diff --git a/.ipynb_checkpoints/SeBRe_detection-checkpoint.ipynb b/.ipynb_checkpoints/SeBRe_detection-checkpoint.ipynb new file mode 100644 index 0000000..618236d --- /dev/null +++ b/.ipynb_checkpoints/SeBRe_detection-checkpoint.ipynb @@ -0,0 +1,382 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "id": "bba90324", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "import random\n", + "import math\n", + "import re\n", + "import time\n", + "import numpy as np\n", + "import cv2\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "from config import Config\n", + "import utils\n", + "import glob #for selecting png files in training images folder\n", + "from natsort import natsorted, ns #for sorting filenames in a directory\n", + "import skimage\n", + "import pandas\n", + "\n", + "import model as modellib\n", + "import visualize\n", + "from model import log" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e92401ef", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C:\\Users\\dal4019\\Documents\\Bst_Reg\n" + ] + } + ], + "source": [ + "def resetDataDir():\n", + " while os.getcwd() != \"C:\\\\\":\n", + " os.chdir('..')\n", + "\n", + " # Replace the following with the entire path to your data\n", + " os.chdir('C:\\\\Users\\\\dal4019\\\\Documents\\\\Bst_Reg')\n", + "\n", + "# Root directory of the project\n", + "resetDataDir()\n", + "ROOT_DIR = os.getcwd()\n", + "print(ROOT_DIR)\n", + "\n", + "# Directory to save logs and trained model\n", + "MODEL_DIR = os.path.join(ROOT_DIR, \"weights\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "db89c922", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "25\n" + ] + } + ], + "source": [ + "RGB_MAPPINGS_DIR = 'rgb_mappings_medulla_v2.csv'\n", + "\n", + "resetDataDir()\n", + "\n", + "RGB_MAPPINGS = pandas.read_csv(RGB_MAPPINGS_DIR, usecols = ['Label', 'R', 'G', 'B']).dropna()\n", + "RGB_MAPPINGS_MAP = {}\n", + "for index, row in RGB_MAPPINGS.iterrows():\n", + " r = row[\"R\"]\n", + " g = row[\"G\"]\n", + " b = row[\"B\"]\n", + " label = row[\"Label\"]\n", + " RGB_MAPPINGS_MAP[label] =(r,g,b)\n", + " \n", + "RGB_MAPPINGS_LABELS = list(RGB_MAPPINGS_MAP.keys())\n", + "RGB_MAPPINGS_INDEX = RGB_MAPPINGS.index.values\n", + "NUM_LABELS = len(RGB_MAPPINGS_INDEX)\n", + "print(NUM_LABELS)" + ] + }, + { + "cell_type": "markdown", + "id": "21f1c41b", + "metadata": {}, + "source": [ + "## Load data to run detection" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d4493dfa", + "metadata": {}, + "outputs": [], + "source": [ + "########### Create detection dataset:\n", + "\n", + "class BrainDataset(utils.Dataset):\n", + " \"\"\"Generates the brain section dataset. The dataset consists of locally stored \n", + " brain section images, to which file access is required.\n", + " \"\"\"\n", + "\n", + " #see utils.py for default def load_image() function; modify according to your dataset\n", + " \n", + " def load_brain(self): \n", + " \"\"\"\n", + " for naming image files follow this convention: '*_(image_id).jpg'\n", + " \"\"\"\n", + " for index, label in enumerate(RGB_MAPPINGS_LABELS):\n", + " self.add_class('brain', index+1, label)\n", + " \n", + " training_images_folder = 'images/VALIDATION'\n", + " resetDataDir()\n", + " os.chdir(training_images_folder)\n", + " cwd = os.getcwd()\n", + " img_list = glob.glob('*.png')\n", + " img_list = natsorted(img_list, key=lambda y: y.lower())\n", + " im_id=0\n", + " for i in img_list:\n", + " img = skimage.io.imread(i) #grayscale = 0\n", + " [s1, s2] = np.shape(img)\n", + " im_dims = np.shape(img)\n", + " self.add_image(\"brain\", image_id=im_id, path = cwd+'/'+i, height = im_dims[0], width = im_dims[1])\n", + " im_id+=1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "22874be2", + "metadata": {}, + "outputs": [], + "source": [ + "# Detection dataset\n", + "resetDataDir()\n", + "dataset = BrainDataset()\n", + "dataset.load_brain()\n", + "dataset.prepare()\n", + "print(\"Done processing data.\")" + ] + }, + { + "cell_type": "markdown", + "id": "24bf9ee6", + "metadata": {}, + "source": [ + "## Load inference config and run detection" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "218fd787", + "metadata": {}, + "outputs": [], + "source": [ + "class BrainConfig(Config):\n", + " \"\"\"Configuration for training on the brain dataset.\n", + " Derives from the base Config class and overrides values specific\n", + " to the brain dataset.\n", + " \"\"\"\n", + " # Give the configuration a recognizable name\n", + " NAME = \"brain\"\n", + "\n", + " # Train on 1 GPU and 8 images per GPU. We can put multiple images on each\n", + " # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).\n", + " GPU_COUNT = 1\n", + " IMAGES_PER_GPU = 1 #8 ; reduced to avoid running out of memory when image size increased\n", + "\n", + " # Number of classes (including background)\n", + " NUM_CLASSES = 1 + NUM_LABELS # background + 4 regions\n", + "\n", + " # Use small images for faster training. Set the limits of the small side\n", + " # the large side, and that determines the image shape.\n", + " IMAGE_MIN_DIM = 128*3 #128\n", + " IMAGE_MAX_DIM = 128*3#128\n", + "\n", + " # Use smaller anchors because our image and objects are small\n", + " RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels\n", + "\n", + " # Reduce training ROIs per image because the images are small and have\n", + " # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.\n", + " TRAIN_ROIS_PER_IMAGE = 32\n", + "\n", + " # Use a small epoch since the data is simple\n", + " STEPS_PER_EPOCH = 2000 #100 #steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. \n", + " #steps_per_epoch = TotalTrainingSamples / TrainingBatchSize (default to use entire training data per epoch; can modify if required)\n", + " \n", + " # use small validation steps since the epoch is small\n", + " VALIDATION_STEPS = 100 #5 #validation_steps = TotalvalidationSamples / ValidationBatchSize\n", + " #Ideally, you use all your validation data at once. If you use only part of your validation data, you will get different metrics for each batch, \n", + " #what may make you think that your model got worse or better when it actually didn't, you just measured different validation sets.\n", + " #That's why they suggest validation_steps = uniqueValidationData / batchSize. \n", + " #Theoretically, you test your entire data every epoch, as you theoretically should also train your entire data every epoch.\n", + " #https://stackoverflow.com/questions/45943675/meaning-of-validation-steps-in-keras-sequential-fit-generator-parameter-list\n", + " \n", + "\n", + " \n", + " ###### Further changes (experimentation):\n", + " \n", + " # Maximum number of ground truth instances to use in one image\n", + " MAX_GT_INSTANCES = 8 #100 #decreased to avoid duplicate instances of each brain region\n", + " \n", + " # Max number of final detections\n", + " DETECTION_MAX_INSTANCES = 8 #100 # #decreased to avoid duplicate instances of each brain region\n", + "\n", + " # Minimum probability value to accept a detected instance\n", + " # ROIs below this threshold are skipped\n", + " DETECTION_MIN_CONFIDENCE = 0.1 #0.7\n", + "\n", + " # Non-maximum suppression threshold for detection\n", + " DETECTION_NMS_THRESHOLD = 0.9 # if overlap ratio is greater than the overlap threshold (0.3), suppress object (https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python)\n", + "\n", + " \n", + " \n", + " \n", + "config = BrainConfig()\n", + "config.display()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f3d04824", + "metadata": {}, + "outputs": [], + "source": [ + "class InferenceConfig(BrainConfig):\n", + " GPU_COUNT = 1\n", + " IMAGES_PER_GPU = 1\n", + "\n", + "inference_config = InferenceConfig()\n", + "\n", + "# Recreate the model in inference mode\n", + "model = modellib.MaskRCNN(mode=\"inference\", \n", + " config=inference_config,\n", + " model_dir=MODEL_DIR)\n", + "\n", + "# Get path to saved weights\n", + "# Either set a specific path or find last trained weights\n", + "resetDataDir()\n", + "model_path = os.path.join(\"weights\", \"mask_rcnn_shapes.h5\")\n", + "# model_path = model.find_last()[1]\n", + "\n", + "# Load trained weights (fill in path to trained weights here)\n", + "assert model_path != \"DANA_WEIGHTS\", \"Provide path to trained weights\"\n", + "print(\"Loading weights from \", model_path)\n", + "model.load_weights(model_path, by_name=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "57418e89", + "metadata": {}, + "outputs": [], + "source": [ + "colors = []\n", + "for color in RGB_MAPPINGS_MAP.values():\n", + " colors.append(tuple((color[0]/255, color[1]/255, color[2]/255)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4cdfbf53", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "image = dataset.load_image(95)\n", + "results = model.detect([image], verbose=1)\n", + "plt.figure(figsize=(20,20))\n", + "\n", + "r = results[0]\n", + "print(r['rois'])\n", + "print(r['class_ids'])\n", + "print(dataset.class_names)\n", + "\n", + "visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], \n", + " dataset.class_names, r['scores'], figsize=(15, 15), colors=colors)#ax=get_ax()" + ] + }, + { + "cell_type": "markdown", + "id": "5e249df7", + "metadata": {}, + "source": [ + "## Download detection masks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "929072b8", + "metadata": {}, + "outputs": [], + "source": [ + "from PIL import Image\n", + "\n", + "# Create dir for detection masks\n", + "resetDataDir()\n", + "detection_mask_dir = 'detection_masks'\n", + "if (not os.path.isdir(detection_mask_dir)):\n", + " os.mkdir(detection_mask_dir)\n", + "\n", + "# Create id class map\n", + "class_map = {}\n", + "for info in dataset.class_info[1:]:\n", + " class_map[int(info['id'])] = info['name']\n", + "\n", + "# Download masks\n", + "for image_id in dataset.image_ids:\n", + " original_image, image_meta, gt_class_id, gt_bbox, gt_mask =\\\n", + " modellib.load_image_gt(dataset, inference_config, \n", + " image_id, use_mini_mask=False)\n", + " results = model.detect([original_image], verbose=1)\n", + " r = results[0]\n", + " \n", + " # Reset data directory to directory with detection masks\n", + " resetDataDir()\n", + " os.chdir('detection_masks')\n", + "\n", + " # Download detection masks\n", + " section_detection_mask_dir = \"section_masks_\" + str(image_id)\n", + " if (not os.path.isdir(section_detection_mask_dir)):\n", + " os.mkdir(section_detection_mask_dir)\n", + " os.chdir(section_detection_mask_dir)\n", + " num_classes = np.shape(r['masks'])[2]\n", + " for class_id in range(1,num_classes+1):\n", + " im = Image.fromarray(np.uint8(r['masks'][:,:,class_id-1] * 255) , 'L')\n", + " im.save(\"section_masks_\" + str(image_id) + \"_\" + class_map[class_id] + \"_m_\" + str(class_id) + \".png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "49883ef2", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:bstreg] *", + "language": "python", + "name": "conda-env-bstreg-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.ipynb_checkpoints/SeBRe_training-checkpoint.ipynb b/.ipynb_checkpoints/SeBRe_training-checkpoint.ipynb new file mode 100644 index 0000000..c014273 --- /dev/null +++ b/.ipynb_checkpoints/SeBRe_training-checkpoint.ipynb @@ -0,0 +1,13323 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "CX2nQuVKBxyf" + }, + "source": [ + "# Developing Brain Atlas through Deep Learning \n", + "\n", + "## A. Iqbal, R. Khan, T. Karayannis\n", + "# .\n", + "# .\n", + "# ." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "executionInfo": { + "elapsed": 7172, + "status": "ok", + "timestamp": 1626787247341, + "user": { + "displayName": "Dana Luong", + "photoUrl": "", + "userId": "11149291357161653867" + }, + "user_tz": 240 + }, + "id": "xXYUb0KMBxyo", + "outputId": "ed7b403a-8537-4357-f64e-e0280ac7a83d", + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import os\n", + "import sys\n", + "import random\n", + "import math\n", + "import re\n", + "import time\n", + "import numpy as np\n", + "import cv2\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "from config import Config\n", + "import utils\n", + "import glob #for selecting png files in training images folder\n", + "from natsort import natsorted, ns #for sorting filenames in a directory\n", + "import skimage\n", + "import pandas\n", + "\n", + "import model as modellib\n", + "import visualize\n", + "from model import log" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 351 + }, + "executionInfo": { + "elapsed": 161, + "status": "error", + "timestamp": 1626787250954, + "user": { + "displayName": "Dana Luong", + "photoUrl": "", + "userId": "11149291357161653867" + }, + "user_tz": 240 + }, + "id": "fEyJkBrRBxy0", + "outputId": "746a2782-b2f6-438c-9b93-a8b7102b32db" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C:\\Users\\dal4019\\Documents\\Bst_Reg\n" + ] + } + ], + "source": [ + "def resetDataDir():\n", + " while os.getcwd() != \"C:\\\\\":\n", + " os.chdir('..')\n", + "\n", + " # Replace the following with the entire path to your data\n", + " os.chdir('C:\\\\Users\\\\dal4019\\\\Documents\\\\Bst_Reg')\n", + "\n", + "# Root directory of the project\n", + "resetDataDir()\n", + "ROOT_DIR = os.getcwd()\n", + "print(ROOT_DIR)\n", + "\n", + "# Directory to save logs and trained model\n", + "MODEL_DIR = os.path.join(ROOT_DIR, \"weights\")\n", + "\n", + "# Local path to trained weights file\n", + "COCO_MODEL_PATH = os.path.join(ROOT_DIR, \"mask_rcnn_coco.h5\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "yWsl3SI7Bxy4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "25\n" + ] + } + ], + "source": [ + "RGB_MAPPINGS_DIR = 'rgb_mappings_medulla_v2.csv'\n", + "\n", + "resetDataDir()\n", + "\n", + "RGB_MAPPINGS = pandas.read_csv(RGB_MAPPINGS_DIR, usecols = ['Label', 'R', 'G', 'B']).dropna()\n", + "RGB_MAPPINGS_MAP = {}\n", + "for index, row in RGB_MAPPINGS.iterrows():\n", + " r = row[\"R\"]\n", + " g = row[\"G\"]\n", + " b = row[\"B\"]\n", + " label = row[\"Label\"]\n", + " RGB_MAPPINGS_MAP[label] =(r,g,b)\n", + " \n", + "RGB_MAPPINGS_LABELS = list(RGB_MAPPINGS_MAP.keys())\n", + "RGB_MAPPINGS_INDEX = RGB_MAPPINGS.index.values\n", + "NUM_LABELS = len(RGB_MAPPINGS_INDEX)\n", + "print(NUM_LABELS)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MJTK5716Bxy6" + }, + "source": [ + "## Configurations" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "SgSG2JV9Bxy7", + "outputId": "3aa097ed-69e8-4055-8187-0ca8cbc8414a", + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Configurations:\n", + "BACKBONE_SHAPES [[96 96]\n", + " [48 48]\n", + " [24 24]\n", + " [12 12]\n", + " [ 6 6]]\n", + "BACKBONE_STRIDES [4, 8, 16, 32, 64]\n", + "BATCH_SIZE 1\n", + "BBOX_STD_DEV [0.1 0.1 0.2 0.2]\n", + "DETECTION_MAX_INSTANCES 8\n", + "DETECTION_MIN_CONFIDENCE 0.5\n", + "DETECTION_NMS_THRESHOLD 0.8\n", + "GPU_COUNT 1\n", + "IMAGES_PER_GPU 1\n", + "IMAGE_MAX_DIM 384\n", + "IMAGE_MIN_DIM 384\n", + "IMAGE_PADDING True\n", + "IMAGE_SHAPE [384 384 3]\n", + "LEARNING_MOMENTUM 0.9\n", + "LEARNING_RATE 0.001\n", + "MASK_POOL_SIZE 14\n", + "MASK_SHAPE [28, 28]\n", + "MAX_GT_INSTANCES 8\n", + "MEAN_PIXEL [123.7 116.8 103.9]\n", + "MINI_MASK_SHAPE (56, 56)\n", + "NAME brain\n", + "NUM_CLASSES 26\n", + "POOL_SIZE 7\n", + "POST_NMS_ROIS_INFERENCE 1000\n", + "POST_NMS_ROIS_TRAINING 2000\n", + "ROI_POSITIVE_RATIO 0.33\n", + "RPN_ANCHOR_RATIOS [0.5, 1, 2]\n", + "RPN_ANCHOR_SCALES (8, 16, 32, 64, 128)\n", + "RPN_ANCHOR_STRIDE 1\n", + "RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]\n", + "RPN_NMS_THRESHOLD 0.7\n", + "RPN_TRAIN_ANCHORS_PER_IMAGE 256\n", + "STEPS_PER_EPOCH 2000\n", + "TRAIN_ROIS_PER_IMAGE 32\n", + "USE_MINI_MASK False\n", + "USE_RPN_ROIS True\n", + "VALIDATION_STEPS 100\n", + "WEIGHT_DECAY 0.0001\n", + "\n", + "\n" + ] + } + ], + "source": [ + "class BrainConfig(Config):\n", + " \"\"\"Configuration for training on the brain dataset.\n", + " Derives from the base Config class and overrides values specific\n", + " to the brain dataset.\n", + " \"\"\"\n", + " # Give the configuration a recognizable name\n", + " NAME = \"brain\"\n", + "\n", + " # Train on 1 GPU and 8 images per GPU. We can put multiple images on each\n", + " # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).\n", + " GPU_COUNT = 1\n", + " IMAGES_PER_GPU = 1 #8 ; reduced to avoid running out of memory when image size increased\n", + "\n", + " # Number of classes (including background)\n", + " NUM_CLASSES = 1 + NUM_LABELS # background + 4 regions\n", + "\n", + " # Use small images for faster training. Set the limits of the small side\n", + " # the large side, and that determines the image shape.\n", + " IMAGE_MIN_DIM = 128*3 #128\n", + " IMAGE_MAX_DIM = 128*3#128\n", + "\n", + " # Use smaller anchors because our image and objects are small\n", + " RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels\n", + "\n", + " # Reduce training ROIs per image because the images are small and have\n", + " # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.\n", + " TRAIN_ROIS_PER_IMAGE = 32\n", + "\n", + " # Use a small epoch since the data is simple\n", + " STEPS_PER_EPOCH = 2000 #100 #steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. \n", + " #steps_per_epoch = TotalTrainingSamples / TrainingBatchSize (default to use entire training data per epoch; can modify if required)\n", + " \n", + " # use small validation steps since the epoch is small\n", + " VALIDATION_STEPS = 100 #5 #validation_steps = TotalvalidationSamples / ValidationBatchSize\n", + " #Ideally, you use all your validation data at once. If you use only part of your validation data, you will get different metrics for each batch, \n", + " #what may make you think that your model got worse or better when it actually didn't, you just measured different validation sets.\n", + " #That's why they suggest validation_steps = uniqueValidationData / batchSize. \n", + " #Theoretically, you test your entire data every epoch, as you theoretically should also train your entire data every epoch.\n", + " #https://stackoverflow.com/questions/45943675/meaning-of-validation-steps-in-keras-sequential-fit-generator-parameter-list\n", + " \n", + "\n", + " \n", + " ###### Further changes (experimentation):\n", + " \n", + " # Maximum number of ground truth instances to use in one image\n", + " MAX_GT_INSTANCES = 8 #100 #decreased to avoid duplicate instances of each brain region\n", + " \n", + " # Max number of final detections\n", + " DETECTION_MAX_INSTANCES = 8 #100 # #decreased to avoid duplicate instances of each brain region\n", + "\n", + " # Minimum probability value to accept a detected instance\n", + " # ROIs below this threshold are skipped\n", + " DETECTION_MIN_CONFIDENCE = 0.5 #0.7\n", + "\n", + " # Non-maximum suppression threshold for detection\n", + " DETECTION_NMS_THRESHOLD = 0.8 # if overlap ratio is greater than the overlap threshold (0.3), suppress object (https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python)\n", + "\n", + " \n", + " \n", + " \n", + "config = BrainConfig()\n", + "config.display()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Msfd_mvzBxy_" + }, + "source": [ + "## Notebook Preferences" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "dI14Q8NxBxzI" + }, + "outputs": [], + "source": [ + "def get_ax(rows=1, cols=1, size=8):\n", + " \"\"\"Return a Matplotlib Axes array to be used in\n", + " all visualizations in the notebook. Provide a\n", + " central point to control graph sizes.\n", + " \n", + " Change the default size attribute to control the size\n", + " of rendered images\n", + " \"\"\"\n", + " _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows))\n", + " return ax" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SC8bytjOBxzK" + }, + "source": [ + "## Dataset\n", + "\n", + "Load training dataset\n", + "\n", + "Extend the Dataset class and add a method to load the brain sections dataset, `load_brain()`, and override the following methods:\n", + "\n", + "* load_image()\n", + "* load_mask()\n", + "* image_reference() # do not need to for now" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "n1opK0yTBxzL" + }, + "outputs": [], + "source": [ + "########### Create training dataset:\n", + "\n", + "class BrainDataset_Train(utils.Dataset):\n", + " \"\"\"Generates the brain section dataset. The dataset consists of locally stored \n", + " brain section images, to which file access is required.\n", + " \"\"\"\n", + "\n", + " #see utils.py for default def load_image() function; modify according to your dataset\n", + " \n", + " def load_brain(self): \n", + " \"\"\"\n", + " for naming image files follow this convention: '*_(image_id).jpg'\n", + " \"\"\"\n", + " for index, label in enumerate(RGB_MAPPINGS_LABELS):\n", + " self.add_class('brain', index+1, label)\n", + " \n", + " training_images_folder = 'images/TRAINING'\n", + " resetDataDir()\n", + " os.chdir(training_images_folder)\n", + " cwd = os.getcwd()\n", + " img_list = glob.glob('*.png')\n", + " img_list = natsorted(img_list, key=lambda y: y.lower())\n", + " im_id=0\n", + " for i in img_list:\n", + " img = skimage.io.imread(i) #grayscale = 0\n", + " [s1, s2] = np.shape(img)\n", + " im_dims = np.shape(img)\n", + " self.add_image(\"brain\", image_id=im_id, path = cwd+'/'+i, height = im_dims[0], width = im_dims[1])\n", + " im_id+=1\n", + " \n", + " \n", + " def load_mask(self,image_id):\n", + " \"\"\"Load instance masks for the given image.\n", + " Different datasets use different ways to store masks. This\n", + " function converts the different mask format to one format\n", + " in the form of a bitmap [height, width, instances].\n", + "\n", + " Returns:\n", + " masks: A bool array of shape [height, width, instance count] with\n", + " one mask per instance.\n", + " class_ids: a 1D array of class IDs of the instance masks.\"\"\"\n", + " \n", + " masks_folder = 'masks/TRAINING'\n", + " print(image_id)\n", + " resetDataDir()\n", + " os.chdir(masks_folder)\n", + " subfolder = glob.glob('*_'+str(image_id))[0]#add 1 to image_id, to get to correct corresponding masks folder for a given image \n", + " os.chdir(subfolder) \n", + " \n", + " info = self.image_info[image_id] \n", + " mk_list = glob.glob('*.png')\n", + " count = len(mk_list)\n", + " mk_id = 0\n", + " mask = np.zeros([info['height'], info['width'], count], dtype=np.uint8)\n", + " class_ids = np.zeros(count)\n", + " \n", + " for m in mk_list:\n", + " bin_mask = skimage.io.imread(m,as_gray=True) # grayscale=0\n", + " mk_size = np.shape(bin_mask)\n", + " mask[:, :, mk_id]= bin_mask\n", + " \n", + " # Map class names to class IDs.\n", + " class_ids[mk_id] = m[-5] #fifth last position from mask_image name = class_id #need to update(range) if class_ids become two/three-digit numbers \n", + " mk_id += 1\n", + " return mask, class_ids.astype(np.int32)\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "########### Create validation dataset: \n", + "\n", + "class BrainDataset_Val(utils.Dataset):\n", + " \"\"\"Generates the brain section dataset. The dataset consists of locally stored \n", + " brain section images, to which file access is required.\n", + " \"\"\"\n", + "\n", + " #see utils.py for default def load_image() function; modify according to your dataset\n", + " \n", + " def load_brain(self): \n", + " \"\"\"\n", + " for naming image files follow this convention: '*_(image_id+1).jpg'\n", + " \"\"\"\n", + " \n", + " for index, label in enumerate(RGB_MAPPINGS_LABELS):\n", + " self.add_class('brain', index+1, label)\n", + " \n", + " val_images_folder = 'images/VALIDATION'\n", + " resetDataDir()\n", + " os.chdir(val_images_folder)\n", + " cwd = os.getcwd()\n", + " img_list = glob.glob('*.png')\n", + " img_list = natsorted(img_list, key=lambda y: y.lower())\n", + " im_id=0\n", + " for i in img_list:\n", + " img = skimage.io.imread(i) #grayscale = 0\n", + " [s1, s2] = np.shape(img)\n", + " im_dims = np.shape(img)\n", + " self.add_image(\"brain\", image_id=im_id, path = cwd+'/'+i, height = im_dims[0], width = im_dims[1])\n", + " im_id+=1\n", + " \n", + " \n", + " \n", + " def load_mask(self,image_id):\n", + " \"\"\"Load instance masks for the given image.\n", + " Different datasets use different ways to store masks. This\n", + " function converts the different mask format to one format\n", + " in the form of a bitmap [height, width, instances].\n", + "\n", + " Returns:\n", + " masks: A bool array of shape [height, width, instance count] with\n", + " one mask per instance.\n", + " class_ids: a 1D array of class IDs of the instance masks.\"\"\"\n", + " \n", + " masks_folder = 'masks/VALIDATION'\n", + " print(image_id)\n", + " resetDataDir()\n", + " os.chdir(masks_folder)\n", + " subfolder = glob.glob('*_'+str(image_id))[0]#add 1 to image_id, to get to correct corresponding masks folder for a given image \n", + " os.chdir(subfolder) \n", + " \n", + " info = self.image_info[image_id] \n", + " mk_list = glob.glob('*.png')\n", + " count = len(mk_list)\n", + " mk_id = 0\n", + " mask = np.zeros([info['height'], info['width'], count], dtype=np.uint8)\n", + " class_ids = np.zeros(count)\n", + " \n", + " for m in mk_list:\n", + " bin_mask = skimage.io.imread(m,as_gray=True) # grayscale=0\n", + " mk_size = np.shape(bin_mask)\n", + " mask[:, :, mk_id]= bin_mask\n", + " \n", + " # Map class names to class IDs.\n", + " class_ids[mk_id] = m[-5] #fifth last position from mask_image name = class_id #need to update(range) if class_ids become two/three-digit numbers \n", + " mk_id += 1\n", + " return mask, class_ids.astype(np.int32)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "kfwbYWpcBxzN", + "outputId": "26a6d5f3-5e85-4511-c862-fa155462a42c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C:\\Users\\dal4019\\Documents\\Bst_Reg\n", + "Done processing training data.\n" + ] + } + ], + "source": [ + "# Training dataset\n", + "resetDataDir()\n", + "print(os.getcwd())\n", + "dataset_train = BrainDataset_Train()\n", + "dataset_train.load_brain()\n", + "dataset_train.prepare() #does nothing for now \n", + "print(\"Done processing training data.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done processing training data.\n" + ] + } + ], + "source": [ + "# Validation dataset \n", + "resetDataDir()\n", + "dataset_val = BrainDataset_Val()\n", + "dataset_val.load_brain()\n", + "dataset_val.prepare()#does nothing for now \n", + "print(\"Done processing training data.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "CY7cFDifBxzQ", + "outputId": "6b8d120b-832d-42ce-982f-5f56cb6a097c", + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IMAGE ID: 813\n", + "813\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvgAAAGoCAYAAACDneILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAD6E0lEQVR4nOzdeZxkd13v/9f31L4v3dXr7GuSSTIJISELyCKgIHpBUAQEAVcUxfWnXr1y7xWvcr0CKup1gavggqIi4gJ4uewEEkJClsky+3TP9Fr7vpw6vz96zpfJMPvW08n7+Xj0Y7q6Tp3zrVPVqVS9+/P5GM/zEBEREREREREREREREZG1wVntBYiIiIiIiIiIiIiIiIjIuVPAJyIiIiIiIiIiIiIiIrKGKOATERERERERERERERERWUMU8ImIiIiIiIiIiIiIiIisIQr4RERERERERERERERERNYQBXwiIiIiIiIiIiIiIiIia4gCPhEREREREREREREREZE1RAGfrGnGmP9qjPHO9esM+4kYY95sjPmwMeaAMaZujOkaY+aMMZ8yxvyqMWbzKW7358f3fegc1rrphLW88eLuuYiIyKV3ltfVljFmrzHmL4wxd57DvpLGmLcYY/7RGHPQGFMzxvSMMUvGmC8bY95rjHmxMSZ4Je6biIjIuTDG/Onx172iMSZyHrfbd/x2/3z88htPeA0dGmNuPsvtz+m94oW+dxUREblaGGMCxpjvNcZ8wBjzhDGmcvy94qIx5gvGmN80xlx/0m1O/FzVM8b89FmO8Znj2/355bwvIqtNAZ88lSycw9c3Mca8DNgPvA94FbAZCAEtYBx4AfDrwF5jzB9e3rsgIiJy1Tjx9XMJCAPbgDcAXzTG/NfT3dAY82bgMPCHwCuATUAEqAM54FnATwCfAJ4wxrzwct0JERGR8/S+4//mgf90LjcwxjwX2HrS7Z+0CfBbF7swvXcVEZG1zhhzO7AH+Fvg9cB2IM7Ke8UR4C7gl4CHjDH/YIwJn2ZXv2KMSV+BJYtc1RTwyVOG53kTZ/s6+TbGmB8FPgpMAzOsfNi4wfO8qOd5OVY+jPwW4A+AAfDaK3ePREREVs9Jr6FjrLwmPhu47/gmbz9VJZ8x5p2sfPCYBx4FfhBY73lexPO8EVY+iNwO/CjwVVY+nFTAJyIiVwXP877MygePAG86x5v52y0A/3qabV5sjHnBha5L711FRGStM8Z8J/AZYAdQBH4Z2OF5Xvj4e8UwcCsrfxRTA76blfDvVEaBn7/caxa52ingk6ctY8xdwHtZ+T34HHCD53l/6HnejL+N53l9z/M+73neW1l58fnC6qxWRERkdXme53qe90Xg5Sf8+EmVDcaY7wf+v+MX/xq4yfO893ueN3vCfjzP8/Z5nvcnnufdenwfs4iIiFw9/Cq8Fxtj1p1pQ2NMipVqOoAPeJ43OMVm/3L833caY8z5LkbvXUVEZK0zxmwH/pKVP0jZw8p7xd/yPG+vv83x95xf9Tzvl1n5Q9CPnmZ3/uvqzxpjxi/nukWudgr45Onsd4AgsAi80vO86pk29jzvCPBdV2JhIiIiV6vjYV3x+MWk//Pjc4r89mNfB97keV7vHPb3z57nvfeSL1REROTCfRDos/KZyQ+cZdtXA4nj37//NNv8MjAEnsk3wsDzofeuIiKy1r0DSAMd4BUn/hHoqXieV/I87+XAqV7z3gscYeX199cu8TpF1hQFfPK0ZIy5lZX5PwC/73ne8rnczvO84eVblYiIyNXPGDPNymwEgMdPuOrlrLQNA/jNcwn3RERErkae5y0B/3z84hvPsrnfnvOLnuc9dpr9PcxKaAjwG8aY4LmuRe9dRURkrTteZef/gctfeZ73xLne1vM87xQ/7gJvP/79Dxtjtp5iG5GnBQV88nT1rSd8/5FVW4WIiMgaYYwJGGPu4Buvm4vAB07YxH9tdTn9/CEREZG1wm/Tuc0Y8y2n2sAYsxPw59GernrP92usfCC5Hfih81iH3ruKiMha93y+kUNcqteyDwCPsDLj/Tcu0T5F1hwFfPKUYYyZP8vX756w+a7j/3aBR1dhuSIiIle1k15DF1l5zfwSsBP4K+A2z/MqJ9zkuuP/7vc8r3FlVysiInLJfYJvzIh982m28X/eAP7uTDs73jbzD49f/DVjTPwc16H3riIistbtOuH7+y/FDo9Xqv/n4xe/1xjzjEuxX5G1RgGfPJWMn+Urc8K2fmuxilqXiIiInNKJr6EFIHD853FWXlNPHmbuv7aWTrdDY8wbTveHOJd47SIiIhfl+PvEvzh+8VXGmOSJ1xtjAsDrj1/823P845bfAGrAJPDT57gUvXcVEZG1buSE70/7fvF8eZ73z8AXAcM35sGLPK0o4JOnDM/zzFm+3njC5sa/2SosVURE5Kp38usoEANuZuXDzpcBnzPGvPw8dxvn9H+IIyIicrV5PyvvGRPAq0+67iWsBHX+dmfleV4R+J/HL/5/xpiRM21/nN67iojIWmfOvskF+8Xj/77IGPOtZ9xS5ClIAZ88XfmDyXPGGP0eiIiInIXneR3P8x7wPO+HWJmbEAH+3BiTPr5J8fi/+TPs43+fFBq+6fKuWkRE5MJ5nncA+Mzxiye36fQvP+Z53pfOY7fvBuZZqYb/z2fZFvTeVURE1r7lE74/7fvFC+F53heBjx2/+FvGmMsZJopcdfQ/h/J09cjxfyPAtRexn/bxf2PnsO2JMxbap91KRETk6venx//NAC89/v2e4/9uPbmNmYiIyBr2vuP/3mmM2QlgjBllpZr9xOvPied5LeC/H7/4E8aYDWe5yaV67yoiIrJaHjnh+5svw/5/GRgCzwS+5zLsX+SqpYBPnq4+dcL3r7iI/fh/gTJijImeZdvpE75fuohjioiIrLbDJ3y/+fi//mtrAPiOK7scERGRy+YfgMrx7/3K89cDIWAAfPAC9vmnwF5WQrv/dpZtL9V7VxERkdXyaVYCOLgMr2We5z0CfOD4xXcYY4KX+hgiVysFfPK05HnevcA9xy++9fhfYJ7VKVqi3Hf83wBw+1lu/mz/8MD953I8ERGRq9S6E75vHv/3n4Bjx7//ZWNM+IquSERE5DLwPK8D/PXxi28wxgT4RtD3L57nLVzAPgfAr56wz+vPsO2leu8qIiKyKo6/Vv7D8YuvNcbsONfbnkfLzbcDXWA78MPnt0KRtUv/wydPZz8PuMA48A/GmMyZNjbGrGPlw8sT/QdQPv79L57uRccYkwN+xL+N53nlU20nIiKyRrz2hO+/CuB5XpdvDDjfDbxfIZ+IiDxF+G04J4H/Atxw0s8vxIdZeQ11gP9xlm0vxXtXERGR1fSrQIOVMUf/aIyZPtPGxpicMeYfWBkLcVae5x0B/uD4xV8DEhexVpE1QwGfPG15nvd54G2sVNR9C/CgMeYtx98MAWCMCRlj7jTGvAd44vh2J+6jycqLBsC3s/ICdZMf9BljwsaYbwM+B0yw8pck5zJIXURE5KpjjJkwxrwD+IHjP/oycLd/ved5fwn8z+MXXwc8YIz5wRNfW0/Yz+uBn70CyxYREbkonud9DXjg+MX/cvzfOeDfL2KfHvBLxy9+51m2vej3riIiIqvJ87wnWGlx3QN2sfJe8ReNMdv8bYwxAWPMzcaY/w4cAL77PA/zG0CVlc9gn3lpVi5ydVM/WnnKMMbMn8Nm3+153pf8C57n/YExZhb4I2AD8IfAHxpjOkAbyAJ+Vd4A+OOTd+h53nuNMWOs/CXKy49/dYwxTVb+ysT/PasDr/c8776T9yEiInK1OcXrapQn//XkQ8Arj39AaXme94vGmCdYCfquBf7s+P66rLwWxo9/+Q6iP34REZGr3/uA3+cbfyj9F57nuRezQ8/zPmWM+Q/gReew7UW/dxUREVlNnuf9kzHmBcCfA9uA3wJ+yxjTY6W6L8s3Xmc94G/4xkiIc9l/yRjzP1kJ+kSeFhTwyVPJ+Dls802twjzP+6gx5hPA9wMvAZ4BFFgp5V4EHgb+H/BBz/NmTrVTz/N+zRjzYeDHWPlLyQ2sfAhaAx4HPgn80YXMZxAREVklJ7+u9oF54OvA3wMf8Dyvd6obep73PmPM3wJvYOVDy5uAUVZeG6vAHuBe4KOstK4enmo/IiIiV5G/An6blT94AXj/JdrvLwEv5Bvh3GldiveuIiIiq8nzvC8aY64Bvgd4GfAsYAxIASXgMeCzrLyWPX4Bh3gP8FZW2mqLPOWZk/7oWkRERERERERERERERESuYprBJyIiIiIiIiIiIiIiIrKGKOATERERERERERERERERWUMU8ImIiIiIiIiIiIiIiIisIQr4RERERERERERERERERNYQBXwiIiIiIiIiIiIiIiIia0jwTFcaY7wrtRAREbm6eJ5nVnsNa82LnO/R66aIyNPUfww/rNfN86TXTRGRpy+9bp4/vW6KiDx9ne51UxV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA1RwCciIiIiIiIiIiIiIiKyhijgExEREREREREREREREVlDFPCJiIiIiIiIiIiIiIiIrCEK+ERERERERERERERERETWEAV8IiIiIiIiIiIiIiIiImuIAj4RERERERERERERERGRNUQBn4iIiIiIiIiIiIiIiMgaooBPREREREREREREREREZA0JrvYCns6MMVf1cc7ldtFolEAgQLPZPK99e553QWu6WP5xjTF4nnfK+3gua1ut9YuIiIiIiIiIiIiIiCjgu0gXG9Jd6pDvTPu7kGOd6Tb5fJ5AIECj0cBxzq8Y9EoGZCce68T7c7r7drqfn24/53LcM/1MRERERERERERERETkfCjgW0VXMtw7nROr2AKBAK7rnvOxtmzZwqOPPkq73T7v4/rHvJKBl1+1dzG3v5DtzzcYPPk2p7osIiIiIiIiIiIiIiJPXwr4VsFqBHvnUq02HA7P6TaO47Bp0ybGxsY4ePAgnU6H4XB41hDqSoVUpzvOaoVkF1o5eSmCwdP9TERERERERERERERE1i4FfGvc2YKfS9WW0/9ZMBjkpS99KW9605u47777uP766+l2u3zwgx+kXC6vSrj2VA2wLuaxUztRERERERERERGRp67Azm0cfM0Yzg1V4pE+A9ehdiDLxn/tE/rU10Cf7Yk85Sngu8wudStKfz/GmEs6b8/f/lT/BgIBkskkz3rWs8hms3zXd30XnU6HzZs3UyqV2L59O8973vP4oz/6Iz772c/S6/WetFa58q5UO1EFgyIiIiIiIiIiIleIMTg37OSxt6T5y2/739wVdZ58/a2w+Komt/+/n2Tnj+5h2OmszjpF5IpQwHeFXExbzhPDFz888TwPx3G+ab/nc5zT3dYYQzabJRgMctttt7Fjxw6y2Sw333wzjz/+OA8++CCBQIB0Ok21WsUYw8zMDK94xSuYnJzkvvvu44knnrBB38nHWusB0IlzC89lW7j0bVkvl1Ot80z391SP69nu65ke/7X+3BAREREREREREbnUgpMTLH77ZgLfs8T7rvs/7ArHAOeU244FEhx40fu59e+/l/x37Yehe2UXKyJXjAK+y+hShzonhx8n7v9CK7ZOvBwMBikUCjzrWc/iVa96FTMzM0xNTdFutzl06BCPPvooU1NT7Nu3j0gkwsTEBAcPHuQf//Ef2bBhA0tLS4yOjvLqV7+ad77znfT7/SsS2FyJ8PBiK9VO99ittQDwTM50Hy5knuDZKAwUEREREREREZGnKhOJ0HnBjRz5Ppd33fl3fEf8XwmZABA7p9vf+4y/45r/+hY2/trdl3ehIrJqFPBdhMsdypwqhLuYQOh0FXvBYJCtW7fybd/2bdx44430+31mZmYwxrC8vEw0GqXdbjM/P8/c3ByDwQDHcahWqziOw9jYGNdffz3Hjh0jEAgwNjbG+Pg4Bw8efFII81QJ+y7Fvk++/eUIwC6VK7meK3UshYMiIiIiIiIiInI1CqTTzL92F7vf+DDvmv5dcoG4f8157+srb34Xr/nbN+I+8vilXaSIXBUU8F2FztQOMRAInNO252p0dJTXvOY13HDDDWQyGR5++GFGR0dJp9OUSiWOHDlCMpmk3W4TCoVoNptUKhWi0Sh33nknrVaLTqeDMYZqtUq5XAbgla98Je9973vpdrsMh0MbqLjuSkm43170xEq2kwPMiw1hTg77LsU+r4TzaQG6VlyO4PVCz9GZzu9aeH6IiIiIiIiIiMhTjwkGKb/mVl70c1/g7YX3Hq/Wi5/1dmeScWJs+fND7L3NgD73EnnKOXWjXrkk/Jl5J36dzdlCCz8UOzEcO5d9nfx9KBTiWc96Fm9729vYvXs35XKZjRs3EgqFyOVy7N69m9HRUbLZLIVCgenpaRKJBL1eD8dxaLfbfPrTn6ZWq1GpVIhEIiwsLFAsFolGo4yNjXHddded9pwMh8NTrvXE+3Uu9/FcXex+nmqB2+V2quf+ib8DZzqfl/Nc++Heqb5ERERERERERERWQ3D9Oub+fjuf/s3f5R1jDx0P9y6N905/heKbb79k+xORq4cCvqvM2YLAM13nBxV+ddyJPzvx+1gsxitf+Upe+9rX0mg0KBaL3HDDDdx3333E43EOHjzI5z73OWZmZvA8j2KxSLlcZn5+nnQ6TSQSIZ/Pk8/nKRaLuK7LX//1X9NqtUgkEtx///1Uq1Ve97rXfdOxzxbenSp4CQaD31Tx5297vq6m0PCp5HyD7KupUu5qWouIiIiIiIiIiDy9OLuv5Ts/cT9fv+1viDvhy3KMv/gv7yK4bvqCb29CYUzo8qxNRC6cWnReAZerNeTJrQY9z2N0dJRwOMzc3NwpbxOJRHjJS17Cq1/9ag4fPszY2BixWIxYLMbU1BT333+/ra5zHIdms4nneQwGAwKBALVajX6/z7p169i1axczMzNUKhX6/T4TExN4nse6devYtm0bMzMzbN++nccffxzP8wiFQnadjuN80zkJBoPs3r2bbDZLr9cjlUrhui5zc3PMzs5Sr9dxXfdJ1X/+uT3VOT7TeT85nDvXx8cPsE4MKs93H6dby8XMV1xNl/q5fTkDN7XmFBERERERERGRq0VgfIwf+/uP8l2J1mU9zq5wjI0fKXLoW9O4tdq5rW10hIVX7qDz4hp3rjtEyHH54tFr6X49x9Tnu0S/ug+3Ur2s6xaRM1PAd5mcHCScT2hzrtue6hjZbNZWu50cRmUyGV72speRz+f53Oc+Rzwep1wuEwqFKJVKzM3NUa/XicVi7N69my9/+cuk02mi0Sjdbpd2u81gMABgaWmJL3zhC7RaLUKhEI7jsLCwwKZNmzhy5Aie53HDDTfw/Oc/n2w2yyOPPEKn0yEUChGNRmk2m09a98aNG9m+fTt33XUXvV6P4XBIuVwmk8mwYcMGJiYmWFpaotFo0Ol06PV61Go1ut3uk+7nxYRsZ7vtidVpJx7vxLDvxH2cHNyd6phnuiznT0GdiIiIiIiIiIisFXN/kr/s4Z7vD6e/zMs/9m30Xx1jML9w+g2dANXX3Mr3/eeP85PZ/yBgTmgCOP1luA3Kb27xl7Vredc9L2Ty4yFyX5plcHQOhu7lvyMiYingu8qcLuQ5l/DH8zzm5ua48cYbOXDgAMPhEGMM6XSaLVu28IIXvMAGdK7rUqlU8DyPTqdDqVSi0+nQ7/fZuXMn9957L4AN2brdrv0aHR1lbm6OYrGIMYYtW7bQ7Xap1Wps376dj33sY0xOTmKModvtMjk5yejoKLOzswwGA8bGxvjMZz6DMYZMJsOmTZvYvXs3mUyGer3O4uIiIyMjuK6L53m2YnB6eppqtcpwOKRer1OtVun1ejQaDRqNBu12m2azecoKv3M99xcbEJ2u7eharc47V5eikvF8napi81LuT0RERERERERE5HIxoTBffuYHgdAVO+Y/bf8E7/nUJv72N76d/KcPMVhYsqGck0rRuXMnzZ+q8v92v4ekE+V0E75ygTg/mTvMT37b++i+uM9n23F+b/aFPP6VTUx93iX51cMMFhZBn7eJXFYK+K4CZwomzreaLxQKsWvXLlzXpd1uc9NNN/Hc5z6XZrPJY489RrPZpNfrsXnzZg4fPmyDtFarZcOxL3zhC0xPT+O6K/9xbzQa9Ho9XNdlcnKSLVu2sGfPHowx3HbbbXzqU5+i0+kQDAb51Kc+xcaNG2k2m3zxi1+k0WhQq9VwHIfp6Wl7G8dx6HQ65PN5vvM7v5O7776bSqXCYDAglUrheR6JRIJAIMADDzxAqVTijjvuoFAoUKlUiEajJJNJ2u02wWCQVCpFtVpl37591Ot12u02rVaLwWBwyhaYZ6uqO9X1J153vmHS5Qr2TrXfU93PEys6T7zd2dZ1LqHXmSoRFZqJiIiIiIiIiIh8MycRI2KuXLjn++ncIX7kf/4en2zn+bOjz+FIJUsk6PKqjffzI9lPkAvEgeg57y9iQrw43ufFO/4ddkDjdR0+0Rrjt574doYfG2Hi32YYzMxevjsk8jSmgO8yOFVIdL6VeecSCJ24TSAQIJ1Os3v3bpLJJG9729s4evQo2WyWRqPB3NycrcAbGxtjeXmZTZs2MTs7SywWw3VdcrkcjuMwGAwYDAY2yCqVSnZmXr/fJxgMksvlCAQCLC4uMhwOcV2XQCDAxMQE/X6fer3O3r17GQ6HhEIhNm3axP79+3nRi15Eq9VicnKSw4cPU61W+dKXvkSxWKRWqxEKhRgMBnQ6HUZHR/nc5z7H7OwswWCQTqdjQ8hWq4XruriuSzgcJhgMkkwmueWWW6hUKkQiEfbt28fi4iLlchnXdZ90vs6lfebpKsRWqwrv5ODsXJ47J95Pz/NsdaMxBsc59V/gnOmYF7JmhXwiIiIiIiIiIiJP5lZrvK86wQ9m5im7Lf6xsYUPz91CPNjjtzb+EztCict27LgT5uWJBi/f8e8nX3PR+046UV6ZrPHKZ/wd/ZtdPvkLCd762e/nmt9tMHzwsYvev4h8gznTh+/GGH0yfwZnC1jOVunlh2bnst9T/cwP9QqFAps2bQJg06ZNLC0tccMNNxCNRolGo5TLZVqtFvPz8ywvLxMIBOh2uwSDQQKBgJ15F41GGR0dpdPp0Ol0yGQytnovkUjQaDQIh8PccMMNfP7zn2f9+vV2Fp4/u6/ZbOI4DolEglgsRqPRYNeuXbz0pS/l/vvvp1gs0m632bdvH41GwwZ6juMQCARwHIdkMonrunbGXiwWIxKJEA6HWVxc5NChQ/R6PbZt28bo6Ch79+7luuuuIxaLUa/XSSaTjIyMsLCwQKfT4dFHH7UB53A4PKdZe+fiSrfdvNjjDIfDJ7UvDQQCl2zt5xPiXWzgd6bfq4vZt4LIb+Z53lOzp+xl9CLne/REEhF5mvqP4Yf1unme9LopIvL0pdfN86fXzaemwHU7OPSKUSa+0iV6/0HcchXjGLjpGpbe3uOeZ3zoyTPw1rAHex1e/tGf5pr/cQB3YXG1lyOyppzudVMB3wW6VJV35/NzYwzGGJLJJJs3b+bWW2+l3W7TaDTsdaFQiFwux2AwIJ/P0+/3qVarVKtVlpaWCIfDtn1nt9slHA6TyWQolUrk83lGRkZwHIdQKES322VpaQnHcRgbG6Ner9PtdgGoVCp2Jh6shJXGGBqNhq3m27BhA7Ozs0QiEUZHR+n3+zZcDIfDLC0t2XUPh0OKxSKZTAbP8wiFQrTbbUKhEIFAgGg0Sq/Xo9/vMzc3RyAQYMuWLRhjGAwGFAoFlpaWmJ6eZn5+nvXr19NsNgGoVquUy2Xm5uZYXFyk3W4/KejyXa6Q6lKEaJdiH34Fn+d5OI5zxgq+s1U4nukYl2Kbc73dyedFAd+lpYDv/OkNl4jI05c+qDx/et0UEXn60uvm+dPr5tOPCQbZ95u3su91f7TaS7mk/qCyng/+xneQ+euvaEafyDk63eumWnRehPMJXc53zt7JbRYLhQJjY2OsW7eOdevWMRwOaTQaJBIJPM8jFosRjUbpdDpEIhEb4iwvL9NoNBgOhwSDQbrdLolEAtd1WV5eBiAcDlOtVolGo0xNTbG4uEij0WDjxo2EQiEcx6FYLLJr1y4effRRWwlWLBYJh8M0Gg1isZgN5tLpNPV6nfXr17O8vEylUsFxHKrVql3v0tISw+GQZDJJJBIhGAwSj8ep1+sYY+zPMpkMnU6HVquF4zi0Wi1GRkaIx+O23WgymaRUKpFKpSiXywQCAUqlErASPMbjcZLJJJs2bWLv3r0cPnyYYrH4TdV8l6ud5Nnm/Z3JhQZ7J98uGAw+aR7hydueXI04OTlJqVSygS5cugDsQkI5f5tzaXsrIiIiIiIiIiKy1nmDAVt/8R7e89JN/HTu0Gov55L5iewMP/DO93DTS9/Czp87xmB+YbWXdPVzAjB0V3sVchV6atT3XgX8SrRT/ex0ocrJ153uZ9u2beOuu+7i27/92xkbG6Pb7VIqlRgdHSWbzbJhwwZ27txJMplkOBxSr9eJx+NUKhU6nQ71ep1Wq0Wz2aTX63Ho0CFarRahUIhIJEKxWLQVcs1mk1arRTqdxhhDv9+n1WpRLpeZnZ3FdV0qlQrj4+M8+9nPZjgcEg6HSSaTjI2Nce2119LpdAgGgzzyyCM0m02i0SjNZpPBYEC322UwGNhjLy4uUiwW6ff7OI5Dp9MhFAqRSqVwHIdarYbruqTTadrtNolEws7fC4VCLC4uUq/XGQwGxGIxhsMh8XicRqNBJBKh1WqRz+cZDAYMh0M2bNjAHXfcwYYNG4hEIqd8zK6kUwVXJ1/vf53N6Z5vwWCQd77zndx88822LefJ2578/Tve8Q5+4zd+g61bt5LNZk+5zZnWcKZtTnWbc3Gu50BEREREREREROQpYejyF3/00tVexSWXdKLse/7/4ds/9Rjdl9y62su5YoKTE+z/ndtZ+Mk7cRLnNmPxwG/dAf8xyeKP30kgm7nMK5S1RgHfJXS26qLzCfVObMc5OTlJJpOhWCzS6/XI5/PcfPPN7Ny5k2g0iuM4HD58mFarRafTodFo2FaUvV6Po0ePcujQIcrlsm2h2W63McYQjUZxXZdwOEwoFKLRaNDpdOj3+/T7fWKxGIlEgnA4TLlcptfrEYlEGBkZIZPJPOl+FwoFGwjmcjnC4TCBQIBcLsfU1BSpVAqARqNBJpPBdV08z6PRaNDv93Fdl0QiQTC4UlgajUbxPA/XdWk0Gva+uq7LYDBgbm6OUqlEu90mnU7bdYyOjtr5hvl8nvn5edrtNpFIhEqlQjwe59nPfjbXXHPNBYd8lzpIulQtOE/81xjD5OQkL33pSwmFQvz4j/843/Ed30EulztlEOf/LJVKMTk5yUte8hJ+4Rd+gbe+9a2Mj4+fNrg7UwXq6QLuU21/qc7pyb9LIiIiIiIiIiIia9XkJ5+6FW4/mTvM3/zxuzn0jjswofBqL+eychIJbvv4Efa95n9z3y+9l9wnw/RfeMtKdd5pmEiEr37/u/jEtf/CV3/lvdz5uQXq33c76DNPOU4B3yVyIa0Dz9aaMxAIsHnzZgqFAsYYMpkM27dvp1AokM1mbVjV6/XsVyqVotFoMDY2Rq/Xs7P2/PaM3W6XZDIJwGAwoN/vEwwG6XQ6DAYDAFtB57e7bLVaBINBW/XnOA71ep1PfvKTALY6sF6vs7y8TCKRoFQqUSqVyGaz1Ot1+v0+d911F7FYjEAggOd5xONxRkdHCYVClEolEomEnanX7/dJpVL2vA6HQ/vzSCRiAzu/UrHZbNq1tdttCoUCsBImjoyMEI1GKZVKRKNRAoEAruuyfft2duzYQSgUOm315eVyrlVuZ6oCPdu+A4EAk5OTPP/5z+ehhx7igQceYGRkhDe/+c1cf/313HHHHYRCIUKhEPl83t4+Fotxzz332MpIx3F46UtfSiaTOW3V37mu6UK3O1UIfrb9KNwTEREREREREZG1zpudW+0lXFaTwSR73vQHHPvwVpxodLWXc9k8/kc7eXthDwAB4/DXmz/Nh/7P79H7xDrKP3AHgdGRb7pN93k3kHFi9ja/OvoY//6/3s3e9972lD5Xcu4U8F2gyxEenBxgTE1NsXv3bjZu3Mi2bdvYunUrmzdvplarcfToUebn5ymVStRqNdv+Mp1Ok8lkOHToEEePHrWz6/xKvEgkYmf0BQIB2u22rawLh8N2hl+r1SIQCBAIBIhGoySTySeFJq7rMjo6agO7eDxu22T67T57vR533XUXuVyOZrNJMpkkGAwSDoftv+FwmHQ6DcDi4iKRSIRYLGaPEw6HabfbtFotxsfHicViFAoFEokEsViMcrmM67p2rY7jMD8/z9LSkg0z2+02jUaDdDpNIBCg2WySSCTodrs8+9nPZtu2bacM+c72OF+q+Xjnsp3jOAQCAVtpGY/Hicfj9hyGQiF7Dvzt/GD4vvvus8Hv0tISg8GA5z//+Xzv934vb3/723nJS17Czp077fOgUCgwPz/Pu9/9bhYWFlheXubaa6/lJS95CdFo9Irc79M9Fo7jnFfoeTlmKoqIiIiIiIiIiFwpw1aLrtdf7WVcVgHj8OBtf8PBD2xf7aWcnTEEcjmCWzYR2LaZQKGAE4+fsarO3LKLx7/1T7/p52OBBJ/e9VG++D/ey8s//yj7/9ftBLdsstfPvOGb5+5lnBgHXvHHeP82QmB87JLcJVm7gqu9gKcCY8yT2iKebpuz7ePE7xOJBNdccw3pdJpkMkk6ncZxHJaXl4nFYoRCIYrFog3W0uk05XKZ5eVlPM+j2WxSq9VoNBoMh0NbiefPuRsOh3S7XaLRKJVKBVipxOv1emzatInBYECr1aLdbjMcDkmn04RCIWClMqxSqZDNZu2MPT9YGw6HxGIxxsfHAWz7zUKhwOLioq0k9Of7JZNJHMchHA7T7XZpt9sEAgESiQS1Wo1QKEQymaRSqTA/P2/DwkAgQK1WwxhDp9MhHo/bWYPj4+N0u12GwyGO45BOp5mZmbGViPF4nEKhwMzMDEePHmX37t00Gg1mZmbO+viez3UX6sQKOcdxSKVSpFIpAoEAqVSKYDDI6Ogo1WqVTqeDMcY+nsYYYrEY3W6Xbdu2AVCtVgmHw/R6PTzP48EHH+Smm27iwIEDeJ7Hi1/8Yj71qU/Rbrd5+OGH2b17N9dccw0zMzNMTExw7NgxHn30UUZHR3nLW97C4cOHOXz4MF/72tcYDoeX7H57nmfv+5nOqSrzRERERERERETk6eTwoMeO45/NPpU99uwP8tzv/BGiH7tntZfyTYIT4yy8bAv9l1X4qZ2f5oboDAE89vcLPNjawN3Lmzl4bJTgbIRIyRApe+BAY53hP7/67wiZ07fiDJkAP5I5xo+89n/zry+P8hu/8kZyX5rlo3f9IRA75W0+fs2/8t8+eR1feeVO3H0HL9O9lqudAr6LdCmqmU41f+/6669n06ZNZLNZxsbGKBaL9Psrf6nht8EcDoc0m01isRjVapV8Pk+9XieTyXD48GECgQCRSIRut4vneYyOjtJsNm1FXyQSodfrMT4+zuLiIqFQiImJCbLZLEtLS3ie96TZeIFAgF6vB6yEgcvLy7RaLYwx3HTTTdx7772Uy2VbHddoNNi7dy8ACwsL3HbbbRw6dMiGYn7oFAqF7Ly+Wq1mA6pkMkkkEqFardpwcW5uzs6DW1xcxBhDs9nk4MGDjIyMkEql6Pf7BAIByuUy/X6fSqXCzp07OXr0KOFwmMFgYNub+gHpc5/7XD72sY9RrVbPO7A7l1Dq5Mf5dNf7Yac/4zAajbJ+/XrK5TIA6XSa4XBoK/YGgwGe57FhwwbbUrNWq5FIJMhkMjaAKxaLtjVqIBBgZmaGWCzGyMgIX/nKV2i1WmSzWXK5HMPhkK9//etcd911zM7OYoyh1+tRKpX48R//cYbDIZlMhh/6oR/i8ccfp1qtXrKg80L3cfLtLuT38nKEtSIiIiIiIiIiIhfrS+3N7AgtrvYyrojvfee/888f++Z2lavCGMxN1/HEDyb5rRd/iFck/u2EoG7l8+pbIlW+N/kQjD0E133jpq638rlswJxfE8XviHd49u+8m7s7WXaFTx3u+d5e2MOf/8syH3r9t+Hd+9B5HUeeGhTwXWInViGdL8dx2LBhA6FQiPHxcaanp8lkMjaIGw6HlMtlOp2ObcM4GAxIJBLU63WKxSKtVguAdruN53k4jmMr7LrdLq7r2gCo3+/bEC+bzRIKhezcvVgsRjAYtJWC8/PzbNiwAcdxmJubI5fL2Zl4gUCAL33pS9xwww3s37+fiYkJarUaw+GQnTt38ulPfxrHcfj85z+P4zhkMhnK5TLRaJRYLGbn/42MjNhZe+l0mk6nY4PAXC7HsWPHGB0dxXVdBoMBwWCQ4XCI53m0Wi2i0Sie59Fut4nH4ziOQ7VaBbCVe57nUalUSKVSrFu3jnq9znA4JJlMsn37du67774nPZa+iw1/ziXcSyQSTExM2HCvWq3aGYPJZJJWq0W1WqXVajExMUEikWAwGLC4uMixY8dsu04/1PPboAK27alfxTkcDqnX64yNjTE9PU2xWKTb7TI1NWVnIn7hC1/AGEMoFKLRaBAIBFhaWrJh8ite8QqWlpZ4z3vew3A4PO/qu1Ntdy7n+WzVsmdbg4iIiIiIiIiIyFryRHsC0k+PgO8nsjN89M4XYL709VVbgwkG6X7rTcz/UJd/vPWPuTYcP37N6avwTna+wd6JMk6Mb493z2nbN6YXue7v3s/P/H9vJfnhr1zwMWVt0gy+C3SuM8D8bc92nTGGG2+8kde97nU8+9nPZuvWrbiuS6PR4IknnqDRaBAMBmm32zbcGh0dpdvtMjs7S7fbpdfrUa/XWV5eftL8PMdxbAjmz1nzw7dMJmPDJX+OX61Wo16vk0qleMELXmCPs3//fpaWlti6dSvJZJJOp0M+nyeXy5FIJNi7dy9zc3McOHCAUChEMBik2WwyPT1Nt9ul2+0Sj8dxXddezufz9rilUolkMsn4+Di9Xo9Wq0U4HMZ1XUKhEKlUCtd1GRkZIZFIMDY2RiqVIhaLUa/XcRyHwWBANBollUrZ+X7r16+n3W6TzWZpt9skEgkWFhY4fPiwDUDr9Tp33nkn+Xz+SY/Jqaorz9SG9eSv0z3+/vWO4xCPx5mcnGTnzp2Mj48TCoVwHIdkMkm32yUSiQAr8wjj8TiJRAJYmYPY6XRIJpOkUil6vR7GGILBoL3toUOHWF5eZnl5GWMMruvS7/dt0Ld+/XoefPBBut0ujuNw7bXXcujQIarVKpFIxJ6fbDZLPB6n3W7zz//8z5RKJVqtFqVSiXA4fNqK1PP5vTjT+TrVuTvTvs7FySGgQkEREREREREREbkadYdPrzqd6XcdWJXjOqkU9VffjveJCT78Z7/Lo3d98IRw7+p1WyTER971Lg7/9zswxz9LlqcHBXyXwIW2dDxRNBrlmc98Jp7nkc1m2bZtG8lkkmq1iuu6jI+Ps7S0ZLet1Wq02217GVZm4zUaDZaWlkilUkQiEZrNJoPBAIDJyUn6/T6pVIr169dTqVRs0FMulzHGEIlEbHXf3NwcCwsL1Go1AAaDAcvLyxw7dgzP84jFYrTbbZLJJOFwmEQiweTkJOl0mlqtxuLiIjMzM5TLZZLJJPV6nYWFBXq9HpFIxFaFeZ7HYDAgHA7btQAkEgk7by8Wi+F5HqFQyLb19AWDQQKBAJ1Oh4mJCQqFAp1Oh7GxMQqFArlcDs/zbKDX7/cJBoNEIhHm5+dptVq2KnBqagrHcU4Z7J3tMTzXx9oXCAQYGRlh48aNbNiwAcBWWpbLZYbDISMjI/R6PfsYBAIBGwyWy2V6vR7dbpdmswnAsWPHSKVSbN261bZoTSQStrVqvV5n3759hEIhbrrpJg4ePGiDwa1btzIxMYHruoTDYe666y6y2Sz9fp/rrruOwWDAhz/8YRqNBh/5yEd4/PHHmZmZoVAoEI/H2bFjhw2MzxaGnu38nE+AfvJtLuS2IiIiIiIiIiIiV6vr4sdWewlX1J+t/yzu855xRY9Zf/Xt3Py5Kv/3d36PT1z7L4wGElf0+BdrLJDgkR/8A4KfyGNuvWG1lyNXyNMr+r9EztRm8EICDWMM27dvZ3JykoWFBbZt20a/37ftJ/2KK1gJs/x2lH7AMxgMcByHer1OKBSy8+kymQz5fJ5Go0EoFKJer5PP5zl27BhLS0tEo1GSySS9Xs+GiYFAgFKpZMOupaUlG4b1+31b4TY6Okq9XrdtHzudDpVKhXw+z/T0NHv37iWVSjEzM0Ov12N0dJRqtcpgMCASidhWnJ/73OdsGBkIBHBdl3Q6jTGGwWBAPB6nVCrR6XRsdZrrumQyGVvJWCqV6PV6NgD0H5djx46Ry+VYXl4mGAziOA5jY2MYY6jVakxPT/PYY48RCATsem688UZmZmZsa8+TH6eT23ZeqEgkwtjYmL2voVCIfr9vKyMDgQCpVIqFhQVSqRSJRIJ2u02r1bLBrTGGdrtt77M/u7Df7zMzM2Nn8pVKJdatW2erQHO5HK7rsn//fo4cOWKfO8YYhsOhDUtLpRIHDhywcw4nJibYsWMHe/bsod1u02g0cByH3bt3Mz4+zgtf+EK+9rWv8Zd/+ZcsLCzYVqHnOqPwXGhOnoiIiIiIiIiIPN28IL4PSK72Mq6YgHH4/v/9L/zNNVNX5HiHfv0O7nnTu8g4MSB8RY55OQSMw7/s+Hce/XCL7/rbn2P7u/bjLjw9Wrs+XamC7xI6l8DndHPHrr/+etuCcfPmzQSDQfr9vm052el0cF0XYwzZbBZYadGYSCRsBd38/DzLy8vE43Gi0SiBQMDO2YtEIqTTacrlMrlczoYvnufZ8CuZTBIIBEgmk7iuS7FYZHFx0VbS9Xo9+v0+4+PjFItF2u02xhgb9GSzWZaWlgiHwzYk6nQ6TE9PMzIyQjweJ5VKUS6XbQvIZDLJli1bGBkZIRgMUqlUqNVqduZgpVKh0+nYFpzBYBDP82g0GuTzeRKJBIFAgFAoZOfM1Wo1MpmMDTX92X6ZTAbP875ptl2tViMcDjMxMcHk5KRtOXmm1poXIxQKsX79ehu0JZNJms2mbWkaiUTs7EHP8+xcQX8+XjQatffdb+8Zj8cxxhAOh217U8/zSCaTJJNJFhYWSCQStiVopVJh37595HI5rrnmGqLRKP1+n06nQzab5dprr8V1Xft4HD16lMFgwNzcHM95znOIxWL2OQArgeV9993H6Ogov/RLv8S2bdtOWQl5KufSwtZ3PuHehVYPioiIiIiIiIiIXC2ceJwNwau/TeSl9prU0StynPmfvpOH3/ze4+HeU8O14Th7X/9HvPwzD7Pwk3fixJ9+z5+nCwV8F8gPXi6GHzCk02nGx8dptVps376ddrtNOp22rRLD4TCtVotut0ulUrHBTyqVYjgcYoyxc/c8z7Mz63q9HuVy2VZ2+SFSp9MhFApRKBRIJBKsW7eOfr8PrMx5q9frdlZeq9Viw4YNRCIRIpEI1WqVdDrNkSNHbGjmuq4NFMPhMAcOHLCVen6gBytz/8rlMvF4nGw2S6FQYHp62s4HDARWhpR2Oh17XM/zyOfzZDIZ0um0rUoLBoMsLy8TDofJ5XI4jsNwOKRardqWn/7MuVqthjGGTqdDsVgkHo/bCr0777yTLVu2kEwm6ff75HI5yuWyfWwvdQjkOA7r1q2zFYuFQoFoNEooFKLb7drKOGMMS0tLdiZfr9fjyJEjeJ5HvV63sxj9Vp3JZBJjDNPT07aFpzGGer1Op9MBsHP4/HaqfiXlvffey2AwoNFocOzYMXbt2sVtt93Gvn376HQ6pNNper0exWKRarXK//2//9dWECaTSTKZDN1uF2MM1WqVmZkZfvu3f5sbb7yRWCz2pKDvfILTS/EYXMhsQBERERERERERkatF/SU3EDBPv4/xf698zWU/xvC5N/Opn/ttQiZw2Y+1Gn4kc4z7fum9bPiMR/s/3Qb6fPQp5+n3X4ZL4Hzmr53LtoFAgB07dtDv91lYWMDzPBYXFzHG0O/3cV3Xtm0MBoPMzs7aoMtv1VkqlajVarZqr1arEQqFbBVcOp2m2WzS6XTodrv0ej3C4TCRSISRkREcx7GB4sjICIPBwM57O3bsGI6z8lTxPI8HHniAG2+8kV27dlGtVjHGUCqVbMgTDK50fg2Hw0SjUdLpNJ7nYYxhYmKCUqlEpVKh1+vRbrfxPM/Onosf/2uCcDjMo48+SiaToVQqkUgkGAwGZLNZG9YNh0MikQiO4zA6OooxhkKhYAO+ZDL5pBl0fjVjPp9n586dXHvttWzfvp3p6WmGwyEHDx7kiSeesKHp+T7eZ+M4DtPT0/ac1Ot1+v0+1Wr1SY+L67q2qrLVatFut4lEImQyGRsG+pWX+XyeSCRCt9slGAzS6/XIZDLE43Fb7RcMBmm329RqNbrdrg32gsEgw+GQXq9nw9nJyUm++MUvcvfddzM/P088HqfRaNi5jH4VaKvVotlskkqleNWrXmUDStd16Xa7fOlLX+I7v/M7+amf+inuuOMOG8L6vxOO49jn1+mcbQ7iufJvq9aeIiIiIiIiIiKy1tzxK/es9hKuONcb8q+/8ILLeozgpg380vs/sOZm7Z2vgHH443V389H3vodDH7qB4Lrp1V6SXEIK+C6Bcw0fTredH5Z4nsfGjRsZGRmh3W6zsLBAKBRiaWnJhl+pVIpwOMyGDRtot9u2ci2Xy5FKpej1egBks1lKpZKtAAwEArZKazgcEo1GMcaQz+eZnZ0lGo0yGAyoVCpMTU3ZVo61Wo39+/eTTCYJBoMkEgkbRi0sLFCr1QCIRqN4nmdn5flrrdfrdhu/xWY6nWZiYgLXdRkdHX3SfEE/hHFdl5GREVsl5s8JDIfDDIdDO4fPDy39wMsPF/3wKhwOUyqViEajRKNRYrEYwWCQaDTK1NQU69evZ9OmTTZYbbfbJJNn72d9Pu0f/UBrYmKCZDLJcDi01Yd+G9ZQKITjOBQKBdLpNMPhkFarRSKx8gITCoXodDp2dl8wGGRsbIxiscjExAT9fp/HH3+ce++9l2g0asM8f/+RSMSGcMPhkFAoxOLiIsvLy3ieR6/XI51O23mGjz32GIA9X34I+sgjjzypenDnzp18+tOfplgs4jgOpVKJbDaL53nccsstjI2N8V3f9V287GUvY8uWLbYtay6XY9u2bWzYsMGGmWf6HTnxXJ74JSIiIiIiIiIi8lRVe83t/PbE/au9jCtu28d/hMi/33vZ9h+cnuKOf36Cb425l+0YV5tcIM7jz/kA3/0f92Fu3rXay5FLRAHfFXRiBdGJ4US32+XBBx8kGo1SKpVoNpuMjIzQ7/cJhUIkEgkbrA0GAzs/LxqNcvjwYTqdDvPz86TTaQA7ky4ej+N5HoFAgPn5eTunLpfLkc1mqdVquK5rW4ICrFu3jnq9TjAYZNOmTbbCzp+ZVygU2Lx5M3v37qVSqbBx40auvfZaHMexIeXi4iJHjhyhVCoRDAapVqtUq1UymQyxWIxMJkMqlWJ0dNTO2/NbVgK2Aq3dbuO6rq1i9KsM/ZCrWq3S7/cZDoek02mMMRw4cIBYLEY0GrXn2W8J6lc0BoNBtm3bxujoKNFolOc973k2bHNdl507d9p5fqd6vM70s5Ov97cZGRmhUCjY1qfGGEKhEIB9nE+cn+cHmH6Y5rdeXV5etoHu7OysbUvqz+3zz4E/N9GvAPRbdfqPk7+fYrFoZzyOj4/bmYbRaNRWTfqtTvv9Phs2bCAej7O0tEQ+n2f//v3Mz8/bqlH/mPl8nnK5TLfbZWRkhDvvvJPXve51/MRP/AQ333wzGzduZPfu3Vx77bXs2LHDnu8zfZ3tHIuIiIiIiIiIiDxVBDdv5I9/8z2rvYwrquv12fIfb2bnjz142Y7h3bGbF31yD786+thlO8bV7Acz87z+Qx9Xu86niOBqL2Atu5hgwQ9j/O8XFhYYGRkhHA6TyWTwPI9sNsvi4iKFQoFwOEy5XCaVSjE1NWXDFH92XjAY5PDhwwQCARsAnTh7bnx83G5fq9VwHIdNmzaxuLhoWy/6AVOz2bTtM/1wMRqN0m63qVQqVKtVWyE3Pz/P0tISvV6Pbrdrq+Bc16VcLrNu3TpqtZoNmfr9Po7jMBgMKJfLNqDxg6xAIECtVmPTpk3Mzc0xPj5Or9fDcRxbwea3dgyFQriuSyAQsJWL0WiUVqtFOBymWq0Sj8eJRCJ2/mA8HretO/37c+zYMTvn0HVdxsfHiUQiPPzww3amn/94+7MXT5wpd/LjeuLja4whnU4zNTVlQzq/2nEwGNDv94lGo7a9aaPRoFAo2LmKfqXlcDhkYmKC2dlZWq2Wvby4uMhgMKBQKHDttdfa54E/99Cfy+i3cvXP42AwIJFI2DmLmUyGI0eOUK/XSSQSXHvttTz00EP0+32y2SzLy8v0+33m5uZIJBJMTU0RjUapVCr2cSgWi+TzeZaXl+l0OrTbbTqdDo1Gw84KjEajjI+Pc/PNN1OpVMhms/b54s9uPPm8nmoW38ntNs903am2OdW2auMpIiIiIiIiIiJXAyeV4uaPHODGcHS1l3LFLLpNXvjuX2D7u+++bJ/RBbIZfu2v3s/t0afmzL1z9arkPB8Mb8Prdld7KXKRVMF3BZ0pEPQDKM/zqNVq5HI52/awVqsxNzdngzK/fWe5XCYWi9n/4Plz15LJpA3T/HCo0+nYMGl8fJyxsTHy+TzT09O0220eeeQRkskkmUyGTqdDKpViaWnJVsP54ZPfCtRvjdnpdACIRCJs3rzZVqX58/dc18XzPLrdrp0/F4vFbPDjzwhsNBoMBgNblTc7O0sqlWJsbAzP86jX6ziOg+M4tNttWq2WDdv81qTdbte28KxWq4RCIarVqg2WQqEQN910E9u3b2dxcdGGYY1Gg3g8zrp16+x9zOfz7Nq1i82bNxOJRM75cTyx4iwYDJLL5diwYQPNZpNoNEo8Hrfz7mClBaZf1RcOhwmFQratZqFQsPP1Go0G3W6XbDbLcDi0QerY2BiNRoNOp0O9XmdhYcG2I/WDTGMMg8GATZs20T3+H23Xde2MvnXr1tn5iCMjIzSbTR555BF6vR7BYNC28fTXUq1Wyefz7Nixg8nJSRvO1mo1G05mMhnK5TLVatW2eT169Cj337/SUmAwGNjZfxs2bGDdunUkEolzrpQ8U5XfuVb/nbytiIiIiIiIiIjI1WD2A+t5x9hDq72MK+Zgv8HLf+HnmHzXl+Ay/gF+9UXXPO3Dvb7ncu1H3qpw7ylCAd9FONNfEpwcGJztcrfbJRaLkc1mbcvNVCpFOp0mFouRSqVsZd/i4qINiEKhkJ2bBrB9+3Yb9jiOQyAQIJlM0mw2AUgmk0xMTOB5HpVKhYWFBWKxmA2TDh48aFtX9no9O5dvdHSUiYkJdu3axa233mpbbfrHmJqaotfrEQqF7Ky+66+/no0bNxKJRMjlcuzYscNWlHW7XfL5vA0VjTE0m01yuZytDuz1eiwsLNhz1Ol0cF2XeDxOpVKx7UMbjQahUIh2u23DvkwmQygUIpPJsH79egaDAbt37+amm26i1+tRqVR49NFHmZmZsedvcXER13XZv38/pVKJ6elpduzYYWcBnivHcUgkEkxPTzM9PU2r1WIwGNj2q36Y51cNRiIRHMchlUoRj8dt2BsKhfA8j5GREdLpNJ1Ox7bT7Pf7JJNJ5ufniUajzM7O0ul0SCaTjI6OEg6HCQaDtiozFosxNzdng7pkMonjOCSTSZLJJNls1lYG+u1E/WDTD+z8Fq1+wPr1r3+d0dFRBoMBGzZsYGJiglAoRLPZpFwuUywWbdvTRqNhz7PfItQPLf0w9BnPeIatzjzV79OlDOEU6ImIiIiIiIiIyNVo8K238NCz/nq1l3HFHOw3eONbf5bUh7582Y+VONq57Me4mj3aa3HrO3+S7T95z2ovRS4RBXyrzA8aOp0OCwsL9Ho9er0eR44cwXEc0uk08/PzOI5Dv99ncnKSTqfDcDgklUrx6KOPYoyxFW2HDh0CsG0qA4EA/X6fVCpFMpkkHo9TKpVs2FQul0kkEvR6ParVKlNTU0xOTrJu3TpbCeiHOGNjY3zmM5/ha1/7mg2gms0m1WrVhmr++geDAUeOHKFYLJJOp5mYmKBWq5FOp+n3+/R6PRqNBtFolGAwiOM4Nujxq8D8SkU/4JqcnCSVSlGr1eycwVgsRrfbxXVdO1cwEolw5MgR2yZyaWmJ3bt3Y4zh0Ucf5dChQ1QqFdvy9OjRo1SrVYbDIbFYzM7jW1xcpNVqsXPnTjuj8GwVX6FQiNHRUaanp+3cxFAoZMO0brdLp9Ox8wpjsRjNZpNIJGJbhHqeZysc/RaW/nzC4XBIOBxmMBhQLBbJZrMkk0mGwyH5fJ52u004HGZ5eZnl5WVKpRLxeNy25/RnE/oz9TzPIx6Ps3nzZpaWluh0OiwtLdFoNIjFYgQCASKRCAsLCwwGA5aWluz9SKVSPPzww7bVaLfbZWFhgXA4TKVSIRgM2vvkVyV2u10KhQLlcplwOGyfHy996UvJ5XJMTEyc0+/L+V6vQE9ERERERERERNaC5kRotZdwxVSHbb7/53+O6MeuTOBk7n6QNxz+lityrKtNa9jjJ37kpxj/vctbJSlXlgK+C3S+FUVn6xvsV29lMhmCwSDJZNLOy2u1WrRaLVKpFDMzM4TDYWKxGNVqlVarRbVatWFeq9Wi3W7bffptP7PZLJFIhH6/z3A4xHVdlpaWcF2XarVKoVAgFArZ1pqlUol+v2/322w2mZ+fp91u26qrUqnEcDi0lV779+8nnU7jOA6ZTIZkMsmxY8dotVocOXKEBx54gGPHjjE1NcV1111HJpNhdnaWjRs3sn79enK5HIANkPzWj7OzszQaDQ4fPsyBAwdwHMdW+NVqNVuplk6nKZfLHD161LY19QNH13Xp9Xq0Wi3i8TjhcNjOozt8+DD9ft+GUX6LzuFwaB/niYkJgsHTj6w0xhCJRFi3bh3j4+MMBgMbOvpzB7vdLqFQyFbCJZNJ2z7TP8/+7fyKTD+o7fV65PN56vU6oVCIfD5PIpGg3+/TbrcpFAq20tBv2RmNRikUCna2of888c/ByMiIfX4dO3aMb/mWb7FtMxuNBvV63Qay3W7XznAcGRmx1Xd+uOq3WD169Kg9Z+Vy2V6Xy+WIRCK29Ws6nSYQCNDpdCiVStRqNW699VZuvPFGgsHgWdtqnolCPhERERERERERWatyH3mQ/f3Gai/jsnO9Ic/+3Z8j+eGvXLmDeh7Lrx9h2W1euWNeJV708PcR+uRXV3sZcokp4LsAlyMoyGaz5HI5Wq0W/X6fsbExKpUKzWaTcDjMyMgIoVDIzljz22GGQiECgQATExNEIhHb4jCZTNoKKr8irVKp0O12WV5eplar2Soxz/PsrL5rr72W5eVl5ufn8TyPm2++2QY1pVKJ66+/nmAwyHOe8xyuv/56NmzYQDqdZv369TZwuvHGG9myZYutLvMr2YwxLC0tceDAASqVip1Fd/ToURYXFxkMBniex/Lysg0n/eq9ZrNpK+x6vR7pdJpUKkWhUCAQCNjKO7/VZaVS4bHHHuORRx5hbGyMTqdDsVhkeXmZSqXC2NgYsViMVqvF9PQ04XCYsbExgsEgkUiEYDDI2NgYrutSq9XYtWsXiUTitM+DeDzOhg0bSKVS9Pt9gsEg8Xic4XD4pHDQrzpcXl7GcRxc1yWRSJBKpWxY6lfZpdNparUanucxHA6p1+skEgn7GPrBWyQSYTgc2uo6v6ITIBgMEo1GyefzNhj223MuLi4Sj8eZn5+3VaN+CNfv94nH42zbto12u43rusRiMfr9PgcOHLDzAF/0ohexfv16G3B6nmfbhfqVmtVqldnZWWKxGLASdkejUZaWlkgkEpRKJR588EGOHTvG2972NjZu3HhOs/NERERERERERESeaoatFq/91V9gbvDUDvluuPsNTP32l674cd19B7nzgz9/xY+72oZ/MbbaS5DLQAHfFXK6QMKv7ItEIhhjbLvMZrNpq7nGxsZIJBIcPHiQsbExxsbGKBaLNpwLh8PE43HbcnEwGGCMYWFhgXg8buemGWOo1+s2IKxWq6RSKWCl+i6RSPC5z33OhjHhcJiFhQVbEdjr9Th48CDD4ZBgMMjMzAw7duzAcRwOHjxo5951u1327NlDLBaz4ZYfPPpz+4rFIo7jkMvl7DxA32AwYHJyknA4TLlcptVqMT4+Tr/ft5WGfkBYrVZti8tarUY0GqXf79vz1+12qVQqVKtVQqEQi4uL1Ot1W623b98+HnjgARzHodlsMjU1ZefiwUrINj09TaPRsAHeyY+rX7kXCoXo9Xr28Wi325TLZTsbz2896geRg8GARCJBIBBgcXGRfr9POp0mmUwyGAwYHx+3VYC5XI5isUgoFCIajTI2NkYgELCz8vxKzna7TaVSIRQKYYyhWq0+6TnRbrfp9/t2VmImkyEcDuN5Hq7rkkwmGRsbo1AosGvXLqrVKolEglgsRiKReNK8QD+4u/322wFsC1a/tWsulyOXy9mwuVQqEQ6HSaVS9nGdnJxkYmKCZrPJ4cOH2bt3L294wxtsmGqMIRAI2FmPjuPgOI697kKr9c5WUSsiIiIiIiIiIrJash+8m9e85Wf4g8r61V7KZfG+6gQb33R41Y6/5e338fFWZNWOfzl0vT5vX9rFjx+9ncbwm2cN5r5eWoVVyeWmgG8VnBw+GGOIx+OEQiFKpRLpdJqlpSUmJibsDL1er2crv04MaUZGRigUCjQaDTv7zm/vGQqFGB8fZzgc0u/3AewMOL9KcDgcAiuVXvV6nVqtRr/fp9Fo2Kovv6IsFArhui6BQICHHnqI4XDIsWPHCAaDLCwsUC6XGRsbs204/Sqx4XBIoVAAIJFIkMlk8DyPYrFoz0U0GqXZbNqWlQC5XM4GkX7V1+zsLP1+n3q9TrVaZXl5mUQiYefGJZNJpqam2L59O9u2bWPjxo20220bSGUyGZ7znOeQSCR49NFHqVQqtm2lX0EZCARse9Bms0koFOKxxx6j0Wh8U5tOx3EoFArk83nbKnR8fJyJiQlisZhtcRkKhfA8j2Zzpfw7lUrZ44ZCIRKJBK1Wyz6+4+PjLC4u2taq4XCYbDZrQ65SaeU/yKVSiUAgYKv8BoOBbb85GAxwHMeev3w+z/j4uJ13uGPHDsbHx/E8zwa5ExMTtnXrAw88YFuFxuNxKpWKfY7F43Fc1+Xhhx/G8zw7T9EPNDOZjH0++LMljTHkcjmWlpbIZDJEIhHm5+cpFos2RPRnEH7bt30byWTSnudoNIoxxs4zPPn351SB3ql+rso/ERERERERERFZCyL/ei//9oLruOErr13tpVxSD/Y6/P33PZ9hvb5qa/D6PX79l9+4ase/1D7XgWf/l5/injuzHHi2x13/62e/aRtvZm4VViaXmwK+82SMOWv1z/mECP62tVqN4XBIKBRieXmZ8fFx21oymUxy6NAhJiYm7Ny4XC5Hu91mOBxSLBYpl8u2haUf4CSTSRYWFpibm7MVWo7j2Gq0xcVFyuUyjuMQDodt5RzA5OQkhw8f5siRI8TjcQaDAfl83s5dW1hYIJ1O0+l0WFpaot/vY4whGAzaCq25uTkbPvnh2/j4OPV6HcdxbKAZCoUoFAqkUilbtbhv3z663S6O4xAMBul2uwQCARu+DYdDPM9jfHycZDJJs9m0VYKhUIiJiQk2bNhANptlOBxy9OhR9u7dS6PR4O///u/Zs2cPS0tLeJ5nw6rZ2Vna7TbNZpPR0VE7b851XYrFIocPH6ZcLj/psctms6xfv55Go0GhUCCbzeJ5nq2YHB8fJ5vNEovF6Ha79jz7Qasxxs63SyaTeJ5Hr9ej01n5KwvHcWxVYDAYJJ/PMzIyguM4LCwssLS0ZIPFyclJAoEAmzZtAuC6664jGAyybt06ut0u1113HZ7nMTY2RiaTIRaLsXfvXobDoa2qPHDggK307HQ6zM3N2dB3bGyM6elpkskkxWLRtnn94he/SLVa5dChQzSbTYLBIKOjowB2/qPfYjUQCBCJROxzqlarMTo6SqvVotPpcOTIEfbv38/s7CzxeNzOW/TbhPpf50Mhn4iIiIiIiIiIrEWD+QWmv+cJtvzDj672Ui6JJ/pN3vZjP8nw64+u9lJI/v09vLO4fbWXcdH+vDbGb77iNeTffzfDZhOv22XiPV/iDYe/xW7zyVZoVQNVuXwU8F0G59P+z/M80uk00WiU5eVlADsrzm8j6bebrNVqRCIRG664rmurpfyWi8FgkHa7bWe1BQIB0um03cYPWHq9Htls1lZEBQIBMpmMDZ2MMWzcuBHXddm6dSvhcJhms0m326XRaDAYDFhcXMRxHKanp7n++uvp9Xrs37+fVqtFs9lkbm6OZDJJNpul1WqxtLTEQw89RLPZtIFNOBy2VWl+NZtfrecHSOFw2FYwttttG/glEokntSINBoO2is3zPAKBgD1v/vzBcrlMu91maWmJ0dFRYrEYlUqFVqtFPB4nEAgwHA5ZXl7GGGPnIG7dutW2UfVFIhF27txJt9slmUzatpP9fh/Hcez5DIfDuK5Lr9cjEonYajV/rf1+n3w+b2chhsNh26bT35fjOLYi8KGHHrKtUmOxGDMzM1SrVft88CsP9+3bRzgcplgsEgwGOXz4MM1mk1wux7Zt29izZw+jo6M2WI7FYtTrddt2tNfr2WAWoNPp2HmIvV7PPtcOH14pp89ms/a+lkoltm3bxsGDB23AvH37ygumX5WZy+VIJBIUCgWazSb5fJ5HHnmEhx56iMcee4ylpSVbYer/rvgVfqdyIcH6hd5eRERERERERETkSvAGA7a/7ats/8wbL2o/fc/lyKDBPzWTvGP5Gt6+tIt/bUVpDXuXZqFn8bkO/OiPvI3wx++9Isc7K8/j33/xeau9iovygdooH37pnacMTJfeso6u12fZbfLffvnNq7A6uRKCZ99ETuXkkOFcZn7525z4vV8RGIlEcF2XWq1GJpPh0KFDdo7ZsWPH7Ey8iYkJDhw4QL/fp1KpkEqlWF5eJhqNMhwO6Xa7hEIh2u024XCYRqOBMYaRkRGWl5cJhUJ2n9lsls2bNzM9Pc0999zDunXrCAaDtgpudnaWQqHAgw8+aOfc7d69m1qtZsOscrlMPB6nWCxSrVbt/ajX60xNTXHkyBFCoRCNRsO29/TnzjWbTduaMhQKkUwmbdDmOA7ZbJZ6vW4r9tLpNOvXr6der9vgbvv27SwuLj7pMWi1WpRKJWq1Gvl8nkQiwfLysp3p5ziObYnabDYJh8MUCgXq9TqJRMJWtKVSKdrtNoFAgHg8zrp169i3bx+wUlk3Pj5u768fwiUSCTqdDqlUikajQTabpd/v29lz/X6fVqtFMBjEdV3i8TjJZJJIJMJgMCAajdoZiX6VXbvdpl6vs7CwwBe/+EW63S6ZTIZer8fk5CSJRMKuPZVKcejQIRvWFQoFisUi6XSaYDBIq9Vibm6OJ554gk6nQ6fTodVq2eePP7vPDx0bjQYjIyPUajUWFxcplUq4rmtbqvrtMgOBAKFQyLZ39SsH/fPrt5X1H1c/aG42m+zfv59oNMqRI0d45JFH7ON5ut+xM1XRnkuFrYiIiIiIiIiIyJoydNn6pkd52Sdewke2/wshEzjj5l2vz4F+n//bvJa/PvJMlh8aI/8Q5B6tE5hdYlhvgOfx1dwL+M3b17P4qg7/51n/h7uil6ce6BcXbuLBH7iG8INfvSz7v1CRf/8q/9RM8vJEY7WXct4+1Q7woe9+Ae6BJ055/fCBPTzrnW8jc3BA8mNfucKrkytFAd9lcmKIdzaxWIxkMkmpVGJycpKZmRn6/T6ZTMbOTxsZGaFSqeC6Lu12m/n5eTsbzxhj2x/6X35IE4/H6fV6tFotwuEwnuextLREOp1mcnLSBkm33347+/fvp91u0+12SafTDIdDOxPQdV3S6TTz8/O0Wi1arZadxeYfO5fL2fahsViMcrnMYDCwbTXT6TTxeJy5uTkikYg9T/5curGxMUqlkq34cxzHnodut2vvQ6/XI5FIMDo6yv79+4lEIraKbnFxkfn5eVzXJRaLMTk5ycLCAqlUys6Ta7VapFIpjDF25l6n07HtRP2wy299WavViMVi7Nq1iyNHjtjj79y5k2PHjhGPx2m328BKldtwOLSBnR9sJhIJey78qrRIJEIgECAWi1GtVu1cvsFgYNtWBoNBlpeXqVarLC0tUavVyOVyBAIBJicn7QxAz/OYn5/H8zyCwSChUIjhcGjD03w+z+HDh+n3+1xzzTU89thjDIdDG+b6rVWDwSBbt27l8ccfp1Kp2MBvMBhgjMFxHFzXtQHr5OQkg8HAhoWRSIRCoUC73eaJJ55gfHycWq3GyMgIzWbTVmYGAgFb0VgsFrnpppvs8+9EpwvsTgzLT3XdqcLB0wWGCgRFRERERERERORq53W7uN9e5o7Xv5X+d1R47rp9bIoW6XsB5noZHipPcXC2QHRvhPxjLqnHq5jZOdLVA6S9/Sv7AAYn7HPYapH4h2Ns/gf4je2vYv8bx/m57/4oP5ieJWAuPux7oNvlu//tp7jm1/YyLD520fu75DyP//aeN/DyX/nD1V7JeXmi3+Sd3//jmD1fP+N247/3pSu0IlktCviuoNNV8Y2OjtJoNKjVavR6Pfr9PvPz82zatAnXdSkUCjYoarVaVKtV227Tr/jzw5NQKESn0yGbzbK8vGyrw/x2n35ry2g0yuLiIul0mv3795NIJGwrRr+CLhwO2+q3eDyO53mUy2V7rPHxcaLRKK1Wi2w2y6OPPsrY2JhtpRgOhxkOh/T7fdLptG0D6QeGrVaLxcVFWx3oB5jVapXBYECv17OtN/2gq16vc80111Cr1Thy5AipVMrOfTt69CiNRgPHcdi4caNtT+nP2EskEjiOQ6lUot1u02637Yw7v/pueXmZHTt2sLCwQL/ftyGf36I0Go0yGAy45ZZbqFQqtnLPDwkB0uk0jUaDWCxGq9XCGEOj0aDVajE2NmbDw0qlQj6fJxQKkUqlbEtRYwzNZtPuD7DnYjAYMDY2xqZNm4hEIiwtLdngNpvNUiqVSCaTBAIB2yq13+8TCoWIx+N0Oh327dvHpk2b6Pf79Pt9yuUyvV6PZDLJzMwM+XyeVCpFtVolGAxSrVYxxthQbnJy0gax/jnKZDIsLS2xYcMGSqUS4XCYVqvFcDgkHo8TjUbJZrPMz8/b9qN+5Wo0GuXYsWM4jmMDPj908/89W9B34rbnS1V/IiIiIiIiIiKyFgw7HUb+9G74M8MT4TD7IuvwPA+v1yPYm2G7d+Qb257nvt29B9j0Kwf4p/fs4g9f83Juee2D/K/pT5ILxE+5fWvY4yPNSX5///MZSzT43U1/z4ZgnCEed3cD/MBnf5Br3t1k+4Nfwb2I+3y5Tbzvayz/UpPRQGK1l3JOym6LN//sz5K4W1V5ooDvsjpTFZ//83A4zMaNG21QNBwOqVarZLNZW+nW6XTwPM/Oy4tGo7iuS7/ft1V8ftWWX3EViUQIBoPE43HbMnEwGNgwKhwOMzo6yvz8vL1+bGyMTCbDvffeSzabpdlsMjo6Sj6fJ5vNsri4SCqVIhKJ2P347TCHwyHD4dBWt/nz2fyf12o1EomEXWswuPLU6/f7xGIxW+3mVwOGw2H6/b6dA1coFEgmk7iuy4EDB+z99qvBarUaw+GQXC7HyMgImUyGgwcPksvlaLfbTE1NMTs7Szwep9vt2raZruvaMM7zPOLxOPPz87btKWDbndZqNYLBIJFIxN5nfx6gfz7D4TDdbte2w0wkErZi0j8PfqvOkZERYrEYgG1Z6rfV9DwPz/NwHIcNGzbYirxjx46xY8cOu/9cLmdnIhYKBTvDsFar0e12icVijIyMYIx5Uojoz+Xrdrs4jsPIyAjPec5z+NCHPsTS0hLdbpdoNEoikbCtOLPZLJVKhWq1Sq/XIxqNEgwGyWazHD16lFQqZW/rP/8rlYqdCegH2IPByt8JNRoNxsbG6HQ6tNvtb5oD6O/jVL83ZwvkTrWdWnuKiIiIiIiIiMhTguetVPQd/xzuUnKXlhj/vSWO/UmU737e2zj0Ko+fv/MTfE/qMSpD+KvKbXzg7rtY90lD6vMHyCzvpxcI8Jab30Lx+iShlkfunjl2HLzvvEPG1TDsdLjrS2/h8ed8YLWXclZ9z+V5/+vnmfgHVebJCgV8V9Cpwr5CocD09DSwUvl1++23s7i4aCvC/Dll2WyWarVKIBAgn8/T7/cplUoEg0GGw6EN3vxqLX/eXqVSsdV8fjBojCEcDrO0tEQ0GsUYQ7fbZe/evQB2lpvfItTfH6wEkgsLCxQKBUZGRjh48KBtAzo+Pk46nWYwGNiqLn9+IGADxmKxSDKZxPM8G5L54SRgqxD9yrz169cDK4GQfx/8NqSNRoNer0c4HLZVZu12267Br4jzZwH6s+EWFxfJZDIYY+z6AKrVqq3s63a7ZLNZG5j54aUfdvktNP0qNT/g9Ksa/XMxNjZGr9cjEAiQSqXodru2ZWir1bLtR/25fvV6nVgsZu9jLBazLT/j8bgNbf3KP/+y3zY1EokwHA7tTMdYLEatVrPnc2xsjCNHjtjgEuCVr3wlH/vYxxgMBqTTacrlMrlcjqWlJQAbDrqua2cUJhIJGo0Gi4uL9rh+aNdut+l0OrbFajQaZXl5mVarBayEvBs3biSVSuG6LpVKhUAgQDKZpNls2jamJ/7OnPz9ubThPNXvoII8ERERERERERGRMxt2OoQ/fi87Pg7/mtvGR6/7VgKNLuw7wo7mPQC2Ms8bDODeh8jfu3J5cOpdXrW2/kod97PDS9KW9HJxvSHX/dVb2fK7CvfkGxTwXQLnOmvvdLfbunUrlUqF2267jXQ6zU033UQgEOCBBx6wlXqhUIhIJGIrtPzAbjAY4LouyWSS9evXc/jwYdrtNolEwraI9Ns7GmMYGxvj2LFjNmDy59e1222MMdTrdQCGw6Fto+jPh/MDLWMMruty9OhRGxYWCgU6nQ4HDx4kmUzakCwYDJJIJOj3+7YaMRqN0uv1iMVi9r71+32Wl5cJh8PEYjHbgjQUCtnZcp1OB2MMxhg7m7DX69mfJRIJ23pzZGSEkZERGo2GbUWZz+dpNBp0u102btzIkSNHCIfDJJNJqtUqhULBhlStVoujR48yHA5tiNjv920FZavVsuvxz6Ef9vkBY6fTodvt2rUXCgXGxsbYt28f9XqdUChErVaz53xyctLOzfODz2g0ytGjR+n3+zb49R+fQCDA4uIiIyMjTwoz/fan/nnwKwFd1yUUCrG0tESr1SKfz9uZgf/yL/9iqwuXlpaIx+OMjo4yMzPDYDBgfn7ePl6pVIpoNMqNN97IPffcY0NHv7Wo67pPen63220727Df79tKyU6nw549ewiFQjYA3bJlC/V6nWazecYgzn/MT9zm5Ba4/naavSciIiIiIiIiInLh3HIZ88XymqjIuxDuvoO86cjz+MDGz632Uk5r+3/8MNt/8curvQy5yly9kfRTwNmCP7/N4vLyMuPj49x+++1cf/31rF+/3gYyJ1by+bPS/OqyaDRKp9MhlUqRzWYpFotUKhXbFrPb7dr5e/4svF6vx9TUFIVCgXQ6TTKZJBwOMzExYeep+S0V/ZBufHycfr9vW1COjIwQCASo1+ukUimSySSpVIp6vW4DwEgkQi6Xo1Ao4DgOkUiEer1u71en02FhYcEGZX7A0263baXXYDCg2+1Sq9Wo1Wp4nke73aZYLFKv12m1WkQiERKJBJ7nUSqVbPvHcrlMp9OxAV88HqdWq9FoNGwlWjqdxvM8ms0m+XyeSqVCu92m2WyyvLxs22ZOTU0BK9WLgUCAWCzG4uIilUrFthutVqt25l00GrUVkN1ul0AgQDabxXVd2u02rVaLWq1m77c/a8+vuvQrEbPZLPl8ntHRUcbGxggEAgSDQWq1GgDNZpPNmzfbqkO/CnLr1q3E43GmpqYYDAZUKhXbntQPX8fGxohEIvax96sIM5mMfW489thjdm2jo6OEQiGi0SiNRoPJyUkee2xlMG6/37eP/XA4ZHl5mVgsRjgcptPpEA6HbZXhhg0bCAaD5PN5HMchn8+Ty+VIp9N0u10qlQrhcBjHefJ/mvxALxKJMDo6ysTEBNu2bWPDhg1s2bKF0dFRRkdHbetXERERERERERERkXO18DObcL2rM8K84SuvZccPPwQqWJCT6NPwS+DEaqHTOdV14XCYVCrFvffey4YNG4hEIszPz7Nv3z4WFhbodDpUKhWi0aitNut2uzzxxBPk83nq9TrRaNTOhCuXyzYE8yv9/Cozv13k8vIy8XicmZkZXNe11X+zs7MEAgEbAo2MjBCJRDh27JhtN+nPa/Pbhq5fv56FhQWMMbTbbSKRCLFYzM7UM8ZQKpUIBAI4jkO/38cYY1tLhkIhjh07Zlt1ep7HyMgI1WqVRqOB4zj0ej127drFnj17bPVXNBplOBza0DAYDBIIBBgOh2QyGVqtlm1B6gdDflgYDoeJRCI2yBsMBvT7fRKJBNVqFdd17ePit96cmZmxbS+NMXYWoN9ytN1uAystSBOJhG3n6TgO6XTaVv8ZY5ifn7ehq/9YBQIBPM8jmUza4NZfY71eZ926dfax2rBhA51Oh8FgQC6XY35+nl6vRy6Xs/f7wQcftEFrrVZjZGSEWq1GNBqlUqkQCoWoVqs2kFtcXCSfzxOLxexswYmJCcrlsg2Lk8kkS0tLZLNZW+E4OztLMBgkFouRTCZtq9Rut8vS0hKRSIRoNEomk7HB59LSEqlUivn5eRsexmIxG/yOjo7iui6RSITl5WUb2AaDQbZu3cru3bt5wxveQCKRYGRkhGg0Sr1e54EHHqDX67Fnzx7+8i//kmKxqHadIiIiIiIiIiIicm6+/CCvO/RCPrT5/632Sp7ktvu/h3WvOcCw31vtpchVSBV85+lC23Geah/dbhfXdZmZmeGxxx7D8zwb1nU6HVzXZWxsjFKpRCwWY2lpiYMHDxKLxWzINT09zfr166nVagyHQ9tGMZ1Ok06n7SyzRqNBMBgkm80yNjbG+Pg4xhharRYLCwskEgnq9bptK1ksFun1erZVZq1Ws6GQH1Ylk0mi0Sie59nb5PN5wuEw1WqVZrNJOp0mHo+TzWZZt24diUTCVvD5c+fy+bwNiE6s8vKDv1qtZqu+/LBpZGSEZDJp1wcrMwxzuRzxeJxKpYLjOMTjcRsU+qGaH6IlEgkymYxdS6/XYzAY2LanfnjozzZ0HMe2JPUrDMvlMtVq1bby9FtzdjodSqUStVqNcrlMqVSi3W5/07zBkZERRkdHbdhnjLHHrNfrGGOYmZmhVqthjCEajZJOp3Fd14amgA3CSqWSnYHX7/fJ5XLU63X6/T7FYpFEIsHU1JRtlZpIJMjn8/axCAQCtFot6vU64+PjxGIx2+rUr1Q0xtDpdMhkMnb2o+M4dDodgsEg1157LcPh0N7Hubk52z7Tf+5Uq1XbttRvNeu3oS0UCjzjGc+gUCgAK61LX/3qV/Mnf/In/NiP/RgTExO23ev09DSbN29m3bp1AHzLt3wLv/7rv26D3Uv1Oysi8rRz+40c/K07mP2HXRz9x13se/ftlN94B86N1+AkEqu9OhEREREREZFLrvbDo7SGV0+Qtvue1zDyyhmGxwslRE6mCr4r5MT5YL7BYGBnvz300EN0u13q9TqDwYBwOEy73baVd/v27aNYLDI6Osr4+Diu69qZZgcOHCCdTlOr1QgEAnb+3tGjRxkZGbHHmZiYsPs/fPiwDfUcxyGbzbK4uGir2fr9PkeOHCGVStngJ5FIEI1GMcYQj8ft/RgbG2NxcZFOp4PneWQyGYwxtooNsNVyvV6P6elpDh06RDqdJpvNUiqV7Ow9fwae33J0MBiwtLREOBymXq/bGXWtVot4PE632yUej9vA54knnrChleu6FItFG4hGIhE7j+7YsWNMTU0RiUSoVqu2laYfjPV6PVzXZXFxkVarZavM/McyHA7b8xAMBkmlUiwvL9uQy696bLfbxGIxPM+zIaFfcTg2NmYfo0qlwmAwoFarkc/n6Xa7tiVmqVQim80yPj5uz8XOnTtZt24djz/+uK0gLJVK5PN55ubmcF2XZrNpZ/n1ej37NTMzA6zMxvMr9PzHp9ls2nai/vzEcrlsn7u9Xo/hcMjMzAzJZJJ169bZ8+WHeqVSifHxcZaXl8lkMnbO4rFjx+z9GQ6HTE1N0e/3bctUv13qyMgI69ev5/7778dxHG655RZe+MIXcujQITvr0W8/6q8jkUhgjGH//v288IUv/KbqvNNV66mKT0TkyZxolMd/ZzefetnvsDmU/MYVt4P7vUP2D9r8TeVW/mrPrUS+lmDsvi6Rr+7FPd4+WkRERERERGStcvc8we6/ehuPff8fEDCrVxvVGHa48Z/exo6fuV+Ve3JGquC7gqLRKOFwmEwmg+M4OI7DYDCwlVQPPvgg8/Pz1Ot1W3W1tLRkK89GRkZ4/vOfz/j4OOVymZGREds60w9z/DaHAJlMhnK5zGAwwPM8ZmdnGQ6HtNvtJ82D27hxI+l0mq1btxIKhWx7zGAwiOM4ZDIZ1q9fTzAYZHl5mVKpxP79++l2u/T7fbrdLoPBgPHxcebn5zl27BiAnTXnV+D5lXF+pZwfJjqOw+TkpA0ii8UipVLJBov+zL1Op0M8HqfVatkqNT+cqlQq9Ho9YrEYrutSrVZtmDc+Pm5blvpz+BKJBOFwGNd1CYVCtgLNX2sikWBiYsK2GvXbc/qzCU8MhZrNpq1s8zzPVj56nmdDq1qtRrfbpVwuU6/X7T788+Cfl06nQzqdtvfHD8cWFhZspWK/36darXL33XfbcBZW5uT5gWIqlSIajVKr1ZicnCSRSJBIJFhYWLCXg8EgruvS7XZ5+ctfbissjTFs2rSJeDxOKpWiUCiQyWTI5XI2LPSr8wKBAK94xSsAcBzHBrwnVg+mUinK5TLhcJher0e1WmVycpJyuUyxWGRxcZF2u0232wWgXq8zMzNDq9XCGEMsFqNarVKpVPja175GvV632+7Zs4fl5WV6vZ4NgIfD4TfN8IPTV/Kpwk9EZIWTSFD/pykOvOKPnxzuHRcwDjtCCd5e2MMTz/0LHvqZP+Tv/+L3efYXFmi+6lnndSwTChMYHyNw7XbMrTdgnnk9wfXrMJqlKiIiIiIiIqtoyy/fw673/QSP9lqXfN9nm/HnekPeU97Et/7yz7D9J+/BU7gnZ6FPUS6RU4UEJ1bthcNhpqam7Hw8v8ouFAqRy+W45ZZb2L9/vw1eQqEQ6XSaWCzGwsIC4+PjbN++nUQiwZ49e/A8j3Q6zbFjx+wstmg0ats2Li8vE4lE7Fen07EtLVutFqOjo/Y2/jy6TqdjK+kcx2FxcZF0Os3IyAiPPvqoDX/8qq5ut8v27ds5fPiwDc96vZX/6IRCIdsuNJ/PMzMzQzabpd/vMzMzw4033sgTTzzBwsICAJVKhUwmQ7FYtK1Ga7UamUzGVg32ej07J9APxnK5HNVq1QY6oVCIfr9vW0hOTU1RqVSIRCLkcjlb0ec4DkePHmV8fNxWtgUCAVKpFLFYDGMMc3Nzdq5eo9FgdHSURCLBcDi0lWf+4xWPx+n1ehhjcF2XbDZrQ7pUKkW73bbhW6vVIhKJMDs7Sy6Xo1wu2wrMUCjEww8/bGcVFotF247Tr5BLp9O2GjCRSDAzM2ODRT9QDAQCxGIxEokER44cYfv27Rw6dAjAtiF95jOfSTqd5tChQ3z2s5+1Ya3fFjSVStHtdnnWs57FV7/6VarVKuFw2Aa1ruty5MgR3ve+9zE5OWkDTT/M3Lhxo30u+lWK/j5PrK705zo6jkM4HKbRaNg2qH6L1lqthuu6TE1NcfToUVs16T9/AoEA09PTzM3NsbCwQCQSwXVd+3t44u+pKvZERL6ZCQap/8M4X7jxH8/rdrlAnP88+jhvetd9/NC9r2FweOaM2wcnJzj4Q1u46dsf5ZWFL3NNeIGMs/Lf68f7Gd4982KW/2wjmb/6ioaHi4iIiIiIyJU3dNn4a3fzMx/5Yfa+PsUL7nqI78h/nXygQX0Y5UB3nDdlHifpRM95l/d0+3z/3/4UyUNQfmafl+x+mBdnH2YqWCaAxyPdKd5/5NlU/2mKyb97nOzy3Zfv/slTigK+S+RULTh9xhgymQzdbtdW7ZXLZTZv3sz4+DjPf/7z2bBhA4CtRPLDklAoRDwe55ZbbiEajbK0tGRn9fnBXa/XY3R0lEqlYqukcrkczWaTQqGA53m2baTfujGbzTI7O2uDPL8dqF8pWK/X2bZtG4lEgkceeYR+v08ymcTzPBuwHTlyxFYgttttpqen7fomJibYv38/w+GQw4cP26o0P5gsl8u2cm1iYoLl5WWmpqYolUq2Ss8Pzfy5eX4Vml9l58/aC4VCGGNsuOmf70ajAUCn06Hf79tKRr+yz6989EPJbdu2MTc3Z485Pj7O7OwsruuSSqXodDoEAgF6vZ49R34o2ul0qFQq5PN5YrEYwWCQbrdrA0M/kPM8j2w2S6PRIJ/PEwqFGAwGtvqyXq8TCoUIh8MEg0E6nQ7tdptUKmVbYfph4MTEBIFAgOFwaIO3cDhMt9u1QVs8HqdcLjM7O0soFKLT6XD06FESiQT79u0jnU7TaDRse9hUKoUxhlqtZh/HhYUFisXik2bl+UFdNptleXmZubk5QqEQyWQS13VJp9McOXKEcDjMunXraDQabNmyhVKphDGGYrFo5+T5IV4mk6HdbhMOh9m7d6+dK1iv15mbm2Pbtm14nkcikaDb7bKwsMDCwgKjo6PU63We+9zn8vGPf5zDhw8zMjJCq3Xp/8pGROSp6onfvYUDN/7xBd9+MpjksXeMsu31pw/4vLtu4nve92+8Mf3xE34as9+tC7p8645/p/vOPte+6EfZ/qavw9C94DWJiIiIiIiIXCjv/kfYdj/MhML86chdEAlDr4/XbPE3L3kJb/yv/8yPZI6ddT/vq07w4Te8iM33roR2BeBAJMKfZO+EVAKMgXKVSPEwY94h9C5YzodadJ4nPyA6n+sSiYQNcvyqpE6nYyubtm/fzsaNG4lGo3YeXLfbJRKJ2BaF3W6XWq1GsVikUqkwPT1tK9j82XGhUIjhcEij0aDZbNLtdpmbm6PRaBCLrXyA5odg+/btIx6Ps3PnTlKplK24i0QiVCoVcrkcy8vLzM/PMxgMiEQiZLNZG1aFw2EKhYJdm1/Vls1mKRQKzMzMsH37djzPs2sKh8OsX7+eXq9HqVRidHSUdevWASvz4Obn53Ech1qtRjQatWHa+Pg46XQa13VpNBoMBgOKxSK5XM5WOQ4Ggye1nBwbG6PT6bCwsEA6nbaVeuFw2FZQ+iFfNpu14Ver1SIcDjMcDm31nl/15XmenRfXbDbtmvzWmo7j0G63GQwGdq6g3xI1EokQDAapVCq2Is0P1fzHyvM8Op2Ofcz9Sj8/vPOrPv0QuF6vc+jQISYnJwkEArblZzQapVKp2IBry5YttgWmfz+CwSALCwvs2bOHfr/P+Pg4nU7HzgHsdDps3bqVWCzGzMwMnU6HdevWMTY2RvB4+zT/mP5MQT8sLpVKtjo1m83a1rStVovBYEA8HrezAf375fMrKf3zYIx5UnvXfr9Pu90mm81y8OBBJicnqVarBINBms0mk5OTAOzYscPuUy04RUTOLDg9xcP/6fcvej8fec4fnfY6Jx7n5//ir3hjevGs+4mYEAde9H72/v4zL3pNIiIiIiIiIhfD6/cYzC8wODzDYG4et1Yj9bdf5qPPv4Ftn34TjWHntLf9voMv4B9fchvevQ89eZ/dLu7CIu6+g7h7D+AuF9XFRi6IAr7LzG/j6LeNdByH5eVlhsMh6XSaTZs2US6Xefjhh3nsscdsi0RjDJ1Oh6WlJfL5vK3k8qu5RkdH2bNnjw3O/Mq14XBIKpXCdV02btxIIBCgWq1Sr9fZuHEjqVSKZDJp97+4uGgrzfzgpdlssry8TKFQIBAIEAwGbVVaOBymXq/bIGzfvn2Ew2Gi0ShHjx6lUqnY9ph+SObf506nw8zMyl/2+21BFxYWbKvP4XBILpcjkUjYSq5MJmPbQfZ6PSKRiJ1ZWC6XaTabhEIh8vk8rusSjUZJp9M0m03i8TgjIyM0m01bWQgQDAap1+sAtmIxEolQLBbtbLher0er1bKVd37w5Fc5+uFjOp3GcRw2b97M5OQkw+GQSqVig0e/vWaz2bRBoV9x54e1/gzAaDRKJBKh1+sxPz9v59n51/tVmOVy2VYvAiwtLdFoNHBdl4WFBY4ePWqP0263WVxcJB6P4zgOudz/z95/R0uWH/Z94OfmuvdWji/36zg9CYPBEIBAAARFgBSDbNGSgwKpcKSlEhUoydYe7dqyVj57tPKxJdlrU2tRlKjVUodWYjBggRABBmAwwGBi98zr+PrlV69yrls37h/N+1P3sCf0ZAx+n3P6TL/3qm7dulXVZ2Y+/f1+S0KQVioVbNum2Wxy+fJlUXOaitzLly9z8+ZNLl68KBKhvu9z8eJFsf33+OOP813f9V08+uijfOpTn6JYLJIkCYeHh1QqFRRFYTgcikrTNJUIUKlUxOuaSrx0Q891XXK5HKZp4jgOa2trYiMxrZG1LEsIbE3T2N7eJp/PM5vNOH/+/H1/VqUIlEgk36lc/akNHNV8y8d52DBfdUPv4Cc/zA84wf2d14/+rwQ/ICWfRCKRSCQSiUQikUjef4TNE87+2PN89m/8FP997yxBcjt7N4k9/umozoP/259j+P0e4c7ee3ymkg8yUvC9SV4ryZf+HMCyLLE5pus6iqIIGZdWa6bJsiAIaDab5HI5IcrG47FImt28eZOdnR1KpRLf+ta3RE3naDRiNpuJRNloNCIMQzqdDlEUUa1WWVpaAiCOY5HGK5fLDIdDDMNgPp8zGAxQVZVCoYDjOCiKwmKxwDAMlpeXRTrOMAw2NzeJ45jNzU2RPCuXywCMRiMAXnrpJTKZ213EZ8+eFTWTS0tLKIqC4zhEUYRpmoxGI5GOq9fr1Go1IZTa7TaaprFYLJjP5ywtLaHrOtlslnK5TBAEVCoVkU68MwmZ1numSbA0ZTaZTFBVVdRiOo5DvV6n3+8LoZjL5QjDkMFggK7rxHHMYrEAEOk827ZFhWQqX9NazG63y3g8Znl5mdlshqqqVKtV8RqkkhfAcRx0XRd7g6mobLfbmKYpRFn6/oHbaczZbMZ0OmU4HLK/v890OhWJS8uyRK3n0dGRuG2xWCSKIvr9vrg+qbz80Ic+xNLSEqVSiYceeoggCNja2sK2bS5cuECtVsPzPCqVCq7rsru7i23beJ7H9vY2hmGwsrIiNgbv3NKr1WqiWjVNUKavWSowDcPAsixyuRwAmUyGlZUVGo0GURThOA4rKyv0+32RGmy32+zs7AiRGwQBDz744F3C7pW/f6XMk3JPIpF8J/NTP/z5t+U4mqK+quD7Qz/2a/d9PEPR+CP/4P+4XVcikUgkEolEIpFIJBLJ+40kofjPvs5XPr3BJ/9vP8lH/h9/lt/7p/8C//unH2Pjv32SWE4ISd5hpOB7k6RC4LUkn6qqopoz3X/r9/vAbfGXJAknJydCNBmGIYSL53lCDlqWRalUYrFYMJvNmM1mtNttPM9jd3eX+XwOwNWrV0U148rKitiIGw6H4rbb29v0ej0hRHK5HL1eT9RMDodDNE1jNpvR7XZZX18XsmZ5eZlCoYCqquzu7lIsFpnNZui6juu6YgNO13UeeeQRIQHDMCSfz6MoCmEYMplMKBQKIrmV7rGlQjNNsaUbfNlsVuzSqarK8fExcFuypa9Bt9vF931yuRzr6+vYtk21WkVRFNbW1jhz5owQctVqFcdxRN1omixTVVVs6rmuy3Q6BRDPIU2XpVWcpVKJ4+NjKpWKSD6m0jbdqbMsi36/z/nz54XUBYToSq99KtvS6spMJsNkMhE7hWk1qaIoaJrG/v6+qGY9ODhgMpmgKAqlUolsNit27dJqy1TizmYzhsMh0+lUVHKmScP5fM7W1hYvvPACw+GQ69ev4/u+SGFubW1Rq9WEME1l8pUrV+j3+yiKwnQ6pVwuE4YhxWIRz/NEwu7o6EhI0PT5AKLOE26LzmKxKI6fJiz39/ep1+v4vs/e3h6+7wtJePr0abLZrEh3BkFAtVpF07R7fk7vJedf63MskUgkH3R+2N16W47Tj2bEv/0XYe5C1fjz5eff1DH/ZKHJ7Ec/9tZOTCKRSCQSiUQikUgkkneQqN+n9E+/Tu0ffh3r808Ttdvv9SlJvkOQgu9N8kbSe2nKS1EUVFVlPB6LCk3LskSKKhVa2WyWUqkkRE+32wVup5g8z6PX64kdskwmw2KxwHEcIRAVRcF1XaIoYn9/n1KpRCaTIQxD9vb2xLk5jgNAv99nMBgwnU6xbZvRaCT2+9Iay+vXr4v9v5deekkkCDOZDN1ul+l0iqqqrKysMJ/PGY1GjMdjnn76aabTKefOncM0TU5OTkQ9aFpXOplMcF1XVEmmFZLHx8dC1qytrYnrB7fF6Gw2E8Iovc6GYVCtVkWiLggCsUHXbDbvElDD4ZAzZ85QKpWoVCocHx8zm81Ekk9VVSaTCcViUaThFEVhZWVFfJ3L5ZhOp2QyGVRVFfLSdV0Gg4GoES0Wi+i6zmQyEem0fD6P53lCLGazWZIkYTAYiErVVPDNZjPm8zlxHNPr9UQiz7Ztjo6OxG6hoihsbGyItOh0OhViNAgC8vk8tVpN1JnW63XxXktrZNN0YzabBRDvr9lsxmg0wvd9bt68yWQyEeefzWZptVqMRiN2dnY4e/YsqqqK9KCqqsRxTKvVEq95EAS4riu2A33fJ5PJUCwWRZLUtm00TWN9fZ21tTWiKGIwGIha0tFoRBRFDIdDIQ4BDMPg3LlztNttURf6Vj7LEolEInnjfM+3/tQ9NwO0B89RUO03fdwf+lu//hbOSiKRSCQSiUQikUgkEonkg4kUfO8QiqIIcZNWAqqqSi6Xo1arkc/nxY5cr9djd3eXbrfLZDIRyTLDMKjX65imye7uLoPBgEajweXLl4VgyeVyuK5Lo9EQ9Y5p3adlWUynU/r9PkEQEMexkEpra2usrKywtLQkqg81TaNarZIkCZ1OR4ioyWRCkiQirbe3tydEkqZpQhLZtk2SJBiGwbVr1zg+PmZ7e1vctt/vs1gsmEwm1Go1sVeXCrQwDJlOp8znc1Gdme7LxXEsUmhJknDu3DlKpRKASK9pmsbJyQmtVksk5dJdwna7LZJoqXBKHzdNWVqWRTabFbWRqXxNU4H5fJ7JZMJoNMIwDJF0TCVcmrjs9XoAlEolbNtmMpnQarWENE0rK33fJ4oistms2BpMNwWPjo4IggDHcSgUCliWJa5Zet5JklAsFtE0DcMwUBQFy7Iol8ucOnWKJEnu2jHsdrvitXIch/l8jv7bVWrp7p3v+0ynUyFYLcviM5/5DGfPnqVcLnPt2jUh39JNPNu28X0fVVXZ3t4W1ywV09VqlUajged5GIYhko7Hx8fU63WSJMGyLJE27HQ6FAoFqtUqtVqN8XgsBF+aIE3f52nacjgcMhwOGQwGXL16lSAIWF9fB35neu/VkKJPIpF8p/Jvxx96y8f4mhez8ed69/xZ6xPlt3Tsv17ZQvvtSmuJRCKRSCQSiUQikUgkEsltpOB7C7zWbpdhGHcJtbTaMU3ypQKj2WxycnLCs88+S6/XE5LKtm2xgbe7uwuApmki6ZTNZsUmnq7rIsU3Go3IZDIUCgU6nQ6ZTIZarSY25lRVpdfr0el0GI/HDIdDHn74YZGcSrfpBoMBw+FQpOUajQbVapVKpSJEVKfTASAMQw4PDzk+PqZUKrG0tMTm5iarq6siSba8vEyz2SQIAnK5HP1+n+l0Kq5RmkAcDoeYpslgMCAIAsbjsUgVpjJRVVW63S6ZTEYkCO+sh1xaWsJ1XZIkEddiZWWFUqkkqiAnkwnD4ZAgCESazTAMIaHK5TLT6VTI2bS+NI5jccwgCETFp+M4Ii1pGAa6rot6y1SqbW5uij3FtO5T13WGw+FdSb5arUalUsG2bbE7mNa2BkEgkn1Jkgh5t7S0JIThdDplf3+fOI45PDzk4OCAwWDAfD6nVquJNGMqPBuNBh/5yEeIoohSqYTjOHiex3Q6xTRNUenp+76QoKurq+i6TrVapVQqEYYhZ8+eFXJyMBhQr9dF1WZaNavrujjWbDYjCAJM0ySKIvEeKBQKDAYDHnzwQUqlkpDZjuPQ6XQ4PDxkNBrR6XRQVVVUs6ZiUVVVhsMhjz766D339iQSiURyNz/zL37wLd3/F6dZ/ts/9icJj5v3/HnovLU/hzVFxfvY+bd0DIlEIpFIJBKJRCKRSCSSDxpS8L1NvDL947ouiqKIqsYoigBEgqzf7+P7Pp1Oh62tLZaWlphOp6KGME2ztVotisUiqqqi6zqDwYAoikSCK03Epamx5eVlsW2XVnGmKbNms3nXXp6maSwWCyEHq9UqAN1uV2zGmaZJPp9nNpuxu7tLs9nEMAzy+bzYMkufUy6Xo9PpMBwOKZVKnDt3jjiOmc1mItGYCq/pdCoqI9P0Wa1WI5fLMZ/PxZ5fKjXT9BncFqsHBwf0+30MwxCVmpqmCfkXxzGmaTKfz1EUhWazyXg8JkkSsT0XBAHD4ZAwDGm323Q6HbFLOJvNyGQyGIaBbdvk83kymQyZTEak79IkWyqp0tSgZVnM53P6/T66rlMoFDBNk6OjI5EUNAyDKIrwPA/P80TFZFpnulgsSJJEVIHOZjNRnaooCqurq+RyOfL5PI1Gg729PbH5mN423fUbDAai0rLVaqEoikiLhmHI8fExly9fZjgcCglsmiaVSoUgCLBtm1wuJ4Teo48+eld684EHHhC3SbcWy+Uyx8fHqKoqEqnp5+LUqVP4vk+j0RCCNpWpmqYxHo+FwD19+jSz2Yx8Pi+uSbfbpdfrUSwWhShNX8/NzU1xXhcuXHiHP/USiUTyweDU33uefz25/4TcQTjhoSd/jH/0ez6H+lvPvertKpfvsct3nwzPmG/5GBKJRCKRSCQSiUQikUgkHySk4LsP7pUESr/3yp9FUSQSS+mGmmVZovKy3W4LkXfjxg1u3brF3t4eo9EITdNYWloSciQVUpZlYVmWSDylKTFASBnHcUiSBF3XRWoqk8mQy+UolUoiURiGIScnJ6KSUtM0CoUCAL7vs7+/j67r5PN5kSRLU4i+7+M4DqdOnWJ1dRWAYrGIYRhUKhV836ff73P16lUqlQrFYpGjoyPiOBZpvLW1NZF2Gw6HKIrC4eGhqOJM5WWaZEz/OZ/PhTRNdwg1TRNpwFarJSoze70epVKJ2WyG7/vUajWKxSKZTIYoisT222g0YrFYiMRkt9tFVVWxPzcejxmNRhQKBWzbFhWoqXRN5W2xWCQIApG66/V6TCYTxuMxYRjS7XYpFotCvKZpwjt3/GazGYVCgdlshuM4TKdTIR0Nw8D3fSHt0hRlFEWYpilE7XQ6pVAo8OEPfxjLsrBtW+zxpUI4rYB1XVe8XyuVitjXcxyHxWJBNpsVzzdNIqbbf4Zh0Ol0ODo6Ynl5mXa7LepeV1ZWWCwW4vVJE6vpc1hbW+Po6Oiu9KPv++K2a2trbGxsCNE7Go1E+u9OMZpWujqOw/LysrgexWKR8Xj8dv8RIJFIJB9I4tmMn/lPf5j/fPuzHIeTV71dlMQchxP++95ZTv/K/4U/8eN/gfX/7CXC7Z3XPL7xtcvcDF79uG+E7FH0lu4vkUgkEolEIpFIJBKJRPJBQ3+vT+DbjTda9zcej9E0Ddd18TwP0zSZzWYsFrf/FnuaelNVlTAM2d3dZXNzk+FwSBRFQiClksdxHHRdZzabEUURw+GQXC6HaZp4ngfA6dOnxW5cWntZr9c5OTkR22qNRkMk+arVKjdv3qRcLot6SN/3eeCBBwBot9t37cmlQiutzmw2mzQaDYbDIbVaDUVRcF2XbreL4ziMRiOWlpbY2dnBMAyRRASYTqcUi0V836fb7QK3BZllWUL4TSYTcrncXTWLmqYJwTOfz4XYSis509+n4icVdGnqsdPpYNu2EJyGYVCtVvE8D13XxXNMX7N0M7HVavHCCy+gKAq+7zMej9F1nUqlQqvVIo5jca0KhQLj8Vhs2K2srHDjxg00TaPf74tEWxzHQlym1aC6rovUYrrp5zgOruuKpJuqqiKpmYrKJEkYj8fUajV0Xce2babTKdVqFcuyRNpSURROnTrFycmJeH+1221KpZK4fqdOncLzPFRVpVwus7u7y3Q6xfM8MpkMJycnIkH60EMPicrMVCQGQcDR0RHZbJZSqcRgMMD3fQqFgkitFotFGo0G4/FY1Hjm83k0TSOfzwu5mlaE9no9qtUqqqqSzWZpt9sUCgVc18U0TUqlEisrK1y/fl3UfQ6Hw7fpUy+RSCQffOIXrzD6rMUf+66f5ORjDuMzEWrZR1VjgrmBcWKQvwnll2fol29xYfT0Gz52sljwh/7mf8mX/rv/kYJq3/e5taIpzldeIr7ve0okEolEIpFIJBKJRCKRfHCRgu9t4JXSL5UpqagKgoD5fC6SXultUsk3mUzE/lwcx5TLZQaDAYZh0Gw2qdfr+L6PYRgMBgORpPI8Tzx2ugc3Ho+p1+vEcUwQBIRhSCaToVqt0uv1RCVlKlvK5TL5fJ44jmm32wB0Oh1GoxHZbFZs/c3nc9bX11ksFkJCVioV2u22qJFcWlri2rVr5HI5yuUynufRbrfFHmG73cZxHCaTCb7viw26UqkkEnSWZYlkXxRFjMdjlpeXabVazOdzsc+WJvhSIWbbNs1mk5WVFSEOS6US8/mcSqUiNuzSNNqdVZlpYjAIgrvqTyeTCUmSsLm5Sa/XIwxDUfOpaZpIT6Y1pGkdqGmaQn499dRTLBYLUSeailvXdQmCQIixtJ7S932RAtR1XdSUTiYTkcZLazwNw6BWqzEcDimXy7RaLRzHYXNzkzAMeeGFF8hms2JvL4oiXNdF0zSxfTibzbBtWzxu+n60bZsoinj22Wep1+vivfGJT3yCra0tIWAPDw+Joojl5WWOj4/FeyCfz7OyskKn0xEJvOFwiOd51Go1IbpTYZq+t+v1Oo7j8PjjjxPHMU8//TTD4ZBqtUoURcRxTL1eF4m/YrFIFEXs7+/z0EMPUSgUePzxxzk4OOBLX/rSPT+rr6zTlUgkEsltksUC5WvPs/Q1WHqN272ZLF3pn36dH/R/it//N77EXyxdwVKMN3S/LX/GH/67/yX16ZNv4lElEolEIpFIJBKJRCKRSD64SMH3NpAmo+71/eFw+KpCQVVVPM8jSRJ6vZ6Qc7u7u2xsbOC6Ljdv3qTT6eD7PmfOnCEIAizLEnWbvu+jqiqqqjIej3Fdl9FoRC6Xo1gs0m63yWQyDAYDUWWZSrRMJiPEUpIkZDIZkXi7U6TZtk2tVmN3dxdd1xmPx5jm7S2cM2fOYNs2s9mMGzdukM1msW2bw8ND8vk88/lcJNHSmtJsNitqKzVNYzAYiNrQg4MDUQGaphDTfbq04tSyLHzfJ5fL4TgO3W6XKIpQVZVPfepTfOlLXxJfTyYT8vk8y8vLQgKmEivdxysWi0wmExzHYTwe0+/3yefzInnW6/VwHEek/NLnkUq/VOKm1zBNVKbVomlSLt0FTJNyjuNg27ZI+6XCNn0P6LrOaDSiWCwKgajrOpZlCQnX6XTI5/P4vi/SnDs7O5w7d475fI7v+6KmdT6f47ouR0dHosYylWeO43B8fCxkYioyLcsSyUzTNNne3mY0GmGapqh0nc/nLC8vi2t29uxZkTTd3NwUx0t39tJ60FTMprWe6fmfP3+emzdvksvlRGpwsViI1F+r1cJ1XQzD4PDwkGKxiOd5bG1tUSwWuXHjBjdu3GB7e/t1ZZ6UfRKJRPLukf/5p/jK/7nBv/mh76f5vRGPX9zhE+VtTpkdNBKmscmBX+HyeIVLrWUWWwXO/OsR9Wek3JNIJBKJRCKRSCQSiUQieSVS8L1NpKIgrZNMv47j/1Ao9UoJOJ1OMQxDCCzf98W22c7ODpubm8znc1RVpdPpcPr0aQqFAt1uF8uyGI1GrK6ucnBwQKPRALhrly5JErHft7a2JpJhg8GAT37ykzz11FMUi0XOnDnD1atX0XUdRVEol8soisLZs2e5dOkSGxsbtFotDMMQQqZcLjMcDhkOh0ynUyaTCa7rCiEXxzG5XA5N0zg8PERVVVZXV4miiFarxWg0ErWfaaJtNBqJvcBer0cUReRyOSEx4zgmm81SLBbZ29sTkhAQNZPPP/88iqKwvr7O4eGhOAfTNOl2u/i+z+bmJoPBgP39fXq9Hv1+X8g027aZTCaiqtM0TXZ2dshms2L/Ld03VFVVVGime4hpGs7zPLa3t/E8jyAIKBaLnJycoGmaqFdNX480uZi+j/b398nn83Q6HZIk4ejoiHw+TxRFIlmYz+cJw5BGo4GiKGQyGYIgAG7XmF66dAlVVTEMQxx7sVgIgVur1US96dHRkbjtfD6nVquJa5ZK1fR1SAWlZVk0Gg263S7ZbJadnR0qlYrYEGy1WmxubnLjxg1GoxFBENyV0EyTlWl9bCqB6/U6N27c4OLFixwfHwP/YdtQ13UcxxHJTF2//cdXGIZigzJ9T16/fl3KO4lEInkfEvX75H/+KfI/D1NV48vuCkrmDKgKhCGJtyBZjFkJ+wDIP8klEolEIpFIJBKJRCKRSO6N+l6fwAeVV8q8e9V4Hh8fc3R0JFJ8abJrPp8zHo9FpWWaDkslSBRFIoE1m81Eom91dVVs6aUVlMViEdM08X2f0WiEYRiYpkm/3xciMD2HfD7PmTNnSJKE2WxGv99naWmJ5eVldF0XEix9/PF4jOd5LC0t4fu+2JJLkoQ4jtne3mY6nWLbNoVCgclkwmg0YjKZiFrMtMY0rb1MpaSu6+RyOcbjsZBDcRwTxzHdbhfXdVksFgRBQDabJZ/PUygU2NzcJEkSDg8PxXbhfD5nd3eXXq8nROHGxgaO44jro6oqURSJpJimaSiKQjabFQm89DVIt/Nc1yWfz6PrutiPS5NpYRgKYTgYDDg6OhI1qpZlCdGmqiqKojAej0Udqud5TCYTisUi5XJZvH+y2awQgp7n4fs+8/mcMAwJw1C8ZmEYisRmmvIsFotCXubzebLZLDdu3KBUKhFFEaPRiH6/TxAEHBwccHR0xHA4ZH9/n+l0KjYc4zgW76WbN28KKZwK0VKpxI0bN8jn82xtbQm55zgO9Xpd1K+m7yVAPEfHcYQ4TpKEbrdLo9FgMpkwnU5ZXV1lNpuxsbHB+fPn6XQ6lEol4jhmOBwymUzY3d0lCAIuX758T8EnpZ9EIpG8j4gj4vGYqN0mOmkRdXvE0ynJb//lHYlEIpFIJBKJRCKRSCQSyasjBd+7zJ2CId3Ju/N7qejzfZ9Op8PS0pKoUEzTgJZliUpL0zQxTZPpdEoul2M+n7NYLMQ+XLlcplqtomkaqqoKiRZFEZZl0Wq1ODg4QNM0Dg4ORJJLVVUGgwGmadJsNoVEKpVK4hwcx6HRaHDr1i00TcNxHFzXZTgciorGQqFAo9EQlY+O43Dq1CkhZorFokijaZpGJpMRzzOKIrFPFwSB2B1Mr51hGOTzeSFPT05O2N/fp1Ao8MADD7C+vk42m2V5eVkIuul0Srvd5tq1a9i2LRJ2pmmKtCTcTrulCUPLssSWoK7rVKtVBoMB/f7tdEGxWGQ6nRKGoTierusinbi8vEypVCJJEnK53F0Jz/F4TBRFGIbBbDYTtZ6p9IuiSAjIIAjY2NjAtm00TePUqVNYliX2A03TZDAY0G63qVQqolq1UCiwt7cnUnn5fJ7hcMja2hpHR0fM53MhKjVNY3Nzk3K5LGRwuVwWdaSDwYA4jimVSkynU1G7mYrUVqtFNpvF8zym0yme56FpGqVSSWz8JUkiNikNw2CxWAiJmCY/2+02nucxn8/JZrOUSiX29vbodrsEQUCtVuPMmTOi2jMVg2kStNfrvWOfYYlEIpFIJBKJRCKRSCQSiUQikUjea2RF57vEnTt9r/x9yp0pvzTJFkURa2trlMtlsZmmaZrYRku/HgwGXLlyRciXVqvF6dOnGY1G7O7u4vs+6+vrnJyckM/nOTg4oFQqkclkGI/HbG5uYlkWV65cYTwei+Sgpml0u10he9LduFQqbW5u0mw20XWd4XAoaiTT1GCv1yObzaLrOqdOnQIQ9ZilUgnLsphOpywWCyGfBoMBQRCIXTrbtoHbCa90Vy+TyVAul0UdJoCu6zSbTabTKf1+X2y6KYqCaZpomsbDDz/M1tYWiqJQKBTE9UoTkblcjmaziaqqQqD6vk8QBHieJ6SiruvU63UUReH4+BjLskRaLpvN4jiO2MdbWlpCVVWGw6HY3EuPMZ/PMU1T7BoGQUCpVBLJxTAMSZKEcrnMZDLh6OiIbDaLoiiMRiMhFNNNunq9jqqqQvguLy+LfUdVVSmVSnS7XQCOj4/RdZ1arSY2CDVNo16vM51OaTabRFFEv99nPp+LxGihUBCJwzurMsfjMYZhoCgKvu/z0EMPcePGDXzfp91u47ruXZ+J6XQqkpOlUonhcEi73eYjH/kIvV6ParXK/v6+qOhst9tUq1UODw8ZDodiy284HFIqlTg8PGRtbY29vb27qnHv5E65eq+vJRKJRCKRSCQSiUQikUgkEolEIvl2QCb43mZSWfBq0kBRFDRNu+dt0vRe+n1VVdnZ2eHq1auUy2Usy6JarYqdvMlkIkRboVBgsVhgGAZnzpzBtm1RS6lpGtVqVTzG6dOnMQyDTCYjduaazabYL6tWq0ynUx555BG63S6rq6uEYchiseDWrVssFgsA6vU6zz//PLZtY9s2jUZDyLZqtSrkTRiGBEHAZDJhPB5zdHREHMei6jOOYzKZDJPJBN/3xXMdjUYoikIYhuLnpVIJXdfxPI9er0ccx6iqSrFYFALJdV08zyObzdJut+l0Oui6zubmJr1eT8jKtAry5OQEANM0xbmkUjGVT+VyGdd1cRyH6XSKrusitWcYBoBISdZqNZGyi6KIl19+mUuXLhGGIc1mE0Bs8KXJwlRCGoYhJBkg9vu63S6TyeSuPb1UqKavY7VaFclJ0zSxbZurV68ym82o1+tiN1BVVVHDatu2qEtNq0abzSZXr14VAi2t9fR9X9SQRlGEqqp4nid2E6vVKpVKBdM0OX/+PNvb22JnME3t+b6P7/vk83mxYQhQKBREUrHX67G7u8t0OsWyLHF9bdsmm81ycHBAs9nk4OCA/f192u02ly9fZjgc8vzzz/P000+LpGBaF/vKz9adnzeJRCKRSCQSiUQikUgkEolEIpFIvt2Qgu8d4NWkwSuFw2vdNq3T9DyPk5MTkaxL5cxkMsE0TVzXRdM0sVOXyWSEEEmFne/7TCYTFosFlmUxn89FeiqtSkx36x599FEURaFardLpdLh48SKTyYS1tTVKpRKu6xLHMc1mE8/zxNeDwYCdnR2iKBKVjq7rEkURQRAQRREHBwd4nicSbKncGo/HDAYDSqUSnU5HpM9SmVUoFER1Z7vdJpfLCZGWJuFM02SxWNyV3EolZq1WYzqdEkURrVaLKIrodrsUi0UKhQLVahXP8/A8j36/LxJy5XJZJPkWiwWLxYLRaIRpmjzwwAPkcjnCMKTRaIhUm2madLtdRqORSP4lSSJSjOnrl1ZSpnWo+XyeSqWCqqqcnJyIpGSasKtWqxSLRQzDEMm8tN50ZWUFgGazSa1WYzAYAIiK1XTTcLFYkMlkyGQyLC0t0Wg0RDVpFEXUajXG47FIzd1Z5TqZTIiiiE6ng+M4Quql6bpU1qYbgo7jCLHo+z6u64rrk0rAbDZLsVikVquJ6s30fGezmUiwpglD13UJw5CDgwNmsxlwu4K23+8LeXz16lXa7fZrfr5eTexJ2SeRSCQSiUQikUgkEolEIpFIJJJvF6Tgewd5LdGXcmct553EcSzqF9PkXD6fx3VdarWaSOvpui727MIwpNVqceXKFVHXCLcFma7rdLtdWq0Wg8GATCaD7/tkMhnq9Tqu64oaxNFoBNwWZL7vo6qq2AsMw5BOpyN+NhwOCcOQ2Wx2V8VmFEVomsbq6iq9Xk8kxNLHtCxL7AwCYhswm82KVJfruuLr2WxGqVTC8zwGgwGGYQgR5DgOk8mEIAgAmEwmAHQ6HTKZDFEUsbKyIsTPfD6nUqkwHA4Zj8dUq1WiKAIgDEORJIzjmEqlgq7rjEYjISTT6sr0NUi380zTJEkSer2eSMNlMhkhZFVVxXVdVFUlm81iWRaLxULsG975mqqqytLSEoqisL29LQQkICo9AbLZLL7vi8rWdPNuMpngeR71ep1MJkM2m8U0TVqtFrPZjFarxWQyod1ui22+nZ0dJpMJ9XqdQqEgrmO73cZxHCzLolgsMplM0DSN+XwuEqlpRWk+nycIAl5++WUsyxJJylu3boltwVQcpqIzTR2m76NMJoPjOBQKBQDxnhkMBmInMb3e6esXxzGmabK/v/+68vx+PqsSiUQikUgkEolEIpFIJBKJRCKRvB+Rgu8d5rXEwavJvTvvl/4ziiJu3bqFqqpCugFCRsHtDbo0fbayssJ4PGaxWKDruhBohUIB3/dZXV3lIx/5iEhdHR0doSgKQRCg6zpJkpDL5djb22OxWNDr9fA8jzAMcRwHwzBE2i2bzWLbNqqq4jgOpmmiKArz+ZxWq0WxWMT3fer1OsPhkPl8LhKHKysrWJZFqVRisViI2tHhcCj29izLElLQtm1yuRy5XE5UUSqKgmEY2LaN4zjUajUeeOABoigim80SBAGDwYAwDImiSNRgjkYjSqUSg8EAx3EoFosiBZmmxiaTCR/+8Iep1WpUKhUhutrttkicpWJL0zRGo5GQXakEKxQKQuyl+4HD4VBIrFwuRzabZXV1VTxHVVUZj8coioJt23iex7lz58T301rP2WzGfD6n0WgAtwVlqVSiWCyiaRq3bt0CbsvaOI4Zj8fkcjmxTZjNZsXWYBiGwG0xmu4BLhYL8vm8kMWmaTIYDDg8PMTzPLGvV6lUhKSsVCq4rivSmQDr6+sAzOdzNE3Dtm3iOCaOY1H9eWeSMpfLAeB5Htvb22iaJuRiGIYcHh6Ka91oNMQGZCp538znUUo+iUQikUgkEolEIpFIJBKJRCKRfLugv9cn8J3Ka8m9lFQ4pKmnmzdv8ulPf5pWq4Vt20RRhKIojEYjdF1nbW2NJElQVZV2u41pmuRyOQzDYDwek81miaKIer0uajHb7Ta1Wg3Hccjn84xGI1RVxTAMOp0O+XxeyKS0HtOyLLa3t6lUKvT7faIownEcFouFqKJMKzd7vZ4QganYs22b+XyOaZriuaZ7eo1Gg0wmQ7fbFfIxTeyFYYjneaiqSi6XYzweC2FlGAbz+VzIqXS7b2VlhcPDQzY2NojjmJs3b4rdvlKpRKFQ4OTkhOl0ShzH5PP5u6o+5/O5qIScz+dYlsXy8jKz2UxIxTiOxY7f0tIS0+lUpCRd12UwGIhrk/5zMpnQ7/fRNE2kLxeLBa7rMhqNhGxbXV0VW4HtdhvXdcnlcsxmMyaTCXEcUywWKZfLdLtdOp2OSNQFQYCqqoxGI6bTKdlslul0CtzesxuPx4RhKKSxruuidrTX61EoFMR7p9friSQn/IcK2SRJME2Tfr8vZHK/3+fUqVMkSUKr1RLfM01TnNdsNsOyLPG+AVheXqbVauF5HpVKhVarJa5XGIbk83lR22qapkh/nj59mmw2K94jUtRJJBKJRCKRSCQSiUQikUgkEonkg45M8L1D3Cnw3i7hcHx8zDPPPIPjOERRJKo0s9msSGcBNBoNIf80TRNps/F4zLlz5/A8TwjD06dPM5vNGA6HLBaLu5JlaTWj67oAog601+vhOI5IqG1uborEXbPZpNfrsVgsxOP6vi8SYqdPnxY7gdPplPF4LB4j3Q5MU4KqqmJZFrqui3rMdNOv2WwCiN28tLpxdXUVgOl0ysbGBisrK6IKdDqd4rouuq5jGAaLxYLBYCDklu/7nD17FsdxcBxHJNxms5lIFUZRxOHhIf1+H9u26XQ6jEYjRqMRuVyOIAgoFosi5VgsFomiiFKphO/7JElCv9/H933xnCqVCvV6/a69vrRWM45jLMuiXq+LNF/6OqWVnkmSsLW1JSReWr9qWRa5XI7FYkGpVGJlZYVKpUIQBGLPzrZtNjc3RcKwVquxvLwsrkdaUzoajUQiNN3d6/f7LC0tkclkmM1mQlYuLS0RRRHz+ZxyuUy9Xmd1dRVN04T8TXf90vrSIAhE2jCOY46OjkSa8cKFC8xmM46PjymVSui6LlKHaS3p5uYmmUwGTdPels+aRCKRSCQSiUQieQ9QlNu/JBKJRCKRSCQSyesiE3xvkTTd9mrffys7fK88VhzHXLt2jc997nO89NJLoi7S8zwKhQLdbhfLsjg4OKBQKDAej1lZWaFYLHJycsJsNuPmzZusrKygKIqQcOPxmEKhIMTaYDBgMpngOA6e5zEej9E0jcViwXw+xzAMHnnkEba2trAsi8PDQ5GoUxSFzc1NUempKAqKouD7PsVikWazSaVSodlsUiwWGQ6HWJYlhJOiKEynU3zfFylFy7JIkoQkSTAMA0VRsCwL0zSJ41js/aWJwDtvP51OWVlZ4dq1a2QyGXE+afosl8vR6/VYWVlhf39fiL/FYkEmk2Fzc5Nbt26JZKLneURRhK7rzGYzkfhTFIVcLkeSJNTrdbHl96EPfYh2uy1uk8lkUFWVIAgol8v0ej2RWNQ0jV6vx9LSEp1OB9/3URQF13XpdrskSYLrusxmMwqFAlEUibrWcrnMZDKhXC4LOReGIc1mUzzv4XCIoigsLS3R7XbJZDKEYcje3p4Qjf1+n9FohKZpQjweHBwIeZbWkJZKJfL5PO12G8MwcBwHgEwmw3g8xjAMBoMBrusKsee6rpCkaRVnWutq2zaNRoNms4mmaYzHYy5evMjR0ZHYdEx3H9NNxlwuJxKLa2trDIdDcrmc2Fp8rc+cRCKRSCQSiUQieR+gamgPnuPo+yqMnliwvNTHD3U6xwWqT+rUf3WX8PDovT5LiUQikUgkEonkfYkUfPfJqwm9t3K/N3LM9DYHBwccHByQzWaFzNB1HV3XRaIprYb0fZ/hcEi9Xmc6nYrUXLqNp2kajuNQrVaFqLFtG9d1abVaoi4yraOsVqu4rkuj0eDGjRuYpolhGHS7XbFrl+7otdttsU1n2zb9fh/P85jP54RhSBAEzOdzFovFXRWRqqpimiaj0Uik2brdrhBxuVyOyWQihM/y8jKHh4fouk6r1QJuJxgHgwFJkvD888/j+z4PP/ywqOdMhddisaDb7QJQq9XY39/n2rVreJ4nBOJgMGA+nzObzUT6z7ZtcT0XiwVhGIrq0qOjI6IoYjabEUURL7/8MnEcC4G6WCxEkjCty+x2uyJxF0URw+GQMAwpFouilnQ0GpHNZjk4OMAwDFZXV8XrndanapomRGulUsG2bVqtFlEUsbOzIwRZkiTMZjMqlQqz2UzsEKapuDRVV6/XSZJE1Gq2221s2xaJyiAICIKA06dPi+Ri+noClMtl1tbWODw8ZDqdomkaqqpi2zaapon3qKqqRFHEwcEBtVqN4XAokobppuCjjz7KfD7n2rVrRFFEHMf0+32q1aqQj+fOneP8+fOMRiPa7fZ9fTYlEolEIpFIJBLJu4iisPjB72L654f800f+KQ+b9u+4SfDDEZ//GwX+2i/+OA/8D9uEzZP34EQlEolEIpFIJJL3L7Ki8y3yeim9NyMDXwvf99ne3ubUqVMi1RdFEf1+XzxmPp/n6OiIarWK53kYhkGj0RCCJr3tQw89JGoXkyRB13WRJEvrItM03OrqKkmSoGkaH/nIRzBNE9/3mc1md6XGAJrNpkizDQYDbNtmY2NDJPDSpCDcrhdNN+lS2aOqKvV6nUqlwmKxQNM0cR9FUSgWi0J+VSoVAFEvWalUmE6n6Loukmi2bbO0tIRpmhSLRTzPo1Qqsby8zNLSkqjNXF5exrZtTNMU95vP5yJFmF7fdOPOsiwh1c6dO8fDDz8sdgNVVaVarYoaVc/zRJLNMAxc173re2kiT9d1oihifX0dQIjTfD6PYRjouk4QBCLhd3R0RLfbJY5j5vM57XabMAy5ceMGW1tbeJ5HNpulVqth27bYKiwUCsznc5Ik4ejoCF3XWSwW9Ho9Ie5OTk44Ojqi1WphWdZd1zqbzYp03ng8xvd9dnZ2ACiVSuRyOR555BE8zyMIAvE80grNdPvPcRwh6yaTCbVajWw2S71eZzabkclkiOOYra0tJpMJtm1TLpfRNI1SqYTruhQKBTRN4+TkhG63i6qq6Prv/LsLb/dnUSKRSCQSiUQikdw/2vkz7P/Lh/lX/9vf5+mP/O/3lHsAhqLxo+6EG3/kp/l9X7nE8I/8LlnfKZFIJBKJRCKR3IEUfPfJ/UqCO+XfayWF7idFdPPmTa5evSpqKU3TpFAoEMcxvu9z/fp1DMOg3W7jeR4nJycsFgueeOIJNjc3OTk5IY5jbt26hWEY5HI5dF2nUqmwsrKCqqpcuHABz/P4zGc+I77//d///aiqyjPPPEMYhmSzWZFIs21bVF5aloWiKJTLZfH7NFEHcObMGebzOb7vi/219Dw0TcPzPLEL6DiOEEblcpkgCIiiiHq9TqFQEPWU3W4XRVHQdZ1sNouiKEIapvtuaUJO13Vu3LjBqVOnaDQaQjCmlZWGYbC2toZlWWSzWQCKxSK1Wk1sH6aJO03TmEwmQqqlFaNxHIuEna7raJom7qPruqjKTLf2UmlYLpcxDINWq8V0OmWxWJDL5chkMqyurlKtVllaWkLXdXF+hUKBer3O6dOnRXowjmPCMBTiNpWtaSqx3++LtJ3jOJimyWKxEGLXtm2RosvlckIiptc8TViWy2Vms5nYIOx0OrRaLebzOQcHB+zt7Ylqz+l0KpJ/ruuSz+dF0tGyLObzOcPhELhdszqdTlleXub4+JiVlRUWi4U4B0AIYdM02d7eFslCwzAolUoiSXgn9/r8pilIiUQikUgkEolE8g6iKHT/5Cf4y//nr/Dyd/9zqpr7hu/6E4Uj/v3/6+9z7Wc/glatvIMnKZFIJBKJRCKRfPsgBd/bwP3IgdeTfG9EAgZBwFNPPUUYhpTLZXzfF8kl3/cxDANVVYnjmPF4zMHBAWEYcuvWLUajEYVCAV3XRV1nv98njmNKpRLf933fxyOPPMJjjz2GZVk899xzfPrTn+ZHfuRHWF9f5/z58+I5x3HMJz7xCVzXZT6fo2kaURRRKBTIZDIEQYCqqsxmM3H+iqJwdHTExYsXRQ3m6uoquq4ThqGQQ8ViEdM0UVWVxWKBZVkiqRVFEc1mkzAMuXbtmkj1hWHIxsYGGxsbIiUXRRG2bbOzs8PJyQlhGIo03EsvvcTXvvY1IdLa7TZRFGGaJkEQcHh4KHbiZrMZJycnKIqC4zgkSSLqS6fTKXt7ewRBwCOPPCKqKre3t1ksFkRRhOu64jllMhlarRbD4VCIzOl0iqqqop7Ttm1qtZpI9BmGIaRhmjSM4xhFUeh0OnS7Xfb29lBVlel0SjabJQxDzp49K845rQnN5XKUSiVqtZqQjvP5nHq9LmSvbdsEQUCpVMLzPPFYhmEICWcYBkmS0Gg0hMRLn18QBIxGI5aWlhiPx9TrdSzLolgssr6+jud5+L5PHMe4rive24qiMJ/PURRFpE2Pj49RVVXcJ62BnUwmDAYDDg8POXXqFO12m3w+j6qqlEolIe5e+fmUQk8ikUgkEolEInl30ZeXuP5PPsKv/62/xw84wZs6RlbNcOv3/GM+9eUDZr//4zLNJ5FIJBKJRCL5jkcKvvchb0TyLRYLXnjhBXK5HPV6XdQlBkHAbDZjMBigKIqoYkzlyGAwwPM8sbeW7u5ls1mGwyE7Ozv0ej22trbI5XIMBgMGgwGqqvJrv/ZrQoKFYYjv+1y7do1GoyHkZCaTYTKZ4DgOlUpFiClAJNqGwyFHR0cidRhFEfl8XqTSLMsSsiZN7aXPo1AoiOea7g5Wq1WCIKDRaHD27FkODg5wXVds5qWPnW4ORlHEZDJB13UymQyWZQmBZVkWvV6P0WhEHMeivjSOY2azGYvFgtlshqIoVCoVXNdFVVVRIxqGIZqmkclkRBIwiiKKxSKFQoF+vy9kWLoxF0UR2WxWJDAbjQbFYlEcu9frMR6PGY/H7O3t8cILL5AkCScnJ+I1HAwGOI7D+vo6uVxO7PstFguazSYnJydEUcTy8jKbm5ssLS2J/UC4LY3T3T3btlleXqbVarG3t0ccx6ysrJAkCUEQiA3D+XwOQLvdxvd9cS7ptctmsyRJwvnz5zk+PsbzPA4PD2m1WsRxTJIkLBYLkXBMJW8mk6HZbOI4DrlcTryHlpaWhIjO5XJcvHgR27axLAvbtnnwwQdZXl5GURROTk5eNxUrRZ9EIpFIJBKJRPIOo2oMf+x38fu//DzbP/CPyaqZt3zIv1G9yi//g7/HtX/8hEzzSSQSiUQikUi+o5GC7z3gfuo47ySVEen9b968yfPPP89sNhOpMkVRRM1kEAQ8/PDDrK+v0263mc/nxHFMJpMRe3uVSoVyuSwqHbe2trh+/bqQR0EQsLu7y8/93M/RbDbZ3d1lfX2der3OY489RhzH7O/vE0WR2MjLZrN0Oh02Nzep1WqoqspDDz0k6iZN0xTbgIvFgtFoxGAwEBt+rutimiaz2Yx+v0+lUuHmzZtMp1OCIMD3fVzXZbFYYNs2JycnBEFAPp9nMpkwnU4ZDAaMx2NGo5EQhKkI6/f7mKbJD/7gD4p9uyAIOH/+PJqmkc1mUVWVRqOBaZqcPXuWOI6xLItSqYRpmkJK5XI5bNsWycQrV67Q6/WA2wm39FyHwyG9Xk+k1lRVFUKwWq1imiZJkqCqKsfHx+zv73N0dCSuQ5IkTKdTFEUR1yXdBVRVlVwux2Qy4fj4GE3T6HQ6IimoKApBEBDHMa1Wi4ODAwzDwDRNUTtqGAae59HpdMSe3Z1pvslkQrFYZDQaUa1Wmc1mzOdzIeTSzbzRaEQ+nxfn0G63OTg4EPI3fY5ptWpaDXpn0jGtVm02m/i+T7FY5OTkhF6vJ0SqYRiibtX3fcbjMWfOnOGJJ57goYceYjKZ3Nfn7M1+JiUSiUQikUgkEsm90Zca7P/vD/Lv/87f508Wmm/rsUuaw60f/Bk+9eUDws8+8bYeWyKRSCQSiUQi+XZBCr73iNcTCveq63zl13Ec8+KLL9JqtVhZWRH7bQCe59Hr9Xj55Zfp9/uikhMQm2+VSkX8M63CbDQa5HI5vu/7vo+Pf/zjIg3W6XTQdZ3xeMyzzz5LPp/n+PiYxWKB4zioqsrZs2cxTZPNzU0ymQy9Xo/hcIimaRweHop0l6IoJEki9gPDMKRQKJAkCa7roigKrusSxzHz+RzTNMlmsyI5aFmWqCNNr4Ou63Q6HV544QU8z0NRFBaLBa7ritSZpmkUi0UMw+DcuXOsrKxQKpWYTqeYpkmz2RT7cIZhoCgKo9GI8XgsBNlgMBDJw263KzbkZrMZqqqSyWTI5XIkSYJlWXS7XVGzGYYhrutSKBQol8vUajUcx2EwGIjq1JWVFR544AHxOqavWSo0FUWhVCqxtrZGrVYTabUgCBgOh+L61mo1Wq2WSBuqqoqu63iex2Kx4Nq1a8xmMzqdjqhVTc8liqK7UnqTyYTxeHzXtqDneZw7d07I4ePjY0zTBMC2bbF9GIah2FGsVCpi38+2bQaDAfl8XiRKwzCk3+8TRRHtdptWq0WSJJRKJebzubiut27dEhWis9lM7Cjquk4+nxei+e34HEokEolEIpFIJJL7R3vwPN/zpW1e/u5//rak9l6Nv1G9ys/9k3/A3t/8bpTf/guQEolEIpFIJBLJdwpS8H2bkoqJMAyF5IuiiNXVVZFAS+XZYrEQMg1A0zQASqUS1WqV6XSKruuUy2WxzzeZTPj4xz/OZz7zGVZWVjAMQ4jCVHhtb28TRRG+75PP5ymVSoRhyGQy4cEHH0RRFC5evMja2hr9fp9CoUAURSJl6HkecLtGMggCsaOXEscxuVyO4+NjMpkMmUwG27bvSo9ZlsX6+jqaptHtdul0OiL15jgOZ8+eZXV1lQcffBDTNImiiDiOOTw85Nd+7deo1+vEcYxhGNRqNbrdrkgjVioVstksiqKwubmJ67pCqqW7dmmKMP3l+z6ZTIbl5WVRJbq0tCQkY7VaxfM8TNOk2+2KJFqSJIRhyHg8FluBaf1koVBgMBiIa1Mqleh2uxwdHQkJ1mg00HWdwWAgNuzS801f17TmMt3VUxQFXdeZz+dC9qXPKa1Mrdfr5PN5KpUKtVqNpaUl2u02pVKJk5MTJpMJlmWxurpKvV6nXq/T7/fJ5XKsrKxQLBbJZDJ0u10hai3LYjgcMhgMCIKAbDZLENze4RiPx+K1Tjf+kiQRqcL19XVR61mpVETlajabFUnD9L3zys/Kq32GJBKJRCKRSCQSyduH6rr85//2N/jrlevvyuOt6Vku/8T/m9kvr6Cf2XxXHlMikUgkEolEInk/IAXfu8ib2fu6V5Lvzp/B7bTer/7qr3Lz5k1RfZjWH6YVhmmSbjqdMhwO+eQnP0kURRweHlIoFKjX6+RyORRF4UMf+pAQMSsrK/zQD/2QSNSl9YpXrlzBsiyWlpZECkvXdS5cuCAk1dmzZ9F1nVKphOu6jEYjlpeXhci7c+cuk8mIOkbDMJjP5ywWC1RVxbZtFosF0+mUyWRCNptlY2ODSqXCdDrl6OiIIAhEAjBN5q2trTGfz+l0Ojz11FMoiiLSeqZpcvXqVV566SXxvM6ePUu1WhXbg7du3RKy8OTkhMcee4xcLgcg0mSpHFUUhclkQhAEDAYD8XpXKhWOjo7Efp+qquI2hmGIhJ1hGGiaRhRFoooyrce8M/WW7hr6vi+uUy6XIwgCoihiPB7TbrfRdR3HcWg0GgBCpnW7XfHeSas9NU0TVaX5fJ6NjQ08z2M0Gon7zmYzJpMJ+XxePId2u81sNgMQe31JkjAajTg4OKDT6aAoiqjvjKJInO98PkdVVfGaGIbBqVOnRA1oWqmazWbp9Xp3ic7xeEw+nxePPZvNME2To6Mjbt68Kb5/v58ziUQikUgkEolE8tYZ/+Aj/PF86119TE1R+c1H/y1/+ou/SvdPfQLlt7fYJRKJRCKRSCSSDzJS8L2HvB1SIT2G7/tcv36dL33pS4xGI1RV5YEHHuD06dOUy2Vs28Z1XVRVxTAMnnnmGeC2vFlZWRFbeGfOnOHk5ATbtvmVX/kVnn76aS5fvkwQBGIDbjKZiKpGx3GYzWZMp1O+/vWvc+XKFYrFokje6bqO67o89NBDmKaJZVl4nofjOPi+j6qqbGxsiNRcWjNZr9eB2/JSVVWq1SqO4whpefXqVVRVFeeSz+dZW1ujWCySz+dJkkTstuXzeQBRA5nWRqaJxjAMGQwGXLt2jel0Sr/fZz6fi928Wq1GNptla2uLcrlMvV5nbW2NXC7H0tISmqaxublJvV5HURRs2yaTydBut0VCzTAMUVvqui6u6wK3k2aVSoVCoUCtVqNYLBLHMZqmEQQB/X5fiNC0jjOKIlFPme4k9vt9FEVhaWlJVJhalsXJyQnz+ZxKpYJlWaJ6NJvNCrmYbiOmKcjd3V2Ojo5wXVcIxvR91mw28TyPU6dOcfr0acIwxDRNkfxME4uqqrK5uUkcx3Q6HfL5PGEY0mg0GA6HLC0tkc1mCcOQfD6PYRgcHBwQRRHT6RTXdUVadLFYiM3A9HyPjo4olUosLy9jmqZ43T3PYzqdoqqv/UebFHoSiUQikUgkEsk7Q/43bvC/DNbfk8f+j90ZX/tb/xPj/2MD7fyZ9+QcJBKJRCKRSCSSdwv519reY5IkeUPJvlRI3Ou26THSLbRUam1sbIjqRNd1OTo6olAoMJ/PyWazdLtdLMvis5/9LKqqsre3R6fTEfWQ0+mU1dVVVFWlUCiIvTrbtsVjD4dDFosFlUqFCxcuiGTf/v6+qGm8ceMGp06dEikrwzDETppt2xwdHaFpGuPxmNXVVdrtNicnJyiKIpJyqRx0HEdUajqOw3w+x/M88vk8iqKIJGAURbiuy3w+ZzAYiErNRqNBr9fj5OSERqPBbDYjCAKR2jNNU1RppgLx+PgYTdOI45jr169TrVZFFaTneSRJwv7+vkgrpunHcrmM53kMh0Pq9Tq6rlOtVsXOXLp9Nx6PsSxLJAIzmYxIq1mWJZJ7BwcHotIzrUx1XRff99E0jWw2y2KxIAxD8bqkKb9MJsNgMEDTNFFv+uCDDwqRd3JygmEY2LaNpmkMh0Oy2SzLy8s4jsPe3h5BEHD27FmKxSLdbhdFUTBNk3a7TbFYBODw8FCIQVVVqVQq9Pt9isWiqA9NNwtTIZgkiah6LZfLdDodyuUyg8GAwWBAqVQCbqcmW62WeK5XrlzhkUceQdd1dF3n0qVLHB4eiuTlnXWvEolEIpFIJBKJ5N0h6nT5wg98iL//dz/Lc9/zD9/RDb57YSkGX/vQv+EXv5DlH/7B30fyzEvv6uNLJBKJRCKRSCTvFjLBd5+kaaZX/nqj9wXEhts7dX6e59Fut3n22Wf56le/ynA4RFEUNjY2AHAch4ODAyF6fuEXfoH9/X1msxmGYdBut2m1WpimybVr1ygWi0KkpcmqtbU1wjAkk8mwvr6O67oEQYBlWXS7XRqNBkdHR+zt7XHmzBlRURmGoahl9H2fJEmYz+f4vo9t29y6dUuIOsMwGI1GmKbJdDrF8zxyuRyFQoFisUin0xGyx/d94jgWQk5RFIbDodjrsyyLUqlEv9/n+PhY7BT2+32y2SwrKytiEzCXy+E4DgDHx8cAmKaJYRhigy7d10uTeZ7nsVgsOHPmDOVymZOTE2q1GlEUUS6XRZJtb28PAFVVCcMQ/berY0ajEUdHR5imyfr6Oo7jEIahqLI8PDwUkjN9H509exbHcUT6Dm4nOefzOfP5nCAImM/nGIYhJGb6uNlsln6/L2RuGIZCBqaybrFYsLe3R6t1u15nY2OD6XRKs9nE932RdASIoojj42OSJGGxWDAcDlFVFd/3KRQKDIdDUZmqaRqVSoUoivA8T9SHlstlVFVF13WSJCGfz5PJZAiCQIjJk5MTzp07R7FYxLZtBoMBlUqF69ev8/TTT/Obv/mbnJyc3HdNp0z0SSQSiUQikUgkbx/hwSFnfuwS3/9f/WW+5sWvf4d3gB91J/zxn/8C6m+3p0gkEolEIpFIJB80pOC7D15LArya+LvXfV75vberqvPO4yRJQhzH9Ho9nnnmGUqlEtVqVYg2RVGESHn55Zd56KGHaLfbHB0dsby8TLlcxnVdvvd7v5ft7W2WlpZIkgTDMKhUKmSzWT75yU8ShiHtdlvUgiqKQhAEvPzyy9RqNer1uhAuqcRJqz1TUWhZlkjbWZYlRGE2m8U0TeI4ZmlpieXlZXZ2dgCEZLNtm1qtxng8ptPpUKvVhDzVdR3DMABwXVdUidq2zdmzZ2k2m2KPLwgCUV05n8/Z3d2l2WyKxGP6/NKq07RK1PM8IcmCIKDX6+F5Hr1ej+PjY7ENCIgUYHodM5kMtm2LTb1UFB4fH7Ozs0M+n8eyLOC2YJzP5zQaDcIwpFwuM51OqVQqwG2xN5lM0HUdy7LIZDIsLy+jKIpIBmqahuu6Qq45jkM2m6VYLHLmzBkh61LROxqNRPVnpVJhbW0NRVFYWVlB0zQKhYJ4rPl8TqFQEHWdqqpy8+ZNUf1aKBS4du2aqCZNxW0YhiJpOBqN6Ha7uK5LuVym1+tRLBaF7HQchzNnzjAajej1ejiOw+bmJplMhuvXr/Nrv/ZrtFotgiB4zc+WlHkSiUQikUgkEsm7QByR//mn+Nv/2Y/zqzPjPTmFP5jrc/XvPvKePLZEIpFIJBKJRPJOIwXfu8C9ZN+blXyvd7t7/fzWrVs8//zz3Lhxg9XVVVGNmO6nLRYLnn76aYIgwPM8Op0OL7zwAmEY8uyzz/LEE09gmib1ep2LFy8KibRYLCgUCkRRxHg8Zmtri8FgwHg8JpPJ0Gg0cF1XpL7SWs2PfvSjQnItLy+zuroq5N6dFZvFYlFs2d28eZPRaMTy8jJ7e3t4nidSc+munK7rhGFIsVjEdV3q9bpI+4VhSLPZFDWZOzs7xHGM4zhMJhN6vZ6Qb67rks1mKRQKQprpuo5t2/T7fbEdqKoqp06dYj6fiyQdwMnJidj9cxznrurN9fV1DMMgjmORpstkMliWJWpGDcNAVVWRUtM0Tbxm+/v7LC8vCwmaCs7pdCpuo6oq0+mU8XiMaZpCvOq6zmw2YzabUa/XGY1GRFFEu90Wyc+NjQ2KxSK1Wg3TNMXje57HSy+9xPHxMZ7niRRqt9sljmPxepdKJZIkEec+nU6ZzWZ4nsfy8jK6rrOxsSESm0EQiF3IxWLBeDwmSRJu3rxJJpNhsVjQbrfJ5XLs7++zubkJ3E4MLi8vYxgGu7u7/Mqv/Ar9fv++PksSiUQikUgkEonknSd55iX+xz/4X/DNRfD6N34HeOY//ntoxcJ78tgSiUQikUgkEsk7iRR87zL3mwJ8vdu93mOkt/vmN7/Jyy+/TLPZRFEUIUd832c2m3H9+nVKpRK5XI7ZbEYURWxtbQHwG7/xG+zs7PDRj34URVGoVqtie84wDPL5vJBKSZKQy+XQdZ3FYsFLL71EoVDAdV2q1SoXL17k0qVLnD17Fl3X6Xa7og5zPB7jeR66rhPHsTif5eVlkRKr1WoAZLNZIZ62t7fFhttkMsGyLMIwZGlpCUVR0DSNIAhYXl4WtZcAlmXh+z6bm5sUi0XK5TKlUonFYkEmk8E0TXRdxzRNstks4/GYXq8npN+FCxcYDociZajruqilTGWfruuMx2MAbNumXq/jOA6GYbC+vk6SJKKWMt3ay2az2LYtzqPf7zObzcTjbG1tCRF69epV9vb2hIS88/qnr61lWZimSalUYm1tjQsXLqDrOsPhUOzi7e3tUSqV0DSNnZ0d8d5IkoRMJkMYhliWxerqKktLSwD0ej0h51I5OhqNcByHtbU1ABqNBo8++iie5+H7Pg8//DCWZTGbzTg5ORHHns1mlMtlfN9nbW0Nx3HE7dLk48bGhqg8zWazXLx4kTAMeemll9jf33/DYu+V9bhSCEokEolEIpFIJO8sybcu89f/zJ9lL5y8649d0hyOf+zhd/1xJRKJRCKRSCSSdxop+N7n3I/su5fYS3/v+z7b29vcuHED3/cZDociKRYEgdi/e+aZZ+h0Oly/fp3Dw0MMw6DRaFAsFplMJhweHnJ4eIiqqrz44otMJhOxkaZpmkjAnTt3Thw3n8+zWCzwPA9VVTl79qxIsD366KMUi0VyuRymaQKIisXDw0PG4zGqquK6LlEUiTRbmnbL5/NUKhWxhzccDoXkiuNYCCVd1/mJn/gJLly4IKohTdMUybZULPq+T7VaFd9P5Z6iKKiqSjabpdFoCJFYqVR4/PHHRRItk8mQy+UolUpCsGUyGRzHEYm3fD7PcDhkPB6L80hlZz6fx/M8MpkMvV6PbrdLLpcTojIMQyqViqgINU1TXJu0evVOUWpZlqgp7Xa7YqNwb29P1HiGYUgURUwmE/r9PnEcc3JyIsRokiRsbGwQxzGDwYDJZILjOJw+fZpC4fbfhD1z5gxRFBGGIcPhUCT9hsMhN2/eJEkSBoMB/X6fk5MTHMehVCoRx7HY3tvY2MAwDCGhU0lbLBbFe2M8HjMYDGg0GuKYX/3qV4miSLzXJRKJRCKRSCQSyfsP84vf4g/91b9KK5q+649d/U/23/XHlEgkEolEIpFI3mmk4HsPeLMS4vVk371uc+fXcRxzcHDAU089xa1bt4SMMgyDbDYr6iLTNJaqquzv74skV7fbpVwu8+ijjwoRdObMGT7xiU+QJAmKoojKx2azSblc5vTp09y8eZN6vU42mxW7brZtUywWee655+j3+ywWC3RdJ5PJUK1WKZVKov7x6OhI7Lrt7OygaRrT6RTf98XmnaZpRFFEkiTM53Pm8znPPPMML7/8MnEcs7a2xhe+8AWuXr2K7/si1aZpGvP5nMlkgqIozOdzjo6OhExzHIfFYiH299KkYBRFbG9vc3BwwK1bt5jNZnQ6HfE8er0e2WyWTCYj6jq73S6+74sE2nw+ZzqdCjnoOA7T6ZTRaMR0OiWOY2q1GnF8e5R+NBqRz+eZz+eimlTTNHq9npCrmqaxWCzErmAcx8znc3zfF+c9mUzuer1s22ZlZUVs3ZXLZXK5nKjnHI1GjMdjFEXhoYceEluGcRxTrVbJ5XIcHR3h+z66rqMoCp7n8cQTT9Dv9xkOh2xubqKqKv1+XyQEFUUhjmMmkwlnz55FVVVM0+TMmTOMx2NxHo7jEEUR8/mcTqcj5GK/3+eb3/wm+/v39x/rUgJKJBKJRCKRSCTvDdl/+Q1+31//qxy8y0m+H1/9+rv6eBKJRCKRSCQSybuB/l6fgOTNkQqa+70PwHw+5/r160ynUzY3N6lUKoxGIyGMgiBgPp+j6zrLy8sUCgWm0ymFQoFer8eNGzfI5/OiEnNvb48oinAch+/+7u/m+eef52Mf+xiz2UwksSaTCadPn+bo6IhMJsN4PKbb7ZLNZmm321QqFQaDAYqisFgsGAwGqKrKeDzGMAx6vZ6ocEwTdr1ej9OnT3NwcIDjOKIGcm1tjXa7DUCn0yGbzbK9vU02m8XzPKrVqtgG9DyPKIpEtWY+nxeJxFarha7rBEFAvV5nOp1Sq9U4OTnBdV0ATNOk3++jaRqVSgXf95nP5xQKBYIgwHEcNE3DcRxmsxmqqrK7u4vjOHS7XZaWlsRzTBNpaWpwOBzS7/dF9WaSJEL4jUYjFEVhOp2KiswoipjNZti2LeRZKiTT9GGlUmE8Hovk3OHhISsrK+zv72MYBoVCgdlsBiCkKUC/38c0Ta5fv06tVmOxWGDbNp7nMRqNRMVoJpMR8vXSpUu4rovrurRaLVzXxfM8XNclSRLG4zH5fJ7RaCSuzYULF5jNZvT7fWq1mpC+rVZLbCaeOnUKz/PY2triq1/9qhCgb2TXUso9iUQikUgkEonkvSX/80/xh+Z/lb/zP/w0n8y8O3/n+GHrCFh7Vx7rOxJVQ19fYfrIEv0LBl4lQQ0U8rcSqr91RHhr970+Q4lEIpFIJJIPJFLwvQleKQnuV7S98hhv5v5v9DFebW8sDEP29/fJ5XKoqsojjzxCs9mk1Woxn88xTRPHcbh8+TKj0Yhms8kP/uAPcvr0af7Vv/pXzOdzRqMRV65cEXt6vu/T7/dRFIXZbEaz2cS2bTY2Njg8PCSfz3Pp0iUhsxqNBrZtM51OCcNQiK5KpcLKyopI+qWSKp/Piw28Rx99lNFoJFKE6fFnsxntdhvTNDl16hSGYdBut0UicXl5Wcik/f191tfXyWazmKbJfD4nCAI8z2M6nRJFEcViUVRtnjt3jkuXLmGaJrPZTFxLwzDEtl9auZnNZpnNZgyHQ5EWtCwLgEwmQ6fToVAoiGrNdKdwPB4zGo1YW1sjl8vR6XSEBDMMg8PDQzRNI5fLiRRfNpvl5OSEUqkk6jZTuRoEAYqiUCwW0XWdjY0NTk5OaLVaeJ5HqVRiaWmJ1dVVDg8PabfbQij6vk+pVCKKIgaDAVEUUSqVuHHjBmfOnBHntVgsqFQqRFFEo9Hg4OAA3/cJw1Bcx3STMJ/P0+/3RXJ0NBoRBAGWZWHbNsvLywwGA27cuEG328W2bbGluL+/T7FY5MKFC3zxi1/k+eefp9Pp/I7P072+lkgkEolEIpFIJO8fnH/7Df72zo9T/1/3+Scbv46mvLroG8Zzsor1mrd5PXJq8Kbv+x2NoqCfPkX/o0vkr43h5RskiwUAquMQP3KW/R/IsfF9u/yVU1/g49aUrJoRdw+SiK95Bn/qF3+C8//NJeLpu1/PKpFIJBKJRPJBRgq+9yFvVP6lt3uzgjBJEq5cuUIQBJw5c4ZsNovv+xiGwXQ6FSLr6tWrOI7DN77xDdbW1sR95/M5ruvy4osvUigUxD5akiTYto2u6xwfH2NZFkmS8NRTTxFFEY8++ijtdhvHcRgOhyINloqlOI7p9/vMZjOCIEDXdSEFl5aW2N3dZW9vD8dxcF1XbLXNZjMqlYp4/CiKqNfrDIdDLl68yNNPPy32/vb29sjlcpw+fZpWqyXqRyuVCs1mk2w2K35Np1McxxHirdvtCjmWJAmGYTCZTIRMtG1bpNNM08TzPDY3N9nf3xcisFqtsru7S7FY5OGHH2Zvb4/Dw0Mcx6FerzOZTFgsFiRJIhKC6XZgJpOh3W6jqiqKouC6Lo7jcPbsWZrNJnEcC9GW7vspikK73WZra0tcS8Mw8DwPgHPnzrG/v0+5XKbf75MkCWfPnuXw8JAoinBdl0KhgGmaJEmC53k8//zz2LZNGIZ4nkexWOTatWs0Gg0hidPXJZvNUiqV+OY3vwkgqkRLpZIQteVymZ2dHVRVRdd14jjGMAx0XefUqVMMBgO+53u+h6tXr3Lr1i0uXbp0z8paKfckEolEIpFIJJL3P8lzL9H+rMNH/vRP8vv/+K/z58tPU9VuN6X0oxn/dfN381v//AkqLy0YnjFZ/SO3+JfnfgVLMe77sYJErpPcD4ph4n3/Y5z8CY+feeLn+JiVsBfO+bsn38+vXvouFC3hP3n0Of5S7afZ0LN33DNz13EMReN77Zgbf+gf8qPf9XtY/F6VeDx+d5+MRCKRSCQSyQcYKfjeZ9y5nacoyhuSeG+lrjOKIm7cuMFisWBjY4NHHnmE8XhMs9kkiiJRMxnHMScnJ4RhSL/fBxD7b+n34jhmf3+fhx9+mGazya1bt5hOp5RKJS5cuMALL7yApmkMh0MKhQInJyeMRiMsy6Lb7ZIkCa7r0u12UVVVpMdyuRzD4ZDBYEChUBB1nktLS0JWPfDAA3z1q19leXmZKIoYDodsb2/jOA6TyYSDgwMsyyKfz7O9vY1lWUwmE7a3txkOh2iaJuo5V1dXURSFq1evcu7cOSHzPM8TVZZxHIutwm63i2EYBEFAJpPBtm2xLZeK0FRYpvKt2WxSKpUwDIMbN26QyWRQVZXZbIau63ieRxAEQrgBTKdTUVm5WCxQFEVIulKpxJUrV8S232OPPSaSd7lcTkjC6XRKo9FgfX2dKIqYTqeMx2OefPJJjo+PyWaz4v00mUyYTqdkMhkhDIvFIufOnRPVnaZpArdTjN1ul8ViwWQyYX19ncFgQK/XE1Whr7xOiqJgWRbr6+sYhoFt2yRJwqlTp8RzLxQKDIdDXNflE5/4BNvb23z961/nxRdfFNf3ft/zEolEIpFIJBKJ5P1BPJux9Pee5KmfqfBb3/UX6DySIdGh8pKP9dWXWZo9CUAV8H9W52M/+Zf4zb/2P1BQ7ft6nMMw/w6c/QcPNZNh8J98mNM/eZX/ZeMfUNIc4LYcPWtk+f+sfR3W7twzzN7zOPfiF89/kQ/9f/8Qyz+69faetEQikUgkEsl3MFLwvQnuJd7u/PqNJute7eevlHxvhFe77Rs5l1TMdTodBoMBFy5cYGVlBcMw2NvbI0kSHMcRIk9VVbFbZ1mW2KzzPI84jtna2kJVVeI4Flt0u7u7ospyNBph2zbz+RyA0WiE67oEQUAYhiKVlqa/er0erusymUzQNI35fC5qJ9M03cHBgdgMTDfyfN/n+vXrrKysYNu22G4zDINGo8HOzg66rotqS9/3yWazdLtdUc/Z6XREIk9VVfGc19fXOTk5wfd9PM9DVVXxOFtbW5TLZVRVFem/QqHA0dERpmmK66WqKr1eT4guTdPwfZ/RaCQ28/r9PovfrkCxbVu8pmEYihTc8vIycRxz/vx5ZrMZpVKJmzdv8vDDD3Pt2jXq9TpxHDOfz7FtG8uy2NvbYzKZiNRmFEXous7jjz/Or//6r1Or1YScSzf00srPtKrz5OSEarXK0dGR2NHTdV0kP9PX1LZt9vf3SZIEXdfRdZ1+v08mkxFC1HVdOp0OhmGwvb2NruusrKyQzWbJ5XLU63W+/vWvc3x8zDPPPEOr1XpDn4tXfg4kEolEIpFIJBLJ+494PEb7yrM0vnLH915xmyQMWfr7T/K78n+VrT/zv97X8S9762/9JD/AKJbF4D99nAf/wkv867X/CUc1Aedtf5znPvr/43f/6J/B/sVvvu3HlkgkEolEIvlORPZUvIO8nlR4I9LhzaTz7of0HOI4Zjqd8vLLL3Pp0iVGoxGrq6s4joOmacRxTBiGoj4xrc1MKzbn8zm5XE7s5Zmmyblz5yiXyyJFt7KygmmaDIdDZrMZtVqNcrksNvDy+TyOc/s/IkqlEqZp0mw28TyP4XAIgOd55PN5keJbLBYEQcBwOMTzPHZ3d4WISo/R7XZFrWcul+PHfuzHODw8pF6vMx6PcRwHy7KYTqeUy2XK5bLYBYTbAnI4HKKqKpVKRaQGF4sFjuOIVFr6OACVSoX5fC62CZvNJpZlEccxo9GIQqFAkiRiA1DTNDRNw7ZtKpWKeH3i+PZ/1hYKBTKZDNlsltFodFcCzvd9MpkMk8mE+XzOhz70IVZWVhiNRiRJgmVZou5zY2ODXq9HFEXieRuGwXg8RlEUTNNkZWWFxWIh9vxOTk5QVVU8/snJiagbPTo6IkkSJpMJun777wukIrFWqzGfz9nd3RXP3fd9yuUyruuiKIp4P43HYw4ODvjyl7+M53niNdR1ncFgwNbWFltbW3zzm99kd3eXMAzvWc15r8/U2/E5lEgkEolEIpFIJO8PTv0/v8lTXnRf93lqcPodOptvcxSF0R/+XVS/YvMbf/d/5p9s/NZvy713Bk1R+VN/59+8Y8eXSCQSiUQi+U5DJvjeJO+kdHuzj/NGk4P3Sh+mv4+iiOvXr3N4eAhALpejVqsRRZFIdAGEYYhhGDiOg67rTKdThsMhtm2LeslWq0Wj0SCXy9FoNKhWq5TLZba3t2k2mywtLREEAYvFQgimtCZzMBjgui6maWIYBpZlCbmVPvZwOOSBBx7g+vXr4rxc1xXpsUceeYTRaCS2/1I59eyzz6JpmkjHbWxsEAQB8/mcW7duiaSZ4zgkSUIQBCwtLZHJZGg2mwRBgGEYXLx4kSRJaDQatFotoii6S2Spqsp4PCaTub1D4DgOpVKJ4+NjcY6peJtMJkRRRJIkRFFEJpOh3++Tz+fZ3NxE0zSKxSK9Xo9WqyWkWKVSoV6v8/LLL/PYY4+hKAqapjGZTOh0OnzsYx9ja2uLfD7P8fExzz33HNlsls997nPs7Ozguq6oL00rMr/7u7+bX/qlXxJSL5PJYFkWnU6H0WhEvV5nsVhQqVRE7Wkmk+Hk5IRGo0EYhnQ6HRzHEc99NptRLBYZDAZYloWu61SrVRRF4fj4mO3tbba3t1FVlWeffZYLFy7wjW98g9XVVUajES+//DLNZpObN28K8Xqv9/T9IuWeRCKRSCQSiUTy7UUShvzRX/hJrv2xn37D9/nWzVOcp/sOntW3J8c/9Qme+it//7el3v1vG74Z/mi+wz//xI+gfP2Fd+XxJBKJRCKRSD7IyATffZKmhF6ZFlIURUiytyr/0mO92eO8WorptWTGnT9PkoTpdMrnP/95vvrVr4pKzfX1dVRVFedlmiamaaKqqpBxac1mEAScPXuWxWLBaDQijmMWiwWPP/44xWKRxx9/HEVRmM/n5PN58vk8pmkSxzG5XI6lpSXG4zGFQoFSqYTjOBwfH4uaSt/3qVQq9Ho9crkcSZJw/vx5sd+3WCxot9tsbf2Hfv90W/DatWtomiaSdwcHB/R6PRzH4fTp07iui6qqHBwcYBgG+XweRVEYDAaizrNUKrFYLHjxxRfp9/vM53MKhQJLS0tcvHiRTCaDYRiYpsna2hrlcplSqcRsNhPXLJfLEccxpmkShiFxHKMoCsPhkCRJME2TCxcu4HmeOLamaZRKJc6ePSsE3M7OjpCJaTqw3+9z8eJFbty4Qa1WY2VlhXK5LB7nW9/6FkEQsL29LXb3crkcxWKR3/zN3ySfz4v3Ynq/QqGAqqr4vs/Gxgau64odwuXlZUzTpN/v43kevu9zdHQkXve0VvTs2bPYts3v/b2/l3a7za1bt/ja177GlStXiKKI2WzGt771LX7pl36Jb33rW/zqr/4qX/3qV/nGN77B9evXxfbf673f38jP7uc2EolEIpFIJBKJ5P3D+X90fF+3z38r8w6dybcvimHyb//S331HE3uvRvS3++/6Y0okEolEIpF8EJEJvrfIG6n/ey1Rd6/7vxuVnK/18/TxgyBgb28PTdNYXl5mc3OTtbU1stksV69eZT6fi7pK3/fFMXRdp9Fo8NJLLxFFEbVaDcdxxHbfnbt1uVwORVHwPA8ATdMoFApEUYSmaXQ6HUzTFFttxWKRMAxFGuzKlSvU63WKxSJxHLOxscHe3h4Azz//vEi0RVFEPp9H0zQABoOB2PKbzWYsFgtqtRqe54mKyn6/z9HRkdgb9H2fixcv0m632dnZodFo4LoupVKJQqHAfD4Xj71YLMhkMqIqs1gsMhwOqVQqjMdjcrkc0+kU27ZFWvD4+BjLsmi1WoRhyKlTp9jZ2QHg2rVrXL16lTAM+exnP8vLL78s6j7r9TpXr15lsViwtrbG008/zXA45OTkBEVRuHXrFpPJRFxzgIODAzzPYzKZ4Ps+m5ubnDt3TlybUqkkakPPnTvHl770JZ544gkuXbqErut0Oh3iOMYwDHzfZ2dnh8lkwng8pl6vYxgGo9EIy7JwXZfpdMrS0hLlcpnz58/zz/7ZP+PZZ59lPB7jeZ5ILsJteev7vhCdd4rn+30vSyQSiUQikUgkkg8e4a1dtvwZD5pvbCdu6atD5H8d3M30P3qcs8Z7s4X3by7+Av+F8RmSwH/9G0skEolEIpFIXhWZ4HsXuF/R8MqU4Ov9ejO8UekYxzF7e3s888wzfPGLX+Spp54ijmMefvhhNjc3WV1dRVEUDMPAdV0sy8I0TQ4ODpjNZmxubhKGIfV6nUwmw3PPPQcgRNf6+jrFYpFsNstiscCyLNbX10mShHK5TD6fJ5fLoaoq5XKZpaUl4jim3+8zm81YX1/HNE2iKKLVatFsNtE0jU996lNks1mxF6iqKqPRiPF4TLFYZDqdUiwWKRaLJEmCpmmcOXMGx3EYj8fMZjOWl5dZXl5GVVWm0ynT6ZSbN2+KVF8qoMbjMZPJRKQbl5eXKRQK2LZNv9+nXC5z8eJFKpUKcRxjWRb9fp9+v4/rusznc06fPk0+n6dQKNBoNIjjmDNnzlAsFikUCnz4wx9mY2MDwzCYzWaMRiOiKKLT6aBpGvl8Xpx3ukeYCsTJZMKFCxdwHAfTNFksFiiKwmKxIJvN8r3f+7185CMf4fz580ynU/7En/gTbGxsiNciFXV7e3vYts14PCaKIpHOHA6H+L6PYRicOnWKwWBAkiQYhkEcx2QyGS5cuMDa2hq9Xo+f//mf59d//ddpt9vM5/NXFXhpOvBe73Mp9yQSiUQikUgkku9gkoQf/+/+KrP49QVRlMTw8o134aS+vXB/8uA9e+yCauP/7g+9Z48vkUgkEolE8kFBJvjeJV4vyfdWjw13S7vXSwa+8uevPLdXJvmCIMDzPDqdDrdu3eKJJ57g8ccf55FHHuHJJ5+k2+0ShiGTyQTHcSgWi3ieR7lcJkkSjo6O6Ha7WJbFZz7zGbrdrkjXBUFAtVplsVgwm81E2iutBu31epTLZSaTCS+99JJI4dm2zfLyMoeHh3iex6lTpxiNRiwWC37jN35D7L5ZlsVisWAwGKAoCjdv3kTXdVGD6vs+pVKJJElwHIfBYEC/36dQKFAsFtF1HcuyUBSFyWTCmTNnCIIAgH6/T7Va5fr16zzwwAMAnDp1CsdxODw8pFQq4fs+t27dotlsCunZ7/dptVri2o9GI6rVKu12mziOqdfrYqcvlXLVapXpdMqVK1eYz+dYlgXAzZs3yWQyzGYzsZOY7umNRiN0XefWrVsisZhu/6XStNls8vGPf5yvf/3r5PN5XnzxRVEdmr7uaX1quVym1+sRhiG+74s61kKhwGKxoNVqsbKygud5aJp214bi1772NZ588kmm0+nvqNpM329vRdzdj9STAlAikUgkEolEIvn2pvIzX+cTub/Mv/zL/z0XDPdVb/c/9s+TLBbv4pl9e/Az534ByL5nj7/74xHnfvU9e3iJRCKRSCSSDwRS8L3N3EuU3ev397rtW+WNSLtX+/kr9wTv9b30636/LxJYYRhi2zb5fJ4wDIUkAwjDkG63i23btFotPvzhD9Pv93n++ecZjUYEQcDR0RHT6RRd18nn80wmE3Z2dqjX68zncx577DHa7TaLxYLFYoHv+0wmE1ZXV9nf32d/f59cLkcURVy/fh3f94UsLBaLRFHEcDgkDENM08RxHBzHodlsCnGXiipd1+l2uwwGA7Hh5/s++XyeYrHI1atXhXDL5/PcvHmTjY0Njo6OcF2Xy5cvU6lUuH79uqgZdV2X4+NjNE3Dsiym0ynz+ZxcLsd8Psc0TRqNBvl8nvl8ThRF6LpOkiTs7e1x/vx5rl69Sjab5YknnuDFF1/ENE0effRRptMpjuNw/fp18vk8hmGgaRrNZpMoikQ1qGmauK5LNpslDEMGgwGqqhLHMZqm4TgO+/v7uK7L+vo67Xabg4MDMpkMiqIQRRGmaTKbzURKcTqdUqlUGAwGxHHMwcEBKysr+L7PbDaj0WgQRRHlcpmtrS2+8IUv0G637xJ7bzSVd7/ffzWk1JNIJBKJRCKRSD5YLP29J/nJp/4c4/9mwr95+OdY1u8WVjeDCV/8C59B49n36Azfn2jVCmv6eyf3AP7rj36ef8HKe3oOEolEIpFIJN/uSMH3NnNn8u29Fgr3knav9vM7b3Ov837l8wqCgK2tLa5cucLGxgaVSoXJZEImk2FzcxPLsiiXy0RRxOnTp1EUBVVV2dzc5OrVq9RqNdrtNicnJywvLzMajVBVldXVVW7duoXruiIxZ1kWk8lE3OaTn/wkg8FAVGNOJhN0XSeOY7H/NxwOGY1GLC8v0+12MU2TbDYrBNtisSCfzzMYDHj00Ue5dOkSzWZTSLhMJkMQBBiGIeRiGIa0222GwyGPP/444/GYK1euUCwWyWQynDlzhl6vx2AwoFqtksvlWFlZYTgcMh6PUVWVQqHAcDjkzJkzHBwc0Gq1eOCBB9B1XaTg+v0+mqZRq9UolUpsbGzQ7XZ54YUXhDS8cOECv/zLv8zjjz/OD//wD3Pjxg1arRaWZeE4DvV6Hd/3ieMYRVGEzKvVanS7XbLZLOVyGdu2xUZhs9mk2WzS7/dRVZVqtSpSlACqqjKbzYjjmGw2K3YEM5kMmqYRxzGrq6tUq1WWlpZ44YUX+PKXv8yzzz4rxN4b/Uy8HUm9N3K79/ozKpFIJBKJRCKRSN4aytdfIP8jGn/0k3+B3R/KUHysQ92d8NKtFc79bIz2W1LuvZLJJ88Cv/aensPvcbal4JNIJBKJRCJ5i0jB9w5wv1WB71R1570eC149OXg/P0+SBM/zUBSFfr+P53ns7e2h6zo7Ozusr6/zxBNPMBgM+I3f+A2RiLNtW1Q5pqIwCAJOnz6N7/t8+MMf5vTp02iaRq/X4/DwkEqlwurqKtPplDAMuXz5Mo7jEIYhxWKR2WwmtvPCMGRvb49CocBoNOL4+BjbtimXyywWC+I4xvM8Iff6/T4/8iM/wvHxMWtraziOQ6vVYjweCzmX7t2trq7S6/XwfZ92u814PKZaraKqqji2ZVnU63VqtRpbW1vMZjNM0+RjH/sYly5dwvM8PM+j1+uJGs5KpcLx8THD4ZBKpSIEZKPRQNM0Lly4wMnJCXC7LjUMQ5555hk0TePy5cuiOrXb7XL+/HlOTk64fv06H/3oR9nf3yefzxMEAY7jcPXqVQBRt+l5HtevX2d9fZ3ZbMaHPvQhbt26JdKMcRwzmUwA0HVdnK/ruui6jqZpZDIZsb/oeR6XL1/mX//rf83u7i6LO6pw3koST8o6iUQikUgkEolE8qrEEepvPcfp3wIUhUBRuRAfv9dn9b7l8Her7/UpkFPl/46SSCQSiUQieavIf6N6D0mFxLsh+d5u6XjnZlq32yWXywlh12636ff7XLt2jccee4xqtYqiKPR6PcbjMa7rMhwOmc/nFAoFAAzDYDqd8rWvfY0kSdjY2OCFF14gn8/j+z5Xr14ljmOCIMCyLKIoQlEUUR2Z1nROp1PxXIvFotijy+VyQgoCrK2tceXKFVzXZXd3lzAMhXgEME2TYrHI7u4ua2trqKrKyckJjuNw+vRpWq0W6+vrnJyciMrKjY0N4HY1aXqcSqXCwcEBly5dotFoYBgGS0tLtNttHnnkEXZ2doiiCNu2cRyHxWLB2bNn2d3d5dq1a1QqFR599FGGwyHVapWNjQ22t7cJgoBOp0O1WuWll15iZeX233w8ODjg6OiIIAjE5uHGxgbPPfcccRwThiH5fJ7FYsHu7i6VSkVsHxYKBXzfp1KpkM/nefjhh/nyl7+MqqpEUUQQBOi6TqVSQdd1crkcDz30EHt7e7z00kvs7u7S6/UYDofEcUwcx6/63ns7U3gSiUQikUgkEolEIkgSSKLXv913MB//6NX3+hQ4iuRrJJFIJBKJRPJWkYLvXeDO/bpX4/XSc+82r1XveaeYBIiiiMFgcNfPwzBkMpnw5JNP4jgODz74IOfPnyeTydx1LNu2UVWVZrOJYRj0+30sy+Ly5csimbe7u4vneaL2s9lsikrQMAyJokjs9KUVlePxmOl0iqqq6LrOaDTC930h+2zb5oEHHuDRRx/lhRdeYDweU6lUME2TGzdukCQJg8GAQqEgEoZhGNLr9Wi1WiwWC7LZLK7rUq1WCYKAl19+mWq1yv7+Pk888YTYJXziiSfY3t5mOBxSLBYZDAasrKyIVF66c1cqlTg+PmZjY4NTp05RLpf5xje+QbPZ5ObNm+zv7xOGIZubm+i6TrFYZGVlhel0iuu6hGGI53mYpkkURVy6dIkLFy5w9epVgiBgMpmINKCqqoRhyPLysjiP8+fP0+/3aTQa+L6PoigYhoGiKELguq6L53lC0n7+85/n8PCQ+XwuhN4r3z+v9r56o++/d+L2EolEIpFIJBKJRPKdyp9c+s03db9fnRn8QufjHEyLfKh0yP+9/iQF1X5Tx/rzN/4gKvtv6r4SiUQikUgkkttIwSd5y9xLTt4pASeTCd/61re4fPkyxWKRj3zkI7iuS6VSwbZtkcLr9/siyWeaJkmSMJ/PmU6n6LqOoigsFgscx0FRFCzLIpvNCkEWxzGZTEYkA9NUWhAElEol4jgW6cKTkxOSJGE0GgmRtbW1RSaT4fDwENd1WSwWTKdTyuUyOzs7YpNvPp+L5KJt21y7dg3DMPB9X2zpdbtdwjDEsiyef/55Njc3MU2TwWAgxF+ahHvooYd44YUXODo6Io5jDg4OUFWVj33sYzz33HNC4KW7eOk5VKtV9vb2cF1X7AtevXqVKIpEwtL3fabTKY7jsLS0xHQ65WMf+xhXr15lbW0NgDNnzrC7u4uu62KHL002ep4nUo+qqpLJZKjVahwfH/Mv/sW/wPf93yHX3opsezdTrRKJRCKRSCQSiUTynchHzDHg3Nd9Hvzaj3Pmrw2Ijk4gOuZyxuY/+oG/xGf/1lf5m7WX7+tYiyRA+a/LIAWfRCKRSCQSyVtCCr43yStTea+Wcku/f+ftXy3R937Z4rvX7d/IbV/rdqmsm8/nfOELX0DTNEzTJJ/PU61WqVQq5HI5Tp06RbPZxLZtNjY26Ha7nDp1ir29PTRNI45jstksnudRLBYZj8fk83lUVaVSqRCGIUmS4Ps+xWIR13XxfZ/RaISu62SzWWzbxvd9VFXl9OnTZDIZkiTh8PCQ4XAoUoZpteh8PmcymeB5nkgAFotFbt26xXA4JAxD8ZqOx2Mcx2Fvbw/LsojjmNlshq7r6LpOEATkcjn6/T7Hx8e4rsu1a9cIgoBGo8H+/j5xHPPggw+iKAoPP/ww169fp9Fo8NBDD/HlL3+Zg4MDLMtC0zQmkwn9fh/bttE0DcMwCIIAVVVxHEcIyt3dXcbjMbVajZOTE+r1uqj5jOMYx3FwHIfl5WW63S6e51GpVOh0OriuS61WI5vNsry8zM/+7M/y/PPPC/F353vqtd5vr/feSYnjWLyX0l9v9L4SiUQikUgkEolEInkNFIW8mnn9293Bn9z7FKf+8FXCwBffi2cz7F/8Jt/46jIX/ueP8vyn/xGOar7usYbxnI/93F9h88mv3/epSyQSiUQikUjuRgq+++RO2fBa4uFeP3uj9303eTvk3Stvdyep+Hplui8MQ8IwZDab0Ww2RYpudXWVxWKBoiicP38eTdPI5/Ps7+/z6U9/mvl8DkC/32c+n4v0n23bTKdTFEUhm80ym80wDANd1/E8j3w+L1KAqcAzDIPxeIymaUynU1ZXV4njmFarhed5+L5PFEVEUYRpmsznczzPI5vNcnJygu/7d0k8TdPE+aXfGw6H+L4vxJ2mabTbbWq1Gq1Wi0wmw9bWFtVqlcFgQDabpdfrsbu7y9LSEpqm8T3f8z1861vfQlEUwjDEMAw+/elPc3BwAEC32+Xo6EiIzXK5TL/fJ5PJMJvNhOybz+eMRiPW1taI45hOp8Pm5ibNZpPFYsHW1ha6rovaU03TqNfrFItFCoUC169f56d/+qfpdDr3fK1f773wRkiS5L5SfG9W7kkpKJFIJBKJRCKRSL4TUXQDTVHf8O2H8ZzmH66SBDv3/HnU6XL6jwz4vj/8F3nsL77Af9X4EsuaiaX8h//dNE98LvsGf/PW72P2v6yy+W+k3JNIJBKJRCJ5O5CC710iFRXfzmLhzewEvnKv77Vu5/s+e3t7IsF1eHgoElxpdefGxgaPPfYYq6ur9Pt9ZrMZYRhimia1Wk0ItWKxCNyWeI7joKoqZ86c4eDggHK5jKqqfOUrX+Gpp55C0zR83+ejH/0on/vc5ygWi8RxjO/7QhYGQUChUEBVVSHxbNsWybxUTKUJulwuh6ZpeJ5Ho9EQCcD19XU2Nzd56aWX0DQNgEceeURUa2YyGS5cuECtVsOyLACef/55NjY2+KVf+iXiOObcuXO88MILtNttzp49S7vdJkkSIThzuRydTod+v4/v+/R6PUqlktjou3nzJqqqcnR0RBRF2PbtzYRCocBwOETTNFzXZXNzE9d1OTg44N/9u3/HN7/5TaLfHkJ/vY29+0mHvhnejhpQiUQikUgkEolEIpG8Nh/+/F/kwvbTr32jOKLwz59i719l+PMP/mmmm1m8kkqsg+aD0wpxrnVQdvZxwoN358QlEolEIpFIvgOQgu9d4rXEx7stHN6PSUL4D8k+uFuIpvKv2+3S6/V47rnn+MQnPkE+n2dtbY1Go8Hx8TG5XI5cLke73WZ9fV3IKsuyUFWVF198kSeffJLBYIDneSwWi7uu/VNPPcXNmzf5s3/2z9Lr9Tg4OBCpPwBd11ksFuL2QRDcJQHTBF8ul8PzPABM00RVVeI4plgsEgQBL7/8MkmSEMcxpmly69YtDMPggQceoFQqUS6XOTo6otPpYNs2zz33HEdHR5imydraGicnJ0ynU7G7p+s6vV6PKIpQFIXt7W0h89JNQcuy8H0fx3F48MEHuXLlCmEYoqoqx8fHd6Ub6/U6n/rUp1AUhc9//vP88i//MoPB4A3L2jd6m1dDVdVXTe9JOSeRSCQSiUQikUgkb54k8Pn1ucr32vHr3nYYz3nwb9wkeoPHjj0PnnsJ57nfufD3Ro8hkUgkEolEInnjSMH3LvNau31vlHdLyr1yN/Dd5F61nqk0i6KIf//v/z2qqooEnaqquK7LysoKSZJw6dIlSqUSw+GQbrdLs9lkNpu9pqRKkoRWq8UXv/hFfuqnfoqvfOUrjEYj8vk84/GYJEmIogjXdZlMJqiqiqZpLBYLSqUSs9mMfD6PpmmEYSjOLYoiDMNgfX2dTCZDqVSi3W6jqrdrUc6ePUuv16PT6dBqtSiVSnzuc59jd3cXwzA4d+6cSPwNh0OWl5cZDAZsbm5y+fJlfN9H13UcxyGOb/9HWrpxaBiGSN0pikIQBFy+fFlcR8/ziKKIXC5Ho9FgOBzS6/X45V/+Zf7dv/t3dLvdu2oz3+pr+nq8WqVr+rO3GykMJRKJRCKRSCQSyXca/9e/+RN8+e/8T6+7mfexr/1pNrsvvktnJZFIJBKJRCK5X5TX+h/ciqLI//v9Ct4vibd38jzej8/x1RJdr/a9V5NEbwRVVbl48SJ/4A/8AZIkIZPJcOvWLSHEptMpcRzjOA5JkjAcDrEsS1RyppJvsViIVF+xWMTzPOI4JggCbNvGdV3y+Tyu6/Lwww/zS7/0S1QqFT760Y9Sq9UYDAaMx2Nu3LiB67q8+OKLGIbBaDRisViwsrLC7u4us9lMJAXT2s9047BQKKBpGuPxGNu2ieNYVHFGUcSpU6fIZrM0m01u3brF4eEh0+n0d6QbX4075dtbrc38/7d397xtnWcAhh8eUXDkJLZkBYLtOIKTJtBWGMhWIFNhtHvRP9GxQ/9Cp0wFOrVD1zZzh3QMUKBTACcKDBtxHVuAYZkiI4m2KPGrkwiFJSUeifp47OuaLIt6zyEpmMPt531PukaZa436M/+v3+9fjH8MErlb/NYvFcAb6l+9f/jcLMnnJpyf9d/9Iv74+7/Gry/vjvz+35tX42+//Cw6T22pyenwuVmez02AN9e4z00TfEkdNdU0LohNY+2DRp0tOMnPlQ0rR6158PkeZ+Ls4HPu9Xrx3XffxYMHD2JlZSVu3rwZ169fj16vF4uLi3Hp0qWo1+tx5cqVeP78eWxtbcX29na8fPkytre34/r16/HJJ5/EzMxMvHjxIra2tiIiYnl5OS5fvhzb29vR7XZjd3c3dnd3o9lsxqtXr2J5eTmKoog7d+7E5uZmNBqNmJmZiW63O9ge9KOPPorvv/8+Wq1WPHr0KN56662YnZ2NarUac3Nz0Ww247333oudnZ1ot9uxvLwc9Xo9FhcXo1qtxrVr12JraysWFhbi8ePH8cMPP8TDhw9jY2NjsD1q2fdl0td7knMYj2vUz46bQD1u+AUAAHhdLP353/Gnf/4q/vCbWxGfNeLnS8/iymwr7m3cjNp/rsfP/vJE3AMAuOAEvtfENLYxPM4E1bitLo9afzgMlr3v4ccf9fVxdDqdWF1djdXV1cF2mwsLC9HtdqMoiiiKIjY3Nwfbh/Z6vej3+1Gv1+P+/ftRFMVge8x79+7F4uJirKysRLVajU8//TQ++OCDiIhYX1+PxcXFwbrdbjfeeeedKIoivv7668H2nZVKJe7fvx+tVisqlUoURTGIe/Pz87GyshJPnjyJ+fn56PV6g8nBFy9eDLYpbTabsbGxEXt7e4PzBIffr+FpupMGseNGtJPGN5N6AAAA43UeP4kbnz+J+DyiVq1GbWYm3t77b7zdfxTl//snAABnTeBLblScGf560tg1HHaG1zppNDssuJQNfdM+l+2odTqdTrTb7Wi1WhNNonW73eh2u4N1u91urK+vx/r6elQqlfjqq69idnY2Ll26FNVqNW7duhUff/xx3L17NxqNRly9ejX6/X7Mzc3FnTt3ol6vR7/fj1qtFgsLC4PtP69cuRK1Wi2Koohr167F0tJSPHr0KJ49exaXL1+OL7/8Mp4+fRovX748dNLusN+j84pjJu0AAADORr/TiTjGri4AAJwfgW+KTrIt5rTXOqvzzKat7FafB39m1Nl70zTN93Y/ALZarYiI2NjYiG+//Ta++eabaLfbMTs7G91uNz788MNYXl6O27dvx9LSUnzxxRfx+PHjeP/992N+fj42Nzfj6dOn8erVq6jVatFoNAZhcHt7O9bW1qLdbk8c9qZpGmtf9PsDAAAAAIDzIPCVdNj2k6cVlk6i7D1lix6jJs2mOd03fLbfuHVPOu24v+Xmu+++G9VqNVqtViwsLMTe3l6srq4Ozvl7/vx53LhxI9bW1uLhw4extbUVMzMzURRF1Ov16HQ6MT8/H41GI2q1WqktVMsa93pk+x0CAAAAAIBsBL4pOUnUGBWDTjq9d9I1Rpn2tphlrneak3njrlvG8MTkUa/V8PPp9/tRFEXs7OzE3NxcRET8+OOP0Wq1otlsRrPZjJmZmdja2opGoxGdTid6vV50Op3o9/vR6/UGa7VarZ9sD3qWphn3hEIAAAAAABhN4LsAJg0ZByPSuHhz1HTZtKfaxl1n2tebxKhtScs+90muNW7Ncdef9DXY3d2NBw8exO3bt2N7ezsqlUpUq9Xo9XpRq9Wi3W7Hzs7OYHvPcXq93pnEvdO8hrgHAAAAAADjCXyJjJoQ2ze8jeRhaxx87HEjzaQBZtrnEkYcPhU36ddlzig87HGTBsFJw2un04m1tbWYm5uLSqUSm5ub0e/3Y29v7ydTemWuP2zSOHsSWc+ABAAAAACADAS+18RxY8phZwruf/+kge6sJgjLrnGWjrrng/Gy1WrF7u5uFEXxf9tvDj/+sLXKGN4udJLHn9bE5mHrAwAAAAAAAt8bqew2lOPi1Hmc8VbGSSPRaZ37d9i6B+93eBvOsu9b2Xua9uOHn2PZCcpJp1IBAAAAAOBNI/AxkVGRZdJAcxJHhbBJpuKO4zSi0iTR9DjX31/rrOLecQ1PCU56z2WnCwEAAAAA4HUn8HFqjhMF9w1Pb42bIDxsvYs+YTjNrUbLnie4/9qd52s0auvW40Tj4ec06mfK/D0AAAAAAFx0Ah8X0nB4KTvpNRxvyoSsSqVyoeNgma06x02/lQ2DF9nw+37UY/aNOtsQAAAAAAAyEPh4bYwKWJMYjj8XOe6VdZxQeh4u6n0BAAAAAMBFJPDxxssSwQAAAAAAACIiivO+AQAAAAAAAGByAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJCLwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJFLp9/vnfQ8AAAAAAADAhEzwAQAAAAAAQCICHwAAAAAAACQi8AEAAAAAAEAiAh8AAAAAAAAkIvABAAAAAABAIgIfAAAAAAAAJPI/qfslO5/5U80AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "IMAGE ID: 938\n", + "938\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvgAAAGoCAYAAACDneILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADrt0lEQVR4nOz9ebyceVnn/7/upfZ9OXX2k5wknXR6STfd0NANDSiCMI6A2+DGDKC47+t83UbGZXT4yeiojIoiOuroMCrqiDIqIDQNNPSaTtLZz75Xndr3qvv3x0ndnA7nnJyk0zmp5v18POpxTlXdy+dUnXT1qXdd12U4joOIiIiIiIiIiIiIiIiI9AdzrxcgIiIiIiIiIiIiIiIiIrungE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+ogCPhEREREREREREREREZE+ooBPREREREREREREREREpI8o4BMRERERERERERERERHpIwr4pO8YhvE+wzAcwzCyhmH4rmK/c5f2+9tL19926bpjGEbXMIwXXWH/3rZvu8J2PsMw3mEYxgcNw7hgGEbJMIyGYRiLhmH8i2EYP2MYxuRu1y0iInK9GIbx85tezyqGYYzssO3+Tdu++tLFeQ6X/ZeO+7YdtqkZhjFlGMb/NgzjDTfsgREREblGhmEcuPQ3n2MYxnuusO3wpb9jHcMwfn/T7W+7/PXysv2mLt33gev/E4iIiFwfl/29ecXLDse5pvdWDcP4wKVjT+1irZv/3n3bc/vJRfaOAj7pR39w6WsSeNNudjAM41XAwcv2f9YmwK8814UZhvFvgfOXzvH1wCTgAarAIPDlwC8AZw3DeO9zPZ+IiMhzEAT+01Vs3wSWt7m0Lm3T2mGbzhbHXNt0/wpgA/uAbwA+bBjG+6/qJxIREbnBHMe5APz4pas/aBjGgzts/vts/B07A/zI8702ERGRPbTd34WbL19E762KXB0FfNJ3HMf5DHDy0tW373K33nbLwN9vs83rDMP48mtdl2EY3wn8DTAKzALfC0w4juN3HCcB+IBXAr8NtIFvvtZziYiIXCfvMAzj8G42dBznYcdxhra6AA9f2mzbbRzHmd3isC/ZdP8gG6+VdwP/dOn+txuG8U3P9YcUERF5PjmO8ztsvHaZwAcMwwhdvo1hGO8E/g3gAO9wHKd4Y1cpIiJy4+zwd+HmvyOfRe+tilw9BXzSr3pVeK8zDGNspw0Nw4iw8YkPgD92HKe9xWb/99LXXzUMw7jaxRiG8XLgt9j4N/UJ4E7Hcd67+c1Mx3FajuN80nGc7wMOAw9d7XlERESuk1ngKTYq5n55j9fichyn6zjOk8DXAIVLN79571YkIiKya98GFIEDwLs333Gp7eavXbr6Xsdx/uXGLk1EROTmpvdWRa6NAj7pV/+TjTZgJvAfrrDtW4DeJyi3a/X1/wFd4MV8IQy8Gr/GxpukK8DXOY5T2Gljx3FmgDdew3lERESuhy4br30AX2cYxn17uZjLOY5TAc5duhrey7WIiIjsxqU3IH/o0tXvMgzjtQCXPkD6ASDCxmvbT+zF+kRERG5yem9V5Boo4JO+5DjOKvC3l66+7Qqb99pzfspxnGe2Od7TbISGAL9kGIa927UYhvES4KWXrv6m4zhru9nPcZzubs8hIiJyvTmO82HgXy9dfc5zaK8nwzCCwKFLV0/v5VpERER2y3GcP2RjJIQB/IFhGDE2Qr9XsfHhmrc5jlPduxWKiIjcfPTeqsi1U8An/azXpvOQYRiv3GoDwzCOAA9curpd9V7PzwEN4Bbg269iHa/Z9P1fX8V+IiIie+0nL339MsMwXr+nK2GjysEwjDuBvwRiQI2N+QoiIiL94p1ADhgH/hfwS5duf4/jOJ/as1WJiIjcvPTeqsg1UsAn/ewjwNyl79+xzTa928vA/97pYJdKu9976erPXaoe2I3bL31tAKd2uY+IiMiecxzns3zhD6j/ci1zaJ+jzxmGsdS7sPFa+hTwauBDwMscxzl/g9ckIiJyzRzHWQS+/9LVNwAB4CTwM3u2KBERkRts899521x+Y9Pmem9V5Bop4JO+dakM+48uXf16wzCeNaPHMAwLeOulq3/hOE55F4f9JTYGow/zhfkJV5K69DWv0nAREelDPwV0gLuBb7rB504Dg5sunku3+4A4MHKD1yMiInI9fBBY3nT9hx3HaezVYkRERPbA4BUusU3b6r1VkWukgE/63fsBBwgBb7nsvjewEdT1trsix3GywH+9dPUnDMNI7bT9Jb1qB2c35xAREbmZXJpP+4eXrv6CYRienba/ziYdxzF6FzaCvaPAu4FXAn9vGMb33MD1iIiIXA8/zcablz1XMwJCRESk723+O2+by9s2ba73VkWukQI+6WuO41wAPn7p6uVtOnvXn3Ec5+GrOOx/A5bY+CTJT+1i+97g14RhGPo3JSIi/ejn2Zh3dwD4rr1ahOM4TcdxnnEc5yeBX2fj/1V/wzCMg3u1JhERkathGMY9bAR8AB++9PUbDMP4hj1akoiIyM1O762KXCP9g5EXgj+49PUBwzCOABiGkQb+7WX374rjOFXgP1+6+r2GYUxcYZcTl772qg5ERET6iuM488BvXrr6M5e3vd4jv3/pqw3oTVEREbnpGYbhY2OMhA18Fngj8L8u3f3bhmEM7NXaREREbmLX673V2qWvgV1sG9xiP5G+o4BPXgj+Eshf+v7tl76+lY05Pm3gf17DMd8HnGXjheVdV9j2XzZ9/zXXcC4REZGbwX8B1oEM8KN7vBaA6U3fT+7ZKkRERHbvXcAdQB34D47jdIDvY6NDzADw3j1cm4iIyM3qer232qsETBmG4b/CtqObvl99DucU2VMK+KTvOY5TB/7s0tV/bxiGxReCvv/rOM7y1nvueMw28DObjnnHDtt+Dnjk0tXvu1Q9eEUqORcRkZuJ4zh54FcuXf1RNoK+vTS26fvKnq1CRERkFwzDeBnwY5eu/pTjOKcBHMfJ8YX2119vGMa/24v1iYiI3Kyu43urj176agEvu8Lur+idHnh8N+cTuRkpYJAXil4bzmHgZ4E7L7v9WnwQ+Dwb/05++Qrb/hjQYWOQ+l8ahhHbaWPDMMaADz2HtYmIiDwf/jswB0T4wgdd9so3b/r+83u2ChERkSswDCMAfICNNxQ/CfzG5vsdx/kb4E8vXf1twzD2+kM0IiIiN5vr8d7qP7HRlQbgJw3DMLbZNwF8R28fx3HWt9pOpB8o4JMXBMdxHgOeuHT1Zy99XQT+4Tkc0wH+46WrX32FbT8J/CAbn/p4JfCUYRjffenFBgDDMDyGYTxgGMavA2cubSciInLTuFQV//OXru742vd8MQwjYRjGDwE/demmKeCv9mItIiIiu/TLwBE2Ks7f7jhOd4ttfoCNv1HTqFWniIjIs1yP91Ydx6kAP3fp6uuBvzIM4+5e0GcYhtcwjK8EPgEMAQ2+8HenSF+y93oBItfRHwC/yReC6z+6NPPgmjmO8y+GYfwT8NpdbPvbhmHMAf8DmGDjj7b3GoZRZ2NYaxzofXKkDfzuc1mbiIjI8+QDbHx68tYbcK7PGYax+bXaAyT4wuvlDPBvLwWPIiIiNx3DMF7JxhuSAD/hOM75rbZzHCdnGMZ3An8LfJ1hGG9xHOcvbtQ6RUREbiTDMJZ2sdnXOo7zcO/K9Xhv1XGc37pUKf8zwJsvXeqGYVSAGF/IQ0rAWx3HefTyY4j0E1XwyQvJn7IxzLzn/dfpuP+RjU+PXNGl1isHgHeyUW0wxUZ5eQhYYWNo7E8DBxzH+eHrtD4REZHr5tKHY27UpxjTbLRg6V2iQBb4OPAjwO2O45y4QWsRERG5KoZhhIA/ZOPNxo+y8YbkthzH+Tvgf1662nsDUkRE5IVocBcX7+U7XY/3Vh3H+TngLjYCwqeBJhvhXhH4NPAu4JZL5xLpa8ZGF0IRERERERERERERERER6Qeq4BMRERERERERERERERHpIwr4RERERERERERERERERPqIAj4RERERERERERERERGRPqKAT0RERERERERERERERKSPKOATERERERERERERERER6SP2TncahuHcqIWIiMjNxXEcY6/X0G9ea36DXjdFRL5E/VP3g3rdvEp63RQR+dKl182rp9dNEZEvXdu9bqqCT0RERERERERERERERKSPKOATERERERERERERERER6SMK+ERERERERERERERERET6iAI+ERERERERERERERERkT6igE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+ogCPhEREREREREREREREZE+ooBPREREREREREREREREpI8o4BMRERERERERERERERHpIwr4RERERERERERERERERPqIAj4RERERERERERERERGRPqKAT0RERERERERERERERKSPKOATERERERERERERERER6SMK+ERERERERERERERERET6iAI+ERERERERERERERERkT6igE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+ogCPhEREREREREREREREZE+ooBPREREREREREREREREpI8o4BMRERERERERERERERHpIwr4RERERERERERERERERPqIAj4RERERERERERERERGRPqKAT0RERERERERERERERKSPKOATERERERERERERERER6SMK+ERERERERERERERERET6iAI+ERERERERERERERERkT6igE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+ogCPhEREREREREREREREZE+ooBPREREREREREREREREpI8o4BMRERERERERERERERHpIwr4RERERERERERERERERPqIAj4RERERERERERERERGRPqKAT0RERERERERERERERKSPKOATERERERERERERERER6SMK+ERERERERERERERERET6iAI+ERERERERERERERERkT6igE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+ogCPhEREREREREREREREZE+ooBPREREREREREREREREpI8o4BMRERERERERERERERHpIwr4RERERERERERERERERPqIAj4RERERERERERERERGRPqKAT0RERERERERERERERKSPKOATERERERERERERERER6SMK+ERERERERERERERERET6iAI+ERERERERERERERERkT6igE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+ogCPhEREREREREREREREZE+ooBPREREREREREREREREpI8o4BMRERERERERERERERHpIwr4RERERERERERERERERPqIAj4RERERERERERERERGRPqKAT0RERERERERERERERKSPKOATERERERERERERERER6SMK+ERERERERERERERERET6iAI+ERERERERERERERERkT6igE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+ogCPhEREREREREREREREZE+ooBPREREREREREREREREpI8o4BMRERERERERERERERHpIwr4RERERERERERERERERPqIAj4RERERERERERERERGRPqKAT0RERERERERERERERKSPKOATERERERERERERERER6SMK+ERERERERERERERERET6iAI+ERERERERERERERERkT6igE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+ogCPhEREREREREREREREZE+ooBPREREREREREREREREpI8o4BMRERERERERERERERHpIwr4RERERERERERERERERPqIAj4RERERERERERERERGRPqKAT0RERERERERERERERKSPKOATERERERERERERERER6SMK+ERERERERERERERERET6iAI+ERERERERERERERERkT6igE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+ogCPhEREREREREREREREZE+ooBPREREREREREREREREpI8o4BMRERERERERERERERHpIwr4RERERERERERERERERPqIAj4RERERERERERERERGRPqKAT0RERERERERERERERKSPKOATERERERERERERERER6SMK+ERERERERERERERERET6iAI+ERERERERERERERERkT6igE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+ogCPhEREREREREREREREZE+ooBPREREREREREREREREpI8o4BMRERERERERERERERHpIwr4RERERERERERERERERPqIAj4RERERERERERERERGRPqKAT0RERERERERERERERKSPKOATERERERERERERERER6SMK+ERERERERERERERERET6iAI+ERERERERERERERERkT6igE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+ogCPhEREREREREREREREZE+ooBPREREREREREREREREpI8o4BMRERERERERERERERHpIwr4RERERERERERERERERPqIAj4RERERERERERERERGRPqKAT0RERERERERERERERKSPKOATERERERERERERERER6SMK+ERERERERERERERERET6iAI+ERERERERERERERERkT6igE9ERERERERERERERESkjyjgExEREREREREREREREekjCvhERERERERERERERERE+oi91wuQa2MYxlXdfj04jrPtfaZpkkgkACgUCrTbbQzDwHGcZ329Flvtt91aHMd51n2maW57jKs9507bdLtdut3ujo+RiIiIiIiIiIiIiIjI9aCAr4/tFPL1gqbdBluXb7dVULV5m8vvHxoawrZtKpUKtm27YZdhGO5+zzV83Lz/TqHf5p998/mv5vhXs41hGG6Q6DgOnU5HYZ+IiIiIiIiIiIiIiDxv1KKzD10ptLrewdJWAd3l4Vm5XCYcDtPtdrEs64vWeT1Ctsur87batxe29S7P5Xy7XUPvtl6gads2Xq8Xr9eLbdvPa1WliIiIiIiIiIiIiIh86VEF3wvY1QRL21Xs7XT75q+tVot2u02323VDtm63u6tj9ta5ufJupyBvu/17329Xwbjb23a6fas1XP54bL7dsiwsy8JxHLeN51aPi4iIiIiIiIiIiIiIyG6pgq8PXR46bdc28vk8Vy/EsyzLDfPq9TqJRIJut4vP59uyReZ2IdvmYOxqKxA3V9DttPZrOcZW69vq/isdsxf2+Xw+QqGQKvtEREREREREREREROSaqYKvz2w1h+7yqrGrPdbllXM7Vdltvu7z+dx2nL0KtVarRTAYpFarYds27XZ723Vttf7drHm3YdvlYeJuH5vNj8FW7Ti3O9ZOz0Pvvl4FXy8Y7d3W6XQ0s09ERERERERERERERHZFAV+fuTysulIryc37bbft5jBrt2FY71jNZpN2u43jONRqNcbHx7Esi2azCUCn07niMXaqSLx8m61aY17Jbh+jrfa5mvNsd87Nj+tWx9k8L1BtPEVERERERERERERE5ErUorNPba4u2ym42k07z2thGAb1ep1Wq+WGUY7jsLa2htfrJZFI4PV63Qq/3j6bW3Zu1cJzq/Nczc+w031XarV5JVtVB17peJu32+pyOdM0sW0br9eLbdtu8CciIiIiIiIiIiIiItKjCr4+cq1hz26q8nZTAQh8UTXa5fvVajUMw2BwcJBoNMry8jL5fP6q2ojuFJpdbbvNrY67m8rB3a5np+NdzZq2Wocq+0REREREREREREREZCsK+PrYcwnsttr+SnP3Lr9tq7DN6/WysLDA8PAwd9xxB5VKhSeeeIL19XU8Hg/FYpF2u0232902ONtqLVfa9rm00bz8ONdqu6DvSgHg5efdKgxV2CciIiIiIiIiIiIiIj0K+PrQdkHRtYRTWwV2u9lnu8qzbreLx+OhWq2STqc5cOAAt9xyC36/n4mJCSqVCg899BDdbpeHHnqIbDbrzunbKti6fJbdlX6G3YR8W83D21zddy2PyeW2CvV2+vk2h5Q7zSAEhX0iIiIiIiIiIiIiIl/qFPD1iV6g81xn6F1LZd9ubzcMA8uyiMViBAIBPB4PAwMDpFIpVlZW2L9/P4899hh33303r371q/me7/kePvGJT/CXf/mXPPPMM3Q6nS8K3a6lbeZuq/l2Cga3C9x2Y6tKyN2sZ7uQcatj9o7bC/t6M/16lZHPZdagiIiIiIiIiIiIiIjc3BTw9bHdBFCbw6WrqdDb6novwLNtm0aj8az7DcMgFotx9913E4/HGRoaYnl5Ga/Xy7lz56jVaqysrDAzM4Nt2yQSCSYnJwmHw/zO7/wOv/u7v8tHPvIRVldXt61+u1LYd6UgbauqwK0ep8u/Xuk4VzrfTrfvVKm4XdC31fl7z8Hmyr7NgZ+IiIiIiIiIiIiIiLxwKODrIzuFPVvdf6Xbr7SNYRj4/X4OHjzIkSNH2LdvH+FwmAsXLjAwMEC322VxcZF2u836+jr79+/HcRxqtRoTExPYtk02myUej1OtVpmfnycUCrG2tsapU6cIh8NMTEzwyU9+koMHD/Krv/qr/Nqv/RqnTp16VjC103zAy+fvXU213VYtM5/P/a50vF7l3VZh49WuqRf0WZblBn0K+0REREREREREREREXhgU8PWBXnXW1bBt+4taXm4+3k7nMk2TSCTCvffey6te9SomJia4cOECyWSSUqlEIBAAcIO7XkWeYRh0Oh2azSanT5/m6NGjOI7D8ePHGRoaAsDj8WCaJs1mk5MnT3L33XfT7XYJh8OcOnWKX/zFX+Td7343n/3sZ931Xyno26qqbaf2mzvNENwuSNzOTmHf5WHdTjbP0bMs6zkFh1uFnpZlKewTEREREREREREREXmBUMDXB7arrttp+1AoRDQaZXZ2dlfH6lXrjY+P85Vf+ZXccccd1Ot1VldXeeihh/B4PDiOQ7PZxDRN1tbWmJ2ddcOiYrFIKpUCoNFoUCqV+Od//mcCgQBer5fZ2VlarRYDAwM0m01KpRKjo6OsrKyQz+epVqs4jkOj0eCtb30rrVaLxx9/nHa7veX6Lw/WLg/2trv/ajyX2Xu7beO51b7dbhfLsp7TerabZdgL+7aa2yciIiIiIiIiIiIiIv1BAV8f2BzObDeLbvNttr3xtHo8nm332XzMaDTKkSNHeNOb3sTIyIgb+pimSavVYnR0lHK5TKlUYm1tjUgkwsjICNlsltXVVcrlMvF4nFKpRK1WIx6PE4vFyGazVCoVYrEYAK1WC7/fT7VapdFo8OlPfxqv18uhQ4fwer2Ew2Gy2SwXL17k5S9/OalUihMnTrC6ukqz2XQr3Lar2NspYNupwm+7x/G52E0bz+1CyF57zWttPXqlc/WO1ztmr7Kvt83loaqIiPQBw8CKROiUSqAPbYiIiIiIiIiIvOAp4LvJ7dRqcqttYKMCrNFosLi4+EX3bw72bNvmpS99KW9961tpNpuEw2EWFxexLItqtUqpVCKdTjM3N8fo6CgzMzM0Gg0CgQClUolsNott20SjUdbW1ojH4yQSCer1OoVCgXg8ztLSEh6Ph2PHjvH000+Ty+XYt28f8/PzRCIRMpkMjUaDcDhMq9Uil8uxtLSE3+/n0KFDjIyMcPz4cUqlEpZlUSqVWFhYoNVqXdXjt1OF3/NtN9WEpmleUyvW62nzGtTGU0Skf9ijI8z+dox33vIwv3fm5SQ+EMaudVm/xUsjDmMfr2I+chKn1dzrpYqIiIiIiIiIyHWigO8md6XAZ6vwzuv1ui01t9rO5/Nx+PBh3vjGN/K6172OJ554gnq9zvz8PJ1Oh0KhQKfTwbZtTNOkXC4zOzvL/Pw84XDYbalpWRaVSoVIJMKBAwfw+Xw888wzjI+PA1AulwmHw0SjUVZWVkilUm4bzm636+43Pz/vVukNDg5Sr9fx+XzU63VGRkawbZtAIEAgEODMmTPU63VmZmZYXFwkn8/Tbre3rOq7/HG60ry8G2GnNTxfa7pSi9LefZur+EzTdCsJFfaJiNy8rESCF/39LH+f+TAA3//SaaovadKiQ8zcmJm7+J1lfnT2qznxf17M2F/N0p6e3emQIiIiIiIiIiLSBxTw9aGdWm4ChEIh2u02jUbjWbebpsktt9zC13/91/Pyl7+cUqnEmTNnqNVqrK2tUS6XMQwDj8dDNBp1q+larRblchnTNMnn8zSbTer1OkNDQ5imidfrJZ/PMzQ0hGVZNBoN1tfX3daPq6urAExMTBCJRDhz5gymaZJKpfjUpz5FOBxmdXWVUCiEYRjUajUGBwdZXV3FNE1CoRDr6+tu8Dc2NsaLX/xizp49y8LCAmtra0xPT1OpVOh0OtsGfTu19dwqSH2+A63e87jd83m92nNei8tbhirsExG5+dj7J8j8+Tq/mDn+rNuDpvdZ14ftMH82+TE6P/Yv/Mv3+vjuz3wr+//QxPOvT+KoLbOIiIiIiIiISF9SwHcTu5aWjYZhUKlU3ECmd1ssFuNbv/VbefOb38zS0hLnzp2jWCxSKBSo1+sUi0Xa7TaBQACPxwPAoUOHeOqppxgeHsYwDHK5HIZhMD09zeTkJIZh0Gg0iMViJJNJbNsmk8nQbrfxeDwEAgFqtRoTExMsLy+zvLyMx+NhbW2NZDLJhQsXaLfbzMzMkE6nCQQCPPHEEwSDQebn5xkfH8fr9VKr1Wi32+TzeRqNBrVajVwux/r6Orfddhvz8/NMTEyQy+VYXV0lm82Sz+eB7av5trq+XSDYs9OxnmvgtV2Ydy3P/1bHu7yK7/JwcafQePN+CvtERG4Ohm3zpn/4PN8RW9j1PpZh8rpgi/Nf/oesvKrC2859A8XfGif8N48q6BMRERERERER6TMK+G5i24U7O4U+hmHg9W58cr8XvjzwwAP86I/+KHfffTfHjx/H6/W68/S63S6VSoVkMkkmk2Fqagqfz0ehUKBarRKLxfD5fMzMzNDpdGi1WgwNDdFsNgkGgwwMDJDP5937KpWKG/LlcjlCoRD1ep19+/YxOzuL4zgMDw/j9XppNBqEQiGWl5cplUocOnSIUChELpcjHo+TzWYJh8NucFgoFAgGg+RyObxeL/F4nJWVFQKBAPV6nYGBAY4ePcry8jIf//jHqdVqz2o7eTVB1FZtLbeah3g9wq3N59r8dbvgbafjbOdK69wc5l1ePbjT3EDTNLEsi26367ZKVeAnIvL8M7zeqwr3LpexQnz4yIcp/0ad17/zm4n8pI/uk6eu4wpFREREREREROT5pICvj+wm6HEch1AoRDAYZP/+/XzjN34jx44dY3Z2lk9+8pOcOnWKdrtNrVYjkUgAsLi4yNDQEOvr625As7a25lbhZbNZYrEYjUYDgNXVVSYmJrAsi3K5DECpVCIajTI2Nsb8/Dz5fJ79+/fT6XRYWFggHo/TarV4+umnicfjFAoFYrEYjuMQiUTc+XrhcBiPx0M8Hsc0TbcKsNlsuhWDHo+H1dVVEokE5XKZZrNJLBZz23v6/X63si8Wi1GpVFhaWgJwf4adHtPdPM5bhX1Xum+nOYBbVQteHvbtdm2XH2entV+P9p8ejwfTNN2WsJ1Oh3a7Tbfbfc7HFhGRrXVrNard5he147xaYdPPQ8f+is/8dYcf/7HvIfhXn71OKxQRERERERERkeeTAr6b1OXtOXcKoi6/b319nV/4hV9gcHAQr9fL448/zvT0NKZpUi6X8fl8wEYoFwgEyGQyeDwe8vk8hmGQSqVIJBKsrKwwODjIk08+ybFjx5ienubWW28lHo+Ty+VYWVkhnU4Ti8UoFouUy2VKpRLJZJJoNIrf76dQKGCaJhcvXqRWqxEOhykUCm5Lz+XlZQKBAIAbCLXbbZaXl0mlUmSzWdbW1nj9619PuVym1WqxurpKp9PB6/Vimibj4+Nks1mSySS1Wo1Go8Hk5CSxWAzYmEmYz+dptVp8+tOf3nWV2ZXCr63aau503Cvdd/nzvbmabruw72qr/K5kq9+p3VT/eTweOp0O3W4Xy7IwDONZLTwV9omIXGeOwx3//N2cfe37sAzzyttfwcv8Fn/8336N7/3U19JZXrkOCxQREdkFw8D0+TD8PjBMnGaTbq0O3c5er0xERERE5Kb33N8RkufF5TP0NttuNp9lWWQyGX7oh36IV73qVfy///f/eOaZZ1hcXMQ0TbLZLKZp4vV6SSaT+P1+YrEYBw8edIOYcrnM+fPnKZfL1Go1zp8/TzweB6DVanHx4kUMw8C2bRKJBF6vl+HhYQCCwSDxeJzbbrsN0zSpVCrs27ePgwcPEgwGsW3bvayvr3P+/HlM0ySdTrOyssLAwADlcpl8Po/H48Hr9RIMBhkbG+Ohhx7CcRyCwSBf+ZVfSTQaZX19nVQqhWVZOI5DtVqlUChg2zZ+v59ut0sikaDb7XLLLbcQCoUYHR0lEAhsG5heTVDW2/7yy/WyXYDbC/x6Adrm2y6vEHyuM/12s2+9Xqder7vr6AV98IU2nrZtY1nWs36vRUTkuTn87U9y++9/H480WtfleJOeMLmvOHBdjiUiIrITe3SE+Z98gPX/e4gjn2rzVQ9f4M0Pn+bBT6/h+9gAZ373JRS+9WXYQ4N7vVQRERERkZuWsVN1jmEYGqa1R3pVUJfbLuyzbZuv+Iqv4FWvehXRaJR0Os0nPvEJt8Jr//79zM3N0Wq1CAQCrK+v0+12GRwcpFKpEAwGKRaL7ly+XvvNZDKJz+dzA8BqtYrH46HdbpPJZJibm6NWq2EYBqVSieHhYQqFAt1ul/HxcUqlEoODg8zPz9NoNCgWi+7+4XCYbrfrVvL5/X43CPR6vTiOQ6PR4M477+STn/wkoVCIwcFB2u02+XyeYrGIbdtMTEyQSqWYmZmhWCzi8/kYHBxkamqKdDpNvV7H6/W67TpnZ2c5efIki4uLz+vMuGs57nZVgZfPxdup1ef1DBkvX9N2P1MvuNtcqbd5281VhpvDSM3ru7k5jnN9f5m+BLzW/Ab9UssNZx29hXP/Ic2/ee3n+P70x9lvB6+pqm+xXebbX/nNtKdmnodVirzw/VP3g3rdvEp63fzSVHvTfXznf/1LviWS3XG7ltPhrytJfvKf38LR38jROX3uBq1QRG4EvW5ePb1uioh86drudVMB303INM0rtujcXN0Vj8d5y1vewrFjx7Btm2w2Sz6fJxKJ8NRTT/GSl7yEcrnM6uoq7XYbj8dDq9UikUhQKBTweDwEg0EMwyCbzRKPxymVShSLRfx+PwMDAxQKBbxeL+l0mrm5ORKJBJ1Oh1KpxMGDB1lZWWFpaYmXvvSlnDhxgmazSSqVolAoUCgUqNfrVKtVotEopVKJRqNBNBoFNma4ARQKBcLhMO12m9HRUQqFAoA7d89xHFqtFu12m0KhQDqdptlsMjg4yOjoKOfOnaNYLDI8PEwul8Pn8+E4jls1GAgECAQCeL1e5ufn+eQnP8nq6iq1Wo1ut7tjgLWVq91+N9tut81W57pSkHe9wr7dBHyXb3ul2zeHfYAbIMvNRQHf1dMfXLKXTL8f5+hBlu+PUXllme+58xO8JfI0w3b4ivv+fdXPL/9//4HwBzWDT+Ra6Y3Kq6fXzS89xr2383t//btM7OK1abNP1OG73/c9jL/nUZzL5qqLSH/S6+bV0+umiMiXru1eNzWD7ya0m+AGNoLAffv28XVf93UcOHAA0zTJ5XJUKhUMw+DQoUNYluWGXo1Gg6WlJQ4dOsTJkyeZnZ0llUphGAahUIhWq8XMzAytVgvHccjn8xw9epRSqUStVnMDmGazSa1Wc8PBcrlMuVxm3759PPzww9x6662cPn2ac+fOMTAwgGVZpFIpWq0WlUqFdrvttnEMBoPU63Usy2J8fJxKpUKxWGRxcZF2u00oFKLT6bC8vMzg4CCGYbC4uAhsBH+maVIqlXjssceo1+t4PB7m5+dpt9u0Wi1arZYbIPr9fkzTJBaLMTAwwO23384zzzzD9PT0FQOo7W670vN2Nfv3trmakO9KtqoI3G49261vp/Ney3q2Ol6vAlCVfSIi165br8PjJ8g8DrwX/l98Hx++/dUsvyRI8Y4mRw4s8tLUFBPeLH6zRa4d5lR1mH949Bi3/eoy4YsK90RE5Pn10vc/cdXhHsAr/fDU9/0Wr3vNm/G/rUN7bv55WJ2IiIiISH9RwHeT2i7k691uWRYve9nLePOb30w0GsW2baampqjX64yOjjI/P0+tVmNtbY1gMEg4HCYUChEIBDh37hyGYTA6OsrIyAj1ep3FxUUuXrzI7bff7h6vWq26AVwqlWJxcZHbb7+dUqnkttLMZDKsrKwAG8FfIpEgl8uRyWRYW1ujXC5Tr9fdVqDtdtutrKtUKoyNjXHx4kVarRadTge/308ikaBcLjMwMIDX68WyLDqdDs1m052vFwqF8Pv9GIbB9PQ0t9xyCwsLC261XyAQwHEc6vU6zWYTy7KwbZtWq8Xi4qL7eBw7doxOp0M2m6Verz9rrt3mx3w3odN2IeFW7TZ3s99W2+4U/vbWeTVB405z+nr77FTB13tcDMPANM0rhpNXW3XYmzUoIiJXr5MvYHzqCYY+BUOAY1o84o/xucAgGAY0W3QbDQ43HqG914sVEZEXPCuV5F0DH732/Q2Tf7ntb/nNj+zjfX/wVYz94xqdU2dBHw4UERERkS9RVz+gRZ5X283Y23yfbds8+OCDfO3Xfi0LCwscP36c48ePc+edd7Jv3z5CoRCmabK6usqxY8ewLIvHH3+cZrPJPffcQyQSIZFIUKvVaLfbbjVeJpPB7/dTKpVYX1/H6/XSbrfx+/2sr6/j8/k4d+4cfr+fQqFAq9ViYWGBffv2EQwGabVaJJNJFhYWWFxcpNFo4Pf7aTQaLC8vUyqVGBsbo91uuyHi0aNHMU0T27Ypl8u0Wi23VWev+tC2bUZGRvB4PBiGQTQaxe/302w2KZVKRKNRlpeXMQwDy7LweDxYlkWr1aLb7bptSdvtNtlsFtM0abVaFItF6vU699xzD0eOHCEUCuHz+bBt+4uej+3aXe7UBnOrMGy753ynoG03TNPENE0sy9ryuJsvm8PK3bT93Lzf5XqBaK/F5k6Px+Xr2HzbdnrPqWVZbpWfiIhco26HbrVKJ5ujs5alUyyqzZmIiNww1fsOXpfjfH9imqd+7L388t//Txb+6ij1r74Pw+e7LscWEREREeknquC7yVxeXXV5aOLxeHjta1/Lt33bt3Hx4kU6nQ4ejwfbtul0OgDMzs5Sq9XodDp86EMfYmhoiEKhQLlcZnJykkgkQqVSIZlMcv78eYaGhigWi9x1113kcjlqtRqBQIB4PM7MzAzj4+N4vV5KpRKRSIS1tTUsyyIajVKr1ajVaoyPj3Px4kUikQihUIhYLEaz2aRSqTA0NESr1eLQoUOcP3/eDRgXFxf513/9V+LxOCsrKwwNDWGaptv20+/34/P5KBaLxGIxSqUSgUCASCTC6uoqhmFg2zamabrtOgOBAJVKxW3XGQ6HqdVq1Ot1kskkiUSCUCjkBn2WZWEYBul0momJCdbW1sjn8zQaDXK5nBuGtdttisXiFz1P213f/Bxevt3l1XRbVdf19t/u92PzfqZpkk6nmZycJJfL0Ww2yefz7lzBxqU3b3ttUS8/5+UVejsFlttV922u5LsaV7NPL+wDzewTEZHrxLQwPDbGpg/IOJ0OdDobX/VaIyJy3Uz/u+vbmeNun4/jL/0zCi+p8b0zb+D0799D+oNP0y2Vrut5RERERERuVgr4bjI7tVe0LItXv/rVfMVXfAXnz58nFotx9OhRpqamGBkZoVQq0Ww2abfbxGIxFhYW6HQ6zM7OYhgGg4ODAFQqFeLxOADBYJD5+Xm8Xq/bJrMXfOXzeQYGBojFYqysrOD3+3nsscfIZDLYts3Y2BiPPvooHo+HhYUFotEojz/+OMFgkHg8zuLiIoZh4PP5mJ2dpdvt4vV6yefz2LbtVsv5fD4GBgao1+v4Ln3yMhwOEwgEyGaz7m3RaJRsNuu28VxdXSUej5PP52k2m8TjcSqVCqZp4vV6gY1qx1AohGEYdLtdyuUyzWYTj8dDMBh0234ahkEul2N8fJwHH3yQdrvNpz71Kc6fP+9us93zs9vncquWnZvvuzxA67W87N1nmibJZJJgMMi+fft45pln6Ha7DAwMcPDgQVKpFIVCwX0uTdNkcnKS06dPE4vFaLVa5HI56vU6a2trNJtN1tfX3UrHXmhmmibtdnvLELD3/eZWsb3fmc0VdruZN7jdY7WbfXrn6oXaIiIiu2ENDLD+FQdZvcfAf7DIgVSWieA6KW8Bk43Xn2wrxFojwsVikpW1KJ4LAVJPd4ieKWIu5+iWynRrdejqNUhE5Gr84Sv/8Hk5bswM8Cf7P07rF/6Fd/3A3fz97z3I8J+doJMvPC/nExERERG5WSjgu4lcqbXhwYMHeeUrX8nCwgLNZpP777+fxcVFBgYGyGazhMNhVldX3a/1ep10Os3c3BzDw8Pkcjkef/xxLMuiVqsxNzfH7bff7gZcjuNw2223MTc3x/LyMpFIhPHxcS5cuIDf76dSqTAyMsLCwgLhcNgN1WZnZzly5Ahra2sMDw8TCAQ4f/68G8zlcjna7TaGYRCJRNyKuYGBAc6fP+/O+rMsi0KhQCwWo1gs4vP58Hg87iUQCDA7O8vo6CgA2WyWarVKJpNx24z6/X5arRY+n492u+1W9tXrdfx+v3t/IBAANoKicrnsVoYtLCy49/XahgJbzoHbrm3ltT7vm7/2Qkq/3084HMbj8ZDJZNzAtTf/sNvtYlkW6+vrtNttN6jrPT8XL14kkUjg9XpJpVLE43EOHTpEs9nE7/dz/PhxQqEQ0WiUp59+2p1X2Ol0CIVCNBoN2u02rVaLSCTCyZMnWV9fp1Qq0W633daZ2z0WOz1Gm9uFXm3ln4iIyNWyDh/kzX/zad4e/Uc8hnXlHXpeAw2nxVy7wfHmEE9WJ3iyMMrTnzrEofeco7O6+vwtWkTkBcK493ZeHXjieT2Hx7D4xcxx3vXTT/Kr33WUP//Aaxj7o2foZHPP63lFRERERPaKAr6byHaVXQChUIi3vOUtDA0NMTU1hW3b/NM//RNer5cXvehFLC0tUalUCIVCzM/P4zgO9XqdSqVCOBzG6/W6IU+5XGZtbY1MJkM8Huf06dMMDw/z5JNPMjMzw+HDh+l0OrTbbS5evMjAwACVSsUN3UZGRiiXy8zPzxMIBDhy5Ahzc3Nuq9ByuYzP52NhYYFWq8XAwADDw8NuxV5vJt7y8jIej4dQKEQqlWJmZoZarcbQ0BDlctlt01kqlWg0GtRqNTKZDLARGmYyGdrtNvV6nVAo5IZTvSrGfD5PKBR6Vgh28OBBSqUSoVCISqXiVvp1u13Gx8cJBoPMzc2RSqU4dOgQ586dY2FhYcvn63qGe16vl+HhYVqtFmNjY/j9frfKstFoEAgE3G0LhQK2bZNIJMjn8+5aelV5iUSCZrNJuVwmEolQLBZJpVKsrq5Sq9VYWlri8OHDFAoFxsbGKBQKzM/Pk0wmKRaLblVgJpPh2LFjTE9P02q1aLfbJBIJBgcHKZVKHD9+nNOnT+P3+6nVauTzeTqdzrZz/S5vBfpcH1O16BQRkavRHojwbdE5rKsJ9y7xGR4Oejwc9JR5c+gkDJyEQ//Ez7zhTh57dVJVIiIiV+B9T/aGncsyTH4qfZqf/NFT/MY7DvGHf/R6xv/wNJ21G7cGEREREZEbwdjpTXLDMPQO+g3Umwe3WW/u2Mtf/nK+7Mu+jNXVVTeYW1lZIRgMui0Xo9Eoy8vL7N+/n1arxfnz50kmk88KWAKBAENDQ6yvr7vBzrFjx1hfX2diYoLHH3+cAwcOcO7cOQYGBhgdHeXWW2/lU5/6FBMTE3zuc59jcHCQmZkZDh48SC6Xo1AoEAwG3SCp1x602+3i8/lYX18nGAziOA62bZPP5xkfH6dcLhMIBPB6vRSLRQqFghs6maZJPp/H6/XiOA6NRoNWq0W1WmVwcJBKpUIkEnGP3263aTabBAIBt4Itn8/j8Xjc8GlgYIBAIECn03Fbd1YqFfexHhwcpF6vEwgEOHXqFAB33nkn73//+6nVau5jeC2Ve73nwOfzuSGY1+tldHSUdDrN2NgYIyMjbki6srICbLSgXFpawu/3EwwG3WrOUqmEaZp0u10ajYZb4Tc9PU29XicSiZBOp/F6vWSzWSKRCJ1Oh0ajgW3bpNNpSqUSyWSSixcvMjg4iM/ncyvyMpkMlmVRLBbdVqG9Vq7tdpvx8XFGR0eZnZ2lUCjwv//3/6bZbFKtVqnX69u2zrzS47bbx7W33VaVlXL9OI6j0sqr9FrzG/S6KXITu/gr93P8rf8dn+G5bsec/Mi3cfjtj16340n/+qfuB/W6eZX0uvnCZwaDLLzzbh77id/CMswr7/A86Dhd3puf5Pf+6KsYf7+CPpGbhV43r55eN0VEvnRt97qpCr6bxOYQbnPIZxgGQ0NDvOY1r6HValEsFrnrrrtYXFwkFAq5s/JqtRrZbJbJyUlWVlaYnp4mHA67M+lGRkaoVqtks1mSySTr6+t4vV7uvPNOvF4v6+vrblDUC3XOnz9PrVZjdXWVbrfLxz/+cSYnJzFNk2AwyOLiIoODgwwMDPDkk09y6NAhZmZmqNfrrK6uEgqF2L9/P16v1/2ZWq0WqVSKSqVCtVolFAqxsLCAaZqEQiG8Xi+NRoNgMOiGYa1Wy23TaRgGxWKRSCRCPp/Hsiy8Xi+dTodYLEapVHJDqnq9jmma1Go1BgYG3JadoVCITqeDZVluG9FarYZlWdxzzz1MTU0xODhItVplfn6e17/+9fzd3/2d22Z083OzuSqtp3fb5rl03W6X22+/nW//9m/n1KlT7jp9Ph9er5dcLsfi4iLpdJpqtUqn08Hr9VKv1zEMg3K57P6cPp8PwzBYX18nGo26VX/5fJ5AIIBt21iWxdLSEvF43N2+1Wq58/aWlpY4cOAAR44coVwuEw6HWVtbI51Oc+7cOcrlMrVajXK5zN13383CwgLVapVbbrmFTCbDiRMn3FDZ7/dTKBTcNqfBYJBWq0W9Xt/x932nlp7Xq/2piIjIZpP/8dO8OPeDfOz7303aCl2XY37ky/8738/Lr8uxREReSKpf81Lu+qkn+NDIb2Bdxw9WXC3LMPn+xDTf84O/xe+8bR+//adfzeQfnKe9tLxnaxIRERERuR725iN08kV6QdBmvWqtr/mar+HBBx+k0WgQDofdIA42qv663S6madJutwkGg5imSTQadefPtVotZmZm3HlskUiESqVCMBh0wyXDMKhUKtxyyy3E43Fe/OIXMzQ0RCaTYW5uDoD9+/cTCoWo1+skEgkajQZ+v59yuczk5CSlUol9+/aRTqcZHh5mZGSExcVFHMeh2Wzi8Xio1+uUy2Vs2yaVSpHNZkmn0wwODtJut1lfX8eyLKLRKPF4nEql4s7PcxyHdruNaZpuO85isUi9Xndnz/n9fmzbJpvNEggEiEQiDAwMkM/nMQyDUCjE+vo63W6Xubk5twIsFArh8/k4e/YsgUCAVCrF0aNHcRyHYDDIN3/zNz/rOdo8L2+71qq92XbDw8O86U1v4q1vfSunT5/GcRyq1SqA+7ysrKywsrLC008/zdzcHOVymenpafL5vNuCtFQqsba2RjabddulAm4l3cjICF6vl263SzAYZP/+/W5r1d5cvW63i9frpVKpcP78eT70oQ/h9XpZXFwkl8th2zb1ep16vY5t25imydNPP829995LpVLh6aef5pFHHsG2bUqlEn6/n5mZGaLRKKVSiWazCUAgECAUCm1ZkQrbV+pt93iKiIhcLyP/9WHe9CM/wl+Wo9fleGPW3r1pLSJyM/uP7/4jfmv0s9e1avq5sAyT743PcvJ738tbPv4oMz/3APbw0DUdy/B4MUMhzGDwOq9SRERERGT3FPDdRDaHG4ZhYJomsViM+++/n09+8pOUSiUAN6DKZDLU63Xuuece4vG4W8U3MTFBs9mk0WjgOA7ZbNad0ba8vMxjjz1GLpfD5/MxOztLPB53g65cLke1WnVbP7bbbYaGhhgeHqZUKlGtVqlWq26V1oULF5ienqZQKLjhmeM4WJbFuXPn3FlxgUCAUqnktghdWVlxZ8I5jkOhUKBSqTA0NOSGaqlUilarRSAQYHl5GcuyqFQq+P1+ms0mkUgEr9dLrVbDMAy3ws1xHEqlEqurq24glkwm3XaVfr/fbWO5vr7O4uIijUaDubk5stksTz/9NCsrK8zNzT0rPLv77rt3FT71nruBgQG3tarX6+WjH/0olUqF06dP0263KZVKbrtQwzAoFApuBd7CwgKVSoXFxUW3irJWq7lzFLvdLqFQiEAg4IaFU1NTJBIJ7rvvPjKZDMvLy6RSKe699148Hg/BYBC/38/ExAQveclL2LdvH7Zts7q6yvLyMoZhcPLkSbetaS9Ezufz/Ou//ivRaNS9bWZmhm63y6lTp4hEIgwNbfxh7DgO4XCYcDiMYRhbttDc/Dt+uV7wp+o9ERF5PoU/+Fne/5Vfxi0ffxsrncqVd9hBi63bUouIfKn72ZNv2uslbOvfR9c49V3v5a0f/yxTv3Q/1qFJMHee0WoPDZJ7+/2c/eN7GH/Iw4OfXuNFnypz8c+P0fqKe2/QykVEREREvkAtOm8Cl1ct9b43TZM3vOENdLtdSqUStVqNarXKxMQE2WyW0dFRHMdhfX0dv9/PwYMH6XQ6HD9+nFgsxsrKCmNjY25Y5/f7qVar+Hw+Go0GTz/9NN1uF8Mw+PIv/3KeeeYZdz7euXPnOHToEH6/n/PnzzM/P8+BAwc4e/YsoVCIXC5HPB6n0WjQbDbpdrs0m01isRjNZhPHcZiYmCAWi7kz8sbHx1lYWGBpaYlwOEy1WiUej7uz2yqVCrVaDb/fz8rKiluJCBuz6Dwej9u2M5PJkM1miUaj7izCXsWiYRh4PB5isZgbMDUaDQ4fPszjjz/OwMAAnU6HfD5PNBql3W5Tq9UIBoNYlkWr1XLv67UF/ehHP8q9997L4uIiS0tLwNbz+EzTZHx8nGPHjjEyMkI+n2d9fZ3V1VW38nFwcNAN9Hpz8Xw+H0NDQ27lXK9Fp8fjodPp0Ol0CIVCrKysUK/X3UAtm83S6XRIp9O0222mpqZYWVl5VitTj8eD3+/n1KlTxGIxzp49y8TEBENDQ9i2TbFYJBqNunMZ77rrLpaWlvD5fJimyfDwsNvatFwu02g0WFlZ4f7776dcLjM/P+8Gk71K0G636waP24V1asUpIiJ7qX1xmgPfMsM3ffkPUPzhEn957P1M2OGrPs4/Vwefh9WJiPQx02LuJ1/Kfzn6gb1eyRV9Y2Sdb3z7/+BT39Tl5y68mbW/H8NsgmOB1XAYeKSItbjGmR86wC98zZ/zdeEP4zGeHQT+8uBTLD5Q5it//ScYfs/De/STiIiIiMiXImOnN9cNw9A77zeAbW/krJe3fUylUvzsz/4so6Oj/MVf/AXpdNptjQm41WuxWIypqSlCoRCrq6tEo1Gi0ShPPPEE3W6XcDjM6uoq4+PjGIZBu92m1WoRjUapVCpkMhk8Hg+VSoVkMukGUe12m7W1NYLBoFtV1wvgpqenGRgYIJfLcd9993H69GkKhQKJRAKPx8PCwgLpdJpWq+XO1Gu1Whw6dIjHH3+cVCqFbdtEo1HOnz9PPp9nYGDArUzL5XKkUil3biBszLFbX1/nrrvuwjAMms0m5XKZarXqti7thZ0AlUqF0dFRAoEACwsLlEoldy6eZVlu61C/3088HqdQKJBOp5/V0rJUKrnPh23bHDp0iFOnTvHEE0+4QSZstEqNx+O87nWvY3JykmeeeYZarUa73cbj8WCaJolEgqNHj3LhwgVyuRzr6+u0Wi3S6TTZbJZYLOa23uy1GPV4PFSrVUzTpNvt0mq13OcCvhCe9cLJ3uMYCoUIhUJMTU2xf/9+txqz97X3XB4+fJiLFy9y5MgRVlZWyOVy1Ot1t9Xr6uoqt956KwsLCwwMDOD3+ymVSm7IWS6XcRyHdDrN7Ows09PTDA4O0ul0mJ6eplarPet3/fIZkzu5UvDnOM6WFYJy/TiOo36pV0lDz0X6lGnh3H8nZ99u899e9ed8VbDwRW/gbqXabfLKd/0gqfd9+gYsUm522w09l+3pdfMFyDA48757OfeG38My+rthUMfpcr5d4+HaJG+Lrlxx+/VOlW998BtpT83cgNWJ9D+9bl49vW6KiHzp2u51UxV8N4mtQo+RkREikQgrKyuk02lqtRr1ep1wOOyGS0ePHmVxcZFisejO12s2m1y8eBGv14tpmuRyOcbGxqhWq1iWRalU4siRI8zMzBAOh5mammJsbIzz588DG8GYYRgMDAzQarXcdpjZbNatxItEIszPz+PxePj85z/vBlADAwMUCgWCwaDb3rJcLhONRtm/fz8nTpzAMAxqtRrRaJS5uTk3QPP7/XQ6HQYGBqhWqySTSWzbJpPJcOHCBSqVCkePHqVarRKNRjEMg2g0SqfTodls0m63yWQyGIbBysqKW51Wr9epVqtuxdrU1JQb8HW7XSqVCmtra+72zWYT27ZptVp4vV4CgQCBQIBisci5c+c4evQor3zlK5mbm2NlZYVarUYoFCIYDFKv13nooYfcCsd0Ok2322X//v3MzMzwmc98BsdxqFQqhMNhtzWpZVk0m01M08Tr9eL3+92Zf73fjU6n485a7M2/61UsNhoNvF4vhmEwMzNDKpVyg8CLFy/i8XgIh8PYts34+DjhcJgTJ05w4cIFBgcHOX78OI7jEI1GicViLC0t0el0CIfD1Ot1SqUSkUgEwzAolUpEo1EKhYJbiVkul0mn0+7zNzg4yPT09JYVepdf3y7w2828PhERkeui28H41BMc/hS8b/SV/OIb9pH6pll+59CfM+nZuqrvkUaL73z3D5F5n6o1RER6st/2Ms694bf7PtyDjZl9hz0hDnuuHO4BJKwgJ39qkMPfoYBPRERERG4MBXx7bLuQwrZtXvayl2HbNmfPnqXRaJBIJPD5fIyMjHD+/Hksy2J1dZX19XU3iEkkEpRKJY4fP86RI0fw+/0Ui0W3HWQvMMvlcgQCAbrdLuPj42SzWQ4dOkS5XMa2bZaWlty5d51Oh3a7zcjICEtLS5w9e9YNx9rtNrFYjEKh4FYSxmIxyuWyO2NubGwMj8fD448/zj333MPJkycJhUJusHfXXXfx2GOPuVVga2trVCoVvF4vsVgMx3FIpVKEw2G63S5er5dqtepWuOVyOQzDoF6vMzw8zMrKilsZ15tLGAqFaDab1Go1brnlForFIo1Gw12j3+93Qz+fz4fH43HnyTUaDQqFAs1mE8MwOHHihDvPLhQKuS1U19bW6Ha7WJb1rNag9Xqd5eVlJiYmWFpaIhgMulWUvZajvbmFvZmEHo+Her2Ox+PB6/XSarUIBoOUSiX3ManValjWRnVBIBAgGAy6LTJ7P5fP5yMWi7nPfaFQIJlMum1Va7UarVYL27bdCslYLOZWhzabTWZmZvB6vW670V6o12638fl8RKNR9zGORCIEg0E8Hg8jIyNcuHDhWSHf5t/3zcHdVveLiIjshfb8AqnfX8D4gM13v+i7ufC1YW574AJfnXmSAbvIo9VJ/vjhl3PrbxfJPK1wT0Skx7Btfv+nfx3L8O31UvbMf/uy/8X/4NBeL0NERKT/mRbWrQdpZsL4ptZUIS+yDQV8e6xXpdXTCzgCgQBjY2M8/fTTVCoV8vk83W6X2267DY/Hg2VZPPjgg3z4wx/m1ltvZWVlhUKh4M6SC4fDBINBstkstm2Tz+cZGhqiWq3SaDTYt28fpVKJ2dlZAoEAqVTKrcrLZDIMDw8zNzdHLBYjGo2yuLjI1NQUtm2zurpKOBzGsiy3pefQ0BAzMzOk02ls2+bo0aNMT09z22230Wq1uHDhAp1Oh/n5eXw+H4FAgHK5TLlcdo+Xy+VIp9NEo1HOnj3L+fPnSSaT5HI5vF4vCwsLBINBJiYmuHjxIp1Ox50xt76+Tq1WY3Fx0W09Wi6XCYVCxONxt3VlrVZjYWGBTqdDLBYjFApRKpXweDwkEgmSySS1Wo277rqLP/mTP6FcLjMwMEA+n3dbldq2TbvddkPSlZWVZwWEveDSsiw3IK1UKjz99NPceeedzM3N4fP5KJfL7uPQe1wDgYA7LzEQCLjrjsfjrK6uEolE3Mo8y7Iol8tuAFgulykWi24FZLFYdMO+SCTiVjqeOHECy7JIpVIAhEIhpqenOXDgAF6vl8XFRTfc7LU17QWyXq+X2dlZYCOU83q9LC0tuTMF/X6/Wz34ohe9iFKpxOrq6q5n7W3eZqfKvs2BoGb4iYjI88Fpt+Fzx5n8HNRtm7+M3Ybh8dAtlTlceQQ1iRYRebbqv72Hu32f3+tl7KkH/MsK+ERERJ4j4yV3kvv5Or9/+x8zbnV5shnmHQ+9jVt/qUDnzPm9Xp7ITaX/+2b0ue1CjFAo5AY7jUaDV7ziFSQSCZaWlojFYlQqFVqtFsPDw0xPT2PbNqVSCcdxmJqaIp1OMzMzw8jICPF4nEgkQjqdptlssrKywjPPPOO2YVxYWGB2dtatAKxWq6ysrLiVWmtra9TrdbcdZa1WI5lMsn//fnw+H+12292+WCwCsLa2hs/n4/jx45w5c8Zt3xgKhahUKti27Vbc9VqP9kKnu+++m/HxcTKZDAsLCwQCAQzDIBaLcezYMffn2LdvnxtoxmIxbr/9dkzTZGlpCdM0SaVS1Go1SqUStm2zsLCAx+NxW3/2grdqtUqz2QRwQ8+HHnrIDbXq9TqO47jtSrvdLs1mk0ajQS6XAzbmA26epdibcbe0tEShUGBmZoZareaGg9lsFo/H47YWDQQCRKNRAoEAlmVRKBTcuX+9Fpm92YKtVst9vAzDoNvt0ul0gI1ZgL1KvsnJSarVKrFYjGaz6Z4DcCsETdMkHA67a5mamqLdbtPpdNz7exWcvWrCYDDI+Pg4Pp+Per1ONBolmUzi8Xjw+XzMzc257Vzf8IY3MDQ0tOXvei8I3RzWXV7ht1V4p0BPRERuNKfdppPN0V5aplup7PVyRERuSs3vyO31EvZc0LBAXUlERESuWfdVL+K/fvB9PPKiD3LM6ydhBXl1oMuF176fH/2HD1H/6vuueAzD48UeHsI6cgjryCHs4SEMj/cGrF7kxlPAt4d2qlBKJpPMzc2xtLRELpfD4/Fw2223sW/fPj72sY8xPDyMbducO3fODZAA4vE4pmkSDAaxbZvp6Wk8Hg/FYpFyuUy32yUSiTA5OekGJZZlMTAwwMzMDLlcjkgk4rZsbLfb7nw5j8eDaZoEAgE3BOy1eOyd03Ect5Kw0WhQqVTweDzMz8+7VWq9to69yrV0Os3Q0BDr6+uUSiU++tGPYpomy8vL7ky4druNYRg89thjfP7zn6fZbDI/P0+xWMRxHPL5PNPT0wAMDQ2RzWaZnZ0lGo26AV+voq5SqZBKpdxWmel0mnvvvZelpSVGRkYYGxsjm81y6623Eg6HSafTzwq7evMPe9cDgQBHjx6lVCpRr9cZGBhwQ7HeulutFpVKhX/8x38kn8+7oWs+n8eyLNrtNoVCgW6367bu7LUL7VXmtdttt31nL/iLx+Pudt1u163Q7LXYzGQy7u25XI5Go0EoFGJkZIRarUYqlaJarRKJRKjX68RiMXe2YSAQcFuw1mo1ut0ui4uLbmDYqz7t7dPtdqnX67RaLarVKj6fj/n5eb7qq76KgYGBLwrwtvp3oFadIiIiIiL96ZeO/PVeL2HPhU0/c//x/r1ehoiISN/6ht/5CMe8/i3ve02gw/t/6z1YR2/Z8n7Dtln5ngdIfjzEd37iE/zKR/6EX/nIn/Cdn/gEyY+HmP3ZB7DHx57P5YvccAr49tDl7Tl7LMviFa94BZZl0Wg0CAQCPPPMM7TbbRYWFty2iLVajZGREW699VZgI9ybmpqiXC4TiUTciq18Pk86nWZtbY1EIoFpmm57yGAwyF133UWj0cDj8eDxeNxZd36/n3A4zPLyMqVSyW296PF4qFQqrK+vMzs7i8/no9VqsbCwwNLSEvl8HsMwqFar3HrrrQQCAQKBAPfddx+pVAqv10skEiGTyWCaJidOnCASifDSl74Un8/HwsICc3NzbhvN1dVVSqUSzWbTDbZCoRC2bTM6Osr8/DzlcplgMEi328VxHGKxGKlUyp0jWK1W3fuDwSCdTodisUi9Xmd9fZ1z5865gdvs7CyO43Dx4kXq9Tq1Wg2Px0MkEnED1N7MvF6l5djYGMlkEr/fj23b3Hvvvezbt49Go0Gr1cLr9RIIBPD5fDQaDaanpzl58iTr6+vucx4IBNzn6P7773dv93g8+P1+t7Vpr01ns9nEsiy8Xi+O45BOp5/V4rMXym5u0WlZlltFaBgGS0tLdLtdJiYmiMfjbiViJBKhXC7jOA6dTgfTNPH7/TQaDTqdDoVCwa3qazabbmVjIBAANioaV1dX3WrFN7zhDSSTyR1D7a2+3+p6LwTcrsJPRERERERuvHu8pb1ewk3h4e/9NXjZsb1ehoiISN+xBgb4jtjCjtsc9IQ58MdbzOMzDM798R088tO/yZ9Nfow3hqoc8/o55vXzxlCVP5v8GCe/+72886MfZ/W79GEceeFQwHcTuDzA8Pl8JJNJQqEQjUaDwcFBhoeHOXfuHAcPHmRycpKDBw8yOzuL3++nVCqRy+XI5/Nu+FQqlQgEAqyurlIsFllcXHRntSUSCXd+XDQa5eTJk2SzWbf15MLCgluF1QvwejPygsEghUIBx3HIZrNYlsXa2ppbVRYKhdwZeM1mk6WlJarVKuFwmLNnz9LpdKjVapw8eZJCoYDH4yEQCHD27FmWl5e5ePGiG0DOzMwwPT1NrVYjEokwNDREsVh0KwpLpRJTU1NkMhmSySRer5ejR4/Sbrfd8KvdbgO41XS9+XLFYpGxsTGCwaBbLbiyssKjjz7qtu/sdrscOnSIgwcPukFp71i9Kj7DMMhkMszNzbmtPhcXF3nyySeZmZnBsizuueceNwQ1TZN6vY5hGO5z07vem2kXDAY5d+4chw8fdisBm80mpVLJ/TlarZYb5hmGgWmaFItFtzLRcRzK5bL7PPcqN1utFn6/n3w+z8jICOVymUajwerqKqZpUqlUcByHarXqhoDVatVdbyKRoNFoYNs2Xq+XSqVCJpMhEAgQi8VYX1+nXC7TarVotVqMjo66QfZb3/pWotGoW8l3pWq+nstDPFX3iYiIiIjcfMKmb6+XcFOImQG+5v3/olZgIiIiV6lx58Sutvut0c9i3Hv7s25b+qH7OffqD+AxrB33fXOozKd/9r8z9/89cM3rFLmZKODbIzuFFAcPHnTbQlqWRSKRoNPpMDg46LZBrNVqFAoFqtUqnU6H0dFRyuUyiUSCsbExGo0G+Xwer9dLOBwmEolQqVSo1WrE43Hq9ToejwfDMPB6vYyMjDA0NMTY2Bg+38YfZoFAgHg8TrFYdFtctlotN/jpBXqdTgev18vq6qpbCWiaJmtraxiGwejoqDvr7/jx41SrVWZmZhgbG3PbTh48eJC5uTnW19dJJBIYhsH4+Djlcpn19XXq9TrNZhO/3+/OCey1x1xZWWFwcBDHcTh+/Dg+n49ms0m5XMbj8dDpdHAch3q9TrvdJpFI0G63WV5eZm1tjVgsRiwWY3JykkgkwvLyMo1GA9M0OXjwINlsllar5YZwpmni8Xh4zWteQyaTYWpqCsdxuOOOOxgeHnbbZHa7XUKhEOfPn+dVr3oVoVCIsbExvF4vtm0zPj7O6OgowLMe414gOz8/T7VadSv0ekFXp9OhWq3SarWwbRufz0csFnPD0l51X7PZdG+PRCKYpulW3UWjURYXFxkcHKRarboVkvv376fb7bK2tkYymSQQCJBIJJiYmGB4eJjR0VG8Xi/tdpuBgQG8Xq8bZKZSKeLxOMlkklarxcDAAN1u1w0h6/U6X//1X08qldpVSKcgT0RERESkTxgGJvr/957vis9z/hfu3etliIiI9JVGwt71tmd+YNMHi0yLP/vBX9v1vj7Dw8Pf+2vYY6NXszyRm5ICvj3UCzAur1DqVZU1Gg1qtRpra2uMj48TjUY5e/asW/nVq76q1+ucOXOGZrPJ+vo6tVqNYrHoVs91Oh235WI6nWZqaopAIIDf72d1ddWd4darBATIZDKsra1hWRufeqhWq9i27VaAxWIxJiYmCIfDboBmGAbtdpuzZ89SqVQ4cuQInU6HM2fOUCqVGBoacivryuWy2+azF8L12lHm83kymYxbkef3+1lcXKRSqTAyMuKGYb0Wo16vl8XFRWzbJpfLYZomiUSCUCjktoWs1+s0Gg0ajQazs7NYlkWpVGJkZMQNUIvFIolEgkQiQTgc5sEHH6RWq5FIJEin00xMTFCpVAgGg6TTaYLBoNsmtRc2Dg4OEovFsCzLnQ3Y7Xb59Kc/TbPZJJfLkUwm3TmHExMTjI6O4vP56HQ6eDweN4RdXFyk1WpRKpWwLAvTNLEsi0KhwMDAgNvus/fcNZtNisUiwWDQDeYAEomE2zKzVqtRqVSwbZtareaeqxcI91py9tp4drtdut0uCwsLxONx1tfX8fl8jIyMuM+BaZpuxV86ncayLIaGhqjX6xSLRRqNhlsNOjo6ytvf/nZuueUWTNPEtu0dgzyFfCIiIiIifcBxaNPZ61XcVB75ll/D3r+7SoTnm3XkENl33s/ad95P63Uvxh4e2usliYiIfJHI2cKut/2BF3/U/d649zZu9wau6lwxM8DsW/Zd1T4iNyMFfDeh+fl5FhcXmZubwzRNN8AJBAIcOnSIwcFBN2Sr1WqYpkk4HGZychLDMCiXy3Q6HcLhMLZt0+123Rlw5XKZdrtNMBhkbm4OwJ3z12w2CYVCmKbJ3NwcHo+HXC7HgQMHME2TbDbL+vo6gUCAbDZLoVDAtm0OHDhALpcjlUq5IVSpVCKTybC6ukqhUHBbUY6MjLjz92q1Gvl8nqWlJRYWFjBNk0AgQCgUIhwO4zgOkUjErRzrtcXstS7tVdT5/X4OHz7MwsKC2zqy0+kwOztLtVoFcNtf9ubM1et10uk0xWKRmZkZfD7fsyrhXvGKV5BOp7l48SIHDx7Etm0KhYIbxI2OjlIsFolGo3S7XeLxOBcvXiSXy7Fv3z78fr87x/Do0aN4PB4GBgZIJpP4fD6i0SiBQIB2u00+n8fn87mVf36/n3q9DkAoFHLDyt7zCtBsNgkEAm7lZK9dpuM4LCwsUCqVqFarOI7DysoKpmliGAahUIhisUg+n3d/N1qtFpZlMTg4SKPRIB6PuzMBy+UyzWYTwzBotVrkcjlGRkaoVqvs37+fu+++mzvuuAOfz4fH43FnHFqWRTKZpFAouBWLg4ODXLhwAdu2ecc73sEDDzxAIBDYsWUnKOQTEREREekHq53GXi/hppKwgsz+emhvF2FaTL/rAX7uH/6Cz/78b/PIz/02f/3+3+Sdn3iIM3/wYroPvgj095aIiNwknJPnWO9Ud7Vto+txv595feTazrdzN0+RvqCA7ybSCzJqtRqWZfHggw9imiZHjx51q8o6nQ7pdBrbthkdHSUej+Pz+fD7/W4VXTAYJBwOc/DgQbrdLtVqlVwuRzwex3EcbNsmlUpRq9Xc4Gl5eRmfz0e9XnePnUwm8fv9nDp1imq1SiAQoFQqkUql3Hly5XKZhYUFNyQ8ePAgY2NjRCIRpqamuOOOO4jFYkQiEVZXVwmFQm4l3tLSEktLS9TrdZaXlykUCrTbbSqVCtPT02SzWRYWFhgfH2d4eNj92ev1OvF4HNu23baWS0tLNJtN2u02c3NzNBoNdx6gz+fD6/VSLBbd1pYejwfHcUgkEmQyGYaGhtxAbmRkBMMwOHfuHGtraxw/fhzLsuh2u3Q6HZrNJmfPniWfz7szCnvBpM/n4+LFizSbTWzb5tixY+5curW1NZaWlmi1Wm5At7KyQq1WI5vNYts2wWCQ9fV1t2KyUCjQ6XQwDMNtLRqJRNzAtFcpuHmGYigUIhAIMDk5SaPRcOf39dp8+nw+LMvCtm3i8TiVSgWPx8PS0pIb0A0MDLC2tsbo6KjbbtSyLHw+HzMzM0SjUZ588klyuZxbRdjtdsnn8wwMDLC6ukq5XMY0TZLJJKVSyT3O2toac3NzfNmXfRmTk5Nuq9jLL1v929h8u4I/EREREZGbx0O18Wve90Szxn9avZ13rd5GuVu/jqvaW/+/O/7Pnp7/wi/fx4lv/y1e5rewDBPLMImZAd4cKnPxDb/PH/zpbzL3f27DePEde7pOERERAKfd5k0nv2VX277v+Mvd71tHdxcKXm78b1auaT+Rm4kCvptQMBgkFAqRz+eJx+Osrq7SarX4xCc+Qa1W48SJE1QqFRYXF/F6vTSbTQ4cOMDKyopbabVv3z63MiwUCrlBkGVZ1Ot1crkcgUDArWYLh8OUSiXGx8cZGhoin8+7FXq9UDAWi3H77bcTCoVwHIdGo0Eul8Pn8xEOh90A7MKFCxw8eJDR0VGeeOIJN+zx+/2sra1Rq9UwDIP19XW63S6pVMqd5VetVolEIm4QGI1GmZmZcQPGVqtFIBBg3759eL1exsfHsW2bZrPJ4OAgAB6Ph1AoRKFQYGpqCsMw3MpCwK36a7fbbqjZbDZJJpOMjIywb98+zp8/T7FYZGRkxA3H2u22G1Y6jsPMzAy33HILPp/PbSnaC+56gd/q6ipzc3NMTEwwMjJCOBwmm826lZaxWMwN6ur1ujt70OPxEA6HCQQCZDKZZwVkkUjErd7stdUMhUJuVWejsfHJ2V6LVtu28fv9wEa7TsuyMAyDarVKpVKh0+mQyWTcarparUa1WnXbwO7btw/bttm/f78bIluWRTAYdEPL3ry+TCaD3++n0+kQi8V44IEH6Ha7APj9fnK5HNlsllAoRKlU4h3veAf33Xcffr9/y5BPgZ6IiIiISH/4mb97y1Vt33I6fN/8S7nz17+HH/+qt/HI/TE+80CC1/3YDzHTLj9Pq7yxvixQx4rHbtj5jJfcyeKPPEDl61+KdeQQT37rb2AZ27/tM2GHOXH/n/Lf/s/vcfaP7uHsB+7lzO/cx8KPP4DzwF2YoT2uQBQRkS853l9J7Gq7kb/wut8bhrPDllt7T+4AndPnrno/kZvN7idXyvPm8hCjWq3i9/s5efIksNFC88yZMySTSZaXl922ib05azMzM7zoRS+iXq+TSCSwbdudqdYLsuLxOLlczm2f6PP5SCaTLC0tUalU3LBndXXVbd8ZjUY5fPgws7OzBINBPB4P6+vrmKbJgQMHOH36tBvqeb0b/1GNx+N4vV6mpqbw+/1YlsX+/fsxTZP5+XkA2u0209PTpFIp9+f2eDxYlkWxWCSXyzE4OMjy8jLz8/NuGNZoNCgWi27Y1u12OX/+vNvC1DAMvF4v8/PzpNNp0uk0nU6HYDBIqVRyW5P2wqdqtYplWXQ6HUKhELOzsxiGQTKZZGhoiFwuR7Vaddtx9mbM9R6jXjvPXgVfNBpldXWVQ4cOYds29XqdixcvkkqlqFQqhMNh6vW6G3T22m1GIhG63a5b1dgL9nptMyuVCl6vF8uyaLVa+HwbQ2R7j32lUqHVarktN3u/P71qvN42fr/fbZnZm+k3MjLCM888Q6lUolAouMfttUQ1TRPTNOl0Ojz66KNuINmryHzggQf42Mc+hmmatNttbNt2f3eazSbhcJhUKoXH43HbjgaDQWZmZkilUhSLRd74xjcC8Mgjj9But92ZlL0WrJfPquzdLiIiIiIiN4/Dv3iKp76+zjGv/4rbPtWs89Zf/xFGfu8JRqoPP2t6X+TPP8OXv+THOPdNv/P8LfYG8RgW537iNiZ/6tPP74kMg9mfvp8PvfPdHPaEqHab/HFxkqDpvfK+wFFvkAuvff+zbpv7/jK/mX0Ff/X/7ufgB0vw5BmcVvP5WL2IiIjL+tcn+VS9y8v9239AZa5dJviPT9J7d9D7RAhetftzzLTLfOTbXwE89ZzWKnIzUAXfTWRzgOHxeLj11ltpNBp4vV63omt0dJRAIEAsFqPT6dDpdNi/fz/nzp2j0+lQKBQIBoMYhsHhw4epVqvU63Wy2SwAsViMSqVCt9tlfn6egYEBjh49SqlUYmxsDJ/PRz6fJxqNYlkWuVyOXC5HuVxmfn6eVqsFQLlcJhwOE4/HOXz4MENDQwwMDJDNZhkbG2N8fJxut4tpmm57Udu2mZiYoN1uk81mMU2TgYEBdw6c4zhuBZ1lWUxOTgJQLBbd+Xztdhu/38/y8jIrKyt0u11KpRKJRIJut+u2oOzNuatUKrTbbaLRKNFoFK/X64aHhmHQ6XRoNBrMzs66AWKv9WavZeXp06d56qmnaDab7vMTDocZGRlxA7Mnn3ySarXqBoWWZbnBXD6fJ5vNcuHCBXdOYa8isvfYVioV4vE48XicRqOBbdsUi0XW1tYoFArU63X38VxYWGBtbc19HrrdLrZtU6vVKJVKDA8Pu78HvVmGvXl9vTA2FosRDodZWVlxv+89ZrFYzK0U7FVT9qocw+EwhmEwOzsLwNmzZ+l2u+7alpeX3arBVqvFww8/zMrKCtlsFr/fz5EjR5icnKRarbK4uMj09DTFYpHXvva1JJNJt7qwZ3MV31bfq6pPREREROTm0MkX+N4f/kEWd6i+6zhd3rV6Gz/+797J0K8/TLe6dUst7/oL562Kj37ru7EP7H9ezzH1Cy/jye/+TQ57NirugqaX74rPP6djjtlhfnXwCc6+9X/wP/7yd0j/a5ALv3o/5W94KdbtR7ASCQxbnxkXEZHrrNvhP/7od1Po1rbd5NV/8eM4jS/M/t33wQU6TveKh245HX5o8cX8h+/4YfiMwj15YdD/jd1EepVJvTAlk8ng8/k4cuSIG4T0QqpqtepWN3m9XqLRKKVSCY/H41a3zczMEIvFiMViFItFd3abbdtUKhUKhQLxeJz19XWSyST5fJ58Ps+hQ4ewLIvFxUUOHDjA0tISgFu1trS0RCQS4dChQ+7stt7su2PHjrG2tuaezzRNjh8/TiaToVaruRVtc3NzhEIhN6jqtRV95plnKJfLtNttBgYGaDabeL1e6vU6Ho+HWCxGs9kkHo8zOzuL4zhEIhF3ft/AwAD1ep1Wq8WhQ4e45557OHHiBKVSif3795PNZllfX8fj2RjE2gsa4/E4pVKJXC5Hq9VyH9dem8teK89Tp05hGAalUomlpSX8fj/nzp0jEokQDAap1+tEo1H3OfB4PESjUfL5vNuGszefL5/Pu8Fnr8qwWq1SrVbpdrtuNWQvEE0mkxiGwdzcHKOjo/j9fiqVijtbz+v1sra2hmEYpFIptzoRNqryDMPA7/dTKpUYGBigWCy6s/N6QeXq6qq77l641/s96rUUDYfD5PN5TNN0qyALhQK1Wo1QKMTIyAhPPfWU+7MVCgXC4TCLi4sMDAyQy+XYt28fKysr1Ot11tfXOXDgAF/91V/N3//935PP56nX69tW6amCT0RERETk5hT868/yja0f4b7//Dl+auBTJKwgHafL+XaNHzj/71j8u32MfuAUrB/f9hjW4YO89+39X73XM2aHue+vz/DIv9lPe37huh9/8Uce4Km3/wYew3Pdj90z6QnzJ/s/Dvs/TuNbW1xotXi4doB/WLuDpxeHaU+HCc0bhBe6hObr2CtFyOXpFoo47fbzti4REXlhCv71Z3lN+kf4o59+D7d7A8+67z25A9zys4+zOc5rX5ji5U/+Oz5z9/azb3957Qh//etfTvovnsJb+dzztHKRG08B302oVqsRiURIpVLE43FqtRrBYJBkMsn58+c5cuQIKysrnD59muHhYdrtNrlczp09t7CwwMTEBLlcjoWFBYLBoFuZB5DJZKhUKoRCIYLBIFNTU6TTafx+P8lkkmKxyNDQkFs92GvpWalUWF9fxzAMlpaW3FlvDzzwAMePHycSibC2tsbtt9/OxYsXqVar3HrrrXzmM5/BNE38fr8bgk1MTLC2tubOr/P5fLTbbSYmJtxAKJvNUqvV6Ha7LC8vu4Gfz+djbW0Nj8dDrVYjHA7TbreJRCIsLi6651peXqZYLLqtP5eWltyZhO12263YO3r0KB6Ph1QqRbVaZWxszJ0tV6lU8Pl8BINBIpEIrVaLYrFIOBwml8tx4MABtx2nYRgcPHiQcDjM5z73OXw+H+vr6yQSCRKJBEtLS+RyOXdWX6vVwuPxuG00S6USyWSSRqNBuVxmZGTEfYx6Mw4bjYb7fJw+fZpOp8ORI0eo1WrubDvLsiiVSnQ6HTe8DQQC1Ot1BgcHqdVqXLhwgXQ6jWVZ+P1+txJwc6DabDbdylGv1+u2/+x0OoTDYVqtFoVCgeHhYZaXl+l0OkxMTJDNZpmcnCSbzdLtdvF6vW615traGn6/n1QqhdfrpVgsUq1WGRwc5PWvfz0zMzOcOnWKtbW1Z4V8l4d6qtwTEREREbk5+f/vIzz9sRBf9/IfIH/Qg9mG9OMlnMdOMdSdf1Y7zst1X/Ui3v57H+LVgSt/Cr+f/KeBk7znI3X+9idfg+8fHoPuTo/C7pjBIFM/cTef+/b34DOu3Bb1evEZHo56PRz1LvFtsSU4CLxi476G06LQbTLb9nC8McY/527jkZkJjLMh0scdYo8t0zl38YatVURE+lfqfZ/mR45/J7V3lfjvh/+coNnmJ6a+ltbbA3TrU1+0ffKbV7nvT7+Bjxz7IxJWENh4XfpINcYPffjfc+t/PkMy+2leWP+HIQLGTpUwxrVMqJRdMQwDy7Lc7zffbpomP/zDP8zQ0BBnzpwhFArRarUIBAKUSiVSqRT79u3j4Ycf5vDhwywuLtJqtcjn825AVavVSCQS5HI5pqam6Ha7hEIhHMdxK7Ty+Tyjo6MAbuvHyclJFhYWGBgYcGe79bYfHh5223ZalkWj0XDbSfr9frfKKxqNUi5vtGXptciMxWJuYNerNtu/fz9nz54lHA5z5MgRNzTstZyEjfacjUaDarXKxMQEs7OzdLtdt1pvdXWVWCyGZVlEo1HOnDmDx+Mhk8nQbrfdOXPT09O0221GR0dZWVlhaGiIdDrN2toao6OjLCwsuM/D8vIyjUYDx3GoXmoZUy6XSafTZDIZVlZWSCaTlMtl7r33Xh5//HHuuusuzp49SyQSoV6v0263qVarbgWeaZqsrq6SSqXIZrNEo1E3yOtV1Xm9Xvbt28fy8jKJRMIN6HptTjOZDPV6nVKp5LYjBdxQrRcexuNx1tbWqFarRCIR/H4/Ho+HtbU1otGo266zXC5jWRbBYJBiscjAwIB77pWVFYLBoBsM9uYPAszNzbnBX68dqGEYjIyMuHMTDx48yMzMDN1ul0wm4/7+AjSbTTcsbTabdLtdtzI1k8nwz//8zzz11FPkcjk6nY77c27136rNM/vk+nMcR0nqVXqt+Q36hRQR+RL1T90P6nXzKul1U3oM2+bCf34J//At7+agJ7zXy3nerHUqfNnn38nYN12ge2lG+Y4MA+f+Y5itLuZ6GaNcBdumctcIEz9zmj+c+DiW0R/tTBtOi8cbJm//o+9n4l0P7/Vy5Cag182rp9dN+ZJkWliH9uP4PTinLuw4D9awbRpf8SJWXuTBcCB2vkP84dnnpYJe5Ebb7nVTFXw3qbm5Oe69915yuRyO45DL5Ugmk0QiEdrtNsePHycUClGtVgmHw6yurhIMBt0gp9FoUCgUyGQyGIZBIBBgfX2daDRKNpvF5/MxNDREOBymWCxSv/THRS+o6VXHmaZJMBh0w6G1tTUGBgYIh8OEQiFWV1fxer1ks1kWFxcxDINWq0W9XudlL3sZp06dotlssr6+zuHDh1laWiIQCNDpdBgZGeHs2bNUq1WeeeYZtxVms9lk//79GIZBLBbjySefJJPJkM/nGR8f58SJE6RSKZrNJqFQiE6nQzqdplQqubPoisWi20qzNzfQcRwuXrzI4OCgW9no8XjI5XLuPLdWq4VlWW7wFgwG3faYPp/PrThrNBqkUikWFxdpNpvu41IulwmFQiwtLbmtPrvdLmNjY2SzWdbW1tz5fKZpkk6nGRwcZH5+nkajQafTwePxYFkW7Xab4eFh6vU6kUjEnenXq6Y7cOCA27o1l8sxNDTE9PQ0oVCIoaEh9xwrKysMDg6SSCTw+XyUy2UGBwfdx29zCLl//37y+TyO4+D3+8lmsxw+fBi/38/p06cpl8scOnSIcrnMysqK23a01WqxuLhIJpMhkUhgmiaO45DJZEilUm4Q5/P5uHDhArZtMzQ0xMmTJ93AsVgscuTIEfbt28f6+jqO47gtR3vtaBXmiYiIiIi8AFkW//qt72bYfuGGewBpK8Txl/4Zk7/17Rz+9s9fcXvzziO8/89/mw6w0PGx0E4QNBq81F8kZgaA/gj3YKPy72V+eOo7fpPXPPHdBP7mkb1ekoiI9INuh86Z87va1Gm38f7j5xj7xy/cpkbR8kLXP/83+CWgV0HmOA5TU1MsLCxg2zbVahXTNInFYnQ6HRqNBslkkpGREer1ultFl8lkqFar7gy4zfPaut2uW6137Ngxbr31VsLhMPPz89i2TSAQcIOW1dVVSqWSO0OtWq26wWEv9LJtmxMnTtBoNNx5cMlkkmAwSLVaJRaL8eijj+Lz+ajVasTjcbclZaVSYXp6mjNnzhAIBHjlK1+J1+vlzjvvZP/+/TQaDbLZLKurq1QqFYaGhtwqsbm5OWKxGNFoFI/H484c7FUbtlotfD4fkUiEaDRKPB4nl8tRq9WIRqOk02m37Wa73XarIhcXF5mdnWV+fp5Wq0UoFHJDv0AgwODgIIFAgEqlAoDP53OrJiORCI7juBWKvWA0kUjg9/vdx9Dr9TI6OorX63VD0EKhwOzsrFv1WKvVCAQCbvVgNBrFsiymp6fdlpe9+YBTU1OEw2F3+17b0mg0yvLyMqVSCcCteCyXyzQaDTeorVQqVCoVyuWyG1I+9dRTLC8v0+12CYfDWJaF4zisr68TCASIRCIsLy/TarVIJpNUq1X8fr/b4vXo0aNu1WcvRIzH4wAsLS257WYzmQznzp1jYmKCQCDA+fPnWVtb4+TJk3g8HsbGxggEAu6/ic1f1Z5TREREROSFxWk0eODDP7LXy7hhTrz+vZjB4BW3m35jkmE7vDHHz+fhzaEyrwu2LoV7/cljWHzPf/3gXi9DRERE5AVBAd9NyHEcnnzySS5cuIBlWXQ6HTfsyOfzbtvNXrvNRqNBJpNhfn6ecDhMNBolmUy6IVO1WmV8fBzArbaam5tjZWUFr9dLrVZzQ5mTJ0/i8/ncFpVer9dt65hIJHAch0AggM/nIx6P4/P53PM2m01GRkaIRqP4/X53NqDjOHQ6Hc6dO0e9XmdgYIBoNEqr1SIej3P69GlGR0fdKsJ0Ok21WiWRSJDNZt25d47jMDAwgOM4NJtNtyosnU4zNzdHKBQiHo+7VWu9OXK9x2F5eZnl5WUOHDjA6OgorVaLpaUlTNN0w7PefL7esXuhYe/xSSQSwEbQFI/HKRaLlEolVldX3RCvXq+7LSwDgQDdbpe1tTVarRalUgnTNDFN031ei8UiKysrwEYr0GKxSCAQIB6Pu8cdHR1123xWq1X3nOVymXw+76593759z6rAq9frhEIhcrkcPp8Pj8fDLbfcQqlUcoPaer1OPB4nk8mQTCbxer14PB7K5TJer5eTJ0/i9XoB3ODNcRxSqRS33347ExMT+Hw+YrEYiUSCQCDgrsm2bVqtFo7jMDo6Sj6fx+v1sri4iG3bbpjYqxRtt9t89rOfZWBggPvuuw+v1+u2sw3u4g9gERERERHpT7f9/DQNp7XXy7ghgqaXwhuPXXG7V7/psRuwmhvvGyPrmHfcutfLEBEREel7CvhuIpvbD7bbbZaXlzFNk3w+TzKZ5OLFixw4cACv18vIyAjr6+vuHLVsNku9XufIkSOsrKyQTqcZGhpyq9QMw2B6eppOp8PCwkbf4VQqBcD4+Dgej8cNYRzHwbZt99jVahXbtllaWiKZTFKpVDhz5gypVIput8vc3Jwb6BQKBfL5PCsrK3Q6HbrdLpFIhGKxiNfrJZVKMTU1RafTYWJiwm2LGY/H6Xa7LC0tubPX2u02iUSCRCLBwMCA21IyGAzi9/tZWVlx5wO22213jpzH43HbgMbjcZLJJOPj44yNjWEYBo1Gg1wuR7VaxbKsZx0nk8kQiUSYmJigXq/j8/mwbRuPx0O322VhYcGdZdh7fjqdjltheObMGXK5HOvr6ywtLbG0tMTKyopbdRgMBgmFQng8Hrfi0TRNqtUqmUyGkZERYrEYXq+XSqXizlUEyGQydLtd/H4/0WiUkZER99y9mX2lUol0Oo1lWYRCIcLhsNsas1gsEolEePTRRxkZGXGr+vx+P4ZhuO0wDx8+TCAQYGxsjFar5QZxzWaT5eVlbNt2Z/2dOXOGc+fOubP7Hn/8cYaGhtywN5lMks1maTabnD17lkAg4P58Q0NDRKNR93e/9/hOTU1x+vRp2u22Gx4GAgFuueUWd3tV8YmIiIiIvLC0l5Z5xePfstfLuGFC75zfeQPD4OeH/uXGLGYPnPm2+F4vQURERKTvKeC7CWwO9nrfdzodTp8+TbFYJJVKuXPfLl68SDKZxDAMfD6fexkeHmZiYoKlpSWazabbsrFXAbW+vs7o6Cj33Xcftm1z5MgRVldX3aCqXC5Tr9cxDINsNkuhUMDr9VKtVllYWKDRaBCLxVheXmZpaQnDMNxQMBgMupV0MzMzbmvPQCDgVp6Nj48zPDzMysoKQ0ND3HbbbZw4cYJ2u029Xmd1dZV2u83KygqJRMKt/urNqxsfH2d8fBzbtolGo9TrdSzLAnCDs2azSblcJplM0mq13Iq6drvN1NQUzWYTn8/HyZMnCYfDNBoN5ufn6XQ67N+/H8uymJubo1wus7q66oZ6vWrEZrPphn69Fpvj4+O0Wi23IrDdbtNqtdx5d9FolHA4TKFQoFarkc/nyefzBAIBgsEgg4OD7nPUa2XZk0wmSafT7jocx2FoaAjLsqjVagBusNjpdGg2m6RSKZaWlnAcB8dx3GrAdrtNNBp1w9pcLke5XCaTydBqtVhbW6Pdbj+rcu/48eOYpkm326VUKhGJRAgGg+5sv6GhIdLptBsGRyIR93fP4/GwtLREp9Nx5xN2Oh2OHDnCwsKCW0kaDAZpNBruz2dZFrfeeisnTpxgYWGBeDyO1+slEAiQzWYpl8s35h+liIiIiIjccJnvq7PSqez1Mm6I3zn0v3a8357cR8YK3aDV3Hg/+fq/3esliIj0PcPj3esliMgeU8B3k3Ich/Pnz9PpdLj99tup1+t0u12azabbLnNxcZFkMsna2hpzc3NuK8N0Os3CwgKdTgev1+tWctm2TaPRYHBwkGw2SyAQcFtrdrtdLMty226mUiluueUWVldXGR4edmefDQ8P02g0ABgYGKDb7TI5Ocna2hqNRoNAIOBW1FmW5VYP1ut1yuUyk5OThEIhpqenCYfDbiXXxYsXWVhY4N577+Xg/5+9Pw+T5L7vO893RB6R933UfVf1gW5cBBogQRKUKVqULImiJUvjEW3LkizLI8vXejw7u55nHs96dtazs7szO352bD+yx7YsWbI1Mi2JEimJFC8QTaABNLrRV91XVmXlfUcekRH7B5g/NxrVjcbZaOD7ep5+qjoyMuIXUVloMj/5/X4XF9F1nbW1NVZXVwFot9tUq1W2trbI5XJomsb09DRer5eXXnqJdDrNxMQEHo+HRqOBpmkkk0n8fj/1el0FVKPqxF6vR6vVUiHgaAbdqKVkKpXCcRzq9TrBYJBarUa5XCYajeLxeHC73cRiMXZ2dpiZmcHtdvPoo48Si8UYDoeEw2Hm5+eZm5sjEong9XpxuVxqHt7k5CSdToe1tTU0TWNmZoatrS1V+bi1tUWz2VQtPr1eL+VymbGxMWzbVvP0RsdNJBLqdfPQQw8RDAaxbZtkMommadi2jWEY1Go1ksmkCmcbjYYKO7PZLM1mk4ODA1UtCeDxeBgbGyMQCDA+Ps7Zs2dxu90899xzRCIRer0e8XicxcVFNE2jWCwSCoVIpVKqbWo8Hsfj8bC+vk40GmVxcZFKpaJayc7NzREIBIjFYpw5c4bPf/7zqvVqp9OhWq1ycHCgAvCbQ3EhhBBCCCHEB4O1vcuP/F//Li27e6+X8q5b9ITuOIdv8y9OvIeree99IbwNuuteL0MIIe5LrlPLlH7ho+z93ccwf+zcvV6OEOIekoDvfeK4wKLf71Mul9ne3lbh1QMPPEClUmFqaorx8XH29vaYmpqi2Wxy/fp1FVQlk0lcLpd6rN/vE4/HyeVyFItF+v0+w+GQbrdLPB7H7XZjGAbD4ZCpqSlarRYbGxsEg0H8fj9ut5tsNks4HCYajeI4Dru7uySTSQaDAel0msPDQ06ePInX62V8fJx2u83h4SGdTodOp6Mq3I6Ojmg0GkxOTmLbNp1OB9u2mZ2dVVVbyWSSiYkJ3G63auNp2zaBQIDZ2Vl6vR7D4VBV7I0qFkOhEB/96EfRdV2Fiul0WrUWdbvdPPHEE2r228mTJ/H5fCqUGw6HKgDTNA2fz4euv/prommaqlZ77LHHqNVq6npN02Rvb494PE4sFsNxHFZXV1ldXcWyLKrVqqp2CwQC1Go1otEo/X5fzSwMhUKMj48TjUZZWVkhGAyi6zrhcJijoyMsy+LSpUsMBgNM00TXdfr9PnNzcxiGoWYJrq2t4Xa7CQaDqqIznU4TDAbRNI1Wq6XmK+7u7lIqlUilUnS7XfW6mZubU/MLR+0++/0++/v75HI5FhYWcByHarWq7u2zzz6rwtLRa219fV1VWo7C4Wg0SqVSIRgMUiqVeOihhzh79iwTE6/+H9hR5eeDDz7IT/7kT5JKpVhcXFTHEUIIIYQQQnxwxf71szz5v/6de72M94Rzav62j/2Vn/jye7iS915A96KfXbnXyxBCiPuK5vHS/M+eZPVnU9ROOXQzNrlP6rinJu/10oQQ94gEfPfQ7aqQbm7T+Ud/9Eeq/aHL5eLo6EjNp5uZmcHj8XB0dMSjjz5KJpPBcRyi0SihUAi/349pmoTDYUzTpNFo4PP5WFhYYHJyEtM0VciWSqXUvL9isagCmBMnTpBMJqnX62p2nWEYqiKwVqupuX0ul0tV/JVKJWKxmKoyG1Vn9ft9VenX6/VIpVK0Wi2i0SixWIxKpcJ3v/tdJicn8Xg8jI+Ps7y8zEMPPcSP/uiP8rnPfY75+Xl6vR6lUkndi1arxdTUFKFQSLWltG2bdruNx+MhFAqpcwwGA+bm5jBNU7V/HAWN0WhUtQqNRCIsLy8TDAZVFd6oNecoTD04OOD69euUSiXa7TaZTIZUKkWv18M0TbrdLplMhpmZGRzHodPp0O12CQaDZDIZfD4fnU6HYrHI1NQU5XKZvb09AEKhkDqvaZpkMhlmZ2eZmJhQFX0ej4darcbu7i7xeJxqtarmAh4dHTE1NUU4HKZardLr9fD5fLhcLra2tohEIpw5c4ZAIMBwOMQ0TdxuNwDlclnN/jtz5gyNRoNut4vP52N/f592+9W2Ofl8XoWzuq4zGAx46KGHyOVypFIpAoEAbrebnZ0dEokElmWxtbVFMpkkHo+TSCSo1+tqNuHoNTz6uYRCIb7whS+QSCTweDzqd0Rm8AkhhBBCCPHBNfk/PstTl/7svV7Gu65yNnLsds0w+KX4jfd4Ne+9vc/G7/UShBDivuHKZjj45cc4OgeO+6b3lDUofnrm3i1MCHFPScB3jx03f+9m+Xyel156idXVVaLRKMVikZmZGV5++WXW1tYwTVNV4p07dw7TNOl0Ompbs9lUrTKDwSDhcJh6vc7h4aGavdZut9E0jVQqRTKZBGAwGKBpGrVaDbfbTTqdVsctlUqYponf78fr9fLKK6+g6zoej4dut8v6+jqnT5/GcRwsy1IVd41Gg6OjI06dOqXCsXq9zuTkJJqmcfXqVR588EE0TePSpUtkMhlisRgej4cf+IEf4OLFixiGgcfjIRaLEY1GSSQSLC8v4zgO29vbqsLM4/HgcrkYGxvDNE2Ojo6Ynp6m3W6zv7+v2lf2+32KxSLpdJpQKMTU1BSFQgGfz0e73WZnZ4dGo0GtVlNB26jqL5lMYpomlmWRTCbx+XwArK6usr+/TygUUkHoqIJxcnKSXq9HsVjkypUrLCwsqGvc2tpSVYLtdhvHcdja2qJerzM1NYVhGOzt7VGv11Wby1HbzenpaZrNpqpG1DSNer1Ot9tV+3a7XdVC1ePxqNl/o+DWsiwODg7QNE3N2RsFyJ1OB4/HQ6fTIZPJUKlUyGQyhMNhBoMBLpdLhb/1ep1Op6MC5nw+j67r7OzsqIrFYrHI4uIii4uLJJNJarUalmURCoWwbVtVHwaDQXq9HqdPnyZwh/Y1QgghhBBCiA8QxyHy40fM/84v8A9LJ9+xw24N3l8zvWsnjt/e/fSDGJrn+Ac/QFKfPrjXSxBCiPuC/vBpNv76Iu0pG475zHtzXj4IL8SHlQR899DN88RuDfdufuzChQucP3+ea9eu0e12KRQKKtjSNI1gMMjExAQXL17E5/NhGAa2bTM1NUWj0UDXdfx+vwr5RpVQgUAATdOIxWKUy2UikVc/PTia41epVOj1ehQKBU6fPs3c3BzNZpOpqSlVOZbL5dB1nUQigdfrpdPpMDY2pub6jY+PAxCNRqnVagSDQXK5HK1Wi2azidfrpdlsUqlUaLVaVCoVfD4f4XBYBUb5fJ7f/u3fZnV1lYODAxqNBoFAgHQ6rea/eTweBoMB1WpVhU2jFp6j9pIvv/yyajO5urqqwkKPx4Ou66RSKba2tshkMoyPj3Py5ElVRTZqlxkKhTBNk16vh6ZpVCoVXC4X9XqdQqHA5cuXCQQCWJZFs9mk1Wqxs7ODx+MhEAhweHjI0tKSCt8cx6HX66kqyvHxcTKZjDrv+Pg4pmmSSqUYGxvDcRx8Ph+xWAzbtrFtG0BVKo7aWwLMzc2h67qaFziqmtzd3UXXdfX9qHowEAhg27aqUgwEAhiGoY4/CoqbzSbD4RDbtnEch0AgQLlcpt/vs7KywuHhIbqus7+/j8vlQtM0yuUyXq9X3RePx8O1a9coFovU63U0TcMwDJ544gn1uv3Yxz7G0dGRqgQcBcFSvSeEEEIIIcQHn91us/KLz/GdT2b5Z/W3N4/uSt9k/g9+nl/8c3+NX2sm36EVvn3WeP/Y7ZVfeH8Fke+W/+/Kb9zrJQghxPub7sL83DnWfjqKFXKODfcABsHju8QJIT74JOB7HxuFfN1ulytXrrC1tYVpmszMzHD58mWuXbtGNBql3W5TLBZVi8vl5WVcLhe1Wg2Xy8VwOCSdTuNyubBtm+FwiMfjod/vUygU6Pf7+Hw+SqUSpVKJfr/PyZMnSafTTE9P43K5+Pa3v025XGZ+fp5Wq4XP5yOfz3Pq1Cl8Pp9qkalpGgcHB6pVpGEYFItFbty4wcLCAl6vl3w+z8zMDA8//DCzs7MUi0WSyaQK8+LxOLVajbW1NWq1Gk8++STZbJYnn3ySTqdDPp+nVCrR6XRYWlpSwd2oFahlWRiGoebSLS4uMjY2ht/vZ2FhgYceekjNEdza2sLlclEqlVTr0Xg8zvXr1ykUCiqkW1hYoNPpkE6n8Xq9KkQMh8Nqrl2lUlFVb61WSwWBowBv1K6yVqsRi8WYn58nl8tRLpc5OjrC7XZTqVRwHIfDw0O8Xi+FQoHZ2Vkcx2FtbY14PE4gEKBSqdBsNlXwuLm5SavVol6vY9s2/X6fer2uqvI2NjZwu90Mh0MMw1BVg6PKxf39ffr9PqlUCnh1Dp5lWfR6Per1OrFYTN3zmZkZdF3n8ccfJxKJ4Ha7OXv2LB6Ph16vRyKRIB6Pq/ajmUwGXdcZHx8nlUoxMTGhKgZHa+r3+0SjUb75zW+q0LdYLGLbNt1uF9M0OXv2rMzhE0IIIYQQ4kNmWKvza3/vh6kOO2/6uS/0+sx/+ef5P33+51n5uQvw3GV+9T//LKVh+11Y6ZsXih1/Tb/58D9/j1dybzzo9eHKZu71MoQQ4n3JFYlQ/IVz5J7WX9uS8xiOywH5QLwQH0oS8L3PjKr5bq7gA+j3+1y7dg1d13nppZdUcDNqpXj16lUsyyIQCNBsNtnZ2SESiRAMBvH5fOzt7VGpVDBNE5/Pp+bOjaqhFhcXcbvdxOOv9sBfX1+n2WxSrVaJxWKk02kikQh+v59YLKZmwsXjccbHx9V8urGxMVKpFN1ul0QiQa/XIxqN4vP50HWddrvN+Pi4ahM6aqc5OvaJEydYX1/HcRzm5ubweDwkEglisRjb29tcv36dra0t1WLyxo0bJJNJFhYWVMvMTqeD1+tF13UVSJ07dw7LsigWi6qqbXFxkX6/r0I3eLXS8PDwUM3DG83TK5fLhEIh0uk0+/v7VKtV/H4/g8GAWCxGKpUik8kQjUbpdruMjY2pe+v1eun1ely5coVer6d+puPj4yoQGx8fp9vtomkamUwG0zRZXV3FcRz29va4cuUKuVxOBWqjn59lWczNzWEYBqlUinA4zMsvv0y32yWbzdLtdhkOh3Q6HcLhMI1Gg2AwiMvlwu120+v1mJiYIBwOk0wmabfbhEIhFZKapqmqI71eL9FolFarRa/X46WXXsLj8dBsNrl06RLJZFIFwYFAgL29PcbGxkgmkziOo9qZ+v1+0uk0sViMXC5HsVikXC6roHdUZeo4jrovoVCIsbExvF7vbWdXCiGEEEIIIT6YfL/7HD/xM7/M/O/9FfatO1e3dew+/3N1jpV/9df4b/7MF1j52Qs4L11RjzsvXOFP/9//LgNn+G4v+y1xT01yyvvhGU+Q/7OL93oJQgjxvuNammf7b5yhvnL7qr1b6d/rwiWE+HCRgO997NYWnoPBgK985StUq1U0TcPv9zMcDlUbRE3T0HWdvb09NE1jMBhgGIaasddoNLBtm42NDbxeL9PT04yNjam2n+12m6WlJdLpNOFwmHb71U81DgYDnnzySQqFAm63m263i9vtZjAY8Mwzz6hqrEAgQCQS4fTp0ypgKxQKbG9vMzExoSqxADKZDJZlUalUcLvdOI6jWoiOWnvG43GSySRf+tKXVOgXCoWYmJgglUrRaDSIRqPouk632yWfzxMKhUgmk6RSKdX68YUXXmBvb4/BYECj0SCfz6NpGpcvX2ZpaQnHcYhEImxvb6u1bG9vE4/HcRyHTCbD4eEh4+PjDAYDANxuN+Pj48zNzdHr9bAsC03TaDabnDp1ipMnT2LbNqZp0m63sW2b5eVlvF4vxWKRTqej2pt6PB6y2Sz9fp9arUalUlFzCjVNU9WXmUyGg4MDFQSWSiUcx6HRaDA/P0+73cYwDBKJBMFgkEajgdfrJRaLAVCpVHjggQdoNBoUi0UV4hYKBQzDYGdnR80LHFVUPvzww3g8Hqanp1U4nEwmVfvTzc1N1X40lUoxOTlJPp/Htm3OnTtHMBik3W6raj6Xy6WqIcPhsGqpWq1WVQVovV5nOBzS6/WoVqu0Wi3cbjf9fp90Oi0tOoUQQgghhPgQcn/1BVZ+4Xm+8Ff/Npf6XYaOzdCxadldrvRN/n7hLPNf+Tn+9N/8Zf7w4/PM/9fPMry6euyx0v/bs5z69b/+Hl/B6zWrrw/y9n5y9h6s5N75yM9cutdLEEKI9w9NY/ipR1n7+TF6yePn7R3/PNBj0Xd1aUKI9ycJ+O6xm6uR3mgW33A4pFKpcP78eYbDoZqtt7+/T6VSYW9vj06ng2EYTE5OcnR0xHA4xDRNvF4vPp+Per2OrusMBgM1N800TUzTxO/3c3h4SLPZJBQK4fP5cByHhx9+mGKxyGAwIJ/P4/P5SKVSmKbJZz7zGXw+H0tLS4TDYfx+P7lcTrWZzGazeL1eut2uavHZ7/c5ODhgbGwMn89HOp0mn8+zv7/PwcEBJ0+epNVqcXR0xM7OjgrKdF3nypUr6PqrL1vDMNT11Go1pqen+Qt/4S/QaDQIhUK43W6y2SwPPPAABwcH6LrOxMQE1WqV4XCI1+vl4OCAXq/HYDAgkUhgmiaBQIBHH32UWCxGq9XCMAyWlpawbZtms0mn08Hn86FpmgpPK5UK6XQax3HUXLler6cq5fb392m326oqzbIsSqUSJ0+eZGxsjBs3bqBpGqFQiEgkQrvdZmpqim63i8vlUvdK0zS2trbw+/1omkYkEqFareJ2uzEMg8FgoNqUjlpqxmIxms0mpmkyGAzUzEaXy4VlWQSDQcrlsmrhqmkajuMQjUbZ2tpiZmaGWq1GMpnk6OhIVdq53W4eeOABstmsCg2DwSCzs7O0Wi2KxSLD4ZDV1VWi0SiDwYBHHnmERqPBYDAgl8sRjUbVPMdvfetbqjozm81y/fp1VXEZjUbJZrN87GMfe+9+OYUQQgghhBDvO8YfPM9/+Z/9Ah/9v/wST/79X+LP/OLf4L/8ob/EC09FWPnLLxD8P77LsFp9w+Ms/r3zrHzjL70HK749b877um0f+cnL92Al987/MPGH0lZOCCEA3eej9oUn2f4RL7bx5rtXDafSd3kiF/rDp3GeehjX8gLoMg5HiPuZBHz3gVtDwFwu95pZdR/5yEcAqNfrDAYDFcRlMhk6nQ5+v59+v89wOFSz4AKBAIlEgmg0yvLyMtVqlU6nQ7FYJBQKqcq4TCZDPp/n8uXLKjwazWsLBoOEw2F6vR6f/exnGQwGPProoywtLeH3+6nVapw5c4ZwOEypVMLr9VKtVgmFQmiaRjgcxrIs+v0+09PTxONxMpkM3W4Xy7LI5/N0Oh3m5+fZ2dkhHA6rtpYul4tsNsvi4iKNRoNut0upVOL3fu/38Hq9HB0dMTU1hcfjYWdnB3i1gi2ZTOLz+XC5XASDQQDVjnJUGdZqtRgMBjz00EOk02mmpqZU9eJo1uFgMFDn9Hq9aJqmqtDy+bxq+TlqUZpOpzk6OqLRaKh7UKvVqNVqvPLKK0QiEdX+cnNzk6OjI46OjkgkEgQCAXq9HrquEwqF1OvhxIkTdLtdMpkMzWYTv9+Pruu4XC5SqRTBYBDHcdjY2CASieDxeCiXy/j9flVtWa/XOTo6UnMER9Wge3t71Ot1TNPkxRdfpFQqqXaftVqN4XCI4zi4XC729vaIxWJMTk6yvb3N1NQU7XZbBc6maTIcDllcXKRWqxEMBpmenkbTNJLJJH6/n5mZGXw+H4lEgvX1dZ555hl2dnbweDxYlsW1a9e4evUquVzuvfq1E0IIIYQQQrxfnb9E/F89S+J/fxbf7z3H8OoqdvtNztVzHBZ+5jqfvPz5d2eNdyFx9fVv4P6jyS/fg5XcOylXEFcyca+XIYQQ95R7LMv+X3+U0iMOzlt8t94cv7v2zrUvnGPtL0TY+HEfq7+QpfhXz0nIJ8R9TAK+e+h2rQaPmzF28zbbtnnxxRd5+eWXiUQir6mqc7vd1Ot1Wq0WtVpNVWJpmqZm440CpsFggG3brK2tsbj4at/7cDhMIBDA4/EQCoUAcLlc6LpOOBymUqkQDAbp9/sqZDNNky996UsUi0XW1tbwer24XC6Wl5e5du0atVqNVCpFNBql3+/T7/eJRCJcuHABv9+P2+1G0zSeeuopdF1H13Xi8Tgf//jHGR8fZ2tri263y/b2Ns1mk1QqxcbGBrlcjqOjI7LZLLqu0+v1CIVCqmouFovR6XRYW1vDcRwSiQRra2uqneboj8fjUXMJ9/b2VGVkPp/H7/fj9XpVO9FRlaXL5aJWq+H1ehkbG8MwDAzDoFgssrCwgM/nA16dv9fpdFhaWmJiYkK1Lh1VR25sbNDpdGg2m+p4lmVRq9Xodru0223y+TzBYJB0Oo3H41Fz6izLwrZtCoWCmglomibVahXLstTMu0Qioar/crkc9XpdVSNOTk6qKstMJoOu62otbrdbzdsbzf3r9/vMzs5SrVbpdrvs7+/j8/nodrv0+31Onz6t1ptKpYhEIiwuLlIoFNjd3cW2ba5evUo8HlftUIPBIMPhUL2WbNtmenqac+fOMT09jWEYquKy1+u907+GQgghhBBCiA8pp9cj+BMl/n7h7D05f/yl8mv+7p6cIOMK3pO13EuDk9P3eglCCHHP6A+dYv2XFuhMvImWnMdoTr5xSOeKRSk9/L0QUQPH7VBfdnAtz7/1Ewsh7ikJ+O6R49px3unxUdvEkW63y7e+9S1u3LhBs9mk3+/j8/nw+XyqfWcoFKLZbHJwcIDX68Xr9ZJMJvnEJz7BjRs3CAQClEolEokE/X6fubm511QIPvjgg2xubjIYDAiHwwwGA3q9HsPhkGg0yuTkJF/+8pfV7L+f//mfV2HgaDbg4eGhmpuXyWQYDAY4jsMnPvEJfD4ftm2TSLz6ab1PfOIT9Pt9EomEqr6LRCKEQiE++clPsri4yOnTp4nFYkxPT3PmzBk6nQ6dTgeAmZkZTNNUodQrr7zC/v6+mulmmiaRSISlpSXq9Tq5XI5QKIRt29TrdSqVCrOzs8RiMdbW1tjZ2aFWq7G8vKxaTI7m2Y1m83k8HqLRKJ1Oh4ODA/r9Po899hjVapVAIMDExAQAW1tbtFotdd9G96zX66l5ebZtq0rKUCikjhEMBikUCly9elUFYNVqlUqlQrfbJR6PMz//6j/EzWYTwzCoVCqMj4/j8XjweDyqper09LT6uYzurcfj4fDwUN270euk1WqRzWbRNA23200oFCKVSlEulzFNk3A4TCgUwjAMJiYmWFtbo1QqkcvlVCBoGIa6jtG1zM/P02w2cblcNJtNLMvi0qVL7O3tqTmMMzMzdDodvF4viURCVVj+mT/zZ1SLViGEEEIIIYR4u+xmk5c+N8dzvcF7et6hY2Ov77xmW/UTM+/pGt4vDj55d1UnQgjxQTP81KOsfSGGFXLeVrgH0J584326jy297jyaA1Tqb+/kQoh7Rt4pv0/cPItv9NWyLL7zne9Qq9UIhUKUy2XS6TTpdBq3202pVCKfz9Pr9ej1ety4cYNKpUIgEGBhYQG3281gMODMmTMcHh5ydHREJBIhlUrx8MMPs7OzQzAYJBQKEYvFiMViLC0t0Wg08Hg8DAYDfD4f7XabZrNJq9ViamqK5557jkgkQqPRwDAMZmdnWV1dpVwu82M/9mNEo1FM0+RHfuRHVIXW9PQ0v/mbv8nY2BjNZpOTJ09ycHBAs9nk6OiIK1eu0O/3aTab7O7u8rnPfQ632004HKb9vVYslUqFwWCA2+3GsiympqYIBoMEAgEGg4GqZNza2sJxHObm5hgfH2dycpLhcAigAsFms8mpU6dIJpMUi0UmJiZot9tYlkWr1cK2bfUzyOfzhMNhZmdnicfjtNttOp0OExMTar96vU6j0aBSqbCzs0O9Xsfj8TA+Po7X68Xv92NZFm63m8XFRSYnJ4nH46pSbjAYMDExQaPRoNVqsbW1hW3bLCws4DgOsViM3d1ddF2nUqnQbDbp9Xpks1lisRgHBwf4fD76/T7tdhu/308ikaBUKmFZFgCNRkNV+pmmieM4NBoN/H4/0WiUZrOp5gi63W71s6jVauzt7anqzFOnTrGzs0OxWKRSqRAOh4nFYsTjcZrNJh6PRwW4BwcHWJbFmTNnKBQKPPDAAwQCAQ4ODgiHw9RqNTRNw7IsvF6vqvYUQgghhBBCiHeKtbPH3/1bv8TAGb5n5/yqaeAM+q/Zdvinrffs/O8nrnNvPDNRCCE+aDTDYPuHvTjuNz9v7zhW0EF/8OQd9yk+bLx2gwPpCzAsFt+RNQgh3nsS8L1PjdpHwqthnm3b2Lb9mn0cx2EwGHDlyhUKhQLZbJbr16/T7XZ56qmnANQcNsMw1Py2UevL4XCIYRjcuHGD4XCoqr2y2SzD4ZC9vT1cLheZTIbx8XEKhQKlUolIJEK1WlXVXo7jMD8/z/PPP8/zzz+P4zh0u101M29/f59sNkutVmNzc5NsNquCuZMnT7K0tESxWKTb7fKNb3yDVqvF5cuX8fv9NJtNNE2j3W7jcrkolUpMTk5y6dIlhsMhs7OzVCoV4vE4KysrxONxXC4XMzMzxONx0uk0mUxGzfrTdR3btvF6vTSbTbrdrgrbut2uCtYMw+Dq1asAPP/88+zv7xMKhZiamlLPH7Xv1HUdy7JIpVJkMhm++tWv8tRTT1GpVFRlXKPRUMFYv99XAelozmAqlcLn8xGLxdS2QCBAs9lkamqKTCaDaZr0ej0sy2J8fBxd11Vw98orrwAwOztLt9tlYmKCbrfL3t4eExMTqkowGAySzWZxuVzU63WCwSB7e3t4vV58Ph+maRIIBNS8Rsuy1M9gFPpFo1HC4TCdTofTp0+risRIJKJm742C1VE7VNM02d3dZWtri0gkgmEYnD17lunpaTwej2pxenh4SLfbRdd1dnd3KZVKeDweFUyOKhhHvyNCCCGEEEII8U7w/8fn+MjzX3jPzvdX/+RnXrftpx/97nt2/veTmVjtXi9BCCHec5rX+5bn7R1/QNj4z+PYH38Y/Xujg27mikQwx1/73rJR1on++wvv4CKEEO81Cfjex0ZtOkdhy+jPaPvoz+7uLi+99BL5fJ7FxUVarRYvvviiCt9GFW1ut5vJyUm++c1vUi6XGR8f56d+6qfweDz89E//NJqmsbm5CcDFixc5ceIE9XqdX/3VX6XX66nWlj6fj3q9TqFQQNd1zp49y/b2Nrlcjn6/z8HBAb1ej729PVWFZ5ommqYRDAaJRCJkMhnq9TovvPACL774ogpvpqamsCyLRqOhquXi8TiaplEsFtVswUqlwtNPP83a2hpTU1P0+30VCHW7XQ4ODlRA1W631VzAVqtFKBQiGAySSCTQNA3btllcXFQz3iKRCOl0mnK5zNHREc1mU1X1tVotXC4XyWSSZrNJp9OhUCjg8/moVqsUCgXa7TZHR0e0220SiQSWZeFyueh0OoTDYYbDIYuLi4yNjTE/P49hGHQ6HarVKu12m2q1yuHhIfV6Xb0O+v0+e3t7zMzM4Ha7SafT2LbNcDhU98k0TQ4PD3Ech0qlgt/vZ2pqikuXLqn7PhwOSSQSagafYRg4jkO1+uonJlutFj6fj3A4rMLhqakpSqUSlUqFcrmMz+ej0Wig6zobGxscHR2pasRer0e/3yebzTI9PY3X66XdbrO+vk6z2cS2bQ4ODvjqV7/K1atXKRQK9Pt9TNNkfn6eWq1Gs9lU1+fz+SiXy3g8Hj760Y8SjUbv2e+jEEIIIYQQ4oNt+hcrtOzue3Kuk/+49bptPxl7/j059/vN2lH6Xi9BCCHec3aziVF9Z9+aHxoOW5/3sft3HqX9E0+gP3wa9+w0rgdOsPcLZ14TKGpDmP9XOzjWh7N6XIgPCgn43qfuNJ/vuH0LhQLPPvssV69eJZFI0Ov1yOfztFotVXkXCoXo9/skk0kmJiY4c+YMe3t7xONxTNNkaWlJzeVbWFjA7/czPj5OMBjk5Zdf5uWXXyYej6u5aOPj44yPj7OxsUGz2aRSqeByuYhEInQ6HRWajYKuc+fOUa/XsSyLmZkZHn/8cXw+H91ul2QyqVp+Li8vk81mCYVCzM7OUq1WSSQSPPzww3zmM5+h3+9z5coV/vk//+f4/X5qtRrpdFrNtXvooYdwuVwqcBwFW6OAsd1uq2oxwzD4whe+QCqV4uzZs0QiEba3tymVSsRiMdUmMhKJEA6HsSxLzeMbzd8zDIPhcEg+n6fZbDIzM/OaYHI0u240c9Dv96t7NqrKs22bH/mRH0HXdVKpFG63m5MnT3Lu3DkymQxer5eZmRk1S9GyLA4PD+l0OmxtbdHr9UilUgAqnOx2u1QqFdxuN6Zp8tBDDwGokDYSidBqtUgmk8zMzKi2paZpks1mKZfLTE5OEo1GGQ6HTE9P02q12N3dBaDf77OyskK/38ftdrOxsUEkElEtRfv9PpZlqbAxkUgQDAY5PDxkenqaUChEMplUIeiJEycol8uqes/v92OaJrqu0+122d3dJRwOv/O/bEIIIYQQQggBWPkjnn7pL77r5/lyx8B++drrti+5P5xv0QS+GbrXSxBCiHti/l/vob3D3aEdHbppm8OPaaz9hQirvzTF6l+O05m4qXrPgbHzDtZ+7p09uRDiPffh/F+P7xM3z9M7LtAbtSC8+eud2hIeHR1x9epVDg4O0HWdcDhMOp1mbGyM4XBIs9lkbW2NCxcusLGxwbPPPstgMCCVSqnAKhQKEY1GefbZZ/H5fAQCAZ588klM0ySTyRCLxUilUirM0nWd5eVl4vE4vV6PmZkZ5ufn8fl8HBwc4Ha78Xg8tFot0uk0S0tLVKtVfvM3f5Pt7W3C4TCNRoP9/X00TVPtIq9evUqz2aRWq9Hr9QC4dOkSlUqF+fl5/H4/g8GAubk5dF1XM/QMw6BSqRCLxWi1WjiOQ6lUUu1EW60Wp06dYjgcqlaie3t7pNNp9vf3WVlZYWZmBo/Hw/z8PJ/61KcIh8M88MAD2LatKv42Nzdpt9v0+30VLI5CvGq1qlpU1ut1/H4/hmHw6KOPAhAOh+n1eni9Xo6OjtA0Da/Xy8bGhlrj0tISJ06cUHMTY7EY09PTFAoF1fp0dM9DoRCJRIJyuUwikWBsbIxsNotlWaotaj6f5+rVqwyHQzqdDm63W4WdmUyGbDZLIBBQgdvGxoaqHh1VCW5vb3PixAni8TihUIhsNsvVq1eJRqNqXl+/32dycpJWq8X29ja6rpNMJtX8vdHMw2q1ytHREZ1Oh83NTSKRCMVikWQySSQSIRaLkUwm0XWdxcVFJiYmiMVi3Lhx4537BRRCCCGEEEKIW6T++9e3NXun/df/n597/UZNw9Dc7/q53296zoDx37h+r5chhBD3hLWzx8yXB+94yAeA9mrYZ3scHNerfx/xNHVCX3zhXTipEOK9JgHfPXZru81bHwPQdR2Xy4WuH//jujkozOVyfOMb3+DrX/86uVxOtabs9/scHR3hdrtZW1sDoNFocOnSJWq1Gs8//zy7u7v0ej1u3LiB3+/na1/7mmpRubS0hNvt5sqVK1iWxYMPPsji4iK5XI7NzU2i0SjJZJKtrS0Mw+Dhhx+m1WoRCATw+/0UCgW+9rWv8eUvf5nz589TLpcpFApsbGyg6zqZTIZ+v4/X62VnZ4dTp05xeHiI2+1W69d1nU9/+tNcv36dRCKBaZqsr69z+vRpSqUSqVSKdDqtwi2v10s4HGZiYgKPx4Nt20QiEba2trBtG7fbTSKRoNPpsLOzQ7lc5urVqywsLDAzM8NgMOA//If/QK/XIxwOE41GmZ2dxeVy4fF4WFhYQNM0LMtiOBxyeHiIrut4PB5VcadpGtVqlVAohNvtZmFhgXa7reYHhsNhFfjt7OxQq9Xw+/3EYjGuXLmigq7l5WU0TWNubk7NunvqqacwDIOnn36abrdLPB6nWCyyt7eHbdsEAgGWl5cB8Hg8WJZFp9OhXC7TarXo9/vMzc1xdHSkqghH96Df7+P3+1WV49jYGKlUCk3T6HQ6VCoVms2matdZLpdV+8xwOMxgMMCyLNbX1ymXy3Q6HVqtFgcHB+zv7xONRtE0jcPDQyqVimrLapompmmyt7fHcDgkGAxSqVQYDoekUimazea78nsohBBCCCGEEAA8d4WO3X/XDv+HHQ/Zf/b6eUeay4VLu//fornW77D41b/M4r/7Rf5B8fQb7v/AN/4Kw3LlPViZEEK8P3n++AUWftvE3dLg7hu6vXUOLPxGUVpzCvEB8eH7eNj72Cjku7Vy73b7app2bCjY6/UoFos0m00sy+L06dOqik/TNEzT5ODggEqlQiqV4vnnnycQCKiKNp/Ph8fjYTAY0Ov1WF9fZ35+nlAohKZp1Ot1/uyf/bOsrq7S7XaZmZnh8uXL2LbNRz7yEUqlEi+++CLz8/O022263S4ul4tSqcQnP/lJrl+/TrfbVXPg0uk0w+EQv99POBxmZ2dHXUu/3ycej3P27FnOnz+v1uHz+Th16hQej4dMJsPW1hYHBwf0+30ef/xx1SYyHo+zvb1NOp0mHA6zt7dHMBhkYWGByclJCoWCqnyMRCIUCgV6vR7j4+McHR1hWRbhcJhLly6xtLTEtWvX1Aw/0zSJxWIMBgPa7bZqhfnII4/w3e9+F7/fz3A4JBaLsb+/TzgcZn19HZfLRTgcVvP80uk0165dUwGZ2+1mb2+PwWDA0tISfr+fVqulWllevnyZlZUV0uk08Xicb37zmwyHQ1qtFqlUimq1isvlYjAYcO3aNTweD5qm0W63sSzrNTMQTdPEsixVnWiaJpFIBI/Ho4LI9fV1TNMknU6j6zo+n0+13xy9rjqdDg888AC1Wo2joyOmpqbY2Nggm81i2zaZTAbDMGi1WrRaLdxuN4FAgH6/z8TEBJOTk+qaE4mEqh5tNpu88sorPPjggwwGA/b29l4TaAshhBBCCCHEO8oe8m+ac/xC9OAdP/TQsfm//b2fJTD47jt+7PeLX/7Lf52lP3kRgO/G0nzyNz/PN8/+h2P3/a+OHmb5r25gH/uoEEJ8eGjfeZnFtTTFH16idgpst/Oairt3jAPxaxrDa2vvwsGFEPfC/f/xsA+gW6v6blfZd6dtjuNgmiYvv/wyX/7yl6nVamQyGXw+H4lEglwux8TEBOfOnWN+fp6TJ0/SaDQIBoNomobb7WZqagrTNNE0jWvXrlEoFFTLzRdeeIEbN25g2zaGYahArFgsks/n0XWdyclJJiYmcLvdNBoNPB4Ply9fBqDT6ajqsFwuRyj0as/9VqtFJBJRLSgBTNPE5/MxNjbGP/yH/5BQKMTOzg5Xr14ln89z48YNms2mCrhG7ThrtRq7u7t4vV4CgQAnT54kk8kQDoc5ceIEzz//PK1WS7XRbLfbNJtN/H4/juMQi8VU1d3k5CQHBweYponL5VLBZaVS4ejoiH6/j+M4pFIpdnZ2sG2b4XBIMplkcXFRVauNKuNM08S2bdLptJoJOBgMiEQiWJZFMpmk0+kwMzPD6uoqu7u7+Hw+BoMB4XCYSqVCvV5nbGwMwzBU+9ZGo4Hf7ycajZLLvdpHe1RlGAqFcLlcBINBYrEYXq8X27ZptVrs7++r4A1QXwF1Hc1mk/X1dfL5POl0Gtu2KZVK6tpLpRLr6+sMh0NKpRKapmEYBu12myeeeEJVZFqWRS6Xo9vtcu7cOcrlMtevX8c0TQKBAIPBgMFggGmaav7fqL3o1atX3/B3QQghhBBCCCHejn/6P3+OofPOx04nvvGzBH77+HDPsZ135Zzvpbpt4vpeuAcwrNUJ/bkyv9MOvG7fx1/8SV75wSy2dGkRQggAhsUiiX95nuVfKRBd1dAH73xFn6uvkf61l9/Zgwoh7ikJ+O4Tx4V9N39/XDUfvBrOlMtlvvvd77K1tUUwGCQajTIzM0Oz2eTSpUsq0JudncXn81EoFOh2u6pCbxTg9Pt9FaIVi0XW19dVoJfJZHjsscdUu8pUKsXq6iobGxtq5pvjOFiWpSrfms0mnU4Hj8dDuVxmbm4Ox3FwuVwcHByoeXef+9zneOihhzh79ixzc3O0221isRjpdFq12/z4xz9OKpXi0UcfpdlskkqlePLJJ5mdnaXdbrO3t8f4+DiBQACXy6Vm2cXjcQ4PDxkbG1OB2yj4unLlCh6Ph8PDQ15++WU0TVNzAZPJpArMACzLolQqUa/XaTQaLCwsMBgMGA6H7Ozs0O12VRXeiRMnyGQyuFwuHnjgAQKBANlslmq1SqlUYnp6mkqlgmEYfPvb36ZUKpFIJHAch3Q6TS6Xo1KpcOHCBV588UXK5bIK6gzDwDAMhsMhgUCAUCiEx+Oh1+upOYydTkcFhYlEgrm5OUzTpNvtqp/RKIzzer3Mzs4yHA5JJBJqXqPjOESjUXq9HgcHB0QiEarVKplMhsFggKZpDAYDZmdnicVi/P7v/z4+nw9d16lUKuzv77O/v0+v12NlZYVYLEYsFuPw8JD19XUymQx+v59Lly7h9Xrx+Xw88cQTVCqV286sFEIIIYQQQoh3QuqfnefEr/8Su1brHTvmj659luWfvcOsOXuI6bx7rUHfCyHNQHO/tlHUsNHg//23fvo1237oxg+R/Pw2Vv7ovVyeEEK8/zkOw9UN0v/0PMv/LE/isoar+w4FfQ7Mf7GN3em8AwcTQrxfSMD3Pna7EOO46r6bvx5XzVer1dQMvM3NTbLZLHNzcxiGQa1WY3Nzk6WlJZaXl3nsscdIJpNkMhkymQyappHNZmk0GirkCoVCTE5O4vF4yOVyxONx2u025XJZVaRVKhWmp6fRdZ1AIICu63i9Xh5++GGCwSCtVouzZ8+SSCQIh8Ncv36ddrvN0tISyWQSgFwux+/+7u/yK7/yK6yuruJyucjlcszOzqJpGpOTkySTSS5fvkw0GuXGjRs89NBDVCoVQqEQ165dU0HW7/7u77K+vs5gMKDT6VAsFrlw4QKmaTI5Ocn4+DiRSIQnnngCn8/HAw88QLVapVwuqxaXH//4x+n1eoRCIbxeL5ZlMTMzw9jYGGNjY8zPz9Pv9/F4PCSTSZ588klqtRrRaJTTp0+r+XWdTod2u83ly5c5PDzE7/eTSCSIxWLU63Xy+TwA+/v7RCIRNjY2KBaL7O/vY1kWzWZTtbkcVUv6fD663S7NZhPDMIjFYliWpQJc0zTxeDyEQiFWV1eZnZ2lVqvR6/Vwu934fD7K5TL1eh3DMKjX61SrVfb399nc3KRUKuF2u/H7/eTzeQKBAD6fj/HxcTRNo9/vqyCx1+sRDAbJ5/McHh5SLBYxDINGo0EoFCKVSmEYBs1mk1wup6pLs9msCk1Hswh9Ph+2bbO1tUXnpv8RYtv396dbhRBCCCGEEO9TjsPif/ksP/sX/wafvvqjtOzu2zrcJy9/HutHOtjdOx/n6sD1ts5zt6rDDn/Y8fBfHT3MT2x8P3/r8DGe6b79/3/l0nT0xbnXbTe+9Dz/z8qiOrf2BXAG93eYKYQQ7yrHYbi+ReJ/f5blf7zDxLcdjIr+1oM+B6KrGpy/9I4uUwhx70nAd584LswbfW/b9hu28RzN5tve3ubLX/4yX/ziFzl//jx7e3u4XC6Gw6FqH7m8vIzjOHi9XhXW7e/vMzU1pea+feMb36DZbBKNRslkMqytrTE3N4fH42E4HNLtdpmbm+Py5cuqPeRoHtvFixfx+XxMTk7yne98h+FwiMfjYXZ2lieeeAKv16vWOzU1par9rl69yuHhoWpV2e128Xg8XL16lXA4jNvtpt1uc+3aNVURNzExQTKZZG5ujm63S7fbpV6v89JLL9FqtYhGo4TDYV555RVM06RQKJDL5ej3+6q9p23bamaeaZosLS3R7XYpFAqq/efp06fpdrvk83nC4TDdbpdarYZhGMzMzGBZlgrnDg8PyWazhEIhdF1XbShPnz5NpVIhEAhgGAaTk5OcOHFCzQHc3NxU7U8BUqkU0WhUtbQcVSh2Oh10XWcwGKhQNhKJEA6HVQWlaZpsbm6SSqXweDzquaMwcxT6jSr6YrEYuq5zcHBAKBRSwVylUqHX62HbtvqZZrNZUqkUsViMjY0N1eK0WCzS6XQwDIOxsTHGx8fJZrN4vV5eeuklCoUCfr8fgGazycsvv0w4HKZarWIYBl/96ldf81ofDofv2u+bEEIIIYQQQri+/iKezx7wg3/jb/Lpqz/K/pus6LvU77Lyr/4agR89YNhovOH+/93Oj77Fld7ZwBlyvjvkh1d/kFP/7L/gx//yL/O/fOpPc+mjPppPV7n+MRf//Q/8BH8998TbPte1/3P02O2/9Y/+NAAf+eovY+Xe+fmGQgjxQWXlDgj89neZ/X9dZOnfdYhs6Oj9N1fV52lpZP+1tOYU4oPI/ca7iHvpTlV8mqa95u+jfW/ePnJzC8/hcMjm5iZbW1vE43F+4Ad+gFQqpSrKEokEvV4PgHg8rubiFQoFstkshUKBYDCIYRiEQiGq1SrRaJRvfetbPPLIIxiGwdHREYFAQIWAo6q/fr/P1NQUU1NTqrJsOByysbFBv99nfX1dBVfLy8tkMhm++c1vEolEmJiYYH9/nz//5/88X/va15ifn6dcLnP27Fm63S7Xr18nEokQi8U4ffo0Xq+X3/qt31Jz99LpNC6Xi8nJSdU6M5fLEYlEqNfrqhpQ13WCwSCVSoVIJKKuFaBcLuPxeCgWi0xNTdFut9nY2MA0TdLpNI1Gg6OjI1KpFLOzsxweHtJut1UVWiQSoVarUalU1N9HYeCo7aeu68TjcfL5PHNzc6q1aqvVotlskkgkqFQqdLtdDMMgHo9TLBZ58sknKRaLqi0roCrlisUigUCAfr9PLpdjbm6O1dVV5ubmmJubY2Njg3q9rgLjUdDWbrexbZtYLEapVCIYDLKzs4PjOAwGA3Rdx7Zt1Tqz0+nQ6/U4ceIE+XyeRx55hO3tbcbHx3G5XFiWxVNPPcXFixfZ3t7G6/Xi9/s5deoUjUaD7e1tTp48yc7ODslkkt3dXfx+P4899hj/6B/9I/XalhadQgghhBBCiPeCY1kEfvu7aL/j5mef+Ots/ISPH/vkc/x88tsseDwYmuc1+1eHHf5je45/8PUf4+Q/aTF/8dm7fg+29Cuz8D++vfVe6nf5jeo5LtamCHl6XNicJfU1g/Q3Dxnu7jNjHQJg3XyNvSHDtU22fmyCZ75l85TvrX8W/MXv/1/56eQPMyxXXrM98X+8TOd/6HPq7+dfc24hhBB3x+504PwlMs+5mJieoPGRCcqnXfTjNs4d/rOt9zUW//cDLGnN+ZZpbjea243dH4AtBQfi/UUCvvvY7QK9W8OPUbh3XDhSqVR45plnePzxx1lZWSEej+P3+/H7/ViWpea5+f1+wuEwpmlSLBYJh8Mkk0lqtZpqSXnq1CnVenJqaornnnuOUCjEiRMnKBQKGIZBv9/HMAwuXbpEqVTC4/Fg2zaPP/44Ho+H3//93ycej2NZFhcuXODBBx8kHA6zsrLCSy+9xPj4OC+++CJerxeAaDTKo48+ysWLFwkGgziOw+XLl9UMu0gkQi6XU20jR207DcNQAdtwOCQUCjEYDMhms6o9qNvtptvtqtaUbrebxcVF1tfXsW2barWKy+VSlYn5fJ6ZmRkV2Om6zvb2NoFAgEgkgm3baJrG8vIyR0dHnDx5kna7TTqdVrP7er0enU6HsbExXnnlFbxeL6lUCq/XSzgcxnEcAoEAu7u7NBoNbNvG4/HgcrloNBqMjY3hdrsJh8PYtk273abX6xEOh4lEIur1sL+/r8K8aDSqQs1YLEa/38eyLDweD9PT0xwcHOB2u+n1erhcLlUJOLK2tkY4HKbX63Hq1Cm2t7e5cuUKJ0+eZDgcYts2zWaTzc1NZmZmyOfztFot4vG4qqhsNpvs7e1hGAatVoulpSVVrdlut3Ech1wuh23b6Lr+mvMLIYQQQgghxLvNsSy0Zy6y9Axc9fn4O0s/S/NElPq8CysEOOArQeJ6D+PlbVZKz/Fmm14mfu/aWwr4ho7Nf1t8iN/51U8w9ftFnJ0cdveIhq6xbL0IcFehmpU74L/9uZ/nf/oX/xsPf+9Drm9W3BXgxn+zwtLfOv+a7Xanw9nf+hss7Z+/zTOFEELcFXuItbNHYGeP0JcDOKcXKD4apjkPQ8OBm94m1vsaS/+2jrW1c+/Wex/T3G4aP/4YzVmdoRfcHRj7bgftmYv3emlCKBLwvc/dXHkHx1cu3VrNd7t9R/vdHPRpmsbu7i4HBweMj48zOTnJxMQEmUxGhV66rqNpGolEglwuRyAQwOVyUSgUyOfznDlzhomJCXRdp1gsUiqVWFlZ4dKlS5w+fZqtrS0ymQy9Xg9N0/D7/ayvr5PNZlVV3jPPPMOpU6eIx+PYto1t28zMzHDjxg01Y284HJLL5UgmkwQCAS5fvsypU6f4+te/zs7ODn6/n8b32p40m000TaNQKBAOhzk8PGRycpLDw0NCoRC1Wo1EIqGq+7a2tmg2mywsLHD9+nW++93vEo/HKZfLGIZBNBqlVCqp8OvMmTP0ej3VhrPRaKgQahRkLi8vk8/ncbvdTE1NUa/X+cEf/EF2dnYoFAqcP3+ebrfLuXPnKJVKpFIpFQSapsn09DTlcpkf//Efp1qt8sILL9ButxkMBiqYHAV8oVAI0zQBCIVCtNttdF2n2+2qANOyLDXDzuPxoOs6y8vLfOtb31LVlYlEgnq9js/no9fr0W63AfB6vWSzWer1Ot1ul3a7zcTEBJ1OB03TcLlc+Hw+VldXsSyLQCDA0dERrVaLsbEx1WbU6/Vy/vx5pqamiEajVCoVMpkMpmkSjUaJRqMUCgWWl5dZW1vD6/XidrvV96O2nP2+zGsQQgghhBBC3Bt2twuvXCf4CgSPefytfrZ/WKvzdVPnU/67jwa/3DH4r/7xzzH5L15hvPGd15zbeQtj9Vx/8iJ/7wt/lZ/6lS/zc9H8XT3nWr/DNzrL/OXoNgCPfGSd5jH7Lf2d59/8goQQQtyW3enAhVdIvaAxNpal+cQMpbNuBiEHX0lj+ncKDG+s3+tl3re0MyscPQFor/6D2kvC5qSPleIiw9WNt35g3YUeDGA3j/vXUog3RwK+97l3ohXhrdV7Nwd9o+8ty2Jvb4/9/X08Hg+xWIypqSnGx8f5zGc+Qy6X49q1a2iaRjabpVarATAzM4Pf7+crX/kK8XicRqNBKBTi4sWLWJZFPB5ndnaWUqmEYRgkk0meffZZFhYW2N7exrIs+v2+ahG6sLBAvV5XFW6j1pSmaaLrOhMTE0SjUV544QXOnDmjqukCgQBut5tkMslgMKBcLtPv9+n1epimic/nwzRNdf3R6KtzAQKBACsrK/T7fTqdDqVSiatXrxIKhRgfH+fg4ICFhQVyuRzBYBDTNOn1egwGA6rVKt3vDUmPx+OYpkkymaTf71Mqlcjn8xiGwdTUlArY/t2/+3dMTExw6tQp1tbWODo6olgskslkSKVSFAoFFZqNQtX/+B//I+FwmMFgwMTEBJZlqRmJPp8PgMFgAMDR0RHJZJJ8Pk8ymSSZTNJsNolEIjiOw/T0NLVaTc3Ve/HFF3Ech7Nnz/K7v/u76mc7CnFbrRY+n496vU6v18MwDFwuF36/X4WELpdL3dPNzU0CgQCO49DtdtVsv36/ryoWRzMVvV4vwWBQVWPatk2hUCAej3Pt2jUsy8K2bTqdDpZl4Xa7MQyDTqcjLTqFEEIIIYQQH0g/9zu/wMZP/ZM33G/o2Dx9+SeI/DKMrX3nLYeKx9Geuchvf+Yj/KP/Kcl3nvrfSLleG2NWhx1+vzPN/7L+p2h/O830l+vo2wf86x/4ETQbol9dPf7A0tZMCCHeHY6DdZjH/8U8s38URE8lGB4cMRzIB+TfDj1fRnMiODfV1Tg6NB9IEXiLAZ8eCHD0lx7CzGpkvzvA+AP58It4e956Y3Xxto1CnJur6m59/M2608y+WysBR5Vytm2rxxzHod/vUywWeemll/ijP/oj/u2//becPHmSyclJVlZWMAxDzZZrt9uUSiV8Ph+pVAq3202pVOL8+fP4/X7Onz+vKsIuXrzI6dOnWVhYIBqN8vjjjzMYDPixH/sxcrkcpmlSr9fxeDyqVeMo8Hn66acJh8O0220VTh0dHZHJZDAMA5/Ph2VZ7OzsoGmaCsRGAVQoFKLb7aJpGoFAgHg8TjQaxeVycfnyZeLxOPF4nM3NTSKRCIlEgnK5rKr7RhWLlmVx4sQJSqUSmUyGdruN3+/nxIkThMNhpqen6Xa7BINBIpEIuq5z48YNwuEw3W6XSCRCr9djb2+P3d1dVlZWqNfrJBIJvF4vjz76KB6Ph/HxcZLJJKZpomkaU1NTrKysMDk5ydLSEvF4HI/Ho841MTFBIpHAcRwsy2JiYgIAwzBwu91MTEyoFqOjYLfVajE3N8fMzAzXr1/H7XbjOA4ulwtd1zEMg5WVFQaDAcFgUM0RtCwLy7JUdZ/f78e2baampkgkEng8HhXeVatVarUaBwcH7O/vU6/X0XWdQCBAKBTC5XJxeHhIq9ViMBjgcrnUz3C0LR6PU6/Xcblc9Ho9qd4TQgghhBBCfGCd/B+36TmDO+7Tsfuc+Lf/BaEf2We4tvmurMPazzH/5y/zE3/1b/FDN36IL3V8fPrqj3Lin/81fvzn/ga/9vFHif/wOlP/w3dwXrrCsFol/BvnCf2786+bvyeEEOK9Y7fbWDt7OBLuvW1W/oj4lVven3cgtFZ/S8dzxePkfvFh6ssO/ajN/ve7cM9OvwMrFR9mEvC9j7xR4Hen570do/Dv5rBvFPhZlsXzzz/P3/7bfxvbtnn44Yfx+/2EQiEMw1BtMavVKv1+n0qlgqZpeL1exsfHsW2b9fV1CoUCH/3oR/n3//7fU6lU6PV6FItFAM6fP8/k5CT9fp+joyN8Ph/5fJ69vT0Vhnk8HuLxOI7jsLr66qcBC4UCpmmqyq/9/X28Xi+GYajqstFaQqEQbreb6elpstksp0+fpt1u4/F4GAwGhMNhAoEAhUKB6elpTp48ycLCAktLSwyHQ9UqcmJigt3dXUKhEPF4nEgkwtTUFI1GA8MwePHFF1XFoN/vJxaLoes6zWZTVcHBq9VqZ86cYXFxUQVho3lzLpcLl8tFMBgkkUhw4sQJcrmc+pk8/vjjBINBVRU4CuX29vaYmpqi1Wph2zbT09O0Wi1mZ2f56Ec/ytmzZ6lUKiwtLdHtdlUYa1kWhUKBmZkZNWswFApRLpfRdR3btlleXqbVagEQiUTIZrOq+tLlcpFKpdjb22M4HOI4Dh6PR13n6HntdptqtUqj0SAYDHL9+nWuX7+uHg8GgzSbTfx+P+VyGa/Xi6ZppNNp3G63ag86atMphBBCCCGEEB801mGeU3/0i7d9/IVen6f+H3+Lxb97/t1/89ZxMH7/eezPFPj/Pf2ncP/pHHP/zbN4/vACw2IRpLOKEEKID7j0b18ddegEQBtq2FduvOnjuNJptn/pFO0pW81JdHRoPzD2Dq1UfFhJwPc+dzfh3XGz9u62ku+47cdV97VaLf7pP/2n/Pqv/zpPPvkkP/VTP6XaL45aMo7ac5qmyeLiIq+88op6bGFhgRdeeEEFPKOgy+12UygUsG2bwWDAysoKL730EidPnlRrC4VCfP3rX2dzc5NCoUCtViMWi+Hz+djc3MTlcpFOp8lms0xNTREOh+n1ekSjUcLhsKrei8fjaJrG7Owsu7u7JJNJ9Vxd1zFNk/HxcRUgbW5uEo/HicViZLNZ4NUWmKNAsVAo0G63uXjxIpcvX+bMmTN0Oh2y2awKtsLhMG63m1gsRrfb5aGHHqJSqTA5OUkul+Pll18GXg1Sv/Wtb9FoNHjwwQfV803TZGNjg6OjI5aWlojFYtTrdZLJJLVajWg0SjweV9WFN8/E29rawuPx0O/3efbZZ2m321y+fJlCoaDmExaLRbrdLsvLywyHQzUnsdls0u122dvbI5vNsrGxgc/nw3EcKpUKh4eH1Go1FbCOKhKz2SyapuHz+VQgqmkaoVAIj8dDpVIhlUqp0LPb7aqAsVAoqLmPe3t7NJtN0uk0rVaLP/zDP6Tb7d7xtS2EEEIIIYQQHwQnfvEKT136s6qSr26b/EYzzvzv/RX+/o/8RTL/+Dvv6Xocy8LKHUiLTSGEEB86w1od/9F/ilACee1Nf8DFFYuy9deW6SX+U7g3olvyPqd4e2QG333g1pBvFHCMWi3evO2NjnPz/seFh7eb1wevVmN98Ytf5Otf/zpPP/00Dz74ID/0Qz/E3t4e3/nOd1RVntvtpt1uEwgEODo6wjAMdnd3abVaJJNJNE2jWq0yNzfH5OSkCnTcbjfFYlFV6nm9XlwuF/v7+wyHQ3RdR9d1YrEYpmmqeXLT09NcunSJj33sY2xubuI4DrFYjHg8DqBahHY6HWZnZ2m32/h8vtfMErx+/TqnT5/mypUrBAIBIpGICiv9fj+dTodYLEaj0cC2ber1OsFgEI/Hw9TUFLqus7q6yqOPPkoymeRP/uRPVOVfIBCg0+kQCoX4xje+gcfjoVgs4vV6yefzDAYD/H6/askZDAbZ3t5W58pkMpimyUsvvcTy8jIXL17kwQcfZGNjg+/7vu/jS1/6EoAKMFutFh6Ph1arxcmTJ0mlUuTzeSqVCvPz85imSbfbxev1Ui6XqdVq/PRP/zSXLl1ieXmZcDjM9vY24XBYhbytVotQKMRwOKRYLJJIJGg0GmiapuYjBgIBms0m4+PjdDodPB4Pu7u7OI5DvV5nbm6OUCjEwcEBtm2zuLhIoVAgEAjg9XqpVCrs7u7idrtptVqMjY1RLBbZ3Nyk0+nc9etcCCGEEEIIIe5ndrdL+HM5vu/zv4yZ0omtDwhc3GUl/zz2Gz9dCCGEEO+g8W+12fhJPwDuzpt7b1IPBNj5aw/Qj70+3AMYBF143olFig8tCfjeZ24OMG5XvfdWW3K+UTgyCgBvDf9uDgVHFVxf/OIX+Z3f+R1+7dd+jXg8zuzsLOFwmMceewzbtjk8PFRhTjweJxgM4jgOn/rUp1hbW6Ner6tZay6Xi2QyydHREa1Wi6mpKQKBAPv7+5RKJWKxGJFIhGAwyN7eHmfOnKHRaDAcDolGo1iWxSOPPEKr1VLnmZubo1AokEwm0XUdr9dLp9PB6/XS7/cZDAY899xz6ljJZJJyuUw2myUajXJ0dMTExASdTgfDMBgOh4RCIRqNhmodOTk5ydWrV2m1WiQSCa5fv8709LRqU5pOp7FtG8Mw6PV6ah5dMplkMBjQ7Xbp9/tEIhFSqRQTExOq1War1aLb7ar2lIFAgHw+z9NPP43jOHzpS19ibGyMF198kVAopH5muVwOv9/P4uIiAB6Ph06ng2madDodxsbGyOVy6noTiQQ+n49isUg0GiWZTNJqtZicnFTnL5VK6LpOrVZjMBhgGAbRaJRGo0E2m2UwePVTpS6XC6/Xi2maALRaLaLRKPV6Hb/fz97eHqFQSFWF+v2v/sNYr9cJhUJomkYmk6FSqaiAdnV1lcuXL7+mjawQQgghhBBCfNA5vR7h3zhP+Ht/t+7paoQQQogPL9eldfhzZ0GD9gSk7/J5mmFw8AsP000fH+4BmAmdwDu2UvFhJC063wdG4cVbqU66dWbfmwn/jmvtebvHbl2rbdtYlsX6+joXLlzgj//4jwkEApw5c4ZoNMpTTz1FMplkYWEBr9fL6uoqXq+Xl19+mVKphN/vZ2lpiVQqxXA4ZGtri0AggG3brK2toeu6qkiLRCJqpt6oGi0Wi6lg6+DggHw+T6/Xw+12qwAJoNvtMhgMsCxLhWW2bdPv9zFNk0qlgq7rhEIhMpmMCqD29va4cuUK0WiUSCRCs9lUVYW6rhMMBjk8PFRzA7e2tohGoxSLRXK5HBMTE/j9ftXust/vE4vFSCQSeL1eisUipmmSyWQYDAZomsbq6irPP/88u7u7am5gv99nbGyMSCRCt9tV8//6/T4zMzPE43F6vR7lchnLspiYmMDr9arAr9lsMhgMME2TXq9HqVRSs/AmJycxTZNYLEa1WmV8fJzDw0PC4TDxeJxOp0OtVqNSqXBwcICmaViWpcK+0WvB4/Hg9/vxer34fD6q1SqVSgXDMCgWi6rl6ej+joLfer1OJpOh3++ztrZGJBJRbU9HLUQvXbpEu91+3WxIIYQQQgghhBBCCCGEeLfZ7Ta69ep77lbQwf74w2/4HD0cJv8LH6E1c/twD6Afe2uFPEKMSMB3D71RWPFmw4ybQ767DfreSmByaxA4asH4L/7Fv+DZZ5/FMAzy+Twez6sFxrquk8lkSKfTOI5Dr9ej2Wyys7NDs9lUFXZutxuXy0U8HufixYtUq1VmZmaIRCIkEglSqRQf/ehHmZ6eJpPJ0Gg0cBwHt9vN4eEhV65coVqtqgDs6OiIfr+PZVmqJWa320XTNPr9PqFQiO3tbarVKq1Wi1wux/7+PhsbG5RKJc6cOUOlUqFareJyubAsi+FwSCAQUEHd9PQ0juNgWRaRSIRYLIbH42FxcZFwOEyj0cAwDLa3t7Ftm6mpKQzDYGFhgdOnT+N2uzEMg3a7TSgUotfrqao+n89Hq9XiypUrGIZBKBTiwoULqrrwa1/7GoVCAY/HQzKZxLIsKpUKrVZLtcGsVqu88sortNttKpUK4XAYx3HUbEFd17l+/TpXr17lxo0bKiQFOHfuHOvr6wQCAcbHx9WaRmFnIBDAsixqtRqaplGr1VSLzeFwSDKZxO/343K56Pf7NJtNUqmUaiE6mrM3ClUvXbqEaZoEAgHC4TCbm5scHh6+qTa0QgghhBBCCCGEEEII8U7yNL/3XrsGW5/z0/3hc7gikdftpwcCOB99iJ2/eZbm/J3DPYBB8F1YrPhQkRad73M3z9t7r89xa6By3OM3t/U0TZNf/dVf5U/9qT/FZz/7WQCGwyHNZpN6vU6v1yMajaJpGsFgUM2C03WdiYkJyuWyqqYD6PV6rKysAKgquE6nQ6fTYX9/n1qtRigUwu12Mz8/z9HREY7jsLOzQzwep1arkUgkCAaDnDp1Ss3EOzo6wu/3q8CtVqtx6tQpfu/3fg+fz0ev1yMWi9Hr9bBtm7GxMfb29rAsi3A4TCKRwO/3c3h4iM/nI5FIEIvF2N7e5sEHH6RYLLK9vc3Y2BjLy8t861vfUm1IW60WrVaLq1evMjMzQygUYm5uDpfLRa/X4/DwkGQySS6Xw+fzEQwGCYVCdDodLMviwQcf5Pz585w8eZJqtUoikVDhYC6XIxKJEI/HqdfrhMNhOp0O4+PjlEolhsMhrVYLgHa7ze7uLpZl4Xa7cRxHzder1WpMTk5y48YNXC6Xqtjs9Xp4vV6SyST9fh9N06jX60QiEcrlMoPBgNnZWRzHoVAoUCqVsG0bTdMIh19tLHP+/HkymYyaXXj9+nXS6TSGYRCJRPD7/bTbbXq9npqnOCLtOYUQQgghhBBCCCGEEO81f8Ghl3j1e8ftsP+ndLyPnSFw4OCrOeA49KI6nTGNftzG0e/ufcyhXwoaxNsjAd89drt5d2+031v1RiHe2+E4Dq1Wiz/6oz8iFovx/d///QwGA5599ll0XScajTI+Pk4oFELXddxuN6lUSs20G82te+mll1heXqZUKmGaJvl8HtM00XWdRqNBJpPBsixmZmbIZrN0Oh0GgwGdTod0Ok2z2VQzALvdLsPhkM3NTTqdDqlUisFgwPT0NMlkEsMw8Hq9DIdDNQtvb28PAMuyCAaDqhpx1FIzGAyqeXG2bWPbtqrsu3btmmqJOZq3F4vFKJVKPPTQQ1y4cAG32825c+e4ePEiTz/9NKurqySTSTRN46GHHiKZTLK2tobP5+Py5ct0u10CgQAnTpzgypUr9Ho99vf3CYVCbG5uqhmF8GoI1m63KZfLBINBLMtSIV00GqVSqaiqydFjowo6n88HQKlUwufzqeo7n8+H1+ulXq+TzWbV7L18Ps9wOFTXrmka1WqVbDarqjofeeQRLl68iGEYZDIZWq0WsViMw8NDisWiapeq67qa7+j1erly5Qrlcvl18x+FEEIIIYQQQgghhBDiveQv2dRuLsfToB+16Udv2oDzvT93z5Z0RrxN0qLzHro1vDiuFeHdhH9367iA8NYZfnfrTsGLaZr8xm/8Br/1W79FJBJhYWEBAK/XSy6Xo1AoqFl4Y2NjxGIxANVO0+Vy0e121Uw7TdPw+XykUik++clPEovF+L7v+z5VlWdZFl6vl2w2S7PZZGZmBsMwOHnyJPF4HIBkMkk6nVZVaKZp4na7KRaLdDodvvSlL3HixAkcxyEYDJJKpdT8vlAoRCwWUzPv3G43gUCAQqFAMplkZWWFbDbL1NQUoVCIU6dOUSqVyOVybGxsqPaewWCQH/zBH2R8fBzHceh0Ojz77LPkcjkODw/Z2tri6OiIq1evsra2xvT0NIFAgGAwyMc+9jHVXtPv9+M4DtVqFU3TGB8fp9Fo0Ov10DRNzcILBoMEAgFarZaandfr9dQsw1AoxOLiompROhwOKZfL2LZNo9Egn88TDofxer2USiW63S5bW1tYlkWr1VIzBk3TxOfzUSwWVRg5uuejqs1RuGjbNhsbG/T7fer1OpZlqeC01WoRCoVoNptsbm6qij0J9oQQQgghhBBCCCGEEPeKUbPeleM6LnnfU7w9khHfY8e1wbw1bBu1wbz1OW8mlBsd426fc+s5R+e93fNHj7lcLlXV9aUvfYlarcZnP/tZVlZW2N3dxTAMwuEwu7u7jI+PUy6XCYfD9Pt9vF4vzWaTT3/601y+fJlIJEK9Xmd5eZnZ2Vk0TSOXy9FoNIBXg8RKpYLjOBSLRZaXl+l2u/R6PSKRCHt7e9i2rYKowWDA2NgYmUyGwWBAv98nHA5TLpdV2BcIBDBNk0KhwMzMDACZTIaLFy+q+YCjUDMej7O9va2uw3EcYrEYzWaTyclJisUis7OzbG1tqUDP5/OxubnJ/v4+LpdLVQK2Wi00TeMjH/kIr7zyCisrK7jdbj7xiU9wcHDAc889RzQaZWJignQ6zXA4xO/3k8vlADAMQ80wrFQqTExMUKlUaLfbnDt3jitXrqiwtN1uYxgGtVpNtdYMBAK4XC78fj/lcpnhcKhm53m9XhUAer1eKpUKoVAIwzBUwFcqlRgbG8Pn87G3t8fExATFYhFd19E0jZ2dHR577DGuX7+OZVl4PB4SiQTVapVut0u1WsXn87Gzs8Pq6irD4fA1r3VpzymEEEIIIYQQQgghhLgXXB0L8Lw7B9ddYA/fnWOLDzwJ+N5nbq3eu1P10ltp23ncc249z+jxNzr/ccceDodqZpvjOHznO9+hUCjwD/7BP2BpaYmDgwMuXbqkQqFSqaSCvPHxcdLpNLlcjuXlZer1Op/4xCfQdZ1SqYTX62VjY0MFQd1uF8dxWFxcJJPJsLW1xdLSEru7u2q2XyqVIhwO02g0OH36NLVajUajoWYAlkol/H4/wWAQj8dDu93G7/fjdrtpNpsEAgEGgwHBYJCDgwM8nlf/Q+7xeDg8PAReDZ9cLheBQEC1Hu12u0QiEV5++WUSiQTxeJzz58/zwAMP8Nhjj3F0dEQmk2FpaYlqtcrzzz9PMBjkmWeeIRaLsbm5ic/no1qtMhwOVZUbwLVr13jggQcolUoqYANYXFwkkUjwwgsvMDk5SS6Xo9frUS6XKZVKBINBHMeh2+1Sr9fRdZ1wOEyr1aLf72Oa5msq8wB0XafdbqPrOsPhELfbra5xNN+v3+9TLBZVSNnr9djb2yObzdLtdlX14OHhIUdHR0SjURzHwePx0Ol0cLlcuN1uSqUSu7u79Pv9Y19bQgghhBBCCCGEEEII8V7Thu9e8YHmceP0JOATb40EfO9jx4VubyXoOG7u3p1af978+JsNEG3bVlVbo0q369ev84u/+It8/vOfJxAIMDMzw6lTp5icnOTrX/86GxsbGIZBv98nn88zMTHB1tYWp06dotvtsrGxgW3baJpGt9vF5XJh2zZzc3NqppvX68Xr9fLtb3+bQCDA+Pg47XabaDSK3+8nk8mgaRrxeJzBYEA+n0fTNEKhEJ1Oh3A4jMfjUfMAR1Vyo1Cv0+kQCARoNps0Gg1isRhTU1OMjY3x7LPPAjAzM0Mul+OjH/0o1WqVfD5PKBRS1X3dbpeDgwO63S79fp9ut0s+nycQCODxeEgmk4RCIfb29jh16hQnTpzgueeeo9/vqz87Ozs4joOu60xPT9NsNhkfHyeXy6kKwXQ6zdWrV1X70nK5jGEY6hz1ep1oNEqtVlPtUDOZDP1+n0gkQqPRwOVyoes6yWSSVqulgr1sNsvW1hapVArbtmm1WgCqFWetVsPtdqt5jPV6neFwSDwe59q1awSDQYbDIZVKBU3TiEQieDwems0m1WqVwWDwmteOEEIIIYQQQgghhBBC3Evau/U2pQaa243T671LJxAfdBLw3SduN5fvbp87av158+y8m4/zdgLEW9m2rQI5y3q1P3GlUuGLX/wipmni8Xj4mZ/5GcbGxhgfHyeZTLK6ukq32+XkyZMcHBygaRqrq6vkcjl0XScajRIKhUgmk/j9fjqdDn6/H4/Hw3A4JBwOUyqVWFhYIJvN0uv1iMfjWJalwi3HcWg0GoTDYSYnJ9nc3GR2dpbJyUmeffZZDg8PmZycVBV+zWaTEydOsLW1hcfjodfrMTMzw+XLlzl9+jQzMzPs7++zuLjI1atXyeVydLtdLl++jK7reL1eHMdhMBjgOA4+nw/HcTAMA6/XSzqd5rHHHuMrX/kKHo+HGzduqPN0u12mpqYwDEMFZMPhkPn5eQ4ODlhbW6NUKtFut1VrUJ/Px9WrV9V60uk09XodwzCIxWKUy2U8Hg+pVIpKpYJpmmrmYLvdpt1uq+8DgQDRaJR+v08ymaTRaNDpdOh0OqpN56iFp+M4TExMAK9W/I1m+Nm2jWma9Pt9NQ/Q5XJRq9WwLItUKoXf76dUKrG+vk673X7N62j0mhy16xRCCCGEEEIIIYQQQoj3mt7uAcF35diay/WuHFd8OEjAdx+6XQj3ZoO/W495p+ffruLvTsHg6Jijr+VyGU3T6Pf7qtVmv9/n5MmTrK+vMzc3R7lcJpvNUqlUqNfreL1e4vE4pmkyPj5OvV4nFAoxPT2N1+ul1+vRbrfZ3t5mbm6OSCTC4uIiR0dHnDp1ik6nw7Vr13C5XIyPj+Pz+Wg0GqrKzLIsVZ2XzWYplUo0m000TSMajfLKK68wGAyYmZmh3W5jmiYul4v19XWuX79OKBQiHo8zMzPD/Pw8L7zwArVajbm5ObxeL9VqlWg0Srlc5ujoCL/fT7fbxefzEQgEeP7552m322iahm3bGIbBwsICW1tbFItFdnd3SafThEIh6vU6Tz75JOvr6/zUT/0Uzz//PJ1OB13XqdfrxGIxhsMhtVqNcDisqgZHlXSj1pmj+zY1NaUq8EqlErFYTM1RHIWMvV5PVdWNWob6fD4sy1IVfG73q/8ZGYV9N//cw+EwnU6HsbExTNMkn88TDAYxDANd11lfX1ftPW/3upZKPiGEEEIIIYQQQgghxL2ime9ShZ0j732Kt0e/1wsQb88oULn1z3H7we2Dujf6+3HHvLUCcPTnduvUNI1AIEA4HObFF1/kD/7gD1hbW2N/f5/HH3+cwWDA5OQkxWKRmZkZVlZWOHHiBIFAQLWKrNfrrK2tcXh4yKVLl+j3+6ytreFyuSiVShQKBSzLYmJigsFgQL/fZ2VlhVqtxuLiItFolHA4zMbGBoVCgWeeeYbJyUkikQiWZTE+Pk4mkyEej6NpGs1mk3Q6TblcVi0qU6kUg8GAarVKp9PB4/HwxBNPsLW1RSAQoNPpYJomtm1TKBTweDyk02mSySTVapVHHnkE0zS5fv06zWaTaDRKOp0mHA5TqVQolUr0ej0qlQrNZhOXy0W5XCYcDrO7u4tt23z961+nVqtx+fJlwuEwkUiEw8ND5ufnWVhYYHp6mn6/TzweJ5PJUK1WCQaDaJrG3NycqioczccbtQkdDAaqXamu62rmYL1eV207W60WLpeL4XCogsnRHD+fz6fCwG63i9vtpt/vc+PGDRXuhUIhrl27xre//W02NzdpNBoS7gkhhBBCCCGEEEIIId6XnFoD3oW3KTUHHNN85w8sPjSkgu8D5I1CuDs957g5fcftezdVgrfbJxQK4Xa71by1QqHA9evXuXLlCufOncPv95NIJDAMg0KhQKvVIhAIkM/nGQ6H+P1+2u02nU6HqakphsMhhUKBTCbD3t4eoVAIx3HI5XKqLaVpmpw9e5ZYLMYf//Efc+HCBS5cuECj0VDrsm2bz3zmM+TzeRqNBn6/X4VOjz/+OHt7e2SzWfb29jg8PCQcDrO/v080GqVYLKJpGoeHh4RCIRqNhqou3N7exrZtJicnOTg4IJvNsrq6immamKZJMpmkXC7TbrfRdZ14PM7KygrXrl0jnU4TjUbRdZ1QKKQqEEetLd1uNy6Xi0gkgmmatNttyuUyAJOTk3i9XkKhEM1mk1gsRjKZxOVy4XK5cBwHt9uN2+3GMAzcbjcej0c9NvrZ93o9YrEYzWZTBXatVotkMkmv1yMUCqmgcNQStdPpYFkWlmXR7/cpl8u43W7C4TCaplEoFNja2sL83j9cbxQy2/a7N8BWCCGEEEIIIYQQQggh3siw3ng1jHvrDfT+k++9/enqaox/Z4jzvRFXQrwVEvB9QN06a+/m+Xtv5E773tx+8W7nAmqahmEYpNNptra2VGgzav24s7PDwcEB4+PjFItF0uk02WwWy7Lw+Xzous5wOFRz3NrtNsPhkGQySSKRoF6vk8lkKJVKqppsdnaWVqvFuXPnePHFF/nN3/xNbty4QavVwrbt14SV3/72t2m32/ylv/SXODw85PDwkHK5TDqdVvuOj49TKBTUHLvFxUWazSadTodCoUA8Hufw8JCxsTECgYCqaEun06yurtJutwmHw0xMTKiZfgcHByq429nZYXd3F03T8Pv9WJZFOBzm1KlT9Ho98vk8tm3zwAMPUKvVSCaTrK2tYRgGR0dHAMRiMYrFIleuXKHVapFOpzFNk62tLdXC0+PxsL29Tb/fJxKJcHR0RCgUQtd1ut0uhmGo++7z+RgOhypMbLfbRKNR/H4/zWaTWq2mWq72+31M01RzF71eL4FAANu20XWdRqPBxsaGmrN3pyrTm/8uFXxCCCGEEEIIIYQQQoh7yh4y+6UB5QcM+lGwAg6OGxz9e+9darwa3DkamgOaDdoQNEtDH4CrDy4TPG0Ho2ETOOji3jhkeFS4l1clPgAk4PsQuDkouVMbzZvdHOLdbXXfzc+99VjRaJRarXZsiDMcDrFtm+3tbXZ3d/H5fExNTRGNRnn66aeZnZ1lMBgAkEql2Nvbw+/343a76fV6KhT0er34fD7cbjfD4ZCxsTFWV1f5J//kn7C6uvq6wGj0vWmaXLlyhWq1yvT0tKpO8/l8+P1+gsEgtm0zGAyo1+vMzs7S7/cxDAOfz4dt29RqNVwul5qxl0qlGA6HHB4eEo/HcblceL1eotEo+XweXddxHIdKpcL09DSpVIpWq4VlWRiGwfLyMs899xzJZBJN01hZWWFmZoavfvWrLC0tsbu7i67rqnWpaZrMzs5SqVTwer14vV6azSa6rqsKwdE9a7fbBAIBjo6OcLvdKoDt9XpqBt+onaiu65imiWEYaJpGp9NR+3m9XizLIpFI0Ov1sG1bVeu53W5KpRKlUol6vc5gMKDb7d5VsHe7bUIIIYQQQgghhBBCCHEvuL/2Atk/0dANAy0URAsGcAwveL4Xsdg2WEO0/gB6fZxe/9XqvMEAx7JwhkO46T3P4T26DvHBIgHfh8ztwr6bg7y3G67c2vZz1GZyVGl2p+fYtk2n02F1dRVN07hx4wYnT57E5/MxPT2N3+/H7/czGAxIp9P0+30GgwFTU1P4fD7K5TLRaJSDgwNeeeUVzp8/Tz6fv2PAads21WqVf/kv/yW/8iu/wvb2NgsLCxweHqJpGqZpqll1AMVikZWVFWKxGKFQiJ2dHer1OsFgkHq9zsLCAvl8nkAgQDwexzAMGo2G+joKDJPJJI1Gg+vXrxMIBOh2uwQCAQKBAM1mU80ArNfr+P1+VldXcblcFAoF8vk8Ho+HBx54gPHxcS5cuMCNGzdUVV273cbj8agKOsMwODg4IBwOq4pIj8fDcDhkOByqdp+DwYB2u021WlVVfm63G9u2VYCn6zqapqn5eqMZfj6fj0KhwMbGBq1Wi1arRa/XOzbUvZuKUmnPKYQQQgghhBBCCCGEeN9wHOxuF7pdKJXv9WqEkIDvw+zWsO/mryO3hn53U/138/E1TSMUCtFqtfB4PLed43dzS9GbNRoNnn/+eVUdFw6H8Xg8JBIJVV3n9Xq5evUqXq+X/f19kskk6+vrDAYDCoXCa45p2/ax16ppGtvb2/z6r/86KysrqtXkaL5cLpcjFovR6XTodrsUCgWazSYzMzMsLy/z3e9+l6OjIwzDIJfLoeu6qgBMJpMEAgFM01RrnJ+fZ3p6mpmZGV588UUVXJqmidvtxrIs2u02Xq+X6elpbNvm4OCARCLBYDBQ97Lf77O1tUW/31f3x7ZtLMtS1Xijeze6nlGlo8vlwjAMFTgeHR2RSCSIRqMMBgNM0+Tw8JB0Oo3jOLRaLcLhMKZp0mq16Ha7qoVpt9tVzxltO+61cLuf862vgzvtI4QQQgghhBBCCCGEEEJ82EnAJ4DXhn2jSrVRIPNmQr1bjSrDer2eagd5nDudw3EcLMui2WzSarUA1Ly6UYh1c3B0XMA0emz09dYKMsdx6HQ6/Oqv/ipPPfUUn/70p0mlUmxsbGCaJtFolGq1SigUYjgcYhgGGxsb5PN5nnjiCZaXl4lEIhweHlKr1TBNk6WlJdLpNOFwmHQ6zY0bN7Asi1KpRDqdplAo0O12OXnyJEdHR6o1aK1Ww+12E4/Hcbvd5PN55ubm6Ha77O7uMj09ra6z1+sxNjZGqVRSswIDgQCHh4cEg0F6vR4ej4dAIKAq9Eb32+v1EovFCAaDqiKw0+mgaRrD4ZBcLkelUmFtbU2FjqPqv7udj/d2Xz9CCCGEEEIIIYQQQgghhHg9CfjE69zcGnEU9o3cGurcKbwZzXbr9/uvae/4dlovHlfhNRwOXxPY3a79460VZLe2Jx216vyDP/gDXnjhBX7wB3+Qp556inq9zpUrV0gkEmiahq7reL1ekskknU6Hzc1NNE2j3+/zqU99ij/4gz8gEAiwvr7O+Pg48XicTqdDMpnk4OCAcrlMqVRSgVkoFCKTyTA+Po7L5SKfz5PP53G5XHS7XWKxGOVyGa/XSyKRwO1288ADD1AoFPjKV77C7Ows+XyeqakpEokElUoFn8/H4eEha2tr6voMwwBQwZ/L5VJhZbVapdPpqOBuMBioMHB0j2/++k67NQiU9pxCCCGEEEIIIYQQQgghxO1JwCfu6OagZRRu3c6tIc2ozWWr1cLv9+P1elUF2M3eTIXX7cK7u2nteFzbyFu/H1WvHR4e8mu/9msUCgU+9alP8dBDD+Fyubh8+TLhcBjHcQiHw2qGXbVaJZ1Oo2ka3/d938e1a9cYGxtjbGyMarVKrVbj9OnThMNhLly4QL/fV8Fkq9VSrTJ9Ph+GYfCpT32KYrFIIBBQMwT9fj8A2WyWRqPBV77yFRqNhnp8Z2eHF154QVU8WpZ1x/txN/fo1sfeqNJydA9vdbvn3e7nJu05hRBCCCGEEEIIIYQQQojbk4BP3DXHcVQ4Nwr7bg1lbp5vN5oF5/F4sCwLwzCYmppiZ2fndRVat1bf3U0g9G64+fi9Xo+vfOUrtFotzpw5Q6/XI5FIkEwm2d7eJpVK4TiOmnG3t7eHx+MhFovh8/mYmZlRQeD09DQXLlzANE0+//nPk0gk8Hq9VCoVjo6OKBaL1Go15ufneeSRR2g0GmQyGT72sY/xrW99i1KpxMWLF7lx4waDwYBut0uz2XzNmh3HwTTNY1uQjh6/XUB6t/fkbo5zpyD17WwXQgghhBBCCCGEEEIIIcSrJOATb8mtYd/oz83hz83z8EzTpNFoMD4+znA4ZG9v7zXB1Jt1cwD4RhV9t7biPG7f223v9/t8+9vfZnt7m0QiwcLCAoeHh1iWhdvtZnl5mbW1NZaXl2k0GpimSbPZJJlMUiqV8Pl8hEIh1tbWmJqaot1u4/P5mJqaYn5+nkuXLjEcDjFNk8nJSRYWFmi1WgSDQQ4ODvg3/+bf8PWvf529vT263e4b3rPbPf5m7vVxrU5vvT/vZAh33DxEIYQQQgghhBBCCCGEEELcngR84m0bhXnw2rBv9Fi73QagVCrhcrkIhUKk02kKhcKxx3qz5z6umuzm87+Z8Oi44wwGA7a3t9nb26NWq9Hv95mbm+P69euMj49jGAadTofFxUWCwaAK7HRdp1qtkkwm0XWdVCrF7Ows169f56tf/Sqrq6vs7e2pFp2nTp3i0qVLuFwupqameP7557ly5Yq6hlF705uv+eYw9e26XdB58718J477Rq1SJeATQgghhBBCCCGEEEIIIe5MAj7xjrpd2Deax1epVBgMBgQCAXRdf92Mvzea83bzeY77/taw782EU7erBBy1G7Vtm83NTXw+H5VKBcuy2NjYIBQKkUgkWFtbw3EcJiYm6Ha79Ho9DMMgk8lwdHREuVxG13WOjo5IJBLMz89TKBSwbZtUKkUgEKDf7+M4Dru7u8zPzxOPx3G5XLjdbnw+H/v7+6yvr7OysoLH40HXdQqFApubm/T7/bu+xjeqgHynqupurRx8M/MWhRBCCCGEEEIIIYQQQghxPAn4xLvmuLCv0+ng9XrxeDyvm8M32m/03Jv//lYc12Lyrcx9u/kx27bpdDp4PB40TaPdbtNsNikUCmoe3+XLlxkOh+i6/pqA0+PxYBgGXq+X06dPMxgM1H6BQADTNLEsi+FwSKvVot/v0+v1SCaTTE1NMTMzQ7VaZWpqikceeYR2u83h4SHz8/Nks1leeuklGo3GXV3Xm2nxebfh3t3e67s9rxBCCCGEEEIIIYQQQgghjicBn3hP3Bz2VatVWq3WW6rWgzuHfm8UTL1R5drdPm8wGLzuMcuy0HVdXevNz9E0jV6vR7vdxu1288wzz6h9NE2j2WxiGAaO49BoNBgOh2p+4fb2NteuXeP7v//7qdVqeL1egsEge3t7lMtlLMsCYHl5mZdffhnLst7ToOxOLTdH1367x97oWEIIIYQQQgghhBBCCCGEeD0J+MR7zrZter0e8J8q+0bB2M3b7uRetXy8NUActe90uVwAr6lKvHmNN1eo9ft9te7RV9M0X7fvzdrtNl/60pcAcLlcrK2t0e12VRA4eu5wOHzT13K7c97qzQR1dzrfG20TQgghhBBCCCGEEEIIIcSdScAn7qlRtZtt2yrou9ko7LtTtd3tgqe3Gv7dbo7f7c4PvCZYu92ajptrd2uV352q4SzLUrMMRwHpyGhGIKBag956nONaZ95tuHfr8272Vqowj9smYZ8QQgghhBBCCCGEEEIIcXck4BPvG47jqKDs5sq+4/a72+PdHGod9/3N3mhm353af95cRXe7cxz3/DsFfre7puO2jdp5jtYyqii8m+e+kTda1xtd6xsZ3XcJ+IQQQgghhBBCCCGEEEKIuyMBn3hfurWy7+Y/I3cKnY577K3Mf3uzVYBvNrB7ozXc7bzB2z3n7YZmxwWRN59jdI1v5jz3qr2qEEIIIYQQQgghhBBCCPFBIQGfeN+7ubrrboO+NwqR3krw9WaDrLfj5mDtdm08b/7+1hmGdwr/3m7V3u2qG99K9eFou1TvCSGEEEIIIYQQQgghhBB3TwI+cV85Luw7ro3nzfu/k95KyPd2K9aOa+15pzmBx63xuFDubs73dtd73PqOW48EfEIIIYQQQgghhBBCCCHE3ZOAT9y3btfGc+RuArXjArM3et6baf95u7l9o/O9mTajtwv6brf/m23Vees+x613tP1O57rTsd/J9qFCCCGEEEIIIYQQQgghxIeVBHziA+HWNo+3Vva9meq5W0O/24VStwvXbn7OGwV/b6a6783OFXwrMwDvdKy7Oc9bmXMoQZ8QQgghhBBCCCGEEEII8eZIwCc+kBzHYTgcAseHfXeqVrt12+2Cstu1orzb+YB3WvvduNOa32rgdlzrz9u1+3wra76bNQghhBBCCCGEEEIIIYQQ4s4k4BMfeLeGfW+lqu3Nhm53OsfdVrG9neDLtu03XMfN57hdC85bKyPvtLa3Mp9QCCGEEEIIIYQQQgghhBBvngR84kPldoHVB9WbDSZv/fpmjvlhuq9CCCGEEEIIIYQQQgghxL2kv/EuQgghhBBCCCGEEEIIIYQQQoj3Cwn4hBBCCCGEEEIIIYQQQgghhLiPSMAnhBBCCCGEEEIIIYQQQgghxH1EAj4hhBBCCCGEEEIIIYQQQggh7iMS8AkhhBBCCCGEEEIIIYQQQghxH5GATwghhBBCCCGEEEIIIYQQQoj7iAR8QgghhBBCCCGEEEIIIYQQQtxHJOATQgghhBBCCCGEEEIIIYQQ4j4iAZ8QQgghhBBCCCGEEEIIIYQQ9xEJ+IQQQgghhBBCCCGEEEIIIYS4j0jAJ4QQQgghhBBCCCGEEEIIIcR9RAI+IYQQQgghhBBCCCGEEEIIIe4jEvAJIYQQQgghhBBCCCGEEEIIcR+RgE8IIYQQQgghhBBCCCGEEEKI+4gEfEIIIYQQQgghhBBCCCGEEELcRyTgE0IIIYQQQgghhBBCCCGEEOI+IgGfEEIIIYQQQgghhBBCCCGEEPcRCfiEEEIIIYQQQgghhBBCCCGEuI9IwCeEEEIIIYQQQgghhBBCCCHEfUQCPiGEEEIIIYQQQgghhBBCCCHuIxLwCSGEEEIIIYQQQgghhBBCCHEfkYBPCCGEEEIIIYQQQgghhBBCiPuIBHxCCCGEEEIIIYQQQgghhBBC3Eck4BNCCCGEEEIIIYQQQgghhBDiPiIBnxBCCCGEEEIIIYQQQgghhBD3EQn4hBBCCCGEEEIIIYQQQgghhLiPSMAnhBBCCCGEEEIIIYQQQgghxH1EAj4hhBBCCCGEEEIIIYQQQggh7iMS8AkhhBBCCCGEEEIIIYQQQghxH5GATwghhBBCCCGEEEIIIYQQQoj7iAR8QgghhBBCCCGEEEIIIYQQQtxHJOATQgghhBBCCCGEEEIIIYQQ4j4iAZ8QQgghhBBCCCGEEEIIIYQQ9xEJ+IQQQgghhBBCCCGEEEIIIYS4j0jAJ4QQQgghhBBCCCGEEEIIIcR9RAI+IYQQQgghhBBCCCGEEEIIIe4jEvAJIYQQQgghhBBCCCGEEEIIcR+RgE8IIYQQQgghhBBCCCGEEEKI+4gEfOL/374dmwAAAzAMo/8fnb7QrRikC7KbAAAAAAAAECLwAQAAAAAAQIjABwAAAAAAACECHwAAAAAAAIQIfAAAAAAAABAi8AEAAAAAAECIwAcAAAAAAAAhAh8AAAAAAACECHwAAAAAAAAQIvABAAAAAABAiMAHAAAAAAAAIQIfAAAAAAAAhAh8AAAAAAAAECLwAQAAAAAAQIjABwAAAAAAACECHwAAAAAAAIQIfAAAAAAAABAi8AEAAAAAAECIwAcAAAAAAAAhAh8AAAAAAACECHwAAAAAAAAQIvABAAAAAABAiMAHAAAAAAAAIQIfAAAAAAAAhAh8AAAAAAAAECLwAQAAAAAAQIjABwAAAAAAACECHwAAAAAAAIQIfAAAAAAAABAi8AEAAAAAAECIwAcAAAAAAAAhAh8AAAAAAACECHwAAAAAAAAQIvABAAAAAABAiMAHAAAAAAAAIQIfAAAAAAAAhAh8AAAAAAAAECLwAQAAAAAAQIjABwAAAAAAACECHwAAAAAAAIQIfAAAAAAAABAi8AEAAAAAAECIwAcAAAAAAAAhAh8AAAAAAACECHwAAAAAAAAQIvABAAAAAABAiMAHAAAAAAAAIQIfAAAAAAAAhAh8AAAAAAAAECLwAQAAAAAAQIjABwAAAAAAACECHwAAAAAAAIQIfAAAAAAAABAi8AEAAAAAAECIwAcAAAAAAAAhAh8AAAAAAACECHwAAAAAAAAQIvABAAAAAABAiMAHAAAAAAAAIQIfAAAAAAAAhAh8AAAAAAAAECLwAQAAAAAAQIjABwAAAAAAACECHwAAAAAAAIQIfAAAAAAAABAi8AEAAAAAAECIwAcAAAAAAAAhAh8AAAAAAACECHwAAAAAAAAQIvABAAAAAABAiMAHAAAAAAAAIQIfAAAAAAAAhAh8AAAAAAAAECLwAQAAAAAAQIjABwAAAAAAACECHwAAAAAAAIQIfAAAAAAAABAi8AEAAAAAAECIwAcAAAAAAAAhAh8AAAAAAACECHwAAAAAAAAQIvABAAAAAABAiMAHAAAAAAAAIQIfAAAAAAAAhAh8AAAAAAAAECLwAQAAAAAAQIjABwAAAAAAACECHwAAAAAAAIQIfAAAAAAAABBytv3eAAAAAAAAADzy4AMAAAAAAIAQgQ8AAAAAAABCBD4AAAAAAAAIEfgAAAAAAAAgROADAAAAAACAEIEPAAAAAAAAQi60/vuS3avTHQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load and display random samples\n", + "resetDataDir()\n", + "image_ids = np.random.choice(dataset_train.image_ids, 2)\n", + "for image_id in image_ids:\n", + " print(\"IMAGE ID: \" + str(image_id))\n", + " image = dataset_train.load_image(image_id)\n", + " mask, class_ids = dataset_train.load_mask(image_id)\n", + "\n", + " unique_class_ids = np.unique(class_ids)\n", + " mask_area = [np.sum(mask[:, :,i])\n", + " for i in range(0,len(unique_class_ids))]\n", + " \n", + " visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names, 4) #limit=4, display 4 images" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "FWPGbuPNBxzT", + "outputId": "3b29b078-2399-4021-9055-63e1f38b4ae5" + }, + "outputs": [], + "source": [ + "# # Verify that all images and masks are the correct size\n", + "# train_errors = []\n", + "# for info in dataset_train.image_info:\n", + "# # Check training image sizes\n", + "# image_id = info[\"id\"]\n", + "# info_height = info[\"height\"]\n", + "# info_width = info[\"width\"]\n", + "# try: \n", + "# mask, class_ids = dataset_train.load_mask(image_id)\n", + "# [mask_s1, mask_s2, mask_s3] = np.shape(mask)\n", + "# if (info_height != mask_s1 or info_width != mask_s2):\n", + "# train_errors.append(\"Training Images. Image and mask shape differ for image id: \" + str(image_id) )\n", + "# except: \n", + "# train_errors.append(\"Training Images. Image and mask shape differ for image id: \" + str(image_id) )\n", + "# continue\n", + " \n", + " \n", + "# # Check images not empty\n", + "# image = dataset_train.load_image(image_id)\n", + "# image_total = np.sum(image)\n", + "# if (image_total < 0):\n", + "# train_errors.append(\"Training image empty: \" + image_id)\n", + " \n", + "# # Check masks not empty\n", + "# mask = dataset_train.load_mask(image_id)\n", + "# mask_total = np.sum(mask)\n", + "# if (image_total < 0):\n", + "# train_errors.append(\"Training mask empty: \" + image_id)\n", + " \n", + " \n", + "# val_errors = []\n", + "# for info in dataset_val.image_info:\n", + "# image_id = info[\"id\"]\n", + "# info_height = info[\"height\"]\n", + "# info_width = info[\"width\"]\n", + "# try:\n", + "# mask, class_ids = dataset_val.load_mask(image_id)\n", + "# [mask_s1, mask_s2, mask_s3] = np.shape(mask)\n", + "# if (info_height != mask_s1 or info_width != mask_s2):\n", + "# val_errors.append(\"Validation Images. Image and mask shape differ for image id: \" + str(image_id))\n", + "# except: \n", + "# val_errors.append(\"Validation Images. Image and mask shape differ for image id: \"+ str(image_id))\n", + "# continue\n", + " \n", + "# # Check images not empty\n", + "# image = dataset_val.load_image(image_id)\n", + "# image_total = np.sum(image)\n", + "# if (image_total < 0):\n", + "# val_errors.append(\"Validation image empty: \" + image_id)\n", + "\n", + "# # Check masks not empty\n", + "# mask = dataset_val.load_mask(image_id)\n", + "# mask_total = np.sum(mask)\n", + "# if (image_total < 0):\n", + "# val_errors.append(\"Validation mask empty: \" + image_id)\n", + "\n", + "# print(train_errors)\n", + "# print(val_errors)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DCwqjDHzBxzX" + }, + "source": [ + "## Create Model" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "8i711wH5Bxza", + "outputId": "c589d395-2736-47d9-f904-ec8538e897b8", + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\tensorflow_core\\python\\ops\\resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "If using Keras pass *_constraint arguments to layers.\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py:4070: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.\n", + "\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\tensorflow_core\\python\\ops\\array_ops.py:1475: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.where in 2.0, which has the same broadcast rule as np.where\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Documents\\Bst_Reg\\model.py:524: The name tf.random_shuffle is deprecated. Please use tf.random.shuffle instead.\n", + "\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Documents\\Bst_Reg\\model.py:567: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "box_ind is deprecated, use box_indices instead\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Documents\\Bst_Reg\\model.py:315: The name tf.log is deprecated. Please use tf.math.log instead.\n", + "\n" + ] + } + ], + "source": [ + "# Create model in training mode\n", + "model = modellib.MaskRCNN(mode=\"training\", config=config,\n", + " model_dir=MODEL_DIR)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "Hn1axmeyBxzc", + "scrolled": false + }, + "outputs": [], + "source": [ + "# Which weights to start with?\n", + "init_with = \"coco\" # imagenet, coco, or last\n", + "\n", + "if init_with == \"imagenet\":\n", + " model.load_weights(model.get_imagenet_weights(), by_name=True)\n", + "elif init_with == \"coco\":\n", + " # Load weights trained on MS COCO, but skip layers that\n", + " # are different due to the different number of classes\n", + " # See README for instructions to download the COCO weights\n", + " model.load_weights(COCO_MODEL_PATH, by_name=True,\n", + " exclude=[\"mrcnn_class_logits\", \"mrcnn_bbox_fc\", \n", + " \"mrcnn_bbox\", \"mrcnn_mask\"])\n", + "elif init_with == \"last\":\n", + " # Load the last model you trained and continue training\n", + " model.load_weights(model.find_last()[1], by_name=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tpFQNxtLBxzd" + }, + "source": [ + "## Training\n", + "\n", + "Train in two stages:\n", + "1. Only the heads. Here we're freezing all the backbone layers and training only the randomly initialized layers (i.e. the ones that we didn't use pre-trained weights from MS COCO). To train only the head layers, pass `layers='heads'` to the `train()` function.\n", + "\n", + "2. Fine-tune all layers. For this simple example it's not necessary, but we're including it to show the process. Simply pass `layers=\"all` to train all layers." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "zOo_8g2ZBxzd", + "outputId": "3e020c4f-be4e-4a75-bc7d-3390b56a8fd0", + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In model: rpn_model\n", + "67\n", + "76\n", + "102\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\tensorflow_core\\python\\framework\\indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", + " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n", + "C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\tensorflow_core\\python\\framework\\indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", + " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n", + "C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\tensorflow_core\\python\\framework\\indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", + " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", + "\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\keras\\callbacks\\tensorboard_v1.py:200: The name tf.summary.merge_all is deprecated. Please use tf.compat.v1.summary.merge_all instead.\n", + "\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\keras\\callbacks\\tensorboard_v1.py:203: The name tf.summary.FileWriter is deprecated. Please use tf.compat.v1.summary.FileWriter instead.\n", + "\n", + "Epoch 1/2\n", + "986\n", + " 1/2000 [..............................] - ETA: 5:01:38 - loss: 8.6616394\n", + " 2/2000 [..............................] - ETA: 4:10:06 - loss: 8.1360648\n", + "592\n", + "599\n", + "47\n", + "856\n", + " 3/2000 [..............................] - ETA: 4:15:47 - loss: 6.6577852\n", + " 4/2000 [..............................] - ETA: 4:00:18 - loss: 5.6126605\n", + "902\n", + " 5/2000 [..............................] - ETA: 3:55:36 - loss: 4.9684708\n", + " 6/2000 [..............................] - ETA: 3:37:28 - loss: 5.3905287\n", + " 7/2000 [..............................] - ETA: 3:38:49 - loss: 4.9377378\n", + " 8/2000 [..............................] - ETA: 3:35:52 - loss: 4.5919485\n", + "341\n", + " 9/2000 [..............................] - ETA: 3:36:52 - loss: 4.4973411\n", + " 10/2000 [..............................] - ETA: 3:33:44 - loss: 4.1643190\n", + " 11/2000 [..............................] - ETA: 3:29:32 - loss: 4.0536523\n", + "656\n", + "416\n", + " 12/2000 [..............................] - ETA: 3:31:48 - loss: 3.818175\n", + "334\n", + " 13/2000 [..............................] - ETA: 3:33:41 - loss: 3.5664521\n", + "290\n", + " 14/2000 [..............................] - ETA: 3:35:52 - loss: 3.3926307\n", + " 15/2000 [..............................] - ETA: 3:35:54 - loss: 3.3219403\n", + " 16/2000 [..............................] - ETA: 3:33:58 - loss: 3.1567982\n", + " 17/2000 [..............................] - ETA: 3:32:50 - loss: 3.0021607\n", + "961\n", + " 18/2000 [..............................] - ETA: 3:32:59 - loss: 3.0211793\n", + " 19/2000 [..............................] - ETA: 3:30:58 - loss: 3.0608310\n", + " 20/2000 [..............................] - ETA: 3:31:06 - loss: 3.0446438\n", + " 21/2000 [..............................] - ETA: 3:28:29 - loss: 3.092291\n", + " 22/2000 [..............................] - ETA: 3:24:19 - loss: 2.9749391\n", + " 23/2000 [..............................] - ETA: 3:23:50 - loss: 2.8700939\n", + " 24/2000 [..............................] - ETA: 3:23:47 - loss: 2.7821639\n", + "270\n", + " 25/2000 [..............................] - ETA: 3:25:00 - loss: 2.7690427\n", + " 26/2000 [..............................] - ETA: 3:24:09 - loss: 2.6915853\n", + " 27/2000 [..............................] - ETA: 3:23:25 - loss: 2.6280396\n", + " 28/2000 [..............................] - ETA: 3:22:39 - loss: 2.6603342\n", + " 29/2000 [..............................] - ETA: 3:23:13 - loss: 2.5929148\n", + " 30/2000 [..............................] - ETA: 3:20:33 - loss: 2.5536584\n", + "234\n", + " 31/2000 [..............................] - ETA: 3:21:30 - loss: 2.6056425\n", + " 32/2000 [..............................] - ETA: 3:20:54 - loss: 2.6108476\n", + "561\n", + "551\n", + "528\n", + "690\n", + "512\n", + "468\n", + "346\n", + " 33/2000 [..............................] - ETA: 3:24:58 - loss: 2.6003397\n", + " 34/2000 [..............................] - ETA: 3:24:19 - loss: 2.5919282\n", + " 35/2000 [..............................] - ETA: 3:24:48 - loss: 2.540193\n", + " 36/2000 [..............................] - ETA: 3:22:16 - loss: 2.4814725\n", + " 37/2000 [..............................] - ETA: 3:20:09 - loss: 2.4390534\n", + "782\n", + " 38/2000 [..............................] - ETA: 3:18:56 - loss: 2.3913389\n", + " 39/2000 [..............................] - ETA: 3:18:44 - loss: 2.3440433\n", + " 40/2000 [..............................] - ETA: 3:18:16 - loss: 2.3541869\n", + " 41/2000 [..............................] - ETA: 3:17:52 - loss: 2.3159567\n", + "0\n", + "813\n", + " 42/2000 [..............................] - ETA: 3:18:22 - loss: 2.2847470\n", + "184\n", + " 43/2000 [..............................] - ETA: 3:17:58 - loss: 2.2552157\n", + " 44/2000 [..............................] - ETA: 3:16:12 - loss: 2.3025932\n", + " 45/2000 [..............................] - ETA: 3:16:13 - loss: 2.3125566\n", + "866\n", + " 46/2000 [..............................] - ETA: 3:16:13 - loss: 2.3213792\n", + " 47/2000 [..............................] - ETA: 3:15:33 - loss: 2.3336724\n", + " 48/2000 [..............................] - ETA: 3:13:54 - loss: 2.3022960\n", + " 49/2000 [..............................] - ETA: 3:13:45 - loss: 2.3105406\n", + " 50/2000 [..............................] - ETA: 3:13:21 - loss: 2.323469\n", + "680\n", + "60\n", + "886\n", + " 51/2000 [..............................] - ETA: 3:14:30 - loss: 2.3254859\n", + " 52/2000 [..............................] - ETA: 3:14:06 - loss: 2.335858\n", + "693\n", + " 53/2000 [..............................] - ETA: 3:12:58 - loss: 2.3241187\n", + " 54/2000 [..............................] - ETA: 3:12:18 - loss: 2.3310267\n", + " 55/2000 [..............................] - ETA: 3:12:32 - loss: 2.3395179\n", + " 56/2000 [..............................] - ETA: 3:11:54 - loss: 2.347587\n", + " 57/2000 [..............................] - ETA: 3:10:25 - loss: 2.3468655\n", + "442\n", + " 58/2000 [..............................] - ETA: 3:10:10 - loss: 2.3587140\n", + " 59/2000 [..............................] - ETA: 3:08:53 - loss: 2.3679120\n", + " 60/2000 [..............................] - ETA: 3:07:37 - loss: 2.3420837\n", + " 61/2000 [..............................] - ETA: 3:07:23 - loss: 2.3624464\n", + "741\n", + " 62/2000 [..............................] - ETA: 3:06:32 - loss: 2.3396893\n", + " 63/2000 [..............................] - ETA: 3:06:28 - loss: 2.3397537\n", + "314\n", + " 64/2000 [..............................] - ETA: 3:06:57 - loss: 2.3459180\n", + " 65/2000 [..............................] - ETA: 3:06:29 - loss: 2.323332\n", + "119\n", + " 66/2000 [..............................] - ETA: 3:05:39 - loss: 2.3013767\n", + " 67/2000 [>.............................] - ETA: 3:04:37 - loss: 2.2781799\n", + " 68/2000 [>.............................] - ETA: 3:04:01 - loss: 2.2874600\n", + "548\n", + "102\n", + " 69/2000 [>.............................] - ETA: 3:03:33 - loss: 2.2688976\n", + " 70/2000 [>.............................] - ETA: 3:03:29 - loss: 2.2672501\n", + "304\n", + " 71/2000 [>.............................] - ETA: 3:03:58 - loss: 2.2801471\n", + "529\n", + "333\n", + " 72/2000 [>.............................] - ETA: 3:04:42 - loss: 2.2777911\n", + " 73/2000 [>.............................] - ETA: 3:04:45 - loss: 2.2820565\n", + "494\n", + "370\n", + " 74/2000 [>.............................] - ETA: 3:05:12 - loss: 2.2836122\n", + " 75/2000 [>.............................] - ETA: 3:04:14 - loss: 2.2571909\n", + " 76/2000 [>.............................] - ETA: 3:04:11 - loss: 2.2511278\n", + " 77/2000 [>.............................] - ETA: 3:04:41 - loss: 2.2602354\n", + " 78/2000 [>.............................] - ETA: 3:04:45 - loss: 2.2571401\n", + " 79/2000 [>.............................] - ETA: 3:04:32 - loss: 2.2589727\n", + " 80/2000 [>.............................] - ETA: 3:03:38 - loss: 2.2498350\n", + " 81/2000 [>.............................] - ETA: 3:03:43 - loss: 2.2484586\n", + "295\n", + " 82/2000 [>.............................] - ETA: 3:04:17 - loss: 2.2568604\n", + "63\n", + "131\n", + " 83/2000 [>.............................] - ETA: 3:03:53 - loss: 2.2435264\n", + " 84/2000 [>.............................] - ETA: 3:04:05 - loss: 2.2469609\n", + "616\n", + "24\n", + "209\n", + " 85/2000 [>.............................] - ETA: 3:04:57 - loss: 2.244464\n", + "169\n", + " 86/2000 [>.............................] - ETA: 3:04:28 - loss: 2.2279647\n", + "237\n", + " 87/2000 [>.............................] - ETA: 3:04:43 - loss: 2.2326413\n", + " 88/2000 [>.............................] - ETA: 3:04:31 - loss: 2.2378358\n", + " 89/2000 [>.............................] - ETA: 3:04:25 - loss: 2.2473467\n", + "42\n", + "798\n", + " 90/2000 [>.............................] - ETA: 3:04:21 - loss: 2.2490286\n", + " 91/2000 [>.............................] - ETA: 3:04:36 - loss: 2.2519321\n", + " 92/2000 [>.............................] - ETA: 3:04:42 - loss: 2.2458395\n", + " 93/2000 [>.............................] - ETA: 3:04:36 - loss: 2.2428481\n", + "260\n", + " 94/2000 [>.............................] - ETA: 3:05:01 - loss: 2.2431390\n", + " 95/2000 [>.............................] - ETA: 3:04:54 - loss: 2.236633\n", + "707\n", + " 96/2000 [>.............................] - ETA: 3:04:17 - loss: 2.2234263\n", + " 97/2000 [>.............................] - ETA: 3:04:25 - loss: 2.2268838\n", + " 98/2000 [>.............................] - ETA: 3:04:23 - loss: 2.2392273\n", + " 99/2000 [>.............................] - ETA: 3:04:39 - loss: 2.2370296\n", + " 100/2000 [>.............................] - ETA: 3:05:00 - loss: 2.2226456\n", + "630\n", + "739\n", + " 101/2000 [>.............................] - ETA: 3:04:36 - loss: 2.2049765\n", + " 102/2000 [>.............................] - ETA: 3:03:51 - loss: 2.1886573\n", + "666\n", + "958\n", + " 103/2000 [>.............................] - ETA: 3:04:14 - loss: 2.1888699\n", + " 104/2000 [>.............................] - ETA: 3:03:29 - loss: 2.174965\n", + "15\n", + "814\n", + " 105/2000 [>.............................] - ETA: 3:03:39 - loss: 2.1788162\n", + " 106/2000 [>.............................] - ETA: 3:03:05 - loss: 2.1650113\n", + " 107/2000 [>.............................] - ETA: 3:02:17 - loss: 2.1499328\n", + " 108/2000 [>.............................] - ETA: 3:02:23 - loss: 2.1527863\n", + " 109/2000 [>.............................] - ETA: 3:02:13 - loss: 2.155846\n", + "154\n", + " 110/2000 [>.............................] - ETA: 3:01:42 - loss: 2.1482580\n", + "496\n", + "912\n", + " 111/2000 [>.............................] - ETA: 3:02:01 - loss: 2.1479232\n", + " 112/2000 [>.............................] - ETA: 3:02:13 - loss: 2.146482\n", + " 113/2000 [>.............................] - ETA: 3:01:28 - loss: 2.1375324\n", + " 114/2000 [>.............................] - ETA: 3:01:32 - loss: 2.133976\n", + "645\n", + "903\n", + " 115/2000 [>.............................] - ETA: 3:01:46 - loss: 2.1356918\n", + " 116/2000 [>.............................] - ETA: 3:01:45 - loss: 2.1384722\n", + " 117/2000 [>.............................] - ETA: 3:01:05 - loss: 2.1317614\n", + "873\n", + " 118/2000 [>.............................] - ETA: 3:01:14 - loss: 2.1315617\n", + "301\n", + " 119/2000 [>.............................] - ETA: 3:01:27 - loss: 2.1276623\n", + "583\n", + "175\n", + " 120/2000 [>.............................] - ETA: 3:01:15 - loss: 2.1177895\n", + " 121/2000 [>.............................] - ETA: 3:01:16 - loss: 2.1174539\n", + "455\n", + "417\n", + " 122/2000 [>.............................] - ETA: 3:01:24 - loss: 2.1240547\n", + "118\n", + " 123/2000 [>.............................] - ETA: 3:00:54 - loss: 2.1207929\n", + " 124/2000 [>.............................] - ETA: 3:00:53 - loss: 2.1178462\n", + "17\n", + "384\n", + " 125/2000 [>.............................] - ETA: 3:01:03 - loss: 2.1175917\n", + " 126/2000 [>.............................] - ETA: 3:01:00 - loss: 2.120284\n", + " 127/2000 [>.............................] - ETA: 3:00:18 - loss: 2.1112621\n", + "892\n", + " 128/2000 [>.............................] - ETA: 3:00:20 - loss: 2.1082824\n", + " 129/2000 [>.............................] - ETA: 3:00:09 - loss: 2.1099222\n", + " 130/2000 [>.............................] - ETA: 3:00:17 - loss: 2.1096644\n", + "780\n", + " 131/2000 [>.............................] - ETA: 2:59:48 - loss: 2.1166771\n", + " 132/2000 [>.............................] - ETA: 2:59:12 - loss: 2.1086542\n", + "188\n", + " 133/2000 [>.............................] - ETA: 2:59:02 - loss: 2.1002199\n", + " 134/2000 [=>............................] - ETA: 2:59:00 - loss: 2.0971978\n", + " 135/2000 [=>............................] - ETA: 2:58:53 - loss: 2.0934250\n", + " 136/2000 [=>............................] - ETA: 2:58:52 - loss: 2.092025\n", + "883\n", + " 137/2000 [=>............................] - ETA: 2:58:56 - loss: 2.0910543\n", + "947\n", + " 138/2000 [=>............................] - ETA: 2:59:01 - loss: 2.0883514\n", + "706\n", + " 139/2000 [=>............................] - ETA: 2:58:40 - loss: 2.0925151\n", + " 140/2000 [=>............................] - ETA: 2:58:06 - loss: 2.0862213\n", + " 141/2000 [=>............................] - ETA: 2:58:04 - loss: 2.0893128\n", + " 142/2000 [=>............................] - ETA: 2:57:31 - loss: 2.0823183\n", + " 143/2000 [=>............................] - ETA: 2:57:14 - loss: 2.0782493\n", + "281\n", + " 144/2000 [=>............................] - ETA: 2:57:27 - loss: 2.0801818\n", + " 145/2000 [=>............................] - ETA: 2:57:17 - loss: 2.0865701\n", + " 146/2000 [=>............................] - ETA: 2:56:45 - loss: 2.0849803\n", + " 147/2000 [=>............................] - ETA: 2:56:25 - loss: 2.086748\n", + "915\n", + " 148/2000 [=>............................] - ETA: 2:56:30 - loss: 2.0829687\n", + "45\n", + "736\n", + " 149/2000 [=>............................] - ETA: 2:56:13 - loss: 2.0737284\n", + " 150/2000 [=>............................] - ETA: 2:56:24 - loss: 2.0755576\n", + "981\n", + " 151/2000 [=>............................] - ETA: 2:56:24 - loss: 2.0740769\n", + " 152/2000 [=>............................] - ETA: 2:55:53 - loss: 2.0650365\n", + " 153/2000 [=>............................] - ETA: 2:55:46 - loss: 2.0663480\n", + "953\n", + " 154/2000 [=>............................] - ETA: 2:55:47 - loss: 2.0672277\n", + " 155/2000 [=>............................] - ETA: 2:55:51 - loss: 2.0707622\n", + "230\n", + " 156/2000 [=>............................] - ETA: 2:55:59 - loss: 2.0687553\n", + "840\n", + " 157/2000 [=>............................] - ETA: 2:55:57 - loss: 2.0671663\n", + "545\n", + "252\n", + " 158/2000 [=>............................] - ETA: 2:56:13 - loss: 2.0673308\n", + " 159/2000 [=>............................] - ETA: 2:56:13 - loss: 2.0646775\n", + " 160/2000 [=>............................] - ETA: 2:55:42 - loss: 2.0638967\n", + " 161/2000 [=>............................] - ETA: 2:55:36 - loss: 2.0628319\n", + " 162/2000 [=>............................] - ETA: 2:55:35 - loss: 2.0595652\n", + "86\n", + " 163/2000 [=>............................] - ETA: 2:55:08 - loss: 2.0519191\n", + " 164/2000 [=>............................] - ETA: 2:54:52 - loss: 2.0438634\n", + "520\n", + "764\n", + " 165/2000 [=>............................] - ETA: 2:54:37 - loss: 2.0342220\n", + " 166/2000 [=>............................] - ETA: 2:54:38 - loss: 2.0335697\n", + " 167/2000 [=>............................] - ETA: 2:54:09 - loss: 2.0277879\n", + " 168/2000 [=>............................] - ETA: 2:54:10 - loss: 2.0242387\n", + " 169/2000 [=>............................] - ETA: 2:54:04 - loss: 2.0238636\n", + "740\n", + " 170/2000 [=>............................] - ETA: 2:53:41 - loss: 2.0137650\n", + "969\n", + " 171/2000 [=>............................] - ETA: 2:53:40 - loss: 2.0139965\n", + " 172/2000 [=>............................] - ETA: 2:53:34 - loss: 2.0143457\n", + "142\n", + " 173/2000 [=>............................] - ETA: 2:53:12 - loss: 2.0114783\n", + " 174/2000 [=>............................] - ETA: 2:52:44 - loss: 2.0059134\n", + " 175/2000 [=>............................] - ETA: 2:52:17 - loss: 1.9980555\n", + "796\n", + " 176/2000 [=>............................] - ETA: 2:52:05 - loss: 1.9938671\n", + "383\n", + " 177/2000 [=>............................] - ETA: 2:52:05 - loss: 1.9936320\n", + " 178/2000 [=>............................] - ETA: 2:52:05 - loss: 1.9929874\n", + " 179/2000 [=>............................] - ETA: 2:52:07 - loss: 1.9940810\n", + " 180/2000 [=>............................] - ETA: 2:51:49 - loss: 1.9942560\n", + "688\n", + "952\n", + " 181/2000 [=>............................] - ETA: 2:51:54 - loss: 1.9942973\n", + " 182/2000 [=>............................] - ETA: 2:51:47 - loss: 1.9949846\n", + " 183/2000 [=>............................] - ETA: 2:51:39 - loss: 1.9983495\n", + "809\n", + " 184/2000 [=>............................] - ETA: 2:51:28 - loss: 1.9950682\n", + "881\n", + " 185/2000 [=>............................] - ETA: 2:51:31 - loss: 1.9971345\n", + " 186/2000 [=>............................] - ETA: 2:51:27 - loss: 1.9997336\n", + " 187/2000 [=>............................] - ETA: 2:51:24 - loss: 1.9986482\n", + "95\n", + " 188/2000 [=>............................] - ETA: 2:51:00 - loss: 1.9899711\n", + " 189/2000 [=>............................] - ETA: 2:50:37 - loss: 1.9840511\n", + "294\n", + " 190/2000 [=>............................] - ETA: 2:50:45 - loss: 1.9831368\n", + " 191/2000 [=>............................] - ETA: 2:50:38 - loss: 1.980956\n", + "139\n", + " 192/2000 [=>............................] - ETA: 2:50:18 - loss: 1.9747698\n", + " 193/2000 [=>............................] - ETA: 2:49:53 - loss: 1.9689219\n", + " 194/2000 [=>............................] - ETA: 2:49:53 - loss: 1.9704685\n", + "957\n", + " 195/2000 [=>............................] - ETA: 2:49:53 - loss: 1.9663562\n", + "363\n", + " 196/2000 [=>............................] - ETA: 2:49:52 - loss: 1.9655444\n", + " 197/2000 [=>............................] - ETA: 2:49:36 - loss: 1.9661735\n", + " 198/2000 [=>............................] - ETA: 2:49:11 - loss: 1.9587888\n", + " 199/2000 [=>............................] - ETA: 2:49:12 - loss: 1.9578851\n", + " 200/2000 [==>...........................] - ETA: 2:49:03 - loss: 1.9587163\n", + " 201/2000 [==>...........................] - ETA: 2:48:43 - loss: 1.9579737\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 202/2000 [==>...........................] - ETA: 2:48:18 - loss: 1.9506941\n", + " 203/2000 [==>...........................] - ETA: 2:48:15 - loss: 1.9534472\n", + "620\n", + "152\n", + " 204/2000 [==>...........................] - ETA: 2:48:01 - loss: 1.9494217\n", + " 205/2000 [==>...........................] - ETA: 2:48:01 - loss: 1.9496747\n", + " 206/2000 [==>...........................] - ETA: 2:47:37 - loss: 1.9422258\n", + " 207/2000 [==>...........................] - ETA: 2:47:37 - loss: 1.9429971\n", + " 208/2000 [==>...........................] - ETA: 2:47:30 - loss: 1.9386832\n", + " 209/2000 [==>...........................] - ETA: 2:47:22 - loss: 1.9372244\n", + " 210/2000 [==>...........................] - ETA: 2:47:24 - loss: 1.9375841\n", + " 211/2000 [==>...........................] - ETA: 2:47:15 - loss: 1.9344374\n", + " 212/2000 [==>...........................] - ETA: 2:47:10 - loss: 1.9342103\n", + " 213/2000 [==>...........................] - ETA: 2:46:45 - loss: 1.9278868\n", + " 214/2000 [==>...........................] - ETA: 2:46:37 - loss: 1.9298962\n", + " 215/2000 [==>...........................] - ETA: 2:46:32 - loss: 1.9232779\n", + " 216/2000 [==>...........................] - ETA: 2:46:10 - loss: 1.9178215\n", + " 217/2000 [==>...........................] - ETA: 2:46:07 - loss: 1.9180519\n", + "772\n", + " 218/2000 [==>...........................] - ETA: 2:45:49 - loss: 1.9158823\n", + " 219/2000 [==>...........................] - ETA: 2:45:40 - loss: 1.9168784\n", + " 220/2000 [==>...........................] - ETA: 2:45:18 - loss: 1.9145817\n", + " 221/2000 [==>...........................] - ETA: 2:45:09 - loss: 1.9156160\n", + " 222/2000 [==>...........................] - ETA: 2:44:51 - loss: 1.909594\n", + " 223/2000 [==>...........................] - ETA: 2:44:26 - loss: 1.9029312\n", + " 224/2000 [==>...........................] - ETA: 2:44:29 - loss: 1.9002894\n", + " 225/2000 [==>...........................] - ETA: 2:44:24 - loss: 1.9002235\n", + " 226/2000 [==>...........................] - ETA: 2:44:23 - loss: 1.8968597\n", + "758\n", + " 227/2000 [==>...........................] - ETA: 2:44:06 - loss: 1.8918651\n", + "227\n", + " 228/2000 [==>...........................] - ETA: 2:44:10 - loss: 1.8862721\n", + " 229/2000 [==>...........................] - ETA: 2:43:48 - loss: 1.882449\n", + "508\n", + "18\n", + "936\n", + " 230/2000 [==>...........................] - ETA: 2:43:58 - loss: 1.8832266\n", + " 231/2000 [==>...........................] - ETA: 2:43:58 - loss: 1.8811686\n", + "794\n", + " 232/2000 [==>...........................] - ETA: 2:43:51 - loss: 1.8812155\n", + " 233/2000 [==>...........................] - ETA: 2:43:30 - loss: 1.8803574\n", + "210\n", + " 234/2000 [==>...........................] - ETA: 2:43:31 - loss: 1.8840808\n", + " 235/2000 [==>...........................] - ETA: 2:43:17 - loss: 1.883750\n", + "207\n", + " 236/2000 [==>...........................] - ETA: 2:43:18 - loss: 1.882840\n", + "55\n", + "14\n", + "327\n", + " 237/2000 [==>...........................] - ETA: 2:43:29 - loss: 1.8831715\n", + " 238/2000 [==>...........................] - ETA: 2:43:08 - loss: 1.8788117\n", + " 239/2000 [==>...........................] - ETA: 2:42:45 - loss: 1.8748749\n", + " 240/2000 [==>...........................] - ETA: 2:42:24 - loss: 1.8691934\n", + " 241/2000 [==>...........................] - ETA: 2:42:20 - loss: 1.870374\n", + "716\n", + " 242/2000 [==>...........................] - ETA: 2:42:04 - loss: 1.864739\n", + "111\n", + " 243/2000 [==>...........................] - ETA: 2:41:46 - loss: 1.8585944\n", + " 244/2000 [==>...........................] - ETA: 2:41:45 - loss: 1.8578955\n", + " 245/2000 [==>...........................] - ETA: 2:41:39 - loss: 1.8615202\n", + " 246/2000 [==>...........................] - ETA: 2:41:36 - loss: 1.8625718\n", + " 247/2000 [==>...........................] - ETA: 2:41:15 - loss: 1.8581430\n", + " 248/2000 [==>...........................] - ETA: 2:41:08 - loss: 1.8587882\n", + " 249/2000 [==>...........................] - ETA: 2:41:04 - loss: 1.8611259\n", + " 250/2000 [==>...........................] - ETA: 2:41:03 - loss: 1.8590186\n", + " 251/2000 [==>...........................] - ETA: 2:40:51 - loss: 1.8551855\n", + " 252/2000 [==>...........................] - ETA: 2:40:44 - loss: 1.8542366\n", + " 253/2000 [==>...........................] - ETA: 2:40:38 - loss: 1.8536440\n", + " 254/2000 [==>...........................] - ETA: 2:40:29 - loss: 1.8531192\n", + " 255/2000 [==>...........................] - ETA: 2:40:17 - loss: 1.8535400\n", + " 256/2000 [==>...........................] - ETA: 2:40:09 - loss: 1.853699\n", + " 257/2000 [==>...........................] - ETA: 2:39:48 - loss: 1.8499414\n", + " 258/2000 [==>...........................] - ETA: 2:39:41 - loss: 1.8506665\n", + "900\n", + " 259/2000 [==>...........................] - ETA: 2:39:39 - loss: 1.8522579\n", + "448\n", + " 260/2000 [==>...........................] - ETA: 2:39:30 - loss: 1.8516525\n", + "385\n", + " 261/2000 [==>...........................] - ETA: 2:39:28 - loss: 1.8521676\n", + "226\n", + " 262/2000 [==>...........................] - ETA: 2:39:30 - loss: 1.8507862\n", + " 263/2000 [==>...........................] - ETA: 2:39:23 - loss: 1.8509544\n", + "254\n", + " 264/2000 [==>...........................] - ETA: 2:39:26 - loss: 1.8504483\n", + "147\n", + " 265/2000 [==>...........................] - ETA: 2:39:10 - loss: 1.8455658\n", + "603\n", + "375\n", + " 266/2000 [==>...........................] - ETA: 2:39:14 - loss: 1.841212\n", + "582\n", + "867\n", + " 267/2000 [===>..........................] - ETA: 2:39:18 - loss: 1.8402491\n", + "843\n", + " 268/2000 [===>..........................] - ETA: 2:39:19 - loss: 1.8405156\n", + " 269/2000 [===>..........................] - ETA: 2:39:01 - loss: 1.8374938\n", + " 270/2000 [===>..........................] - ETA: 2:38:57 - loss: 1.8366827\n", + " 271/2000 [===>..........................] - ETA: 2:38:50 - loss: 1.8383629\n", + "225\n", + " 272/2000 [===>..........................] - ETA: 2:38:52 - loss: 1.8365835\n", + " 273/2000 [===>..........................] - ETA: 2:38:47 - loss: 1.8364928\n", + " 274/2000 [===>..........................] - ETA: 2:38:43 - loss: 1.8398983\n", + " 275/2000 [===>..........................] - ETA: 2:38:38 - loss: 1.8393486\n", + "62\n", + "141\n", + " 276/2000 [===>..........................] - ETA: 2:38:26 - loss: 1.8399610\n", + "386\n", + " 277/2000 [===>..........................] - ETA: 2:38:24 - loss: 1.8361774\n", + " 278/2000 [===>..........................] - ETA: 2:38:06 - loss: 1.8325613\n", + "164\n", + " 279/2000 [===>..........................] - ETA: 2:37:54 - loss: 1.8273194\n", + " 280/2000 [===>..........................] - ETA: 2:37:43 - loss: 1.8225211\n", + " 281/2000 [===>..........................] - ETA: 2:37:40 - loss: 1.8223577\n", + "26\n", + "479\n", + "745\n", + " 282/2000 [===>..........................] - ETA: 2:37:32 - loss: 1.8199331\n", + " 283/2000 [===>..........................] - ETA: 2:37:33 - loss: 1.8199323\n", + " 284/2000 [===>..........................] - ETA: 2:37:31 - loss: 1.8194231\n", + " 285/2000 [===>..........................] - ETA: 2:37:29 - loss: 1.8195593\n", + "612\n", + "812\n", + " 286/2000 [===>..........................] - ETA: 2:37:29 - loss: 1.8195174\n", + " 287/2000 [===>..........................] - ETA: 2:37:14 - loss: 1.8160510\n", + "844\n", + " 288/2000 [===>..........................] - ETA: 2:37:10 - loss: 1.8172507\n", + "356\n", + " 289/2000 [===>..........................] - ETA: 2:37:08 - loss: 1.8184975\n", + " 290/2000 [===>..........................] - ETA: 2:37:03 - loss: 1.8196845\n", + " 291/2000 [===>..........................] - ETA: 2:36:57 - loss: 1.8192221\n", + " 292/2000 [===>..........................] - ETA: 2:36:58 - loss: 1.8190829\n", + " 293/2000 [===>..........................] - ETA: 2:36:50 - loss: 1.8195594\n", + "233\n", + " 294/2000 [===>..........................] - ETA: 2:36:52 - loss: 1.8169581\n", + "451\n", + " 295/2000 [===>..........................] - ETA: 2:36:44 - loss: 1.8168563\n", + "176\n", + " 296/2000 [===>..........................] - ETA: 2:36:33 - loss: 1.8131907\n", + " 297/2000 [===>..........................] - ETA: 2:36:27 - loss: 1.8134905\n", + " 298/2000 [===>..........................] - ETA: 2:36:22 - loss: 1.8124298\n", + " 299/2000 [===>..........................] - ETA: 2:36:21 - loss: 1.8142979\n", + " 300/2000 [===>..........................] - ETA: 2:36:16 - loss: 1.8135435\n", + " 301/2000 [===>..........................] - ETA: 2:36:04 - loss: 1.8135189\n", + " 302/2000 [===>..........................] - ETA: 2:35:54 - loss: 1.816428\n", + "7\n", + "786\n", + " 303/2000 [===>..........................] - ETA: 2:35:44 - loss: 1.8138627\n", + "381\n", + " 304/2000 [===>..........................] - ETA: 2:35:42 - loss: 1.8137591\n", + "889\n", + " 305/2000 [===>..........................] - ETA: 2:35:42 - loss: 1.8164338\n", + " 306/2000 [===>..........................] - ETA: 2:35:38 - loss: 1.8157355\n", + " 307/2000 [===>..........................] - ETA: 2:35:35 - loss: 1.8155750\n", + " 308/2000 [===>..........................] - ETA: 2:35:22 - loss: 1.8106674\n", + "825\n", + " 309/2000 [===>..........................] - ETA: 2:35:18 - loss: 1.8117937\n", + " 310/2000 [===>..........................] - ETA: 2:35:14 - loss: 1.8122196\n", + " 311/2000 [===>..........................] - ETA: 2:35:04 - loss: 1.8113329\n", + " 312/2000 [===>..........................] - ETA: 2:35:01 - loss: 1.8127916\n", + " 313/2000 [===>..........................] - ETA: 2:34:57 - loss: 1.8130347\n", + " 314/2000 [===>..........................] - ETA: 2:34:54 - loss: 1.8130896\n", + " 315/2000 [===>..........................] - ETA: 2:34:48 - loss: 1.8129802\n", + " 316/2000 [===>..........................] - ETA: 2:34:37 - loss: 1.8126339\n", + " 317/2000 [===>..........................] - ETA: 2:34:33 - loss: 1.811092\n", + " 318/2000 [===>..........................] - ETA: 2:34:15 - loss: 1.8068761\n", + " 319/2000 [===>..........................] - ETA: 2:34:02 - loss: 1.8020454\n", + " 320/2000 [===>..........................] - ETA: 2:33:51 - loss: 1.8022322\n", + " 321/2000 [===>..........................] - ETA: 2:33:49 - loss: 1.8011669\n", + "242\n", + " 322/2000 [===>..........................] - ETA: 2:33:49 - loss: 1.80182\n", + "954\n", + " 323/2000 [===>..........................] - ETA: 2:33:46 - loss: 1.8025137\n", + " 324/2000 [===>..........................] - ETA: 2:33:31 - loss: 1.7973760\n", + " 325/2000 [===>..........................] - ETA: 2:33:15 - loss: 1.7941864\n", + " 326/2000 [===>..........................] - ETA: 2:33:09 - loss: 1.7950536\n", + "559\n", + "10\n", + "509\n", + "251\n", + " 327/2000 [===>..........................] - ETA: 2:33:18 - loss: 1.7962241\n", + " 328/2000 [===>..........................] - ETA: 2:33:15 - loss: 1.7955123\n", + " 329/2000 [===>..........................] - ETA: 2:33:00 - loss: 1.795659\n", + "243\n", + " 330/2000 [===>..........................] - ETA: 2:33:02 - loss: 1.7951181\n", + " 331/2000 [===>..........................] - ETA: 2:32:53 - loss: 1.7949201\n", + " 332/2000 [===>..........................] - ETA: 2:32:49 - loss: 1.7959114\n", + " 333/2000 [===>..........................] - ETA: 2:32:32 - loss: 1.7915885\n", + " 334/2000 [====>.........................] - ETA: 2:32:28 - loss: 1.7925240\n", + " 335/2000 [====>.........................] - ETA: 2:32:25 - loss: 1.7926458\n", + "922\n", + " 336/2000 [====>.........................] - ETA: 2:32:24 - loss: 1.7925423\n", + " 337/2000 [====>.........................] - ETA: 2:32:17 - loss: 1.7929675\n", + "945\n", + " 338/2000 [====>.........................] - ETA: 2:32:16 - loss: 1.7934898\n", + " 339/2000 [====>.........................] - ETA: 2:32:11 - loss: 1.792936\n", + "694\n", + " 340/2000 [====>.........................] - ETA: 2:32:00 - loss: 1.7921943\n", + " 341/2000 [====>.........................] - ETA: 2:31:57 - loss: 1.7923834\n", + " 342/2000 [====>.........................] - ETA: 2:31:50 - loss: 1.7923348\n", + " 343/2000 [====>.........................] - ETA: 2:31:46 - loss: 1.7937477\n", + "535\n", + "908\n", + " 344/2000 [====>.........................] - ETA: 2:31:47 - loss: 1.7933136\n", + " 345/2000 [====>.........................] - ETA: 2:31:32 - loss: 1.7901283\n", + " 346/2000 [====>.........................] - ETA: 2:31:31 - loss: 1.7901923\n", + " 347/2000 [====>.........................] - ETA: 2:31:28 - loss: 1.7897949\n", + " 348/2000 [====>.........................] - ETA: 2:31:25 - loss: 1.78924\n", + "279\n", + " 349/2000 [====>.........................] - ETA: 2:31:27 - loss: 1.7894490\n", + "921\n", + " 350/2000 [====>.........................] - ETA: 2:31:28 - loss: 1.7886415\n", + " 351/2000 [====>.........................] - ETA: 2:31:22 - loss: 1.78855\n", + "168\n", + " 352/2000 [====>.........................] - ETA: 2:31:11 - loss: 1.7855692\n", + "887\n", + " 353/2000 [====>.........................] - ETA: 2:31:10 - loss: 1.7857153\n", + " 354/2000 [====>.........................] - ETA: 2:30:56 - loss: 1.7837268\n", + " 355/2000 [====>.........................] - ETA: 2:30:53 - loss: 1.7855632\n", + "857\n", + " 356/2000 [====>.........................] - ETA: 2:30:50 - loss: 1.7861487\n", + "738\n", + " 357/2000 [====>.........................] - ETA: 2:30:38 - loss: 1.7829640\n", + "628\n", + "569\n", + "746\n", + " 358/2000 [====>.........................] - ETA: 2:30:31 - loss: 1.7788797\n", + " 359/2000 [====>.........................] - ETA: 2:30:21 - loss: 1.7767700\n", + " 360/2000 [====>.........................] - ETA: 2:30:07 - loss: 1.7750719\n", + " 361/2000 [====>.........................] - ETA: 2:29:52 - loss: 1.7711326\n", + " 362/2000 [====>.........................] - ETA: 2:29:52 - loss: 1.7724728\n", + " 363/2000 [====>.........................] - ETA: 2:29:37 - loss: 1.7694776\n", + " 364/2000 [====>.........................] - ETA: 2:29:23 - loss: 1.7654405\n", + " 365/2000 [====>.........................] - ETA: 2:29:16 - loss: 1.7687717\n", + " 366/2000 [====>.........................] - ETA: 2:29:02 - loss: 1.7665785\n", + " 367/2000 [====>.........................] - ETA: 2:28:48 - loss: 1.7643100\n", + " 368/2000 [====>.........................] - ETA: 2:28:32 - loss: 1.7602821\n", + " 369/2000 [====>.........................] - ETA: 2:28:26 - loss: 1.7619598\n", + "702\n", + " 370/2000 [====>.........................] - ETA: 2:28:15 - loss: 1.7593109\n", + " 371/2000 [====>.........................] - ETA: 2:28:00 - loss: 1.7559344\n", + " 372/2000 [====>.........................] - ETA: 2:27:57 - loss: 1.7557726\n", + " 373/2000 [====>.........................] - ETA: 2:27:43 - loss: 1.7547959\n", + " 374/2000 [====>.........................] - ETA: 2:27:38 - loss: 1.7543935\n", + " 375/2000 [====>.........................] - ETA: 2:27:35 - loss: 1.7546683\n", + "309\n", + " 376/2000 [====>.........................] - ETA: 2:27:35 - loss: 1.7546606\n", + "506\n", + "552\n", + "138\n", + " 377/2000 [====>.........................] - ETA: 2:27:31 - loss: 1.7532434\n", + " 378/2000 [====>.........................] - ETA: 2:27:24 - loss: 1.7535316\n", + " 379/2000 [====>.........................] - ETA: 2:27:22 - loss: 1.7535125\n", + " 380/2000 [====>.........................] - ETA: 2:27:08 - loss: 1.7510407\n", + " 381/2000 [====>.........................] - ETA: 2:27:02 - loss: 1.7530393\n", + " 382/2000 [====>.........................] - ETA: 2:26:57 - loss: 1.7529897\n", + " 383/2000 [====>.........................] - ETA: 2:26:52 - loss: 1.7522556\n", + "130\n", + " 384/2000 [====>.........................] - ETA: 2:26:42 - loss: 1.752330\n", + "422\n", + " 385/2000 [====>.........................] - ETA: 2:26:38 - loss: 1.7516132\n", + " 386/2000 [====>.........................] - ETA: 2:26:25 - loss: 1.7504352\n", + " 387/2000 [====>.........................] - ETA: 2:26:22 - loss: 1.7499228\n", + " 388/2000 [====>.........................] - ETA: 2:26:20 - loss: 1.7498575\n", + "515\n", + "441\n", + " 389/2000 [====>.........................] - ETA: 2:26:17 - loss: 1.7497443\n", + " 390/2000 [====>.........................] - ETA: 2:26:08 - loss: 1.749496\n", + " 391/2000 [====>.........................] - ETA: 2:25:53 - loss: 1.7455505\n", + "150\n", + " 392/2000 [====>.........................] - ETA: 2:25:43 - loss: 1.7429107\n", + " 393/2000 [====>.........................] - ETA: 2:25:28 - loss: 1.7419518\n", + "595\n", + "71\n", + "105\n", + " 394/2000 [====>.........................] - ETA: 2:25:21 - loss: 1.7383642\n", + "526\n", + "768\n", + " 395/2000 [====>.........................] - ETA: 2:25:13 - loss: 1.7354143\n", + " 396/2000 [====>.........................] - ETA: 2:25:00 - loss: 1.733797\n", + " 397/2000 [====>.........................] - ETA: 2:24:46 - loss: 1.7297193\n", + " 398/2000 [====>.........................] - ETA: 2:24:39 - loss: 1.7314870\n", + " 399/2000 [====>.........................] - ETA: 2:24:33 - loss: 1.7316951\n", + " 400/2000 [=====>........................] - ETA: 2:24:28 - loss: 1.7321257\n", + " 401/2000 [=====>........................] - ETA: 2:24:26 - loss: 1.7329325\n", + " 402/2000 [=====>........................] - ETA: 2:24:24 - loss: 1.7312489\n", + "781\n", + " 403/2000 [=====>........................] - ETA: 2:24:15 - loss: 1.7293229\n", + " 404/2000 [=====>........................] - ETA: 2:24:13 - loss: 1.7294558\n", + "822\n", + " 405/2000 [=====>........................] - ETA: 2:24:09 - loss: 1.7287590\n", + "977\n", + " 406/2000 [=====>........................] - ETA: 2:24:06 - loss: 1.7281601\n", + "778\n", + " 407/2000 [=====>........................] - ETA: 2:23:55 - loss: 1.7270172\n", + " 408/2000 [=====>........................] - ETA: 2:23:45 - loss: 1.7246362\n", + " 409/2000 [=====>........................] - ETA: 2:23:40 - loss: 1.7242541\n", + "285\n", + " 410/2000 [=====>........................] - ETA: 2:23:41 - loss: 1.7249980\n", + " 411/2000 [=====>........................] - ETA: 2:23:37 - loss: 1.7247306\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 412/2000 [=====>........................] - ETA: 2:23:34 - loss: 1.72413\n", + "861\n", + " 413/2000 [=====>........................] - ETA: 2:23:33 - loss: 1.7245166\n", + " 414/2000 [=====>........................] - ETA: 2:23:22 - loss: 1.7246449\n", + " 415/2000 [=====>........................] - ETA: 2:23:13 - loss: 1.7249673\n", + "919\n", + " 416/2000 [=====>........................] - ETA: 2:23:12 - loss: 1.7246847\n", + " 417/2000 [=====>........................] - ETA: 2:23:06 - loss: 1.7246654\n", + "466\n", + "816\n", + " 418/2000 [=====>........................] - ETA: 2:23:05 - loss: 1.7248877\n", + " 419/2000 [=====>........................] - ETA: 2:23:01 - loss: 1.725773\n", + "585\n", + "478\n", + "376\n", + " 420/2000 [=====>........................] - ETA: 2:23:04 - loss: 1.7266517\n", + "704\n", + " 421/2000 [=====>........................] - ETA: 2:22:53 - loss: 1.730577\n", + "460\n", + "588\n", + "661\n", + "265\n", + " 422/2000 [=====>........................] - ETA: 2:23:00 - loss: 1.728280\n", + " 423/2000 [=====>........................] - ETA: 2:22:48 - loss: 1.7260112\n", + " 424/2000 [=====>........................] - ETA: 2:22:35 - loss: 1.722266\n", + "85\n", + " 425/2000 [=====>........................] - ETA: 2:22:23 - loss: 1.7197643\n", + "625\n", + "709\n", + " 426/2000 [=====>........................] - ETA: 2:22:15 - loss: 1.719413\n", + "876\n", + " 427/2000 [=====>........................] - ETA: 2:22:14 - loss: 1.7192791\n", + " 428/2000 [=====>........................] - ETA: 2:22:01 - loss: 1.7172984\n", + " 429/2000 [=====>........................] - ETA: 2:21:57 - loss: 1.7169848\n", + " 430/2000 [=====>........................] - ETA: 2:21:51 - loss: 1.715553\n", + "554\n", + "703\n", + " 431/2000 [=====>........................] - ETA: 2:21:44 - loss: 1.7166380\n", + " 432/2000 [=====>........................] - ETA: 2:21:39 - loss: 1.7161527\n", + "679\n", + "31\n", + "956\n", + " 433/2000 [=====>........................] - ETA: 2:21:41 - loss: 1.716341\n", + "899\n", + " 434/2000 [=====>........................] - ETA: 2:21:39 - loss: 1.7160261\n", + " 435/2000 [=====>........................] - ETA: 2:21:38 - loss: 1.7155805\n", + " 436/2000 [=====>........................] - ETA: 2:21:30 - loss: 1.7148602\n", + "730\n", + " 437/2000 [=====>........................] - ETA: 2:21:21 - loss: 1.7121806\n", + " 438/2000 [=====>........................] - ETA: 2:21:14 - loss: 1.7100589\n", + "144\n", + " 439/2000 [=====>........................] - ETA: 2:21:05 - loss: 1.7077940\n", + " 440/2000 [=====>........................] - ETA: 2:21:02 - loss: 1.7074660\n", + "388\n", + " 441/2000 [=====>........................] - ETA: 2:20:59 - loss: 1.7084357\n", + " 442/2000 [=====>........................] - ETA: 2:20:55 - loss: 1.7096564\n", + "305\n", + " 443/2000 [=====>........................] - ETA: 2:20:54 - loss: 1.7098300\n", + " 444/2000 [=====>........................] - ETA: 2:20:51 - loss: 1.7091720\n", + " 445/2000 [=====>........................] - ETA: 2:20:40 - loss: 1.7067878\n", + " 446/2000 [=====>........................] - ETA: 2:20:37 - loss: 1.7070484\n", + "729\n", + " 447/2000 [=====>........................] - ETA: 2:20:27 - loss: 1.7036659\n", + "203\n", + " 448/2000 [=====>........................] - ETA: 2:20:25 - loss: 1.7039731\n", + " 449/2000 [=====>........................] - ETA: 2:20:13 - loss: 1.7021473\n", + "453\n", + " 450/2000 [=====>........................] - ETA: 2:20:07 - loss: 1.7036596\n", + "439\n", + " 451/2000 [=====>........................] - ETA: 2:20:00 - loss: 1.7033398\n", + " 452/2000 [=====>........................] - ETA: 2:19:55 - loss: 1.7040804\n", + " 453/2000 [=====>........................] - ETA: 2:19:46 - loss: 1.7036367\n", + " 454/2000 [=====>........................] - ETA: 2:19:42 - loss: 1.7028872\n", + " 455/2000 [=====>........................] - ETA: 2:19:38 - loss: 1.7031925\n", + " 456/2000 [=====>........................] - ETA: 2:19:35 - loss: 1.7031216\n", + " 457/2000 [=====>........................] - ETA: 2:19:31 - loss: 1.7039492\n", + "664\n", + "571\n", + "447\n", + " 458/2000 [=====>........................] - ETA: 2:19:30 - loss: 1.7032200\n", + " 459/2000 [=====>........................] - ETA: 2:19:27 - loss: 1.7038513\n", + "854\n", + " 460/2000 [=====>........................] - ETA: 2:19:23 - loss: 1.7035146\n", + " 461/2000 [=====>........................] - ETA: 2:19:11 - loss: 1.7016158\n", + " 462/2000 [=====>........................] - ETA: 2:19:01 - loss: 1.6994173\n", + " 463/2000 [=====>........................] - ETA: 2:18:51 - loss: 1.697127\n", + "801\n", + " 464/2000 [=====>........................] - ETA: 2:18:45 - loss: 1.6971672\n", + "369\n", + " 465/2000 [=====>........................] - ETA: 2:18:42 - loss: 1.6976419\n", + " 466/2000 [=====>........................] - ETA: 2:18:37 - loss: 1.6958734\n", + " 467/2000 [======>.......................] - ETA: 2:18:25 - loss: 1.693538\n", + "787\n", + " 468/2000 [======>.......................] - ETA: 2:18:16 - loss: 1.6917351\n", + " 469/2000 [======>.......................] - ETA: 2:18:12 - loss: 1.6918624\n", + "963\n", + " 470/2000 [======>.......................] - ETA: 2:18:11 - loss: 1.6921404\n", + " 471/2000 [======>.......................] - ETA: 2:18:05 - loss: 1.6922116\n", + " 472/2000 [======>.......................] - ETA: 2:17:53 - loss: 1.6889297\n", + " 473/2000 [======>.......................] - ETA: 2:17:50 - loss: 1.6888641\n", + "713\n", + " 474/2000 [======>.......................] - ETA: 2:17:41 - loss: 1.6860280\n", + " 475/2000 [======>.......................] - ETA: 2:17:39 - loss: 1.6867239\n", + " 476/2000 [======>.......................] - ETA: 2:17:36 - loss: 1.687190\n", + " 477/2000 [======>.......................] - ETA: 2:17:24 - loss: 1.6842299\n", + " 478/2000 [======>.......................] - ETA: 2:17:21 - loss: 1.6836204\n", + " 479/2000 [======>.......................] - ETA: 2:17:18 - loss: 1.6836910\n", + " 480/2000 [======>.......................] - ETA: 2:17:14 - loss: 1.6829195\n", + " 481/2000 [======>.......................] - ETA: 2:17:08 - loss: 1.6817611\n", + "349\n", + " 482/2000 [======>.......................] - ETA: 2:17:06 - loss: 1.6819849\n", + " 483/2000 [======>.......................] - ETA: 2:17:00 - loss: 1.6808436\n", + " 484/2000 [======>.......................] - ETA: 2:16:52 - loss: 1.6806110\n", + " 485/2000 [======>.......................] - ETA: 2:16:40 - loss: 1.6780253\n", + " 486/2000 [======>.......................] - ETA: 2:16:36 - loss: 1.6774469\n", + "732\n", + " 487/2000 [======>.......................] - ETA: 2:16:27 - loss: 1.6747689\n", + "763\n", + " 488/2000 [======>.......................] - ETA: 2:16:18 - loss: 1.6722178\n", + " 489/2000 [======>.......................] - ETA: 2:16:10 - loss: 1.6707145\n", + " 490/2000 [======>.......................] - ETA: 2:15:59 - loss: 1.668881\n", + " 491/2000 [======>.......................] - ETA: 2:15:47 - loss: 1.6670531\n", + "34\n", + "165\n", + " 492/2000 [======>.......................] - ETA: 2:15:42 - loss: 1.6646884\n", + " 493/2000 [======>.......................] - ETA: 2:15:38 - loss: 1.6650790\n", + " 494/2000 [======>.......................] - ETA: 2:15:27 - loss: 1.663851\n", + "626\n", + "891\n", + " 495/2000 [======>.......................] - ETA: 2:15:27 - loss: 1.6636197\n", + " 496/2000 [======>.......................] - ETA: 2:15:19 - loss: 1.6629759\n", + " 497/2000 [======>.......................] - ETA: 2:15:08 - loss: 1.6605412\n", + " 498/2000 [======>.......................] - ETA: 2:15:03 - loss: 1.6595831\n", + " 499/2000 [======>.......................] - ETA: 2:14:57 - loss: 1.6586499\n", + "850\n", + " 500/2000 [======>.......................] - ETA: 2:14:53 - loss: 1.657998\n", + " 501/2000 [======>.......................] - ETA: 2:14:42 - loss: 1.6566777\n", + " 502/2000 [======>.......................] - ETA: 2:14:31 - loss: 1.6560461\n", + "302\n", + " 503/2000 [======>.......................] - ETA: 2:14:30 - loss: 1.6562946\n", + " 504/2000 [======>.......................] - ETA: 2:14:26 - loss: 1.6559373\n", + " 505/2000 [======>.......................] - ETA: 2:14:21 - loss: 1.6557379\n", + " 506/2000 [======>.......................] - ETA: 2:14:17 - loss: 1.6570170\n", + " 507/2000 [======>.......................] - ETA: 2:14:08 - loss: 1.6559668\n", + "149\n", + " 508/2000 [======>.......................] - ETA: 2:13:59 - loss: 1.6548214\n", + " 509/2000 [======>.......................] - ETA: 2:13:55 - loss: 1.6543236\n", + " 510/2000 [======>.......................] - ETA: 2:13:52 - loss: 1.6542948\n", + " 511/2000 [======>.......................] - ETA: 2:13:48 - loss: 1.6537751\n", + " 512/2000 [======>.......................] - ETA: 2:13:37 - loss: 1.6511206\n", + " 513/2000 [======>.......................] - ETA: 2:13:35 - loss: 1.6504428\n", + " 514/2000 [======>.......................] - ETA: 2:13:29 - loss: 1.650368\n", + "637\n", + "54\n", + "615\n", + "733\n", + " 515/2000 [======>.......................] - ETA: 2:13:26 - loss: 1.648043\n", + "498\n", + "318\n", + " 516/2000 [======>.......................] - ETA: 2:13:26 - loss: 1.6482218\n", + " 517/2000 [======>.......................] - ETA: 2:13:24 - loss: 1.6484578\n", + "340\n", + " 518/2000 [======>.......................] - ETA: 2:13:22 - loss: 1.6474360\n", + " 519/2000 [======>.......................] - ETA: 2:13:17 - loss: 1.6481101\n", + " 520/2000 [======>.......................] - ETA: 2:13:05 - loss: 1.6461811\n", + " 521/2000 [======>.......................] - ETA: 2:13:00 - loss: 1.6470382\n", + " 522/2000 [======>.......................] - ETA: 2:12:55 - loss: 1.6470635\n", + "533\n", + "52\n", + "842\n", + " 523/2000 [======>.......................] - ETA: 2:12:54 - loss: 1.6467684\n", + "931\n", + " 524/2000 [======>.......................] - ETA: 2:12:52 - loss: 1.6460289\n", + " 525/2000 [======>.......................] - ETA: 2:12:50 - loss: 1.6460497\n", + "408\n", + " 526/2000 [======>.......................] - ETA: 2:12:47 - loss: 1.6474677\n", + "681\n", + "275\n", + " 527/2000 [======>.......................] - ETA: 2:12:47 - loss: 1.6455924\n", + " 528/2000 [======>.......................] - ETA: 2:12:43 - loss: 1.6452353\n", + " 529/2000 [======>.......................] - ETA: 2:12:39 - loss: 1.6449839\n", + " 530/2000 [======>.......................] - ETA: 2:12:34 - loss: 1.6461463\n", + "292\n", + " 531/2000 [======>.......................] - ETA: 2:12:33 - loss: 1.645861\n", + "272\n", + " 532/2000 [======>.......................] - ETA: 2:12:32 - loss: 1.6436795\n", + " 533/2000 [======>.......................] - ETA: 2:12:24 - loss: 1.6422757\n", + " 534/2000 [=======>......................] - ETA: 2:12:14 - loss: 1.6400830\n", + " 535/2000 [=======>......................] - ETA: 2:12:09 - loss: 1.6399429\n", + " 536/2000 [=======>......................] - ETA: 2:12:04 - loss: 1.6396633\n", + "670\n", + "488\n", + "474\n", + "29\n", + "364\n", + " 537/2000 [=======>......................] - ETA: 2:12:06 - loss: 1.6389608\n", + "224\n", + " 538/2000 [=======>......................] - ETA: 2:12:05 - loss: 1.638489\n", + " 539/2000 [=======>......................] - ETA: 2:11:54 - loss: 1.6381392\n", + " 540/2000 [=======>......................] - ETA: 2:11:49 - loss: 1.6378159\n", + " 541/2000 [=======>......................] - ETA: 2:11:40 - loss: 1.635778\n", + "974\n", + " 542/2000 [=======>......................] - ETA: 2:11:37 - loss: 1.6359550\n", + "754\n", + " 543/2000 [=======>......................] - ETA: 2:11:28 - loss: 1.6356587\n", + "906\n", + " 544/2000 [=======>......................] - ETA: 2:11:25 - loss: 1.6367371\n", + " 545/2000 [=======>......................] - ETA: 2:11:21 - loss: 1.6363723\n", + " 546/2000 [=======>......................] - ETA: 2:11:11 - loss: 1.6364942\n", + " 547/2000 [=======>......................] - ETA: 2:11:07 - loss: 1.636419\n", + "815\n", + " 548/2000 [=======>......................] - ETA: 2:11:03 - loss: 1.635923\n", + "44\n", + "208\n", + " 549/2000 [=======>......................] - ETA: 2:11:02 - loss: 1.6360748\n", + " 550/2000 [=======>......................] - ETA: 2:10:52 - loss: 1.6366807\n", + " 551/2000 [=======>......................] - ETA: 2:10:45 - loss: 1.6348522\n", + "540\n", + "37\n", + "361\n", + " 552/2000 [=======>......................] - ETA: 2:10:45 - loss: 1.6343826\n", + " 553/2000 [=======>......................] - ETA: 2:10:39 - loss: 1.6336705\n", + " 554/2000 [=======>......................] - ETA: 2:10:29 - loss: 1.6353271\n", + " 555/2000 [=======>......................] - ETA: 2:10:26 - loss: 1.6354546\n", + "291\n", + " 556/2000 [=======>......................] - ETA: 2:10:26 - loss: 1.6355359\n", + " 557/2000 [=======>......................] - ETA: 2:10:21 - loss: 1.6348631\n", + "177\n", + " 558/2000 [=======>......................] - ETA: 2:10:14 - loss: 1.63311\n", + "770\n", + " 559/2000 [=======>......................] - ETA: 2:10:05 - loss: 1.6314662\n", + "901\n", + " 560/2000 [=======>......................] - ETA: 2:10:01 - loss: 1.6315288\n", + " 561/2000 [=======>......................] - ETA: 2:09:59 - loss: 1.6311880\n", + " 562/2000 [=======>......................] - ETA: 2:09:55 - loss: 1.6322773\n", + " 563/2000 [=======>......................] - ETA: 2:09:45 - loss: 1.6318431\n", + " 564/2000 [=======>......................] - ETA: 2:09:39 - loss: 1.6315185\n", + " 565/2000 [=======>......................] - ETA: 2:09:32 - loss: 1.6320249\n", + " 566/2000 [=======>......................] - ETA: 2:09:29 - loss: 1.6314789\n", + " 567/2000 [=======>......................] - ETA: 2:09:19 - loss: 1.6302245\n", + " 568/2000 [=======>......................] - ETA: 2:09:15 - loss: 1.6299247\n", + " 569/2000 [=======>......................] - ETA: 2:09:11 - loss: 1.6294402\n", + " 570/2000 [=======>......................] - ETA: 2:09:05 - loss: 1.6294248\n", + " 571/2000 [=======>......................] - ETA: 2:09:01 - loss: 1.6307127\n", + " 572/2000 [=======>......................] - ETA: 2:08:51 - loss: 1.6288695\n", + " 573/2000 [=======>......................] - ETA: 2:08:42 - loss: 1.6281646\n", + "762\n", + " 574/2000 [=======>......................] - ETA: 2:08:33 - loss: 1.6265426\n", + " 575/2000 [=======>......................] - ETA: 2:08:28 - loss: 1.6259276\n", + " 576/2000 [=======>......................] - ETA: 2:08:25 - loss: 1.6254450\n", + " 577/2000 [=======>......................] - ETA: 2:08:18 - loss: 1.6254424\n", + " 578/2000 [=======>......................] - ETA: 2:08:12 - loss: 1.6243964\n", + " 579/2000 [=======>......................] - ETA: 2:08:09 - loss: 1.6243970\n", + " 580/2000 [=======>......................] - ETA: 2:08:04 - loss: 1.6239311\n", + " 581/2000 [=======>......................] - ETA: 2:08:01 - loss: 1.6241657\n", + "72\n", + "129\n", + " 582/2000 [=======>......................] - ETA: 2:07:55 - loss: 1.6223452\n", + " 583/2000 [=======>......................] - ETA: 2:07:47 - loss: 1.622416\n", + "223\n", + " 584/2000 [=======>......................] - ETA: 2:07:46 - loss: 1.6219691\n", + "744\n", + " 585/2000 [=======>......................] - ETA: 2:07:38 - loss: 1.6200246\n", + " 586/2000 [=======>......................] - ETA: 2:07:34 - loss: 1.6197418\n", + " 587/2000 [=======>......................] - ETA: 2:07:29 - loss: 1.6181108\n", + " 588/2000 [=======>......................] - ETA: 2:07:19 - loss: 1.6162317\n", + " 589/2000 [=======>......................] - ETA: 2:07:17 - loss: 1.6159753\n", + " 590/2000 [=======>......................] - ETA: 2:07:07 - loss: 1.6157343\n", + " 591/2000 [=======>......................] - ETA: 2:07:03 - loss: 1.6158106\n", + " 592/2000 [=======>......................] - ETA: 2:06:53 - loss: 1.6147752\n", + " 593/2000 [=======>......................] - ETA: 2:06:43 - loss: 1.6153920\n", + " 594/2000 [=======>......................] - ETA: 2:06:39 - loss: 1.614821\n", + "335\n", + " 595/2000 [=======>......................] - ETA: 2:06:38 - loss: 1.6144182\n", + " 596/2000 [=======>......................] - ETA: 2:06:31 - loss: 1.6147167\n", + " 597/2000 [=======>......................] - ETA: 2:06:23 - loss: 1.6129126\n", + " 598/2000 [=======>......................] - ETA: 2:06:13 - loss: 1.6112330\n", + " 599/2000 [=======>......................] - ETA: 2:06:10 - loss: 1.6111409\n", + " 600/2000 [========>.....................] - ETA: 2:06:05 - loss: 1.6112927\n", + " 601/2000 [========>.....................] - ETA: 2:06:01 - loss: 1.6111293\n", + " 602/2000 [========>.....................] - ETA: 2:05:59 - loss: 1.6120421\n", + " 603/2000 [========>.....................] - ETA: 2:05:54 - loss: 1.6119742\n", + " 604/2000 [========>.....................] - ETA: 2:05:44 - loss: 1.6133972\n", + " 605/2000 [========>.....................] - ETA: 2:05:41 - loss: 1.6143262\n", + " 606/2000 [========>.....................] - ETA: 2:05:39 - loss: 1.61466\n", + "933\n", + " 607/2000 [========>.....................] - ETA: 2:05:37 - loss: 1.6150399\n", + " 608/2000 [========>.....................] - ETA: 2:05:33 - loss: 1.6150800\n", + " 609/2000 [========>.....................] - ETA: 2:05:26 - loss: 1.6138860\n", + " 610/2000 [========>.....................] - ETA: 2:05:20 - loss: 1.6136557\n", + "238\n", + " 611/2000 [========>.....................] - ETA: 2:05:18 - loss: 1.6135714\n", + " 612/2000 [========>.....................] - ETA: 2:05:09 - loss: 1.6120619\n", + "819\n", + " 613/2000 [========>.....................] - ETA: 2:05:06 - loss: 1.6122930\n", + " 614/2000 [========>.....................] - ETA: 2:05:02 - loss: 1.6118678\n", + "20\n", + "57\n", + "788\n", + " 615/2000 [========>.....................] - ETA: 2:04:56 - loss: 1.6102865\n", + " 616/2000 [========>.....................] - ETA: 2:04:51 - loss: 1.6103638\n", + "504\n", + "67\n", + "743\n", + " 617/2000 [========>.....................] - ETA: 2:04:45 - loss: 1.6086858\n", + " 618/2000 [========>.....................] - ETA: 2:04:40 - loss: 1.6083377\n", + " 619/2000 [========>.....................] - ETA: 2:04:35 - loss: 1.6082875\n", + " 620/2000 [========>.....................] - ETA: 2:04:31 - loss: 1.6082212\n", + " 621/2000 [========>.....................] - ETA: 2:04:27 - loss: 1.6082198\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 622/2000 [========>.....................] - ETA: 2:04:24 - loss: 1.6083503\n", + "313\n", + " 623/2000 [========>.....................] - ETA: 2:04:22 - loss: 1.6077820\n", + " 624/2000 [========>.....................] - ETA: 2:04:16 - loss: 1.6074710\n", + " 625/2000 [========>.....................] - ETA: 2:04:07 - loss: 1.6058755\n", + " 626/2000 [========>.....................] - ETA: 2:03:58 - loss: 1.6041766\n", + " 627/2000 [========>.....................] - ETA: 2:03:48 - loss: 1.6025524\n", + "115\n", + " 628/2000 [========>.....................] - ETA: 2:03:40 - loss: 1.6001538\n", + "828\n", + " 629/2000 [========>.....................] - ETA: 2:03:36 - loss: 1.6007968\n", + " 630/2000 [========>.....................] - ETA: 2:03:31 - loss: 1.6007913\n", + " 631/2000 [========>.....................] - ETA: 2:03:27 - loss: 1.6008410\n", + " 632/2000 [========>.....................] - ETA: 2:03:22 - loss: 1.6006914\n", + " 633/2000 [========>.....................] - ETA: 2:03:18 - loss: 1.599888\n", + " 634/2000 [========>.....................] - ETA: 2:03:08 - loss: 1.5981465\n", + "926\n", + " 635/2000 [========>.....................] - ETA: 2:03:06 - loss: 1.5986502\n", + "649\n", + "756\n", + " 636/2000 [========>.....................] - ETA: 2:02:59 - loss: 1.5974890\n", + " 637/2000 [========>.....................] - ETA: 2:02:55 - loss: 1.597383\n", + " 638/2000 [========>.....................] - ETA: 2:02:45 - loss: 1.595111\n", + "161\n", + " 639/2000 [========>.....................] - ETA: 2:02:38 - loss: 1.5937667\n", + "437\n", + " 640/2000 [========>.....................] - ETA: 2:02:33 - loss: 1.5935653\n", + "833\n", + " 641/2000 [========>.....................] - ETA: 2:02:29 - loss: 1.5920133\n", + " 642/2000 [========>.....................] - ETA: 2:02:20 - loss: 1.5919124\n", + " 643/2000 [========>.....................] - ETA: 2:02:10 - loss: 1.5902475\n", + "549\n", + "22\n", + "500\n", + "256\n", + " 644/2000 [========>.....................] - ETA: 2:02:11 - loss: 1.5906904\n", + " 645/2000 [========>.....................] - ETA: 2:02:06 - loss: 1.590579\n", + " 646/2000 [========>.....................] - ETA: 2:01:58 - loss: 1.58838\n", + "255\n", + " 647/2000 [========>.....................] - ETA: 2:01:55 - loss: 1.5870568\n", + "121\n", + " 648/2000 [========>.....................] - ETA: 2:01:46 - loss: 1.5865696\n", + " 649/2000 [========>.....................] - ETA: 2:01:37 - loss: 1.5855618\n", + "315\n", + " 650/2000 [========>.....................] - ETA: 2:01:35 - loss: 1.5859966\n", + " 651/2000 [========>.....................] - ETA: 2:01:30 - loss: 1.5853712\n", + " 652/2000 [========>.....................] - ETA: 2:01:21 - loss: 1.5836985\n", + " 653/2000 [========>.....................] - ETA: 2:01:16 - loss: 1.5839459\n", + "572\n", + "337\n", + " 654/2000 [========>.....................] - ETA: 2:01:15 - loss: 1.5835372\n", + " 655/2000 [========>.....................] - ETA: 2:01:10 - loss: 1.582935\n", + "570\n", + "269\n", + " 656/2000 [========>.....................] - ETA: 2:01:09 - loss: 1.5814205\n", + " 657/2000 [========>.....................] - ETA: 2:01:05 - loss: 1.5806836\n", + " 658/2000 [========>.....................] - ETA: 2:00:59 - loss: 1.5799135\n", + " 659/2000 [========>.....................] - ETA: 2:00:50 - loss: 1.5783445\n", + " 660/2000 [========>.....................] - ETA: 2:00:44 - loss: 1.5780420\n", + " 661/2000 [========>.....................] - ETA: 2:00:39 - loss: 1.5776516\n", + "530\n", + "871\n", + " 662/2000 [========>.....................] - ETA: 2:00:37 - loss: 1.577370\n", + "104\n", + " 663/2000 [========>.....................] - ETA: 2:00:28 - loss: 1.5754987\n", + " 664/2000 [========>.....................] - ETA: 2:00:23 - loss: 1.5749171\n", + " 665/2000 [========>.....................] - ETA: 2:00:16 - loss: 1.5734950\n", + " 666/2000 [========>.....................] - ETA: 2:00:11 - loss: 1.5733532\n", + "446\n", + " 667/2000 [=========>....................] - ETA: 2:00:05 - loss: 1.5731303\n", + " 668/2000 [=========>....................] - ETA: 2:00:01 - loss: 1.5735432\n", + " 669/2000 [=========>....................] - ETA: 1:59:56 - loss: 1.57409\n", + "274\n", + " 670/2000 [=========>....................] - ETA: 1:59:53 - loss: 1.5743332\n", + " 671/2000 [=========>....................] - ETA: 1:59:50 - loss: 1.5739928\n", + " 672/2000 [=========>....................] - ETA: 1:59:46 - loss: 1.5735890\n", + " 673/2000 [=========>....................] - ETA: 1:59:41 - loss: 1.5736978\n", + " 674/2000 [=========>....................] - ETA: 1:59:36 - loss: 1.5726259\n", + " 675/2000 [=========>....................] - ETA: 1:59:32 - loss: 1.5725226\n", + " 676/2000 [=========>....................] - ETA: 1:59:29 - loss: 1.5718784\n", + " 677/2000 [=========>....................] - ETA: 1:59:20 - loss: 1.5709455\n", + "636\n", + "149\n", + " 678/2000 [=========>....................] - ETA: 1:59:13 - loss: 1.570185\n", + " 679/2000 [=========>....................] - ETA: 1:59:04 - loss: 1.5688975\n", + " 680/2000 [=========>....................] - ETA: 1:58:59 - loss: 1.568695\n", + " 681/2000 [=========>....................] - ETA: 1:58:49 - loss: 1.5665217\n", + " 682/2000 [=========>....................] - ETA: 1:58:46 - loss: 1.5663804\n", + " 683/2000 [=========>....................] - ETA: 1:58:39 - loss: 1.5649219\n", + " 684/2000 [=========>....................] - ETA: 1:58:35 - loss: 1.5646212\n", + " 685/2000 [=========>....................] - ETA: 1:58:31 - loss: 1.5653678\n", + "895\n", + " 686/2000 [=========>....................] - ETA: 1:58:27 - loss: 1.5655582\n", + "584\n", + "781\n", + " 687/2000 [=========>....................] - ETA: 1:58:20 - loss: 1.5651407\n", + " 688/2000 [=========>....................] - ETA: 1:58:15 - loss: 1.5657333\n", + " 689/2000 [=========>....................] - ETA: 1:58:11 - loss: 1.5651331\n", + " 690/2000 [=========>....................] - ETA: 1:58:07 - loss: 1.5651384\n", + " 691/2000 [=========>....................] - ETA: 1:58:02 - loss: 1.5651905\n", + " 692/2000 [=========>....................] - ETA: 1:57:57 - loss: 1.5653948\n", + " 693/2000 [=========>....................] - ETA: 1:57:54 - loss: 1.5657604\n", + "382\n", + " 694/2000 [=========>....................] - ETA: 1:57:50 - loss: 1.5656402\n", + " 695/2000 [=========>....................] - ETA: 1:57:44 - loss: 1.5656290\n", + " 696/2000 [=========>....................] - ETA: 1:57:41 - loss: 1.5654300\n", + " 697/2000 [=========>....................] - ETA: 1:57:37 - loss: 1.5652869\n", + " 698/2000 [=========>....................] - ETA: 1:57:31 - loss: 1.5654848\n", + " 699/2000 [=========>....................] - ETA: 1:57:26 - loss: 1.5648409\n", + " 700/2000 [=========>....................] - ETA: 1:57:20 - loss: 1.5658501\n", + "608\n", + "236\n", + " 701/2000 [=========>....................] - ETA: 1:57:18 - loss: 1.5655569\n", + "62\n", + "736\n", + " 702/2000 [=========>....................] - ETA: 1:57:13 - loss: 1.5637902\n", + " 703/2000 [=========>....................] - ETA: 1:57:07 - loss: 1.5636896\n", + " 704/2000 [=========>....................] - ETA: 1:57:02 - loss: 1.5631394\n", + " 705/2000 [=========>....................] - ETA: 1:56:57 - loss: 1.564152\n", + "559\n", + "420\n", + " 706/2000 [=========>....................] - ETA: 1:56:54 - loss: 1.5636185\n", + " 707/2000 [=========>....................] - ETA: 1:56:47 - loss: 1.563558\n", + "254\n", + " 708/2000 [=========>....................] - ETA: 1:56:44 - loss: 1.5629673\n", + "634\n", + "441\n", + " 709/2000 [=========>....................] - ETA: 1:56:39 - loss: 1.5632789\n", + " 710/2000 [=========>....................] - ETA: 1:56:30 - loss: 1.5623120\n", + " 711/2000 [=========>....................] - ETA: 1:56:22 - loss: 1.5617741\n", + " 712/2000 [=========>....................] - ETA: 1:56:13 - loss: 1.5601202\n", + " 713/2000 [=========>....................] - ETA: 1:56:09 - loss: 1.5601703\n", + " 714/2000 [=========>....................] - ETA: 1:56:01 - loss: 1.5588983\n", + " 715/2000 [=========>....................] - ETA: 1:55:56 - loss: 1.5600424\n", + " 716/2000 [=========>....................] - ETA: 1:55:50 - loss: 1.5594960\n", + " 717/2000 [=========>....................] - ETA: 1:55:45 - loss: 1.5594525\n", + "246\n", + " 718/2000 [=========>....................] - ETA: 1:55:42 - loss: 1.5589433\n", + " 719/2000 [=========>....................] - ETA: 1:55:36 - loss: 1.5591729\n", + " 720/2000 [=========>....................] - ETA: 1:55:28 - loss: 1.5575267\n", + " 721/2000 [=========>....................] - ETA: 1:55:24 - loss: 1.5570828\n", + " 722/2000 [=========>....................] - ETA: 1:55:19 - loss: 1.5570564\n", + "798\n", + " 723/2000 [=========>....................] - ETA: 1:55:13 - loss: 1.5561945\n", + " 724/2000 [=========>....................] - ETA: 1:55:08 - loss: 1.556160\n", + "740\n", + " 725/2000 [=========>....................] - ETA: 1:55:02 - loss: 1.5543271\n", + " 726/2000 [=========>....................] - ETA: 1:54:58 - loss: 1.5544910\n", + " 727/2000 [=========>....................] - ETA: 1:54:53 - loss: 1.554372\n", + "68\n", + "565\n", + "404\n", + " 728/2000 [=========>....................] - ETA: 1:54:51 - loss: 1.5545176\n", + " 729/2000 [=========>....................] - ETA: 1:54:43 - loss: 1.5533841\n", + " 730/2000 [=========>....................] - ETA: 1:54:37 - loss: 1.5539943\n", + " 731/2000 [=========>....................] - ETA: 1:54:33 - loss: 1.5535640\n", + "372\n", + " 732/2000 [=========>....................] - ETA: 1:54:29 - loss: 1.5534819\n", + " 733/2000 [=========>....................] - ETA: 1:54:24 - loss: 1.5534666\n", + "783\n", + " 734/2000 [==========>...................] - ETA: 1:54:16 - loss: 1.5524921\n", + " 735/2000 [==========>...................] - ETA: 1:54:12 - loss: 1.5521963\n", + " 736/2000 [==========>...................] - ETA: 1:54:08 - loss: 1.55223\n", + "230\n", + " 737/2000 [==========>...................] - ETA: 1:54:05 - loss: 1.5524760\n", + " 738/2000 [==========>...................] - ETA: 1:53:57 - loss: 1.5510881\n", + " 739/2000 [==========>...................] - ETA: 1:53:52 - loss: 1.5511954\n", + " 740/2000 [==========>...................] - ETA: 1:53:47 - loss: 1.551231\n", + "476\n", + "982\n", + " 741/2000 [==========>...................] - ETA: 1:53:44 - loss: 1.5505951\n", + " 742/2000 [==========>...................] - ETA: 1:53:39 - loss: 1.5506401\n", + " 743/2000 [==========>...................] - ETA: 1:53:34 - loss: 1.5507603\n", + "309\n", + " 744/2000 [==========>...................] - ETA: 1:53:31 - loss: 1.5508263\n", + " 745/2000 [==========>...................] - ETA: 1:53:28 - loss: 1.5502693\n", + " 746/2000 [==========>...................] - ETA: 1:53:20 - loss: 1.549246\n", + "188\n", + " 747/2000 [==========>...................] - ETA: 1:53:14 - loss: 1.5483752\n", + " 748/2000 [==========>...................] - ETA: 1:53:06 - loss: 1.5481628\n", + "340\n", + " 749/2000 [==========>...................] - ETA: 1:53:02 - loss: 1.5475504\n", + "952\n", + " 750/2000 [==========>...................] - ETA: 1:52:58 - loss: 1.5474222\n", + " 751/2000 [==========>...................] - ETA: 1:52:55 - loss: 1.547587\n", + " 752/2000 [==========>...................] - ETA: 1:52:46 - loss: 1.5468939\n", + " 753/2000 [==========>...................] - ETA: 1:52:42 - loss: 1.5470522\n", + "57\n", + "761\n", + " 754/2000 [==========>...................] - ETA: 1:52:35 - loss: 1.5452364\n", + " 755/2000 [==========>...................] - ETA: 1:52:31 - loss: 1.5448858\n", + " 756/2000 [==========>...................] - ETA: 1:52:25 - loss: 1.5446826\n", + " 757/2000 [==========>...................] - ETA: 1:52:21 - loss: 1.5443743\n", + " 758/2000 [==========>...................] - ETA: 1:52:12 - loss: 1.5449324\n", + " 759/2000 [==========>...................] - ETA: 1:52:08 - loss: 1.5446159\n", + " 760/2000 [==========>...................] - ETA: 1:52:01 - loss: 1.5449249\n", + " 761/2000 [==========>...................] - ETA: 1:51:56 - loss: 1.5454677\n", + "793\n", + " 762/2000 [==========>...................] - ETA: 1:51:51 - loss: 1.5451913\n", + " 763/2000 [==========>...................] - ETA: 1:51:46 - loss: 1.5450231\n", + " 764/2000 [==========>...................] - ETA: 1:51:43 - loss: 1.5446885\n", + " 765/2000 [==========>...................] - ETA: 1:51:38 - loss: 1.544733\n", + "220\n", + " 766/2000 [==========>...................] - ETA: 1:51:35 - loss: 1.5442586\n", + "415\n", + " 767/2000 [==========>...................] - ETA: 1:51:31 - loss: 1.5441513\n", + "936\n", + " 768/2000 [==========>...................] - ETA: 1:51:29 - loss: 1.5444855\n", + " 769/2000 [==========>...................] - ETA: 1:51:24 - loss: 1.544374\n", + "4\n", + "676\n", + "897\n", + " 770/2000 [==========>...................] - ETA: 1:51:23 - loss: 1.5443572\n", + "277\n", + " 771/2000 [==========>...................] - ETA: 1:51:20 - loss: 1.5444964\n", + " 772/2000 [==========>...................] - ETA: 1:51:15 - loss: 1.5438742\n", + " 773/2000 [==========>...................] - ETA: 1:51:07 - loss: 1.5434475\n", + "391\n", + " 774/2000 [==========>...................] - ETA: 1:51:03 - loss: 1.5434233\n", + " 775/2000 [==========>...................] - ETA: 1:50:59 - loss: 1.5429264\n", + " 776/2000 [==========>...................] - ETA: 1:50:55 - loss: 1.5432158\n", + " 777/2000 [==========>...................] - ETA: 1:50:49 - loss: 1.5433288\n", + " 778/2000 [==========>...................] - ETA: 1:50:45 - loss: 1.5432908\n", + " 779/2000 [==========>...................] - ETA: 1:50:40 - loss: 1.5429275\n", + " 780/2000 [==========>...................] - ETA: 1:50:36 - loss: 1.5423362\n", + " 781/2000 [==========>...................] - ETA: 1:50:31 - loss: 1.5419490\n", + "900\n", + " 782/2000 [==========>...................] - ETA: 1:50:27 - loss: 1.541655\n", + "631\n", + "600\n", + "914\n", + " 783/2000 [==========>...................] - ETA: 1:50:25 - loss: 1.5411597\n", + "653\n", + "950\n", + " 784/2000 [==========>...................] - ETA: 1:50:22 - loss: 1.5404888\n", + " 785/2000 [==========>...................] - ETA: 1:50:18 - loss: 1.540215\n", + "864\n", + " 786/2000 [==========>...................] - ETA: 1:50:14 - loss: 1.5410535\n", + "272\n", + " 787/2000 [==========>...................] - ETA: 1:50:10 - loss: 1.540316\n", + "76\n", + "643\n", + "32\n", + "29\n", + "492\n", + "648\n", + "697\n", + " 788/2000 [==========>...................] - ETA: 1:50:08 - loss: 1.5393320\n", + " 789/2000 [==========>...................] - ETA: 1:50:04 - loss: 1.538820\n", + "694\n", + " 790/2000 [==========>...................] - ETA: 1:49:57 - loss: 1.5377337\n", + " 791/2000 [==========>...................] - ETA: 1:49:53 - loss: 1.5369755\n", + " 792/2000 [==========>...................] - ETA: 1:49:45 - loss: 1.5369347\n", + " 793/2000 [==========>...................] - ETA: 1:49:40 - loss: 1.537266\n", + "109\n", + " 794/2000 [==========>...................] - ETA: 1:49:32 - loss: 1.5357473\n", + "940\n", + " 795/2000 [==========>...................] - ETA: 1:49:29 - loss: 1.5353585\n", + "514\n", + "371\n", + " 796/2000 [==========>...................] - ETA: 1:49:26 - loss: 1.5347813\n", + " 797/2000 [==========>...................] - ETA: 1:49:21 - loss: 1.5345261\n", + " 798/2000 [==========>...................] - ETA: 1:49:16 - loss: 1.5340687\n", + "845\n", + " 799/2000 [==========>...................] - ETA: 1:49:12 - loss: 1.5339244\n", + " 800/2000 [===========>..................] - ETA: 1:49:07 - loss: 1.5337351\n", + " 801/2000 [===========>..................] - ETA: 1:49:03 - loss: 1.5339467\n", + "821\n", + " 802/2000 [===========>..................] - ETA: 1:48:58 - loss: 1.5335483\n", + "506\n", + "720\n", + " 803/2000 [===========>..................] - ETA: 1:48:52 - loss: 1.5324346\n", + " 804/2000 [===========>..................] - ETA: 1:48:47 - loss: 1.532822\n", + "223\n", + " 805/2000 [===========>..................] - ETA: 1:48:45 - loss: 1.5319731\n", + " 806/2000 [===========>..................] - ETA: 1:48:37 - loss: 1.5324103\n", + " 807/2000 [===========>..................] - ETA: 1:48:28 - loss: 1.5306686\n", + "679\n", + "437\n", + " 808/2000 [===========>..................] - ETA: 1:48:23 - loss: 1.5306136\n", + " 809/2000 [===========>..................] - ETA: 1:48:15 - loss: 1.5291345\n", + " 810/2000 [===========>..................] - ETA: 1:48:10 - loss: 1.5291240\n", + " 811/2000 [===========>..................] - ETA: 1:48:06 - loss: 1.5287280\n", + " 812/2000 [===========>..................] - ETA: 1:48:02 - loss: 1.5290573\n", + "959\n", + " 813/2000 [===========>..................] - ETA: 1:47:58 - loss: 1.5287447\n", + " 814/2000 [===========>..................] - ETA: 1:47:51 - loss: 1.5284122\n", + " 815/2000 [===========>..................] - ETA: 1:47:43 - loss: 1.5281961\n", + " 816/2000 [===========>..................] - ETA: 1:47:38 - loss: 1.5280616\n", + "472\n", + "397\n", + " 817/2000 [===========>..................] - ETA: 1:47:35 - loss: 1.5288920\n", + " 818/2000 [===========>..................] - ETA: 1:47:30 - loss: 1.5287835\n", + " 819/2000 [===========>..................] - ETA: 1:47:25 - loss: 1.528145\n", + "883\n", + " 820/2000 [===========>..................] - ETA: 1:47:21 - loss: 1.5283947\n", + " 821/2000 [===========>..................] - ETA: 1:47:16 - loss: 1.5279339\n", + " 822/2000 [===========>..................] - ETA: 1:47:11 - loss: 1.5272383\n", + " 823/2000 [===========>..................] - ETA: 1:47:06 - loss: 1.5276815\n", + " 824/2000 [===========>..................] - ETA: 1:47:01 - loss: 1.5269651\n", + "260\n", + " 825/2000 [===========>..................] - ETA: 1:46:57 - loss: 1.5264289\n", + " 826/2000 [===========>..................] - ETA: 1:46:54 - loss: 1.5266432\n", + " 827/2000 [===========>..................] - ETA: 1:46:49 - loss: 1.5268162\n", + " 828/2000 [===========>..................] - ETA: 1:46:41 - loss: 1.5259285\n", + " 829/2000 [===========>..................] - ETA: 1:46:38 - loss: 1.5259790\n", + " 830/2000 [===========>..................] - ETA: 1:46:30 - loss: 1.5251361\n", + " 831/2000 [===========>..................] - ETA: 1:46:24 - loss: 1.5248516\n", + "329\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 832/2000 [===========>..................] - ETA: 1:46:21 - loss: 1.5250302\n", + " 833/2000 [===========>..................] - ETA: 1:46:17 - loss: 1.5252428\n", + " 834/2000 [===========>..................] - ETA: 1:46:11 - loss: 1.5250594\n", + "629\n", + "173\n", + " 835/2000 [===========>..................] - ETA: 1:46:05 - loss: 1.5240508\n", + "527\n", + "179\n", + " 836/2000 [===========>..................] - ETA: 1:46:01 - loss: 1.5240439\n", + " 837/2000 [===========>..................] - ETA: 1:45:55 - loss: 1.5235166\n", + " 838/2000 [===========>..................] - ETA: 1:45:47 - loss: 1.5225496\n", + "773\n", + " 839/2000 [===========>..................] - ETA: 1:45:40 - loss: 1.5219208\n", + " 840/2000 [===========>..................] - ETA: 1:45:36 - loss: 1.5223937\n", + " 841/2000 [===========>..................] - ETA: 1:45:31 - loss: 1.5221619\n", + "425\n", + " 842/2000 [===========>..................] - ETA: 1:45:26 - loss: 1.5217292\n", + " 843/2000 [===========>..................] - ETA: 1:45:22 - loss: 1.5214250\n", + " 844/2000 [===========>..................] - ETA: 1:45:18 - loss: 1.521826\n", + "601\n", + "365\n", + " 845/2000 [===========>..................] - ETA: 1:45:14 - loss: 1.5217417\n", + " 846/2000 [===========>..................] - ETA: 1:45:09 - loss: 1.5221102\n", + " 847/2000 [===========>..................] - ETA: 1:45:00 - loss: 1.5212117\n", + " 848/2000 [===========>..................] - ETA: 1:44:52 - loss: 1.5198257\n", + " 849/2000 [===========>..................] - ETA: 1:44:49 - loss: 1.5194470\n", + "480\n", + "925\n", + " 850/2000 [===========>..................] - ETA: 1:44:45 - loss: 1.5191840\n", + " 851/2000 [===========>..................] - ETA: 1:44:40 - loss: 1.5192901\n", + " 852/2000 [===========>..................] - ETA: 1:44:35 - loss: 1.5192282\n", + " 853/2000 [===========>..................] - ETA: 1:44:31 - loss: 1.5188110\n", + " 854/2000 [===========>..................] - ETA: 1:44:23 - loss: 1.5172544\n", + "574\n", + "689\n", + "90\n", + " 855/2000 [===========>..................] - ETA: 1:44:17 - loss: 1.517481\n", + " 856/2000 [===========>..................] - ETA: 1:44:09 - loss: 1.5165754\n", + " 857/2000 [===========>..................] - ETA: 1:44:01 - loss: 1.5164891\n", + " 858/2000 [===========>..................] - ETA: 1:43:56 - loss: 1.516688\n", + " 859/2000 [===========>..................] - ETA: 1:43:47 - loss: 1.5152479\n", + "10\n", + "775\n", + " 860/2000 [===========>..................] - ETA: 1:43:41 - loss: 1.5143115\n", + " 861/2000 [===========>..................] - ETA: 1:43:33 - loss: 1.5126314\n", + " 862/2000 [===========>..................] - ETA: 1:43:29 - loss: 1.5129618\n", + "663\n", + "641\n", + "583\n", + "317\n", + " 863/2000 [===========>..................] - ETA: 1:43:27 - loss: 1.5125711\n", + " 864/2000 [===========>..................] - ETA: 1:43:19 - loss: 1.5114612\n", + "148\n", + " 865/2000 [===========>..................] - ETA: 1:43:12 - loss: 1.5106857\n", + " 866/2000 [===========>..................] - ETA: 1:43:06 - loss: 1.51059\n", + "358\n", + " 867/2000 [============>.................] - ETA: 1:43:02 - loss: 1.5107135\n", + " 868/2000 [============>.................] - ETA: 1:42:54 - loss: 1.5095593\n", + "363\n", + " 869/2000 [============>.................] - ETA: 1:42:50 - loss: 1.5088369\n", + " 870/2000 [============>.................] - ETA: 1:42:45 - loss: 1.5088474\n", + "187\n", + " 871/2000 [============>.................] - ETA: 1:42:39 - loss: 1.5095575\n", + "834\n", + " 872/2000 [============>.................] - ETA: 1:42:35 - loss: 1.5093979\n", + " 873/2000 [============>.................] - ETA: 1:42:30 - loss: 1.5093887\n", + " 874/2000 [============>.................] - ETA: 1:42:25 - loss: 1.5090436\n", + " 875/2000 [============>.................] - ETA: 1:42:18 - loss: 1.5088800\n", + " 876/2000 [============>.................] - ETA: 1:42:11 - loss: 1.5084104\n", + " 877/2000 [============>.................] - ETA: 1:42:03 - loss: 1.5076170\n", + " 878/2000 [============>.................] - ETA: 1:41:56 - loss: 1.5068818\n", + " 879/2000 [============>.................] - ETA: 1:41:50 - loss: 1.5064468\n", + "343\n", + " 880/2000 [============>.................] - ETA: 1:41:46 - loss: 1.5063657\n", + "812\n", + " 881/2000 [============>.................] - ETA: 1:41:41 - loss: 1.5060892\n", + " 882/2000 [============>.................] - ETA: 1:41:36 - loss: 1.5063143\n", + " 883/2000 [============>.................] - ETA: 1:41:28 - loss: 1.5055422\n", + " 884/2000 [============>.................] - ETA: 1:41:23 - loss: 1.504983\n", + " 885/2000 [============>.................] - ETA: 1:41:15 - loss: 1.503338\n", + "184\n", + " 886/2000 [============>.................] - ETA: 1:41:10 - loss: 1.5030662\n", + "958\n", + " 887/2000 [============>.................] - ETA: 1:41:05 - loss: 1.5025543\n", + "820\n", + " 888/2000 [============>.................] - ETA: 1:41:00 - loss: 1.5027119\n", + " 889/2000 [============>.................] - ETA: 1:40:53 - loss: 1.5022903\n", + " 890/2000 [============>.................] - ETA: 1:40:48 - loss: 1.5023530\n", + "341\n", + " 891/2000 [============>.................] - ETA: 1:40:44 - loss: 1.501642\n", + "756\n", + " 892/2000 [============>.................] - ETA: 1:40:37 - loss: 1.5007591\n", + "877\n", + " 893/2000 [============>.................] - ETA: 1:40:33 - loss: 1.5009700\n", + " 894/2000 [============>.................] - ETA: 1:40:25 - loss: 1.5004469\n", + "557\n", + "99\n", + " 895/2000 [============>.................] - ETA: 1:40:19 - loss: 1.4993258\n", + " 896/2000 [============>.................] - ETA: 1:40:14 - loss: 1.4992207\n", + " 897/2000 [============>.................] - ETA: 1:40:10 - loss: 1.4989735\n", + " 898/2000 [============>.................] - ETA: 1:40:02 - loss: 1.4976462\n", + "59\n", + "502\n", + "164\n", + " 899/2000 [============>.................] - ETA: 1:39:57 - loss: 1.4965867\n", + " 900/2000 [============>.................] - ETA: 1:39:52 - loss: 1.4964560\n", + "552\n", + "794\n", + " 901/2000 [============>.................] - ETA: 1:39:47 - loss: 1.4959868\n", + " 902/2000 [============>.................] - ETA: 1:39:41 - loss: 1.495623\n", + "719\n", + " 903/2000 [============>.................] - ETA: 1:39:35 - loss: 1.4945278\n", + " 904/2000 [============>.................] - ETA: 1:39:31 - loss: 1.4944491\n", + "802\n", + " 905/2000 [============>.................] - ETA: 1:39:25 - loss: 1.4938661\n", + "518\n", + "931\n", + " 906/2000 [============>.................] - ETA: 1:39:22 - loss: 1.493763\n", + "968\n", + " 907/2000 [============>.................] - ETA: 1:39:18 - loss: 1.4939224\n", + " 908/2000 [============>.................] - ETA: 1:39:13 - loss: 1.4938668\n", + "435\n", + " 909/2000 [============>.................] - ETA: 1:39:07 - loss: 1.4935438\n", + " 910/2000 [============>.................] - ETA: 1:39:01 - loss: 1.4931726\n", + " 911/2000 [============>.................] - ETA: 1:38:54 - loss: 1.4933112\n", + " 912/2000 [============>.................] - ETA: 1:38:46 - loss: 1.4936310\n", + " 913/2000 [============>.................] - ETA: 1:38:41 - loss: 1.4935765\n", + " 914/2000 [============>.................] - ETA: 1:38:34 - loss: 1.4945709\n", + " 915/2000 [============>.................] - ETA: 1:38:26 - loss: 1.4932489\n", + "639\n", + "547\n", + "588\n", + "751\n", + " 916/2000 [============>.................] - ETA: 1:38:21 - loss: 1.4930724\n", + " 917/2000 [============>.................] - ETA: 1:38:14 - loss: 1.4924101\n", + " 918/2000 [============>.................] - ETA: 1:38:06 - loss: 1.4912893\n", + " 919/2000 [============>.................] - ETA: 1:38:01 - loss: 1.4908581\n", + "204\n", + " 920/2000 [============>.................] - ETA: 1:37:57 - loss: 1.490444\n", + "140\n", + " 921/2000 [============>.................] - ETA: 1:37:50 - loss: 1.4904180\n", + " 922/2000 [============>.................] - ETA: 1:37:44 - loss: 1.4909556\n", + "316\n", + " 923/2000 [============>.................] - ETA: 1:37:40 - loss: 1.491153\n", + "587\n", + "806\n", + " 924/2000 [============>.................] - ETA: 1:37:35 - loss: 1.490178\n", + "658\n", + "21\n", + "576\n", + "567\n", + "941\n", + " 925/2000 [============>.................] - ETA: 1:37:34 - loss: 1.4898221\n", + " 926/2000 [============>.................] - ETA: 1:37:30 - loss: 1.4898414\n", + " 927/2000 [============>.................] - ETA: 1:37:24 - loss: 1.4903849\n", + " 928/2000 [============>.................] - ETA: 1:37:19 - loss: 1.4901375\n", + " 929/2000 [============>.................] - ETA: 1:37:14 - loss: 1.4906396\n", + " 930/2000 [============>.................] - ETA: 1:37:09 - loss: 1.4909779\n", + " 931/2000 [============>.................] - ETA: 1:37:02 - loss: 1.4897297\n", + " 932/2000 [============>.................] - ETA: 1:36:58 - loss: 1.4898319\n", + " 933/2000 [============>.................] - ETA: 1:36:54 - loss: 1.4897142\n", + " 934/2000 [=============>................] - ETA: 1:36:47 - loss: 1.4888622\n", + "873\n", + " 935/2000 [=============>................] - ETA: 1:36:43 - loss: 1.4892976\n", + " 936/2000 [=============>................] - ETA: 1:36:38 - loss: 1.4890114\n", + " 937/2000 [=============>................] - ETA: 1:36:30 - loss: 1.4876106\n", + " 938/2000 [=============>................] - ETA: 1:36:22 - loss: 1.4871429\n", + " 939/2000 [=============>................] - ETA: 1:36:17 - loss: 1.4873129\n", + " 940/2000 [=============>................] - ETA: 1:36:09 - loss: 1.4875919\n", + " 941/2000 [=============>................] - ETA: 1:36:05 - loss: 1.4874728\n", + " 942/2000 [=============>................] - ETA: 1:35:58 - loss: 1.4865825\n", + " 943/2000 [=============>................] - ETA: 1:35:52 - loss: 1.4862708\n", + " 944/2000 [=============>................] - ETA: 1:35:45 - loss: 1.4859366\n", + " 945/2000 [=============>................] - ETA: 1:35:39 - loss: 1.4856191\n", + " 946/2000 [=============>................] - ETA: 1:35:33 - loss: 1.4858918\n", + " 947/2000 [=============>................] - ETA: 1:35:28 - loss: 1.4853650\n", + "28\n", + "326\n", + " 948/2000 [=============>................] - ETA: 1:35:25 - loss: 1.4852630\n", + "862\n", + " 949/2000 [=============>................] - ETA: 1:35:20 - loss: 1.4855141\n", + " 950/2000 [=============>................] - ETA: 1:35:13 - loss: 1.4850669\n", + "846\n", + " 951/2000 [=============>................] - ETA: 1:35:08 - loss: 1.4846493\n", + "550\n", + "664\n", + "757\n", + " 952/2000 [=============>................] - ETA: 1:35:03 - loss: 1.4841688\n", + "906\n", + " 953/2000 [=============>................] - ETA: 1:34:59 - loss: 1.4844232\n", + " 954/2000 [=============>................] - ETA: 1:34:54 - loss: 1.4845520\n", + "214\n", + " 955/2000 [=============>................] - ETA: 1:34:50 - loss: 1.4845199\n", + " 956/2000 [=============>................] - ETA: 1:34:45 - loss: 1.4844193\n", + " 957/2000 [=============>................] - ETA: 1:34:39 - loss: 1.4848336\n", + " 958/2000 [=============>................] - ETA: 1:34:34 - loss: 1.4847145\n", + " 959/2000 [=============>................] - ETA: 1:34:27 - loss: 1.4844505\n", + "683\n", + "427\n", + " 960/2000 [=============>................] - ETA: 1:34:23 - loss: 1.4845563\n", + "795\n", + " 961/2000 [=============>................] - ETA: 1:34:17 - loss: 1.4838494\n", + "133\n", + " 962/2000 [=============>................] - ETA: 1:34:11 - loss: 1.4836859\n", + " 963/2000 [=============>................] - ETA: 1:34:05 - loss: 1.4836153\n", + " 964/2000 [=============>................] - ETA: 1:33:58 - loss: 1.4828705\n", + " 965/2000 [=============>................] - ETA: 1:33:50 - loss: 1.4831973\n", + " 966/2000 [=============>................] - ETA: 1:33:45 - loss: 1.4832681\n", + "126\n", + " 967/2000 [=============>................] - ETA: 1:33:39 - loss: 1.4823625\n", + "526\n", + "160\n", + " 968/2000 [=============>................] - ETA: 1:33:33 - loss: 1.4812788\n", + " 969/2000 [=============>................] - ETA: 1:33:26 - loss: 1.4802359\n", + " 970/2000 [=============>................] - ETA: 1:33:21 - loss: 1.4802293\n", + " 971/2000 [=============>................] - ETA: 1:33:17 - loss: 1.48036\n", + "357\n", + " 972/2000 [=============>................] - ETA: 1:33:12 - loss: 1.4801969\n", + " 973/2000 [=============>................] - ETA: 1:33:07 - loss: 1.4801986\n", + " 974/2000 [=============>................] - ETA: 1:33:02 - loss: 1.4798542\n", + "606\n", + "238\n", + " 975/2000 [=============>................] - ETA: 1:32:58 - loss: 1.4794981\n", + " 976/2000 [=============>................] - ETA: 1:32:53 - loss: 1.4790111\n", + " 977/2000 [=============>................] - ETA: 1:32:45 - loss: 1.47782\n", + "242\n", + " 978/2000 [=============>................] - ETA: 1:32:41 - loss: 1.4775265\n", + " 979/2000 [=============>................] - ETA: 1:32:37 - loss: 1.4778763\n", + " 980/2000 [=============>................] - ETA: 1:32:30 - loss: 1.476530\n", + "814\n", + " 981/2000 [=============>................] - ETA: 1:32:25 - loss: 1.4761882\n", + " 982/2000 [=============>................] - ETA: 1:32:20 - loss: 1.4761907\n", + " 983/2000 [=============>................] - ETA: 1:32:15 - loss: 1.4762529\n", + "376\n", + " 984/2000 [=============>................] - ETA: 1:32:11 - loss: 1.4761168\n", + " 985/2000 [=============>................] - ETA: 1:32:04 - loss: 1.4749851\n", + " 986/2000 [=============>................] - ETA: 1:31:58 - loss: 1.4747495\n", + "65\n", + "510\n", + "488\n", + "210\n", + " 987/2000 [=============>................] - ETA: 1:31:56 - loss: 1.4747843\n", + " 988/2000 [=============>................] - ETA: 1:31:50 - loss: 1.4748690\n", + "152\n", + " 989/2000 [=============>................] - ETA: 1:31:43 - loss: 1.4746706\n", + " 990/2000 [=============>................] - ETA: 1:31:36 - loss: 1.4757218\n", + " 991/2000 [=============>................] - ETA: 1:31:32 - loss: 1.4760225\n", + " 992/2000 [=============>................] - ETA: 1:31:27 - loss: 1.4761161\n", + " 993/2000 [=============>................] - ETA: 1:31:20 - loss: 1.4756165\n", + " 994/2000 [=============>................] - ETA: 1:31:13 - loss: 1.4745692\n", + "459\n", + "156\n", + " 995/2000 [=============>................] - ETA: 1:31:08 - loss: 1.4736444\n", + " 996/2000 [=============>................] - ETA: 1:31:01 - loss: 1.4735390\n", + " 997/2000 [=============>................] - ETA: 1:30:56 - loss: 1.4740545\n", + "935\n", + " 998/2000 [=============>................] - ETA: 1:30:52 - loss: 1.474313\n", + "878\n", + " 999/2000 [=============>................] - ETA: 1:30:47 - loss: 1.474451\n", + "182\n", + "1000/2000 [==============>...............] - ETA: 1:30:42 - loss: 1.4744548\n", + "454\n", + "1001/2000 [==============>...............] - ETA: 1:30:36 - loss: 1.4746251\n", + "1002/2000 [==============>...............] - ETA: 1:30:31 - loss: 1.4751434\n", + "1003/2000 [==============>...............] - ETA: 1:30:26 - loss: 1.47507\n", + "243\n", + "1004/2000 [==============>...............] - ETA: 1:30:22 - loss: 1.4750453\n", + "1005/2000 [==============>...............] - ETA: 1:30:16 - loss: 1.4748274\n", + "1006/2000 [==============>...............] - ETA: 1:30:11 - loss: 1.4745163\n", + "1007/2000 [==============>...............] - ETA: 1:30:04 - loss: 1.4737497\n", + "368\n", + "1008/2000 [==============>...............] - ETA: 1:30:00 - loss: 1.4737927\n", + "1009/2000 [==============>...............] - ETA: 1:29:55 - loss: 1.4738886\n", + "1010/2000 [==============>...............] - ETA: 1:29:50 - loss: 1.4738571\n", + "701\n", + "1011/2000 [==============>...............] - ETA: 1:29:43 - loss: 1.4731307\n", + "1012/2000 [==============>...............] - ETA: 1:29:39 - loss: 1.472977\n", + "335\n", + "1013/2000 [==============>...............] - ETA: 1:29:35 - loss: 1.4727725\n", + "1014/2000 [==============>...............] - ETA: 1:29:27 - loss: 1.4727248\n", + "1015/2000 [==============>...............] - ETA: 1:29:23 - loss: 1.4729515\n", + "647\n", + "730\n", + "1016/2000 [==============>...............] - ETA: 1:29:17 - loss: 1.472014\n", + "464\n", + "386\n", + "1017/2000 [==============>...............] - ETA: 1:29:12 - loss: 1.4724555\n", + "637\n", + "620\n", + "624\n", + "413\n", + "1018/2000 [==============>...............] - ETA: 1:29:09 - loss: 1.4714607\n", + "599\n", + "944\n", + "1019/2000 [==============>...............] - ETA: 1:29:05 - loss: 1.4711276\n", + "1020/2000 [==============>...............] - ETA: 1:29:01 - loss: 1.470825\n", + "512\n", + "174\n", + "1021/2000 [==============>...............] - ETA: 1:28:55 - loss: 1.4701580\n", + "811\n", + "1022/2000 [==============>...............] - ETA: 1:28:50 - loss: 1.470224\n", + "967\n", + "1023/2000 [==============>...............] - ETA: 1:28:45 - loss: 1.4699484\n", + "577\n", + "778\n", + "1024/2000 [==============>...............] - ETA: 1:28:39 - loss: 1.469289\n", + "1025/2000 [==============>...............] - ETA: 1:28:32 - loss: 1.4686373\n", + "1026/2000 [==============>...............] - ETA: 1:28:26 - loss: 1.468440\n", + "912\n", + "1027/2000 [==============>...............] - ETA: 1:28:22 - loss: 1.4684198\n", + "1028/2000 [==============>...............] - ETA: 1:28:17 - loss: 1.4689875\n", + "1029/2000 [==============>...............] - ETA: 1:28:13 - loss: 1.4692524\n", + "695\n", + "1030/2000 [==============>...............] - ETA: 1:28:06 - loss: 1.4685118\n", + "1031/2000 [==============>...............] - ETA: 1:27:59 - loss: 1.4691767\n", + "1032/2000 [==============>...............] - ETA: 1:27:52 - loss: 1.4686829\n", + "1033/2000 [==============>...............] - ETA: 1:27:46 - loss: 1.4685450\n", + "1034/2000 [==============>...............] - ETA: 1:27:40 - loss: 1.468634\n", + "786\n", + "1035/2000 [==============>...............] - ETA: 1:27:33 - loss: 1.4677691\n", + "303\n", + "1036/2000 [==============>...............] - ETA: 1:27:29 - loss: 1.4677426\n", + "1037/2000 [==============>...............] - ETA: 1:27:24 - loss: 1.4675866\n", + "1038/2000 [==============>...............] - ETA: 1:27:18 - loss: 1.4671227\n", + "1039/2000 [==============>...............] - ETA: 1:27:14 - loss: 1.4671865\n", + "1040/2000 [==============>...............] - ETA: 1:27:08 - loss: 1.46685\n", + "36\n", + "189\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1041/2000 [==============>...............] - ETA: 1:27:04 - loss: 1.4661672\n", + "440\n", + "1042/2000 [==============>...............] - ETA: 1:26:58 - loss: 1.4656972\n", + "1043/2000 [==============>...............] - ETA: 1:26:53 - loss: 1.4656113\n", + "1044/2000 [==============>...............] - ETA: 1:26:46 - loss: 1.465649\n", + "796\n", + "1045/2000 [==============>...............] - ETA: 1:26:40 - loss: 1.4655598\n", + "980\n", + "1046/2000 [==============>...............] - ETA: 1:26:35 - loss: 1.4653281\n", + "1047/2000 [==============>...............] - ETA: 1:26:31 - loss: 1.4650388\n", + "1048/2000 [==============>...............] - ETA: 1:26:26 - loss: 1.4648738\n", + "1049/2000 [==============>...............] - ETA: 1:26:19 - loss: 1.4638183\n", + "1050/2000 [==============>...............] - ETA: 1:26:13 - loss: 1.4636766\n", + "1051/2000 [==============>...............] - ETA: 1:26:06 - loss: 1.462791\n", + "1052/2000 [==============>...............] - ETA: 1:25:59 - loss: 1.4618733\n", + "1053/2000 [==============>...............] - ETA: 1:25:52 - loss: 1.4607956\n", + "1054/2000 [==============>...............] - ETA: 1:25:46 - loss: 1.4606922\n", + "1055/2000 [==============>...............] - ETA: 1:25:42 - loss: 1.4609685\n", + "646\n", + "684\n", + "578\n", + "321\n", + "1056/2000 [==============>...............] - ETA: 1:25:39 - loss: 1.4604291\n", + "1057/2000 [==============>...............] - ETA: 1:25:35 - loss: 1.4603852\n", + "1058/2000 [==============>...............] - ETA: 1:25:29 - loss: 1.4601108\n", + "1059/2000 [==============>...............] - ETA: 1:25:22 - loss: 1.4603296\n", + "1060/2000 [==============>...............] - ETA: 1:25:18 - loss: 1.4604615\n", + "299\n", + "1061/2000 [==============>...............] - ETA: 1:25:13 - loss: 1.4603172\n", + "1062/2000 [==============>...............] - ETA: 1:25:07 - loss: 1.4594405\n", + "1063/2000 [==============>...............] - ETA: 1:25:01 - loss: 1.4587554\n", + "799\n", + "1064/2000 [==============>...............] - ETA: 1:24:56 - loss: 1.4580817\n", + "1065/2000 [==============>...............] - ETA: 1:24:51 - loss: 1.4580645\n", + "82\n", + "1066/2000 [==============>...............] - ETA: 1:24:44 - loss: 1.4568987\n", + "1067/2000 [===============>..............] - ETA: 1:24:39 - loss: 1.4571147\n", + "1068/2000 [===============>..............] - ETA: 1:24:32 - loss: 1.4563623\n", + "71\n", + "503\n", + "772\n", + "1069/2000 [===============>..............] - ETA: 1:24:26 - loss: 1.4552710\n", + "1070/2000 [===============>..............] - ETA: 1:24:19 - loss: 1.4543327\n", + "1071/2000 [===============>..............] - ETA: 1:24:14 - loss: 1.4543446\n", + "1072/2000 [===============>..............] - ETA: 1:24:08 - loss: 1.4543785\n", + "1073/2000 [===============>..............] - ETA: 1:24:01 - loss: 1.4537239\n", + "1074/2000 [===============>..............] - ETA: 1:23:56 - loss: 1.4538215\n", + "1075/2000 [===============>..............] - ETA: 1:23:51 - loss: 1.4536205\n", + "1076/2000 [===============>..............] - ETA: 1:23:46 - loss: 1.4528511\n", + "675\n", + "325\n", + "1077/2000 [===============>..............] - ETA: 1:23:43 - loss: 1.4529306\n", + "1078/2000 [===============>..............] - ETA: 1:23:38 - loss: 1.4526322\n", + "1079/2000 [===============>..............] - ETA: 1:23:33 - loss: 1.452311\n", + "898\n", + "1080/2000 [===============>..............] - ETA: 1:23:29 - loss: 1.4529313\n", + "1081/2000 [===============>..............] - ETA: 1:23:24 - loss: 1.4529833\n", + "1082/2000 [===============>..............] - ETA: 1:23:18 - loss: 1.4524654\n", + "17\n", + "850\n", + "1083/2000 [===============>..............] - ETA: 1:23:14 - loss: 1.4524874\n", + "1084/2000 [===============>..............] - ETA: 1:23:09 - loss: 1.4522762\n", + "1085/2000 [===============>..............] - ETA: 1:23:02 - loss: 1.4524759\n", + "1086/2000 [===============>..............] - ETA: 1:22:55 - loss: 1.4520458\n", + "485\n", + "570\n", + "121\n", + "1087/2000 [===============>..............] - ETA: 1:22:50 - loss: 1.4520178\n", + "1088/2000 [===============>..............] - ETA: 1:22:44 - loss: 1.4518131\n", + "1089/2000 [===============>..............] - ETA: 1:22:37 - loss: 1.4521107\n", + "1090/2000 [===============>..............] - ETA: 1:22:30 - loss: 1.4514546\n", + "985\n", + "1091/2000 [===============>..............] - ETA: 1:22:25 - loss: 1.4514682\n", + "73\n", + "632\n", + "856\n", + "1092/2000 [===============>..............] - ETA: 1:22:21 - loss: 1.4513301\n", + "1093/2000 [===============>..............] - ETA: 1:22:16 - loss: 1.4515105\n", + "1094/2000 [===============>..............] - ETA: 1:22:09 - loss: 1.4508192\n", + "1095/2000 [===============>..............] - ETA: 1:22:03 - loss: 1.450397\n", + "1096/2000 [===============>..............] - ETA: 1:21:56 - loss: 1.4509287\n", + "1097/2000 [===============>..............] - ETA: 1:21:52 - loss: 1.4511304\n", + "1098/2000 [===============>..............] - ETA: 1:21:47 - loss: 1.4513312\n", + "1099/2000 [===============>..............] - ETA: 1:21:44 - loss: 1.4511216\n", + "1100/2000 [===============>..............] - ETA: 1:21:39 - loss: 1.4511132\n", + "1101/2000 [===============>..............] - ETA: 1:21:32 - loss: 1.4513842\n", + "1102/2000 [===============>..............] - ETA: 1:21:26 - loss: 1.4511123\n", + "1103/2000 [===============>..............] - ETA: 1:21:19 - loss: 1.4513715\n", + "1104/2000 [===============>..............] - ETA: 1:21:12 - loss: 1.4504933\n", + "1105/2000 [===============>..............] - ETA: 1:21:07 - loss: 1.450241\n", + "12\n", + "917\n", + "1106/2000 [===============>..............] - ETA: 1:21:03 - loss: 1.4502456\n", + "228\n", + "1107/2000 [===============>..............] - ETA: 1:20:59 - loss: 1.4502722\n", + "1108/2000 [===============>..............] - ETA: 1:20:52 - loss: 1.4494839\n", + "1109/2000 [===============>..............] - ETA: 1:20:46 - loss: 1.4498853\n", + "1110/2000 [===============>..............] - ETA: 1:20:41 - loss: 1.449735\n", + "965\n", + "1111/2000 [===============>..............] - ETA: 1:20:36 - loss: 1.4494247\n", + "1112/2000 [===============>..............] - ETA: 1:20:31 - loss: 1.4495348\n", + "1113/2000 [===============>..............] - ETA: 1:20:26 - loss: 1.4494167\n", + "1114/2000 [===============>..............] - ETA: 1:20:20 - loss: 1.4485155\n", + "1115/2000 [===============>..............] - ETA: 1:20:13 - loss: 1.4481809\n", + "1116/2000 [===============>..............] - ETA: 1:20:07 - loss: 1.44780\n", + "621\n", + "146\n", + "1117/2000 [===============>..............] - ETA: 1:20:01 - loss: 1.4472938\n", + "1118/2000 [===============>..............] - ETA: 1:19:56 - loss: 1.4473268\n", + "1119/2000 [===============>..............] - ETA: 1:19:51 - loss: 1.4476194\n", + "1120/2000 [===============>..............] - ETA: 1:19:45 - loss: 1.4476124\n", + "1121/2000 [===============>..............] - ETA: 1:19:38 - loss: 1.4478449\n", + "1122/2000 [===============>..............] - ETA: 1:19:32 - loss: 1.4478656\n", + "930\n", + "1123/2000 [===============>..............] - ETA: 1:19:28 - loss: 1.4477330\n", + "1124/2000 [===============>..............] - ETA: 1:19:23 - loss: 1.4474838\n", + "1125/2000 [===============>..............] - ETA: 1:19:18 - loss: 1.4472808\n", + "1126/2000 [===============>..............] - ETA: 1:19:12 - loss: 1.4466880\n", + "1127/2000 [===============>..............] - ETA: 1:19:07 - loss: 1.4468400\n", + "1128/2000 [===============>..............] - ETA: 1:19:02 - loss: 1.4473283\n", + "1129/2000 [===============>..............] - ETA: 1:18:57 - loss: 1.447261\n", + "235\n", + "1130/2000 [===============>..............] - ETA: 1:18:53 - loss: 1.4467353\n", + "1131/2000 [===============>..............] - ETA: 1:18:48 - loss: 1.4465157\n", + "1132/2000 [===============>..............] - ETA: 1:18:41 - loss: 1.4462613\n", + "486\n", + "380\n", + "1133/2000 [===============>..............] - ETA: 1:18:37 - loss: 1.4465854\n", + "1134/2000 [================>.............] - ETA: 1:18:32 - loss: 1.4462273\n", + "1135/2000 [================>.............] - ETA: 1:18:27 - loss: 1.4464451\n", + "1136/2000 [================>.............] - ETA: 1:18:21 - loss: 1.4462966\n", + "1137/2000 [================>.............] - ETA: 1:18:15 - loss: 1.4458712\n", + "1138/2000 [================>.............] - ETA: 1:18:09 - loss: 1.4457674\n", + "758\n", + "1139/2000 [================>.............] - ETA: 1:18:02 - loss: 1.4448442\n", + "1140/2000 [================>.............] - ETA: 1:17:56 - loss: 1.4445549\n", + "770\n", + "1141/2000 [================>.............] - ETA: 1:17:50 - loss: 1.4437478\n", + "596\n", + "718\n", + "1142/2000 [================>.............] - ETA: 1:17:44 - loss: 1.4432100\n", + "1143/2000 [================>.............] - ETA: 1:17:37 - loss: 1.4422144\n", + "1144/2000 [================>.............] - ETA: 1:17:30 - loss: 1.4414716\n", + "1145/2000 [================>.............] - ETA: 1:17:23 - loss: 1.4403411\n", + "1146/2000 [================>.............] - ETA: 1:17:18 - loss: 1.4402393\n", + "1147/2000 [================>.............] - ETA: 1:17:13 - loss: 1.4402385\n", + "1148/2000 [================>.............] - ETA: 1:17:08 - loss: 1.4400714\n", + "1149/2000 [================>.............] - ETA: 1:17:01 - loss: 1.4391595\n", + "186\n", + "1150/2000 [================>.............] - ETA: 1:16:56 - loss: 1.4389609\n", + "128\n", + "1151/2000 [================>.............] - ETA: 1:16:49 - loss: 1.4394234\n", + "1152/2000 [================>.............] - ETA: 1:16:44 - loss: 1.4392957\n", + "1153/2000 [================>.............] - ETA: 1:16:39 - loss: 1.4390387\n", + "1154/2000 [================>.............] - ETA: 1:16:34 - loss: 1.4395130\n", + "1155/2000 [================>.............] - ETA: 1:16:27 - loss: 1.439564\n", + "644\n", + "977\n", + "1156/2000 [================>.............] - ETA: 1:16:23 - loss: 1.4396642\n", + "344\n", + "1157/2000 [================>.............] - ETA: 1:16:18 - loss: 1.4395652\n", + "860\n", + "1158/2000 [================>.............] - ETA: 1:16:13 - loss: 1.4395229\n", + "1159/2000 [================>.............] - ETA: 1:16:09 - loss: 1.439286\n", + "1160/2000 [================>.............] - ETA: 1:16:02 - loss: 1.4389739\n", + "1161/2000 [================>.............] - ETA: 1:15:55 - loss: 1.438198\n", + "1162/2000 [================>.............] - ETA: 1:15:48 - loss: 1.4371389\n", + "1163/2000 [================>.............] - ETA: 1:15:43 - loss: 1.4372649\n", + "19\n", + "932\n", + "1164/2000 [================>.............] - ETA: 1:15:39 - loss: 1.4373519\n", + "181\n", + "1165/2000 [================>.............] - ETA: 1:15:33 - loss: 1.4370406\n", + "1166/2000 [================>.............] - ETA: 1:15:28 - loss: 1.4370241\n", + "1167/2000 [================>.............] - ETA: 1:15:23 - loss: 1.4369196\n", + "1168/2000 [================>.............] - ETA: 1:15:17 - loss: 1.4368776\n", + "1169/2000 [================>.............] - ETA: 1:15:10 - loss: 1.4357924\n", + "1170/2000 [================>.............] - ETA: 1:15:05 - loss: 1.4356803\n", + "1171/2000 [================>.............] - ETA: 1:14:59 - loss: 1.4350517\n", + "423\n", + "1172/2000 [================>.............] - ETA: 1:14:54 - loss: 1.4349611\n", + "713\n", + "1173/2000 [================>.............] - ETA: 1:14:48 - loss: 1.4340633\n", + "827\n", + "1174/2000 [================>.............] - ETA: 1:14:43 - loss: 1.4340610\n", + "774\n", + "1175/2000 [================>.............] - ETA: 1:14:37 - loss: 1.4331328\n", + "1176/2000 [================>.............] - ETA: 1:14:32 - loss: 1.4327311\n", + "1177/2000 [================>.............] - ETA: 1:14:27 - loss: 1.4327507\n", + "360\n", + "1178/2000 [================>.............] - ETA: 1:14:22 - loss: 1.432843\n", + "747\n", + "1179/2000 [================>.............] - ETA: 1:14:16 - loss: 1.4323477\n", + "934\n", + "1180/2000 [================>.............] - ETA: 1:14:11 - loss: 1.4323768\n", + "1181/2000 [================>.............] - ETA: 1:14:04 - loss: 1.4318430\n", + "1182/2000 [================>.............] - ETA: 1:13:59 - loss: 1.4319418\n", + "1183/2000 [================>.............] - ETA: 1:13:54 - loss: 1.4319352\n", + "1184/2000 [================>.............] - ETA: 1:13:49 - loss: 1.4316749\n", + "1185/2000 [================>.............] - ETA: 1:13:42 - loss: 1.4314460\n", + "655\n", + "356\n", + "1186/2000 [================>.............] - ETA: 1:13:37 - loss: 1.4314764\n", + "1187/2000 [================>.............] - ETA: 1:13:31 - loss: 1.4307528\n", + "746\n", + "1188/2000 [================>.............] - ETA: 1:13:24 - loss: 1.4310744\n", + "1189/2000 [================>.............] - ETA: 1:13:18 - loss: 1.4300780\n", + "1190/2000 [================>.............] - ETA: 1:13:11 - loss: 1.4296665\n", + "116\n", + "1191/2000 [================>.............] - ETA: 1:13:05 - loss: 1.4285443\n", + "1192/2000 [================>.............] - ETA: 1:12:59 - loss: 1.4283481\n", + "698\n", + "1193/2000 [================>.............] - ETA: 1:12:52 - loss: 1.4277252\n", + "1194/2000 [================>.............] - ETA: 1:12:47 - loss: 1.4279537\n", + "822\n", + "1195/2000 [================>.............] - ETA: 1:12:42 - loss: 1.4278318\n", + "1196/2000 [================>.............] - ETA: 1:12:38 - loss: 1.4276398\n", + "1197/2000 [================>.............] - ETA: 1:12:32 - loss: 1.4275342\n", + "1198/2000 [================>.............] - ETA: 1:12:27 - loss: 1.427147\n", + "558\n", + "769\n", + "1199/2000 [================>.............] - ETA: 1:12:21 - loss: 1.4262471\n", + "894\n", + "1200/2000 [=================>............] - ETA: 1:12:16 - loss: 1.4259962\n", + "1201/2000 [=================>............] - ETA: 1:12:11 - loss: 1.4256638\n", + "970\n", + "1202/2000 [=================>............] - ETA: 1:12:06 - loss: 1.4255750\n", + "1203/2000 [=================>............] - ETA: 1:12:00 - loss: 1.4250721\n", + "1204/2000 [=================>............] - ETA: 1:11:53 - loss: 1.4245154\n", + "1205/2000 [=================>............] - ETA: 1:11:46 - loss: 1.4240823\n", + "1206/2000 [=================>............] - ETA: 1:11:41 - loss: 1.4238269\n", + "1207/2000 [=================>............] - ETA: 1:11:36 - loss: 1.4236626\n", + "18\n", + "171\n", + "1208/2000 [=================>............] - ETA: 1:11:30 - loss: 1.422854\n", + "627\n", + "374\n", + "1209/2000 [=================>............] - ETA: 1:11:26 - loss: 1.4226734\n", + "1210/2000 [=================>............] - ETA: 1:11:19 - loss: 1.4230929\n", + "1211/2000 [=================>............] - ETA: 1:11:14 - loss: 1.4231787\n", + "1212/2000 [=================>............] - ETA: 1:11:07 - loss: 1.4225540\n", + "830\n", + "1213/2000 [=================>............] - ETA: 1:11:02 - loss: 1.4223889\n", + "1214/2000 [=================>............] - ETA: 1:10:57 - loss: 1.4221523\n", + "392\n", + "1215/2000 [=================>............] - ETA: 1:10:52 - loss: 1.4218562\n", + "256\n", + "1216/2000 [=================>............] - ETA: 1:10:47 - loss: 1.421894\n", + "1217/2000 [=================>............] - ETA: 1:10:41 - loss: 1.4215863\n", + "1218/2000 [=================>............] - ETA: 1:10:35 - loss: 1.4215807\n", + "1219/2000 [=================>............] - ETA: 1:10:29 - loss: 1.421280\n", + "1220/2000 [=================>............] - ETA: 1:10:22 - loss: 1.420727\n", + "847\n", + "1221/2000 [=================>............] - ETA: 1:10:18 - loss: 1.4201255\n", + "1222/2000 [=================>............] - ETA: 1:10:13 - loss: 1.4200294\n", + "1223/2000 [=================>............] - ETA: 1:10:08 - loss: 1.4198175\n", + "1224/2000 [=================>............] - ETA: 1:10:02 - loss: 1.4192680\n", + "702\n", + "1225/2000 [=================>............] - ETA: 1:09:55 - loss: 1.4193699\n", + "1226/2000 [=================>............] - ETA: 1:09:49 - loss: 1.418739\n", + "605\n", + "670\n", + "253\n", + "1227/2000 [=================>............] - ETA: 1:09:45 - loss: 1.4185169\n", + "1228/2000 [=================>............] - ETA: 1:09:39 - loss: 1.4189561\n", + "465\n", + "127\n", + "1229/2000 [=================>............] - ETA: 1:09:33 - loss: 1.4181551\n", + "381\n", + "1230/2000 [=================>............] - ETA: 1:09:28 - loss: 1.4184466\n", + "566\n", + "408\n", + "1231/2000 [=================>............] - ETA: 1:09:23 - loss: 1.4185541\n", + "861\n", + "1232/2000 [=================>............] - ETA: 1:09:18 - loss: 1.4183378\n", + "1233/2000 [=================>............] - ETA: 1:09:13 - loss: 1.4185791\n", + "1234/2000 [=================>............] - ETA: 1:09:06 - loss: 1.4178871\n", + "1235/2000 [=================>............] - ETA: 1:09:01 - loss: 1.4182332\n", + "1236/2000 [=================>............] - ETA: 1:08:56 - loss: 1.4180354\n", + "1237/2000 [=================>............] - ETA: 1:08:51 - loss: 1.4178334\n", + "1238/2000 [=================>............] - ETA: 1:08:46 - loss: 1.4175195\n", + "1239/2000 [=================>............] - ETA: 1:08:41 - loss: 1.4172203\n", + "1240/2000 [=================>............] - ETA: 1:08:36 - loss: 1.4168824\n", + "1241/2000 [=================>............] - ETA: 1:08:30 - loss: 1.4165279\n", + "1242/2000 [=================>............] - ETA: 1:08:26 - loss: 1.4165338\n", + "1243/2000 [=================>............] - ETA: 1:08:20 - loss: 1.4160748\n", + "1244/2000 [=================>............] - ETA: 1:08:14 - loss: 1.4159953\n", + "1245/2000 [=================>............] - ETA: 1:08:09 - loss: 1.4160298\n", + "1246/2000 [=================>............] - ETA: 1:08:04 - loss: 1.4161190\n", + "1247/2000 [=================>............] - ETA: 1:07:58 - loss: 1.4154137\n", + "1248/2000 [=================>............] - ETA: 1:07:51 - loss: 1.4144659\n", + "884\n", + "1249/2000 [=================>............] - ETA: 1:07:46 - loss: 1.41458\n", + "777\n", + "1250/2000 [=================>............] - ETA: 1:07:40 - loss: 1.4136395\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1251/2000 [=================>............] - ETA: 1:07:35 - loss: 1.4135379\n", + "1252/2000 [=================>............] - ETA: 1:07:30 - loss: 1.4138445\n", + "1253/2000 [=================>............] - ETA: 1:07:24 - loss: 1.4135971\n", + "1254/2000 [=================>............] - ETA: 1:07:19 - loss: 1.4135500\n", + "419\n", + "1255/2000 [=================>............] - ETA: 1:07:14 - loss: 1.4133421\n", + "1256/2000 [=================>............] - ETA: 1:07:08 - loss: 1.413537\n", + "150\n", + "1257/2000 [=================>............] - ETA: 1:07:02 - loss: 1.4135213\n", + "1258/2000 [=================>............] - ETA: 1:06:57 - loss: 1.4136904\n", + "1259/2000 [=================>............] - ETA: 1:06:51 - loss: 1.4136732\n", + "1260/2000 [=================>............] - ETA: 1:06:45 - loss: 1.413796\n", + "1261/2000 [=================>............] - ETA: 1:06:38 - loss: 1.4128410\n", + "1262/2000 [=================>............] - ETA: 1:06:33 - loss: 1.4128323\n", + "1263/2000 [=================>............] - ETA: 1:06:28 - loss: 1.4126602\n", + "211\n", + "1264/2000 [=================>............] - ETA: 1:06:23 - loss: 1.4125457\n", + "737\n", + "1265/2000 [=================>............] - ETA: 1:06:17 - loss: 1.4132533\n", + "539\n", + "614\n", + "399\n", + "1266/2000 [=================>............] - ETA: 1:06:13 - loss: 1.4130717\n", + "1267/2000 [==================>...........] - ETA: 1:06:06 - loss: 1.4123745\n", + "1268/2000 [==================>...........] - ETA: 1:06:00 - loss: 1.411556\n", + "1\n", + "660\n", + "75\n", + "509\n", + "771\n", + "1269/2000 [==================>...........] - ETA: 1:05:55 - loss: 1.4108879\n", + "1270/2000 [==================>...........] - ETA: 1:05:50 - loss: 1.4105197\n", + "1271/2000 [==================>...........] - ETA: 1:05:45 - loss: 1.4110134\n", + "1272/2000 [==================>...........] - ETA: 1:05:38 - loss: 1.4103667\n", + "367\n", + "1273/2000 [==================>...........] - ETA: 1:05:34 - loss: 1.4102923\n", + "1274/2000 [==================>...........] - ETA: 1:05:28 - loss: 1.4104315\n", + "1275/2000 [==================>...........] - ETA: 1:05:24 - loss: 1.4104926\n", + "1276/2000 [==================>...........] - ETA: 1:05:19 - loss: 1.4103671\n", + "810\n", + "1277/2000 [==================>...........] - ETA: 1:05:13 - loss: 1.4103538\n", + "909\n", + "1278/2000 [==================>...........] - ETA: 1:05:08 - loss: 1.4100412\n", + "1279/2000 [==================>...........] - ETA: 1:05:03 - loss: 1.4101589\n", + "237\n", + "1280/2000 [==================>...........] - ETA: 1:04:58 - loss: 1.4099206\n", + "1281/2000 [==================>...........] - ETA: 1:04:53 - loss: 1.409670\n", + "797\n", + "1282/2000 [==================>...........] - ETA: 1:04:47 - loss: 1.4095911\n", + "1283/2000 [==================>...........] - ETA: 1:04:42 - loss: 1.4091487\n", + "832\n", + "1284/2000 [==================>...........] - ETA: 1:04:37 - loss: 1.4089125\n", + "1285/2000 [==================>...........] - ETA: 1:04:31 - loss: 1.4088463\n", + "844\n", + "1286/2000 [==================>...........] - ETA: 1:04:26 - loss: 1.4088245\n", + "1287/2000 [==================>...........] - ETA: 1:04:21 - loss: 1.4089805\n", + "1288/2000 [==================>...........] - ETA: 1:04:15 - loss: 1.4082635\n", + "201\n", + "1289/2000 [==================>...........] - ETA: 1:04:10 - loss: 1.4079284\n", + "1290/2000 [==================>...........] - ETA: 1:04:05 - loss: 1.4081448\n", + "1291/2000 [==================>...........] - ETA: 1:03:59 - loss: 1.4080590\n", + "696\n", + "1292/2000 [==================>...........] - ETA: 1:03:53 - loss: 1.4072536\n", + "286\n", + "1293/2000 [==================>...........] - ETA: 1:03:49 - loss: 1.4072521\n", + "67\n", + "592\n", + "139\n", + "1294/2000 [==================>...........] - ETA: 1:03:43 - loss: 1.4071579\n", + "782\n", + "1295/2000 [==================>...........] - ETA: 1:03:37 - loss: 1.4064349\n", + "1296/2000 [==================>...........] - ETA: 1:03:32 - loss: 1.406684\n", + "1297/2000 [==================>...........] - ETA: 1:03:25 - loss: 1.4058350\n", + "1298/2000 [==================>...........] - ETA: 1:03:20 - loss: 1.406050\n", + "915\n", + "1299/2000 [==================>...........] - ETA: 1:03:15 - loss: 1.4059916\n", + "1300/2000 [==================>...........] - ETA: 1:03:10 - loss: 1.4056266\n", + "1301/2000 [==================>...........] - ETA: 1:03:05 - loss: 1.4058482\n", + "955\n", + "1302/2000 [==================>...........] - ETA: 1:03:00 - loss: 1.4059370\n", + "1303/2000 [==================>...........] - ETA: 1:02:55 - loss: 1.4059568\n", + "93\n", + "1304/2000 [==================>...........] - ETA: 1:02:49 - loss: 1.4050949\n", + "1305/2000 [==================>...........] - ETA: 1:02:44 - loss: 1.405192\n", + "1306/2000 [==================>...........] - ETA: 1:02:37 - loss: 1.4041727\n", + "1307/2000 [==================>...........] - ETA: 1:02:31 - loss: 1.4040305\n", + "1308/2000 [==================>...........] - ETA: 1:02:26 - loss: 1.4042209\n", + "1309/2000 [==================>...........] - ETA: 1:02:21 - loss: 1.4040416\n", + "1310/2000 [==================>...........] - ETA: 1:02:15 - loss: 1.4039899\n", + "1311/2000 [==================>...........] - ETA: 1:02:10 - loss: 1.4037138\n", + "1312/2000 [==================>...........] - ETA: 1:02:04 - loss: 1.4037836\n", + "1313/2000 [==================>...........] - ETA: 1:01:58 - loss: 1.4035151\n", + "1314/2000 [==================>...........] - ETA: 1:01:52 - loss: 1.403748\n", + "499\n", + "837\n", + "1315/2000 [==================>...........] - ETA: 1:01:47 - loss: 1.4038816\n", + "1316/2000 [==================>...........] - ETA: 1:01:42 - loss: 1.4037704\n", + "1317/2000 [==================>...........] - ETA: 1:01:35 - loss: 1.4036498\n", + "531\n", + "876\n", + "1318/2000 [==================>...........] - ETA: 1:01:31 - loss: 1.4035753\n", + "1319/2000 [==================>...........] - ETA: 1:01:25 - loss: 1.4029942\n", + "1320/2000 [==================>...........] - ETA: 1:01:19 - loss: 1.4028723\n", + "1321/2000 [==================>...........] - ETA: 1:01:13 - loss: 1.402479\n", + "1322/2000 [==================>...........] - ETA: 1:01:07 - loss: 1.4020377\n", + "1323/2000 [==================>...........] - ETA: 1:01:01 - loss: 1.4019461\n", + "403\n", + "1324/2000 [==================>...........] - ETA: 1:00:56 - loss: 1.4018295\n", + "1325/2000 [==================>...........] - ETA: 1:00:51 - loss: 1.4021831\n", + "1326/2000 [==================>...........] - ETA: 1:00:46 - loss: 1.4020177\n", + "1327/2000 [==================>...........] - ETA: 1:00:40 - loss: 1.4013200\n", + "1328/2000 [==================>...........] - ETA: 1:00:35 - loss: 1.4011270\n", + "1329/2000 [==================>...........] - ETA: 1:00:30 - loss: 1.4010534\n", + "69\n", + "262\n", + "1330/2000 [==================>...........] - ETA: 1:00:26 - loss: 1.4010870\n", + "1331/2000 [==================>...........] - ETA: 1:00:20 - loss: 1.4014308\n", + "1332/2000 [==================>...........] - ETA: 1:00:15 - loss: 1.4012792\n", + "1333/2000 [==================>...........] - ETA: 1:00:09 - loss: 1.4007946\n", + "1334/2000 [===================>..........] - ETA: 1:00:04 - loss: 1.4005801\n", + "1335/2000 [===================>..........] - ETA: 59:58 - loss: 1.4009 617\n", + "553\n", + "532\n", + "974\n", + "1336/2000 [===================>..........] - ETA: 59:54 - loss: 1.4007355\n", + "1337/2000 [===================>..........] - ETA: 59:49 - loss: 1.4004984\n", + "1338/2000 [===================>..........] - ETA: 59:44 - loss: 1.4005707\n", + "1339/2000 [===================>..........] - ETA: 59:37 - loss: 1.3999452\n", + "1340/2000 [===================>..........] - ETA: 59:31 - loss: 1.3998872\n", + "1341/2000 [===================>..........] - ETA: 59:26 - loss: 1.4001431\n", + "1342/2000 [===================>..........] - ETA: 59:21 - loss: 1.4001495\n", + "213\n", + "1343/2000 [===================>..........] - ETA: 59:16 - loss: 1.3999664\n", + "524\n", + "582\n", + "938\n", + "1344/2000 [===================>..........] - ETA: 59:12 - loss: 1.3998687\n", + "163\n", + "1345/2000 [===================>..........] - ETA: 59:06 - loss: 1.3990157\n", + "1346/2000 [===================>..........] - ETA: 59:00 - loss: 1.398484\n", + "1347/2000 [===================>..........] - ETA: 58:53 - loss: 1.3975920\n", + "1348/2000 [===================>..........] - ETA: 58:48 - loss: 1.3973164\n", + "1349/2000 [===================>..........] - ETA: 58:42 - loss: 1.3964696\n", + "1350/2000 [===================>..........] - ETA: 58:36 - loss: 1.3957305\n", + "1351/2000 [===================>..........] - ETA: 58:31 - loss: 1.3958347\n", + "1352/2000 [===================>..........] - ETA: 58:26 - loss: 1.3958651\n", + "155\n", + "1353/2000 [===================>..........] - ETA: 58:20 - loss: 1.3957790\n", + "1354/2000 [===================>..........] - ETA: 58:13 - loss: 1.3953621\n", + "48\n", + "850\n", + "1355/2000 [===================>..........] - ETA: 58:09 - loss: 1.3952948\n", + "1356/2000 [===================>..........] - ETA: 58:03 - loss: 1.3951216\n", + "1357/2000 [===================>..........] - ETA: 57:58 - loss: 1.3953903\n", + "1358/2000 [===================>..........] - ETA: 57:53 - loss: 1.395221\n", + "980\n", + "1359/2000 [===================>..........] - ETA: 57:48 - loss: 1.3951804\n", + "1360/2000 [===================>..........] - ETA: 57:42 - loss: 1.3947703\n", + "1361/2000 [===================>..........] - ETA: 57:36 - loss: 1.3947208\n", + "1362/2000 [===================>..........] - ETA: 57:31 - loss: 1.3949959\n", + "1363/2000 [===================>..........] - ETA: 57:26 - loss: 1.3947284\n", + "1364/2000 [===================>..........] - ETA: 57:21 - loss: 1.3946259\n", + "1365/2000 [===================>..........] - ETA: 57:16 - loss: 1.3945192\n", + "1366/2000 [===================>..........] - ETA: 57:10 - loss: 1.393781\n", + "1367/2000 [===================>..........] - ETA: 57:04 - loss: 1.3932715\n", + "1368/2000 [===================>..........] - ETA: 56:57 - loss: 1.3925872\n", + "1369/2000 [===================>..........] - ETA: 56:52 - loss: 1.3927541\n", + "133\n", + "1370/2000 [===================>..........] - ETA: 56:46 - loss: 1.392731\n", + "232\n", + "1371/2000 [===================>..........] - ETA: 56:41 - loss: 1.3928718\n", + "1372/2000 [===================>..........] - ETA: 56:35 - loss: 1.392188\n", + "1373/2000 [===================>..........] - ETA: 56:29 - loss: 1.3918355\n", + "1374/2000 [===================>..........] - ETA: 56:24 - loss: 1.391939\n", + "909\n", + "1375/2000 [===================>..........] - ETA: 56:19 - loss: 1.3918705\n", + "1376/2000 [===================>..........] - ETA: 56:13 - loss: 1.392477\n", + "214\n", + "1377/2000 [===================>..........] - ETA: 56:08 - loss: 1.3923135\n", + "1378/2000 [===================>..........] - ETA: 56:01 - loss: 1.391766\n", + "601\n", + "321\n", + "1379/2000 [===================>..........] - ETA: 55:57 - loss: 1.3912378\n", + "1380/2000 [===================>..........] - ETA: 55:51 - loss: 1.3910862\n", + "1381/2000 [===================>..........] - ETA: 55:46 - loss: 1.3910210\n", + "1382/2000 [===================>..........] - ETA: 55:41 - loss: 1.3907587\n", + "562\n", + "891\n", + "1383/2000 [===================>..........] - ETA: 55:36 - loss: 1.3905121\n", + "1384/2000 [===================>..........] - ETA: 55:30 - loss: 1.3905397\n", + "1385/2000 [===================>..........] - ETA: 55:25 - loss: 1.390982\n", + "1386/2000 [===================>..........] - ETA: 55:18 - loss: 1.3907181\n", + "1387/2000 [===================>..........] - ETA: 55:12 - loss: 1.3905765\n", + "1388/2000 [===================>..........] - ETA: 55:06 - loss: 1.3905594\n", + "241\n", + "1389/2000 [===================>..........] - ETA: 55:01 - loss: 1.3905986\n", + "1390/2000 [===================>..........] - ETA: 54:56 - loss: 1.3907132\n", + "1391/2000 [===================>..........] - ETA: 54:50 - loss: 1.3901863\n", + "1392/2000 [===================>..........] - ETA: 54:44 - loss: 1.3903228\n", + "1393/2000 [===================>..........] - ETA: 54:39 - loss: 1.3902694\n", + "1394/2000 [===================>..........] - ETA: 54:33 - loss: 1.3898979\n", + "1395/2000 [===================>..........] - ETA: 54:28 - loss: 1.3895310\n", + "1396/2000 [===================>..........] - ETA: 54:23 - loss: 1.3896690\n", + "220\n", + "1397/2000 [===================>..........] - ETA: 54:18 - loss: 1.3895278\n", + "1398/2000 [===================>..........] - ETA: 54:13 - loss: 1.389259\n", + "556\n", + "24\n", + "313\n", + "1399/2000 [===================>..........] - ETA: 54:09 - loss: 1.3892254\n", + "1400/2000 [====================>.........] - ETA: 54:04 - loss: 1.389052\n", + "517\n", + "549\n", + "340\n", + "1401/2000 [====================>.........] - ETA: 53:59 - loss: 1.3889256\n", + "1402/2000 [====================>.........] - ETA: 53:54 - loss: 1.3884123\n", + "1403/2000 [====================>.........] - ETA: 53:48 - loss: 1.3889236\n", + "1404/2000 [====================>.........] - ETA: 53:43 - loss: 1.389098\n", + "1405/2000 [====================>.........] - ETA: 53:36 - loss: 1.3886726\n", + "1406/2000 [====================>.........] - ETA: 53:30 - loss: 1.3891798\n", + "1407/2000 [====================>.........] - ETA: 53:24 - loss: 1.3886686\n", + "429\n", + "1408/2000 [====================>.........] - ETA: 53:19 - loss: 1.3888581\n", + "767\n", + "1409/2000 [====================>.........] - ETA: 53:13 - loss: 1.3884546\n", + "329\n", + "1410/2000 [====================>.........] - ETA: 53:08 - loss: 1.3882668\n", + "958\n", + "1411/2000 [====================>.........] - ETA: 53:03 - loss: 1.3881108\n", + "1412/2000 [====================>.........] - ETA: 52:57 - loss: 1.3875653\n", + "809\n", + "1413/2000 [====================>.........] - ETA: 52:51 - loss: 1.3873613\n", + "727\n", + "1414/2000 [====================>.........] - ETA: 52:45 - loss: 1.3874195\n", + "1415/2000 [====================>.........] - ETA: 52:40 - loss: 1.387396\n", + "1416/2000 [====================>.........] - ETA: 52:33 - loss: 1.3867614\n", + "789\n", + "1417/2000 [====================>.........] - ETA: 52:28 - loss: 1.3863391\n", + "1418/2000 [====================>.........] - ETA: 52:22 - loss: 1.3860464\n", + "180\n", + "1419/2000 [====================>.........] - ETA: 52:17 - loss: 1.3859128\n", + "1420/2000 [====================>.........] - ETA: 52:11 - loss: 1.3860388\n", + "1421/2000 [====================>.........] - ETA: 52:06 - loss: 1.3859682\n", + "521\n", + "852\n", + "1422/2000 [====================>.........] - ETA: 52:01 - loss: 1.3858865\n", + "1423/2000 [====================>.........] - ETA: 51:55 - loss: 1.3856650\n", + "739\n", + "1424/2000 [====================>.........] - ETA: 51:49 - loss: 1.3848398\n", + "1425/2000 [====================>.........] - ETA: 51:44 - loss: 1.3849467\n", + "56\n", + "542\n", + "661\n", + "485\n", + "595\n", + "828\n", + "1426/2000 [====================>.........] - ETA: 51:40 - loss: 1.3849124\n", + "1427/2000 [====================>.........] - ETA: 51:34 - loss: 1.3851606\n", + "771\n", + "1428/2000 [====================>.........] - ETA: 51:28 - loss: 1.3844751\n", + "1429/2000 [====================>.........] - ETA: 51:22 - loss: 1.3841883\n", + "1430/2000 [====================>.........] - ETA: 51:17 - loss: 1.38419\n", + "611\n", + "838\n", + "1431/2000 [====================>.........] - ETA: 51:12 - loss: 1.3843194\n", + "1432/2000 [====================>.........] - ETA: 51:06 - loss: 1.3840699\n", + "1433/2000 [====================>.........] - ETA: 51:00 - loss: 1.38344\n", + "470\n", + "506\n", + "22\n", + "522\n", + "659\n", + "722\n", + "1434/2000 [====================>.........] - ETA: 50:55 - loss: 1.3832477\n", + "264\n", + "1435/2000 [====================>.........] - ETA: 50:50 - loss: 1.3831117\n", + "1436/2000 [====================>.........] - ETA: 50:44 - loss: 1.3827515\n", + "258\n", + "1437/2000 [====================>.........] - ETA: 50:39 - loss: 1.3827394\n", + "1438/2000 [====================>.........] - ETA: 50:34 - loss: 1.3825422\n", + "1439/2000 [====================>.........] - ETA: 50:29 - loss: 1.3824695\n", + "1440/2000 [====================>.........] - ETA: 50:23 - loss: 1.382930\n", + "711\n", + "1441/2000 [====================>.........] - ETA: 50:17 - loss: 1.382351\n", + "892\n", + "1442/2000 [====================>.........] - ETA: 50:12 - loss: 1.3822956\n", + "1443/2000 [====================>.........] - ETA: 50:07 - loss: 1.3820513\n", + "625\n", + "488\n", + "239\n", + "1444/2000 [====================>.........] - ETA: 50:02 - loss: 1.3818936\n", + "1445/2000 [====================>.........] - ETA: 49:57 - loss: 1.381745\n", + "376\n", + "1446/2000 [====================>.........] - ETA: 49:52 - loss: 1.3816592\n", + "620\n", + "19\n", + "584\n", + "623\n", + "473\n", + "712\n", + "1447/2000 [====================>.........] - ETA: 49:47 - loss: 1.3814240\n", + "1448/2000 [====================>.........] - ETA: 49:42 - loss: 1.3816755\n", + "1449/2000 [====================>.........] - ETA: 49:36 - loss: 1.3810910\n", + "1450/2000 [====================>.........] - ETA: 49:31 - loss: 1.3808636\n", + "773\n", + "1451/2000 [====================>.........] - ETA: 49:25 - loss: 1.38032\n", + "898\n", + "1452/2000 [====================>.........] - ETA: 49:20 - loss: 1.3801218\n", + "1453/2000 [====================>.........] - ETA: 49:15 - loss: 1.3802293\n", + "1454/2000 [====================>.........] - ETA: 49:10 - loss: 1.3802618\n", + "189\n", + "1455/2000 [====================>.........] - ETA: 49:04 - loss: 1.3797436\n", + "1456/2000 [====================>.........] - ETA: 48:58 - loss: 1.3794921\n", + "1457/2000 [====================>.........] - ETA: 48:53 - loss: 1.3791231\n", + "1458/2000 [====================>.........] - ETA: 48:48 - loss: 1.3791510\n", + "643\n", + "912\n", + "1459/2000 [====================>.........] - ETA: 48:43 - loss: 1.3789545\n", + "573\n", + "357\n", + "1460/2000 [====================>.........] - ETA: 48:38 - loss: 1.3787837\n", + "1461/2000 [====================>.........] - ETA: 48:33 - loss: 1.3784352\n", + "1462/2000 [====================>.........] - ETA: 48:28 - loss: 1.3781297\n", + "1463/2000 [====================>.........] - ETA: 48:23 - loss: 1.3782316\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1464/2000 [====================>.........] - ETA: 48:18 - loss: 1.378044\n", + "967\n", + "1465/2000 [====================>.........] - ETA: 48:12 - loss: 1.3778382\n", + "1466/2000 [====================>.........] - ETA: 48:07 - loss: 1.3777660\n", + "390\n", + "1467/2000 [=====================>........] - ETA: 48:02 - loss: 1.3777377\n", + "1468/2000 [=====================>........] - ETA: 47:57 - loss: 1.3778792\n", + "1469/2000 [=====================>........] - ETA: 47:51 - loss: 1.3775946\n", + "1470/2000 [=====================>........] - ETA: 47:46 - loss: 1.3773547\n", + "489\n", + "810\n", + "1471/2000 [=====================>........] - ETA: 47:40 - loss: 1.3773411\n", + "1472/2000 [=====================>........] - ETA: 47:35 - loss: 1.3772370\n", + "1473/2000 [=====================>........] - ETA: 47:30 - loss: 1.3772348\n", + "1474/2000 [=====================>........] - ETA: 47:24 - loss: 1.3773224\n", + "1475/2000 [=====================>........] - ETA: 47:19 - loss: 1.377342\n", + "648\n", + "669\n", + "800\n", + "1476/2000 [=====================>........] - ETA: 47:14 - loss: 1.3773116\n", + "1477/2000 [=====================>........] - ETA: 47:08 - loss: 1.3770561\n", + "173\n", + "1478/2000 [=====================>........] - ETA: 47:02 - loss: 1.3763460\n", + "456\n", + "188\n", + "1479/2000 [=====================>........] - ETA: 46:57 - loss: 1.3765736\n", + "1480/2000 [=====================>........] - ETA: 46:51 - loss: 1.3758336\n", + "1481/2000 [=====================>........] - ETA: 46:46 - loss: 1.3757911\n", + "1482/2000 [=====================>........] - ETA: 46:41 - loss: 1.3753229\n", + "1483/2000 [=====================>........] - ETA: 46:35 - loss: 1.3752846\n", + "1484/2000 [=====================>........] - ETA: 46:30 - loss: 1.3750335\n", + "1485/2000 [=====================>........] - ETA: 46:25 - loss: 1.3746913\n", + "1486/2000 [=====================>........] - ETA: 46:20 - loss: 1.3748526\n", + "323\n", + "1487/2000 [=====================>........] - ETA: 46:15 - loss: 1.3747410\n", + "1488/2000 [=====================>........] - ETA: 46:09 - loss: 1.3742698\n", + "1489/2000 [=====================>........] - ETA: 46:03 - loss: 1.3737845\n", + "1490/2000 [=====================>........] - ETA: 45:58 - loss: 1.3735432\n", + "1491/2000 [=====================>........] - ETA: 45:52 - loss: 1.3737441\n", + "1492/2000 [=====================>........] - ETA: 45:46 - loss: 1.3735433\n", + "1493/2000 [=====================>........] - ETA: 45:41 - loss: 1.3736405\n", + "1494/2000 [=====================>........] - ETA: 45:36 - loss: 1.373867\n", + "654\n", + "608\n", + "472\n", + "555\n", + "970\n", + "1495/2000 [=====================>........] - ETA: 45:31 - loss: 1.3736932\n", + "1496/2000 [=====================>........] - ETA: 45:26 - loss: 1.3736227\n", + "1497/2000 [=====================>........] - ETA: 45:21 - loss: 1.3736779\n", + "1498/2000 [=====================>........] - ETA: 45:15 - loss: 1.373055\n", + "609\n", + "57\n", + "492\n", + "797\n", + "1499/2000 [=====================>........] - ETA: 45:10 - loss: 1.3728851\n", + "1500/2000 [=====================>........] - ETA: 45:04 - loss: 1.3728626\n", + "888\n", + "1501/2000 [=====================>........] - ETA: 44:59 - loss: 1.3729899\n", + "1502/2000 [=====================>........] - ETA: 44:54 - loss: 1.372987\n", + "1503/2000 [=====================>........] - ETA: 44:48 - loss: 1.3725831\n", + "1504/2000 [=====================>........] - ETA: 44:42 - loss: 1.3724563\n", + "857\n", + "1505/2000 [=====================>........] - ETA: 44:37 - loss: 1.3725688\n", + "775\n", + "1506/2000 [=====================>........] - ETA: 44:31 - loss: 1.3719796\n", + "1507/2000 [=====================>........] - ETA: 44:25 - loss: 1.3716825\n", + "1508/2000 [=====================>........] - ETA: 44:20 - loss: 1.371634\n", + "381\n", + "1509/2000 [=====================>........] - ETA: 44:15 - loss: 1.3717734\n", + "1510/2000 [=====================>........] - ETA: 44:09 - loss: 1.3716906\n", + "1511/2000 [=====================>........] - ETA: 44:03 - loss: 1.3715645\n", + "897\n", + "1512/2000 [=====================>........] - ETA: 43:58 - loss: 1.3714415\n", + "1513/2000 [=====================>........] - ETA: 43:53 - loss: 1.3715534\n", + "175\n", + "1514/2000 [=====================>........] - ETA: 43:47 - loss: 1.3710697\n", + "1515/2000 [=====================>........] - ETA: 43:41 - loss: 1.3703516\n", + "693\n", + "1516/2000 [=====================>........] - ETA: 43:35 - loss: 1.3696770\n", + "1517/2000 [=====================>........] - ETA: 43:29 - loss: 1.3689294\n", + "1518/2000 [=====================>........] - ETA: 43:24 - loss: 1.3689444\n", + "1519/2000 [=====================>........] - ETA: 43:18 - loss: 1.3689836\n", + "1520/2000 [=====================>........] - ETA: 43:13 - loss: 1.3686832\n", + "1521/2000 [=====================>........] - ETA: 43:07 - loss: 1.3684497\n", + "480\n", + "859\n", + "1522/2000 [=====================>........] - ETA: 43:02 - loss: 1.368520\n", + "262\n", + "1523/2000 [=====================>........] - ETA: 42:57 - loss: 1.3683925\n", + "1524/2000 [=====================>........] - ETA: 42:52 - loss: 1.3682414\n", + "1525/2000 [=====================>........] - ETA: 42:46 - loss: 1.3683939\n", + "1526/2000 [=====================>........] - ETA: 42:41 - loss: 1.3681101\n", + "1527/2000 [=====================>........] - ETA: 42:35 - loss: 1.3674710\n", + "1528/2000 [=====================>........] - ETA: 42:29 - loss: 1.3666503\n", + "886\n", + "1529/2000 [=====================>........] - ETA: 42:24 - loss: 1.3666222\n", + "1530/2000 [=====================>........] - ETA: 42:19 - loss: 1.3665951\n", + "1531/2000 [=====================>........] - ETA: 42:13 - loss: 1.366585\n", + "1532/2000 [=====================>........] - ETA: 42:07 - loss: 1.366250\n", + "75\n", + "632\n", + "184\n", + "1533/2000 [=====================>........] - ETA: 42:02 - loss: 1.3659445\n", + "1534/2000 [======================>.......] - ETA: 41:56 - loss: 1.3657282\n", + "1535/2000 [======================>.......] - ETA: 41:51 - loss: 1.3660799\n", + "1536/2000 [======================>.......] - ETA: 41:46 - loss: 1.3656100\n", + "1537/2000 [======================>.......] - ETA: 41:39 - loss: 1.3654375\n", + "1538/2000 [======================>.......] - ETA: 41:34 - loss: 1.3653647\n", + "937\n", + "1539/2000 [======================>.......] - ETA: 41:29 - loss: 1.365228\n", + "62\n", + "190\n", + "1540/2000 [======================>.......] - ETA: 41:24 - loss: 1.3648136\n", + "1541/2000 [======================>.......] - ETA: 41:18 - loss: 1.3646138\n", + "1542/2000 [======================>.......] - ETA: 41:12 - loss: 1.3645129\n", + "1543/2000 [======================>.......] - ETA: 41:06 - loss: 1.3647314\n", + "1544/2000 [======================>.......] - ETA: 41:00 - loss: 1.3648159\n", + "1545/2000 [======================>.......] - ETA: 40:55 - loss: 1.3647692\n", + "130\n", + "1546/2000 [======================>.......] - ETA: 40:49 - loss: 1.3647972\n", + "1547/2000 [======================>.......] - ETA: 40:43 - loss: 1.3647671\n", + "875\n", + "1548/2000 [======================>.......] - ETA: 40:38 - loss: 1.364937\n", + "156\n", + "1549/2000 [======================>.......] - ETA: 40:32 - loss: 1.3644754\n", + "1550/2000 [======================>.......] - ETA: 40:26 - loss: 1.3642960\n", + "1551/2000 [======================>.......] - ETA: 40:21 - loss: 1.3642856\n", + "1552/2000 [======================>.......] - ETA: 40:16 - loss: 1.3641969\n", + "1553/2000 [======================>.......] - ETA: 40:10 - loss: 1.3641795\n", + "1554/2000 [======================>.......] - ETA: 40:05 - loss: 1.3639579\n", + "953\n", + "1555/2000 [======================>.......] - ETA: 39:59 - loss: 1.3642354\n", + "1556/2000 [======================>.......] - ETA: 39:54 - loss: 1.3638929\n", + "1557/2000 [======================>.......] - ETA: 39:49 - loss: 1.3636879\n", + "1558/2000 [======================>.......] - ETA: 39:43 - loss: 1.3635791\n", + "1559/2000 [======================>.......] - ETA: 39:37 - loss: 1.3630607\n", + "234\n", + "1560/2000 [======================>.......] - ETA: 39:32 - loss: 1.3628666\n", + "737\n", + "1561/2000 [======================>.......] - ETA: 39:27 - loss: 1.3621874\n", + "1562/2000 [======================>.......] - ETA: 39:21 - loss: 1.36208\n", + "824\n", + "1563/2000 [======================>.......] - ETA: 39:16 - loss: 1.3622605\n", + "103\n", + "1564/2000 [======================>.......] - ETA: 39:10 - loss: 1.3615369\n", + "1565/2000 [======================>.......] - ETA: 39:05 - loss: 1.3614675\n", + "724\n", + "1566/2000 [======================>.......] - ETA: 38:59 - loss: 1.3614144\n", + "1567/2000 [======================>.......] - ETA: 38:53 - loss: 1.3611558\n", + "230\n", + "1568/2000 [======================>.......] - ETA: 38:48 - loss: 1.3610589\n", + "446\n", + "1569/2000 [======================>.......] - ETA: 38:42 - loss: 1.3609226\n", + "1570/2000 [======================>.......] - ETA: 38:37 - loss: 1.3608900\n", + "1571/2000 [======================>.......] - ETA: 38:32 - loss: 1.3608707\n", + "1572/2000 [======================>.......] - ETA: 38:26 - loss: 1.3606439\n", + "1573/2000 [======================>.......] - ETA: 38:20 - loss: 1.3603332\n", + "1574/2000 [======================>.......] - ETA: 38:15 - loss: 1.3604131\n", + "1575/2000 [======================>.......] - ETA: 38:09 - loss: 1.3602260\n", + "1576/2000 [======================>.......] - ETA: 38:04 - loss: 1.359810\n", + "182\n", + "1577/2000 [======================>.......] - ETA: 37:59 - loss: 1.3595638\n", + "769\n", + "1578/2000 [======================>.......] - ETA: 37:53 - loss: 1.3587530\n", + "676\n", + "158\n", + "1579/2000 [======================>.......] - ETA: 37:47 - loss: 1.3587580\n", + "290\n", + "1580/2000 [======================>.......] - ETA: 37:42 - loss: 1.3589146\n", + "1581/2000 [======================>.......] - ETA: 37:36 - loss: 1.3587564\n", + "486\n", + "644\n", + "630\n", + "127\n", + "1582/2000 [======================>.......] - ETA: 37:31 - loss: 1.3582815\n", + "1583/2000 [======================>.......] - ETA: 37:26 - loss: 1.3581597\n", + "95\n", + "1584/2000 [======================>.......] - ETA: 37:20 - loss: 1.3580525\n", + "777\n", + "1585/2000 [======================>.......] - ETA: 37:14 - loss: 1.3576658\n", + "588\n", + "247\n", + "1586/2000 [======================>.......] - ETA: 37:09 - loss: 1.3577806\n", + "1587/2000 [======================>.......] - ETA: 37:04 - loss: 1.3574833\n", + "1588/2000 [======================>.......] - ETA: 36:58 - loss: 1.3572204\n", + "1589/2000 [======================>.......] - ETA: 36:53 - loss: 1.3571952\n", + "1590/2000 [======================>.......] - ETA: 36:47 - loss: 1.3569118\n", + "1591/2000 [======================>.......] - ETA: 36:41 - loss: 1.3569343\n", + "1592/2000 [======================>.......] - ETA: 36:36 - loss: 1.3568487\n", + "578\n", + "71\n", + "813\n", + "1593/2000 [======================>.......] - ETA: 36:31 - loss: 1.3569276\n", + "1594/2000 [======================>.......] - ETA: 36:26 - loss: 1.3565427\n", + "1595/2000 [======================>.......] - ETA: 36:20 - loss: 1.3566735\n", + "1596/2000 [======================>.......] - ETA: 36:15 - loss: 1.3560139\n", + "1597/2000 [======================>.......] - ETA: 36:09 - loss: 1.3558168\n", + "1598/2000 [======================>.......] - ETA: 36:03 - loss: 1.3557819\n", + "1599/2000 [======================>.......] - ETA: 35:58 - loss: 1.3555805\n", + "1600/2000 [=======================>......] - ETA: 35:52 - loss: 1.3553514\n", + "895\n", + "1601/2000 [=======================>......] - ETA: 35:47 - loss: 1.3555209\n", + "1602/2000 [=======================>......] - ETA: 35:41 - loss: 1.3554279\n", + "1603/2000 [=======================>......] - ETA: 35:36 - loss: 1.3558373\n", + "1604/2000 [=======================>......] - ETA: 35:31 - loss: 1.3558531\n", + "160\n", + "1605/2000 [=======================>......] - ETA: 35:25 - loss: 1.3555303\n", + "1606/2000 [=======================>......] - ETA: 35:20 - loss: 1.3557670\n", + "287\n", + "1607/2000 [=======================>......] - ETA: 35:15 - loss: 1.3555418\n", + "1608/2000 [=======================>......] - ETA: 35:10 - loss: 1.355665\n", + "944\n", + "1609/2000 [=======================>......] - ETA: 35:05 - loss: 1.3554640\n", + "281\n", + "1610/2000 [=======================>......] - ETA: 35:00 - loss: 1.3553746\n", + "1611/2000 [=======================>......] - ETA: 34:54 - loss: 1.3550743\n", + "1612/2000 [=======================>......] - ETA: 34:48 - loss: 1.3544458\n", + "364\n", + "1613/2000 [=======================>......] - ETA: 34:43 - loss: 1.3542971\n", + "1614/2000 [=======================>......] - ETA: 34:38 - loss: 1.3540402\n", + "1615/2000 [=======================>......] - ETA: 34:32 - loss: 1.3541312\n", + "1616/2000 [=======================>......] - ETA: 34:27 - loss: 1.3541977\n", + "1617/2000 [=======================>......] - ETA: 34:21 - loss: 1.3537353\n", + "1618/2000 [=======================>......] - ETA: 34:16 - loss: 1.3535961\n", + "1619/2000 [=======================>......] - ETA: 34:11 - loss: 1.3533759\n", + "1620/2000 [=======================>......] - ETA: 34:05 - loss: 1.3526266\n", + "1621/2000 [=======================>......] - ETA: 34:00 - loss: 1.3528720\n", + "1622/2000 [=======================>......] - ETA: 33:54 - loss: 1.3524272\n", + "1623/2000 [=======================>......] - ETA: 33:49 - loss: 1.3523395\n", + "1624/2000 [=======================>......] - ETA: 33:43 - loss: 1.3523719\n", + "1625/2000 [=======================>......] - ETA: 33:37 - loss: 1.3517501\n", + "678\n", + "292\n", + "1626/2000 [=======================>......] - ETA: 33:33 - loss: 1.3520684\n", + "880\n", + "1627/2000 [=======================>......] - ETA: 33:27 - loss: 1.3519738\n", + "1628/2000 [=======================>......] - ETA: 33:21 - loss: 1.3513574\n", + "360\n", + "1629/2000 [=======================>......] - ETA: 33:16 - loss: 1.3514359\n", + "1630/2000 [=======================>......] - ETA: 33:11 - loss: 1.3514319\n", + "1631/2000 [=======================>......] - ETA: 33:06 - loss: 1.3513288\n", + "1632/2000 [=======================>......] - ETA: 33:00 - loss: 1.3514749\n", + "1633/2000 [=======================>......] - ETA: 32:55 - loss: 1.3509987\n", + "1634/2000 [=======================>......] - ETA: 32:49 - loss: 1.3509134\n", + "1635/2000 [=======================>......] - ETA: 32:43 - loss: 1.3506505\n", + "783\n", + "1636/2000 [=======================>......] - ETA: 32:38 - loss: 1.3504430\n", + "1637/2000 [=======================>......] - ETA: 32:32 - loss: 1.3503685\n", + "628\n", + "330\n", + "1638/2000 [=======================>......] - ETA: 32:27 - loss: 1.350143\n", + "49\n", + "318\n", + "1639/2000 [=======================>......] - ETA: 32:22 - loss: 1.3502167\n", + "1640/2000 [=======================>......] - ETA: 32:17 - loss: 1.3497983\n", + "1641/2000 [=======================>......] - ETA: 32:11 - loss: 1.3497757\n", + "1642/2000 [=======================>......] - ETA: 32:05 - loss: 1.3496351\n", + "1643/2000 [=======================>......] - ETA: 32:00 - loss: 1.3494435\n", + "1644/2000 [=======================>......] - ETA: 31:55 - loss: 1.3494154\n", + "1645/2000 [=======================>......] - ETA: 31:49 - loss: 1.3489619\n", + "848\n", + "1646/2000 [=======================>......] - ETA: 31:43 - loss: 1.3487299\n", + "1647/2000 [=======================>......] - ETA: 31:38 - loss: 1.348517\n", + "153\n", + "1648/2000 [=======================>......] - ETA: 31:33 - loss: 1.3483109\n", + "1649/2000 [=======================>......] - ETA: 31:27 - loss: 1.348268\n", + "794\n", + "1650/2000 [=======================>......] - ETA: 31:21 - loss: 1.3478215\n", + "1651/2000 [=======================>......] - ETA: 31:16 - loss: 1.3478539\n", + "286\n", + "1652/2000 [=======================>......] - ETA: 31:11 - loss: 1.347835\n", + "827\n", + "1653/2000 [=======================>......] - ETA: 31:06 - loss: 1.3476788\n", + "1654/2000 [=======================>......] - ETA: 31:00 - loss: 1.3470102\n", + "1655/2000 [=======================>......] - ETA: 30:54 - loss: 1.3467380\n", + "1656/2000 [=======================>......] - ETA: 30:49 - loss: 1.3468890\n", + "1657/2000 [=======================>......] - ETA: 30:43 - loss: 1.3467324\n", + "1658/2000 [=======================>......] - ETA: 30:38 - loss: 1.3465957\n", + "1659/2000 [=======================>......] - ETA: 30:33 - loss: 1.3463212\n", + "1660/2000 [=======================>......] - ETA: 30:27 - loss: 1.3461830\n", + "1661/2000 [=======================>......] - ETA: 30:22 - loss: 1.3460917\n", + "1662/2000 [=======================>......] - ETA: 30:17 - loss: 1.3459366\n", + "1663/2000 [=======================>......] - ETA: 30:11 - loss: 1.3458169\n", + "1664/2000 [=======================>......] - ETA: 30:06 - loss: 1.3452342\n", + "1665/2000 [=======================>......] - ETA: 30:00 - loss: 1.3448326\n", + "1666/2000 [=======================>......] - ETA: 29:55 - loss: 1.344616\n", + "320\n", + "1667/2000 [========================>.....] - ETA: 29:50 - loss: 1.3444349\n", + "1668/2000 [========================>.....] - ETA: 29:45 - loss: 1.3444508\n", + "915\n", + "1669/2000 [========================>.....] - ETA: 29:39 - loss: 1.3443245\n", + "1670/2000 [========================>.....] - ETA: 29:34 - loss: 1.344136\n", + "559\n", + "413\n", + "1671/2000 [========================>.....] - ETA: 29:29 - loss: 1.3441271\n", + "1672/2000 [========================>.....] - ETA: 29:24 - loss: 1.3442527\n", + "263\n", + "1673/2000 [========================>.....] - ETA: 29:19 - loss: 1.344078\n", + "277\n", + "1674/2000 [========================>.....] - ETA: 29:14 - loss: 1.3437655\n", + "47\n", + "820\n", + "1675/2000 [========================>.....] - ETA: 29:08 - loss: 1.3438463\n", + "700\n", + "1676/2000 [========================>.....] - ETA: 29:03 - loss: 1.3445672\n", + "363\n", + "1677/2000 [========================>.....] - ETA: 28:57 - loss: 1.3443975\n", + "1678/2000 [========================>.....] - ETA: 28:52 - loss: 1.3442403\n", + "1679/2000 [========================>.....] - ETA: 28:47 - loss: 1.3442854\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1680/2000 [========================>.....] - ETA: 28:41 - loss: 1.3441949\n", + "1681/2000 [========================>.....] - ETA: 28:36 - loss: 1.3443251\n", + "1682/2000 [========================>.....] - ETA: 28:31 - loss: 1.3442183\n", + "1683/2000 [========================>.....] - ETA: 28:25 - loss: 1.3443635\n", + "740\n", + "1684/2000 [========================>.....] - ETA: 28:19 - loss: 1.3435484\n", + "985\n", + "1685/2000 [========================>.....] - ETA: 28:14 - loss: 1.3435308\n", + "1686/2000 [========================>.....] - ETA: 28:09 - loss: 1.3434817\n", + "1687/2000 [========================>.....] - ETA: 28:03 - loss: 1.343360\n", + "12\n", + "371\n", + "1688/2000 [========================>.....] - ETA: 27:58 - loss: 1.3431274\n", + "1689/2000 [========================>.....] - ETA: 27:53 - loss: 1.3429762\n", + "1690/2000 [========================>.....] - ETA: 27:47 - loss: 1.3425115\n", + "1691/2000 [========================>.....] - ETA: 27:42 - loss: 1.3421566\n", + "453\n", + "1692/2000 [========================>.....] - ETA: 27:36 - loss: 1.3421187\n", + "1693/2000 [========================>.....] - ETA: 27:31 - loss: 1.341970\n", + "916\n", + "1694/2000 [========================>.....] - ETA: 27:25 - loss: 1.342032\n", + "122\n", + "1695/2000 [========================>.....] - ETA: 27:20 - loss: 1.34183\n", + "298\n", + "1696/2000 [========================>.....] - ETA: 27:15 - loss: 1.3416943\n", + "1697/2000 [========================>.....] - ETA: 27:09 - loss: 1.3417142\n", + "1698/2000 [========================>.....] - ETA: 27:04 - loss: 1.3416873\n", + "1699/2000 [========================>.....] - ETA: 26:58 - loss: 1.3414928\n", + "1700/2000 [========================>.....] - ETA: 26:53 - loss: 1.3415585\n", + "54\n", + "617\n", + "416\n", + "1701/2000 [========================>.....] - ETA: 26:48 - loss: 1.341380\n", + "1702/2000 [========================>.....] - ETA: 26:42 - loss: 1.3414268\n", + "1703/2000 [========================>.....] - ETA: 26:37 - loss: 1.3411265\n", + "1704/2000 [========================>.....] - ETA: 26:32 - loss: 1.34130\n", + "918\n", + "1705/2000 [========================>.....] - ETA: 26:26 - loss: 1.3412894\n", + "1706/2000 [========================>.....] - ETA: 26:21 - loss: 1.3411361\n", + "1707/2000 [========================>.....] - ETA: 26:16 - loss: 1.3408420\n", + "1708/2000 [========================>.....] - ETA: 26:10 - loss: 1.3410884\n", + "1709/2000 [========================>.....] - ETA: 26:05 - loss: 1.3409673\n", + "774\n", + "1710/2000 [========================>.....] - ETA: 25:59 - loss: 1.3404518\n", + "425\n", + "1711/2000 [========================>.....] - ETA: 25:54 - loss: 1.3403149\n", + "1712/2000 [========================>.....] - ETA: 25:48 - loss: 1.3399452\n", + "1713/2000 [========================>.....] - ETA: 25:43 - loss: 1.3397930\n", + "1714/2000 [========================>.....] - ETA: 25:37 - loss: 1.3396337\n", + "1715/2000 [========================>.....] - ETA: 25:32 - loss: 1.339225\n", + "170\n", + "1716/2000 [========================>.....] - ETA: 25:27 - loss: 1.3388571\n", + "941\n", + "1717/2000 [========================>.....] - ETA: 25:21 - loss: 1.3386454\n", + "1718/2000 [========================>.....] - ETA: 25:16 - loss: 1.3388677\n", + "744\n", + "1719/2000 [========================>.....] - ETA: 25:10 - loss: 1.3394840\n", + "1720/2000 [========================>.....] - ETA: 25:05 - loss: 1.3395289\n", + "1721/2000 [========================>.....] - ETA: 25:00 - loss: 1.3398225\n", + "1722/2000 [========================>.....] - ETA: 24:54 - loss: 1.3397346\n", + "1723/2000 [========================>.....] - ETA: 24:49 - loss: 1.3398474\n", + "186\n", + "1724/2000 [========================>.....] - ETA: 24:44 - loss: 1.3397437\n", + "1725/2000 [========================>.....] - ETA: 24:38 - loss: 1.3394577\n", + "358\n", + "1726/2000 [========================>.....] - ETA: 24:33 - loss: 1.339689\n", + "1727/2000 [========================>.....] - ETA: 24:27 - loss: 1.3395981\n", + "1728/2000 [========================>.....] - ETA: 24:22 - loss: 1.3394853\n", + "1729/2000 [========================>.....] - ETA: 24:16 - loss: 1.3394334\n", + "1730/2000 [========================>.....] - ETA: 24:11 - loss: 1.3393237\n", + "1731/2000 [========================>.....] - ETA: 24:06 - loss: 1.3394905\n", + "1732/2000 [========================>.....] - ETA: 24:00 - loss: 1.3394557\n", + "629\n", + "885\n", + "1733/2000 [========================>.....] - ETA: 23:55 - loss: 1.3395200\n", + "1734/2000 [=========================>....] - ETA: 23:50 - loss: 1.3396976\n", + "1735/2000 [=========================>....] - ETA: 23:45 - loss: 1.339592\n", + "1736/2000 [=========================>....] - ETA: 23:39 - loss: 1.3391860\n", + "1737/2000 [=========================>....] - ETA: 23:33 - loss: 1.3390461\n", + "90\n", + "1738/2000 [=========================>....] - ETA: 23:28 - loss: 1.3386839\n", + "1739/2000 [=========================>....] - ETA: 23:22 - loss: 1.3385814\n", + "1740/2000 [=========================>....] - ETA: 23:17 - loss: 1.3381723\n", + "1741/2000 [=========================>....] - ETA: 23:11 - loss: 1.33807\n", + "300\n", + "1742/2000 [=========================>....] - ETA: 23:06 - loss: 1.3379250\n", + "1743/2000 [=========================>....] - ETA: 23:01 - loss: 1.3378493\n", + "793\n", + "1744/2000 [=========================>....] - ETA: 22:55 - loss: 1.3375105\n", + "1745/2000 [=========================>....] - ETA: 22:50 - loss: 1.336879\n", + "1746/2000 [=========================>....] - ETA: 22:44 - loss: 1.3364811\n", + "1747/2000 [=========================>....] - ETA: 22:39 - loss: 1.3361612\n", + "507\n", + "46\n", + "942\n", + "1748/2000 [=========================>....] - ETA: 22:34 - loss: 1.3360808\n", + "1749/2000 [=========================>....] - ETA: 22:28 - loss: 1.3357238\n", + "1750/2000 [=========================>....] - ETA: 22:23 - loss: 1.3356934\n", + "1751/2000 [=========================>....] - ETA: 22:17 - loss: 1.3355729\n", + "1752/2000 [=========================>....] - ETA: 22:12 - loss: 1.3351434\n", + "1753/2000 [=========================>....] - ETA: 22:06 - loss: 1.3351567\n", + "876\n", + "1754/2000 [=========================>....] - ETA: 22:01 - loss: 1.3351475\n", + "871\n", + "1755/2000 [=========================>....] - ETA: 21:56 - loss: 1.3349877\n", + "1756/2000 [=========================>....] - ETA: 21:51 - loss: 1.3349728\n", + "1757/2000 [=========================>....] - ETA: 21:45 - loss: 1.3352389\n", + "1758/2000 [=========================>....] - ETA: 21:40 - loss: 1.3351781\n", + "1759/2000 [=========================>....] - ETA: 21:34 - loss: 1.3348396\n", + "1760/2000 [=========================>....] - ETA: 21:29 - loss: 1.3350752\n", + "1761/2000 [=========================>....] - ETA: 21:23 - loss: 1.3346544\n", + "801\n", + "1762/2000 [=========================>....] - ETA: 21:18 - loss: 1.3350275\n", + "1763/2000 [=========================>....] - ETA: 21:12 - loss: 1.3350902\n", + "1764/2000 [=========================>....] - ETA: 21:07 - loss: 1.3352855\n", + "1765/2000 [=========================>....] - ETA: 21:02 - loss: 1.3350423\n", + "1766/2000 [=========================>....] - ETA: 20:56 - loss: 1.3350217\n", + "1767/2000 [=========================>....] - ETA: 20:51 - loss: 1.335027\n", + "385\n", + "1768/2000 [=========================>....] - ETA: 20:46 - loss: 1.3350327\n", + "1769/2000 [=========================>....] - ETA: 20:40 - loss: 1.3349171\n", + "1770/2000 [=========================>....] - ETA: 20:35 - loss: 1.3351598\n", + "656\n", + "529\n", + "392\n", + "1771/2000 [=========================>....] - ETA: 20:30 - loss: 1.3349483\n", + "203\n", + "1772/2000 [=========================>....] - ETA: 20:24 - loss: 1.3347520\n", + "306\n", + "1773/2000 [=========================>....] - ETA: 20:19 - loss: 1.3345537\n", + "255\n", + "1774/2000 [=========================>....] - ETA: 20:14 - loss: 1.3344197\n", + "1775/2000 [=========================>....] - ETA: 20:08 - loss: 1.3345400\n", + "1776/2000 [=========================>....] - ETA: 20:03 - loss: 1.3345443\n", + "1777/2000 [=========================>....] - ETA: 19:58 - loss: 1.3343947\n", + "1778/2000 [=========================>....] - ETA: 19:52 - loss: 1.3341826\n", + "1779/2000 [=========================>....] - ETA: 19:47 - loss: 1.3341509\n", + "766\n", + "1780/2000 [=========================>....] - ETA: 19:41 - loss: 1.3336283\n", + "1781/2000 [=========================>....] - ETA: 19:36 - loss: 1.3334835\n", + "1782/2000 [=========================>....] - ETA: 19:31 - loss: 1.3334962\n", + "1783/2000 [=========================>....] - ETA: 19:25 - loss: 1.3333554\n", + "701\n", + "1784/2000 [=========================>....] - ETA: 19:20 - loss: 1.3330704\n", + "1785/2000 [=========================>....] - ETA: 19:14 - loss: 1.3332408\n", + "1786/2000 [=========================>....] - ETA: 19:09 - loss: 1.3331533\n", + "368\n", + "1787/2000 [=========================>....] - ETA: 19:04 - loss: 1.3329691\n", + "179\n", + "1788/2000 [=========================>....] - ETA: 18:58 - loss: 1.3326384\n", + "1789/2000 [=========================>....] - ETA: 18:53 - loss: 1.3326935\n", + "1790/2000 [=========================>....] - ETA: 18:47 - loss: 1.332415\n", + "317\n", + "1791/2000 [=========================>....] - ETA: 18:42 - loss: 1.3322325\n", + "1792/2000 [=========================>....] - ETA: 18:37 - loss: 1.3321908\n", + "1793/2000 [=========================>....] - ETA: 18:32 - loss: 1.3320633\n", + "803\n", + "1794/2000 [=========================>....] - ETA: 18:26 - loss: 1.3318406\n", + "1795/2000 [=========================>....] - ETA: 18:21 - loss: 1.3318966\n", + "1796/2000 [=========================>....] - ETA: 18:15 - loss: 1.3316252\n", + "1797/2000 [=========================>....] - ETA: 18:10 - loss: 1.3317244\n", + "1798/2000 [=========================>....] - ETA: 18:05 - loss: 1.3318725\n", + "1799/2000 [=========================>....] - ETA: 17:59 - loss: 1.3318924\n", + "1800/2000 [==========================>...] - ETA: 17:54 - loss: 1.331553\n", + "379\n", + "1801/2000 [==========================>...] - ETA: 17:48 - loss: 1.3316864\n", + "1802/2000 [==========================>...] - ETA: 17:43 - loss: 1.3316847\n", + "1803/2000 [==========================>...] - ETA: 17:38 - loss: 1.3313834\n", + "1804/2000 [==========================>...] - ETA: 17:32 - loss: 1.33101\n", + "955\n", + "1805/2000 [==========================>...] - ETA: 17:27 - loss: 1.3310341\n", + "1806/2000 [==========================>...] - ETA: 17:22 - loss: 1.3306821\n", + "1807/2000 [==========================>...] - ETA: 17:16 - loss: 1.3305868\n", + "1808/2000 [==========================>...] - ETA: 17:11 - loss: 1.3305802\n", + "1809/2000 [==========================>...] - ETA: 17:05 - loss: 1.3306674\n", + "112\n", + "1810/2000 [==========================>...] - ETA: 17:00 - loss: 1.3306593\n", + "387\n", + "1811/2000 [==========================>...] - ETA: 16:55 - loss: 1.3308528\n", + "599\n", + "448\n", + "1812/2000 [==========================>...] - ETA: 16:49 - loss: 1.3307496\n", + "540\n", + "807\n", + "1813/2000 [==========================>...] - ETA: 16:44 - loss: 1.3306199\n", + "1814/2000 [==========================>...] - ETA: 16:39 - loss: 1.3304615\n", + "600\n", + "662\n", + "253\n", + "1815/2000 [==========================>...] - ETA: 16:33 - loss: 1.3304590\n", + "887\n", + "1816/2000 [==========================>...] - ETA: 16:28 - loss: 1.3302438\n", + "1817/2000 [==========================>...] - ETA: 16:23 - loss: 1.3300328\n", + "1818/2000 [==========================>...] - ETA: 16:17 - loss: 1.3299267\n", + "1819/2000 [==========================>...] - ETA: 16:12 - loss: 1.3298331\n", + "1820/2000 [==========================>...] - ETA: 16:07 - loss: 1.3297733\n", + "1821/2000 [==========================>...] - ETA: 16:01 - loss: 1.3296866\n", + "1822/2000 [==========================>...] - ETA: 15:56 - loss: 1.329558\n", + "248\n", + "1823/2000 [==========================>...] - ETA: 15:51 - loss: 1.329497\n", + "1824/2000 [==========================>...] - ETA: 15:45 - loss: 1.329072\n", + "565\n", + "551\n", + "968\n", + "1825/2000 [==========================>...] - ETA: 15:40 - loss: 1.3290367\n", + "1826/2000 [==========================>...] - ETA: 15:34 - loss: 1.3289119\n", + "1827/2000 [==========================>...] - ETA: 15:29 - loss: 1.3286591\n", + "166\n", + "1828/2000 [==========================>...] - ETA: 15:23 - loss: 1.3281984\n", + "1829/2000 [==========================>...] - ETA: 15:18 - loss: 1.3281126\n", + "1830/2000 [==========================>...] - ETA: 15:12 - loss: 1.3275889\n", + "1831/2000 [==========================>...] - ETA: 15:07 - loss: 1.3275471\n", + "742\n", + "1832/2000 [==========================>...] - ETA: 15:02 - loss: 1.3281151\n", + "1833/2000 [==========================>...] - ETA: 14:56 - loss: 1.3279350\n", + "1834/2000 [==========================>...] - ETA: 14:51 - loss: 1.3279177\n", + "1835/2000 [==========================>...] - ETA: 14:45 - loss: 1.3282451\n", + "1836/2000 [==========================>...] - ETA: 14:40 - loss: 1.3281974\n", + "1837/2000 [==========================>...] - ETA: 14:34 - loss: 1.3279543\n", + "569\n", + "141\n", + "1838/2000 [==========================>...] - ETA: 14:29 - loss: 1.3273106\n", + "1839/2000 [==========================>...] - ETA: 14:23 - loss: 1.3272476\n", + "338\n", + "1840/2000 [==========================>...] - ETA: 14:18 - loss: 1.326941\n", + "449\n", + "1841/2000 [==========================>...] - ETA: 14:13 - loss: 1.326640\n", + "552\n", + "162\n", + "1842/2000 [==========================>...] - ETA: 14:07 - loss: 1.3266498\n", + "785\n", + "1843/2000 [==========================>...] - ETA: 14:02 - loss: 1.3264450\n", + "1844/2000 [==========================>...] - ETA: 13:56 - loss: 1.3261731\n", + "1845/2000 [==========================>...] - ETA: 13:51 - loss: 1.3258459\n", + "965\n", + "1846/2000 [==========================>...] - ETA: 13:46 - loss: 1.3259143\n", + "1847/2000 [==========================>...] - ETA: 13:40 - loss: 1.3256622\n", + "257\n", + "1848/2000 [==========================>...] - ETA: 13:35 - loss: 1.3257147\n", + "1849/2000 [==========================>...] - ETA: 13:29 - loss: 1.3254246\n", + "1850/2000 [==========================>...] - ETA: 13:24 - loss: 1.3254478\n", + "512\n", + "940\n", + "1851/2000 [==========================>...] - ETA: 13:19 - loss: 1.3252548\n", + "870\n", + "1852/2000 [==========================>...] - ETA: 13:13 - loss: 1.3250233\n", + "1853/2000 [==========================>...] - ETA: 13:08 - loss: 1.3247663\n", + "778\n", + "1854/2000 [==========================>...] - ETA: 13:03 - loss: 1.3242417\n", + "1855/2000 [==========================>...] - ETA: 12:57 - loss: 1.3243639\n", + "235\n", + "1856/2000 [==========================>...] - ETA: 12:52 - loss: 1.3240307\n", + "1857/2000 [==========================>...] - ETA: 12:47 - loss: 1.324069\n", + "311\n", + "1858/2000 [==========================>...] - ETA: 12:41 - loss: 1.3239301\n", + "1859/2000 [==========================>...] - ETA: 12:36 - loss: 1.3239465\n", + "963\n", + "1860/2000 [==========================>...] - ETA: 12:31 - loss: 1.3237242\n", + "1861/2000 [==========================>...] - ETA: 12:25 - loss: 1.3238750\n", + "1862/2000 [==========================>...] - ETA: 12:20 - loss: 1.3239904\n", + "1863/2000 [==========================>...] - ETA: 12:15 - loss: 1.323861\n", + "322\n", + "1864/2000 [==========================>...] - ETA: 12:09 - loss: 1.323614\n", + "5\n", + "502\n", + "211\n", + "1865/2000 [==========================>...] - ETA: 12:04 - loss: 1.3237616\n", + "901\n", + "1866/2000 [==========================>...] - ETA: 11:59 - loss: 1.3237165\n", + "1867/2000 [===========================>..] - ETA: 11:53 - loss: 1.3231829\n", + "1868/2000 [===========================>..] - ETA: 11:48 - loss: 1.3232309\n", + "1869/2000 [===========================>..] - ETA: 11:43 - loss: 1.3229386\n", + "1870/2000 [===========================>..] - ETA: 11:37 - loss: 1.3229689\n", + "111\n", + "1871/2000 [===========================>..] - ETA: 11:32 - loss: 1.3227721\n", + "1872/2000 [===========================>..] - ETA: 11:26 - loss: 1.3224679\n", + "273\n", + "1873/2000 [===========================>..] - ETA: 11:21 - loss: 1.3223919\n", + "1874/2000 [===========================>..] - ETA: 11:16 - loss: 1.3222511\n", + "196\n", + "1875/2000 [===========================>..] - ETA: 11:10 - loss: 1.3221504\n", + "604\n", + "914\n", + "1876/2000 [===========================>..] - ETA: 11:05 - loss: 1.3219973\n", + "1877/2000 [===========================>..] - ETA: 11:00 - loss: 1.3218125\n", + "1878/2000 [===========================>..] - ETA: 10:54 - loss: 1.3214867\n", + "1879/2000 [===========================>..] - ETA: 10:49 - loss: 1.3212550\n", + "708\n", + "1880/2000 [===========================>..] - ETA: 10:43 - loss: 1.3206201\n", + "1881/2000 [===========================>..] - ETA: 10:38 - loss: 1.3203816\n", + "1882/2000 [===========================>..] - ETA: 10:32 - loss: 1.3201249\n", + "1883/2000 [===========================>..] - ETA: 10:27 - loss: 1.3203818\n", + "1884/2000 [===========================>..] - ETA: 10:22 - loss: 1.3200560\n", + "568\n", + "198\n", + "1885/2000 [===========================>..] - ETA: 10:16 - loss: 1.3199356\n", + "1886/2000 [===========================>..] - ETA: 10:11 - loss: 1.3198404\n", + "1887/2000 [===========================>..] - ETA: 10:06 - loss: 1.3197302\n", + "1888/2000 [===========================>..] - ETA: 10:00 - loss: 1.3195637\n", + "76\n", + "869\n", + "1889/2000 [===========================>..] - ETA: 9:55 - loss: 1.3193 882\n", + "1890/2000 [===========================>..] - ETA: 9:50 - loss: 1.3192374\n", + "1891/2000 [===========================>..] - ETA: 9:44 - loss: 1.318911\n", + "776\n", + "1892/2000 [===========================>..] - ETA: 9:39 - loss: 1.3186756\n", + "1893/2000 [===========================>..] - ETA: 9:33 - loss: 1.3188145\n", + "1894/2000 [===========================>..] - ETA: 9:28 - loss: 1.3186362\n", + "1895/2000 [===========================>..] - ETA: 9:23 - loss: 1.3184261\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1896/2000 [===========================>..] - ETA: 9:17 - loss: 1.3183649\n", + "841\n", + "1897/2000 [===========================>..] - ETA: 9:12 - loss: 1.3181570\n", + "523\n", + "812\n", + "1898/2000 [===========================>..] - ETA: 9:07 - loss: 1.3181553\n", + "950\n", + "1899/2000 [===========================>..] - ETA: 9:01 - loss: 1.3181843\n", + "1900/2000 [===========================>..] - ETA: 8:56 - loss: 1.3182431\n", + "1901/2000 [===========================>..] - ETA: 8:50 - loss: 1.3181680\n", + "140\n", + "1902/2000 [===========================>..] - ETA: 8:45 - loss: 1.3177717\n", + "1903/2000 [===========================>..] - ETA: 8:40 - loss: 1.317318\n", + "110\n", + "1904/2000 [===========================>..] - ETA: 8:34 - loss: 1.3172926\n", + "1905/2000 [===========================>..] - ETA: 8:29 - loss: 1.3172296\n", + "1906/2000 [===========================>..] - ETA: 8:23 - loss: 1.3173780\n", + "1907/2000 [===========================>..] - ETA: 8:18 - loss: 1.3170219\n", + "1908/2000 [===========================>..] - ETA: 8:13 - loss: 1.3169176\n", + "1909/2000 [===========================>..] - ETA: 8:07 - loss: 1.3165107\n", + "1910/2000 [===========================>..] - ETA: 8:02 - loss: 1.3162763\n", + "1911/2000 [===========================>..] - ETA: 7:56 - loss: 1.3160768\n", + "1912/2000 [===========================>..] - ETA: 7:51 - loss: 1.3158221\n", + "1913/2000 [===========================>..] - ETA: 7:45 - loss: 1.3156786\n", + "1914/2000 [===========================>..] - ETA: 7:40 - loss: 1.3156150\n", + "1915/2000 [===========================>..] - ETA: 7:35 - loss: 1.3157596\n", + "482\n", + "500\n", + "709\n", + "1916/2000 [===========================>..] - ETA: 7:29 - loss: 1.3151945\n", + "1917/2000 [===========================>..] - ETA: 7:24 - loss: 1.3151393\n", + "1918/2000 [===========================>..] - ETA: 7:19 - loss: 1.3150760\n", + "1919/2000 [===========================>..] - ETA: 7:13 - loss: 1.3152457\n", + "753\n", + "1920/2000 [===========================>..] - ETA: 7:08 - loss: 1.314933\n", + "732\n", + "1921/2000 [===========================>..] - ETA: 7:02 - loss: 1.31476\n", + "269\n", + "1922/2000 [===========================>..] - ETA: 6:57 - loss: 1.3145426\n", + "1923/2000 [===========================>..] - ETA: 6:52 - loss: 1.3143207\n", + "1924/2000 [===========================>..] - ETA: 6:46 - loss: 1.3144532\n", + "94\n", + "1925/2000 [===========================>..] - ETA: 6:41 - loss: 1.3141982\n", + "1926/2000 [===========================>..] - ETA: 6:35 - loss: 1.3142772\n", + "1927/2000 [===========================>..] - ETA: 6:30 - loss: 1.3140782\n", + "1928/2000 [===========================>..] - ETA: 6:25 - loss: 1.3138202\n", + "1929/2000 [===========================>..] - ETA: 6:19 - loss: 1.3137223\n", + "1930/2000 [===========================>..] - ETA: 6:14 - loss: 1.3137295\n", + "1931/2000 [===========================>..] - ETA: 6:09 - loss: 1.3135447\n", + "1932/2000 [===========================>..] - ETA: 6:03 - loss: 1.3133372\n", + "1933/2000 [===========================>..] - ETA: 5:58 - loss: 1.3130583\n", + "683\n", + "741\n", + "1934/2000 [============================>.] - ETA: 5:52 - loss: 1.3126479\n", + "576\n", + "907\n", + "1935/2000 [============================>.] - ETA: 5:47 - loss: 1.312691\n", + "1936/2000 [============================>.] - ETA: 5:42 - loss: 1.3124714\n", + "1937/2000 [============================>.] - ETA: 5:36 - loss: 1.3118702\n", + "1938/2000 [============================>.] - ETA: 5:31 - loss: 1.311423\n", + "978\n", + "1939/2000 [============================>.] - ETA: 5:26 - loss: 1.3112161\n", + "1940/2000 [============================>.] - ETA: 5:20 - loss: 1.3112481\n", + "399\n", + "1941/2000 [============================>.] - ETA: 5:15 - loss: 1.3112243\n", + "1942/2000 [============================>.] - ETA: 5:10 - loss: 1.3112610\n", + "83\n", + "1943/2000 [============================>.] - ETA: 5:04 - loss: 1.3108665\n", + "206\n", + "1944/2000 [============================>.] - ETA: 4:59 - loss: 1.3106627\n", + "535\n", + "466\n", + "758\n", + "1945/2000 [============================>.] - ETA: 4:53 - loss: 1.3104657\n", + "73\n", + "634\n", + "401\n", + "1946/2000 [============================>.] - ETA: 4:48 - loss: 1.3104455\n", + "747\n", + "1947/2000 [============================>.] - ETA: 4:43 - loss: 1.3105681\n", + "706\n", + "1948/2000 [============================>.] - ETA: 4:37 - loss: 1.3104603\n", + "63\n", + "893\n", + "1949/2000 [============================>.] - ETA: 4:32 - loss: 1.3105858\n", + "1950/2000 [============================>.] - ETA: 4:27 - loss: 1.3104304\n", + "1951/2000 [============================>.] - ETA: 4:21 - loss: 1.3106667\n", + "923\n", + "1952/2000 [============================>.] - ETA: 4:16 - loss: 1.3104424\n", + "1953/2000 [============================>.] - ETA: 4:11 - loss: 1.3103931\n", + "1954/2000 [============================>.] - ETA: 4:05 - loss: 1.3104641\n", + "178\n", + "1955/2000 [============================>.] - ETA: 4:00 - loss: 1.3106927\n", + "1956/2000 [============================>.] - ETA: 3:55 - loss: 1.3104285\n", + "1957/2000 [============================>.] - ETA: 3:49 - loss: 1.3104494\n", + "440\n", + "1958/2000 [============================>.] - ETA: 3:44 - loss: 1.3101462\n", + "716\n", + "1959/2000 [============================>.] - ETA: 3:39 - loss: 1.3095383\n", + "1960/2000 [============================>.] - ETA: 3:33 - loss: 1.3094185\n", + "1961/2000 [============================>.] - ETA: 3:28 - loss: 1.3094631\n", + "148\n", + "1962/2000 [============================>.] - ETA: 3:23 - loss: 1.3094152\n", + "1963/2000 [============================>.] - ETA: 3:17 - loss: 1.3094104\n", + "1964/2000 [============================>.] - ETA: 3:12 - loss: 1.3088745\n", + "1965/2000 [============================>.] - ETA: 3:06 - loss: 1.3084172\n", + "1966/2000 [============================>.] - ETA: 3:01 - loss: 1.3085191\n", + "1967/2000 [============================>.] - ETA: 2:56 - loss: 1.3080409\n", + "1968/2000 [============================>.] - ETA: 2:50 - loss: 1.308186\n", + "1969/2000 [============================>.] - ETA: 2:45 - loss: 1.3077964\n", + "1970/2000 [============================>.] - ETA: 2:40 - loss: 1.3075784\n", + "1971/2000 [============================>.] - ETA: 2:34 - loss: 1.307238\n", + "878\n", + "1972/2000 [============================>.] - ETA: 2:29 - loss: 1.3072954\n", + "1973/2000 [============================>.] - ETA: 2:24 - loss: 1.3072174\n", + "1974/2000 [============================>.] - ETA: 2:18 - loss: 1.307529\n", + "519\n", + "646\n", + "624\n", + "823\n", + "1975/2000 [============================>.] - ETA: 2:13 - loss: 1.3076291\n", + "1976/2000 [============================>.] - ETA: 2:08 - loss: 1.3076844\n", + "1977/2000 [============================>.] - ETA: 2:02 - loss: 1.307526\n", + "842\n", + "1978/2000 [============================>.] - ETA: 1:57 - loss: 1.307274\n", + "642\n", + "64\n", + "861\n", + "1979/2000 [============================>.] - ETA: 1:52 - loss: 1.3070764\n", + "1980/2000 [============================>.] - ETA: 1:46 - loss: 1.3073280\n", + "1981/2000 [============================>.] - ETA: 1:41 - loss: 1.3072412\n", + "1982/2000 [============================>.] - ETA: 1:36 - loss: 1.3070421\n", + "1983/2000 [============================>.] - ETA: 1:30 - loss: 1.3069787\n", + "1984/2000 [============================>.] - ETA: 1:25 - loss: 1.3065205\n", + "1985/2000 [============================>.] - ETA: 1:20 - loss: 1.3063365\n", + "1986/2000 [============================>.] - ETA: 1:14 - loss: 1.3063575\n", + "120\n", + "1987/2000 [============================>.] - ETA: 1:09 - loss: 1.3062536\n", + "922\n", + "1988/2000 [============================>.] - ETA: 1:04 - loss: 1.3061586\n", + "491\n", + "137\n", + "1989/2000 [============================>.] - ETA: 58s - loss: 1.3058 442\n", + "1990/2000 [============================>.] - ETA: 53s - loss: 1.3058270\n", + "1991/2000 [============================>.] - ETA: 48s - loss: 1.3060333\n", + "1992/2000 [============================>.] - ETA: 42s - loss: 1.3060761\n", + "1993/2000 [============================>.] - ETA: 37s - loss: 1.3059822\n", + "1994/2000 [============================>.] - ETA: 32s - loss: 1.3059344\n", + "1995/2000 [============================>.] - ETA: 26s - loss: 1.305993\n", + "1996/2000 [============================>.] - ETA: 21s - loss: 1.3053339\n", + "1997/2000 [============================>.] - ETA: 16s - loss: 1.3050896\n", + "1998/2000 [============================>.] - ETA: 10s - loss: 1.3051713\n", + "1999/2000 [============================>.] - ETA: 5s - loss: 1.3055 99\n", + "2000/2000 [==============================] - 10665s 5s/step - loss: 1.3050 - val_loss: 1.3431\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\keras\\callbacks\\tensorboard_v1.py:343: The name tf.Summary is deprecated. Please use tf.compat.v1.Summary instead.\n", + "\n", + "Epoch 2/2\n", + "652\n", + "193\n", + " 1/2000 [..............................] - ETA: 4:28:56 - loss: 0.3472849\n", + " 2/2000 [..............................] - ETA: 4:35:02 - loss: 0.7126490\n", + "730\n", + " 3/2000 [..............................] - ETA: 4:24:05 - loss: 0.9232602\n", + "538\n", + "345\n", + " 4/2000 [..............................] - ETA: 4:43:37 - loss: 0.9883114\n", + " 5/2000 [..............................] - ETA: 4:27:16 - loss: 0.9547407\n", + " 6/2000 [..............................] - ETA: 4:27:32 - loss: 1.0065469\n", + "748\n", + " 7/2000 [..............................] - ETA: 4:24:33 - loss: 1.0292881\n", + " 8/2000 [..............................] - ETA: 4:28:45 - loss: 1.099513\n", + "499\n", + "113\n", + " 9/2000 [..............................] - ETA: 4:25:48 - loss: 0.9881572\n", + "315\n", + " 10/2000 [..............................] - ETA: 4:31:15 - loss: 1.0158468\n", + "428\n", + " 11/2000 [..............................] - ETA: 4:32:52 - loss: 1.0404933\n", + " 12/2000 [..............................] - ETA: 4:34:56 - loss: 1.0524419\n", + " 13/2000 [..............................] - ETA: 4:34:28 - loss: 1.0586675\n", + "333\n", + " 14/2000 [..............................] - ETA: 4:37:18 - loss: 1.04936\n", + "17\n", + "801\n", + " 15/2000 [..............................] - ETA: 4:37:35 - loss: 1.0379629\n", + "930\n", + " 16/2000 [..............................] - ETA: 4:41:17 - loss: 1.0319315\n", + " 17/2000 [..............................] - ETA: 4:42:15 - loss: 1.0345416\n", + " 18/2000 [..............................] - ETA: 4:41:47 - loss: 1.0560346\n", + " 19/2000 [..............................] - ETA: 4:42:33 - loss: 1.0351710\n", + " 20/2000 [..............................] - ETA: 4:38:40 - loss: 1.0615948\n", + " 21/2000 [..............................] - ETA: 4:39:38 - loss: 1.0795173\n", + " 22/2000 [..............................] - ETA: 4:37:20 - loss: 1.0476282\n", + " 23/2000 [..............................] - ETA: 4:39:07 - loss: 1.057790\n", + " 24/2000 [..............................] - ETA: 4:36:11 - loss: 1.0328795\n", + " 25/2000 [..............................] - ETA: 4:34:52 - loss: 1.0521868\n", + " 26/2000 [..............................] - ETA: 4:34:26 - loss: 1.0541146\n", + " 27/2000 [..............................] - ETA: 4:31:26 - loss: 1.0325742\n", + " 28/2000 [..............................] - ETA: 4:28:49 - loss: 1.0258508\n", + "747\n", + " 29/2000 [..............................] - ETA: 4:27:17 - loss: 1.0223147\n", + " 30/2000 [..............................] - ETA: 4:25:50 - loss: 0.9969866\n", + " 31/2000 [..............................] - ETA: 4:26:03 - loss: 1.0041136\n", + " 32/2000 [..............................] - ETA: 4:24:19 - loss: 0.9848355\n", + " 33/2000 [..............................] - ETA: 4:25:04 - loss: 0.9845926\n", + " 34/2000 [..............................] - ETA: 4:25:53 - loss: 0.9891819\n", + " 35/2000 [..............................] - ETA: 4:25:56 - loss: 0.9962688\n", + "755\n", + " 36/2000 [..............................] - ETA: 4:24:48 - loss: 1.0055838\n", + " 37/2000 [..............................] - ETA: 4:24:44 - loss: 1.0106719\n", + " 38/2000 [..............................] - ETA: 4:23:06 - loss: 0.9925986\n", + " 39/2000 [..............................] - ETA: 4:23:24 - loss: 0.9946641\n", + "805\n", + " 40/2000 [..............................] - ETA: 4:22:59 - loss: 0.9880337\n", + " 41/2000 [..............................] - ETA: 4:23:26 - loss: 0.9876221\n", + " 42/2000 [..............................] - ETA: 4:24:23 - loss: 0.9992409\n", + " 43/2000 [..............................] - ETA: 4:24:20 - loss: 1.0083637\n", + "107\n", + " 44/2000 [..............................] - ETA: 4:22:57 - loss: 1.0042211\n", + " 45/2000 [..............................] - ETA: 4:23:21 - loss: 1.0044962\n", + " 46/2000 [..............................] - ETA: 4:23:20 - loss: 1.0036576\n", + "958\n", + " 47/2000 [..............................] - ETA: 4:23:43 - loss: 1.0015621\n", + "846\n", + " 48/2000 [..............................] - ETA: 4:23:57 - loss: 0.9996911\n", + " 49/2000 [..............................] - ETA: 4:24:01 - loss: 1.0067255\n", + " 50/2000 [..............................] - ETA: 4:23:54 - loss: 1.009962\n", + "787\n", + " 51/2000 [..............................] - ETA: 4:23:01 - loss: 1.0055638\n", + "205\n", + " 52/2000 [..............................] - ETA: 4:24:09 - loss: 0.9974410\n", + " 53/2000 [..............................] - ETA: 4:24:10 - loss: 1.0017825\n", + " 54/2000 [..............................] - ETA: 4:24:22 - loss: 0.9963533\n", + "374\n", + " 55/2000 [..............................] - ETA: 4:24:59 - loss: 0.9938372\n", + " 56/2000 [..............................] - ETA: 4:25:18 - loss: 0.9910419\n", + " 57/2000 [..............................] - ETA: 4:25:20 - loss: 0.9966363\n", + " 58/2000 [..............................] - ETA: 4:25:37 - loss: 0.9915700\n", + " 59/2000 [..............................] - ETA: 4:24:31 - loss: 0.9872636\n", + "749\n", + " 60/2000 [..............................] - ETA: 4:23:50 - loss: 0.9777812\n", + " 61/2000 [..............................] - ETA: 4:23:50 - loss: 0.9777921\n", + " 62/2000 [..............................] - ETA: 4:23:57 - loss: 0.9727780\n", + " 63/2000 [..............................] - ETA: 4:22:59 - loss: 0.9719322\n", + " 64/2000 [..............................] - ETA: 4:23:47 - loss: 0.9721405\n", + " 65/2000 [..............................] - ETA: 4:23:49 - loss: 0.976545\n", + "377\n", + " 66/2000 [..............................] - ETA: 4:24:12 - loss: 0.9762664\n", + "149\n", + " 67/2000 [>.............................] - ETA: 4:23:12 - loss: 0.9786893\n", + " 68/2000 [>.............................] - ETA: 4:22:55 - loss: 0.9800608\n", + "614\n", + "192\n", + " 69/2000 [>.............................] - ETA: 4:22:44 - loss: 0.9789289\n", + " 70/2000 [>.............................] - ETA: 4:23:09 - loss: 0.9813275\n", + " 71/2000 [>.............................] - ETA: 4:23:29 - loss: 0.9876296\n", + " 72/2000 [>.............................] - ETA: 4:23:45 - loss: 0.9898956\n", + " 73/2000 [>.............................] - ETA: 4:23:41 - loss: 0.9875496\n", + "42\n", + "965\n", + " 74/2000 [>.............................] - ETA: 4:24:17 - loss: 0.9872579\n", + "746\n", + " 75/2000 [>.............................] - ETA: 4:23:36 - loss: 0.9884227\n", + " 76/2000 [>.............................] - ETA: 4:23:48 - loss: 0.9910132\n", + " 77/2000 [>.............................] - ETA: 4:23:00 - loss: 0.9974253\n", + " 78/2000 [>.............................] - ETA: 4:23:01 - loss: 0.9981131\n", + " 79/2000 [>.............................] - ETA: 4:21:58 - loss: 1.0019944\n", + " 80/2000 [>.............................] - ETA: 4:21:54 - loss: 1.0051913\n", + " 81/2000 [>.............................] - ETA: 4:21:29 - loss: 1.01138\n", + "427\n", + " 82/2000 [>.............................] - ETA: 4:21:11 - loss: 1.0125885\n", + " 83/2000 [>.............................] - ETA: 4:21:05 - loss: 1.0160357\n", + " 84/2000 [>.............................] - ETA: 4:21:08 - loss: 1.0194864\n", + " 85/2000 [>.............................] - ETA: 4:20:55 - loss: 1.0174381\n", + " 86/2000 [>.............................] - ETA: 4:20:52 - loss: 1.0179291\n", + " 87/2000 [>.............................] - ETA: 4:21:06 - loss: 1.0159246\n", + " 88/2000 [>.............................] - ETA: 4:21:08 - loss: 1.0179765\n", + " 89/2000 [>.............................] - ETA: 4:20:17 - loss: 1.0236894\n", + " 90/2000 [>.............................] - ETA: 4:20:10 - loss: 1.0229504\n", + "648\n", + "158\n", + " 91/2000 [>.............................] - ETA: 4:19:52 - loss: 1.0276600\n", + "764\n", + " 92/2000 [>.............................] - ETA: 4:19:06 - loss: 1.0372252\n", + " 93/2000 [>.............................] - ETA: 4:19:01 - loss: 1.0365677\n", + "936\n", + " 94/2000 [>.............................] - ETA: 4:19:11 - loss: 1.0442786\n", + " 95/2000 [>.............................] - ETA: 4:18:21 - loss: 1.0404301\n", + " 96/2000 [>.............................] - ETA: 4:18:33 - loss: 1.0451358\n", + " 97/2000 [>.............................] - ETA: 4:18:31 - loss: 1.0489361\n", + " 98/2000 [>.............................] - ETA: 4:18:35 - loss: 1.0472852\n", + " 99/2000 [>.............................] - ETA: 4:18:30 - loss: 1.0505587\n", + "760\n", + " 100/2000 [>.............................] - ETA: 4:17:58 - loss: 1.0450341\n", + " 101/2000 [>.............................] - ETA: 4:18:01 - loss: 1.0433778\n", + " 102/2000 [>.............................] - ETA: 4:17:17 - loss: 1.036410\n", + "284\n", + " 103/2000 [>.............................] - ETA: 4:17:35 - loss: 1.0345684\n", + "828\n", + " 104/2000 [>.............................] - ETA: 4:17:31 - loss: 1.0349714\n", + " 105/2000 [>.............................] - ETA: 4:16:48 - loss: 1.0274379\n", + " 106/2000 [>.............................] - ETA: 4:16:38 - loss: 1.0320196\n", + " 107/2000 [>.............................] - ETA: 4:16:25 - loss: 1.0337306\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 108/2000 [>.............................] - ETA: 4:16:29 - loss: 1.0320297\n", + " 109/2000 [>.............................] - ETA: 4:16:32 - loss: 1.0315694\n", + " 110/2000 [>.............................] - ETA: 4:15:51 - loss: 1.0263102\n", + " 111/2000 [>.............................] - ETA: 4:15:05 - loss: 1.0181727\n", + " 112/2000 [>.............................] - ETA: 4:14:27 - loss: 1.0212445\n", + " 113/2000 [>.............................] - ETA: 4:14:05 - loss: 1.0208832\n", + " 114/2000 [>.............................] - ETA: 4:13:51 - loss: 1.016315\n", + "323\n", + " 115/2000 [>.............................] - ETA: 4:14:04 - loss: 1.0161456\n", + "14\n", + "865\n", + " 116/2000 [>.............................] - ETA: 4:14:09 - loss: 1.0165740\n", + " 117/2000 [>.............................] - ETA: 4:13:21 - loss: 1.0092642\n", + "485\n", + "447\n", + " 118/2000 [>.............................] - ETA: 4:13:03 - loss: 1.0073518\n", + "909\n", + " 119/2000 [>.............................] - ETA: 4:13:17 - loss: 1.0078676\n", + "520\n", + "591\n", + "32\n", + "249\n", + " 120/2000 [>.............................] - ETA: 4:13:51 - loss: 1.0099150\n", + " 121/2000 [>.............................] - ETA: 4:13:08 - loss: 1.0037586\n", + "549\n", + "402\n", + " 122/2000 [>.............................] - ETA: 4:13:14 - loss: 1.0068779\n", + " 123/2000 [>.............................] - ETA: 4:12:32 - loss: 1.0040174\n", + " 124/2000 [>.............................] - ETA: 4:11:56 - loss: 1.0000914\n", + " 125/2000 [>.............................] - ETA: 4:11:52 - loss: 1.002498\n", + " 126/2000 [>.............................] - ETA: 4:11:06 - loss: 0.9976824\n", + " 127/2000 [>.............................] - ETA: 4:10:53 - loss: 0.9992662\n", + "280\n", + " 128/2000 [>.............................] - ETA: 4:11:02 - loss: 0.998443\n", + "286\n", + " 129/2000 [>.............................] - ETA: 4:11:22 - loss: 1.0034111\n", + " 130/2000 [>.............................] - ETA: 4:10:40 - loss: 1.005582\n", + " 131/2000 [>.............................] - ETA: 4:09:54 - loss: 1.0050242\n", + " 132/2000 [>.............................] - ETA: 4:09:51 - loss: 1.0045523\n", + "148\n", + " 133/2000 [>.............................] - ETA: 4:09:19 - loss: 1.0045712\n", + " 134/2000 [=>............................] - ETA: 4:08:43 - loss: 0.9981366\n", + " 135/2000 [=>............................] - ETA: 4:08:29 - loss: 1.0028116\n", + " 136/2000 [=>............................] - ETA: 4:07:51 - loss: 1.0011682\n", + "657\n", + "464\n", + "847\n", + " 137/2000 [=>............................] - ETA: 4:07:51 - loss: 0.9987564\n", + "691\n", + "695\n", + " 138/2000 [=>............................] - ETA: 4:07:32 - loss: 0.9966100\n", + " 139/2000 [=>............................] - ETA: 4:06:54 - loss: 0.9898476\n", + "199\n", + " 140/2000 [=>............................] - ETA: 4:06:53 - loss: 0.9904144\n", + " 141/2000 [=>............................] - ETA: 4:06:17 - loss: 0.9887594\n", + "119\n", + " 142/2000 [=>............................] - ETA: 4:05:46 - loss: 0.9918770\n", + " 143/2000 [=>............................] - ETA: 4:05:09 - loss: 0.9890692\n", + "570\n", + "245\n", + " 144/2000 [=>............................] - ETA: 4:05:25 - loss: 0.9901553\n", + "279\n", + " 145/2000 [=>............................] - ETA: 4:05:37 - loss: 0.9929767\n", + " 146/2000 [=>............................] - ETA: 4:04:59 - loss: 0.9877499\n", + "505\n", + "190\n", + " 147/2000 [=>............................] - ETA: 4:04:58 - loss: 0.9880155\n", + " 148/2000 [=>............................] - ETA: 4:04:25 - loss: 0.9884938\n", + " 149/2000 [=>............................] - ETA: 4:04:20 - loss: 0.9894552\n", + "308\n", + " 150/2000 [=>............................] - ETA: 4:04:26 - loss: 0.9901537\n", + "951\n", + " 151/2000 [=>............................] - ETA: 4:04:24 - loss: 0.9914566\n", + "177\n", + " 152/2000 [=>............................] - ETA: 4:04:01 - loss: 0.9864716\n", + " 153/2000 [=>............................] - ETA: 4:03:24 - loss: 0.9916112\n", + " 154/2000 [=>............................] - ETA: 4:02:46 - loss: 0.9884757\n", + " 155/2000 [=>............................] - ETA: 4:02:08 - loss: 0.9860612\n", + "212\n", + " 156/2000 [=>............................] - ETA: 4:02:18 - loss: 0.9869589\n", + "204\n", + " 157/2000 [=>............................] - ETA: 4:02:21 - loss: 0.9883243\n", + " 158/2000 [=>............................] - ETA: 4:02:19 - loss: 0.9898931\n", + " 159/2000 [=>............................] - ETA: 4:02:17 - loss: 0.9894435\n", + " 160/2000 [=>............................] - ETA: 4:02:00 - loss: 0.989673\n", + "430\n", + " 161/2000 [=>............................] - ETA: 4:01:58 - loss: 0.9920751\n", + " 162/2000 [=>............................] - ETA: 4:01:27 - loss: 0.9905519\n", + "68\n", + "963\n", + " 163/2000 [=>............................] - ETA: 4:01:31 - loss: 0.9898240\n", + " 164/2000 [=>............................] - ETA: 4:01:26 - loss: 0.9907774\n", + " 165/2000 [=>............................] - ETA: 4:00:49 - loss: 0.9890908\n", + " 166/2000 [=>............................] - ETA: 4:00:43 - loss: 0.9899389\n", + " 167/2000 [=>............................] - ETA: 4:00:38 - loss: 0.9920903\n", + " 168/2000 [=>............................] - ETA: 4:00:30 - loss: 0.9939299\n", + " 169/2000 [=>............................] - ETA: 4:00:31 - loss: 0.9945320\n", + " 170/2000 [=>............................] - ETA: 4:00:29 - loss: 0.9966802\n", + " 171/2000 [=>............................] - ETA: 4:00:10 - loss: 0.9957527\n", + "718\n", + " 172/2000 [=>............................] - ETA: 3:59:47 - loss: 0.9929668\n", + "293\n", + " 173/2000 [=>............................] - ETA: 3:59:58 - loss: 0.9951792\n", + " 174/2000 [=>............................] - ETA: 3:59:40 - loss: 0.9968129\n", + " 175/2000 [=>............................] - ETA: 3:59:12 - loss: 0.997252\n", + "27\n", + "959\n", + " 176/2000 [=>............................] - ETA: 3:59:19 - loss: 0.9967816\n", + " 177/2000 [=>............................] - ETA: 3:59:06 - loss: 0.9963189\n", + " 178/2000 [=>............................] - ETA: 3:58:49 - loss: 0.995491\n", + " 179/2000 [=>............................] - ETA: 3:58:15 - loss: 0.9925493\n", + "397\n", + " 180/2000 [=>............................] - ETA: 3:58:08 - loss: 0.9946345\n", + " 181/2000 [=>............................] - ETA: 3:58:05 - loss: 0.9960232\n", + " 182/2000 [=>............................] - ETA: 3:58:03 - loss: 0.9964829\n", + " 183/2000 [=>............................] - ETA: 3:57:49 - loss: 0.9962342\n", + " 184/2000 [=>............................] - ETA: 3:57:41 - loss: 0.9951656\n", + "168\n", + " 185/2000 [=>............................] - ETA: 3:57:20 - loss: 0.9960950\n", + " 186/2000 [=>............................] - ETA: 3:57:23 - loss: 0.9946907\n", + " 187/2000 [=>............................] - ETA: 3:57:14 - loss: 0.9948848\n", + " 188/2000 [=>............................] - ETA: 3:57:03 - loss: 0.9932486\n", + "481\n", + "459\n", + "933\n", + " 189/2000 [=>............................] - ETA: 3:57:17 - loss: 0.99411\n", + "689\n", + "726\n", + " 190/2000 [=>............................] - ETA: 3:56:57 - loss: 0.9976916\n", + " 191/2000 [=>............................] - ETA: 3:56:53 - loss: 0.9970577\n", + "422\n", + " 192/2000 [=>............................] - ETA: 3:56:48 - loss: 0.9976797\n", + " 193/2000 [=>............................] - ETA: 3:56:24 - loss: 0.9976239\n", + " 194/2000 [=>............................] - ETA: 3:56:13 - loss: 0.9967528\n", + "506\n", + "438\n", + " 195/2000 [=>............................] - ETA: 3:55:59 - loss: 0.9954215\n", + " 196/2000 [=>............................] - ETA: 3:55:53 - loss: 0.9949498\n", + "141\n", + " 197/2000 [=>............................] - ETA: 3:55:25 - loss: 0.9929639\n", + "887\n", + " 198/2000 [=>............................] - ETA: 3:55:21 - loss: 0.9935118\n", + " 199/2000 [=>............................] - ETA: 3:54:46 - loss: 0.9904961\n", + " 200/2000 [==>...........................] - ETA: 3:54:34 - loss: 0.9899209\n", + " 201/2000 [==>...........................] - ETA: 3:54:26 - loss: 0.9923860\n", + " 202/2000 [==>...........................] - ETA: 3:54:12 - loss: 0.995033\n", + "503\n", + "334\n", + " 203/2000 [==>...........................] - ETA: 3:54:19 - loss: 0.9963219\n", + " 204/2000 [==>...........................] - ETA: 3:54:15 - loss: 0.9972810\n", + " 205/2000 [==>...........................] - ETA: 3:53:56 - loss: 0.9985898\n", + " 206/2000 [==>...........................] - ETA: 3:53:51 - loss: 0.9988578\n", + "431\n", + " 207/2000 [==>...........................] - ETA: 3:53:46 - loss: 0.999466\n", + "604\n", + "918\n", + " 208/2000 [==>...........................] - ETA: 3:53:50 - loss: 1.0003404\n", + " 209/2000 [==>...........................] - ETA: 3:53:39 - loss: 1.0022295\n", + " 210/2000 [==>...........................] - ETA: 3:53:38 - loss: 1.0026982\n", + " 211/2000 [==>...........................] - ETA: 3:53:29 - loss: 1.0047731\n", + " 212/2000 [==>...........................] - ETA: 3:53:00 - loss: 1.002312\n", + "455\n", + "142\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 213/2000 [==>...........................] - ETA: 3:52:43 - loss: 1.0007538\n", + "512\n", + "947\n", + " 214/2000 [==>...........................] - ETA: 3:52:46 - loss: 1.0006735\n", + " 215/2000 [==>...........................] - ETA: 3:52:17 - loss: 1.0017666\n", + "411\n", + " 216/2000 [==>...........................] - ETA: 3:52:10 - loss: 1.0020375\n", + " 217/2000 [==>...........................] - ETA: 3:52:04 - loss: 1.0021484\n", + "408\n", + " 218/2000 [==>...........................] - ETA: 3:51:55 - loss: 1.0028271\n", + " 219/2000 [==>...........................] - ETA: 3:51:49 - loss: 1.0034184\n", + " 220/2000 [==>...........................] - ETA: 3:51:30 - loss: 1.0038974\n", + " 221/2000 [==>...........................] - ETA: 3:51:18 - loss: 1.0050858\n", + " 222/2000 [==>...........................] - ETA: 3:51:05 - loss: 1.0053872\n", + " 223/2000 [==>...........................] - ETA: 3:50:57 - loss: 1.0087595\n", + "425\n", + " 224/2000 [==>...........................] - ETA: 3:50:47 - loss: 1.010799\n", + " 225/2000 [==>...........................] - ETA: 3:50:16 - loss: 1.0125706\n", + " 226/2000 [==>...........................] - ETA: 3:49:46 - loss: 1.0155309\n", + " 227/2000 [==>...........................] - ETA: 3:49:40 - loss: 1.0160335\n", + " 228/2000 [==>...........................] - ETA: 3:49:37 - loss: 1.0199658\n", + "353\n", + " 229/2000 [==>...........................] - ETA: 3:49:32 - loss: 1.0213117\n", + " 230/2000 [==>...........................] - ETA: 3:49:01 - loss: 1.02204\n", + "393\n", + " 231/2000 [==>...........................] - ETA: 3:48:55 - loss: 1.0228939\n", + " 232/2000 [==>...........................] - ETA: 3:48:46 - loss: 1.022835\n", + "607\n", + "406\n", + " 233/2000 [==>...........................] - ETA: 3:48:41 - loss: 1.0223878\n", + " 234/2000 [==>...........................] - ETA: 3:48:31 - loss: 1.0223791\n", + " 235/2000 [==>...........................] - ETA: 3:48:03 - loss: 1.0192854\n", + " 236/2000 [==>...........................] - ETA: 3:47:48 - loss: 1.0195139\n", + " 237/2000 [==>...........................] - ETA: 3:47:20 - loss: 1.0174303\n", + " 238/2000 [==>...........................] - ETA: 3:47:15 - loss: 1.0194270\n", + " 239/2000 [==>...........................] - ETA: 3:47:14 - loss: 1.0201470\n", + "352\n", + " 240/2000 [==>...........................] - ETA: 3:47:10 - loss: 1.0201763\n", + " 241/2000 [==>...........................] - ETA: 3:46:44 - loss: 1.0210940\n", + " 242/2000 [==>...........................] - ETA: 3:46:37 - loss: 1.0212814\n", + " 243/2000 [==>...........................] - ETA: 3:46:23 - loss: 1.0212226\n", + " 244/2000 [==>...........................] - ETA: 3:46:17 - loss: 1.021613\n", + "225\n", + " 245/2000 [==>...........................] - ETA: 3:46:15 - loss: 1.022839\n", + "785\n", + " 246/2000 [==>...........................] - ETA: 3:45:53 - loss: 1.0214327\n", + " 247/2000 [==>...........................] - ETA: 3:45:47 - loss: 1.0208869\n", + " 248/2000 [==>...........................] - ETA: 3:45:35 - loss: 1.0204310\n", + " 249/2000 [==>...........................] - ETA: 3:45:33 - loss: 1.0210859\n", + " 250/2000 [==>...........................] - ETA: 3:45:21 - loss: 1.0204683\n", + "588\n", + "781\n", + " 251/2000 [==>...........................] - ETA: 3:45:03 - loss: 1.019961\n", + "482\n", + "507\n", + "849\n", + " 252/2000 [==>...........................] - ETA: 3:45:01 - loss: 1.0190194\n", + " 253/2000 [==>...........................] - ETA: 3:44:44 - loss: 1.019240\n", + "156\n", + " 254/2000 [==>...........................] - ETA: 3:44:23 - loss: 1.0200830\n", + " 255/2000 [==>...........................] - ETA: 3:44:09 - loss: 1.0194738\n", + " 256/2000 [==>...........................] - ETA: 3:43:44 - loss: 1.0167130\n", + " 257/2000 [==>...........................] - ETA: 3:43:19 - loss: 1.0222904\n", + " 258/2000 [==>...........................] - ETA: 3:43:08 - loss: 1.0221494\n", + "274\n", + " 259/2000 [==>...........................] - ETA: 3:43:06 - loss: 1.0220457\n", + "25\n", + "300\n", + " 260/2000 [==>...........................] - ETA: 3:43:10 - loss: 1.0217238\n", + " 261/2000 [==>...........................] - ETA: 3:43:05 - loss: 1.0219964\n", + " 262/2000 [==>...........................] - ETA: 3:42:58 - loss: 1.0218917\n", + " 263/2000 [==>...........................] - ETA: 3:42:51 - loss: 1.0223769\n", + " 264/2000 [==>...........................] - ETA: 3:42:29 - loss: 1.0210669\n", + "524\n", + "634\n", + "312\n", + " 265/2000 [==>...........................] - ETA: 3:42:36 - loss: 1.0218450\n", + " 266/2000 [==>...........................] - ETA: 3:42:20 - loss: 1.022071\n", + "449\n", + " 267/2000 [===>..........................] - ETA: 3:42:09 - loss: 1.0222987\n", + " 268/2000 [===>..........................] - ETA: 3:42:00 - loss: 1.0220663\n", + "960\n", + " 269/2000 [===>..........................] - ETA: 3:41:53 - loss: 1.0210925\n", + " 270/2000 [===>..........................] - ETA: 3:41:44 - loss: 1.0203421\n", + " 271/2000 [===>..........................] - ETA: 3:41:35 - loss: 1.0208285\n", + " 272/2000 [===>..........................] - ETA: 3:41:33 - loss: 1.021495\n", + " 273/2000 [===>..........................] - ETA: 3:41:09 - loss: 1.018946\n", + "187\n", + " 274/2000 [===>..........................] - ETA: 3:40:59 - loss: 1.0201857\n", + " 275/2000 [===>..........................] - ETA: 3:40:48 - loss: 1.0206890\n", + " 276/2000 [===>..........................] - ETA: 3:40:40 - loss: 1.0217401\n", + " 277/2000 [===>..........................] - ETA: 3:40:30 - loss: 1.0220536\n", + "737\n", + " 278/2000 [===>..........................] - ETA: 3:40:10 - loss: 1.0200811\n", + " 279/2000 [===>..........................] - ETA: 3:39:58 - loss: 1.0207428\n", + " 280/2000 [===>..........................] - ETA: 3:39:45 - loss: 1.0197380\n", + " 281/2000 [===>..........................] - ETA: 3:39:35 - loss: 1.0200796\n", + " 282/2000 [===>..........................] - ETA: 3:39:21 - loss: 1.0195754\n", + " 283/2000 [===>..........................] - ETA: 3:39:00 - loss: 1.0200937\n", + " 284/2000 [===>..........................] - ETA: 3:38:55 - loss: 1.0203206\n", + " 285/2000 [===>..........................] - ETA: 3:38:49 - loss: 1.0182207\n", + " 286/2000 [===>..........................] - ETA: 3:38:45 - loss: 1.0186460\n", + "400\n", + " 287/2000 [===>..........................] - ETA: 3:38:41 - loss: 1.0184618\n", + "702\n", + " 288/2000 [===>..........................] - ETA: 3:38:25 - loss: 1.018867\n", + "873\n", + " 289/2000 [===>..........................] - ETA: 3:38:24 - loss: 1.0196601\n", + "479\n", + "739\n", + " 290/2000 [===>..........................] - ETA: 3:38:11 - loss: 1.0168756\n", + " 291/2000 [===>..........................] - ETA: 3:37:51 - loss: 1.0163804\n", + " 292/2000 [===>..........................] - ETA: 3:37:37 - loss: 1.0167699\n", + " 293/2000 [===>..........................] - ETA: 3:37:17 - loss: 1.0141672\n", + "110\n", + " 294/2000 [===>..........................] - ETA: 3:37:00 - loss: 1.0125789\n", + " 295/2000 [===>..........................] - ETA: 3:36:40 - loss: 1.0097574\n", + "509\n", + "644\n", + "934\n", + " 296/2000 [===>..........................] - ETA: 3:36:47 - loss: 1.010372\n", + "463\n", + "326\n", + " 297/2000 [===>..........................] - ETA: 3:36:48 - loss: 1.0111354\n", + " 298/2000 [===>..........................] - ETA: 3:36:42 - loss: 1.0114975\n", + " 299/2000 [===>..........................] - ETA: 3:36:34 - loss: 1.0108384\n", + " 300/2000 [===>..........................] - ETA: 3:36:26 - loss: 1.0108605\n", + "395\n", + " 301/2000 [===>..........................] - ETA: 3:36:21 - loss: 1.0122103\n", + " 302/2000 [===>..........................] - ETA: 3:35:59 - loss: 1.01253\n", + "88\n", + " 303/2000 [===>..........................] - ETA: 3:35:40 - loss: 1.0095875\n", + " 304/2000 [===>..........................] - ETA: 3:35:34 - loss: 1.0106340\n", + " 305/2000 [===>..........................] - ETA: 3:35:28 - loss: 1.0097170\n", + " 306/2000 [===>..........................] - ETA: 3:35:14 - loss: 1.0104318\n", + " 307/2000 [===>..........................] - ETA: 3:35:09 - loss: 1.0102703\n", + " 308/2000 [===>..........................] - ETA: 3:34:50 - loss: 1.0111708\n", + " 309/2000 [===>..........................] - ETA: 3:34:29 - loss: 1.0088876\n", + " 310/2000 [===>..........................] - ETA: 3:34:24 - loss: 1.0091542\n", + "808\n", + " 311/2000 [===>..........................] - ETA: 3:34:13 - loss: 1.0103622\n", + "707\n", + " 312/2000 [===>..........................] - ETA: 3:33:55 - loss: 1.0114178\n", + " 313/2000 [===>..........................] - ETA: 3:33:43 - loss: 1.0119758\n", + " 314/2000 [===>..........................] - ETA: 3:33:22 - loss: 1.0111491\n", + "627\n", + "667\n", + "48\n", + "879\n", + " 315/2000 [===>..........................] - ETA: 3:33:28 - loss: 1.010918\n", + "953\n", + " 316/2000 [===>..........................] - ETA: 3:33:23 - loss: 1.0117635\n", + "551\n", + "60\n", + "176\n", + " 317/2000 [===>..........................] - ETA: 3:33:14 - loss: 1.0098744\n", + " 318/2000 [===>..........................] - ETA: 3:32:54 - loss: 1.0086660\n", + "851\n", + " 319/2000 [===>..........................] - ETA: 3:32:49 - loss: 1.009423\n", + "76\n", + "414\n", + " 320/2000 [===>..........................] - ETA: 3:32:44 - loss: 1.0108752\n", + " 321/2000 [===>..........................] - ETA: 3:32:24 - loss: 1.0096843\n", + " 322/2000 [===>..........................] - ETA: 3:32:14 - loss: 1.010251\n", + "28\n", + "616\n", + "262\n", + " 323/2000 [===>..........................] - ETA: 3:32:17 - loss: 1.0116891\n", + " 324/2000 [===>..........................] - ETA: 3:32:07 - loss: 1.0118525\n", + "180\n", + " 325/2000 [===>..........................] - ETA: 3:31:56 - loss: 1.0129268\n", + " 326/2000 [===>..........................] - ETA: 3:31:50 - loss: 1.0131247\n", + " 327/2000 [===>..........................] - ETA: 3:31:44 - loss: 1.012922\n", + "439\n", + " 328/2000 [===>..........................] - ETA: 3:31:35 - loss: 1.0122241\n", + " 329/2000 [===>..........................] - ETA: 3:31:28 - loss: 1.0124201\n", + " 330/2000 [===>..........................] - ETA: 3:31:21 - loss: 1.0125713\n", + " 331/2000 [===>..........................] - ETA: 3:31:00 - loss: 1.0100773\n", + " 332/2000 [===>..........................] - ETA: 3:30:40 - loss: 1.0106114\n", + " 333/2000 [===>..........................] - ETA: 3:30:20 - loss: 1.0104510\n", + "705\n", + " 334/2000 [====>.........................] - ETA: 3:30:03 - loss: 1.0145307\n", + " 335/2000 [====>.........................] - ETA: 3:29:57 - loss: 1.0152743\n", + " 336/2000 [====>.........................] - ETA: 3:29:37 - loss: 1.0150267\n", + " 337/2000 [====>.........................] - ETA: 3:29:32 - loss: 1.0154231\n", + " 338/2000 [====>.........................] - ETA: 3:29:26 - loss: 1.0161370\n", + " 339/2000 [====>.........................] - ETA: 3:29:16 - loss: 1.0158134\n", + " 340/2000 [====>.........................] - ETA: 3:28:58 - loss: 1.0166831\n", + " 341/2000 [====>.........................] - ETA: 3:28:49 - loss: 1.0165331\n", + " 342/2000 [====>.........................] - ETA: 3:28:46 - loss: 1.0174248\n", + " 343/2000 [====>.........................] - ETA: 3:28:39 - loss: 1.017338\n", + "845\n", + " 344/2000 [====>.........................] - ETA: 3:28:32 - loss: 1.0165126\n", + " 345/2000 [====>.........................] - ETA: 3:28:14 - loss: 1.0149782\n", + " 346/2000 [====>.........................] - ETA: 3:27:55 - loss: 1.0144495\n", + "74\n", + "182\n", + " 347/2000 [====>.........................] - ETA: 3:27:48 - loss: 1.0145977\n", + " 348/2000 [====>.........................] - ETA: 3:27:39 - loss: 1.0146821\n", + " 349/2000 [====>.........................] - ETA: 3:27:28 - loss: 1.0147777\n", + " 350/2000 [====>.........................] - ETA: 3:27:09 - loss: 1.0142575\n", + "58\n", + "790\n", + " 351/2000 [====>.........................] - ETA: 3:26:55 - loss: 1.0121191\n", + " 352/2000 [====>.........................] - ETA: 3:26:42 - loss: 1.0115198\n", + " 353/2000 [====>.........................] - ETA: 3:26:38 - loss: 1.013178\n", + "513\n", + "582\n", + "218\n", + " 354/2000 [====>.........................] - ETA: 3:26:40 - loss: 1.0134157\n", + " 355/2000 [====>.........................] - ETA: 3:26:21 - loss: 1.0136383\n", + " 356/2000 [====>.........................] - ETA: 3:26:13 - loss: 1.0132424\n", + " 357/2000 [====>.........................] - ETA: 3:26:03 - loss: 1.0133583\n", + "97\n", + " 358/2000 [====>.........................] - ETA: 3:25:46 - loss: 1.0162497\n", + "978\n", + " 359/2000 [====>.........................] - ETA: 3:25:41 - loss: 1.0157535\n", + "983\n", + " 360/2000 [====>.........................] - ETA: 3:25:35 - loss: 1.0165233\n", + " 361/2000 [====>.........................] - ETA: 3:25:29 - loss: 1.017187\n", + " 362/2000 [====>.........................] - ETA: 3:25:10 - loss: 1.0146121\n", + " 363/2000 [====>.........................] - ETA: 3:24:53 - loss: 1.0149151\n", + " 364/2000 [====>.........................] - ETA: 3:24:35 - loss: 1.0156771\n", + " 365/2000 [====>.........................] - ETA: 3:24:17 - loss: 1.0144929\n", + " 366/2000 [====>.........................] - ETA: 3:24:12 - loss: 1.0150912\n", + " 367/2000 [====>.........................] - ETA: 3:24:06 - loss: 1.0158234\n", + " 368/2000 [====>.........................] - ETA: 3:24:01 - loss: 1.0158837\n", + " 369/2000 [====>.........................] - ETA: 3:23:53 - loss: 1.0165478\n", + "489\n", + "836\n", + " 370/2000 [====>.........................] - ETA: 3:23:48 - loss: 1.016624\n", + "861\n", + " 371/2000 [====>.........................] - ETA: 3:23:42 - loss: 1.0173208\n", + " 372/2000 [====>.........................] - ETA: 3:23:36 - loss: 1.0177200\n", + " 373/2000 [====>.........................] - ETA: 3:23:29 - loss: 1.0175550\n", + "571\n", + "93\n", + " 374/2000 [====>.........................] - ETA: 3:23:16 - loss: 1.0158475\n", + "441\n", + " 375/2000 [====>.........................] - ETA: 3:23:07 - loss: 1.015429\n", + "338\n", + " 376/2000 [====>.........................] - ETA: 3:23:03 - loss: 1.0157169\n", + " 377/2000 [====>.........................] - ETA: 3:22:47 - loss: 1.0141329\n", + " 378/2000 [====>.........................] - ETA: 3:22:43 - loss: 1.0145317\n", + " 379/2000 [====>.........................] - ETA: 3:22:38 - loss: 1.0144153\n", + " 380/2000 [====>.........................] - ETA: 3:22:21 - loss: 1.0148955\n", + " 381/2000 [====>.........................] - ETA: 3:22:13 - loss: 1.0151768\n", + " 382/2000 [====>.........................] - ETA: 3:21:55 - loss: 1.015336\n", + "841\n", + " 383/2000 [====>.........................] - ETA: 3:21:48 - loss: 1.0159626\n", + "85\n", + " 384/2000 [====>.........................] - ETA: 3:21:32 - loss: 1.0134877\n", + " 385/2000 [====>.........................] - ETA: 3:21:26 - loss: 1.0143188\n", + " 386/2000 [====>.........................] - ETA: 3:21:15 - loss: 1.0139593\n", + "256\n", + " 387/2000 [====>.........................] - ETA: 3:21:13 - loss: 1.0145179\n", + " 388/2000 [====>.........................] - ETA: 3:21:01 - loss: 1.0145670\n", + "741\n", + " 389/2000 [====>.........................] - ETA: 3:20:48 - loss: 1.0129278\n", + " 390/2000 [====>.........................] - ETA: 3:20:45 - loss: 1.0141615\n", + "655\n", + "228\n", + " 391/2000 [====>.........................] - ETA: 3:20:46 - loss: 1.0159266\n", + " 392/2000 [====>.........................] - ETA: 3:20:41 - loss: 1.0176473\n", + "516\n", + "265\n", + " 393/2000 [====>.........................] - ETA: 3:20:41 - loss: 1.0191932\n", + " 394/2000 [====>.........................] - ETA: 3:20:35 - loss: 1.0202597\n", + "562\n", + "546\n", + "49\n", + "674\n", + "547\n", + "654\n", + "733\n", + " 395/2000 [====>.........................] - ETA: 3:20:37 - loss: 1.0206526\n", + "515\n", + "276\n", + " 396/2000 [====>.........................] - ETA: 3:20:38 - loss: 1.0212794\n", + " 397/2000 [====>.........................] - ETA: 3:20:26 - loss: 1.0209910\n", + " 398/2000 [====>.........................] - ETA: 3:20:20 - loss: 1.020734\n", + "511\n", + "50\n", + "79\n", + " 399/2000 [====>.........................] - ETA: 3:20:10 - loss: 1.0188701\n", + " 400/2000 [=====>........................] - ETA: 3:19:54 - loss: 1.0178360\n", + " 401/2000 [=====>........................] - ETA: 3:19:48 - loss: 1.0186480\n", + "653\n", + "398\n", + " 402/2000 [=====>........................] - ETA: 3:19:44 - loss: 1.0193531\n", + "584\n", + "468\n", + "324\n", + " 403/2000 [=====>........................] - ETA: 3:19:45 - loss: 1.0193135\n", + " 404/2000 [=====>........................] - ETA: 3:19:30 - loss: 1.0194899\n", + " 405/2000 [=====>........................] - ETA: 3:19:23 - loss: 1.0201561\n", + "96\n", + " 406/2000 [=====>........................] - ETA: 3:19:08 - loss: 1.0180679\n", + "443\n", + " 407/2000 [=====>........................] - ETA: 3:18:59 - loss: 1.0176643\n", + "693\n", + " 408/2000 [=====>........................] - ETA: 3:18:45 - loss: 1.0153514\n", + "7\n", + "83\n", + " 409/2000 [=====>........................] - ETA: 3:18:32 - loss: 1.0143469\n", + "223\n", + " 410/2000 [=====>........................] - ETA: 3:18:29 - loss: 1.0152348\n", + " 411/2000 [=====>........................] - ETA: 3:18:22 - loss: 1.0155557\n", + "920\n", + " 412/2000 [=====>........................] - ETA: 3:18:18 - loss: 1.0149412\n", + " 413/2000 [=====>........................] - ETA: 3:18:09 - loss: 1.0153193\n", + " 414/2000 [=====>........................] - ETA: 3:17:58 - loss: 1.015164\n", + "152\n", + " 415/2000 [=====>........................] - ETA: 3:17:44 - loss: 1.0147339\n", + " 416/2000 [=====>........................] - ETA: 3:17:38 - loss: 1.0143620\n", + "793\n", + " 417/2000 [=====>........................] - ETA: 3:17:28 - loss: 1.0145367\n", + " 418/2000 [=====>........................] - ETA: 3:17:20 - loss: 1.0141160\n", + " 419/2000 [=====>........................] - ETA: 3:17:06 - loss: 1.0148721\n", + " 420/2000 [=====>........................] - ETA: 3:16:50 - loss: 1.0134101\n", + " 421/2000 [=====>........................] - ETA: 3:16:33 - loss: 1.0128487\n", + "336\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 422/2000 [=====>........................] - ETA: 3:16:28 - loss: 1.0128722\n", + " 423/2000 [=====>........................] - ETA: 3:16:12 - loss: 1.0131650\n", + "649\n", + "750\n", + " 424/2000 [=====>........................] - ETA: 3:16:00 - loss: 1.0121581\n", + "415\n", + " 425/2000 [=====>........................] - ETA: 3:15:53 - loss: 1.0123434\n", + " 426/2000 [=====>........................] - ETA: 3:15:44 - loss: 1.0132886\n", + " 427/2000 [=====>........................] - ETA: 3:15:38 - loss: 1.0136725\n", + " 428/2000 [=====>........................] - ETA: 3:15:23 - loss: 1.0143919\n", + " 429/2000 [=====>........................] - ETA: 3:15:16 - loss: 1.0145454\n", + " 430/2000 [=====>........................] - ETA: 3:15:05 - loss: 1.0152736\n", + " 431/2000 [=====>........................] - ETA: 3:14:50 - loss: 1.0145145\n", + " 432/2000 [=====>........................] - ETA: 3:14:34 - loss: 1.0137766\n", + " 433/2000 [=====>........................] - ETA: 3:14:19 - loss: 1.0121530\n", + "759\n", + " 434/2000 [=====>........................] - ETA: 3:14:06 - loss: 1.0100772\n", + " 435/2000 [=====>........................] - ETA: 3:13:50 - loss: 1.0094599\n", + "941\n", + " 436/2000 [=====>........................] - ETA: 3:13:46 - loss: 1.0097376\n", + " 437/2000 [=====>........................] - ETA: 3:13:38 - loss: 1.0107251\n", + " 438/2000 [=====>........................] - ETA: 3:13:32 - loss: 1.0108580\n", + "283\n", + " 439/2000 [=====>........................] - ETA: 3:13:30 - loss: 1.0117834\n", + " 440/2000 [=====>........................] - ETA: 3:13:22 - loss: 1.0119216\n", + " 441/2000 [=====>........................] - ETA: 3:13:17 - loss: 1.0127976\n", + " 442/2000 [=====>........................] - ETA: 3:13:10 - loss: 1.012586\n", + " 443/2000 [=====>........................] - ETA: 3:12:54 - loss: 1.0115973\n", + " 444/2000 [=====>........................] - ETA: 3:12:47 - loss: 1.0116602\n", + "540\n", + "720\n", + " 445/2000 [=====>........................] - ETA: 3:12:37 - loss: 1.0118133\n", + " 446/2000 [=====>........................] - ETA: 3:12:22 - loss: 1.0132783\n", + " 447/2000 [=====>........................] - ETA: 3:12:07 - loss: 1.0113870\n", + " 448/2000 [=====>........................] - ETA: 3:11:59 - loss: 1.0118501\n", + "631\n", + "490\n", + "277\n", + " 449/2000 [=====>........................] - ETA: 3:12:03 - loss: 1.0132943\n", + " 450/2000 [=====>........................] - ETA: 3:11:57 - loss: 1.0131467\n", + "554\n", + "979\n", + " 451/2000 [=====>........................] - ETA: 3:11:56 - loss: 1.0129373\n", + " 452/2000 [=====>........................] - ETA: 3:11:48 - loss: 1.0134474\n", + "745\n", + " 453/2000 [=====>........................] - ETA: 3:11:34 - loss: 1.0119350\n", + " 454/2000 [=====>........................] - ETA: 3:11:27 - loss: 1.0114183\n", + " 455/2000 [=====>........................] - ETA: 3:11:18 - loss: 1.0103122\n", + " 456/2000 [=====>........................] - ETA: 3:11:04 - loss: 1.010594\n", + " 457/2000 [=====>........................] - ETA: 3:10:49 - loss: 1.009111\n", + "609\n", + "109\n", + " 458/2000 [=====>........................] - ETA: 3:10:38 - loss: 1.0088548\n", + "287\n", + " 459/2000 [=====>........................] - ETA: 3:10:37 - loss: 1.0096806\n", + " 460/2000 [=====>........................] - ETA: 3:10:27 - loss: 1.008747\n", + "319\n", + " 461/2000 [=====>........................] - ETA: 3:10:25 - loss: 1.0081823\n", + " 462/2000 [=====>........................] - ETA: 3:10:17 - loss: 1.0074590\n", + "448\n", + " 463/2000 [=====>........................] - ETA: 3:10:10 - loss: 1.0069123\n", + " 464/2000 [=====>........................] - ETA: 3:09:57 - loss: 1.0053922\n", + " 465/2000 [=====>........................] - ETA: 3:09:52 - loss: 1.0059458\n", + "120\n", + " 466/2000 [=====>........................] - ETA: 3:09:41 - loss: 1.0066369\n", + " 467/2000 [======>.......................] - ETA: 3:09:35 - loss: 1.0065900\n", + " 468/2000 [======>.......................] - ETA: 3:09:29 - loss: 1.0072563\n", + "432\n", + " 469/2000 [======>.......................] - ETA: 3:09:24 - loss: 1.0073970\n", + " 470/2000 [======>.......................] - ETA: 3:09:17 - loss: 1.0077935\n", + " 471/2000 [======>.......................] - ETA: 3:09:12 - loss: 1.0082250\n", + " 472/2000 [======>.......................] - ETA: 3:09:06 - loss: 1.0076175\n", + " 473/2000 [======>.......................] - ETA: 3:08:54 - loss: 1.0096646\n", + "54\n", + "984\n", + " 474/2000 [======>.......................] - ETA: 3:08:52 - loss: 1.0095465\n", + "709\n", + " 475/2000 [======>.......................] - ETA: 3:08:41 - loss: 1.0081164\n", + " 476/2000 [======>.......................] - ETA: 3:08:29 - loss: 1.0065905\n", + " 477/2000 [======>.......................] - ETA: 3:08:22 - loss: 1.0071502\n", + "901\n", + " 478/2000 [======>.......................] - ETA: 3:08:17 - loss: 1.0078633\n", + "213\n", + " 479/2000 [======>.......................] - ETA: 3:08:13 - loss: 1.0082356\n", + " 480/2000 [======>.......................] - ETA: 3:08:06 - loss: 1.0092453\n", + " 481/2000 [======>.......................] - ETA: 3:07:55 - loss: 1.0093971\n", + " 482/2000 [======>.......................] - ETA: 3:07:47 - loss: 1.0108273\n", + " 483/2000 [======>.......................] - ETA: 3:07:42 - loss: 1.0108163\n", + " 484/2000 [======>.......................] - ETA: 3:07:29 - loss: 1.011131\n", + "202\n", + " 485/2000 [======>.......................] - ETA: 3:07:26 - loss: 1.0111681\n", + "55\n", + "272\n", + " 486/2000 [======>.......................] - ETA: 3:07:25 - loss: 1.0115850\n", + " 487/2000 [======>.......................] - ETA: 3:07:18 - loss: 1.0112305\n", + " 488/2000 [======>.......................] - ETA: 3:07:13 - loss: 1.0120220\n", + " 489/2000 [======>.......................] - ETA: 3:07:08 - loss: 1.0128862\n", + " 490/2000 [======>.......................] - ETA: 3:07:00 - loss: 1.0132685\n", + "161\n", + " 491/2000 [======>.......................] - ETA: 3:06:49 - loss: 1.0137915\n", + " 492/2000 [======>.......................] - ETA: 3:06:43 - loss: 1.0140222\n", + " 493/2000 [======>.......................] - ETA: 3:06:40 - loss: 1.0145815\n", + " 494/2000 [======>.......................] - ETA: 3:06:32 - loss: 1.0147378\n", + " 495/2000 [======>.......................] - ETA: 3:06:25 - loss: 1.0153522\n", + "344\n", + " 496/2000 [======>.......................] - ETA: 3:06:20 - loss: 1.0156954\n", + " 497/2000 [======>.......................] - ETA: 3:06:13 - loss: 1.0159972\n", + " 498/2000 [======>.......................] - ETA: 3:06:06 - loss: 1.0157661\n", + "230\n", + " 499/2000 [======>.......................] - ETA: 3:06:04 - loss: 1.0158698\n", + " 500/2000 [======>.......................] - ETA: 3:05:50 - loss: 1.0147477\n", + "882\n", + " 501/2000 [======>.......................] - ETA: 3:05:45 - loss: 1.0152420\n", + " 502/2000 [======>.......................] - ETA: 3:05:38 - loss: 1.0150687\n", + "809\n", + " 503/2000 [======>.......................] - ETA: 3:05:30 - loss: 1.0160451\n", + " 504/2000 [======>.......................] - ETA: 3:05:20 - loss: 1.0158237\n", + " 505/2000 [======>.......................] - ETA: 3:05:14 - loss: 1.0160762\n", + " 506/2000 [======>.......................] - ETA: 3:05:01 - loss: 1.0161532\n", + "611\n", + "968\n", + " 507/2000 [======>.......................] - ETA: 3:04:57 - loss: 1.0162665\n", + "92\n", + " 508/2000 [======>.......................] - ETA: 3:04:44 - loss: 1.0151394\n", + " 509/2000 [======>.......................] - ETA: 3:04:37 - loss: 1.0152628\n", + "259\n", + " 510/2000 [======>.......................] - ETA: 3:04:33 - loss: 1.01502\n", + "659\n", + "928\n", + " 511/2000 [======>.......................] - ETA: 3:04:29 - loss: 1.015759\n", + "185\n", + " 512/2000 [======>.......................] - ETA: 3:04:21 - loss: 1.0159466\n", + "728\n", + " 513/2000 [======>.......................] - ETA: 3:04:08 - loss: 1.0160143\n", + " 514/2000 [======>.......................] - ETA: 3:03:53 - loss: 1.0157423\n", + " 515/2000 [======>.......................] - ETA: 3:03:45 - loss: 1.016156\n", + "827\n", + " 516/2000 [======>.......................] - ETA: 3:03:38 - loss: 1.0165236\n", + " 517/2000 [======>.......................] - ETA: 3:03:32 - loss: 1.0168418\n", + " 518/2000 [======>.......................] - ETA: 3:03:24 - loss: 1.0172734\n", + " 519/2000 [======>.......................] - ETA: 3:03:11 - loss: 1.0173154\n", + " 520/2000 [======>.......................] - ETA: 3:02:59 - loss: 1.0174927\n", + " 521/2000 [======>.......................] - ETA: 3:02:53 - loss: 1.0174592\n", + "807\n", + " 522/2000 [======>.......................] - ETA: 3:02:46 - loss: 1.0179364\n", + " 523/2000 [======>.......................] - ETA: 3:02:39 - loss: 1.0176392\n", + " 524/2000 [======>.......................] - ETA: 3:02:33 - loss: 1.0172217\n", + " 525/2000 [======>.......................] - ETA: 3:02:31 - loss: 1.0173717\n", + " 526/2000 [======>.......................] - ETA: 3:02:19 - loss: 1.0171555\n", + "105\n", + " 527/2000 [======>.......................] - ETA: 3:02:07 - loss: 1.0160545\n", + "258\n", + " 528/2000 [======>.......................] - ETA: 3:02:04 - loss: 1.0165181\n", + " 529/2000 [======>.......................] - ETA: 3:01:56 - loss: 1.016820\n", + "444\n", + " 530/2000 [======>.......................] - ETA: 3:01:48 - loss: 1.017621\n", + "328\n", + " 531/2000 [======>.......................] - ETA: 3:01:44 - loss: 1.018453\n", + "75\n", + "313\n", + " 532/2000 [======>.......................] - ETA: 3:01:42 - loss: 1.0186569\n", + "257\n", + " 533/2000 [======>.......................] - ETA: 3:01:39 - loss: 1.0187362\n", + " 534/2000 [=======>......................] - ETA: 3:01:32 - loss: 1.0190949\n", + " 535/2000 [=======>......................] - ETA: 3:01:27 - loss: 1.0207748\n", + " 536/2000 [=======>......................] - ETA: 3:01:14 - loss: 1.0209671\n", + "171\n", + " 537/2000 [=======>......................] - ETA: 3:01:04 - loss: 1.0218565\n", + "417\n", + " 538/2000 [=======>......................] - ETA: 3:00:58 - loss: 1.0220452\n", + " 539/2000 [=======>......................] - ETA: 3:00:47 - loss: 1.0221254\n", + " 540/2000 [=======>......................] - ETA: 3:00:42 - loss: 1.0223715\n", + " 541/2000 [=======>......................] - ETA: 3:00:29 - loss: 1.0220106\n", + " 542/2000 [=======>......................] - ETA: 3:00:15 - loss: 1.0211784\n", + " 543/2000 [=======>......................] - ETA: 3:00:02 - loss: 1.0237606\n", + "559\n", + "833\n", + " 544/2000 [=======>......................] - ETA: 2:59:57 - loss: 1.0238260\n", + " 545/2000 [=======>......................] - ETA: 2:59:52 - loss: 1.0236113\n", + " 546/2000 [=======>......................] - ETA: 2:59:38 - loss: 1.0218723\n", + " 547/2000 [=======>......................] - ETA: 2:59:25 - loss: 1.0215166\n", + " 548/2000 [=======>......................] - ETA: 2:59:13 - loss: 1.023441\n", + "880\n", + " 549/2000 [=======>......................] - ETA: 2:59:09 - loss: 1.0236186\n", + " 550/2000 [=======>......................] - ETA: 2:59:01 - loss: 1.0236124\n", + " 551/2000 [=======>......................] - ETA: 2:58:48 - loss: 1.0235652\n", + "798\n", + " 552/2000 [=======>......................] - ETA: 2:58:40 - loss: 1.0232368\n", + " 553/2000 [=======>......................] - ETA: 2:58:32 - loss: 1.0229128\n", + " 554/2000 [=======>......................] - ETA: 2:58:20 - loss: 1.0232517\n", + "800\n", + " 555/2000 [=======>......................] - ETA: 2:58:11 - loss: 1.0239867\n", + " 556/2000 [=======>......................] - ETA: 2:58:03 - loss: 1.0234603\n", + "598\n", + "985\n", + " 557/2000 [=======>......................] - ETA: 2:57:58 - loss: 1.0240906\n", + " 558/2000 [=======>......................] - ETA: 2:57:51 - loss: 1.0242440\n", + " 559/2000 [=======>......................] - ETA: 2:57:40 - loss: 1.0236881\n", + " 560/2000 [=======>......................] - ETA: 2:57:34 - loss: 1.0242884\n", + " 561/2000 [=======>......................] - ETA: 2:57:27 - loss: 1.024670\n", + "647\n", + "529\n", + "871\n", + " 562/2000 [=======>......................] - ETA: 2:57:26 - loss: 1.0247568\n", + "753\n", + " 563/2000 [=======>......................] - ETA: 2:57:14 - loss: 1.0245483\n", + "302\n", + " 564/2000 [=======>......................] - ETA: 2:57:10 - loss: 1.0250967\n", + " 565/2000 [=======>......................] - ETA: 2:57:03 - loss: 1.0250883\n", + " 566/2000 [=======>......................] - ETA: 2:56:56 - loss: 1.0249210\n", + " 567/2000 [=======>......................] - ETA: 2:56:50 - loss: 1.0250396\n", + " 568/2000 [=======>......................] - ETA: 2:56:42 - loss: 1.0253818\n", + " 569/2000 [=======>......................] - ETA: 2:56:34 - loss: 1.0252399\n", + " 570/2000 [=======>......................] - ETA: 2:56:26 - loss: 1.0254799\n", + " 571/2000 [=======>......................] - ETA: 2:56:16 - loss: 1.0258544\n", + "264\n", + " 572/2000 [=======>......................] - ETA: 2:56:12 - loss: 1.0262560\n", + "853\n", + " 573/2000 [=======>......................] - ETA: 2:56:06 - loss: 1.0262165\n", + " 574/2000 [=======>......................] - ETA: 2:55:55 - loss: 1.0261696\n", + " 575/2000 [=======>......................] - ETA: 2:55:42 - loss: 1.0255351\n", + " 576/2000 [=======>......................] - ETA: 2:55:35 - loss: 1.025726\n", + "500\n", + "892\n", + " 577/2000 [=======>......................] - ETA: 2:55:31 - loss: 1.0262775\n", + " 578/2000 [=======>......................] - ETA: 2:55:17 - loss: 1.0253585\n", + "385\n", + " 579/2000 [=======>......................] - ETA: 2:55:13 - loss: 1.02525\n", + "844\n", + " 580/2000 [=======>......................] - ETA: 2:55:08 - loss: 1.0250835\n", + " 581/2000 [=======>......................] - ETA: 2:55:00 - loss: 1.0246839\n", + " 582/2000 [=======>......................] - ETA: 2:54:54 - loss: 1.0245874\n", + " 583/2000 [=======>......................] - ETA: 2:54:48 - loss: 1.024565\n", + "625\n", + "813\n", + " 584/2000 [=======>......................] - ETA: 2:54:44 - loss: 1.0248980\n", + " 585/2000 [=======>......................] - ETA: 2:54:37 - loss: 1.024319\n", + "63\n", + "856\n", + " 586/2000 [=======>......................] - ETA: 2:54:32 - loss: 1.024581\n", + " 587/2000 [=======>......................] - ETA: 2:54:19 - loss: 1.0248390\n", + " 588/2000 [=======>......................] - ETA: 2:54:12 - loss: 1.024557\n", + "263\n", + " 589/2000 [=======>......................] - ETA: 2:54:09 - loss: 1.0242104\n", + " 590/2000 [=======>......................] - ETA: 2:53:56 - loss: 1.0227840\n", + " 591/2000 [=======>......................] - ETA: 2:53:48 - loss: 1.023277\n", + "556\n", + "84\n", + " 592/2000 [=======>......................] - ETA: 2:53:37 - loss: 1.0227244\n", + " 593/2000 [=======>......................] - ETA: 2:53:32 - loss: 1.0228895\n", + " 594/2000 [=======>......................] - ETA: 2:53:24 - loss: 1.0227969\n", + " 595/2000 [=======>......................] - ETA: 2:53:17 - loss: 1.0231290\n", + " 596/2000 [=======>......................] - ETA: 2:53:12 - loss: 1.0239619\n", + "492\n", + "138\n", + " 597/2000 [=======>......................] - ETA: 2:53:02 - loss: 1.0250730\n", + " 598/2000 [=======>......................] - ETA: 2:52:50 - loss: 1.0247863\n", + " 599/2000 [=======>......................] - ETA: 2:52:42 - loss: 1.0252159\n", + " 600/2000 [========>.....................] - ETA: 2:52:31 - loss: 1.0261391\n", + " 601/2000 [========>.....................] - ETA: 2:52:23 - loss: 1.0260573\n", + "613\n", + "349\n", + " 602/2000 [========>.....................] - ETA: 2:52:19 - loss: 1.0261981\n", + " 603/2000 [========>.....................] - ETA: 2:52:13 - loss: 1.0264729\n", + " 604/2000 [========>.....................] - ETA: 2:52:00 - loss: 1.0250472\n", + "617\n", + "623\n", + "761\n", + " 605/2000 [========>.....................] - ETA: 2:51:53 - loss: 1.0254386\n", + " 606/2000 [========>.....................] - ETA: 2:51:46 - loss: 1.0256826\n", + " 607/2000 [========>.....................] - ETA: 2:51:38 - loss: 1.0259197\n", + " 608/2000 [========>.....................] - ETA: 2:51:30 - loss: 1.0267214\n", + " 609/2000 [========>.....................] - ETA: 2:51:24 - loss: 1.026880\n", + " 610/2000 [========>.....................] - ETA: 2:51:12 - loss: 1.0270269\n", + " 611/2000 [========>.....................] - ETA: 2:51:08 - loss: 1.0271461\n", + "167\n", + " 612/2000 [========>.....................] - ETA: 2:50:59 - loss: 1.0275732\n", + " 613/2000 [========>.....................] - ETA: 2:50:48 - loss: 1.0271115\n", + " 614/2000 [========>.....................] - ETA: 2:50:35 - loss: 1.0265382\n", + " 615/2000 [========>.....................] - ETA: 2:50:29 - loss: 1.0269471\n", + "429\n", + " 616/2000 [========>.....................] - ETA: 2:50:23 - loss: 1.0267541\n", + "137\n", + " 617/2000 [========>.....................] - ETA: 2:50:13 - loss: 1.0253686\n", + "332\n", + " 618/2000 [========>.....................] - ETA: 2:50:10 - loss: 1.0258724\n", + " 619/2000 [========>.....................] - ETA: 2:49:59 - loss: 1.0262521\n", + "44\n", + "842\n", + " 620/2000 [========>.....................] - ETA: 2:49:54 - loss: 1.0261945\n", + " 621/2000 [========>.....................] - ETA: 2:49:49 - loss: 1.0261321\n", + " 622/2000 [========>.....................] - ETA: 2:49:44 - loss: 1.0263897\n", + " 623/2000 [========>.....................] - ETA: 2:49:38 - loss: 1.026230\n", + "426\n", + " 624/2000 [========>.....................] - ETA: 2:49:32 - loss: 1.0262387\n", + " 625/2000 [========>.....................] - ETA: 2:49:26 - loss: 1.0267330\n", + " 626/2000 [========>.....................] - ETA: 2:49:20 - loss: 1.0269347\n", + " 627/2000 [========>.....................] - ETA: 2:49:16 - loss: 1.0269539\n", + "462\n", + "820\n", + " 628/2000 [========>.....................] - ETA: 2:49:11 - loss: 1.0269292\n", + " 629/2000 [========>.....................] - ETA: 2:49:06 - loss: 1.0271624\n", + "298\n", + " 630/2000 [========>.....................] - ETA: 2:49:02 - loss: 1.0272162\n", + " 631/2000 [========>.....................] - ETA: 2:48:51 - loss: 1.02740\n", + "855\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 632/2000 [========>.....................] - ETA: 2:48:45 - loss: 1.0273203\n", + " 633/2000 [========>.....................] - ETA: 2:48:39 - loss: 1.0268108\n", + " 634/2000 [========>.....................] - ETA: 2:48:27 - loss: 1.0254680\n", + "281\n", + " 635/2000 [========>.....................] - ETA: 2:48:23 - loss: 1.0257388\n", + " 636/2000 [========>.....................] - ETA: 2:48:16 - loss: 1.025537\n", + "437\n", + " 637/2000 [========>.....................] - ETA: 2:48:09 - loss: 1.0256902\n", + " 638/2000 [========>.....................] - ETA: 2:48:03 - loss: 1.0255127\n", + " 639/2000 [========>.....................] - ETA: 2:47:51 - loss: 1.025689\n", + " 640/2000 [========>.....................] - ETA: 2:47:39 - loss: 1.0247316\n", + " 641/2000 [========>.....................] - ETA: 2:47:34 - loss: 1.0248235\n", + " 642/2000 [========>.....................] - ETA: 2:47:28 - loss: 1.02479\n", + "645\n", + "488\n", + "788\n", + " 643/2000 [========>.....................] - ETA: 2:47:20 - loss: 1.0234924\n", + " 644/2000 [========>.....................] - ETA: 2:47:14 - loss: 1.0229952\n", + " 645/2000 [========>.....................] - ETA: 2:47:07 - loss: 1.0231572\n", + "125\n", + " 646/2000 [========>.....................] - ETA: 2:46:57 - loss: 1.0218690\n", + "889\n", + " 647/2000 [========>.....................] - ETA: 2:46:51 - loss: 1.0218632\n", + "822\n", + " 648/2000 [========>.....................] - ETA: 2:46:45 - loss: 1.0219261\n", + " 649/2000 [========>.....................] - ETA: 2:46:40 - loss: 1.0216651\n", + "195\n", + " 650/2000 [========>.....................] - ETA: 2:46:32 - loss: 1.0215304\n", + " 651/2000 [========>.....................] - ETA: 2:46:26 - loss: 1.0220359\n", + " 652/2000 [========>.....................] - ETA: 2:46:19 - loss: 1.0230224\n", + " 653/2000 [========>.....................] - ETA: 2:46:13 - loss: 1.0228446\n", + " 654/2000 [========>.....................] - ETA: 2:46:04 - loss: 1.0225436\n", + " 655/2000 [========>.....................] - ETA: 2:45:55 - loss: 1.0220343\n", + " 656/2000 [========>.....................] - ETA: 2:45:48 - loss: 1.0219314\n", + " 657/2000 [========>.....................] - ETA: 2:45:43 - loss: 1.0225407\n", + " 658/2000 [========>.....................] - ETA: 2:45:36 - loss: 1.0229140\n", + " 659/2000 [========>.....................] - ETA: 2:45:24 - loss: 1.0221697\n", + " 660/2000 [========>.....................] - ETA: 2:45:14 - loss: 1.0206413\n", + " 661/2000 [========>.....................] - ETA: 2:45:06 - loss: 1.020469\n", + "442\n", + " 662/2000 [========>.....................] - ETA: 2:44:58 - loss: 1.0201288\n", + " 663/2000 [========>.....................] - ETA: 2:44:53 - loss: 1.0206596\n", + "923\n", + " 664/2000 [========>.....................] - ETA: 2:44:48 - loss: 1.0209776\n", + " 665/2000 [========>.....................] - ETA: 2:44:36 - loss: 1.0198433\n", + " 666/2000 [========>.....................] - ETA: 2:44:28 - loss: 1.0197673\n", + "365\n", + " 667/2000 [=========>....................] - ETA: 2:44:22 - loss: 1.0194640\n", + "942\n", + " 668/2000 [=========>....................] - ETA: 2:44:17 - loss: 1.0195543\n", + "630\n", + "946\n", + " 669/2000 [=========>....................] - ETA: 2:44:12 - loss: 1.0199229\n", + " 670/2000 [=========>....................] - ETA: 2:44:07 - loss: 1.0197325\n", + " 671/2000 [=========>....................] - ETA: 2:44:01 - loss: 1.0193558\n", + "711\n", + " 672/2000 [=========>....................] - ETA: 2:43:50 - loss: 1.0186371\n", + " 673/2000 [=========>....................] - ETA: 2:43:43 - loss: 1.0183567\n", + "311\n", + " 674/2000 [=========>....................] - ETA: 2:43:38 - loss: 1.0183888\n", + " 675/2000 [=========>....................] - ETA: 2:43:32 - loss: 1.0184610\n", + "172\n", + " 676/2000 [=========>....................] - ETA: 2:43:22 - loss: 1.017316\n", + "803\n", + " 677/2000 [=========>....................] - ETA: 2:43:14 - loss: 1.0167403\n", + " 678/2000 [=========>....................] - ETA: 2:43:07 - loss: 1.0168294\n", + " 679/2000 [=========>....................] - ETA: 2:43:02 - loss: 1.0164957\n", + " 680/2000 [=========>....................] - ETA: 2:42:56 - loss: 1.0165817\n", + " 681/2000 [=========>....................] - ETA: 2:42:49 - loss: 1.0162896\n", + " 682/2000 [=========>....................] - ETA: 2:42:42 - loss: 1.0167678\n", + "534\n", + "966\n", + " 683/2000 [=========>....................] - ETA: 2:42:38 - loss: 1.0163704\n", + " 684/2000 [=========>....................] - ETA: 2:42:27 - loss: 1.0166736\n", + " 685/2000 [=========>....................] - ETA: 2:42:16 - loss: 1.0165445\n", + " 686/2000 [=========>....................] - ETA: 2:42:07 - loss: 1.0162491\n", + "968\n", + " 687/2000 [=========>....................] - ETA: 2:42:01 - loss: 1.0166718\n", + " 688/2000 [=========>....................] - ETA: 2:41:50 - loss: 1.0164926\n", + " 689/2000 [=========>....................] - ETA: 2:41:44 - loss: 1.016170\n", + "894\n", + " 690/2000 [=========>....................] - ETA: 2:41:39 - loss: 1.016167\n", + "47\n", + "887\n", + " 691/2000 [=========>....................] - ETA: 2:41:38 - loss: 1.0161148\n", + " 692/2000 [=========>....................] - ETA: 2:41:28 - loss: 1.0158944\n", + " 693/2000 [=========>....................] - ETA: 2:41:24 - loss: 1.0156779\n", + " 694/2000 [=========>....................] - ETA: 2:41:15 - loss: 1.0148393\n", + " 695/2000 [=========>....................] - ETA: 2:41:10 - loss: 1.0145124\n", + " 696/2000 [=========>....................] - ETA: 2:41:00 - loss: 1.0144260\n", + " 697/2000 [=========>....................] - ETA: 2:40:54 - loss: 1.0145492\n", + "759\n", + " 698/2000 [=========>....................] - ETA: 2:40:44 - loss: 1.0146591\n", + "483\n", + "859\n", + " 699/2000 [=========>....................] - ETA: 2:40:40 - loss: 1.01464\n", + "168\n", + " 700/2000 [=========>....................] - ETA: 2:40:32 - loss: 1.0148621\n", + "590\n", + "349\n", + " 701/2000 [=========>....................] - ETA: 2:40:29 - loss: 1.0151368\n", + " 702/2000 [=========>....................] - ETA: 2:40:24 - loss: 1.0151943\n", + " 703/2000 [=========>....................] - ETA: 2:40:20 - loss: 1.0155202\n", + " 704/2000 [=========>....................] - ETA: 2:40:16 - loss: 1.0153870\n", + " 705/2000 [=========>....................] - ETA: 2:40:10 - loss: 1.0150369\n", + " 706/2000 [=========>....................] - ETA: 2:40:05 - loss: 1.0160439\n", + " 707/2000 [=========>....................] - ETA: 2:39:58 - loss: 1.0156372\n", + " 708/2000 [=========>....................] - ETA: 2:39:53 - loss: 1.0163604\n", + "100\n", + " 709/2000 [=========>....................] - ETA: 2:39:44 - loss: 1.0150452\n", + " 710/2000 [=========>....................] - ETA: 2:39:37 - loss: 1.0154737\n", + " 711/2000 [=========>....................] - ETA: 2:39:28 - loss: 1.0150641\n", + "341\n", + " 712/2000 [=========>....................] - ETA: 2:39:24 - loss: 1.0146166\n", + " 713/2000 [=========>....................] - ETA: 2:39:16 - loss: 1.0153937\n", + " 714/2000 [=========>....................] - ETA: 2:39:12 - loss: 1.0151265\n", + " 715/2000 [=========>....................] - ETA: 2:39:08 - loss: 1.0152283\n", + " 716/2000 [=========>....................] - ETA: 2:39:05 - loss: 1.0156247\n", + " 717/2000 [=========>....................] - ETA: 2:39:00 - loss: 1.0156157\n", + " 718/2000 [=========>....................] - ETA: 2:38:51 - loss: 1.0158107\n", + " 719/2000 [=========>....................] - ETA: 2:38:42 - loss: 1.0151828\n", + " 720/2000 [=========>....................] - ETA: 2:38:36 - loss: 1.0151786\n", + " 721/2000 [=========>....................] - ETA: 2:38:26 - loss: 1.0160981\n", + " 722/2000 [=========>....................] - ETA: 2:38:20 - loss: 1.0167232\n", + " 723/2000 [=========>....................] - ETA: 2:38:15 - loss: 1.0168188\n", + " 724/2000 [=========>....................] - ETA: 2:38:08 - loss: 1.0162172\n", + " 725/2000 [=========>....................] - ETA: 2:37:59 - loss: 1.0168326\n", + " 726/2000 [=========>....................] - ETA: 2:37:55 - loss: 1.0168101\n", + " 727/2000 [=========>....................] - ETA: 2:37:44 - loss: 1.0156881\n", + " 728/2000 [=========>....................] - ETA: 2:37:39 - loss: 1.0157259\n", + " 729/2000 [=========>....................] - ETA: 2:37:35 - loss: 1.0157642\n", + "199\n", + " 730/2000 [=========>....................] - ETA: 2:37:32 - loss: 1.016065\n", + "2\n", + "273\n", + " 731/2000 [=========>....................] - ETA: 2:37:29 - loss: 1.0166404\n", + " 732/2000 [=========>....................] - ETA: 2:37:23 - loss: 1.0169513\n", + "783\n", + " 733/2000 [=========>....................] - ETA: 2:37:15 - loss: 1.0177658\n", + "263\n", + " 734/2000 [==========>...................] - ETA: 2:37:11 - loss: 1.0178824\n", + " 735/2000 [==========>...................] - ETA: 2:37:05 - loss: 1.0179395\n", + " 736/2000 [==========>...................] - ETA: 2:37:00 - loss: 1.0182246\n", + " 737/2000 [==========>...................] - ETA: 2:36:55 - loss: 1.0183337\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 738/2000 [==========>...................] - ETA: 2:36:50 - loss: 1.0187467\n", + "904\n", + " 739/2000 [==========>...................] - ETA: 2:36:45 - loss: 1.0188118\n", + " 740/2000 [==========>...................] - ETA: 2:36:35 - loss: 1.0185697\n", + " 741/2000 [==========>...................] - ETA: 2:36:26 - loss: 1.0188381\n", + " 742/2000 [==========>...................] - ETA: 2:36:20 - loss: 1.0192694\n", + " 743/2000 [==========>...................] - ETA: 2:36:10 - loss: 1.0185409\n", + " 744/2000 [==========>...................] - ETA: 2:36:04 - loss: 1.0186900\n", + " 745/2000 [==========>...................] - ETA: 2:35:57 - loss: 1.0186598\n", + "675\n", + "539\n", + "541\n", + "81\n", + " 746/2000 [==========>...................] - ETA: 2:35:51 - loss: 1.018340\n", + "808\n", + " 747/2000 [==========>...................] - ETA: 2:35:44 - loss: 1.0182667\n", + "496\n", + "155\n", + " 748/2000 [==========>...................] - ETA: 2:35:37 - loss: 1.0179532\n", + "729\n", + " 749/2000 [==========>...................] - ETA: 2:35:29 - loss: 1.0166605\n", + "127\n", + " 750/2000 [==========>...................] - ETA: 2:35:20 - loss: 1.0162544\n", + "507\n", + "616\n", + "714\n", + " 751/2000 [==========>...................] - ETA: 2:35:14 - loss: 1.0161806\n", + " 752/2000 [==========>...................] - ETA: 2:35:07 - loss: 1.0160625\n", + "460\n", + "548\n", + "378\n", + " 753/2000 [==========>...................] - ETA: 2:35:03 - loss: 1.0162286\n", + " 754/2000 [==========>...................] - ETA: 2:34:59 - loss: 1.0163415\n", + " 755/2000 [==========>...................] - ETA: 2:34:52 - loss: 1.0162932\n", + " 756/2000 [==========>...................] - ETA: 2:34:46 - loss: 1.0164233\n", + " 757/2000 [==========>...................] - ETA: 2:34:41 - loss: 1.0166219\n", + " 758/2000 [==========>...................] - ETA: 2:34:37 - loss: 1.0173935\n", + " 759/2000 [==========>...................] - ETA: 2:34:32 - loss: 1.017375\n", + "431\n", + " 760/2000 [==========>...................] - ETA: 2:34:26 - loss: 1.0170344\n", + " 761/2000 [==========>...................] - ETA: 2:34:20 - loss: 1.0170123\n", + " 762/2000 [==========>...................] - ETA: 2:34:11 - loss: 1.0171777\n", + " 763/2000 [==========>...................] - ETA: 2:34:02 - loss: 1.0167952\n", + " 764/2000 [==========>...................] - ETA: 2:33:56 - loss: 1.0168865\n", + " 765/2000 [==========>...................] - ETA: 2:33:49 - loss: 1.0170884\n", + " 766/2000 [==========>...................] - ETA: 2:33:44 - loss: 1.0170720\n", + " 767/2000 [==========>...................] - ETA: 2:33:34 - loss: 1.0162689\n", + "18\n", + "825\n", + " 768/2000 [==========>...................] - ETA: 2:33:28 - loss: 1.0162463\n", + "903\n", + " 769/2000 [==========>...................] - ETA: 2:33:24 - loss: 1.0163289\n", + " 770/2000 [==========>...................] - ETA: 2:33:19 - loss: 1.0168485\n", + "385\n", + " 771/2000 [==========>...................] - ETA: 2:33:14 - loss: 1.0170573\n", + "373\n", + " 772/2000 [==========>...................] - ETA: 2:33:09 - loss: 1.0170807\n", + " 773/2000 [==========>...................] - ETA: 2:33:00 - loss: 1.0169521\n", + "482\n", + "37\n", + "494\n", + "708\n", + " 774/2000 [==========>...................] - ETA: 2:32:54 - loss: 1.0160589\n", + "144\n", + " 775/2000 [==========>...................] - ETA: 2:32:45 - loss: 1.0160304\n", + " 776/2000 [==========>...................] - ETA: 2:32:40 - loss: 1.0172584\n", + "690\n", + "680\n", + "237\n", + " 777/2000 [==========>...................] - ETA: 2:32:36 - loss: 1.0173189\n", + " 778/2000 [==========>...................] - ETA: 2:32:29 - loss: 1.0171925\n", + " 779/2000 [==========>...................] - ETA: 2:32:23 - loss: 1.0166663\n", + "20\n", + "387\n", + " 780/2000 [==========>...................] - ETA: 2:32:19 - loss: 1.016982\n", + " 781/2000 [==========>...................] - ETA: 2:32:08 - loss: 1.0167939\n", + " 782/2000 [==========>...................] - ETA: 2:32:03 - loss: 1.0168931\n", + " 783/2000 [==========>...................] - ETA: 2:31:56 - loss: 1.0164606\n", + "637\n", + "28\n", + "827\n", + " 784/2000 [==========>...................] - ETA: 2:31:52 - loss: 1.0163744\n", + " 785/2000 [==========>...................] - ETA: 2:31:43 - loss: 1.0157220\n", + " 786/2000 [==========>...................] - ETA: 2:31:37 - loss: 1.0158417\n", + " 787/2000 [==========>...................] - ETA: 2:31:30 - loss: 1.0156161\n", + " 788/2000 [==========>...................] - ETA: 2:31:21 - loss: 1.0163212\n", + " 789/2000 [==========>...................] - ETA: 2:31:17 - loss: 1.0166750\n", + " 790/2000 [==========>...................] - ETA: 2:31:08 - loss: 1.0166909\n", + " 791/2000 [==========>...................] - ETA: 2:31:01 - loss: 1.0167801\n", + " 792/2000 [==========>...................] - ETA: 2:30:54 - loss: 1.0165522\n", + "190\n", + " 793/2000 [==========>...................] - ETA: 2:30:47 - loss: 1.0163516\n", + "367\n", + " 794/2000 [==========>...................] - ETA: 2:30:42 - loss: 1.0162167\n", + " 795/2000 [==========>...................] - ETA: 2:30:34 - loss: 1.0164619\n", + "50\n", + "554\n", + "980\n", + " 796/2000 [==========>...................] - ETA: 2:30:30 - loss: 1.0166987\n", + " 797/2000 [==========>...................] - ETA: 2:30:23 - loss: 1.0164818\n", + " 798/2000 [==========>...................] - ETA: 2:30:16 - loss: 1.0160871\n", + " 799/2000 [==========>...................] - ETA: 2:30:10 - loss: 1.0165448\n", + " 800/2000 [===========>..................] - ETA: 2:30:02 - loss: 1.0164102\n", + " 801/2000 [===========>..................] - ETA: 2:29:52 - loss: 1.0152814\n", + " 802/2000 [===========>..................] - ETA: 2:29:46 - loss: 1.0149829\n", + " 803/2000 [===========>..................] - ETA: 2:29:39 - loss: 1.0150949\n", + " 804/2000 [===========>..................] - ETA: 2:29:33 - loss: 1.0148581\n", + "565\n", + "236\n", + " 805/2000 [===========>..................] - ETA: 2:29:30 - loss: 1.0148831\n", + " 806/2000 [===========>..................] - ETA: 2:29:23 - loss: 1.0148514\n", + "951\n", + " 807/2000 [===========>..................] - ETA: 2:29:16 - loss: 1.0147856\n", + " 808/2000 [===========>..................] - ETA: 2:29:08 - loss: 1.0146582\n", + "346\n", + " 809/2000 [===========>..................] - ETA: 2:29:01 - loss: 1.0141388\n", + " 810/2000 [===========>..................] - ETA: 2:28:56 - loss: 1.0140555\n", + "897\n", + " 811/2000 [===========>..................] - ETA: 2:28:50 - loss: 1.0137967\n", + " 812/2000 [===========>..................] - ETA: 2:28:43 - loss: 1.0136790\n", + " 813/2000 [===========>..................] - ETA: 2:28:34 - loss: 1.012546\n", + "699\n", + " 814/2000 [===========>..................] - ETA: 2:28:26 - loss: 1.012889\n", + " 815/2000 [===========>..................] - ETA: 2:28:16 - loss: 1.0128984\n", + " 816/2000 [===========>..................] - ETA: 2:28:09 - loss: 1.0127200\n", + " 817/2000 [===========>..................] - ETA: 2:28:03 - loss: 1.0126843\n", + " 818/2000 [===========>..................] - ETA: 2:27:57 - loss: 1.0123588\n", + "643\n", + "593\n", + "459\n", + "178\n", + " 819/2000 [===========>..................] - ETA: 2:27:53 - loss: 1.0129746\n", + " 820/2000 [===========>..................] - ETA: 2:27:43 - loss: 1.0130644\n", + "815\n", + " 821/2000 [===========>..................] - ETA: 2:27:37 - loss: 1.0132311\n", + " 822/2000 [===========>..................] - ETA: 2:27:33 - loss: 1.0130382\n", + " 823/2000 [===========>..................] - ETA: 2:27:27 - loss: 1.0132333\n", + " 824/2000 [===========>..................] - ETA: 2:27:22 - loss: 1.0131553\n", + "71\n", + "475\n", + "847\n", + " 825/2000 [===========>..................] - ETA: 2:27:17 - loss: 1.0133615\n", + "25\n", + "23\n", + "137\n", + " 826/2000 [===========>..................] - ETA: 2:27:11 - loss: 1.012315\n", + "131\n", + " 827/2000 [===========>..................] - ETA: 2:27:03 - loss: 1.0117765\n", + " 828/2000 [===========>..................] - ETA: 2:26:53 - loss: 1.0116420\n", + " 829/2000 [===========>..................] - ETA: 2:26:46 - loss: 1.0114924\n", + " 830/2000 [===========>..................] - ETA: 2:26:41 - loss: 1.0118653\n", + "224\n", + " 831/2000 [===========>..................] - ETA: 2:26:36 - loss: 1.0121489\n", + "795\n", + " 832/2000 [===========>..................] - ETA: 2:26:29 - loss: 1.0122761\n", + " 833/2000 [===========>..................] - ETA: 2:26:19 - loss: 1.0117276\n", + " 834/2000 [===========>..................] - ETA: 2:26:14 - loss: 1.0117861\n", + " 835/2000 [===========>..................] - ETA: 2:26:07 - loss: 1.0114622\n", + "313\n", + " 836/2000 [===========>..................] - ETA: 2:26:03 - loss: 1.0113126\n", + " 837/2000 [===========>..................] - ETA: 2:25:53 - loss: 1.011266\n", + "986\n", + " 838/2000 [===========>..................] - ETA: 2:25:47 - loss: 1.0110813\n", + " 839/2000 [===========>..................] - ETA: 2:25:40 - loss: 1.010862\n", + "686\n", + "384\n", + " 840/2000 [===========>..................] - ETA: 2:25:35 - loss: 1.0106270\n", + " 841/2000 [===========>..................] - ETA: 2:25:29 - loss: 1.0109380\n", + " 842/2000 [===========>..................] - ETA: 2:25:22 - loss: 1.0107526\n", + "143\n", + " 843/2000 [===========>..................] - ETA: 2:25:13 - loss: 1.0102893\n", + " 844/2000 [===========>..................] - ETA: 2:25:06 - loss: 1.0100517\n", + "104\n", + " 845/2000 [===========>..................] - ETA: 2:24:57 - loss: 1.0096440\n", + " 846/2000 [===========>..................] - ETA: 2:24:48 - loss: 1.0095272\n", + " 847/2000 [===========>..................] - ETA: 2:24:42 - loss: 1.0094835\n", + " 848/2000 [===========>..................] - ETA: 2:24:35 - loss: 1.0091913\n", + " 849/2000 [===========>..................] - ETA: 2:24:29 - loss: 1.0097844\n", + " 850/2000 [===========>..................] - ETA: 2:24:22 - loss: 1.0095634\n", + "670\n", + "705\n", + " 851/2000 [===========>..................] - ETA: 2:24:13 - loss: 1.0098892\n", + " 852/2000 [===========>..................] - ETA: 2:24:07 - loss: 1.0095809\n", + " 853/2000 [===========>..................] - ETA: 2:23:58 - loss: 1.0092284\n", + " 854/2000 [===========>..................] - ETA: 2:23:52 - loss: 1.0098977\n", + " 855/2000 [===========>..................] - ETA: 2:23:46 - loss: 1.0101868\n", + " 856/2000 [===========>..................] - ETA: 2:23:39 - loss: 1.0101715\n", + " 857/2000 [===========>..................] - ETA: 2:23:30 - loss: 1.010145\n", + "561\n", + "486\n", + "659\n", + "306\n", + " 858/2000 [===========>..................] - ETA: 2:23:27 - loss: 1.0101611\n", + "217\n", + " 859/2000 [===========>..................] - ETA: 2:23:22 - loss: 1.0102360\n", + " 860/2000 [===========>..................] - ETA: 2:23:15 - loss: 1.010180\n", + " 861/2000 [===========>..................] - ETA: 2:23:05 - loss: 1.0093725\n", + " 862/2000 [===========>..................] - ETA: 2:22:56 - loss: 1.0092918\n", + " 863/2000 [===========>..................] - ETA: 2:22:49 - loss: 1.0093332\n", + " 864/2000 [===========>..................] - ETA: 2:22:44 - loss: 1.0096762\n", + " 865/2000 [===========>..................] - ETA: 2:22:35 - loss: 1.0093741\n", + " 866/2000 [===========>..................] - ETA: 2:22:26 - loss: 1.0085832\n", + " 867/2000 [============>.................] - ETA: 2:22:19 - loss: 1.0089833\n", + " 868/2000 [============>.................] - ETA: 2:22:12 - loss: 1.0091882\n", + " 869/2000 [============>.................] - ETA: 2:22:06 - loss: 1.0094512\n", + "731\n", + " 870/2000 [============>.................] - ETA: 2:21:58 - loss: 1.009456\n", + "481\n", + "27\n", + "139\n", + " 871/2000 [============>.................] - ETA: 2:21:51 - loss: 1.0092866\n", + " 872/2000 [============>.................] - ETA: 2:21:45 - loss: 1.0092896\n", + " 873/2000 [============>.................] - ETA: 2:21:38 - loss: 1.0092282\n", + " 874/2000 [============>.................] - ETA: 2:21:34 - loss: 1.0091323\n", + " 875/2000 [============>.................] - ETA: 2:21:28 - loss: 1.0090169\n", + " 876/2000 [============>.................] - ETA: 2:21:20 - loss: 1.0090287\n", + " 877/2000 [============>.................] - ETA: 2:21:14 - loss: 1.0094816\n", + " 878/2000 [============>.................] - ETA: 2:21:08 - loss: 1.0092781\n", + " 879/2000 [============>.................] - ETA: 2:20:59 - loss: 1.0088982\n", + " 880/2000 [============>.................] - ETA: 2:20:53 - loss: 1.0089103\n", + " 881/2000 [============>.................] - ETA: 2:20:43 - loss: 1.0080119\n", + " 882/2000 [============>.................] - ETA: 2:20:34 - loss: 1.0084551\n", + "132\n", + " 883/2000 [============>.................] - ETA: 2:20:26 - loss: 1.0078960\n", + " 884/2000 [============>.................] - ETA: 2:20:20 - loss: 1.0079386\n", + " 885/2000 [============>.................] - ETA: 2:20:13 - loss: 1.008768\n", + "557\n", + "457\n", + "347\n", + " 886/2000 [============>.................] - ETA: 2:20:09 - loss: 1.0083506\n", + "858\n", + " 887/2000 [============>.................] - ETA: 2:20:04 - loss: 1.0082339\n", + " 888/2000 [============>.................] - ETA: 2:19:58 - loss: 1.007878\n", + "698\n", + " 889/2000 [============>.................] - ETA: 2:19:49 - loss: 1.0071811\n", + " 890/2000 [============>.................] - ETA: 2:19:42 - loss: 1.0071244\n", + " 891/2000 [============>.................] - ETA: 2:19:36 - loss: 1.0072214\n", + " 892/2000 [============>.................] - ETA: 2:19:30 - loss: 1.0076836\n", + " 893/2000 [============>.................] - ETA: 2:19:23 - loss: 1.007352\n", + "755\n", + " 894/2000 [============>.................] - ETA: 2:19:15 - loss: 1.0074890\n", + " 895/2000 [============>.................] - ETA: 2:19:09 - loss: 1.0075742\n", + " 896/2000 [============>.................] - ETA: 2:19:00 - loss: 1.00768\n", + "469\n", + "479\n", + "206\n", + " 897/2000 [============>.................] - ETA: 2:18:56 - loss: 1.0077916\n", + " 898/2000 [============>.................] - ETA: 2:18:51 - loss: 1.0077730\n", + " 899/2000 [============>.................] - ETA: 2:18:42 - loss: 1.0075195\n", + " 900/2000 [============>.................] - ETA: 2:18:34 - loss: 1.007386\n", + " 901/2000 [============>.................] - ETA: 2:18:25 - loss: 1.0065391\n", + " 902/2000 [============>.................] - ETA: 2:18:19 - loss: 1.006524\n", + "721\n", + " 903/2000 [============>.................] - ETA: 2:18:10 - loss: 1.0061454\n", + " 904/2000 [============>.................] - ETA: 2:18:03 - loss: 1.0061241\n", + " 905/2000 [============>.................] - ETA: 2:17:56 - loss: 1.006198\n", + " 906/2000 [============>.................] - ETA: 2:17:47 - loss: 1.0056175\n", + " 907/2000 [============>.................] - ETA: 2:17:38 - loss: 1.0064601\n", + "756\n", + " 908/2000 [============>.................] - ETA: 2:17:28 - loss: 1.0073438\n", + " 909/2000 [============>.................] - ETA: 2:17:20 - loss: 1.0071303\n", + " 910/2000 [============>.................] - ETA: 2:17:14 - loss: 1.0073826\n", + " 911/2000 [============>.................] - ETA: 2:17:07 - loss: 1.0072855\n", + " 912/2000 [============>.................] - ETA: 2:17:00 - loss: 1.0070504\n", + "639\n", + "804\n", + " 913/2000 [============>.................] - ETA: 2:16:53 - loss: 1.0071636\n", + "821\n", + " 914/2000 [============>.................] - ETA: 2:16:47 - loss: 1.0073880\n", + " 915/2000 [============>.................] - ETA: 2:16:40 - loss: 1.0074271\n", + " 916/2000 [============>.................] - ETA: 2:16:34 - loss: 1.007536\n", + "578\n", + "280\n", + " 917/2000 [============>.................] - ETA: 2:16:30 - loss: 1.0079566\n", + "727\n", + " 918/2000 [============>.................] - ETA: 2:16:21 - loss: 1.0083758\n", + " 919/2000 [============>.................] - ETA: 2:16:11 - loss: 1.0084782\n", + " 920/2000 [============>.................] - ETA: 2:16:02 - loss: 1.0083466\n", + "748\n", + " 921/2000 [============>.................] - ETA: 2:15:51 - loss: 1.0090487\n", + "679\n", + "942\n", + " 922/2000 [============>.................] - ETA: 2:15:46 - loss: 1.008943\n", + "901\n", + " 923/2000 [============>.................] - ETA: 2:15:39 - loss: 1.0089179\n", + " 924/2000 [============>.................] - ETA: 2:15:31 - loss: 1.0090152\n", + " 925/2000 [============>.................] - ETA: 2:15:22 - loss: 1.0087472\n", + "34\n", + "854\n", + " 926/2000 [============>.................] - ETA: 2:15:16 - loss: 1.0086477\n", + "629\n", + "842\n", + " 927/2000 [============>.................] - ETA: 2:15:10 - loss: 1.0088862\n", + " 928/2000 [============>.................] - ETA: 2:15:03 - loss: 1.00896\n", + "519\n", + "229\n", + " 929/2000 [============>.................] - ETA: 2:14:58 - loss: 1.0087752\n", + " 930/2000 [============>.................] - ETA: 2:14:48 - loss: 1.008841\n", + "563\n", + "950\n", + " 931/2000 [============>.................] - ETA: 2:14:43 - loss: 1.0091580\n", + "574\n", + "35\n", + "560\n", + "723\n", + " 932/2000 [============>.................] - ETA: 2:14:38 - loss: 1.0089906\n", + " 933/2000 [============>.................] - ETA: 2:14:31 - loss: 1.0091177\n", + " 934/2000 [=============>................] - ETA: 2:14:22 - loss: 1.0083343\n", + " 935/2000 [=============>................] - ETA: 2:14:15 - loss: 1.0082238\n", + " 936/2000 [=============>................] - ETA: 2:14:09 - loss: 1.0083348\n", + " 937/2000 [=============>................] - ETA: 2:14:02 - loss: 1.0086181\n", + " 938/2000 [=============>................] - ETA: 2:13:54 - loss: 1.0088739\n", + " 939/2000 [=============>................] - ETA: 2:13:45 - loss: 1.0080712\n", + " 940/2000 [=============>................] - ETA: 2:13:36 - loss: 1.0083478\n", + "163\n", + " 941/2000 [=============>................] - ETA: 2:13:28 - loss: 1.0082158\n", + " 942/2000 [=============>................] - ETA: 2:13:19 - loss: 1.0088661\n", + "394\n", + " 943/2000 [=============>................] - ETA: 2:13:13 - loss: 1.0089930\n", + " 944/2000 [=============>................] - ETA: 2:13:07 - loss: 1.0090867\n", + " 945/2000 [=============>................] - ETA: 2:13:01 - loss: 1.0086740\n", + " 946/2000 [=============>................] - ETA: 2:12:52 - loss: 1.0077719\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 947/2000 [=============>................] - ETA: 2:12:43 - loss: 1.0085216\n", + " 948/2000 [=============>................] - ETA: 2:12:37 - loss: 1.0085314\n", + " 949/2000 [=============>................] - ETA: 2:12:31 - loss: 1.00893\n", + "358\n", + " 950/2000 [=============>................] - ETA: 2:12:25 - loss: 1.0091149\n", + " 951/2000 [=============>................] - ETA: 2:12:16 - loss: 1.0090839\n", + " 952/2000 [=============>................] - ETA: 2:12:10 - loss: 1.0090293\n", + " 953/2000 [=============>................] - ETA: 2:12:04 - loss: 1.0087650\n", + "787\n", + " 954/2000 [=============>................] - ETA: 2:11:56 - loss: 1.0082702\n", + " 955/2000 [=============>................] - ETA: 2:11:47 - loss: 1.008194\n", + " 956/2000 [=============>................] - ETA: 2:11:37 - loss: 1.0074134\n", + " 957/2000 [=============>................] - ETA: 2:11:28 - loss: 1.0075772\n", + " 958/2000 [=============>................] - ETA: 2:11:18 - loss: 1.0072201\n", + " 959/2000 [=============>................] - ETA: 2:11:12 - loss: 1.0069962\n", + " 960/2000 [=============>................] - ETA: 2:11:05 - loss: 1.0071682\n", + "763\n", + " 961/2000 [=============>................] - ETA: 2:10:57 - loss: 1.0069657\n", + "488\n", + "910\n", + " 962/2000 [=============>................] - ETA: 2:10:51 - loss: 1.0066964\n", + " 963/2000 [=============>................] - ETA: 2:10:45 - loss: 1.0062537\n", + "654\n", + "536\n", + "345\n", + " 964/2000 [=============>................] - ETA: 2:10:40 - loss: 1.0062278\n", + " 965/2000 [=============>................] - ETA: 2:10:34 - loss: 1.0062902\n", + " 966/2000 [=============>................] - ETA: 2:10:27 - loss: 1.0062936\n", + " 967/2000 [=============>................] - ETA: 2:10:20 - loss: 1.00620\n", + "377\n", + " 968/2000 [=============>................] - ETA: 2:10:13 - loss: 1.0065538\n", + "22\n", + "325\n", + " 969/2000 [=============>................] - ETA: 2:10:08 - loss: 1.0066180\n", + " 970/2000 [=============>................] - ETA: 2:10:00 - loss: 1.0072610\n", + "90\n", + " 971/2000 [=============>................] - ETA: 2:09:52 - loss: 1.0070830\n", + " 972/2000 [=============>................] - ETA: 2:09:44 - loss: 1.0068609\n", + "234\n", + " 973/2000 [=============>................] - ETA: 2:09:39 - loss: 1.0068182\n", + " 974/2000 [=============>................] - ETA: 2:09:31 - loss: 1.0068267\n", + " 975/2000 [=============>................] - ETA: 2:09:24 - loss: 1.0070356\n", + " 976/2000 [=============>................] - ETA: 2:09:17 - loss: 1.0071912\n", + " 977/2000 [=============>................] - ETA: 2:09:10 - loss: 1.0071792\n", + " 978/2000 [=============>................] - ETA: 2:09:02 - loss: 1.0072209\n", + " 979/2000 [=============>................] - ETA: 2:08:55 - loss: 1.0078802\n", + " 980/2000 [=============>................] - ETA: 2:08:47 - loss: 1.0072361\n", + " 981/2000 [=============>................] - ETA: 2:08:40 - loss: 1.0074418\n", + " 982/2000 [=============>................] - ETA: 2:08:32 - loss: 1.0076329\n", + " 983/2000 [=============>................] - ETA: 2:08:26 - loss: 1.00775\n", + "213\n", + " 984/2000 [=============>................] - ETA: 2:08:20 - loss: 1.0075922\n", + " 985/2000 [=============>................] - ETA: 2:08:13 - loss: 1.0079493\n", + "631\n", + "474\n", + "834\n", + " 986/2000 [=============>................] - ETA: 2:08:08 - loss: 1.0076129\n", + " 987/2000 [=============>................] - ETA: 2:07:58 - loss: 1.0088171\n", + " 988/2000 [=============>................] - ETA: 2:07:49 - loss: 1.0090941\n", + " 989/2000 [=============>................] - ETA: 2:07:42 - loss: 1.0092945\n", + " 990/2000 [=============>................] - ETA: 2:07:35 - loss: 1.0093692\n", + "106\n", + " 991/2000 [=============>................] - ETA: 2:07:26 - loss: 1.0089510\n", + "402\n", + " 992/2000 [=============>................] - ETA: 2:07:20 - loss: 1.0091256\n", + " 993/2000 [=============>................] - ETA: 2:07:13 - loss: 1.0093780\n", + " 994/2000 [=============>................] - ETA: 2:07:04 - loss: 1.0087655\n", + "623\n", + "534\n", + "473\n", + "69\n", + "875\n", + " 995/2000 [=============>................] - ETA: 2:07:00 - loss: 1.0088410\n", + " 996/2000 [=============>................] - ETA: 2:06:52 - loss: 1.0090253\n", + " 997/2000 [=============>................] - ETA: 2:06:45 - loss: 1.0090414\n", + " 998/2000 [=============>................] - ETA: 2:06:38 - loss: 1.0092767\n", + " 999/2000 [=============>................] - ETA: 2:06:28 - loss: 1.0085462\n", + "135\n", + "1000/2000 [==============>...............] - ETA: 2:06:19 - loss: 1.0087676\n", + "281\n", + "1001/2000 [==============>...............] - ETA: 2:06:14 - loss: 1.0087701\n", + "1002/2000 [==============>...............] - ETA: 2:06:04 - loss: 1.008272\n", + "940\n", + "1003/2000 [==============>...............] - ETA: 2:05:58 - loss: 1.0083336\n", + "1004/2000 [==============>...............] - ETA: 2:05:51 - loss: 1.0080845\n", + "1005/2000 [==============>...............] - ETA: 2:05:43 - loss: 1.0077275\n", + "1006/2000 [==============>...............] - ETA: 2:05:37 - loss: 1.0076805\n", + "1007/2000 [==============>...............] - ETA: 2:05:29 - loss: 1.0084700\n", + "1008/2000 [==============>...............] - ETA: 2:05:19 - loss: 1.0077840\n", + "1009/2000 [==============>...............] - ETA: 2:05:12 - loss: 1.0076635\n", + "934\n", + "1010/2000 [==============>...............] - ETA: 2:05:05 - loss: 1.0081365\n", + "1011/2000 [==============>...............] - ETA: 2:04:58 - loss: 1.0079146\n", + "1012/2000 [==============>...............] - ETA: 2:04:50 - loss: 1.0074240\n", + "1013/2000 [==============>...............] - ETA: 2:04:44 - loss: 1.0076300\n", + "1014/2000 [==============>...............] - ETA: 2:04:38 - loss: 1.0075468\n", + "571\n", + "527\n", + "85\n", + "1015/2000 [==============>...............] - ETA: 2:04:31 - loss: 1.006951\n", + "207\n", + "1016/2000 [==============>...............] - ETA: 2:04:25 - loss: 1.0070435\n", + "1017/2000 [==============>...............] - ETA: 2:04:17 - loss: 1.0066141\n", + "1018/2000 [==============>...............] - ETA: 2:04:08 - loss: 1.0063975\n", + "1019/2000 [==============>...............] - ETA: 2:04:01 - loss: 1.0064294\n", + "1020/2000 [==============>...............] - ETA: 2:03:55 - loss: 1.0064559\n", + "500\n", + "965\n", + "1021/2000 [==============>...............] - ETA: 2:03:49 - loss: 1.0061841\n", + "1022/2000 [==============>...............] - ETA: 2:03:42 - loss: 1.0061665\n", + "820\n", + "1023/2000 [==============>...............] - ETA: 2:03:35 - loss: 1.0060540\n", + "640\n", + "154\n", + "1024/2000 [==============>...............] - ETA: 2:03:27 - loss: 1.0058660\n", + "671\n", + "774\n", + "1025/2000 [==============>...............] - ETA: 2:03:19 - loss: 1.0055191\n", + "1026/2000 [==============>...............] - ETA: 2:03:11 - loss: 1.005132\n", + "266\n", + "1027/2000 [==============>...............] - ETA: 2:03:05 - loss: 1.0056617\n", + "630\n", + "31\n", + "142\n", + "1028/2000 [==============>...............] - ETA: 2:02:57 - loss: 1.0052749\n", + "1029/2000 [==============>...............] - ETA: 2:02:48 - loss: 1.005439\n", + "596\n", + "928\n", + "1030/2000 [==============>...............] - ETA: 2:02:43 - loss: 1.0058186\n", + "1031/2000 [==============>...............] - ETA: 2:02:35 - loss: 1.0060108\n", + "1032/2000 [==============>...............] - ETA: 2:02:25 - loss: 1.0055711\n", + "1033/2000 [==============>...............] - ETA: 2:02:16 - loss: 1.0049476\n", + "328\n", + "1034/2000 [==============>...............] - ETA: 2:02:10 - loss: 1.0050401\n", + "1035/2000 [==============>...............] - ETA: 2:02:03 - loss: 1.0051405\n", + "1036/2000 [==============>...............] - ETA: 2:01:54 - loss: 1.0051309\n", + "1037/2000 [==============>...............] - ETA: 2:01:47 - loss: 1.0051406\n", + "1038/2000 [==============>...............] - ETA: 2:01:39 - loss: 1.0052899\n", + "1039/2000 [==============>...............] - ETA: 2:01:32 - loss: 1.0053768\n", + "1040/2000 [==============>...............] - ETA: 2:01:23 - loss: 1.0047446\n", + "1041/2000 [==============>...............] - ETA: 2:01:15 - loss: 1.0045920\n", + "1042/2000 [==============>...............] - ETA: 2:01:09 - loss: 1.0045351\n", + "1043/2000 [==============>...............] - ETA: 2:01:02 - loss: 1.0044502\n", + "819\n", + "1044/2000 [==============>...............] - ETA: 2:00:55 - loss: 1.0043176\n", + "1045/2000 [==============>...............] - ETA: 2:00:46 - loss: 1.0044857\n", + "1046/2000 [==============>...............] - ETA: 2:00:39 - loss: 1.0044873\n", + "1047/2000 [==============>...............] - ETA: 2:00:32 - loss: 1.004633\n", + "470\n", + "716\n", + "1048/2000 [==============>...............] - ETA: 2:00:24 - loss: 1.0051803\n", + "1049/2000 [==============>...............] - ETA: 2:00:16 - loss: 1.0047258\n", + "1050/2000 [==============>...............] - ETA: 2:00:09 - loss: 1.0049121\n", + "1051/2000 [==============>...............] - ETA: 2:00:00 - loss: 1.0046288\n", + "1052/2000 [==============>...............] - ETA: 1:59:54 - loss: 1.0051185\n", + "1053/2000 [==============>...............] - ETA: 1:59:46 - loss: 1.005863\n", + "76\n", + "390\n", + "1054/2000 [==============>...............] - ETA: 1:59:40 - loss: 1.0055707\n", + "1055/2000 [==============>...............] - ETA: 1:59:30 - loss: 1.0059955\n", + "1056/2000 [==============>...............] - ETA: 1:59:23 - loss: 1.0061823\n", + "1057/2000 [==============>...............] - ETA: 1:59:16 - loss: 1.0062520\n", + "57\n", + "453\n", + "1058/2000 [==============>...............] - ETA: 1:59:09 - loss: 1.006258\n", + "262\n", + "1059/2000 [==============>...............] - ETA: 1:59:03 - loss: 1.0060430\n", + "1060/2000 [==============>...............] - ETA: 1:58:56 - loss: 1.0063505\n", + "291\n", + "1061/2000 [==============>...............] - ETA: 1:58:50 - loss: 1.0061254\n", + "1062/2000 [==============>...............] - ETA: 1:58:44 - loss: 1.006355\n", + "455\n", + "735\n", + "1063/2000 [==============>...............] - ETA: 1:58:36 - loss: 1.0056125\n", + "1064/2000 [==============>...............] - ETA: 1:58:26 - loss: 1.0058441\n", + "1065/2000 [==============>...............] - ETA: 1:58:18 - loss: 1.0056342\n", + "1066/2000 [==============>...............] - ETA: 1:58:12 - loss: 1.0058442\n", + "1067/2000 [===============>..............] - ETA: 1:58:03 - loss: 1.0057173\n", + "1068/2000 [===============>..............] - ETA: 1:57:55 - loss: 1.0059130\n", + "1069/2000 [===============>..............] - ETA: 1:57:46 - loss: 1.0061848\n", + "1070/2000 [===============>..............] - ETA: 1:57:39 - loss: 1.0057389\n", + "1071/2000 [===============>..............] - ETA: 1:57:32 - loss: 1.0059196\n", + "1072/2000 [===============>..............] - ETA: 1:57:24 - loss: 1.0061558\n", + "239\n", + "1073/2000 [===============>..............] - ETA: 1:57:18 - loss: 1.0059117\n", + "1074/2000 [===============>..............] - ETA: 1:57:09 - loss: 1.0055165\n", + "1075/2000 [===============>..............] - ETA: 1:57:00 - loss: 1.0057138\n", + "1076/2000 [===============>..............] - ETA: 1:56:51 - loss: 1.0053432\n", + "1077/2000 [===============>..............] - ETA: 1:56:44 - loss: 1.0053612\n", + "664\n", + "443\n", + "1078/2000 [===============>..............] - ETA: 1:56:37 - loss: 1.0052570\n", + "797\n", + "1079/2000 [===============>..............] - ETA: 1:56:29 - loss: 1.0052985\n", + "1080/2000 [===============>..............] - ETA: 1:56:22 - loss: 1.0055656\n", + "264\n", + "1081/2000 [===============>..............] - ETA: 1:56:16 - loss: 1.0053864\n", + "1082/2000 [===============>..............] - ETA: 1:56:08 - loss: 1.0055564\n", + "299\n", + "1083/2000 [===============>..............] - ETA: 1:56:02 - loss: 1.0052354\n", + "1084/2000 [===============>..............] - ETA: 1:55:55 - loss: 1.0052568\n", + "330\n", + "1085/2000 [===============>..............] - ETA: 1:55:49 - loss: 1.005319\n", + "315\n", + "1086/2000 [===============>..............] - ETA: 1:55:42 - loss: 1.0053525\n", + "38\n", + "350\n", + "1087/2000 [===============>..............] - ETA: 1:55:35 - loss: 1.0053599\n", + "29\n", + "412\n", + "1088/2000 [===============>..............] - ETA: 1:55:28 - loss: 1.0057810\n", + "1089/2000 [===============>..............] - ETA: 1:55:20 - loss: 1.0059268\n", + "1090/2000 [===============>..............] - ETA: 1:55:13 - loss: 1.0063908\n", + "1091/2000 [===============>..............] - ETA: 1:55:06 - loss: 1.00621\n", + "662\n", + "957\n", + "1092/2000 [===============>..............] - ETA: 1:54:59 - loss: 1.0062738\n", + "1093/2000 [===============>..............] - ETA: 1:54:49 - loss: 1.0055112\n", + "1094/2000 [===============>..............] - ETA: 1:54:40 - loss: 1.0054709\n", + "1095/2000 [===============>..............] - ETA: 1:54:30 - loss: 1.0047269\n", + "1096/2000 [===============>..............] - ETA: 1:54:23 - loss: 1.0049646\n", + "600\n", + "562\n", + "706\n", + "1097/2000 [===============>..............] - ETA: 1:54:15 - loss: 1.0050235\n", + "1098/2000 [===============>..............] - ETA: 1:54:08 - loss: 1.0051222\n", + "1099/2000 [===============>..............] - ETA: 1:54:01 - loss: 1.0051879\n", + "1100/2000 [===============>..............] - ETA: 1:53:54 - loss: 1.0052602\n", + "546\n", + "683\n", + "572\n", + "575\n", + "773\n", + "1101/2000 [===============>..............] - ETA: 1:53:47 - loss: 1.0047799\n", + "1102/2000 [===============>..............] - ETA: 1:53:39 - loss: 1.0045498\n", + "364\n", + "1103/2000 [===============>..............] - ETA: 1:53:32 - loss: 1.0045162\n", + "1104/2000 [===============>..............] - ETA: 1:53:23 - loss: 1.0039883\n", + "1105/2000 [===============>..............] - ETA: 1:53:16 - loss: 1.0041569\n", + "170\n", + "1106/2000 [===============>..............] - ETA: 1:53:07 - loss: 1.0045889\n", + "1107/2000 [===============>..............] - ETA: 1:53:00 - loss: 1.0045704\n", + "1108/2000 [===============>..............] - ETA: 1:52:50 - loss: 1.0045648\n", + "673\n", + "552\n", + "261\n", + "1109/2000 [===============>..............] - ETA: 1:52:44 - loss: 1.0047403\n", + "1110/2000 [===============>..............] - ETA: 1:52:37 - loss: 1.0051218\n", + "1111/2000 [===============>..............] - ETA: 1:52:30 - loss: 1.0051543\n", + "335\n", + "1112/2000 [===============>..............] - ETA: 1:52:23 - loss: 1.0049695\n", + "1113/2000 [===============>..............] - ETA: 1:52:14 - loss: 1.004430\n", + "696\n", + "1114/2000 [===============>..............] - ETA: 1:52:05 - loss: 1.004695\n", + "1115/2000 [===============>..............] - ETA: 1:51:56 - loss: 1.0038320\n", + "1116/2000 [===============>..............] - ETA: 1:51:49 - loss: 1.0038691\n", + "627\n", + "775\n", + "1117/2000 [===============>..............] - ETA: 1:51:41 - loss: 1.0033524\n", + "754\n", + "1118/2000 [===============>..............] - ETA: 1:51:32 - loss: 1.0030822\n", + "1119/2000 [===============>..............] - ETA: 1:51:25 - loss: 1.0028249\n", + "1120/2000 [===============>..............] - ETA: 1:51:18 - loss: 1.0027969\n", + "1121/2000 [===============>..............] - ETA: 1:51:10 - loss: 1.0028205\n", + "1122/2000 [===============>..............] - ETA: 1:51:03 - loss: 1.0025776\n", + "1123/2000 [===============>..............] - ETA: 1:50:54 - loss: 1.0018105\n", + "1124/2000 [===============>..............] - ETA: 1:50:45 - loss: 1.0018334\n", + "1125/2000 [===============>..............] - ETA: 1:50:37 - loss: 1.0018428\n", + "1126/2000 [===============>..............] - ETA: 1:50:30 - loss: 1.0020292\n", + "1127/2000 [===============>..............] - ETA: 1:50:23 - loss: 1.0022628\n", + "16\n", + "947\n", + "1128/2000 [===============>..............] - ETA: 1:50:17 - loss: 1.0023255\n", + "1129/2000 [===============>..............] - ETA: 1:50:09 - loss: 1.002396\n", + "1130/2000 [===============>..............] - ETA: 1:50:00 - loss: 1.0015411\n", + "1131/2000 [===============>..............] - ETA: 1:49:52 - loss: 1.001642\n", + "113\n", + "1132/2000 [===============>..............] - ETA: 1:49:43 - loss: 1.0013973\n", + "1133/2000 [===============>..............] - ETA: 1:49:35 - loss: 1.0018433\n", + "1134/2000 [================>.............] - ETA: 1:49:28 - loss: 1.0020914\n", + "1135/2000 [================>.............] - ETA: 1:49:20 - loss: 1.0022798\n", + "1136/2000 [================>.............] - ETA: 1:49:12 - loss: 1.0020228\n", + "1137/2000 [================>.............] - ETA: 1:49:05 - loss: 1.0019734\n", + "1138/2000 [================>.............] - ETA: 1:48:56 - loss: 1.0018794\n", + "1139/2000 [================>.............] - ETA: 1:48:48 - loss: 1.0019812\n", + "1140/2000 [================>.............] - ETA: 1:48:40 - loss: 1.0018898\n", + "1141/2000 [================>.............] - ETA: 1:48:33 - loss: 1.0017607\n", + "722\n", + "1142/2000 [================>.............] - ETA: 1:48:24 - loss: 1.0019592\n", + "79\n", + "1143/2000 [================>.............] - ETA: 1:48:15 - loss: 1.0011407\n", + "1144/2000 [================>.............] - ETA: 1:48:07 - loss: 1.0013535\n", + "359\n", + "1145/2000 [================>.............] - ETA: 1:48:00 - loss: 1.0014800\n", + "1146/2000 [================>.............] - ETA: 1:47:52 - loss: 1.0017652\n", + "760\n", + "1147/2000 [================>.............] - ETA: 1:47:44 - loss: 1.0019791\n", + "1148/2000 [================>.............] - ETA: 1:47:34 - loss: 1.0011838\n", + "1149/2000 [================>.............] - ETA: 1:47:27 - loss: 1.0009297\n", + "1150/2000 [================>.............] - ETA: 1:47:20 - loss: 1.0010392\n", + "1151/2000 [================>.............] - ETA: 1:47:12 - loss: 1.0009490\n", + "917\n", + "1152/2000 [================>.............] - ETA: 1:47:06 - loss: 1.0012383\n", + "1153/2000 [================>.............] - ETA: 1:46:58 - loss: 1.0012733\n", + "1154/2000 [================>.............] - ETA: 1:46:49 - loss: 1.0016251\n", + "1155/2000 [================>.............] - ETA: 1:46:42 - loss: 1.0017860\n", + "1156/2000 [================>.............] - ETA: 1:46:34 - loss: 1.0016877\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1157/2000 [================>.............] - ETA: 1:46:26 - loss: 1.0017771\n", + "1158/2000 [================>.............] - ETA: 1:46:17 - loss: 1.0017668\n", + "449\n", + "1159/2000 [================>.............] - ETA: 1:46:08 - loss: 1.0015197\n", + "1160/2000 [================>.............] - ETA: 1:46:00 - loss: 1.0018215\n", + "1161/2000 [================>.............] - ETA: 1:45:53 - loss: 1.0022400\n", + "1162/2000 [================>.............] - ETA: 1:45:45 - loss: 1.0024122\n", + "1163/2000 [================>.............] - ETA: 1:45:36 - loss: 1.0020484\n", + "789\n", + "1164/2000 [================>.............] - ETA: 1:45:28 - loss: 1.0012242\n", + "1165/2000 [================>.............] - ETA: 1:45:21 - loss: 1.0015252\n", + "1166/2000 [================>.............] - ETA: 1:45:13 - loss: 1.0013587\n", + "603\n", + "164\n", + "1167/2000 [================>.............] - ETA: 1:45:05 - loss: 1.0014869\n", + "1168/2000 [================>.............] - ETA: 1:44:57 - loss: 1.0012921\n", + "1169/2000 [================>.............] - ETA: 1:44:50 - loss: 1.0010927\n", + "1170/2000 [================>.............] - ETA: 1:44:43 - loss: 1.0010583\n", + "850\n", + "1171/2000 [================>.............] - ETA: 1:44:35 - loss: 1.0009687\n", + "542\n", + "92\n", + "1172/2000 [================>.............] - ETA: 1:44:27 - loss: 1.0001938\n", + "1173/2000 [================>.............] - ETA: 1:44:20 - loss: 1.0000370\n", + "1174/2000 [================>.............] - ETA: 1:44:12 - loss: 0.9999518\n", + "876\n", + "1175/2000 [================>.............] - ETA: 1:44:05 - loss: 1.0000159\n", + "1176/2000 [================>.............] - ETA: 1:43:56 - loss: 1.0001376\n", + "1177/2000 [================>.............] - ETA: 1:43:48 - loss: 1.0001465\n", + "778\n", + "1178/2000 [================>.............] - ETA: 1:43:40 - loss: 0.9995851\n", + "1179/2000 [================>.............] - ETA: 1:43:32 - loss: 0.9994357\n", + "1180/2000 [================>.............] - ETA: 1:43:25 - loss: 0.9994497\n", + "327\n", + "1181/2000 [================>.............] - ETA: 1:43:18 - loss: 0.9993785\n", + "1182/2000 [================>.............] - ETA: 1:43:09 - loss: 0.9988340\n", + "1183/2000 [================>.............] - ETA: 1:43:02 - loss: 0.9989436\n", + "1184/2000 [================>.............] - ETA: 1:42:54 - loss: 0.9986764\n", + "1185/2000 [================>.............] - ETA: 1:42:45 - loss: 0.9984853\n", + "1186/2000 [================>.............] - ETA: 1:42:37 - loss: 0.9984308\n", + "1187/2000 [================>.............] - ETA: 1:42:30 - loss: 0.9984852\n", + "1188/2000 [================>.............] - ETA: 1:42:22 - loss: 0.9983769\n", + "1189/2000 [================>.............] - ETA: 1:42:13 - loss: 0.9977499\n", + "317\n", + "1190/2000 [================>.............] - ETA: 1:42:07 - loss: 0.9977793\n", + "1191/2000 [================>.............] - ETA: 1:41:59 - loss: 0.9975745\n", + "1192/2000 [================>.............] - ETA: 1:41:50 - loss: 0.9977471\n", + "624\n", + "620\n", + "626\n", + "10\n", + "713\n", + "1193/2000 [================>.............] - ETA: 1:41:43 - loss: 0.9978549\n", + "422\n", + "1194/2000 [================>.............] - ETA: 1:41:36 - loss: 0.9978874\n", + "1195/2000 [================>.............] - ETA: 1:41:29 - loss: 0.9978905\n", + "1196/2000 [================>.............] - ETA: 1:41:21 - loss: 0.997721\n", + "983\n", + "1197/2000 [================>.............] - ETA: 1:41:14 - loss: 0.9977978\n", + "1198/2000 [================>.............] - ETA: 1:41:07 - loss: 0.99799\n", + "279\n", + "1199/2000 [================>.............] - ETA: 1:41:00 - loss: 0.9977703\n", + "1200/2000 [=================>............] - ETA: 1:40:51 - loss: 0.9978878\n", + "1201/2000 [=================>............] - ETA: 1:40:44 - loss: 0.9977923\n", + "1202/2000 [=================>............] - ETA: 1:40:37 - loss: 0.9977464\n", + "451\n", + "1203/2000 [=================>............] - ETA: 1:40:29 - loss: 0.9975295\n", + "1204/2000 [=================>............] - ETA: 1:40:22 - loss: 0.9975586\n", + "684\n", + "895\n", + "1205/2000 [=================>............] - ETA: 1:40:15 - loss: 0.9973888\n", + "1206/2000 [=================>............] - ETA: 1:40:08 - loss: 0.9974618\n", + "953\n", + "1207/2000 [=================>............] - ETA: 1:40:01 - loss: 0.9977444\n", + "1208/2000 [=================>............] - ETA: 1:39:53 - loss: 0.9975226\n", + "1209/2000 [=================>............] - ETA: 1:39:46 - loss: 0.9975753\n", + "1210/2000 [=================>............] - ETA: 1:39:37 - loss: 0.9977770\n", + "1211/2000 [=================>............] - ETA: 1:39:28 - loss: 0.9972672\n", + "322\n", + "1212/2000 [=================>............] - ETA: 1:39:22 - loss: 0.9973375\n", + "1213/2000 [=================>............] - ETA: 1:39:14 - loss: 0.9977285\n", + "1214/2000 [=================>............] - ETA: 1:39:07 - loss: 0.998014\n", + "318\n", + "1215/2000 [=================>............] - ETA: 1:39:01 - loss: 0.9977817\n", + "1216/2000 [=================>............] - ETA: 1:38:53 - loss: 0.997713\n", + "886\n", + "1217/2000 [=================>............] - ETA: 1:38:46 - loss: 0.9977872\n", + "1218/2000 [=================>............] - ETA: 1:38:39 - loss: 0.9978398\n", + "1219/2000 [=================>............] - ETA: 1:38:31 - loss: 0.9981495\n", + "511\n", + "677\n", + "929\n", + "1220/2000 [=================>............] - ETA: 1:38:26 - loss: 0.9980221\n", + "1221/2000 [=================>............] - ETA: 1:38:19 - loss: 0.9982128\n", + "1222/2000 [=================>............] - ETA: 1:38:10 - loss: 0.998661\n", + "501\n", + "153\n", + "1223/2000 [=================>............] - ETA: 1:38:02 - loss: 0.9985437\n", + "1224/2000 [=================>............] - ETA: 1:37:54 - loss: 0.9982597\n", + "225\n", + "1225/2000 [=================>............] - ETA: 1:37:47 - loss: 0.9980193\n", + "1226/2000 [=================>............] - ETA: 1:37:39 - loss: 0.9983424\n", + "1227/2000 [=================>............] - ETA: 1:37:32 - loss: 0.9983379\n", + "1228/2000 [=================>............] - ETA: 1:37:24 - loss: 0.9985248\n", + "1229/2000 [=================>............] - ETA: 1:37:17 - loss: 0.9984556\n", + "956\n", + "1230/2000 [=================>............] - ETA: 1:37:10 - loss: 0.9985681\n", + "726\n", + "1231/2000 [=================>............] - ETA: 1:37:02 - loss: 0.9990307\n", + "1232/2000 [=================>............] - ETA: 1:36:54 - loss: 0.999088\n", + "1233/2000 [=================>............] - ETA: 1:36:45 - loss: 0.9989613\n", + "74\n", + "647\n", + "651\n", + "111\n", + "1234/2000 [=================>............] - ETA: 1:36:38 - loss: 0.9987632\n", + "203\n", + "1235/2000 [=================>............] - ETA: 1:36:31 - loss: 0.9986523\n", + "421\n", + "1236/2000 [=================>............] - ETA: 1:36:23 - loss: 0.9984413\n", + "1237/2000 [=================>............] - ETA: 1:36:15 - loss: 0.9984353\n", + "1238/2000 [=================>............] - ETA: 1:36:08 - loss: 0.9986450\n", + "1239/2000 [=================>............] - ETA: 1:35:59 - loss: 0.998353\n", + "963\n", + "1240/2000 [=================>............] - ETA: 1:35:52 - loss: 0.9982257\n", + "1241/2000 [=================>............] - ETA: 1:35:44 - loss: 0.9983751\n", + "1242/2000 [=================>............] - ETA: 1:35:35 - loss: 0.9981223\n", + "1243/2000 [=================>............] - ETA: 1:35:28 - loss: 0.9980608\n", + "366\n", + "1244/2000 [=================>............] - ETA: 1:35:20 - loss: 0.9980508\n", + "49\n", + "531\n", + "567\n", + "426\n", + "1245/2000 [=================>............] - ETA: 1:35:14 - loss: 0.9981399\n", + "1246/2000 [=================>............] - ETA: 1:35:06 - loss: 0.9979425\n", + "1247/2000 [=================>............] - ETA: 1:34:58 - loss: 0.9980959\n", + "1248/2000 [=================>............] - ETA: 1:34:50 - loss: 0.9980133\n", + "1249/2000 [=================>............] - ETA: 1:34:41 - loss: 0.9976958\n", + "1250/2000 [=================>............] - ETA: 1:34:33 - loss: 0.9975140\n", + "1251/2000 [=================>............] - ETA: 1:34:24 - loss: 0.9971194\n", + "1252/2000 [=================>............] - ETA: 1:34:15 - loss: 0.9969301\n", + "1253/2000 [=================>............] - ETA: 1:34:08 - loss: 0.997060\n", + "109\n", + "1254/2000 [=================>............] - ETA: 1:33:59 - loss: 0.9968579\n", + "732\n", + "1255/2000 [=================>............] - ETA: 1:33:50 - loss: 0.997048\n", + "183\n", + "1256/2000 [=================>............] - ETA: 1:33:42 - loss: 0.9971638\n", + "530\n", + "633\n", + "728\n", + "1257/2000 [=================>............] - ETA: 1:33:34 - loss: 0.9976972\n", + "1258/2000 [=================>............] - ETA: 1:33:26 - loss: 0.9977408\n", + "1259/2000 [=================>............] - ETA: 1:33:18 - loss: 0.9981743\n", + "1260/2000 [=================>............] - ETA: 1:33:09 - loss: 0.9981456\n", + "509\n", + "99\n", + "1261/2000 [=================>............] - ETA: 1:33:00 - loss: 0.9980352\n", + "1262/2000 [=================>............] - ETA: 1:32:52 - loss: 0.9983766\n", + "1263/2000 [=================>............] - ETA: 1:32:43 - loss: 0.997612\n", + "849\n", + "1264/2000 [=================>............] - ETA: 1:32:36 - loss: 0.997687\n", + "1265/2000 [=================>............] - ETA: 1:32:26 - loss: 0.9969296\n", + "1266/2000 [=================>............] - ETA: 1:32:19 - loss: 0.9975316\n", + "1267/2000 [==================>...........] - ETA: 1:32:11 - loss: 0.9973116\n", + "1268/2000 [==================>...........] - ETA: 1:32:02 - loss: 0.9969515\n", + "595\n", + "150\n", + "1269/2000 [==================>...........] - ETA: 1:31:53 - loss: 0.9967397\n", + "1270/2000 [==================>...........] - ETA: 1:31:45 - loss: 0.9966885\n", + "1271/2000 [==================>...........] - ETA: 1:31:37 - loss: 0.9966915\n", + "1272/2000 [==================>...........] - ETA: 1:31:30 - loss: 0.9968948\n", + "1273/2000 [==================>...........] - ETA: 1:31:22 - loss: 0.9968550\n", + "93\n", + "1274/2000 [==================>...........] - ETA: 1:31:13 - loss: 0.9971796\n", + "1275/2000 [==================>...........] - ETA: 1:31:04 - loss: 0.9969227\n", + "1276/2000 [==================>...........] - ETA: 1:30:57 - loss: 0.9971757\n", + "1277/2000 [==================>...........] - ETA: 1:30:47 - loss: 0.9976846\n", + "1278/2000 [==================>...........] - ETA: 1:30:39 - loss: 0.9978184\n", + "1279/2000 [==================>...........] - ETA: 1:30:31 - loss: 0.9980666\n", + "312\n", + "1280/2000 [==================>...........] - ETA: 1:30:24 - loss: 0.9981447\n", + "1281/2000 [==================>...........] - ETA: 1:30:15 - loss: 0.9980198\n", + "1282/2000 [==================>...........] - ETA: 1:30:08 - loss: 0.9982371\n", + "1283/2000 [==================>...........] - ETA: 1:30:00 - loss: 0.9981427\n", + "1284/2000 [==================>...........] - ETA: 1:29:52 - loss: 0.998173\n", + "911\n", + "1285/2000 [==================>...........] - ETA: 1:29:45 - loss: 0.9984674\n", + "136\n", + "1286/2000 [==================>...........] - ETA: 1:29:37 - loss: 0.9979933\n", + "1287/2000 [==================>...........] - ETA: 1:29:29 - loss: 0.998091\n", + "1288/2000 [==================>...........] - ETA: 1:29:20 - loss: 0.9976302\n", + "1289/2000 [==================>...........] - ETA: 1:29:12 - loss: 0.9981837\n", + "1290/2000 [==================>...........] - ETA: 1:29:05 - loss: 0.9979480\n", + "324\n", + "1291/2000 [==================>...........] - ETA: 1:28:58 - loss: 0.9979156\n", + "1292/2000 [==================>...........] - ETA: 1:28:49 - loss: 0.9978245\n", + "1293/2000 [==================>...........] - ETA: 1:28:41 - loss: 0.9979614\n", + "461\n", + "503\n", + "54\n", + "321\n", + "1294/2000 [==================>...........] - ETA: 1:28:35 - loss: 0.9978669\n", + "961\n", + "1295/2000 [==================>...........] - ETA: 1:28:28 - loss: 0.9977649\n", + "577\n", + "83\n", + "1296/2000 [==================>...........] - ETA: 1:28:19 - loss: 0.9972529\n", + "362\n", + "1297/2000 [==================>...........] - ETA: 1:28:12 - loss: 0.99717\n", + "976\n", + "1298/2000 [==================>...........] - ETA: 1:28:05 - loss: 0.9969863\n", + "1299/2000 [==================>...........] - ETA: 1:27:57 - loss: 0.9969907\n", + "1300/2000 [==================>...........] - ETA: 1:27:49 - loss: 0.9968331\n", + "1301/2000 [==================>...........] - ETA: 1:27:42 - loss: 0.9972979\n", + "1302/2000 [==================>...........] - ETA: 1:27:34 - loss: 0.9972355\n", + "1303/2000 [==================>...........] - ETA: 1:27:27 - loss: 0.9971717\n", + "1304/2000 [==================>...........] - ETA: 1:27:18 - loss: 0.9967688\n", + "338\n", + "1305/2000 [==================>...........] - ETA: 1:27:11 - loss: 0.996997\n", + "1306/2000 [==================>...........] - ETA: 1:27:02 - loss: 0.9969174\n", + "1307/2000 [==================>...........] - ETA: 1:26:53 - loss: 0.9970110\n", + "1308/2000 [==================>...........] - ETA: 1:26:44 - loss: 0.9966208\n", + "1309/2000 [==================>...........] - ETA: 1:26:36 - loss: 0.9968645\n", + "576\n", + "250\n", + "1310/2000 [==================>...........] - ETA: 1:26:30 - loss: 0.9968192\n", + "1311/2000 [==================>...........] - ETA: 1:26:21 - loss: 0.996617\n", + "374\n", + "1312/2000 [==================>...........] - ETA: 1:26:14 - loss: 0.996544\n", + "710\n", + "1313/2000 [==================>...........] - ETA: 1:26:06 - loss: 0.9959230\n", + "1314/2000 [==================>...........] - ETA: 1:25:59 - loss: 0.9957298\n", + "1315/2000 [==================>...........] - ETA: 1:25:51 - loss: 0.9957954\n", + "1316/2000 [==================>...........] - ETA: 1:25:44 - loss: 0.9959419\n", + "1317/2000 [==================>...........] - ETA: 1:25:36 - loss: 0.9964145\n", + "1318/2000 [==================>...........] - ETA: 1:25:27 - loss: 0.996164\n", + "147\n", + "1319/2000 [==================>...........] - ETA: 1:25:19 - loss: 0.9956678\n", + "160\n", + "1320/2000 [==================>...........] - ETA: 1:25:11 - loss: 0.9959528\n", + "946\n", + "1321/2000 [==================>...........] - ETA: 1:25:04 - loss: 0.9958211\n", + "1322/2000 [==================>...........] - ETA: 1:24:56 - loss: 0.9958305\n", + "1323/2000 [==================>...........] - ETA: 1:24:49 - loss: 0.9961277\n", + "1324/2000 [==================>...........] - ETA: 1:24:42 - loss: 0.9963971\n", + "1325/2000 [==================>...........] - ETA: 1:24:35 - loss: 0.9965231\n", + "1326/2000 [==================>...........] - ETA: 1:24:28 - loss: 0.9966891\n", + "1327/2000 [==================>...........] - ETA: 1:24:20 - loss: 0.9964243\n", + "1328/2000 [==================>...........] - ETA: 1:24:13 - loss: 0.9966187\n", + "1329/2000 [==================>...........] - ETA: 1:24:05 - loss: 0.9967919\n", + "1330/2000 [==================>...........] - ETA: 1:23:58 - loss: 0.9972966\n", + "1331/2000 [==================>...........] - ETA: 1:23:50 - loss: 0.996984\n", + "1332/2000 [==================>...........] - ETA: 1:23:42 - loss: 0.9966784\n", + "1333/2000 [==================>...........] - ETA: 1:23:33 - loss: 0.9965274\n", + "1334/2000 [===================>..........] - ETA: 1:23:26 - loss: 0.9965290\n", + "1335/2000 [===================>..........] - ETA: 1:23:19 - loss: 0.9966974\n", + "1336/2000 [===================>..........] - ETA: 1:23:12 - loss: 0.9965970\n", + "1337/2000 [===================>..........] - ETA: 1:23:04 - loss: 0.9964120\n", + "1338/2000 [===================>..........] - ETA: 1:22:56 - loss: 0.996326\n", + "585\n", + "310\n", + "1339/2000 [===================>..........] - ETA: 1:22:49 - loss: 0.9964547\n", + "319\n", + "1340/2000 [===================>..........] - ETA: 1:22:43 - loss: 0.996477\n", + "114\n", + "1341/2000 [===================>..........] - ETA: 1:22:34 - loss: 0.9960363\n", + "1342/2000 [===================>..........] - ETA: 1:22:27 - loss: 0.996159\n", + "788\n", + "1343/2000 [===================>..........] - ETA: 1:22:18 - loss: 0.9959115\n", + "1344/2000 [===================>..........] - ETA: 1:22:10 - loss: 0.9954747\n", + "1345/2000 [===================>..........] - ETA: 1:22:01 - loss: 0.9955434\n", + "1346/2000 [===================>..........] - ETA: 1:21:53 - loss: 0.9957724\n", + "1347/2000 [===================>..........] - ETA: 1:21:45 - loss: 0.9955533\n", + "458\n", + "204\n", + "1348/2000 [===================>..........] - ETA: 1:21:38 - loss: 0.9954594\n", + "210\n", + "1349/2000 [===================>..........] - ETA: 1:21:31 - loss: 0.9955693\n", + "1350/2000 [===================>..........] - ETA: 1:21:22 - loss: 0.9952545\n", + "11\n", + "429\n", + "1351/2000 [===================>..........] - ETA: 1:21:15 - loss: 0.9951685\n", + "151\n", + "1352/2000 [===================>..........] - ETA: 1:21:06 - loss: 0.9954416\n", + "1353/2000 [===================>..........] - ETA: 1:20:59 - loss: 0.9953423\n", + "1354/2000 [===================>..........] - ETA: 1:20:51 - loss: 0.9952396\n", + "1355/2000 [===================>..........] - ETA: 1:20:43 - loss: 0.9953867\n", + "1356/2000 [===================>..........] - ETA: 1:20:35 - loss: 0.9951755\n", + "1357/2000 [===================>..........] - ETA: 1:20:27 - loss: 0.9952869\n", + "1358/2000 [===================>..........] - ETA: 1:20:19 - loss: 0.995270\n", + "506\n", + "862\n", + "1359/2000 [===================>..........] - ETA: 1:20:12 - loss: 0.9952805\n", + "1360/2000 [===================>..........] - ETA: 1:20:04 - loss: 0.9954659\n", + "343\n", + "1361/2000 [===================>..........] - ETA: 1:19:57 - loss: 0.9955230\n", + "1362/2000 [===================>..........] - ETA: 1:19:50 - loss: 0.9955612\n", + "326\n", + "1363/2000 [===================>..........] - ETA: 1:19:43 - loss: 0.9957257\n", + "1364/2000 [===================>..........] - ETA: 1:19:35 - loss: 0.995965\n", + "586\n", + "434\n", + "1365/2000 [===================>..........] - ETA: 1:19:28 - loss: 0.9957916\n", + "1366/2000 [===================>..........] - ETA: 1:19:21 - loss: 0.9956253\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1367/2000 [===================>..........] - ETA: 1:19:14 - loss: 0.9956816\n", + "1368/2000 [===================>..........] - ETA: 1:19:06 - loss: 0.9954118\n", + "1369/2000 [===================>..........] - ETA: 1:18:57 - loss: 0.9953785\n", + "1370/2000 [===================>..........] - ETA: 1:18:49 - loss: 0.9952530\n", + "526\n", + "219\n", + "1371/2000 [===================>..........] - ETA: 1:18:42 - loss: 0.9951464\n", + "36\n", + "910\n", + "1372/2000 [===================>..........] - ETA: 1:18:35 - loss: 0.9950132\n", + "1373/2000 [===================>..........] - ETA: 1:18:26 - loss: 0.9948661\n", + "614\n", + "331\n", + "1374/2000 [===================>..........] - ETA: 1:18:20 - loss: 0.9946569\n", + "480\n", + "388\n", + "1375/2000 [===================>..........] - ETA: 1:18:13 - loss: 0.9945417\n", + "1376/2000 [===================>..........] - ETA: 1:18:05 - loss: 0.99441\n", + "798\n", + "1377/2000 [===================>..........] - ETA: 1:17:57 - loss: 0.9943768\n", + "1378/2000 [===================>..........] - ETA: 1:17:48 - loss: 0.99395\n", + "838\n", + "1379/2000 [===================>..........] - ETA: 1:17:41 - loss: 0.9936522\n", + "424\n", + "1380/2000 [===================>..........] - ETA: 1:17:34 - loss: 0.9936920\n", + "1381/2000 [===================>..........] - ETA: 1:17:26 - loss: 0.9934645\n", + "895\n", + "1382/2000 [===================>..........] - ETA: 1:17:19 - loss: 0.9932316\n", + "1383/2000 [===================>..........] - ETA: 1:17:11 - loss: 0.9934964\n", + "1384/2000 [===================>..........] - ETA: 1:17:04 - loss: 0.9933513\n", + "164\n", + "1385/2000 [===================>..........] - ETA: 1:16:56 - loss: 0.9934777\n", + "1386/2000 [===================>..........] - ETA: 1:16:47 - loss: 0.9933400\n", + "1387/2000 [===================>..........] - ETA: 1:16:39 - loss: 0.9934304\n", + "1388/2000 [===================>..........] - ETA: 1:16:32 - loss: 0.9936738\n", + "1389/2000 [===================>..........] - ETA: 1:16:24 - loss: 0.9934546\n", + "553\n", + "273\n", + "1390/2000 [===================>..........] - ETA: 1:16:17 - loss: 0.9933577\n", + "724\n", + "1391/2000 [===================>..........] - ETA: 1:16:09 - loss: 0.9935370\n", + "1392/2000 [===================>..........] - ETA: 1:16:01 - loss: 0.9934919\n", + "1393/2000 [===================>..........] - ETA: 1:15:53 - loss: 0.9933452\n", + "1394/2000 [===================>..........] - ETA: 1:15:45 - loss: 0.9933236\n", + "1395/2000 [===================>..........] - ETA: 1:15:38 - loss: 0.9934377\n", + "1396/2000 [===================>..........] - ETA: 1:15:30 - loss: 0.9934857\n", + "1397/2000 [===================>..........] - ETA: 1:15:23 - loss: 0.9933338\n", + "1398/2000 [===================>..........] - ETA: 1:15:15 - loss: 0.9932871\n", + "1399/2000 [===================>..........] - ETA: 1:15:08 - loss: 0.9932292\n", + "1400/2000 [====================>.........] - ETA: 1:15:01 - loss: 0.9934915\n", + "1401/2000 [====================>.........] - ETA: 1:14:53 - loss: 0.9935814\n", + "1402/2000 [====================>.........] - ETA: 1:14:46 - loss: 0.9936644\n", + "130\n", + "1403/2000 [====================>.........] - ETA: 1:14:37 - loss: 0.9938205\n", + "1404/2000 [====================>.........] - ETA: 1:14:30 - loss: 0.9939845\n", + "1405/2000 [====================>.........] - ETA: 1:14:22 - loss: 0.9940128\n", + "1406/2000 [====================>.........] - ETA: 1:14:14 - loss: 0.9940215\n", + "1407/2000 [====================>.........] - ETA: 1:14:06 - loss: 0.994115\n", + "301\n", + "1408/2000 [====================>.........] - ETA: 1:13:59 - loss: 0.9941163\n", + "1409/2000 [====================>.........] - ETA: 1:13:51 - loss: 0.9943780\n", + "1410/2000 [====================>.........] - ETA: 1:13:42 - loss: 0.9944706\n", + "1411/2000 [====================>.........] - ETA: 1:13:34 - loss: 0.994835\n", + "165\n", + "1412/2000 [====================>.........] - ETA: 1:13:26 - loss: 0.9948940\n", + "1413/2000 [====================>.........] - ETA: 1:13:18 - loss: 0.994876\n", + "387\n", + "1414/2000 [====================>.........] - ETA: 1:13:11 - loss: 0.9950829\n", + "1415/2000 [====================>.........] - ETA: 1:13:03 - loss: 0.9949431\n", + "1416/2000 [====================>.........] - ETA: 1:12:56 - loss: 0.994855\n", + "968\n", + "1417/2000 [====================>.........] - ETA: 1:12:48 - loss: 0.9948269\n", + "1418/2000 [====================>.........] - ETA: 1:12:41 - loss: 0.994922\n", + "39\n", + "962\n", + "1419/2000 [====================>.........] - ETA: 1:12:34 - loss: 0.9950574\n", + "504\n", + "539\n", + "677\n", + "265\n", + "1420/2000 [====================>.........] - ETA: 1:12:28 - loss: 0.995031\n", + "234\n", + "1421/2000 [====================>.........] - ETA: 1:12:21 - loss: 0.9949501\n", + "754\n", + "1422/2000 [====================>.........] - ETA: 1:12:13 - loss: 0.994869\n", + "969\n", + "1423/2000 [====================>.........] - ETA: 1:12:06 - loss: 0.9946535\n", + "584\n", + "499\n", + "441\n", + "1424/2000 [====================>.........] - ETA: 1:11:58 - loss: 0.9945365\n", + "1425/2000 [====================>.........] - ETA: 1:11:51 - loss: 0.9945493\n", + "705\n", + "1426/2000 [====================>.........] - ETA: 1:11:43 - loss: 0.9944775\n", + "1427/2000 [====================>.........] - ETA: 1:11:35 - loss: 0.9941442\n", + "1428/2000 [====================>.........] - ETA: 1:11:27 - loss: 0.9942408\n", + "1429/2000 [====================>.........] - ETA: 1:11:19 - loss: 0.9944760\n", + "1430/2000 [====================>.........] - ETA: 1:11:11 - loss: 0.9941203\n", + "1431/2000 [====================>.........] - ETA: 1:11:03 - loss: 0.9940806\n", + "1432/2000 [====================>.........] - ETA: 1:10:55 - loss: 0.993821\n", + "64\n", + "711\n", + "1433/2000 [====================>.........] - ETA: 1:10:48 - loss: 0.9933965\n", + "1434/2000 [====================>.........] - ETA: 1:10:40 - loss: 0.993293\n", + "1435/2000 [====================>.........] - ETA: 1:10:31 - loss: 0.9930389\n", + "1436/2000 [====================>.........] - ETA: 1:10:24 - loss: 0.9931741\n", + "1437/2000 [====================>.........] - ETA: 1:10:15 - loss: 0.9931938\n", + "1438/2000 [====================>.........] - ETA: 1:10:08 - loss: 0.9933314\n", + "1439/2000 [====================>.........] - ETA: 1:10:01 - loss: 0.9934558\n", + "982\n", + "1440/2000 [====================>.........] - ETA: 1:09:53 - loss: 0.9932248\n", + "1441/2000 [====================>.........] - ETA: 1:09:46 - loss: 0.9934756\n", + "1442/2000 [====================>.........] - ETA: 1:09:37 - loss: 0.993823\n", + "191\n", + "1443/2000 [====================>.........] - ETA: 1:09:30 - loss: 0.9936114\n", + "1444/2000 [====================>.........] - ETA: 1:09:21 - loss: 0.9932101\n", + "1445/2000 [====================>.........] - ETA: 1:09:13 - loss: 0.9930904\n", + "1446/2000 [====================>.........] - ETA: 1:09:05 - loss: 0.9928454\n", + "1447/2000 [====================>.........] - ETA: 1:08:57 - loss: 0.9928358\n", + "1448/2000 [====================>.........] - ETA: 1:08:50 - loss: 0.9929590\n", + "136\n", + "1449/2000 [====================>.........] - ETA: 1:08:41 - loss: 0.9927497\n", + "837\n", + "1450/2000 [====================>.........] - ETA: 1:08:34 - loss: 0.9926478\n", + "157\n", + "1451/2000 [====================>.........] - ETA: 1:08:26 - loss: 0.992312\n", + "591\n", + "854\n", + "1452/2000 [====================>.........] - ETA: 1:08:19 - loss: 0.9922180\n", + "1453/2000 [====================>.........] - ETA: 1:08:11 - loss: 0.9922235\n", + "1454/2000 [====================>.........] - ETA: 1:08:04 - loss: 0.9923384\n", + "1455/2000 [====================>.........] - ETA: 1:07:56 - loss: 0.992252\n", + "735\n", + "1456/2000 [====================>.........] - ETA: 1:07:48 - loss: 0.9922701\n", + "1457/2000 [====================>.........] - ETA: 1:07:40 - loss: 0.9918146\n", + "1458/2000 [====================>.........] - ETA: 1:07:32 - loss: 0.9919286\n", + "1459/2000 [====================>.........] - ETA: 1:07:25 - loss: 0.9922875\n", + "1460/2000 [====================>.........] - ETA: 1:07:17 - loss: 0.9924784\n", + "1461/2000 [====================>.........] - ETA: 1:07:09 - loss: 0.9921710\n", + "1462/2000 [====================>.........] - ETA: 1:07:01 - loss: 0.9922175\n", + "1463/2000 [====================>.........] - ETA: 1:06:53 - loss: 0.9922333\n", + "1464/2000 [====================>.........] - ETA: 1:06:46 - loss: 0.9921981\n", + "1465/2000 [====================>.........] - ETA: 1:06:39 - loss: 0.992030\n", + "723\n", + "1466/2000 [====================>.........] - ETA: 1:06:31 - loss: 0.9920469\n", + "866\n", + "1467/2000 [=====================>........] - ETA: 1:06:23 - loss: 0.9919325\n", + "1468/2000 [=====================>........] - ETA: 1:06:16 - loss: 0.9921289\n", + "1469/2000 [=====================>........] - ETA: 1:06:09 - loss: 0.9923715\n", + "1470/2000 [=====================>........] - ETA: 1:06:01 - loss: 0.991811\n", + "611\n", + "532\n", + "698\n", + "1471/2000 [=====================>........] - ETA: 1:05:54 - loss: 0.9918941\n", + "1472/2000 [=====================>........] - ETA: 1:05:46 - loss: 0.9918211\n", + "1473/2000 [=====================>........] - ETA: 1:05:39 - loss: 0.9917242\n", + "1474/2000 [=====================>........] - ETA: 1:05:32 - loss: 0.9917745\n", + "1475/2000 [=====================>........] - ETA: 1:05:24 - loss: 0.9916484\n", + "945\n", + "1476/2000 [=====================>........] - ETA: 1:05:17 - loss: 0.9915427\n", + "1477/2000 [=====================>........] - ETA: 1:05:10 - loss: 0.9913637\n", + "525\n", + "281\n", + "1478/2000 [=====================>........] - ETA: 1:05:03 - loss: 0.9913188\n", + "1479/2000 [=====================>........] - ETA: 1:04:55 - loss: 0.9913512\n", + "808\n", + "1480/2000 [=====================>........] - ETA: 1:04:48 - loss: 0.9913413\n", + "1481/2000 [=====================>........] - ETA: 1:04:40 - loss: 0.9912112\n", + "1482/2000 [=====================>........] - ETA: 1:04:32 - loss: 0.9913956\n", + "1483/2000 [=====================>........] - ETA: 1:04:25 - loss: 0.9912630\n", + "581\n", + "502\n", + "750\n", + "1484/2000 [=====================>........] - ETA: 1:04:17 - loss: 0.9907173\n", + "1485/2000 [=====================>........] - ETA: 1:04:09 - loss: 0.9908376\n", + "1486/2000 [=====================>........] - ETA: 1:04:02 - loss: 0.9909791\n", + "1487/2000 [=====================>........] - ETA: 1:03:54 - loss: 0.9904936\n", + "1488/2000 [=====================>........] - ETA: 1:03:47 - loss: 0.9904786\n", + "1489/2000 [=====================>........] - ETA: 1:03:39 - loss: 0.9899898\n", + "1490/2000 [=====================>........] - ETA: 1:03:31 - loss: 0.9898580\n", + "169\n", + "1491/2000 [=====================>........] - ETA: 1:03:24 - loss: 0.9898381\n", + "1492/2000 [=====================>........] - ETA: 1:03:16 - loss: 0.9897966\n", + "1493/2000 [=====================>........] - ETA: 1:03:09 - loss: 0.9894907\n", + "1494/2000 [=====================>........] - ETA: 1:03:02 - loss: 0.9893587\n", + "495\n", + "489\n", + "638\n", + "896\n", + "1495/2000 [=====================>........] - ETA: 1:02:55 - loss: 0.9892624\n", + "324\n", + "1496/2000 [=====================>........] - ETA: 1:02:48 - loss: 0.989283\n", + "1497/2000 [=====================>........] - ETA: 1:02:40 - loss: 0.9888328\n", + "1498/2000 [=====================>........] - ETA: 1:02:32 - loss: 0.9890345\n", + "1499/2000 [=====================>........] - ETA: 1:02:25 - loss: 0.9889470\n", + "451\n", + "1500/2000 [=====================>........] - ETA: 1:02:17 - loss: 0.9888783\n", + "1501/2000 [=====================>........] - ETA: 1:02:09 - loss: 0.988828\n", + "821\n", + "1502/2000 [=====================>........] - ETA: 1:02:02 - loss: 0.9888804\n", + "1503/2000 [=====================>........] - ETA: 1:01:54 - loss: 0.9890944\n", + "1504/2000 [=====================>........] - ETA: 1:01:47 - loss: 0.9888717\n", + "1505/2000 [=====================>........] - ETA: 1:01:39 - loss: 0.988351\n", + "976\n", + "1506/2000 [=====================>........] - ETA: 1:01:32 - loss: 0.9883374\n", + "1507/2000 [=====================>........] - ETA: 1:01:24 - loss: 0.9883482\n", + "117\n", + "1508/2000 [=====================>........] - ETA: 1:01:16 - loss: 0.9879930\n", + "1509/2000 [=====================>........] - ETA: 1:01:09 - loss: 0.9878653\n", + "479\n", + "61\n", + "216\n", + "1510/2000 [=====================>........] - ETA: 1:01:02 - loss: 0.988196\n", + "1511/2000 [=====================>........] - ETA: 1:00:54 - loss: 0.9875445\n", + "1512/2000 [=====================>........] - ETA: 1:00:46 - loss: 0.9872568\n", + "528\n", + "536\n", + "419\n", + "1513/2000 [=====================>........] - ETA: 1:00:39 - loss: 0.9872562\n", + "415\n", + "1514/2000 [=====================>........] - ETA: 1:00:32 - loss: 0.9873570\n", + "401\n", + "1515/2000 [=====================>........] - ETA: 1:00:25 - loss: 0.9873635\n", + "317\n", + "1516/2000 [=====================>........] - ETA: 1:00:18 - loss: 0.9872890\n", + "1517/2000 [=====================>........] - ETA: 1:00:10 - loss: 0.9873346\n", + "1518/2000 [=====================>........] - ETA: 1:00:03 - loss: 0.9875109\n", + "1519/2000 [=====================>........] - ETA: 59:55 - loss: 0.9874 360\n", + "1520/2000 [=====================>........] - ETA: 59:47 - loss: 0.9875514\n", + "327\n", + "1521/2000 [=====================>........] - ETA: 59:40 - loss: 0.9876456\n", + "278\n", + "1522/2000 [=====================>........] - ETA: 59:33 - loss: 0.9877507\n", + "9\n", + "19\n", + "952\n", + "1523/2000 [=====================>........] - ETA: 59:27 - loss: 0.9877418\n", + "1524/2000 [=====================>........] - ETA: 59:19 - loss: 0.9882199\n", + "1525/2000 [=====================>........] - ETA: 59:12 - loss: 0.988188\n", + "1526/2000 [=====================>........] - ETA: 59:04 - loss: 0.9878351\n", + "1527/2000 [=====================>........] - ETA: 58:56 - loss: 0.987886\n", + "1528/2000 [=====================>........] - ETA: 58:48 - loss: 0.9877729\n", + "1529/2000 [=====================>........] - ETA: 58:40 - loss: 0.9874887\n", + "1530/2000 [=====================>........] - ETA: 58:33 - loss: 0.9876414\n", + "1531/2000 [=====================>........] - ETA: 58:25 - loss: 0.9879350\n", + "1532/2000 [=====================>........] - ETA: 58:18 - loss: 0.9879237\n", + "1533/2000 [=====================>........] - ETA: 58:10 - loss: 0.9879575\n", + "884\n", + "1534/2000 [======================>.......] - ETA: 58:03 - loss: 0.988079\n", + "1535/2000 [======================>.......] - ETA: 57:55 - loss: 0.9878531\n", + "290\n", + "1536/2000 [======================>.......] - ETA: 57:48 - loss: 0.988045\n", + "151\n", + "1537/2000 [======================>.......] - ETA: 57:40 - loss: 0.9880888\n", + "1538/2000 [======================>.......] - ETA: 57:33 - loss: 0.9878283\n", + "1539/2000 [======================>.......] - ETA: 57:26 - loss: 0.9877757\n", + "1540/2000 [======================>.......] - ETA: 57:18 - loss: 0.9875623\n", + "140\n", + "1541/2000 [======================>.......] - ETA: 57:10 - loss: 0.9872593\n", + "366\n", + "1542/2000 [======================>.......] - ETA: 57:02 - loss: 0.9871691\n", + "10\n", + "133\n", + "1543/2000 [======================>.......] - ETA: 56:55 - loss: 0.9872693\n", + "1544/2000 [======================>.......] - ETA: 56:46 - loss: 0.9867541\n", + "972\n", + "1545/2000 [======================>.......] - ETA: 56:39 - loss: 0.9868393\n", + "1546/2000 [======================>.......] - ETA: 56:32 - loss: 0.9868573\n", + "902\n", + "1547/2000 [======================>.......] - ETA: 56:24 - loss: 0.9870687\n", + "692\n", + "13\n", + "942\n", + "1548/2000 [======================>.......] - ETA: 56:18 - loss: 0.986832\n", + "145\n", + "1549/2000 [======================>.......] - ETA: 56:10 - loss: 0.9869971\n", + "1550/2000 [======================>.......] - ETA: 56:02 - loss: 0.9870224\n", + "1551/2000 [======================>.......] - ETA: 55:55 - loss: 0.9869302\n", + "1552/2000 [======================>.......] - ETA: 55:48 - loss: 0.9874608\n", + "465\n", + "57\n", + "204\n", + "1553/2000 [======================>.......] - ETA: 55:41 - loss: 0.9872124\n", + "1554/2000 [======================>.......] - ETA: 55:33 - loss: 0.987397\n", + "1555/2000 [======================>.......] - ETA: 55:25 - loss: 0.9872245\n", + "1556/2000 [======================>.......] - ETA: 55:17 - loss: 0.9873551\n", + "716\n", + "1557/2000 [======================>.......] - ETA: 55:09 - loss: 0.9872987\n", + "1558/2000 [======================>.......] - ETA: 55:02 - loss: 0.9873683\n", + "914\n", + "1559/2000 [======================>.......] - ETA: 54:55 - loss: 0.9875547\n", + "110\n", + "1560/2000 [======================>.......] - ETA: 54:47 - loss: 0.98710\n", + "545\n", + "933\n", + "1561/2000 [======================>.......] - ETA: 54:40 - loss: 0.9871947\n", + "1562/2000 [======================>.......] - ETA: 54:32 - loss: 0.9873258\n", + "1563/2000 [======================>.......] - ETA: 54:25 - loss: 0.9876812\n", + "1564/2000 [======================>.......] - ETA: 54:17 - loss: 0.9878673\n", + "843\n", + "1565/2000 [======================>.......] - ETA: 54:09 - loss: 0.9878457\n", + "154\n", + "1566/2000 [======================>.......] - ETA: 54:02 - loss: 0.9879407\n", + "1567/2000 [======================>.......] - ETA: 53:54 - loss: 0.9880500\n", + "300\n", + "1568/2000 [======================>.......] - ETA: 53:47 - loss: 0.9880885\n", + "1569/2000 [======================>.......] - ETA: 53:39 - loss: 0.988192\n", + "1570/2000 [======================>.......] - ETA: 53:31 - loss: 0.9879631\n", + "560\n", + "306\n", + "1571/2000 [======================>.......] - ETA: 53:24 - loss: 0.9879753\n", + "1572/2000 [======================>.......] - ETA: 53:16 - loss: 0.9879143\n", + "1573/2000 [======================>.......] - ETA: 53:08 - loss: 0.9875392\n", + "1574/2000 [======================>.......] - ETA: 53:00 - loss: 0.9874787\n", + "1575/2000 [======================>.......] - ETA: 52:52 - loss: 0.9869297\n", + "1576/2000 [======================>.......] - ETA: 52:45 - loss: 0.986891\n", + "1577/2000 [======================>.......] - ETA: 52:37 - loss: 0.9863296\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1578/2000 [======================>.......] - ETA: 52:29 - loss: 0.9863765\n", + "1579/2000 [======================>.......] - ETA: 52:21 - loss: 0.9863740\n", + "1580/2000 [======================>.......] - ETA: 52:13 - loss: 0.985737\n", + "63\n", + "380\n", + "1581/2000 [======================>.......] - ETA: 52:06 - loss: 0.9856353\n", + "1582/2000 [======================>.......] - ETA: 51:59 - loss: 0.9854732\n", + "1583/2000 [======================>.......] - ETA: 51:51 - loss: 0.9854103\n", + "1584/2000 [======================>.......] - ETA: 51:42 - loss: 0.9851618\n", + "274\n", + "1585/2000 [======================>.......] - ETA: 51:35 - loss: 0.9851516\n", + "876\n", + "1586/2000 [======================>.......] - ETA: 51:28 - loss: 0.9851709\n", + "1587/2000 [======================>.......] - ETA: 51:20 - loss: 0.9848378\n", + "1588/2000 [======================>.......] - ETA: 51:12 - loss: 0.9849261\n", + "1589/2000 [======================>.......] - ETA: 51:05 - loss: 0.9849293\n", + "1590/2000 [======================>.......] - ETA: 50:58 - loss: 0.9851386\n", + "1591/2000 [======================>.......] - ETA: 50:50 - loss: 0.985380\n", + "1592/2000 [======================>.......] - ETA: 50:42 - loss: 0.9854622\n", + "54\n", + "187\n", + "1593/2000 [======================>.......] - ETA: 50:35 - loss: 0.9854467\n", + "8\n", + "299\n", + "1594/2000 [======================>.......] - ETA: 50:27 - loss: 0.9853627\n", + "334\n", + "1595/2000 [======================>.......] - ETA: 50:20 - loss: 0.9852758\n", + "1596/2000 [======================>.......] - ETA: 50:12 - loss: 0.9851509\n", + "556\n", + "43\n", + "178\n", + "1597/2000 [======================>.......] - ETA: 50:05 - loss: 0.9846678\n", + "127\n", + "1598/2000 [======================>.......] - ETA: 49:57 - loss: 0.9845800\n", + "1599/2000 [======================>.......] - ETA: 49:49 - loss: 0.9846315\n", + "1600/2000 [=======================>......] - ETA: 49:42 - loss: 0.984614\n", + "123\n", + "1601/2000 [=======================>......] - ETA: 49:34 - loss: 0.984241\n", + "934\n", + "1602/2000 [=======================>......] - ETA: 49:27 - loss: 0.9842917\n", + "1603/2000 [=======================>......] - ETA: 49:20 - loss: 0.9841100\n", + "1604/2000 [=======================>......] - ETA: 49:12 - loss: 0.9837271\n", + "1605/2000 [=======================>......] - ETA: 49:05 - loss: 0.983817\n", + "761\n", + "1606/2000 [=======================>......] - ETA: 48:57 - loss: 0.9834194\n", + "1607/2000 [=======================>......] - ETA: 48:49 - loss: 0.9832287\n", + "1608/2000 [=======================>......] - ETA: 48:42 - loss: 0.9831395\n", + "1609/2000 [=======================>......] - ETA: 48:35 - loss: 0.9829796\n", + "1610/2000 [=======================>......] - ETA: 48:27 - loss: 0.9831669\n", + "402\n", + "1611/2000 [=======================>......] - ETA: 48:19 - loss: 0.9831527\n", + "517\n", + "811\n", + "1612/2000 [=======================>......] - ETA: 48:12 - loss: 0.98327\n", + "238\n", + "1613/2000 [=======================>......] - ETA: 48:05 - loss: 0.983289\n", + "1614/2000 [=======================>......] - ETA: 47:57 - loss: 0.9829848\n", + "1615/2000 [=======================>......] - ETA: 47:49 - loss: 0.9827743\n", + "1616/2000 [=======================>......] - ETA: 47:41 - loss: 0.9827603\n", + "620\n", + "555\n", + "955\n", + "1617/2000 [=======================>......] - ETA: 47:34 - loss: 0.9829475\n", + "496\n", + "447\n", + "1618/2000 [=======================>......] - ETA: 47:27 - loss: 0.9827747\n", + "1619/2000 [=======================>......] - ETA: 47:19 - loss: 0.9828425\n", + "1620/2000 [=======================>......] - ETA: 47:11 - loss: 0.982882\n", + "1621/2000 [=======================>......] - ETA: 47:03 - loss: 0.9824182\n", + "1622/2000 [=======================>......] - ETA: 46:55 - loss: 0.9822707\n", + "1623/2000 [=======================>......] - ETA: 46:47 - loss: 0.9823929\n", + "1624/2000 [=======================>......] - ETA: 46:40 - loss: 0.9825437\n", + "1625/2000 [=======================>......] - ETA: 46:32 - loss: 0.9824398\n", + "1626/2000 [=======================>......] - ETA: 46:25 - loss: 0.9826846\n", + "1627/2000 [=======================>......] - ETA: 46:17 - loss: 0.9824809\n", + "1628/2000 [=======================>......] - ETA: 46:09 - loss: 0.9823839\n", + "1629/2000 [=======================>......] - ETA: 46:02 - loss: 0.9821836\n", + "1630/2000 [=======================>......] - ETA: 45:54 - loss: 0.9819472\n", + "24\n", + "712\n", + "1631/2000 [=======================>......] - ETA: 45:47 - loss: 0.9816444\n", + "1632/2000 [=======================>......] - ETA: 45:39 - loss: 0.9815877\n", + "1633/2000 [=======================>......] - ETA: 45:31 - loss: 0.9814601\n", + "120\n", + "1634/2000 [=======================>......] - ETA: 45:23 - loss: 0.9813385\n", + "1635/2000 [=======================>......] - ETA: 45:16 - loss: 0.9812368\n", + "1636/2000 [=======================>......] - ETA: 45:08 - loss: 0.981434\n", + "272\n", + "1637/2000 [=======================>......] - ETA: 45:01 - loss: 0.9813597\n", + "690\n", + "498\n", + "640\n", + "149\n", + "1638/2000 [=======================>......] - ETA: 44:54 - loss: 0.9816382\n", + "1639/2000 [=======================>......] - ETA: 44:46 - loss: 0.9817759\n", + "1640/2000 [=======================>......] - ETA: 44:38 - loss: 0.9816853\n", + "1641/2000 [=======================>......] - ETA: 44:30 - loss: 0.9815137\n", + "1642/2000 [=======================>......] - ETA: 44:22 - loss: 0.9814330\n", + "1643/2000 [=======================>......] - ETA: 44:15 - loss: 0.98153\n", + "473\n", + "643\n", + "53\n", + "629\n", + "647\n", + "594\n", + "975\n", + "1644/2000 [=======================>......] - ETA: 44:08 - loss: 0.9813262\n", + "1645/2000 [=======================>......] - ETA: 44:01 - loss: 0.9813416\n", + "1646/2000 [=======================>......] - ETA: 43:53 - loss: 0.9811241\n", + "1647/2000 [=======================>......] - ETA: 43:46 - loss: 0.9810135\n", + "1648/2000 [=======================>......] - ETA: 43:38 - loss: 0.9808185\n", + "1649/2000 [=======================>......] - ETA: 43:30 - loss: 0.9810713\n", + "1650/2000 [=======================>......] - ETA: 43:22 - loss: 0.9807529\n", + "792\n", + "1651/2000 [=======================>......] - ETA: 43:14 - loss: 0.9811963\n", + "1652/2000 [=======================>......] - ETA: 43:07 - loss: 0.9809726\n", + "1653/2000 [=======================>......] - ETA: 42:59 - loss: 0.9811461\n", + "183\n", + "1654/2000 [=======================>......] - ETA: 42:51 - loss: 0.9814779\n", + "1655/2000 [=======================>......] - ETA: 42:43 - loss: 0.9809267\n", + "1656/2000 [=======================>......] - ETA: 42:36 - loss: 0.9810918\n", + "1657/2000 [=======================>......] - ETA: 42:29 - loss: 0.9811303\n", + "1658/2000 [=======================>......] - ETA: 42:21 - loss: 0.9812228\n", + "1659/2000 [=======================>......] - ETA: 42:14 - loss: 0.9814538\n", + "280\n", + "1660/2000 [=======================>......] - ETA: 42:07 - loss: 0.9814722\n", + "1661/2000 [=======================>......] - ETA: 41:59 - loss: 0.9810256\n", + "1662/2000 [=======================>......] - ETA: 41:51 - loss: 0.9809468\n", + "841\n", + "1663/2000 [=======================>......] - ETA: 41:44 - loss: 0.9810270\n", + "1664/2000 [=======================>......] - ETA: 41:36 - loss: 0.9809409\n", + "1665/2000 [=======================>......] - ETA: 41:29 - loss: 0.9809565\n", + "429\n", + "1666/2000 [=======================>......] - ETA: 41:22 - loss: 0.9808572\n", + "485\n", + "943\n", + "1667/2000 [========================>.....] - ETA: 41:14 - loss: 0.9807225\n", + "1668/2000 [========================>.....] - ETA: 41:07 - loss: 0.9807883\n", + "1669/2000 [========================>.....] - ETA: 40:59 - loss: 0.9807421\n", + "1670/2000 [========================>.....] - ETA: 40:52 - loss: 0.9806244\n", + "1671/2000 [========================>.....] - ETA: 40:44 - loss: 0.9806973\n", + "1672/2000 [========================>.....] - ETA: 40:37 - loss: 0.9807634\n", + "142\n", + "1673/2000 [========================>.....] - ETA: 40:29 - loss: 0.9804466\n", + "195\n", + "1674/2000 [========================>.....] - ETA: 40:22 - loss: 0.9805533\n", + "878\n", + "1675/2000 [========================>.....] - ETA: 40:14 - loss: 0.9804925\n", + "1676/2000 [========================>.....] - ETA: 40:07 - loss: 0.9802477\n", + "48\n", + "954\n", + "1677/2000 [========================>.....] - ETA: 40:00 - loss: 0.9803953\n", + "1678/2000 [========================>.....] - ETA: 39:52 - loss: 0.9803329\n", + "1679/2000 [========================>.....] - ETA: 39:45 - loss: 0.9804567\n", + "490\n", + "519\n", + "557\n", + "675\n", + "207\n", + "1680/2000 [========================>.....] - ETA: 39:38 - loss: 0.9805284\n", + "1681/2000 [========================>.....] - ETA: 39:31 - loss: 0.9805641\n", + "559\n", + "686\n", + "842\n", + "1682/2000 [========================>.....] - ETA: 39:24 - loss: 0.9804824\n", + "1683/2000 [========================>.....] - ETA: 39:16 - loss: 0.9803589\n", + "305\n", + "1684/2000 [========================>.....] - ETA: 39:09 - loss: 0.9803828\n", + "1685/2000 [========================>.....] - ETA: 39:01 - loss: 0.980367\n", + "357\n", + "1686/2000 [========================>.....] - ETA: 38:54 - loss: 0.980472\n", + "411\n", + "1687/2000 [========================>.....] - ETA: 38:46 - loss: 0.9805332\n", + "1688/2000 [========================>.....] - ETA: 38:39 - loss: 0.9807167\n", + "1689/2000 [========================>.....] - ETA: 38:31 - loss: 0.9807778\n", + "1690/2000 [========================>.....] - ETA: 38:23 - loss: 0.9804214\n", + "1691/2000 [========================>.....] - ETA: 38:16 - loss: 0.9805295\n", + "1692/2000 [========================>.....] - ETA: 38:09 - loss: 0.9803503\n", + "152\n", + "1693/2000 [========================>.....] - ETA: 38:01 - loss: 0.9804974\n", + "1694/2000 [========================>.....] - ETA: 37:53 - loss: 0.980333\n", + "170\n", + "1695/2000 [========================>.....] - ETA: 37:46 - loss: 0.9803166\n", + "1696/2000 [========================>.....] - ETA: 37:38 - loss: 0.9799433\n", + "1697/2000 [========================>.....] - ETA: 37:30 - loss: 0.9798549\n", + "50\n", + "960\n", + "1698/2000 [========================>.....] - ETA: 37:23 - loss: 0.9796450\n", + "1699/2000 [========================>.....] - ETA: 37:15 - loss: 0.9796802\n", + "1700/2000 [========================>.....] - ETA: 37:08 - loss: 0.9797648\n", + "106\n", + "1701/2000 [========================>.....] - ETA: 37:00 - loss: 0.9793939\n", + "1702/2000 [========================>.....] - ETA: 36:52 - loss: 0.9793834\n", + "1703/2000 [========================>.....] - ETA: 36:45 - loss: 0.979218\n", + "599\n", + "730\n", + "1704/2000 [========================>.....] - ETA: 36:37 - loss: 0.9792141\n", + "1705/2000 [========================>.....] - ETA: 36:30 - loss: 0.9790835\n", + "1706/2000 [========================>.....] - ETA: 36:22 - loss: 0.978962\n", + "105\n", + "1707/2000 [========================>.....] - ETA: 36:14 - loss: 0.9783492\n", + "684\n", + "220\n", + "1708/2000 [========================>.....] - ETA: 36:07 - loss: 0.9784405\n", + "1709/2000 [========================>.....] - ETA: 36:00 - loss: 0.9784521\n", + "703\n", + "1710/2000 [========================>.....] - ETA: 35:52 - loss: 0.9788275\n", + "1711/2000 [========================>.....] - ETA: 35:45 - loss: 0.9789924\n", + "1712/2000 [========================>.....] - ETA: 35:37 - loss: 0.978825\n", + "515\n", + "605\n", + "344\n", + "1713/2000 [========================>.....] - ETA: 35:31 - loss: 0.9790307\n", + "1714/2000 [========================>.....] - ETA: 35:23 - loss: 0.9789928\n", + "1715/2000 [========================>.....] - ETA: 35:16 - loss: 0.9790455\n", + "658\n", + "979\n", + "1716/2000 [========================>.....] - ETA: 35:09 - loss: 0.9789352\n", + "1717/2000 [========================>.....] - ETA: 35:01 - loss: 0.9789121\n", + "1718/2000 [========================>.....] - ETA: 34:54 - loss: 0.9788793\n", + "1719/2000 [========================>.....] - ETA: 34:46 - loss: 0.9787861\n", + "1720/2000 [========================>.....] - ETA: 34:39 - loss: 0.9788150\n", + "1721/2000 [========================>.....] - ETA: 34:31 - loss: 0.9787294\n", + "1722/2000 [========================>.....] - ETA: 34:24 - loss: 0.9786412\n", + "1723/2000 [========================>.....] - ETA: 34:17 - loss: 0.9786582\n", + "255\n", + "1724/2000 [========================>.....] - ETA: 34:10 - loss: 0.9785680\n", + "891\n", + "1725/2000 [========================>.....] - ETA: 34:03 - loss: 0.9786625\n", + "561\n", + "921\n", + "1726/2000 [========================>.....] - ETA: 33:55 - loss: 0.9785115\n", + "1727/2000 [========================>.....] - ETA: 33:48 - loss: 0.9781524\n", + "373\n", + "1728/2000 [========================>.....] - ETA: 33:41 - loss: 0.9781767\n", + "1729/2000 [========================>.....] - ETA: 33:33 - loss: 0.978346\n", + "748\n", + "1730/2000 [========================>.....] - ETA: 33:25 - loss: 0.978195\n", + "1731/2000 [========================>.....] - ETA: 33:18 - loss: 0.9778436\n", + "1732/2000 [========================>.....] - ETA: 33:10 - loss: 0.977627\n", + "60\n", + "772\n", + "1733/2000 [========================>.....] - ETA: 33:03 - loss: 0.9773540\n", + "277\n", + "1734/2000 [=========================>....] - ETA: 32:56 - loss: 0.9775138\n", + "1735/2000 [=========================>....] - ETA: 32:48 - loss: 0.9776486\n", + "260\n", + "1736/2000 [=========================>....] - ETA: 32:41 - loss: 0.9776655\n", + "595\n", + "104\n", + "1737/2000 [=========================>....] - ETA: 32:33 - loss: 0.9770977\n", + "1738/2000 [=========================>....] - ETA: 32:26 - loss: 0.9771379\n", + "1739/2000 [=========================>....] - ETA: 32:18 - loss: 0.9772923\n", + "1740/2000 [=========================>....] - ETA: 32:11 - loss: 0.9770131\n", + "1741/2000 [=========================>....] - ETA: 32:03 - loss: 0.9772189\n", + "1742/2000 [=========================>....] - ETA: 31:56 - loss: 0.9772252\n", + "1743/2000 [=========================>....] - ETA: 31:48 - loss: 0.977366\n", + "4\n", + "156\n", + "1744/2000 [=========================>....] - ETA: 31:41 - loss: 0.977078\n", + "668\n", + "908\n", + "1745/2000 [=========================>....] - ETA: 31:34 - loss: 0.9770231\n", + "1746/2000 [=========================>....] - ETA: 31:26 - loss: 0.9770276\n", + "1747/2000 [=========================>....] - ETA: 31:19 - loss: 0.9770406\n", + "1748/2000 [=========================>....] - ETA: 31:11 - loss: 0.9771196\n", + "1749/2000 [=========================>....] - ETA: 31:04 - loss: 0.9772438\n", + "1750/2000 [=========================>....] - ETA: 30:56 - loss: 0.9771367\n", + "1751/2000 [=========================>....] - ETA: 30:49 - loss: 0.977116\n", + "162\n", + "1752/2000 [=========================>....] - ETA: 30:41 - loss: 0.9771171\n", + "1753/2000 [=========================>....] - ETA: 30:34 - loss: 0.9774879\n", + "1754/2000 [=========================>....] - ETA: 30:26 - loss: 0.9775251\n", + "1755/2000 [=========================>....] - ETA: 30:19 - loss: 0.9775662\n", + "161\n", + "1756/2000 [=========================>....] - ETA: 30:11 - loss: 0.9777858\n", + "1757/2000 [=========================>....] - ETA: 30:04 - loss: 0.9777899\n", + "1758/2000 [=========================>....] - ETA: 29:56 - loss: 0.9776471\n", + "49\n", + "458\n", + "73\n", + "688\n", + "650\n", + "285\n", + "1759/2000 [=========================>....] - ETA: 29:50 - loss: 0.9776958\n", + "1760/2000 [=========================>....] - ETA: 29:42 - loss: 0.9776626\n", + "789\n", + "1761/2000 [=========================>....] - ETA: 29:35 - loss: 0.9773107\n", + "1762/2000 [=========================>....] - ETA: 29:27 - loss: 0.9768903\n", + "1763/2000 [=========================>....] - ETA: 29:19 - loss: 0.9769264\n", + "1764/2000 [=========================>....] - ETA: 29:12 - loss: 0.9769922\n", + "1765/2000 [=========================>....] - ETA: 29:05 - loss: 0.9768554\n", + "543\n", + "491\n", + "852\n", + "1766/2000 [=========================>....] - ETA: 28:57 - loss: 0.976777\n", + "742\n", + "1767/2000 [=========================>....] - ETA: 28:50 - loss: 0.9767980\n", + "1768/2000 [=========================>....] - ETA: 28:42 - loss: 0.9766882\n", + "1769/2000 [=========================>....] - ETA: 28:35 - loss: 0.9767763\n", + "1770/2000 [=========================>....] - ETA: 28:27 - loss: 0.9766158\n", + "1771/2000 [=========================>....] - ETA: 28:20 - loss: 0.9767948\n", + "1772/2000 [=========================>....] - ETA: 28:12 - loss: 0.976774\n", + "926\n", + "1773/2000 [=========================>....] - ETA: 28:05 - loss: 0.9766206\n", + "1774/2000 [=========================>....] - ETA: 27:57 - loss: 0.9765794\n", + "1775/2000 [=========================>....] - ETA: 27:50 - loss: 0.9763266\n", + "1776/2000 [=========================>....] - ETA: 27:42 - loss: 0.9763129\n", + "1777/2000 [=========================>....] - ETA: 27:35 - loss: 0.9761356\n", + "1778/2000 [=========================>....] - ETA: 27:27 - loss: 0.9760229\n", + "1779/2000 [=========================>....] - ETA: 27:20 - loss: 0.975981\n", + "1780/2000 [=========================>....] - ETA: 27:12 - loss: 0.97572\n", + "197\n", + "1781/2000 [=========================>....] - ETA: 27:05 - loss: 0.9757894\n", + "1782/2000 [=========================>....] - ETA: 26:57 - loss: 0.9758588\n", + "487\n", + "600\n", + "700\n", + "1783/2000 [=========================>....] - ETA: 26:50 - loss: 0.9758186\n", + "1784/2000 [=========================>....] - ETA: 26:42 - loss: 0.9757578\n", + "291\n", + "1785/2000 [=========================>....] - ETA: 26:35 - loss: 0.9758636\n", + "616\n", + "666\n", + "85\n", + "1786/2000 [=========================>....] - ETA: 26:28 - loss: 0.9754633\n", + "820\n", + "1787/2000 [=========================>....] - ETA: 26:20 - loss: 0.9754181\n", + "1788/2000 [=========================>....] - ETA: 26:13 - loss: 0.9755950\n", + "1789/2000 [=========================>....] - ETA: 26:05 - loss: 0.9753900\n", + "1790/2000 [=========================>....] - ETA: 25:58 - loss: 0.9754364\n", + "1791/2000 [=========================>....] - ETA: 25:50 - loss: 0.9753459\n", + "654\n", + "870\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1792/2000 [=========================>....] - ETA: 25:43 - loss: 0.9753439\n", + "1793/2000 [=========================>....] - ETA: 25:36 - loss: 0.975198\n", + "1794/2000 [=========================>....] - ETA: 25:28 - loss: 0.9750663\n", + "523\n", + "901\n", + "1795/2000 [=========================>....] - ETA: 25:21 - loss: 0.9750168\n", + "1796/2000 [=========================>....] - ETA: 25:13 - loss: 0.9749312\n", + "1797/2000 [=========================>....] - ETA: 25:06 - loss: 0.9749850\n", + "1798/2000 [=========================>....] - ETA: 24:58 - loss: 0.9748660\n", + "202\n", + "1799/2000 [=========================>....] - ETA: 24:51 - loss: 0.9750592\n", + "221\n", + "1800/2000 [==========================>...] - ETA: 24:43 - loss: 0.974820\n", + "679\n", + "40\n", + "825\n", + "1801/2000 [==========================>...] - ETA: 24:36 - loss: 0.9748341\n", + "1802/2000 [==========================>...] - ETA: 24:29 - loss: 0.9747664\n", + "337\n", + "1803/2000 [==========================>...] - ETA: 24:22 - loss: 0.9745153\n", + "1804/2000 [==========================>...] - ETA: 24:14 - loss: 0.9743818\n", + "1805/2000 [==========================>...] - ETA: 24:06 - loss: 0.9742855\n", + "1806/2000 [==========================>...] - ETA: 23:59 - loss: 0.9742951\n", + "1807/2000 [==========================>...] - ETA: 23:52 - loss: 0.9740872\n", + "1808/2000 [==========================>...] - ETA: 23:44 - loss: 0.9741949\n", + "1809/2000 [==========================>...] - ETA: 23:37 - loss: 0.9739198\n", + "1810/2000 [==========================>...] - ETA: 23:29 - loss: 0.9740957\n", + "1811/2000 [==========================>...] - ETA: 23:22 - loss: 0.9739476\n", + "463\n", + "483\n", + "355\n", + "1812/2000 [==========================>...] - ETA: 23:15 - loss: 0.9739803\n", + "1813/2000 [==========================>...] - ETA: 23:07 - loss: 0.9740639\n", + "912\n", + "1814/2000 [==========================>...] - ETA: 23:00 - loss: 0.9740298\n", + "1815/2000 [==========================>...] - ETA: 22:53 - loss: 0.9740617\n", + "927\n", + "1816/2000 [==========================>...] - ETA: 22:46 - loss: 0.9743213\n", + "1817/2000 [==========================>...] - ETA: 22:38 - loss: 0.9742905\n", + "1818/2000 [==========================>...] - ETA: 22:31 - loss: 0.9743363\n", + "1819/2000 [==========================>...] - ETA: 22:23 - loss: 0.9741985\n", + "1820/2000 [==========================>...] - ETA: 22:16 - loss: 0.9743397\n", + "1821/2000 [==========================>...] - ETA: 22:09 - loss: 0.9744159\n", + "1822/2000 [==========================>...] - ETA: 22:01 - loss: 0.974287\n", + "1823/2000 [==========================>...] - ETA: 21:53 - loss: 0.9740830\n", + "1824/2000 [==========================>...] - ETA: 21:46 - loss: 0.9738510\n", + "75\n", + "670\n", + "369\n", + "1825/2000 [==========================>...] - ETA: 21:39 - loss: 0.973868\n", + "978\n", + "1826/2000 [==========================>...] - ETA: 21:31 - loss: 0.9738550\n", + "552\n", + "548\n", + "827\n", + "1827/2000 [==========================>...] - ETA: 21:24 - loss: 0.9736488\n", + "864\n", + "1828/2000 [==========================>...] - ETA: 21:17 - loss: 0.9737282\n", + "1829/2000 [==========================>...] - ETA: 21:09 - loss: 0.9735721\n", + "1830/2000 [==========================>...] - ETA: 21:02 - loss: 0.9734313\n", + "1831/2000 [==========================>...] - ETA: 20:54 - loss: 0.9734179\n", + "1832/2000 [==========================>...] - ETA: 20:47 - loss: 0.9740212\n", + "1833/2000 [==========================>...] - ETA: 20:39 - loss: 0.9742209\n", + "1834/2000 [==========================>...] - ETA: 20:32 - loss: 0.9742288\n", + "1835/2000 [==========================>...] - ETA: 20:25 - loss: 0.9743200\n", + "1836/2000 [==========================>...] - ETA: 20:17 - loss: 0.9743874\n", + "1837/2000 [==========================>...] - ETA: 20:10 - loss: 0.9742375\n", + "1838/2000 [==========================>...] - ETA: 20:02 - loss: 0.9744847\n", + "1839/2000 [==========================>...] - ETA: 19:55 - loss: 0.9742462\n", + "604\n", + "453\n", + "1840/2000 [==========================>...] - ETA: 19:48 - loss: 0.9741681\n", + "518\n", + "448\n", + "1841/2000 [==========================>...] - ETA: 19:40 - loss: 0.974094\n", + "1842/2000 [==========================>...] - ETA: 19:32 - loss: 0.9739428\n", + "1843/2000 [==========================>...] - ETA: 19:25 - loss: 0.9737192\n", + "1844/2000 [==========================>...] - ETA: 19:17 - loss: 0.9736657\n", + "646\n", + "318\n", + "1845/2000 [==========================>...] - ETA: 19:10 - loss: 0.9738696\n", + "1846/2000 [==========================>...] - ETA: 19:03 - loss: 0.9739699\n", + "1847/2000 [==========================>...] - ETA: 18:55 - loss: 0.9734542\n", + "689\n", + "42\n", + "649\n", + "889\n", + "1848/2000 [==========================>...] - ETA: 18:48 - loss: 0.9735801\n", + "1849/2000 [==========================>...] - ETA: 18:40 - loss: 0.9735731\n", + "1850/2000 [==========================>...] - ETA: 18:33 - loss: 0.9735340\n", + "1851/2000 [==========================>...] - ETA: 18:25 - loss: 0.9733610\n", + "111\n", + "1852/2000 [==========================>...] - ETA: 18:18 - loss: 0.9731766\n", + "1853/2000 [==========================>...] - ETA: 18:10 - loss: 0.972726\n", + "628\n", + "481\n", + "410\n", + "1854/2000 [==========================>...] - ETA: 18:03 - loss: 0.9727222\n", + "1855/2000 [==========================>...] - ETA: 17:55 - loss: 0.9726125\n", + "1856/2000 [==========================>...] - ETA: 17:48 - loss: 0.9724372\n", + "1857/2000 [==========================>...] - ETA: 17:40 - loss: 0.9725734\n", + "1858/2000 [==========================>...] - ETA: 17:33 - loss: 0.9721865\n", + "1859/2000 [==========================>...] - ETA: 17:25 - loss: 0.9722430\n", + "1860/2000 [==========================>...] - ETA: 17:18 - loss: 0.9719764\n", + "1861/2000 [==========================>...] - ETA: 17:10 - loss: 0.9720148\n", + "1862/2000 [==========================>...] - ETA: 17:02 - loss: 0.9720435\n", + "1863/2000 [==========================>...] - ETA: 16:55 - loss: 0.9719873\n", + "1864/2000 [==========================>...] - ETA: 16:48 - loss: 0.9718733\n", + "1865/2000 [==========================>...] - ETA: 16:40 - loss: 0.9719227\n", + "1866/2000 [==========================>...] - ETA: 16:33 - loss: 0.9720774\n", + "1867/2000 [===========================>..] - ETA: 16:25 - loss: 0.9719720\n", + "1868/2000 [===========================>..] - ETA: 16:18 - loss: 0.9716671\n", + "813\n", + "1869/2000 [===========================>..] - ETA: 16:10 - loss: 0.9716122\n", + "1870/2000 [===========================>..] - ETA: 16:03 - loss: 0.9716108\n", + "1871/2000 [===========================>..] - ETA: 15:55 - loss: 0.9716348\n", + "1872/2000 [===========================>..] - ETA: 15:48 - loss: 0.971838\n", + "336\n", + "1873/2000 [===========================>..] - ETA: 15:40 - loss: 0.9717126\n", + "1874/2000 [===========================>..] - ETA: 15:33 - loss: 0.9715911\n", + "1875/2000 [===========================>..] - ETA: 15:25 - loss: 0.9714892\n", + "1876/2000 [===========================>..] - ETA: 15:18 - loss: 0.9713619\n", + "396\n", + "1877/2000 [===========================>..] - ETA: 15:10 - loss: 0.9714537\n", + "984\n", + "1878/2000 [===========================>..] - ETA: 15:03 - loss: 0.9713656\n", + "737\n", + "1879/2000 [===========================>..] - ETA: 14:56 - loss: 0.9712174\n", + "1880/2000 [===========================>..] - ETA: 14:48 - loss: 0.9712511\n", + "652\n", + "217\n", + "1881/2000 [===========================>..] - ETA: 14:41 - loss: 0.9710446\n", + "1882/2000 [===========================>..] - ETA: 14:33 - loss: 0.9708404\n", + "1883/2000 [===========================>..] - ETA: 14:26 - loss: 0.9708460\n", + "770\n", + "1884/2000 [===========================>..] - ETA: 14:18 - loss: 0.9705134\n", + "1885/2000 [===========================>..] - ETA: 14:11 - loss: 0.9704810\n", + "1886/2000 [===========================>..] - ETA: 14:03 - loss: 0.9704736\n", + "1887/2000 [===========================>..] - ETA: 13:56 - loss: 0.9701807\n", + "1888/2000 [===========================>..] - ETA: 13:48 - loss: 0.9701727\n", + "1889/2000 [===========================>..] - ETA: 13:41 - loss: 0.9701449\n", + "1890/2000 [===========================>..] - ETA: 13:33 - loss: 0.9700762\n", + "1891/2000 [===========================>..] - ETA: 13:26 - loss: 0.969844\n", + "102\n", + "1892/2000 [===========================>..] - ETA: 13:18 - loss: 0.9697880\n", + "1893/2000 [===========================>..] - ETA: 13:11 - loss: 0.9697147\n", + "1894/2000 [===========================>..] - ETA: 13:03 - loss: 0.9695323\n", + "1895/2000 [===========================>..] - ETA: 12:56 - loss: 0.9694474\n", + "583\n", + "249\n", + "1896/2000 [===========================>..] - ETA: 12:49 - loss: 0.9693674\n", + "749\n", + "1897/2000 [===========================>..] - ETA: 12:41 - loss: 0.969558\n", + "621\n", + "856\n", + "1898/2000 [===========================>..] - ETA: 12:34 - loss: 0.9693420\n", + "1899/2000 [===========================>..] - ETA: 12:26 - loss: 0.9694361\n", + "1900/2000 [===========================>..] - ETA: 12:19 - loss: 0.9694390\n", + "1901/2000 [===========================>..] - ETA: 12:12 - loss: 0.9694607\n", + "642\n", + "613\n", + "596\n", + "781\n", + "1902/2000 [===========================>..] - ETA: 12:04 - loss: 0.9693788\n", + "1903/2000 [===========================>..] - ETA: 11:57 - loss: 0.9688208\n", + "1904/2000 [===========================>..] - ETA: 11:49 - loss: 0.9689769\n", + "1905/2000 [===========================>..] - ETA: 11:42 - loss: 0.9684986\n", + "1906/2000 [===========================>..] - ETA: 11:34 - loss: 0.9684886\n", + "1907/2000 [===========================>..] - ETA: 11:27 - loss: 0.9684909\n", + "1908/2000 [===========================>..] - ETA: 11:20 - loss: 0.9683751\n", + "1909/2000 [===========================>..] - ETA: 11:12 - loss: 0.9679223\n", + "1910/2000 [===========================>..] - ETA: 11:05 - loss: 0.9679335\n", + "1911/2000 [===========================>..] - ETA: 10:57 - loss: 0.9678321\n", + "1912/2000 [===========================>..] - ETA: 10:50 - loss: 0.9677534\n", + "544\n", + "863\n", + "1913/2000 [===========================>..] - ETA: 10:43 - loss: 0.9677868\n", + "1914/2000 [===========================>..] - ETA: 10:35 - loss: 0.9676598\n", + "746\n", + "1915/2000 [===========================>..] - ETA: 10:28 - loss: 0.9679665\n", + "84\n", + "1916/2000 [===========================>..] - ETA: 10:20 - loss: 0.9676859\n", + "1917/2000 [===========================>..] - ETA: 10:13 - loss: 0.9675184\n", + "1918/2000 [===========================>..] - ETA: 10:05 - loss: 0.9674606\n", + "833\n", + "1919/2000 [===========================>..] - ETA: 9:58 - loss: 0.9672 913\n", + "1920/2000 [===========================>..] - ETA: 9:51 - loss: 0.9674505\n", + "602\n", + "585\n", + "233\n", + "1921/2000 [===========================>..] - ETA: 9:43 - loss: 0.9673508\n", + "172\n", + "1922/2000 [===========================>..] - ETA: 9:36 - loss: 0.9670714\n", + "1923/2000 [===========================>..] - ETA: 9:28 - loss: 0.9673702\n", + "1924/2000 [===========================>..] - ETA: 9:21 - loss: 0.9675906\n", + "1925/2000 [===========================>..] - ETA: 9:13 - loss: 0.9674790\n", + "1926/2000 [===========================>..] - ETA: 9:06 - loss: 0.9670744\n", + "1927/2000 [===========================>..] - ETA: 8:59 - loss: 0.9675719\n", + "1928/2000 [===========================>..] - ETA: 8:51 - loss: 0.9673685\n", + "609\n", + "268\n", + "1929/2000 [===========================>..] - ETA: 8:44 - loss: 0.9676443\n", + "1930/2000 [===========================>..] - ETA: 8:36 - loss: 0.9675579\n", + "342\n", + "1931/2000 [===========================>..] - ETA: 8:29 - loss: 0.9675694\n", + "1932/2000 [===========================>..] - ETA: 8:22 - loss: 0.9676697\n", + "1933/2000 [===========================>..] - ETA: 8:14 - loss: 0.9675310\n", + "1934/2000 [============================>.] - ETA: 8:07 - loss: 0.9675119\n", + "1935/2000 [============================>.] - ETA: 7:59 - loss: 0.9676113\n", + "1936/2000 [============================>.] - ETA: 7:52 - loss: 0.9673571\n", + "71\n", + "254\n", + "1937/2000 [============================>.] - ETA: 7:44 - loss: 0.9675239\n", + "1938/2000 [============================>.] - ETA: 7:37 - loss: 0.9675776\n", + "1939/2000 [============================>.] - ETA: 7:30 - loss: 0.9672259\n", + "1940/2000 [============================>.] - ETA: 7:22 - loss: 0.9671935\n", + "1941/2000 [============================>.] - ETA: 7:15 - loss: 0.9672440\n", + "1942/2000 [============================>.] - ETA: 7:07 - loss: 0.9669970\n", + "1943/2000 [============================>.] - ETA: 7:00 - loss: 0.9669193\n", + "1944/2000 [============================>.] - ETA: 6:53 - loss: 0.9668718\n", + "1945/2000 [============================>.] - ETA: 6:45 - loss: 0.9669795\n", + "1946/2000 [============================>.] - ETA: 6:38 - loss: 0.96686\n", + "362\n", + "1947/2000 [============================>.] - ETA: 6:30 - loss: 0.9667849\n", + "1948/2000 [============================>.] - ETA: 6:23 - loss: 0.9665279\n", + "1949/2000 [============================>.] - ETA: 6:16 - loss: 0.9665144\n", + "1950/2000 [============================>.] - ETA: 6:08 - loss: 0.9662155\n", + "1951/2000 [============================>.] - ETA: 6:01 - loss: 0.9659851\n", + "1952/2000 [============================>.] - ETA: 5:53 - loss: 0.9659383\n", + "1953/2000 [============================>.] - ETA: 5:46 - loss: 0.9658831\n", + "1954/2000 [============================>.] - ETA: 5:39 - loss: 0.9656695\n", + "1955/2000 [============================>.] - ETA: 5:31 - loss: 0.9660676\n", + "403\n", + "1956/2000 [============================>.] - ETA: 5:24 - loss: 0.9660615\n", + "752\n", + "1957/2000 [============================>.] - ETA: 5:16 - loss: 0.9658967\n", + "1958/2000 [============================>.] - ETA: 5:09 - loss: 0.9657311\n", + "1959/2000 [============================>.] - ETA: 5:02 - loss: 0.9657881\n", + "1960/2000 [============================>.] - ETA: 4:54 - loss: 0.9657423\n", + "1961/2000 [============================>.] - ETA: 4:47 - loss: 0.9657520\n", + "932\n", + "1962/2000 [============================>.] - ETA: 4:40 - loss: 0.9658823\n", + "1963/2000 [============================>.] - ETA: 4:32 - loss: 0.9658682\n", + "651\n", + "632\n", + "250\n", + "1964/2000 [============================>.] - ETA: 4:25 - loss: 0.9658576\n", + "243\n", + "1965/2000 [============================>.] - ETA: 4:18 - loss: 0.9658240\n", + "1966/2000 [============================>.] - ETA: 4:10 - loss: 0.9657844\n", + "1967/2000 [============================>.] - ETA: 4:03 - loss: 0.9655354\n", + "1968/2000 [============================>.] - ETA: 3:55 - loss: 0.9654897\n", + "1969/2000 [============================>.] - ETA: 3:48 - loss: 0.9654391\n", + "1970/2000 [============================>.] - ETA: 3:41 - loss: 0.9653399\n", + "1971/2000 [============================>.] - ETA: 3:33 - loss: 0.9654725\n", + "1972/2000 [============================>.] - ETA: 3:26 - loss: 0.9655946\n", + "1973/2000 [============================>.] - ETA: 3:18 - loss: 0.9653160\n", + "1974/2000 [============================>.] - ETA: 3:11 - loss: 0.965390\n", + "1975/2000 [============================>.] - ETA: 3:04 - loss: 0.9653832\n", + "1976/2000 [============================>.] - ETA: 2:56 - loss: 0.9652773\n", + "1977/2000 [============================>.] - ETA: 2:49 - loss: 0.9652308\n", + "1978/2000 [============================>.] - ETA: 2:42 - loss: 0.9652371\n", + "1979/2000 [============================>.] - ETA: 2:34 - loss: 0.9652319\n", + "1980/2000 [============================>.] - ETA: 2:27 - loss: 0.9651218\n", + "1981/2000 [============================>.] - ETA: 2:19 - loss: 0.965159\n", + "815\n", + "1982/2000 [============================>.] - ETA: 2:12 - loss: 0.9651246\n", + "1983/2000 [============================>.] - ETA: 2:05 - loss: 0.9651782\n", + "1984/2000 [============================>.] - ETA: 1:57 - loss: 0.9649860\n", + "1985/2000 [============================>.] - ETA: 1:50 - loss: 0.9649322\n", + "1986/2000 [============================>.] - ETA: 1:43 - loss: 0.9648937\n", + "1987/2000 [============================>.] - ETA: 1:35 - loss: 0.9650667\n", + "983\n", + "1988/2000 [============================>.] - ETA: 1:28 - loss: 0.965099\n", + "1989/2000 [============================>.] - ETA: 1:21 - loss: 0.9646739\n", + "1990/2000 [============================>.] - ETA: 1:13 - loss: 0.9643309\n", + "1991/2000 [============================>.] - ETA: 1:06 - loss: 0.9642359\n", + "1992/2000 [============================>.] - ETA: 58s - loss: 0.9644 704\n", + "1993/2000 [============================>.] - ETA: 51s - loss: 0.9642422\n", + "1994/2000 [============================>.] - ETA: 44s - loss: 0.9641190\n", + "1995/2000 [============================>.] - ETA: 36s - loss: 0.9639893\n", + "1996/2000 [============================>.] - ETA: 29s - loss: 0.9639263\n", + "1997/2000 [============================>.] - ETA: 22s - loss: 0.963847\n", + "349\n", + "1998/2000 [============================>.] - ETA: 14s - loss: 0.9638339\n", + "1999/2000 [============================>.] - ETA: 7s - loss: 0.9637 320\n", + "2000/2000 [==============================] - 14729s 7s/step - loss: 0.9637 - val_loss: 1.2147\n" + ] + } + ], + "source": [ + "# Train the head branches\n", + "# Passing layers=\"heads\" freezes all layers except the head\n", + "# layers. You can also pass a regular expression to select\n", + "# which layers to train by name pattern.\n", + "model.train(dataset_train, dataset_val, \n", + " learning_rate=config.LEARNING_RATE, \n", + " epochs=2, \n", + " layers='heads') #epochs = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "xX4PLFP5Bxzi" + }, + "outputs": [], + "source": [ + "# Save weights\n", + "# Typically not needed because callbacks save after every epoch\n", + "# Uncomment to save manually\n", + "# resetDataDir()\n", + "# model_path = os.path.join(MODEL_DIR, \"mask_rcnn_shapes_A4_Ch01_E=5_fine.h5\")\n", + "# model.keras_model.save_weights(model_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "aGQVL2EiBxzi", + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Starting at epoch 2. LR=0.0001\n", + "\n", + "Checkpoint Path: C:\\Users\\dal4019\\Documents\\Bst_Reg\\weights\\brain20230410T0822\\mask_rcnn_brain_{epoch:04d}.h5\n", + "Selecting layers to train\n", + "conv1 (Conv2D)\n", + "bn_conv1 (BatchNorm)\n", + "res2a_branch2a (Conv2D)\n", + "bn2a_branch2a (BatchNorm)\n", + "res2a_branch2b (Conv2D)\n", + "bn2a_branch2b (BatchNorm)\n", + "res2a_branch2c (Conv2D)\n", + "res2a_branch1 (Conv2D)\n", + "bn2a_branch2c (BatchNorm)\n", + "bn2a_branch1 (BatchNorm)\n", + "res2b_branch2a (Conv2D)\n", + "bn2b_branch2a (BatchNorm)\n", + "res2b_branch2b (Conv2D)\n", + "bn2b_branch2b (BatchNorm)\n", + "res2b_branch2c (Conv2D)\n", + "bn2b_branch2c (BatchNorm)\n", + "res2c_branch2a (Conv2D)\n", + "bn2c_branch2a (BatchNorm)\n", + "res2c_branch2b (Conv2D)\n", + "bn2c_branch2b (BatchNorm)\n", + "res2c_branch2c (Conv2D)\n", + "bn2c_branch2c (BatchNorm)\n", + "res3a_branch2a (Conv2D)\n", + "bn3a_branch2a (BatchNorm)\n", + "res3a_branch2b (Conv2D)\n", + "bn3a_branch2b (BatchNorm)\n", + "res3a_branch2c (Conv2D)\n", + "res3a_branch1 (Conv2D)\n", + "bn3a_branch2c (BatchNorm)\n", + "bn3a_branch1 (BatchNorm)\n", + "res3b_branch2a (Conv2D)\n", + "bn3b_branch2a (BatchNorm)\n", + "res3b_branch2b (Conv2D)\n", + "bn3b_branch2b (BatchNorm)\n", + "res3b_branch2c (Conv2D)\n", + "bn3b_branch2c (BatchNorm)\n", + "res3c_branch2a (Conv2D)\n", + "bn3c_branch2a (BatchNorm)\n", + "res3c_branch2b (Conv2D)\n", + "bn3c_branch2b (BatchNorm)\n", + "res3c_branch2c (Conv2D)\n", + "bn3c_branch2c (BatchNorm)\n", + "res3d_branch2a (Conv2D)\n", + "bn3d_branch2a (BatchNorm)\n", + "res3d_branch2b (Conv2D)\n", + "bn3d_branch2b (BatchNorm)\n", + "res3d_branch2c (Conv2D)\n", + "bn3d_branch2c (BatchNorm)\n", + "res4a_branch2a (Conv2D)\n", + "bn4a_branch2a (BatchNorm)\n", + "res4a_branch2b (Conv2D)\n", + "bn4a_branch2b (BatchNorm)\n", + "res4a_branch2c (Conv2D)\n", + "res4a_branch1 (Conv2D)\n", + "bn4a_branch2c (BatchNorm)\n", + "bn4a_branch1 (BatchNorm)\n", + "res4b_branch2a (Conv2D)\n", + "bn4b_branch2a (BatchNorm)\n", + "res4b_branch2b (Conv2D)\n", + "bn4b_branch2b (BatchNorm)\n", + "res4b_branch2c (Conv2D)\n", + "bn4b_branch2c (BatchNorm)\n", + "res4c_branch2a (Conv2D)\n", + "bn4c_branch2a (BatchNorm)\n", + "res4c_branch2b (Conv2D)\n", + "bn4c_branch2b (BatchNorm)\n", + "res4c_branch2c (Conv2D)\n", + "bn4c_branch2c (BatchNorm)\n", + "res4d_branch2a (Conv2D)\n", + "bn4d_branch2a (BatchNorm)\n", + "res4d_branch2b (Conv2D)\n", + "bn4d_branch2b (BatchNorm)\n", + "res4d_branch2c (Conv2D)\n", + "bn4d_branch2c (BatchNorm)\n", + "res4e_branch2a (Conv2D)\n", + "bn4e_branch2a (BatchNorm)\n", + "res4e_branch2b (Conv2D)\n", + "bn4e_branch2b (BatchNorm)\n", + "res4e_branch2c (Conv2D)\n", + "bn4e_branch2c (BatchNorm)\n", + "res4f_branch2a (Conv2D)\n", + "bn4f_branch2a (BatchNorm)\n", + "res4f_branch2b (Conv2D)\n", + "bn4f_branch2b (BatchNorm)\n", + "res4f_branch2c (Conv2D)\n", + "bn4f_branch2c (BatchNorm)\n", + "res4g_branch2a (Conv2D)\n", + "bn4g_branch2a (BatchNorm)\n", + "res4g_branch2b (Conv2D)\n", + "bn4g_branch2b (BatchNorm)\n", + "res4g_branch2c (Conv2D)\n", + "bn4g_branch2c (BatchNorm)\n", + "res4h_branch2a (Conv2D)\n", + "bn4h_branch2a (BatchNorm)\n", + "res4h_branch2b (Conv2D)\n", + "bn4h_branch2b (BatchNorm)\n", + "res4h_branch2c (Conv2D)\n", + "bn4h_branch2c (BatchNorm)\n", + "res4i_branch2a (Conv2D)\n", + "bn4i_branch2a (BatchNorm)\n", + "res4i_branch2b (Conv2D)\n", + "bn4i_branch2b (BatchNorm)\n", + "res4i_branch2c (Conv2D)\n", + "bn4i_branch2c (BatchNorm)\n", + "res4j_branch2a (Conv2D)\n", + "bn4j_branch2a (BatchNorm)\n", + "res4j_branch2b (Conv2D)\n", + "bn4j_branch2b (BatchNorm)\n", + "res4j_branch2c (Conv2D)\n", + "bn4j_branch2c (BatchNorm)\n", + "res4k_branch2a (Conv2D)\n", + "bn4k_branch2a (BatchNorm)\n", + "res4k_branch2b (Conv2D)\n", + "bn4k_branch2b (BatchNorm)\n", + "res4k_branch2c (Conv2D)\n", + "bn4k_branch2c (BatchNorm)\n", + "res4l_branch2a (Conv2D)\n", + "bn4l_branch2a (BatchNorm)\n", + "res4l_branch2b (Conv2D)\n", + "bn4l_branch2b (BatchNorm)\n", + "res4l_branch2c (Conv2D)\n", + "bn4l_branch2c (BatchNorm)\n", + "res4m_branch2a (Conv2D)\n", + "bn4m_branch2a (BatchNorm)\n", + "res4m_branch2b (Conv2D)\n", + "bn4m_branch2b (BatchNorm)\n", + "res4m_branch2c (Conv2D)\n", + "bn4m_branch2c (BatchNorm)\n", + "res4n_branch2a (Conv2D)\n", + "bn4n_branch2a (BatchNorm)\n", + "res4n_branch2b (Conv2D)\n", + "bn4n_branch2b (BatchNorm)\n", + "res4n_branch2c (Conv2D)\n", + "bn4n_branch2c (BatchNorm)\n", + "res4o_branch2a (Conv2D)\n", + "bn4o_branch2a (BatchNorm)\n", + "res4o_branch2b (Conv2D)\n", + "bn4o_branch2b (BatchNorm)\n", + "res4o_branch2c (Conv2D)\n", + "bn4o_branch2c (BatchNorm)\n", + "res4p_branch2a (Conv2D)\n", + "bn4p_branch2a (BatchNorm)\n", + "res4p_branch2b (Conv2D)\n", + "bn4p_branch2b (BatchNorm)\n", + "res4p_branch2c (Conv2D)\n", + "bn4p_branch2c (BatchNorm)\n", + "res4q_branch2a (Conv2D)\n", + "bn4q_branch2a (BatchNorm)\n", + "res4q_branch2b (Conv2D)\n", + "bn4q_branch2b (BatchNorm)\n", + "res4q_branch2c (Conv2D)\n", + "bn4q_branch2c (BatchNorm)\n", + "res4r_branch2a (Conv2D)\n", + "bn4r_branch2a (BatchNorm)\n", + "res4r_branch2b (Conv2D)\n", + "bn4r_branch2b (BatchNorm)\n", + "res4r_branch2c (Conv2D)\n", + "bn4r_branch2c (BatchNorm)\n", + "res4s_branch2a (Conv2D)\n", + "bn4s_branch2a (BatchNorm)\n", + "res4s_branch2b (Conv2D)\n", + "bn4s_branch2b (BatchNorm)\n", + "res4s_branch2c (Conv2D)\n", + "bn4s_branch2c (BatchNorm)\n", + "res4t_branch2a (Conv2D)\n", + "bn4t_branch2a (BatchNorm)\n", + "res4t_branch2b (Conv2D)\n", + "bn4t_branch2b (BatchNorm)\n", + "res4t_branch2c (Conv2D)\n", + "bn4t_branch2c (BatchNorm)\n", + "res4u_branch2a (Conv2D)\n", + "bn4u_branch2a (BatchNorm)\n", + "res4u_branch2b (Conv2D)\n", + "bn4u_branch2b (BatchNorm)\n", + "res4u_branch2c (Conv2D)\n", + "bn4u_branch2c (BatchNorm)\n", + "res4v_branch2a (Conv2D)\n", + "bn4v_branch2a (BatchNorm)\n", + "res4v_branch2b (Conv2D)\n", + "bn4v_branch2b (BatchNorm)\n", + "res4v_branch2c (Conv2D)\n", + "bn4v_branch2c (BatchNorm)\n", + "res4w_branch2a (Conv2D)\n", + "bn4w_branch2a (BatchNorm)\n", + "res4w_branch2b (Conv2D)\n", + "bn4w_branch2b (BatchNorm)\n", + "res4w_branch2c (Conv2D)\n", + "bn4w_branch2c (BatchNorm)\n", + "res5a_branch2a (Conv2D)\n", + "bn5a_branch2a (BatchNorm)\n", + "res5a_branch2b (Conv2D)\n", + "bn5a_branch2b (BatchNorm)\n", + "res5a_branch2c (Conv2D)\n", + "res5a_branch1 (Conv2D)\n", + "bn5a_branch2c (BatchNorm)\n", + "bn5a_branch1 (BatchNorm)\n", + "res5b_branch2a (Conv2D)\n", + "bn5b_branch2a (BatchNorm)\n", + "res5b_branch2b (Conv2D)\n", + "bn5b_branch2b (BatchNorm)\n", + "res5b_branch2c (Conv2D)\n", + "bn5b_branch2c (BatchNorm)\n", + "res5c_branch2a (Conv2D)\n", + "bn5c_branch2a (BatchNorm)\n", + "res5c_branch2b (Conv2D)\n", + "bn5c_branch2b (BatchNorm)\n", + "res5c_branch2c (Conv2D)\n", + "bn5c_branch2c (BatchNorm)\n", + "fpn_c5p5 (Conv2D)\n", + "fpn_c4p4 (Conv2D)\n", + "fpn_c3p3 (Conv2D)\n", + "fpn_c2p2 (Conv2D)\n", + "fpn_p5 (Conv2D)\n", + "fpn_p2 (Conv2D)\n", + "fpn_p3 (Conv2D)\n", + "fpn_p4 (Conv2D)\n", + "In model: rpn_model\n", + " rpn_conv_shared (Conv2D)\n", + " rpn_class_raw (Conv2D)\n", + " rpn_bbox_pred (Conv2D)\n", + "mrcnn_mask_conv1 (TimeDistributed)\n", + "mrcnn_mask_bn1 (TimeDistributed)\n", + "mrcnn_mask_conv2 (TimeDistributed)\n", + "mrcnn_mask_bn2 (TimeDistributed)\n", + "mrcnn_class_conv1 (TimeDistributed)\n", + "mrcnn_class_bn1 (TimeDistributed)\n", + "mrcnn_mask_conv3 (TimeDistributed)\n", + "mrcnn_mask_bn3 (TimeDistributed)\n", + "mrcnn_class_conv2 (TimeDistributed)\n", + "mrcnn_class_bn2 (TimeDistributed)\n", + "mrcnn_mask_conv4 (TimeDistributed)\n", + "mrcnn_mask_bn4 (TimeDistributed)\n", + "mrcnn_bbox_fc (TimeDistributed)\n", + "mrcnn_mask_deconv (TimeDistributed)\n", + "mrcnn_class_logits (TimeDistributed)\n", + "mrcnn_mask (TimeDistributed)\n", + "99\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\tensorflow_core\\python\\framework\\indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", + " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n", + "C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\tensorflow_core\\python\\framework\\indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", + " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n", + "C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\tensorflow_core\\python\\framework\\indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", + " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3/3\n", + "159\n", + "original image shape: (7000, 7000, 3)\n", + " 1/2000 [..............................] - ETA: 30:58:24 - loss: 0.083631\n", + "original image shape: (7000, 7000, 3)\n", + "158\n", + "original image shape: (7000, 7000, 3)\n", + " 2/2000 [..............................] - ETA: 26:01:56 - loss: 0.083395\n", + "original image shape: (7000, 7000, 3)\n", + " 3/2000 [..............................] - ETA: 24:10:54 - loss: 0.0614308\n", + "original image shape: (7000, 7000, 3)\n", + " 4/2000 [..............................] - ETA: 23:54:20 - loss: 0.1833349\n", + "original image shape: (7000, 7000, 3)\n", + " 5/2000 [..............................] - ETA: 23:46:26 - loss: 0.3534914\n", + "original image shape: (7000, 7000, 3)\n", + " 6/2000 [..............................] - ETA: 23:29:41 - loss: 0.4482420\n", + "original image shape: (7000, 7000, 3)\n", + " 7/2000 [..............................] - ETA: 23:18:51 - loss: 0.500217\n", + "original image shape: (7000, 7000, 3)\n", + "161\n", + "original image shape: (7000, 7000, 3)\n", + " 8/2000 [..............................] - ETA: 23:18:17 - loss: 0.4631819\n", + "original image shape: (7000, 7000, 3)\n", + " 9/2000 [..............................] - ETA: 23:19:47 - loss: 0.4787360\n", + "original image shape: (7000, 7000, 3)\n", + " 10/2000 [..............................] - ETA: 23:24:41 - loss: 0.4983494\n", + "original image shape: (7000, 7000, 3)\n", + "4\n", + "original image shape: (7000, 7000, 3)\n", + "313\n", + "original image shape: (7000, 7000, 3)\n", + " 11/2000 [..............................] - ETA: 23:32:11 - loss: 0.5158979\n", + "original image shape: (7000, 7000, 3)\n", + " 12/2000 [..............................] - ETA: 23:26:46 - loss: 0.5396230\n", + "original image shape: (7000, 7000, 3)\n", + " 13/2000 [..............................] - ETA: 23:28:02 - loss: 0.5374909\n", + "original image shape: (7000, 7000, 3)\n", + " 14/2000 [..............................] - ETA: 23:27:42 - loss: 0.5457972\n", + "original image shape: (7000, 7000, 3)\n", + " 15/2000 [..............................] - ETA: 23:27:38 - loss: 0.5727107\n", + "original image shape: (7000, 7000, 3)\n", + " 16/2000 [..............................] - ETA: 23:09:55 - loss: 0.5415259\n", + "original image shape: (7000, 7000, 3)\n", + " 17/2000 [..............................] - ETA: 22:59:50 - loss: 0.5590683\n", + "original image shape: (7000, 7000, 3)\n", + "48\n", + "original image shape: (7000, 7000, 3)\n", + "424\n", + "original image shape: (7000, 7000, 3)\n", + " 18/2000 [..............................] - ETA: 22:50:59 - loss: 0.5691265\n", + "original image shape: (7000, 7000, 3)\n", + " 19/2000 [..............................] - ETA: 22:28:41 - loss: 0.5838949\n", + "original image shape: (7000, 7000, 3)\n", + " 20/2000 [..............................] - ETA: 22:21:31 - loss: 0.5861788\n", + "original image shape: (7000, 7000, 3)\n", + " 21/2000 [..............................] - ETA: 22:11:22 - loss: 0.5790188\n", + "original image shape: (7000, 7000, 3)\n", + " 22/2000 [..............................] - ETA: 22:04:02 - loss: 0.5705944\n", + "original image shape: (7000, 7000, 3)\n", + " 23/2000 [..............................] - ETA: 21:58:59 - loss: 0.5782252\n", + "original image shape: (7000, 7000, 3)\n", + " 24/2000 [..............................] - ETA: 21:54:20 - loss: 0.5962129\n", + "original image shape: (7000, 7000, 3)\n", + " 25/2000 [..............................] - ETA: 21:46:41 - loss: 0.5915576\n", + "original image shape: (7000, 7000, 3)\n", + "187\n", + "original image shape: (7000, 7000, 3)\n", + " 26/2000 [..............................] - ETA: 21:42:20 - loss: 0.5972700\n", + "original image shape: (7000, 7000, 3)\n", + " 27/2000 [..............................] - ETA: 21:35:45 - loss: 0.5845723\n", + "original image shape: (7000, 7000, 3)\n", + " 28/2000 [..............................] - ETA: 21:29:17 - loss: 0.5697197\n", + "original image shape: (7000, 7000, 3)\n", + " 29/2000 [..............................] - ETA: 21:25:06 - loss: 0.5752835\n", + "original image shape: (7000, 7000, 3)\n", + " 30/2000 [..............................] - ETA: 21:21:28 - loss: 0.5839675\n", + "original image shape: (7000, 7000, 3)\n", + "310\n", + "original image shape: (7000, 7000, 3)\n", + " 31/2000 [..............................] - ETA: 21:19:51 - loss: 0.578624\n", + "original image shape: (7000, 7000, 3)\n", + "154\n", + "original image shape: (7000, 7000, 3)\n", + " 32/2000 [..............................] - ETA: 21:14:50 - loss: 0.6056968\n", + "original image shape: (7000, 7000, 3)\n", + " 33/2000 [..............................] - ETA: 21:12:00 - loss: 0.6074752\n", + "original image shape: (7000, 7000, 3)\n", + " 34/2000 [..............................] - ETA: 21:07:20 - loss: 0.6129540\n", + "original image shape: (7000, 7000, 3)\n", + "83\n", + "original image shape: (7000, 7000, 3)\n", + " 35/2000 [..............................] - ETA: 21:02:56 - loss: 0.6192850\n", + "original image shape: (7000, 7000, 3)\n", + " 36/2000 [..............................] - ETA: 21:00:22 - loss: 0.62583\n", + "original image shape: (7000, 7000, 3)\n", + "754\n", + "original image shape: (7000, 7000, 3)\n", + " 37/2000 [..............................] - ETA: 20:56:52 - loss: 0.6336258\n", + "original image shape: (7000, 7000, 3)\n", + " 38/2000 [..............................] - ETA: 20:55:20 - loss: 0.6465606\n", + "original image shape: (7000, 7000, 3)\n", + "538\n", + "original image shape: (7000, 7000, 3)\n", + "809\n", + "original image shape: (7000, 7000, 3)\n", + " 39/2000 [..............................] - ETA: 20:53:10 - loss: 0.6385413\n", + "original image shape: (7000, 7000, 3)\n", + " 40/2000 [..............................] - ETA: 20:50:39 - loss: 0.6442691\n", + "original image shape: (7000, 7000, 3)\n", + "160\n", + "original image shape: (7000, 7000, 3)\n", + " 41/2000 [..............................] - ETA: 20:47:40 - loss: 0.631528\n", + "original image shape: (7000, 7000, 3)\n", + "544\n", + "original image shape: (7000, 7000, 3)\n", + "714\n", + "original image shape: (7000, 7000, 3)\n", + " 42/2000 [..............................] - ETA: 20:44:56 - loss: 0.6215351\n", + "original image shape: (7000, 7000, 3)\n", + " 43/2000 [..............................] - ETA: 20:43:17 - loss: 0.6228500\n", + "original image shape: (7000, 7000, 3)\n", + "510\n", + "original image shape: (7000, 7000, 3)\n", + "817\n", + "original image shape: (7000, 7000, 3)\n", + " 44/2000 [..............................] - ETA: 20:38:27 - loss: 0.6212712\n", + "original image shape: (7000, 7000, 3)\n", + " 45/2000 [..............................] - ETA: 20:31:52 - loss: 0.6158924\n", + "original image shape: (7000, 7000, 3)\n", + " 46/2000 [..............................] - ETA: 20:30:55 - loss: 0.6137110\n", + "original image shape: (7000, 7000, 3)\n", + " 47/2000 [..............................] - ETA: 20:27:59 - loss: 0.6120366\n", + "original image shape: (7000, 7000, 3)\n", + " 48/2000 [..............................] - ETA: 20:26:43 - loss: 0.6256650\n", + "original image shape: (7000, 7000, 3)\n", + "243\n", + "original image shape: (7000, 7000, 3)\n", + " 49/2000 [..............................] - ETA: 20:25:59 - loss: 0.6320493\n", + "original image shape: (7000, 7000, 3)\n", + "845\n", + "original image shape: (7000, 7000, 3)\n", + " 50/2000 [..............................] - ETA: 20:24:42 - loss: 0.6373421\n", + "original image shape: (7000, 7000, 3)\n", + " 51/2000 [..............................] - ETA: 20:23:16 - loss: 0.6392703\n", + "original image shape: (7000, 7000, 3)\n", + " 52/2000 [..............................] - ETA: 20:20:30 - loss: 0.6436456\n", + "original image shape: (7000, 7000, 3)\n", + "383\n", + "original image shape: (7000, 7000, 3)\n", + " 53/2000 [..............................] - ETA: 20:19:35 - loss: 0.646352\n", + "original image shape: (7000, 7000, 3)\n", + "405\n", + "original image shape: (7000, 7000, 3)\n", + " 54/2000 [..............................] - ETA: 20:18:53 - loss: 0.6535678\n", + "original image shape: (7000, 7000, 3)\n", + "287\n", + "original image shape: (7000, 7000, 3)\n", + " 55/2000 [..............................] - ETA: 20:18:56 - loss: 0.6633469\n", + "original image shape: (7000, 7000, 3)\n", + "283\n", + "original image shape: (7000, 7000, 3)\n", + " 56/2000 [..............................] - ETA: 20:18:46 - loss: 0.6613818\n", + "original image shape: (7000, 7000, 3)\n", + " 57/2000 [..............................] - ETA: 20:17:35 - loss: 0.6600472\n", + "original image shape: (7000, 7000, 3)\n", + "751\n", + "original image shape: (7000, 7000, 3)\n", + " 58/2000 [..............................] - ETA: 20:15:25 - loss: 0.6598122\n", + "original image shape: (7000, 7000, 3)\n", + " 59/2000 [..............................] - ETA: 20:12:58 - loss: 0.6550408\n", + "original image shape: (7000, 7000, 3)\n", + " 60/2000 [..............................] - ETA: 20:11:18 - loss: 0.6596233\n", + "original image shape: (7000, 7000, 3)\n", + " 61/2000 [..............................] - ETA: 20:10:11 - loss: 0.6590111\n", + "original image shape: (7000, 7000, 3)\n", + " 62/2000 [..............................] - ETA: 20:07:25 - loss: 0.6492477\n", + "original image shape: (7000, 7000, 3)\n", + "773\n", + "original image shape: (7000, 7000, 3)\n", + " 63/2000 [..............................] - ETA: 20:04:20 - loss: 0.6470411\n", + "original image shape: (7000, 7000, 3)\n", + " 64/2000 [..............................] - ETA: 20:02:59 - loss: 0.6484865\n", + "original image shape: (7000, 7000, 3)\n", + " 65/2000 [..............................] - ETA: 20:01:59 - loss: 0.6536883\n", + "original image shape: (7000, 7000, 3)\n", + " 66/2000 [..............................] - ETA: 20:01:07 - loss: 0.6550721\n", + "original image shape: (7000, 7000, 3)\n", + " 67/2000 [>.............................] - ETA: 19:58:55 - loss: 0.6489276\n", + "original image shape: (7000, 7000, 3)\n", + " 68/2000 [>.............................] - ETA: 19:58:21 - loss: 0.6538812\n", + "original image shape: (7000, 7000, 3)\n", + " 69/2000 [>.............................] - ETA: 19:56:22 - loss: 0.6570104\n", + "original image shape: (7000, 7000, 3)\n", + " 70/2000 [>.............................] - ETA: 19:50:56 - loss: 0.6489939\n", + "original image shape: (7000, 7000, 3)\n", + " 71/2000 [>.............................] - ETA: 19:50:33 - loss: 0.6514619\n", + "original image shape: (7000, 7000, 3)\n", + "894\n", + "original image shape: (7000, 7000, 3)\n", + " 72/2000 [>.............................] - ETA: 19:50:16 - loss: 0.6539749\n", + "original image shape: (7000, 7000, 3)\n", + " 73/2000 [>.............................] - ETA: 19:48:46 - loss: 0.6472270\n", + "original image shape: (7000, 7000, 3)\n", + " 74/2000 [>.............................] - ETA: 19:48:26 - loss: 0.6482890\n", + "original image shape: (7000, 7000, 3)\n", + " 75/2000 [>.............................] - ETA: 19:47:52 - loss: 0.6507963\n", + "original image shape: (7000, 7000, 3)\n", + " 76/2000 [>.............................] - ETA: 19:47:36 - loss: 0.6505976\n", + "original image shape: (7000, 7000, 3)\n", + " 77/2000 [>.............................] - ETA: 19:46:59 - loss: 0.6526324\n", + "original image shape: (7000, 7000, 3)\n", + " 78/2000 [>.............................] - ETA: 19:46:37 - loss: 0.6526345\n", + "original image shape: (7000, 7000, 3)\n", + " 79/2000 [>.............................] - ETA: 19:46:08 - loss: 0.6579577\n", + "original image shape: (7000, 7000, 3)\n", + "856\n", + "original image shape: (7000, 7000, 3)\n", + " 80/2000 [>.............................] - ETA: 19:45:36 - loss: 0.6589263\n", + "original image shape: (7000, 7000, 3)\n", + " 81/2000 [>.............................] - ETA: 19:45:18 - loss: 0.6640434\n", + "original image shape: (7000, 7000, 3)\n", + " 82/2000 [>.............................] - ETA: 19:44:40 - loss: 0.6643359\n", + "original image shape: (7000, 7000, 3)\n", + " 83/2000 [>.............................] - ETA: 19:43:58 - loss: 0.6705713\n", + "original image shape: (7000, 7000, 3)\n", + " 84/2000 [>.............................] - ETA: 19:42:17 - loss: 0.6637702\n", + "original image shape: (7000, 7000, 3)\n", + " 85/2000 [>.............................] - ETA: 19:40:41 - loss: 0.6638437\n", + "original image shape: (7000, 7000, 3)\n", + " 86/2000 [>.............................] - ETA: 19:39:25 - loss: 0.6709912\n", + "original image shape: (7000, 7000, 3)\n", + " 87/2000 [>.............................] - ETA: 19:38:56 - loss: 0.6751485\n", + "original image shape: (7000, 7000, 3)\n", + "867\n", + "original image shape: (7000, 7000, 3)\n", + " 88/2000 [>.............................] - ETA: 19:38:21 - loss: 0.6754633\n", + "original image shape: (7000, 7000, 3)\n", + "716\n", + "original image shape: (7000, 7000, 3)\n", + " 89/2000 [>.............................] - ETA: 19:37:06 - loss: 0.6684964\n", + "original image shape: (7000, 7000, 3)\n", + " 90/2000 [>.............................] - ETA: 19:36:31 - loss: 0.6681201\n", + "original image shape: (7000, 7000, 3)\n", + " 91/2000 [>.............................] - ETA: 19:36:08 - loss: 0.6702135\n", + "original image shape: (7000, 7000, 3)\n", + " 92/2000 [>.............................] - ETA: 19:34:49 - loss: 0.6649185\n", + "original image shape: (7000, 7000, 3)\n", + " 93/2000 [>.............................] - ETA: 19:34:05 - loss: 0.6690833\n", + "original image shape: (7000, 7000, 3)\n", + " 94/2000 [>.............................] - ETA: 19:32:16 - loss: 0.67021\n", + "original image shape: (7000, 7000, 3)\n", + "64\n", + "original image shape: (7000, 7000, 3)\n", + "645\n", + "original image shape: (7000, 7000, 3)\n", + "462\n", + "original image shape: (7000, 7000, 3)\n", + "935\n", + "original image shape: (7000, 7000, 3)\n", + " 95/2000 [>.............................] - ETA: 19:31:44 - loss: 0.6739566\n", + "original image shape: (7000, 7000, 3)\n", + "34\n", + "original image shape: (7000, 7000, 3)\n", + "605\n", + "original image shape: (7000, 7000, 3)\n", + "180\n", + "original image shape: (7000, 7000, 3)\n", + " 96/2000 [>.............................] - ETA: 19:31:40 - loss: 0.6763925\n", + "original image shape: (7000, 7000, 3)\n", + " 97/2000 [>.............................] - ETA: 19:31:20 - loss: 0.6759417\n", + "original image shape: (7000, 7000, 3)\n", + " 98/2000 [>.............................] - ETA: 19:30:22 - loss: 0.6802599\n", + "original image shape: (7000, 7000, 3)\n", + "893\n", + "original image shape: (7000, 7000, 3)\n", + " 99/2000 [>.............................] - ETA: 19:29:59 - loss: 0.6832634\n", + "original image shape: (7000, 7000, 3)\n", + "79\n", + "original image shape: (7000, 7000, 3)\n", + " 100/2000 [>.............................] - ETA: 19:28:39 - loss: 0.6800652\n", + "original image shape: (7000, 7000, 3)\n", + "980\n", + "original image shape: (7000, 7000, 3)\n", + " 101/2000 [>.............................] - ETA: 19:28:00 - loss: 0.680411\n", + "original image shape: (7000, 7000, 3)\n", + "171\n", + "original image shape: (7000, 7000, 3)\n", + " 102/2000 [>.............................] - ETA: 19:26:33 - loss: 0.68299\n", + "original image shape: (7000, 7000, 3)\n", + "18\n", + "original image shape: (7000, 7000, 3)\n", + "625\n", + "original image shape: (7000, 7000, 3)\n", + "610\n", + "original image shape: (7000, 7000, 3)\n", + "60\n", + "original image shape: (7000, 7000, 3)\n", + "718\n", + "original image shape: (7000, 7000, 3)\n", + " 103/2000 [>.............................] - ETA: 19:25:50 - loss: 0.6769120\n", + "original image shape: (7000, 7000, 3)\n", + " 104/2000 [>.............................] - ETA: 19:24:08 - loss: 0.686219\n", + "original image shape: (7000, 7000, 3)\n", + "680\n", + "original image shape: (7000, 7000, 3)\n", + "280\n", + "original image shape: (7000, 7000, 3)\n", + " 105/2000 [>.............................] - ETA: 19:23:57 - loss: 0.6906623\n", + "original image shape: (7000, 7000, 3)\n", + "527\n", + "original image shape: (7000, 7000, 3)\n", + "574\n", + "original image shape: (7000, 7000, 3)\n", + "659\n", + "original image shape: (7000, 7000, 3)\n", + "109\n", + "original image shape: (7000, 7000, 3)\n", + " 106/2000 [>.............................] - ETA: 19:22:54 - loss: 0.6844457\n", + "original image shape: (7000, 7000, 3)\n", + "630\n", + "original image shape: (7000, 7000, 3)\n", + "143\n", + "original image shape: (7000, 7000, 3)\n", + " 107/2000 [>.............................] - ETA: 19:21:06 - loss: 0.6811401\n", + "original image shape: (7000, 7000, 3)\n", + " 108/2000 [>.............................] - ETA: 19:19:41 - loss: 0.6844272\n", + "original image shape: (7000, 7000, 3)\n", + " 109/2000 [>.............................] - ETA: 19:18:30 - loss: 0.6857774\n", + "original image shape: (7000, 7000, 3)\n", + " 110/2000 [>.............................] - ETA: 19:16:22 - loss: 0.6824406\n", + "original image shape: (7000, 7000, 3)\n", + " 111/2000 [>.............................] - ETA: 19:15:01 - loss: 0.686491\n", + "original image shape: (7000, 7000, 3)\n", + " 112/2000 [>.............................] - ETA: 19:13:13 - loss: 0.6805108\n", + "original image shape: (7000, 7000, 3)\n", + " 113/2000 [>.............................] - ETA: 19:11:25 - loss: 0.6747719\n", + "original image shape: (7000, 7000, 3)\n", + " 114/2000 [>.............................] - ETA: 19:09:37 - loss: 0.6699590\n", + "original image shape: (7000, 7000, 3)\n", + "299\n", + "original image shape: (7000, 7000, 3)\n", + " 115/2000 [>.............................] - ETA: 19:08:56 - loss: 0.670342\n", + "original image shape: (7000, 7000, 3)\n", + "828\n", + "original image shape: (7000, 7000, 3)\n", + " 116/2000 [>.............................] - ETA: 19:07:52 - loss: 0.670972\n", + "original image shape: (7000, 7000, 3)\n", + "986\n", + "original image shape: (7000, 7000, 3)\n", + " 117/2000 [>.............................] - ETA: 19:07:24 - loss: 0.671450\n", + "original image shape: (7000, 7000, 3)\n", + "587\n", + "original image shape: (7000, 7000, 3)\n", + "861\n", + "original image shape: (7000, 7000, 3)\n", + " 118/2000 [>.............................] - ETA: 19:07:02 - loss: 0.67035\n", + "original image shape: (7000, 7000, 3)\n", + "667\n", + "original image shape: (7000, 7000, 3)\n", + "769\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 119/2000 [>.............................] - ETA: 19:06:41 - loss: 0.6684102\n", + "original image shape: (7000, 7000, 3)\n", + " 120/2000 [>.............................] - ETA: 19:02:55 - loss: 0.6638758\n", + "original image shape: (7000, 7000, 3)\n", + " 121/2000 [>.............................] - ETA: 19:01:07 - loss: 0.661351\n", + "original image shape: (7000, 7000, 3)\n", + "961\n", + "original image shape: (7000, 7000, 3)\n", + " 122/2000 [>.............................] - ETA: 19:00:44 - loss: 0.6628864\n", + "original image shape: (7000, 7000, 3)\n", + " 123/2000 [>.............................] - ETA: 18:59:56 - loss: 0.6639205\n", + "original image shape: (7000, 7000, 3)\n", + " 124/2000 [>.............................] - ETA: 18:59:35 - loss: 0.6636152\n", + "original image shape: (7000, 7000, 3)\n", + " 125/2000 [>.............................] - ETA: 18:59:30 - loss: 0.6658653\n", + "original image shape: (7000, 7000, 3)\n", + "825\n", + "original image shape: (7000, 7000, 3)\n", + " 126/2000 [>.............................] - ETA: 19:00:01 - loss: 0.6671628\n", + "original image shape: (7000, 7000, 3)\n", + "195\n", + "original image shape: (7000, 7000, 3)\n", + " 127/2000 [>.............................] - ETA: 19:00:31 - loss: 0.6726942\n", + "original image shape: (7000, 7000, 3)\n", + " 128/2000 [>.............................] - ETA: 19:01:21 - loss: 0.6723586\n", + "original image shape: (7000, 7000, 3)\n", + "530\n", + "original image shape: (7000, 7000, 3)\n", + "80\n", + "original image shape: (7000, 7000, 3)\n", + " 129/2000 [>.............................] - ETA: 19:01:49 - loss: 0.6717291\n", + "original image shape: (7000, 7000, 3)\n", + " 130/2000 [>.............................] - ETA: 19:02:50 - loss: 0.6740149\n", + "original image shape: (7000, 7000, 3)\n", + " 131/2000 [>.............................] - ETA: 19:02:52 - loss: 0.6735227\n", + "original image shape: (7000, 7000, 3)\n", + " 132/2000 [>.............................] - ETA: 19:03:58 - loss: 0.6744558\n", + "original image shape: (7000, 7000, 3)\n", + "464\n", + "original image shape: (7000, 7000, 3)\n", + "306\n", + "original image shape: (7000, 7000, 3)\n", + " 133/2000 [>.............................] - ETA: 19:05:13 - loss: 0.6776943\n", + "original image shape: (7000, 7000, 3)\n", + " 134/2000 [=>............................] - ETA: 19:06:09 - loss: 0.6767793\n", + "original image shape: (7000, 7000, 3)\n", + " 135/2000 [=>............................] - ETA: 19:06:48 - loss: 0.6750603\n", + "original image shape: (7000, 7000, 3)\n", + "638\n", + "original image shape: (7000, 7000, 3)\n", + "132\n", + "original image shape: (7000, 7000, 3)\n", + " 136/2000 [=>............................] - ETA: 19:07:14 - loss: 0.6745982\n", + "original image shape: (7000, 7000, 3)\n", + " 137/2000 [=>............................] - ETA: 19:06:59 - loss: 0.6751637\n", + "original image shape: (7000, 7000, 3)\n", + "62\n", + "original image shape: (7000, 7000, 3)\n", + "775\n", + "original image shape: (7000, 7000, 3)\n", + " 138/2000 [=>............................] - ETA: 19:06:07 - loss: 0.6736834\n", + "original image shape: (7000, 7000, 3)\n", + " 139/2000 [=>............................] - ETA: 19:05:29 - loss: 0.6730715\n", + "original image shape: (7000, 7000, 3)\n", + " 140/2000 [=>............................] - ETA: 19:04:26 - loss: 0.6701808\n", + "original image shape: (7000, 7000, 3)\n", + " 141/2000 [=>............................] - ETA: 19:03:39 - loss: 0.6668450\n", + "original image shape: (7000, 7000, 3)\n", + " 142/2000 [=>............................] - ETA: 19:02:51 - loss: 0.6671460\n", + "original image shape: (7000, 7000, 3)\n", + "117\n", + "original image shape: (7000, 7000, 3)\n", + " 143/2000 [=>............................] - ETA: 19:00:50 - loss: 0.6642831\n", + "original image shape: (7000, 7000, 3)\n", + " 144/2000 [=>............................] - ETA: 18:59:19 - loss: 0.665086\n", + "original image shape: (7000, 7000, 3)\n", + " 145/2000 [=>............................] - ETA: 18:58:11 - loss: 0.6613156\n", + "original image shape: (7000, 7000, 3)\n", + " 146/2000 [=>............................] - ETA: 18:57:03 - loss: 0.658697\n", + "original image shape: (7000, 7000, 3)\n", + " 147/2000 [=>............................] - ETA: 18:55:51 - loss: 0.6556689\n", + "original image shape: (7000, 7000, 3)\n", + "827\n", + "original image shape: (7000, 7000, 3)\n", + " 148/2000 [=>............................] - ETA: 18:55:13 - loss: 0.655238\n", + "original image shape: (7000, 7000, 3)\n", + "274\n", + "original image shape: (7000, 7000, 3)\n", + " 149/2000 [=>............................] - ETA: 18:54:46 - loss: 0.6556589\n", + "original image shape: (7000, 7000, 3)\n", + "101\n", + "original image shape: (7000, 7000, 3)\n", + " 150/2000 [=>............................] - ETA: 18:53:47 - loss: 0.651446\n", + "original image shape: (7000, 7000, 3)\n", + "651\n", + "original image shape: (7000, 7000, 3)\n", + "953\n", + "original image shape: (7000, 7000, 3)\n", + " 151/2000 [=>............................] - ETA: 18:53:25 - loss: 0.6530669\n", + "original image shape: (7000, 7000, 3)\n", + "855\n", + "original image shape: (7000, 7000, 3)\n", + " 152/2000 [=>............................] - ETA: 18:52:53 - loss: 0.6530255\n", + "original image shape: (7000, 7000, 3)\n", + " 153/2000 [=>............................] - ETA: 18:52:22 - loss: 0.6533286\n", + "original image shape: (7000, 7000, 3)\n", + " 154/2000 [=>............................] - ETA: 18:51:59 - loss: 0.6533903\n", + "original image shape: (7000, 7000, 3)\n", + " 155/2000 [=>............................] - ETA: 18:51:26 - loss: 0.6533115\n", + "original image shape: (7000, 7000, 3)\n", + " 156/2000 [=>............................] - ETA: 18:50:23 - loss: 0.6493217\n", + "original image shape: (7000, 7000, 3)\n", + " 157/2000 [=>............................] - ETA: 18:50:01 - loss: 0.6511309\n", + "original image shape: (7000, 7000, 3)\n", + " 158/2000 [=>............................] - ETA: 18:49:25 - loss: 0.6511373\n", + "original image shape: (7000, 7000, 3)\n", + " 159/2000 [=>............................] - ETA: 18:48:46 - loss: 0.6507423\n", + "original image shape: (7000, 7000, 3)\n", + " 160/2000 [=>............................] - ETA: 18:48:03 - loss: 0.6511305\n", + "original image shape: (7000, 7000, 3)\n", + " 161/2000 [=>............................] - ETA: 18:47:33 - loss: 0.6554881\n", + "original image shape: (7000, 7000, 3)\n", + " 162/2000 [=>............................] - ETA: 18:47:02 - loss: 0.6597315\n", + "original image shape: (7000, 7000, 3)\n", + " 163/2000 [=>............................] - ETA: 18:46:32 - loss: 0.6594624\n", + "original image shape: (7000, 7000, 3)\n", + "215\n", + "original image shape: (7000, 7000, 3)\n", + " 164/2000 [=>............................] - ETA: 18:46:09 - loss: 0.6610384\n", + "original image shape: (7000, 7000, 3)\n", + " 165/2000 [=>............................] - ETA: 18:45:32 - loss: 0.6602467\n", + "original image shape: (7000, 7000, 3)\n", + "362\n", + "original image shape: (7000, 7000, 3)\n", + " 166/2000 [=>............................] - ETA: 18:45:01 - loss: 0.6599410\n", + "original image shape: (7000, 7000, 3)\n", + " 167/2000 [=>............................] - ETA: 18:44:26 - loss: 0.6606513\n", + "original image shape: (7000, 7000, 3)\n", + "978\n", + "original image shape: (7000, 7000, 3)\n", + " 168/2000 [=>............................] - ETA: 18:42:42 - loss: 0.6608505\n", + "original image shape: (7000, 7000, 3)\n", + "361\n", + "original image shape: (7000, 7000, 3)\n", + " 169/2000 [=>............................] - ETA: 18:42:07 - loss: 0.6607170\n", + "original image shape: (7000, 7000, 3)\n", + " 170/2000 [=>............................] - ETA: 18:41:16 - loss: 0.6594516\n", + "original image shape: (7000, 7000, 3)\n", + "130\n", + "original image shape: (7000, 7000, 3)\n", + " 171/2000 [=>............................] - ETA: 18:40:34 - loss: 0.6599178\n", + "original image shape: (7000, 7000, 3)\n", + " 172/2000 [=>............................] - ETA: 18:40:03 - loss: 0.6582551\n", + "original image shape: (7000, 7000, 3)\n", + "14\n", + "original image shape: (7000, 7000, 3)\n", + "67\n", + "original image shape: (7000, 7000, 3)\n", + "397\n", + "original image shape: (7000, 7000, 3)\n", + " 173/2000 [=>............................] - ETA: 18:39:49 - loss: 0.6592720\n", + "original image shape: (7000, 7000, 3)\n", + " 174/2000 [=>............................] - ETA: 18:39:01 - loss: 0.6584173\n", + "original image shape: (7000, 7000, 3)\n", + " 175/2000 [=>............................] - ETA: 18:38:08 - loss: 0.6596352\n", + "original image shape: (7000, 7000, 3)\n", + " 176/2000 [=>............................] - ETA: 18:37:34 - loss: 0.6597884\n", + "original image shape: (7000, 7000, 3)\n", + " 177/2000 [=>............................] - ETA: 18:36:56 - loss: 0.6636545\n", + "original image shape: (7000, 7000, 3)\n", + "553\n", + "original image shape: (7000, 7000, 3)\n", + "546\n", + "original image shape: (7000, 7000, 3)\n", + "508\n", + "original image shape: (7000, 7000, 3)\n", + "415\n", + "original image shape: (7000, 7000, 3)\n", + " 178/2000 [=>............................] - ETA: 18:36:41 - loss: 0.6658709\n", + "original image shape: (7000, 7000, 3)\n", + " 179/2000 [=>............................] - ETA: 18:35:46 - loss: 0.6625174\n", + "original image shape: (7000, 7000, 3)\n", + " 180/2000 [=>............................] - ETA: 18:34:52 - loss: 0.6599725\n", + "original image shape: (7000, 7000, 3)\n", + " 181/2000 [=>............................] - ETA: 18:33:54 - loss: 0.6573523\n", + "original image shape: (7000, 7000, 3)\n", + "954\n", + "original image shape: (7000, 7000, 3)\n", + " 182/2000 [=>............................] - ETA: 18:33:27 - loss: 0.6586661\n", + "original image shape: (7000, 7000, 3)\n", + "726\n", + "original image shape: (7000, 7000, 3)\n", + " 183/2000 [=>............................] - ETA: 18:32:33 - loss: 0.6580829\n", + "original image shape: (7000, 7000, 3)\n", + " 184/2000 [=>............................] - ETA: 18:31:55 - loss: 0.6576489\n", + "original image shape: (7000, 7000, 3)\n", + "501\n", + "original image shape: (7000, 7000, 3)\n", + "591\n", + "original image shape: (7000, 7000, 3)\n", + "579\n", + "original image shape: (7000, 7000, 3)\n", + "200\n", + "original image shape: (7000, 7000, 3)\n", + " 185/2000 [=>............................] - ETA: 18:31:51 - loss: 0.6601376\n", + "original image shape: (7000, 7000, 3)\n", + " 186/2000 [=>............................] - ETA: 18:31:20 - loss: 0.6613203\n", + "original image shape: (7000, 7000, 3)\n", + " 187/2000 [=>............................] - ETA: 18:30:49 - loss: 0.6607240\n", + "original image shape: (7000, 7000, 3)\n", + " 188/2000 [=>............................] - ETA: 18:30:20 - loss: 0.661841\n", + "original image shape: (7000, 7000, 3)\n", + "735\n", + "original image shape: (7000, 7000, 3)\n", + " 189/2000 [=>............................] - ETA: 18:29:28 - loss: 0.6636693\n", + "original image shape: (7000, 7000, 3)\n", + " 190/2000 [=>............................] - ETA: 18:28:30 - loss: 0.6617537\n", + "original image shape: (7000, 7000, 3)\n", + "930\n", + "original image shape: (7000, 7000, 3)\n", + " 191/2000 [=>............................] - ETA: 18:28:03 - loss: 0.6630231\n", + "original image shape: (7000, 7000, 3)\n", + " 192/2000 [=>............................] - ETA: 18:27:35 - loss: 0.6641506\n", + "original image shape: (7000, 7000, 3)\n", + "917\n", + "original image shape: (7000, 7000, 3)\n", + " 193/2000 [=>............................] - ETA: 18:25:17 - loss: 0.6651648\n", + "original image shape: (7000, 7000, 3)\n", + "13\n", + "original image shape: (7000, 7000, 3)\n", + "344\n", + "original image shape: (7000, 7000, 3)\n", + " 194/2000 [=>............................] - ETA: 18:24:54 - loss: 0.6650519\n", + "original image shape: (7000, 7000, 3)\n", + "596\n", + "original image shape: (7000, 7000, 3)\n", + "860\n", + "original image shape: (7000, 7000, 3)\n", + " 195/2000 [=>............................] - ETA: 18:24:14 - loss: 0.6658781\n", + "original image shape: (7000, 7000, 3)\n", + " 196/2000 [=>............................] - ETA: 18:23:09 - loss: 0.6664103\n", + "original image shape: (7000, 7000, 3)\n", + " 197/2000 [=>............................] - ETA: 18:22:05 - loss: 0.6634277\n", + "original image shape: (7000, 7000, 3)\n", + " 198/2000 [=>............................] - ETA: 18:21:37 - loss: 0.6657748\n", + "original image shape: (7000, 7000, 3)\n", + " 199/2000 [=>............................] - ETA: 18:20:31 - loss: 0.6659261\n", + "original image shape: (7000, 7000, 3)\n", + " 200/2000 [==>...........................] - ETA: 18:19:56 - loss: 0.6666933\n", + "original image shape: (7000, 7000, 3)\n", + " 201/2000 [==>...........................] - ETA: 18:19:17 - loss: 0.6667253\n", + "original image shape: (7000, 7000, 3)\n", + " 202/2000 [==>...........................] - ETA: 18:18:46 - loss: 0.6668926\n", + "original image shape: (7000, 7000, 3)\n", + " 203/2000 [==>...........................] - ETA: 18:18:11 - loss: 0.6658896\n", + "original image shape: (7000, 7000, 3)\n", + " 204/2000 [==>...........................] - ETA: 18:17:34 - loss: 0.665968\n", + "original image shape: (7000, 7000, 3)\n", + "746\n", + "original image shape: (7000, 7000, 3)\n", + " 205/2000 [==>...........................] - ETA: 18:16:38 - loss: 0.6664319\n", + "original image shape: (7000, 7000, 3)\n", + " 206/2000 [==>...........................] - ETA: 18:16:04 - loss: 0.666061\n", + "original image shape: (7000, 7000, 3)\n", + "37\n", + "original image shape: (7000, 7000, 3)\n", + "482\n", + "original image shape: (7000, 7000, 3)\n", + "84\n", + "original image shape: (7000, 7000, 3)\n", + " 207/2000 [==>...........................] - ETA: 18:15:24 - loss: 0.6636332\n", + "original image shape: (7000, 7000, 3)\n", + " 208/2000 [==>...........................] - ETA: 18:14:54 - loss: 0.6642176\n", + "original image shape: (7000, 7000, 3)\n", + " 209/2000 [==>...........................] - ETA: 18:14:06 - loss: 0.6615951\n", + "original image shape: (7000, 7000, 3)\n", + " 210/2000 [==>...........................] - ETA: 18:13:37 - loss: 0.6627660\n", + "original image shape: (7000, 7000, 3)\n", + "795\n", + "original image shape: (7000, 7000, 3)\n", + " 211/2000 [==>...........................] - ETA: 18:13:04 - loss: 0.6632339\n", + "original image shape: (7000, 7000, 3)\n", + " 212/2000 [==>...........................] - ETA: 18:12:41 - loss: 0.662881\n", + "original image shape: (7000, 7000, 3)\n", + " 213/2000 [==>...........................] - ETA: 18:11:46 - loss: 0.6600471\n", + "original image shape: (7000, 7000, 3)\n", + "221\n", + "original image shape: (7000, 7000, 3)\n", + " 214/2000 [==>...........................] - ETA: 18:11:27 - loss: 0.6600672\n", + "original image shape: (7000, 7000, 3)\n", + "504\n", + "original image shape: (7000, 7000, 3)\n", + "923\n", + "original image shape: (7000, 7000, 3)\n", + " 215/2000 [==>...........................] - ETA: 18:11:14 - loss: 0.6595224\n", + "original image shape: (7000, 7000, 3)\n", + " 216/2000 [==>...........................] - ETA: 18:10:53 - loss: 0.6600906\n", + "original image shape: (7000, 7000, 3)\n", + " 217/2000 [==>...........................] - ETA: 18:10:28 - loss: 0.6603452\n", + "original image shape: (7000, 7000, 3)\n", + " 218/2000 [==>...........................] - ETA: 18:08:38 - loss: 0.6595727\n", + "original image shape: (7000, 7000, 3)\n", + " 219/2000 [==>...........................] - ETA: 18:08:01 - loss: 0.6581440\n", + "original image shape: (7000, 7000, 3)\n", + " 220/2000 [==>...........................] - ETA: 18:07:34 - loss: 0.659387\n", + "original image shape: (7000, 7000, 3)\n", + " 221/2000 [==>...........................] - ETA: 18:06:52 - loss: 0.6565378\n", + "original image shape: (7000, 7000, 3)\n", + " 222/2000 [==>...........................] - ETA: 18:06:35 - loss: 0.6585385\n", + "original image shape: (7000, 7000, 3)\n", + " 223/2000 [==>...........................] - ETA: 18:06:16 - loss: 0.6590356\n", + "original image shape: (7000, 7000, 3)\n", + " 224/2000 [==>...........................] - ETA: 18:05:58 - loss: 0.6584293\n", + "original image shape: (7000, 7000, 3)\n", + " 225/2000 [==>...........................] - ETA: 18:05:43 - loss: 0.6587920\n", + "original image shape: (7000, 7000, 3)\n", + " 226/2000 [==>...........................] - ETA: 18:05:23 - loss: 0.6579547\n", + "original image shape: (7000, 7000, 3)\n", + "569\n", + "original image shape: (7000, 7000, 3)\n", + "105\n", + "original image shape: (7000, 7000, 3)\n", + " 227/2000 [==>...........................] - ETA: 18:04:52 - loss: 0.6551729\n", + "original image shape: (7000, 7000, 3)\n", + " 228/2000 [==>...........................] - ETA: 18:04:15 - loss: 0.6529289\n", + "original image shape: (7000, 7000, 3)\n", + " 229/2000 [==>...........................] - ETA: 18:04:06 - loss: 0.6554532\n", + "original image shape: (7000, 7000, 3)\n", + "7\n", + "original image shape: (7000, 7000, 3)\n", + "112\n", + "original image shape: (7000, 7000, 3)\n", + " 230/2000 [==>...........................] - ETA: 18:03:32 - loss: 0.6557915\n", + "original image shape: (7000, 7000, 3)\n", + " 231/2000 [==>...........................] - ETA: 18:03:12 - loss: 0.6554642\n", + "original image shape: (7000, 7000, 3)\n", + "322\n", + "original image shape: (7000, 7000, 3)\n", + " 232/2000 [==>...........................] - ETA: 18:03:00 - loss: 0.6570433\n", + "original image shape: (7000, 7000, 3)\n", + " 233/2000 [==>...........................] - ETA: 18:02:39 - loss: 0.6566531\n", + "original image shape: (7000, 7000, 3)\n", + "885\n", + "original image shape: (7000, 7000, 3)\n", + " 234/2000 [==>...........................] - ETA: 18:02:25 - loss: 0.6571636\n", + "original image shape: (7000, 7000, 3)\n", + "840\n", + "original image shape: (7000, 7000, 3)\n", + " 235/2000 [==>...........................] - ETA: 18:02:07 - loss: 0.6587742\n", + "original image shape: (7000, 7000, 3)\n", + " 236/2000 [==>...........................] - ETA: 18:01:58 - loss: 0.6588242\n", + "original image shape: (7000, 7000, 3)\n", + " 237/2000 [==>...........................] - ETA: 18:02:18 - loss: 0.6591448\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 238/2000 [==>...........................] - ETA: 18:02:32 - loss: 0.6566379\n", + "original image shape: (7000, 7000, 3)\n", + " 239/2000 [==>...........................] - ETA: 18:02:54 - loss: 0.6580320\n", + "original image shape: (7000, 7000, 3)\n", + " 240/2000 [==>...........................] - ETA: 18:03:19 - loss: 0.6590849\n", + "original image shape: (7000, 7000, 3)\n", + " 241/2000 [==>...........................] - ETA: 18:02:18 - loss: 0.6585145\n", + "original image shape: (7000, 7000, 3)\n", + " 242/2000 [==>...........................] - ETA: 18:02:23 - loss: 0.657012\n", + "original image shape: (7000, 7000, 3)\n", + "204\n", + "original image shape: (7000, 7000, 3)\n", + " 243/2000 [==>...........................] - ETA: 18:02:49 - loss: 0.6577921\n", + "original image shape: (7000, 7000, 3)\n", + " 244/2000 [==>...........................] - ETA: 18:03:12 - loss: 0.6572521\n", + "original image shape: (7000, 7000, 3)\n", + "196\n", + "original image shape: (7000, 7000, 3)\n", + " 245/2000 [==>...........................] - ETA: 18:03:31 - loss: 0.6571191\n", + "original image shape: (7000, 7000, 3)\n", + " 246/2000 [==>...........................] - ETA: 18:03:43 - loss: 0.6592218\n", + "original image shape: (7000, 7000, 3)\n", + " 247/2000 [==>...........................] - ETA: 18:04:07 - loss: 0.6604245\n", + "original image shape: (7000, 7000, 3)\n", + " 248/2000 [==>...........................] - ETA: 18:04:28 - loss: 0.6607206\n", + "original image shape: (7000, 7000, 3)\n", + " 249/2000 [==>...........................] - ETA: 18:04:46 - loss: 0.6599836\n", + "original image shape: (7000, 7000, 3)\n", + " 250/2000 [==>...........................] - ETA: 18:04:56 - loss: 0.6597446\n", + "original image shape: (7000, 7000, 3)\n", + " 251/2000 [==>...........................] - ETA: 18:04:58 - loss: 0.6612705\n", + "original image shape: (7000, 7000, 3)\n", + " 252/2000 [==>...........................] - ETA: 18:04:58 - loss: 0.6616273\n", + "original image shape: (7000, 7000, 3)\n", + " 253/2000 [==>...........................] - ETA: 18:05:20 - loss: 0.6616679\n", + "original image shape: (7000, 7000, 3)\n", + "744\n", + "original image shape: (7000, 7000, 3)\n", + " 254/2000 [==>...........................] - ETA: 18:05:26 - loss: 0.6606898\n", + "original image shape: (7000, 7000, 3)\n", + " 255/2000 [==>...........................] - ETA: 18:05:27 - loss: 0.6620681\n", + "original image shape: (7000, 7000, 3)\n", + "90\n", + "original image shape: (7000, 7000, 3)\n", + " 256/2000 [==>...........................] - ETA: 18:05:23 - loss: 0.6597116\n", + "original image shape: (7000, 7000, 3)\n", + " 257/2000 [==>...........................] - ETA: 18:05:13 - loss: 0.6572868\n", + "original image shape: (7000, 7000, 3)\n", + " 258/2000 [==>...........................] - ETA: 18:05:16 - loss: 0.6574141\n", + "original image shape: (7000, 7000, 3)\n", + " 259/2000 [==>...........................] - ETA: 18:04:59 - loss: 0.6561302\n", + "original image shape: (7000, 7000, 3)\n", + " 260/2000 [==>...........................] - ETA: 18:05:16 - loss: 0.6578168\n", + "original image shape: (7000, 7000, 3)\n", + " 261/2000 [==>...........................] - ETA: 18:04:42 - loss: 0.6558439\n", + "original image shape: (7000, 7000, 3)\n", + " 262/2000 [==>...........................] - ETA: 18:03:36 - loss: 0.6566497\n", + "original image shape: (7000, 7000, 3)\n", + "561\n", + "original image shape: (7000, 7000, 3)\n", + "298\n", + "original image shape: (7000, 7000, 3)\n", + " 263/2000 [==>...........................] - ETA: 18:03:56 - loss: 0.657974\n", + "original image shape: (7000, 7000, 3)\n", + "643\n", + "original image shape: (7000, 7000, 3)\n", + "22\n", + "original image shape: (7000, 7000, 3)\n", + "388\n", + "original image shape: (7000, 7000, 3)\n", + " 264/2000 [==>...........................] - ETA: 18:04:17 - loss: 0.6577247\n", + "original image shape: (7000, 7000, 3)\n", + " 265/2000 [==>...........................] - ETA: 18:04:31 - loss: 0.6594297\n", + "original image shape: (7000, 7000, 3)\n", + " 266/2000 [==>...........................] - ETA: 18:04:40 - loss: 0.6583657\n", + "original image shape: (7000, 7000, 3)\n", + "15\n", + "original image shape: (7000, 7000, 3)\n", + "615\n", + "original image shape: (7000, 7000, 3)\n", + "595\n", + "original image shape: (7000, 7000, 3)\n", + "852\n", + "original image shape: (7000, 7000, 3)\n", + " 267/2000 [===>..........................] - ETA: 18:05:02 - loss: 0.6588139\n", + "original image shape: (7000, 7000, 3)\n", + " 268/2000 [===>..........................] - ETA: 18:04:51 - loss: 0.6576380\n", + "original image shape: (7000, 7000, 3)\n", + " 269/2000 [===>..........................] - ETA: 18:04:53 - loss: 0.6578874\n", + "original image shape: (7000, 7000, 3)\n", + " 270/2000 [===>..........................] - ETA: 18:04:50 - loss: 0.6591736\n", + "original image shape: (7000, 7000, 3)\n", + " 271/2000 [===>..........................] - ETA: 18:04:34 - loss: 0.6578555\n", + "original image shape: (7000, 7000, 3)\n", + "573\n", + "original image shape: (7000, 7000, 3)\n", + "853\n", + "original image shape: (7000, 7000, 3)\n", + " 272/2000 [===>..........................] - ETA: 18:04:40 - loss: 0.6578486\n", + "original image shape: (7000, 7000, 3)\n", + "172\n", + "original image shape: (7000, 7000, 3)\n", + " 273/2000 [===>..........................] - ETA: 18:04:38 - loss: 0.6588682\n", + "original image shape: (7000, 7000, 3)\n", + "767\n", + "original image shape: (7000, 7000, 3)\n", + " 274/2000 [===>..........................] - ETA: 18:04:34 - loss: 0.6573962\n", + "original image shape: (7000, 7000, 3)\n", + " 275/2000 [===>..........................] - ETA: 18:04:37 - loss: 0.6576641\n", + "original image shape: (7000, 7000, 3)\n", + "55\n", + "original image shape: (7000, 7000, 3)\n", + "436\n", + "original image shape: (7000, 7000, 3)\n", + " 276/2000 [===>..........................] - ETA: 18:04:45 - loss: 0.658249\n", + "original image shape: (7000, 7000, 3)\n", + "235\n", + "original image shape: (7000, 7000, 3)\n", + " 277/2000 [===>..........................] - ETA: 18:04:59 - loss: 0.6583562\n", + "original image shape: (7000, 7000, 3)\n", + "515\n", + "original image shape: (7000, 7000, 3)\n", + "694\n", + "original image shape: (7000, 7000, 3)\n", + " 278/2000 [===>..........................] - ETA: 18:05:01 - loss: 0.6570947\n", + "original image shape: (7000, 7000, 3)\n", + " 279/2000 [===>..........................] - ETA: 18:05:11 - loss: 0.6574670\n", + "original image shape: (7000, 7000, 3)\n", + "317\n", + "original image shape: (7000, 7000, 3)\n", + " 280/2000 [===>..........................] - ETA: 18:05:24 - loss: 0.6569931\n", + "original image shape: (7000, 7000, 3)\n", + " 281/2000 [===>..........................] - ETA: 18:05:29 - loss: 0.6575841\n", + "original image shape: (7000, 7000, 3)\n", + " 282/2000 [===>..........................] - ETA: 18:04:23 - loss: 0.6587974\n", + "original image shape: (7000, 7000, 3)\n", + " 283/2000 [===>..........................] - ETA: 18:04:24 - loss: 0.659165\n", + "original image shape: (7000, 7000, 3)\n", + "244\n", + "original image shape: (7000, 7000, 3)\n", + " 284/2000 [===>..........................] - ETA: 18:04:29 - loss: 0.6592292\n", + "original image shape: (7000, 7000, 3)\n", + " 285/2000 [===>..........................] - ETA: 18:04:43 - loss: 0.660277\n", + "original image shape: (7000, 7000, 3)\n", + "335\n", + "original image shape: (7000, 7000, 3)\n", + " 286/2000 [===>..........................] - ETA: 18:04:54 - loss: 0.6607543\n", + "original image shape: (7000, 7000, 3)\n", + "904\n", + "original image shape: (7000, 7000, 3)\n", + " 287/2000 [===>..........................] - ETA: 18:05:02 - loss: 0.6603779\n", + "original image shape: (7000, 7000, 3)\n", + " 288/2000 [===>..........................] - ETA: 18:04:24 - loss: 0.6596495\n", + "original image shape: (7000, 7000, 3)\n", + "184\n", + "original image shape: (7000, 7000, 3)\n", + " 289/2000 [===>..........................] - ETA: 18:03:50 - loss: 0.6593977\n", + "original image shape: (7000, 7000, 3)\n", + " 290/2000 [===>..........................] - ETA: 18:03:17 - loss: 0.6592165\n", + "original image shape: (7000, 7000, 3)\n", + " 291/2000 [===>..........................] - ETA: 18:02:29 - loss: 0.6572854\n", + "original image shape: (7000, 7000, 3)\n", + " 292/2000 [===>..........................] - ETA: 18:01:51 - loss: 0.657892\n", + "original image shape: (7000, 7000, 3)\n", + " 293/2000 [===>..........................] - ETA: 18:01:01 - loss: 0.6557338\n", + "original image shape: (7000, 7000, 3)\n", + " 294/2000 [===>..........................] - ETA: 18:00:31 - loss: 0.6555181\n", + "original image shape: (7000, 7000, 3)\n", + " 295/2000 [===>..........................] - ETA: 17:59:51 - loss: 0.6551300\n", + "original image shape: (7000, 7000, 3)\n", + " 296/2000 [===>..........................] - ETA: 17:59:22 - loss: 0.6558649\n", + "original image shape: (7000, 7000, 3)\n", + "878\n", + "original image shape: (7000, 7000, 3)\n", + " 297/2000 [===>..........................] - ETA: 17:58:52 - loss: 0.6559314\n", + "original image shape: (7000, 7000, 3)\n", + " 298/2000 [===>..........................] - ETA: 17:58:18 - loss: 0.6553882\n", + "original image shape: (7000, 7000, 3)\n", + " 299/2000 [===>..........................] - ETA: 17:57:39 - loss: 0.65580\n", + "original image shape: (7000, 7000, 3)\n", + "484\n", + "original image shape: (7000, 7000, 3)\n", + "761\n", + "original image shape: (7000, 7000, 3)\n", + " 300/2000 [===>..........................] - ETA: 17:56:48 - loss: 0.6540303\n", + "original image shape: (7000, 7000, 3)\n", + " 301/2000 [===>..........................] - ETA: 17:56:09 - loss: 0.6558285\n", + "original image shape: (7000, 7000, 3)\n", + " 302/2000 [===>..........................] - ETA: 17:55:33 - loss: 0.6562301\n", + "original image shape: (7000, 7000, 3)\n", + " 303/2000 [===>..........................] - ETA: 17:54:53 - loss: 0.6578738\n", + "original image shape: (7000, 7000, 3)\n", + " 304/2000 [===>..........................] - ETA: 17:53:58 - loss: 0.6560813\n", + "original image shape: (7000, 7000, 3)\n", + " 305/2000 [===>..........................] - ETA: 17:52:31 - loss: 0.6564696\n", + "original image shape: (7000, 7000, 3)\n", + " 306/2000 [===>..........................] - ETA: 17:51:24 - loss: 0.6555560\n", + "original image shape: (7000, 7000, 3)\n", + "743\n", + "original image shape: (7000, 7000, 3)\n", + " 307/2000 [===>..........................] - ETA: 17:50:33 - loss: 0.6564783\n", + "original image shape: (7000, 7000, 3)\n", + " 308/2000 [===>..........................] - ETA: 17:49:39 - loss: 0.6568971\n", + "original image shape: (7000, 7000, 3)\n", + " 309/2000 [===>..........................] - ETA: 17:48:55 - loss: 0.6575294\n", + "original image shape: (7000, 7000, 3)\n", + " 310/2000 [===>..........................] - ETA: 17:48:17 - loss: 0.6579822\n", + "original image shape: (7000, 7000, 3)\n", + " 311/2000 [===>..........................] - ETA: 17:47:31 - loss: 0.658288\n", + "original image shape: (7000, 7000, 3)\n", + " 312/2000 [===>..........................] - ETA: 17:46:34 - loss: 0.6562498\n", + "original image shape: (7000, 7000, 3)\n", + "685\n", + "original image shape: (7000, 7000, 3)\n", + "567\n", + "original image shape: (7000, 7000, 3)\n", + "593\n", + "original image shape: (7000, 7000, 3)\n", + "798\n", + "original image shape: (7000, 7000, 3)\n", + " 313/2000 [===>..........................] - ETA: 17:45:58 - loss: 0.655927\n", + "original image shape: (7000, 7000, 3)\n", + "639\n", + "original image shape: (7000, 7000, 3)\n", + "113\n", + "original image shape: (7000, 7000, 3)\n", + " 314/2000 [===>..........................] - ETA: 17:45:10 - loss: 0.6549698\n", + "original image shape: (7000, 7000, 3)\n", + " 315/2000 [===>..........................] - ETA: 17:44:23 - loss: 0.6539734\n", + "original image shape: (7000, 7000, 3)\n", + " 316/2000 [===>..........................] - ETA: 17:43:32 - loss: 0.6540278\n", + "original image shape: (7000, 7000, 3)\n", + " 317/2000 [===>..........................] - ETA: 17:43:01 - loss: 0.6550684\n", + "original image shape: (7000, 7000, 3)\n", + "151\n", + "original image shape: (7000, 7000, 3)\n", + " 318/2000 [===>..........................] - ETA: 17:42:13 - loss: 0.6569722\n", + "original image shape: (7000, 7000, 3)\n", + " 319/2000 [===>..........................] - ETA: 17:41:27 - loss: 0.6555673\n", + "original image shape: (7000, 7000, 3)\n", + "794\n", + "original image shape: (7000, 7000, 3)\n", + " 320/2000 [===>..........................] - ETA: 17:40:48 - loss: 0.6557848\n", + "original image shape: (7000, 7000, 3)\n", + " 321/2000 [===>..........................] - ETA: 17:40:11 - loss: 0.6553207\n", + "original image shape: (7000, 7000, 3)\n", + " 322/2000 [===>..........................] - ETA: 17:39:37 - loss: 0.6570419\n", + "original image shape: (7000, 7000, 3)\n", + " 323/2000 [===>..........................] - ETA: 17:38:58 - loss: 0.6578524\n", + "original image shape: (7000, 7000, 3)\n", + "520\n", + "original image shape: (7000, 7000, 3)\n", + "863\n", + "original image shape: (7000, 7000, 3)\n", + " 324/2000 [===>..........................] - ETA: 17:38:25 - loss: 0.6589692\n", + "original image shape: (7000, 7000, 3)\n", + "444\n", + "original image shape: (7000, 7000, 3)\n", + " 325/2000 [===>..........................] - ETA: 17:37:45 - loss: 0.6595873\n", + "original image shape: (7000, 7000, 3)\n", + " 326/2000 [===>..........................] - ETA: 17:37:04 - loss: 0.6616800\n", + "original image shape: (7000, 7000, 3)\n", + " 327/2000 [===>..........................] - ETA: 17:36:15 - loss: 0.6618955\n", + "original image shape: (7000, 7000, 3)\n", + " 328/2000 [===>..........................] - ETA: 17:35:27 - loss: 0.6623126\n", + "original image shape: (7000, 7000, 3)\n", + " 329/2000 [===>..........................] - ETA: 17:34:25 - loss: 0.6614981\n", + "original image shape: (7000, 7000, 3)\n", + " 330/2000 [===>..........................] - ETA: 17:32:52 - loss: 0.6617518\n", + "original image shape: (7000, 7000, 3)\n", + "216\n", + "original image shape: (7000, 7000, 3)\n", + " 331/2000 [===>..........................] - ETA: 17:32:19 - loss: 0.6621674\n", + "original image shape: (7000, 7000, 3)\n", + "708\n", + "original image shape: (7000, 7000, 3)\n", + " 332/2000 [===>..........................] - ETA: 17:31:29 - loss: 0.6605262\n", + "original image shape: (7000, 7000, 3)\n", + " 333/2000 [===>..........................] - ETA: 17:30:48 - loss: 0.6606857\n", + "original image shape: (7000, 7000, 3)\n", + " 334/2000 [====>.........................] - ETA: 17:30:03 - loss: 0.660335\n", + "original image shape: (7000, 7000, 3)\n", + "473\n", + "original image shape: (7000, 7000, 3)\n", + "654\n", + "original image shape: (7000, 7000, 3)\n", + "918\n", + "original image shape: (7000, 7000, 3)\n", + " 335/2000 [====>.........................] - ETA: 17:29:32 - loss: 0.661330\n", + "original image shape: (7000, 7000, 3)\n", + "975\n", + "original image shape: (7000, 7000, 3)\n", + " 336/2000 [====>.........................] - ETA: 17:28:53 - loss: 0.6613354\n", + "original image shape: (7000, 7000, 3)\n", + " 337/2000 [====>.........................] - ETA: 17:28:16 - loss: 0.6610987\n", + "original image shape: (7000, 7000, 3)\n", + " 338/2000 [====>.........................] - ETA: 17:27:34 - loss: 0.6613225\n", + "original image shape: (7000, 7000, 3)\n", + " 339/2000 [====>.........................] - ETA: 17:26:57 - loss: 0.6608911\n", + "original image shape: (7000, 7000, 3)\n", + " 340/2000 [====>.........................] - ETA: 17:26:19 - loss: 0.660423\n", + "original image shape: (7000, 7000, 3)\n", + "620\n", + "original image shape: (7000, 7000, 3)\n", + "451\n", + "original image shape: (7000, 7000, 3)\n", + " 341/2000 [====>.........................] - ETA: 17:25:41 - loss: 0.6608169\n", + "original image shape: (7000, 7000, 3)\n", + " 342/2000 [====>.........................] - ETA: 17:24:55 - loss: 0.6606533\n", + "original image shape: (7000, 7000, 3)\n", + "381\n", + "original image shape: (7000, 7000, 3)\n", + " 343/2000 [====>.........................] - ETA: 17:24:20 - loss: 0.661296\n", + "original image shape: (7000, 7000, 3)\n", + " 344/2000 [====>.........................] - ETA: 17:23:32 - loss: 0.6612907\n", + "original image shape: (7000, 7000, 3)\n", + " 345/2000 [====>.........................] - ETA: 17:22:54 - loss: 0.6620236\n", + "original image shape: (7000, 7000, 3)\n", + " 346/2000 [====>.........................] - ETA: 17:22:17 - loss: 0.6616341\n", + "original image shape: (7000, 7000, 3)\n", + " 347/2000 [====>.........................] - ETA: 17:21:36 - loss: 0.6611820\n", + "original image shape: (7000, 7000, 3)\n", + " 348/2000 [====>.........................] - ETA: 17:20:57 - loss: 0.661393\n", + "original image shape: (7000, 7000, 3)\n", + " 349/2000 [====>.........................] - ETA: 17:20:08 - loss: 0.6595404\n", + "original image shape: (7000, 7000, 3)\n", + " 350/2000 [====>.........................] - ETA: 17:19:29 - loss: 0.6607268\n", + "original image shape: (7000, 7000, 3)\n", + " 351/2000 [====>.........................] - ETA: 17:18:56 - loss: 0.6617600\n", + "original image shape: (7000, 7000, 3)\n", + "182\n", + "original image shape: (7000, 7000, 3)\n", + " 352/2000 [====>.........................] - ETA: 17:18:19 - loss: 0.6612847\n", + "original image shape: (7000, 7000, 3)\n", + " 353/2000 [====>.........................] - ETA: 17:17:40 - loss: 0.6609453\n", + "original image shape: (7000, 7000, 3)\n", + " 354/2000 [====>.........................] - ETA: 17:16:28 - loss: 0.6608846\n", + "original image shape: (7000, 7000, 3)\n", + " 355/2000 [====>.........................] - ETA: 17:15:37 - loss: 0.660273\n", + "original image shape: (7000, 7000, 3)\n", + "248\n", + "original image shape: (7000, 7000, 3)\n", + " 356/2000 [====>.........................] - ETA: 17:15:01 - loss: 0.6605778\n", + "original image shape: (7000, 7000, 3)\n", + " 357/2000 [====>.........................] - ETA: 17:14:12 - loss: 0.6599535\n", + "original image shape: (7000, 7000, 3)\n", + "618\n", + "original image shape: (7000, 7000, 3)\n", + "66\n", + "original image shape: (7000, 7000, 3)\n", + "739\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 358/2000 [====>.........................] - ETA: 17:13:31 - loss: 0.6589398\n", + "original image shape: (7000, 7000, 3)\n", + " 359/2000 [====>.........................] - ETA: 17:12:49 - loss: 0.6592941\n", + "original image shape: (7000, 7000, 3)\n", + " 360/2000 [====>.........................] - ETA: 17:12:14 - loss: 0.6595445\n", + "original image shape: (7000, 7000, 3)\n", + " 361/2000 [====>.........................] - ETA: 17:11:32 - loss: 0.6587447\n", + "original image shape: (7000, 7000, 3)\n", + " 362/2000 [====>.........................] - ETA: 17:10:51 - loss: 0.6570198\n", + "original image shape: (7000, 7000, 3)\n", + " 363/2000 [====>.........................] - ETA: 17:10:17 - loss: 0.6581772\n", + "original image shape: (7000, 7000, 3)\n", + " 364/2000 [====>.........................] - ETA: 17:09:34 - loss: 0.6574608\n", + "original image shape: (7000, 7000, 3)\n", + "646\n", + "original image shape: (7000, 7000, 3)\n", + "869\n", + "original image shape: (7000, 7000, 3)\n", + " 365/2000 [====>.........................] - ETA: 17:09:04 - loss: 0.6577487\n", + "original image shape: (7000, 7000, 3)\n", + "71\n", + "original image shape: (7000, 7000, 3)\n", + "199\n", + "original image shape: (7000, 7000, 3)\n", + " 366/2000 [====>.........................] - ETA: 17:08:37 - loss: 0.6591232\n", + "original image shape: (7000, 7000, 3)\n", + " 367/2000 [====>.........................] - ETA: 17:08:02 - loss: 0.6586329\n", + "original image shape: (7000, 7000, 3)\n", + " 368/2000 [====>.........................] - ETA: 17:07:27 - loss: 0.6585900\n", + "original image shape: (7000, 7000, 3)\n", + " 369/2000 [====>.........................] - ETA: 17:06:46 - loss: 0.6588275\n", + "original image shape: (7000, 7000, 3)\n", + " 370/2000 [====>.........................] - ETA: 17:06:12 - loss: 0.6593755\n", + "original image shape: (7000, 7000, 3)\n", + " 371/2000 [====>.........................] - ETA: 17:05:24 - loss: 0.6598862\n", + "original image shape: (7000, 7000, 3)\n", + " 372/2000 [====>.........................] - ETA: 17:04:46 - loss: 0.6604823\n", + "original image shape: (7000, 7000, 3)\n", + " 373/2000 [====>.........................] - ETA: 17:04:08 - loss: 0.6609295\n", + "original image shape: (7000, 7000, 3)\n", + " 374/2000 [====>.........................] - ETA: 17:03:36 - loss: 0.6621647\n", + "original image shape: (7000, 7000, 3)\n", + "782\n", + "original image shape: (7000, 7000, 3)\n", + " 375/2000 [====>.........................] - ETA: 17:02:56 - loss: 0.6612441\n", + "original image shape: (7000, 7000, 3)\n", + " 376/2000 [====>.........................] - ETA: 17:02:18 - loss: 0.6609957\n", + "original image shape: (7000, 7000, 3)\n", + " 377/2000 [====>.........................] - ETA: 17:01:43 - loss: 0.6607622\n", + "original image shape: (7000, 7000, 3)\n", + "193\n", + "original image shape: (7000, 7000, 3)\n", + " 378/2000 [====>.........................] - ETA: 17:00:45 - loss: 0.6603442\n", + "original image shape: (7000, 7000, 3)\n", + " 379/2000 [====>.........................] - ETA: 16:59:46 - loss: 0.6601934\n", + "original image shape: (7000, 7000, 3)\n", + " 380/2000 [====>.........................] - ETA: 16:59:15 - loss: 0.6612897\n", + "original image shape: (7000, 7000, 3)\n", + " 381/2000 [====>.........................] - ETA: 16:58:44 - loss: 0.6615640\n", + "original image shape: (7000, 7000, 3)\n", + "153\n", + "original image shape: (7000, 7000, 3)\n", + " 382/2000 [====>.........................] - ETA: 16:58:05 - loss: 0.6606732\n", + "original image shape: (7000, 7000, 3)\n", + " 383/2000 [====>.........................] - ETA: 16:57:21 - loss: 0.6602147\n", + "original image shape: (7000, 7000, 3)\n", + " 384/2000 [====>.........................] - ETA: 16:56:38 - loss: 0.6592334\n", + "original image shape: (7000, 7000, 3)\n", + " 385/2000 [====>.........................] - ETA: 16:56:19 - loss: 0.6590629\n", + "original image shape: (7000, 7000, 3)\n", + "548\n", + "original image shape: (7000, 7000, 3)\n", + "671\n", + "original image shape: (7000, 7000, 3)\n", + "891\n", + "original image shape: (7000, 7000, 3)\n", + " 386/2000 [====>.........................] - ETA: 16:56:19 - loss: 0.6589556\n", + "original image shape: (7000, 7000, 3)\n", + "730\n", + "original image shape: (7000, 7000, 3)\n", + " 387/2000 [====>.........................] - ETA: 16:56:02 - loss: 0.6580697\n", + "original image shape: (7000, 7000, 3)\n", + " 388/2000 [====>.........................] - ETA: 16:55:41 - loss: 0.6566877\n", + "original image shape: (7000, 7000, 3)\n", + " 389/2000 [====>.........................] - ETA: 16:55:31 - loss: 0.6568952\n", + "original image shape: (7000, 7000, 3)\n", + " 390/2000 [====>.........................] - ETA: 16:55:19 - loss: 0.6572210\n", + "original image shape: (7000, 7000, 3)\n", + " 391/2000 [====>.........................] - ETA: 16:55:10 - loss: 0.6582665\n", + "original image shape: (7000, 7000, 3)\n", + "390\n", + "original image shape: (7000, 7000, 3)\n", + " 392/2000 [====>.........................] - ETA: 16:55:03 - loss: 0.6579438\n", + "original image shape: (7000, 7000, 3)\n", + " 393/2000 [====>.........................] - ETA: 16:54:46 - loss: 0.6573916\n", + "original image shape: (7000, 7000, 3)\n", + " 394/2000 [====>.........................] - ETA: 16:54:38 - loss: 0.6579118\n", + "original image shape: (7000, 7000, 3)\n", + " 395/2000 [====>.........................] - ETA: 16:54:13 - loss: 0.6578973\n", + "original image shape: (7000, 7000, 3)\n", + " 396/2000 [====>.........................] - ETA: 16:54:01 - loss: 0.6578511\n", + "original image shape: (7000, 7000, 3)\n", + "658\n", + "original image shape: (7000, 7000, 3)\n", + "632\n", + "original image shape: (7000, 7000, 3)\n", + "256\n", + "original image shape: (7000, 7000, 3)\n", + " 397/2000 [====>.........................] - ETA: 16:53:57 - loss: 0.6589791\n", + "original image shape: (7000, 7000, 3)\n", + " 398/2000 [====>.........................] - ETA: 16:53:35 - loss: 0.6582583\n", + "original image shape: (7000, 7000, 3)\n", + "876\n", + "original image shape: (7000, 7000, 3)\n", + " 399/2000 [====>.........................] - ETA: 16:53:23 - loss: 0.6585655\n", + "original image shape: (7000, 7000, 3)\n", + "983\n", + "original image shape: (7000, 7000, 3)\n", + " 400/2000 [=====>........................] - ETA: 16:52:14 - loss: 0.6590142\n", + "original image shape: (7000, 7000, 3)\n", + " 401/2000 [=====>........................] - ETA: 16:51:49 - loss: 0.6583787\n", + "original image shape: (7000, 7000, 3)\n", + " 402/2000 [=====>........................] - ETA: 16:51:25 - loss: 0.6578241\n", + "original image shape: (7000, 7000, 3)\n", + " 403/2000 [=====>........................] - ETA: 16:51:13 - loss: 0.6574466\n", + "original image shape: (7000, 7000, 3)\n", + "805\n", + "original image shape: (7000, 7000, 3)\n", + " 404/2000 [=====>........................] - ETA: 16:50:57 - loss: 0.6575463\n", + "original image shape: (7000, 7000, 3)\n", + "121\n", + "original image shape: (7000, 7000, 3)\n", + " 405/2000 [=====>........................] - ETA: 16:50:27 - loss: 0.6576677\n", + "original image shape: (7000, 7000, 3)\n", + "814\n", + "original image shape: (7000, 7000, 3)\n", + " 406/2000 [=====>........................] - ETA: 16:50:17 - loss: 0.6576316\n", + "original image shape: (7000, 7000, 3)\n", + " 407/2000 [=====>........................] - ETA: 16:50:08 - loss: 0.6594711\n", + "original image shape: (7000, 7000, 3)\n", + " 408/2000 [=====>........................] - ETA: 16:49:49 - loss: 0.6587430\n", + "original image shape: (7000, 7000, 3)\n", + " 409/2000 [=====>........................] - ETA: 16:49:37 - loss: 0.6581604\n", + "original image shape: (7000, 7000, 3)\n", + "238\n", + "original image shape: (7000, 7000, 3)\n", + " 410/2000 [=====>........................] - ETA: 16:49:30 - loss: 0.6582838\n", + "original image shape: (7000, 7000, 3)\n", + " 411/2000 [=====>........................] - ETA: 16:49:17 - loss: 0.6584617\n", + "original image shape: (7000, 7000, 3)\n", + "737\n", + "original image shape: (7000, 7000, 3)\n", + " 412/2000 [=====>........................] - ETA: 16:48:56 - loss: 0.6597144\n", + "original image shape: (7000, 7000, 3)\n", + " 413/2000 [=====>........................] - ETA: 16:48:35 - loss: 0.6585254\n", + "original image shape: (7000, 7000, 3)\n", + " 414/2000 [=====>........................] - ETA: 16:48:22 - loss: 0.6595938\n", + "original image shape: (7000, 7000, 3)\n", + " 415/2000 [=====>........................] - ETA: 16:48:09 - loss: 0.6598223\n", + "original image shape: (7000, 7000, 3)\n", + " 416/2000 [=====>........................] - ETA: 16:47:52 - loss: 0.6605481\n", + "original image shape: (7000, 7000, 3)\n", + "140\n", + "original image shape: (7000, 7000, 3)\n", + " 417/2000 [=====>........................] - ETA: 16:47:32 - loss: 0.6594950\n", + "original image shape: (7000, 7000, 3)\n", + " 418/2000 [=====>........................] - ETA: 16:47:18 - loss: 0.6600264\n", + "original image shape: (7000, 7000, 3)\n", + " 419/2000 [=====>........................] - ETA: 16:47:06 - loss: 0.6600733\n", + "original image shape: (7000, 7000, 3)\n", + " 420/2000 [=====>........................] - ETA: 16:46:42 - loss: 0.6598929\n", + "original image shape: (7000, 7000, 3)\n", + " 421/2000 [=====>........................] - ETA: 16:45:29 - loss: 0.6603192\n", + "original image shape: (7000, 7000, 3)\n", + " 422/2000 [=====>........................] - ETA: 16:45:11 - loss: 0.6615150\n", + "original image shape: (7000, 7000, 3)\n", + " 423/2000 [=====>........................] - ETA: 16:44:47 - loss: 0.6609913\n", + "original image shape: (7000, 7000, 3)\n", + " 424/2000 [=====>........................] - ETA: 16:44:33 - loss: 0.6615514\n", + "original image shape: (7000, 7000, 3)\n", + "211\n", + "original image shape: (7000, 7000, 3)\n", + " 425/2000 [=====>........................] - ETA: 16:44:13 - loss: 0.6619503\n", + "original image shape: (7000, 7000, 3)\n", + "536\n", + "original image shape: (7000, 7000, 3)\n", + "478\n", + "original image shape: (7000, 7000, 3)\n", + "480\n", + "original image shape: (7000, 7000, 3)\n", + "393\n", + "original image shape: (7000, 7000, 3)\n", + " 426/2000 [=====>........................] - ETA: 16:44:03 - loss: 0.6630821\n", + "original image shape: (7000, 7000, 3)\n", + " 427/2000 [=====>........................] - ETA: 16:43:40 - loss: 0.6630400\n", + "original image shape: (7000, 7000, 3)\n", + " 428/2000 [=====>........................] - ETA: 16:43:23 - loss: 0.6639750\n", + "original image shape: (7000, 7000, 3)\n", + " 429/2000 [=====>........................] - ETA: 16:42:54 - loss: 0.6626146\n", + "original image shape: (7000, 7000, 3)\n", + " 430/2000 [=====>........................] - ETA: 16:42:28 - loss: 0.6619563\n", + "original image shape: (7000, 7000, 3)\n", + "785\n", + "original image shape: (7000, 7000, 3)\n", + " 431/2000 [=====>........................] - ETA: 16:42:05 - loss: 0.6618687\n", + "original image shape: (7000, 7000, 3)\n", + "842\n", + "original image shape: (7000, 7000, 3)\n", + " 432/2000 [=====>........................] - ETA: 16:41:37 - loss: 0.6620125\n", + "original image shape: (7000, 7000, 3)\n", + " 433/2000 [=====>........................] - ETA: 16:41:14 - loss: 0.6609194\n", + "original image shape: (7000, 7000, 3)\n", + " 434/2000 [=====>........................] - ETA: 16:40:53 - loss: 0.6605594\n", + "original image shape: (7000, 7000, 3)\n", + "137\n", + "original image shape: (7000, 7000, 3)\n", + " 435/2000 [=====>........................] - ETA: 16:40:30 - loss: 0.6596948\n", + "original image shape: (7000, 7000, 3)\n", + " 436/2000 [=====>........................] - ETA: 16:40:12 - loss: 0.6593260\n", + "original image shape: (7000, 7000, 3)\n", + " 437/2000 [=====>........................] - ETA: 16:39:56 - loss: 0.6597549\n", + "original image shape: (7000, 7000, 3)\n", + "412\n", + "original image shape: (7000, 7000, 3)\n", + " 438/2000 [=====>........................] - ETA: 16:39:37 - loss: 0.6603706\n", + "original image shape: (7000, 7000, 3)\n", + " 439/2000 [=====>........................] - ETA: 16:39:08 - loss: 0.6595296\n", + "original image shape: (7000, 7000, 3)\n", + " 440/2000 [=====>........................] - ETA: 16:38:55 - loss: 0.660056\n", + "original image shape: (7000, 7000, 3)\n", + "789\n", + "original image shape: (7000, 7000, 3)\n", + " 441/2000 [=====>........................] - ETA: 16:38:13 - loss: 0.6594123\n", + "original image shape: (7000, 7000, 3)\n", + " 442/2000 [=====>........................] - ETA: 16:37:11 - loss: 0.6580728\n", + "original image shape: (7000, 7000, 3)\n", + " 443/2000 [=====>........................] - ETA: 16:36:20 - loss: 0.6571888\n", + "original image shape: (7000, 7000, 3)\n", + " 444/2000 [=====>........................] - ETA: 16:36:05 - loss: 0.6570757\n", + "original image shape: (7000, 7000, 3)\n", + " 445/2000 [=====>........................] - ETA: 16:35:40 - loss: 0.6566807\n", + "original image shape: (7000, 7000, 3)\n", + " 446/2000 [=====>........................] - ETA: 16:35:15 - loss: 0.6553100\n", + "original image shape: (7000, 7000, 3)\n", + " 447/2000 [=====>........................] - ETA: 16:34:50 - loss: 0.6554844\n", + "original image shape: (7000, 7000, 3)\n", + " 448/2000 [=====>........................] - ETA: 16:34:32 - loss: 0.6556866\n", + "original image shape: (7000, 7000, 3)\n", + " 449/2000 [=====>........................] - ETA: 16:34:14 - loss: 0.6562871\n", + "original image shape: (7000, 7000, 3)\n", + " 450/2000 [=====>........................] - ETA: 16:33:57 - loss: 0.6574765\n", + "original image shape: (7000, 7000, 3)\n", + " 451/2000 [=====>........................] - ETA: 16:33:32 - loss: 0.6571271\n", + "original image shape: (7000, 7000, 3)\n", + " 452/2000 [=====>........................] - ETA: 16:33:16 - loss: 0.6575905\n", + "original image shape: (7000, 7000, 3)\n", + " 453/2000 [=====>........................] - ETA: 16:32:56 - loss: 0.65772\n", + "original image shape: (7000, 7000, 3)\n", + "786\n", + "original image shape: (7000, 7000, 3)\n", + " 454/2000 [=====>........................] - ETA: 16:32:31 - loss: 0.6568342\n", + "original image shape: (7000, 7000, 3)\n", + " 455/2000 [=====>........................] - ETA: 16:32:15 - loss: 0.6564281\n", + "original image shape: (7000, 7000, 3)\n", + " 456/2000 [=====>........................] - ETA: 16:31:58 - loss: 0.6564895\n", + "original image shape: (7000, 7000, 3)\n", + " 457/2000 [=====>........................] - ETA: 16:31:40 - loss: 0.6576321\n", + "original image shape: (7000, 7000, 3)\n", + " 458/2000 [=====>........................] - ETA: 16:31:25 - loss: 0.6575662\n", + "original image shape: (7000, 7000, 3)\n", + "859\n", + "original image shape: (7000, 7000, 3)\n", + " 459/2000 [=====>........................] - ETA: 16:31:06 - loss: 0.6577416\n", + "original image shape: (7000, 7000, 3)\n", + " 460/2000 [=====>........................] - ETA: 16:30:44 - loss: 0.6578522\n", + "original image shape: (7000, 7000, 3)\n", + "879\n", + "original image shape: (7000, 7000, 3)\n", + " 461/2000 [=====>........................] - ETA: 16:30:27 - loss: 0.6576945\n", + "original image shape: (7000, 7000, 3)\n", + " 462/2000 [=====>........................] - ETA: 16:30:04 - loss: 0.6577290\n", + "original image shape: (7000, 7000, 3)\n", + " 463/2000 [=====>........................] - ETA: 16:29:05 - loss: 0.6586960\n", + "original image shape: (7000, 7000, 3)\n", + " 464/2000 [=====>........................] - ETA: 16:28:27 - loss: 0.6583347\n", + "original image shape: (7000, 7000, 3)\n", + " 465/2000 [=====>........................] - ETA: 16:27:52 - loss: 0.6589164\n", + "original image shape: (7000, 7000, 3)\n", + " 466/2000 [=====>........................] - ETA: 16:27:10 - loss: 0.6576348\n", + "original image shape: (7000, 7000, 3)\n", + " 467/2000 [======>.......................] - ETA: 16:26:36 - loss: 0.6584554\n", + "original image shape: (7000, 7000, 3)\n", + "70\n", + "original image shape: (7000, 7000, 3)\n", + "753\n", + "original image shape: (7000, 7000, 3)\n", + " 468/2000 [======>.......................] - ETA: 16:25:56 - loss: 0.6581784\n", + "original image shape: (7000, 7000, 3)\n", + " 469/2000 [======>.......................] - ETA: 16:25:13 - loss: 0.6572367\n", + "original image shape: (7000, 7000, 3)\n", + " 470/2000 [======>.......................] - ETA: 16:24:37 - loss: 0.6570428\n", + "original image shape: (7000, 7000, 3)\n", + " 471/2000 [======>.......................] - ETA: 16:24:00 - loss: 0.6572392\n", + "original image shape: (7000, 7000, 3)\n", + " 472/2000 [======>.......................] - ETA: 16:23:21 - loss: 0.6569209\n", + "original image shape: (7000, 7000, 3)\n", + " 473/2000 [======>.......................] - ETA: 16:22:45 - loss: 0.657432\n", + "original image shape: (7000, 7000, 3)\n", + "984\n", + "original image shape: (7000, 7000, 3)\n", + " 474/2000 [======>.......................] - ETA: 16:22:11 - loss: 0.6576162\n", + "original image shape: (7000, 7000, 3)\n", + " 475/2000 [======>.......................] - ETA: 16:21:28 - loss: 0.6580465\n", + "original image shape: (7000, 7000, 3)\n", + "488\n", + "original image shape: (7000, 7000, 3)\n", + "157\n", + "original image shape: (7000, 7000, 3)\n", + " 476/2000 [======>.......................] - ETA: 16:20:47 - loss: 0.6577552\n", + "original image shape: (7000, 7000, 3)\n", + "790\n", + "original image shape: (7000, 7000, 3)\n", + " 477/2000 [======>.......................] - ETA: 16:20:04 - loss: 0.6573602\n", + "original image shape: (7000, 7000, 3)\n", + "387\n", + "original image shape: (7000, 7000, 3)\n", + " 478/2000 [======>.......................] - ETA: 16:19:28 - loss: 0.6582355\n", + "original image shape: (7000, 7000, 3)\n", + " 479/2000 [======>.......................] - ETA: 16:18:52 - loss: 0.6579377\n", + "original image shape: (7000, 7000, 3)\n", + " 480/2000 [======>.......................] - ETA: 16:18:15 - loss: 0.6582391\n", + "original image shape: (7000, 7000, 3)\n", + " 481/2000 [======>.......................] - ETA: 16:17:36 - loss: 0.6582251\n", + "original image shape: (7000, 7000, 3)\n", + " 482/2000 [======>.......................] - ETA: 16:16:57 - loss: 0.6587327\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 483/2000 [======>.......................] - ETA: 16:16:19 - loss: 0.6586764\n", + "original image shape: (7000, 7000, 3)\n", + " 484/2000 [======>.......................] - ETA: 16:15:30 - loss: 0.6599337\n", + "original image shape: (7000, 7000, 3)\n", + " 485/2000 [======>.......................] - ETA: 16:14:51 - loss: 0.6599375\n", + "original image shape: (7000, 7000, 3)\n", + " 486/2000 [======>.......................] - ETA: 16:14:13 - loss: 0.6602584\n", + "original image shape: (7000, 7000, 3)\n", + "340\n", + "original image shape: (7000, 7000, 3)\n", + " 487/2000 [======>.......................] - ETA: 16:13:08 - loss: 0.6598364\n", + "original image shape: (7000, 7000, 3)\n", + " 488/2000 [======>.......................] - ETA: 16:12:27 - loss: 0.659898\n", + "original image shape: (7000, 7000, 3)\n", + " 489/2000 [======>.......................] - ETA: 16:11:38 - loss: 0.6591612\n", + "original image shape: (7000, 7000, 3)\n", + "631\n", + "original image shape: (7000, 7000, 3)\n", + "257\n", + "original image shape: (7000, 7000, 3)\n", + " 490/2000 [======>.......................] - ETA: 16:11:06 - loss: 0.6598468\n", + "original image shape: (7000, 7000, 3)\n", + "282\n", + "original image shape: (7000, 7000, 3)\n", + " 491/2000 [======>.......................] - ETA: 16:10:34 - loss: 0.6601919\n", + "original image shape: (7000, 7000, 3)\n", + " 492/2000 [======>.......................] - ETA: 16:09:58 - loss: 0.6607887\n", + "original image shape: (7000, 7000, 3)\n", + " 493/2000 [======>.......................] - ETA: 16:09:23 - loss: 0.6613601\n", + "original image shape: (7000, 7000, 3)\n", + "220\n", + "original image shape: (7000, 7000, 3)\n", + " 494/2000 [======>.......................] - ETA: 16:08:51 - loss: 0.6613279\n", + "original image shape: (7000, 7000, 3)\n", + " 495/2000 [======>.......................] - ETA: 16:08:17 - loss: 0.661663\n", + "original image shape: (7000, 7000, 3)\n", + "525\n", + "original image shape: (7000, 7000, 3)\n", + "148\n", + "original image shape: (7000, 7000, 3)\n", + " 496/2000 [======>.......................] - ETA: 16:07:37 - loss: 0.6621370\n", + "original image shape: (7000, 7000, 3)\n", + " 497/2000 [======>.......................] - ETA: 16:07:00 - loss: 0.6620507\n", + "original image shape: (7000, 7000, 3)\n", + "304\n", + "original image shape: (7000, 7000, 3)\n", + " 498/2000 [======>.......................] - ETA: 16:06:28 - loss: 0.6625212\n", + "original image shape: (7000, 7000, 3)\n", + " 499/2000 [======>.......................] - ETA: 16:05:52 - loss: 0.662675\n", + "original image shape: (7000, 7000, 3)\n", + "811\n", + "original image shape: (7000, 7000, 3)\n", + " 500/2000 [======>.......................] - ETA: 16:05:16 - loss: 0.6629429\n", + "original image shape: (7000, 7000, 3)\n", + " 501/2000 [======>.......................] - ETA: 16:04:39 - loss: 0.6630372\n", + "original image shape: (7000, 7000, 3)\n", + " 502/2000 [======>.......................] - ETA: 16:04:03 - loss: 0.663482\n", + "original image shape: (7000, 7000, 3)\n", + " 503/2000 [======>.......................] - ETA: 16:03:18 - loss: 0.6623368\n", + "original image shape: (7000, 7000, 3)\n", + " 504/2000 [======>.......................] - ETA: 16:02:42 - loss: 0.6621676\n", + "original image shape: (7000, 7000, 3)\n", + "43\n", + "original image shape: (7000, 7000, 3)\n", + "177\n", + "original image shape: (7000, 7000, 3)\n", + " 505/2000 [======>.......................] - ETA: 16:02:02 - loss: 0.6611910\n", + "original image shape: (7000, 7000, 3)\n", + " 506/2000 [======>.......................] - ETA: 16:01:26 - loss: 0.6612762\n", + "original image shape: (7000, 7000, 3)\n", + " 507/2000 [======>.......................] - ETA: 16:00:39 - loss: 0.6611396\n", + "original image shape: (7000, 7000, 3)\n", + " 508/2000 [======>.......................] - ETA: 15:59:59 - loss: 0.6615585\n", + "original image shape: (7000, 7000, 3)\n", + "250\n", + "original image shape: (7000, 7000, 3)\n", + " 509/2000 [======>.......................] - ETA: 15:59:22 - loss: 0.6618581\n", + "original image shape: (7000, 7000, 3)\n", + "832\n", + "original image shape: (7000, 7000, 3)\n", + " 510/2000 [======>.......................] - ETA: 15:58:20 - loss: 0.6623318\n", + "original image shape: (7000, 7000, 3)\n", + " 511/2000 [======>.......................] - ETA: 15:57:43 - loss: 0.663433\n", + "original image shape: (7000, 7000, 3)\n", + "830\n", + "original image shape: (7000, 7000, 3)\n", + " 512/2000 [======>.......................] - ETA: 15:57:04 - loss: 0.6634695\n", + "original image shape: (7000, 7000, 3)\n", + " 513/2000 [======>.......................] - ETA: 15:56:20 - loss: 0.6628616\n", + "original image shape: (7000, 7000, 3)\n", + "717\n", + "original image shape: (7000, 7000, 3)\n", + " 514/2000 [======>.......................] - ETA: 15:55:36 - loss: 0.6620803\n", + "original image shape: (7000, 7000, 3)\n", + " 515/2000 [======>.......................] - ETA: 15:54:54 - loss: 0.66148\n", + "original image shape: (7000, 7000, 3)\n", + "228\n", + "original image shape: (7000, 7000, 3)\n", + " 516/2000 [======>.......................] - ETA: 15:54:21 - loss: 0.6621826\n", + "original image shape: (7000, 7000, 3)\n", + " 517/2000 [======>.......................] - ETA: 15:53:41 - loss: 0.6621131\n", + "original image shape: (7000, 7000, 3)\n", + " 518/2000 [======>.......................] - ETA: 15:52:55 - loss: 0.6621454\n", + "original image shape: (7000, 7000, 3)\n", + " 519/2000 [======>.......................] - ETA: 15:52:12 - loss: 0.6625427\n", + "original image shape: (7000, 7000, 3)\n", + " 520/2000 [======>.......................] - ETA: 15:51:33 - loss: 0.6628580\n", + "original image shape: (7000, 7000, 3)\n", + "534\n", + "original image shape: (7000, 7000, 3)\n", + "936\n", + "original image shape: (7000, 7000, 3)\n", + " 521/2000 [======>.......................] - ETA: 15:50:59 - loss: 0.6635491\n", + "original image shape: (7000, 7000, 3)\n", + "922\n", + "original image shape: (7000, 7000, 3)\n", + " 522/2000 [======>.......................] - ETA: 15:50:26 - loss: 0.6636797\n", + "original image shape: (7000, 7000, 3)\n", + " 523/2000 [======>.......................] - ETA: 15:49:46 - loss: 0.6633288\n", + "original image shape: (7000, 7000, 3)\n", + " 524/2000 [======>.......................] - ETA: 15:49:14 - loss: 0.6642666\n", + "original image shape: (7000, 7000, 3)\n", + "490\n", + "original image shape: (7000, 7000, 3)\n", + "267\n", + "original image shape: (7000, 7000, 3)\n", + " 525/2000 [======>.......................] - ETA: 15:48:45 - loss: 0.6647399\n", + "original image shape: (7000, 7000, 3)\n", + " 526/2000 [======>.......................] - ETA: 15:48:09 - loss: 0.6649239\n", + "original image shape: (7000, 7000, 3)\n", + " 527/2000 [======>.......................] - ETA: 15:47:34 - loss: 0.6648353\n", + "original image shape: (7000, 7000, 3)\n", + " 528/2000 [======>.......................] - ETA: 15:46:59 - loss: 0.6652572\n", + "original image shape: (7000, 7000, 3)\n", + "664\n", + "original image shape: (7000, 7000, 3)\n", + "937\n", + "original image shape: (7000, 7000, 3)\n", + " 529/2000 [======>.......................] - ETA: 15:46:27 - loss: 0.665358\n", + "original image shape: (7000, 7000, 3)\n", + "927\n", + "original image shape: (7000, 7000, 3)\n", + " 530/2000 [======>.......................] - ETA: 15:45:53 - loss: 0.6669269\n", + "original image shape: (7000, 7000, 3)\n", + " 531/2000 [======>.......................] - ETA: 15:45:16 - loss: 0.6672175\n", + "original image shape: (7000, 7000, 3)\n", + " 532/2000 [======>.......................] - ETA: 15:44:31 - loss: 0.6678431\n", + "original image shape: (7000, 7000, 3)\n", + " 533/2000 [======>.......................] - ETA: 15:43:41 - loss: 0.6673901\n", + "original image shape: (7000, 7000, 3)\n", + " 534/2000 [=======>......................] - ETA: 15:42:53 - loss: 0.6674777\n", + "original image shape: (7000, 7000, 3)\n", + " 535/2000 [=======>......................] - ETA: 15:42:08 - loss: 0.6671222\n", + "original image shape: (7000, 7000, 3)\n", + " 536/2000 [=======>......................] - ETA: 15:41:33 - loss: 0.6669824\n", + "original image shape: (7000, 7000, 3)\n", + " 537/2000 [=======>......................] - ETA: 15:40:54 - loss: 0.6669407\n", + "original image shape: (7000, 7000, 3)\n", + " 538/2000 [=======>......................] - ETA: 15:40:15 - loss: 0.6675476\n", + "original image shape: (7000, 7000, 3)\n", + "565\n", + "original image shape: (7000, 7000, 3)\n", + "770\n", + "original image shape: (7000, 7000, 3)\n", + " 539/2000 [=======>......................] - ETA: 15:39:35 - loss: 0.6665759\n", + "original image shape: (7000, 7000, 3)\n", + " 540/2000 [=======>......................] - ETA: 15:38:51 - loss: 0.6655382\n", + "original image shape: (7000, 7000, 3)\n", + " 541/2000 [=======>......................] - ETA: 15:38:14 - loss: 0.665589\n", + "original image shape: (7000, 7000, 3)\n", + " 542/2000 [=======>......................] - ETA: 15:37:30 - loss: 0.6644183\n", + "original image shape: (7000, 7000, 3)\n", + " 543/2000 [=======>......................] - ETA: 15:36:49 - loss: 0.6641768\n", + "original image shape: (7000, 7000, 3)\n", + " 544/2000 [=======>......................] - ETA: 15:36:02 - loss: 0.6633597\n", + "original image shape: (7000, 7000, 3)\n", + "40\n", + "original image shape: (7000, 7000, 3)\n", + "346\n", + "original image shape: (7000, 7000, 3)\n", + " 545/2000 [=======>......................] - ETA: 15:35:27 - loss: 0.6633541\n", + "original image shape: (7000, 7000, 3)\n", + "656\n", + "original image shape: (7000, 7000, 3)\n", + "970\n", + "original image shape: (7000, 7000, 3)\n", + " 546/2000 [=======>......................] - ETA: 15:34:51 - loss: 0.6634760\n", + "original image shape: (7000, 7000, 3)\n", + " 547/2000 [=======>......................] - ETA: 15:34:04 - loss: 0.662453\n", + "original image shape: (7000, 7000, 3)\n", + "229\n", + "original image shape: (7000, 7000, 3)\n", + " 548/2000 [=======>......................] - ETA: 15:33:27 - loss: 0.6622325\n", + "original image shape: (7000, 7000, 3)\n", + " 549/2000 [=======>......................] - ETA: 15:32:48 - loss: 0.6618114\n", + "original image shape: (7000, 7000, 3)\n", + " 550/2000 [=======>......................] - ETA: 15:32:03 - loss: 0.6608475\n", + "original image shape: (7000, 7000, 3)\n", + "403\n", + "original image shape: (7000, 7000, 3)\n", + " 551/2000 [=======>......................] - ETA: 15:31:23 - loss: 0.6610578\n", + "original image shape: (7000, 7000, 3)\n", + "458\n", + "original image shape: (7000, 7000, 3)\n", + "776\n", + "original image shape: (7000, 7000, 3)\n", + " 552/2000 [=======>......................] - ETA: 15:30:42 - loss: 0.6603133\n", + "original image shape: (7000, 7000, 3)\n", + " 553/2000 [=======>......................] - ETA: 15:29:58 - loss: 0.6594213\n", + "original image shape: (7000, 7000, 3)\n", + " 554/2000 [=======>......................] - ETA: 15:29:21 - loss: 0.6592792\n", + "original image shape: (7000, 7000, 3)\n", + " 555/2000 [=======>......................] - ETA: 15:28:41 - loss: 0.658910\n", + "original image shape: (7000, 7000, 3)\n", + "237\n", + "original image shape: (7000, 7000, 3)\n", + " 556/2000 [=======>......................] - ETA: 15:28:06 - loss: 0.6593357\n", + "original image shape: (7000, 7000, 3)\n", + " 557/2000 [=======>......................] - ETA: 15:27:15 - loss: 0.6593815\n", + "original image shape: (7000, 7000, 3)\n", + " 558/2000 [=======>......................] - ETA: 15:26:44 - loss: 0.6591461\n", + "original image shape: (7000, 7000, 3)\n", + "234\n", + "original image shape: (7000, 7000, 3)\n", + " 559/2000 [=======>......................] - ETA: 15:26:21 - loss: 0.6590414\n", + "original image shape: (7000, 7000, 3)\n", + " 560/2000 [=======>......................] - ETA: 15:25:56 - loss: 0.659599\n", + "original image shape: (7000, 7000, 3)\n", + " 561/2000 [=======>......................] - ETA: 15:25:26 - loss: 0.6593985\n", + "original image shape: (7000, 7000, 3)\n", + " 562/2000 [=======>......................] - ETA: 15:25:02 - loss: 0.6594644\n", + "original image shape: (7000, 7000, 3)\n", + "570\n", + "original image shape: (7000, 7000, 3)\n", + "837\n", + "original image shape: (7000, 7000, 3)\n", + " 563/2000 [=======>......................] - ETA: 15:24:40 - loss: 0.6594899\n", + "original image shape: (7000, 7000, 3)\n", + " 564/2000 [=======>......................] - ETA: 15:24:17 - loss: 0.6591932\n", + "original image shape: (7000, 7000, 3)\n", + " 565/2000 [=======>......................] - ETA: 15:23:54 - loss: 0.6593946\n", + "original image shape: (7000, 7000, 3)\n", + " 566/2000 [=======>......................] - ETA: 15:23:30 - loss: 0.6592509\n", + "original image shape: (7000, 7000, 3)\n", + "312\n", + "original image shape: (7000, 7000, 3)\n", + " 567/2000 [=======>......................] - ETA: 15:23:09 - loss: 0.659747\n", + "original image shape: (7000, 7000, 3)\n", + "529\n", + "original image shape: (7000, 7000, 3)\n", + "889\n", + "original image shape: (7000, 7000, 3)\n", + " 568/2000 [=======>......................] - ETA: 15:22:49 - loss: 0.6599186\n", + "original image shape: (7000, 7000, 3)\n", + " 569/2000 [=======>......................] - ETA: 15:22:24 - loss: 0.6600350\n", + "original image shape: (7000, 7000, 3)\n", + " 570/2000 [=======>......................] - ETA: 15:22:01 - loss: 0.6599499\n", + "original image shape: (7000, 7000, 3)\n", + "432\n", + "original image shape: (7000, 7000, 3)\n", + " 571/2000 [=======>......................] - ETA: 15:21:37 - loss: 0.6600710\n", + "original image shape: (7000, 7000, 3)\n", + " 572/2000 [=======>......................] - ETA: 15:21:07 - loss: 0.6590374\n", + "original image shape: (7000, 7000, 3)\n", + " 573/2000 [=======>......................] - ETA: 15:20:41 - loss: 0.6591155\n", + "original image shape: (7000, 7000, 3)\n", + " 574/2000 [=======>......................] - ETA: 15:20:10 - loss: 0.6584763\n", + "original image shape: (7000, 7000, 3)\n", + " 575/2000 [=======>......................] - ETA: 15:19:38 - loss: 0.6579575\n", + "original image shape: (7000, 7000, 3)\n", + "902\n", + "original image shape: (7000, 7000, 3)\n", + " 576/2000 [=======>......................] - ETA: 15:19:14 - loss: 0.658185\n", + "original image shape: (7000, 7000, 3)\n", + " 577/2000 [=======>......................] - ETA: 15:18:42 - loss: 0.6571839\n", + "original image shape: (7000, 7000, 3)\n", + " 578/2000 [=======>......................] - ETA: 15:17:44 - loss: 0.6569550\n", + "original image shape: (7000, 7000, 3)\n", + "810\n", + "original image shape: (7000, 7000, 3)\n", + " 579/2000 [=======>......................] - ETA: 15:17:16 - loss: 0.6573331\n", + "original image shape: (7000, 7000, 3)\n", + " 580/2000 [=======>......................] - ETA: 15:16:52 - loss: 0.6569459\n", + "original image shape: (7000, 7000, 3)\n", + "358\n", + "original image shape: (7000, 7000, 3)\n", + " 581/2000 [=======>......................] - ETA: 15:16:27 - loss: 0.6574179\n", + "original image shape: (7000, 7000, 3)\n", + " 582/2000 [=======>......................] - ETA: 15:15:59 - loss: 0.6576190\n", + "original image shape: (7000, 7000, 3)\n", + " 583/2000 [=======>......................] - ETA: 15:15:30 - loss: 0.6574119\n", + "original image shape: (7000, 7000, 3)\n", + " 584/2000 [=======>......................] - ETA: 15:14:59 - loss: 0.6576668\n", + "original image shape: (7000, 7000, 3)\n", + "136\n", + "original image shape: (7000, 7000, 3)\n", + " 585/2000 [=======>......................] - ETA: 15:14:28 - loss: 0.6569418\n", + "original image shape: (7000, 7000, 3)\n", + " 586/2000 [=======>......................] - ETA: 15:14:00 - loss: 0.6575892\n", + "original image shape: (7000, 7000, 3)\n", + " 587/2000 [=======>......................] - ETA: 15:13:35 - loss: 0.6575202\n", + "original image shape: (7000, 7000, 3)\n", + " 588/2000 [=======>......................] - ETA: 15:13:06 - loss: 0.6573609\n", + "original image shape: (7000, 7000, 3)\n", + "959\n", + "original image shape: (7000, 7000, 3)\n", + " 589/2000 [=======>......................] - ETA: 15:12:42 - loss: 0.6576311\n", + "original image shape: (7000, 7000, 3)\n", + " 590/2000 [=======>......................] - ETA: 15:12:18 - loss: 0.6578189\n", + "original image shape: (7000, 7000, 3)\n", + " 591/2000 [=======>......................] - ETA: 15:11:48 - loss: 0.6573365\n", + "original image shape: (7000, 7000, 3)\n", + " 592/2000 [=======>......................] - ETA: 15:11:21 - loss: 0.6572614\n", + "original image shape: (7000, 7000, 3)\n", + "246\n", + "original image shape: (7000, 7000, 3)\n", + " 593/2000 [=======>......................] - ETA: 15:10:57 - loss: 0.6577771\n", + "original image shape: (7000, 7000, 3)\n", + " 594/2000 [=======>......................] - ETA: 15:10:25 - loss: 0.6569635\n", + "original image shape: (7000, 7000, 3)\n", + "557\n", + "original image shape: (7000, 7000, 3)\n", + "571\n", + "original image shape: (7000, 7000, 3)\n", + "134\n", + "original image shape: (7000, 7000, 3)\n", + " 595/2000 [=======>......................] - ETA: 15:09:56 - loss: 0.656778\n", + "original image shape: (7000, 7000, 3)\n", + "6\n", + "original image shape: (7000, 7000, 3)\n", + "226\n", + "original image shape: (7000, 7000, 3)\n", + " 596/2000 [=======>......................] - ETA: 15:09:32 - loss: 0.6570542\n", + "original image shape: (7000, 7000, 3)\n", + "880\n", + "original image shape: (7000, 7000, 3)\n", + " 597/2000 [=======>......................] - ETA: 15:09:05 - loss: 0.657069\n", + "original image shape: (7000, 7000, 3)\n", + "699\n", + "original image shape: (7000, 7000, 3)\n", + " 598/2000 [=======>......................] - ETA: 15:08:32 - loss: 0.6566607\n", + "original image shape: (7000, 7000, 3)\n", + "611\n", + "original image shape: (7000, 7000, 3)\n", + "851\n", + "original image shape: (7000, 7000, 3)\n", + " 599/2000 [=======>......................] - ETA: 15:07:34 - loss: 0.6570492\n", + "original image shape: (7000, 7000, 3)\n", + "44\n", + "original image shape: (7000, 7000, 3)\n", + "517\n", + "original image shape: (7000, 7000, 3)\n", + "966\n", + "original image shape: (7000, 7000, 3)\n", + " 600/2000 [========>.....................] - ETA: 15:07:10 - loss: 0.6568369\n", + "original image shape: (7000, 7000, 3)\n", + " 601/2000 [========>.....................] - ETA: 15:06:39 - loss: 0.6570741\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 602/2000 [========>.....................] - ETA: 15:06:03 - loss: 0.6560690\n", + "original image shape: (7000, 7000, 3)\n", + "333\n", + "original image shape: (7000, 7000, 3)\n", + " 603/2000 [========>.....................] - ETA: 15:05:37 - loss: 0.6559701\n", + "original image shape: (7000, 7000, 3)\n", + " 604/2000 [========>.....................] - ETA: 15:04:59 - loss: 0.6552422\n", + "original image shape: (7000, 7000, 3)\n", + " 605/2000 [========>.....................] - ETA: 15:04:28 - loss: 0.6554956\n", + "original image shape: (7000, 7000, 3)\n", + " 606/2000 [========>.....................] - ETA: 15:04:00 - loss: 0.6554870\n", + "original image shape: (7000, 7000, 3)\n", + " 607/2000 [========>.....................] - ETA: 15:03:27 - loss: 0.6558528\n", + "original image shape: (7000, 7000, 3)\n", + "402\n", + "original image shape: (7000, 7000, 3)\n", + " 608/2000 [========>.....................] - ETA: 15:02:55 - loss: 0.6565731\n", + "original image shape: (7000, 7000, 3)\n", + " 609/2000 [========>.....................] - ETA: 15:02:16 - loss: 0.6559502\n", + "original image shape: (7000, 7000, 3)\n", + "958\n", + "original image shape: (7000, 7000, 3)\n", + " 610/2000 [========>.....................] - ETA: 15:01:48 - loss: 0.656145\n", + "original image shape: (7000, 7000, 3)\n", + "740\n", + "original image shape: (7000, 7000, 3)\n", + " 611/2000 [========>.....................] - ETA: 15:01:16 - loss: 0.6553875\n", + "original image shape: (7000, 7000, 3)\n", + " 612/2000 [========>.....................] - ETA: 15:00:46 - loss: 0.6556965\n", + "original image shape: (7000, 7000, 3)\n", + " 613/2000 [========>.....................] - ETA: 15:00:17 - loss: 0.655616\n", + "original image shape: (7000, 7000, 3)\n", + "582\n", + "original image shape: (7000, 7000, 3)\n", + "266\n", + "original image shape: (7000, 7000, 3)\n", + " 614/2000 [========>.....................] - ETA: 14:59:51 - loss: 0.6558969\n", + "original image shape: (7000, 7000, 3)\n", + " 615/2000 [========>.....................] - ETA: 14:59:19 - loss: 0.6558663\n", + "original image shape: (7000, 7000, 3)\n", + "26\n", + "original image shape: (7000, 7000, 3)\n", + "124\n", + "original image shape: (7000, 7000, 3)\n", + " 616/2000 [========>.....................] - ETA: 14:58:44 - loss: 0.655276\n", + "original image shape: (7000, 7000, 3)\n", + "395\n", + "original image shape: (7000, 7000, 3)\n", + " 617/2000 [========>.....................] - ETA: 14:58:13 - loss: 0.6553496\n", + "original image shape: (7000, 7000, 3)\n", + "802\n", + "original image shape: (7000, 7000, 3)\n", + " 618/2000 [========>.....................] - ETA: 14:57:40 - loss: 0.6550688\n", + "original image shape: (7000, 7000, 3)\n", + "128\n", + "original image shape: (7000, 7000, 3)\n", + " 619/2000 [========>.....................] - ETA: 14:57:06 - loss: 0.6554336\n", + "original image shape: (7000, 7000, 3)\n", + " 620/2000 [========>.....................] - ETA: 14:56:32 - loss: 0.6557166\n", + "original image shape: (7000, 7000, 3)\n", + " 621/2000 [========>.....................] - ETA: 14:55:31 - loss: 0.6547588\n", + "original image shape: (7000, 7000, 3)\n", + "25\n", + "original image shape: (7000, 7000, 3)\n", + "886\n", + "original image shape: (7000, 7000, 3)\n", + " 622/2000 [========>.....................] - ETA: 14:55:03 - loss: 0.6553443\n", + "original image shape: (7000, 7000, 3)\n", + " 623/2000 [========>.....................] - ETA: 14:54:29 - loss: 0.6558568\n", + "original image shape: (7000, 7000, 3)\n", + "626\n", + "original image shape: (7000, 7000, 3)\n", + "57\n", + "original image shape: (7000, 7000, 3)\n", + "796\n", + "original image shape: (7000, 7000, 3)\n", + " 624/2000 [========>.....................] - ETA: 14:54:00 - loss: 0.6563249\n", + "original image shape: (7000, 7000, 3)\n", + " 625/2000 [========>.....................] - ETA: 14:53:30 - loss: 0.6568806\n", + "original image shape: (7000, 7000, 3)\n", + " 626/2000 [========>.....................] - ETA: 14:52:55 - loss: 0.6561425\n", + "original image shape: (7000, 7000, 3)\n", + " 627/2000 [========>.....................] - ETA: 14:52:27 - loss: 0.6568307\n", + "original image shape: (7000, 7000, 3)\n", + " 628/2000 [========>.....................] - ETA: 14:51:58 - loss: 0.6568724\n", + "original image shape: (7000, 7000, 3)\n", + " 629/2000 [========>.....................] - ETA: 14:51:23 - loss: 0.6559940\n", + "original image shape: (7000, 7000, 3)\n", + " 630/2000 [========>.....................] - ETA: 14:50:53 - loss: 0.6562214\n", + "original image shape: (7000, 7000, 3)\n", + " 631/2000 [========>.....................] - ETA: 14:50:25 - loss: 0.6567343\n", + "original image shape: (7000, 7000, 3)\n", + " 632/2000 [========>.....................] - ETA: 14:49:55 - loss: 0.656639\n", + "original image shape: (7000, 7000, 3)\n", + "167\n", + "original image shape: (7000, 7000, 3)\n", + " 633/2000 [========>.....................] - ETA: 14:49:23 - loss: 0.6559908\n", + "original image shape: (7000, 7000, 3)\n", + " 634/2000 [========>.....................] - ETA: 14:48:53 - loss: 0.6558330\n", + "original image shape: (7000, 7000, 3)\n", + " 635/2000 [========>.....................] - ETA: 14:48:21 - loss: 0.6555435\n", + "original image shape: (7000, 7000, 3)\n", + " 636/2000 [========>.....................] - ETA: 14:47:46 - loss: 0.6550843\n", + "original image shape: (7000, 7000, 3)\n", + " 637/2000 [========>.....................] - ETA: 14:47:15 - loss: 0.6552326\n", + "original image shape: (7000, 7000, 3)\n", + " 638/2000 [========>.....................] - ETA: 14:46:45 - loss: 0.6552449\n", + "original image shape: (7000, 7000, 3)\n", + " 639/2000 [========>.....................] - ETA: 14:46:10 - loss: 0.6548409\n", + "original image shape: (7000, 7000, 3)\n", + " 640/2000 [========>.....................] - ETA: 14:45:37 - loss: 0.6552483\n", + "original image shape: (7000, 7000, 3)\n", + "54\n", + "original image shape: (7000, 7000, 3)\n", + "613\n", + "original image shape: (7000, 7000, 3)\n", + "872\n", + "original image shape: (7000, 7000, 3)\n", + " 641/2000 [========>.....................] - ETA: 14:45:08 - loss: 0.6562284\n", + "original image shape: (7000, 7000, 3)\n", + " 642/2000 [========>.....................] - ETA: 14:44:13 - loss: 0.656420\n", + "original image shape: (7000, 7000, 3)\n", + "106\n", + "original image shape: (7000, 7000, 3)\n", + " 643/2000 [========>.....................] - ETA: 14:43:21 - loss: 0.655994\n", + "original image shape: (7000, 7000, 3)\n", + " 644/2000 [========>.....................] - ETA: 14:42:32 - loss: 0.6550592\n", + "original image shape: (7000, 7000, 3)\n", + "967\n", + "original image shape: (7000, 7000, 3)\n", + " 645/2000 [========>.....................] - ETA: 14:41:51 - loss: 0.6547564\n", + "original image shape: (7000, 7000, 3)\n", + "127\n", + "original image shape: (7000, 7000, 3)\n", + " 646/2000 [========>.....................] - ETA: 14:41:03 - loss: 0.6542426\n", + "original image shape: (7000, 7000, 3)\n", + " 647/2000 [========>.....................] - ETA: 14:40:18 - loss: 0.6547707\n", + "original image shape: (7000, 7000, 3)\n", + " 648/2000 [========>.....................] - ETA: 14:39:29 - loss: 0.654121\n", + "original image shape: (7000, 7000, 3)\n", + "816\n", + "original image shape: (7000, 7000, 3)\n", + " 649/2000 [========>.....................] - ETA: 14:38:46 - loss: 0.6538686\n", + "original image shape: (7000, 7000, 3)\n", + "804\n", + "original image shape: (7000, 7000, 3)\n", + " 650/2000 [========>.....................] - ETA: 14:38:03 - loss: 0.6542386\n", + "original image shape: (7000, 7000, 3)\n", + " 651/2000 [========>.....................] - ETA: 14:37:21 - loss: 0.6543323\n", + "original image shape: (7000, 7000, 3)\n", + " 652/2000 [========>.....................] - ETA: 14:36:39 - loss: 0.6542389\n", + "original image shape: (7000, 7000, 3)\n", + " 653/2000 [========>.....................] - ETA: 14:35:56 - loss: 0.6540479\n", + "original image shape: (7000, 7000, 3)\n", + "627\n", + "original image shape: (7000, 7000, 3)\n", + "470\n", + "original image shape: (7000, 7000, 3)\n", + "36\n", + "original image shape: (7000, 7000, 3)\n", + "858\n", + "original image shape: (7000, 7000, 3)\n", + " 654/2000 [========>.....................] - ETA: 14:35:17 - loss: 0.6540621\n", + "original image shape: (7000, 7000, 3)\n", + "539\n", + "original image shape: (7000, 7000, 3)\n", + "766\n", + "original image shape: (7000, 7000, 3)\n", + " 655/2000 [========>.....................] - ETA: 14:34:32 - loss: 0.6538394\n", + "original image shape: (7000, 7000, 3)\n", + " 656/2000 [========>.....................] - ETA: 14:33:50 - loss: 0.6539363\n", + "original image shape: (7000, 7000, 3)\n", + " 657/2000 [========>.....................] - ETA: 14:33:07 - loss: 0.6537745\n", + "original image shape: (7000, 7000, 3)\n", + " 658/2000 [========>.....................] - ETA: 14:32:21 - loss: 0.6543598\n", + "original image shape: (7000, 7000, 3)\n", + "512\n", + "original image shape: (7000, 7000, 3)\n", + "756\n", + "original image shape: (7000, 7000, 3)\n", + " 659/2000 [========>.....................] - ETA: 14:31:38 - loss: 0.6547780\n", + "original image shape: (7000, 7000, 3)\n", + " 660/2000 [========>.....................] - ETA: 14:30:51 - loss: 0.654629\n", + "original image shape: (7000, 7000, 3)\n", + "219\n", + "original image shape: (7000, 7000, 3)\n", + " 661/2000 [========>.....................] - ETA: 14:30:13 - loss: 0.6549328\n", + "original image shape: (7000, 7000, 3)\n", + " 662/2000 [========>.....................] - ETA: 14:29:33 - loss: 0.6553801\n", + "original image shape: (7000, 7000, 3)\n", + " 663/2000 [========>.....................] - ETA: 14:28:51 - loss: 0.6552163\n", + "original image shape: (7000, 7000, 3)\n", + " 664/2000 [========>.....................] - ETA: 14:28:06 - loss: 0.6545208\n", + "original image shape: (7000, 7000, 3)\n", + " 665/2000 [========>.....................] - ETA: 14:27:25 - loss: 0.6555138\n", + "original image shape: (7000, 7000, 3)\n", + " 666/2000 [========>.....................] - ETA: 14:26:40 - loss: 0.6555747\n", + "original image shape: (7000, 7000, 3)\n", + " 667/2000 [=========>....................] - ETA: 14:25:32 - loss: 0.6563559\n", + "original image shape: (7000, 7000, 3)\n", + "474\n", + "original image shape: (7000, 7000, 3)\n", + "371\n", + "original image shape: (7000, 7000, 3)\n", + " 668/2000 [=========>....................] - ETA: 14:24:52 - loss: 0.6560455\n", + "original image shape: (7000, 7000, 3)\n", + "928\n", + "original image shape: (7000, 7000, 3)\n", + " 669/2000 [=========>....................] - ETA: 14:24:12 - loss: 0.6571526\n", + "original image shape: (7000, 7000, 3)\n", + "704\n", + "original image shape: (7000, 7000, 3)\n", + " 670/2000 [=========>....................] - ETA: 14:23:26 - loss: 0.657359\n", + "original image shape: (7000, 7000, 3)\n", + "799\n", + "original image shape: (7000, 7000, 3)\n", + " 671/2000 [=========>....................] - ETA: 14:22:44 - loss: 0.6572373\n", + "original image shape: (7000, 7000, 3)\n", + " 672/2000 [=========>....................] - ETA: 14:22:05 - loss: 0.6570805\n", + "original image shape: (7000, 7000, 3)\n", + " 673/2000 [=========>....................] - ETA: 14:21:23 - loss: 0.6574175\n", + "original image shape: (7000, 7000, 3)\n", + " 674/2000 [=========>....................] - ETA: 14:20:40 - loss: 0.6575859\n", + "original image shape: (7000, 7000, 3)\n", + " 675/2000 [=========>....................] - ETA: 14:19:58 - loss: 0.6576115\n", + "original image shape: (7000, 7000, 3)\n", + " 676/2000 [=========>....................] - ETA: 14:19:12 - loss: 0.6572821\n", + "original image shape: (7000, 7000, 3)\n", + " 677/2000 [=========>....................] - ETA: 14:18:31 - loss: 0.6570563\n", + "original image shape: (7000, 7000, 3)\n", + "142\n", + "original image shape: (7000, 7000, 3)\n", + " 678/2000 [=========>....................] - ETA: 14:17:47 - loss: 0.6566304\n", + "original image shape: (7000, 7000, 3)\n", + " 679/2000 [=========>....................] - ETA: 14:17:08 - loss: 0.6569473\n", + "original image shape: (7000, 7000, 3)\n", + "951\n", + "original image shape: (7000, 7000, 3)\n", + " 680/2000 [=========>....................] - ETA: 14:16:29 - loss: 0.6568758\n", + "original image shape: (7000, 7000, 3)\n", + " 681/2000 [=========>....................] - ETA: 14:15:43 - loss: 0.6566350\n", + "original image shape: (7000, 7000, 3)\n", + " 682/2000 [=========>....................] - ETA: 14:15:02 - loss: 0.6569873\n", + "original image shape: (7000, 7000, 3)\n", + " 683/2000 [=========>....................] - ETA: 14:14:21 - loss: 0.6578302\n", + "original image shape: (7000, 7000, 3)\n", + " 684/2000 [=========>....................] - ETA: 14:13:40 - loss: 0.6580885\n", + "original image shape: (7000, 7000, 3)\n", + " 685/2000 [=========>....................] - ETA: 14:13:01 - loss: 0.6587249\n", + "original image shape: (7000, 7000, 3)\n", + " 686/2000 [=========>....................] - ETA: 14:12:20 - loss: 0.6589861\n", + "original image shape: (7000, 7000, 3)\n", + " 687/2000 [=========>....................] - ETA: 14:11:39 - loss: 0.6589621\n", + "original image shape: (7000, 7000, 3)\n", + "624\n", + "original image shape: (7000, 7000, 3)\n", + "155\n", + "original image shape: (7000, 7000, 3)\n", + " 688/2000 [=========>....................] - ETA: 14:10:57 - loss: 0.6586398\n", + "original image shape: (7000, 7000, 3)\n", + " 689/2000 [=========>....................] - ETA: 14:10:16 - loss: 0.6588904\n", + "original image shape: (7000, 7000, 3)\n", + " 690/2000 [=========>....................] - ETA: 14:09:36 - loss: 0.6584726\n", + "original image shape: (7000, 7000, 3)\n", + " 691/2000 [=========>....................] - ETA: 14:08:37 - loss: 0.6599539\n", + "original image shape: (7000, 7000, 3)\n", + "223\n", + "original image shape: (7000, 7000, 3)\n", + " 692/2000 [=========>....................] - ETA: 14:07:55 - loss: 0.6606721\n", + "original image shape: (7000, 7000, 3)\n", + " 693/2000 [=========>....................] - ETA: 14:07:10 - loss: 0.6602396\n", + "original image shape: (7000, 7000, 3)\n", + " 694/2000 [=========>....................] - ETA: 14:06:28 - loss: 0.6607158\n", + "original image shape: (7000, 7000, 3)\n", + " 695/2000 [=========>....................] - ETA: 14:05:45 - loss: 0.6610506\n", + "original image shape: (7000, 7000, 3)\n", + "146\n", + "original image shape: (7000, 7000, 3)\n", + " 696/2000 [=========>....................] - ETA: 14:05:01 - loss: 0.6607136\n", + "original image shape: (7000, 7000, 3)\n", + " 697/2000 [=========>....................] - ETA: 14:04:17 - loss: 0.6599630\n", + "original image shape: (7000, 7000, 3)\n", + "615\n", + "original image shape: (7000, 7000, 3)\n", + "460\n", + "original image shape: (7000, 7000, 3)\n", + "42\n", + "original image shape: (7000, 7000, 3)\n", + "447\n", + "original image shape: (7000, 7000, 3)\n", + " 698/2000 [=========>....................] - ETA: 14:03:38 - loss: 0.6594176\n", + "original image shape: (7000, 7000, 3)\n", + " 699/2000 [=========>....................] - ETA: 14:02:56 - loss: 0.6596190\n", + "original image shape: (7000, 7000, 3)\n", + " 700/2000 [=========>....................] - ETA: 14:02:14 - loss: 0.6593902\n", + "original image shape: (7000, 7000, 3)\n", + " 701/2000 [=========>....................] - ETA: 14:01:33 - loss: 0.660384\n", + "original image shape: (7000, 7000, 3)\n", + " 702/2000 [=========>....................] - ETA: 14:00:49 - loss: 0.6594819\n", + "original image shape: (7000, 7000, 3)\n", + " 703/2000 [=========>....................] - ETA: 14:00:09 - loss: 0.6592401\n", + "original image shape: (7000, 7000, 3)\n", + " 704/2000 [=========>....................] - ETA: 13:59:28 - loss: 0.6600284\n", + "original image shape: (7000, 7000, 3)\n", + " 705/2000 [=========>....................] - ETA: 13:58:51 - loss: 0.6603380\n", + "original image shape: (7000, 7000, 3)\n", + " 706/2000 [=========>....................] - ETA: 13:58:09 - loss: 0.6608620\n", + "original image shape: (7000, 7000, 3)\n", + "308\n", + "original image shape: (7000, 7000, 3)\n", + " 707/2000 [=========>....................] - ETA: 13:57:32 - loss: 0.6608231\n", + "original image shape: (7000, 7000, 3)\n", + " 708/2000 [=========>....................] - ETA: 13:56:54 - loss: 0.6605315\n", + "original image shape: (7000, 7000, 3)\n", + " 709/2000 [=========>....................] - ETA: 13:56:16 - loss: 0.6610910\n", + "original image shape: (7000, 7000, 3)\n", + " 710/2000 [=========>....................] - ETA: 13:55:37 - loss: 0.6615524\n", + "original image shape: (7000, 7000, 3)\n", + "140\n", + "original image shape: (7000, 7000, 3)\n", + " 711/2000 [=========>....................] - ETA: 13:54:54 - loss: 0.6609948\n", + "original image shape: (7000, 7000, 3)\n", + " 712/2000 [=========>....................] - ETA: 13:54:13 - loss: 0.6614825\n", + "original image shape: (7000, 7000, 3)\n", + " 713/2000 [=========>....................] - ETA: 13:53:32 - loss: 0.6613605\n", + "original image shape: (7000, 7000, 3)\n", + "961\n", + "original image shape: (7000, 7000, 3)\n", + " 714/2000 [=========>....................] - ETA: 13:52:51 - loss: 0.6612296\n", + "original image shape: (7000, 7000, 3)\n", + " 715/2000 [=========>....................] - ETA: 13:52:00 - loss: 0.6618545\n", + "original image shape: (7000, 7000, 3)\n", + "619\n", + "original image shape: (7000, 7000, 3)\n", + "243\n", + "original image shape: (7000, 7000, 3)\n", + " 716/2000 [=========>....................] - ETA: 13:51:21 - loss: 0.6619627\n", + "original image shape: (7000, 7000, 3)\n", + "626\n", + "original image shape: (7000, 7000, 3)\n", + "470\n", + "original image shape: (7000, 7000, 3)\n", + "959\n", + "original image shape: (7000, 7000, 3)\n", + " 717/2000 [=========>....................] - ETA: 13:50:43 - loss: 0.6620748\n", + "original image shape: (7000, 7000, 3)\n", + " 718/2000 [=========>....................] - ETA: 13:49:57 - loss: 0.6619200\n", + "original image shape: (7000, 7000, 3)\n", + " 719/2000 [=========>....................] - ETA: 13:49:16 - loss: 0.6622529\n", + "original image shape: (7000, 7000, 3)\n", + "2\n", + "original image shape: (7000, 7000, 3)\n", + "550\n", + "original image shape: (7000, 7000, 3)\n", + "538\n", + "original image shape: (7000, 7000, 3)\n", + "55\n", + "original image shape: (7000, 7000, 3)\n", + "222\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 720/2000 [=========>....................] - ETA: 13:48:42 - loss: 0.662441\n", + "original image shape: (7000, 7000, 3)\n", + "63\n", + "original image shape: (7000, 7000, 3)\n", + "338\n", + "original image shape: (7000, 7000, 3)\n", + " 721/2000 [=========>....................] - ETA: 13:48:03 - loss: 0.6623332\n", + "original image shape: (7000, 7000, 3)\n", + " 722/2000 [=========>....................] - ETA: 13:47:23 - loss: 0.6629198\n", + "original image shape: (7000, 7000, 3)\n", + " 723/2000 [=========>....................] - ETA: 13:46:42 - loss: 0.6632587\n", + "original image shape: (7000, 7000, 3)\n", + "15\n", + "original image shape: (7000, 7000, 3)\n", + "133\n", + "original image shape: (7000, 7000, 3)\n", + " 724/2000 [=========>....................] - ETA: 13:45:58 - loss: 0.6629174\n", + "original image shape: (7000, 7000, 3)\n", + " 725/2000 [=========>....................] - ETA: 13:45:14 - loss: 0.6630208\n", + "original image shape: (7000, 7000, 3)\n", + " 726/2000 [=========>....................] - ETA: 13:44:32 - loss: 0.6635271\n", + "original image shape: (7000, 7000, 3)\n", + " 727/2000 [=========>....................] - ETA: 13:43:53 - loss: 0.6637186\n", + "original image shape: (7000, 7000, 3)\n", + " 728/2000 [=========>....................] - ETA: 13:43:11 - loss: 0.6637530\n", + "original image shape: (7000, 7000, 3)\n", + "928\n", + "original image shape: (7000, 7000, 3)\n", + " 729/2000 [=========>....................] - ETA: 13:42:31 - loss: 0.6640713\n", + "original image shape: (7000, 7000, 3)\n", + " 730/2000 [=========>....................] - ETA: 13:41:46 - loss: 0.6633532\n", + "original image shape: (7000, 7000, 3)\n", + "500\n", + "original image shape: (7000, 7000, 3)\n", + "430\n", + "original image shape: (7000, 7000, 3)\n", + " 731/2000 [=========>....................] - ETA: 13:41:07 - loss: 0.6630760\n", + "original image shape: (7000, 7000, 3)\n", + " 732/2000 [=========>....................] - ETA: 13:40:22 - loss: 0.6626683\n", + "original image shape: (7000, 7000, 3)\n", + "629\n", + "original image shape: (7000, 7000, 3)\n", + "263\n", + "original image shape: (7000, 7000, 3)\n", + " 733/2000 [=========>....................] - ETA: 13:39:44 - loss: 0.6623724\n", + "original image shape: (7000, 7000, 3)\n", + " 734/2000 [==========>...................] - ETA: 13:39:00 - loss: 0.6615169\n", + "original image shape: (7000, 7000, 3)\n", + " 735/2000 [==========>...................] - ETA: 13:38:16 - loss: 0.6614345\n", + "original image shape: (7000, 7000, 3)\n", + " 736/2000 [==========>...................] - ETA: 13:37:35 - loss: 0.6618974\n", + "original image shape: (7000, 7000, 3)\n", + " 737/2000 [==========>...................] - ETA: 13:36:53 - loss: 0.6618458\n", + "original image shape: (7000, 7000, 3)\n", + "219\n", + "original image shape: (7000, 7000, 3)\n", + " 738/2000 [==========>...................] - ETA: 13:36:14 - loss: 0.6618475\n", + "original image shape: (7000, 7000, 3)\n", + "583\n", + "original image shape: (7000, 7000, 3)\n", + "268\n", + "original image shape: (7000, 7000, 3)\n", + " 739/2000 [==========>...................] - ETA: 13:35:28 - loss: 0.6618852\n", + "original image shape: (7000, 7000, 3)\n", + " 740/2000 [==========>...................] - ETA: 13:34:46 - loss: 0.6619167\n", + "original image shape: (7000, 7000, 3)\n", + " 741/2000 [==========>...................] - ETA: 13:34:12 - loss: 0.6613780\n", + "original image shape: (7000, 7000, 3)\n", + " 742/2000 [==========>...................] - ETA: 13:33:36 - loss: 0.661065\n", + "original image shape: (7000, 7000, 3)\n", + "8\n", + "original image shape: (7000, 7000, 3)\n", + "448\n", + "original image shape: (7000, 7000, 3)\n", + " 743/2000 [==========>...................] - ETA: 13:33:05 - loss: 0.6606570\n", + "original image shape: (7000, 7000, 3)\n", + "368\n", + "original image shape: (7000, 7000, 3)\n", + " 744/2000 [==========>...................] - ETA: 13:32:34 - loss: 0.6603504\n", + "original image shape: (7000, 7000, 3)\n", + "100\n", + "original image shape: (7000, 7000, 3)\n", + " 745/2000 [==========>...................] - ETA: 13:31:58 - loss: 0.6595179\n", + "original image shape: (7000, 7000, 3)\n", + " 746/2000 [==========>...................] - ETA: 13:31:23 - loss: 0.6595553\n", + "original image shape: (7000, 7000, 3)\n", + "832\n", + "original image shape: (7000, 7000, 3)\n", + " 747/2000 [==========>...................] - ETA: 13:30:52 - loss: 0.6595842\n", + "original image shape: (7000, 7000, 3)\n", + " 748/2000 [==========>...................] - ETA: 13:30:17 - loss: 0.6597118\n", + "original image shape: (7000, 7000, 3)\n", + " 749/2000 [==========>...................] - ETA: 13:29:40 - loss: 0.6594801\n", + "original image shape: (7000, 7000, 3)\n", + " 750/2000 [==========>...................] - ETA: 13:29:06 - loss: 0.6594127\n", + "original image shape: (7000, 7000, 3)\n", + " 751/2000 [==========>...................] - ETA: 13:28:30 - loss: 0.6589455\n", + "original image shape: (7000, 7000, 3)\n", + "58\n", + "original image shape: (7000, 7000, 3)\n", + "531\n", + "original image shape: (7000, 7000, 3)\n", + "491\n", + "original image shape: (7000, 7000, 3)\n", + "717\n", + "original image shape: (7000, 7000, 3)\n", + " 752/2000 [==========>...................] - ETA: 13:27:59 - loss: 0.6583581\n", + "original image shape: (7000, 7000, 3)\n", + "329\n", + "original image shape: (7000, 7000, 3)\n", + " 753/2000 [==========>...................] - ETA: 13:27:28 - loss: 0.6584387\n", + "original image shape: (7000, 7000, 3)\n", + " 754/2000 [==========>...................] - ETA: 13:26:56 - loss: 0.6589417\n", + "original image shape: (7000, 7000, 3)\n", + " 755/2000 [==========>...................] - ETA: 13:26:22 - loss: 0.6593522\n", + "original image shape: (7000, 7000, 3)\n", + "360\n", + "original image shape: (7000, 7000, 3)\n", + " 756/2000 [==========>...................] - ETA: 13:25:50 - loss: 0.6601411\n", + "original image shape: (7000, 7000, 3)\n", + " 757/2000 [==========>...................] - ETA: 13:25:16 - loss: 0.6603672\n", + "original image shape: (7000, 7000, 3)\n", + "727\n", + "original image shape: (7000, 7000, 3)\n", + " 758/2000 [==========>...................] - ETA: 13:24:40 - loss: 0.6596867\n", + "original image shape: (7000, 7000, 3)\n", + " 759/2000 [==========>...................] - ETA: 13:24:06 - loss: 0.6595257\n", + "original image shape: (7000, 7000, 3)\n", + " 760/2000 [==========>...................] - ETA: 13:23:35 - loss: 0.6598270\n", + "original image shape: (7000, 7000, 3)\n", + " 761/2000 [==========>...................] - ETA: 13:22:43 - loss: 0.6600132\n", + "original image shape: (7000, 7000, 3)\n", + " 762/2000 [==========>...................] - ETA: 13:22:02 - loss: 0.6602131\n", + "original image shape: (7000, 7000, 3)\n", + " 763/2000 [==========>...................] - ETA: 13:21:25 - loss: 0.6605512\n", + "original image shape: (7000, 7000, 3)\n", + "771\n", + "original image shape: (7000, 7000, 3)\n", + " 764/2000 [==========>...................] - ETA: 13:20:50 - loss: 0.6600874\n", + "original image shape: (7000, 7000, 3)\n", + " 765/2000 [==========>...................] - ETA: 13:20:17 - loss: 0.6604266\n", + "original image shape: (7000, 7000, 3)\n", + " 766/2000 [==========>...................] - ETA: 13:19:44 - loss: 0.6607180\n", + "original image shape: (7000, 7000, 3)\n", + " 767/2000 [==========>...................] - ETA: 13:19:09 - loss: 0.6616542\n", + "original image shape: (7000, 7000, 3)\n", + "339\n", + "original image shape: (7000, 7000, 3)\n", + " 768/2000 [==========>...................] - ETA: 13:18:37 - loss: 0.6612365\n", + "original image shape: (7000, 7000, 3)\n", + " 769/2000 [==========>...................] - ETA: 13:18:04 - loss: 0.6610211\n", + "original image shape: (7000, 7000, 3)\n", + " 770/2000 [==========>...................] - ETA: 13:17:32 - loss: 0.6614501\n", + "original image shape: (7000, 7000, 3)\n", + "956\n", + "original image shape: (7000, 7000, 3)\n", + " 771/2000 [==========>...................] - ETA: 13:17:01 - loss: 0.6612520\n", + "original image shape: (7000, 7000, 3)\n", + "966\n", + "original image shape: (7000, 7000, 3)\n", + " 772/2000 [==========>...................] - ETA: 13:16:30 - loss: 0.6611826\n", + "original image shape: (7000, 7000, 3)\n", + " 773/2000 [==========>...................] - ETA: 13:15:56 - loss: 0.6614297\n", + "original image shape: (7000, 7000, 3)\n", + " 774/2000 [==========>...................] - ETA: 13:15:24 - loss: 0.661573\n", + "original image shape: (7000, 7000, 3)\n", + "197\n", + "original image shape: (7000, 7000, 3)\n", + " 775/2000 [==========>...................] - ETA: 13:14:51 - loss: 0.6625412\n", + "original image shape: (7000, 7000, 3)\n", + " 776/2000 [==========>...................] - ETA: 13:14:17 - loss: 0.6624599\n", + "original image shape: (7000, 7000, 3)\n", + "799\n", + "original image shape: (7000, 7000, 3)\n", + " 777/2000 [==========>...................] - ETA: 13:13:41 - loss: 0.662852\n", + "original image shape: (7000, 7000, 3)\n", + "277\n", + "original image shape: (7000, 7000, 3)\n", + " 778/2000 [==========>...................] - ETA: 13:13:11 - loss: 0.6634409\n", + "original image shape: (7000, 7000, 3)\n", + " 779/2000 [==========>...................] - ETA: 13:12:39 - loss: 0.6637817\n", + "original image shape: (7000, 7000, 3)\n", + " 780/2000 [==========>...................] - ETA: 13:12:06 - loss: 0.6636210\n", + "original image shape: (7000, 7000, 3)\n", + " 781/2000 [==========>...................] - ETA: 13:11:35 - loss: 0.6639106\n", + "original image shape: (7000, 7000, 3)\n", + " 782/2000 [==========>...................] - ETA: 13:10:55 - loss: 0.6631152\n", + "original image shape: (7000, 7000, 3)\n", + " 783/2000 [==========>...................] - ETA: 13:10:01 - loss: 0.6627185\n", + "original image shape: (7000, 7000, 3)\n", + " 784/2000 [==========>...................] - ETA: 13:09:26 - loss: 0.6630334\n", + "original image shape: (7000, 7000, 3)\n", + " 785/2000 [==========>...................] - ETA: 13:08:54 - loss: 0.6635168\n", + "original image shape: (7000, 7000, 3)\n", + " 786/2000 [==========>...................] - ETA: 13:08:18 - loss: 0.6633113\n", + "original image shape: (7000, 7000, 3)\n", + " 787/2000 [==========>...................] - ETA: 13:07:42 - loss: 0.662924\n", + "original image shape: (7000, 7000, 3)\n", + "838\n", + "original image shape: (7000, 7000, 3)\n", + " 788/2000 [==========>...................] - ETA: 13:07:11 - loss: 0.6633239\n", + "original image shape: (7000, 7000, 3)\n", + " 789/2000 [==========>...................] - ETA: 13:06:41 - loss: 0.663527\n", + "original image shape: (7000, 7000, 3)\n", + "446\n", + "original image shape: (7000, 7000, 3)\n", + " 790/2000 [==========>...................] - ETA: 13:06:06 - loss: 0.6632187\n", + "original image shape: (7000, 7000, 3)\n", + " 791/2000 [==========>...................] - ETA: 13:05:30 - loss: 0.6637659\n", + "original image shape: (7000, 7000, 3)\n", + "256\n", + "original image shape: (7000, 7000, 3)\n", + " 792/2000 [==========>...................] - ETA: 13:04:58 - loss: 0.6639791\n", + "original image shape: (7000, 7000, 3)\n", + " 793/2000 [==========>...................] - ETA: 13:04:22 - loss: 0.6633868\n", + "original image shape: (7000, 7000, 3)\n", + " 794/2000 [==========>...................] - ETA: 13:03:50 - loss: 0.663230\n", + "original image shape: (7000, 7000, 3)\n", + "75\n", + "original image shape: (7000, 7000, 3)\n", + "906\n", + "original image shape: (7000, 7000, 3)\n", + " 795/2000 [==========>...................] - ETA: 13:03:20 - loss: 0.6633391\n", + "original image shape: (7000, 7000, 3)\n", + " 796/2000 [==========>...................] - ETA: 13:02:47 - loss: 0.6631869\n", + "original image shape: (7000, 7000, 3)\n", + " 797/2000 [==========>...................] - ETA: 13:02:14 - loss: 0.6633275\n", + "original image shape: (7000, 7000, 3)\n", + " 798/2000 [==========>...................] - ETA: 13:01:41 - loss: 0.663593\n", + "original image shape: (7000, 7000, 3)\n", + " 799/2000 [==========>...................] - ETA: 13:01:05 - loss: 0.6634385\n", + "original image shape: (7000, 7000, 3)\n", + " 800/2000 [===========>..................] - ETA: 13:00:33 - loss: 0.6633358\n", + "original image shape: (7000, 7000, 3)\n", + " 801/2000 [===========>..................] - ETA: 12:59:59 - loss: 0.6636201\n", + "original image shape: (7000, 7000, 3)\n", + " 802/2000 [===========>..................] - ETA: 12:59:29 - loss: 0.6636250\n", + "original image shape: (7000, 7000, 3)\n", + " 803/2000 [===========>..................] - ETA: 12:58:55 - loss: 0.6638251\n", + "original image shape: (7000, 7000, 3)\n", + " 804/2000 [===========>..................] - ETA: 12:58:04 - loss: 0.6639560\n", + "original image shape: (7000, 7000, 3)\n", + "199\n", + "original image shape: (7000, 7000, 3)\n", + " 805/2000 [===========>..................] - ETA: 12:57:36 - loss: 0.6637708\n", + "original image shape: (7000, 7000, 3)\n", + " 806/2000 [===========>..................] - ETA: 12:57:02 - loss: 0.6631230\n", + "original image shape: (7000, 7000, 3)\n", + " 807/2000 [===========>..................] - ETA: 12:56:32 - loss: 0.6635938\n", + "original image shape: (7000, 7000, 3)\n", + " 808/2000 [===========>..................] - ETA: 12:56:00 - loss: 0.6635459\n", + "original image shape: (7000, 7000, 3)\n", + "415\n", + "original image shape: (7000, 7000, 3)\n", + " 809/2000 [===========>..................] - ETA: 12:55:29 - loss: 0.6635431\n", + "original image shape: (7000, 7000, 3)\n", + " 810/2000 [===========>..................] - ETA: 12:54:55 - loss: 0.6631556\n", + "original image shape: (7000, 7000, 3)\n", + "310\n", + "original image shape: (7000, 7000, 3)\n", + " 811/2000 [===========>..................] - ETA: 12:54:26 - loss: 0.662776\n", + "original image shape: (7000, 7000, 3)\n", + "86\n", + "original image shape: (7000, 7000, 3)\n", + " 812/2000 [===========>..................] - ETA: 12:53:51 - loss: 0.6619921\n", + "original image shape: (7000, 7000, 3)\n", + " 813/2000 [===========>..................] - ETA: 12:53:18 - loss: 0.6617354\n", + "original image shape: (7000, 7000, 3)\n", + " 814/2000 [===========>..................] - ETA: 12:52:47 - loss: 0.6615153\n", + "original image shape: (7000, 7000, 3)\n", + " 815/2000 [===========>..................] - ETA: 12:52:12 - loss: 0.6610766\n", + "original image shape: (7000, 7000, 3)\n", + " 816/2000 [===========>..................] - ETA: 12:51:37 - loss: 0.6607384\n", + "original image shape: (7000, 7000, 3)\n", + " 817/2000 [===========>..................] - ETA: 12:51:06 - loss: 0.6605979\n", + "original image shape: (7000, 7000, 3)\n", + " 818/2000 [===========>..................] - ETA: 12:50:34 - loss: 0.6607790\n", + "original image shape: (7000, 7000, 3)\n", + " 819/2000 [===========>..................] - ETA: 12:49:58 - loss: 0.6604969\n", + "original image shape: (7000, 7000, 3)\n", + " 820/2000 [===========>..................] - ETA: 12:49:27 - loss: 0.660468\n", + "original image shape: (7000, 7000, 3)\n", + "40\n", + "original image shape: (7000, 7000, 3)\n", + "269\n", + "original image shape: (7000, 7000, 3)\n", + " 821/2000 [===========>..................] - ETA: 12:48:58 - loss: 0.6606795\n", + "original image shape: (7000, 7000, 3)\n", + " 822/2000 [===========>..................] - ETA: 12:48:23 - loss: 0.6604109\n", + "original image shape: (7000, 7000, 3)\n", + " 823/2000 [===========>..................] - ETA: 12:47:48 - loss: 0.6603426\n", + "original image shape: (7000, 7000, 3)\n", + " 824/2000 [===========>..................] - ETA: 12:47:16 - loss: 0.6601555\n", + "original image shape: (7000, 7000, 3)\n", + "144\n", + "original image shape: (7000, 7000, 3)\n", + " 825/2000 [===========>..................] - ETA: 12:46:21 - loss: 0.6596204\n", + "original image shape: (7000, 7000, 3)\n", + " 826/2000 [===========>..................] - ETA: 12:45:49 - loss: 0.6599603\n", + "original image shape: (7000, 7000, 3)\n", + "978\n", + "original image shape: (7000, 7000, 3)\n", + " 827/2000 [===========>..................] - ETA: 12:45:17 - loss: 0.6600773\n", + "original image shape: (7000, 7000, 3)\n", + " 828/2000 [===========>..................] - ETA: 12:44:40 - loss: 0.6598371\n", + "original image shape: (7000, 7000, 3)\n", + " 829/2000 [===========>..................] - ETA: 12:44:08 - loss: 0.6596138\n", + "original image shape: (7000, 7000, 3)\n", + " 830/2000 [===========>..................] - ETA: 12:43:33 - loss: 0.659526\n", + "original image shape: (7000, 7000, 3)\n", + "571\n", + "original image shape: (7000, 7000, 3)\n", + "706\n", + "original image shape: (7000, 7000, 3)\n", + " 831/2000 [===========>..................] - ETA: 12:42:55 - loss: 0.659867\n", + "original image shape: (7000, 7000, 3)\n", + "964\n", + "original image shape: (7000, 7000, 3)\n", + " 832/2000 [===========>..................] - ETA: 12:42:17 - loss: 0.6597123\n", + "original image shape: (7000, 7000, 3)\n", + " 833/2000 [===========>..................] - ETA: 12:41:34 - loss: 0.6593112\n", + "original image shape: (7000, 7000, 3)\n", + " 834/2000 [===========>..................] - ETA: 12:40:51 - loss: 0.6585551\n", + "original image shape: (7000, 7000, 3)\n", + "34\n", + "original image shape: (7000, 7000, 3)\n", + "535\n", + "original image shape: (7000, 7000, 3)\n", + "353\n", + "original image shape: (7000, 7000, 3)\n", + " 835/2000 [===========>..................] - ETA: 12:40:14 - loss: 0.6582444\n", + "original image shape: (7000, 7000, 3)\n", + " 836/2000 [===========>..................] - ETA: 12:39:32 - loss: 0.6583703\n", + "original image shape: (7000, 7000, 3)\n", + " 837/2000 [===========>..................] - ETA: 12:38:48 - loss: 0.6589374\n", + "original image shape: (7000, 7000, 3)\n", + " 838/2000 [===========>..................] - ETA: 12:38:08 - loss: 0.6587407\n", + "original image shape: (7000, 7000, 3)\n", + " 839/2000 [===========>..................] - ETA: 12:37:26 - loss: 0.6588623\n", + "original image shape: (7000, 7000, 3)\n", + "56\n", + "original image shape: (7000, 7000, 3)\n", + "59\n", + "original image shape: (7000, 7000, 3)\n", + "753\n", + "original image shape: (7000, 7000, 3)\n", + " 840/2000 [===========>..................] - ETA: 12:36:45 - loss: 0.6588604\n", + "original image shape: (7000, 7000, 3)\n", + "880\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 841/2000 [===========>..................] - ETA: 12:36:06 - loss: 0.658721\n", + "original image shape: (7000, 7000, 3)\n", + "647\n", + "original image shape: (7000, 7000, 3)\n", + "147\n", + "original image shape: (7000, 7000, 3)\n", + " 842/2000 [===========>..................] - ETA: 12:35:23 - loss: 0.6581137\n", + "original image shape: (7000, 7000, 3)\n", + " 843/2000 [===========>..................] - ETA: 12:34:39 - loss: 0.657554\n", + "original image shape: (7000, 7000, 3)\n", + "835\n", + "original image shape: (7000, 7000, 3)\n", + " 844/2000 [===========>..................] - ETA: 12:33:58 - loss: 0.6574793\n", + "original image shape: (7000, 7000, 3)\n", + " 845/2000 [===========>..................] - ETA: 12:33:15 - loss: 0.6575715\n", + "original image shape: (7000, 7000, 3)\n", + " 846/2000 [===========>..................] - ETA: 12:32:31 - loss: 0.657094\n", + "original image shape: (7000, 7000, 3)\n", + " 847/2000 [===========>..................] - ETA: 12:31:47 - loss: 0.6568692\n", + "original image shape: (7000, 7000, 3)\n", + "886\n", + "original image shape: (7000, 7000, 3)\n", + " 848/2000 [===========>..................] - ETA: 12:31:03 - loss: 0.6571289\n", + "original image shape: (7000, 7000, 3)\n", + " 849/2000 [===========>..................] - ETA: 12:30:18 - loss: 0.6576389\n", + "original image shape: (7000, 7000, 3)\n", + " 850/2000 [===========>..................] - ETA: 12:29:38 - loss: 0.6574534\n", + "original image shape: (7000, 7000, 3)\n", + "976\n", + "original image shape: (7000, 7000, 3)\n", + " 851/2000 [===========>..................] - ETA: 12:29:00 - loss: 0.6574607\n", + "original image shape: (7000, 7000, 3)\n", + "375\n", + "original image shape: (7000, 7000, 3)\n", + " 852/2000 [===========>..................] - ETA: 12:28:20 - loss: 0.6574124\n", + "original image shape: (7000, 7000, 3)\n", + " 853/2000 [===========>..................] - ETA: 12:27:36 - loss: 0.6568765\n", + "original image shape: (7000, 7000, 3)\n", + " 854/2000 [===========>..................] - ETA: 12:26:52 - loss: 0.657074\n", + "original image shape: (7000, 7000, 3)\n", + "638\n", + "original image shape: (7000, 7000, 3)\n", + "742\n", + "original image shape: (7000, 7000, 3)\n", + " 855/2000 [===========>..................] - ETA: 12:26:09 - loss: 0.6569714\n", + "original image shape: (7000, 7000, 3)\n", + " 856/2000 [===========>..................] - ETA: 12:25:26 - loss: 0.6565779\n", + "original image shape: (7000, 7000, 3)\n", + " 857/2000 [===========>..................] - ETA: 12:24:42 - loss: 0.6560544\n", + "original image shape: (7000, 7000, 3)\n", + "945\n", + "original image shape: (7000, 7000, 3)\n", + " 858/2000 [===========>..................] - ETA: 12:24:03 - loss: 0.6560881\n", + "original image shape: (7000, 7000, 3)\n", + " 859/2000 [===========>..................] - ETA: 12:23:23 - loss: 0.656181\n", + "original image shape: (7000, 7000, 3)\n", + " 860/2000 [===========>..................] - ETA: 12:22:39 - loss: 0.6554811\n", + "original image shape: (7000, 7000, 3)\n", + " 861/2000 [===========>..................] - ETA: 12:21:57 - loss: 0.6553442\n", + "original image shape: (7000, 7000, 3)\n", + " 862/2000 [===========>..................] - ETA: 12:21:14 - loss: 0.6554752\n", + "original image shape: (7000, 7000, 3)\n", + " 863/2000 [===========>..................] - ETA: 12:20:28 - loss: 0.6552492\n", + "original image shape: (7000, 7000, 3)\n", + "47\n", + "original image shape: (7000, 7000, 3)\n", + "679\n", + "original image shape: (7000, 7000, 3)\n", + "879\n", + "original image shape: (7000, 7000, 3)\n", + " 864/2000 [===========>..................] - ETA: 12:19:50 - loss: 0.6553749\n", + "original image shape: (7000, 7000, 3)\n", + " 865/2000 [===========>..................] - ETA: 12:19:05 - loss: 0.6555836\n", + "original image shape: (7000, 7000, 3)\n", + " 866/2000 [===========>..................] - ETA: 12:18:23 - loss: 0.6554723\n", + "original image shape: (7000, 7000, 3)\n", + " 867/2000 [============>.................] - ETA: 12:17:38 - loss: 0.6549986\n", + "original image shape: (7000, 7000, 3)\n", + " 868/2000 [============>.................] - ETA: 12:16:58 - loss: 0.6551905\n", + "original image shape: (7000, 7000, 3)\n", + " 869/2000 [============>.................] - ETA: 12:16:17 - loss: 0.6551301\n", + "original image shape: (7000, 7000, 3)\n", + " 870/2000 [============>.................] - ETA: 12:15:37 - loss: 0.6556963\n", + "original image shape: (7000, 7000, 3)\n", + " 871/2000 [============>.................] - ETA: 12:14:56 - loss: 0.6556370\n", + "original image shape: (7000, 7000, 3)\n", + " 872/2000 [============>.................] - ETA: 12:14:16 - loss: 0.6555850\n", + "original image shape: (7000, 7000, 3)\n", + " 873/2000 [============>.................] - ETA: 12:13:22 - loss: 0.6556937\n", + "original image shape: (7000, 7000, 3)\n", + " 874/2000 [============>.................] - ETA: 12:12:42 - loss: 0.6557298\n", + "original image shape: (7000, 7000, 3)\n", + " 875/2000 [============>.................] - ETA: 12:12:02 - loss: 0.6557287\n", + "original image shape: (7000, 7000, 3)\n", + " 876/2000 [============>.................] - ETA: 12:11:23 - loss: 0.6560482\n", + "original image shape: (7000, 7000, 3)\n", + "831\n", + "original image shape: (7000, 7000, 3)\n", + " 877/2000 [============>.................] - ETA: 12:10:43 - loss: 0.6563828\n", + "original image shape: (7000, 7000, 3)\n", + " 878/2000 [============>.................] - ETA: 12:10:02 - loss: 0.6562585\n", + "original image shape: (7000, 7000, 3)\n", + "327\n", + "original image shape: (7000, 7000, 3)\n", + " 879/2000 [============>.................] - ETA: 12:09:23 - loss: 0.6565608\n", + "original image shape: (7000, 7000, 3)\n", + "35\n", + "original image shape: (7000, 7000, 3)\n", + "108\n", + "original image shape: (7000, 7000, 3)\n", + " 880/2000 [============>.................] - ETA: 12:08:40 - loss: 0.656346\n", + "original image shape: (7000, 7000, 3)\n", + "166\n", + "original image shape: (7000, 7000, 3)\n", + " 881/2000 [============>.................] - ETA: 12:07:57 - loss: 0.6556101\n", + "original image shape: (7000, 7000, 3)\n", + " 882/2000 [============>.................] - ETA: 12:07:12 - loss: 0.6550865\n", + "original image shape: (7000, 7000, 3)\n", + " 883/2000 [============>.................] - ETA: 12:06:30 - loss: 0.655287\n", + "original image shape: (7000, 7000, 3)\n", + " 884/2000 [============>.................] - ETA: 12:05:45 - loss: 0.6545547\n", + "original image shape: (7000, 7000, 3)\n", + "37\n", + "original image shape: (7000, 7000, 3)\n", + "260\n", + "original image shape: (7000, 7000, 3)\n", + " 885/2000 [============>.................] - ETA: 12:05:06 - loss: 0.6548829\n", + "original image shape: (7000, 7000, 3)\n", + " 886/2000 [============>.................] - ETA: 12:04:24 - loss: 0.6548281\n", + "original image shape: (7000, 7000, 3)\n", + " 887/2000 [============>.................] - ETA: 12:03:44 - loss: 0.6549261\n", + "original image shape: (7000, 7000, 3)\n", + " 888/2000 [============>.................] - ETA: 12:03:03 - loss: 0.6551226\n", + "original image shape: (7000, 7000, 3)\n", + " 889/2000 [============>.................] - ETA: 12:02:21 - loss: 0.6550808\n", + "original image shape: (7000, 7000, 3)\n", + " 890/2000 [============>.................] - ETA: 12:01:38 - loss: 0.6547207\n", + "original image shape: (7000, 7000, 3)\n", + " 891/2000 [============>.................] - ETA: 12:00:58 - loss: 0.6556849\n", + "original image shape: (7000, 7000, 3)\n", + " 892/2000 [============>.................] - ETA: 12:00:17 - loss: 0.6555264\n", + "original image shape: (7000, 7000, 3)\n", + " 893/2000 [============>.................] - ETA: 11:59:37 - loss: 0.6554788\n", + "original image shape: (7000, 7000, 3)\n", + " 894/2000 [============>.................] - ETA: 11:58:55 - loss: 0.6550644\n", + "original image shape: (7000, 7000, 3)\n", + "510\n", + "original image shape: (7000, 7000, 3)\n", + "660\n", + "original image shape: (7000, 7000, 3)\n", + "981\n", + "original image shape: (7000, 7000, 3)\n", + " 895/2000 [============>.................] - ETA: 11:58:18 - loss: 0.6549818\n", + "original image shape: (7000, 7000, 3)\n", + " 896/2000 [============>.................] - ETA: 11:57:36 - loss: 0.6548593\n", + "original image shape: (7000, 7000, 3)\n", + "267\n", + "original image shape: (7000, 7000, 3)\n", + " 897/2000 [============>.................] - ETA: 11:56:50 - loss: 0.655179\n", + "original image shape: (7000, 7000, 3)\n", + " 898/2000 [============>.................] - ETA: 11:56:00 - loss: 0.654712\n", + "original image shape: (7000, 7000, 3)\n", + "665\n", + "original image shape: (7000, 7000, 3)\n", + "61\n", + "original image shape: (7000, 7000, 3)\n", + "60\n", + "original image shape: (7000, 7000, 3)\n", + "725\n", + "original image shape: (7000, 7000, 3)\n", + " 899/2000 [============>.................] - ETA: 11:55:20 - loss: 0.6542548\n", + "original image shape: (7000, 7000, 3)\n", + "953\n", + "original image shape: (7000, 7000, 3)\n", + " 900/2000 [============>.................] - ETA: 11:54:40 - loss: 0.6545678\n", + "original image shape: (7000, 7000, 3)\n", + "812\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 901/2000 [============>.................] - ETA: 11:54:01 - loss: 0.6546449\n", + "original image shape: (7000, 7000, 3)\n", + " 902/2000 [============>.................] - ETA: 11:53:19 - loss: 0.654399\n", + "original image shape: (7000, 7000, 3)\n", + " 903/2000 [============>.................] - ETA: 11:52:35 - loss: 0.6537443\n", + "original image shape: (7000, 7000, 3)\n", + " 904/2000 [============>.................] - ETA: 11:51:54 - loss: 0.6538523\n", + "original image shape: (7000, 7000, 3)\n", + "691\n", + "original image shape: (7000, 7000, 3)\n", + "456\n", + "original image shape: (7000, 7000, 3)\n", + "896\n", + "original image shape: (7000, 7000, 3)\n", + " 905/2000 [============>.................] - ETA: 11:51:16 - loss: 0.65356\n", + "original image shape: (7000, 7000, 3)\n", + "178\n", + "original image shape: (7000, 7000, 3)\n", + " 906/2000 [============>.................] - ETA: 11:50:35 - loss: 0.6534778\n", + "original image shape: (7000, 7000, 3)\n", + " 907/2000 [============>.................] - ETA: 11:49:51 - loss: 0.6532716\n", + "original image shape: (7000, 7000, 3)\n", + " 908/2000 [============>.................] - ETA: 11:49:06 - loss: 0.6525739\n", + "original image shape: (7000, 7000, 3)\n", + " 909/2000 [============>.................] - ETA: 11:48:23 - loss: 0.6519676\n", + "original image shape: (7000, 7000, 3)\n", + "915\n", + "original image shape: (7000, 7000, 3)\n", + " 910/2000 [============>.................] - ETA: 11:47:43 - loss: 0.6520759\n", + "original image shape: (7000, 7000, 3)\n", + " 911/2000 [============>.................] - ETA: 11:46:59 - loss: 0.6515584\n", + "original image shape: (7000, 7000, 3)\n", + "787\n", + "original image shape: (7000, 7000, 3)\n", + " 912/2000 [============>.................] - ETA: 11:46:18 - loss: 0.6513602\n", + "original image shape: (7000, 7000, 3)\n", + "930\n", + "original image shape: (7000, 7000, 3)\n", + " 913/2000 [============>.................] - ETA: 11:45:40 - loss: 0.6515965\n", + "original image shape: (7000, 7000, 3)\n", + " 914/2000 [============>.................] - ETA: 11:45:01 - loss: 0.6517617\n", + "original image shape: (7000, 7000, 3)\n", + "13\n", + "original image shape: (7000, 7000, 3)\n", + "38\n", + "original image shape: (7000, 7000, 3)\n", + "366\n", + "original image shape: (7000, 7000, 3)\n", + " 915/2000 [============>.................] - ETA: 11:44:24 - loss: 0.6515635\n", + "original image shape: (7000, 7000, 3)\n", + "141\n", + "original image shape: (7000, 7000, 3)\n", + " 916/2000 [============>.................] - ETA: 11:43:44 - loss: 0.6511798\n", + "original image shape: (7000, 7000, 3)\n", + " 917/2000 [============>.................] - ETA: 11:43:03 - loss: 0.6509328\n", + "original image shape: (7000, 7000, 3)\n", + " 918/2000 [============>.................] - ETA: 11:42:24 - loss: 0.6508383\n", + "original image shape: (7000, 7000, 3)\n", + " 919/2000 [============>.................] - ETA: 11:41:44 - loss: 0.6507233\n", + "original image shape: (7000, 7000, 3)\n", + " 920/2000 [============>.................] - ETA: 11:41:04 - loss: 0.6507711\n", + "original image shape: (7000, 7000, 3)\n", + " 921/2000 [============>.................] - ETA: 11:40:21 - loss: 0.6504343\n", + "original image shape: (7000, 7000, 3)\n", + " 922/2000 [============>.................] - ETA: 11:39:32 - loss: 0.6511688\n", + "original image shape: (7000, 7000, 3)\n", + "364\n", + "original image shape: (7000, 7000, 3)\n", + " 923/2000 [============>.................] - ETA: 11:38:52 - loss: 0.6510740\n", + "original image shape: (7000, 7000, 3)\n", + " 924/2000 [============>.................] - ETA: 11:38:09 - loss: 0.6504878\n", + "original image shape: (7000, 7000, 3)\n", + " 925/2000 [============>.................] - ETA: 11:37:28 - loss: 0.650422\n", + "original image shape: (7000, 7000, 3)\n", + "240\n", + "original image shape: (7000, 7000, 3)\n", + " 926/2000 [============>.................] - ETA: 11:36:48 - loss: 0.6506784\n", + "original image shape: (7000, 7000, 3)\n", + " 927/2000 [============>.................] - ETA: 11:36:05 - loss: 0.650269\n", + "original image shape: (7000, 7000, 3)\n", + "237\n", + "original image shape: (7000, 7000, 3)\n", + " 928/2000 [============>.................] - ETA: 11:35:26 - loss: 0.6503666\n", + "original image shape: (7000, 7000, 3)\n", + "509\n", + "original image shape: (7000, 7000, 3)\n", + "972\n", + "original image shape: (7000, 7000, 3)\n", + " 929/2000 [============>.................] - ETA: 11:34:53 - loss: 0.6505596\n", + "original image shape: (7000, 7000, 3)\n", + "139\n", + "original image shape: (7000, 7000, 3)\n", + " 930/2000 [============>.................] - ETA: 11:34:18 - loss: 0.6502564\n", + "original image shape: (7000, 7000, 3)\n", + "888\n", + "original image shape: (7000, 7000, 3)\n", + " 931/2000 [============>.................] - ETA: 11:33:45 - loss: 0.6502507\n", + "original image shape: (7000, 7000, 3)\n", + "754\n", + "original image shape: (7000, 7000, 3)\n", + " 932/2000 [============>.................] - ETA: 11:33:10 - loss: 0.6500294\n", + "original image shape: (7000, 7000, 3)\n", + " 933/2000 [============>.................] - ETA: 11:32:37 - loss: 0.6501942\n", + "original image shape: (7000, 7000, 3)\n", + " 934/2000 [=============>................] - ETA: 11:32:04 - loss: 0.6499891\n", + "original image shape: (7000, 7000, 3)\n", + " 935/2000 [=============>................] - ETA: 11:31:29 - loss: 0.6500718\n", + "original image shape: (7000, 7000, 3)\n", + " 936/2000 [=============>................] - ETA: 11:30:53 - loss: 0.6494939\n", + "original image shape: (7000, 7000, 3)\n", + " 937/2000 [=============>................] - ETA: 11:30:20 - loss: 0.6495769\n", + "original image shape: (7000, 7000, 3)\n", + " 938/2000 [=============>................] - ETA: 11:29:44 - loss: 0.6490330\n", + "original image shape: (7000, 7000, 3)\n", + " 939/2000 [=============>................] - ETA: 11:29:10 - loss: 0.6490785\n", + "original image shape: (7000, 7000, 3)\n", + " 940/2000 [=============>................] - ETA: 11:28:34 - loss: 0.6487941\n", + "original image shape: (7000, 7000, 3)\n", + " 941/2000 [=============>................] - ETA: 11:28:01 - loss: 0.6487864\n", + "original image shape: (7000, 7000, 3)\n", + " 942/2000 [=============>................] - ETA: 11:27:28 - loss: 0.6488156\n", + "original image shape: (7000, 7000, 3)\n", + " 943/2000 [=============>................] - ETA: 11:26:50 - loss: 0.6483745\n", + "original image shape: (7000, 7000, 3)\n", + " 944/2000 [=============>................] - ETA: 11:25:56 - loss: 0.6488737\n", + "original image shape: (7000, 7000, 3)\n", + " 945/2000 [=============>................] - ETA: 11:25:18 - loss: 0.6483319\n", + "original image shape: (7000, 7000, 3)\n", + " 946/2000 [=============>................] - ETA: 11:24:45 - loss: 0.6490195\n", + "original image shape: (7000, 7000, 3)\n", + " 947/2000 [=============>................] - ETA: 11:24:10 - loss: 0.6490646\n", + "original image shape: (7000, 7000, 3)\n", + "82\n", + "original image shape: (7000, 7000, 3)\n", + " 948/2000 [=============>................] - ETA: 11:23:33 - loss: 0.6484425\n", + "original image shape: (7000, 7000, 3)\n", + " 949/2000 [=============>................] - ETA: 11:22:59 - loss: 0.6487238\n", + "original image shape: (7000, 7000, 3)\n", + " 950/2000 [=============>................] - ETA: 11:22:24 - loss: 0.648795\n", + "original image shape: (7000, 7000, 3)\n", + " 951/2000 [=============>................] - ETA: 11:21:46 - loss: 0.6481980\n", + "original image shape: (7000, 7000, 3)\n", + " 952/2000 [=============>................] - ETA: 11:21:12 - loss: 0.6481274\n", + "original image shape: (7000, 7000, 3)\n", + " 953/2000 [=============>................] - ETA: 11:20:39 - loss: 0.6481171\n", + "original image shape: (7000, 7000, 3)\n", + " 954/2000 [=============>................] - ETA: 11:20:03 - loss: 0.6483321\n", + "original image shape: (7000, 7000, 3)\n", + " 955/2000 [=============>................] - ETA: 11:19:30 - loss: 0.6482983\n", + "original image shape: (7000, 7000, 3)\n", + " 956/2000 [=============>................] - ETA: 11:18:56 - loss: 0.6483876\n", + "original image shape: (7000, 7000, 3)\n", + " 957/2000 [=============>................] - ETA: 11:18:22 - loss: 0.6483652\n", + "original image shape: (7000, 7000, 3)\n", + "83\n", + "original image shape: (7000, 7000, 3)\n", + " 958/2000 [=============>................] - ETA: 11:17:46 - loss: 0.647798\n", + "original image shape: (7000, 7000, 3)\n", + " 959/2000 [=============>................] - ETA: 11:17:08 - loss: 0.6473490\n", + "original image shape: (7000, 7000, 3)\n", + "783\n", + "original image shape: (7000, 7000, 3)\n", + " 960/2000 [=============>................] - ETA: 11:16:32 - loss: 0.6469324\n", + "original image shape: (7000, 7000, 3)\n", + " 961/2000 [=============>................] - ETA: 11:15:59 - loss: 0.6467248\n", + "original image shape: (7000, 7000, 3)\n", + " 962/2000 [=============>................] - ETA: 11:15:25 - loss: 0.6468337\n", + "original image shape: (7000, 7000, 3)\n", + " 963/2000 [=============>................] - ETA: 11:14:50 - loss: 0.6465300\n", + "original image shape: (7000, 7000, 3)\n", + " 964/2000 [=============>................] - ETA: 11:14:15 - loss: 0.6466797\n", + "original image shape: (7000, 7000, 3)\n", + " 965/2000 [=============>................] - ETA: 11:13:31 - loss: 0.6464643\n", + "original image shape: (7000, 7000, 3)\n", + "777\n", + "original image shape: (7000, 7000, 3)\n", + " 966/2000 [=============>................] - ETA: 11:12:48 - loss: 0.6462235\n", + "original image shape: (7000, 7000, 3)\n", + " 967/2000 [=============>................] - ETA: 11:12:14 - loss: 0.645964\n", + "original image shape: (7000, 7000, 3)\n", + "557\n", + "original image shape: (7000, 7000, 3)\n", + "824\n", + "original image shape: (7000, 7000, 3)\n", + " 968/2000 [=============>................] - ETA: 11:11:41 - loss: 0.6458803\n", + "original image shape: (7000, 7000, 3)\n", + " 969/2000 [=============>................] - ETA: 11:11:05 - loss: 0.6461173\n", + "original image shape: (7000, 7000, 3)\n", + " 970/2000 [=============>................] - ETA: 11:10:29 - loss: 0.6462911\n", + "original image shape: (7000, 7000, 3)\n", + " 971/2000 [=============>................] - ETA: 11:09:55 - loss: 0.64630\n", + "original image shape: (7000, 7000, 3)\n", + "498\n", + "original image shape: (7000, 7000, 3)\n", + "188\n", + "original image shape: (7000, 7000, 3)\n", + " 972/2000 [=============>................] - ETA: 11:09:22 - loss: 0.6462307\n", + "original image shape: (7000, 7000, 3)\n", + " 973/2000 [=============>................] - ETA: 11:08:48 - loss: 0.6464802\n", + "original image shape: (7000, 7000, 3)\n", + " 974/2000 [=============>................] - ETA: 11:08:13 - loss: 0.6467681\n", + "original image shape: (7000, 7000, 3)\n", + "489\n", + "original image shape: (7000, 7000, 3)\n", + "920\n", + "original image shape: (7000, 7000, 3)\n", + " 975/2000 [=============>................] - ETA: 11:07:41 - loss: 0.646619\n", + "original image shape: (7000, 7000, 3)\n", + "664\n", + "original image shape: (7000, 7000, 3)\n", + "9\n", + "original image shape: (7000, 7000, 3)\n", + "320\n", + "original image shape: (7000, 7000, 3)\n", + " 976/2000 [=============>................] - ETA: 11:07:10 - loss: 0.6470120\n", + "original image shape: (7000, 7000, 3)\n", + " 977/2000 [=============>................] - ETA: 11:06:32 - loss: 0.6474830\n", + "original image shape: (7000, 7000, 3)\n", + " 978/2000 [=============>................] - ETA: 11:05:57 - loss: 0.6474453\n", + "original image shape: (7000, 7000, 3)\n", + " 979/2000 [=============>................] - ETA: 11:05:21 - loss: 0.6474495\n", + "original image shape: (7000, 7000, 3)\n", + "699\n", + "original image shape: (7000, 7000, 3)\n", + " 980/2000 [=============>................] - ETA: 11:04:44 - loss: 0.6471162\n", + "original image shape: (7000, 7000, 3)\n", + " 981/2000 [=============>................] - ETA: 11:04:08 - loss: 0.646678\n", + "original image shape: (7000, 7000, 3)\n", + "451\n", + "original image shape: (7000, 7000, 3)\n", + " 982/2000 [=============>................] - ETA: 11:03:34 - loss: 0.6465923\n", + "original image shape: (7000, 7000, 3)\n", + " 983/2000 [=============>................] - ETA: 11:03:00 - loss: 0.6464693\n", + "original image shape: (7000, 7000, 3)\n", + " 984/2000 [=============>................] - ETA: 11:02:22 - loss: 0.6470494\n", + "original image shape: (7000, 7000, 3)\n", + "685\n", + "original image shape: (7000, 7000, 3)\n", + "669\n", + "original image shape: (7000, 7000, 3)\n", + "129\n", + "original image shape: (7000, 7000, 3)\n", + " 985/2000 [=============>................] - ETA: 11:01:46 - loss: 0.6466393\n", + "original image shape: (7000, 7000, 3)\n", + " 986/2000 [=============>................] - ETA: 11:01:07 - loss: 0.6465348\n", + "original image shape: (7000, 7000, 3)\n", + " 987/2000 [=============>................] - ETA: 11:00:25 - loss: 0.6465987\n", + "original image shape: (7000, 7000, 3)\n", + " 988/2000 [=============>................] - ETA: 10:59:50 - loss: 0.6464618\n", + "original image shape: (7000, 7000, 3)\n", + "971\n", + "original image shape: (7000, 7000, 3)\n", + " 989/2000 [=============>................] - ETA: 10:59:17 - loss: 0.6467367\n", + "original image shape: (7000, 7000, 3)\n", + " 990/2000 [=============>................] - ETA: 10:58:42 - loss: 0.6465893\n", + "original image shape: (7000, 7000, 3)\n", + " 991/2000 [=============>................] - ETA: 10:58:07 - loss: 0.6469854\n", + "original image shape: (7000, 7000, 3)\n", + " 992/2000 [=============>................] - ETA: 10:57:32 - loss: 0.6470326\n", + "original image shape: (7000, 7000, 3)\n", + " 993/2000 [=============>................] - ETA: 10:56:57 - loss: 0.6471177\n", + "original image shape: (7000, 7000, 3)\n", + " 994/2000 [=============>................] - ETA: 10:56:19 - loss: 0.646510\n", + "original image shape: (7000, 7000, 3)\n", + "357\n", + "original image shape: (7000, 7000, 3)\n", + " 995/2000 [=============>................] - ETA: 10:55:45 - loss: 0.6466569\n", + "original image shape: (7000, 7000, 3)\n", + "51\n", + "original image shape: (7000, 7000, 3)\n", + "441\n", + "original image shape: (7000, 7000, 3)\n", + " 996/2000 [=============>................] - ETA: 10:55:09 - loss: 0.64657\n", + "original image shape: (7000, 7000, 3)\n", + "546\n", + "original image shape: (7000, 7000, 3)\n", + "705\n", + "original image shape: (7000, 7000, 3)\n", + " 997/2000 [=============>................] - ETA: 10:54:31 - loss: 0.6471774\n", + "original image shape: (7000, 7000, 3)\n", + " 998/2000 [=============>................] - ETA: 10:53:53 - loss: 0.6468820\n", + "original image shape: (7000, 7000, 3)\n", + " 999/2000 [=============>................] - ETA: 10:53:16 - loss: 0.6468347\n", + "original image shape: (7000, 7000, 3)\n", + "1000/2000 [==============>...............] - ETA: 10:52:40 - loss: 0.6469757\n", + "original image shape: (7000, 7000, 3)\n", + "1001/2000 [==============>...............] - ETA: 10:52:02 - loss: 0.6467697\n", + "original image shape: (7000, 7000, 3)\n", + "1002/2000 [==============>...............] - ETA: 10:51:25 - loss: 0.6461814\n", + "original image shape: (7000, 7000, 3)\n", + "1003/2000 [==============>...............] - ETA: 10:50:49 - loss: 0.6461288\n", + "original image shape: (7000, 7000, 3)\n", + "1004/2000 [==============>...............] - ETA: 10:50:15 - loss: 0.6464286\n", + "original image shape: (7000, 7000, 3)\n", + "1005/2000 [==============>...............] - ETA: 10:49:42 - loss: 0.6466919\n", + "original image shape: (7000, 7000, 3)\n", + "1006/2000 [==============>...............] - ETA: 10:49:07 - loss: 0.6466126\n", + "original image shape: (7000, 7000, 3)\n", + "1007/2000 [==============>...............] - ETA: 10:48:30 - loss: 0.6462576\n", + "original image shape: (7000, 7000, 3)\n", + "922\n", + "original image shape: (7000, 7000, 3)\n", + "1008/2000 [==============>...............] - ETA: 10:47:41 - loss: 0.6461947\n", + "original image shape: (7000, 7000, 3)\n", + "1009/2000 [==============>...............] - ETA: 10:47:07 - loss: 0.6463549\n", + "original image shape: (7000, 7000, 3)\n", + "395\n", + "original image shape: (7000, 7000, 3)\n", + "1010/2000 [==============>...............] - ETA: 10:46:32 - loss: 0.6461116\n", + "original image shape: (7000, 7000, 3)\n", + "1011/2000 [==============>...............] - ETA: 10:45:55 - loss: 0.6455768\n", + "original image shape: (7000, 7000, 3)\n", + "1012/2000 [==============>...............] - ETA: 10:45:17 - loss: 0.6450130\n", + "original image shape: (7000, 7000, 3)\n", + "1013/2000 [==============>...............] - ETA: 10:44:40 - loss: 0.6449656\n", + "original image shape: (7000, 7000, 3)\n", + "285\n", + "original image shape: (7000, 7000, 3)\n", + "1014/2000 [==============>...............] - ETA: 10:44:07 - loss: 0.6455422\n", + "original image shape: (7000, 7000, 3)\n", + "1015/2000 [==============>...............] - ETA: 10:43:31 - loss: 0.6456513\n", + "original image shape: (7000, 7000, 3)\n", + "751\n", + "original image shape: (7000, 7000, 3)\n", + "1016/2000 [==============>...............] - ETA: 10:42:55 - loss: 0.6452559\n", + "original image shape: (7000, 7000, 3)\n", + "388\n", + "original image shape: (7000, 7000, 3)\n", + "1017/2000 [==============>...............] - ETA: 10:42:21 - loss: 0.6450598\n", + "original image shape: (7000, 7000, 3)\n", + "908\n", + "original image shape: (7000, 7000, 3)\n", + "1018/2000 [==============>...............] - ETA: 10:41:47 - loss: 0.6450789\n", + "original image shape: (7000, 7000, 3)\n", + "1019/2000 [==============>...............] - ETA: 10:41:11 - loss: 0.6447150\n", + "original image shape: (7000, 7000, 3)\n", + "1020/2000 [==============>...............] - ETA: 10:40:34 - loss: 0.6447985\n", + "original image shape: (7000, 7000, 3)\n", + "1021/2000 [==============>...............] - ETA: 10:40:00 - loss: 0.6448474\n", + "original image shape: (7000, 7000, 3)\n", + "701\n", + "original image shape: (7000, 7000, 3)\n", + "1022/2000 [==============>...............] - ETA: 10:39:23 - loss: 0.6445833\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1023/2000 [==============>...............] - ETA: 10:38:47 - loss: 0.6445755\n", + "original image shape: (7000, 7000, 3)\n", + "1024/2000 [==============>...............] - ETA: 10:38:09 - loss: 0.6448936\n", + "original image shape: (7000, 7000, 3)\n", + "1025/2000 [==============>...............] - ETA: 10:37:31 - loss: 0.6449236\n", + "original image shape: (7000, 7000, 3)\n", + "1026/2000 [==============>...............] - ETA: 10:36:51 - loss: 0.6450764\n", + "original image shape: (7000, 7000, 3)\n", + "1027/2000 [==============>...............] - ETA: 10:36:08 - loss: 0.6452480\n", + "original image shape: (7000, 7000, 3)\n", + "377\n", + "original image shape: (7000, 7000, 3)\n", + "1028/2000 [==============>...............] - ETA: 10:35:29 - loss: 0.6454591\n", + "original image shape: (7000, 7000, 3)\n", + "244\n", + "original image shape: (7000, 7000, 3)\n", + "1029/2000 [==============>...............] - ETA: 10:34:50 - loss: 0.6454376\n", + "original image shape: (7000, 7000, 3)\n", + "1030/2000 [==============>...............] - ETA: 10:33:59 - loss: 0.6456912\n", + "original image shape: (7000, 7000, 3)\n", + "1031/2000 [==============>...............] - ETA: 10:33:19 - loss: 0.6458595\n", + "original image shape: (7000, 7000, 3)\n", + "245\n", + "original image shape: (7000, 7000, 3)\n", + "1032/2000 [==============>...............] - ETA: 10:32:40 - loss: 0.6458613\n", + "original image shape: (7000, 7000, 3)\n", + "80\n", + "original image shape: (7000, 7000, 3)\n", + "1033/2000 [==============>...............] - ETA: 10:31:58 - loss: 0.6461291\n", + "original image shape: (7000, 7000, 3)\n", + "1034/2000 [==============>...............] - ETA: 10:31:19 - loss: 0.6463466\n", + "original image shape: (7000, 7000, 3)\n", + "481\n", + "original image shape: (7000, 7000, 3)\n", + "352\n", + "original image shape: (7000, 7000, 3)\n", + "1035/2000 [==============>...............] - ETA: 10:30:40 - loss: 0.6461851\n", + "original image shape: (7000, 7000, 3)\n", + "1036/2000 [==============>...............] - ETA: 10:30:00 - loss: 0.6462465\n", + "original image shape: (7000, 7000, 3)\n", + "590\n", + "original image shape: (7000, 7000, 3)\n", + "154\n", + "original image shape: (7000, 7000, 3)\n", + "1037/2000 [==============>...............] - ETA: 10:29:18 - loss: 0.6463877\n", + "original image shape: (7000, 7000, 3)\n", + "1038/2000 [==============>...............] - ETA: 10:28:39 - loss: 0.6465272\n", + "original image shape: (7000, 7000, 3)\n", + "1039/2000 [==============>...............] - ETA: 10:28:01 - loss: 0.6466182\n", + "original image shape: (7000, 7000, 3)\n", + "1040/2000 [==============>...............] - ETA: 10:27:20 - loss: 0.6465875\n", + "original image shape: (7000, 7000, 3)\n", + "1041/2000 [==============>...............] - ETA: 10:26:41 - loss: 0.6466890\n", + "original image shape: (7000, 7000, 3)\n", + "1042/2000 [==============>...............] - ETA: 10:26:02 - loss: 0.6468420\n", + "original image shape: (7000, 7000, 3)\n", + "1043/2000 [==============>...............] - ETA: 10:25:22 - loss: 0.6470658\n", + "original image shape: (7000, 7000, 3)\n", + "899\n", + "original image shape: (7000, 7000, 3)\n", + "1044/2000 [==============>...............] - ETA: 10:24:44 - loss: 0.6472323\n", + "original image shape: (7000, 7000, 3)\n", + "1045/2000 [==============>...............] - ETA: 10:24:05 - loss: 0.6471537\n", + "original image shape: (7000, 7000, 3)\n", + "827\n", + "original image shape: (7000, 7000, 3)\n", + "1046/2000 [==============>...............] - ETA: 10:23:26 - loss: 0.6470224\n", + "original image shape: (7000, 7000, 3)\n", + "1047/2000 [==============>...............] - ETA: 10:22:46 - loss: 0.6468220\n", + "original image shape: (7000, 7000, 3)\n", + "1048/2000 [==============>...............] - ETA: 10:22:07 - loss: 0.6468847\n", + "original image shape: (7000, 7000, 3)\n", + "1049/2000 [==============>...............] - ETA: 10:21:26 - loss: 0.6468667\n", + "original image shape: (7000, 7000, 3)\n", + "428\n", + "original image shape: (7000, 7000, 3)\n", + "1050/2000 [==============>...............] - ETA: 10:20:46 - loss: 0.6467405\n", + "original image shape: (7000, 7000, 3)\n", + "1051/2000 [==============>...............] - ETA: 10:20:06 - loss: 0.6471707\n", + "original image shape: (7000, 7000, 3)\n", + "1052/2000 [==============>...............] - ETA: 10:19:25 - loss: 0.6466671\n", + "original image shape: (7000, 7000, 3)\n", + "349\n", + "original image shape: (7000, 7000, 3)\n", + "1053/2000 [==============>...............] - ETA: 10:18:41 - loss: 0.6467857\n", + "original image shape: (7000, 7000, 3)\n", + "1054/2000 [==============>...............] - ETA: 10:17:56 - loss: 0.6468440\n", + "original image shape: (7000, 7000, 3)\n", + "1055/2000 [==============>...............] - ETA: 10:17:16 - loss: 0.6472900\n", + "original image shape: (7000, 7000, 3)\n", + "1056/2000 [==============>...............] - ETA: 10:16:36 - loss: 0.647296\n", + "original image shape: (7000, 7000, 3)\n", + "1057/2000 [==============>...............] - ETA: 10:15:54 - loss: 0.6467650\n", + "original image shape: (7000, 7000, 3)\n", + "525\n", + "original image shape: (7000, 7000, 3)\n", + "114\n", + "original image shape: (7000, 7000, 3)\n", + "1058/2000 [==============>...............] - ETA: 10:15:13 - loss: 0.6461588\n", + "original image shape: (7000, 7000, 3)\n", + "333\n", + "original image shape: (7000, 7000, 3)\n", + "1059/2000 [==============>...............] - ETA: 10:14:34 - loss: 0.6466229\n", + "original image shape: (7000, 7000, 3)\n", + "1060/2000 [==============>...............] - ETA: 10:13:54 - loss: 0.6465122\n", + "original image shape: (7000, 7000, 3)\n", + "1061/2000 [==============>...............] - ETA: 10:13:12 - loss: 0.6460736\n", + "original image shape: (7000, 7000, 3)\n", + "1062/2000 [==============>...............] - ETA: 10:12:30 - loss: 0.646062\n", + "original image shape: (7000, 7000, 3)\n", + "45\n", + "original image shape: (7000, 7000, 3)\n", + "209\n", + "original image shape: (7000, 7000, 3)\n", + "1063/2000 [==============>...............] - ETA: 10:11:52 - loss: 0.6465648\n", + "original image shape: (7000, 7000, 3)\n", + "694\n", + "original image shape: (7000, 7000, 3)\n", + "1064/2000 [==============>...............] - ETA: 10:11:10 - loss: 0.6466170\n", + "original image shape: (7000, 7000, 3)\n", + "1065/2000 [==============>...............] - ETA: 10:10:28 - loss: 0.6467568\n", + "original image shape: (7000, 7000, 3)\n", + "216\n", + "original image shape: (7000, 7000, 3)\n", + "1066/2000 [==============>...............] - ETA: 10:09:48 - loss: 0.6468743\n", + "original image shape: (7000, 7000, 3)\n", + "1067/2000 [===============>..............] - ETA: 10:09:05 - loss: 0.6468306\n", + "original image shape: (7000, 7000, 3)\n", + "1068/2000 [===============>..............] - ETA: 10:08:25 - loss: 0.6472183\n", + "original image shape: (7000, 7000, 3)\n", + "1069/2000 [===============>..............] - ETA: 10:07:43 - loss: 0.6474508\n", + "original image shape: (7000, 7000, 3)\n", + "600\n", + "original image shape: (7000, 7000, 3)\n", + "882\n", + "original image shape: (7000, 7000, 3)\n", + "1070/2000 [===============>..............] - ETA: 10:07:05 - loss: 0.6476823\n", + "original image shape: (7000, 7000, 3)\n", + "1071/2000 [===============>..............] - ETA: 10:06:24 - loss: 0.6476128\n", + "original image shape: (7000, 7000, 3)\n", + "1072/2000 [===============>..............] - ETA: 10:05:42 - loss: 0.6476493\n", + "original image shape: (7000, 7000, 3)\n", + "611\n", + "original image shape: (7000, 7000, 3)\n", + "483\n", + "original image shape: (7000, 7000, 3)\n", + "49\n", + "original image shape: (7000, 7000, 3)\n", + "90\n", + "original image shape: (7000, 7000, 3)\n", + "1073/2000 [===============>..............] - ETA: 10:05:01 - loss: 0.6470578\n", + "original image shape: (7000, 7000, 3)\n", + "203\n", + "original image shape: (7000, 7000, 3)\n", + "1074/2000 [===============>..............] - ETA: 10:04:22 - loss: 0.6473934\n", + "original image shape: (7000, 7000, 3)\n", + "1075/2000 [===============>..............] - ETA: 10:03:43 - loss: 0.6480160\n", + "original image shape: (7000, 7000, 3)\n", + "1076/2000 [===============>..............] - ETA: 10:03:01 - loss: 0.6475181\n", + "original image shape: (7000, 7000, 3)\n", + "1077/2000 [===============>..............] - ETA: 10:02:20 - loss: 0.6475810\n", + "original image shape: (7000, 7000, 3)\n", + "1078/2000 [===============>..............] - ETA: 10:01:31 - loss: 0.6476949\n", + "original image shape: (7000, 7000, 3)\n", + "1079/2000 [===============>..............] - ETA: 10:00:50 - loss: 0.647497\n", + "original image shape: (7000, 7000, 3)\n", + "1080/2000 [===============>..............] - ETA: 10:00:07 - loss: 0.6469259\n", + "original image shape: (7000, 7000, 3)\n", + "1081/2000 [===============>..............] - ETA: 9:59:27 - loss: 0.6471 680\n", + "original image shape: (7000, 7000, 3)\n", + "468\n", + "original image shape: (7000, 7000, 3)\n", + "944\n", + "original image shape: (7000, 7000, 3)\n", + "1082/2000 [===============>..............] - ETA: 9:58:49 - loss: 0.6471454\n", + "original image shape: (7000, 7000, 3)\n", + "1083/2000 [===============>..............] - ETA: 9:58:08 - loss: 0.6472543\n", + "original image shape: (7000, 7000, 3)\n", + "592\n", + "original image shape: (7000, 7000, 3)\n", + "193\n", + "original image shape: (7000, 7000, 3)\n", + "1084/2000 [===============>..............] - ETA: 9:57:29 - loss: 0.6472702\n", + "original image shape: (7000, 7000, 3)\n", + "1085/2000 [===============>..............] - ETA: 9:56:47 - loss: 0.6478720\n", + "original image shape: (7000, 7000, 3)\n", + "1086/2000 [===============>..............] - ETA: 9:56:06 - loss: 0.6476433\n", + "original image shape: (7000, 7000, 3)\n", + "1087/2000 [===============>..............] - ETA: 9:55:26 - loss: 0.6476657\n", + "original image shape: (7000, 7000, 3)\n", + "278\n", + "original image shape: (7000, 7000, 3)\n", + "1088/2000 [===============>..............] - ETA: 9:54:48 - loss: 0.6478467\n", + "original image shape: (7000, 7000, 3)\n", + "305\n", + "original image shape: (7000, 7000, 3)\n", + "1089/2000 [===============>..............] - ETA: 9:54:09 - loss: 0.6479192\n", + "original image shape: (7000, 7000, 3)\n", + "1090/2000 [===============>..............] - ETA: 9:53:27 - loss: 0.6479970\n", + "original image shape: (7000, 7000, 3)\n", + "1091/2000 [===============>..............] - ETA: 9:52:47 - loss: 0.6479487\n", + "original image shape: (7000, 7000, 3)\n", + "16\n", + "original image shape: (7000, 7000, 3)\n", + "110\n", + "original image shape: (7000, 7000, 3)\n", + "1092/2000 [===============>..............] - ETA: 9:52:06 - loss: 0.647753\n", + "original image shape: (7000, 7000, 3)\n", + "283\n", + "original image shape: (7000, 7000, 3)\n", + "1093/2000 [===============>..............] - ETA: 9:51:27 - loss: 0.647928\n", + "original image shape: (7000, 7000, 3)\n", + "586\n", + "original image shape: (7000, 7000, 3)\n", + "521\n", + "original image shape: (7000, 7000, 3)\n", + "845\n", + "original image shape: (7000, 7000, 3)\n", + "1094/2000 [===============>..............] - ETA: 9:50:49 - loss: 0.6479954\n", + "original image shape: (7000, 7000, 3)\n", + "1095/2000 [===============>..............] - ETA: 9:50:09 - loss: 0.6481662\n", + "original image shape: (7000, 7000, 3)\n", + "71\n", + "original image shape: (7000, 7000, 3)\n", + "322\n", + "original image shape: (7000, 7000, 3)\n", + "1096/2000 [===============>..............] - ETA: 9:49:31 - loss: 0.6483675\n", + "original image shape: (7000, 7000, 3)\n", + "848\n", + "original image shape: (7000, 7000, 3)\n", + "1097/2000 [===============>..............] - ETA: 9:48:53 - loss: 0.6482973\n", + "original image shape: (7000, 7000, 3)\n", + "1098/2000 [===============>..............] - ETA: 9:48:13 - loss: 0.648344\n", + "original image shape: (7000, 7000, 3)\n", + "933\n", + "original image shape: (7000, 7000, 3)\n", + "1099/2000 [===============>..............] - ETA: 9:47:34 - loss: 0.6487399\n", + "original image shape: (7000, 7000, 3)\n", + "1100/2000 [===============>..............] - ETA: 9:46:55 - loss: 0.6488567\n", + "original image shape: (7000, 7000, 3)\n", + "189\n", + "original image shape: (7000, 7000, 3)\n", + "1101/2000 [===============>..............] - ETA: 9:46:12 - loss: 0.6487722\n", + "original image shape: (7000, 7000, 3)\n", + "1102/2000 [===============>..............] - ETA: 9:45:26 - loss: 0.6483674\n", + "original image shape: (7000, 7000, 3)\n", + "218\n", + "original image shape: (7000, 7000, 3)\n", + "1103/2000 [===============>..............] - ETA: 9:44:48 - loss: 0.6484335\n", + "original image shape: (7000, 7000, 3)\n", + "1104/2000 [===============>..............] - ETA: 9:44:10 - loss: 0.6490214\n", + "original image shape: (7000, 7000, 3)\n", + "1105/2000 [===============>..............] - ETA: 9:43:31 - loss: 0.6490731\n", + "original image shape: (7000, 7000, 3)\n", + "1106/2000 [===============>..............] - ETA: 9:42:50 - loss: 0.6485634\n", + "original image shape: (7000, 7000, 3)\n", + "479\n", + "original image shape: (7000, 7000, 3)\n", + "4\n", + "original image shape: (7000, 7000, 3)\n", + "926\n", + "original image shape: (7000, 7000, 3)\n", + "1107/2000 [===============>..............] - ETA: 9:42:14 - loss: 0.6485853\n", + "original image shape: (7000, 7000, 3)\n", + "1108/2000 [===============>..............] - ETA: 9:41:34 - loss: 0.6485872\n", + "original image shape: (7000, 7000, 3)\n", + "1109/2000 [===============>..............] - ETA: 9:40:55 - loss: 0.6490870\n", + "original image shape: (7000, 7000, 3)\n", + "1110/2000 [===============>..............] - ETA: 9:40:15 - loss: 0.6491654\n", + "original image shape: (7000, 7000, 3)\n", + "606\n", + "original image shape: (7000, 7000, 3)\n", + "763\n", + "original image shape: (7000, 7000, 3)\n", + "1111/2000 [===============>..............] - ETA: 9:39:35 - loss: 0.6492419\n", + "original image shape: (7000, 7000, 3)\n", + "1112/2000 [===============>..............] - ETA: 9:38:56 - loss: 0.6491809\n", + "original image shape: (7000, 7000, 3)\n", + "1113/2000 [===============>..............] - ETA: 9:38:15 - loss: 0.6489486\n", + "original image shape: (7000, 7000, 3)\n", + "246\n", + "original image shape: (7000, 7000, 3)\n", + "1114/2000 [===============>..............] - ETA: 9:37:37 - loss: 0.6491719\n", + "original image shape: (7000, 7000, 3)\n", + "1115/2000 [===============>..............] - ETA: 9:36:56 - loss: 0.6487463\n", + "original image shape: (7000, 7000, 3)\n", + "663\n", + "original image shape: (7000, 7000, 3)\n", + "816\n", + "original image shape: (7000, 7000, 3)\n", + "1116/2000 [===============>..............] - ETA: 9:36:18 - loss: 0.6486943\n", + "original image shape: (7000, 7000, 3)\n", + "1117/2000 [===============>..............] - ETA: 9:35:38 - loss: 0.6484228\n", + "original image shape: (7000, 7000, 3)\n", + "1118/2000 [===============>..............] - ETA: 9:34:59 - loss: 0.6485884\n", + "original image shape: (7000, 7000, 3)\n", + "1119/2000 [===============>..............] - ETA: 9:34:20 - loss: 0.6485914\n", + "original image shape: (7000, 7000, 3)\n", + "1120/2000 [===============>..............] - ETA: 9:33:43 - loss: 0.648557\n", + "original image shape: (7000, 7000, 3)\n", + "135\n", + "original image shape: (7000, 7000, 3)\n", + "1121/2000 [===============>..............] - ETA: 9:33:07 - loss: 0.6481770\n", + "original image shape: (7000, 7000, 3)\n", + "1122/2000 [===============>..............] - ETA: 9:32:29 - loss: 0.6477517\n", + "original image shape: (7000, 7000, 3)\n", + "402\n", + "original image shape: (7000, 7000, 3)\n", + "1123/2000 [===============>..............] - ETA: 9:31:54 - loss: 0.647929\n", + "original image shape: (7000, 7000, 3)\n", + "612\n", + "original image shape: (7000, 7000, 3)\n", + "566\n", + "original image shape: (7000, 7000, 3)\n", + "424\n", + "original image shape: (7000, 7000, 3)\n", + "1124/2000 [===============>..............] - ETA: 9:31:14 - loss: 0.6478273\n", + "original image shape: (7000, 7000, 3)\n", + "1125/2000 [===============>..............] - ETA: 9:30:35 - loss: 0.6479687\n", + "original image shape: (7000, 7000, 3)\n", + "434\n", + "original image shape: (7000, 7000, 3)\n", + "1126/2000 [===============>..............] - ETA: 9:29:58 - loss: 0.6480909\n", + "original image shape: (7000, 7000, 3)\n", + "1127/2000 [===============>..............] - ETA: 9:29:22 - loss: 0.6482196\n", + "original image shape: (7000, 7000, 3)\n", + "1128/2000 [===============>..............] - ETA: 9:28:44 - loss: 0.6484363\n", + "original image shape: (7000, 7000, 3)\n", + "1129/2000 [===============>..............] - ETA: 9:28:04 - loss: 0.6482871\n", + "original image shape: (7000, 7000, 3)\n", + "1130/2000 [===============>..............] - ETA: 9:27:23 - loss: 0.6486695\n", + "original image shape: (7000, 7000, 3)\n", + "1131/2000 [===============>..............] - ETA: 9:26:41 - loss: 0.6483390\n", + "original image shape: (7000, 7000, 3)\n", + "1132/2000 [===============>..............] - ETA: 9:26:01 - loss: 0.6482464\n", + "original image shape: (7000, 7000, 3)\n", + "414\n", + "original image shape: (7000, 7000, 3)\n", + "1133/2000 [===============>..............] - ETA: 9:25:24 - loss: 0.6484653\n", + "original image shape: (7000, 7000, 3)\n", + "471\n", + "original image shape: (7000, 7000, 3)\n", + "317\n", + "original image shape: (7000, 7000, 3)\n", + "1134/2000 [================>.............] - ETA: 9:24:51 - loss: 0.6488151\n", + "original image shape: (7000, 7000, 3)\n", + "1135/2000 [================>.............] - ETA: 9:24:13 - loss: 0.6493889\n", + "original image shape: (7000, 7000, 3)\n", + "1136/2000 [================>.............] - ETA: 9:23:38 - loss: 0.6494303\n", + "original image shape: (7000, 7000, 3)\n", + "1137/2000 [================>.............] - ETA: 9:23:03 - loss: 0.6495897\n", + "original image shape: (7000, 7000, 3)\n", + "1138/2000 [================>.............] - ETA: 9:22:28 - loss: 0.6495254\n", + "original image shape: (7000, 7000, 3)\n", + "1139/2000 [================>.............] - ETA: 9:21:53 - loss: 0.6497309\n", + "original image shape: (7000, 7000, 3)\n", + "1140/2000 [================>.............] - ETA: 9:21:19 - loss: 0.6497982\n", + "original image shape: (7000, 7000, 3)\n", + "1141/2000 [================>.............] - ETA: 9:20:43 - loss: 0.649788\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1142/2000 [================>.............] - ETA: 9:20:06 - loss: 0.6491232\n", + "original image shape: (7000, 7000, 3)\n", + "1143/2000 [================>.............] - ETA: 9:19:29 - loss: 0.6492111\n", + "original image shape: (7000, 7000, 3)\n", + "1144/2000 [================>.............] - ETA: 9:18:51 - loss: 0.6489744\n", + "original image shape: (7000, 7000, 3)\n", + "1145/2000 [================>.............] - ETA: 9:18:14 - loss: 0.6490580\n", + "original image shape: (7000, 7000, 3)\n", + "478\n", + "original image shape: (7000, 7000, 3)\n", + "862\n", + "original image shape: (7000, 7000, 3)\n", + "1146/2000 [================>.............] - ETA: 9:17:29 - loss: 0.6494806\n", + "original image shape: (7000, 7000, 3)\n", + "1147/2000 [================>.............] - ETA: 9:16:52 - loss: 0.6502655\n", + "original image shape: (7000, 7000, 3)\n", + "488\n", + "original image shape: (7000, 7000, 3)\n", + "429\n", + "original image shape: (7000, 7000, 3)\n", + "1148/2000 [================>.............] - ETA: 9:16:16 - loss: 0.6503616\n", + "original image shape: (7000, 7000, 3)\n", + "628\n", + "original image shape: (7000, 7000, 3)\n", + "191\n", + "original image shape: (7000, 7000, 3)\n", + "1149/2000 [================>.............] - ETA: 9:15:40 - loss: 0.6504813\n", + "original image shape: (7000, 7000, 3)\n", + "1150/2000 [================>.............] - ETA: 9:15:04 - loss: 0.6503496\n", + "original image shape: (7000, 7000, 3)\n", + "318\n", + "original image shape: (7000, 7000, 3)\n", + "1151/2000 [================>.............] - ETA: 9:14:30 - loss: 0.6504225\n", + "original image shape: (7000, 7000, 3)\n", + "1152/2000 [================>.............] - ETA: 9:13:55 - loss: 0.650966\n", + "original image shape: (7000, 7000, 3)\n", + "438\n", + "original image shape: (7000, 7000, 3)\n", + "1153/2000 [================>.............] - ETA: 9:13:20 - loss: 0.6508125\n", + "original image shape: (7000, 7000, 3)\n", + "1154/2000 [================>.............] - ETA: 9:12:43 - loss: 0.6504815\n", + "original image shape: (7000, 7000, 3)\n", + "1155/2000 [================>.............] - ETA: 9:12:07 - loss: 0.6502917\n", + "original image shape: (7000, 7000, 3)\n", + "1156/2000 [================>.............] - ETA: 9:11:32 - loss: 0.6503573\n", + "original image shape: (7000, 7000, 3)\n", + "1\n", + "original image shape: (7000, 7000, 3)\n", + "403\n", + "original image shape: (7000, 7000, 3)\n", + "1157/2000 [================>.............] - ETA: 9:10:57 - loss: 0.6504579\n", + "original image shape: (7000, 7000, 3)\n", + "558\n", + "original image shape: (7000, 7000, 3)\n", + "866\n", + "original image shape: (7000, 7000, 3)\n", + "1158/2000 [================>.............] - ETA: 9:10:22 - loss: 0.6505668\n", + "original image shape: (7000, 7000, 3)\n", + "682\n", + "original image shape: (7000, 7000, 3)\n", + "381\n", + "original image shape: (7000, 7000, 3)\n", + "1159/2000 [================>.............] - ETA: 9:09:48 - loss: 0.6507340\n", + "original image shape: (7000, 7000, 3)\n", + "1160/2000 [================>.............] - ETA: 9:09:13 - loss: 0.6505423\n", + "original image shape: (7000, 7000, 3)\n", + "1161/2000 [================>.............] - ETA: 9:08:37 - loss: 0.65063\n", + "original image shape: (7000, 7000, 3)\n", + "565\n", + "original image shape: (7000, 7000, 3)\n", + "738\n", + "original image shape: (7000, 7000, 3)\n", + "1162/2000 [================>.............] - ETA: 9:08:01 - loss: 0.6501552\n", + "original image shape: (7000, 7000, 3)\n", + "962\n", + "original image shape: (7000, 7000, 3)\n", + "1163/2000 [================>.............] - ETA: 9:07:25 - loss: 0.6500499\n", + "original image shape: (7000, 7000, 3)\n", + "883\n", + "original image shape: (7000, 7000, 3)\n", + "1164/2000 [================>.............] - ETA: 9:06:50 - loss: 0.6503594\n", + "original image shape: (7000, 7000, 3)\n", + "913\n", + "original image shape: (7000, 7000, 3)\n", + "1165/2000 [================>.............] - ETA: 9:06:14 - loss: 0.6504461\n", + "original image shape: (7000, 7000, 3)\n", + "772\n", + "original image shape: (7000, 7000, 3)\n", + "1166/2000 [================>.............] - ETA: 9:05:37 - loss: 0.6500234\n", + "original image shape: (7000, 7000, 3)\n", + "1167/2000 [================>.............] - ETA: 9:04:54 - loss: 0.6498462\n", + "original image shape: (7000, 7000, 3)\n", + "710\n", + "original image shape: (7000, 7000, 3)\n", + "1168/2000 [================>.............] - ETA: 9:04:16 - loss: 0.649311\n", + "original image shape: (7000, 7000, 3)\n", + "325\n", + "original image shape: (7000, 7000, 3)\n", + "1169/2000 [================>.............] - ETA: 9:03:41 - loss: 0.6493792\n", + "original image shape: (7000, 7000, 3)\n", + "1170/2000 [================>.............] - ETA: 9:03:03 - loss: 0.6491684\n", + "original image shape: (7000, 7000, 3)\n", + "651\n", + "original image shape: (7000, 7000, 3)\n", + "421\n", + "original image shape: (7000, 7000, 3)\n", + "1171/2000 [================>.............] - ETA: 9:02:28 - loss: 0.6490887\n", + "original image shape: (7000, 7000, 3)\n", + "1172/2000 [================>.............] - ETA: 9:01:51 - loss: 0.6491119\n", + "original image shape: (7000, 7000, 3)\n", + "1173/2000 [================>.............] - ETA: 9:01:12 - loss: 0.6491929\n", + "original image shape: (7000, 7000, 3)\n", + "1174/2000 [================>.............] - ETA: 9:00:36 - loss: 0.6493807\n", + "original image shape: (7000, 7000, 3)\n", + "1175/2000 [================>.............] - ETA: 9:00:00 - loss: 0.649091\n", + "original image shape: (7000, 7000, 3)\n", + "1176/2000 [================>.............] - ETA: 8:59:22 - loss: 0.6484511\n", + "original image shape: (7000, 7000, 3)\n", + "72\n", + "original image shape: (7000, 7000, 3)\n", + "661\n", + "original image shape: (7000, 7000, 3)\n", + "148\n", + "original image shape: (7000, 7000, 3)\n", + "1177/2000 [================>.............] - ETA: 8:58:46 - loss: 0.6484858\n", + "original image shape: (7000, 7000, 3)\n", + "1178/2000 [================>.............] - ETA: 8:58:10 - loss: 0.6484932\n", + "original image shape: (7000, 7000, 3)\n", + "1179/2000 [================>.............] - ETA: 8:57:34 - loss: 0.6487686\n", + "original image shape: (7000, 7000, 3)\n", + "527\n", + "original image shape: (7000, 7000, 3)\n", + "89\n", + "original image shape: (7000, 7000, 3)\n", + "1180/2000 [================>.............] - ETA: 8:56:57 - loss: 0.6482734\n", + "original image shape: (7000, 7000, 3)\n", + "1181/2000 [================>.............] - ETA: 8:56:19 - loss: 0.6476839\n", + "original image shape: (7000, 7000, 3)\n", + "1182/2000 [================>.............] - ETA: 8:55:43 - loss: 0.6477907\n", + "original image shape: (7000, 7000, 3)\n", + "1183/2000 [================>.............] - ETA: 8:55:07 - loss: 0.6476601\n", + "original image shape: (7000, 7000, 3)\n", + "796\n", + "original image shape: (7000, 7000, 3)\n", + "1184/2000 [================>.............] - ETA: 8:54:30 - loss: 0.6481452\n", + "original image shape: (7000, 7000, 3)\n", + "1185/2000 [================>.............] - ETA: 8:53:53 - loss: 0.6481940\n", + "original image shape: (7000, 7000, 3)\n", + "1186/2000 [================>.............] - ETA: 8:53:17 - loss: 0.6481432\n", + "original image shape: (7000, 7000, 3)\n", + "1187/2000 [================>.............] - ETA: 8:52:40 - loss: 0.6480846\n", + "original image shape: (7000, 7000, 3)\n", + "1188/2000 [================>.............] - ETA: 8:51:53 - loss: 0.6480221\n", + "original image shape: (7000, 7000, 3)\n", + "1189/2000 [================>.............] - ETA: 8:51:13 - loss: 0.6480242\n", + "original image shape: (7000, 7000, 3)\n", + "1190/2000 [================>.............] - ETA: 8:50:33 - loss: 0.6481794\n", + "original image shape: (7000, 7000, 3)\n", + "1191/2000 [================>.............] - ETA: 8:49:53 - loss: 0.6478194\n", + "original image shape: (7000, 7000, 3)\n", + "1192/2000 [================>.............] - ETA: 8:49:12 - loss: 0.6477633\n", + "original image shape: (7000, 7000, 3)\n", + "735\n", + "original image shape: (7000, 7000, 3)\n", + "1193/2000 [================>.............] - ETA: 8:48:30 - loss: 0.647818\n", + "original image shape: (7000, 7000, 3)\n", + "386\n", + "original image shape: (7000, 7000, 3)\n", + "1194/2000 [================>.............] - ETA: 8:47:50 - loss: 0.6479342\n", + "original image shape: (7000, 7000, 3)\n", + "1195/2000 [================>.............] - ETA: 8:47:10 - loss: 0.6478392\n", + "original image shape: (7000, 7000, 3)\n", + "1196/2000 [================>.............] - ETA: 8:46:30 - loss: 0.6478782\n", + "original image shape: (7000, 7000, 3)\n", + "1197/2000 [================>.............] - ETA: 8:45:48 - loss: 0.647577\n", + "original image shape: (7000, 7000, 3)\n", + "469\n", + "original image shape: (7000, 7000, 3)\n", + "704\n", + "original image shape: (7000, 7000, 3)\n", + "1198/2000 [================>.............] - ETA: 8:45:07 - loss: 0.6478843\n", + "original image shape: (7000, 7000, 3)\n", + "1199/2000 [================>.............] - ETA: 8:44:26 - loss: 0.647948\n", + "original image shape: (7000, 7000, 3)\n", + "143\n", + "original image shape: (7000, 7000, 3)\n", + "1200/2000 [=================>............] - ETA: 8:43:44 - loss: 0.6476439\n", + "original image shape: (7000, 7000, 3)\n", + "1201/2000 [=================>............] - ETA: 8:43:03 - loss: 0.6476834\n", + "original image shape: (7000, 7000, 3)\n", + "1202/2000 [=================>............] - ETA: 8:42:22 - loss: 0.6475253\n", + "original image shape: (7000, 7000, 3)\n", + "1203/2000 [=================>............] - ETA: 8:41:42 - loss: 0.6476355\n", + "original image shape: (7000, 7000, 3)\n", + "1204/2000 [=================>............] - ETA: 8:41:02 - loss: 0.6475700\n", + "original image shape: (7000, 7000, 3)\n", + "1205/2000 [=================>............] - ETA: 8:40:21 - loss: 0.6476968\n", + "original image shape: (7000, 7000, 3)\n", + "1206/2000 [=================>............] - ETA: 8:39:41 - loss: 0.6479597\n", + "original image shape: (7000, 7000, 3)\n", + "346\n", + "original image shape: (7000, 7000, 3)\n", + "1207/2000 [=================>............] - ETA: 8:39:02 - loss: 0.6478957\n", + "original image shape: (7000, 7000, 3)\n", + "1208/2000 [=================>............] - ETA: 8:38:22 - loss: 0.6478924\n", + "original image shape: (7000, 7000, 3)\n", + "1209/2000 [=================>............] - ETA: 8:37:42 - loss: 0.6478696\n", + "original image shape: (7000, 7000, 3)\n", + "1210/2000 [=================>............] - ETA: 8:37:01 - loss: 0.6481931\n", + "original image shape: (7000, 7000, 3)\n", + "1211/2000 [=================>............] - ETA: 8:36:21 - loss: 0.6481767\n", + "original image shape: (7000, 7000, 3)\n", + "1212/2000 [=================>............] - ETA: 8:35:35 - loss: 0.6479747\n", + "original image shape: (7000, 7000, 3)\n", + "1213/2000 [=================>............] - ETA: 8:34:50 - loss: 0.6477515\n", + "original image shape: (7000, 7000, 3)\n", + "25\n", + "original image shape: (7000, 7000, 3)\n", + "497\n", + "original image shape: (7000, 7000, 3)\n", + "636\n", + "original image shape: (7000, 7000, 3)\n", + "157\n", + "original image shape: (7000, 7000, 3)\n", + "1214/2000 [=================>............] - ETA: 8:34:11 - loss: 0.6475413\n", + "original image shape: (7000, 7000, 3)\n", + "1215/2000 [=================>............] - ETA: 8:33:31 - loss: 0.6477518\n", + "original image shape: (7000, 7000, 3)\n", + "121\n", + "original image shape: (7000, 7000, 3)\n", + "1216/2000 [=================>............] - ETA: 8:32:50 - loss: 0.6473844\n", + "original image shape: (7000, 7000, 3)\n", + "1217/2000 [=================>............] - ETA: 8:32:11 - loss: 0.6473372\n", + "original image shape: (7000, 7000, 3)\n", + "1218/2000 [=================>............] - ETA: 8:31:31 - loss: 0.6472741\n", + "original image shape: (7000, 7000, 3)\n", + "1219/2000 [=================>............] - ETA: 8:30:51 - loss: 0.64695\n", + "original image shape: (7000, 7000, 3)\n", + "361\n", + "original image shape: (7000, 7000, 3)\n", + "1220/2000 [=================>............] - ETA: 8:30:12 - loss: 0.6468149\n", + "original image shape: (7000, 7000, 3)\n", + "1221/2000 [=================>............] - ETA: 8:29:32 - loss: 0.6468276\n", + "original image shape: (7000, 7000, 3)\n", + "1222/2000 [=================>............] - ETA: 8:28:53 - loss: 0.6469804\n", + "original image shape: (7000, 7000, 3)\n", + "1223/2000 [=================>............] - ETA: 8:28:13 - loss: 0.6469416\n", + "original image shape: (7000, 7000, 3)\n", + "1224/2000 [=================>............] - ETA: 8:27:34 - loss: 0.6469427\n", + "original image shape: (7000, 7000, 3)\n", + "1225/2000 [=================>............] - ETA: 8:26:54 - loss: 0.6471750\n", + "original image shape: (7000, 7000, 3)\n", + "1226/2000 [=================>............] - ETA: 8:26:13 - loss: 0.6471484\n", + "original image shape: (7000, 7000, 3)\n", + "445\n", + "original image shape: (7000, 7000, 3)\n", + "1227/2000 [=================>............] - ETA: 8:25:33 - loss: 0.6472698\n", + "original image shape: (7000, 7000, 3)\n", + "1228/2000 [=================>............] - ETA: 8:24:53 - loss: 0.6468572\n", + "original image shape: (7000, 7000, 3)\n", + "314\n", + "original image shape: (7000, 7000, 3)\n", + "1229/2000 [=================>............] - ETA: 8:24:15 - loss: 0.6468554\n", + "original image shape: (7000, 7000, 3)\n", + "299\n", + "original image shape: (7000, 7000, 3)\n", + "1230/2000 [=================>............] - ETA: 8:23:36 - loss: 0.6470622\n", + "original image shape: (7000, 7000, 3)\n", + "901\n", + "original image shape: (7000, 7000, 3)\n", + "1231/2000 [=================>............] - ETA: 8:22:57 - loss: 0.6471894\n", + "original image shape: (7000, 7000, 3)\n", + "1232/2000 [=================>............] - ETA: 8:22:18 - loss: 0.6470670\n", + "original image shape: (7000, 7000, 3)\n", + "729\n", + "original image shape: (7000, 7000, 3)\n", + "1233/2000 [=================>............] - ETA: 8:21:38 - loss: 0.6465860\n", + "original image shape: (7000, 7000, 3)\n", + "1234/2000 [=================>............] - ETA: 8:20:58 - loss: 0.6465514\n", + "original image shape: (7000, 7000, 3)\n", + "822\n", + "original image shape: (7000, 7000, 3)\n", + "1235/2000 [=================>............] - ETA: 8:20:19 - loss: 0.6465841\n", + "original image shape: (7000, 7000, 3)\n", + "1236/2000 [=================>............] - ETA: 8:19:32 - loss: 0.6464562\n", + "original image shape: (7000, 7000, 3)\n", + "104\n", + "original image shape: (7000, 7000, 3)\n", + "1237/2000 [=================>............] - ETA: 8:18:51 - loss: 0.6459625\n", + "original image shape: (7000, 7000, 3)\n", + "855\n", + "original image shape: (7000, 7000, 3)\n", + "1238/2000 [=================>............] - ETA: 8:18:12 - loss: 0.6458295\n", + "original image shape: (7000, 7000, 3)\n", + "1239/2000 [=================>............] - ETA: 8:17:34 - loss: 0.6459382\n", + "original image shape: (7000, 7000, 3)\n", + "1240/2000 [=================>............] - ETA: 8:16:54 - loss: 0.645832\n", + "original image shape: (7000, 7000, 3)\n", + "946\n", + "original image shape: (7000, 7000, 3)\n", + "1241/2000 [=================>............] - ETA: 8:16:16 - loss: 0.6457217\n", + "original image shape: (7000, 7000, 3)\n", + "1242/2000 [=================>............] - ETA: 8:15:38 - loss: 0.6458837\n", + "original image shape: (7000, 7000, 3)\n", + "1243/2000 [=================>............] - ETA: 8:14:58 - loss: 0.6458519\n", + "original image shape: (7000, 7000, 3)\n", + "892\n", + "original image shape: (7000, 7000, 3)\n", + "1244/2000 [=================>............] - ETA: 8:14:20 - loss: 0.6458984\n", + "original image shape: (7000, 7000, 3)\n", + "1245/2000 [=================>............] - ETA: 8:13:40 - loss: 0.6458206\n", + "original image shape: (7000, 7000, 3)\n", + "1246/2000 [=================>............] - ETA: 8:13:01 - loss: 0.6457331\n", + "original image shape: (7000, 7000, 3)\n", + "1247/2000 [=================>............] - ETA: 8:12:21 - loss: 0.6457408\n", + "original image shape: (7000, 7000, 3)\n", + "1248/2000 [=================>............] - ETA: 8:11:41 - loss: 0.6459394\n", + "original image shape: (7000, 7000, 3)\n", + "1249/2000 [=================>............] - ETA: 8:11:01 - loss: 0.6460215\n", + "original image shape: (7000, 7000, 3)\n", + "1250/2000 [=================>............] - ETA: 8:10:20 - loss: 0.6459241\n", + "original image shape: (7000, 7000, 3)\n", + "1251/2000 [=================>............] - ETA: 8:09:41 - loss: 0.645985\n", + "original image shape: (7000, 7000, 3)\n", + "1252/2000 [=================>............] - ETA: 8:09:00 - loss: 0.6457163\n", + "original image shape: (7000, 7000, 3)\n", + "1253/2000 [=================>............] - ETA: 8:08:19 - loss: 0.6453145\n", + "original image shape: (7000, 7000, 3)\n", + "1254/2000 [=================>............] - ETA: 8:07:38 - loss: 0.6450856\n", + "original image shape: (7000, 7000, 3)\n", + "1255/2000 [=================>............] - ETA: 8:06:58 - loss: 0.6450533\n", + "original image shape: (7000, 7000, 3)\n", + "690\n", + "original image shape: (7000, 7000, 3)\n", + "526\n", + "original image shape: (7000, 7000, 3)\n", + "536\n", + "original image shape: (7000, 7000, 3)\n", + "502\n", + "original image shape: (7000, 7000, 3)\n", + "614\n", + "original image shape: (7000, 7000, 3)\n", + "960\n", + "original image shape: (7000, 7000, 3)\n", + "1256/2000 [=================>............] - ETA: 8:06:20 - loss: 0.6449528\n", + "original image shape: (7000, 7000, 3)\n", + "351\n", + "original image shape: (7000, 7000, 3)\n", + "1257/2000 [=================>............] - ETA: 8:05:41 - loss: 0.6448369\n", + "original image shape: (7000, 7000, 3)\n", + "1258/2000 [=================>............] - ETA: 8:05:01 - loss: 0.6449410\n", + "original image shape: (7000, 7000, 3)\n", + "1259/2000 [=================>............] - ETA: 8:04:20 - loss: 0.6451105\n", + "original image shape: (7000, 7000, 3)\n", + "1260/2000 [=================>............] - ETA: 8:03:34 - loss: 0.6446918\n", + "original image shape: (7000, 7000, 3)\n", + "1261/2000 [=================>............] - ETA: 8:02:55 - loss: 0.6447775\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1262/2000 [=================>............] - ETA: 8:02:14 - loss: 0.6445292\n", + "original image shape: (7000, 7000, 3)\n", + "1263/2000 [=================>............] - ETA: 8:01:35 - loss: 0.6448265\n", + "original image shape: (7000, 7000, 3)\n", + "1264/2000 [=================>............] - ETA: 8:00:57 - loss: 0.6451404\n", + "original image shape: (7000, 7000, 3)\n", + "1265/2000 [=================>............] - ETA: 8:00:17 - loss: 0.6454975\n", + "original image shape: (7000, 7000, 3)\n", + "1266/2000 [=================>............] - ETA: 7:59:38 - loss: 0.6453609\n", + "original image shape: (7000, 7000, 3)\n", + "172\n", + "original image shape: (7000, 7000, 3)\n", + "1267/2000 [==================>...........] - ETA: 7:58:58 - loss: 0.645570\n", + "original image shape: (7000, 7000, 3)\n", + "20\n", + "original image shape: (7000, 7000, 3)\n", + "761\n", + "original image shape: (7000, 7000, 3)\n", + "1268/2000 [==================>...........] - ETA: 7:58:18 - loss: 0.6455642\n", + "original image shape: (7000, 7000, 3)\n", + "164\n", + "original image shape: (7000, 7000, 3)\n", + "1269/2000 [==================>...........] - ETA: 7:57:38 - loss: 0.6450290\n", + "original image shape: (7000, 7000, 3)\n", + "1270/2000 [==================>...........] - ETA: 7:56:59 - loss: 0.6452279\n", + "original image shape: (7000, 7000, 3)\n", + "1271/2000 [==================>...........] - ETA: 7:56:20 - loss: 0.6453316\n", + "original image shape: (7000, 7000, 3)\n", + "1272/2000 [==================>...........] - ETA: 7:55:42 - loss: 0.6454641\n", + "original image shape: (7000, 7000, 3)\n", + "541\n", + "original image shape: (7000, 7000, 3)\n", + "400\n", + "original image shape: (7000, 7000, 3)\n", + "1273/2000 [==================>...........] - ETA: 7:55:03 - loss: 0.645692\n", + "original image shape: (7000, 7000, 3)\n", + "1274/2000 [==================>...........] - ETA: 7:54:22 - loss: 0.6452477\n", + "original image shape: (7000, 7000, 3)\n", + "589\n", + "original image shape: (7000, 7000, 3)\n", + "134\n", + "original image shape: (7000, 7000, 3)\n", + "1275/2000 [==================>...........] - ETA: 7:53:43 - loss: 0.6449418\n", + "original image shape: (7000, 7000, 3)\n", + "1276/2000 [==================>...........] - ETA: 7:53:03 - loss: 0.6452436\n", + "original image shape: (7000, 7000, 3)\n", + "1277/2000 [==================>...........] - ETA: 7:52:24 - loss: 0.6452746\n", + "original image shape: (7000, 7000, 3)\n", + "1278/2000 [==================>...........] - ETA: 7:51:43 - loss: 0.6452356\n", + "original image shape: (7000, 7000, 3)\n", + "1279/2000 [==================>...........] - ETA: 7:51:04 - loss: 0.6451262\n", + "original image shape: (7000, 7000, 3)\n", + "1280/2000 [==================>...........] - ETA: 7:50:25 - loss: 0.6451631\n", + "original image shape: (7000, 7000, 3)\n", + "117\n", + "original image shape: (7000, 7000, 3)\n", + "1281/2000 [==================>...........] - ETA: 7:49:45 - loss: 0.6447313\n", + "original image shape: (7000, 7000, 3)\n", + "1282/2000 [==================>...........] - ETA: 7:49:06 - loss: 0.6445205\n", + "original image shape: (7000, 7000, 3)\n", + "1283/2000 [==================>...........] - ETA: 7:48:22 - loss: 0.6444677\n", + "original image shape: (7000, 7000, 3)\n", + "103\n", + "original image shape: (7000, 7000, 3)\n", + "1284/2000 [==================>...........] - ETA: 7:47:45 - loss: 0.6439645\n", + "original image shape: (7000, 7000, 3)\n", + "312\n", + "original image shape: (7000, 7000, 3)\n", + "1285/2000 [==================>...........] - ETA: 7:47:08 - loss: 0.6439958\n", + "original image shape: (7000, 7000, 3)\n", + "1286/2000 [==================>...........] - ETA: 7:46:31 - loss: 0.6438107\n", + "original image shape: (7000, 7000, 3)\n", + "1287/2000 [==================>...........] - ETA: 7:45:53 - loss: 0.6434967\n", + "original image shape: (7000, 7000, 3)\n", + "1288/2000 [==================>...........] - ETA: 7:45:16 - loss: 0.6433485\n", + "original image shape: (7000, 7000, 3)\n", + "898\n", + "original image shape: (7000, 7000, 3)\n", + "1289/2000 [==================>...........] - ETA: 7:44:40 - loss: 0.6432516\n", + "original image shape: (7000, 7000, 3)\n", + "577\n", + "original image shape: (7000, 7000, 3)\n", + "280\n", + "original image shape: (7000, 7000, 3)\n", + "1290/2000 [==================>...........] - ETA: 7:44:05 - loss: 0.6435359\n", + "original image shape: (7000, 7000, 3)\n", + "1291/2000 [==================>...........] - ETA: 7:43:29 - loss: 0.6435184\n", + "original image shape: (7000, 7000, 3)\n", + "1292/2000 [==================>...........] - ETA: 7:42:51 - loss: 0.6437503\n", + "original image shape: (7000, 7000, 3)\n", + "14\n", + "original image shape: (7000, 7000, 3)\n", + "252\n", + "original image shape: (7000, 7000, 3)\n", + "1293/2000 [==================>...........] - ETA: 7:42:15 - loss: 0.6441895\n", + "original image shape: (7000, 7000, 3)\n", + "1294/2000 [==================>...........] - ETA: 7:41:39 - loss: 0.6441762\n", + "original image shape: (7000, 7000, 3)\n", + "1295/2000 [==================>...........] - ETA: 7:41:01 - loss: 0.6439159\n", + "original image shape: (7000, 7000, 3)\n", + "1296/2000 [==================>...........] - ETA: 7:40:24 - loss: 0.6434639\n", + "original image shape: (7000, 7000, 3)\n", + "927\n", + "original image shape: (7000, 7000, 3)\n", + "1297/2000 [==================>...........] - ETA: 7:39:47 - loss: 0.6439637\n", + "original image shape: (7000, 7000, 3)\n", + "213\n", + "original image shape: (7000, 7000, 3)\n", + "1298/2000 [==================>...........] - ETA: 7:39:11 - loss: 0.6441227\n", + "original image shape: (7000, 7000, 3)\n", + "1299/2000 [==================>...........] - ETA: 7:38:35 - loss: 0.6440733\n", + "original image shape: (7000, 7000, 3)\n", + "1300/2000 [==================>...........] - ETA: 7:37:57 - loss: 0.6444540\n", + "original image shape: (7000, 7000, 3)\n", + "450\n", + "original image shape: (7000, 7000, 3)\n", + "1301/2000 [==================>...........] - ETA: 7:37:21 - loss: 0.6443406\n", + "original image shape: (7000, 7000, 3)\n", + "1302/2000 [==================>...........] - ETA: 7:36:44 - loss: 0.6444362\n", + "original image shape: (7000, 7000, 3)\n", + "1303/2000 [==================>...........] - ETA: 7:36:07 - loss: 0.6444712\n", + "original image shape: (7000, 7000, 3)\n", + "1304/2000 [==================>...........] - ETA: 7:35:21 - loss: 0.6440689\n", + "original image shape: (7000, 7000, 3)\n", + "379\n", + "original image shape: (7000, 7000, 3)\n", + "1305/2000 [==================>...........] - ETA: 7:34:45 - loss: 0.6443247\n", + "original image shape: (7000, 7000, 3)\n", + "1306/2000 [==================>...........] - ETA: 7:34:08 - loss: 0.6443212\n", + "original image shape: (7000, 7000, 3)\n", + "1307/2000 [==================>...........] - ETA: 7:33:32 - loss: 0.6446311\n", + "original image shape: (7000, 7000, 3)\n", + "1308/2000 [==================>...........] - ETA: 7:32:55 - loss: 0.6446800\n", + "original image shape: (7000, 7000, 3)\n", + "1309/2000 [==================>...........] - ETA: 7:32:18 - loss: 0.6446476\n", + "original image shape: (7000, 7000, 3)\n", + "336\n", + "original image shape: (7000, 7000, 3)\n", + "1310/2000 [==================>...........] - ETA: 7:31:42 - loss: 0.6444732\n", + "original image shape: (7000, 7000, 3)\n", + "1311/2000 [==================>...........] - ETA: 7:31:03 - loss: 0.6448582\n", + "original image shape: (7000, 7000, 3)\n", + "344\n", + "original image shape: (7000, 7000, 3)\n", + "1312/2000 [==================>...........] - ETA: 7:30:27 - loss: 0.6448293\n", + "original image shape: (7000, 7000, 3)\n", + "1313/2000 [==================>...........] - ETA: 7:29:51 - loss: 0.6448977\n", + "original image shape: (7000, 7000, 3)\n", + "1314/2000 [==================>...........] - ETA: 7:29:14 - loss: 0.6448378\n", + "original image shape: (7000, 7000, 3)\n", + "1315/2000 [==================>...........] - ETA: 7:28:37 - loss: 0.645243\n", + "original image shape: (7000, 7000, 3)\n", + "610\n", + "original image shape: (7000, 7000, 3)\n", + "840\n", + "original image shape: (7000, 7000, 3)\n", + "1316/2000 [==================>...........] - ETA: 7:28:01 - loss: 0.6453574\n", + "original image shape: (7000, 7000, 3)\n", + "916\n", + "original image shape: (7000, 7000, 3)\n", + "1317/2000 [==================>...........] - ETA: 7:27:25 - loss: 0.6454776\n", + "original image shape: (7000, 7000, 3)\n", + "1318/2000 [==================>...........] - ETA: 7:26:47 - loss: 0.645136\n", + "original image shape: (7000, 7000, 3)\n", + "435\n", + "original image shape: (7000, 7000, 3)\n", + "1319/2000 [==================>...........] - ETA: 7:26:10 - loss: 0.6450505\n", + "original image shape: (7000, 7000, 3)\n", + "161\n", + "original image shape: (7000, 7000, 3)\n", + "1320/2000 [==================>...........] - ETA: 7:25:33 - loss: 0.6446165\n", + "original image shape: (7000, 7000, 3)\n", + "1321/2000 [==================>...........] - ETA: 7:24:55 - loss: 0.6441202\n", + "original image shape: (7000, 7000, 3)\n", + "1322/2000 [==================>...........] - ETA: 7:24:18 - loss: 0.6441955\n", + "original image shape: (7000, 7000, 3)\n", + "1323/2000 [==================>...........] - ETA: 7:23:41 - loss: 0.644123\n", + "original image shape: (7000, 7000, 3)\n", + "50\n", + "original image shape: (7000, 7000, 3)\n", + "31\n", + "original image shape: (7000, 7000, 3)\n", + "730\n", + "original image shape: (7000, 7000, 3)\n", + "1324/2000 [==================>...........] - ETA: 7:23:04 - loss: 0.6438952\n", + "original image shape: (7000, 7000, 3)\n", + "1325/2000 [==================>...........] - ETA: 7:22:21 - loss: 0.6438925\n", + "original image shape: (7000, 7000, 3)\n", + "1326/2000 [==================>...........] - ETA: 7:21:44 - loss: 0.6441935\n", + "original image shape: (7000, 7000, 3)\n", + "1327/2000 [==================>...........] - ETA: 7:21:07 - loss: 0.6444472\n", + "original image shape: (7000, 7000, 3)\n", + "709\n", + "original image shape: (7000, 7000, 3)\n", + "1328/2000 [==================>...........] - ETA: 7:20:30 - loss: 0.6440258\n", + "original image shape: (7000, 7000, 3)\n", + "1329/2000 [==================>...........] - ETA: 7:19:53 - loss: 0.6442437\n", + "original image shape: (7000, 7000, 3)\n", + "1330/2000 [==================>...........] - ETA: 7:19:16 - loss: 0.643739\n", + "original image shape: (7000, 7000, 3)\n", + "341\n", + "original image shape: (7000, 7000, 3)\n", + "1331/2000 [==================>...........] - ETA: 7:18:39 - loss: 0.6437575\n", + "original image shape: (7000, 7000, 3)\n", + "282\n", + "original image shape: (7000, 7000, 3)\n", + "1332/2000 [==================>...........] - ETA: 7:18:02 - loss: 0.6437561\n", + "original image shape: (7000, 7000, 3)\n", + "17\n", + "original image shape: (7000, 7000, 3)\n", + "781\n", + "original image shape: (7000, 7000, 3)\n", + "1333/2000 [==================>...........] - ETA: 7:17:24 - loss: 0.6435863\n", + "original image shape: (7000, 7000, 3)\n", + "1334/2000 [===================>..........] - ETA: 7:16:47 - loss: 0.643833\n", + "original image shape: (7000, 7000, 3)\n", + "649\n", + "original image shape: (7000, 7000, 3)\n", + "728\n", + "original image shape: (7000, 7000, 3)\n", + "1335/2000 [===================>..........] - ETA: 7:16:09 - loss: 0.6444632\n", + "original image shape: (7000, 7000, 3)\n", + "102\n", + "original image shape: (7000, 7000, 3)\n", + "1336/2000 [===================>..........] - ETA: 7:15:30 - loss: 0.6443640\n", + "original image shape: (7000, 7000, 3)\n", + "457\n", + "original image shape: (7000, 7000, 3)\n", + "903\n", + "original image shape: (7000, 7000, 3)\n", + "1337/2000 [===================>..........] - ETA: 7:14:53 - loss: 0.6442756\n", + "original image shape: (7000, 7000, 3)\n", + "1338/2000 [===================>..........] - ETA: 7:14:14 - loss: 0.6443950\n", + "original image shape: (7000, 7000, 3)\n", + "1339/2000 [===================>..........] - ETA: 7:13:37 - loss: 0.6442673\n", + "original image shape: (7000, 7000, 3)\n", + "786\n", + "original image shape: (7000, 7000, 3)\n", + "1340/2000 [===================>..........] - ETA: 7:12:59 - loss: 0.6439255\n", + "original image shape: (7000, 7000, 3)\n", + "1341/2000 [===================>..........] - ETA: 7:12:22 - loss: 0.6441397\n", + "original image shape: (7000, 7000, 3)\n", + "1342/2000 [===================>..........] - ETA: 7:11:44 - loss: 0.6442575\n", + "original image shape: (7000, 7000, 3)\n", + "695\n", + "original image shape: (7000, 7000, 3)\n", + "1343/2000 [===================>..........] - ETA: 7:11:07 - loss: 0.6446178\n", + "original image shape: (7000, 7000, 3)\n", + "1344/2000 [===================>..........] - ETA: 7:10:29 - loss: 0.6445951\n", + "original image shape: (7000, 7000, 3)\n", + "1345/2000 [===================>..........] - ETA: 7:09:53 - loss: 0.6444107\n", + "original image shape: (7000, 7000, 3)\n", + "1346/2000 [===================>..........] - ETA: 7:09:07 - loss: 0.6439357\n", + "original image shape: (7000, 7000, 3)\n", + "1347/2000 [===================>..........] - ETA: 7:08:30 - loss: 0.643890\n", + "original image shape: (7000, 7000, 3)\n", + "1348/2000 [===================>..........] - ETA: 7:07:52 - loss: 0.6436301\n", + "original image shape: (7000, 7000, 3)\n", + "1349/2000 [===================>..........] - ETA: 7:07:15 - loss: 0.6439905\n", + "original image shape: (7000, 7000, 3)\n", + "1350/2000 [===================>..........] - ETA: 7:06:38 - loss: 0.6439875\n", + "original image shape: (7000, 7000, 3)\n", + "1351/2000 [===================>..........] - ETA: 7:06:01 - loss: 0.6439142\n", + "original image shape: (7000, 7000, 3)\n", + "1352/2000 [===================>..........] - ETA: 7:05:22 - loss: 0.6438314\n", + "original image shape: (7000, 7000, 3)\n", + "1353/2000 [===================>..........] - ETA: 7:04:45 - loss: 0.6436958\n", + "original image shape: (7000, 7000, 3)\n", + "1354/2000 [===================>..........] - ETA: 7:04:08 - loss: 0.6436863\n", + "original image shape: (7000, 7000, 3)\n", + "1355/2000 [===================>..........] - ETA: 7:03:30 - loss: 0.6439856\n", + "original image shape: (7000, 7000, 3)\n", + "1356/2000 [===================>..........] - ETA: 7:02:53 - loss: 0.6439147\n", + "original image shape: (7000, 7000, 3)\n", + "1357/2000 [===================>..........] - ETA: 7:02:15 - loss: 0.6437510\n", + "original image shape: (7000, 7000, 3)\n", + "818\n", + "original image shape: (7000, 7000, 3)\n", + "1358/2000 [===================>..........] - ETA: 7:01:37 - loss: 0.6437478\n", + "original image shape: (7000, 7000, 3)\n", + "758\n", + "original image shape: (7000, 7000, 3)\n", + "1359/2000 [===================>..........] - ETA: 7:00:58 - loss: 0.6435986\n", + "original image shape: (7000, 7000, 3)\n", + "1360/2000 [===================>..........] - ETA: 7:00:21 - loss: 0.643534\n", + "original image shape: (7000, 7000, 3)\n", + "774\n", + "original image shape: (7000, 7000, 3)\n", + "1361/2000 [===================>..........] - ETA: 6:59:43 - loss: 0.6432584\n", + "original image shape: (7000, 7000, 3)\n", + "850\n", + "original image shape: (7000, 7000, 3)\n", + "1362/2000 [===================>..........] - ETA: 6:59:06 - loss: 0.643333\n", + "original image shape: (7000, 7000, 3)\n", + "802\n", + "original image shape: (7000, 7000, 3)\n", + "1363/2000 [===================>..........] - ETA: 6:58:28 - loss: 0.6436521\n", + "original image shape: (7000, 7000, 3)\n", + "769\n", + "original image shape: (7000, 7000, 3)\n", + "1364/2000 [===================>..........] - ETA: 6:57:50 - loss: 0.6433425\n", + "original image shape: (7000, 7000, 3)\n", + "1365/2000 [===================>..........] - ETA: 6:57:12 - loss: 0.6434448\n", + "original image shape: (7000, 7000, 3)\n", + "1366/2000 [===================>..........] - ETA: 6:56:34 - loss: 0.6434302\n", + "original image shape: (7000, 7000, 3)\n", + "1367/2000 [===================>..........] - ETA: 6:55:51 - loss: 0.6437406\n", + "original image shape: (7000, 7000, 3)\n", + "1368/2000 [===================>..........] - ETA: 6:55:13 - loss: 0.6438456\n", + "original image shape: (7000, 7000, 3)\n", + "334\n", + "original image shape: (7000, 7000, 3)\n", + "1369/2000 [===================>..........] - ETA: 6:54:37 - loss: 0.6437134\n", + "original image shape: (7000, 7000, 3)\n", + "1370/2000 [===================>..........] - ETA: 6:53:58 - loss: 0.6435413\n", + "original image shape: (7000, 7000, 3)\n", + "1371/2000 [===================>..........] - ETA: 6:53:20 - loss: 0.64361\n", + "original image shape: (7000, 7000, 3)\n", + "389\n", + "original image shape: (7000, 7000, 3)\n", + "1372/2000 [===================>..........] - ETA: 6:52:43 - loss: 0.6435567\n", + "original image shape: (7000, 7000, 3)\n", + "116\n", + "original image shape: (7000, 7000, 3)\n", + "1373/2000 [===================>..........] - ETA: 6:52:05 - loss: 0.6431160\n", + "original image shape: (7000, 7000, 3)\n", + "1374/2000 [===================>..........] - ETA: 6:51:27 - loss: 0.6427484\n", + "original image shape: (7000, 7000, 3)\n", + "239\n", + "original image shape: (7000, 7000, 3)\n", + "1375/2000 [===================>..........] - ETA: 6:50:50 - loss: 0.6427642\n", + "original image shape: (7000, 7000, 3)\n", + "176\n", + "original image shape: (7000, 7000, 3)\n", + "1376/2000 [===================>..........] - ETA: 6:50:12 - loss: 0.6424500\n", + "original image shape: (7000, 7000, 3)\n", + "640\n", + "original image shape: (7000, 7000, 3)\n", + "779\n", + "original image shape: (7000, 7000, 3)\n", + "1377/2000 [===================>..........] - ETA: 6:49:33 - loss: 0.6421918\n", + "original image shape: (7000, 7000, 3)\n", + "1378/2000 [===================>..........] - ETA: 6:48:53 - loss: 0.6421792\n", + "original image shape: (7000, 7000, 3)\n", + "1379/2000 [===================>..........] - ETA: 6:48:12 - loss: 0.6422899\n", + "original image shape: (7000, 7000, 3)\n", + "1380/2000 [===================>..........] - ETA: 6:47:31 - loss: 0.6424223\n", + "original image shape: (7000, 7000, 3)\n", + "1381/2000 [===================>..........] - ETA: 6:46:51 - loss: 0.6425119\n", + "original image shape: (7000, 7000, 3)\n", + "1382/2000 [===================>..........] - ETA: 6:46:10 - loss: 0.642615\n", + "original image shape: (7000, 7000, 3)\n", + "532\n", + "original image shape: (7000, 7000, 3)\n", + "540\n", + "original image shape: (7000, 7000, 3)\n", + "829\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1383/2000 [===================>..........] - ETA: 6:45:31 - loss: 0.6427598\n", + "original image shape: (7000, 7000, 3)\n", + "543\n", + "original image shape: (7000, 7000, 3)\n", + "242\n", + "original image shape: (7000, 7000, 3)\n", + "1384/2000 [===================>..........] - ETA: 6:44:52 - loss: 0.642769\n", + "original image shape: (7000, 7000, 3)\n", + "321\n", + "original image shape: (7000, 7000, 3)\n", + "1385/2000 [===================>..........] - ETA: 6:44:12 - loss: 0.6426508\n", + "original image shape: (7000, 7000, 3)\n", + "363\n", + "original image shape: (7000, 7000, 3)\n", + "1386/2000 [===================>..........] - ETA: 6:43:33 - loss: 0.6424912\n", + "original image shape: (7000, 7000, 3)\n", + "1387/2000 [===================>..........] - ETA: 6:42:53 - loss: 0.6424644\n", + "original image shape: (7000, 7000, 3)\n", + "712\n", + "original image shape: (7000, 7000, 3)\n", + "1388/2000 [===================>..........] - ETA: 6:42:12 - loss: 0.6420672\n", + "original image shape: (7000, 7000, 3)\n", + "55\n", + "original image shape: (7000, 7000, 3)\n", + "904\n", + "original image shape: (7000, 7000, 3)\n", + "1389/2000 [===================>..........] - ETA: 6:41:33 - loss: 0.6419198\n", + "original image shape: (7000, 7000, 3)\n", + "1390/2000 [===================>..........] - ETA: 6:40:50 - loss: 0.6421982\n", + "original image shape: (7000, 7000, 3)\n", + "1391/2000 [===================>..........] - ETA: 6:40:10 - loss: 0.6420295\n", + "original image shape: (7000, 7000, 3)\n", + "1392/2000 [===================>..........] - ETA: 6:39:30 - loss: 0.642067\n", + "original image shape: (7000, 7000, 3)\n", + "476\n", + "original image shape: (7000, 7000, 3)\n", + "474\n", + "original image shape: (7000, 7000, 3)\n", + "632\n", + "original image shape: (7000, 7000, 3)\n", + "266\n", + "original image shape: (7000, 7000, 3)\n", + "1393/2000 [===================>..........] - ETA: 6:38:51 - loss: 0.6426553\n", + "original image shape: (7000, 7000, 3)\n", + "783\n", + "original image shape: (7000, 7000, 3)\n", + "1394/2000 [===================>..........] - ETA: 6:38:06 - loss: 0.6423325\n", + "original image shape: (7000, 7000, 3)\n", + "1395/2000 [===================>..........] - ETA: 6:37:26 - loss: 0.6423651\n", + "original image shape: (7000, 7000, 3)\n", + "80\n", + "original image shape: (7000, 7000, 3)\n", + "1396/2000 [===================>..........] - ETA: 6:36:45 - loss: 0.6419141\n", + "original image shape: (7000, 7000, 3)\n", + "1397/2000 [===================>..........] - ETA: 6:36:04 - loss: 0.6419775\n", + "original image shape: (7000, 7000, 3)\n", + "1398/2000 [===================>..........] - ETA: 6:35:24 - loss: 0.6416950\n", + "original image shape: (7000, 7000, 3)\n", + "1399/2000 [===================>..........] - ETA: 6:34:44 - loss: 0.64172\n", + "original image shape: (7000, 7000, 3)\n", + "236\n", + "original image shape: (7000, 7000, 3)\n", + "1400/2000 [====================>.........] - ETA: 6:34:05 - loss: 0.6418611\n", + "original image shape: (7000, 7000, 3)\n", + "209\n", + "original image shape: (7000, 7000, 3)\n", + "1401/2000 [====================>.........] - ETA: 6:33:26 - loss: 0.6419778\n", + "original image shape: (7000, 7000, 3)\n", + "1402/2000 [====================>.........] - ETA: 6:32:45 - loss: 0.6417928\n", + "original image shape: (7000, 7000, 3)\n", + "1403/2000 [====================>.........] - ETA: 6:32:06 - loss: 0.6422824\n", + "original image shape: (7000, 7000, 3)\n", + "1404/2000 [====================>.........] - ETA: 6:31:26 - loss: 0.6422324\n", + "original image shape: (7000, 7000, 3)\n", + "1405/2000 [====================>.........] - ETA: 6:30:47 - loss: 0.6420786\n", + "original image shape: (7000, 7000, 3)\n", + "1406/2000 [====================>.........] - ETA: 6:30:07 - loss: 0.641744\n", + "original image shape: (7000, 7000, 3)\n", + "955\n", + "original image shape: (7000, 7000, 3)\n", + "1407/2000 [====================>.........] - ETA: 6:29:28 - loss: 0.6418123\n", + "original image shape: (7000, 7000, 3)\n", + "1408/2000 [====================>.........] - ETA: 6:28:47 - loss: 0.6416101\n", + "original image shape: (7000, 7000, 3)\n", + "1409/2000 [====================>.........] - ETA: 6:28:07 - loss: 0.6415755\n", + "original image shape: (7000, 7000, 3)\n", + "1410/2000 [====================>.........] - ETA: 6:27:26 - loss: 0.6416347\n", + "original image shape: (7000, 7000, 3)\n", + "1411/2000 [====================>.........] - ETA: 6:26:47 - loss: 0.6417840\n", + "original image shape: (7000, 7000, 3)\n", + "1412/2000 [====================>.........] - ETA: 6:26:07 - loss: 0.6417291\n", + "original image shape: (7000, 7000, 3)\n", + "1413/2000 [====================>.........] - ETA: 6:25:28 - loss: 0.6417855\n", + "original image shape: (7000, 7000, 3)\n", + "1414/2000 [====================>.........] - ETA: 6:24:44 - loss: 0.6417586\n", + "original image shape: (7000, 7000, 3)\n", + "390\n", + "original image shape: (7000, 7000, 3)\n", + "1415/2000 [====================>.........] - ETA: 6:24:05 - loss: 0.6417336\n", + "original image shape: (7000, 7000, 3)\n", + "1416/2000 [====================>.........] - ETA: 6:23:25 - loss: 0.6415326\n", + "original image shape: (7000, 7000, 3)\n", + "1417/2000 [====================>.........] - ETA: 6:22:46 - loss: 0.6415845\n", + "original image shape: (7000, 7000, 3)\n", + "1418/2000 [====================>.........] - ETA: 6:22:06 - loss: 0.6415736\n", + "original image shape: (7000, 7000, 3)\n", + "1419/2000 [====================>.........] - ETA: 6:21:25 - loss: 0.641526\n", + "original image shape: (7000, 7000, 3)\n", + "830\n", + "original image shape: (7000, 7000, 3)\n", + "1420/2000 [====================>.........] - ETA: 6:20:46 - loss: 0.6415926\n", + "original image shape: (7000, 7000, 3)\n", + "1421/2000 [====================>.........] - ETA: 6:20:06 - loss: 0.6416690\n", + "original image shape: (7000, 7000, 3)\n", + "155\n", + "original image shape: (7000, 7000, 3)\n", + "1422/2000 [====================>.........] - ETA: 6:19:26 - loss: 0.6413577\n", + "original image shape: (7000, 7000, 3)\n", + "320\n", + "original image shape: (7000, 7000, 3)\n", + "1423/2000 [====================>.........] - ETA: 6:18:47 - loss: 0.6413879\n", + "original image shape: (7000, 7000, 3)\n", + "1424/2000 [====================>.........] - ETA: 6:18:07 - loss: 0.6415293\n", + "original image shape: (7000, 7000, 3)\n", + "1425/2000 [====================>.........] - ETA: 6:17:28 - loss: 0.6415580\n", + "original image shape: (7000, 7000, 3)\n", + "72\n", + "original image shape: (7000, 7000, 3)\n", + "296\n", + "original image shape: (7000, 7000, 3)\n", + "1426/2000 [====================>.........] - ETA: 6:16:50 - loss: 0.6420602\n", + "original image shape: (7000, 7000, 3)\n", + "306\n", + "original image shape: (7000, 7000, 3)\n", + "1427/2000 [====================>.........] - ETA: 6:16:10 - loss: 0.641988\n", + "original image shape: (7000, 7000, 3)\n", + "1428/2000 [====================>.........] - ETA: 6:15:30 - loss: 0.6415956\n", + "original image shape: (7000, 7000, 3)\n", + "1429/2000 [====================>.........] - ETA: 6:14:50 - loss: 0.6414787\n", + "original image shape: (7000, 7000, 3)\n", + "1430/2000 [====================>.........] - ETA: 6:14:10 - loss: 0.6414876\n", + "original image shape: (7000, 7000, 3)\n", + "1431/2000 [====================>.........] - ETA: 6:13:30 - loss: 0.6414952\n", + "original image shape: (7000, 7000, 3)\n", + "1432/2000 [====================>.........] - ETA: 6:12:51 - loss: 0.6416552\n", + "original image shape: (7000, 7000, 3)\n", + "847\n", + "original image shape: (7000, 7000, 3)\n", + "1433/2000 [====================>.........] - ETA: 6:12:11 - loss: 0.6415180\n", + "original image shape: (7000, 7000, 3)\n", + "1434/2000 [====================>.........] - ETA: 6:11:31 - loss: 0.6414352\n", + "original image shape: (7000, 7000, 3)\n", + "1435/2000 [====================>.........] - ETA: 6:10:51 - loss: 0.6413356\n", + "original image shape: (7000, 7000, 3)\n", + "1436/2000 [====================>.........] - ETA: 6:10:10 - loss: 0.6413683\n", + "original image shape: (7000, 7000, 3)\n", + "554\n", + "original image shape: (7000, 7000, 3)\n", + "424\n", + "original image shape: (7000, 7000, 3)\n", + "1437/2000 [====================>.........] - ETA: 6:09:28 - loss: 0.6413750\n", + "original image shape: (7000, 7000, 3)\n", + "1438/2000 [====================>.........] - ETA: 6:08:46 - loss: 0.6413447\n", + "original image shape: (7000, 7000, 3)\n", + "1439/2000 [====================>.........] - ETA: 6:08:06 - loss: 0.6411468\n", + "original image shape: (7000, 7000, 3)\n", + "972\n", + "original image shape: (7000, 7000, 3)\n", + "1440/2000 [====================>.........] - ETA: 6:07:27 - loss: 0.6412148\n", + "original image shape: (7000, 7000, 3)\n", + "1441/2000 [====================>.........] - ETA: 6:06:46 - loss: 0.6412723\n", + "original image shape: (7000, 7000, 3)\n", + "1442/2000 [====================>.........] - ETA: 6:06:06 - loss: 0.6409942\n", + "original image shape: (7000, 7000, 3)\n", + "1443/2000 [====================>.........] - ETA: 6:05:26 - loss: 0.6408129\n", + "original image shape: (7000, 7000, 3)\n", + "1444/2000 [====================>.........] - ETA: 6:04:46 - loss: 0.6407274\n", + "original image shape: (7000, 7000, 3)\n", + "1445/2000 [====================>.........] - ETA: 6:04:07 - loss: 0.6408804\n", + "original image shape: (7000, 7000, 3)\n", + "1446/2000 [====================>.........] - ETA: 6:03:27 - loss: 0.6409776\n", + "original image shape: (7000, 7000, 3)\n", + "1447/2000 [====================>.........] - ETA: 6:02:46 - loss: 0.6406458\n", + "original image shape: (7000, 7000, 3)\n", + "889\n", + "original image shape: (7000, 7000, 3)\n", + "1448/2000 [====================>.........] - ETA: 6:02:07 - loss: 0.6406299\n", + "original image shape: (7000, 7000, 3)\n", + "1449/2000 [====================>.........] - ETA: 6:01:28 - loss: 0.6406217\n", + "original image shape: (7000, 7000, 3)\n", + "1450/2000 [====================>.........] - ETA: 6:00:49 - loss: 0.6407220\n", + "original image shape: (7000, 7000, 3)\n", + "1451/2000 [====================>.........] - ETA: 6:00:09 - loss: 0.6408118\n", + "original image shape: (7000, 7000, 3)\n", + "1452/2000 [====================>.........] - ETA: 5:59:29 - loss: 0.6407280\n", + "original image shape: (7000, 7000, 3)\n", + "1453/2000 [====================>.........] - ETA: 5:58:50 - loss: 0.6408245\n", + "original image shape: (7000, 7000, 3)\n", + "1454/2000 [====================>.........] - ETA: 5:58:11 - loss: 0.6408583\n", + "original image shape: (7000, 7000, 3)\n", + "486\n", + "original image shape: (7000, 7000, 3)\n", + "576\n", + "original image shape: (7000, 7000, 3)\n", + "254\n", + "original image shape: (7000, 7000, 3)\n", + "1455/2000 [====================>.........] - ETA: 5:57:32 - loss: 0.6410385\n", + "original image shape: (7000, 7000, 3)\n", + "1456/2000 [====================>.........] - ETA: 5:56:53 - loss: 0.6409192\n", + "original image shape: (7000, 7000, 3)\n", + "1457/2000 [====================>.........] - ETA: 5:56:13 - loss: 0.640996\n", + "original image shape: (7000, 7000, 3)\n", + "1458/2000 [====================>.........] - ETA: 5:55:33 - loss: 0.6409397\n", + "original image shape: (7000, 7000, 3)\n", + "1459/2000 [====================>.........] - ETA: 5:54:53 - loss: 0.6410940\n", + "original image shape: (7000, 7000, 3)\n", + "1460/2000 [====================>.........] - ETA: 5:54:14 - loss: 0.6409408\n", + "original image shape: (7000, 7000, 3)\n", + "1461/2000 [====================>.........] - ETA: 5:53:30 - loss: 0.6410770\n", + "original image shape: (7000, 7000, 3)\n", + "1462/2000 [====================>.........] - ETA: 5:52:50 - loss: 0.6407169\n", + "original image shape: (7000, 7000, 3)\n", + "1463/2000 [====================>.........] - ETA: 5:52:10 - loss: 0.640783\n", + "original image shape: (7000, 7000, 3)\n", + "1464/2000 [====================>.........] - ETA: 5:51:29 - loss: 0.640338\n", + "original image shape: (7000, 7000, 3)\n", + "111\n", + "original image shape: (7000, 7000, 3)\n", + "1465/2000 [====================>.........] - ETA: 5:50:49 - loss: 0.6398365\n", + "original image shape: (7000, 7000, 3)\n", + "1466/2000 [====================>.........] - ETA: 5:50:09 - loss: 0.6397165\n", + "original image shape: (7000, 7000, 3)\n", + "1467/2000 [=====================>........] - ETA: 5:49:29 - loss: 0.6393813\n", + "original image shape: (7000, 7000, 3)\n", + "1468/2000 [=====================>........] - ETA: 5:48:49 - loss: 0.6394117\n", + "original image shape: (7000, 7000, 3)\n", + "1469/2000 [=====================>........] - ETA: 5:48:09 - loss: 0.6390827\n", + "original image shape: (7000, 7000, 3)\n", + "1470/2000 [=====================>........] - ETA: 5:47:30 - loss: 0.6390205\n", + "original image shape: (7000, 7000, 3)\n", + "1471/2000 [=====================>........] - ETA: 5:46:50 - loss: 0.6389355\n", + "original image shape: (7000, 7000, 3)\n", + "1472/2000 [=====================>........] - ETA: 5:46:12 - loss: 0.6388547\n", + "original image shape: (7000, 7000, 3)\n", + "669\n", + "original image shape: (7000, 7000, 3)\n", + "121\n", + "original image shape: (7000, 7000, 3)\n", + "1473/2000 [=====================>........] - ETA: 5:45:34 - loss: 0.6387110\n", + "original image shape: (7000, 7000, 3)\n", + "1474/2000 [=====================>........] - ETA: 5:44:55 - loss: 0.6385646\n", + "original image shape: (7000, 7000, 3)\n", + "138\n", + "original image shape: (7000, 7000, 3)\n", + "1475/2000 [=====================>........] - ETA: 5:44:16 - loss: 0.638540\n", + "original image shape: (7000, 7000, 3)\n", + "246\n", + "original image shape: (7000, 7000, 3)\n", + "1476/2000 [=====================>........] - ETA: 5:43:39 - loss: 0.638664\n", + "original image shape: (7000, 7000, 3)\n", + "487\n", + "original image shape: (7000, 7000, 3)\n", + "846\n", + "original image shape: (7000, 7000, 3)\n", + "1477/2000 [=====================>........] - ETA: 5:43:02 - loss: 0.6384983\n", + "original image shape: (7000, 7000, 3)\n", + "1478/2000 [=====================>........] - ETA: 5:42:24 - loss: 0.6385316\n", + "original image shape: (7000, 7000, 3)\n", + "1479/2000 [=====================>........] - ETA: 5:41:47 - loss: 0.6385375\n", + "original image shape: (7000, 7000, 3)\n", + "1480/2000 [=====================>........] - ETA: 5:41:09 - loss: 0.6385866\n", + "original image shape: (7000, 7000, 3)\n", + "1481/2000 [=====================>........] - ETA: 5:40:32 - loss: 0.6386906\n", + "original image shape: (7000, 7000, 3)\n", + "1482/2000 [=====================>........] - ETA: 5:39:54 - loss: 0.6385582\n", + "original image shape: (7000, 7000, 3)\n", + "710\n", + "original image shape: (7000, 7000, 3)\n", + "1483/2000 [=====================>........] - ETA: 5:39:13 - loss: 0.6381524\n", + "original image shape: (7000, 7000, 3)\n", + "51\n", + "original image shape: (7000, 7000, 3)\n", + "741\n", + "original image shape: (7000, 7000, 3)\n", + "1484/2000 [=====================>........] - ETA: 5:38:33 - loss: 0.6378843\n", + "original image shape: (7000, 7000, 3)\n", + "1485/2000 [=====================>........] - ETA: 5:37:55 - loss: 0.6378617\n", + "original image shape: (7000, 7000, 3)\n", + "401\n", + "original image shape: (7000, 7000, 3)\n", + "1486/2000 [=====================>........] - ETA: 5:37:18 - loss: 0.6380157\n", + "original image shape: (7000, 7000, 3)\n", + "1487/2000 [=====================>........] - ETA: 5:36:40 - loss: 0.6378594\n", + "original image shape: (7000, 7000, 3)\n", + "811\n", + "original image shape: (7000, 7000, 3)\n", + "1488/2000 [=====================>........] - ETA: 5:36:02 - loss: 0.637960\n", + "original image shape: (7000, 7000, 3)\n", + "188\n", + "original image shape: (7000, 7000, 3)\n", + "1489/2000 [=====================>........] - ETA: 5:35:24 - loss: 0.6379670\n", + "original image shape: (7000, 7000, 3)\n", + "150\n", + "original image shape: (7000, 7000, 3)\n", + "1490/2000 [=====================>........] - ETA: 5:34:46 - loss: 0.6378153\n", + "original image shape: (7000, 7000, 3)\n", + "1491/2000 [=====================>........] - ETA: 5:34:08 - loss: 0.6380461\n", + "original image shape: (7000, 7000, 3)\n", + "74\n", + "original image shape: (7000, 7000, 3)\n", + "54\n", + "original image shape: (7000, 7000, 3)\n", + "701\n", + "original image shape: (7000, 7000, 3)\n", + "1492/2000 [=====================>........] - ETA: 5:33:30 - loss: 0.6376916\n", + "original image shape: (7000, 7000, 3)\n", + "1493/2000 [=====================>........] - ETA: 5:32:52 - loss: 0.6375417\n", + "original image shape: (7000, 7000, 3)\n", + "1494/2000 [=====================>........] - ETA: 5:32:14 - loss: 0.6377705\n", + "original image shape: (7000, 7000, 3)\n", + "1495/2000 [=====================>........] - ETA: 5:31:35 - loss: 0.6377718\n", + "original image shape: (7000, 7000, 3)\n", + "1496/2000 [=====================>........] - ETA: 5:30:57 - loss: 0.6374871\n", + "original image shape: (7000, 7000, 3)\n", + "1497/2000 [=====================>........] - ETA: 5:30:19 - loss: 0.6374252\n", + "original image shape: (7000, 7000, 3)\n", + "1498/2000 [=====================>........] - ETA: 5:29:41 - loss: 0.6374927\n", + "original image shape: (7000, 7000, 3)\n", + "1499/2000 [=====================>........] - ETA: 5:29:04 - loss: 0.6376388\n", + "original image shape: (7000, 7000, 3)\n", + "1500/2000 [=====================>........] - ETA: 5:28:26 - loss: 0.6376364\n", + "original image shape: (7000, 7000, 3)\n", + "1501/2000 [=====================>........] - ETA: 5:27:48 - loss: 0.6374470\n", + "original image shape: (7000, 7000, 3)\n", + "661\n", + "original image shape: (7000, 7000, 3)\n", + "193\n", + "original image shape: (7000, 7000, 3)\n", + "1502/2000 [=====================>........] - ETA: 5:27:11 - loss: 0.6374528\n", + "original image shape: (7000, 7000, 3)\n", + "135\n", + "original image shape: (7000, 7000, 3)\n", + "1503/2000 [=====================>........] - ETA: 5:26:32 - loss: 0.637150\n", + "original image shape: (7000, 7000, 3)\n", + "19\n", + "original image shape: (7000, 7000, 3)\n", + "331\n", + "original image shape: (7000, 7000, 3)\n", + "1504/2000 [=====================>........] - ETA: 5:25:51 - loss: 0.6370636\n", + "original image shape: (7000, 7000, 3)\n", + "832\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1505/2000 [=====================>........] - ETA: 5:25:13 - loss: 0.6370747\n", + "original image shape: (7000, 7000, 3)\n", + "1506/2000 [=====================>........] - ETA: 5:24:34 - loss: 0.6369587\n", + "original image shape: (7000, 7000, 3)\n", + "539\n", + "original image shape: (7000, 7000, 3)\n", + "853\n", + "original image shape: (7000, 7000, 3)\n", + "1507/2000 [=====================>........] - ETA: 5:23:56 - loss: 0.6369502\n", + "original image shape: (7000, 7000, 3)\n", + "566\n", + "original image shape: (7000, 7000, 3)\n", + "915\n", + "original image shape: (7000, 7000, 3)\n", + "1508/2000 [=====================>........] - ETA: 5:23:18 - loss: 0.6370658\n", + "original image shape: (7000, 7000, 3)\n", + "694\n", + "original image shape: (7000, 7000, 3)\n", + "1509/2000 [=====================>........] - ETA: 5:22:40 - loss: 0.6368420\n", + "original image shape: (7000, 7000, 3)\n", + "1510/2000 [=====================>........] - ETA: 5:22:02 - loss: 0.6368595\n", + "original image shape: (7000, 7000, 3)\n", + "555\n", + "original image shape: (7000, 7000, 3)\n", + "823\n", + "original image shape: (7000, 7000, 3)\n", + "1511/2000 [=====================>........] - ETA: 5:21:24 - loss: 0.6368367\n", + "original image shape: (7000, 7000, 3)\n", + "1512/2000 [=====================>........] - ETA: 5:20:46 - loss: 0.6369550\n", + "original image shape: (7000, 7000, 3)\n", + "206\n", + "original image shape: (7000, 7000, 3)\n", + "1513/2000 [=====================>........] - ETA: 5:20:08 - loss: 0.6368519\n", + "original image shape: (7000, 7000, 3)\n", + "962\n", + "original image shape: (7000, 7000, 3)\n", + "1514/2000 [=====================>........] - ETA: 5:19:30 - loss: 0.636749\n", + "original image shape: (7000, 7000, 3)\n", + "97\n", + "original image shape: (7000, 7000, 3)\n", + "1515/2000 [=====================>........] - ETA: 5:18:52 - loss: 0.6363932\n", + "original image shape: (7000, 7000, 3)\n", + "1516/2000 [=====================>........] - ETA: 5:18:14 - loss: 0.6364396\n", + "original image shape: (7000, 7000, 3)\n", + "1517/2000 [=====================>........] - ETA: 5:17:35 - loss: 0.6366455\n", + "original image shape: (7000, 7000, 3)\n", + "311\n", + "original image shape: (7000, 7000, 3)\n", + "1518/2000 [=====================>........] - ETA: 5:16:58 - loss: 0.6366503\n", + "original image shape: (7000, 7000, 3)\n", + "433\n", + "original image shape: (7000, 7000, 3)\n", + "1519/2000 [=====================>........] - ETA: 5:16:20 - loss: 0.6365892\n", + "original image shape: (7000, 7000, 3)\n", + "1520/2000 [=====================>........] - ETA: 5:15:43 - loss: 0.6364354\n", + "original image shape: (7000, 7000, 3)\n", + "1521/2000 [=====================>........] - ETA: 5:15:05 - loss: 0.6362525\n", + "original image shape: (7000, 7000, 3)\n", + "25\n", + "original image shape: (7000, 7000, 3)\n", + "351\n", + "original image shape: (7000, 7000, 3)\n", + "1522/2000 [=====================>........] - ETA: 5:14:28 - loss: 0.6361789\n", + "original image shape: (7000, 7000, 3)\n", + "1523/2000 [=====================>........] - ETA: 5:13:49 - loss: 0.6359465\n", + "original image shape: (7000, 7000, 3)\n", + "163\n", + "original image shape: (7000, 7000, 3)\n", + "1524/2000 [=====================>........] - ETA: 5:13:11 - loss: 0.6355591\n", + "original image shape: (7000, 7000, 3)\n", + "492\n", + "original image shape: (7000, 7000, 3)\n", + "937\n", + "original image shape: (7000, 7000, 3)\n", + "1525/2000 [=====================>........] - ETA: 5:12:28 - loss: 0.635581\n", + "original image shape: (7000, 7000, 3)\n", + "1526/2000 [=====================>........] - ETA: 5:11:49 - loss: 0.6351369\n", + "original image shape: (7000, 7000, 3)\n", + "1527/2000 [=====================>........] - ETA: 5:11:11 - loss: 0.635193\n", + "original image shape: (7000, 7000, 3)\n", + "1528/2000 [=====================>........] - ETA: 5:10:32 - loss: 0.6348373\n", + "original image shape: (7000, 7000, 3)\n", + "1529/2000 [=====================>........] - ETA: 5:09:54 - loss: 0.6347200\n", + "original image shape: (7000, 7000, 3)\n", + "1530/2000 [=====================>........] - ETA: 5:09:17 - loss: 0.6348444\n", + "original image shape: (7000, 7000, 3)\n", + "1531/2000 [=====================>........] - ETA: 5:08:38 - loss: 0.6349407\n", + "original image shape: (7000, 7000, 3)\n", + "1532/2000 [=====================>........] - ETA: 5:08:00 - loss: 0.6350527\n", + "original image shape: (7000, 7000, 3)\n", + "409\n", + "original image shape: (7000, 7000, 3)\n", + "1533/2000 [=====================>........] - ETA: 5:07:22 - loss: 0.6352805\n", + "original image shape: (7000, 7000, 3)\n", + "1534/2000 [======================>.......] - ETA: 5:06:44 - loss: 0.6349477\n", + "original image shape: (7000, 7000, 3)\n", + "378\n", + "original image shape: (7000, 7000, 3)\n", + "1535/2000 [======================>.......] - ETA: 5:06:06 - loss: 0.6351568\n", + "original image shape: (7000, 7000, 3)\n", + "86\n", + "original image shape: (7000, 7000, 3)\n", + "1536/2000 [======================>.......] - ETA: 5:05:27 - loss: 0.634842\n", + "original image shape: (7000, 7000, 3)\n", + "416\n", + "original image shape: (7000, 7000, 3)\n", + "1537/2000 [======================>.......] - ETA: 5:04:49 - loss: 0.6348675\n", + "original image shape: (7000, 7000, 3)\n", + "753\n", + "original image shape: (7000, 7000, 3)\n", + "1538/2000 [======================>.......] - ETA: 5:04:10 - loss: 0.6351359\n", + "original image shape: (7000, 7000, 3)\n", + "1539/2000 [======================>.......] - ETA: 5:03:32 - loss: 0.6354849\n", + "original image shape: (7000, 7000, 3)\n", + "1540/2000 [======================>.......] - ETA: 5:02:53 - loss: 0.6353308\n", + "original image shape: (7000, 7000, 3)\n", + "1541/2000 [======================>.......] - ETA: 5:02:15 - loss: 0.6353858\n", + "original image shape: (7000, 7000, 3)\n", + "1542/2000 [======================>.......] - ETA: 5:01:37 - loss: 0.6353663\n", + "original image shape: (7000, 7000, 3)\n", + "623\n", + "original image shape: (7000, 7000, 3)\n", + "382\n", + "original image shape: (7000, 7000, 3)\n", + "1543/2000 [======================>.......] - ETA: 5:01:00 - loss: 0.635475\n", + "original image shape: (7000, 7000, 3)\n", + "913\n", + "original image shape: (7000, 7000, 3)\n", + "1544/2000 [======================>.......] - ETA: 5:00:22 - loss: 0.6357809\n", + "original image shape: (7000, 7000, 3)\n", + "1545/2000 [======================>.......] - ETA: 4:59:43 - loss: 0.6357199\n", + "original image shape: (7000, 7000, 3)\n", + "1546/2000 [======================>.......] - ETA: 4:59:01 - loss: 0.6357868\n", + "original image shape: (7000, 7000, 3)\n", + "1547/2000 [======================>.......] - ETA: 4:58:22 - loss: 0.6356481\n", + "original image shape: (7000, 7000, 3)\n", + "785\n", + "original image shape: (7000, 7000, 3)\n", + "1548/2000 [======================>.......] - ETA: 4:57:44 - loss: 0.6355717\n", + "original image shape: (7000, 7000, 3)\n", + "1549/2000 [======================>.......] - ETA: 4:57:05 - loss: 0.6352873\n", + "original image shape: (7000, 7000, 3)\n", + "1550/2000 [======================>.......] - ETA: 4:56:27 - loss: 0.6353292\n", + "original image shape: (7000, 7000, 3)\n", + "1551/2000 [======================>.......] - ETA: 4:55:48 - loss: 0.6354271\n", + "original image shape: (7000, 7000, 3)\n", + "1552/2000 [======================>.......] - ETA: 4:55:11 - loss: 0.6355412\n", + "original image shape: (7000, 7000, 3)\n", + "1553/2000 [======================>.......] - ETA: 4:54:32 - loss: 0.6354115\n", + "original image shape: (7000, 7000, 3)\n", + "1554/2000 [======================>.......] - ETA: 4:53:53 - loss: 0.6352722\n", + "original image shape: (7000, 7000, 3)\n", + "1555/2000 [======================>.......] - ETA: 4:53:14 - loss: 0.634882\n", + "original image shape: (7000, 7000, 3)\n", + "1556/2000 [======================>.......] - ETA: 4:52:35 - loss: 0.6345578\n", + "original image shape: (7000, 7000, 3)\n", + "231\n", + "original image shape: (7000, 7000, 3)\n", + "1557/2000 [======================>.......] - ETA: 4:51:57 - loss: 0.6344820\n", + "original image shape: (7000, 7000, 3)\n", + "1558/2000 [======================>.......] - ETA: 4:51:16 - loss: 0.634410\n", + "original image shape: (7000, 7000, 3)\n", + "287\n", + "original image shape: (7000, 7000, 3)\n", + "1559/2000 [======================>.......] - ETA: 4:50:37 - loss: 0.6347137\n", + "original image shape: (7000, 7000, 3)\n", + "1560/2000 [======================>.......] - ETA: 4:49:56 - loss: 0.6343372\n", + "original image shape: (7000, 7000, 3)\n", + "1561/2000 [======================>.......] - ETA: 4:49:16 - loss: 0.6344208\n", + "original image shape: (7000, 7000, 3)\n", + "1562/2000 [======================>.......] - ETA: 4:48:36 - loss: 0.6347426\n", + "original image shape: (7000, 7000, 3)\n", + "1563/2000 [======================>.......] - ETA: 4:47:56 - loss: 0.6348462\n", + "original image shape: (7000, 7000, 3)\n", + "674\n", + "original image shape: (7000, 7000, 3)\n", + "559\n", + "original image shape: (7000, 7000, 3)\n", + "771\n", + "original image shape: (7000, 7000, 3)\n", + "1564/2000 [======================>.......] - ETA: 4:47:16 - loss: 0.6345505\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "422\n", + "original image shape: (7000, 7000, 3)\n", + "1565/2000 [======================>.......] - ETA: 4:46:36 - loss: 0.6345350\n", + "original image shape: (7000, 7000, 3)\n", + "1566/2000 [======================>.......] - ETA: 4:45:56 - loss: 0.6345269\n", + "original image shape: (7000, 7000, 3)\n", + "1567/2000 [======================>.......] - ETA: 4:45:17 - loss: 0.6346652\n", + "original image shape: (7000, 7000, 3)\n", + "924\n", + "original image shape: (7000, 7000, 3)\n", + "1568/2000 [======================>.......] - ETA: 4:44:36 - loss: 0.6346125\n", + "original image shape: (7000, 7000, 3)\n", + "1569/2000 [======================>.......] - ETA: 4:43:54 - loss: 0.6343454\n", + "original image shape: (7000, 7000, 3)\n", + "1570/2000 [======================>.......] - ETA: 4:43:13 - loss: 0.6344901\n", + "original image shape: (7000, 7000, 3)\n", + "1571/2000 [======================>.......] - ETA: 4:42:33 - loss: 0.6344146\n", + "original image shape: (7000, 7000, 3)\n", + "1572/2000 [======================>.......] - ETA: 4:41:53 - loss: 0.6342285\n", + "original image shape: (7000, 7000, 3)\n", + "1573/2000 [======================>.......] - ETA: 4:41:13 - loss: 0.6343784\n", + "original image shape: (7000, 7000, 3)\n", + "1574/2000 [======================>.......] - ETA: 4:40:33 - loss: 0.6342399\n", + "original image shape: (7000, 7000, 3)\n", + "1575/2000 [======================>.......] - ETA: 4:39:53 - loss: 0.6342613\n", + "original image shape: (7000, 7000, 3)\n", + "654\n", + "original image shape: (7000, 7000, 3)\n", + "132\n", + "original image shape: (7000, 7000, 3)\n", + "1576/2000 [======================>.......] - ETA: 4:39:12 - loss: 0.6343537\n", + "original image shape: (7000, 7000, 3)\n", + "887\n", + "original image shape: (7000, 7000, 3)\n", + "1577/2000 [======================>.......] - ETA: 4:38:32 - loss: 0.6345706\n", + "original image shape: (7000, 7000, 3)\n", + "1578/2000 [======================>.......] - ETA: 4:37:52 - loss: 0.6343721\n", + "original image shape: (7000, 7000, 3)\n", + "1579/2000 [======================>.......] - ETA: 4:37:11 - loss: 0.6341624\n", + "original image shape: (7000, 7000, 3)\n", + "345\n", + "original image shape: (7000, 7000, 3)\n", + "1580/2000 [======================>.......] - ETA: 4:36:31 - loss: 0.6343878\n", + "original image shape: (7000, 7000, 3)\n", + "1581/2000 [======================>.......] - ETA: 4:35:51 - loss: 0.6342872\n", + "original image shape: (7000, 7000, 3)\n", + "1582/2000 [======================>.......] - ETA: 4:35:12 - loss: 0.634491\n", + "original image shape: (7000, 7000, 3)\n", + "1583/2000 [======================>.......] - ETA: 4:34:31 - loss: 0.634035\n", + "original image shape: (7000, 7000, 3)\n", + "489\n", + "original image shape: (7000, 7000, 3)\n", + "897\n", + "original image shape: (7000, 7000, 3)\n", + "1584/2000 [======================>.......] - ETA: 4:33:51 - loss: 0.634124\n", + "original image shape: (7000, 7000, 3)\n", + "98\n", + "original image shape: (7000, 7000, 3)\n", + "1585/2000 [======================>.......] - ETA: 4:33:11 - loss: 0.6338343\n", + "original image shape: (7000, 7000, 3)\n", + "1586/2000 [======================>.......] - ETA: 4:32:31 - loss: 0.6339806\n", + "original image shape: (7000, 7000, 3)\n", + "1587/2000 [======================>.......] - ETA: 4:31:51 - loss: 0.6340808\n", + "original image shape: (7000, 7000, 3)\n", + "1588/2000 [======================>.......] - ETA: 4:31:11 - loss: 0.6338221\n", + "original image shape: (7000, 7000, 3)\n", + "1589/2000 [======================>.......] - ETA: 4:30:31 - loss: 0.634062\n", + "original image shape: (7000, 7000, 3)\n", + "934\n", + "original image shape: (7000, 7000, 3)\n", + "1590/2000 [======================>.......] - ETA: 4:29:51 - loss: 0.6343667\n", + "original image shape: (7000, 7000, 3)\n", + "838\n", + "original image shape: (7000, 7000, 3)\n", + "1591/2000 [======================>.......] - ETA: 4:29:12 - loss: 0.6344728\n", + "original image shape: (7000, 7000, 3)\n", + "1592/2000 [======================>.......] - ETA: 4:28:31 - loss: 0.6348745\n", + "original image shape: (7000, 7000, 3)\n", + "1593/2000 [======================>.......] - ETA: 4:27:48 - loss: 0.6348393\n", + "original image shape: (7000, 7000, 3)\n", + "1594/2000 [======================>.......] - ETA: 4:27:08 - loss: 0.634756\n", + "original image shape: (7000, 7000, 3)\n", + "216\n", + "original image shape: (7000, 7000, 3)\n", + "1595/2000 [======================>.......] - ETA: 4:26:29 - loss: 0.6345515\n", + "original image shape: (7000, 7000, 3)\n", + "921\n", + "original image shape: (7000, 7000, 3)\n", + "1596/2000 [======================>.......] - ETA: 4:25:50 - loss: 0.6344228\n", + "original image shape: (7000, 7000, 3)\n", + "1597/2000 [======================>.......] - ETA: 4:25:10 - loss: 0.634532\n", + "original image shape: (7000, 7000, 3)\n", + "561\n", + "original image shape: (7000, 7000, 3)\n", + "733\n", + "original image shape: (7000, 7000, 3)\n", + "1598/2000 [======================>.......] - ETA: 4:24:30 - loss: 0.6346276\n", + "original image shape: (7000, 7000, 3)\n", + "1599/2000 [======================>.......] - ETA: 4:23:51 - loss: 0.6346189\n", + "original image shape: (7000, 7000, 3)\n", + "1600/2000 [=======================>......] - ETA: 4:23:10 - loss: 0.6345126\n", + "original image shape: (7000, 7000, 3)\n", + "1601/2000 [=======================>......] - ETA: 4:22:30 - loss: 0.6342152\n", + "original image shape: (7000, 7000, 3)\n", + "1602/2000 [=======================>......] - ETA: 4:21:50 - loss: 0.634018\n", + "original image shape: (7000, 7000, 3)\n", + "729\n", + "original image shape: (7000, 7000, 3)\n", + "1603/2000 [=======================>......] - ETA: 4:21:10 - loss: 0.634031\n", + "original image shape: (7000, 7000, 3)\n", + "953\n", + "original image shape: (7000, 7000, 3)\n", + "1604/2000 [=======================>......] - ETA: 4:20:31 - loss: 0.6341826\n", + "original image shape: (7000, 7000, 3)\n", + "1605/2000 [=======================>......] - ETA: 4:19:51 - loss: 0.6341557\n", + "original image shape: (7000, 7000, 3)\n", + "256\n", + "original image shape: (7000, 7000, 3)\n", + "1606/2000 [=======================>......] - ETA: 4:19:11 - loss: 0.6341641\n", + "original image shape: (7000, 7000, 3)\n", + "975\n", + "original image shape: (7000, 7000, 3)\n", + "1607/2000 [=======================>......] - ETA: 4:18:32 - loss: 0.6341650\n", + "original image shape: (7000, 7000, 3)\n", + "95\n", + "original image shape: (7000, 7000, 3)\n", + "1608/2000 [=======================>......] - ETA: 4:17:51 - loss: 0.6339719\n", + "original image shape: (7000, 7000, 3)\n", + "1609/2000 [=======================>......] - ETA: 4:17:11 - loss: 0.6336327\n", + "original image shape: (7000, 7000, 3)\n", + "1610/2000 [=======================>......] - ETA: 4:16:31 - loss: 0.6335140\n", + "original image shape: (7000, 7000, 3)\n", + "1611/2000 [=======================>......] - ETA: 4:15:51 - loss: 0.633321\n", + "original image shape: (7000, 7000, 3)\n", + "249\n", + "original image shape: (7000, 7000, 3)\n", + "1612/2000 [=======================>......] - ETA: 4:15:11 - loss: 0.633492\n", + "original image shape: (7000, 7000, 3)\n", + "1613/2000 [=======================>......] - ETA: 4:14:31 - loss: 0.6332181\n", + "original image shape: (7000, 7000, 3)\n", + "1614/2000 [=======================>......] - ETA: 4:13:51 - loss: 0.6332175\n", + "original image shape: (7000, 7000, 3)\n", + "1615/2000 [=======================>......] - ETA: 4:13:10 - loss: 0.632976\n", + "original image shape: (7000, 7000, 3)\n", + "869\n", + "original image shape: (7000, 7000, 3)\n", + "1616/2000 [=======================>......] - ETA: 4:12:30 - loss: 0.632959\n", + "original image shape: (7000, 7000, 3)\n", + "817\n", + "original image shape: (7000, 7000, 3)\n", + "1617/2000 [=======================>......] - ETA: 4:11:48 - loss: 0.6328772\n", + "original image shape: (7000, 7000, 3)\n", + "1618/2000 [=======================>......] - ETA: 4:11:08 - loss: 0.6326978\n", + "original image shape: (7000, 7000, 3)\n", + "1619/2000 [=======================>......] - ETA: 4:10:28 - loss: 0.6326124\n", + "original image shape: (7000, 7000, 3)\n", + "1620/2000 [=======================>......] - ETA: 4:09:47 - loss: 0.6329800\n", + "original image shape: (7000, 7000, 3)\n", + "1621/2000 [=======================>......] - ETA: 4:09:08 - loss: 0.6328708\n", + "original image shape: (7000, 7000, 3)\n", + "1622/2000 [=======================>......] - ETA: 4:08:27 - loss: 0.6325318\n", + "original image shape: (7000, 7000, 3)\n", + "1623/2000 [=======================>......] - ETA: 4:07:48 - loss: 0.6326606\n", + "original image shape: (7000, 7000, 3)\n", + "700\n", + "original image shape: (7000, 7000, 3)\n", + "1624/2000 [=======================>......] - ETA: 4:07:08 - loss: 0.6324120\n", + "original image shape: (7000, 7000, 3)\n", + "1625/2000 [=======================>......] - ETA: 4:06:28 - loss: 0.6325536\n", + "original image shape: (7000, 7000, 3)\n", + "233\n", + "original image shape: (7000, 7000, 3)\n", + "1626/2000 [=======================>......] - ETA: 4:05:49 - loss: 0.6323749\n", + "original image shape: (7000, 7000, 3)\n", + "1627/2000 [=======================>......] - ETA: 4:05:08 - loss: 0.6320682\n", + "original image shape: (7000, 7000, 3)\n", + "84\n", + "original image shape: (7000, 7000, 3)\n", + "1628/2000 [=======================>......] - ETA: 4:04:28 - loss: 0.6316497\n", + "original image shape: (7000, 7000, 3)\n", + "57\n", + "original image shape: (7000, 7000, 3)\n", + "380\n", + "original image shape: (7000, 7000, 3)\n", + "1629/2000 [=======================>......] - ETA: 4:03:49 - loss: 0.6318232\n", + "original image shape: (7000, 7000, 3)\n", + "1630/2000 [=======================>......] - ETA: 4:03:09 - loss: 0.6318315\n", + "original image shape: (7000, 7000, 3)\n", + "1631/2000 [=======================>......] - ETA: 4:02:30 - loss: 0.6319946\n", + "original image shape: (7000, 7000, 3)\n", + "1632/2000 [=======================>......] - ETA: 4:01:50 - loss: 0.6319139\n", + "original image shape: (7000, 7000, 3)\n", + "1633/2000 [=======================>......] - ETA: 4:01:10 - loss: 0.6319472\n", + "original image shape: (7000, 7000, 3)\n", + "526\n", + "original image shape: (7000, 7000, 3)\n", + "402\n", + "original image shape: (7000, 7000, 3)\n", + "1634/2000 [=======================>......] - ETA: 4:00:30 - loss: 0.6321648\n", + "original image shape: (7000, 7000, 3)\n", + "272\n", + "original image shape: (7000, 7000, 3)\n", + "1635/2000 [=======================>......] - ETA: 3:59:51 - loss: 0.6321187\n", + "original image shape: (7000, 7000, 3)\n", + "1636/2000 [=======================>......] - ETA: 3:59:11 - loss: 0.6322689\n", + "original image shape: (7000, 7000, 3)\n", + "773\n", + "original image shape: (7000, 7000, 3)\n", + "1637/2000 [=======================>......] - ETA: 3:58:31 - loss: 0.6321346\n", + "original image shape: (7000, 7000, 3)\n", + "1638/2000 [=======================>......] - ETA: 3:57:52 - loss: 0.6320463\n", + "original image shape: (7000, 7000, 3)\n", + "376\n", + "original image shape: (7000, 7000, 3)\n", + "1639/2000 [=======================>......] - ETA: 3:57:12 - loss: 0.6321436\n", + "original image shape: (7000, 7000, 3)\n", + "1640/2000 [=======================>......] - ETA: 3:56:32 - loss: 0.6322752\n", + "original image shape: (7000, 7000, 3)\n", + "1641/2000 [=======================>......] - ETA: 3:55:51 - loss: 0.6321549\n", + "original image shape: (7000, 7000, 3)\n", + "523\n", + "original image shape: (7000, 7000, 3)\n", + "404\n", + "original image shape: (7000, 7000, 3)\n", + "1642/2000 [=======================>......] - ETA: 3:55:11 - loss: 0.6322114\n", + "original image shape: (7000, 7000, 3)\n", + "1643/2000 [=======================>......] - ETA: 3:54:31 - loss: 0.6321414\n", + "original image shape: (7000, 7000, 3)\n", + "1644/2000 [=======================>......] - ETA: 3:53:51 - loss: 0.6322431\n", + "original image shape: (7000, 7000, 3)\n", + "1645/2000 [=======================>......] - ETA: 3:53:11 - loss: 0.6320954\n", + "original image shape: (7000, 7000, 3)\n", + "1646/2000 [=======================>......] - ETA: 3:52:31 - loss: 0.632171\n", + "original image shape: (7000, 7000, 3)\n", + "43\n", + "original image shape: (7000, 7000, 3)\n", + "902\n", + "original image shape: (7000, 7000, 3)\n", + "1647/2000 [=======================>......] - ETA: 3:51:51 - loss: 0.6320837\n", + "original image shape: (7000, 7000, 3)\n", + "1648/2000 [=======================>......] - ETA: 3:51:11 - loss: 0.6320109\n", + "original image shape: (7000, 7000, 3)\n", + "1649/2000 [=======================>......] - ETA: 3:50:31 - loss: 0.6318383\n", + "original image shape: (7000, 7000, 3)\n", + "1650/2000 [=======================>......] - ETA: 3:49:51 - loss: 0.6317509\n", + "original image shape: (7000, 7000, 3)\n", + "631\n", + "original image shape: (7000, 7000, 3)\n", + "224\n", + "original image shape: (7000, 7000, 3)\n", + "1651/2000 [=======================>......] - ETA: 3:49:11 - loss: 0.6317961\n", + "original image shape: (7000, 7000, 3)\n", + "1652/2000 [=======================>......] - ETA: 3:48:32 - loss: 0.6316573\n", + "original image shape: (7000, 7000, 3)\n", + "925\n", + "original image shape: (7000, 7000, 3)\n", + "1653/2000 [=======================>......] - ETA: 3:47:52 - loss: 0.631948\n", + "original image shape: (7000, 7000, 3)\n", + "659\n", + "original image shape: (7000, 7000, 3)\n", + "608\n", + "original image shape: (7000, 7000, 3)\n", + "900\n", + "original image shape: (7000, 7000, 3)\n", + "1654/2000 [=======================>......] - ETA: 3:47:14 - loss: 0.631887\n", + "original image shape: (7000, 7000, 3)\n", + "1655/2000 [=======================>......] - ETA: 3:46:35 - loss: 0.6315151\n", + "original image shape: (7000, 7000, 3)\n", + "1656/2000 [=======================>......] - ETA: 3:45:56 - loss: 0.6315284\n", + "original image shape: (7000, 7000, 3)\n", + "1657/2000 [=======================>......] - ETA: 3:45:17 - loss: 0.6315265\n", + "original image shape: (7000, 7000, 3)\n", + "1658/2000 [=======================>......] - ETA: 3:44:39 - loss: 0.6317898\n", + "original image shape: (7000, 7000, 3)\n", + "1659/2000 [=======================>......] - ETA: 3:44:01 - loss: 0.6317836\n", + "original image shape: (7000, 7000, 3)\n", + "1660/2000 [=======================>......] - ETA: 3:43:22 - loss: 0.6318263\n", + "original image shape: (7000, 7000, 3)\n", + "1661/2000 [=======================>......] - ETA: 3:42:44 - loss: 0.6318634\n", + "original image shape: (7000, 7000, 3)\n", + "459\n", + "original image shape: (7000, 7000, 3)\n", + "600\n", + "original image shape: (7000, 7000, 3)\n", + "310\n", + "original image shape: (7000, 7000, 3)\n", + "1662/2000 [=======================>......] - ETA: 3:42:06 - loss: 0.6317564\n", + "original image shape: (7000, 7000, 3)\n", + "446\n", + "original image shape: (7000, 7000, 3)\n", + "1663/2000 [=======================>......] - ETA: 3:41:27 - loss: 0.6317172\n", + "original image shape: (7000, 7000, 3)\n", + "1664/2000 [=======================>......] - ETA: 3:40:46 - loss: 0.6317506\n", + "original image shape: (7000, 7000, 3)\n", + "973\n", + "original image shape: (7000, 7000, 3)\n", + "1665/2000 [=======================>......] - ETA: 3:40:08 - loss: 0.6318196\n", + "original image shape: (7000, 7000, 3)\n", + "1666/2000 [=======================>......] - ETA: 3:39:29 - loss: 0.6317923\n", + "original image shape: (7000, 7000, 3)\n", + "1667/2000 [========================>.....] - ETA: 3:38:51 - loss: 0.6318671\n", + "original image shape: (7000, 7000, 3)\n", + "61\n", + "original image shape: (7000, 7000, 3)\n", + "368\n", + "original image shape: (7000, 7000, 3)\n", + "1668/2000 [========================>.....] - ETA: 3:38:12 - loss: 0.6317724\n", + "original image shape: (7000, 7000, 3)\n", + "1669/2000 [========================>.....] - ETA: 3:37:33 - loss: 0.6314765\n", + "original image shape: (7000, 7000, 3)\n", + "1670/2000 [========================>.....] - ETA: 3:36:54 - loss: 0.6314725\n", + "original image shape: (7000, 7000, 3)\n", + "1671/2000 [========================>.....] - ETA: 3:36:16 - loss: 0.6315714\n", + "original image shape: (7000, 7000, 3)\n", + "1672/2000 [========================>.....] - ETA: 3:35:37 - loss: 0.6312304\n", + "original image shape: (7000, 7000, 3)\n", + "1673/2000 [========================>.....] - ETA: 3:34:58 - loss: 0.631527\n", + "original image shape: (7000, 7000, 3)\n", + "556\n", + "original image shape: (7000, 7000, 3)\n", + "680\n", + "original image shape: (7000, 7000, 3)\n", + "288\n", + "original image shape: (7000, 7000, 3)\n", + "1674/2000 [========================>.....] - ETA: 3:34:20 - loss: 0.6316400\n", + "original image shape: (7000, 7000, 3)\n", + "1675/2000 [========================>.....] - ETA: 3:33:42 - loss: 0.631716\n", + "original image shape: (7000, 7000, 3)\n", + "625\n", + "original image shape: (7000, 7000, 3)\n", + "370\n", + "original image shape: (7000, 7000, 3)\n", + "1676/2000 [========================>.....] - ETA: 3:33:04 - loss: 0.631620\n", + "original image shape: (7000, 7000, 3)\n", + "323\n", + "original image shape: (7000, 7000, 3)\n", + "1677/2000 [========================>.....] - ETA: 3:32:26 - loss: 0.6317677\n", + "original image shape: (7000, 7000, 3)\n", + "145\n", + "original image shape: (7000, 7000, 3)\n", + "1678/2000 [========================>.....] - ETA: 3:31:47 - loss: 0.6315821\n", + "original image shape: (7000, 7000, 3)\n", + "1679/2000 [========================>.....] - ETA: 3:31:08 - loss: 0.6314479\n", + "original image shape: (7000, 7000, 3)\n", + "483\n", + "original image shape: (7000, 7000, 3)\n", + "307\n", + "original image shape: (7000, 7000, 3)\n", + "1680/2000 [========================>.....] - ETA: 3:30:30 - loss: 0.6312441\n", + "original image shape: (7000, 7000, 3)\n", + "1681/2000 [========================>.....] - ETA: 3:29:51 - loss: 0.6312931\n", + "original image shape: (7000, 7000, 3)\n", + "1682/2000 [========================>.....] - ETA: 3:29:12 - loss: 0.6313191\n", + "original image shape: (7000, 7000, 3)\n", + "1683/2000 [========================>.....] - ETA: 3:28:34 - loss: 0.6311579\n", + "original image shape: (7000, 7000, 3)\n", + "678\n", + "original image shape: (7000, 7000, 3)\n", + "711\n", + "original image shape: (7000, 7000, 3)\n", + "1684/2000 [========================>.....] - ETA: 3:27:54 - loss: 0.6310691\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "341\n", + "original image shape: (7000, 7000, 3)\n", + "1685/2000 [========================>.....] - ETA: 3:27:14 - loss: 0.6308572\n", + "original image shape: (7000, 7000, 3)\n", + "767\n", + "original image shape: (7000, 7000, 3)\n", + "1686/2000 [========================>.....] - ETA: 3:26:35 - loss: 0.6306941\n", + "original image shape: (7000, 7000, 3)\n", + "1687/2000 [========================>.....] - ETA: 3:25:56 - loss: 0.6308342\n", + "original image shape: (7000, 7000, 3)\n", + "1688/2000 [========================>.....] - ETA: 3:25:18 - loss: 0.6307569\n", + "original image shape: (7000, 7000, 3)\n", + "348\n", + "original image shape: (7000, 7000, 3)\n", + "1689/2000 [========================>.....] - ETA: 3:24:39 - loss: 0.6307633\n", + "original image shape: (7000, 7000, 3)\n", + "626\n", + "original image shape: (7000, 7000, 3)\n", + "70\n", + "original image shape: (7000, 7000, 3)\n", + "890\n", + "original image shape: (7000, 7000, 3)\n", + "1690/2000 [========================>.....] - ETA: 3:24:01 - loss: 0.63075\n", + "original image shape: (7000, 7000, 3)\n", + "628\n", + "original image shape: (7000, 7000, 3)\n", + "73\n", + "original image shape: (7000, 7000, 3)\n", + "963\n", + "original image shape: (7000, 7000, 3)\n", + "1691/2000 [========================>.....] - ETA: 3:23:22 - loss: 0.6306881\n", + "original image shape: (7000, 7000, 3)\n", + "1692/2000 [========================>.....] - ETA: 3:22:43 - loss: 0.6307212\n", + "original image shape: (7000, 7000, 3)\n", + "1693/2000 [========================>.....] - ETA: 3:22:05 - loss: 0.6308939\n", + "original image shape: (7000, 7000, 3)\n", + "1694/2000 [========================>.....] - ETA: 3:21:26 - loss: 0.6307144\n", + "original image shape: (7000, 7000, 3)\n", + "1695/2000 [========================>.....] - ETA: 3:20:47 - loss: 0.6305909\n", + "original image shape: (7000, 7000, 3)\n", + "1696/2000 [========================>.....] - ETA: 3:20:08 - loss: 0.6304896\n", + "original image shape: (7000, 7000, 3)\n", + "1697/2000 [========================>.....] - ETA: 3:19:29 - loss: 0.6304737\n", + "original image shape: (7000, 7000, 3)\n", + "1698/2000 [========================>.....] - ETA: 3:18:50 - loss: 0.630113\n", + "original image shape: (7000, 7000, 3)\n", + "588\n", + "original image shape: (7000, 7000, 3)\n", + "103\n", + "original image shape: (7000, 7000, 3)\n", + "1699/2000 [========================>.....] - ETA: 3:18:11 - loss: 0.6298548\n", + "original image shape: (7000, 7000, 3)\n", + "762\n", + "original image shape: (7000, 7000, 3)\n", + "1700/2000 [========================>.....] - ETA: 3:17:32 - loss: 0.6298662\n", + "original image shape: (7000, 7000, 3)\n", + "766\n", + "original image shape: (7000, 7000, 3)\n", + "1701/2000 [========================>.....] - ETA: 3:16:53 - loss: 0.6297201\n", + "original image shape: (7000, 7000, 3)\n", + "1702/2000 [========================>.....] - ETA: 3:16:15 - loss: 0.6296313\n", + "original image shape: (7000, 7000, 3)\n", + "1703/2000 [========================>.....] - ETA: 3:15:36 - loss: 0.6295622\n", + "original image shape: (7000, 7000, 3)\n", + "545\n", + "original image shape: (7000, 7000, 3)\n", + "880\n", + "original image shape: (7000, 7000, 3)\n", + "1704/2000 [========================>.....] - ETA: 3:14:58 - loss: 0.6296257\n", + "original image shape: (7000, 7000, 3)\n", + "1705/2000 [========================>.....] - ETA: 3:14:18 - loss: 0.6298335\n", + "original image shape: (7000, 7000, 3)\n", + "1706/2000 [========================>.....] - ETA: 3:13:38 - loss: 0.6298716\n", + "original image shape: (7000, 7000, 3)\n", + "1707/2000 [========================>.....] - ETA: 3:12:59 - loss: 0.6296185\n", + "original image shape: (7000, 7000, 3)\n", + "1708/2000 [========================>.....] - ETA: 3:12:20 - loss: 0.629577\n", + "original image shape: (7000, 7000, 3)\n", + "984\n", + "original image shape: (7000, 7000, 3)\n", + "1709/2000 [========================>.....] - ETA: 3:11:41 - loss: 0.6296250\n", + "original image shape: (7000, 7000, 3)\n", + "1710/2000 [========================>.....] - ETA: 3:11:03 - loss: 0.6297305\n", + "original image shape: (7000, 7000, 3)\n", + "1711/2000 [========================>.....] - ETA: 3:10:24 - loss: 0.6299427\n", + "original image shape: (7000, 7000, 3)\n", + "1712/2000 [========================>.....] - ETA: 3:09:45 - loss: 0.6300522\n", + "original image shape: (7000, 7000, 3)\n", + "541\n", + "original image shape: (7000, 7000, 3)\n", + "882\n", + "original image shape: (7000, 7000, 3)\n", + "1713/2000 [========================>.....] - ETA: 3:09:06 - loss: 0.6303945\n", + "original image shape: (7000, 7000, 3)\n", + "1714/2000 [========================>.....] - ETA: 3:08:27 - loss: 0.6302495\n", + "original image shape: (7000, 7000, 3)\n", + "938\n", + "original image shape: (7000, 7000, 3)\n", + "1715/2000 [========================>.....] - ETA: 3:07:48 - loss: 0.6304258\n", + "original image shape: (7000, 7000, 3)\n", + "1716/2000 [========================>.....] - ETA: 3:07:09 - loss: 0.6305797\n", + "original image shape: (7000, 7000, 3)\n", + "1717/2000 [========================>.....] - ETA: 3:06:30 - loss: 0.6304732\n", + "original image shape: (7000, 7000, 3)\n", + "1718/2000 [========================>.....] - ETA: 3:05:51 - loss: 0.6304349\n", + "original image shape: (7000, 7000, 3)\n", + "1719/2000 [========================>.....] - ETA: 3:05:12 - loss: 0.6304442\n", + "original image shape: (7000, 7000, 3)\n", + "1720/2000 [========================>.....] - ETA: 3:04:33 - loss: 0.6303698\n", + "original image shape: (7000, 7000, 3)\n", + "1721/2000 [========================>.....] - ETA: 3:03:54 - loss: 0.6300452\n", + "original image shape: (7000, 7000, 3)\n", + "1722/2000 [========================>.....] - ETA: 3:03:15 - loss: 0.6300788\n", + "original image shape: (7000, 7000, 3)\n", + "1723/2000 [========================>.....] - ETA: 3:02:35 - loss: 0.6298411\n", + "original image shape: (7000, 7000, 3)\n", + "1724/2000 [========================>.....] - ETA: 3:01:56 - loss: 0.6299511\n", + "original image shape: (7000, 7000, 3)\n", + "987\n", + "original image shape: (7000, 7000, 3)\n", + "1725/2000 [========================>.....] - ETA: 3:01:17 - loss: 0.6299105\n", + "original image shape: (7000, 7000, 3)\n", + "1726/2000 [========================>.....] - ETA: 3:00:38 - loss: 0.6296154\n", + "original image shape: (7000, 7000, 3)\n", + "1727/2000 [========================>.....] - ETA: 2:59:56 - loss: 0.6298264\n", + "original image shape: (7000, 7000, 3)\n", + "1728/2000 [========================>.....] - ETA: 2:59:16 - loss: 0.6299895\n", + "original image shape: (7000, 7000, 3)\n", + "1729/2000 [========================>.....] - ETA: 2:58:36 - loss: 0.629828\n", + "original image shape: (7000, 7000, 3)\n", + "790\n", + "original image shape: (7000, 7000, 3)\n", + "1730/2000 [========================>.....] - ETA: 2:57:56 - loss: 0.6297822\n", + "original image shape: (7000, 7000, 3)\n", + "1731/2000 [========================>.....] - ETA: 2:57:16 - loss: 0.6297230\n", + "original image shape: (7000, 7000, 3)\n", + "1732/2000 [========================>.....] - ETA: 2:56:36 - loss: 0.6296279\n", + "original image shape: (7000, 7000, 3)\n", + "1733/2000 [========================>.....] - ETA: 2:55:57 - loss: 0.6296657\n", + "original image shape: (7000, 7000, 3)\n", + "629\n", + "original image shape: (7000, 7000, 3)\n", + "943\n", + "original image shape: (7000, 7000, 3)\n", + "1734/2000 [=========================>....] - ETA: 2:55:17 - loss: 0.629585\n", + "original image shape: (7000, 7000, 3)\n", + "1735/2000 [=========================>....] - ETA: 2:54:37 - loss: 0.6292571\n", + "original image shape: (7000, 7000, 3)\n", + "831\n", + "original image shape: (7000, 7000, 3)\n", + "1736/2000 [=========================>....] - ETA: 2:53:57 - loss: 0.6294289\n", + "original image shape: (7000, 7000, 3)\n", + "1737/2000 [=========================>....] - ETA: 2:53:18 - loss: 0.6297965\n", + "original image shape: (7000, 7000, 3)\n", + "1738/2000 [=========================>....] - ETA: 2:52:38 - loss: 0.6296639\n", + "original image shape: (7000, 7000, 3)\n", + "428\n", + "original image shape: (7000, 7000, 3)\n", + "1739/2000 [=========================>....] - ETA: 2:51:58 - loss: 0.6296739\n", + "original image shape: (7000, 7000, 3)\n", + "1740/2000 [=========================>....] - ETA: 2:51:18 - loss: 0.6293603\n", + "original image shape: (7000, 7000, 3)\n", + "764\n", + "original image shape: (7000, 7000, 3)\n", + "1741/2000 [=========================>....] - ETA: 2:50:38 - loss: 0.6292574\n", + "original image shape: (7000, 7000, 3)\n", + "260\n", + "original image shape: (7000, 7000, 3)\n", + "1742/2000 [=========================>....] - ETA: 2:49:59 - loss: 0.6293213\n", + "original image shape: (7000, 7000, 3)\n", + "1743/2000 [=========================>....] - ETA: 2:49:19 - loss: 0.6294713\n", + "original image shape: (7000, 7000, 3)\n", + "1744/2000 [=========================>....] - ETA: 2:48:39 - loss: 0.6291865\n", + "original image shape: (7000, 7000, 3)\n", + "1745/2000 [=========================>....] - ETA: 2:47:59 - loss: 0.6293914\n", + "original image shape: (7000, 7000, 3)\n", + "1746/2000 [=========================>....] - ETA: 2:47:19 - loss: 0.6293494\n", + "original image shape: (7000, 7000, 3)\n", + "530\n", + "original image shape: (7000, 7000, 3)\n", + "653\n", + "original image shape: (7000, 7000, 3)\n", + "262\n", + "original image shape: (7000, 7000, 3)\n", + "1747/2000 [=========================>....] - ETA: 2:46:40 - loss: 0.6293551\n", + "original image shape: (7000, 7000, 3)\n", + "799\n", + "original image shape: (7000, 7000, 3)\n", + "1748/2000 [=========================>....] - ETA: 2:46:00 - loss: 0.629265\n", + "original image shape: (7000, 7000, 3)\n", + "9\n", + "original image shape: (7000, 7000, 3)\n", + "883\n", + "original image shape: (7000, 7000, 3)\n", + "1749/2000 [=========================>....] - ETA: 2:45:20 - loss: 0.6292601\n", + "original image shape: (7000, 7000, 3)\n", + "688\n", + "original image shape: (7000, 7000, 3)\n", + "759\n", + "original image shape: (7000, 7000, 3)\n", + "1750/2000 [=========================>....] - ETA: 2:44:40 - loss: 0.6291415\n", + "original image shape: (7000, 7000, 3)\n", + "1751/2000 [=========================>....] - ETA: 2:43:59 - loss: 0.6292457\n", + "original image shape: (7000, 7000, 3)\n", + "908\n", + "original image shape: (7000, 7000, 3)\n", + "1752/2000 [=========================>....] - ETA: 2:43:19 - loss: 0.6291848\n", + "original image shape: (7000, 7000, 3)\n", + "1753/2000 [=========================>....] - ETA: 2:42:40 - loss: 0.6291746\n", + "original image shape: (7000, 7000, 3)\n", + "1754/2000 [=========================>....] - ETA: 2:42:00 - loss: 0.629194\n", + "original image shape: (7000, 7000, 3)\n", + "1755/2000 [=========================>....] - ETA: 2:41:19 - loss: 0.6288190\n", + "original image shape: (7000, 7000, 3)\n", + "1756/2000 [=========================>....] - ETA: 2:40:39 - loss: 0.6292621\n", + "original image shape: (7000, 7000, 3)\n", + "435\n", + "original image shape: (7000, 7000, 3)\n", + "1757/2000 [=========================>....] - ETA: 2:39:59 - loss: 0.6290339\n", + "original image shape: (7000, 7000, 3)\n", + "1758/2000 [=========================>....] - ETA: 2:39:20 - loss: 0.6289803\n", + "original image shape: (7000, 7000, 3)\n", + "1759/2000 [=========================>....] - ETA: 2:38:40 - loss: 0.6291980\n", + "original image shape: (7000, 7000, 3)\n", + "1760/2000 [=========================>....] - ETA: 2:38:00 - loss: 0.6292957\n", + "original image shape: (7000, 7000, 3)\n", + "1761/2000 [=========================>....] - ETA: 2:37:20 - loss: 0.6291195\n", + "original image shape: (7000, 7000, 3)\n", + "1762/2000 [=========================>....] - ETA: 2:36:40 - loss: 0.6291298\n", + "original image shape: (7000, 7000, 3)\n", + "1763/2000 [=========================>....] - ETA: 2:36:00 - loss: 0.6291218\n", + "original image shape: (7000, 7000, 3)\n", + "1764/2000 [=========================>....] - ETA: 2:35:21 - loss: 0.6291501\n", + "original image shape: (7000, 7000, 3)\n", + "833\n", + "original image shape: (7000, 7000, 3)\n", + "1765/2000 [=========================>....] - ETA: 2:34:41 - loss: 0.6292699\n", + "original image shape: (7000, 7000, 3)\n", + "1766/2000 [=========================>....] - ETA: 2:34:01 - loss: 0.6290122\n", + "original image shape: (7000, 7000, 3)\n", + "1767/2000 [=========================>....] - ETA: 2:33:21 - loss: 0.6288273\n", + "original image shape: (7000, 7000, 3)\n", + "1768/2000 [=========================>....] - ETA: 2:32:41 - loss: 0.6288947\n", + "original image shape: (7000, 7000, 3)\n", + "1769/2000 [=========================>....] - ETA: 2:32:02 - loss: 0.628963\n", + "original image shape: (7000, 7000, 3)\n", + "885\n", + "original image shape: (7000, 7000, 3)\n", + "1770/2000 [=========================>....] - ETA: 2:31:22 - loss: 0.6291173\n", + "original image shape: (7000, 7000, 3)\n", + "1771/2000 [=========================>....] - ETA: 2:30:42 - loss: 0.629168\n", + "original image shape: (7000, 7000, 3)\n", + "361\n", + "original image shape: (7000, 7000, 3)\n", + "1772/2000 [=========================>....] - ETA: 2:30:03 - loss: 0.6291504\n", + "original image shape: (7000, 7000, 3)\n", + "453\n", + "original image shape: (7000, 7000, 3)\n", + "1773/2000 [=========================>....] - ETA: 2:29:23 - loss: 0.6292673\n", + "original image shape: (7000, 7000, 3)\n", + "183\n", + "original image shape: (7000, 7000, 3)\n", + "1774/2000 [=========================>....] - ETA: 2:28:43 - loss: 0.6292194\n", + "original image shape: (7000, 7000, 3)\n", + "1775/2000 [=========================>....] - ETA: 2:28:03 - loss: 0.6292794\n", + "original image shape: (7000, 7000, 3)\n", + "1776/2000 [=========================>....] - ETA: 2:27:23 - loss: 0.6290182\n", + "original image shape: (7000, 7000, 3)\n", + "1777/2000 [=========================>....] - ETA: 2:26:43 - loss: 0.6291460\n", + "original image shape: (7000, 7000, 3)\n", + "609\n", + "original image shape: (7000, 7000, 3)\n", + "542\n", + "original image shape: (7000, 7000, 3)\n", + "278\n", + "original image shape: (7000, 7000, 3)\n", + "1778/2000 [=========================>....] - ETA: 2:26:04 - loss: 0.6291410\n", + "original image shape: (7000, 7000, 3)\n", + "1779/2000 [=========================>....] - ETA: 2:25:24 - loss: 0.6292227\n", + "original image shape: (7000, 7000, 3)\n", + "1780/2000 [=========================>....] - ETA: 2:24:45 - loss: 0.6293610\n", + "original image shape: (7000, 7000, 3)\n", + "480\n", + "original image shape: (7000, 7000, 3)\n", + "922\n", + "original image shape: (7000, 7000, 3)\n", + "1781/2000 [=========================>....] - ETA: 2:24:05 - loss: 0.6293763\n", + "original image shape: (7000, 7000, 3)\n", + "1782/2000 [=========================>....] - ETA: 2:23:25 - loss: 0.6293781\n", + "original image shape: (7000, 7000, 3)\n", + "1783/2000 [=========================>....] - ETA: 2:22:46 - loss: 0.6292485\n", + "original image shape: (7000, 7000, 3)\n", + "730\n", + "original image shape: (7000, 7000, 3)\n", + "1784/2000 [=========================>....] - ETA: 2:22:06 - loss: 0.628952\n", + "original image shape: (7000, 7000, 3)\n", + "475\n", + "original image shape: (7000, 7000, 3)\n", + "816\n", + "original image shape: (7000, 7000, 3)\n", + "1785/2000 [=========================>....] - ETA: 2:21:26 - loss: 0.6288660\n", + "original image shape: (7000, 7000, 3)\n", + "259\n", + "original image shape: (7000, 7000, 3)\n", + "1786/2000 [=========================>....] - ETA: 2:20:47 - loss: 0.6288970\n", + "original image shape: (7000, 7000, 3)\n", + "1787/2000 [=========================>....] - ETA: 2:20:07 - loss: 0.628839\n", + "original image shape: (7000, 7000, 3)\n", + "637\n", + "original image shape: (7000, 7000, 3)\n", + "707\n", + "original image shape: (7000, 7000, 3)\n", + "1788/2000 [=========================>....] - ETA: 2:19:27 - loss: 0.6286234\n", + "original image shape: (7000, 7000, 3)\n", + "1789/2000 [=========================>....] - ETA: 2:18:48 - loss: 0.6287158\n", + "original image shape: (7000, 7000, 3)\n", + "1790/2000 [=========================>....] - ETA: 2:18:08 - loss: 0.6286782\n", + "original image shape: (7000, 7000, 3)\n", + "1791/2000 [=========================>....] - ETA: 2:17:28 - loss: 0.6284664\n", + "original image shape: (7000, 7000, 3)\n", + "99\n", + "original image shape: (7000, 7000, 3)\n", + "1792/2000 [=========================>....] - ETA: 2:16:48 - loss: 0.6285391\n", + "original image shape: (7000, 7000, 3)\n", + "1793/2000 [=========================>....] - ETA: 2:16:09 - loss: 0.6285445\n", + "original image shape: (7000, 7000, 3)\n", + "1794/2000 [=========================>....] - ETA: 2:15:29 - loss: 0.6283518\n", + "original image shape: (7000, 7000, 3)\n", + "282\n", + "original image shape: (7000, 7000, 3)\n", + "1795/2000 [=========================>....] - ETA: 2:14:50 - loss: 0.6284184\n", + "original image shape: (7000, 7000, 3)\n", + "1796/2000 [=========================>....] - ETA: 2:14:10 - loss: 0.6284387\n", + "original image shape: (7000, 7000, 3)\n", + "1797/2000 [=========================>....] - ETA: 2:13:30 - loss: 0.6288303\n", + "original image shape: (7000, 7000, 3)\n", + "1798/2000 [=========================>....] - ETA: 2:12:51 - loss: 0.6290748\n", + "original image shape: (7000, 7000, 3)\n", + "1799/2000 [=========================>....] - ETA: 2:12:10 - loss: 0.6289384\n", + "original image shape: (7000, 7000, 3)\n", + "1800/2000 [==========================>...] - ETA: 2:11:30 - loss: 0.628889\n", + "original image shape: (7000, 7000, 3)\n", + "1801/2000 [==========================>...] - ETA: 2:10:50 - loss: 0.6286131\n", + "original image shape: (7000, 7000, 3)\n", + "1802/2000 [==========================>...] - ETA: 2:10:11 - loss: 0.6286615\n", + "original image shape: (7000, 7000, 3)\n", + "815\n", + "original image shape: (7000, 7000, 3)\n", + "1803/2000 [==========================>...] - ETA: 2:09:31 - loss: 0.628678\n", + "original image shape: (7000, 7000, 3)\n", + "229\n", + "original image shape: (7000, 7000, 3)\n", + "1804/2000 [==========================>...] - ETA: 2:08:52 - loss: 0.6285735\n", + "original image shape: (7000, 7000, 3)\n", + "1805/2000 [==========================>...] - ETA: 2:08:12 - loss: 0.6284241\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1806/2000 [==========================>...] - ETA: 2:07:32 - loss: 0.6286903\n", + "original image shape: (7000, 7000, 3)\n", + "1807/2000 [==========================>...] - ETA: 2:06:53 - loss: 0.6285113\n", + "original image shape: (7000, 7000, 3)\n", + "1808/2000 [==========================>...] - ETA: 2:06:13 - loss: 0.6284599\n", + "original image shape: (7000, 7000, 3)\n", + "679\n", + "original image shape: (7000, 7000, 3)\n", + "498\n", + "original image shape: (7000, 7000, 3)\n", + "496\n", + "original image shape: (7000, 7000, 3)\n", + "449\n", + "original image shape: (7000, 7000, 3)\n", + "1809/2000 [==========================>...] - ETA: 2:05:34 - loss: 0.6283219\n", + "original image shape: (7000, 7000, 3)\n", + "1810/2000 [==========================>...] - ETA: 2:04:54 - loss: 0.6283423\n", + "original image shape: (7000, 7000, 3)\n", + "1811/2000 [==========================>...] - ETA: 2:04:14 - loss: 0.6283211\n", + "original image shape: (7000, 7000, 3)\n", + "1812/2000 [==========================>...] - ETA: 2:03:35 - loss: 0.6283935\n", + "original image shape: (7000, 7000, 3)\n", + "1813/2000 [==========================>...] - ETA: 2:02:55 - loss: 0.6286891\n", + "original image shape: (7000, 7000, 3)\n", + "1814/2000 [==========================>...] - ETA: 2:02:16 - loss: 0.6286130\n", + "original image shape: (7000, 7000, 3)\n", + "1815/2000 [==========================>...] - ETA: 2:01:36 - loss: 0.6287161\n", + "original image shape: (7000, 7000, 3)\n", + "1816/2000 [==========================>...] - ETA: 2:00:56 - loss: 0.6284560\n", + "original image shape: (7000, 7000, 3)\n", + "392\n", + "original image shape: (7000, 7000, 3)\n", + "1817/2000 [==========================>...] - ETA: 2:00:17 - loss: 0.6283676\n", + "original image shape: (7000, 7000, 3)\n", + "844\n", + "original image shape: (7000, 7000, 3)\n", + "1818/2000 [==========================>...] - ETA: 1:59:37 - loss: 0.6282338\n", + "original image shape: (7000, 7000, 3)\n", + "1819/2000 [==========================>...] - ETA: 1:58:58 - loss: 0.6281174\n", + "original image shape: (7000, 7000, 3)\n", + "1820/2000 [==========================>...] - ETA: 1:58:18 - loss: 0.6281394\n", + "original image shape: (7000, 7000, 3)\n", + "1821/2000 [==========================>...] - ETA: 1:57:39 - loss: 0.6280686\n", + "original image shape: (7000, 7000, 3)\n", + "344\n", + "original image shape: (7000, 7000, 3)\n", + "1822/2000 [==========================>...] - ETA: 1:56:59 - loss: 0.6281740\n", + "original image shape: (7000, 7000, 3)\n", + "1823/2000 [==========================>...] - ETA: 1:56:19 - loss: 0.6278867\n", + "original image shape: (7000, 7000, 3)\n", + "1824/2000 [==========================>...] - ETA: 1:55:40 - loss: 0.6277977\n", + "original image shape: (7000, 7000, 3)\n", + "1825/2000 [==========================>...] - ETA: 1:55:01 - loss: 0.6277546\n", + "original image shape: (7000, 7000, 3)\n", + "544\n", + "original image shape: (7000, 7000, 3)\n", + "197\n", + "original image shape: (7000, 7000, 3)\n", + "1826/2000 [==========================>...] - ETA: 1:54:22 - loss: 0.6280859\n", + "original image shape: (7000, 7000, 3)\n", + "1827/2000 [==========================>...] - ETA: 1:53:43 - loss: 0.628045\n", + "original image shape: (7000, 7000, 3)\n", + "715\n", + "original image shape: (7000, 7000, 3)\n", + "1828/2000 [==========================>...] - ETA: 1:53:04 - loss: 0.6278917\n", + "original image shape: (7000, 7000, 3)\n", + "1829/2000 [==========================>...] - ETA: 1:52:25 - loss: 0.6279286\n", + "original image shape: (7000, 7000, 3)\n", + "1830/2000 [==========================>...] - ETA: 1:51:46 - loss: 0.6280166\n", + "original image shape: (7000, 7000, 3)\n", + "1831/2000 [==========================>...] - ETA: 1:51:07 - loss: 0.6277731\n", + "original image shape: (7000, 7000, 3)\n", + "1832/2000 [==========================>...] - ETA: 1:50:28 - loss: 0.6275944\n", + "original image shape: (7000, 7000, 3)\n", + "1833/2000 [==========================>...] - ETA: 1:49:49 - loss: 0.6274684\n", + "original image shape: (7000, 7000, 3)\n", + "812\n", + "original image shape: (7000, 7000, 3)\n", + "1834/2000 [==========================>...] - ETA: 1:49:10 - loss: 0.6274204\n", + "original image shape: (7000, 7000, 3)\n", + "1835/2000 [==========================>...] - ETA: 1:48:31 - loss: 0.6274225\n", + "original image shape: (7000, 7000, 3)\n", + "1836/2000 [==========================>...] - ETA: 1:47:52 - loss: 0.6275930\n", + "original image shape: (7000, 7000, 3)\n", + "1837/2000 [==========================>...] - ETA: 1:47:13 - loss: 0.6276791\n", + "original image shape: (7000, 7000, 3)\n", + "1838/2000 [==========================>...] - ETA: 1:46:33 - loss: 0.6273630\n", + "original image shape: (7000, 7000, 3)\n", + "647\n", + "original image shape: (7000, 7000, 3)\n", + "275\n", + "original image shape: (7000, 7000, 3)\n", + "1839/2000 [==========================>...] - ETA: 1:45:54 - loss: 0.6276655\n", + "original image shape: (7000, 7000, 3)\n", + "381\n", + "original image shape: (7000, 7000, 3)\n", + "1840/2000 [==========================>...] - ETA: 1:45:15 - loss: 0.6277570\n", + "original image shape: (7000, 7000, 3)\n", + "516\n", + "original image shape: (7000, 7000, 3)\n", + "253\n", + "original image shape: (7000, 7000, 3)\n", + "1841/2000 [==========================>...] - ETA: 1:44:36 - loss: 0.627841\n", + "original image shape: (7000, 7000, 3)\n", + "267\n", + "original image shape: (7000, 7000, 3)\n", + "1842/2000 [==========================>...] - ETA: 1:43:58 - loss: 0.6279162\n", + "original image shape: (7000, 7000, 3)\n", + "1843/2000 [==========================>...] - ETA: 1:43:18 - loss: 0.6276933\n", + "original image shape: (7000, 7000, 3)\n", + "1844/2000 [==========================>...] - ETA: 1:42:38 - loss: 0.6278696\n", + "original image shape: (7000, 7000, 3)\n", + "1845/2000 [==========================>...] - ETA: 1:41:59 - loss: 0.6276164\n", + "original image shape: (7000, 7000, 3)\n", + "1846/2000 [==========================>...] - ETA: 1:41:20 - loss: 0.6273589\n", + "original image shape: (7000, 7000, 3)\n", + "362\n", + "original image shape: (7000, 7000, 3)\n", + "1847/2000 [==========================>...] - ETA: 1:40:41 - loss: 0.6272149\n", + "original image shape: (7000, 7000, 3)\n", + "1848/2000 [==========================>...] - ETA: 1:40:01 - loss: 0.627222\n", + "original image shape: (7000, 7000, 3)\n", + "11\n", + "original image shape: (7000, 7000, 3)\n", + "967\n", + "original image shape: (7000, 7000, 3)\n", + "1849/2000 [==========================>...] - ETA: 1:39:22 - loss: 0.62713\n", + "original image shape: (7000, 7000, 3)\n", + "888\n", + "original image shape: (7000, 7000, 3)\n", + "1850/2000 [==========================>...] - ETA: 1:38:43 - loss: 0.6271801\n", + "original image shape: (7000, 7000, 3)\n", + "1851/2000 [==========================>...] - ETA: 1:38:04 - loss: 0.6271179\n", + "original image shape: (7000, 7000, 3)\n", + "1852/2000 [==========================>...] - ETA: 1:37:25 - loss: 0.6270692\n", + "original image shape: (7000, 7000, 3)\n", + "36\n", + "original image shape: (7000, 7000, 3)\n", + "884\n", + "original image shape: (7000, 7000, 3)\n", + "1853/2000 [==========================>...] - ETA: 1:36:46 - loss: 0.6270590\n", + "original image shape: (7000, 7000, 3)\n", + "128\n", + "original image shape: (7000, 7000, 3)\n", + "1854/2000 [==========================>...] - ETA: 1:36:07 - loss: 0.6269535\n", + "original image shape: (7000, 7000, 3)\n", + "297\n", + "original image shape: (7000, 7000, 3)\n", + "1855/2000 [==========================>...] - ETA: 1:35:28 - loss: 0.6268793\n", + "original image shape: (7000, 7000, 3)\n", + "1856/2000 [==========================>...] - ETA: 1:34:49 - loss: 0.626737\n", + "original image shape: (7000, 7000, 3)\n", + "533\n", + "original image shape: (7000, 7000, 3)\n", + "627\n", + "original image shape: (7000, 7000, 3)\n", + "471\n", + "original image shape: (7000, 7000, 3)\n", + "440\n", + "original image shape: (7000, 7000, 3)\n", + "1857/2000 [==========================>...] - ETA: 1:34:10 - loss: 0.6268491\n", + "original image shape: (7000, 7000, 3)\n", + "203\n", + "original image shape: (7000, 7000, 3)\n", + "1858/2000 [==========================>...] - ETA: 1:33:30 - loss: 0.6268777\n", + "original image shape: (7000, 7000, 3)\n", + "1859/2000 [==========================>...] - ETA: 1:32:51 - loss: 0.6268251\n", + "original image shape: (7000, 7000, 3)\n", + "1860/2000 [==========================>...] - ETA: 1:32:12 - loss: 0.6268702\n", + "original image shape: (7000, 7000, 3)\n", + "1861/2000 [==========================>...] - ETA: 1:31:33 - loss: 0.6270466\n", + "original image shape: (7000, 7000, 3)\n", + "6\n", + "original image shape: (7000, 7000, 3)\n", + "685\n", + "original image shape: (7000, 7000, 3)\n", + "842\n", + "original image shape: (7000, 7000, 3)\n", + "1862/2000 [==========================>...] - ETA: 1:30:54 - loss: 0.6271261\n", + "original image shape: (7000, 7000, 3)\n", + "1863/2000 [==========================>...] - ETA: 1:30:14 - loss: 0.6271851\n", + "original image shape: (7000, 7000, 3)\n", + "1864/2000 [==========================>...] - ETA: 1:29:35 - loss: 0.6271704\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1865/2000 [==========================>...] - ETA: 1:28:55 - loss: 0.6272919\n", + "original image shape: (7000, 7000, 3)\n", + "1866/2000 [==========================>...] - ETA: 1:28:16 - loss: 0.6272756\n", + "original image shape: (7000, 7000, 3)\n", + "1867/2000 [===========================>..] - ETA: 1:27:36 - loss: 0.62700\n", + "original image shape: (7000, 7000, 3)\n", + "237\n", + "original image shape: (7000, 7000, 3)\n", + "1868/2000 [===========================>..] - ETA: 1:26:57 - loss: 0.6271907\n", + "original image shape: (7000, 7000, 3)\n", + "1869/2000 [===========================>..] - ETA: 1:26:18 - loss: 0.6270377\n", + "original image shape: (7000, 7000, 3)\n", + "1870/2000 [===========================>..] - ETA: 1:25:39 - loss: 0.6271757\n", + "original image shape: (7000, 7000, 3)\n", + "1871/2000 [===========================>..] - ETA: 1:25:00 - loss: 0.6271168\n", + "original image shape: (7000, 7000, 3)\n", + "1872/2000 [===========================>..] - ETA: 1:24:20 - loss: 0.6271386\n", + "original image shape: (7000, 7000, 3)\n", + "1873/2000 [===========================>..] - ETA: 1:23:41 - loss: 0.6271451\n", + "original image shape: (7000, 7000, 3)\n", + "1874/2000 [===========================>..] - ETA: 1:23:02 - loss: 0.6270437\n", + "original image shape: (7000, 7000, 3)\n", + "1875/2000 [===========================>..] - ETA: 1:22:23 - loss: 0.6269281\n", + "original image shape: (7000, 7000, 3)\n", + "1876/2000 [===========================>..] - ETA: 1:21:43 - loss: 0.6270469\n", + "original image shape: (7000, 7000, 3)\n", + "243\n", + "original image shape: (7000, 7000, 3)\n", + "1877/2000 [===========================>..] - ETA: 1:21:04 - loss: 0.6270697\n", + "original image shape: (7000, 7000, 3)\n", + "1878/2000 [===========================>..] - ETA: 1:20:25 - loss: 0.6272810\n", + "original image shape: (7000, 7000, 3)\n", + "1879/2000 [===========================>..] - ETA: 1:19:45 - loss: 0.6272507\n", + "original image shape: (7000, 7000, 3)\n", + "616\n", + "original image shape: (7000, 7000, 3)\n", + "936\n", + "original image shape: (7000, 7000, 3)\n", + "1880/2000 [===========================>..] - ETA: 1:19:06 - loss: 0.6273312\n", + "original image shape: (7000, 7000, 3)\n", + "1881/2000 [===========================>..] - ETA: 1:18:27 - loss: 0.6273949\n", + "original image shape: (7000, 7000, 3)\n", + "1882/2000 [===========================>..] - ETA: 1:17:48 - loss: 0.62737\n", + "original image shape: (7000, 7000, 3)\n", + "795\n", + "original image shape: (7000, 7000, 3)\n", + "1883/2000 [===========================>..] - ETA: 1:17:08 - loss: 0.6273108\n", + "original image shape: (7000, 7000, 3)\n", + "1884/2000 [===========================>..] - ETA: 1:16:29 - loss: 0.6272493\n", + "original image shape: (7000, 7000, 3)\n", + "283\n", + "original image shape: (7000, 7000, 3)\n", + "1885/2000 [===========================>..] - ETA: 1:15:49 - loss: 0.6273106\n", + "original image shape: (7000, 7000, 3)\n", + "1886/2000 [===========================>..] - ETA: 1:15:09 - loss: 0.6271597\n", + "original image shape: (7000, 7000, 3)\n", + "222\n", + "original image shape: (7000, 7000, 3)\n", + "1887/2000 [===========================>..] - ETA: 1:14:30 - loss: 0.6272593\n", + "original image shape: (7000, 7000, 3)\n", + "828\n", + "original image shape: (7000, 7000, 3)\n", + "1888/2000 [===========================>..] - ETA: 1:13:51 - loss: 0.6272300\n", + "original image shape: (7000, 7000, 3)\n", + "1889/2000 [===========================>..] - ETA: 1:13:12 - loss: 0.6272322\n", + "original image shape: (7000, 7000, 3)\n", + "1890/2000 [===========================>..] - ETA: 1:12:32 - loss: 0.6272432\n", + "original image shape: (7000, 7000, 3)\n", + "1891/2000 [===========================>..] - ETA: 1:11:53 - loss: 0.6271562\n", + "original image shape: (7000, 7000, 3)\n", + "687\n", + "original image shape: (7000, 7000, 3)\n", + "405\n", + "original image shape: (7000, 7000, 3)\n", + "1892/2000 [===========================>..] - ETA: 1:11:14 - loss: 0.6272210\n", + "original image shape: (7000, 7000, 3)\n", + "1893/2000 [===========================>..] - ETA: 1:10:35 - loss: 0.6273332\n", + "original image shape: (7000, 7000, 3)\n", + "1894/2000 [===========================>..] - ETA: 1:09:55 - loss: 0.6273857\n", + "original image shape: (7000, 7000, 3)\n", + "1895/2000 [===========================>..] - ETA: 1:09:16 - loss: 0.6272330\n", + "original image shape: (7000, 7000, 3)\n", + "1896/2000 [===========================>..] - ETA: 1:08:37 - loss: 0.6272966\n", + "original image shape: (7000, 7000, 3)\n", + "1897/2000 [===========================>..] - ETA: 1:07:57 - loss: 0.6272514\n", + "original image shape: (7000, 7000, 3)\n", + "47\n", + "original image shape: (7000, 7000, 3)\n", + "434\n", + "original image shape: (7000, 7000, 3)\n", + "1898/2000 [===========================>..] - ETA: 1:07:18 - loss: 0.6271604\n", + "original image shape: (7000, 7000, 3)\n", + "860\n", + "original image shape: (7000, 7000, 3)\n", + "1899/2000 [===========================>..] - ETA: 1:06:39 - loss: 0.6270929\n", + "original image shape: (7000, 7000, 3)\n", + "1900/2000 [===========================>..] - ETA: 1:05:59 - loss: 0.6270235\n", + "original image shape: (7000, 7000, 3)\n", + "1901/2000 [===========================>..] - ETA: 1:05:20 - loss: 0.6270862\n", + "original image shape: (7000, 7000, 3)\n", + "1902/2000 [===========================>..] - ETA: 1:04:40 - loss: 0.6271226\n", + "original image shape: (7000, 7000, 3)\n", + "1903/2000 [===========================>..] - ETA: 1:04:01 - loss: 0.6274643\n", + "original image shape: (7000, 7000, 3)\n", + "186\n", + "original image shape: (7000, 7000, 3)\n", + "1904/2000 [===========================>..] - ETA: 1:03:22 - loss: 0.6274490\n", + "original image shape: (7000, 7000, 3)\n", + "798\n", + "original image shape: (7000, 7000, 3)\n", + "1905/2000 [===========================>..] - ETA: 1:02:42 - loss: 0.6273329\n", + "original image shape: (7000, 7000, 3)\n", + "1906/2000 [===========================>..] - ETA: 1:02:02 - loss: 0.6275328\n", + "original image shape: (7000, 7000, 3)\n", + "1907/2000 [===========================>..] - ETA: 1:01:23 - loss: 0.6277215\n", + "original image shape: (7000, 7000, 3)\n", + "1908/2000 [===========================>..] - ETA: 1:00:43 - loss: 0.6278614\n", + "original image shape: (7000, 7000, 3)\n", + "248\n", + "original image shape: (7000, 7000, 3)\n", + "1909/2000 [===========================>..] - ETA: 1:00:03 - loss: 0.6279333\n", + "original image shape: (7000, 7000, 3)\n", + "1910/2000 [===========================>..] - ETA: 59:24 - loss: 0.6278 358\n", + "original image shape: (7000, 7000, 3)\n", + "1911/2000 [===========================>..] - ETA: 58:44 - loss: 0.6279247\n", + "original image shape: (7000, 7000, 3)\n", + "1912/2000 [===========================>..] - ETA: 58:04 - loss: 0.6279910\n", + "original image shape: (7000, 7000, 3)\n", + "1913/2000 [===========================>..] - ETA: 57:25 - loss: 0.6279430\n", + "original image shape: (7000, 7000, 3)\n", + "1914/2000 [===========================>..] - ETA: 56:45 - loss: 0.6279920\n", + "original image shape: (7000, 7000, 3)\n", + "1915/2000 [===========================>..] - ETA: 56:05 - loss: 0.628046\n", + "original image shape: (7000, 7000, 3)\n", + "964\n", + "original image shape: (7000, 7000, 3)\n", + "1916/2000 [===========================>..] - ETA: 55:26 - loss: 0.6279319\n", + "original image shape: (7000, 7000, 3)\n", + "1917/2000 [===========================>..] - ETA: 54:46 - loss: 0.6278981\n", + "original image shape: (7000, 7000, 3)\n", + "1918/2000 [===========================>..] - ETA: 54:07 - loss: 0.6277337\n", + "original image shape: (7000, 7000, 3)\n", + "1919/2000 [===========================>..] - ETA: 53:27 - loss: 0.6276429\n", + "original image shape: (7000, 7000, 3)\n", + "1920/2000 [===========================>..] - ETA: 52:47 - loss: 0.6276512\n", + "original image shape: (7000, 7000, 3)\n", + "398\n", + "original image shape: (7000, 7000, 3)\n", + "1921/2000 [===========================>..] - ETA: 52:08 - loss: 0.6277877\n", + "original image shape: (7000, 7000, 3)\n", + "1922/2000 [===========================>..] - ETA: 51:28 - loss: 0.6277170\n", + "original image shape: (7000, 7000, 3)\n", + "1923/2000 [===========================>..] - ETA: 50:48 - loss: 0.6276482\n", + "original image shape: (7000, 7000, 3)\n", + "742\n", + "original image shape: (7000, 7000, 3)\n", + "1924/2000 [===========================>..] - ETA: 50:09 - loss: 0.6275854\n", + "original image shape: (7000, 7000, 3)\n", + "1925/2000 [===========================>..] - ETA: 49:29 - loss: 0.6275780\n", + "original image shape: (7000, 7000, 3)\n", + "1926/2000 [===========================>..] - ETA: 48:49 - loss: 0.6274156\n", + "original image shape: (7000, 7000, 3)\n", + "1927/2000 [===========================>..] - ETA: 48:10 - loss: 0.6273825\n", + "original image shape: (7000, 7000, 3)\n", + "1928/2000 [===========================>..] - ETA: 47:30 - loss: 0.6272864\n", + "original image shape: (7000, 7000, 3)\n", + "1929/2000 [===========================>..] - ETA: 46:50 - loss: 0.6274488\n", + "original image shape: (7000, 7000, 3)\n", + "976\n", + "original image shape: (7000, 7000, 3)\n", + "1930/2000 [===========================>..] - ETA: 46:10 - loss: 0.6274734\n", + "original image shape: (7000, 7000, 3)\n", + "1931/2000 [===========================>..] - ETA: 45:31 - loss: 0.6273419\n", + "original image shape: (7000, 7000, 3)\n", + "1932/2000 [===========================>..] - ETA: 44:51 - loss: 0.6273668\n", + "original image shape: (7000, 7000, 3)\n", + "79\n", + "original image shape: (7000, 7000, 3)\n", + "1933/2000 [===========================>..] - ETA: 44:11 - loss: 0.6271985\n", + "original image shape: (7000, 7000, 3)\n", + "1934/2000 [============================>.] - ETA: 43:32 - loss: 0.6271834\n", + "original image shape: (7000, 7000, 3)\n", + "1935/2000 [============================>.] - ETA: 42:52 - loss: 0.6271171\n", + "original image shape: (7000, 7000, 3)\n", + "1936/2000 [============================>.] - ETA: 42:12 - loss: 0.627129\n", + "original image shape: (7000, 7000, 3)\n", + "703\n", + "original image shape: (7000, 7000, 3)\n", + "1937/2000 [============================>.] - ETA: 41:33 - loss: 0.6273112\n", + "original image shape: (7000, 7000, 3)\n", + "1938/2000 [============================>.] - ETA: 40:53 - loss: 0.6272270\n", + "original image shape: (7000, 7000, 3)\n", + "1939/2000 [============================>.] - ETA: 40:13 - loss: 0.6274761\n", + "original image shape: (7000, 7000, 3)\n", + "1940/2000 [============================>.] - ETA: 39:34 - loss: 0.6273607\n", + "original image shape: (7000, 7000, 3)\n", + "596\n", + "original image shape: (7000, 7000, 3)\n", + "960\n", + "original image shape: (7000, 7000, 3)\n", + "1941/2000 [============================>.] - ETA: 38:54 - loss: 0.6273421\n", + "original image shape: (7000, 7000, 3)\n", + "1942/2000 [============================>.] - ETA: 38:15 - loss: 0.6273531\n", + "original image shape: (7000, 7000, 3)\n", + "167\n", + "original image shape: (7000, 7000, 3)\n", + "1943/2000 [============================>.] - ETA: 37:35 - loss: 0.6271464\n", + "original image shape: (7000, 7000, 3)\n", + "371\n", + "original image shape: (7000, 7000, 3)\n", + "1944/2000 [============================>.] - ETA: 36:55 - loss: 0.6270467\n", + "original image shape: (7000, 7000, 3)\n", + "14\n", + "original image shape: (7000, 7000, 3)\n", + "754\n", + "original image shape: (7000, 7000, 3)\n", + "1945/2000 [============================>.] - ETA: 36:16 - loss: 0.6269127\n", + "original image shape: (7000, 7000, 3)\n", + "1946/2000 [============================>.] - ETA: 35:36 - loss: 0.6267886\n", + "original image shape: (7000, 7000, 3)\n", + "1947/2000 [============================>.] - ETA: 34:56 - loss: 0.6268277\n", + "original image shape: (7000, 7000, 3)\n", + "1948/2000 [============================>.] - ETA: 34:17 - loss: 0.6270207\n", + "original image shape: (7000, 7000, 3)\n", + "1949/2000 [============================>.] - ETA: 33:37 - loss: 0.6272517\n", + "original image shape: (7000, 7000, 3)\n", + "309\n", + "original image shape: (7000, 7000, 3)\n", + "1950/2000 [============================>.] - ETA: 32:58 - loss: 0.6271592\n", + "original image shape: (7000, 7000, 3)\n", + "143\n", + "original image shape: (7000, 7000, 3)\n", + "1951/2000 [============================>.] - ETA: 32:18 - loss: 0.6269744\n", + "original image shape: (7000, 7000, 3)\n", + "1952/2000 [============================>.] - ETA: 31:38 - loss: 0.6270911\n", + "original image shape: (7000, 7000, 3)\n", + "1953/2000 [============================>.] - ETA: 30:59 - loss: 0.6270760\n", + "original image shape: (7000, 7000, 3)\n", + "1954/2000 [============================>.] - ETA: 30:19 - loss: 0.6267619\n", + "original image shape: (7000, 7000, 3)\n", + "290\n", + "original image shape: (7000, 7000, 3)\n", + "1955/2000 [============================>.] - ETA: 29:39 - loss: 0.6269768\n", + "original image shape: (7000, 7000, 3)\n", + "1956/2000 [============================>.] - ETA: 29:00 - loss: 0.6267294\n", + "original image shape: (7000, 7000, 3)\n", + "1957/2000 [============================>.] - ETA: 28:20 - loss: 0.6269366\n", + "original image shape: (7000, 7000, 3)\n", + "1958/2000 [============================>.] - ETA: 27:41 - loss: 0.626817\n", + "original image shape: (7000, 7000, 3)\n", + "726\n", + "original image shape: (7000, 7000, 3)\n", + "1959/2000 [============================>.] - ETA: 27:01 - loss: 0.6272136\n", + "original image shape: (7000, 7000, 3)\n", + "1960/2000 [============================>.] - ETA: 26:21 - loss: 0.6270807\n", + "original image shape: (7000, 7000, 3)\n", + "1961/2000 [============================>.] - ETA: 25:42 - loss: 0.6267581\n", + "original image shape: (7000, 7000, 3)\n", + "360\n", + "original image shape: (7000, 7000, 3)\n", + "1962/2000 [============================>.] - ETA: 25:02 - loss: 0.6270133\n", + "original image shape: (7000, 7000, 3)\n", + "1963/2000 [============================>.] - ETA: 24:23 - loss: 0.6272819\n", + "original image shape: (7000, 7000, 3)\n", + "1964/2000 [============================>.] - ETA: 23:43 - loss: 0.6271681\n", + "original image shape: (7000, 7000, 3)\n", + "499\n", + "original image shape: (7000, 7000, 3)\n", + "852\n", + "original image shape: (7000, 7000, 3)\n", + "1965/2000 [============================>.] - ETA: 23:03 - loss: 0.6271238\n", + "original image shape: (7000, 7000, 3)\n", + "1966/2000 [============================>.] - ETA: 22:24 - loss: 0.6271649\n", + "original image shape: (7000, 7000, 3)\n", + "558\n", + "original image shape: (7000, 7000, 3)\n", + "738\n", + "original image shape: (7000, 7000, 3)\n", + "1967/2000 [============================>.] - ETA: 21:44 - loss: 0.6271529\n", + "original image shape: (7000, 7000, 3)\n", + "638\n", + "original image shape: (7000, 7000, 3)\n", + "727\n", + "original image shape: (7000, 7000, 3)\n", + "1968/2000 [============================>.] - ETA: 21:05 - loss: 0.6268353\n", + "original image shape: (7000, 7000, 3)\n", + "1969/2000 [============================>.] - ETA: 20:25 - loss: 0.626958\n", + "original image shape: (7000, 7000, 3)\n", + "656\n", + "original image shape: (7000, 7000, 3)\n", + "66\n", + "original image shape: (7000, 7000, 3)\n", + "23\n", + "original image shape: (7000, 7000, 3)\n", + "796\n", + "original image shape: (7000, 7000, 3)\n", + "1970/2000 [============================>.] - ETA: 19:46 - loss: 0.6269618\n", + "original image shape: (7000, 7000, 3)\n", + "841\n", + "original image shape: (7000, 7000, 3)\n", + "1971/2000 [============================>.] - ETA: 19:06 - loss: 0.6270534\n", + "original image shape: (7000, 7000, 3)\n", + "861\n", + "original image shape: (7000, 7000, 3)\n", + "1972/2000 [============================>.] - ETA: 18:27 - loss: 0.6269395\n", + "original image shape: (7000, 7000, 3)\n", + "1973/2000 [============================>.] - ETA: 17:47 - loss: 0.626830\n", + "original image shape: (7000, 7000, 3)\n", + "959\n", + "original image shape: (7000, 7000, 3)\n", + "1974/2000 [============================>.] - ETA: 17:07 - loss: 0.6270894\n", + "original image shape: (7000, 7000, 3)\n", + "1975/2000 [============================>.] - ETA: 16:28 - loss: 0.6269473\n", + "original image shape: (7000, 7000, 3)\n", + "177\n", + "original image shape: (7000, 7000, 3)\n", + "1976/2000 [============================>.] - ETA: 15:48 - loss: 0.6267612\n", + "original image shape: (7000, 7000, 3)\n", + "971\n", + "original image shape: (7000, 7000, 3)\n", + "1977/2000 [============================>.] - ETA: 15:09 - loss: 0.6268255\n", + "original image shape: (7000, 7000, 3)\n", + "1978/2000 [============================>.] - ETA: 14:29 - loss: 0.6269104\n", + "original image shape: (7000, 7000, 3)\n", + "1979/2000 [============================>.] - ETA: 13:50 - loss: 0.6266585\n", + "original image shape: (7000, 7000, 3)\n", + "874\n", + "original image shape: (7000, 7000, 3)\n", + "1980/2000 [============================>.] - ETA: 13:10 - loss: 0.6266693\n", + "original image shape: (7000, 7000, 3)\n", + "1981/2000 [============================>.] - ETA: 12:30 - loss: 0.6263839\n", + "original image shape: (7000, 7000, 3)\n", + "1982/2000 [============================>.] - ETA: 11:51 - loss: 0.6263835\n", + "original image shape: (7000, 7000, 3)\n", + "1983/2000 [============================>.] - ETA: 11:11 - loss: 0.6263814\n", + "original image shape: (7000, 7000, 3)\n", + "1984/2000 [============================>.] - ETA: 10:32 - loss: 0.6263563\n", + "original image shape: (7000, 7000, 3)\n", + "240\n", + "original image shape: (7000, 7000, 3)\n", + "1985/2000 [============================>.] - ETA: 9:52 - loss: 0.6264 513\n", + "original image shape: (7000, 7000, 3)\n", + "520\n", + "original image shape: (7000, 7000, 3)\n", + "666\n", + "original image shape: (7000, 7000, 3)\n", + "244\n", + "original image shape: (7000, 7000, 3)\n", + "1986/2000 [============================>.] - ETA: 9:13 - loss: 0.6263102\n", + "original image shape: (7000, 7000, 3)\n", + "1987/2000 [============================>.] - ETA: 8:33 - loss: 0.62604\n", + "original image shape: (7000, 7000, 3)\n", + "268\n", + "original image shape: (7000, 7000, 3)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1988/2000 [============================>.] - ETA: 7:54 - loss: 0.6261665\n", + "original image shape: (7000, 7000, 3)\n", + "968\n", + "original image shape: (7000, 7000, 3)\n", + "1989/2000 [============================>.] - ETA: 7:14 - loss: 0.6261443\n", + "original image shape: (7000, 7000, 3)\n", + "1990/2000 [============================>.] - ETA: 6:35 - loss: 0.6262538\n", + "original image shape: (7000, 7000, 3)\n", + "565\n", + "original image shape: (7000, 7000, 3)\n", + "605\n", + "original image shape: (7000, 7000, 3)\n", + "720\n", + "original image shape: (7000, 7000, 3)\n", + "1991/2000 [============================>.] - ETA: 5:55 - loss: 0.6260743\n", + "original image shape: (7000, 7000, 3)\n", + "1992/2000 [============================>.] - ETA: 5:16 - loss: 0.626153\n", + "original image shape: (7000, 7000, 3)\n", + "439\n", + "original image shape: (7000, 7000, 3)\n", + "1993/2000 [============================>.] - ETA: 4:36 - loss: 0.6262374\n", + "original image shape: (7000, 7000, 3)\n", + "1994/2000 [============================>.] - ETA: 3:57 - loss: 0.6261870\n", + "original image shape: (7000, 7000, 3)\n", + "1995/2000 [============================>.] - ETA: 3:17 - loss: 0.6260450\n", + "original image shape: (7000, 7000, 3)\n", + "1996/2000 [============================>.] - ETA: 2:38 - loss: 0.6260969\n", + "original image shape: (7000, 7000, 3)\n", + "1997/2000 [============================>.] - ETA: 1:58 - loss: 0.6260379\n", + "original image shape: (7000, 7000, 3)\n", + "1998/2000 [============================>.] - ETA: 1:19 - loss: 0.6261709\n", + "original image shape: (7000, 7000, 3)\n", + "1999/2000 [============================>.] - ETA: 39s - loss: 0.6259 340\n", + "original image shape: (7000, 7000, 3)\n", + "2000/2000 [==============================] - 79025s 40s/step - loss: 0.6258 - val_loss: 0.4717\n" + ] + } + ], + "source": [ + "# # Fine tune all layers\n", + "# # Passing layers=\"all\" trains all layers. You can also \n", + "# # pass a regular expression to select which layers to\n", + "# # train by name pattern.\n", + "model.train(dataset_train, dataset_val, \n", + " learning_rate=config.LEARNING_RATE / 10,\n", + " epochs=3, \n", + " layers=\"all\")#layers=\"heads\" ; epochs = 2" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "LKQirAN3Bxzj", + "outputId": "0aca002c-7ec7-433b-8530-5ce2b66677a6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C:\\Users\\dal4019\\Documents\\Bst_Reg\n" + ] + } + ], + "source": [ + "resetDataDir()\n", + "print(os.getcwd())\n", + "model_path = os.path.join(\"weights\", \"mask_rcnn_shapes.h5\")\n", + "model.keras_model.save_weights(model_path)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Detection and Validation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rdznSLooBxzl", + "outputId": "d481a985-43e2-4402-d659-0beb98326b99" + }, + "outputs": [], + "source": [ + "image_id = 10\n", + "original_image, image_meta, gt_class_id, gt_bbox, gt_mask =\\\n", + " modellib.load_image_gt(dataset_val, inference_config, \n", + " image_id, use_mini_mask=False)\n", + "\n", + "log(\"original_image\", original_image)\n", + "log(\"image_meta\", image_meta)\n", + "log(\"gt_class_id\", gt_class_id)\n", + "log(\"gt_bbox\", gt_bbox)\n", + "log(\"gt_mask\", gt_mask)\n", + "\n", + "visualize.display_instances (original_image, gt_bbox, gt_mask, gt_class_id, \n", + " dataset_val.class_names, figsize=(15, 15))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "z7DxbSpwBxzm", + "outputId": "2f6b9dea-c19d-4973-d661-d1c462d1bc73" + }, + "outputs": [], + "source": [ + "results = model.detect([original_image], verbose=1)\n", + "plt.figure(figsize=(20,20))\n", + "\n", + "r = results[0]\n", + "print(np.sum(r['rois']))\n", + "print(np.sum(r['masks']))\n", + "\n", + "visualize.display_instances(original_image, r['rois'], r['masks'], r['class_ids'], \n", + " dataset_val.class_names, r['scores'], figsize=(15, 15))#ax=get_ax()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TmOYlMxnBxzp" + }, + "source": [ + "## Evaluation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "qVDrXwoqBxzp", + "scrolled": true + }, + "outputs": [], + "source": [ + "# Compute VOC-Style mAP @ IoU=0.5\n", + "# Running on 10 images. Increase for better accuracy.\n", + "\n", + "image_ids = np.random.choice(dataset_val.image_ids, 30) \n", + "APs = []\n", + "for image_id in image_ids:#for image_id in image_ids:\n", + " # Load image and ground truth data\n", + " image, image_meta, gt_class_id, gt_bbox, gt_mask =\\\n", + " modellib.load_image_gt(dataset_val, inference_config,\n", + " image_id, use_mini_mask=False)\n", + " molded_images = np.expand_dims(modellib.mold_image(image, inference_config), 0)\n", + " # Run object detection\n", + " results = model.detect([image], verbose=1)\n", + " r = results[0]\n", + " # Compute AP\n", + " AP, precisions, recalls, overlaps =\\\n", + " utils.compute_ap(gt_bbox, gt_class_id, gt_mask,\n", + " r[\"rois\"], r[\"class_ids\"], r[\"scores\"], r['masks'])\n", + " APs.append(AP)\n", + " print(precisions)\n", + " \n", + "print(\"mAP: \", np.mean(APs))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sfrsj1vABxzq" + }, + "source": [ + "# plotting APs\n", + "# .\n", + "# ." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "uN_g7T2jBxzq" + }, + "outputs": [], + "source": [ + "np.mean(APs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "JQeChv4jBxzr" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EzLupP9aBxzr" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "DCwqjDHzBxzX", + "tpFQNxtLBxzd", + "Acto-lZNBxzj", + "x72_ZFpeBxzm", + "TmOYlMxnBxzp" + ], + "name": "SeBRe_training_Ch01.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python [conda env:bstreg] *", + "language": "python", + "name": "conda-env-bstreg-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/16.jpg b/16.jpg deleted file mode 100644 index b02642f..0000000 Binary files a/16.jpg and /dev/null differ diff --git a/FP_SeBRe.png b/FP_SeBRe.png deleted file mode 100644 index 08eb888..0000000 Binary files a/FP_SeBRe.png and /dev/null differ diff --git a/FP_SeBRe_1.png b/FP_SeBRe_1.png deleted file mode 100644 index 0e84941..0000000 Binary files a/FP_SeBRe_1.png and /dev/null differ diff --git a/FP_SeBRe_2.png b/FP_SeBRe_2.png deleted file mode 100644 index 1b689f5..0000000 Binary files a/FP_SeBRe_2.png and /dev/null differ diff --git a/FlipImages.ijm b/FlipImages.ijm new file mode 100644 index 0000000..4564d4c --- /dev/null +++ b/FlipImages.ijm @@ -0,0 +1,73 @@ +//Rotate images, first in 2° angles CW, then 2° angles CCW. Saves as R/filename_r*angle* + +#@ File (label = "Input directory", style = "directory") input +suffix = ".png"; +ouput_format = ".png"; + +output = "/Users/Dana/Desktop/Research/BSt/MASKS/BW-MASKS-4/FLIP/A1"; + + +for (i = 0; i < list.length; i++) { + if (i % 21 == 0) { + File.makeDirectory(output + "/" + list[i]); + if (!File.exists(output)) + exit("Unable to create directory"); + } +} + +//setBatchMode(true); +//processFolder(input); +// +// +//function processFolder(input) { +// list = getFileList(input); +// list = Array.sort(list); +// for (i = 0; i < list.length; i++) { +// if(File.isDirectory(input + File.separator + list[i])) +// processFolder(input + File.separator + list[i]); +// if(endsWith(list[i], suffix)) +// processFile(input, output, list[i]); +// } +//} +// +//function processFile(input, output, file) { +// print("Processing: " + input + File.separator + file); +// print("Saving to: " + output); +// open(file); +// +// format = substring(file, lastIndexOf(file, ".")+1, lengthOf(file)); +// +// for (angle = 20; angle <= 360; angle=angle+20) { +// selectWindow(file); +// run("Duplicate...", "duplicate"); +// run("Rotate... ", "angle="+angle+" grid=1 interpolation=Bilinear enlarge"); +// +// saveAs(ouput_format, output+"//"+replace(file, "."+format,"_r"+angle+ouput_format)); +// print("saved as -- "+output+"//"+replace(file, "."+format,"_r"+angle+ouput_format)); +// close; +// } +// +// for (angle = 20; angle <= 360; angle=angle+20) { +// selectWindow(file); +// run("Duplicate...", "duplicate"); +// run("Flip horizontally") +// run("Rotate... ", "angle="+angle+" grid=1 interpolation=Bilinear enlarge"); +// +// saveAs(ouput_format, output+"//"+replace(file, "."+format,"_hor_r"+angle+ouput_format)); +// print("saved as -- "+output+"//"+replace(file, "."+format,"_hor_r"+angle+ouput_format)); +// close; +// } +// +// for (angle = 20; angle <= 360; angle=angle+20) { +// selectWindow(file); +// run("Duplicate...", "duplicate"); +// run("Flip vertically") +// run("Rotate... ", "angle="+angle+" grid=1 interpolation=Bilinear enlarge"); +// +// saveAs(ouput_format, output+"//"+replace(file, "."+format,"_ver_r"+angle+ouput_format)); +// print("saved as -- "+output+"//"+replace(file, "."+format,"_ver_r"+angle+ouput_format)); +// close; +// } +// run("Close All"); +// +//} \ No newline at end of file diff --git a/README.md b/README.md index 735f3c4..ea81f93 100644 --- a/README.md +++ b/README.md @@ -57,6 +57,12 @@ __4__. Modify and run the notebook [SeBRe_training.ipynb](https://github.com/its __5__. Modify and run the notebook [SeBRe_FINAL.ipynb](https://github.com/itsasimiqbal/SeBRe/blob/master/SeBRe_FINAL.ipynb) to test the SeBRe DNN on your (custom) dataset. +## Sahni Lab Data: +This data was used to train models on brainstem images. Optimizations made to the model and to the data are reflected in this repository and the following datasets. + +[1] [Training Data v1](https://drive.google.com/drive/folders/1zChrCERZjf-MvDK-nhNs_lEI5WlSkKh1?usp=share_link) +[2] [Training Data v2 (optimized for medulla)](https://drive.google.com/drive/folders/1oDAH5UlplUD08RXswktuuBsDD-vMXfAq?usp=share_link) + ## References: [1] https://arxiv.org/abs/1703.06870 diff --git a/RotateImages.ijm b/RotateImages.ijm new file mode 100644 index 0000000..6d7edf1 --- /dev/null +++ b/RotateImages.ijm @@ -0,0 +1,59 @@ +//Rotate images, first in 2° angles CW, then 2° angles CCW. Saves as R/filename_r*angle* + +#@ File (label = "Input directory", style = "directory") input +suffix1 = ".jpg"; +suffix2 = ".png"; +suffix3 = ".tif"; +ouput_format = ".jpg"; + +list = getFileList(input); + +output = input; +//File.makeDirectory(output); +// if (!File.exists(output)) +// exit("Unable to create directory"); + +setBatchMode(true); +processFolder(input); + +function processFolder(input) { + list = getFileList(input); + list = Array.sort(list); + for (i = 0; i < list.length; i++) { + if(File.isDirectory(input + File.separator + list[i])) + processFolder(input + File.separator + list[i]); + if(endsWith(list[i], suffix1) || endsWith(list[i], suffix2) || endsWith(list[i], suffix3)) + processFile(input, output, list[i]); + } +} + +function processFile(input, output, file) { + print("Processing: " + input + File.separator + file); + print("Saving to: " + output); + open(file); + + format = substring(file, lastIndexOf(file, ".")+1, lengthOf(file)); + + for (angle = 2; angle <= 20; angle=angle+2) { + selectWindow(file); + run("Duplicate...", "duplicate"); + run("Rotate... ", "angle="+angle+" grid=1 interpolation=Bilinear enlarge"); + + saveAs(ouput_format, output+"//"+replace(file, "."+format,"_r"+angle+ouput_format)); + print("saved as -- "+output+"//"+replace(file, "."+format,"_r"+angle+ouput_format)); + close; + } + + for (angle = -2; angle >= -20; angle=angle-2) { + print(angle); + selectWindow(file); + run("Duplicate...", " "); + run("Rotate... ", "angle="+angle+" grid=1 interpolation=Bilinear enlarge"); + + saveAs(ouput_format, output+"//"+replace(file, "."+format,"_r"+angle+ouput_format)); + print("saved as -- "+output+"//"+replace(file, "."+format,"_r"+angle+ouput_format)); + close; + } + run("Close All"); + +} \ No newline at end of file diff --git a/SeBRe_FINAL.ipynb b/SeBRe_FINAL.ipynb deleted file mode 100644 index 9d4e350..0000000 --- a/SeBRe_FINAL.ipynb +++ /dev/null @@ -1,1353 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Developing Brain Atlas through Deep Learning \n", - "\n", - "## A. Iqbal, R. Khan, T. Karayannis\n", - "# .\n", - "# .\n", - "# ." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Import libraries here\n", - "## Install missing libraries" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "import os\n", - "import sys\n", - "import random\n", - "import math\n", - "import re\n", - "import time\n", - "import numpy as np\n", - "import tensorflow as tf\n", - "import matplotlib\n", - "import matplotlib.pyplot as plt\n", - "import matplotlib.patches as patches\n", - "import matplotlib.gridspec as gridspec\n", - "from config import Config\n", - "from config import BrainConfig\n", - "import utils\n", - "import visualize\n", - "from visualize import display_images\n", - "from visualize import get_ax\n", - "import model as modellib\n", - "from model import log\n", - "import glob #for selecting png files in training images folder\n", - "from natsort import natsorted, ns #for sorting filenames in a directory\n", - "import skimage\n", - "from skimage import io\n", - "from skimage import transform\n", - "\n", - "# Import testing dataset \n", - "from brain_dataset import BrainDataset_Val\n", - "\n", - "%matplotlib inline \n", - "\n", - "# Root directory of the project\n", - "ROOT_DIR = os.getcwd()\n", - "\n", - "# Directory to save logs and trained model\n", - "MODEL_DIR = os.path.join(ROOT_DIR, \"logs\")\n", - "\n", - "# Local path to trained weights file\n", - "BRAIN_MODEL_PATH = os.path.join(ROOT_DIR, \"SeBRe_FINAL_WEIGHTS.h5\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Configurations" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "config = BrainConfig()\n", - "class InferenceConfig(config.__class__):\n", - " # Run detection on one image at a time\n", - " GPU_COUNT = 1\n", - " IMAGES_PER_GPU = 1\n", - "\n", - "config = InferenceConfig()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Notebook Preferences" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Device to load the neural network on.\n", - "DEVICE = \"/cpu:0\" # /cpu:0 or /gpu:0\n", - "\n", - "# Inspect the model in inference modes\n", - "TEST_MODE = \"inference\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load Dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# Build validation dataset\n", - "dataset_val = BrainDataset_Val()\n", - "dataset_val.load_brain()\n", - "dataset_val.prepare()\n", - "dataset = dataset_val\n", - "\n", - "print(\"Images: {}\\nClasses: {}\".format(len(dataset.image_ids), dataset.class_names))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load Model" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading weights C:\\Users\\Asfandyar\\Documents\\Romesa\\Scene_Parsing\\Code\\Mask_RCNN\\NatMachIntell_Code_FINAL\\SeBRe_FINAL_WEIGHTS.h5\n" - ] - } - ], - "source": [ - "# Create model in inference mode\n", - "with tf.device(DEVICE):\n", - " model = modellib.MaskRCNN(mode=\"inference\", model_dir=MODEL_DIR,\n", - " config=config)\n", - "\n", - "# Set weights file path\n", - "weights_path = BRAIN_MODEL_PATH\n", - "\n", - "# Load weights\n", - "print(\"Loading weights \", weights_path)\n", - "model.load_weights(weights_path, by_name=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Figure 1: Block diagram and performance of SeBRe\n", - "# .\n", - "# ." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Figure1(a) : SeBRe block diagram" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAHjCAYAAACAW+ZqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3XmcXWV9+PHPc85dZ+7sM0lmkplJAgGSAAJhUxCLW6u1+qtWrf7aWqhVX+ICrrVUQQUkKgi4AvbnWq1aRa1WK+IKhbIoWYBAQtaZSSazz9z9nnOe3x9nuefOknWWm8n3zStk5t5zzzlzM/c85/s83+f7KK01QgghhBBCCCFObMZCn4AQQgghhBBCiOMnwZ0QQgghhBBCLAIS3AkhhBBCCCHEIiDBnRBCCCGEEEIsAhLcCSGEEEIIIcQiIMGdEEIIIYQQQiwCEtwJIYQQQgghxCIgwZ0QQgghhBBCLAIS3AkhhBBCCCHEIiDBnRBCCCGEEEIsApGFPoHD0At9AkIIIYQQQgixgNSRbigjd0IIIYQQQgixCEhwJ4QQQgghhBCLgAR3QgghhBBCCLEISHAnhBBCCCGEEIuABHdCCCGEEEIIsQhIcCeEEEIIIYQQi4AEd0IIIYQQQgixCEhwJ4QQQgghhBCLgAR3QgghhBBCCLEISHAnhBBCCCGEEIuABHdCCCGEEEIIsQhIcCeEEEIIIYQQi4AEd0IIIYQQQgixCEhwJ4QQQgghhBCLgAR3QgghhBBCCLEISHAnhBBCCCGEEIuABHdCCCGEEEIIsQhIcCeEEEIIIYQQi4AEd0IIIYQQQgixCEhwJ4QQQgghhBCLgAR3QgghhBBCCLEISHAnhBBCCCGEEIuABHdCCCGEEEIIsQhIcCeEEEIIIYQQi4AEd0IIIU4qWmsKhQKPPfroMb2+WCySz+XI5/Pk8/lZPjshhBDi2EUW+gSEEELMDY3mtls/E3z/7muuwVBqAc9o4WitsW2b3//mN/z+wQdxbBuA884/n6N9Rz71qU9RKpUAiMZiXPvP/zzLZ7vwbO/9ORTTNA+7jdaaXDbHr+67j7GxMQBe8cpX0tBQf9znKIQQYioJ7oQQokporbn99ttnvLGORCJ0tC/jta97/RHtb+PNGytGlrSjwTxxg7sbbrgBy7JmfD4ajZJMJnnnO99JNBoNHrcsixtuuGFWzmHT448HgV0101rz7W99y/03V4CGcBS7bt06zli7lmQyOeW1w0PD3PHZOw57jPe97/2kUrUzHv+HP/gBm7ZsmfLc7Xfczof/5V9QJ2lHgxBCzCUJ7oQQoko8/L8PMTo6eshtRkZGeOL663n+JZfwope8ZMbt9u7du+hSBg8V2AGUSiVKpRI33ngj1157bRDghYNlpRQohXacoz5+Ppfjhz/60VG/biHc94t7eWb79hmf375jBz/68Y8B+PCHP1wxCufoI3tvHGf6TgjbtrnhhhvQWgNup8SVV1zBso6Ok3bkWAgh5osEd0IIUSXOOW8D//2Le3GOIPC4/3/+h67ubtacdtq0z//bt74126e34N733vfR19fLt779bQDe+pa3Yhju1PHhkWF++tOfkk6nAfjc5z7PNddcDUA8HueiCy6kY3kHZz/nOezetYuvff3rR338Oz772SBgUUoFX1ej5Z2d8OCRbXvDDTdw3XXXTfvc+Rs2cP75F0x5XClFff30qZVfuvPO4L2pr6/nPe95z5GdiBBCiOMmwZ0QQlSJeCzGRz7yEXZs3843/+3fME2TD3/4wxXbZDJZPvWpT6K15jvf+x7/cu21U/bz6VtuoeCN2v3jm/+Ru79897yc/1xL1aVoaWkNvm9b0kYk4jZjS5ctZe3atezauZOvff3rjI2PYVlW8PzL/vzl5R0dw+DRyOgo2WwWgHVr1/LMjh1YVZyeuXbdWq699lpuvPFGAGLxOP/8oQ+htaZYLHHXXXcyNDQElOcjTjeHrrYmybL2ZUd83Ewmy8DBgwAYpimBnRBCzDOplimEECeQ2toanvfc5wJumuLk0aNisUh6YgKA9vb2GUdXFqvuVavcL7yAZbbccfvtwdd/9brXzdp+55tSing8xjve8Q6UUb4F2Llz57TbW7bD/9x/P5/73Of47B13sHnzpkPu//bbbwu+/ocrrpydkxZCCHHEZOROCCFOMA97JfwVTClK8clPfSr4+i1veQvpifR8ntqCGhkZ4Qtf/AIAkWiUeDw+K/v9yX/+ZxBE/8OVVy6KeWO2bUOoY2Cm9+qB//mfiu9/8IN7uOeeH/Kmv/s7VvqBtMfROig2Y5gmDz38v2z58uaKbd7w13/N6WecMRs/ghBCiGlIcCeEECcARzvkc3nuvvvuIB2wvb29YpuJiYnguXPOOWfRVyO8+667ME0Tx3EoFIuMjIwEz73utX81K8ewLJs/PP44AKlUihWdnbOy33mnNcViEa01lmVx+x13VIz6dnR0HMWuNF//5jf5yKSU4dGRkWCfjm2zZfPmKa/99r//e0WxGyGEELNLgjshhKhStm1z/fXXT/vcqaeewhve8Mbge38ZBXDXXnvlK185H6e4oPq9uV2TXfH3f0/3ypWzcoybN94crIn37ne/+4QNmIvFIjfddNO0z8UTiWBuIkBdXTmV9+/+7u/o6OhAKcWB/fv5yle/CrjB2xNPPMH69euDbUeGh6fs+8UvehENjY18//vfDx779Kc/zT/90z+dsO+lEEJUMwnuhBDiBKKU4s1vfjPLly+vePzmm28OlgqIRCJ85jPu4uXh5QNuu+0zXH311Ue0+PSJwIyUf466VB2vfMUr6OzunrVRoXw+X1E0xS9OElYqFrn++utnDMKrmVKKtWvX8rpJcwjj8di0P0/3ypV0d3ezZ88eAH78n/9ZEdxNds0119DQ0ADA2rVrufGmm9COQ6FQIJvNUls7/Rp5Qgghjp0Ed0IIUaWUUlz19quC6o6JRILa2tppRzxKoSAu51V1nGxiYoJ7fvAD/uq1r52T851vH/qnD1WMOC0kx3GCZRmqUSQS4eUvK1cMXdG5giVLlhz1fs4+86wguGNSMZ+6urrgazNiVhTziUQi1NfVMTY2BsDg4IAEd0IIMQeqo1UUQggxhWEYtLa1Hn7DI92fafKKv/iLWdvfYheJRHjnO97pfqMATRBof/4LX8CxbcyIydXvvrqqAztw/+3P23Dece9nz769oe8qOxnaliw55Pp/sVgs+DqZqDnucxFCCDGVBHdCCFFFHnzgAQ709wNuLHH/736H1hqlFJdcdtmMS7RNLm4B8Pvf/pZMJsNDDz8MwOWXXUYikZijM597GzduJJfLBd/fcMMNwdc1tbV84P3vn/Z1juPwsY99bNrnPhpKPzRMs+J9jEQitLS2BN9rrbn11luZ8JaaALAtmy988Yt88AMfOOqfZ67ZjlP5vTd38HBpuVpr7rv3Xs45bwOtoZ8/ny+wZcuW4Pu//D+vqnidUorGxgZGRkaxLZtdu3axevVqwE0PHhwcDLZtbmk+th9KCCHEIUlwJ4QQVWLHjh389733Bt87ts0vf/Wr4Pvf3n8/1/7zPx/Rvu6680769u+veOy+X/+aQqHIi1/6ktk54XkWDuwmy2YyMz5XKBSOaP/OYdbFGx4ergjsgvPKZqsuLfPZZ5/lG9/4RvB9sVDg4x//OOAWhmlqaprxtRs3biSfz/PAgw9iRiLU1tSgtWZiYqJiVO7UNWumvPbNb/5HPuUtx/H1r3+dK6+4gobGBm67vVyd8/TTTquadFohhFhs5OoqhBBVYvLSBpOlalPBKN7hdHZ2TgnuANauW3vM57fQXvriF/PM9u3AlOlerF+/bsbXJZNJLr7wQka9+V7u66e+jxdffPEhj9/U3MyrXvlKNm3aFJyDUrBu3dqqCuwA+vbtm/G5XDZ3yODOL8KjtcYqlYJ5cmHvuOod0wZotbW1XHbpJfzu/gcA+H9f+cqU5//6jW+c8johhBCzQ82UG18lqvrkhBBitjmOM+OcpaOtcmlPMxK1WCplisMrhSp9QjmgPVw1Udu22btnD9+/5x7SoZHK+vp6XvPqV7N8xYrDjryVSiW++53vsH3HDgBWrFjBq1/9apqbJR1TCCGOwRGvHSPBnRBCCCGEEEJUryMO7qorj0QIIYQQQgghxDGR4E4IIYQQQgghFgEJ7oQQQgghhBBiEZDgTgghhBBCCCEWAQnuhBBCCCGEEGIRkOBOCCGEEEIIIRYBCe6EEEIIIYQQYhGQ4E4IIYQQQgghFgEJ7oQQQgghhBBiEZDgTgghhBBCCCEWgchCn4AQQgghjpYmm8kCUFNbO+0WuVwO7TjE4gkiEXM+T04IIcQCkeBOCCFmkVUqkc5kMSMR6lLT3XRrRkfHAWhoaECp+T2/avaZWz5Nydac9bK/52VntU15/l/vuI2hfAllmLz/fe9ZgDOsLvt3P822g/vZcO7lLGusqXju4LYHeOjpXs448wK6OzulsRdCiJOEpGUKIcQscuwiD/7ka3z3rs/SO5yd8vx/3HUr3/3Xz7O7Z/8CnF11u+a976No2Tzyw7soWc6kZx0mkh3kqeN9EtgBiiVLW+he9yf8vy99EV3xnOau7/2asztbWLKsnXhsamhn2za2ZaG1nvLc8bJtG9u2OZI927Y968cXQoiTmXTmCSHELIolamlKxbj4pa/kC3fezbUfenfF81v351jTHKWja6WM2k1L8ZoL2vnPB7fx6uevCx7d/egveMNfvYw77/63Y96z1ho1x2+61jo4zlwfy9eVtNneO85py+sBsIo5mtdcNNMZcs83v8KmHXvdbw2Dq67+IG318dAmDl/6/OfIWw5vu+qdJKJuSueBpx/i33/2EABXveNdRCOV/cOl7Ahf+uKXGEoXAY0yTP7pgx+gbzjPqmUNU87jm3d/iR29/aAUNbUprnjLO2mrjx3nuyGEECc3Ce6EEGIOpFq7Oa2uRMlygpvg4V2P8NdvuYbH/uNz077mFz/6Dx5/+lkcRxOPJ7jirVfRWBMNns+P7eHOr9yDRvHuq9+NHzr84Gt3sXfEHSW8+uqrp+y3d/tmvveT+8gVCpimSap5OVe+/AyiS8/FNCYFINrhq3d+nv4xd3/xeC3vfNdVU7ebQ+v+9E385BMbwQvuHNvi6z99mA9/5E+n3f6Ld9xK2omx7pRusuPDPPXsHq686j2saEkF23x640Ysx+a5L/2/vGBDNwCl3Bi33P5FbNvijBe9gddcfErFfh/5xff52UNPsPL0M2mpibHrmS3kieMY3XzgmtdUbFvKjfC5L3yZeHM767o6SI8N84etT/LGK6/i1BUts/n2TPH6t72dGz9xK9df/xEAfvLNL/OWN72Dnk2/rtiumJvgU7fezluvupq/bHTfG60dfvCNu2g96095wbmr3A2V4k1X/gPb7vseJcsJgrsla87nzcvPZPzpX2LbdkVwZxXS3P6VH3P1uz9Qnt+nNT/8ymfpvPS1FcHdxOAebv/SN7n6ve8jlYyjtaZYyPPz73+V+Ko/4c+ed9pcvVVCCLH4+b2MVfpHCCFOOA/e80VdtLUuFQv6tq/+ynvU0Td+/ONaa62/ecfNun8sF2zvlLL6Ezd+XO/dPxjai6Pvvv2T+rYv/tuU/X/2Ex/TzjTH/fQnbpzyWP+Tv9Hf/vHvtGXZwWOlQk5fd911OpsvVWy7/aGf6Y9+/KaKx0vFvP7Exz+mx7KV286Vj994s9Za65GezXrr7mGttdY//urn9P3bBrTWjv7oxi9W/Oy33HyTHp7ITdnPHTffoP/r4V0Vj+UyA/o3j+6esu2uh36g/+PBHVMe/+QXvz3lsUIurW/65HcqHnMcS3/spk9PeT+11vord3xaj0/z+GwYH9ittxxIa621fvZX39YTBUfnxnr0J269W2ut9a7HfqlH0uX35qYbbtCj2eK0+7rtxo/pvcPZise2/tfX9fg02w9u/onO5Ssfzwzt1Pf9Yc/UHTu2TufC2zr64x+/URet6X6Dtf7cxhv0roPpaZ8TQoiT2BHHTzLnTggh5kgkGiO97wEARvf8L6nuDdNut3HjLbzkNX9H57LwCI/iirdfTX12zzTzz47c4394htf++aWYZvlyH4kluOLFayZtqfn3XzzG+977HpLxclJHJBrnPe97L3fcdtsRzaGaLQ0d6/nRt78BwON7R3juaa1Ttjn42A+IdJ5PUyox5bm3vftdPPzzbx7XOdjp4SmPxeI1vP1tr6h4bNMvv8vb3/62ivfN97dvewdf/u6vjus8jsTqy1/P57/+c773je/y569+zdQNtCZSu4SGZHTqc8Bfv/pF3POd+475+DVN3fz+x1/hhhs/wSOPb2V4eARHA8qgNlE+pm1ZtJ52PlFz+pHgK9/8V/zid/97zOchhBAnO0nLFEKIOfSuK1/Gjv1jfO+b9/GeD3xo6gaOhUqt4LzTu6Y8ZUai/M1V7+Lur/+St1/50mM6/vNf9Vpu3vhJli1fyctedBmNTU3U1CTovvT/VmyXG3yGv/z7q6hJxqfsI5ao4Zwmg539WU5ZWjPl+bmglMGZSw1G9jzGy1//j0yXFfq1X27jH94+fXGVaCJFZ00Uy9FEjjGl9E3/53lc/9GPEosnSMTj1NbU88pXv5r2tsaK7X764Haatn8NgEwmM2U/2XwB235xRYA9+xTJoT/Qay7lb7ubpjyrsalZctaMr247dR2Znx77fEaUwXXXXYdVKrJr21bu+cF/kM5MMDI6wYc+dG1Q1EVrzejeJ7j7rt34k07z+XzF/MRYcsWxn4cQQpzkJLgTQog5VNexgVs/+lEufNUVxKNTb+4tq0jT8rOZKfyIxpJMTOw55uMnU4184L3XMDE+xpYtW3jk0cfIZbPEauv4YKjqZHZ4kJ/88Mf81yHioPq9Bzhl6epjPpej9fK/eQs33PQJrrvuummf144GNXPAZB9nJcj2U8/huo+cjW072LZNNj3Oj77zNUaMTq5526uD7eJKc8UVV6IUmKaJoRSO1hhewKIBY04DO9c7P/Ah9Ay/SQqTsX0PoLl42i12PfZ76jpnKsJy5CLRGGvOOo81Z50HgOPYbPzUZ/nQB925oJFIBLsE//CPb5k2YBdCCHF8JLgTQog5NlNwAhCJJuh/9ndozpv2ptsqpmnqnD6d80hFYzGaW9t4weUv5AWXvxCA4YN7+P4jPbzmAneUpHbFmXScFeVvX3bhcR1rNkWiMa4/xHv3Ny9dxzfv+TXv+tuphVYK2TH25+0jGrUrFoowqUjj0I6HaVx9AaZhEIkYRCIR4vE2/v7t7+a2T3wcKAd3b/zLy3mqP895K8sjeguxZLhSxoydBCjFC7pruOXO7/Pet76mYju7VOBbv9jM+z/4ZxUvqWusJVe0qQulchZzI/zrTx/nXadVjiTf/okbeec/XTslYFNKYajQrYYyeOl5HXzmc//Ke9/5D9OeajqTJ1U7NdVWCCHE4cmcOyGEWEjKIGZneLJndNqnf/jVr/LGP1t/2N1op0jRmTpStXHjLdNu39S6nN7egeD7RLKO3Y/eS75oHeGJL7z2c19Bbs/D5CfNSdTa4Y7bP8cr3vCPFY9HIrU8vWtnxWPF3Djf/vVTU/a9c9vT7DqYnuaomsykt6hj/aX87Nt3kpvmvdPa4fvf+g7T/NMcF+04FAslSsUC+Xwe2y6/B1o75PN5SiWLYqFAqeSuJXfJ699Kc34Xd37th5RKFrZlkc+Nc8NNN/PWd1xNIlY5H69jw5/xtX/9sjfXUrN/+x/51C2f5+UXr8aaZh27mz95CwfHMliWjWVZFAoFPn3zTVzx1isrtrvgT1/H+qYSd9z1VYrFonfOmt6dO/j0xpu451ePz+6bJYQQJxGl52AB01lU1ScnhBCTFQt5Hvrxv3LmS/4GU0F9Q0MwSmKXiqSzOe75yhe4/HVvprO91U3d0w6f/eRGWk67iDf+pTuyhi7yyY23sO7y/8MrLlpbcYzBHb/np5tt3vTqPwHgtz/9Hr/f2otZmuBD//Lhim0/ev1H6T71HN70N68KzkM7Fp/c+Enedc37SYaKXeSz49xy62e54PJX8dJLzgwe3/LAz/nP3zzK/33zu+leWjebb1dAOwVuvfWzpLNZamtqQEV533u9NQK15rZbbqGkNZlcgdpkgve//32A+55+5tMbida1sLSliWI+y669vVzz/g9SXzN1/uD/u20j42aK2niUocEBapet5RXr4Bv3PkHHOS/nzX/hjpI++tNvMF4yeOzZAZYsaSMeMRgbHWJoeIy3v+s9NNYlK/ZbyGX49pc/S+8ELGlrATSjw8MULId3vOuaKdsfL7tUYPeenuD79hXd1CTcETLHsdi9a4//1tG0pJ3m+vJcyYnRIX703X9n/1iWSy97CRde8JwZl7oY6NvDnXd/FVvFef3rX8eaU1eSG+vn2T0HOH392SRi7hjlwb5e2pYtY3/vXv79O9/H1nDOORt4wZ9cRiw6/ThmPpflt7++jwcffoy2lafx0uc/j67O5cRj0xd9EUKIk9gRJ7JLcCeEELNofGg/ff3uKJwGTl+7NkhVK+bG2bmrN9h2zRlnVNxU9+7azg+/9x8M5kuct+G5vPQllweFKCbb+tgD/Pin95Fo7uA1r3oF3Z3L2PTYo2RyBS563vOC/T751E66Ohr546MP8+sHHsaIJjn3oufxksueSywyffLG3h3b+O//+jF9o3lOO+00LnruZazu7piFd2fuWKUiY2MTRONJ6utms+iLJj0+TqFokaqvl8BDCCHEQpDgTgghhBBCCCEWgSMO7mTOnRBCCCGEEEIsAhLcCSGEEEIIIcQiIMGdEEIIIYQQQiwCEtwJIYQQQgghxCIgwZ0QQgghhBBCLAIS3AkhhBBCCCHEIiDBnRBCCCGEEEIsAhLcCSGEEEIIIcQiIMGdEEIIIYQQQiwCEtwJIYQQQgghxCIgwZ0QQgghhBBCLAIS3AkhhBBCCCHEIiDBnRBCCCGEEEIsAhLcCSGEEEIIIcQiEFnoExBCCCHE8evb38ez23dwcGCAwcFBxicm0FoTj8VobGykvb2djvZ2Oru7aKhvWOjTFUIIMQeU1nqhz+FQqvrkhBBCiIWgtWZ8fJz0xARbn3iCffv2MT4+wZK2VppbWmhsbCCZTKKUwipZjI2PMzQ0xNDQENlsluXLl3PK6lWsWXMa0ViM2trahf6RhBBCzEwd8YYS3B0dy7KDr9URv83Tq+63fnYc73s02UK9Zwv5bz3b7+HRHRzQoLX/e1/+QZQyOYprzVE7lvcsEjFn/0SEqDLZbJZMJs2WLVvZuvUJWlqaOWX1KrpWriQei4FSUz6ZGoIP1ejYGNue2kZPTy+mabDhvHPpWrmKVCrlvl4IIUS1keBurpSKxYU+BSHmmEbjoLVGY/t3he7foUuLMkwMogt0jtOLyo2pWMQsy2bbtifp6ellaGiQ1tY2Tj/9dOrqUhQKBQqFApZlBdv77btSikgkQiKRIBaPY3g9Ro7jcODAAZ7d8SzZXI6uri7a25excuUq1IL2Ks0Pac/FSU9pt63XDuAQtPXukyjDRFF9naYnaVsvwd1ckcZALD7e8JzSOI6D1hb+R08p5V74HY0yJl9XFIYRY+oYwcI5SS/44iQwODjAju07eHzTJs479xzaOzqIRqMMDgySz+eJJxLU1NZgGpU3Yu5NG1i2TWZigkKhSE1tDUuWLCUWcztnHMdhcHCQfft62LlrFxvOO5dTTzmVhsbGef8555O05+JkpHGzcdyMHI3f3msNCl2ZLqQMTCMKunraeThp23oJ7uaKNAZi8XFw0Cjt4Pjpl9rt9Z8c0GknnJapUEYUQ1VPr95JesEXi1y+UOC/f/5zBgcGuODCC1i6dCnZXI6hgUFSdSniiQSWZdG7bx8jo2OUSqXg8xuLxkgkErS2ttDS2gpak8/nGR8bI1lTS0dHO6bpfoYL+QI9PT1s3bqV1rY2XvTiF5FMJBf4p5870p6Lk4t2/9N+J65LodBuo+8GduE7b6Xc4K7KiuufpG29BHdzRRoDcaJzP1S2f5nH8K4B7kXf+9rxR+7Av55Md61QZgRTVU9q5kl6wReLlNaa4eFhfvOb32CYJmefdSaxWJzBgQHMiEltbS0T4+Ps7enFUIr6+jpaW9tIpVJEoxEsyyKdyTA+OsrQ8AiWZRGNRunoaKc2laJYLDI+OkrrkiU0NjRgmiZaa0ZHx3jiiScoFotcfvnlNDY1Bamci4m052Lxc6dZoN2US8cbyQ+enSYrJ9yJC2CYUQxVXcX1T9K2XoK7uSKNgTjhKLdHzr3Aaxycivk0yvuUTXfRn35//gaAMoiY8dk/52N0kl7wFyU/sNm1cye9vb2MjIwwNj5OIZ/HcRwikSipVIq6+hRL2pbQ2dXFihUrqK2tXRTzxSzLZv/+Ph544AGWtLVx6po15PM5SqUSNTU1jI6OMjAwSFtrC8tXdKIUtLa2zfizF4tF+vsPkElnyGQzDA0Pk0wkWL5iBZl0Bse2qG9spLHBXSKhVLJ46skn2dezj4svfi5dnZ3E4tXzWZ8N0p6LxUbjuG09oLQTZFMqXdmBC9O38eF5ugHDJGJUV9t6krb1EtzNFWkMxInCLYqCl35RGbgFOfXarZISFFjwArzwyN2hLhHK8OfdVUfKxkl6wV9UJiYm2Pnss/T09lKyLPK5nJctpFAKDEMFxX0c28HxfkHNiEltTS01ySTLOtpZc8oaItHq6m0+Ulprent7eOqpbRQKBc455xwm0hMAJBIJ9u3ZS66Qp7uri8bGRpYtaz/yfQMH9vcxNDjE8PAwJcti5aqVZDMZSsUiTc3NNHpz7UqlEo8/volcLsu6detYvfpUTLM6PuuzQdpzsSgovyCKBu1OswAVNPMK5XXwHj64C55T5Y5fZZiYZnXNuztJ23oJ7uaKNAaiqim3+InG8i7ifonL6T5Kyr1BdpyZU660nhLcqXKL4TYaRgSjSqppnaQX/BOeP0r3+OOPs3nzZhoaG1nR0cGqVauoq6sjGothmiamabq/q16ng+M42LaNZVkUC3mGhofp69vP9u07KFkl1px6CpdccimNjY0YxokTlGQyGX5L2o7iAAAgAElEQVT4wx+STCa56KKLGBg4SENDA7bjsGXzFjpXrKCru5umpiai0WNLi7Ysi0w2w969e9mxfQfr168jFovTf2A/9Y2NLFu6FADbttm8eQs9+/bxspe/nLa2ttn8UReUtOfihKU0jmOX58pN7sCFoHdWowAHU5kVGTpH04mrzBiGrp5r6Ena1ktwN1ekMRBVR2kcbaMd/6I9+SKvvPgu9HFyy2Lh+IWxHDAMw20owmYorOIzlIHGqJp8/JP0gn/CKpVK9B84wOObNrFv317a2pZw/oYN1Dc2YFsWtm2Ty+fJZbIUigVs28ZQCsM03eqQNTXEolEikQjxRKIi0Ont6WX79u3s3buXjo4O1q1fR2tzS1VXgHSD3CHu/cW9tLa2csYZZzCeniCZTDI06C5AXl+X4oILL561NR0ty+Kpp56it7eXtrZW2tqWMHCwH8M06ezsxDRNLMtmx/Zn2L1nL694xZ9TV1c/K8deaNKeixOGN73C0V7apeNWuA6KoQSFUKb0xuI4TrALYMb2HLzbhGnafMOIoKiOdh5O2rZegru5Io2BWHDKvQnUyvFG1iYFc9pNzdDKwK+H4jiOmzgZ6qHTuAGdG8BVzsMzlDFlDt6U01AK7S2EYKjquNBW6wU/n88zODBAIulWNczmchSLRaxiCct2R1mVcisbxhJx4rG4WyxjYoJUqpaGhqZFt0B7T08PD//v/zI+Ps7q1as4dc0aHA1DAwM42sFQBrZtk8lkKJZKwQ2KYRgYhiIaiRCPxzEjEZQycBwb0zCob2hk6dKlRKJRtGMzPj7B7l272Pb009iWxQUXXsDateurLr1Qa83OnTv54+OP09zUxJo1p5LN5YjH4uzZvYtoNEpDYyOnnrqG+CzPfSsUizz77A4O9ve7aa3tHYyNjeHYNiu6OjGUwrJsHn74YYrFIpdddhktLS2zeg4LQdpzUdWUxh1cc7xlCzzTBXGER+TcDEq/HVfKW7DIr4Z56INO2bcy3EJLZpW081C9bf0cO+Lgzrz++uvn8DyO2/ULfQKTObZ9+I2EmAtK4yjtrk/jLzYK016stZ9fH86x97I0/Vx6w1Bur54uL1xqGma5iqaaZiTPPxWl3LDOGxREGVWx3p1f0r1aOI7DwYP9WFaJTC7L8NAQ4+Pj2JaNUopoNEYsHicWjxONRtFAqVgim8kwOjrqXW8U2WwG27ZJJhdHWfrt25/hoYceIpfLcs4557Ciq4sDffuZGB93e4y1Zmx8nAMH+plIp9GOP4sESrZNsVBiPJ1mdHSUdDqDaRrE4wm01mQzGXp7ejDNCDXJGpI1NSxZ0kZ9fR3FksW2bdsoFvIsW9ZeVb8vQ0ODPPjQg0RMk+c852xy+TyRSIS+vj7yhQJdXV0sX76CmpqaWT92xDRJJBNox2FfTy+1qVrqUnWMjY2hDEVNMolhGDQ0NPLkk09SU5Okvf3I5/lVK2nPRVVS2lugyAlVuizT/tJF/gwJpXC0DmK+YL6cl6HjZuUAqrKVPlQb7+/X38ZAVU07D9XX1s+Tjx7phjJyd5Skp0/Mq8mpGDP1unkpGoA7mufg3gkrBd6IR8VcaEeDoYJ5SNp2tzFNc/oRO6XwxgGDnkC8Bc4BDBVBVcG8u2rqzTtwYH+QUggQiUWJmCaGF0AD5WFU799VoYIRVEc7WJaF5Y1aRWMxWppbAE1LS+t8/zizIl8o8OTWrfz6N7/h+ZdeSld3F729vYyPjbOiqwvtOGzZspnBgSG6urtYt24dyWSSaCyKaUYwvN85x3EoFAqUSkWKxSJPP/0Me/bsYcmSJaxe7c7T27d3L5lslrPPPpuW5hYM08S23QqUP/v5f1OTSPAXr/yLQ1aYnA9aa9LpND/72c9obWnh9DNOJ53JYJomBw8coFgqce4551JXXz/n8watksXefXt5+umn6erqpDaVYnhwiOUrVrjFabRm3759PPP0MzzvkktoaW1BKQNt25iRCJFI5ISa2yjtuagaXlEUv3N1isnTKrSD9q6HhhfcebuZVAzFAAW242CgMZTpBYNudgRMrZTtC573gjutTJlfv7AkLXOuSGMg5pxyR9scbVde0P1sidDHOyhbXPGZd9AOKMNPz9AYhOII72JfsVMvXcNAVVzoZ7r4B3n+5S29qpkLqxou+LlsltGxUfr7+zHNCLUptzS/n1ZYvuZqHC9eD4JsLz3T7zENB3q2bZHNZLFtm7bWNlpaWkgkkydM2f+hoUF+97vfMzg4yAtfeDmO43Bg/wHq6uuIxePs2L6DiYkJurs62XDBBcRiMQzDPOzvlNbu5yWdSbNl0yb6+vajDIM1a06lpraWfXv2Ut9QT3d3N3X1DSilyGbSPPbYY+zZs5cLL7qQM9efuSDvY6lk0dOzj4cefJDG5mbOec7ZFApF8oU8vft6SCQSrFu/jqam5nk7J8uyefrpbfT29dLV2Uk+l2ciPeH9naZYLJJIJFi1sptEsgbDNDANg2g0RjzuphP39fWxZMkSamtTVZ1OLO25WEhuRWvH64N1Zr51V2pSB64CbXttutuG+wGd34lrKNybgPDxHAdlGBUdtT4jtO3kx91BQMcLDKtjXdtqaOsXgAR3c0UaAzEXdLDQqA5Vv6p8XvkTpv14LPTxmBzclRe3caulOI72Lvbhx/1SySqYt6eUgdJu0me4WTjc/DtQGEZ0wZdEWOgLvm077O/rZXBwgJpUKijwYdtuGqZt25SKRRzbf79VxUXONE0i0fLoh2EYQaAH4Dg2xVKJfDZHY1MTrS0t1KRSCx5UH87Y+BiPPPwI+/bt49xzz6WmJklfbx9tS9qwLYsnnnyK2tpazlh7BqtXnXLMAYHWmsHBQZ55eht79u5j6dKlrFy1kr27dxOLx+nq6qK1tRXDjGBbFr/57W8ZHhrissuez4rOrnldqNuybPbt28P9999PMlnDpZdeQrFYIp/P09fXSywapXvVKjraO+Y18MxkMoyMjrJ3924vNfYAY2NjmGaEVKqWxsZGli5ZQl1dHYZpuL/Lyk1xdLTGNE0SiQQ1NbWMDA/R0NjEsmXLiFXhzZi052K+VbT1/pSIcM/tpI/69B24ujzvTim3QrbSU0brfEop75bCW/oIgpG7IxnBC1NGDKMKlj5a6LZ+gUhwN1ekMRCzxp3h7JUzdkLX+ENMenZCIV3FtV6jlDHDqgdejuakXapQoBeM6vlz9MINiqpsYCpG7EIjiUpFFrxq5kJd8G3bYXRshIGBAYqFArWpVJAq4zhueqWhFLF4nPHRMZYuXUptqpZEPIHl2OSyOTKZDENDQ9TV17mpmN6NslIq+NtvhC3bIpNOE4lGWbpkCQ31jVW7plt//wF++ctfEovGOHfDeWQm0mg0NTU1bH9mOyXL4pJLLqG+vn7WCoU4jsMzzzzD4MAAe/ft47nPvZhMNsuB/Qfo6Ghn1erVGIZJoZDnD48+xpatT3D55S9g/TyN4DmOw7ant/HYo4+ydu1aOjs7KZUshgYH6e3rY8WK5aw5dQ3JOZhfNx2tNeNjY/T29qJMA6tk4dg2WjuYXuGaSDSKaRw66Ha0g3YcbO933i5ZgNu50djUxJK2tqoabZb2XMwHjcbRVvDd5Ayc0IZu9gZeMz65za5M2yl/bQCOm6bp9teWtzvkZy3crusZ0kEnU0ZVFFaR4O4wG0pwd3SkMRDHTWkcR6O8SdOAl0Pvb+B4a4t7n+NwQ+DNldOOW6rYvygHa855/PQLf3/h9IzJ13odWuzUPxe/BzC8qPl05ZO1o1GmwvRGoJSKsZALnS7EBV9rTX9/P4ODg0RjUWKxGI7joLWmVCqhtaaluRnbcWhubiFxiABGoynk8wwPj1Ao5LFsm0K+QCweCwI8P8hztEOpVKKYL1Df0EBHx/KqSoFztGbLpk08+thjdHR0sGHDeezetdsNXi2L3//+fs44/XQ2XHA+9XX1c3LDb5Usntr2JPf+8j5e/rI/I5Wq449//CMrV3azatVqorEYWmv+54EHeOTRR3njG/6azs6uWT8PnwZsy2b79qf5xS/u5YUvvJzly5eTy+c52N/Prl27OWX1atatX3/M69cdDduxsUoWAwMHGRgYAA21de6Ic1A06ThpNNlslmwmQyQSoaNjOQ0NDUSikcMGi3NN2nMxZ5Rb0dqtVB1Ky5/mtta/9mlvFFz589m9z6DGXb82mM86pRPXq5amjIonKq6pwf2EP9rnTJmGEW7np/vaLdypiUQWvrCXBHeH2VCCu6MjjYE4Ftq7+PqpERrbHWnzn5s0WbriF99xe9SUf0X3LvB+mqa/9Yw3YuGHwz16/usME8dxyhmbTvnoFcGdohwwenPDtPcT+AdRRFBq4W7Y5vuCXyqVyGQy7N2zm2RtLZFIBNu2cRyHYr5APJlg6dKlpFJ1R53y5zgOmUyGXC7H4NAghmG4FTW14xUX8UbxLPccli9fTipVN+tl8o9FsVBg0+ZNbNq0mVNPOYVT16xh4GA/kWiMA/v7GBkd4+yzz2LNaafN+Q2+1pq+vj5+/etf07liBaeccgp79uymqaWFVatWYRgmVrHIY489xtDwMJdffjmNc7AWnlWy2LV7J5s2b6aQL3DRRRfS1NzM+Pg4e3fvJpvLc+qaNbQvW0YqlZr144e5HRIHGBwcDNKFa2prKn6vZpujHUrFErlslkQyQalk0dm5goaGhVt3UNpzMWuUX63STZFk8khY0IFbvg8IGl1HV86p91cVVzN34E7J8FEVaTReSBjaz+RRwJna+Rk6cYOvFUTM+Ek/BWOBHPFNRHXm8QixGChdvmjioLSifI000Nqb9OwtO+D37AUX9tAFVXlz5KZeoZl08ScI9YK+kUmvKYdk/nFsP0O0goMuBySmCtI1DUPh6HKlTPdQbuqnoxzMKqmmNdeskkU6nWbfvr1EorEgsNNaUyqWqE3VsmTJEmpqao9pVMowDFKpFIlEAsNQHOw/iAVEolFs2wbTneweibijhfv3H6BzRWTBg7ux0VF27NjBI488ygUXnE9nZxcHD/ZjGCY7duwAYMOGDV5gNfc3CEopOpYv58wz17N58xYSyQSxWIx9e/cxMTZOJGJiGibJZJKx0TH69veRSCRIJBJHtP/evl5Gh0dYvmLFjEHh6OgoTz35BL19B4hGIzznoufQ3NzM6NgYzzz9DMVikTPPXM/y5Svm/N9Pa83+/X0UikUcxyESjVJXWztnQZ3PUIaX3hkhm8ngOA7j4xPkcjmWLTvxl1UQJyeNF8w5kwI5wDBNHCdUGM2b464oV7TWjp62/Q0vW6CMchsfbKdU5fd4GR1eZ7H2KzAHMzJUuSM51B4FI3feOYYDuem4casTdE6L6iQjd0dJevrETPxeOsexggufo7VXtXJSkr3juCNwjrvEgWGE5sv5m7m5meWLumfGVAv3geD/umI/waPTfO2m7Gvlpe7733tbOf4cAF0eQdRKofzGIDiq+6xpHNlN8VyYr968TCbDgQP7SU+kiSfixBMJbNumWCxiGga1NbUsWbp01opIaK3Zs2cPxVIRy7KCtDnTNIN1iLLZLNq2ae9YTnPz/FVXDOvvP8B//dfPUAqe//znE48nmEhPMD42xpNPPsV5557Lis5Ompub53zelZ8WOzIyTE9PD4Zh0H9wgPGxUZQyMEzTLUJnO1iWDWhi8RjdnV0kkgnS6TTLO5azrL2dSGTmftBt27aRz+fJpNMs71xB54our/fbXeJg+zPPsHXrE9i2zYYN57F8+XIMw6Cnp4etW7aybv06li9fTktL65wHu47jsHfvXsZGR4lGo8STCSLm/Pfxam95l2w6Q8kqsWzZMtrals57WrG05+JoOf78eD8bx1uiyG3jp/v8OtMMt7gVrSvuCoxQWx4EZlMmyrub+umU4ecn38v7o3faHwwMZ9pQLrzpzQH0qw4fjr84ulsd++SaglEFJC1zrkhjIKbw5tD5v66OLo94OYf6fHkjdY5yMNXMwV05Dpum0Iqa2iCAd/H3Pz6Te+KUv40fjnm78HbnzsFTKMdxA7vQenbl9FC8x0Ln6DGNhcvHn48L/sGDBxkeHnJH5+pSKKWwLItCLk99QwMtLS0ka2pmvfKixk0v9Bc5jyXiKKWCm3NHO+TzeQzDoLur+4hHnmZDOpOm/0A/v7j3XtadcQbr1q9Da+jv76e/v599e/dyyaWXsHr1KYcMlGZDvlCgVCwyMjLM2OgYlm0Ri8VJJBNHlgKqCNbRK+RyGIZBTaqWpsYm4vE4iURNRRCyc+ez9Pb0ki8U2NfTQ319HXV1deSyOfYfOEDUNDn/ggvo7FyBZdmMjI6w7altjI+NccnzL6W7s3vOi+ForRkbG2VgcJD0+Dip+npi0eq4OSoUC+QyGRqbmmlubqKurn7eji3tuTgi3jUBwNGWuyQAYGsN/rz5cGDnt43+gF34suO38eGBPr/TFD19522wT/xG2v/LO3J5Tp9/vsFBKvt9g12o8PFDKaSTR+785XmC1wbTQiIYJ9EUjCohaZlCzDn/gu8HPqG5cuGgTikdxF7aDl04DTct0tBG5VBZkHdfeawpn+uZGoHg+F5g5sVeSmtvNM8L/bxjhUfqtAalHbRhBGkhQY+fLjdAwViddn++cK5/xWI7i4xVsujv78exbWpC69cV8gUaGxtJJJPU1NbMSY+mQrF0yTIO7O8jGotiecVa8k7OLdCDm8rpALlcjng8Pi+jYxPpCTY//jgPP/Io555zDuecdy62ZdHT08N2b+26P/2zP2Xp0mWY5tzdDNi2Qyabplgo0NfXh23bJJJJUom6o045NA2TmmQNiUTCC6azTIxP0NzcgmmO0dbWFqRPtrd30H/gAFbG4uyzzqKnt5eD/Qepra3lgvM30NnZiXYcJiYm6O3pYfOWrbS0tHD5Cy+f0+ItPq012UyGdDpDenyiqgI7gHgsjm1ZDA8NEY1GiESjJBMLX7BBiGCufLhKNUZFB67bnnpZLcqboeDz4yutvHZy6nPhuXSHbDcq2nv/BENjceFeWv+LILDT5d5b72XB4udUpnsq776k3F9cTu8M5XiGDySqkIzcHSXp6TuJqXL0pUMBXcXI1uRiKLhVMbUzKeAx/ARI969pO8Cm6XGbek5emobhztkz/F49rdDeYugoUI5fmVNVpmziz8FToTz9cq+joQzvZ/N+bsKNhP91OBrVGEYExcIsdDpXvXmFYpH0xASDQ4MUC8VgYfJioYBlWaRSdbS2tlJbWzurx9VaUywWyWazKGB0fIxsNkshl6NUspg01AsoDENhRiJEI1Fi8Tj19XXYlkUiWUNjU+OsFTAplUps3vQ4255+hlgsxllnnUVXZyfDIyPs3LmTvXv2sHTZMtatW0dHx9yu1TY6MkI2l2V0ZBTHcUjUJIhGZvd3wfaWrHAch1RdCsd2WNHZSTwWY2Jigl27drJn7z6KhQLJZJJ4POYGnOk0+UKBaCRKR8cymlta6e7qmrdlDg4ePEg6PUE6nXbXplvgCpUzKVkl0hMTRMwIjc3NrFi+fO6PKe25mEyFCp/N0L6XYyEddN76zaa7j8lTIJxQoZLQczNl5FScTzlFU1d0sFIezQvSRNWk+4XyfUd4Xn741jr88x2JchVdtaALmsvI3WE2lODu6EhjcHLR/rIE0/wqBuWLQ5+hYMSuIkVihpEsf36Nt60yvcOEc+/LByOothVOgcRAB+kZKiiW4r9ceT12Gn/BVP9JhTL84E+FGgfKE/b8SdNB5a7Kt2HyIurltM6FWwdnLi742UyGXbt3BekoyWTSHTHL5ojGY9TX1dHc1Dzrxx4dHWHP7t00NbeQzqSxSxZmNELENIlEoxjKmDFgcrSDbdtYloVVLAEQjUWpranF0Zq21tZpg4vBwQF6e3pJ1iRZs+a0afdvWTaPP/4Htm59Aq01F190IZ3d3ZjK4NldO7n/9/fT3NzE859/Gc3NzXNaIMSybIaGBjiw/wBmJEKyJolpmHMaSDqOTaFYpFgoEIvFWLasncbGRorFIqOjIxQLRcYmxsllMhimSXNzC01NTdi2TV1d3bwsceBz5xv24tg29Y0Nc1405Xg5js3ExATacWhbupSO9o45PZ605yc57zLhOA4oL3Dy136bJuiZ0r4beO3y1OuNu3SA33HqoExjUmplKDALXl7uNHUzZkLbh00KOoNYz3HKSxa4J1z5ffByt21X/hq4If4yOzNRhhHc0hgqumBZOhLcHWZDCe6OjjQGJ4lJ8+gOxU9ZLGdDOBVPhuepVQiKJ2j3Iux3qE/KszeUiaNtQGFMakfcgTM3QPNH2JTCK+jiN1a2F9z5rwj18AXX9nIjovB6KLU7CuQ+7r+0HACGyzkHGSder55aJMGdOyKUY3h4GDNikkgk3DTMXJ5YIo5VLHHqqWtmdc5UvlBgcGCAsbFRlDeXIhKLEo/FjmnURWtNySphlUpYJYtETRLbsli2dBmNTU0V2+7evZu+vl727d1HS2sL69evZ8mSZaA0uWyWvXv28Ngf/sjERJqu7k6ec/bZNDc3UygU2bx5M09t28Y5Z59F25KlrFq1GtOcu2CiWCzS39/PxMQEwJHPqZsF4TUGjYjJyu6V1HjBsmXZFPI5LMdGKUUsGiWxAGmGuWyWnr5eMuk0DQ0NVTtiN1nJKpHL5ohGI3SvXDmnKZrSnp+kQu375Dll09I6mFlXHqajnLkyXYDjNsShb53K5/x9hb+ebuQv3OFbcQ5esxwK7ILdG26RLX++vcYLNrVbtdt/XmuvmJtf3TMoBDf9uRrK7UwOfmRlYuiFua5IcHeYDSW4OzrSGCxejnZCvXb+Y/5FT4W2C/1aelUvDS+4Kl+b/a/8ksdTb3L9fWrlls1yq1C6AZlfEMXwR93cXVGOogz3Qk1le1Ax2IfCUF61S+X21rn7UaGArmIoDpThjb65DY3pF4aBctCnQiN1hI/n/k+jUEYE5cz/KMGRXvDHxsaYGB+nrqGe2praiiIflmWTzWZIpycYOHgQ04xQm6oFpSgVixQLRVL1ddSl6mhuaZm12XXuEgpFdjy7w62IGYsF8+Zma8TF0Q6WZVEsFFAomluaWbp0WXBzMzIyypbNm8gXCoyOjtB/cMB9b7SmZFnUpepYv+4M1px2Olq7Ad+2p59m69attLa0cNkLLqO9fTlmxJiTeYe+sfExxkZHGRkeIVmTJBaPz+nxZuJoh1wmi+M4tLS20NjQOG/plofijmgOcmB/H/WNjVU/YjeZbVuMj0/Q0tJC+7L2OSs4I+35ycUBr/O1MttmxvYdgnnnk59TypmU0GLM8Dp/Pl5oJC4kKIYyKTNmxsvZNMFgOLCbVig4nJxxFFomveI64Xidw4ecFWIYoBemdIcEd4fZUIK7oyONweJR7okrX+wPWd1yxh057no2/sXScEe9Jv/2urn53hy50Bo0fmETf5HyYJkBxy+Ior1l7xwM/FE6CLcGCtx5fYafQukGm6YfcXl/OX5rBBWRoHsZd9wePV1+XhkqiAPDbYp/4Q+nmQQBqQLbMTAMk/le6PRIL/g9PT1MpCfQWtPY2Iht2aTTbsEM27YYGRmlVCpSU1tLNBqlWChQKpaIxmOkUik62md3DtnwyDDpiTQTE+NoDcma5JyWqNe4c/lymSypuhT19Q1esRCDgYEBHnnkEUZHR0nW1FBfl6KhvsGtDAqMjY4xODREemIC23FIJBI85znPobt75byUsh8fH2NkZJTx8XFqU7XzNlp3KPl8jlKxhGEYLGtfRnNzy4KdS5CqeuAAqbq6BVnqYDZYtsXE+DitrW20t7fPSTEeac8XN3d2gdu+h9v26apZzzj3TGt3Trv2Kkv7c9krFg4qd+hqraaplOxPf/C6asPTpA93zzHNrspVrstP+imZ/m7x7wcm/XzKH1EMhvy8jJ9Q1ijawVvDadKplANUN1hVmMbCpGZKcHeYDSW4OzrSGBze5BGdauX24rnpjkcc3Pnr002iVGUPlztXr/JdULiNilJq0nF06GLrBnOGd6VVoXNyR+pCixcEWRvli63/sD/KZhpuVr1bGMUuv8bP51DlJqJchlmFFipV4UMFvZFTUlHLO8FQCttxq8SY8zzh+kgv+LlsloODA2TSGfd9MNx/F227cyMikYhbMKVYxCqVSKVSZNJpuleuor5+dku1j42Ps+vZHUSiMWKxKPH4/C1hYDs2hUIBcOcSruxeCbipoQf7DzAxkWbnzp2MjY5iOzbRaIzm5mY6OjqoramhqbmZhobGOU2/DMtms+zYsZ1IJEqyJllVI1Ilq0gumycai7J61WqisdiCXAcHBg7S09NDbSpFPLawC9ofr2KpSCGXxzBN1q5dO+tzKaU9X3yUMtA4oaUBjrBtD8+Hm7LPcPvu72/63Uy3BM7kwFH7KZrB6JuuPK5/L+B4c/Wg8vXacdOsw4k3QXrp1PHBI1leIVgFzy2lOf0PNw1lRDAWoPC+BHeH2VCCu6MjjUGZEwpetNYYRnnB7eq55aqklJvO6Pe3uXPZyoIGwI+3oLI4CoBhTJrMrKdZfFh7HWcqmN4WVJ2s+J7KHj0qUx7Dl+qgYpejK/bhpnMy5cZHazBNA+3N/UGpcvpGaGDRPYbXeCnlzg3QKljjzvB2FnwYJ/3swTy90P4cr2fTNOb3AnykF3zbdpgYHyObzzE6PIJlWxiG6abX4qaFASSSSUzTJBqJzliE5HjYtk1fXy9jo2PE4vE5LT4yE0c75Pz13JJJOju7gt9vy7LIZrMUi0W04/6exxJxkokEkWh0XoOXXDbLgf4D5LI5El7hlGqi0ViWzcT4GG2tbbQtWTLv/56WZfPMM09TKhZpaGpckFTV2eRoh0w6g1KwvGP5lDmix0va88Vjats+Nf0y2JZJKZLhNt6bZuEcQfs+2eTALtwmV95r++19+X4j6LYNd6h6GTyVSxAEO/Tm1jVsO5YAACAASURBVM9AhQK+cI/7DB0kbu01d2knQxnldXIPGyMYmOb8j95JcHeYDSW4OzqLuTEILlY6dKMenhQcmn82uRfMz1tXSlf17UQ4TDtkcOc45dE0w5h2xC78PhjKLT7iXpDdoiYO2psi55dK1uUkjnAPm58Wgdsjp0ORkqkMdx6e928SNEhegBcOtJQf8ZUjP7cBMA03zRPcpQ4cpzz6FhzZ8ZZB8B4LlkDQXvKJxs8m8c8jCOm8n7eczVkOQiOR+S0kcbQXfMuysGyb0eEhxtNpbNsmFotRX1dPKpXCME2ikcg0jfvxs0oW+3r3MT46Rn1D/YIWvNBoCvk8hUKBhoZGOru6Zn0R9uMxODjARDrtrdN29OvWzSfLKjE2OkZTSzPLli4jmZyfz4Bt2zz55JNYVomGhgbMEzQdczLLtshmsixbtpTWtrZZDVgXc3t+svDbdL8ztOLxUPs+7cid365PCu4mmzpyV5nW6c+5P9TIcnAbBSh0uWiJf48w0wtDncIVDzvTBZ2TDzrllGcM7gw9+X6o/GK/A3n6Cp94nbjVOQVjkZHgbq6ciI2B9u683Xt9t0KSOxHWu1H3CnPM1Avkl4CvGG3y9x0auTEmL9JZhdwLfuWyAEEqw+Q0w3AlqxDDH6lS5eVL/WnJjvceuBWSQ2NZjhPqpyunYQbfe3twD6nAC/LCN9hBvOZ/7QWPDqHTDNIsyz2TBngBopd6qN3AVfvba43SGoWBVjYo0x2J9Zshd/gyFIi6+zOYmi4SvHW4hWSMSAyD+QtaTpQL/vDwMHv27MY0DOoaqqdEfS6fo1QokKqvp7ure06C2qNVLBTY17OP8bFxGmZxnb65VLKKpCfSNDQ20tXZPS9pq/v39zE8PEIimThh59nNpFgqks/l6F65krpU3aylZ56I7fnJ7lClQ7Rjo8LXh0PNp58mIyf4clKBlcnTLo7a5IqaSlcUQdFesOdOxyCUyeNO03DPyb8P88qf6MoCKOH0Gb9SpjKMIByoCNC8OfLeWJ17X+A43vvlzyVUQYqmmlStU08atlSRKOY8p2aeKG39LDviX8OFb7nFcdPavU452k2VtB2wHPdrBwPtGGjMijRA9zPrfpjDFwjlzQkLvvan7arQiEzwJ5TmcAIEdsCUwE47oaAu9HMT/h4wDHeStD9nzutswwmSK7xFwh3ACZVN9oqOaKOcjukN41UES2hvNp3ydhycgxHMcwv9EOV2wk/H9P7421akgyjcRc1x/6CM4Pz90T2twFYahQk4Xsljr+yxCjcG3mG1Vx00+J0op5WW1+ah4r0WLqtkMTg4QDyRoCZVWzWBHUA8HseMRtGOQzabWejTAWB8Ynzei6dYtkU2lz3m10cjMWpqasjlcgwc7J/FM5teLpsll89782yrP/g9WpFIBMe2GRsdw7bsw79ALBoaN8BydLld1Y7ttluO7QYk2vGCFncaQvBHV7ZJFUGaUm5A5/8JHg7d//h/jug8He8PhOupBUEaU7Nbwj9kRftq+O26rmj/VWiah//1dJRhuHP1Qs9rv4ffPQH3fQ2dj/tz+u+Dn5VTzsLxz3NyYOcm/shnstosru69RSVUat4rcuFPEHYcG+UtNOk+YwSjSL5yz5Mu783P5fbL7oaPFloQuSK9wA82/PL5Qa8S+ItcG1WeihkW/Aje4p7KUG56g+nm6/s3Rsrw5pz5AUsQDXkXyVAvGf5Tyh3R8spJ4q8h4y8rEKxA4PWIaTv8PofWwvP2rVDlClgaLzBz0yfwRux0qBBLENj5vzvevt2RO+8arB13eQN/BND7t1Te4jXu17jFV0KTrJXWON5Iou0PH/obK+UGeyp04XfXYJj0JgmAdCaNVbIwIiaRyPwWnDkcQxkkk0ky6Qyjo2NoDXV1dQt2Pv39BxgaHqY2VUd8nntqjzerJRaLU8qkyWQzlEqlOV28vLevj2KpSCwem/WiI9XAUAY1qRSDAwepra2lubl5oU9JzBH3FqN8jzH5ySBzxXuu/DnVwffle5lwQKdD2TJUZOX491nlBJjK52aspOkfVZcLnRloL8Om3MnprqlXztZxO0zLO1Beh3t4XTr0pKyp8EGDdh8qbr6CfU4NHiu2096YnZr0Yn/+xzRHdZd0Cr3H/o2F9v9ymO/q2GJm8i9RRbQyAMP72x2JCd8flwMBozwi4o+uUL74VDTu/jUlKM7kTcKd9OEPr8HilsPX5ZEZHXrdpNcYM3ceVS0NbvChDEzDJBIx3Z/FMP2rfBBchS9vfm/c/2fvzeMsOa46329EZt699q33bqm1r7bl3RhjwJYHHh7ABsMDZgbws8HAY9iGwc8YDMyYB2MWY+OFZ3ZhY/h4wQ/beEHGQrJsYclaWq3e9+6qru3W3W8uEfNHRGTmrS6Jlnpv9ZGq61ZVZmTkFhG/8/udc9JrI8wv3UDusE5+EM9aScdF6w2USE+CtF62XBC1QA5ea21AXOZxBCVcywIppcVYwuJKx9GZm6PIxQba9pTWDE4bdkJSJlBcC+stdfBOmGMoTRpH6E5IOAmJ0uYAZua1YYU6lZVcMej3+ywuLSI8SalY4vR8wufXpJBUqxXm50/SbrUuWD/iOEEpjUoUhXMIjNYy3/OpVqpn1IYQgnKlQrPZpNFoPLMyK6dhcWziRPvd3jkFkBfaCkEBKSXHjh4ljuIL3Z0rdg7MiSidqmgtG8AoKgNreXZprY3zihaZ++7UOAPt5tc/q/u4RmiKZlDK6bi6NGmK0kZeZZUyp4AvQSp9NFJKy9C5PqcqqpxKRwyc3GB7Ovf1lL/L+qOds15KG/9tjiekGIgXdNcyf3HNKuLKPH8x2RVwdxGZTmOYLF2uTJISo/QTAwkvgFP01k4umA52jlLXrk7aqcd0niEHRFYPaHk2z2nEzYCTfb+UTEM6eDkmS+XOe8Djlmc9rRki0410Olf4PHeBtfPKpRTcKZaxbFZjj7BgWdi0/NhB1Q3s2u2EEAJPyKymjdXQZ4oLWytPWKBIrkirECRagdAkaX9Fmhlr0FFgr4n1MAyEDJCN9g7rpXRiupGdAC7uuN7zZlprWq0mjZWVtDj5xWpSehQLReYXFghtqYTzbY1mg6WlJVOg/CK+Vk9lxnkUcOLEiXMGlKM4pNlsUiwWLyqJ77mwcqWKUoqVxsqF7soVO0NzaxUntxyAcms8x5oMzDknK2Di2V1MuzbzZhoioAxoWV3jLv+z0rk2Vx1zdZiK29/tl8+o6T7nQzKyWPjBdtXqA7rPwiqz0OnaLNfcaXrSV3nc15p+U5+uHlgnKm1KSKh8PGAa1K9zyeDM9ywWzwSmXLGLxy7vmeASM4Emtt4dw3iLXAKQBJWolF13zI4Q2WCTL2vpvEkOtAipB15yI8OU6YCSgbVBaYJe9fI788RAfcyLzjTWC6g1iVbpoKVXjaaGmczkCQ7EKjshZOxbLmOlVqcMmFpbYC2wrKDLfknWwhojvQFxFizlvGFGaWkYPgM4jfQx7bnKgGjK2rnPtgGljEcuYw7ts+B0FGTPiWMrDUZNXFggKON9VHm5SK6fA/LddCK0nGIan3hl0AdYWlrk8OHDlCuVSyIuqlytoLXiwKGDJMn5vYeJSmg1G8RxRBBc2tED1VqVKAxZWFw4J+2v1OuEYZ9y9eyW6bgYLQh8hBTs3bP7Qnflij1DU5j3O4ljlErQWg3EyYFdi6waI9NZM8+C5R2vMoc7cvPT6nqzbg8H8qTIO3f12szcGizeQDZhrW3eATtOKpXtl1g+UjhlSy4EY+DEsIoeD0SmnsqvNbRSuXMnZfEyzy6Wicttv+pcjEfWrHMc26mt+mb19kLKFGcLG5uYOp7tmkVIDyn9K07ci8yugLuLyISN0XKDjiC7Qea9MVF1rhZXfpGNBWv5YSz1OAEq0Sm7x6ptBuj+nOWzR2aOJn3RgTqlFIl24cx2eHXEUu789MCgZgZIkcbEWe7KoiOXJcpIMe1326aJo2MQ4FlnmVYWYJlUl3Y/891Ltx9A2WlnMzbMSBqFq4lgUaIJi1Mu5SdCaxN/h04Bp0K5sZuUebO/cM9UBuR0ytgZJOwGe9sTrdKAPW2RrUgnFfOPTh0CguwxEqZWECJ9Zp7tpoHZ2Vk8z6NUOn9Fys/EpJDUhoaIwoi5k7Pn9didTofFhQWqF1nCmWdiUkhKlTIr9TrNZvOstq205tjRYxRLpUv+Op2OSelRKpeZnJqi2+te6O5csdO0RCXpl16VfEMrveorIYkiVLK29NawRRYs2RlGSEmaRRKdgTw7H7k1lcqBNLXqe95Wb/uUZgGRVhZUKWUC4104gnTgK+cQldnP/9706DJjDtTFTf+YTvanOpyVMmsQx2zmci04BlS42Hjb3bUVEtJ+OSbA/izMClVKmTJ9miuJVS4Wu/xng0vQUkBl5QqWxCFNeOHke+ScPo5dY9WLb03YYCu3v/llTnCoNVKfCvCyn0zLnsj38PxbYj19iUpSD6ADWtqlDEWvkuu7gXHw3JQFeiIHdrILbgfVxNF1eVWETuWT0jKnMierFI7FstsLewOVzICQlHLgWqfca6qocB8G6+vonLo9TaiSyijN9o6xNZhOk7iafU6KkSMJ01BzbQqXC2nbVorMZeeuix48L8fypg+oTNuT6SnY6/csj7tbXJgnSRLK5fKg1/YiN88Wdi8EwXkD6Uopjh8/jpCSwL880l2XikW01szOnjir7S4vLyOluGQcBmfDfN+n3+9TX65f6K5csacwBSRak/w7mRSfLM1++n2AnUs9rAjhnZrpErc2MoySsHTeMyWVHPA7hdHTa/Rp8KxYvd7I0YqmidWlGNK2SefzUzJTwmkBzrTtNbYdOA3XNZllAXftn14ZnLyz90KuDK/Yaru09S6XnZm6JfmSA0JnwESIHHgT5BIbZUBBSIm2Hq/BNPQyY4BYw0OjQQuVVjhx+4tc8pa1B7Fza8qyVCa1hwUiqeRxNa8IGoVWAoEFK87JJ3Tm5MrVfENpU5tuNajS2TGkcOxeWu47SxbC4BBu5LLaHs8xrO4+ko75ynXbtuOKhutcf7OR0mn3radRgFA6Pbd8tZzcHoOsnEVbDmcpnTGCtuMpABNYLX06Gdnfr4o9cOefPnuDDsqsfg4mtlEImUpLn222sGAkeZ5/6Q25fqFAs9VidGQM/zxIJDudDu1mk3L1zBKaXFQmBKVy2WTQDMOzVqNpaXEBhLgkZL5ny4QQ510mfMVOz1IuLQfoXPbKU4p820zVa1k+O+XqGcO4OM3kl6/nClgGT6PJA77czGgdlKk5ELS6kLn7HXaudCyfLXo+uP6AJP4cOroHWbgTISdIWneBtxkp16Oi+0Guwy+9irhzFwgfv/ITxJ13g/DxKm8nab8dkHjVt5O03wEovMpvkHTeDnh4lf9O0vkdIMGr/ARx969BN/FrbyPu/AmoOfzqT6PCf0NF9+NX/hMqaaL6H0cEr0LQRSdH0HIc6W1DRQ8iRBFZ/l6S3oeN477yA8SdjwBQqL6ZqPv3+KXXmSuuwTlv9Srcmq4z7OIiuz9X7ELalSLmT9POedFTIS35NOgpymcncsAiv5rWQmJKE5i/uWLluE2lxOr61sjqRO7nLP19Fmvn5KLn7KzTvhgWiozpcfLIzMeU9tqcvpFypLXn0msj0YnC8z0LUtd0YqFz8XYOmGVuqFWghgx8OdbLgT5btRyH3gw+1Fnt0lyJAKFNwhOUsnr/HPlFfnuR9tudK5AB0rQfuQuoNdrG8GWTqtnfFS3Vrk3UwCSYXl5cv52k1Ug93cSpEAidxX9m0lLLFop8c1ZiLCQC75wP+hdjYdMwDDk5N0en26FQuPSSgyQqodvpsHXbVdTOA+B6fMcOut0u4xPjNmvb5WFJEtPr9piYnGRmZuastDk3N8v8/MIFLVdxvk2jaTWarN+wnvHxiTN6n64UMT8zS92r2oIuIdaUXT7p/qescbLfi4GEHauPmzkildLIJ9kum9NXMW+rgFxaQPyUBjhlFaoBT8rUZ6qFJmq+Fb/2TruLXlOpkgeiWmuSJEZr8wy2l08SFEoMTU5natPV5yxBmNriFmRlGcy14pRrkK6ZtAadZLXJnazVKW1cKSvhobWLefQIm/+T4tDb0rhE1+88mJbCSjIHMLuHqZd7bu1inOvPg532YHfpuZEvc3PZ5M3CWg8AklRZJySQmHfVrv6FTtBKoD2JwL2guZIJOPBgX9K1Ri1rg4BP43tnV72bJnsxP9hPnu2VskA13RgHGsxJZGxdpkQUg/FkCKt7N7UBpXyyczWoJw0MBrQWuPkg1zzaHS9l28il+FdmP1PhxvwrSGPmhN1HYxg3812ZhDnasHophhJmMsxPBGkxhdw2gK3PZ0Gcu1SmO4AZ7B2fqe2groVIn5vsPrukJ66TwkhOtfMHSHuuOVmoEGlJhPT49npqpfCc19NdK23O1zsPg/7FZo3GCu1uhyAILjlgB0aaqRJFFIaEQUDhHE6qSinKlbLNGHt5RQ0IKYmTmEZjhemZmTN2c0RRTKfbpVB8di1yBAIv8Gm3O4yNjV+S79SlaukUozUDsQ/WuYzwIKf/eSpgl7fBurrOPUpajza/nZlvBuPrtNI50GLnzCd7LlZ5ebWtF+w+58/VxKG58AQ7W+osRZgBeAK8V3PsyBE2bdlEo96kUq3g+d6A4uZn/u+f5fbbb+cN3/997PjKFzn82L3MLik8UWJ8YorqyAgbtm1i6zXbGZlaj7Qqj7e/7dc4PnuCD37g/UhP8tADD/JHf/w+PvSnf8JPvPnNCOC973sPP/HGt1ApV3jPe99tAKBLmiYA4dtYv9wCwl3XfHgOXvpzUPtZW0tZpDWVtb0HzmmbZtXMK3Z0YgHeFbuQdgXcXWRmGBG35DbMzYDHyTErq9glZ9rJ9dzmQuZ+Not2rVUGKNx+tmmtzO8dEDwb86ZTNeQTDmudAywIOzHIbIf84JRud0rL2aCuc2INbTx55rgOWYlscMJJUx2Kc56rXLbQ9PJqlALhOerPwDdBnjF0QEfhZAup/NCCb20loGnPc4O++6wQNs7axQgYhJmg8IS0BJo5Sw+N9lwdROPFc+eGTeCiNXhColEo4QCZTo/n0u+Y4Vla5aabuJxHT1hPoZULi8Fn0bGOzl3gMo8q1/6AwF+B8NPzfrZYr9sjieLzXqvtbJoX+LRaTYqFwjkFd612izAMKRZLl92iXSDwPM8U4F4tD3sG1ut1iKMIz3v2OUyklERx9IxjqS4HO9E6AMBUbQsr3QXCpMN4eQPduE03WqEcjFAOaix1jhF4ZaTw6cdNBB6VYJjZ1n6kkGwYvpajK7sAuGbiuexdfAiAayefy54F83n7+HPYu/QNtNZsH7uNudYhBDBaWc9Kdw6lFeuHruLg8g7CuMum0Rto9BZY6c0zXdvGUucEcdKnVhwnVjG9qEHRr1AJRlnuHgMhWFfbzlxrHwLJ5tGbOLT8GKC5dvJ57F18CCkk28efw+7FBxFotg7fzKHGDpTSbK3exOHuLtAJV4/dyuHGbpSO2TZ2K4eWH0ORsH7oGmabB1AqxpcFrhq9OXMyA2lStbzlgd0q+Y9LbKdRJN338f4PXMcN11/Pna/5DwgheM9738OWLVt4wxu+jx/5kf9CtVqh2+nyA9/3Bu68bYKP/tNXmNpcQgjFjdeP88PfvJFup8uvvq3CyXqPu/7mr0ArZqbGefOP/zCH9+9hy9XX8Efv/WPe//4/5omdT/DTP/WTxGFEY6XBb7zj1/jruz6Sgt/0FPLn6BZ37s+njEHZz3Hnw/jlN+bWQtg538prV798A6zAIEVwxc6/XZFlPk07HzIOtQrNuIvgpTXpHIuk0wW2WWULtM1+JFbLAqy3xRQoB62STOonMvbHSSCdHEo+zUQYpiuOwnclA3Kgxr70wgaMmcPrzJvkWC8LJk45j1yM2EDQsZVwOAZJKNcXjed7advg5Io49WYOaOYBYLY/2tKpq6WVpiNkYFuTZpVy4NidvaXWBsop5I6DEKbPIpM9rGbvso3zx8sYRWFBXXqdRBZnCeb50cpdX7d3nstNUb2JyxPOB2t6YvZR2bOSdicni9Vkz5Xts3sMhBRIEQxMPGfbLkapxkpjhSOHDlMbGrpkAUs/7BP2+mzZtpXhoeFzdpxDhw7RajWpVmuX7LV6Kmu329RqNTZu2njGcXILC/PMLyxQLBafVTF3YJ7HOI657trr8f1nfu6Xsizzzx78b7z+ll+hHAwRJX1iFVLyayQ6Jkp6FLwSUnj04jaBV0QgCJMenvApBTWjpgA84aGsHM8THon9LIVHrGKSJMEXHrE22cY8KelGTZRKKAdD9JMOSiVUC2MoVOpUdLVUPQsmtHVW6nQOdk5Z45RMooREK4RWJLFCqYROu41Q0A+7zB89QaVcZv+B/Xiex8zkNJWhIp1Wi0qxgChXCQoldKzwCjCzZSvFcsXWorVSSm2yRnZVl5pnrkEUxcRxnCqUkkThFwKk9NI11wC409pkgxauXp4irP8Mx5d/gZ//hV/ifX/8XsrlEp7n8eM/9kZe//rX8frXfw+v/+7vYbIccOerFF/66n527e/xod+WvO1/KQ7Pwu/+P4qF7gytboGJkRW2ba4Sxm3+9WuKqeor2LezzPXXbmW20ebu+x7gp37qp/mTP/sLEILf/I13sLS0yKc//Vl+8Zd+4cnHzlOwnCA/cbvMl1IK+o3/QVD5lWw/vaodvcbvnUnvnKt0Lsa5/jzYaU+KV5i7i9A0Ii0W6Vg7IYRhduw20grpHDtl1vDKSOh0JmVwEkgj9cwHGedkjfmB1oLA0wF1Wjt5BtnAJ4zETwqZSTUyWGDAjQVLhmFzmMklCMn3W2c4yXQaLaRhHXN9N4OSPSt3Li7uTKmck1xkDSkFngStifohQSHI+u/OR5CB0BQUCVv7zfQ5/dcOcubc3XlYni2P8IROXWCuEIHEgC5lWUSsNDRJElPzRpt769kSDAIzcap8zQeZJVZJ6xUKI8PUStkkKm6OEu4q5LBflikrham2nIMpkWglmWnQITk21rGU5k9KZ0Aw/YMF4xqFEM+ehajWmm6ng5TylAlXaUWSxCjLAPu+f0HS2Zt+JPZ9lDa+drAfvu/T7DfwzzGIaDYbWejqZWi+79Htda3i4MzaCsPwtGVvl5tJKYn6IReh//e8WeCVGSqMAeb9BBMPGxDw5S98mVffeaf5ObcILnplwMiff+zHfpxSscgHPvABPOHxfd//BgD+4s//jB/9sR/l5ptu5rWv/Y/80R+9m5/5mZ/m1ttuw2VhrviZg6fiD6eqEM+GJhhHscBPA8mdq9M4+VwqfqUSVuaXOH7wCEf27WF4bIxSyaPX6yOJWV5sMTI+RL9n4pUJi4zXPGLl0/yXJs2oReGWEupgyMLJeeINfTYUNqE09NdHBAWPqKfxiwET105x8rHjeAWfD0++ne946L/SbfaYetV6jn36KL4n8V4oqX+2Qb/fZf33TDN8dAy/EnDN99/Mvr/bgdZwzfffzP6/exylFNu/9yb2fexxvOT/wnuRh5z1OPrJg2x+yWYWHp6FY4Jv3vISXvvq11FZLjK94Xr+/GOf5Pff1uPnfkMwPFblxHyLoarHukmfZO4kJxfWMzG6Dk0R2vM8cK9kduHzfPAPi3zuvj579r6YE8fn2P0vn2DuyCE2bd3KxMQ4P/uzP0+lWl4b2D3ZeJr6q6UpJWVllkppgsqbBjNmCk6VYeZeP62UWfJhYvJ5Fs3zF6NdYe6epp0PT59bwDtpXWYSF/7mXrIkfdksEyQ8Aw6FW4DnmB8pMjGeTgaCmbXOQNCTxdhpQCUKbCZIczzXYcHgOt/puJOUrXIwL025r1bJFaVjjXSa4l9oTX6dqdGDWnK7rwOzSmkLiBzfZBgsIZTLC5K/nBnosifvQK+QmWQTIVEp02mvdRpjMHitssshU8ZPKNDS1LnLZ5bSOeBrzsX+wV3UNFGLwYRSph1OwbRCZ4DWXXmBOefcVcs7CYTOMYICCy5I69y4VCkCB/qz+2q5QlCJ2TbH4lmXwcA84rBgKjWWHt459CldbN48pTVHjxyh3WlTKZsi091el3bTyA/jODaLHa3xPY+gUKRSrVAqlc4pG5OohE67Q6/bIYoim/TG3CPP8ygVS1SHagS+kZJqNAsn57l6+3YjKzxHduzYMZaWlhgePnfs4IW0fhgShX2uu+56gjOU6R45fJiVRuOyqAW42nRuvFrL4iSmsbLCrbfcdkYZXC9l5q7VafGj//lHed/738/vv+tdJErx+te9jo997GN85WsPcON11/KTb3kLv/Vbv8WH/vRDLC4s8Lu/87u8573v5cCBA+x64gkOHj7Mm970Znq9Hv/wD/+A73kUi0W2X30Vb33br7J+3Qbe/e7f56Uvezlfue9fn7QvDtxB7t55cmB+1kqjlKaxvExzpUFzeZles0mtUuCwOMLeZCeHwq8BFRKt6aqEYb9MTyV4mEwCnhBUPI9Yww2f/g4ef9UXwetTFiUSJejRMfNZMs+LNryeLfG1bCitZ3TDZgrFIlqZ5HC/+ZXv4sdm3gN+QP+hBu35Fv1uRL8fUioElMcq9LbHLB8/zB2vfDkT69ehY+so9wUq1ugkISgXiPsRceMnCMb/BBUp0AoZeOhEE/V7dOoLFGrDHHz0QWoTf8nJ33sFG376XZSLPl5QRARVRFQnjhVxpFnor2diZiOqV+fkiT1MVPuUigWUlkRxzGK7hZajVIYn2fnVW+msjPP8V76Cbbe+GOl5pyahsnNwWo9u9SuVLilEbv6HpPtxgvL3WibP1bKz4ShS4iSapKEx2DWPaceThXO6gr/Y5vrzZFeYu0vZUoBgWStD0FgQsMbLkqn1BC4biFuPD0yOTq5pX0SzODcAYzWwU25B7jJfWemkQiOUk1WqDJc5cZ8FP1raBCnaSQNV+viSqAAAIABJREFU7qlUhnXKx4Bpc1ApTLKPfAFsiRzIZiWARCuiXkhjpUW/0aB+co6dO3ezfmqEien1nJidpVYKaHRitm4eIUl84n6bg0cXGRkdRwrNtuuuJez18TwB9BmdXkdtfBLp+xbAWJCnddofgUandKMDg06WaAGZsMygAJ2Y89SxQnkSB1gV2rCQDmZlN8wCYCz7KAekmu6oeYxnErnYt94xZDoZvPcWuAqtUUJYIGcerlQ/LwUqUWmR2HzZDcemSPtM6rQ8hM2eae9xdnxl2xWuYxaQqhyofhaY1oRRH09KOt0OS4uLhGHE6Mgwo+NjFIvF9PpHUUS73WFhfgGlFBMT49SGhs7qwl2phPryMo1mk8D3qQ2PMDwygud5CCGIk4Q4imi3WiwdXqJcKjExNWWSwUhB2O87Pvqs9clZFEWUSpdfrF1+7JLSnOfZcKr+e/XDLmUbkKM/2TbPUtbS2ff+9Xfzmb/9HK1Wi9tuv51apUq32+WNb3oTmzZt4iff8hauu+FmRkbGmTsxyy/+0n/jnb9tMjr2en1qtSEqlQpaa0qlMv/8hS8QJQnvec8f8Z3f+VqKxYBf/dVf4QUvelnqqnW2+vnN3yWX9EQnCunZUAAN/X6fE3v3sHfHTvA8lsIGM9PjfLjzewwVriLWHgV/I4GAdhxRFIqSX0LFEUUvi9VeibqMF6p4RY9iUSIo04z7SOGx0NRMDRepM8FXT97LJ8K7+OX170SdCJnecg39Tp+V4wvc/vAb+P2PvI+XbXsuQSWg1wpRiUInmj949AP81+e9mQCJ7wu+613fzYf//m/YuHkLr3jFt3H33Z/nF37uF7j7nvu5954vMDI6jAj6eFIgi9L62TVaxMwd3cvIxDTl4Rrbbp2isdxABAHtboQUGi9WBHFIcWiSqDGPFAodN5HSJ45WqAxvotPeRTGQSK9AsVxhUkIch8yeOMKNLywwPtnj/k979Lpdrr/jm5GlcnqtzDpSnMq65W9c3nFrYzyEABXvAL4XyO2LsEB97VIkwstKeSmUi+S/YhfAvF//9V+/0H14Kvv1C92B1aaS8zOhpot4J6/T2cuqxWARc8MU2bdUuPT3pyZDMSwZGctmF2nCghMhJAobXaXzA7aV1VnAkw0IIv0vdxDbtMnQ6EoNZIBVMwBgbHeQJh5Q2DgxkU/m4WINNXzmk5+lv3CEr3zpq/QaDY4dOEAh8BgZG2XdhvXURkcJ20dIug0IRti0bT3Hjy3hewHzC8vcePNVlEseSin27TlArVrg8R07qZQqxLHm+OFZUJpytWRkm7Yfp4Raa51dfPLfnafSnZtM/y5t4hcBadyeYVRdGQtpgZrIthHCSmoHLjvuVjpUZwBVlj0sfTqkk9naRuxnE0LoFlDGs6qcrEKb2D1pnXL5gqiOTBRCo1LIazuSe+BcDF4aK+ieZUwsx7myiy25hFKa5aUlWs0m3U6Haq3GzLoZiiUTk5HeN228oaVSieHhYSqVCq1Gg067g5SCIDgzL6XSik63w8L8PFJIxsfHGRkbIwgCpJX7unHE832qtVqaXr++XDfPrycpFosMDw+fEwDW7/Xo9Xr0ut1zmrTlfFse3Gmt6Xe7TE/PnPGzWq/XCcOIQqFw2QHiTFmw9nkprQj7PWZm1iHPIJvz+ZrPz4UttR/id37ug9z5mju566/vYu/+/dx66y2MjY4xOjrK//yt3+Ktb/0V9u/bxbe/+tW86lXfzh/+wR/w6te8hvGJSf70Qx8iimJGRoYZHxvn05/5NC94wfO5/fbb+fznPstbf+WX6XS77N61k49+9CNP+k7m75HIOY6FEMRxwuFde9nz0IP807GP8YXOH7K/+jX2V+6nPtHmYLCLkj8FePjSM/F5SGKtKUqfojSxfmUvINEaT0iqfolQJcyOHeBzX9jBzn87weP/eJTrXrqOhZUW97zvMeYOrTB1Q4UH/uIEn7zn8+ze8Dn+/q3/RP0v69z9kXu459u/TvSliE67zf6DhyiLIuVqmdmTc7z62lfy0Qc/wQ3rbqBRb/PKzS/np37n5+j2WvzJhz7Iu373f/E/fvudlAo+L37xixBC4hVfg8ZL1wQriydZPLyfiY1bKRTKBKUCQSmh4O8muOUJ+rpCq1UnjnsUfUGn1aZQrqCiPkm0Ql/VGBqdphSE6OIWGq0uJa+H9AKCUpkgKBLIkFZjhbm5iKnNdUYm/oV//cQiY9PjlIfG0/n4tMaGtTaR6xBybZVG3iGcrSezY7nEdOIcgruLba4/T/aO093wiizzadr5knEo4SO1SqOWTPp6idSYQgfalA2AvMfF0uECEk3GNTkWBVtMWucX4jqTJrrfGGRhAZhyR0hZd7ebsBkYU6Whi/VT2Qtujj3IJLrPafIPZVgs6RKrCOcdSuh1+xw5cIL60d0cPXKcq67eRrFiki3UKkXa7RaJhihSDI8OU6kNEUchIijyyEM72bxumHo75prtG2k2WkhPUq0NMXdykbkTc6Al62aGGR4q0Gr1KBd9dGGMwBNsum6bBZsyA5uptDJblLsi5+k5WlBlV8u4WjyBZ+6Yy1S6uhxFWsDcgj53z7TW6TFVLqOXTDNyugastC63HzZbqsviiQ1wd2ULsLF+rt8my2VWMt7d7zQJi9b4UqLsFlEc43m5xC3ueXCB8gI0uXgz60SQ+twMzBebVKPTbrNv/34AqjUTExPH8UBcZN7cMwVGRtNpd1hZqTM6MsrQM5QqKq2oLy3T6XYYGx+nXC6nMXZr9cH1Iy/Haa40kJ5kYmKCzZu3nBMw0Wo1abVaLC0vU61cPgXM4yQ2zCjCyAnrdW6+5dYzBrAHDx6g1WpflrJMpRI0PKk0OU5iWo0GN99yq403e2Z2Kcsy20mbqvfk74mCtObcapLTOdjSxF65sknaKjyAAbml2X4VY7dqHHDhEb1un+byCoef2MWCf5zPJ3+HL6sorSn7RZPFOefclUKm6fZ9IekkMb4QFD2fZtSjIH0acZ+aX6ATh5S8gI3vfy4nfvIbfOpDD7Hxm2a4btsoi0s9FAnTkyU6YUjY0Rx+pMn/2flPfPkFd7P4K4t811Wv5q6bP8aGL25k+9Am7rj+du577Ou85OY7ODF7kumpKT5y/8f5gRd9N2Ev5jOPfoFD7cP83Le+mS+euIcbXnsTb/npn+KHfvCHuOvDdwGKaOWHCEY+jMCMm7MHDzN39CiT0+MUAp+gXGBk2kP1PsATv3ob0z/7KZTy6fbahJ1lZP8ItQJURyr0+gmdTkh56gWUigoVNkm8URbnjjHkH6dYKCDL4yRhB5300VpwYqFDs1dm+40lju3cwLqr3sbGa29Lk8yBjb3PxdBppYx01tz09N47izvvI6i+JVuipB763PfcvqvoWwA8zl2G6Ittrj9PdtoT7+U1I1xGZpbP7gbZ5ClK4ZJU5MdYB5qEsIOrA0eA1jEahVaJkeqRp9MdR5SBDMe6oZSDc7njiGwRTy5ezrJ0KRsnXJycZZGElSPKTFZpSUZbKMYCOyFt/82+SaI5vGM3R3Y/wcj4Om5+zu0MTazj0MFjLMwe5cTcEl5pmIl1Gwljj1JthDiKSERAv9OjXBRMb72KTetqxErQ6yf88xfvI+x1mJwa4+abtnPttZvotFpor0Z9pc+99z3Inh0PU6yW2f3AfURxTBRHqERZKaXm5JHDfPWLX+She/6Vj/7pX7H74Yc5tncPca+XTX6OoRR2spQZmNXCsqjpXbBe6lTyCEpoFIpYK/MkCG3uvzL3RrgMoVYa6WIutbLlIVJWzt5XrWyZhVw/lEoZSXMrtAWvWUkJN5SkvdVuXDeTs++Zejamll92ku55JM8g59jmZ4PFccz8wgIqSajWqihlEpdIKfE8L02ykv9yCU2EMExqpVphbGyMVqtJFEfPqB+9Xo9Ot8PQ0JAFdvFA8pTVfcj3wzDOkqGRYZIkoX8JL4YvlOUBu1MynA0zUtqz0tQlZ0op/KDAs2c0OdU+/tjvnPI7Zb9ilaDi2MS5OYehi4+yDt+Bmm5u/ki3MSbWAHOrHVNCivQLoNPuceSJ3cwe2MM/en/J3ckHKXojaKDoFfCER9krIIVHIAUlafIqGt+jpmfjuROgFfcpSAPeC9Kjn8QMBQV8AV5gmL5SURJIj5LvU5A+X79rL1/62z2MFGo88LGDDH1yAo6FfMs938ZEdYqHjj3OS7/2IgLpUywEBL6H73mUh0tsv34r9+64nzuv+1YOHT3K8HiZyeIo33vtd9Oo9wgWytz58pcQ9rv84i/+PFKIbA1l52eBIFaQhH3QIStLCxzZu5/W8jwajSz4FIKYpHeCalExvW4rwxteRK98Pd12n0qtQqUcsDy3g0RU8Erj0J9nbGYr9f4U7W6MjOuUqxMUCkWk0KyfrDI13Ofw7g4brj/C1z/3MVrLJ809xapvBuSUhnXTibKOWLcYI/u7XsZlU8/ffykGAaFdgGYKroG1zdryzSt27u0Kc/c07Xx6+pRlzwYSn9hEHUZ2qdK/G8ZmDRbOBH0NeGaySm2W0Un/aBkf1MDvpUNjmMQcWoOKFdLPWgGwSI7c5hbjZMyQdslYrAwx7XMKACRzR2aJ23X63S4H9+6mVBJMTG7g+FyDLVvWU5ucZvHkItPrpnjwgW9wxwtvJe6HRLEiCDyE6pPoAo16ndGJMeoLywyNjXL8yAmEJxgbHaE8VKW+cJJKpcrCyUX27jvM9NQotXIAKmR8fITa9FYWj+3jhhd+k5EjSsm+h7/Ohu03srLUoForMXtskePHj7Nx4wYaK02SuMXNd9xOpTYEqXxWp8XpB1djGbBylRYEWakCAwYU//1NP8qLr4p5/GjMuqtfzNWb11EZHuLFr/kPNhlHvuYOuUE286xqS6N56b0RaKHSMhKuZp+lZNOsaAMFZO0z4c7JPU/m/6wcgiva7p4BN/lZQhcpJOIyZ+7iOGHPnt1EUUhtaMgwYTaecSAD2VOY1tqkIfd9GisrxHHM5OTU02LNlEqYm51leHiEcrVCHMeAQMq1Gbu1LElMamylFO1Wi4mJSTZv3nzafThd6/a6NBtNFubnqdZqZ739C2X9sG/kr0ISRiHdTocbb7jxjJ/V2dkTLC8vG4nvZVYKIVGJTTK0NivX6/eQUnL11Vef0blfyszdXz38a/zI7UalZZy/OlPm5Exbp6zAlTzKsmJDbv1Axth78vTHmHxm7n6ny76dO/nzxi/je5NAgCcD2nFEpDUzxSFibRzHHoKCFIRK4UmP2V6TEb+AL31CpWnGHcrSo+KXrGJFEyYRBS8gVgk1bxglOgTCI9Y6zcwZqQgpYgqyRk/F3P5Xr0J7HklVE7QVSSvmH3/wM3zPJ16L52drrFK1iBd4dJp9wl6E59nSAImZh+MwoTRUIm71WHfLep77sy9N32GtO2hVtBdEs/uRnfQbCwQFycH9J6jWPG5+/gepDb2UsNug3VlCR008mYBSFCrT4BU4tOsrrB/XlGpDdFeWWNFbmZzZgqQPcYeQGgsnDjJVmadYmyJKJFG3QRDEaCVptkNOLPtMT1WYfeJ1vPT1P4nwfXPvlXtSVpm71ypNeQdSkERfRnovN0lahM3c7qSYWqdrymztduozI/HOmTTzYpnrz7Od9ot5Jebuadp51ejbjId5/sylqjcSxsR60JxsUmQ1pgcegYyByZcmcDgwA4/uSFnGCyM7zMoDCOulkVJmIAJS7bVMWxDpUaQ0i3vtQJ5FfykTmGtm7uA+Wid28/hjO1m3boJ6W7Nh+y2AwPeLjExOoKMuI2NjtJaX6Hc6qKhHeXicL33xPpKwx+JSi/GpaU7OLTF7bBbPDxgdG2b22HEW5hfZsHGGT33yM1xzzVXMnphj795DPP+Om6hUiyRhk7FRj5WFOYbHp6nP7mffg/dTn19k/45dPPTIfo7uO8jORx6js9Lg/vvuZ9eOx0Ermst1pmY2cWLfLuN9G8pik4QQJFbmtgrNpmxYep80qDjib9/1Vv72rk/yTTco5luKF14viRtP8Pl79zCz+Xo8BLv+9eNsvvF5OVCnU7bONenq+qENOHfxmmbSz9i0vKoSe5+0A+ur2F0X4+ni+cx+KYS37RoJprBBgKt8wIPPz1myi0WHf/ToEfr9XhpbZ8payDWB3VM52KSUJElCsVRiZWUFP/BNcpPTvHb1eh2tNSNjoySJGS+8p4hRWgvwOWDneR6e75PEMUEQUCwWT6sPp2tSeMRxxMrKyllv+0JaHMf4doEVxxGe7zM+NnFGsWIAYRjR63Xt4uvyEuGYEjb6SYFbGIWUS2VGRkbOSCJ8Kcfc3Tz9zYBnnYJ27LcyfJfl2ShxXNFXu7AXIv2dUna+sI5FYdUzxv/3748yeWBXX1jivic+y8da/y/lYBuRgpJfBgRDQZGxoEysEyIVk2hF2fOJtSLWml4SMRQUie36pp10mShUKXo+RSkIpDRsna0vF2nFDZ95Bce376MgfVuixWzXjDqU/QrdJKbXrrFp/9WsDDV44OX3c9XOLQQln9037OEF889F+h6J0hRKBQtsNUHJp1QtEEcmIUzYjwGI+jFBwUcGHq2FNns+tZNrvvN6hIBw5T/jV14HaOIkYffDDyGTLiNjw4yNVRkZHWF88jGQNfa8/bmo6+/B6+2l3WmjixvwkiU8z6c6toXlxWMMlxOK5TL95gKxHKFcHUWFi5Rrk5TKw8zNLzJcaFKojhFUxiFq0mr3qVYKlLyEpWaV65/3dZL+ayhURlK1Ve7GmfuGc9DqAWewkJIk/BqedwtYlYdTe7iQkVTZkwsFWev5EPrcjE0Xy1x/nu0dp7vhFXD3NO38gjvPLpQddLPZLoVOF9AOzKXxWtjkH3ZxnaY5tNu4n5xoz+6NkWqQBcq6F9bu4GBDGkqGHnipzQsPwvXZZct06M3G05nmnVRPpCzV0uwJ5vYfJul36fViJqamKJaH6HW6FEWIFoLpdaMkCcTtk+zceYB1GzdQrpZZWKizZ/d+tmzdyIbNG0Erjh89yZ7du3jRS5/LieNz9NpNhIQbn/ccFufmuOG6zZRKAeOjVTzhMTFZReqYQtFD41Eo1ygWq1THt3B0tsOOR3eystJmcmqCuN+g01fs33uQmalJpF9ECI92p83KwgK7du9CNQ5y9a0vgNx5ZolEcsDODq/p0Kg1Ya9Hp91ieaHN/KFv8PxrOmyYlExNV1g3VeG6TR7zRx5muTeFX5lmfsenOHHgCTqNJfY+eC9Jv8PI9EZ7Z3OZDbUBXumgaB+ejLDLmNf8Z7eRhW3Z39OzcA1YZ4Sw0N6CfWXb1vb80mOcA4/exTDgK604fvwEAKVSKQVVeWCXyfSsjHbV3JiX8gHp5Nppt6nWTq/At9KKk3MnGZsYT2PnnNxzdfvpPrksaAP32O4XBAG9Xg/Pkwyd5WLmUgqOHj2SZs28XCyKoxTchWGfYqnEyMjoaTO4T2ZJEtNqtU55ti4HUxaIPCm46/epDQ1RO8134UmPcwmBOzd+Km3m6o8+9k5unn45WUkdK4NLZZXpTG2nIZdJ2409diyX0qa2z+bygTkJshhyZyIDdnEU8aWDH+Xu4x9hZ/9BysG0UfhYAGAAmmcyYNrC4IlSRErRVzECTSB9Ip1Q8QKkEJTsz0VpQjoipSh6Ei0yR8bE3u2sXHcQX0hCFaOBSMdU/CKB8FkOO9z0lW9hbutJxtrDXP/wNsrVIn7gc+PhW/ADD4lJFBWHJsZTWZWCGRqdisUolYJSgE4UftGnUCkQhzHtgw1mnr8BHX0cr/h609d+yNLsCfp9jedDo9FlaGSUYvVfUSqg/qUtBLd9ldFaTLmgaNQXqU1eh4gbFCpjRKGGqE6xUkWqPu1mnUTWqI2sI2oexAsqBOUxWitzlAsg/SLtnsATEVEYIzyIGSJsB4yMfp1e+wUUa0P2puXXfLl7KYRVUmXbqP4nkcWXp2sYtw5N15Eii6UXueuVNquds/cKuDuLdgXcnSs755OBzRaZDcQu4BmL1dzPGTPmKDgHFVLHXZo90fI6YtWAnQdyOWmG6YZI31UpRPrOp0W57cueOW4ENtVi6j10U4V2HUqhhkg7ufvfvsrS3DJ7dzzB3j172LP7AEPDNSrDY7RaXYbHxhgZHze1t6pDCClRFJiemeDuu++lVq3SWGmyedM6Ou0uSA8ddxgaCpiZGqbXabB1ywRC+nQbyxQDya7H9zAzM8U3Hnqcbds3UR2qUa5W6PYUlXKCLxWJDpib7/D4ozuYW6jT7fUoFIp4fpFOP+FFL7mDarlAuVxiw/opasPDNOsN4qSP0gFDYxtprcyzbvMWctUF0ykY95OTNGpI4pjlE8epDNUolco8+JV7OTLXZv20Yma6SmlkBqkjggDWT/p84rOPcfvzXkxvYScf/+yDiPqDHDx4lK8+dByv10AlHYYnZgaAms7FSmgEnqk6isPg+YdNCGkUG0LaZyC7d6ck4hDSSH3dczLA4pI+E1mCFgfyzi57dzEM+L1ej16vi2eZOhdnlyY1UioFWp6USM/Dk14q2czHwjkQppSiVCqxvLRMqVQ6rRppnXabfr/H+Pi4LXitzLHsV/5Y+S/Xx3zClXzGXqU15VLZsIj+2Q2Yn1+YRylNoVgwjqpcMqhL1aIoStnWfr/P8PAItaEzAyUAnufT7Xbph+GaSUX+vVpxF6tpMsfDWuBOaUWv12VyYpJSuXxGx7qYwZ2bJZSVqGrtkpqZufThuX/mtplXAvm5OyeXI3MfKsfe4UrcmEE/HWdyTkAHIlMyWOYcftr8rLUmCkPq8/P84cNvZF/rGEtRi0ibma6vEnwhqfpFk51ZmLmmr2IipagFLubOw5eSWCtKnk9gi2kXPUFJBvSVyZCpbOKyQEhClRDqhPb1RxFCU/Q8eolCCpPru+YX6SYxVx16Ja2gzlU7ZvBWICgGFMoBfuDxD6/8FDcduA6lFFEYUyz7RJHC8ySeJ4kTI00Nir4Z/6SZv+IwAWFKBpWHSnQW2xz64j7GtvwXyjNGSt5uNpk/cZLKcJWDh05y7XXbiHodhse/jieLjNxxklb3BL7sUan4lPyYVjxCuTaOViFeYZjFxZNUigrPL6H6TdrNJWrjW/H9Ekl/gaA0Tr3ew1dLJHFMobaZktfA96DXA+HXKOpZVlqCOPo8jZPXURubRKxi+M06TabrSfddSoFKDuIFz0lVOukiVLh9ZRpDLAbWDtkTnFf4nG27GOb6C2CnDe6u1Lm7CCwvhnRgS6FAZ/Xn0g3tB+Osy4OELM9ROikgbK02O2jrrH0QjlLJMXXY38kM8ynHrllvnp0X7NSAFibNt6k55DJIJmYwTBk7W/MtrfmtOXnwKI3lBkePLNNpH6VWK3LzrbdSrQiC0ghRLOj16pQqZWaPz1Er+/R6EYlKKJcLLM3V+Y7/+B088ehONm/bwBOPPcHLXv48NB7SHyHs9ZFSsjC/SBgHjE6N0Y+g21f4xRrtruIl3/LNPPbwwzznBS9AqRCh5wmTMpWxbRx4dBf15Sb1lTbrpidZd/tNzM0uECvB6GiFsNfj+PFZ7njRHZSqQywtLDE5Nc7o2BidToddO3fR74Xc+sIIz6WxF7mbgwlqd0rM+SP7qY3PMDazHhl4oDTPe/EdrNt8A2Ptv6HR6rG0cpyN1z4flh5BJR4TQx0jEylJxicmmB5b4Hk3CRK9yCe/+AmeH38/R/b9E+3jX+XON78DLPemlZHKmtudlhcfeCbTCT8H0twJpGndcWUiTNmEVK6pTcbNlLXEPBNZzRttJUHqsmMcwDA1vW6PUqU8AOwcSBNCpDFYeTtlAhRmcasxNfCEEFQqZdqtNmVbEP2prNPtMFSrGXmb5+H7/mnJ96Qn0VKTqCTtrwN+Lgaw02lTKASUS2e2uF5tQ7Uay8v1gTigfCmBtexc1d07G5YHp0orG7+TnJX+ep5HHMeE/ZBS8VSm8+lcl4vpGuYztT6ZSemx0lhhZHT0PPbs/Fia8sJmutTpfOvGZbPFG255GyrdxoJUJ8HPmS1uNMDHZaWUdOrYNU5gaWrbelapoZVJupFvVGmWFmb5h8MfZHfzHpTYwGK0TMULmCqa+1HyJRJNos1zH6EpepJ2HDIclM28I8y97iYRFS8gUgrfM+CtJE3pA3c9POnhCUk7MUmlqn6Rqz/9Ch6/8/MEwuR3Vho84dFNYvpKUf2sYOWbfeJ2TFAKSOIkXeZoGRKF5ppJ3yMMFX7gGebOkwSeIOknCCloLLbxCx7FapGiJwl8ifAk0pMUAklpqMSM/E3mH/0NhreNEC+FNP5hhcV+jApj4uthbPoYYVjF93oc+L2XE/zgV/DKBgj7vqC7cpKRsUkIF/GDafzKJlrNfYxOjFOpBohun5MnDjO5bhPaG0LoPsMT64kaJymIHoGviDsRcZzQjkaoFFbQ3gjdKKA00uQb93yDBMHWG5+TPhVCktaKdKETANrO09LbigNm+dIkplYuKbBLaxzj5J0iXedordDCOZEvjvHl2WKX38rqIrdsbZ/lJ3IDt/msbeCq9Xbk7lCa0Son47LLaCvFdOn481S5G5ht5kqXGleD8ExCFJGN/DjPTJoFSrr20ryL6TJAuJQvmoydE2lDKfiUnpcWzW4sLDJ/6Djt5VmSRLFhusINN29j47btlCoFtCxx371fozxU4cD+Q0gp2bT9aoKhMfr9HkFQpNXqEEeKE0eOsmnzJEvzJ3nuHTfxxM4DaK9IfWGZcrVkGLqN61lq9In7Ies2TOMHZW6+/Ra63Q7HDx3jtufcyokjJ1hZWmZleYHpzdv5x49+mLnZWbSKGR6usGnzBo4eO87JhTrDQwHbr9mMDAps3rqFcqXMULXA8sICidKMj1WoLy9x7TVbeWLvfnY/9A3CbsfcUydNtOyncKBcw9L8Cju+ei+9bjv1Wm+58TmMjY/w918uUin6SNUjXHhNJPOZAAAgAElEQVQQv7aRer3FNes1lUqRyuQ2vulbv4PRquLQ8RCJ4v94qeSfPvH/UV9eol+8jr/73Z9L77EicwRIQ82m91bi4qW1ndzThKgp2BvI/pcbr9MU2sJlas2eCRcJmDJ3TsZxmZnWmkKhSJLEqZQxD+w8zyPwTwV2T2UCQSEoIKUkKBQITyMJhNKKOIopVypmvzXA5FMeUwh8z8f3/QFQ6oBKGEX0ev3Tbu90rVat4fm2/t8az4dSCf2wT6drSkQsLy9RX15mZaVOq9WiH/bTBe+5NKUVURzRD/v0+j36Yd+AYT2YsCAPUgEQgigMzxqb1u32SJL4Sf++1jV0/Wq1Whw7eoTHdz7OIw8/wu7du9i/fz/z8/PEzzAz69kyF+v9ZH/zPEnlMiqXAVmmS5PlMskVac+UFnkp9Sd2vusp23MZmU2GQ5NESdqYNde0FsKqObL9zBpBpsfNP6taa2KV8O6dP87e9j56zFDwAqpeiYnCMKANs6YSekoRSGHPS9NN4pSNB/CFWeuUPd/WsDMwouIFCOHhS0GslYm1s/0oez4SidIJnudR8wuEKqEgfQpSUPECO/aVePjOHWz72ihCCkqVAmWbMAUh+J7HfxghBVEvIu7HFEo+nmeub6vRNdcoTkBpKkMlkkgRhzFxlBDHCr/gIaWg341JogSG6uz65MPc/3tf4tEPfB2EICgF1MaqPP7+XZSr/0Yca3Ri5J/Fcg3PU2gtjWpDLdJtt1FxhNAxQyPjRMr0xy8UqVQC2ktPIDT4pVGI2wSFMr1Qg0oQuksYaaJIUR6ZRvpVQjFJ2NxNfe4ksgj7Ht+dk93btaKUNrN6fm4wa78kui99DoTNopCWUDIPg1lP5J5JrVS2YHDPrTJS4it2fu2KLPNp2tOTcRgqW+XYLlIVXLagFmngM+kCXEvsy2PKWqfvlA1SMzjMZr+y26UDvwBXly3lZVKiLntBJU5yZV9naV92J+OzsVM6lznLsTOObdSQZlyUMqulIoQpyuywpdaKnV/5N5ZOLnL3Zz/Llqu2opM+nUgwuX49+3bvYv3G9Rw/OseGjesZn55kemYS4ZfpNpb4/z/1eXwpmZkexaNPP+yyfv04ntRMTE+x45HdXH3tVkoFqIyMQBIhREC55FMqBBSKPvWlFhOTQ+zds5/5+UVuu+NmkiikVK3g6RZTm67l6J7HmJxaj9YewvMpl8ooNDfduJ2JqXEKgWB5qUNQKDA2WiBJTO2qq6+7irHxcXY8tott27aQaM0NN99EfaWDr/oszx5hbHqDuRduULRXVGvFw197yIBPKTjw0D1Mbr4WT3oc23kv19z0Yo421vN3n3qQ524XhK1lamPj1LwG0fCLCMqTlMK9/MvDfabL89QqksLIVm7cGBLE+5ltjXDN7d/K1/7unVz3wlfh+b6J4bL30QA6kQN6VkphlRjuOXGg3rF+DstLgS3cYVhfJ93MmDxXSU+nDC42CZCULgn22bELLdVw5QLq9TqFYnEA3Pm+f0aZ/YQQJElMs9VkdHTsKbeNk5hWs8nwyAhSes+YlTGSpAzQu4Vev9fD9yRjY2sXuX2mVigU2P3ELoIgOKVwe6/fY/7kSdqtFklsAI0UjlE0Ra0bKw0ajZU0Cc3ZlCQ6OeBKvc78/LyRvfb69Ltdup0O9eU6jUaDOIrSY7vFlO/5JgMkmomJCcpnKCd0JgSs1OsUy6ee61qFwLXWdHtdHvjaAzz8yCM0my1K5TLVSoVur8dKY4W9e/eye89ewn6f8YmxM3pmHUjX2kiR08cwVYOcakolRHGMHwRr3r8wDCkWikxPTZ3x+36hZZlKm3HVOHRVyqI5YGdS69vLprNYezR8Y+4L3Dr9LYMN2r85H6u7fGlslP0nk9lnjGBmktTtrF0/Fa36CrsPPMK7d74R4W0k0YKKVwIkI4UyiTZ5tit+QEFKSp5PXyVIIahHbcAkRAFNICWhUlQ8n8ieq9IQ20DAvkroJQllzwcEsda0kxAXy+0Lyfz2Qyit8KVEk1DyCigNK1HEc/76lVx1bCPFYkChUiAoeMSJJuqESE/w6Rd8gu17r0FpTakS0O9GhL2YKIwpFH0Smw282+wRFH3KQyUKBZ84jPF8j6gXExQ8ykNFok7I4oGXEFQKBKUAISHwpCnILqDfDdn0yscolsqE3Saj13dZ6BykUuhTKgeEYUgSR7TCCkOjUwjVoVQdZ2lhnrLfo1CbIA57DJUES50ShUIRHdcJiiN0Ol3ifgNPKvziKCppE/YjojiiJE5SLUukThgevYfScJW4NcPw5DpblsrNvSK962kcndYk8SP4hRena0S0SBNrGuyWOfIddjOqBOMg0Il7AM0YeLaTPl3ouf4C2TtOd8Mr4O5p2tOdDFytOhfaBKnPhNxwS/6jdsW8tS0VnSuI7Rg4R4GYd06mDRgvTMauZYxMlkXLJD3J9UNgM2NlL1/6SWTgLMuSlOXTFFqDrYeV+mqEHSQs23PPZ75MY2kJFbZRKqRQKDMxsx6AmfXjHNx7gA2bNiK9gEKpzPTGGfrtJsePzNFcXmT37kN867e9jLHREYKix9j0DCOjVaI4ZHFhiVajy4YNkxw/MsfI5DqOHTrGwsllOs0GgejTbEWMTo5zYM9BaqPjjE+OMzU1TqfZwg9KtOoLJEnA8OQEioDlxTZDo2P0u22GRkaRQlAdqlKuVkiiiM2bR+mGgrnjRxkZG2NhsUW5UqI6VGX9xg0IIvbtPUoctdm0aaNJAhOGhL0WQ+MT9p45lANxGKHDDpVKgX+5++scPHqSIO4xuXEzw5PrWT70NTZcfRMvednLmA+v4f577mXzZJ9gaB2Nw/dR2fBNFPyYa257OV/+6m62z0SUgghveDsF2cYLZ3lkT5N121/G3kce4uqbb0odA5Y8zLT4qcfNgHNhmT6hnZRHpwN5KnHBORJAuCxs2PIMWiO0S/Mj0mfOUNWZE+Fs2YUe8OM4JgpDVlZWUnCntX7azNmTWRTHtJotRsdGnxKwJUlCu91meHj4jK+vY+ySOLbDkCTqh/h+wPjExBm1vdax6it1+r0+5YoBQEmScOLEcerLdcbGxhmbGKdSrVIslQgKBYJCgVKpRKVaZWioRrFcprmywvLSMn7gPylIOF1TWhEnMXOzs9TrKxQKBaampxkZHqY6VKNWq1Gt1RgaHqJULtPtdJmdnTOxMMViGg/X6/UoBAVmZtadNTlyuVxhYXERjV4z/lHrTEYdRiGP73icBx54gLHxcV75La/gpptuZMP69UxMTDIzM8PmzZu47rrrGK7VOHjoMHv37GVqatLEQJ7mNdRout0ux44dZfee3Tz6yKM88uhj7HpiF/v37efk3BxRGIEw6cxXXwulFXEcUyycmjFVaUW33aG+UmfL1q3P4Iqtau88gzun1NHYzPM4ALYqRf0qwtUtsA2Lbobpa8efT+AV7BgqVm1PqtTJJHKuZJIrYZT9Lkuk6Rb7bic4+OiDPHLwvv/N3pvHSnbd+X2fc+5e+/L29/q9XtlsUtw5GlGirNk1tkezGOM/nMHYCTBIAMN2gCQOYHgSjJ3ESWA4sZ0Eju0gnvEGD+QtiaJZpBmPREoUKe4U2WSz93799q32u56TP8699ep1NyVS7LaW8EcUX1fVrXtv3Tr3nN/y/X2//B+r/zlvhhfw7TaZ1sQ6o2x7DNMIIUygYCGwpWSUpWRaE2UJgyymZLlUHQ9LCMqWa8hRgH6W4EgbKQQlyxpfhZJlYJjdJDS9dtJCCBPkZdqQqxz/4mfon72OEBpHKBAWiUqpf+ssM5tNLCmwHRuURloGSjkaxPi+w+sn3+DYqydwXNsgmKTA9W0cz8HzbOIoxSt72K6FZUkcz8a1JY5vEsWuZ2G5NkmmsS3JE7/499i8/BQASZjQ3Rlg+w7SkgQ1n8XHRqRqjVR5rP69T+I88PvUyhKlPVxXYEno9FLqU8uQjUB6DIYJLrvEiSCo1EiiAdt7Ga2pGSQZmdKEUUIcD6mXU9zmA1gihWSXipcSBHYOnZf4bokoO2Dn+gyzK2fzVpHD6pr5qSeT9gJhLyBEbXI0mCIBery2F7sYd/bk8MuCwT13LgExZk2/W/a9Xuu/R/a+g7uPYJn32Ipp9IjcQNEcrdUh9EJPMtgV1TVy0CVoCtHRXAhcHlbdpMgFifNEjMRALxAT9UFxCADVupCuLiCaeaim81dy53xSkFsgEPk5Cq1MplGpvLqXb6OLoEWjVMZLX3me819/jqS7ypXzb6CETbXR5uEnHuLF51+iOwjp9mO0AL9SJaiUuHrlKkmcEIdD2tNtFhbbPPHUY7i+g2UbXHyahKhMgZa4Xo2FlRVsx+fMg2dJ45hWq0wYDhFeQKiqlKpltlY3KdWbXL22ZgRdLYtKo8H+zhaNmmb2+Aq7qxf55tdeZXevy5tvvEWj2aDZLIMQ+J6DzhL6vQHabVMKJKfOnGFn+4DjJxfpHAzY2eoy7PVIlMPM3CxCOLx9/h02NzapT81w9dI6cRjmYuGHadXP/+Y/Z39rA8u2+NTTj/Czn32aKBqRxiEvP/sCL76+yag/xFK7NFs1Pvtn/xv+4RcVvguvvr3Dc1/42xAsEa09yy/9yl9kw/kcX3tpm2FnHbvxKFrAJ0+t8Y2v/GvevHCNf/a3/nvSJOSwBGyIewp4Ra45jxyPWXEofA4IXVTxxiXkPPNs+jyL71cENopc25Cikge5cOAYpvnDYkVvW2FFz93dylpqpYz0xHdYJIv7Ut2lCyyFgXYWv6m85XveTVtcXEJrRZalxHHMxto6pSBg5fgKpXJpLAZ/RP9TG03ATCls22ZuYYFmu83+/j4H+/tHtv0gplTGwd4+6zfXCIKA5ZUVWlNtCmmTLMtIs4wsM/2Jtm3Tnp5ieWUF27bZ3d4hCkPQmiSKGA4G2Pbdc0qEEASBTzQK7/heUTlMs5SXX3qFTqfDH/v00zz11Cdy+LAaO26Fw5akKdOzs/z4j32GE8dP8JWvfJWtjY3bIKd3siRNuPjuuzz7zLOsr2/QbDR46qlP8LnP/Rw//ws/z0/+1E9y5r4zDIZD3vzWm7zwjec52N8/sg+js3bn+0UpE2gv3QOdxXtlGlOVypQ+7KM7Ah0WFOu6VnoCjjmxjwIGrw/d7//7wv9iPq0ngfYUUd1t+zhkNswxIxNsh4fnOnlPwSjp8/f3/zpfTn+HTCzhSJdUZ2Ra03ZLCAEVx8NC4AiBZ1kk+XcTQKozHGExzGIileEIsz5kWmNLA6sEI4sghKSXjEiUwhICRxakXkb6wBaCKEsoWTaelFhSorTCEqa3TyLohpc4/crxXJ5HQF75tBwLnSnqTdOr/OP/8rMEVR+EoL8/JAkTLEti2xLbtVCZSaL7JYcsU7iOBZbAdi3svAo47EXo1MA1pZWN/bpRNyJNTe+ebUue+pkXyLRZCxzHIwlTKiWF44Dt2iAsRlGC0H0De80UaRLiBRXSVBM4CdLxzfWMu8RJCpZvfEbhESWWkbQQNpY3hRu0cUtVpOUjRYIUGpVl+J7D2Y//NkpnFLQ65COvaJwYc+igyYa/NR6/k2MCcoKeI2On0C/m8DNaHmYyPrJ/7/ZR5e4D2gfP9B2Khd/6OhgYpB7DVcaYtSNVPdPEism43ebTCYpb0wRgRTUkL6UXmTotKBrfJtmfCt28w6qdnjhuHkjmzyclFgooxy3VeXMumeL3Pv8FKoHk1ZdeYmbxOEsnTrN+c5XZuRlUpqk3W+zuHdCqBTieT5JkvPn6O9z/wEmuXbrBKEzZ3+0QlHwaU21GvS4HBz38Upnuzjprm10azToIic4SSrUya6vbXL96k+OnjzEzN8/+9j5zcw1q9TbPv/AGU+0a01NNsizhYO+ARrOGUCGu56OFxeqNPaIoZHqmxcryHLPHVqjWK/hBwGAYUqrVKVfLXDp/gTgBpIttg+W4LCzPce3yVVrtOlcvXqXXHXDi5DF2tveo1Jtcv3wRDdQqHpVGc5ztQoOdRQxGCSoZ8uxz55mfX8AJykSdLZLEYcH+fXauvYg79UnizW8QtE7y0OMfx+k+x0OPP8h89YCt5H5q8w+QbT/P7Kkf5d03XuGBlZRKe8HAN5OMh+5v8MIr11m57+O8/Uf/gnNP/QTk7dASeSTgNAF7Llqe/+JFmmG8MAiO/h0vGIe8axoQylSjhShQ+3LsfAjEXYVrfK+zeVJKA8vc38d1XdIsw3Xff9XjO5nOj/GdCFWEMFDAD1Jx+U4mhMxlHcy9XwoCarW7K4cA4Ng2BwcHxvHq9bAdm2bLwD8LQfVJRtHJBzBOkvm+h+O6dPYP8AP/AwejGk2/1+PgYJ9qrU6j2RwHkYXm0+Q5jD+nDWFRUArI0pTRaITreaRJytz8HJW7LtAuONjfuyM0swju1m/e5ObNmzz5I0/SarXNUmDJXDdsgqHVMqy3SZqSJAlzc3OEoxHXb6zSqNcISu897tIs5Y033uDa1WusrKzw0MMPMT83T7lSIfB8XMcl8H0a9QbTMzNUazV2dna4ubbG1NQUbi5KnKTJmNX1VoviiCxNOba49L4YY7+T3avKXZHQNUnSyXod+cSfs2FPBG3FfXVnZ7hYk83eBYI3tv+dgWXm2bij0iXf5tzG1bm8RldM+/Jw3lZZxu9c/Ef847f+Kp69ZEhOLBtLSDSCqu2aoEuZ5F2QE6JkeSVwlCWkOqPmePiWjW87uMJCCJkLkudkXsLQbGV5RS6wXFxpKnipVjjS3LNSGBinIyWetNDA7ukNNLEJmoWkG13g5y7+Ot0rXdAQVEyPnUrN8WzPxnFMIPTip84ze7GFUgrPtfFLLllWcBpAmmSm0mRJXM98RiuN5UhUahLbliVJwhSkRF15nMj2TcuCMNIJaZRguTbLp9ZgukZmHRAnGXY2pH7yKpYtkI5v/AgVEmcar3oMKcyxpeUy7NzEcxVO0ERFByRpTCYqlEo1hB6CVUJlKVVviFWaQmVDZLpLEo5AmT482xJ0BhmxaONg4ZWuIa1P5eMlbwsaI3MOPcAseQbhfPpofCb0GNJ7COE5HJ9HhmtBnV0kaoqWjbtk3+u1/ntkH1Xuvl8sy53jiZApd5wNtkKr7BAFoXI6ySPV8jyTN0GlPoZO6MMJuuhzMpDIcS6Wgu3QHKPI0WBSiUqPn5tK4aFzXzAcmkWq6KcyTEkFuE7nfQLj/gCtePubL3PjrfNMVUIaU00+9eN/jH6YgA554pMf58UXXuWtt96l1qjw8GMfA8uj1ShTrQbUqyV0BseOL1EuBZw+M49l2dx496LRuZttEw371Fsz2BI832c4GHDj+jqjwZA4HvHw4w+hUkUcx0zNtOh0IjSKqXYZVEZrZhqEoNlqsLe5ie9GxLrCztoGB/s9tNI021Osbe6xu7nF+Tff5fK7V7FtSWdni25nwMz8HMdPLSGlplKv8vLzr7O3vsnq9VWSaESlWiVRCRtbB1QqNY4ttXn4sYdYWlqENDOMXHmwncQxUQLzx47x6rdW+dzPfZLmVBnHcRnsXaVSLzPVdjmzYrPz1m/Suu/n6OyuUipV2Ny3QAtKlRrrr/1TgnLZ/C7pgHOf+NO8/NaAd157Hjn/x3FLPr6n+bM/P8ubL/0+pYUneOaf/M2xE6C0MgxYMPZDVE69osi1bXQ+FvUEPTe6aJ/jMMkwkb5TOp/jC4ZNM+GP2dru3lz/fWNKKWzXQWuN53l3NXj1XI9W6ztDIaWQlCuVu97nUDjgvudRKt8bQgvbcWhNtU3FC2i12+PKWCEvcWsgN0n7X8D80jQlCAJqtSqrN1bfV+Vp0pIkYW93l5m5ORrNBmmajklx7LxvdTKwLAKkwunIsoxao47rufS7PQCmpmbuyjWatFK5jON6jEaj296TUrK3s8PXnnuORx95eBxYWraBvWltrlMUx4RxRBRFpCrDdVxs2+Zgf5/HHn+MUuDz8iuvEid3JvNRKuPVV15le2uLH/uxz3D/uftxHXeM+rjVXMdhbnaWTz/9NAvz83zjG99gZ2cbMNftvRy30XBIqVT6tkHm98LGUMs8oDPzo4KJMTfpJGudjavq4wDvDhW7w/F1OFeasSb4E2f+PEWHtByPQetogF+gaSatIGQb99Hm55AHMG9tv8CvP/Mn+er6VxFyiUgluNKmbHnYwmKUxQyzjFgpBqm5R/fjEYlOx9+zbDv40gTfqVa4QmAJSJQhVSmQHKlWdNOYMMuQCMIsZZglpDr3mwq9QzS2EHjSIlKKVMOpP/hUnhwEoUPOBb/A9nObCA2uZyNticoUlmcjpMC2JJnSJFHKTvMiUgoc27BgTl4ipRSuZ+MFNlkuYF4Ed8NeRL9rkEOZhtEoIY1TTn3u35DGeR+wFDiOmYPKvkB1BcIOyTTm/nrxDHGc5ZWuFOE2SJSgEhj2WyE9VBpiWQ5xKshSjc5CtIDAtYjDEGHZkCWmeomdE+QoSLtEwxH9QcxeTzKIXLY6JTLvDM2qh0o1g+4LrJ7/34iGA8aoG9QhiVUefNulXzPjV5mHVmo8nE2AfogGK/7LLwAG+iOPLvAfcP79yD6cfRTc3WM7pJGfzH4IhLRMIJfDGE1Fzcr/bT4phBiTXohJWFEx0xcSB3lgZ2IzM3Ee+tuFeDRmA63H8H5dNGiTh3iaiRs8h9epDLNzeSiYPj4NkYuVatYuX+bqG6/xpd/7Q3a2N9kdWmhh45VrzM/N4lfa7G5uMz8/xRMff4hht0PY74LSDGO4evEGy6dOsrt3gFYRjVadjfU9+v0hC8sLZGnKYJTSnGrjlkocO7bAcDBkd2uPIPC4dmWVleOz7Kyvk2kL13VIohFByWF/d5/T99/H9FybOAzpHXTxHIHlSHa6FRpTbQbDhOFgyOziEtcuX6NcdhFCM9OukKYptq3xShVuXt8gDGO2Nzvs7vVIEqg1qmxt7fITP/PHeOftq9iW5tzZk1TKAUopDg4GRFFCpVZGC5MFNL+wZNDtghD4tubHf/Jpwsg4ib7vIIN5vvKHf8TmdorrO6zMaS5fPE9Z7pAkGQf+zzI62MRtn+XJcw6rV6/RPP3TqO2vs3j8GNXln2Z5IcBL3iYTU8SJIk0VP/eZKdbWNugNU8MIViQF8oBf6UkIL3kSwgR6usgcC2G+h85zDHk1uIADF2NvkqCneAgmJRiOQoF+GCzwfUpBiTRN73pw9b02IQRpmuL7AZVK9Z4do1KpoJWm3miMEwm3SkpkORyyCPzGr6XpOOCLoohawwiGdw4O3vc5aDQ7W9tUqlV83ydJknEVTCnTEzb5KM6hcNSLQE8pRa1eR0hBqVzCsu7+eLAtm0a9TjQK73gvvfDNFzmxcoLZufnxuWVpRn/Y52B/n53dHba3Nlm/eZOt9XU219bY2tyg1+0yGg25du0aDz70MWzbZmdr67b9K5WxvrbG7u4OP/PZz+K4rrkeWpGqjDgPHOMkMQHyBIxQWJL7z91PtVLhjdffIIoijP7j7cFdmpnr3J6austX8MPZZF3OtFoU0Mujv4Uult/3gKpl7wHJnLSx5qQQfPnyb41fm6yciAJXXzyf+HcRzI1lkCaPrxXPXf93/Oab/zN91WSUxTkTpYNGk2pFrDIcYWPn81rNLeFIG0c6aC0IVUqB7pACRlmGIyW9NKWXJnjSVP8caTLaYZbSdHxqjkusNBXbpeV62Pn3tPK1JNUaT1okGhxpml10lCGFgXBG6Sb3v/sYWZLRnKviVzziKEULgW1LhNIMuiG9/SFhmPCzr/wSQcXDr3okSYa0LcJhQhQa5sxyzUMIgetaxKMUnSpc3zZBoyWNzBRQb5fMc3ubZGQYZm3P9BDatsX9Sx1e/dL9aL+DRUqtVqU7EmQKur2QaNhHCI3vSiwK2K5AJQMsy8IL6li2IEsibNslCDySUQc0ZFpgOw6e5zEcpaBikihhZ9TGbT1OY+FHqc4+SnPuHDV/hFYxuC26nQpO+Vneev63GPW7oLMxSqfoo9MqIx3+w9vHqc5luIqSQq7LPC48jMn3cjmF/PUx86344Vrrv5/th8vz+D40MfH3aNF7As5YVDUK2KQWSFEEXTkLpRA582xOUlFkSoQsBPLyIM5U4Iy/bVaSQsPkSCiXO/AmlhTjhWcMqhYaVEGFr8bwleLz4+8nBHs3b4CSJHHKJz/9CTIRcOL0WSpVH9IBreky9YZFuVrm/ocfRFge1VqJoFrj/NvnkZgqXLfToV6vkSQmm3zs1AogONjZ5OrlVZqtElsbe1x+9yqd/T2GnR7nHn+UlVMnaU/PIoTNwoklhBDsbu3T6/aR0sUiRacRjhswCmMWVpZYu7FGtVrh5NlT7K6+y6A34OCgQzkQTM/UcWwzOWfS5tHHTgIO1y5e4MSZ40zPTxPFISdOLuD7FqfvW2FjbZ3Nm+ucPHOS9fVtur0hS8szLC7OUC277G7vYjk2GzdvsLW2ZrKpAsLOLnOzDRTg2JJSxSMLh3i+he1WKJfKWFIgLQ8tBBvXzuM07qNUslhcPkZ/mKCiLus7A1555l+jlcadexqdpiyefph//fvbJJ0rlBY+ge2Wub7eAx0x7K5Tbh9jf/VinrXFMGUKU4lTxVjQh1VaoYu5WRyONXlIzFKY1gUTWzH5H4J+ZREIcrggvAcO6QfWXNclCAITEPyQZSu11qhMjeGS9+oYvW4PMAyjSh0GdlmWHamgOY6D53q4jovruObfrmdEwycCwVazyWAweN+/R5Zl9Po9KtUqWWYCOChQRhLbtnNGT2dcxVNKkaUpKjsUgC++j+d6hlkzuvvyEeOAURzCMAvr93r0ej0eevgh4iTGkhZZltHt9+gedAnDED8IWFxa4r6zZzl99iyn77uP6ZlZPNdjFIZcuXIF3/eZn59jfWPztv7F4XDIhXcvcvrUaYb9Af1uj3A4YtDv0+106HY79Dpdul3zGAyHJElKmmU5G6Tg/nPnAKGNgvgAACAASURBVNje3npP+Gw0CnFsh9L3WdXuTjYZpOn8udCHDy0mKh25FQzG78eE1sTZIHemD9fz8fsTSaUikJ783czyU7xuWi7+wct/iS9e/8dk2kKjsIVEAbYAR0jCLEXpjLLtIIVl9G21Js5ShNBjyKUARlnKII3zIM7M+yXLQQrBIEsomLxLlp0niRWBZaEw8ghWHtgFlpFFsYQwkE9McDfMMjY+/Q5Ka7rxDf7jY3+T67973aw1tsRy5HidiUYJwjbsBZZjIYVgc36fZJSQxRlZbIiiojBh2BkRDRMQIq/6GeFzaUuSxGjplasuWmmCkoMXOKSp4p1/+0sM+tFYJ89yDGndWy8KHv1vL6BVH9sxEhQnHpPs9VLzeysNKswToSYZhbTHzmGUSqJYMxhECOmCzpBWlpN0GQI9IQW+J0EbKHVzeolS2cOxNfFon2y4htZg+dPs725z4+q32NkccPzc73Hz7VdIkuhwoAJ5nwa3hQdi8p8GOXYkcQDjiuykHUqa/BDCdL6P7aPg7h6YnnjAIQrC3DOTWTRT2SgyHwXmXkjjRBcI5Ul9m7FTnKMw0cpUXPRR6QOTuT48I9OPl6MxRFGCN8FbmiV58JfD75TO+wC1ab7NS3+H9745SpalvPnMHzLqJxxsr3P95i7NVpPFpWmcZJUoSrh8dRPbq5CmFsPBiJvX1knCAaNY8No3X+PRJ5/EK5UYDUNmF6aZmm2iMoXtuoS9A/ySQ7U5zbmP3QdZwsKxeU6cPsHUbJNyo07Y7zHsd5ldmMJyHLOIVErMzjdYPn6My5euUJ+aZnVtD9t1qZRdDna2OXFmAaFCwsEOG+sjut0+tXoZJyiDlATlBmEY4ljglpu8ff4KzVaLG1eusbN2k2rZJRoOONjZoz3dZuXkSaZmW0xNN3jkiYc598hZ4tEQ17exXZuTZ46DFhy/7ww33jk/HiiWZeGVAhA20tI880cvcOXaFmlvlSRJiOMRZR+0XcZ3NFHvGlgBnetfp1Krs98TbK9d5dhig8eOd9m4eQPpVYiu/z+UAo9zP/rzpHGIV53F9so8cLpGpeoxv7hC2rnK6tf/DlkSA0d760QBd2P8o5tTFsUIJ09E5ONRFWO+oEsuKnU5UYMoeutkXrD+4Z7oLdtCSEkY3k508YNqBQuiUhmLS0v3dKne29vF9bwjPUkFOY3rmiDOktYdK6MiH2ue6+H7PlJKqvUacZy87+Bq0O+Pj6M1eJ6H7/k4tott2eNjS2F0qmzLxnNNj5+QYlxFLEhNvMAnzVLW1tfu6nUqvi9CUKvVDAvlhF29eo3l5WWq1Wou0xGxu7ONAObm51g5cZzZmZnxdZI5vLRWqzK/MM9DDz3EE088gUCwuLjIxsbGER1Bjeb6jRt0u12mpqd4/Y03GAwHuJ5LqVSi3mjQarZoNBuUK2VczyOOInZ3duh0Dkz/Ippms8F9953h5ZdfuSOTqNKKKI5YWj6GY7u3vf/9anrc/nAYXGUTKgN64j+z0dHPZ7cE64UuHcCTCz8PWGit8mDuVmdc5rlefSSwU+oQyqy0Jk4jfv2rP8V2lORBlsOUW8ORLm23MmarBHICFKNRJ3OopBASCxPAVWyXRButuprj5b1yGZ60sPIgrmq7RErhSokrjeg4CDxL4kmRE/uAJ21GmaKcB/tZfp2U1thC0/zaSQJi/uKZ/5Xu9gi/7NJeaqCVZjSIDdG/FJTrPlpppNYEvoMfOLw4+4dmTkkNvLK3O6AUOAQVj3AQE48S4jgjjRLiMCEaGT08x5GkiaLc8Iljo4NXb5c48xMvkY4Shr1wjGga9UPO/NXnGAwvEEUJSZIi4jWyxGJm+ROs7dlkSpANd5B+A41g6+a7pjvHqiB0guNViWKF72TYpRa2BTax8d2yBDTYlkRnoNKY3iBDWhZp5zxp5zXzG1WWsIJFdjYu0ZDXeWBJUpPXuHhhSGvx7/Lil36XOByCMNwPCkBJ7OAv5+OoeMh8/OTM6Zhsr9TGUy0kk8aySrfYGP77kf17sY+Cu7tsRyAaHGqZHf5/7POOS9TjNuZxv1v+2bzKIcfbFJDJ/Fg5nLNokNbFJ4sbSBcaQ8W5FXBAxu8LobEKUpcCd3/kfaNZR54FFwI2rl7mzWf+kNW3XmWU+rz4tW/gV+ucPHGMcqWEEBqvdZrufo/21DRrly+xtbHD1uYOCyuLoDXlkkOcanQaIXTGA4+eZWt1lUF/QKtdQQJRrCj5LlcvXuB3vvB7bG922L55A5WOkE6VcrVMuRJQbbWR0qJ7MDTQkNGAVFloNA8+cILd7S61agUhBEmaUa46DAYZXmOZ1Xfe5Mb1ayytLPD4xx/n4KDH3l6XRquBRCGFYHenS7XWpFxrUa2X8D2PaiXAcj3KtTLf+Orz7O7usbm2RZZBtRqQRDGtmTkazSpaa3Z3DgjDhL2tXRaOn0AL47Bcu7LGM3/0PKVKiU4v5jM/+Unuf+gca2tDlLLo7rzD6tYIx6/T7Sf4doLSDg4xQa3GyxccqmVJMP84c7Meb37lN4mGI1T70ygtmJpaREtBvPMq6XCHNA750vMRM94mIrxMv/6LPP+Fz5Ok8XisTnTN5eNUjB3IQmdIjEdk7sDIieSFnhxjh/spxvUkMuOHNchrt9q0Wy1UahzqHwYbDgZkacbS0rF7Wj3JMtMz6zjOkZ4627axLfsDQV2LAMw8uC34eS8bDUdUymUDzXJMQPd+j1eIvxv9vWxcTZNSsr+7977P/YPY7OwszWaLOI6PQDM3N7c4cXyFKI6IwpC9nR2arRYzs7MEQfCeQuGFWZbF/Pw8zWaDVqtFFEUMJ3r7tFJcv3qd+8/dj+/7PPXUU5w9e5Z2e4p6vU61UqFULlEul6nXarRaTWZnZ5mbN1pbuzvbxElKkqYsLh0jjmN2trdvO48kSfE8j1q1flfZRr+dFev3HR+HMdsdkxyH8LSJ10SRpFUFTIaiZ2zM7igYV2PA6MJpIRHSMq9rA3fUQnB++6vjSrR+j4p00fUx+Z2KAEkDX7ryT/mvvvYnGOo5oizClh6ONLItFdvFkabPDUwfXWGJ1ljCrLFWzrpZtR1Ktk0gLZyxWLphYd6NBoQqo58mxCrFkSKHZ0oCy8KRgjTrYksHhSCwTZWvYjuAYJSl2DlzZjdaQychSwclfrn9VxBxhFcxxE5KacJhgpQCv+rhBzZZonLU0+F69aOrP0OaaRzfkKw0ZipUp8rU2iUqzRJKaUpl93DdEwK/7JjqXaYY9iIcxypkh3Faa4SjhN3VA3au7fHwn3uUx//LBxHuFoNhQmf1Wfb3+8hgiY2LAs/zOf3Ap9jtCvYOhlilaTzfY6EZsbe7iR20ECKm1pxnlFgkqQC7nvfpJRT9a9KSaGETRjFCQLnsIbRCeEtY9cdQBKxfv8DBjWfws5u4roXlSGpVm6XaDns7iuPnvsi7r74wZmotkgHp6H+YHDS33RuF7EHxvKiUFjY5t/ywrvPfz3ZvcDX/P7RCpKCQ/zxiY7zxRBVP6JzBEqQ2FPKmr65wrU23noH7TCjXCXNfm12aoxaFEhP3jV1oxndkwXooDgPDQszcHHJiWzFxkhzC6Ark3atf/iLCstgd2Gz3epx78DQ7W7ugEjY292hGdZozUyS9TeaPLZDECVI2iaIMlWmGvR7RMOTSpVVOnT6BlJLd7R3KNRN8Xb5wGUsKVk4dp3dwgK5XeeX11wmjmHqrjuM6+OUqQprrEccJaI20HKYWF0mjmKBSJouHuG6TcNBl/eYWw1GPhaVpRr0Omzcvs7Q4SxI32NiHhx5/mGvX1lg6sYJtS3Zcmzdff5NHH3+IZ776AouL8ywuLlKp+lTrJdIkQ+mMzRtXQEt+5JOP89YbF1g+fsxg/F0fSyl2NjZwPI96q8GoN+CP/uBZfuynP832xi7Lef3TcQQrJ0+yvbHJ3NIc25u7lOQ+tZllRsMen3wwZa5dRrtt6lWHE/May7aJZYMsClk48zjnLz/DjywarZ5H7hOsXr/BsZXjWLYCMgbdkHZzm92RJvDg6c/+CuHmS6Tl+/n9L/wrfvaXfpVnfvt/58d/5S+Nx9JYwoM8GCsw9eO/egzzFTnLmoHi63zbO/PDTow0MzQnYMB3k0nr+8Fq9Tr9wYBup4Pd+HAC5t9ri5OYKAyZn1+gVqvf24Ppw3mqEL/27wIxTab0ezrBt1qapTiO/10fSwppHC+tSNNsTHaRpLeTntwNcxyHbq/LIUmGGFe7ao0GURhxsH/AsZVlatXadwzqbjUhBF6u2Tfs96lUKggMq2Zv0Of4ygrtdvt9OXFSSjzPY3Zmhq3tbQ729qjUqkhXMj8/z+bmFrOzc+N9Gd27hGq1imXf+3y04au+fa46amaNLUaTVpnpo58wIcUde+hkjtIpAq0CtK5RxgcQFqDuGCCaY5ljD5IOh2v9xPu3jPHJAK/YUgP74TbPrv0ugXsaK0vIAF8a2KKFZpRlDNKYhhsQZhmZzvAsB0dI9uMRQ2GZfjFpM8pSfGnlgZBZP1R+dXrJgNVoH2hTcQIyDSVhtNCUCvnp43+Omq6jhjbBlINlO2No81eu/zbXepcZpkNcqehEl/izU3+D0WaH5mNtvFIJx9GEW7ugQSUZtmePxd+jMCUaJuhMUWmVTNCSKmZW61iewnYtwkFMOEwo13yT5LaFke5VGsu1sQFtGZin7UhwZO5zGOimEILOq5/C8SxUnPHEX30ay87INvtkqSbs3KAaSPZ714hqdWQgEDpG2iVS0UaIDZJhl0zWEdYWUo8QQqLTEZYVYFllXDtBSps0iY2fVxCbpSlamcSX1oZJOBx28UtNBp1dOpvfouaD69p4jmAUZUjbQQojK7W/tYYfeFjWl0nTT2A7k9qSH3w9PkxgmOLDmIFznGEw8FPuAN/8yO6ufVS5+5BWZPLeyw77kXKnGPKgLte+0qDy4Kqgii/2LCh0irSZ6MfQ5bzxWshxpDcajBizF+V6IyY5aPqoVA7THPfdjYNMjqT2DjXw8kVBmO1Vprj25ptof46IOkuLc0gVc/Hti9iOoFKtcPzEEu2ZaWyh8arThKMRjuuRpgJLhASBh+16eIHDjzz9OM985WvEUUR7ps2oPyBOEpZXFji2cozAt5hbnCMKYx568HEee+zjSCl57eXzpHlDr9ZGBDeKYwbDPlKAE/hsbWxj+wFaOvzeF77E6fuXabfr7Gzvs725RpIIGov385Uv/yErJ5aQ0uGxJx/i8oUbvPv2RRr1Kk9+4gk213eo1+q4RPglSX9/k+eefQVURFCpUW/Psbs/IBp0eeSJB9AkjAYDLr/1OlkaUq6WGY4UOxu7ZNJnafkE775znUazRrG0l0sOjZrL+tomKks5fu4sg26f/f0uz37hH7E0K3H8kgFNCoss01iOi1U7STgccvbcfVTKDlfffAkhJZ1eSOegi+05DLYuUG222ekIXnvpWzSWf5S1rYh+d4evvrLHi8/+S371j0t2zv8L3OY51i+fHzdIF0H/EZr5I+QoORlQ0fMxruXlY458kKksH0d54kEc5jpuuVPez+32A2WBH3B85QSVapV+r0eS/uD14BUBQjgcMb+wQKPVuueVE8u2sB2bNO/zNVWwD3lMYaCVnne7MPadzLasu6IRaFn2IQQuZ6G8VzY3O0u1XiOJ43GvocoybMtif3/PQOIqlVxM+IObIZhw8oSaeW1vZxff9953YHfr/mZmZqhUq+zv7TEcDDh27Bjbt5C2pGlKmiQ4tnPPCIomq3LfzrTKcobrw0SrViYfelS7LjcpjlTihBBGUFsW8DVrfFQpbq34FT1ZKj9uEaGZOfpU60dMMJgT1Jgq2VH9x7HkzMRvowX87qXf5O+89JcYKQulMwLLoWJ7CBSZShkp4wfM+QZFY0tJ2XYRQKwMQDLTGVXbpWQ7lG2HUKVshQOGaUqmFVoLHCHRSJq2IV/ypYUlEiCj7k7za2f/R86WHqKpqoRXXqOp29TiEg3dpKHrfG7h1/jzZ/87/tOFv8Iv+3+BX1R/jZJysS1JbyckSzNSZTMaxKRphkoV1bpPqeyOicuqzQDbs0miFJVpskzxxaf+FSpT9HYGlMouOtMGjhkb9m8hBMKSZEmKbRmYZTRMyFKV9/5qsjjDsiSdvSHdN9pI16L29DRJHCKkZH9zE6VGuKJH4AlmWwnx/rdYeSRDZ31UlrB44iybnTI62sGv1Cj7knR0QBJHqExiWwplt9nc2kdlEZ7n4jsZSRwbwi7LRto2lm0j/XlK5YBS9i56/5vYvTeYa7jUGxWqrRnc2iy1ZgPHsxG2wHMyam6Hg/0eC8dfZLC3cWS9t4K/DPJQJkWKvI1IynHl99ai3uTYk0LcYQ49ChH+yO6dfRTcfUAT77G4aJWNaZDHbFn5xEuWGZp5U7vmEHCfT+oTfSWTdTe0Gve3SX1444giOtPKBGsqwyuZLLPK3xtryRQ3kzDZHp1LMCC4pXnb/FsKgZVrJ+gcRz3s9Lh+/m1WV7fwHMlMu2xIQRS0p6d44qkn6ez3TI+Kb9HtjbAtjcBmOBxx9dIF9vYjrl9dxfU8tjd3Wbt8kUcfPkdQ8rh84TppkrB4bJ6dnQ5SQKoMY1Sl4rFyrMn9D5wljBRnz60YOISGNOqSDndxXQ/fL5GEfVTYo9UKiAY9HNfhZ3/h5xkNhszOL5JEfXSa8eATTyLI+PRP/DTVep0bV6+ydmONWr3MfQ/cj7QlN29sgpTMz5Tp9kZ845kXePP1dzh39hhXb+xw/vU3iYZ9jp9YJqhU2VxdZ2Oti+s5VOpTvPP2NTItmZtv0u2FlAKH02eX6Xb79IexEWEXkk43QVoOj378cUr1FhKBXV3mC5//bZ5+zCJKbWxbor15klQx3XbpdzpYXsFU6LC7r2lWE6SQHPQUVy5dIApj0CmjYcTmruJjpyz81imOzdd59av/mD/91BqffNinMxCcWpbsd/qsvf3KYeAlJ4ZFkY3LB6fB2ueLgC6yz4fjSIwpYsVYqNz0e4qcUvp2mIbS+gcu8Hk/ZlmS5eUVypUKSZLQ7/UJo/D7/rsqrRiFIwa9PgDNVovp6Vn89xkcfVir1+tEYYiVQxw/rAkES0tL+H7wvrafmpkZa+t9GJPCVKkEhqSl0Wx86H2+l/l+gFaKQd8QxxSyDKOhqRYeO3bsQ2tDZZnC89xxorE/GFAulb9r2JUAWq0mw+GI9fV1qtUKw9FoXH3SWhNHEUGpRKV6b9hZ4XZHqIBkjp8Xa2+eZBgHeXlCVWh9W+Uu/+DEZ2+9Rjk0cyxfYCHEpJSBuiPBis6PF6bDcQ+eKDJy44q3vu0hhCDVKX/j63+KF7aeI1IBZdsnUSp/r9Cpk/m0LwhVxigzouUKSJSin0a40gSDAInKsITAFhLfcnCkpOgjzABH2sz6daa8MnF6lV87+V/zH5366/zyyl9AJRFJ1EcJm+nTH6ezv8ugH5JGQ7IsJUliht0hnYMRSRyyvNgCFbF8+hTDvQE3b9xge22TTI1wqz62bxsCFcusNVE/YjSIcUsO0pJIKag2Ak53H8MPHLyKhwb8soNSGpVm2K75HdPE9K8ZH0vjlRzD7t0NScMUISAOU6qPN6j/hX9L6bNVsqk0l8IJsGyf4XBIksVoZaQYfDvh4rMaLcuIZBdbSupTy4xCRTrcBsvHok+/2wGrjE5H1JstlKigRrtoWUJIG9t1sIJZ07OahiRKIKSLdGt4lTZ+pYr0ykjXQ+GShEPS4R5Z1CceJWSpJkoEcZYhEHQ7DYLS3zfEefkYykb/Uz4KCyiyeeO9euruZHfartB//MjurX0U3H1A0+Og6fYs31Ea5GwcvI2Fwk3Edoh7N0/zStpE4KaL/efVNq1vcaDHOzMaJPkxCry0yglWin3KopqHCU6FFJCTbI6JXMaqDHlQJ82Nef6Fr9Pb2aNUa/DVrz5DNOphSZhfXOCBRx/A9z16e/vMrRxDS8nN62vcuL6KROP6Dv/uD/6IU2dPUa7XaTZKvP36WwTlgFp7mrmlKa5fu8nycpOFlUWE1Jw4OUtQr9LdP6A31Ozv91CWj06GNKebVBt1dBpx6a130PhIf4Z/+n9+nv/r81/kpeffJAwjwGi/9Hd3OdjZ5fVXX8EPPG5ev8qZhx9B2g47Wz0Odrb58v/7JQb9IdMtD8dSeJ6ku7ePTkZ0D/aYXZhnZvEYy8vzHD9zH9MLi9QrJR545EGWTx6n2a7T6YVU6nUsGdM96FNv1Zifm8G1LV575U1O3bdsyFlcm1NnlimVAq69ewkJHL9vBVRCb28d2/VYO/810uEWv/yrv0q3L+j0U6IoIijVsRwbKTKicIRl2WTJAN/3ubrawRIKO6hweqWMk3VxHAeZbDMz1+b6tiJVFugU1foJfuqnP4NVmmP52BzTDY3UEd967QWGocqFZYvsXUHpU7BfmnE6diSKochEpQ59OF7HRejxIDfwTW2IepQuKsrF44dzyvdclxPHTzA9NcX0VBuVZezt7rK3t8ve7i5h9P1BupKpjL3dHfb2djnY38eyLObm55lqT7G4uHhPaPzvZEII5ubmEUJ+z+QkbMt+331238ksaRFGEbbtsLS4dFf2+V62tLiEZVuEYTjWOtzf3+fUqdO0PkSwqpRiY2OD02dO05qaGlfptVZYdyBA+SBmWRazszNUKhWyNLulEmBguWmS3APx9/e2IngrHkKIiYDuyJYYCKV1GwRTiNsF7m8P8PI5TxQJr4K5Ol+vtT4S4BVM2VoIbna/lVfujlZMlNJHHoVY9WrvCn/9a7+IkHO5aHhGlCWULIdhGpNpjSstbCHwpUXFssc9gbFKyZTGtSwqtkeqU3bjIanWZBpCZYhJLCFIVJZ/TpCqjKbrk6SX+FzrP+S/eOifU3LLOI5NZ2udKxcuYdsV3nz9Iq+8dIFXX3qXrz/zEjvbHTbWdrl6eY3nnn2JLB4xP9eiVPZpzi1h2xatz7apVKcYDUNSLI79mRXCXmiuR2aCsMEgzpFHGssxzJtppnBjF9uRBGUXyzXkV37ZEKoIwHZMkB2Hef9eyUVIw4LpuKYKOOhFzP3JFar3V1jf+BWOH18i8HySOMF2PPxyGZCkqcayTd9kEAgWz1wznABaInRIuz3N7kFIb28fp1SjUXWIButgm3Mplar49WW0jik15yiXfQa9PZS2GPXW0OE6jZkT6HSfuLdK/6BDvz8kDhN6nS7J4IBhr8twGJOkiizTaC2JY7BLp5mencMVI/Y2XuOdb/4mB9vrZkDe4uHKW8by7TeNHq/p47F4y/PxONV3qHJ/ZHfVPuq5+y7MFN0yLGkdDv8CIjm53RjonjvI+tAFHre/iWITUWiK55818M3iE6b6Js1kX1AT5vueXFP0xOt5i55pyMbc0EJMVE4KCGYOvcxP03TxCc3+9h7TC8d57cXXWZhv8wu/8McJfI9ub8TMXBNURrczYOXUIuGwR7/Tp1qrMbe8zLXLq7iO4LHHHiNLEhxL0h/GZColDiP29/dZOLbMyTPLhLEiDQcc7HcJw9josWUgRcrJ0ysIyyUol0jThCweMUwd/HKdMIrwVMJ/8Of+FMPekJ2dA86/eQXX8wh8n9FwwMJ8nScfux9LRjzyyBk83+MbX/k6Z+4/R7+zz2d+5qdwrRS3XEVEin6vT6osGlMVZhcX6HZ62DaU29OkUUgSD9FKs3r1GsfPnKK/s49tW1i+w/TsFJ1ewnCYolTMlUs7PPz4xwjDCN9zQGua7RbXL13B8104exrLcbl+fYP7HzzFu1/5LXqDjDNPfoaDA8Ve60/S2fg8JUdQ6r6LlBZZluAFAVE4JOpuYlWO0W7X6PQyZmo+vj8gTAz2XscHIC229hJc18INGrj938HPdsnixCQGhCDwAz728GPUakVl11D4SHJdOz0u2RWIXzO2im5yXQRyBgJcIJELWH2SJdi2Y24PcRjgSXEI7yjuix9Wk1IyNTVNHMd4fgmtFds72/Q6XbIkhX8/BbFva6YfJcVxXeZm57Adm3KlTPA+q1130yzLolar0u/3cWrOD3RDvtKKKAyp1Wo47r1lerRdh2qtxsH+PqWgRLvVYm19nY899LHvep9Kaa5fu8blK1dZWVk+wmZZq1bZtrdJkgTHcb7NXr69tdtt6vU6qzdu4DrOGCETRhGO47KwsPBd7/s7WZHQGtsdYGPjpG3+fLz1eN1X+VPrMAAUArjFLygSFXqis08f3es4yMsTt2O/ofib6z5W3Jn8U9rkz4qefVGgK4xUQRSO+DcX/xbf2nsOy15ikBotQVtaVGwfIcBSckycIoQky5PDwyxGCoswy4yeHQKdE6HYwgSCYZbhWRIrP29X2uOkXaY1nWib/+T436ZZmjH9k/GILMvoDzNS7bK3s86pE9MkSciFt6+yMFvGszJsmXEw7HN8ZZZWu4HtV7AcB8u2WH33At1vxsQPDHBtQXu6RaXiET8ww/WX1wjqgWHMdCzSOMX1bARGCiFLMt6Z/iaP2CcQUmAJiyxJyRIj6xBUPKQACzlOkqsko9+LKFXN9cqihIWHF2ku19jZSvGCq+yuL6PQtGanSeMR6WCNxkKL3Y1dUpXieD46DRHnXmR3K2VmbgmZ7uL6c2TOCW7uvE19FpxSHbrbxFGEHzTMb+UEhOEO1focfqVDtPcuvZ6g3mriNhYQlse1C68R1JYJGiexBFhJSJaldPoHhP09bCtFaYHt2AgslNOmPbuIzEISbSPdKeZO/Bu2Vy9Tbf817PJfzjuKxJHkwXio3vLSpPc7GdCJW56PtUB/cKf0HwizfuM3fuN7fQ7fzn7je30Ct5rKstyfNc7p0fF9a+bOeMJFn1JBGSFEwVxZaIQVk/otBxMT0R4mi3nISGSwb0VANr7XRI7xL6AacNgLVZxBEVDKnNB2DLWDoinq61/8A0qey7DXYe3mBsNRSqlcepKaygAAIABJREFUxvV96s0mnf0+mxubNKamkAI213eYWZzl8sUb1KslwmGferuJUIpwGNFoN+h1e5z72CmqjSZb6xs4tuD65VWazRr9bg/XL+H5NjNz0yg09WqVXqdDa2YGabnoNObihTUcCfs33+bF518iGXZJB1vsrl2h5sfMTns0GmWuX11j5eQCWRTiVpqUG228cpsrF64wO7fI9WvX6fVHTM9O8Xtf+DInz5zGdRTvvvkOtVoFxy8RlAKuXVslKJe5cvEyaSYJHEGtUeXqxavEiaTZqhP4EscPcLwSQeARDwe0Zuao1QK00kSjEX7go4WNkIJrl2/wzluXeOTjj2JJgVaSeP8iI7lEJJpIyyUednGDMlfWLGYrW1j6ALd2nEF3h764j5n5aYi38WsLvP3qs7ieZPHEfahom0vXFUsnHyTt38BtnGL76jc5e9zFad5PtPl10kSx11GEseBg4PKllwIeffLj0HmVJHOozS6Z5IPg8C85KQ9iDLEsRvzEsDkc0/k9IjSm72Syn7SABRcDUR2O6wIS9N3ah4Wd3WuzLIsg8PF9n42NDWzHoVT5zrC2JI0ZDYdozfuGKWr0uDfj1jnhTiaEwHEcLNsmCErMzMzg2N+9w/5hTFoWQRDQ7/dJ0iR3SH7wvAGlDUwyKAUsLS3d8+tpdFEl3W4XDVQrFV56+RWWFhaofhewxjRNeffCBW7cXGNpYZ6pqakjxEClcgkpJVevXqNUKuMHwXf1KxWaha+/8S2CwGdxcRGNpt/rUSmXmJ2bvye/vsrF1pmsDk8ykExYQWJxtBJ3KFhkPioPUTjjyp0cvy7krUngw0YMQ0ahxvPo+FzukPaSUhJlI2ZKy7f1NcnCKchn2H/wyn/GVnyAkK1cmiBCCIuSbchRJOBaDr5VyHtApjVhlpHm1T3XMrptidZEWULFdvHy5LYjJZYAiUSjUFqQ5gHzKN3g11Z+nZm6qbaFkaS/30O6JS5dWGXz2mXWrl1E6gyRJQhG2NJGEJNFHVzHI6hNUWs10NpFaYve5iWee+EGybeGbJcO8Dyf9swUvV5I41yD2U8dI5uXdK/2iboxpaqPtCRu2cXKK6SbJzucunli3K4CYNkS27GQVt5uoE0wKHIYoV9yUJnm2E+dYPonZimdKZPFMW4pYHrqn9Dvf4ZSOWBqpkUSDUgG+1Tbl7CcKslwE9+TCKfM1j/4M4hHn6FUX0CgsBhQbc7T6WW0yx2kP41I+kSpg+tXSeKE4cENyoHAKS8j3QqePaJcn8WtHUdYPuHueWIxS6V5DM/VZOE+UqR41VlKlSkqjQWcyizV1jJ+ZZ5y6xi1WgvSA7IkxAmmiOMYIVrUW+fZvfkIpfI/QzpPT9wW3/4O/LbJ2XyNRxWyHXxoRMb3+1p/j+yvvd8NPwruPqCpLDNsWrcFdnCn4V1M7kUlbbzZuI9J55N68Yam6KUTOWZTy0Po25jQIidcAfOekPKwzSmXLzCLCsa5LmAe+b7Gp5IvVloUe4JLL38TLJdqo8WNK1c4fvoklmMzPdPGL5XRKiOOEy5dusr8XJN+54C5xUX6/ZBWq4ElzffIMpNlbEw1AYVfKjHq9/j/2HvvKMnu677z83u5XuXcOU4ezAwGGYxgkESJsiUK5FLWkuLKEr27Z8+RvaItybLO+qyl3T1eraU9omwFWqblpSjmJIoiARE5T8bk6Ymdu7q6cnxx/3hV3TWDGRIAAQoUec9poKvmVdWr1/f97u/e7/fer6II8sMZGuV10tkMnuehahoXzl2hVa+xMr/A2OQYiiqTGR1BkmQ69QKtlkTI8CgtnmH7Xe9g2+7baHQFUzv3kZuYJZKbolByiGeGGJkYRTfCJHJDyIpEa/0y1y5eJRRJce3KFdqWzNTUMPGETiYZo7C8hBEyefapIxhmHM9uoyiCSCRKu1FjanqaXNbEcgR6SGdkcpJuvUw8GaewtkG90cI0dTzX4vixC8RiYTRdQ5Jl8CVk2afZaLC6sMLQ6DBdy2Vm5zSubaOIFuV6CGX1E6xfO4If2UdUr+JLMbbftp/zJ54hpHTJ3vbz2MXDfP3bC0xN78LbeB7MWS6fP81tMx6J8XtoFM5zfl5ids9BVHsRI7OX4uWn8Nwu6aTBiRdX0Cf+e8Ijb0ZN3Ulk5H527pqitfAopN9KudTGaxeIZ8e2qMS+2Kqy9f0ItuhCojcltrcx2dqOBOngJhV5kHosRI+uuYVuB4WHf9jJXd+EEJhmiFKpRCBIe+tNv+s6nDp1mjOnzzA/P08qlSIU+u5oWqNW59ALh7hy9SqaGog/f6fr4/ke3W6XSDjC6Ojoq/per5UJAmqk6zh0Oh2sbhdF/cFC8Dzfo91soeoaqWSKWCz2fUlQFVlFVRVKpRLRWIxGrca58+fZs2f3TTXkbmXdrsXxY8dottpsm50lkUwg30BVFUJC1zUk4MLcHPFYDMMwXtXfybJsHn/iCQ7s3084GqHdbiMhmJqZQXmd7mvPda9P7Pp2k+Ruk64uydCLuf3n6SdvvUTupr35A60SW9ZvUB5M4vrFXu+647emhwZJ2yNX/4K92bcNnuHmOh3I/jj82bGPUXVtXBTApel00CQVRVLQJGlzFyGArufRcm1CvYFJLccmpmpEFAPb96naLeKqgSkH0zEVSb6ur8f2fRwvmJDo+D4Na5UPZv4VUS+KGYtz6YqDoTksL5RYnT9LzFDYtu8OjEic1MguzMQokzt2EopPIrQc8fwQkp5DyBqJdBzbU+k0GyzOL9No+mi2yqXyRXQjiufLVMo1LMvFdSTqrQ7RHREijkG3EUjRHF9ukDVVFFUmLuUJVxUgmHipKMHQEFkKEnsfNqed2nbwd+i2bJqlJvpdKpFYDE1TEZJMp93Fk5q4zi7GJsdQDZ3KlcOAh2Y+im4M0ais4HsOruOjLuwhcvAQq4Um8dwUkqyDpBCNJWhsXMGMDRNKjOPW5uhUrtCtXSMRVfHMaVRNR5J0hJZGUhNIwgGnSru2RtNNE4tGAiquJCPJOl57Cd9pIcugyjIyLooCst/E7RSQjSyoMQqrS1SLZ3EcGd0c5eIZl9GpKrL2wJb79j31Jvf2S0oQ/WSu/3vf/wPn/KGK9a+xvezk7kc9d6/CJHgJ976/6Pd/IKBobDazEQxF2SzKbVYA/c0kz+/p3/QwvYGEcIs22d9wi4H37SeEm1o59McrD1TrRXACva6oreEv/aZuP/g58fQzhFMjNOsNFi7PkUiniERDDA1lMcJhNlZXcB2b7PAQ7/iJdxBLZ4nEY1RKRSRcGvU6QhIoioSpdTGjYeobCwivjSx8DEOnVCyyurxBJJHGMEOEwyrF9RKKIpMfGWFy2wS6JhPP5FBUE8+zOXbsMpIEteI65651EMJDlj1y6TiO1aTbCSibTteiWqlSWi/Tl4rwbAvXBdlI8dwzh1hfLRDRLJJJg/XVGtFUilgiRmG9ztjsNmRNwoylKK5XCEcNNF3BRaCaMeKJMEY4ysbaOsOT46i6xsTsDOl0AlkSKIrG7tu2E4uFqBQLAe2uWwHfwTBMXjx5jqWFZcJmMHlMwmP+1AvUSwvEYwq37TA59cSnwJjA9BfxHZtzy3kuLzaxSidRZMFQtEK92cVITiBkhZldtxOPyMihLCuFLkgGmmYE9BrXIxkJhE7b65dwo3ch00XyW7SKc9jzX6Cxchpl+N3YVgvdkFicbzJ35MnAs0QA33n9Zn3hB9RLAiQ56InpUTH7k9noc/MFwXjvwEc3+/Z6EzaR+hM3e8uQ4IeKix+JRMnlctiWdcsBKz4+nW6X9fV1ZmZnKZVLLC4uftf39vFZXVtjfWODaCTC0tIy3fate/s838PqdjFNk1wu+6q/02tpQggy6SzpVCpAo6pVLNt6Td47QNQar9n73ez9W80mSAJVUYJpkt8n5FFRZCRJRlM1XNdlx47ttFotLl+6/LLfo9VuMzd3gY7VZWJivIfQ3Xwzpek66VyGoXyeQ4cOs7y88qrOu1BYQxKCVCa9OUgll8+jv85U1ptNuQyGnEhbMZyteB7E4C3+jBh4za0/5Oa4Rp9KuXUeXq/32H9JD98WnS04XpO3pDqkngbcFuIH/+XEr7PSqdB0HKpWHdvzeqQJQde1cf1AJN1D0HIdul6gJdd2XRzfR5cDOqbVG5iSUE2c3joVJJhBHHB8D9sPBmI5vo8sBLJf4Z7Mu4j6URLZLEIITpxco9WoEI3YrC4tkBsfxrYbDI/kiMVg4dppioUNfK9Gs7bE6uIqmm4Rjct4TgvJWUNVXaoNm2p1lUq7wsj4GI1GmUPPP8mVyxdoNipYVp1up8rVqxfZGK/ibveordURrkthdQXX8Xh09K9xLAd8P0jsetfU722wfM/HdVw820WSoFXtMHz3KOMfmcIImXTaHaqlMp12B0kWyPLbkIRMt9PB6bbxEZjpWdq1cWyrQ9tN95J7m+j7HgdZJyxv0KwW8f2gZaMvKu/7NsgZzPQ2ksOzZKfuwMzfQSQSw7PKOK1rWPVLdGtzeHYdhE44lkRYy6wXVmh1bIQaQyhxJHMWtFzgT24H36vj22U8z0MKjeGh0Ok08bpL5JIq7eYCa6sFdhx4gpX5e7bYNgPW76PrI8Z9/+9Lgb3EehM2N3/6L/oH2mP/RrEfIXev0Dy3z6f/znmx6PHdB6scfdHx61kX0mb/29axfWpl8LskAC+gYAbVQhFstDcRuYA7t9lb1+eKDySH1yGI/YktPRQwSP58rp46gRlJ8cKTz3D+4gVSmTwT05PUas1AvLbRZH29RCQeR1UEly9cQ/ItNDPMwsIKiiwRTaT4+le/ye7dMzRaDoYm0e0KHA8kSSCpGtFonNXlVbJZE19oOLZLIpWitFHGth2GhuLImolmhPHcFpJsoCsSl+Yu07Xh7jcdRBEOtu0RiUdxPQm3vYweSZFImIBENp/F913aG1eR9BjHX7zGwrUVrE6HK9cWkFWDVrPDWrFCvdbGcqBSqmJ32uzYvZ1sLkY6l8FzLKLxBKGwht11MaJRbMvl6twZLMcnk8/jeV1UVaVUqiLLEImGkRSd6kaZF547jm25IFSMUIip2RkKhTLpTIZ0PoOi6awvr3P0mW+SSzmYIYnpEZ+mdieKqiNkg9GJGZLSOWSrQKUOYVNGiuxACQ0TjYUpFusk1UX0zB7s9RMsFQ123HYHbmcDV0px7dzTTAzp1BsuyYk3Iwpfx2vM4yppWupuIqlhrh35FO7G81w+e4hw9gDtjiASljCj8U1UFz/owRObLZ9bFWdZSFuBoPe06NObBit9PRpQvwoeuHG/iidAyD9U1TxF1bCsLpZtIyvySxIA3/dpN1usra4yMzPNpcuXScQT37UHyfd9lhaXcByH3bt2sra6RiabIRS6ufi467l0O10y2RzRSPQNg5BJsoRphtF1A8PQqVVrNOo1bNsOKGx9uumrOF9fiCAReg0GtvSHCPXRukajTiweZ2hoiHwu/32/npqm0el0aLVaxONxMukUh48cIZfLYZrmdzyfVqvFoUOHabfb7NyxAzMc/o7XSAiBLMlEohFMM8TZs+fwPY94PPGykcJ6vcHRI0eYmJwkn89j2RaKopBKp9C1168h9ZbIHWyuW5uxk5eiFgMRGx+JfgQOhrBIvcFqfczjeguSN/96RO86Vs8NS+eAnwshiIaGiGupzUJan9TT7XY4d+kwJ1pHkCWNi801kloEXZbRZBlDVlCkQOpDkwNdu7rdAQLkyvE8NEmi7doYstITWZeDbygEsgBNknuSCIG5fvBvvW9PUs/x3sTPk8jmUfUQrtVg7lKbf/GxD7Nr23aeOfoiV68tMjk2zCc++Un27NnNv//9/8Ce7ZP8l7/4r7z7nffz+x//Yw4ffh6nW6Fea/KpT38Rr6vw8COPML+4QOHIOm/74JtJJqLEY2FW19eZGBtH4PMnn/wz0okU+XyWzGSSTx3+LLmlCKMjQ/zpN/6C/E9m2LW8E9sO9N6CMOb32hCCC+l5Pq7t0REeww/m8OIuG8UNuh0f3dBpt9s0azUMXSeV+j9YW3tzkLv4baL57WiRJKGowGq+SDiex2oWCOkeS3/wIVLvPEMkalIpXKZWrWLbHu3qEiHNJhSfwvF8VC2BpMYCX3A7dBsrVNcvU683qDQjFIoW7doquHXM1CzxiI/il6mV5ikX19nYqIIko2ohJDWMUCMIKQxKHMfXEUJmbfkadm2ORBjCYZWoqYBbod6KYpjzCO9eNMPc8tEbfrwBfUdv0Mtviu6JzQKE2Iz5r95+0GL9a2Q/omW+XtZP7m6EoQMU5obn+gtx/wmfXtPxlvUTwE0ah9jarPi9hT4YXLH1if0+pv4Uzv6HbCImgzCf3xdMFZvnQO91mxUXCa4cP4YRzVLdWMN2XPJDY2ybHcNqtzh79gKpTJJULkMqEebhh55l/8E9hE0VSVYprpfxujYTsxOU1wuMT4yRSKcCBr7ns7JeI2SoGIbOqePniIaDvrrVlRLJVJxGvcrKwiLT28aJhSU8Qqi6gaLIeI5FYXmDykaB7Xt2kMsnMKNxbNvGCMfA85EkB81M4bZLgE0oEgHfwWlv4CHz7DPnaDUaRGMJtu+YZHp2lka9RalYZX21wO7dM7iuz+L8MkY4wshYlmq1yZljJ9DNGIlUBtdu4wuFK+cvkhvOk8uniScTPSFTm8pGlVQ2Cbi0mw1K6xtk8llMQ2LHbbcRCau0WzaO45FOBgMPxqbHAEGnaXH8uYe5e5/GpXmbTFLjyWeuMTZ7EK/0AtHsLF/52lNkYm2m9v8E9dWLOMZOEpkM3UaReGaI6rXHSM++E3vtaS4two79B/FcELIK1RdJp1RalowITxFK7cLI343nSxx/4Ums5W+we1omGYVqzeLs6dMMTe2lsLTE5M6dW57SC4BbC7egPxKz73vBpFVBHyzuFzMC/+4t7psFh97bSb2Erpf4fS/2g7bgK4qCZXVpNpogxEvOv4+yA1ycu0g2m2VibOy7j4UXAZ1zeWmZYnGD/NAQmXQa7SYoSH/gRyKRIJvNviLq3vfD+gLa4XA4SHY7bTzPo1lv0Go10TTtFcslCCFQ5NcmsbMdO5h62m4HiXq3y+TUFCPDIxj6q6Mofq8mSRLtdotOp40ky71+O8HRY8dptlpkMumXXDPP81grFDh69BiZdJrpmWkMI/Syr5EkJEJmiEw6w/LyCqVSiVAohGF8ZzH4brfL008/Q7vdZv+B/SCg02qjGzq5/OubGPd76L1eMrb5Xb7L6/rxvj8Whc2yTJDebL7XrRC7m4ib+4heu8dAUfiGBG/z84Xgby78Eftyb6c/8br/ff7o2K9yun2ClmMDEFGC62/KKnYv0Wy5NrqsIvBpOl3CioEqyUgCdEmiZlvEVB1ZiEC8XBKoUuAvHdcJODFC0HUdIoqKR39v44Pv8k/H/1c0PYQaMhG4gISpqxw98jQf/IUPohsaheIaY+NjPPXsM3zhK18nYmpEwiZnzl/kb795nEeePYkVfh/PnPB5+G8+w0rhGnfffg+HThzi6uJVJsNTZHZmabXb5IeHUFAImSqtZpsnnnmGuSsX+Uc/+ZP8/h//J64tLBIN7yerCuY3Fvjv8u9H9yQUVcJ3A0RzkIrZbdtU1ur4MRXv9kBns1xq4rk+RsSgvF7CcSCVTiFkCdVcplneQ9fyaTZtdMUlnEwjaztQ5GN4dhVhDLGwVCV88gDevkfodCwyw5NBr6rSJJoIo0ZnEXIUWdbxvTqt4hn87grCK6IoMs2mj56YJZHKkUpnUIwUrY5MqzSHGc8Tio9iqF1Cmk02KTBElY3CIhsbJdYLG3hOk2azTaPRYHXhJCNpi1hYIWQq2K6HLMlYXZtKpUwiPc38XJ78xMQt78GgpUds9d6zhWb3C7fXF3HlHitN/qGL9a+R/Si5e71sE7nj1g2k/SRvMNnrUzkGH/dJbL4IBlX0pwsO3gy9PC5YvPuLeL+yt1mtkzardxBQC6T+v23ushno79vCXQA6jRpWx6bT7mAYGrmRMeJRhYsXFxidnuT0yTNk01lUVcYwNXKZGI7rcunCZWqNFvlsBj1sEtIl1lYLVMoVQobGemEDSdaIx0OkUialtQJjUxMUVjdYL9YYH89Sq1QxQyEkWUYzQqxtdBiZHEWSVRzXR9VMzEgETQFJNtH0QDdNliUahbN01k/QWjuC77roiXE8X8KuryKpYVQziY/K3LkrDA9nuTB3lXw+g6aqNJttpqfHyA3lSGWzlNcLTM1Msr6+RiqVQtVUapUGMzO5HiLqISsKiVQMIQX9C4qi9BryIWSaFAslTFNHUYONaKVcIxJNsnh1iWgsRjiaoNPpcuLoGe64/yBGOITVatAsLXP2zAUO7tbJZmN4dhtTcQkP3YXfWkKJzbAwv8aBySqhkbs5/szjHDtTYnb7buzqJYSepbLwFJnRWSpLZzh71Wdq+37apSuY2W20lx4nmplElVxWlgqsFCyeefhThOyT7B5tkEv61FsQMnXyWYWZMZ2vPHSW2w7cTWZkaHMR7ft0z0kDH6O3GZEGfP7GXLDn233f3azc9TdE/Z4Vtlz11doP4oLv+R6dbmdz4uAgeidEMCADzyObzZCIJ4gm4t9VDFsgkCWJSCRCOpMhEY9hRiIvuT6e7+G6Lp7nEY/HCYfDr8t3fC0sEA92qJTLaLpOIpFAD5nBNft7Qhp9ggmjnuchyxKGYTA1PUMymfp7O6e+GbpOYb2A67johkE0FqPbabO0uMRGqYSqqpuJsef5LC8vc+nSZRKJOCOjY6jaKxcNDyb7KRiGTrG4TqUcsBRulXx7ns/JkydZW11ldtssmXSGbqeDkCWSieTrLn/wnZg4g/F9cMPaf9w/5oYSLv7gTndwSqDn4375i7Q/8Sc4Tz2BNjFF6//6dzjf/hbqPffT/u3fwH7ob9He8S5av/5rOA99E+0d76T1mx/DfvibKO/+Mdq/8TGch7+Jtv8Az536f9n9n4+ivPvH6f7O/47111/hC8lvMfrCCe569AoXZsPMnl/jgb+7gIip3PnCRfY+d4Wo0yVTbfDWL51k8twy7akw7/7kIXa8uMT8wVF+8o+fYP+Ly5y5Y5Sf/dPH2X5mlSu3j/NTf/I4O4/Nc+xAngc/e4RdLy4yt3eY937xCDuPz3P2tlG2v/A02y/VGJ39KbRPfALvc59H3rcH97d+m2PfuMSLtTnee+USrcceoXjmHOcPHeKjdoeHlpeINEuce/RJfjU+w1/OO7hulfvu+DFimsrc3Em6dpa33TPNmbnzPPiP/zFLlVVGxvJksmlOnjnJUy88zdvf+nbq9TZ33H6AarXK2972Fmanpzl24gRydpp9RoLDV49T+KdX2buwZ5O9JA0IzXdbNpFcGHHQ4GjxDOVSFatroSkq4XAIu9ul3mgE1EvTwHNdioUY7bbK0nKBZqON5wtS2RSKouDaT+E7ZXyhoptxmtsewtRdhPCRvQaS5KNGppC1ERAy9PBfr3WVbquMbdsosoSQZZpNC1lNIkkywmsgKSE0zaC4XkT1q+ghFSWUw7MbqLIdvLcsEYtKGEoXRVgIr4nwGqTjAtOQqdbbSJKMLMsovTXBtjvUah+iWvYZmZ5CVpReT/1NKw1b90mfDSYGYjsDiPcme+x7J6n/IMb618BednIn3uBq8W+4k7OtrR6NoKPregvomB7eQCTop119qYMbX+NdV/cIXudLIPwg6esNRB4ILv5Ad2uvb87v1Qw33+qloWhTK8/f0hTz8dlYLlCvN7EbJY4cPcs9992BqsiUSjUc1yGeiKPpGrrqcuTIOaamJlAkD6EopFIxNtbL2LbP8GieRqtBLJGiVavg2A7Hj5/jjoPbiSSTCN+jWaui6SadTguBT2GtSiwZY2Vxjdvv2oPtCMxYEt/t0CpeJJLbxZXzl/GdLkNT29BDKn/+B/+esYzEnnvfibfxPLGoTHTHL6CFYvh2GyEF18PzZZAUzh47TSSRwbU7PPnUYd72tnsxwiYhXWZlcRV8i4XFMrffsRMUnauX5nHtLuFIjPHZCaxum0w2TWF5jaGxIXynTbdrEwpHwHc5e/oyU9Pj+E4HXyiomsqZE2fI5LKb/SOdVoNQNI5hRrh64RJ77trH6rnniA1tZ/7Yw/jhWeoX/5ypUR1ZM7h6qcDl7tvZvWsbYa1Gw0rzjS/8ER95cBartUGppmDOfIjGxb8huecDXHjqD7n3HT9B9cpjPH1+iLvf9h40TWf+6hXqc/8fb3rwX9JeOYyz/jxOt4tQdRaWm0yOJ9CT00iaSXXtMiHNxmp1qDQlatEP4jcu8MAH/+dBDx/gIkm96nXA05R7CJwvfIQv6I8FGvRRJGkLORYSnr+1yItb3FOvxF7vUfOvlxUKBaq1Kr7noevXIx0+PpZl4Vg2ihYE35cTGvuInOd6aIaOIivXBedA8ymQJtFDBuNj4zdF9t5otra2SrFYRNV0wEeSBKpy6/PuozKvirp545j8G9/b93AcZ7NvOpFIksvlXvHnvF5WrVa5fOkioXAgadGnjZ49d45r8/NYlkU6mSQ3NISuacRjMXJDeWT5pRThV2Ke79Fpt1kvrDM/P89b3vpWYrEttNn3fVqtNk88/jjFjQ3e8qb7SWUyIAS1SgUzHGbbtu2ve4I8GM9vZf5AQRR6Baz+cjZwep4fPO53owU+0Y+zwQHNX/llwv/5z4Pnbtx79Qe0cP09erO+J9/3cYWL7MubLJ9SYYX/+9w/I6GP0XEd5F7/XFgJhMUd38f2XCRAleTN/rm2axNWgqE4G1YbQ5IJKRod10aTAj9QensKr0c+BQ/H95CEhCoCnTvLtUjI8Iuj/wbVCHo0JUXGam7gyXE+8+kzvPm+MPmhIWLJCPW1y5QXX2CjWCMTbSL5bX7tL+/htuEEnu/jakqwxeldWM+H+fUa/+wfJTl75hSS+EM0AAAgAElEQVS7VsaIPzhMrVKlXq8Ti0cJmyahkIosuai6SThi0my0WFtdx+76xOsa5RdKPP7+x3nfsz+D6wY9d522TbvcwnU9vAMGO98yzYtHTrNRqmOaOqosoxsGui4zNJIlFo/QaXVwfcHQSI5o9GOcOvHPsboenu9RLtUYGslxx5sPIskXcTtfoVs5QdfRWP4P7yX2P/0VndplhtJqT4NPQlF1lMQdIGL4zjILF1/EiE2hamFcu0ncWMHzNdbWbVIj+xFuFdeqIeQwQo2zfPUsqVibRNxEjY6CFMNrX8GzWzTqFrouoSjQ7ngYuozjChTJx3ElVDOK4/i06hXCpkKjYdMSB5i/8LNM7JxketeewEUHGGY9RwySOel61LvvsZtD1HpJ3XW+zQ9nrP8e7WUviD9C7l6hDSJ3N7/K13cjXWcDzMhgI7tF5bj+uC0qm997HDwf3A592YJAGmHzzLY+ZFNEj81x9v1PDjbbYrMP4PKxFzAiKc4cPUI0nubAXftxOg2K62VcxyWVzSBLgjOnz9LqCDLpJCtLy0xM5CkV62SHUkiSSq1SI5mJs7iwgip51OtdskNpWrUq0VgMyRdUyjWWFgtoskPL0jh76jQz2yaRfJd4MokZi2DEUixevsKhJ5/FFwaZoSHm5i4zf2WJ0eEkX/zs33J1ucrkaIacfpnY8G1Ep96DrGg4nQq+byMkGde2kDUDhEIoEubhbz7CufOXue/eAyytlFlZuEw0niQci6GqOqMTo6ysFsnkMqTiJtnRUVK5FJdOzTG9bRwJiKdSuI7Vu8o+uBa+LxGNx3CtDh4aC1cXEJLMtaurjE2MsbK4TLPeJBSOsb62hh4ywPeC4FC+SrdeQDd09OgwncKz+EIgh6eJ6g1WFy8xvO1+3NolotlpzOgwSfUi4eF7OXrkOLGh+0lN7McwTUpLpxkaG0f4XfzWIkb2DmqVDZylr7L/Le9BD2exiicCYVvXolbrUK07ZDMmnlXFba6ytlInElECJMd1UTP3UV+9wLaDbw18Rhrw194k1sGKnCx66HNf/27z2N6GRQp0GkUfs95EssVL7plXu6X7Qa3mmaZJrVal2WgGiMlAsBQIFFkJUBb55UsC9KUNNE0LEu8bNsqe72FZFooiM5QfwjRv3o/3RjMzHKbZbFKvVtENIxgOIL80ebNsi/lr13j22ee4ePEiqWSCkGm+vMTYc5mbm+PM6dNUa3VCIeMlSXcf9RQCWo0mRijE6OjY3ztiN2iaruP7HuWNEnrIQJZkNE0jnUmzY8dOJifG0TSdSCTM+MQEsXjsOh/zPJdOt4vnugG68TKRvADBU4lEo5ihEOfn5giZIdqtFoW1NY4eO8YLhw4TCoV44IG3E43HEQjq1SrhaITpyZnvy708GM9vyn/kpRXmICbTK1ptdjr0YrJA9APuwMAI0XuhtGcP//UrX+XgwYObfvJ7v/d7vOUtbxlAOkSPtTO4Ol5vQgg+/eLv4CxGyGTSXD1/jifL36Lg1Dl6aRHJkIhqBqokYfkekhDYnofS06hrOl18BEpvHZcQ2L7Phfkyo6koqiTRclxkF1q+hS4H03xtz+Nz/88hotkQ4ZSB7/s8e+gKh79xlR+/azdP/kGBT3/2S/zsz76PX/v1X+fUiWO87e0PsHhtle0TOl3LJp5MUlhZ46FvPkalKsglXaLxBP/qU7vYPppGtpxAn67P9PAJJCeEIGrqfONQiXfdm0FbE5TDZfRQiLGxPCMTYyiKRCIVRwiolGrIsiCWCON7ghNnZMZ3yWTuzXFX4m4MLcLK4UUapSbG9iTTHxhn5t0TGJkwspAYGx9maChFLpel026j6yrxRIzJmTFqlTqe8InHoqyvrmHGHmF1+R7isQjxdAwfQavZwW63McMTaKE4Ql5H0zyqT0ySflcR2cjT6uo0Owr1ehvHdsAuooai2M1lmh0VXTORaSDkMHa7RNjUMA2JxcUCspHGNGNIvgXCIZwYo9Hoook63VYFnBKyHkPS06ihOIoeRVIMZDWEoodQjCjoWTwpgmamwK4hSw5CgCxBsdyhWrkX12ozMj0VoIWD90r/p5fgSWJrZfV7k2Ol3owISRL4N3jyFtfs1dkPaqz/Hu1lI3c/Su5eoV0XDAZskG7Zf3xjD15wgLiO0uH3OMvygLTC1gZXgC8GaJ5ik+q29UEDbawDmVz/RhL4PeFpv/8ouPEkwcXjh0nmp1i8PM/EZJ5EJsvi1Xl8yQQhMTqWo9Vsk0jFqJabpDNpMpkYqUyObsehuF4kGosyf+UKs9vHcT2XWDyJomiEIxEqlRrCd9BDYRq1GidPnmdyepxDL5wkETdpNdrYnozdbTG+bQZJNli9dJa//urjFIsVUrlh8iN5qqUGd953O0cPn2Xn9jz3TK0yPpkmd9sHCaVmsFoNhHADraRQFEmoeGh4dhNZlpElGccRDA8P02g0cd0O6XSeWDKBKgcjv3W5iywphMJhqpU6rVqFZqVMfiSNEdJ7l9brUTcEiqLguB6NpgV2l3LVYn11nUgsRqPWxAybVKotZFlQq9bJ5BMoqk61VCadz2PViyhmmtLqOmP73kSz2uTkhTaV1Qtk4k2k+E5Et4ijbiMzuZdQOEoqk+Pq6ceYuOMDpKVLuLUzlK0x2pUVumtPMrbvp1Cik2ids9jFZ4ibTUb3vxentsg3P//fkNNvxtJ24Jh7mV9to3h1khEXy6anbeRRLFk0mh6Hz/uk8rtR3VXiQzPo4Wigb9f7/nJ/YYetno8eN7OPGW/qPA3cJP1prn0HliWpL3v3kvvp1Sz8P6gLvhCCRCKB67k0Gg0kWX5de98838O2bWRZJp/PE4vFXrfPeq1NCEEsFqdrdel0usiKjO/71/3tfd9nY32do8eOkc/nAZ+rV+eZGB9DuYXW3CDtaG1tjYf/7tvkcnnOnDmD53mMjo1el7i5bkDHtLs2kViUyYkp5Ddgv6IkBWySVrMVoL697+B7HmY4TCaTIZFIoMjKdTRMz/c4c+YsRw4foVgsosgy0djNh+14vke1UqFWq+F5Hrqu09fcM8MmkbBJYW2Ni3MXWSusE48n2DYzze7du1HVAIm2rC6245DL5ghHo98zbevl2M3ieb+Pzh/4/8uxzZkovrv1YMCEECz/xr/kT87Ncf999/GlL36Jj3/840QjEZLJJN/+9rf5+B/+Ib/xm/8GM2RQKZX5t//2f8O2LL72ta9x7do1Ll++zEd+6ZfQNQ0/Z/PZP/w6f/qnf8bEj2X5q0Pf4NTRa5gpg0QojKlpfOZ3nqYTE0yOJJGExHMvXGN0LMHJM2s886mzlFUbS4VG06UrfI5/eZ6TT11FjOmYYRXLsnnm6Xkunlxj+64sru+z9/4RVtaqjORjeMDzn73G3R+O8h7pl0inkvyPH/0of/fYY3zk5z/AQ9/8Cu98908iKxJf+tsCsruEZ7tcOHcR13XJR9aIx6P8+n8bYTKXwHddPE3BkwengffzhyCRiBsaGyWVO3fECU+E2ChWiMbCNBtNhoYyeK5HNB6h2ajS7XZxXR9ZVblwroSm1mm3LL7g/S55dz/KTp3knWnMUYNYPIKiyuRGhohGVBRFIhqPslEo02g0SaRTGIaKrgoUNSjI+a6g0ahSr8VwvRFMU8Vut3EsBw+fKxeu4nsuw2N30qgLNPUcmd0Wvr6MJOtoRoyQmUQN5ai2ZAy5ihYykBVBtdrB0CQ0NrBdnW6nSdj0kBSTkNxifX0NLZxHMRJgFZH04G/cbayjKi6S5GF3GjjtEsK36XY6KLJAUgQg0Wk1EHaZTqOI4lXAdxHCw3E8bNvhS3+ZZnj8bkJSh6GZbdfpWzK4zt1IvSSI/VKvcBCQGny+E/X5hynWf4/2spO7V9aF/iO7pQ0Ggr7Dev0et+sODJI5ccMYWX/glf3EcDPI9N68T+vsvygASfqiqX5Ag/N8fCGQ+urTsKU50jvO9wEXYokRwENTHMx4GqdbQ9ckYskwqhKmsLxOYa3Q03szGZ8e5+r5CyQzKS5duojn+Vw4fYbd+/exUSyRSsdxXQur28bBYH11jUw6ie9DvVZn144xEsk473z3/TSqVabecjv1WpX85F6EBM1ygSefvcjUzDSNRpsXj58mnU4ST0bQNMG+0Us0KkXM9CSxmfciKRpWfQXNCAdVKDysdh1FCwVkVknH81yQJPbun2VtaQ0zlOHbf/c0Y2PjxOIRmo02kVgEVZHo1jZQZKhUy6ytFLltzzbCkQg+KrIkKG2UyeQy+ELg2R1cT8azu1xeWObLX/oa+/bfw4UL57jv3rvBd8gN5eg064TMKI4jEY6E0DSNVr2FqsjkhkeJZYcRskp5+TQT07OEGycwVIGQXIbzJmfO/RW58X9Nq1bFdlysroXruqT2fZSlb/w7Qo1PUm04jMzuR6gmku+Tvv1XyKlhOs0Sl+auEau+QGbHz5DMb8M0DRqlRfbc8zOsLlzl2ycO4bWXGU77DA+FUTWHQ2c99t77IOlsmkJF59ST3+L+930ESVJ6zf5b4Jzf/6/Y0lns698Jz7/Ob7fwuYH7pS8DcouF/42Dgbz25nkeGxsbrBcK1Os1FEVlfGIcz/Pptjt4uobcS/JeqzH6gz12VtcikYgjhODokSMYIYNYLE48EScaeeWC199Pk2UJRVGC8eFekJR5PZpY31zXRVE1FFVFlhVsx8ayLAzjpRqBnudSq9WIxeNIQqLVaiGAbdtmuHz5Eu12exMhhOA69td3RNDfJstvrMSub4ZhEIlEqNfreL6HLAKfsn37uu90o7Xbbc6fv0A2m6FY3EDTNIZGhpBuoMB6vcRxbm6OSrVKIpFg3/59GD2kUxIS0VgMVdNIJpPomo6iBQl2n87Vn9aazWbJZP7+pTj69PDBYe03Pt60gTYHkLeGpQhekgiHuw7bZmc4d+4chw69QKlcYXoKPv+5z1EulymsF9E1nQ99+EP80cc/zoEDB/jAz/8T3v2ud7NrxzYQMgf27ePDv/iLfOHLn+eX/oe7+PrXvsxjhb9ifq5J9dAG6W1xYkoIy3e546O3sWskget7qJLM7gPDVGptdu7IcPg/nsLzXfb/L0N8689e5ODPzSBLAjWuMzucpOHYeJZL9djGJjIjC4HtuURUJQBufHDweWv7A0QzESzXxfU86uUKJ4+fYX65wdryGsncGLpusH3nNorrG8zOjNAobpAJqfzWZ8fYNhzHdT2ELBHyAkJ/R0i94Vz9vUtwUWVZcK3Q5PRKmfv37QFUWBScXj5L50KbZDqBOpEkLw1TLdWJpWIolsJd+QrhcIor164R8/aitlTciIO6rtFxbFZKJUxfgwmVyGiI9uU6siShIJN3c+hVHX1Gp33Vw+p46BMOpVMVNENn6h1f4fw3D1Jb7NDSqig1A9/1CKci1E7VWFGWaShDZLwPUvnMGhO/00DurONYHVyhoBkG2aFR2sUVYkICOY2gGCRJsoKmm7TqQazEa6EbGvmUT610jbYWI5nKgVMjFE6wVskg2wU0HbpWIJGlyG1kz6dcrBA2g/2M3XZB9ZAB2+rguHIggO56CHwOvtVClWSQpesTu5vYYHNFAB5IIIK1Oegj7N8r3kuSvH/ocf7vy36E3L1CuxVyN4jYQX/TeoMj9yEKKeDI9zvhBgQMtl6/+Z8tmqXfo2sED3tcfJ8bX0WPH7JJ67gODu/1BSxevIymh1hbWGZxqUA6qeNisrS8xvBQhk7LotNxmJwZ62mvCCIRFU2R6Xa7zG6fZmbHLOlsBjyHaDJOq1ZjaWGVeCJBca1ANpOi3ShTKpSYmh1Gj6QReGwUy2TyOZAUEkOTgE9lbZHPfPpb5PM59h3YS6vRYHh0iPxQEkWyobuGnpglMvHjhJKTlIsVVLmDasaQZQUh63hOt/f1BaI3r19RTeqVGrouIwufjY0q23bsRJZ8vvrFh9i7bwa765DIJFBlj/OnzjM+NcXStSUKxRKL8wskklE6zQ5m2OTyucucP3OJ/HCW4so6x4+fI52K02xaSPjEwiaNRgNZEgwPp5AVmVg8hiy5rC6XCEVMnn/6EBuVBulEBDMeR5IkNNnBw6DcGUWzTuN2S2hGFA/B2qVDNN0sV84eYSReIDn1dlqdNkPb7ic5+05y295EOJkD38auXMRrr9NsNDHCcWLyKuXVq0RG34Xwu3TKFxG1o+C2ieZ2sn3fPUztuZ/o0EG01O34kb1MzN5JLBahuXERLbEdX8ty6NvfYPedd/W0ngYqdGzpLvX9T2ztbYJCBgMv2fRfsZnwBQWKQN9pM0j0X3fTu+3W9oNQzXNsh8L6GsViEVmSSaVSDA+PkEgliUVjSFIgQNxpt2nUG5RLZVzPRdO1VzXd0fd92u02lUqZRg9ZcV2XdCZNLB7H6nbJ5nNBYiNLdNptNjaCSYevdArl99PCZhjHdWg06mhaoOk22CvmuR6SJNGs17Fti/GJCYaG8jffqPQorFIPbfZ9n2q1ysLCIrF4lHw+Tz6f25xm6DgOAFbXIpfLkk6/8aaM9k2SJDRNx7Ys2q0WiiIjJCnoFfSCQVE3Kx7UqzVOnz3DT//0e1ldWaHb7TI+Pv4S5NNxHRbmF5ibm2NkdJRTp06RSqZIJpObx/QpwqGQiazIwZAIRUaRgwS92QzoyKlU+rtO13wt7WbxvL/uDBZlAw06cd3at/V8oEknhAx414XhG5M7ZSTPZ598mve///08/ewzbJudIR6P88u/8is89vjj3Hf/fSwsLvKhD32IM6fPoGkaX/nyl/i1f/HPOXrsGA8++HM8+thjPPrII2QeaKItx5irXUGZaHDhiQJaWGd4bxrDUEgYOs8/fpkzhxbYf/t48Pmy4NO/8RT73zNBeEeYarFNdmeG1bkNpm7LUq85bL8rxzNfOsvM7UPoisTSchU1rLBz/zBdz+Ghz51m7ulVxu5N88TDV/jIwZ/m8a8/y4MfeJBDR47xt3/zNUJSgs997avMTG5ncnI766sr7NiWZHI8RKj9HHbtHJlMin/96SkmczHwQFYkhCRQezQ/Z2DXLzx/UL0JTZFZ1nU+98QyH/7wbtZbFdSQh2t4FOrrlJpFam6d/PYcHadDeiLHsycbRNJNHNkj3s5x+5v3kB1OU7bKdGSLaMZES8pkJuMITYAp4Zke8wsryFEJKSZhRk1c3SMxFsXBwUhrdKQmmaHjVNr3UnPr1DsNMD1c0ycSMwllQ8hhiWK5QleJkPmxHWh6Gkk+gRIaR1EsPNdGM3Q8XyYUHUOIELoRwkMBr4En4pSKy4QNCd+zkSQ1SNpEC6tdwfFDKLLAdztEkqOsrhZQJdB0CU2VabR9bE+m1XZwbJ9608F1BfWmjaJKgYiH6PuywPUF8fw468szzO6aJZYZ2dKl7VMwezqQQkgB86zfVyeCnexmwWOAuhn83ov1A7HsR8jdy7aXjdz9aKDKK7RbNWAPInY3E0XtHxOMjA9GDruDCd0AujFQpNosIfp+HyfxNxu3oZdE9pI8v6dDFvAwBxK+/s0lBWNoHdumUarxzKNPs3f/dmq1Jp7TYXrXLuxOh5XFVY4dO8N73vsAjmWhh02ef+o57nvTnZQ3yhiROIYu0WlZXDh3iT23zVAqFskN5bE7dTyg2eiAEBiGSa3aIpE0CEWSCOHRbnZoNhtkszFC6QmcVpUvfOYhxsfHaNRrmNEIYdNAyAqaKrFjzzY8p4nTqQECp7VGbPQgjmMjCQ/PcZBkDc9pIxQdz2rj+R6aEcNxHBRNp9uq027ZKJKHEU1x7tQVimtXWV4qo4fCvPdn3oqiqvi+zNNPPM/4aJ5O1+LcuYuEdI1MNk8mFUZSA12+qdkR1FCEVr1Op23hew5C1nnx+Fk6zTZjE3m27ZriwqnzuL5ganYKVZW5dnkez/NZWlghEkswPjXOrgM78X2Xs4/+FVJsO6eOHmFH6ghR00NRNMTo+2gvP0coNkx49F58z0UPJeg0S+C1qBSrnDz+IrtGSlxZtJhbVFDlLu99IIWefzPUjvA3D13l7h//ZYQvMEIhhG/Rra9C7SRqci++52IkprAai3TWj2EMP0C9pfHXX/4C97/lbaQzGSZ3jJIentrqpe47qehTkAOdoMHqtvADJHmw/xroDQrqObIv8L2b1MR7fXyvxN7oTdae71EpV2g2m6RSqZtOp/Q8j3qtxvLqCooSDEGp12rU63XCZphwNIJhGJsb8uvWcLFVRfU8l3arTblSRpFlwpEoRsgIZER0nWg0RiaTGTg3H8/18HrU0Hq9TrKXcL5RrVwuU9wobk4alSRpM8FzXIdapYJl2/ieTzyZwLyFzt+N5vke62sFut0uCEgmkkRjMXyCarTv+3S7XYQQjI2NveGRToDFxUXK5RKyomwmxpZlYej6TQXKG406jz72GKqsYjs2o6Nj7L1tz0t057pWl/PnL7C6vMwD73iAz3zms9x5553s3bv3pufR6XYQBPeqJCQs28LqdslkMuTzQ6/HV7+l3SqeD65Gt4znXtDecKuhOzd7vv3bv0Xod//PW5xNvxeZXu9eUNgNkEAP3wtaKr7w+c/z/g98gE8c/U3eLv0Cn6x9DEOdZcNqElV0ZCHheD6KJKEKgSbJPP6NFWzL4sCPZUmYBi3HRggfQ1IAgS4H1Gbb91CFoO16mIpMn0dkex6W59ByLFRJQZMkZAGycPlQ8leJJTJoZoxuq8mXP/N1ZNUIQCbPIhaNMTSU5fx8iJ95oINQZHxthI/+9jEms8F9I8lSwDqiNyW8v5chOAUhS3hu0BYhSRKu44IPjucRDWt89INjPPLo0wh8JsbHSCZMlpcLjE+PsG3XNlzL46mnS0yNNrk2v8zhoT/mQf13abVtVEUCHGLxGJ7vkc+nQAqKEeurRRYWVxGej+t7ZPM5wpEIsoDC2jqKBKX1DWr1BdKZbdRrDVzXxXYEIUNH11VK5TqNZp1oNEE2Gyc/nCOWiqErHYzw80jiRRBxfL8LQsH3OjitKwjZRNY0vNZVHD/OSqFJLryGZbuEwwqOE6zXuiaoN3z88F402cLzNSTVoLi+TqNWJRY1MKMRZNlAklUU2cdDxrUdJFlgddqo1KhuXCIUUpEkmcWCDuJXSMVnmd7/ls0kLvBPcR1o0f/tugjuu717IHi4qc98i/tJSK9cGuGNHutfJ3vZG6IfIXev0L4TcreZk21SJV96DASOHlQHtyZg+r1hJ9dthKHfXx089rfeSfThkB71zYdeoNlK7Ab1doQQm5IKl06cwDBCVAorhDQZJRQnN5SlVa0gywpGSGX3gdtYXS6gqVBeWwQlhNXucuXaOqOjeRy7RSyZwDQUmtV1Mvk0VruBHjKwHYFqRFlZ3iA3MgwCVpbWuHppgZGJYV545gh79u9ED6ewOy1OHD7JhfMXwbGYn1/GcTzOnj5HKGQwOTVBu2uRSGfAa6MYCULJCexuF9+x8HwZ3/fwPRfP7SCEEgxS2aSg+kiKCq6NpoJQZDbW6ySTCUrFMgfuPEgqYdJqdCgVihQKq9z7pjtRDYNYLMJGoUQkGscIaZSrTQzdYGWlQMgMEU/GUTWF9ZV1UpkUFy/Mc+3SJXbv2xmgmfEwuqGTHcpTrdRZunqNRDyKbbvEYlHW1jYIh0Nk8ikkWSEcj1O4dJKpvW/i2JE5pkY8hCwjmpeITr+TyNA9lCsNYskMTrfM4rln2bj8JEl9hdGxPHZrg9TOf8LE9G5yY3t4+Nsn2TVWJ77958iHFzl5+Cmee/4cI+OzGGYE2UgijDyWFyYcUbA7JYSaRcsc4P9n781iLbvOO7/fWnvteZ/xnnPHurdmVpEsThopkU1Zg91uG7YCo5+CAAkCIw9B8uaX5CHoBOggQAPpFxtpd4Ig8ZC0LVvy0JZkq+W2RMmiBoozi8Wa57rDmac9rzzsfc69VSxSlCGJpKMPOHXrTHufs88avuH//f+GXeWbX/syK951ercvsfHAk1x88dsce/TD+1m4clyJxUY8pz8+ONj3ZTsOvOJA1uatc2Vx+DLT9+OEdx+EbF4Yhiwt3b9CkWU5/X6PyXSKlJLpZEqapBiGwg8CsiSh3+/j+R6GYZBmKWEYkqQJSZqQpinSKPodRqMRg36feqOB7bgFw16WIg2jDNiKNWe+Sc77swzDwLLsAg4qCo2596s5jsNkMiGczTDKKqMshc2llNiugzQM/CDAvQ8c8+1MCIHnuSjTpFqrFQmRudOpNVmWobUm8ANa7dZPDDb70zTfDxhPxsymU2zbQkiJzguu5vvNG2kYqNLpX11bpdVsFuRY91QotdbMJhNu3rpFvz9gPB5z4vhxavX6W46Z65w4jFCWWlTtppMpyjRpNBoLKOfPyn5UD31h99bxDjwjxH0Du+IYYkEEMoeuh3/4h1if//zbfBpZ7uHz3s/52ln2y5cJsIfPnAE0S6NDpBE8H36FFJ+a6ZHmGscwyXWOr0yUkCQ6p73pcuhEFVSOowrpEMcwMUVBpKJEkWwrgquCdEUDcZ4T5wVML9YZnrJwDQNLyrJyFPF48BmUGyB1wvPP/YA7t3rU63Va7SbT8YiV1WUeOH2UG3fg1Okaym3w518eMpskSCkLWLAuEn15rlF5jtSaTOzLEwB3k0zJws+RUtAbzGjXajSbEtOS5KnGUAaN5hK2ZRcJXiVp1lPSJMXzXF7J/o5Pb/1zLNNgMpkU551DhYXBzvYeeRphOgUjth8EVKpVpuMpw/GIQX9QSEfZNnudDk9++v/gpecfJo5TdJZSqXmQZ6ysr9JebXL02GEC32EyjUniCCGK/n7TehiMT2E4p9DJt8nTO2RpA6FvgzQReoY06wghsJwKd3Ym5FmC7whMs4CoZrr4Lfb6mkqtisw6CGlhOx615hJeUMO0nIJdWBfNPrIkPBJaoCwHoSrEmUd3IJlELocOLyO1w+rhX8ZyKwv4dMF6eff8Fwf+7s+Se3OptqoAACAASURBVOZL2X6B1gX6517/WOsfG5XyQdjrfwr2rit3Pw/ufkx7p81AHxRCvU9wN8/kFT00c4qTg8jKchEvnS7IFxDMOfOWWERylLDP4tj7yLh5NUSX4tD7fX9CGOS5prtzE6k8ltt1pOUgybh6+RYbRw6TRBHV5hJf+8u/5sEzp0jCmNdePcuZR08RR1MkGbPJkGnvDpYCx3XQyYg4dRhOc5JUEkYZgpxqrcbunR3On7/OsVOnaDY8bly7w6OPncCuNAHBdDTmzbO32Tp2GMt2sF2fEycPc2hzAz/wMW2L5eU68WQbqSwMyy1ER9MZWpj7fVsiQZk+6IwkHGI5FYQE0w3I4xnScBASlPKwbIXQGX/9N9/l4hvnaLSWaTSq7Oz2Of3Ig+V1Euze3mU8mtDv93n0iYeo1QNuXr9Bo9kkSxOqFYVhWgSuIE410WTI8eMbBIFLa22FLA7ZudMhms2wTIkWCqFMGvWAKMk5fGSN2XTGdDCiUvMx7SpBzSGZjlg7+hjf+uGM2eg2Us8wpudJhpdpbD2JNEwGb/4p6fgaX/tOD9fUtJsZo4kmdc5gSI1jGaxsHOO737+MG7/K2sO/Rsvb5aFjOcwu8n/9wbcwZc7K+mH8aoU4sdGqQhTleIHPl//kjzi1fJVHH6yw3Rmz3XfwahusbbYxrcIBO6hnV1Tv9qO6xTK9oEKe1531Ap2sS/hwkanWzAlX7oJw/iML7oQQuK57H705ze7uLlE0AwoY5Ww6pVqtLipESRIjpCzIKjQoU9Ht7JEmKbrspYtmIXGcYCiDNE0xTYushJQV0DiF53rs7e0WcDwhFv1kB2UQpBQ4jvO+DuyguJ61Wg0E9Pu9RR/ePDAVQmCZBcvoj39suc9QWvb0zSGt8/6wtfX1D0RgB8VvakjJcDgkjmNcx0VKQRRGKFO9JUiRUhJUAqqVSnF7G31FIQSOUyQD8jxnc3OTrcNbb7nmuc5J4hiNxrJshBBMZ0USY3VlhXq98ZZj/7TtnQhVFsLm+q2ogmI/LRNW86qGLqCZopR70bAgs5m/S/S6qA995K4EsM7na9+8T37edQ8HXWddwnpyNKNehz+587/j31niTetb1J31Utu2GI1KGozTBFW2gOQyRxg5llQY0iDLM8KyElc3HRKdYwhJTsGsmWqNIQpGb1MWfXagsQ2TnCLgq5kev9r+L2k1NlDKYDYa8MZrV9jYOsR0OkMqhWVaOJ5LtVrjoYcbuF6VQS/kX//eazQr7iJ4y3NNnhd7gZXrQjxdigWJlywT4kV/aPE986xItJiWwfdfvUMcBYTjW7iWwTQMuXzhWhFAmQaOF/Dst/oE3pgwighunaBZr5PngiROaCzVaa+t0Gw1sSyYTmL8oIKyTHQO27d38AOP6XjM9p09gsAvkxQ2k8mUjcPf5cr5j5DEEY2qjWW7VDyb7t4Ot2/ukMQ5ftWht1OQ0E2nEUpZKJVjewF55iHNzxBOPkwW9wqaBB0jVY5QbQyrjUhuYvpr5AT0+kOyNAEtSZKEWRxjBS08r8v27XWE9pDaJJkBaYqpbAzlYCgHpTwMFWAYLgiHNIYkVhhGA6+yhl85xLU3/xOOnz6H3/yNu2QO5nDLuZ8770NdpCDEAa9WzOeBvmuNzLN8sdfPTZTIgX9Me/1PyX4e3P207J2Cu4OZh4Ip8O6qhJDlwi/loi8p3y+CMM92FLCEHK1L8ed9QOf+6Nd5Oenm1blyo5irRZdO8oI1UxbMRTfPn6PaXKNz5xaWbVNt1FGmiZQCW+WcP3eVWRhy8oFjpNMueRaxvNJmPNhFCsmhzSVqzQbSkCSJZhYZpCns7BW6Ll4QIAWYtsXrr1/k5KlDHNpa4c6tHfxKwNqhZdzaMgJBNNzhhR+8wdJKm3ASce3aVR44dYJao05/OMJSkiMnDpHHQ8LeBezqJiDIkylC2SU8I8Z2PIQsyCcQYJgm0jAhzzBLohVlmoTjHoZSZBn0OgNsx+PIZpNOb8IrL77Gk5/8CLu3bpMB08mIKEpotmoc2jqM63ugIQ4TVtbb2G4hCpwlMdL0GHT3ePPNW2wd3cJyPZJU4/sewjCYjoZ0u0NGwymDbpdzr18oiAykhDzj0oWrbB3bYm9nD9NpYJlTxjtXOXXmCVLrJOeuGGzfvkbFi0nxkdmI3asvMrE/w+kzH6W59TRy8gKOX+WNKwbrG6vknW9iVY5y/KHH+JN/91Ue2dojOPLL5LM9PGPEJ5/wOX/udaLBVb72te+i8wS/UuXsK6/wra/+3/zix6FeldiWZHMjIJvexm6coXftRVZPPLxPXnGg7XM+0mWZfyg0mlikMe72Hcs+0wMQDyFECUESSKPUb8qzHyuj90Fc8EejIZ29PYSAIKggpUGrtUy73SZJEuIkIU+LSlGaFAyNuc6xbJskKgI5y7YxpIFGY5QQpiQuyHdEWckylMKxbXzf58jRYwSeTxhGKEMxnc3QOr+LTfH9arp0GAqHMCfPdfn9ZdHvuqjg/WR74LI8KyBXccz6+gZLrRZZmpGlaQGZg0Xw904VnffSHMeh0WjS7XQLx9i0imuZZfftr1SGwnFcHMfFfBuWUSEElmVRb9RptVusrq7e97VplpKkKXY5VpM0ZjqesLm5SaPR/Il/13dj99vP5+7pPurlPnv5/O8BOGtR1SjDsgUNPAeqFYLsuW+jPvrxu6FpZQADlJXUObphX4t2TmQlgP7uNrevXOd8/iotY4Wu3SMHoiwlUDYaMIUoArsS/u4pi0xrEp2hhMAxFI5hYBmqrNgVqKEoT8lK7dE4z5AiZ5zG2FJhGwolCj9kFJ/nN9f/J1w8nGqV6aDDudevMehP6Pb6KCnpdbsgJK7jkoqcb3xrzEMnDX7rX77McsMv/Jf8wMZBkYDQhiQzZIFikgckTkq5k7kvM/8RslxjSMlgEvPSVcGHTtjYtsKreOzc2WFtfYV+b0SmK7SXCu3Pr1Z/m9XOGRzLKfriGxVMJUmikCiM2d3uMBlPsS2TW9e3kUJz+OgmcRxz4fw1bLvoRw6jmOV2i17nSU6cPkV7uYaQijQXxHFCFEZ0d7uAJo4yXM9hNJqSZSnxLKbbGRFULByvQhpHJLMh4dBhNtognj7MaOcISVzBcv4eqQxMYxfHGeNVXAzXRToBk9lvIsV/xu2LG2xfe4SbV5q8+qLJzq0NpPgQ6A9hBb9EmnwEaX4KoT6FG/wSpvdZLO8zuNVfxPV+AWU9SZZ/BK0/zPrRo3j1I0hj/cAw1aUXKhZVuDkh2jzgvqvacLAgccDma2PRpyruCux+Htz9SPt5cPfTsrcN7t4Gdz/fGA6K6BYTooBJ7o9mcbD8xjxTt4BuClEEeWKfR3NfY6z8//zpxfY032iKfwSas899Hb+5QW93j/pSlc5eD8+zuXb5OtEswlY5fuCjmPCdb7/M+qF1kiRFqIDZdEqmbaq1gHNnb3Do6DFM2+LSpZt4jk2z3abfG5LnKcp0QEtaqyvcutllfaOGEimmEyCVwWyww41bI5579vssr6ySZklBtR2YaK05evIwo36P5ZUlJnvnsJwAJ1gtIFfKIc8SEEVQapg2AhaECtKpMe1uY9oBOo9QVgXQSMMkSQpIRGe3y8kHT/LiC2e5dWubRr3BZDrj0NHD6AymkynVeo1XXz7HlYsXWd/cYG9nF8/3aSw12NvuEEcxGslsuEe1tYYkZzzos7s7hLxokLbMQoahtlTHcS3WN5ZxHUW/O8LzXV588SxPPv0xdJpQqdf5iz/9Kg8/9hitjaPo+A4iT9k8eYbG+of5gz/6Fo8cHuFVGzz//TdY2XwMb/JVuuMWYe8VWisrqOgS339lzOrxp1Hj76FVi8MnH+bNl5/Dy87j19p4608R997g8IbFci3jww9b7Ny6yqHqVVbrPc48UOPVczssLTe5fmdKo+5z8fKAYdJCmk2WWlUcP9gfr0IvqnB5XiYnymBOz+GVd7eFMR+R986ZeeXuLsfqHWfk3fZBW/Bv375FmqYYhoHn+fi+j23bzGZT+v0+k+mUzUObpGlKrnNcz8U0TZI4wXEdLNtiNpkhhVjoE1ZrNcJZCAIq1SpKKYKgwnKrjed7TCcTEAJTKSrVKpZjM51OGI8nRFGI1vp9V7HLtWY0HtHpdEjShMl4zHA4ZDgcMBwWUECtc+IkIUtTsrwUF0cvgtt/iGmtF7IRWZaRJelijA0GA4bDIaPxmPF4VN4fkCQxSZIWZC7Tyc8cavijLE5iHMem2+mSU0hIZFm2gPPea+82UDUMY0FKc6/Nr6GUEsu0SNKY2WRGe3mZdnv5PQuE3ym4e6uVeINF/9E910XP/xx47OC10zmz/+13sX791956wvI2hxsW0jv7AkZltgytc7avXKNab/Kl3T+kZ11FSLM49eJcOanWZGjCLMY2FFbJZmwZClsa5JqC+VLnOIZBqjOkEJhCF3BLWQSqSQ62VKQ6Z5alZBpsQ3Cm9ilONx/FrdYJpxN++NyrXL+2R61WwbZtgopHvVHDdhyEFGxurrLbkWw1b/OX35pS9+x930SUQZ0uKnNWrlGGIDckUhTi5XleJAJ1Xl5dKUtGxnkgLojjFPKc1y5GfOJxjzu39wpItS0xlGTUv0ql6rNzp8vtygucSD9Jp9Mj8FyyPCUrx0KS5Sy3W+hcs7u7x51bO6xvrhcVat8lS3OUIVndWGY4GFGpVTh24n/m8qWPEFQCvKBCtVZl+/YOXuCjLJswjNnYWqXeqDIZjoo1RErCMKNa8XFcB3TKqHsTIQykVAjDBCHRukk4/hij7sNMBx8m7D/OZO8BsvCTTHtPoKgT1JvUW2tUqj5LSwFpCnmSENSq1NtrKGUSRQnnXn2TNI4IRyOm4xmu7yINhWGYWLaLX6lSqdWwXY8s/muk8fh+hfodd+IDsMt5xU7PkxT6vu9dHHe+17/tvLu/fdD2+p+Q/Ty4+2nZ2wV3BZPTuxya81LHwdeLOXxtPsTnTu5+4LaPdS5WNHnAaV7oh2lYiESXmRUNhRwC0Ll5s8jW5gmWaSDyDNN2mQx2sSybpdU2eZqSapOVja1CjmB5iaXlJYTpMB5OkCJj/chhLNtk3J8ghIHrWRimYjaZkcUJpmVQqXhcPneeyWjI9Wt3OHbqAZTjo7OI8Sjm6uVbaAStVo1+r8/xk0dRlsurL7zCJIwIXJdmu8Fs2MNvrmPYQfn9iq+jTJMsDgvq/bzAjiMMDFRZvTTIshTSMYZdKei/oxk6S1BSo1FcuHCJT33qQwxHQ27f2mbr8CG27+zgVQN2bu3yxEce4o3X38SybXwvoL5URyqD9c0VfN/ipR+eRVkKMk2vN0RIyc0bdzh+6jj9bp/eXp9GwyONI4a9PrudAXs7HWqNKkma4rkWg24fJQW9bp9DGytU61XydITlryOji4yvfxOr8SBaGzxwWKPtI2TjaxjVB/HlDXCOo6PrVAIgT3HY43bXYunQGUTnm9itBzl7rsPh5g7hpKA0d1afIo9nhNMehshoNiyUIVCGQJCyue5h2j7NZpU8S9lYsfjB2ZzVtUMk012Wt46wwFcW2YeCBICiD2IOLipGq9gnXJlDh8R8Yxb7fxdz4W59vH+sC/5sOiXLiypPq9UuSFKEYBbOigBmMmF9bb2ABipFlmaEYYg0DDzfK/pVSp3AJE3QaDzPw1AKy7axbJM0LQKSleXlYtO2C3mQOI7o9wfUaoUUgu/7SEMSRxFRFC/O+X6wLMu5euUyhmEU0FQh6HS7QCFBYJomhlFQ0BuGQhqS6XhMFIZF9TLNCpmYsofn3cIo4yQmjmPC2YwoikiTBMu2MS0L13WpVqvUajVqtRqBH2BaJiDodjpIo+jlMcp+ove6+V9rza3btxgMBqUfpomThDiMSOKEJElIk4Q0TchKVME/hJn17Wxe9YSiuhnOIgzDoNVuY5pWQXn/HtjbsWXmuggm9jVmKYOng+ic+33mMqm6YF1dPIQQkvyll1CfegY4kBA+2MGhDx6lXFoXzfcwHY8IJyG9wZAfhn+CbawWFWNACVBCMM3S4rMCjmEyTmbYRkF/D2CUcyAtIZ6Z1uQ6I9cay5AIDDSCMMsWzLJ5uXabUhKm2/zz9n+FV2shhGTa3ebFH17CsCwa9SqD/oBGvY7rOURhzMahdapVnwdOuCiV81ff7FMNnP3EX7mJFJwbApUWv0km5+0k+wF3luVFAFEGglLIBaFUnGREScb2KOLsZaibOziOjTBM/EqVL/35TdLwOrZjclh+BNeqsLraZnWjRa419UatqJxqCKoBaZriujZJWvRAtleaSMOgVq9Ra9SJZlM2t9awHQPb+Sq7O09TqfgkSbGm5zkYlsPRk0e5eeMWq2srtJaXyNMU27EIw4TxaALkNJo+TqWOV22BYZInM8JxF8vxsP06ynExTRspcpRVJLMNs0L7gacJWodxa8uFT6AEuVb0ujHKtvHrbXy/IKfLkogoytjb7eL7VdI4Jpn0ScNxcd0XqI1inOTJl5HmM3eN8/2OoP1ixhxWXHQPlRVmaZR7+IF+e7Hff7qYLf/Aqh18sPb6n6D9PLj7adnbEqqIfT27OS/Q3cP44GuBnIUTLAExh1Myh2gc1MgTC7YhsXj+4BmKmy4xnnrR1DR/9/5nzLXEMD0unb9IEk1J4imNZoDleEzDmNdfv8ThY1sIIAwjjh7b4Ny5q2wdWUVikOYwm85QhsntG9u015fxKwF+NUAAnmtg2D6+b/P6q2/SXFrCq3gcO7qBV2uRJyHhZMi3v/Uqu9sdKpWA5lKVO9evIJXD8899j2c+9ws0GnWiKKbRqiHyGOU0MJRJnmckcYJpO8RRCBgYykQqBTonjRPSJCz1wQo9J8N0mXWvYgVLmLZHnoNGcu3aLlev3EDrlOk0ZfPwKo5t0en2uPjGm4RhxGuvvMmnPvMMG4dWicIQ07IIApvZdEoSp3g2xLFEKJNoNsK2fdpLFf7ma88iETSaDUxT8fqrFxgNJwz7E4ShaFZhMktYWVvn0NY6eZ5z6eINfM/CcR1cvw4k+MsPUtl4lGT7WdYPtbBqD2IFy1Sah8Cokg3O04vXUOFrBJ7GqTSpuglmcp2b3Qq1jQ+hRMLyxlH2rv6AMIrx1ZA7l17CVJrKkV/EWf0kht3AdDxMbwmn/SjUHiNY/RBR7wLTyYg/+LOLzEYDHnz4NDu7fU48VDLhlQmIuTMBIA1xYNzNK88lbHnuxAmJUcKG5DyBcU+FezGPDsCOf5R9UBZ8rTXdXg/bsmguLd21ge7u7pClKUGliu95C9ib7/tUKhWiKCKczkqolsC0TJRSOI5TJDxK6GCea2rVKpVqhaWl1iJR5LouYRghpcDzvcXjRbWuqOT0ez2qtdp7d4EOWBxHJdSxgGO12ysst9s0Gg2CSpUgCAiCCp7vYxgSU5lESYypTETZX5TECaOy18zzPLTWhFFIOAsL6GscE0URstR0StKYXqeDLjX0lDIxrYKNczqeMJvNME0T27GxLRvDMIqKRRDQXl7G83zSNEYpRZpluO67J3P5SZoGBr0ek8kYAfhBwGAwQAO+52FaVtF/53kL/cPZdMag32c6mWCYqmBs/bFdL0jSlMl4TK/XZTIeFxXVcmxatk21WiVNE7rdLru7O5iW+TOvGL/dfr7Yi9nfP3/UClQS/5bSMHOHdv99Os8Q/S7y9OnyuTkM/f52LxpIA/3dPXItGA3HvJZ9lZq1iiMNlBTEJaR9liUEyip16SDTBeV2pnOiPC1o6yn0z6IsZZaF+Mom0yCEItUQlsc42G5S9OLlZNlNnlr5T7FtmyxOuHNzm8uXb1JvVEnSDJ1lDHp9BoMBK+ttDKlZWV/lq1/b4djahC9/e0LF3SdxWny/eWAgBLkU5Ad+A33gIsgSdl5UOgsSmizNMZXBLIwx57D0tMlqc0aSJEzHU67dTNlYyVhZW+Pr/u/wzPLn8YIAnccM+yOq9QqmbeK59qK/1rQc0BlrG8vMJhO6vRGVICAKpxgCKo0almXR7z5Drzvk8sWr2LbNzas3qdYDbMvC8YqxHoYhaZKx1+kwGU0ZjybEUYKhFK2lCqbjIqQkT0OicEKaG0h7GcNuEEcQRSkJLlq4CNKCuRsPKTKS8Q1QFbTZRqgqQa1Bc2WVKIzI05zA9/F8lyCoYFmKfm+AF/h0dvsYhkkeh8TTCeGkTzge4gQVNF2k8eCiKLeoLs9RYouK9MFps5+81Xl2D3mKLiG1+7fF3Fm8/x/fXv8Ttp8Hdz8t+1E6d/fLdd4V7JUFu0JonJLymIMR2GLi6JIFCVFkzaSgZNMqX1suQFqXQtFQNG+XVUBdVgfnh86ynN2LL2B5AY6lcIIqKxubmG6FKEoJZyEPnHmIQXcAWhc9YLbLqYcOE4czLp+/Sp5GbG21sH2fve0uljK5+MYb+J6Psh1ee/k8raaLMEwcz6PbHRBUPJYPHS60leKQm9c77N3ZJs00G5vriFzjBwFpqglqAacfPcMPv/M96o0qgZMjZYpTWWLQH2FZBlGYYVo2Ok1I45i/+crXeeD0KZIkRmcJWS4R5cQvFn8DZQWEkx6m7YGAWX+PKFH4ro1p+kzHE86evcjRY0dZ3Vjnu9/6Hq12g+WVFW7dvEGexfgVn9vXr0OuqVQ9hqMplXqbC+cuMe71iTLFoa0lzp69yI1rd6jVa2gNqxvrkGt2djs8cPooIpvRH2S0mxV81eeVV66z1Gpy8tRRbt/u4HsuWpgYzNC5xqk08FfPYJg+bn2dzqXnQDi4ngnxHVTtQezsPMPhFN/JSTMDU+V845svsLRyhLh/mdxo8sKruzQrY5YaNmEkEPmUbHSer//Vl1mr9iHpMx3ukQ0uEPfOkU+vIUXEZDTjY4+38B1I7DPMJiNOPXamgMaU41WWMOJiCO9X7hb91fMZUA52UYKXxOK+uGtJf6vM6buzD8qCL4TAsR1cz73LwUmTlDhOiOOI5eXlu94jZSHcbZkWlmUxmU7KzTtb9HslcUye5QRBhVZziXqjQbX6VikDx3G4dvUKjutimft9dpZtYyoT1/PeN5U7KYuAq1KtUa1WF2yYQgjSJGE4HNDpdOh0O0ymM9I0oVqpkOYZaZoWS2pe9N3alo1SBmmacOf2HQxZ6NZlWUoUhkV1zrGJorjsQysE0D3fY2VlhWqlSrVWRZmK8WTKcDhkNp3ilhIL8z4rKSW+72PZDm5ZkX0vbDad0uv3MU2TZmMJ13VpNAp5iyAoqhOj0QgpRPGbmyaO6+J6HqYy6ff6DIeDspJrkmUps+mUOI5JypuUAikLVs0sz4jiiL2dHXrdLtKQ1Ot1gmoVPwhQZtGLV6lUWVtdw/M8ms0mSZIwGo2J4xDTtH5m8/htg7uycnfXQxSatAewNW8tus0lDCiqf3PY4Nw7nv6rf4X1+c8vCKTeelq9eO9dPUxokjBk3O9z/fJNsizignkZJQsYbF4yXiLAkgoEGPN1VhgIsX+yRKdoMlKdFyLdwkQIA7M8nxRF1c42FInOS9kDiSUNyLb5b07+NkFliTzL6He2efGFS4BAKcVkPGKp1QRDYCgDKQz6/TFL7SpXrqd0dqfc3BVFRZsCbjmvJBdrGBgln0Ca5eQaJtNCv1YpY5E4lEoWfa55jqQ8nhA4tsloEpEmGZeGEb/08SVOPHCEPMto1md4fsB0MuFG9QU+5H4O1zGx3QIW6XpWcQ4pMZWFZQpMZRHNQpCK8SyhWq2QZilojeO4dHa6jIZDDm3+S1576TiGVChLcenCdaaTCbMoIvB8tIQsTZiMRsV6kyRF8GNIZrOIEw8+gLIs+t0OcZgyGMRMpprBYIpjmaBz9nZHhGFCFOVoUWGvm/PC918gmfbxaktMJorbNzrEUUKj1cKreFhK4vs1EClSGSThDEsJTNsk15rLF65g2grHNiFP2dvpkcQpo04XS10hijaRpnFX0nU/W8Hdgd2cjj3XC1KhuwK5sgefe+bVz2Kv11rzO7/z23z5y1/hqaee+sD4Cfexdx3cvT92738kNq8y6APsWgfZtvL5i0rLEUhR6oAt5Av2XzNfkOcMmbnIiwofZelvXhY/cFjBweAPojBi0N0jmYyYDfZorhxCk7F65DAXXruI5zpIcm5euwrSwXUUZqtKkqVML0wRJAy7Iy5e3sa1DVYPrTEYhvg1H8cxGQwGbB49wc7ODs2m5vSDx4jjiJ0rN2gtL3H0yDKzWUieRegkJ+pf5dm/e57Nw1tIOWF9Y4XXX3oDJ/DIsojd7V3eePk1xpOQ23c6tKoZlZpPEmtcxyYrIWNJOEHZHuNJwud+6SmyNELkCZZXIZoOUKZHlkSgFXk8AWEgzYBo2iucteYyq3bEuXMXMQTYfoXTp04AcOnN85w8dRLTsQgCiwfPfJg0KyCUSZqydniDnVvbzKKMalUTBDa5tLlx5SpHjq3zsac/TpYJqoFHu13nC3/4Z3z2nz7D2sYqR08dp9+s8upLb6KlYreX8/prryKV4iQp00GfRK+wt91l9VADP6iRJjHRqMvg5lkMGaFkgrJtlN7DWH6QcCz4ux/Y/OKThRaSZaaMJppPfbTOC9/7Mp/+/G9iyJxHP/4ULzz7RbbWodmwSJOEXHg89sgWSEESh9y8OaJZAaRJnkyxPJt6TdLZHXBjO+bBYwGeOZmPyn0dm7kTU4o8w91N7/usr/NKXlmJno97uf//cnT/2Lo3HzRT5v2X3ziJWV5eue9zcwhl0aPnEYYzev0+0QKu6dNutTCUwlSFs3I/k1KyvLJCZ28P13EXTJmi/FzqfbQ1SCnx7qMHOBqPGA2HjMdjTNNkqdksnMIkxXHsQrcrTkAYKNMkTRKm0wlRHBFUKlhlVco0zXLMFtWJ4WBAEsc4peB2AQfLGA2GRUCUFVVVx3FRpqLX7XHz1k2WlpbwXH8RfM6P916a53lsbm6+bXAZBAGVSoVevOqzbAAAIABJREFUt8NsOmUWhgv4pKkUnuchDaPo8XRcut0uaZKgSjr9JE0QI1heXSVNU3a2t0nimEajwVK7zUH5iDzPmYzHrKyssLa2ftfnWFpqMQtnTCdFr2m7fO97ZW89t9ivyOl8QXUyN8k8waqLoK58j0AcuA/Ce3udxXxOUME946ZkjZyMRhiGDXlKt9shWb6KaZ5ZnEmjsaXBOI1RSDJRalfqQqPNkgIhNHGWMyslMEypkEhGSYglDZQwyNH4yiIvg1kQTLMYnQ/5zdb/SJ4Y5FlMGsd0dgYIKTFNC9uyMKTAUhYhIY7jcfjYFtev3MRQFp99SvHc9yMMGZIkGco0iJMM21ZkSUGMNA1jTCVxlEFSsmR6ZZVvIamj9V2ialmWIZWBUgULedW3iWKDLEwwzGUq1QpRGPOd78ecPDqk1W7xYeO/oFINiuC7hIMWPAgGiCLZo5HkOmU0idDjGfVGnTgKqdSqKOWxt90hihKULYnTGdNZTKNRKZLUgUejucTySgPIGA/HtFoVbtwYU69XsJYqZGnO7t4YkIRRwmi0yxsvn8UPPAyRk8Yxg8GY3u4uhiHo7A1xHIs0LarfQa1GGENvLHnAX0GaMYeCgNlowqDbxbQEQihMOcV0a6DBDnxm0xlWXpzz2IktensDlFKsrK2yslEhy3LCMMIwztLvfYLunW0s26TWamH5FYwScrmoLJeZ3IMJC51n3C2ZMH/tfn/d/jMHaxt3+88/CXvxhRf487/4i8Xc+v+L/bxy92Pa22b65nYXplgsnIbi3t0vk8gDjdP7ILb9Pru73nHX/xdJlHk25EBwqPOMzp3b/N7/+r+Q9G9w/qXneeXlC7z04lk2tzb54XPfpdlus3lsk+5uj1s3d1heXcNSAmlZDPsjslSzdWSZMMwYDYfoHLYOrzAeT0jjtMj4qyJ7dfvWbZRhYtkmV69cp9lq8h+++reYUlCtWbQ3jwKKye4VsJe4dOEm1cBifXONC+cus7a+SqXicPn8RerNNhubaziWzcp6m81Tp9FaYthu2ZehUaaDsix0nmJbkEURwjCxbIc4HGN7VcjTguodjTBssniKVCZpHCKVi1ImOpuhMGgsNTh39hzPfPaTROGMfr+PoQzi2YSdnS5bR9e5eeMWS+2lokHatPBcRbO9RBhGrK6vFQ3oKDbWl5hOp5x88CTVepXtG7t87leeRtkuk+EI27ZIUsnpRx7g8oXL2LZLGGY88sgJhtMcx7YZdHqYStLtDLHEFMerYLoeWiukFRBHOegcYTg0jz1N3n+Z9RNP8ldffZmTWxLTNHEcg6vXB5w5adGJjuJGL+IvP0a9scHXn73F7rDBMGlx8ZbP9rDJtZs5z78yLNhPs5xDq4pJmGIbGd3OBNu2+MHrGY888RRpuMPGyTPMe1BkmbGbU58soBnMxygHHN79vpX9Mc9BP2nxmD7w/3drH+CMHADD0YDO3h4rK6vv6NwqpYreSdelVq3TWmqxtNSiXq9hW/ZC0PudzPM8JpMxQRB8oK5bIbBeiLpPJhOq1Sqrq2u4nkscx+R5xmg0xjAkaZri2E4BuSyvh2EYZTVNlpW9gowGAZ7vIw0DNCVcaolqtUbFD4jjmG6/BxTU/0FQxXEcKpUqk/GIKIqZzaYMR0MqQeU9DU4O2v0+RxzH7Oxs75P5+D5JklCpVqlWi+9lmhZpEpMmSVFV0ZosSVGmwnEdTNMsIXGFDlhcVo093y96+qKouMXx4q/tONTrDZRh3DXmDsJafd//mV27d9zP73JO513D+wmotwDIxIG/iyJHIf1SOLAa6/QDcA8zqD6Q1Nonmdj//qI8zs61ayQppLMJR45v8tz4LwmsVVKtMRe9dsXvlOqMMIsxhMAUEOY5SkqUMDClIsqLAM6WJqM0xCshmKZhkOV6UaXM0EzSiFzDEW+LD618Gr9WJ5mNmY4mvPrKJbqdAZ7vFUkhUZAaGYZEGgbNZoMsjWmvLfO1r9/EcUyu3JwuehoNo2AOz3XB8uvYJjrTCCXJhUToghDJMIySqAsQc2IVDWXPsc4K+LQ0JLalsG2Tml9Q/z/6YIV6a4nnn7/NQ6eq5DrjRe//5Yngs5iWVbBtmoWmo5TzBGTBwJmjuHHtFutb6zQaAY7nEk1njEcT9rZ79Hp9lho1Mv1Zjpz4P1lZf43L5w/zxCe+wOrGS/Q6j3L8gd9Hmn9Lnn6Kk6e/xFLrB3je0wTN32Nt40Vc70Fqtd9nNP4C7ZWHWDv0H6g2vsFkdAtlnefEQ89Rb14hqDgcOfUVltcuEc9O8vjH/5LG0oDhoM2R43+MZf6AyfgM7eV/g199kTz/JwTVf42yX0WLp1Dmv8W0fkgcf5hG64+o1l7Btp9m/fCf0GydZzLawqv+Prb7Il6wjJBXgSexXYss1STxjPGgBxpUqYNaTJN9n/Ugyd/d+88ctXOvJ3vvPv+Tq9x94Y//mD/94hc5e/bsXY8/88wzH6j97h77OSzzp2U/MriT8q5A697Bey/QA1GwQRXwybm6HWUVozzC/nw5UNEugNA636/gTcdDvvGlL/D3//HbnH/tdT7zq7/B//MHX2Jl8yG6ezvkach4HPPohx7nzuWzePVVhqMI0zJorbQIAhtD2eUETclygy//5d9imSaOa9NaqtBsNxGGxaWLN8sN3qDVqpBm4FY8dJZRqwd86OMfRQhNo1nHqzbJ05Akirh+fcj1Gzc5fuI4SJN6o4ahh9y82WHt0GEaSzWa7RXSaICU4NsR0xkYpMW31hJETpoWGXnTslFuFcMotlvDdMjTmFwXTc1ZWjgmUhVkB2X0S54mWJUGrqOp1psEvs3ScoMkSvjB935IEiU88vijfOPZ7/BPPvWJQjPHc/F9D2WU8NgcHNdDKcnO7R1W2wFWUMHzPfZ2etgqZXljDWUoTAW727voTFNpVMvPkJNpyakHj3P27FVWlhxqdY9Ll25x4qETPPuN7/Lwo2fwazUGdy4z2rlS9ABJiaFMJv1thM4w7Apx5yWOnvkc568KnvvuedZaEseG8SgkMrZwdA8RX8cwa5x6/OOsHT7Jyvph1rdO0Fha4diDT3Dq8Y9x5IGP4DYfJnNOMLh9FtuRKMvkz77W4Rd+5T/n1tXzPPnPfr0QPp2PyxKeWW63BcnHYpQWwdzcQSl+wxJmPO8dFUVGWd8zO2BfR+fdunof4EUbgG6vR61aw3uHDP9BE+UmKg25IMF4146xgCiKSNIM7z3qCftxbW9vl263i841QVCh3V6mXm9gGAbhbEa/10fKgn691W6ztLSE1hplKqI4LqCZtl1UG6xCyDtJkiIh4rooo9AHNJRBvV6nElSo1es4jkO1VltAXAeDIXEcElQCpJTUagUZw507d7Asi263gx9U3pfjMU0zLl+5TOD7ZFlGvd7A8zziOGE2mRKGIVlarrdAGifMZiFKGTieRzibFQGwEMRRjB8EgKbX6eD7PrkuSC+klFi2XUjGZDmrq6ustJcL2GanA5r3rBdxbu8c3N1/Hh3cz9/iih54y72VAikE49/6rbeImN/LRnpQo3FOAqSznP72LcaThCgc47gOl7lEnBfnycrVN9caiSbME6I8xTVMDGkS5xmmVIR5hiklpqEwywqMIQxsqUpypkJjTgqJEoJ+PMM2LHKteaB6hpONM0hhkEUTrl3Z4eqVm9SqVYTIUdLA8wMsSxGGEZVqwO5eH601tYrHmxdmuK7B+WtjDDHfK4qAbB4gyDLZLQwDlCz3hvlGs7iwBbtm+WMUsOv53nJgTZSC757b5jc+t4XjmjzxRJvmUpVqrcJzwz/ngfSTBXlZnpElGcqxMEqkw7xyOp5MkQIMQ5FmmjiMuXNjm3AWcevGHfyKjxQGUtpcu3iS6egTNFtNujuPkiWfJgwTgvqvc+XccWzbZm/3NGnyNEJYZOnHmYw+iue10fqTROOP09k2ePV5n+3rpzl/1iYKT3L76kNMho8w6De5fvkhrl06gu3W6e4+ShKeYTbVeNVfxRBPYVsOwvg08Als2yGKP0mcPImQJuPRGUz7GXQKufgY495DmKai132I6eRx0sRgNnmYOHyM6TjA9T8DJAWRVZwUqIb+BKkz4mhaoEPKHtk5g+y8Z04KeV/45b3z5eD9he9775x6G7vf2qq15ktf/CJ/9IUvsLu7e99q3c+Du/eH/Yv3+gPcaz+6cifJS82jeSzxFispjZHqQL2ufGru4hZpvBKFUDjDeQlrWxxViCK4A7TO+KN/87ucf/MSjzz+GI999ON846//mtMPPswbL3+XyXCXSq1BGk/Jcsna+gq9W29y+sNPUql4XL98hdu3dlBaY9sKjAIKcfvmLT76iQ8zGI6pVuucP3uR9UPLLLerKGWgpcWN69skUYoyFDeuXWNpqcmFN95gaXkZxzGQllNARKdDfvC913nqn3wMx/UY9fs4jkltaY0kmhFFCZ7voXXOqNdlqd3EdTQYQQkDyMjjGZZbI09mCKmQ5QaFzsnSCGWaZSOvWQTOaVpsWMokmY2QSpFOexhujSwaQhZhuT5BvYZlmQTVKqdOHUYpm729Dp/73NM4vs/ho4dwXQt0Bro4fjbtgOEwGQwwhEarCq++dJaV1RZSKUb9KbW6RxTNGPZn2LbLt77xHRr1Gl/59/+Rh88cZzaLqDeb+L7H6tYhdBKzut4mTSFNc2zLxCDEqTSIRrt4S4fQaYTlVkhmI5AKnQmU5aLHZ7G9VY4+9EkmHKW+dgpVeYRKYHH23B7KqePWGqT9N2ByvtgJky6TQZdhWZGIoxmGtJFWhc5siT/7q1e5ejPhxKP/DMcNOPPoFvW1YwCLBXyOo5/fX2RYdTmy5/0eZT+KFvPHiluxqL+VskEcuL1b+wAv2kDRC+e63s+EPVAgsG0Hx3Z+4ppwPw1L05S9vQ62bRNGIWtr64u+QA0MhwO0LgSyG8396ojruuhc4zpOQWoQJwsdxTl9vzILmGEYRliWRbvdJvB9gqBy12cwDKMQ4AZGkzFpkuCXkFHHcQgqFabTKRrwfe9tteHeKxuPx3Q6e/ieh+t61Gp1zJKEJ46jQvIhzfB8H9OyC8IY2y4p+gtCljiKieKIvNTzq9SqIIpjx3GMMgxM0wJR/GbhbEZQCaj4QdFbnRRad+EsJE3Tgi7/PapyvvN+rsl1sZbp++zld/Xb5dmix2hx/8DKNU/bxl/+K6xf+7X7ft/7Vu3KdSBLU/Zu73Lj2jY6zwhqVZ6b/D6BtUqYZ2Q6J9MZrqGQaGxpooRJlKdIIYsgr1yj4zzHMUwmaYwUErOE0selL2HKguwq0UXP21w24WjlOMdqD4GA5PwbVP/7/w790CMkls2ho1tIKRkOh1hK4Vd8lFFILqy0qijTYv1Qi05nxtXbswK5NK+6lf7N3PFxKRg9E1isg/MexPleM79OC620eYCn9UI2ylASSwh+5Re3yHN4/Y2UzS2HJEyw/RXqcQOvWiWNYlw/wLENFvBBBHkusGwLw3TwAxstFOF4WsAmlUmcJdRrNeIo5s03LrOyuoxlm7iuhc6LnsPllQaWrRgNh3Q7I3Z3e6Rxys5OnzCM2NhcwfMsyBN6vTFvvPwmyjYZDUZ4rkcSxSQlg+1gMMJyLZbqHqZjs7fboVatYhgG65trGEoV10kWRYEsy5iNh1TqAcq00GXCZTQcsHNnD7dSRRlmgVKKcm7c2GV5ZRmvWuHapRs0Ws0Cfi0NDEOXeqoWlq0QGqaDPsIA2/HvDuS0vkf4/K3z5V47wAP/ru3evf71117nd//t73Lnzp13fN/Pg7v3h/2L9/oD3Gs/MrjTc8an/cxegUUusplzRpVCo0XOC3BvxabdVfYrMPfF/MlLx1kvfObtG9f4H/7b/5qtw8f5hV/6ZYJ6m6988U84+fAZXn/+b1lbX+fQxiqea7DcqnH14iXqrVX8oErn+qssb53EUBYXzl2i3a4yS+DKpetUqy7HTxzlh99/lcl4wtpKFccy+N53X+LoiS2uvHmDwFfs7Q44dmyVoOKxvTtAIJhOYsLZCCkNqq1l0lmXMJLsbA/odPrU6hXiMKTbG6OUyc72Hjeu3+KjT3+E3TvbCCFQloeZ72E4TUzHQ+cxyg5IwiGWWyXPcgyjgFrmWYLOCzFeKQXSVGidFzp4hllU8srspFAWybiDtHwMZSENA2VaZEmKzhOUZdNsVWnUPbQWjAdDvEqNaDZle7tLa2Wl2LyViyTGCeo8++yrxLMJjzzxEOPhmGq9CoYkR/Kn/+7f8+DDp/j7Z7/H0eNHaS7VyLOc4aDPeBziuk7B7JmHvHHuKtVGne2b23R2uri+R6NmESytUFk+TJYkIDLi6Q5efQWvsU48HRVjI0+wzYhq1SSb3sYPJJ6v0KpFvWpx506fC+cus7xxHLe+SaW1yvrpJ1k7eYZDJ07T3jhEY6VFpVnj9oWXqNTWOH7qcc585NMElRpLQZetxz9XBtRlIFcOV1FW62QZzM37I0TRbFdsvhS9dqIM+uZ9d5SV6/tOp3tuP2rx/wAv2gAly+vPztGdyyl8EExIScUPsGz7Ldpos+mUbreDUuq+/VqO4+C4HpZlkiSFvEGWZgtWvCxJSeKESqXC8nKbWrWGZd2fuVFKgWlbxGEBNfR9f3ENTdOkWq1SqVSxyoDx/WAa6Hb2mEzGSClpt1dwHLvUF9NMphPCMKLdXibNM6IwKggxpESZJq7r4bouUkpsx15UNuqNBoY0So1RxVJrCdtxMC2rIE8RAtdxcL0iaef7Pq7r4jgOSVawaYbTaSFC/x7M3R+1n9+7l8N+ILe4IRYEEvuPzZEK+xpfudY4Tz4JZTLgLTII88cO2LwiFUcRo14fncVkeYptC74f/w2+aiOFIMpSPGWT6QwlTUKtcQwDQ0qmWUSgLDI0syzBVQrx/7H33lGSZXed5+fe58ObzEhvypuurmordbdEq9UaSYgFwc5wYHY1wA67SAsDCATDcrB75jAIZuYww9mBEUaDQAwMCDuSRkIO2fbd6uru6uryWekzIzMiM+yz9+4fLzLLtFFLyFPfUyYj48aLiPfuu/f+7u/7+36FxhKSfhLtflYBaUCHJtaKWCukkORNC1tKZouHmfD2kJx5iuS3/4BVXHJzlzhy6Sy5T36I2ucfYuZjH2fhrruRUqbCKtIgiWOEqXjqVEAU9Jlf6af9TumBKNdV319KpNYgBUqm6yOlU4rkrvOOuHJu5MDYXEqZ1mnLK0GiUho/jHnjq4eQlsvKcsjIsCabz/KhpXfzytob8TyXTruPYRkYUg/EnCVJEqES2Kg3sCyDU0+eZu7cJfKlPH0/xHEsyqUCwjDodHtUh8q4WY92q43SmigM8bwMiwtLtJpbCGnguubAPzBlGZhSUCy4SFMODMotTj55mn63TzabwfFciuXUhzROIOz3yeczmI5HuVSkUq2Ry+cZmxjFD0Ly+RymIZBEaCHpd3rkixWUSlBBD2mYWIaFl/HIuBkWF1YQhkW33aO13WFouEKv20/LW/p9At9Ha4GT8TAMC6RIGVIqHDB3JNsbmyRRiGk5GAOxpC/WmxaeP89/MXP9H77nPXzggx/k6aeffkn12R38Ywnuvn6q5r8C+LVf+zWiOHrJNkn8BYK16/COn3wHnveFTGnTBLTa4ecLgeaKsAo6Vbg0DJkWLQ8iN72Tk96R1GSQqBtw4NM/YleeWynFE3//Ec6cXeX4idu49RV3kSnk+O3f+I+85nVv4sFP/DXTk+NI1aY8tJ+g30Zj4GYcnvn8oxw9up+JPfvpby8StbZ47bd+Cw9+4gFGxoa45fbDhIFieWmNe+57JRurGzx3doFjN81SHR7F9xUz+6dQcYgQiq6fEHe2ecWr7iAOA0bH2jSbfTKZLCqKiPyARx46jWuD4Xg4tiBSAmlYNOprVEp5SpUSi5cWGJ+o8cyjD1MbLiDtAtlCkWeffJp9B8YHgQOEfg8pIY5AGhZCeggdpYIKcYxQahDomUSBjzEQANAabDdVzDTMDKiAKAgRMkYnMabrpPU2hoOUPSrDRZbn5llbqZPPe8zsmSIMgnTxgkYIk2dOnuG199/GmWfPkvEMpMwSBX1WF9Z47tSzfPubX4dlCUqlIqVKgSRJ5djX1tZ45d23EocBlZEKy5dXOHz0AGefeiYVc8m7tFsdrOw+AHrbm0RhTKdnUKjchMYkjBJCivj9LrZdI+MkhH7A/ru/GykN4rCHufokcf08mgyzs7XU6Lo2jUoU60urrCwsMzGZZ3TPMWwni+lqbnndd6DjmF63S33xMlMHD5PNv3J3MaIHimYado1mUwqlRmpJqvCqdjN3V9w51JX1jNLXlpW+yHCe7oIPfpbGFz1x3MA3BwQDsZcXEKJZWV3BkAajY+Mv2j+kEBQLRQqFIr1uh0ajydZWEyFSRcdqpYKbybys/mVIA2kYqDBkcXGR2dnZK59TiBcVsvlaIYkTTMtChiFDQ7VdtUIgrV3sdMhmM+TzeUzLZKO+Qbvd3j3XV/veGdJ4XkbTtgZejINgSWtNNKBslsol/H4fhKDdalEslRBCUClX8ByXbq/L4tIi1UqFYrH0VTojLxdXODW7v5HGNWMSWqGSaxeVV/wUBRqVpr+EoP2zP0vu3e++pt31C1Ktr4iySCEGGRdBGIbEiabXbtFpb5Gd3IMxuCYZM6VORpo0OBq8PlKaqp0hHBzTGviKhUphSxNHmlhSEgyysCap3UHWsGnFPkoremji+Dx3Vd9J3Okg/8u7accGpmmSyXr4loHyPEBhrvfIFyqAJozTzdZuZ4tyZYp2p0+lZKX7eSqdE6RK6+uEgGSQJowGQV2SpBRTBmsdSNsIcYV+eeXK7ARm6bGFFIRBzHbH57nn5rjpxEFuvy0LKkQrCOIlsnmPnepCx7Gpr22mQa40qI1WsRyD0Ylxuq1tXNfDMB021jYZm6ghlOKhR57CMi327x9ncnqUc2fmsQyT5sYWnmeTJAEze6aJopDJ2QkEgo16k+eeepZabZhMzqXbi7Bck/p6wPraJtXhIXJZl+npMXphhFYxrm0ThQn9qMbk1DjPPn2abtfHdmwcbbJZr6eb81stZvdNYRg2gd9P6/uTKPUEtDLoRBHHMQkKwzbpbG8zPFSi1fdptTuYloMQmrAfcvb8IoV8lmrV5/TTZxkdrzKzZwptGEgzh1YR0oJCtQRa0VpfAMMhU6qQzeV3BdGulka55p4Z3EfX93uuFlORLz2Gvvvd72ZxaWmXvfZy8c5f+7UX20v+iuHVd9/Da1/3uq/qe35TB3dJkpDECffcc8+Ltsm/gArbS8F6EYW7qyGkHEj0psPOi3W9JInTLAgDaoIYyCdrBRjsRnuDgO9KYXb63T7zN+/j4UdOcuutxxk98S1IofmNd/477jhxkPPPPMjRYyfIZS0sSxJFPsViAcOCftcm6LXJFKqsr9WxPY/S2DQkIbe/6h76zctsbnZYujxPZbiGaUqWFpfYf2A/TrbAkWNFPv/IY8zs3UuxkOHo8SMszy8xPj3O0uWVdGL3e2gEcdZAa4WVLRNFMYawGB7N8egjzzA2PooUMaNjE/Q6WwjTodPpwbJi9uBRuu0GtvaJyzPsP7xvUDBtIlCpJPJggI/6bRQS2/VQicK2beKwD8IiDtpYmRICRRyFmKaDivvoROH7Tdx8hSjqc+HcMu32Jnd/yytAGpw//Rz7Du2nvtZmYnaWxfkltLKJwhjHSaWJtYQojDh64jAozdGbD7K8tEkcplLMp55+mv0H9rKy3CSb86iUXIJem2efXmb+4iW++3vfSHOzQT/QCMOiPFRgfXmdO1/zCtYWV9jY7FEqFxHCZGtjiyceOsnkxBAPPvgo995/H8VCSp1dX20wPFKhVB5j8dJlMpkca2c+RSZrIs0MVm6W4ZuPoAoXcXMFGutbqKiFVhLLNFmcX6XfT3j4c3/Nq+87SmXqcDrJGRbZUplsqZxaHeyUgA766o68907N6JV+fqUqZVcpbie62yEoaQ1C8tADn+Oxx5/gx37sRwcZacVXQjHrBr550emkHm7lcvllBWYCyGZzZLM5pqamvuT3tSwL0CRJ8jxPsq83GKZBxvXI5wvPU/Dc2trCMAzKA6GPnXrFfC7H0vIyiZHgOA5KJ8gXWXAprQZehKnAShgEjI6N4rpe6kOYzXP23BlqwzWSRO0Gl14mgzAM3AFl9usTad5uJxx+sZFpJ1ATu5l3ceXfgYWRcF6cpnu1DcLzngMsmVCt5jB0l04/IIznMOwThDqhE4UUbBeDtFbOFCahijEEBErRjUMypoVmR5UTunGILU0ipXY97ExhYEqDbhKQNZ3dNgiN1Ar5S7+AztioXohpG9ieC0mCtNIAzSjlaayuEgvJqGXiByG2l6fZ7HP3zQZnF66Ibe0EsTJRqbBcOqlgxalFgD9gOOnB59317R2kUsUgypMDO5Nd5cYBPTOKFfV+SC6TQ2uTx59oc/utJqbl8D2Hf4UoTOj6PpZlsDS/RqfbZnS0hpdxMYwdtpXg9Knz9LsB3W6PkdEhbMtGSsWhQ7M0G12CXo+V5QalShFDCkxTEoYRluNgmpL2dpeN9Q0c26FU9jh07ACtxja2ZRCFCefPrNHebtP3A44c2YMQmiSNgBFCEMYxiUrrFlGafLFA4IdIw2B1bTNlgmmF42aIgxDD85Ai3WjRsY9hu6goIlEhQtgpbVUaGJbL6mqTjY06IyM1FhYXmLu8QtaV5AsFtppb1EYrbDe3iaOQYrlEqVpGq+gqsk2CYboIYaCUorfdQAoDJ+NyrSDR8zdFrg/2rseO6M6L4S1veQu/8zu/S7PZeMnjXI+7XvGKF2UKfSXwwAMPkHyRAeiXA9/Uwd0O3vCGN3zZjhWF4Rdso5I4JTnsMASuw5WU86A2Twv01dmNwY29s0WllN6ViU93AgWnH36Q3//DP+O7vvVe9hyyOZxOAAAgAElEQVQ+iuM6fOhvP8K933I3i5fOMDpSoTaUw8tn2NrysWzB4uU5jt16AtPaxCyUQCmGRsYoj+5BhQ2kNMkWPBorCf3OErfeeZytrQ6d7S4ze2dws1ni2Ofko09zy61H2drqs7a6ycryWcbHKmw1t7FkSLZYwTAKbG028Aplnn38MQ7fdieZjEOxWCRKYM/eGfJ5l6WlDTY3G1SrxXQCMwTDoyN87jOPctddhzCSOlHQBeGgoi6mbSMNByEMhDHwpMkUIAlJogjTNpCGi+lk0iDBsUnCEJ2ESNMG1UNrjeVmQXfwO00s1+X8mee4465XDEw3Ew4cOUDo96hUHBIdY1gOmVwewxzkp5IYrW2kYbJwfo4kjjFsj9HxMkkYsbHZ5viJY+QKRZIk4iP/8xPc/4bX4Houh08cp7FRZ2Vpg1KpgO3G+L0epcoI03snSeKE82cucddrX8OpJ09hWiZnnrvMPa8+zulT57jlxFGSOOTkI6cJwxglTSK/z3ZjkyjSJNpmtZ9l374RXMejvt4l6DcYmZgk6nfIeCbbWwHV2jCmJbjtjiOsLi3xylfdAobF6vlnKQyNkClUUvrvoN7zyh625gohMw3EhFYDhqVADRpeTTtK52a1+1qdKH77Xb89yA5Yg43twR7sSwR2L4eucQP/uBAEqQ1E/gX8/L6SyOVy+H7/JWtJvl4gAGtgd3E1lFIkKmF0dPSa33uum3rfeS69bg9fa2zbHizqxG4WT2m1a3UghMDv+yRJzNjY2G49H6QslYnxCTqd9vNox67jEAqB63w9ivroXQ/Zl5zPB99JXPPd1CA7kRo5SyD7W++65nW7FM7BOUy3ywZUTp3+nPzpu0nOXsA7fgx90+1Iw0K2GigNidYkSpGQXgdHGnSSGFcKLJkqTPaTVBwnvWbp5pmVEiqwpCBI1KDmLsEwJH4c4Q5EVCxh7HxD4n/9MxjDI6igRxh2MS2J3+3hZVx8P8B1HcLxce5+12/y0I//DK7nMlQtsr58Gbfg8NwlgbQtojjBkDsevmI3eJM704XS6feRKbMJsXNer3gMct25S2u508fdTjoeRFHMgUrM3NwcE3tSOxDD8lBa8Njqx3hD5fsxpcXq8ir19SZKKTbWt5idGcN1x4AYhYntuGgtKeQzDI2mNNitRosgiEBHBLHF+oVFbrnzKJ7n0e10yWRc2q02jm1QyDlpXbMh6Hd8sl6G8v4yhqHptru0ez1uOrGPOAoJA4Uw0jKcKIqQQmLb1sBQ3aa5tUWlUiaMYgwpGRnLooH6ygpKhVy+cJlcvkBtfAgtDbSWSEOghZn2JyGQWqOS1C4GnXDbbcfYbrapVgp02h1sQ6JJ627XVjeZmB5DqYSFuQX8fo+hkZF0k12qNP5FIQ0QwkBq6GyuEvVzZMrVVHhpcK2+6HHyCwRgruvy9rf/OJcuXuSP/+RPdkWgvhBee//9u+PSVwMPPPDAV+29rsY3dc3dZz7zGZRS3HfffV+eT8PLqLljZyF7bd9Mi36vmDleecJIve6ua78zsO80FaQUTQGcf+Ih/up9f8sb7n8tN916G16uyKOfeZjJmQlOP/lpbr31KMVSga6vcWwby3ZxHZNCIYNrKZxsJdXSiBJMy6W+skzUa7Gxtoxh2mjhUR3KMz+3zOh4lUsXFimVS7S2t8gXSvi9Pq5rsLHRJldwmZmZIAxjzp6+yPTMOFtbWwPxlj5Bt0cUaTqtLr1+jDQMmvU6UkoKxTxrq3XGJ8a4PLfA5MwUtgVhIslmHHIeqLCBU5gg9Pt4uTKCNIiQhj2If9NFRhIrIEApQRx0iKOUZpnEcUp/VQpDMhBasVFxSBQrmo1tGutN2t2IrGczNFIlDnsYdlo0raIeF86tMDI6BELy8AOPU66U6PWCVDZdCNyMR6ftIw2Tp558jtroCLYjqQyV6XT6dNs9qrUqY+MjtJoNzp0+j2NbKBUzNFxCCFiYW6TTCWlubBH6igPHDtDt9Nh3YBKBZnpmgkc+9wRS91hYaHLm9HMMDY0wtXea4WqW9dUGC0sNCjmPhctLdDs+h08cwzAdvIyJZbskSpEtluh3moxO70FHLZQyMGVAPxC0trdYW2pQGx9maW4JSUSrvpqqYtlOuuMnUssDfXVHvdKZBx1X7waF6WJi0EoINut1fvf3fo9PffrThIONEmkYvOqee64UuLzENLBjFfJi+Abm0t/AlwjP8ygWi7sBx1cLhpEKDDi285J98usZa2urGIaRUiWve840TQqFEq6bikvtlALseNbt1CtqpYiT1DA+43lUKhWGh2vPuxdt22ZpaRHDNJ+nkmkYBtL46td+vpz5PGUmXJuZvd6c+WqkAd1gnNp5zWDs7Pxf/yfmd7w5pZLtUHEG2N24iiLi/+8/0H7PHxJ+8G/onb+M39iCk8+Q+8j7id/47TiZAg923k+i+khZwB4EcgyOYQ4o8504RCBIBiqYtkzNyCOVUubjQUbBlqn4iTN4XTcOkNKgn4TYhgHtZe7dug0d++g4odMNBqwjjVYJhkgtdHSSkAxVqC5eoj57AC/j0Wm1CHyfxVXJP3lNmb/8yBI5d1CfZcjdbKccRHeJlGm9HYN102ATfIcssnu69ZUaOz3QJdh5Ko5iGttdXDNg/7TL3n2TlIsSN2Oiteb9l3+D18z8bySxT+BrtrfbVCoFhodLeFmHnp+KrPR7XZIoIZfPUioW0BpUEmLZLnGcUCwXKZVcauPDCBXS9yMKRQ+URsUJhXIp9Y5UoGJNHCukKbFNiTRM/CBmuFYh8H38fkAQhCwtriMGyqPFUh60IlcspqU8polhCDKeh+NamIZBNucxVBuiXC2mG9oo1lc36Xd9Op0uy0trWHZa/xqGEc1Gi9Z2G8vSTE/XsF0byzJpbbUolAocOLCH+nqT5eUNLCnp+v1ULdOwaNQ3WV7aYHRyDMOyBzX1yTVCN4YURGGfdqOJ5diYlrPb/6++V3bEcHYfX8d+eLlzfblc5jX33sstt9zCo48++oIKmVfjq11z98lPfpLp6Wn27tv35TjcjZq7ryWkgITUJ+ZqaderWPu7akK7NUjiujYDCtsutXPQycMw4NFHnuWuu+6iXC5guAX++3vew733388Tn/0w03sPIa0MvV6H2kiFfLFCgoHlZDHVFoKYzXOXyWSLoGKaq3NUJw+yOn8Rw7LYrj/Iifu+jVazhdCKVqPJTcf30esFZHOjrK+sMDI+StDbZnO7S6lapNf3qY2PMDI+RKcTYpgWkBApk16rgWmabNQbzF+4wOFjR6jUhsjncmgUpUIGPwhZr2+QfP5p9h7Yw6ULpzl8aIbVpSVGhtLg13EsQj81K94JupASKVMlPMt2QNrEQQgkxGEPyykhsHZFUhjIRmsVAxEkIdmsy+cfOc3jJ59mZPT1gEKaJknU5/GHT3HH3bfiOC0+9YkHSBLYu2+S089c5PjtR4FUpOXi2UusrzUplvIU8x5aRQR+wAf++mMcPXYE25JMTdbQSvHk46cZGa8RR5pOu8djj57i6NE9HLn5MM36Js88M08247C2vsbd995J0F5DGlk++oGPUyjmeO65RUZGR8lmC2y323ibJnMX59HS4Y5XHsU0bUrlAotLq2nGLYkBSTbvEkcxGytrOF4B0FiZIkkQ0O2bZDIWtltku7nFpz/xEPfedxuGabPZ3mZ97Szj06N4+TLZUgHF1Rm0nWDsWqFjrUGhdoUGPvvpT/PQo4+mptIvADEomL+ep58+lw7EWiXfsIvoG/jKIV0Afm36xRWVv288aDSNRpOJiRevUzQMSalU5sABk16vj1KKVrtFFEUDrzGwXZtSrkicJIyOjKRCKi8AIQRjY2PU19cplyvfMKdNSNDqynV+qTFqZwgUVwVacCWOE7Y18LW9Mobu0DB1EuP/9I+yNbdKhxjLNGh1fKIQLMdKDeXLo2R/6scxVczNv/p6bnPu5/3bf5SqXkqBRGIK6CfxIOBLVWE9Ix2fO3FM1kwXzbaAfqLT7F+S4A285Bxp4NgekUrtDbaDFX7hQ4ehqCFJaLf7hH6Il/FSOr4WRGGIBrL5HCoJyK6uQr9Lr+MQK4ljSm67q8Qf9yTr3/kqhj79JM033YYhoPKRJ2m84RYAKh87ycb9N+NKSe7vPs/aPzmBaUgqH3+KzdcdB6Dw0DmarzyILTW5Z5fYODhFxtQka21ix6KRMdGbXcJzK7TvrDFX3GY7Vlwgxz2EGIbkjXt+AokgVyhx6ukLZPJ5gliT0RIhTBxLkoQBmaxHXTeIgohMxsbvRWilaG7W6fX6jIwO0dzsYVgh3U6bYrGAXauQL+cxHYder4/fCyhWhgj9Hp7nEIWKpY11LMskihVexsJ1bJq9TarDwyRK09xs0e/59DoOw7Uq9bU6o2M1TCvH9vY25aESCmhvbxH6Pu12j9r4MMOj1bRPCYkUCUmi6Xd6tHs9SCJM08bvtrE9h8mpUbRS2F4Wy8uw37Zob3eJ45hjx48wM9tjdWWdbqeDSiSFskO/79Nrt3nkM4+x9+AsYxOjaR9IgsFq10DLtI7StSza9RXCnI+XK2BY5s7NNLhnrh0BxIAuCgPK5hc515dKJX7xF3+RKIp473vfy/z8/Bf1+m823AjuvkK4QiDYKfe96rmr1Om0Bi2vPEjFVxjQOET6nNZInQYmpx95GENoCoUibn6ID/zV/+C222/lwY/+NaXqMAcP7mHx8mVy+RxetoAhQuJIkCQ9nFKNZn2TTL5EqxNS8BJWltZZWG6S96CxHVIdHmfhmUcZP3gYb98MG0sLhPksC5dXCUKNTgJqo1UW5vvcfGSWXhhTLJVYXa4zPFzCsqDvG6ytbLCyMM+J24+xOF/HsQyGR0awTMnq6hpJFFMql9HSRGtBPptnfGKMsB9QLuaobzSZGB8n6NXRwkKIBNgxHI5T1UWliPwAy7FQKkAriUrilHbi5lEJJOEmplNEhX0My0VrhdIJOpEszDd4/OHHMW2bfbMzNDfqxFEMURcrX+XEHTchDZOJ6SFqozUuXZjDNk3GJmqoKCSxoNPvky2U8OfXOTwxRjZjkShJxu5zx53HB+bdilwhR+AH3PUtd/LMkyexxkscOLQHlSiGxoZJooCTJ89x5Oh+FhbWmJkeRcUxhp0hY7jkch5JAvv27yWOYmojFVaW67TaPYZHanie4NGHPk97e51icYw9B/YQRyE6iRBCI8wclhUxPD7K6sIyZcMk9GOk6eJlJI5tA4p8cRzDdFleaTG9t8DY1CgrSxtYts364iKZhkNlYjpdwA2U9kCntEyZ7szpQU1FSidO+M//+bfodrsv4565LnF31USQPrwhpnIDN/DlgkBQqw2/oGz59cjl8uRyeVrtFtvbW9SGh1EqzeBtb2/huA6j15lzvxDy+SKtVvsb6z6+LhHwooFd+uiaF+irXy8h+5u/uetmdE1gpzXhL/88/V7MfKPB9J5Z+n5Ec2uLYiGD3+0RhjGu5xAVi3QbmwTPfoj93/bDdOpnydoHCONUJMUUAtew6MQRnmGQ6NTmIEgChEgf14MOw05uNwiVDII8rTFFSuk0hEEv7vLmj8c4din9wEaqlGzaZmoNJE2Cfh/LsYmimDAMsEyByhUYOfkA/dd/J0pBFHS5MB/zA7eHfPwvHkMM5Rn68BOp8IzSDH34iVR+S8DUBx4Dx8RHMPKxk7tUqPIHH0OaBmgY+vDjmGYqvDKxtLFL7UwSBY0OnW6A1pq37aszmRkhZ1kkQqZ1X1rQDBoEQUolPXbiKHMXF/H7Po3NJkHQZ++eabYaLYZqQ1SGqpw9dY5iVhAnJouXlilXi2itqa818BxB3/cZGamSy+dTS4I4ot3usr5SZ2yiRhhGRGEMSiMNE9s2iRKFbVsgTUzLoNcPyYUJcRTjZjyyOY+g7xOFMc1mi263zczMZGpFEgR4GY9iuUASKaRloWMFpmCz0UKaknzOxbIEmZxHppBDIgFJvpAhCII0+xj2MaQkDn1MU5IrZNnabFAoFJm7tEQQ+GRzOTrdPqOjw7S327RbXRobdSrlPNXhMrbnIqUgjvzd+1pKiUpCpGXT2VwliWIKw8NcXZl/dQ3e9fV4Qhp8qXl8y7L4wR/8QRbm53n3f/2vX+JRvvHxjaGB/Q0IKQbeLDuPudbLQ1zVTl+127c76YmryQjpruHqwgKLF8+BDpnev5e5C3PMzo7z1CN/j5crMbX3AAuXFxmfPUCpmCHw+2gEmYyLVxym25inUMpRqVWZnh5is9Fj/5FD7J3ysE0DW4ZcPvck7//gZ7n83LPYXp7hqT0DeuA41UqOKFG0GpuoJODJpy7iWBZrq+vYluTc2cs8+cQZli7PYQhBtlDCcrMMjdUwbYfDNx/CsCzm51exLIulhXnioEvYb5GoiI36JrlCjupQkfXVTS6cnaMyeROG4aBUmPoxxRGmZWO7uZTSKhO0UlhOBqETnEwWw5QYRiqPbHtFEArTHtCAtMK0MpiWQ210hBO330aUJFTKHnfcc2cq/Z0ppzLL0qTb7WO7GT7w/o/S6fhcnFuiXCmwML+EMBxs26S1uckdd51I6xVCsMyIbpj6/z352OcxTI+NepPiUJXLl+a546476fVikiQhDtrU1zZpbmzzmvtupdvtMLt3Er/n02l3CWOH5YU1Npptwjit5XRzOSIlMC2LoO9TKBcoVUd4zf13c+KOe3n1fXcxPTuLZZuAwrBTJbNECc6dPs/49DhaC5JEp1YQponlerS2fZTSjE2NE/g+URARRYrxiRJSqFQS2XHoNhuszZ3bpWihBVwlIiCAlZUV3vWud/Hrv/7vXlZgN+jyKX1DyoEpqrhm4XRjsLqBG/jyYmhomEL+5dcqFvIFDh06zNDQMMPDw4yOjnLo0OFdMZYvBMOQTE5Ofqkf92sCeRW7Ul739/m4iht4XVAoNHR+9F9dwz6QQhCcepLGd7yJM4+eZHOjyaHjx2k2O3Q6XSwSYr+HFIo46LK+vIphewxNzjA9Z8OP/zDfW34rSq0jhIFGE2lNK+qRMQwsmQqkZAwD27ApWg5SQN4cmE9DunksBNFgc7mXxPSSmEgrrGiDE1t7CMOQqNVECIcwVLiuQ78fEPo+nufgejamaSCFRCmJzGYY+fxTWPMXKTsmlUqBxohHf6vOf/zXd9Lvh6AUYpD91cC5UyfRSvPRz/4ZwVW5eK01q4srSNPYFVYxDbkr8KVUes6FSPtX1ks9FttxwuLiMn/xt3/BT77jJ5kOY9CCZx7/NL/073+LbqfHL/z8L/GvfvzHmN0/yR/96R/w++/9/dQWJQpwbId2q4dOFLZrcf7cOkuXV4iSiF67hWMZ+L0usZYMj46Qy2VJkoTG2gaddg/TkIyO1+h2+1iWIJvNEEdpTV0mm2WoWsSyTdrNFnMXlul1o5RqaZmMjldRKqHv+ywuLXLo8AwzM3uYu7jE0HCVteV1mo1tOltd1tc2MaRBFEX0/RAv65LLZXAcB8POoBH02l38IKBZX6ff64JIUDHoOCFJIlAJ0rRwXZuJ2WlypTxhFBKGIUkcoeKQZ585TxwmzOydpTY6ilIJn/vo51i9vEIYBAjDRVomlpXFMGx0ohGGSaZYQeuYxtISSqlrmTjS2H385Z7rp6an+eVf/mV+4u1vx36BeuNvdtzI3H1FcYUvftXm3S60HlQ177QbPL6GeibEQGBCsnzxMo88+hTf85bv48LZ8ywtnGPx4mmGhmvsPbCP7WaD0G9jJmtYZkIStLCMvXSDCFcqLMcBNP1eHy9f4cDBGgvzy7RbXWojVSwvQ7EyRKu5zuKlRWw+ytQtb8D1urTbPmHQZXlhkbFaia6vQfnYmTzxlo+Xsdm3fwqlEqKYVCI5iGguX6C+4RNqh7WlFXKFIvsP7iNXzNNudanWhlldWeHmE8dYr2/SajZxXYf9B2YYHa/y0Kcf4Y67bsMQAUqaWG6GJPKxMw6mZSMMG1RCFAYwMGNFGCRxiDQGMt6GRRz2EdJCI1F+E2Hl6bbb1Ot1Nuub1IaHMAwLYaSDTdxZwymMkqgArTTf+5bv5OTjzzAxuZ9eq8PY+BhLc4vURocYmxpl7txFSuUKG/UN9h/ez8MPPMzhw/u4467jBK1FTLfCdqPBseMHiQKfeqPD6NQYSexSKORpb2/T2mpx+PghPDdVNXvvu9/Hvfe+ko36Fq99/ashCQgjRbvVYnhkmGCsQqcTsrK6hkrWKBQK2LZJvpQHJBfOXGJ67wxSKLRKfbxm906maqb9bSzTQpoWYasL0qDeaFMdGWar0aE6XKPT7lEoelw6v87+o/vJ6TSTuLJwmVJlhPVL5/EKVQpDVxZ29Y06f/iHf0T8MoubIRV1+Ju/+surJFtSNLe2rt75YEedk506lyua2IMbSu3WYL4Uvl5FWSqVl7dAvoEvjEbjWgW1q6/5F3P9PddL6Wdf4nv/Q/vabq3RixznbW9729eMqvylvu83iq/i1bii2qfTUovBsDOoDLtKdOXqevpr/0+SBOKrNIWjkN4P/QuWV1rUO132HjoEQnL5wmWkUPS3tnA9m0zWRSURhunR7wesLS6Sy+dYvCfG2J7gyB98kunlNr/3A3Xi8k3YUoBhE2sFKrU9EAIsIQlUgkRgy1QoJVIaU0q6cUDRclFANMigeIbgnss+29mIcpCh1+liJ4owihFITNNExQlaQGu7g23bhGE08H7MwNgkI5/5NP2lFZpvfxuZfMK3v+VHuPP2u/DF63nwM7/Dt7zmrWyu1zl77u8wDJuJ6QP0m2d57rFPceTO+1icW+TZU3/NTTd9FypOWF+pc+H8JygWxvAyNebmP4dl2py45dswhMnDj/4ZWW8G05nm9XfmaXc7RFHEv3/nO/nkM48z86rbeM9/fz/v+OHX8YlPfIRf+MWf5/v+j38JWvPd//Sf8Z73vpd9hw4glY+Xz9DrhLQaa/yPv/oQe2cnuePu26hWy8RxTBTEWI6FZbtkXIdEKZYWVxFSYNsmc5eWOHBoL91uQL/Vo9PrMzYxguO4SMMkDHzq9RWGhyog8vhRQKfdJ1/Isbq0juO5mKaBYdj4gaJaq3CifBOxgsmZSbSK2dhs0+v6jIxbbK236AcRY1OjmFIRaY3qB5iGQb6Yp9PqUKxWUEmAYZhEcQ/HdVKV16SLaTpguCQ6BjSvfu2ddFsdGhtNFufrlEo5/MDn8ceeYGZ2hs1mj5W1DcLHnmJyZoyDNx1AWBbaiFNxPMeis7WBl6sACZ1Wg1Zzg9HZvWSK5Re/1/5Bd+q1EEJQKpf5uZ/7OTqdDv/tj//bl/HoX9+4Edx9BbET2KUS0RJjp84OBkHIC2zt7bRQV2dDUnraYw9+mp7fo1yr8MQjjxKHIUeP7GFiZg+9doty0cYZncZ1IexusN2JMK05nMI4jpVlfTOGZAGkR0ZEdPuSQm0vlQmX5vJ5xseHWFmuo/Ilep1tHnqszdDYKRodhyQW5NyYajWV5u92O2Qcm1Zjk16vzcjYNHPnLjK5Z5JuZ5v5S3NMzM7Q6/UYnx3n2ZNn8fI5nnziqdS3R2jm55cYHqkwNTXKysoaQ5VCWhtHwuL8MnGUMDk1hVJgGBaGYRL7bYRhopMIaTpoFSNNAcoi7m8PaJAShIOUOlVzUmDaGZAGa/OLDI2NIIXEzRUI/JhsvpjSNZVCa0kS9lBxgyTI4DjFlF4gNCduv5kgDGltNpFSMT4zRex3yRXL5IptcuYmLdfl8w89xK133Ep9vYGx1qBe97n5RI5TTz/LkWMH8XJZpiYq2I5N1G3Q2d4miSUq8SlWLKRhojX8wFv/d+Kww+TMMJ12Hy9bYWluidPPXuDQzTfx9COPMblnhpGxIR5+4PMUCnlGp8ZYW1qjWC6QzWYI+l2E66Y7ZDpCSic1HLbzJHFMEgcUKiWeefwZysUcfq+PimMcz2XuwhyV4SPkshZJkmY/NTGjE+OpkpfMEAVt4iiHZTu878/fx8VLl75gQfP1UEnC6efO/APutG8OrK6ufq0/wg3cwA28IDQKmdIX4xjTtK56Rj8v8r66Lm+HbiaFJPuf/tNum+4Pfj+LnYB2EDI2OU2uUGRjvU4UBKBjLMcgm3UxTYHhZgj6Po5tEUQxjUaDdkkQ+z5WJktu7y386P/c4pEfvAtyDp9a+1M8e5K0zs4nZzqpN6PWmCI1K4+UxpKSUCU4hk0/SZAiFWPZ8cNbtTuM5wPK/dRkPq2z1ISBTy6fHYigCLxshiRKMAyB53nEUUQYRuTzGYyhKp0LC2TjAjffdJSfeceP8BO//BjHj/9TNutrnHz6j0mSHrXa3eQKGcpOhYOHbiWKIs6e+TssK4cQqZH74sLnCaI6mjFmDhxivX6asbEj9PyIfC71qJ3ddyePPPxfUHf8C8ZqZcK4OaCdQhLH/PDb3sZb3/F2fuptP45l2eyZnSGOEm655QS3nzpFrpSn3wpRSYTWEY2tkH37ZvFcg+rwCMWiQyIkQbuLYZqE/ZTxUl/fIA4VrdY2QyNDVKtDZHMujj1MGCeMTY2n2gAAOqLb66OUptVqMz5ZI5vNcua5Sxw5uo9cLsPi0iqjY6NUqkWiMGD+4mX2HpzFRhP0ffp+kAq9lPL0ez6WbaOEoNXsgE5wXIltuxi2k/r7mla6ISFNBgbKqCTEsDwMw0FrgRAJUphpiZAhyZcK2J7H5laXYrnA1lyHgwf3Mr+wxOR4jbGxGrZtsLW5ycKcy9TsOHE/wDZtdOzjuBbCUBhAsVom6nVo11cQ0sC7jjFwNaPtmt9/mayRcrkcb33bW//Bx/lGwY3g7iuIVJ5XMNgkGyQZXkASVutrd5bFFS8YpVMlKb/bZ7vVxXXzGIZFq7VN4HcY2reXteVV9h3ci2X00cEq4dY2SRyQMTRBP49TMulst1mdv4DlVWltrZBcLlHNm5hqjerkftxcgfrqCtnSGIg6lmVvs6UAACAASURBVJmnd3EOUdjHSK6Jk5/kyQcf5MjNh9Pdulhx2723YhomuUIB07IZnZxI68QMk+rwCHPnLjI0XKHb6VAeqvLMyacolquM1EqcfPJZZmeneO70OW697Si9bg93apL66iqOY7Jv/15MIzU8j2KFZaUSyjqKyOaGiOMu0rABQeBHqNjHy1WJ/TZayDRLqSVK9UniBMuySYIOtcnxNDiMI86ducDoxDiLSwu88u4TOLZg5fICI5MjmPn9mI5L0O9hWjZxohAkSMDLeqAiVNjlzOlLHDy6n5XldRZCn2rVRloZli5fZK3ewts/yZGj+0iShNtecYLGxhaul6Hbj3n4M49w/PbjlIar1JfX8fJFtptt4rBPgo1tKrL5LJtrTdbWGiwsrHHo8Cxv/mdvYnNthfLwCK1Wj498+O+59zWvJF8qcvnCZfbsm2VpYRUv63L22We55767UdoE4ZLEQRqkaUWiFDKWJJFPq9OhXHIwbJfTp09z7MRhZvfP0Gn3aTW3aG512H94P5bjIixJv7eFZQQYlktrbZ0kCfief/7PUSrhqSdP8qEPf/hl3yfSMHj7j/3ojgD4bq2dm8lcaQO74kQvlS94Ibn3bxR0u72v9Uf4pkE2m/nCjV4GwjAiil5YBOgr/d4vhX/7b3+FKHr52fEb+IdDSoFSEsM0ryIMPH8+1ypBydT+YFcwTWkgofvT78B905vov+99rAWKtZU6Bw8dIJMvsL68THt7C6lipEhwMhk8z06VRC0L0zRAJYguGCTMrnsDSyAbdIJVKPOqPz9DfOE8lR/5CYJcwIPJhylYLq2oT9HOoNHEWhBriHSCoVMxIgMwDBOlE0yRLguPf/YpunvGGV/wwNKYpqTvp+qbuXwO0zLw+wFCpJmelHInUIlCC4FppR51juuw78ghzjkTLC6v8bO/+P/y+7/xq/zwTz/I1Mw0Fy7MkvGqjIwf5OKZswS5ESLLwpQSlQQgBIZhYlomrfZi6tEmLQQCy7AxTZvhkVE++bHfI0m6rC2dw3PHGB6OUHg4nstP/sz/w7/8iX/DH/3xn3DLiZvp7Qt507d9K42NDX7+Z3+WdrvLr/z6Oynk8/j9HmFi0W1sU6qWWF1eRwrJ6Pgka4sLeO4MlmXjZV1M26KzDRfOX+T4bcd46vFTCGGzte0Th30W5gXVUpbhWgVDCJLARxmpjVOv1yeXz5Iv5jh96iLVaplDh6YI/IDID7j51qNEQUwcxZiOw8zoCJ12L2WomCaZTA7XS/vimVMXyeYy1OsN2q0eh4/txXayCMMELen32rheZqA2KtBGKvYgZPp66RRQcZc4UiRhG6TGNDJICQYBR48dYHuzwdbWFmNjNU6UDrO6vMDKWpOJyRoHDkyxtNRgeX6JO155GAZqoKmgWowwHES0jZPNopKYXmMV07JwXG+X2bbz9/q5/svpefuPSZDtRnD3FYVG6Cuy8foFJoLddmJHF1Onkr5i0Dp1NueJT32M4ZEp/pfvup1GfQPTlLQ6DdZXPGwvw3ZjjeF8A7+5iul5hP0ellcgO3wTra7L9tocpdHDdLtttMzg6TZBO2KjG+KVfdrbLXJZl636HF6hRtjvk6+MsL3RoDpSRWvFLXfdSX15jdZWk1zWwbQMGmsb1MaHaK6tUKqN8eiDJ/H7AfsPTFIs5RiuDbG+uk4ml2dpaZWDRw4zMjHG0uI61aHUB2V5ZY1quUBre4uxyXGi/jZ+t8384jr33HcXywtr1Fc77D96kFho+q1NTC8/EKAxQfkYtkMSx0jTJo5DVBwhZRo4xHGPyO9jZ6uoOCaOAyK/w9joMOtr67RaLbrtbQSKYtGm1+lRKLjoRGG5LiqKkcJAqwglJKVqld5WHQRMjGR59qnTfPJjH+WmozdxxyuO4y5KcvkccSL59Kce5Pt/6PsI+30W59dp1NcZn5picmqM8bFhssUcF89cwPMyCDSmaTF3/gK10QkS00EKhTQNDh3bT3VkhH6ryWf//gH2HtzP+FSNOBG84U2vJ/Q7LC8tceTmg7iuy/TecYSUZDMWH/3gp3jDd9wPlkUYgikFQhvoJMCPfGzH5Zbbb6HX7XPq6XOMjNV45KEnyWQyjI1VOXdukXK5DPoSk3umyGQtPFchjCxaK0zTod/XNJaXqY6Ncdvtt3Lz8eNsbW3xu7/7u1/wLpFS4may17CYrh/Od3fBr2rzzYavRlBwA18cbNtKRQ9u4B89xMCrboeCqfTzM3Y7eCGDZg3ETz5DVBqinkBzY5Op6THypWIqUb/dwDYMDEPjuh6Oa6K0xrFSxefUWkHi2BKJhd3VoBUqjIjDTvoOwsKc3cvsn/8lhgyYvfMufmvveyk5N6W0TJ0Qa4UlBJZhwUBIxZAGBhpfKXKmhRH1OLvP5Qc+PkmYRMSmwM1kSbSP34+QRhrERVGE7dpEwcD/VwtMM7UlkKaBaYrUbuL3fwf5U+/kW1/7Or73e74XL5Pjl3/m9bznfae597VvQZrGrpjWTfv3gxT4huT13/YjqTCXSBfmr3vjD11zPu981ZsHF0fwujf+38RRQqcfsufgCW65pUQcRbzxW++j0+2yPFThf33zmxFC8GM/cj+GNBiuDZHEKcPnP7zzV4kihVQJ2ZzH0vwy3XaPRqNJoVAiSTRC+zx36hz7D+7By+YI+j1KlQKT8ShJnFAoFdlqNomiAEMKnnr8JMeOH0IYkC/ksR0XFQQ0m9uUKgWyuRyb65uUykWKpQz9IKE8nM4DgR/QaGwRBRHtdodb7jgGGqIwIvEjMsMV4ihBa82+g7OsLNUZqQ3h2D2CfkjfDCgULRCSjY024xMeQphIK1VO1dogiQIMEYE0ENJDxW0wBKjUP9QwDPxeiDQTbNdkdLSSCrAkESMVG1P5rK0tYzsGQ0MjbDVinnp6kVvuOIHtgJQWSeSjdYKVKaPjAClslFC0NzewxibgOpr21XP9TrB3A188bvjcfZF4Ob441yBViUAKcSVrN9jRu2LaopGD4E4PpLS0FunPA5+Ei49/jE998jMcO5Yaiy+cP8WBIweJIp+JyVFqtQzd+jniOMZxXSwvT27kKLEo0e+0iFSOxvo81doUKlEYTp6p/Ufpbm3Q7vTodfp0220m9+xnc30drSKGqgWSsEuhNkUS+YSBwnZssjmbqdkJLs+tMTRa41N//wgHjxxEJ4ryUBFLhIxOTqCVolHfpNHsYTsZbjp+M5cvXqZZX2djs0l5aIj11TWmp6fwMhkaG038IMbzbM6fu0Cn1WN2doyhiXFUrHC9dDJysgX8bp+w28R0XZI4QkqBNE1AYljWYMc0NSQ37QyGZQOSOAwRAhIlaG/3GKnliWNNsVRCaYmbzaGT1MNHWhaGNDh/5gKBHxIFMdl8jjjs0w9hbXmNUrXKycdPMzwyyivuupXSUJlcoUR5qMTwyDDFjEexUiaOEizLwJCK+noDLUyajW2kCsnmcwyP15Bas91KBVWkoTnz3CVy2TyBH9PrtIkjRbfb56YTh1lZ3eTRh07i/P/svVmQpNl5nvecc/4996X2rbfpnrVnX4AZkOAmihQZtrzQtMK0JEo3sk35wr6QKF+QEb7wvcMRvnHYETQpUaLCWkgEAYIACIAAMTOYrXt6md67qmvJqso989/P8cWfVd0NDBUi1pngfBEdlZWVOVP153/Od97ve7/3dSyqFRvXD3j0yXNE04Td7V1qjSpGWJQqFc4+cYZBb8DNG3fYvLOFMobJNMYtlfH8wuz9W3/+LbJwytlHT5OEI1ZWl9nZ3uPw8JDxoMOZR5+gXnO5dOEq8TRlfn0dkyZYbkCWjLBcF4lmfLiPE1RRtk2pFPATn/kMZ06f5t133/1Ll4hUis+8+urD+rKzivdfVmn7y0DeJz53n8Rfh/ja1756nNv+OlWjf9DxV8vnBqSc+W9x37/zu/L5A++YiX2YGRA0F99nf3eHJAwpV3zqrTmiOGV7cxtlNGk0xXUt/MBDCImUCmVbhQo0GsexsF0fLwj4wvM9zl8NMLNZ4+lwRL+zg1KGUnsetMDZ2uLpd3y+eO42mhIaSWpyPGUXOm1CkAP2zJheCsE0Czl1+Q6/8IUTRbcQUVgQSUmWJjAT71BKkSaFmXae61mRzkdnOUIV3TYjBJYliSON/Ttf45nf+K+ZRimgabcV/8/n7tLwHZRVUD6NAaU1zAReAJQlj6n+xsy87WYfh4HCpNsYjC5yxr3emP/+VxZYXGhQb1TRCErlgFuJxemSJE01iZezUTmH1rPf23dRloXne2R5DvmYmzd2cR2PUrVEs9Vk8/oVnnn5Wd55+wPm2k2khDwvQHdzrsVoMKZcKTO/OIc2OZ3OIaWgBAi6/RHz7QpCCaRU2JZg2O9TqQZYlosfOERRjhSGNE7ROURhDAIc12Z5eQHbkZQrFVxX0e8PqVYCoighyw2e5+J6TgHAk5g0TZhbbJOlGVGS0mzWkZZdqJMaQEiEUGRRt2DwKBtQaJMghULZLlk0wRiDpQyCHCUk9Vab/c4Ow1HC/v4Bj512OL2smU4Tev0IJQW7212yOGZ+sY2QFhKDsuzCp1kWoj9CGPIsJ8tzHM//D+5hH/dc/+PyufsE3P0V468M7o5Vn+5bIhw9OjJtNADSmvE2Z+Q0YY6VrIQQRDFYTpXltRWuf3CNe3evU2+0EAJqZYVvDXG9Gf9TuvjVRYQzT5wKwijDdW3i6YRwPKDXG6LIqNQqTIY94nBCND6k0V7A92wqtTKtxQ3SJKFSrVJtLeD6JWxbYqmZKbWWNJpV/FLAmTMrWE7AYWeXRqOK4wVcfO8qy2tLVJstwvGYG9duEUcJAs0LrzxDlubMzdUpV6scdocEJZ/5xTaVQPLWty9yuN+jXGty4swGOo24ffMerXYTKQxKOaRpjFA+jutiuy7D3hDHKwAcAkyekox2sf0aWZYgpEUymWCw0Lnh9//5v+GDS9c4fXqDpeV5KvUq1XqJLInwKw0s2yZPYpTt0JhrUwosbNuidzjAtXO8UoU8VyjLZme7y53b12m156lXLJAKjOb65auUSgHhZAxS8fnPfYXD3pQXP/UsO1v3OHlmja17e/huUTV1/YBKrUoaDdi610Mi6B3s45dK1OoVHM+n3S7zrW+8y+adW/zc3/wMrqPY2yloI+VKgOPYVGvVgj+PQcniq+MH1KoBaxsrXPvgJksri0iRsb+zx87mPZ596RnaC7ViJkBYDPtdyoFNZ6/HwuIq5ZLD1Q82OXNmg52te7hKUmk0MCZHWhZSzv5ZMOn38MvVQvUSKFUqvPzyK3iOw63bt79rhUil+PSrr97vahszOwzdNzEtVDn1jH9fPIbvNjn9uGz4n8Qn8f3EJ+DuBxN/9Xx+5Od5n4VzRBs7zud/ycyxMZrJP/1n9H2fMJxQqTUoVats3ryN7SjS6YggcHG9Qh5fWRalahnbcfDLZWy7KH1FYUKmcz44N+bUt2E8njLu99FpwjjKC7ZQFuPXmygvwFU2z1+rcqtxiZ43JdUDXNUg0RmBsjFoOvG48MTDcP7mNr/09TXsShmlFMP+CKkkSgjiOGM8mqCUxXQyxZhCPM0YDUKSxCm2Y2E7DlJJommIFALbs3nv5Vd5bN3HX14nTTKSOGFv2xDG2TEAFlKQCTlT7rzfsxEzg3PE0evk/dygDUmmsZQkjjJGYczJ9pj1jWWSJKHdriKkxZWbPWr5GCXh853/jVfm/vbsM1OAns26G2zPJY96LCwt0F5aJPCL+f3JeMpgnCIR1GpVpIBao0HvsIfrCILAwbUVloJatcT8fBsjDGE4ZXFxHm0gzzRxnDAahZRKAYP+BKMNjqs42B/Q7/WZn2uyt3fAZDphdW2JbrePHwRUazVybUiThGa7WZjOu3ZhCYHg2pUbZGnGdDIhKJWoVgp7IzWzEDLGoI2Yecrm5Dmg00Jl1HJBSHSWg8kBg5SKPIvJ0gm24yNtlzzPWJiv861vXWBvt0e/P+X8iy8g9ZDt7QGH3ZjmXAPbdoiThEolQFiiAOXGIFShKYBUKCXQaYpy3Jk38tE6+ZBcL+Qn4K6IT8AdfFTAHRTSKt9ZgbiviikAdVTRmD1RLEY44irs7x5gWQ6dnR0kGZ3dbcgmLC4vUwkMtu0gyHCq6wTNdbJogD/3JLeuXKJcKZNnCdMwxfcsSmUf1/W5/cH7OK7N3OIa0q0QJxlxlOHYkjxNSJMp01Efr9wmqFRBKt598xKOynGCMvs7XRxHcdAZkKYRf/r5r3HuycfZ3dphcXmpqCSVysRxjjGa3Z1dWq0Kb77+HidPn8RyPIb9LkpIpDDE07Aw4W42mE4jgpJfVNRsn6XlBpbjHkvpSmUhpTmef3BdRZ5MClEaU9A4pFMGBEopsrCPcktoAybPKbkezVaThaUGSikqtRJpOOX6tdvcvrXD+okVpMxn8wy68MhDU2s2UY5LGoa88c13ONzv0Wg2OOx2efLRea5dP2CuXcYrFYIm9VaTa1duMt+ucG+rS3u+xUGnT61WJc8S5hfbuI7CLReiLnkS8ZUvf5MgqLBxqpBX7neH1Jo1bly5wfzqIr4jWT1xkkq1TrlWod8bs7iyxM69Par1Mlt3dzC5wHYspPLY3uxQrgQoJbFti4XFJn7go42iWqvil308t1CgdIIqridJ05xavcapMxuUyyVuXt9CuT5JFNKca9M/3Ceo1nFcGzmrWhdUnRTHC5gMBggB1kyh1ZKS1fV1PvXKK/iex81bt45Xh1SKV1999TtWTPHfkkrNzMvvP3/f+67oeD8YH5cN/5P4JL6f+KiAuzwvhKiSJCHLCmNzow1GfPfa/CjG95bPH6aNixnf4DifH7f0eAjoTccD8v/9/+SwVmZ5dYVStU53v0uepowPOwSlAGVZ2K6L67oEZR/LtknTFNsWSGWRa4kUkKQ5Nd+luptj8gzHgihM6B4MiCZTwjjHnlEpsV1UmPDS7gk+e6HKy1+PKa29SKvyLMvOYyzmJ2lnK9xKvskrtzp89hunSC2HTBeea6VyQBwnxWFcKCxLEccJlrKKPKINaZIipMS2FEHJJw5jxOyaCCExuebuiQ1O3Xkf/eTz/OtE8rVM8eILbV7/do/AaPJMY7TB14UARyYEUslZMdkgrBlImdE04WgO0pDEGcpShEnGf/lTFbKax71WkxOeTeD75GlM12ScnqvhBR7v9r/As7W/NQOJBVQ/kuKXSiCtAK9cI01CLEsyGoRsbh5Qq9eYX2gTBD6thRaOK0CnWI5NnuVISzCdxpQqJVxH0mjUMCanVq8z7E/o7B5QKZcIwwiDQEmJtCw8z2c8idC5oFzxSZIEy7KZDCfUmjUwkCUJli1nOZFZ0T9FSkk0jahWK7QXWkwnU9pzDVzXKVhalkJn6bE1V3FPSkyeFQwnkyOVS55mOH6FPEtAZwgpUY6LZVlYygU0woR4lQYLCy2m44g//4vLPHmmRrlkIbMBm7spWWYIpymD/oBBf8zS2moB3sSR2rVCmHzW6NZkSVyARylnXegH1tVRrjcf31z/Cbj78Pit7+fNHxVw950S78eduxllo1B3l9yHf7OHwhx/bc7P8a0/+wr1ikuUCj54/22CUonDbpelxTaOneO3zlFqrdIdwCSt0tvbZevODWzbYfP2BywuzoGy0UlKOBkxtzBPe2GBzr1NRoe7rG2skKYho6nEcSy0zqhUS6S5IKjWsWyLervF4c4WXrmB5zkcdLpcv/YBjz75OHdv3ebiu5d45oWnufL+FQJfYaTDtUsfIJRDlkQElSq+a+O6HuPhmMXlOaI4plry8MtV9vcHlEoe08mUKEpottvsbO3QbJSwPJd0MkYLsBwbiSGLp2RJhHI8dGaO6ZdCqJk6qZhdXxdlu3R3d9i83WFv94DV1TaVep0b1+8y366ipY/rOGycWEBKuHd3n3KlPLNUKD6bPI1xgxLDnQs88sRz1Js15haaWBLWzzzCG2++hzTgug5xnOE6gsXVRbq9KafPbtDvD7CFpnvYR4mM9tISQudEUVxYNUjF4tIKrbkmrueztXVAqeQyncace+I0B3sHZLlgaaXN9Q9u0p5rML+8gOvaOJaNFoLXv/YWz7z0FOPBEMeVlCs+UuhCbESA1pI0z9BJSjzpEZR8HL+GkBaYmL3NeyytrpCmETrXeIFPnkt6B3vYfpkg8OgPRhzsHVKpVAkqVbJ0AibDcqsFj9+xiUZdokmMX6kwa0YjpGR5ZZnXXvsMG+vrXLhwoejcfeqV+7SmGecpDidY1tFY8FGBxIB+8CD1cEXv47LhfxIfn9Bak6VpUfnWBp0XwhE86Ev6I44fB7jLc02eZxht0EYzGAwYDgcMBwMGwwHD4ZDeoM94MiaKokKIxhQFuI9qd/F7yeeah3P1h+Xzh2JWoH39S1/Bu3KFoFWn0phjd2uLLIkY9w8IyiWCcoCQAktZOH6hqmjbCqkUyirsfYS0sB0bv+Tyb57f5bnrJRTFLJ7tKMqlANu20HlCGsYk0YRyo46UNiafzduVyixf73Dij7/J6p++wcbX3+Hs1y/zqc01Hu2tk4uiICols3koQ55mlKs1XM9BCsl4PC0O/a6FznOkEPglH6MNeZ4fz+OlaUap5DOZTNjbClm9cRnnP/1lvjrK8CWMDYzPbmBd3p052xhIihGGXMmHWBxHtM2jrt1xN88YpCWZTGJ++SfX6O5f5r1nnkPYLiGKU54i1YLLScBSNkFnhnbjcayRzevf+DbVSokoTAnHE7r7hziWpNJcQFkWbhAQ9jfRSY/haMjK6hLt+RbVmoOUOYVvro1t2wglkVbRkcJohJRYtqTdbjEeRziOhT+jfR72BiwuzeOXfKQUBL5LKXAoVT2M1qRJxv7+IeMwYn1jFYwm03I2J5djOw5CQDxNGI+mVCplwihmcNhlbqGFW/LJ0qygQgoJwsJyCk/bPJqQxSFCanQeo3Ow3DJBtYFQCikthHLI0wgAZbuzbkOO43pIqQhKJVZXF8iTjIQqV28cUgsMk1GPlRNnac+1kMrmYL/PtSs3C0uCVgPymIIIXHx2luWSZinKclDWfQkQo2eaE0fn49m86ccx138C7j48fuv7efNHB9wdUTaK7x/s3B1X+WYVruJH9yVYjoaQBPDut77J4uoJrl25Rh5PmJufZ319hf5gxMLaaa7f6OBaFlu3rxOFKZPBLkrZrJw8TWe3y9z8PL3OLv1BD9ev0mjUuH71Kn65Tmthle27t5AiIwh8et0uWZrTqub0h4pyxUNYPpZl8Esl/MDnYO+AVqvO4vIqWZriKMXqxgnCyZQb17dYXFvHsRRhmFKvV2g2a+S6MM/WGPq9PuVyhSjJkZbDaNAn8B16M9ndg4NDhr0BK6tzJKmhVC6xt7tP4HtFlQeNsn2kogAmRVkPnUxwPB+NKICfAm0Uu9vb2I5LriU3blxndX2JStljaW21mCPIUjzHIs8Fo+GUaq3KN776DRaX5sjTBNv1QQosx0O5VfxyCSklo26Pe1u7XLp4E4FmZWUR6XiUSi5Xr9yl7EsWVhewHYs0HNNs13nvvQ/wgxLXLl/j5CMbZJkmjibs3dthfqHJNEwpl1wcW/Inf/xVlDBkaUpzbp5yxScOI9Y2ljno9ChXy9y+sUmjUcaybE6f3cAYSb/bw3U8bL+EMBqpJMYI+t0BJi/UKMVsmFkpRTjcRSqLUq2GQRbmtJ7F1tY+4+GAUuDRPRyxcWKR27e2uX1ri3A0Ym6xjV+uodMYo+NCxVSnCGmTRlOktHDdWYI4rnAbarUaL7/yKXzbZnl15XhlzNA4xpiHN/CjwxM8cLB+mJr5cdnwP4mPfhhjiOKIyXjCZDplMhkThlOSJCaOY4QpKPRS/eg7VD8qcGeMIU1ThsMho9GIwaBPt3tIr99jPB4xnYYMR0PGoxFxHJPEMfEM2KVZQpZlCCGwLOsj6W/3PYG7Y6XMIj40nx/9bLZPZVnKN7/0VR7/4z/BOneWLMvo7O2SJjHS6KLDZgy2kjiOjWWbgtGiZvNKeUo26SKkhxEKKRUfnOny2GWfKEqwlCoKnrLo7CgpieKIJE5o1MtI10dYTgFLdYYKSph6g6Fl4y0tIdpNbNthMp0QBCXSNCXLM2yrsMFRqujYpWlGbjRZXPjZWVKRZRnWbP4ujhOUVFi2VQAeUxzSJ+MJ14NTnPQiLD/nz5tr2MJgS0HbyXiTJs3tfUAgHYvcUsd7vJkd7qUs/ASlfECkThe+gzo3HI5Czj4l+IP1ZVZLJSqWRUMKnM4+5VqZO4OcR6oCy3X4F3f+CT+x/KtUK1XefOM9hr0ROoM0KxSq/ZJfqD0KcPwqXrnB6sYq9WYDJVKUFAVDSAqQAqMFRqdIQwFehEUcJ3heMcsXRQm1Zr2wJhKSer3C9tYOy+srVOtVtDZs3rkHSKbTGMuyqbeaNBt1lJIc7ndxAhfHUShbMZ2EaK3p9wYopY4L7eVamXKljM5ShLIQSJTtIJUqKJdCgpSk4aCgoWYpGCjPLWLZzsxKSiEtC0HBhirslyUCgyY/PsvatkWlWqJUrhBFEr+2RK0xT29crIrDwwGNVp29vUOuXb3J6uoS5WpQKL4KCykkeZ6iLBfHLz28j35HgUTMPG0f7N59XHL9J+Duw+O3vp83f2TA3exGPaJcFpvWsXTE8WHXCHlsdVdoqTwwrScETz73HDcuXWTj9Fn82hybN97HcXwsS7K/Py7a7Dony8GSOe2l0zi2YDrq055fxLZyev0R5XKAkjAZj5EYWq0qnZ095hbm2e/sU2muUKlWKJVLYJVw3Zzd3RHNxTWSKMGyNOPeoJgDcGwc32U6mbK2scL1a3fZ3d2j2W6ytr7CzlYHBHQ6XdIsRUqLdqvO/l6HucUFfE8wnobMzbfYvHsPx3Ho7O4xHo2ZW1ri5VefIyj7dPe71JsNfM9GWTY6y5BSYfIck6UIpbAcYTqsGQAAIABJREFUr9iYlMRoQRKOsN2ANI446AzY3+sRhRFf+tM/45VXnufk2ZMMhxMsKdjd6dBsVHjnrcusrhYqnn7Zp1Zv8s2vvUU4meJ7Dr1un3qjhu2XUJZNGo1RVsZ7797gpVeeISjVaLdrtNsVHCsmTTK00ZQqVcaDIc1Wg6AcsLw8h5KKxaV5Dvb2aTZL3Nvs0G77OJ6FpRThdIqQNk8/f57F5Tlc12d3r8uXv/h14jBh4/QJvMDnysUrbJw6gWVbWMqgHJd333yb9lyLt954l/b8HFGY4nsFBcVzLZQq1MmE0Ti2DeRYSmDyBCU1QtogCoGaaq3M9tYOrfl53nz9bRYWlxhPprTn27TbDSaDAZZj4wclpHKKz4Si2qxsRRqHRGGCe2RtYArKhaBI2Murqw8vmNk6KLoj96dWjzb4Yhi8eB08aDD88dnwfxyhtSbLspmf48fTTPoHHVmaEacxaZwQJzEgkFKSZznd7iHdbpf9/X1++7f/V5566gnCMCKcTkmyhCRJSJKYXOdYyv6RXs8fNrjLspzpdML+/j5bW1vs7myzu7dHZ69DZ3+fg/0Der0enU6Hvb0Og8GAKIywLIUxxWE+iWPCMCRJU3SeY9v2A534j0Z8r7TM44kJZg8eoF8egbwjoBfHEQc727zz+hucv3wJ65HT3L5+A3RClkSUqxWElLiOjWVbOJ6EPMSkIUpJhO0hpEQ6ZbIsJZ5OyfOcpT2Xcl5CWnYBorUGDLbnI8go1+oInZMaG9/3EUIjbK+wL9AanWWE06ToGBpT7NVpfiyiYimLOImxHbso/k2jwn4jh+l0SpZlOK5Hs1ljMg6xXQvf84jiBGUJhNG4gY/Oc4wW3H3iDEtbtyn9xZsMnnsUXW2hhGKa57z3lbsstMpYSYafa6Q25IiZWMrsEucGeUSjzPVxsXAyidkaTPjlX2rx75ZbPFNv0nZcEp2zbElq0YRSOSDPE8R4QpJmvB9/jcetzzIZjrh1Z5fDwx6d3T0MmrWNFQygc43tFDNituMh7ULQTWcJQhXziYgCAIo8Qc50nqVSYNnYtkQKiRASx7NRAg66I5JMk6cpJ0+fIE8142Gfw+6Qaq2G5zmU/KKDayhm6ow2DIdTas0qeZyipGJ7a49mu0FQ8rEtxeFhn163y/Lq0vHoSZ7nFPTLGEzxe0lhYbRGSkMajQCLNNNU24vFtZVylrcLBpTtVZHKJU1ClChGJUw6KQBtnlNrVKk0m8zNtxgMptQac2xv7VKrVplfmCM3cHjQRVk2nZ09Gs0WQbkG0gAaDVheCWc2vvEwtbkYsizOAUUH+RNw9wm4Az464E6IB4DdA08KIR9KCuSzA+0DLxWmUNk8qgAunzzJ4KDH0tISne6ErVtXkNJiPBpSazZx3RL3bl8nzRXdzj02b9+hNT9Hvdlg0O0TVJpF10vn+KUSg26nmNVTKTs7HSQZjkywvCoHu7vkGmw3wDIDgto8b75xkUajRr3VoLffJ0lSdu51WFlfYjqesLiywOraEouLTSQJ/e6E0XiIrQTlagXXcdi5t0ulUac112Rn95AzZ0+yeesuq2vLdDqHhWSwY9Pvjzl97gS5liyuLxfKXnnGvbsdgpJHlkRIZWPyENsrI6VNHE6Q0iaLp4UctYDd3T6O69E76HDp/Q948vyjfOMbr/PsM4/S3d/DL5WpNSoIZdM/HKBxuHfnNo1Wi3gSsrXdQSL4gz/4Q9bWNvAcKNVqCMB2faTtcfr0CjoesriyQLlabIaWU6JcCajUCt69UhLHFViOj2MJkiTC8TxG45jDgwFnHzvD1atbzLcrHBxMicKY4WCMkgmeF5CkOa5t8ezzT9Kab/Pm6++wtr7MwsIcn//cFzn32FlGgwGO47KycYLOXpf19RV0llCtBwjpkM6kky27SFp5ls7sDCQ6S1BeA4SY+SsqhNEIJGsnVpmMQ1ZW1yi7KTdvbWM0ZDpjb7fHuHfIwvIcQjkoSWEwn2foTGM5AUJn9Pc6lBuN4wIHD9zXBdWmoNGKGS1Tyu8WJxBiBkqPqDnfQY37uGz4P8owxhCFIXESH1fkszzDaF0UQ+QPHhx81CNJEkajEYfdA/qDAcNR0ZnqD/pkacZh94But8dwMOB3fuf3CKOYf/F7v8dT559iOBoxHk+QAnKtybNCgMD3/R/Z7//DBHdJkrC9vc329r0C2O3tcXBwSL/XZTyZEEUR0+mUyXhMGEXkWQYC4iRmOp2CkEglsWeg4/DwEEGxdzszCttHJb7XfD7jij3wnPzufE5xSO3c2+HauxfZvn2T53yHTn9MFofoNMJWCrfkIw1IS+K5NkpPEHmMzhMkGiOKYkM0CYnClCzThJOQz/3NEXc2JmAbvvFTU+6cTVg4sPjCLw648XjG3BXNV3415uqjI87davNv/8YtLp3Y5/H+Bn/22l1unexztr/AV167x9bZiIX9Cm/8TJdbG33yccbNZ0NuPjZg/prH5U9PuPX0GGus2J4b87XX9pG2QPuCz796l8kajJua95/ssvdITE2XufBTA26dGFK9qXjzFwbse4JHtiZ87T+L8Xe+wJ3lX2Y4/nfo9Crnn3uRP76ziXt+RGM3YOf8HQarI/xujb3zHabLfUr7NbrnBnRXO5TGC/RWQ64caH72eYP98wfcrHRpyjF5todJ3mSUJZxNd9n3LnEnusXVbJle+kXuZTf4We8fcuPGPUbjiLu3b/Laq8/wwqee5sTpFZQsip5ZmhSz/bOcopSFkopwNESaDKFsdBpishzpVVEyBxSGIm9KA8xEWoRO6HfHZFqQJznNVhNLCQb9EXudHo7tkUQhShjqrSZXr1wjDhP8UkB/MMH1bLa3OoVYmhQsLDSLookuRlRKpRILi3MIwLJd8izGaJCmoECaPCXPU5B2wW7SQJ4yHfWZ33ikYCU9eN/Kws/RnnnR2W6p2OeMQUgb5VaQjo/RR5NDAt93ydJClyDPUhzHRuuUtY01egcHTMIYi4JWOhpG2G6JJINqrY5Q8uF2+PGaOiqUyI/tCMYn4O7D47e+nzd/VMAd8DCwe/DpBxLC0c17zDyTonijuX8QVpZFPBmT55r+wSHlRgtpNH4QcLB/gFKGensRz/OJwwmPnX+W3a1tWvOL3Ll1k2a7TjydMBmPEELheGUOdu+yfvZZRr0OQXWO3CiWVlcZ9Q5Q/hx51CWor9DducWzr/4Ed25uUq1WcAOP6bDLwtoS5EX3LBqPSHNwPY9uZ0i91eLtN97hqeeeYToeYtsOC4t1Dg8H2JbCdV1e/4u32dhYIowzhDHs7x9Sr5fwSwEr6yuQhUhlMR5Oee/b77G22ibPckajKfV2C60V8ajLeDwpOPCWg+WXGBx0sVyfPNVceu8S6+trxFlOq9ng1Z98Gcty8MtNRD4iy6G73yfPM0qBS7W1yNe/+i26hwP+1R/8a0aTCf/Vr/wSJ86sY7sOJi+49shiPuHaO2+w/th5knBKlhQUzqP5iUn/ENv1C8qiU8HoHJMMaMwvcfv6FqWSj85ivvylr/GZz76CZdlobOYWqrz97g3a7TlKJZsP3r/G3PICSsKgN+GJp85gWTbRYJezj58rNmPHLkzaTWFX45dLCAQXLnzAyuoiyrK5fPE67bnazMevhMkjdDpFKAdp+bMNXJFFQ9I8x1IaozWlSkC/16NSazCeTLly8QonNla5eOF9nnn+acbDAfVGhaLXViQBITKEUOzsdqnWXGw3QFp2MUMxU5dDHnXkxP0unAApJNpo5ExR9j6MM8dA8Dt7JR+XDf9HFcYYppMJ03BKHMUkSVLUl7U+/idFoTBbiGPcp5dlWTE78+OgHf4wI0szev1eMS82HDEejQinU6IwYjqZEIZTJpMpo+GQ3/gf/ydeeulFXnvt0/zO7/4+lXLA0tISWZYVkukcdRMEjuP8yDpTPyxwl6UZu3s7bG1tsb+/T7fbYzqZkKZJITdvCtEL4IE52qMuvEJrQxiGTCZTBOAHPpPJdEbds9BaY7su9kekg/c9d+7+kmv+YQCvt7dHt9Ph8GCPp95+h7EfMOz2cF1BpV7DGLBdh8BTKBFj0jEmTxBSY5BgldAasjgGZZFnGoTi7AXBxkXB0qTOY1d81i9aOGPDucsBj37gIcKU0xccHr8SoLwyT99b5om78yhjcepug9O3yti2z6lbZU7uzGNngpN3G7TfMdRHDqe685y85uNYDiu7ASdv17D2NdV9ydmrVZb7FWpTh423bE7tNWjt2Jy6VWHlho99mLFy1WPjdg0xNaxc9Ti8dYK1pMOZzTqP9tf49489ymLlOQLvMWKd8cSJFa4O1qkOp9iXFdVOA5lDrVOmdK8CuaF04FLdrWEsxf7SKc7/7DyT5QV6ZpFNPYeSi9S9dRbKT/FMbYVngjZL8hT+tMXO2OUl9wQb7jk8W7K9vYejFItLbU6d3sDxClBWCHhpMJo0SfCC8oMfMNGoNytAFv54UtkFbVRJpOsihEBrjbItTH7ENJHc2dzHlhLfcxiPR5RqZZrtOosry9y4cgPbUmxu7tJoN5AIKvUKg8GId966hOc61OpV/MArDoiqsK2QShFNY1xboGwHISR5OpnNq2UFMC02fNBFxzBPc7SGybBHa+UkQa15v2Mm1f3xoFk+1jArrOczkTMLTQG4pGUjRKHCqWSOZTtYUtHrdTEIojBmdXUJ1/MYDkPiJCEoBSRZTq/bw/d9yvUqllKFrcV35fqjebuPb67/BNx9ePzW9/PmjxK4O+KOfyjIO/JwEZKZCckDr9PHA9lHt3y13eSLf/g5Xvz0p2b8cxstfO7dvU6lsUQ8GSN0Qm8QEYVTPrh0kXKlTrla597mDkGpTJ6nOK6HbRlWzjzNqN9lOugAGel0gLQ9SrUlpsM9klSzv7fF8sY5Nq+8yRMvfYovfeHPGA8jTj96giw1REnG1q07tBcWyLIMZVJ2dvZ5/+JVnnrmPHdv3yWKUubnW3z7jYt86qde4t7de7iOzSPnTvPWmxdYW1vg4GBAq12jVCrR6fRYXV9GzVQyv/GVb7K2sc5onJClhuFhh+vXbjMeTqi15rGVRFku3/z6t1g/ucFoFNE7OOTCu1ep12vkuaBRLQERCysrTCcTBt19vHKd6TjG9Vw8zyfLc6LphEoQcOHCRX7uZ3+SX/07/znlioft2BidgZxJEM9AxtzqBhhDODzAcUtAjpQFbdPkYXHoMwY5s7yw/cax0MD8YpNBd8QTTz/Jzr1dFhZbTCYhfuDRrLlMx30Ggwjb9ekf9qg363iBy+5WBz/wUbaF7dcQSHSeze4byd1bW7TaDfq9PuceP0OWJYyHQ5ZWlrBcHzlT0TLSRSpvVkAwSCsAk5HEEZayEMoFBIcHPZbXlrl3d4c0mvLkE2fY2d5leWWRQW+A6/sMu0NqzTJ5OgGTkkVjtFDUqgqEzeaV96m25oqB/WMg9/CwtBAgjUALw/3pivtUp6PN/uEUUMTHZcP/QYaedY/ymXHyET0wzzWj4ZDReMQ0DIt5qCQhzTIwBq01aZoRJ8VsThhOiaKQKI6Jo5AwnBInMVmeFZ5Vx1o3H89OnzEF8Njd26XX6zHo9xkNB0ynU6ZRSDid0h8MZ525Mf/yX/4rojjhb/zcz2DQ/MIv/Dx/9Id/xL/993/MT/7Eq8RJglKymCdT8riLbDvOD/1v+WGAu9FoxPbONrdu3mJnZ4fhcEiSJMXhbvYaMctNQsiCbkeRmfK88KzK8nymnJkRhiH6SOl2JtIRRiFQ3KOWZf/Yu8bfc7H2Yenr7/jZrFgrC++23du3GI9Dhr0xj731Fl3fJ0tjSoGHQOHYAs9VWHqISQYYHWPIEdLCKi+Sppo4yUmiBCEVSRiitSHwS3jlMpNBlyiMSCYRCIHlOAhyBIX/qWUrHMfB9oLCcmk2yhBNp1hSoLUgi2LiMEQaXShQY2aesAptUpSyi71iRs1M02wmaiLRuSHL8pkkf3FfuEGRX7IkJctSwumU3ZfPc/pgm3q7geW5nL9+ifeefI4w15QsRWgS1Nhwt96g/OkV9JNLmMeXSCKJ/ulTmCeXSJ9YIn9ikfe+fpOf+U+WUUJzEIdsZzGPBRUEcKpUYidO+EUZF79bnhGHGafKivmFBtNJyP5hn0sXLrFxZp1nnn8KN3BAG4zJsRwfI0QhcGbA9YNjARchBbbrk8QhUlgIZSMshbIlaRRjtELKAtBhdDH3ZiTKKQRXer0RUsB4XHjp9vtjosmYg4M+49GIZ154ht5hF8uxGQ+GTKdTtDZ09vZozTWxbYnvuaRpxrA75M71u0zHE1oLc7OZxKI7Z3SGyTKyNEXoFC1svGqDoFov/G2DgPr8Ml6lXjQVjpkz90NyXxVWzbpnOksx5FjSKkiVBpRyUUqijSAKpygJayfXuHNzi2rJ5fU33qHkeVRqNTq7++zu7rO4tMCzn36O5lzrOGc/JJI2u7eOl9cx6LsfH5dc/+MCdx+N8tlfmzjqUNx/RgJm5kOiAfRszm5GxzRSFlUXoY7fKxD8yj/8da6+c5Fma5G1Eyd4760LaKvK+pnHSJOcaqXEchpxeNDh0z+zzKX3rzM43OTsuce4c/MaC0ur5EYjjMXe5g20TplfPc1o0CVJMnoHBzTbhs27m2ycPINSCbevXQKTc/nP/4jnX3qV1lydNJoSlHx0LtCLLXoHHVoLK4homxMrLisnXuFP/uhL/Owv/jRXLlxme2ebc4+fo7vbJYpjTpxY4e7mAS+8/Byd3X3OP/cEF9+5QByGrK8u8O2/eJsXX3sBqRRPPfMkb735HuWSR7lSxg+qrLVdtLE42O/x1psXmJub49yjj/LBpZusrjWoVts0W03u3t6dzYoc8vyLT6O1xvdthHFQIsd1ZUElsATdwzFaw+adTf7Or/0XBGUPoWxyHaHTuFDmTCdMRllRedUGKQRJrnG8MjqLgaICqGwPKUHaAXk8QWcaIXOEmPnVNALGk5ATj2wwHk0598Q5xtOEuYUWRmccHvTo7A144VMvsLe9w8LSeiEqmWvqzQZSSqYTja9HhbCM8siSEKEEp86dIIliSiUXnU0xWYLvKRA5aRwiizdAnpPnMcnoJpXF8wip0JlAWS7SsogmfWynRLPukcUTNk6tkKWawWTKyoLHoNflc19+m3/0j/4+u50hpe1D5per6CxGWRbScTBphCBj6dQGvc2rVBZO41dKx3NzxYTprEqIQGNmVcOisHEkUz3TgOa7XW/++kWea9I0JklS0izF6CIV27aNVIokjplMpsfCCnoG/o7Ax5Enl5IF0C6kzwvJ7COVOqUUjlMcJlzHwXXdjxSt7j82stkM3Wg0pN/rMxqPiOKEPMvQOifPNVme4dgOUko6e3u8d+EC//Q3/wlaFx2rLE359V//+xwedvnd//d3+bX/9tcQQpDECYmdEDkRUkocx8WyP16pdTwecfvWLTqdDvsHB0RhWOQjIQqvzFlHyszmNXPy7/pZNrv/pJSzeR/odXvUGw3KJbuYv0uSoiOvC+XNer3x4/ujv48oRoIe4NkcPxbHe5XROTrPGQ0GdA+7rG6swNIC4WQKsyKc7RZjBVJrTD4uOpy2QggLy62TpgJtVNEJcjyyNEbaLhhDmkRIy8N2AnSeoZREOgF5XtCFhbJmyqaGeDrGdhxUUAV5NLpsgSw6QJPRmChKSJyEcq1GFsbYtkU4DQnDiEbTKg7bloWJM5RU2J5LOAmxbEWepuhcUqp4JDGkUYxlFf9/y3YolxXV0RajyKJK0d3KsHCEjZCafpghpMKdc+n+H9+gZynMzNgcgLdvHe9JUkle+nsv0JmMCWXGNIY5PIZJBrlgN4L/ruFiC5iMpniBQ6nh8O3c5zNJiuu5nDi1iuc6BSgSYibyQSEkohQiN8eFh3AyplStzT73QqAkz3KUZ2MpmyxLQVhYyikkR5IUYXkIZYEUaJ1hcigHirX1NgKF63ns7HZo1Ms024uMRlNsJensHXC438XojOFgQnu+xdLSAiBYXl4kT1Mm44her8+NG3dYX1um1a7PjOQjpLTI04wsjonGPVqrj6BsG9txZ/eNPgZJxzl1dq8++D08bPehAeU4eNUGeRySJBEShdY5WmgQBtf3sSxFnufE0xGra/PcuHaH0WjCZBwxCQ94+rknWF5dmbGa1H2K80OLqwDGxwvtiKEjzGydfRL/MfHxykAf8zgqsB7fyobi8CrM8cELMatiHL1GCxA2ShQDxscSKwIeffYp/r//6//mxU8/zxOPLfPiq7/BZDgknISMx1NsS7G6sc6f/NHn2D/o8fN/6xfJ4hhjlcnymN5Ol2TSwyv51BsLbN+7h+c41OrzCNth6+5dnnz6KW7e3KLdatDZ75KGPUq+YrR3Hd8+ieWWCCcTpNAEJR+kw2RwSLlaQynBYadHEids3t7C8XxMngGGS++9xzMvPMf21i6TSUg4cahUfG7f2KJaqzIajhHKYjgY0t/d5fqNbWylGHSH+J5LpVqh3a4jlU04HRG4GT/92gn8apMkDvGWGviBRxZHYHKmkyH1aun4YPrmt97m/LOPcvniTR594iygSOKIoNKg1mpSqQasnVwtKm/KQqfRbGPJSOMRUjrHuORo4NfzXEa7fbzARzkVsiTGGAnCQVkA5fvSzibFZBFhmHL75j0uXrjCKy8/zf7OHisnNri3OeSwN+TUyRO056eMBz0s2yOcDPB9j+FwyuWLl/nsT7+M53kFrc7Apbcu8MT5R1FK8fabb/PUM08SVGtEo0OkdBHCFAqilotUMyU02yJOQuzyKlobsnBUUCSkLCCXSRj2UzzXIKwSyoaFxSpf/f1vsrrS4vwjPv/D332Ow26HtZUlbt/aY25lFbtUVJDzbIqQCsvxybMYr1Jj2r9HUH0UKWbqczxYmZutEG1mVK9sBvuYGbCa2XcFAPwu6fG/BpHEMWEUkqYpcZKQpQVIKYQeiqtYdOZS0iQlnc3bSSlnqmMFxVtKSa5zMmPIc000DYmiiGRGw3MdFz8IAINVrYHr/Vj/7u8lsjTj4PCAw8NDJuMRw9GYOI6LDiYUXUxjcG0HISU7Ozt84fNf4Df/2W9y5JkpkChlkWUpzWYDZbtMp1OWFxcL4JdnJGmKmomsfJzA3WQy4fat22xubTIYDImjqDh8HQE6TCF3LyU5gDGoGVW3kCyfdYyhKAzAcWdeWQUtLM2ywh4mSZhOp8dVd9d18f3gx/BX/4DCfNeD4rtZPtdaM+zusXP3Cs+98Cpmc5u4FBD4NllmiKOIsgeKCG0ysgwsW2G5VZRfJppoojAiz/PZNVUIYSDPsRyP8WAIgOM4CMvFtovrmsUa5Vgo2yGdjIoi4HBE2S0hbAfpSlxVdKJMklKpVQkqedG1yw3KtslNxmg8oVwukaQZnusShRHKlsRxQhzGmNkeLF0Xy7FJooRcF0bgxhgcy0GYgp5XirMi/8riHNPY2meQagZ5TIDDJE04zAec+weP0/YcKq4gz226cUTTl0ziorsUODnoFHBp2TZ7WhNmGZ18yrxd47/RISrz6I8mZJlBpxPsUoumFaLNzN9NW1SqPoIcaSuyJCn83qSFyYt8k+cGZTnkWQrcB0NSKZRjkScJOAIx84zTM+aVzlPI7QKjpMX6ydIEx3PI05A4HFGueLAHg9GEU37AiTNrKMtm1B8RlBziacTK+iJpZnBdn1K1UOZ+++3LtNsNxuMIhWI8GBNNYyr1KkJm2JaaKVtKStU2XqUGiPs2A0J9eFlUHK3n/D8I+qRSKD8giZPicxQ55HlBOFOgbAeTD3E8H2lPOX32BBsby/QHIVdfv4mRkvMvPoVUFsr6cLq/QB83MaAAljOC8ifxV4hPrtePMIpb9cFWc/HlqOL+0JOAQc4OFoaHXjJ7nRCGv/0P/h5SGhZPPcbwYJNwGlNv1VjZWKLddFlY3+Dv/uN/zP/82/8L5UqdL3/xy9QaDU4+9ixnHn+GxtI5Kq0T2F5AJso45TkGozE7d67R3bvHzctvUytb9A62WVtb5NxTzzMYhhzsbGKkhxOUee+9G4VkrnSwLcHFC9dJopyDw5CgUuL5l85z7/ZtRv0B1z64TqXq8emffI3pdIIUFoFTbKB5mtNqF52w6XhEs10hHI3ZvLOLziMGgxHlkkUpsNnb6XDhnffp93ogHXrDDL/WRJgYW2WUvJw0CkHZGAz7hyOG45DpaIJrC6TQTCcxp8+dZW+nS1AuU63XSNOEej3g7s1NlNTYlsFkKWk0RFkCy6sVVgiOh9GFae8DKI8sA6RLEk0QEpQlyOIJaWLIomExZwYgbCzbw/UDRqMpqxvrCKU49ehZsiTlzq07rCzOsd/pUWvUUMqi192n3mwjhIPvl/j0Z19jZ6fPaDjmrTf/f/bePFiy9Czz+33f2U+u9+bda6/qql7Ue7fU6kY0I0tICDAgRmGQB2YYmMExYCbswQPhAWzsiQCHPeE/7AlHiDHGHo/DE3YEyzBIgBHSiJZQa6HpVu9de91bdfeb+9m/z39852Tmra5GMAi6q9VvR/W9eW7myZMnv+Vdnvd5vkY0Sjh15jiW47FxeYO73nUXtuOaxn2vZvDwfh3bq+P4dbIkZtw7IB33QOeGgazMQAe1BrpIKdIxTtCiNdfADwJczyUe57TnG+RFwquvXqK7t0Xn6Dme+dKzPPMnrxDWXJ7/k+fIkwFo02RuOS5FNkYrhe2FOH6Ncb+PMt0BGJ43KgI0pvW8w6yOFQxMlDjnypn8ZrGKmj5KYuI4JopikiQhSROi2BxLSpbCOIpJk4Q8S8vjKeMoZjQaMehP6euLIi/774qJ3mYcxcRxUuqVpRTKfFO3GyRTKUWv36XX69Lv9egPhpN7BAZOWBQFjm16PrIs48UXX+Y7PvKRw+NLlj01lsXv/u7voYqMTqczs4YbqZIiz8nVvyfU700wpTV7e7ts7+xI6FzyAAAgAElEQVTQ7fZI02T6Rz0VoVaYapBWymTcERMaepjuWlJMSZCU1iRpRhTF5EVO4PvYtk2hCrI8o1AFaZb9dX7cb6iZlviKuZdb7udCaBqNOkeOHiMeDyHNcB0HSwi0ANsS2I4JCqTl4YcellNHOj4Iu0RY2BMpAq0VlpTYvk+R5Tg21JpNijxGZTEqV+g8oyg0QgvSKEE6LlJnJElMHo9M1bCsjOiSPVflmQnYhUBYklqzRr3VpjXXJIlTwFSvldLkWYHv+3ieg++5FIWBaOZZznBoAnetwbEdpJBkeU6aZgxOLOEwwFYJQij8uuTvNQqSoiAVCciMBcdjLVQ4xCRKsZ31cRzFlWiI4+T4bk5oWcx7MO+V9CV2SuBp5i2HJ5//E5Kox2jUp9HyGA33iKKMMLQ461pYQhDWfQa9AdIysFVpOViOZyrQSpWfs0RZoSiy9FCAI6SkOb+KKkoklW0dmivC8pAUFFlGJY4uUCRRhrQtrq3vcOHVS5w+vcaZM8fJ0oRL59fZ39rh0qtXyeKc4TACZdg2G8069VrI/k6X1bUltjb32Fi/jm1J/MDDtiUHez2k8CjSnDyL0bogaJteuj8vfLFKSGhVTP7d6jFIgmYTYRm5Cl2kFEVmWJiLAtut47geq6sLLK0u4wYBliU4emSZh9/zEJ7v47oOHAozyx6+m/Z6g+DRZRvBN9de/5e1d3ru/oL2743RL00Ieajf2myEMwdKiOZU+LzMXwhd9jvoEsBW/lVDs7OM7XtoZeHaGQiLvZ1dXnvlAlppPvM7v8WRY0dYOXGG93zLY3iex6svvMDzzz7HQ+95jPZ8h8bcAtL2WFxeJs1yFpZPUqsFuF6IkAaD3+sOkVISjw7ICRgPI5Jcsry4SHNhlWG3i++7tJohiJxkPKbWaHDl4gauY/HAux8kTcacuesc169t0WjWOOgO6Hb75Dl0FhdIkhg/qOOHAdeubBLWa0jHZnlliRs3tjh9xxmUyjl312l6g5ju/oB63ScIa4S1kCIbYbsNhBOWOjWSwSDlYHeX7v4Bd99zivX1TXw/wHNtegdjgsAmKxR5Dr4n0NmYwShn+YihB0aZxV1lyaTHQBepYYG0JJbtTPpt8jzBkjaOX0MVJmSRtj8RXwVKwhNTlbIdm431LRYX2kTjGMuyuXzxCidOHuHzT32ZWj1kYWGOJMtASfzA5dqVG8wvtBkMRszNNQkaTdbWFlEFOK6NUprROGJuvk2RZyiVY1kuhUoNAYJleiOk5aDyIcL2UEVGFo9pLh3BrzcmkE0tLIo0QloeQlpI28PK97CDFvfeewf9bsTnv3yNh++pM1+LGCYN9ra3aTabvPbqVY4eW0aQovMMyw3M/bCMblMy7hM0O6AUlRxINeYpH8npw7LiWU2cyoHSZcCnTTBt3T4Vk7+oaa1Jkpg4ikzwlhiClCROiKOILEkmgttZkpYiwhlJmlDkhckg50UpiWB+GrimmvaJlT11aZJMeoT9srrSbDaNXuFtYnle0O/32d7ZYX93l16/TxTHZHk+cXhkSYRSBXn/8l/+Kz7wgffTbDYn4smm2m5+/Z//+Se4dOkSP/7jfw/LtqmFAZZlYVk20jaC067j4vv+X2kg/I3qudvf3+PixYtsbGwYpksMWYiYZFqMqTJgsSuCBjBJmEpIunqe1pPqevWvyDJAEATBpPoTBD7SsnBshzAM37SkwV9uPzdEMm+0nxveC2l0RbVgHMWsPv81dtEUSUxQ8/E8D9sWWJZjxpDfRHoNsAKSDEaDIUopwsBn2B8QNmrkmZFD8HwfP6yRJSkIMwazQpGnI2zHpSg0ulCmN9RxcRxBNBzi+eY10TjC9TyTPC7HdxIbjbUiSRFC4Pg+WisajQZZlptgLU0pVIEUEsexDZGXLbFsw7AoEWRpQjSOzdwpFGjNwdoCrQtXUUrjSAn9LqPHHqfx4ssEW1tc7SxSsyR1NHOWTSwtLAEtR7PoWIQWOEIQ2haxglhpxgoeHnRZu3KNe3f3qfkOQT00hEdpjlbmvmtp8aLjE3b3aLYa7O11jW7swhy2FGitQOUGauwEpVyANNfqBiYIZBrDW7YNlkU8PMBxQ7IsxbYwLLGOi2VZqIrQRGukbSMF7O7ssrvdpdVukyZm7R4Oh9xx7gRKa5r1Gvu9EceOrVCrBwgB1ze2ef5PX2Y0HuM6NrZtkRcFBwcHSA2u75FEEQuLCwBIx2HhyAn8oD4he7pVWGSIY2brO7cOnnSpLzs5T9lzazsueZaTJZEJbrVCiAJVxEhhYdk2eaFxHZt2u8k9D97PsdPHJtckZMXULEp9vVvNI32IMbuUNgdx++z17/TcfbOYnsl1lgyY1SGtNFIenmKVm3s4pCt33hlfV0ibxWNHGfXrXPrqH7J6+iGWO5pxFvDYt34rw96A8y9/gdbcPMdOHuVvfPd3crC1Q5JkbF+/xmf/4DPUQpel5WXO3X03vh8QRTFxb5t+fxddROTaJ4pSllaPsLlxjWTcZZQ5HDu2wv5Lu3iugx/6HOyPmFucZ+lIi63r+yA0zdYc1y5e4szZU3S3rtJst+l3uzSbTVrtNq+9+AoXk4TewS5nzp0l8F3CwCYIm+zu7NCTmgcffBdKF2xtrLM/18FzXVzHoT+I8VyLjY0xa6ttpBOSRV0De5VNLr5ygfWNTR64/262tvZptTvsbm9xsNdleanBte0hzbl58mzMwtIqC6uLoHqovEBamI3TdrC9usGs69wE6UUGesbZFYL5lWPs39hAWDm26wOKLEnQujDQLsdCKdMsXOQJtuPx4ENnEcLm+a9dREjoLDSRtmRlbY177jvN/m6PMPRozwUkcUYUj7l2eZ077rqDL37+yzz4yH1kcUy9WWc8SggCwdHjqyhVYLsu8aiPsFzyJEM7uWGxlMLAUCyXIt5HWLUyIC4ry5bE8Wu4YYOoZ5ElPSzXQ+cRVtBBo6jVQz70Xe8jy3P+4KkhZ1cKvOxVGsuPst8dEMUpv/tvPst3fuy7sKUGnZSbXWECYtshGY8O6d/pmSBPUEoyHFrgb4I/UVa2tQb19gYixImhoE8TU1FL07QkNzBOghDC9O5oUFpNBKSlkEjHwC+LQpGkGUJCXhQ4tkk0uJ6PU0IJbceh2WwyGo+xLQvP83E9B9e9vSCZg0Gfvf1det0u/eGQtKysWZZVav1pPNclLwqU1vzcz/8iP/Z3/w6+H0wcc6UMRMiSFudfO08Ujfi5f/KzKKUY9vs06jXCIECjJ1ThVQ+f0Qt769pwOOD69RtsbW+XxA1FmXSSKCmxKKt1YIg6SkdVvR5GYubfhOiohE+XgVOhFKPhkN29fZYWFkqNTZNAyDIDY/X9vz4ZiW+clZXsmUB4dj9HabQU1Nsd4lHMxvomdpIhwxAtUrQW9AdDXCdAuy4FdbSSZKOUKIkRRYHKUzwvJBpHgCCLE5AWYbMJQDTqkyU5WitqzSbpcIQQpt/WsgtcJ8ByPIpCUShwbRjtrNNYOoLr1kjjpAzMHKLxiCAMKIqM8chow+VZQXN+HhXHZKV8iNGyixEC4nGCRtFoNYnHY4KGaT0YjWOkhMAPSdOEJMlZvnqDZrOFHg7YFgn7P/Sj7L90meFgSMt2+fjWBhcWl0iVYq/uU5OSlu1S6ByblGVbU7cKhOXzLUGOg8UoKriwGXNt0MNuNPB9j72tA6J4SKczh0aTjMeMo5TkzBHqtTqbm/vMzTVBW4z6I6y5piGgKcdvlgxBg+V4OI5b6tsZdMnsDlNvzqGymO71S9TmVwxzpJRAAZZA5KaKrZRG5QW2Y7F69DhLq6tGUFznKMvDc32kLGjP1dBtmFtomARwkROEFvPtgLvuPGrgiQqKIqNIEoTtUWs1cTwPPwgRlo0sW3bQoiwkKG6erXoGWTD5Xbx+79Q3Vcq0MvuwsCRamPcJm21sz2ewfR3bUQglS1F3w6zpewEid/DmajTmO2Y/usU8en2CZGqqbCOYPlbv9Nz/Oeyd4O5NMJMMfoMSs1ZY0ppkPYGycZty0lI6wTe9XpuMRq3Z5uzjH+Haqy8htaS9uEJY2wOlCZodnv7M7xINdjh553005+exXRetCv7mx3+Q4XDAM198mi998YusHL+bu86eZGurzvreK9xx8iz7W9dQGjauXKLebNA92Oeex9ZYO3GM3/x/fps7z53Gd7ocP3WcoBZwcDBi/2DE6tEjxOMRyysLHGyvQ3JA6+g8X/3y1/jwd3+QF597ifnFDqfPnkBpm9/7t5/i277tCY6cOM7Bzh7JeEi4uszmjW1Onj3B6rFVHNdm0B+wt30DxwvpHbQ4deo4USLxpETYdfZ3dlEqp9sbkkYj4iTD91z2draoN5vMzzVI0oR6U1IPPa5e63HkpM/5F1+hVm9SFMqIx0qLIk8Q2jTIVw6OkBLH8zGQAvO9KqVJojFCKIRwESI1QuppCiohHsV4gSGgEUKg8jGD3pB6TdKZq/HcMy/x3icepNFqgNL0DgZsbewiREEc54S1gIP9AXLBZvv6Fg8+ci+e67Bx5SpZprh2+TL3P3wfRZFhWRZ5dIBAkkYjAzHVFkXcw/LnsSyLIsvR2iYb95k7ctYMJcrGcVcanTo/QNgORTYu9X9G2E4AUpLnOe//9se5+Oo6iT5KO9hl62DMkRPH2d3aI0kynnn6azz6+H1oLadMl0IjEYy723jBiUO7ptATXqEKf3nrqQLT6gqY7Ovb1IpCGdHsJJ0wXuZ5TpEbvbokTVFFgW3bU63MMrArVEGRmwBGl8GHLsz9z0sWOJPFnYpMW5ZlHHSlcDwXz/UmfVa3g6VpSr/fZzQYMRyOTLWhMLDTojBVTM91J3IQv/Hrv0mrWePk6RMmGLasCRukXQaD69fW+Yc/9ZPGgVOqzJ53DbmE44DtTO7x7WC7u0akfTgYmnsjzBzSWiC0oXk36OeS3Kjsu5Nl0GsIwA55ZRPqdDD3Lb8pwOs6DvWagYgXeW7kN4rbd97qsifzDb9xpZlfWSIaR/QPdiCOEPU6eQF5mhGEPnGcgXCJ4pHRHk1Tcy8tTdjsoLMEAcjAxnUtlDaNykkS4zg+hR0ZAo3xEFRuiG2EwHY9hG36yYS0AUWmBY4L3c2rWGELv9YkywosGyxLkmcFSEGtHpCmqfmMaQzkhIFDmoV093vML8yj8hzLscmy1GjCOQ5FlmNJiecb8e3ReIQQYDuSa2dOsLL3HHmnyVcf+QDHhQMMTZXHMtqID+UJ3c0dpGOTrCwwN9fAdixCz2Uh3seyQ6Rr+oNTBZsbW+zu7JEkKfacRZam2I6LpwOi0RAhJLWaR6Nex72ywVYtQArJXNNnHKV4gUMRD7H9gCKNzZopHdO2kMUURY7faE3i91lsidKK+vwyeVYY3gEpkLZE2jYqzw2SJx0bhmxZibEr8zzXAe2AlEAGGAhmXqSoIkclA7Qw5E4IGxD4tToIgVIFjusZkpQZSRFDymeq7mbeqgn65VDjTwkxVXk+6X+cwHS/DvSxSmZUSBuNxvE8mgur5FliIKyWIUTRKqfIE2pzHVMhFjPs1kJP/KWJJNIbWAX1PtRPfpussW+mvRPcvQlmyCMqlq0qgCv7FArDGjW7iGhhSnRVv5Z5tTTVPM3kXGbeCRzXY+X4MZLRkGSwQTraI1y4k2T7PGfO3cezzzyDLhTLJ88y3+nQXujg2BZH3JOcPneWNE559qvP8bnP/BFpmnL16hWG/SGPvOdRamGDYXeL9asXSSJNa67N5//dl3jiyfcy6vVYOrrCqy9dYmWpRX/3OjeubbJ+xWZlrcOgaxP4Fol1hKLI+a7v+3YunL9GrjT33X8Xv//Jf8eTTz7E9/1H38fVi1e4fPEKC50WDz32EIP9PULfokgTLNvl07//h7zvySdZXm6zuz+m3fR57rkXqYcO9z78EBdeeB4sjy9/+VmOHzuGLSVJnBJpxekzx7l0cZ08GdFuBURRgu9BGLo88/QznD13kvmFOYoiI4+GBK0ORZYipY20HfJkgOU2qbXmJlAFE4wbFseVk2dYf/lZWourCOmRJ0PcoAHaRsjICH0LgcoiNrd6ZLnimc99jSeefDfHTx9Fa02ea1w/xPN9jp92WL+yyclTHWyvjtKaRqtBZ7HJxvo+jZrD/MIye5s3WFheNE3Plk1RlLp6qdFOQjvkaQrSoxj1iEdjCgVKpRy7811GJ2cy6oxJS+KXsKnRQKKzIbaU6FL8vN6ok6UJ9zxwJ9eubLC4eI4XPvVpjhxTpb6V4vr6df706YL7330/ohijtDQ9JWV2tMgNWYAuocdKV/OinCdCHJ4P5byZ1PK+CRb6tIRjxomp2BVFQZ7laDRZlk+qdHlRQAGu60wCuywzfTUVmY+uZBDyHIXZZIuiwJJlz025mXquR5zEeK432ZxvB9Nac3BwwMHBPv1+n/F4RJrlk7GTZTl+4JMXBVrDxQsXee75F/mFn/9ZpLQmwQtCYAlBkRf82q/9Gt//0e8nDAMDV3Ns0iQljiIGwyGNxgxZErzltQGHwyFbmzfY2d0x/YeHkiTasF2WAa6oxoU0iRlZJmgOQRorp4tpnkbBJEguioIoMvAty7ZYcg2UXWmFeuPQ6LYwQeXoHq6KVBbWahw9c5LOyhqi2SKoGQTIcDhCWhJVQJpGJcRVmD0mz3FdF3RBliW4YR2UIokzHN/HciQqGpGkKY7jglYUeUZYa5IXWQlLjBAqR2HjlufMsgxh1SiSFK320L5LgQNlgO0Enmn9KHKycU4YBFShgVYaXRQ4jo0qcpI4wQs8bNsukyQaLIskSbCkRFjmzozGMY7jcNezL7IXerQOdshrNl3Hxut0SIQkaLWwPYeea3MjiQkHOXarSV6HhSKnWzgc1JaYzzO28oIsl9RTxYXRmK0sg1HMlSSn3gix9/a4OBiyvLrCklIMpSD3NMlAIaKM8Tii1Z4zlePEQ2cJoW2BZaNUhkCTlKRpeZpN2ilmR+ns763FFdzaiL31iziOhRc2QBidVsevoynIogGD3ja2XcMO57Ac26AsLBtpmYBSI8iiHCwbt9bBchxs1y8DTpNwupnspFpvZqGXs40+f9YqZJJ6ZdAkxa33UTkTkFVjYIbxvQocbc/D8nzyNCYeDNFFVrarSKO1W7WkABqF0FV70uHATs/0OVf70Kx9M+z13yh7p+fuL2h/2Z47qCZfiTEuezom8A4wvWJUE8FkUU21wzgch8a31maGzVJxllosg90bZIVLY/EEeZbSmFtmOBxw5PgJPvfZz3Lp5ZfIkoRmu8P82ophikJQa7c4evIk9z78APc++AD/wYc/wrufeILQs3numRfY3e/y0BPv57VXL3PyjnOsHlnB9Xy6ewPm5us0Wg3aCwvkhWZzs8vzL7xCo9HihRde45FveR9PfeaPWV5bobffx3U95jvzXLlwhaWVRa6v73D+lQsszgesHD2K1hkHu/vEqWZpdY6isCkUnDl7mv3dfVzXIY0G7O73CPyAoydP0N3vkmaSG5vb1MI6d955Ar/W4OrVq9x15ymQFmfvuoNud0A0HAIFR9faZEnOYJTTWVhm0OuyvblDZ3kBWfZzaV2gsgiv3iHPUmzHN5kzUUpaVLBCIWnML7C3fpmg2cJypoQraIxWTFGAzggDyUE35sSJowyjFPKEQX9ArRHieh5XL94giUeMR2O6vQhLajqLHWwbEC7bN7YoMsXly9eJxyPqdZ9WZx6VD9F4qGzEYGcdp9ah0VnBcT0aC0vUWnM0FhZpLS4xt3IEaTsG6iCnel2idOTMIitwXJc0HoPKEZaF7QRobRHHGarI6SwsonXBXHue3/j13+YD3/5tbG/vMuiP8LyQZDRkYe0IKo+RlslGCsvF9W8B97up52eawpj+eTL+SxNCYNu3H03/1zOlFINB3xCBlIGdqcSpMhGQESeJYTdVylTvhEAVRnC6KKvN1VpjgppSvazMwjYaTTzfm1T7tNbYlgl0amFIvVa/LXSFtNaMx2O2trdMVWo4Ii+rm5Vsgee5pZMgGI/G/NZvf5L/7B/+xKSXRCkjwCEtC6U1n/rkJ3niiSdYXFoyFU1MP1/l5GRZhh/42I6NHwTUwhrBW7jnTmvN9RvXuXr1Ggf7+yYxcEhvzuxHShm5g6pHZtINUO5XFfPqbPW8Or8u4Vez2XYwUGAhBJ35eVzPw3NcgiA0gcybYN+I/VzB5N4cEjEvf1QC98fPnEH96/+b4PRphLTIs4LR2FTr8izFCzwox59t2wZynaaAZeay1uR5Qp4WKFXgBz5pEgPKyG+4ploVj4aglRm/eY7lBOR5WmoxSlCaNC8lLeIhQb2NG4SlY1KgiwKhNLbrYDkOKsuQtmGKRVrkWT753ivx6fmFeQqlTNIky8kyk3wqCuOz+IGPX0Btv4s3jvE/9BHibo/QsVgOA/wsYef6Jk3LYjEwLSFqMCbf7+K6Nm3HQY8SNDaMIqwo4Quf+wqD65swHCMl2HHMvOeztNRhMQhoSgvXgnxvn9Waha0Ug8GYg4MBg8GYosjpd4e4no8rC6TlgLBRaQRKU+QJ7dVjWNbX2VOEwLZt6nOLuLXGZO2FSemb+twK9c5RvOYCfq2B44ZYrovjGlbRLM9Rhaa5tEqt1cb1QxwvwHYc08dozYiLw4TFUohpMu5W68BsoPf6P874nW/0pPJvYta/LMf09Gqm+rO26+MGPo7n4fp1vLBesmqWL570zyujG3iLa36jHkHKBGW1lzm3yV7/ZvXcvbXTi29Tm0Au9eFMX7XBGratqnF0sqOiVRnYiTLgQ5d/n5xgBsUmWDh6htVTZxgOh/zGv/4tLl++yvEzp2nNtfiO7/s49z78OFlWcP6lr7F5+SI3rt3gYGePnY0t+nu7SGkb+v1BD6UyTt13Px/47g+RpRl/+KlP8pHv/Shn33WW7Z199nb2uHDhNWxLMOodoIocKR0efuReHn3kAbr7u/iuxdULl3n08Uf56tPPcOLsCT7z6c/h+ZK1oytsb22zvDzHyTOnkE6Dq1c2sN2QheVFojglHg7xfIuF5Tl2tnbxfJ9aPeDgYEyz7hHHKU9/4Sucf+UCly5fYfv6JlIKdvb6SKFoNkI6K8ugEr7wR3/MPfee4cjJE3hhg/4gActD6JzPfvaPePZPXyCJY1598RJpNEQrQRb1UYUmjce4nocd+lQ+kaJkTytrqtK2mTtyGlUUZOMRCHdCHKKKjDwbI4SNdEJO3XGE1lyD5aUWvu8Rhg62Y2NJRbvtURSSex98F2fOnQQETz/1FRQ2/d1t6vU2X/nqc1w8f4nl1RXSVJAmOdJqoQtFkWq8+gJzK2tYloVfbyF02cQspNE4Q5cV4nKcvS6wKtEjAMJGSLfUqgLpeoQ1nyBwgZgozvECjx/64Y9RKHjk0fvxPA9pwWuvrrN+ectUE7VG5WOTxb7pvTT6kJyNqJxLbtqHJk7UYefy7WZxFJGlGWlWMpIphSoMRFgrRZoa1tYsz0oyCzWRRsjLwE5ro1FWlBW7Qk2rTJTQMvNrqW8njTPhuq7pO7lNmteVUoxGI6LRqKwc5xMIdVZWN4HJePnVX/1V/s4Pf7yEG1oTpkMpjRjzJ37lf0Mpzera2qRalWVGQsG2jXOVZxnD0ahc0/UkIfJWtTzL6HW7DIcDsjdgq1Rl72b1e+mqTidf9VnLql5lhgBJHIaCzTigWmvGwyHDwaCE69m3RdLgz7IqUXDL/XxmGNQaDfRBnzRN6CwuIG2HemselWsQkv5gzHg0osgyirwgTxJT1YvH9PZ3iZO0JDcT5IUmjsYk4xFJZCRRsjgiz1P8MEBaNtFwSKEFeTwoSW0MDF8pk5BIk4Q0zYn7ewDYnovGMKEK1wQVOi/IC2UCPK2NDqQwRDKFKgjroWGITXPABPx5KXBuuw7dbh/XddBpjvvSS4wefw9/+qM/wY2dPaLRkKzQ9HsDCq05dfYEvd6A/W6PvChKfTYHaTns7e+zuXGdzc0dkiRn/domruvQ7w/wXIdz5+5gaWWJTmeeWq3Gytoyli2Y68xRqzWIc4skV/S6PZJoxPlXX+Pya1cZDyN6BwPiOCeJIlSSUmCzfuE8bm0ey3Zf913fikkSDMmK6/mEzTlaS0doLh2nsXCUxuIxbC/Adj08P8D1DBGOX2vi1Zo05pZpL6zRWlzDKpOslpRGOLx631v1yc3ufzMtCbPslof+vUHVazJOxeFjs//MMevQ46pIMX2NhVYFEoHtml5FOTO3XwdZ129QLbyVaT11QuQ7Ycufx26PHfttZkJgGl9v0RQqKuYmYU1gl1UKVMzsmHrWSRGVSphGCIksgS52mQ09fsdZ/sHP/jQKQ+rRWVtj3O9x4twJLr30KvGgT6FsTt51Bi0Erz3zLP39bbK84NgdJwnqHnmasb+5RRbHfPTjP8jxsyfMdaC5596z+GHAHXef5sbF8ywfXSGNY2xH0N3b4sypJRYWmqBytm5sc/e9d3Lm7EmuXdqgXgt5/tlXOHPqKO9570Ps7fXZurrOvfef5eqVa6bRO9bU6yF+c5mtzT1Ggz4LC/Ps7fe5eOGARtMlrLfw3JhGM6TX7SHQzJ85TRB4JGnK5QtX+a7v/SCB72AtLXD0xAr9bg/Hc7nz3rs42Nrg/CuvoKRFvdagEXoc9GLO3rFAEmVoUrCa7G5tsnDEI2h1zHpalewQE+dHlYf8ep0ic7nywgXmlsHz64DE9etoodFFBLgGnmgV2G4NQhsvj0AXWJZkYblJZ7GBJqbdbtJoeqweWSRJUrQ7RxKNeezxR1i/usGF1y7xwKMP8ju/9dt8z0e/h3g8Ih0dcOSu+7GkPfHBVMW8StVsPSMkPsG3T7z9meqypt6eIxoOQOdGxy+NkLaPsFwGuz3SeMCgP2bl6FF+/3c+w9LKIh/88Lfxhc8/Q5xkCApeffZlVo6torSkNl9ykJWBsSlEC8PYx9WlkvsAACAASURBVOSyzFXejLcXVW+ZLNm23roO9b+vxaWeXZplFEUxgT8prSafN8umAuba0uTFNCOrtZ5Q82uNEe0ue6fyoqBQBUIKA/OsCFgsiWUbJkPHsamF4W3TbzcYDOh2u/R6PbLMwNMAQ3KS5wbCVo6tX/qlX+bjP/gDuJ43GVs5Gtd2UEpx8eJFut0uP/73/+6kkiXLsVYUuWEjLCGMtmVTQYXfrCrUn8e01vQHAw4ODgyJygQCNVMV0Goy73W5yBVVYFyKXs+mhWdhmLOPmZmnQsoyIQl5odg/6FKr1Zlrz+HdqnJ/G5kUJgB+oyrEZCFT4H/nh4h+7Mc4+Jl/zPHTJxgNhhzsFUjbZtztI2VO5mjQKdKxESrHCwJcy0UpiCKjtyqkoMhTXDdEC0ij2PRGSpckNkRgQWuBLBqb/rV4SFHkOJ6p4vmeWzLqakbDIUl6ldbCIkgHLSQ6MoyH0nWQyibNCjw/JBlHWK4JQELbVBQbTZ8iG+I6Ifu7+3i+T5qkROOYVruJvbvL1s/+Ar3xmMCzEXsHtNstOstz7G7t0lycK6/Jo9as071wEbdWY36+wbDXY3Njk9FozMrKIhYW61e3uXF9A5XlzM8vMD/fosgSxoMhtVqI68Fyp8ORY3cRjVIa7RZFAVvr17CEhe97tLAYRQnjccTu9g6f/8wNpFSMo5SgXuc/+cc/gef7t4TZVnbob2IaAFXHD40HMT2OqODv08DHKntVJznUkgylytXfLDAOZfVLWFU/zp95rdX1GmH71z9vmvS6+fjh5I0pIAgMsdxNJ1Gml/nQqbTRp6vWTlUmhQQChXl+hRSZtVvt9QKghM2LW/jO79hheye4e9NsBsbCzXPKSDaa8rRGlpU4tEAfmoPmlQJQFQym3JRFWe2rPGONRkp78j71dge05qH3vXd6RVqjheT+x99jXiM0Kiu4dP4Se3tdWu0Wp++5k+0b22xd32Zr/Rprx08Y+IZlobVg+fhx1s+fpz3n4wRN1k6cYHPjOmurDb78pedxbJutG1t8/nNP8x3f+QHuveckzz37Iu2mz9Vr17EtG6U1Lzz3MqfOHAddIFAcOb7GlQvrLCw2cJ0mSEGRR9xx50nTP5QmXHj5On7NY21thddePU+706HdboKAs2ePceXSBkdWa7Tn61iWT7vTKiFWEUtry0RRzvr6FltbOxzsRhRK09u+zuWrGwiVUWsv8CN//weYXztmnOmSKrkspk4w5EyWZCPqefrBx9GqoEjGdDcvEI1HzK/dgV9bMNCQvS3GvX1aiyuAwHFcc34BqtCoPCcd7ePUjBxCliVYTojth4S1AMk+S+++l1q7hReE/NCdPwpC0pIlrBJzgarq2SyhvRJR1eyQCFQ5ZgSYxuoSTmGCVmU2HCCoNejtbWI7HloXJflCQbtTpxZojpw4zual1wgDj2g05tUXX+LY0SWe+txF/q9/9Zv81H/xEzTqAdKthFWr8Q1IbZyX2eNMbufMXDH/tyzJZFK8zeD4WpvsfJwkZHlWEqgUFMUUZpiXRCnCkiUMU02o6KuKnSHuKSZVO6UNiYUsHYYiL8jSlNzzJpBOx3bwA5/ADycsmm91KwpFt9ul3+8Rl/DVLM9xbJsszfA8bwLu/W//6S8xP9fmxKlToHWZkNHYZWA3Ho35zX/zSX72Z/6RObk20iVoXc75KsArTCDsGDIa3/fxg7cu82OapuzsGk27qgIJZUA3+Z1Jxt0QrKjJca012DYoPanOSUxSUs7o3lUVvFuZAKIoQqmCZqP5NnHTvv6nEFIQfOxjuOfOsvkLP4/9n/40tfvvBa2Johg3CCcaYIXSuI6DH3hEoyEaoxsnhCKNM6RUaNGgyBNUXuC4IUkc4dke0jHrYhyNEdIiS011NhoOcFwfLQRZlhnx7iQpK6gFo8GAemuOOMnM2h2NCS1JlmU4tl32Xwpz7lGM67t4gUcyGFAIgec1sG0HrYzwuhaaZq1JCvj9Ls1Tpzg42Ec6Dru7uwiZMxrGtDtt9MhID3iOTWftCP3RmLxQ7O53abZazM21OX/+KkWR0ag3yZOc4WBMvVWjVg/o90ecPH2MotD4rk3gO+WeVdBs14mjlM7yAjs7+6YKSUEaD7mxPkI6Pv1hn1qtgWW7nDyxhheYPvPDlVgToCltfKWqZ03IcvP/OkNgEqC9QbXqkChBBZs3j6bHbwrMbnV9s6Qoh+DWevq8W55PyEMVQHNM3PRQHPrT4Y9y8+eaPpY3sXFqpgyZs4nK2T4702EkJn6VZVkcgvS8Y3+m3R679tvMjINtMphS2hihZz1hp4OqGGQqd5MCUTlZBFWQJybPlXoa6ilhfk6w2OhJhc9olsyA26oZWuGchRFMFwKENln8Mw+8izPlnFdas3psFYRmaW3RHCwzif3tTeZWllg5eQeoGCEkRTamUQ9YPHaKq//n/8G3f+/HWL/eY2FhnldevkCeJbTmFuksrSJ2tllaXkRKm2bb52B/zLPPvszCQp3xOOLosRaW5dLd3+f8q1fpzNc42DsgHQ9oz4XUmo1yU4upNzvYtk1/NEIUms3r29x1z2mC0DUMYnmCJTXCckwvWdQjbDQ4eUKws7GBhYslJblwaM8v8f73v5cwKJhfO1ret1LwtLyHpjFZM+00MYGyECZYQQicoMHi6QfNy7VGobGUonPkNAvH7ii/Es1gb4vu9gaj3gF3P/5Bcy59bJrNE9O6rxSC9tJq2e83HWOvq7PoGWesypxN8OtVckBTaGUSAwLTd1C+k0YbzLswn7G5sEx36wae76N0bsJE6ePUJMlozLWdPo8/+SgvPvcSCovr16/z/T/wvTTmGqTREHehiS41bgTlZiaEgYxWlcLyP8OcKScQ2EMf9G0W0M1almUkSVL2sGSHAruiKJDS9ITVwqAkLZxWXqsenSzPDaOhFEgkjm0ILpRW02pVkTMajbFtB7fVxLYtXMchDGpveTr/WRsMjDD7aDg0ZDNa4zgOaZIiyoyz1ppPfOJXeezdj/ChD3/IvLCsytmWjRSC0Tjij556in/0n//UoepTZZYlKVJT/SwK40z5nktQM7IIb+UKcrd7wN7uLqPhoFxLpn8z24I+5BBWa84s8lmVfXOq3FOAiZNbBXjVnjXrKlZENbo8R5pljKMxrbdwpfPPY9V+rpTZz7Uug+bXOcuS0b/4FervfYJjjz3B4P/7FKN/8tO0PJvm3CK2fWwCga0YAqVWJvgp9/c0iumqA3oH+4BkcWkRpcELPOpKkxc5KsvxPI+gllLogjSKiUcD/EaNaDRCC4W0A1QcozWkRUyeKxgOSTJFa26ezRs7dBbmyDLzXTuh6ck7OOizt32AbUscz2HYMwRbRS7JRiP80CPPFUEtQCtNEiXYnsf2xg22dg9YWV5gZWWJA9f0vS6uLJGlCUEtYDgcGkmFQrG1t09QaFSemepgPeTEqSPcuHaDNBkzjkYsrSwgpcCxBSfPnKB70GdhPmSuFYIwrRG1hsASGs9zmO8cwXd9rl+9wtXLV3CsHLSD1HDPu+4jKwo6C20eeuyBabAxU4mrflax3CSwE9WeP5PWLatq+tC3Xw2Ysio1c7xcost5M4uRVIfmURWY3ar6pvL80OPDfbTGbu7Nm5zvJmjnrSqFN5283KNvCga1MmyuJRLHVOsUE6mFMin+RtdUQZzloaD07Zm8/au2d4K7N9kOCTSq6ZZokC8CVVLGV7urmMl4cMjvmBaqK7HNKvczhdgx+4LqAspYpJyANyegZuLA6oCpVFVsR9Xmrjh67izRaESaDllcXqS/v0979QT9gy5pWnD2zAp5IVlZXWF76wAtJOfuvpvdvX021je4fPEi9UaDJMkI6yskSQxKce7uc2zf2OGFr13g3F0n2d7eA53j+AGbG9dYPXoCyw0YjfY4fuIoX/rC0xw/cwrfc2nULF5+5QZ33LGGG9Spt3wj8mobxq9C5UT9faSEsNZi/fJlhJQcObLKcDSm1V7gSrrOaHDA3e/+GxMIxPSmVMGPAiwoIbET2l9dLvdCTxZvymBbatDWtJpaLYjNxTWai2szfVCijHf0BD5VBWCq+g6r01YA3dkK70yKbTIe9PS6TUBVBfVi0g+qCmUqslSZA11W9BQoaC6sMOrtI3SBlhKZR2Ww7PDwQ/eSKzh95gzDUcRnPvMUVy9f4Sd+5iexrfkysIOqddpUqStncTJQq7ctL/yt6zT/VViaJhPopFIKVeQlDFCVjqSFJaXpbZiBqkxGptZobZ6bFwWqlFMQwsAwsywvx6HJ5Gs0jm1j2ybhcTsFdkophoMB4/GYpBRvr8a91moClUySFMu2+NB3fHia1NK6hFuaufXpT3+ac2eNLIjS5j7LsvKNMOyZrjfLLKsJwhDf9Q71mLzVTClFv99nMBySpNNeO9POYvYdQ/R1GKKpVXWfmKxDlU3Wlzewm3vvZCVwXr56PI6o1Rq31Vi7lc32rE5c/LL6MiW9qJ5rnlxrtUn/q18m+9MvEPyLX8M6egKwjJaZykmimCLPCa0aWVHgeB5ho0Gt2WTlyCqDgz79fp80iYiGLmkakxcKz/fJsowwDEBLvJqL4/nE4zFalzT1gBQ2eZGT5wV5FiFth85KgFJGtw4Nju+S9AboPCdPEmwLLMeiKBTRKEHVwA4DBr0ezTmPJM2IhhFpklJv1EzSb9DHXV1hxQ/QKLa2tlFKGSmSPGFhdYX9vR5xnNLrjqDfox76WAI6S0uMBiPGkSEVW1xuo5XAD0Mcx6FeC2g0G4wHI2phwGgUcfToQpm4ykvpkwwQZGkP17dZWFlie2uXPIeVlQ5auggh6Q9G5HlGa2m5+jJnvmA5TUIyDZwMbBFATsAnEyijgJsVq6DyGKaBYOVGVccNbmviaU32yMk1zcy3CcJm8mfzqkMw+jLJcKtg7/AYlhPf5evZ9Npnuu6qDyMmlQYT2IEJ6t74jSfvT/X+7wRyf2l7J7h7E63S/NJ6KsloJpahuJjMk3IlqKZ69TohpuKxptByU1amcuj1tOpnSoFlVelQkFI5QnoSlKgqAVNaRUs/1UDSlTtAFcAEtRp5ltLb3aLRWWb9a59m7Z5v5eKzX6Kzdo6nP/t7nDh1Bx/8yJMk4zFBe46jJ4/ypaf+mOPHj7CzeZ3hYMj+fpcHH76LTud+blzfpVELWFtu0D/o0Wy2GPYjsqSgXm9w4/oNlpeX8D2HKxcvYlkSW0Jrrs0Lz73Eo48/yt7WdaLxkJe/9hyPvOdOtJYoleFYDvV2E2F55GnKztY+caZRwuf0HSs0W02WVzrU6o7RBIQJmNGIdUIFZQRVZr6tyf2ySrijYOq8TJzwW66hYvI1lQNiAnHS6EOLaYUEmcY+1ZipMO3V88zJZly2ybkFZTA3gXLIEp5r6Nz1JJivLlhPrl0KQa3ZZtTdhyKnEAJRJFhODaGNgPrKsWWe+8pzfPRv/ofc/eCdpX7a7FVPP7esAjstQM5sHN9kQR0YRzyOY0OUkGVkSYpSahLY2bZjvh+l0Noymc5qk5zpkwRp9BqFRFvKUPSXwZ3WMXmem0w0YFuG3MJxHIK3MLTwVjYaDekP+ozHY+JS0N2SktFojCwTFL1un89//vP8yN/+W4ccN60VjuMiBPzSf/fP+JG//bdYXl6e3O+qQlqtj75vWO5MckgRBj6u5+EHPu5bmMFtOBqyv2fkIUwFWE/2EfPZqmEzRY+IqixVmkkqHO6RqVoCgGn1roS6zooPV4Ge1rqU8zDi23me3f7BHZR072b/ni6xVUXCPG784n8zqVRIAfPLi/Dh70V94LsYfeq34P/9DXSrDirHssDzw0kSZu/6BloVNOYWEFLS6nSYW16myDPQkCURvYMelm2T5zmbN25gWzZRnFKvN7AsG+E6pFmK5zi4ro2QDvFoQL/bhSxDIXAtq5RXMCRMQS0EJLYfEihNuy3o9/ogFFmcMipMsmM8jAjCkHqzRr+nKbSmWQ/Y/uj3cZDl2GrE8soi23EKUnBw0Mf1Frh8/jL1RgPHtiisjGGc4DVreL5Du7NGlsS4rksSR4wGQ+rNOWzHKfX8NDs7u/hhnXrg0unMIRxZldbQeY5BQOVI16dhWwx6fQajBMfzSTKb9lwIwOLqIqsnjuJ6XvXllT+saXJ9pndOSGsS0MiZBKqSFeakFDS/yWY8rkMxzOzvlTzIROqg9L1et2veFLAJ6/Xy3sZftA4Hq7d4jqgGapkQOwQjvSngmwSk2rzW+J56enD2uWWyeMq4WSa3KwLAmyXJ3wnsviF2e3TJv01NlNmgWyVKBCVjYDWhhVU+v8zjaD3poapYyKpsUOWETKGWMydW5sAkeLCqDWnq8OvqnEof0qidnkqYiVwGf0JUDr9JVTU68ywcO4kb+Jx6+Dvwgzp3P/Z+Hnjyg/hBwJ985as8//RTNDsLfOnf/u+mkpArvvzMy+z3Us5fuILOM65d2+T8y5dwrYL5ToPF5WXCWh3fs1leWcKyHdJcc+zYMna5dgWhz8PvuZ+93R5xEnHXPadB55w4e4ZaPeTRx+4DnaGFje3WGacWQjqAZDSMEdImCHy00uzujnj6i1/jtZdf4/QDD5tPXkU6xuuZMjkKaTZ3aVEVoCxTfp0k9spbbzD7h+4mk+yupFK2qBbb0uFiWrWD2cVVzVxP+d2LmwK7CsM+Tagd/i5nB0ipO1V9/4euciYNKcr/WZZF2Joni4bl8JIURYwmR5TVkPsefYgHHrsfPwjKzyBKmBxUDdpiUmWhpPgHoSt2WGbzg98Ullci5aVGmNKljhTmnkspJn13s4EdGCdTluNRyIpsxqw3lpS4jjP5GQQBnucTBD5+6FOr1wnDcFLFuh1MaUMSMh6NGEcReVm1S5MUrQ2tfFEovvD5p3jyyW8tUQfl+qiUIUMB/qd//gmefN8TLC8vT8hrpJATSGyW57iug2075FlGnhc0GnXarTa+bwI8x/Xe5Ltxa9NaE43HDEcjsjRDSmviGJo5pydjZILK0LMoET39B2VF2NyjyXtU64WskpZmjzpEuFLO9WqfsixTfX472KR2/mc4p4Nf/K9npmoVPBhtu9p3fz/+r/yv2EGAvLaOozMcSxAELmHos7i6ghcEDHsD1i9dYufGBlkSmdShbeOFdZZWl1lYXWVpbZVz99zDqTvuYO3YUYKa6aeVKFxbUqvXkdJh0BtQaIv63AK1RpswDCfkTXmhQAssxyBS0EYL0/ds2u06zUZIsxkSDUcEtYBaPUCrHMuyqNd8XMciTVL2cRBa0Wq12Fi/ge3YNJtNQwoGDIdjXFvieTZ7u/ts7h0wGEV09/cZdHs4rs3ezi6WHVCrzzHo9fEcmzAIaTRrZLkmCAP8wOdgr08S52V8baDpQhpdVdv2sdyA8TgljhKKvCBOYvb3B2ze2GRhZYH55aVbB0Gz66uQTMhQZpbeau5IYSHewLXWN/285XAp597032yQN32v11lZwZPldUyuqXqduGmfuOnn5K1nH88wc+pD11QGbEyva5Lkv+UHKx9IWe5D9uR+fXPt7H999k7l7k00KbTBJ9+U5QMmmQ6Bnjj3VYVo9t+0kjOt2pQou0nlrpyFZpFAlzA/s3BPKoPlgiKmr5icfzYMMEGGKAOLabQgK9y5FogSXSpKiIAqFNIShPUmH/7Y9/OJ/+F/5OmnPsfl8y+xf9Dlgd4B9z/yEGtHj/PySy+ysLBCvVnn5edf5Vve9zBXL28w7O6zvLZGmhRkacE4SiiKHJVm7LkegWcR1mpkScxn/+CL3HPfu4iiAuVpQiz2dw9YXesw6vUJmy3QmiLPaM51iPtbbO/0uPDCS4xHQxr1kCIf0u+l+I7me374PzZVsSqBNRMhTfDiM5nv2e9Piep7NncQPWWTOrSsaZOtq5bKSdVVYL4vAEN5Ur62YpISpvevcpBKp0rMXEyVDIAp5L1iW9X6MFyiet0EXVSWjCefS1bwyemmY1mS9uppxv0DoEBK2zgHaYTGob24AEIeyuJDdb+mmUlVjeLJdVcVhKoi/c2zDVTBQ1HCKU2FrtIXEyg1HUeHHY8ya1xigKtm9SqYFgKKknTFMB+C6zh4rksYhIS+0Va6nSzPMqIoIo4T0pLaX2tFlmdYttnifu7nf5Gf/Ac/ThjWAGaEic34+5OvfpUw8Hjv44+VfWHTwEYrjZKqhG5aRgi6vG+hH1Bv1Gk2moR++JauQFUyGloVM9W3w6x3N68H5cHp77OQMA0VWkEJgTWR8tGHahY3s2hqIag3GoRh7baXQZg1IRVafZ1AdZJMrRz2KVxTCon0A+xf/mckwwHF7/w6ca+L8/ufxT5+FEvAXGeeQW8IYp7xaAxb29TbLRzXwyq1Qy1A2g6WH4BWLNWbhsmw7NdGgLBttIJwb5/XXnyVoyeO0pxr4rbbuEpDnpmlP0sQUpAnKSBQOkdKTbMRoBEUusDxHFSeMx4lxEnCHAWjQWSq3GHAuf/lv+fif/lP6fb7LC8vEieZkcCwHfoHBzQbNYRlobIMXWTIOCLp97BsgesugIJGo8bG+jZznXnQGts2a9zeXp9Wq4VtQW93j9ZcnTRJCYIQVSIailwjPYu8UKT/P3tvGmVZdpWJffvc++aYMiLHqqxSTVIJgaQq0IQEQhLI8ANjoG3Aa7nd3Qvo1d00BoQNtAS4aDV0YxsabC93r7bbww/DomUJCZkGs7zMqKFBAtSaQGik5qrMyszIiHjjPds/zt7nnHvfi8ysUmZGvIj91cqKN9zh3PveO/t8e39778keLl28AHCFyXiCdgHsDHdw/0vuxp333gNXthYFqhpwDUcnxc8xLI1knZT0UgDq+adAJpYh1KKBYa3n05t6bEAcUtLjDi6TiRZArIqcXqsVaUGKntfy+OS9mvIrq+RZK7bUOJ6uVWqksMEWKXiBw/e7SUotSnfLYOTuoEEpbtJMLNUfnVPpHNIPUhfsquXXaUTL8bMs8MJCP0VdYsEP0TV7L5NQHtIJmrvwoxVJXCSM+ZTFlEnsEKIw2XOPkFRMBcUFwtm7X4K3/8Iv4z3/+l9gdPUyitYArmjDlQ533HUGO1cv4NLlETZObOA1Z8/g4sUrOHX6JAgVru6MQFxhbzxDq6hwYnMLj33hSyh4gsmoCA1XGTh/bgt//IEPYXVjDXfedQ8uP3cJd7/oPLwHWr0etq+MQgWt8QxPfvIv8cXPfwnjvV089cQTOLm5ilbZRb+1hzd+87dg48xdEh11MSdYuG24RgqLaCIt3y93R5Q5zgMsBtUJEQsfESc5lH4VEIgcSBfuKsUM59TEa0LygvMCTTvlzYUzJhpy7VLB5dBmw0XZbmxGzBIfdpROKBE3SPU8JabspPKmY/TW1jEdTzDeuQRHM4DaWD91CskVEa88evp0jAwCU/IG+uy7TTKMo+Hfvz6qyktPOyF3vkoLwIzYxblCEvuLrNEts0/5DkQoJLStPZvZe8B7FGWJVquFTreHTqeD1pIVtwhNy3cx3NvD3nAYIklEGIs0syxL/Pqvvw9f+9pX444774Bnj1ZZxhw6Rw7bV7bBAB5+6BX42J9/7KAv6ZaASL4fIh1MpftdWFg25IONneMbKtvU7bTpu3OJtABZCXPUWyU4ACurq7jjjnM4sbmJfn+wdM6EfSHFoBbxArXfq7/4y1DH1vw2Qr6cQ2dtHf67/nPsPfUYdt/yDeA//SMMPvhRgEqsra1ibesknnzsCUwmE3zqY5/AydNbaHf72Di5iX67BSLCZGcnzJuOJFpCoE4HaLUBMGg2Q6/Xw9e8/tVwa+thEN6DJ0NQq4XZ3ijYi+kktDYqCxRFC+3VNkZ7QynsBLQKoNsf4NlnLmA687i6U8Yqz5ubHXzxzW/FdDrD5ol1kHPY2dvDyVMncO99d2HmJ+Bphd3t51BVIQI5m45xYvMejJmxt3sVV64AvU6Yp9h79Ff7ePbp5/Dil70YrXYL4+EYnX4PZ+44BUcztFoFqGjBzSowHIpuG1ev7uLpx57EX33iE7hw4TlsrBZYW+uhpD288uu/CWfufWkobgcCo0KeRtFEXQmZCqjVCB7R3Gecx7V0rce+CjYvVrpsyjgZQIW8bUKUS8rvFznBayBvr1CIbXDsa0RTpdJ5e4O8kEwTXJNzMbzL4pTk0jkp5Ngex7SKwwAjdwcMzXdR7XINFAiWzxfpnOVAUbb4RzbFCGnw2Y+QhPBBepz5KLlrFGihsGBP7ds4kDZ1HUVeSKlIlBCRFC0K7MdREStG6iUQM1qdLr77H/xIqDDJHtuXnsPu5V14Bzz4sq/A9uXncHWvwvDKNtbWVtFql/DTMbqFAxU9PP74ZbRaLZArULQ7+MKXnkHhGCura7h66QJmo20UzmN3d4ir2xcxHO3i4de8EsFL7TAZjrBXOnzpM5/Be9/zW1hfX8Xd58/iRS+6C6949atRTj6MEw98D9r9NbkvQqc4JU1DLxuQ+Z1S1BSU3W99zmI2ZGHOiN64mqdQKqQyEMiOnJBFbkn6mWk01cniTCtUMaLBSL3iuBZ15fiqGCQ5YVjwCo+TRE9yepyQxefZgZ3PvmhCWl3IcyyKEp1eF8qElfCmUaRqY0R51ECOCRmf0/UkR0dGxYzCHf0pazabhn9VFRrRC8EryzL9biUMF6WZmRQHQE0ulzeAB8L30RUOqML2ZVGg1SoXS30OOarKYzgchqqisxnADFcU8N6j3Wnj4oUL+MhH/gw/97OPxHxFCLEDgOlshg996EN463/w1iAH9smfHfLBKlSVR+UrdNodtFoFKh+qcK6uDDDoD3D69GkMBitxAb+5tfllXVNeDvxGtr1RtFttdLsduT9V/LzztgfpuECM4OcqgMawtA9eLF+uNkcIofc+eO1l+1a7hdOnTuGee+7BxsbmoY50vhA48FxEJMfVH/pBrPzr/z0+r9/zJKXTnKfVjXUM2y1cfvib8MXNEYUT2wAAIABJREFUB/HcxYs4sbqK83fdhXI2wac/9imQZ8zW1tHvDzBdX8WakKjuygDsKwyHIxTtNoZXrqLyM4x291B+6mM4+Vu/hfbaGioi7P3lJ1F22qGHXbejgwPGExTn70e36IEKgCSntNfqAVSgmk2w89wTAJ3F5uYWrl7dxe7uHs50W3jm+/4O/px6eOKxx7H9Zx/D+bNnMJt59FcHAHm0WoQ22tg4dwLbz12EE/l0+6UFHn/qaWycPIVWu4XpZIhZRZjOKuxc3cWzzz6Lza1TePSvHw89606sg6opWq0CrfYAwCw4sVyJpx57Cl/63Odw5dnnMBruwDngzOYAL3rJA1j1f4LNF38zTt77FYE8CQkhFDWHhNrGkFvmxSmkziGpDglV6LDWGwv7OO0rV4/iNfvEaQsDciSVM8PiKth3cYB6XLcoSj6DpyrrqRWBft9q14f57+p8y4VsLenEhR0WKZJvCCFzoUBX2vGawzXcQhz9ldJhR+7hzBYdAKRcvuRucVjs+8a+sdiKLIwJHH/Vse1BntMUNpMFNkM1mcF2i2SDOchHGKlSIWWSTCVyCESQVNfpNDlfFvKkcaxwbp06ZbUuGvECG1unsLqxgclwD5//09/FdDLFix78GjAReqsbuHzxMnYu7uGZC9sgdxWT8S463XXs7Y7Rbrew1ipRFiWq8R5QjeAKh6vbl7B17m689MEH8cSTT6GaecBVwRHpHX7n/b+L0XCETquFfqeFtbUBXv2Nb4EfXwC1X4ZWbwXxjlIyvLmfLnxmUWwEnSKZECJwIaSV7jtI+slpmX+OeXgxipWRx3ifhFvOKLQxqGlGvLZGkNqoKheheAAALjnPxFo5/SiENIZxy/eHXIwZshoFJOeAo0IPJPKOCsThtfBVcZHYqgw15IeG10KfoHAflOhpBDR8lVSC6OL3vB79O9qYSU+70LA89aSrSTEBaOReX/RVlb2VSGBoe6ES10AGy6LEGFO4IjSFdUX5vIjCYUHlQ0n9Su6Xcw6zyRREhOHeEI89+ih+5pF3yKLMp6+Q/I7e+U/+GX70R34weJg9gMLFe+UrQrvdDpFTtDHo9+PiaDBYwYkTJ7CxsY7z5+9CawmiT91+H+vrG+j1nw0NzGVBqdLV5ORLc4w68pId2f/4VSNBO1XeTbLNXq+PE5snMFhZOXLELkDnz/Qb3HfLRRLYBlrdAajsotNbxer6CVy6eBGTyRS0so6NE2t4sLsS5wfnCpRlC/2NdfRXV9DuhgjdbDIFOYfxcIjJcITJeIziJQ+i/T1/E/3VFXjPmF25ila3jXarFaP3nhnbFy/C/8Z7UD31TCiy5AjVxz+J4sxZwDkUZQud3gDbFy+gLNo4dWoN9KXncPVtj2Dz9Dlsf/aL6Hfb6HXPYFrNwOxw6dJV7F4dw88m6HRa2NnexnQyQTWu0O/1cOXzX0S3cPAgXLm0jcHqKkajEU5sbGA4GqHf7eLC009jNBnjzvPncbG6hG73DLav7OHUqS7G4ykIwHg0xqULF/Hko09iZ3sbvW4H4Aqnz53Bnffdg8nFZ7GyeadYZYqpCtH1yRKly9RU2QbRlikC2ZPvABr7YL41yH6I/E3HI/309rV/13HKhe+in3Pe8T6Pa9ssLrogK530f2jk3sjcoYGRuwMHg6WHl28YgzyfSz1IGVdKkRqG5C4lEqGziEYEtURuSnql6F11KilUL60TYpdNbAGaV4ek3Y+Rn0Tg4rHAKJ2DZ56fSLg+4biyhd7qOr7yG/4jMIDJcA/PfPGT2Hny4xhPgAuPfQYnX/wWfPYzT+D8vXeh1xvAV8CJr7wf/8/7fhN33nUez1y4gNlkhCeevoB+v4tuwZhwgde+/lUoWw6T0QRF2cFsPMXLH34lPv2JT+BNb/kmnL5jC7OLHwJNnsWp+x5KuYpC0oJSkUEs3jS99UJewrybCEg07KonlAgsUagu6jQilX2Gnjh9nhlHUxFjaFkQvHhUyKTPHHPtYhUvSqWuScSTwakmBoLUA6hlj5FIZmY8PAK5cjIClu9JNHTyVWGVhmgLCMhBpV+eZw8fJS4emj8Y2uRQiGTqFzV+OeQusg9eTPVBLKorfQQxlXy70MJgBu8rFEUgd865+m8yk3KrV1cLgaRFAepOJNmuVZYoRM5ZK529RBiPQ8VPZo55ZNPZFEQOf/zv/h1e97Vfi1arhaoSZwS5ELUC4dd+7V14w+tfi/X19RjRa34PmYGZtD6YVRXAIWrXbrcwWBlgbX39UBM77z1293axt7uLZ595FhcvXgSRQ6tVYjSqonS/KArkOXi1SppALXKn/erqX0MGV1W9FQSl1gdEhH5/gFMnT+LMmTPodLq37R7cblCc7+vOWgYw+Jf/KjxWZwt0znS1/dXWUtFCp2yBO130V1axefZsth2wvnXqumMpemGZ12q3gfX1GqkMvxvGxskTtXHqvuunTmL2t74Xe1e2sb13FYP1ExhefgoDchiP9jAeDfHoX34Gv/3+38T6Wh8vee0b8OAP/hf40qf+FOd7bawMBnjWtbB7dReep9jbHeLcuXP43F9+EQ++9E5cvrSNlX6JdreLZx9/FjtXr+Dq9jZ6m5soCBiPpgB2MJ3NMJsxdrd3sH35WVy5dAUTLrCxsQlXOFxot3D2znMgAiYzj+3nLuOJR5/EFz73eVy6+BxK53D32bM4f885nD23jlYxwZmv/h64opVFTDUCpySvScXyCgRNWxTeYdZ3pGKsEL7UBklvrjou83QKavSxc5KKQVEQ1URBuc2ez2+tRebY1w6R59gFR7zLHKsEX6Xm4nJjovMWCLXjEOsBGA4bjNwdAmhL6jxyV5PmxEVH6ncGIBI7qOxR9lMHCkmILv74nJKurM2CS/uppBDZ9nlsP/q1KEnl4kBknKxjFUlPxR4u1hFT6smBLElIioWMhqGFlXy728P5B18drl2ikKPtS3jJK1+Oi89cwNbpk3CFw3Qyw9/6h9+Hp7/wGbz0pXegP+gABJStLp59/HF0B110VvqgokTZ6sARsNG/DF7p4I5vfh3WT51Cq7sG574aGnaMBEUiTaSv1zW02XUr4ctIOEEMfFjchCiViwTR67XqUVijebJQYo3E6fdAIoCUbVMP40D71ABUq3YYlgoEdvknkD45jbJGYo5UusUjNDdnIiG4mduSfHakcL2esm8QA46FHipxhRC1yguxzK6BIG068u8bRJ7K+s3BUTYnVeWFrAQ55mwaqo4GYkfQKDwLGQnVMCW6KrIeLajCXqKv3md5eoHcAIHctVotlK0WyqJcykhK4RymkwlG44n0BPSoZjO86/96N77ru78rRBtkniqKkNBfVR7//L//H7Czs4f/+qf/UfZ7lr525DCttCFwII3VLET9e70uOp0O1tfWsXliE+trGwd05TeGq1e38fQzz2D7yhVcubKNvb1QLbMsW2i1wncMACppTB6i/NJHEXE2nINOPfWcO4C9R+FS3o0Xe9Bpt3Dm9Gnccf5ObG5uNYorHS1QbPqerlGdtDs/8Pew8q/+1yS91Pebx8iiRdHMEslyv7E+wOLITHqvGVFNEr1mtF7nGZV/O0dotUqsn9wE+w0AhP7aKriaoedKMBhr974Mn3/qaXz6k3+B3/nN38Bff+lLmI524bobeNG9D6IzGKDb7+Pzn/kr7O3sYTypcPrMBi5eHqPTbmFvNMZ0GorL9fs9XGgPUHjC8OI2+oMu9oZjMM8wGj8H8hMUbgb2E+zujLG7t4utrVOoplVwnrLHxtYm+iurePSvn8Lq2gZObKxhdbWDBx88i5X1daxs3YHu+tn6PSda+J3U5uLJciZCHtMnWBUVmXM9+xxVkaP8zGefb61wSSaFzIuhaCTPM8FlDk7G/pHAeVqazg3Ikk4arTeRE740HoL274vfsuPha11aGLk7BGAwKs9zkwvJe8EbJBEcmZA16hOCJOq5R0YshAhmIsBm4INJvYwa3ZF1DoBYGkTJn0aUIAY/HkvGFRhHflFh0pPIHsn5YpBLri1EAbXCZ2qgHaJlcm7RnPfXToCJcOrcmXiastXCleeewx0vfhlm0wlmkwkmo10U7S4efPWLZZHrYw4DFYSNzPsZYk5hYud087J77MDEUUceuS5nyx7ZTeVLnlL+HWe5ZJVXKaMS+GxfXYhLxCoxmyCNdBTvdPC4aSGTENNDJKJzsk1RTCD77PQR5W0ZJPam0Tg5FpMSvUDsomGLHyjrMCU10UcpF0eGJmTEOcSqr/L91F6K8TuhDgiRIOv1hPLSR3dBqJhV2v7AYzadQauRhsV3Gb4PmdSaQHAuRF1CKyMfcqqqKhK7qvLRW69tFVwRHC7dbge9fh+dTgfd7nL1tgPCQrWqKuzt7WE4HGI6HuMXf/l/wvf+nf8MvW6KDuWRyQ998APo93r40bf9UCR2jkjuvQ9fax+iWZU0jmdmdLpdrAwGWN9Yx4nNTWxsnDjUhHg2q3D58hU8+8wzuHp1R1pr+NAHVKKN08kE0yoUcgjtdkiixJn0QxEJR6PCLiFG8nQ3RxSJXasscfLUKdz1ortx6tSpQx3pvBnw4IUFoEgnXACj/+6dgCN0f+TtGP3izwEAem97B4b//GcBOPTe9naMf+nnwJVH94d+HKNf/vmwzd/7YQz/5S+Fx9/xPRi9/13g6QydN7wR089/HtWTj6G85wEUp09j/McfBLVKdL7xWzH67feifNH9aH3rt2P4P/4CqNNH53v/LvYe+WlQu4X2D/8oxv/NPwM5Qucf/RQmP/sIAIf+z/089t7+4wCA/s//AvZ+4m1wp7bQ/YG3YfQv/lvAM3rf/w/x7b7CN2+u4jN3nMHWH/8B/N4E/fU1rH7mM9j63F/iwjd+C+5++glsfuiDmL3hLbi843Dyfe+CO72F4bkXofvxj2IdBa58w1vxFb//f+MD3/ydoKJAr9dD2QokcvvyFVx8+jm0SofCAW1X4fLFJ3HXvXfjgRffAwfC448+g9N3nkE1meKhhx6A5wdANMXGmTvQGayHOgAI38+43mpEWJXUBMemfqJ1LqPpFLI7gBRtU0KnhF62Uuu+rzwzL4giFB7BTgebnb5PvC+p00qaC9+DEH32qNLw58agJNOV5bEpYnYUQTeauH1A+LIG97M/+7OYTqd45JFHbtJwgjG82WACqgr7eo4Kl0daUhVNeUH+l5fnFe8+e2gAKBWxoEhM0tYZkeLMW0uag0VZoQE9b+iD5mRsSV5C2SZcfy1GHJWwAtBcsTiSzLdEkZaigpBfXVhoFU9ITlJZZKQUkvQr0ahKyJJGNShVAW2WBA7DlYwzIhQMkHOhmAdp7hLHgjOeOZJe/TxqWnSimOfGLkhwCyG0Pt7vegQv3U2nKstI3FWC64gyoolErmPkLUW4lM7BhYqJDI75nMK9Qm/79Mmla/EepOW7tax+3IJDpE0HBjVq6WuSzkHxyBoJdTWtSSKJkM/xhRT4WLZqj02MRkNcvnwZw+EQVy5fliIgYmyd9LdjznrZJXIHCLlzheSgVZHYsThbZjEiBbTKFlbWVtHv9bG2toaNjY2l6m83m1V46qknceHZZ/D0s8/iyuXL+JVf+Td4/Ikn8WP/1dsCoastsIDReILf/rf/Ft/+Hd+eebNkMSf3qwlfheIjJ7c2sbW1ifUTJ3Dm9BkMBoPbdq0vBMPREF/4whfwxGOPYzgeoZqFSHDFPhZpqKoZxuOJNLUP0R/nHGbTaSwc0bxPQN1/BKDW4865Ii6QC+ewtr6B+++7F/c9cD9WBitz0aKDxK2w5x7ScmbBdfJoCHS6oNEwzHjdHjAahje7PdB4GKbC/gA83Avze6cbt+F2GxiPAQDUboOn0/DZlGWYq70PzjnnQLNZcJaVLfBkAhQFULZA4xG4lxw5zSrdUSWAPIqTSAvv7YK6PWA8Cvt2usB0EkhDq42dK1cwGg4B9vBTYHfnKnqDHqrZBOOxR6fbx87VHbRKwsraAE889iS2L13GhWcuo9vroqommPkC4+EYZ+84jfFwD1QQti9vY+fKRYx2LmFaTbB1chNl2cZXPPwanDpzNmaUdDoFqukQjkborJxGd3UdrXYPcV0EXQ6kzycWQMmImWcvKRpppQJR1RAVYhKbFSWdnAdQexjvI3GNLC0iaFoRO9nGcP7YezJ8SrHJee27tYDY7VfxMrzHcOXi+M4yWIFlsfWPPPIIvu4Nb8A3vfWtN+NwNzx5WuTuEIA09F9jbfIeaVPxsKgvQFlEAykyEhO4sgkZJL/SrKUBS86N5FSEXLx6BEaTnLSSZt6oEhyFlBKhQZzIdKEf5rHAeLhiLTIp+8fV+8IoIOu4JYeNxduZKCTC2OJX3MGVcgJWuaheB8K+hTTslYk65NHJePOwJRoEhTlO6EqKoISROUaduDF+/VBDRJUlvwwAZ1VHdXjx80OKVnK8W5HnpbqX8llSKu6SuHiSVhZasATZBioP4UBeYykYTlE73d+JAYn3ST5XjTDCOYmoxguG3qHEDZUCJg+ko0ThYw4Zkl/yEK37DgRKLvTbnjeKdq6I7zdT5JzT0tsiA2YfC7Kw5FHMqlBAo9UqUZYl+oMVrAwG6HZ7GAwGS0XsAODq1SvY29vDrKpQkMPnPvs5PPn0M/jRt/1QXJzWiN1wiF9/3/vxbd/2rcFJw2HRykqCYyVSXeSGe90fDLA6GGDr5EmcPXMG6yc20FuCKOd4NMZ4NMJkOhVprg/3qigw9RM4WQiGPog6zUlerFS9q6oqOBKA5DyKv9EkDwakoISoL5xzKAqHldU13H33eZy/6zxWVlaPQexdqgdTnLprIP3e9PrpNX1MBPQG0AmUen2ZOTltz+kxA0CRLeG4vuRniZAyAORkTh5HaWgeaUKIcsdS/ciLhoUxUn8QxtofpPz0IhyzALC2uYk1OX4YcqhCO52MwCA89qkPw40uY1aNMPansdpjdGmGe+57OXb3ptg6exreAyfPngQDuHrxEio/gh/tYToeotUNPfFc2cP6qfNo9TqYTT18NUPZbqHdboOKUtY5mDMq+qzWrkN+ACw230VlTuZ41evX/PY5flVAZ+5oeaN8lucIUy2Cp1UnoUVZ8prYLtlQ58TRXj+5krimtPNayCtv5m5Ww9GAkbtDghCJmWd3hJx8JK8TZzJCJVok2kk9gpOyuk3WyDrh6QTOWaKwbKqNKXUUGt5hTlGrXC5KrAUJdNQcI0q1qp95VEuPraxRonQ5yQBIGjJryY8g82Si6FUjSeplV0QCqXlKGsmKE6lIRaERN+WRQBx/MsryKE76aexMiAsZJT3xBnIqHJJfmUoNNeKW83lRQoKUvGczrVaZjIRaxuuzY2g8TYl/aGlAkZTqNpzdk3idSjiZwVqUI5nA7CPKehx6eT2LFgbPQUNaq3dAPL9O+uUV+rUy1OAo9CCrqipGy3WRlEfw0vb1JQMRSRXE/Yldp9NBp9fHyqCPwWCAwWAFnU7nNl3hzcF0OsPu7p70uBtid28Pv/P//n/4oR/8+0KICxRF/iMi/MEffRBf/3WvR6/XlYbkIbJXzTjIWDkUBamyaq0bJ07g1NYWVlZXcebMGWxtnVye4jPMKCSKFho4T0VqWqHX64n8tAVgiOkEmHKI6qY2CeJo8D5ILBG+nzqHOEeo1BAA4Oxxp9PG1tZJnD17Bi+6+0VYXVs/Rj/3sECvOPw+UyQos8Hyt9nXNjxO879aPa7ZzOxMnOaIXOmwXyXOzD1Z2zeeKUbq9PNuzC/hzTj+4MxLx1l03tC7D2h3Aym9/6vfHO9Huubw24MLRcBIczgZ6K4O0OufAmrEhSTKXABEaLW9vpEicg12XYuiNZD6qoZtVLaohGt+ZbZAXEkAM81VzMzz7po7xLtbyytHWAVwuJ4s830hsatJp/OXpRpuPIVGY8V+LMksZniBMHJ3aMC136wWV4lGQN8gihUXnRCBONFmES3iLBcrhVISkWLUJgXScIoeS48jbzogLja1dD6IYj5cIHNyAp1QHMUG7NGTHhkklB1G1qLSQI1C5JtqaNNXocCEykVDj7W0PcUIZt0YarXHSFpkex8NaRJTkt6aKIUI16N+URfvZT1SFf4GyqU0SHP12CUS2hybmgk9Vio/E0y65gOG3vIF4H2UYaoMVW+VRkxDv7ycoHM0XGHcqUy5fo4s9ykQtmRo0tfHI89705zKeB5hcwVCIQVG6Ht3HHLlbia89LbTj6u+CEsglWtzcKQUUplWXor7EAEFA64Mpf07vR56vS56vR5WVtfQXsIcqMlkhPFkjMl4jMlkgv/5f/nf8He//3tRzQJBqVwFcrK4BvBLv/hLeOMb34gzZ8+GBWu2wJtJH8FKKpS22i20Wi2srKxifX0N6yc2cGJjA5ubm8tD7AC0Ox10e110ux2MJxP5HhVod9oxr66SiHruCAIgVS4JoRclo5IKrIBEPOQL5ijkEmuuXqvVQrfbxebWJu684w6cP38eqytrhzo38VYhVAtu2CEgKizia7pN5igLrWpSs/lmm6QmVFLrY9pCJrVEMqPR/jwPyfsiMuQiwWPsRxOaRE/nquaY4jFbrTmiEgKE/XDPivl5KhYVI5J1weJj3wg4G1v4y6h8UknkBC/ILOuNvtVBq/Q5fJaRqsWjytXWzqSFW7ysX9QPrr/HoDRIcs/MzYpaNHEfKLFz6gA3HHkYuTtUSN4gD4g0RrxISTcjkSMhOMyygMnIFQDtVRa8iAQJ2kOli6FYhswgUh4fSJEhJUkeAFWVkCCKx4iotQDgWFI8et5Iiq3I7KVRP8g1aWRPiYxKQWKYSh9LnTAuy+Ta1GuIq+AUBePsBZYJMfb1y7xomvOWSJIcW3oE1qpdSVQ0FohRgqiVP8VzV/OPpsHUJ2TokMOZ4yevEhl9j8TokBbE0eIz4X2tzkkIMtG8ak7k75SuMPBPMe555NYlspfGnB2LPUi8ql4jc/Gz0eqcyWwcv6XczcG0moGRJIHeLyZ2Cl3UNSMDRVnAcaqi2e60UbgC7W4H/V4PvV4Pq2vr6CxJ3kKOqvIYjUYYj8fYvrqDH/uJn8J/+t1/I5TX7zLGozEmkzGANspWib/49F8AYDz00CsBhIUSV4Auhdh7FEWJTidUwuz3e+h2Ouj1+tg4sYHTkl93mHLFbgTdXg9ra+vYvrKNvb0hhgjXXiAQO41WdLvdWORkNqskxzAQCmq3MZvNUMh3KxZaAcL84Rx67TbanQ76/T7WVlextraKU2fOYGtrC/3eYKkI8c2E5kXnjtnUIZQzu4A6eSOd1zNFTTxEvUpmDma/MIoTpmhJ3tbH+yBvC5CTneY3P6/YvXgsiahmL9Yf1+QptHDsAPaVi9fnRIptARaTYEb9ShZTwHzc3LDYuRM1Or+plPWTLjSCYzTmu2f50M3zkHjUtThLTgBjwC2vgifKKbXpNzIfaU7d8fwFHm8YuTtEcOQzOVwiD4nwEPxsBioLpN5kQOhNxChEAqJTMruQ41U1JxfKY0ccI215dac0kaUSLvH/lCZ3JQkar9ICK5DnaSaU46o3S8/lRQooESclRCqX1HxAp16s2LcLC+bqRD7ziJYaSehxcztCMs7M0EYJBeeTcNLga7RP+xk5UJrX41GyP0L6yAHOp3sr8TMZBGURQWDuMMzRKOt9dVLcxUfeXy9gE0myjtynz17LcKsElCT3MPeupjFKcRN536GAyyVvhpsC5iAPJATnQpAXhvy5MtTCCZFQQjTsRVHU2iEE1BuSa1SlKAr0ul30BwP0OqEK3TKC2YdegNMp/ubf/j589UOvxF13nUe73QoN2SkUBJlMJtjb28NvvP/9+JEf/mFMpxOUZYHCtQEKVRxdEaRd7XZo4DwY9NHpdtHtdrG6uooTJzaXtrqjI8LW5ib29nYxm03hfYXpNBTaYXKhj5V8bTTCVJYFVk6cQK/bBVHIuZvNZhiNRqFyqCg1yDm0212srAzQ63axvr6OweoK1tfW0em00e8P0F5Cx8HNRRDgN4WKMQ9afqLaDw1AslUKeR4cdQuIW0MKmf/uc/6kBG8xpalLvbU6bP68ftxw4EJIqLbumXNANa/lWhAnaygOtV8tyDr5jGNpXktGjnXlUeeVyakZFZz5YRrENESwU51pGW5jXIRUyiCsZ1JQMdwrzj7nEEhrVJ1Fbak0B/bZ59Akx0CsdGmySwNg5O6QgRHqmftIbgK0uAmjLEuoeMbpxO/DBOLrR5qbXLXdQKzQGIlcmFFSyZDsIDKjqcQk5ChrGXaIsafaPKOEVEcOAlCkak8aPWIiUJEklpE9MGJkkcDZtVGqTBkJGCfjI4cIHCbzOmYzd6wAF6Nreu3pftUFmvq5JALovUerKBKhzA2hksV0pWBQaEcgPd90u/AZ6qZC7GV8oZR2GEesigkGiRFl5FW1EjlnP9+7CHq/kXkXEUSWpXyeSh5JvnteDB/BzeVdGG4NfCM/Iiz6wjd/VlVot1pwjuCKAu1WG1S4SNqU1OSNeMNiKWzTarfRarXQ7/aXltQpSvFGl0WJX/s//w/8lz/+k/g37/p1fP/3/W0AQLvdxsaJDXzhi3+Nz3/us/iBf/D3Uc1maHfa6HZ76Pd6gZy0Wmh32uh0Omh3Ouh0Ohj0+uivDNBud9Bpt5cuWtdEq93G6VOnQ9SdCBcuPofxZCyROw+ehoW59xVa7Q5WVga4/4EHsDJYifL43b1djIbDUGmzmqEoWyjLUKa+3elgbW0Ng34fZdECSSEVQ0BOvmqVEjNZ69w+8jeahii19rXKuPk59P38tZxc5FEnJQbqDJwjbvuMp/Y+18vxp+Is9SIti7DoN6Vyw+bx0rWkoi9N8qnI72kt1QHzgcF0T2t3Jo4vXwd59igaUcgsIzXzokpRlHSLACRCRhSKFNXd8rKtl5LYjVtTl1q6bLzZugfZd+s6RVQMxwfLbeWPIBxSifwIX4UoHOrRWS50AAAgAElEQVRep5gvppUg4+SevDtJkCeSSK0OCWTRJo6kqO4RyiScmaeRZHxMyHLzUl+zKEmoeZki94pErK4653q/PZkslQxF+SSRFFfJZmvdj32Sq0KvLSN4IeyU7pE0f4+X6/VeNj2eumAGKhYJYsZFY5SR9E5Q1opApZUU702kk5yKqwAkTc81f5AjEVUpq5oFrVxHpJ+P0DUfdPkhby4MmH1eBia/KCd5dg0iK7mNFpi7/XCxAbkDuRBZaRYBIOdQli2U7RZaZah66YoCZVHUvNrOuUAEyaHVCjlkriiPzMLbOUKrEwjrP3nnT+Gd//if4LOf/Sxe/MAD4frLFj79qU/hFa94BTqdLgaDAVZXVtDr9dDpdtGWfcuiQFmW6PV66PX66PX7R67Bdq8/wCZ7zGYzzKoKV65sY3d3T3ogapU9RnfQxdbmFu44ew69fqjUSK7AZDLGeDzCZDLFbDZDp9NBWRbBydDuoiMRU8M8atlWmcNW7V6VRZfidtlrynn24Un1cy1wws1Rl/ChAg2idC0yFsdUI4H1WsxKxBZFEefpUz5oF/dP85c6qfICMU0y1hxfsIxEFNsW1d/fbwTZNaFOhPUadOnQ3DsVOtt/vqgVzCFJV5Ho9/y15SPBgg893SNGKBxztGYqw82EkbtlQHLBZfGo8FeLNGocSpxFNYPBqtXWyJe4sWqGJp9I1PuU8QFlMfG48l4sEcKNiTEjhKySw7hzfhUZSaXsVIyY2xaPJQQo5oQ15JKJ4Kk1TMYltTeQgjSkJC72KQhNcrLtxK0p21Hkfn6O1OUVSgF4SE88IAphOH1Cuq/2E9Lxhc1CDqWXm6ByKSbAS0EWL+PVCpzaly99/ppbl8rqg+X69D6CgcLFZ9mHD8PBgIhQliUKibZ1ux2MRmNUvkIpEbpOp4t2p4Vuu4t2p4OyLNFut1EUDuQKOEg/vEIWSEd0AbC5eRLT6Qy9fg9EwE/+1Dvwjp/8x/jGb3gD3vSWN+MdP/kIfvzH3oaTJ0+iVZZYXV3Bic0trK6tYnVlNTqxyjJIWJc9QnctFIXD2to6Ou0O2q02yuIJTKZTzPamABjTyRStdhsnN7dw3333YuPEidr+rVYZe/pdq+KgYTGibdiHOy0idnWI3cgqby4iZPOkRO0nYhG00PqjXpd77jgNiWWKyDUugJN92a9SJ+W5fvHF8Fq+z43ILW8Esdpl0ylGJONqkD40nM6Z5DSmuMg8GtcJ6rxGGmvMeSaqRWi1CF3ulK2vzvKxZSySk9s3vCDRX/vdGW4QRu4OHZR4ZJNbXPDXJ+Uop8wIgL5Zq2vIGitikfqlKFPQpZNEbJSA5PSL0lykBEEnPZmolKy4zMsVGoaHN7RcfmwbIGPUaJdGDjmbXEMkL7V7UCaq59UqjZ6QkT19XydxnSzV60hx7EHySQD7UHBGdPW5IYyg1AfHk97LRDTTfeXAp3IZaIzfxdPrs+B540RQlTSm/IuwbSzogvy44TpTY3UxOBJ5Y41uatTRNRf5ZiQOIzqdLoajIbqdLniF0e50MZtOwWC0Ox30ul20Wm2srq6g3+uDXHEsKxGWZYkzZ0LlywsXLmA4GuGdP/OT+Jl3/lP83h/+Ib7rP/4OnL/zTnS6HaysrODkyZPYWD+x9JLUFwoC0O12cfbsWRARdveG2NvdxWg0BjNja20V5+68A6tra9c+ji0unx84aGaa2WfJSbc/oVH7Cf2bvd9sWdA8Z9w/7ipSSSmmpSOKjsW46+JWBs2KvYEkZoa8sX1+vFw2Gt9r9s7LydQLJnb1McZm4/E0aS0T1yDI7iVkXRAduRRplZhg3QMhikbxvmaDSJ8ZsjQQTkqc5iorQSud1p87IoCsyqXh+cG0FIcN+yQTJxGETkicyIz+rbQlQdgjIouIaVVN4jRVhaZr2QRPJGTNCYmSHDtH9elIe5fpfqrDz6WfzMokxetE6VTK2bJ5LhT70MeJXLJMyFz52OM7SkJZC5MwJAExjcVRjGDoPy2EomMKVSmzcJzcVM0rjCWtnYMjTT6n1GsvOfPCraR0jUQpQooog0RGjOVT4USSlYhHKyTX78HxP+3xx1pqS25obMTsXIgAiRfSDMNyoCgLdLuhfH2n00Gv38Pq+hrW19exurKCfr+PFelN12q3jyWxU5RliW6vh26/h0F/gFarhUd++u2449w5fO3rX4fBygCDlRVsbGxgY2Pz2BK7HO12G+sb61hfX0O73YYjQq/Xw+bmJk5tnUQva65tuBkI8vnaK5ntoey50oYYLRJE5yBQt78NJOl2cqzOvScOTT3YPI9SJYmv/UtjT8/JBQOuBVUWj6keneOs0bo6XG+mbWoS5PpzXTRQLVqfme/4V1tRgKRqbJQWaVXTdF1JSbMYqQpqyKHWpua1nEVXpKbj5OJz7VNp9tvwfGHW7hBCIzExJ41CeD+X/yHrmcaeYpAmFksR4hAdf5G7UCRF4OwxSINyyCWVCm2lmQyPRrnSNsFpxYAXsgQtlhJe09hbzD0goTGqy8zcafE14rwZXfCqVT4kDms4DBqgy1mWS5FDD7AaPOWdcrx4ajgQaaZcYp96DPVwZvHDZKTl4kOXhdSLJm2ayWdlO80MVNlm/Ox8RmjDCKHsjpreTr0t+UdlnvWlBhGh3e4EL69zmEnfNucc2u1QEKQsW0cmd+7LxerqKiaTMdgzyrLAZDrFO97+E+j2+lhZXcHKYAUbGyeONQnOQURYX1vHuXPnsLOzg06njbXVVdx9991YXV832dctQCheE37DzXY3tahPFkGqPc9kmPH1jLS4aMsyGaZEkHLJpTQrCikBaqcapIwaxwbqBCk4SjXvC4GIZA3Qr19EpdGrM7/87MWm7PR6EcX8PCn/T5VC9XzBvO0EzQ0grLvI1WWoGsEjQlQ/Vd7X1kh66/btR6g9b6MTPN0RvYrCCqIYbhKM3B1CkJABRM9eeD2G9XNXEyi2CYgFPfKIf8wdi5tHwhGZgT4MSWKyWXaQrIRy6KWjx2LAI06gTSbJCJMfsY5djxxZaCQpqfQLoj6RlPhpfzXvgyyUpHakDiqTfkIvDSzFVQA4OWu+bpF99FLi2Fg/gXgoiQwiNkxV8sYVgwoXjSlrBJHFyMg16ThrPen0RapX98yJc/xguE4A43XYQuxIIuTQlag6s9hXrJQKhYY6yrLE2uoaiAidTidUfSxbQY45WEGvb5GoRTh58hTG4zF2d/fQ7/dw9uw5I3a3CNFeoMYF5p7nZhvN7aTQVyQcmZSTMztW269J0qJTEki9bfc7az7+jFzWInGaAy6Km332za+j+Vo2WMSc/Ujorj2ufVsmEMXj7Xu+xhibHQUX5TRSHFue4y5RuGz90Rx2fl15BDW/Y+aqM9xsGLk7pIiNpVVmB5ElimsunxpYGIw2uY6TFCE2OHcAKpUXypukR5KZhQsI+QjHSVNPOmbNE8g6VtS2rDEjPYuT+h7sQQVl1SUR3WKOMtkiBakisipsQbYQJIksr8cIoPJFUs7oYgI7c4hKenCSOAhJJpGVxCIm4S2Q3geiUKI+48heLpKckl4Ny+mlC7Hj0IuOnYs3hkApJdAzUCQToecGCLnntbbosvXXsUBROBTFce8TdmPodLvw7NHt9tAqy1BRtChNhnkNtNttnD59Gnt7Q5RlEdtLGG4+CEChti2PuCFZ1loTczQIFcJuTlML5AXdfj9StT85ohixU39pfd/54ihBxlgndjpmcsUco2nmETYjgvPtHAg+a+Mzv/98lG7+surj2w+L2lAQ6q2kkNnfWjP36JMN7zMytU6SRKF+KCXG6dqaUl2D4WbDZvRDiDDZJxmgTv4zMAogFPUQJpMFq9LMkx0nSgijh44kmlaLTUErSUVpI6UJNeyZSFDMawMHj2LWmoBq58omcc3xIweudBLnKBPVCBi8jzJJOEjREqdBPnGcuXiVse+dRgNj5DI2UQAgEzplzRc0Z01JJnPqjcMaeVSPmjJIwMu2YYJOd5ojs2R48nAczuWDBiZ+LHm7CK43TEhsGdBQosFguA6ccxgMVg56GEuHwWAF3W5/TrZmuPkgAOyDuiYv0x/IAdeqO+aEKLQvSg104jZAtLfxWDlhUidm7X3ppca51amwsBJmPEzqX9d4Q/rIiaIkvyZVsWTkqNkUvX6oXH6Z8vdcQ6K4Xz+/Jgrnrkl8F0WofePeeWbA+1pELZLrWMkyKWzS7oyYSgEXlxzOyJzhNsPI3SFGcB4ljxcRgtSQPRhFiHSxEIZc1iDbBgImRsERCon2seQAxDkuTvZJXuEYAFcA6h5FL+REi2t6zuUJceRZ+hwnOSNzCn8RQjXMjPtpef6wmQ6QVHkpBC+WTknGKxK8LJqn+YPyXmjHEAgeCTn1CITMAUlWIWPUh1V+fZyuSxuCF83GRQRpVMrIpafR2Old4RmKosh2tMnfYDDcXlju5u1DTuyUHsTCHdlrnnJrhmiTwjYEdx25YtwHdSIUDqBRpGS35nLq0CSKycWp1R6TAa47lPPjXKu9Qn1Ije3i4/0J5+LXaeG1ZJKaeL48Utoke6ladb3oiR67iHkvmTM5BUPRLDRnahvDQcBm9kMKJwQjl2IQhwkpyAOk6hSFHDRyDiCCQ0M+gdBLDQhGI+V2pUmt5llTksVZ5zTmSFbY++htBAIJjHIFz/FfSmrWQiaBYGrz7vyYWr0yoz5QUheZHaUKV9qdLTbxDEOUYJzUk/ShSiVJFcoCMYYnpC5N+LGks44pi+jp2CmeQDgb633LepIKAWUitdrSEoJCKwIhxY7YEqcNBoPhGCHYszw1IqtpTfX+aA5SsEPBmrKQeRGRv10nSOnfgkEQAHbJJjfL+SMjRpRihs30AIeQ9hEkNgQ0SFeziXkcX/ZaJHPs5V8qHLaoIfoNg/LeldeJ1OHG+sfl66SwZGjcMwcULlSntoW14aBh38FDDY28yTNS0kexciaBU3PMjJxAXmNAip4QXNZ01MXm3eE8QVWZe+sQtyWNfmkFZZ9aLsSIGyEYCpeIDTPXImiJjFI2+WoLgCzhXE6or+s4gpdMCJMjVFy72khc82OIcASViCBZJmWvHkjiSOJYoozMmjAdju8p9cYDgl1UWSuLrDRGD8U7SyxEW6SzQaRhMBgMhmMJ0orT4mZU8pZF7nLEPMhGCkXUqeQ5Y7md3CeylW9Xq8x1je1VEbQf+YnVrhfkC+bni20QGm0V8r8kEa/9xqzO3f2Inq8kj1BCizmBuxZ58w3Z6Pw1zlNqR3qeZNvNvhsOE+z7eIiRnGeByEwmkzBJ6gQvsoFMtZGIHpDJKWSiY+3plmsIZAvPtYicyj0Z0l+NQ1EUJUEEyloaaMQtyUyCI89lETeXzBLVJ0zo4+hoI+GKUvTE6fN4ZxBLSctzimPWLeQxM8BeIouQqGKIQKp0IuQ1hKPkETqNzsVbmk6Ycu6Ys0ieRlc9HIX+Ro64QdENBoPBcNzgwHDgmGIwmU1rjtl8MeaRRe4k2ue9B/sKFUP+zRMSNVEa/XJaXZqcvKZNyNP6Iu7biLQ1iVTejw+cyBPJgIk9OGsanipIN5BJL9O5Xe2vDrJJ5PJ8vuYYXeGglS+jCoj2J3b5GiTm2mfnqI1fpJyhwXnINnRq3824Gw4hLOfuECPmhslk1mq1IlkBlGdEIaHoyMNrkd5wKEgC7xEy6BwgOvG8hDJFV5TQt8i2YjwtzoQq7iQgNRKHFGXRhO1GCS5SVodsp4Y/jFwo1qK94KB5cFKQJLWC4NAnTiNu0cYJ0SJtSk6Sv0ApuigsLTcSkQRCLZ4aLUZMnKbUmLyegygGRvaxOigGg8FguB667U7tudo3LewVc8EFapnYVwCCgsYVWeEUTRQXOFfUyZXYtrzSdsihI8A5cChnHY6t+2REKtjNYFtj6yP1LHuAK4TCYqouWpBz14zWhWEtknO6OTlnfE/Om+cH5iSQ5DV1Dmc1uOvHQloDRfWQpr3ouOVv4Sh7ZjAcfhi5O+TIC6o4jYhJ6KtW5TGLWnHUQMp7UoESQJjAY/8AjnJCn2bzdHLvRQeaXuZcg18bqP5PJlrlUiqxlP2dHg9ZgFGOx+xTFc8sIqgEM0UTcwLKyaZlBicU/+Ro0CKRU7epHkNOnhNWRMlqOk+zZEz6fCDROYPBYDAYro1m24OFj/eLNok6BDGvO5EkLXZSc9rKuZr5ckSB+IEDcanl96FObiKRIyD18UmkitSOIthdcvPWMo/MXbPapaZnZOsMJWG5QkjPr9eYj2f+Xsp59pFe6vnAjGbhF+f2o5kGw+GGkbvDDvZpYhY5IShFrYBcnqFyhBSRiiWBRUPJRIAHfKNZeSA1uUHRKpepGhQ4m8iDXhI5GYxkTo6VRwW1aEks/h81lJm0A4k0smzr8s0igeVadC6OwYUJPFQCFbqm+QAamRQjFRuYKwmV8zss7jeUN+YjaB7CtT44g8FgMBgycAVQocGuVC2TuU5gJOWiGbkjctonKVPApPebxAiYL4QCKkJagqhrPAfVDHstaJLIUhp3FtFryDPDa7JWcBwjijda7TI1EXdpCaJkkNOYovM1y5FbJNusHVfWGRWqa+TzaewuyFjNrhuOAozcHXIEqWNoEhokgOF/TjXhtY0R+61pvlyMhKm6EByLnET5AsIxWaJVRKpar4XsxAZlTcDlsDoupgIOHDmUBr/iueQ4SfDvQ8ERJKLFYHghjeRRK3YCCs+D44+jR1IDdHnDd6WR+bXH4i95xDC7h+qlbBoBJ+zWaVd0i9MZDAaD4QVAtSdqRbSXHaCthRIxyx/HTLJIbCSKlpujTA6ZO2w5GmNdQ7i6gQYFspckPEmmmBU8kdDcXPSN44EhFTjrg5+TaaIZndNxhsfa5omgvWWvbXWbcspcYhm38T7kIGajqBE5M+uGIwQrqLJEcAgBJC/tCGKQDDqRQxmKeKx0RnSJJWUxMqa81YIahDlBRSR2hBAc0/3VTCXlqPaF4dgfgHQ80KAZA7n8kjLpB1IksSYZFUkmMVIdGM4MAhArghKQCJ+c05ELrQjiVSZw9g/IKpjpPaeUOG0wGAwGw5cDzo13fG1ewbJgz/hvkWozt9zzSpz0enBghkM5VfPc0Li91H7JbSSllIjGSJtsqdZeIY9WypZZxkZ+kLkI5fy45u/Wwtdqbtwba39gMCwrjNwtAbxPlakSEfLJyaa5ZJI3Fnus6WuUyQqziJoTDhW9esiiaw0qpL5Gz6ENAbkiRu9q8SxN4JZ5kylIPkj4nvf19GaWAxAROJQOixOz9pEDe8D7GL1L0cSMvyaXXWJ18RzXLnWsCA5NqTJmhM5gMBgMNxkOHlVV1dImlGjEcv9QuSJqr+tjQFruqK2LVbS1/xzVK2cDiMRQSRoRqhmD/BwtrGFR0/DI5yiuOoIdd6UcJRjnWAAlu44iuz7IY5WghkiaSDEd4GleJlkv1DI/8rzPn65kHAGtwoldh9h2s++GowuTZS4FfPT2pdK8FHPTolRfSRLnnj2q8Z7UmDy5yUJULMzUjhCqa4KDBJM5KilD0UoRUbA2IackmdCcQBd6JoRIGwNUBWlFxSLZYHhle0LqSHvogVDNpiikxw8rg4PkKGRMTqNxHg4Ofq4xaRhSPUGaUPc8pkTv8LzIyaPBYDAYDDcZwV5rhetU8CS6WRtETvYSJUp4LRJDAF5smsv2jfaQeY6ykc+cxZACZC7JNpvOUC2EUkvfcy46VuPr7KEF33JlUb7u8Ejnbo5LHdZecuVCmkbz3lHmAE6S0XoPPWkDAUbh6rUBDIbjACN3SwBHhCp7rh49Dk/0kYoksyThuucvTPISOVM5ZHhXJmghbZn2UStvMoQAykQZuGYhE77Mvp4TueR6q4LAATk+D3Oz5hAk5QUBKFutZFxEVgm9omyOZslDBDHqYsqc5Lo5A6DvOVdYdM5gMBgMtxXqcs2JnRK9unhQto8RsECOHChWz86VLk1ix0i2P1fYMCoAwavKCL3pYjPyPE0jz+HL7HAey4v2P0v9YGrKRBk1L+7c/cgQt5M1DC/YJp673hydiEGuQMOdu/CcBsNRhpG7pUAgbamnWqiQ6ZyLkTySJGYppokYY8sTmaM3UJ7GoyfiFVK0KWTP5ZMqS4XKPElZSWA0JCxRvNRiQGWSzCEx2nmuNYPz3qNwLnrx1D4srGylh8yfcTi4pzCcotYDNRG8KEkhJ3mDebcfg8FgMBhuD4gYFTtRiiRoOwPtbVtDVOTkee5pTUALeEyN+Onxs0IqLDLIfC2QSzkXpTMkJZBGG9O6gj3BFRRz4L04lLOjx+PWmqZz2iZV65Q9CeCKUeQ3K7sBWiRFMzIMBoORu6VBaBxKc3JLAkKj7iiAT1Wj8vLBid44aBNSnVSTElFonhIiyiKCnLx/0lUh6OXzslhxUk7j5orl5FrOuC4ZdVQgVO4KLdYpJtEh8xiqERB5ZpSHJrkHsVLT+TLLJGOzid9gMBgMhwFEDA+aK3ygtjv2w5OIHdgjNedWVQpHUhPpUYPQNclaaigudjF5YtWTu9C5WiN6tfdDtCxL3Yfm45MDUCEsGBoqmdh7Nv8bzxOaq5OsC5o3SaWrprwxGBbDyN2SIEy/yRhIqlsAc8yTK0gifEjeP5VfaiAtusOSwD4jVCqV9DHihuxcKs+MXLDpKlQXohIzl6QhrigyQ7Oolk8aR+3VhlEJ/e3SPkr68nxD61VjMBgMhsMKB6lUmXInsvfSX8+qOhEFTMyvk+w17TEHoGbTMzTNIadqbKLIQXS+5hxtUWugWOiFUzpHqIAtx6udjWpSzGYkMNUQyAmoT6xQ1UZybdFZazAYrgkjd0uE2LaAOTQd5TSRa9aZzybWGLEjgvcs0s3GpC+Tq2r9s65zuVIiEcAsUKeyDlU9qtetWdUrtTdAjZTVvX91Tcl+1S2Td8/HE+cK0HifzAAYDAaD4dCCwOwk4QKZQ1QaiguU6OUm0SH4X1kJIubtHi0geeF1F3vR6tHnmoFjPj2i9hhIkTgvj9nVBkyxKMr1oTlz89uyRDHzkRkMhuvByN0ywekEypFEETN8JjmkOYmD7ErIPGohIdun8ipRtpgafyb/XaimKU3BKengFZRtm/eySRBtPBg+61nDKv9gTgRQj6mSFJWQ6D7e54U+Q2FODhKX5vkMBoPBYDicYBQOqITHRRLnfXK2ZnYZJP1exTEaUiQcWBy3M+/hGrYv5txnqhYwQQtIx0bouj0ArW6m4sjw+BoRM0oeX2YEGaZTWWXuDc7Gg0To6neE4cjVcufNnhsMzx9G7pYJPvR+qSRqRk76zgGJpKGuZU+tBCRRTkhapS41mo/UKU/iXK4p8hGi0F8HQFbBM03eTAWIPeYmZJZzar89ieKFHnwUr62pv1crFGUZzs3LLk2CaTAYDIZlQ0Zw9JHyGlXeeM1BE2LHVARpJoe9tDcrkLtkE3IljTpmQxo8A1SC4OM5PZw4kZN6Jid5iPvVc9glGz9U/0RRq7XG7GMxlFpfOrXtDrF+gMFguDkwcrdkiFWvwhPEKpbyXMUNtZYBKaEuvhLf85xaFsSEaqSkvpiwXWdUnlwMzoXDBqoXEqDTWFMkjzMKGBqwO228KgbAeRc9ik1olTDLpTMYDAbDUQCzh6NCSFFA3q+1qtlsIUhebK2+1qhafT2WFNUy4lR1zsWWDJQrfCjLiYuRuUXCSfHZ1k5ep6oLq25abrzBcMtg5G7pkKSM4OSNY88yUeZROI28ac4bJdJGMUkODM1dywTy+jZRTNWGJ7CjuWbhtZosUkpzrvcOM1LNTjlcbIpKUr2rAsHVqmRaNSyDwWAwHF2InYspFKnfXSBXKa6mWQ1qFUM/WSV+Dpp1H9MaFiDY5CJm16u91QhhGEMw2Vm3ueZB0iu1Qiyc2XUAjkFeXMeSE2iEzmC49dgnTmI4tOAkv0wTbIhoeQBceXldtZVBMqFkL1ZH9g7wQFHM99qR3ZInzrlQjdMRyDeIHTOcaD3CnwUGpab35MXGAirTCJHCwsGIncFgMBiONIgSqdr/fY3OZRJGCg3NQS6kKzgKjtpFbQygWRgUUxtAWQ59c3ufyGae7pHg1B2cKYIQbTz08MwhL56CPTdiZzDcHljkbumgM65KNHxWlVIaelK+qYdWsdKyJaBQToU5RdKctFCARNqK2GNHKncxwM4hBQc5jWFBQZT6iCUZu2kEOMg9iRjOGZEzGAwGw/FC5T1qVcKASJpCBC68lveEk1cCUYvNjzj0sNX+szFvglDEnrUhJBdy9hjkSrHtaQ2hqR46EKWeet5Q6GwmahufoohS+Mw5SgVRzEFrMBwIjNwtIXK5hdKqmJZdq0YVGp2q9DEWJ1EZJXGUU3oAUtEkVrV0BHhfoSYFRTAEJPl+UI2+SP9Tyl6j2mWWOB4apLsYoTMYDAaD4Tgi2lunxIuzlIiUb57H97TAWFwJsI/uVZVThg1d2oFZZJOpQja4koMVchwlgRmhW9Azj7PoYG7fXeFMDmYwHAIYuVtCEHtUTCiKoMbPJ9NoGBCicdGrFvPvxJgQAHKi0kdKynahRQJ8lfXMy5KkKUgzOczwYZL3DGQBQ+R7RUKZCrCYNMNgMBgMBoFjeM/Sqw7x73x+u0gpJTAXonZO9gltkWLmHXuwr1L0L69+rcfTv16if8RgJsBLRI58FinMxqG5ec6JPTdKZzAcJhi5W0KESZ3BPhkBIBkCTchO2wctvvr+PKi2H6DSSl/z0mmlrFzlGUox63MCaZMeH1osNO1A6NPDi9IADAaDwWA49nBgVCLNzG2zIwqdgziVI4s1yqRbrZOcPVa1DQvRY7HHOUFs5NEB4hCWfAuW/Plk8wtokRbtk1e4/VMwDAbD4YCRuyUFzcXJMm8f8hw6fVeIn1I0MRDREDQqWYZzNKAFXHKJpuj7VcufvHwsRsBgMBgMBsM1sZ+5bPAo0vw4TiS/SRQAACAASURBVDY/FEtpbEdJQllP1cj2Qcrlm9sZHAukEEQ2mpVaMxgMhxdG7pYUjhgV7y+FSARPK1cRHAdZZSB0QF6WOBC8Ohb1pgEQ++wEA+DALlTForkKl2YEDAaDwWC4HlQ+GVvDyutK3ChG7CTCJlG5vC8doLadoNafmyqeWs6+Fm8R608xUQOgEBvMWywZDIblgJG7JUbTK+cQim5JTcvYGDXPqfPQRqXhCClNe7GkE0BjC619yVHzT2SyS4PBYDAYXii0wmWTRsVIGwWi5gAtaykbhIc+expbHah4s0HoKP/LHiSrhpDSl7VbMlJnMCwljNwtMVyjobjKMLUtedwufxyjdyLtoLRvMw4YSy9DDECwGKFnjVNiaDAYDAaD4csBOQ9wEStNR5etVqJEVgCFwyss1S6zuplgse9BrTNP6vIyaeSAgp0VOTMYjhiM3C0zuELhSrCUTw6tDHwkaTWyRgTvvbr0AHgwA5X2rEN4WY1K3tIAYDhXGJkzGAwGg+FWgPN4WoJa7Pyd4NQN6REsRA6+irnvAMN7QrPPHAFwc17cm3wdBoPhwGHkbsmxX15cDq896YBci4F8VmdOhkBfdQSAfGZ0DAaDwWAw3A444mS6s4JmLovuhcrZ2spAC6MFkpd6mXPWM89gMBx1GLlbdmS8y8mDJOlIm+gjBgNaEKW2jTQ3bRC82PfAYDAYDAbDLYSqaESOKY5Zj8y9mj9nwItsM4hs5HHMhbf0CYPhOMLI3bLD+2AIaL6VQY5gCJT05S0LtME5m+7eYDAYDIaDhIhoojXPWw9pGC+2M+CaqjL0lLWCKAbDcYeRu6WHEDXtbopQ8bKS/DqOHU9TRE5lGo5s4jcYDAaD4dDAe4CKmDPfzLfT9gaai0dk7QoMBkMdRu6OACpfgVHUXtPIXAzQiTzDNPcGg8FgMBxWMLz3KDJbrTl2gchxTJcgsqbiBoNhHkbujgQY4GphtnToRWeTv8FgMBgMywGG50Dq9HlQ2mjDcrPpBoNhfxi5e54o2+305AYqVd4WhG7m19jgkIzTYDAYDIZDglZuzw8RWgc9AIPBsNQwcvc8UaNQh0njeM2hHKJxGgwGg8FgMBgMhluCZjtLg8FgMBgMBoPBYDAsIYzcGQwGg8FgMBgMBsMRgJE7g8FgMBgMBoPBYDgCsJw7g8FgMDxvzGYzTKfTgx6G4TagKAq0D2nxkZuB4XB40EMw3CYQEbrd7kEPw2C4pTByZzBcA9PpNDSCNxx5lK1WVnrccD389m/9Fq5sbx/0MAy3AQ+94pX4ypd/1UEP45bhPe95z0EPwXCb8OpXvQovefDBgx6GwXBLYeTOYLgG3vPud2NWVQc9DMNtwN/4zu9Et9c76GEsFUbDIbw5P440Wq3jUZh/OByaI++Io2cRO8MxgZE7g+E62NvbO+ghGG4x+v3+QQ9hqfF1b3j9QQ/BcAvwoQ99+PD0c70NOHf2LO6//76DHobhFuCPPvDBgx6CwXDbYOTOYLgBvPyrvgrr6+sHPQzDLcAffeADBz2EpUd5hPOxjjPIHa+aa0Rk32WDwbD0MHJnMNwAnHMo28dDnmQwGAwGg8FgWE4cL7ecwWAwGAwGg8FgMBxRGLkzGAwGg8FgMBgMhiMAk2UaDAaD4csCWQsJwxGBfZcNBsOyw8idwXANaBuETrdrRv+Iw9ogPD/s7u7i+NRRPJ6YzWZodzrodDoHPZRbhiprddPv2xxwFFHNwmdMzmFlZeWAR2Mw3HoYuTMYDAZDxHA4vKHtZrMK3ldgBibj8U05NzPwfHwo19v++R7vduGwjKsoShRlcdDDMBgMBsNNhJE7g8FgMAAAmBnvec97bmjbJ556ErPZDADwAeshtZS4+667cP+LHzjoYRgMBoPhJsLIncFgMBhq2Nvbu+42G9b3calBRPHfNbe5jWO62fiVX/mV62/EjMefeAJVVWE4HOLzX/jiLR+X4ebjTW9+077vEVkupeF4wcid4Vji3e9+9w1t9+RTT6GazfCRj/wJyrI1t9Bh4IYXP/m219tv0fua30S38Ly3CvudV1+/3vv7HeNGrm11bQ2veOUr9h2bGf3FeN1rXwtXWEHlowb2jA99+MMHPYzbAmbGbDa9zjZAu92G9x5FUYDZMkkNBsNyw8id4VhiNBrd0HbMHoxQWMBs/nIiL5hguHG02i24wvKxjhrY+4Mewm3FeDxBVV37mjvtVDBmOp3d6iEZbjJaLVvKGgw57BdhOJYoigI7OzvX9dJurG/Ex+bRXT4Q0Q0T+dFwaBUzM6neaDjCYNUqyx01UEbYrye/LcsS3nuMb1LBnIPAc1d28Cd/9kU4Z1Hoo4aq8tjd28N/8h++DsPhEL195u+iDEtd9h47Ozu3c4gGw4HAyJ3hWOPhhx/CmuUOHUn8/u/9/kEPwWA43Dg2uUgEXursQcMicPbdJVw7f9RgOE4wcmc41jCDcDxgn7HBYDAYDIbjACN3BoPBYJjHdSopGgwGg8FgOHwwEbrBYDAY5mC0zmAwGAyG5YNF7gwGw5GHRaAMhkWw6KzhaOB6PRsNhuMEI3eGYw0zCIbjgE9+/BP42Mf//Q1t+/jjj2NWVfjghz+MlrVCWEq86S1vPughGAwGg+GAYOTOYDAYjgHqDZ2brd9Tm49Wu43CezgiwBwfS4nrOazMoXW48Nz21fwneKjQ77TR7Xauv6HBYDg0MHJnMBgMxwSTyRSnTp4EOQcwR2oHIBK5jY0TC/dl5kAKtN8jUXotf38f1N7f59z7bd88d21ffb7o3Mz7H7t57uy6Fo5j0ft6HTd47uZ5931+A/dU+27q9le3tzEcjYy4NbEEt2O0N07fr9sBAsqSkLf+YwBVxfBeniB851vOodNp2/fKYFgiGLkzHCm8773vxayqrrvdE088ielsio989KPotNu3YWSGm43+YICHv/rhgx7G0uGlL/sKa+h8BPGpT3wSw9HohrcPkvTrbfNlDuowYAkugr2/9edA4LlUAGfuZNz3lVOsrCcHgWdgb7vA9mXgygWHC087DHcAf1hDihluJL3CyKnhOMHIneFIYTyZYDqdXne7yldg7+GrCtPZ7DaMzHCzMZtNr2mw1eCb0a+DcPyu+VjAPlLDAlABrK94nN2aot0F7npgivteNkXZ3p+0jaoS2zsFvvhXLfz1p/vwEzq0stHnBZv3DMcERu4MRw6j0Qje+2tGJzZPLJaeGQ4/vPdGTgyGa8B+HwYQsNr3eNXL9/CaV17Cved3URQAEQO0v21kz9j1bTzZWsXg4S54OsOjnw6RPYPBsBwwcmc4kiAifP0bv/6gh2G4Bfj93/v9gx6CwWAwHFq0WsDXfOUevvbhy3jJPdtodZrMbH8ZKDlgxY1xbzHFpYun8OhnSyN2BsOSwcid4cjCvNcGwzys/cdRxfP/TAkEd40ojmH50O8C3/ZNl/CaVzyHQX+KonxhzGw6KfCxjwywfQkY9K5dLOkwwBHsu2wwCIzcGQyGJcWNkRSCGX2DwXD0sbnh8ZbXbeNNr3sa5QskdQDgmfDvH9/Exz/RQWHJnAbD0sHIncFgMBgMRwiHPcpiuMkg4Mwp4Fu+/goeeumFL4vYAcDF6QB/8sk17O0Aqys3aYwGg+G2wcidwWAwLDF+9Vd/9botsnZ2ruLylSuoqgp/8Ad/eHsGZrjpeO1rX4Nev3/Qw1g6EAXZ3mEFfRnFKNtt4MzZAm/4ml08/LJLWO3PvqxY28iXePzqAI9+rpBXGI4OZ6FJPhIlPA2Gmw8jd4YjC/NeH33YZxx6ZO3u7eHsmTP7brO6MsCZM2cAaYq96L7daEPya22nzzljm/r8Wtst2uaFbNfcZ9F2zeMsGluOGx0TCLUVOjPDOXdT7utTTz8dn++3P9EL+D28kH0MNx0vhKI4B5w95/DKhwrce8cQL7/rMXRa128DBAATLvc956PDNfzRB9bw3DNL9r2wXGKDIcLInWFpMJlM5JGuouYncu89mBnMjNnU+tctK5wjuKK4/oY3iONg9F/z2tfCHebwxFEFM3ysPsiguGx2ILo53+H3vvd9N+U4hqODkycd3vImxgN3PIvTqxdvmNh5AJ8ZbmHXt+YIHnvgkx/t4K8+Xl5XDWAwGA4vjNwZlgbvete7rrvNE08+iZk0Jf/DPzT52bLi1a96FVbWVg96GEuFbrcLV1jhmNsGZgBepGF5yE4fEMh9+Sb2+S6yb6jI0DFwdhxlOAc8cL/HfWcv4c6NCyjc83NkVnDwqEcM2TMuPVvirz7Rwd6eMTuDYZlh5M6wVNjb27vm+xvr67dpJIZbiXanfd1ter3eDR2re5O3O2yIcSIjdrcWzCBAonQcn0chgW/0DnM3J2rnq7Rw7w8G+243Ho0BXJ+4cda0bHCd/L3ZrEKr1UKn07mRoR5KVFUF547Gb8MRcPZkhVe8dBdv/rrL2FrdfV65hB6B2FXeYTYlVPJdYE949qkWPvq7XVx4imsOhcPcOiWXUPd6+3+XK/kNERFWVqxCjOHow8idYelQliUeeuiVIJFlMhiOCF5zYEBgcPybv+eIwIz4PiDJ7I3XdD8gec6b7+fn0dea5ycCPKdtFM3jN7fbb3z7Xd9+48/3UzTH0rz+5lj0/UXjat6ffHx63/V5fu5Fn89sNsOf//nH4mJicV7Y84s6EBEc0TWLARzWhYvhEOD/Z+9NuytJzju/3xMRud0NWy1dVb2xu9lNiuIqcSSNJUvjGY+Pzhz7jb+A/dnmA9iWfM7YcyRZuyWZkiiRosgmu9lrbQAKwN1ziXj8IvMuQAEooLqquro6f33QKNzMmxmZGZkZ/3i2pXWOtd9ri0+ub0wt8oxhIQCfZCaKc/vqJfdTb+vFvzfqZ87zfhznt88YGGx7vv9rY/7Dd/fZ6hY4d3Yh8pMEhGGVcj/v8OlBh5/8OOX9f3UUs3q5IlQFFPlpLXuOz99aHOq5/ZgXoy+3tFyUVty1fOEwxtDrty57LxplXjx6pYZHvcwX67S0XIqlJWAh5FYul4ucKbX9o7EEaQAx9YKF5fSYBTUATy52tOXLyc1XS77/O0N+7fUDdrLiUta6Ug0f5Zv87JM+7/0s5hc/coyO2mdjS8uLTCvuWlpaWlpaVNH1xCiy5va1+CV1IidZ5nN6/tz96rT/Z7cryMUtPi2fL0Zge8vz678+4q2bE7aS8tJumAdVxs8+7fPDv035+D1LPntqzW1paXlOaMVdS0vLc4fISefRxYJn3ZKWFxrVxmX4eHoJPelR2cTViQrHvNTW+qMo6In+qQREzfNZJIzFfbZo20Kxnp6JuOUZI8JrLxf8z//DfV57dUhkhUgunuhEgZlP+Ne7G/zJH3Y4uC8vdAZMWf7/lP77nN5/LS1Pi1bctbS0PJ+c9kLWk6tc7KV9hlRs+RKydLfUhaDTxuWyHhjqyZWbrvNwV1sfTupDwm5p7ePs2naX5em6Gp+iWFs+F0Rg52rgv//3Q975yhBrTmRkvQB5cHw47PPnf9Kva9a9wMKupu2/LS0LWnHX8oWkjad68bj8NZVWtLVcjKWFbvnB2g9LEadrlciXmTDP3ugqudDCanfaAPoS1paWFoAkhe/+m4KvvbYQdpdDFYZFwrsfdrj7sf0SCLuWlpZ1WnHX0tLS8gWnnew4nTpmbt3dcLnguEulAdC1WLp11t0W1z9bCUY5/vHJVjxm69f29liZMJ/MtlqePV//ludX35qwkZySvvIClGr5l08H/MPfZ8wmT7hxLS0tzz2tuGv53Ll37x5//Md/8sj1bt++TdXULPqz/+dPgdWw6azhysmx2vrfJ7972rju5PpnrfvwsO/0v8+KbjmvnZc9jrOO5bxtndXOx9n3o/b1e//u905feX3Q+RzXVmp5ztFVnkuW/2p+HqWz5Mw/Tu5k9euExe/Urz3hkgjPnC9w079oDDaV735nxle2D5DHSH5TIbw33+If/6nP7V+2mVqBY/feixx32NKyoBV3LZ8/CqoBPVkE+AQigjFyrG7d2ibO2/yF/z5tO2ctP2ufF92+nvH7Itt5nL8ftey8Y3vS+3pStAKwBWjcLlecUiFxOag7PXburDvijP61FHWLNc7u5XLCSvi4PKqvizzm/dDeQ88PItx6zfPq1pjMVY9e/wQBw1GV8sGdLh+8awn+szeprkHqz+zDJycpF59x4vOzJg858flpE56nTkCe7LfnWavPXNLS8mLSiruW5wLvPXmeLwt7n8bW5uYzbFHLk2RZYP4ci9xjD04vQjuAfeHQYxM8xyeGTpv6WXUBQz3cC5w+9Dx7S0tOJlk5p3vVCTbbenefN/f3D8jz8vNuxqlUlcc5y2BD+davzrk5OMLK5ZXZsIp5d3eDP/6DjPETqGXnQ+DwaMRoPP3M23rSuNhxdWvweTejpeW5pBV3Lc8Vv/O7/+3n3YSWp8Cf/emffd5NaHnBkPWEKOesdToKYhsfLX/muqH5zDyUpvWhsL1HoM/MNVOQ83fzNCdRWh6bKIaXX/F87ZUjLJcXdj4I737Q58/+ps/B3vNXf7GlpeXZ0Yq7lueKdtDRIpxdukCkdbFpeZhVYpPTTGlnuVaGteXaSEWpReMiPE9qERmQ4wLvUcJu3Qc0hKbjPn/WOwHkMlWxv5B8MY5v57ryve/MuNadPtYcwGgc8Wd/PuAX77lV1/4SsDhX5/bj8MXoAy0tT4p2eqflcyeKoqU75nw2/5xb0/I0SNN0+W89Y+QRxXH9DxHy/Jx+0Lh2zmezxpXzrJ+6T00fsd6C+Wz2mY/z82BxCMF/iUZ0J5CHymIIZ2Q2OfajJ6x/grLIPC9o87OwEl6eZSSgXsTKeDrGruZgZ9MpRsypP2maATwUj3wSa1av/fH0fHc7Zy2qgXz+eFkbnwesNfjgn3PPbOXmzcD1qzmxvbzVbjJz/F9/fp0PP455ROj6i4PqseQos+nZz2/n3OIrTCbjp92ylpbPndZy19LS8kwRMc/eQvt8j+xazkC1KQC+ljDluNA6K2+rghg8D5jl/0qSvAnYxkYXmgmG1ShYpI7DExUqqUVZHSe3yrwpLGYD7Npe/NICuEwAIQYR23wWECM4riwO6Jm5ZrZ8cRADr78049WNy8XaqcLB3PKHf3SDv/ib/pdH2LW0tJxLK+5anivaIcmLSXtdnwHyxRvU6yOsWQLHsuiuEpiYNbfK9YQoayJPA0hCmrxDUbxP5N7A0EewdcHx5lur2naN8NKV7FtY7urNryVd0SZVZpObRXXRimb9xXVQTym7Sx9PkbVlF+WLdUlbHpMrnRnd6HIW0gr4/360zQ//pdsKu5aWliWtuGt5vmjrm7Vwmptdy4vESVEXThmZLly15Vhl8XVf2kXGy3qLJ/dQU2K0Rxr/Knn5M4LdxMkNEIs0cXPBrCdM0WWs3UKw2fXdLVRh81t1JQ7NYqVjoXkn3UMDz1s0xHn3mYicyEr6xeSL8E5x9vKlD6a54cc/GzCZPP/H96Q5OU9yXqx2S8uXjVbctTx1/vAP/oCyOvvFVRQFd+/fx/uKv/vbv8U591CNm/WE5adx2vrryzhjG6cNW05z9Dqr9s5Z2zzt71Nr9ZxxLCfbcl57T2vzWcvOcmI7rQ1nHe/JdU7++9/+9n9zxlYvznklE9ZWevTLvNmOlXMG1F+Agd+Lwrqou7hoOHHHnHBtXG5F166j1J8GVYwqlpTU/SoV+8yKvyOEGaoBaRwwy5DjQ4E1Ec7UsZ8idbyZNTGoImIwZoCx3UV9gzVj4drfKMZYInmj6cduccBN0897kj3iTDyilMglN4Zpfh6x4iU33PI4VItajBc83QH44E6Xjz52VNWX/BqJIOYRfVkekUW2peUFohV3LU+dvCjI87PdTcqyJIRACEpZlvjWv+SF5kLC7Ynu75ntqmUNRZcCbv16L+Lojom7UAs21TqJifeeogoU+Zzx4RFJEqOq2DgiiiPSbhfr3No2hRB8vR0jTVwnzTZBm1g5xzWm4Z/RMAUMRSgYDz/GGUNeTDDRBknWRcOUKlRAyWbnHUQUUYdzEc5eQR7KermyKCoV+fznxPFXmiXRCWteK5daTqDw4DCi8IHsgtlLfaW8936P6fT5ysDa0tLy+dOKu5ZnQp7neH92oHhboPyLjyzd6E4ZnLTutk+Vp3FuA8pcSooqb8TRiX3ysFBJTEyiEVBnRRUxqIZjQm5pvdJVshLvKybDEaPDI6oip5jPUe+BgBjDwczxL4c7iDMYq2xvWoIxBMAZyItAVVZYVbwKg35MkjiqkBIZsLZciq8Q7xBHFShks7sk0w/Z7EVYXzA92mcWv0RZjLBhj4qEYVpne93cfok0HeDYBD1lQK21ZSBQIRI3+1PQE889DSCXG5Bf+vq299oXClX46c97fOPNEa+9dLGM0VUl7O4lnPNabWlp+ZLSiruWZ8rv/t7vft5NaHkK/PVf/TXVOa63lx5qtmLwc2eqOT+4/SP+df9fiExEZFflLEpfMEg2yH1OalOccYTGdfFqtsNJJ+TTXIKr4Ml9wdF8yKSc048zRIQqClQ2gJjabRBlnG7z0YGj100IFIjzbJS122WpMB3njPMKX3lEoao8G4MEFzu+cj3ler/OsSkCc43R/FvsH3T48Pbr+I+OMFdGZEkPJhPG9hZWAvkopxuV3BvuMtfrXLkZ8c53Y+y2Yk/VZiu3ukXXVYUgJZaFB2dTL0/0uBvp58lz0oynjT4v5/sUFOH9jxP+6gdXufX7n+DsBVyWFUL44sdDfibWDv9xchW1tLyotOKu5ZnSDthbLsKFe8lF+1Pb7S6NICQ25kbvVVIbM/c5VgxelUk5QsSwne5gxWKNw4eKr2y9wlvdl3k40rTZpgihChztP2AyPmQyHOGiHoqQugT1itdAVYUmG6aiIXA/zxhWnleKMQel436yS3QQcXg4BZSgdUyls4YQlOHuiOGu0t/M0Ks3qTSt4+tCLQaH9/fIw00GV25gzL/l7oMP2Q57WJ/j/CfEG29B8j3K8S95+XrOLB9xsPcTfvCnh7zyxlu8+a3v4aL4tJNWu4EqTZwex86BLDNyXt45U5oY07O6fL2s7ehn8pyfmtnM8N4nCcN5xHa3eOT6FRFT/+Uewh3r7m3fb2lZ8uV+MrQ8c1xvyk73DcbTOhZmoJ9A7+aFHsyTX4xJtydMBoGBu/HQ8pnOGZdjNqI+BQUZGfZ2BTfTYy/2uVYUVPRJ6mLYc6GqKjL2sb1rZ+6/VM/Qj9hxKxdSmSniIfTqHeST+vMiKzBGiHU9kYcst/PpZI/XetcRYL84YCPu447F8dSZAFVG3H/QZ2sTRtWMbNRDx3M2bnSY3p2iV+bEnQExlplOOcz32U6ukkiKDzCpDJlTIrMccS5/5jPD/qFy47pDzJRgCqxunHn8xVCxsWATHnugVA9Qz1/e8nzgxHClu80rGzfYiTfqvJSq+BCo1HNQjvh0eI8synhj4xaxRERmYaOC04RdMZtzeP8uD+7eIfeCGEeUdjCiFEVJUVRoCMznOb1+hi9LirIgc47Xtg2//tKI3VnBPyWfcusw4WpaAsJg0MVaR3/QJc9LZtMZVeUxyQy/94B08+ukWYaimHzMrCp4cBCIBi+RJUKRbJAOdphPrtLXnzMd/ZTs+vdx6Sbj+z9gc6NLmk55cPg+7/7TEb1Bj5tvfQODLI+0yaXSJEx5GAEwaya9lpYT5Gq4W0Z0QkkieuZrUYH7vsNM2yFcS0vLw7RPhpZnijQT1wsXiqJUTpn/PuPLXHB2rp7BlrPccGrdtJbwrs55fpHhlqpSql82Q5phnWJQhUoFREmM4e5suNplc8AGwavnKJ9xPzpCgYPZiDwIsXWL1mNE6m1rzqGJMGU9LjQCQYSAEpQmK+B6tobjSeZlUYxZFV0ryszCsrBsP09swNkKtBcFwYoldQmpWbhkKmoCqtB3HW5kV5j4Ke8ffcqt/lWs2jo5kgYCq2AgVUHVc7S/RzEfM4pL4k6KscIoDJskSooYMAi2pxBXeA3MS5jmBfPSs9sZM3SGw8khh0mfbi9j0/bY6fUIvo7t29joEFllOJoQQsF8Nuf2Bx/y+jtfRYxhNBrifUzkLOVsgoweYPP3KWZX6WzcwB/eZrOfM5k9oLf5EkX/Hary5ySdDXr5XcbzKePdj/GvfhWJ47Vn0unWOCOuedisxR0unoFPSePJBZNytDSIYNfEVBXksz0PZaXjYc2aew6qMJ0If/ejTe50O7xza8Kta9NTX3mFGvaqhPC0OlBLS8sXmlbctTxTbPOSM0YgaP37gog1TabFR6z3iOVKHavDekryEy/j07AImUuZhtkxsQZ1nS5VJcchArGv2IgjlkJzLfYo92CN0IscAvTcNgPbeyhd/0KOMe2w3Rz7WGrXMg2LRBSKCxAQvNZWQR+0Fn9NDFDwgWBWcU+LNBaVr7e1OP46Duj8c/AsWCVmOX95y9ND10R/LcxOWuHAqJCoJTF9Zt2ca/EWoobaAL2aSFAfONjd5XB3D8ZjunHMRtwlJiGUSggBMVBVBc464tTWHpnBoCilrxiRMK0cVycpHekQScpmlZFtD9iMu1g1qCohQOUDLrKkWUpejQFBg1LMZiRZVqdLF4uNUiofsFZwdk6it7FynTJ5nRB+geQfkRdX6G5c4eD+iK3qiChO6HRSdj95j2B7vPzVr9Pf2mk66+JZsriPF/d9VJe2C7Lmraogz0HNu0fFtspnFDlfAFwi7FxXfv+39rg2mBDU8F//4io//nl66cLgYqA7UF56I/DKVwuMhfGh5Zc/irj/8aOfW4f7lr/8vzdwRvn2d3r8L//Tx2TueCxzhXCn7DL1bZbMdeq53/bd0NICrbhredasDxSWFryLPZDFChiDeSgN+do6a5kMHhk/vxARDw3KTseIoUvG+u6lKVMcGmU4B1BIz3nv5nj6ccWG6Z976LWVUzBG2B/Vbqz5gq7eIAAAIABJREFUuKAYFsyyhHJcQhqYekhFmCoc+oqD/D5lEKqgzD1kVoktWDEYY6AZCM/mEMUGKUpCmKBaYO2oTmSBYI1tTqXi1ZOrYLzi5mF5/gwGaz6/AerFLBRtLNJF0IUrsK5qxKGhEXgrIbK0Wh+zpNfTBsasEqkEH5iPxgwPDtm7cw9jhSTrECUxUZwwHU/xviJOLGmcYkQJPuAr8D7gHASvIJbIOYyBOI744M4I7Rk2NjdRW9+93tf16mbTGWmWABBHFrEdYhcTOUc+L3BxgiFgTN107wNF4UEMVqeEakbSvcLo3vts9Uv2Dz5g8+obdDdfJsyPUImJI6EqDrn/wQ9RhK997zcxUcTiabLMEiqG5RRNWGUGXcyhKJeXdquJopbPjMDmTcNb3zV84/URv3njLlFTSHxrqyD815f58KOIyZG5kMgTA298M/D135zT3w5Icy8k95Tb7zsu6ssePBRB2J/GfFp2ed0Ol98Ugbtll3tVp7lfW5a0z/iWliWtuGt5piyjcbQe71RBsF7PM9OsvoCgoa5htTIMrCUrEIPBELyy/C8oTbAQCzWpKPPiDs5ZrImYBsEHEDnE+nJptVhvc103y7Ce8y9oAHy9hq+HaXPAYFGtB2G1y2d1TNPmwTPLD5h1PGZtT4aYSNfi+VBUAxvdUFtPgIk6VFI6G4aisOSJJ+16UnJiPAOuEFEHxVUBpl7JLESNCDLUWfpUhDIC9YZOJgQmqM6wcnW5/8U4XRuDQ1GAs4okJ2ZIL5mFrj6X7Yv4eWAh6E6TGbpw16Xuf6tL9nCilOV31mrYjQ8O2L9zh6qoiJII6xw2chjj8FVFVVWkWUynG9eJVoLFGNeon0CdfNXgoghKwUUOVWVeVDhjiWOLFyjzAirBOUunkyJGiJMUNCDWEioLIhT5nKiImc9zoniLKDjCrCSf7dNNDdYoufekqaWkj5F9bBiDjTHGU4WU7qCHkQNcp2Q0HVFNdql8SRxFnDV4F8rmfNZ/LWzoctJ7oOWZEifCK1+33Hq14s2tBzi7spBd3Z7w+/9+lx+8u8W7P83Y+1TIZ+dfpzRT3v5+weBK7Y7sqN08I6vEcSDJhKBQzh99vQWYDIVf3u0iW4EsUYyt+8tulVGq47lws2hpaXkuacVdyzNFGutYaFyonAr5z4+INrLjg0dz3Nqi3jO7e0QyiWAG5WzM+MEEl0RL1yEPeFVyHTO3njEzuDfDDnu1uxiCGJiEnGlUokUHg2Ve1anTUYfpxjQKENVQWw5u0pjRmrYhmCDcL6BXQKgC0qubkc8MwULc9YgaxBtE3dp7WMkp2C87dIM0bW/Gs/4Ap40oFTDiUXuEpwfiEA/DuRBiR1oMya2QFwekwxmJs/hQ0Us2QRyvRIK3EFTIjBKdYkk0VgjBEGEIONTE2PUA/ZNjEKmNlg/JgBPrnVXnruX54HhU5uLfKwG3EGfrFiJpRIgs74G1yQ8VomVtAKHKS3Y/vcPo8AHGCMGYuuC4Ahh8Vdev27mygfe+mbcxVF6xzWxHktQukwBRZImwqA/kuTKbzYmMQYPS6XQIk4JiXpDEDhc5fAg4Z3E2IlilnFXk0wJfebIswzhDCIEky5jePeKafEScbpO4hGkxQXUDja7g/R7OzlAiIjNhJjFp4jBFwXwa8KYHVcXw/qdsv/wGxljW/ABW8axrns/PZDgu8pCL92nrfNm5+prh629N+eaVe1zLDo89xqwEvnr1kJ3NnBtvX+Wn/5zyz38RU+Vnb2/nZaW3UQvEWJTX40M6MmN0NaXzWxu8+qsJkwPLD/80ppid3zZVuPex4X/7z5v0dwbsXPf0N5XNayWdbkAEylIuJBRbWlq+fLTiruWZcjIAXMSQ3tpA++e/pARHOu/D5hTte1zRY/N6H5OBNiamnAKtpgzcJn20HqBe83DVHHO57FAxLTwb0TYGR1EIvvKk4jCd7dVOvRLuFsjVh1O+CBC8cM3XoTMhrdtQTA0IxFlYrrc+kFJVCg3IdJ/XujtrQ8FAgZLI1lp8k6LiEO2BWqRU9j+cE0cx3UyYHU0pugOywTaJuqXL6/4Fi9rWbWuCIC8wRhArS1ejp03rfvZ00FPkxXr9rxAEkZUPmlDHotbW1pWNWZsssNoU6I5MBEEZD4fc+eX7HO4/IOv16HS7REjtDixCXlRETrDW1NksTW2RIwTiyOHiCBc5gi8J8wLU1AIxVIhETCYTrmwPOLBjYhdxNJ7QxdHpZoTgyfOCbr+DM4ayKFE3xwdLlCTk84LRaELczygjiweSOMJPr1DO55gth59MUIno9ncopg4J1bKdIobh0ZBZeB2NM7JuTJnP+ek//oBXZ55bX3kLGy8sKitRp7JywJRjzpjyDBXfwxhW1/Y8vuhW9tp1+/gxRDH8h9854N+88imJzU990lipuBqP+Pam4L95lTsfOO6+b+p40BN0B8rLb1ZESX0xjSh9M2PTzYgErl3PkCuWw07AugunEGM+g/knht1PDGIgTR02FkTqydFHWRNffOr3hFn865y+/DlHt7a0PFNacdfybGgC95eDS6lHNZXacyLojqOhdlMMhNrl8USg/1reRxY1n8QE9MQeBIOIrQesCJXMmZsxVXiAC6uXpVfhQRUTz32zPcVIbWarAtybe6rGDbSJPqOY1wIoNXXMhTZeoX7p6SlUGrg3mdF1cwzabDfgOMK7hetnc2xhAlKxsBiWElHoIaqBXAsgZ1ZBMHEzCFPGZUXSWO3GQdGmJEOXrYVRcnkJZJnj4WKDhLN04DMfYkidUfRcC4UsXvrnD2C/LC99PWZtO/lvs+wPTfaPZukiqpTl36vvLdapa9PNZzP279ymzHOSrEO308E6i2ksd/O8JHIWF5kmp4g2MaCKi2OMU1zkMMYicYQizKcl+WxOPq1QMtI0JfNx028FFW1KJ8wJqlhjqQqPTSzGWipV0izFSYqvPNPxlM2diIqK8eE+xgSSnV9h+OBdfDVGdAaqxElEPk6II/DeU9+WQllZst4GogXj8ZhifBvmB9z+oMdgZ4fB9g7IQtjVwXVi7DJzr544h5dFVhfp9GUtj8QY+MrXlG/f2j1T2K2zEw95eyPm/ddjRnsx4yNzLHbcRvDGdzy33i5wRjlZV1wuoN5VA1X16PXKR5e/e6IEBWs/nyek1IZwgoczqou0tLScQSvuWp4tx2LoqN2w/CXiTlZGrTVB0iQrUK2TQDyCesa6fmF5LSmYk+qAjniQVcybIsxMyU4Sr6xca8u8KC81YXeaAAiF1gIrSdYHz8f3X+ApfMy1eOWKencCvc6cRDZZiDulIkjAaA8RW7dHc6zv01HB+DkqUyK7SSIrAZtF0DFKUEGt0LUw9Xc5WRJJl4PQWjyeFMEPEZQLK/FzkEdl6Gv5TNSpRYTTrHQLFudfdZX+/Xh9trVZABbrHr/flokUg7J7tMv4bk4xy+kN+hSFJ+mkVGWJ9555XhJHDhvVYg+U/d1dfPDceuUV4jQhhDqO1SUJIuB8wA+nhFBi4wxyQxRFGAyRqd07xRq0EuI4xjhLJ0sxzhAnMWVRIRLjjMUgBA1MxzM21VLOhox271DSp3u1y+HsDcazn5DYKXk+pZMlFG4bI/vk5ZQoVsCRxFDkRxTTAxJ5QK+TYzoF+9OfcOeXV4iiiGzQa8q91JY50Wj9rB2/Vtqc90vGrT6S9vY6k63twH/67T0G2ehCp0mAV5MH/MfvK5v9Lf7p77vsfSpYq6R9uPqq581v5/R6gbfifWYaca/sL79vJWDl/IwsRgzOXe7haqzSHZy93HuYj+XSGT+PbSMEnLHnPkueBnEHXv4NIR3AB3+pTB60Aq+l5TK04q7lmbIYw9TWFDChoH77XHR2sBYkdda5k6JQ16wJzSd5xcluvki2svgrBI8Gg2KwayIpiGCNxy0zMq5bLcAagw2hlmLNOgFhUTNpyYkRRFDFSp1lUpqNadBmQLg4JkHUomKwUrdtaY1UMGIR48BarFhWNqrG1ao5o6YZ5jsTrZ+AGr8eCni2RWD9mM97x58n2BaxXC1Ph/Vzu5j0uIg1VlFWheVPW79ObrKedGXdjZMQOLy/y937n3A975EmCSKGOHWAIQRZujVGka0t76Fs1slIs5QkywiqaPDksxxfeoyz5NM5zhmcdZRlwnxWUHYrJEoZFgUKJElMIpZELFESAQYXO4KCWAMeppMJcST4KjRxcVDM55TTXazdI8/fxCV9iuIKm8ld9o5uk0SvIq6LswWhyAnJJnGa0utEFKPb5PaQKAoISj5XRHMmh/eYHl2j0++ycLkUVvfV6VdDQR/97GvvnSfHTr/k1tbBpfSvkcBrgwPS75T0b13j/u0IFyvdgdLpe7qZ54qdci0aU4SIVDxZk6AlNYENW3Cv6j6R9hunbF5T3v6eZ/N6eaaQ96VwcNfyi3+MONyVc5/dzxUCV94Wbn3L42LAC+/+kVDNP++GtbR8cWjFXctTx1cVGgJJEmNhmULdiVKVgTi64Gs2BLBN/E4jho5P5514ey39D09sRhUfSgyWSkp8kNrd8uTXw/nvw9NKVflKeVRIRV1aQBtxCkqo/14TaKgSFhXftZZoBXDgYhIneAmMjScAaVk27on1dx/kijOGKsAswNwrs6JgGi+ywdXnrlBbJ4FRsBRo5Sm1PLPdprJsJebUwURZVecOQGez1Zv5rPWKYpWtIMnSR4rNrNM5d/lqvexC66XZxdZ73lj00UXpistgznBXrZPMBgKKEdO4bq5NnKiSz2aMHhzw4N59bGrp9/tYZ4njiLIsmU1ntQBLI6qqovKeJHaEoFRlRb/fpb+xgRrYvX0Xaw3z2QznHDaKKArPtes7VMWc+3dGaOgTx47pNOeIGV483X6HzFk6aYaI1sldYkNV1eUIMBFlXou6bq+L9wFrh1hjULfJVrbHeO8XxFe/j5VtSn9IN80J1Fk908F1Zvu7SFliJOfwCILfIdgNxvkc9RXiEuzGFazNuP3Bx0SdlGRrMeESUNbvqVOeKI+w3IVqlcWx0z1bIMxmdZYO+4j7Jqz5Dfa63XNvM19VOGdJkuTcbT7P1KLeLE99EgWypDr/S6dgJfBSPObNnQ7bm6vz0Tclr8UP6NiittJZT2bny8ekkYrU5DgJVIXDX37XqzbE8J3fq3j5V3I2uoFX4+Gp6+Vq2PMdrt6y3Hir5PbPI37+DxHDvctPEqxb7WwMSQ+KqVDNn7xatBEMbgqv/HpYvkc3X4P+TeHg/RNhGCdq3na6Z78PqrV7qNfrPdE2t7Q8j7TiruWZsp6PQ+TRhcPXEQF38K90hrvYvAfGYaKVIMjiHlF1gHVXQEuQGDmcodJnPeW4pUC4j9WbGDzZXHEa4aI5ZvT+cj31oA/ACmtCjKXouAbYso5pY1y3QScRuIBNTstqovULqfsKrBVBWJ2CZqDd7KseGq5ZCwWMM3SCJxODqlAZQ2YtkXHL786dkhmhUsDU2TLVGnprbj8CLIYfWaPXVIVYVpk91+2iFcrzNnEqy/89er3W8HEKHqphhTi7nHCp41rriQ6PwWtEGNtae6zdQ7PxnPGDIyajKX5q6PUH2DyBEnwhzMYVGixVWRFlkMYp1TxQOepgmmCITAozx/hwRPCeOI7Y2BzUtR2tZWMzwVjD7v1DHuzPmYqjKEp8iIgjV4sngThJsLa2Chq7slqqD1TBY01dY8xGjjg2BD8jybrYrEelQ3rxEaMqpzu4QnFwj+5Gl3m+hzWKSTfZvuIJxEyGU0q5QtyJSJzFeSH4EuMcRiIOdj+lqODuRx1e3lh/tZ4YlDblIh6Hc+s6tp38qWMk8Gay15QiqO+GyFQ4WYmH065CV0qiJ2A6cxZ6O4FON7DlZryc7J+6XlBhs+xyT/rEWzG9b3lu/9wy3PtsfvWdLeHGd5UH7yl7v+CJWgPFwvYbwo1vKdnWcUGZPhmjZ0vLl4ZW3LU8U9QDXupMlAIapC4l4E++dB5+RaoqMvoAO0ixiSP4hfMhSDHCIlTzQ0y3A1UOrkMwG1R8s96AqZNG+FBSuXuU85cIlMyqGUa6uGKCibeWg6QyBMpOoAyyCI5pmlbXiXugwrWuoD2zvJOCU0JsqDqLzCMLpdQIuYMfE8oRwWyiBFbxdfX8aBAwy3ioOplFEEVQfBMV50Ig9oZKPRI8iQjJwsqoQmaEKIBV8KEuqF5ZyMLxc1p7sApJqMtIgGDCypKzPmMrYsjV19kUL5iN8zTkxGzracufPO2gd0Xd3wAO//UBcT8hvd4D04i6sKjPWN9ZUiniFlbt2tUwn0x5sHefvfu7pHFEf7sHkQcPRZ6jFUgkxLHFVUIUGfJ8hrGGvPJYJ/Q3N4k7GbPJjNHBiP72FnHPYa1gBWwUIRK4d3uf+/eGiMkIlXB4MKKwHVxsCD5wOB6TicMlhihytSldhelkWidiCfto1cOQk3RSTFyXOtm4+gqDUcFs/5d0ujCdvsswT4kp6F/9Nn0gnx4x3vuI/UOL6phrVx0u/5CD+waTXmdz5yZxGiMGhnsfk1TvElNx+8OKzdeu09nyYLS2f64JuuN9XJ58vN1D+zi57Inv7ktFZCoiLmd+c8bjePwHp9jG1d41CbiAl+NDhNMD6qzAlXjIVjShCJaZdfxD9Dp3PmPQdFUqUaq88usw2TPMDj67uutegY1Xhe4V5drbgTj7oviPtrQ8v7TiruWZIh/3KPpjZsO8nqGfVczcAWner2NkAEKotZA/XjhhfndIx3bxLoYQg1bgMgighaVKDXm5RVTGoBG4iBBt4JtC5qoVqrVkKbAcSIEIzDVBTS2q5lWO+totrbSW/UKItwQj5tisuaoyC8oeASarl/Z0qLjc0/tKjIkDQX2dxbMJWOuIZ0rJuJgy1N4yLmpuA6NijnMx4vNlgJvqGNjDIswrZVgoxseMhyVhOsMeCnZeUGodYadRTCUwBUqEmRckCFMd43Rab7dpUzmvU2/UfwW872KpVWLQ44lgKlO/2MfDChPbxUl4aD0429Wv5eliRM5MKLSoXWcEQmm4/TcfMRvO6Wx1mB09bJMVoXYmtI48FBz5ep3glcmDCePDKbZKsVnM7MBTdAyzeQGYZdIdTYRkEJPPC0IFcScmlCXOxDhSwkQpDkt68YBoHmH2cySZYnc2ES0AW8fIWcArNnJ0u11GeaAfJyQaE0yFMQbn6rp3lVfm0xkff3iX8WhKd6sito4s7lAVnul4iGPMyy9tsnkj5eBgj4PDe0TZmCuDQLTxNVQMo7s/wc/uE0jYuPo9oODo6A7Xtjfod8eU8/c4uPMegRgwJOaAjU2DDxGj3Q84OojpmhHdzf5ysuZhM8dqcsqco7h8q8Y+M4uag0ueoX5Q4LDqMH/M4ZZ18J3/riTrB2ykbF+v2DAFPXtO0b3Fd8WTWU8Ue976Vs6wjLj3kSE8ps6cHQg//S/wK/+jcuvXlNv/KEwe6GMnO1Gp3TDf+J1QJy06o6uf9lhr74qWlrNpxV3LMyUNFQxGdXp1UUxnRCIpYTCuk4QAGgKIEnw4lkba9ipUMsLWa6A366e7A/FNUhNyvOSIDtDGPcu6ZJUuX7XJzAmIwQLBQIgCiUBiwUZ1mmtVKEtPPujQ324SgtRfpI6SE4rC049Xt5CiaKTog7owQj3D6mphtwqlAwzWRM3x1htOpc4iGJWe6Of/AvMJhKpOB+0M5DNsFXhFLWkA2a8gN8RHEabTh/kIkj7auUZCRGLqcg2phyyyWNmlr6bOoaiBQL0LgKyrGHHUkrA5Vz6g3Q566xpQD/THQ8NGJrDMzfL0Xq91GYvTrLdPbZcvBCdFQmgsRovzFhTCPPDBj26T59Uq36xSx7Q2vtLOWUofILLYECgmxbKweZWXmLpAGtYa8rzEpDG73oMISVp3EANsXekuS3TkZoIGKDMokn18GcjnJVXhme8O6aBcfbND9DvduhBZgI2NHs45EpsyHym7U0NuU/LQYXdimPmADcpkXmfanM9yZrM5+yMoiohyBjtbA2YmZZoHJtMSxFL5Cd5usnX1Fezw2xwdfUrX7GOTHYrg2b13gI0GDNIR88k9oshgXJeDvV+ys9OhszUgiY9QrSdivKZEaR/mQ7rJkMnwgFk6obfZRySpk9CcdMdc1CFprtN5Au9p8qVI1vIIj4GnSaWWYUiaCbjLY61y9dWKjSseEbBG2XQzRP2FH8FihFffLIi2pvzyxzE//aeorpF32eepah2uEIQb36wnTT/4S6ges0SDiGDjujzFucdyEff7c63VX4I+3tKyRivuWp4p0ktwO31s1DzQiwrntmBAU09Llq4mJx1I7MEEJymy/TJabdXZIzNdejV5yQnVDLXr5QxOx0mXmA0CJfNsTqwZhJK0019+MfpkSEcDmTycTCBAnXBhUYYBmKhnRiAyhhyQauECJcvU6IUIlRisJJRh1UKLpQpKUhRk7/0Esg5MhtAdLLNpRuUcmw7QwwOoxuAyTJaB3YfKI5uBcO0dplGH1AgExXshOEXFY+Tqsk6dqGIWh5UFPE0iBhPXK4ynmP0Dwq3ryzMpdnF9nh8u+tL+Mr7cF7XsljXtVDE//hHhn95nc7+Dy2J8UCJrUO8JCCayuMRRTmaIswQfoKio1EMVsALeaF2CwHskCN4o09GUtOMQr9hZhcaOJLJs9T6h0jkL1+Os0wFjGB4O6acp9AzFQc5Q7rDV/QrZKCb+ybtg6iJXToVvHO7zyY0u3gV2R54iS9mdb3FQbnA0tdzdm9JLaiv5YHNAmm2T3LjK/GjMVDy+7FBOSuaTKajDaJePbo/odPd5/VqPzktfo0yvU1YPuH//NldeSrHxFs4EnKnIqp8xnfRw3dfR6G1u3/4hO4M5xnYJ0pRZ8BXl9ADRGZHJqbQk+NXge5kFVxo3zMcpf/CIuo7n1cBr+fwY+oz9qk72EXzj4n+pp6hgLBgbEKkTuGy66aUutZWKb23d5lsbQvGa47+88zrv/mPMJz81FPkl+0zzOHGRcvM7dfs++XuYD7m0WIwSZedtJYoCL8dDJj5h36eX20hLS8tDtOKu5ZliJcZqgmsKTBsSLPGFBjo2zBqLQZ3q/KH3o4aHSiGchVBnTwuyKosgJ2sRBU7U/mp20xQn9ssx88IaqGxYR2RKOuJqf5plTMQiSYolxXBoC7Zt2mxLyRU2Y0dcxiAdpNdDe12W9fwESnqMAnTlJaIM/KhEUkWSOq1Y2LxC2Nkml7SO/QtQVQbiQPBTvB2wHnMlWV0Emri2fAaRurwCBpxDRuO1Y14c52cfPJ4lD7+MAuxpcZp7pmiAoyNsz/DOazF206JFQGw9CyHW1BmPtAATU4WSyXiXdJwTbV4h955QlISqqktsxBHh6BCPMGPOxsZ1wniI+Iqjr75F2NnkqMqoypwQPJ1eh2RjwC9/8TG354brmwNevrVBMtvlpeRt/HCjTuLyVSGEUN97xtGtPK/uJGwa4eNPxlR2SNWb82svbXPvQU55VHB1J2Y2zdnYmNLtC2Xl+bQ6IEqVTuop8oKpm1IUBWQf1RkLyykMe/RfvcaNaz1CeZX59CaRNVwzfYb7d5nMAhv9gtjucTSNSTffIO9/m493f4wxMRUZaWIpi5JB/IDIeiZFh63+Bp1eihhBKZGFV4ICi1jbEwLvydxdjZfBuSIwXLjwzItIHgzVyUrjT4mghv2qwzQ4dj92/PQHEVXx+FfZANfdkK55tEvmw9/1tde0CFdvlQyuVaTdlJ/9bYS/hJumAovIAeuUW99TOleF9/7EMH1QW/YuhMCNbwnbtwLbbsbXsw/5YH6zFXctLU+AVty1PFP0xEvVGThdqZ21gZWlTE4ZwF6kiHnNKg5GqcsSmJPf1ca6yPHkIqumrIRSLSrXi6gvMmE+fGwL986iqTOn1O5lcw8qKXLt2/Br36izcOrqS6NQMa4C/sCRbhvyT2ekVzzS79X7EUFVyEvIBapFAhVdtWRhH4V6XKlQF0h/RNBELe7OXWV1fK1Iey5RBClLdDJCDyrIgFyRpOmrJkFzX6f3jyKsLzBujgwMxeQO5Syv3TwDSGQIeSCUBWIMJqkIE49YQRxo5pmaHG8g7ndJs5ik2+PwYMzhtCLb3MR0OkQbO8SDbQgOX8aEsiLElsUdZ4zDJDGRtWRpQhQ5glaEUBKKOd00Qj1EVglOAE8xmwLKzmZGGcaU+RgtoZxPyWcFvU0l6zo6cZ+iKJmPxvSzLbL+ADCU49vEMWxc2ebuJzlZ8QFZYrD5Aern9DsRya3fIIrjerJJQdVQlTMO9m/jNjM2ryT0Nrc5NpnSxD3WF+M0l+PHz6LZcnEeHDg+udfna68fPPV9eYRRSPEq3P3Aced9+5mKitcTkoacmDwEOqY8M6nKuZsRcLFy5ZXAL/6ey4k7Dx//QIh7wuBGvZ3tVxT+necXf2KZ7l3sReFiuP6NQGQCO3ZCaqrW8NzS8oRoxV3LM2URdrAUGFVxvD7ChTe0lr1y/eNL+oXUoUaKbzJLHougCwpOlta1lfVqsUYdn1d7XjavWK1jBlWlLvOwLgBhGXieWihDnZAElMJDEaQeOIc6AGGlt2pXnjIY8kopfB3rUKhgsEho3D61jq0qAhS+to91bO1KZ6RJd792euoyeoKa1YBTJTT1uU45V75OsW2fdjaCxv3sNBe0OiV/OwJ4LESQmzexb77J3Z8U3Pj+NUKu0KQZP35VhRkF9/WQ+KiguD1GCFjjsM5RVZ7aS1cxRjh0M6qQob6iqjx0O2hQkjTFWEMcZ2Acu/cPCJjaMmcsZVGR2AgjKerLJi7NYqxBMIi1iHOIddjY0ev1OLx3h4N8yv70CJ8KYZozHc/Y3tmi2+uQz3KKvKQqPbic0UjJ0i69/oDBBmjnHrPxnLu7d+gNehzseTQEdq7vIMaiJGiYkyQDXrrlGB4MmBQl6Vaf4AMP9o/o9pXNnasYlxJnXaI0Q0Mur/2ZAAAgAElEQVTgpfk7qFQkG/exNkbXMiSuJn4WD8HFxNDijH8e/VpefEF54vAeHFj+zz+6wdv/6whjP0PRuQsw8hlDHyECr/1qhXXCj//SUl7Gerc28RYEPiy2+KTYwADfyu6QmscvUrN1rSLKEopLGgLH95Sf/B/Czlfhnf8Ixirbr8FLv6L88q94tPVO4OrXhO62su1m3Ez2zhSpPhfmR2e9c1bnsY25a2lZ0Yq7lmdCnQLfYJrntzV1jbvgFWcuJslqrSScb+W7mPDQtbePNukhzYMJTEb1h0Hh3ogqLpA4AyNIUNSHJuGK1K5Wpt6OWgHxhCNDsTehi8fEEBZuos2svMxyTGLp9mN6kwkERUOgOzFsbAlxABMrIVq1NaCMD/YZj0cEF9HhKpkVCqdkkYJtzp/UQnMghr4Ny8Fi7QR2MnhemiQPcvxNHPRMsa3nmO6e9cvTsOpT562z4Mv4cheR5aTEAo1j6A/wvTG6sQlTjw6afnLMpVnwWlCMJ+QSKBEGm5uoCNOixGUJVQg4Z4kShxdDNbdADGooq4AYyMuK1MYkvT53P7nD8GiCMZZOJ6Hf7+CsR7WuQyfW1HM2xoFYFCVUHqkqXBwTJykhVOR5QeErDo+GTA5m9OlwbWeHuCmQnnQyFhYz2+lwzSWIOnzlmc9zjIvIun2SuIszQlmW7O0+IEpjdnYGlEmXgEVthI1g8wq4qEvS26AsS+LOmKLwIJZ8Nmc0nNLt9ch6XdIswyWGgt2VmGuOZeHWvEycoqsUTeu/z7+oj9cXWlYEFd7/KOLHP9/inTcOSeKKy2cWeTQK7PvOcstRHIjS0yclz2PnlpL1/PJrlUKFQZTHsNmBQxiYkkMf0RkErrwcmBzZS2erMlHz6lh0c4Gb3w7svW8ZfqrnntJ0Q7j+DY+Y2qekDDGHCPPw8JD04CNldLft+C0tl6EVdy3PlIUYWmAuE/xh7bIG1zl7uGBDamtcHadXCyzxim5nQOM+OgkQpehW1AzUFF9W+KrCh8C4KDkKBbPZlLIomWeOYir0qghncnqbfUxT3kFDoCxLqJQpnqMAUZZgTF18eQRsPphS5gWuEnxZf288POBH/++fwNG/MLGGoXuZu/o2V1+Pye+MifszOje+Qv/KVeKsi4tiZkGZhEVl8jpucK6KbeROUEVD7b6pCmW0uggLa4xUoIWgpTSlI5RJKSQlxEZI3WcYDJ0xuPkyCrCnxVJAyMoeFBor8/LKaTNZgT3FnVmb7wRmkwn9JCV2dRYkVcUKVL6iyAvKuWfcmdOrOvjgEAHnHBghloi0k1HkOZ9+ugcokTMY59DggQglqgWQLykLXwtDPN4HosjVKZaqCussL916iXuHR3TcnG63w2w8RwQGgw5JJyVLY6x1RM4wGYKagqSbUcyUyXjG0eEI0SGJv0YWR2iocJFhnhfMJ3MmnZTRkacoQCgpi4AxGWUxY+tKRBT3yfodelaxFuJY8Icjjg4OKfMZLorr7H+DEYYJURIjzi1dLs8bPz/J/n9+LckntpsvJqrkpeE//+83+I3vb/Dbv7VPP8np2PljuTiehQBxY7lVhfd+GPOTv3GN1e5iz884ha98syROn2C7pOC15AHz+TXmCm99p+DTd9PLZbwUuPEd4eY3FbP2Logy+MZ/Cnzw14aDD2A+fljkmQg2Xob+9fo83Ct77DUJZ/yJjKLlHD76W4Mvnk2MZEvLi0Ir7lqeKQ8NIS/zzDaLOLezkAu5NimChmUaFWDhmmmajJDUZsXYEIzBEyiKnCIvKGZTxodHzOdz7uHwxQzFY5xlOFLCPKM6jAhdB6nSGfQx1jKbzhgeHqH7u9yZWY42SnSjw8bWFmIdlaldM10ADXV7gq842HvA/v1PeP2KJ+12MPMDxrtHhE9z5r/8OdnmhMmdj0j7N7j1xttcffV1SknqGmXNKM5Ibf0rfT2ADIAGqZMKaB2bV6fMb2aCjSKh/iOExtVTDFWoKIJwMIXXBqck7FgWaT7lynzpR5SfL2HhxqzU7o8+oJUHH2pX4IXwW7shRUtCqHAoUWQQwBc55WRKoSXWQBy5WqipoSzqZB1iwJce7z3dbkYaJ+zeuU8+nZGlMUaVTuRwpna9NcEQyqoWmj5AWWIjh3UWIyAhoL5Ci4JulvD1r73O3mzOle4mo3JMRoQTIUIxGsAXWGdRMYixhBAYHo7BCNbVQtYa02SXtGxudYmiBDRw/9N7TMcTJuNJs05dFiVOYsqQ0u908JVHtb7nBaEzGJCFULuB8v+z92axlmX3ed9vjXs4052q6tbQVc3uFtkkLUW0aCmRZRuOhFgK8iQi0eSYgQhHsgRRBpwX50mJCEgCn6TAtp5jOA+BYQSG4YcEiCxElkg1bUmW2FSzu9lTTXc+4x7XkId97lDdVV23mtXN7uL5HqruuXefdfbZa6+9/uP3SYyVtN5RVTOqErKhRNnu2XS/ZSCXvXiPi1BlhXMgRg7Hkj/8Wg+nFZ/4ngXXNhcMTYERASnax/IxPdmNIwRkvUBw4pE2vd4ILjz14F40HxRB6m79ivM3zqWyIRMtVbSMLnj6a4Hx3qNn74R65/HpKPKxvxEYbAve/KqgnkfOFgXka4KtZyPanLYruPvIRMQI47cExeHKsVthhUfFyrlb4YNFOM4eHZN0nN+cEVKcvF8o+c6NSAiUfLuAQoclPcM9r4hLGYUoTvrmzgxFiJHFuORuuU+5mNPUFUmWIoXE+YBNuroUrSUHukcrGpoKilYwXSw4uuux4wmtjxzsjamrmmF5wIFPGM8D5e0Fzzz/HFuXr4LpsiReCYSMLMoZEehtbTB46pOM53+GAtKRpRofkaxfIs4u0u+/ilU7jOdTvvmNgnlbYa/eYH197eTrRATOGYLujPggut6NoAUxgFPhnu8uBQQV6FmBTbpduSFiU8HIBqrmA+Dae0D17cr4PS9OCYPOZuWid8jJhDh2cHQEjQHpkEp1RCqRLroQQcSKZroL+wuyfANfLmiblkxBVdYorVDGoKRADSNZ2+JcQFtDCA5RN+SJRk+OGL/2FhtSoIMjIElcgzuogD4itIigUI1FhYCdzxDWLs8e4mwKk7wrwY3QF55UODYU9J66TJw2yOmUUChkliKLOe2Va53z5iVl0eC9QwhFnmeIYQ+tD9GipSprpi4y3B5gtGTn9j4VM0LiUNZ2GnuZ6npo85ZgJ+hcErzHI0BIvKyJPlLTIkXEuUCSNGgjaJuaYj4l2gyT5iht3j5RJ/MjYlyWnX8w97mQAinfveeu05p8clfd5Ejw//4/GS98JeWz/0Wf7/3egiTx9FXF0JSkokEKd98rEIE2dNI2x7AEtIgENAtvyVRDIgJNFDz96YadNzSvv6g4D6mzkPDcZ1ry4f2dtijgG/UFZA092fB8dvfcmUcJqCU7dJJ5PvvjNbtvaF76Y0NdnmOACPvfhOG2YPNj73S+kn7kyvdHBlcEO18XTG5CdHS9dp+AzWce7rAVB4Kb/0ES/cOPFQ+7jx+gm7rCCk8qVs7dCu87lNZIIajrmrINyAUsZi3RdyLfdd0irTnxvY612N7uuxULR8/6zvi8h1ijO1BGccakPSYrOB7k3lIYgSSKiIwCrQShEcgTHSqoi4Lbr7zCOI5o+of0h0NMkqJURwaR54pKaFSQBOepY80w9fhUQDAkC0Pbem7u3GU6LRA6JTOahgskSYasA00l+MadV/n484E43KIREl02xEPJ7T85wGowvZyPb/8Ad79lWVSa2XyPq+0RxZsHDPUnaIstnDjichKoqzFv/fsXWGQ36X/2MwwvbKNCxPnITAQ0LT6CVBItwBpJfwRax5Nrc1LCZwSzsmZj+VoKEKY7YGlj32PwWKNp3YMjx3mWUZTvbjVYe6onWFcVSfJOfcGzKMqHaz0JKSir6hwGLFRlSZpl7z7ghxDH38wHfya48YA8UJoSjUFdCsSNDagjcdiV8J7tzosxEn0NqqCYeipjMVmGLypkYtEhEkIXjIgCpCnxo5y6rAha07aOZDBAbV+gqgqa/pAkS3HO0TpHMhhC8NS9HjoZILxGqEg7bwlbHcOLEJ1jKjc3YW2duLXRBV18oNx/g6MoyIcjbC6QQVDXjmgNSdOilKRYlBTlEcMtiWoXIDsCoqYcofsdW98gNUwnE+o60DQCHwt6Qw0yxSjZBaGiJ0kMISxwQUGURCGQogvuSBmYzCe0bbss2fboI0NuX2VtfQ0tMtq6ILQNJuth0vy+83gccOq+++ncaX26TReLgl6/d9/3Z1nGeDIhPITmX56phZ8vFu96rNEG5z11/ejU+x8WaCXxfik/cR94B+Mjwe/93ymvvGR49uMtV68nWDMgVYF1PSOXLZJT8pUmCiokkyAIZ8ptrYhsW4e2ktfCJk8lE56z+9xya4yxPP9DNXdey6gWD3c01i9FnvpU867PuGMnTYjYseGe85oI4gkxlpCQ9iImuf8l6loh3nlPzXcjb3xFMLgksPn9KjlgeCnS34J2AWF5+VQakSo+NEl4+Pq7Z+1ijPdUGhSLBXnv/mvj7Bqaz+f3PWaFFZ4krJy7FT5QtC4gqkDTeGKIlEGhREA1ocvGcfzQPv3/GEeHJZcunYlMvs2IOab278gLBBCW779P9PlMtFVKgZTgY0QBdbFg783XqYs5jczorZlO0857XNsZOnXTUmjLeiYI3hPaGmUla5sZNihE2jKraybJjM2LAmsdg2FCz9e0BpTIGFUa1wba+hYiBDauCtJmjdA4BuKQjldijFIGk+wz7CXI7BJpc5fN3k3m84RL1xIOCkmPm4w2egz6d3h50TC+2/Lsp/4bxNLYN75hTXU/L/1XBF0pJkvB8+5idNfp1N07vriPOtPvjlUU9f3HMRPrAyE46Qk9xonBFALBOWJ0pL2c0JwayFIAWhHaQNs60jTBREWIAaU1IUa01iilUFJStA6/lDuR2oDr/h6cJ8RADN39F7t6ZLxvuqwSCrXUw/TELnMnoCzmHFUlB8UR6UYOUhNDZDKe4hrHlpVkzuOcQ6keojU0i4ixmiRPkW6ArEDJlEQmZIOulHQxLxlZT4iRtvUk0lI1Tdf35yWhCCwqQX84QBuNVKbrpWsdfnqANZKjgzGz+Zw0zWiSiPSBja0eSneVBm3ZOVM6Sd+VDCjEeNo3+R6wKoN+dHgHr39Ls3Nb8tQzmsQug4ZiwEjX93R710Ad79//PUojo7WAG2rmI0lv4KmU7gJjIp772bd+KaDNu2TiouBGMmakF0vN2POXZUbOKLAGuP2y4aX/YGgehXgzwuxu5NafSK79wJIs5m1oK8Hhm4LYQjUT1LPzV34u9qCtViWZK6zwXrBy7lb4QNHPFXoDZJYQAvTaKUbnxEEEPGIhO7ITcW/mIUbYbRx+FmHh8aEluoCKBpatAhFQQXcRzNhFMk8TGMcR8c5IFEgIgoggNJFYRvxRzTTsMh0f4ltHKnv0ZEpfWnzhqSuHFJBoS5pYvLJkIpKahLyWiMJBUNAItO4xvnNILjJ6g45FL0sTxHyf4BTDfEi/1kyrOdFLpmHGTEXS/jrNvEIYhTCWNE0oj+bo6kXQFtP/YWL6DDqtMAd3cMXHGA2fYbrrGckKLUb0NZRHU3ZfeZ3hxavYJFtu5pIlw0oXiz02ACVnPWNA4EoBdaQtOmPeAW0dQYN5WLbsCS7j+tDivo2OD2Cs61Sulwyq3QIJsWOBda1jNh7zxktfZ1JM2eu1PL1xGZuOqKsGm1pMYqmKimJWkOYJUkqM7u4XqzU+BtqqoY4R7z1V2SCVxLUtILG2Y5nUOlIXBX09RHjdna8UCKUgeEL0XYYshO7rLTMkVVFRuoaiqgkiImTsyh2FRCeGtqlJI/R6Oa1zuNqTmh5JYpBCMBjkNHVLbAUeiU67EtAkUdShplpUpNkAbRR9lWOSzlGVSnS9qs5TFDVSOaw1VEXDpe1LxBBJbZ/BbMHe3hHzylPXM5pGs31lCy0jnkg1HyMKQzZcu2+Z5rnnd4XHjxgpS8E3v/520+ic87SEVJBkYLOM/joM1gOD9UA1l+cmLulKDd/tgMidZkAiWgb6PLWUp2ijZhGS5efA5ecahIz8xR8Y6uL891po4Y2vROq55Op/FpDLnvXgI4tDwVsvCBb7xz13j9ZV2unPPsKXWmGFFU6wcu5W+EBxwATrI9O41LEyU9Ap3nV01L2jjPlGA4TO0EMil7TPBYKZmNPKKT7EEx1gEbpItURihTlDlsKyXGXp0IjjuvxlActy5/R4ZpMp1ZuvU6+vgxDoJCVLuoh905RorekPu/OUUmDThP06IlTEh0iep2TKEV2DtinT2QykZDAY0BvmWKOo64aeNfiixoUWnaQYaxBKoYylbWd411FYKmsJgNQCXaQYrTFJy6RZkPUvczh7ha3NCZPJt9DJx8k3nmFx8B9JjEAmI9y84KU//QM2rz7Px7/vryIS3aVyjvfWZdZACDptuyWbSlzWxHZEEhEhTp1ilYK0Alm//4bm6Vyt8F4hgcDp/R45m7XtEBqPQkOMjA8OeevVV5hPptx56yaTekp10ZCXkeHIs7F9jbp2uKZGasVgNKCpG4pFyaLfkJHhg0dISdbLaZqGqmqoar/s7ZLLPtsuY9gtRb9k7Dwu/1queKVwx3VcHJPBRLwPHB5MabRnOBp0AR0JIkS2Lm0wny7QxZymaijLksnRFITAt54hPXq9jNYF6sahlETqgPKx08VzjhhBKUXTNHgvSdIEhEBqhfcepRSJkvQGOb51nZbfUJIkFohoa+gN+pRlQ7GoiB5uvXmH6B2jjSG9ft4R0HhHOTsiyQaY9J2lwO8la/deV8tqnT1+BA/lHMq5ZLzftQEcJ2pjuLdF4JEQoS8dVnpkRw12ql/6CNO40wypzpCYDDc95Vx2zLWPekoe7v55ZO8vz56AILjOyXvHFzgnHvWuXO0ZK6xwipVzt8IHig2xhtUjTNNF4fNqhpY5bGgg4mXNZj66zzsFmZoyzPrEbERoh0QPIo1dD1hcZqXiMish4Ljw5O2deOKYHj54yvmU/YObVPuOjYFAjQzaWKy1xLKg8TW9XiTtS4Lv2M58CNSyxhtFKwNeeSrtUNox6EuKec24npFvpSS5wdEQkdTKo3xF0WtYbJTYWkNfEERg1lRMswIVDklEQ9EXRGuo5IQSx0zUDIxmzpy5XFAMrpCI/0QVppCuYbN1Zk6wPpD4es4ge5OqDBwsKg7jNUJs0GmGlIoe+Smv6ImQ8jJtt2x2jDEiEtDZcQEn6BBPnL73DCFOmQof8PdHGOzcm/l366bfVdwuAxtv75yJ4eT1bDzmhX/37xgM15kcTfFtweZ6zrQfGR/tc9gKNi9fZjDMKKsG4SJ1jNjEIpWkrmc4ZxCxcyllJklSw/RoymJadsLksuthq6qufyuxCmu64IYInKxbKSWIgEIBnah5jIK29QTA2ATnAnlmiK0HbbFGI6RibcMim4pWCY4Ox7jW8/SzN7qesWUWsagqjNboXopNExJrqasabRRV5UnShKIosIkl62UoqZYagILJeEaSWgZKdiWt8rjTqQuQGKMwKnLj2WvMJnP27h5Qlo47N+8ym864en2bXi89Ia0ppwfAxtLBE8s5u/+9KmEZeDmftuOTgrpuls7zRxPH2adTOdH3/vyUArZ0wYaeg4CeaJHi0YTYm2A48Pk91CuzQ8Vr/8lSl++t7iIGcB/dtswVVnjisHLuVvhAoQKIKNBCElVcsvId//U4dn+mHPNkI4zLzjmx9EHEGUdELA1VuYzenY53upEemz1dH17A0RQF+7dvM51NSOUQYzTBWKIyFLVDO09MDDaVRKFoI0S5JGKxGucjbYygDDLrAQVedlmBKFTXl6MFWhkODsbkeY6XgUmi2G01fTtEEJBSMmsEO5MFhXRkc8+dgSKzOTLAeHyH3nqfMqZULRwuImG4TTN9HSUcidOkDmTIMTqlL6AfEhIcVQg05RydGBCCypVkJkVFcVK2Ks6UrXa9ip1Dpx6wyzePT3JphQ8Ax/N7TFQEnJRjEqGpK179+osMh0Na11LNj+j3LP31EQw9oZ6T2JQYBcG1xCgJsSZLDFXVdhqRSiKExBiD0l3mq6ukFJ28SADnXHe/SYFUgiRNEFLSuo6t86Q3VggEiog7WecxBpQ6vl8FiZIoqYgu4GUEI5ZyCt0o01lB6zodv+hbBoOcsqiom5aqamlEgxQwGPao6hptuoyFUh6dGEbJaCltIIhCYhNDU7f4xlGFSL+fLyvHBUJ2GUmpDME5vGvQSjEYZEzHhp7PmR7uUiwid97a4dlPPI0y5kQaoa0WSKXQNu2mhveehTud8ycnmPGbv/kbPPfcc/zUT/3UPcQYj4qut/rD6f4Keb6HagDutAP2XR9E5NPpXdJHcu4EE59THeug0mUS928Zbr+qVmWQK6zwhGDl3K3wgSIIj7xzBzlpiYCp7qJoYbrcaXZAVPB29kaAfulg7wjim4gw6soxz4i7Bgl3bY+7NiNIidKKNnS9RCFAzyhqH0i0ZFaWTG8d4osK6xTzRUXjF8xEydQ1JArsIrBjArfvtkjpCBFc25VzhdgwTnrs1AEpoFAzElkTo6S5DWZ9HRsto0qw5lucWGeyCGRqg1nr2RhssO77iBhp25YrdWRUdjTv61aTWUMvzTALwc3dGZlskSrH13MuN5okJhRHoPOU4lAwHGTYcpP+7piSjDi/gRYpayHn8E9fpf+921zcvk4UoSOuOO6/47jBXXD2XylOMwXvFCd8yCQ/QYblB4Gv/fEf89kf/MH3bXxxXJop4pk2vE7bsHWOW6+8wnj/gNHGBndfeQlrYGN9hM5T5rYmXR/SzCt2b75J2zREIbl47Tpt25Ikiqp2WGUIBloZaIOnxSMFaGOIVlDVDVprpJBobRCJoQwNsYaoUnpKItA4InVwBDxSa4JzGOGIwuFwNI2jcDXbgxHRSHzwXelXlKSpxTuPNBJXeZIkwfYyJuM5G1KRZQlplmCtZmfngPFkhs1MlxWKAW0SksR2wu1Vw7Izlxg8UmiMNmxc3KKYzQkhoJVGSImQguAboOspRGp8UyEFXLy0xuuvz1nve5SeMTlquHt7wNalTbIswZiI84F6MUNq80Apl+9mxBh5+eWX+dKXvsRzzz3Hz/z0T6Peg5O3tbH2Ppzd48Gduwe07uFOmoiQqZae7NJkj0KiAlAHw+12SFg+on0rufWK4aWvWprinccrKXnq2sVH+owPEt4/2vdfYYXvFqycuxXOhaOjI37nd36HX/iFX2B7e/s9jXHcFxf+vz8i8ZIoFbGe4ORtoEEoQWgT5BsevAelIARi2VF4bbY9gjmA1/4cVA4uEKND2OVtnKbcvnCVm5eudIQnpmPAlAIO68CahXHT0BeBOkr0+iWyeIfBZE6mM0ZRYeqKNaXoi0iiAjfo+swgIqXEyUCSdZzRO6JmLRb4ADfLhi1ZsyMHHcNX3qPJPG9GTVOUJEbS1A2lW1AmhtYEJqrF+4C0imQI9bzHfDdgpKQcGEoWFK7CffopbjMhTcdo6fAKxKChHabo3ONkIK4Foo5M6ylVtsVWXlOHPs3BmPboZV75i236YQtzuU9U4iRxQ+wi2m+bqaVDcJZl9OE6Qo8LnVMpHlh+dva3T0KG4oWvfY1/82//LRcvXeIXf+EX3v/swrIEN8bIzu2b7O3fpTcccev1V0ksDAZDRptryNxS5g1WB7JQMzu6Q1s7ZouWtnVcf+45lNIY5xiUmlJ6lFxWRltB41yXIU4VrgBtJEEKgoCmLVFC4JwjG64xrxpslAQfqUNNlID3CAlBBqIItNExLwvGiwkMItIqaOnKmiezrqRTKfI04/rVLQb7+8ymC5IkIc2XvURCsrk5ZLTWp6oa5tOCulrQG+RouhJAISIxeLJ+Hx/Aphbnlk6kiPSGPaxRXY2BFHjXdhqBKkWbFNHWoA0QybXiqaeu8trLFdKVuHrK4f4RBwcTLm5vcuXqFlpqAhHvHMp2zl1Yisq/8/5+MMnGe1sKH60+pVdeeYVf/9KX6PV7/OoXfxVrP7rlmu8FQsAlM+eimUKMSHH+MoqA5ihkTEN3zZpa8M2vJbz0VU1dHpMrfXSx6rlbYYVTrJy7Fc4FKSUxRn73d3+XCxcu8LM/+7Osr68/8jiLMMXICSRDogSrQYoIulPdkSbH+WknQhVCR4HuazDHLJgW30uRThGFJrYOpyrwkZAogne0ZYlPEmTo+ldihFRJ6hApvaeKAYnrenTWeuRJgy1SzKwh3Rwh05wNGwlxQlwISGA4GpLmOT5ElDFIqYkRzME+3jlMotnoD+i1OcVLt7BeEhPDKz5yLY2d8ddTZNITRCBJIzesom4CUsaO/CJpWQhB4gSb2jI5vIu8/QZpeoN66zKTgympjey3RyxsSrkxYBoXFLIF2+KySCQwzSNtSCnGr6HVhHSzYZ7f4i8Pvskou8TlUSf2HiMMTE6O5e2FYFGIe8Sv4TEm5B7TOOcd5v5G8ocPuzs7/Pqv/zr//d/9uzz9zDPfFhX+vYj3fRVD4GjvkBA8s+mUulrQ31ojyxVWtQiT0hrY6dfkaWSxCHgfqWvB3XCXA29YzzYpRUOlXZeJVxohBK13ICNKabyKHPUXKF0jlez0JGMAInXT0KoeSlm0rolSkbanfOwCgRw0RDvH1Y4Dt2C8ViGFxJYShSCIbn299dYd+v2cy3nCcNsw3FgnyTNiCCxVQJZZa9URFFlDCJHFvMRag9Sqo6kPoI2lqhtSJFVRYaymbVuU1iSp7YhXJCCW2UPXovIhyiZIpRCNwrU1xIb+MOPa0zeYz2aYZEbrFU3jePP1O4xGfQaDHlLIU5Kb2JFAyfsENz78d/EHg8V8wW/8xm/wyU8+z+c+99+i1Iez3PLbxX3JbgER/SM/j+ugGLc9AtDUkjuvGL75gqEuHihCZsoAACAASURBVPRJK6ywwkcVK+duhXPBnmlo39vb47d/+7cRQvBL/+CX2NjcQKnzlRPleogJazTbz3bOUXkbIa7A0k+MOxp1+eKJFWOI8HSnnn34lwvybIK5cIXo+x37YxLRy2Nr0WLahv+6nZKmfdjogxSEEJiPD9m7eYe2aTHGQDZHxj42NxzWkcJVDC0kA0vR1tQxoA2UbU2apJhRDkohvKOq59ishw+CJJWEJpAbizCCUDYYEennioNyjk7XcM5QNgqdVgT28Fowa3N22gChRcRAcJG6PGB+1MN6mB/tMjm6zUB/CwRcNRmba5dhMqU8fIv1wXPge1RVSyYdG1bR1op+vs1RvYs6eoMbmcamltZrVDMj3NolGa2zvjkgkYZKeFxoH2gxhmUv45JS8/Swb9PCFI9hjCcVMUb+93/+zwH423/rb/Ejf/NvnnttvVsW5oQE5zi6LQSudbRFQ0xgcrjLsJ/TSw25aWkXYzINlwpFOKrBR4ZZhhDgfcC1Dv3mjEvPP4PtpUzqQxCKzKTUdY3WiqZpCW1kOi6wZUaWpUipEFKSJobpeMxiEbGzlitbm2hviAtIk36X5ReSGBxyuk8TE/aiwOw2fPrSU/TSlFRbyqLGLQomk4LDwzGXLm9hQ0tTlqT9PjbNKGdjoved2Lo87u3rUtdCSpxzNFVL05ZIJcjSjLqqiULQtI7BqE8IAWMsRiukAO8dPoqOTVZ0vb7KWIw2RKWRxmJ8TlNMCCGwvrVObzigmJXs7R2hTcJ0OuW1V+5w45mrJFlCP5dEOqNdcqxJ+R5YM+XDMxhPgs5kjJEXX/wGL774v/KpT36Sz33uc++pXPPDinIBwQnQp45XjOCiJAqN4Py9dhHJbjtkz2WEKHj5aykv/bGiencN+ycOMQRiCKtyzhWeeDw5T8IV3ldo9U6K5Bgj/+Sf/hMA/voP/zB/+7/8UbR+mCEqkNsXqf7K93XkHe0lrLqAGHWRV7/boC7ev9TmcHKXja0x8canCGGtC/6nAWS3+dWh5Ghvn2brOono6Ptd0zAfT9i/fZuyqhgMhl2UPjG4UDGbT6h9Q6/Xxy9q2lgQjSbqhsbNWbs4IruU45hzeDBFKcF8MiXvDTgImuAbNjaHmKJlPJkQXILSgaqdcjAuaC710Vnk2lZLNoA4G1C2htjP6BuJEhFXV7Qt5KZHf1uTz2ekFwaEJkHs9SmKGWFrhEgbFoeRdM1xEA8ZjDJKlZKpgljfJDWSutEs2GRoA0ezCaqMRD2gTYcMeiNmh/uM8x0ubV9bZrQk93paS3bMeCw1cdykJVjqUD+QaOVkhp8Aw/HDgN/7/d/n937/99nY3OR//Pt/nzRN3/X4R73qbVV2GaowR8SWLM3IzYRYT5DJgLKCalGjZxGlBNI5fNuQJhalDCoq7KJllK5jdI8oDK5skU4T6kBPGHzoCFtUSPETT5rbThah8SRtggiRy/0thjKjnTuqSYmZZdise94Eb1ALKF1D3UTSRnHBjjBC4pxHItBKE0PLD/y17yPNNHJvl+AanPMoo7vsYTwlZIpEpNLEGLHGYKwlRDDGULcNs9mCtm0p64aLFzapipJiUdLv51jbwztHDA6dZChtMCJHqjW0WeqGCYEWqiNVSnr4tkYCWluEkAQiO7f3MFoxX5QUZUtvbXSmHPfDt3588Dj34TWIX/zGN3jxS18iSVO++Cu/Qq/XO/lbFyj4cJfs3e/Udl8X7L5uufb8aSY7Cthp+/RkzZqen2tsFwxl1B1DpoC2lrzyJ4a6OG+27iF6e99BPMqcvnXzFq5teeXVV9/HM1phhQ8HVs7dCueCMe9+q/z7P/xD/uirX+VXfvmXGY5GD842hI7xzhooKpgXFhEbYMkUN2+Rie02ZNlRjEe6Frx57TkcR1gDH1twAdUzCCmIMTBHMG4zDifgRcfONz+aMZ/MKeaQ5SPakNFUAuqUolDUQVGxYC3LOwkCnyGlRjQS6QJpsoaKGfPxGL+QyMQyyi8RUShtGfY0McBk9wB/0DDo97ABqkIhkgGSHkqkJIlCUKLkEK0iQWaY2IM24tocJVOkDGACHo8PBplsUPgxQkem0zm9zQ1amdHLWpyfUSwkherTW79IWh0iRcvegaLubWJ6BpFeQ8wc0UaytRKmmtl4ym68xdpwA9FLHlCME+9lWDxuvYsRKToWTSnE21zCx7v7iw+xQfFB4/DggN/6rd/iH/ziL3Lh4sX3aKSeec/y/a51eNfiY42QAq080ne9azpdZ1ZGWhe68tAQOmdfiGVpsiaEQLOY4Nc2QHSyBW3jsGlCWzfMpnOSJMX5jqFWKEmMASkVShuSEPDOkKSWtJcyu3tANa+Qs0Dauk6+AMmw8bSiJYTO+QkxEIUguo7ZMsbI1oUNsjxByi5gIWSXdVZCom1KcG6ps9dJELDUxjRWkdiu5y1JOkKWabEgRM9oOCDGwP7uIfPZAnt9m8wnxBAwSULSGy6fc/efDyFAJykQcW0DArIsJQZHvTZgZ+eAC5c2uXD5AlkvW87riUjJEo+DO/P+OF5j70Z+LwS8+dZbvPbaa/xf//pfvy/n8ThRVxVf/vKX+Zmf+RmeffbZ0z98yJ8l93sOt7XgjW9otp+RaHvaW7eImiOfMVTFu/bcuWiY+ox9l1MESxF0F6sLYinLcD+2rHfio/AcPtatPY+Qg9Iaax5dz2+FFd4rvhP328q5W+GxIXjPb//O7yCE4LOf/Sw/8RM/8Q5yiP/t//xz5Lig+Y9/TOsCflHjYsTkXdTbFTW2l3SMlKETCD+GK2quZyl74uu4CN55BsOMunEYq5FaUfRzDjjg0jChWNSMD+coKdFGYY0H5rTLCHSIoFOD1yP22siwSNm1FR5BpgQbrWShx/hXS+aTgqyXYLREdBYkYxH4MxrGk4LJ3GHiAHzN9k5Bc5QwGfVZyyU900CwaA8DqUA4mgBloWgbybySKClIDxyisTRjg5oMGKqcRROQzS7DbE5x+wi/uIiym2xefBp8y6EruHnniP6sYX0Y8QHaO3co7YBhfwNrBFGBLCfUu6/Sjzsc7ZTsxIytZ28sxaSXzfRCdBcFoK6haJGz5mR3j8FDUCS1QFTvFEQ/Nx5DFP249OxdSV5kt9nLhxmwH3bLjy5L/k//2T9DCMF//kM/xN/58R9/pPd34uXH3OfdHEslQUWaqiV4j7Uam2+gbI+izZhNJiilkarr/5IiEn3Eu5YGidGKxWQf01tDKkuaWRAZWiq01ngi3oWlQyex1i6p1ruSUCEkRgtmszlZkrG3c0RYRKxTzGYziI7UKowVrK/1qZ1g/2DMYrbAtRbXtmQ92QUbjEIqDaHhrNEqhMCmKW1Vnko2xEiIHpC0TUNT15jEIKUgSSxbiUVpRVXWFPOSqqwJPtC2jhgFNs1I+32kfPD2GeOxiItA267vr61KhJJkWcb2VctgbURvOCLv97pSzON1Fk8lYE6CKyfz+G73/PtzH0shEMackpe8/aTO8xoe7CW8/fi3YTE/X4bqGFprrl+/jnpoFcmHH7delrz01ZSP/1CJsd11DMCtdkguPBfM+L4OXoyS2+0abzVDHF11/d5Nw82XDLMjSVXFjzp/ynvGf/e5z/GJT37yO30aK6zwvuK7wrn78pe/vNwwOyHa02iVoG3b7+CZfYgR4zlieg96a+SFF17ghRdeoNfrcePGjZO/Pf/sFtoFWO8jgHJegRD0lk6ajpEgO4Fg13r2Dhb0e5ZebhnvzRDzit4gwxjFm3cnbA1TvA+sjzKaECml4vrIsr2mmY0bmlFCkiUoKbvswtKGEITuZ+1oVYUpLOy3bF+9yLzxbA8V66WkMZYJBSYZkCWejG+SmsOuF0h0/Xz7BzN268iaBLxE7bYk24KwnnFXr3GlLRhVFqHX8KGh8eDLBbvf3CdRLUnSxzrNiBQfArqc0k+eIt/cwu2W7N3eo+duM+pZvMhZyy8j5S7zna8zNIporrJ98RrVfI8N27B9qcGVO0wOHKIZErVhntzm8tBjU8V09032xtcR4x4bV68sBeCPo5/L6yM8wihIun7HKCIgIXSMhzE5k6v7KIR2H4KXX36Z3/yt3/pOn8ZDEWPkj77yFf7oK1/hb/zIj/CjP/Zj73mspN9HJ5ZYCto2MJnWOIb4ScD7CVobiIEksbR1g3M1zju8c9hUoFROUdTE268wuHDj9JmhAs558tRSFEunSkra1pGlFiEVrm4IS4mSalFxp9ihbVpSkzCbzFnfXCPLemRJRO3BvG6YzBsEkcODCUIGsjShbRrSPCXPc1xbIUVEGAN0z5AYI0JI0sGQcjaGpaMZXIDgyHoZad45V0pJBBHnWhCSwbCHMrbT5ZMKbbqg07GDFe9jHR+ToZyFlBGT5Qhl8E1FCB6tJVuXLmDT7J7lE+I7Sx/De9CVfJwliNefusZnvv+v8unv/SuPbcxHwa/92q+d67jnnnuOn/zJnyTP8/f3hD5AuAa+/oeausl45vsa1i50fXYeeKlep4qSp5IjQHDUpox0jcaz7wbcagc4oJgqXvkTy6t/ZqhmcFx2/90GJSVRaz70adwVVngMeKKdO7mM7hfFfQRcjo9RZwzbJeJ9hLTv9/qBxz0Bxi7i289n/A+f/zxPf+xj/Mt/+S9Pfrc9SrEHM7g8BAFu0pWK2I0eMUJxd0J2aXhy/PXra10UPMJid8rN3Sl9H1BaYWPElw2LssWXDUpJnJS8eqthx3TzOp/XaFOQZwZiZ3xJIZAS2jagdZfVE6HGihxfzrBW4dMNytmMJoUqBGaTgsX+X/KJ7Rfp33iqazxTKcq3XNwa0J8dIGSfal6SXQmkaxJvJkQcPSMRdcG8bKAtEHJAklryNOKrObnNSbIMWUQWvsJIx9HeLhtaMLx6mVK1NDpShiMqP8fKBeP91wiiT2VblNrnoFrQG/U4LCSZmzFc12xuJIRSEVWL7vUQTY9WLkiZcOfwJqLcIDdgzpIQLGMfQShIFFXSGbOOSAwQpaHwgvXsPsbB8r5X98vkiQ/3urh+4wb/1Y/9GEmSPOCIh5UwnZJ0dHjQsW8fR/Av/o9/wXg8Pve5CiH4R//of6LfP+0rOn/u9HQOrLVcuX4DOYDFfMbhZEbVgLEWqRRtW3ZOzzLT7V3oSpZx1IsZ3nmUTqjrhrJ4idGFy6xfuobWEr8MfhilSKyhaT2pTbGJpambZUY+YpME1Sp87cmyBNVK6rphfDDFreX4kJI3njd27nCIIs9ztO4yicE1lK7haDxlOOyz6dfo9S2+XGDW104yazF2rJ3ZcB1XV/i2Rml7wuwjpDqRh1BSY/IhUqlln9b9r+zbjePIcbbu3j3h+JoLETCJQVmLbyqEkChtHnD82XG7++XJ5IJ8PHj66af5/Oc//6Huqft24Fr45guKvTczPvNjNReuNcccV9x1AzZ0iRWebzVbfErdpUbzRrtBEwXBCb71p5ZvfMXgT+LY332OHcDVK1dQWq96wlf4rsAT7dz943/8Pz/0mPclgvWEbjL/yzkjqHme86v/8B+S3EeD6HuuD0n1DuGT64DA7y8gbBDWckKIVDKQPnUqNnscIY8R6t0JR7cOuXKhj5SS1nmSRNM2HoQg61sOS4+fgBYRoxVl7TBGkaQd7bmSp6ZUjC3GarSR4AMqRoSW5MOMfKNisXOL4eg6ctQyH++Rqz0GWwrSNcSSHAEA31HEyzhg9w3PoNphzQ6IG5ax14SyQYRAqzTGzwh9w2htgy1hmR9ANsgRLqE6mlBVDco72rrm7q27bA4uY3sD+mvPspjdZdYI5q6h0gnKGGpVkKclhDkzHxCjaxxOWvziDUySQYAoAuO2pm0jC1MiRMTbSKUEpXMYFZbX44x0fAh4ESlCWLL3QXoisHy+Xo1vBx+0ZlFiLVtbW6RZ9oF95tnPPi8+//f+Htdv3HgEBs0HQwjBYDAk5JeZTafs3nqTeVFimkCSJEjRVTtI0XRyJTEihMe3S5a+usb7iNAJzi1A7tIbbCLyDGP0UhdOYKwhIrBGoFTXV+acwyYWbTSx7uRQVKLxbSAAVVPDNNI0LfXhnMW8Rg6H2MSyvjFCG0VbVSzmCxaTOYtZSV1UJKlmzTdsf+y5d5SEK6lQWY+QZMQYuvW7JNuIMRJiWAZ+umv7KHvDGf7N+0pYHLtnUoC8J4AQOmKpd52ne+fsca4LgehO6iOINMv4ws//PBcuXHjosR/1RFVwgsM78PU/SPj+Hw2sX+zWYB0kbzTrGOFoouKNepMIlMv+1GIuufO6xrv3/5n9ncDZeRXio3svr7DC48YT7dydB09qtO87ge3L23zh57/QSQ08AJkVXe9bChBpEvA1/Jt/9Re8/Po+MkSk0Z0QcuzoVASgteL2rSNC2bDnItN5TQgRaxTadJptPkTqGKlnFXlmkEKc/O92Zngf+MTV0QkZiJCCunZMqwhlSxI8bT9jd9bwjRcr/E5JduEOm9fWUWGDmPx1Xj9YIOyIZ35wiMk90BmDTbMLesTXZxPWxiOytQx9YZvK9PDzA1LTkOX7xPmUWlqi7tEKQR0ECQIRQudgSkFdV7RNi3eBu7M98rWc/sYlRhtDNlKPbw0Xt1KqoztMZjU2VFyRExbFFB8GkF3h8PYYpVpEaZCpphl40jqispowDlzsX2AzTxhaw1B0pBBRiBPilCA0RZD0l4buMdXD48BjNU7PNdZHe9MXUvJzP/PTPPc9H/82R+qyU8feghCCJDNcHF3BWMtw0MP5QF03nY6cAhcC89mUpq6x1nYOU/QIAk1d0FQFrqrR2lDXhwTxBptXbmCVxCQaqRSLRdWVRPka33ZskcfZQSklKlEdg2Wi8c7jtMJ7z3w2x9SGav+QZLRGvjakN8hZX89J84QQBsynPbwP7O3usb/XMhj1uLw56gIbD0Dn9J06fscOk1z+Lh7fU2/zCM7qPt7PgXu4LuGylDnCiT8XWZY8nx1neR7Ix7TinizkvR6/+sUvvkuW/clEDHBwSzDd1yfOXRRw4BIgAQF7LgMi3gvmE8XNbxgOb4uPvne7wgorPBK+6527Fb59DAYDfumXfonsPFmPM1HqECMqAVdBquDTz10kV5CNuiye913WyFpF03i+5/IQ0zQML6+xd1AghKDXt/QHKcW8Zr5ouOsF68F12TIpsFbjQ8AahRCCz3w8Qy5LsGKMlK7Am4Ze6JMvCtrr17i9O+XotUOyVNF7NufaZ/poFZnLlqy+zc03L7PpoRfFsh9Hc1tb1qTikoaRC/hpwf68QfUHaJPi22YpjmyQQjKdzNiUI/qDFDc9oJ4nqLqlqSpS0WBUSWoTfFxQzafM9gakVhGaIVUxJlYzrJAYs8W0tsyEAidYTCNKl6SDT5HmAzJvEakhG47J6jX2y11iK7iwfZX+4CJtYamWxmRn5HZz4wooFgKzuNe8jEAIDzEU3sUiPSF7f0C526r87BRaa774xS8yGAwen0N8D9FF95/Rlq1L2/T6PeqyoJzPO3bYKIjRs35hC6JgPp8xn8woywUxCoTqY/t9ZFMTvKcsC9RswVZUSGkwRtFUXZ/cfF7gQ0KeB8qqwRqDBNq2pWla8JKetPi2IXhPlmfYVhNFJMlSRJ6jez3SNCFJLVKClDAYZfQnPaaTGWtrIza3LzJMH5AJPQleAMvg0VmcZOricXntvdkOKcSZnrpHnY/umXO8dEQ8Hfk4aCKEQJx1Ou+dpkfCkxi0fP755/nc5z73rsHDJx0xQtsIyoW6t0AoQlUImlJQFZKDm5pbryrmhxA+vAoWK6ywwvuElXO3wnuGEIJf/uVfZnNz89zGRHAeGg/zBgn4WY22JX3Tse8NFSR93RGoASJGpJYEp/AHM/x4wdYz62xeHxF9AKNQgxRrIl4UBGsZtpZcWJz3GK1QamkJxoAcLXC+6ZgfBfi2JqaOW3aG8C2L3HF3Y0qtp6iFI71QMnZTkhhpgb6ccrO/R6VBuwojLYnIGMsJtW6Z5Ra/0aCB+XSBlj3miwLaAqMrklR1ZDFEZlUJrkZVE1o/JGQtuudRXiCylkU1pywkvdywdzBFSo1uIsgCF1psaGilhXyDcSHp2Q1SNWQxm7NYVPR6FxAyA2VJe5a1wQWUW0esG3r9PjFIQgk13bUQUpz0I7gKqjqSlv4e67JYtPi1Ry9dfPJMzfcPQgj+2mc/y9/58R9/LOWXZ0Y++akjrRQIJYGIlIJ8MCTJcrTRKOkhRMqqZufOLloZNi5tc2H7MkoKFvMFk8MJs9kEk2bEIFC2Ym1jC5smOB+QQmESy4UL6xSLgtm8oHUOKY+DK4HjvrtZuSAJluA8xWLRySNkCWVZISJoa3HBo7Q65pHsjFupqOuWtnU4HxhtbWBde5/nkVi6ap1weTdEZ/V2pCtvP/7+LpU80QU5P84SrLyj4/KMQ/dRYG39TqDf7/OFL3yB9fX17/SpfMcRHNx5VVGM03cQks7HgnImKOewmAj8+TXOV1hhhScMK+duhUeGlJKf+7mf45lnnnnkCPFxnwtKdPHvwQU0cOHykK1LfS4lEnVRLZ07AdF3EfUYu8xWvcPHv08TxRqxBVXXuIsJ+7cPEf1D9kYZT/k+SV0hl7Q3SIm1GqLHNTVRdM6eDwKlDVVoeCvsIpShKWc0GtItRb3uQXsO6rsgJD5USFqm5lu0hSTGmoEd8tTwGkmUZEmfvg3sbjhG8xa1d0g1cSwmO2xtOmw6Y6bGNFHQTwVeHCDSCSoEVFITpKdpHb1m0hE73EhojwSLGKmT/5+9N3myJMvu875zr89vjDGnGnpCd5OAKEgLGbSgRK1horgQzASaliK1ozaAGf4wmUmCYUNiJxkl0igKA4nqrq6srMyM8c0+3HuPFv6miIwcqro6MqvLvyrLePF8us/dX+b9+Tnnd2q8m/Po+AlplqPUGJcRlZ5QlJyGJQ97x6hRVmXK9MqRFzPSumRaLRG7JIqWZIPAOB0RRw21BhpV+jaH7dQ3IEZp0hIOhPHxTXERfCCY71jN3Xdozvw//7N/zsPHj35DkZd1WuDm3IpgopuRImMt/fERSVawuHqBD4HTRw85P7/i6S9/xXA05uTxAwYHhwxGBxhjUPUEhcV8SX80YDAe452nnE/AK4NRn/6wR/XLX7KcLyjLmt6wDwqxNVibcjAYYlcWbx1BPWVZIgJN3WAbhxXIs5ysyMBYvIfZZMrFizNmkykPjiOe/M4PGB0eILPb1vnriLTs0hxlLbk20bpvUnst0j4M0aBv3F51Mwa9MQb7NYXi5uHL6+4Ns/dw5l14/vIl15MJZ+dnr11nkz3xPvmTP/mT9zuADwjv4elfG57esez7nHn5/OVL/vz/+PO39uPt6Pi+0H0TOt4dEf6Xf/EvGB8cfPP5cmyRxKB53Ebm8pigYPsNppdBZqBY2+8jbW+t9b9aTTJFjYXeAOgjDRAMHmG58pikR2xzrOlhXWveUNUrBMOqrEAMSrZuiWCwiSDWY2LB1Wes6pKzskFMTCqewkRMteIgSbFicSghzGhChieQWkEk5tAeUeo1gzpjaJZcpDmTCuqTE15UlrLqcZ3HHOQJgZzzcMBXvuCJRJSTB1hnqKRPPKnJFpZm/pTrz3pk5TFOBX+tFLGjsSuqpxnX1mJ9hC5m+KSizh2XSYzMVxw+fIDxnuPsALMKbf1OEfHicsZ1vcAVirFCntTUscEWKRLZbQPl9sI6bDVH9KYHuxHBxpbE/nribj/989flbSLo+cuXWGv4Xz/gBsxxFPOnf/qnFEVxL+l0smlRqIr3urF6XC9sr02S5kSnHzPwnrqsePTpj6iqtudhEidE6S71MTQOMZbjh6atnTMGTRQrUFclVsCrR9SjTcWDkwMGo0M+//wpk2VJYWuenJyyuaciE1M3TVsr6zxNteTiqxf084Lx8ZCmVi7PLvibf/dXZHnMpz94xJMfPqZ/9ElrhiICYto6y7DrF8fmfhbZGQe9kwPqrXf32iDoa1KUN/V5IjuDFZHXNzx/H2gIqCrOv7nXQhdR/LD4Pou41/FO9/L7fkrR0XGPdOKu4535sz/7M7Jfs4j9bd3z1IddyctejcptWvM+BQ1UyxoRJc+ytr1CXRO5mnJZMuv3SBFMmiLGsFg5bNSmRoYKqqomHuQM0485+ALSSpG0YCQVR5pTjiyPxgdIlPFSKmx4RvL5j3gwjin6bd/Es2C4YkZPYq4HferDjI/kAU3/MfnCcTSpOB3m9IcJWn/O4zhgijEH5YCLpSeO4Ky2lL5k6AzpynHyV5/D2ZTaKqXzDJMUVaVaTMlqi8oE4xdIriyTCHpL6qknlEov2xlCiDEUIXAil6R1zVSW5KYgTVLQhko93vawSYqxG5toj+GM3vhn7bm+3RbjOzS50BBQEfxbJrDvk//pn/+zezqSbLXFxtmxulxiJpuaS8AIxsh2IqQ+IM4QRIm1rXUSo2jUbNcJzkPwuHWEfXs0a0g0ayOCLnBsf8DLX/wbVr8oSX4y5IH9mIlOqVcNZd0QO4t3nsY1+EapVjW+qTF1ySIIWeMAg41jZvOS3qDHD37wgAeffkx/fIIxFhGDhNZxU270nLtjYveGWXIr4Dbb3Wp78I7Rvs335r7r32T931vXMQYx5ltO/e3ouH+6e7mj4yaduOt4Z35dYQevTrE2fZx00wDZb8MKN9bZf9a+WSoARqirkrqqMSmglqau6UcWsT2IMwbBY4zBuUAaW6q6IYki6s8tvZOMPI+4livsZMmj/gjX1PR84HxS8vJqwLOzmiQV/u1pjzL8AGcKkgshXLb26YpBwjFlsGR5CtWP+cKmmFkCxFyNn3AZN6RNhviX9LnguMmYu5rKKKIVPo3x4yXVsE/y8CfIqqTOE5Z6zeIasmMYZDnu2ZDzry6gMKS2xypuKEc5RVQSLZ5QfvyIfGxp+jnGWFQV7wKT+kui5YCZLgk2J88yQgzBKiuNoFkE0QAAIABJREFUgIgkL0iKHiKKkytm7oSj/WtDm5bp32FSe8eb736PmF3a4OuWv/u+1v/oR91fdQA4D9ML/AvB/a0hj1/Tx23vO/da+4r1fWBvv7Wnp4xpTUgEeDwu6P2D3+Hy7IxRXGNMYNgPBA+6mOIuY/zScToyiBUiYyn9iiS2pJ8+YviwredLkoi//5/8FBP9nKToE9lod8+JQNNsK+z2P9GNl3uOoTdF2lrUimzH/tonTG/Amg/fGujJ48d89PgJ//V/84/e91B+o3SRx99+njx+zD/+b/8xg+HgfQ+lo+ODoJvxdNwLsp1M3bTu2prXbYzs7hAOm0mmNYJb/77tyWYE8dpWmoeILInbiWFiEO/bTCzvMSgx7eTTGMGikAbS44b8SEkmE+xJO1FceiGUK75q+tiP+kzwWAkMlpasFA5jh/GCU1i4QGFa84h/e77kZJiwok8kUBOQxHDWFwobKN0KfMx8GqPiKN01k3PLqPCEzICpmeczymVCf5Fiw4DhyYIsG9DvWdzKUGE4enJEeuixbsnCVsz6GUl1Tqg8S+cobIJ9/hJ9+BDWTZqrsqFZllw3U65mVxRRSjxIGJ+OGBQZAK6pCLOmFXhxwN4xJ2qaQB3fnar2bfOmPW76ib1p4iYITx4/pt/r8d/9k3/yrY/vO0m/B1XJ+DjHnS8IsutvKHtOknf1Y/+6dWmy/lJvMz6Bnhb0Dj/dDSfN2+iggnsi2GFKetRgjMF7hxDQ3/t7hCcfYfIcQbBrwb4e1M2xqafND9C3T+k3H3i9L1HdtkEQ1Tb6t04Pf1u4+r6ic8L99n/s6Piu0H0vOjp2dOKu417xeOrIo1RAGyFQFCeCE6WVfs162ebP9as0onYx85mjWc5YXE1x8wmzaEGSppQLWIVAcIYKhSAs65LKOUyR0mx6eK2dM+tVRLx8TpNGRMtLpGzAOiwRiWlI/ITziwXOeKyN+MwcINfC575HFFuiqDUw8F5bD38Pn13PWaUxYVFhYsPRIOfvYzmOMqb1lMuXQ1ZyzPH4gElt8XaE8RXNIseHBSaLyA8j7EQ4lhRvBceQXm+Ms0IzrtGwJCoCqYlZ6gLbSxgMD+gxZBlbJsuSbDqHYYmNI5raYaxydDykWlXUdcVyWuJcybRawOFDDo9HWKNo8JSzc0imaHK8nfjuo+t0WfsN/zG97wblHXvkOfrJpwx+VmybZ79WuqxdJFU3Te43AoobyvvN1/KWX/v6wczN49xabf16PyIY70fmXjNWpFWSirkj43JvO7N2qJS21UNr3BTWad67IaHhzcLudrryffDGA3bfqe8qjx8ev+8hdHR0/BbRibuOe6XyKxbFEq3Pt+8FhZkkpGZBgYBrAF2n/23DBjRHjtp5zi//IxfPZlz86iuW5RQOLYdHI/onR1hNqfCURGgTkHpOiaUuhSiOqKQmsgZrBZ9YJtUF8WLIomzIjNL4JXMvTGODHc55dLwkywNpWuBdQ8UJp/kAooY0EZx61FscgcRGzGYp9A2LSUQSQSUxYhquSm3TRNMh82ZFtboit9fYxFHVS2pNyYNFl0oS5SxGh8TTFdSehavg7IpkoTSVxR6sqGrB+wqJAwkgwaKuIR/EpKmBKGHlFVGPazz5aERiCsbZkCRLuHh2xcv5Nc7DF7/6ijiO6Q8LrBVQ8E1J5ebooL+Lkuzx9obNHR8aAq0hkQDBY7Bsvl+yFTC691sA3cSuNunTEFj3I5TtXmkf05idacn2oGavL1zYLb5LL0l7rP1d7KLHa39L3Xjgbo7JjbRJFZAkbssLt+Njb/ku2ruuiNtG+e5qn3Dz53eIr5G63NHR0dHx20Un7jp+43jnUNqavZ4OiBdjSJ5slweFZ+ULTuwhg6Yhio64a/bX6Ixnzd8Rf/bXyNIQLb/iVDyuBPtySRQtOPrkh3wSpcR1jWSGwnh6tiA4BwS8sW0zYg82zSAVqqYkimoOjRLHhtopqo6npzXp6ZAQKrI05+N6wcWxxfpAFBsqX2GNEFsIKqzCEooIk0QM+xZvawaSMbSB2BqmzUt6/gBXl6ifMXFX+IszRr2Iab+AMkJyw9lqwrSc8zJZMSJjFTtWUUNyfoFEBcMDS1MHfDmj30tZeKWplmjpYHaBv1qQpBmSCLVXXB4xD4pqg0s8RZqQVil5WuCWjqpc8vSXTxmOBzx8ckqctGYS3pUsJhV5f4iN23pLVcVYi3BzEl83zRsblK+Wy73ld088q7Lavs6yt9d3Fr3iresA9IreO633XWXzTXk3MwFFliukLCG0kSuC3hRlYtq6xo2Daghr/eYR1TZiu2lpIrZVekHblMiw3o/qtqdcuy/TRgKDX+eB7tw528HHO7HoXfupbtXCiTXtfqB1cn1l3NLee0kCZt1qZZO2KfuCbnMmFMQioXmH8/b+cG7XsKzf7792vdVqCbRp528i+F1q/PB7UKPkQ2h7nXb81rGfKt4fvP670dHxfaMTdx33Sthz4tuwseE3AiYy64fO+5MwcE3Dl7/4JZUmuOLHfPnFL0ijUwZxghwaJtdTVE65kAfI6Bi3WKHqmEof0T4SGZq6xKQRxliMMTRLi0QNi1BwLQ1F9BEplgaPC56LC8NHUcwo7xHHA/4/MkJiGM0iHjwIXIbWDl5Q0uYSdTC5WPJicE39iz7psSftPeLR8BJragbTv8G4Av/ykoE9xSVPsRPlqP6UbPWSQRDqekVkr5iUJ4y4IBoNUfeQylTIeII1hp6JIfU0GkhTS+V6xKQUxe8wn54TX35O8eQT1CT4SKiTQ0q3JNgjvAYqv2J0MqQ/6nHx+QXVQLg4P6OsltR1xac/OoF4PUnUhtXsimJ4RBQnax++e7DLfE3q5ivpdl2E4uuRF2jeiuJNFGuX/rypO1u70YrcMEfZvdhfV7YLN60zwtplctMcfBsH1PZyvRogu3lHyd5F3mRbbtjsG/ROY51tVE42QrdtlC7auqburIF2KZjfpTvo3VNgOzo6Ojq+r3TiruN+8W9ZfisFUIGggYvnz3nx9EsiM+D6/AyrDcNRnwxDFQeG4z7OeSpf8fyLzzksetgowUaGGItrAkkctylY6wBAXTkyMaR5StRYfONwUdsnK0sT7NmQkcsZaUQvPWEQRSzriH4VeDxISY3lUezAB66qQ/Iw5cV1xSpxNOUxHxfCJSc8mJXE4YCVKzGXjrNVRrX6OVoJk74hjR9xnV9TTQ8YNUrd/5zJ1REsBqRRznHvIa6akDUWn2SY4oDgz2imBnt0hGQjDhaHuJDR++gRxlqctySmjxUlkYJllJE3ET7L6TcpeGmz7g4GPFssORo5nJ9SLhMm1ytGDxLAEgkEr9SrOSY6APPrTyFfO0HtUj3vFbmtnNhFuFTWZiK3nGv3hd3m525daX/X3XqtwKNVdV5vHG6z/k7BbaTZZtu1INweeeNsedM5987PdmvU+2PW7j7r6Ojo6PgtphN3HffKHRl7sPdkf78Pnl+bHJSLBX/313+DMTlX51OywUuORgeMDg7oqaE4ElarBZe+5OrqJV99MeWi8Xz04x8TH1gS+2Kd6SVbm33VQNZLQCdIFTDmmijOyeIMY5QoMsTOk9kJibfEdYI1fYqqJm8CZvUFiUCUeiJVbDDUYYH3hjhEXImnSla4JuYqfkbUn1H5Kct+zPyiITz+FfgF0yZlGZ1RhwUPfmgxkWeU9jjpj8mfL7gYKWF+gj9QtFFmcsSj7CGuTOmdnpDmFeVBQZId4qclEkXEvR5ZnKzt3CNc0LZxdQjEJsGKBQlgYDAsODoe8/ln5wxz5eL8KSrCqhGi8SGHg5TIgPce31REkSV0rYQ+OMTI12oRsWHTbNuIIawjb7IfjVsLrqA3n8rcFkghbGr6BGN375n1rgTBWrnx/X51P+ulW/MUMAoh7KJtbQ++m5/BrP9SuR1kFDbRyUDY22jfFbMd34ct9szXvLbPX7zkz/+3//21y+8h7t7R0dHR8R7pxF3HvfJWg/KwEXrtRNM3jhdffIkGpaoq8I5+r2DQy8kTIcXiUgOmz0CFJDbkmUV8xZef/Qce/t6PiA9PqRtYzGuSNN1OlNzCooMVVZzQcEDVjIglAzHUNTT+itVqgH8ZSPunzJKIK61JJnNOr0aYWFnM2rSviResGuarCjt1HF+n/OTljH+jAwpOiA4coQF/tcLWhvKBpXA5JTmH+oRBfsaR9BlkJXO/ojyYMvQrcm1I3IS4WhFXK0q7YLn8CsNzKudwc8VFSjVLaJYNuojIfMAaT9j0/wqB0NRIFBMnEXGUQtPgmwoNDacPD4njv8f0espRNKEOwsuzGdNnv2Dw848YDHpYa25cO68Be7dS/1bmyq/bxQc+D//OcUPI3bqecuPVXixs/WMjuozZWJzcTNm9EYTfROY03BR4+4psq+F0l24rYG715JB1/Z6y+7uiFXi7noy7+2S/t8PN4fy23kree1Zl+b6H8UHRufP+dvK2+tKOju8rnbjruFe26Vw38rNYzx93DYXbSILimobryyu89ywmE+K4R5YlpHHAV9eQDKiqiNl0zjJWZJQRJzGZFJSVYzWdYI4fkWQRVeUw1hAnEb5xEFtCZFEVXPCIQBzHOB+I4whrLc57tKmpF1/ySTriLEnwxlD3hDoRYvEQPN4rK6csTMnJ2TOu0kPcwDMLymoJmYuYzgWtHaIJRTykbyNiP8DbA6ZhxUpijsoJlfccZa2zoQyP0C8jkpCh9RSJDL2oT1OlGMnxboLxiqhAEGJjESOENEGDooZtDVVkDcZAHKWoibFRQrOaoeoYHw7JioL5dMj55SVRnHI+q3nx7ALzJCIvMtIMNOg6ImNevY7f6o3ybjV33aTt12MjylTDnWH19n37ijwKYS+lcxOde1MfvG0zvc0Gu3WDKmazWOTd6ig39YLbOr+bBj+69/tml7vDfzfvGdnGUV+zfB0hFWOwUfdP+z7XV9fvewgdHR0d90b3L0DHvSImvHG5+r0n/yK4uqIuK3zT0DQLhtmYUS9gVl+BTSibmOkEppMVvjC4NLBYrMgTS5IKQWsa15D3xxgUH1qXv6Z2IEKaxqycYFxbkzefLymKDOccznua2mAjKBLDI1LGzjGqKh7ExyyyjOPIoyEwXzpwFfFiRa9ecD3oUT/6hPrcIppRVI7B4wi7fEj1ixXHn81YTAzNqCE/+Cue6QXJtSVNJ9jiiJO5xVGQ9I9Ji0MaK2R9T9Pk1LaPzQ94ceHIR0KSJjSloYkM2biPhCt8L0NDgwkR1idkHBI1Bc1iQRDBEgMxoVa8K7HGkhuFKEJyy+V8xTgZ8fIXM5pJxKc/+og0iqknMxovBBNtmoF9zev/+h53Rt49/eyr58+5ur7m+fMXX+v4Ha9BzKsCbiOQgm8l4F6+4yvRtDb38pW0yw2tMyU3I3W7hW17Bftu117Xkbq7jqRrBbfZ0/7t9N2UdF+fj558xD/9p3/8vofxwfDkwTH/4x/9o/c9jI6Ojo57oxN3Hb9xbBQhQFlVNF7wS0GXbJ+gq0LjAvNJSWIULc06OzMwn3pmk5KmEYwVjHNYf4kQsPlHlHOoQ4MxBu9c23/NWBofiKKEVV2zmnyFjccEEUJw1JXDxjFL56kmM1xWENSzMkuS2FJrIK8SxMaUyzFhVTN5meHrnOrFlH93tuTF/7XEsSINHhsZnsUp8bzP4uIJv+KYkpL6b0bEw4YwzVn2f0riA+fRF8xOHE8/ydBqxYVJOUk/oqk9V/yMxD2j11eubI/LuWFQPcWn19SRpxoFmsU519Vz1F/hRmPKuGZ53rD6siJnTD49oVk9JRRjst5DKBPUJkhqCY3FxmY9wW7PfTToIbXFNSWiQm9UkGSKGWVcfhY4ejDm40+fMD4ZYSKDWIMaQc0mjtAmayZxjGtaS/m7xFtRFCyXy/X11jvXSffaH1RlSZZlr6yz2SyK49bi/B0iFIvl4q3rfJfZnEnvPDb6+gWRm+1brb4fUWvNTFrTzDfEjFS2OZjCrj3BK0JPFVVBZO/9PaG4PcLmIu+7Zm6TPndGLZvXOxsW5V0Df98l9u/x+Xz+2nYIRV5wdXV9I2r5fee/+of/cF1jra/8BG68vuv32++/6SfwTvu9axyvO96bjv023nUft8f+rsd803v7+3zX8b/pnL7uPO9v1zQNcRy/9bx0dHwf6MRdx/2ioCoEr9tZpSqoDwQFHxS/XhYUxMSkeY/l8oo4WiAaEaUj4nzIcplQTS/xI9maoIi0U76mqnAuEFLD4vocG09QIgqEeBkwpiZuDM0yoVxZgvE0jQOxNOt00AeDv6Nu/gHqAp+/mDArPWqvGcYZxTAicivi0RXGpmhxwsFywkV5xVCekw2ecJJc8Vf9QLGKibKSsnrEaD6ifNmjNB9xkH3BdfSILGoY5iPcPEIPxlQMOf3YMn9+SZ4cYpynSGLUC2kSGAx6ZGnEopqzWiywrs8yXRCbEa44QEcFaa+H9I8I60y7IhkSrIHYI5Fu21cHDSR5gtSKq1ZocES5YawDfpCfcpKn9IYD4rjdkS1SJI8wRdiLjny7PaQEWVvo3z1LF4TxaERRFPyXf/AH23tIZP2Tm5VW0TcQPN8vAqq3XDNRNnINXtO0fn+Ctnmtu+81rNM3Ny0HjKCim3bnb46kqWlNf/ZE3FYsKqjspXmuxWLXyazjNh9/8sn7HkJHR0fHvdOJu477Ye18F8WGJHFoAdv5pApFLyHLIgoTiHMAJagiBwnDUcL0uiHziquE1VWflYvwq5rMFYTKYeOIRVkRLQ3xXKFSosRAnBBWjvnyK7LhMcHHBGtQsXiUNOkRNQX9ZsCg7BNrQpLGxKVgTpawWpCkFmOWpLpins/pFY+Q0TX5gWE8tsRRSlo5qsrBWUVirpDsgEl0xNQGnqcJH2lMIz1MXhBHL0mTEntUMqg9/bRgGS4xkcXEOW4Ss2ieEYVr4JTsICbuRZSlgE+xA4s3ShqlDNND8vQUTj1hZYiPhxRSYlVRClTaQIohZ7FvMc9u0oxAlCSIEXxVEkJFMNAbDhn0MuyeM8Zugr2bxLeGFvcbLsmyjOFgwA9++MN7Pe5vO9sn5Pu5jTfEu+6yK7dqWtHQthjZRPg2ss/sO5cIbW0obxN26+jftqRvHbF7pd6SGymY3we2bSXuWna/Q+no6Ojo+EDpxF3HvfJiUtOf9QnPq+17qsrFixmxgI2F1EYEILiABsPh+OeszoZcrQo+e7lEf+kZDSsiI2hVUzaeSD0+dlS+RiPBV55QTQh+yMrXNMszotkFJ71H9J+cYmKhmgVCzyONYFdKZB39OCPJIvykxrqC8sn/g533CfEcXSbkx0uWK08cXzBaXEM+ANdnuvAsl1+C/xTbZODnmDpHRxHN0vHXqwgngWNJWC0iZi9y4rqgXw9InbKsB5yYhCyk1GczTh6OURtT9RN6B6ekkoEo1yblKBkQxzFSO2zsYDBEY8fSNIQ4IoS2dlHVt1bwRvCAWzdzhl2a2/oKIAI2TjBRgq8WiCmITYa1b7Jw2F7Br3UPyGvMUjreLzeuyVa47V8r3QXrbqVMYqSNtG/el92Dg+0ut0rsVffKVwej+LBLC93sS/Z/7+jo6Ojo6HiFTtx13CvjYcpwPkOfZDtpoXDyYsj4QZ+TzGCOEna975RDTemPap7pBZP/c4HrLzlfBgYmQSthYQPGttFAeoa5T4ikBxrwpUXV0IQEbRTfXHDUy7FFgjrLagGLUOE1EM8dQVe4VAmLhtF/+AH9T6CYB4JcswgHcJLw8j8aei8fMl5+SXHYR6XP2DuGFz10NWBwGDF42EO84cfTiuOlcPn8Cjt0pFpSENDCkhRj/CiDOCKtVhhfcCEZz0rhZZaRu4BmhmRqieuMsglcqsdnK1IpoXH0A8QLwX9ZEY6EdFDjbImIBwcqFoPgFVbA0ERYMdgbSWwbz8S1s2CWAgXiWzdCZTfBj6wh2ttU73Dw64Tbd48bLRHMutXAnqjbWGKKCLo2WNmyNtaRvZYJ+3VwAKJ7N80mEhxCG/W7sa+18BOwIts6uu6O6ujo6OjoeDc6cddxr3zdBrptWpcwPjxEP/6YX/3dUw4+HVOtanoak88aeseWqlwya2b0nTJJxkSxEMcJpa2oqmvKJgeERV1yXiZE2RGNDzSmz1QyZjqjLsfYLAdnECnpRZ7GjOg3C0wWWMgBy1BwXp3R1AWFiblc9mkYcE0gs32q+QT6I1b9H+BlzFKfI2nC0l5gZw5XBxJJeNI/oA6eiYvAKUkQEq/kxpOgFHlKb77CHPTol5CO+iydotbz4NRiVKkXJdEShv0+VR6Ioox+nJFqiRoPUQ9KgQAuaifLQ6vYO6bKu05lrekF28bQ6yXriIyNDJEVRAyCrDPEvv2p9ztb4nd8e2wCahujBW4aouren/vmJruNhT2NuF2vfaG7POwQuPOeCbo72H6T8Y6Ojo6Ojo53phN3HfdK2Dabuslmmhhc2DNy2PiaCzaOOXh4yuFHC37yu4+ZT67wfoq9sGjhyeyQce+QA7ukObMsFwuq1RQNCwZGibTCYMhWK+J5zMFxjotTDo4XXAb4q+lLJsdfMXtg2ubcpfCzdMDznz4jvQqEYsaFvaYygYk8onjyJTSXTEY1U3fGxAl9G3H473N6yYpHhwEJgRA844OIf7/M6cWej8qaVAyf/KhgZS7pFzmJxlxPZpyg2OiQOBzw6DEchCP8D4Xo3JA9KJg2Abtq+LQXYxCm3lD6ilEecdk48rrBnwmr0iFB0aLC1b493VlM3QTqPEJ9WLeceNXpjKi1xPcIrq5ZbRqQ0abozc4WNElM+NmIzqfkt4kA2J0RzZ7jYnv5Zft6195u+2K3olmruzZH8+YhZP3gQNku2/+r4NVWCF/3UdBvN945lsvVWn+/6ni4qrrG5R0dHR0dnbjruGfe1spK/cZIQW7PJBEjRGlEb3xA2supVxES5iRD4ezlJZfPXpCdFDx+8Al574eoKufzZ2QhoKFHVTWc/+0v+fhHPyI5HHE9qRgEcEH5A/MxsRe+erkkiXOimTK6cpx8mZBNPZk55HM7ojkUnv7CczCL+Z1gCU8OmU5ino9ynlSB6WTBz8qK/OCCuh8xXTg0vybRK7SE/tUVmvRYnb2kHkyJ5gUDkxIqR089pZ8Rz2IOQkwSJTTGg+btJO6VgqO2SXmoAsUgJX/QwwwjKIHgoVegi3a67jNFnCFPXrVJ13Xbie1kXAONCLFLKaxizKbhAVTWcjWpIAjYbzb57mruPlD0zucuayHRvpZNVHffbl/3w3X7hio7l8td6m5o72HZtTboonPvxsvzc/7yL/8Sa7unKh0dHR0dr6cTdx0fLrf7Xa1LdRQlyTOy/JRq4nFScXr6gOqF4+LFGQz6HBV9TIDSWMYHRwR6JL4ijQ3Z6RAfRUSnhtn0mlodcRrhYmERXTEvFwwWjn6d0MxLCIqMHXGSYFOQNGFVPGO5uqROpizjiMlBn/FFQAY5wc5YHZ0xlSW/8tdcR1fIeEQv6hPGPebzJc14wipZMg/XDOyKNMuZ+wHO5/jTFGunQI0GxZBvT8mNiEqbcYkGWrdC2SzTnU7bnMK9P3f7uploZzav1+LLWoMxNyMsPij+NZpOoI3c3CHcxLx7g/KOr8+72N68HU/bJONmX7mtEFezjszpOm13s0Zg3Z8AwvoeMnLjdtOwvjfX27e3gn4ro/4+IAhiDMbad+rt2NHR0dHx/aX7V6Ljw6JVF+v/5RUBsvNHF6IXDZYBSX5I4x2/+5NDFtUCoh4mShjYmJQVJ4BzKyK9RsYGra/xzYLDQvEypSwnmGRC1otYltdMKuWjKGM8DkTRC1YzISpT+kNl0IcXPcOBaThurqmM0ksarsoeeVVSVz8lEo9ZxExfXFA3cHI84Kcfj4jTn/H4YsYF10j9hHJQM2g+xgQlWgRqF1C1mGnNRRBsMqTuX2HPS1KbMHWB80XDYdkG2RbThmVZkeQL3MUCd1wgjYEKbFDqUggrDwhOLZUDt9cPbtsIdmt1v5YI4gniWXhB1qHWoG165qwKuMDNHmcbzJts7r/eND4EJYSuGfO9s3bINGJRDTvRqPs1kHuxuf0I3qb33DYtc2+/pquh+3V5/PAhf/iHf0h/MHjfQ+no6Ojo+IDpxF3HvVJNSsIEqqdL9jO1Zl9NKDQQi9K3rdgIPmw1RKgd7mrJ5GJB+XyGjQ3uaon3gbiXkR8Pcb2aNEBiDjEKqUDkDfnwFNQjdUBrheUZVUgpnTBIClISfNKQ92MejD6mnH7B9VdPOTr9fQ6PD5jREHLLpHdAVAZKb7jUQ4ZNwH4F5XKCXCvXF45M+sTNBUlpeTwa43LDj380xBQ/4IWPqWxGEnvsSY/aGnrZiIHGiNSIQukCL1+WvHiuFJ9Y6v83pTw/I3uxpFKogvDMaBsJUyVxjrNmSpxEZPMGXXrCokYbh/ZnNMsabTxmmGMQsIBZT9nD2sK+8a07okLvtE8y1LZtglUG5mbMr4qF4zTmW+5bfoOX5+f8xV/8BXEc/+YO0vEatA0Hm9Y0Zyvh96KxstZ2qn6zBbs7RAHTPkBYR+g6PfftIMZgbdR9Lzo6Ojo63kgn7jrulWyYYZaQfVTcaIUwfDmieNBnKIH4UbY1VN9SQyhiDr6akT8aYqwhtSDWoMc9fBPa+jPvd+mKAOcvID8ChFA2SHYK0SHilNlCaNRR+4baxGQ2YXkqHJ/8Fxz3nkFa0DxZkadzwuqMI+/JHZxaOB1/zIP4mOU4Y+grrm3E7z6O+OpLpake0HtUMO79mGfLJT4+w+sUbWrmlaM2jmAXzOuaPHWkVhDj2rTKouYn/7ml/IUn/fkKY5Ro8RPCwDNpPNW84eODGCuGyHmGjVC6HJsZbLo+V6sA3kC/R1j1AHCJsGyEcaZ3ZU0C0CzaxvF2L6Pudo2kESGKvnkSoOz999rlItgo6tLP3gNl6yx9AAAWWElEQVSydqfd98vcWamsf1tH50TMOnK3aXfQtk8w6/TgTtR1dHR0dHTcP93sqeNe0bfM+Ez0hpCQKhr2Gilv8gthq0aCtrb9G/EgWUHoDVoTj3gB2YigQgwcHxp8HQjLiqYwEGJIAkhCOB3jJjVJr49mh9grg+0dM2gaDmZC/8Tj02vswwJr+hx6pdCIaC7YiYdqgYuuiRvIqhgxQhYihrZmlg2p7QFZPGCUjelLhOS+NUGJAiqG0BhyPUVljtQQh4IsBDKtyTVto3BNyaJuqLxiLVgjbfZcDRJAG1Dfnhtv15LqtoPh/unlpvHha5tNv+Ua/rr1X3mW8cnHH9Mrijev95blHd+E9i543RWUG/dDW4+3fU++ncq/jo6Ojo6Ojm9OJ+467pW3Tf7E7om7/R5qAgTdWfirQmRQtzMRaVfTG+0WJIDZ2LOvm3CZdegqswoRFHHEPIpILGgCmJjDI0tzFUiNxfePoegxEsPINfRfzjke9+jbBD08RKwldkLmAy46I9OcKImJDx9gr5SoVyN5QdCSZBYYJBl1ExF5IVkqtXVItU6NdA4QfGQpMagaqDwmQK2wWsJz71rDlJXHrRxe50gaYbM2XUtKyIylqT1aNgQVNLHEwMK2k/FNhAbD1kClnpaExhMPUryx1L5B4va8Gmnr75LUgvO/3kV+C6PRiN///f+Mw6PDX29HHd8AvfV6P93yrlYFXbuCjo6Ojo6OD4lO3HXcK27fFGWNrC3+RQQNu8miqIIx23qwGx2VRVuzD88rzZRlU1MmgkXwYnapiH7FjYRP3wpG60pMA6jDUhBlnig4JA6QG8h7xCGQxAXxOBAfDIgzRY8GCFB4oayhKWZ8lWbYPKPKCn6pNT0x+CbhEsHYHjhwdUMTQVlXYCxSOzRASIWggWWcktY1kanAR9A01OoYHTYM037rJl+CVgKmj6SCSdrPLbViNFDnMWEVt0KwaKOcsi672ztdBN2ksWagSjIEgzCI7K11BdRQnoVuTv9bTWBrTQvsRFx30Ts6Ojo6Oj50OnHX8Z7QncRqu/Luq4xt+qaEQBt129T1AHvbtZsKZi0C2/eVqQssBGYGtGna9+0hJswQ9Vux51ybuli7mqj2zOqGo7wCt2xXiEftgYwQ/G6sQltfhA8oMAScCCc28GNtQCKaTJBY+VkUIIcXWczDpA+LBWIXLJbXFPkCsREUtPtqVgjCMorI6iVia8LcYQeCGmhQYl+2kbdyBauSRkpspdhs/aG8I/RHEAWCbVNU5c5v+s20yyZrZXISK2oM5hWzyk2vvXe+yHciIp1t4gfNRsh11+iDoNPUHR0dHR1fg07cddwrFlqt9Nnn2/cUQb+q0WqBjSxmuVFRG6SNql2sWP7qnBf/UhCBxDmkdjAqCC6gOVRS0tc5AcEBy7Ih+eWv2DvYDYwPUDmqoaLPK6IToeGKF2WNfH5JaATsFFAu0gxfVTz91RT5LKff1K3QWws+5wN1I9T1HFcK9fUlq1VgtqoQX7NUYR4UiWLEK4ujU0KiKBXSVGhgPWpYag8/qoASxjEyUhwe1cDItn3vJAlQCOoiQqpItvlwCdgSNdWuLHEbiBFkLx7X9ijb648HIAbR3je6vkDXoPw9cXZ+RpEX20j2tk/drZ/7bKrkbm9z17Lb+/w6290+3obb+95///ax7jreN6nye9M+Xjeed93u9nm469y9ibv27cNb0qA7Ojo6Ojr26MRdx70gYsAEdFEin/wYcesaM9/20mqWNRQxTezIXIJuxIgqEgStAlSG//Qnh1SJBQHbNJg0QouktfPPwKonD9F6U6WywmDPpEWMtMcOihqBxqPBE2lDGgt1LCQmxi4X6MMh+unR2hYepjYmd45+LeSPBuT99XFCe6wE+JFOCNeH2EeeaDDCLmqSGARPqoGEsBZaQqQxybRtCK1NgfoAsUJ/hHhDFFlUFpQzSKICa1rh5EUwRtDaobWjrAM2MsRFfOucC75p+9zFq2jdWuKOCbcIYg1uXrXxmnlMNa3o/bjA2FdW32x1ox1CJ+jeP//qX/6r9z2Ejo6Ojo6OjvdMJ+467hXNE/TJYF2/tX5PIb60yMMBGEWfFDcywkIAGkEOloyThiodAEJyPoPYwnGP0ARc3lCxZKCj7eariTAaPsZg2KYVbhsvC5QenTuWownpRUL12FPICVKf4i8d5uP+NoVzUTtGaZ9xrQw/GTIYtOpml17qYOZYEhHFNVZi0giyQYqokoZAuu0DLdQE0uS4/XUVIAS0F6HWUrklmaSojWh8TTFOkU0q4+ZHA9SKbxKiNMJmt5SYgCl9GynNI8wmj/U26/1FkQGFKLNoUETvdsvcmrHsRyU6bfde6dpGdHR0dHR0dEAn7jruGRtZSOMb4k0VJE8gixHxkEY3lgugVtA0RnIDNmrVRBaj5zNUwTUeegGlBFO0UTlAlxZC3QrEtaGIrIVl2Bi5JBaymGVxztI5fOQxsUFE0WpKWPfyWjaOqTPMakuvnkMFrfXIurEenuAuKMmxWuHDCt83TBSsWGZNIMvNOnqmiMSEdVTRrhowATEGNLRCzJUoK0QNJnKtgcwe4mrUNkT0kFgxsbvjhAsYi0l5qwIT147FpILNX98oWcyuBvLrcj2Z8H//63+9Hsp+44VOHX5T/vs/+qNvvK3q62+LTZD3Tcu/rqjf3+b29rePd3vd1y17l8/xXXz4cNf5t/a1ofSOjo6Ojg6gE3cd90y4Iy3wBm+aoYWwdc0MCvK4j8SGMCowTcANanwTkDhvzU4AnQiSbvpxsRZWbeTObC04hZ7P0NWAyK8oJAUC+qxCiEDbiJaLLCMPxVnJcDCgXwuivtUlTiEYsKfYuEccWRoTMHPoH7XHSR3k0Tp6Jm3fOZVV+7EvvkAHPTAWRDA+g3qB8UIcAlKt2r4O+6ekqsF5RCzGglZrh9FNZLKpobLo+PjdtdMmuBfecJ1eY4ay7S14x8GMtO+vViu+ePr0HQfT8S4kSfK+h9DR0dHR0dHxgdCJu44Piht97m6jQAgE0/6igAYlrNMD2z9vCiDJTiG2KGZnshnWlpy3Ug71kwzVawKHiARCU2IeZesaOaXxoNYg1xPCyQg3kK3e2holiEEvGlRigjOEeoX6HBEhiEO8baOH+58JCFpA8hjttxP1xkwJ2RHGCmV0RpoPX4ncYVZI43BaYGJDlN9sMc1y1grAd+RGh7PwNuv71zQ4fwvGGOI4fnsUsXPT7Ojo6Ojo6Oj42nTiruNeMXu1dlt0J3a2k/q71lHdtSFgYwPJrgZtexDbriuCwYKJ2vox0wpHEb/epRL87kAqnqAGtVEr/UwFNqbVhYL6hucu5tnUMb/0mColaBsN3KR+GYFw1ZDVhpVR/vayQgdZK/7UYLVmk5Fobdt/T4ygFxC0hFUbNLu+XLHKUsQKl89muAdjjDGogG9aOatlgDrQsMAkEUkeg1mbrSi4iRKmntO+Yt8hdGfCzstP/St9EHbnyb+mdu8dePz4Mf/DH/9xZ8DS0dHR0dHR0fEboBN3HfdKNVkxnBdgdnVWohAqh85LlLhtTrfBtMpPKgizEup1TZ6C+Agii0FQuVlYIyKoKtHWhERR73dCcP3T2FZs6l5hziZA5tepkxseJDFNIzyP4KfHMb3B2lhEN5HD9mcZx0SFoTERmS/4vQeyN7S9FLq94JcsLBxm28jdUIcUD1PEQPaiz8FRtBuY2Ha7lUdcoJE+kgg2ublPnximPmqFmtq3p2YKbBsMvokQdsK6o6Ojo6Ojo6Pjg6ETdx33yt/8asKzmltuCPC3n13w8iLj4SDBpxszj13+Yqgd7nJOksUs7QoQ8l6CpDG+mRAaTxgWzI3l2J23bRaAWZry1TBbR/zWuseHmy4LphVpaoSViSl8027/dIZUa1EkghjBB+Xzy5Lm6ZK8n64Hp22kcD1kFhXkSogDSRoj5g26aqPX4qhN+dw3khFBZF0veCOXc72daUOFGhSjewJyE/xcRyr1TfVze+i3FU3rUio7Ojo6Ojo6Ot4LnbjruFcOj3sUpwO2uYm0UbPh+YLhYUEvFeSgf0sNtT3dvIWoSEhtBEbIigRVxdeOUHvCKMWiDEK6jSz1YotkZpdGKEAwO7PHzXGMIYgSiSdX00awejEUdid6jMH7QBoZenlMnq+THTeNzNfmLME5TGowWcS4b5BvksN4Iwr5unV2zp93HmEjAL/ZYTs6Ojo6Ojo6Or5jdOKu41756KMhwx/2bvaxU1hcDzl62Ge0qsge5LsF0EbRGos3HhsbmiIjCGTrpt2+dPjKQS9mRc1QklZsyS56tU0j1N3rrb4UAQIYYQGgV6gH6TtCcYXi0XXPt8ZbegZOshm9fNcCQQnrtEYlzDJya4lThcYTmvVn2Utl1I39/7rmzswCnrrtXaewuliQpeaNBjNtLFLW4vLVdgKttpN164K3X5tNKiuAeZOxTUdHR0dHR0dHxwdJJ+467pWyDtglt/rcCa7xTM6XmGHK9PliKzK29Wxe8dMSYwW38IgISdoan/ja4ZuAWThqEab1DGsFa6TtG8dN05PtcYNujT2UtZmLxut2C0o1dSQuXeu/dr3GB2xYMkjHFFF0Z+3ZIpq3ffKiPYG0JyqVwFR/QRLG7XgMGPsC4giiBPWCGk8VTwlhSXp8sHbsvInQtj14bWBPPaKvN0a5c5tNmmj0hlzSdRrrN3ZV6ejo6Ojo6Ojo+I3QibuOe2VSeVi6V9wSi0HKclbxfNXc2dtaveIXra2/Zq1bZBxbVFtnxxACrDyNgJvXxLEhS9694e9d/iBuURK5Tc1bO566CQwPe6TDCInhLgUUFQmmiJH89pJNGirk/ojUHu7ElJmh6SEUCQj8/+3d2W4jxxWH8e9UNxctE8vL2DEQ5N55JL9lEsB5oiAXjuCMh+LW3VW56CZFUdSSWaRJ4/sBGg2kYrGbEgT9VVXnbM4XnF1c0sYNefXQRT91U9wJps/yjLz2UBPzPkAXtpstt1+8flz3SPVNSZIkfRqGO72YIHhzMeXtdxPiKBy8/e7q0ceWLcT1Cs5b1tUlEMwvE6UU8rqQt5n2Dw3LZsGs/TN1Fcxmd5bp6A+nDVsZ9xfVh45ylGpSQPfPJdWP53dWzZomWK4y9YSHPZGlAtjeQDlYVYt3QZ60pD4xcvP7munvZ7QFqk2+E3TvvjD7f056qlvd3cEH20YfKcISKZ24lODX62u6tuUfv/zy3GeUJEnSJ2S404tIMRyh+4gS+qXL0MA+srSpf99lImfoIEru33KCjr5s/91Z+rej1az90bvDkScDTnmy6EhKj5XHHFa4qkJ9WEZzAtW0grrvZTeZVNTTinaTn652ud8mefw8Q7B7ZlGVPifuypPugvDzvl67FcJIiar2x4okSdJr8Lcwvah8syEW7/sssk9Ut/swS87cT0aF1CVKs6EsW0qVKQXyb8MZtqZQukL1vpBiSbd5R6oTZQLRdH2Y4naTYADUCVLfxS6G83jlqOhJBcSy7JufA9AU0mq4xjttC4AYxq0yEVsilztZ9rZAaIZ417c+KEBk6uodXZpRmEKGyQVQX5PyhtRNYXkzbA09WGNcb4iuIQqUTSJvY7iXfqUv/74g/7YlTybkNob7jX3hlzJcyu4iu0X/vt4m2mUhTTKk3J9/PBjXXLdMSk3M4vCm+OP330MEP//886PfAzYwlyRJ+jwMd3pRqe2g2Q6rTRyFO/oVuFOre1UiviqUVUekIEqQzrs+ra2htEH3ZkuJBpY1URfSrA8lkW+3XQZDEZV0dwUuSj5Y6tp9EOgayHfDHdtMzI5vLPbhLlqgLdAc9L9juNfot6d2TU05W1NKUKIjaOnyitK1kKNv7J4TNAFdEG3Tn3Pbt10A2i10HURD3ibKtq+cWboMXaFbNDTvNlT1kipPoE7DeblhXC79yuawuNkOobXqarbrjpQKkfJ+vt1rUzaF6HK/chrHCdfwJkmS9FoMd3pZVxeUqzc8tm3xQas1ETVM3vRB4qLqQ8o6U5pMe9mQm4oUF+RJwHy3VlcePq72v2ohzwrl8uEbKNuGcllT5qfHlA4m/z5nej7bnz2MrxL15Vs4ryGgfb9iNj0jukI7v6F8ddz7D8pmS2obqvlF38T84M5KARZnVNWS6ds31F/P9nc8ZLsD/SPzogWgPq+Y/rqk/u6cGAqCxkG3vhqI+viUoiRJkl6b4U4v6maxYfWv+u4RsaEXW6SgdH0Y27UjOFSajrRs2cwWAORpBbmwXTXkNpMupmwDmpvf6GY1aeiDV/KwmnWcRoYec7teciXvVrOOBqYYFuWCtsuslw31xfT+OCCq/h7qswQ5TibI6GB5fUNdDT3ogHqRabotedFRCry/XlKGvnN1AF3uC7scLgTmvmpoVNxrlB5AmhSqeUW32tIOK5YlF/IDr0W7biGCtKlZ/Wc1fGni3mImiX7c8LrlpvuwsC5JkqRPynCnFzX75oKzH89O1P84/MDpNaGy3hDX76nOzim5MJ20UOBsArkJ2vMFcEMV3zKZFebzbT9tpq+WeWraFLcFRx4ad3CebttCl4Pzy+b09tHdtsfuBhbsqsjcm+7bq0Tplvstn5N2QWom5NT32Wvallm7Iqrot2be3Axn5Q62rTYNnN3rt3DwPEF9kZh/e0ldP/36Nst+6+VkHqQU/Wrfgz8hnp5PkiRJL8twpxdVDUfs7m/qe0ZAmE8p33xNaRLkQql3h8CGM3ZnmYoZtBNiGpRdu4Jc6MujPGAf7p4YB0BQzcvt3I/NV4B0+r6qPxyMzYVyMSedz4mz/vnTOjG5qiFBmwtl11T84PxfVBVMp7cN3+/phnon5cTrfeq6h/wYEJNESbubOMVAJ0mS9KUx3OlFXb0N1pv1h0+QgFlfAaTbBbH9d/EFNRdw1S/CrQ8f89y5n1JDPT+Y+1NIwA8/3PnQ9E/V7XO8hfZw7F7VF0TZbB641prqCpp2Q9OeHnLHkEmbBjgDmu5Zlw8f1eFCkiRJn4jhTp9d17b742l//+vfXvdi9NnY306SJOl1+duYXkSK0422JUmSJH0ahjt9dj/99JehOfmH5buHtvx9bFbczfvYPKXcfv7w/6fGPPb5h3zoPRy3z/vYOY49dp8fOqckSZI+r3i4GMMX4Yu+OEmSJEn6zJ79p/znlpqQJEmSJH3BDHeSJEmSNAKGO0mSJEkaAcOdJEmSJI2A4U6SJEmSRsBwJ0mSJEkjYLiTJEmSpBEw3EmSJEnSCBjuJEmSJGkEDHeSJEmSNAKGO0mSJEkaAcOdJEmSJI2A4U6SJEmSRsBwJ0mSJEkjYLiTJEmSpBEw3EmSJEnSCBjuJEmSJGkEDHeSJEmSNAKGO0mSJEkaAcOdJEmSJI1A/doX8IR47QuQJEmSpP8HrtxJkiRJ0ggY7iRJkiRpBAx3kiRJkjQChjtJkiRJGgHDnSRJkiSNgOFOkiRJkkbAcCdJkiRJI2C4kyRJkqQRMNxJkiRJ0ggY7iRJkiRpBAx3kiRJkjQChjtJkiRJGgHDnSRJkiSNgOFOkiRJkkbAcCdJkiRJI2C4kyRJkqQRMNxJkiRJ0ggY7iRJkiRpBAx3kiRJkjQChjtJkiRJGgHDnSRJkiSNgOFOkiRJkkbAcCdJkiRJI/BfAFKT1+UxTjIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "block_diag = os.path.join(ROOT_DIR,'DATASETsubmit')\n", - "os.chdir(block_diag)\n", - "diag = skimage.io.imread('figure_1_block_diag.png')\n", - "fig = plt.figure(figsize=(15,15))\n", - "plt.axis('off')\n", - "plt.imshow(diag)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Figure 1(b)- column 2: Mask prediction by SeBRe on upright brain sections" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "mrcnn_val_data = os.path.join(ROOT_DIR, 'DATASETsubmit\\\\mrcnn_val_data')\n", - "os.chdir(mrcnn_val_data)\n", - "image_list = glob.glob('up*')\n", - "image_list = natsorted(image_list, key=lambda y: y.lower())" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing 1 images\n", - "image shape: (1840, 2288, 3) min: 0.00000 max: 255.00000\n", - "molded_images shape: (1, 384, 384, 3) min: -123.70000 max: 148.10000\n", - "image_metas shape: (1, 17) min: 0.00000 max: 2288.00000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA68AAAL+CAYAAABCPSIPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXuwLMlZH/jLquru8z73/Zi5M3c0I82IGbEgJGEkaySwN8A8JOHAEMYgEWsQxvbuhmODtb0gYMAIjGM31hFrL0IS2LwN2IAAG7MsG4AeYD2QkBghRqN53bl3nvfOvfc8u7uqcv+ozuovs/PLyqqu7tPn3PxF3Jk+3VWZX76+/F75pZBSIiAgICAgICAgICAgICBgkREdNAEBAQEBAQEBAQEBAQEBAVUIymtAQEBAQEBAQEBAQEDAwiMorwEBAQEBAQEBAQEBAQELj6C8BgQEBAQEBAQEBAQEBCw8gvIaEBAQEBAQEBAQEBAQsPAIymtAQEBAQEBAQEBAQEDAwiMorwEBAQEBAXOAEOIuIYQUQiSjv39XCPEdDcq5UwixLYSI26cyICAgICBgcRGU14CAgICAAAIhxBNCiL2RgvicEOLfCSHW2q5HSvm1Usqf9aTnvyfvPSWlXJNSZm3TFBAQEBAQsMgIymtAQEBAQMAk3iKlXAPwZQBeB+Bd9EdRIOyhAQEBAQEBc0TYeAMCAgICAhhIKS8D+F0ArxJC/KEQ4t1CiA8D2AVwtxBiUwjx00KIZ4QQl4UQP6rCeYUQsRDifxdCvCiEeAzA19OyR+V9F/n7nUKIvxRCbAkhPiuE+DIhxM8DuBPAb488wf/UEn58mxDit4QQ14QQjwoh3knKfEgI8atCiJ8blfuwEOK15Pd/NqJ7SwjxV0KIvznD7gwICAgICJgKQXkNCAgICAhgIIS4A8DXAfjk6Ku3A/huAOsAngTwswBSAC8H8GoAXw1AKaTvBPANo+9fC+DvOOr5ZgAPAXgHgA0AbwVwVUr5dgBPYeQJllL+K8vrvwzgaQC3jer4MUMJfSuA/wDgGIDfAvBvRnXeB+B/BPA6KeU6gK8B8ER1rwQEBAQEBBwMgvIaEBAQEBAwid8UQlwH8CEAfwTgx0bf/3sp5cNSyhTACQBfC+CfSCl3pJTPA/g/Afzd0bPfAuBfSykvSSmvAfhxR33fBeBfSSk/Jgs8KqV8sorIkXL9RgD/TEq5L6X8FID3o1CyFT4kpfwvozOyPw/gS0bfZwB6AO4XQnSklE9IKb9QVWdAQEBAQMBBITloAgICAgICAhYQ3yil/H/pF0IIALhEvroIoAPgmdFvQGEUVs/cZjzvUkbvANBEcbwNwDUp5ZZRz2vJ38+Sz7sAloQQiZTyUSHEP0Hh8X1ACPF7AP4XKeWVBnQEBAQEBATMHMHzGhAQEBAQ4A9JPl8C0AdwSkp5bPRvQ0r5wOj3Z1AopQp3Osq9BOAejzpNXAFwQgixbtRz2fHOuGApf0lK+UYUirgE8BM+7wUEBAQEBBwEgvIaEBAQEBDQAFLKZwD8PwD+DyHEhhAiEkLcI4R48+iRXwXwPwshLgghjgP4547i3g/ge4UQrxllMn65EOLi6LfnANzN0HAJwEcA/LgQYkkI8d8B+E4Av1hFvxDiPiHE3xBC9ADsA9hDEUocEBAQEBCwkAjKa0BAQEBAQHO8A0AXwGcBvATgPwI4P/rtfQB+D8CfA/gzAL/OFSKl/DUA7wbwSwC2APwmijO1QHFW9l1CiOtCiO+1vP6tAO5C4YX9DQA/JKX8fQ/aewD+JYAXUYQWnwHwfR7vBQQEBAQEHAiElK5opICAgICAgICAgICAgICAg0fwvAYEBAQEBAQEBAQEBAQsPILyGhAQEBAQEBAQEBAQELDwCMprQEBAQEBAQEBAQEBAwMIjKK8BAQEBAQEBAQEBAQEBC4+gvAYEBAQEBAQEBAQEBAQsPILyGhAQEBAQEBAQEBAQELDwCMprQEBAQEBAQEBAQEBAwMIjKK8BAQEBAQEBAQEBAQEBC4/koAmog/5wINVnIUTl80JWPjJRVp7nlc9ISQqO7HTQuvM8RxRF5WdaFtcOrQ4P+Jaj6DB/497PoT8jpYSU0rtvVR228rMsgxDCaywpaBu48WoTqo4oirC/v48oitDtdtnn2bniibKPhWDHy/WuGqcsyxBFkVaGrZ4oisr3zN8VzDapd+gztAw6V3xojqIIeZ6XZZhrRAhRzhf6XhzHAIA0TcvnpMwAwNpubrpoc7vmfNT7iW+vok+1c/x9rI0bfc6GSOh9Tgpy1B1X0q6P1bhun/6Qsl6fFeWO66NtVW1Xc0whQlzyT9pP6nn1vV6JvQ/pU3TsI8QT5Zvz2KRN9c/EuuXq5tYVY0sWYMrJmT6PXGtuXIdWd55q7R3TZKfbxpfoGKrfzX60t2Nyf6y7BgEgN8qna4jjgbQWjj59jCbLF0IgcvBOsyzX2lZ12PggLHu5EGKi3QYhWhtU3TnhNzb6FL/l2sB959rvzd/NvQJSIs9zJEnCzkEKyke58aXl53mOKJ6cu0XdUVkOnYMmX+Laocox90Zal21/lVICQp/z0jI2tv2WlqnoVPshpdH8rBPB9BvDu/JsTIvWVwbPMfvQ3PtM2Ya2m4O5N3LjYW2Og/9waEs2d5XlBWaMXPKaRGZ9jtszzPGrqpuWP0ELN6cYdLtLjTrnUCmvs0KTyVgHdOFMNYk94WoPK0Bw7xByp1UUbUJbk/6Y9Xi54FJaFdqkb5qy4jjWNlabwGkVIirooBu1+YwpxKjPaqNT9VTBphTbDDFKKKGw0UB+raybo6ONtVul0Ltpr1ePXq79N1/jQvUztC63AEL+Yp+xjTdnXPA1ktSFKtMsP47j0liSJIkmkNF3eLF7sg4AkOzz3PdNhKua/J8rxTKHOKOd3ifuMn0USB+aXO/UXdM+BqI6/VfHSKbR6iiLQ0QMmXEce62VOuvJ1Q6zn13lSikRccYixmji2q8oTWp9xnGMXKYsHabyOWlk1Oe3+ttU8k2jGqWjKVw0U9rq8nYOPgZ4pYDmee7cVU2l3Cy/Lk1N1prLuOFbTlvvt6UD2PbHcSWtVLHQCMor5qO8UgvwrOtzLRQXM7bC2ASaWsW5OppYxA5SeQV0a6sNbTKqacqinlfbPKAWds4aaqODKq/mHDIVVO7ZKpjtFkIgjmNNUFD1meWa1mgd9fqwTWOT6TXk6mtDGTPf5wQnn/l1EMorterT721jTvurzfHilFeqCNDokUm+4OHJm0J55Vo6rfLaxLgEVEfEcHTFxEs7jfLqO/Y+yij3vO8a4Z7z4QE+dWvePtf7o//HsR614Gp3Y+XaIWvQctlyiDJE4eKVPvsVfY6uUxqto95Re6Z6R1OiCV228ea8sLb36TsUXPQRx+PMtccpr3X5og/PT9OURHbxirnNgN5Uea27N9r5cn1MK9PNW3mdg4/swCEOWhGog0E6rEWsb2jrNOCi5SIiWrgsbnWtw9OOV92yuPY16Vuf+mwM26Uw0zKjKCqVGxeDoExwFp5wIQSGw2Hp+fSBosWkiTMYqOdoSLr6nlqPuXps35shU7SPXMYX0wJthiHblFxg7MFSMDd6RYOtPLqRT/ZNZvxN50iitcvVVy7wQnaT9WkPDafGB40fcGGknnX4wOzD6ucn51SVQCVlphlWuDVZrgsuhInwiIlxEbn1uZyhSciILctGn0vAZEOxjDLHhdlDu2GMRTkf5OR6KR5wKfPMPJDZxJoXQnj4jqeHgG7kokcdqvi0ojnPc4iK0FEFjR9YyjX3a42/OtrQGhhaWWOFo6iIKWta6bauIVsZSU1epoW5EsVNvaOUc27fMee5LcyX0hqRJabxIiacsu6xHfPZkt+M6KL7bKnIRVKb/6peur/neT4OUffwIpprhoYdazKVjCb5lhDIZWrl34Ic3aAQBs9hj7wwR5Tqgq77ab2qrjrM+jhZpup9l/JaqVhLPdrA1v8TtDBh3z5h4lrZNcPKne8wCGHDC4bDZBQ4KqDMfR5nYV2os7ED+mZlfm9j0oqJ2s6NlMKchUnmhoCgvjc/q3KUt5MyWNvcNi3YvmCFylF/0DpNYaWJBXae4JR833cOguamaLah289qNa27Kc/V5j+alzUpTIc9oC5sY1m1BmaxTg5y3R1V2YEzwprPADr/zxrs5XQe+eT5YGMeGo4F3T/N+ny9geaeNw3Uvl9lCFL1UhqawNzLzd/aWF+HaX8MaB9BeZ0RjuoGdBiwt7eHXq93oDSYylcVuHAyztpKvZ10g1ThjFzYXhXDNy2MNEmSTSl2Wbp9wJVlbty0TT4bv1nH2Djg9UoraKK8mtZylxV7kdBEeeWSkDSpu0owq3q//IzmZdF1Oi+v5VGDqXT4jkUURe7ERQ3pOAjUUdwPC6jCRqGtfWIsZROwecJMmmR6Ni0UWr9tOhb0nK35/mRf8KHUE17aFjyWrt/KPov1hGvT1GPu8W16TOdxDC9gMXFow4Y1yw7sgtO8GT916dPwD98zHD60H6bxMjEN7dP2h69wTZ+3CVDTeGSmZ9i6cjemjQ9j9KWvClk2hJSyzARp9smkwq170qhQynmEqfJrCyF29b8Z8kz7XC9PV7bH7bB7/oTUQ7/KNtdgLeP1r4fame02wY8fN4ccxxOYUB4zm/j4B0agcoULMTC9H2V9sIeFZqQKLUGLR9bdib5k6LWNqRCCDR80x6J8h4QGTxgrEGvPmjSqMMryfTDZXTGem1mWTWRjnXzBb4zo/De/H9M0BjVe+WTv9a2b41m03frLk2vYpz5rHQYdNn5mlmNbs7RffA1OPmqUFz93KIQ+oca68YYph1NGLOtCPeOine5f5ve0H4UQANlvFC+n4xBFUXlMBxitq2Q8Bt1uF1LK8oymdQwlEx7MhVO6IMeZ89VaHQ6HiBNdaS3n3SjDuTmXzTlZfo/M+r2LRp814vKW2sLEXZm8bWtM7dHK4N5EPp8274pJk48n2oVpZSyv942wYR9w2YbnUXddhLDhBcZRsp4qHGYl2gc0VLZNS+FhBSfotgHVv1ya/7qgBiQ6bsVGVa8sKmi4nrH9PikI8wr8QaHpma62oQtO9UKIm/Ql9ejXrcNlQNHqaMlhbkY3VAldbQl4Jtry/gC6knMUoJQUpbQc5b1CU8wNpbbuuHLryvTIqmdpZBFNmkb7u/g8Xh80r8I8oOgsSB97f1VTXQYbsxzX722j7lp0GaRdOMpr46hhkflzUF7nAHMCHFbF71ZSXqnwp5jtIpylPSj4eCWawJWQqilML0FTj7l6v0pp5xSKyTap/y+O8roo61ino170TBO+VLfdPnVMRNhwnsOaqLs2dIG5vXnW5lzhvEqHFVUGhaMEzjNv/la7LMaLCzJXaIZb815h9XwURdYIEaXszhp0Hqh5EccxINznTm37xzznVZOxa8JHb4U1clSwyDL/kQgb5hJ81rH+cUxi1psr3cTV377MalZ0+QjjTeo+THONC5lSf7fRFipk+tChsrOa38dxp7Q+04y/piWcXjNDLxr3aUuepxNhQuZ52/GzOaIoKT+r+inUnJ/27juavdBn7QghNSFoDCYMkukaM2zYDKc0jw8UNFVfV+MH3cswzrDtULCN8J9SIY+YvmLChsGEyZoCG0sH5Sfke0WPlBIisttUBZjwcVd2w5phzlTh9BoXR/m0LJ+riiDs7YtEYn3exqOklBimfURRVArrbIivJQRw4ntSh4piUHPOFkZoy96r1nltjwszrjQ7q3cYnbHP0u8pnXVAeWoTb5KqWfVPSZ/HvOPGyIRtPEYF2Pd4Sz0u451w7B8cT3YZLsx9IYoirT/oXFJzm/Lykv8yIfjmeJdtI1nGKR1ZPtSe59oJkL2OWfdxwshPcrxXm3t4mqYTe6xEpvUp5wGl+7Rqj1L6qexh3gFsjo+PDGj2gU+SrLZgziGfaCKXjOtjiPahpa7xgX2mZvbeojD+WqdaYMKGbeu2KULY8CGFTeA7CMuU7T6yW9lCNq+2t+F9UO/aLNdtzSu6sav5YZ69q+OZPShDho/BoC44azL1DszKaz/vfnR5HU1hqi7KtUC+o+GY02QC9kXb3sUquLxYdcqhymGSJJrxiuMBTQ2Qt2r0ySyg7tjWz3YfHtD5dZDyAjVgFsTYn+P4Pj2qYN7d7FM3QNpPlpWuSHmcgyZlUSW9Sd+aBlUpZXm3raqDGoB9xpHjGQc5B25lOfVWRlBeFwR08c/a2+uqX30+KDoWBfMIl2iT6dponJXyqjwO01jf6npO2kQdj7MvbO1QyaJmCV1omE9InIJpmZ52LMeGvPF39N7maTIB+6JNI2Jt5ZXz8nvQpPeLmPjeXl+9+ZIkY3GBRnEENIfNE3yYhPFFUl41cAElRqgxMOlA8PE0mnXrCqG9PprczbWO1e9UeW0CatSmspzNs2rzuLrKNNtg8wTPC4dpvQS0h8MVNjwYVBIrpZ4RtS3UDQFoExxTYRkMIW+CVi4ckKCugEPDnszvKTP2ob0qnMNVzmFgYlWhF77ZZ13p/139UOdeTbNvqRdRhTPRsCb1PA0ttIUX+rTVhdIqLsep92k5OUnWYXpaY1F9/YbWn0z4Dfsuk63W9Q49C6VZ6rnMt2yoan1vMhtp7BF2pPU5ecZU2OO4U35HeZlAvb71CZ8yowO4smjo6VRJqxzZGKmXUmXXNJPHaHUzfW6Gfpbzl8lSmstUK9smsJvImf6vuzrrhLD6GJEo36/iF7b+t9JhXKMCjD2gVUaYVg2OBq2VBmOmvyjfpX+PCCYfyd7DhImr9811QceV8k5J9oSJcuytKOmb2IMc+xttd9lPI74J6JEflHbap2rNmFEiQgjkMrX2vW3fUuuY8hrl4RRCIPew62j8LrL31HCQaZEncRwXe282KCN5lEGJC9dVBlRqeKI8Sf1GDa1xHE+0QfVfnIwztKv6qGygoGV+ZnjOPGQ3rz2ewLyxYBrQucsdy/Chla+APw5Csw3XNV5qvNZxdEMjhdZRM9dDCBsegTKqgIBFxUHNzzY2CWpE8LEgzwqcYmyi7gYW0C7m3c+LNK7mfuRUThqijvEqQPcWznJcjiqU0tOUx9O+1gwrU0QFuEBpBSZlQymlt5XGRhc9L1ocb2gnUZsyeKn+VYqi+j9VSG1Qz9ruiHetgeLvSaUd0Pfco7hejgrvPIpjY+LIKa/0vsejAmV1NNtlO6d6VMEZJBblqg9fmNbkOuDP6/jPg6ZnPc3NTs1JtcGa9SrL9CJscpoldQpS6s61iatTOO+kcN+duajgrszg7gicJ02lp4CJMKDeEh+reJ26FcywxGnDAE1wZZkeuMM2r2YNM2JlEfqH2+PbhDbPHc/U4UVNrk9Se4KuVELjIW3m3dCMrDWX3kQG8TnKlcpIQOtVbRkOh+j3+1hfX69drqm8Ku8op7xSPsOxLtteVzWPFO81r8k7SFCPfJs4bHLqYcChDRvm3N++k84M0/EJYeLKqVv3rJG7rprwCBvmYJY1zUZbFbLA/aZ+9wnxMt+1lW+O/zR0Vz0zb5ihVIA9tEz1QVVSIbrhJUkyce7NVM60UKpZGFdyqc2JMtTMmBLaxi8nv6f0TniTmRBdyjvonDTDbMz+t9YtGUWfCdmh4aX6/E3qz73cziskk61To4OsQVe4qCQDQusQjuzLXH+U4X/G2NHkYfSuTTU2vV4PaZqO57Cop7DSMEY9/HLyaIP52RdcODjrkeLCqGtmWAaALNczHZfCp0ffcArIJL16WGhTmLzWZ/zU8QYz22pVBElTOn1CtdmIfS6skL7rO7csfZXnOWJDmKZ81EYHrU2bI6PvrLKTMZds5dIwzZwoUZPNGBsgy32HyXxugipSdL0qpS2KIkhMehTpPFH8xDwiQ9tQ1oXCE9vpdCYSctn6g+NFlFa1v+V5roVsmkcDbEqkKdvQfVsz7NL2EO8x/S3LhxMh3GZ/2Oig9NByqUxRR56z1dVUxvDRJUxabc/MHY5jND77t4/MymbfFw6jTs3syCFsOOBIg3ovmoBbnIuiaC4C6vSFGXJkYiKUakEMOxRtjb0eSlX//aabdhtYxHGpC1OwUMJVlmXodDoAgOFw6CqiEoFPHG5Qz2bAYkKFwbax1myGJJtS5sP/6vJIZQRoktRMb7vf2UhqhGkKlwHHptBNW19AwLQIyuuUCOEA7YIqOzbLkK+l3VauC4sQOnZQsFkUq1B3Y6beyXn3tTZ3HALBQSlybWc+PuyoG0JJj4ooD8ve3h76/T7W1tZKj5t2Jyc1FHv0/UFeH9ZWWLML8whb5Y43zIMf2JI0mQJ4m8dwDnI/4RItuZ6fhWLPKTqzMCDYznVOhCVb3qma67Pizdr8nyJilq5X15zj1ltd3kL3SW7t+II7uhGw+HAdiZoXgvIasFDglFSbQttWfUfB+zQNrKFMDijBgDMwAGNvZBmWdYDKmeYlZsLX6N91adUTmNSfS03rbQNcmNRhAhWO1TxeWlpCt9uFEEVm0CZn8ygCnzj8MEMkg8Fotqjbz2qdzmqPL8KGJ+lrG6q+OI4bGXnH5fDlm39Pk8vCrNdJE4LXNWAxcKjOvA6HQyuxbQlgVaET5sbXhhfwIAUiNs7dJxZeVF9d4Hs+gD7HnYmwnbFQG1KbsDFmrj/0RAZ+68h1voKbU9x3tjK5tky2y33dCvU0Fe/aU6/T61mqaLJdl6L+jqJIO3+ppayP9TpKDwqjKGZSvwrBRVc5j6X97Iw5XpzwaztbNAHuShxu/jfIWsmdfXKd3bV53mVuPwvIzVPqPVBllXMoGl/3UF5ZFMeQeaqVa74/AebMK32ehqur36h1fzyfJwVAQPfQabQZ59LKhGTM2bDii/E71MugaHJ5GxSNqg46b8o+cNwbSdtPr4Oh1+uYScOq4MO/uffMPqdtUX+b5dAkMtPS0ZR22/OUtywifOhytZtb91XvTsxB8r02Hw0DIp3bNn5EeZk+HyavlrLxX5vXV/EJG+10XTivHWTAlWtefVauQ5myBl6bnGUz6qt6WX7NXbtG9jTKlzhvsEquVPfaKoosy6wJmuooxXXkTuv72lF80gceQzy1/O6Rq2DaOrg+4Mpl1zdzFVwTXsshnHltAYu6GQUUMBWHgx4vUxmbJw667dPAZww1I1GD0CaFOsKpqZxWPWt+bmNMtDIanp89CExrBPV5n/azSxkxjV02xcj1Ln1Pfa8NS4P1PiuPUhVcRi9dkGmPrmkwreI1a8xjfc3DuN2URzaBb3vUujLpocqkSsxmrsmZ0dhiHba2czynzfqKMqvHW9//3AaKpjIPNVodZhnmsIL2/UHy0TYQlFdMWp8CFg+lF07YPUIHgYMMh21T+KChTXE8+7NaVABxWfFLIaWmBKH6ps45RVWf71kOyjPovyZJOmy0F3XUe/cg14WvgEr7JzIUwqr3zT530WEaFFyeAurNNPcC9S8mxKZpim63W4SKex7VMoXUNlC17qu8UJr33yM75TwwjfI6j7mv8aUZ1TePPBrzUF5Nw1G5biu8viZof6jQ4mLNtjdnuXVR92y8CzZDkpSy9ALTyJQ2Ueyhdjp4I+zs1liQsw8OUkrW833YcCTChjm4BKJ5WDcXHWx4i6dFv25yD5/6FDNXZyYVuJC/pmNHLYA2+ISZzUqAMYXoNssdf7ZfNi5ErNVPn6ffqfEHonH405RJF2IxvvdNUyCY0C3BTFPuqpyiHZPjJ4SAzHjvbmvjLHJr37pCdmzzoBHPtoSFmmOvfWZC3FhlHvr1C/pvdmE8YgaQaysN0XWFdnNl1YWa01JKNoxO5pNh5GX4uawOi/YygMlIC3dU60NdsWTWMek1ngxdNA01dPyUEE2TXJltoL/59r/5nI/BWK0XTqj3XRfqN3p3pvredn0Yh3nLCmZ9s87c7rPv+b7LvdGEevs60ZMVccZQlxxhyhIT60LYPcJVHmT7D9XhoizvM9a0gsvYqsqixwW4/YT2RZHQzn4VCr2yhx6zobzHhYNcY5zsoO17jKxhYipDZItXnGnFzkCXa3J0qS5C2HBN3KoK66KDKsV+4S0Hh4Ouvy3YNsxZtq3KiGEqA23Wx+GojGUdHIThUu/n6nM5Pt/PEmM+w58Zdr1b9f00baoqn96Hbf5m1mtbky6jDccnfNcRrWMaY6Rv//koyq5362IWxvGDjKyYFrP2lpsKWBU4QwpXts93bcCmsJp1NfHOTni/SR00K7NNCbUp7656XMYmHwfGYZ3jAfNFUF5xMEJRAI8qZulrtZ816OZymBmubpmefd9WJSuiFuM4jiGbHP4k8NkYbyV+cJDzVquPc1BMEREyC0RRhJyJD+YETPWbAtcmekdwXXDjqJJJqXO2ZkSErT6bN2cy+mL8DBdl4SqXo32aMNk6Qq8QYiKixwdN5uAsQn/zPNeOXBwmzEN5ddWjoDy0aZqW98oqOmy00L72nQfTtMkWlWEqnmbkAIVLsZVSapnx1dpT5WZZNq7TUofPnKuKvuLWxa18VWFAMxzpsGEKLSQC/huKjWGY5R70VSAuuMK46tI8rSDpI5Ryz5iCGv3/NP1vC5+xhdXYnvfBPCy0FNTrUhX2YlNSOSu0zYtj0qKNl+Gp0uqAfuei2lS5EEVKk3ZFT26fN+Za12Bk9LOVq/UtF+LjAOeVMkNry/kWMTZE5kwXDenlxtjkV1qWWoeHgfaBGZpr9o0KHTO/t80dyndLhUXYhSiz3lKAk3ZBSze+TLbbCmGvgwuTUqFyql/UmSGJMR1spucRzHe9UTM7JaXZRoMNrkzM1qrNtcjA9QzNwOxLZx3YFGnXuUKXYcumMM7b8DOr6+LaUraq9htX/UIIZBYjSxRFGh+k2W6TpDh3bjVIRPb6InAyg85/xnxJp6ecB9GkfND07kt19EDxtZIiwrOTJBlHpDnOp3NHaXIptHKA0XyKJue0bZ7b1oBNPlPttt2rrH6z0j3FHKxjMLM941P3NDKgLx185fXDjH1kBK4sL/7fYjhxCBueARZVIT3KcAnWrt9vNUzLTNU7Tea46eWZJpNqXeMDpZvWqN+1Wh/T9AcFvd92oiyPLtLGlXnGp6/nsU6m7TMljJnnEF2o8jrNqt1xOfs2AAAgAElEQVQqCiBN0+qHLZg1/3IZlRYRrIFHSqvQO00dFG32P2cADGgGOjb0Xmaua01jtvGjtVyuPiknQ4+L3/2VLZMGl6GQg80ISxXHwthZq8iyDJcThj4D8DkFODS51/1WleUCr2gHQXl1IEyy+cPlkQ2CwhjThqWZnuw6MK8uUEmWmp7FMS3OLuhesklhp6kCO01/UKiwPpuQ4FOsbpSwP+NjuZ2n8toUNITPt6yqMZpVu5MkwXA4nEhiVBfzVF7tc3AxBEZOeXUl3mlaB61nFsprQDvgIigipotpNNDE3kM8ij4h7lR5Vb+5lFeNPsv94EWZza7UMt9va2+i0RLc7+q3uns53feklF7RJbU9kEcEbXpxb2XcMmHDLrTFHMwyFep4ldqmowm4xUUzzc2KPq6vZrXg2yqrTvjULL0w1HLKhc2p56ghgIYt2ULTTEOC8oxwwrwZNqyVxWSftYUhmWtBmx+5HuLMrR3tbyZsmH3fI2yYa8NE+FUkrb/R/qCIhGyFJl+Ya12NASdUNp2/5dxDVksZlfnYo+01P5iyCu8Fs16lHopsq0MJgVLyWYhNcP1m0m7OSUWTvUF6Zm4OdL26jIM21FEmbR4XSp9tfplzrO68tZVJy6k6JuTLc2z9wI2jeidNU8RxzBoaXfPWtiZ895i6xi2fcqf1pLmyg5deQdvch56VXJ8rDv4TyYnngSJsOMsyLXy2oGlyIRfzacyDpZTjM8d0SxF6yCyFbX5RJVIIMZHZ3dY36piEEAJc1npADxumv6lk+jTKJc9zRLE9LN7HUWC7YozSbaODa9806971rpJnmlwNw9E3D+VTq4OE6GptdWUnJnuGD43cbQFs3xp7UhOeo/q20+k16sTgeUUISfWFTZidZ92LjDoMTRkAFgVqE6KKq2tDoZsdJ9gtKjga6fm7w9COg4KPcFulSCnk0h427KrDNMCYZbrqU+8UScCY88QzMi75CHMUWkg14+ila5AKZ9SAZXtnnuDGyBR0S2NATY/PQbWnig6bwj6ruqtoWQS4jFPlv9F3k/Ng3B56PCTP9e8pcjm+7sl2NVKdYwqKTm5umiGzVWX7jqNNGSw+e71uzIPqlzjlgptPlP/40mHjg7Ocr3meo9PpNJJbF3EdHRW0MfZBeUUISfWFEjIOQsD3tbQdFOowxkVTxKmg7LMWTK/UYVL4uI2UJt1ZtPFZJPh47qr6j3rFqNGkqiwqKFGh0lW3TVjKsoz1vPoor3p0Qr2z2rb6bNBDEfkEUFbvi+EJqutlaxM2rw4w6bVR39XFouxDtvbNUnn1NdgsCi9zzUGqvNoUItoEuvbimPcuCQiWn1PPZxXofkiN99JQqKlhjZvHNBGUD+jaaTKO0yiv1JjkUl7r0mHzRM/SIdLpdBq/u4jr6KiA2xdqlXFYhE5gdmHDPjAnr23RcQxaMbT9/X2srKxoyT+oxXBRx4Jr6zSCvg9jOMj+mMZK5+t54sFZbjnhzs+KTLOh0pArnV59g1Wbtnq33LxLxXVs/9KEuUzPJOoS9Gx0TDU/hJ71Ncsy3Lx5E2traxMeKpvnigos1OulnsuyDNzF8hztLiXCFoIjpXSHBdmaTTxupkLgUgg5mMYJ2ziYXlD6XSnEMWGvXMirCiemnnAppRY2TGk3jRBmG+gzVWezWeMNMxYqbJ7yQ/UuNYj4KGZ1IxhUPdwRAfV/er0KbZ/teVq27Xv6vE2w9dknzbbSMmg/mVmqbXW4FF/zHUqLjf6jKKDWNfr6PK9n2wb7fMT0Jw0PpuuS5f/Qw1jVc2IUI0vniY0fqb/NOrjs4LZnzO/pnjgx5y0hxVJKNqTXPNRL1wQ9vqGu9jHXC+VxWZZZ17hLQbQZqjnF0mUYc4Fmpq8Dlh874FWH1EP5oyjCYDCYuD5p/MfBRcrRfU9bF5aM2tycLN9pScZyZRuua5QI2YYXGJ1Op0z2oSah+hwQMC/oAqmY+K5QziZDw+lmRYVxl1WWE0oOCsvLy2X4EMVYEJpkuLSf6DOF5b0+bMqWCcofuLtF65TflgGIKpPm9RRte95dyrICp1xV0dG2pV+d9zbXBWfU9KGtLn3ms2YYo6s+rrym4+n7ns9aMGmaBnXrC9BRZcxoikl+6waN/FJTu86Y1qXfJdT71EuNvlHNNMFUwefWpK+xixqhub3dpz3a2Vv4zwuT/kVbh2rPDZge8+K1QXmdA9SC73a76Pf75d/ThDQEBNQFVSiByUyG1MqrvIzU+zZ+dyysU28wZVYqskC9e9CbVa/Xm/CAUYVM9yZTK6dO9zTKuI8HLs9zpGlaWIBrVmPzQlVZYn1A7zelypVSZNs2UDiziI7gayk2BbW2lVdADxs0jSB1Beu69FGhVIEaaVxlccKkuv6qzhVGtjLNcs3n6vTPtAaZJh6cgDHUOm90T7EDdJ1z93xT0HBsObr/tY7SMY3ySt+le6KrTFukiFmuq271j17TZeNpVeAMjHV5FOV1dTyhyivc9vxpA4onqLYFTId58dojobz6dJYuuFeHdppn4HwWuM/GnSSJFpqwiPBhclQoopZ+X9iErjYxEcpTM0SibuhDE7rmwSip0qE2jaJt499NSxkda3Oc6CZYKGNMaJiR1ZhDW31L25flmeYl1dutZ3uk76tnNCFq9H8l0JfPCiYzpkVYocYAe7t1A4IS5OLET8ChSqsSMM16fOYdfYYqkOo3WpeUks1MPVmnbp2nAitV+Oj7pkVfCIGICBfKAEjbbaOFhlCrucDxBp9IAvq8+t5nrvvwE1dGVlfdNt5sU4R9vR9qnprXTtH66D2crmRbVevfXCN0D3EpB6reusq5qTTTcaHPUzpc9Psabmw8x2Ywo3S6xsq2b7rCX33BGV4ULfv7+1hdXR0bOlFfATLXNuXTlK+oPomJMTGKovJqLbX30H7jwszVP2qYNMeC6w8618pwacKrTb4oLOMghIDMcmvZ5ndce8ykgrb5ao4ZNTr7yrB0n3QloDJ5ga0d9MiCuYf40MOtw+kNWPpvnGzLlWN7b1bg+2yyD+ocE2piTCnfzauzS89avl1sLcoTs+qsukz5VgUN5TnM/cUpM4cZ3BxusmZcAp7tWY65zRpmspQqhcQlyOTZOJmV8XL5XBzHGAwGmodZbfhKIHPfZToWVHTvbLVhxwzjMpUK9Y8zmLmULfP/NkXF9r2rDk4RMb6wliNzXdh1zWsF6j2cVKonafJZFz7Kki+4eceVpcbbtfaokGiWQ+eHj6JOYTNgVb07jcBZ5S2KogjD4dBqkDDrriuc1YWPsMvNO9e71BtUJWxWlTftWADA5uambjBxlOlTn40HR4ayarZnPPf5NlQJ776yXRzH5ZEvjk9QJS6KIuRgxmnKPdBUTKrkFTNPhY0mW5tc40b3G/qPA+VBdK84CA+sztsPt1zXBg67bHtklNcqq3bTcg/7AM8D3W4XwHw8ibOEyfhNS+FhBWeNa7JmVLKx8UZkf66J1bct0LFz1cv1Af0cx9GE8jP6o/xb9QkA4hUYnw21CZ8avaN7B/v9PobDIVZWVornPdrKZbqkNLuEBJeQZ1ppzf70jUrh2k89F7ryywm6kUaHS4C3fW8aVOx11POQTgsfC7k+H8eeH5cSTf/R8fdZi1zdNs++691pwQnfqg5llFHzx6U411GkmsDVbpvXyfze9a65tjlaq6LKphkb5Q2loatCjKMhbGVz9dmSqpnrWpvD0PnReD9j7pBCtSfVHAvuecXbzTlPjZQmDxYkC7LP+vaBWsdUWbYpqhyvMMvi6qB9bBtX2taqZKPUa0v7/KDOlmq8/UAoWCwcdt3mUGUbHgwGJbF1mZMLdFG5QqDqoE3LvbnJzUJR96HDrG/a838AJs4ZTDsfhRBaSCH9noMa+2nqbiIQzXrtmV451/yywbY5AvrGRjMoasqB0WxtEyfv+CgI5jlVjlY1HweDAeI4tp4pV5lsbWGPlGdwAg7d0G3Cp01YqVR2SObDj370o7j//vuxurqqZRPkhAltjDL79wCQy7SSL2pCYy6s35vnaW1ClE04tRlQqsbS9n0VfBQB6mHwFWJpdIn2vUwnjAPlfBplZFQZqst2iXG/KeGXyxJKy1FtKD8zd9WaoHXRz2bGX2v9zGX3WT6ceNYVYugEqUNb69D7xHe/qRKOfca7TZjhngrcmqZQ7W7iqWrT8OrTZ5wxyeQbJr8cj2+qzSmqJKmjHOZeQI8MVNHC0WO2zxwjG5/LZK7RSZFE47B7k05zzKMo0vZK02huk00ovzCNlbSPzP2Ktq+ujGwD3d9sRlP6nHmm2XyG+37ea9UHpoLfRlkA+Ay+DTIdm/t3Zd01jXuuvYdrBzfvQrbhEaoE9cMI2qZFWcBtoc1xUozfJzHOrQBTqaBCe91+tzE3IYRmwVQW6kJAn26eTjPP4zjmNxaPYul6o0LBrMKcaFtf/epXo9frFaFqhlBjg34+dzb0cWebbLy2bf50kMJLW7yJ89oofl7lwV7EvcxFrw80I4hxHdW4Ej86qDBJzyb6JACaB7i+Mo0GrvcPej/zMSCaoPuE7XsTnJzDlTMtmhicbTDHRnmnqeJJBXdlYHfV7erjwWBQPmv2DX2PJtjj5s80/JXW7RojtY+acsciKqYBhwdHUnmdtWdy3ght8i9zWqHqKMG04ALj86DTKK9aWC55Rm3IQjS7Soarry5oKKE5v3yKnfd6o3V0u13keY5Op4M0G5Tfs145zUs2G/po8jrTg2Ja9tsWsg9SaG9LaTQjQUyvipn4xeYpoe/OAqpu3/JND1ld6O9wnhY/OoBxlm51pEEpEOZzBwGX4uCrvLbpRW2CpmNs41ncfOb47jyUV5OOpuWY79Mxpp5YDj57T5IkE2VVJerh0MQoYT5PIy5sdKjfVPImW31BZguoiyMXNtwmpqmjikFVveMKnaACTt2NbRpr40HMFW4zq9tu24YyrWBsCu228zGufuXGte6844Re23PmGRRlBa6q20yRXwoluV0AM8OGNTqMUGNKH/e9bczU3yoTsDknaFvLsCaZau2x1Wf2mfqnBGJXyBnXBq7sPM/LS8gVdnZ2sLS0hIg4Urk5r+ZdlmXoJD3+OgKP0CNaR5ZKrc9tdfvOWar0cmvPZx1TT4bWNEIHF8JrwmYEoAq66wiJVr+YfKY8EhEVYesTxxiYsWD7gITV0vPVrnI4xdKmSNjqLcebCT+jYWNN98lS4Yw6VsMjrcOHVw+HwzL/gkqgpt5rwutVsh6lLNSZ/yavXTSYimXVOq4rs5i/2cqj50ULPjYE4B4rM0zYVN7qwDaWvvu1Chu28iPy5/7+PoQQ5VVttB1luaRKLpScZmD25bvqN3onN/1+gg7HHkjrs4Vpm8qrKs/sH86gwaHu81VlKXDlRVGEfr8PIYR27IjrG5PXTqUz5Mzai6rlFMA0ZDf3tPvoCE3ChjmEsOGAI41FN7JQ70kTzMq6bKtDMVlbna6NzdwwpdQTH2jWVs9Np47RxHw2jmNcuXIFx48fL4XWOvBVmGzPuTazabGxsVEYFDzONCpvN70OqI4gR/u0rfP+vmhrTdP5MW2ZnNLXpFxl7PBNmGWjo3im+t0m41X1TlE+p7TXrk6DEoDjOGYjBlzGLBvo/badTmdq47PKZMwl7ZkWNAHWvCMMbPN8lmueMz6r31zri+ubNtZ7HdA2JHFSGrtshguFpaWlcu6Y+QIU4k6iJUKzGfjqjhfdp809gTPauoywiy5/tQWbATRgMRGU14BDgXltsk2hNguVVr/p+7PckKkCaiqwAH82S71LnyvLYIRbCf6qAwofTyVnfd3f38fJkyc1obUOfOaUjzJTV8iuokklnPIFZ3zwrc/+3ezD79ta0y5PY13UHW/fsup6ruiZuEjYt+m2+s/27nh9c/U1rg7AWHHLsgyxQzlR8DGsmAY5Xw+VDTSzK1U+2lRgbd6qeYH2jfp7lnuPrf9VfVWGAdc8n6csoM1Hx7wy5y3dc7lnAPtdrQp07lV5yGmdVePqo7wucgRB2zCNBgGLi0MVNjwcDktifSzW06JJqEzV877v1K1v2nH0EcZnCTPExMzMp8JDzXMTrvKAasGAE4p8x3UWmz5/BUA1U9VDqvQMjUoYo99N1q1fUk6/twmCgvymngMKgdsUjGhZ5fs15zMNG2PLMcIpXWUpsOGlTAgMDeVR7ytPUimUGwooJygA4wySWgbYXNjnlyVU1WzDhEAE/UqLMvwrGoeCUeEpS8frx6bITcwDl4HCCHsq6ZCMsEbaR+vmvAc+/Ip6IbiMyIWyFk+8oz6rM5Wa1yTRQ4XNOtWaM2mna8LWn6bwaXtX0VQV4aCdUWfmC4dpFED1PgfF130UU5dgbXqWbDTQCIV+v4+VlRXs7+9PhAaqdqrwwTRNsba2hhdeeAEnT55sxPNpH6r1pML9aVnqs42/VZXP9ZXtWVfWZlf/U/rqwmyb2U7T0GOuPaWQASAGUX7esPyBmY7cekNu5z+Uv5qZkLk6hJz0YuZ5DimKSAEzvNfsczqHzERQtM3mGdMqZZfSouqj+5cpi5nzIIoiyGwylLuc50aINTfGtj7XENXnP4uIurpLW0bKorB6ijnLSwwZS6OrZh0hbHiBcStYrKYB3Zg4hialxP7+PlZXV1utu67Canv3MBmAmhhb1HvW9rZoNPF9vqkgDfBKO3v2x4M8aq1tQp8pyI3LmEx+YaubK1P/3R5aawoS5RUMjLevCagXkWakTuKkPK+bJPb65mEFp7xHMoKTotEUMGmSoHka+qiSVQec4uFSytoy0Jl128qz7QMuOI0mo3VFzwuqdprjaCJNU3Q6HfR6xTnys2fPagnpqujg+koz3hwizGOvowYmCpXToI2rSZrSBNjbrmjTfq9QQiZkDmH3bppKi20M6BU19Lx+k34yDQhmXeYzvlD0KF5pg9bWWlQH3KoIyuscUMcyeiuCWqNNwZpaG5eXl1sXEl3Kss+7h2ksfQRC0+qq4ONFbYKmVsim9fp47PTv/co1E23UVa6VwGCWUaUMu/qP9pV63aa8UnpnbWgz77ys8hq2anV21FF6Eyr6c4JeeTD8nHqh6tTPzfkqj2IbvM5n/KquDeLKrPIumd6iKuVVGVOkLMJa0zSFlJL1YtdRXl2/LyrmsddRHsSte328Z0oOACN832IoMteMlPpRGgq6xlS5UkqA8JaqeWPOMzofaeRME15p229symsTg7ONdtszANj+CwigOBJhw20LNWqT87FqV236PrApbubvHJ1Vz9ShoarcNuujUNZLpTBRIcEHtv7nLIa2d22oI9i1jSZhw/RMlmpTFBleJVkdNqzTUb1xSRLOpH8/3pBt14S0AZsHLIoiSGQT7TbR7XYnsixbBQgmBEZE1VedKPpcIaWm0qorRswYMWG1zvUp7WGrZtbY0ljkOGdJaaVKqPp9QgER4zlJhUGfsGgXbEKaa93TujheQWmizyqv6wSfFuOoEapQ+oLWYTPcUYHeFCh9MzaX2Y+NDNs0lNaVWdk2RrRu8z5V2iYz9NCkydYftG56X6tZpvm8TbA36TL3FfMdZbirMhpV1c0pIy65xVxHVfWbZdquKbHRbI4Fl+HWpFU955WF2/GbUt5oFmdTcTXH3uQzxbN++wh9J/cIpdH4sdS/p1C8f0LZi5h2cxGY8bj/6f6s8mfQNaTGwWc/5/aVuvJklSHB1rZyHyFhw97ynNHn5Zr1DBuu21YTddaeDeaNDtOUZaNNwbX3sfV5hPRW9VlhcOH3aHr0xkd2DmHDc8RhUvgPA+jk1s5RhH6eC3wNQRNXfhjv2MarbcMSha0+KSVyqYeh22jIGaW7ad2mEqrqnuccbrMu33OI5n2DpvJaCB+ZpkC1iSrBwFS4pJTsPFbPU+FQQV1BNCGgR0wWbsfYm2HUVcKSzcDCndkF6oXc2mhUodylMcjyDL1Hldanko2pUGrl4fQ9J2nOuzpz2rzb1Sdbuok6CqeLtjYF1lnDhw/a5n5TCCHKJHtUIbYZOefNQ31hJkWaBpoXlqAq2WFVv0yzvy0KNL42B4+s62jArY5F42lBeQ2YwLyvzFDCmLpTb54blu89kEcNdceYCn90bGIi3JpCnunBmiVsCocN6hkl6JqeDhPc3Xzm1UhKAKPluK4+mDds81xKCRHpz6i1qBI2Af7zg6tnFmdCmxi3bPPXBKXTVMitdzqSz+b9k1y/UQXeplTZaKLPmnXRsuj/bbAph+aYqXZST635DG0D/U0lQErTtLh7ePS32e+aN8yh2FLBXs1Njne5EqSZMD1mAFo9V2kz7Jj0Lgp8opxsnv+mUAYNNcemocsH2vxqKekPd9SpaVnA2CNN9wtb+334mPncNEZDn7tgZwW1dwDwST8BYP7y660ClXldCOE9FrNEUF4bwNf6GuAHuilub29jfX39gCm6teCrnNTZqKkSMCvllaOb0snVTQUjm8e0Cbg2zotH1PEKmc+7ynKF/5lzwnbuKs/10L82UWUNNpUkm9eSgmaLNrNj0gyx4/LH9SjBk84rG+oKV7b53IYVnFO0zSMItvq4caRZt5XwTf/50kTr8W1nlVGCeoBt3j7F46pCi23fu7zmiw4ffkDXw7RGOBWC3+l0ymzZZplqrBY1AosmSGrD82oael39vGgesFkiTdNx1E5n9uoKjYQJWGwc2jOv80ZdZtFUwTWZ9kGMz7zrpB4DUyCoCh3y7Wcu0YYpjC+Cl4xvB+eh4K4Q4cPf1N/ebc3tfRbFkx6fPM8nrpjxGSdOUFZ1TLwnx54SumbMa2yqMOFNo4J8xp+1o1kwy7LAJ4JR1wfREDyz/7XxM66YsT5jUc7M71U7bKB1aGOU25UIGiar3hFCwDxTy4Frh8bvxFjJpIoeNaCU9DDeR1ub6O+2+WlT0GyCola3cf54ol8qwNVhelt99x9T4DfnF2e0MSMkTL5LPWWufcnV/zYjB63LzJjKlVulKNrOftrG0FSMXEqqzQto26vMen0hZXGu2rzjuU1jBQdzf+XWAvdu1TP0ObrncCHD5hrK89QaDdAGKhVFpstdx23pO3RuR9Dni0KamwYxew4P23wz53zhnxSjq9HoM7m1XPPYg03W0vaYNNNyk5RweLRVuc888wx6vR5OnDihRT5UyXe2TMy3ivJeBxwv81qjHvk1uLrMOnzLUuPe7ayEM6+LhBC6UB9m0ps2lXct/IQp08czs+igAoHvtOPmKquEaf0z+W4cxxMMzGcczUy0CuZ9iLQ+1dZpwSWg4ZJkNbG6U68P9VD60M8puKZCQK9O4N6noAmbpoGL35m0qDHW+3n2oPxESns4+DTwFa589wZq6KjDl/SkbZNhtqZi7RIeqSLokxDIpXRyCZuowZb+fpj4sKvPfRDHMa5fv45ut1uONfX0z9oDScd2lvIKbQc14vmG3CtPra3cujjI/d48jkKV0PH+LazPzAqcMcF8BqhnoFFe+/PnzwOod37ax2AW4MZR1UWC8hpw4KCblelpoVbYaUCTtBylBdw26vYN3WjVOCZJop2ZnBac11zNlaaCrqLXZc3nNk4pZXmer66gKqXUFPJpQN9XYavm94cNSvhvwyhBQYVVzhM9DXwVQl9MY8BzeZMUqox56hlzTrWt4ByFOQv49bnr3fX19dbnfB1QHtuWUVCBmzP0PLxPEiQaij5v49es4LMOFarWXmEIksjzDFFULd7XVeB91yh9ToWJDwYDbb/1KUuN82HnDQHt40iHDfuEBPliVounLo1UkOc8MFXMTT1vvm9LR8+V6xM2VuVVqFNuXXAbgmqfLWwMaGZZnCV0OiaTrRT/uDNluvBBhWFTYZu43sRAhMlrC6SUkMisfaZCZF3zxLWBCSHKqwIiJteECm01y1ChUKqe2iE05D0zvNT2Lt1gKa0T5XPX7gg9NLD8HPHhsQpauLTFAFTWwbXD8LyW5Ui7l6xqLFywKXR0HZZ1i9z6rK0s9b5PchdtLpD2me/RPldZd7mjHK4QdSqUm0mabHWb3ieOPrMc5blUz9nao+DyftrWq2t9ct9Tb3Hd/Y3OAzacnjESmH1Xtf/QeWOjtWqfNcubVrm30S2EwGAwQLfbddJh1k09ea53XLRy9dkUHVtiO7o+zfdt/N/s//Hv9r2JttE1Lk0MCqr+TI7XPZ0rNAR4gqdZwoajKAJyPVFgOb/EePy4dehPNwAU/DvPgUuXLmFvbw933XUner3exPPqmItat7T91s9yUlbI83wibNi1z6o+2d/fx8rKykTdfu08GsqsD380eSqHNE2xtLSE/f19dDqdiX3BTch0kVlaHTVDkJuGDR+euJwjCsrEXM8A1RbyqnJUGdMwxyr40lHH2jgNTAtylUCjrsQ4ipgQvD3GScEmWNMN1yZYTDPXlILtk42yyfk4FzglwAVbCDFdC4u62frQp8bBN2MlN/YugXse8B0DStc04XqKn9AMojZBjn5PhXrfeeMqs6o+s4yDnrM+PMOk0aZg+vJwbg6qcXONXduw9bkyfNTZk2YxbmZfz6I/Fp1X0nDXJnKOWtfmXmquf/peVZkuZFmG48eP4/jx4xNnhjlD1Tz6X5W/tLSE3d3dmdZ1FOA7Jo888gh2dnZav45uURGU1wPGraq8UnpmBdVOMzkAB6WAHNXFr85RqTCeumdP6JlkwC3omsJ4EyjhnwM9x2y+5zPeLtR5j/aNWcaiC2Q+9NXlGWqeqX+cN0F5q+e13nzOKJsK67TjliRJeaelr/LKhclz9JqKzWFWXum84aBCyvM8L7ORmt6+aZXXeShrNlpshrgkSWrVrbJlm/feTkvbra68drvdcs+hc9AHak4mSVKea1bf29arjzzoQ+/a2hpOnTpVrqm9vb0DVV4pf/3gBz+IY5vHsLe3N7P6jgLSNC3lGRfuvfdexHGMJLk1ToMeibBhrg2zWoRNLPjTCkNVk3facQT0QagAACAASURBVOS8VT7fT+uh4OhoE2rTpZuvKfDQ9h3kBsp5q8zswSVyO91S6PcM0jmoQo3NcMg4MkOSR/0S5ZByVL6MoDIZAsxVHpmeIVBrB5NFl+2PvKA1TVONMfvOFW1cI9363XjsHaEx3FqnYc50DkqMvf02I8CEQMFk9qX9OpEkCfawVRo2Zv5Wviv0cGQapjyVECvHV2/QkHQzvMhcr/S7KmFLnW2lgrfqc/p+OR9y5soKJuSJJueh84gaedTfwOjsvdTpUeUMyUFcbj769LVqDx0jHwOF7RmVK8D3XLk5V2zzmdblI5T51Kc+m223PafoMJMH0Xltzm1b3/iOC6ck2HiPq1wuoZ0L9Cm6xoXl+/I30o+zAMfj+Oft4cc2utVnn5DzOjSod1VZmRzzedP4RrdpaojiQjhpmDFdN7Z5oOise1ZVZc03ebfaD21tNes226b1uVGES1ZUdWdZhiRJJniULcGfyU9tsoet7roor+VpOas1hY0HmqBHGrhnTV5L4dMHPrK9WWbV8TIA2hEiHzq63aVGA3ZrqOjgQ9YCbg2YCtxhgT5P+XM9NuTS77yDrmz5CcdV3dhmdkTVBptwuWhw0WQaUKrACffcu036g1Na580fXUKl7XdTmKsLKkBodZD+0JVSezkqgsEUJM3+1JRDy28272lTmIL8NKjygtaBTZmclk9UCcm232zKYtOEb9PQCNRrf6fT0eZbXWjKq8f7dY0mbYLb92xzqErJ9u0rjteYvwPNlBtfOjhDiWmM8k3IVsC9ZzTl9+Wc8pAb1PPqHaW4ujCtcasuDkIvaItX32q4ZcKGzVC2W6XugAL0zMdhgmL2LqZK55YSytU/H+t53Q1MhaO55nJTgZCDGrtpN9tZg/OmAM3CsqyWemkP++K+9ylfzRXqiZpFxl9fehS48RZCsGHjFBzfNdeJKpP2h09oPR1Tm8fORo/5vm2dcmvaB7SsacfPnBfTgPaRate0PILOU9uYKri+n0Z59RkX17qvU2+SJF6h7760+Hga6/KrtsDVXYf+qrJMVO2XlE804bU+Y1fVbmA8D6rq9uHhTdpBaWryDm2LCnHnoCKt2gyBr0PfrFH3+FbAGEcmbHhW3hibIMp5RDhLZf9/+D62/OQ7vhHxV345ACD/w49i+LO/Cc5K1v2ZHys/D3/430A+eaXwFEho70Rveh3i7/jGgo4nryD9kX/L1/+D/xjRXbcDANJ//xvI//hj1ufExduQ/OA/Htf/nd/Plhm//W2ISJuyn/8A+2znp99d0Ckl0h/5v4Gnrmi/S1k0UTz4Woi3v7VIXvH400j/xU/ybfqBfwgxalP2s7+J/I8/rrdlNEziztsQ/+A/Im16l7U8IZq1CQDSH/63kEabFOg4cW1SjprOD/4j4OK5UZs+APnBT4w3U4jx6N9xDvG7/mHxfQwMv/MH2I0uevvbyrmX/eFHkZttUp0PoPMzD43+FBg+9JOQTz6r0ac+442vQfSOtyGCgHziMtJ3v8fS8lHIz/d/dzn38p/7LeQf/IS1n3DHeUTf/z2jOgSyf/BDelmqaQKIvu2twIOvKf7+0Ccgf+G3jdU0DpmL3/fD48373e+FfOoZa/XRg6+BePtbIIRA/sRl5O9+LwQMJWv03+Rd3wNx120AgPRnPwCM2qRGSkHcOW4TRI7sux+ytx2A+LavR/Tm1xXl/PHHkf/C75gVjx6UEO8Z941893uBS8/aSoR442sQvf2tyGVa8JEffx9bP/63dwJ3ni/43i/8NvChP5usGwDuPA/53X8HeOv/BOz3IfYHRZNpqJn60InHqYvzHGKYas9or/W6464bDIFc783yuTiC6CTF37kEBkNtlDRyu50xI0hTiFGYu163BKIIGF2JJASA/mC8LMz2d2JAGceyDBg6MjUudcefR23ShlL9J4ogO6MAqVGbtGdo27odICpmphymQJZPPitGDel2xi/3Bzptcvw/MWqTVG0apMDtZ4B77hh5qkk/vOcHx8r2u98LmOtJEfHGLwO+7RuK9fT40xD/8qcnqi/b/8+/C/LO80VY7y//F+BDn9SLVGXecR74vneOf/ieH4GxRMf4e18/5hEf/DPgl/4z8yAQ/dR4PeU/+lPaetKKf/A1iN7+loL+J68gf/d7+TK//7shLhY8Iv/534Zk+J648zyid/2D8m8Xj4i+/Rsg3vTaon6TR5jPvvchYGQ4yP7Fe0q+N9FdpE35E5eBH3sf618zebnZppJFXzyP+F3fM27TO8f9G733IT1CQb0j7PJdlTfdBqp42gxlvgYVM0xWq6OGCJrneZlt2Kybk2VVKL/NGE/zCGhXDyHW2l32J8kma9ZN+6o0NsEuY2dSDyfl+lb91qZyWMeIYY5x0yiGacCN66Ia5GvDksl/OByyZ3FD2PACwDYpXYprO5WW/zm0KDcSxioupZLj6l/+ftihBOU8z9kwCTl6qBD46MbgnhfKuzTetAyJ3DDGjIdHlD/RIVPjNHdMkK28Z5M9kGUZ4igChNDCQn3g85yUcmIek1+96nHV3Y5xTgKgV9OIkUo/RdnKIHT1OpDnwLe/BfivH+Sfv//lhcIBAJeeAT77KEuq/FtvgFCz/yOfAra2rc/hjrPIH3h5QceNbYg//XO9RXSuvv5LgM1VCAiIz34BkiglEoDMJW7cvImXsgHu+JavRZJEgIjcbXrg5cAd50ZtehZ4eNymCcX0a944Xl8f/qS9TUBR3v1Fm3BjG/jTT/Flvv5Lgc214u+HH9XapJ4XALCxBrzhS8c//NcPTfbTaDrkD7wc0Z3nivcuPQt8/GFgexeIBGReljh6z51hvBTqfadZaRRTSb0EjBrdZU100CRK268DnFHco/gakIbWPlsob3MuxMJID/RsNaekUriEfZdiu4ig5xurUOXJrypH61vUS2yo5AWzjoP00pttPQzjfatAzetZRDwGz2sF6nhebQxTKa+9f/djqEJVyJkJ2x2PHB0+v1U9M6u5oq4DSNNUm+T9fr8MkVGWmzYYU902zYMZcnTo1lJ9XEorIuznb6TIywyHiomMlf9xOCK9+F2Qu2E1QZQkbCqS/xTKBFV+laU3juNSULUaG0jyG5+x8EkAYMvQaksak8vxPXvcfYMT5BrW+sLQYg9DNe/9HCvScuKd8UN6n9ugrUmSfImGXNnuYC2TkuVMPzOJiGz1u3hJ2Zefewzy7/8A8He/bqSb6Uqx3jxh+aQEqpHxQRaKthCT/V1GUJR8n/T1SBOwesilhISEHN3hOG5X8bwy6sRJgq2tLSz1euh0O6PnZLkOGiv7yshDLECK4rI/SN/xLMquPplTWRnAaB9NlKTx/KI8KdX6icbvX3oWeO4asp/+YasQaybBo9C9aXwSG+r1Uc+p+3Zda9Wsz0aX+T29OsRVrs0rZ7aHe9d3/6jzrC+4qSNG9SkZwqZ4mApkVahqlTLJeTWV9zV5/49oYz9+d5xUromcY47ZonleEenzm9JqrVtKq9xH36Nz1vS8avLy6J5227GKOp5X1R+cHD5Lz6tZFzd+wfM6Jxh3xFNZy4ZbzvNqW+QuJa4pbGEQ1AtSN2TBzNpIBW2bJctkIrYN05WFz4TGdMlnynDNtpq0uIwETfpcCTFmO6hy0e12kWUZ9vf3sby8rNFmA+1nukGrMaAMlApSJl0+Vkxzw/MeC8LM6XciGodQCkGGSY6FN6q0yCgfCePGBfUiQhzH5bO6ApQXQqoA8jxFFMeIRIQs1wVHhRg95DJHnuUjgkZZ+URUSkixiIrEDbmckKC1Nlr6ANAVLFs/AfqcsJWvxjeO4zKLLR33OJk8cyiEYOsuyix6TIyIlxIQUa6vycKBiUgkuuBQ0iYcSrs+l21zTp+LpG6tOZNtUHOazm0v4cwiEOR5jkTqdFMhCALI1JwGSm+pBG038TKM6BUQI/5T9HEWZZCyC0AiivqQeQYhu8ilBKRAHHdLJVQIgUGWQUggSSJ0Own2+wPkUiCKE6AUCgvjS5YO0el0MRj0kUkg7iQQUqITRxDIMUglOp2RwjTsY3N1FYN+CiHFaH2M5lOeI4kjpDKFzAEpI3SSXsFr4ghRJJAjxf7+HlZXV7G/vzf2LIkYUgjkWVYqpnGcAHmOKI6RpSmyUduKa3bS8mxYHCsDnoSQEkLEkFJAIEIuM0SRVEsTuRxlcMYoI2oUoS+LvlJqvRj140BkiGSEaKRFy0jJINHoCwEgUuYBJCIaeV4lIjJfxSgM0ZyJUkpIEXsporbv6VqmoPsn9xvHL+g6M5+lSi1HE90POdhospWrBDwz2+y0MkzEyEPlHhHp11nZ9n6bQmkDzUZua6utDgpbXxd7N80wT58fG0t9QWnh5ACtTbAr7WZbXShlG1J0WV5EMqBbFMaJ56HvDzYlkfb/5D4DAGocgDjiVQBz3IARGyBrZdzIcfScmSiSKrZ0z5RZrs1z9b3qcxeaKHqKf5hzet5KIydfV0UV+hpWbPVxBps6cK1/Xb4jWfOj0Z4v09b7+dAqrxzaUFjnCRuDcD1DIWxM5AhBbUpqY7906RLuuOMOLRSBW/CmYGJupBRUoZ0nTKvmmDlV01ElANRhctRb4qLVVW8VNMHJ6Q+wfGsw+ypGHEXRxP2P9P22Lb9m+epfmqblPLUJvuY7TeBzRgqY3qqrNv481oWh0SdI9IpPolOqRVLKkSI0zk5dKPrFP+XZAySkKE5uS1WuVN4hASABZIJI9gFEyAZ9RFEMQGJrexvrm+uQMsXuS1vYylKcPH0GaZZjONxH1ImR5sUVS1maIZNDXHvhKp6/dBkf/pP/hjSXeOD+L8I9L7sLJ04cw3AYIxISQkjs7uziqSefwj13vwJpnkMix97uLjY3N5B0EiRxgmg5AWQRRt/f20aWDbG03MPyUg/72zvodLqQfQkxjBFFMZI4xnDnBiAlHnvscRw/fhxrq+sYSolnXnwOFy9exPLyMnKZo9/vI82GWOqtIUeObLiP/d0+9vZ2i/bHI/VTCqyvb2AwGGB9Yw1DWdwLCDFWhrJ85GGWRS9nGBkYCosL4lxAkHUl8kLojCd94ihMXxJxUih4WZ6Xa1oyhxuUz1dKiSiOC0PECObMbENpawLXPqv2IPWcTdEz36kDpbj6Xkk0Lar2jzbgI9tUvWvyRr1v7E4LVWfbmNWctM0jV5+55p0PfK6+UjKJfqyIN8z7ZhteJDRVBtuErwyv+M9RlfWb4Egrr/NWRmxQiRk4UGXDpbzaLLFtWVQWFdQamaYp7rzzTi1ZgctSRS1ZtkQEFAfVh2pMqWfQl5lytDZJ4U8VroixYk8jiND3AX6j43q/rvJKrfHKy2MrcxYbAS1TJSjgvEv0c1PjgG8bpp3bqr8zw4OraM+jWPOeAijOvgKAjFUhY+u/QKGwSuWdBsY++UJ7VV6CSIjCDZhnePbZZ/GpT34a9913H1ZWViAiiY999CPYXFvDxvoqeks9vPTiC1jbPIZz585jd6+PlZUV7Ozs4LnnnsNwMMTK6gqEzPEVX/5aDIcZLl68iJ2tm7j85FM4cfwsXrz6AnrdDgCBM6dOYX93G8M0hUSOK1euIInuwPr6Gp57/llsHNtA0ukiHaaAAG7euI69/W10ux3cuLGFe1/xSuzs7uELjz6OM2fOYjhM8cIzT+DixbsQSeDRv3oE6+sbiCKBznIXn/7kOBnW9vY2Tp46CYEiudKZM2dKz2U/TYFEKa8Rtm/cwOrqCj77F5/CvV/0ykJAzXIsLS1BiAg3b9zAxsYGkqhQVtVYjtdThEjmhW9VjkZCCsQyghRFmDXE2LAwHA7R7/cRxzE6nXHyJzOCYbxHEU9wBY9TwvVBGBNthi3TO8cZQM136qDuvZ3TYl7Ka1MPMu3vJlFNh1V5pd5gVlFsgY6q/uE8y0dJeVJywkHmUXE5VRSUzHvQivai4dCeefWxSrUJWi7HSHwmovl+XbgUXB/LDHdWo845DRcdNqRpit3dXaytrZWLkDKMKo+f6q/9/X0sLS3VI3QEmpzHDGuyhW1w423SNg14Jdperk+okhlSRJUiLXTUohBGUYScEeAkkziV22CpRZEaGgqheTjhyYiiSDvLafatGieqvHLhYjZBsmy7YC7Z5s6jchidJzbLcp3Plcisc81Gr8tQZT6ryrCdN7Sd+50W3W4XaZoiyzIsLS1hMBig113G3t4elh6/gv47/in23/ZVSAdDdLtdLK2sFModxtEUg8EA3eUlpIM+4jhClqXoJkWm4DTLILME29vbWFmO0e/3IbMEV68+jc98+mF0Oj284Q1vgJRAv7+Lzc117GxtoduJceXyZXS6XXR6S1hdXce1519Er9fDYDhElmXodrvY2NhAmg+Q5QISMVZWVjDs99Hf30cSZ1haWsa1a9fQH/TR7fWwtr6GrZs3keU5lpZ66CQJBsMBVlaWcfPFa1haXkae53juuedw/txZ5HKAnZ0dREsr2Fg/hv1+H7edvwNpmmEwGGJpbRlZlqPT6UAgKhS7PEdHSNy4cQOXL1/G3XffDQngypUr2NhYKZ4dKa7D4RBxHCNBMd+iKMYjn/88jm1uYmNzDVu729i6uYXz52/H8vIyrlx5BqdPncHzLzyPThJhY2MDSysrePryZUhIXL9xAxvHz0MgQy+JcfbcOTz2xJP4xCc+hQtnz+Nld9+Fre3rOHHqJM6kMfqXnsHuv/5fcccdd2BnZwenT5/GYDDKWBwnuHz5MjqdDs6ePYubN2/i5MmT6Pf7yKIc3W4XL774IjY3N7WQ/l6vV14bAejRIJRP07mu1hE3t7ljIJR/+igLFDY6fPZ7ymM5UKOcadiss9eYvKAObIZCX95BDfFm3a7+lH/8cQAC0Ztfa33GHK8x9LlCPYppmrLhy7b9g1Mg81FCIzOc2wVz+y7rjtxzyhxv83t6VIijw9bnLsOKz/ww6zGPuEVRVGaAt409zUSstYlUTZ/PobfBtsZcbZiFDlDFazj48og2YM5TBZuc4kKbtPrwvm5npdGAHTnP6zxwmBT+g4TaSDqdDpaWlsrNpYmX02TuTWAKRLY6FgOcgFNtIVQCYR0DAQW34fmEMpugAoOiq9vtlmciTE+zjxGjDhM23wVwIMFNpSAS2dtYJYTQMmweWnrPpSnot42luIO0P4SQEivdHva2d4tEavtbkLs7eN9P/l/41uEQN6/fwPb2DpIkQRILnDhxAhACSRyj0+0CeYrh/gCdJEGeDtFJEgwHffT7feztDvDkE1fw6KOP4K67ziFJYtxx+12QEHjDX//r6PVWIERxrrS31IOIBFZW15EOB7hwx0XESQc3traRZhJr6+sQIsLJU6ewvb2NpaVldLsdRJ01vHD1JZw4dRLpMMP29g5OnDyFzz/6GbzqgS/GxvFj2N3bgxDFuZ04SdDpJKMzrQKPfupTiOMIX3L/A9jf72NrawfLK6vIJLC6uoHe0gp6G8fR7XRxLIqQ5Tk6vQ529/ews99Hr9fDMCsMVXGcYJhlkDLH7mCAu1/xCjz99NM4e/YsOr0eNo4fx2AwwOrqqmYI2rtxEy/dvI6trSI8+dTp09javonz585hbXUdURRhZXkFZ8+ew/LSCk5LgTgBtra2cPXaS9jc2EC318OZU2fQWT6GbiKxtXUDTzz+BSRRgnSY4hX3vgJ7e1u4ePECtre38Jef/Szksy/h7W/6SnzTN30TXnrpJbz+9a/H448/jo2NDZy57Q6cOXMG165dw9WrV/GOd7wDTz9+CZ1OBxvHVvH0U5dx+vRpdHOBXEbI0gxiuYt+v+gTU0BUc1nxCioI1jESt+W5osL0POQAU5GZN3yUbgV+7+ARRRHyN73W+U4dz5iPglH1uxbZxSicvpCyCL1NkgSZtBvHq+ikfWPOg0pnRcO5U6cPpZRO6YC2Q9vDGdoXRw4LWGQE5bUBfCyKAbollIZQJknivJiaAw1Pa0ILoAtDKrGPQlsCzkGCJhqh7bMlO7GB9fDVVF7pHXOKLkWHqscM2eHWlSqrjvWbQvdE1GrG1FB0SylZOYj3wNvDpdU76neaMXca444P0t19DIdDvPDCC/i93/s93H///VhdXcVdJ2J87vOP4Evvuxvyjx6FzDKcPHUanU4Hz156AjcEsLK8gv/vQx/E0tISPv/I5/HKV34x0izFykoPZ06dwu7eNo5tbgCyi2Nr6zh78hSWex3EQkLIIRDFWF3fgJQRnrnyLE6dPgkhgFh0kOURrr50E+fOnUUUJ9g8sYz+YIj4WIQ8l8ijCL1OF3ESo5+m2N++ic7KMhAniJBg/dgJ7A2HiJIV7PUFhsMhnr7yPC7edSeGwz6W106MEi/tI4oFXvsVb0ISx9ja28LmybNYGWTIsiKxXL+/DwmJBAnSNEMsIkRxhGGW4fkXr+Puu+9GFMUjD2qCbJghlglEInHi1BkAwMtefi/yPMcdm8cBCMSdDDmA3b1d7O3tYX19HcnacWx217B5RuDxJ57E0rHTWD5xGt1ugtUTMbIsh0CE1c468hxYjtewN9zGqQuncSLLkEQx9nZ20Ol2kSQRhBzi3JlTePH5Z/FFX/RK3Hvf/egkCXZ2b2JpKUISS8hjx7AulvHNX3k/eiLBsfMX8Dfe8CCyv/YGnD59GldevI4HHngATz/9NJaXl/E7v/5b+NjHPoY/+IM/wINv/grce++9SNMUDz74IDqdDm6//XYkJ9bLPaLf72NpaUmb7/QaEXpspEoop7/Rd6ZZH5QPzQMHqbyqfbqu4bNOtIePl7jOvuwzNpw3j5ZRGoCnNHfSfU7UVIQ5j7Gv13GaucPtxVQBVc/kee6UD3iZgn/eRkdAAMWhDRueN3wZsYnB3y+uyun+jP2qnCpGNO34uDaUtpTwaWlsbw7yG1eaFmF6Nss+RZWFuT6tk6Fr1ENGkWVZSSOlp1S0DdrKpApc0iqZFPWLFBAZhoMMSdJBHHeQS4nBYIBYFFcRRaOw2TzOrAJAxISkUGjzCfHEbzavu693xOwzFQJKQ5jKUC8SIi4lHx7GwWeN0Ix6Jp0maCikKaxJKQEZ2YUpkU9s+rZ5Y3qCTMECABI5PgutZTuXA+RCQEQJUplDJMX82+qnWO0tYWmYId0fIEkSfPLTn0EMiUuPPYy7LhzDY1/4PO6594vRWz6Bq9eexvlnruPUr30IcnsXL736HqyubOLmzS3k+VUkcRf9fooIHXzmMw9DiAj9rIOnLz+GJM4BCHzzN30rbl7fwdrmCnZ39yAiYPPYJl588UWcv+08ZJ5ARCODh4iR5xJXr14D5BASwMmTJxEnMeKR0J0kCYb9HfT3B1heXka310OeFYm0km6MNC3SFnW7Xfzar/1HPP/c8/j2v/ctGOxnWO6t4kMf+QhyAbzpq96IbH+A5dUV5HmG7Z1tnDhxcqRsDRFFEV566RrW1tbQ7fXQ3x8U6yyR+NSffQqveuAB5FJieXkFj3zh87jrrruBPEUkMwARECWQiBDHOba3d/C5z30Wf+11r0Oaprhx/SV0kg6WV9eQighRHGN3Zxt5NsRjn7+EF154Aesbq/jSL/0SRJHAzu4WlnvHsbzSxX/7kw/iZS+7CxIxks4SPvThj2L3+nP46r/1NVhaWUNvaQlPXnoaO7u7eOUr7oQQEbrdLgaDFN1uB1ICL774PI4fP4XBoEh6Jba3sPKf/xCDV92Hve/4JuzccwGdboIoAgaDfRw7dgo3btwAUBzziOMYa2treP7553F88xhiMcSlS5/H+fNnMdjfx6WnLuPchYsYDoAb13fwK7/yq/i6r/tavP4Nr0MugJWVFayurSGTOVIhkeY58igtBd/OKANyJIEBndejdVDeXBXra0R9VkZVc33RNUaNgC5lwQd0DdoUDS5EUylTrjJNmky+6LN3UV7lo0Q0kVEm2vhHHy/qZMKGOdDuoPuD6/wwVb7M7+kYqH8q5FX1iy2nRJ1wTCHERBIk+hulxee8qVk31y51LMb0gppXpdnGUyszt+9FvlcHaXOqtsjJzEHH9JOMfKE9s+DOKJchAahOuEm/r7qtwVWOT4QY91zxMBM23PCqnPihhx5q8t6BIM/zhw6q7qaTOvvAHwAA4rf9zdrltrmQqrxVi7ho64PnYsNhOiGo2GAq+/S7NmhSmwa3CVaNkU2R4Vot1DUXolAO4riLvd0ckAmywRBLnaXykvI8yiAFf02Dug7Duy8kv6lqoUPMMzaGbXve9AzYlGOOZtf3LoGseK9aYDOFR64deS4nQiIBlNfg2DxPtA5TIKH0lwq9HJ0liiJIISDFaIgkEI3uUu4kCWSaIo4jxABkfx9dEeGpx5/Ar//GB7CyuobVtRXc87KL2NvfwctfcR/Onr8I+VeXcOF3P4WNX/8gcOYUBl9yH5LeCnpLq+j2VoBcotNdQ6ezguWVDWxsHMfa+nGcOn0SF26/HSdPncGF2y/i9OnT6HQ7SLMIf/7pz6C3tIrl5TVkGbC+dgxAjigSSLMcuczxO7/9O/jMX/wFjh3bwO///u/j7LlzWF9fRywi5KMQvW6SYGl5CcM0RZaODR1xkiBJEly9eg1bW1u4+2V349777sOpUycQiw4ee+IJDNMU5247h5OnT6LXLc6pSkjs7/UxHA4houIqqngUCl3cVZ3hT/7kT3H8+DFISNx54QIEBOIoQn84wPETxyElcPXFF7G+toannnoSH/mTP0Ucxzh1+iSuv3Qdd95xB7a3t3Dt6lV88pOfxPraGtY3NjBIC4PJX372s+jv9/Hxj30C/f1dPPrY5/Gq++/H3u4OTp08gSTpIc9S3HPPXbh8+WmcOn0GT116Gmma4fbzpxHFEZZXVtDtdrC9s4NrV6/i9Okz6PZ6yNKi327cvIFut4tOEiMdpkX/ZTk662sYvvJl6Lx4A8u//AEsf+4xRBfOY+muC3j66UtYX9/EysoKsixDlmV4//vfj+PHj4+8PSjO2gAAIABJREFUzQkQAZvHj2F5aRmraxtYXd3EyuoqOp0eLl58GU6fPo2lpR5+4id+Av/p134Fq8vLWN9YR6/XBfIcS73iyiSBqPgXxcW5YRGVGY3V6hKjeS4A7boO2/9t65b+bVOEXHzCxVua7MNVfIzjqT51Uqh71X3P9zXZGyf437t/Cvj0I4je+lU1S3IrHb7f2Z4Z880x751Q/GqUqZ6jfLmKNrOOKqXDRUs0ugSc7jGF8srvndYyGUXUFZhFf/J9h9JEK7fS5yqg5jgtuhzcdE5XPdu0b+g1W9Vl2b+P4+SHKyu3IIQNH3H4WmeOOnq94ioP34y+aZqWV5y0zdA4D6RNGLJtdmbonKOmkeJatDcbJujEy/ilX/wVvPKu2/FFD7wS3bUEneVucbdmlCMeJlqiC0qz+s5nDtk2WdscdJXFZQo2w2TV/33GytfKqiz4tH7V73Us7YpeF9TvpsdbhXqXYWeiCLk3+4/+4+rOBSCiCMJQkPOoAyElhv0+hMzwuYcfLpSWSOCzf/E5/MxP/xx+6KEfxVve8lYknQ62d25ge28Lt7/sAeCTf4n+z/0ijj/yFPKLd+Lql78axy7chnRvG5A5tnb30EkSbJ64E+lwiDzPMRgOcershULRyPcwHAp84dEncd8rXwmR5Hjksc8gjpcRd3u47fY78fjjjyMSEZaXN/Dcs4/hnnvuKe5Y7XTxjX/7rXj2mWexurKCl3373eh0Emzd3MLm5ibSNAWkRLLSxd7uPnrdJXziE5/As88+hze/+c1IsyGyTGJzYxPDYYqlpSV0kg6G2RBRN8EDr3oAe3t7iDoJoiSCkDF63S5euvYSrjzzLD784Q/ibW97Ky7cfh7DQQpAIIoKT+zt589hudeDEAIvvXQde7s7+Nxf/RXe+OCDyNIhup0eAIm/ePhhHD92HOfPnsWNl65B5vdgc/MYnnryCaytruDUqTN4xctfARkJDIZDdJMlxHGCVz3wxUiiGNevXceFCxdw8uQJpOkQm5snMRwOIWWOSACD/hBLvS52d7axubmOC3feiby/AxFFWFlZQpoOcNv5Mzh9+gT6fSCKc8RxhBwp1jY2kMkMly9dwkc/9nFsbe3ibW/720jTIlkUHngFnl5JcNu1m1j73h/H8OJtuPurH8TOqXMQq6uI4xhPPfUU3vO+9+B1r3tdwfM6Bf1ZKjDIcvz/7L1pkGTXdd/5e2vue2bt+9LV1QuAxk4QIEGAFCVbJGVZ8nzRxGwKSV7mk8cTMeOYGNkxEeMZe2JkT4zDlkYOSRQlWtxEggJAECCIpbE1eu+q7q6ta9+zsnJf3jYfsrPqZdbLqqxGA6IonIiMynr57vruu+f8zzn3HK/Ljy/sRRJ1dlMFdrNZtpIpvD43/8v/+i/wuWF+fp5//+/+LaVKmaeeeornn38ebyhKLS6aKYFxVxGjmvU6s9p3UwAaFDu1/cjJy+Q4Sjr7O9oKOSlH7deb3X8cwPtReHw2m8Xn8/3MC/Fw0KLUeO7fiVoFgY1t1JSLrR6/aUb3mgqpFoDqXoP/OOX7biS7xfevMwKvnRplkGZy0qf0yZKmaXv73l/XXvFzZ3n9JFwAmlmInKhqeRWQf+WLLWldm1mknD6t9vXj0Di1snm02t9Wxl3n6ti0zsP61Nx6JwjCgc29xihaZTQ1sHOwjeZuFa0IJI2btaMLaRPtay1qsWmaWKZApawzMXGbV3/8Olcuvo8oiYyfOYmJiSkZWKKFYimO7lNCk/7atdH1E7Lf/8MYbuNzrVGlUmFycpLu7u69TdJudbSfnT3Kxa32u/0ee5lGYbXRaulUby1HqX3t1MClXUC2988uMNev7XrBd085gXmg3cb/GxUgNZIkqX7ehf3orLquV9PMCAKWruFxuXn3rbf48z/9U7777e9g6SblfAZBEPnN3/yH+AMhPG4X2UyKwuws+W/+Fd3/95+h/Pg9zHAI67GzrHlVvvvDHzB+6iT5Qg5REpFVkVwuiyyrFEtFBKmaY9S0dFxulUIuja5b9PWPIEkSFaNMLB7FF/CTaI8jyxLvvnuemZkpRBEKhQylcglVVfH7/Xtjeff8u7jdHiKRKDPTMwRDIUSxmsKlWMhjWeDz+QiHI5w4cQKXy109P29ZGLoBloVpWOSyOVSXG0PT0Q2NjbU1NF0jm8tVXZF1HZfLTTQSpbenC7dLAUvHpbpwKW4ss/r8Na2CJImIkszM1BQ+jwdNqxCNxVAUCQGBSrlCR2dX9RxtsUhfby+maWEZJj6vtyqsChDwB/AF/aiKi5s3bxEJR/F6fRi6RsDnIxDwsbG+TjgcAiCfy6HpGsVigaDfR8AfQJRkfH4/giji93oQJBFBFNje3sbr8aBpGt/61l8Si1bP9SpKNYeuZZlUimUq5QqSJDE4OEjAH0BVXWh6mb/4zrfpPPcgwScfRdc03D99H/8ffQfhzhKmaRGIRvmFX/1VEolE9XlJMrIiI0pU0wsZAmurGywu3SEabWNuboHf+u1/yPXr1/n8Fz6HKBgEAwFGR0fxuN3Mzc5x6eIl+vsHiYTCWKaJy+WiWCohCAJeWUEvV13cBcAyTSzh8FRpjbzEaa9txgOc9hSne534wnH4d2O/Wi3f2D87r3Pig7Xgik7ttUrNeP1hdZkv/LRa9ivPHllPfZ310YbtfW7c8534lD1idSPPqykMa7mMGxXORz3LxuMsdedobZ40jS7hdk8iu8X/KBlwL66Cg5xUrW8/6Fn9HOzPS00BU6vLMe1eEy+ERv8vezuiINb1ZZ8nHb2Ga/VUyzvf81Etr63IqAfkIeGgFb22TlqR745DTm3arx+nvNO1xjoa113t2mF7XWNd9rVt60ldGzWSZeWeLK8/d+DVTvdr8XyUevfBq7PbcCv1flzj+KTbOC45vVSNn6OAoq22pr8YhkGlUjkAklrdHIADTKaVPrUCXvdqsfbTQ9hTAxxa1qyaJATBpAZkJUnm/Q/e4Z/8k9/hic88htvvQ9c1RERkS65jNK1Qs/tEQdrb4FoRhBrrKZfLtLW17QUNqdVR+25nEPeydu2M9DBLi9OGX6WDlhy7IGRnYnZhxH7vHln7fakXpI49LEeyLAvJFJAFEdECv8fLxuoaN65e49J7b/F7/9e/IRQM88UvfImvfvVXGRo+QXtHG0MjY+goqLKE+O77qH/8HeJ/9AKJdJF3tDxT8RCJs6eQvR4k2aK/vxfLsvB5fQhANpPmtZ+8itvlJh6PIssSmUyaUrmIqsiUKpWqRdElI4jw41deRRBEorEIgmURDgXIZ3f5pV/6EoJZwe3yMtA/QCabw6W6MHQLn99PJBxBkiQ8bjfXrl+no6MDSZLI5XIE/P4qMK5oCIJ4V7kgImBRKBSwTIt8vlg955vJYZjgcamkd3ZYXJhH13TW19ZQVZkXf/giekXn5o3r9HS18c7bP6W7p4NyqcLW5jYfvP8hly9doquzA4/HzczMHO2JBH6fj+WVZfr6e0mldsjsZvB4fbhUF9vJHd5/5zwba2uMnz7D+bffpr9/gEqpXM1J6/XhCYTQKgbTt6ZYWVoiFPKTy2Xw+wKk02k62zuZmpomEo5SLlUIBv0ICMzPLaBXTKZnZgmHI+zuphAEkUgkBnfP+oqCiCxJdHZ00tYWZ3Nzveo+blpUSmUwJQb7hwiFg1iCia5re3MaCofo7ekDWcYMB7FODGMMdWMsr+F7/X0C3/sxbTfv4EdE6GxDVwQy2V08LgXREtjeTNLT1Usg4COfKxGNJlBVld/+7d8hGo1Q1DS8/hDhcJyOzh6efPKzRMNx7sze5A/+w7/n23/xTcr5LF3xGBGvB0urxjXQKhVkScKwzKrVVRDgEEtcjez5FJspsJqVtf/fKuhrVfA8rK3jUDNBtPbb/ZABmvKDQ/ipdRe8Sl/9giPgbE4HvZIaQVINsB31DBv5yZ4Ft2EMjsc7nMbUsH6c3I6dxtrsuv03p/47/V6/Hp2fvdAgQhzpzWU1eS62a/axS5LkKAIJgtASeG1ULDjRRwWvrVLj/Dp5xTnddz+pFaD9Uele9ofW9kjnez4Frw70KXhtnT6ONlp1zWlGThtF7brzy3Rv4LV2bg0OgtBW+2wHHvWg8qOBVzvwsTO0VgCXZYrVvVswEQSQZRG/38fnn32GYCSApEhUKpUq0KT6MUy9pfEeOQarnmk0Y4iOYI6qm3eNablcLnRd37vPDoiPu5Hb59AuULVizWwFvDq11ahwaXQxtKz657y/BlseVlOqtalaEoookc9kSSV3MDSd6dtTuIQyT3/2s4yOnsAwBFyKG+nGLK6dFOpfvo740hsE/vUfIF2fIrObIvfAIMXBbghHaWvvJBQOIgqgKiqyJJNKZpBElXJJw+P2Mj52mnKphN8fQNcNLl28THtbB6FgBFlRcLkVFFWkWMhx4YOLnDp5Fk23CPgCYFjs7uxg6jqKJBEKR1heXqFcqjB35w6maaFrBrs7uwRDIWRJxuN2s7C4xMrKKlevXuXE6Ag7OylCoWrgp9r503wux4svvYTX62N1dZXlpRWuXLmCphsk4jE2N9YJ+n1MTU2xsrTM3J1ZFEnm9MlxtHKZ0ZEBYpEA+UIO0xTYWN+kq7OHaDTCu+++w9zsLCYC2UyaWCxKJBpmO7lFoi2BaVgE/H4sUWRjY5PdZJJ0Kkn/wBD5fIHFhQVUVSUeTzBxY4JYexflUoW2WJx8Po/HrXDz9iShYBTX3bzXc3PzdHV143J5AJPd3V3cqhu/P8j5t9+hv3+AeCLO0uIqsixTqWgsLS2xtrZOJBJB18pgVc+UCsBuKoWqKCzdWWP0xCimpeNxu/B43UiiBAKEwxEEBCwLKndz+hqKSDkShPFRSgPdSKKI58pNvF//PoGvfx/j8gTKxQkMw8CTKbCWSeONh3C5vGiaSVd3L8FQkHwhiz8cRtNNMpkcum7icnlwuzwMDrXzyCPn8LlU7sxM85Mf/Ygfv/wSoUiczY1NXC4XHp+3mpqkFuG1BfB6cO8+Hnht5V08bvmfF/B6GO2B1689d8/gtZlVFA4Gn3Lqb+PfffDa/IxqYx11PTsCvNotrI1jtv9/FK9rFbwKNs+bw8BrszHsX3Qer2Cz4DY+C6eZaxW81s9Lk3sOr+BAXfdKrYDXjxtcftLg9bD3qrFfR1+/v+D1b3G04WY+/cc/j3AYHRVtuBk1A24fFzVro9mivJ99agYc6t00j9c/e5nDwBNwN9CKXldXYyTD/fYkx+uWVZ9AfJ8OW0+thfWvucjaz1fVaW8d+lMrq2naXqCqGsAGsPb6ZSLJ+4BMFPajHdeN22ott2Ej6Ha+6ej0OC6XC0mW+U9/+IfEogmee+454KCbsd19uLFO+xlb+7nS2rzVWXFtfbILC40Jvp2uNzuLY88X2Khtr1s7Zv0a3ptnSUdExLIEBNNCEkR0o4yguZAVBQ0TU5YoGzqCKpPAg5bPsLy8SD4rcebsOHfu3GZ7Z4mhE+e4eeUd3FYOPZtB9vhJ7OrIc1uogoB8/hJitoiVL1bdad0KQiiIEY/y7u2b5FWZ5597lvXNTUKRCOlsnr6BAbRKBUPXmJ+bob29k1de+QkBf5Ann3wSWRHR9QoedwAoc+3qddoT7ZTKecqVDAODo4CAS3WjaToXL15GVVQ6O/tYX1+jr6+XtrYYG5vryLLI7elFhgb7+fZ3v8lAbz+xSITp6RnOPfIoxWKR1E6KM2fOMDMzw8TNCQL+AM8+/QSKohIKhbk9NU2pXCGRSBCKxUhu76CVNba3txkdGSWTyVApF1BliXR6l56+fiq6QaGisbO5zdjYKIGgh3Klms5lcWGJyYmrPPPMs/i8Aebm5pEkkWDIR6lURBBVDN0gGouyk9y5GyUZMrtJzj36MHPzc+zupgkFgmR200xNzXHq5CjFQp6NjQ1++atfY31rG62i8eGHHzI8XHWvTmczDI+MYJTLvPXWG2iaxuNPPEkkEsPrD/H+W6/idnt49PEnuHDhQx546GHKZY1ILMbkjSuMj43h9XgolSpkihora5v4vCqhYJC52RnGT57A5/Wys5MEQSASCSPIArl8lnA0TKlSoLRbIl0skOjo4Pb1m2yubqB6vcTCQfoHBvGFIpTKZcAk4HHz53/2dZ489yg9iKhlDXFtC3QDIV/ADPqw2uLsnBzk9//4T9l+4DT/6J/+j3jaY/hDHspaphpx3QABFU/IjSCAgEmlkAbLZHN9mWsvvMLcwjKDZx7mxEMP8+BnnkQJujEtHVEw7qYmqrqT1zxtFMFCEBWQqucZFVHANHQQnMOBNOWHonCA39QUZHalZrNAgI17SOOe4+S257TvNPbvfvHpWv8b9797oVp/ax/jt34XURSQ/+BfNmnbsH23DljG7fNq5w+NqdWq5ap9tnvzNO7N9ft1c6VjjWr8eK+ctL/vN5sj+7OThHq39j3g3Ays3YuCwLYO7PzdPqbGLAd7/Wjg0Y3rsTHAVzPg7iSf1I23iVLlqDn4uOTjVub5sLYP6/tR1uTD6rS7ndupcX9xUsYd5jFg75e9Tqe+HkcRt/fOms7lXS7PPW0kn4LXA3R/wavx0w8AkJ59/FjlPgWvH72NVsBrIzPc70eztpulK/h4wCvsM7pGILXHbG0BnOr7VGWgsiwfAKR28Lp/5NJCQHbcHD9p8ArVyJf5fB7LFFAUxeG8jvixgNdafY2CTa2uA+DTdo/TeI5KU9UYQn5PsBPMqrLEtJBFsRpETIACFpgmiiBR3M0QdLt56/WfcuPmDVxumSeeeIS3/+03EdIFnn32CfwTU0RMF3q5RG5unraCAYqM5VIxe7uxMDFDfsx4BN2yEIMhypUiPl+A1ZU1tFIZn89DOBxiavoWg0MjhCJRDN1gZ3sLn9fLnfk7DA0Ns7a6ycLCItFolMHBAcBkfnGJUNCNzxvArXpRFBGXW2Bjs+rGGg6HqVQ0TNPgG9/4MxLxDixMenq6iUTCaFqJ2blZBgdPEo2GWVy8w62bNzn30INUSjod3d3cvn2bRFsbqysrKKpKIh4nFA5jVgpEY3FUVSW5s4vH62V7a5v3L1zkM08+gSzJSLJIKrlDPp/nyaee4PrVq4gCdHX1cOXqNfJljUIuyxeffw6P14Usi6ytr5PezZBOJ3GpHrq7eimXNXRDY2lxgaHhId55932CgSBPPPEEpmly+/Ztxk6OEY9EWV5bpVAq09/Xd9dFt8IrP36JL3z+aVZXlonFYrR3dlKq6FgWTE5OcmJsjIA/wMuv/IjFpUV+67/977h8+RInTpzA5/chSSrTs/OsLd1hdHSURFs7u6lddN1gfX2D0bETmKZGqZCnWCiCKLG6sc2NyVuUyzl+/e//Ogvz8wwODhDw+VlaXCTR2YEgWESjUUrlIooqVc+SVsAd8FOslFhbWOaVl3/EL33l7/Kjl1/h2S88x6UrVwmFQ3S0t9Hf28PEjav0DwximCbd3d0YpoHiUiFfZGNxgWhBRyppbEzN0okIhonZ0YbV0w6dCSoPjVEqa+g6yM89iSvoQxYEtEoBn9+DoZeRZJ2trW2uXbrBP/qdf8xwfx/hgEo2s8uf/fA1+vr6WFhYoL29HVVVyWQyKD4fliDVBUUTrOZBeVoFr41nHJ34zFHC4M8reLWTIAgYv/W7YFlIf+BsgLHzYudzm4eD1/rghmIdX7DztEblYnV8R/NoO78RBAGT+vzETmR/diIHn9lh4LWRJ7XavxrVAiEeFZipGbiy809wBq/NgJHTtXsBr58E/ayD12a/2fvWKni1rLsp5JqkDnO6v/G+ZvRxgddPow1/zHRc0PopOdPHBaKdXX1bA9SfxMbqxFiBeuDVBKQ3fq8fo2D7exD0/nWTJEl7VmNZ2s/n+kkpcg5TeMDR1vxaPbV7G6/XraOm5aXqr5aJWSgiLG9hWhaSoqNcmWLjrQtsra4RDQR5eHqFJ9I5BEmE//QGgxUNIxZBeek9CpKFOTSA4JLIt0fQHn+YXFnD7Q2gGyKWqZHPpImHQxiGjiiLuCUfW9tJotEYc7NzpHNZlLuu3IIAlXKJhfkFcru7+Dxurl69iiKrhMMRyuUyxWKRfD5HoVhgYKCX1157GcsQ+MLnfwGAN996k2AozqlTp9hNZRAlAcPQ8Xo9PPbYIywtL9LWFicajSCI4HarJJN5Xnj7Tfr6euju7mJzc5snHn8CUXVzYkwgm80yNTPD8PAIw6MnWF1ZwSW7iMYTlMsVFpdvEE+0EYpGeeaZz6FVKoRCQX7wg+/j9brp7u6mouuMnz6NVimxubHF448/jqaZZPMZXG4XGxvrhCNhJFHmzJmzLMzPIAhVJUulorG2tsbnPvcMuXyes2fOEggGKBQLTNyYYDe9y8zsDP/g134dyxKJhGMIggKmweVLV1FdLtY3NpAkiY7OdjRNw+d1Y6HwzDPPAAKarjE+Pk5Pby+FQgFN00ind0ntpujq7iMaiZDLprEEiVyuQLFYIhgIMNDfx9tvvMH42THa4gmy2Qy5dJrT42Osrq1w5vTjpNMpbt++RcAfwK260XQT393zraVyBVlSKOWLiAKkNneJCSIGJpVSibZolM31Nc6cfQCv10ulXGJjo8TO9hbDQwOcHD+F3++vKtKsauouraQhqCqdJ0YpFcsUKjqv3LxGLN6GqRs83RUn4HHhnVvCc30Kn2FQ3N7B///8MbhULJ+H7FMPUfry01gjveQ9OoGuLh5S3PxP//M/w2dpaIUMllnhv//t3yGXyzEwMMBzzz3HL/7iL1aDSMnuqjBf21dNEAQZqUke51bJvofsKQxb2E/uRaD9m0aNyj7p93/30Llx4rnHUXI37reHzXMzC1OrQMayrH1X9RbpuDJFq/c3W1M1YN14vdHy6tTGcXnwx7WeP2k57GeR7ve4m+VFrv39WZvnv1GW10ql4tjZVjaygxPvbP2xW8qO+7CaWWAOo4+i3Wlkjk5tO2kk7wc161NjNL37VW+rc1v73cmNpVmqlpoWseZOVg3qcjzLq9N6qrZXnwal/nm3Fra+sd5GqjtVYBs/QDqdJhqN7mnlnNyGBbFWb9VteK93tvurmT8P70fL619wHrdlWXUu0TXNrt0y2ahxd2KmjYzNSTkhCELdOVpBrO+7/dMY6bhGtXNL9gjDzfppv35Ac2qJWJkc/PidqhVdEDCX1xHeu05VN2EirGxAWcOSJHStgi4KrCkQjcfQdB1XNIwyMIKJhmGU2djOsL6ZxB/wMjjYSyaXRpYkErE4IKKbUNF0trcy/OS1V/h7X/tlwpEglihgmlAqV1hbXae3tw/TsjBMA0OvgKVhGhZzc3cY7B/A1MoIpsErP32TUCiM3+/j4XOPkM8XqnlDDQN/yEMxn+HCB1c498BjyLLED374PVwuH08//XTVxVawKBTzZLNZ1tZW8Xg8SJLMc889i2WZVCoVDEPklVde5ktf+iLJZJLBwWFu3rxFOBJF03VKxSKFYpFyqQTA+KlTWIbJiy+9yPj4ONcnrvPVr30Nr9dLJpUjm9klkYixurqMz+smGAwwM7/E8NAgAhZzs3MEvAGWFld58uknuHT5IpFIiHg8TiyWYCeZ4lvf+s/8xm/8BsFgkGQyRbFYJByKsLy8TDAUYG52jkg0giRKbG5tcu3qNf6b3/wvSadzyLLK1ctXeeTcORbn57l2c5KvfeXv4FYVvvGNP2FkZITTZx9gO5nB5/Pj9XkxDZNQJMx2Mkk5n8flUkin07R3dOD1BrCQKJVKTE9P09fbQyGXY2Zmmp3tJA+cPUusI8ra2hpjYyeB6rGCZHKHYqnA0NAwU7en6evrR9MMwtEoK6sr5PN5VEXh8qWLhANBZEnkgVMPMDkzxYPnHiS/u0s2vUvF1OgdHKNSLlMsFfF5PVXlk1LVkQtUU08JooQgiGwnk7g9HgJumW984894+pnPUSprhIIhQuEIslIttbCwSEdHJ5ZlcuPGJOdOneX111/nkb5+OoplpOV1zGgI60ufo/D3/y6GoDMzPcHI2ACeoBtRkdDSOqqqsru7S6lU4pVXXsHlctF1+hzPP/tZLK2C2+3GlFSKZR2Pez9d2t4+5PAu1/YMzTTqfncS+BsthvZ9qZkwbgcUjW6rjZ44zVJuHYeaWeOOAxabUY0HNZNFmu3tdl7c2I9GHl+jmiUd6udJEKS6vd2pXnvbluUcvPHQORD3XY9rdTezRFqWBaYzr9BN51Rx9rVUF9W3YX3Z123tXvsxokay9+mwYJCNgNjpaI193LV7a6nn7OC5RvZxOslnh1ma70XWbqVMK0aLxnqOixnsSoSPQ0Y/7Fk29uM42OU4Vv+9PcVyxlaq6r4nVPw3KmCTYRi/63S9lYk8eE+zB7R/371oGhpfMuOnH2DNryAOdLfYr+O1dVRdx9Ec/qzTYRtYjWrpMxqDNDhpbGtUc6GpudNUGWyzdprayQ70tfq3Xjipb//+bBL2O2qAqjZXuq6jKIoDeK79rY9q23imd6/fHAR/jaH0ay7KR+bCa6IYKJfLjkyw2Zwf5apSY5L2tdAsv6Ig1Ls8Oz0v+/favNaYrr2sU79qzBtAOH8Z6/e/BT86D//s38Dv/Qn8wbewZhYQbt/BunYbFteQ+nuQ2qMQ9iGPDZI/OcgbW+sU2wNYwz2ExkawOhK8v7zIq9eucvLkg5iSiI7JwtIak5O3WV5e4cSJMWRZwO32IAgS8wtLBIMhREnC5/OjyhLJ5CalUolYLIaFRS6T5c033sDj9hCJhJFEkbWNVV5/9XVOnDiJIIrcvnWb4aEBJiZucO7co5w+dQqf18v29hZdnZ1cu3qdrs4uJFlA0yrspjKsr27S39/PxYvvk8nn2NzYxLJMJicneeSRh5mbu8PCwjz9/f2MjIwQiUTJZLL4/UGuX7vG8OAQuXyOcDhEJpOlp6eXUqmIVimTSu0wPDTE2+ff5tFHHkEUBVY0GUTIAAAgAElEQVRX1zhz+jTxRJzddJrR4WEsy+TKlauIgoCARSweR6tUKJWKTE/PMDI6golJJpsjm8sxNDiM4lbo7Oqko6Odjc0N8vkiG5tbCAiEQmEsLLw+H/l8Hr8/gCCI3Jyc5KFzD6HIChcvXeT06dOYlklPbyehcAgBicuXL5LN7NDX24E/HEXAolQsMjjQSyQaoVDI09beTaVSxuVyk8vl8Pl9WFjMz80Rj8cRBIFEog1JVigUSszM3GZjfZX+vj4mJm/Q2dmJy+2if6CfYqnIbjqDy+1jdmaWSrlMWyxGLp9HAHp6ekEUSCa3yWTSYJosLS7Q39dHNp3hqc98pvo+Ggax9gSiLLKxtk4xnycQDpMvVpi4McH4yROkUylEUUA3TDweD3dmZ9jd3SUeS2AYJn/8R3/CA2cfRKuU8AeC9PX34/Z4UFQVX8AHgsHU1BTJZApFUchmcpw+cwoD+Onbb9JxYgTP+CjW6TEMVYXzH+L/w2+iXb1J4tyDKAOD5EQXFclDSFUolstUdJ1AKMSD584xNDJCrlAmtbHG7sYqnYk4oqRiGCaCZN0NbFVpugfY/zcbAvs02wOOe62ZEsy+1zT276MYJOxA47Bx3wvZgUwr9+5/d75+WL+a3Sc0iVDUbKySdLzo+7UON4Kdw/rdLMK/eQSItP8tlUpVJZOqNlXoOqVyahYF+qh5dVIiONVhv78R1DZ+mlEr97RCxy3f6tr6KG3Yy31cMvpx3rd7eT8Po3oFS7N3TP4XLVXWQJ+C14N3Hqtep3bqhNx/+f9iXb2F9DXnaMMfZcHaNTZHaaU+SfD6cbRp11A3q7em2aud8XRiSE4uNHZgUQNgrayPenIWMj4J8Go5uNTW1qE9l509xY6wxzDr+2FZzq5udvDaLP1NDSQfqelrAl5rOQYPgsfjMxE72d+P5prcg25ltTacmHMNuNstxVCvwWw8f2JduAH/9F/D11/AcrvANOHcOMKzT8DjZxHGBhGGemGgG2ugm2ShQBGdty6+Q7qUR5VlYpEY4a4Y/kgUdyBARQPLUOjvHWZu7jb5fIb+wS7a29s5deo0p0+PU9FKBIMhJFnF5fZWGYokoioKxWKenp5Opm7fZGhwgHQ6y/LKCrJgsba6yszUNP0D/UxMXEfXK7gVP+0dXezspBk7dQpZlYlEI6R2dnF73CwvLzEw0MfW1hZraxusr68jqzKyLLC4sMRjjz3JrVuTfPbpJ2lrixEKBzh79gwIAh0d7QQCQT771NME/EEKhSKhUIR8vsCffv0biAI89dRn8Ho9SLLMVnKH7e0dirk0sWiESxc/ZHtrkzOnxsEyq66r65sMDg7w9ttvEotFKFfKeDwuFEVG08qIosjGxgaxWJzNzW16OrtYXV8lFA4hKwrz84v09PSytLJALB4jldohFo+TzeYJBcN0dnYjSAKlUjX/7MrqGqlUhitXr9HV2U44EkYQBS5dusTJsZP09vZSLOmUSyaq6qGzowu3S6JSLjJy8jSKInFnbgavx40kChSLRYolg1gsxtb2Fm63mx+88ALvv/8Bn3/6aSLRCPl8nmRym83NbebnF0ltr3D61EnS6R0efvgcW9vJKmju78fj9pJo68TvD9LZ2cX83CzdnR2k03lMyyKZTJLJpnF7Xbz73nnaojGWFhbQtQrhSISKVqGtsx3BMpi4fZNwNEwsGmNtdZ0PLl5ibn6RQMCHKklgmmxtbeFye6hoBpcufoDP58MwTFyKi3A4iiBKFEpZhoaH0HQdxaXi9nkwTBNTL1IuVzh5Ypwb12+wtbmJVqnQlojT3tGGLEtEohHKeoWMaPHS3FX6fvl58remif3wTdRbcxgVgQ1viJvTk0TaOvAEQ6i+ACXDQvZ46etoZ/7mVTYWZ/net75JOBKls7ML1euidDd/bDPLSN35yo8JvB4m4Nf61czj416otn/v7u7i8Xjq6m20uB2Xan1trMv43/4D1psfInzu0br29ue8uYvoYXJP7Tcnfly7fti8Vn8/Hujmbm9r9R4G7PbuN53nthXwWitTk3tqXkBOH7vl0z5Wp7ZbmdfGa62AV7ss0iootc+l0+c4QOo4ZT4J8HrYfnG/6H6B9nupU9M0oLZGnC2vfyvAq2mav3scjY2dDr5wUBWKGz/NyxynjdoGYf7gJwAtg1cnrdlx2mu8ftgc2eewWfnj0r3U0+g+Yo/8awcBdu3hYRtuI1CsgQz7BtgolBQKBQqFwl6KFsMwEe+6t1nW/nqpujAd/AiYYN3toyAjICMggWBgWebep2rRrZaxLOEuiBQb1qPlYCkFrP3rVavR/oq1g1X7WGuWQfvcVX8zqQkFlmkhiRIC9QxFFEWoMdBmoLZhDbX2zPffN1GsnesUMPTqnIuihGVimxtrzzJeG5NpmlgYd0P9W1VAfPcjCCCI1QTsoiTs/S5J4l3gbFWfhSQgiNV7GwFrjdHDwfM/giCgl3VUWSWfzbOb2iXoD2IaJiK1JiyE2lzrBvwffwj/+/+H2d+B9fyTmF0JpPY4gs9LOZ0jnUyS3UmTTaW4evEiVy58SFdPNViOW3WjKm7a2juZuHmLOzML9PcNYOqgVTS+95ffRVVl0jtzGFqe7s52SoUc/oAPUVa5s7RMLBzCQsYUZGZn5unq6CabzrC5vonP60cQJEwLVFXF1Ayi0Siq4mJ09ARXLl1mZGiYvu5eltbmuXbtEqGQn1d//AqFfB6fL0hfZxfbW1usbW4QDAdRXS4SsQiyJLKyscXY2Cm6e7q5evUit29PMDg4yM5OmpN33Vc31teZnZlFkWUQBd58600EUaRULFEqlZEkicefeopyqcSlDz9kbnqaS5cuM37qFG0dbWxtb+Pz+zj7wFk2Ntfp7OnAH/DjcquIkoiiKFy6eIWhwRGioTiWpdCWiNMWjxCLhpEUFc0w6ezpZG11la7OLl5+8WWWlxY4NT5OxO9BK5YIB8Osr6zj9/pYWlggHPHgUmQC/gDK3fUwNDRALpvh+o0rjJ0cIZNJ0dfXwwcX3sc0LdZWVklub3P54iV2ktsIkkD/4CCXL11GKxd5/PHHWF9bRysbJLdSdHf28vprP2VwcBiXx4UomAimDpaBaVnEogl2MzlESeHW7Un6ewfo6u7GH/CxvLRET3c3yWSKuZk7vHn+La5du8LQYB9XLl/ixIlhPvjwQ06dGaZY0ImE48zOTpHPpnny8adQVTj74El6enoIBqKEAlE+eP8drt+e4PPPPINbUZiavEVbexs7ySSj46OcOnUSQytyZ26arvYu4tE4f/HNv+Ar/8U/IBpLEAmG0LQK3/3+dxgeHqCvrQNDN9B1nZA/yMSVa3iQ8QQj+H0hTMuio7OD3v5ePD4v0zNTiICp6YiWxcrKMl3dXTw02Esuk8V7chRtfAQ2k3heeRPfjVtkYiHiJ0ZJp9JgWGysbhLyBREEiY7eEToGx3D7/Hz7T/4j7/7oe1x7/W1ODI5i+RIYshdDMHDJGpolYlI98GHdTaQiVNGKDfA4B6ex75uNe3sjGLG7/NldkRt5V21/ahUYO+7GNmBeK+PxeJqCjXuhRiG9jm98/QVI5xC+8uyBcvtCr5OsVs9HTLNq3ZEkuY6f7vEYBGpPrsaHLauaRq7RaGGa5t2jIk0AnShwF9kiiCIIVbBpOsgkgiA4eiPtzbsAgihU080I1XVFw1zbj600ewZOQLfWtmWYVf4kCNVjKYYJloUkimCBLFUDsVVnSagD4HWytmntiT2WaSHAXuqsxjFX5aiD/XYKOHTUb8cBjI3vUmM997KGhf3H3TI1iyy+L3tZDXXeXwDbbKxHjf8wa7wTXjiMZFm27WH1MlrtuyQpfzvA672WvbcF+9EX03HB6/1o+14A/f0Crx9lg4CqO6bb7WZpaQmv17uXg7XxxWmMcNdIdoYuCMKeK3GtbCMzrf3e6EJ8cPNrMm723SJEQdr7XjvfWZvfxqBJzpuBs9tqrd+N2tNmZN+8a+Ou1ekkXDlZpffqaXIW/H68I42ucfYIwoeuJaF1ratTPU7niVvd7F2KC03TqilTFheJxWLIsoxuGVhVLF6d0zsrVdfgyzcxfukplOE+TARURcEyTRYXF3nv/DssLS9T0XQCAT/tHe2cODGKrKi43W58Xh/BUJhcLs/snQVKxQI9vb1YlsXq+jqmabG8ssKvfOXLBEMh/F4/yWQaRfVgIuH1erE07a5gBIV8jp+89io+jxufL4AoCqytrbKTSiLLEi6XC62isbGxQUdHB6nUDm63G7/fjySLXL5ymdPjp7lz5w5nTp9BVV3sbG9R0TUeefRhZFnG7XazvrbO9PQ0M3fmGB0ZQQDi8Ri9Pb0Yhs729g79/f3MzsyQy+c5ffo0oXAYf8DPBx9cYG1tjYcefAifz8fQ8BCCKKFXKgwN9uPz+2lv72BkZBStomFaFtFIjEAwQDAYJBwKs729TSgUxuPxoigK7W0dyIoCCKxvrFMpF0jEo9y6dYubt27jdnvw+X3sJHeIRePEojG6u7pZXlrGH/CBAC6Xm9XVNebuzBONxEjtbtHZ1c3MzCxdXV1cu3aNzY1NdENHEODU6VPIkkQ8nkBVXFy5cpUH745pYmKCQiFPIhHHNHW2NrZ59LHqeeFAMEgi0Y6sqKRSKbZ3thkbP8ny8jJ+nw9Fljh96jQ+nw9BEJmYuEl3VyeRaJhYJIrH68WyDJI7SUzDYmNjA1VVECWJkeFh+vv7WF1eYWR0lEQ8jqxIfPjhFfr6+nF7FILBAC6Xh2DAx8ryMl6vj82NJAIC0zOTyC6VkaERVEVha2OLcChMX38/nd1d+H0+0qkU0UiUfL7A5StXefyJJ3j73fP0dHUhiyKKKpNKpVhdWyO5uUUmn0eUJUKhIAGfn8uXLyGpLi5fuczAwACGaeByuRBFkb6+XtwuF5FIFNOy8Pl9hCJhMskt5ubn6RsawZQVxJ4uyj0dqBvbdL/4FlQ0NsI+fNEI0WgEWZERTYt8sYgkSvT2dPLUk4/x1FOf5cevv8WLr77G4595Co9HJehzUyzmEKT9mACC7a89Muy98N+jvh+23ze2d1zr61FC7v04i3eYnFPL8+oEXg8r2+q9doubKNbHhNhXZh+0qleVl03m0taOXdF82HneZn1rdRytPIdmMp3UoASxR2127IPgvC4E9q/X9aehuzXZrFl6oWbr7X6C12bt3AvdazWNcmaVmsna9xe8HtWn4/5+PzGU/fqn4PUI+psAXu3h9T8Ktdpv+6Z+L+U/LrIsay/IEOwfat/Xhop7gZWakVOKAjvwrbVTA7blcpm5uTn6+vqAfbdQexCEVsFr1Up5d35pDsRq036QeTiDV13X69LmOFmf7cCvEbw2E4Rq/Wpk6JZlUSgU7s6XA8Pi4Pq9F9eyRouu3Q2pNo5GF1xBEFoGr/Z6nAQ9J8VNs2iLe2WM6pm4UqlEKpXa0y6KatVyiChgTi/Cf/3PweuGZx9H9nixjGqorM31ddaWV3DJCmPjp+gfHKS7pwt/MIgkq8iqC0R5z4qQzuQIR+N09fQxMjqC6nKjGwb+QADDMtnY2GBteYUHHniE2dl53G4ffn+YpeV13n33A7Y3VqmUyrQlEvg8LrxuhWg0wMTEFDs7O6ysLmEYOiOjQ4TCQdZW12lrTzA1dZuR4WHW1tbo6OxgZXmJLz3/RSLhCA+cfQCXqlIqFrkzN8fY2AkuXr7C6uoasVicfDZLMBCkb2CArq5ODE3H5/OztrZG/8AAiUQbiiwTDofp6elhYXGR1M4OXo9CX28P0UiIjY11LMskFAyg6QbpTBqf18vtqSkKpTJdXV1cuHCR06fO4PMFKFcqYIEiq7g9XgqF7N21I6IbOrIkc+HCBXSzxEB/NxsbKyR3djg5fpqOji4qmsb07Sl8Ph+WBZVyhatXr9I70MNOKkU4GiOaSNDV04Mv4MfUNWRZIZ/P0dHeQVtbG/FEgu6uHlZWltEqWjV4lerG4/Fx6+ZtTp8+hWFUwdjm1gZnz54llUoxPj5OqVSkrGksr6zjC0Z48/z7DPZ3Mjg4yPLKyt19zWLsxBiyAutr63xw4QOef/45TNPA41YolwyuX7tOPB7H4/FQLBbo7+9FksA0BNraErhVlZs3bzIyPMTi4hLpbJpbk9PE4jHa2uK88MMXcKkeVlfWME0DTTOolHXa2hN097QTCIaJhMMsLixRKlVItLVxe2qKja1NyqUSkVCY3XQGyxJweTysrq1jaWVK+Rw+rxswCYeDxNvihEJRIpEwUzPTtHe0I0iQzWcIBMIkt5NEoxEmJyeJRiJVC5Flsb2VZOLGBKOjJ0inM/gDweq7KqlsJHeQZQVZELlx4xqB0QHW3C6i16dp+96rFD/zAGpHlHKlgKkbTE3PcvX6NYZGxjBllRIyT//CLxEKBZiduMD1997ggTOnkWU/CNX3V2QfsFoCzvuTA7XiqupETh4vh+1PzX5zombgoFKpoGnaoceSWqVm5S3LwvrhGwCIHwG8NuN1QJ3yu8ZbD1rl9ufdHjei6jHlwNMaQKIzSGnuUnvUuGprwQ4UnSIEH1Xnnrxj1V8TBIF8Pr9nGbPzfMuyqpZgm1ywd73JsTrTNk92Gasx0KF9XI39bCxrL/M3Ebw2lyF+9sBrK9jjU/D6EejnHbwettEdh/46y39UC64daNSsn05RFlVVPdTyWitfu6d2Jq0GSu2ASJZlVFWtpsq4G6CjFn240fWjFfBatVLevdEhf+j+OJpZ+5zBq2XbYJrNs9lwTyNgPYyJOrnZ1M6h2l2Km43noz772jORZbnuXagpLWrj2mOIx7S8Oo2v2X12y37jGC3LQqSad9Xj8ZBKpahUKng8HmTXXcvM7FIVuJ4dhXPjIIpYmoGhGyzcuYOp67hVF6FgANnlrua9VGRMy0KWFTY3t1HdXioVrapgMUwEUUKSVUxDQ1YUjLsub8FAkPHxkwwODFMslhEReeedd4nF25lfWGJtdZWA183Cwjw9XZ3cnLzB4FA/4XCYtrZu3nvvXZ753NNMTk6iaWXaEnF83iBejweXS6GtLUE0FiObyTExcZ2hoSF2kkmWlhZRFJnurk5cLgWf309Pby8ejw9REPF6vYTDYW7dukV7Wzvvvfcevb29LCws0NHZyc7ODoIocvHSJTq7uggEA3R1dxMK+knuJImEw/h8Pjo62rl69SqFYpHenh5008AEBgcHyeayDA2OoqoustkML7/8Mn5/EEkSiUZjbKyvUCpV8Pl8KLJCoVjAMHQeefQhstkUPd3ddHV18aff+PMq0HK5mZiY5LHHHicYDOB2uQhHQgwMDxJLJHB7vAhi1TURUcLQNBYW5slkM/T29rK7u0s2m0dVXczMzLC8vEwkEqa9vYNSqcza2jonx8eIxiK0d7SjqgqxWJyFhUU8HjeRaBS/P0DfwCD5fIk33jpPW9RbtaBaIqVymXwuT19vH++//w7hcJh8vkA2m8Xv8xLw+3B5/MTjcURJZGZ2hv6BPuKJGKVyidHhMfL5HLlclrnZOVwuFUyTju5OxsZOUSqV2N5eZ37+DpLooru7l0AwiGGY9PcPAhY7uxv4/SEkUWJpYYFIJIrH56WzqwvTNLh18xbjp05x6dIV8sUi/f2DRCIRAl43siggyiLZXAaXx8Vrr71KX+8AHq+HQCBAIOhHUWT6B/oRLJHdVIrp6RlKpRKWYdLR0cnu7i6RcJiJiQn6+/pwez0YVtUl0kTgzbfeplIu09HeTiwSxLIMvv/Ka2Q7YnQMDxL6j/8ZXZHRzo5gFE1eePGHvPPOuzz/pS+jiRIlAwoVg1DQy1hPgvT2Jh+8f4GxUw8jKWKdw+oegG3YX+/FetFsf7XX6SQjNAOvrcoSze6rgRZVVY+so5U2mtH9Aq/2+A7NwJFp7vORekXl/v0Hj9fsX9+bK1v1dmV4q5ZDOyh1snw6PWPnjAUHyzWOWZIkDF3f45s1HupyuYCDUayBOvBa1z/bV3smC7NhDLV12lj3UWvyU/D68ZPTnLSCPT4Frx+B7AGbDhOanT6HudI0ui0eVeY4DMH4/mvVer/6XEvljwNeG0HHcYFvs7my071qcZu9ILV7ahu9HYw4gQsny7A9obz9LKSu63ubNdS7DtcYsL2uZu3b62gck2kaTc6jmgiCaGOEd1OxiFbdeGv1VtvcP5tqr08Q9je+2t98Po+iKHv32EF4oyaz8dxVI7N2emb2thqfoSAId12h6zWkjczaXk7TtAPvkdOztINS+/Nu7IOdEdRcu2vK8sZ31cnNvFZH41wftb6c1mB1PsS9Z+n3+4lGo7jd7up5pZlF+K/+OdIDY5jDvVRKJbRymfXVdXRNRxRgbnYWt9tFIhGnolUt9Ds7SVTVhVYx0SomFgJvvvkmXreHF//qr5i8dYuTJ0+ysb7Jt779LZYWFgkFgkQjYQJ+P+++d4FcLkelUqa9rZ3Ozna2d5LE41FOjY8RiYQRBejr68XlclPRDTY3Nzl9apxQOIggwPr6BsFggKtXbqDrFYZHBljfWEeraLz33gU8XjenT59mfWODzs4OJElgbX0Vf8B3NwquzOzcPMViiVg0gmWabCe3GRwaZGh4iBdffomHH3mU+cVFdpLbdHV3sb6xTiwWY2ZmhmKphG5o+IMB4okEbo8HX8BPV1cX3d09vPjyS8TjbXT39iKIIul0is3NJAA3btxA0zRUVaWntwfTMCiW8oQjYTKZDMVSkdu3b/PQg+dABMPQwDJJpzNUNIO19Q00XWegv5+dVBKXS2FjfY1YLIKmG2xvJfH7AywvrZDJ5pmbu8M7b5/ny1/+MqFQkExmF0mW2U2lAYHNzXV+7dd+FUVRsCyLYDDIiRMnKJfLgMXExA36+/tRZBfT07PIioLL7cIfDHD79jSSKPHwww/jc1fP7Hp9fi5dvMyXvvgl5hfmOXX2FBYi7e2dJHdSVCplBElAUVxcu3GNdDrD8PAo/oAPWZZJ7e7Q1tZFNp9D1zVOnjzJ5uYmY+MnkRWZTDrPnfk5giEfPT29TNyYYmh4GEWVCYfCrKyuIQgipUqenp4+Zqam6e7uoVypkM8XKVbK+FwqnR2dKKqLoZFRXv3JT5AkCZ/PQ0ciTiQWRVZlFhYX0SsV9HKFtvYOZAEyu7usra3j8/txe33cmrjJ0NAQAwMDdHd1kUwmScTipDNpDM2go6ODSqXC9naSRFsbm1tbLCws8tCD5+ju6kaSRGRZwu1yMTI6xuDgAEI8jHliEPV7r6IobhajATra2/l7v/LVqqu37EJS3Xz3u99mqK+ftniCkdExJm5NU8jlSWcyxKLR6g4vihhWNVRTo5XsuNS4P9v3vdo+2yhgNuOz9yILHCbrNHP9bLXOo/pRA6/SV7/QFOjZvztZH2tz7qRwtJcVhHoFw77V8WAqPXvWgQNykFB/n51HOPFiJ1DrlGPezpfq5sj27CVJolwu14HsZvNWq9vuNmzvl5PsV+WtB8cgCEKd23Bdm8L+Wql5xDV7/k7yQLPn6lT+qN+d3iPYlzXuBYQ1A5zNZGinNXtU3+23NOtjq/J4s/uarVN7n5v19bBgnK1gicb7a/S3Grza6V4WZqsTfi9t1MCr3fJ61ENttf5mL+nHRR+1DaexNbqKHPVC2l8w++Ztd3+xnwm1B3hq7IsdrDaCVydQCGCaRl3dtt5Ri+BbKWuI4t0+CAfB0v5aEx2uCUD9mZxaeaXBTdoJYNkFDScNZrONyz7HTtftZ16dlEWNjKd2htg+907avUahw16nvY2D7tsCCAf7ca8C21HM5oCwZLNEq6q6xxhNrQK//I/hwTHy3QnWV1bxejyIJlR0E7/fRyDgx8Skp6cbARBlF4V8FpdbRavoeNx+TLMKCi9d/JBIKEB7WxsPPPAAHo8Hn89HWzxBoVBg6tZN/B4vPo8HSVHJ5bKkd1OcOTOOP+Cjt7eX1O4O+XyeoaFBFubn2dzaZmVtg8tXrnPt6iWe/MwTpFIpZFnB5/Pj8wW4cf0GJ8fHkJXqM6xGYe2mp7+H1G6K/oF+FFXB7XWjqCouVUYQJLa2d5iemmVgYJCFO3fweb309XWjqirJ7R0SbQlmZ+dob29H1yp0dXahqAqBQIBIJEJ7WztIFrl8Hn8giCBJIAjIikp6d5fz77xLe2cn8UQbOzvbJOJxwqEof/VXPySXy/HlX/wFBEz8Ph+lcgmf183iwgKZTIZgMMTs7CwPPfQQFgKBgJ/JiRtIksjDjzxOItHG7MwsqkthdHSETDpFNBoiFAoiSQq5XI7d3TTLS8u8ff48T3/2afSKjiQLJOIxCsV81bVfh0AwyNvvvMn4yZMsLS/S3tZOPp+jWCiyu5vC5VLo7e1D13W2trZJbu8wNn4C0zQJh0J8eOEDouEImxsb+L0qHq8P04KOzk48HjfXrl1mcGSU1G4Ww7IYGR2ls6uL9G6K2TszPPrII6guN6FQiGQyycbGBn19fZQ0AwuL3d1qdOhwNILL7WJycpLt5A5er5eR0UHK5Qrra9s8+NCDZDIpXvnRK2xtJXnooYeQZYFyUdtzm9/eSnLhwwuMjJ5gdWkRVXVRqmhYgkihWM33OjwyzOzsLPNLC5wYP0lvbx8elxuv28PAQB8uVSESieJS3VyfmCQcibI0v4AoiiiyQiaT4fz586gulbb2dlZWVmhvb8fr9VIolXjjzTeYnLjB7NwMTz35FLIsMzkxSSQWZXN7m2DAT6VSqYbWU2VKHW3I33mJhflFuv/O83S2x6nlE93a3uL3/tW/4sknPkNb9wBb6QKnT4+zODeNhUQikUCUxOrRAJyPSXwULxT7ft5MULb/f9Reda90L3tqY/mjgLwg7J95Fb/6hab3HPa//drRgLneULE/z/UK39rcm+Z+rtS6+XCo3lku4MDzsv/f2PdWZDqnmB2OI7WvQZzXkRPfqwWRclrXTVtrVp61luIAACAASURBVE8L5LSmP4o83mwOW5mzVvtr++8+1tXa9eO+k/cbKzXzFDhuPTX6FLwecf0wOu6COE4b0teer7O6HlX+5xm8GoaxlwfUrpEE5+TujWQ/71kDabWk2zXLay3QQqNWtBGg2efZvtHW3EVrfTm4Me4z5frf9hmgoZuAQKFQQFHrrYC1l78KdvYDMNW3Z2GPTlj7WwuDXxtXrb92jaKTRbZRu9k4H42a4/2xOoNX+1iaucaoqlrHxBqTtjtRo2bY/qzsSeedwGuzMdjH3dh2/VmoemoG0PfKChKGUY2Qur29jcfjQULA+h/+T6zdLLnTQ2R302RSuwimRdDvp1jRcXs8CAK4PW48Hg+ZbAZV9bK1vUE0EkGRVQr5Mj99/U36+no5MTKCaeoMDw+RSMQplcuIlkTA76tq04Guzi5mpqZYWF5iYLCfsRNDWJbBysoSml5BVgRkxcXm5gZjo6P09PYTjsTxByI88/RjaFqZYrGIKEoEA2G8Pj893T1MT90mFgujGzpYIjs7uyTaE3i83qqmXeTuWFx88P57gEBFs1haWuP2zVuMjAwxOzfL0OAAS8vLeDxerl67weTkJF947nni8RiZbJadVDWPZyabJZ6Iky/mMU0L1eVGECU0zSCTzTJ54xodnd2cPH2G2dk5TF1HlgR8Xh9zd+YolYo8+MBZVlZX+P/Ze68YSdbszu8XPjIiI70vb9teb8ZxDLlcLbVa7D7si3YBYbGCXvRACYIgQuCDsAs9rCBADwLEFZakSGKXnOVySA45Mxzv7p3rTd++fW93V1d1mS5flZXeZ4bRQ1ZWZ2VlVldfM6I4cxqJyo784rMR55z/+c53TjAYOA5CdcTszCxWIIAgCExMTLC3u8fBQY5GvU4yEevmhnZcPA/mFxaIRsM4jk0sGubo6BBVkykXq4QjESzTIpPJoGk+opEor736Ovn8EZqmkEolkESJzNgEpWKZF198HkURMQwfhuHj5s33MAyTeDyBpqnIcveZLhWrOI7HlWtXkGWJ7e1NpibGKeRzpJNJEFwODrNMz8wRCARQFYVoJIwvEAIETL/F7/3e7zE9PU0sHkHVFPyWRbVaw/XoBtuyLO4u3SESS6CoKoFggFgsxu7eHrF4jImxCeLxBOl0kkqlhK7p5HJlgmELv2UiyTKBQJj791eZmplAkRW+/hdfR5ZlFFUjEosTTyYI+U0c1+W73/sBxXKFjQcP8JsmkXCQ9Pg4s3PzXZd32+Gdt95G9ADRodVsYfp87O0dEgiE+Ma3vs0XPvdZEODO3Tv4dB/NVpNqpcru7h7VSpV8Lo8kSuTyee4tL3P50jzPPPU0eCKaptOxHURJJBqLkz/ap1avUq+3iEZjvL+8wruFHJ/fPMS6c5/92RQ+S0eUJFRF4mhnly//2j8AM4Ij6bTrFTS3wdTcJb7z7e/wta99jS//2q/ieKe9cAZB1Hn87jx+c55XS+/3nwd4HeYRdVHqGS/PO94jCAIUKwhTGYSnLo0uc0z9sn9YmccBr72dpH634d61nrdEV66fjsY8CF775fKwtocBst44enMzuCN2HvCzbftMirahI+17LsS+co/yEhAEAUE8HdTp5LdRaevEs/P/OOC1v51hu8nnjfVxwOsn8W78ooLXT/I87C/Ba9/3YQs6avv7vHsuUv5xBdMg4xrdx+MA/H2htHug6FH1/22hRwFz6I5ZUZSTYBCjgGtPgPcYW3/ZHvUEQO987LDzoIP19oRNlyH2IhCeDl8+zKW3X5idHdsxQANEScRxbUy/75SS0aOHO8TdPHK9dj3PxbY7Jy4+J8/M8Tgd130I4EQRD3Dc7lmvXv09F+oe9QO+U4LdE0/S0UDXLdjzYFgO1m7dw9+3Ue9C/1nh3v97gLbrSs3J2IUeEOK0gnAi0AUXD/ck7U0vvU1PCRi08g4Kv0HQ26u3X2HwPAcJsTuXrgSeCK6E4LVxOh0ERJzjemzHA1uBVpPvff3P+E9/+Lu8+NzzeL/9f+J+uELzy8/RbLSw/BbReAwjGMCRBDSfBoKIbXu0Ww6CpNDpuLQ7Lo4DhXwZ07RwOm0q5SLTU2McZQ/JZrN4iDRbHRAE7q8scXh4yFtvvkUoGOLSpUUisQipRBzTMGg22ximhaJq+INBNjY2eeu1t7l2/RKhaIT3bt0hEo0gKS6yqqH7DDrtFuVikVqlyub6AxqdDlYoyNjEBLqu02m1aFQrrK1tc/feCrLiIxKNI+DRajTwG90zkAtzs0xNpHiwfp/LlxZIJRNIsoYoiVQqJSYnxmk1G8iiSClf4NbNmwQDFlOTY1imwY133mJ2ehZFVbm3vEwiESd3lEV0XEwrzMzMLJIH45kM5WKJZqOFP+hnenqSTCZNKBQiFouzu7PHxPgkiUwSVTVoNW1qtRo+n49kIkq5XGNnd5t0Jo3uM/jpT16hXKoztzDFwcERuXyZN968weraJs889wLbO/v8zbe/TSwSwXU6GKZKKGQyNpZGUSTazQbxaJy3373BzPwCumlwsL9HJBRmZfke6XSGyZk5dL+JYNtoPp0H25sEQgFiUYtLi5NsbmwRjcdxBZE//8uvs/5gk/GxcWKpNNmj3PEu6hGtRp2Dg31czyEajnC4f0R2P4uIyNaDdZJTc9TqLQyfD1P3sba6zMrKMl/4/Oe5v3SfQj5HJp0il88RCkW5v7KG3arSbNZZXr5HLJ5E8xmEI0E67RamYbC3u8vEeIaZmUleeflnNOp1rlxZIJGIsrAwSzwW5taNWwiqQjKdIhwKcP3KJZbv3iaTTvDsM0+xvbVFvVZn5d4ysihTLte4cu0JWvUa4UiM20t3Wby8SC6f5crlBTpuh2QqzXe/9wOi4Shf+MLnSCVjhKMxXnn9Zxzl8kSiEZLJBNevXcPvMykVK9QbbaLRGKFIBCvgJ5vNUi5WmJyYImgFaLWa+H06RsDEev5pjIMjAn/2PWozMzipFI7t8uv/4D+jWMzhNMpogs0HH3zI3NWnQRBZmJshFgrwsx98nxeeewG342ELLrKi0DlO83ZKvT1OKSIinKQjEenu2g7Khn4ZOeoYR78MGbxnkM+d5eOclH2UUXMQkD8uDatzGAlPXToDXM8DVg/H5Z7IkH7Z3b02vM1uapzu/PR0huOagYeAu1KpdOM9HMtH7/gD3WCMrtt1NRaEbho5jtPedY/XnJ1313Xh+DnwXA9REI9TzXQ73L++/evRb4AeBJz91/t1pcG2BaEbkePY53cgyZ/Xs8gfl+kC80HPs4f1eCe6h9CXLmiY0eBRRpXRerE38Dm9psOMAf3PxXn6+cNnkhE06geh73OqRgafv/62Hl4XTp7N3qbFQ72q+/kowPQiNAornYePPk4bo+odNb5faPD6UejjWAo+Tj3n06hF//ih6v82UP8LU6/XT4IxjXrYh+XZ7NUzTOg/zlr0dj+7APJsIIwegxly57ljEwThTE7ZQSHgeQ+DYAwqDue523gMWqy6u3/SOecQRluiTysmJ2WFUYx/tGX5UdcBei7Ng22c7tHD3dZ2u31SZ5fhD9sFP298o/s3TNC7KHhiF0V7eIieB9h4goR8HLhLESR0VcZuNXn3lR/xv/3r3+a73/wL/pt/+S+Z/MPvI69sYv/aZ6i1mgiALMl0bBtJUbq58zwB13ZRFIV8Pk+9XiN7dEggEKFWrQGgqRpbW9uYpkkooGP4dGZn59A0jVKxiCKrtNoNErEE9XqdfD5H4tjl0QwEMf3+bjoVv59Go9494zoxzu7uPo7bRtN0DJ9FLBbDNA1azTaW34+qyBxls0xOTjI1Ncl3vvdj6rUG165fI39UQFd9KJJCy66TTCZQVBlNlSkV81QqZVTNRyqdpl6v02l3UwgFA0ECVgBEgUqlwuTkFNDdCQwEA+i6Sse2jw1ZNrVanXKpQiKV5lt/8zdsb+/yxBNP4roer7/2Bsv37vPBBx8yMzNLp91hfX2DW7duIUjduT44OOiesT06ZH5+Dg+XaqWMoqgoikrbtonF4zRbLVaWV1lYmCUYspBlhffeu0mt1iCdThCNxkglE7z11lu02y2euH4dTdVZX1tnenKSZrOJFQigaTqKphEKBXGc7nn7TDqN4TPwXJdoNMIHt95nenqGvYMDAsEgKyv38fu654NX19a6QbFUjVKhiCeq1JtNCvk8pmEwlk6TjMVw6Bqotre3CVgBkok0mfQYhj9E/qiIoqgkk3FmZsZptMpkxmYREHj9lVeZm51CkgUmJsYRJZHV1Q0+/PAWY2MZDMNAEARs22FqcvzYrdbj4DCLrukEQyHWVtfw+01s22Z8fBxN0xAEgUgshCCJGKbJ/furxOIpHMejWCrRaXeYmJig1Whx6/YtZFFmYWERwzCp1apcvnyZSDTK2toqruuysb7O/EI36Fb2KE+j3mR6ZoZwMIiqqNx45wZWwM/lK5c5yB5QrTQwDZPrT1zHMAwUWcZvmURCIeLxOLdv38ZxHVqtJrqm4rkOzUabZqNFIBQ6fhchFAqj6CpMpHF1Df8f/xXe3gHtqTRFp0MgEEDXdVqtFn/0R3/EV77yFWRNBsEjFA7x/s33KRTKpNMZFKObH1w+5smnePgQJb4HKAZBS48/wdkYBP007CjMMHkzjP+d8LwBHvhpKM4flS7SF887L4DRKBl1+v+yLB97bEknILPXtiRJp6T9sPO0Q9seYQAW+gDyqfuGyLUeDXognbeuj+Oqe6ZvQ8DMKJn7adDpOR1epmssOGtQGXxvRtX7sJ5ent+hPblgj0fcfSHd6Of7jv083unH0b8G6Zfg9THp5wVeO//6/8J96S2kr7x4gVb+/w9ez2OyPaHeA62KotBut0cy3EajgaIopyyk/cJ50CrYz8TOW5ee9bLbrnemnm4dp8fzUNBfDLz2u/32C6t+F9qem/PgvI2yFnpwxtWov+7Hs6T97QOv3RRDD8/uDq7RsDV+bPDquMeJ1U9HDbVR8ASxC2BxED0HyXVxRJVjUzu7mw+IWEH2Njf5N7/933JtcY5/9vlf5dk/eQM5V6Hy+WdQfRqaqmLbNhsPNgmFI4hiN+9vqVhClrtAzfL7USSJeCyKJKl89U++SrPRZPX+Ku1Wm6W7SyzdeRfDp3cNPaLEj3/0Y0LBEH7LQNNUbLtDPB5jd2ebSrVEKjNFq91me3sbRRYpFfJsbz7gwcYaL3zmczRbNcbHx/FcgdWV+2iaTKft8e4776DrKtPTU2xuPiASjbC3u8fTTz+BLEs0m3VMU0f3aYQjJrIsEAwF0bXu3LSbTRwEdJ/Og81NopEImXSGQqHAxsYG/oCfu3eXEAQRy7J47bXXmJ6eJBwOUm/WuXz5Crt7eySTaaZnZug4DsFQN8jSzOwskiQRCofIHeVpt9vMzs7x8ssvc+nSJXK5PM8+9yyxaJRUKoXjdFBVmaPcAYGgH7vVYW1tHb/fJBgO47oezWaLxYV5EokI1WoZVVOJRKI8/cwzBAN+yqUipmmws7XFC88/h2kYiLLMtatXePP117l1630mJqeQZQUj6GdrawtV05iZnmZ7a4vC0RF721uouoZh+giEAkSiUWzHppAv8O7b75JKpZicmKBYKHB4eMTE5CS6P4yqyITDQWrVEulkgmqlQiQWodVsMjMzQ7VaY/neCsFgmKPcHvt7O1SrZVzXIRIJd40Fgo9XXn6Z5Xu3aTbrXFqYpVgq4LdMquUqX/j85zBMH/l8jnAkSi6XwzT9+AyDcDiKYzvdaNE+nXQ6RaPRJB6PcXiYRRQFxsfHODw6IBQKovsM0ulxBFHiZz97lXw+z5e+9GV2d3fJHeX4lS98gcWFRTa3ttA0lXq9jmkalEolXn3lVaYmJ7l89SrLKytkj3KEgmFmZmewOw5rK8vIssz09BSKKtNoNUkkk8iiysrKfTY3HyCJAm+++SaVapmpiUkKhTy5XJagFaDdatCo1VBkmexRgampaTY2NtF0nfX1DXZ2dkkmo7RaLZRklL2wH+29uwT+07epHOUwXnwa1TDwPI8vfvGLKIrCUfkIn2mi+0ymZuYo50vcu7vE+voas5PTiC7IknQ6IvEIUCAMBAjq8fZ+8DpKnvaf1+yP/dBf/1D+10c919hRbTyuh9lHJe/BLpQqCCHrVHsXAa+jy50PXj3Po1aroWnacXq57g89l9yeHO+Potufhq6/n2fXt7+PffJMEIa7PfeV71/LfjD6aYHXQQ+p/n70t9t/vTcPw/owjC6il10MvJ72LBhW/3n1ns49O0pX+iV4/bTa+IUGr67r/qthVqL+SbnIlvUnAXwvWo/z7/8KSpVTAZtG93GUtev83G/D+jdY5rxos71yo1xP+ut91LjP+22QIT6K2fYH/OmPuthfj33spvWoPowGhu6peXzIIE/nPnt439myvfqH5TkdZKz9Yx9mReyV6XfrOun/gLtQT5AMq3MYnRZC0tAzsaI4fJ66blKjAy4Na2vw83A8pw0CD/t9dmegO+7h9ff358xcjVhvwfGOPXk8PNcFDzzXpV3voOkalWoFTZXRZBnRO14vPLAdglaQP/2T/8h7N27yL/7pP+KZO0Uu//k7tKaSVJ9YpNJo4lMVPDxa7TY//NGPWVhYpFjonn2VZLWbAkdROTjYp1qr4PNpaKrRjR4piExNTpLJZLA7beZnJ0gkEjQbLURRoVatkT08QjdU5mbnKJXKBCyL1dX7XLt6FTMQpNVqEfRbCIJ3Aj7C4QiRaBzX7eA6LqbPQpTgKLvPSy+9Cp5Lq9Ugnc7g8/lQVZXJyQzRWATXtXE9G0FwWN9YwTQMJElhe3sXUZJRFIVGvUEylUYURaKRCLLcTfmzsbHB5NQEN967QT5f4oknnsQ0TdbWVllcnEfVVPyWn62tHWLxOIViEcuyUFQVSRTI53KYhonfNNFUjZnpGZ588kmWlu6wubnFzMwMmqaSTCdZX1s7jvocRhQFyqUyftOPquoYpokVsOjYNo7tUCqX8eka4NCxuzv8puGn3Wqzvb3JxMQ4rusQjUbw8KhVa1gBi/W1VcbHxpAkCZ9hoGka7U6LdDpNIBCk3W6jKjKqLKGpMm3bQTN0bKdzPCaJcDiMqiokk0m2t7aplMssLC7S7nQoV1vYdgtdVXjrjdeIx+LMzM5huzamaXBwcEAqmaReq/PBhx8wO5vk6OiQSrmEoqi4jsDrr7/D9OwcqWSCu7dv4dgtJibH8JkmtVoDv8/EMH14xy6X5VKJWCyG47q02m1yR0dIkkgoFGR/b4+t7W3a7TbFYpFYLIZhGORyeQIhC103uHHjPWLROKVSmdu3P+TLX/4KhmHgNw1C4RCmYbCzs40sS5h+A0VRaTSa7O7usrOzwxNPXKdYKjKWGWNycpJarYrnQSFfYHJyAlEUub+6TKVaZW5+jmazyfe/+wMajS4IvnRpkexRlueff4FgMEStXmdmZppwOESr1aJQKFIqlZmcnEGSJN69cYN795ap1Wrs7++zsDCPruu4rsfW3i5vHu1zo3TE55pg/NFf4rQ7yFcXcOQuoLlz9zZjY2N4gojf8OM3/cRjMf7g938f0zS5/vRTtOuNExdiVVVP8eVTxkZOu++OKtfP13rUz7P77x8mf4brFKf5Z48fjwIF/QbTwX6MOod6UXJ/6//A+9m7p1LlXEwZPvfXEbrKw3nrpYHrzvVxVN6Bs6T9GtZD4HNWT+tfj146nv7rruueWMQFoRuNv9f2oBZ3nkF2mCGk93dQnl/E+DBMJ+v3hht230UMJYN9HFVu8Hkapjc8/G14oKrBwJWDmxuDdQ/rw6PKXdSQ87jg9edlIOq93x+HPs75914fhtEvDHgddv3joP6PQo9T17Bow6PrHXX98axpo17Q8wInDDskf5F6P03q71P/Sz54hnEUCLwYnW+B6wmsh8JoMO/r2d3A8/rRvzt7UepXLoYpOwIPmdPFGesIg0/fruip695wYfWR5lw4vWt60o53es5PBOgn4HhwskvRNyRJkiiVSvzwhz/kj3/n3/JP/vE/xnEdBEnCbtrUKy3u3HyD+0tLbD3YRBZVxhPjXL2zTfx3/horW6fzD7+IPDuNK4hEYhEa1SqVcplAKMyVa9fxPHDaDobPJJcv8MrPfka9VieZiNPptAmFg1SqVVLJBK5rM5ZJc3i4T6vZYGFhnmK5gukPYFkWV69do1avMT0zQyFfJBqJs7m5RavVJB6Pd3fSQkEMw0e73SEcibCyukoylebunfvMz89QLhbZ39snEg7geW3mFxYJBPw8+8wzqIqK7vPz1lvvoGsyqqLwzrvvceXyZQxDxzR8WIE4jicQDMW6AZUEkVAoTDGfZ393H0VREeSuQhZLJhAkiddfe41IJE46laGQz/PU00+QL+R4770PAIGxsTHAo9NpI4gelUqFzbU17n54m+nJCUyfj3sry4TDQXw+nVAoSCQSxsMlFosiyRKZTAZRFKmWa90gT22H5eUVEqkxKrUKe3s7rN5fxnMdJsbG2N7eQtVkNjfXGR8fQ/f56HRsGvUapmnQbNUxfD4SyQThUBhB9Gi3m8SiYba2t3jxMy/gt/zgumiahiTJ5AsFBAG2NteQZAHLCmNYBrZrYxg+7I7NxtoGiVSc9bX7jKVTaKpKx7FRVIVvfevb7O9uYRk6zz77LM22QzZXJJmKUa/XaDQbyLJEq1mn0awxlkmAB1evXqXRaGCYBvv7+xQKBXa2HvD3f/0rXL40j+M6+Aw/CDKaIrOxvsb+/i7NZhOfbgAerY6Lruns7x9QqZSJRqJoqkIqnSIcCZNKJhFEgYODAw4O9knEEuiqj1AwQqNeR5YkJNHl7tISqVQCz3PQdQ1JhFwuy8TkGIfZI77znW/z1FNPkcvleOaZZ3jwYIOrT15j5f4KkiLRbDbRNY1oNEKhVGJ3f7cb+EqV+PDWB2TSY4yNpwmFAuRzea5ff4Jyucbu7gG66SeXL7B8f4VcPsf8/AL5XBFRkNk72GVpaYlnn3uGZ599hmg0QrPZZGx8nFarzerqGol4kvGxCUrNJu2pNP7Li+hvvIf6B19D9Dw2dJGxTBJF1lE1g7YDhmmg6Ap/7wu/wt7ODn/5ta/hAZlMpsvHZGmk0thjRcOAwEXkyDADJ5xOlTYMYPWXHayznwbl2zBA3UuLct7xn/NIEATcb/yk285jgtfRshvgLJgbdk+vjCg+3PU+zyD7qE0AQRAY5VkkiQ9l/qm1ucBQzzNCjCo7+H1kf4/pIkEVL0qPA8rOjunh94uktxkVNPKj0eh5vihQf/T1n79+PYwf/Lzr+CV4HUK/BK+D5c9WNBjVd5D6heF5zPvnTUNTxhxbTOHRO8qPpuGCxvNOM373JFjSw/L94Pq8CMX91Jvb/nNR5wn9HrPoWWgH+9QPgs/bNe/17WHFjwleGS4MR411lIW418Yo8Nqr37ZtoDfHI4d0obZ7hhvHcVB56C6saxrvvP02r77yCru37zI+Oc7U3CwH2Rzrqw/AhlZlj0LuiEaxyuyNdcL/5t8hrzygdu0SfPY5Gp6AKCtIioznOcgeFEsl/IEAiqqycu8+7VabTrtDLB7n0qXL7OxsEw4HiUbDyJLE3v4+kiyRTqd5sLFOJBzm+vVrrK9vUqnWmJ6ZpVAqouoaiUSC5eX7TIxP4jgulUqFz7z4GRzHoVIuUMwXMAwd3WegaBo+02RtfYOjgwKpVIJKuYRP04hEggQCPhTVIGD5aTSbvP3WO6Qz4zTqbaKhCKKoMjE5i6bq4Al02h0Oj0qUyjW+/d3vs7B4CdftghSvYyMAsXiUo1yeerOJYfkRJJGrlxYxDYtoNIbu07l/f5l0JokkaWTGxtF1jXwhj6xKhMJBcFzu3V3iH/3D/5x8LocgCGQyKXZ3d1E1hc2tBwQCFnNzsximj6NcjkAgwOFhlvW1dZrNNq4Dd+/cQ5AVDFNncnKiGzxKEFi9v8y169dx3Q5jY5lj930Zu2MTjoTZ398lFotSLBYRBZH9/Syb22u8f/MmLzz/PB4u9WaD9fU1xtMZlu+toCgq4UgEQYC5mSnanRaOIxCKhlA1FUmWkCWZgN+PbqhMT05Sq9XIHh4STyVY21hnbWWdZ55+gk6rSTgSQVZ13rlxi3DID0A8FmV3dxvLMlhcnKWQbeDaYBgGHbuFokk88+x1ysU6+/u7zM1MUKmUGBsbp95ooet+snu72E6Ha1evIAgCwVAIn+7j5VdeY29vl0wmzeLCAjffu0EoFCRfyGH4fJTKJXw+nU67zeLCArgCy0srWH6L1159FdfpEI0G+PyvfBFFlWk1G3Q6LTp2m0gkzO07t5memSGdzrC+vsYzzzyD4ziEwxEOjvZZXFhge3ubSDjM4cEhB/v7TM/NEgqH6Njt7s7z3gFT41OoevfYycbGBtPTM5RKZZqNNpnJSd548w08z6VWqzE2NsGdO0u88PxniESC+C2T92+9j+M4aJpGo9HAcwV+/KMfs7q6jqZp1Gp1ZmZmmZgYA0NHWJzBScZQXn+P5J9/n/zBIbHPv0jD9Wh7gAy208arNTFNk4X5eTY2Nnjv1vuMTYwTDAVPeNkZPsVDfjpo+BwmR0YdlxncQR2lzH9U8Nrv/TRIg5HkPxJ966VuoMNPELw6zlkvqMF7+sGo6w4/mtIvfAbndhh17x++eyoKD+fqtDy8mP56EfDav/PYf9959Q5+P2+MFwWlo3Y/H9WH7v8ffu/PnjDqWfa8bvySfh3so9MvweunVccvNHgdPPN6Ahy6MdPOREAT+h7E85Tp81KFDPsMljlvQXvgdTBdzrA2OBV5TDz59NNFhcRHefkuymwG6SLuy6PKfRRmMOgqe5F6B5ndQzdkj9589+a+K8i6T1TXrbgLWntCadgzNWrXddgZppP+9b53KzhVVw+Y9iyPZ8Y44Co8rH33WPgKgnASIbCvZ9AfKU/wTkBlj07tfPciIqKC9wAAIABJREFUOwreyV8ED29gU+HkXRDc4x1TD9frBsYCDw8XPBHPOzYQcBzN0QNR4iSSMMdRheF0VMzeeZvB+RA9EFwPXI8OvUBfLpLgIHougu1iKDrv3bnP2tISL3/z69x89SWOsjtk0nGefGGR9MQcFFrU7u2xe/NDxu+uY//wTRJvLvPU37yNvLrFZibBX+1uM/30ddxOm3IhT9D0gdt9ltqdCoap4TkOru0StAJomo833nyTUMBPIXdEPn/E5PQEVsDCwSUWS3Hr1oek0hlqtTr5QpFgOMLB/g71eplEPMD91RXGJyao1ltsLC8TiYQpl4qkMsnjnU6B8cwcqq5we+ldLl++xvbWIZFwCM/rEAvrBCw/lUoVn2HSaHTwBBXFEJFUhWAgSDAYxPNcggE/ht+Hz1A5OtpDkDwUVaXRtMGt49MUVu4tsTA7S6fdRtd1DENH1bWu27nnUquUiAYsSrks2YMc5VqN9FgGVZbY29ni1ns3ONzPEQmFkCWZWrXK0eEBlmmxvrlHIhonEo9RaDeQTR9BK4QgqZQrBXSfSjKRolgooyoiSx/eJRYJcLC/RTodBTrIioLh8zE+HiaRTOB43bQp9UYdu91E0vz4/UFKpSrlYhVFkmk26iCLaJoPVTPQfSaCpKL7fDi1OuvrO1y+/iRWOECtUkKTVNY3VvH7DVqNOslkHEWSEWUNRTPRNAVV8YEr06i3kRWFYrnM3tZu9x33PKLJOI4N2cMcS6ur/MoXP0cwHMTnM9jfPeLGOx9g+RWCgQDBYBBJlAmFo2iagWGotDpNYokIhulHkjSOcjVuvPc6wWCAqYkZstlDVFWgWChgGH48zyESiVIqlwkEAmxtbxIKBxA9m8VLl2g0WwSCFsGQiSzZlIp18rkCoiiRzxeYmp7lnXffIxIP02o3SWdSJFNJDENHFKHR8VBVnXa7g2GY7O3uEgyFiEajSKKKLMukMxlUTcF2WmzvbNIoNWjUWuzvHDIxMUU0FsEKGditKg/W14hH44iC1D3nm8/jOTaKrjI9O9M9Y64ruE6bfPaA555+ing0zjvv3mB6Zo4P795BlGUyY3FkSaRSKqJrOm+8+Q7lUoNkLIamSUxNTaAqJnfuLtGxG2RSaURRQFZEPEPHm5/GzaTw37iD8h/+mtz+Dvr1WVouSKJCtd3i3uoadrPGi889y/72Djdu3uby4hUETQABXLtrXBQ8EQEBUTiWOF43+rDAcURiOCXbhn3OMyAO7qD1G1eH0VBvnkEQ1/d3UHcaLDeMzpPzbi/Pax94vdi9o9MFdY+/nKiC9GQ5PJTzPZnfPSLknJTrl/ueeyy7e/N4ct7TPVX2RI56PW30bN+97oVu1PqejiqePfLSW4N+o8ewnfZTczhgQOg3+j/KOH7emvf6ZNv2mWdqWL/P+z6s7Z5M749p4ronPgnHatH5YLLfCNFra1hwrcG2h1G/vj3sGNjHofPm4nzyRnzO1n9eOx93DKMMFx+3XllS/+6DV9u2/1Xv+xmmMOT6eVM66mU4r8yoei4CXkftvH5a1paPYvH6efahx3CG7ZL1aJTb8EXrH0X9gK9XdtCq13/2c1ifevcNCpVHAflTv48oOyzAU38AqPPGOgheR/Zn6NWPQmeNBN2+Pvx/vwCQJAnHfuiedXoNHt4zjPrXzXXdbnAl76FSAN3vNhq26+EggCjjegq6L0Sx0uR/+Z//R/7iT/+ERvaIf5qc57PxaebXi8y9vIT10k303/0zjB/+jNir7+Lcukun2mB3/QHei09RnMygxiJkMmksv8UPf/B9GrUamUyaVruN67oETJNGvcnW5jay1N3Nk0SRfO6ISqWGLCvMzM0SCoZ4sLlJLpcne3DA9tYmN268y/z8HMViganJSXw+H6ViAcdxCIXC7OzuMT4+SSoRod6ocXi4j65rxGJh8vkj2m2bSrXMtWtXcBzwG37a7SaWZRAKRbl99x6RSAJBlEFS+NGPfsKd2/cIBSNsb24TskIoskKr0UKQFTxBYHPzAZbfZHPjAfFoBEWR+eDWB4QjMQzDh88w2N3dodNqICsS7XaLRr2BpunYtkO93iSdTvP97/+AdrtNvV5jdm6WbDbL2FgGWZaQZZlQKITjOOTzBe4u3WNxfpZmq8nYxBgCAp16iw9uf8jVK5dA8JAlhXq9DoJLLBrDb/kpl8ukM2mqtQYgMjc/T71eQ9O1bjRRD4LBIIZu0u60EcWuslko5Egk40iShKooNBt1Ou1Wd1c0FkXXVOx2i929AxavXkHVRKqVMuurG8zOzzCWGafRbOK4Lu2OTce28RkGR9kjarUGoihSqzdQVJVSqUi1XKFaLZMZG0OURNZWV3nt9df5/Gc/S+5wH9duIYkikWiUS1euEon4yR7nEm63WsiSRKvVQpC6QYxarRbQ5RWhQAArYBIMhui0bYJBP37LIByJsb9/hGUalMtlAoEggiCQzqTxPI/D/UPaHYdcLk9mLIMkCnieg99vEU/EiEZjxOMJ7t69xwsvfha700TXdF555VWikSiOY6PrGqFIhOzRIbFoBE1TaLdbBIMBlu/dIzM+iaTI3L19G01TEQUR02cwPjHFxsYGd+7e5er1q5imwYMHD1i6c49UKsMrr7yKTzeoVKsk4jEOsweEwxFUVePmzfdZmF/E8BmEg2HanQ71Rp1gIMDBwQHZ7BGZTBq/38/e3i4T4+OkUinevXEDK2hx5dIcoYifYDBAq2UzOzuLafrY2nzA5MQEO7vbBAIBRFGiKUscWD6EVILQ+yuY//4bKFt7NJ+5QrHc4Lf+p9/iv//N36RYLNK2Pd7/4C5f/MJXQHJxOn38W+imTHG904C0F8DPE4bLi5F8vk/JHqWLfFSj96Pok6jX+5jgdVg/RivXj66rn1zXOwky2WunW+6ccY9oYti54WGGid569vLXnzfHg0aJfl1m1NwMHhHr110etYkz2EZ/mf7v/f266AZFf9vnAc9h9w9b7/N3yS+24TI49o9Kp0G1eOb6sLYfTWd1r08KaD+y5V+C18ej/oBNnyR4HfWA/l0Erx/vZflk+gDd3VPHcU4YdP89/Uz1POb9aYLXQfeifgtfjwYZ9DBAPshQRoHXwfZPn7P1zpwpGsU8BsfdC3rVA8Gjyp0e+/l0qh+cZsQPx3v6Wq//3V3z07vfJ/MvjFbA+gV7b1wnNm6P7k50r15XQMaF/BHe3fvUv/4D6n/8V7S++1P+yUGD//rQ4b/Ie4QOy4grW0jZAk46TlVRaF+aZyVg8p2tdW7US1z71S9z82CXpuswNzeHqsokEnEEUWTp7m2effZpRMGj0+ngM3y06022t3ZZmJ/H7tgcHeWwOy2KxQKXLl0lM5bh5Zdf5ubN98mkM2Qy40hi97mRRJFsNsv+wQHJVArDNLo7XoU8AjA3P48gigQtgzt37zA+MU4gYCErMqFwAE036O4IgOtAu9PmzTdeJ51Kcpgtsraxybs3bvDccy/gIbC+sUm70SAeixKNRLD8Bpomk8sdUm52KJaKLCzMomsazXqdYqFAo9FkYWGRWCzB3bt3GRsfI56M0+k0MAwfCAKxWBxZVmh3bDje1ZidnSEej+E4NtlsluvXr+O4NuPjYyiKgiiKhMMRPAQWLy8QMI0usNVVPARWlpYxTJNEIoLnuaiKRrVSxW8ZHB1m8Rk+mq0GsqLi91scHh6hKAqHh4c0W008x0WWFQ4PsgQCIXxmd5fYp+tIksj29hb5Qh7XcRAREUUB0+fDdWzuLS3RbDWZnJrFClp4OHiuTSqZIhaL0eq0sfwWrVa7a8TwPIrFIoFAkO2dPSRJptVqsb+/x+TkJI7dTcOSL+YQJRFJlIjFY8xMThMNB/CbBrbj4DguumGC12Zrcwvbdtja2qJWr2E7NqKsEAyG2N/fJxQMIokijVoV3TRJJVP4NB9ra6uEQkHaHYdSuU4o2A2I1Wq3CASCfPDhB6RSKaLhCKIsYzs2uaMjNFXlKJvFw0WSRCRJptFocXCYpdFoEgwa7OzucnhwwMzMLLFYlE67jed5ZA8PSCYT7O/vY3c6WJafVruFPxjCsR38pr97DMN2yR5m8QeC3XzVksilS4s0GnUikTCK4kNTfSzdW+bpZ57B81z8lr/7PggCutFN9ZTJZDjYP+Awe0g4HD5+LiwCgQCT4+MszM+xv3fA1tYWjt2h3W6ztrHBb/zGbxAImNRqJZqNJolEhk67Q6lcQFUUotEI4VAQgKNcHqfjIIsqHVVjxeugzk/j29zF+rdfxdo95Ff+2X+JNpYmmkjw1ls3uHbtSQ6zOaanxrHtDo7dTWsmiB7d9J6nXStPUqwJj9ZPHlfJvuiu6EXA4KB8G9WnUfef6dv/R+D19D3DdThJks9E9H8c8Do4P4NyvScHRwHEYes2eFypX14O02UG2xgGXof1Y1R/LgJee+08ys26XzcYtQv8KBqV7unjgtdPCriereuTauPTB6kjW/4leH08GhVtuH8NLwpeezQINh73YXoU8/YKZYSpMaRnrnxkgPxJUm+8g7noBsf9KAvOqDk7b/76r7VaLZaXl0kkEmd+693vOA7b29tYljW0zn4QehGL3Sih27uvd661y3hPJwMfnJPBNgfP3g4GzRjGSM8Do4P1D87NsPMdZ8Y9IMROrc2Q9RtMwTOKervAXUA8fA16LsiD6yGKx0nd+/p78k4z+sxK/1z1rODOccoZu9nCsx3cUgX5Gz9B/N//He3f/Y+4v/On8N1X0O9vUm80CMsynunj8OoU5pdepDkzTmdijHYmRU2W+cM//zMmZ+eJhMNEImGuP/kklmWRTKYYGxtDUxVsu9PNG9lq0W41mZocp9lo4Pf7UXUNu2UjCHBwcIhl+bEsP/v7+4yPj5HLF9F1FVWTWVxc4ODgiJde+hnj6SSBgMXlS5eYmZ0hEAySSCROwPnM1AyGaVIqlVlbX0eSXebm53FsB9M0cewW5XIO1xPwENA1P+AgyzA9PYUsKaw/2OWJJ5/ghRefp9ls4LcCjI2NMz4ex/CpGKaCqoksLX1Ao1lhey/P5cuL1Cplmo06uqZ3z2wGg5imH8P0k81mCYWDFAp5RAl0n04ul8fnMxAEkaNcjkg0ArjcX1lhemoS1/OYnJ6m48DhwQ6arp88a8ViEUEU8Vs+FBEq1TKyriPLMqbmIxqLsbO7RTBksbe7jyzJqKpEMBBA9+n4LYtyucrW9g6XrlxGVRVUTScZj+E5Dn6/yfb2DslUBtw2H374Ial0spvyxm920/8oPkqlEtFIFMuy2HiwQTKZwMFjemqWO3fvEAmHqNUqeJ5Aq91B1zRcDxAFQqEwhUIJ0zQplyvUajWOslkuXV4kHo/SqFXIpMaQJIFgKED2KEs4EkbVVBRJZm93F8exGZ8YR9d96IaOJLokkykS8RSCIFIsFZicHMfw+1ldvU+lUmZyfJKlpTtkMilUXzeQlq7qBEIWR7ksimbw0suvI4senusRCocplUoEg0EEQaTdbJIvFEhnMpimQcCySMYTIHjoukahUEIQ4Nvf/i6XLl9GER38hp9mq0UymUJV1eOIynRT4RRLQDeft91xyKTHcNzuGn/jG99gb2+f69efoFiuUKnVSKTiuK6NYegcZg+IRmIErCAdx+bJJ5+g3emwvr5OKp0mFAkjSzL5XIHFhUU67Q4rq/fJHeVJxBOYfpNoJEomncLym7iOje4zKBYKPP/8s6iqyvzCIrqu842//iuCIQufYSALCpqqErAMNFVDFEVsuxcVVkJTNW7euMXa2hqbDx6ghUMEn7xKe3EKZS9L4hs/RF3fpjOZYv5zn0GRVI6yOf70q3/M5PgEnuvgD5h4uDQ7bWRRHs67R8ivft78ODueo5T582TlMFnbO65zHsgZVn+/fDiTA5dHg9fRYxveVv88nTXanvbmetj3UXrccJ1IEB6uxyANug336weP2gU92/7Z8fXrPYNzP6ij9K/9oH43LMDjo/TAQZ1oVD/Po8ENiUE9Z3Ccg3UPPoP99/bvIg/qaqf7NUrn/3ls+gw3Fj3OOeHBenp1fZp4YvAZ/KTq+oU48zoqYNNHAa8XAViPS8PuFZ++gvj0lce659OkUWDn48zFRcBif7nei5pMJocK4t5LLEkSPp8Pn893KiXOeQJzWLu9a4MAtydUBplpvzDrZ4aDYxj8f/8u4+B4hpFwgbGcR5/UszNsTOfVfZqBnRYgJ/M4cH729BwPKX98zyjq75vrunQ6HXRJoVGqEDD9yK++h/svfpv62x/woFpAXphkXbHpXJlCujSDkk5DLELNp7OytkYoEkE8Vh7bbZtmo8n8zBzxaBRNlYhEwvhMnWaziee5GIaJ57ns7uyQz+fJ5fNMT09h+HRq1Qp3lpZoNVu0203SmQzlShnT70cQRQrFEo1mk0ajQatVJ51JEI3FkSWFre1d7GaN+fk5LMuiWqthmAamaVBrNPjggw+Jx6IIgkAul2dxcR6foVGt1Nja2iadytBsVpFlASsUxjQtHFvkYH8H6KDICqIgc39tnVgsjKyK7O3u4vf7kUSZ5Xt38ASPw8NDVFUlFothmiZ+fxhVkTANH6ZpUG80MU0/r776OqIgUq5UMAyDSrVMOBLupqVRNA6zWSLRCLIsEQ6HkGSRaqmELIv4dJ3DoyyRaJx6s0WtWmZ6aop6vUGxWESWJXRdo9WqI7ou2zvbRBNxQKBWrGBYfjqdBoIAmqoTjcbI548oV8qoqorrelRrdRLJJJquH7uy+hAFl1azBoKAzzBRNR2706TVbBIKRXA9UBSVarWG5wn86Mc/IV8oIEoiqUwav2Vh+g1qtSbBYAjbbhKNRtB0H4bPoNlsoWgqqqKxs7vL9MwMqqriOA7VapWnn3oaz3MoFnN07DbbW7uUykWSqSQIoOsajusSCsdIpZKEQmFyuTyS3E1FtLuzSb3WxPNEyuUqU1OTWJZBu9kkGolwsH9ANBpF9/lodZrsHxyCJ6BpPuxOm3giTr3R4oNbd9FVGV338fbbb3Ht+jUM06DdbiMJAo7nEQhYbG1t02w0kSQJ226j6z7y+SI+n49qrUo0FuNwbxvPg3g8gSTLCKJIo9XA0LppZ2RJIWAF+MY3vsnC4iW2trcZHxtDFEUSiSSCKJJKp7ECQTRNw3UdfIaGYZpEIhFyRzk8XDRNRdNUTNOk2WyyvLxMuVJhfHyiuxvd7iBKEo7rcePGDTKZNOPj46iywks//SmiJFAuFQmEw5imweaDDdKpDB/evovjeiyvrFAuFbi3vMK1q09Qr1Uo5LMkkmn29/eQZJF7S0tEIlE03YfgeYTDIcrlEi+8+CL5fA7d8iNPjFGdSCHt7aP9wV8gLq8hz00ix2Os3LvH6toaX/zSF2h2miiqjObT8M6my+zyOuE0X+5R77z/4+TyHAUE+n+7aD09umj7w0DVsCj7wpOLCF967lSe14vVf7qtYQBv8PdRWuFgXQ+/jwpe2f07VIkfAkY/Ctg7Tz8bdU//2vS+j0qB1Ot/vx40rD/D7h0sM+reQRqmg/UD7GH9GVbHMENMfz+G9fE88NpXami/P46eNqS2EW1/9Hp+HvRJYpX+un4JXntfLwheR1nCPmnw+mnc83HoYi/26Gvn1TlI54HIXgCAruLinlzrX5PeGSBBEE7t9vXaHCWMhwHinrvO4KffDfU0ID0LWvsZ5uBO5iBz61mpZVke+pz19/ejPAMfJ6/esH7Aw7EO5robpH6rtueetZgKQi/A0/Bnqpcztr/N7m+j+9hfXhRFms0mTqnG2jvv0flf/2+E3/9z7gZUvrW3jjW/gD+ZRPRbjE/PYyMjKAZtW+Sdd99mdW2dJ59+6iRCoWu7bKw/4NL8PJLgsbG+SjwRRRA8EARUVcWn6xRyBXJHOarlKk889QSdVovdnW1Mw4ciK2TGMoQiIWRF5uDwgEg0hqr6MP1+TMtClgQ2NlexAn7q9TrjE5OsrKyyMDON4zjcfP99DL+J6fdTrVXxmX6CgSBf/eqfMJ4ZZ2wsw2F2H93no1FvMTMzR6FQxG/62NvfwQaaTZub797mjTde5umnroIHrg2iLGH4VHZ3H7B4eQFZ6r5XE5MzpFJj/PCHP0EQVFKpCSwriut0iEXDHB4e8P0f/ADLCqLqJpIo8vbb7/CZz36WaDRCNBZBUWWqtSa1eoNwOILj2rRaLRzXJp/PkYzHqdeqdDpt9vYP2dnbZ27hErFImGqtxp27d0gkE4TCge5zA9y/d49AwCIYCaMoKoWjIqFIiE6niaoqiKKMJEqYpo6iKASDQfb2D0gkUzTqDSRZRFM1mu0WpVIOXVUolUtIsoKiauSzB6QzYzx4sEk3BWMX2NZqDeYXFpicmiIYCtO2O8iyTKvTxqf7EYBCIUepXCSfLxAMhOjYNrKiUCiWsB372NVQolwpMD05haLKCLgUi0cEAyb3llZJppJ4uOzv7zE+PoYsS4iagYdA2+7OnywrKKqK39TZ2z8glRojHA6zv7dDo1nHbjWQJRHLCmIFAqi6ztLKErNzc0iijCRICKJArVal2bRJpSeYHE8jCAI+w0BVFGzHwTT9KFI3D6skS0SjURKJBPVqg0KhQLVaIxwJo+s6sViUZDKOT1XI5XK8+dbbVKt1otFuDtjtjQfcX16h1WwRDIaxAiFA4jvf+x5jqRT7e3s4nsf1J55ENQw8UcSna/j9PoLhALVqheV7y8SjcXyWepzSSAMBgsEQ0WiMcDRCp90mmUjQbnVz6JqWn9npGW7fvo1pmkQjERKJOLs724RCAVRdY3dnm3arTbVaQ1F1Nja2iUbj/Pqv/xozk9NsPtim2ayTO9onGk2yt7dLq9Wk3W5j+QO8/NLLNOplJibHGBsbQ1UV7t9fIxqNI0senizCZJLGwgTyzgG+//DXBHcPWJxfpBwN8t/9D7/JP/+v/jn1Rh3D9OHawhn+BuB4w4PN9Muwi9InDV4fJ7r/cPA4pFzIemzg2q3z8doeBK+nAc/we0Vx8Kzr6baHynVxuF5wng5wkTGM+q2f+o8XXQSMDmY8+Djg9SL9O09v6tffhvVjUAcY1t7fFfB6sXZ+CV4/qf586tQPXk898Mf/XMftxuw7PrJ4kckexmAel6mfV97d2MErVhBCgQvfA5/e2dSLvoSfRJv9gK/f3UmW5ZMgCD3AKghdq+zgGY7+MP39IPYiYxvFHE/NrdcNYS8eP0cn38WHUQl7H88D13VOzc8owdR/fZS7siCKXSkoCKdPYIxg8P11n4ry2BdB0fPAo+s+CqfPDH+UNe+/d9D9pvvbcQThvr+D54cGhYnnDTKv43NAkouLgIuAJMqIrouISxMXz3NQJQdTFdi9/4Cbr77Dq//Pf2Tud79OsOXg/r3PE1iYZe7yJSYnZjD9FpVqHVVRURQVWQQBh8mJSS5fWmR1bQUrYCEcu7tGLD/1VgNBFvEHLOxmk3a9QT6bRfSg3WyyvbtDvljEAyJWAEEQqJRr+P1h3nrrBpn0JLc/fBtdU1lffUC72eYH3/8+U1MTGD6Vtu2QTo+h6yaJRJq93V0ikQChaBQrHCMaT/PNb36Lxdkpitl9QoEwlmmiKjKZsczJmVLJFdE1P4rq4+t//U22d3eRRJmJsTnu3bnD1EScgGUSCscpN21+8NOXaNarRBMhrGAACQ3HdsBpUzraZ/neXb70pS+SScVRZchl9zg4qpPLlYhGE7z66mvYts3lK5cIhkOomkIyGaXRrCKLkMse4PcbWH4Dz3PY39tHVVRUWcXwGezuHxJNZhA1H3Pz80RCQVTJw/FcFEUjFIqgKBqqJtNqNRBdFU3XSSSTbG8+IGCagEc+V0CSwO/XaTTKbG5ukslMcpSr8tMf/xTLtEjGYzQbTVrNDoIgIbqN/5e9936SK8vu/D7P+/S2vIErAN1o38OZJmckUuIwliFpdynpJ5kI/Qf7i36R4a42RG4oJIVW5K6WQe5SQVLcITkcx7E9zelGd0+jfQPoBgoNU95nVVb6l/mcfsgqICuRCRTacOhOxIvMfO++e8+97+U953vPuedgahblvSqOHcNrt7BMiXhyhGsfXWd6ehrHtqm7LrKqsbN0jXQqja7p7OyW6bRdBCHEbdRxbI2dnQ1ijkN1v8ns9Cm+9rWvoes6lmFTrezz01cvYmgK+UyKTrPBfnkf27TYLu2QSKUxbZvtUoWJiQlsy6Td9lANG1HV0WQBr92hVq0RBj6yCJoCotTdx1upVmk2mySTCRrNJmMTY7TbER3PxzA1Oh2XkcIMWytraLKKpirIksTHN28jqzKqKjA5PsLO7g6S3AWrhiZTr+4SInL5/atMjE+ysrKKKis0Wk3ShRHiqRSSJLK9vU3csVlfWSGRK2A5Mebm5jh56gRR6LOztYWgxZicOcnU7CwBkM3l2CmVuPD4EySSSfKFHMmUTRC0cZtVFm/dRBQkFMElaldRBA/LMlB0k/JWBc/tYJs6pa0t3rz0BufnziOJEqsra3z723/B5OQ03/zWN5k7fRJRkXnqmae7e4CTCd6//AEnTp7krXfeY219kwtPPMnoaIF22yUKAhxT59TpE3z/ez+g1WozPTvNtevXmZw+weLyEvF4gjfeeJPHHrvAlctXEBAYLcaxLRsnnuC73/sh2UyGD95/m8kTJ1BUlTAAQZJRJscIzkwhbO1i/uh1xmodfuO1i7z97hWevPAkcdtBEBRavgeyDJKEHIkokUhIiCSKEEZIgogkdNN7hRwFJb1z9CDlvX8O752P++9/0DaUQW6dg+hhIO2TUm/k/241R2NSPKj+Xo+orh5xKBf76hIkBEFEEKXuFgAEEEREsbe9e0d0oGZyqCsI974L0T2toatXdG+L+vga3NcBOkp/3w6i9XeZ6B6iIHXjTwiDdYeHPZPecoMW9PvHtPeeYTrloZ7SS73Gh0M38l5XckEQEA4CpAjTAAAgAElEQVQfCfc+D8dSFITuvnHunUc4uuWrl7f+7716aK9+epd6AkcLBxHAD94YBr13D6bu3fes90cXT/rHavg4HurQh89seD2PQvfSPz78Pz3sHXoUGta/v3Pgte/83T/dsBxnD3o5+umzW2EB75/8JuErbx8rz+sgHj5L4HpY718lDRKq90eZPQpkDl1v+1fYBoGwfoH6yGM25P8Y9ueAudvew9s47vv1sDoeJHSOKinDJp57Y/aormZwv6t1//VDGlSmn+8jwpj790zBQWqfCAQiRAGiIESIBGQhRCGiXqnw737v3+G1QgprFX7hGxdxzp2GZy8QKt2gOIZmIEkitVqVYrGALEt4XjeQjCiJEIXIioSiyFiWgyCILC4tU9opkUgmWFleZWtrC0kQUVWF9959j0ajwe07d7gxfwPdMFhbWcU0VFy3zU5ph1QqSWGkSLVaYe7MGRYXVpgYn2ZlZYNSaRfX7TA7c4J4Io4oCqTTKRYXF1lcXGRmZhpZEkkkEuiGgeu6vP3WJWZPzGI7NqZpkE5nWFpeAkQ2N7fIpBJwIHjT6QxB4LG8tMSp03NkUil290pkMlnqzSamabG5ucnzzz2FqsnomoUsabRaDQxDolapkcsXCCOo1WuoskwUhFhOnLW1ZWRJ5Pnnn4MopLSzQ7vTplgoEAQ+7bbL+voqiqLghwGGabBT2kFVuvloZVVBllV0XUUQRTY3N3EcC1VVKO+VCMLuYqOmaRiGTrVaYX7+Bpqi4/sepmUgCALl8j6pdBrHSbK5uYVtx/F9gZ++folCYYSFpSUqlX0ev/A421s7WLbD+5evMjY2QbvdQhBlbt++Qy6XI55I0O508EMwDA1NkRElEcdxkGWFyHdx4kmabpuPrl3jzJkzeF6bZCLJ2toauVyum8IiAk3TWN/Y5LHzj/OTn/wlFy48wcrKCk8++RTb2zvsl/eZmTlBEEY0Gg1i8RjVaoV333mfx86fJwoDwihCVhQarRa1WhVdN1BUjWQySRB2dz0vLq4jCAp3bi/R6QRYpsUPf/AjgtBjbGySeDyBrsv4fodO20fTFHb3dqk3GqQyGa5fu0YYhji2g6YpxGIxBEkikUh0AyrZDru7Fd597z1OnT5NFEU06nV0Q6PT6VDZL2PbNoHnEUWQTmfY2tnGti2qlQphEBAGAbVqlcJIAU2XAR9FiVhfX2F8rAhRSDyeQhQFbszfwDRNOh2fTCZLKplkeeEmzUaVMIR0Js/C4jqXr1zlmWefxfM93I7L1NQ0CALtdptsNkelUmHu7ByJRALbttmvVNB1Dcs00VSVZDKJZVq02y7T0zOkkgkAarUa+/v7TE5Oc+v2LZ57/jkgYmdnh6effppWq4mqKNTrdUzLJBFPMDI6wsrKCpoqEUsksewYdxaWsGyTUydPoJkmiqIgy/JB1O0OjU6bMJ+mlIhjLq/z32bHSfzDr5LJp5kYGyGKAiRZRJCAKECIQiIh5O7Oi775tCc190CgMOzaw2iY7DzO90H1HEdm9FL4B98huvIxwoXTA693AeeD6bh9Hs7TkPujIelShjwLQRCG45shTQxbMBjap+j+8/fKPhxgHGesHrS3tVenGAQS++X6ICDeX++Rvb9D+X74hYfpgYfjGg3R73qHb9jzPi4dgs5Be4s/CX1euvvngTOGtTOI/k6D12HuBH8dwOvDog0/jIe/TeD18PeD9oc+rHxvmUPqFS6POmZReG+2OtKOMNi1fBB4fRTX80d9B4dN/McBr6J4/Hd+EP+HFtFhLjq91L9wNGy1vyuc7gevYRgSRiBFERIRYhAc5HsT0dsN3nr1Vb7/7e+jKSZPT8wx+z/939TPTLNdyKCqGlEEiUSCTqdDFHUDGTWbzYMcciKSJBKGAY1GDdPUDwIFSWyub/G97/6AttthfGwMr9Ph1s2bxBwH3w9RlW4OVEEU+MVf/CWEKGJu7gyuWydfyLG4eIdcPofrdvdBZtJ5Gk2XEydPkU5nmJmZpdV2WVvfIBazuHz5A/L5PJZlsbi4wMTEJGvLd/joo48wDJ2Tp06RzGb48Po8piEjCgKKphKLJUgkUmxv7eC2KliOQ8fzQBCQZZnnnn2OVy5eZHl1mdmZWaIwpNlskM5kyOUyxBwdy47htiJ++IMXuXLlPU6fmcS24uiGwcuvvMJeaZdEIo5pmQQEFEfyNJo1IKRYLFIo5EkmEmi6ym6pRCKRIJ3JsLNdojCWY6+8ix8EFIpF6o0mQRAhyTKmqRzslUyjKBI725tUq/vsV/ZJppLs7e6hqRqtVpvvfvf7yJLEhSceRxAF5m/ME4vFiRBotRqsr2+xvLjJ1NRJzp8/h2npZPMZzp47SxQGXL82TyaT5+WLr9Pp+ExMjlOrN1lZW8eOxXFiCXZKeySzaW5+PE+hkKOyX2b++jzxWIxadR/dtFlZXSeRTOE4Fqau4/sgywoLCwsUR7pW8I7vMTt9ku3tHXRdozhSJJFI4vsh77z3Ac8+8zz/3x//CYqi4nkdHNtCEOHs3HnK5T0sy+q67KpaF8TrBjc+vkkykSISYL9aZWdnl1ajTcyJ4Xk+2WwGx7EZGRnh1KmThIHA8soyHa+JYaioqkq13iBbyHf/v4CiKMydPoOp60T4uJ0OluXgewELd+6QSKYplWoHvHtAQCIZxzB0DF0lHotRrzcIgojl1TWKo6OkU0nCMEQ72NvbaLXY3t4mX8iyW9pCiHwWFm7h2BbxWNcqLUgazWaTfD7P1asf8tZb7zA3d55Ou8boaAG35SKKKqVSlffe/RDX67C6tsaFJy5gmha6qSHJAppq0Go1sS2bhYUFZmdnCAKP8clRPvroKqlkAlWReeedt3Eci5GRAqWdXV65+DKzMzPU692UVYlEkkarRrFYJJVKEovZ1Ot1pqYmsG0H27aZmZ7Btm0Mw8CJOaiqzM1bdygUigS+z8zMNMvLy0xMTCCJUjcPaBShyF239iiMkDUFr5DF2C5zan4Zt5ji3/7pv8cLPSYnxpGECAgJhJBQCBEi8T5dpiuThoPBzwq8HqfOzxy8/vYfw/LG0IBNfxXgNRoiQyVxiPw8Jng9IgcfMm693z8peD0MevggOi547bVS3m16iB7WL+/73cv79ZDea/1bwR4VvB62fOjNNyzHa69XXy94PVLuMwSvh/QohoNB9KjeoMelYf/7/rb7y3/a9vrp7wR4jaLo14c9xOMq2f3X7t/L8GgP6GEv1icFr8Po8wK1nwcf/WPcP879+y16y/YK716wdnjf4fdqtYqmaffSDPRZdPsn1UOwfLcu4egke3fC7uvDvfruz6s2KEBTvyAfNHYPo/tddI/W0fPrvrq714dbP8W+5zdwdXkAP4PODQb5g122u8K9+3kYgCSKIhRFIUJEFkKijkfgeYQh3L6zxNVLrxKzHLK5EWbSIyT/6b9CmZ2icXKKr3/965w5cwZJFGm3O9RrNTRdAaDRbHDz44/JZrPIskyz2WBleYlkMkmtWiUIQpaWVjg7d5btnRIjxQKe10ESRU6eOsXq6jojoyPkCwXS6TSdTod8Pke9XmN/f4+O183tOjM7Q8t1WVpaYmx8jNu3bxGL2ciyiOe1GRkp0Go1icVilMtlFheXsCyTyclJNE2lXtnn7LlzqIpKu91BVjReefUitf0SzVYTy7LZ2NxClhVefe111lYWGBsfx7ZtEokky8tLqIpKq+3y0bWPmJmeQZYkWq5LIhXH8zwkMWJ1bYNCYZyPb9xib2+HZNJid6dM6iC1jR1ziIIATVVx2y5ep006lSIKI+r1boCmlZVlREFga2sL27GRJImR0RFq9QrJZJIoBNPsggDDMCAC162j6zrr6+vEHJu11VXijo1hWHgdH9M0UWSZRr1B2+2QSqVIHwR90nWNVCqFIqvoRheM3VlYZGZmCgSfjtdkeXWFmG3jtlokUyksy6ZWa/D0M09jGDphGDI3dwZN01BVjVgsjhf6ZDMp3GaDeCxOGIYkkylazSa6aaEbBql0Ct/3Ke/uQSRRq9ewHRtN01haXCSTyeJ1AkQRCsUC65sbOI7DO+99QK3W4M233sLzfPK5PKdPn8TzO2iaQhQK7O7uIsoyiqISRd29/1EYkclkEKVurk/DMInFE+SyKXRDJZWOYVka9XoVw9QJgghZVlFkBdvRcdstNFWnXK0Rj8WQJBHd0Ol0OqyvrbGzvUO70yQSRCzbQZIlDN2g7bpsbu5x6tRJWm6DVCpJo9FElhU2N9cxTYu333qXRqPJzMwMzVaDMPDY3NxAFERu3ryJZTtMTk0jChKe59NsNtFV/WChSmZleZXtnV0KhXw3erRlce3aPM89+xymqfLRRx8yOjqKE+umyLly+RrP/9yzFAp5JLk7v0qS3HUxFARqtTo/evFFJicnKBaLrKwsEUvEkCQJRVHQNY1EMkEUhriui64ZzM3Nsbe3i6p2o0PfunWHfD7N9vY2QeDTaDTY3t6iWBxhfX2dxcVFNjY32N3dJZvLsLBwB8dxOHnyNLblIB6MryAKOHYM3/O7+YMFgVarSalUOgjo1eKNN95Am5nA9gKS3/wJ11X4yfwVctksvh8wNjlBxIHs8Q/m6D7rl+f7d38f15V30Fz8oK03/bnVB8mf3vsHyY1+3eBhi7sPjzZ8PzAa1M5x+j4IRHW/3w/cu8fRc3f1EPHoGB1+j6LoPgB0tw3hqNvqsPG4r60eXkVRROBocKVenajXbbi/PhgOPofxMchqeBjv4vBd6tcBenW4wzYfPv7cLSsO0Mf73b977wn7DB0Ponvt3j/WURQhcH/b3R8PrHZIW/frt/fVewx6lH3mx+OrW9ehy3D/eA7T4z5L6nXbFkX5bz949Tzv14+jZB/ScYDVw8p9mjbgswevf5OoX3gd95kd+uIfJ7S/aZr3WWkHCc5BAvmgwN3rh2H1D1e5BwPg+4VVf/7Uw3PD3EU+yWTw4PLDrj36HoUHhWsfJhge1MeBdUX3L2p09z4rCB2XTqPKGxcv4vkiuulQ2d0EQeVUcYrcP/8dRNPAfewUuqGTy2XRdR1ZkajXaty+dZOR0TGCIMS2HUZGRvnJT15mfHyC3d09RsfG2d8vI4kiXrvNpTcu8fSTT3H+wgUsS0MW4eMb17Esm1gigaQq1Bp1DNOk0ajjxBz2yiUkSWZqaoqTJ0+xsbFJLl8gkUiwuLTM5uYm77zzFufOz9Hx2kRRxOuvv04mkyabyZBKJbsBdjQV3dDRDR1D01EUma//+Z8zMjbKl154gfNzZ4jHk7Rcl2Qyxa1bN3nhhS91A0QpGpbVteTFHJutzU2mT86i6yYryys0600cx0aShW5alniCVDpJu93B0C0sy8T3PJ577llESUbRNEZGiiQSccIwwLHjiKKIIiu02y0kScQ0DcQoYnNzk7Nnz3Lt2nV29/YwbRuiboRZU+9GuBUFKO1s4zhdfjTdoNVqE485RGFE4PukUwVM02RtbZVEIo7rtnn8sceRZAk7ZrOyskwsHsPzPGRFJYg8YokYo6N5JCWi47VotZo0Gy6aIhP6Hpoi06hVmZyaQNc1DENFVmBldYlY3O7OL0FEGIUogsR+uYxtOdix+EGgpA4dzyOVTgNdPjPpDIqmdPdiqjK+75PJ5AlDgdDvUKtXsQ4CDomSxJ2FZc6eP88LL3yBRDLB3NwZlhaXUFUF07JQZIlUJoOi6Ciaxs72DstLS9imgSiAqkp0d8ELCEj4nRadjkt5v0TLbZBOJ7lz+zYg4XsR3/rWt5iZmWRra4ud7TIjo6MIQjeH7erKKiNjozixOJ3AIxFPIEgyqqpTqVSwTIMoDBgdm0SWBVKpBIois7m5zd5uhcmZCaq1Oj/+8cuoqkYqlSDmmNSr+0RRxOjICFevfkgun6fd8UHouuOn0xkkSSYWT6JpOtlsgeJIAVVV8P0OlmXx+OMX0HWD/eo+ISGyqqNoJl4QUanWefzCaSqVMkQCtuWwurKK67aoVCpks1na7TbtdodUKkk6k2J7e5vR0VHK5T0q+xXqtRob6xvMzM4QBt2gPIqikkqn2NzY4d33PmB6agJVVTFNG1XV8P0A0zSpVqvE4w7xeJxMJkUqlSafz+EHIYamc+fObcbHxvj41k2mZ6a5fes27XabfD4PUcTVq1eYm5uj7bZ56623KRZH0DQDbXIMgYjnPlrjK7/zv7GwsspLP/gRlVKZkydP4bU9Iu4HRofTZq8i2w8CBs29/eUGAYkH0TA5cBxDwTAd61HBa3/Vn0ZfGwaA+i2v92T8PbfhIxFw+8bz8DsclcaDAFC/TnEc8H0UaNwfiffe9+MBjwcB3Ad971/cOLx+eH5QbtfjWA6PvJMDcvF2rw3uU7+h4VhtCPePQX/bnxa8HvL/aQ1knzVwfNBc8Xm33d8ugCQqf/vBa2+e179u4HUYoP578Ppo4BW61tFhwLV/4j+03vWD0/62+/OuHlIU3j+xdi2v984fBaf389IPkI8zIRx3LI7nMvIJwOsQ4flZgddB+evuVXRUGIui2LXUaRa/969/i/2dLUYKRVLpAoKocHvpFqppk/+Tl1A2dtg+PUEsboEkdV0bTZ3trS2KxQLFQgEQEQSRIAjx/YCVlVUmxicQJZlXXnmVV1+/SMy2adTr1GoVdku7ZIsFwsDl5sfXeOGFL7K4uMRPXn6FjZ0dzp9/DNM2MG2TRrNOPpdnd6dMNpujXK6QSqbxfJ9GvcneXpNOJ2R8YpJ3332PQmGMWDzD9vYesZhBOp3CbbdJJpPIssyHV6+QKxRZWVmh3XaZGB/HbbdJJZO4jRaWZSPLCslU8sBqJeGYcQrFEXZ3S4gSNBp1xsdGQFaYnJykmOu6QR6CN93QCAKRnd0t4gmHZCKDaVicOXWWtfUldMPEtG1qterBmNQQ0Hj14msHewMniDkOe3ulu1ZKVVUojo6g6jq6pqMKCnulXcp7ZQxdxW02MHQFUYiIx1M0mi6GYSLLCp22i9fx8H2J5eVFZFkkCDyCwKder/P9H/yQkdECHa9DKp3EMK0u6DaSXVBmaXh+B9N0EEWNmckJQt+j3WrSrNdwHJNyeRdNkeh0XGq1MqlkjIWFW8QdB4jYWNsiGY9z8+YtavUGyVwORAlVVojF40RCxN7uLpqmsrWxidtuoRvdyOiyrIAgAyKVcglJjlheXmBkrMj2zg5PPPUMiUQKt1092B8c8vbbbzEzPc3i4iKObSLKCpVaHUmScOyua/LSwm1SyRi7uzv4vndguRaRBAVF1tA0nf1KlUJ+DNuKE0YRhm6xurrKU089gaZpjI1OEwUeXqeDIIoYpkF5fx8nHsO0LEzNQDctEERkSSQMfSrVPX7wvR+TSscxD6I3u60OoqARS9kIksL05AwnTpxEkUERQ0RRxj5IBQUCe3v7nDkzh6BEWJZOvVlBEEP2yrvUmzXW1laRJJGlpQVq9SqGYbCxsYlpmGiGgSCKqIaBKCtousH4+BSN2hYx20EWVT668hHTUzPsbG1jmDrf//73eeFLP8/o6Cjtdptmq06EgGnZmIaF7/kUiyPYlg0IKJJEtbJPOpOlUq2RzRVwnDhus4muG1y9+iFhGDFSHMWxu1GvX3zxRRzHYWpqiitXLvPuu+8yOT3L3u4e21tbuK0Wi8uLjI6NUywWMc1uYLEw7Lpjj42OHSwAqYyOjBFPpNjbr/LWygJJXcf+/k8x/5v/nC9/8cu8/NIrvPjDlyjt7DFz6gSKotydW++CUGmwK+aD5vB+y+DhovBx9KgHyYG/qeB1WL+Hgdf+rTc/K/B6+F08+L/9rMBr7+8jQSMf0J/+d3BYG/fA6+B7BwHO3h5/UvB6RMf6DN2Go+ivN3g97hzweVBvvZ/UbfjTOWP/DKl3Be2T3g8Pfjj9Fr1B7T0qMPssadjL9ygA/1Hq/byoH/ANc08Nw/AuWD2kwwm0P0px/+/Dc3cj2x7UiRgRCSEhASHB3d+SJCAIEVEUIMuHUQfDI7z0T8S9edUe9l4GB3ujDg8B7kXV61tdP2yzf9X47jMKo4FHFIZEYdgXM/moy/B9giAU7h4CEkRi93ePa1A/9fb3kL8gahPSIYg8vDAgFER8QcVDIZAkQsFDV30cNSQuwP/+P/xTxPIOX/3KlxElhT//zvdouh1USeZs4RyFf/VN9ItvU7twilJpG1PXCb02teo+iiySyWXphCGyoSPJArIscPXy+2ysLvH8008gRT63r1/l3NxpUvEk++UaqmLgewKzsyeJxR3ef+cKjpnmwys3SWdHOff4UyR0g521FUqbq+xubXD75k0UxWBi+gReAMlUht3yHoIAXuAyOTHCF7/wNM8/+wRPXjhP3DFxmzXOnjlFsVig7TYQQw8xihAFmWS6SECAKAlcfOUVctnsXaVXIODmrXlMxyAUAmRFAs9jf3+DTruKYajYVoz1jRKBpNGsbBF6VZy4RMMtIyrgxBPIsgEitN2ARqWBKLiMFOMEQZ1kTKNVDZCiJqYukEgUyBZGaLSqnDg1iyjIyIpOJwpp4QMe7U6Djt9BVkRKW2soYkC1VSGZTWInHERFxwtlJCWBoqZRVAVZFpClCEEKcBIOmm3QDF3m568zki2wubJJYWSSdiTy+JPPkEjmmZ4+Q+CJEArsbKwjiz6KLNNpRviuiNf2CAOPerNOo90iEEQiWUUxY4yOT6LoBrfuLON2IEJjanIOSbJwXfC8NqEAkzMnuPT2u13LXASSLkIUgO8T+SGyohLPZoilM0SiAijIkoYiSmytrmE6CT786DaXLl0h9FQcI4mCgKlKxJw0pmmwU1qnViuzcOc2iqSxvLYOUcjNa1dZX14k8joEXofLV6+yuLSGbsaJxdO4ro8oiaimSihGaIZFJlPE8wI6noemamiOxq/8o1/FD0FTbTx8IqC0u0snCFhaWSGTT0HURpU9KuU6O+vbtKpVwk4bQpdCIcnPfek/RDVUfFq4Xo2VtVWWV0pE7QDRDyDysGyVjudTbwV4HYW267NfLtNutZmdmqFV30OXVGr7VVSpGwwsEU9g6Q7jY1OYuoMsGcTjBT66dpvi6CihGNCq77K1vkqltIcmadSqdSq1fZxYAS8Qufj6a8w9dpb9apWXL77BxvoObsvjT//kz7h+/Rr1+j66LhP5PvgRnVbIn3/9m7TcKlevXuHyB1fY3atze2EJQYpYXLrNm2++wfrGGu+8+y5RBKqmMTk1RSKVIIgCrs/PE4vH2dzaIopAlGTGxieQD+Y/VdVJpjP83PPP06yVCcIOmi7jeT575QpPPfUctXqTMIJsJkYsYaIbCvl8ji9+8UvcSTkIlTrOD16jpUr86q/9Gl/9j75KfWefF//wd3DaNWJKRBB41DyPlqKhBqAcHHJ0v1zolZWHn/3yo1+X6S3b+3kfIOuRF73bZAZZ2vr56JfvvbnVj6NjhGH3EAQJQZCIIgEQ7+vH0T6Jdw9RlBEECRDv1iNJClEk3D0OI9keHkK3A/hh0BvUF0SBkKNy+DDt3109pKd8SHT3IBIRkO7K1sNjqC57IHvDgCOyOIx8EEIiAhBCEELCyO+e7xv/fp3h0DAwbFGin5f+ciLCkSjYXSfmo+9K//2P6vb6qLq2KAp3o0h3PeO4+ylE945hetJhP4QIBEk4ckRC9IlR0rD3/5PU82mwzjC+hlG/Lv5Ztv1Z0t8oy2sQBL/+KOU/C/DVv/L1qHX+rCyvhwDrk4zB57HS82nrHHZ/L2gctpJ3+LvX9efehP5o7Q0r0y/8H3bfcQT3sRclBgRwOLgwtJ7hbd7v8tPt02AlZxiFUde9SUC+B5yFACIfR1Zot5rUy/tcfPk1/uv/6r/jl37pV7h6+QNmTsxw8uQJYskU29t77C+tcvpf/gH1pRXeSxqkx8YoFos0Wy32dvfI53IEfkCptMv62hq2ZeO6LrKi8tJLL2HbDiura+RzOcqVKomYw/PPPcfoyCg/evHHRKLAmbk5NE07UHUibMtC1XWmZ2aJ2TZ+4JPJZokQGBkdo1ZrsLq6guPYlPf3uXjxIvl8DtuO8eqrF4mikGQyDoSYpoFlWcTiDuXyLrVqDdu28fyA27duYxgmltXNuSmKIvF4AlXXWFi4QyaVojgywu7eHmsrayiKzJXLV5g9MU0YRhimiSTJmJaFKEpossqN+Zsois6tW3cYH5+ktLNLGESoukwi7hBFIaZu0GrVaTabCJKIpjn4YYP5+ZsYagxDlzAdh0Ihz9joGPPz1/A8j3QmRWlrm8mJKTq+jywrmIaBIMDy8jK5XJ5Wy2W3tMf1a9co7ZRoNpuIUjdokGEY7O9XCcOIfKGApVuMjo3S9jqMT06CIKJKMqOjBWRZxvc9FpcWqdcbTE7P0Gm7dDoe8/M3DiItpw4soRKmaeO2O1imw+3bC4yMjEEkMDkxjmnpuG7rbj7WdrtNLGbjez71Rp3lpRVOnDyJKEqIUsTNGx+jqRqOE0OSZeqNBrYVQ0C4+5wWF+7g+238MGBiYoIvvfAlgO4CgwD7lQqvvvIq4xOjaIrKiZMnOXHyFCurq5yZO4MkyeTyRRRFZa9cZnl5hee/8BzFQhFV02i3OwRBwPb2DoQdVFUhjEI2NjaIJeK0Wi4vvfhdTpyZRRAjZAEa1TKqLiOEErdv3SaRSFIoFGk1mizcvsXY2DiyohNGEd/45jdpuS4nT52k6bpkc3Hq9RaGlkASDT766BqjY0mq9TqiKJHL5dFUDUVRMXSDRqODosts72xzZ2GF9fVNTMukWq1RqeyTSMbZ2dkmlUojiV1Qt7m5wcs/eYVnn3kGz/e4fOUyhUKOZr3G6OgYhmkRhAGGoaOqKlHoE4vbpFJJFFnmD//oj/hH//Afo6oS+XwWz/OZnp4iX8ij6xqiILG/X+Xy5auoqkw2myabLXL61Fk8z2N8fISW26TdbpNIJJmfv8HU1CSObROPx7l+/cmVfGgAACAASURBVBqpVIqXfvxjctkcL7zwAq9cfIVmq8nM9AyjY6PcmL+GoesUiyPs7u5y6Y1LnD9/nv1KFVGUaDZbOE6MMAhw3RatZhMRCVFSqDdcBEEgCHzGJicJp0fRv/EikiixM5ohnUnz5DNP8/Ybr/O7v//7fOnnv4IoyxiaStBpI4gioQC+CJF4v6zrt6w+iIZZ43rrOw71g6PjttdrvQ0fYnk94q57tJYj9R+Vj/e3NwicDePvXguD8+P2/x5kzXoYT/fuH2IJZbAXlDgsiBSDdZJBfA4r86D+CYegnvvT6BzX+vmgdu6eH1CuW3aIF1q/OtQLno9hMj0yZn3XjrvAMqTmTwVa/zrQ58V/b31/JwI2/SzB6yd9iMKFM4hffu5IntfPm3qF2c8SvPa2/1k9i0FtRFF0EFX23opwbzCgQ4H+acHrg4TYo7wfD3s2D3KzGXR+uE/LpwOvR1bmuX9z/4MWR8JQRkBEROyO8UEqCCEK0YOI2zc+5p/9z/+Mj+dvsbaxy5m5x/kvfu0/QzU0Xn3tNS489jijl+8w85u/i5fPUHvsDJVmE8PQ0XUdVdNJOA5+x+f99z/g7bffoZDLE/g+iqqiaRqO4zB37iwrK2sYhkkYQS4dp9PxKJVKbJVKVCpVvviln0cQQBZFVpaXGBsfxwsCFFVBUbpupIgiDddlZWUN3TQo726TzWaIooj33nuX8+cf46OPrrG7u4vvdzh5cpa9vV1kRT7Yv9gNyqPpGjEnhiwrLC0tM3fuLEEQsLdbZmpqmnq9iiSJ7Ff2yGZySLLM/v4+bsvl5o2POXv27EGuYYH1jQ0c28H3PQLfIxFLEo8nu+Awn8XzPGLxGIoq43kurVYTx7ZwOy61apV228WwbGp1F7ddQRJUAk9iZfUOiUyKcnmf3VKJfDZLKpWgXquRSaVwDxRpWVZptZrIkkQun+f27TuASOAHXHrzTUZHRroRmDMZwjBC1wwM06Td7kAkUimV+Wj+OlMnZpBVlWa1wYvf/xGaIdNs1Oh0OoyMjKBqOppmsLu7ja7r6JqB53nYtoWma1RrNdqdDrFYHElS+fCj64yMjKNqBo16GdPQkWQJVdNQFIUwOlhtF0VESebJJ59ElMSDgEAddFVDFGXWNzb5+OOPefniRc6ffRxJlCCKCIMA2zaxbJN4MsXq2irxRLy7/57u3LO8ssyJmVlu3uwCYcPQiYB8IQ+CdBf8dzoelUqV9Y0Nzp2dQ5Zl2u0O165fp1Aosri4SLNexnFsoijqvk+STCQISJGH5dhomkppa4vtzU0y+SzNaovl5VVGR8dQVQ3CkJgTY+H2HaxYAlXT0HSDc+cfO8hRKVOpbWEacWTZRBIVRseKqHrId3/wIiMjI6RSKZqNBrdu3qRWrXHj5gK5fIZkKonnhZw+PYdpmxQLBWzHYm9vD9O0MA2TIIwo7ZSYnpqiOFLEMA0uXnyFiYkxNE2h7baRJBkEgXK5jOd7qKqMIkvdwGFeh1qtxtjoGKlUinK5RCKRPFgQ0QkCH1VTEESBd955l1Mn50gk43zrO99CkXXGRqdYXlkgCDxsx8IwTRwnwcbmJj/3/HO4rotpGORzOUq7u8zPz/P444+ztr5GqVTi3NlzmJaJ7/mkUzEMw2R/fx/HiZNIJrAsB0WWWVleRhQkGrU629ubiALomko8lsQPIu4sLNJo1Ig5DqapE0oCTI2h/ME3MX7lyyijBfwoZGdzm9GxCVotlzOnzxAFAYYk0BIgPDAwHQIJMQLEo9bVv0rwelzdaNC1uwEbL9+AuIP4C88MvLc/td49io6UOQ54PQ7oO3IfR63XD+rHID6O8DRkkVkQh4BXYdgWnuELx8PA67BndByAe2QrUXTv3MPA68MWNYbyOsSF+7jgtbe+Rwevn52F8W86cIW/B6+fGf1Vg9dhK1CPYkIXErHPDbj2gyBBOBp06PD3sBfw07yYwxJY99c/iN9h5Q7dgiVJot1uI8vy3WuHUe0Guc72usL0usccXu9due0Vgt19lw92++7neRj/vfUe16p6GFVvWPkHjW/vsxMFaUiZo247w+rrbfuwrl4LazeJ+IOVnX5+3aaHoZtEgQdhiN9xkaIQgoD/8Z/898xfm+c3fuP/4KmnvsBX/8F/QjqbQzd1VtfXSNdbZP71n6F89xXaX34Ob2Ya0zS4evUqb771Jk9ceJI3L71J4Hosr6ygKRrr62t0Oh28ToeJqSl8z0dTNTqex8svv0IylWZm9iTNyh6+77Nd2uWpp57iwhNPsLK6gm1a3bQ3uRxb21vMzM7Q7rQxdIPllZXunihBIJlMks8XKBazhGGIZZucP/8YrZbL+Ng42XwK09DRDYPVlRVUVaVS3e9ao2JxJFHigw+ukEgkmZyaYL+8y8LCIslEEk3X+dM/+1NUTSadTtJouMRiMUzDZG11lYXFRSK6/xPbcshms5R2d0inkkCI6zbx/DamqWJYGqap0u40EcUQTVUQReFujstsNkcUwd5+nb/4i+/x+IXTjOQn+eM/+jrZnEVhfAzL0LENnUat2rXSIuD5HZxYgtX1TSzLIp1O0Wg0uH79Oo5tk0qmcVttyntlMukkjmMThhGiJLGysko2m0dVNZpNl93NDV679AZPPPss1WodQ1EZLRSQZZFCIUc83t2vqOkG7U5IwjGoVqpEEdi2TRgF3L51i1w+z+bWNvF4EkGU8P2A7Z0SCwtLTE4UabaaGIaBKAk0Wy0sy0JTVERJpNPpIEkysqLgeR6l7S0y2Sy6YRCLx7FthzOnTiNLKvVanVdefpnJyQkWlxcoFPJECF1AretAhO9389/qus6LP/gh58+dJ5aIY1oW1XoNRZURJZXADw7m6YBCIcfU9BSB77O6uko8kaBQKCAIIrl8nrFiHlEUkGQFSZZRNR1Blsgn0iiaye07SySdJGIo02x5/OTHL5FJZ7h56xaiIJBJZ/ngg8tMT06j2ho7OyWKI+PdvZ4fzbOyssbs9Al8v41pSUS0u+9ZoPD4Exe6KXS8Ltje2NjkrbfeQhAVHr9wnmqtgm3F+d73f4gfeGiaDBFoqoZl2fh+QKVSoVAs0HFbXL1yhXbbY3pmivGxEfbKe0xNzxJzYlRrVeLx+MFiV4Tb7i5WCUKEqqoUCgUuX75Cq1VnZWWZXC7LSy/9JYap0267pNJpXn31dU6cOE2r1WRh8Q6nT53j5s07FAoZRFG4a3UFOHP6DKbZXVBKJlO0Wi1EUWJ6epp4IkYsFuP8ufM0mg18z8eyLN56+xJTUzO8+tprTM+c4J1332NyagpVVtjbLTM+Nk61WmNqagJFFshk0vzlTy7ixOJ4vo9lmXeDoomRgGIadDQV/fe+Dr/0RRqWxsTIJJPTJwiCgP/nt3+Ld376U55/6kmw7S5Q6nXPFO6PU3AckNUrQwbN5b31PEjWPyhGwiBZ0fv7LtD+hWcQfuHp++7pdcUd7F11rw/9KRIHRXodpgM9KL5G19908LWH6YP3u70OHo/DDAb3jeFBVP7e/h8uuB/y3RvtV5blIzz2bz/qHc/e9gbpgf06z92+hoMjUAvi0fr76zw83+9KOwjgDgOvQ3OzHhTv1XvvHkMyMfS+O719ZADfn5yGGyd6efq8qHch62cFoh+EPQ7p78HrAPo8VgseFbx+njQIvMLx/xyfZnwOLZqPYt0dNnb90YUbjQau62IYxsA+9fM/aIJ+EBjsdVk6LPagPhwH9PX/ftSx/TTPQmBIQnHh6HtwvH4I943TICE+/P4uybJCq1VH1zSiIMAxTK5evsJv/i//K//gq7/Kf/zLv4qoGIRIIApIMuibexT+8Dvk/+B7RKaB9Ms/T2gZiJJEFIXEbIdTJ08hiwKLi4vksjnGxsbwPZ/NzU2++MUvMj0zQ6fjcvXKZTpeN7rqxzducv78Y2iaSqfVYKdUYr9SYWZ2BlVT2d7aJBFPYlkm9UaV0bFRFFmmXq+hyDKO47C6usqlS5e6AC2doNVs0G53UGQZt+0iiiLr62s0mw3GRkdZX1vn8uUrnD9/nlw+hyzLvP7a6/h+SCKVJIxCfK/DzvYWk5MTWJZFhMB7778PhBAGtFoevucxf+06szMnmJ2dBUGgUi4zMzNLtVplcWGBVDpBFAa02y1abgtNV6lWyuxX9tjZ2T54hiLNRoNUKo2iagRhhCjJrK3tcOfObUZGMkiizYdX55mazZPLF6iU97BMHbfVIp3JoGl6N02GKOHE4lSqVVRFxXVbjBaLVCsVyrtVxsfGMXSd/coetm3gdjosLCywsrKComnEnDjVWg1FFjh77jyWafPhlaskYnE0TUU3DVpug3KlAoDvB+ztVnBsDct2EBBxXRfbsroBj2JJYk4MURRx3TajY6Ncu3aNt955ky+98HMEBwGmwgDclovbdLv72kSBdrtDGEUsLy+TTqexTB1ZVrq28gMQ5tgOYdjN3akoEsVigRvz86QzaQTAMk0gwg/8rpIW+NxZuMPTTz2DYVqoqkYQ+BiGTrvdRhIVJFmkXq2SSsbxfY9qtUKjXsdxHDa3tzBNE03TaLZadNwWqmrgttuIokQkQKfdRkaiE0bE4gmatRZvv/Uu5x9/grZb59z582xub9NstRgbHyMWc3AcB0EWaLsdbMtha3OL0k4JyzJJp/JomkAkdFheXkRAIZUcQZK7c2m93iCeiJPN5dANk6985St4XpMg9FFVgzt3Fjl//iz5XIatzS1M02J1dZ1cNkelUiEWcxCFiHJ5n3bb7Y6dCKoiHaSHUtgplajuV4jF4mxubJLNZQHY29slFovxzjvvs7qyzpkzs8yeOIFtWeyUSiiyzOkzp5FVBd0wyedHyGRTSLLAqVOnufTmWxQKGaampvCDAN0wQABJvmfhVzUV3/f59re/w26pRBRFzF+fZ2R0hFarxY0bNzh9+jTrG2sEYUQ2kwPE7kLWSIFqtUqt3mB/v8KtO7c5eXKWIAyoN2romkkynSSby2HZJqIoHMRREKnWauijRTB1pH/7deQvP0cQ61rZx8dHKWRzfO3ff41r164xNXuShO3AgeeAHwb3KYePYl08Lug8vux4cD3D6GGLtIM+D+4cWH/3+3C9ob/+B8nxfkvco4KAI2WjYfrBkFQy0eCx7wVeAwHYYa0D3KN7235Uz7wuT4O9wujRvQbV21t+EKA5Hnh9sOV1kHW+H7w+tH+fKWR4NKvv50E/a7wyrH9/D14fQn8dwKv/+98g/GAe8Ym5z5SXQ356V0f7+TzWn/VT0GBXnge3N2jsDs8dAiVN0zBN80jdvX3qb3cQeB20v6XfIt09f39wi0F8DxQuPfQoOYbvlhly76NSFA5uL4zuBbc6joLQLXgUvB5+Pqg7gxcKOohCSMdtkXIS/It//i8YyRR5bO4Jbiyt8n/99r/h57/yi9Bskbx8leT/+Xs4X/suoqbhfflZmvkUlVqNTtujtL2JpihcvXyZS2/8lDMnTzExNs5eucqVqx8iiALxRJxao04ul6NeKzN3+hSLC3doNZtkMhnef+89zp09i24Y2LZNEAR02i10TWakmKPV8njvvXe4eesmZ8/N0W67zF+/TiJmsbW1QcftcOGxx1hYvMNIMYdpOCwtLlOpVOh02iST3UituWyBpaUVTp8+y/LSKql0mkQ8xu3bdzgxMwuCyPzHN8mkU8RjFqlkHEUTcTs+kqxw6vQZTs7OEo/FmD5xEt/zyaTS7JfLREDb89jc2GJubu5gAcknCDoYukYqnSP0od32+OEPfoyq2pydu8A3v/E9JidGMAwTTTcRBJlyuUo8kUIIJAqFDPGkhSR3c+nmR2MYsookQsdtdvcvixIBInulHexYDE3TsWybcrmMaRj4noeum5TLVUqlXQQBHr9wDsPQyBXyjI6OMjU1STKZQlZkHCeGrIvYuoUcyXTcNp3AQ7N0TMtBUkTq9Rq5XBa/49FstKjV93HdNpqqI4oi7Y5LKpkkROba9ev86MUfYdkmQegxNTPOl774BSJRIgpDPM9nY3WTym6FS6+9Sb6YY3d3F1lWyWSz3Wi3qkajWsWwTDp+gB+EKLLMpZ9eIp1OsLa2QjKZPLDiysTjCdrNJt/482+QiMeJ2Q4d10WIYGZqCi8KaTab2JaDIAjomkLgeciSwv7uLjHbxPParC4vIAghtt219MYTCaIootFo4MRibG+XSSTTVKt1arU6jmUjRBGIAbKhUGvWKG1vU9rZYfLENMVChlqjyuypU8STCQzDQFUVgjBAkkUajSam0d1nXSzmSaUSRJHLj3/8Cj/+0Wv8B1/+KoqiIso+5VKZWzdvMjI6iiRLBEA6nyVou4CPJIIid/fBSqJAJpvCicUwTYdkIkUYRSQSCdbXVzF1DV3XmZmdwdB1Ol6beDxGJEZIkoSqqmTS3dy53/n2X9Bym1QqVTKZLI1Gi0qlRnm/wtPPPE7g+6TSaWZmZhkZGaHVarJT2uPSpbcxTJNcPoOmS4REPPfcs5T3djAMk729Pebn5xkdGyUIfXRdRRQFWs0Wa6vrPPvMs5w5M8c777zN9s42J06cYHtrm+e/8DwLCwtMTc9gW3GWllZ449IlDEtHlkVKpT1OnT5DrpDnzbfeQlZkcoUM165f48SJSWKJGIqqdOfUA7ffIApRVZVOp82m3yaeTiP/9h+hTI/yrevvMz07Ta5Y5Bd/+ZfZ2t7l6//vHxG4bUZzBVRNIxSFu6uvg+TTw/KJPkxHGJSH/f55/pPtee29/zj3PSp4jaKH62tHrZn3g74oiu7DH583eO3fDtSvy3TL3ePjcKvUIL2nty/DeBrWl0EpcbocDbE+D+HhiNV2gNW1X3c96PV9/H4W4PVh7+pfFXg9rrfCZ8JBXxuHOvCjLlx8Vu0POv93DrwOAxSDQM5h+U9Ln2QFw/+Xf0C0tH7sgE29VsHj8PCo/Ro2Pg8qf9hu7x/uuH++/nL9E1hvfrB+ENrvNjQMQPZPWoP6JSJ0lYaD6SwKD5QIUUIQRMIwAgREUSIMI6KoG5m4P7pxN2JhRBRxICBFoqi77eguH4clD627Q45e+jSrYwL3L1x036MHPKNIvMtJFHbrkET5SFogSboXCTEUumvQQhQiRSFy6COHHm5bQBYVxAhUWUUMQmREHNlDieDf/Nbv8v771/hP//F/iWyb3FpZIOvkea7qMv3DV7B/+/cR3rwMU5O0nz9LMFokFCS8lsf3vvNdqpUq6UymCzQUhc2tTaq1KuOT4yRSGQgDDFXj7OlTxCyLRqNGPNkNpFSrNHj/3ff54hee4dzZSdqtXSQ1SRBBOpsBUeL2nQWaLZdcJkEqnWZ29iSNpst2qczE1AzNjottO9y6fZvR0TGq+zXaLR9JjSgUC8TjMTRNY2NzC1GUaLl1isUcCAFT0+NoukJpt4RpmfzlS69z6uRJdrY3/3/23itGsiy98/td72/4iPS+fJtqNzM9fjnkDEUtoSUpCYIEYWWAfRUECXoQIGBXkERR3AdpJRAUsOCCQ7PLWZLLmekxbdkzPd1VXdW+ustXep8RmeHNtXq4mVmRWZnVXW0IUuyvcFEZEffYe+453/+zTE3OQKzyZ9/7PidPnybluMiySKtZo9frYNk2iqojiCLtThvLMZmaHCGfccg6af7wu/8SURaYmDpJNjdAu9ticX4OTVOwTJd33nqX848+zMbGIr7fYmb6BEEEyyvrmIZOLpNiZ2sNw9ZwHYPA87EMmdJwDlWz2VxdJIx6CGKEH0iohoViqOQLpURbpKksLSxgWw6mYSEoMpvlMhPT43T9HlMzM/Q8WNuoEoQ+m9vbBHFEKuUiiQJ3blxncWGNazduUm3UGR4fxc2ksWwHRVVpN7r88Ps/pt3qUas3mD45g2nq1KoN1tY20DSDVCpFtGuKXsznUCSJocFB8tkchmZADLIqI4oJ6EoXsmSKWcZPTEIQ47hpZFknjiPEOKDXrvOTn76MbdqkHJc4CNjaWOfypYvcmlvh+rXrbFfKTE9Nkc1liWKBZ599BdtNISsyzXaTIIq4PTuHaTtoioIoqly+9BbblSo/+fFzFAoD2I5JFEdYtoUfhjgpl3yhiKyqtFotJFEgjkIsyySMffK5NPVaNUkv5HsEfg/D0BBlGUmUECMRVdGwXItSMYuqKyiaiiCISQ7iQoHAD9guV1BkiSgAQ7O4c/sWmYxOubyEZaR4570P+Ee/9R+imwaaJtOsV7j6/g1mZ2dpN5s4ts36+grZtAu9GL8bUqnUyOULtLttSkND+F5Eo9nm6gdXqDeqmLZFvdlCMR2e/emL9PyIyekZKjs1ZEWj3fFwUw5xLKCpGrdu38LQdcbGR5k6eYqh4RK6Cr1ui5HRMcbHZ+j2tokiWF3dZKA0zM0b1xAEj+GhMSbGRxgbLdHrtpAlmV63S71WxXENwihJPzQ1NcX1azewTYdb1z4g4xYIPI84bNNt12g3Gpw4c4Kvf+Or9HodIEJRJXRdxTBd/ux7f8bS6iLf/NrXyWVz3Lk9y6OPPs52ZZtyeYu5uVm++c1v4PV8HDuFadvMzS2gawZvXr6MZVqYhgFCknJIkhRs08GzTUg5yP/qL3noN38D7dQYrW4TSTOYmD7DI09MMzd7k5dfeI6sbTMxMorv9VBVBd8L8ASBSBSJEJAEEOMIIRbuRpnfi6gagx/ejUx7PwbzQRjdDwOh/QCk//vwn/xT4h++fE/Aprv8wJ6Q+W4k2eS6e4btXXtnc3L0JmmLBIG+6xhQJtytOzk3E3PePX5hr1lREHejEd/9R3wwW4BwTEAlIU7uTSLJ33s/JOAiCJJnI4q7eWaJQIgT39g+1vAokCrs9lHo43fEXXB51DMRD4zjbp/67z/Ae4ni7kQenPrDfOsBIcpu3aIgEkcxkijdM68H+CJRICbeFZqK7BbfNVne4xP7LuFgmwcovmtm3X9Fuzr1OCm4PyYhvmdoH/8Shf2qD85o3Hd9Err/O3kcQD9q/R9llv9APfkIGKyf5xT63l1Jkv/+gdcHoU9LyvCg9XyW0Yb/piUnh8Hrg5btP7ju97L0t+H7/oH0NsfV/2F9EjgGrB/a2O7WdZxU+N7k3Ml47m9+9NnSve18uLb0Xj+powQj+9JKId7d2ONkLoWEHVIUDcKQOArotFromoZm6lx45edcuPA6USTzj37jt5AVGX17m4Fnfs7pP3mG0uwSSspmc3yQ7926ymPf+haKqdJqtvG6Pd55+x1UTWFycgLHdbl58xaTk5N4nocoSkxMjKOoSsLEk6QKWFtfZX1jHUVVqFVr1GtNJicmGRws4Xkd3nv3PTa2qoyNjyURflWVa9eu8sQTT0IUslOtUtr1NRwoDaAbBovzc2TSGR55+FHiOMbf1XxeeuMiMydOICCg6wapVBrTtKjVdlBVdX/dSpJEFEWMjIywtLiEm3IYGirhug4QcWf2DsPDg0nOTEHA873EnzOKsCyHTrtFFAaUinl8z6OyXcY2U+iWRr5QwHEz+F6iQcplU9RqddLpLNeuXmdsbARVUxgZGcZ1UtQaDYZHRul5PSBOTE8VlcWFeVRFwTAtRFlF00wkISYIkkA6rptle6eKoil4XsB2pUIukyWdztBpt/GDEE036HSSvLS5XA5JFJmdnWNychLLMrAdh3Q6RRxFBH7iB50rFDFNk1OnTqKqKrKsIIgiQRBw8/oN8rkcp0+fZmBwkCiOmb19m8nJKVKpNK7rsucDpcgyYRgyPz+PZVlEUcTOzg7ZbJZut4uiKMlxKYpJ6ihRQIhA03Tq9Rqzs7MMDpa4efMGna5HEASMjY0SxRHb2xWqtRqCpPCdb3+b8bHRRFuIACIMDQ5z9uxpCsU82Wwa2078dJOgPjtoqk6xWOLixYtYtslTTz2B7weUy2XSqTS+7+P1PKIowvMCiKHX7aFpOkEUIkkyvU6XCxcucOvWbU6fPk2lsoWbchFlmWajxcULlxgcHMLzPLLZNADNVhvLctA0HUVW+OEPvk+pmCedyaDIGlvlLQYGiyiqvBtoSsRx02iagWmaSCLIksDI4CgPP/IwrXaLfD6PLCtYlk2r0eTWnds8dO4cjVaTbC7RqMuShGno2LaJLIlkMllMKzGBfvbZZxEQmJycwrJMbNsCQFYUNEXFDwLarTbEAqVSCSSRXrfDTmUL3/OJYhHbznD79g1mpk+h6wbNRp2R4SEs06TWbOE6LrquEUUhsqyiazo//OEzPP74ebqdJI6CoiqMjo4RRSE9r4Os6IiigKbLZLNZTNNFt0za7Q6GYaBpOhsbm6iqRhQLpFyXdCrD1NQU2+UKS0tLDA4OcvnSJRzbZnxsFEVR2NnexnVdNra2KJUGEBB47rnnWFyY56GHziHKIlEIxMl7LwoCpF2EbAbxj/6SO/PzuF9/CgQJUVRIZSwqmxVMw+Sf/+4/5z/9z/8zIiKkXQDcC3wsyyIIAiQh2asPnw37VkjEH6oBOnx+fxh9HPAKfGie1+M0rP1jO1z33m33tnfcWA/yHUeXPaoP9wqeo+M0fPExvFPfx6OE84fbvR9fJRxVPwdh0gFlQnRMX4Wj7z+qP3B/DXocHc1XHEuH6t3vH8cA1PvxORw958fNx6fKsX3m/N+nV/+D8PX3K/8hdx15/+fg9UPo7wJ47QcQn/Sw+LTok4LXflPdfvPgPTrOP2Lv/71k7f3UP0/HHcD3OKrH95onC3fFYvtBBu7257jN9V6z5ShK/Bc/junwp0MPDl77TZiOMq0+bLUgClEi0RWS6KRRLBPEInrURRFjFubu8Pu/93tcff8Klc1NTDPDs8/+Nf/Nf/vfwXoZ/ff+GP13/iVaGFEZLPDszjrFR86QKhV45OFHKFe2iMIQSZRYWFgEAYrFAn7QY3p6hlwux/LyEjMzJzh37hxbW5tUtjep1XaQNQVN15hdnGNiepKUk2FsfBJF1lhZWSUGCoUCCCKnVcbPkAAAIABJREFUz57FdSw2NjaIwoi11TVu37pNt9vhJ8/+BMMwGBgc3AWqHtEuU3nz1i3S2QytTodHH3uUmekZXDeFqmo0my103aTVbOO6FoIgkE6nk5Q9sozrJv6YAwNFFFUkX8gRxyG2beG4FoqqcfPWLbZ3tun1eqysrKBpGoHXQyCk3WogS6CqErVqlWq1S71RR5JlMtkiy8vLvPfO25QGsqiqysL8IoNDQwwMDFIoFNip1kjnc8iqiiTLSLLM+sY6pYEBdE1jcHCIMIRarYEsG/h+ROjHrK2tQyzgpvJYtoMkC0jIWKaFIEgEYQLudE2lUqlRyJdYWlokjpP0NQMDA/i+TxiFmIYJsUCtWkuC89QaZHIFrlx5n3K5Qq/bw7Gd/YBUQ4ODlEolFEVB03ViISafzXLx4utcufI+09PTaJrGG29cRtFkNF1l5sRM0pZlYZg6MTHlzS1kUUJVlV3tY5luu0MURjipFLqe+PFub1dIu2keOv8wE1OTxELE+toGpYFBHj3/ODMnTuLYFqurKyiyzJ3ZOUzLolndZmtjnZTr0KjXERBxbZf5uQX+6gc/YGx0nFwuy/DIAJZlkM64CJJMLpen0+lR3tzi9Quv06g1yRXyvH7hIu+//z6nTp2i2WolY49jTpw4RRCERHHM6Ogoggi3b8/zys9fpZAvMTo6jmM7bKxvYjsWYRghyyqKotKoN5iZnqJS3mJ1o8r7V69w9txJNENF0016Pbhz5xZDwyNkslmq1W1kSSTReEU0mnVcN4WiqnS6PcIA7ty6ycrqKluVCl2vRzabpdlsIksisixhWwaGqbO2vo6iyPS8JIrzt7/9K1Qq5d0AMyJhGBAEEWur66iqjqroBH5Ap9OjXq+TSaeBGCflEkUCURizsrJDsVhCUSR0Q+bmrRvMzy0iyAq247CzU8XQTW7fnOXW9Ts8+tB5svk8um6QzqQRRZH33nubYqlANp+nWmuiqCrbO1ukMxnuzM7tR/s1DDMpl84Qx3D58hucOHmCbrdDrVajVquiaxqB3+WRh84mKXI6XbyuhyKrXHj1Am++/Q63btxienqKp558nFKpiGXqCJKUpBEKApaXlnn++eeZmp6EtAvTo+RfuoxQaeCfO4Gg6fQiGB2f5OzZh3jiiSf47f/ln3Hn5jXOnDmPpqrIsoDX6yCJfdq3Q2fCXXPYD8+/+XcJvB4WjEdReAwv9cnB695vRwl8AYTjhALHgNcovnvm9ufN7b/vsFbzuHFzHOA+jk86LqLxpwhe96Nj9133uz/qMyfuLyMKx6zH+4LXo/v3OXi9lz6R9d/n4PX+9PcFvN5PGvpJ+vJx6NMAr7B3oBwXNfB48Or7/j2gsD9q3XEm1vceHEf7RIiSuG+qI8tyX1qdaP/z4cPvsKlOFEX0et39qMfH9uEzowcHr1GfxLXf96TfbPjgARH1tSPsmk0L0Nom8Dx+93d+h3/vO7/KyVMnGB+bIJUdpJjKUvyDv0T57d8jCgKaTz/MuqORm5rkxMlpqjvbpNNpZFlN5jqM6LS7SKKEbuicODFNJpsBBJaWFsnnC2SzGXzf4xe/eJWNjXXm5ha4dfM2mXyJ9z+4hq6bjI2Osr6+STaXIwojtisVLMtK/OcKeeIo5MaNm4yMjLC8tMyZM2coFPOcOHGSZrPJyPAwQeAjiBAHIT2vh6qpSIqMrusIIszemUXTNECgXm+wsrLKL159FdPUEAQB0zQRRRHDMPbNrzXdQNNNJElBFOVE0yiI6LrOq6+9RhRGnDp1MsmpmsuxtbmBZRl4XptOp42m67ipFJadpThQQDctFFnnuWefZ2FhltOnpzAMg9HRMeqNBrlsllq9TqW8jeW4eJ63q2VLzOIRBLxeFz8I8PyQQqGEJCnoms7rr7/B8PAwPa9LsTiI74eIssDl1y+xtVVhZHSMKI5RFZlmo45lZ2g2Eh9V3dBRFHn3vehRrdfJZfNEUUSr2UKRFdbX13HTmV1/xQ7P/OhHTIyPoygqsiIThSGvvvoqlmWhaiqyoiAKAteuXafV6nD69CkkScR2bPL5HCAQBD66rtNqtbEsm2p1h631TUzLQlUUiGLW19dZXFzkyntXmJyaQpREHMfG0Axy2RyxnPiKy7JCs9kisdMTeOfd98hk0uRzGVrNBj999lmeePJJQq9LPp9le3ubWq1Gq9lGkRXqtRobm2W+8tWvEEUBpmlw+/YtSsUikqxy4+YNSsUiy0srZNIZxsfGMW2LdDqNYzsUCkWiOEZWFCrlSqKJDUJUVcNN2cRxhGE4tNodNjY2sC0bXdfZ3q7gh17i06pqdLs9/t1f/jnnzp4ln8tw49YCH7z/HqfPntgNYiUQxzK6rqBpGlEYUq/VkZUEhEpSYrq4uraObblcu3aDdqdLFPpERMzNz/GNf/AN4hhsJ/HFbTbrtJsN1tfW8H2PfL6Q5Oe9dp2JiXH8wEdWZFRVQRJFFhaWuPLeFURRorSb7mp1dY2x8VFUTUFTZeIYNM1gY6PMm29dxTA01jdWGRjI02w0KJd3yOZz5LJJCp3y5hZDQyNk0lnq9SZuJs37Vz7YTW8VEUYhUeSDKBOFYFgmbsqi3WmTy5UI/AjTNHnnnXcZGR7l+vUbVCrbnH/8MfK5HLlcjqtXP+D27dv8w1//hywvzRPHMdVqFUmScB2XmzduEkUx5x9/gqeffhqIUVUFy9QToawg0Gi06HU9dqo7tDttNE1ncLBEIAn4wyXU16+gvHSRzteeRNzN6wwCiiRgmyZet8Mf/MGfcGJqimIhh0CYACAkIkSONhhNcNTenn/sqfJ3CLzu0V0/1mMi+H5K4PV+Y31QzWt/UKi9MkmE/3t5ieP6tH/vcX0+DoQ/oOb1gEKgv577zFU/QO4X+B8rGOhrp1+Y/nHA63FlPgev99KDKM7u6cnn4PX+FEXRP/2owA4Ovmj3kyo8SH1wUELxYWUT8Crsg9c96dpR4+iXNj1If+5Hn9RH9sPKfZQD8DjA2z8Xe58P33vc8+5/rv0g8rgw8PHuZnlY6xvtzk9/ap1kzu7O28E6+186aV9SKol30/PsfX+cZHaPDq+Dwwf8UfN1+O/kvntTGQiCsJ+b9ai5g3vfjTiO94HW4fZFSYQwotduIUUhF1/5Ga6hsLW4yGsXXuPR8+fJFQfxghA7lUG9MsfY//r7sFPF+6Uv0hsbQlA00m4GQUq0Ao6TpNLotDtsV3Zo1OuUt8o8/9KLzExPo+pJHscf/vDHdDodWq0muq7z5ptv8dBD58ilsrRaXRAUWh2Peq2JYZpMjo/TbrdJpVIYpsE7777DY489xsDAICsriywuLDIyMsTly5d44onHEvPGXA7N0HHdFNXqDvPzcxTySWReSUlMK9PZDIapo+kqhVw+MUFUFO7cucPg4CDXr13HcUyGh4fRNO3A2pyfn0eRTYIg5rt/+KecOnWGTtfjxRf/mlIpj+u6OK6Dpmm7aVIEiATKlQqDQ4N4foDluEiiToyAqIjohkar3WVlZZknn3gM00jA9M5OFUVW6HQTDaNhGty4NUsUhKhKEjFX1TQazRZp1yEIYyRFYWenihBHzM/d4dWLbyCIcPLkDLduzXHj5k0KxTy6pHJnboFXfnGBiclJiCJajRrb1SYXL17gkUcfQhQFfC+gVqvzve/9OU9+4YuICPTaPRqNBmtr69TqDUpDg6iKytr6GufOnsNxbLYrFRqtBo7t4DoOnudh2w6NZhNFkanV6nzrW7+CJCXgeGFhgZ7XxXEcEES2t7cJd0Fzr9djeHAY3/dYXVsjl8thWsnzOTFzAk3XiKKAXq/HG5ffxOv5pLIpRBKLD9uyMAyDTrvFq69d4NzZM1y6dJFet8u3v/NtRElieXGBYrGEbTt4PZ98IYebsskXspw//zhh6MFujt/BoUFURcP3PbKZLG+9+RZj4+PEMSyvrjEyOowsyrvmuTKtVhtZSQQcV95/nxdeeBFJkpEkkXQmQxTD5sYmkxOTjIyOsrC4wDtvv4VlmYiiTBAmAOzM6dNsbW6gKjIjYxOMjY0i7uaWlGUZSZLQLQOiGFkUMQwNWZbZrlbRNQXP9ymWBvfz0ra7PR56+DQDQ4OcOXuGbrdDEPhoqkplq0KlXCaVcrFMC1GSd/PrquTzWer1Gvl8AiBrtSqanmj+BwcH2djYYHh4mLW1VX728suMjowiSiLtbpdOt0fgB2ysrvFLv/IdBgYLCRAlMbOemTlJrbpNsZAn8D2KxQK3b9/h9p05lldW6Hk95ubmSKVcojgkm8kgiAIbm2W+972/YGF+nrPnTuPaDnEsUq3uEEUh6XSKIAywbQvTMjFMk3a7zeLiIgPFEl/+8pdpt9uoqoKiqJRKA/ieRyqVIoxCnvrik7x75X1c16HTamHbNpVyGV03kRQZTTNQVZVcLsfk5CSO49BqVRM/cl3HHx9GWttC/Vf/lmhkmHC4hBeFIAhMTU1y7sxDDOSG+MkzP+Tf/uvvUsymGBwYBFlFUQ0Cv7e/vz/zzDNEUUShUCC8J/3KRzMfPnz29NNefIijQOpRvM7euRo/87PkjPkI4PVQz47lE0TxaN6vP4/5HiVBj+7VpB7FN+7xEEdZce3PyzE+r3vRg+8ZxaE8r/3P4zA/0H9P/xwfNq29t5F7n8UeINyrd289RFF0ABf1r5OjruP47Lt9Eu4pf/i5HbjEg891f54PPYf9do5ZH4IgwDFr9Vi/5CNr+nh0FEC+r4b6genT6+1xPPonqeve74/GPX9vwOtnUe+DPrAHiRZ2WPPan4f14yzkTxqp7NN7cT6dOg+XFUUx8QPzPGRZPgCs+g+8o+iwtPLA/PZtYv11HrWp7xY48jDp3zAOaC2Fu8/mfiZF/XTUZt7fjw9bH/t9iu81Zd4bw3HlDpsN9/+9N47+dRrGApIgcufaVW5ceYeoWaa2togXJalKHj3/BIgKnV5E6d88j/F/f5fgyXN4D0/jCTGvvfIaqmLi9SJUTaVcLu8CvznmZhf4xSuvIQBTU9OEfsDps6eJ4gA35ZDN5IjjmImJSUzT5OTJE0RRjCx0cFybr3/ja9iOzVNPncfQZZZWlkCIUVUZVZVJp9MIgoBhWqyvr1Mul9F1nY2NdUbHRki5NkEsIIkiggj1WpW0mwRQstNZdmpVHNehUa8R+D6yKCIIcOPmDVKui21bRFHIo48+gqYp5PN5yuUyjuMk2sZWi1QqheWaNFsNVldXeejhcwhihCCFRFHMqVOnyGazWLZFrVbD931eeukVLNtmYGgQSVYRJQ1ZtVAUkXanTqfbQdcMzp09R6mYTQBCrkCr1UJRJMrlTUZHR+h0Ovz02ZcoFQqsLi0yUCpiGCaKoiEAopwAHcvSqVfLyFLEV775y5w6Pc3qyhKeFzA8PEq+mCNluTRabbZrdR5/7AlsUyf0e2TzRc4/9ijbOxU2NrZ46cW/5vz5J8hlCxRKBQTgnbffodlsMn1ihkw2i6hAq91kZHiIYqlAvValWMgRAlEQ7vofmqyurZLOZPC9Hs1GC0M3UOTEnaBYLKAZJvV6k06nh7SrzU6nM2i6gSxLdHs9nn/xBSanprAdh063y05lB1mREo26JJFyswwODKGqCqqsEng+1e0KuqoQxwEPP/o4teoO62urPPrII6iaiijLpFIpel6AqhsIkohpGfT8FoIUszC/hGntzrEoIUkq83OLXHnnDYaHBtENnVw+z+ziPBExY6MjBL7PwsJCkn9WlvmjP/5jpqammJ6e4fEnn2R8fAxN1/aBZzqdJpvNcvnSZfL5HGHo8ej5R1ldXWdkdJQY0FQFgZgoDHBdG1O3MHSLlaUVchkXSQroehGB51Hb2UFVZOYX5hkeHaVZr2M7qcRyBRClxBxcVkQ0TUNRVRRF2d9D3rz8FidOnEBXNTY3NxkcGNr1ZZYTn9JMFkEE3/d2850G9DwPTVMZHh5keXmRKAz5whefwjQsNrc2UTUNwzSxDZNCLkejs4NlGfheQLPRSXy1xYiUabCxtoYkCaxvrDM+MclOvcGXvvw0kiAwOTHBwEAJWVLQNJ3r129ALBAFAr/6nW8zd+cW165eRRRkJFnk6tUPcBwbQQDTNEilXN7/4APyuRzFYoF2u0UQ+CiKjGm7FIpFlpdXGJ8cp91p0WoneX1npmeQJYlKuYKpm1iWw/WrN8iXcsSxQBCEyLKMKAi7zzZEEAWiCKJIpJlxEFMO5p98H+HOIv7ZE3imjq7axCjk3RTzd26Tz9jIUsTE1DSCatDuecji3T1/YmKCTCaT8CAcFBw/KE9x1P39Jq/3nkV3z5fDoOzjgtf+4/VegH2v+8temcPWRoetlD7KmXvUebvf1nHl42O+PwQU+4Fcf476o+go96gPA69RnyBfPBTAah+USx89P+hRc3BgXX1I2XvqP7L7wgOD137gfESFR399n74+MB2zpv4+gdcDeOWY9f85eP0E9KAP7HjJwr0ve/TONYSUg/iNp44MPf9ptf03Vf7TrvPeQ+du2oS9BNx7tAf8j2sviqIjgzsdlsDtH5pxjCAe3Hj3NvWkSHxA63oYvO4d1qIoEu3mePy4fgP3W1P3KyMIAmF41zT7ID04eA3D8Mg2FVXF63ZRhIhCykYh4P/9f/4vRibP8K1vfYuuH+KHMYU//SnqixcIfuNbRLkkh2Wj0WBibILFxVVefvlnjE+MMTc3x/DQEKqqIQgio6NjFPI5mo0GZ86c4d333mV8fISNrQ2IRIrFIr1eokVYWlrCsixu33ib0sAgzVYL07aYn7/N1NQoP/nxs+iGzvDwELOzsxhGAnZEUSSdTjM1lQSMSWdSBIGHpmuI8i4gkCQc28K0DIIgQFQ1bNvh/Svv0W13SKdSGLqG53vUqjWKxSLr6+sMDg6iqiqqKiMIQpI7UlWp1Wo0m01UVUU3VObmZnns/HkkWaTe2GZicgxJUOh2u8RxjOcnQhvTNDl54iylwQGC0MdNZwhjEVFU8Xstgsin0WyQSecIw4DQ7xKFMZVyhavXPsD3fYaGBmm322QyGQqFEVRZ4uKFX+C6TuIbWK2i7mpcnZSDqsgszt0m5do42SJB0GVjbYXLl95iYnIK0zJYW15lfGKK6RNJkCWv22ZtdZkrH1yn2+swMjLC1Q+ukUplGCgN4TgpBFlACGP8nkdlu4LjuqTSSYogw9Ahjmg1m9iWiSCAYTmYhkkURSwvL/OjH/2YXD5HMV9EEATeeONNhoYTjWoURaiqhuf5SfAsTadcruzmgxUIfI9Wp82TTz6JYZr787y+us7I6DDrG+uIokjoJwGyel6XudlZOp02165eJZfLJuBPUtFVlVwuTcp12CqX0Qyd1ZU10ukM4q5GJyZEUUWCwGd9bYtMJo0oCQiiRBTC++9f5foH73L27DlkVSGVTlMcGGBoeBhFlAGwTRvLslFUlTffeouHH34IXdeTcfY83n//Cul0CtM0WVpaIvADTkzP4LgOlmkgy0qyFjUNVdNYX1ulVtthsFRkeWUZx3a5ef12Ejwr7BAEHWbnV6lu77BdKTM0NEQmm6Xb66KrGo16gxhotdq7eWsVJBm2yltYtoUkivsmwLdvzVIqFHEchzAIkGQZUZLxvIAg7LGzs4OiyCiKjOf1CMOQZ370DPlcHkM3KOQLLMzPI4oC+VwRRVOJ4hDTMul1OrSbLZ5/+Vlsy+GNN97m7NmHkCSRlZUF8ukUqqrguA5BFGGYFo6bxk2lIQ73taNbW1soikLKTaGpKqdPneO9997lsfMPc+G1C2RSOZy0RTqVYnhkCEVR2N7eptlsUCgO4DoOlUqFVrNJNpOlUqkQhDGdbofe7phkRaJWr5JKp/C9AE1V8Xoe169dp15rMDo6yspGYjK+ZzkjSntryKNWq6OqBmEYsbm1hTFYxJ8cQv7gNvaf/hDGh6kVM4mLRQxffvqL3LpxhY3NdZY21pk58zCKZiAJdzWEQRBgmmYS9E6WDpyFHwZS+u85TlN7+LvDoOZw2c8SvN5PW7tH+2d3FP2tAa9H8i73oX6LMUEQdiPy3h+8HnjmfY3vnf2SJB1rVntk94+YgwNCjEP39q+TI9fREVrRBwGvB8DTsT69n4PXAzV9RuD1QH2fg9eEHhQA9r80D7pBfBKSvvkFpG9+4SODk/5N/dOgw+P+uODqfvRx6twb3+HneHjhH5YOHwanh8HtUS9hFEVIonSk2a0o7AYCiBP/jz14urch9s/ZXXPieBfcRvuf+/1Fj0vr82GH4lGS4sPzcSTjICQ+jKKYmAonGDs+oKU+PHZZkJIQ+lG0G4FV3J1fh4guouTjmApRN0aOVZ753nf52QsvksuNoJkZDDPDv/v+j/nSr/4HmJk0Ya+H89//LtK712h98wvEqgBRhO95SILA7O1btJo1vF4zCfSzU2Hm5CT1RpWlpXlOnT7B7RvXmZ6ZZKu8ydkzp9F1HdOwMUwrMYG0LARRZHFpiXQmzejIFJKsUSgWaTRquJZNys6QLQxw6vQZJDGJ9lveWMe1DXa2Nwm9BmtrK2zvVCkODKCpOuWtLUwrS+B7XLv2AZIiIcsafhjTatRQZZlGvcnIyCipVJrZuVkyuSKyrCAi0WzUSWfTIArICCwuLKCqCtValTCMKBQGkGWVzc11RofHsCybZqNBNpujUq6QsTVkRcELfAzDTPLayiIoIqoi0KxVsTSd2s42IjG91gZCHJNyE//LXruGpglEgkyn06XTjajXWgwNDCIT0KhtMzQ2Qirt8Mj5xygNDu+ar/rEcYhjp+i063Q6NWw3RbcHxAF+z8cwbKZnTiSmzEiImo4XtiH2cSwLXbPJ5PK0ml0sy6ZebzI1NYWbcnjhxZ9y6vQ0hqFze36WkfFxxsYnWNvY4sKF15kcHU+0crLIdnWHbDZHFIOiaUC02zcHr+fhmA6mrZFKu0xPT9Ko11haWto1NU0iud65c4du1yflprDMJBKtECcRVxcXF1F1FYEYP/QZKg3S6XRJpzP0ej2y+SyyJtHrNBgaHMCyTIoDJTq9HqqmU9newdBV4ihkc2ODbL6Aquko6Lz4/EvYls1zzz3L5vomsqARhwI/f+U1JsbGSTkp6vUG29Uq6UyGmZMnGRoZwdBVatUqjVoDTZaRZAFRkpAVlViQaLe7nD51jkw+te/rKJJYply6+DpTp06i6SqplIMkgaJIrK+tUxoaxDB0RCGiUlknm8ng2C7tjk82m0WSRJqtBidPncT3QyTJ4K0336NRq/PEk0+ytrZBFMXUqzVc10EUJa5/cJXB0gCKqjC/uEirXmNidJwoiHj7rXcwdJNbt+7w9JeeZH1znZuzd5g5fYowjvB9j6WFOXK5PNquT7JAkpJMEmX8TsRAqcjm5kbiv2u7LC2tMTA6iKpKiLFPr9PGchw0x+b09GlMy8FyHJqtJsQhiiSim1mW17fYqbcZGh5ja7uCbmh0vQ7f/cM/YXh4EDelU2/sEPohhUKRRqOBJEMun6VWb/LII4+ztV3m1KlTyXwLIhcuXsC2LSrbFcZHx3nn7XeYGB8nnUpRb9TodluUKztcvXYNXdNZWlykVBzg5Zd+hiqrhH7I5vo6pUKOnZ0dwihGkBUGSjm2yxXa7Q4bG+ukUi6iGCGJSZojRVG5cuUKzz3/U86ePoNqaSgz0/i6gf5nP+L7L7zA6Le/gudotKKQhx55gnK5wcz4NFGvTdrUEFQZP46JRA1RkhHCEE2E8AH8KY+i44TEB0Hd3fMxuXUvbcmhuBcpG+GRkwgTgwfu37uOI/GeVCT919HUX68oCn1tHTSd7e/fUbxT/5zdA2QPdfruPbt8waH8u8f75x7t9pVE/Rd2U/YcHHYs3P0oiLv5V48Ad/t8BMekQxIO3tvfNrsazT1eSQCiMNrtk7jfp+S3u3N6FG97FF8UhRFRGEEcI+0FoULY53HurqfdOTrQk73nkli7HAuc43h/ovrHEh+uavc6bhked//xCt/7FXjQ635894Nhort9++R0bD17eboOXR83z+vxzoqf02dGHwXM/G2no8DnZ9FG/zyFYUiv1ztwT7/287DJ8OG+Hq77sL/tR/Hp+Jugw6DzOPPiw+M5DNjv20bfFfYdTqLXQQ4CLFHCa7QxFYXaVplWtUkpm0fXTTTNpN7yaXYF3n33XdqtDsL/+V3ipXWav/QUuutQq1Ypl8u0Wy0CP6Dd7gAwOjrGlffeo7y1RRxC2k1jGjaqrBPHIa5rE0UBohjj+T2WlxfpdTtcu/o+Xq/Dm29cYmZ6inwui65rxETU63VUVaPV6RIEAZoiUd/ZRlVkLMtCkJLgJabt4rgqMyfGmZqZIo4UZNWh2YqpVbfRNY0zp8+wsrxCFIbYpoXvRVy8cBlF0ahUKlSrO+RyWWJEbNtleWUFx3GQgNDrslVZR9FkbCfFz15+Fd+P0E0NUY4YH5sEktybsqzQaXcREGm1W8RRQCblQhTsWhxATI96o0KrVSUIO+TyLp7fIrUbhGZnewfTMOn2PNbXN4nCkFQ6zcMPP8SJkyfwwwAvCAjDiGazmWgpNYVOp82VK++STqdxd/1sJUlBU40EyHY80ukMqXQK0zLJZDL7VhCqomHbiT9jGMZ0uz2iKCZfyDEyMkqhUMC2bbKZLCdPnNpfb+Nj40naoDhmeWmRzc11tre3k/c0hlw2z+LCMh+8f4Pq9jbVnW3iOEIQY7761S8zMTGObhiIkoyiaqyur3Ht+nWy+TzdTpdLly7z5ptvYhg6hUIeSRKJSQQefhCg6Tp//eLPEEWVtJvj5q1b3Lp1i2q1SqVSYXNzE9/z8Ho9el4PUUzSQG1sbCHLKqosIQoQ+QFDg0PoqooYQ0jI1vYWpcFSMt9hgJ1yyReLGLaBquvs1KusrK3iuC6FUoFsNk+v5xHHIltbSduV8jah7+N1uwS+x43rV3n5r18iCn3azRqSECLEEe0gjNQOAAAgAElEQVR2g3w2yz/45jdpbFfQJIlmvU4cxXg9j8nJCXrdkFarRxzLpFNFfA8kSaPd8phfmKPT6ZDNZhFFkZSbwXXSfO1rX+VrX/8acZxEM/Z9n4mJSTRdpdGoc/6xxwD44Q9+RDqdRdcMarU6CDA0PIiiiOTzGSqVCm7KZWZmBgGBW7dm+dnLv2Bra4coEhCQCfwIPwjQNYOtzS0GBgZwHJdUKkWhUKBUKvHlp58mjiJEUUKUFGzbpdv1aDc7hLsWNumUS6vZIJPNMDA4yPMvvsALL7xItVqj1+2SSaXRVA1VUXbf2RjTNEmlUiBApbKNLIvEcYgogWFoXHz9NS5dukin00JREiuKxx97glJpEMt08IKQRqsJosg7771LvlCgUBqg3miysLDI0tISURixsDDPiRNTbG1tsryyyOTUBI5jgxAjKyK2baLrJiNj46yurfPOO+8RRTGipCDLCpVKhSiKMAyd8dFxfM+n1+sQEyJOj3Hn9BS/tVxD/7PnkIOE0fejkF/+zrfZrFT43/73/4O333oX/AhDVokDH4gIRQikv108iPD1JxG+/uSB7z6q682nRce1dxSf8zfVp346KEA/+P2DztVxvNtxY/yw+g9r04/q054VW3+wzeP6cRQ/9zl9Tofp76zmtZ8+6Qb8N72B3+/g+LQ1r58V9Qck+jh9/ShmFP0+l71ej263i76bOmIPfPbfs5dTs19auK8F5V7J6WGw1/9covgu+Lufn/F+Ge719/i489FvGn2cP+pRZfs3+8OBq+7pl8gBja0ExFFIt1zmR3/1F/z2P/ufeeWln3PtyjWuX73Gv/mj7/KDH/6I3/yP/xMkWeXFl1/l8See5ukvf4GBP3kG85W3aH79cdYr24iChBCF3Lx+nZnpE5TLFc6ePYeqqgRhyMjoKE9/6WlkScaxU/h+hG2lcF0Nz+uRSrs0m43EZFNLtFOFQp5Wq0kul8FxkkiyxCE/fe45xsYncNw0xXyebrfDrevXKG9t0u12aTSbvHbhIrliCctxmbt5jVQ6j6yZLCytYJompYES1UoZSUzWSeCFeL0euqZjGDaapnHp9Us8+dSTu8GOZARRo9frMTg4gOOYzN6+iRhHuFkT27bRtTSdTsiZc2cTM8DGNqpqU6vV+cWrF9je2cEP/CQy8E6ZnWqVSnkr8Y3djY7b6nYQBJFMKgOIhFFiupn4vyp0Ol0URcU0TVqtDqZpJYGiBFBVFU1T8Xo9coUCfhzheR7VWo10OkUmm6XZbCCKEiDT6bbRDZ3l5XV6vRhNl9nc3ESWZWr1OrIs8xd//he89fa7PPXUE7RaLV54/iXm5xeZ2mXMg8DnrbfeYmNjg3y+kAStCSIiYjRd3d8zRkaGCYKAQjaDYRhJdM4wJuPmyOeKLK8uUCwUEEWBzY1N2p0OpmUjKgqCKCFKIplshjCKGBoeQpFkSqUBcrk8IyND1Os1FFXkpZdeZHx8HFlWuX79Jl/9yteRFQ0BiYHBErbj4DgOhpGYE1tWEm221+thGCayopLJZPGDENvSWF1eRtc1bNNic2sLWRYRJYVzZ8+gGTpj42NMTExg2RZhEPLo4+cRBVA1lXyhgKyqrG+uc+Xt9ygUiszPLbCzXeX0mbOoqsYP/urPyeeyyJJIeWuTyYkxBkpFJCVEIGZ5aYm11TWqlR1KpRLLi3M0Gw0cx6XXScyhO70Okiwh7eZIrVS2d7UXiSbbNAw0XWVjfYNUKsXS4gqbmxXeevsNzp07hyzLzM7O7gInkzDyMAwDr9vj9u052p0eumExNFDajY6roesaiiphWjq2naJcrlAolFhaWsHr+nTaXSYmp9nZqbK5sUEmm6HX7aEbGoVCEVXTESUJ23HY3NzCcizWN9fQVBVd1YhjWFxeoZAvASAr8u6eH+F53SSF0coKmmbx1FNP0et1yeXzxHGM7/XodXtMTU0xtzsuSZJ56YWXuHbtGg8/coZGo4Ftm0iSSLfbYebENOl0OtHyxGCaFosLy7ipNB9cvYrt2Fy8+Drf+OY3aXfaWLbD+toWY6NjEMecOHGCkZFhHNdmdGyUhx9+iHa7xZUr7/L0009TLlc4ceokoiSxs1Mnny9y7qGHEESBrXIFTVV2IzR7FAoFxscnSKfSxPj75umZgUE2dZXUc6/w1rPPk//1X6bX7XFnbo4vfOFLnDx1hnJ5h9vXb3PmzFlECcLYJxZiIhFEpCPPtI96dh0FLO49a45zWzkuQ8Ddvz+KZd2nyfcd1d5hQNYPqg5bsx3UWh7TX+4N7rTb+ocKEg5oP4/4/qi2jzv7DwScEo4W+B+OgHx3DPdq6fbctfrv7zdn7jdHlmX5nj4dnr/D2STu/n5vQM+kr0fT4bk6jo7SON9zz7GFP0IDn06hv4VtHNPyA76XH1fz+ncKvPanyumn4ybrfhvgx5E8fpzN0vuv/kfC7794IFXOh9Xzcdr5qGbUn5bE9Shw9FHpcF8PA7S9Onu93n70W1mWUVX1QLCBIAgOHCpHSQD32ojCe6MN77XX3+Z+eaIDAZj6+3vUoXWchvYoaeX9/Hb7NcKH+3TYpOnw1d/eUb8LgkAQJL65uqkhxDFBr0fKcQh7PcQo5vf/xb9gaHCYf//Xfp0nn/oiTz75NKfPnGNnZ4fxqSlOP/wQqUyG/+If/9f85m/+R2TuzFP67l8x9/gJIkUmDAJ03URXVd568y0GBgYRBYHl5RVqtTrvvvceruuSSrm7zy9ifm6BTCZLIZ/ixo0bZDJZAj9AURV0w+CDD65imSaSKJLNZpEliXa7jabJFEsl2p0ujpvi6tWrEMeMj48jiiK1WpXx8XHOP/4YmUyGZquFa6VJZfJUG00s28B2dEQxYPb2bcrlCgvzi6RSKa5eu4ZtW2iGST6fx7QS5rbTaaFpCrVak/evXME0dQxdo9tpU8jlCIWQerVJjMTU1AyiKCArAtXaNtlMgSiOsSwHVVM4dfoUsiIR+h6ZTBbXdel0uoRhhKKqWG4KRdbQFYt2qweI2K6LoqoQCViWTafTpdFoksnm2FzfwLQsWu0OiqbQ63bp9rq0Wm2yhQJhGGIYJpKssLqyRjaXQxRlQELT1AQUZnIMDA7T89tkspkEEOsGqqqxVSlTKg0yNDJAt9NJxqFo2I7JwmISyVVVVAYGBlAUha2tMpZlo5nafo7gOI7QdQ3TNFicm6NQLJAEVwG/53P50mWGRwb3I3C6borV1XXW1tYplkoospIEc1NkisUCntdDU1RkWSGdzlCr1YnjEMvWGRoaRFE1FFVhdHSURrPB7Vu3KW9tkSvk0Q0dWZJptzs4jku73UlylNoOkqwQRTEIYsJwxSGmYSEJEs1mC0VRaHc6eL5PKp3aHZeOIAjsbO8gyzKyIifgVVGQZRnP97lx4ybzs7NEYcTrly4zNj7Ondu3GBkdRtfVBDRJEqlUiu2dbXK5HIap4gchpm7RbDQZGh7CtkwkRUTXDEzTptv1uXLlPdyUg2UbrK+vEhOTSrs4tgVxyOraMpVyjYGBASqVMo7jYhgWtuVQLOVx3RTNZhPHcSiVSqiqxrXr7+Ps5q0tlQaYmp7BTaUQiDBNi7nZOSzLRNd1AG7emmViYgIBEUVKcpieOXuaTCbD/Pwsb7xxmfPnz2Pb9v4+uLK6im07iKKIbdsIokAQ+sRRiKZrSLJCJpP4dteqNQzLxPc9FubnKOayaJpGJpPBdtM4rsPQ4CDl8ha1WhXXcdBUlZ7XZWR4mCgKKZVKbKyvMzo2zsTkGGEY0u326Ha6jI9PoGoaFy9cZHlpmenpGZrNFh9cvcpbb77J01/+MsTCbq7mKBFu+B6yrGCaBrdu30IQIJvNYBoW3U4HTddYXVkm9AMsx6LRaBHtmkSKgrgbQVpCURVEkV2/eZFez2Nnp4ptW0iiRBD6KEoC5olBT6e4vLnG17e7yI+fQxwbxLQtFFXHth1cx+Xi65doNurMzEziBR5BFBJGIUL8EVPM3YeOMgE9+PeH+50CxD9/AxZWESaGjjzfjqOjztmjov9+FPqws3sPfO193//b3vf7Z7RwUDh+V8B9zPndF1TrKO3n4b71z8g9PMBHFADc7dPB8e6VieL4yDFwDMg/zG/1a177Be79Ean7lQ+HwfVRvFe/a9aBtXbo3uPm6sjxH15fnxC8fjQ+/P/f4PV+dNScfw5ej/n+0wBqH9bO/eioPK+fVn+Oo8+6/k+D9jabo4Dc3uc9Kd3h3/sPqD0J3/3MfZJN96Ak9X79Sg6BD9co7wHrOD4Ycv6jjP2zovut+f4DXgwjes0WKcvln/zj/5LFm3fwWx2e+OIXKAwMMTA0jqDatPyAWqvLl55+mqe+8hVSGQdZEfm1b/8KP/gf/id+7cIHxF95Cmt0CMsw0DWdbtdDimMCz2enWmVsbBzbdlB3mcyNtY0kSmomRa/boVTKY+gaO9vb5AsF0tkMN27cZGhomG63y8TYBFtbW9RqdS5fusT42ARzs3NMTg7juGmyuSJxLFKr1Ui5LpubZba3dxgYHESURNyUQ7fbwXVt3HQOUdHww5CU6yTRVWWJbLHI6Pg4mVyetY1NFpeXOP/4Yywu3cGyDEQBvv/9v0oARiaFLsq88vOfEUUBY2OjyLKMIIooqgGCTCaXJooDPL+LJKuYpoMX9DBMA4hxHBtFlZFlgTAW0FQ10apKMqpmoho2CBF+z+eVn7+Gbbv0PJ9UJkUYx9RqdZr1JvlsHllViRHIZdMggKxIyLKEFwSk3BRuKk2t0aLT6WE7LoIgkc5kqdUatJoBS8trzP9/7L1pjB3Zdef5iz3iRbx4+5b7xp2sIlmrJFuW3JItt+W2G4ZnprsH00BjMF/me08DAwODwYy/NDBbTze6YXg88ta2JNtaq6Taq1h7FatY3MlMMsncX25v32KdD5GZ9TKZyUUleRnrEAFGvnfj3hs34t17/vec8z93ZikUc9FGTwCqJhGGkWIgKxGQm5yaZGRkBEHw0TWFdCqK4RsYLEAYsriwQBAG3L49iyBEm0sDAwMEBPiej+/7SJKE5zmomoJMBPBCAmzbYmb6Jk8+cYZKpUatVsf3QzwvYH19kxs3bjExPoooCPiehyIrlJeXyKTTyJJCp9Phz/7sz7AsE0EIseIxYjGdcCu28r333uXo4UMkk3GSyTiKFpE8/fGf/AmdTodUMonruLz97vscPnyEpaVlAiLiHVES6DkOvhfyx3/8Z9y5M8fps09gmDFiuo6iSHiuS71Wp9vt8tZbb3Pt6jUGBweImyYL83OUy6s0m00OHz7CyRPHmJya4ujRYwwODmLbJhsba0xOHUI3TOYX5snl81jxOJqu4/oeIOL7AoPDQ9QaNW7fvs3EkUPohsX1G9OAFLmt3r3D6NgoiWSSZqODgMTS0jL5fESi1G56vPraqxw9dghFlnFdl9XVVTKZyDW8VquTzUZpZgr5KNes03OZn1skDEJUXSOVSaOrCuvr6+RyeRYXlmk22nheyBtvvsnY2DjddpulpQVGx4bwAxfD0mm36gwNDlAqFbcYsaM8tPbWpkcYhswvzLO8skgmkyCTjNLa+EFIKArIosTq8hKJdIbAd0nYFpqqRFZm10dRdAI/8jC4cvkS777zDoVcnm6nSzxhoSoqiqxQq9U5fORIlH6r3Yxcgk0TVYsAeBiEvPDCKxiGyfHjxyPCN0VBURU21jY5deoUMV1n9vYsiiJDCLIicuXKZZaXlnj6qae5dPEyhXyJ8+cvkEjYVCqbyJKEIEhMTkwxe3eOtZUlZEnG6XZZWlzAjseobG7guF6U11nTo7zMW2uYJCpUKzVkSUZWJARRoNJqkh8ZQPnT7+P/2i8ipVMIoowsKkiyQsxOUa1W+N53vs0vfv5zeJ6LKEaM3I8CDvulf937qYDX3/t9uDSN8PUvPrDtg/q3370ctMH7oDYOuqf76Q27QNhBAGib1G3vuB0AXvstvbutnwff4/2skPuec+/noijuAMJ7Dh5urA9qe6/s562233Pdfp/2baNP17vnvg9s+QD5jOD14TDHz8Frv/wcvB7w+c/B699d2Y6B2GsN7d/R22aYVRRl51n6vr8Derd38vaLm+iPtxDYbTE9SHbeGVHYxUa4Lf3X9luBH+Vd27sYPaw8zDX9O577gf7t2EW/3eZP/uiP+Ojd9/iNr/0ax6YOMTk6xivvvMPg8DitrkOt7fLFX/4qqUKe3/0ff5cnnnmCeMrAcTsU/viHfO3mCnPDBeInDjM9Pb3Fwllh+sY03U6LMAwpl1dJpVJ88MEHNFstrly+wte+9jXarSbV2gae53Dx4ieMjg8T+iG378ySzeQolYqsrK6yvrGOImkEQchKeRXfD5kYn4jyhJbSTE/fQpJULMvGdXqk0ymy2QLzi4vMzMxgxS3WymWGhwdpNRt4oocoi2iaTuiBhMLd2QWSWZuNzSqu65FIJjl27ChBGJLLJRAEMAyDY8eOEgKFQoGg6zAyOszE5ATNduQ+KQoiridgmiZLKwvohorjOqiqSa/r4XodRFFEN3SarSa2bRGGAc12l5gR5XtsttoYZpxmu0unXcFxe8RjJmtrZfLFHIoqEYQShqazvrZOOp2mUq0Rs+L02k1ESULTNZrtFu1WC9OyabVapNIZDN3glVdeY3R0DEEQURWNZqOHHU/w/ofvMjCYJyRktbyGEdORZYXV1TUsM44giHQ6XQQBllcWiMV0et3IrTEIPUwzRi6XR9ciVtxEIkkuV0ASJRrNBtPT0+QLeQTg5VdeJgwDAjfgwicfMzI6RKfTIpfN4DhdqtUW+Xyeb3372yiKysrKGs88+zm8XpelxUUqG5tYlkkyYSOLUpT3VhQZGhrGdR3GxkYRpYjgIxBkmo06Q0ODaKpMvV4BAtxARFNVDh8+jCSK5LN5VE1l8tBRBEHED31sO47T69J1OlhWgpWVVZ5+6lkef/wM9WZEwNRpRGBicWGBwA+o12pcuXSZf/HP/jlW3MTtdnAdh0wqjRWPY8ZMHLdDo97EdV0MQ48AtxiAoFCtVjHNODEzxuZmhXang6JqdHseL7zwIlOTUxiGgZ2wqHc7BKFEcWCY5cUVrl29yq//468Rt9Nomkmt2sRzQhYXlzFjcSwrzuL8KqYZY3CoQLfbwbIsctkcsirx/vsfMDk5QbvdwXNdLl66zPjEOJZpMT46TjqTRtVUur0utcomzz//Iz766GMOTR0mmUhhmjbjkxPY8Ti6pmLoCusbq8iqhKLLpBI2hWKeRqNJ3LL50Y9+zPvvfUChVEBTNSRJRhCgWCrQ7bURhQDX93E8H03TIAwplUr0PA9JFNhYW0VTIpKyTy5dIp3ORb95y2JkZJjHTp2k1WwxMjLCYnmJcMsV2nFclpeWGRsbxYrb1Ot1nJ7DhY8/YXRkFEEQeebpzyMrCqZp4fseN25cZ3JynNHhMdyew8svvcToyCjra2skEwk26+uMjY3yxNknuHzpCl/84pe4cf0m09MzfP4Lz5LP5el1u1y+cpV6vUmxNICuiGSz2Si3bBAQixmsra4wPDqGruusra1Tr9fpdDpYZhyn59PtdVlaWkIQQNd1MpkMYjaB3OkhXbyJ9yufRxAkfMdHlhTMVILhwRJXLp5HkUTyuQKKqhGwvyL5MKn4tt1AD1q3Pz1/SPC6xTYs/eaXH0lf2w/k7AV/94C7AyxjB32+X5kH9u+A70Vhf9C/ndZnrxy03gt7yuyKL31EQL6fY+22/tOvhz0IvO7nSn2/tg+yzO5XfvsIAn+Xe3JfoZ06+/+HiJDzkeTn4PVnKj9N8Pr3KiJ670S0X/xfv+wNGv8s7W3Xt18/HrTDt7dP92vjQZ8/bF/72/us4/DTlmgiCvYNyu/vq+u6CIKwE8u6vbupKMouAChJUgRu+0jMCEJEotykkiAiSCKIAgFhxBAnCiAKhEIAYoggQSgEBPjRZ2FIGAQEvk9UXLjnf2k7cfaeMZYkaVdapO3z7Yn3QWRKhCJhIBD4e873jOF2/Z4k4G8doiKDIOAHASg6niAThBKqoqNKMqHjIYcC3/h3/yejuTTPPHWG3OAAnpHkP/zp9zh05BSKaqKrJrLnIzktjpRy/Nvf+185feg48dUu6d/9fcxzH1P/6lOEQzk+fP8DZm7e4vXX3mZ+fpmNyiaNtsOhoyd56pnPky8NUhocIZMtMXX4BOc/voCdSiErBtVam5sz8ywsVFB0m6PHjhPg4/oujXqbt9/8EM02iadtzp59jLHREleufsTxUxNISpzJqSOUlxZo19dJpyLrJmKHo0dH+fXf+DVGRkaZPHyEjuNjJzMYqsn6Uhm33cYPHBRLY+LkEWRBQRLAdTpk80l0U8NOxZEkmSAIkBUZWVapVuq8/OI5ZhYXEFQtApJ6nPJqjY4jUF1fw+l2yKRset0Wmq7Sc3qEokDggSrEaFRqmLpHu76GJqj4bZF33vyQbtej1+uyvHiH+uYyMc0mlUyRyic4evIkiWQGRAFVh2anTraYR1BkBDFEDB3MhI2sanS7HnEzSSE/QKfTYXOzQhiEBH7I3duz+D2HuVu36DbqvPLaK1iWwkAujS7rmIaFFY8jyxIQkohbdFp13G6L7/zlN6msrjA7M8fCUgXNtBFUCVmL3Pk93yNuJ6nVGgiiiKaLzN69ydzsLKuLTUJHZH1tgZvXruG1YviIWFYSSdCJmyl0w8SwTCQVFFVH12xu3ojSpoRBm1Q6RrtdIQx7lFeXkHQFRwiRZIcgbBPQZurQWOQ1gYLrCNQ3Nnn15ddZnC/jIpEqFEnms5ErpqIQM00KhSI+IYIkomg+gtgjnY7TaTeRRBFD1ggJEcQAw1Lp+R0uX77E97/zPcprGwiyRL5QwAtdel6Hf/xPfpVQ8gikAClmkBscwpdkFEWn3eliWHFCfDyvgySDH4Jl51ieXyQMAxzPYaW8ylp5g5tXbrF6d5ml2TkURFZXlul2eyiKjilqvP/Gm9TW18nnM/yL//qfEU8lcB2HzfVVJNljYWmayalhGq0anh9ixUTSSZP1tQ3OvfkWjU4DX3IIEBkZGWVpYZGlhQUqlSp+KNCq1+h12lvpuAS8nkO7WiWdSVAqFWm3OqRSGdbW1xAlh1wiheAHtNpN1JhBKlPAjKWRApPycpVuOyBmxHFdj0IhTxB6vPzyObo9B99zWZ6/S3VtDdHxuX7tDq16D6fTo1GroSgybaeL7/W4NTPDx+cv0Gl7vPH6W5w+fZZapcn7751nfa3C3NwSF69cIz8wyFqlSkw1yGaySJKArikUilnq9RqE0QaoaZmceuwkogS6LlOrlhkZKuB5HRRVpLy2gqwrKJqCpMKzX3iCkYkBTp1+jI1Kg2tXblCvNREEiaefeZrZ2dtAiKLINDt1BEVENmJMHjnG1JGjuJ7P8voaV2/cpN5uU6nXuXbtJh+e/wTP9wgRqVYbdLsediKJIIWsr68yd+cOr736GpKosLG2QSxmEogyndMnkC5cx3zpHXTJR1F8QqFLWgmJiSCFKudefZvrF66idF28boAQ+AihgyR40VoSSAhBuHOIITtHv/SvbWHoE4Y+ghCdb9MARp8LO0ekakaHIIS7jm3a14PLS4B4z+d7XYT3btzudWXd/v9TMPRpdoBtD65tq3L/Nf26yfb63R8m1C9BEBD6nx5iFOmKiAChj0CAKIQIBDuHLEpIgghBSOgHEIS79Jjtz3aOLd0FUUCQIt0mFLgnE8mu7At7dKPtOvfqhv3lRYR7rtlPBw7DEN/3dx17v9/PNTgUQgRJ6H+kW4gkimcPAn8L2EdHv5vxnkHfdeyq6lGogPeM067jAKPH3nL9z+mgunZojh+SIbu/jCBEmx3R37vvKQrLYet4yI2W7fvYg3EeJPfDFQ/CRT8tTPL3yvK6l7DpQQ+mP0bhJ7FG3s+i+7Dyk1pef5rW4kcFwn8Tsm0x7U9wD7t3Zvo3Kbb/BnZiXVut1o5rcRAE97jT7JJ9FqJokr13It7v+gf9vVf6J+z+/LQP92PdPcnvfCru3mHub0MIQdya08IgAD9AlwXcdhMxDJECeOfcu7z/9odU1qv4Tg9NN0ll87guvP3OR3zlq79K3DbQFI16vYHnuvx3/+2/YmlpkbNnzjD3B39K6X//f0ESqT02Scf3SaYSyLKMacaobFaxbZtjx44xNDRAubzCnbuzqKqKosrk8hkWF+dYXFigXqsxODjABx98yNNPPc3k5ASXLn3Cq6+9QjJpMzAwgK6bDJRKtJp1Ou025eUVXn/9DU4/8SSqZtBqt7Esa2teD5mbnydfyNNpNdF1A1GUWFxcIpVK0W43UTWVaqWCJImsLC1jWiaqEoFLXYnmimQygSJJLM3PYxoG5dU1kokUYQi3bs2iKFEsrxmLcezoMVrNJn/0jW/w1a/+MuATT8SoN+qYlo2uWciSgq5JNOrrJOwEgiDgeT2a9ToffHCeYmGIer3JZmWd4ZEBXLdHoVjA0HVc16PZrKHrBp4n4Lo+nW4HTZNRZIVuu4siq3iuj2labG7Wtt4Ub8vtV+DihWtcuTJNaaBAGAZMTE5imiatVotqrcbjZ06jawq6odJoNkgkE+iGClvvred6qKrG9M1pzpw9Q8wwGB0bJQgD6o0qcSsGhLhOwPXrN1AUjR/88Dk816NYLDI4OEQyZXNo6igILnfvzjA5eZjx8UNMz1zn1q1pVlaW6Tldet0e9XqdbDaDJCl0eh1++Ze/xOFDU8RMDcuysEyLfL6AqmmAiKzI+E6IohhIooYZS1CvtSiXNzj/4ceMToxw9OgxPrn0Cdl0msBzCXyfixevkMlk6HW7lMsr5LZigntdFwGRMAhZK6/iOS7xeBSHmUgm8H0fTVFJJdIkkymGhosYuoFpmiSSSTLpLJFVW0WRZXrdHiIirXoTWZLYWF/Hsi1MM8atmRlu35pleHgUQRRoNfcaB4AAACAASURBVOsUBwrYtommRrHDhqFj2nEGhwYxLZOPPvqIqckJ4paFIMjkchnspIll6dTrNc6fv8ilSxcZHBykWqsyNTlJMpnCsuI4jkPc1MjmcsRMk8HhIZLJNK1Wlw/e+5iTJ45hmmaUYzWXpVQqsFFfR43pGJaJT4ioihiWjqbr+H7AoSNHKJZKhKFPz+mysryMEdPxAw/H6WInbBRFieZ7AWRFod1uU61UyaTT3J2NYmZPP/4YnU4b0zTJ5nLMzMwyPDqKKEnYiSStRhNN1ViYmwdRZXR0nOGRMUzLYmxyAllVsMwY4xOjFAo5Ll66SCwWI5+PcgPrsRjdXhdF1ZBVjbn5RQrFEp12i2wmC8Cd2VmqtRqyLKMZMZbLZYxYDFXXmZyYhCBar5rNOvV6DU1Veeutdzl58hTFYo5kIoEoiHiuj6br5PMF0pkUhVyaxYV5BgcGKOQLtFst7LiFqkoUiyWmp6fJ5QqUy6sszC9w8rHjQEg+n8O2LXRdpdfrkElnSaYSnDhxAgi5OzdHOp2OwIsoEqQSKH/wbTq/+VUkQ2NmZoYf/vC7rJRX+O3f+R26PY/vff95jJjNwNAgghigyApBCFtbvYjC/uvTQSlKt5Xu/dfDg6xpe2r4fmR5Fb7+pQPKH1zP3pjJfn1hW/rB9j093Kfu+ync+1mm+8Nx+uNf76dz3e/z/fqxq4x4b9sHAekdgL5Pe3uv2c/i2d/GQf2+n9X4vsaZPdbdbREP6NPe6w9q66Byu/vyaKBpW+f6qejQD2vGfWA/7r3Xg3Tph6l3v/P7lb/fs30UkSX1J7K8/v8avD7q7sNe+Tl4/dmJJEk7FtV+OYjFMAiiWCZBECIXTTHKd6iq6qeuJOHua/ZUck87kfU22DU2OwvRZwCv+00g9yNpulf2t57Tp1jsAq9bO6QAoeuhiBKE4DTrGKqC13O5PTNLu94hbiV4/LHT6LrGuXNv8/TnPs/VKzfJ5gZweh6e10aRVVRZxeo4OB98TOoHr1J6/hylyzN4Tz1GcyRPvdVkeWkJy4oRtyKQtry0zFNPPkWn0yYIIytiJp3hyrUrdLothkcHSWeSXLx4mS9/+ctsbG5y5vQZXM/DisfZWF/n7t1ZCvk8AIlEgm63R6/TZmhwECNmcvfuHPVmi9NnnkAQQmqVKivlFfL5Aplshrm5OQr5XJR2QohYSf3AI5lMRjlwQ3Adh1QmvcUy26FWrSHLkUVdUxWcXhdFklhZXmZ4dIyQKGdcJpOl3W5z/fp1isUiQ0ODCAIMDBbRDY16o4asCvh+gB1PISBSq1aiMZVCPB8a9RqqKpNKpQhDkeXlVTK5PB+ef5/xiVFiMYN4PE6v10OWFVy3hyhK9Hohly9fRdMU1tZWMWMmpmXh+z6O4yHLKrpuohsakuzTatWpVhsEvsLCfJnSYIZWs4WiKly6dJnl5WVOnDyBrutouoKuqSSSNp1uB1VVkBWVdrtDp9MhDGCgNIAoSeiahihLGLqG50fArtfrsrle4fnnfsThI0dZW13n+InjO9YMyzIACcfp4oduBARCkcGhElNTU7TbbSYmJkimktiJRERyJUcWkGw2iyjB6moZWZaJW3E6nQ4gohl6lDZFkPADH1XVKJcjFl1N0ygNDJBIJ1AUhaHBQSzTpLK5iSorvPjyq7RaLcZGx0ilkoRhyNraGteuXOPCxxfYWN/g+PFjpFJJ6vU6gRAiiRIEIb4fUK/VyefzNFt1rLiF53kEQVSHaVloms7N6ZsU80UqlQovvfhCNObHj7O0soQkCORyOXK5HEYsRhCGBIHL8soS8bjFxvo6iYSNoqhIioym66iqQrFYJKZrtJpNVMVgfWOVVruOaRmAwLlzH1DZXGdzcwNjiwFZFCUcx4liwpMWoiQiSjJLy8tYVoJOp8ONazeRZTly7RbBtm0gJFfM7JDl9XpdJFmi1WqgKCqmZZNMpgCoNxuYVoy4GQMhpF6vYxgGsqIgCKCoMoIkEwQhN2/cpJDLEbcsJicmOX36FK7roGsaoSAgChKaYaAZBrGYSafdxXEdfNfj9Vdf59qNWxSKA8RME0VRcD0PL/BRJAHH6aAbOnHLYmpqiueee45UKkUqk8YPAzQ9Rgiomh6xdgObmxsIgsC1a9eQRJHx8QkEWcay44RBuOWFE6Ju3YudiCMKAq7rMTAwhKKo/NVffQvP84nH43x84WN0IwZAJpNFlUIqlWoU80rI7O1b1KpVUpkErVab1dV1Dh8+wsVPLiEIApOHJxBEAU1TUVV1K6VU5PJcrUYbhKura6yvr1MsFlD1KKxivdvGREB67yLVZ09y8+Z1fv3Xf5X1jQ2mpg5jWSmKpUHOf/QJVlynWChGeb4RYDsG9gCl/m8CvPL1Xzqg/EGK9b2g6iCSRbiXKHFvn7e9ufZzgd27Gd3fRn/O236L7P3W+/2+2wu8HwW87ueFuAtwH+Qe/BDgdbtfe1MR7gdu936/dxx31Sndm1MXdjMgHyQHbR58ViB1v/Z+Dl53l/85eH0EeVTw+rOSg9rd78Xxv/sKICD/1lf2fdAPY4nbOzH+XZCDcnD1/7j6Lab9rrMHun+wezz6XW7X19dRFGWX6+22+/BO231xrffEqfZPjluTXFRmf1a9g0Z5+9qDJvJddfzEz+3Ta/vvo7+K/vZNVafXbGMn03z83vs063WuXbrMxtIi75x7k2uXrnL54hUOHz5Ko9ZEAOYWFvjyP/plQkEkVyjw3e/8gP/hX/8bWnduc6bcIPvn3yfxjW8Rv3aLpBHjk/Iiyi8+yQfXr26lrWkxNjZGImnjbbkK3Zq5RSabZmRkmNnZmyRTCXK5PPl8nqlDUywszhGGHoQCpVKJ5597npVymaeffoper0Ottsmzzz7DyMgInu+xsbmJ6/YYHhxiZaWMnUigx2Jkc3niVhwCj7htk83mqNVqQEipWGR+fh5JlHnj3Dk2NyuUBkpoukq9XkOXVaq1KrUt5Xp+foFDk5N4fhR/WKvWaDVbSFts1nE7ycLiAt1OF9uOoygKY2OjjI+P0Go2aLWaFAs5DENDVSQkScAyLVrNTpSaZnODTqeOJItsbDYoFDLoukq34xH4UCzlCQWJ4dEhbNtmfXMDWVHw/IBWs0sQ+Ni2Tbfr88PnnufsE6cpFgbodhw8z0XXdWIxC0VRURQVx+lRra0jKxIbGxWOHD5BiMC7753jC1/4Anfu3MH1PB4/fTpyoQ8i5l5F1fA8H9dxiBkGPdfl5s2bjA6PEgYh1UoVVdW4evUa6VSaRr1GKmmztLxMMplCEmQ67Q6ZTJYPPviA1dVVhoYGkWWJWrWCLIu02k0S8QSNZpswDKM0I6ZJz+lh2za6biDLMp7rYFkWtVoNy4qhqjJx20YQRTY3KywtLVPI5+n2IpbXCxc+wDBUjJjK6uoycTtGu91A1yVk1aDX6yAK4PR6mKZJvV7n1OnHyeWyLC4soGkad+7MMjBQYmNjHTNmcuToYVqtJrIsc/7D86QyGWzL3golCEgk4gSBz8zMTUZHR1lcXMSOJ7DtJIsLS3S7PSYnJwl8n2azyckTJ3Dd6JmVhgYwdJ3yygqO66KoKpqmoyoSCdtGVVUMw8D3fRRVQ1JlPN+jUtkkkUywWi5jJ2w0LUazWUMzlCgWtevw9NNfIJ/Pc/v2bY4dO4qh69RqNXRDJ2bEqNWrLC2tIEoy7XaXTDqL7/sMDY2QzaWRFZlmu0Gn06HZaGJqCrPTt9BljQsffoSp6czdvo1h2iTsBNtTq6LI6IaOFdOpVKpkMhkqm1VESaLb66KqMsuLZURRJJ/PsbGxwauvvsrg4ACarrK2tsba2hrr65tkMllARNM1Njc2cJwoTVoykWSgVMJxQpLJJH/513/J5NQkqqaiKgqr5WV0XWdlZYVSqUSr2WJ1dTWyPCcsVE2j1WrjeR6qqvPOO+8ii5+CnlQqxeDgIKqq0nW6EWhXZHq9LnfvzNJo1Ll1a5qxsTF0w6DXcwCBjY0N1ldXePKJJ6jX65w8eRLfD/jmt77J9MwM6YRNGIaUBkq0W21u3Zrh7Nkz1Op1XNdneXmF9bUNBgcH+YVf/AKqpuB7Pp7v4nkusiQRj9tsE/7ouoYoCmxublAsFlG33fadgMvr64xem6V+ZARpIEOuWKA0OIjng6Rq5Aoluo7LuVeeY3x8AklUkRQVL/SRFAGhD6X2b/4/CLzuv8Y9HOjcBq/ib3x5X4X4YCX5XgW9H7Bt93+b5+F+gLEfAPUz2t7PgNEPyvaT+7kt7y23azz2Mbrsau8+be0CgX2AUxJ3p7LZe75XV9vr0nk/N8+9wK5fb9s7Drvcrbe62u+qDZ++NQeBov3cwrfb6/dwiz779Lx/g+MncVf9qeneezdvDgCjD+7HwRsSe38TDwtkf5b44qC6fw5e/wblwEml7wexs3uXiCOePoo4NvhTa+/vgtxvUu+fyPbGh4RheI+1tX/ctq2x/dcEQYBlWaiqiu/7uyafXf3Yp57t8/6paveO4f4/7PuN8oPcjz6rbFd/bzuf/u37Pp7nRfFamkHguPzVN7/Jay+9zMjAIKlEgmK2yPDQKIcOH6U0MIAZj5HOZ7CTcVK5bMQCG7hc/c73+c2exH/fgt9YbmDNr+CYMX64WSb9xWc4NzvNk7/yZWRFoVQsEouZlFfKSKLM5SuXSdhJyuVVDENnbGyYanWdVMYi8H1arS5WPEGlWidmxgh8mJycRNcNEnaSufk5PM+hUMhhmga5fJ5yuUw6ncHQNfzAY35+Gcu2UQ0VP/AYGihy99YMdiKB4zosrizT7naQJRnbiqMbMVzXpVAoUSwWESWBWq0ChGiSjOf7DI8M47ouSTvB5vo6nW6P5eUyV69eY2hkBDMex7Sj+EFJltmsbGBZJrGYTqvdJG5pmKbB/NzdrTy0UcqX6kYFMxaj0ajQ6TRJppKYVhJBUAEVK65Qq1VxegGqqpJIxrh+/Q7xeBzbjpPNZmk0WjRqLb7zlz/g5s0bnDlzFl03SSRsCsUMK/ObvPvue7z91lscO3EMURTodNqsLC9HpC9rG+SyeeJWAlkRiNs6Y6PjURqRgUHsZIJkKomkKgi+iyDJOK5PGILbc1hbLaMZMUZHRnFdj7/4i29y4sRJHMfl7bff4+TJk1Q2N/AcF103UHUDEYGxsVFc1+Xo0SOcPv04MVPn1q0ZRoZHuHN3FgGJixev0en0SCbjaKaOrEYx2mvra2SzeUIEJFHG930syyQM4e7duwR+iLa1uWDGLJyeQ7PZ5vbt25w+/RixmInjuBiGwerqOqlUkkajie+GaIpEGAYRIFEUJFklkUigqgr5XA5ZkigWCwgCWLbB6NgICCGJZHKLbVml1/W38n3eQVNldE3G9doMDY9SrVZI2AkWF5eRZYVXXn6FwcFhBFlEVCR0XcPzPfLFfHRfdhxJFJClKPUTCPRcZ4uJ2eOtN85RLBTpdBxkVcV3HURBIL61eaJoCnpMx3UcNjbWGSgNMT19i0w6hx84JO00o6NjyLJIPG7S6bRRVRXd0HGcgCAAz/d44ccvUBooRd4nQYBh6ohSRE6mawZ/+kd/yvDIMIODIyyvlDlx8iSNRpNcIU8ikUYUoFat8t677yCJInbcRpYiz5hux6XX80gmU8iyhCCKzFyfZrVcxnVdMtksj51+fCuFU4Cma5TLq1imScK2mb01g20neOnFl6hVa5w5c5bF5WUKpRIJy6Ra2+TJJ8+i6Rq9ThdFlGk1O0iiwnM/fJ6jR46CAMlEgmKxAIJHGARoikKz0eT2zC0uX77E8OAQyWQSy7J49913uX37NgAJy0BXZELfQ1FkDENjeHgQewuIOj2H1dU10ukMlmVy6uQJ2q0Whhnb+k1oZHJ5Gs0mJ0+cBEFk9s5dWu02IbC2vo6uW4QBTIxP8uab53jm2ScJQ5ebN27jex7vvP0WhXwewzDx3JByeRnbthEEAV3XGRwc2AGWkighILGytkYybpG6eRfzd36FUDEIBYWO4yDJCl7gkc6mMCX48MOPWFurMDY5iWxEv5F+8Nq/TvvB/qnm9rN+fiqPBl6F3/jSvuUP1jX2/fjTeu/jTtpfrl9n2XveLwdt2D9IHsUC1m8dPvCaB9z3fuf91syDNgj2fredv/V+4Pxh2j6ozPZ93Kt7Pfja/jSJ/SRO/c9orxV7N8D/yWMtP7Psc3uPAl7vW9FBJR/hHfxZyc/Ba5/8XQCvDyw7NviZgOve9v62X8BteVjw2i+dTgdZlncC+vuv2W/h6AeZe2NO9t2d3GN53XUu3juGnxW8/syeS9jfv76P6bfCRuQSL774Iu3NGr//H/8ToyMjfPUrX6FZq5NNZ3B6AZVqnbmFRcprZXRTR1YlVN9DubuK9tc/JvMf/oKx968h1ZtweJz22eO4k2OEmTQzd+6gaxpPPvkEG5UN7t69S3mlzPr6GqXSAJXNTcyYSRgIJGx7xyVW02Q6vSa2beM4AapmcPfOHIqiMDc3T626CUAuX6C8sszk5DipVBJd16nX6jsEXBApiYEv8PKrr3D02BGyuSyXP7lAp9lAVlT0mIGiqtgJG1mS6HY6EQhwPXpbrpKNRoPDR6bQdY3V5TKapiIpCosLixRyeVwnsuC98sorLC4t8cznP4esqlSqVWRRQFGkKGekHUfXVSzLpNdroekauVyWlZXIbRlg8e4CN2/cYGi4iKbLGDETQdTo9QK+970fcOjwGOXyMvnsAIIIGxsrZHMjUTqfXpcgBDMWR5YVUokcg4ODpNMpXnvtDSYmJrATBh9/cJWZ6Rl+6UtfRJRBVVUc1+XSJ59w7tw5/tFXvoLnBiwvL2FaOrdu3WB0dBIA1/NoNpvIisxmtcqPfvgDJian6DmRBcjQNHRNw4zHd0jV4vE4iUSCTCbL0aMnaDUa+Fuxo6lMhl7PQ5JCyuUyhUIR27ZptZvIssCbb51jYjxKUWPbKW5cn6HZbHLk6CEEMSI9My2LZDKJJErR3MA2X4HI6mrkBuy6PnpMx9B1NEWlvLLKyMgIG5ubpJIZFuaXkCQVUZDI54sIgsytmVnq1TrtTpNsNoPjusQsCxBwPRdd02nU67TbLcyYydzcHLohYVom9UYDy7KjdCOmRSadhzDE6XXRdAXX7SBKsLi4gq7r+F7A0NAwAiLTM7c4ceIk8bTN4sICdsLeup+QeMKm0ajj9HqkkokIFIgSi0tLOI5Lq9Ekl82STKZottrIqs6F8x9SKBSYm5/DNGMouoogioSeiyyriJJCs9mhWCxSq29S3Wxy4cLHXL9xjdHREXq9iCXasiwCJEwrRhiEjI2PoSoSRszA6XZRdAXDNKjW6iTiCYYGhskUsii6hp1IgyihGhoxy+T1V19neGiI9bU18rkcw0PD3L51e8sDQeOtt99lbm6BQ4enWFhYoNvpUNuocub06ShGk5BQEvFCn17XIQxDUskkoiDyg+9/j0wqSbE4gOt4zN65w2OPP8bVq9fIFwtsrK6Qz+cwTRM/DJi+cZPVlVXGxyfpdLosLCxw5sxZFFnGTsRRZJlKZQOI3P9jhoGux5iamkKVFZLJBI7j0Gq18DyXEydO4HVbrK2WESWRdrvJxuYGoiTQ7XaJxUxEUURVdVRVZWVlhfm7s6RSKXrdbkSWJ4iomsbhw0cQBZFEIkpZlUqlSCSTXL16jepmjXyhQK/ncP3GVU6cPMqFTz7m9ONP0mg0CMOAqakpOu0evhdy6/YMmUyGbre7s95sbm5ixk0CP9zyaBlEKubQP7kKuoZ//DiE0Gq10Q0VWZaQZBjOZxGQuHT5Cicef4xA3LK8BruV/521+EByzM8OXoWv/xJ8/YsIwv5upJ8VvN4PdD4IvD4sAL6fPApw2Otau3+F929rv/ODwOv9LMP3ixXer56HeWb7WV7vvb2HH+dtPWi/Zx0ZOT4tt591+m9Ffg5ed8k/CPDanyrnfj+OB5V5WNlvh2pvvfsBrv5J4UH175WDYi4edD/3c+N91H49jNyvnv2AKXyat3U/iv39dvm2y98D4kKf/djaBFGIlKLIIXLnX5SzVdzV1qexrewoy2EYxTf1T3Tb7e/cRygiClJEex9ANNWK9wBL4B7X6IMmzn5wHoYhWhBEDI8hBIQIggSCjL9lhUmpKpog8o3/+If8H//23/F//1+/zz/9p/8lf/wn3+TJp75A14VGyyXUZH788kv87r/512iiwG+nhzHOXSD2v/wntBffQqy16QwP0Dt7nNnQY63jcf7tdwmCFqZtIAg6VtzAMkFW4+QLeeK2ydDQIKYZx/MFQsHnk4sXSGcz1OoNUukMiWQWIdTp9QIy2RQfnn+XU48dI5NOEwYBr78eWTjsRJy7c3cIQxgaGqHebuA4XTynjaaI3J6dJZvPky9mGR8ZQgpD1lZWyBTyDI2PoccT9HpdbNPA67ZYWphHNzQ21pew7Rhh6DM+NkLSTlLZqEEgkcjYdLoOphFDEERWymVKpQFatTrJRILK5iaHpg5j6DFkSabndNH1GKaV5D//+bc5ceIUPcel1fEJAEmWKBYzrCzNEXg94naBlfIKo6NFmo0N1svLVNY2kYWQldVVSoUhhobGWVyYQxBCZEkiGY+xtr7Bd7/7A5544kl6vQb1xgaTk+MkUzaVjQ3Wyiu8fe4NpsYnGTs8zFPPnqVQzBM3LbrdNjFdYWB4ikq1RrFUwvdcUqkUIiKl0gAIEpIsEAQenudiGjE21zZoNNuUSgPELZN0OsHS0iKpbBY36NGoV7EMner6Oo7bQ9c1QqDr9FB1lXQ2iyQLGLqK7wZoqkbg+5TLS6yWV0imEoyPjzE/v8Do2Bg+HmOjI8xM3+TSx5e4cuUmp0+eInA6eE6HZqOKqkkEvkezUWf29gwjI0MEvkuttkHSNhHwufDJRxw/cQTXc5Alke2cst/73veIx20sK842I6Msa6ytrZPP5Ql8B6fXRhYDpq9eYWHuLqMjo1Gs6vomzz/3Y5555kk0xUDXovyaK8uLpFJxEEJa7TqiEGKZJnfvLpMvjiDLJufOvcm5t95kZHQIKx7j2PFjeL6DIqlcvnQJO25jxDQ0TY1iWmMJYkYSBJG19VUMTcfQTBAi63c6U2Bjo0I6lUbEY3R0EMftIioSdtLG9zzarRahoPLGm28zPj5BKpMCIaTeqJLMDiGpEQv10aOHuHHtKkOlEpX1DcpLdxDxCUOH0kCB1bUNcvkicTvarPBcj5s3brK5uc7I2DCaLOP0PLpdjzdef5N0MoFt6aRTWT768DxBGJJKZxBEkWw+g+84XL54heGhcRYXlxgZHSZmaKiqyNz8Csl0emujSmVztUwybvHmy69yaGoyitP3XY6fOkVpZJjK2gbr6+ucfvxx7ty+w8jIKHbcJp40EWUJVdUIPJ90OkPCThKEESHU2NgIMzM3sSyLbsfh3XffY2BgmHarQ73WRNd1TNOM2EwDAVVREQWRYrGAJIuk0ylWKlXS+QKmlSCeSGKZNjHdQovZeI5Lr9OhsrZOrVrn7twCqUwCTVcJfRdVlpi+Mc3s7CIvvvAyp08c4ePz5xkaLEVET7pKPG5C6BMEPseOH+Wx02dQ1Bijo5M4XkCn2+L4iWOsLm+wuLRELmuRHRxGlhV+9PyP8RwHXddIJBMIRJtAkighCtGchCojv/werd/+MpquIogCiqzhuh6SpODpJvm0hW2E/Pv/7fco5EcoFMcRggBB8JFkP3ofBQFflA+OhQ2jNVAUo3zKbLGeRqvqNitqxJIqCLDNMbFXovV1/zQ9ghAiipG17FOm1f1DdfaCzb317acf9q/z2xt223Vte3n1e3Ftr+0H6VQHeobtabfvCiL3++1x2z7udScOwy2dZp97FISI+2IHBu2cf3rtXpfZXYzE+4zT3vvbS565t579rNZ7x3mn7wgRqN6jyu0eB+4Zj/773Xs/+50LW4MRvYO7DSL73cvPXPqa2z0mBxQPd78VOyNz324/5MaRcP9NoHuvfzTZfkZ7vS37n+E/iDyvQRD8T4+yg/DTAK/95wcB2fvt5vivvU94Z/Ee6+v9wORP2u/+Sfjvk/QvFP0vueNEO/LbrsKflt9/J2nvM9r99wELGPvvsu6ts6+Ve+rYqnXXNf1l7rcjuV8cyRZf4U4uvjDqJfgeUggby8v89be+zYWPPuHNc2/z3/zLf8lTTz3JM888jaapROQeOstzd/h1u8C/EuJ8/Z0ZxI+uIlYbtE9M0Tl1hE3L4tZamWQ6irO7efMWp04cozhU4MaNm9y9u4jjdJAVME2TjfV1bt26TTqZYW1tFcsyeOed9/jVX/01bs3McOTIEWKxGLdnb5FMpreep0e+UEAUJeq1OmEYYsRinDlzhm6nG7nLxiPil5gZI2YYCIQsL69w/PhJmq02ui7TajaJmSbz8/Nkslleff0NRAIEQlqNOtlMlmarzWalxvjEBK7n0+05iKKM43kRiY6u4fsea2tr6LqOrmlIosRKeQVFkRgcGuDI0cPUGzU0XUGSReJWPJpgRZmRkWESSRtJFImZBooioWsqlcoGyWSSeDxBz+kxODhAtVZDVQ3S6TyipCDJCo+dPsOtWzPELYtsPofjuqQzWWqVTZLpDGMT40iyjKooGJqKIEoIiARhQDqTQVLkKC+obeM6LosLS7QaTfL5HIQBruczNTmBpiromo4oRWy8rufTarbxXAdCojEWIzbibcuuoij0ej0GBgYi11RVjojRiKyCuXweVdUiAiFJ2LE+SaKEHwQ0my1UTUMQonelNFAiZsQIwoCbN24hSgLpTBpZEnEdh1ajwWOnz7K5uUajXiWbzaLHYmxsVIjF4ni+hyCKxOM2qqaiGwaE4Lk+zWabXK7A4sIipVLESq1pOu12m1qtyvT0NBOT43iuy8DAMD/68fNMT09z9szZiPlaURElmUQyhSTJxIwYjuPw5JNnKmqjKAAAIABJREFUUVSJWr2+FT/skM6kQICFhSUymTSmYSCJEsl0CllSkGQpAkH4HD16BEVRabc6zM3NE7csSgPFHeId13WpVmrkMjkcJ2LjbTUbJBNJFheXyeUz/OAHP+TUqVN861vfYmRkmDt3ZkmlkiiqhmlZsLX51ul0MbQYhAG2HSdmGLRaDVRFIm4miMdNJsZH6DldioUCjuMwt7DA8RMn0GMGtXqDEJFYzEQSZTrt7o5iXiqVyGazWwq6TxD6VGtVTj9+ClUTWVmZRxRUSsUig0ODrK6tkk6naLaaSCJ0e11MK06pNEAiYdNoNnA8h/GxScIwwPNdKpubDA4O4HouTteh2+vi+xEgMC2TpaVlMqkMnueRSCRBgFQ6TaVa5T//+Z/z7LOfo9vp0mm3o3y1pkW70+HOnduEROCvVCriuA4vvPACnueysLDI6OjIzn06jstLL73E8PAw129cZ27uLqViiVjMRNN1REFE1yLm9cWFBTzfJRAFAt+n0+5wc/omzVaLp555hkwmSafTpVFvUCyWiMUs3n3/AwRB5MknzjI4PMSPX3iRVqvFQGmAwA9oNhssLi4hyZHr/PkPzzM4OIjveczM3KBQyHPxk8s8duoUm5truF5I6Pu0W00+/ugjvvALv8C5N98klY68VvytDWDPd1HTCYRrM8j5HMHh8S3vjB4QpQYKZZHAaZPLpJAEkStXb/DE2ScRVYmQICIs3AYYoUR4AAvxfuvap2vmvRwg99OVhAOJekL205UOBsGfWg7viac8QI/b+93Bffy07vsZA/aroz8v/O7r7tVX9hu/nfN9vMi2RXzI/u+UPyCv70G670Gg/X46z0F1HlTuUeSncf3fJnh90Pu2p/hDfvHAL3fafhj5rOB1O4TvID34HwR4DcPw7x149f7nf0/4yfV72IZ/Dl4/lX7wuv339iTvui6e5+1YYSPZ//52kxvttTiz73db5tMDf1j9zzwMw8jKuq/7yaOD135r6+4yEPaBVyGM9r1joUu1XOa7f/VdWvUm/9V/8c/5rX/yW2QKWdLpJIcOTxG3LQo9l+KffJfJb/4Y9f1PCBQZ8UtP0Tt5CH+ohJpKUNmsMH1zhtuzM4yODCKJInHLJpVKMDc/j51IcvzECSYmxkhn0vTaVYqFEqpkEvoi5dVlQnocP3YaXdPJ5fJIkgj4FAo5Ll26TKUSKajLy8ukkikWFhbwfI8jRw7hOD0MI0axWOSNN96gUqlQLJb4w//nDzl69BiLi8t4vk8ibrOxuUIqnUQQBBRFQ9UMPv74Ir/wuSdJ2jZhECJJKslMFj1m0esFxO00z//ox9yevcOpx06BAO1umzDwKeQLdHs9ZqZnKA0MYFkWPddlubzKwNAgPcfBD0OCMECRJZrNNmYshqLIeL7D6uoylhnD9102Nla32K8Vel0PQXHoOh00NU4Qarz73seYto2dtJElmXwhh6wqhCF0uw7P/ehFjh+bRNG0LfbgiBAoCEJu35kjbtsYhoGqqUxMTKAoGpquockqnXYHVVFIxC163R6yLBLTNRYWFrBsC8f16LkuwhZLbrPVJJGw8X0fSZZZXlrZYpcVCYIQVdNwXI9ut4e0ZTgJESkVB9H0GOXVMpZl0O12WFhcIJVMUq83uX7tBoqmcOnyZeIJmytXr1IaKFGpVlA1nV7XY2hoEEWNyJjyuSyjo8PEkwmajRq3b99G03RA5u133mdycorbs3cYKA0hKVEqD0XVEEUJzw/J5fKsrKwyPDKG6/r8wR98g5npab7y1a+QziQZnxhDkRUsy6JSrWIYBiMjo2iaThiItFs9VtfXGR4ZRZIlms06rWadXrdNKInETJPy6hqpVBrE/4+9N42x7Dzv/H5n3+655+63bu1bd1d1szduIqnFlqWxjcEMxprMOMEAzsdkgEE+JAEmX5KMEWCM2A4miTGBDQwmmFiSNbYky5IpmxJFijubbJJNsjf23rXXraq772fNh1PVLFZX9UJKk5lID3BRt+49533f85573vf5P8v/AT8IsBNJRFGg2ajTbrficNJeD9PUyGQcZmdnsEyTeq3OxQuXuH17kVIpSzIZl6jRVA0QWFpawQ8CWs02W5sblMtrMSuyk8EwdDLpDJ7nMjo6wvraKqdPn9oORQ1i44AoQASWadKsVRgdGabVqNPttLBMHV1XkQSoVcosLdwiiiKsRIJKrU4kCmTzBer1BplsDieZolZt8N4753jt9TeYOzzH4uIihXwez40NHetrS2xsbPKTF37C/NF5Bm6fMPD56QuvcPjIIfzAY2xihHanha7rGLpCvVHnBz/4a+qNGlPTUwRhSD5foNfrsrFRxh0MqFQrZLJZ3nv3HI8cO8Z6eYMXXnyBo0ePsrm5yejoCIQR6UyK73znO2xsbhGEAYV8gfPnL3Lq1Cn6/fj3L0oCKytLlIaHt6NCDMbGR2i1WuiaxszMNIePHGF+fp4oirh06RKTk5N4nseJE8fp93vUGw1mDx2i33cxTIvBwMWyrHjdNQ1q9SrpTBpV16lWqyRTDiOjo6Qyaer1Gpl0isFgQDaXI2EnefvsO1hWgtOnT1Gp16jV6qRSaQzDpNPsYBkJOv0OJ06cwHFSSJJCs9kik8nwjW98g1QqQXVri5HhCc6+8y7DwyUCL6Lf7SJEESOjw/Rdl6WVFQ7NTiNJYpySEwZsbW1iJRMQhYjnr9P70ufwAh+iCEWWUGSBlueiKhKCIDE+MsqlD8/TqdcYnp6M17koQhREpFBADiG4T7rn3v023nPv3o/305XCf/lviF59D/FLj+/b9o639l7gdXfY6F179gPocTvfHeRZ3NvewUCUT4xjt+wA6b1pUw8PXj8O573rOu6j+h1kPD8o7HdvJOC9Ivx2jt/bz0Fh2PuN537jfdjv7ye/BK/3l88yP67rEgTBHv39FxC87g4bfpA4/N3yIFa7Bzn/XmER+7UTsw3HpXL2Lmh7w433hl48zPj2uuUPkp/Vg7pjUen3+3f6V1X1ocax25oniuInPKw78yBJEqqq3hn3Tnmbnfd752P33x1PbtyudIfSfmd+d7e109fOtext885ru/T13aHP+wDdXXN9Pxr3nXmQJAk/DO6Ez8SAWSBwAzZvX+EP/9c/5D//7X/CqUefoNXu8dbbbzP/yFFarRYFO4n+B/8G64/+FF8SiJ48SffIFF4+jStE9Hp9et0e/X6fKAz56PIV0ukkW5vrDJeGKK+XKY2P0Gi28f2AsdEiS0tLLNxeIZ91qNea/OQnL3Pjxk2e/vzTWLZBeb3KpcuXePfdd9B1DSthsrm5Qb3e4PDhw1iWhWlaeJ5HRMTQUJFbt27xwgs/pd5okslkOf3oaaamY1bbQ4cOs14uMz0zTWmogO/HoCxp24QRGKaJpulks1m8QZdut4tpJVhdK5OwbRKJBP/23/47ctkco6OjscJoGtuEXwqKHJfrUBSFbDYOd1xZXuGll8/whS/8Cv2uSyLhoEgqmqLT63VwbHubICKgvL5KLptGFKU4r1OUsEwL3bBoNlq4XpNsJkez2cf3Ra5dv8XjTzxGvdVk8dYCrutimjphJJBMZfD9iFQ6iZlI4vkBRAIfvP8huqqTyub4yfPPYycs0uk0IFCrNojrIomk0hneffc9RsfGEEWRaq1KpVIhIsK0LFRNRZREVEWh2+5gGjruwCUIY3B85cpVRsdHCaOIdrtDvd5AUTX+7JvfYnQ4j6YZ9Ac+iqoiSSJh4NHr91hfL6Opcd3VXm9AJpMlk8swMT6BaZqMjo4iyRKJhIUggG05SLJAr9+j120z6A9YXlxkaGQMXVM5cuQwgijR7Q7Y2KwwMjxMeX2dQrHI5UuX8TwPWVZQFAVN03n77Xd4++2znD79KGEUMTM9y9Gjc8iKgCQJ9Ho9bt64TaPRYmioyIcfnkfTNP7yr75HtVKjUW+SzedIphwWFm5jmRY3blzj0KFD6JaBJMnYdpIwCpHlOFeVKC7fo6kqohA/8JVahZWlJYLAR5Li0iaKrFAsDnH48CFMUwOg3+sBcOP6DWZmZ0jYCSwzgSTA5NR4TAql6lQrFWRJJp1OYtuJ7RxrDcM06XZ7yKoCxAqBLEqE/oAwCKlWK+SzeXrdDrVaFUmEZr3Ba2+8yfzRoximRSKZIJvLbTMPG/iejyAILC4uUygUGRkZpd/v8+ILP+H06ZP0ep3tMlhpRFHh6LGTWGaSKBRZvL3K1PQUtVoFw9SQJAjDuLbp2soqyWSSQ0eO8PgTj/P8T56nVCqhqhoffnCO+fm5O8Rktm3HpXwEETuZ5NixY5imiaIorK+tU61WSCTteC0YLjE+EdfDPXHiJH7gI4kSm5sb/OV3v8tv/Mav4/shN2/GjOdB4AMCmqphWQl8P+T27duoqsbo6OjH+5QgUK/XmZ2d5dlnf4gkSQwPj2DoOvV6nY1yGSthkclmUVUdgKSd3C7R49Fpt8ikU9y6cZOEncA0E/gRZHMFErbFyGiJ0vBwzBosq4wOj/L88y8gSTJHj83F9Xc9D9fz2KpU43Jft26QzaZ48nNPMuj7tDs9Jqcm2CxXWFpcoFxe46mnniCM4NTpR3EHcekoWVZwB962EcwnzDio713GHx+hYqm8f+498vkMsiyhKjKeGyJpGqIg0aqWWbx5BR+RQqEAshIbvaIQJYrwHsC4uyMfg6G797r99I/omz+ERhvx73/5ru/ivXN/cLd7jz2oxMzePXw/IHW/a9lPv9j9fkevuB8IOdgreRCYZt9rQLj7Gu98t8dIv9PvfvrHfuM7COzvBrk7Iu4Dovebg/3+P+iz/ca4m/15d9/3BHwH3Ov9dPeDdLafmzxkF58WvO52CO2W/TDMw8peY9FBslNdBA6+x58WvH46+rRfyn908iCL589SdoChpmnouo6iKNv1Fz+d7DxQURQxGAwYDAafWDR3joGDvZc74HPv8btp1A/asPYudj8r2bv4HyQ73+0A+Wh7w5aEGNRXN7d47aWf8vlnnmJxdYVWb0Bn4HJkfg7P8/nJH/0J8j/7F0RXbvBcWqN76ihdSeLMm2e4dOkitxcWEEWBWzdusrG6ju/HoW9zR47wxJNPcP36NWYPzSJIIpKksLy8TLvToNfvomkmrWYP3w/J5jNMz07R6nSoN7ooqkypVAIi6vU69VqdZqPFM888RRj6yLJCEIS4nkcq5RAEPql0munpGY4/chwAw9Botxu0mk3yhQJHjx3DtMxt8icFIRJYXlqlWqshSAK9QRdVjXOs3n3vfar1BqKsIAkCoe/x2KOP0um0GC4NMTE+hhBBpbLF6soqV69egShia2uLVruNIAg0W03a7fa2hVBCFgVMXUUWhe2wxNjb1Gk3SaUcLMtAVeJauI6TotVq0W610A0DTTHwBh5EAaap4fsunhfyztlzLC2u4jhpEASWV5cIooC5Y/M4ThbXDRAlhSCMiCIwdAtFlGk1W0RREAeOR8SgQ5IIgTCCL/3qr3J7cQHV0MkXihSGSoyNj+P5LmHoI0YhQhSgaRqCKKKoCkQRpmly6tRJ/DBAVhRW19YwLYtur8/45CSFXAbT0NjYLNN3XSIiVE1GkhSGSyOMjY0jyzKWpROGPqqs4LkuW5ubRGHIoNdHiGKikGd/+ANa7SbJZCIOL1Y1zpx5i62tShwSH0Gj2cKwTH7tK1+hXF5nZGSEjXKZ+fk5dE0jYZk0m016vS4zM9P8zn/5O2xtbXL+w/MkkwkMQ8NzBzGDtJNifW0D205vk4QtMDU1ydf+wW/xd//ub6IbKt/97rfxXZdcLoeqa9RbLbwwJApDiCKiIMQbuPEkRyGSJBMGAa7bp16vIwgwOTnB1OQkhVweJ5lka3OTMPRRZJFOu0mrERs3GvU6lc0NxsZGUGQRPwy4dPky169do7y+zmAwIAgDDMNCliV6/V5ccilh0O11CYMQ3w+QJSVOH4iE7TzdLWqNOpqmU97cQDNMEESarQ4jo+N87smncJJpfM9HRMT3ve1SPz7NVgNBEjg8dxgn42AaOufefYd0ysEd9Eg5NgIhoihh2zZB4OP5LgsLiwwNlcjn88zMTJNIGIgitNstBASGR8fIF4cYGhrC9z2OHp1DNzRUTeXo0XlUVWFrc4soDGm32nQ7PYIw5MyZM/R6PRqNBpsbGwS+T7E0RKfdwXFSmJYZsyZrGoauochxCZt0Os3TTz9Dv+/S6/U4f/4CgR8iSbGho1qt0R8M8H2PV199latXr2IYBmEYsbq6yre//V2KxSEEQaRarWCaBoIQochinO+cSVOpVBn0fQYDn9s3bhD6Af3+gNWVNUZHRtAUiUIxTyqVwg0C1tbLRETkchk0VaHVarC5WaZS2USQBTL5LLKmcuHCBT744H1qtRrl8gaHDx8m8ANOnHiEI4cPsb62xuWPrtDpdCmXN9mqVnn0sceYmZ2l026Ty6RpN5uUy1tIksLLL7+Komq0Wx3W1sp4AQQTI5h//E1EBNKpFLIoEXgui9evx0A7kIgUja/8xleZPTTJs9/+Di8+9yMIQsIozq708D/zPrgf+Pl5ykH97QYqB32+99zdOa87cpBO8R9L1NtBBoWf5fj2XveD9LF73h5kfLv1sXuVPPql/OLJf1Ke171sw/vJg/6w7+XZvN85DwNwgu+/AMSe1/uds59V70HHtxeEPUgfn0X2WuAGgwErKyukUqmHbmtnA9ixYEqShCzLd7yxd4PR/cHgXk/2jgc1Dte5u2xP7Ek92LK6I5/87IDjDsgJ2s/yd5DcsWQKEWEQEgRR7GHxAv7kj/+EfELixOlHyQ5P8Dc/foHRiXEmpiawrizxm99/hS3LYGWkwIWrVzEME7/XRwSOn3gE0zB49gfPoggSoR8wPDJKs9miWMyTTMT5crKkUu+1GHR9Pjh3joHb5MTJU4ShQrc94MLFi5w4fYKpmUleefUNDs8dJ5XUcb0Bn/vck1hWgg8++JCxsUl0XWXgeqysrBGGIaZpIorQ6bRIOVmGh0cZ9F3CKCSVTiDJEbZls7C4gBd4tFoNep0m3U4DQ7ORFAUjYeEHPq47QFMk8oUS41MzXLl6g0ajyfBQHsH3SKdT+N6AoWLsjdIUjV6ng4jAxOQEV69cJZVOk06lqdVqcekeQ6HbrjM0lKNaWUdTodWsYlo2ohjnidm2RbW2RYSP14ekbdNqtxi4AxRVxUk5KIJEvdIgm8uwtrZCNpshkXAoFko0ay0mJ8fRDIVMPhuHsosiYaggSTKXLl3m7NmzHJ2b5+vf+DpjoxM8/dSTGLrKe+++iyqrXL54jcLYELbjIAgi5c0NxsbHEUSQFANx24CzUV4n9D0kEXrdNoZhM+j3UFQFwzCp1xu4AxcrYSFKEul0FkM3MQyT0tAwkdeivLHB1PQsERBGPrXaJkuLZUZGRu+E8qmqTBQFNJstbDvOvRz0+/ieR7VaRRQETp46CYRomkrCshGRWF/bZGxyhvW1VRzHQZYl7GQS13PJpVL0e11efumnDJeGyGUzvPnm60xOTcf1Sk0Tz3PjciGjI4hChKKKCGLE5uYmSTvNcGmSv/iLv2T+6CynTp9EluNyJ7Zt4vkDHjt1GoCr165RHCoxc+gQqqbTqNZQFRXP8xn0+2iKwtrqKv2+i+d7CETcvHGdbC6LKEmIkbJN/BOi6yqtVoMg8Gi3G6iqydWrV7CTNqals7W1ycLCTXL5Ek7CIe0kcZI2oiITCRKGbnDx4oeYpk7gu9RqNQI/oLyxCaKAk0oB8ToZ+D6KIuEkU6QzWTqdHsmkQyaTRVJUWq0O2VyRa9dukrASaJqC77okjDgv2TANWt02VtJGlGVs3eTosTmOHj3C4uJtJEmgUt2gWt2iP+gwNJxncfE24+OjJO0Euq6jahKblQ2clE2v10MQJN5/7wI3b95mYmKckBA7mcAwdYIwoF6tsLa2yuTkFJqusbS0hG4YdHs9NC2+r+tra9TrMStxREhItE2uFNJ3B4iSiECAKAnYiTgi4sKFi5x5823Ovf8hkxOTlEolFEXh1q3baJoZEztFIQsLCwwNxYY2wzB47bXXcN2QEydP0mo2GRsfZWx8BMPQaDaqlEpDKIqKlbARJYXv/+CHfHThfWYPHUKSZNKpNNeuXKbdqKOoGltbNQaeTzqbAyDwXSqVTfrdDknbxkmnSNg2UzMzOKkU2UwK07AYHx+n3elw88YtMtksH136kH6/y9z8UcJQ5ujRY1y8fIkgiAgin7fOvMFwqcjlSx9x5fJVDs/PIQoSE+NTEAlcvvwRjWaDYrGIkM+hnHmPczMlJuZm+OY3v8780TnGc0UuX7lJIp2j02sjRB2KRQe/5tIfeBw+fhI3CkECQQiIhI/D/h5cx/r4/X75kXe+e/bleP87wPN6r+4O8oge1N9B4HWvF3GvR26vFysIgn3b/HTg6iCd7v6H3zWX4f29rA+jhz7o8Q8a2bg76m3v5/udu3NcXLP23nrafmN6GM/rg7T7M5H/QJ5XuD9e+KzyMG0cdOwvRNhwFEW/u/33kwDkAK/j3gfiXsftB/zudeN3FqowDJFlGd/37yrMDNvgVRBQvvZ37mr3fuHBDzAfBy60OwvEfov0Qcd/GhEE4Q7AtCwLRVEe6MHYPS5JikN6B4MBiqIQhuEnLJp3LzzxK9oOrRUEEVGUEPaE0+y+PkLusNsJsM1sF9Pb3W8+PvE9IYIIMUleGINW4W4Qvd883bXIR/HYo2h7KMQeFVnWIRQIXR874fDsd7/D2tISR0/+KrnCBNVqncAbsHD7Jkf7Eenf+2Mqxw5hnpqn02mwuVHm+pWreH6T04+dYnm1TL4wjG2l6LY7pJ0UtWqdTFrHSgS8/8FZHDuFqujUtqrMzMwwMj7B5NQhJAI6rTLFQomx8RHS+RRr62t88P77nHrkGIIKkhyHlJbX1/jw/Hm8IA5tbLfb+GHMavrRlcuk0zkSCYdeq0LoDVhZXmJ4dBhJ05F1iyuXLqNpCteuXGVubg5FM7DsNKsri/h+RC6TpVHfRFVlFhbWyFgxz/Pw8BDFoSJR5NPqNFC1BLaTRNP07bA8n6STJmE7XPzoI1566VXm5h5B1wz63S7tZp2ErTE8PMzq6hpDQ6OIos7mZgNJN0ECUYkQhIiUk0UWLfregG63BZGHocqk0xkCPySUZKxkBkFUccMuuUKSfCGHJIm89dY7aIqOZZmxV1rRcT2RMOghSDFAXFtbY+7Ycar1JiMToySdJIaukc5mSaSSjM5OYZg6oeehKTKqJKPoKp6/XWJGEIk8D1VWsJNJap0uoqohoiHJCr1eF0USMTWdwPXQDQVZBFGMGWgrWysUcklcPySMJJxEhk6ri6FpyLJMOlOIw4gVKQbKIkiKzMr6FoIgYOgygeeyurZOws4jyBa2oXD1o48QIwHNMBAVlWQuS9ax8Qcuhqrx5utvMD4+jigKtDsNkk6SmdlZkqk0rh/iOFmymQS+NyAI+lSrG1iWjijCwPdZXlokDDzajTq5XBbDshgaGSLlWHz9T79BpVJFViRs26JQyCDKGu+dO8etmzcYGxvD1FQatQpREHs2BQTsRALPHdBsNsjmiqiqjqaZ9PsBthUzWJeXFynkc3Q7HTzXo9dzSTpZLNNhbWWNhcVl3j5zlseeeJykkyCdczAtEy/oI0gakmyxub6O26sS+SLP/c2PkGWN0bEpVNXESCTRFJV0KkMUhFS3trAMPfaEDvw42iQSEAWJarVKu93E1HX622G/+XwaSZHiZzGIKJc3yOWLaIpOFESIYYBESLfnMvA9XN8jjEISCQuCkOLQFIOBiySqiKgxUZfs4g5iZnfbtqlWKvR7Lh9dvsah6WnOnn2bR04cJyIOzyeKiEIfSREZGs7h+z6CoBBFEUnHQAx1SiNDrK6vUhjKUyyW8NyA9947x9RkXK+23W5y7cp1bl5fYGR0FAEJENBNi0QiwfDIKJcvnyedSTE8PIwkyURRiG7I6LqCJKpkM1kKhQKZTIbKVoWxsTFOnTyBaegIgkir1WBtbZkw9FBlE0M3CHyflaUldFVmYmyY64sLjAxPIUk6ohRQGEqTSqcJIoG1tVWmpyb53l9+h4RpkcsW6Pc8csW4prYgCFhmgm67S6vZ4cbV95idmaG8Vub1196kWCoginD2nQ9ZWd1EUQ1mZqapVDe5fOkSK6s3efyJx1haXubUqceobNaYmZ6h7w1Ip1OEUUAQ+aiGRj5fRNMNggj89Q1e/eELjH3tH7G+UsZJOqi6QTbtIONjqQpmIsMg0Gh1Vrh04UMKTp6RwjCuF+CqIhoyIgLidiGTnVd4n1I5O3vzzvsdJtnd76NnXwIExL//pZ2NeXsvj1/308n203P2GvP3pgLtJ7uB0Y5ncK/usZ/uuV8buwHk3pSou1OKhH2ve7d8Yg523YO7mXrvBue7xyrL8l26zd6Q693v9451vxDe3de7n5F+x4GwW3byf/fOV9zGx4zSO46K/XS7g2Rnvg8qobP3Wh9E5z9IHsY5ceecA14HgdEdfulYRRR2nXDvXnaPZbfxZUeH3q1LP4gcpNfecxQPcM9+IcDrTs7rpwFaDzrJD3LO7s935zvs117w/RdBAPm3vnrftnZCRu9VGPqgc/cb0+4F+36L7WexwuzEte9Nyn5Q2blu0zQJgoBut3sn/3PnddAYP7ko7T9noiju8DLd3YZwt+f1oIV5Z6wHXcPDGwLuXviiKML3PFqNOoZu8L//4f/G1//dN3j+xz/hn/6z/4YIqNdrDAZ9njKSZP/nP6L3+Eku1LZw3T5vvfUWExPjPProY+TzWcIINN0gjEJWl1eYnZ4kX8iSyWfo9ju02j2Gh8cplUYxLJNarYrvhySdJGEQsLG2RjqVYmOzQr1RI5FMous6M9OzDAYDEkkL3/PodbsMDQ0RBAFPP/N51tfWKJc3mJqcIuWk+avvfZ83TPKPAAAgAElEQVQwjA0c169fozBUwnGc7TxZC9/3KOZycdszU0BEr9dFkiCVzmI7aT766DKGqW2H9Zp0uj3CSKTT6aPrBjduXCOXyZB00jFZi67S7jQJfJ8gjEkDsrk8Y2NjuL0BYeThBy6apnDh/HWiUCCVSqFpCkHQR9MlTMshCDwa9Rq+FxD4EZvlKt/85p8xMlzCthM4js2Vq1fo9vtUazUSiQQCIr1+l263x9rKFikniyRKjIyMIAgBZkIDQUSSNGSgWtmi3+ty6uRJPHfAyZMnsGybytYmZ8++xczszDYrqbQdHh0Q+AHC9m9OlhVajRbuYEC9VufWrdtcuXqNmdlZ1tbLvPHKG1imwZtvvk6z2aQ0PMLC8hIpJ8Xi0hJRBO1Wm0KhgO/HnlRVURGQWFxcoNfvUaluksnmkOTYANRut5HlmGgmly1gWSa6qiCJImtrZRrNNqVSCdftkM/lEASBRqOBKEjouoEsxczKYRBwe2GB6dkZoihCVWUkKWZJVlUNXTdQVY0o9KnXG9h2AkGIyWY2NyqkMhkcO0HStrEsC98PaHV6mFYCVRE5fvwEqVSK1dUVJicnWVxcQNdNAI4cPgwQMxCLImEQ8dxzz1Gr1VhcXODa9as8/dTnEESZCxfOc/bts8iyxHvvvcvrr7/OqdOnCKOIVqeFbpqks1l6vR5blQqLC7cYGxtH0+KwWddzSSZTdDp9NE0n8GF5aRWikHojrleraioTkxNouoppGdRrFTbLG7z55hu0Wi2mp6eoVCuoqkq9XscPAgRB5JVXXo0ZwO245JFlWSwtL2FZFu12m0wmjaHr6IZKt9tBlhR63T5LKytsbGxx7dotPN8nlUqRdGwkUca2EnT7Hk4qzv9dXVknk0kDPmtrGyRsA0mKS7PcuH6T98+d58Tx44yNjVGpVjBMA1VVGAz6iKKEbhi02k0GA49Go41hmBiGyvrKBn23RyqVJJPNsry8xNm33ubUqdPohhYr95GAnUzy7jvvUCgWUVWFxcVFXHeAk0qSzaX5/DNfZGJign5/gCxLfPs73+bzz3yBVqtNq9UhnU7T6/UwDANJkmg0GmxVNlEUlVarRSqVQlUVSqVS/PuSRFzfiz3egoCiKDz55JPomsXlS5d58cXnmZmewjQTyLJKoVikWqlimQnm5+fodjt8dOUyjpMiaScREOh2+zSbbdZW1zl+Yh6QWFxe4eTJU0CA5w7w/ZCnnn6KXCbDc8/9LceOHePChQukkjZH54+iqyqZTIYwiuj2u0xPTuJ6LlEY0et0uXXzJteuXuPMm2/yyLF5JDvBExt1Fr78Of7gX/0hfhRQa7Q4Mj9PFEGz1UEQRSRJZm52nP7A58c/epEjR4/hpJKIioSwa9v7hFLM/p/v3s/2Mo3ufHcHPNwBr79y/x1zn731fjrOfn3e67uDjnsYXWk/Y/hB+tru4+43zgft/yDZr0zh3uve7zofFOAdpGPukFTtbXt/ne5uB8T9+t0tO86P+93PvWP+LPP6Wc+PG3mwfj5tYw+Kb+7V94M8Zw/bxy8MeP20P5KfF3hdX1/HMAxkWd7X2uVvhw0/CHjd/dnDgNf9ANNB3un9zv+sD90OcLtXMfB7yU7+bGyRj8epKMqdOdhde22/c3dkN7th/P8uD3R4wAJ4AHjdb/7vl8/xsL9NESEuSRBFCLDrfUjaSfPay69S26oxOz1L4Ef8vd/6LVrtNn/x53/OP/n13yT13/4e0ZeexC/mEURYWlxkfn4O1/VZWloik8nS6fYYH59gbW0NgYh8PoskCdxYvMFQaYRWu0+v5xNEEUEUhz/WanXa7TYXz1+gWMjTbrWx7STdXo/S8BA3bt6k2+4QhZDKOJimgSxJaNtAQ1E1rly+wurqKsePn0SRVcbGJpBlmaGhEsOjo3HOVjaDJIkIQgxULdNkYeE2rjfAcWwSibgcS7XeRJZV8vksohDSatYZKgyjGjYIMqurZcIwxDIM8rkMy2vrSKJIGMU5rJZl0mp1sEwT34+QJRnT1Ek6Nr7n0mo3uHDhKp///OfxvAGGqXHlykcknSSSpLG5uUE65bC2vs7aapmRkTFu3bjNyZMn8NwBhhGT6uTyeTzfJ5l0ADEmvLGTEMl4HszMTCJJEooq4EcesqISBgJCGMbldhwnLquiyBCGdHo9tra2eOfs25w+dQpJUhBEAbc/oNVs0Wo00DQNWVEY9AcAdLs9Xn/9DeqNFp12l6OPPMKPf/w8W2sbFPJZnnrqc6QzaRRVxUokEBBwkg7mdt3bmFDKYjDoIwgig4FHubzBuffPUcjnKZbyiNveEFmSkSWZ69eu02g2aTbqcTkOQcBOOrz44k85cfwEQeRhGDqmbnDlylUSlo2ux6zFge8TEZHJZtB0HV2PSbKkbYI1UZRwtxnHFVmKc5JlGYhzswViw1mn00FVZRRF5vbiIvlcEdPQEcWYIVwQBKanp5BkCU3TMQydXC7HxsYGw6XheM2RVV5//XVGR8eYmZnl7Nm3URSZRMLCD+Pne2VlmWw2y5NPPEEul0MQBYqlIkEUghCXiVlYXGJmdpZsJoWmqTFBUSGPoZsEQYhhmERhyNWPrvPTF18mkTB59LFTIIi8d+49stkMrXYDVVNpb+dZz87OMjxSIiKi3WqSdJIEfkAhn0cQ4vzvY8eOMTJSottrs7S8hGGasZexWsX3vZjVWVdIOQ7dbhdJkslk8limQ7PR4oWfvsDFi5d4/LHHUFUFdzDgb/72ebK5NKqi0Ov1kWWFSrVMNptDliXC0EfTDPK5AmurG+SyKRJ2glw+FxtbAE3Vtj0hMpIooCo67iDASSZx3T7ZTAY/9OKwbCHCsR1KQ0PIsobnusiyhGma3Lh+g6effhpFUe+UB3K9PnbCpNfvoKvWHeOe57l88QtfpNvtcfbsu4yNjbG+vh57goFWq8Xa2hqSGJfMeeutt+JyM36ApumoehxpIMsyiqrw5pk3GRsfi9nv3YirV28wMTHG6toyw0MjLC+tkbBsPM+j3+/TajVptVrMzc+hKDtlbGQGAxdZUmKitYkRJCV+flNpJyYCI6RYKEEU4rku1UqFpJ1gZnqatONg6DqiGI/Jtm0KQwVqlSrvvP026XSaixcvoqkac0fmKJfLTI4NYRcLCEvrBLUaX/of/jtOP/44hw/P0e52UWSF73z325w+fSp+pgkYHRnDD6HT7ZFMp5BUGZH9vXP3Aq87e+Z+390PvN4v7He/tn6W4PUgb+5BY9ivvZ3r2E832gsM917vQSzGD9r/QfKg4HW3Trn7Hh6kh+0+/l565l7dam8fDzP2g2Tv+H+e4PVe1/3Q8p8YeN2RzxpB+gsBXh8k53W3POiP8qDv94bY7n34BEHAtu17LjTyP/gK8q4yOfuNDz4GaLA/mcB+r4NCNHafszvPc698luT9/cZ4v/Z2j/0gRl+4m71vv7Z3PLOf/PxjsLp7LqPoYwUW2DPPnyR72j3W3V7W3XN9h1TpATaXe+XlinyyjR3rpBpJ/PP//p9TrdT4h1/7hxTzQxw6dIQXXn6J3//93+d3v/aPyP6P/4peNklzpEgUBrx/7j0cx2FmZpZisYgkSUxNzyLJMlHo4yQT6LrC9evXuH7zBsdPPUIQiPT7Ee1Onx/95McMBj1S6RTZTIbK5hZbm5v4QUDSSZHNZygWiwx6XUqlIXTdIGEnWS+vY1kmpmGyUd5AUVWSSSeu26kbrCyvUyrF5XImJyYQRDDtJKZpslFeZWtrA1mKWS3b3R5+EJMLKYpMp9MhDENS2Ty6ZuL7HrohoyoioQ+CkuD2wiIrKyvcuHaN4VKRwaBPvd5ldHSURqPK4tKtmFVYEJElmSgUuH37JuXyGhOTY1SrW6RzWdLpBH7QJ2FbSJJCrdrlJz9+hVIpy1CxQBiGbG5s8crLr3Ls2CMcmZvn69/4f5ianEBRZSJRZOAFuK5HIuHguj7dXod+b0Cv6/PjH72AYSqk06k4ZzYYIAoSYSjyra9/k8ceexRBiJBlkVq1ipWw6HS6jI6NMlQaJpXOxF4M30OTVeq1GknH4cyZMyQTNk4ySaNRQ1FklpfX+LWv/HrMGhrB5MQ4Tz35BKlUivLGOqquoRlmXIJGUmi12iwvL5PPFxi4bsx47btUqzUuXLjI3PwcYRgxOTlFvVFBkkQUJa5bKiDguh6iIOA4STKZDJ7n0Wq3+cLnv4AogKLLDPp9PM/Dtm3+7Jvf4qnPPY2ZMPnWn32LdqvFxOQkoiTi+T6BH3DhwgWqtRq+75PJZlhaXMTtD0g5KVrNFt1eF8tM4PsBkiiytLRIFEGlUmN4eBjD0O8YRZqNJtVqFVVTuXXzFo6TpFmroKkKmqaBIGyfW2XuyBFKpRKWZTE/P8/8/FxsAEnEzL8zMzNkMxnCMODatWscP3kaUZLoD3rbxhaJbCaDqqnUKltkslmiMKTXG7C4uIKuW+iaxqDfJ52OGWzXyuuMjo/SaLQ4dOgQpmmQz2dRZBk7YXLp4mUM06DZbOK6Lsmkza1btxgeHsbzfKq1Gh98+CHr5XUmJsa5cPkCQ8Ui2WyOWq2GYZioqko2k6Fa2aTVbGInkyiKiu9LvPTS67jugK9+9Ss8+tjpbeOhzCsvvczpR5+g3WrgpBwK+SKiKGKYGkHo02630TQddxDntp84eZpet8XQ0BBhFKGoCrdv347P0Q067Q6tZoNEwiblZHAHfXy/TxQF9Pp9oijCcVKEYciPnnuOyakpEokEa6vrXLx0EXe7hrJl2dt1pq1tRueQtbVlTDMV51lL4KQcJFHCcwO2KjVmZ6dJJBJUKhUURaHb7ZLNZikUcqTTGWZnD2EaFn/5ve9x+PBh7GSCwWBwZ2+wrNiQtrlRZn1tg63NLR599CTzR+fx/RBTt9jc3KJQKFIsFshms4hSvFdc+PASKysrjI2NsrqyQrVa5fPPPENv28iYSFiknCStdjNmgg8ixkdHSSQsZEkim07jey63btwmm8uxvr7OyOgo771/jl6/x1A2z9Wr1zhx/DgJy6Jeq+N7Ps88/TStVg3XHeCmkgy99Dby7/xn/L3f/i9oNBo88djjSIrEk088Rr/XptNu8Wdf/xaZbIFjJ47z9W9+A7fv8ugjJ/GJYgPSLqNyvJkerGPdT/+6s6fW2wgTwwgnD9/33N3/7wZSu/Wo/fQdQRD2dTDsbXPn/70pS7v7vFfa2l7Qurf9g9o+qI395NOCJEH4OMVrx2EgSdJd+bt7x/1pdejdwH3nXu1H1LS7j/3uxV49cPfrQXX3TyMPgh8+M2D9RGOffhx3n/NJLPEw5z9sf/e6Z7tlvwgE+CV43X3MpwjffDj5LJaavbIzzgcNFf40sh+4/f9aDvoh3+v43bL/efeoJ8bdDxIQ56/eY3M96AG8lzzoYieGsad15yVLEstLS/yff/CvOf/BBb7z59/hn/7X/xULC7fx8ZiZn+drk4c49H/8Oy4lNTqTw6yvrUHoMj4+joCAaZi88sorHJk7wo+ef56p6SmiwOWln77I0bl5qrUax4+fpD9wAZG/+eHfUC6v89v/+B8zOzNDPl/ENEws02BqcoJ8IcfY+DhBFOD7HoHv0W41cX0fJ5Uml8szGPQJ/QBd0/D9AN0wMAyVjXKZxYUlRkbG+P5ff4+nn34CQYwIAmg1a6QcG93QCIIQ3UgQhpBOp1E1DV0zWFpaJggiVldXUBV1uwxKG0VTqNfbNNsdLp4/z5NPPEapWKAwVCThJPnbH75AeWODJ544jZ2MQWCz2UWWFFrNGum0Q2m4QHmjTCqdQ9NNosDDti1azQa2nSQKZZJ2Gk0LCHwX3w+Ynpnl9OnT+IFP6Ic8euoEURRSKBaptzpouoVj23iej++HXLjwAYmESTabY3h4lGq9wtDQEP1uG98fYJo27WaPRDLBmbfOcOLkCc689TaZbBHLisGSsF1GRBBEPG/A0sICCcsmmXKQFJnR8TFM0ySKIhQ5zlUsDY+iGSYffPABly5e4NjReVzXw7QMVlaWGR0dpVqpceHDC4wMlzBNg0wmHROv9fvbyrqJ4zgcOXzkjtKhaya2bWLo+raxJ0IUBBIJk0wqh2VZbFWrpDIxy6876FHZ2sC2bULf4+qVK4yNjTM1M4uiaURElIZKTE9P02q3uXrtGqZlARFTk1N0ez10I/bGNptNxkZHcL0BoiTQ7XZQZAXfD/jGn/4pX/jSF5EVleLQEJ1eh4RpQBTiegMy2SxJ2+Hce+c4eeokAgKS4CEAsqLSbnX4/g+e5ciReUxDp9vt8f3vf5/JyQlM04jvgyQRRSGqqqAqCu+/f44wDJiZOczLL7/M2OgIzUadfC6HpqpUtyqIgki1VmN0dBRZlikWY1DXqFeJCHA9l+GRETY2N5mYGEXXEyTMBK7noSgxS7FlmRSLo1QqNUwjLiMjSRLF4hCI0Ov3SaXS9Pp9nnrmKTzfxfMCiqVhAj8ijCIsw2KjvEk+lyflOLFHW4pzEa9cvQGCRMLUmJmdRlEV+r0OW1sbzB05RCpdJJEwuXTpPN1Ol1QqA1FEq9Uml8tCJLC2to5pWtse0rgW7fLqCnYyycLCIqEf4jgO75x9m/GJEcrrZSzTAiEkilyIBAwjDgUXBZnyepmUk0IzJARRQBJlVEUjDCKWlpYpFvK0Wk0s00QSRXTdIJlM8fLLr3Dx0odMT09Qr1cJw4BEIrkdeh6HhV+/fp1EIsHIyAiVSoVOp4ssq5w9+w6zs7NMT09Sr1dptprksllkRYmjA8KQRqNBGPSYGJ+i1WoxNTPB1uYGFy99xKuvvEKz2eDo0XnK5TKqqtHv9TF0k9GREWZnpvjoyiUUWSKXyyLLIuc/vMjU5ASmqSMKcUhxNpsjigQiBG4vLNAfDLDsJL1en9LICD/96ct8+de+zMbGBoahMzoyQq/bY2FhgcJQEU3XOXzkCKlUinq9gSjJZHI5ukRIboD5/ee5/ugj/J2vfpmRUpGkZaDLEV6niaVJ1Jsev/KVL9MPXERB4MrFS0i+QHq4sH9a0KdQ7PfqT8LJI4gnj3BQ2s+DtgkPB/j2grP7gfC953wa2WuIv1d/Pw/wugMmd+eE7nd9n6Wf/c7fiazb7T09CGA+iOFiBwTvdTr8LOU/uK78s8TBB8zppzn3s/Z9v3H8Erzukp8luNzd5s+j/Z/3A7K7/Z8noH8QOcij/CCy22J38HkfL8Q7BAk7C/ZB4HUnv+LuwuFsf39wov9B8iDXFEUR0i7waloW7759lls3bjI7doxbN29R3tjgq1/9Ms1Og+PH5xFef5/D//d36Dx2jNcXb3Lz5q24yL1tcu36NTY2NimXN1nfKDM/f4ThkWFkSWLh9k3mDh2KWT11E9NKEIUCpqFTGipw+vQJdE2nslWh0+uzurzC2uoK+VyWar1KSIiTSqEqMv1ul0qlwtjEJIoaK5SiKNBqNrfDK30kRUaWBQr5AmurZebm5pgYH8dJ2yws3EKWVPrdDpl0ElmRUVQDVTPw/Tik8sUXf0o2m6NYLKKpGrIEkiQjSwKGpSOKIql0gWQyyXCpSOC5DJWKhICkqty6vszS0iLHTxzF913CMMKx05TLm6iqSBB4dLod0uksjUYLTbWoV1vcunWLfCFPEHhASNKxsMw4fLXX7aIbJqqi0Oq0+PGPf8zszBSKItPudiiWRhEljSgI2NqqkHLSLK3cYnRsGFGUSSQSDJVKyJLM0tJthoaKBEGEqiXI5bOUhkuouoaZsEmls4iSiiiE8c9DEEEUkEURUYgYDDwESUS3TJAEBv0+oigQBv3t2q4qURT/rjc31jh2dJ4rV6+RL8ahnrZtc+7dc5i6yVApDjn3fQ9VVUCIEEWQpNha3m53cF2fcnmT1157gwifTruLLMuYpkGtXkOWJa5fvcnm1hZ20kHVNCRRQBIEOu0W/f4A0zTi8ilBSG/gkkylGAz66Jq2Xb9VozRcwk7aRH4Y1+HNZTAtC1EWt1nMAzzPxTA1BoM+juPQbrXxXI+R0TE0XSMCVEVBFODWrZsUt+d5eWmF8+fPMzU5iZWwaNXjqAJV1UjYSQ4dnsO2k9SqFRwnxdGjx7bJTeJ2EkkHXddpNBrU63UMXWdlZYWkk8FzB2TSDrZtsXh7AUkUWLi9gCDIFIp5bt28EQMow+AHP/hrSsU82Vwa3YjDysfHxgjw0TWbixcvIAoirVaLUmmIVrNFtdLcDnU2iSK4evUq+XyBXr+HuK2A6rqO4zhUKluUhkdQ1djwIUsKa6tlBr0BF85fAELspI0kywiSxNraBhcuXMbzuhw+fJi+28XQVYIg4INz75LLjZCwjbjsi6axtVnFMDTcgYvjpJAkmRs3byLJIo5js7kR1wAuDA0RAdlMjlwuT7PZZHx8GKKQ4eFhur3udomdKr4XbZcJ0ghDAUmMmZcTtorv+6iKQT5fIGk71Ot17IR1hwuh3e7Q7fQwdJN2p82jj57CC/pYCWPb89zkpZdejsOTs1kMwyCTybCwsECv1+Pdd9/n0Owhev0+2WyKbDZFp9tGEkQG/QEiAs1GgzAIcewk2ayN6wYsLS4zPjGOH/qk0hkeOTrPiRPHGQxcyuUyhmGyvLzKlY+uMjwyhOsO6HSazMzO0GjUkWWZXCpLs1Fja3MDO5mkUqlhJ1OcO/cBsqLy5pm3OHJkDkXVKA2PYFkW73/4AblclvfPvceR2UOEQcAbb7zJF770RVLpNFuVCqIs0+50MRMWphXXkT3z5puIpQK55U0e+9KvYD42TzqZoLKxxrtvv0GnVcXrdbCzo7iei6iJjI+OMZQv8PKPXmLqkcM4jnMXAPk04PWT5Dy7wdPDgdfd+sTeqLW93+3ua29bgiA8MJD6/wN43Sv3Imz6tHLQfO29fzuvT0bb7a/j7R3bbi/4z0N+CV5/Nn3fbxy/BK/b8rMGlg/b1l6vr/u7/5rgpbcQf+XJT4S57FjAdv9/Lw/gjhwUWnzQ8feyKn6Wudp97s4isvuadr8+Borinc3vXrkTe2V3mK4gCBAFiEKsYEdRGJe7IUJEikHqNvvmznthOzx3b59RjAxgm7mY7eN3zo/9tTHZkyTKhOHdzMI7IgryJ85nhzlYGCBGEQISoSAjSgqhKBDJEaogEbh9OrVNfu9f/E+YikS7XuOLnz9Nq13lX/7e/4KTzZMTNOz/699TevZFvKdOU1E0ZqZmuXXrJs988RlanS7Do+PIqsahI4dxnBQLC8scmZshCCJKpUl6Aw/dVDGMBGEo4LltFFnmtddeQxAl8vk8ru9x8/o1mq0mhaEhJqdnkBWNer2JntBYXVslnckgyTIy0KnXabYG/Pm//wuOzM3hpFJcu3YdRdb44V8/x9tnzvLkk49j2wbJpEG1skHStghcAT8IuHl7AdtJ4w5c2u0WN6/eAAKGCjkifGQlRJRCdD2LrGhEgoiqatQrW3jdBpJoQgQrqyv4nkcmlQI/YKyU5fCRaayEjaKYGJZN6PvkchkkRSNhJGjUq4TBgPPnL7O4uMn07BCVShUikVQyQ7vVIJm0EKMeCTNJ3/WIpBBBFej7ApPT41gJGyeTw7KSiASoUkCtuU6zWSGZSjI+NoMsmyiahiRLLC3dwkqYOKkMrhdgWRayHOEHEYuLNykN5XHsJL2Ox41rt/ir7/0F46OjGKqKhECj3kRVDQzTwg08JEnh5rUVlheXSaUMBu6ArUoFyzIQogjfc8lmc1hWgrGxIYLQBwEUTWV4bBjDNlHVBCtri2xsVlDVBIKoEoTgBT4hEVEUIEQhr7z8EqokcXj+EBMTk6yslrESSXTLICJkq7qGoSu0azWGRoZxA59mtUp5eYXR/5e9N42x7Dzz+35n3+9+b+1r791kk81tJFKUxLFnMhONZBtBnACZTBBkM5IvCQz4gxE4BowEieHAhj0JEgTJYDLWSBqJotaRKIqiSDbJ7ia7uTd77+qurvXeuvu9Zz8nH05Vs7pY1WxS1DiemQc4uFVne9+zve+z/v9TcwRxiCBLyLKCbdoQxLjugG/86Z8yOTmRAWWpKoHvsbRwFd1UeOXV1ygVxjh35i1Wb92kOjWPLKn4no9j2gR+iOU4GIZOGHgUCzl8d4jrDlhevkUQ+ORyFUgi8gUd24RysYAmGGi5PHY+z+r6Khv1dSqlArIAuqlz6eJVVNVClJUsM4CAjY0upWIeTRHRFYmbC9d46PhxksTg2Wd/QH+wgeM4VGqjtDtdwjhg4A4xTIOxsTF838XUVY4dPYCiGiiqSJK4RJGLImkIiUK73eb0mdd48MRxNENB0w0EUeZHP/4euYLD2NgESZLw1jtvZojKukwag2XaLN5cwrEtgqBPEISkCTTqXWRJ58WXXmZ6dprl1UVmD8xj2Tm8ICZNoVCyOHhkmn1z+7EMBTlNIEnodHuUq+PYTpaaHQQJgigjiCm5vI2q6awsr5MrlLK0WcuCTSeXIEm4gyH9dhvb0ui2GwwGbXL5MmvrG3huRKPeZnmpzvzsERTVoNftIksC/V6bkydf4ujRYxk9UK4IqYSiqrTbLQ4c3IeiyrQ7LfrDPtWRGlGSgCwyMTmLIIloukFjo0M+N0p/2GN5dZGZyRnSNCFfyKObKos3rnPk0H6q42N4fsDU1Aydbp9Or8fI2Ch5yySOQ9565xyz87PIikqUCoRBiqZbzM3tp7nRplgoYhkmnXafU6fPMDE5QaVSQVY0ri8sMTd3iO9+98/wPJex8XF0zaaQH2E4SLAcFUnTmZieA1EmCiLcoUvoR3TaLa4tXKM2UqNWG6HVbmPJKss3b3Hk4CFK+TxXr1xmdWWJL3zxtxj0MxCw18+8QbWS4Ro4tsUbZ04TBSH3HT3GBxcvMnLoIOVnX6RzfIaVYYOL77+NaWoUR0dR80UEMWVkpMqg189qfjWVxfoSzctX2bd/PygakapCEqCmIQji7fl357KJJf0DQGkAACAASURBVPyRJRU+hMcVRYH0xhJJq4NYzO06t+6VpbVTx9gtxXevqOLO/bba2Ymmu5v+tNd5duOR301f22l07aaHpWkKosCmJceWeoIAgihu3r10c/u2bTvu2/Z7tdvvdmaH3dKwt/S7j5OdNbJ3tn1nHz6UOyOpH9IiCrcT0rK05gTIAgxbNet3nOXfYEBmL/nw+fGRZc/e7rHh4zIyd9Olhduvzh1vBBnK96dPhb6XrNa9tu21/q+N11+DfFqjbvtv9Mffg05vV57Xj/v/s+jTX8SHvRPVeKdsfXxBENymwvkk4E4fMd7T3VGU0z0QEbfO8XFezr28sjt6s2sft2oMPtrvlBiRNM0oLYLQQyRFTBOi/hBD1/hX//IP+d3f/QrTM7MgiOTzOQ4ePMiwO8B57lUK//3/iiSKeE89SuzYBH7A2uoqK2urjIzWKBWLSJJEEIQUi1kqb6/bJZd3uLW4hK4ZvP/eO+RyFu12B98LOXfudbrdLidOPEy5XMJxMo7VY8eO4nkutVoVVVUQBDAMHVFSGPQ9wiDiwgeXaNSb1KqjrKyt4/sexWKBIPCYmpokSRImxsfJ5RwOHTrAYNBHEAQWF2/SaXd57933WV5Z4aFHHkZVVfq9bgZuZNucO3eWyckJOt0WIyMjeJ6LqlgA6LpKBrCVEng+hpUjjAJGRmqIkphxwIYBG406CCmWbaHqGutrq0RRBqzUarUoFPI4tkar3eThRx6h0xmgaTKzM9PcXLzB6GiN1eVVFEVFkSVcL6ZcHWXouZiGDSjomoIgiCRJShxGpElMFEfIikyhUEKWNTY22qiqiiAJRFGIoetoup4pSCmbs7pIFMbk8g6CAOfPf4A7DHj+F7/gd37nt3n11dc4cvRohiw6HIAAsiQjCglhFFLIl3jrzXPsm58ln3eQ5Qxoxh16uK6LZdlomoYkgyRKuK6bAWzJCqqqIAoKhaJDrTaCLKm0Wi1ef/0MlVIFTdVwbId6o8lGo8Vjjz3O2voypWIJTdNpNlvYOQtd1ykU8lQrNf7k//0TnEKJ2ugI3WaLl154AdPOMTM3w9r6KqQpqqJy6dIlDDNLPzbMLBoWJzGNeoPZmRm6/R4IIlGU8t6776JrIuNTU8iygGVohIGHqiqEUYgiK/zsuWexbBvD0Mnlc3Q6bSYmJuh1+wSBT7GYo91uIgoKuuHQ6jQRRSjkclnKtaJxa2mZZqtJoVBiZLRGmib4gQtkqbeqKtPvdblw4QP2ze9nMBzSaHZ44MQxTFNlenoWXTeRJAlNU5mamkLTVJrNJrZtoagKnU6XJIGlpUXarTaNRpNqbYQ4ijBMm4nJcSzLZHV1hSRJN8fLmEMHj7C8vMI777zD3NwMoiRgmjp+EPLcc88zMTFBqVQkTkJUVcc0LJaWVvnxj/+carXC/cfvY3Sshm1ZmQmRbJYqKBK6ppImYgaeRkoYhCiKim5kAGpZaYCPrqkYpk6/36Xb7SBKEnEUY5oGAGHok8/l8DwPyzLxPQ/DNMjn8oRhxND1EQSwTIvTp08zOjKCpmn85Kc/ZW5uFss2CaOQEyceYjAYstFsYBom164tYFk2zVYTTVOQJAFFzp69bTsYhsn1hQUs08EPXAxDxdAt/CAin3c4cGAfg16XQrFAs7WBqiqbiO49csUSpWKZJE6QFZm33jrHzPQ0qiyxvLzE/cePo6hqNr4LIrqqIopSBoAnisRxlEW7x8a5dvUKh48cRhAEWq0WpVKZ69evc/XaJR579DGSNMY0LHzP55vf+jPCsEe5WsG0TdrtFvX1Nc6+8QZfeOJJNpobPPnkk1RrVZIk4ZVXX8Ed9JFkmYUb1zFMk3yxwNj4BOv1DW7cWMA0TQ4c3I8siaiqSpqmRHHEzMwM759/n1KxhDlaRSrkqPzpT1h8/D4iUkRJYmRyirGJSUzDxvN8BEEkimJEUcI0La688xZXb97kocceJUxBTGNEUhD2TtvcU/fYMc8m/+Cfw8k3Eb/65bue65PoMvdibO7Vz0/r0N/LyNgtmPBx0dfNDXus3vu69ur13Qz37Rghe+lId+3nx7Sx92G761s7jfgt42yLNude2/03Lnvdjz33/7TN7P3M7nX9J9nnVzF+d5O/Nl5/DfJJH8JuBlm8iTb8WRmvW0bW3QCDPuk5f1XZzeu2cx3wqel0tnvysoHszvUfbhc+csxuwAm7/e5V3/rRa9xrgtr9XoSiBMiAhJSm6GICoYdKxPe/9W1eOXmSf/erf4u5fYeIUonJyVmkNODm//F1xv+3b6G/dxnvb3ye67qIohtEYcjrp0+Ty+WYm59FlGVaGw2iKCKOIkqlEgJZ/WxC5rG8efMWV69eZmxihJnpWSzTYTgcMDY2Tm2khmEa1OtrjE2MIcsik1MTSJJIv9+jsVEnl3NIYoVrVxf45Qsv8egjn0MSZNbXNsgVbY4dO4KmKxSLeSRJwDQMLEvHMg2WlpYwTYter8/U1BzFYpmFhUvcuHGLEw8+xnDoARH5goGhG0xOTlAsF7GdHK12F9O0uXXjJpato6oy3W4X3bDwghhVUwmjiBQwTJNNVz/FgkOpXGLgekiKjG6ouMMentsnJau98fwhTs7g5s1F5ubn+eUvTjI5NUoub6CqMs88/QNmZ/fR6Q0YugmCqGBZOr4XICQZrcSVS1cZDl3K5TKKorDR2MC2C4ioeF7EcOjiOA6tdjMDfJEkgiBA1XQEUUYSNa5eWWCj0cgM9labSrWCk8uRJDFzM/s5euw+er0upmUiiCmarpC6MYqSkKYesiIwMzPPwsINDN2gkC8iCCKKmjmJ8gWHVmuDwBugqSq6rtPr9pBEWLp1i1azh2WpyJvOD0mUOHToAGIiIQpZWma5VKVSHaFYqjA1NXrbCHv7nbfYf2A/URTRarVJ4pSHH3yUk6dewzBNxmojqKLCL0++ykZzg3KpyMhIlWvXrpBxcOocOXIIXdc3azAhDEPqjTa1kQq5fJ58vkin2+KRxx6g3qjT77bxhj1My0CURC5dvkwul8tqKFOy1OQo2jRqLDrtJj977ueYhoGdy6EZDvV6l9fPvMzc3Cz9fh/TctAMi1KpiiTI6LpElLgsLl6jXC5h6Da6KuMOB3jeEE03sJ08lpMjJcXOqYyO1Wg0miiyDgK0O200VcUyTZIkRpYVbizcoDY6yvr6OsVClYsXrlMuV3EcnTAaEMciaRJx6tSrjI+PUSoWGQ5d4gjy+QKOk2P//nmqtTK6oWDqNr1en3K5ytzcLL1el2Ixj6rqRHHEzRuLWJZJq93k3XffZv++eTRJIfBDet1ulhYrSMiinHHPBj5JHBP4AYXN2nPbNjJE7m6Xfr+HYWj0eh3yjkUUBlimgWWayJKIruogZgZ3HEWAQBhGhGGC78V4wQDLtnFyDgIph48cptttY9sO+YKDqqr0ul0UReH69euMjo8xGLjU63Us0+LZZ3/KwsICs7PTDPqDTWqbrM6+XCmTRDG+72EYKnEU861vfIeNjTpTU+OUijkQU2RVQVVUck6Oa9cXGBkZ49q1a3zjm1/n0MGDjI+Pk8/lqNdXqVVrSLK8yUEeoOsGSRLTbLa4dOki9913jF6vy9mzb7B/3zwpCb988QVOvfYaj/3GY1hWRgX0G48+ju3YpCSIkoBhGFy+fIkDh/ZRG60RhgE3Fq5zYP9+arUaaQq1WpX33z/Pyy+fRJJEbt68gSilfPHLX8TJ55iZm2MwdJEVlfMfvMfNG9l9cRyLZ773TMa/29zA9wJqtRHGxsfpDwYZ2JmqUL98mf2vXyZ46vMcevQxTLtAnErIokAURVy/fp1arYZt2xQKBR46coCV9VXW6nUmp2dIEEhSCekuPug9gXV2Rhh/9FI2t28zXndil3xa43ULmGhnX7brT4LwIYDk3Yy47bIVob2T7WBv43XndezULT7uPu08357GyR793Wv/nW1vj8jupjvdTbbvc2fUey899eODBbtFcO/W7v+v5C+Z8bqTfuiTHr+X/JUwXrd4XnfK1uCz9fdnJR9J49hl/XbDZ7c+ZMar8BGqnE9juG6Xj6Zm3NmnezHIfhXZGQ3dXmO6c6LZOWhv3yZJ0p7cqVsTz9ak8uGg//GD4Ue27BhY77Z9+7qP1NAId046t88pSLvyiwWJgCQrKIKIPxwS9ns0V5b5F//sf+HLX/wij3/hi0iKQ3/oE95aRf+j76D+i69TunQL4cRRkt84jiekWJaJIit875lnaNTXmZqaxLItXjt1ivffe5cHjh+n0+mQy9msrixTKDj4QYDj5Oj3Bpw48SClYg5RkPn5c89z//3H2GhkaKjD4ZBcLkev10cUBerr61i2TRgEFEslLNNko9FAIKFQzDE1NUG+4HDq1CtsNBscOLAPJ2eztrbCrVsZlUicRCRJxI///MeEUcTS0gqaZqBrJqWSzeEjRykUqyiyTD5vcu3a5dvUOL3BgPX1dVIkHDuPbWoMhz0gQRQEut0Bq+tNfvyjn+B5ES+88DKBnzA+PoUiqwSez/p6E1k2MHSHJE4o5ByCIECWTSTRQFUNhq7Pz5/7BQf2HeTYfQ/iDrvohoLnDpmdmafX6yPrMtMz0+iGiu93Cfw+3nCIJGusrqxQyOd55ZVXmJqexjAtvv6vv8Xy8hqmaaJpGvl8Dk3XkWUF3w8y2pAkornRYm2tzo9+9OfMTE1SyGcck+1Oh1SA6kiVNBb54Q9/xNmzZ5nfN4dpmUiyRHN5jSgZkuCjGQayrFOtVNFUneXlFRRFxbIsDENnY2ODXrfH2EiVIAgyw6lYJNn8jn78w+ep15cZGanR6/bRVJ1ms4EqJximyvLKTZy8hWUbSIpEFAasr61jGBpHjh4lihL6/SGFfI711ToLVxeY3b+PsfFxhDghcH32Hz7CI4+cQNdV3GGfSqVEvpjHNE1kWaLX66EoMq1WC9cdMr/vAGHocu7s69iWzeHDh5DklGajz/TEFLqioSkGIFOujJIkIW+++SYXLl7g+PHjSKLM6toauq4jiyKPPPI5nHyO/mDA2voGoqwjxC6CAJquUywW8YOQMIzIOw5BOOTW8g1mZ6fRNZ2FhSXiyKPZbGA7DqZt47oeTq4AQoxhKqytr2EYDqqWZRA4OQd30MfQDQRhk3YkX8A0LdbW1rDtAq+8coYHHnwQw5AYDjtYVh7PG1IsFhgbHckcUnGM70d88MF5VlZWWFy8SaVSIE1iOu0+5XKFcrnMysoSoiggySKDoYuqakyMjzMxMcboaI3JqXGKpSJnTp3C91zOvvEGx++/n2d/+jN0zcSwNK5cvoIqK+TzeeIkpdVusba2AgIZIJwg4Dj2Zg14n7GxUSRRoNFoYBgGy0srfOvb38IyTRzHYjAYYJk2b7z+JlGYMDU3gWlZtFpNSuUyYeiRy+colys0mxvousZGs5kBtuk6hpG9w+VyCUVVmZmZ4dChI4hihia8urqKqmqsra3hODlUJeMC9rwhV65c5ckvfIkkiYijAEWRCKIQRdXQNI1333mPg/sP4OTy6JrKsaNHyTkOuqYS+D6W7ZCQcO3aVQQBKuUy/W4PUZRJkoQjRw7TbDZZXFzkoYcewjS0bPySRJ544gkQQVZFJElgbbWJJMtcu3YN27HpdFo8/MgJyqVxfC9AVw0mJ6ZYW22iajZr9WUs26ZarXHgwAGmp6aYmZlCliUUTWV0dAzP81EUDVGUuHDxPMVSkfvuv4+N5gayInP02DFy+TyFQpEf/PCHNBoNoijmpZMvMzc3z4II46lA4YXXEf7mE8S6zaDncfHCeSrlKtPTM7jDDHAKBJJ4yDe++Q3Wlpd58okvYFp51hpNLFO965y7mz7wkdl703gVfu9Ld8zRH2e03muEaLfI525sB9v32W7Q7ZaSfPtadhh4O4MK243orXNtp/7bGXHcru8k91j+dcc177g3O9vYWdoFuxvge7W1dfxH2t1x/3Yes9uzuJe07u364a/yHnya2ti79XVn21u63/ba3U+qpYp7eIJ2PvuPexc+S8Nyr378qnKnDfBX3Hjdqy7iV5F7+Vh2fhg7+xDf5nndnS7ns5Ld+vrrLGbfKRm9RrTrwLZTtvqUpultbtfdZPugdec+9+bJu9vH/mmi1oIgsFfNqyDc6cndakOUgCQlHPrkLIvv/tk3efXlkxy//xjf/s4zPLb/PvjRy2j/+9fJ/dF3kfyQ6Og83oOHoJhn6Hp02p3MuJEVLMtibXWZ4aDPsaPHKJbKPHziQQaDAaury0xNThIEHoIAqSBRX2/w8ksnuX49qye1LIeZ2TlOn36FlISpqWmuXL2CbTuEUUyaxFy/voA7zFJOVSVTTnq9FrVaBUWRaDbruN6AUqVItTrC6GhGUZMB3Ag4do7FWzfRdZ16o8nIyAgTk1OcPfcmqqoyUivR6w8QRIHTZ04RRgET4xPIskS708HQdXTdwDAzdFVVkzefXWZsaJpJmgj0ez1mZ+Z5773ztJpter0OU1OThL6Hky9w4eIVDMMi59gE/pAkjogjkZdePMX4xBRB6LN4Y5GJ8UkEScTJ2aRpiqaplEsVatUqSDG6ZhAnEZ7Xw3FMREnGMnLousrI2AgTk+P0er2sBtYpYFomBw8dxHZMBAGSNCVNYG15DU1TUFU5qyUFDh08iG3qmwBSRTRdJ4pjDNNERKJcLrO8uszs3ByWbSEIAlIKVt5geXUV2ymiaWaGrOsHLC8voygKsqzQ7fawLBtdz6LJpmVhGCaCKBHFMSkCS4sNVA0mpzKQn+WlFTRdp1A0URSROA3pdNvkcg6+5xF4AUN3SKFYQFZkBFEi8EPyOZt2u82Lv3yJzz/5BKqmEQyH6KrKyPgYa+vLFAsF1tfXSdIMoCwKEwRBxLZtkiTNIsxmxjdrWQrVcpmcnUcQRAbugDdOn+PI4cN02x0uXb6MbeeQFJU49Lh0+RKFQoGZ6Vmef/4XzM/tQ1U1NF0jCLP0R4QUy7LJOcUMBTmXw3Fskk2gN0WWEUjwfRdFVdB0E0nK7qWua9iOAwKs1+vkc3lkUUaSZJaWbjE1NcVGvUPOKeD7Lq7bp5jP0e12MQwTWVYxDAM/DBgOBqyvNTJOXcvEcTIU6EKhgu+76EZmlCwtLaEoKm+8fpb3zr/HF574AkHgU6tVWVq+RalQQZblzOFUX2dicoJ2u0OawnAwxDAMgsDHcWwcx0YURAxNo1gqcvDQfnKFPBOTU8RxguVkgE+aouO6HtdvXGdsYoxKpYKqacRRgqJs0QqlkICiqDSbLRqNDXK5HN3ugMcffzwD3UoTbMskBZobG2w0m0zMTJLGCTknR5xEGIaJ67nEUYIsSwRhQLVaIQwjLl++Qr5QQlEUOp0WkiRRLJZxhx66rhDHMb1+n1ptBNO0kGSJOEowTI0g8KhWR9B1k1qtgmHqrKys0un2GBkdzVL9o4RKpUIcpyCAIKScO/cGQRDx7rvvcujwIXzPY2S0hmla3Lp1C9/zKJWqyLJMFIe47pDaSBYpbdTXKZVKFApZSn1KwqDfQ5IFOq0hzz33Mx577DFqtRrdbidD95YMSFO+98wzTIxPsFZvkqYCP/7J9zh06BCVygjLy8uIEqiKTLFYQhQyoKpz584xPz9HEiccPnKImdlZkhQKxSKyoqKqGkmS8tJLL7O8usr4xASu59HpdllaWuLA/oM4xw8jbrQofOMnLI8USSsV5uZnyecLRFG8mU0kAAKe73LsyFFeP3OGo4ePIooy+XIF0vBj59Gdc2m6c7rfMl638bzei95yL0r6Tsf4Xk70uwUCPq69LcTbLcP04/TGu+mpdxh6e5Yo3Zvxule68l4G2L3Kvex/p8G5u/G6W6nVbm19XPT312W83ksbO/XJOxwBe51rz0Y+Zef26NMn3fYXKZ+F8Sp8VpG4vwgJgmDXzu7mSfssZK+Ba+egsNX2bh4m/z/9hwBof/Q/fep+7PWM9urTluxWW/rriLxuDVRRFKGqe3tit2Trnm0N9nvBne80Xm97Q9k9Ukt6b3W0u6U079XP7ZHXzHj9KPfrVtvb38Gta1PkBFmU+Sf/w//IWHWM3/2tv4kswjf/53/KfxLn0U69wzBv81a3xfGv/A0sxyRUbaIgIPB94jhCkRVIU27dXGRychzP7WPoOteu30CUVKamxun3u5sKtk0YBkAKko4kKpv1bOB6HXJ2kTiGMOwgSwqpIBFHsLKyThjHVMpOFnnZhNJvtVqMjY3R77bp9/uouo5pmjSbTcrlMkki8NZb55ienkQ3VCRRxrKzVFlN08jlCoRhBiDT7fUyxErPpdluUK6WWVldpVoaIw4hV1BZWV1ldBOpNAhDhsMhTr6YpYpqMu1Wm/4g4OKlG3zhCw/Safcol2o0my3ixKdQdEjTCE03kWWLNAFBCGms32Aw6FCtHOD5X7zC2OQkR47OYuoaoRfwzvmLHD54hMXFW5imxvh4iZs3rzE7e4h2q49l2whylNELJArLi7dwchZBGGDaFobhgCCxtrxKsVTAcSzCOKTX7aNqFs1mk+8//T0+//lHmJ2bwDRNkgRsKwckDAYuumEhyApxmtDt9ug0MtqZtdU19h84QJwk6LpO4HVBiBFliSRRkUWBdmsN34up1WoMXY84SvE8D0VW2dhoMjU9ysAdUiqW8YOAwdDFtm2uX1pjerZAGA3IOSWSJKt/CuPMgHOH/U0KJptup8/irZscu+8Ig+EgAxQSVNJURBQ9Fq4t4Bg5fCBXzJNTNXrNJnqhwNrKEqQJExMTiLJCmMR4fRfbsfE9H9/3EcSsFtM0NLqdNQLP482zH7DvwCFGJ0ZJ05DWxga1agU/CJEUDSuXR0xTojjG9318L8s2+Jd/+K/QZJ3/8r/+r+h1XUqlPFE0JAojfvSDn/Lbv/vbQIxt6ZmjJ0lotVoIEkiiju9HjI6NgQB+MCBFxvc9HDuj4EnCmCRJcX2BXMEgTROiEJaXVlA0gXzBIh56bDRbFEolBEnBtnPESYqhyqQJmzQtMqqq4PseghjjeR6GoaNsAqU16k3m5ue4dm2B2dk5FEVhdW2JQiFH4MU888x3+c3ffArTNAijiHKphCQrtx1t3W4HEAkCn1arzfTkKJ7v0e60qVZqKKpFo9Eml9cQkbh2+TqDQZ+FxQWe/NIXqI1lqbuGbm+OiSKyLJJGGXidIKQkaUyv1+M7336G3/+Pfh9FkRHFEEmE4dBF10xEUaXv+xi6TprEeJ6LLElcvnyJvJOnWMwzdIfk8zk8L0ASZU6dOcvCwnX+zt/5GpZloWk2rVYH05Rot9rk8jl0I3N2bLSaaJKKaWmsri1RLtWQJRPX63H69Cs8cPyxDACqmEeSRNZXVjLe49UGKRETE2Nc+OACY2OT5HIFkARIYwQhIU1i4ijGtmyCEM69+QYnHnyA/qCP7wWMjIzhuS7tdhtFNajX68zNz6DqEkkSEQUSqqYRhRmHchj5KIqMH8QoUkq/2874bVFw/Yhev4Fj5fGGERcvXOChE8ep15cpFkY4e+4sn//852g2N6jVakRRhB+FeJ6HbTn4foCiaDz//PMcOXKEbrfLyZMnmZubY25u7vbYPTc1TSLG5Ao5Lj/7C+5vurw6P8L+f/6PqFQqtNttisXi7ah6Lwko6QrvnTlDt9HgS//O72CWygRkzuePK2ParqskO1S09O/9EwDE//Mf7br/vZxzr207+7Q1P3+ckblbOu3ddMCt+f6uKb17OM/3jOrucXl3ve70w312Y2jYqRNujy7fi2xFXj9u/zt1od118yT5KBDpXm1uOa/32r6XbOeX/ayM9Ls9u+3XkezlfNiju1vP+7M2tO/s7977/UXK9rZVxfxUHbl31Jy/lr+WPURRMmXJMIx7PmZrYtgNPW5LtgbJrZSMreWTnH9r2X783dKAPq3sdT6312bh2mVKxTyVSoWo00f/9nP8F2+uo7b7uH/7twh++8sc+/e+hmIarK2s4Lo+775/njOvv8FzP/s5S7eWMAyTiYkJbt68yfLSEkkcY5om/X6fNE2QpKyWeNAfYNs23W6Hen2deqNOo9Fg8eZNkjim1WohCiKCkBLFIfX1dd56+y2Wl5eRRAnLshFFiSTJkOkkScb3A+J4k85CUtlotNB1kzhOUWSVw4ePMDIyimlY6JvvgGGY1OsbJElGgN5utxhs9nV5eZnxiXFuLd/Atg0sy6bRaDMcuoyPT5Cm4Hkuw+GAarUCopCl+6kqiiKTcxyuX7vK2upNRkfKDAYtIMSyFIbDNpohU2+sEMUeXtAnjn1SQmamx+n1W3zu849x//1HSZKQdqvO+voSgpASxwnn379AEqeoisL09ASBF+L7IZ4XoWsWrVYPTbOYnpkijiPK5VIGENTtcObMGRRVRtMU+oMeSRJl6Ka6TqVc5Su/+xWOHz9OrVZFkbMaz263zY2F6+TyWf1kNsmK6IZBpVqh3Wrxymuv0u52CKMIPwwJogBZVUmRkGUVScrqescnxhi6QyDNkG8rNWq1Uebm5lleWcEyLZqtFppukC8UiOIYSRJvK6hbZPW+7yPKKiki7jCg3x2SxlDKl7n//vuJ45goigjDgHanzdNPPw3A+Pg45XKJsfFRJFHkZz97FtvO0iRnZ2dQZRkEAd/3ieMEVdVIUxDEDEXatpzN9w/a7SaDfh8BKBVL9Ht9cjmDmdlx/HBAt9fMDMTYRxBFdF1n8eYihmHSbne478j9PPTwQyytrFIoFImimCgIsvrNXoef/eznGKZFb9DP6rt7HUQBSqUi+XwB284TBimkApqmomgGmmEQRZmRvHhrkUG/R73eJIkFLl64xK3FJZZXVrl+/RpXr17BdV2KxSKFQoFOp8vyygopKf3eAEGAK1cuEUUhnhcgSzqapqNpGT2MJGWURt1ulziJkZVsLJQkKQMYSrLx8Stf+Qq6rmNaFu5wgKIoRFFEvbHOtWvXyOcLdeC9tAAAIABJREFUCALous6B/QeQFZlypUSpXEKUJVRNRZYlNE0DwHFsnnjiCb74xS+iKEpGuWKZCKJIGMUIokgUJ0QRBEGEJMkEQYCmaXzta19DVbUM+EnIosEZn63P+fPvIYkycZyNK46TQ1WzsaNcKbNer1MsFvA8l5yTpfg/8cQX+IM/+AMKxYyDeDAY4NgOmqayvLyMpmmcPXs2q+3O5bl48SL9fo9atUqzuYEsi4RBwJe+9GWGQw9F1pAkmShK+ODCBSRRpFKpoOs6aZJmjjLHIYrC2wpkVu/q0ajXEUWRjY0NDh48iCiJ+L7HCy+8QL1eJ4oi1tfrGIbJe+++RxRFrK2uEscx3V6XwPdQNY3+oM9gMOSDDy7wxtlTuG6PKPZAiHDdHrou3y45kCSJ++6/nxSoVqsIgkilUqXd6rC0tEwUBbTbG7zz9rsEQci5N9+k1WojSTJra+sMBkPCMGR0dDTjWk4SRkdHmZ+f5/333ufShYv4nk/+wWN4v/cUj95skPt7/xh/vYmq6iwvr3L16nV8P0SzbERJ47HHPsfp115hafEmged+pnPoZynbn9+9yE7gok8iWyi5u7W3m+H7aYyG3c7z6zjms5K92CQ+qfzbFFz7LOTXoZv+ZZV/q9KGkyT5x7t9jJ/lR7rdM3av59ueDvIRaXcR5yaQThz91H3cfn33cq2fpMj+s5B79d7tFR3eOnY3j16mJIeb6XGbXrQoQUBEFKQMYfg2Pc2Hsj1taKfX7Y5aBgk2gSRJSTK3mJAiSpnHMEljBDHjg43j6CNey9vXQYIipghphKWpJEmEKOu8ffotrly6zuKNJV74Z3/Iv3/mKsqlG4SPPkh0aIZUlpAESMKIb37r2yzcWObA/n3cuL6ApZtMjY/z9pvncCyd0miFUrlEfX2D2sgo3W6HfMHByhdJEBBlCd/1ee2VUzTXuzSbfS6cv8DBg/sQgCAIUVQZXVcYDnoYVkbdU1/rUG9s0GyvUCharK3XKeRK/Oynz1IqOgiEyJqEnbOI4ojhcMDq6jo5p8DS0gKVSpm333qLiYlJOu0OiqzQ69RRZJEwTkkSgUKxxML165SLJSrVAo16k5HqFLqWYzh0MawM3dT1hjQ3GmiqShhE6KpOMAwI3BDXc5FkAUFMePThz6HZeVTdRrccdN3EsmwGAw/LLlMoVGiur2MbBvW1DQrFSQxrFEGWKJZLSLKGkIqkqUAu57B4o07OcTh0eH8WBRp4dNouhXKZN86+zltvvcmhg8coFirU1+u8c/4CcSqiKCY5q0gcJdxYuMGb597m2P3HUTQFJIk0SRHSDMnVzJmcfv0NwkikUKohKxqqoZNGIZbl0Gp3uX7tKtWSRRoOECSVoTtktDbK+OgI9dUlBt0miqahKTpCLLCxto5hqCiaTuRHDAZ9oihB03XSNKbRWsVyVPKFGmEUIKsZaJrrevzwBz9ibekGlWqJaq2GpmkkCAz9gEGzjSpJrK6tUKiUSSWRRJKAlHarRamQJw4jLl+6zNjYGMViEVlVWVpZRldVhDhhfn4OUZGRJRHPG6DoGW9qp91m2B9Qrha4dvUSlXKB4bBHt9tCEBJEQabnDqlOTHHovhPIuoFp60hqjs5gQKFUoVAcIU0kXHfIs8/+gtGRGrZloEgCcRIxMz/L9Mws7cY6ui5AGrC0vMTIyCgPPHCcA4f2QRpj6jqdTpdwM2vELpZJo5Q3z56l1+1iWhayphN5LlcvXaZarqJpOo6TJ4oTHFth0O9RLBS5eeM6Fz84z9rKOppicvDQUbr9HrbjIMoyExMTCIKM5w0YugNGRkrYjkG71yKREsIgxjBtNhptTMsmTmLGJ8YQhYScY+H7LleuXKRarWDqBrJuouoahqnjBy6SLGNZFt1+N4twxhH9bgfLshBEkdXVNexCGS9IkFUdEOl32uiyhGEb9Lp9Bt0hmmZs9lnkxWdfJPI8Qr+HkAS88tIrqJJNsaBx69ZVbi0ukLeKuF0Xb9jmhRdOMjY2mr179ToiIo6VY2O9yejEJO6wj6JJRFFIp93Btm3E1KOQz+MOfHTDzrIxKhX8OGQ4GGQGpOdz+rVXmZudotNts2//PGEYMDY6gixLiELKqydPoqkaIyMTOHYOP/CxHBsQUWWF8++/y1itwvLSTR64/xgbzTqCKHLp0iUs02J1ZY3hYMBGfZ3p6UnSBF785atYZh7TclhdX6WQL+N5LrZtsLq6wsGDRwnDlF5vgKFrXLjwLp/73EPYhkYap9iGhWFYXLjwAZVyicuXLlGrVjENk3Nnz/LA8YfQdAdB0Ll27QbVchVBSBkOhiwtL/P973+PuflZZE1BU01GRmo0NtYRxZQwCpFkhYMzs9xavMbR44dxciXiUGJqrMTMRJE0Fbjv+H3k8nZGHeVY9NpN5ufmaLdbiIKAnbO5VV8lODRNwYtQ/+R7+F95AtExmJqfRtEVFm+sY5pK5gyUYpZWGxw79lBGH3Z77t9EzEMCMgfpbrrK9qlaEATSH72Y/X0PacN76UI7s6m25ukoiu5se5tutD1SujNyupURtp0G8HZ/d9SF7tQ3PkTH3d0Q3s1A2RnhFQQB0q2kbSD9cBE2WesFsowR0vT2slvUbWdZ2/br2P7/verRO/XLnTWpH412b70X7Fj/4QIpafrR8wiCcBvkcyf+yHbKobvpyLulT39Wcrf7JrD9+aUfPr+92hfuzDLc3saeB+y67L3f3rW7dz6LO4/N5LMoQ9ztu/grUfO6F9rwZ/0ywt6F6Z9UxAePIJ04ek/73tsL+5dDdvNE7vxotyYCTdPu/HDuNgBsk90G7Y9MPHvlcOzo63ZQqu3nv72PKCKkCWKaEgchXn/Ii8+/iGM5TIxPkjx3kv/s1pDBWAX3xH00fQ/LtiBNM2L7lVU0TWNmegZZlbl1c5F6vUG706a+vo4gwPjUFKQpo7URWq0m+UKeIIxwBz5Pf+fbHD1yhPPn3+fW0gqTU9NMT07S7XSoVMtousp777+LpEiYtkkYRrx//jzTU7OMj08CKZ7X58DBfViGjaKqvH/+fXI5mygKSAUBWVIAgZXVFS5dusTY+BgICX7gMzY2yurqSgYspchIKLheSG1klNW1VWxHx7Y0ev0msqwQxwmKqvL9H3yfY/cdQVUVvKGLJIkMhwOKxRK9bh9F1XjrzbdxXY8wCrAsHdcdYOg2g2GXnOOQJimB5xJHAWkSEacJhm4QRyFJEmPbORISJFkCIUYQBIIgJI5C8vkcvU6Hqbl9WLaJYRpsNDbI5fJIksSlK5d57933OXbsGCBw6tQp3nj9LJevXuWpp76MZZpEkY+iSFSrJebn9+M4DpIi3+aoUyQJURB5++13OH3qFJ4bcPDAAeIoZqPRoN1sIUoKkixRb6wzNlrFD1wGwwGjIzW6nTaVaglZlSgU86iqhixJbDQaWSprztmkdBEQBJFvf/u7zEzPoGs67nCAJEpcuXyNky+/zNTkBGmSIEsSuqZRyOcplAuYpkGSJvS6A3K2gygLyKpMuVJG20x51FQNSQRBSOl22pCmVKo1SuUSlm3QbmeAS7Ik4QceSRyjKgqy7uAHIaKsouoG7iYgTpxE1GojCAhIkowiyQipQJLGaJqM7Tj4bkSz0WI46HPqldeYnhonikNURSOOsoikKEiMjY2ytrZGGISsrKziODkkSaRWrVJfX0NVs3euVCwhSfIm9zMZum4YUShmCNe+7yEIIsViCd0w6A/6aJrKyvIy5XIZWZIQhCwNdzgcIEkKpVIZ3/eRZZmDBw5w4sQDHD5yCEXRMpAtUcIwDNJNhqQoCui0W8RhVleo6zbtVgdD1Wk2NxAFUBSZTqeN7w1pt9vousFwOGRubn5TdYUkihBJEURQVRXLtBBFmTiJcByHXreLKAqUK1U8P+Cb3/wWDzzwAOvr62i6hq5raKqG73v4QUS306bTbmI5Jp1uh1KpytAdMr9vP7qmZ4Bruka1kiNK001qJomlW2tcuXqN2dlJNMNmcnKCOPaxHYdXX3mVYrFEp9NDlFLiOERVsxp2RdNBlOl3W2iawekzr7Nvs60EiKKYwWCAruv0+31mZ2ZptVrk8jkgo6kKgiAbk1ZW8IOISqVCoVggjCJkVQIBJFmEOGF2doZWq4muG5imxfXrC/zkz3/K6MgIR48eRTN0SuUyTi6XAVAtr/Dcz5/j5s0bPPLIw9i2xfpqg8uXLmJuoixPTExCmvLyyy/xyCMP0e11KJVK9AZD8vkinh+g6uA4FlHkk8/nWF66RaVSYnRkBMuySDeNplKpRKNRp1DMEccxtm3z2GOPcWtxiUqlwtUr13G9IbIsMT8/hyzL5HIFbty4wb7983QHA2ynwMmTJ1lbXWRqegKnUKLd6bG60uD8e+/gu300TaBYrDAYDui02/R6fTrtHgIi2vw0WhCi//hlVo5O4cURlq5SLFWQ0gRFFhkfGeX//n/+mNnZ/VTGarsYJ5mWLoq7O/V3Gq8cP4Dw5EMIBefO9XvMxXebp3f+fTdwpN2M0K3/tx+3dZ69DKLt7e2mc9yrbDeo9zr/bue9F8Nzt2PuVXYz/nYGA7Z0pN2CGJ+kre3PZksH335fdtvv496JezXK/6LkbsbrJ9r/UxTJ7v1+7HnEPfTjV2v7r0TNaxiGtzv76zL0tn+In9W92c0btptsT4n9pIbzvdRQfJbyadvYukZJku4YpLcGqp1pwVvE1HEcfzgwJh/f9m6eza20oC2QqMx4/fg05O2D5x01Ddv7KggIcUTserzy/Au89MuX+Pt//x+CphE9+yLGP/2/GDz5CGKtjOu6/Pznz/PVr/0enU4Hy7TwXY8//fqf8sADD5KSYFsOsqywcGOBUrHIw488iKxqCCREvsf5D87z4ImHef3sm6wvrWUgLIcP0Ol2mN+3n8HQ41t//Ec89dRTlGsVWt02h44cxg89JFnBG/okcYQiKfS6PdZWV1EVmem5aXTNIAxjWq02tm1sKsN5gjDIvL6CwNraGuVKmTQJsxrJMETXdVZWViiXy4hpmgG9kCJIEsPBAEVWMA2Dfr8LiMQJvP7GWR5//PNsNOuU8kVMUydOEqI4pb6+gWk5nH/3fS5cuMRv/uaTTM2M0Ok0EASdWrWMO/S5dWsJRVHI5Wxc1yVXyG0aXCGiJCPJCv1+nyAMsR2dbm9IPl9CFiVC3yP0PXpRjCwqWIaFIsk8/Z1v89RTX8Iwbb7+r7/O7//+72NaJoPBgEF/gGaZ5PN5kiii027y8ssv8dWvfgVFNomiiHNvv8Wjjz1KFEZcuXiJDz74gK989WskCbz6yqlNmg8ZXddw+z2qo6MYps5w2GOkVqTT3kBTTFwvoFCoIEgynu+h6ioCCaIgcnNhAUPXqdQqDD0XSdGRBIled4AiKbiDAYVCHnc44K2338fzhjz+xOdoNDK04Eq1SoKCqsBg2MNzfURkoihFUDPwFyFNMh7bTYeApApEYYiAQK/fRxREbCdHEPgEQYAkiihbNZdpmvHqFkcJAp9Lly/wwAP30+12GAx6OIUCucvLSJKELMlZOnEUo+saogTRaIm2pKNrNo1LF1FW1ymVimiaiuv5yIqCosiQQnt2FG84JJ/Lod1cIx4OUWSFOImzdOg0RZZlepqEtn8GTdQ48+JLPFKsgpCNt1m9qYEkZhyXnZESoq2jagrRtRXsIEP/9VwXwzQQBZFut4dgGZyPXcbHRzO05G6QZYtICmEU0e10GBsfJ0kSorEKScnGHbqoXRe93kaSZbrdHu5wQK1WRRAEwjBgISchiJAvVijVe+AG9Hp9HNvK0vk9j5SUrgzK/BSdbp+J0gjS1evZWBrHCAK4roe4Od5eESPyYyPkinm01SZyu48syZtp3FlEVBAEEk3DnZlh6Hb47tPf5z9/+HEUWSZJQkQxJdrkhQ3DkIamMNA0xsbLhKtN8j0XUczSw8MoQtc0wjBC0xSWyjrdXo9CqUK17SMFEWIa4/sBKaDrWf3wkj+gk7PQVJWyYVFYa2X3VFEIwyDjkjUtEOAyITNHDwESymoDsdX50HDa/A38AMk2qZccXnvtFE99+TfJXb/FoJ9dv27oeL6PpmsIgohbzrMW+iRJQjERKA68rEQjhjAMsG0LVVOIo5jzckKyOU9Nz83S6XR4+pnv8R//wR+wePMW5YqJqmhcuHCZffMHkOWMI3o47FGulGk2m5SKJS5fvszU9BSykjnX8rkinU6WKt1qtfmzb36D/+A//LvouopuaJw5/Qb3338cWZYJwpBOv49uGDzz3e9y4oFjRGHAgSPHuPD+Vc6+/jbzM+M88sh9dDtr9HpxVppQqXLm9bPMzMwxMTmBpIjoqoLw+jtIYcTV/+7vIuYtqhMzWUpsnHD69Gmefvr73Hffffw3/+C/3dRvtubCO3WYrXl2+1y5veb1kxqpO42m3bbdzYDcboRup7vZK8K6M2treynTToNya/12up0961nvEnndkq0yjq12P+7e7NXOboGY7QbibrK9je3Pbnta9NaxOw39/4+9N4215LzP/H5Vb+3b2c/d196bbC5ScxMtyrYQ2ONJRmMbQcbOAn8JEGC+5UOAJEAyCRAMAgQZL5MZIxMntkcz1ki2KYsWJZLaSIoUKYlrb+z99t33s59Te+VD3b66vLy3F0qyvL2NA9w+p6ret96qeuv//Jfn2X/cw8d78BzAR8FrslPisvfa7VWjuNP57x37/kj0X1W7l/nY69S598jr/bXDnh/pkL73g9cfZ/72PmN79/+4Na9/YyOvPy1vykGL7UHb3Otxsrkl0mb7I17Fw8Z+v+d10M3wV+FpOqyP298JIXYiT0nOzrjDRLzfe7k/krk/BWXvtdhNF9nnTbvTOPb/vv8lIYu7F/Pvn9+9NS6790uSIKUp//e//teMDY/wmc/8PJZbgG+9if6//z6bZx9EG62ztLTE0FCdo0ePwE7Kz+bGJtvb25imycrKKp955mkuXbrEzOwsp06eplav0+l0+Na3vo1jW5SKHpubGyRpxuzsMWzT4vSDp1A1BddzkGSJQeBz6vhRiuUirueiqipBFKIIhX5/QBiGZJmg2+tiWRq1eg3QWJifY2R4mCDw6fU6FMulPG1HgpWVVYIwYHNrk0q5SpbBlSsf7NZT6bpOuVzOiZ20kJXVeUzbQFFkXKfM8uIGimSwtr6MYVi4rseRI7P0el0s2yKNIzbWV3NSoijm1e++TqlUpV6tYFkW169fx3UtCkWXglei2+5iGAZRFGPZLqZp4RUKuSRRFKNZNnGSEsUppmWQZRmKyOssTdNAlmBh/hajIyMYto5lOvS6fdbWNnjiqSfp9noM1YcxTZNSuUyaZriujaprFEsFgmCAoghMw+TUyVOQSfiDPoZpMjw8giQJyDI6nRZPPHaWRqNBEIRUyhVefOFFOp0OjzzyMNNTU5iORafX5oUXv84Dp08jIaFpLmQKr732JrXaCH/xF88xNTmNrhnIsoSqCAxNxw9CwjCXJpLImVSXFpe4NT+/U3eXUhuqohsmExOTvPHG9xgfH2dtfZUoStANdTca1my1+PM/f5afe+ZpgiCg2+miCIEQEjdvXKPR2MoJbWQFTTN2o5eB72PbFlubW4RBwPLyMqQZEvCH/+8fUHAcxkZGWF9dxjF1PNfGEQaduSUs06I/GKAbBpqmkWYZSRIT6BJvvPcel69epWLbTBXKtDstbMfZqbOXd4TrU24FPXRN5/LlyxRSCUNRSLMUVVXJsgxNU4miGMW1aZHS7/m8//bbnB4ehQySNEHXdaIgJEmTnLV5tIqkqmRxSHdlEwsJ3/exbJskiVEUBUM3UC2TwpFpDFOnVqsi1hsYhrFD7pWi6TpClhn4Pn0B3STGsmzUOEPp+0hSznRsWSZBEOysdxLSSA3H8fDDCHsQIydpTvS1k06YpmkeGS4VkIpu/gwFMXq3R5alJHFMXieroGoaqqrRkmOGJ8aQhYwRxEh9H9/3kYVMEse5c0qWQVN57fJFLEvhk5/8JGart7P+piRJQhTlxqQsSyx3e4wfO8bNueuIIMLN8qg2gJBF7kASAkkCv2CiCiVnX/bzc5IAWRa73AlZlqGXPG6srdHr9qgVyxh9H1XNtYtlSd7RBhbIkoQ7M8HNhUVkKSFY38CWxUdSDIUQZIpCUvKYmJgkTmJY3cTQdbSdel9pT81joKpkpp5nljSalGQVWQgs0yJOYkzLYjAYkKQpC1FAJmWcOHGSNJFY29hkYmKCSqWMH/TptgMUxWB6+hgvf+e7vP7am4yNTVIoerz88qtsrG8wNj5GpVKl2WpS8Ao7Do2chA9JIklS3n//HR566AxIGW9873s8/fSnkRBkcoIQKoZm0Wo0GAxaPPrwWUaGJxCqoF6rMj4yypEj01y9do2hkRFM28WyHOYXFpk9coTtxjbDw6N8783vMTYxgZgYguV1hl5+h/ePl/G7bb7xwjf4P/7P3+P3/q//h9/9vX/J+ffPMTwxyfjY+M47MQUyZJETeUk7lCp735VpmpLtSY88rO1/396+LoeVKN0pMrl/DPuB7d6x7bf/bgOevVHFvWM4yPba+/e9OPn3O/H320H3E8jYe06HRZbvNjf7x32QDbU3Qny38R0GmPZH5n+03UfHsTdFeP8+e50Fe//etfEO2fd+2kHOhftp92STSwdvf3uePwoa720s92IjHwSWDwOpH3cODnsWFKF9rMjr31jw+tNsty/mYRfpTt/vv0mC//afk37nB/ctlXMvN8j+2oO/Dm1vesdgMNiNZtzrg3Avi4T0MTxOhx5LPvgh3fsA7///bSbevW3Q7dFpNnnha1/j13/917Fdl/Bbb2L+899n6cwxvvL6q5RKJWZnZ+h281TEuRs3aTabeF6BSrnC+fPn+aVf/mWyJJeRMAwTRVV54YWvc3NujqeefArbNOh2WyRpwsTkNJkk0HWVTqeF49rIQkIIifffP0e9VuX6jRtYtk2apqyuruXsu5mUp+YWq3ieR5KFyLLCxmYbISV4BQ9N1xCKQNG0nOwm9vOImCwoFUv4/k4UyLUpFkvcuHEzZxLeIS6plApEUQxICEUQJzGVUgWylCTLZTfCMEKWc4Ij3dCRs4SNjXW8YglF0XnxpW8zOj6BqUtYps0TTzzBYNBlfX2NLM2PqxsmpuUQRjGqbqBoGq3NTSRJRig6UZKiGyZCFui6hixpOcmRIlhdWUHIMqZhIERGEqb0ugO+98abnDh5kiAKkSVBpVpFURX6gx6qpiEUmTiO0DSVVrOFLBRURSeOM8jySJ8ky7RaLdIkZtDroesaXsHh5s2bvPXDt9E1jVqtyuzsLIqqMPD7qKrC7JFZVEVFUTRkofDu++9z7tw5zp79BINBF8NQkWWVXq/LzRs3GRsdIYgiavVhVlcXqNdqZBm8/PIrLCwuMHfrFg+cOc3skVkcx0GSZd4/d46p6WlGxkboNHIDOYx8ojiiVKkwPjGJZeeOlFKxhKFr6IZGoejS3G5RqdRIUwlJVtB1nYX5ecqVKqQZrVabNEkZ9AcUCkVsy2Fyapqh4RFee/1NFEVlYmqaJE5Z32pgTo+zQoQ5O8mqFJMNV0nrFVbpYFYKLC2toWoGRx85Q1Sq0HYU/JKNPDpCWC7SdVXatkqz0eTKB1eYv7XA0SfPktQLyGM1/GKBrqcR14rEtQJyqYBl28zdmuPhs59AGqmyIVL0yRH6rsHAtViTUzaERLFaodVqUC2XCEyHtqXz7Ovf5UavzbFnniIseaTDNRoCFFUhjEKEIpMOlQjKLslQlZ5r89bSAlGlgHdshpXmVh6ZFoLENFiKfZqGhDpep1cwCCsFsqEyfdfGcQtIspqncI/UCcsuNwYdtnVBXCvRLzgYMxMo1RLtTht/4KPZBi1LwS9aqGN12qaCGBtiUHTZ0gSlSiFffwyD2DbouRba5ChB2eTS9jpNTWBMj9PWBGMTI0hZQrOxjT45wmoWYMyM4xdtwmqVoOIwKFg0/YhSucLQUIX1ThOGq/gFm4XYp3jqBEG5QL/kElcKbGxsMlQbYntrmyuNbQqnT7JBiBgdIigX6HkW0kgVuezh9wbUajUSWWJVStCmxmgYCtuajDY5ylISoIyP0B70GRsdIw57XFi4SenUUQaeRVqrwHCdnmPTKxhItRK+H+C4Ts6KP1IjrBRZIcY6Ms17q8uUTh0jrpYIhUycRFQqJQojdYKSh1/wCKse76ws4Ryd4Z2VZZyjs7ieR6lSRdXz9abT6RL4PqMj9Zy0KhX8xV98hQcfPMPK6gqtdosnnnyC9997n4sXL1Gr1Th+/AS9Xo+CV6TX6yPJMo5j5aBflmg0GkxOjJMkMZ7n5ozsGUiSjCSFtJptFGHw8ne+yWNnH2V7u8Of/9lznDx1jK2NdSRiev0+/UHId155nZtzc5w58xCra2scO36M0bFRNF1lcnoKTdWQFIms6iEu3mBjZYVzcQfddJiZOUGj5fMr/+BXCPwejW6H6elpZEkGUpBS8ldlioQ4+H26Hyh9/i/h/StIDx3/yPa397lb5PFeAwoHRU737rsXJB/0/t87pr3b/yTaYQGI+7XvDkrfvdsx7rWfe537exn74WDyYJB1GGvx3RwXe4/x47SfxDHu3MHhPx1sF987eL17+yiwzPf76WOLvwevP8H2ccHrQR6S+ACd13tZVO4VvP7UH6iP0W6/JCRJwjCMXbB3kOflryt43Z/isPf323qmt7dJkoQ3X3mN69eu8rl/9I+wXYdocxvjv/9tgkcexD4yQ7fT4eSpk0RRiKIK3nv3Pa5dvornelRrVUzTYmp6ijfefBPb0jn33nnGx8fRdJNuv58Dnalp3n77h9ycu86pUyfZ2Nziz7/8FYaGqoyOj+yAK4U0Tem02jz31b/kqac/hSTJuQ5qs03BK1ItV7EslSTOSZ4kOSXJ4NVXf8CF99+fGFPLAAAgAElEQVRmdmYGSZLoD/qEUcT84iIFz8YwDFRVQxEK/+7zX8ArlBgbG8b3faamppmbu0Wn02V6ehpdWCiKztr6OrZt0e40aDTW2dxa5T986S8Yro/geQX6/T79QZ8kiYmCPqNjY0RRRJzC2ceepFKpE/hNnnvuq0xPTzMY9JianEDXbRzXZmurCZLM+sY2hVKRNMvQZYmr164TRAlDI+PkUo4ZWZqSJipCKPjBgFq1hCxJdNotgl6PwI8oFqtMzxwBWWJ1fY0ffv8HPPDAAyRpwsLCPJqu0mo2Maw8stbYblIp19nY2OZrX3uRJPHZ3NykUh2i2+3y7W9/m3qtwtBQnTRL6ff6nDp1mjNnzjA0PESWpURxQKO5jVf0sHb0XRfmF0nlhJOnTnDi+FFUBWrVAt3ONoXiCO+8/Q4nTxzHMHRW1zZwvSIlV6fZaAAyD545wyfPfpInnnwCr1TA93ssLC5SGxrmyNFjOK5LBri6xeLiHOVKGdO2UVSdQrkCcYRt2TmTrKEjFIko8RGZIAhj/vzLX2FiYpIoCBgdHqbf65MkKcVCEVXVaLc6GLqBbdlYpTIXLl0liDMcr0x1aJRMFhiyxKVLF5mamc6Zb00DSRFkCJI0QNc0bMfjxOnTKLqCopmYjoksSwhZwR8EmDuERYpQOTp7lKNHjuIHARkJGxsbuG4BVcsJP7a2tnINXKHguA6O49DtdigVC9y8do35W3NMjE+yubnJ6vo6J06eQBESrcYWsmLieR62bVOtVfA8lyiMkOR8jUvTBKEIVFUjjlNUVWNzewvH9hgfn8A0TKLQxyt4DAYDNra2sV2XQtGjVHAJwz6yUDBME001UDWdNJO4cP4D6vUKQlGIo5ggCBgdHUXTdJrdHoqqomkqkpTiODZhEFAqlSADWYIkjmi12mRImKZFGvp5KYaus76+QRAEdFodqsMFdNWk3wtQVYNavcrq+iKDdotS0aPR2KRUKnL1+i1GR2ZQNQVVkfO6yUaXLAVVkbAsE9M0aHW6vPTSN6jV6zRbLRzHZXF5iXKxjKkZqIqK6xVyDV1dYW5+nq9/PWenHhoe4ty59xj0BkxNTxMn8W4EPQhDijv16GEYsri4SKuV15levXyeyYlx0iRDEQoL80vcurmA63o4nkOapARBwNLSEq7rIskZQteJ44g4iSkWighZJhgMuHr1Ws50vkMkI8mC5eVViiWXsfExgiBkcXGZI0eO4q1ucuWN79PSNGzLxSt4VMtFgqDHUL3CBx9c3TG8Uy5ePMfs7CRTU+O4bpnZmSPUqjU6nQ7PP/88s7NHsEwbyzIIQ58gGCBkgaZpaJqyw0YdkWawvr7BzRtzSHKIphp4Tu5o8v0uhu6hay7zC9coeg61WhHdsOj7EVvbfcrVEsgyR48dw7It3njzdQzTwCuWiOIIRUhcuX6VbKzG8R/cYOTXPsuJT/0cUzMn+IXP/jLlUomhWonlzXUMw6BQ8JDkhJx0ZidqeA/gNcsysn/1H2B+5VDCpp8keD0IjErSh2sq9263t4xsb7udtnpQedl+4Hiv7bBo4v0c73Yq7UFpzXfr+68avO5P096z94HHOkz25k7nebuPe2WdvlP7WYHX2/fCRx0lPx3w+leNKz4ueP1bUfO6t/20JvywfO27tYN1XvPF/aM6rB+vj/3tTuD4Xq73vWjm3mn+b5/D7XrVg/bZr0F24Dji5MCF+7BUlTT7EbPg7d9v9xN95/cPOxPE8WdIasfzRW7jKsmVVzhoSFkG3s/91ySSIJY00ve+RNpepdftsDB/i8mpmZz1NUrQf+ddEtMjOnuaTPJRKisAdDu5NEeSJrSaLSzL4ubbPsOVKWRZ58r66xw/U8NxbKIoolQqEkcRcZzg6BVWzgtkIXBsl679LkgSaRJQKJWIogjLtpGQWbgY8tIXX+U/+83fIHU6OKODvFbPNJAliUzOSTakDJLVGdZXFykWXLalS4xMlomTBFVRSdOEwO9j2x5h2yBql8iAW/PXmDojIRQZXddyQXVJylO6kUkao8iJgR/4WLUeodhEEYIoilhdWcW2bUqlAkEvwV820TSTLFVxjrZIc3FW0iRPEVxf36A/6GNFI9ScKTr9DkY5QSv1ELJCr9fH930KhVzDMYkjFr8v2Gx0efypx/GtD5DVGFkS+XmpKnmUQGJ7OUKPJpDRsQoSWeEWWQbtdievRasUKXgekiSxdllBlT2+/rWX+PQ/OMHYERtZyEhkNFst4jjBdYss3NygJD/KtcuXOHbsKNbUErqu79aF5mnWSa5/2y2hp+MkaYjuDYiNNeIkwfcDmo0mtVoVVcsN98HiGK7nEAQpa4M3GZ2s7JIjaapGmuYpdv2mih5NkJEg9Ai1skarmUdYdV3bfX7SNOXamz6WVuXd987z1C9NU50QJGle55qmKbKQURQVOdG58lqb0ckRgiCgcLSJJMlkKchC0O31SJOUQsElbBRQ4jIXzl/CrcPUaZO5uVsMDw8jSSBJIBSBtZCx+MGA8sMP4gcRan0dzUyJo8EOaZNBlkmATNo3SXs1wtBHaDFqdZ0kTdA0DTmDIAhRVBUkmc5iiZJTZ211Ba3UwB3K9WMD3wdAM3SSKCbsyyRbo1SrVW5c+YCRRwJkRd1dYzLSvP41SZB6wyhphW63i+EFiMIWaZohy0AG3V4uUSXLMnLzKGEY0txoUJjpIfQ8AyEHMDJZGiNJMs2VFCedxDAlVrfmqByVkIVg1yiRJOIoPy+lM000kOn1BjjDfTKjReAHyAI0VSVNc93EXivA5QSyZPHW9y9y/GkfxzEIowhZEkBKFMUYpknaqaKnRUhiZHNAaK6S7qYCCvxBwPLqKsVCAb19Es9zWFyYY/yMYBC1d+V1btfmCSHIfBfFH2Jhfp5CWYfiMrIkoWk6YRz/SE5NAqk1jt/J2Gw0GD2i0QkXdhheJTRdIw5DhCKQUpNos04aJXzzhZd45p8cwXWdvAxAye/jJEnx/QFSv0rUNvA8F2EFNJNrgIxhaGh6zhkQhj6qqpNunUSTVf7sz/6U/+S/ephUHuQ11GRkWZ5doaqC5lqCEU0io4HWQxtap9Vs4boOSZLhvZsSRREbpyKKxRJK4wGiKK8N9n0fVVPodHpYpsX5C+eYmZmhUHAQss6Vqx8wPjGGaRi02z10zSBKQgoFD6SUNI1J0yyvLx7kkf3BoI/jeHz9a9/k1twi/+lv/EMq5Trt1gBNlZGkiKWFVVZXN5mbX+Szv/gLOK6FhKDd7vHlZ79CREQcRTz55JNUKyWWFuY4fuIo5WoNSZaQkPCDEEmS0C7eQGw1aP/B/8ZgkLHd6GAXNGpDLl/4F7+LWyrzud/6LfSylz9fUoLIUhIOfvfvBxvJf/O/5n/fp87r3naYnv1BpUkH1UoeZnfttWcO4ru4GzfKYb/tr7Hdv89e0HwntYT953+n/m4Dvzud327fSbqbRp9KuWZplmV34Le8k1157yD69rEOs4H3z/dhzoO9IHd/EGJvvey9Rs4lSdpd5w4i7bzb/B96pnu3l+9OQPWhMd2hq+w+HRE/SRz4IUfVPfT99zqvf4PanRbKv46R1I/bJElidXX1jgvM/s9ePdbDtNduz89BC/H9zl+WkQOlnf7u9hCHAmIZUikljCO2NrdoNlvMzB5FKCpZBsq35pBaHXqnjhKHEZDXd7RaLSzLpNfrYRoGjm3juQ6z01OMjY7w7ttvMVytUyoVURUF13Vot9qkWa6H2+m0qdZKhKHPdmOToeEhisUClVodTdPxvALKTn2ZY1v8l7/1T/jgygVyOClDJtHr9giCANKMdrNJFIWcf/9d4jAkSRKG6sMIIdC1HAwJWcG2HQI/QFUUFGB5YZ7jx6ZptZv5S3EPE3OaZXS7XZ577i/pDwaYpoUkS3mqpCyjahoTkxOUK2WiOMGyHKJEoBsOxfKPyHMkQFUEsgzDw3WmpiZyRmJ/QMEromkGkpQzjhqGSbvdYWlpic3NTZI4pOs3OXJsioxcAiVNU+IkIkkTwjAAJPq9AWEQo2sWX/rSF8myhIyMJI1RNcH4+CielxtkSZoyNDxMwSvym7/5mztATMrf2ZKM53qUy+V87h0bTRGcOXOGxaWcTMoP/JwR1s6jmWmaoWkaqqoihCBNUjY2t3KNVTmv6dN1FV3PU7WFLLBNhyyRUKSEiYkxZAkyMhRF3SUh29zaYn11jc31da5fuY68Q35RKBR2nq+MIIhIkox+f8D07BT1oSoLC7dot3PSpiTOwZVQFNjZv9cfMPADLl++jhC5tmyaZshiRwbINHFdmygM8Qc9sjhi7sZ1bt28QZKEDA1VMU0Nw1BRVRlZytC2Mma8EoNBD1XA9uYa3W4L3w92+gWQSNMEWUgs3rhJr9HGUnXIMrI4RUpzgICUEUYRkJJlEWQJxaKb13/7PpKc61DfdqYJRcG0LFbW1lheXWXm6DFkRUEWAkmWEYrYYRhP0VQ1fx6ihCTM5YEGgxwIp0ma18GaJlmar+uRHxKHMbV6dbd0QpYlkjTdYTP+kTRYoVxicWkZ3bSI4phOp0MQBPi+nzM3qyrtVpu5uVt0uz263TZJEjPo99E0FTIIw3BHG1bBslw2N5tEUYQfdHc0dZOcKVoIslRGllVAZmujQXO7T68bMQgCwjCGTCaJU2RJwrI0hmo1igUPQ9d2WMcFSZKh6yZBEOZ1xEKgqgphmPfV6/WZmprCtp1cz1U3iOIIy7J2nZpJnLA4v0C33eb6lctIJLiuy+bmZk5oJAvCKI8wKoqCkAWDgc+xE8fRtDyFXyg/WuvDMCRJ0h3JLDsnfiLF8zyEyDkYojgmSVMUoe6wFMtsb6/xuc/9w12m7DAMdjSuU4TIHXyuU+RP/v0XuXzlElGY0O30KBaL+XMpRA7wNBVXHyHdHmdu7iY3rl/lvXfeIgr6AFSrVa5dv8YjjzyK57kEYU7qdfToMUzDyImhSmXCMGR7a5MoDEljiEOJLBG0Gj0GgxBdM3Fsj+vXrvPII2c489ApdN2g3x8gSRJbjW003cC0bR79xCd5/PHHePHFF2k2W8hCUKmUeezxs8xOTVH0CkxPTTM8MsJjTz5BbWh4d61OMzANA03VkYfryBtNOttdVlfX+Wf/7H/JHXytPk99+hle+vZ3aDabSJm8ozQn81dtWu7Nerub0Xw/AOEgwHL7OHuB0b30fdh476X/H9c2vP3c3W2bvX3tHeft7/+mtf32JXzY/v5ZB+/+ttn8cO/39o/b/talDf+0boL7ScHY25ID04bTA1MZZPnHT23Y3z7OfPw4aQN795FleUf0Pf7IC2M/YN3vHZMkKdcw43BWwf2eszyq8+Fx395XmX4CMf34Rz7S1KNIbm0XJEtuDWX2ccT0Y7sfZeZx5OmzyNNnSUSWE06QkVWPcmFLZfyx/5hk/FGi4UeQmgWM3/0yvaef4PraGo5pEPQjknYBqV/h5vkm57+3jJ1NsHkzRotqOJYHGVQqVbS0iMEo/Q0NT0wi9UpInTJvv3ILOXKp1+vousaFi+epmLMY8RBZv4yRjhF3Slw/10L0qwStiF7QYnxygl5Dwkqn+MIffAOLEdSoiicmEYMKZjKMaRo8//zzPPnEExjZMMvX+2wupGzdErz24gWG7KMofh0ROygCCp5FGqWs3Rgw2DTpbmjoyRB6OozwK4QNi0ceOYuQZfqDPkrqoYQ1Nm7FZP0iRjLC9lKCK08ih1WKpSrIEkGYkPaLiLCKPCiyfmPA1lxI1HVw5TH6LZ8kiSkUy0iJyWDLor2m8Uf/6qtcfWcbPR7ixMTjpB2D0bEpJNlAVXWCpkLS9Lj+bpN64RRxy2XuYoc3v3WNjYUeYyOjnH38E5AJrGyUrOch+yX0tI4SjJD1i4QNE8+tEIURv/07v0NrI2Ci8hBRy4FemeVrPiKo8e5rixyffAyh5KCuVCoi+zWUoI48KNPd0IlbBc69uUhnTZBFKkmSM+FevnALMxvDFdOIoEpjBWxpgqTtYiRjAPzxH/4xBc/CU0aR/AprN2NsMYMSj9BbUdmez/jhaxd5+KGH+PKzz9LvBGTdImVjllsXu5T04/zhv3wOeVDFZhJNVZCFwtjYOJNDp0h7RRYv91m/leKps+jSBEmnyM2L29yaW+DhRx6lWCqz8EGHsnEEaVCkuZwhdUo0FlL0uIouOSwtLvD0p57GNSqs3xxAzyPruGhRjahpsTEX4nVlZFkQVzxkMsysjL+h8Kd//ApjxeO0V2UcaYqtxZSiXafTzqViZEkj6xVJux5h0ybp2BjZKEpYQ43qaIpBq7EFpJTdCeSoiuJXaM4nhE0LR5vCTCfJBh5z87eo1qqoqkbSLdLeUDEZZf5yh4VLbRzGCLZN0kAjCgOuXP6At988T9rxKChTeGKKm+ebjBYeYP5Sm6I+iyQLZFmQJDEfvLtEyTiCK6YYNCwG2zYWI4QNG00u5dqbBQ/HLqIENQrqNAzKKGGdzppC0TgC3TJFr0qWJVSqVeK+isUYWa/E2tyAojZNb82muawzf7nJ5NQUIFEsONSc4/Q2VLS4TtCwmL/sk3YKqNEQ22sddE0QRgFrq03efX2VtDfEiHcaeg4bN7eoGQ9Cr0i73cTxPBzHQworqINR5i62MdMRGksJIiizdmNA0Zrg29/+Ds1Gk0qxzo1zW4QNEzWoYjNGf10jaTm0V2Q217a5cvkyn/70p7DlKu1lif6mRdk6QTqoYMRVtLhOczVFV3WEUBgaHsHIKrjyKI2ljP6WgRYN0ds0cKUpDFEgSWIuXLjIxkqbgjrN9kJK2TiOkoxAr4AZV1HCYWTFYG31FkHgM1Q4ipGMIgc1hF+nvRGhhDXCRhEpLPLggw9w9dolXLvCW6/Oce39BlmvzPVzTcRal6JbIy3NcuPqLZIkRddUpqfGuXVrDrdQ2AHXCY5jc/78eWrVCppmsLS0SJalJGmKRM7iHoQ5T0SnM0BVdC59cBnLcvjg0iVc18OybJAyHMdmemocoap5qn67x6uvvsKZB08Bgn5vQJomlCu5PNQPvv8DvvWtb3P69ClOHD/K/K15RkZGKZVL3FqaxzBNdFWl3e6gaxpJkuUZAkmEc22BjelRnn/7LV5++RV+6Zd/iUKhSL1SpNvvs7iyzsOPfAIZdpxqh9fL7bcD7kfn9V7bndJKb2u43ksZ02EMtXvB614iyvtznN85y26vPN9+G+lu4z6sr/0256EBlD1Tk/sQd87tYwGSj2c738t5HrbN7Wtzm1xzb0BECLF7D9yNrHPvMe8E4j/u/fohe/c+j3XHre4z8vqTbne7t/d+/3dO5/WwyN39tMPST+/U7rePHLxmiM/9CLzK8sEMcmn6YS/Xx6VHv9fxHgZS72UuD5v//XUje2tJDtNI3R9d3R0XH6Z6P6iPD4/p8GhsHsFJP/RAZVmGLH5UT7H3fjhoPLAjw56mJGHA9179LieOnkQSCjEJ0Q/P4f0Pv030xMP0Cw7PPvtlzjxwCl3XSJOYKPRZWVrJXyBZRm2oyubWJuVyiZs3bxHHCZevXOHV736XRx5+CE1X2VjfwHXdXCNSSjFNA0VVqNaquI7D6voqS8vLlMsVsgz63QHFYgFZyuhHA4aHR2g1Oxi6ShAMuDl3g1MnT9HtdCgUPTrdzg7ZhoTteAhZRigSW1sNLNNl0O9z4vhRdF1HkjK2tjdyuZtOlyiKGB4eoVwpYxgWINHvD+j3ujtsxV0MXSfwB9iWhe8PclIZ1cC0VCQEnbafmzlyjGlYSJJEHOdzVS6VKBWLeKUiSRwTRyGSJBPFCbphsbm5hWnaRFEesTr7yUdxXYtLl67R64d0OnnKZa/Xpd3s8q1vvswjn3yYRrPFa999nSQKeeqpJ9E0BUUVKIqg1W5jmnm9maIqSKhkaUq/39vVlLxy5Rqjo0MMDQ3R7fYol8uYpolp2rz00ktMToxjGDq9fj9PXxS53uTy8hL/7vP/nieffIpKtUy5XNqJDKn8yZ98gc9+9j/aIccKEUJgmhaqqrK1uU0U5BHRYtGjPlzHcz2QJBzXRSgKsizR7XQpVyqMj4+RZRlXr13jV3/t16jV6/QHPQrFIlImc+36da5cvcLP//wzdLrtXBN1x1DSVDVnpg5CNjY38FwXVVExdJ3JiQlW11Yplyu89fY7zMzOkCRxToAjNPr9HqqSp106jouiqji2Q7VSYzDwURUNVdWRZQVJUvH8EFmW2dKk3ClRcFEUBVXVOXX6OGmWoSgalmkjiwzDKZCQIisChIyiqSi6hiLl0f84SXcNLGWHCTcMUwZhyIXzF9ha3+TajRuMTU0RRwmKkKmUy3Q7HRzXozfo52BelnBtB1036HY7VKpV2p02K6srPHjmQUbHRimXy1RrVTRVo1Ao5MywlolpmkiSRBiG+P4A23EolYog5Vq2lm2hyDKqrqEIkT9XsrQjBSYTxREZaa79KYEQKlmSoqoKmqaSkeXReCERRynlcgFd1zBNB9OwsCwTw3SAjMtXzlMsFVBkjTiKaDa3qdSryCLDMhUMXaCbCpqmYDsO1eowtp3vu7a6hBApnlel1W4iVCWPyqkavd6AbrNPs9Wg0dhiYjInEjINm2KpjGPbABSKBeq1GqqmYdo2Vy9fpVKtoGkajuPgFTw8z2O7sU0YhCiKQkrGG2++QZyk1KoV/CDAMAyWl5fRDYM0zVDVjP6gj5AVHKeApmmEYUgYhKiaQhD49Ps9JicnWVtbZ2pyGj8YgCQQskS72UDXDeJUpuCZKIpGvz+ADHr9PnGcYJoin/tUxjBMdF1leKiObbtEUcSpU6eo1Wr0+z2GUgnDNAhKDjeu32BmdoZyqYRQBMPDw0RJysWLF7l65VoeoXUd6vUa8/OLCCFTqZQwLYtGo0m1WqNYcNBUAyGryJLA0A2ef/455udv8dhjjxHHCdevX2d8fIw0S0mzFMOwOff+BS5evMhTn3oSIasIRcW2LeIoplAo4roexaLH2NgoQegzOT2FaVkkaYLnuhimiSJEfq/KClkGQsg523ynh1UtM/urv8LI2AhTM5NUKhUMTcYueMhC58ixo8hSzqGQZWmelLLHlthv0+y+X7/6ClkG8S9/ahcs3snovRvgOwhk7n+X74+W7rcvDnOY7z3O7W32MgMfZKPs/+72/vuPf9hYgV2gdZDNerg99FF25XsBv1mWfShunu0kGGVZ9rHYRnJSsTvXqt5pPLfbQfO8//f96el7s/cOmrd7AcN7fzvoPjhsv7125r3Y7xn3FzT6OOD1sPvx0DHtm8+9fx9m1x92fQ7DG3/nwOtPqt3zjfIxwePtyOte8Hr4oQ5fdH8a4PWgfn6SbTeaecDNfNBDtP9Bke7TY5fbrR9dKKIffol0+SLyyOkPfZ9l2YcKB26PZ2/tR5ZlxHG8u/3GjTm2lpf5yhe/xImjx6kNjRGjIr9/nsp/9y/YPjmBc3KGOIyo1mqM1GqkScy5999jaLhOr9Ph2NHjaIpGdWSIix98QKFYJkPCLRQpVcpoqs7o6CjbW1vYjk0chTSbDU6cOJmzmoYRtmWRkdfQ2ZZCHEWEQYjjeHz1+a9y4uRxhkamCcOISsUh9Fu4rskgiDh+7CS6oZNmGcurKwRRxMlTD/LlL/8lQk6QFJiemcHQbRYW5llevMX4zCRCkYmCkFa7RblWp1QdQhUSnW6PxaUlGs0WlVIZVZExNJlSwSP0B5iGxurSEo5l8vk//jxZJihXXC5/cIXvvvImDz/8IKoWksYZ3V5nl5REkhS6vT5xktHtdBiq1YnjlChOcqIaXcc0DGZnZnng9CkMUyFNQzTDJssEpu1QLLkUCgaWrjIzM4FdKOJ5RTRV8Iu/8AyuayJJUW6cSzJCKIBMugMYZEklDAOEEDsAXaZWrXPkyBS6YfDBpSuMjozzR3/0R5w58xAPn3kwr4s0DT7/+c9z9OhRhKKQItFpdXj44UdwHY9r165TH6rTbrdzQ94rYpoW29vbLC+vUKtXUVSLleUVyqUS165epl6vYJs6bqlCJknIsqDT6TDodTB1DdOyieKIxaVFKtUKj37iEyRphu+HeJ6Nrhk0Gk2mpyf51NOPYzkqup6Da9/v0+93aW5vUS2XcRyXr/7lcxw/fpxep8NXv/IcaRRTG63heQU0XadQyFMng9Dn8pXrjI6Po+o6QlGRhUq720MzDLYaW2QkSEJmu9lgaXkNy/EwW12EEHRdMycQ2m4gNJ1KqYhQwLJsojhDVXX6gx6KUGlsbWPt1E2GQYi/A2JkWWHgh/T7uXyRnKXEYYSqu2SyjKGbPHTqDJPTs0iKiiIE/W4b29Dodtq4npdL9Uhw+fIHaDuyT+VqlfXNTebn55mansawTHRDxyvkoClFIskyTMtCMwxUXSeVJISqoqkyjuuCLJGkCWmWIcsScRKTkaHpGhm5bHUU5fdbrkuaIRSBaVlIyChCZSfXgygMCSMfSBFCZW1tGVnIRGFMp9tFN2R63YQvfvFPmJyqMz4+hqZaxHHE0HCZ7VaHoVoFRUrptBr4wYB2p4VrOzkwNnIdVdM0qVXHiNIEy7a5cfM6uqYS+D5RGPDKy69x8+Y1lpYXOH78CJIkaDVzh5aq5anwURRhuw5pmtHutilVKmQSLC4vMQgC1jfWOXHyJMVyDdM0QMqolEskUUQURoxOjtLr9nAtB9uy+Tf/5g84feZBSp7NxQuXabW6FIplNre28You3XYbP8jr+iuVCq5TYGNjm0KhRK/fwrBthCxjqAqSELR7PQSCNCUvrJBlTMskDAJM00FRNBQV+v0Wvj/gwsVLmIbO2NgYtm3T7/ep1SqUo4Q4CslmI0rDOoZUZWV9nVK1xvrWNq5j8d5753js8ccYHx+nVCqRpjHXrt6gUinhODabGxt5f0IhCgMunL/ESy9+k3arSRQO6HS2eOzxs9R2SkSeffbLnDp9ksFgQF0JXkEAACAASURBVBBF6LpFrTbEww+fIQgGaKpJp9Oj1+ty9eo1isUKy8ur3LhxjfmFW5x+8DSmZbG2ukYa59G9OIrQdJ04zh0pGxsb/NmfPcuZMw+hNppEvR7er/4CaRYyMTWGpqkEoU9taJjnn/86n3riU2Q7YFrXtQN5LQ6KdGVffQUA8blfuGsg4m7g9X6c7gf9f9cu4N5to8P2398+Yt8cMI7DxroXiO1td4r6ftw5Aj4CXnfL8O+65+H9HRS9vp+21y470AlygMPg4471fsZ0L/N8b+D1/uzxjwteP2477P68nz5+kuD172tef8pN/Z//Kcr/9E9/1sP4mbQ71YLsrW09bJsfZxH60Dg6G2TdjTuObe9n/5hue4OvX7/OW997k5df+iYzY2OM1KpEUcSb/9/ncf/H3yN++mGMoxOsLC2iKYJKucRgMGBleYWJyQlkCRrbW0hkNBoNwihifX2T559/gUKhTL8/wCsUSJKMKIoRQqAqCqqqMjIyxOb2NlGUousGi8vL+EGEYZrYhkqx4FAouBimwS9+9rMgSQR+iqIaJEkAUkgYdnnggdOkWV7Qv7GxSaVSZXxiksXlFRqtDhubG1SrFba3t5Bkie3tLVqtFpKANMtAgmq1jq6ZyLK6W0dYqVR2ImtqThrUbSNLKWkSEocBpCl+v8/J40c4efI0Qpa5NXeTJI4JgwHdbpNuu4kiJOI4QlbUHAxoBs8//3W63QFRlBN4FYtFVDWPKuQ6vQlIKUJIdLpNZAFuwWJktIZQMvygDXJAfajAYBDQbDY5ceIkvt+n3d7OAa+m7IBVCU3VWVtbJ4lvk45pNFstgsDnhz/8AaNjo5iWgQScOnUSIRRGR8eQZRlFEQwP1TEMnZmZGXTTQCi5fqWu65RKZQA0TUNCwnVcZCGYmZnF0E0qlSpnzjyILEkM+gEvvvANXn/9e9TrNZqNBpKU4ocxSSaRZtBqNnEch/m5myCDZmg8cObBPMoqC65eu0an16Xf75FmCYNBn0LBIU4CgqBHnGS5M8S2GR4eYmJinO3tLbIk4df+8T/GsS3W1lZRhEyWpti2SavVZHJiCkmS6fX6ed1ylNLp9NF3jN80y2i1umSZTK1exnIMkiygVq8wOjaMYWqoqkKWpjiuh2k5VOpDeKUyYeizurpCq9VEUXJ91mazTRYl+L0+3VaHrbUN2lsNDKGT28gyYRRTLlfw+z6Dvo8sC869fx7LtLEtl+s353YdEHEcsba2xvLSAt1OGyHnrrKrl69QLVcIfB+hKiRZytjkJGcePkOxXNyRfUrIpB0SEwl0yyRKE65eu8biyjLZzr+B7+fkaDtRqDAMySTwfZ8wDGm32wRBQBTl0liyLHPt2jXCOCRJ8hrmnZL83TXJsqydOmiZNN2pBxUyvV6XcqWAJCUYusFv/sZvMD09QRgFSEiYhkmSxNRqI2SpjKrqjIyMYpoOI8PjDHo9SiUHy1JZXlkCSQHJIMmg3e1w7NgxHMehsb2Noal85jPP8MCDD1Afyplysww8r4TjuliWTaVcyVmPAaEqFApFDNPAtCzee+99giDA8wqEYYQkFDJJYmtri7W1FSYmxjjzwKndetrNrS2SJOGTZz+J5xVYWVpFRlCt1pFlwejoKLphUCx5JElIGAb0+z0uXLzIiy9+gyzNyfyEkIjikF6/y9raKlEU8YPvv4UQCu+++z5vvfU2WZbheS6ypCNLgsGgR7vTwLR0ZqZn6fV3CPeSGMsykcVtp2lKIG+iewGqqjAxMcnSyirFShWAT33qKWrV2u23D3GScPbsWarVvC7adXMnkq7rqKpKsVTk0UcfodncRtMVPvPzn6ZQ8IjjPP34P//N/4KlxRVURcVxnJ13asaN6zexbRskiUqlQr1e49PPPMNg4HPkyCzVapVjR4+haLkO8pWrV5CFYGNtHVM3d4HBYNDfYZGfytMvp0Zxvn8ONQ5ZXLqFbqi0O9skWUp/MODmzVtcuHABRVZ39Xj3gpbb7/YDWV8nRpAmh3e3/UnKz9zpXf+Tsi/2A9f92V+H7XO3vvduc1i96l7w9LOu3/xptzuRXP2s2m2nwt+1tvf5+Vldj7/lkddcNPvgz/0tWh878ln0kIru/m93P9JOyuZBfpTDajLutujdJpG42411mLfwXr2N91r0/qOxJNyef1m+PUaBtKsNlyFJ7H52+Fp2OHEk0izLa4PknYjp/s8hY0/mfgBIyFOPfeRcVQQyct5nlpKRAiki8ZFUCz+SSGPobW3ywRuvcvW9bzFUL/LJp5/h3BvvUPv81zn11VcJnzhDNj2BrFl4xQp+EHLz6hVM06Pd7iJklShK6Ps+txZu8szP/xzvvP1DxsdHkCSYnZ3h1Ve/y+XLV1EVmWPHjmCaBn0/BwemZWOYBVZX1jh37jwz01MosmB5cYGMFMN02NxuYjsOrusQhxHd5hb9dpO1lWVq1RqGrhL5HbK4i1OsYBoqaRoRBQNq5SKjw1WCWOK1V19henyENOpy9rFPUKsNgVCRZRlNKLRaDSzTpN3q0PIlCiUHRctwHJNWq5Wnf6oeW41tTEvGDyLIHCr1OtNHp2lHfRyvzMkTx5k5MgJZj3LBQzfrBIFPlqYoQgJJRhaC9bU5yqUKxWINw7L48rPPITIby5bJ0iyvJ4szTNPD82o4eq6Rm2ZxzlYqKXTaXSzTYmtjE9PUUVSBahggNAyniJwoRHFEKmfEaYSuamiKThB2SZIIx7FzVtluB8PU0HQJ3dBIkhhZCL72tecZGx9DlWOarS0818HxXCzbRlYUkMBxHeIo5E/+7b9lZnqaXq9HsVzi5s1FXnjhBQAcx8a2bTY3t3Asi63tNYaGK8weOUq5OswXvvgcliEoF4ukSUSpXKLb71IoFTE1AyHLtNpdLNsmixO+8uyfMj05gVcosbXZoFAo0mq3sEyL7e0mpqEQ+D7ddhfXtlleWaRQcgniPFK6tbmNYRg88sjDlColLM+mXCqwuDhPseCwOD+PoWrUR4ZZXVuhUChw9eoVwmDAyHCN7e01VN3BVHU0WeW9d84xMjrGufMXqacyqqaSVIuQxmwsLyKyhBvXb1GrjWCaDv1ulyuXLyFkwRe++GUeePAURc9EUTJ020K3HBRC2s1tXNtkaXGJjc0Nxv9/9t40yJLsuu/73dzXt7/a116n18FsAEbDwQxBgiZBUKZIGmKQiqBlUo6gaDkcDoct0pRCQQn+YAWtCMqkJVMETVMySZACCAIgsWMAzNqzYZbu6em9qrr2V/X2l3umP+Srmuqe6p7uwYCkLZ6IV1HvZea9N29m3jzL//zPzDyf/tM/IxMwPztLGPoYlk6v30WR2SXSmZyeQdNyCLplmNilAuVaDbdYHCqhuVFr6Dqe10dRJHQ9d0YEQYjX3sD3umTkBE2aJhF6fTRZQtZ0MpETT2VJhK4qKBIMeiGVchVNVZElCUUWBIGHkFUq1SqSnEPYg2AAWUBKXnNU0zXiJI+wuoUiCAnLtlEUBdMxURQJIWmYekwU+9hujUzSScQwT18oREFIkiYsr60zCCJGx8eQNRXDttja3iIJA3QlodNcJRhscm1xieeefpLG+iqGoTMxMUWKhCTlxvj83EGq5RE2NjYRIsEtFlFUOU8RGAywTYutjU1KTpEw6iMJhmgRm8mJGVaur2HYJs3GBp3mFq5jg6QgmxbdVpNCoUAmC4QqMz09hSpJdPttpmam6HZbuLbN0uIi/U4fJA3DcEhSQblcp1gqcer0KZI0xtRNRJayub6alzQyTZauLyApKpPjUyiSyisvv0Kx7KJoMoWCxcb6MqHn0Wm2qVZGeeKbzyIrElNTU8Rxwmuvv5ZDi8MEpVxAjOf1nS++us321hbjI3WWrl6lUqkQBB7rG6tomsLiwiIFt8j6+jZxnCLLGufOX+CV115lZm6Wa5fX+cIXP8dP/hcf49jxk9RHJgCFZmuLickpOt0eaZYyNj7O6vo65VIVECiKwujIKJKsIaQh+75IGfS7uK7JVmOdgwfnqFZLpFnKF//8y2yubTE+Ok5jYxXSkEQoJEmKAMqlAtOTY/heD7lQQbmyiHfiMPaBCbxuG5KUgjxLkoaceN8oSTNirDSJUlHoKm2kQN41Rm+rhzx6P+LRB/IIH2/Xe/aLYN0cxduL3rqdE/x2sMm9v91NROl2Ec9bRVtvpcfdap5uTiG7W8PhTo7Za5CkDOHCeyKugtxJIw3RIfm+O0E+cZtPtrv/jWO65Wj3/eyt87pfLvKdRu1vde/s7HM3cjtjOs1rMCDJ0q4ui7hNxHTXPMnYwR0KIM1ukZd7uym/g3zzt3e+//77R/XfGvDeTWK4vu93zK2i1H8DG95X7oy++07ku/XO/WW2eycQlv2OuSvIgrg9fGd/yRhmjd7wW37Dv72dnPVRvO3ld6subzWSm43XG44ZGscpgjQTkEmQSQxiBUkxyZIY4TX51f/u5+ldP8cDj32E4yfup/LsFWZ/53NInR7pYx8gq1dJkgwyiKMI0zTI0oi1tU1832N5+Trb29tcu3aZEydOMjIygqQojI2NMzc3j6KojI6M4gcB42OjLC9fp1wuYdkWlmlx9uw5HNfFDzxmZ6bRNI0oChkdHcWyTBRVI0lzCKKuabRbLQqug1twyUiJ4wgyQRBEaJpFu9dH1zWiKELXdK5dXcDQLWbn54mjgIMH5kmSBM8LSFMolEukcUyWJTkz7sYWtusisJClfPYlZFyniOd5SLKCZem0W1vUq6N5xEskNFvbOE4J13KJwhjHcoaRJYhTiXa7hWnnuYOe7yOERL1aY3RkgiSGKAq5ePEipukwPTPG6up6XuPxwiXefPNN6vUR+v0O7XaLcqVMnMb0ul0EOfy0VK4iS3kOqqqoQ8isT7fVwbBNNF1DCMHS4nUCP6BUKZFlIMkKiqpSLleH0MgcbhgEEZ4X0G51OH3qNJquUK5USFOBbTtsbzdxLCePwKUZnXYbx3Go1et4YYDluMiSxLe//W3mD8wxMzNDliVYlpXXLj18kJGRERRVJQwiBoOAOPEYnxjPy6oI6PX6uG6B60tLGLrOyuoKrusgyCgVHOZmZkizNI+S2iYCsGwTx7EwTZOtrSa6YeSELYZOEsdkyFiWReAHOI5NmiQ4joNlWWxtN0mSBNu2EQKazW0s28lzgLsdRkaqeF5emziKIjTDYmX5Oq7rUCqVAUGlUqUkBFGWklYKbGxsEMURpXIF27Lp9/o5M3BGXtYlzbBskxMnjiMJCctyELKcs0fHEU6xyCDwEYrCxOQkzW6XQ0ePMD8zi6bm5YHyqHMRsoxiscDVq1epVuusrqwwOjpKkqY5VHdngRECWcrzcbudHrKSQ8vbnQ6yrKIoKroqkwkJ03aQhpBzXTOGuX9Kzl4dxWQZmKY1XALTPCIqZflHBk1TyFI1h68Kmf4gL0+lawaynKMvfN8jy7LcubG1iarm0eterzuEG+dQcq8fYhg2kqwiSQqkaZ4XnGWomookS+i6jmXleeo7z7gzZOm17Ryma9kuheIIQRijKQbjY5MkqcTS0irlYpGFhSXGx8bz2rcjdUzLYHt7C8/30DSNy5cvIUsyqqbSajfpdNsossLE+ASNzQa6riLJAsO2iMMAIUCWFWRFpTfweOPsWeojdQzTJAhDZCGx1WhQKDi02x2KxQpCkhkMPFZW1nKoc72Krmusri5j6DqyJCEJgWHoqIqc16rWDKIoZXJ6hvGJcUgzLMNAkWXqo3Vct0Cr1SJJojwf1bQIwoSNjS2OHJ1H1VQ0VaVQKGLoFqJYQKq6BFLOZ1DS5pEkCVVVUZU8wmlZFgW3QK/XY2RkhE63w9Z2k9XVFcbGRvj8Fz5PoeBw9OhRzr1+lsOH56lUyui6RafdwbJVSqUSILBtmxdffJGZmWkc20KWcki5JGTSNOHKlSs4jkmv10FRNLyBz/LyKq7tEEUx7XYHXTcxDQun4FCpVmi2WtTqo9TqdWRFRlNV/MCjUCgQ+D6G5SBdXUY+Mot++h7OPPci99xzmmCQoOiCZnuVT/4fv8sjj3yIzBL0Yw8T422G5231BenO4a+3gjC+k3F4O3nXAYo7NEC/G3mvosO3M17vrI8bjcX3Ykz7bHnHY2/nELkTJ8N+9+V7EYW/qcP97907OnTP+KT8/zsll7pdL3d/fu/dfNyq778xXveVv3rjNf6/PkP6nTeQ3nfsPWn3TrxEt4Lh3k7+cozXnRqGuRdtz4jzv29r7+3kCfn2Wyxat+j1dsZrKlJScqM1yyTI5NyAjRMIQ/7FP/nH/Le/8LP8+A99Hw+dOMADow9R/J9/G86cJb33GNn7jqPaFr1OnzCMiKOEMPSxbZMsjZicmmF8fIxXX3mFkZE6H/vYx4jjGMuy6A88bMtmbX2dwSBX+F5//TV0TWN2doaLFy8wPjFOmmZUq7nRpMgSpqHnRoGu0+12aba2ieIU27JZ31gnzfL6lIqaKzOtVpssk3CdMl/+yjdobreZPTDDhQtvMjk5ie8FfPpPPoNlufR6bcQwil2rjyBJ6pA9Nb9mjUaD0dExXnn1NQaex+c/92Ue/sCDCBIGfQ/bctC0nFxCVXJjtNfrMfB6w0hAhiEbkCXoqkqSJghJQZI1VFXDNA3iOMXzAzTNQFVUkgQWF1Zx3SJ+6PHiiy9w7PgJkiSiVqsRRTGDfp/5AwfQNYOVlSVqI3U0Lc/fGww8nnnmDDPT83n9UMNgdXUV27ERCHRNwzAsJCm/h8IgoF6tUalWiVOQh3U0X3v9LN1ej9HxMXRVI4oSwiBm8doSvX6fqckpYhIURafd7nL+jfMcOniIdqvNF/7scxw9cgjHcanUqmy1W0zMzJACXq/DQw89yPTMJJuba/kcJBFCSBiGvksWJcsK4xPjjI+P5GREUUQSp5TKlbyGbZiXVknTlILjkMQRVy5fpF6vEsY5zLHguiRpbnwLCYIgr/lZKBRAgiCKMCwL03DwfR/T1DEMHdPQWVhcwDAKbG81qVQqbG01kBWJar2KrOT5kHkNSgdVVQhCn16vh20X2d5uMhgMGB0dRVMVFEUmcg1ErcTq2jpj42MkSYZmGAgyXNcFIWg0thgfn2Rra5vDR+fYXN8kjiQ03SZNY/qDDqZtIyQJw7SQFRVV0zAMnSiOGbS7rK2uUimXCIclbVQlZ1jWDQNZlimXy6haXg4nQ95FcZDlyB0/8LDMAp1Oh1KpiKGbu7nRiqKjaDphGJGkWR6Jy0QOhUXKvTJphqqo+EEIQgY5RdM1VtZWsB2HOInp9fuINENVJLI0QVW0vI6rpJAke/PvIzQ9h7jLkkwY+CiyRL83wNANIEPVDLq9LrIkUETG+soSZ559itF6BVnXIMtTAFRFp93uoalGPt5MIkMiTQWG6SJrOgidmakZvvzlr/D66+c4fe99aIaJ3+9x9eo1NE3j2uICkiLjFF1MQ8WyLFRVw7ItPN9jpF5HUiSe+tZTTE5OoSoy9XqFKPKJQh/dsNA1lV6vy8TkJEEU4/sBM1OTRHGEbuZGkGkYSECaZJSKFTzfZ+HaEo5T4Mjho5imwuVLF+l0Wjz7zDPce/peojAkiWMuX72M73kIIaEoGlkmoygmvf4W/W6HXq9LoVCgWCwjywq9Xot6rZaXJ+oPaDSazM0fYOn6ZWZnZnNjUVJpbrd5+eVXaDTWGZ3LSbiyfpGzr79OqVSmVCqzuLiQ138dQnyDIEBRZOr1GjOzUyRpzP0P3s/s3Cy6rlKvFRkdrRNFGZpqUig4dHpraJpFGEZIksTExCRpmrP4B/4A0pzhuLG5SeAP6HTaZElMrxejazoCwdLSEpbpIAmVxYVlRkarjI7V+NoTX2fx+jqHjpzCdbTd8amKMiwtFiNkCZUM8cTzZB//GIrkEkcKy6vL1MaquEWLl559lrWV69z/yMPopoMUv1Vncz/Cxbe9v6X9IzY3O+Nvtc/dRjbvxEi+k2Pvpo+72eduxnYnsl8gYL8+bq/X/fUzXu/U+LwT4/W9FCG9db/f0N+dHLtn/3RPxPkuen/Hdr+bdm4ne2+v2z0nO/KfjPF6dwbT9954fScDMf6N/5tsYeUGwqY77e+dFulbyV8WBv1mb95+i/heeMeli4uUyxV8z0fV5OGxNy7iexnl4MaH/63zfmfjde9YkmvPQyYQsw/ubtv5RHFClqQUiwUib0ASeKSBz//093+S1154mtmpCR597MP8kBjlyB+/jvz5J4lOHKL3wElEuUwcRSRxzO/+u9/hnqNHWbh2jVq9iiJLxHFAFCW8+eZ55uZmOXX6FFEUYZo5vDaKYsIwotFocH35OgcPHmRqehpVVWk0Npmfn8sjcMOcSSFSDF3n/Pnz2LZNmglMyyWMQkbqIwy8Ae1WkygMKZbz/Dw/8EmSjO3tNmEQcfSe40xPz9Ib9DgwPw/Da3PyxClUVSXLQo7ecxRF0zBtl1arg2FaGLqCqVsUimUyIbBsB8PQWVleoFZ3yQjp9/o5hNnKyT/a7TauUyDLUmQFSpUaoJKlAVHk0/PaDPw+bsFlY6uBaeh0u31My0ZR8lqisqwgkHnhxZd55ZVXefDB+5iemWJmeg5DN5AlGUVVKJWKQ6ZUgVsoDqNKGf6gj+04OE6J+sgIQs5vH1VVc0jj9jaO4+D7AXEcsr21hWWaSIrC9naTz33+Cxw6eIgrV69y/PixHMaYZXTbHRYXrjM1OU2pVGZsdIRqtYIkK3mOWJIwOzuHEOQEQpKEbZk02y0KpRLlSgVv4JHEMa5tYlkmkJOD5TVeNdIkY2FhMY+8KsquUrm5sUHgh+iGMaydmd/8ppEbmrbr5qysmkq9VmMw6FMoloiiiE6nS6lUIAoD0iSh1epSKpXIhnl4UZyiaxbXF5e5cuUK01PjpGluSBcLJc6fv8Crr77K5OR4nkeZxvi+h2m4aJrOoN/Dth02NzfptDtMTEyCkIcEOi5BGBBFIZsbqyiKgmEaWLaFH/iYloWua3iDPusbG7s1QlVV58qVa5x97TscP3aSIEoxdINOt4VhaHg9D1IQCeiKSnu7hd/t091u4RZLvPLKK/ihn1/nMMC2bTKRwyxlRd71kKdpQr68DKFxWYaiSEgCfD+mWCqQpskwVz9PfYizLD+OFFlAFAZD8psYGUE46LFyfZFKuYiiqjS2t3EsB5Bw7AJkOaxdEirNrWu4BZNer42iDuHJksAPfBQlT7PwvAGarudgvCRGU1UkScZxHOIopt/vEWcBpqmgKhme14I0QJYzJqbGSFH2pJVIhGHI7/3e7xGGIfX6CC+++BIzs7NIskKSQKfXxPf6zMyM8+iH/hZCzrALFrIkcez4cQzLot3p4Pl9HNdm4epVfM/H0G3+8I/+hJdf/g6z87NIisTpk/diO27OHKxr6IaBqilsbm6xvb3FzMwsSZLS6XQYGR1lY32NcqmEpMjoukZze5t2q0WpVMnnPk4YGRnFcRySNCZJIsbGxmhub3Po8GGWl1eYmJjE90NGx+rYto1p5jWhn3/xZWojIziuQRj4lAoutm2xsrpKmqaUigXanQ6OW0TVc0dImiRcuHSeudl5lpaW6HR6OXR8q4khBKNHc6bpzYWAjc1NRscm+Pa3nuTUqZMEQURjc5swylMQXNdBlgV+6LPV2MItuOiGiSQk+r0upmVQKpbJEDQaG6gaGFq+LnY6HdrtDkDuLLIt1tbWMQ1zaIAXqdWqOI7Dmede4mtf+wrHjh2hXq8jhMSTTz6NqulYtoFuaBw8dBBNt6jWamyuL7O4sMDY+CgMociqroOA2NbRn3mV7B98nH/yq/+cf/zLv8Lho3MUqxV0wyDsbfHimac59cAjpJKDrqT76gg7RtQOFDb9xX+eMw7/6Ife9u6++fu7MTpurjKwr+5wk4G8H3x4r3G3I3vhvHv72c9Q348I6nY5snuPTZLkHZmYb3VeN8CB07ccCjeXGtxvLt6+7ZZb7ng8+83NjfN/533vnNN+Oc07Bu7e+d7b9zs6U8T+MOM7lZ1W33Y/38Gx+0Ve707u/Hq8F+3c3OZ+n1vNsyJr/2kYr3A33oO/+sjrfmzD38v+/qpkvwd8Z2HcWWA21pp84c+/wPd93wdIkrdyJ/bKjS+I/T1Xt7yuex6OvS+S5NoL+XiGxutO+1mWQQwiTQm6XRSR8N//o3/I009+k9P3HOS//Plf4Kiwuf/f/gXOuUWi0/eQPXIvUdGl2x2gqAoSEAY+E6OjDDyPK1evcOTIYVZXVhip1fC8Aa6bl1dIkpi1tXVGRupsbW3h+QGLi0tcvHSRe44dy2uQKRLraxvce+9pDENna7uB5+UEL4NBj36/x+zsHI7j0mhss7i4xJnnzzA1OUGv06VYLNAfDLBshzAIKBaLuG6JpcXrOG6BQtHBdW1M20ZXc0WoXCnT2m4iyxJjYyNouk6SZWRIPPPMGa5euYYqZaxvbLCwtEStNkIYhdRrVcbH6xiGjBBgmi627RCEHkkSkcQZtunSbreoj1QZDGJkycCwTLq9Xl4uRM1LOhSLJbYbDXq9Pqqm0e32ieN4aKytMTY6TqVSoVwuMPD6yLKKrulDgyNncW21WpAJ3EKZfn9AGHj0+z00VaXveTiOS0YyLC1hEEcxkpDy8kCqxmDQ4zOf/jQPPPAA3V4fVdPptDtMT09zfWkJ17GxLZMkjtAVlSAIeOPcGwgyWq0m9XoVSZZYW13l5e+8zPjEGAjQDZ1vP/ktKpUyQggM06Lb6XHtylW+8dWvc+LkcRRFQQhBs9WiWCjk930q6HRaOQuulhsyiizheTFCSNi2gyRJBJGPJJFHsYVMgoSsqCRJiqrKWKaVOwMkhWvXFnFdl24vJ3F68403kYBCoZArlEIFIdHcbnPg4DydbpPt7QZhGNDr9vniF7+ErqscOnyIMI7Z2NhgemYWMpk0zVhaXMIbDJBkmcnJKa5cRpeHCQAAIABJREFUvkK/71EuVwijmPX1VcZGR0iTiCDOS57YtkOcRCRxROB7GIaOYZgsLS4xMjJGFMUsLS2TxQmW7VAfrSGpEqsry1Qq1TyfETEki4rptts8f+Z5yqUS0/NzvHnhTe677z4q1cpuaZAkSegMyyLtkCpFcYSsSDkMV4Ai52zXZBKWY5MkMWHoI8syiqLsri+B34c0Jo0DZJHnYymSzKDb4dXvvICly4zUa4RRhGGZyGQkcYQsSYgohu02WW+A4nfxm22yVg/twgrhxUVYXEO6voF0fY340iLmc2fhzFnES+eRXr5A9uIbiJfeIH3hLOKlN9HbPeTNJtLiOvGVJfw3F5E7HpXxMfAi0m6I5IdkmoKs5bnYBw7MMz01hWWZTE5O0Ol0CYIASZZYXLyGpimMjY/S7/cIohDbtnOm5SzFtAyiKODAgTkEKZVKFVXVEKjcc+wEtXqduQPzqJpCmsLCwiITU5OkWYbjOrTbXRzbodftUSyV8IOAUrFEFIZIkqCxtcXIyMgwvUGjUi7T7/cJQh/DNGg2t7Fti+vXlyiW8vJRg4HP0vVlarVRNjYaSLJCseTQabe5euUKxWKRufl5NF0nCgOKhQKSELz88oscOXIUIaDd3MYtFOn1+0hyDk2ulEqcOHmSDKhU8jxTb+Az2x8waVhwQEaSBZJXIk4SKpURqpUajcYGExOTvP7aOZ599hmmp6dI4ogwDEnTjHK5jDJEciiKgiKpu6RQsqSgKApxnCNRZFlGVXVUVcN1cwdiFMXU6yO88cYFNhtbPP/CC8zNzaKoKtVqjePHj1KrlRFkrK+t0+v1qdarlMslRuojeQpK4FNwTAJ/QL1Wo1gqDcmVBOwYCLJAe+Uivf/sg9RmZvjP//aP8+GPfD92sYCiKBydG+Ub3/gSZmmco8fuR5b8t0Xp9lNid+q88rHHbumw30/uVEd6twbI7Qzj/aKPt8uXvfn3nfqt+xlYe9vb+3uSJPvUtn/nc9rPgHun87t7ea+MpVu3dTdD3e/67Ce3uy+EyMv27Thb7lpu0fXdGq/vDrn7V2e83u0xf2O87it/Y7z+Zcl+i8DOww/Q6/WQJYuHH36YxaVFCkUXWYaMhL3XYsczmLNp3qru1Z1R0e/8lgY9JHcUUZ1967c0zVlxW33WV5b5Z7/6P/LqS2d4/NEH+dmP/ziz7/sw1v/zVfRf/32SE0fIvu9+Ituitb2OrmoUS2UCP6DdauN7Pt/8xleRJMH6xgaHjxxhcWGRdquFEFAouNRqNYIgII4j1tbWkWWFqalpQCDLEidPnkTVFCzLolKuIEmCZnMbz/OYmJjA931UBdrNnJQpilMKhZxR9qWXXubakLn34IF53IILQsIwDVRV49VXX2dicorPfvbTPPDAvUiy4OzZC3S7HXrdDoahoesqhqERRyGKptHtDrALRfq9AS+++DJHD80xPjHJ2TfOMzYxQaHg5lFNU0fXdZ577gWuXlqhWByhWKygGwmDQQCpimnqdHttNLXISy+e5bXzlzh4+CiOU0CWNDTVot8PsS2FUqlCp9PjqaeexS24uK6LWzBACGZmZ0DKsB0LIVTSOGN7ewvdUOkPugz6HhcvXOKLX3qCsdExSkUXQ1PRDI0kzVA0FVnOowlpkrC12cBx7DwnVlX43J99lvvvu48sy7BsG9txKReL2JbJ5OQ4nU6TLEvodNoEQUjBzSNx4+NjyDLouoJI8pxEx7bZbjdRdBXTNTlw+ACVYok4ien3Bnzjq1+n12xjyBoHjx4BBIZhksQpYRii6wZBEHDlyhXmZueJ4xhJEggpw9RLrK2u8/rZs0xNT6KoEkEwQEgaSDn0M695KuF7HgPPxzBMZFmlVCoTJzGObeO6Lgdm5knjGFVVabc7tFtdFNXg2WfOMDE5jqrCyEhez1TTDQ4cmGdqapIrV65Sr9eZnp5FVlWeeeoML734MrbtUKvV8zqvssJXvvJVTp06jaSoNFstxkdHIIuRRUZ9tYvZHpCMlJEkQTDoI0uQkUOAK5Uqi0vXdxX7kcoYlVoFWctJ26rlKqQyiSIQqkKc5Sy/pm1z+NgRCuUiUZpx4NAhNEMnJSVOEzRDR5YVTNNk4A2GzpIOpm0iiZg4jlEVFSFkDN0kjlKuryxSLLogMlqtnMSq3x+gGxqySFDljGDQwet3kWQZScCZZ56ms7VG3bUJ37iK/foCvHIR8cZlsrOXSV67iHjxHPR6xOsb6B0fZdtD70Vw6h6k99/Hdq2OOD5KMD8K98yh/cJPEf0Pv8Dqxz6E8l//IO2feJzgZz6K8Ys/Q/gTjxGbMsHsBByewTx9GOnIDEYnRFlsIG8NEBvbcPU68pnX4MI1OHcJd3EN4/ISXLmOlqYYnR66rqEWXUrlOtVKDVLQdROBjKobxCJG1hSiKMS2TAQpipSSxBIrK+uoqokQKqNjY3i+h6IpdLo55D4FtrabWLaLkBRMTcW2HZqtJmmasrmxSaHgYplGvs4EPpqmsbXZQJEkNN0giiJ6vS6VSg7LnT8wR7vXR1YULMuhUqmxtd3iS1/6CseOnSCOfYoFl5GRGq12k0KpiKLJxDG0mts4toFlm7gFhyiO0TUNhCCIIlRNZ6Ra5Y1zZ6lUR8lSdh0Yg0GPeSMvwZNNG2QJ6FQoFkv4fkwURtRqFQI/YmlpheWVFarVCmNjI6iajj5EFkRRkhuJCfyb3/odrl27womTh9khN1QUY1j/OXeaXLx4kbGxPH1g4Af4QUihUKRSqeK4LtV6nV6/j6bKw3JgMZLIHVxzc3PMHZjl7GvnMHSLnP/Qp99rMD4xQ7FQIIPceahqxGlCmiZomgZbbeR6gcrD9zE9PYXQBW6xhqHpEG7x9FPf4MVXFviBj/wEuh78tTBed+R2BsjtyDFv1/e7MV5vRyq1V/bqQntRbLeKRO8nO3rODtpib1/vrY753RlLdwKjvtPh7p2znWu+3/XdG6G9XTu3G9PtB3JXP7+t77s64F318r03Xu/kur5b41V5Nwf9f0Wy7NYP+d0me98tFPd2YfLb9bcXBvG9kP0W23crez2a+81bFOX5OfFQOQ7jDbZbPpWqixAZWSZIk5sZyHJCpzTNhkRAO5CaPWPNbvQ87o6DtyDKaZahKApJkqAc+TBJNsgPyxRUWSbudthevc5Hf+wniaKIX/u1X2NmZoYTJ04w2Gri/PInEFst+j/8KHKpiMhETthTnaLR2KQs61y5dJHvvPwS3//449x3/4PIssShQ4cYdNqUCjlr7Ob2JtcWF0nijMce+36uXl1mMOhz8tQEmq7gODbvf+ADiFRClmWuLFym22hw9J572N5qMHfwIClQrFQQZIRRhtfrk2VQro+ztr7FIw9/kJmZGdbW1lA0izAM6LS2qZUrdHrbjI/WyETC9//gDyDpFn4U02z2ieKUyYk6nh9SKZfZ3NzEKjmgqKQZkGTIIuXgwSlU2yJIAu45dhAyn+ZmkyyOaPWbzM0d5dTJB3j+hVewbJ0si/D8Iqph8u2nvs2g1+Xv/O2Pomsq9xwZ548/c4ZzRZNjx46TpQl6WWJ78zqWo1GrjuEN+hyYm0GVIA59DN3C0FPIQvrdLt1uj4mJCSIpQdIEW60W1UoFw3TIgNde/w7t9iqjowWSDIJ+QLlYQlFzxS/0Q1ZWV5iYGCeMY9xSgShMGR+bZm7+yBCqrRBHMaadM4X3ux1GanUGvo9qOFhDopTJuanc0dJPSaWU7naf8xfOc+8DJ9FiDUhprG1ScAtEIiYIAyqlKvfdf5p2q8OJEycxbY0wSFlZ3qBYKiMEJKnANE3ed9+9ZIQEoUcUJpRKFQQRUeIRpSHIMmmcYuslVtcWqNVr+F4PRVGw7AKaYxP4Kh1/gGvrSLKHHGdomsWlS4uUyjaqbiPJCl6vS+B7DKSQ64uXCb1TmLaGYdj0eg00Taff7TM+PcmffPZPKder6IZBwXb4zssvIyRYWlnkp+d/GrdSxOt26fQ6NBrb3FOrEdsWly5d4vDhg8i6jaCN74fIqMiyQru7kpeXCiIkySBLoVIsc+3qZVzXRNU1GlsNDpXnCUKfOPVI0xQzriDkjDgJaTQ3EVLG1MwUWZTR3drEMHQsxybNMqLQRzE0oiQlCAbYZg5jV0RCNOihaVVswyZJYwQSQZBH/OYmqkhCkKJjuyPECEzHQo49NtfXQQgq1TqynqCbJtlGk4eEg+b5iDMrJA8eofHhg1Qffz+y5iAnuWGjuiW8qSkURQehACFJGtLc2sAwDOp2ET+BJI0QUkqkykgojFmzZGlImjZoddoYWkJcMUh/4jHCQZPi6DhJotNY32bs53+ObMjWLqUqIu2z9PUvMTVSp9sZUK2NI4Vt+t96EX9hFUvT4ItPkgJifgz/3sNolQpBkKKZBmmSoUgGSRjT6wwoFB36/R6lcom43UWSE5745hcZHx/ngQceYHVpgbm5uRxW7Q0QaUZ3c4OeqaGbJlEISRKiKYKMlNn5OSShEichnufhODnRkO0Wc1enLBj4HqVymWuLS4gM4iilZNo0my1kVafT7VEu2BQsmYIpcEsjBKFHTvwt01jbpF6r4+g6tl5nbW2ZcrlCEkuQKsiGgqqoaIZDHMf0BiGFyiirq9eYmJhkaWkZQ7cJvAjPC9F0hbQ1kedAqxqe18JxVcoVm7WVbXzf58Spo5w8fU8etU5ldCUjSUKQBd32Fo6bRzBPnpzn/vvvJ4kFTtFi0B/QabfZ2FjDth2mp2eYmZkkjhM8z2drdRPD0HBKDqbh0FhrUnZcLlw4x0hthOm5WVA0Fq5fIwwDZqdGCBOf2QNTZAQkmYRdGmHUPYAkRTSbbSzTpt/3hmku1jBKHSJXirQ/9wTKDzxMJmdIhk5/0MHSDbCLPPrDP8qTX3+OqrJFhE6uyCYIiSF/akImSTssF/n7e+fNv8e4u9OI4p3KfgiuO8lhfScjcz9YcJKpCBEgiJEykFDJUolYyQn2EJBmyVBnEWhZzA4LbZJluyy/O2POy7WpxHF8gxG6n+xEdIHdyO5eHel2xtqdyK0g03d6Le5E7957ejuR5nzsb2248RyyG367VaR97zzIsnxD+aH95ubdcMfc0N9elfXGRNC7bGf//dOb8o/3Ok9u5JS5obUbvr01rnd2EN04D7c+h+8Wbn2n8v/zyOtbcqfHvFeTvQv1uIvI6zthw9/Lcb2XsuMhvLltWZaR5TzfT5Zz9lLbtt9xAX5r263gwe/sedzr5dxZxJMkI4sT8Pt89S8+z59/9tMsrmxz+vS9lEoVKpUaad/D+pVfRw0iwkc/gGxbxElCGAS77eq6zuXLl8mSBLKM8fFxkjRjbv4ASZJRKJZobG0xOjbKxvo67U6HRx55lDTN+MKff4ETJ47T6bSRFYVet8/5N87T6bYpV8qUqxWmJqdQNY1arY5AsLC4QK1aZWV5Fcs00XWVgeejmya1eo1rVy8zPz9HqVRC01TW1lbzepBaXoojI6VcLFEoumysr+PYFp1On+9850VmZ6eo16v0er2cQdZ1UGUN27QYDLrUaxUOHZwfEqQE2I5LqVRC13S6nR7V+gTNZgfHdZibm0FRJeIk4bd+6ze599RJsjRhbW2FSrlMksZkwH0PPEh/MGB2dhbDNEGkec6XZhCFCW6hQLVaxXZsLMug1W7lsEE9h8sVi0WSJCETEpbtYFtOnvuqqBi6yfsf+gCFQhFVUXOIoe8PS91kxHHK5cuXmZwYR1ZkJCHY2NhgMMiVZNd1UNUcfpqmKaqakz5tNTZRFIVCoZRH3HQDkBBICASqorO2skmxWELVNQrlAoZhkqVQLVVJ0wyyDFVW0HWDOE6YnZtD0zWiJBpGVFJWVpb5wz/4DwS+x/TMDJIshlHXHP6bZQIhMsqVEvV6HcM0SJMY3x+gqTa6ZnPl8jUkSUNVLK4vrWEYDkJOsXSNq1euUqmOkKHw6qvnOHfuZYLQZ2pyimK5NMxDtXjg/ocolQqYlsHy8nUcxyWK8nzcwWDAww8/zOjYKJZpEQYBp0+d5sjRIxw/fg+6phCFPpqqcu/pU9iOTWNzE9u2c/KYIaoiXFjBMk3ExGj+nAooFgosLl7HtpxdRtxCqYAsyxQKRXq9Hp7nsbm5wfj4GJ1Oh8Xlq5QqBV557RXmZuewLIfVlU0cq4Qk5TVWFUWm2+0hJAlFlhAiZ9ztdjtoqkYQhjmkWElJpYBB0EbIIUk2IAg6LC6sUKnVSRGoikKWJcikOTEOIs/tDUKyVy8jvvECnF9AfvAUyi/9NOmv/RLKT3wE9f5T6FPTtFSZbTKU0Sr6WA1F1VA1hTgOiRMfXVdpt9ooskkSCRRDxjAUMvL84l6vj6arxFGCbdlUq5WcKCjLia402WRjo0WaKeiajaSoKLLADwdoikKa+Az0lL6hUDx8lLaqk02OYz18H/oPfIDssftJf/5jdA9OILd6qF94luzKMiJJkKtlkGUyElRVQTd0ZFnGMEwCP4RE4Lg5BP3A/AHSNKFSKdPYalCpVNjc3CRLUyYmJ4iTmHhYR7nb7eAWXMIoptfr89RTT2MaBq7r0G62aLWauI5Dt9tFUTT6/QG+5yEJiemZaZIk4uKFi4yMjPLSyy9z5szzPPjAA0xOjOckZQg2Ntf58le+yPjYCLqqsbiwQKVeY2lpMWcwbjXzNVMIVMOg2Woihorzn/7pZ5mbm6Neq6HIGu1hPvcf/dGneGByGl3X2VIltraadHs9PvOZz3D61EmiOMK2C1y+fDm/V7Idgy1lY32NDGi1OthOASHJaJrOzMwUtmPvvm+yLEdzWLaVIxqGrNdJkgxLPBlUa2VWV1epVuvU66P0+20q1RKqrmNYFil5jnO1VKbb7uIWC3TaHXTNQAgJxy0QxwlJnGKaOXeAruvoRp7H7vkemp5Ho+1XL3Hp4ePopkUmZwgUpBQiv8WF82epFGq8/wOPEEk77+FsT95eBjeV0tiJvIofe+wd3+t/XeRWOlp+fQGR5NaLkMkkmUxSUBMfOYuRsxiVFIUEVaSEyGTkiBmGH5ENy/ft0Qlv5APhbf/f/H1vLiiwq4d9d/rl955P5WaD6a3vt4/I7pzXraLoN3/ffRazt6pa3OqY9/J+vJO2btxnf4PzVrmwO8/cLVq+gxF+d3K38/ZuI6/ie2kovdcSRVF2N9b87ULWdxt5vVvZeSjC/+pXANA++b+84xh3vGR3UuT6dnK7a/q9irzuLJQ3FyG/GUqzF0q8nxdw74JC9pZn7IZxpzc+HHsX6Js9ZUmSoPhNkjhGL41x5cKb/Okf/HvkLOHHfuSH8JQpzp8/zyc+8Ql++zf+Ncf/3aeIt5tsHj+MWygAsLKywsWLF1lfX+enf/rj9HodkqEi//TTT3Lk0GFqo5M88c0n2Fhf58f/zo/Tbjc5fPgwjY0VBgOPsbFJrl1bYH19nYceeoCnn36SR77vQwS+j64ZpFmG6Vg0O00cy8U0DJrNLdI4pt1uoakK9fokaZoSRQFZlmC7BaIkJovjnHxGzulyc0M9Zm15Cdd1MU2T9fV1CsUS5VKFTqfDf/iDT6OoEj/yIx+hVHQJAx/bdvD8AF3X0TSV9bVVHMfMc5OFzbe+/W1++KM/jO/7NLe2mRgdodWOkNUMx9XpD9rESUrBrXL54gUmJybwAp9yuUwUR7tkRJKmM+h7udGnKvheH1WVMDSbzY1NHMdB0xUuXbpIqVykXh8lDEPiOBkakzmDpmpYu0ahLCRarRa6rrOyvMLY2BhZluB5fVRNwTR1NE3j7Nk3c6bnfo/DRw4jCYGQ8hIjy9eX0XVjF8r3lS9/hccffxwE2JZOv9/DtEwURaHvR2ysbzA6Osrv/s7vceyeYywsLPKzf+/v0u31KFfLpElClqYYik6SJLTaDVqtFvOHDhFnOeNskmSkaYQsKfS7fQxNo91sUSoWUIZ1Pckytra2UDWNgltACFhbX6NaraLrOghBq9mk4NSI45hvfP3rVKpVHnzwIc6/8SZf/erX+IV/8DM0m9tUa1WiWJCmCs8//wrbW5f56Ed/FNO2SLOMOE6I04Qrb1zk4KF5FFWh023v5liPVGv8n7/92/zs3/vZ3TzdLMvYXN1kdLSOZhmce+MsJ44fx+/3sCyLze0WTz/1DKdOn2Z+/gACiSRJ0c5dyA2XwzMEgU+/10YSGYpssLnZYGJyaljqKSOKIzRZpdlqEoUx1WoFITI63TaW69Lv9rl69RojtVEuX7yEZVmcPHmcTIrzmrdZxmDQo1RwaWxu4JYqKEp+L6VpiqxIGIaBnxj0OlvIJJSLFlEQ0uv2ccs5SVC3nxMmSSQM+h0q9TrhWoP0ubPI1zfh9CHMX/y7pMcPMLAcJEkDGNaojlBVmSQW6DJIUkyzuYXpFhCyQhhEBKFP6Ad8+lOf5cKbV0kjhX/5r/8pQkB/0M4df8gYho3vpSRJhGFoSDLIch6hTXwFw7D4V//bbzA2OcHs3BSzs5OUyi5hHOH32kyOjdJrd7ALdSTZZLvfRqQBchajKBJmoUAQQ2trlbpikH3lDMkXn0F6/TLp0Xn8o5NYxRJCCDqdLp7nUyyWeOJrT3D//fczMlIjyxIyUtI0JoojslQmDEOiIKBQcFlevs7o6CjXl5YxLYtWq0V9ZATbcYmjOD+vYckZgDfffJMDBw5gGA5hGCBJ0O12iKIASRIoKAx8nzjNKJXKOLaNRIrveci2TegPaLe20BWFkltkY32D0vg4iiQgS9jeahBHIf1ej9mDJwiCgCAI8X2fCxcu8tBD78frDWhsNciyjOPHj/H5z3+OH52ax9B1WvOT9PsDGo0GQggOHTqALCucPXuOqakpHMfdhXAmSQxDSOfGZoNmq8Urr77G8WPHeN/7jqPrOoPBADJwHIdOp4OkyJimSa/b4/XXXuf4ieN4no8CFMsFZE1mfW0Lkal87at/zvz8NO9/5FHIBI3NbdaW1xgfm2Brs8H0oVmee+ZZxsfG8tJhksTY+BiBn+A4FkJKiWMfVVPzNTeOCHwfOUlxPvdtev/mV/mLC+d57AcfxzJcRJyiyG3Wlq/w+5/8FJ/4Z/8rQcEarg8Jkrzzzk7JxFuAv/A3LXjtQv7l1JE973WQHwuRTuS6QnpWIfmmdktdRP2Hg93/408ZZI1bQEGPRciPh/mXTZn4T4y37bOjPig/5SGNDqOpT2ik55Q9++zRLesp8k95b6G+/q371n47J5MJpCxFeTRAPh7lcN5zCulTFsmObsROdHrnnHq7/0efMmCfcxJCIB2Pd88p25TyfXe6zXZGId7xnG5ot5aifNx/q//fst523jsiPxYgn8x1tfw66fu2mZ9Tf/f/+FPmLa+TdDxG+f4w14UbCvEfv/067bb5cR9pZJgK9oRGek696WSGNVPrKerH/V0dM/jfzd3tuxd9eC3Ux0PU00OG99ck4idufe8Z/+iteQr+UCPbfPs5ZYDx33jDLu4WOv122yVNU/whOaCmaW/Lg77TyOs7yZ3Aft/Ww11GXnXNfldG17vHD/w1kluF9+805P+9yAHYJQyamUDMTty2b7gR8vC99Dp+t1CIve3AjePfyyy8d/vOPjv5F/tBHXZkL8zlVrL34ciZP9Pd+VaUHYKLePcTvvDHxC/9R1587gz/8Q/+kPXVNe67931MDj3mJ06c4Nf/xSc4/Ju/T9bpIh57GM8bsLa2ShD4PP/8GZaWFvnQhx7lzHPP8dSTTxHHeRRkZnqG5194YRjp1BkEA9IkIQrzaFmxVOKVV1/lzTfPAxkHDszjeX0++MEP8MILL9Bu52UaNE1FkgSWlUenVlZWCIMI13EYrdep1+rIIq8HuXT9Oj3PAzI0NS9j0+110HSNfr+HN+ijaXk5DbfgEIYhruuSJjGSBG+8cY7ZmWkC38MyDRYXF9nearK2uoqqqLRbTRYXrhEEHsVSCV03yLKMDz78wZxoS1awbJs3L17m85//C3TdJEOg6TqFYoFMZExPTWJaJmEYYJhGPl+Bj6Lm10bVNFRVRZGV3FjVNHw/Ymu7mdcZ1HXcQoFCoYiQJDRNH157iWazRZwkxHFMlqW0Wi08z2N1dZVGY5OpqWkMIy8jlGUZzz9/Bs/zSNOYgwcPMj4+juO6ZFm2qxgLAQcPHRwSCNkkccLhI4fxPI+N9Q3+4otfQtX1XbiRIufRj28+8S2CIKBaqfLI33qE7e1tPvVHf0QSJ7uKa7PZzPuSFQI/Z/mVh3D6NE3IEkjiGMe2QEAyjEglaUwcRWRAkqZIQhCEPkISOcmLouANPEI/GLIR9wijPrPzU0xMjNLrtWm1G9TqRbI4oTysE9nr9UmSmELB4cOPPz4kh8mV6p180EqlhGkYtNvNnMk2jhkdGwVZ4tjxY7tzpyoqpmUxMz2Vz2WaMjM9ReAPME0DSKlWK2w3t1hfX0eW8zJKhpHfE7Ii0+12iaKISqVKwS3i9Qc4tk3BdVhYuMby8jLdbo/+oEsUhnS7Xa5dWyAZPveKbHP23CXIFKanpzlwcIZT9x4C+uiGAZKMpKg5y3CWlxQJgtx54nsBumHi+RFBGCOnUHMLOKpC5vsk3gAVOHfuDbIsy1lyNZXQG2B2PMJ//0X446+TffAU6ef+FZ1/+Uv0T84Sq9AdbJESsNFYBQJWV66Spj00zRg6Y2I8z6PRaKAoElEcsri4iCTJ/NzP/X1+5Zf/KR/5wR8hHITICKQMLN1ApII0iomjFNNw6fV8vEGA70eEQYwfpsSp4Bvf/Daf/OQnCYIAxzIgDXODv9NBllR0zcb3/1/23jtYsvQ87/t9J8fOfXOadCfPbE4ICywAgiaJJQBKJE1ZEsmiy3RZtmSLrqJYZYu2yjRLEmUWrYJIkSJFAiZILRKBBTYvsDnM7OxO2Mnx5ti38+nTJ/mP03f2zt07u7MIRZXIr+rWdPecPuE7od/nfZ/3eTr4vkfB0nFVgRQVjbNNAAAgAElEQVT5ePUK9aV51uanyWaKxFkX/+EHePsf/xTe//O/gCxj/uUzcPQUYatNGIYcOXKEJIG77rqbbC6XqvMmCa12C1mRrytLZzIZJFmm3mhQKqXJl7GxMYZHRnDdLLlcAdt2yGSzzM1Ms7a6QhQGJHHEtvEx2s0GK8vL1KpVGo0GjmOTz6dCXEbPq7Wvr49Lly7hd7v4vs/KygokCZZpomkapVKJ02dOk8lmqdeqdLs+i4tLeF6HocFBHNtmaXEpFTqTZXLZHLcdPszVy1fo+AGSkCkUiqysrPCpH/sklmlSq9eR+q8gyhd56aUX6e/vo1Zr0Gq1r1ecJQmazQaLiwsIIVAUlaXFZXQ99fL90AMfZseOnVTXqrRbbaIoYnp6mkajwdzcHKqqXU/g3XHnHWTdDG6vd12IVLCu2+0yOz/HZz/3Oe65526QpOsgPJPJsrKyimk7hEGE62ToKw9g2TaGabC6uspTTz5NpVJNf4tsC5KEVrOJpqaJMzubIdJU/vL3vsBjjz2GIgtCv8Py4hLtWgPLMDl3+gyXL126TmHdGBNs/kuDCd5VKHoHS3wfjLn3+MrNYr3NrM71qud7x0vvsLvWE/dhmCYb36noSb33kAgZLwA/0WiHMu0AkJQUsL5rTt4J/qMopRhv3IN02S12KXln/9ePZasJ2Wpeb6S2vpsivXn+fhRx84a9eacYcoux6nrs2NvRDat6Z25vuq8bJ6033qt9b4tL9qbLbF7uZtfUehHo/eZTCHG95369WLRxXT/MguQNc3qLYzM2+FGN/yIqr++VHVi/uTZXM7+fjMIHGR9k/TerQP4wtv2jGt/PNm5FEh42UDqIt37oJO94fG3+7npVdz1ADoKA+MU/4Orlq5wQB7h8/hw/9/M/y+DwCM2WhyS7tNtt3N/7E5TTF/Duv5Nr01O88Nz3+OznPkehUMD3fRqNBs8+8wx+N8C1be648w6CbpehwQG+853vcN8DH+bixYuUyiUmJyfx/Q6FQp4g8Hnj6FFkWWNkZIRszsW2TdrtJoaeTTPwScipt99mx+ReHvnqV3n4J3+SwcEBwiBVpFxaWmJ8fIx2o4pmmHzz29+h3e7w8z//sywtzLNaWWH7tm3ISkqFnJtL+znDMKWjLi8vpzYlnk8ul2VuboHLV2eYmb7Kj3/6U7gZh0sXL1Eu9SHJCpXqKqOjI/hdn0azRX//AI1aE8MyiYXAsiyCIGRtpcK3vvUYDz30MQxTp9RX6FGmBFcuXKa/vx/d0ImjiEajSiabQUKgGDatVhvLsOh4HpalE8chvp+gKALf76AoSkovQ6DpCpIsk8QJ3W6QChtFEWESo8gy9XqdTK+qkcQxipxaC339G1/js5/9aa5cvky5r4xhpFRfVVVTJc9eUN1sNFBUQaPRQhIyluUyP7/IsWNvknFcDhw4wPzSInv27CIMOqyuLFHqG+6p88q8feoUJ4+f4POf/zyt5hqyquIHMf1DQyRJKvBTyOWYnZlJqb6GTix6gUkcEbQTbMdktbJMJuty8sTb3Hn33TTrFdptD8tM+zVlWQJiTMel1WjQajTJZbOpQJCq4LcbLCwsMDGxk+mpGfr6+qg3amSzGUzdTOdVV2nUm1QrNXTNpFDK4fsd6j3apq7rVCoV8pkMQdhNhXbqDfr7B6lWG2SzLlEYceH8efr7+nAybqo6PLfI7OwsD3z4AVpeC8s0iMMQWRLEKKwsr9LX30er1aK6VqV/oB/30gytVpvGzjG++c1v8tmf/gxXLl2k0fS5/Y7D+B0P07YwdIurV6colzOYpo3XTu8Lx7VotRrk8/3Xnwme10BIIdXaAvlCBtMsg6ykPfSE+O06YacFqo7jFogiGYQEEkRJiCZ51FbnkZMuSRTg+V1iFLLZHaiGjqTKRMsVpKePgizh/cxD6P/ws8SGzNTVK+TzecKwS5IkDIwOQ6ITeBF+p4ntaCwuTJPv346pKrSaNUzTJEQiTkQvISAThwlhB+bnVnjww5/id37vN/nJn/yv6AZtJEkQBgmyrDM7t0KhmCOKQsp9RYLAQ1ElJFlP+7ADkfaMWum2pqYvs3PvQVQhSMKI0O/ghV0uXr5E0PRoVJf50AP30O12KPcPEAsVySxw/MRRhkaKmKaOZeYh1gneOEH0/34Z5ewVuGMvYt+ONAEilOsq4Z0e1dTz2qiqgqYaRElM22ujyDKGqtCo1VFUg2tT03Q6XQ4fvo2EFPRaWho4VSoVVldXmZycpNFoIMnpPaubRurtK0m0vQ5SEiNJMrKq8W+/8AX+3n/9C/T3FfG9Doblcvr0KQ4e2Eu1l5Dp+gFtr4Fp2szPLTI2MZ7e0zL4XvpbFQQhly9f5tChw6ytVTl7JvXetkyDi5cusnPnDkZWqiQI2g+kyTSpsotz5y6Q63nGhpHPwEA/jUaDfD5PFMWEYUASJVy5fBUkweTu3UxNz/DtRx/lv/2Vf8jc/Bxjo2MkJHQ66fPQsDMEgU9trUqpWKDdaAAJrVaHldUl9h3cTxxLzM0sMziQJ0kCUDXCbsiJYycZHB7DNC3+5M++yOTObVy7coXduyfZt28vz73wHAuLi9x+6B5y+QwT24ewLA1N05GEgt9NbbqiIEB+4wz18QGif/KLFAsuvhewMr/M5UtH6Cs6/MWffY2D++7k8//ov0fTNJIk7XntRQHXK6/hI2nlS+p7If33wRvdAD4IMHp3z98PJwZ6v/UkSXI9IR/HMbqu4/sBIoRsvkDcaTI7c4W5mWs0PcHx48fZvXs3pVKJUqnEysoK995/D4/+1V/x8YceQjF1gigEKWWnrDPV1J5/93oL1M1AzsY4cl2dOLXAuzEe3WqOrre6beib3eKIb3HmfjjjxmO92bWwdV/y5nhz4+c/CCV487V2s7G+TPBsmiBXHwq2XNfm5d+93pv3vMKNha8NW7/Z3t90f/+6xvdbef0vruf1+6HF/sgzBLew/v/cezxuddwqVXtj1m7jQ2YjUE2tFrfIUHEjeN1cvRZCpPL/QcDCwgLtcy/i2i6TH/47fOqTn6Tlh/ixjGzmqCwvoB09TvYvv82VHUPoGYfV1RX27JlMq4aGTrPZQJal1JbAD8hms4RhwJkzZ8hls4yOpN6sQ0ODiCRBUWQWF+aRhCCfz6EoGtu2TWDbDooi0Q18NE1F1x1WV1ZoNuoISSKbz7O0vMLObePXs4WKqiFJqcLnhbMnKZaKZLJ57rjzrpR2K0uUygUMM7VMWF1dwTQNTNOgEwQsL69QKBRRVC21H5meJZNJqbgT28Z7INpgbnaOcrkvFVAJuyQCojihWOwnSiRkYoKgi+d3MAyDKE6Io4iZmav0DwzQ1zeAqpopECDCzaTbTKmlsLS4gN9u0Wo2sZ0MEhLnzp5Le9qqa6iqQrvjo6oypmVQr9dxnCyKopOINIkRRjG6obO8stKrVgja7Ra6plGtrmGaKUATErRaTfbt20u9Xmd4ZARN0zlx/ATZXJ44TtB0jaXFRfxuF8u2kCSo1eoYhomm6hQLJVw3w7UrV0EIXnn1VYIwYHhogOraKolQepY2UG9UOX/hDKVygZHBPmRJkEgCRU0DEcPUSESCLJR3esDXqUwkHHnpGGvVNfr7+1F1jVyxhJBkWo219NwrOmuVNcIwpZ0KoRCFMStLKxQLRV586SUQElEYIEkyum6RcXNEUUxCnFa1vQ6NVhPTNpEliVa9hq7IWJkc0zPTyD1f06xrU6usIikKEOP7XcIoQuspo4ZxyNLiAqPDKXhve23cjEuj1sYPupT7+9EMjVYrPS8poAyo1WsUi0UWFxcoFAssLMxTChI6HZ+or8iuXbvIZ7NousbwyBgdv02r3aJUKNJqNCABw5IxDZsgiHCcDL7vgUiQRBdZSj1y640mpmmTILDtHAhBTI/NEYdoikR9rUIQR5imiyTrJAii68JwEr7nkcnkCCJAtrCy/ahCobOwjHj5BPKrp/D/8c/R/o1fortnB7FIBeYs1yZfLqCbOnbWQYQadE3++f/2W/z7L/whn3zwISQhMLMOXquBoWsE3Rgh64CCEKk1SRwlLM4vMTY6weDgEHfecRu6bhB0A+IoxnXynDpxmp/4qYf5oz/8Ix544H5OnjrB5ORkChaUgJXVFTRNQZBQq1TQNIWJsVEilLRyG0YIErJ5h0Ipx+j2gzjZLLabw84W6KIQKwZBNyaTddENCV3X6Hg+YSCIy2XUz32C5I59iC89ChenCEpZJEunWquiGzpRnFIJZVlBVtRU8EdR0j9ZQiTQajSwXZfvfe8Fzp29wK5dk8iKgm5oiCRkYWEBWZaxbYuVlRVs20aRBY1GHcd2sF0Xz/OxHJcL58/R199HIiQOHDxEqVRkYX4O27ZoNby0HUBTEJKE74dEJNi6QhBEZHMFukGEH4ZIsoLSU/Wdm5unv7+f2dk5LMtiYmIc0zTxPI8Xnn+B7du3kRkZIc7lSbJVZFnCWzWp1+u4bpZCsUgu56IoKvV6A9t20mMXEhfOn0cI2LN3L2EUsbS0hCRLTE7uuN5b3u120157N0OUpMrDsiQRxxGrKyvYloVtZ3EcG6HIgIJp2oRBF1VLRX5q1RrT12YwTItESJy/cJGMa1EsFrnzjttxXIeXX3kFWRbs23eQvXsnsR2NbjdVC5YkhZiYwO8SRyF6q4MWxcwf2okig6GbPP3Ukzz8U59AlWN0yeDypavc96lPkiQJQdBFUdbbiRLWkWz0nA5tgfQzRRgfvGkM9EHjp+8nllr/zntV5za3eK3HJqkAV8zi4iIXL15k5469mLrFM99+nN/5rX/BF373X/PaC89w8fibnDt+lK988Y958q++wrce+XNOvv4SJ468yWPfeRTHsejrL2FYOt2oSxRxvTUDuC4wtBHUb8Vc23xcW332Qeb6rzM2faeCfXPwuhUIvxk4v3F973z+fuNmce2tfFfeFiNv27pws1Wx7d2f37xa/MHPzQevov6oz//fGKucm91c73VDbnUCfrSUhxvXf7MM18bX702TTckHKY/9HTKCeCed+QNnGm/l4f1eY7OYwFYUoTjuZaZ7/q5JEqfvkSABWZI2cS16vSJSGtSJnkBOIBKkBJQghm6ILqcP+I7hQyQImiFqV+by6XM8+o0vc/dw+oMuxu4lSAS6aWNbFsQhOaeE89tfIB4fJR7oI05iyuUyCRHFUhlJKATdmFKxhOs6DA4MMj4xiCLDwQOHsNw83TikmM1x9eoVHMchU8iTL5YwHBsUhbbfQTN0ukGILKt0uxG6brNcrWG7Wer1FoNDI3ztka/y0EcfRNMivHaLldVldMPk8pWrOE6GXLmfKIFczkWVwQ98UBQsVSPwA4gTSEirmqbN1SuXGRoYQBIgSQn1eoV6o0LLq1MsD1OpLFPuKxLFMZZTRDWynDx5gbHxIcIw4srFWUxdIQzX6HgBmYwNcUwcCTRFotac49Ch2yi5ec6dOM3jTzzFxLYJrp4/T7mcQ5YSfL+D57WJY4FhumTzxd4FC41Gm1K5jGlZSIqEk3EJwhASCdvNEscpIyFozBIHPoZuEAUxrU4HwzZJ/Jg4irBMkz/6D3/I4cMH8AMPWTaoN5s9cTAl7dus1Xj8ice47baDGIbG3Nw0+VyeSqWCZaVgIgpgZWkNEkGtWkVRBC++8grbd0ywffsEr7/2GrOzs9z/wEdw3Ry1tQoiifC9Bjt37GJ0bBuybhMLBRmZ0PP54p/+GYsLS+yZ3Mtjj36HwO+yuLTA0NAQq6srKIqMLAkGBwdZqaygalrKGIgCTMPoUfFjisU8tbU1JGSatSrZjMPRo6+RzWdZWFgkSSQGipMcP/EG27ft4MtfepTygIXtqGhKjkQC30tQVYPl5TkKxTyGbSOQaLUDFpfqFArlHjCoki/1YVo2luUgySqKmvrMdtZWWV1dJd8/gGraJEIiDCNc22RweBBJSStfJIIkkmg3PV586QV275zkrWPHefnl19h34DD5Yh+xJOHrEkbBJgj8VFANlcWFFQb6+ymVSrQ7Hu22TzZXQFG1tAKtKXTDgO+9+CKG5SDLKe1RUwRnzxxncWGe7dv3IckWrXoVXbdJkpB6rUKSyOQyo4RJF0XRqa2tIROjiIiw06LRbmE7eYTiYlhlNCOPnCjw9kW0l0+S/MSdJP/2V5kdzJMrDCAZ/Zw5+zbjY314jUWElBCjEiYKSQf8epMD+3by6bsO4546jTk3j3l5Ef3qMsqjr2B+6wW0p14l+PqTqE88j/3doxjPvkbhtRM0/tPX2XnxEpmX30T/7itoz75K6ehZzOeOMHrmEr88MMH/sG0P+tnLWK0Wg9UatVdfJS/3oRsFnn/8JeKujJXrJ0hk/ERl5tRzmMYcnaZEpTbN6UvPMtb/IGG4hq2VqKw28Lx5vOYcth7jOi7Nag1JWNSqXRTDQjEUKrVlpqev0i0YmL/4GcLpefRHX0R0Yswd20ASqJqFJJnIqkIsAmSMHvhKBfuarRa5Yj61cjJVDh3ah6bKqIqMSASXLpwniWIM06JYLOFkc0zPzpOIhERIaIaBphooikbgR3iBR6FUxDB1kiTh+FtvsWvXJEEYMTt1DkUltUxKQDMMlldW6S+VWF5JE36qptDxOnQ8D8NQiCIf32+Rz+ewTIepa/N85WtfZv++fVy5eplPfOITVCoVdMehGXg042vYlkVUtalWq4xvmwABp06+iWVo5LJZup0QEoVzZy4yNFZkbGyc5ZVlzp09y+LCHJ/61EN0YzBMA8uxcFwHIUl0uxFBGNH1u0RhansjS4KpqSlKA4MpNT6WiYOQr3zlL9i+awdep4OQFXTDZHZ+gUKxSDaXhSTinnsOMzo8hmNlaTea7Nu9nZ3bxyj2F5hfmEPXLIyecn0YtNFUAyFJtDwPJZdFe/o1cr/2S0QmvPj8M3z0wx+l2nFpRjaHDk5w6sRzbNt2F2qmSCgn6EkHKZGJcEhI+zPjo2kfoXJP+C5AtvH9DyNG2yoO2wwG19uQ1rcfxzGqLJHEaY0rIqEbJ3TjGEULUUyNSs3DsfJ0WwFHv/sc3/3Wd/jn/+h/5gv/5rd57BtfpL70NrZUwRarhLV5Os1FTF1AEiCraZLmyvmXcTrznHjuSR750tc4feQkyeoqX/niI0jdkKW5BYYGBvHCEE03UJUuJCHEEVKSpLpQ638iua61IAmRJlLjKFUa72lhpGC2V7Vjvde2p/acJIge93gLJu1N4+atWva2Onc3A4G39vlNT++7trH+vY1VyXVv7rTyKpEk76w/fX3zdW4Vz68nMG51bMWwXF9fup5eOns99t2wzNY7devFuXfO2QfDCTe/995rPbdSTX5n/I0Br9/vd/+6skfdX/4N4m8+e4Pa8M0yNzfPhm297o3g9QcdP2jmciuazzpf/p2bfmuqy7pIweYfmJv9eMVJnAK1dTU9RSIkoeV5qMhYqsojX/7/+PV/9mv8wt/7eYakCiCRDN6O7/s9T8ta2h/7r34f6fIU3Tv3oRsGmq7xyiuvpFS8cj9RGHHu7FkajXR5WVFpNeu02y0URadarWEYOoqQ0A2dS5cvMz4xkWbCexQf27YIgyCtugmI44iLFy7wzDPf5Y7bb8O2LYKgy4svP8/wUOrbmS8UyeZyVCprZNxUOGpq+hq6rqEIwfT0FLl8HkVVWFutYDk2YZiqBbdbXs9HdpggCKmsrZHP5Zidm6NUKpHL5ei0OpAEOJaOpsi0Wh0USeWJxx9jz57tmKbOY995CkkWDAz0kc+XqdfWkGQZ07CYnZ9neHgAISRatSZvHnuLTD6HrMqsLM2zbcf23twYLC4usrS0zLaJbaiqytGjR5mbW6BUKqW04jhE01T8oAtJqnKZxCDJvR+YqE2t3sSysyBkFpeWcR0HAWiaihBQKpcoFAromk4cS7z6yqskcUyxWGStUsFxXSYnJxEIDNNAUXo9wW6Gs2fOocgypmkxNTXDvn37kBWJa9eu8rGPP8TIyDCFQpF2u02r1WLfvv0IZFZXlrFMIxWnAdQeZcwwDC6eP8/8/Dwf+ehHKBSLqe1JqcD4+DimZWA7NpKQUDUNkQgSElZWV9OqfpRS31UlDfTbrRayJFMulfC7XXQjFTTatn07hWKRcrmf4eERgm7C089+m4MHD+L7MWPj/cgyGHoGRMJbb56gVCqSzdosLMyTyaSqzbpu8/qRI7z11jH6+4uMDA8gqzp+t4uqaangTa/3yLEshKxiWE4vIBLoukbQ9el0OkRxjKookAjm52YxDYPhkVHUXs/p0vIKu3fvZmp6CiufpxF26PgpjdQ0bBRF4fKVy4yODhNFIauVVTKZtD9ZNzVSmwmoVNZ4+plncF2XycntJHGXWq1CxrXZvWcPkRA0mg0K+SwQQRIQJz6arKIoOqoOJND2PHRDx+ip5iJJaGoqDhK0OoSXplCeeAnhh1z69V8g/8sPc2V+mbGRPeiXVpBn5ukLArTlCvbrZ3FeOI362hmM107jfPFRrGdfofjKcUonLmI2OhhrLaSZFaS5ZYSQCCZG6GQczlaWqWuC7J6dhMUs3byLMTaI1FfE2TGBGCghDfQhBkoEhSwMlNCGh5AH+yggGI0lpNlliq0I8fzrqE98j5GTZxk9coyTX/06i1//Fnurbfr7BolbCe7O/SSKwvadkwShhdepYRk5TMvCzepMTV3BsXNUqm1ApVZrkslm0XUNQYStm2Rcl3azRS6fR/vY3XQevB35hbcQ332VWEpQ+vOAQJIiZClEEnqasCRCkgSqqhEEXVotj9GREQqFAq1Wq9fLmqGyuoyTyWCaJrquo8gKlmXidTzW1qqUy33IvZ7OOI7I5bNppan3e1IsFvFaHh2/QxIHaJqOm8mhqiqWZWNbNpXlBer1BoNDw9TqdTLZbJow63axLJt6vYFhmHS7EZ1OKpS3b99+BgeH6Ha7DAwMoOsapmliljziKKIyFVHu6yMRqae06xhU1ioUinmCIGCtssbXv/k1BgaKFApF1tXz/a7Pju07UDWdttcmCnsJSQSSkPH9tIWk2Whi6DqdjodtW5iWTa1WxdB0NFUll09V65vNJnOz8xRyBcbHxqjV6zzxxON0fZ9s1iWbKSBJEgvzC9iOiSzL5ItFMtls2r+egKarKKpCnAhUVUVTUwV76dRFZn78XiRdZ9e2Hbimi6Ta6KZCZf4ibx8/QnlgN31jo2iGihR2ECjEQgMRpOCwB14l71W4Ng/jg1vGID8q8Ao3xijrIOKGz7gxTFeEQhSGKMgkAWiywcyVKY688CK/+1v/F5fPnKbdXkNRY3I5l8GBAo5t9TQWBLfdfg+WU+TUuRmQZOYWlij3Fdk1MoxAwYsVpudmOPv2Md44doy5mSnOnD9DqVRkZGgY3/eQZAmStO8xjCKSdfgpxA2FtRvmbVNcdv1j3n/5zfN4q/P9fst/0Er7D3od3Kgrc6PA0Tuvb9zeB61SbzXiJUHSEgh76yLahndbztvNwestbf4HnLfv57sfbL7+Fry+z/jrAq9bWeX85whe18Hn9+sBthV43Vx5laR3Pwik9WorW//AbPWDI4RAElLqhyYLQpEQSWAEGRqVZb79rf/EYL/F5z/3Uxw8cBfy4pl0E0N3AFCv18lms4hX30T7gz8nfvhjhELQbqfUslw2R7mvyLWrU6iywrFjx+jvL+N32pQHR1B1BV1V6Hg+q6ur2LbBwtwCmWyWffv3U61VWVhcoLJawTZMom7IubNniaOAdrPO1LWrlMp53njzTfbv3dtTCxVM7t5Fub9EPl9ktbJGJpNlbnYGWQLL0gmCgMG+MkuLcwz0l2k06mQyWRw3w/z8ArppohsGiqrSaLZ6fWc+tWoNWVaRRCrD7zgZSALCoINpaKysrFAslpienuHO2w8gyTGNRgPLyWK7WQaGR5EjCT/wsG2VRqNOf98IS4tVDFuj1Wjgdzrc86H7KPUVKOazdLohhmEihISq6SiKgu06CElw9coVjhw5yqc//WlUVUGSJYQkEEJjanqK2bk5NFUhDAJUTUY3dcJIkCQymmbw3HefY3x0HEkFRZUJwoBsJkujVk99Q+XUAmVy5ySGbiKEoF5rkMlkSBKVKIp7PUTpNZvJZFBUnbNnz3PnXXcRJxEtr8H2HdtRVJkoDAiCkImJCfbtO8DiwhKvvf4Gy0tL7Nm9iytXLyMrMnGckMk5RFFAu9UgSULWahWGhgcxTZ2Ma9NoNZidm6Nc6kNWVGRZBUmQiFRVNONmkABNUZBlLe0j7AHtRr2G12mhaA5Xrl7jG3/1Vxzcf5CwG3HpwkWef/E5PvOZHycKA1RVoVDMEMURXT9AURWOHDlKx2+Ty9kMDw8jyyoJEfVGgzhO2LZ9nPHRYWZnZgCJTqtNs97AtR0MXafdaqHoBoqqI6sqXb+LoSkszM1QyOdI4oiO10ZVUi/lfDaLbVm8dfxUKjzW30/bayGrErqpUc4X0HWZjJsmIjodn5npGZ5/8XkOHz5AFEdkMm6aHFJl/KDTC6oTTMNk7+69TO6aRKHN6soCjUaVoZEhlisrOK6Dqsu0Wi2iTp3a6jS6HCLJAknVkAnSvkrbJgjT3tZEktLkh99FOnUZ6elXkFWN+j/4LP971OX02xfZWYnZ9foVnC89Bi8fY/W7L9A/u4J26jJipY6nqaiGkfasTYwQHdxFa7iPan8GffsIQdFFDBTxi1koFxCmjtAV+kYGKA4NoDguoSKj2BaqbaFnbCTLoitAdRxiTUEyDRJN5cTbb/P4s09xfO4aBz/1EGK4j3ion2ZfHrFnB4+ee5tOucjE8DCe10ZutcheWMB8+Tzqo8+TnJzCXJIJvUWUrAtODiRBEHoEEahKgWxpgCiRsZ0MfttDVyTWKvMEnkfWcTEMs9djqxPnSsSfe4DuRInwqVeRT15EzuiEcsjc/CWcTAlEQr1eo+sHaHoqDmbbLrMDzCIAACAASURBVHJPzEzXDJIkpaoWy2V0w7wuknbh/FlyWZd8vpxW9uOES5cvcvTIEcqlIpIkEwYhszOz1CprHH/zTTIZl1KxiGObJAkpYA5DVlcreG2PJI4YHh6hUlnFzWQIg5ALFy4wNDiCoigUCkVUVaPdbgEx+/YdRFEUJEnQajeQ5ARtcQWp5RH3dQiDAD3sR9N0PN9Pnz+SoN5o9Cj2DrqpcvjwIUZGhtB0g47vMzg4BCRomkqt3ujZeznEUcTiwiKNRou8m6frd9E0lb7+flRNw81mQcSsrq7QVy7RbDYoFkpcm5rh7VNnqCyv0N/XhyDBazVxHYvbbztErlBieWmV+YUlrl67xs5du8gXi7RabTRVTxWISYjiiIQEVVGZn5/HcRxUIeDEeXL/66+QSDZyLDA1nRBoew1efu6b1CtzBKHJgbvvQVElkqCDQCaSVCC8AbyKp74AJy+Q/ORHtowjflTgdSv67cYKLECYJCBJqS1eEJJ4HVxNpzZXRYtlHvmP/5E//t1/zbf+4k+x4gZ9jsrgsMzbZ5dxnITxid30D2xjerqC7uR55Y1T2LlBHnjwISZ2HeDVoydYqTVQhWBlrc7A2Bhh2MZWWowN9VFZmmbmykVefeFZHv3KI7RWlhnZtpN8Lk8SAj2gHZEQiV4VdqtqZ+9Y13tIr8dkN5vnm8z5xnjuVum2NytobNyPWznfN9v2u4sk7y6ArB/3O/t0a+D1vcatXpf+n5hEbyso9wRbnpv185JsOHc3i6NvPEe3tPkPfM5uHD8YeN14bm42/kaA1yiKfnPj+/eblI0X9OabY+MJ3fydH+o+98Cr8tlP/gBZnK0pGDcDr9/PRfqDHvfmB8dmekX6/+/s3w1ZsA0Zp/VAZWOj/kZAHccxUhITE+MHXcI4JEoigq7P2sVl3jjyEgcPbqfdrbN3/wH8joqyfJoojugU9hGGIb7vU3/iexR+6/epPrCfY5cuMDaW9qRGUczK6ioZx+HM6TOcPv02Dz74EbZNjOE6FpJukc85nDzxFstLK0zu2s3QYD+r1Squm+G1119DAG+8cYy9e/dSr6yxVqkwMjLCQH8Zz/MYGxtDURTuu/teTEPn+PG36Osv47ousiwRx/L1nl1dTfvWFFlida1CsVggjkLarSaanir2+t2QbDaL7Ti0Pa/nQ5mQcVOvTNtyabc9Wi2PYqGEquroGRc/CLDdPHamgGpk+Mo3HkVXukxMbKPZarFtxzZK5UE8L8JQZcLQo1JdIpPJ8ge//8fcc9f9KDp0Wi0mJsaJpQRVT30S3UyeJEkBSRSltKV6vY6u6wwPD3Po0EE0TWZuPlXRVFUVSVYJgoClpSWGhgdxXQdFkQlige1kUFWdqWtTHNi3n/m5efLlLIqqEfg+kCo1a6pGo9Hm0W8/ygP3P0CcxLz4wguptLzn8frrb9FqtRjoeYR2fJ8nn3yKt946ycMPP0zH76BpMoah43U8FFlOwXVKrOKZp59lenqWD33ko+zYMUG36+M4Fk4mg6xoxHEXBEgiwXFstm0bJ4xDZFlCUQTZXK53ntXU10/ICCkVqImjCNuxUSSZqalrOG6GlZVlBD2VW11HVRWEbOC6GQYHBhgcGGR5cZljx45x970H6e8fwLZtJDkkCCJAwjBUJFlhcnI3A4Nl5manMQyTc2cvkc3Z2I6D47i89OKLlEtFXMfFa3u0Wi00VUuDVzlVNtYsGz8Imbo6zfE336RUKlIul7h27WrqTRknXLt6tdcPLJieneG1197g9tsOU6tVGRsfJZPLYFomS6fO4CoavgRBEGBZFoqqcP+H7kdT1V6fXEIYBkBMlKSCJVEYoUgStmVCkqCrAsfO4ro5ElLBrU7b66mkJqgiQsQ+lqMjSQptPyAKAmzHSSv7QmBYNlKzg3jpLaQXjxPmbbq/8StID96H99pxPjy3zN8JJPILK8iuQ3fPDt70GkQjZdwDk8RjA4jRfuRCFhyHtiLQshkgFdpSVRUhpHT7rfp15eMkiRHE+L6H6TgsLCzx2HceY2J8W6/iFaXPeSGo11NP2qRnD1XKFxgaHmT//r29xJBCnEhohkzQ7bJv/37KQ4Mo+Qz2QJmOraFN7uGbJ89zwV9k79AYZ555gaHTV7Afex3l+FmkqVlCTcYYG0XELjWvjaqafOxjH+NLf/olfumX/j6CiPrqGn19fSwtraCqJpJqEIQJpmlh7dnB7B0jOJKO9OwbJOemcQ2buFQkCEMsy8KyLZIEZEkmintsGkFaUer1h+qWCQimp69x5epVDh08QByFVKup8BEiod1q0WjUERIUC310/S7FfPqMHBsbRZEkXMdhfnERx3Gp1uqpn7PjYpgGpmmiyArXrl5DVVUMXSOfy6HrJmuVNQAUVaHT8Rgc7GNqaoavfvUrtFpNcvkMcRxSrHsIr8uSu4ppGIh2+uyLkrSnu9UM0DULXbfwPB+QyGbyIEKuXZ3C8zrYjkM2l0VSJDTdIJvJYGgqzWYTRVaorK4xc22G559/Dk1VabaaFIoFkASKIpMv5Hnl5ZdoNhsMD4/gZvJkMjn6i3m6vo9jm9SqFXRdpZDPMTu7yOOPP8GlKxf50AMfIpPLkgiJtdUKjm0TJ6l9VMf30bTU6iubzbJWrZKQoF2aId6/g3BwjLgbIIuQThShaoKcBbXVRQw9z+TB2wmiGDkJEUjEkows0wOvKpAgLT6dxgkPf+ymscP7Bd+b4491L/nN4PT94peNsUaSJMSyIPS7mIrK0Zdf5jf/2a/z5KOP8kdf+Dd84Xd/mxOvfZfa0gVKbsLIgEsc1dl3eAcTO0fo+ICcpdFOMOx+PvSJT1LvwK/+j7+GYub42reeZH6pys/9N/+AOw/fzv7Dt3PkzROcOXOFT398P8WsRdRtMNiXI2/pJJ0WF0+9xekLV/nkxx/sCZSlFdcgilBUFWULsCBEuszGxMC68JPgxtjvupjRFmByM+11MzDZHGtvrmKvA9aNLWbvBTi3WufmY7sZdXf9GDcuvzHmlGXlhr7lzft9s1g9pV5HW/7f5u2v/0WvpwJl6r3vWERudazADY4dm+dufZ6uv95CqGoruvZWGOjWx4/+O38LXt//u+/6bKssx48KvG6svH7wsfWD970qrz/s4/h+xg0PSSFYP47NP0JplvfGhyRsbZuTJAlJHBDFUQpco5Cw7ZEzLf78P/wpt9+5H9VUsbMFVM3l9OlrWAMHMMYPIjQbWQiUZ16h+IUvc3GsTGHfLizTSnsjFbXntehjW+b1qt2eyV34fofV1WWy+QJB0KGyusy+vQfodLosr65QKBZ56qmnGB8f59DBQ8iyTDcIePqpJ9m3bx+u4xD2+reWllcolfvwOz5+t4uma72qaIJhGAghE/VsVBRVJpvN0vbagIyqKBi6SiaTxc1mU3ERReby5Us4tk2lsoIsS9TrdaIwoNlsEoYhjmPT9bucP3+eOEnQXQfHzRDHECcS9abPK68eIepUOXDwNuIkIZtziSN44olnuHb5HGPjQ9Sqa1i2S3/fEIapEYmIXCaHpqloRuo5GgUBnU6EqqaCPZlMSufL53NomoaqpXYjqTpjCsriCGRFwTQNdF1H7mUiJVkiQSaOUr/IfCGHoRvk8wUSkRAnCX63i2mYKLJMs9kgRnDvvfei6xrLy0s89eQTfPhDD/DW8TeZX1ji4w99HMPQME0DRUnncvu27amSa+ijGzpCSATd8LptDUh4nsfMzAz9/X3k8nkcx2Stuorj2MSxQFV1On6LJIkxNB3TMNE0HVVTe3Y0MUkC7baH3w16ytDzqGpqj+O4DpIQ1Bt14jhCNzWazQalUok4jPE8jySGMATD0MnnssRRSDab4fDhw3S6dVTZ7FEr64ShhCxpSHKCrCgkMaiaRK1eIZ8r0Gx2KPelPYfT0zOQwIm3TpDL5Cj1FdF0nZdefpnDhw4hSVJKvxQCWchcOHeBy5cuc9c9d4EkMTM7zcDgIAKB47i0Wm2ErDC/uMDtt92OJNIgW1EVhCSQFYXSShPF61C3DBIEnpfeD5mMm/bXtdpIIhUKiuMIzbB6ADBVXSaO0BSJmelZJEWj2fSwbJd2q41tquiaQhw0AUHL6yCrGp1ujJDMlCasKNSqdYzZVeSjpxEvvQk//hGSX34YuZwn9/XvoZ67SuwHXOq2yH38AeIdowQ5m2bgMT4xSqGQR5ZlZCVVLU4SUhpoAlLPz9PzWukyUirKND83w8L8IvlCEUVROH3qJLlsBt20U3q16dDX14csS0iqQhhFyJLM2bNnSZKYZrNJqVgkjqFer+FkHEzTQAjBzMw8JCGmaRIFERcvXqJcLiPJAt/3yTgZMq5NN24xsGcSuW+AKaWFe+/tSKqOPD2H9eSr2E8dQa03+Z0//WO6us4v/+Iv01cucfttt9ENfQaHB+h2Q5ZWVjBMk3q1imlZtJotJCn1WdXuvYvOZ34Mr2hhHDuL9ORryKpKYOoopoHntWl7LVQt5XCrikycJJw7c47HH3+cPXt2o6qp9dno6Aitdrun/nsJy0zPYaPeYN++ffSV+whjqDdqADhO2ncahOnzVdMNkgRKpRJJnNDxvNRmqhugaipWz5qp63dTMaS1CpVKhVYrZRLYtsXc/AyOneHQ4QPs2rWTOA5pt1vk/Zh6vcHTx08xmN/GqeMXmJiYYHVtjUa9QdhNf/pc16HZbJPP5pmZnsNyVHTdTO3RdD3FCwKSKMUOK8vLGIZBHMfYps3RN96g1W7hd33uvucuLMcgjqLUNzmOsE2T8fFRJEkmRrC6uopjG2iaSr1eJZdLKdGLi4sIJK5du8b4+ASIhGKhiCzLvPT8i5RKRYIwQMip93GChNoTXIrjONUoWKzQmRxl1rYp5V28Vo1uTwhvqJQh9FokiUYsGdjZPLqSgCSTyDKiJ44WH0lVWNfBq/jMgzfEAeuvt0pibxVrbI4dbogZbgG8brTcu769CPKZDK21Gl975BEunT3D7PQ1fK9CNqMTBU1+5vM/xbYdE3SihOLgEB/++EO8deYaD3z0x5hbbNAJwLKzXLx8iX/yT3+dS1em+Ff/8ndJUBgdG+fuu+/gd377t/ns536G0R2TrFXn2b9jhPMXz+BmHXKuQ7tdRyZEImR6fpFWfY1yqYCsati2g5CVtHJ3s+PbojqZFg7emaONgpcbZ+u9gONW4HPzvG6uIm5c582+s9Xr91v2vba7vu2trqObVftvtu716/FWjyHsgVflnvA9l9t4rW/VH7t5324VvP5g42/B6w9l/CDgdf2iiOP4uoLfeublb8Hrj26sU3DS+d/6nMnSu/1hN1J3Nkq3p5936QYBSRxDEKL4IV/6d3/I+ESO4bFRigPjqPYgnq+i6Q7LTR/LdVER6P/y32N+9XG8+26jk3XRNQtNTxVm6/U6mqZx8eIFRoaGSeKEvlKZer2aVo3GhllYmGNtdYHRkRHarQ4zcyv0DQ4yNzeLYZoUi0X8js/oyCjtVot8IcOVK1fYu/8ASBLtTkjHj4hRUBRBx/fJ5/JkXJcTb54gn8kSR0EKXjSNhaUlbMdByDJuJkcCVGv1FIwIiShJCDptTEMniSN0TSXjOqxVVimWCsiKhOPYqKrS6/WyiOMYx9KIfJ+w0yXyA77zrUf56c88zOTu7bSaIeVyieXlKbodn/GRbfT3Z5BEQl/fALKkUywVaLaXMJ0CmqTgex2EKhMlIGKBolksLy9jmCaiV3mS5BQAiV4v1crKUg9UB6lnq0j97NJAPO3n+dIXv8z+ffuRZUEQ+DRbDWr1alo1kxQkSUZTVebnZonCIK1SWiaKIiFJ0Ol47N27h2KpwPDwIKZtk8k66IZKkoDvB+QLJWzbBBFhWiZBELCyXCWTzVOv1dE0g2q1Sj6fZ3R0lKeefpKIiL5ykVqtSi6XQwiVk6fOcfz4GwwODhKHcarw22gSJwmO49Bud2i1PTK5XE91WMbrtJm6eJH+/n6ESL1yVV3DzWURhORymdTuaGmFWrWO3wl54fnnOXRwP91uhygJUDSVOImp1ZcoFAZpt9poRkJtLeBb33ycmdnL7N6zB1mRWV1dYnCwH1mouG6BtlfH63QplwcoFUs0621IBFbWJJ/Ps2tykrbnEQtoe20MXWNlaZED+w6xfft2NMMkkaVUVVtVUVWNq1evkcnmMW2boZERBDFRmCac4jhBVtJKsF5pICSJhutgOxmWV1d57sUX2D25C1lS8DsBL730Cn19ZYQAWUmtNQQJSRySxAFz81OMjI3RDQNy+Tzdrgdxh1ZjkcryFGoc4BbHMDJ9oNnououpWCTdmO7LJ7BeP4fodJF+9icQv/KzmFfmMJ9+Dbnp0T08SXfbKOdrDV45+SYDQ0OYpoVpmkCCrEiokkxMTKOR+reCQAIUWemF6Ammafae1RIgoykyAwODyFJKvR4aGkAk0O6GLC8sMzo2iiylNk5BT2BFkiSCIKBYKFAqFZmZmgZJ54tf/hLLy0vs37837fWMBF6rReCHtNsegwND6b2CwHYd/vIvvoKTk7jz7vtRdAXVksgVdqPpAiybsJwl2TVInLFJLs/wqdUO7mqVofvu486HHqLWbvL2mfMMjgyQSBKWZbGyvIDjGKytzFMu21y7egbbUTFNi1iotAeyqH//QeKf+DTS828gP3+MpFpD7i+AliqpJ0mELEt0gy7lvhK33XY7Z98+xamTJzhwYD8IgWaY6LZNLmPhODaVyioZN0smk6HZaiNrBqZlAWC7Nq12i/6BPuqNOrlsgTCKWFurEEURpmkyNzPL8NgofsdndnaaOIqYn53Ftm08v83OnTuRZRnXzVCv1+nv78dxLJaXF4miMAV5QYBeaWJZNqN33E/GLKLIEpcuX2bb9h0oioptqJw6eYxiwWV1ZZHZmRlsyyRTzKAoKrqRAuu2107bD6KEoOsTRWEq3tbtcu7see770P3c98C97D+wF0mC6WtXkCWBYeaQhYJpatSqa3T8DtVajUI+j6omuBkby7ZQNR0hpR7aczMz3H3XnRw6eABFlvE8D9MwqVbWKOTzZHNuz4+3iW4YyBLESYJpGHSDAOXaHOKeQ7h3HqTbrpNEHtdm56k3Wvi1Gt/5xjcpFQtcnF7krvsegKgLIiGWlPTeTRKSpkCUI8Sp76b39U3A63tVwjYutx4fbIw9Nv+9F9jZXBETQiD5EY3VCv/3v/g/eOTLf87CwiytZp2M7dDxAj73+b/LM999DZ8ML5+cZWLfhzh67G3+p3/6f1Ia2s5zL7zKf/erv8pHP/Iga8tNJsYm2RPcwce2/Th/9/5f4CM7Ps6ffOPfcd9d95At9DO72uL5773Mx+6/l8n922i222zbPo5hqgwNFlDkiGLO4uXnn+XpJ77N4uIKpmExOroj1bGQt46xgjC8HodtrFZuBK/rxx3HMfGmeGyrQs8HmdfNCYTNy9+MXvp+23g/8LqZmny9GhrFN1wzW4HXrWLS/5+9Nw+y5Eqv+3733tzz7Uu9Wrurel/QAKYBzGAww8FgZGkocRVthkQ6RrJoW3IwGCGLDMl/kHYobFEhB2VKFE1KEZIomgquwxmSM8BwATgDNHagsfe+VnftVW9f8+XqP7IK6G5UYxlSthScG/GiqzNfLu/mzczv3O9853yc8bhz7PAVDYR4F7zenUr7Xh9/B7x+ePsLA153ZlzCMCQIAgzD2NUv6zvg9c+v7QRdsHM+d7npE3ELwL19Jk/TtFu23wavRO8CW1M3+Df/4l+xtbLGX/3+R8mVJhj6gMpx/uI1/tbf/ts89/yzfN/kDLl/8LNozS7LJ48QOhZnz57h7NkLHDhwgAsXL5DPFzCt1Iy93+syGnm88uorHDx4gGKpQBQG5PJ5VpZvpt6v3SHPPv8yzVab48ePMjs7S7FY5PHHv051okq328VxbQ4fPoIfhOi6CULjuedfYGl5FdcxKBSKKJkqtmYch/pmnTiJsEwLTVOsbayndUa6QRgl1OtbuK6NbVlcuXaNcrlKp7lFu9VOfRW3RTUs06Le2KLTaaNrOs1mk2w2i+u6ZDJZDC3GHw6JggAJnD79OvN795Ar5CkUKoRRgGWDY7n0ux6FgkWpVKTT6QGKdqcFwkfqKVXUG3ksra6kVGTbQUiF47golWaL4zhCKsn169extjMtrpvSAqM4QdMMlK5otVvYjoNtOwgk7XabarWKbmhIGad0vUIBqTQS1LvUp363S61WJYpCVtc3yOVySCFwXItyucTFCxcoFAqUK1W88QjHsVleXuG3fuu3OXL4KLZlYFpGmmkNQjTNZGuzQRSGOK7DeOynv0VXHDlyhMmpScLAZzgcUMgVkMrk+rUbjEZdTpy4lyiMCIOQYrFIEEYpPRXo9/sYhomQgn6vRzaXxda1dKw4DpqhE0QRQkq2NtcwLQsSSGLwRj6WZXPl4iXuvfcEUoE39rBsi4SEXrdBtTzLVn0LqQJymRpXLl1jfmGayakpNKWReprHmLrF2mqdaq2I5/mAwrEzTFSquE6GQjmDZVn4vk+n06FQSMV8UggmMXWDXq+P5TpIXUdKGPQHmIbJoDcgX8gTxDFK0zGUJOO6RFHEVqOBpukoTUffajL2fXquSzaXZTwec+LEvWhKQiIxTYskiamUS5imToKGFOD7HoNBD9NQVKtlWp12Wq8Y+WiaoNXaQDJCigBbN+iNNaSVwfd8wqvLaC+8CadeQ7v/COKn/w6bP/IFSpfXsb7yJFHWJf7UPfgzJcZSoJTBtas32NrcYDgYcuzYceJ4R7kSJAlBGOIHAYZpIwUIBEqk+aXRaIAQ22qWcUoLcywTIdIso67r+OMxSkkSpfP8qefIZXPk83l6/R5Ck+iaRhhHZDOZdCwkMa7jEkSSublZkjhi7945lNIQQiPjuLhuhuvXb/D22+8wUZtAagqpKbqdAYeOzWGYBSIiIhlx7VoPUx9j6CZB4OH7Q3rBmLBcJdo7SaEzxPnT54hNA39hL8VKmUY7tbCxHQtT1+i0W2yur1KZcGm01jAtjTBOkIaN1AWJFqAXZxA/+AX6j96HtrqJ+t1vkvSHjKoFDNtIvUSVhpJpHfz83Bx79+7lnTNn00yuaYJQWFpCGIVoSsMb+wyHQ5ZuLmM4DoVCgbW1NZaWl5idTUW/tra2mKhOkpBQyOfRNI0oCLGdVCNASkE2kyUKQyZrNRzHIZdP68UtyyGKYt5++y2UkpiWTrvdYnJyEs/zCMOY/ChAIHj+2iUc2yKfzzM1NZ2yFKRi0Gty5coF9u9fYDgcsHfPXDqhaBvp8y+KiaOYGzdvpM8AqZGQ1gZLIXAdlz1z8+iOiZCQxDFKSTKuzXA4YDAMGXkjLEMRhD6OY2OYNuOxDzKk2Wpu25bpZLIpKLU0g4zrEEVpzXsQhERxwtTEFJmci2WbCE1sT3zI1GZK19MafKUQV5cQnzxBd6pMzjEZ9lpUp+bI58tM5B0O79/HuXNnKU3vZc/+Q4jYJyEhEoKdvJ6cjxB7Q3jiVPqOvwt4vZPeuVu7E7x+2Pd2Wy5EKoL0bliSJNho/PzP/3NeevEFwvGYOPKJowDfhziEKIJ/+N/9M9qLirzax4HJB3hwz0NMLZ3AvTLB/cbD7Bsdo/L6Ag92H2Pi0gL6wGa06JMfFnHX8/zoxN/l8/YPcaDxAPlRlS89+PfQrlWJNh3Onb3GwdoJXv3TDSrmBLOlg6y1L6E0yWDoYblFnvzmKU4+9GmKhQqReI/SettvFe9RZ28Dcnf0XQrs0vfPnX1zZ9/dVjv7AUDroyz/KPHqtwNebwXMO9c2Pe87BZw+Wp31xwGvO8eOXtFvA6932y5J0nPciW2/A14/uP0XBV53rHLeT0N4z0ImXZW875MGEOlD3zQNUqns22djhEiFU3bE25Lt4ZHq/b1/nztrbj+XtO2c427gdeemv/V7d7bbaRhi908aKW2f63uLxbc14HZvH1SLsLP+VqrDB2//3rJbX0YJMcl2JgOx3esiASWRcYIWg4wShBTEJPSCIaZuIEYRrz//CgcOHebo/SdxJ/YzGIMmdWJ/wGQ5y986fIT/4eI1io+fgpP3MD55mHyxuE1j1FlfWaeUL3Dx3HkWr11lanoK0zY5d+Ys0zMztFo9qrUphp6Pk83hjWOmZxa4dOUGmUxuG0hq7N+/D9syMQ2D0chjdXWVt99+m5MP3ks+l2U07CNFgi4FqzcWefSzD6O0mHaryerqOrXJSTRd58bSTfbtO0irXSeTtYiTkEKhhKE7rN28xtjz0EyDmFTNUEY+2VKVcnWCXKFIJpsjihM6nS6OEmQdB8s2KRYLjPwAP0zwg5jxoE8Qe1i2g+kWOXH/JzAcaG6NyOckSTTEG0b0eh5O1sa0TIajBITCzmpopkDJEo6TgW2qqK4Uoe9RKOe5dvkq168uEvgJpWKRZnMLTbNoNvuUqyUsw8IbjtCVgVImsZQoEjQVoWuS0WAMCRw+vA/HNojDFFTmswX6/RGu4xKOfXzPQ0mBaVvEsUAzbHKZDFEYI4XO0o1UVbdYKtLrd/F6Hi++8BLTU1M4loOlG1QLpW2l44QkEdiWg6FbfPl3vozjGOi6wjQ1biwusrK8wsLCAaQuSeIETdexHZsoHKGrmHvuOYEAhsMhvf6A9Y0NJqoTSCStbpskSXAsk1F/gK4UjmXT7Az51tNPMzlZQwmJDBWjrk+pnMcfBwz6fRzXZeSNKJer3PfgUVrtOmEQ4FoOy8srFPIFSqUpmu0NBsM6leJeNM0kDHvcf/89jENBnIzpDzyyTpU48onCOqZbI+sW+OqXf5O9c1WK5SKlSoVOq4llOYRhSgElSei1W2y1B5TLJcJwDCJCCAh8H1tPCMdj2u0mlutiWCamZdOo17cZBh6tTouJiQrtVgPXNrE6A4bDPpn9syTRGEMX2JZGHCUoKVGapDpRQeqKcehh6oogSI3eHSeDbYWxBwAAIABJREFU0kyCWJBzbYJRj1GnwduvPks5b2NbOpZto1lV3LaHPH0O49nX0QXI7/8M/r/8X+B7/ypJtUzpd59Ce+084WOfJJ4skigNUEiZsnOqExVmpyY4efIEY6/D6soNioU8mkrrlVMQC5oEQURv0CIRAUqzkFoMicY3njjFM888y4l7jxBJ0kwjIe1WnUwuC5pGGEhWlpa4evki++bn0DSBPxojDT2dCFQSqSkEEMYR33zqGQ4eXODAgQXCyEPKBKUJosij3++wd26OQ4cOkgBBEqAMSa2UJ5upgAghDrh55SZ4A2ozZRApNd11C1h2FsuxGYQRf/TWW2Tn5rCffhG73SM+OI8uUwsPYoWbyeO4WXKVPLpRolichkgjiQX9fh83WyBIHPywQ6fTIFebx3jsUZLvuY/hi6+Q+eZbqE6fuFxEcxzCOCSIx+iaRQJUJirYtk2n1SKXSUs8dMOm2+sTRjHrm1scOZKqxYdhSLlUpNPpptmPMIZEMB73kEox8MZksjlGoyGN+ib5YpnNzfq28F2WlbUVWu0WWbdKrzMgiWNWV5Y5cDAtK7hxdZXF69eZmpwkigJKxQpGq4cgYfJTM7gFjVE35Oy5c1QrZUxD40+fOsVnH/08640NFvbvI04kmjJIhA6JxvXrN3nyySd59NHPomnpe9SyTPK5HP1eH6kkW1ubNDc3aTVbrK2vU6lNEIaQzRTR9ATTTOtTTctic6OBUhqe51EoFlJmUxShpEaM4tSpF9jcarP/4BFQimzWpVotIGVEqVpGaAlCKURiEgQxUvlEQcRo5G/bTgnE9WV46B6y+/fS73YwXAfLKBAHMSurV1luLBF3G6wtr3DfiQfpjHx0U8eyIYpup54mjz+T/ud7P/dubPFxaJy3xhk7YPdumdTbYr1bs7S3xE1xEGKYJnEc02/e4IVnXuOl516k3lpnoib4d//2V/jRL/04Xzz5N/kb7j+idvM492Uf5rHJv8Rcdw9HtQdpLLe4tnQV18mwdOMmSTEgOjxAHYi50b+GKMe8fO0l+pkOy/oVCicsXr96msniBKV8AcvOUR4d4jO1H2ZP9Bk+v/eHWRBf4HDyA3zS/u/5fPnvcrhwkuK4itXT+Le/8n/x0AOHqE7Pp37ApkEYR2kYlcQgBHIbrJIkaEqlzLVd4jlIbQs1lXoKy+1tpRBE25nb3fr0btfl1nXvlZCB7/u3JTg+rO12jN0mNHYbNzuZ0J1zkHIns7rze3asG2/Psu6Mp936aLeYd7eJl+iVlB5/J3iNb+nL3frp3d94S8gvpHhPH+AuffTBwPUuWOIuLdlFAOzD24dPMN26z78w4HX3NXenI+zW0u/c7ep/rMV3XfPueeSzyPuOIOdn3l136+D/s8yQxMnulIr/VDnXD5qNurW29e6/670Hw277fN9DaJuClwgISAhJCAVkEfQaLf7hT/0UUtP55KcfIVsp4/sjRt4A09Awzl0m88//PZkv/xEctvG+e5otL625HI/HOI6LZVm0Oz3eeONNarUKX3jsMSxLY+nmDXTT4ebSMgcOHqDf71ApF+h3W9QbLcLQ58yZd/jkQw8xNzdDJpNh7HvEcUyn02Z+PrXKefjhT9Oor5HNZtjY2CCXz7KxucaBI/vJ5BziKKGQL6Wz7ZrG4uJ1jh47QhInBKGP7Ti0O10ajWYKIIDJyRq5fBYlJaZhEMUxN65cRpOgK0mjscXY8yhPlFlZWkI3DMa+z8bGJtWJGlEUEwQh9foWE7UaIz/AsG06/S5BFPLbv/EV9s5PMxwOyRcqCKnTHwxot5pUqpXtl3pC4EdYlstbb55HCh2lDC5fvsbs7F6IFcVihslaDU3TkTLBtBS/+Iu/xPraOg898CBCCOr1Ohsbm2i6jmVZDHsRm5tbBEGCY+cJ/ID19TWUEnQ6bfL5AokATUuFTIQQaLqG0hRhGBOGCUqZ+H5q7bK2ts4rL79KNpsnm81jmRlWVpfp9LocPnqUxRsr7NmzkALsch5dT1/WKytLuBmbmZlJer0e09M1iqUCtckJNF1LJ1uShNWVFSYnawS+j5Byu/ZIR0iF5di4mQzZfI5MLsuNpZtMTtZS0SXNoN1u4zgOnU6LQqHC6dMvc/jIIQr5PF/96u+RJAkzk1UE0Ol0UtVT08QLAk5962kOHz6KaRg0mnVKpTx+MKbRaFKdqOL7AUqm1jSj0YD1tTW8wYgwjKhW01pFw7BwMhlOPfM0+Uye+YU58sUcnj+i2+9jmTreyOOdM2eIoghd14ijkMmpeeqbdUaeRxiGFIsFfN8n8Mds1uvMzMyRxAmO7bC4eCNVNY4TWq02lUqF1dU19h9MAZVe7xDHCX4ph2VZhGEMCPwwrdmMU5FMojg9vgYIpREJnUQoBD4iHNFYfoel65e4cvE81alZpqYXYGOMvjRAfvNtYi9C/JXPE/7UjzH8kS/ifvp+YitDsjkk8wu/inZ1meiR+xGGTcJ25iJJWR9hEHHjxiIzc9NYto3SdHL5HJphEafT9yC2vW2FpNFqUyqXkUpDRorxaAQx9NptAn/EzHQNy3HTICQCw3QIY0EcCfzhgF63RaO+xb333UciJYnU0HUDgcD3A0Qi2NqqY2gGx48fBkKiKNhmBZhIaRCEMb3ekGa9xVNPPpkC2ZlpJDGGYZHEBi+9+Dqu47J3bhbfH6KZGqZpIpXGjvtjvd5kfW2FxevXWGs1OfqXH8O6fB37Wy9i5G0aWZ2r126kYNd0aLf7GE4eXUvriTVNEYmEIImQuiIn8jiWAkKUbhE6ZYzvf4zw4WOE15cwXjoDoc/A1HCdQpqxJa3xFQlp9j6IWFldJZPJYBgGN5eWWNi3QKPRIIkjLNPAH4+ZmZpCVwopBNVKBcN0sUyHMIwIwxBD18hms3jDAYvXrlIuFtlcX2U87OE6FraTwzB0Ll46z8FDBwHQdZ3p2TnyhXzqjW2b9Hod9HqHMAzx9nUZxU1y+l50I1XstWybY8fuQddMklhHCo18Po9ScPHCNd5+821O3v8Ak7VJxiMPx3KQShCGIUpKDN3g2vVraJrGeOwxPTuzLTJlkMQxN2/eRHMkpmmjKwclLXLZDK6t0LUIP0gnlh07rRfXDYNSucR4OGTQ7/Piiy8wNT2LZljohoXneTQa9bRGW6U1+37gowTpJF0UptnX5XU6MiZ+8ATK1EApFAbh2GPUW6bbWmLPzD6K5Wkef/IZ7jt5EjdjpZO4KlUZTjYlDCV862kA5Pd9ftfY4eOw62799251mDug4TZgs10wmgAiToiDkGGnx7//pX/Bc6eeZXllBccx+Jmf+VkeeeSL1E/BwlsP0qXL1698hcLxHK+tvYq+R5JUPerJBtW9JSb3T6DlBd94+utMz8zy7DPPsbCwj6tXruE4Lv3egD1ze4njhPPXzjOki5aDlr+FOaczLvT4xunfYy2+wfnGa2xpi/SNFZrREsawwlz2AA/mv4//Zs8/IHotz5OX/x8e+ty9eMMRQhmp57QwkLyn+XJnP90K7m7NdO/04a2gL/6I9N3b7HjuEuN5npc+5+PdLRR39vNRspwftX3Y+LqbCNWtbTc69W772vlOeAd4vXP9bgD5tv3elkAXuwL2j94+3nbfnvvIB09k3LnP74DX7fafG3iV8zO3Adfb1n2btjQ7bbei+ruf0Z+93a1vdx5uH/QQgjTznf6b7HqT3rmtSsS7OfV4Oz+LEGj9Pn/49SfY2Nzk+37wB5GmhWXb6JqgdG0V5+f+A85vPEFULTD89L1wLGKjvsU7r6yxML+AlJKzZ86ysrJCq90lCHw+cd+9lEpFlpeXqNe3mJ7dw9raOuVymae/+acIIrJZm7m9+3Ecl4mJKqPRENM0sCyTs+fOsn//fqIoSi1PcnlWlldwLJf1tU3yhSL5fJFcsYjSNIIwYjQYsbGxgWFalMtlvva1P+DEiXu4fPkytYkJDEMnl88zGAywbQd/HCAE6LoiCMboms7q6hqGSgV/8vkczWYDzx+Tz+fJOBnW1tdxLJP+YIDrZgjjBMdJ6/YMw0RqEqXpuNkMhmEhIoWTMYjiiEymyKA/wht6FEv5tCaq0yaMYvr9EbZtc/7ceWZmZ7h86SKLN65z/PhRLNsiir1UJVZIHMfCGw/o9z327dtHxslw/tw5arUqxUKBRrOJFKmFz5tvvc4zz5zivnvvJ5O1Gft9Mq6L7wcYpsFoNEKI9AUjNYHSUnVqw7QABUjEu0wLOHHvCSzbYW11A9t2qFSLJFJQqU6glMbpV17j7bfOcvyeQ3R7XYRIsOyU1mxZFmtr6zSbDRb2zTMajTBNE8s0UZrEceyUJtvvk8vlUJrG0PPR9dTixrAswiAAITAMA38cMBx5DPpDyqUSmibJZjN4Xsi1a5fJ53IUi3nyuQLz8/P0Oi2kkgyGA9xMFqVphFHC9StXOHr4MFEUUSgWaDTqRGGIbloIAYV8aqkRJ2nd9HA4YmZ6EsfJsFVvplRJpej3h8zNTBIEEaVKESETTNum1+/jmDZK0zh3/jzHjh3FdWyGgz7feOJJXnn1FQ4c2E91okoSx0iVshgcx0UIydraOkpTqYhOEPD2W2+Rz+fRdYNypUIQhQRhiNpMfYPFVJUgCNB1HU3TME0LtoOpMArRDZ04CiAKGfkhmmFBEiETDxmP6DVu4GJSiiym6qCeP49AYzBVRf3jvw8/+WN49x3CqOQwDIHXb6GduUr2l36dxDGITh5AmqnSdZSkADqdQAqxLYtKZQJkjJCSBLYp6wlxEiNkOv4CP8QPInL5PEJCFMVIqdPt93CzGWrTExw4tIBhppTxkecRhDFhGCOFgkRgaILx2KNWq1EslQijGKFpGEpLrcGShCtXrpDP5wnCAF2XJEmMbVsYhkGvNyCOEkw7gxCKfrfLuTPvcOzYEcbeIPXFFhr+KObVV94g8H1MU5HJuiDB98NUU1sqBJIzZ84iZUwYBHzu0e8iEgn6wgz1VpPc6Yvkl+rkjh0izOXxRiG6YWPZLgiJaUiGoyGOaxMJUnAz8ohFj6HXTpW8zSyJ0HGqVcafPsSWE5N97Sr6xSVELg85myRJUm9RJQnGqc7Bm2+9RbPVolabZGpyEqUU+UKeQb/H22+9RavZxNi2VGo2mggEYz/GcdLa/0a9Ti6bpdlqoek2ExNTdHsDNF0nk8sx9gM6nR7NZp3Tp08z9jx6vS66rmE7GRKRsq5cx8Y2NZJ2nys3b+IedYijGFfMpH0oUgpmvb5Bs9lic6OOZRkIETHyewz7I7IZl2zWJZ/LUCzmUEqQSEEQphMSmp5OQumGkbIQpEr9mcOYfq9HdaKC5Vp0e30yTpE4Iq0vj/qYlkI3sxi6wXjkkZAyIHq9LtVCkVK5SG1ykldPv4brZtOa7STmxs3r1CanWLq5loJwJTEMLQV9SiJF+i43XztP+De/hziJieKEi+cuU8rn6HeXMI2Ya5dXOXbvA1xavMl3Pfq5VDlbCtgud4p+zSE+p6P974/cRhneLWv6YW2HEroDtu6mQrsTp9wZewm2mXZJyrbTEsGVC5f46m/+KufPn91WQ89z4r5Pse/iw9gXKvSrLZ698i0GwyGLN25w+PBR3njjTbKuja5rLC4uEkYB+XyemZlZtjZSAa7aRI35+XmePfUsmlIsLa+wf99+Njc2OHnyJK5jc+TIYWIUI29MECaYpk21VsPJZEm0kFgGXF57g8BYp2tcYWn0MjLW+eTgR7hy4w0yBxJ0O0ssFLFQKO4uFnRrn++WTb0VdHxU8Hq3LNud37NtmzAMPzAx8mHtzxO83skKvBtw/jjgVS1EqOMhwn3/Pu48xn9u4PVu1/HbPcZu/fkXDrzefpN9eBbzzofiXetF7xgo7257l7rTWze49Zx2Ew64c0bwzzYIgbvcXH+e4PXWrGp8C81kZ90OBXqHq39rHcT7Z6g+vGZl528hBGK7TjARoElFNPbRw4R/9bP/hJdfeYl/+n/+HJl8nhgN1RuR+5lfwPi1ryMmKwSfexC1Z5rheIzKdun1+hSNgwwGIyzTolAo8Prrp4niECng3ntOEIQBtuOw1agjpGTvnjm2tjZ5+OFPUi4XsV0b3bCJ42gbuOhsbW6wubXJ3NwsnU6HanWCKArZ2Nggm8vy6ivvcN99D2DZLlGUpPWdyuDcufMsLCzgulna7Q5jf8zySppFqFYqDAcDvHFqMyOFwvfHnDr1AqZl4Q17JEmM5/nkCyVcx8IwLWzbxXEyWJYDaGi6wnVc+t0uU5OTtNsdCqXStvVLSgPTDYMg8gENb5iwZ2YKpQuiJCaXK3P27HleeulFHnzgJEqDOBH0eiMmJmYQMuLA/nmkiilXC9x/8j4SYnx/hOcNEKQZgTiJsSyDg4eOks+VcEwD3VRUJypousQbDNhYW6VUyeONB5DEHD58lCgeoxsxupZawywvLzMajcgXCmhKo9fpYFsWmpRcvXqFr/3B1zh//hz33HOC9fV1qtUKnjdicXGR5557nvn5+W0Lm1Sd1TQspBDcd++9WLZGksTousK2bYZDj4ybYX4+BWmQUG9s0ev3GI99Mo6DEAJd05BKsbGxmQLoRPGNJ55gfX2DubmZbTAgME0T07Rot7r8xq//Jg888ACrq8t44yGGkWV6ehLbNlMri1KJixcuUq2WEUqm4k4qVZ1tNdscmN+Dbuj4wZg4ST1rM45Lp9ehXJrg7JmLvHPmLVzXxHUymIaDYxtYVpbf/b2vMrtnCtexCfyETmuDysQ05y9coFjKp+q4gxH5XJ4wCjl46BC+P8YwNLIZh2K+yL6FBaZnpwnDAMs26babNNpdHNel3+tTLlfQNZ0oTMFzoVCg3emgazqGYaCk4o3X32CPvu3hWS0gpUDXdbrdLrptgZDb2gSpnYYgIY4llm0hIh9D+ixfP8dgeYnCpRGZ6wMymQLaFz9D8tN/D/ETX0J+96OYMyXC2EM3ExLhEQy7ZH/tjzGfepXwwBzx/mlQEYNBHylSmxYl1Xb9qCCOk9QPWCaEYYQQaa2r543T9w4JUipMw2BzYwtnW5xpNByimQZCaIRxiB8OsF0LhIaI0mDUG40xTZteu8PXfv/3OHL0KJOTE8RxyPXr18jlc+mETX+ApiRKSSqVMkpPAaeuSfyxz1a9TjabwzIthsMhmmETBiHTUzVOnryfZquBm8kwUUs9W8+duYg/HrG+vsynP/1J4iTBsl0CPyCOE/r9AY7r0GjUOXr0CPsWFrbxRpxqRRQKDGsZWGtQO/U22Y0W3Vyef/qv/zWmpaEJuHz+LNOTU3S6XYIgwXWy6MkAL2zSH7apVGqESYIfD6ivN8gX8+TuPUL8PZ8hGfqox58hWlyGPRMow2Dkedi2A1KysG8f5XLllixRzHg8ZjgccO99J6hWqtTrW4y9MeVKma2tLaq1SQaDPs3GFrWJCS5evszCvgNEQufq9Zv0R2MmatNECZSqNSxDkc/n2LNnD/sWFpiamsIwLbq9lPqfcd1trYKQgS3JH9iHVRyhGwZiVCJJUhX0JEnY2LxJPp9lbnaKSrVATMA4GDEzM00254KIaXUaxASEoY9upsrpQZDW0ortmbiYCCkVJJLQj0gAN2MTI4j8mEsXLnP92jUef/z3OXRwP81WC6XZGJpBFMasra8jlaBcLWEYGmEYEkYh2WyO0cjj5ZdeZmZ6Bimh3tji8SceZ/++/eQKLhLBYNhH0xTDwQB95KMaHUY/8Bhn3zlLuTRJ1q7ijwMunj9NlHg88ukv8k/+2c/xpR/7H7EyqciZRLzrTRq/aiAEqE/eDl52o27eGSfcGTvtxma7W0y423KZQLxNJTU0nXF/yP/9cz/Pa88/jaYCHnjoAfxA8Hemfwa7leeN/ouYBY0LFy7ymc9+hgcfeABd17lw8TytRp3JyRrNVp2zZ8/hbj8Xm80Ge+bm2NjY4JlnnkYpwaFDB5mZneXFF5+n1WoxGg2ItnVZBqMhw6HHwvx+lldW2WrUiYlZ22izudVgamqSiWoRkhBEwEitsdg5w+H+F7m8+ALZhZQOKyQp7Xfb5mXHRujWvrszRr11/a0TA9yx3c73bnXz2KmBvTOLe+c12IkZP4qK9K3X7cNi5g/K4u6sv3O87Lbvu8XzO7/rzuV3O1+ZEQj3/RMDd2a47wbyd6tt3e3cP0rbmfj/uLjj433/401E/IUDr7e3uwHL99qdwPGjgNdbt/0o4HW3Fj/9CsmNFcT8zEeasfpY7WNnib+NQ+zygrjz/zsPqx0Qu9tN+l5dwftl6+82Q0q8fWUT8Icjik6Gr//27/Lay8/yP/3ET2BkMpiWjfbqObI//S9BSrzPf4pkuobUdIIgRFM6ItNOaal1l3K5jG1bjMcjisUi83vm8IYDut0u3V6PyakZxn7A/PwMppHWHa2urpCQ4GYygOSdt9+mNjmBoad2K4VCgcUb1ykUisRxhFIaq6urNBp1Vta2cLMuhmnQ63XJ5VykgvrWOsVCGaU0MpnM9sdhbW2VcqmE47iMhqPtwNJCaYoXXzjN8vJNPvvIp1JhJtOg3mhRrJQIwgihdMIwQddS65mY1FNxa2MDtU0Za7RbGJaFqQSmYVNv1LEsHUN3eOG51ynkLLIFm0w+RxQJvOGIbqfJgYMH0XXJYDjCNDMM+2MsW+ENBiAFbjZLuO1/trm+QTbnMhiMMAwXkjQT2mx28UY+oT8iX8ih9PTijj2PmelJhFSUyyXm5vYyGPi4ro1SksFghJQSXTeYmp5iZ7gkUQqOoijEMg1Ov/oKgoRjx07gui7dbptWu8Hc3AzdXi9VX5aS4WCAs+0RevHCBbY2N9i7bw+QKpE7tstzz75AtzsgkytiGAadbodiqUA2W0gzSpZFs5nWlmmGDlJiWTbEgpuLN7l04SIPf+pTGLpGu9lk2B9gOxkc20HXDKanJ+n1OlSrJb7+9Sf5xCfuxbQ08oUcxOl9l8m6WI6DruupL902kb7d2twG/jpCShzbQQqJnbEJg4Sp2h7a7S2OHjuErkxM0yWKPTTDpVQuks/bxFGIJgwyOZsoliyvreI6NvlMBkNLLXpy+TyeN0Y3NJSURGHAzRvXOXb8CEEY4QepB4ggwc0VcLcFuqSUGIbB1StXsSwjrUWMorT+0XWJo4hsJos+O4lXTJVQpRC0Wk2y2QzJdpA1Gnmpr22SMPY9NCuLJCIaNhm2Nohfu8TEhT7mX3+U5Gd/nPBLPwQPf4oolyMKhww7dXSl0x30sZpd9KdeI/8LX0FGsLSnTGabruePfaIwZmuzTa6QI064LUhLM7EBUkgEEpEIlEwnLpI4QNcM4jDCdRwEoERaMzbsdxn1PLrtBpVyjk6rQ7c1IOO6dDt98rk8b7z2OqNhj4W9cxSqNQQJYRAwHPSZmZlhdWWZUqHAcDhAqpRGa9kWURSmYj6ui+M4BGFIEseYpokfxLTbLRzbxLRSayrdNEmEZOzHPP2tb5HL2iwtX+X4iXvQdZv6VoNsNoeUGoahIwQ4jkWv1yeXz2E71nZfpOPcG49YiwLi+TmS1U2mnn6JWS/g1aWr3Pddj7B3Zor65ha6ZpLNFhmNQrqtddxMBtsq4nkSTTMIwx4jzyNfKOMHqcDT+myZ4V/7FNnOEPlbT0LOwZyu0ev30beVeUFsj39BGIdIJdF1jTAMUNvLTSud9CoUiuimQRwHdNpN/PGYRqtDqVJh7Pn8/ld/j6tXrlDI5xgO+mQzDhAhREI2m0XXtTQT7/tkMk4qmhWlVHgn4xInCVv1JtmJKM3eDQt02h0c18V1XEqVEo7tkMQR/V4PTTcxrdTTO4pJa7M1AyElIy/NkOrbQoVJnKRKwLZNImOiMEaTOm+/fQbLtjAsHREr/HGAlJDPZZidnWZ6dpYogihOyGZztBptZmdnMCwDqdJ3sqZprCyv8Cd/9McMh3021tdYW9/i+PEj5AsZ/HHAocMHESJCIAjDdDLJtk16y2uY3SH819/NpUsXePXVt1hZatBodPi+73+M64uX+fVf/yrf8wM/QG1mBtvNbGdst2v4YNvnVSAf8j8w/rhbUP9niZ3uBB5SpBnvWMB4OCJr2vy7X/xl6quLHDuxn5/8Rz/Jj1b+V8rjacL5AbatMej3sCyTG4uLLC4ucujQQWZnZhAI1tZW2dhcZ3pqilKpzOnTrzE7O83m5iZnzrzDRK3C7Ow0SgnOX7hArVZlenqKI4cPUavVePHFF3EzDtNTM3jemFarhZAJhqXjjSEKw5SZlbHptFsUS/ltSzeP1miDQ4Pv5Y3O1wi1YaqlYNjvumx8UJ/cSae+Dbjy/kj7TiC1G833o5aJ3bp8N9D4UdsHjYsPSxh9FPB6a/ugUrlbl90tU7sTG98J8m8Hrx/tt/2nad/O8T7eNt8Brx/S/v8Cr+H/8cvEb11E/cAX/osErzs0nN1UmXfMmm8Fr7dus/P3ezf/e+s/qOh9p92a6DVRnPrjp3jj2Rf5b7/0w0zPzaJZNtqp1zH/t18kOHoA//gBdMvCH/toSgME58+fozSbgJB86/EzLCwsEPg+KytLtFoN9i/sZXVlmU984iTXrl5ncjat/yEY4vtjspkMUtcolUuEcQQJ1CZq+OPUyuDc2bNomqJcKdPr94mjmMFgyMzMNLlcnurkJK+/eRohIra2VpEyQsmYmZkJNrfaPP3MKQ4c2E8YhZTKRUqlArrUMUyTer3BRK3GtavXmJyaJJ+voqRgemqCfq9LLl/AdrLU2y26vT6um8VxsvR6A65dWWQ47mM7NqE3xjJN+v0+puPS7XUZ9NJaSwQoJfDHcO3KOmOvTqGcBykIgoTF64tM1irbdjAx3tjn6W+9wFtvneXkA8cJ/RilmWm9olAIoRgPAyxLY2OjTiFfZjQaoRsav/vl3+fNN99hYc807XaDXDHLcNDH0BS6prixvE4+X+DG4irPPfsKnudt14nqaXY9hcfOAAAgAElEQVTLMrfHC/iBz81ri5SKBTQlgJh7jh/jgZOf4MzZS7iOSxT5TExUME2DSqXEc88/iwhhbs8cCTGDXofZmSnKxSKGZbC2vkYmkyGKEob9MUqZNJotXnv9dY7fc/TdsWyZDlHgkcvm0Y00APP9IK17NTJYpkmxUGB6apI4ijEMnfW1NYrlKmEY88Tj3+C++05QqRTZqm/w+mtnOXhwAce1SeKIzY1NSqUymmXgB37qPxuESCS/+Ru/xebmEkeOHiUhzQYSC5SQoCAKwR/HFIsu7U4Dx87SbHTp9psYhpt688ZDoihk0PUQWoKmOfhBQDD2CLwRIpYUKyWiKELTNHRdAxJWV5bRNbaVcAepEmkU4o2G+FFqCRNGEVKkjIxiMY+SipCE0XBIoVAgCkJ6nS61apVEJPT7PWzbIopD/GCMpiliqdA0Pa2XFqRKvElErBxk5LN54S2s5y+jK0nwy99N/Nf/Pr4zAVaRBIUmIhKvTs6RqJtjck+/jvMrf4C22WZ87xGCfXsRyuKVl96kNjGF47icP3uJq1eWyBfdNLDX9e3naMrsSeIQbzhGSY0wjNA1hZSCRn0D27YZ9FNq/2g4hCSi3WoRD4aEw5B2fRONkIKbY3Vxg+pEOa1bNUxKxTyrS4tMVEokehqIJklMqZjSYDMZB01pNJsNyuUSQkAUhzQadYhFSi1GEEcxuq7hjYdYduoXbOgpdbc/GHL69TdZOHAIYsXUZI37Thzi+PHD5PIFNjZaZNz8NvD1kTKdbLJtk35/RKFYxPOGBGGIrum88/ZZXNehUChhZ3L8hyce56XGFo8dOcpfao7RF5d55uIZRppkanIP43GErhwMU6PdHpFz57BUmY21NRxboGUMgkAx8kBTFlJLKE47bO6pMjw+j/OHL5NcXUbOThKbOoq071Nr7AQpBUpJhBSphVoS47guN27cZKJWS2mtkc/mxhqGpkgSwd6FfSRC0W/WCUZDapUS41GfyYkikohcIU+v1wUEnufhOA7NZhNDS/u61eqQyxdTFV9dp1QqktgtgiDATqa21dJTcZXQl5AkWLoiiiVS2sSRidIEYSQALRVCQjD2IzJZlzAMkUqlzIQwJIhCEDGD/ojlmyvMTs1SLBfRDUVzq4tlGOTyDoYpqVarhJHEdQs4rkkSJamfsWXieSPY9scWCIQUaXZ9fp5Br8df/ivfS0KIm7HYu3cvtmOSJAHBOMayTZIkSvUHEg02mwy/+zPUajWefOpZXjl9iZnpOfYfnqI6NcHC7H6OnbiXRNfQdCN9/0cxidyOxU6nta/ij3+J5NRriM898L4Y4P8r8EocE5L2S8Z2WLm2yNaNZS6deZNcQTHb+yT7+48w3jsgMSJUklCpVLh08QJhGLJ//35u3FhMWSVvvEG9vkGpVGRjY4NWq4VhWAShx9bWBkkck3Edrl29ysgbUm9s4vtjNE2yeP06jXqDubk5hsMOc3N7ePJPnmIwGjIzM8XM7CTl6h4Wr12nVCywtbHCzMwko/EIwzBwNEEkB8SRYHbju/jFU/8zFy5e4OCJk+9zboDbQdWt5V93xmc77747dVZ29nVrfHgn8+7Drt9uWfTdkhx3Xr+Pu26387m1D3Y7v93A627Jl7vtG8D/U0V8XSIX4nfj5p3v78TWH+R6cjfw+kFZ37u1Wzf5aPfPd8Drn0sLw/Af7zZIdmZi00BDvvv3bqD2vRvuLrM+7/uId4OY3T8f3OKvfRMhQPvB/2r34/1ZHsAf4Yy+nZmrj9LufMC8B1YjuEP5OVVxi9/3UNx5YMqdPti5ttv7l8LDjxRRpBh2B3RbW/ijLY488gVilcH81ccx/s1vMf78Q4j5SW5eOEPWtZFKkBaexdRX18hMBti2gxvvIWPbXL54nvrWBrMzk1QmpkDqxLEkk83i2Ca6ApRGnIDSNRzbYXNzk0qpwnA8JONkicZjHFPR6WyhaTokgkKhyGAwxHUzDEcexWKJ8cBnPBgx7A+pb9aZn19gc7NBsVihUMixtrpMtVJiPB7hWC7eKKDZ2iKbzZDPu4xGQ3RdT4U7rpxhZrqK0qBYLKCEThzEdDbWmCiWUSJhMNoiTkaUK1WKlTzDwYCMaxPHCQiNL//OV7j//gcoVKqYloVAMBqMqW9tMD2ZZ2ZhD4ZpY+oOumEwUauRyRUYDzr4QcQTj/8Rj33hMVY3ljl67DiGnQJKkSQYMlVC9aOAzdUtLNMiTsaYlgIUtdoMlUqV+cOHsB0DWzOQiUGQGCgngy5GmIZFp90ml8+w/8A8pqmDUnjjgP7QQ0ljm/4UEHiQyefx4wjdshBCI4kVX//a19E0QS6fQSmVio74IS++8BK5QoWDhw6yubVJJlsgDBVSc1GGIIkE3XaPUrFENp8hX8oyWSkThz6VSgVN6fh+mPqUSpEG+kogpUAKhUgEQgl0Q8ewTGzHIUoihBLprLiIGQ4GDIceBw8eRCrF5laDycoESRyQy7nYVuoVqms6SRIz6PeIwgghFEEQs7h4k7E/5vixe1BSY2N9HSkTdNMgiJM0a0aEiBWGshj1exRyDlEs0DXB5uY65fIEumHhZtPxlbUtIm+MY9rolokwJAkBURSwsbZGPpsj9CMaW02sTA6EQtNMvJFHnCgKhSqGpdNqtrAdO/WDdBwSIRBSMew2iMKUkWA6Bqat48deWssaK5AWcaLQTQOpSTQRQCJJUCSAZWmMhi2UiPCvX8F6+SpLe2D8k9/PqHiQfK2KaUYkURfBECEj5FoH6z9+E/N3/pBkMCQ6cQgOLRBbOoausbF6kzdff5OZ6UmUgmarxfp6nWNHDhKGQzKuDkmAFAlJlBCLlD5sGCZRFKJrKagYDkYMB0PyuSyWodPtdlBSgwTylRIbWzcolrNopoOdyaO5DoHfx8k4SE1LrXMcF9t20GIJeJSKBZZX6zTbPWbnZ5FEGLpGHMUoIRkPx4R+QDxuYOk6ujJZvLFKFCVYpoauTJLYIxFjwiAhGBskUcL0VBFN17AcBzSFMjTGQUCj2aI2Ueapp54kSWLy+QLPPfs8ExOTFAqpOJw/jnj+2Rfp9wbMz+9DagrHcQijgIsXz5OQcM+jj+HPFMn2Rxw+v8r4whW+cvoFjn/2u1hZ3WDvbAWRCDQdIobotkJIHTxJlGi0Oj2SKCZrODCIKJQlK8mQ6R//GwTX11B/8DR6xoGqy9gfohsao9EQpTSU0PG9LsHYw/fGiCRloJiGS6fdQzdMXDdDtpBPM9G6gUQQxAkzexcoVSexMzlm5+exMjmUMtA0C00ztus+4cqVi5Srk5iWiR95GFaadcleWcWod/Gm/TRTumXij30cy0EkMB410Q2TOFGsrawReSMWL50lXywgk4Bhv0kSe8RxRCbrQDSm3ahjGukzYOSltfa24ZDN5LDs1Js8CBI05fLEn3yVufk5TMNibXWTnJuhsbFOxjbRTItmYwtFxMrqMoVCEU2ZyGCEN/B5+40zNJptDh45xPz+vSgCdF3DD9IaySAMEEJi2ha6Lui228SBxPIT5Pomgx96DKXZHDp4giSJ+PQjnyBTyKH0LL3RgJtLy8zWpjBNg1hAIFNWghCC+HRqFSQv/T50++/Wvf6/7L1prCXpfd73e2tfz6mz3n3rvXt6m4UcLqIVURaSCIooJ3ESZAMsAXYEB/lg+EO+GHCAAHHyQYHtxIYMR6JsWlQoiiKH5FDkLORsnJnume7pnp6eXqa7771997Pvp/Z8qNs9t3u6e2ZIWRAivcDBPefcqrfqVNVb9X/e//N/nr3xwaOyc582XtlLT91rywegJQmRUEnQiMYBUjxi/YOLvHHmNU4f+SX+G/WfcHFwFm/WRZV0fnrmbRwnT73Z4tChQ9iWTbfVxbFsrl+/iabJJEkIpHTbXT77mae5vXyNbn+Aopq4bpU4jICYqeoUtUYbSdJY39jkxIljxOGQuelZZAVKlQKOY7N8a5VGrc3kxBSHDh1GVkxurKyCrBDFPs12CzufI0lU2uEKs+pn6IwvcmvtMrabUPQ8rHyFKBXEaUCc+MS7ExlJmmXXSQWpyGxY4iQhvuP5yr0CoXuTEg8qibv/2N9fUnbnHOz9/DBW3scB2Qdt72F9fVwm9WHb39vut3S8/7fvBaZpmhI/a5DWZOTPhB/Z3sMo03cSQwBJ+tHjBveC//sp3yJ9CDa4G5Pf+U3pPZ8/Oq4eNs4ehj4+PZ75KwFe91rlfLKb2qMu+L+Y9HvyzIvAw31efxbu+Z2B8fMKPn3atndf79ROfFSk6dPdZB4onrDbXyg09DQhaNf54Xe+Rc7JceIzX0BSNYyzlzD+76/x7bDLoS88zc7ONtsb6yDJmLaLZhq0Wm28Qh63IpPEMsO6hKapvPTSi5imxunTpzLhGFlGVTW8vMe3/uRbHD50GNO0SRK4ceNWNmsaRMiyimGZREHKH339GywszrPvwEEct8D6+iaO7VAslYmTlF6vj5BkosBnenqScqVEv9+jWCwxMTHJ2TNvUa1OsrW1zdWrVzl56iSNRh3Py5HPe8RRTKPRJAjG5PMu3W6bUmmenFdC0TLKsB8P6PTqGIaOZhikQmA6NoqqE4YKw8GAXrdHwSvQajaJoohao87C/Bye50ECrU4bTddZuX2b/YcOYlsZBTVJElrN1i4NWsZ1MxGY969co1KdQNcNwiBgMBzgOi5RmBnPK4qKrCqUSwVyORfNVLl18yZxnCBLCgvzc6hqiiISut0OqmYiazqpBLKIURQDx3XRdAOv5CEpEiKR+NEPnycJySiAigZJShyHIMhqdlPQVB1SQXVimihOOHT4KDs7Db72ta/z9NO/wPETp+h221y8+A77lhZRFJVz586zubmBV8ixvraOaRi4rgsCLNtmPB7guPae7A6EoU+71aZYKNJsNWm324xGPlub2+Q9B8NQUVWJZqvBcDjEH43JewUkUlRFpVAoousaaRLh5XO74lkKQhKMxyNkSWE89rM61yhiMOyTz+fYqW3x+c9/jsMHDxFGEbphsLW1xebmFr4/wrBd2p0uiqzy5ptn6PV7eAUPIQnOnDnHkSOH0XWdra1tDMNGCJnRcIhludRqDYrFCrbjIskKQeAjSTLFYpnnn3uB4XDEj370HDNzc+RyHu12i4mJCXRDpV7fxnVckiS5S51dWV7G0PWMct1uEycpXqGAoqq7YEBGX97BGPjEXg5FhsAfMBr0SFMbiJGVgNGgQeiPcbQ8wcXzKK9e55XZEP+/+2We/A//FnZpFkkx6HZ7JEmKYZgEZ97D+6f/L2Ga4D95lHRuAmHqpGmS0W1lkBWFzY0aJ048hmEqlKslTpw4gabpuDmX4WhMkqTEsSCOM6aOkGRee/k13n33XYqFAju1bRbmZknThCAIGQ3HdDodHNvezchDznUolYr4fsBgMMRxXPq9HpLI6mp7/Q7+eMhw0MWwHJycRb/fx7HzVCtVuu0GsiTjui7NZos4Tuj1+tiOTXcwoNkZIskG33/2z7h18xaVchHbyq4nVVVQFJ0UwcLSPN1+B03RiYKEbruNkMC2HHqdIeHY5+LFizz51FNsbGwyNTODrGrsbG+wsrzM3Nws5XIZ27YpFj00PQNWQsDJkyd48oknCAKfUdhHm50imJlm58IVvjJW+f7v/QGHfuNvcvXGdcbjMbKigAAhSQgh0Wm2uLWywoH9B4lIsHImQhVEqaA6OcfKZp3yV/4m6fEDpF//AWJ5i0G1gGaYkHCXYisJgaoa2HYOVdGxLRshpeTzOZIkuutFPBwOsWyLNEkxHZPxeES312XfvkUkGSAmiWOazSZBELC+vo5tWciKjOPkqNfryIpKt9vP1LtXNgkCn/6Ej6pq1FciisUCsiRY31inXCoRhBFBGCFkmVanw+zCHMPxmNu3VymVy9iui6LppEIQjgNyuRyKooPIaNqKrAERQeAjy4IkCRFySqOxxezcLAXPQ9dMdF1nbW0N09BRdY3BOGFleZXqxBTFQgVFM7l9exMv7/H6m29x6dL7zM7OYVk6siwY+T45L58Fv0IwHAzpdrqkQkVVZZI4wjQshKEhn72E9t/+x8SKhCwrTE1PYVoamilhGBmttlKuUK/VKJZLGV1Y+jAdcBe8bj+fPffvA69/3u2RtE4gElmpjalErFy5wL/6P/8JVk7wDw78GwJixuUevV6ParnK1HQZSUoxDJXbt5dpd1vcWrnJTmOLEycW2NlokIYSx4/sYzTaZnIipezlsQyF0aBDv7ODrkbIBOgK+KM+qiqj6RqtVpvbtzcp5HPs1BqEcYLneTz5xBMcO3aUwK+zevsWx44dIfATrl9fIQwUGg2fVnfA9k4rE5czm3zR/B9ZG73KD179I9547XVcx2N6YjIbK3czsbv1mwh4QKZ77+dPov4LH81m3qEUf9Jz83HLfNLr4/59h48XFv24dn/W+WH7lSRJVgv8dlZyIX82/FSTMXeSO0J6cD3uXtuhvX1kTNGHtD3/eNR4eOAK/57aXznw+rD2/3fweqcw/pPcQP68297tybKcUZs+ckN6OL3iQXSNJEnuMQbfu1yQyIx2NvnWv/19xu02hx47jj19APONc5j/yz+n+/nHOfiFpxECHMdmdmbmLnhNEJi2iawqNDYi1KhI5ukF+/Ytsbg4j2FmlK9zb79NPp9jeXmZfN7L6H/jEXEcMzMzy2AwYHZ2lpWVVXRdRQiVzc0dmu0Omq5j2zmmJqeIogTDMHjppZd4/Y03OXr0MdycThD45HIu/X6fnVqdV155jbW1dY4cOcKBAwfZt28/SZLQ7bbQdZnL711F1w0M3eDGjRuYlsH0TBUhKxSKeXRdI4wiojhTeXRyJqpuEoRxpt4qqQhh8m9+/6tMT82gKDKVapXhsM8TTzyObVu02p0M3HgFhCJRnqggqTIyMnGc0Gg0MU0TwzBwXYc4Trj8/lVyeY/RcMx4PKJcLjIxOUUcxXzvu9/j4IGDyLLCcDTCMFSCcEy9XsOyLOIoplQqZmqbaUCrVaNWq+PmC8iqjqQIFCFodbpYtkPOyxElSWYZpCoszs9x7txb3Lr5AQcP7ENRyOr5VAXDyjwfRQq6ppEv5yiWPWRZxnZsHn/iccb+CNM2mKpOMvZHVKtlkiSmUq2wf98+bMdk+eZNKuUSmqZiGDppktBqZwFsPp+n0+1gmSaqomAaNmEYYJgGtm0TxzFvvPEmhw4v0Ww1MCwd17XRNA0vXyJNUkQao2kauqrSbjWRJYmtjU0mZyaxbIter4dumGi6huPmaDVbeF4eyzIJwjGu6xKGIY7t0u10UVSFqakpXMfJsnKqltnUWA7Pfv9ZUuD4yeNIikLe9bBtiySNabU6kAq+/off4PHHj+G4DqquoqgySRqiaUpW+6gajH2f6ZkZvLzHiZMnMUwHyzIzEaZ2E1mWyOVdfD+4O/Yzm43svrC9vYVtuwRBSL1ep1gsEacpQsjI6ztIcUJczpPEARJJ9lcWhEEEiczN6zdYXJghqq0hPX+Z734hxfqv/3OOfPFXUfLThImMrqqZQjEC6cI18v/6O8RPHEU6tIikSuzsbN+9V92hQktCYnp6DkRMEA7QNJU0STLbGlJSBJ1uHz+I+Je/+7t8cPUax48d54XnXqDbbqPrGjPTk3Q7TXa2a5SKZTY2tsi5GTiVJcHK8nJmMZRk/uKKohD6Pkmc1TJeef89TF3DMFSmpiYZjH1IE2zL4dLFK1w49w5Hjxxg7fYmrpN5k5ZKJdqdNnGcMjE1C5IKQmZycpLHT5+iWi6wsnwLx7HpdvsYhoFuasRphKppkEhcvfoBuqGjyDL1WpN2a4Bj62xsblKtVGi2Whw8fBhN17AtE0M3EJLg/LlzLC4usLOzjWnZ9Hpd8vk8/X4vm3gZjYgJsSyHZ77/HJMnTqMfPcQJoVB97g1ys7N8kIwoloq02i0kSaXT7rOxusaTTz6BJEN30MGPAiRDJ411kAxM3USSFNzD+7l+fAZnvYnxk7dRJspEhoasyARRiCprSJKCEArr65sEQYCqyaRpJshl2TaKIhNGmWqxYepEcYSuq1QqRfr9DrquEcdhNsGiKKiKSm2nTqVSxisU+OlrrzM/v4Dr5snlPAb9Me5gjCKr1MYe0rgIgJuz6XRaNJsNLNMmjhMcx0U3DYqVEpZjM/Z9piYn8X0/E8LaZfuQZPXecZLQ7fRw3TxBEDAaBCRxSrPZ5lvf+lM0VWNqahrT0JGkrNZcIIijCNMy0DUNPw6Zn59F1WQ63TamaWJZJp3ugNEo4MjRo7sicR7j0RCnUMhKX3p90ihFRub69RsYlofrWKRpjK7poKlIl28w/vUvYJY9dEPHdk0MU8awFEbjAWurt1lcWOQ73/4OT37mqT3gNWt/mcBrtMsQE2lIff0mz333m/jtHb7o/SafLf4a7/hnELLE0uIC6xsbDAdD3nzjTbY2dxiNMpu8JI1pdZpMFA28nE4wanDk0AQHFyvI6YicJWNqCkXPYnGhhBQPWZqbotfeZm66QrXisb62QRgkSIpJbXsjux6QOHP2bfJ5lzSNee/iBY4ePcbYD6nVW5i2g23nUDST7ijl2GOn6A/GtHub6G7M37D/J5ZbL7PVeY+33zxDYysrz8nbDoqUCdAlpJmQFgIZcbcu+WfNfn+c5cyj6MSf5Pz9LOD1zjZlWf65GImfFLzKd2j/u1Y5DwOvDzrGe4G2JH90wmAveH3Qsfxr8PqXrMVx/I/vvP9ks0GfHLzeTyv5pO3j+PLxd17I9vHXv3zv1sVHldgetP6jXp+kPWqdT9LXw+kE9w7iD/v56Izbw7Zx50aS7KmdvWdGKUo49+pL1NbX+Mpv/Kds1Fo4ik3+7/8jRr/wFOlEBUVWUJRdFT1JYuj7CCEhyTKj0QjHtjAMHVWRMXSDgldkY32NQsHD933iOGVyN4DwCnlkJfP/K5XLuxlZFcexEUJgGAaFvMNo6GNYNo89diwTUDFMkiTizbNnmZiYyGahZ2ZYWJjn2vX3dzNrGuVKhcFwyNrabQ4eOszi4hxCCC5eeJdiqZjNfI8GzM8vYJoWcRzvUsls4jik0apjmhqj0Zhms43reDi2B1KQ2XJ0+hiWiSQJFFnnynvvsbW1xeOPn0LVFITIgmZdy6hwuZxLmmbqilEcQ5IiUnnXQkNjMBhimruzhopKGEX0e31OnTrF+++/x9NPf2bXOkGwMD9P4PtZwOvaGd0yBdt2UBUVXc+yAkHgE4cB3V4Hy3KwLC9T6EwTFFlBpFlNK0KCNKHd6aKpMBj02bd/iceOH2VjM1PplYXCTr2OadoYho4sSSRJhKykQEyaJrTbDTwvh6pmdg+KpFKtVlBVOfNsTVMs2yRJY6anJtna2MA0Tba2t/A8D8sysWwbWZbo9XqQgiQkxuNM/EKRFYbDAaZhks97uK5LvVZH17UMHNQb6JrJysoqhmng2A7D4YhGs0kcJ3Q6HSzHQFVVcrk8IBFHMX7gMxgMyOVc4jjCH/soioKm6YyGfmaynqRompZBLUnCdh38sU+r2eKJJ57k4KEDIFKCwM9Up/sdVE3GcRzCKOH26gbHT+xj7I/oDweoukyjWWM47CEreiYUJUnouo5t2wSBj2GaDAZ9wigg8Mfk83lu3bpJwfMIAh/LyoRpkjRTpo3jiIJXJAwDvEKWSZckmTQFrdHOaj6misRRwGg0IIljDEchjRV01WGqUkEMWgTff5Or+2Nm/86vc/wXfg3FLSOrNookEYd+di8djMj9739A/Nh+4mqRNElQlKx+VpZ3fXhF5t8qhISuG6h6psqdktXFq6pBs9FA1w0CP8TLe1w4f4EnTp8mDALmZmcZ9Pscf+wwruMQRj6ukwMEb7xxBl3XmZyqMhoNMfRMFCyMIpIkxTKzsSmEhGkYSBJomookSeTzHu1Wm/F4SJrC+bcvsr29w7FjhygUqwgJFEXCMHQMw0SWZFRdR5aVu8DbNA363TaqrpAKme2tBsVSEUgZDgZoikEch9hW5sEcRQG1nTob61ssLs6xsrpCq9PmiSefYHn5FgXPgzSjrf30tZ9y5MhR4jiiP+izurrO0tJSJuKjqplQl5AoVcrEcYJlOhiGwcgfkT9+iIGt4b12gYXNNixU2U7C7BpTTJqNHUhjco6NbmgkcYRlO/h+xlQY+2NURSUMxii6hvYrn8WanyL82vcy+5+yR6/fQ9MM/CCk3x9iOy7PP/88hw4fYDQesry8QrU6AanILMJEVg+saQZJGqNpKqqqZAq/Inue3JlALBQLdLsZsDUNAy+fJ00FsqwSRRFWd0AUhQxdC2+XlizLAsuydgUMMwVzSZaI4pB2u4Oqa/TaPVzXQVMyfYYgijEMk3R3gtrQd0GpnGWoVdlkfW2TXK7A2bPncJw8rVYXVYNcLkfgh3TaHYbDATMz01ltHTGyIhiN+4TBGNu26LZb7NSb7N9/gGvXrjEc9PEKHsPhkGK5BAnsbG5DAoPBkB+/9BJBBIuLM5Bmug9CUpAuXeP84QmMokeSpCiqwubmBmEcousG1UpmpbW6ssqRY0eRdicZ5Cy9jViIkY6F8OOXss+fALw+DHTcWX5vadKD/v/wfgWQkCYhJhH/z+/+S36h8mv8av4fcIW3OHziMRrNBs8990MKXhGBzLWrN5ienKG2U6PdbGBbOjnXJmfolEsa01M2aTwg5ziIWCEIepAqlMp5kmRIfaeJa9tYBuRymUbD6lqPw4eX2NysE/h9JianuHb9BlEUc+36VaIoIBrD5mad/QcP8drrr/GLv/glimWPkyeP0WgPMxGpldsMBwNirYdk9vly4R+yFZzn2sZ5NtbWkBUZL59jZmYB3TIJkpgEEKlAIhPVupuVfkgM+GknGB4W6z6qr/vB2f2x5P0OGA/r60H03p81jt6b8bw/Zn/QtRef3fV5fTq6Z9k7eGOvRsz9+yRJEogPrwBPKAkAACAASURBVOsHTQLsfX+3zz3L3/tDHvy7H4Q9MoeRj9r5fJzo1adtf6XB68Pbp8u8/iwn5OMA4B3wen/m9c46jxrQ/77bp31A3L/Mgwfrw9d9aL97+pJlmSAIsqyZ3+OZ7zzL0ZNPodpFFg4cxP5f/xlC0xkuzqJrxm5wAIoiEwOKorKzXePFHz2Pl8sR+QGGrtHpdknilNpOjYJXZDAcsrW1Tac74vbtVfYfWMQwNLa2NzIbHF1HUWQ2NzcwDJ1Wq4llmWyu3WBmeoYbN26RL7joukwaRyDB1NQkCIFhGtRq21QnJpianKDT6VIsFlEUlfF4zIkTJ9i3bwnS7CH/8suv4TgOqqpQKhXodNt02h12durMzs6SJAlBMEZTNVaWV9neqpNzcggEuqYwGo8yc3onjyQlpGlImoRMT8xw+vRpFE3BDzPaYhzGSEjImky9XsM0DFrNFsQJuqIiSSrnz53j2Wd/wMmTx7HtTITGj0MKBQ/LsVE1hZnpSSQJVF2FJKbX6yAJQKQ0Wg00Vc+qKRKBrGg0atm2Xn3lFa5cuc6RY8eQJJVmo0POdei262iKSRSFRGGEaehZ4B9mmUDDtAGJwWhE3ivQ7rTYWNtifmGJOEmJoogk8VEUUFWJJM78M3XNRBYyV95/H9uyGA53FWwlQa/bJSXmypXLSCID7T9+4QUeP/04XqFASkpvsAtCyESTLNPm5gc3WFvbYnpmmn6/z+bGBhMTE+RyOUzNYXNjE9sy2altUSwUMA0Ly7SwHYexHyLJCnGS8sd//CeMg4ilfbO7kxUpcZwQp/EufdkhSTIrHCEUwjDmvUtXcR2XZ599lgMHDuL7PoahU6/XUWVBwctnQDGfR9MUTENDiMwr03Z0UhExHI4oFEocPXwcQxcoqolmmKiajkgFqqygaDqKqrC1lY2HZquRUZ3JbKIgJe95JElCPpdHkRUGwwH1nRpuziUMAkzd2M1wmViOiZDS7LdIma+p3miSpjDM69k5ERKW4xD6CbouE/htkqBB+Nw5VspDbv6t/4Cjn/tl9HyVMIwJhz06zTqu6xGGEe5Xv0syHBPsn91lIGTXgaKoxHEWHEiSTLPZQlFlhFB3H+aQeQQrhP6Y1ZUVvLxHt9NB13ROnTpBs77DhXfe4Utf/CKWpTMe99BUQbfXIefmGfRHrK7cZjQasbQ0T6Ne55WfvIxpWSAExYLH+vptLEMjiCJqO5s4pkkUhpimzfLKOiQhU5OTjIY+q7e36PZ75As267drvPbaKxw/cYzNzQ3MXdutJBwwGvY+9H1WM9VKp5BDUU0MI48sy3z7T79BqVCiXR/gFR30Xe9OSBBCYmF+CTOnceLkcWzHol7bIfTH6IpMHEusrNzm6ac/x3gc0O/36XS6LC+vk8QJlmGRpimjkY+uGfT6YyzbwbRUypUcEjHdTpeOH/KuPyAZDph++V0cWeED22Bmeh+VyRLn33qTUt4lGo1obO1QzJWRRQpJTH/YwzBNUlmAIqPLXV7d/oDuwWmq55aRak30g0vEScR47PP1r3+Dw4ePcebsWR5//DSGaVApVQmDiLfOnueZZ77H0tIijuugqDpxHO5OpGaAtN3uYFmZx+ytWysMBkMAHMeh3aqh65ni8c1byxQKeYx2D4HAL1iYlslwkD1bZCnzZfZKJQQpta0N1lZvMzs9Q683QBEK2xsbaKrKaDDk0qX3KBZKDPodhsM+bi7HufPnyeUzxWNJSAwGPYSA06cex3Fc3rt0mU57h4JXwNANNE2n2WxiuzZhFNFptUmTCMs0cSybNEoYD0YYho5tG+imymPHH0M3TUzbRSQJ7UaT5Q9uMeiPQFZQdIOJySmqVY/RqIehGVx+/xrlWofpX/lFxOIcOzs7WLZFuVLCNHOARBJnCt3tVpuFpUWQpEyZ/Q54sFOEncL3Xs4+f8rM64Nir0cB173L3B+AK4AiUtJgzG//1m/SvRHydyf/Ke80XmPi8CS66XL58ntAwlNPfgbDsjhw4ADNRh1iH0WETFVtlmYruLpMHI5I4pBi0aPdaqJqMoosiCOFKA5Q1YSJaoVWY8D0lItjaziWyvR0EUWRaXd6LCzOsrGxQbE0wWjkUy6Vabfa9Psj7JzD5PQUbs7mypXLVMslnnvuR5w8eZLl2yssLh2iN4gY+SHCHRNIW3w59w+5MXiOxuAmKyu3+PELf4ZhlVk4cIBUkUh2qeJqKkikjx7Dnxe8Pqp9XALlQZnHvf97WF+PyrZ+WvD6adudde6A1zs1r49KWD3ofcpHf/+D9ume9XlwZvjTJlLT9KNY5c8bp/yVBq8PB4B/DV4f1T4JeH3UMncyx/cu//DtfZx6XFYzmfkrBkHAn/3h7+MWJshXZpmc3cfg7Dt4X/1Tak8dp9ntoioqqqpCmlF2gjgmCEIC30cRCpVSibXVZaYfH4PVQgzKnHv7PLIsU9upUalU8LwyS0uLjMcDEAmmaVIsFhBC3KWPrqws0+/38Lw8SdBja2uHpf0H0XQVWYrZWF9H1TK12u888wyHDh3CcR1M00QgqNcbWR1rHOH7Y/wgoFqtsrOziWO7lIplpqdnyOddJFkQBEMs22VqchpZzpReNU0hHAlIFH784kscPLAf3+8Tx0OEpKFrVkZHTAPG/oA49FElg1q9xvrGGpOTE5iGwdrKOqPhiHwxs0GREKRxyqsvv8xrL7+C6xUpFotsbKwzNzeL67rESUwqZxkry7SI4gjHtpBlGPk+up5lPcMgwA8CKhMVwjAhSVLOnHmLyYlJbMsmiSN++tOfMhwHLCwukMt5jIc+mxvrfOdPv8nc7CLD4XC3bwlSQa/TBSmr3VNkgyhM0TQDx8mjqzqvv/EmF999l1OnTiJJKd1OE0XSSGKBJDTqO01qO00cx+XNN85w7txbhGHIzPRUpsQcBRSKHmkiKBYKxFGEYRhousZwPGJtfYtKdYLVlVV+8IMfsrS4tBtEjimXyziOTRAGuG5GjQ3GMRubm3znO9/i8OHDGZ01zTxLFVWnPxiAEOh6JgYzPT1DueoSRwm6YUAq6A96u8btoKpqVn8qsmPw4gs/QVUVGo0G8/NzOI5NSkoul+PCO+coFgqMhz79QQ9NUWi2GzQaDfq9HpouE0Y+hmEhyyqqahCFIWEiUDSTOExRJIVWo02+4GZ2Oa6DZZoZK2A4QFEyOxLTsEjSLDMWBBFJGmUKxoMBqqowGAxJ0hjLtkEIgmBEs1lHN0zSJEFIMlqtQRxHyLNloihmOBpnx0X2CII6KW2i966jrg8Y/Q9f4MR/9vewC1XarS5SEuM5Fo5h0OmPMOsdzK8+Q/TF00i6nt2XkgTSTIHW0E0uXnyXwWBIsVhCVgRCKFkWmMy/I44lNjdWef6556mUK7z00kscP/4Yyyu3SJME17bxvBymaWCaGpIMruNmta7tPkePPsbBg/up1bZxHJsPrt+kXK0wOz+HICUOQ5q1Gpabo1jwcCwLwzBptXo89/wLTJS8zBJDKJTKU2xubXDsxGFur2xSb9SZmqpSKpeySSvDIg56u77EOgiI4wjbtkGVEZKGLAySJCL0Bxw9dIxuc0iuaKCpOpIkMgGffAF/HKGYEkEYYGgaXi4HScpPXnwRJ1fi8nuXOXT4cMas0HTW19e5eu0mi4uL2WRVvcHGxgbr6+uUKlMoioxhSsTJmE67zbA/Ik0UiuUC1cMHCKYLuBdvMrPVJj12lJEUcuLwIW7fusE/+53f4dqV6xw/dpK8Z6PrKs1mnSAKkHWNIInpbL9PqVxk6vQxlF/9RZJvv4L0/i2kuQm2mg2qlUlmZuY4efIkQoKd2g4SElevXufSu5eZnJji1MmTmYq2EOiatvs8E7slEy1s10aWFQI/ZDQaMTM9TRRF+H6f9bUNavUGBw8eJgh9zM4ASYL40JBAapBTp3HcHI1Ga9dKS+PWzZtMVau8e/EiZ8+cZTgccf3KNSzLvKsfsf/AQSzTws2ZhLvjf3Zulnh38lJVBVEYMBoPMAwDL++xtLRIr9tE1/XMX1lVaXXa1Gs1JicnGPXGgISiqNR3GqzeXCUaR+hWJjqXpAmWbYEkkwpBp9Hg3QsXmZ6c5ubNW1QmJnEKHvv3LaHrEjk3m0T84PoyVcdByTmonz2FH/jkPQ9SiTjJstuCmPcuXeKJx59ga2ebUqWMH2WA9p72M4LXR9myPCyGeZgybDQac/Gd86ytLvP93/sh/+LzP2Jl9D4Ln6tQKk3RbHV5/InHWVyYY3Nzi3avyc2bNzBUie2NFWZniuxfmiAK+8ThmGtX17BMD1VRkNUUWQtJYsHqaoMoCcl7FmGYcu3KBtNTNhCRpDGyohJECY1mh63tOm4+x9zcEuvrmxiGwaDfZ2HfLFEcoJsqpmly9Mhj+KMQ07AxTBkhC0rlSTY3W/QHPVRdUCwLBoM+ny39l9Ryb9Lq1Wg1G/zoxbP8nd/+e4zjkFSSkRAof0nB695M5ScFr3sz8g9a7i8SvN6xhNp7be5lez7sNyVpyv31rQ/ap714QhIPphR/EvD6MJD/oEmEP4/2Vxq87m33fi8e8eIhJyThjgLXva+PP2H33jCz9eSvfBnp13/pnr722vR8HPi9v9+ft+3d3p3f/uiBndwV5tirIAwPNnqG9J6bzL19ygiR0QbvnAdJkkniFN0XCEUlMARGOubKT17gtdd+ypd+5VdpDX3sSDD5P/8fvBwP+MmVa1y7+gHTMzPk87ms8wRURSAhGA9GnHnzDMPhkP3795NaTVRFQwxKlEplBv0h/f6QcnmCkBDHtbEsG13VkYXIqFd+D1WTqdW2mZmZpVKt8gdf/bccPrafnOehyBrj0RjLsjFsHU2XyLkFNjdqNJsdlhYXCMIOpmHh2hYbt1dZX1nhsaNHMQ2dsT9CkRQsyyEKIxzXotfvMB4PMO0cbi5HHIe7wjkw6A9RhITjWpx+8jMMRxFvvX2BnGvgeRMosoShy4R+gK5bjIIEy9LRNJPQF4SBTypGLO07TLcfIssppWKZIEro9vpUp6aYmpsjESmz89OcOHU8oyDLBpJkYCowGmUiVLrmICExHjXRDIOYFKFoqIadKRhHEVIic/ODm+zft4+trU1iYkzbYv/hQzx24nH8YIzj6rh5m3y+hCy7zM3N47gWg2EXWU4Zj3zy+QKKpCJJCqphoKgKo0EXTUq5ceMm5UqFZqfD4r79GIoKQUyaKjQbTdqtOrZtUK1WuHzpChcvvIflehw8eGDXx3CEbVr4oyxoj1PwSkUM22EcJeS9AroSYGomo0HI4tICnlcgCAWIKHuRZYlb9SayUIgl2NzeRgiZ/fsOAiBJKaahIssq4Tjk5o1rzEwXWVyYwcvnMuVZIWi3W5AmdFotojDE84qs3V4j5+az8ZREzM5OMjU/x4mTJ0BAvVGjUi4RhQFC1pBlg3PnL3Dw8BKdbotue8jZMxcYDDqUCkVyTg7NsBgHAZEMfr8FScRw0M1orLqGk8uhSAKiBOKUjdsbKLKGm/OABMO0QM2Ol3ZHYVeRqNV2KBeL3F6+zc5OjdmFJTr9Pl7eYjwaU/CKmZ/q9g75XA5pu0kqC5LqDM2tW7i5lCA2SUWAGNeJ2juYZ+r0/u5Jkl/6Epo+g0BGVQxkWaPXDzDtAoZmYf1v/wp/pkJa9pBIEXFMq1Enl8vxjT/6JiSCamWSqclJAn+MpKnEcUSaRLvHNkaWU65cvkZtp06aJMzPTNBt19CkiOnpeUzT4qWXXmJycpLtnW2CICIMIiQBtqOzsbmKZRkMBmO6nT779+3jyJElBoMOrVYTx/UYjKKMoiiyiZ9avcGlS5do1OscOnIEy7HQdEEcD1iYn2LcH7Fv/wKSlGJbNoqkoEgyg14XUy+DopDKEormIAmdD96/Qrk0hSwkkmTI2toyi/v2MRiNiEVAp9UhDHwsx8YwTQzTRJJTZKEgAyQJzzzzPc6cvwC6zdLCIrl8jlKxyKuvvkJjp8bS/ALV6WlOnj6JUGTKlTLD4QBdkZhbmCaKAiRURGowHPpMz0yiainFchlZkZANjaapoTX72M/8EGOqjL9vluLUDNXpOZxCgSNHjxDFoKgKcezj5Wyi8RhXt4itfeRNl7RTxxQ9xl86SjoQyN97mWRugtn986iMWf3gPKVykUKxgJAVDB2eeuIEhw7sz+jrmoTvjzE0mUGvwahXp7l1Cy0doqg5kijCtgxq21v0ux1Mw6BYmCZNZYIgolop0+128EYRUZwSLmYlC42VkPFwQKlcZDgcoBkalYkKg1HA5Mwc5YkpDh46zOz8HDNzc2imRWmigqJIpCJmHAgM3UCWBY2dOp7j0akPkXQN03awLJcojrjw7rtcuPgOkxOTlEplJEVmOBwwNTWBrMoYlpn5ANsuyytrICSWDu3DLeZAlZGUjL47HgxQ0hhDFmzX1tnc3OLti+/RHY5ZOrCPpaU5SJJdoSWBH46ZmZ1Ab3bA1OmeXMRxXCRZJo4jECBJcOnyJU6eepx2b8Qz3/0ep0+fwFBV0iRFQpC8pMOyguS1EfNTcOrQPfHHx8Uve9uDYpH7qY57y7TuBwOyMPjhN/+Qs9/8Cf9o39dYC67wXvs8i/OHyefz3F65yTvn32ZqZhpJgnJhlgvnLtHqdBmNBrhuRNE1CEcjNEdncX4Cx5LQlRRT1xj1ByAUKhMmihLguS5pnFIoWNi2CUIiRSKKEkxDZ9BpMju9yO1b65w6XmZ6ymL19irFcpXbqx3G4yHbW+vIqeDq5WtcufI+Tz31OO1uh2qpwKBT5/Nf+AyX37+OH5l0Wh0ur1+hqM7ytPFb1MovQtgijHQunH0dNQ05cewIURwQCeluDCeRqUPL3EsnftAxftD5eNS53NseVvr3ScDpw/blfrrx3utg73J3dGQeta+fBuTevy/JLRlhpcjH47vbf5C36/37dmeSRRJi12NcZCV2sKsMzYduKGl693tJSLu6DYAQ96IY8aFC9L37/aFLy72TBNx9fdhS7ocknxbQ7j1Gsqz+NXh91PcPW/ajg+NhQPHT0lgelWX8i1UJflR78DHY+/8Pl9v7d+/xuHcgPIxO/OE6dwDznfeRIDMwJ2E8GLD6/hVe+dGLqKbDl778HxGMEqq/83sgJH60vcbnP3uKX/7lL2GaCpJIGAw6JMQoksJoMGY09sm5Lu12m3K5hFX1QQh+95//CXnPo1Qpc/btsxRKJX784k84cuQog16fTrdDksQ0Wy3mFxa4fXsdXTMYDX26nT65XJ5CwcU0NTRNQpYTFE0hDCOa9R6uk2Pf/kV0TSWXc6jt1CHN7AYUWca2HcIoIibBtKys7lKRMQwNiDEMhSSNGQ5GqIrM1uYGy7du0u91WVpcJIqHNFs7jPxMAffY0SOYlkIUC+r1Gi88/xyyLGHZNqpmIAsZVc1m5GVZQpY1XnnpLGfPvMNnP3eaFAjDkCRNKBRLTE1NUSzls6A+TbEtl/Eo4MUXf8zq6k3m5+cgFShyVkOIiFElBVkokKZ0u11IU/zxmG/+8bc5duwY3//Bsywt7aNUKqJpOoahE/khUTRGEJMmCfXt+i5VNbtKbnywzBuvn+XUqRPICnS6LeIk85+M4wBdEySxz2R5mm6vz9Ejx/CDEE3R6HR6sJuJbLfbBGFIuVxBlhW+9KVfYH5pnnKlQBJHjIYjFCVTv5UUOVPCVVV0TeeZb3+bpcV9SFKIrpqomkGcBOTzLpZlUyq7aJpBtzPk1s0VqtUyiAjXzeHYFo8dPwYCiuUSqm6QpIJ2q4XvhzRbDcb+kDAMEEKl3emzsb7FrVsrzM8vsr25w/PPv8ji0gI7OzvkXBeE4OaNG0xMTiJJEqPRcDcTptJptel0u0xNTWWgvd1lZmaanZ0aB/YfQ9dsTp0+Ri6XI0lT1jY2kGQZwzRo1+uoqoZp2VntJJCmCePAp9loMhgMqUxUsWybYBfs+X6AJGSSJMX3x5Bm9ZyWmdGjZUVBM3QKpSKmYeKPh4zHPo7jEPgBmqZl9cnr25nlTkHQ79YZ9gPcnMWgdQXfH6BcaKAenEP5+7+Jmz9NmI7QNIWxP8YwdBRVIgh81FfPwatv843l99m/fx9B6KMbOqZtEASwvLyC4zhUq2XeffcC0zPT6IoBSQpJgkSKPx4xHmYqwJ//3NPs279IpVImSSMs2wAhs7mxwc5ONpn1+k9fZ319iy9+4Qt88MENRqMxiwuL1OtNLr93FdfNUyzmWVu7jWXZqKpJrzfkuR/9mAP7FpEkQa/bwTItqpUq1UqVlBRFlvHyHqViiWarTcErkKZQqVQwdJ0rV65k3ruaxtbmFlvbaximjmEYREFEoZAjSUfoOihKiq4LXNciinzKpWImHrZ7a07S9MPALYmJw4BrV6+xsbFF4Ef8F3/7v6IyUSYIfPL5HIZlcPTYEQbDIVNTOUxLRlYShJTgeS6tVp3B0Kff7zMejTPxoyizXonjmFa7w6Dfy2jLmsLbq7foGRqTb19Ffe8m8ZOPMb04nynTSoIr15apNRtMTE8gKSpxKvCDFEGXdncb1dJYr23x4zOvMvu3/wbpWMH58XliTUWdKCKEYBgLzFwRFZ9Ot0axmGNldYVCMU+SjNGVzBZHVQ1Mw8XJlSiUptAsGz8I2NjYRJFl5mZnGY6GjP2QF198gc3NDU6eOokAdMcCL0eU7xKGAVYyRb3RwLRs8oUikiRotzrZxJDjoGsaYeCT93LIkkBVFfzxmNFoRKOesUTiJESWJAaDIeNxQKFQQtMlVFmm2ajz/uUrpHHK7dU1NtZXSdOE+fl5dna2kRQZx3V2n7hZMJzL5XAce5cp4eO6Ob773e/x+k9f5+nPfpbRyMf3A9xcAV236fdHPP300+RcBzdnZfdHTSYlIYxixn6Abjsoz79J8t//GqPRGEXN6rclORMpy3s5kjhFkhR+8INn+cpX/hOiKLpLRYz/zCStyyi/tYQ4eeiuSNC9ccafX9vb5/0ARht3+Ma/+Cq/nfu/aCrL1OVVjp18Asdy2djcpFKdII4TJqoTDEYjbi1fpFJx6HdbPP3UMaaqVd545TIiUbjxwRbVah5NEyi6ICYhkWU0JatzNy2Tbq+LJLIJP8uwdplbG9iuSZz4FMsOuq6Sywls06bf7hOGMY5tIhkGW7VNcjmbWr3Jgf37KZUdFhcneemlNzh18gQ510GSFQ4eOsR7ly8zPzfB/NICb994hadnvkwsdRm77xL22/R7Hc6+/hZvnLnIiVNPYuZsZCFxf1R85/XzHPefp33SmP/jhJke1M/DMss/T6bxznrSYyHKiQ9dNR7V317g+qD9upOBvgN8H5RlFruA9VH97+07++6j/WTvP1mG+mcBr3faX4PXj/n+Ycv+NXh9NHiF+2nBHwWv92Zzk08EXvdSd0IpQRIg4oQ08Pl3//r3MSSVX/m136A7jJj7g2/DtZt0njjO0WNHkQl5/fXXUBWFXq+H5xVRVR0JwbuXLlEsFHn/yhWefOpJyqUSaqGPoiicf/U2mq6xuLTAzOwMjUYmVnL8+HECf8zy8gpCygzl3VyeXq/PRDUznFdVlWp1Al1TIQVVlbl8+T0kSaPgVRGpgqIqaLqCrssoikKxUMV1s4AdIVBVlWK5hCRl4j+WpWcgJPQJgjEA3W4X18ntzrbB4uJCpoR86ya6rmPZWb1VuVzl2tXrFIoetuNQ8PLkXIdKpYJl23T7A2xTZWtrE9d1UNSMhru9XSefyzM5U0LVMnqlrutomo4fBMhKFtQGQUiSCjTNYDgcsbW1zrFjR2m32nS7fWq1OkKK6TRatJstBBKlUglFUWi122xv1ZicmmZzcxPTMqlWJ4jiMLsG0hTL0jENle2tbX74gx9y88YNTj95ElIZL19kbW2DqakKlqURhDGWZaFIEv1+l3fffZelxX3IyBimhe26fO1r/44TJ07yve89y8rqTU6ePIntOFi2TZoKNre2KJVLeAUX0pTl5WUKhRKSJKMoGrKaeYrKu/YxpUIRx7ZJkgBF0dnZqdNoZbZEtuMShiOCIMI0Xba2tnFdk9G4i27YLC/fyiiIJMiKgpDVLBWRRMiSiqJILCzOIUkK7168zHPPv8jnP/cFfvLSy0xOTFHwCvT6Aw4c3IeqqqiaiuM65D0PSc4ogH7gI0sShmHgBwELC4sIITB0k3K5ysb6Bm+99TaOXSDwY+bmK2zv7JBzcwzHI3q9Hvmcy3AwxCt4BEHAcDSi0+mgqiqmZaEZxl3AqWgqQs6sMoSkkO4Ka0VBiO/7mLqBrmpsbm7RG/SZnJyi2WxiWiY7u+JXvh+QxFkNbxAGaELClzQSN0CVZTTVBWkM4zrS6hBzZYD9+/+YtpTH0ssIfUx/0KPb6eK6OaIoYvzSmxT/5EXaRxZwqmUmJyfQdY3xeEQYhpCqLC0tMTM9TZLGeF4BWQKRyty6cRPHthgO+owGfXKui+M4mfhOv89g0EeIlCgKyecKpGnCxMQkMzMzNBttDhw4hJcv0GxlytyKoiDLCm+/9TbD4ZDJiXLmAS0E9XoLRdG5fv0WU5PlzNs6TSl4BZIkRdf0/4+9N4+15Lrv/D6n6tRet+6+vL3fe713k81FkmVJliV5ZA8yS4KZyWQmwSABAiT/JMEgQZI/sk3yZwZIgAEmiZMgM3CcOPIiW5ZkSiJFiSIpimSTTTbJ3rvfvi93v3Vrzx/1utVsdTdbtuwgsA/w8O6rd+rUuVWnqn7f3/L9Mg7HWJZFkqYcHhximRbWkca0VyjkLMlHRrciBOVSiTSL8McjBDJPzY8Ddvc2SaI8IqwqKgd7B3TbXUpehQyVnZ0deoM+hUIhX0+aSjAaEgZR7vAJYr78pS+TpaCbGoNhH9d1qFQrpKSMx2Ma9QLbO9tHc8i5Cr7zwovs7O6zsLBAvZaDXshI4wTHdoiTFKmqWLbFnVt3sCyTC5/9JcYTNUYfXKXwwuuMPmcH1QAAIABJREFUT8xAvYzQVKYn55maniIIc+Z3Verouo1kTBimlOqTeNUGkxNTJMNDJn79i9xMfcrffYdo7wB1okKhXMlJR7KQKA64c3spL8eQKlE0RtdMgiCgPxhh2S5JCrk7I49oeJ5HpVJBlSpb21tUK3XK5TILCwvcvn0TTZNoRZfENFCcDooi6G7loQrX8zCtvI5fVeWRpNYI13Wx7TzbQpUKiioYjUZ897vf58MPr1Cv1/jWt7/J+XPnGI1y1mHDtMmymL3dPbyCh5QarWYLVVX56le/QrVaRTd1XMfFdd17r+ebN2/S7XaZaE3Q7/cZDAYEQYDUdM6eOcfZc2dzoqd2l063R7vbY2NzhzNnzmJZJs1mnTSL2dzewrbyOnjLtjAMC4GCcvk647/7FbqjEQXPOyKYUY7Ag4Km6aiqxvXr15ibm0HKXCJKiLs6r/fVAv4FgNf7o073a3FuXXuf2cufZy+4zcjYx3Q8Tp17mq3NvGyk18ufOb7v8+qPXqW928fQHDY31plsORRcBU2O8DwTr6xQqVjYrkmvH3Pt2haDgU69akKWEsUBruMihMCyc24NXdfzuu5M4I8jXNdDajGWYZDGGR9cvoOug2Vq9IOU4ahPpVwmCiGJEzzPoFz2uHplicWFYzkxYpqSJBnjsc/u7g4H+23CKMCsxjyb/UOuG1/H0Hrsbh3SPhjw2c/9Gh9cvcZzn3keDYnIfppzeNeay+47lw+e28ed95/3Ov1Ztt+LeD5CEudJweuTHPtx7cEo8N053VXXeFxU+UEy1Ac1Xh92jJ8XvD4q2v1X4PXPod0PXu9vj/KQfFKN5f2/79vrof3vH+pR3osHI5AA0X/7P5G+chH1S595qJfjk2oz/jTtcSkbD8tnfxx4vQtGf3aBKw8VS76/2/0Pkfymlfeirh8bU0CYhjAec/PSZa5d/ohPf/4LNCbmKHz9RYxvv8zq2UUqEy1sy6boeszNLfLhB9cASaMxgeN4rK0sMzk5heMUqNcaRGFEt9+lPJPP5amFL2GZJp7nce3aFc6eO8toOOTEieOsrK5w6tRpmq0JqrUGURSjKhLTtFAUhThOWF9fo1Gd4tatOyiqZHr6GIN+jGUW+Zf/4n/jwoWnWFm5Q6HgHoFPlbW1Fer1OkJVsByHzc1NOp0uUlHxih5RFJJlKWEUMBoOqdcbDAY+P/nJm7k8Q6nEwcEBigLT04sMhz6u49I+6PD1P/wm585fQGqwubXB7Mw0I99HUSSOW6DT3qHRKDMYHTIc9tE1k0azxslTCwRRgFQlURxj2RYpEMcxSRJhGAaaZmAYJkkSU/Aczp09lzOeqpJuu0uz2aLguRS9ElJqbG1toMnc4+4UPE6ePoNbcDl+fJGpqSn6gx6WaYKAy5ffp1KpsL+3R7NR5/z5c0dkMRbtwx7d3oBnLlzAdW22t7cgM3CdAlkqGA18rn50nfEoRlUl29tb9Pt9Pv3pT6OoKgsLi3S6BxRLJUajXKtzeWWFickWpmUilIzRaMR3XvguT1+4gG4YKKrKOAyJwig3ZoBysYiUKsPREIGGPw6ZX5jFMHLWZd8f0OsNqFbrtJotSiUHTROoisnS0h3OnTuNaeaRiCyFNElJ4wjbdqhUyrTb+wgUvvPCS6iajmEYfOlXv8Rbb76Frut8/vNfQJEZjuNweNjGsm2WlpaOGI5zY0dVVfq9PvVG/YiwKk+13tzY5urVj6hUqpBJXv7BK0xOVjk4PKRWr5PECYahUXBsTCtfk1JKNCmplPM6re3dQw72Dyg4bq6JScbS8hLVSoU4SvjBSz/g9Vdfp9lskpHhmA5BEICqUqvXURSFcinXK9Y1PY9oH5GgJUmck7LVytiVGr3+OlGUUiu38Ps7xDtjCpcP6f7mf0KwcBIUBcdMGYchB/uHNJsTqKrkv/n3/yP+7ntb+M+eRZTLOZvwUd3icDRCVSV/+Aff4qmnzoGAwWDArVs36XS6XL9ynbfeeotmo85oOMQydDrtNmEQUPQ8HNflrbffZnNri8Xjx0miiCSOqFarDAdDmo06pWKJJEn5zgt/wtLSHc6fP4cQClOTU7RaE6RpSBwn7O7t02pOHmm9Djl7+gSlUpHd3R08r8hrr73OcDDk5KkTRFHM0tIK1WqdbrdLlqWYhokiFO7cvoN6JPfjFTykKtnb22ZyosVw6GPbDrt7W0xPHcOyHHZ39qmWG5imhyZtej2fpeWlnAV47FMulzjstHM2advkxZe+z3vvf4Bt2SRJSsG28YqFvCacjDRLMC2TUrlEEsao0gAh0TSbLJUszJ9kcXER60jrV9Mlhq7fdVky8n0GgxG6btBo1BkOB4SBT5aBfWKeXhJR/uaP8iyO6TqqYoLIkJrAMHQUJU/XjccC3a6SKi5xalBwymRhwsHaZcZlDeWLT9P93huE71wjm/IolYpkqcA0LZJUoVadyNPrSNHMvJZbNww2N7fwyh7dXgfbymtepVRJswxERqVSRlE0yuUSxZJHvV6jXs9B+nA4Qi8NicIQGVbRdBNF00mzjN3tnZy13LZyHWQhyLKYMIwZ+UPG4xG6rjM9PcOZM+ewLZ2TJ04yDgKq1RoFr8hwPGLQ61L0iqhSzeVqyJidncUf96lWK3kNuqYRhiHLy6tUKzWKXolWq4WqCpI0xrJsVlZWqdXKdLsdkigmTVPG45DZ2Tn6gxH1eo1qtYLrWkgpMA2dQsFDCI7WX0qWZqRShVvLtKer1C6cI04SkiTJid+E4Nbtm3hekShKKBY9ZmamMIxcHud+8Ko0VqDbh1LhoTbILwLIPmjv3SWHjKKIdrvNS//jN/l0+ne41nuVKE1o94a0+7kOb7lSplqtAvDiiy+iS4lCSrNeYTzYZ2rCQSGgXmtgWy6VkkUYDNE0FaGYaJrDweGAgpvg2LncUJIkJGkMWYamk5cSZJJ+L+HDDzYoeXWKpRhNFZDCRKtMpeJRKprY7iSamjE7M8ONG7ewDYeNrS1GI5+nn3qWP/rDrzMcDjh77hxCCJaWV7DsMo3mFKpiUJ2sUsBlsv9VRsfeJPAjyp7HR1c+wjI0FhePUa60yJKUJIqRUuYSR+Lj+aMPA06PO/8P2sqPjgI+fL+HMQbf7XN/pPKTUpYfFVy5P233Twtk7x/jwejpo+z5h32Xx52Hu/972HHu9X+INuyD4zxu+4NzeNz1etL781H9/9KD15+3PS7S+PD+TybO/OA4yW99A7p91H/1fqmcT75pP3meT9ae5KHySZHXh8/vUexjH78RP77gf5o28bFc/zQhSiPGnQ53PrhCGMQsnjxN6zd/D/PF1wl//QsY1TzVM00TFEUjywSGZbGweDzXT4wiDnd38QpFdM3g1VdfZTAcsXB8HuG0ieMYGTQpl4vs7+1SKLgUCg6nTiyyvHSH6Zlp3r54kWKxjGHmchnlcjmXnZGSNM01OguuQxzHRFGakwYZFlLT2N9fZ3FhHn/kUyqWkVKj0z2gVmsgNYlmGMRxTBxFVCoVyqUSm5ubmJaFZRl5PUOakxHt7Xf5wQ9/QK3eoFar5caKYXBwMCSOxxi6zOUuJmeQuoZTMOh1OxwcHNBoNNB0gyhK8dwCURSASBiNfGyrRJolKEoKQmF3d5eCV8ijzYBh5nVWAolAIUszdna3KJUKSNUgCsckUUTRK6FKnXEwBKky8ke88qMfcf78eTRdQ5ESVcqjKKGKPx5RKuYRzztLtzl96hxxElO+y+g7GByBRoV6rX5PtmI4HBEEMeMgpOC4bK6vU/I8XnzpJT73hS+yfcRwOT9/DFXmtO6j4ZDTZ05SKpbw/TFXrlxD13WkppIkEZZhokmdnZ09Tp46RUquAekPfSqVCr7vY1kmcZLXp1imhUBHKBJVZmxvb2E7LppUKXpF9vf3IEsYj0d5qqTu5UBQU9GOdD13t3fRNR1dU4njlPHYB5Gyt3uAlCa/9tVfY2Z6Ck3TcBwbyzLp93t4xVwbuF6vkx2leFbKFRSyXIpHSuI4xrId0jSjc9jm0qX3aU1Mcfz4PI1GjampGZqNJlPTdfqDAaWjiLKha8RhgCJ1er1eLu1imhhHuqRLy+vcvnmTYsHDHw0pl0oUih5CUVCEQr/b5/Of+zy1WhVN1+i3e3R7PTIBhaKHPxqh61oOXlQFXdfY2NjAdXN9XNu2cpIo/5CDgz0azSnicMTqBx/RvNrH/Mf/Fnz5V0gzhXA84s0fv4xbqDI9PUO300f85CP+tbeWaDcr9AoFfvLGG5QrFZZXVqjXG1iOg6KqXLt6gzNnTqMo8JOf/IQbN25ysN+hULB5/vnnIEuYnJhk/2CfJM6vea/Xwx+NefOti/T7AyYmJ0mTGMd18EejHGwYGr1+h35vRJLE99Zhv9+jXC4zGg2YnZnh+o0bLC0v89TTT7G9s0W9XqXf6+X3iarg+z6XL3+AoqiUKyV6vQFC5LI+YRiiKAJDNxn5o3tOQNvJo7GqouG6Nnt7uyRxhuO4HBzu43l5VkWh4DEYjTBMC9OyOThsc/36debn5xkOh1RqVeIkJAjGaFLH90NWVzf4m3/rb7GwMI/n2rm0iaqQRFEu86MAWYaUGmEUI3UDRcic1RmJUEW+zkoeWZYyHA5Ik5Rut0e90cQreFy5chWpqpTLxVym6EjazKhXiBpV5KvvoL78FqO5SbbHfWz7p+nHuTxUASGUXBc4CpAqSMPCUIZs7R+i1SvcaoJ9fQvv2i5DU8Us51kLhmEjhIogYdDvEMQ+ruuhKHm5QJYkRHGEblikWe6c1TXJ+vo6uqETjCPanUNc1yGJYza3NqmiYqaQVYZkWYoMqqiahmFaCEVFO0rz0zSNzY0NwsCn4Bbo98d4nsv+/i5Sk5iGheMUMMw8u8eybBRVkikCTUpcu4CUuUNsMBxQLpeQmiSOAqIoYmt7i1KpjGHkta6qml+XMApIkhjDyEHl2A8IgiGHh4csLMyjqpJv/vG3EEJw9qmzFDwH09SQqoKUCt1Om7W1LcrFIkmSIDKwLZMoitAOeziWRfZLT6Pp+TNpHOTENLZtYegmUZTgODaGod0rTbgfvIrf/+/JXnv3Y4RND9oofx4tDEMsyyIIAgbfFqiZYLV3BcNymZw+xgdXbnDu3DnmZo/R6XZ4991LBOMAy7RxnCG1mkOlbFKvONiWy81rW9y8scXJ48dyCSwhkDIhYcTUdAnLkGiaREpJEIRkaUah4JHEYxQlJ9CL4hTDkJTKRRxXkMYpmpT4/hDD1FBUwZs/+YA46JOlY04eP8Ht23cQQqXb7VOtVtnf32ZiYoLVtQ3a7S7VWpNPPf8pDMNgbW2d+WPzdNJNpsPzXE/fpzShM/K77G6tkiUxf//v/QN+cvFDrl65woVnnyWKYzIB2WMjdE8GXu+2x5eqPXz73XTZu/s/yTweBV7/LO1hEdXHjR3+c5vkbQ35mfixc3oYIdXj5vsgkP9YvydwDDww2sf++qRa4yfJRH3UfB9sfwVef872iwKvn8R0nHzjZYC/tOD17u88Rz/ffn/uvxACDUGsxix9eIU3X/wBf/3pTzP1f3yD5M4q41/9FErFQ1UVut0OrlcgESCkwCsWCIIRZDFXrlxmdnqW1ZU1bt68xWc+80s0GjljqNsM8QoeS++3adSq3Lh+lXKxRMkrsLW9Smuigapq3Lx5m8HAp1yp8t5773BsfpbhaMjhwT7Fosf+/h5CGXJ4uM/sbP7S39pex3IUJifLgMB1imiaxWDQJUqGhEGKUASpAFVKUjJMwyAYj0HkGl65FE+HZnOC1dV1Zo8d58KzzzIzO5vvm6WgKBTcvM5sd3cVTVMwLINKrZizRqYJtUoFfzzmsN0hSlJEYuWatIaO61Q52PX52td+lzSJmZs/RqVSIYgitra28DyPJE0J/JxRNPcEp9i2jlBS/FHCyB8SRwE/ePkVCsUShVKBTKpITeXkqROMBkOyLCMIE3RLRwgYj3MPdJYlCJFSr1WRRh4hC6MQ3TCwLAvXK6AIk4yITERomsrX/p8/wCtUqLWK+H6fiWaF0ajP6dOnaE60qDZbVGtVsjSm2zlkOOgx0WrS6XfzaPD2LidPnmJ2dgYpBRkp7737Pqur63zpS19GqIIkCVlavsVLL7zE2TNncV2X4WhIKjKkLvnd3/l91te2WV/fpFguIAS4rkeawv7+DtVaCU0X+KMxluWRpCq7OzuUSi5ZGrGzucmH71/m1OJx/MgnjlIMQ8ctuIzHAReefg7dUhkO+7z77tscX1zAKzgUCg6o+XVFye8fx3EY+iPCsZ8DyF4fRE56FiUJqyurWKZDt9ulWHJI05hSqczh4SHlSoFKpYY4YgvuHO7nyZG6RdHLo1NbW5sUPS+/7qbHicUT7O/sUnAd0jTJI0z+CMuwGPVG1Ot1NjY36XS7bK5t4o98pmZnMMzcSFYVwbe//S1OnTpNFMfomo6UylEtUooSCUYHNymVZ1F1m5f/+Hd5akNB+Q/+Dfx/+K/QaffwLA81gXKxyYdXrjM9PYf13i0Kv/1Nhs+fI52exJQ5k/C7716i3e5w8tQp9CM25wtPPU2axsRxTKs5ybFji3zuc7/C5FQF27ZYX1+nPxxy7do15ubmMfWcRK3fGxJFKVEU85nPfJaSa3Gwf4ChqxQ9F98fMh4PqNdaWLbJ9PQkUTTGskwM08S2LTqHbbqdLv1Bn6mpCWzbzInCogSvVKRWrxInCVMzM0zPzhInIY1anl1i2w69Xg/dkFi6iVRVsjSXJ+IozdjQLEb+gCiKMUyHQqFEseyRoaJKldF4wOraMqVKkTgNMUxJqzFFHMWcOHmcMAqxHRvHsdE0G8sp8NQzz1CqlBCkHOxvo4hcWzaJY8ZHjh1VURgGI/YO9nn74tvMH5vFNDQ2VpfRDJskTVCUjLHvE4wDDD0vS4jTBCk1Dg8P2d/bo1wu5HXLScb//Jv/C4pQmJk/xpap4qJS/u5raJN14ppLEIxYX12lXqkQSommBuhiyHiwxTgaEBkW/TCiMnMSxanQnJxidL5BfxQxcWmVkBBqFtduXKNSKWNbKuOgjelU0KVLEgtUofNb//K3aNTqFCoVpKJCluWZBY5JlqXcvHGHUydPkiYJG5sbxHGIu3mAHaeEMymKEGhxnTQFRdOJ0xSRJOiaxvrGGq1Wk3K5nDs87DKIFMs20XWVJElZXcnrsy3LQpUamchTAIWqoIi8tEFRVRRVIFSBqglIkiOnhsPO9g6e56GoElWRtA/b2LaJYepcu3YNRUiq1RpeQce0DECAInj2ueeoN+qoOgTBiE7nIM84iiJIwdAd/MGIg709XNdi0O9hmwZZFCM+vIXxj/42a+vree11kmKaJlLmklhCqIRhgFCyIwmij4NXZeel3B74Cwavd9OGHceh9uNF3tt6je74kFOnz5JmCk8/9+m8zECVvPzS99F1nROLx1lZXcVQNaIgpeQauE6GrqdYps7s3CRDfw2RpqRJysqdVerVOlEQoMgEBOiazvb2DpblIKWWs4cbFlEckRJQqVtoVkAc3tX4jRmP+xTLuZ7uRGUC102YnHJBiTlx6gST08eIkpTlpVucPHmcjfUNNN1kYeEkFy9eQpU+d5Zv89ynnmfkj7h26wb9YZdfUv9Nvn77f2d+0WWqYREOB9y4soyvOjSbLYb+iHK1koPXB67FLxK8PgnB093tT5I6+7ixfp5I4SdtfxC83k/CdLdf8nZeOnIXvD5uzLuR259nHn8FXv9/0B4FXu9vjwttP/lFfNjPo4/38DB8zt71U6mcv/axsR5kv3vcuE8a6v+k7U/yHe7+JEly9PmnLGQf/8lZiD/OovzwdIK7EQNFzVkGlSwjPdo1A3YO9pjwmqxdW0b5ox/w7HffRi25fK+zyfGnnkaoOqlQKRRcSEIyBFJTiYMxmqoy6HWplSr0e23mFxdIAWka9Ad93rv8NrZhMzv5NIVCE1XLNUO7vR5uochB+4BqrY4QkpmZORzbIRgHvPPORUrFEkWvgKHrhMGYarWMEDq6YdHpdNF1Hct08IcxYaSiqjqe4xKMh9y8eZPjx8+Q+l32tjfQNZU0TVA1SZKlDHyfrY1NIEaIJDewwxhN1dEsHU3JSOMxIsvlPlRpopC/yAaDDqrU0HWHbq+Pq5fzaOkR6dBwOMaUNuPYx3Yd0gwM20bRBbfvrFBvTTPRbBEnMbqUeJ6b18cJkJqJJjUgIU1CBr0uggxDc9B0lU6vz0dXbiCETpamNEsed27eRgodxy3z3e++TLM5gymh12lj2SYZKZmqoBsOvaGPToxAsLmxTRjG3F5eplarQxwwGI5ZWl6n0ZygVLSplhzK9TJesUSSSa7fXmL22AJBNEbTMnZ2t7EdmyjJWFpep1JrYlgaiqriFj2kpiOEwtbGJp12h0vvXWZ2bo76RANVVYiCCJI8bSsMQ7qdHo16k0F3SDiOUVSTS5feZeT3uXDhGcrlMqqiIDQDfzzGMi12d3axXA/dskmi4Cj6NAJhcGdlk5tLq5x/5llWNrYJgzHNaoXd7W1s00JVAdXi8vuXmWi1qNUrKFKSKoIoTrBNm6Vbd/Bcj067Q6fT4c6tJSYn5+h1ffxhgGsbKMQU3FxapFys8tab77K2ssbc3CStiTLt/hBdqogkyuswFQPDrRCORgglIU59EAJVNVClSZrEfO/F77Oxvc2zz58jyxKiUUyQCkzLwvcHlMrevQj6KIhotloEwTgH3sQoakqx7GBaNpnI5XSi0GfQ61L2XPTrd9B6GUqrwNoHH3JqySf+158m/ft/m4JTBmEiNA2UCMGQcqnMxutvMP873yN5/ixjQ+PSpUvMnzjG1OwU5WqZX/7cZ7FsAyFi0jSPAIVBQJaFDIeHFD0HUsHta1cZ9kc4lsnxhTkKBZVyxSRWDAbdLqWCy0yrwexUizAYoegaUlNJ45h+v4emCESaoiJJ44jAz8m/oig+ki5y2d/d5cTicQqOQ5ZmlL0iURBSnp7AKhQQUgfNoFStYdguoKHbBv3hEMcr8NHVa5QrLTQpGAc+zYkqO7sbeMUi7XYH0861WpsTTVzHRFVTNFVFlQqj4QDPKbCxukGrOUmn08MrlvOIZ8XED0asrmyByDDthDBQUIC15SWqpSJRGCA1jb3dIVLqHB4eAiAVlSROkei889Y7XP/oOrPTxzB0izRVKFY0XMem3/N5/9JVhsOQer3BjZs3sDRJp3PIxHSL4XDA1GSLXruDpRe5dOk9Tp44Tq1RQ+oa76+v8NrNmzy7ekjplfeRmYZ97gQr25tIR0WoCrFQ0d0iUhqILKagnCMcBujqDvu7Nxh0N/FrPcIGlN/tobRHVM6dAcVAqhKyFEXWyBRASQmiMRff/YBTp5/C8zRUVZCRR+OlJjk4OGTxxHGSLCGOI5rNJuVSFbMzJAxDopqDkppsr/Zptw+pljyULCGO8nd8rVojGPuoIidvQ1dAAV3T6PdGZLHCN/7wm5RdNycLUzKCKERKFSVT8qg3KUkS5ZF7RWM0DEgDWF/fglSwubVFtd5AUSS9/hCpCCxbhyyhWPAolcosL61y7ept5o4t0u502N7bwSsVSQXY0uZg/5C9nV10XSdNM4rFMqka4rg2pVIFQ7dQNI1MySU5lItXaP+9r2B7BVQpcz3oLCVJQdM1BBmaovCNr/8Rzzz9DKnMAXN6Uc81LB8CXh8mIfJnaXfLsGI1wUgUECqJVJFZjLoeE//Q4f3DVzAdh8m5ee4sL3Pq9HGy0CdJx0zOTXN42GE46NI5WGeUGewd7PDM+UkcmTEcjIjUGGFEWMIEcg30cTjCMDWEkuUs7WlKEoSYukkUC1TVIksFtluiPxhhmg7jUYAuDDRhs7W+jiLBtB2CEJaXd5ickCTJgGLBZdQPkSmItEfvYIli9QRrSxs4hYTBMOTdd68SpG2WV7apVsqoacTN61chUVjeX+L4sZM8p/5NdpuXafsjeu0IKeDzX/l1bt+4Sb0xRaMxCWlMGo9QpfFYDY97Fu49llzxM9uyNM1lzB5hq6sP7HP3c/aQvp9k1z8sDThJkp9ZX09ia99dRw9uf3Cfu5/v1am+rR+B1+iha/PB/R4c935ypo+D/Nw2zzfdX5Io7nINP7Z9bKwsy2sjj67R3c/ikXWxj05ZfrBe95OwyF+B16P25+Wl+3nbPa/LI3Re7+/zZz3Gn2d7lDPgQSKnh7W7TJaKcjfacvQQEiCyFEGGQoZrGojvv4n4r/8ZTw8Sos9d4KBqc2xmkjhNiaMU3TCI4yiXtJA6URAQhrlXPwpDer0uvcGA7Z09hCIpFDyuXv2QcDygXppgeuIUcRRy9aMrVCtlet1ciL7RaNIfDNA0HV3X6XZzhuJet8vs7MxRqkoeJUzTlPjImLAsizTNePvtt5mZncG0TFRV4eatG3T7XZIsodZosLW5Ra05QZoJpK7jj8Z4buFIWxBUVcE0dHTDxDJtet0+dsFFqoKxPyKKIkzTRNM1kiSk2z2k5JVQyBl+i0UD3+8TJ2M0XSdJcq+koUs2NrdotZp55FbkFOpPX7jA7Mws3c4B3V43Tz/VNMZjP39Qqrn0iUAgVYnjuEipkR05LIolj5mpWWZmZmg2ayRpzObWNgeHh9RrdS5depdnnrmAYRp5PanIIwXBODh6GaWoisKgP8R2Cly5eo1nn30eTTcIxj7ffuE7IBQWFhYxTQNVVVE1jcEgN6Kr1SqKClLmTIKO46AoCrpuQCZ44YUXqJSKHB60mZyYIhiPMXUJWUwahxQKJd6++Dbnnz6PoigYms5gMODSu+9z4cIFNjc3aTTqWHbOjCwUyfUb11hcXGB9bRXLNNG0PCVaZCkKAl2TRx50CPwBUlGoVMp5jaeicu7sORzbolqtsba6zMb6GlPTU1iOgyolcZzw5huvMzXVwh8NSdIEIcAwTLqdDgXXvfc9vVIR94hJ8oMPP2R9Yx30nQIbAAAgAElEQVTHs7Edk3EQ8dGVqyweP061VuPEyRNsbq1RrpQxTIfRaEC/18O2HAzTYnt7m1KpQJqlSKnl9WkhrK5u0Ou2mZmZ48yZ03R7baRUWF1eo9xo5OvfMOh2O/fIeur1GgXPoVQqcnCwh1f0GPtjFEXFNC3Ggw5ZPMY281pqVI14bRdT17l65yr197bY/40zaP/OX8etNBgGKbppowiVOIpQBSSHPsd/72XieokrvX3mFxeZnp5G1VQ6nQ4TE5PYto0Q0Ol2iOMITTUxdJNgPEJVYTgcksQZpVJOQKSoedp7FCcEQUSpXMHQDQ4PDuh2u9QaDVQp2dnapFwssrGxTrFQpNPpglBQVIPvvPg9hKpSLJUwjuRnwjBiYnKavu/jlio0pqbRHQ+nVMG0TSAncNP13LliWSZewcUyDcqVIo7jMD01TalUIs3y8zgYjhFC587SCq5b4Mc/fp1KtYYQClevXWcwGDIajYgSwd7uHuE45MqVqxhWTrwVJRG//X/+Dq7nYBom9XoT01DJ0gApTYQClUqZQb/PaDRiY32dcrXI2voS9UaZWr2ca14PBwghOH36FI1Gg2AcsLa2yocffciJE4ukaYaUJjvbu3Q6h8wdm6bZrBPFIc2JJlLTaNTrdNodatUGaabwqU89R7PVRNM0OodtTp85S2NuFv3cKZJiAevyDcxvv4bMQM4cI1F0+p0hSqaydHOJZnWSIAqwXJU4C9GkxUfvX0PTEoYlOPOf/mOClz9AvnWVnUKGVXAJA0iSDMNQEKSMhkO++CtfxLFtoniMruuMxwFS5unKuW63RAglN8AhJ13aPUSqkqQ4TTjQ8P0x09PTjMdjOp0u5VKFfr/H66+/RqvZYOSPsCwLw7IRWYbIBDdv3GJne4+nn36aSrnMweEBpmPnJStJLq8XBjFSVTk4zKOiumbkc8tykr1v/8k3OXnqBI7jsr21wx99/eu8d+kdvGIBVYVeb0AYxiwvr3Di5AnG4xH1Ro1yuUSS5GUxaZwQRSHVahnPK2AaJmmaohk6mqazurKKIgSGZeRZQZaBeuka6t/5a2jVEsC9ulsh8vpsqUq2N7dQhGBqagq0o/TIZYlwMsSd3EZ6lM7rk9g5T2ooZ0qGliokiiAVKSIOWPveJoc3D7nTucrQD/jsL3+BZmuKj65e5/bNJVqTU/T6I/b3DlldvkO9VuT5M7NM1R1cC9I4L4NIEx/PMUmjFKnn6d2WZVMqVwABAgb9fl5vK9WchFCTQEh/0KU/7FEoOiikxMmY/b19KtUShm5iWi5JIuj2ulRLxVyaSNFIE413371KsegwMTnByuoyhqbSbDbygIFU0PUCjUaTVqvFO++8Q7lcoVqpY5gmG4MVgm7Cr/Dv8j/84T+jOqVgmCHf/+Er/PpvfJlxGPLBh+8zf2IRRTPulRg97Pw/6po85qI9dH/lUft8QgTyk1qapvds0Z93/yddjw/734Pg9X5A/SQR5/uJxR4W/Xzoef5YEPbRkeKHdL8XuMrJ1x7a/WfA/KMCaI9q98/jL53O66PaX4HXP117VPrDgwv/pyzBjyfEujvG3fYx5jeR5lGLLEP88C2y//ifEnztT8jmp1G+9BnUShFV10lGPTY3cgCWEyipDAdDDMNgdWWZYrGIVPPUmt2dXa7fWuHO0gpS12m3D5ieanFsdhLPsSmVyoyGAyxTZ3Njk0ajRrlcJk7BthwODg7Y2tpkdm6aLIvZ3Nxhfn4ewzBy0OB56JoGSnaP5Ghvf5czZ85gmDqqoSN1Fa/gUq6U0HQdzTQplhooqo5u2TlAKBSIw4Bhr8/v/sHX2dzc5Pjx42xtbSPIDRLN0iFNkapyRMyj4AejXOvRsRl2R/TaA0xdZXPjOkKm6LrB/n4XVbrYVoH1jVUWFuYRSu79VFTliPAkBJHi2CYFr5CTaCGI4/go3VPlhe+8wGuvvsb58xcwdIsoyvLIRDgCUoZDH6lp2I5BhsB1XaZnpknTmNmZaTqH+4yiBN0w0LS87jMMAgxNx5AShMLBYZtvfetPcN0iC/MLjP0xaZYyv7hIvV6/50xwHBdVUdE1g/F4TJam7OxsUfQcAj/M67gyQZZmhEFEuVwiizPSKGVvb59mo8b+zhbVkoPrmOiWzRd/9VdQVAVNlbmxFoZMTc1RqVSoVisYpkRRMuJ4jFss8exzz5ImCWdOncR1Ha588BHNVp3AH/N//1+/zalTpzB0jf3dXQ72tpmfn+OdixeJ4wSpqtSrec3q1voGJ44vkpJiOQ7tTp4GH4U+x2ansC2TctGlVPYYDgdI3SIMAizT5OLbb3P9xg3evvg2zzz7LLbj0Gg2OHv+LLZ917mRcev2HWzbodlqYpg6hYKLYZn0+3263R4TE5P444Asy3IJniPJ5TSD8TgmiFJ+8uZFbt++xqnTZ6jWqgyGXaqVCl6hxCiMMA2D/b0dsizFsiw0XcOy8pRgRSXPkECgKhqGbqOoEI8OCQcdSDMGo4AwVSkMAuJuH/PyKtfO20z/V/8h5fkLxNkYVdURmcJgEEAi+C//s/+Cv/HjG+iVEp2JMnPHjhHGIZquEccxBbdAkuTPGCklpmWwtrbGxbfeZXpqhixLCIJ+zmouFLrdfQ4PDyiXyrzxxps4dpFmYxLfH3FwcIBhWui6QbffQ9N0wmEf09AplSocHHZA1ZibP07fDzhodzh15izTs3PopoVbKGKYFp3DfYrlHNAKqRFnoOg6gT/CMIz8USgEinL0rkgi4iQiigLGY/8eU61pgtRNSsVJkljy0ksvo8icPfz8+afY3Nrhzu2lPCtAlWSZxtUr17l8+QN+/atfJUkibNdB0yS3ltY4/9R5Sl6RsT8i9IckUYjrFVi6cxvI2cejOMEwLfxRj+mZKVzXwTAMkjhl7tixvG47y6WS5hfmmZqapNvtUK836Xb7pEnG4uIC8wvH6HQP6Pe6R6zWQe68QHCw3yFNBXv7uZEehWPSOME0LZZXVtEtk26vS7FVZ1OCOdFAf/8GxRd+hL21j7kwi69krN1ZplYpkZkRuqWiai5SqfP977/Jc59+GnQFy7XpfvozpIdtau/cAsdAr82haTFZFjP2R9iWgSZVpBRIXSPLwDAM0jR37gihEIUZilCIoxjfH7G0dJtGqpDEKXdGQ0rFMp6Xkxt1Op0cFBoGlp2zGu/u7dJoNrFti+FgRBxGdNptTp88RcH12NrcpjU5iXJEFhUGAZrUSOKEN378JpVKBV3LOQHiOEIoClkmiJKYX/7lX0LTdFaWlnBsh1q1RmuixdTUJNVaLXdsCsHx4yeOorcKq2srVColTMMkjiKyJGUcjBgO+/l7ws0ld1IgjmL6vR7FYglFKoRhmDtMdw9RSwXCU3Ooqkq73SaKIgzDZDQa4ToulmEeAe0M07Vz++BcjHI2hm/9KL8XfoHg9dEZbRlKppAqGUmWogRjDr4eMtjv4k5aGKYLqkmnN2R+fpHbN5ep1OqsrG0QjENCv08c9VioCaQIkaZGnBkoioGShmhKHnFGgJQ6WSYYhzFpKlAVkKqKVyxgWDqDYZeMGFUKDNOiVCoz9gNM00DXJcWijaKoXHrvRl6fa9t4JedIpi4jTiPCMGV+fg7DVBAiolbTmJ2aRGQ2kzNlZqZrfHBphVOnT3Dj5k0arQnmFxYZj8ccP3mCJI1pnSiShhn/aOE/p6vuIRq3iUZdLr/3Y47PT+MPe4xjqLWmUdRfDHgV4uOMuH8R4FVV1Yeujb9o8Pok+z5pTS/8rOxT3vHnHPeB8e72Fcrjz/kvBLzKvwTgNU3Tf/KokP4nenn+nNrDctTvb48Cr3/aud7ziPDJ4PFR+3/SObwnx/AAgL3rucofAOnDhv/YnO6f512x5STLGfYYjuB//T2Sf/ovuBEN2Dk1zdRzz5Apav6iTBL2t9YZhxFbWzsMR2OKxSJhEKEoCivLy9i2jaHr9Hs9mq0mly9f5Yu/+kVarRatVp1Ws8Hm+hrCGeKUNK68fwt55HULw5BqpUaU5JGjpaU7TE9PYRo6vj/KJXJMg36/T5zkx1xbX2VtfZ1jx46RpilhFCGlmkd4LIswGKOqR+dPUdF0gzQRvPHmm0xOTUKeJUbo+9y8cZ3W5BRrKyucPHkCKSX1ep2CWyBVFNI4wdBNBBBGIZqey2REYYhjFzA0AyFSCkUDfxRSLjdRVQevUEcIlVKpRByFCCF46+2LTE9N54RJy7cpFgsoCnS7PVQlJ5BA5Cy8UtMwDJNTJ08deZMz3njjDTrdQ+bmppFSw7RsRKaiKClCVdjb38O2bEgzNE1SLpV48eUfcurUSbIsyeUjOh3ah23iKEa3LHTd5OLFdxn0Bzzz7AU0qWLYFrqu5fVeqgIiT39JjnRypaoBYJl6biCFOcNulqY5uYmiUK1W8IcjOp0OUlOxHYtyucD+/g5ewcYPEjJ+yso5HAzRNY04yQ0bw9DQdEkYjZFSRSgaYRRw6d2LnDt3ljRN8TwvX3f9PlkGx+bnc+mZYpGCa5MkCaVSiYmJCZIk5c7SEkIIvvPCd3A8h2LRQ5UqummSJAnj4QjS5B5Jij/2sWwbVTMhy1CFgqoorG9soJsmJ0+dQAhBu90+kt5wSOIEy3KYmZnhlVd+xMREi8Ggh27oSFUShiFBEGCaFrad9xcCFFWgKirKkSYwae4IqFQKHJubR5ESz7NYXl5BlxYxCkXPo9M+QGSgaiq+71MsFQnCMcNhHyHI15LU0TSD8XhIOOwShj6KquFVamiajXlnAzEY88+5SOsffJmzn/sNdgYZg94eQmioQqPb7vHjV1/H/eOXmXI93M8+T7/fw3asnKwmzb3ESZIglPy7IPI1YVomumrwnRe+x9TkBHE8JgxD8kdXSrlcQdN01tc32VjfZn7+OIqS0en2QAg0I88eMC2LQbdNkmYIVVIolkgzBa9UxvE8pmdmqDca6IYBSl7bDhD7PTQp0XUNyHK1pDRfs0II4iRBHN3TqpQIAULJiOLcyFGlJM0yer0DfD/CcaoMBj5Xrl1hemaK48dPkGUZGxubTEy2sEzraF36OcGQlBRLHo5r5xJPBYeF46dZX1vDti38UR9VEQRBiKpJxuMgJ3zTct1YwzD47ne+h+cVqVZqkAmGw4BgHOc6pFLFdR22tnLG75MnTxKGEQcHB3jFYn4Mf0in06ZSqZCRs5WPx2PiKOZrX/t9js0fJ05CRsM+aZIcyXaZFItlTMekWPRI4pgwCBCmybhWYlmLqQUJ5jd/CGenaJ5fYH9/i9pEi263S5xK4kjyhc9/hXLVoO8PWLr6AVvrbep/47P0qxn2Ny7BKMD3dBRVMB75tNttXMfJQWOcAHl5i5QaSZyTTr388g9ZXFzANExURVCrVTHafdI0YzXp8v4HF5mbXUQRgmLRy6O1R+/MSqVMs9EAYGNzk2F/SKvZwrYser0eq6sbjEY+b118B380YnJyAssw81TLLGNhcRFFEXmWxThnl47CmCiOMQw9J7QipVqpkqUZURBy/sI5TMsCAa7rHr3PFW7duo5bcO4ROUVRQpbBrZu3iKOYRrOBruskSYY/HqNKDVVVcaxcWso0rTzrQqrI0Rixvc/q+TlKpRK6njseFUVFVdU8Oi2UXAYqSTBd++M2yEPA6/12yd3fjyuzut+x/riSLCEEIoWEDM2UHGyskr7isn2whjdVoFJvcfP2Mr/82c+haZLxcES/3+Pates5CZ2acO7cAlU7Q0gBus21W+tkqJSKDlEcoqi5s1VRJWEU4/vj3AEW5u/XJEsggziJcByLYJwQpwq+HwFKnu4tFHr9AxRFYhgmiiqJ05jV1WWq1RJRNMaw8ntFNyRRNETTwXVyIP3+pWts7dyh1apy5+YWW7sb+KMR09OzbG3vMBj0OXf2DKoqMUyLF378bQbygK+4/zYGHgPnQ0wd4ihkanoaobkcP3GOVOTa8Hftu0fZ3U9k395nc94tLYOfAqmfBWTi3nEfZmc+/BA/BVmPA9J326PSgh/GZvyw4z4MaKZv/1QS6kH5nvvteSFybdq7Uda7BFV39WrvP9f3f5+H2fKIn537/d/nZ354BIa678+PR4w/Pt6jzsGj2v1j/aVIG07T9J88bPv/19HWx3oY2j3E3BTKM2f+Qo73i2j3vwQePN5Pb4ZPBs4/kzacQCZSsnYH8e/9d4i3PuL2fJW+qzE1O8MojFG1PJ1W03QgY2ZugdbEJLbloCiSQqEIWcLc7CymYTAcDvPaTcNAUw1eeulFWq0GrYkWhqFTrdaonAjJ9CGMKkhNZ3J6lo+uXiPJBK+99iqTk5PMzEzn85Qqu7t7vPTiy9y+fZvTZ86g6xq9Xo80STm2sEgURmhSJ04S9vb38YpFNE2l2z6kfXiQS4y4Hrpu8sMf/pArH33I7LE5vGLO3BrHMceOzWFYBqdOnaRWraDrGkkcYZgSP0xZX93glR+8gqbp7O7t4JU8NNWm1+tiGhqqlERJSpQmaJmO5XgYpolQVYb+iCgMMQ3JzvY2/f6AYrGIpktqtQpCpCRJzGjkc+nd92k2J8hI0XVJkoBX9HBsmyDwaXcOeerpc0xOTtFuH+SRiCSvxxz5QxzbouAWEAheeOG71OpNbMdlbWWJUtFDVQQHBwc06y0+/PAaL//gRzz7/P/L3nsHW5Ke532/7+scTg43z713ctyIQSIIkRRpW4mWadmW5XLJpXKpXLbLVVaVrX9cLtN/uBxUzrIklkiIBEiCAgMysMSCWCx2sQtsmg2T0805nHxOx89/fGcGg8XM7gIEZavEb+rU3NunT3ef2193v8/7Pu/zPA1IFhcWOH3mJFJmDAYtEJIkHnGwt0O5WNB2KqYBeUK320Gg1Vk/8+nfxjQtzpw+i2marK9tUK1UaLUP6XQ6hEFAqVxk8fgim1sbFIsBg16bKB4xMTXLcDhgNBpSKBQY9Ht8+jd/C6Si2aiTpom26NnewvM8kmHE5uYGTz75JL1+jzTXYju3b91iYfEY03NH2NndZ2t7m0G/T63a5PbtJYrlCtIwyfIcw5T4gc9gGHH6zCmCUohhSEI/YHt9k0JYwLZNbMfisHWggZNlIW0P27IYDYZsbm4yOTnJmTNnGA407dAdB6wbGxusLK9Qr03Q6/V48okn8D0Hw5D3wb3j2JQqZYS0dNApBCpPydKMzY1NqpUqAsXuzjZTU00mJhtcvXoDy7FJ0phqpYLnhqQITCk53N9nfn6OQjFkFGkFzn6/j+taOK6jqzhKYFkOedrXVkS5oFyfIF7bxf76SxjVIjdFm4NPTtNLBYlbozY1j+P7FP0SeZLzW5/6Tfwrt/i7xUnkz17EdC38wEVKSZYrlDCQQmmRICExDJPhQFPgO90u7YMDlu4ss7+/y4XzZzGkwZe//FVcN6BULhMnCc3mhFZnNU1UlvC1r32NrZ0dzp0/T7fbI01SojSmNxhSqtY47HRJlaBUqZKRaxEadCAvhMA0DF555ftcu3yV/YNDjhw5QpIkWrHc1L3xCC1opRkRUguaKa3kbNkOhmFiWQ57u/vUG02CsAQKypUiFx47RxCGzM7OcNg6pFjU/s6WKSHXLRazs9OUSyHmOLlk2fq8DPpDtjb3uHHjOkePzWOaJuXShA6YcsHq6hqVSoW9/X1s2+b2zWWefvoiruty+/Yd6vUm3U6X5577FlubWywuHuP69Zvs7e3jeyHCUMxMT5NlGuBevXqNW7duE0UJoyTHMCR7O9vsHxwwOTXN6TPnqDXLVMslSmEB0zCIkhRpWeRpRDyKcGyb/f0DvvKVr3J42OKpjz2NmKiShS7OHz3PeslCNEsE3gxb27tMTTZQ0gRl4noerlcgdGJcb0Ay6rP4iU8Sf/g8vPgG9q115NQEQa1GsVii1W5z2G5j2Q7dbockSQnDwtjTOWB+fg7LMhEohsOI9bVNiv2I9fU1wo8ILlw8Av0yhinIVYrKMwajSCdVUJiWzcryMkfmF2jUG9y4eZPDVgs/KPDy91+hWKowd2SBZrPBi9/5DidOHCeKRtq2TOm+8eXlJe3likEa5/zub3+G7774Ik888RhZlt5vAyhVyni+S5Zq1pLWirAYDHq6/UJKarU6lmkz6A4wpEW/PxxfC5J2q4OQkjAoEqcZhhS4rvYml6ZBrnRPay4FxouXCP6zv0WaZRqwjv1eQVcb7yUg1tfXaUxNvC94/SBUx/ezQnwoeAWEgkwqkixitLNJ48UPcTl5nrtrGywcO8mJk6dxHIvNtSWG/Tbnz5/m6tXLHJmZYtTdZdjdZmZuilEc4wUFbt9aod/r0WiWEQYYGAghGcUx3U6PtY01Jicn9D3ZNInTnDTPMMaCWEGhiBQ2uTL41rfewTQSCoWQwNOMGtdzqFTLGKZJqVRhe2eXSrVCEiegJFmaUix5JMmATjtmbf2AQjHk9OmjuLbJ/GwNyxD4vsfNW3fJspyzZ07zyve+S5wKNrY3GY4itvY3aalVTluf5DHjbyHtEam5Sb+/z0vfe52D/RZHz114KCvvYX//9xsPnp0HCyaCR4CiRyQkkiT5EXD34HE8CuR9kGN9v+rxB1l2H7x+OLkPRB91fPfi7nsshXvrPuz7vRd4/SA9r4+qvL5rpUe98b7b/6D7/nPw+v/heK/9yyfO/FSB6/vt76e1/Udd9PcusA96CD/0EMoV2fcvYfyN/wpRKdB+6jjtXhfDlKS5otaYwLQcVKb7gJQUpFnO2toGnW6Xmzdv4TguK0t3ieKIPM9ZWVmhOdnE9Tzefv0tLjx2DiUUhik10FKgvAPtjWguUCpXGUYxr79+ie3dPbI0Zn7+yH0KpBCaXjszrftdjxyZY2dn54FeyJDhcIQCkkSruZqmSZ6m7O7uYErJwpF5QNOGTFNw4sQJJqaaRNEQ19P0KRT4gUuv18UwtTponqdaRdIMuHvnLrdu3ubI3OwY6FoIXPzApt9v4fk+rc6AanMCFY3I8pSMFGkqLMdAGgYCRRRHWGP6UrlSIo6GdLptpJCUy1XmZhewLC1OcufOLar1Jnfu3KYQhhQLIUplKDIMaYHQWXspTFQuybKYPImRQtDt9njhxZdYWVnjiSee5vTJRaSAQhBgGAaO4zM3t8ix4ydxfXcsghVRKAb0+y0c28Dzi2RJxOH+LvWartQYhkm/12J3b5dGY4Jeb8D29i4f//gn+MIXvsCxo8eo1Wq8+N0XmZ2ZYTQaYdoGlWqJJE0IC8G4ytzSVjiDIbZjk6a5tiAZDLh14xZPfegJqrUKlmUSRboClSQpZCmurdWBhSHwggCkZGZqBoRBnOSExRJvvvkmK6srnDlzgddee4OtnR1m52axHZtypYxtW4TFMoVKCcsycSybNE6plisM4xjbNkBAqVjksNWmUq8RJfl90Yrr169z+vRpgjBkdXmJRr1Or9vVADuOWZhfZGV5lVKxyPbWBpVyCdMw6bY7xFGM57sIIVHo3ufW4QGObdNudbAtG9916XU77OysMxx0CYslGs0J/CDA920kkivvXGNn/4ByqcTB/i7FYggoPN8jy8D1PHZ2tzBNqdVGDYtc5USDNqNMMTExg/j+dczvXSH6L36FbNimM+jSe3ya6WOnePpnfoFBf4gbVMlGMRLB2VOnefzyMkkxYFB0x8Jmie5xFgYKSa+n1aXzXAE6e22aJlma4piS5aVVfN8nTUe4jgtKMhimXLl8hfmFeQ4O9jFNg0a9wd7ONivra1iOTVAIx9XzlKmZGRqT03QHA1qtNhPTU9oD2hRIAaZpYkiJIXVSQCnF0uoOmzt7PPn0RSzXRUiTNFdIofvVfxC+3WvF0JVWxsyAJM2wHQ8pTCzbRhiK4ahPEATYjss9kbypqSndszno4zgmtutQLIaMhkOmxkk8gLBQwJAmhaDEjRtXKRQ8GhOTCOGzubFGsVAijlOCQoFKpYJpWRxbPEquMixLsH+wS7VWRkjY3t5jaWmZu3eWOHvuHLVqTYv7lHX1KVc562vrnD59hmq1xjef/RZCWpw9c4ZCwWdqcpLJ6RmSPMeyJQYw6PV5+623KZbK+IUiZAlJEmMaJi+88ALtTo9KtcrC0WMIYZE4DnnoM/XNS0Sf/Ch/8Pnn+fjHPkouBliWxHY8Br0eQVBi5dZrdPo3CLwCU/XHuLK+gfirs3idEPGl51G1CqpYwA8CbNclCHza7S6+H7C6sobva+sZaSjSNBmLmkhUpigOIgC886F+3g1LWLbBcNjXSsKOR7vT1j2OhkEYhliWRRQnlMtlqrUaYaHAqdNn8YKQl196mVKxyNH5IwihLbJyFEIqbNuiXNbe2p12H8OwePO11zh58gRhGGoRwSBga3ubSqWKaYoxQ8gizzNM06Q36GmbpUKAEIK1lTU21reo1xpcv3GLxaOL7O3tsbW1xcryKtNTs5i2jcozOp02rdYhjusRhgVylSFcB/nOTVqnjpDWSvi+ZsEodEUtSzPahy0Mw+Dll1/m7OPnNVviH4fkr9rIvzMPP/sUolx8eNzwAcDrQwP4R1VeFSRCASlf/Sd/xOnOJ3mr+yJhucaZc4/h+wHbm2tMNSoc7G2hVMbVK1fZ3tnh6QsnaNQ8HNuiVC6SxyMma1UmamWkTCgUXFSuwWuWa1/kQqGAZZsIMtIcHeMosEwLQ5pkREjDJM+h2SzQbFZxfQNLauErZEaSRhiGjVKS119bY3FxluEw5tqV2wyHMe7Yiq8/MHjljQ2OH69jGBLPtInjber1KWzHpd0dUqvV+cjFp/E9l9Nnn+DW3Zt88uc+yfbWJrsHm1iNFipPOKX+LU6P/jaV7nlOly7iWBa1E3O4BedHFH/fK+571Mgfcv50FfARoFE8XCAIHl0F/iCszD9r8CoDEPMpsvmI+fjAd79ffX7X/P9xwWv+ADPygxz/jwte/7QY5F858PpBe14fzFg8uPzPYrx7kr0XheEnHR9URu1ZaV8AACAASURBVPz9LtJ74+HN349cmwcVhZXSKsNSyofewJTItQOM1Mq3uRIgJHmWk77wPNZ/+j9h/eKH+PK113jj1e9x9OgcjdnTVOp1hMg53N9DSqEzujncvn2XMCyxsbFFtVqnXq/jugGFsMidO3fY3d3h1JlzKCEZRUNOnj5Fr9ej02qD0uBpINYxTYO9FS1g4Lg25y6cpdGscnxxkeGgz/LSEoNBH9/zAEUQ2riOx69/6lN85OJHadTrFIo+qUoIA58sTRn0+5SLRfZ2dzENG8912d7ZIQc63S7bW9vMNC0sI8GxJaurS9SaDYRhkhsSSykCz8NEsbWxoe0xuj32d9apVitc/MiHCAKHQmCTRz1My0blir39FjkSPwgYDkY45SKG5ZKlimQUYZkmCu2HG6cJU5NNAt8hzzJSBWmsKJeLxPEQw8oRIifNFeVqg8FhzBc///ssLkwzGg3wvSqHu0N8F2zTYW+3pYWgphoIAw4Od+j3h2xv79PtjPjEJ36WsOBjGjm9fkd78EYR0WhAkgz5/d//XRbnj2EYiiDQdjqOE9LpxHi+gWWZ+EFAmuWYUpKnKcItUa5q+wlDSorFMkmU8sqrr3Hy1EkU8Oabb3DmzFkKhRKFsEK73eV3PvO7LC4cw7U9fK/IzRtL1Cea5FnO1uYm1UoJz3VoTjSoV6vYtkeutPWMynLi0ZBnv/EcTz51kSgZ092zBJUMyZVia2MTy7TZ3d7l1KmTnL9wAVNCt9clLBSZnpnRwZtKyFWK5xikcYwlTfq9Pnfv3qJYLmAaEtezSNIcy9KAcDBoYVkldrd3sCTs7e7QbrW4cfMul6+8zYnjJ7h27TrTs7P4QUCcJbh+gWHUJ1Mxvl/AsX2Wlm7TbNYwjIA8Nbh2+RZvv/UWMzNTrKwtUW1OYbsWSTYkSoYcmZsjDEMMITAMMAxIohSVK/b3dzl38hiddovZuSMYhsFoNMIQcHdplXfeuczpU2cwTRtpSBQZli3pH3aZ9AtkX/gOzE4R/NavEldh+8sv4gY2h4/Ncvr8LxGWZonSLkKaSBMymTNc26b+pW/zW++8zdtXr3DxQxfxAo8oSdje3sM0HKLRQAs7xdqDUihFNOwjgULZp1KpYFkOnhuSxCmu51Bu1FhfX6MYFpiZmuW5b7/AW+9c5uSpY5w9f5YnHn+cWqOO4zkUKiWk4yItg6BQoDHZxPVchAEqz3UyCkmW63sdUuIXQs6ee4zFY/O6F1gaKCVQyuCb3/gTRsOIZkPPxSzVojZKN+SO75cppiFJkxEqN3npuy9RLIaEYUimFIZhYduCHEV/MMD1fDIl6PUjGuUq7UOthr67u8v1q1cJfZ9hf0AYatuZV155hcWjx6lUGyiRY9suWa6oVqt0uz1uXL/O5ESTbhTRbu3TqJWwTINWq0elOkV1qsbCsWNs7Gxz8eJFKrUyiJQwDEmzlJXVZaZnpsZ6ASWkYfD0U49j2RZRnPL222/TbDbxHJMsTzjY12rGb79zmWKprBNlSrK8vEySjpidm+TjP3OR4ycWyJOINB5pip0fYEQx/tUlrlVSJmbqlEsV4uGIKOphOBam4+IXiwy2uxTIuXbzDa5cf4uSX6HxN/8molZE/P43EHFCVi2jMMiVwnU9QNKsN/nc732O8+fO45mS4SjCsCwyCULkxGUfa3EGI2wjJKheiCkhi0cc7O5iuwG2pWm329vbBGGAQqGkjWVbrG+s0+v3cTxtL3PixDGCQkCS5piGzdLSMuViAdMvkKvxMznL8CyLaDCgVC5y9OhRpJRab8GxKJZDpAlRpOj3RyRpimkbZHlCUBgzOvoZm2ubNJtVZo/MkijY39rAc11KxTKvv/Ym3e6AxWMnGCYDHMvBcz0KQQElFKZlkIxGuLZNst/CilOKf+mTjNIMYZhkcYIh5dhn28J2XTq9HicmZzANg/R13fdt/KKLUSog+YHKrL6Ox68Hevrey53hYcveTfnMLUWSKIJc8On/4/+k93wLw0iYf/Ic29stpienOGxtsb6+wnCkeOudN5mYmGN3e5OZ6ZCJqTqvvnGHyZpJnmmnANPOCUs2vX4Hy3SIkx7CDsmki2G4FAoh6XCAkq62xEliUDlZmiJNA2LFsN/DtgS+Jwl9m3g00srDoxG2ZZFEEUJlKBVz4sQ06ahH6NraB9oP6CuPuxtdjk5VOHEioF4L2d7YJPQ9yAVR0tXJ7FHC+to2l68ssbS0zer2OrMTdaabE8wfPcb27jaOKXj9+iWS0h32xCWkEvjxBDPdJ5HPVtj97gb+TIZRs8DKNMMg1S0BQgpyQJgGg9GQHIUlPcgEKJBKITKFVDB0MyQCE4mRqXGsmWKlBiIHcoXBD9wu1ANU2Afnwj3g+rC49h4L4MHlP66P6qPm1aPGPbrvfcDZzH8IuD4Yq99rxXuY/c/9dfSCB6Jw/bt4wLnkR74TIO7/4wcv+Yi+cCHur5SrfLyPH/wNfyi5IMQP3vwpjD8XbBqPR03Kf1HV2XfvJ19aR7W6P5RV/Glu//2WP2w8Knv1iLV/ZD8Pnfz311bAmN6RK60OLEAdHCL/7f+aw6dO8fnvfY/Dwy5BocrRE2ep1OuAwjQN/CDANLVqbjSKkdKg02mzvLzM/PwClXKZne0tXnvt+3zi4x9lcXFeU6XyXCvTGgbNRoN6vc5gMGB5ZYXZkz5CSno7Dp7rglDYlu4hDTwfy9KiL41GA8fRwkDbO9vYlkshLLK3t4dtW7iuhR+EZFmO47ikaYYUBlevXmM47Gsl3rlZisUCpVKJw4MDJiamiaKcXi9idnYRw3AYDRPSJGM07OE6DkiBUoKvfO0Z5uaPEkcxM7NHdPVUSjqdNtFogDB0JrZULmslW9PE9Vzy3GRv54B+f0TgFxHSpD+IQBnEUYLvugghGAwH2kqhViNLUkajiMAPGfSHrK6sUa3U6PV7LK8sU6/XWVg8hkJgOxaObxInCYVCmUq5QrfbodftMDU5xXPPfYc8hyPz84RhQFj0MYTCsh36/QFXLl/m+ImTY/VFXaWr16sMh3329/cwDZtqtYYhwDAsVK4YRbEWTPE8lMqxTInKEixLglLs7+2ytbNDo1FnYqLBhQvntYCIZZELhee5nL9wTveDZjm+H1CuVJCGgWW7lEolNjY2KRQLIASFIERJoYMFW/+dV5aWKVXKFCtagGd5ZYUgCOh2ehSKBUajGCElO7t7vPzy95hfOEKv22VqapIkTSmVSqRpzMHhAUHgY0htpSKEBAXNZpM4ThDS5LDdQkqLJIXbd+4wPTPD/m6LZqOGEOC5HrVmg+MnT/L4hcfZ2tpmYfEorVYby7TxPJ84TigVQxzbRAqTaBiR5rFWtPY8BoM+N25c133IJpw6dQrLsdna0v6ujm0TxymmNNne3sHzw3HmVTAYjCgWigRhgTTP+crXvs7RY8cJwwDDNPjSV77OKIrG52GEYUjieIQpDcyNHfjjV+j9yidRv/p3kFaXT//af89S3KLyCycJZxc5fupD7B708AIPQ7p0O21c26b47TdI9w55q33A0x9+iqnJCQ2MlcJzfXZ2dvBcj5de+h5f/fpXMaRJo1En8F2EUGxsrDMzPc3+7g7fe/llgiDgnXeu8diT53niscfwHJvtnW0GwyHrW+tMT03RnJzEtC2yLGc4HOHYDkroaoohDYTQyulSGEA+rgiMeyOzlCiO6Pf7+F4wVqzWoFQKgzhOCMOA06dPE8XaU1kYmj6MEAihLauEEOO+bzANi9nZaZ00vEfJRAPXe4qmpmkThgVK5QrtdgvbdTlsHZJmGdPT0xSCgE67jRP4rK2u8pGPfoRqtarRAWBbkp3dbRxXC9Q5tsPu7h71+gRhGKBUShzHNJoTY3Vvi0qxxLHFo7qP3bZwXJtOu0u5XB4DDnBcj16vx97ePqur60w0J7Adm9nZWVzP4fBQ05Nd2+XyO+/wsY9/nEKxgGXZOLaD57kIAYVCAaUEQkh8z+fGzdt0O33u3F0iOLaIt7XHmW4CH3uMm3fv4Dg2Qgp2dnewLAszqNFsVNhrbZEZJn/lV/4j/uDLL3D89HmSo9N0L57B+uLzyKt34fgcSmmvUpXlDEZDrt+4ycLRRaTKyZEIw2QUJfyTf/yPmJ6Y0lXVYgcBuNkUO1ubjEZDwkIBx/VIk4TdnV3CQAtn5VlGbzDAlFpVfmZqhiROkYZBGiesLq+ws7vLjes3uPiRD2M5FkpKDKGQAl579VXKxTIrKyucPXuaYqlIWAjGvdOCW7dus7q6xuTkJEEQ0Ov12N3ZoVAIsUyTrY0t4lFKpVQGclbW1igUSvS7HYrFIqtra8zOzVGrV5mZntaesEoRjUbjBESE5djYlsXu3j4Fw0Ru7iJ++ROoJKJzsEuhVEUpXTm2LIvhcIjjOPw3f//v85f/2l8lfc0GAfJicr/a9tDxU0jY3xtJnmMJgZUnvP7yCzwmfg4nMClOTVKrTeD5PgeH+5w6dUb7dmcJb116i4JvcrB3wOx0mTxNqRRNwjCgWAqJotG4t9fQOgnYdPspL730Dq5tEfohnVYHy/NYXV2lUa9p1wJDINEsMUPqSq1SisFgSBCGum3GkCRJgmFaICSWaZOLHNsysC2TcrmEYZpsbW3T73c4OjeBaQvSNKMQFlEqw5AK368ihMnVa7eYXzxCnAyRZobjhPi2iWFKvvHNb9Hr9yiFLjNTRcrFACFilN1lJ7rNoLCJOT2gOFpg8ILLztxV6qUiLgaZ1I4ESZyQpCmWbQNaiCpK+mRk5CInNSARkEqBzBUiE4hcR41KCDKBZggJ7UrBA4JBD1Jh3ytZ8TCm4IPg8GGVykfNr59kvN/n3v3+wwpJP9S69xAwLqWERyRy9D5+vDfeq2L98O/z5+D1xxr/MoLX5O/9j+TffuWhasM/je2/3/KHjT8NeH3wcw8Hr+Nt5gopFIZS0O2T/91fJS8X+drd2+RK0OkO+flf/NepT0xjmBKlcuJYU8RAkOcK3/fZ29vl+ee/g2mYDIYDfM9HkBEPR7iOzerqCv1Bn4PDQ0zDpFgoaHl+02Rzc5Njx4+T2DtkuSLrFvEDnxtXr1GvVSHLcByXtbU1ZmZmcByHK1euaJuK2RmuX7/B8WPHOX7iOIYh6PXHVSEh6XYHOLZDmuXsbO1w+crbPPH4YwxHffJc2w0UiyV29w4JwpLu1UX35JnSwLVtbNckzzOyNMMPQgajhHp9EtM2WV3boDkxwaDfRxqSIPCxbYc0zRgMBgyHQ2xb9wUb0oUcpDTw/RAhJP3ugOEg5tOf/gwL80e4RzEs16qMooj2QYdarTb22hUM+iM8xycs+SgEc0cWMExbP1htnSE0xnTnLMtIk5h+r4fvB0RRwurqGqdPn6ZULiJkjm1pdc61tXWaExPo5IRFo1GnWKzieQ62bWBZNkFQIIpiLEMyGkZ8/3uvsLK6xuKxY2QoWge7dDstyqUCKs8IXJfRcMj1m7eQUjA9PYk3FiU5ODgkVQm2a5Nm6ViMSoztO2yUMEBKFIqDgwMGwyGNZoPDgwMt0GPb2qs0DAmDADfQgj1JmpGkOXfvLrGwsMDWxhZf+crXqFSrHDt2nKmpSSanJjnY29V9ZJaFaRogBLaj+7jjKGFne5eVlTWmZ6Y5PDykWCximA6Oq2mEQth8/gtf5O7yHY4eWdTB4e4uXujjBSGGbTHsDWg2m1y9do3mRFNX43INtNpt3QOplGBnd4+JiTq3b99icqqJYRhMTk5x9uyZcTuawrJsigUfKcVYqVbSafeo1xt0ul18P8S2HXZ2dkEpTNtia3ub9c1NTpw6hW1bjEYjTp09x9zcERzHJo5HQE4Y+MTXl7Bevkrnf//PMf/6L2Hbgptvfwc5XKYTJyx+6DGOnvkIXnESxy2RK4Fludimqe0kPv1lsukG5z/2YWZmp0kz3d+kE04ZlmPhu0XWVtexTIdbN2/Q73WxbAMpBYFf4GB/h3qjTLfTww+K3L2zQmOySqVSYmdnCyFgYfEo0jAoVUpMTEwAOmHgB/74jibH0ZQWtLJMc5ww05ltpfTLMI37LQhSGgihxu9roGmaFp47th+xTK5fv06aaLXkHC3moQN5yHOFlAYoTVUNC+G9NsLxvVYLw6VjNdx8vA/bc8Z96wHtdptoOKR12GJhfp67y3eZmJwkKIRcevMSpVKJdruFHzi6wpPEFAslhBA8++w3MUyber1Gv99lMOjT7fYIgoD2/iFZkqIyxfLKsqZGOhaW6ZBmKUHg4zoeQghGo4ivf+0ZBv0RcRIxPT2FaUrSLGF5eZliqYRrO2PF9L1xkqxAmmTkec7Va1dYXDzK0tIylXKdvb09SsUKxVKFa9dv0O60qZw7g7+9h3HpOvW//guYtkUQ+viBntuZCBAyYXXlbcqVMmHpCI996F8jylNu37rF8SfPI//9f4P89gbyuVfo14u0e1qIybJtjp88hZASE8FBq4U0TIbDEUu373Dh/Hm+/pWvcPLJBv1ejxuvbTM5NYHjOkRJQhiEbG1uUqtWSJOYOIrY3Njg7bff4ejCAp7tsHR3mZ3dfWzb4cXnn+fK5cscO3qMd65c5sSpE1i2iWVbmIYWSJubncOyHH3/sATSEGSZrpgIISgWyzTqug/aMi2Wl1fwPY96rUav12N7a5t+T7exbGytkStFoVCmUa9gOTae56JQTE5O6Gqa0nNTSg207lVwLNtBKYXTqCC/9l2W/uJ5SgUfSYoyvPv9iFEUsb29TaPR4Otf+hJ/49/7d0lfG/u8Xv8jeOsG8vFTDw9BfgLw+qgKbS4EtlIcrC/za//o/+IvFf5j3KJDZb6J7xXo9nqEBR/LdshSwfPffg5DKj70+CmaNZvAk0SDHhPNMqZpEMUjEIrhUAtoDQYDAq+EaXuYhm5dqpYr7O/tEZRLBKG+n4xGA4qhFgdLs3gc8+hnrEALz6VZhFKQZgrLckiTDJWDtMEwBNFogMozLEu3SSzMTqPyEdLQYMjzQrIswZA5QVDGkCYrq2ucPnOKVGUctvZYnD9DPOohELhBwNzsDN3DPZr1EFRKseCSpTGO54KUdIc9hm6Hpj3P4FLGN+78U25fvcrJM6dJhj3iUZ87N69RCX2q5QK7G2uEoY0hIcsTkFJz+aTAykAqkORamBFBKoSeb7pQq5XYx0XB/BHg9b3Eix6sGr5XX+yj5tePOx72meyyidqVyOaPUoLfffwPbud+kehd696vtPKj23nfY/8A3/XdwPXhhao/B68/1nhQbfhRL3h4Wf/9JuJPk/L74L7eS234g1J3f5IM46PGuy/gd1MsfpRu/aNU7Hev88P0A8jTDCkUeRwTeB7Z//Ip+m9fZ+PkNE996GnmFxZ4/MmnKFQrpMCw3yXLtM+i5wW0Wi08zyUeRYxGIyzT5NixY8zOzhD4PvVqhUajjiBjdmaG9Y0NKtUKX/ijL3Dq1EmSOKHb67J4VAek+PtYlkUgZvnGM88wMdEk9H1c22Z7Z5eJCS3YYpomzzzzDJ1Oh+PHjzE3d4RSuUSSxLiuQ7lcotvp02q1MQyTdrvNzZu3OHX6NOcvnMFxtRqukOB5PkJITMeiP+hTKhcQQpFnMdGoR5aOsByXJE1I4gghJJVqk253yM1bt3ju28+xsrLKk089gevYmKZFNIruiy+FhSIHB4cEYYE8S7Fsg1brANdz2D/co16vYhoeYSHgrUuXiKIBlVoVz/c4PDzgy5//OgsLR0mShMPDDtVqnW/+yZ9wZHGaiYlpHEdbOQhD0Wof4HkBSZIgBQwHAwa9AZMTU2zt7NJqtfn5n/95CsUQ0xSsra/qIDbNiaKIKI41IBD6oby6sjF+4Mr7Sp5JkjHo9vjCF76E64V85KMfww89MpXhmYIw8EijIaiM7e1tnn32jzl67DQ/+8mfwXEs1tfXsC3tVSosTY9ZXV2l3W7j+QFZOs7bjq9xaRgctlo0G1pVU+Q5+4eHBEHA1tYW7XaLSrmEsLTwiBeEZJmi2Zyiddjm2W98k1/+5V/GcV2UUhSLBdIsYzQYUC7rnrcbN64TFkKiKBp7qKZMTEySJJn2bRUC27bpDyIG/a62VzJdTNPi1KnTmMAf/MEf8DM/+wmQEjfwERKi/ohLly7x8ssvU61Wx/14Bp7jcni4T6Vc4tq1G7z80veZmpkc+3eWORz3udq2RbfbQakc3/fHgk7uGIBJbMdlZWkFw7AIwlADf8Ok3WpRqhQIC0XOXbiAYZhkmRaDcT1H91s6FrZlapXsG8tYL18h+Wf/HbcMwezsMQ53N2lt36GzeYO9gx2OnvkolbnHaA8ylDBx7AClEqQSuFsHGF/8Fv2TM0gLDlsdXMdlc2ubZNwvOBoO+ae/9huEQcj29haWadDrdTh//jSVSpmdjR3iuIftGCwuHmM0TJidXsC0FagMx9Y9yUoazC8sUGvU8DyfJE0YjXTVtd/v47jeOAFiaBGse2qLkvtWKvqBrpBSV1AVunqaZulYwEbfRy3bvn/P3N7eYTgcEYQBqAyBwjBNDMMkSbQVSp6l970J0ywnTmJNPUQDaNMwNQ1V5UTxCGmZSMPEME36/T5hGBKGBdbX1ihXyriuS5Kk9xN2rusSDbowfgZqA3rJ8RMnCcMCQRCwvr7G9MwMpiHZ393Fsz0+85nf5vXX3+Av/uIvYlomSmV8/+XXKBbLOLZFFI1YW1vn0qU32dre4q/85b/GwvwChmngjO991WqVZJQgDU3VrdXrxFHM2toq3W6PLE/xPZ9Go4HnhihlYFo2hmmxubHNiRMnQSlKpSJysox/eYmdKzd4RfU5fuIEoyjS1/copT9qUQ1jrr/6InPTC+wephRrNSaaJd5663UWFucxfumTtF6/QvC9txFHZynXagiprWg832M0GPKbv/lp5uaOUKvWefLJJ2kedmkKC/uYTiDMlM6TZBntTpt2uwNKi8q0D9tUyhVarRZKKeqNJp6rhdV8z6Neb3D37hKvvPIyH/3Ixzhx4iT1eoPnvv0tzl04R5akSCExDZ1AzVWu55Yp6PUGSMNgf2+fPM9xLFu3j6gMlWsF4lKpxP7+AZZl0qjV6HaHhMWQar0yZl54xGnMcDjEskwmJiZQKmdra1ODuiDg5q1bKAGB72ON/b8ty2JrZ5tw8wDzxBw7Tspko8FeJ6JSqaCU4s6dOywsLLCysoJv2Zw8c5r8kk44ylc+AytbyAcEmx6MUzKV348/Pkhv43sxwwzDorW2xJf++ae48uqb/Jv1v0dS7WGXPUzTpdVq8eqr32dtfZ3VlU129/axjYTFmQLp8BDHyDm6MM0oHoFAM4HGSUDNvjDvA9JSycNxJErFhAWfSk17KOd5OuZ/KqJRhO2FmKZNlCRjFwFdwbQsQZLmDEc5aSpYXV0nTRIs9x7jKh9TkDNsSyBJQGbYjs1wmDAcRASBhxAJOSmDYY9qtcGVqzcZjEBKj0ajiWsblMsVFo9rKziVRZANaNQrDHtttKtBibBYoFh0cB2TregqE53HyVnj2Vd+g0/9w/+Vb3z+d/nOV/+Qq68+z5svfZPPfer/4bO//n9z5dXX2b5zm6fOnGVvbZ2dtTXqfoiRSQbtPa68fQnPs6lVSqSp7u3O8wwpwZBC/ywgzX9YYfjHiYnfrfL77rnz4yy/t713H8ej1k8/55LflRgXk4eqYD/scz/0/d41p+/9bDxAN74H0h9cTyn1IzH9g3t+cP00Te9v54O5mPwEwPndW7ifDLP+1QCvP+lnPyhI/NOOd2/jpwFe/6zGvWPIskyrd47NiX94PBywPjqzo+kMBmAJSTIc0P8v/2eueora8XlMaeA4DkurK5peZghEntHvDykWi0ihg5jRaEQ0HGDbNlNTU1QrVWzbxvc8XnjhBcqlMpubGxwcHHDq7Fksx+Ha5SuUikUNTNot0izDcR3MQhspBeaoThzH2JbN/v6+Fs6wbdbW1nQQlSRYloUQgomJCTY21nEch0uXLtHpaFEY3/eRQuC6Lq7nUi6XKZRKRKMBKOj1u/dpxcvLq0xMNRmOtLrt8vJdPM/FskziJCaOc/r9Dq5jYdk2hmHR7w351nPfIvB8nnriccqlInmeMoqGJHGK7wXj/gfBcKgDs8P9XU0Hs026/Q7NRoNer0OWCcrlIpOTdXq9LrNzM1i2rcV0TI+Z2RmkqXtnpTSwXZtyuYht2Zr+OBoSBB62bZNECZ12G8/Tv7uux/r6JgilbTo8bXMTxzGO69Dr9AnGoGp6ahppSJI4IssyPvu7/5zZ2Wlc16HdbrG8vMr8/AIqz7m7tEQYFDh+/Dg5KZDT2j9AKW3Z4PsBxWKJy5evsrN/wMWLHxo/6ARRFFEoFjAtQxu8V6paZdkw2drcpFwukasMBKgsx7FtXQ0zTOJoQK3eIE1TiqWS9gPeWCcsFFhf38R1A/74mWepVasUwpCjC0eJooggCPi93/sdnnzySZ2sMOXY3ijRYk2lMpZlj6vQK4RhiOvqBEKlolVJbcfF9TQ4GQ1jjh07jm2bbG2sMTU9TalSJU4TfN9HKN3XPDMzzczsDEfm5/ADnyga4VquzsTbJu+8c4VOu8vJ08ep1SqgFEmSERYKSCkYjYZYlk0aZywtL1MohNq2JUnI8pxbN24yMTGBH3gsLd0lz1OOLi6iyLBtiyiKcVwX2zJB5RiGIk0jLNMgiiKc7UPkd97E/+z/QHbmLEVb4DoG2eqrVGRMmiTMr5rM5NMYjz1JZzjED0IMDEaDFrdv32b0h88QJDnZTA3XsTAtn1dffY0/fuYbzM8vUCwWkIbg9VdeY3Z2hoP9PZ5++kmazQbNRo08y/AcG9938TyfVqvDoD8iyxSDQZdCIdRURtej1mhiO7radE8o7J7Nh23Z5PfUuNN07BWrrb+E1BQ9LWQ2zoWLcYJbKdIsZTQajgWddICR59m4ciUplUo8//x3sG2HiYkan2Q9YQAAIABJREFUpmmgckWulO5vFAJTCpIkJUkzTEtX31zXRQhtq3D7zm3CwMOyDCzDwLAcXYUVAsd1dQ+zabC9s0uxWKDT7jI7O4sUBjdv3aJULhN6LsNBBEowHI4oV7VnrDsWhioUQ6SUWJbF3u4uYaHEzu4uvX6fxx5/HNd1kIag1xlSCENcVytC36Pn7+zscPr0GYJAK3mbpsX6+jrFYon1tTVq9Tpb29tIKel0WkxNTFIoFrSoWyGk0+2ytLTK9Ws3mV88wmgQce36dV595VU832Nqsontu3QKLs2rqxilIvHcJOVqVScd4hGxUgwON+lvLtPab7PTy5iYmMIxFe+8/RrzC0fIM4PBxSexXnoVrzUgnaigAMfRrReWITl+/Dj1RmN8vhX+/iEFz2cwFevzFTe5e/cuMzMzVCpVBv0R5UplLNBUwbJtmhOTlCtV4ihiZWUZKQ1KlTKtdotKqcr09DRbOzu8/fbbDIdDjh1bxDDE/SSJyhX7B/s4jo3t+DiOi2WahGGIHAf8Gxsbmh2UpmxtbeF6LqNhn729HbqtDtMzRzRDwIA/+eY3ufT6W6ysrWHZNgcHh7Q7nfuem63DFpNTUwyGA6anpzEMyWDQx7Jd0izVrICdAzh7nOzoLF5YxCtUNJvKNLEsi8FgwI0bN1icneXI4gLp61pITG4/q/9/l1XOvcD6URW39xqPiq3iOKPiKH7zH/5vHDcucqLwMa73L7O+uUmjPkm/30PKnMcff4y11XUOWy2OTJeYrFnYhsKxTbI81UQMleG4NkmcYBhyfG4kUdzHdgxMEwQZQiriaEQc6xYez9Pq5GmSkmY50nCR0sQyNI3atmwEkMQjXL+IEjbDYUylXKJWK2O6LoxZF+Tgui5pEpEmMdI0GEUJaSrw3CJpkmCaSmtdJBmDfkZ/kHPy9NOsbe4zGg0YDXrcunULadlceecynf1dZqYqbK6vIkWmBd+EJAgLWKbWghgNOuyMrnOi9+/QH+1xa+s7lHybXmsfk4zD3W16h/sszExBavDic8/xW7/xKT7zG7/O5Tfe4Iu//zn+8Atf5FvPfpUrb77GVLOGSlMa1QZpnOBZNsP+ADVWT8/yDMQDisQ/BkB6v1j7x13+7l7b9xvZKzqmNC4mHzjm/6F1Hqgc33vvHkPnUcd5b9GPvPdDm/3RausHxySPXufHPTd/Dl7fZ/yLAK8Pq9z+/x28Aj8EYO9JdP9gvHe19UeyNEJgCCDP8UyDT/2Df8AT379L/JHT1JpzkEu6nR79jva4M6TJcNDn5ZdfZnpqFiEk4259bt24QbVa4403LmFaJr1el8tXLjM9O8/u7i5xklCp1ugPR5SrNS6cOcPOzg6tVovFo0e1t6CAtFti//YQ27YYDEbUak2UkPzOZz/Hxz/2EaIoug/Kms3mWGE0o1AMEQKaEw2ajQZ7e/tUKyUO9vfwApdev89zzz1Ho1mnXtEZettyCIIQw7SJo4TtzU08x8OUFtVKnY3NHcqlGvv7LQp+QLHgs7+3RZpECLStzLXr1/jb/+F/QKNWwTElhwcHVOtVVG6ysrLG5NQM0SjljTfe4ujR4ziWi1IG0rCIk5xcCVburtGcrCENhe9ZzM1Na4qyynFdj1KlQa5yfv2f/TrnLpzD9Vy8MMDCIc8iep19TAMEJo7pk2cpWZqMlZH1g9N2fYJA94cORwPyPMN1PbJM8cfP/AnD4ZDBcMjM9AxXr13F9V26vS7HFk8wd2QWhV5fCInr+kTJkGqtQRTHNJt1pEjZ39uiWm6wublFrd7g4PAQy/E4d+FxnnzyKU0rIqfdaVEoFmkdHhL4BQ2cpcSSBjdvXgeVUSgERHGfaDjAdRxUDp/9nc9yuN+iUHDpDQZ4nvYONg0DlWekcUbga8B588ZNLNNkf3ubrz/zLPML8/ihj2FI5ua0OvXm+hpCQH/QZRRpb2IpTTY2tigWXIJAz6k0TdjYXKVWr9LvdDg42KJcKoCCdquF59rYns3MkSPYnqaMZ3FMe3+PLM8wTEmuUj3nbJO19VUMYVEoBOzv73Ly1BnOXXiMTq9NvVFHZZo+2O/3MU1j7EVb4tXvvQEIpqYnGQwHeMHY9gVJc6KJNASOa1OtlkGlHO7v4ji27sdWil63jcgzJDGddksnRjKF+vpLpP/tf8LhY6fwiYm6l9lf/i6Fq88jD9YpCUX5pk0pDUl/4S+QmTlKxZjC4Oq1V/n6V7/G+e/eIDx7gr7QnpuGGWDbHjdv3OHihz6M4zqAYrJRpVQK+bmf/wv0ul1KxQK2ZeL7PsNeG5UbRMMMx/VxXJv1zWU8x8eybBrNCYqlMsur6xRLZaQpxpVM7gfupmmSJCNNr/VdICOOIyxLJ9osU1PklRY7RjDOjktD95wZ4/tqrjBMiyRLkEKiAM/3OX/+vK5QZZH26hyDVi2eAUKBbbtcvnwN1/Px/IA8zzCEIB4N+dpXvsTRhXmSeITjmEhpo2GVwrFt+sMBqcpJVM5Mc5Ld3T1M0+bg8JB6vUmn3UNkgitXrjIzM0er3SZJUrI8Y3X1LqVSEdO2EMIgiWNEpvArJWqNJtNzczQnJkhTLUJTKFR54YUXqDdqRFGEH/iUiiUuXLig1VlVzuV3LlOt1vjKl5/BNGxOHj9KmqWUKhUs2ySJY0LPJ05GNCfqGKbk7p0lbt++y9kz55CmIEkSGs0mE806iwtHODjYxfNCsG3M+WlqL7yJPzHJqm1iWy65VIzcSabqsxxfOMIwGVE6eY7hfoflO++wMN8kGfUZDRMajQmiuTLyt58hm5sgFmDcPxk5lmWxs73NpUuXcByL/5e9N32S60rP/H7n7kve3LP2Qi3YCgABcAHJ7lavGk9LbrVmRjMa2QqFQwrN4nGEwx5POByjLw77LxiHv4xnZMmaGGnUGoW61Ru7W1yabJLdJEGAWAmgCBRq3zOzcr/79YeTAMEFbFKLrQjpICoKVZl589bNkyfP877PUhiEaLrOmm9z6bW7lIo1vv6Nr/PE449LkyM3T5JCEER4+SKmaXPQ6pBkCi+//DKaoXPk2ByKJihWihTyZfwwYHJyijNnziCyDMs0yEQqPRtQAAXLNsnI0A2XOE7Yr++TJDGOZRBHAdVqCU21EChYtkUU+TiOSbVSot8d8B//4GuMjo/h5R2Wl+5SyBe5sXibRvOAT3/609SqNdrtNq7jYls2axvrzM7N4YcBqhDoQ08G2QXOUFY2yZ48g/bYGVLdgkR2u9bX16lUKui6jmEY6EBtbJTkLQv46eAV5aM7Wx813t/pyjKDm2/+kEF9hSezX6PTiVBGTDzbptPq0qzXOX5sFtNQGBupEScZd965zanjRTQFQCURGUkcyuOrAt3QiCOZ33xP2+vYpoxT8gdS/61oaEpGksSEoQStppVjEMR873tXmZkZY3l5BdM0iOMIQSolPZnO6+evcOdug9OPzKOpGZ1Owp3bq5TKNamnThIMU0c3dJJU4PsZq8vb3Lq5xsT4CN1uk2YbolDl0qV3GB2f5tLbi9RbHX7x738VxzLYq+/z6KNPUKtUuf32FQwtxXVsNFV2P1VdRzctBr0WQd8n8kMyZcBBtsZp7Vd5+tCv0PF2GT02jpsvc/XGIprjcfTEaW4vr6CZBmPjI8zMTNJu7bO/u87Gbp31pVtsri7z5qsv8uy3v8v2ygbX37rKytISj505g6qpxFkCquCebPXBvefHiez5ywav9+bVx2VqJuclI097Kv5ExZf3a17f33nN0oebUN07xw90nD8CvD7sOB8+/ha8fqLx1x28ftgE+OsMXu+dhxACbWj0EATBfYqaHA8BqTzM5UygoCCyhLfefJPeH3yHOc2h+MQp4sxEFSrPPfsCtWqNvFcEoNnc49VXfsyhQ7Myi7DfR1VlpIfjOFy7do2zZ8+iKAq1ao1KdYQLF97k0cfOYhgmmQDTdhBJQrFY5K233mJ8ckI6a4YhSZpy59YNDh2aYXn5Lp3egGptlJs3b/HYY2ewbZubN28OI11Mbt26RaVS5tatW7TbLSrlMpquUa83KJbyDAYDFFWlUilTKpcxLVPSfYBGo4FuGKyurjI6MsbX/tMfsnx3haee+hRxkuE4HpblksvlCf0BjeYe01NjHDQPKBQqGKbFoZlZSsUCb1+7ytTkBF7eI0kThDAYG5ug3x9gmLKjoqkaG2tbLN6+g25YaLrBD59/kVs3bvHEU2fp9drkHIdW6wBN06V+M4oRQsd2TMqVIuVKGVVT2d7exjVy7O1tomoZuq6xuryBY3vEUYCiCmzbGmpJdZI0o99rk8u56IYuTWwUlTQVvPrKq6ytrd+nW2uaSrVawTAM1lc3qdUqqJpCvV7nzfMXcd0chVIe23YZGx0jDAPu3l1kZmaaKMpYW1tnamqSOEnZ32ugqDqGYRKGPrZt4Tg2qqphOw5JnAICRQiazSabG+scPTJPs1GnXC1jWxatVht/IA2rxsfHKZc9LNum2+0PCzgpvW6XnJun1+uzt9dgemoaQ9OxbYPllXWOHz+GUDKOHj06ZC0oFDxPmsuQoukammbg++FQ22uiCIV2uy07JoZGr9dF1zT8oI1lGuxs79Fudch7Obr9Hl6hwF69iWmYDPo92gdNiqUijuOQ83LDWBiVKI5o7B5wcNDAMDVMyyHN4LvPfJu5uVlsw0XXZUZqs9lkZWWZiYlxpqfmKZVLsquYJqRZimEYJKEMog/jENuW3bfA94EEx8lJjbKmS12XYWAaoGsaQbuH+v3X8b/8KfR/8avYjofwm6xdfYba2i3alkXfypH5PtUtHaEahF/6PKmI2NvdQklVCnmN177+DL+cFAjOHBmuQin9fszt20v8wi98VUblDPukjqVTrVYJw4i7S3dJ04TpqUmEELQPGqiqSZLAG2+cp1qtcGhmku2tPWYOTeM4rmRo2Paw85oOLee43ylN4pggHFAqFUnThDTNCAJp7KWoslOaDWmAw0UQuFcQFNKgJ01RhGS3qJp233TJ933SoaFY6HeHIDgjG37XNYMkkmwR2/EwDFM+JykqCndu36bTanH27BlyOZfBoIumOYAE3xky3sqyLUrlMr2DFo3GAa12m3q9zuycdKnd29odmpoVKRSLuDmXnd1tatUy/UFf5m+nsltU8PJork3O87AdhxvX38Y0DQb9Hp3OgLX1Vc6cOU2/3yVOYhr1OrVajc3NDRqNBk+eexLLtJmcnGJsbBzHNu+b00GGZZpsbW5QqZXJkHmq5XKFa9fe5umnP00qYqqVCoau0+/12N/bY3JijDjJWF/fIF+tkI1UMb75AurPfgatWKDRbaF4Y2RhwtY711jbWWPkkSfobexx+a3XeOKx05imSRgpLC4u4RyfgmYX47VrNMs5dH1Y0BIpAoHruFy7epWdnS1OlKTGXUzM4Nh5lpfvcvzYUarVMgcHLfbrB/zH3/99vvDFL5KREYQhL7/yCj986WX+8S//I3KeQ5alREkk57OdR9N1Op0OuqpSLpfYWF8jIyPn5VEU6RWQJDFB5KPrNlmW0WodMD46SqvVJElCdEODTMc0Lfb3ZdEpikIs2yCOUoRicOLkCUxTY35+Hk01eOLpT3Hq5EnK5TJJHKPrGmtra+S9HJNT0/hBgKZrxFEkNfuFAoqiEEcx2ssXCX/9H6JOTdEbhOiktFotarUaaZoSx9KDYHdjg8lD0whPwEyMeONFOV8fAl6zP8cW6UEZ2IN7F0UxefGZP2Z/ZZGf1/43/Ik6h08ep1jwuHb1OnNzhyiVXJI05sKFCxSLZUyjzVjFxjFtgiChUCpIF/YoxLIMBoMBmqph2+5Qo66gG/IzRCgqlukSBDFKFqNrOqZtE0UJumHR6w2o1coU8gUJ7DUF09TQVIE/8MnQsd0ipqXg5SyioMfObpft3X2mp6eJExkHF4YBSZqSJBm25WFZeWZnZoGETqdBkhXJeyXSFPaaB8wePY7tyfc7aUzgB+iGzdjICL2DOgcHO+S9HCKLyLk2hmXJLnswII0hTeS+z8nb3KxfRfQ9Pm/+U1qtgLevrnC4eo7Z0qO8eeMisRUzPT/L8tpdtna2mJmb5qt/7xeIE40jc+NoWYBt6oxUa1w8f4Wlu6s09xuMTYxz+dpVxqcnGYQBmqJ/4LW9N08eNv6qOq+fpPt7H7w+HX8CWu4Djx8CUFVV74PRe+D1Qafl91+Te7//OOD1/V3dnz7+Frx+ovEww6aPmnwf58V4mJD7zzsePM7DwOv77/fR5yc7D/dMd941zP7LB773gOu7GlcBiOG+TNz/UgSITEHlnlGEjIKwLJ00igm7AT9+5QK/uNwmGa0RVmuITOpzxqdGGZ8cIyFCMxQc2+X06dPSXEMorNxdYaQ6RqVcQFNVdMPADwJW11bZ3t3BMlWOHJlHiKHzZia4fOkyURLSG/R56umn0VSNl3/0MtVyFeIMoWpcf/sGN27e4nOf+yymoUGWMDY2gmnp+MEAL+fR6fSZnT1Mt9diZnaGQqFElimsr2/x8suvUqlUqVRqCJGhqxo5x2JrY516Y59arUK+4BFFCUkKuuGytb2FbpgcPSrjYRQR4w+aOLZCmMSUq1V2d+t4+SJpkhCFPplIsByT6ugIquWwuVOnXB1DaAZ+4LO5vkLBsymWCqyvb5ArODiujevYWIZBsZCn1T6gWi3h5QoIYaCoBopmoGkKg0GXOOxhqIKCm6PX7mCbFqV8EUVN2N/v8tIPf8LZRx9lf7+Bqup0B11arRbPP/cs5VJJOpLaDrZrIxQDTTMxLAEiRhUaJxce4fDhwyycPIFQUnQtpd+uo6Qhc4ePkgF7u3UWF++wuPgOiqIxPjbO7s4W5UqBdqvNKy+/yfLdXY6emGdsbJwkVviz7z/P0WPHcDyLSxevUN+vk88X2N/fJZ/P0eu1GQx8hEjRNEEu5zAxOY1uONi2R6vRJI5THMvGtAzCyOfQoUkGfkI+X0DVZJdM6Ca65fF7/8/v0+50OL4wR6WaxzANKrVRTj1y9n4I/c7uNpVqmTSNCcII3TRJ4gx/EGEaNudff4NXXv4Rj5w5g6F7mKZG32/Q7/YoFsZIAIFJ30+ojYxSKBVIyaiUywy6XXqdFqYm6HXaOK6LVyqBoqAbJmSCOIzptXtMzE5SqpRRhUocBnRbTY4ePozr5IjDgL36LrZj0u51OXzkGJmQ5hlxErO2toZpGDT26xS8HJptc9BuSTdhmX2FpmkYhk2728dybBRVMOh1ECIBSxZ1nNeuk3gO7d/6dYQek9NDGhe/S3HzBqmTZ3GxydbGPoFImehUUMIO0VEHa3SKaBBhCOky+3hk4nYD0ulJLNdDqBaqqjA1NYnIEkxDIU0iGvv7vPBnPyJLwDJMBr02ExMjaCq0W82h62VGGIdcuHiRQqmKohpMTo9j2jaaaaFoBjvbu3z/e9/j6NF5yWRIBUJVCMOQhAghVEhVfud3fp8TCychi0gzH38IYlVFkYU/Rbosm6aOEBr3QCwwNHBS7pUDEUqCpkkaXJImmIqComhkieBPv/5NkjBhdLRGpmRS66moGIYgE9KhWhMwUhtnfv4wKDFhNEDTbBKGJmXDAopQVRRFB6Hj5BxGx0fRNEG/18VQFFr1Jp1+j/FDU2iWjuEYIDJKhQJbaxvomkEcxaiqQrvdxLQ0Ot0Ofm/AncU7JGGC3+tjmQqqpnHmzCkEGd1eh7znUcjn2d/bpVSpkCTxfa1g6PdQ1Yx7CUOqKmjU62iqDkJD1U2ZcTuknRZLFXKFAkKNSJKItbVVpqemGRkdQzVtXn3pddbXl5k7UqPea+KVRxHfeo5LepOZ4zMM2jcRmcr3n73Gj77/LY54t0mjBifO/hx69ShprkCSKPxf/+d/4Be/+ncYzI6i/8632SSiMjFKEAzQTMkUUVWdg1aLz372Z8h1B6RpQjZWYG15idOPnGJichJUjQiYmhjh1KkT0sANqecrFUucPXMS13XY2dqmUCiiKRqaouMHGW9fv8aLLzzLp37maRKR0egOePaZ73Ly1CnSLMEwVMLQR6QZmgq2pREFPkkcoqsqcZRgmTaZpoCSkiQx7XaH7c1ddrfr7GzsMDYxiVcoSrZTmrK6fIeVlU1qtSqGLsiIsR2LJE0JI6n5vXzpEo5ls7m5RbFYwrQUsixh0OlhXl8i+Ve/gUlE/2CXJIwwdBNdtUiylDgNQYnZWV8lVcA96qCOC/jOjwAQX/38ezbR98dPoW9+4P5AJrJ3o0WEIGO41sUZwc4twjcr1Iwj3PHf4dbNWySpwPUsEhIyNNrtgB//+AK9/h5TlQIjhRxhFCIMRa7zcYjlOORyBYIgQVE0kiwliiI0PcMfBKiKQZoppAIcz5WfwbpBGAWYpk4Y9ikUbAqeRpL00LQUyzYxTJO+H6CaJqapUnRVaiUby9LoDnzGR8scOTJFkvQRBMThgDQKIZbOwqkIMSwNL5+n2Wpimja1qoZuhJhWjq3NA+r7LQqeyfEjR1GEQj6f47VXnmdv6w4z0zW8nIapDPAcFT9NEZaLkgZE/ZAoiYnIcIrjJGqet67fJS0bbAzWeHL07/KluV/m0crPclh5mv968n/hq6P/HZ/mv+Lvz/4PeMphjppfoNmJ+c1/9t/jZy7nLy8yiAOmZ2fZ2qpzfDqhYMc8/4PvcOn8a7z8w1d55/o7TNRKVEplLNslTDIEGQYRCE1Glqnqfec8RYhhFrP8+d5t937/ceDjg7rTB+NsHiyKfGDevW9OCiFI3pDg9UHa8IPHvQeuP+z54d1dd5bK3HdVUT7gzv1g40we673U5nepxg/+e/fYPHCf93R3H/Ieu/fre07O730e7n89qLIV4sP1wX+jc17/MkDnXyZ4fXB8FHj9+ONhi/Rffdf2wTfFg0PN3s2dUlUVlRRVZJhhQH1rm5eee4FHjhwj/wffYXukjFurIjKpqbUtmySO7y8oIpOd33tmMsvLd1ldWebGjbc5evQIvV6f8fEJTMtk/vBhfvjCC0RRxOzsLDs7O1y/fp25+Tnm5+fJ5wtkKTTqDbY2N1lcXGTydEplSmfQ1FlaWuLcuXPs7u5SLBZxXRfTMFlausPY6Bi6btDv9dje3WJrc5swjLBsi16vx+joCK5jk8/nMQyDNEtp1BsctFqMjk9iWBamYdFut6hWqigi49DMFE8++TgbG6sIAcWih+8P6PV6xEmCrhkoQqPX8+l1fUZHJyiWKwgkDVgf6mz9oI8QKZapU65UiKKINMnY2Nji2We/z8989mmSdIBQQixb5+iRYximpHwK5PXd3dlH12z295pMjI0ghMws3NnZxXFysitkaIDKqTOn6Q+6VEZqvPDDl3j1x68wPTHN6Nio1ELmhuZBfg9N1YjDkF63RRj4bG/uEIYp5988z+raXQ7Pz8mMSjdHs9UmDKUbs8yAzPGFL3ye8fFRTEvh8uWrDPoRrpvHzdnYtsbE5ASbm1sIBLqqMT45DkLg5TwmJsbJeS7NZvN+pTFfcOh2D2ge7OP73fs09DSN0DSdVquFOzQq8rwchmmysrJNr9/Hy3loisI7N29ScG3OPfUpRsdquK5Flsb0eh0sy6DX71KrlalWi4yMjtKoN3Bsmd/o+z4gcF2XwA8ol0qcPn2adrcrg+lVhZs3bjA+NgWo7OxuUi6XhjEa+v0Pylu3FllbX2P60AxevoCXz7OxuUmUJDiWTeAHxHGMbug4tkPgD2jWG+xsbVEuS1ZAvlRE0WVXPU4SCoU8rptDQeAHIYYqIEuoVMpkCCzbIUOREQ+ui6bIziNpTJYmBHGKomnopoWqaMRxyGDQJwwS8jeWSQd9tN/+n3EmD2EGOtFb30NZPU9o6ezsNWgc+IxMzzF17CTWYhfVcAi5QMscoTo6g6HaRElA+QfnEZYB1TIZ0G63+d3f/V0ajTozM9P837/922xtbrKwcBx/EHH+/Hk2NjcYHa1RrpTY3d0myWKCQUgunycIQp56+lPs7e+j6zqFgofr5UiyFMMwabVa9AcDjh49QhAEGIaOGGZZ6rqGrtmomuDcudMoKhQKRUSm0+33sCyLNM2GJm2SvWLoJiCI44gwjGT8UpqiqJpcB4Fg0EcVqjRkUgRo6v2V3nUspqbHsUyVFAVV0cjSBEVJ79kK0Ot1h9pcjXp9lzRL8LwSN96+gWXq2LaOqiDX2HubiSy671jsByFhlLG3V8fzXNrtAwaDAb1OhySK2VrfYLQ2QhCGWLZDLuextbmJ5+Ukg8Q0mJwapVwpki96CHRefellioUShmGi64Yscmg6ubyHqia02g2KxRy+38N1TTY2VvnDP/wGkxOTFPJ5bMscFix1BoMAx3G4ffsdwiikWMpjOVI/ZuomaRKTcxyyTDJ+TMPhytXLjNZqTE1M8YfPfJ+j04eYu7hM/akFUCBOdJ547En+3W//G37xH/88ShJSrB7BckYYhCmWIZibHcGuTdJFxxUqVd1BqdXYa7ZxLAPDMAmCkGq1yq1bN5lSZV7pQeWA8WkPLcpJYx1Nx7Vt+oM+YRRR398nX8ih6wpCkW76iiIoFIv0+wN2d/chE1i2RrlUQtNsdnf3qTcazM5N8djpx3HcHFEsy13NRhMyQZQliGEMmVAFtuPi5nIkaYamG9LkSaiUvDyRHzBSrVEbHSWMI3b3dqhUKqRxxK1bt9AMmUtaLErH6SiKpdeE46AbOpMTkxiGQaFQwMt7NJt1maFs2ojLt+Cf/QphGNJutbGtPKaZY2enLvXsmnztLr/+GocOz1MbGZGb4G9L8Kp89Qvvbtg/Bnj9KNOeBy1qlAxEliKyFDX1+ck3/pTP9/8ltzuXMSomR44dZWr2CGNjY+S9POurqwT+gG63TS7n4WjgWQrNgwMs2yXn5siSCJFJIEGWoioqaSJZGXEaD6+bTpwlGKZJz/cRQidLwXFc0izDtCxpShZJIx/HkevHYDAgiiIswtKxAAAgAElEQVTcXA5/IAsjiqoSRhGO60Icyi5clpGhoWoGSZohFBUl1VAUWfTptNrD4m6ZOFHY3GrQ9xXmjpzk8MICR44eod05oNnsMjtzhInxUe7eucna2hLzkzaaLvDKNQzbo1Nv0dtvsN/qohoF1tYPKI8cZrfR45HHH+PkiZPMHJ3ibuc26ljKtb0rTD4+yvmtH5OMttnTNymNlZjJH+FQ7gjHe5/Cfnuc+a3H+MqxX2Gu8Aif/fkv8sfPfoenPvUU280BVq7EzcUl3jx/leW7i7z+/Ld46fk/o92o88gjZ0mESqyYZHH4nrzUDwOH9/xc7oOyj7H3fZC6+yD9/MNA44eND4DXp6KHPv7DwOtHHfthDsXv//6xMc37pbE/Bbx+WJf33XN712Dt41yrvwWvf8HxVwVexdkFlC889RfMef3rCF5lpHQmUmmjnyaIJKG5usYffe1rjI+Pc0TPoX3/ZeqHD8kczSy5n1MlhKTM9ft9TNOCYQUnDHwK+TyNxj6HDh0iCAJqIyNoutygC0Vl8dYtOp0uxUKRNEu59NYlarUarptja2t7CPZ8iqUirutw+KyHomcsXT3gy1/+MqZpkiQJg8GAg4MWSRIzMjqCYRp0u32qlSp3795FVVUmJydxXBm5UCmXgRTDNNA0qXOxLJskTSiPjKAMDW+CwCcOQ0zDIEmlYUvey9HtdNB1DU1VKRaLIARhEOHliiwvr3PhwiXm5w+TZRk727tsbe3iuC5CgKZrROGAMIwkcE0zGvUmtVqNxx4/J7M8TQPf9/G8AoqwaHfqmKY1jNUx2VjfpL7fYHHxNsVCjoEfyPB405KxO0OKVj5fIkszDEuj3xuQyxXQFZVz585x4a0L7O7tMjk5gRBgWQYiEzQaDUhjVEVhbWWD5eV1Tp48gZd3KJeKHBwc4OY8DEOeT+AHlMqS/orIUBUFVc2oVkZx7By25SCUlPGJEQzTxvM8Fm/dYmSkxh9+7WucOHWSguehSiESOzs7lMvS8Ma2bXTdGAIQBUVoNOpN4jiTmy7PgyyT5l2GpH0VK1UMXSXLYup72zi2jmNpdAfx0D1YQVXEUAPmEITSSCYMA+7cucPo6Nh9IGnoOgLBD37wA1ZWVzl54qSM4Bnm9lmWja4ZLC3dpVar4djSYEc6VWrU63W5MUlSFo4v0DpooanytnarQ7lSRtd00ixlf29PbloVhU5LFk3CIMQ0TFAVhKbR6/fJ5zzq9TrVam2owVKIowiSmNZBC8uRVNOeP8B2HVQB7XaLLE1RFUGj3pAUVFUll/NIEvB9H9syiMKA3NvLiJVNNv73/4L88Rn67Ra8+rtknS3atkeaBERBTL48TmlsCqtUQ7uyhaLqRKfHMDfeQp3/DFEgyNpt8n/yPNGpwySaOjQKMrh29RrbO1v8zGc+Qz6fZ29vl4XjC0xPz3DjxtuUykWeOPcYO9tbjI+PEwQhhUIB3w9kBmqhSC6fY2JiUsa6DB1CMzK8fJ6xsTEURWA7FgKpZ8uye/mAOlHks1ffJk0jtrf2UBSTnOeSZdI1+h513DBMkiRFKDIaSxECRVEZhuYghh/s/V4f27Jot9rSLVJTJbU4TSgU8/S7HUxdJVN1NFWn1WxiWnKOKoo0bkriFF03KBRyZGRoisni4i0mJsZwHYf9vV0s00IMOxB+0JMRQq5Lr9+nVhsjCGJ0XZD3PHKug6HrlIslVpZXKFfKvHnhIkePHUMIhf6gL6mPpkUw7DCH4UDSFe0ck2MTdLtdRsdkVIyqy4izDPAHA3kuQsU0LHRVZ3V1Dd9PcVybYrGIaRmkaUqaxGiagaqqcn0tl7BtkygKCMOULEvZ3tqi3+9JMyxNHxbzNpiemqTdakOWIoplvFYXV9GxnzzL3m4Dx3X4e//g5+j2W/TrexRrs2iGx+7eAZ6rki/qXL58nVMLx0lcG/Fv/gPp8XkczyNLY5IkRVU1+r0eL730Q87UxtF1g2Cmh2rGNFZlsSDJ3t0wS41uFUUB09RpHjRwHVfOLF26yVuWLeO8sgDHzrGz0wAheOXVl1lYOIKhmvT6fb75rW8xMzPL+fNv8tKLL5EreJRKJXRDJ4xi0iQliiNMyyKMYpIo5tqVa4gMTM3Atmw00yCIQmq1ilRHZzA1Oc30oWkcx2Z/f1+6QlvWMLYl5gff/wGGaVCtVeX6ArRaLQrFImkUo1xZpP9rX5W505bLwUGXer1Blip4+TxhFBFFMW+8/ENOnj6NvV5B7OuIrZuIQg4++/hDdHqfXJN4n90wjGKRFocJl19/mUNXnkYMTNr5LfLlGlmaEiUKvV5PFnAVQRyGkKbcXVmi7GmMj7gM/A6FUgHf76EihoAmJUlTTMNkZWUDRdHI5WRhVGpRHZIMTNMZelOAUASqotHr9ocUcH24bxjmlJNJincYyhi0LCVDDNcWA3/QwTBM0kzQ6wdYlqSdq7qOJiCJM4TIUDSkh0GmsL3V5ObtLdziCLXRcUzLkd3wJGJtdQPHdukc7NPY32B2pohnaGSKjma5hGEEkQ+xz24nIhM2y6v7DEKVYycfoVgpkcUxlmVy6dJlZufmmJubp9PuMX/4MLqjUayUySwQJVBqGUGtAzMRb955k83GJqfL55i4e4Z/OPNP2Go2WKqv8mv//DeYn5vH82x2NjZ5fGGOO7cXeeP8eX79N/+plFYoFpoi54thGB/oHN6bI+/vDiI+2AH8qPHXBbw+eH8hPqi5vafFzbL0E/19nxS8vv/29z7Pwx/zYeNvHHj9uJTgjzMedoyPohN/bNewYv4DwPU9FaCPQVmW77UPu88n/9vf/9wP+1sefL4Pu11NBAmpDJ6OAyxVoCcpX//a1/kvv/qLOHkP94//DKU3IH96AdKELIPl5WXZqR26vFqmRRRGNBp1up0Wjm3R67UpFSWdKQxD4kQGxkdxxDe/9S3mZ+c4ceIEqqZRKZdRNYXR0RGEolHI51E1CRB7/R6GoWNXfQCe/9ZFTpw4wTvvvINlWbz66qs89ujjmJYp9ZGNJuVyCYSgWCoxNTVNnMT0e30MQ2fg98l7ORrNJqZpsr+3zx/8wX9iamqakdEqaZLgD3w8z8N2bA5aTWzbpt/vo2kq5VKJ3Z1dcrncfeMcVdFot/tUqzWOLxyn3+9iOzo3by7y7AvP89ijjw3NpDQ6rQMc28YPQjRNRzc0TF3DMFxef+0NioUKSawQBRmX3rqKUBRcJ4cYfkB6Xh7Py3Pk6GFs2xnm0g342h/9EefOPUmcJpClrC5vsL6+Tq1WJu/lKZWqHJocQ9c1fvjiSxy0WszMHKJQ8EAIkkRuwHI5F8uxqZTGcL08xVIR29IhS0iSFN2w0XSLRr3OoZkZkiSRHew0RdM0wnBAt9djbW2dty5dpFarkqUpOa/IrRs3eeQRSUe8cfMW5849CVksHZAdm2KhSEZGu91G0ywUodFu9+h0elQqI2iqRS5X4OBgj4ODJoVigb39vSEI2sMr5VBVpHZv0KFQsBFKipuvIFQY9AbDjfEh/IEvCzfZPV2kcl/3aFsmcZKws71Ds3HAqVOPkCQJ3/72tzn72BlsW6fRaPCtbz5Dzs3R6x0wfWiSLE3Z2NyUZlXjY2QIcm6OerPJ2NgYQSg71bl8Hk1V6XQ6hEGA7ToIBHdXlpmemmZzc5PckE0g41lA13V005QxQkJqbhSkJnJ1bZ1DM4furwWariLI6PX6pKmkOOZyLlEUUqlUybKYIIjQVANd14j8Pu7by9Bqcfl/PIc3WaK1vop9/XlMyyT2RjH0jMBPOOj6zBw9geHkUQ0H92YdgSB8dI60scIgEeQOnaW/tIx38RbZicOym450LTp79ixnzpyGLMNxLObn53AcmySOKJWLDAZ95g8fptfrs7K8imFYlMtlBr5PqVRmr1EnQ2A7NqqmDGOUHAnkkwTHdWQHJY1RlIwgGGCaJlEUkwkVTVewTBPHcYeb1KLMQb4XGaTeo5MpCKRZE8P4oW984+tYliXdw7MMRdVQhMYbb7zJ/GEZ6SWEkI7Cmix+OI6NqqukmZRyuLYBhGxureO5HnGaoA87vGkWS3didGbnZoau6SCGDsEIhWi4wQzCAISgVK5gWvZQQ23gDwbYlk2pWOL2O+9Il884Zm1jnVK5SrfbpVQqEYUhtiWjtC5fvsL4+BSDgc/t20skcUQ+7+F6UjeoqsowTigh75bQNQvbcjF0G0XovLO4xFd+4StMToyBSOl221I6srxCrTqCpmm4eQ9N1yU9tdfDdYsM+j0K+RyGoVEsFlA1nTfeeA1d05idnadWLVMu59ENh+cvvMWZ3Q7hyQXsyVEUJcPOuSSpTW93m3zFI1ewUYRFJjLiuM+4Z6EnAavdOvaNNbK1TZz5KRhm9WZZRq/b44lzj5MFIcJ1yMZCer0eG4t9RsZGQAh2d3fIeTlc12Vvf1/mne7uUiiU6HV7GIZFv9+nUW8QJzF7e7sU87nhvAfbtmi3Wpw9fYa93X3cnMNBq8XszCy6rvLo2bMcW1hACAVVKHTabYIgxLEcwiAa6lYNCvk8g0HAzt4+B+02fuQzNzcDIiNLU27eXGR0bJxOt4Vpys7yndtL2JbN0tIdTNPEy3nMzM7QqDeoN+pYloXrykJgOvBRr98h/s1/RBimJDFcvXqFf/BLv8RnP/t5JqYmUHWpzxdhn5d+9DLndr9MuqJh/KszaJ97ApT3do7eswH6hCMTQurWRYamCkQSUd/dYesHa0yufYoN8yK5apUjx06wsblJrTbGzbff5tVXf8xnPv0ZDMNge2eLSq3AkZkqpj7AslUG4QBdU2VckaIw8PsomkF/EJPzaqiqTZoFGKbMLxeqSZYZ9PoJWZZiGjYHrTZZJrAdyXLJMpk3n90zehMKQRjg2hZxHBPF78ZrJUmMbRt0ByFpqvP223dIUxgZqUjH4SRge3uPYsljELVBaOhGif1WQqq4bO62QFUoFj12d/ZQUrh58wYHjR3u3r6CwoDx0TxprDKIoFobIeq3if0OQtPYOBCUKlM0Wj6f/pkvcmtxUSYqdDvohk7g+1y/fp2R2gjPPPMMjz/xOKouaLc6tJstdE3j7RvXyRc8ut0e1YkRVndXKB130eYT1vY3eET5NL9U/ee4SY0/e/sH/Df/5Fd54qknaWytMz4xRWN3n/Ovv86fff97PHnuaXRLJ01lLN97KLLi3ciY9+9nP+mckpne6ofswd8/VT+EFvtUhPZ0/IFzuHde7///h+3173WRH/wZ3tthvnccSW9+ePbth43sYzh6PwxMf/Bcf3oz8D3X528ieP3/YnzUi/D+N8onOea98fH0tg8jOfzFrsHHmdwPrZakspaZihShgiXg2We+w8rKLk889Sm8Sgn9t/4Pws+cRZg6ipAZa9tbW9RqNfmGE5JiJ4b0um63zerqCrOzM3R7HYIgxvelY6VpWoRByK3FRVZWVjl27Di9XhfLthgZqZFlKX/yJ9+g1WpTrVbwcjkq1bKM08gdoOkaC9OfplQq4XkeW1tbHD9+HF036HQ6uDkHRVGwLEsuviNjQ9c/gaIIHMdhY2MdQUalUqbX77O+vs7u7h6PPHIax9EZ9PsyfkeXEQB9X5r/DAYDcq5Lu9VBVVU8L8/Gxia2ZbK2tsH09BxCUThoNygUPcKox/T0IU4snJKbxShEUUFkgiTJUHWDJEkxdA3TUBkMerzw/Ascmp7l5o3b+IOA11//MT/7sz9Hv+djWSZ+MMDN2WiagqqptA46tNptVFVjb2+P2bk5fvSjH3Hh/BtoikGWpJTLBfb39vH7IZ5rcNA64MSpUzg5l5lDM6iKwn6jjmW7ZJkyjE8Y8J//+BscP75AuVwky2Ic26bT64Kik6Tg9/roukGv16c/GLC9tU2lUhnSK3VyOZtHHjlJkqT88X/+OgsnT7G9vUWlXELXdUZGx2k2D8jnHdbWVsnnCximcZ/eo2kqURRRKHgIoZDLebL7rJtkWSQzIRW5+BuG7KJnQqHV6pL38gRBhGWZ9AcDTMcjS1N0TcdzPEzd5IXnX6RaG6FULEnDnUxSAG3bJsvkh2gSxxxfWODgoMXKygo7OzucfOQESeJLPfbLr3HyxAK7exvUKhU8z0PXNbx8QarZhcA0TbJhR7bb7cqOqRCoQtA8aFKpVvEDH4RgfHyctbVVJiYmcSx7GNOSECcxSZQghlEOilDpdrrEUYRlGeS8AgiZ8yYEJHGEIjJU3cS0TIIgQFN1cp5Hp9NFU1I67Q6mYZKlKb2lu1jnbxL+3n9L3e8ycbBNfn8JrTBGZOcZ9Jr4vRZ9H6bnjxMkgnyxSBLF6JtdYkOlN2GhOi76+gWSuc9g/+QKxk6DaKIm2QxxBFmKNdzgGbrcJJVLJXr9HoqasXjrJnfvLnH0yFGW7izx5psXKZXKTE9PkSQp27s7TE5Py0gPITugGZCkGYqiouk6afpuRmuaJdIQJwgARZokZSmqkNp+XZOGObKjmkqQJoYGGQxNOURGmkKawnPPPc9gMODEwvH7kRoHrQ4X37rEsePH0A0d0gxVqICCVHRBej93RyCISZMA3++Rcz1U3SBNhTxv9R5FTp6XqkmTqCyTDsdJkkotaSbphUIRMls1TQmiEE0T5PMeB80Dup0u/cEAPwgQZIyNjTMyOk4u52GaJqZh0DqQEVeW4RJGGbVKjdpIGdM0WF5dwfUcIEVVBWQZURjIWBABV69exbJMwjBAURW58U4C4jBgf3+PYrE4vI4CwzSJU9je3sbLeQhSBIb0KRj0MHRVatwVjdXlu9y8eYu52TkMSychIF+oMj5/FMNU0BZXCD5zGl2HTqdLpTLJ6vVrWPkMy9HQzSL7uwfkSx4XX3+NXrfHytom1uEZit99jfjINMnwtUjTlN/+9/+ez33+s2jlApRLJNaeBKfLEYdmZlB1jVxemqrFSUI+n8e2HfJeCctysE2Lra0toijC8zwqlTKO63Dr7VuEcUScRkwfmubo0aP0uz6lUh7DNJmfn8cwdYrFIpVykTCMIYUsldq+7c1N/IHPyvIKk1NTUjai63T7A24s3iRTFE6cWEAI0DVZ2KyNjKGoGrqmoKoqBwctyuUKjuOgaSojtRFZBNMkUJCfc7qc/xn4V27C3BThl85xe3GZJMkIwz5Ld+/y67/xG+TyLlEcoagZ8+Oj/OC55/hc6StyDT4nO1IPNWb6c4FXZdhtzYj9PpZpsHjjBlM/eYrd7h1ubF6hF6SgmjSbTQ6aDQ4fPkyxUGZ7e5tcLsdrr79Gvb7H/HQNx0hIshhzyArSh3muUZIQxhl7+222tg9IUo1S2RgyyQS+n5KmOjduLDExMUqaycJgFMcUikVZaDAtojgkTVK0IcBP0oQsjbFdlwwF3ZAuxGkSgQJpqoJiYOg2lmWgiliaSMUJplGQ10DJUPU8O7s+b11/hzi1mJ49womTx3j72hUmxyZp1FuoSkLOURkfcSkXbCwNhKphODYKKXG/Q5YKQpHj+JnPEsYZluNSGx3hypXLTE2N02o2qVYrmKZJrVph6e4dyuUSlUqZNE146YcvsrG2zsLCMfL5HLv7O4hM4A9ibt9+h0cfO8O1a9foJX2W+rfwjtj4t1O+pP0S7zhX+Zf/+n9icnyC1bUNPv2pp3jl5ZfY3dxg/vAch0+eul8I/7h72YflnX7U+Djuwh+rofURHdUHz+f9t78f/H7U+by/OfbTxvuvx08/7z8P9vjwLuzfgte/ovHTwOuDvPgPu1/8e98gvXQT5dET73ncvfH/J3j9aecO3N8Avf8+WqKSioxYSdFUwfrtO1z4yU/40pd/ifFDhwhu3Ub7xnP0z8yzubGOqatECZTLZdI05Y033mB8fJwoiuh1e7z40ossLByjUi7R73WHmh+T5557jqNHj0pLflVhbGyMzY1tjhw5zMzMjKToxjH7+3vs7tRJ4ohHTp/m5s0b5POe7EC4TRRF4c6VJqVSiVdeeYWFhQUKhQKqIiv321ublMol0iRhdHSUW4vv8Nprr8nujmsTBD5uzsWy9CGgVZmYmBjqLieIwq7Mj92v0+35WLYtAYOq4/sBlmERRwmmYaLpOq6bQ1Ol2VUuV+Dylcv86Tf/lHLFo1jySJOMQqGIoqgEUYAQYOkmYRRh2Q6mafL6a6+Sdy3CpEeWwZEjC1y8cJnHn3iUx544QRLbXHzrEhcvnmd8fBRVhevXr7K0dJujR06gDjuy09PTODmHmZkZjh2eZ+HYSUrFIpoq2N7aploeIUl6lKtVVN1kYnJSZqMOfFTLQBEGu7t75Lwc2zs7bKztMjs7w8rKMiMV2Z3y8kVa3QG2neOdGzdZX99gfn6eMAjJ5/PSsdmw0DRwXIN2p0WpOMKJE9IFdHpqkixLeeP11/nJa68hFI3D8zOMjY2zv7+Pbdn4vo+m6+iGIE0ifL/P7t4WhXyeMAwIwoE0eTB06vUGo2NjNBt1CoUCG5t7VEqjaJqFadr4YYRhOvT8PmEY4tg5Fm/eZmx0gstvXebYwkkUVQOU+1VZyEAR2JbMFVUVWaiwLYuFhQXyRZdmc5coTjk8t8D42CgTk1U812UQBBiGiWnbxGlGf+DT7/buZ8mqqnyt0jRld3eHdqtFFEZUa1VUVWXp7l0OHznM8soKhUKBq5evMDY2hmVY3F1awnIdQGF7a5dquczK8l0s0wDDGnZnNQQZe7tblAoFFN0izWTXtt5sYDuuzIEddKiNjqEIld0Xf0Ll2jLb/+KLbMZ7HOkuY6YJysznCFWPoN9AyUJUEZPpRdzCCEJXCf0BapqyW9b51vXXOHHiKEGaoffrRKPHyd/cgThG1EpEcUSSJmiaRpqkMu8vy2g26jSadZrNAxzHwMm5nDt3jl63h6rp5Nw8cZxSrZZAILOJbVuCumwIC4UiO6CKYHNrm3/77/4tjz/2GLqu0u22Ze700Nk1ExlxlKBqFnGUYpo6aRajKNp9h3YhMuI4QVV1skyQkSCEhiJUTp85zdTUJLZjkaGCULBsjxMnT6Hp8pxEGpOlIIQKQkUqtSUNLE0S0jgAQizTxNAsafQl1CHolp8RSSKI05RMCFRNYTB8TyiqJnVxvFulR4CiKuiGjqJCo1FnfXWN0ZFRXNelXK0yGDpeX7j4FkkiXbzjKOLihfO8ef4SnXbAE088LcGwnqDqGiOjNRzXxnFsWq0DdFVS1O8u36VULOA4FrmczdUrlxkbG8HNmXS7LVRNodNpUyqVcewc7Xabvf06rpfHsh163S6u49LpDFCEfA2DYMD2zg45r8DU5BgnT54ily/SPNgnX3ZQNJt8sUyUtzEv3UTTVHZKOq7tYaoljkxO8fql7zKID9C1PJ43hqab1KojYFgcO/kouZMn4LnXieIMY7RCGIYM+gOefvopNE2VhVc/RPfamLrBdPUsURyiGhqtdgtFyAi0+n4T1/UwTRtV1VGQQNHNyXgr3++xvb3F6t11pqanGJuskWQxjfoBF85f5tlnn+HM2bMkmcy/NgxJSR8MAlaWl4nDiItvXqBQyDMzPUPe82g0GrieZN8Yjk1tdJRDczPYloHvD4BMzjlFFk1UNeXixUtomkG5XMGyTCzbJAxDlpaWqFQr7O7uous6mqahKJLWb7Y66FNjaF98mt/61/8rX/nKV6mN5vns5z7PxMQkhmWAMszt3t5iaWWFc+aXEEKgn5P60fQvFbyK+1RhTWRsrK1y7ZXrnFr7u9wIf0BlZILp2WNMHZplZmaGnGuTJhlLd+5ybGGBGzdvslevE0cx0yMlctZQY6uYKIpBp9skjCKEqpCho+k5Gg2fJFUZGx1SreOMTjvipR9d5PTpJ1CUEN8PWLq7hOM4VKpVAj+QxnONOkKRHhWKKueUSBLiNEUzTFRNJxj0UYYdec1w2d874MKFd5ib+X/Ze7MYvdLzzu933rNv377UXixWcWeTvclSe6yxxrGNsWcsyx4kF5kgGMzc5CpAkEkuHCAJcpGb5GaCjA0nCGKP40iWrZZkeSRZ6n1Rq7vVZDe7ySZZTbJY+/rty9lPLt6PbHaLLbU1toHAfoFCFWo536mqc77v+b/P//n9pzD0nCyJUA2PG9fWmZ2dI81T1u4e0evqTC0e4/SZJ/nhmz+i3T7gC7/w8xhCp3XUo9Pe4dy5Y1QKGrrIUdIUs6BTrVUZ9zpEgx6dbsr7a10qU4usb27KeD1DY+X4Epqi8vwLz3P69Gl0TaNQ9HFcm6mpJjkpWZZRKhTZ2doiTVPmFmZJkohysUy92uSJJx4nDEf4vk+t1qTgF2h1W6jNHNMwWbr9OMnnurx/4ya/8zv/HS+9+AKLUw0O93d59aUX+cYzL7C8vCznsnX9x4Tgwz5+sKJ+0E78k0jA/yHi9SfBxT5e//808fphzqz6iecsxKcTuffP71P8Dn8vXv8DVpZl/+Nfl1X406wHcdgf77L+pIHlB1fyv/0R+d0dtC/98kO/72E493vrQ8H41ydeHyQX36MXy7eHn8eDnvYHv6arBhkJeTRk2D6gtbfLjWvvs3zhSdI8R3nlEvr6NsnSArVGEzSN9TtbFEtlhKIyOzvH1tYWxWKJH/7gB9i2R78bMjU9z3AcoRk2e3v7LC4eY3tnl1qtguOYZNmYoleWnZiJJXV3Z4/ZmTlWTp3h8ceexNB0drfvMDVTBVUlVPfQDZ1G4TT7B/ucPXuKQb9LHIe02y3yLEVTVWzLYmt7C8+VOYoH+22OLx0nDAekacyffOXPcF2XF154gWOLC5iGjq4ppEmIYjgyPqdeYWtzDd91ONo9wLBMXMdlHEa89dbbaIaEKziei+46WLbL/sE+xWKRou/xc09+Dl03UFVT2tO413jJWV+7LUWEqpJmGceWlmQ8TKHCzMwiuirnZDY27uL5Pmtrd5iaqvPkk49j2xajQYSmOrz04mucO3ucm6vXmJlpkmYxju2iqjq6ZaKIlHr61qkAACAASURBVCQNIM8wHRtVF2imiqob7OzsoeQ5rYMddC1lOAhoHx6yt7PFVGOaWrXO7NwMtu0wvzBFnA+IkgBVtSj5RZIooFor8f3vfY/Z2TmuXr2KECquWyDNMtrtHqbpYNuetE8qObohZGSL4zA7P8+58+dZXl5CiExCagoFxqMxB3t7HOzuYZsaSi7FxtzsPBsbmzTqdYaDIVEUkGUZlUoFEBzsH+F5BXzLYDDs0hu0MCyVLEnI0pSNO7cIR2OKno+hafzRH/0hjz9+gUqjRp6n9yMRTMsiS1OuXb9CuVxG1Q2GozFCCHxP7o6PhmOU3KRSrrK+tUqx4uP5VUzbo9Xqohs2vW4fz3ZQAGcyJ22oOge7hzz9Z09z4uRpsjhgenaWUrlKrz9CUxTyOMaxi1QqVYIguA/KiZKMmdkFGd+gqTiuhaoqKMiZLNs0uLV6iyiMEaiMxmNKlTLheIySp0ThkHJJUr/DcUSsZOiKYPjsa4iDI179xVlmL5rMDtehPI0y8xhC0zC0hHC0jaEnCLsCqomqmZiWR4aKbss5zCTNmJpZQKgW6mifGIF76QA0QVpy0YQgSzLCUcj+UYtSqSR7kmmKyBOm6jX+3R98hXOnT9PttLAMlcOjA17/0SWOnzjB/OIMSZ5TKJYZjgJUzQRUFJETxwmqKkm2ruvy2c98FtuWs6OmaRGEIbphkmYQhQGWYREHId94+hssLi5iORZB0Jez+IoKaJPMy5jhqIOhOygKBOEI2zZwPfd+dqyiZCTJkDgaousqigJCUSXtVKSyaxsnmKpJniTk5AhVRzM8hmGKalqyVaWAUHKyJEUogiQMiKIBZAmmqmNoOu2DQ9IoxLW0iUAQCMVAQSVNJzCSRMGxbaanmyAUVm/fpd6cp9Esk5NTLZWoVUr4rsN4OMK0CjSbU5y/cJYsjzAMOR9vOS5BFDEcDojjCM8psLW9TxhkTDUbdDptarUSraMWx5dXGPSHmJ6PZVqoqHTaXUzLxpxY1XVNpVh00TWFza1NHLdIlmZkQBDF+MUS9XqT9fUNir5DkkREYUSW5myu71MpFVBFSpxGpNNVrOd/hGl7BKeOk6opSepxsPMsvnApVk7RHh8QjyNst0CSqehukcEw4o//99/js7EKx6ZIk4TnnnmGc+fPIjQNggg9zsj8jqwZRhXee/ddZppTEmSUJRQ8j0q5iCYEkJHEIeNoSJqEJFFA0S+gCoNGfRphqBw7tsTRYZfxMGR7e4fHHn+U+tQUfrFAjnRlKKrCOAoxbItytcJLL77C3bvrnD57Fq/oYLkWtutJV0GaEI4GtPf3GfW794VnGEQYhkUchexsb3Hpzctcv7bK7VvreL5PEI6YmqojFG3iLMmp1SsMR30UJWc4GHB0eIjRHaAUfcZPXuCLv/1FdFPncOs2Rd/GsgWDfhuh5NxZu81U2SUTgvn2ORCC7P/670n//Yuov/GFH6uzFOVni8pRyUgVnRyVNBqxffsm7//RLfJswK3WOthFStUG49GAKBgxHLTRNAXL1Hjm+38ps7sXFnj81BwLC1X6wyN03UDXVEbjPrqqS2ptnuF7NrqWMzNdZma6QJxM4oQyGEc5ozBh5cQ5tne30S0fvzDD2++ssrAwS5qP8CwXy9ZlhFGakuYKll1G02XNFY5HaALUPMfQZUqCgoZQNebmK/gFA03VGA5C4iSjXHJJspA4d9g9SHn/1iHdwRDHVXjyiUdYu7XGiZMnEVpOkg4YDQaEox7VikoYdrEMH6cyi8ghTxOSXKMX29SnjxGi8dmnngIF/KLPYDjma09/k9nZBaI4plotsLe3ze1bt5mdnmN/t0W73aHRrHPYOcD2bMI4RVMtsiRFN1QOW/v0B0OK5RKWa7G9sS3HCEh55coLzJrH+JzzyzS/OMv/9D//L0zNLfCv/ot/xanTKwx629y4/C7fefqrOHouN8t1DdN0yTBIScnI5eZynqPkmaQOC/UjROI8yxDKhwTee19TZBGM+Eh85ANr8nOqEPePde8Y9xxU8Vctsqs66vn0x2ZnHyZSP74+Sdze4zEoihSrH4raD7/3JwnXj0RIKT+dQvyxs/rE4/KRI3zkaD92Xnmeo6nG3w3x+rf5eD+LnfbjS9KGFbQvPZw2/Gk89H+9ndeHH+thw9/AfTz4x1c/HEAasX/nDpdeexNVMfjjr36Nf/xrX8T3PIzf/zKZY2PMTZEmKeQK4+EIVVEYDPpAjjmJmKjXGqysnCDPM65eu8Zbb/2IcqXM7MwsjXqDOIp569Il5ubmsG0bzy8RRAGGabC7t8fS8eMYhilnKfwCQoE4HtHqHNFsTqMW+gihMDo06XY6VKpVwiDE8wpcv3mDlZMnJtEvJv1BH0UINFWlVm+QpglBNMR1bZaWlhkMh9y4foNz58+zs7ONbcu81TTVMEyLKIqp1poyEy1R+H+//P/w5BNPYpoWaZoxMz1NEIyxbZudzT2EorB/sMvMzAy1xjTPPf8ynmfjeQVGo5Asy2T+ZJbT7/cxDAO/WJQFSZJIm2Mm0AQM+12Gww4zs7N4hSJPP/1nHOzvc/rMKQxd58bNG5w7e44zZ06RZjEzM1N0+125WykEuqaRKQrtoyOGgwGFQoEvf/krTE3N0KhXSeKUUrlKFEb4vofvuWS5yvT0DM1mczILBpomsG0ZQ5OmKY5dYNAPCKMRWRZS8IosLi5SqVSo12vU63XSNOGDW7fI84x+v0+SZLRabTzPR9NU8iwjTSQQKs8zTNNAUQUKEvyl6zrdbh/P83j78jtYtkujOUWW5ViWjVA1slzShTc3tykVy6xvbFKtVrlx44bMwaxWAQXTMLANi9FgSJZnFAslXM8jzzJq9TKFgofjFTBNk16vh18oyPtUUXAtE8tyJLBHkW6B4XDAUatNqehi2w5CA8c1ZafVsAHY3tmhWqngFwqEUcRwMEDTLcKxBH9pqpyDGgz7bG9vcWzpOLpm8pff+0vyDGzLolAocHh4QKHgoakCz/PotDuTQhVQckbDAaahk2WpFCJhiOPYE+ppAcexyDI5d6nrGqPRUEbBqBrkCo7tovzoGqI/5Ef//FEe+c1fptSYJj3aQPdrKJaDQsB4cEA0bJPFEaXGCigKpmnQ6/VIkxwyDdPUefUHr6KkCc3xDfCnCU/9GuWvPkN0/gT5xHKaphmvvPwDXnr5Vc6cPkUUhpRLRXzPodPtkKY5s3OzjIZDHNclSVK2d/c4fnyZUklG+NiWzXBiV5d5eam04E+Kkg9nhhRU9UNHjSQPGxPbXsrqzQ/Y2t4EJadcqeA4NigCWQdIu6+c89TuR6OYho4iZLGRk0/8kfl9kJqiiPsFU5wmEsaS5IDK+1evE0WBtLqrClmaTkBQAkO7VyxlqJou7d9piu/7aJoBkzEDGXimYBgmcZpMwu0FWSY3MGXRJUcO0yTh9dff5O76BhcuPgZKTBhFuJ6HbTvkGWxsbmL6PgsLc3R7XZrTTcIo4O7aGs2paTm/HgYM+gP8gk+1UmV3d4ep5qzkB5gmuqZPoGoGiqIyGg7pdFoEYUCxLDc4g/GI4WCAaZns7u1xbHEJy3IIwwgxuZ5c1yGOY1Sho+vSBXHUauG6DlPTTfr9vox4Mg002yKslXCefwshVJKTCwR9wcvfeRZDV5lfWmFvd5tg/D7NmdOS1C5UhKbQNVVWvv0a4bllad1dWb4PgXFubaJ1+wQzEXEUIYIqxWKBfr9PmqUkqdwoEkJw+/ZtPNdlPB7SH44o+h6ObWMaJv3+gHa7w9RU436z8f3336dcKk8i3Txe/+EbdLpdLNucbHoo9Ac9XNdByXMW5+c5triAqqmSeGzKez0MI8il88m2HXoD2eGW16oiLeXkjAJpaT1z5iwnVo5TLHooZIRxiO+76Lqc77asSa62bdHutDH7I8xaBfULT06AcDme6+L4BaI0RRg6QtOYm19ACUeESUZjT0amib1n5PX/G194eMXyM5Q5MiJHzu/n4YgsHJK/WOOA6yyfOMPZ849RrVXpdttMTTUZjkNG45DhMGB9fQMhFLa21im7gkrZgmyMY5nkmZwptEybdrtLuVIhSVL5/1WFjEzKUjzfI00zslRlZmaBbm/I0tICcZpw+dI77Ox2OXFiHkOX8LwwDEjSmCxN5P2YZYxG/fvuKKEoDIdDsjQnS3PSLGEcdCkUNRQlp3uUsrPZw7RsskxgOx7rO/v0hiHFSpPW0RGVSonl5RN4XhEhNBQVbt26zuJMBSXtYRsxSRIhdIditYlhGIyCAKF7lBqLzBw7xdzCHKoqoxJ1TUXXNISqcPLESfZ2t2lO1SHPJbNEqCgIpubmiZOcDz64y2gcMtVskqYxb775I06cOAnAt7/9bSrlCnmWMTPVYHPrLs1mk43NDconCpT6TZK9nE3nFl/6rS8hRM7FJx7FcGwGrT5HB7tcuvwm1969gu96nDh+HDXPySc53GmaoqjyWpJ7fg/vdD4sJubea/vDlsKHTa4fa/xMfjZ9wYCRgvpz8Y/V+582pvNhx3/YsR6WP/uzWpnlFz7xJ37qMT/t4/29eP0bWH8vXj88h4+f5yAdYuYKr33nWVbml2kuLPNLX/ptmtUa77zyA+b/8JvEP3eRVFXleSoKq9ev8cwz3+f27Q/wHBfP89jZ3qY/lHETvu8xPz/H5Utv0Wq1sAyLXm/AyspJLr11meNLSyRJSqvdZm5uDsexKFUk2Ong8ICVlWM4tkO320HTFeYX5jg6OkJRQUlNdte61OsN9vcOuXrtOseXV6g1qhiGLKLiJEbTdYqlAltbG1TKFTzfoVRxGY6GpInCyVOnOXHiJMVSgXKpJKE0SUS7O8A0ddnhHA1lNqGh8/jjj9Jut4nCiGq1SpLEMmuz12Vv45C9/T1QMiq1KmEE3/3eC/iOtObatoTJ3Nu5KhR9HMeVNNoJACvLcoJBwKDfplAwmZ6p4bgOhlli9eZVwjCgVCxSKpWYnpoijkMcx6Lb65CkKfVGHUM3ABmJkqPiuw6mqTMcDDh56gyNepMoCAmCWM7z5mCaJh+s3kIIE00z7s+bqCqkaUwUjxECwjDhq1/5BmfPXqBUtlG1jChK8H2PLE9xHIfvfPfbLC4ssn53i5MnTk4iAwRf/vKfUClXUUSOrsuImW63S5yE7O/t4RULHB4eYpkmSZxQbzQxHZdbq3c4ffoshm4SJymj8YgwjNg/2KdcrtHt9CiWSriOh2lZNBtTqIYmLVqaRhLFJFFM+6hFuVKjVCqzubmJaekMBl053xxL6vTB4QGud2+eSxANAgQCFEUKQE0nimKEqqGKlNFohG7q2LaJUFXSRMbANBsN2enTJQzm5s2bTE3Po6Dw0osvkiYxzWadUrkIikG1WqPX73Fi5QSqKqg3muRpTLt1hKFr990Eg34fU5cF7Hg4ZNDrUip6bG1uyK5BuSiJzyhouoqqCoRQ7gsbw9ABhfE4QEQJ4gdXSPsDNv71r/Lu9ir/0T/5EjtjE2/+MbJbL5PrgvF4j2jYwtQNVGFgFo/R7bcJgiGa0CgUKghMnK9dob4xpnkmhvIi3zqa4c1v/SU/3wqJTx4jIyeO5Nz7B6u36XX7tFstlhYXCMOA1tEB7dYhC4tLxFFEo9Fga3OTQqFEuVLl1OkzqKpCluZYtj2JqABN04niEFAmsKUMJhZpmMA5hPwfWqZJksRyhi6HaqVMs9lgbn4ey7bJFSbzsAoogjTLOWp1+Oqf/hlPPHZBilbuATQgyxJUVSfNcizTQtN0OVesqUTjANOyiJOMPBcYmsHrr73OSy8/x/Hjx3Fd9z4pGhTyeMzhwYGkPjsOWQ7qBOCUcw8aBVma8+qrr7K8vIKqS8CYoqi02y3G40BCr9IUTZOzv6qm0+n0WVhaQqg5SZLR6/fvR3mMxiPKzTpe0adYLpLEEY5tc+f2bbkZdP06iwuL+H4BXdcJw4DRaMhzz77M5uY2i8eW2NzcoTHVRNN1Dg9bGIZGsVSiOTWFoghaR21MQ6dYLKBpGp7vk6YZv/u7v8ew1yNNYhzHmnS/QxzfR9MEpmXhFzwM05jY9n0Ojw7J8wzP9cDQSaaqmM++TpakdJfK/A//1f/KGz/8Hl/4pV9kafY8r774x5y++A9J04TBaISmCU49eo7xd1/BTHOyWhnHtnn55ZcoFQv4gxAhFJJZEwUdERXRdR3HtbFtG1UzMXQTIRRahwf4noupayiaRpakJHFMp9MmBzzP42B/DyEEw0Gf06dPSaJzOKbfT7h67SqmZfGd736bp576HJBjmdLyXy4WaNaqEuB2e408yzFtnSRO6HV7BEGIqhnsHxyysDCLUCQdX1qAVQzDoFwp0mg2qNUqvPzSiyRxQLfToVhxSZKY0WhIlskNJV2zCMIBtVoNqzdCKXrkn38MRE4UBai6i2ZYtHs96ZgQKkdHLcLuEaVqHfuDpiy4977/1y5eQXZsBRlR/4gfPP89lrZ/nkwNmF1ZoD8K+dFbl3Fch1KpiOuXsJ0ChWKFQb+HqSuQDnGMFMcWGGoqrcBxhqYIDNu9Py6S5zlJGhNFYwxdEIUxURiSphmW5bO1vUejMcP27jaarlOpNHjiicd57913qNUrJFmCpgkMU8MyZPyYoSpSGAqFNEtIkhghdCzLRSgpAoGlG6gC4iTGMCwcz0LTLXqDmCgV9MewezCk20v5F//inzMeDQnDmGq1TqlcoD/ooOQJw/YG8w0PJYuIE4FZqKMikx86vRHjCK7f2uSw1WNmuoGmClQhCIKAJE0wDI16tcr8whxxFNA6OuLa1WvcuX2HKI747jPP0O0N6XfHrG9s8OgjZ3n1lRf4lV/5Nba3t3njjTf47d/6LUbjIaauc+Pme1QqJZqNJr7nMxyP0GbAvl3igvgMweyQ5olZBmGKX22w3KizdnsNQUqv0+Kl557lxrvvUi041GenMVSBpmsTr6GQMK8HyuB7hN57edz3r7sHheUn1OnqA8L1E8Xrmx/Shj9JvD7Ykf34ehDm9OD6uGi+R+r+cIzprwCW/VsWrw/+3qr4O2IbvvfxJ4fn/nRq1qddn/a4H7cQP5hVln7zOYBPFK8/yWP/4eN8suD8q9qo5X3449YcWax++LifREK7d4PEwZj99S2CTp+ZmTnc2hSq7dBvtSi/9g7m7Q3GJxYlSfioRbFY4v2r7+A4DrVanRMnTmEYJt/4xjfoDfrU6nVs2yKOJLFx+fgKjUadQqFIluWcPn2G7Z1t4iimUPQplgoMhwM5cxQnaJrO3u4W5VKVNId250hGpSDwtAZrq/vUanVM0+IHr/2QtbW7PHL+EVzXQqjiPilUVQVJklAsSBvrcDhAFTmD4ZBmfZ4gkvEy5DmqptFuHyFUQaHgs7e/ja4pxEmArgtM02Bne4coilhfX8e2bRmvEsfousbN929x4sQylVoFRdHwCyWKxTInTyzh2DZJlgBw+e23aTQaqLpOkiRok+6jpusgVPIkRag5iJw4jojilBydc2dPsbJygmq1JkUROZquSdCV5eH5HlEYoaoa/Z4EAvWHAXkaI4siA8f1abd7Mgg9y9BNk53dXfIsx7ZsiuXy5LqQM39plqJOdqA7nQ6WafP2O+9x7tx5VC1nHAywLZcgDCYwItk98HyPcqmKaRl0Om2azQamYWI7DjMzUwhFTHZ65ZOyrmuMxyGlYgHL1LFMkyAM6Q9HVAolPM/n4OCQ9c0NkiSmXKmgKAJdM/ELJaIoQhGSZt1qHWFbFvoku/eD1Q+Yn5tnNBzh+j67u/vMzc1z9+4a8wvzZFnK2voWtWqVQqFAnmWSShtFlNwi71+/hl8skCQpO9s7lIplDg6OGA46FIsV1tfX8QseaZKTZypCFeRwP8LJNOWMmWl5fPMbXyfPMk6srOAXPCzbxC9U2NzYoFot0+t1qTeaoCgE49EEYOWTTDpsvX6fra1txuMxr7/xOk88+QRpIvNeHccBVQq4PJcQG8d1SLOUYBwSBAGmZRKFEXqSo333B6QnjhH8zn/OD6+/xclTp9DsIplqYFRWMDyf9PoLDJOINMtJUg3N8tG9OnE4xncdNNUgSUFRNMz3d/C0jPipi4xPfpGvP/1N9CurfH5+ifFUBUVReP65F3j78js89ugTrN68yWg04sTKcWqVKmEY4HkejuvSbneIowjHcTFME8OyJlFJkuqpoJDnCopQJ3EY6odzyrl8Dk+zB6JNEnnvKUJB01SyfDIuooDrumiGvPdAkeHx956HcylKV5aXJY15kuEoN5tkDxQkPKs/GMjOKzmKUIjDUM6zqTL2RVUFJ5aXOXv+FH7BZzQaTyKtgFxBVXIc18VxXNKMiSV5kmGYyY6rUARpnDAaj5iemeZeH5YcBoMBL7/8MqfPnCbLM0lLD0IKfom1u2ucOnOGJI0RQkZ7CaEQBCF+sYCiAbkskuI4kk6Vah0hclzHwTSsCYgvIVdyfL/AwUFLzuBqOrfv3GFpaUlat4XAdhyiKJIOiTQjTTIKRQnXCkIp6oVQ6fUGFD2PRx+7iGkYJFnK6uoHFIsVjMkGlGEYRJF8Xmu12mxtbrO8cpxOpyuPl6WIhVmcf/8ydxdt6lOL9Pub/OY/+2eUqys0KiXCTMHxPPYPWmiqytH+Poml4b1zG3F8jjRLqVWrOK6N1R7ITYLCcfKxx872DuVyCQWZk5pkMqZIdtsDSqUSw+GIJM9J44g8zybOiYnodRySOJbAOEOX8WcFH9P2mZ+fIwhG+L7H4uIiqipfC4SQ7pScjCvvvku93mR3d5ep6Saq0NANA79QQKgqhmmiaQqKUCYtynxSA2QI9cO8UVUIGs0pCoUCqi5QNY1+r0+5XKXfGyKEimlJJ0N47QPUuSk2FmoUimXyDAzTlddVkqBpsvbI4oj3Lr1JsVrDvT0NyM4rucx5/cSi5WdYsrTKuXvjPXau3OVs+59we/w6QZaiW77Mz544agzTptXqcPnS23Tb+yRRn0fPLVEuF1CIsG2ZjJAkGYpQCGO5WampGsPRkEqlcp+n0O4MEKp0YgnVplJp8N61mywfXyZOIiq1OqpQyfOQmekaSRKBkkOeEUUBgpzRaDixqwpUVV5HoJKkIJQQw/BRFQdr8lqaEqBbCrpZYBwKWt0xWzsd4tRkefkC8/N1LFvH0DS0yUZqmo7Y29gkC9qk4QDX9tENH6dYodfaIxgFaIaDpjms3rzL+XOPMBwNMQ2DIAhRAE1V0XQNTQj6vT5xFCKE4OWXXqXf6xGMR/SHXfrdDqWCR69/hC5SwmDAteu3eOqpz+L7HtvbmyzMy4bE0dE+CwuLdNpdbMu5D8Xr2i0azhQL18+RqWA0DH7v//4/+Oof/jtOnzlHEIYsLMwzHAw4d+Ys1967Rm1qmma9ThSG5BmkyDn/B8XrvWsfPjoqeI8urCjK5Db5MPP1fj38MTvvgyL03kNkb0qA572onI9e2h92fO+9f5i++Hh+7SfNyP60kcZ74vbBx/74xx89wYd/+mcRr590/n9nZl4f9vlPN2D8V1+f9rgPXjgfX7Lz+sni9dOtv5nO60eF80cvcPjwpn5wZ+c+5Gl/zJ9/7ZssnTlJY3GeRFFJ0gw1TXD+4Otc29rg+++8jaZqOK6HYVgsLR/j5Vdfo9vrMzu3wPe+/yxP/YPPs7yyTLNZJ88SsiylVCqztHiMJIv5+te/ztWr1zh79iyrH6zi+S4CheGwz9rabQ72DhgOB9xdW2NhfoYkVbhzZ4Nnn3+OCxcvYGgGlm5x5846x48ts7W9zaXLl/lHv/QFGs0GcRgwHg45OjzCMnW6nfbExmVhmTZpmpCkIZ5bYHenzYuvvMz3vv99TpxYkbvtcYhpmRzu7HF8aZFet4PvuRwdHtE6OqJQKtKo1+n1BuzvH2CYBp7nYNkmqx/cYGlphfEoJk0VbNegWvFRkCI0SSLanTbHlo6RJhlxmqKpGqapYeoGWQ6KqqOZ0pK1t3eA6xVwvMLEmZjjewXa7R66bvLHf/zHHFtcpOAXMAyX23fWKPg+QhH0ugMO9o5QdJOr773DzEwTyzRZX99hHERcv3aFM2fPICa04mKxSJJIpIxtW0DO6uoH+L7H3v4BvlfC9zwUAcvLx/G8It1uG98vYBi63FFO5cxhEASUy6UJ4bKE45isb6xz8uRJLMtCFTLfLkllxq2mShhNwS+iKTlJMEYVkqLqeh7heES706LdbVEqlrBtm2qtTp7Diy+8QrVWZ2tzi3K5iqbrbG5tMez1qJQroChytkmXOYi267G1tYOmyZzhJE6pNxrUq3UO9w9oHR5Rq1bpdXtkccI4iHnthz+kOT2F57okcUz3qEv3qEO9WeMrX/4zVlZO43o+WarS6wR4nolhGAyHQ9bu3KFRr8t5VMdlfn6eUydOUCoV8DxfRrr4PsWij2loeJ5NEAaEcYShm5TKFVzPxXE9LMum2+0zPTOHqmk0p6awHYdxEGCYJlvb2zgFD0XR0HUL3TQntlcdBfB9n/F4hLF9hPj2q4z+6T/k6L/8TQIlRckMnvrcP2IwjrB9F0tPiZSU8cFt3FEP1XApLJxD8+ooZJBkKLmCppvEWUY07uJcuYsoNOl98T+mVCrx6CNP8rn1FnbRRzSrRGFM66jN+zduMN2c4xc//xQXL5xHFfdEp0IYRHS6bUrFAv3+gO3tHTY3tzi2tDSBucW4rsf29g5f+cpXsW1HxmopYjIvKu53Ru8V72maIYRGmqakWYKi5OSo0v+g5KiaSq7I7qfIZXdEIUNTIY4DxuMhjm3KDmuakaUZiiLtf/1eX8KT0oz1uxv4XgFFkZRjVVEmQCmkzTuLabV2sW1Hxvuo9wAdUqRmeU6WC8ZBJP9nuRQcaZ5OzC6TQkyBRqOGqsm4HBmBJIFwvu/iua4syMcyZqNek7natuPc38UXqgpCuW+5dgyNu2tr6ELFsW1GozG6oePaKrqh3/r15gAAIABJREFUcXh0hFA0wjBm/+CIaq3GwvwMCwsL7O3uc+3aDYrFEjs728xNzXBj9Sb3zD/vvP0uRa/AOBxhGgart1aplMvEacr09CxT9TqXL1+iVq9NHDtFFFUjz6X9NYxDbt++zfTULDs7BxzsHSLUjEa9iWGYWKZJrqug60y/dI3T//o/4eTp0/zo2ltUp8pMTz3BKGyjKBqFQpmiX8ZzPbxjs+S//zXSuSmEbWLbJkEwIt8+kGMrR0coiuDVV18jTVNqtTpbW9sIMlZv3KReb6BqGqbtYJo2pm1iGbrskwvB7t4uKAr97oheT45tGIbO3u4e/X4Pt+BRLHnYtsnJkyeBXNr5Ffm7CyHBUPOLC6Tk7Ozs4LqeHHlQQNU10izGsHRGgz5CqATBmCRJSbOMKI5IwpjRUP7dNze3aDSn2Ns/pFoto+smtu2SJjlXrrzL0tISnU4bFAXnvVuk//K3mXrsMVrtHoVCSdrk4wjX1hF5StBv0T7c5/rV9/iVX/t1zF/QSB8L4C9elPXFb/z1idcsn4gLMmyRcOOVa5S6C/jH4fjKWZozx9A0k/feu0qlWkVRMgaDEXEUsbt1i7MnZqh4KTc+2MJ1DQxDIIRKliky/9aRdHtFqPR7fXlNpRJO5Bbq6KZBlitEsUJ/GNGYmmMwCIiSiJycMArodPbwCyaayCFLJw6iyZiCpsmc+CSW3U3dIMs0rly5Rrnsogp9Is4zoiRlMBbs7o9Y2zzi+s1dTKuEZjgcO7aEoevsH6yTpRGVUoEfvvoSRQ9UBhxu3KXRsCiUPIajBM8vE8dDokSl1QuYPXaOYmWGhcWT6KoBSsrTT3+dqeY0hQmpPssylCzl0qW3uHb1fd698i76BGTmWCZFN6foacxOF/BtDVNXObawwHs3Vrl8+S1WP7jBieUlqtUS63dvUa01cZ0C63e30DQD09QxDI1qo4qo5qx2r9HYXcD+QY2ntF/mM7O/Snsz4Y2bb1GsNFi9s8rbl6+wf9Citb3NlUuXWVlZkZswqk4cJw+wB+QGG3C/i/6whtC9Svnjgk885Np8sFv78c7rp1kP0xefxl78abJo73388VnYvy3x+rD19+L1r/D5T7t+VvH64O7J/x/F64Oi9eN2iDiOGQwGrL12nQuPP0pjZZ7M1GVhk4FIU5x/8wcEF09ze2uLi48+RrfbQ9d0gnDExUcfYzwOWFxcolKtMdWcnkS4qDz/wnP4rsvy0jLr6xuUKwXqjQZnz5zBcRz29nYZDHqcXFnGcxzC8Zjjx5eoVqrMzcwxGg3Ic5UwSjh//iy9bodKsUJ/3CJTEirlBmmaMjM7zdzcLBkpV995h0q5TLNRR1c1XNdhOBiyubVDGER4vstw2OfOnXXiUNDutHjqqaeo1SroukYYyRgcS7VJwpjxOKDgl7BtF88tMg7H2JZDrVaj1+1RqZbxPB/yjGq1RKc3wDIL/Pm3/gLPM1BEhFA0LEtHqAqark0KbYVvfutbbG9vMTPVZG9vD9fziZKUBJnlVyrV0FSJ6Q/GQ0zTJo4SwlDOKE1PTcs5LkXh3/7u/8mjFy/I7luu4FgO5VIZr1RhbqZJlsUkSUyl0mA4CJidrpGTMQ7GXL9xnevXb7B8fIXRaEAcSzvZ7OwMeQ6lYhFVyIy6LA8xTYP19U1q1QaO43P37iqqKgWwoiiSNmwaFAolIGNnZ5upqaYs6FWVmzdv0mg06Pd6+L47ecGJIFcQpOxub1ApFQnjmDBJaFQr2Lbs2qqqKruuqOQZzM8f4/nnn+fq1feYnplCVVXm5uYoed5EDOR0+z0MU845tlsdnn32OS5euEi5VOHGzZsTW6kCWS5zM4OA0XCAAhTLNZZXViiXi9y+fZurV97jjdfe5PTJ05RrVR45/zieXyTL4E+/+jS25XPU2mVmepqDw0PmFxZIkkR2ctOUJI5wHZsgCLl16xZT07OMoxBVSIGTxBGW42DaNrqqoxsGKAp5DmmaowgN23Zk7m6xxMsvv8Lx5SWiOKZSrSI0lTxTUIW0N+sTSJimCtI4Rn3jGsr1NcS/+W+Ifv0XqS8W6HWHPHb2M2Spxjgc4fgG4WiHUWeXTBOoThl12EU53CDVHFTLIBpHKIo2sd9GaNuX0Y+aCK9C8vMXydOMjfUd2l/5JvZMA71SQtM05mbneOTcReZm5smSIe1WmytXrjAcjBiNxnKm2dZIYhmVMByMeOvSWyweP4breqiqJjNUEXQ63UmHvzL5G8lc4PF4jOe5APQHAyzTZjwOePrpr5EmMbOzM6Dokx13CffI8kxGWCjShRFHAYqSQZ5imjq6ppEkMBqO6PX6+J4HOViWhaIobG/vUq3WZIZuIp0O8m8k0DRNimYSgnEP1y9JS3KaIoRKnEjoiG7YgEDXDbIkJQwCVCHIRCZ/v0lOr65rDEcDDHPSARAqqmqQpimlUgmQsUqmaRGMAz5YvQVCcOXdd5mensIwTJIkod1q8dalt1hYnCcaDrBNC9/3QeF+5NTBwQaVSgUhdEzT5oUXXiLNMubnFxgOO6zdWePM6XNcuHCRr33taU6ePIlr2xiWgVvwqFZrWKbJn3z5T3jk4nk8z6VULKFqsmNoGhZKllAsFXFsR77uaDqaboIiJq9bGapQMQ2L1mGXO3fWWFicJo4TTMuS828oZEUPZbuFHQdM/eovYVdyIr1FPGqiihF5JkA1sEwXTWjcWlvDe+smiqZyRIJp6GiqwO4MSVO4PR7S6XT43Oc+R6VSYWtrC9f1MDWVudlZshwMy0Y3LDIUhsMetmmyfneNMBzjeB6FQoF+L8B1PcbjMbVqlTiOqdfqKFrOcDhAqFJAGYYlX7dVUzqn8owgCHB9F03XaTSlCLg3ex8nIYoq3UW2YbKzs41hGHieRxgGKMDh7gG1Wo0sg0KpjOO4lCs1FBSuXbuB5/q8/vrrqKqGKlTiOKRYKKGtrhP9+hdIS2Us2yFNc0b9FlkakcQBGinBsMfMdB3LsChWaqimTZJlfyPiNWdS8JPRO9jinT+9TjM7zp3u+zSnF7h9dxvPL9JqtZibnQMi4jjlzTfe4PhCk5Kn4uhjpubOo4gU173HczBAQJyMSZMEBYVSqUKe5QyHfVRFkGvSvWKYNopq8961m8wfW4EUDo/22N7epFavMDVVJs9DDAFBMJLgIDLCKJIgwCQjzRJyMkzDYhyklIrVyaZbQpL1UI2UJFW5+t6Aa1c7zC4eY3unx2AY8uv/9FexbY3Vm1f53D94io2NNcq+h6GCyIeIfIStJvgllYQEv1gjSWKG/X2s8hJWoY5qV8mEwyuvvMns7DyurXPhkUe5evV9RqMAIVT29nc42N3l5VdfZzwaSteQYXJieZkgDDh1rIrvaNi2QjDusbuzx51bm1h+gWLRJ4kjFDK6nRbvvHOJW7c2uX79Jrpmcvv2bTqdNseWFtjd3wPAdHU2ojt8MLpOfaXE8DDhQvkz/MuT/zX/2P/PuFj9PKtH1zkI9lGCAas3brC2vsHFC49SLFdlfZtnHxGD995rmsa9rNSPOC/5UJQ+2Mz5+JX5kbnTe+L1jb8Z8fpwyrD4MQvyw3TMJ2mYH//GTzzLT/rCJ66/F68/ZT2sLf2zroe15j/NP11+brKb//b7KCUf9Quf4UPK7ycdN3vgex58+3Du8aNvn7R+/Dh5nt2nkz3ssR+kDX/kRkkcUuOIRAvJ4gKMTC69+Cyt8DqN+QrCMNAm5D2UjN1vfIfKpZvoP/cox44dp1QsouuCg/1dbn2wxkyzgWubXHnnEpqmMDM7xaDXwrZdSsW6JEj6DpatEoxbzMw0yPKUOM1pNGcplhuYts7e4T7NmSaoCrkiyIVgc3OHar2KquYUSz6lchlFE5izu3j1lHTgkSkR1VoFXZfzSYZIKRWLCFUW1kftHkkmaDZL9HstbEsjHIV4vk8uUsIo5cIj54nTgFb7iOnpaYSmkysGiq4wGEn7zeHhEVk2xLYLbG5sUimVcB1bAleAbrdHudqk3ZKRHAcH+zz22EU8z0PRTAxNRxMqO9s7KIogilPeeO0NDvb2OHfuLI5tM+x1uPPBTY7NzrF5d40kDDANjUF/gIKCbugyl9E06HW7NKbqDIZ9gmDM3uERn/25x4jDHt1eC79UAt0gS0a0WgdUKlVa7TaFko/lGvieT55B+7DFKy/9AMt2WTp5mrtra3z729/lkQuPo2kGGTlCy1EUFYSMCsrJcR2LLM8m9NDKBHYyufbQSGIIggjTlDNrilAIoxBVE9QaDdI8Ic9zDg+P8D2fcBzje0XCOAGh4/g+cZLQ73VxLSlEDVMSXsfDAbtb68TBEMhYXlpmeqpBmgwwDYU8TfFKPr1+H3K4dvV97ty6S7VSo9mocWJlCcNUMEwNVROyw2MaWI7HxsYu4yDF8Rz6ox7lapk0S0iTFMuymF9Y4Oy502RKSqoMCaIIz/cRmsK5c+fwvBKlYkaeJRimjud55KR0uh3II1zbRVEEYTyiVC4xHETcfO8tbNMmScGyPUSWk4YBnWAoKcOqQrvTotM5JAyHVMo+WaoxGgx46YXnmZ+bpdPrUKqUyAMJGEqViF7vCMcw0IHxzl3Ec5dJSkX4t/8tyal5dtePmPdzDnb2cSoNusEYRcvxbZ3B+p+T9O4SDENa1jLlz/2nmJU5lM23yTauoIRtVDUjETZi5z3y+cew1uXzTPj5R1F0k0ahxNIzb8Ajp9Fsm/z+JlrMsN9GN20Mw2RtfY1yuUCh6CLUnFqlPungh+SKyrkLj1IolqlU6ugGaHpCnsc06jNUyhUMXSXPIshTfv/3f5/jS8cp+EV03aTXOcK0pCh49933WFxYougVUJRYZlVPcmDTJMbQBEkWgYqki6Y5qiYpvhkKApXnn32RF194mSef+IzsYE4KEQlNUciJZGakarO/tU6hWCbLBZ3uENcrYRmuvI+EDpl8/+Izz7I4N0OapKhKRpIEqMLg5o3bVOslNMMkGgeQJkThWAo5y0ZRDchSQEUI7cPXECUnHPcAQalUxSsUGY3GjEdD5hdqaFqOYahomqBWk4JbNV0MyyEXOorQuH5jlVq9ien6pKmEQ4XhmJ2dTaamGhQrRca9FuQZpVIBlIxCwadcqaKoCZapIfKMYDzGNCx0y2Judg7LMknSCFVTiJMUVdMkDEvXSVIZm6RpGmu3b1N0PdqHh9imgSYEo+GQSqXEo49dZNhvUatVIcvQNJVO95A4GaM366jPXWZ/rsrIKrG8cJHecI8sykjTHNtyyHKFJNdwS3XEcMTwe6/wrWvvcu78RTTdxjjqcXBwQOkXMuZOmmytdjEMlc2NXZ575nkeefQMhmnQ77URpIyHXe6sXkcg0DU5E21aFrpm4lgeUdinWitheRaKLrBseQ6DfsDtW3d56aXXOH/+AlE8JhcphqoiFFk0e36BLBcoigloKCJGNXTpmFFy0mDEoHWAaVVYvbmJppqUyh5ZlpLE+f24M79UmlieUyzHIk9COp0O/cGQM2fOMTs7g1/0ZQxSEmPe2iT5lScZuypB1CVJhgz7hzSnGqiag2IVUb0KkWKyfmcdLBerUJSRNn/xgrTN/sYX7gN1EMq9GaefUOf8hJWrIOS18qPXXsK40sDITPYJQOhUK2VK5QILC3NsbK5TqTTodFvcuLnKqJ8Shwm1moNjR2iK3Mg1TQNIcBwTfQJNc12XKIpIsgyvUMIrVEjCHqPxGNv12d3vMzO1RDzO8SsOb1/eYGNjF0WETNUMRJqQZSG6LlBISJMQVUnJ4ggUgVDNiW02ImOSd60XMHUVoWSEYcJonNELMsbJGNfWOLGyzGc++xmu37iB0DTOnD/NsNdjemaBrZ1dSiWbcfcujh6iaQlpkmCbFmmS8P+x914xkmVnnt/vnOtv3LjhI72pyizT5dqS3U02OTMcs+NWY7R6kACtIEASVnoQBEhYLCRgV3oQJAgLyO3ug/ZFWA25w+FYcoez7WiaPd1kdVd1l6+sLJNV6X34uP7q4URVF5vVPeQsHwYYHiCANHHDZNw89/u+v4vCAHITy19g/6BNvV6j0zmgVPYoVjzCMGd7d4s4Crm/skq9Wue1V/8NC1PjHGyt0azanDo+zfGjY1RKBjLrszA/RqXi4doWnuezd9ilM0xoeDrnFpvUvIyxus/a2haHHclBP6A36JNEAe3WPr/6G79KmCQYmc5wGGA7Lmvra7R6hzgFjdpiAzme82+vf4OVcJnnnnqB36n/59yIrzJ3tEej7rK2dpe19VVOnnsW26uQ5EM0oaNhoOVyVFKrKLCH2eoP6+GHcpCHt8ddiJ9UsT8cgj8CsH6C5vXHAcw+Qk1V3S5HHghiNLx7+B4eHvdpYNujhvyxtkL5NEDOJ+tlRS6e2JGI0XEPBwCf5Hb8M9rwE9ZPo2n96TyWOnm0n/8s2s9/9uOP/KnHPOGV/LWeG5588v4kz5FLZf2txRYeLu+//R2ycJOpyePUmzOAR5qZpImOyEzG/uJbJEHInXhItVIhzzMuX7nEzaUbvPTiy6RpQp6lLC4u4rguOYLr169i2y6zs3NKQ5grXWer1aJYLDMchnznu28xPT1FpVLBNHRKJZ8wDEeOldbI+jynXPK5d+8ejUaD9bVNXNcjtXaxLYuwZdNpt9E0DU0ziKIE2zLQDINer0+33eHOnWXefON1avU601NTpHFGvd4Y5Vzq2JZJc6yGZWp4ngsZ6JpOGCSsbzxga2OTUqnG5UtX2N7Z5OhR5aZ32Gqxvb3D1JSicAohcT2PIIwoV6ocO7aAbinDFIUSZmiajmlaFApFDNPiyPwC8/PzGLrJ5UuXmZmZ5cjRI2SpoNft4/slDg4PuH9/hSNH5tndUzmYlUpFmcvkGa3WIa7r8OwzZ9CkxDac0d8iQNdTEEq/srq6SqVSGU2wlfnQ3v4+IPnFX/wSnu/juhaNRplnn3laOQzbCkEfDoaIEe1SCrAti163i18sMRgMyFLotDvohqJP7u3tUi75WJbD8u0l+v0upZKPoRnEUYzUJXEUEwYhg36A63h8+cv/mnK5gmM7+CWfIAhU1I9ukaQ5ewf7FEslEArtytKMckUZbG1t7jAzO8P4xBiGYWFZBXZ2d6nVavR7fcbHx6lVaxiGcjDVNIlh6gTBcPR5FDAMG9O0aTYmWX2wwXe/8z0+/7kvYFq60k+OqEhFr0ieZzQbDbIswy9WuXlziWZTuX6aloVhCHTDIQxiskSZRgXDAeVyjbt3ViiVymRZSLVaRtcMXNvBL5Up+j5BMMS2TdbW7jMxMUEaR0hyHNfFNC2KfokgitGkytAcHxtjenqaWr1BEEQ4BZMcQZppeF6FKIrIuj34zgX0M8eI/5d/ROwbSAJMK2K/D/XxGXQNwsE+YecBerrPrZsX6HcGOHaZ0sRpxmaOQXEcc+Elhm6NzDKhd4jcuoYsTdI/8kXM95fRdYPg5bOkSUa6uYP73jXy40dHF1OBJhUVdtDr8+qrr3H69Gmmp6colcuUSyWqlSo727tcvXqNb7/1HZqNJqfPnKLVPsBxbcghikJ0zeRgv8WXv/J7fPbF5xQCKmFudpaZ2RkM0ySKQr731tucOPEUOXDu3FkajRqGLpEjrXUcxyP92chhWMiRdlb5BmijqXeWZSRpzPT0DKdOncRxbKSGcjnOE3TNxDB08jxFkwbf+tZ3ufzhB5w68zTd3oDvfue7zM/P0+v2SOJwhMgaRFHEm2++TrVWo+AV0Q21b3c6PaanpxGkCGkShTGGruEVCgoN0CQ5OWkUomsaaaL+N8kz8jQhCENcp6Dcc12bcqXI5OSYMkqTymlaZXqqvVMVKDwaiJbLlRFCkKosyiRF0zSaY2NMTk6S5imWaVMoFNENE00oN9xapYKmW2RZhj6SENiuS6VaIc9yhsGALM8wTVtR+cMI0zBZWVlBN3Tl9owgy+APvvpVCoUCvl/k5s0bzM7OcufOXZrNMRzXIkoywkiZzhU8T2Vx2w5xGFF4fwn7d3+VwSChUhlDtx0M20WaNlLTlR5X10hrdZzf+zpn/uP/gCiKsB0Tub2ntJNHFa277i5ScIvU600+85nPkKSRauajEM8r4roOpXIZ23bo9bpKMxrFVCpVgjBge2cPp+CRZjmakJiGhi4FQugs37qFZZg8uL/C/PwseZrS7fRYvrWMV3DI8wTLMGi39vnwgwvMzs3S6bTRdQNySOIE1ykQRik3bixhGDqVqk+WpZR8Fc/ieR5xnPDOO+9y/vz7HD92AssUmJZJpVIlyzNWVu5SrVXY291lfX2difYQfu0LeEdmMCylNW806gzDmCzVQCgjvzgKyKOA+aNHSf7IhRs68nMW8txxmJv8obrl32U98h1JE+bGmtz98y18s8xeesjE+AS3bt2iXKlw9+498jzHdVS03HA4pOo7OGZKvapo1oapnNeFgCiKSZOENIlHtOsATdOJYzV4HQz7Kh6tPMm9lR2q1SmGQcidO7cZhDFZnjDobzE96VOwJKQZQuTEcUyWqMG2lBrk4DoecaQaqX5vgOeV0ITL5uZtNdSJBUFkgVbhW29fpVxt8LnPv0KUgOMU0HSNer2KJgVF1yGJQ27fuMTlC9/n7IlpZBYSJgK/4KGhMQxyOj2BcCfwa2Nomk4Yxbzx+ps0G+N4rodtWhy0DplfPMbFDy9z8/o19CxiflpjrOFw4vgUlbKJbaTk2VAhrgVJloeEYRcpU2rVIsePTeLaklrVwbIEURxx+/YWliXJ44ATi0f47Oe+gFUocnBwSK1SZmtjk4sffMDExDgnnzrJ7Mw0ly59iGna2JbFiRPHqTYq5F7MlbuX+PtT/w1fu/d/s/JglbHGGFcvX+bbb77OsdlpyqNraZZmSgIichBKTvGw8ctGBo5P0ps+roV9fD1R19kXyGaGdiT7qfQnj1N/H2dJPkRc1XP/JLU/Tyz/P+1Y8Sk9yUOU+tNien7WvD5h/U1rXj/hkX/CY/76zevHxds/6WvKtBSZGOixydLFK1x491u89JljVBozaLpFEGdYlkOepcj7DzD/xZdJTh9lLxhSq9XJspSNjXXW1laZmzvK3Mw0xaLH8u1lLNvBL5XY2d6kWmug6zpCgmnobG1ucHBwSLXeoNPpsrC4oGJTDI2d7S1s2x7RK1WMTKvVolIu0u/3MQwDy3YIhiHkAn9ChaMP9y2aY02iKKHgFjA0g939XRV50m4TBAN+8O73WThyhKmZWcqlErZl8uDBKlGcUKnU6HVbCJEjBWRpynA4REqdbrfP2997i+XlZRaOHufOnXvMzs9gWA5Sarz2+hucO/s0rltASp3DVhvN0Ch4RTRdG9GDc6I4RBeGopx5HpZlc+/efRr1OkJIdnd32d7e4cKFiywcXcAwDO6tPKBUruB6ropKKRUxTJNeb4Bl2Y+owZ1OG0aWLY6tYeomt2/fp93uMjlZR9Nz8txACkWfGQwGCKHR6/VxXVfdCgV2dnboddsM+l1q9RKaLtF1ydbWFru7u6ysrFD0fHRDo9/r0ut1GQ4GuG4BwzTotLsYhkGWJSPacFFpi5OU5liDJIkwDJ1WW8W82JbF3t4uWZKzsbFF2S9z5dIVcnLm5uYUjTPLSZOMne09ytUK5XKZ3mCgNDmjiBzLtDk43B3paGyyLGFra5tgEFOrVxRCZdmsra/RGOnprt+8StH3iOKIXr+PaRrcu3dPxZEYOlmWUqlUOHb8GIaus7b+ALfgKudWTSOKY7Y3N/CKHtvb2ziOz8bGOhOTDfq9LgVXOUr3e0N8v0Sr1UIAhYJDmgks0yUIQvYPdkizBN0wiaIYp1Dg8PCAw8MDXNcmjiNs0ySJI9I0Jc9yDNNUDYemo+uC+/fuEYUB09MzZDkYpsXu/jqG6SCFRZZDHAaYb55nMF8h/Cf/BYkoUCjotNobVCo2qTGBUyiQRj2215ZwaBH1tljb2qZebeD7Y0wfe4FEc0hShQp1M0HkVxCzz1A6/iXS2RfRTAP7vSU1Lf65F+h2O9TO30TbPSCdaI6iZUYU3TSFLKfb7WHoykGWPGNvd49+vw+5JIwi0iRB6hq6aTA5NYEQIKVBLtQgqFAosrh4FMMUjwqSdrdNqVwmHmnRxpvjFDwPqWlIyagZy0GoBtUwjNG0+2Het/6o4HloBPVwn9VGRnBFz8MwlFZUamKEvvLIxMfQTZI4Y2VlBU0q87QbN29yZ/kOa2trVGslKpUK/f6A/f19zpw9S61WwzAtNtbXKFfKmKarii6R0OmGxHGkNHh5imFopFlOnESkUaIMagwTKQVRpByuB8OhinHSBEkaIkTGcNjHMh2kphFHqaJmGxYgESM2TxTG6Jo+Ot91IHsEmGm6NjK7Up9hrx+wfPsujVqdPMt5cH8Fr+CyvbNPs9Hg5o0bjI2N0e/3uXL1Cmtrq9RqNTRNw3VVBFK71UYgEQIKXuER8iqlzocffsjY+Bh+yUfTNTXccgtIqbG7vzvSf/oEcaxcmzUNTapGW3+wzT/45h/zC1/6FZJIEOYhSEkUxSRpSpbnaEIgDRvxL3+frUqBxuQ4URySFByoVIkLe8rgK2rSarfY2d3DME2CYDDaPx0ODw7o9wcjp2kV4ROGEbVanZs3b9JsjtHu9bEdF03X6bTaxFHE2v0VBAbTU1OcOHmCK1cuc+bMGQzDwLYcfF/p4PMso9U+oFat0GjUEVJweHCArukYhkmeC/IMhsGQ1157g3LZZ3KyObqOwt7+Djdu3MBxHL717e8yNTXN0SMLGAbYlk2n12Vzc4tKpYLvF+l3+9RqNdz7m8S/9CJRycO0LASSIOxz984DCsWSyqUlwzAkB1sb+KUK2vtl6Av0v1dHm58g/xgj7d9lCQFJkhCHQ/6f/+v/5KX275L7Q2TJ4OjCgpK9LC5iW7YaZFgeQRCws72BY+QcmW9gaiGmaSia+YgabxgGSZogchgQA/iGAAAgAElEQVSGEbZl0x8MiON45NqeMwwjNL2Epvu4bpnd3V0Gwy6feenzlH2Lo/M1igVJveyjC0maJXTabbrdjmJePXrvat/K8ozBoI/UdJIkI4zaOI5PnBgctnNavZzOIGIQJEhDpz8I2NzYoFTyEQJc26R9uE8S9um3t5hqFimYGaQxwrTQRE4UBAxDQSRsCrV5qvUaS7fUcHGsOc7FCxexDAsNweTsJHuHh7z/3vtoJCxMF5ifLuI6EkOmJPGQOBxiSoFf9OgFXdI0QddUvE4ax5CGFAoaoGozdb5nNOpVmqUChUKBd9+/wr37axiGwaWLF8kz+JW/8ytYjkkUBgwGA2q1OpVKnVu3brG+vsbKygrj4xO8ffF7zNbmOFF6mc3STS6cP0+p4CLTiPWVZbxyg6npWaTQyEQOQpnxMfIJeEi//bTG9UnN68OG8oeQ0iMZYj7lp7Uelyd+/Dkflyz+dZvXH0df++M0r596/M+aV7V+2lThn85j/ai29COXsh9+vo++/tHJjfr9J6Ci+Y8irOr+n6Rr/eT1uNvw4yuWCXpgknUCXvv6lxn0Nnn9zdeoNqqMTzSwCw6ra3coBj2cf/BPyE8vkM9MUKlUAaFiJvKM559/nps3l3Edm9XVBxw7dow4URqkYDjg1dde46lTT7GxsYFpKMOYY8dPcf3GDWZmZnFsm9u3byukVEqiMMTQTbqdLqZp4RUKPFi598hZ9/r1G5iWTa1aQ/fbZFlK1i1ycNCiVq0Baorabh/ieQUsw0IKQaVc5sjRozTGxhn0++SZmopeuHiRO3fv8uyzz2IYOru7ux81zzm88frrfOkXf55Op8Ozz30GIQ02tzc5ceIky8vLnDlzjkq1wu9/9avMjBBmy7GJwpA4jlGmMEqzFAURlUoVqems3H/AlSuXOXHiGEmSUG80SKKM5VvLzM7Osby8RLvbY35+nizLGQwHSh8lBQVXZTOCMvJYWrrF8ePHMC2TNBmQJDn7B12azSa9XgspMuJUU9Q9y0IIgVvwcNwCYdBD1zQQEq9YpNmsU6+XRlmVJutra0xOTuA6Lu+dv8ily1c4efIk5bLSs+ojl8PdnV2uXbuOZVkKDcoz8jwhDIcMR+6aUuaEQUCWZrRbHVUk9fsUCgXGx8Y5PDgE4LB1OELwHT788EOazXHiOCWMAvb3VRMrpSAKA7IkZXtrk2azzt2796nXG/T7PdZW15mfW+Da9WuMj4+TZkoH6Dg2uzs7VKrVUeyFSw64BY9qpc72ziqlkkeeJwThACFS1tbvMz0zi65pZKmiRR8e7jM+PoamCXy/TBymNBp1IGFtbY1i0X+kncoz2NraolIpY1oWvf6AgueztrZKGA9pjjXRdUvFgOiSKAwwDQ2EwCv6xGGE5xXY3z8gy3Ms0yKMIqSUJHFAs1FnamKS1dU1klQRW01HQwoDXSrE3XjrPMyOY/yz/4pCeQLXLnKwv0Krvcvu3h6NqXPEYYf9jRu8/ud/wEzDRc9jeqlBudokTXT8iZPEwlVDEJmT5hlZHhFFKYY7gdQ1sjxGlMpERybJJxvoUsO8eY/9pTt88/3zHDt+XDUYoNycDZNKtaqYF6bJ6uoaJV/lFTbqDa7fuMbP/fzPoRsa1VqFMAxwHIc4zrn4wQXCSA2fCp7DYXsX11VxKkW/pIQZmobQJI5lK7bBKNpmMBjgFRyCMB5N4dWEO44THkZVPdzXH8YTfLSv52iaIM1S8lwVL2maEUchtuWSJBG9XhtDN6hVahw/eZpKtUK57HPl0iXmj8zxpS99CdOShGFEGEZ8/evf4NjiMayCg0DlbPZ6PeIoZXNzm263RbU+wYX33+fG9ascOXJEOZsKdVX47re+w8bGBjMz00RRjBCS4TDEcQoIqdAxTZNEUTjaAzQ0qROGEe+88y7z80c4PDzENCW6rlFwVdOcxDFSCFqtA2U0k6UITapmP3+Yl+ti2w7r62u4rk2tVuPixQu8/Zff5zMvPIfnuWxtb1Jv1Pn2t7/NubPnaHfaVCo11XihHJLvr9xnZmYK27ZG9DzJtWvXee755zFMXSHuQhmw2LaDbhh4xQKGbgASy7IRIicIQwC0YgF96T5bM01OvfKKytVO2ziWgT3K4W21WnjFIsLQ4MObOEj+2Vf+P55++mkcv0iQJuwNbqn3G9QJgpBmc0zFEOUJW1tK49xqtSiXK5CDYZkctlp4xRKGaWLbDoiccqWKlDqm6dButWi1DlXzkSqtqxA5Z8+deYTGX758Cc8roOsamga9rspRLxQK9LpDKpXqqHkUSE0HqUz/Fo4ucvzYMaSWo2sGSZJRLBUp+j6DQcC5s2c5On+ENE0wdDEyHLTx/TKe55HlGZVyBdu2iS7fxPziZ2j7Lts729TrDXIpaY5NIKWihOuaIEsjPvjB2zx19gzZRReEwHghVma7H6NGPqkOe1IO50f/b4/fL0MnxSTn61/7Cr8k/xPuZu+R6Sa1Wo1KpUqpXGZ9Xel+e90BH1y8SLno0mndZ2aqRMl30HVBlqU4joOQgizN1HmUq0FWluf4fkl5B5ARxzGWWyJJHbLM5N7KKs2xJpqWI0SOoXUxtQG2LolHhnLkKZZpkCbJyCle5WwLETAY9ul2uxQKFpqukaU5QncJQp3lO9usbvSoj82wvr3D7/zubxFHKSdOnGB2ZoZhv8vhwT7hMGDp2nnCwT7jFQPHTLEMVJ69o/KU4yzHLY2R6R6dQFAuF6mUK1SrVQzD5OiRo6Rpxrtvv0Wvd0i7tU25oHPq2BRjZQ1TT7EMEynB0g0c08YybaIgIssFum7iFQoqVk83sHQdISNFiUdiWg7NRp2CrVFydbZ3thmEKUEY0u/2iMKAOEmZm5thY2MVTebs7u5w9doNThw7zsHBHpZlU6/XVbZ0rYE9ZjLfOsPF4buce26W2ckanpGj50P++E9f5e69+zz7wmfQLFs1q0L+CFX2SdLBx8+7T4WoxA+ndXza/Z70s086/z/eRzxOEf442vlXZcN+9Iu/+j4/1BznP/q7x775xOOf9J7+1jevP63103ss9emG/+n/QPpn30L7rS899tif1CD/ZMjrJzfaP17D+kNHfMIhYRZhxwYX3nmLTusO8wvTRKKA5zgMwoj62Bhiv0357/9jonKBwcl5TNOm1xvQ7w2wbIft7S0mJyc5f/4CUgomJ5T9PkKQI9jc2EBqGouLC/h+kW6nw/jYOEmW4tiumuJrGrValSiMqFbKOI7Lyr0HdDs9fN8jzzMODw5p1BuAoFwus7S0xMzsDNI7RJDx4GaHarWq6H0jNz/b1HFsm163R6Hg0esPKJZKpFmKX1SZe6WSj+3aNBoNil5ZBWdXKyRpQq3eYBiEPHXyBHESMjc3Q54r599Ot82RI/O4rovj2KRpxuzszKOpntQk6+vrxHFEuVRi0O9jmRbBcIBhmmi6TqVaYWZmGkFGf9Cn4BYYDgM21jd57tlnuHfvNusb6xw5cgRd17AtS7lL5tBqtZBSGbq88fobbO9scezYIhsb6zQbdXIEfqnC/sEeX/uDP2ByYpJSuaGmzIYxiuVQ8SIP7i1RLpcxLJtcCJI4Ik4ikjjHMk00qQop23aoVRukacb0zDQCFflhGAZ5luO6LouLC+S5QtIODg5pjjUJwwBd0wiDvsqtdBzKpTKVcplBMKRQKKBJyeHBHoauU6tVOXHyJHEcokmV6ZtlUK3WsCwNv1QkjpURTr/bwTYM9nZ3KHgerVZ3RH9LKRY9BBrXrl8jiiKq1QqHhwqpWL59i/HxSUqj80HXdVqtDrbjUiy6CnUydHq9LoicqakJNN1UdKswoN/vUa6U6Pe6uK5DMBzy2quvMzc3h+Oao8glyfUrHyrKp5T0BwMa4w2GYUA2MtGpNxrUG2U0TcM0XKIkRAilIw4DpQFKcxVjkqQq/9cd/b2kVBPlJImVClNqfPOb3+TkU09hWgaWbdPrdii4JsGl62iHXbr//B+SGAYiMxBZSJK02dvdYXHhOVVoZENkcsjB1ipTzTGQNpFuUHA8NM2l2Fwg0x1EniNFRrfbQ8gYXbPwCiqyKAgHyJkp5OwEcaIo4cW7G2jbB3Qci/kjRxQVzzTRNY1+tzdyAZajIYfJ66+9jhRSIZNVRVtN00yZ+bgFtBFSYZoGtVoT23IRIkfIFNctqgZeqNzT/KF+6JHrsEYYhRRcl2AYKI38aJ9NR9rLixcuMjk5Rb/fx7ac0bb7kfonGAaEjyKhVOO7vraJY1tIYajGNo1GDYlke/eAKBgQBkOajRqLi4sUikUMAxzbYWd3j5X7Dzh56pRqRjKNTrdNvzdgY32H1197gxdfeh7dsNA0QRgEzM/PKW0okmEY88brbxDFMSdOnMSyLN7+y3d5550fIKWk2WzC6FyxbYc4UtRflYkL3//+u5w+fZrhUEWBObZDGIUM+oNHGbmFUWbsMAzQRuYnmtSwDDXAEgKKRY9CwQUBlWqFk0+dpFTy2N/bVfFHxSKLi8eYmBjHK/hK+jFycnVdh0a9Sat1qDSIQkVM3V+5T7FYxLbVUGxnZ4eJycmR07McRZjFjy52pqGjSUEuNPWx9Yc89/yzhCdmyUnpbi+P9MQxjmUqba9mcuf2NepX7yEEVBeOMDY+wZUrV1lfW2VywcayLMxkQrmkaxJQ+reSX+L8e+eVR4KANMtJ0xjfV8ZkURjjjczosjgeoXwKwey025w9e4ZCscL29hZLt25ydOEomqazf3DIN77xZyweW6RUKipfAcPEL1ZIkhQpLPIsR+SZonpLFXkj8oTN9W3iJKZcLpKmKUmckQuBYVqYholf9HEcmzzPuXfvDiW/wtraJoZpUSqVAEG33WZzcxMrTuhs7iBeeZap6Sn1f0LO1tY2ruOha5I4Unvi9SsXOHPuabhURCAQw+/D/Q2Y/4g2/EnrSc3EE2s2Ccmwi0wD/tf/6R/zH83+Q4a1dXYPe+i6wTAIse3RcNtQNOfbN28RR31eeG4R11ZOI5atE4QBQgiiKOZhLZalyuTM8zziRBkm9ro98jzHcipkwqI/COj2+0RRyPjYGJYeEgx30PKIOFBxeVE8QBcqh9SxrVGEmyCMIvI8RNcdNGkQhJGizQcpra7kwdo+23tdGuPTnDl3luNPLeC6JqZu4tgWndYBK/fusr6+zksvvogp+9h6gmPG6JryENENiyQJCeIcwy0jrAquX6dUrtPa38e2THZ3dzFNA9OyqDfqNKsVrlz6Ptub63z+hZOUCzqunSn2SJoShqE6l5KUNFU53aZjIwXEWUaaZqPdMSdNE7qDBKk57O4dsrmxQdl3iOKYrZ1tNN1ibm6Ovf19ojhSniT7u9xeXqJeq1AuVzh95hyDwYCCW8B1HS5fvky32+fylcucOnuKZJCwkD9D98hNWoc7RMM2w0GPMDR4sLHF3/mN38D1y+ozzVI1MH3COfVJFNgn0YZ/5D67GnlfIApPLrI/qXn9pPXwtXy8Zv9xQLcfp3n9tGN/vOb1J3vunzWvP6X1025eH+a8Pt68fnI+69+85hXdYG3pDh/+4HVMq8XM8UV+7tf+M04fOc6dOxv47YTKf/tPSZs1us8+he/7PHiwRpbBraVlbMtGahqO4+A4BZ4+d5ZOu8XKygqTU1NKF9VocnRhgbt379BoqAy0TrtLGEcs316mVCphmhaXPrzM/NwRojhkd3ePS5evcObMWZaWbpKmCdOTM2xtbeM4LhubG3gFl06nTWkyI04iPKZojk3Q7w8YDgZEUcSg26J1eEC90UBKjT/506/jekUsy0CQ0WzUGQx7CCmYnJxg6dZ9vvkXr6IbOlPTMyRpQtH36HVa1OpldnZ38f0qjlvg7LkzdDotkjTB8zx0XaPb7VKrVdWEL8+p11Se5cO8WkPXsS0DISWaoSuqqqGRhEMsx8IwDK5dvcnG+jonji+SZTEvfe4lHMfGcR3anS7Xrl0HBJVqZWSxn7NwdIFTp08pGqNfJIoSLNchEznlaoX52aPUqmNsbm8p99Q4wnEclm/fwTBMXEO9h529QwbDANO2FG02URd1xyk8spx/881v88xzz6kClYwgGBKFId1uj7XVNSxb5QUWiyUODg4xDINqtYptm2RZSrvTwvMKhKFyLUxG2tlgMKDRrJOmMUkSohk6+oiOmedw9cpVvva1P0SXGZVymSBQqFmWJFiGTjAYUCyV6XaGBEFAqeyp5iQI6XQ6jI9P8Cd/8idqSBKFLC4usrNzyGA4BMCybRzbJUlyyHSiUOkVTdPEtlziWLnBAo/igBA5jmMx6Pcpl8sUPR/btkEoumi/N6ReKaBJjUF/QLlWpd3vYdo2SRJg2Yp+KwTohkmWSqSZ0O22icIhJb9Ejsb+QZfVtVV8XzX8QoChSTbWVznc32NscgrTMNhc32BxcQHHdXAKDpqw6XX2EdubmO9c5/5/9+9TOXESoXtoUuPm9Xe5eeMCzzz9Irqcp7V7C9/OePXPvsr9u7d45vlXkGaVueOLSpc8TChPLJLrLlmeIPOUTq+H65mkGSSJQZZDlifkmkEyoo532m2qa/tY+x2mnntWIWe6ajCyNKXTbvO1P/walmmN9jxJr9enXKmwu7NO0Vd6zbff+UtmZufxCkWSJEM3dbyih2W5ZLlE6hLD1ACVbTsYBmi6MaL/wqDfwnZs8izDMC3VmJrWKHpKTbKTVJ3n4+Pj6LrJ5uYWWZY9Yjk8vOm6MWIdSIbDACl0+v0h9WqdLM2RMscwBPsHu0gpuPdgkw8/uMDczBRTk+MEwZAPL11ifKxGkqZUqw1Onz6D7SoWwP27G/zRH/8hY2Pj6JrFvXsrzMxM4ZdL1Gs1JsabCo2ThspPzSUvvvQyp8+cQdN10gwKnk+eSY6fOIZhqugUy7QJwhjb8tB0lcWcJAmnnjqFrukUPBdNQDAcYugq/uehw69hSIU+OTZpnnLv7l1MQx/ReyWDfhfTNkEK7IILmmQ4aKNJSJKI2bk5hsMQ3y+zs7Wtcr5zkFLn9p1lSmUfQ1cxJe12i6JfRApBtVqjXm+ouJ6CS6VaHg2g7uA6Lu2DHdqtNrZlsbGxxnA4UPpgzUQAWa+P3Nql9cIRikUbrf2Aw90tQLC6tkGlOU6GxPMg/Yt3VZTJ+BgCjclYMNjcpHq6qArLoD6izkEQBLiFAlmWMT8/h6EbI537Q/ZEzN7eIUW/xNKtm5TKPnEwQNcNdncP2dnd49Lly2RZysTUDJZtUm/UMS0Dw7RwCkXOnH2KWr1GludEcYLtuAwGMVvbe3zly7/PlctXeO65p0lSRavvBwG6yGg0xtV1TmZoUifLBL/3e7/P1WvXWDh6lNXVB6RZjO+5ZKlgc2OL23dWiEIVcba5uUm9WiOOYkoIvGYd79d+AYQgjhJyXeJ7JZI4QUMNkcgT/uIbf8QvfOmXST/0VR3zxr+Ay8vwCW7DT0LCHkegnlSzZXlGa3eDKx+8S3bF5FjlHDPP+Lh+k/HxCTY2NrEsS+Utd7u88+7bdA5aWAYcmSsDIZ7rE0TtEfLqjnJdjRHTIMEwTfr9nirqUfuCbVsMIx3dsAiigDzLWVq6haFZFJ0+muhj6xZSmBiWjmbl5HFMnicgICfDMA10Q6fgeAz7OYeHA/b3WpRLDcJhxoUr++weDHC9ElOzU9gFHcfVSOIBO+u7GJpg9cF9FhcWOHLkCK+9+hq1YkzRFUh6KuPXsBGGC2FGLDzagUFj6iSadGjtHtDvtfng4gWee+55pCbp9HvcX1vlg/M/4MXnT3DyaBlPD5B5iOmaxIka+CFUZnWSpSBBMzSEiMnJyDVIMsXEEzJHEzZ3V7ZJc4sgSOj1u0w2K2S6Tsn3GavX0ch5sLqF6/mUyzU2Nlb5lV/6Eo5tUS6XyYWGX/Do9XpcvXoN3TBoNJu89NLLZIC0JbWDSd5o/ys0PaLo29xdWaazG7PTajM+N8vCqdOKNozKPn4SwvqQVfNxFPXTmteH943/X4fsuv6Jhk0/a17/FjSvSZL8j/BXCIn/xjSyqoBRzatA/+1f5qPC5tOPgYfuv+KTm0o+cgb+UVrCR4+TfwwNePz2MO9PCInI1YYPjChm+ehiqPHtf/UvSdp7vPBrv07j2DlEarDZPsT6cJnSf/9PyZ4+Q/z0KaRukKUmyBBNi/n2G9/i7t1VPvvyC2xurzI3t0guoNvvMzs/CxL29ne59ME1Go06U1NNtjbWyXNBtzeg6DujPEulUXRsh16/j1dR+WJTU1MUix7jY+PkQlKoeLhegW63S5ZkvPX2X/K5L3wRrdgmTXKK2jy9XhfT1EmziGLRxbQ95bQrQdMlzzz7DPVajWDQo1Yp0zo8wHEdCoUicZYhsowTx45y5tQpgkGfcDhEE8rUyDI9bi/fp+yXGQ57HOztYMmEfrdDmgveePPbPH3uLCJPkETkwqB1eIjrWormaDsg4N69VVzXJY5Ciq6DISW379ymNj5GECbMzM9TbZTxqxVst8HXv/Y1qtU6SI1KtcatW7fYeLDK3NEFXnv9DebnFgiGAR9ceA+/aFMs2GxtbqMJyd3bd3Asm2q1AkJy+fIV3n33+zz//AukaczK7WXIY2bmT5IisV0bz3PZ293BsVxc28a0JXv7O+i6i2YUKPgFahWfjfUH6LrAti0sy1JITRhhWS5F30PTBX6lhFMokQubdnefUnkMzytjOZJ251BpTvKcLM3Y3z9UGqN+D2RGJm38Uon3f/AeF997n7NnnqbfH/L8Z56jXKmytblNrVpHCEWVqzaaCgUzdLxigQera9QbYwyGfU48dQJdFxxdOEKzOU6t2kQKiz/946+zuXGf2dkZ9rb7/ODdC8zONjAdG93S0EylsZS6gWm57G1ts77+gLXVO0xNThFHMcNhF9OWpLlOseSiGRLLLGDoOnv7a3jlKoMgojQyI4vDPlkS0mv3SeMY2zKJgpitzS3KJZ84dbj03nlMTeCVykjLQZeCqWYFTWRICUEYkOXgFX0azTGiTOWCer6HFCl5FuNYOvsH96GXU/zBLbT/8jfIf/kFvPIklgjZ3dmi4o/x4cXbnD71DFG4y74UVIyA/+0f/df8e3/3t2kunsafaFKMe9y+cw97fBKjVMEwNbTMJMek21ojT1Mcy0KXkjzJkJmLuHwDe2+fvOnh6Cb27T32r9+m7Qosp6AiY1KlAzdNyamnn8UreriOq3ZRAeOTE7QODmk2xtje2mF6eoZKpYJVcJCGBrlGnquL/WDYR1F5LbI8Y//gQEXFZJlCApIY2zFJkpxBf6gQB9MgyzOiSOVfesUioGjDlunQO2wRDvuUigUMS472TZQJSAZ5kpHEMXeXb2OZJhMTE4TRENPSODjYJ8ugVq0jpWR8bJwTJxcoV0skeUa5WmVu/gg5Et0wSbME13UQIsMwBLVGiaMLc4xNNPHLHsdPLFDwipx/9wdoIqfWrJEJnTDMMHUN8iHvvvMetm1T8v3Rew5YWJzDdiRJovSvUuoIdNIkJxdKP22aJpquoWmSHIiCRDldawamrQp7zZbkQkPqOgKJLnWa1SaGptCjg/0eBwctmvUxDE2ys7UJaUKzNs7N6zfwPA/HdjGkxt3bdxifmKDX7bG7t4du6Pi+j5CCKAiQMiPNYobBAMPUcb0CySDm5o2blPwid+/eoVZvomkWORLNkMRpjmm5XLlyA00zaI5NcXvpBuPj42iug37hBtHf/WU03SEWBpGwqE3MYNgurlMmCaC/t4d//gZ5DsZEAyEkzsY2Y36ZeDpTxW9YIScjzTPlPpomylk6zxkGAYZpsrO7S9zeZnN9jXq1hGnqtDotNeR0ihimjW4IatUSjXqVE8ePQw5//o1/gy506tUaqtWJibMOhmYS9QWrK/ep1QtIXccvVTl75ilefPFF9g8OuL18lzRMuX/7LrXxMTRD5SUL5Ai9slg8coKZyUn8oku9rkyztrd36Q76HD9xgoWFo1SqZf7kT/+Uvb0Dnn7mHEKTWJqO8a3v0/kPf5U4VwiuTBOSJEcYJoZlMQxCWgeHrK7u8YUv/TLheeXoKrffUPKA3/ziDw3kP60Y/0gelT/62z6+EgHFap37197DWEqpV6YJixbvX1hiaXmJ02dO4bg25UoFx3VxLI2jUxrHjpS4fn0Jyyri2EpAoHTeOUmi5C2Goc6nNI1wLBWXlOeQ5gLdsPHKkyzdesD+XotBr02vs83J4+MUixqG5jAM+8Rpl36njWuUSKRA1+yRX8GQPM9IQkkchRgG6LZGsVLnw+s7XF06QOgmv/7rv85hq8383BGKBZ8800gTweT0JJHIqY81ONjdoLu/Tj44ZH62ShSHZEKgGRa61MjCgAfbHbzyWeoTMyQIvvPd8zz97Gkak5PMzZ9A5AZhMGTlzm1Wbq+wvrmJaSX4vgHJAMvUkUKQZhlxknNn5QDDbkBuIoWGY+lYjkOSpBiaganpRGFEmuZkuuTKhwcEA8HsvINfzNHxSaMA08iw3RS/ZFOrNtjeOmCQdCk4HuVSjXK5RJrFdAdDSn6VTreH47hMT0+xsLDA6up98iwFO6O/FiL1Gv/zv/7fsc0CW5t7nD41iWvBsLVL1OvTqDUp1yZJs48azMcp6pqmjaLKPpaP+im3h67EySjn1fhszMOz9uM1/Efn9Ec/f/izx4c0D3W4wI/IVIT4yLzp4wOfx82cnrTyj5m8fvzrj7/GH20rxGPtzV8Nnj3+HH/d5vWT7aB+tv5Wrfzxwclj554pBe1uhyjL8Ysl2nstWNui9n98hdl//mUuWDrt8cZIu5GRpilBEHFr6TZCaMrlEEkYxhSLDpommZ2dQddMwmFEGmf0+4NRQaqabWWCJDF0E9OwGQ4D8jyj3qhSqZTI04yS76NJga5Jtnd32NzaJE2UrizLUsrVCi+//DJCgOzM42dPcXBwoFAvJEXPJ88VCi6FNqK+akgknU5HbdnUh2UAACAASURBVAZS4rouBweH7B3sj47zELkgCkP2dnYJhkPiSKGUQsDTT5+j4Lmsr69RKpcQmoGmGVQqVT7/uVdASBUBkgvIcwzToN8foGkGrVaHPFP0PduyuXfvLltbG6RZxNh4gygYIvKcNA6ZmhgnTQI818C0dcoVn729bSDjC6+8wssvf440iXnl859H11WcQblcZmx8gjhO8fwiw2FAo9HAsq2Rrb7kpZde4guvvIKua9xausXLn/8ctWpdUSmFBrmg2+thGib56PPu9/tUymWGwyFpmtCo1zF0gzffeJODgwPSdISudTssLy+zt7cDuWBjfYe3v/uOyqfUMny/RBAEJEnC5uY2lunguj67u3vcunWLt777XTqdDqWSmuaXS0U0YHp6knq9RsF3+d2/9zs4jsNwOGRubo5Ou6tMvHSDdrtDlmXU6zV836dRb9DpdHj1375Kr9tTCKrt0O+p7Noojvj8K5/jC1/4AkII2u0Dlm7d4NatJSSCXrtLOAxI44Q7t5bZ2dqiWCwyPj7OwsICpmlimbYKc0eMXK4Fjm2RxDG9Xpfp6SmKxRKNRhPLtBgMhti2i2nY+H6JsbEmw+GAW8tLWCMkMM9i5udmKHoFTMMgjZVmFqlhOS5hlLC5tU1v0McwLeIsw5BCGWQB/cGQJIU4yYiilPKtNXj5HDu/+AzlSoM4jtlYvc3W+m0sK6XRMNFEh35vjcWmx97qA6xCFawiYRiRDXtsrt3AkhHdvTYi08kTSS5T0nyArlmsrW6wv3dIEAzIspSDwy0K376A9cZ75LkyXIvjiK3tTXy/hK5pxHFClmfYpoVpmhQLLgXbpt/r0e/3WTx2nFK5gl9VkV0p8P7Fi/T6A9rtDkmUkJOiaZDniUJcRU6SxmRZRqfT4drVq48KCEUf1EeuuIp6n2eMHHYFmi5HKH9GGETEccxhp8P8wiKmrbSyURgpurYAqeUjo6aEd959h/PnzxOFihIqhEIo2632aM8MADAMlbdrmuZHxlu6otzbtq3OyygiyzLSNGF8fAyvUKBaKVOulChXSnheAce1iZOIKAx57bVX+fKXv0KWwedf+Tz1ep0oCkdZy2WSJEFK7VG+sBSSzc0NtrYUopzl+QhVEQqhEELlYQ96XL9+nTAMVEGVCzUoGN3yXJJmOUmWkOUpX/2Dr7C/v8/e3g7Ly7exLEcxFpKUhcXjVCs1ojjGdhykrijvrucqV+ZRfmscR9y/v0KW5tRqddrtLp12j+EgAk2QkWFaFn6xRBSGSMAruGi6RhiGxEnCZ198kTRLGQz6XLlyhV6vB65Fbho4d9YAsK0i539widZhl15PUb8NQ6deryMNg7zb/+h6iVAO64Mxsq7yU5BSokkd0zTIM9jd3UMISafTRQqN8bEJBlHKkYVjxGlOHCc0Gg10XcMUkiyJlQ7cUDF0/X6fTrdFwbNZunWdnZ1t5eOQZqp5yXOyLOHowlF13dUMDg/2CYIhw+GAJIk5e/YM80fmeOEzz2PbFsFAZYsetlrcu3uPzc0t3vreWwzDgPXNDVbX1ih4HjOzM0yMT/K9t9/m6rVrLC0t8du/81v85m/+GrquK/1rowLDENnqoGkaw+FQoU4jynkURXRbyun/2WefHZkB/nAN8lc1rD/JCoaQBxk7Gy1Oe78NiUOaSMbHm7z42Rcpeh4bGxtITfK9t97inb98j73dfZIopeT7DAZdRqa/I2aUrkyHdE2ZsyWpyjHPlM41TZUjdn8wpNftUSq6nDqxiGXkPPfsKRxLEAQBUhjkqUbBVYaGcTogzwLCoI+um9hmmSQ22doa0uv3yYVOmppcuXqHzc0dCl6BMAxwCy5f/OIXqdeqDAYD9vb2eP/990mBarnGoDvg3p0liq6B6+ZIkUIWowmwTJMojMiyHLfgqyGnV0QKSblcQdN0oijAMDWSPOCtt9/k5s2rtFoHFGxJ0bWwTQ3d1EmylN5gQBjo9Huwt9Om3e5y+er1/5+9N42V7Dzv/H7ve/al9qpbd+17b+9s9samSG2WLNuKDDuOF8zEyyD+EiRIMB8MBAE8AYLAHvjTfIi/xZgAju147IxsQSPJtBZSIkVSXJoim0uzSTZ73+5+69Z+6uwnH97qFkmxJcrLTILxSzRwm1236lTVqTrv8zz//+9PmoX0hx3CMKEopIJNRYmyv5gmhimpNSWlajFV1Oj4FcXGkEKHXFPWGRs+/VMnePihM6RpyjPfe4atrW2CIMTQTaI4wDAki4uztNtN7qzdwDAlQuRcv36DYiXiZ+Sv0Kw1OPnQccpV7965GYcBT37n24wGfcbj4X3Px7vgpvcOjD7sz0+6Pso5/1Hv/6OAlv6h1kdpMP1jr/9fTV6zLPv9H/di/X9n8qpW9rUnAdB/9ef+UR/773KsP9RNKQolnYC75HAGuzvsbK7zhV/8RUp+Bfuxszj/yx9CLriyb4FdCfv3r3DlyiUGgz7bm9uMBiNcx8f3lTe1VCqxb3Efd+7cwPM8nn76aYaDEevrW4STmI3NNRYW59B1DSEFSZyxsrKKaVi8c/Eihw4d4s6d2whR0OvtIadwmbXbt3nhxRc4fvJBas0ag16PSrlMGEbKW7u4QJ4VbKxtU2QFeZFjmRbdbo+9vS6eV+bP//z/ZmVlRXlWRiNAEkYR3/rmY9QadfxyGU3TMSxbTdGGE0bDIb5fotFoYJkmlUqVJE8RUrDX3aNU9plpt9je3mRhaZkkzXE8n+F4TLlaQTcMpK5iISoVlalY5IJatcXzz53l6aef4sTJ48zMtHAcg1u3r9Ns1tCkjkQSRzGWJSmXbWxL54EHH8BxLcoVH9symYQTRqOAr33ty7zyysvkecaRw4epVKtEUcL6xhYz7Rm8kofnlxCaZKbdUpAf3aTZbGAYGt/+zrdZ3b+K5/vsbO1gGAbrG5t4rkejUWdrY51KtY6UBd1uF4HGc997jv37l0nTlEceeQTTMrEsk+FwSKVcpT3bJkkCLNOjUZ9lbm6Bes1HiIg8z7BMB12T002bSa8zwnEtFpeWOH36FLZjs76xTnu2PYU6pXR2dzh1+iSaYSB0yWQUMhqO+dM/+TMuXbrMQ6fPkGUFaZoTBEPG4wDLtLFtm36vzzsX32FpaRnLsgijEM9XfsmtzS0azTKzc2263T0WFudpteosLi5w++YaupRsbqxT9kvsbm9T5Dlf/drfcuLkcdI8Qdctur0BUgfTUk2c/mAPy7KhEPR6HVzPJst1kjhF0wy63R4UkpJfIY5DRqMxQghWV1ZJ0kTRKGUGWUg4GuH5FW7f2eTsCy+yuLQPw7SRukleQK3eJM1zNN1AFxnhJMC2bVy3pDxVQsfZ7mGs7yL+8HcZAjk6pmky3LzB7vY2tXKZ9kyF4WCTcLQBu7f58z/+tzz46Oc4fOYzzMy28UXA7ctPYxkGwphnZu44QpgIGTAOOujY1KpVfL+MZZtoGrRaVeTzF4CC+BMPQp7j3dpirtAY+w5S11UBSMGg38PQdTQhiIJgGkcD/cGQV157DcN1qDWaNBotVvcfYGd3l/n5RdUgQk29xDSf9a4PUdN0KpUKs7OzpGn6g4twIZFSJ45TpJAIqaBiUqrc4DwvmAQhnlfiwoW3+MYTj3P6zBn0qacTQGoSioI0C5EiJ88zjh45yvETJ7nw1tu4rjON3pBoutrIWbYCvxm6gZQK0GSaFhSoInbKYpVTgrGCRsVkWao+N5YJwGQScPjgASXZlyA1g85Oj5XlZapVH8MyEQJ609f03vMW4Loek8mEOIp55ZVzHD16jJe+/wKLi4sYuq7mXHlOlufYlsXzLzzP9Ws32LdvmUqlMlXuyB+ohgAhBZqhkRUZZ86cotVqIqVGqVyhVCojhE6SFvwff/RHXL5ymaWlRQzLYDIJKNcq9Hs94jjh6Wee5vTpkxiGztLCEm9euECj0aJcruH7ZXZ29nBLNqWKKuQM0+Txbz7OO2+/RbvZYn1zndWVFYoc3r14EU0TLCzMUSoptY4UEtHpkTsW3fkm/+yXf4t/8Vu/Tb1Rp1avMwrG2LaJrUv1vfP2NZhvkWcF9t5AebH9FjK3pxvd6VxASAxNx/d8pJBEYYQ+nT655TJoJpphK8aBKAjGY9IwZtjts7mxyebmJjPtNv3+kGqjwsryPg4dOkCjrsBlUmpMggDDsMhzJRtWHkwD13HY2dlEaoJqpcx4PCSK1GSv292jUi7dm+oszC+QphnnL1zgxo3r/NznP0+j0SAvMuI04q0332U4HDDo93nozEP4noOuq/c5zVK+/B++wpxuUTq0n3h1HsdxMARYpk1BQW+vQ7NRI5qMsU2bZnuGLJDImRxx4Sm15/jlz32oZPOj7H0+eHtDt8gHm/z+//Q/889m/hXXw3e4tbPBpz/1KZ5//nss7ltSRPr+EMs0Wbu1RR7t4Tk6s7MtfN/C1BM0oSGlIE9TiiK759csVKAnBTlS6kzCBMerYTk+k3FMt7NNyTeolZUnVBMheZ5x++Y2vltREmpiEBlFGuM6HmmSTlUCLudev0y5opMXLhtbMVev71Ktz7K4tMhnf/qnuXDhPPValdu3bxNMAubmZjl06BDPv/giM/U6MoupeQXBYI35OYdJMEJqOaahkWU5YVygGS6prLC5HaJbOteuX+PMmU9w+fK7NFszpGlGGI5J84jeXodhf8QnzhxgdsYhz8Y4toWQOoUUVCptJmFEGIcsLs3SapVwXJ2S7/DWm5eplCsKXpamU8q5oru32g7NVpnxIGemtUDBAF03CcMETTrkuU6vP8DxbDTNY2tzlywRNJpNLNvhwoWL1GsV+v0enufR7e1Rr9WIk5jd3R1Wlg+wN+7QNGf4wsw/x/nULrW6jcxzBDlFnrO5vUOSZZz52CeRpv5Dhdnd4lVKqYjymvaht/ngHvzu3+9OXvWpbLj4wG3uV9N82GfhvdJdIeT79vDvldLf737uP3n94eP+0T/LH3nsH74+/L7+s5AN/6eMyrk7dr87sv+wN+2DWG348cXr/Yh5H6ad/4d4bu/NhHqvDOHecRQo0EoBWZLw3a8/hlcpsRKA9Tt/iHj1IvFnHuaOX+Pcm29w6OBBfN/ltddf5datW2ysrXP16jUGgzHt2Vk8z+V7z34PgWRhYQZDN1iYX2AShLz+2ht85jOf4eChVRzHQdM0Lrz5Fq+eex3LVjRKy7IoioIgGGOYOo1mk9u37+BYFqZp8Ob5Nzh2/EFsU20eJ5MJeZ5xZ32dSrWCoetMgoBer6vIiI6DQOJ5KjrF0CS7O9uKXJmpyOlWo8nhIwfIsgzbdvDLZQzdwrZtXnjueQ4ePEhRFHQ6HZ595lkKCuqtFnGSkBcZuqFRUOC4HrpuUCqXEVLln9qOImFmec54OMIwTEq+j2U5DAdjbt++w87uNo8+8ghSomiHWYoQEIYJlulgWzZ5HjMa9QjGgQJbuQ5RqLrdk2ACUuPcuVdotVocPHCQcrmMrhusr2/wnSefZKbdolKtTuMtYBQEJGmMnGZVDocD9u9fBSGolMv8+7/8Iu3ZOebnF7Ask/F4SJ7G6KbNeDwkCMa0mm0WFhaxTJ04TqaRReaUaipIkhTfLxEEQ/7mb76BZbpcvnwJ37fo9XdJsxzHdkmSmOGoz6A35htff4LLly+yurKC53kIqcjJrWYLcxoNU61WppmLqgBwLBdd1+n3+4RhyMMPP6w2U4ZBlqfTCatNMAmQUmN+fp52e/6eb9jQdQaDIRcuXMDzLCaTCZVKlaLIcF0bTTNwLJcrly8rquMkIE3U1KPbH7L/wCqIAstyEUgmkzG2Y6sOt6e8mUWuUatVp9JoVciEYYBpmpimzfbWDuWSmg4EQaDo1JZFliUgYG97A1PX8SsNrt+8w5tvvMGBg4cwDAXZchz1GhSoS0aWhoxHI1xPZThmWcHTT3yHQ2/dofe7/w3VTz2EX6qSRgmea3HljfPIwuTYgw/xe//b7/Howw/TqpXJext86a++xK//t79DdX4VCUTdDYp4kzQz0d191NuHyIXE0BO2t+/g2dUppEwpHHr9LkIWGC++ixAF2adPg5BY19ZgY5eBbUz9XwVSQhyGiKKg3+1BAcmUkhsmMXt7XW7euc3xB49jmibPPvssZ196idMPPaQkXiK/t/m4W1wqQE5Mv99XcSWmOb2tIIpidrZ3efLJJ6nVatSqFQaDPo5rE4Yhk4mCiYHg8uVLhHHIkSOHsR2bLE2JonAKyRJIDYLRiDhKsC0bhOS5554njCYsLC2SZimWabPb2cXzlcc4y5V6xDRNRSGXatppGAaj0Uj9jmWSZSlZllAUTKe0+XRTBf1uD9MyERKE0KhXm8zPtbFtgzwvpvmoLlEUIYRQYLbpyrKMYDKh3Z6lVquzsDiLaZrv6/4naYomBMvLKxw6dBjPU0Alw9RVDEaRK3ptllGIYjrByqdKExPDNO8pctR7rCJjZmfbzC/MKYmyplEIRSl94olv02w0WVleBnIG/SHhJGJ2dh4KwVe/+jdMwpB9y/MIMQVqScVSsC2Lzc0NSpUSruvS6/aYm5tjEoxothpUq1WiOMYwDUQh0PYG9E4d4t/8wf/O/PwcDx5/AE2XKGGDJBgMcIKIyUvn0ZfmiMIItz9ic3OTzTy711TL8kxt8JDsbm+TxAkl3yeOE6IoolwukUuBZblITWPQ73PjxnXiOOKNV1+joCDLc65ev86dO2sce/A4O51dHEdB2oLJGMu272XvDvpDbMfB8310XclcizzDcmzK5RLhJGQ4HLKzvc3cvAJK6ZpOEse8/P2XqVZrlMsVjh47xtEjR6Y+52QKExPMNNpMJmNqtSq3b99iZXkfJd+j2x0QjANmZmaYMS203hDxhU8TxzGjXge/XEbXLQxDJ4sjNu7cYWZmFq9cIl9J0FZz+Ntn7hWvd/c7P4ok/MF1TzkxBYQVRUGeDrh49nH6rwacrv88cn/EseMneOapp/jkpz6F53kkScL5N85z49p1fK/Co2cOMBnv0Rt0KJU8XFsSxxlCKoiZYRjTz12GY7nkeYbt2Gi6idRM0twgijKE0AmDAWXPwLELyCMgQQqD869fZXd3k3q1hJAp2tRHm2eQ5SlCywiiMdV6jVKpTG+QcO3mLnvdCTNz8zRnGvi+z3g8wraVhabX6+E46vMMgng84NzZZ5lt2thmCkWg4uFMHcsymYQxll0DaTNODMLIYHn/EvVmHUN3aDZqTIIITZq8cf48l955B0mBZ7mszPvUKhZZFqpGoFADByETkDEz7RqOo2EaEjF9L1ynhOPa+CWfKAy5m6fq2B5xOsQ0bTrbERQalpUhRD7NtBZ0uwGXLt9mPFLf+bbl0Z6Zx/M9kizFdRW/o1SqYBgW21sdFhf3YZoOr557jeMnTlAqlYlKQ8SWQXDZ4Gz3b9hcu81cu0m9VmY8DrG8Mj/1M58nn8qC7+73P3gO3v3/96MIf3D/XxQF2fdV8SoeVt+3H6Ut8/7i7gd+2/fXAuLebT8YkXO/z8l9P0v3KcY/TNL8d133Y/38Z1G8Zln2+z/uNv+xJq8f/iZoP3RS/yST14/S8fiHWB/Used5TjGVrGuoFL8kCPn2409w/oWn+WV3DvcP/pj0yAE2VucITQ1N6CwvLzI3P4OUsLgwT6PeZHG+wa2bGwSTmOMnj1GueBw7+gBHDh4lK2KiMCKOEp544gk8z+PI4SNkecxwOKBarTM7O0+9XmdhYZFOZ4cwDNjc3FAe0CRlOByyb/8qQkKepnz80Ue4fes6tmWg6zqaruP5HnNzc2iahgS0aocb6++wcydgfX2D7z79FKdOn0KTEkGG45gIUZBnCe32DHmeE0VjytUaumkTJynjICCchFy9ep233n6b9lwby7Z54Ngx2nNz5IWc+sXklHIruHH9Jq1WiyiKCIMxnmOjTTe2ysuJymUtl0GoTbXrOqys7COKQvr9PuVSiUq5iqbp+OUKcZLz7/78/6E9qybVpmVhOqowjcIQQ1cEWccr0W60WVrah+e7pJkKW59pz1AUsLKyrDZr07ga21ZRQeQZl969SLvdxvM8kIJur8uDR49x69Zt1tc3uXnjJgcOrOK5Bp29EY1mFdd1SOOUJx5/Ak0rmJ1bAJQctNPZwfdVsyCOVbj7ZBJSrvg8fOYURZ7SqNfRDSXd7vU6VMseN67f4rOf/RwnTp6gXCnT2dtFNzRK5TLjYEIhBUWhCKSGrk83bYIsTXnuue8RxxGf+5mfZjIJFEHY0KjXawyHI0BdiMbjQDVshDYtDpUs1LIUEAISZtuLCKEzCYcqyiARxHHK17/xdQaDPsdPPMjMjJpcr64enk74lA/asV2ELHBdGwpNSajRkdKYTtANojiDKdBESkkQhHzlK19jdq6FQLC6ssKly5cYDgcURc5oErM0v4AmDUZBTL01w5Ejh2i32qrAGo8plXxA5RFrUiJkcU8Cl8QJhq4z/+5tjE+dwfqX/yU7nV1sw8Ok4NKF7/PmK6/TXtiHW55hZWU/u9s7DHa32b1zlVptho9/7heQbhXLL7GxcZtgOMBwZjCr84RolHwXmWeQwiQakiQ5nlfi9u01hJCKvv30K2R5xvX5GtVanfDcO9i9IbLdxnHVBjyOJhi6RhqnZIVGmuT0ez0sy8J1bCzb4OjRB9Ck5DuPf5urV66Q5zm1ZoP2bBvIFZhpKpEs8kJ9L2iasgfA1EqglqEZ5HnOzMwMs3MzCFlgWhoC1WCwbRupSSbhmFLJ48SDh2jUKmRJgkComC8hKMiZTGKyJKXf71EuVUizlCNHjjIzO6uKB11HaJJyuUyWZ9N8Y5MiVxscTZOMxyNM0yJLM2zbwjDVBlrJh1O8aTNE8Q0KdM3E90qqGNAEWaoyXcNwRBQPsR2XosihUN83d+M+dE01e1SuZU6lWkUKgaYJ0iS597wQSv6usm9RcRu6es00TcM2M6BgNBhy+dLlqbcW1aTIlDSb6WRWCMVZ0AyD5kyDxaVFHNcBIdE1E8t2WNvY4J233uHnf/4X6HV7+J7P9Rs3OHjwMLpm0NnbY3t7izMPn8S1TTbW14mimFqlztb2NqsHVhgFI8p+iXKpQlHkVColdF0STkbYrquKZalRGDrmC69T/Nrn+cTHP85DZ45j2TpBOKZaqypFT55j7w0Rb14hm6ljmTbadofRaMzVbI3FlSZZqPHmmxewHZed7W0sU2M47LO7u8vCwhyOY6tpXp4zpZfR7e5xcP9+XMdhbmGB+YV5Gq0Wc7PzzM3NA4InvvM0AgUOFBS89dbb2LbN5Xev0Wo1iVLVtIzCnCSeYOhg2g6TIMBxHEqlEjPNJghBMBqSpUquXqnV+Po3vsn+AwcZjwbcvn2bubk51u6sUS75RFHArZu3OHXyBJVKibm5WcIwJJyEfPe7z9DpdDh1+hS6qaOdfYPer/0M/cGAkmWg6QZhHGMZGoPeHi+9+DwPnfkYju+R3/WqfqB4vbtH+Uka9nenYnc9iboY86f/5nf5hP+bzLeOMn9yTsVeORavvPoq7dl5qtUq2xsbDAd91m7fQMt3WZqv0p5tqe+cSIGz7r5XWZapa41pkKXK8pMkEeNJRHcQ0GovYzslXMeHPMQ0C9JohKaB1ASmblIu+aysLCj6uqmuWZpmkmY5RZGRE2FYGrquE8Uuz599G6/aYmnlIKdOn6Y5hQnOzran19YOlmWTJCm9bo94EjDftJhtmBgyoCBGajpSN9CkRhRnJJnOlZsddLvBwv4H2NzqU2/6FEXM2ZfO0Ww10Em5cuka775zjUkwwjEjPvnIMd589TzNlo1pKYuFEBpZFjMJ98jSEM8xKbKILI6wTIM0yfBLNtE0FsiyLbIsx3Ec8jQjy3KKXOPNN68RBAPKJRfb0af7GTWJ3tzosbR0kAtvvUG322Nza5ftToeNjXVOnXqIRn0G07SxLIfRcIxpWDz++Lc5feoMa+tr1Go1rt+4SVIZs5w+QP+axYb5Aq2aT5GEDAZ9bq9v8qnP/RfYpcq9ffxHOQfvN2197/46e0U1lPVHElX8/ojf/7D13oHZez8bKn9YDaDuHvP97vPHTV4/CrDp7/kL933sfypep+sfu3j94An03vVhk1dRLSFPH0WuLPxEj/dhP/+4vKifZL23q5Tnueq8oEzQhpB8+/EncDL47JVN6v/hWcJf+mmu9AfMttr41dI0+iFB1+HNC2+wtLRMq9VGigjHrfDAsVPsW55Dahnk4LklhIRvfONbXLhwgc9+5rPMzc1OO2ghreYMg8GIrc0tlvbtY9DvAwkz7RmajSYg6fcGKpLCUqAJz7GRokDkOVkS0+8P2djaxHFdwjhkPBpj6gapt8bMfJXHvvgCSZLwm7/566RpQhyHlEsOnu8gREF7doa9vQ5JGmMaGlGSoekGSZLj2g5SClb3H2D/wQNYloWmaXi+j5CSJAFd19jY3GCm3cYwTGq1FoN+jzSOEXnKq6+8jGkaqlDUNQzNoFTyiZOQbneP0XhIe7ZFrVrFtm08T01ug9GEvW6PMIkwDY/FpVWE1Gi2GgihUwhVeFqGwWg0AATSMEmCDIGkXq/gODambTAKxjRaDV567izVSoX1tbUp4diiyDP2dne5cuUK+w8eQNNUQacZOo1KDdt22O10OXz4EIYOYTii0ZxjHAwJghFpknHwwCEW52fJCxVNYZome3t7SgoZx8RJQrlcY26+zebGLebn2xRZgaFZxGmMaZrkWUKeR9i2Q54WZBRKXmnpimRqOyo+Q4BhqotykU8hO4aFbghqtZqSb8+0ME2DUrmEbdt0ux0qlQqjkYolyouCwXBAZ7dHt7uHbVu4rsOVK1eYnZtlMOixudHhjTcucPDQPuIownVqRHHM3Pwc5UqJlf3LvHnhAs1WE11z2dzcYLezRbVaByFJ0liBZTQH0zCIooQ4zBn0+5RKHrphYhjKj1nkBWlSRwKwuAAAIABJREFUcODgQRr1GqVSiVu3b3Ho0EFc16VcLmG6VUypaLnXbt5hdmEB17W49PZF1u+sMTvbxnEsBAVhGKBrkihTgfdpkmLpOunGDt7VNax/+wes968hhYZe2Oys3eT8689y/OR+Tpw5zs3NLR44cZR6zeO5Z77F3zz2DT796U/TmJlnpzemNr9IuVJl3I/BqmCUayRFhmM7yExj0BnjlCGcJGSpoNVqo0mdy5evsnB9A13TST95Ct008W5toW11oVUnzVMoMoo8RZcGN65d59nnXmI0GtNo1LEMk7xIqFXLDPsjNu7cYWlxkcNHDnPk6BFmF+YoBOhCm2Zm2lNYmPK850WO53l4nvf+DjsFpVIJyzLJ85Q4CVEQTeU3tiw1pdV1gWFouEbGeDgkSxJ03QQK4jRG13WksLn4zkUe+/pjzM3NUalUMQy1oVdSX5sCiOII0zCUDLNQhZ2aMMckaYRhqPgX+Z5ueJ4XeK5PFEVomoFAI80yNKnz8kuvYlkmjucoynCWkSRjanUXIQz1PGxrOpEuiOOYLMtBFMRxhG2reBX1b6HKwBWqiL07BUjTCIQkTTJ0w2BnZwfdMBj1bhNORoRBzMH9B6YUZhtBgZAGd6VuUgol9fM9ClGgSTHNmS0QQicIQl48exYpdU6dOE3JLzOZhOzu7HLu3KvkufKJttsz7N+/zHDUxbdVLupkHJIkKc2ZFsiChcV5tjd3GI3GNJtNxuMhUoJtWwRBiJTTzaptoV+6RfRzH+fgAwfoD3axHI1Gs8a7l64wOzuPKSXjyzeQF66St5tEYYy9N1Awuv09yk2JkbRZXFyi5JcolcqYRoHtqPgix7UJJkpFFE9Cdra2EAh63S66oTEJJzgVlaFq2Y7yH0YxcZTw8KOfwfdLJHEERYamSZrNFksLSumxsb2G61X4sz/5S9555zynTh0DYWAYajJ/+fJl7ty+w8xMm2gyZm19jUqlSrVW4/DhIwghcW2TfUtLhEGEaegYuiQIRsrvnaWUyiXCKOTG9ZvMz8/z7qXLNFtNVlZXCESBdf4S2q99HrfdYuP2NZxpnnJnZ4eZVhPyhFqthWYaxNsgAgnfffrvXbzeVVcADAYDjELyzT/9P/l571/z9s47bAc9dne6LM23OHD4CIZlI4Sk2+nw1vnznDp9mIOrFdJkgOu6hIHyS0tNEkWRur6aaoKWxDGgKUVLnmFaDprhEKcaN26ts7vTwXPV9FXXlPZF05QqwTA1hJaAiBHoFJlJpsVQSMIwRpMmRWqyvTHm6o0OtWYLzbZ59FOfwPNLpElGUST0+32WlpbwfZ+lpUXOv3FeZWOnEdvrF5ibscizMVLTKYTznkGFxtpGl7mlB2nOrTKOE/YtHsS2C5J0wr6l/QTBmM7WZdburHPn9gbVis1PfeIAmuhwYGUFqTNt1Ktrb5aEOEYTxyxBpmKZLFOHIiVNY6RekOUJUpOK2VAINjc2cewc161RIJidK7O0bwbHcUnigqLIyYsQwyw4eHg/w/EelmWwtLTKbqdHo9Vie2eLzu4eM+0G9UaFr3/jMfbtW6BWK+G4Fts7m+xf3Y9tu5w79xozs7N8/YWv8C8e+B8wlkbsDN8iHPXwSiWGQcJzL7/GmU9+hkqlMt3f/mA//1EUkh/8+939evayUrboj6riNf8JVAXw/qHYez8b75UI/zilwk9SvH401cM/Fa8/0fqHLF4/ihT3fv/2wZP3foUsgFhZQK4u/sjH+FHH8Q89df3gh+Duz7qhkxUm5Babt+6weeFlTv/Ft6hc2yb62Z8iNly2tzbwKz7Csriz1qe7u8Nsu8Xmdod6W+XXJWiUSj62BcFwmyyccPXSdeIoYRINiZOE5eUVLl29yr7lZar1BlmRYZgCXeZUqiWSrMByS/ieR57D+sbmNErgEtVajSLNEYXS/HcHA5KsIJcarfk5Wu1ZLNMiDiZMRgNcR0erKHluVV/l8KFD0847IBI0rYSQJnGaYZgGwbhHEo+YTFLCQODZJfrdLSwLXMdkff0O5ZKKgEmTBN/zMHUd0xhQYOL5DTAAEoo4xxQRui4YRymTJGdh3yoIjSIr0EwDITWENPH8CpbtkeVAPsEwFJwlL2Is26BcbmJIH8NUeP1KzUeTEsu0yQqQOaRJQTiO2NraplarYtoFQsuJ4gzb9hgOArY2N9nb63Ds2GFGoyE3btxidfnAdKpRwvVtDhw6hJASpEYuJELTiOMYqQn2Lc5hGBqm65LpJoYoGA8GhEHATKuJaekUUqMoYtIkxjR0KuUKhm6gCSWdfuf8VRbnF1mYnyOJU8JJjGm6hMkIx64QBPEUnmPgeGVqNZ8kCZlMxux2drFMh0E/wNDUNN62TYbDgZLwOT5CZOzubLO8sgooQNHd7nR/r4emaeRFhpQGhunS64548smnqNaq1Gr1adNAw7JMbly+xsq+RV76/vM8/PAjRHHK5tYahiap1SosLiyQJCmVUhVDN9FEgqlrNGqKRGpaOlIKhsMRlqkkforeKilQcvCcHCkU0KMowLJ0Sr4LUk6n8R5iWoQJIdH1nIycKM2m/s4ZNE0ihIrgqDcaaJpUMR2OR1EIkjRG03V020bqOvpjzyJ/57fhoVmk3qBaW0TXYOvmm7Rck50gxfHmWFrez/qNc3hywFf/7E/45MePsf/oAySmh+NVqFRqpLlOWGoyu3CcEg00W6CXDDIMtjYHjPZeI5j0mVtosdPrsdcf41aaVN+4ppycn/8MuuGhvXsDudkhazexdB0yKDLI05zr129z8/ZNOp0dPv7xR9na3mRvdxchBLrps7O1TbnksrxvAd/3MAwTXTcxjSlkbDDme898j0OHDiGkQEqQyGkGKigfrMpuvAsoiqMQy7LYmCo/dF1HSg31KzpSWuRZSF5oFMIG4fDS2XOEo4jZ5ixRHuC6Pr5fodWcwXUdJpMA01bS/CIXCJR/VQAFkiwaoRchu1t38DyfW3d2qNVq0wxCpgR45Q0H9b4WeYqgwLIMigyECeVKSZ0T08ZPUWhI6ZFnEIUphiHRDSWxNTSHLIl49ukXuXD+IkePnmQchFy6dAnH9fBcB6kV5MVdKayOrQtEkUKRIPOQl198FlvLsCsVNM2lXJ0lFwJpQiYK8kJDkCGlgmcJCds7uyrSKAmVpzYv1OchT8nyhCe+8QTD/oCdnQ6rq6v4JQ/TNDjywH4azSr1RoVCZCoj0/VZv7NLozFDtVpje3uLWrUyzfAeIjQlVy6VXbq9LqWSS6/XZa+3jes4eH4JCoHo9BCuzXZTY35+kSyLSdMur37/O5w4dJRB4WJ0BhTf/B7mkX1kaYg+CsC0cI44SE0SDyqkaY6mGcpLa5tkhaBUqrJxe42KX4Y0x7R9bMenyAXfe/ZZGo0aaaIaLOE4IAkm3Lp+FU0rCCZDKg0Pz3GwLQfd0KnUmsSpwSDYxvFcqqVZdEwa9SqPfOyMOkdEQZEL9jp9nn/uRfqDPg8efxDDthHSRtMcNGliGBLTkhieTZiEjMZDpMyQIsdzLXTbwnU9bt28zVtvXuTUmY+R5IL5hRYrK/soipx+v4e/08dYbJOszFGu1Sk7HmmRobsGaThh4+0rZBUfv1ym+Msy+ds6xr/+FNqv/MyHUlh/5Ia7sEDkFDKmKExsaSKSLv3dq7zxrX+HuDnHivFZ7phX2H9giWbDJS1MytUqRZ5gGQJTg5s3r7G9sUG5bNGotZA56DJH11PyKXRSColtOwBKzu8qFYJMNYRpgm4iRAXHqOCVQKY9LKMgGI6UdSYLyGKdKI7QppJ50zSwHYMkSynCCFlMEDIkFTovnFtjuxtSqjY4fPQozUaDUb9HkaX0ozG6YRKFCRtrW5Cj/MxhgMmApTmPYa+DYdjoponQcwyhEaUjUmkwM3+EQVCQiwzdqjIY97AdT9kHipDB3jpXbtzgyjvb1Byf5UWdRiPB1H1MM1VWjjhCigJdV9etMAwUqT1LyPIcqat9Q5qlmLqFFNpUBSQQMsf3LHTTnzafBVkSIwXqu0wzoQCNAkFOGBVsbgWMunvUGi02djpYfo3hOODI4RVWl5WN6/XXX+fgwf1omka7PcvtW2ssLu0jz1POvvg8Dx47itBhGPY5Hv0iT43/lGqlwbUbN8mLDNOS/Oov/hqagCArKDRFTjcpyBFT64u8t3f+sH37h523cjlDfzBD+tMb/YSNmQ9OVH8gXc4/9PGUQOaHvbg/stZ5358f/PfDU+IfyJU/eIzv99tO7+k+UuH3Fsi6Zv5T8Qo/WbH3dy1eP8r6KBr0/xTrftloBRlxlBAORty6dpmlF9/Ae+US+a98ln4G3X6fl154jmPHjpICFDrnXn6R48ePUm82ieOEMBgx7me0Zy163ZtMRhlhoLP/4BIbO9c4fPhBZudmaTSazLRnuHXrNktLi9i2BUXBeDzm2rUbVKtNsjQnjEbkmaLQCqFx+dIVLl68xNGjh5lMJsrHqBsYhoHve4yCAFM30TWNzu4u7XabSTBGrwYIIWmXDjMejajWKnQ6u2riUIT0h10qlQqaZqAJE3IN07b46lce4+DBg3R7u9SqFbrdLiCnkxkbXVfFWJYXdHa36Q0mlCs1EBlJHGHqJuQxw9GYt965yOmHTivPl64olGEcsrm1iec6JGlCmibYtkUaJZiGTziJocgJw5jxKCaKJ1y9eoW5+Tb9QR/P8YlCJcO9fPkyb55/g/F4RKPRwPVdBJmaLrme8kUNuuw/sEq1UsayLTzP58jRB7hy9SqvvvYqhw4fJEmVJ8uybXWOFApOoQnJ2RfOkmUpu7u7zLRbaIZOkgscr0QcZxiWQ5JBpz+GNCGOE5IkVV5f28ZxbO7cucW7ly4SxiPqzTLjyZBqvUpv0CVOEs6efZkXXngBv+TQnm0zmUSE0QQpNcrlsqI9iylER9MxDMlw2KNSKVEqlcjznFfOvcKRI0e4dv0aRQGtZpN3Ll7E8zyq5TJXr15lfmGRSRjx7uXLTKKYleV9PPTQQ+zu7lCrVbAdmzTNqFQraJrOwsKiomrmufLS2Q5hGN7zC6ZpimmZrK9tIKTGaDwBITEtEzmlKwbjgO5e754/ZzAYUiqXAI0gmGCaFpqmQ44ibFPQ7/dxXZc0TVlbu8Pe3h6IAsMwMA2LarVGlqfqdo5Os1VlZ3cD2zEYDnuUSg5RovI4J8FESSTfuU6R5RS/9y8ZDIcYdol4klD1HF5+9nG+8ZUv8enP/yzLq/u5dPkycdjha1/6K4gLxuGEAw+cwK7M0pzfB5pFkhbotoklJWaWMo6HVOp1ilzDNRw816ZRXyFNTExZ5dLF6/zGf/3b/HdHjqPrBsnHT5FEEea719C39yhmasRxSLfbuXf+1Rt1KpUq7XYb0zRwbBsQNOp1ytUahw4dIM1ShqMRWVagGco3Oez3MQyT559/jvZse0rzjcgy5SdVBGjJ1tbGdKqqqcu2UNCwoiiolEsUxQ8u0MqGKpESTOmwsdnhsce+xcLCPK+9/jL7lpvU6j5ZoU3P28r0mF0s0ySMYpIkQ9fUuaNSIgsQgjgcYxg63W4Py3H57jPPsby8jGkaCmaXJATBhL997DGOHTuGrsvpMU3hOUmGX/LRdBVhkSTJVNZbkMQpiGzqUY3JczUJ6PdHWJaONc0frdWrlEo+8wuzuK5q1Knvp1TJmguBEDmj8RghJEEw4dDhIwSTENcr4XtVwKAomG50U0VZLbL3TArAshyKArXxte0p9VgyHA5xXRdN6PilEkWRs7q6oppm9hRwZSkKveO6U5iKBhn4vk+SxMzOzrK9szWl7U6oN2ZwbJvXXnudLE2p1xvUanWlsjEdLNNWILcgZFT1KB7cj2k4FHnG5sYtZps10kjgNeagVUH7o78i3TfHJMtJKz5ZvYb09tTrsWvzwgsvsLi4gJCCMAghK5iMx/cgfaMgIE4zhsMh2zs7aIZktj1DtVZBk9q9KKMrV6+SFwVHjj3AaDzGmG7sr1y5xDgYoxsWX/z3f0G5VKHVmCGKQ77011/kxImjuJ6FEBqapoj2s7OztNttymWfOI45d+51nnrqu8zNzeH7LlITagJfCDq7HVzbUWCdPCPJctI0o9VsMT83j2YYjMZjPE95cNMk5datNYogwJQmkzMn2elsUvZ8uoOeiujKc94+9zqf/MLnkVKSvmwgBGiPTEE297Xj3W//pIHIQGRo0iZPUqJJj69+9Us88eUv87P276DpBgun5ujs9WnUW1y7cXN67lmce+VV3n7rTRq1OscOz5JEfdbXblAp+1i2RZKFFGhEUag8mElEFMXKv1vopGGGyCWJEKBbjEYhWZ5SKRmIYoJGge+XyIqcvMjRNZvd3V38kjeVImfkeaak/bqpfK+YTGKLSezjlkq0Wi28svJrx2GEELDX79FqzpBE6ZREnjHsd8izhHi8je8VeK6l/OTT7NU4jDBMh5wyQpapzSyimyYUBs1GAzn9HOdZhuf7nH/jPOPhmEc/tp9WU8c2MxxLyV+jKHofK0UIge/5hGGIrmtTMnP2PqWLMfXl5wXT71mdvGCaYS6QmkaR5wgpSYuYIitI40xNeA0VhdWoGQThmN1Oh+2dLqKQHFw9yLXr11leWeaBB44SBAFRlOB5Hk899V1Onz5NkiRcv36VkydP0W63aK020Dc8NqJbZPUdTp14gGvXb7Cx0aXWVE0Xv1onLwqVvJGlILX71gsf3Od/8HbCK35QuPJRgmTuv+5OXIF7xfR7i+oPe/y/z/pJJM4/6rX5UevvWrz+U1TO33P9OIx19vT3yZ7+/n/ko7r/ut/xhtPg8lvXL5J++W+Z+duzDB89hGlbhOGEVrPBr//6P+fGzRtYhkG57PGzn/usIphaJo5jEUUBhoDB3hamUeA5HvuWVilVylTrJYajEY7rUa6UybKMc+deUfK0tCDLoFyu8cADx/mLv/hLNjc3KfklvvnNb/KVr3yVKEo4evQYnlcmiiJmZlpkWYZpmVMATU6lVObK5cuMRmMWF5ewLIvOXpcoVJtVKQvasy2SJGJubg7X9TF06HS2EcCgPyQOU7IUNje3+I3f+E0G/QFFUXDjxg1s21ESOimRmkaWFwzHASBoNudxXV/BpcbKK9PrdVnf3CQrcg4dOoCmSdI0JssSkjQmiSOqlQq2baFJ8DyHjfU1kiTlqSef5Mtf/jJra2uUSiU0XSNNoimVWUeXBufPX2A0HPHaa68xHA7Y7XR46MwZavU6tmkTxzGTSYCmCfIi4caNawTjkfKdqTYoURpz4PBBfumXf4lCgmXZeK5POI06UHh/6PcHyofVbDLTbjMcDpHA2toGWQ6N1owim3a7VKo1DMMiTlLKpTKVSoUwnBDFEza31jl89CAPPXySTncHr+QShGOkJhiPRxw+fJhf/dVf5cCBg3Q6e/z1X/8VAg3TUMWk8thk+L6r5JyioFwuEQQjoihgPB7SbLZIkpSlpX0ADEdjbNuh1+sTTkKOHz+BpmkYpsmJkyc5efoEhw8fJMtSnn76u4RhRBRGqslgOYRxwnAcoEkDU7OIJjGGYdybKCdJQq/bYxJM0E2LZ59/nm6vh2boZDkkaUYwichzQas1y93YgGqtTp5Dp7OHZakszCTJcBwXIQTdbo9erzeVxGU0Gk18v0TJLyGFIBiP6fd6jIcjJII0C5mEQ2r1EkLkTMIReZGSZTGaAN9zkOMxxQuvo/+v/z293W12B2OiOMexTN5641VuXblCFk+wXQF5xK1rl6mUfH7lV34NhMl3nnmR9e0+YZyjGSZZAcNggiwSNCJgwqDfI4oSRJ6RZgFoNYT0cewqEh3HcHB1kyc/c4roX/2PygMeR3R3tsmzhDAKCIIxaZqSZSk7O1t4nkOr2WB1ZZlGvY7jOLz44otEcYxuSDa3NyiVfBrNBju7Oxi6qRpfFWVXaDSarKysUiqVqNdq+CV3SktVUtlyuaz8yNPmXpIkpGnGD7rHqqNdFMoTnWUxkJMkEEUZ9UaDerPOox9/GN2URHFAnhecf+NNvvnNb1HkBU899RSdTgfTcLFMT8UM5UquqyaOGbbrIqTGzNw8CMkXvvAFfN+f+kwFtm1jWxZHjhylKJTHL0sV3TaOE86ePQtIihwQEqkZhGHClSvX+OP/609UzEyRURQwHA4RApypF395ZYmHzpxQOZa6IE0TFa8kBIZhKihMGCl5b17glypohoXrl9EMi5m5BWzTZjgYKmiTBPIMXYAmVCefAqRQ6gPLsEgTBVCbTCYA97yzQgg+9rFHOP7gcX7xF36BLEvY2d1A03IF/ep2KZVKpKny/1IUlCslRuMhzzz7LIPhENfzEFKjVqvT6/bY2d7l7bff4fr1G0ihcfvWHRqNJlEUMw4CXNcDwHEcTNsjykA3XY4ePUaeF5S8MsGoB4ZG4dromkm5XKPT6XPt2rXp8Wfouo7jOPcK8V6ne6+pum95GWmYlKt1KtUqnu8zNz/LyZMnuLO+Tg5kScrO1g5pmnHy1GkePHGS7U6HcqXEYNBHSsnS0hKggH7VWo1Go0GaxaRpxMc+dhrft0lS1QBL05h+v8fy8hKLiwsMh2MuXb7MyZPH+a3f+k0WFucBBUIrCkjilNWVVbJcNR5u31nHNG2VC59ldLtdnn/uef7qi1+cSulVDvrzz73Au6Mh8lvPsr3VZX5e3a/rugRBwN7enooael8D/Ydlj3+XdRfINplM6PV6zJdXOVn+r8jbm7z51gVc18cyfWzLptWawTTUBLvIBW9fvEI06TE3W6c9U1cAIk2Swr18z6LIiaeReLblEocJUkgcx0VqDrudAWmeq6axSMkLBXhKkow0UdetNI3Z2uregz5pmq6+A5JYPQlhMIl00sJha7vLzRu3qNbqvHruVSgElVqNOE6ZabSgEGxubaFpku7eLvOzLchCZmdr5P8ve28aZNl53vf93rOvd7+3+/Y63bPPYIABQJCUSHFRlMiSIsmWo8RSUk4qyYdUqlzlypekHCtJOfmcD6lIFdvl2JIoO6Jk2XQkboKwECA4WAczmBlgtu7pfb/7cvaTD++d5hAciAQlVTYeVFdPL3dB33Pf8z7P///8/nlEnASEoXz9bctka2uLKFTY3u6T5ha2U8CwbdZXVoiDkNFgxKA/wnGKPFjdZro+y9kzdTx/TLFgYCgmWRxKMJuuY5qmZIxM3qtBEBxnm6qq8sjrMaLfH7C7syuhcopGMI7JUlBUdQLBkvf5MELHNBRs25jY5nWSZEyxoFEo6BR8jUsXTjBVcSk4OtONKXZ2d9na2iLLMkqlEmma0mq1mJmZYf/ggCRNKBRL9Pp93nz7HVqdDuNGj58x/w47h4eYjsriXBNbaHz5936PQaeNyDN0VZusu9pHnncfhih9XLv7xz3+nyiI/d91/L9OeX3cifLo8XFmJD7q+z/qyfc4O3H8D36L7NoHPzSw6c+zIvx5z+mhKvCDjofE5Ec/53kuF4o05cXf+od84StvMPyZ51BqVTTDxPGKkshJwkyzQRSn6LrB4d4WnXab1994i1OnT2GbOkl0wMbaHkvz50nSkM3d+7x25W1u3Fjj2Wef4dq719B1nULB5+nLl1m5f59qtYaiqnR6PVrtLmEwpl6t0ht0KfgFbty8wXPPPsfrr7/B4eERn/nsp2i32zJjdDDkwYM1yqUquq4w1Zg6vigGQUCh4GNWAnIBvV25Ad3Y2ERRZIdw0B9T8Mv4BZ80ibh/7yZT02Wq1RlAIwxDpqYrFAo+lu2i6iZZDjdv3uLll7/F2XPncV2XKIJKtUyWJwz6fWzLYTgY0Jhu4PkFoljSJg1dJ4kTojjGc205M5Ikk4VfwbJMNC1nYXGBJ5+6gKanuL6FqgrCcYBQZPyAomhYpsX7N26xs7vN537qczz11FNkEwXnjdffoForMx6PcRybLEtoNBqompx7zITMrwS5SdUmG1ZyOQfXarXwHIeDvT0O9/dJ05xKtUaxVMQv+Di2xfraA7pHR6hZgucYJOEIU9fY2lynWqnhOM7kvIU7dz/AsizOnTtLc2YBhJCZkoqG6xYAqfyksdw8rm+sYFkmuzt71Gp1rl69ynA0wjRMDNNAVQWGJcm1nU4L3/cIg5AwCiiXKmi6VJt8v8Abb7zF1vYWzzzzLLu7O1iWxe9+6Z/z7HPPkaQJmqESjsaoqsLS0iKOY9HpdvE8n25/yGA0JBwH1OsNDg4O2NvZZW9ffpiGQbVWRVGlDUzRLU4sLfH7X/5DpqamqVarRGGIbZtYpsOD1Q36/QG/8ztfIsvzCVHb4OiwhesWGA5GpEnE/sEulWqVaqVMlmcc7O8zPT3F/sE+lUqZu3fvMdWYxnNdXNfBtkziJKZckoqnyDUcp0CaZAz6Q2zLknbp77xH/uw5Rr/8OYa9Hs3lk2gCRt1DvvLl32Nv433yJOBv/Ee/xub6Ni8+/wJzzSrdoxbf/MbLNJqLPPMTn2F2+RSG42JaHggVkhGd/TX2Nm5Sbc5juzV0XWVv9wGe79LptHjvxrssLs5Srbisr9/l5375b2LoGkkwxDZU4mu3UPZa6IszqIqgUPAJx2MZ2ZHlJHEqZys1+b6cnZ1lMBjRnJvG8z0UVSWMYl586WXC8YgTi4skmaRUzs7MyiguAf1BF9NUJzE02YTwbEgLsqaRI6TNTVFljmOSTGZLJ1AMAUIRE1qwQrVaZPn0EkJRqFbrGJqNbjjkKKyurJIkKQvzMppDUQQPHmwzGAyoVMsS7MVkPU4yBJLIO56omIZhS+U0z0AgXRGGyfR0EykLCFRFk/bqVOYlOp5somVp+t0M1zhjPAq4dOkcuiZdI4qCzL62HUxTEp7bnRae7yJt1MrxrC1CSNiVpk0s6oIJzljOdacZiqqj6ekEApfSG7SAkDgaYxo6ipB02ySJ0VQNQzfZWNugPlXDNE3pXpiQhrvdLlmaE4YBvu+vbOCZAAAgAElEQVQhREa5UmA46hOFGa7nMxqNEUKR8CldR1M19vb3OH/+HIoqC4tCoUir1eb+vfucPHWSer3OyZOn0FQNz/Npt1uUyxIWt7q6SiVKyeenSM8to2CQJwnkCRtrG1z59jXOXDxLGiVo/+LrBLMNUlWnVKnh+y7dcEVGg6VN5hfmSNKIKAr4o//jX9JsTlGtycIoB9n06fXZ29ulWitjmjqFggcIep2efF97Pvfu36c+PYXjF0iiiHt3V1GEiutaeL6LbphMN6RCLvNVh5w7f4rr712lUimjaiYCMC2ZG7yzs4vjuCwuzkvStqmzvb2F68nbO7ZNEsekKbQ7bVZWVqlWq2iaOaFaS0Lu+7c/IIhifvLTnwYmc3kZrO/s8nSm4v3qX4eSjm2YXL1+jRPLJ9CFYOveKjNnzwCQvSVnxPnmb5K/8jbi85/4gXuh793LyCxPREqaCJQcfFejUvGJvllgyllCmx/QmFliujlPHKTs7G3hF8q89toVtja2SJMQzzE4t1xGVSKKBXcCcMtRNAGphO+lWSLnxFHoD4bYjk6ex8RJgl9ZYHt3QLnQII1SkmAbgbTB7u0eYDmWLMZME9+3EIJjwrlUHTOiJCNG5eqNNbZ2e/THMlu4Uq/x1NNP4/seo9GIcrnM5sYGU40pphpT3P7gJrqS4Ns525v3WJgrIYRUQFXVPKYQC0wUrcrOQUapNovp2miGQe9AJiZkmdw/djs9Xnj+efa3D/jUJ09T8EMMoZNGGnkWIzTluOB8CMmK4xhdl+9fcrlGKAokiWyS2baDZuhkGWiaju04pJP86HwyXpcmCVEUEYzH6EZGlimkMYThGNvRSJIxSaxSrzewTZOd7Q3OnFnm+o1rpJlGGAacPLlMlmdcvXqVS5eelA3sxXn6gz5nzp7B9Vw6nQ7lSoU3rl/jSecZkvOH3F59C1MzcFSbte19vvjTX8T0CrKRmEuFL1ce32T58Nzp4+qR9GWTdFVFXUoffvOHOLcfP3f66Pe/3y788efEP+p5P/JLx/f5583C/kWK6v9f2Yb/KmdE/yK3f9xtf1Ta8F/Fzx8ej3sDpKnCv/in/4S/9kdXGM9W8Z+8gNAkYTJOAJGj5jFRGBKEMUEYY2gK7127xtbOHhcuXiBPQlqdDWamz+GYdbyijqrHvPX2+xQLcywsTmPZNu1WC9/3aR0dUq1WcT2fXOTYtsPK6n2+8PnPs7GxTr1ep1gs8tRTl8nzjGazyWg0YHa2SbFYxPN8hBDcuHGTkydPMhx2CMcBknLbljReQye1jtBUjaK2gK7ruK5Lt9uhXKrgOAUc1yUIx3Q6h6hqSsG3STFZWVmjWqshlIwoiRFCx/d9Nre2ePutt9nd3ePTn/qJiVKmkWURQpFxL5piHKt7QigSMJMm0m6oauiayXDYx7GlpVdCW0yEUOj32+gT22OWBXR7bUzDnsT12MRxhmGYFItFquUiFy5ePL6IhHHElSuvMx6NSOKIs2fPMhxKFatYKLK5sUW5XAOREYUR/X4f15VUTMe1CUZSDSoUfMajIcVigXK5wquvfoe7d+8yvzgPQkaYWIbOiYVZtjbXcUyDJIrY29mhOT3NOAwYDgf0el1M06Reb9DptOVFWxgYho6qKqiqxtbWLvt7B3zta1/lvfducfbsGeJ4TLPZ5Nz5C6iqysmTpwiDEM/zH57sUgGf0J3Via3HdeUMWRRH2LZDEARUq1WaM7NomkalWmY4Crh77x4XLl6Qm3PyY8rxOAgoFAo4ti0prLq8MNbrdYSAu/fuMjc3h1/0KZVKjEbD4+InSWJ5wROCs2fP0mjUEYCmCvJsYrurN7h37z6rq6ukWcpTTz2JrqnEUYplWbz66qtoGiwszE46zwq6rk1yAXNGoxFxHFMulzF0k8FgQJ5nGLq0zw8HYwzDZX19C001WF1d4c6duywszqMGEbz4Np3/7j+jeuIExUKRVCSQRNx45wq99i6HOw/I84jm8llaB30uX3qad974Nnt7u9y7s8F4nDA9N8/Tz32CXMDu3gHlQglDzei1NrHUAblSwC/NynltPWUw6DDsd7FtHce1yEj4d/7az2D7NSDFNHRsxyS/tUJxFJE0yiRxjIKg3+vheT6WbROHEc3paeIkYTgcsnjiBAeHhxNwmYxWOTxqsbA4x8x0gyyNEaomi7tcBlcrqsA0DLrdttz8ohJPmnHZpDDNc45z/UAQRSG6pksqNUzgYyGmadLrHmDaJlmWoeuSpGkZLqpiEKVjlpeXOX3qNKZpUKmUUZScF178Fm+98waffO5Z4ljGtAComiotzVmGaTmyMJvYgUHmxUZxLEFPWYamqROFWK4HURQhRI6qa7I4VcXkfSYLtZMnT5EkIYZhTaJcBLZjy6/jhCAcY9uSgoyQ87iIHPE9k1AywuhYaVHVCc1alVbQJCAIY3RNx3YMul1JQxVCk3P0SNugpmkcHh4BAr/gyoie0QhFkZtj27aJo4Q8l2u5EALT1AmCMabhcHR0RJbneAUfXZexPFmSYFkmOzs7eJ60eodhRKFQZGp6StL0VQXHtjk6PJysIznlUmXyOkf4w4CgUSI7twiZIA7HBMGQ2dlF/u7f/Q1+9ue+iGVbKL/3dcwLp9EcG/PmbezugH5jhK7rrN7q4vuejCUZj2g2pkmzmGLJO7ZU3rt/nwcrK1y9+jae61Atl4nDiDRJMG2bg8ND6RAo+Fi2RRhHmIZBvzMiTTgeMZHNP2eyriKfmxDYlqSvCkUnjEJc10FT5Wtk2w4IyNKHKrFDkiZsrK+TJBHFYnES55WxuLiA49q0Wn1s25T524rC3MIC585fxJzYQdM0ZXZuhgxoqjrCNUkunsA2TNyCTxiHGIrCzbeucvqZp+Xf4a1JhMjtfw3dAcojwKYfbiOjHhevijAwVI046vH2m9/h8tqvEJTWyKyM/fZIjnCoCq3OEcNRQMEvEgZjNjdWUZWcs8tVbFtFkKEpGhk5GQkCFU1T0XVpzY/jlGAcI3QDyAjChMN2ytz8adpHB7imhqENUVTwXI84lhnMhqEwHgcTtVJes6Sim5NnkOQKgyCj1c05c+4SjmNSKFZ4+ulnMEyL9fUNioUieZ7TOtqfuEKgXi2yu/2AcHTA2dOLpHEPVUvJ0gxdtcmRNt9cuGSigGKWqU01pLIcJxgatDsd5ubnmJ5qQJ6wcu8uJUenXrXwXAUFHdAQKliOLFLzPCcMwwmQzUYIeb7INSyAyToJOaZloioqmq5NXBzyPsIoJJpYkMMwJMslCyBJIvJcJQwk4MqydHTNIIokRCnLUpIkZmFxAcvx2N5uMzU1xcxMk6OjQ7a2tiaNep3haMC7775LpVKZwCPbZFnOvQcPKFsexaNTfKC+QGv/kEalQJRq3F9d46//+/8BSZ5LJoFQJEfvMccPEs+EEMR/YpIdKMc5r3zMGuPR+3zUJvxosfpotM/HqQN+4G0+Zp314+L1I47/rxevPwhS8JdRvD6qXB9nomUZH9xa597f+Xs8rTkET59DtT2SXEPTBIpuQp4x6ByiKQLXK2KYNqv37vHEhUucPH0Oy7LI05gkt9jb67Czu8d7N25y4eJlBoOAmbkmYTimOT3N9PQUm5vrHB0esLAwz5Urr7O2vkZzbobGVJ00CZmeqvH8n73EM888jaYrxHFIp3vEqdMnKJXLPP/8n5HnOf3+gLNnz2MYFsGohaqp+AWfJE1QNIX+sI/hJ+xsHJGNfITI2dnZYXYy85inIxQFDg4OKPoFysUK7aMeplPk1W9fQTd0LEfO5pTL0mKmaTrPPvsJLj/9DIqi8Y1vfpNTp86RMSYI+hi6S6c1lLQ6VUNVdchkZMd7197jvRu3mJ8/MVGPM3rdAXGUEgYRWSY3U7s7LdrtLoWCT8Evk+ca7cMW33rl27RaHfZ299jd3qDgOdi2Q5ZnKLpKFMdsbGxQ9AqcO38eTdVYe/CAUrGEpkkI0osvvMzC/CyOaWObFnmWIvIUy9QxTY8kiUmTGNdxaR8doamCkyfPU63X8ItFNFVwdHiAkudkioZQNErlClGcUK7Wsf0iWRph2+YkakBBICgWy8RxwmjYZdBvoygy0y0cB3iuy+mzZ0mijAsXz+P7Fru7u0RhgqpBoVDAsuSm9erVa8zPz0syqm1j2y5raxtoqixSTMNmNBrLHERVqst+oUiapCimhm5ZNKebGLqOoWtkSXxMgXZsmzt37jA7O8vW9jZ5mpAlCXES4fkejekGpm3i2nKGV9d1kiQ+fv8FYYChaViGiWUYjId9NBWiYMwoDPln/+y3+flf+AXOXzjP6bOn0A0NITIs02JnZ4fxeITnm3i+jWE6CEUwHo+5v3Jf0iV9j163i2M77O3t8cq3XuHJS0+QJAlRMkTXJQzkj//Pr3L69GmmpmqUKyVcv4B44ybZpy7h/O1fIQwiNN1kf+82/dYec40C584sceb8EnOLc/SHOv/tf/0P+JVf/GV+57f/MTubW5RKTd556ypPPHERr+hSLPgE4xFpFOEYgjw8otdZZXrmEppVYxx0uH37bXzNpVpt4BdLoNgYjs9Rd0Txy1/FvHGH0RNLjKIIf/OAfPuAZEITjuOIOIrJMuj3R3KmK5IbpqnpafYPjyiVy/SGfWn5FCqu61AseAz7LSDBclziWM5qqpqKokil0/XcCUREKvRpirRG5jGqoh1HOuU5x5mko5GcfUOI42aJgkEQxBK8pgoZSZTHpGmIqkv7nHRTKMTRGE1XaM7McubMKRzXmPxMJ00yFEWqmA/HEsTD+VtFznhLC6CkJg8GQzRNkUV7DmmcsbrygBdffIFLT11EUYQcUZjYWEGQZjJuJ4nh+T99gaXlE+i6zv37qxxOGAG6Pikyc4EQOkkSEEcxhm6SZZIIHEUBSRiQpQnj8XgCV5MbqyhWME0fIeRsrOf5UvXBIUnHROEYw9QZ9HuTAjVEN2Wj7qFTA2TebBzGOI7L6soDKtWqjPPp9CgWZXSY67qok2zPdqfDweE+5UoZ07TwfB8hFMIwwnFd4mjMeDSgUCzQah1SLBSOrYamafONb/wplWqVUhCjnZwjmPGxdRNNt7BdlzjX+cnP/hJH+/eZmZlF+/0/Ja0X+ef/5o94dmZBAtdmY7IsY7b8BELkZJksppVcoKg543BAEkc4loXn+uiKzqnlE9SrFTY31tjd3qbgFdAcewJvy9nf30fTdDRVRhh5Tpmr71xnY32dxlQDy3aQEcWyyRKGIXEkR1/2dg/J8wxNl5ZV05Dr1fb2LqPRgGqtKl83VWYw+56H65kkSUwcxaytPaAxVWdnZ4vm9ALDYZ+Ve/dotQ+ZmV3AtEyuvvMuX/nXX+GTn/okqqowNV1FVSD/9lt4//mvcrR/gKJrCFVAkrC7us7Jy0/KRscbmhTud58H+AsVr+Q6Sg6d1g63/tUqp4NnGZVWcEt1EsXi8HCPM6fn0U1TUn1VnWvvvsOF86cwLYVayUARCaPhANMwSZMERWSoqkGaxUBGkiSoikGSZHzn9TVsq8Ti4hJ7hyMqtRqW1icOt0jjkGLBJU0zdMNAVXKEkOuY4zhy3Gni9BBCIYpdokxDaBVWVnvcfn+VX/j5f4up6XnSPMdxXfYPDibNM4Wj/S15vSFHURJqFRtDGaKJENOANAnJcoGuu4RBwnAwoNUTVOpLDMKYQdgnS2JEquB6OrPzs5imhmMbPLh/m/Ggw2d/YhnfMxAg3St6jtA14jCYNKkSPM87dqTEcYJj24RhgKppwEOAj4xpixOpUiuqIvcXk33ow6JL1TQMXcdx5XOOwlSOduiC0WBMnmj0wgGGrpClEY7tcXDY45Xv3GQcyOu3bVvU6zVmZmala6rTxSt61Go1bMdBU3WKpRLFQokbN68RJzGX3Of4p9f+F8oVl253jV4nIUwSls5coNaYJhcKGh9dvD5crx4WlI+6GR/us9M3ZZPmYfGa/TAwskeOxymvj9YKD2OcHoVJfdzjx8XrX/GRpun/8HH+OD9qISpnzLIf6n4/PCj94ePjFK8/6Dk9/PyD/PUfVlYfPTQECTlJLkhShXCc0z0a8do/+Z/5j+/0aH3qGUS5yM1bN2k2ptEUyOKMNInxig6KphCNAwa9HtPTUxRKBRzb4s4Ht7lx/TbVSpHFxTk63UMuX75Mrz9CQfDO229x9+49PvHss4RRyMHhPk8+/SRBNOaFF16BPOfs6ZPsbm9RKpbp94dkmSySNFVFCJVyqY6i2+SRDEV3XJ/XXnuNBw9WOHNqiTjPKBYr3F9ZpVQq4/kFOXfR1kkCh1KpeDy7dPPmLZrNJnuHQ772tW9SKVWZmpomGIe4XgHfqzI9VabRKFHwHIJgTJ6meK6keN6//wG+b0/yOzO63RbVcpXxSM7gFQoOpmWiocuiSVVQNJXpZpNqrcq9e/c4c3YZzdTRLQPTsFi5s85L33yVnb0Dms0m8wsLgGB9fYMsS3GKBc6cOU+aKrz//h1+4nOfwSo6rK2uUC6XODrYx3ddTp06ydz8LELAaDQkz1PK5RJRFOHYLkdHLaanG2R5RhRHtFotTNNECA01TTk82qdWrxDnCZZtIxQV27E52NuhUvBJwkBGHGUp0SiaQKo0kkzh8KhDv9unVtQ5PNhn0A/IUhXN8PjNf/iPGQYJly5ewrF1jg72MHSHcrUOikCz4cT8FCQDgn4LJdP56p/8GYVCmbt3blMoWDSbNda3HjC/tETn4IAkStFUkxeef4mCXyLPBbWStGntbG8SBCNKlTJplhFEYyxVRSOj32tR8D0219cwTQtds9FNGQFSrzYIwpBKpYimW9TqdRmtY1qTOB4DI5dd49UHD6jWqqzcfZ9w3ENXLSzTQFVgd38Hx5Xdb8O0yMKQp568SKfTwtA1yMG0LKIsA1XgeI6M4Jmew/erJNlkhkjJKZcKZOTkQsFxTJJIJY1hODzA8QSW7WAoPrbjE8QjGs0ypYpPnma4loOWCMSLr3PwX/17dKI+aTomyyOSXpfZxQs4lQXao4xcpPSHPeYXZ5ieLeLXXOrNZfqBxX47Y+6ky+F+i//01/82771zheXlRQQ2O2/+IXtr69TrF9k5HNGcmkJRbMrVBcJkjOUU8b0y3U6XOx/c4sTCDPrzb6GMQqLnnsS3fIx3bpMftFHnm2R5Khtn6ndjkIIgYXt7G8vWGQw7ZFmCIsCwDSzLQBECBYU0SXH9ArbrT2jU5rFbIM+k1RYEiqITBjG/+Zu/xaVLT0iIWiA3GIYhXRAy8zni5rU7fP2rX+fZpy+TpxmqEKiKTrfXo+A6aHlKPOyjihzV1InyBEOzyCc2fITCOIhAaPiuL5UwTSEIJlE4ig5KQqfbRlNVqQRPohqyDDRVJ88UyBSCccSXv/wvsR2Laq3KOBhhmgr9fouf/uJPkZNjGDqaZqAqBmki6LR73Ll9j+lmjcGwyxtvvsapU8tYtk2x5GO7CoZpSgtwnJDlKXE8xlFybEOj22lhGKos3HUd33LQdRPLkjO6ICZxXa5c7xTIs4wsl/bFXOQohowUyVHRDR2Rx5h6hmo4bG5somo6mqaTZzmapqMqCp1um3t3brO0MMfe9jYF2+bWvTXqUw26vQ6qkORTx7Rw3BLkAscxCcOA3Z1tPNuTerGiUCj4xHFIFAW4jo1tm5QrdTTdpN8bcOXKFT4xv0BWdFAvXYYctnbWGQ5HuE6Fv/f3f4P5qRKHR7sUOiOs3SOqT5yjGslYodQ/gxZPIxSFa9duMD9/gjjOuHb1GpcvP4thOGi6RZxmhGFIbWoa0zbRbUmFrU9Nk2Q5jlOhUChhOxJipWty3hhU4ihkttngWy+/RL1RoVItomgquZhslhWFDEGQxDi+R6lcQtVMNE3a2DMyHqytMBoMjmeG7969i+f59HoDBv0u/d4AQzeZm1sgjjJKxRoROZbjUK7WsG0L37OIxn0ct8j8wiKeV0I3VfqjPrrlor91i/WfuUx1bpYMDSWW5F3N1ChPN+VG/21Dnjd7zyMEqP/uFz5EPZUfHwVyggSRJ4hMEAvo9na48ae/zcXNn6Y7OGIvOiRMdYSisbx8ElQVTbMQisbrV75Nu3XI2cUC8WCfcrmA41rkSo6iC1RNQVFMFCslzzREbskGgkjQDJ1yuYJq6ASZw1RzmaO9HYpujqnn5MlIksRzQT4BYOmahalp9LsDVF2AmiGEyXCQ8uK37rG7G9LtJHR6IwzL4e7qDgsnGlIFR0XJVRr1aba2txGZoFL02dtZpV7SuXPrHRxTlcTucIhpFaSamQYkaYqmF3FrZzDdIpVala3tDTY3NiiVq/T3ADWmXCvzB3/wx7RbA06fXKRWkawETZ9ELWWSiK8pCVmWMh6PUYSCqsjGnm4eMgpSwqRBZ5iiOym6KdBQ6YdDPLOIasTEKISRia7n5KlJnqfohoZlmWQZdNsjVCdAYJCGkneraSlxEnH1zV2WT82j6DFRFpOjc3Q4xi8KPv+5n8R3KxiaJ63S8YiN7RUKToWb793k5PJJ1tbW2N/bleMsmwdUpit4QRGhCTrOfc6fm2F17Q4H7SN+6Vd+nXK5gcgVsjggU7+7z39cUslDMehRRfTh3jt5JCoHvh/Y9FG23Md9PE5x/SjL7uOK4w/XA8f/H4r4/jeeQKZ6HH/53f/SLJHNVpgUzg8f5+H19fsf73FjlUKIH0flPO74ixSvf15X5MMvwp/3eH9Zxetf5pGRI8iJRiGNepF/9Jv/G09duUlFc1hxDBpTdU6dPEkQhBiaymA4QiiC0aiPqigYusHhYYssy3Acl729PcJQFkHPPHOZPIetrS1mmjNkaUqv1+PsubMoisLiiQVUVZVRDooEoaiKybPPPj3pgptoui7zXIHlpUUKvsdrr72GMZmRVEhwXQ9V0/E9n+XlZUzDwPHkbeq1Gg+zBJNEghMKRTlv1jpq4XkupWIRXdewbIe9vR2C8Zjp6SnGQYCmqnR7A7JMbiYNQ8fzPI6O2riuL1VORZGk2BzSJGN9fYO5uVlc1wUBURiRpCl5Jq1qaSozEvuDIeNRgOcVcF1H2sEsC1VRKbhFbt24ie1JVc+yTL792qucO3cOx7G5c/su5VKZWq3CpUvnMQyN4WhIpVQlCmPqtQY3b96SGYGmKQE0QKlcnFgMZQ7k3NwcQTim2+1SKBTodrvUanXyPKPXaVMoFWm1W5imRbfbO7ZKup5Ht93m6OiIcqXMzu4ulmnjui5JmpKmCV/60pewbYv5uSlsx0VVDVzf5ytf+TecOXuGfq/LubOngZQ4SlBUg3EQoeoKhunjmA5pEvPgwR1QNT7xyU9SqdUwTZ1iyUfXNRYXlwiCkGGvh2lJQuq7V9+Vtr+CJ2MDwphut0djaopev4+m6Ri6zsH+HkIRFAtF4jhGUVVsyyJJcqJoRLvdplptEEcx42CEYVoTuIZKt9shjiNKpRLrDx4QRDGu61MqyXid1lEbxy0AsLq2xvz8PKqqEsaRjBpCoOs6rXabcqXCwf4+ruui6xpxGGHoOrZpTdS1ANOySJOE0XA4ocL2sCybJInptockccKp04sIVWDbPnmWE8cRr772bWq1OuVSGXOSH5q/do3suQvEP/9puU4JQRCG5HFIvbnIKEhoNOokYRfH0plfvMT9lQ2efPI5vvwHf8zy8nl2ttsMBh2euPAsZ06f5K2rr1GoOgwGXXZXrjMaDxhGEbrj4JdLaIZDnGTkWUiaghAKjuPgug6KIjDeeJ88h6OLy4yHY4pf/jqHjkFoaliGtFdmacZoOKZWqwOCYrFIv9/F931s28GybTRDn1BwAQTD0RDbto5D3CUhVJ9cSCcXfVVCjeI4ZnZ2lqmpBmkmY5ceKgbSOizhTZ1Wl42NNZ66fAnD0AiCEEVRuXHjJorIpdo76OL4HlGaS7cFTIi7ilRhdJ2rV68CUCoVH7GDS2dCnARoqibzjb8nmD4ly+SsoVAhCMacWFpgfnEB8hxdk7nXClLVMEzrezZDmqaytb3NxsYGp8+exLQsnrr8FJ7nHm+AsixB0yRtOU0k9dMwDPrdNnGS4nieLFKFQg4M+wNUXZfPc6KeJJmcr1ZUgaI8hFDlEtD0qEVNkZu8h4WnopqUSkXplBBCvm6TeWNV1ZiemqbVbqEIQblSwrQ9DENn2O/jey6bm5sIBK4vRwo+eP8mjakGWZLiOJKsq2hSLVKEYGtrizCQipFpOYzHY2ZmZ7h8+SnGgx7eeyvwS18gzWIq5cJESVIRucLXv/av+LW/9WuE79zE647xziyhHXZRFJW4XpbKtVCYmWkCMBwO+eof/wlJmrK29oAzZ06zu7dLMB5yeHgIZFiWQRJH9HsDvMk6oiqC16+8Rp7n6LqGbTkctVu8e/Uqru2wurKCW/CYmZlB1WTzQJ00eoQQFHwf27LJ8gl0DDmfmOUpxWKRclk+V8dxMC0L23YnOdKubPx6PmmWsbmxya1b78trngDLNBF5xjgIaLc7vPTSq7z//geQK8zOT2PbJtg2yr114tk66tmTGIZJGkWIPCMOxlRnZyXoZyFBuZDAiy8BoPziFx67X/mo4lXVNfJU2khzNFxTo/XgOgs3/kM285dojYZcfPJpxrG050aRvO4mSUbr6Ig0HnNmeQ7fdyj4FpoGaRaja6rMn04yklRmsBqaTppJMGSSCLJc4BdLXHnjOjPNBQqeTTQ+IIoGqBPxQ173E3mOKwphGKCbFlmeMg4CTMsniQXF2iKdXo9xGDEOAn72536WixfPYdsa+/v7DPojOh1pRW+3WpSLRcJwjGkqJFGfgmdh6rI1oemCPJfFtywKXVRh0h4pzDQXyBGsrNzjs5/9HHkGV99+B9ODxlSN+/dW6HcO8Z2catmc7F3U46zmJE7QVGWyhsq1PMsz8izHslWCscLaWpf33lvhwsU5sjghiSXLg0SR6RG5wuF+m4Kr0moN0Jtf/fwAACAASURBVHSZly3txAZ5BqZtoKk2Ag3T1AjDMbpm4/g+aSbn3ONQo9dPMC2Pk2fP4jg+R60ulmXzwksvsLuzTb1Wo1FvkiQJlm1x99495ubm2NreZn93n8UTixwO9vjp4t/k24df5tS5MmGQUCrVOOgEFCt1yrUGQlXJ1e+PnXnc3v/DKqlUXn+04vUH/fvRr39Ut+Yjv/j4bz8mFgfk6MhHP87Hq5t+XLw+5vhx8fpdZfjYZkAOeY6Sg6tktDY3ePnrX+GXNgPC06eZPrVE62gP33PIopQ0yzEtHaGAZVhkSc7RwSFhmGLbNmtr6xzsHzK/MMfp0ycZDQPu3LlLtVLFdmzeffcqFy6eJ45DavU6ui4tJePREFVVuXnjJleuvMnMTJOZmSaGIW09rVYXwwDfdei2WxK6sbJCkuacWGiS5Tlvv/0Om5tbPPnkJVRFcH9lhULBR1GQg/mlEq2WpFIqQmUwGGDbNv1Bj163wzgccbi/x9OXn6TeqJELsB0X2/OI45Bev8vMzCxRFDPoj1EVjZe+9QpLSydwPWdieRH4xQJLi0uEYUA6mUsbDIcYusn9e/eoVMrs7Oyi6wa6bmEaDkLo2I5FmmWkccbR4SE3brzH3PwMrfYhnU5LKqhzc2j6JOqgPkUSj+n3dyGTm680Edz+YIUsk2CEYlHaY3u9Dn7BxXEtjlqH3F+5T6lUIggDVh+sMtWYRtM0tre2aExNHVMDNRWSLGMcRti2i8gFm+ubTDWnGQ4G1Ot1shRG4whVNalUS3S7HZlDKeDZZ5/GK/iMwhFhlGDZDodHB1y/9i5f+NxnmJ6qoek6aZZRKDYwTB9VV4jTAYpSRhU6iiKo1IuUqxWiNMX2CrIAVyEYjxj0B1TKFYajIZ7vs76xxukzp3Bcm1OnT1KpNlB1g3pjmiyXluMb16+zu7NDfapOp9uT9FTXxXZs7q/c5+iwzcxsgzAKGfYDSqUypmmw/mB1smHLEcDM7CwHe7tUqlNUatPYjk82sZYWihW8QpHhaExjalpu9hUFw7JJ8xxF0YiShFq9hqFreK7N7s42Jd8nmxBTLcs8tnoOR2N63R6WrhOGEXfv3WN+YYEsg2vvXufVV17h7NnT+IUCimpg6ClChfmFkxS8CmEUIkREfO191O6I3n/zn1CbqVMplaV9cHeXufkTpKpJIjSSPGM07LK5sYXhLOEVZ/CLTT7z2X+b8xef4e2r7/Eb//3/xOXLP8H23iYZQ1qd+3zn9Zf45KXLOAWHYXRAoeISpSnF8iJ5bhFFHcajkKOjFqoqZ8gKBZ/8W+8ihGD8ifN87atf5fJGG+P0EmbJOZ5jTpMUQ7dYubeK7/u02208z8c0bbqdLmEYEyYxvlckz+SM48svfYuz584yHgfH85Wj0QjDMCY2YI0sSyQEKk3RdJWrV9+ZqHESIjMaDVBVgaaqDIcD6rUKly9fApGR5xmu55GlOXfvPGA86hGnIwolR8JKVI8s1UnSMbqmoqgq7VaHTrvLK6+8xpNPXkQokOeSEqwqMndYVeQMuBAK47HcpOV5xmjUI+dhzmuCqkKh4KOp0naZ5xnBOEAzdJkJrKiyMSQU2bggpVT2OXFibrJBzAgCafdtt1pYtjUhgeoIZIH6sOA2TQvDsgljWdwi1ImTwJZRF1kqtypCoGgqtqUDGeNghKoq7GzvEkUJtuUiCFEVIdMbs2zSQIkmmbw62aTZJ7OQQWiS8ul6Lq7nYdkW4yBgNAoYj4Y0GjXarSN6nS4vPP8CC0tLOI5NrVYFJGVcU+Vrv7EhycKGYVGvNUiTlEqliqKqEwUylpRhTYH1XdJf/EmyLOHg8BDLsEjSjKXlJb74U59FtwwKtzfItg4Q81Moe0fyNSv6XHv3GrVqBV1TGA572LbJdHMOFMHpU8vcuP4uBc9lZmqKWqOGZahYpsmg32fQH9Dr9Ll57RrbG2t84fM/RZxM5u0VBUXNKfg+080mCIVPfOKTZHmOrqqQ5Rzs71MqFomCkPFghCpkU0FTdbI0k40NXYM8xzQMLMsizXJsSwK65DyuJA53uz0Z36UbvPHGGywuzJGlGdevXQcE1WoDTTNZWjrBzMwMcZTSbNbIcgkIE/c2MD5xES6cAgSKDGzm6GCXxsIiqqqCkyPcnPyPX5Z7lY9ZvGZoqLnA1k3CIMEgYfDuLt76JXr+de4+2OLu6gbPfeoz2I4NOfQHI7729W+yt3fAVL1GreLzYPU+weiIQtHDsgzIM8ghjhNU1YCMSWEbkWYahwdjBmGPZnOB5sxZrr59jSjooogeWTakWppCUQVhOEYzFJmPrErJQCiKpPECaWqxvd3itXc+YP7EMvWpBpcuP0GSBtTqRYTIadTrMpLIsdnZ2ebE0gLr61uUiy53b7/H7LSPrWdoSoTIE0zHnQDBUrq9LkLo7O60cErzREmO4/nU6nVGwxE7O3ssnKyzfGqJvd0DfEvH0ELqZelO29rcxrEdoijCsgyiOEJoBkLRUB4ShVUVkackCWSZRetozN7egOWlOrZlEwwjCl6ZNMwwbJ0k0ykWagTjI1y3LCGRIgfyYyfSaJjywft3OXPuFKNxHxCoioXtZzIaDIsk9nj77Zs05xsc9XKuvP42e/u7FMs+c7MzNJtNphtzvPjin+G6LgeHh2xubnL+/HmKpSLN6Qau6/DenXdQIoUvVP8Wb4z+EdPFKvfvP2CqeQLT8ZlbOkmqfa/iKZe7xxevH07zeFzxKj6kzv6g4vXR+/wwlPVxj/vDxnR+j0r8Eb/zUcWrUL77/e8HxX7vzx7nDv1x8foDjh8Xr997cj/8/JCgFrTb/O+/9b/yqaefZOH6Jq9tbrDTPsTzbILhiE67i+cXSdKQJEkwDQdV0SgVfSrVGmEYsr6+ya3336fZbKIoYmKBU7jy+uskccx0cxohckxTZvN98MH71OpVaTEzTYajIadPnePEiYWJUprS6w1QFRXX0en1OqyurqJpOp/+9E/S6fQoF10My+LB2joACwtztI6OKPgelUqZIBjh+67suFk2efU+kb6Py9yx8oMAXdeploq4vken18MvFEFVZXzJwR7lcpk0SRmOArqdDrOzc7z/wQdYtk29Xmc0GpGm6ST+QeHB2iqapqEbOo4tY3U0VTuGRD2cT3vvvVv4XpHD1j6eI/PROp0Ot27d5PNf/BwnFhc4d/4sORmGaTAaDikWiwgEWRqS52Nc10DVTMIwR1UMvvGNb9But5mfn+PNN99keXkJw1BJkkTOTGkapVIJQzfwfDkHeOvmLfb391k+uUy73SZJYlqtQ0zbpVAsEwaRzJ/LUhxHFutREBEGMqeyVqsfK0G2KYFCmqZjmBaarh/nzA2HA1zHplopk4QhXrmIpmkIdMIoQTMFw3EHVbUns31yo95qD7DsElESoWsKcRSws71Fu92lXq0zGo/xfZdKpUySJNRrNQAUzZjMKQrCIESbZHnmeUZzpjnJpAvRNB1d17h9+wOWl05zcLCDruuUSjVGozE5GZoqJuAvg8ODg4ldVEEzTfI8I80krTiOI+I0ks0Jy0LRNIQiFadxGBKMA/xCEUVRCYIx/V6HYqGA5zqQ5mxubk5gFQmjsdw0xlFMlqZYpoToxHFCuVxCCI1qpcITT1ygUCigGyZhHKOIgDwHVXXIc/k4w/UHOG/cYfg//pdUnjmHZejcvXebYqnC9Ws3WFpeQnM8VNMmz3OmalV0RaNQX6BYqeAVfbrdHpqm0Jxp0JwtUCgW+cM//H1On1sCkfGrf+PXqVWa5GnGKBxSrNRJYpNS5RxgMRjs4Di+dAfU67Q7LcbjEe7V++RZRu/yGd58/XV+qpeSTlVIDVnQiVxSfw3dmKiwEuozGAxQVY1CoUiv16fWqLO6uoZt20SRzMNdXFjE932Z5yqk4q0ocp40SRIU9eHaqOC6Ls3mNL7vA9kk+1WSieNEZqFqmoptGSByVE2VhW+ScGr5LOWKi+ebqFqOalhkmYGmWSBiuclLUwzDQtcMnnnmWRzXRFM1NFWTWY95dqwMB0GIqmoTErjMo1RUBcu0ZPwQCpblTIpwed6pqoqqqTImYhInpaoaiipV4yxLMUxNrgdxJpXEyYyqbVloukYcJeiGhRAKIB0x353BVclRJlmHirytKuErqiIAaSmUanWCELJBoCgqv/u7X8I0LeZm50mT4fEsb5pmE0+ovCY9VHjiOCVJUobDEZbtkOcZuq6CAE3X2D84YnNjU1J6y2U0VcV1PW5ev8mFJy8iFIFlygxgXdPxPY/NzQ0q1Squ6yFySWc2TJNer4dQBb1+j0KxQJanKHFKurbF7nOnZCbvOEY3TN56+yrlUomC7+E6Lv2XrmC1+4zKHt4glHFPZ4b04g1K1gJpFqMo8u+g6RbT0w0cx2ZhfhbPtRkM+hLEFAR0uh06rTblYpkojFicm6XZnELVFCzbRtHU4+tVwS/S7w+oN6Z55513ePfqNWabU5DnPFh9gOd62JaNIgT37t1janqa7e1tFFXFsuSa1R/0ybIMw7BI4ow0zdja2uLg4ICDgz3qddnEMwwDx3FYXlqm6HsI4P79++zu7nP6zFlM00ZTYTwOWVtbY3auKVU0RUX5zrskf/+/QHFd6dAyZQRKMBzg1RrHzVLgRy9ehY4icogTblx/j6lqgeE3YX9wk0Dpc/LsU6S5juuXjostx3ExDJsPPnifOBxxtL9BteRzcnkaRcmJwhBd1+Q6qigYusyg1zQZg5SkGrdvb7Df6lFv1FGVIuQptaqFro3RNMHO9j6WZaAb2jEPoVgoyNl7TZdFICpCcQhDhfWDERsb27hegXPnznHt2nXOnjtNp31EHCcIFEzLpFarkmUp040prr/7JmRjpmo2Igshly65OBfohkkcB4DANH1sp0qieKyvb+OXypP4pJRqZQqvZNA+GvDtl1+j5NlMVR08J4NMZ2dnh3K5hKoqkGfkuVS4DV3mvSahJCrLjpOKppu4rs/MjI8QEZalo6kKluOTI0hVhe5A4fbtbSrlAoqS4bjSSSQEpFlGHEcINKq1Et3eEUIF05C8gjhOQGSUSgV6vRGD4Zi5+SVef/sDxsEYVYNms8HMzAxX3/m/2HvTIEnO887v9755Z9Zd1dV3z91zYjADAiAOHgKl0EWuZe1aWjvsCO2uQ7Zsf/AXhzfCEQ47wnbIVli72l2LtlYWJYUoUgdXBEWaFAASFImLwGBmMDMYDOae7p6+qq+68870h7d6OAQHJKgjNjZWb8TEdFdnVXVXZdb7PM//usCZM2c5fPggkHPg4EHaHYVeLywsEMc+jXqdPEu5s3mRw5XTTNbmuDN4mU63R3NyL2GccfxDjyJMC8H3UoXfr3l9UP393ub1fpTzgzSv968f1Lw+6PYf1AN9T4P8fsf8gOZ1lx30g5rXD9JD/V3zOlr3c6nvF1N/0PWj3mf35Hu/4/X/8Mcxfv4nvu/4H7beT8/6oOf/II+5e0yWRwhhI3KNf/Sf/GdMNcc5MT5B7auvc9uzefjR05TLBTyvSLFUo98bEiU9XM+l34kR6Fy7eolKVaEg3c6QZ575caTU2Gnv8PwLL3D02FEOH54nyzMmJsbZpfsZpoGmCba3t1hfX6dcKVOvNVhcXMR1bQxTI88zpUedmsawVMG5f/8BGmNjSF1jZnaWd94+Tw4cO36cvXv3jkwqQuWamETEcYhpKKSVXKCX++i6Rj4ojZo0RTt2XJfWxjogqNUaxHGCadp0ul3SOKK90yUMY8YaYzTGGmxtbXJo/giTk5O02zts7+xQq9ZJkgxNqgl6nMRousRxPaSm4dreKGJD0ZvCIOIvnvsLGo0xlT0rBNVKlVqtxsOnTxEmIY5t4/tDlY0ahvR6XTxPua3mWYzv9xkMh/R6IaXSmMoS7OzgOjbN5hiXLl1iY6PFwfn9BEGI6xYoFivs7HRwPRdNStI4Z8+ePczOzZKmKcVCgUF/wPhEE9sukOeSKIwpFz0KnkOcKgrfjevXuXLlHU6dPsWt27cwLAvPddCVyI1Wa2OEAhp4nooGcl33XnHbbI6jm5aKmTVMFhcX8VybNAkwLYFpKHfMbm9AmhhcfOsas3OT7GxtUSoUqNcblEplskxgWSoyKCfH81xsW32fZakqDi2T9dY6YRRSrlRoNJvohoamGdy6vUCj0WCnvcORI/NIoeMVHYqFAmGQ8oef/RyFQoFyuUSSJKyurTE9PUOW57iuSyJSHNdiZ2eD4bCD49r4gc+wHxBH4YhSlSKFilTZ2tygWCyxtLhIpVKmWCyysrqKH4Rsbe/gui4Tk9PkQrK2uo7rekRhSLlU4cb1m/S6XSYmJrBtmwyNIOwhRIznFkeTcEFrbVFpazOJYRqYvR7ui2fZ/G9+ltLP/hi6zGmtriiETyp66szsNLmmE6UxmsjJ/JA8TtHKJp3eDlJCuejxe7/725w+fZS11iV++3c+w6kPfZhTH/owvp/jWpMs3LqJYRXxeyHFwji5KFAfP4AfpujaECkNikWlxbIskzzPsN54FyEl8VMP8cjpU9hffx0x3SQzDYW85YJ+r48gR5M5G1stpBDMzu7h7tJdCgWPRqOBZmmUSiUcW1HY5+fnieJA1Qgiu9cISimJQtXs+YGPadg8++yf02l3aY41kZpgs9XCsZWpiiYUArhLX5ajeBzHcdA0ndXVFYrFIoYpaXd3MG0b0EkSZeiU5ym7xj26rqPrOkmSYts62Qh13d03NjfXsS2VQ6mozuFoL8oxdYcsU4ZSmmZArhgfaRKgjdx5paaNTLsSTMMkR1HIlYlSoCIoDJ0cTZUWI1lFlucqZ1E3Ua4kgjzPIFeRNwhJnuUjfZtySdU1jTQXys05T9FFRhAMlZvoLi1bKvrvsaPHsCwb1/XI8ogoTlRxncSYuo6hafckFZrUIBeYukWSpHQ6PQxdJ0kjBLC4sMTExDSaFOzfvxfHdXBdhziKmduzl7GJBpZpkYzkEf1+j43WOo5jYVk6Umj869/6fzl46BCGqYPMMQ2dbreDrkvaO21klGBttBF/76MgDFy7xD/79X/J1SvX+dhHP8L62haO66BfvAorG2hzk5ibHYSAbrPDWLOClY0TBoFyho9iXNdWaFuqhoOapo/o3UXa7Q5JorJ00zTDtm3CyEdIiNOEnfYOpVKF9fUNtrbUfQvlMtroc/X0qYcplVVM1PT0NLpu0B8ORsMDZTI26A/44p99EX/YZ2ZmikLBIQxDTMPm5o3b2JZyNW9trHFw/0HiKKZUKt1zRlbU10BJVsYa7Nu7D3Jorbe4u3SH17/zBoZhcuz4PFGkTM3khWv4//GnkI5DmiYUHIulhZu8ffEsew+fUBmo3zTI7mjIShsxN4k4Of899c+92uW+0ub+2xNApDEyDHnrzTeoFQ3yF8fxo036uU99fC93Ftcplmu8+OI3OXbsKNsbm7x75V0820RkIU88eoR6zcZ1hGJJSImmaSRxrEwWSclSVWOFcYRpF6nUmszsm8bzGoQ+GEZAoZDRqBUZ9n0KnoemS0zLJAxTwCDwMxLSUV65Mma8s7jJ7YV1gtjgwP6DTE5OMTY2ThQnVCr1UZa5GgZLIYniENs2GXY3SII2ZU/gWSlx2FemXGmKbrtEfkgcx1hOGaGXMJ0mTrFBlutkCM6/dZ75+SMMhwG5hDwyuPHuDXrbS8xOV7F0ZS45MzOFbZkYhkLkDUMnzQWmoSRJcRwBypFfsY8kOQGWleF5FlEUkOURuWYSpQndKOVbr7zL5lbE9EwT20xG0gmTOI5H8UECkcfkMiYFXLdMmuZkWYAp6wz9NlKPiOKAUrnGK69eIM0zNJHzyZ/9GWampgmCkCOHjxDFCcWii2mZlEplTNNgYWGBkycfZnV5iV6/R71eo1J2EV6f6a1nGNaucLt1mVpjnDSDow99CGE47Jb3mqZ9z7l4v+Z09+fvdQPO7mgIL0c7ngDfa9h0f33+3vWgBlmI7zaNuz+7//sHaWHf+5jvvY7UDd936OjmB+tXs/z9GtfvfbD307nuPt7faV7vW38t3vd9x/8o9/lhx9/fXH7Qpviv8jv/oHVPPJ6E2FaRhTurtHd6BGHMqWqTwoXrNH78Y/S6O5RKJdAstncG/PHnP0+lblOt1Ugig7WVFhsbi9TqRer1MSYnZ7h48TK+H9CoN2iO15icnEDXNaIoYjjw8YcBg4FPoeggBBSKRYbDIVNTU2RZxsTkGP1BF8gwDJ3x8QmkFLz2+jn27T+oCrE0wfIU/dLSVH5nlKRIoeH7Q27euMHePXsJgiGlcoHbd24xPT3Nb//2Zzj2+DS6ptFblxSLBTTdJM8lmm4ptFVoRJFCKPMk5/Kltzl/7jzT03O8+uprjI83KZUKCJniehUVD6HvIiMOIOj3evi+QmJd18U0DNqdLqZuATnr62s4roNXcDlx/BjlSpF6vYJE8Odf/DKvvPoaJx4+QRBHFCyP1kaLUrGIZRvohsBxTcIwIggCms1JkljiFquYtkOxaFOtlpk/fBDD0Jmfn+fQoUNESYJCUQwGAx/PGxUkWcbayrrKU11coFatEScxjuOOMi5NwijixrXrNOol2jsbtLYUUthsNpmdnaa1scrsnhlMq0Aax5iG0qDttLvUGhNEoU8SK9RrfW2d8eYkt24uYtoea8vL2K6OH3ZpNGrIDLZbm+iajSYsBALTlOy0t0nThFqlzqDXG5lOxWiGhWaq1x1QxWCakqawtbVDEvVU5MEImSrXqgjDJMky1lZXcN0CL774LY4ePYpXcJTDrDAZ+j12dnaolMdw3ALf/OY3eezDj+F6BWzHJQhVE7ywtEQcQxwm1CpVRC6wLA9yjaKrqMCe5yKFmtZrUqipeZJQqZRZb7UoVip4hSKWV6RcqeB4BeJEoSGu46FJnes3riJyQb1a58VvvEijOUalViLJchxHEEVDHLsAuYZm5IR+gFcoIXWBf+4i+rfOkv+P/wXef/BT5HrK8tIiSeCTRAlTUzMM+gGWrYOupASt9VXiwYDb169TaDbQpYlITfxuzMbKJp//7B/xkx//OB/9yCcZnz7AMA7pDbuEcUK5FPP25bc49/p5PnT6cdY21hBeQmVMo7vdQ6DhOt7IjTFDCDDfeBcEZB85jSDHeP41svEqmemooZNmMBj0aK2vUGsoYzjPc7l79y7N5jjr66sIkWG5Fpa16yYsSdJI0cukIMsUire7mWtSIyfHMCyGw4A0Fbz66nc4dvQYpmmRRIpZkCaZMhDpdDnzxpv85TdfplQqUygWSOJY6SilJAq7JGlMozGOkBaabmGaGlEckGU6itGZkCQKhbVMa6Rf1ckBQzfodNsUix5SKs0pOSMWiso9DcM+mq7+rl63g2WrmA4yleOaZ0qBtOuMPOj37qHNmqZhWzamaQGqGU3TVGVLi10KG/cQVfIMIXJyMtIsIk+AHLI0QZIT+kOkgNsLS1TLBXSREfk9/EEP0zTJcgMpJP1+X3kK2Bblcgnd1MilQoVylBGZyFL8fk+5IFsWWZKRptBu72CbDq+89BqVUgnHMRkM+ow3J5DSoFavYjkW4Shmo1SukmaQZBG6rhMFCZ/5zGfY2trm5MnjFIoeSaxM5k6efJjWRoskjTBtjSROVI5nmmDbNkk/wN5s0/7oaf7PX/sNXn3lHDNT+3n00cdZX19nz579DIIBztvX0da3ELMTpFKSuDpppa+G5oMymtCQQifPQNcyotAnHlGvTctBGiZhqFDtUrlEoVigVquBgFK9ilcqYlgmtVody3IpeEXlhN/uYHsFEIJy0SNLYzKBYmvYFtGIbaSZOoZlcunCJQ4fPoI/HOJ5DhMTakjTbnd46/wlrl+/SaM+xsREk2ZzjHzkiAs5URjRaq1TKZdVdIzIVT6u69JaW2Fnc4OD84dYWV7l9KnTlMoeuiERSOSFa2j/5BeJhEDXJUk0QOQpV96+wMnHnkbTNKKvmrAp0f/zfciHD79vPXN/83p/LZXoGaQhy9euItKYEibumYfoOme5tbzFgcOnOHTkJJWqagQRGa2VVd65fJlarYBjpkw3bcpFjTxXjYU+GjTvFu1SJuiaAbmOZbnEWYJhGeh2jbfOv8uB/QcY+nexzIBB10diY5gpGeoxBoOUONJ498oC1UYFDYkmcqSmo5lFDKPIxGSdhx8+Tr1ewbRMDNPAsFS0nj8M6HS6uK6H57rcuHEdGW9TsHP6nTWKroZlW6S5xHA8ZKYi8AzDJM5Mzl68iR87XLt+g94g4PCRo+TkdLs9rl29yVijyuc/+3kaVY9jRxsUCjmWqWFZOkEwuCeTyJIEyzSJ4xTIsExLRd3pBkhJEquhpCAiTRMsw1GypjQh7MQ4lo4fDel2Q+pll2NHiuiaRjhyL1YRWTpJGiPzDN006Q0Ey8t98tQgDAdILaZUKhCFOZ12xksvXeexJ48SDLtYBkxPzPHW+be5efMOuqGx78AekigkjiM8z+PGjZscOXIM23Gp1RRrZ+H2At32FrUxl+WlFU6Yf5/0xAWuXrnBvn2H8AoNpO4RJIEaHI9M9HbP0ffSdVWUT3avoczzHHksRh6Lv9uwfsDa/v2a1/caRj0o7uaH9QM/qHm93zFZigf3K7ua1wc/z4Mpz+/Xm/1Vm9cPDkn+3fprrQ+KuP5tL8tSVvmf/dzn+Nzn/4TrN25TjiEDHNumUqkyHOmtxEiDFUcxcRRSrdZZXV1D13XyPGVnZ4v2TpuzZ99kdWWVVmuDer2GYehsbW3heQUWFpf42teeY2lpGQQM/SGu43D0yFH8oc/i0hJJErOzs83q6qqiM1kGSZJw+fIVrrx7jTNnznLj5k22trcJo5AgCJTWZ4RmWKZFtVolDEMVqD7SMaVpysT4BEII4lEuXpblDIZDDMNkMBjeQxTTRG02mq6Qif37D2AYJr/wC7/I5OQU8ejDu9vrkqQJWZZRO5pH9gAAIABJREFUrVZHFDrtHu/CsixMUxmZlIolpFDmL9VaDcs0eeON7wApm5stkjThxo3rHJo/xDPPPIOUGlKoPLhisaReK9fGMk2iKGRxaUlRRMOUxburJHFGr98nTSNKpQJpomimjuMgENi2M9L7+fz+7/8B/f5AZWT2h7z44ou8/fbb7N93gPX1dW7cuIFpmUpHGEcYusnZs2/S2miRkzHenGDp7l3Ic5IkZnpmmsGgB0ik1BGA7wcMBz4vvfwKSRRz7epVyHPGGg16vT7ffvlV3nrrEs3GGJsbLeLIZ21tGSkEE+NTmLrLO29fVSiQyJFawqFDs6zcXWb57gqMnFvX1tYVTVbq6LqhitEk4fLly3z2s3+IJGNtbQVNl+QoSqYQgo3NDeI4xvd9PvnJT7G6tkq310UISavV4ubNm5RKJbIsY35+nk9+8lNsbW2PXkeDQqFIkqSsrq7xrb98BU2aZIlA5DrDfkBrfYs8y6hUyty+dZPl5bvEUajowHGskKsoZGp6ihyBPqJpRmnK5nabze1tgjAkGeWOPvTQQ8zOzlIuVRSddERDjuKYty6cp1IpKMfoRFFDa9UGmtTh3Lu4r19h9b/7RfSf/TEG/QhNSCaaTQaDAc1mk2G/i3v5TxlceQmyDEHG3tkZoiCgWq7Q7QzRNJPvvHqeNNLY3OjxP/z3/xO97YTN1R55ZtLp9pnbN0O1UWR8qszjHz5FtVaiUHQxLcHK2lU2tq+zm93Z7XaJooh+v0+WZSQn54lPHARQNF5GbJmR5i4MVJaqYSikqlBw0XVNRaRogqmpSXTDGOWAQhgGdHsd8nsZrUrHVygU6Ha76rYR/XKXHrtnbg+feOYTuF4BkNTrDZ599lmWl1dUwegVuHDpIlkGU1Mz2Jaj0GPbwg98vIL6P80yNE0hxoPBAEOX9xBfXdcxLcU6yfNkpBHP0KROnCR4nir0DMMkSVQRvbPdBlQhkaQRoLSuXsFCyowchVZalqUyXaUkSVOkpuEVPEzTvI8LJslSyDPlCCwAx3VHMVIjt8hR45rnOVJTr10cRQz9AWmajMz1hPrsjWP279+PBJIoZHV5mbW1FSAf0UFV7I3KcZYjU5dRlIMQkHOPfj/oK1YPqGm+aRpIqfHyy69w/dp1nnvuOaSUVCsV5YKc5oRxOIrbyBTVMInZ2t4mCNTekJMzPjHBJz7xCTzXwzAM1lvr+MMh586dG7FAwLRMbMfGNE1KpRJhGFCuqIzT9nabX/mV/5rf+de/w9Ejxwj8iP/jV3+NP/nCF3jzzDmEkKOM3YS0XoJGAU2TI3pqSpJmo4inAVLkmKaO41gEQYgfBmxtbfPVrz7HlStXWVlZZ2V1lSzPKVXK6u8ixzAtbt9ZYHFxkTwT5DlMjE8SBgpZG/qDUQywwPVclUutjzJKswxd13niiSfQdY0nn3ySA/sPYBg6QRBw5swZLl9+h8APlZv25cuEQcDKygpRFJGlGbqhMzszSxRHtHvdkSxRGUgt371LFAZ4nsdHP/ZRms1xonh0baeqcB8MhuR5Tr/fJwgCLMticnJyhOamf616SAiBbqoIoCtXLlOpFDAik9jYolDTSJIcXbdotzu0Whss312mUa8zMzXNzNQUlq6xf98chimJQmUylqWJYmX4gbp+RE6aRqRpShSqQXC5XEGdxgZjzQkuX34bKRM2t9ZHAySNnAyBcqAWaHhuiUEvJAgi8lxdb2EYKC323bsUPJ1iwWR9/S5hOKBcLdIb9Lh16zZRFBMEEaura1y4eIF2u02vu40UKeWie4/hkCPwfSXvytKMKIopFMs4TpHFu2scP36Cek3JappjTaqVGk98+MNommTP3AxpFlIqWxgWSF0QRQGmqUOe4Q8H6toPQ0xTuYHHSUQYxwyDgCTL0aRFp9Nn6AdoQmMw8PGHIVGYMOj0GHa7eLbBo6dPMH9wkiTaQgjuZcZGUcRgMFAIdxghcsmdWyu8dX6BwM+olOtILcTQJVmiU/TGaDRsLBtOPXSYUyePs7q8zM0bt/D9gCzPsB2DTqfN7OwcQkoePnUKx3H4/Oc/z+rKKuSCU6dOUa3WGfo+eeMuRljBXyyRJBF3Fxf59re+xRf++Ausra19oPP1/hzWv1t/u+vfWeT1R6UCf9APyvced/+U4/3+PejY3RX9z/8X2bfeQPuxx7+PKvA3sR7El3/vz++fzMRhxuUzt1h8+yIzYxmnH3uIo++sYRgG6UQFITWFMgVDatUC84eP0tlo4VoOuqXR7W1z9OA8fttHIKk3q5x+7GG8okd7Zwe7UGPQ9+l1etSrFcYadTrdLrVGnUZjjE63R6lcprOzw+VLl2jWGiyvrjN/aJ6xsQbBaGNeX1/j5PF5hv0B3XYff+AzPjZGpejiuhVKxRJZmrC0eAfX1qnXKrQ7fTTNIM0EleoYGRoHD8+jF3tomg79utLZ9jpsbqxgm8ohfDjsI3TBcDgkCkLevXKFsYkm80cOstPZpFStkCERmku/uw1ZTmd7wFf+/C84dOAwlmHT3tmiOTGObprKXEMK3jp7hsbUBMicYW8AuSD0I5aWVjhy9CiuW6RSrTIzN0m5UkaXBr/zW7/L4QMHee311+kNfSamZ5DSwLQcatUqruchNJ2p6Rm2Nrf4xgsvMDW1jzffPM9gMGT/gX1oOrQ720RRiGnoDPo9PvrRpxVdOMkwdItbt68yN1cjDiQaglrN4Pa1O9TG6tiWCrx/+OFTlMsNstxia32JyYkJolxgeQXIUmQakaZKCzPwfTTL4itf+xqPP/440xNNKpUKumUhdQOpGzimxVNPfhjTySkUKpAbFAplhC7pjgxyXn75darVOhBTrTWxzDLlWpXp2Sn8aECaJzTGxthstQjDLnEc0GjUGfQHLC4uMjc3S6MxxdjYFJo0Cf2YSxcuUStXGG+M4Xo2rfV1avUKhq5QgjTJWV5cZ9AbUq836PV3gIR6rYIlNTXhExnt9g5OwWF2zwzHDh/Bsg0VGxD5aLogjoc4nsfm9jbj4xPUanWElGxurnP79k3qY1MqiqKzhSTD0AxAIx0EvP7qK5QKBRzHwrR1pAaaFOx0dhAaPPWRJ8lRLtL9dsw3v/EtDhw8jKaZmKZOHIeI7R7Z188gwxT7T/83jBOzDAcBX/ry1zg6fxBTapCnPPvlL1M2Iiqt84S9NlnzBKZdJIp8drYWkdLHc2xkmvBbn/40Tz31JEeOzfP5P/0cD518jD/64p/yz//Fr/P3f+4/4i+ff53Tx57g3cubTO47TuPQXpyxSRynghMFWIGPdMYRaBSKHnkecWfhOqWyRX7oODv1GkJo6IaJ/cJrBCUbo1zCsgxMU8cyDbI0JwoTOoOIbrdPqViiVCyiGRqarmN7HlIT6DoYhiAIBliGQvKSOEbXUNq84VA1YbnSZz37pS+yudnisUcf4eaN63z1K1/hxMljPPLIozQnJpQJkSaREp544jEs0+I7r71Jrzug2ajhOoZiAAiBZduAMoBSiC9omtLUihHNV0qNdmeHcslFN0wyRvSuPEMjJyVHagJEjmEahGGoinRdNdv+YKgowblEaha50MiFJBdSNYRS0R11QyOKlXY2TVO6vS6WpXJzczLIczRdRXgpp09GaIByCM5zpV1P01xFOSUJlu2SIXE9F90yyfP0u1rbWp362ARCN1Us0CjjkRziZOSSLHPyXGlk80w13u12nz/50y8xM7sX2/UwLYs4ibBsF69YZO/BKYZ+jwMHDpJngs3NLWzLYH11mYLnoms6URhjWzblUgnX0YkCVTA/dOIkhi5JMx9Ng2K5Sac74OvfeBHHdTl29JjyEBACU7dZvruCZdroWYq2tsnG4/sIw5Bf/uVfZmtrg1/93/9XPvaxp3j88cf49P/zr/iH+48h17Zgaoo4ytGFybZ/i17P58t/9CarK2scPLSXtfW79LoBXqGMZppITZBnKZ5jcvDQfsabNYbDNsN+H1PX2d7Y5vWXX8GUOu2tHRzLZXV1FSkF7W4bgWTh9hLP/ptnGfT7zM7NoglJFIaQZehSksYxw2EfyzT43c/8Ib1+D0SGaRt4boEsg9npWfbt3ctHn36aQsGmXHJxHINyo45h6eSoqBTfH1IpVRFCOeeWSiWSNGFyZo5ipUac5ziejZQJju0oJlImkOevsPGTp3nhL/8SXdqYZoHAD5iamcUtVRQ6ddZSTvbNBej0oVx8YG3DA+qtPM8V86Ddx0oklakag1cNtJZFq/8GfVFj/7FH2NjYpmAb7N+3l1zoJEmPmzfv4HkGjYaLqae4jjfyL0jRDQPTMkmyBKnrZLpNsVAhS2J8f0A/zDC9JklexCsU8Adt/O4AiYnnmaDFGNLANC3yLMayIc8jDhyYpeh5aGZOa9vn8tUd7iwn9COTy+/e4UOPP0ma5So3PIqwRvFIGhHFgse163eoFIv0NxcYrzvkWYTn2crAbZTjbFk2URjR73eJUggSh/r4Xk4+8hTnL15kfGICU1d5vrduXKNcdtAI2GytIomolm1sy8I0TZI4QUqdOE0wTMUI0aTGYNhXzWnXp1QoK2fldIgUKWmiqOi5EOTkCCkolSuU63WQEA27aHkPQ4vJcgfyjCyPIUvQpSTwQ8peBWkI+sOIxtg4frDFxGRFZVonMVGYEMc+pp0xPV3nlW9dZm5+nDNn3+bqrS2kbjA5V6BWKiBCA91SYMDS0l2uX71GpVzgI09/mOFgSKlcZGHhDpDTWt8kilM8w2Gv9iS3jD9hGAzY7IT80n/1T5idO4omQRc5khhErqLL+K7M8AfpYN9rjvQgqeH7mRvd/1jvF9OzW+fvPob6HIbv5wO/j652NDQm53sice7deE/zO9oqxINp08D3xesw0o+/16F4d/17k/O6+/XfNK32h933R2l+v0eX8fvPQqeH9nN/u4ZN79e87oZA737t6DZf+OzvUXBSnv7YIzz59Mfxnn2F3LNJqyV0TWlltre3MA0LKU0G3TamYbDV7vHaa9+hXimjWxZuwaPvD9E0ZWgzNTXJtWvXee3Vl+j3uriug2lZNJoTHJo/TJpGaiIvlbnR5OQkY/UaTqGEV/BGiImGlDrlcpW1tWWmp2eI4piNjU1OnDjO5vYGURSM9BYZlmWytrqKZRkUKwr1FZqg1+syGHSxLQPhdUBI2is6tuOx026zd98+ciCLfASKeuq6Hv4w4OTJkyBybMuiWFRRC4sLC1QqVWzLwLId4jjhzJtnqNfrlMpFLl64wOzsHEmaKmpgmlNwC0hdw9T1ewYVtVqdvfv2IqRgZ3uTQsFlMBiQ5RlZmrFv7z6Gwy6tzRbjk+M0m2P4vk+apGi6QWtjk0KhSBAEVKpVjh47RjAcYhiq2C8Wigoxlzp+MKBYLGI7DlmaqsZnROer1Ur0+1tMTuwfhYwPMK0Cpm2T5zlxFHJ3eZFC0cWxlUNpsVhm4IfKOt+22NrcIE4y7i4ts7m9RbfbIwwjTjx0AkmO47qjabSKDZianKDbbZOkMSsrq8oh2VNGUFvbWzi2hWFYDIY9XE8h455X5OKFN+l2OtSqdTZaW6yurFKvV6g1Goo+HsZIqXHgwEEmJicxdJP19XWq1QqDYZ+7d5c4evQIcRKNwswVSuH7PqViCcM0GR+boFBUsTXVqjKA2tzYJAhjvv6Nb3Ds+HGKlbJ6/SxFbfZ9H8M0WVldpVqtYVo2ju3gui6O7RLHKVJqmJZNc6yJbqqhgJQCy3YwTZvVtTWWlxaZnZ1lbu8cd+8uYZomvj/EHhmvIMQ9910pNVynwOHD+5BSuYaKIESeu4L8zttE//DH4Z/+Y3rakAtvvUGpPEYwDJmbm8J2bM6efYOTp09THy4i4wF61KVTP8SdG5dYX70NhkahWsM1G/zLf/F/8yv/5X/L5OQU7Xab48ePMjs9w3MvPM+jjz/GI4+cZv/+fWysr7P38CwLdxeYmt3D2vIO4/UxOps36HWWsUtzrK21GPSH6LpNlgnGmuMgBO12m35/QKFQQNxdxWjtkDYqyik1UzEMeZaz0dqgWChg6Pqo6TLY7rQplstKP2tbCCTdTpc8R0VtCYHQVDapkBqGaQMS3TSIopiZmVlmZ2cpFYuYpsG+fXsp1SpkeaauNynQZMbkZHOUswlRGDIx0aRWLTIY9NBNZV6iazppCoZuMhiEqogfZZ3uDrOyNMVxHYRUcRYgR/F6CplMsu8WH7uoqhxF1qRJgmMr7ZuQGmEYKsreaAkxyvgc6WSjKLqHfDqOrUxn7jOtynNUVqMUikmTKeqwQCFmWfpdxoKm6SiSVj6qhXKlnR3tK3EcEyepMnEa0ZDz0Z4kpSQI/PuijGA4HGLoBrbjcvDAQeqNOpZlMhwOkFIZ5jm2Q6NRZe/evUihMiwHgwFvnb9AnKRMTc8qYyBN3iuU01SxMVynQJombG1t0unsEAQ+QRChazrLy8ucOH6cXrdNpVJSVGtNUR57vR55GOFtd2k9eZJjDz3MmTfP8diTT7Bn/xw/8ZPPoOsu//iX/hHZmbdIl1ZhuonT9xlutXBmleZt+67gqaefwCs6lMpF4lgxAbI8R9N0HMsZsUs0MjImJiYwDAPXKdDp9qjUyuRC0hhrcObNNzl7/jxxGHL06HGuvnuVV155lb179jA5NcbEeAPy0eeDpnSPpmUp7W+SMNZoYhgax44fUcY3mqH8Akwdx3HY3tlW8ookQoicLJcjfbdG4IfYlosfRsq0z3EVqpwkDIc+33n1Oxw9fhQhwDYtdna2le5ydRPZHbD+qad5/uvf5NbCIh9+9BTXr1ykWrQoNsZVTXLOVufuF36N/KVzyE99/HvO5/u+eWBtkyQJF89dxMg1Dh6aIXxLELX7+KywNdSY3nuIarXKt7/5DTqdNmPj47TW13jn8rt0O1uEQZexWpkoSiEP7mso8pFHRabK7VyQJSlplmG5JXJpk6Y6l9++SBL22Ts7TrFooUklVZEIomRAFOdoeoGEGGn7mNIjjEN6g4TtbZ+en3PioVOceOgYURTRHB8fsYvAdUtcvXaFYNilXh9jemYPly6eJQnb7JtrsL25TrHoKN25RMl9pCTPVdOpGzZucZxCqYlhFdENVROsLC8zPjFOlsXUGzWEbrC4sMLt24sUPUmt6mFqEEep8iARKWEYoRkeSWqga8pAan1tXWVVGxqQEscpjmOT5TmmZeF6BYQQtFotpA5RFOBYFpoQWJaByFNMy7lnxKei/TL8oY9l6qSpktCMjdVwbA3b0pAiI0ljbNvGsJQuvtEoEkYWt2+tYVtjjI2PcWD/DNVqhbfOnWdmbhbPK1AslpianMIreNy+fYtKpUbgKzbbE48/gRSCa9euMV2cQxcG7+Zfpjm+H2E0+MRPfQqpKY18LlIymZMJ8V3/gPvO1wc1r9GnPZIzJtpj0fedz38VMOv9+pHvlSdqP7Rn+ev0UPkDbrt33Hsa5nvHvM/T/V3z+kPWv63mdddt+N9W86oChOW9rwcbXZavvEq5nHDqyae4cWOF2d/5EsnHHwcp6fW7pFlKr9MnCCPIBTevX8U0TIqVOnEcc+qhE5QbYwRRSKlcZDgY0mm3yfMc09CoV6s88cTjbLRalKoVbLeA7bqEww5RklAqlalVq1imzu07t2iOTyGl5ObNW2iawdWrN8gyqNWKnD93gYsX3+anf/pncFwH0zIolV3aO9v0eh0sy6A5VicnJxUS27GIwoCtjXUa9SqmrhFqLRAan/lXX+L8+bd4+umnsSyb1ZU18qCLrhk4boHf/czv0e8NsG2bUrGAY9sMB0PyLKfgFYAU07SIo5g0TXj00UcplYpEUcTzzz3Pk089hR+ECCG5fesO9WoDw1LZe2kcs766RqFYQNM1Nre2sG3VpDiOQxTH+EOfUqlAvVbi6PGjeIXdgjmi3+vheB7WyH0yzTNUEZlBlvHFL/4ZMzOzTE5Oce3qdb7whT/j9CMP39uQ89EkznEV7bFStnE8g5e+/SZvnj3LiZPHcL0a/+bPvkCj0cC2LSYmmiRpgB/0qZXHuLO4RLvd5fbN28qpL80Z+D4brRbf/vZLzB86wpNPPIlh6li6VKYzCLa3d+j3e7TbW9i2gabrTE5M0e31cWwHw9TJ0gzb1KlWy6RpxMTElHJgzVIaVY/J8UlWllu8/tobvH3xLfbtnWZ1Y4MgiCiVK6yvb1IqlxBS4Fg2hqGjaZLbt2/y6KOPjLL21HVp2bYqnm2bIAhhVKBLKcjI6fV6FEulkUa5zMFD82iGPioMVcGFEPSHQ9yCR6FYRtMNdMNCkNFut9F1m5XlNRAapmFjGjZxHHL9+jWmZqaRQmnCC56HJiW9XhfTNFUTJ9Xk2rE8bNtmbW2FcqmIbbvKoCpPQcSYIkc7exXxzTOkR2bJfvWXaB2eYHZulsWFd/EKNo3mOPOHj7K8vIRl2zQmJhmbmCC98Rp+nGEkPuc7HicOTKNLg9rUPMKcoL/po2s2k5NTWJYqhP/gD/6Q61evcObsGWb2zDAzO81b589z5o3XyY2U+aNHyaWDzIpYUqez9S5xuElCkWKhRKM2ju0WR4ZGNunqIkUhSWyX3/zNTzMVwXgioFkfUVlVIRcEIaZl097ewtB01lbXsF0Hy/FIhcBzXfJcaUQ9t4CuGaRJzmAwxHBcEBpCqAiajF3WToZhmKPM6k3KJdXASssgzVIc2yKJAiDBMiRJLrAdi8nJcSxL5+7KEq7nkCNwHDWoEEKn1x3y5plzdLsDmuN10kxdp0kcEyeJMo7Lc9I0J09TNGAw6BElMZbtIoSiAe4u1fSAZdmsraxQq1Xp9fvYjst7q4E8yzBGqIlpWgyHfRzHptNpY5gGURSNTKMShJDYloUfDMmyjMHAH0WnZCMDlQTTsggCX8kpNH33tFdSCWGQ52ooIISGYdijfSi7d5wQgizNME1r9HflxLHSZA77Q3RDwzINcjJycsIwpN/vc+nSJWZmZtA0lf0YxTG6pmNZ9oh9UsP3Q27evI2QknKljKZL3r54mUZjjCzLef7557l+/RpPPvUkIFhZXKJaqRAMfaWjtU3u3L5FsVxR2bJxgldwiYKAwuIGvacfRXge1WYDwzWo1Mtsdrdx9RIvfP15jg1j9NYmYnYc8+YSXpIxGPexLYtDM49SKLq0O9tomiSOGGWCZ+zs7KBJDdN0yAXKcZoc07BIUiiWq1THqtiei1cosGduL52dDrVqjdu3Ftje2ubvfeqTmIbGQ8ePIiVohoVpmCONYYah61y6dAlNNzAMjb1759ANnTTNkULnwsVLOI6B67n4wZAoDvEKBVqtTb7+wjdZWrzL3j37SeKU4TDgnXeuoAuNQb9HwfVYXFjAdVxmp2fQLWVGtbSwQK1axXFdgtUWoj+E//TnyKXOzvYOp0/ME/S3kXlIbXqfOg/fUFFPcv3r6ly/r3m9P+IP+eDaSxc5O+0ue+f2I+IW0QsNorRDJ1ol0Uvs2T/PYDhg/uA+muNjCE3j5vXbSCE4sG+Cgmvw9sUbtHe2mRgvY5pKb6pr2sgBV5njKN8KjShNKJSb2G6d27cX2b9nDs8RFDxBEg+wLYMsSRQaagiSxOX55y7ilarYxQxiiR+lIEtkwkMzioxPTDA11Rzt0wZJnFEqVbn67nVqjTKgHNbv3l1m39wERTel4EGxaBNFPpZtQJ5juw5IQRIGaIaDbhXYbMcYVglNtylXq5TLZfyhT5JEhKFPTsrZc5e5cXORNE04fnQfGgkaKYZukOUJSDWUandSvvSVS5w8NoaUYiRNMBTLI4qQUhnGCZRMIB3pPl3PI5exSl9AI0sz0iQhzRIMw763x6vPFJVAkee5Aj50ialDmvikia+GP7pGnMYjx/cUr+CpqLE0ptcfsm//Xl5+5WUajXFOnjyFH/oUi0UsyybNUi5cuMDc3B5WV1qMNccxDVs9pxDYlkUw6DFjnOIt8Rlsq4Bhlzh28sjocy4nE5BpI0f2+9q09zNCEkKQvqkcq3ebV3Hfuf1e86X77/d+64M0r7vff9DUlA+y/irN6279qbK73+c6/is2r//OErN3RcU/aD2I2vujrh/1jf/+2/9macIPeq73UpvvX7vuaLvH7OxskYZdDF3DqdQ5Vp9UlcZupp7nYpkmtXqd1159jXfffYfAH2JbDqZp0mw2yTKlt+n1eqRxQhSGNJtNqtUqe/buZWp6CiGgWPJI4gjPUxEompRceecK6+stpK5hGAbTM1MMBn2EgImJcVzXxTAMqtUam5tbWJZNo94gTVN2drZH+1hOtVphcmoCr1BA7W8CspSNVgvPc5menmbo+6yvt8g6ZTp3dT7ykaf46Z/+aWValCjX0DwH23FYW2vxoQ89xunTp9m3bx+WZbO4dJdB38e2HHRDxzQNRpwPLNvE8yxc18RxLA4dOkgQKPOB1dVVXnjh6/R6fTrtzkhnJhhrNrAdmxwolYsYho5lO4RhxKA/xLZtoihEM4wRfVpl5uVZRpYoOqIgJ89SNcXUBJomcD3lMvz6G6+RZSnz8/N86lOfwrYUjSuKYnRdaQ593wcywjCk3W7zzCc+wbHjx7EcmyRNaTQaFAoFpBT3qIFqAi2YmJjkL772Vfq9Lo5tkwFjYzUefexR/sE/+AUKxSJCKPo1wOLCAgsLi6ytraNpGpOT4wwGPQSC9fUWr7zyCn/8x3+CPwwIw4hhf0gQDsjzhOW7y/hDFVsQhiFRHOD7Qz720Y/y8z//84RhTKNep1wqk6cZxUKBJI7w/T53Fm7huha6LpmfP6TeY9vCsiyCIKDf69/Lmdy9Zja3Nuj2eti2i217xEmCYRgM/SEjeIxd6kwUhJBDwfPI0hRD11laWiSJY1ZWVhRiKgXTMzMYunEvLmE4GHLg4CHSNEdocrRxZ9RqVYrFAoVigcGgPzq/q+q5oojhYDB6H5Q+KEtTgttLaM++hKgUaf/mPyWOuunYAAAgAElEQVT6X36ZVSOl4HmjeCSd6dlZev2ANNe4ffsOaa5Mvt6+/C7axg2M2hQiS/nww48y8DVcp4nMK1hGnVdf+Q5f/vKXR0MHpb+cm93PM888w2/8xm/wMz/zM4yNjXHq1Ck+/vGPc/jgEUzNJPIjSqUKKTqGXaTvZ1RKDkk0JPB7CJFTq9WwXAfvc1/H/fzzpGlKEmfUHjqKWN1AiJw4VDqvNM1U9JCm43kuL730EnmeMxz6rK2vI3OpUL4MyDXSFLJUnYPPPfcXpHGCRKroxhHVME0i0lS9J512dzT5N7Ed5YKsS20UMZPR6/VYXl5G05WRS56naIbGzMwMtu2i6wZJovaiNFEo65lzb3Lu3LkR/VbpwQ1TOXAr5FNXcUujzEfTMu8NlXY/Q/QRW0PtcwpZq9XqDAZDZagjBOw6yGcqqgYYmaTpZCn30OJdoxHDMBFCOXrLEc3Mtm00TRu5Y6vfVwqBPWJg2LaKaVJ7CCNkd4QoC0GWCzIhSQGEJIxCpCZJs3TUuDMqZHcBB9X9uq472nakokqjft8wjLl16zZCZGRZrpppQ9GRpVDvY6lY5NbNW9y8eYtqpar0cv0BR48eRwqNXq/H4cOHOTR/iCAIKBXLTE1N8Y1vvMidO3cwLYtWq3XP5bff7SnzGD8glILEManG6nOhXC4SRQGlaoU9cwfwPId//s9+ndeXF8hvrygmhaa0vHpaRSYqliWMI8qVGmkG58+fV++3rtEYZcsOhkM21tYQIicYDonjmC9/5f/jyrtXEULi2A66plg+P/lTP8XpRz5EvVHnw088TpalvHn2DItLS7Q7vXulYpoqRoLv+8zPz1Ov1xkMB6y31omi8B7gMzc7R7fXBan2oVqthm4YTM/M0tnZwbVs8ixnYWGRer3O8RMnsB2HSrWG0CSNRgPfH3Lt+lX6/T5pko3yyHWiMMI0LaTUKBY9Tp9+mJ/4iR8HKXn51VfYv38/WZbdp3m9V/6/bwPwoAxLIQSx3yeOY4q1Cst3riK3K7SCd/DDlCyDl19+WZke+UPa7R2GA5/Ll69AnlAp2UxP1nn0QweZnppQQ6IsYzgY3vsdhBAYo2swzXPSDNrdATs7XZIoUUZjtomm5Zi6JPCDkXt3jGMXyFKNwSDj/NnrJKFDDkRRyhtvXmCn43PnzgJLSwv0ej22t9sYhoVuGJw7fw7bNul2uhi6wfjYOHNzc9iWQaXskWcx5Nlob0nJEMRphh8E6JpBkoCQJtdv3GRxcYHLly9gmiZRFFFv1KhUKszOTQMZV965THNsDMdxaXd6uF4BKSRppmoEKSSmaWFbBgUH+oMeSRpjmGrwkKZqn9x9zbI8uzd8240cU3r8hCAI0AyLDJNON2boB/de9yAIQIBpGsRpSr8/YDDoomlgWTqmoVyXXc/DtC18f8idO7cgT8nSTSYnbQ4fmUDXYorFCqsrG+zs9IiimE6nzZUrl3nuua9x5MgRet3+SIrx/7P35jGS3ued3+e9z7qvvo/pHvYMORwOb4m2JNOWrLVsrQ+sE2yc9UZxDDt/JAEWAZxdJEEAb7LAxkAQeOHY642dXce71mlJ1EFJJmlaFMnhNcOZIefu6XP6rrvqvd83f/yqm8MxSSnrY9eAX6DBYddbb1X1+9bvfZ7neyk4bo4XXnyJF773PVrdLv1sH1lS0XQ4++qf8tJL3+H2+lWWL19i5cY15DQZubLLyAj2ivAdUImi6F2mTe/KfB01cYef97B3OXQFv/Oau5se/36/PzzOnfTdu+N27jz2nd+f9/tOfdDPoVnVnT/fTwp5+D7fK+LnL9qb/Y1FXn+Q7S/yh/l+x/ogXvqd21818vqDROXceZGuLd9A7u6zdOphzNn7iL9zFn1ji+zYvNDtxeEom9Qg5xaQlZR7lxbRdY3e0CcMPUK/y6DvYWgKJAk3rl9na2ePWmOcty9fYWJyAt3Q2N3ZIZd3hVFJGhN4fSYmp3FzgnLX7XWIk2CkDcy4evUKuq7z9a9/k2tXr/HEh3+IudljlCsVDEvcJPqDFpZl0e10MXSDXrePaVrEcYoqCz1RmiTsbO/iOnleffUNJhuL5MwCjXoNQ1eFo3LOQZZSFFVDknUKhRq5XIHz58/hmAZxKm4A5UoVSVaI4gRVV1FlXUy7FYnBoDfSoKXMz80RJxHXb1xndnaOcrnM8o0bTEzU8TyBTB8VpBIkWUrkB5iGxc72PmtrG9TrdVRV5Zlnnmd+YRGQuX7tGv1el9mZaTRNZWV5mXK5IFAVU6ff79Lt9Hjs8UdxHZF5ure/Q6VSQpI04iih3e5imjZiWiizs7OLYQpHQUMvUqlUGfodCqUq83OzBEHAi997kcXji6iKhqYKHXHg+zzx4Q8xOzvFwcE+tuMILWizw8Tk9Ci2RcIwNTqtNpKk8uUvfw3Ldjl9+jSDfhfDNDBNG8uyWLrnJDMzM7iui6aruJaD73fZ2dnh6a8/x4MPPoxuiOiYXD5HrV6m02tSKpep1yexLZU0iem2uxi6zurKMsN+m2PH5kjTGEaOw0EQMhz4I/qohO8Ll1JZUUjiRLi+6srIdEc0y5qmiTgPXScKRYYeWUochazcunWk91EVhTQJyecc+t0OpXJFOD1GMbc3N7l46U3On3+NY8dm8YYelm2RySI2iAxWbt4gjmPK5TLnzr9BrV4TcUaKTBQmRJFPvmijKHB7awvLsBg88z1Kl9dI/tF/ivNrv0JPURn0OwwDj7H6NGmssL2/x/PffYnF+x7Dcmu89Gd/xtZuk4V77se0c2g3n8WcPk3Uuk2an0QZX0R3S5iGw5U33+LU/cd4/PGHKBRdmgdNXn3lHE9/81k+9RNPcuPWDeoNEfIuAW+eewM9M/GGA0r1PAfdDrppUCnX8EIJlQDLdWl3egRxSEpEFAeYr7yNJMlsLU7zoQ8/jlEt4X7nRbL5KTTDwLZsFEXlwoVLjI9PoukKuXwO07BoNlu8/OIrXL9+g5P3LhHHKWkCaZLx2muv4/sely9fZnpqipzjokgyigxB4JEkIbKqIKFw9cpVEWll6WSIYY2UCaq2rhuoqobtuvQHYriUZncUJSkgiWiNwUBQn9M04cMfepylpeOYlkARFOUdAw+h+xHnPksSsiym2WqRK+TJUoE8HE7j0zQdoaUm8uhaE3mHkZjeSzJkoyzlfh/dMMSCnxq8ce4cSRKRZgmu6xJFKaqi0e60RrRr0cgijfwQZLE2JXGCaCTk0aAuww8CDN0UOiopEw7akkCEkd5BEmTEECBJ4iMXZJGlrI32FRmrZKJo8fwh/X6bNEuJoxhV07FMi/vvvw+RkWqQJAm7O3u8/dZbvPzSy5w4eZKD/T3ePH+O3d0tZqanqZZLXLlymb3dA8rlMvl8fhQTJBGFMYViEW/ok6YZj3/oCSF7sB3GJ8ZJ04z9vT1MQ8fQDTIJrJ0W8g8/SFfLGA47GJqGKpsM+xHFnM7f//s/z7Wdde65sglLC6h7HXFmq3NIkTMq2DIuX75KozHB4uIC+3vbBF4fN+fQ7Qm6eSnnIJHR7bRBkpiZmRWxcbrO5cuXKZfKdDs9VFXDsh0aYxUUVWZvf4cT955kcnJyZNKTjAZmMoEfjgYDEoZuUMjn0Q2dLBVGS7IsoWoqhVKeJI1ptZqYlomq6siySq1cZvP2FjPTM5QrFREppasUiiWRkZwmGKZosqr1GgfNNrZlYRo6yzeXMW2b1/7kT5m0HdKf/WH2dnao1hvUa2WmZ6YYnxwjlgUSn62qSA5Iy88AEvKnBfJ6N/Xy7pzXw8dtI6I7CDBsm+998V+x0PxZetbbKIaJ7jR49MMf4e3Ll5kYa+D7IZevXEeTIBw2SeMd6lUD25AplQqkSTBadxUk+Z2if9DrEfgxlu2iWw6y5pJJFhcuvi1ihxwZWfYPv4okqbhue50ARVW579Q801NlTN1AlTOGQYYX2XiBzNj4FLe3N7jn+HFKpTKmKfwYxica5PMOTq5AuVhg5dYammYSeC0M1SP0O2iKKiQVmYSmGWSSTBjFyJmEpNrYboWNrQPmFxaZmp5md7/N5sYGBwf7lMslhsMeuq6wfPUSmqJRLOZo7m+wtrLB9FiFJBOO6JoqWDemoXH8WB3b0TnUQCqqPDJYikZodSwyyTWNNBWGb4ZpIss6vu/h5HP0hzGXLt+m21cZq9tEkdD0irxqWbig6xaqpiBL4u/vugW8QEgCQLAxZFmYZ0VBgKYoSEisbe5imHk63Yhba6sUCznGx8epVCq88MJ3ueee41y/dpMzZx6mWCrxhS99kWaryYc+/DiyLHFsYY4kCphI7mU7d5ZECyiXJ4nSiJpb4l/+7u/y0MOP4eRLyICapiRAs9nEcZwjB/o7mzJJ+vM5r9l7XMs/6L/vbk7vfOzwvvFez0+SZDSEfG+X4B+kVzqUgdz9Ge7e3i8b9s5f3/l6fxuV8x7bX3fzegiP3/n4X2Xz+v1sqO/eJ8syLl06R0NTqEws0rMr2BevoF65QTw9SZKKsGhZFnEplmVjOxqmpvDW228xNTtHpVLGNmWyOCX0fcbqdbI0441zF7nv/tMUSiVhlW7oVCtlHNvCGw5pNQ9ot1usrW8yPT1DlESYloZhqqiKxsHBPvV6ne3tLVRFZzgYUiyUKBRKRHHMxuYaxxZmKBRtwiAml8vT6XTQRmYm3U4PKYtI4hhZUmg0JtANi1dfO8c9J+6D1BOtmwSuYzMc9tjd2SJXrKAbDls7+9y8eYvHHn6I/b0dVje3eOvtqxSLZdxcjlanhaIpqLIGWQKSaIz8wEfXxSRQ0zWqtSpxktCo15kcn0BRJVzHEU61UYRumfhBiKIqXLt8DVXV+cLnv0Sr1eb06dPouk6hUMHJ5UiSmD/+0pe4tbzMow89jO8PKBWLKDIkI+pP4A9RFANVUXFch/WNNUqlPFEU0O9HvPi9lzl37hzTUzMMh0Pefutt3FwOf9inPlYhSUYRI1qMrluQpBw0D6hWhTPh3t4e5XKVvd19ojCgWilzcLBHsVCgP+jje0OSNMMwLP7wD/8t1UqF/eYuY9U6umHy2OM/JJC4OKJUzI3cLkMUWWVtbZ1arc7O7g62bXPj6nXqYyXIJD7x8U/T6/UJIw/LdkmyGN1SyBVcNM0kyzTIPKRMwjRMdnd2mZubJOfaDIMhSEK32Ov3yeeK2LZLlkKrLdyDZUWh2+2iG4bQuiE0vaoioj6+9KUvcs/ScWzTRMoyojgiDgPBSigVUWSD25ub5HM5vGEfVZFotw9w3TJZBl/96lc5ONgjjkM+8eM/xv7+DpcvX6HVapMvltBUFSnL0DWRf3r16hWOLSxQqVbQdI1mU7h1G4aKpsmoqkxw0MF6/hyrO7t8/u/ex/RPPcna2haVyhi/8Rv/nB/+kY9RKNTY3m4yNTfFt595ljOPfoxf+Ae/zK//j/+Y6bkFwlTmuy+8iNNbxu6uohfH2avei1Grkqky/YNdxssuKBmFostv/ov/k2azwz/+H/4nfvVX/hsa9TxrG+vkiwVM06TdanNy6QTdnT6vvvoSM8fHkDUNWdJQZIOD/T6m0sV2ilRrVXTLJFdwSaUY46UrZCk4P/EksixjlizU1y+TZjCQhStwGCV86+lv0RifwLAUNFWjVCwReAEzs7NMTU5huRaX377C009/m/3dA1ZXV3n0kYdpNg84ffoUkiQKijAYkqYRhqGiqBppIqHIGltbW2RpRBD6R+vHoSYxkyRSwLYdhp6HaRojPZGMogoqsud5Ivs3jtA0gZD7/hBjpFlWVIXA9wTd1zTJJAVvOMA2DdIkws25hFE4muhzlK/peR6u6wIjV+BY0OWkETKijBDi9fV13Fzu6B4kYzA+LvI8LUs0nZpmIEvq6HrSYOSWC+lRAWqa5sitNBE6XUlEDWmaTpZKMNKWMmJ/oCggyaRHRk/xEXNAkqRRMy1x5B1ChiTJQreLhKbL6LpGkiXYljvKstUJoxCR3CO0uZZlMTE2jqKoVKtVpCzhvnvvpdftcHxxgZ3tbY7NHxvJT4QBlW1b6KMi+rD5A5lqrU6SZly+cpmp6WkxTIxFgy+yVw2srQOUHzqDUi9y48Y1oiDCHyZs3W7yu7/9Gzz2oUc4Vmugff17xMdnMVo9ZEkiqpUEGylNxWuaroiw0RUsS8exDZrtFtVajYEfsL2+Qhj4NOo1dF3H0E2mp6fRZZlysYRtOximydAbCvMeLWNtfY1qrUqlWgUULEtkaSuKyOjt9/t0Oh2ckeYwy0BRFTRNYTgccv36dRqNBnESoigS+YK4zwz6HiDhmDqNep2DgxbbOzts3t7k7CsvEgQJsiLhug7dfhdJlhkOhtxcXiUMA/I5l0q5gqKqOFGKNQz4utnhhz/yMfK5Ir1+nzSDSr1KPLrO5Xsj1PsSsq89z93N651o0N2F8lFtFe6x1+4TxRm9FzapSnWa8Q0st0irJzE5t4CiKuzc3mRqapo0U7jy1gUePH2cuakcjpWhqpnIvVZUoijE87wjvassy5i6jixrSIqGrGls7XYxjCKSpBFGHrmcgiIHhIGPZTqEYQzovPbKRUplHd3skMQdYaal6ahGntfP3aDV8jl1/2keeugMYejjunnCIGBldUWgjaaKrFgc7O4yPzvP+tomK7cuYxsROUcnDELCIMQ0bdE0Z4LdkUYZra5HbxBy7+kH0QwT0zLZvL3P9PQ0jUYN09QFsyFLMJUI3wvpdNqcum+RpePTWLrKYNhjOPSQJZGAYBoyadzHDyJRH8rySFevII308ML5OBVMhEwwPvq9PrKk02w1sV2bJNW4cHGDrd0hx+cKQCpyo5No1FxJqJZLFIUkUTjKRM7QdJvVtXVs2yZLxTqkKgpRGBEOTRTZ5u0r6zRbHu2uz9TEBJWay9TULL7vMT09xdjYOEEQ4jg5Ll68yGA4oFgqESchMzNT2LbJm+fepG5OsDI8z1ee+yoZNpZb5O3XX2fp3lNUamNUGxPImYSaZmSq0JYGQYDjOH+u/v/Lbl7vzJG9ezv8vtz92CEDKI7jI+T3vZDQ77f9bfP6F9ju1ry+18+d219m8/p+x707aPidi1ZMp5KvPAuA8tNP8o5z1/u9r/SOfbL33P/uycv3fa8ZKEjIqfjv1s1NNBNqkxNoion+m39AVi5BqYAkSSiSjCoLgx4JiAOf4UDl6vVVXjz7DBOTYyAXMHXoeEOKjRpOoYAky3iDPoqckWYZhmGTyhpBJKIggjCg342o1OoiwyyDq5evU8zVBAVG07Eth2arzdI9S1iOxdR0HUkJsWyZOPHIuQ4SOq29PWRUTEMnTUPSDHZ3uozPzBBnGaquougy7XaX06ceIpSbOCWF2DfIUBgMfcrlGopmEg27IxdZk3wxh6zJ5Ao5vv2t59jf3WV1dYWZ6UkqpSLBcIhqW2SyTCopgIqmm0RhfBQvI6GgKTKd1g7D4T6WW0M1DG6tLuPmXeIgRld0Yi9hbGIcVdWIoiFOzsQwFMbG6ly9cgvXNlEVienpSarVGhNTs6iqSavdI4pTCoUyQRgLamAmdGemaVEuV9E0A88Lcdwcbt7FMHRmZ6dRZHAck2ef+Q4PPvg4zYMerc4ehqnQavVx3RyKFIvMQ8ugUChiWRaabqDqCnbOJpETiqUiaQqf/X8/x42NXU4/cIZ+v02WDLjv5HEG7Q6SKcyf9vb20TWNbreDpuuEfoSlq1y7fp1qtUo+lyPLEtIkZmtni5mZY0iyhmnLxIlPmibkyhUUzQRUQl/QpW7dukm71cdx8uzs7lEbbyCrOn0/QpVkTN0mzSRMwyZOZdJRrq9uqkRRQhgkFPMFWs19NjfWGRufhSzD9wbEoYdrGmytr5MvjrNyaxXTsugN+6SSjGHnQEuxXRtJVUBWAYXtnQNy+YKI7wgjzjxwhgdOnyHwQvpdj9m5Brl8nkKpgu+J6+XgoEm5WMYLhjTGaiQkZLKEauhIaYIkycSJhOyD+e1XCD/9cV565AQnH3mU+tgU49MTKHqG67qMLzwEikqzuUzB0XnmG8/x+Okn2VnZ47GPHCeIh4SZx5W33qRrznLfEz8F932cvpdSz5XBSzE1h1anz9kXX2HpxEnmj89hORa2bRH5Hg8/8QALi/O8evZlapUy/rCPoalsHbyGkdOYmL0XTS+gqxJW1sPr7NHa26A29VGGSp5AjkkzFYIi0gtnhcv5E4/S7XZEHM7by2ShhzpWRlIUvIHH1ctXqZeq+IM2uqaQppEwJlFSPK9DIV/H0AzarSaNRpWD/V2qtQonTiyhGoJKLCsGqmaKjE1ZRQNIYjQFJicaSBmM1cdAGzkHjwp/cV8Rhii6rkMqXKB73Q62adHpdjB1hzSR6bR6OKZNv9eiVMghyQphGJCMDElMU9Ax5VRh0OuiqAK91FSDLFHEcETThSlOGBGGgUD2M1EYZrKMJCmCZaJqyGR4/Zg/+9OXWFyYR5Gh3+3jOBpp+g5NNIwiNG2klc5SZFUnkwS6qkgqCgqyKkzbVFVmOIzEWiYnwpRklI2bJgkKMjIiszVNRcSOgkBjszRDG+nrkyh5p8gaDX9URbBU4iQkI0ZWJQbeEMsocIjktNoHeJ5Hzi0IJ1pZwg98FEWhUq2SZimGraFbGscW54W2XZNRVAlVE6hZkkr0hwHNgz1MPaPf3adQrlIs5mm3D+h2OywuLvFHf/QFqtUKk1NTZJLEQbNFs9mk2vW5PVXAmBrj8ltXubW8zle//BTlYo5//hu/wWc+8ytoEcRf/BbBwgxOp0+cxMQNC0lJMRSHKIx55ZVX6HV7VItFdvcOMNwCsqyi6zqmppJlMp43IE1jet02aZphmSYJMt976VVq9QZJ6rG+cYtiocD+Tp+LFy5x4eJF7r//FGkmk2UKaRYKaquUoFkmlu3S73pijbFTQKLT7pN3C5QKBTRNAU2DTCJLJAZdj9tb2+QKBVZXb2HYFr7vUS4XydKE+0+dJucaDIddFFnEaiVRwqULlzh//gKKpGJaFrlCnjTLcJttlCBk6tf+O1TdBGKyNGbQ7yNLCqphvqvQTr/2PADyp3/kXUX/Uc1zV5lzOIhXtQLba1u44RbR1T3cbIq+EuNW5tjc71KploRXhGmyub6Bo2vs7e8yaLaYmKiRyYhmK5HIFAXTsjjkRmiaJop1ySSTIZN1ksxldz9mdn6ReilDkQboikcaRqiKRhD6yHKCquusrmxRLFRxnJygvWcRhmYRpiHDQMLzBWOtUnXxhn2q1SKXL19gfn6afN7FMDT88ICBnyArNrVajr2NS4SDLtWKQ5wlaKYOsoi2yZKENAxRDQVZtalUJjGcKoruEqUKchLTbDWp1BoEocgbVmSV1994g53tAY2xPPvbXSYn80hIvHbuGqpmYjk6uiEQUcGEiCHLjqQpZELnLqmZGObJKlHiE6cBURyzv9+llCtBmqBIkCURmpqQc2CiXkRThZZdGTXDqirDKFNa0zQkWWYw7AMxuqEjSwmqmgp2RyIRRjpbzSaVepVS3qaUtzAtkyCReev6FpaSUCrlyOWKaJqDk8sRJkN8P6BSrnPinvtotbpcvXqdufkZTEuiHE/RY4cN788oVHxUPSZXrvHEkx/lxIMPESsasYSYKUoiT1vTtCNa7d2NYfKqJlgndxg23Um7/cD6/a4a/11U5PfZXzznncfl0cDx0PPj8HXf5YB8yOC/60e669jv/M8Hvul3HUMY6r2/QvVvDZveY/vraF7ff5/RP9o9pNkJ5DMn7nz0fZ71fhfyD6qvfe9DCrmeOLaiJJx96VlOnj5Flijov/mHhEuzxKoBkvhSiEVEQR4Vaf3eAMe1WF6+gWM7VCoN1ldXRlmoBqqiUywWKRVLNPf3eeaZZzh37hzH5ue5eeMG4406B3v7XLh0gWK5RKlU4o/+3R+xu73HqVP3oyig6RqD/oAwCCgU8jTqNaIoxjBMbNuiWCgjoUAm0e02hT7C0Gm29mk2W1y4+DYzM1MUCnl0XWMwHGKZFufPX2Di3gg/azLYtzEti3/5u/+K6ZkZwjjGGww4aHWYmZnHsmxh2qBpTE3OcGxhllOn7qNULhLHIfsHexTzLpois7O1hSorGLpBq9Pm9bPn6Pe6VCtF+v0OtusyGMSYVg6yDF3V6LQ7gnKnKHR7HTTdIE1jKpVRoa1pYkIWZXz9G0/RarUwDB3DsHBdkSP43HPPkSQRY+MNrl29ytT0NL1un16vh2maeN4QXdfJ5XKkKezu7hIFIZ12lwwoFoo88shj+IMBaxtrLC0toasaxUKRzfUNLFcY3FiWjW6YKIqK5/lHWmNZkYnCCAmZpaUT3H/qBGkcUK+U8HyPUrHEYDhkOPD4zre+xYXzF1g4doypmSnanRaSIgEJrpujVKqMHEqFpm5u/hg7e/vs7R+g6Qb5fAEnl2N/d49qqYQ00javra5RrVRojI0TxwmOmxNIaqfN/t4+bt5hdW2dWq2Boqj8wb/5A8YaY9y4dp2JqXFkWeXcG+dwXYdKtcrY2BhJIvHm+TcpFPKEvs/c3Axj43V6Ax/fH1Isi3gW3TBEcHcmkaUZcSSMhVRVxbFN2s0mV69cRlVlZmdniJOIhBTkjJxZxrHypInMb/1fv8Wx2WPU6w12tm+jaQr5Yn6EoIjjR4FA9IbXbqE9c5bW3/s4+f/+l9G1lPGZCcanx5F1mSQOGWvU6Qx7uJZB52CA34NP/92f53/9Z7/O7v4mpYrL4j1LJCncc3wJb+gzvXgvGzt7lMtlVm6t8sJ3X2RyYpJ//a//gOnpGmMTDQolMaW+9+RJfujDT1BsVNlvtpiYmKRWb7C2sUG+VOK//tV/yqOP/x3uvf9Ret0ddLXH1sbLBMM1tEwiUxziJCKTIgxVQ4ozlJfPARA/8TCGbmKYJrHnY168QTo9Lminisr9p06hqTKlUplisYIsKziOi66b1GtjvKDAIQ0AACAASURBVPTyK7z66itMTU/yyMMPUyjmmZ6eFtptBVRF5+LFSwz6PUrlEpquMvTbpKSEcYhhmRiWcAGWFElUyyJAE6QMWRoVaKN1PUtTLMtiMOhjWhbXb9xgrN7gt3/7t5mZnaLRqDH0huimccRkCcKAjAxVFUiFaQmDozCKSBKxJqiaDpJMhoSiCj08o7ztI+2SLAtkVJIYDvrs77e4cvkKlXIJSUqpVKpkJEgSR7IGIW0QqKfvDVFVDZCJoxRSUYhKsoQkpSN3YxsJGVkZ3TZGOmtpRLvPRs10HMfEUYQsy0c5sNKo6EwRSFCWiRzsMAxRR/4LkiQMoNI4w7Zd4TA/coh3HIdBf4BhWCPkN0VWBL37woULnDhxElUVNLjhYIjtOMJQLIrRVR1v4PH7v///sL6+xuLxBcYnxrAdhygS65dhGhimwYULF7l+/TqtVhND16hWKgSBT3/Qx4kScrrFWtnmzINnmBgf4yc+9Qnmj03zS7/8X5IvOJhJgvyVZwkXpnB7wnHfP9YEo0PSL2EYwuxv8/Ztjs3PUiwV0VSFre3bwn0eCcu1yedd4iShUqnTbA1YXl4DKabRqAmHWEWh0Rgf0STLTE5OYDsWpXIJWdY4e/YVbly9wtz8HLIEmiKhKTKaKqEpEsNejCLraJqOospEaUSSxsiqgiLJSKNGpFarYVoG1UoFMqhUa+imiWYaVGo1VEWnUCwRhjGFYoUkkcnlS3SaXW7fvs0nPvFJdncPeOvSZWYP+gx+4ecxTx9jMBgQBj5ZmvLUU0/xsY99lPhoKDTS793RvL7Xlr5PvEfo+bSaLaZqLoNvldHiHFe2L7O73+Og1eaBM2coFAoMhz65XIHrN5dZOjHDWNXk5ZfeYHzSxtBlyFJM0xp5b0ijRiQhDCMMXdRFKSp7Bz3CCFRNxbUysixCynwkhHO9rsniO5TJTM9MoWopkpSimw6S5JJEPqlksN/0kSSDT37yk0xPj1GvzfDqq29wz/GT6LrN6q011te2MG0bTTHwvTb+cI9yQUWTMmxbERmyI9dwVVUJhh5hECCrJkGocPPWbcq1SfYO2liWg5MT11m31+OtixdZuXmT1eUVZmZmuLV8k4X54wy9FbLEo5jXUVSder1EqWSPtKeHeJpwQs+yDF3XR4hehGHkiULodYUBpSqDKisU82VUQybLIhQlQ9N1VN1gcnISRY5H7tUihsiyLeFn4HliqDlacw41pbKsISGuV001iMKUTtdHlwfkHRXb0LBMnUtvXWd/v4Vtyjz00MPIisLLL73C5OQMn//sF7jv1L2cffFVZmYmqFTyXLjwOouL8/S6A9ZXdxn0hiwZH2Kz8DSn7lnCa6vstfZJJZWpuUV0t3jk7vyD1OXJqyNH+kejwx3e83kfdIz32u5sPg+b5vfTvn7f1/j+YOkP+MB7P/hBn+dvm9f32P5jaF7lMyfualzhP2Tzev6N13ns4QfR7ALdlQOcp56jf98i/jAc6akCbm9tUijkRaSHbnL16lXGx8fY3t6mWCzT7w1YX19jYeE47XYbXTNYubWC7wf0O8IUqN1uc/qB0yiyhD8cUqvUOHfhPLVanUpFIE+PP/Y4bi5PFAlDKN/3qddrbGysUq2WUFUd3/cxTZvdvT2QRFZiEnsYpoWmabiuQ75YYH5ugZybE+67krDRT+KUr3z5q4wvGpTKRfLqHDduLlMsiQgG13Xwhz5Xr93g+NIJJEnmYH8fXdVG1LK3OHnvElEUABnD4RA5SzB1nTRJRJi5YWA7DgW7hG2bWLZGf9jBdnIYRoHNjdtISBQKBdqdNtevXaVULlGplhkMhty8uYymabz88lnq9RqObWMaJr1eV0R35As8//zzHD9+D7Ztcfz4InES4dg2ubxL4IdcuHiRxcVFQZHa3qbRaOAHPvt7TdqtFhvrG4KGk8TMzM6yu7vH1uYm09PTSFlKHMd02x3q1SqSqoqbhabRarbY398faUwyVE0nSRKiOMHUTVRFQSUlSyNa7RaGZWGYFmmaYag6l996m1w+T2OsQT6fo9vvkCvk2d26zWDokS+WuHL5KkmSUqvViJOMwI+oVCqoqoiRkGWFYa/PYNDn9uZtMSQpleh0ehiWjef7+H7AcBSkPjExgeXa2I7N0PMJw4CtzW0c22Z6akrEHeg6f/rc80xMTFCtVtne2SGOMp7+5jdZWrqHWq3C6totxibGGAx8HNcmCHzanQ5RLAqaIIzRNXN00xBFu67rpHHMxPg4OdclzVKCMBB6RjKWr63QGBvj8mXR3E5OjDMc9rl8+W2WTi4hyRLdXhdF0ZGA4aCH1uyhffss6T/6Bxi/9HPESYDfbTE5M0WcZrRabZENq8g4pTxZkuF3Mo7Pn2J1dR1Zjbly/SK/+F98hv2DJmP1Br7ns7+3T2N8HEUTeZ793oCpySkq5Spnzpxhdq5Gksa0u4KCuHhskY31FfR8AYDpuTn6/QEXL1zioYce5p/9b/+Cn/m5n2dnZxvHljD1hH5znXZ7h2ToUxmbQdV10iRDlVWyLMV/5ntous7vXX+L8+ff5PTpM6idPvrZN0mOTQFwa3lZoGuSxObtbYIgotvrsXl7G1XVyOeLNNstlpdvkMQxDzzwANVqdUQXFdEtYRjz7W9/h3a7xcmTJ4ijCGSQZAXdEFrwME7E313OQFKO1ksBv4o1NMsyOp0OhmmQphmmaRCnGTvbO7i5PA+eOUOjUSNOIhFdMjJokmVB0T2czivyKOJGyjANUzS1mkqSSsiKMnppUZhmWXYUBSONBkiKIjMYDHAsC8tyOL54D0997StMTY1TLJVAeseMTNWEzkkekftUTSVOUoJAGI/4vk8cirVfVcWoPEsFFc7z+qNGVzTN6khb1u33jgZtuqYJbpAsH92lskwYLR3Sk7ORGc+hqZQsyaQpwuwqOjSdikf3l+LIJEoTf/cRAl4sFUWjMjVFFIlYE8dxyNIMzxPIbHu/SRIn3Fy+hWVbPPTwQyAJI5trV2/Q6XZo1Gt0O13K5TJxHDEzO0W5XMIyhZO947rkFJ1EgvAB8Z0sV8ps7WyKeYbITkEaeihPPY9y/3H0gw4gEc9kIjaoW6Db6TI+McHExATlUgE/9JAlSJMYVVHZ3dkhJsV1HSQgijNy+TKabmPoEp7fR9MUTMOh0+niODaBHxDHIeMTYyLSTlGwbYdKsTiKuIMoCCBLUGTQdVUMnF0bw9DJ5NF5PDynSCSxGAIMvaHQ0/d6tFst3JxLrlAASSJKUxEKksm8/sY5JsaneOP18zSbbT720R/i2LE5NF3jq1/5Ks1Wi9NWju5DpznISeRyOTRVod/rcf78eR577FGyUYxH/DsuyWsaymdmkX74IeRS/j1LmPR9CvHIj+n3uuyuX6N0c5FIbbG8vYFbaPDY448iK4poKg2TfL7InzzzLHu7GyzO1qnXZAxDaG+dUXRakgqn5kNXVEURsVyplCGrNo5bZnxiljSNIBkw9HroWobvDUmTZMTq8ZFSmTgOyQgFuhsr+J6Ermc02wFRYnFrZYNCIY8/7OMWyrTabSzLYndvh3JF5IO7bl44OJsZmxvXKOd0TE0nS33xPRrRnUWsWIZt2bTaA7b3h+w3B8zMLVGrN1hdWaVSq6LpOpZlUa/VKBcK1CpVynWHvb0NdEXlxEmDQs5AkvrYdhldk9BU6R3Ghiy+iwJ1Fc1lGArNtawaqIqGqqloqkSaBsJPIoUkS4CUMAogy7BsF8MykZIIgctlYniniHxqsUaKNU6wO4SEIUmFI7CEMOiL4wxVs8jnNLIM+v2ATNKxcxVU3eCBBx8hTcSaNxx6bKzdRjN0ZmemcJ0CSRpQq5cZeD0G/SHlcoMoyog6EVZiccP4PHlLY/3GHpmpoBg2qukweew4GfLRenb39ufqcjtDmUuQ6+nhDu/5vA88xntsd0sC//8e62968yr9++QM/Yfaoih6Rz3zAbD5e+3zV9XIvv+WfsBj7wehv99z3tn//T733b8/ynYdFS1JJJwVv/mlp/jIhx7mzWsrnFzto//27/PFsM/O7i4/93M/TaHooqhiqq7ICv2ez8qtG0xMTGAaLrqusbq6zNyx41y/epV+r8+xhXlu3brF8aUl9ja3WLp3iYE3IF/Ik8Qx3VYbx7a5ePkShUIJkPjOM8+RpvCZX/olOq0tTN1E13V0VSHLArIsQVZdLMsmjmNu3rxJoVCgWq2QZT5vvvkWjz76GK3uPmEUUshXyVKQZeh2uyiKwnDo4bo57Jlt4iTB7N9HFAmU4+Bgn4ODfZYWj5MioZsWYRgShR66pqIoJoqSkqQRvj9kMBhSrdZp7e2yvr7OzOwc+WLxKFg86Ge8ffkCjzz6AH7sk6UKm5tNvvG1p1AUhV/4hf8M3dBGxXEKpGiKwcbGBpblcPPmTZaWTvDMM8/wMz/zaTY2NrEshytXrrCyssLP/uzPiAKt02R8vI7ve9i2S687oNfvMT4+jixJfPZzn+NjH/sYlXKZLFWOpoPnz5/n5ZfP8pGPfoQXvvsCP/3pT5HL5XnhhReIQp8f+7EfRdNVAgSiU6tU6XY6FIsF/KGHaekMPQ8nXyRJErI0xR969A928cIQO5ejUhtDVTVub25iaTrIMsOhj+04OK5Fb9AV8T9xwq2VdWw7z8bGBqVSmcXjC+zvtclPfY80TVhbW2NycgJVU5GQ8D2PsHOMLJik0RgjUdfxOMfOzjaSJDE21ji6uUqyhB79JJ12B2/gUZq8xsbWZQqFPPl8QVzbiiwQn2QaW34U349IswO66beEriZLSbNU0CdHCJAWfRSJAlmWEUkXkI1N0cxHIYqsjPSIEnKaRw2eoNlqYVomWuW7pGlCr9PDMASyLysjJC06wbBVo1Qq4CU3iJVLI9MQmaQ/QG33iKYbaHOTWD/xvwMQ9Vuk536PtLdNGEbCfdgbMPQ86vI+WQZBLOH7PqViDqLBiAY7Mmu4c51QbYZ+gGVaJOEAVc5GdLkRKnK4v6yQKdYR/Sfx2u+Ks3jX+qoYbBY/TvXBn6KebbL9wu+QK5RRNIs4kfGDANMyUJZvkxv8HeZ/9/9gZmaWz/+Tj5K0V8nfWCMqF5BHsTJRGCKnM6ytjeENhzQaDaxRXvTO7i4TU+NYlkkcJ9i2g++L2BdZVlB0hTA41FMJbWYUhWi6he8FyIpwSH3++Rd48sknyehjmjaSJAvjFgkyEkF7U1TCMEIZaVKPtGaqiizJ+J6HqspHrBXuaFqDIDhy35QylTQTFLMsTQW6K8ukqaDyirgZ0aymaYp0eE4O9Uqj63HQ66IqNlmq8K1vf42Pf+JHcGwHWVPFOckyfN/DMk3IEqIoQjdNokRib7fLYDDg6W98g9mZSX78k59EUmK8oUfOrRCGEXHioWo629vbODmXYrHIYW64REYYRegjal8UhiOzKRHtYVnCNCgbcccy6Y67WCaNzpE1uroy4iQYodRCL5emMsNhH9dxERrfhDCI0HWDdmePYrGAlEmkCayurhBHCaaqUqvXWNu8zeT0FOaICSFiN0y63Q6VagnP8wjDiHyuSJaE7OztMj4+we7eHo2xMVheJ7RN9v+TH6Xb7TI5OXFkyHXz+g1OnDhBsrWH/Jn/md4nHse2HSQUpOp1ceytOYIgoFarkaYppqnRPNhFyhLy+TxJnBIEEa1+h1qlTBJFkCl4QcZXn/om440yH/3Yh9jYWEORXL75zaf5yU9/nPm5BeGtYOijgjxAVTWG3QE7O1ssLS3Q7TTJpAzHcRgOPYKohePmyTIVN1chTWVAQZZCcT1oBoEfkCYZ62trbG1tcmLpBNV6nUwRtPZmq8XNK9dYWFhgZWWNe0/ey7lz55ibn6NWtZEVGVlS2by9zfb2LrXXrvBbdsw/+c7nyefz3Lp5nbmZGb78x3/ML/7if44/Ql7j33EB0H51INalO9aQO1GtKH0nOuowPQEg6PZYuXWTg2vnOfPsr7JsfpaVg5BidR7P79AdDHnkscdYX99id2eXg/0DXEviw6cnMPWIMMlGGfUycdQb3ReE/CbwfREdFSekskrfV3Dy4wwHMUkSEPm7VKp5vN4eBccV/Ygc4ft9dMUhCANUTQZZxR/Cd759hY/8yDx7TZm1LY/5hUXK5QJh4FGsNkjThGq1wsrqKtVqBUmSuHF9jYX5GQy1T7e9RtTfZWdzh8VjY8iqiqSM9O9xTBIlouGLNIrVBW6s7DIzfxJN18RndByGw4Gg/8cJazdXmJmY4qmv/xmDzh5SIvPxjzewNQtVjjEcmTiJUDWZNI6JYkF59b0Ix3GQJNFcmqZJFEX4YUiSCO8L01RIUh9ZUlFlG1QFiQTSWDAxRrFyXq8jzr+mkWYCZY2jGE0V5k9ZJiRoui4MmgaDkDSJMQ2dMIxZ39gmSmSm56ZIEolbKwfsHQzZ76QMghRFt3jyI4+xdGKRLJG4eXONdrvNIw/fz8rqBm7OQNUkdrZ3UFWDQr7GW1fepuDnOV14iBdP/grrl99k+9YQrVLl8Sc/xWNPforizEmCJCMKfIxDk7zRdicd+HDd13X9XfX5nVX+D9KjHK65dzoFf1BDKiKzknf97vtt78duuMOw4AOp/He9i+/7enduhu78ezVnf6OQ1zRN/5fvt88PNGX4a9nESU9XNsnaPaTinVPFvxzk9QfZFFkhjiKyNOX555/n0qvPceL4LNML88jfeZnm1jZqo8jY5ARPP/11ZmdnyLkummoiSyory7c5tjCFrqvk3RJpktBsblKujolcvm6XSrnMnzz7JzTG6ximjWlbNNsH5AouURRx4/oyN5dvcfrBM5SLJW7fvs1P/tRPMj07jZtzUMjIMjB1HcvUIQtJEx9J1UnihCRJME2TWq1KkgYEYcTc/CKeF5GkCZVqhSxDFFKSMFcxTRPXtYW7Yr5Plqa0NoE0JQx8nn/+WQb9HovHjwv6jSScSEkTTEMjjmSazT2hAfOGyLKCadgomoWTL2DbDkgSvjckSxMGnoeqKyIvb3sf0zD5/Of+HcVCjh/90Se5dOktDg5ajI2Pi5tjFJFEIbVanW63h6qqjI+PMzU1DVJMvlAkimIWji1y6v77GQ5F8aTrKkkSYlkGYRgTxxluzjlCNqanpzEMA8d12Vhd4fqNq6iqjGHobN7eZHZuljNnHqQ+XicDFFXn+D334Li2KCgti1IhD1lK6A+Rs5Q0iZAVGUVWyCRZZAlqGp1OmySOmZyZx8oVSCSVOE4o5nOYtsn2zg7J6CZUyOdot5qQpuQLVYrFCpIkMzU1TalSIE4CmuFn6fd6KLKgcqmqiqaqDAZ94iQhHBao144TJSmJ1GFz5zylUplKpXxU9HtDjyAIMLOTpEmCaVlIxm0KRdF4pWmCYQhURzhTu6jyBKQRihahmNsjh9jDPE6hO01TWL2e4dp1YczAJqnURpEFJTJLM8ig3++jKDYq83TabcYaY3jJJUBC1TU0bRQ7QoakKMiMYyo1ojhCM30yZY8wjDjY2SMXRGTHpkgbwgilmXsAQzfIF2yijddJvC4SCnEUs7y8jDccUjWGtGjguScx6vcguQ2UdAiqjReBrNukiomkOUiGgzb1BPr4/XzrxescHDSpViokGCiGjWzkQLGJJA09P84tr0Zp4VEyd5ZksIOsuaSKhaK7ZIpBmIp4nER1sd089olPkQ32CTZfGaHoKpkkaPBJFoFjc7b4AL/26/+Uf/gPfxF1/1WUZIBy0EEyVKRRzEyWZkhSCdde5OtPfwND1zFMg+eeew7btigUXfL5HJIk87nPfRbbdikVy3z3u9+lXKliWSZZlqLp6uicxqQRnD93nq98+Y959ZWzfOpTP45lqBiWMGTKstE5krIR4iaMRXr9PkNviCQL5EZoQxF0U9ceUWcZxVPpaKpOEIqmS0RQZHjeEEUVcTbySNOlaQreYIgkZbRbTRzHgjQV8UiAcocZYK/XE7pJQxO+BbrB/sGuMAVycySpMorYSoiiAH/YpdtpEgR9/MDHtl1U1cTQDR544D4mJxrIikq/36HT6fJ7//e/QdcMGo0auq6xvLzM2toaU1NTyIqCpAjU4dDF8rC4Omw8dVMwEtJD12JR2SMf3d9SZBk8f4CqSaLxk7IjxEt8XvUIBZNGyO3Zs68wMzNNkoRHeZCypJBlEl/4whdZWDhGfXwM07bQDYPQDwiGPqZmMPR8LNuk2dxnc3ODifFJPM9DRrAjdF3HcmxW19cppBKZpaM+8TCOWyBOZOJYwbaL7O5skc8X0MMM6cvP8DYhlmULp2J7H0WWuXJ+l/n5GWQFJCkjTmKBYMUBiiyxtbVNsVRG03V67TbNgz3CMEBTNU7df4okVtne2WB+fpZScYKrV2+wtn4VwzCoN2pHf2vP95AkcJzcSM7hc/mtt5mYmEA1TPLFIrIivAJMyyTwfbIkptNukqUJmq4jjZpBRRIRYJPTY5TLRVqtA2zLgDQlSyIcWxaOwVMTZGlMtVoU2ZuJMMYTw4A8tVqN3E6LR/7b/wrr5MJITmFh6DqdToeFhWMko/OZviYMvdRHow+szzLp3TTjo9pGCtna2mC+XkI5N4FXvsb84sPIeo777r+PmblZXDfH+FiDc6+9jqbItNp7HJt2IPFotnpcvXmTRqOKZcqjdV9kjieJiGoSySgq+60Q3xcShLWVm9xzfJYkCiGNUUb5pXESkGYivzRNFZIkQ5EhCgNOLk0TShq9oc31WzvEWUK+mGN6ahbTdkTkTZpRKVdQFY39vQNB50/B77cJhx1UOaRcypOlsUCK41g0RmmG74lzsdcaYOfr2LkKaxu3MU2DKPTY3Wmyu7tDtVpBN3RWbq0QxTErG29hmykPPdSgYCdA8/9j702DLDvP+77fe96zn3P32317n5menhUzgwEwAAFugBQqlB3JjpNYibO4YjtlV5zK6ij5FpX1wanIcdms2IkVWaZSKVkSRZEQRYkEF4EgsRA7MJh96eme6X25fftuZz8nH97bwyEEcJHsxI78Tt2are/St889532e5////TGMHHEAdMshitUxLqXEcTwA0jTBcRyiKML3PSgKfK+EaboMhhGWV6HAA1lh0B/Q3t2nWq6q3axWEMchUqByr0dS4CzNVJRglispsmmq816akcQxjquiBKFAlwqOaTs2UlesmO2dPoZZwnQqgGo+Ts+0qJR9+r0+pmnT2d1ld3eLSsVT2coJbG+1qVUbfOUrv89PffpT9KIeM8ExXiu+TpwNWFlZY6zRIMk13r16g5PnHkMzLJVU8SHH7EERmYxsFfcbx+KPAsgevM8PWgfn24Posg9j/hx4b3/Ux4UPh0g9+B8/suf1x6xX/lTIhv9VLF6T/+6XyF94A/nnf/LBV/MD7/NH1x//tSejyczG+jrtdpv1xVc5f/4kbtmj+Pu/gRir4rQqlKoN2nu7nDhxHMdxydKCJE25dPEGY+NlHMfh0sWrZGlMELaZmTtGFIUcWzjK3bvLTEy2WDh2jGq5gW5INWETsLq6xtGjC4w1x/FLZa5duUqjXqdcKeF6Lrqp0+91CYYBwTCgXHJZX79LHAdkhVTkRNfD8z00rWA4HJBlIKU1yjCNMCydJM6wTDUlqNfrSKmRpgm9Xhe93EdogpKYZnt7i2q1wuRki1ZrDL9UJU5VEazrGoau0dlrMxyqiUeep1QqZXy/BIUkznJcz1c5nVKqHMy9NpVGXYXPWw4UGou3b3Hu3CmSJGVmZpqXXnqFvb193rt8mbv37uI4DpWyipZxbBdrBLFo7+5REFMqVdnc2OTu3XtMTEzgus4o5kBjd3cLTWo4jkdRSPY6O5RKPsXIk6rrCqNfLnmMNZso6E/K4088Tq1ex3JMEGAYJtURlCmJQ0xTx7LVJufu0h3Ic3a3N0miaESLFGpDbiqojGnq5DlIy0aaNsnIu5enCfvdDuNj43i+f3+Cq2uw3+ng+jWyLGcwHOJ5DkIbbdL1RVzXQR/8NGOlC3j6KVx5GpNTyHSBscYCum6QoxGFDl999g7p4DBjladwxGmG7THy4RzZ4BC2pXJrd9ttJsYeR2TH2Fkt099qULbOoRcLpMEctjFHHCcs3Vmk7I9hcpKkfwhXf5jt1Qqbyw5WcYbvfGOLmaljWLat/H9Zg8HuOOH+DL5+nt2VCr//hRvMTj5Ns3qePMtxHZcwCGmvVZmsfhQpzuLKMxj5cWRxCi0/haaNo5Hz+muv0awdYdBucfuSwPvmPun005h/429TzP0k7umfoVQuAwW9bhv90NNYx/5tfuGfvop15NP8wv/xNX7mr/9dansv8MpdnQuPP4ZXqSLtMln5MFSOMdDHKU+ewxg7Rt8Yp2eM41VaJJmg3myRWU30+knu7htsxybVw49hTZzllStbNA49TBjFVKrjCN0ktmbo0ODinT6iepSpEx+nJ5os7hToMqUyNom+8BHk+CxrvZBi5gzGkU9TeuivIU/8WxTHnsJY+FnutveYaE1SrviYh57CPvlp7Gs2zvYkcuJjSHGa7v4kpGOk+R7Vmo0QDteuXaOz38GyLU6cWFCRRknM+PgE3/nOi8zPzzM2NqZyCzWBbZvKczvy0epSsrm5Rntvm8cunGd2dhKpF0jdBLSRFFzVXUEwJBj0VFaraWC7LqZpjXB6akKqJkLfo5QqYrBSHUs5kgmjSLtSKummQIwktkoJYBsWmhCjCCKh5HRCI8nSUc6skqUKoTr2pqGT50oWPXdommq1TL/fx/Oqo6KvQJcalqXhuhamKdFNE6FJdGljGCamoWOZEtN0sWxj9N5YnDlzFstWFNvxVovJySk1ZRCjYhLlZdVGxY8upbp6jTZYiJGMWBMjCfP3rmIFOVmWkGYRjm0BcuR9UxAYcd9vDGmSUow8hUUBvu/j+c79jNbOXpd6vcZ4s8XmSHJZrpQJw5BgOOTOzdvs7XY4fHSe9fU1JqeUf9T1L4ef3QAAIABJREFUPO7dvUsw6FNvNOj3+0RJQrVexw0SEl1DPnmeLIOlO/f4X//uP+DJJz9Oa6zGYBCiBSHyy9/iW5ur3L59m3NnH6KwdxECJiongYIoCnEcC00aCHL63X3KpRKdvX18v0IYhjTqVSzTwLYttnd22VhfZ/H2BleuvsuFC4+gyxJBELC2cYvTp05RqdTub06Vb7pgv9dXbATT4PDhw+x19nH9Er1BwOuv3iCKMhqNOqaukSYKKuQ6PusbSpHk2GpCvb62RrNZReqSWzdvEgyHuLZNFARoMqXX7ZGlCWEQEIUDwnBAEgsa9Sa+X0VKQx1bS2von3iS4vAEWZZhGjqrKyu88cYbPPLIeQqpFCrZG4rCKq5/keLiDcS54x+8idE+GHCTx31u3b6Ou1jC2PEIrLs4pWnCWFCpVRkOA5IkYWtjHce2CAcDHr1whrIbYMocxy0RJTG2o+NY+v3JaxRGyiojddI4Jcnhldcvk6QaUxNTOI6BayuC893lO7i2OzpuM7IsQdMtkrgYyV8LXNtSe5dc5/nn38H26jiezZmHTpFlBWmms7/fQ9NMdMNC1002NrZwXYtgMGRyrMH62hK+K9T0MlfxbpqU9zPrdalyVwdhzsTsUdJco94cZ6xZ543XX2Xu0FHqjRpoKi95cnKara0dZQdbWWO8adCqTaDrMWRKGUKhpP2WZY/2UyOAYJooqfAopxogzxQ8bPnuBqvr29TqEywubbK4uMWh2UmkJvEciyxNYEQ6TtP4/s8ziZU6Js9ypAZpps6JURwr3oaANMvxR7aq4XA4Ov9ouGYCeUazOUm1Wue9966QZTFPf+IpTj50mqJIicKIi2+/x5NPfgTT1NBNydrqFm+9+S6eW2Z6ZhrXs9EtC8ct4bUrfDt8jt/78rN87KNPsbezQYpOrlu8ffU2Fz7y1MGh+UfWgf+01+vx3e9+l4nOIdiRyFbxxy5eHyxQDyJx3u95fbB4fVC58K+L138J1o9LG/7j6MA/fP1wEvD7ngEQD0TlfOr+v334+vGK16LIPvA1GZmadkUYZOgYaKxceo+ZUpmqs4XdPIz1+j3kl19k+JHzVJoTDIa7nDv/CF6pSpoWtHd2uXb5MlONEu12B6npeJ7D1tYG83PHuPLOG7RaLeJCY2Z+nkajjm1Irly7gev5lMsVyMEwdHZ2N2mM10iCiK985RvcWlzmzLkzBEEf0xT4vku5XGHYC+juD5CWzdjkLI5fVqHUlkUcBYRBwKDfxy1VMEydNA3pdDqUKw10w6ZIQ8rlMkt3FimVfNrtNpoQOI0YBNy+uM/v/d5XFPhiZgap6+jSJo4TbNemKJT8UhOC3332K8zOztFsjlNQkGQpmp5jSZ8kjpEyY2l5EcO0ePvtyxw9fJI4ixmGQ0q1Ks3mGIZecGj+Yb772uv8mT/7Zzh//izTky2mWi1mp2aIwj5+2ScrcsI4JIoibt68ycTENJ39PcbHm/R6HXRdQ0qDYZKxs7lGrexiWDboJkk0wHNMJbVJUrIkxTQsBGqabJo2URxTHhU+nb22yifVMkSRkkQh3e4+um4qcqWWkacJpiExdJ3WxAxuqYZba5AWOYamsbu9hcgFhu5il3x2trfJwpDO1ga2odHv7zPsBUrOlEZUaz5J0gcSChIsu0qSqk1UFI28Vv0Qq3yP9Y11lm9K6s0mSZbTH4bs7aWUq1XeeutlTEtD1wSGZjM21mCyNUbQ2yeOA0qVMm6pRJJDIQSlkketWqa7v48QklJJZdqapsPuThtZaDiWzaDXZXpilq2dFbI0xtAdLNPG8SyWF5eYnZ2jWqmSJDGWZRCFQ3yvhON45HnBysoKzbEmk1OT1GoVfNfjztIdxlstur0ezYlx0jxHEwWaLOgPexi6jq4JtAKKIqLeqFEeTfQn72zgNmqs/ZWP4dY9vKpPTkoc9wj6WwSDiJJXJcsE584+zC//4/+Nv/HX/yoPz6aIrbdZ+MjPgJRkuZrQqI1Ojm7oJFmClAY7W20qfoVev4PrWNxdukt3f58TC8fZWN+gOdnE9R1MQzI+1sT3XBxbgThu3rjOu++8yezsNCdOH8e0DW7dukG5UqbfD9CzAD/fJRn/KOvLi3zz975JEaWUXJ163UAKgaXXyUWfyckWjquiG+Kky+bmKu5mD2NxhWCsitR0yuUyhmVTiD9gbHyAaz1MmqbMTM+wcPQYpqVjmBbSsLAdh6NH5yl7LvVqmQy1yev3ByoPESVl1USBbds8/vjjTExMUhQCKU00mZJlOXGUYhomQqhsac9voOkmoMjeRaG8m1EYksTxyHOoo0udKIoRQsMwJGFvhzTssL11D8c1yLWCAtWxVxM5CTnomkGRhkRJClInExo5GnlRkCQReQ77ewMc28O1HZVjqqtzlmFqo/xZjSQukEjIUzQ9Q2iQJtooFkgyHCYMBkMcx0RI1ewShq6KcE1HNyyq9SqaLtjr7GOZLlEQ4Xk2ulSAnziICXodbMtCReUINKmryWquMl413SQfZcFKIRB5Sl7EUBToQqPICgxNZ29nB6fkKTbDKEInz5SvNy8EcRRz+8ZtoiCiu99l9vARZBFTZFBk4LgOV69dZe7IDIeOHMGyLOI45u7de9TqdWYPH8JwLYpRYy1OYqqVGhsb69i2jVuu4bgqm3W/0yENQvwko59kFOfPUGRQ8jwuvvMWP/nMJ4iyHL/iYqUJyW/9Ad5jZ5nqBoxrkng8VLErYQPdsCjQyIqDGBGJ5bisrm0wPj7J5tYWptQIgxDDNEnSDNOQJHHAI+dOceahh/DLTeIkolbz8Z0Kx47OEQwH+J5PHOfkuUA3HMJBl0q5RJonSEMjJyPLlFLg2vXLRHEXXUKlUiVNNTRhs7fT5g++/Ptsbaxz9sxpkDn9oIshUrRc8NXnvsV2e8Cxkw9hl0qUdIFAZ3Vti7HJOUrlBkUhubG4zOTMLJqukeQxaALjziraM0+gHa4Q5Tlm4WDEArfsU5ptYY4AffeL19f/b7i7Dj/7tJIvCiUzP7i9f4p0f6+XZCyvrnF4cILe7S77wTLPv3yRM48+hZA5nu+TZjm6rjJom80mq6vXmapVMAo1Fa9Vy/iuSxIG6FJDCoHUQGoQDHpIo4w0bJZX25hmjeFgyJEj48iiRxwNaLVqpNkAaRZkWYLUJAY6O7shzz9/m4mZKm7ZIgp0Nnd2aO+keJ7H1FSVRqNGsz5BruUsLy8zf+gw3335RbJwCFnI3PxZ7t1+F+JValUDqYNrG4gsIBc6huVCmkCWEEQRmdBwy3USq0Gp3kITBcOgz9ShWUyrhK5LFm8uc/3qItPTU7z8ygvstjv09jqIPGdsTJDlCbZbJ8wjCi1H0xOiqE+WJGRxBkInDUNcQyccBGiYdIcFlhAEYcT+MGR7u0erMUG7HXL15gaHD01iuRl53kGXOWmUkacFwtKQhYlWaIg8RogMIQ01VS5ytFF0Tq6w7+iaTl5EDIMupmkSBhFFniD0lDiFQeLy5a++hRAGJ48fZ35umkGS8sYbb2NaDg+dPc3SvbuMjU/Q6wUcXZjHdnVmZidHNg6TN159ncuXL/NQ5WH2x9o05wX3lt/BKUnWN3fp7Ef8/P/4tzEdl0wWygv+4E79wG4zkvZOTU0hvlSBZR3tQnT/enwgA5ajRs4PK1wfXAf3yfMHMseL71lL3l/UPlgHfZjVR3zfr+9VKkJq95kLyp2sqgzt/V/3wI0fs7b6U1m8/ijrww6MH794/eNNRX+8nNcf9zk+zP+K2vgIgQ7oJHzmf/47vPLyC/zETz9NvT6P9j/9KvHhWeTEOOQ51UqZAkmSqK6urmmMjTWZbLUYm2jdz6eTUrK5sUkShxxZOEYQxWhSZ3N9jfbuDofnj7Lf2WN9Y41qrYKuS+r1OhSCvfYe29u7TE9Pc+jwLKWKjxAFQRBjmSZFnjE9o3yOwaj72W63Fe1WgzzLiOMQxy9jGiZJHCKExtbWNleuXmNuZpIgCKhWK/fftzzPsWoBAkHcKdPtDnj44YexLJN2e5c0zSmVfYbDIUUBruOiCZ12u8OlS+/Rao3hui6e79Ht9tCEZH1jhWq1jOPYuG6JkycfYn19A9e1SfNMET51yerKKqVyjTfffJNjC0fQDQ3bNkfZaHDjxm0Mw8IZETdt0+HOnTtUqxUsy1SS3JlpVTToBrrpIkVOniYMgghNNzCkxqDfx/N89vbauK6H1CV5VjAYDgiCgCAIsCz1vIahUwCrq8prWuQFpZKvpD+iQBom7779LrMzs/heifXNLcqVMoUwsU2btdVVfMdnf79HtdZAaApglcaxAhYVBabtYDg+pWoNaZqkeUGWg9AMTNsniVP29zvUanV0wySOMmq1Bpl+HU3TmGp+kjxT8t5ed5/f/M3fIS8yzp55CNOwyLKcosj5+te/waHZOaanp0f5kDloKsfS89yR7FJN2jr7XUBg2QZFno1ItHIEgaohdUsBOEwL03Io8hxTV57hkl/GL5UplUqkaYrnuays3mWi1SJJY0plH8PQcV2HtbU1LMvCcRyCETXR9Vwovudd2eu08T1/JLMUFCLHsV2yrEC8fhmxskHx67/E2PQ0hbDIsbDtElIziIYRruuS5xpSt/nVf/JZvvmN5/hLzxymuvhryOmPgeERRfH3KLZSJ05iXNeFHNI0IwwDhsOAXk+BQiZaE8zNzWGYBnES0xxrsNfuYJoWYRhy9eo1pmdmiOOIbrdLqVyh0WgQBOqCXK+pCZHn+VTG5kjXXmF7P8SeeZRvPf+HZFnEzMwUllNieWUL262gPfci1vIWu/WSgv+YOpomkNUm9tdfJTs6x80bt9jvdGk2mgTBW2R5RntnnFZrgsXFO+ztdZiZnSSMQrXBMYz7uYFBOMSwbD772V/D9z3Gx8fVBFAIsizFL5cYDoeYljWKeTiQweoMB+pzoxsanucqhcGB3+6B7rlhKE/Zg1Kufl9RS3u9Ab6n4jfyAizLBakjxCirTwjiKEFokKUpghzbdQGIoxBdUzE0mqZh6AbPPfc15o/MIwT3i544jkcwJ0EYRgz6IVs7u4qebEiENJS8TWgIKbEsNTVWICUohEaeq2nMwbXScdSkpVQqo8uMNI8wTcnW9gblkq+IyZqG0KSaKgpBkWeIIkce2AtGGyhtJKOmUBApTdMpCjGKwYBSyScd+aryPL8/udUNQ0m9peSf/fqvs7KywuLiIqcfOo0pNdIsZ2VljVqtgW3bOK5DEicMhgNKpRJ+yVcKFAqqlSpREBCGIc1mkzRNWVm5x9TklMqrjGKyPKNSLmPaFntLdxkzLcInz+G6NmGomABSKlovZBhxhPjiN2l8/AITcY7IcvIjasq8fS9XtHbDREOMgFbqvfVcD4TGs89+iYuXLnP85Gm8cgXDtHC9EqbtQJHR6ezT7Q+4c2eZpaU7BMOAucMtlRtrGQzDIYiCOBrej+fa2dnCtEwcWz23oRvMHprj6NEjKu83y1m6s0yt1sB1bRaOLXDi5CnE6PgaH5+g5PmYjkcY5Ryen8dxHQxDx9AgExq6aZOkGZbtYOomlXoV3/dU4SbVz5ybdwkePYlxdIL9/pCwN+RbX/86pmczs3AYY+R+Pihetc1vqM/OAzmv37f7+ZC9mk7G+Hid4Isug3CD1Ninlxi0pufIo4hOe5dqxef2jUtEwT552qffy8mCDlNTVZAFw0gxLvIspb23qzLPNW0k483xS3Xa3R5OqYlperi2gWPlGDKFPENoOUkSYRk6g8EATWik6RDXK1GteNTqkiwb4NllCsOj2xV86tOfZu7IDIPBANBZX7/LyeMnKIqc8WaTnJy9zh6OV2J3/TaWDLFtHd1Q5wNBRlpoGKYNeUaWpQhp0ukNmZo9jelPUeQG6/fWqVUbhKGamGoSapU6rlvCcWx0XaNScQh6bc6dOYpphJimRp5r7HdyXKeELnXlyy8KKHJyHQzLQEidOJX0Q8ELL99gZtLA8Vzcis+R+SmKPMH1XbZ2t5g/3MLQU6TIEYU2OtcbJFmGyHMEGUmi8nVN07lf1ElNTVaFpvZxpmExGAzU+VOouEXbcsgSiGOB0FzSPOHEqZMqQpEEIV2OHzuO67roUnLl8iWCMGDx9iKzszMUwMTEJLq0uLN4F10XPPXkU+xt7HPSf5jfvPT3KDmCsNdmZuYI80dP4tdbjI1NkIkCKeSHHqsHETrZa0p5Ix+PFbfgAQnxj7I+TAL8QYO7Hwf09CM9v/hgj+2HZrmO7vNBr/HD1r8uXj9g/aA37v/PxWuMTi40RJEg4gG/8dlfYW6qzl/+j/8Dxo49RvQ//GPkXo/VmQnuLN5hrN4gSQsMw6bd3vseoTjPSYoM07aI4piLFy+ycPwY4xMtGo067125yvETJ+jsd/jC7/w2D587q1Dnwz4zM1Mj6Z3ANG3SNEdKyfrGBg8/fA6/5FLkGcvLy1QrdTY319EN2NvfxbYdilywtrqppn9jTbJcgU+q1QpJMiJZFgWlkofn+7QmWsT3DfSCLM/pdDrU6nVk1KC7bnL71hKnT59hYmICIQTPPvsF5o8eJYwiDN3ENmw0YaBJk7HxKlEU3A/kLgr1fWxurDLealIUuQo2jwuGw4hyxefb3/4O01PTGLr6/FqGR5omnD1zGsc1ubN0m0qlREHB5uYGL734XXbbbRaOLWAYOkLk1OsVGo0xLEuR++I4xnEc0rTg6vU7fOmLX+SJxx8nzgpM20MjJ0tTpNRZW1snzTI81+Py5cscOjzDcNinVPIxTZMsS3Acm+FwwOTUFFGcUFAQRiE5GXmeEocFjUZTBa6nKYZpAoJXX3mN/b0OEnBsi7GxMW7evEVnb5siy7Atk+e+9jXqjSa15hiM4DKGYaqJllBkUcv0SdOIalVFPbz5xtu8d/EK8/MLBOISrutRdS9gGQa6BqbUeOyJjzA2No6uWehSFZm2I3jo1HkazTpZlhKEMa+8/Bq//+Wv8vjjj1HkOd1OhygIGIYB1Wod07SQekFe5GS58jXV681RJm4ZRIppGjiWy/bmBlkaUqnWGAyGLC8v88IL38bzXAaDPrquipowDChXSiouR0oq1SpCqM257TgjcJCmAB6jjdEByEGIUVdz5BWWm23Ed94k+MzfQjvcIuqlDMMI03GwbJthP2CsPg4iJ0lzbMdjZ2eH//4//Cj+9V/GmHuGWFZYubdCMAxo1JujeBJt5JO0GPT7xHGMPSqww8E+vu/z+uuv0RhrYJg6Y60xBt0+E60JhNBotzu09/aZnpllafEWs3NzVKsVKtUqW9sqaodsqGTnlkshdJzWCYw7X8ZqLvDUn//PePoTj/OP/uE/4KMf+wSH5k+QouN/5WVY34VPPoppmmxubJIXBXYosb7zJvHcNBcvXuTFl17hxIkT5PklpCaplJ8kS3O2t3dxHJdq1cX3Smxtb1Gr1xAC0jSiVPIo0HnxxRexLJv5+SNqYnqQeye0EdhNxTvkRY4mdJaX7vG5z31eEWkzFeukSdX0GQwGJImSuKWjKIcHJVpFoeIgKAreeP0tKqNIKMOwiNMMTVPFZFEUFDl861vf4uTJU8q3Fg0ZDocYpo5tSsJBlzwe0h+EWKbJRKuF4kBJHNcjyVJFExY5wXBIlqXcXVrmtddfYrw1BuijSJqQYNhF1zSSWPlPoyRFIZdH0Rd5AuQIDSXhTWIMQ9LpbFOpViiKHNdVTRHLtig0Na1FgJQaw0GXJByQFwLTssjznHwEtTq41AqhCldNSsI4wrQMojRC03TCMLrfBDjwDQ8HPZIkYrI1zic/8XE832NqcoLNrU3K5RqVSo32XockTlTOb2ePRr1OlqosyizL1AZY09jYWKNcKd+nOzcbTT7/+S8w1miSJDHlSpkgVNFU3lQL+5X3iP7Cx5FSkqYRW5vbfOMb3+TQ/CH+8PmvszAxgfa7L9BulamFKpooKk8ikhqm7mNoqkkmhUaW5wfQagzDJoozmmPjHDp8GKFpuK5LludouiSKI4TI8TyXRrPJc1/9GlOT05x/5DFyEqq1+n168157F0NqBHFGTkG9ViOJI9o7bTQ08jTDsG0gV9muaIyNTXDp0hV0TVCvN9RnQDfJMo0sLYjyjBzJeGuKku+ztrZCvVolRVAInU5vQKVUJRhGrK6uMTk9gdQFUoKUkKQJ2q17pE+eQT9yiLTIaW/t8N/8zf+C/+Sv/mXGD82gjZoVf9LiNUmHlD1J7wsm2+I9YpHhVFu4fplw0IdCvSeGhErJ5ca1y5hmDUsf4vkwjCM8r8bW5h6uo1EuV8izgjTNFBBOGiyvrNNoTlKtT2PbNsP+NtWSztb6MpZtIVAy13gEZDN0A9uR6FKMLDF90iSk38l46c3rtDsRq5tbNMealMo+UkpcWycY9nj33XcQGoy1xhlvTfDuu6/hWQkzLY9ubwfbNsmziCLLMWwXwzDodbsKyWn4lKrjdCMLwxtna6vNtUtXaNSbXL9+m0ajwmA44O7ddW7duMPM1BSLt29y+/YV+t0+h2erOKaGJiR3l+/R3gmJgpBatTz63kbEcx3yvGAwCMmFw9pGh6WVAefPjWFYJkmR43k2koRSyeHEqQUsI6Hk2wz2B4hCI8sihtE+puajm5DnEVLXkdKgyDIKIVQTIEvRhHZfTWFIga5bmLo9kiyrhqKlOTi2y+LyHTr7HfxymctXr3H+kSd47uvf4ujRhRHg0qFWq2LbFqurq8rmVqkx6AUsLd1jZWUVipjx1jh2UEIKnT9sf47HHzlLPtimyOHVV77L+uY2u+0dHjp7Dg7I8R9wrN6fiL6poE4PFq8fNBX9USyPD/pnP2jC+uMUrx8W9fO+J/8TFa8/yvrjFq8/wqv/l3O9f1z+w24/6v3/31oHuvUfdRVF8UPvc3CApaAkb1nB/vY2S7du8pGnnqLcaDD4nRexXr1I/8I5/vD55/nuK68o+UEuSJKUt956h8997rdJ05QkTXB9n/X1ddbW1jh16pSC6FgWhm1z9tw50jSh5Hv81E/9FKZpkWc59VoN17bZWF8jiSMoBLblkGYZMzMzbO9sMxwMSdOUQX8AhbpwlMoVJblD48a1a7z0nReZnJggTlQI+2AwIIhibNsmTRLiKGJne5u9vTaaJvD80mhDpamMUl1tFLNcUeveePMt2nt77LXbRFHI0598Gss2CYYDuvtdbty4QXtPSUzLZZ8Ljz1GtVal2VRgAF3XmZgcA3LiEV1v0B+yvrZBEA555NHHyJKMOBqia6pT+KUv/S7vvvsuaZqwcHQeqUs83+PQ4UP87J/7aT71U8+Q5SFZHtHubNHZ31aTb11XFzbXpT8YIATUajWSJKW736NSrhEMQ7JMZU4mSUqe56yurhLFEZNTE6SpolsOBkM2NjZot9squ86yAA2p6/T6fRzXI8ty9rtd2ru7UCjYyuraJoU4AFblGLJgYWGOOBkyDPaZOzTB1OQkrfExKpUKzzzzDIcOH0bTJJ2dDUQeE/S7FEmILDKWbt2k29mlgJEnsODQoSMcP35iBGcyKFDxL4PBgJ2dHXq9PkE4IMtSdnf3EELieyUl8Q5DsjxnEAQgBEeOzFOrVCnynK3NLSrlCoZh8vqrr/PuO+8ihYoGGQ4GGFIfwRQE5XKZPM+J44S7d+8pyWKucj3TNEU3JN1ul3urd9nZ2WZ8fJzpmWl0XWdldYUoiuj1ehRFQZqkBEFAnufs7++jaeo5kyShKArCMERKHdO0RqTGmCAIEeu78NzLRJ/5eYLjUziuQRj1yPKQWsPGMFOStE97b5M7i/dG3qwBT1cuYV/6DP7CpxjmPhQwPTXF1OQkWZqSphlZoibNw2GAYZg0Gg1KpTJCwPFjx/Ecl5mZaXzPY7+7T6/fZfHWbUXp1XQ0qfHII4+QJAnz80fxPJ8sh/Zeh1u3bqsOuGMRRTGaFCwt3cHyGmhTTyAv/go2A6Su88mnP4Fp6vQH3RF8SE3pPM8hz1UjwTI9+giKYcidd99j4egxpJTUanWV55llWJaFaRqcOHGCY8cW1OaNA1JvQU6O66liNMtSDh2a5bHHHkXJN0f+S00RbNEEfsknzZWHK45TdnfaRIkCkZT88gjeoqYPtmWhj0AcupRIXXWq8qIgzZQX7aAIu3DhAuVqjSjJkLry6Ouafj+/MI5jnnn6JwiDmCIHzy9RKlfQdYMojAiGA6QoqFWr6FKj0Rhl1AYBoJolRZGjAXEcEId9zp87zb/z5z5F1ZU4miAd9GhvLkM6II8G7Hf2uHnjBm+98QY3b964/1qEgN327mh6pjK08yKnVKpSZBpSsxEYWKZLHCm/6QF5OokVrdpxbbQR6VJQQJGhiWJU4MuRy0aQowrwOEnRNFWs3icxc/CzyUfKFpfjJ44jDcn5hx9G05SfMc1S9vb2WFtd5bd+87dYX19Tst8kZXlpmSgMWbl3j2AYQFEwM6PUGZpUDYuNzU06nX0s0xiBjNTPNytyRWsG3njjtZG3X0WM/OIv/iLb27tUyrX7x0OjUaNAAW5E7iBSF01IkiRVE900YTgYwqhZluUFumEwHEbMz04jiwSdjG57G1Pk+JaBYeqYlkFRZPzcv/8XOX36NBubW9y6dQ8hbMIgQ9dsJlvTuI6vQDm6jq4reXyns0+cJARheH+Tur29qywkYcyRIwukWc7y3XtcunyVohDcvbfCpUtXEFInSXPiOGJnZxvLMomjkGGUops2tWqdbrfH2++8w/PfeoEkiYnjiDzPCKOIwUh14HuegiiaFpOT4/yX/9XfpFwu36fIAuhPx8hPRt+3x3nw9w9aBxt2gCiJGdwIMDKPQk+pjU0wPT1DmkRolqA5OcFup093kLJ0b4dac461tUUWjk7j+Q6lUpnOfoTnNtXEP88wLev+9TCOY1oTExTo6v0zJHOzLUy9oF6vkWcJxYiVkec5lmGqDHDUZzzLUvJMoAnd23NDAAAgAElEQVQXISqcOvUISZpw/MRxdnZ2RoVIyssvvUiSJswfPcyNG9cZDofcW7nHhcfOcvzYYdI0xDAkBYo0jqYpQFeajKKvCjrdkL1uhOOXQOSEQY+nnnqUer3EkSNzlEsl8jSj0Whw9949vvGNr2EZkqmJOaYnKiRxRhTBoJ/SbE4wO1ehUpFEUQ8pIcsUvEqmGsQ5aRRjahmGFvJv/uQJdM1ASpOSX0EUGrbtEIYBRZ4CKcNBH9MwcByXJMswDInIFVMkLQDNIQhy8ixX8MPROpDI6oZORsAw6BOEkfLMZiFCK4iSIUHUp1xyOXf2NNeu3iAYwu6uOodHUYiuSdI4YW1lDduyeeaZZ7j03mWCIOTV115ncnKSRx99FF3XCIIhby6/RimuMX/0JO+8e5PZ2UMYusbh2Qn0IuLQTIs0VXuuB/fl768lVNQZI9WJ9n2F4A/68w/b4x/UAw/eALIs+yNy4vdPaFXhL+8/xgcllRzcDh73/Y/z4PenyPvf+/8Pe6x/3utf2cnrv6j14Z2LHz4V/aD7ftjk9YO7JD/uc3zv6x88mHRpk0Uxu/eW+Ud/7+/x7/6Ff4/GzBx8/S30/+WfkvzZnwDXxnUsTp86BUWB69t0+30mJ6eoVCqkScLVy1c4PH8Y3/Pod3usrtwDoFavYzg2BdDp7JFnKetra8zOziEKjVLJJwyH2LbJyr271Ot1nvvqcxi2Ta1aoVors7q6QtkvqTiBFJaXV2m1ZvC8Cou3biAl/Buf+jRRNKBc9mh3OlQqNYrC5Hc+/3lu3brJ4489onLzDB3bschSdcExTYs0TalVa+zutrEsReRs1JvcuXOHSrWE79tkeUJ9rInneexsbnLt2jUsx8K0DNIkpFIpY5qWimvRxOi9VUV+kQuuXlMy19dff52t3U3Onj6Pa1skcZtguEepNM7bb79LUeQsLMxjmibd7j6O67K5tYVjmURxiO0ouJCuKalMFKX0+j3a7TZFrqJCfuu3Ps9jTzxOrewxOz3F8r01yrU6eZYoWWyng+f5nDx5kq2tLTx3FGGgSXZ3dzly5AhZVhDHqhHguB5SKrBTnoNp2NiWhyhikBqGZfHOxUs4tq1yV6VBuVxiY3Od1sQ4URrjlX2EkHT2u+y191i6s4QmBKZlYEoBRU4UDNnvtLFNk0atyo3rV6k3xzBHE13HdnjxpW8zNdXCtDOKtIwlpslGxUSpXEY3TfySz/Xr17h65TKHDs8pieQgotvrUq1VMQydJI45cWyBb3/7OywsHEVDUK2UOXJkHr9UwdANTFOnyHIG/QHrK6ukSUyWRIoYamtqypRpOJ5HIcC2HaSm4TguTz35FAsLC1i2yWCgiLFBEFIuVbhx8yYTE5Nsb28jdYlt21ijqSuawPd88jwdyUyNEfq/r/IYX7+CfOVdks/8PPGjJ8nSDMu2SIcRn/mHf5/Hn3qMbq9DlqVYhs3a2gY1dolf/DsUOxfJWx9Ddxs4jkO3u4/ve6SjTeX+/h5LS0vcWbrLRGuCV199lWajwa2bt1TGpCZYWl7myJF5JZPzPW7cuM6R+Xk2tzbp7HdojbewLJPr169jmib3VlapjaaSp06eQpOSO3cW8UtVHMen7JeIogGmVyYNuojVl0jGH0KL+5SrNfxqiyu3V2ldu0eWpSRPnSVJYmzbRZcmOQW3Pv8lbq+tcvbJJ3j8iceBgiR5F8PQ0ThJHMeUfF/F2RQanl/mztIyzbHxUZ5qSpJl2I7LiZMn0KWmPsdKw6rOo6MJ3wHNACHQkDQadaqVCnNzsxim8rceQHIOICna+zrSB8Xsgx1wXZejqASLLM+JE3WuKlSLjSRO0TTJ7VuLxFGM7dgI7UBWLAkDJYV2HZednW1sx8a2LAWSSXOSOKZIE/Z2t2jWPAbdNnHQRdP6FFlBZycgSyKytE2WBMRBCFKiiZy33nyD7a1Nzp05iygKNQH0vFHTRk0+NCnRkPT7QyzLVfJiKRgOewrYpAmKIldAHU0V08oeoEGe0d3v4No2QmhkRYEoEiQH9Gg1rTJGmdm61KFQ8mqKAqlpRGmMJjWiMMK0HZI8RzMMbNukKCCKIr7yla/wcz/3F2nU67R3d6nVa6ytrhFGISeOn6Df6+E6LlkWc/v2IpVKlVu3btOoN/nYxz5OqVKiWquhGzrtvTae66lj5foy9f/8L/Hiiy9TKTfw3Crj41MIzaBU9pmt1ck/91XkuePIzT2gIB9vIJD0ugOC4RDdlGxub9CoVCiKDE0T7GzvYEgDwzDxLIFjWRR5ShyHDPt9TFOn3e3juC472zuUy2WCKOTm7UWyMGJycop7d1cRQsP1SvT6QyQC0zCRAuwRZdj3y5iuM9rYZiOasUlRaCzduYtpmZTLFeaPzjMYDqjWq0zPTJGlEZ7rYhk629ub9Lr7aEKj1wtxTAvHtvndZ5/liSc/wiMXLjAY9LFtZxSXI3DdEtqtFaJDU+hnTiEMgcgSlm/d5omPfRSrUoJkpFgYLxBjOcWXX1B7m5995gM3wB/GMsmLnOC1Pt0723RYx69NUaqOE0UxV69fIQwyikLw8ksvk+cpS3du8+SFaZpVdX4ohMHVSzfptveYmKnc/5yGUYxhmOimhWa6aLJCZz9iYqLJ7tZtHEPg2CqrmiIdqWcE5AW6lAyHsVIq2GXSQrB0b4/FOxmXr92kVm8wNjbO9uY2nmMRhn0evfAU0tDRENRqVdI44dbNW7hORh7uQdLF82yCMFL0fkBIyWAwwNR1pGbSTyw6g4xypUGSZLiOQa+zTZYl+NUyaRiT5hl3lpYplUrMzYxRKRu8+eplahUT19ZwTIfXX7vJ/EILx44wjAKpqWaLsty4pFGqbDG2TZaHNOoelh6hFRCEMYUw0JAM+0PCMKNca5HHQ0SREkcBeZqqxgwZlm4ziAPi3OTdi2vkuUG5rJqBW1tbiiieK1o3BWRECHySWGLYEk2HwSAhEzmFkNxe3mRzq0etPkeWS65dv0WaDPA9T+3xtneZnprhW8+/wNh4E8ty2VjfoNVq8aUvPUuWhTTqFWzbwXFLTCSz/Pa9z5LEQ3wzIo5jOp09hG7wH/2Vv0Zh1u7Tuj9o73/QaMleN5Sl5fHkQ3f57z/uP+zPP0jye/Dv75+o/rBp7A+U9Yrv/7rvPdkf9ffe//sPeJ4PWn/qZMP/otafpHh9fx4T/H9TvGaJYLDX4X//pV/ib/3X/y2TM4dY+fzXqX3m1yl+5ifQaj6aKCiXSlSqFSzbApJR/INNs9Hga199jkq5wuRUi7WVVeIg5PSpUwwGQyU1M03SNCFLU2zbUvmCmiRLBHESUa9XWVlZZnpmmv5gwKFDc+zt95iYbOH7LpVyiX6vR61W58tf/jKLd9aYmpzntVffYP7INELEdPcHJGlEUeRUqzU2N9s899w3+ehTTzAcDqlVy1iWzTAYkmUZnl+6/07td7sIIShXKhSVFfbDu/zB77xIlqU8duE8UoJfsskLjeFgQLNe5/zD52g060hTIgpBFEZYtk2RqziFolBSOE2TmKZNEiekacpjjz1CpVJhf6/PeHOMYbCOYRb0ugmHDy0wNjZGo9FACMgKBe8QmqS31yfNBI5bQmo2aQxvv3WZ24u3OH/+HJ7rqlzAPOfChSdA5lRKLusrq9THWvyz3/gcosihyBECPF/BpGq1KgK4vbiEaVqUSxXiKMH3fKSuK89pt0uv16dSrmMYFisrG1y5coPpqbIC/eg6x4+fxPdLFDks3l7jnXfe4+TJ07heBdevgGaSZhmVapU0TZmemqRarTAc9HGqTQzTxStXsFwP1/NB6kzPzqFJSa/Xx3Fc+oMe5x4+TVHEZEEdknHCMOTK1av0B0PGJydVfq8UCDIeOnMay3QwDY84TmhNtpC6RhANqVdKOJZJnBXMTM+QxBHXr11ldnaOu/dWSdOM7t4+e+0OhqYxNdFifHyMmzeu06jXGQw77LXb2LbP9nYb07FGkyMN1/Vpt/cYDPrsddpMTsxw9eo1JiemsG0Hy7Lx/RL9fpdavXZfHlyMJnIq11VNXzShk6YJhq4jX7mI1CSXf+E/pfzYGV5++RWOHj2GZbl4sk5rYpbf/+pznH/4cWyzgt7ZwLv2fyIu/RrSb8Lkk1y+tsjbb71NtVblnXfeZnJyHMPQyfOMarVCvV5jbm4ewzCYmpxCUNBs1tUkpIB6vcFgMOCdt9/h1o0bnD55Crvs4fku62vr1GpVlpcWKfslEBqtiRa3b99m0O9jOcrTWR9r4bglKASrK3eJwj5p0sdvtCi2r5OFPXDqxFmBW53Eb86hvfAGtm3D0w+TZTlJXNDvh1y9+BazK7uIOGbqzCmENprGpReJ4xDyY4RhQLfbxTQN1lc2+cY3n6c/CFg4dhzbdZRkU45kqqNz5kG8ixhBMxh1xQ+mfQJVWBmmTr1RxXZM0iRVRVqeY1nW93WfD6JrtFFReyAJG/RVtJPrKA94lCTopiL5FoWa9haFIulKTfKFLz6L1CQzs9MITVd5r5qO1E0c1+PalUuMjzdVs0NKNN2k0+nyT37llynZtvIb9/YYb5bp7W+TSdA0lzfevMXzL73A4flJytUKeS6pVl3SNOTsmTOcPH6CJE6Jo4gkV3TRLM3U9zKKxNIlJGlMXqQURUKvv4PQQobdAM91QRx4uARRHKNLgziO0CgU/MxU3jQhDdqby6RJjOd6qkDWVMF6kJNcjIpobRSvo5mqySO0A5KxRiElUsuVR7VaYf7wYer1Koau4ZfKCCGoVqu0Wi3SJGWvs8fW1hat1hhjY00oBNVqDctyyPOCQqjpwvb2lvI2pxn3lpYZ3+0T/OzTBMME36/yztuXeOT84/zqZ/8vHnnkEdxqGftzX2VHK6gInSxNSOdiCj3AKOrolommCxzPIex2GQ4UpK1arqBpks3NTfxKDaEbGLb3/7D3prGSped93+99z35O1an11t2XXqd7enr2IUWKpDiSYm0QvWexjEQGDCQIog9BEAeB4yBBNudDHAReZMexIcqUCFKMLXHRUBTF4XD2rWe6Z3p67777WvfWvpz1zYe3umfRNDVyYiCAdYCLvvdW3arTp95zzvN/nv+CVwg1FdT18fwCtmnj2CaO4+B6Lj98/jkOtlcRImN2tkFjZophNCTJE5LemJ3tHWxba2ENy0RJSZLnGGgJgxTgOgGHh22e/cFz3Lx5g8PDQxYXF2g29ylXQrIspnN0gG1Kjg6b1Ot1yuUy43FE0S/hOTZS5Zx/+CFefOllFpaXqVWqSMMgnuRZJnEKaYb58iX4q79MLnM8S/CD732Pz37h8ySGxMg/XDDfBa/yS3868DoYjoj+pcWo3WJg9Bgrh3YvYmlhgTtX77A0v8TywhzNvVvMzwYcWynTKBfxLYNcaTbWwmKNet0lnTRtxuOItdV1XM/H9wLa/YjR0GA8FtgW1EoGKo0QQmHblj4vJrbiSk0a3KZAmgpp2IyyjBSfd6+0qFYqnH3wDP3+kEcefgQpcuJxH8urotCeHp7rUAwKLMwtMBjsk47ayHxEnmstvu96GJaFEoI0TfEcl62tfWYWz+IVamQRDMcJyUgnQSRJyur6Fpvra0RJwrnz55luTHH96gUqZQeVWWTJPoFvUCkVcP0cx8/xzBJ5JhHCnPhMxKRZjDJBmYIUhWlp53IpBAYjTMvAdj36/R4HBweUa1P0xjFxb4ghMwLP0Pr+TMt2Br0OuWmzvTfkyuUWUlpUyprdEgQBtqVTEe66t+fCIM9K/OH33mVuYQqkIE1tXnz1FrMLK+zvRxw0h+weNHF8i3MPn2Brc5tKtUK1Wsc0bW7euM2jjz7J9MwUw+FIexwYgj/3556mXC1QLATMLyxhug5Bp8h3r3yLT//0www6mwS+T6VS4eqtO3THOcXpE1Qq5Y9do/DJwOtHJ5oft+Y/+v0HY3c+el7cNWz6JHTkDz7+Z+D13/CW5/l/99ER+Md9gH+SQPiTbh9eNJqaptT73/Ohvv0kOEE39Lm7duQjZ5A/9RSUix963Y8usMkjmn70ode//2IVygUMIMa2TYQlGCcpbh/efPUH1OZMVh54guQ7r1L7u/+Y5Kceg+lpcgwwrImbm2I4GBDHIY4NKs5JRlAIC8zMV0lHI4KiR7FcJCenWq2xcWeNaiVkPBzz+9/+A9qt/sSQRlAM9bS1Vq3TOupSq07j2D5Hh21qZY9hv4VjSQqBtvk3pcHKseN0Oge8e/kNVtduIAyHk2cexZAZliUYjYcMRkNGoyF37qzxqZ/4FMVSAdu1SNKEYqFI66hDKSxNppeSjfVVbVPvG8TODq5nMVs5w/nz5wiLRcaDAQXXRwktqpe2xSiJUEIXUKZlYZoOKIjHEcNeD1PlmG4Zw3KQAoqFkEq5Th5Lnn/+OS5dusC5h86S5TalcJ5Wu8P2zhEPnjvPMEoRpoVpW0ihQGiDkELBw7FMBIoXnn9RU4FVn1MnT9yjzKAUQuS4tkOv16PaqOC5Jsl4zMMPP06lWiNKx4yjEUkqePnl11k+voxh2BQKITkWe/tHqCxj2DlkqlJkf/+Q7c1NDCFxTJNnvvVtotGQ6dk6MzOzms6TRBweNQnLIfu725x+4ASValnH4WQZw14PW5okUawnlJYFhsE4SXAdC4EiiWIswyZNIm7duEbgOUjTw3Y9hCWwLIP97R2qYZn+qEdYLAA5szMzJHFGp9XBDxz2dnaYnZ3DMEzkxMihGLiMRyMcx6XfH9Jp9zEtm2qthGkZJFlKuVphMBpQKhWoVEMMR5HkMZWpGjvNAwzbplyfIvBDHDvEcYtcePMiF954ixMrpxhGA5oH+1TCIp6rHbeH4wGWX6JULuG6NpBRKBa0SyIpfrGIMG2U1F1ZCagsZTweYpkmUsDgzjr2d15A1Mq0/tdf40evX+JHf/QCD515SDsqO4Lr71zgvSsX+Ct/8ZfJm1cRb/594gv/EOWUMY7/LBTmcRyX7qDNyVPHKJV8pmcaCOkwGicEpRDMnEykpJHCkgHjUUav02I8GhMWSiRpzMHeLp5tsbW5wcOPPUmpUiNFAgbrq+s0pqZxbJfVjQ0cGTAc9rl69SL1epnAC3CdAslYu3RjGZRqddygSLs1pFhqYJQrZDd/wLhQZTDq0KgXMcUY6/U7oHLeK0ka9WkydJe9Eow52DrgMadMPj+LkgJpCZLoEqZpYloP4nkejmWxub6KQtEf9Gg29wjDIrVqBSEN4iiFNEaRIKVuHBiGpal8UgE5YhLbYpsmeZ4zitqameD6DIcxf/RHz7KwsKR1nhNDISmkni4KgSEshFTauCWPtbmN7WPZLlkmsCwT09QFRZ4LlJLICdU3zxIsy2B6aor5xXlcy0PlkZ7GS48/+v6z7Oxs8fAjTyAsD8P1yFF0DtYYHK5zeLDP0vIsjekapueCNLGdIsItEscGs1NTVAqCctUhKNYolk8wSiykVcHxyyjTwPEDcmVxcLhP0S0gVY4px2TZmDQBYZi4nke31wEpCcM6plnCCQooJqZNk/uWIU0GnT6BV2B9bYdKbZpMiYkJjiJPRuRZimtZSCFIlSJDYFsmvV4fhaaZ3q1+BCl5ltDvd7QHgCnI0wgpHfIMjg71Nf/mrZtUq2WUFHi+j+f5jMdjLl18m6l6hX6vTSmcIUkEluWhMkW/3yHLI7bWt0iiCJSiEASsr6+yuLSId2eH5Es/R/OgyaDf55VXXmBhYZr/9u/8l/zU5z/N9NwU3sXrxAgKQmIYJvHKCMwRScfnt7/ym3zq8ScxhUGsIt0YiBN63Ta+Z7G1eYc00dEqBd+j3+3guQ79bpdyqUycpOTKRBg2BwdNHnvsEc6ePsHM/Dyur6PatjbWyNMx5VIZKWF3Z4dyWOLNV1+ntd+kWgwZDQZ4roswTTKV4fsuZ86e5MHzZzj1wAlsx6A4YdCkKRRcm06nh+UFuEFInGhvBS9Q9Id9MLShT7vdYn5mijgd4DratEybcSnM4RAO2/DvfZFseIhjJRy09nno/GOoSIMfhCB/zyI/kLBzFUpFxOcfv1fb3KUrCiEwhYRcIZk0opTSjajdDPcPlug1XmFnL8V1QyoVF1PmOK6NV7bYO+hw4Y3b7O028T3FuN+jUKrqDFTPw/cDFAbSSgj8CoZh4BYlQalALspEI5/1rXWOnWjgehmGGJJEHSyRkqUx0nDJhQ1KkqcxtmWRpJJcJQxHY6K0yMV311g+tYgwYen4cU4+cJqN7S2mZ2apVWdZ3Vjj5tWrjEcJjdlj3Lp1h6mChUpWQWmKrGVZOJZBNB6TpymuZSKUIlEepj/NtdtHJKmBbQrm52colYskWUacZVRrZVSSEhQsdjd3cUyH6XqFC2++THfQo1EymWsUcD2wHSi5DnGWYky8O6QBYqLZVkphCguZW2SJjrhRpEjTIsvBtgKyzGScgOcHWIZgHI9wHB/DcMhzEJZEGQLLBpEbuEIwVTY4tlTHcwoIYrIsRQkmchu03EKljPqSzbV9zj98AikjHEfw3ttNZqdqHHX2sGzFsRMrVCt12kcjHn34cZYX53FtnT5Qa8yQKFBxzPXrV2g0dO6tNCx6vZh6Y4Y4SWkfNQnzKtKE3371a9hmRlgMIY3oNw9oHRwyW59n+eFz2t07zzGErteF0l4vign1dqLtNp6Kuavnv/slP/Cz+pgaH97HNB+l337wHPkgtrgfIP7o9mEa8Pu/v5tzrjO67wNu7+Z3T5rBCHEPBd3vPT5uf+HfIvD6SZ73bwa83m+Mfz8dqn6OKIeIcvix+/dxPPA/3b5LEBlKZGR5hsokAosrb13kuee+z8/+/M8QfO8Sxv/2fxJ/6WmymbJ2RxNaoyUFE8c8xYULFxAiYmdrg+Gwz/MvPsvpMys0puawHAfbdZGGhe/5VCtVNrfWqVZr9Pp9LMtk5dgys7MzZGlCpVJBKSgUiuzu7t6jMZQqRTzf46jdwjBNbMel2+1hWhbT0w3mF+Z46KFzHD9xgsvvvqtv5OWQ4WjA9PQM5XKV06d1hl59qs5oNCQIAkzDmFAlE/b298nSjEajQTEs0uv1EH4Py7Iw4waW7bC+volEF1vSsZHSoN/rYU6mL839faRl8cILL7K1ucWNGzcol8tYtkUuBUJk7O1tEQQuUTTEtATLyyuUy2Wee+45FhcXMC0TKSRzC9OMxj2e+YNvs7gwi2VqTVmeK1qHLa2zsW021jcYjUY88vCjnH7gJDs7u1imTZKmDAYDwrBIHGvKTp6nZJmiUAi5evUGwhDUqiWCgo/vFZiamsJxrUnWWJ+vf+MbuLbDzHSDtdWblMslLM/j+PETCAGe57K4uMAjjz5CWKlo6tQoIk1T6rU6KsspFgqEpSLdToed3W2qNW2Ms7GxhhI5zaMm9akaSZzg+T5ppAs2z/UYDXVXtlqrkuYpUaQjnrq9Lq7rkGeZbhKoQ2xXYYiAVqvN0tIyvu8zGPRYXFyk0+nqbvPEyffWrZsoAds728zNzWKaBp7rEsXRRFdqMxwOKFcqtFotXNclihIqlSqGYU5chrXzYRxFtNtHOI5N82CPcw+exfc9imFAGIZsbWxhGhbDUUSlWkOaJoYUWKbk+rWrOsfWMnE9HawOYEjtwpolEVJAHKf0Dlu4r7yDfeUOg1/9ZcTf+U/ITIc//O73+ZW/9iv8vb/3v/PFp3+KQrFIo1bn2LFFxm//JvKtf4xwQpLGZ7FqxxhHCZZl8spLL7GytEyxUEQB43FEGFb4wbM/JEtTKuWQXqdLHA1RKP7JP/0HPP7Ygxw0t+m0j9jdbbKwMKefW6lQLIUYps4WtU2TRr3O6u1brK2t0phuMDc7jee5zM7OsriwhGlZ2I7FzvY2pVKJJE3vZaS6joNj22AXYdRCDtt0nGO0OwnDcU7xnT0Mw6Dxl38eJQSW7UwolRbTsYF9YxOWZyc0UkEal5BiBdepMBqOODg4xLJclpdWmJ9f4Ny5cywuLunr6uSmKhG0Ox18vzC5sWqgMR4NsMyJ2YZiopUX2JaDnEw/lVKagh/4BIE/KdDlPZ2olBKpALTGUwgdJiDRkx3T0J+/NLSG867TrjD0Nd60LAzDJAwLuK6DZZpkeUx/0EMKk93dHWZm6lQqVUChyEnTMfGwTyHweOD0SWzHJkkVYVijPxjhFwKk6SGw+e1/8VW6vRZPffoJDCtAGkVsE/Z29/idr38N33MnEwmXPIt47tnnWJifY+9gG8M08Twdr5FlGb7va412rKOWxIQqORqPtXmevnlhWxbD4YCv/NZvATAzO41p6dxI24AkinFcD6QEqXNiBQrLtCa0aw3004lmcDgcEU6mlSDodnv4XkCaZhwdHlIKQ8rlEs3mAYFfYHtrB98LODhoYls2S8uLFAshm1tb+L7Lxvo6Fy+9TRAEROMxpVKZMAypVis4rk21ViNPM9w72xz+O2eZnasxHHV5+ZXneeDMSf76r/xNHn/scaQhsL73EvguQ5XjVitEFa33NOMpBIKZ6WmUUhy1j6hUqvT7fe1Z0O8zMzvLdKOBlILVtVWqlSobm1uUSmX63Q6j0Zh3Lr2DIQULCwvYpl5Trl9AmhZCaHp7mmYYpkmUxBTDEoZp4gcBrucSFAJK5fI9PSd36eBSYtkWoLSLvWlOHKcNVJYgTQtnQvfWjtgxlglJklIqlYnGMT/60XNsbW1y+uwDWoMpDdIk0aZNe/vY/SHxX/gZpAHXrr5HtzfigQcfwvOKxLnWTGff8MhXTcz/4jziC0/ctxaSfLggv/u9danA4eoW673XmF94mHevXqMQBnQ6fZZXVmi1DnnhhZexTYvR4IhPPXWKggu2LVF5jEDhe7oRnWc56Vgfg/5gjOMUUconTg0q1Tp+EIJSxKMOniNJ00hrl8cjDEPi2Ba2pc8VRYbrBUSJwfUbTQbDFIUkDMukWcbUVIO33rrA0uI8h4dNKtUZTGMXGhUAACAASURBVENw1DqgNzgC+hzuXqUSOvR6uqkhNY7AtrT0JUlT0jSn1R6x1+xRCKdZXDrG1u42rXaHsFwmyxSO42FbDo4rqU/NUKoEJGmXnZ1NFheOcdDscHJ5hp2tdfxigSyDLMkwHIssy7VedBLDp1SOYTooBUkSI6TS+dlpxnA0JCyG5GjTrsbMPHlugLKwLEkSD7GMDCFy0jjGEJBGLqZhY1iSKOkRhDZuwSSNUvIcPN9HAa5tI1CMkz5pouh020zPFUCMyRLBsWMVHF9QrlRpdYYgi1y9vs7efgdD5vi+S6/fZWp6mrcvXuKBs2f1YKMQsLm1QVgo4roe3/id32F2dpb19XXK5RJb69ssqVP8xrv/B1fevcFPP/0Ih/tbJGnC/kGbvXbEoz/5OTzHvedlIKXxvpnR5B/jqfh94Prjavv7PP5xVGDg3v3oo+cFfFhrer/3/DD++Pgh4P19mT78wAd1tj/u/T7uGPwZeP3A9v8n8Prj9u//LXgV5Cg0EDCkzuk0hcnWnevUyyHH/8E3kb/3A7Jf/GlEdeKIepcyh048zLKU4aDHsZPHcWwJeU6jUcdyDObmp7Etn25vgJQGu3v79AcDpupTlEoFjlqHVKs1Tp06hevaCMFEvK3Dra9cucK5c+eIojG9fo9UZZQrZYIgIMvVRF8SEfgejueQZSnlijbc6fd73L55mxMnj+P7Pr1+j/FoRKlc1sVQnt9zeM0y7Wrb7/coBAX6gwEb65va9TJTuLVI79eoiuv4PPP73+Xyu1dYWT6GGxY0iFcKleUEvk+306FS18YG09PTnD17Fs/3cFyHdrtDsRDQareIozHFYsA771xkdnbhXjB1WAoJiyHFMGCcjHBdk1OnTpAmMQU/YDAYkWcA+oQPAh/LtqlWavzh9/+IS5fe4TM/8VkGwyGGIfF9b3KRMgDFYDDA8zw2N7a58t51Tpw8Tr/fwZCCJMkoBEXa7SNs26Hf79NoTDNVq/PbX/0KX/zC52m129SnZzBMAwQMR0MKpaJmDAiJUtrmfTwcobIMyzS5eu0aU1NTuJ5LtVpF5Tkqz3E9i0IxYGqqTpYrrVNBMOz16LTbOK6H53kcNJuakm0a2LaHZeusS1OaOLbD7t4ewezbpGIdIz2JIXUch+M6eJ5LmqUEvj+5kBs6akPkJGnC0tIScRpjSsnu3g5Jkur4DM/TkUNZRqlUotvrkqWCUlgmjmIATVdEEUUjNjZWCQKPOB5zbGWFnd1tCsUChiHZ2tyiVp9mOBxjmg6DaIDn2uS5pnrZjq3ZFHl6Tx+ZZ5meX0pF82CfqjLxvvMC5mcegX/0t3k17bG8vAzCw8CkVqnh+x4zc3NIwyJvXiV78X9AHd3EPvEzWPWTk6m/wDJNbdJimKgsI/B94izHsl1Gw4jnnv0RlXKJ4yvHaB228AsOpmHhOjYLizMUiz5xHBMEZa0bNySe59I8OiRJdP7oxtoa01NTbK6v05jWVORS6LG6uobCoNvpUyqXQGS8+eZblMtllFB4rntPx2iaJggT2y+RrT1Pq/goMwtLBIUQb3fI2DLonV7ENGw9yTQk7d4Qa3qG4P/+Pvv1ENexUVnKsB+hcn1OCwzG4wTb9ul1tfyg2TzC9TxyxSTj1uCoeUSlUpmAH7TBkpoYN00A0V33Vk0blggMBJIs1/Rqx7FwXGdCYf0AeBWCQbeLyjOiaEy/18M2Le1MnOsYCEPKSVdb6iuuAibsjiRJSNJkQq/V1zTTEriug1KS2dlpDFM3AQ3TYBwNKPgeptSa2WLRQeWSoFBGmh5xkk+ijiSjUYpjeywuLjC7MIcwHKTwIBny/I9eYL+5z/ETx0iTDM8L2NpepX3UYXl5mXqjNnE4533338m13TBtNMM411KNILgXpSGEwBACy7KZnZvj9OnTuK6j/78o4mhAqVIlzyFXEjExnUkmOnx7Qsu+a5DlOC6D/kCDKENnPt6dU9i2g20794q3QuBjmg5ZpqOx9veadLsdfM9DGgaOZ5MkMXt7+1y6dImnnnoKz/MolUuMRiMGgyGWZbGzu4NjO3irO9x8cgbX1UZkJ06c5qGHztPvZnS6Hebn54j/1fewSkXsk0sMDIkV9rTh3JY2uSuXyti2TRDqKLRs4mJbqlQxLQfLkpimpVkswxFbmzsIJOPxAENKGo1p4iQhLBYYj0d4QYCQOr85SzPySdPFMrURjuN59/wZHM+l1W5Tq1a1u6k0MKU5WeNaBzsY9LXj+GiEa7uoXHHUbJKpXEee2Q6GNPBcjySN8LyAKNYZxjduXOf0mdNUp+p6jYDW1Vomw509jNUd+I++hFI613RhaQXHDYjSHCbNm/cnUsnH1kF3/70feB3+IOXa1ssctbc5+9DncMMiK8eWqVYbHB7us7a+Siksc7i/y+J8iUrFInAzDKEIAhfHsbBNfV3IswyV63uLBq8hhizgBGV2dg/Y2trlzq2b1Ks+So0QkwZZmqVkmZZOacfvnCgZMY4E/b7g8pVtokTRmJlmbXWDs2cfIpt4C0BOniUUilWuXr5Eq9XixKklqmWbbLxP4NlICaNRH4GayBNMotEQhAHC5KA1ZBTDYJRjmDbzy0t4nk+lWmNra5skTikUioyiIY5VZBR1ycWAS2+/w+Zai+bhPnNTBSqlQFPHFVimdsF3XfeeaaE0JEIJTMtFqRzLAoX+vxuGhWU5unFpiklWr83a+i5TUwvk+RjTTLDNDNu0SaIElacIAaatyEnwgiKGGdBsxjhGro02lSLLMwwpkAZkeYLjeDQaJWxbr+HAq5HkRziOSZaZtDpjLDvEcQsgJI2pEm9dfAvDNOgPRzx47jxpmpLmiY44cmzdfLBsrl+9xvLycaSQ9Pt92qMjHrKe4uDcNUy5y/xsndbBDoHvUyzVGCQmX/iFX6JQKGhpkxB6Inl3cPXRYeW/Jni9K0/5Y9msHwCqH3fe/EnT109ELf6E4PWj73m/9/u3Frx+kqicD7rRfXD7qL30J9k+DFI//oMW9xurTz7c7Mu/i7p4FfnomY/dn4/bPuljpsxQQmnai7QZdga4wuL1Hz3DU7/zEtZRn+SXvkhmG/S7faJhRBJHGBP91Wg84tqVK8zNzmDaDr6jO9dTU3Xq9QaGtDk8bNE8PML1dE6iLnK1ycZoOKIxXWd/f0/nDQrJaDSm3enw+huvc+r0KTY2NojjmNm5WWzXuUe56/X6FAtFoijFciw2NtYohUVcz8WxNZB97NHHcV2HcTSeuOqlgGI4HOH5PrZlAZLBYMDe3i61WoU0y/E9n4sX3yGOEubnFyBoazpQvsBonHDt2nUGgyHrq+ucOX+OaDzWRihCMuz18RyPTOQsL60QFss4jkuUxBQKBVw7IEvglVde48EHzwOCSrWG5+lO9crKMbrdHtnEUU9rAiX9bp9eu8tXf+vrqMwgTQXSyCkWCxiGqSeQE0flKEo4e/YMnqsz9hzXpdU6Is8Et27dZGVlGaVAKcnzL73Ezes3ePiRBymVCqAUnuuTpim2axOGIdONKcJikXq9qrW3UqJMg1Gk3XoLk+Job3+PVquLYzuYpoVlGKzeuY1AYLtaezWcZMe6rqNpzeak44bClCZrq2tsrm9RL1fIckWn3UWhAbLruyihw8aPDg9xbEdr3rKMWr1OKq9pyqY8R6fTxnFsHNshSWOMyfSq3WrR7XYJCgG+5+sJoesgpCBNEw6bB0xPz+E4Nnfu3CFOYkaT7EeBwLED8iwjy7KJZkkxHo8wpGKqXkcImJubY3dnm0ZjCmFKbt++w6mTD9DrD6jXG6SZwi+6GFIw6HfxfX1cpCExpKDVak1MYnS3OonGeK0++Xdf4tUvfZaZv/2fMkhjGo1pLl++zH/2a3+L//nv/o/8k1//dVZWlunt3mCp9fskb/4j8uIy5uKnSZXJq6+8xsL8IlmWAIrmQZPA97l96zaX373MyTNnEUJiWzaFIKAxNYVlmlx57z2OHTuB5xTodruEoabKhWGd+tQUWRLT6bS4ffs2x44fJ00zXMeh22qzvblJoRjg+R4zc7MYRorruBimw9FRi7n5WZJ0zGAQMzXVICwGDHodLMtkNB4jpD4mt27fomSOGCrJYaJoTPmoJ5/E/cknyYQFUmIAaRRjFWoI38P7V9/HfPQBHNtiPBpRKYcoBXGUUiyWGI8TtnZ2Ic+5ffs2zcNDXnzpRfYP9llcXCRJEm7euIFt2QQTvbdSmiYsDQOUoNsZ4DguoHXVSQzffeZ7XLr0DirPJgBST2UHgz7WxNVVTLhe3Vbr3lTW87x7lCtyRRyNQeg49/5goN1upc71VUpnBKZJPLmHaLDd7WrndMu0cRwby5ZIw+KwuUep4JKMhyRxgmW7jEddgkIFwwpAuliOx3A8wjYLOI7PwsIilVpVH1tDM066rQNWllZ46lNPUikVMS2T3/jnX6ZSLvD5LzxNWCrpAlQpHFfnE6+trekImiwHJbEsWzvsTqQvea6BbJbnOis31/FCjuugyJAoDg8PqFaqjKMEaToMBkNcz8GQegIthNYVG1Izg7I0pdVq83/9s3/G5z73eQQCQxqYpqV1zFKSxilf+cpX9HEV2tF+Y32Db/3et/jsZz/Lt771bY6fPI5hmsSxbsCmacYTTzxBpVLBdizyPOeodcT8/DwHB82JLMEkWNth53PnKfg1yqUGYXEGyyjyrW8+w6/+6n/IufMPsnDxOrIYoEIfy7TppmvYls3l17ep1+s0Dw6wLAvP9wGF49hsbm1RLJW5eWcNqTK63S5RlBD4BZ774QvcubPKp558nLAYIqXBzs4u712+zOLiIika2EvD4PbN29RqdaRhoYB0QmlPkoTd/V0a01OUKyX2D5rEcYo90fjubG/TbbewbZswLJJnGb1uV5saWrrBlecTBkexiEBx+8YNTNvWcVZ7exTDAo888jDT09MIU9zL5LxXD5U8rDevk/4HP09Q0u7E5XId1y+QC6mlORPwKgQYn0o/VEPd1e7dK8Q/oK/7oPupesbDCjI6oyaDyOH0uTOkaYZjF9ja2WQ8HFEplTAZUq85NGouvpOTZ3rqakhBliZaz+5aZHkEQuH5FeJU0uoOaXfH5GnOrRtXaB+1OHtmDseW5EqQphm2o/PplVJEUYZlO9iOgWFWeOPNW0SJw+LyMaq1El/43NNceuddbMdhdfUOjUYdUwpsx6bVbPLYY4/RPDgkixNclSJlhMpTbFtnSFu29lAQKgdhkmNTqs5z9tzjzM8fR+XgheFkyj8gGsdcu3YDz/XxgxIvPP8Wx48vEyd9uu0xO5sDFpYKzDc8fF+QywzHtUiSAYViiThNiCdMCSmEjgZMMoRQxMl4AlwN0iTH9QoYpoEwIFcQFKpEEYSlaYQaYlkJeZ4y7CeQC3TpliCkIssVcezxzHfeY321y9kzNZ08IPW1RgpFFI+xrYA8V1iWbuhnicHm+hHFokTlkiiW7O8dsrG5jTTGHDs+xe1b6wRBkUptCsfxCIIAwxCMoohnn/0B62trnH/wIW7cuMkTjz/JpXfe5bHHH+POndvML81R6cxQ/cuSr37tt/iLf+GXeffiW3RaTUbDiL2jDo9/9qeZmWpogKmUZjBM4rmUyu+t67tNwI9uH6Lu3qfmvycf48OA9e6086P4434g96N/f3/a8PvTXMRHzrl709WPD6r5JDTlj25/Bl4/we//tNPYT/YeP95kKfv7/wK1tv0Jc17/dJuhcjIlybBI85zuYZN/+eV/ztPffQOvMyJ7+gskZIyjITKHPM61+N1yiMY6nsH3fEaDMbbncLDX4b13L3Pl6nvMzM7heWWKgYvrelx8+yKvvfoKlUqIITM8r4jn+Ywm4e/dbo/pxgztTod6fYrjx0+QpAnzi/P4gY9tW4zHMUetI9rtNsViCc/zNRXWdfTN2tAneafVplwu0+93NRXU9+n3B5TCMpZl4Qc+N2/emNxoMzzPoVqt0G63SBKtNVlfX+epTz2pqZv+ke7exw2yPOP8+Yd45JGHOP/wOS68+RaL84vs7+9TnNCcW60jxtGYWqXG3s4er7/+BsdWjt3rUr/99kVuXL/NyspxCoVwoq8bkaYpW5vbvPzyqzzxxOMMRz2E6WKZNnkc4TkWDz5wmoXFeV577VWOnViZdOMdut0uSRyTJAmf/omnsG2LZnMf3/fv5Q8KYTDVqDMcDrFtB8tysU2PRx4+T61WYnNjlWqlBkqwu7NDMSxydHjI/u4ug34Xz3UJwpAkz4nGCeVSBceyyZIEQxqaTmxKuu0WhhRsbW1y8sQp0jylXKlysH9AuVTGNC3SJCVJEmzP1e7I3T5Joq34S2GJ3/jNL7Oxucm5c+cpFkOGwwHFoECWphwdHpJlKQUv0PSnXJEJQSquYNs2ZnYSz/Po9/uYlqGnWv0B3W5HT1EcBz/wGQ60oZaQkkzl94wekjglyzR1vFAs6LiHWK+90WAwofBGJKme5kohyVJNqxNIklizB/r9IeVaGd/zOTg4IMszxtEYL3DJURhC4LkOlmGwtr5BrV5HIfD8gDjNsWyHNE6xL17HuHQT6+/+50z/+7/Ed5/5Q8Dkd3/3O/ziL/x5/tJf+auMNi+w7KwTbn6d5c4zuoCf+zyytIQQkrcuvMWxY8dI0pRCKUBKiR94uK6ndYeG5Op7V5mfm2fY77MwP8f6+hqN6WkWFxdpHXbY3NihXq/juDbNwza12gxSpvi+h+95tFotimEFw7QntFDJOIqYmp6mXKsiDMlo2CNJEq7fuMr58+fI8gzLcnDcIuVymTyNEGQ4tq3ddW0bVERYKmOKDDfr8MNrR9RCDzeYp90f4RQrDAYRO5vretpgO9hWjvHSRYQhGNsSx7EZjF9DyAPG4wppkuB72hW13WoxMzvD9evXaHVa+IHPysoKjuvw+9/5PU6eOqUnhEIxGPTvTV3zXHDt6g0c2500n/QNemFxHt/zeODMaYRUWJae9Pu+R5zoib2UQq/hYpGjVoswLKGEpsKKicN0rnS8hGlaOLaFJENlMQYZIgeVCQxhYJgGvX4f1/awHU3hTFM9BYpjHQNV8F2212+Tp7F2PLZcfL9MqiSm45KpXMeMKYsf/fA5NjbWWFqem2QLa3ZDEDiEpZBiqYJtGUhDMRz0mKrXWVqaIyiUtduvoUjSFNOwUUoRhiEIbfyTJjkqB0WGynNM07xn1nM339YwTcbjMbZlYUitUbRtk2SSx+wXStiOw6jfxzYlwjC1HllKmMQdWaaJ5/t89jOfeZ8yJ/QxF8KYyBoyNtbWmZ6eplarcf3aVeq1Gleuvscrr77C57/wkxw/sYJpGazeWWe6Mcfq6jqj0ZBGY4okiciVpix3uz1KpTJJkmFIE39ti8Lf+HeJo5xCUOHg4JAfPfc8v/CLP0e31+Irv/VlfrWxgiz4SMuGJMWqjYiiiO2bEW++8QZPf/GLDIdDDg72sE0Dx5JUa1VM06Y/GDDs9SmVKjQPmlQqVYbDAWtra5w58wCWo80EZ2fnWTl2jCiKiLMY17ZQaUqWxDiOx9FRi69+5bdZvbPKuQfPYpkmszPT5BNA5Xk+hWKJre1dUIqZxhRy0ihpNg+olCsIoN8f0Gl3yFJFIShye/UOpTAkjWOae7u4fpGwVMJ1HRx30oRRYJtCu1WriaYbgTBt5KUbiL/xlxgmKS8+/wqLSytgmMR5Ooljen/yyj/9b1Dfeg75y198v3r6YMH9kbpHSkmSpPS+GdGMrlObKZPJAuvb6zr+pJ/geA4FL2R3a52VxTLlooFrK5TSTZa7DrqmZZFlGVGSoEgYRjGWO0UufLxihXJYoRAYnDk9w/GVMraZMx4OiWKDXneI5zmgBHkm2dpuIgwPQxhs7rQ4aA2Yml5ibnEOJRLGo4gHzp4hy3VkmhRQq9bAAM+22d7eZW56losXXmOxEWIa8QS4ZtplXRoTzX7EOMpZXd/BL82icNjeOaDdarO+scFUfYqr713R9+KS9mZ499J7nDh+iosXL9HvDLh+5Qq9QY9HHlom6u3iO+D6NnmeTFIQ9D3Q8zydaZ2kGKaBUhmGYWNIB0O6qFziuBa5yvXk1bBRWCjhUCpXEVKSx112dtfJco9mMyUoFDCsjGhQZDjMNb2YnJk5j3JFUqt4eoJpmCRpdu+6bJs+lqHNDuM4RyiTo6MjAr+A5xWRAqbqIWcfWGK6XqBatDGsGnGS0+mN2T845I033mBlaZFiscKpU6c488AZEILZ2QV2dvfZ2d5gbe0O5x56iN3dXWaTFdZLq/zaf/23eOuNC7z20iscX5whDEs0W21+7kt/Tbveo+OSTNshF3r6LCbrOP2GT/qugTgb/1hgeT8k8XFU3Pu9xt2fPwlr9OP+5o/hJPHHge6Pw1L/OozXPwOvf4rf/zhe9p/2tf4k8Jp/8wfAH3cb/v9ikznkwiRDgoLoYJfwv/91aolCPf0ksXIxLYkk5etf/Tq99oDeoEe93iDLcmzT5tatW7z15gVOnT2OUCavv/YKSTagEBYphRXGgy5SGPhBwMWLF/jUk4/R7RziB1UAut02IBgOI5rNIwzLpFwqo8gnpkcmjmNrbYgwUFlKc3+fxYVFhoMR7aM2QSnENAw9rRkOkULi+wFHrQMsyyQaR5QrFcTEARMUWZazt7vH7OzcRAOaYtuaIlqtVnj74kXOnjnDcNTHCPtIafD9b7+NEOC5NtvbG1TKRbrdIa+9+irT09MYhkFYCqlUa/ieQxKleJ7P/t4BtVqV/b19wqKFIueJJx4nCHxszyJXGb1umyxVjMfa1bdSLSOlohCWyfMEshG72+ssLs0yGHZ5+NGHULnk8OhwonlziaKYhcUFLEsbnEhDYDvOPZ1dNE5oHuh9GfQHDIdj0iRnZroBIqZSLTEcjkjTnDRNqdV1NqZtWoyGQ8rVCsYkosa2XASSVqtFluqJdqfTwSBjNNIa2yRJJlE1Fqahp7FZrotXw5zcTC1bB7NPpjRZkuG5LmcefJBTp05jGAZHRy0NZuIx3U6Xw6ND8izDkAa7u3vUGlNkSpGoy7pQjVYmOjsPnambaIpfqcz+/v7EoETn6b17+TL1qSlsxyFLE0zTpBSWEUJrtNI0odVuT8yxCpCnNA+blMtl5CRb0jAMxuOILFV0u31QgtEownFcDMvAti0qZf2alWoZ0zEwzEmhLiTdbodqrY5pWNrNOcuRhkUUxag3L2N1h6z+T/8x8ckZgqDI66+9SSms8cXPfx7e+zLizf+F9OrXUb11MulROffzqPAYwixw69ZNarUqYVjEkCalsERv0MG0LYwJhbBSLlMpVyHPSZOYy+++w/ETKziOQ5anXL95k+bePmfOnsUwFKYjqNenGI9jhNTnYykMqdcbgMHe3gGe7xHHKbVanWJYoj8aYjoulpDE8ZjpmTqtVhPPL2BIm9t31qlWK5DHRGMdIyRNi8FwiMoyHFdPe9XBNZ55J+anf/Jz5HaR6fkVhonADwqUAg/XEkjLpNttYu8cku82ETNVDMNiMPwhSXrIeLREEPikcUSv26ZQKLK3v8dgOGBxaYHPfe5zWp+ucuZm60xPz+A4jqa+Ca0etUyLJM756te+RlgsUa9XEEKbOEnDoF6vYxgGo+HwXuapUoo0TSaTVx0Pk2famESDVhPtvquv/6ZpoY2MDCQ55Cmba7eohCFJlGCYDuPxmNfffIMTJ/TkZDwekKYpluUhpcA0JVEU49kmgWPQ63aoTU1j2T5ZZiJMi1E01FMPIVm/vcUrr7xEHA0599AZLNPAMEw67RZh6BCloJCMxgPSZIxlSqanGoyjMaVynUwBUmFMJtMq10A9z/Vk4cKFtxiPY8rl4r1MV9vWIDfPMnIUucpxHX9CJ9agdDjo4/oulu0RxdlErwXRaEiaa7AaxfGERqtpq8akAWAYEiHFJE80J0tzXn/tdabqU5w8eYpiWKDdOmJhboY0TTCkyYPnHuT4yWMgFWmWMOjFmKatn18sMhoPMKS+vlq2TRTHxFHCM888w4MPnsO7s0HrZx/j9775uxw/scT+wTaf+cyTOI7PyrEFbNfiqf0hwvfxmx3s7oDu1FBHi3mnmJ6ZJiyGOI6DY5uMBj0cx6R5eERYCnWUjWkxGo7Y2tqm0WiwuLjIqVMniZKEo6MOlUpNu9AqheO6WqdtGHq/TRPbdhlHMc2DfXq9Lo8//jhZljIY9BkMehQLBaTU07KNzW1efP55DAkLc7NIQ+crS2kwHo+023eSMhiM2dzaot/rsbg4j2VILR8xbQqFAMvRcVNRHIOAeDBA5TlCmGS5QBiWbqa99R7JX/8lRknGz//cL7By/DiPPfEYtueS59mHwKvY/b6uZz4heAVgT5I/79ItXmN5+RjNdoQwFfXaFMeXTnPYPuLm1RskowHkXSoVF9eW2k3csjFNG6UtUzFMk0xZCAmm5RGGKxweRWTCwMgzAh8GvQ2kHOHZFiKHVLm8ffEGnitxHRelJK+/uUmrdcRUrYbpBmzu7DM7v8zZc2cJQx/f87Edl3KlQqMxzcHeHsPBkNW1NXzHxbJMXnzpWc6fW6bsjxmNBli2ea9RplOkFJYAJSyUcIlzG9stEkWZlufs7VOtVLEsk9k57TKuUMSjAZAyHo1568LblIoW9bpBvz1gphJQLPiAIMvAEgZRqqmqpmlqaUOekaUZSiWMRjGm4ZLEOq5IGjnS0JNZhYNtByhhMoojRqM+ZBFB6DMeO6yvtak3qqT0MaVmnBhSIIUiCByKBRtBjjAljuPr2MMkxTJN0iQhTSPUpGFqGAalsqd197ZJlo3xfN3ckTlsrm6wut1nc3MXYdgkcUapVGRleYm97QM2NzcpT/xZNja2aczM0us2qZQrrK+vs7yyQtYX/MFLf8C1/iqXL11EJQNKnuTqtav4YYmHnngaISXlUgXDtlBCcldIKCeszOw5BzUUH6t7yhIGswAAIABJREFU/aTg9e409IPY5X4g0pjE93zsuXRfTCM//vXuA17vxyf+M/B6n+3+UTkfdvz9k740TUv+sQ9EH/j8Q897/+/eXzj3Mv/u6ZnEx3zp18m/+SwAxp9/+sfsy11+/CcH1EoppC3I0hwRZTi5oPU3/yvC7oDoC09huD7j0QDXcnCdgOOnTjC7NIdpSt595wrtww53bt/i9KnjVKshBa9Iu33IxuYGn//8F1laXGI46LJxY5U4HVGvT2EaLuWwRjQcUAwDOp0Ww+GAJIlZOXaC115/k1iZWKbkYHcLz5EUiwFvXnqHytQ03/jaV1laWWHl2HE2NzfxfJdytUivPWQ4HGDZkuGgiyJic/MOC/PHkQJsSyJQ9IZDhOWyv3kb37WYqteQpiROEpJMa6TiOMPxPJZXjtHudilXpzBtwaCd0TuI6fW6HFtZ1jo4w2R6psbNG9d46OwZCoUCeZ5hWHqysX/QpFwusbi4wNUrV3jv8rucPnGSYX/AoN/Dtiwcx9WgxU4pFuvcurHOu5ff4cFzp0miMW+/cRHfsWn32swtrhClFpZTZDAe4dgWhUKBVClM28Z0XJSUEI0Z9DtE0Rg/mNC9dvfwbZvbt+9QqdXZ399lbrbG5Xde49kXfsDDjz6GZQe4bhHLcSiERU1hMRVx2scv+nhuEaEyNtbu8IPvv8zLLz7Pp596DMuUeEER0/LwSgXiRCIMDyEs+oM+jmtzcNQjzTNKYREh4dvf+n1q5Qat1h6VsM7hwSHb22sUii4IyWg4olzWTYkg8FDkOLbLjRs3eeCBMzqrUcRs72wQeD6j3gi3vI0Qgu07LpVKlTxXJElKGJbY3d3DtGxqtTrjSBexr7/2Fk8++TjRaIDv2pCDZbpcunSBcqWEYYLj2YSlMsb/w96bBktynWd6zzkn98zaq27dfekV3QCIhQQILiK1kNLQI4WlidE4JmxP2OGw/8geWz8cjnCEw+M/nrH905bGCi+jZWRt4CYugkiLBEgQJNANEEADjUY30Nvd91qzck//ONWNBghQlEYTtmN0Im5Ed917q+pWZWWe7/ve93kNh7wURNGETreLVEpPeQ2Da9eu4fkNKtU6hqmJiM9891nmFhYZjvpUgippluH5AVmRE45CPFuQxBFKGeQIHX+imPr5SiQl9vou6oVL/Ldih4/9g18mzEPSJOLhBz/OpecvYb30X9O/+V3S6gnUwk/hzT5IYddIMonE4mtf/iqL84t0OnpaahqC0eCIzc115mcXUdJEipQ4HZFlCd2ZJQzDZPXEKlAQhiM67RaUBadW53jttZcQZUGlUkUCe7tbFKqkGrQ52hsTRznHvX3iqE+jUSeoBPT6Q954403eeP0yp9dWkabC8QJs28X1AgaDPqNxn5XlBcbjHjkp9VaDUsDR7gGm0NCkvDBQVoV894e8cCMizTM+/N0tePYV1KcexbYt4mSCECVXr11keX6NojCwv/My+co8UTwmL65SFgVRuEiRZwxGA0zHoF5xqdV8Tp1cY2X1BM8/f5G9vUNOnzyDY/soZU6Jt7qglIZBnmkv1Wx3hqef/hZKSpaX1iiSEbZhkaU5v/e7/5J6vUGz2UQaNkmSYxg2yrAo0TESU9ssSknKIifLtV+43+8jClvH5RQxiJTReEBQCUiFQtkaCnVw0OMb3/gGK6uLVCq1qeRM6QmIq4/pLIvIy4Ltg2OCRofROGY4GlOpeOztbmObWuI/7g/ozsxw/8Pn+dBDD2IaitGgj2VbWgVQKqJhj1o1IMsKqo0WpTIRloll5FBamhIuoinMz8EyM/q9AyqeRTQJ6czOUG3WMURJUeiJEKUOqkcITStWijxLdLFlGnr6UoKhFP3jPvVqDUrNa5CGwjS1ZUJN4U1CoItl9KQsjid6+m2YCAyUgMPDfVzXIs0ims069UadzZsbrN9e5+Mfe4JGTb+WSZzh2j7ClHz5y1/icH8HJQW2UgSOi7RdFAW2KSmLlO2dHRqtFo2tfcQ//GVqtS4z3SVc32cUDgmPbxMnYz77838H9efPUXoOZpIiEBRLLmCgZAdlKG7dvEGvd0xnvoNTqbF30CcOx6STIXVPYHktXn/tVV699DLnz5/RFFnbJokL9neOmJuZ48knf58LF39As92m0Zhla+eASZRSb7Q08EvC/Q88yLlz5xHSwDQ1kb7VbpFMs55NQ8vToyikWqvi+B6XL7+O5/rcvr3O/MIco1GP733/aS6+dIVud4ZqzcUyDZIsxa3V8PyUNNX2miTNpv5vfQyIqURyY+M2z37nGU6snsB87Sq7n/kIjZbDYsflV3/1l7Ecn3FaMrWZkl/QsuF7i9f320BHhoVZasVCLmxG45jg0CK6NOBm/2UyVdMQuc4clXobFbg898zT7O9ucvbsAgtzFtVAIYuM0kmwCkUWJeRFzsH+ABOf0hD0ByGTUJBkLpVqi4sXf8jezms06x4V18IUirJIyIoYIQecPT2P4wSkeYxplTxwbolOu0IufL75F9ew/Q4f+5knkKZLSYvt3ds0Wg0m4WgKErJIs5gTJ85QFPDqpYs8/sgCKj1A5SmImLzIEMoAobBNE1EWRGlCUlr4jTmOR1Bvd0nyhKPjAxaWzzA7P4/vBxwc7tLvHeH7Nr3jXYpowsaNG5TFhEc+tMDKnEmtEdDuWghDq6/KTKKUg+ebSHVH6aAZGEma4DiCpKhx5Waf779ynYXlNmZRYhiQJjlJpsDwsf0mx70xZWkgjBLfNdneOuall2+TZwMW5+s4TjnlRMDWxg5zswtkaYEQBWkekxcWFy/cIJxIHF9SsUuKTJBnpX4PjEyrCMsFDo8T7dNPEpA5tmtx49ZtUClS5ViWTVEYSCNgZn6RRqvK3EKLo6NdWs0uUprcuv42T/zUx2m02tQbHWzLId8t+OjnPsS3rn6dX/l7f5e0jJlfmcVyDEQ54o3L16nYBjPzC3z5K1/joUc/jChLsiSeNhSn8ng0uKksy7sy4Pce5x9sFnxHsvt+hajOctYqGOAuOOpOLVJO5cx3it/31hN3sujFlApWlOU7VY+4k4DybmnxXzbt/ausf8OL1x/3tr//+iDN9r339e43451uxx0N+I9f+n7eKV5/9gOex48+xk+68iJFSgOFYvQHX8L6/Dfgc5+k0u6QZwXP/+AFWu2OlgorRTgJmZvtIoXBwf4BlYpPp9OiUvHoDzQpcXFxiaeeeorV1VWUUiwtLDJJJ2xubxLFKY5rE8VDurPzjMZjbMeh3WpzeNQjz3Ku37zNx594nNu3b2gQk2PT7mjqYq0SYBgGpmlSqVQYh2M8z8X3HcpSb/rKEmq1Bq4bkGYFauojFEJo36TrkkZj5ubmSbIMKSRxklCv6Tw60zSwbJtbt24TBBUcz0MVVUTqsby8zPLS0vS1K0iSBKUUJ06c5OaNW3i+z3G/d5cieOHiBU6dPAVAtRowMzNDkWUICVevXWN/f5+V1RWUMtjcWsexA7ozXebmOwSBS61Rp95oY9kmrXZ9CrNSbG5u0O12uHr1Oq7nYxgWQigs09Y+wSLD9T2kVEyiCMt2yPMSU+qMzSRNaDQbUGrP7H3nz1MUJZ7nE8cJlmUhhCBJdMwEFMRxRr83Yjjok6QxZWEQ+C7HvX3yPMMPKiRJiu1oH7FpmLzwwvOsr9/g1KmT+JXaFJClQUT1eoPAD5hb6DIex/h+QKvdwPVsLMthPA7p9/sc946ZmZnRxYJSeL6W6Sqlp/Zzs3OMxxO6M3NMytewLBORnCRJUyzL0tLyqUTUUBpqMxqPcByX73//BdrtNqapSZe24xBFE1qt5jswFymIooThcKSnua6NYZrs7OzQabcZjcdUggDXd0EUCEoMS7G4OI/rObRadUzTIE2SadYsmIZBWWakaYZtOxTFO34k07T1h3PvCL75fcT/8F+QP3aeRq3OyqmTOK6LZdS4/s3/kftafbzTP49ZbVOtagJylsUYhsHFCy8xPzvHzGwX01Rcv/42rVaDw/19jnrHdGfmyfOC4WiAY9t6Uy/tqaQuJgzDu9Aby7I47vcpS0G91SYI6pRCkmSFLriSHNdxuXHzOguLc8x0Z5BK53YqZeD7Hmurq0TRmDCc4DguSaILKN/32dnZpVFvYZgGSZoQhiG25dA7HjAajhiHIZ2ZLlmWkvVvcXt9mxMPfpqF3RyEifjZj1GWUk9sZYnj2FhmwMh2CJ6+SNmukylBUV4FwHcenvpUddZqvVKhPxgymcRkecnh0RGXL7+BYRjs7e2xMD+nL8ilviSX00xTAMdxGI1GnD59mixLmYQjTMtGKoOLFy9imAYrq8uMwxDDMLh54wa1Wg0pBZSFLvKE9mgmSfJOtm+W8Z1nnqUSuLiuTZYl2LaN63ggDUpKhDAQKLrdLnPzMwih4WHKUEwmEw4Pj7Qf3rWJo3gqTxNUgoCgEhCGEZ7n3/XLW7YLCEzbxDJN8izVsnilqb79wZBaRcPyynLaZJkS1pWColDEcYyUOVE0wTZ94iTCdT0EMByN8P0Aw7QwpSC/cx2cQkr0dADC8XgKVNNAPR0TVCCVJsznhb7WhZMxtmNPI4y0AuLOBi2JY0zL0nCVLL27yTVNE8qSubk5fN/XeZCWnuD94Hvfoz/o05npEKcxhmmws7PDG1feYHXtJOF4zLn77mN2rkutWiWKIpRjs7Wxju97DAYDRuOQtRMncK9vcPzZJ6jVGrqhtrXB//a//xa/8LM/zfLqCZIC+Op3wXWwp1OqvLYKqc59tEwD13ZIkphOu0OJxHMC0ji569cdRymddotOp8VgMGQwHGl7xv4BO9t7hOGYdqeOaRmApDs7x/7uLl/50z+l253B91z293ZxHAfP9cjyjMFgwMH+Ac1m4y71tCyg0WgxN7eAZdkkaUy7paFcQkgCPwABtXqNN9+8RZYlNBt1KtUA3w+wbAdDStKkwDJ1gxj09cVzHZTSXmQpJMvLK/h+QPnWLYr5Nv6DJ8mSiJOnz2mJu+NDmem90fsUr++7z5EKs8yQlJTCol6t0P/TkOHGPnvJTSyvzss/vIQQkkq9yaXXLpOEIeGoj2UWBE7OoHeAbZkUwsAoNWDKcAzG4YhK4GO5DoZhoJRNtdrl4LBHr3/M/eeWkKLEVCVFnlKWmZbR5ilSmJSlxDQVSRJTlnqYsLM/4qiX0xsOGYx7NBstZGmT5SFqqqLyfX96nsjJs4JWs0W14pInx6TRkFrggcyRhkGW3ylMhM6UFYKsMDDMCvtHIfVGi2ajxfz8ApWKlp9XKgG2ZVGpVvR+tSxYnO+ysXmLYtrAPNg9psgkzUYwJaPrFASknqhq5VI2vRbbFIWONowmgq3NXRoNk26nQsW3CcMxSplYTpU4LTnqDTFNiziO6HbqjAb7mMpmPB4xM1Oj03Knr6eGjlmWhePYZHmsr7GmJM1KNtZ3adZrVKoGSkjyXBInBa7naqVXLtg9CLnw/OusrtRRSp/f4yTFNC0WF1Zp1Cr0ByGW5bC1tY7vKQb9ISsr8+zvH1AJ6ozHIbV6BaaKrYP9A668cYXV5VXEFY9/+vR/w8svXeAf/oO/zze+/mVOnljlcH+H7d0R3bkFHv/4J1haO4HlemS5ts2UvOPtLplSh+/xr753/SRVzPtxeO5ku767sP3R+ua9j3tvHZNP/bN3BnMf9Dt/2e1/nfW3xetfcf2rFK+GYbxrjP/j7udfZ/GqDIM8ydh57gLer/8zDj75Iax6nbzU6Hrbctnb3ScIAi2tMEz6/SOyLOcHP/g+H/nIo0gpyLKESlVv0ieTCW+9dY21tTUsy+bSpUucPX8Gy3W4cfM2ylCcue8UQuqpVa9/zIWLF6hWKpw/f55Tp05gKJibaRNHIVE0oVZvUOQZtWqNoOLrOJKDQ7Js6l+KDun3jpiMJ5iGRRYXpHGOX6/SH/SoVALyPMUwJLalAEUYxfcAPEomk4n2XU09LLVaHSEklmWTJhlS5tPHk+Q5xLF+bMM2sS0Hx/PwvICgVkMZFq5rMzMzw3DQJwxHbG/taPhRt4VhWSzMz9Gd6wIFw2GfVrVBHMXcvn2dgglexca0K0zGEbV6jePjA0bDEN+r4Lkupim5eXufJ7/wBUxl0el0UEJgSYXjumxsbmLZDsowSZOMWq1BlkYcHB7SnumQ5xlZlpAmMbbj0W51pkCObVzHYXd3h1q1OY23iBmPI6qVFp7rsbCwwHA4ZH39Bh9+9CG63Rks2wEB/d4R7hRedWJ1hfPnznJ8dIjjeUhRMg5HuuEQ+Ni2zfbONmUuSLMC2zLp93vEUU6j2cD39c+4njudfElcz8O+Q+dVijCcMNOZJctyDO82ADX3I1NPr0W/P0CUkvX1dUzDot8bMDc7x+3bGxRFwdraKmWJ7nJOPxOeUyGJU5IkwjQtXnzxIq12i1q9QjgOefXVV1ldWWF7exup9OttGCWHh3tYliQcD5GyoNmskiYxveMj3Clc5h3ZqMSyHJIknXoT46lMt0AVIL78bQ7+43+byScf5vSpk/QGfZxqF9cPyKKY+fXfZLtYYHZ1DUqBlCbb21tUqh4CQaPRpH98xJ9/4ynOnb+PWq1KMm3SBJUA162ilMn6um7SmIbPq6+8OpVTlzQaTSaTCNtyMS0bN6jS7HR1gaNM8lJgmBaNaoNJOOTocIv5+Rn8So1vP/0sC/Mz7B/sM9OdxTAMGo0apmGQJIUmm1quhnqZFru7e7SabWzbRhmGlpAXgjIvaTXajCcTbEcyGh6wcf0qIpnQmyxxJvcwbY/RRz9EfzDAN2Hr9ltU28sMRhlBYwa1tU+xsYNamCNNX0MA25s1RqOQsgQhFf2jPq1WB8O0SNOUarXCz33mZ2k0ati2xR/90R8yGum4JYSWwhVlpuNOTINTJ09QrVXxPBfX9zRASEoe++hjLK4sIwQ4lkm/f8w3//zP+fAjj0y9nMXdwgwhcBydO6wMA9MwWF5Zolr10TR4kyQpyLKSOM2YhCGmYWGa2q9vWpKsEFiWhkp5rkdZCn73d36fly5c4P5zD+iImDTFMg0ODvZRtovtOGRFgTR04Ws5OspCCkEcRVimwWgcIqXUJGY0tCgvMsoixzIURweHWK6LoXRmrZQlvaNDAtdG2QFiSiD3PJ8kihGlllYfHR+TJIn2ncNdSIlU6m5WNkLc7eSLKTFYGSalAGWYmhxuGIRhqD87hs4KtUwTSj2is2xdxOpJAERRgjIUpmkRTs/7eZ5z5tQJTpxcI0oiBOB6DjPdDqurqyRxTrfTpdlqUJYFW1vrVOsVDo96eJ6Hkord3T0efOghwvGY6u1dXmy52G4AecHVNy7zO//i/+Dnfu4X2N47Rhku1jefY2fQo2m5GprUaegrf1kgETi2jeM4TEYhpjSxTJfArzIaT+iPJkTjAY2Glha3Z7r88ZNf4szZ8yyvLXP9xg3293c5f/4ka2urrCytYhiKdrvJRz78CEkcUvV9KoHP/sEuOztbrN++TbPe5Atf+AKtVpt6vTH1T5dsrG/RbDSn7ASJUgW+X8EPKuR5yZtXr/G1r/0Zyysn+fSnPoWhFKPRmMOjYxrNFnlcsLO1T9WvI6fFhm3ZTKLwrp3Hth1s2ybLckR/iLO6SH7+JL/1v/4Wn/vFX6RQJnnJVJ6vKcPq8YzyK88AH1y8lkJhlBkgSMuSIo0Qr0v2bt4mdcZ49S6LS6vYtkN7ZpY0y+jt75JM+szOBHRaDq1mDcfyKLAxUeQUpEVKrRmQpAPyQk7P6R5labOxvk6t5tKsG0iRMzg+wPcdsjzHMKbWG8ulLARFmVFSkpcSpM3ltw5IMoPubJdPffoTmFIRjkNm5/Qg4ejwiKtXruK5mlL75ptXWJibxTZLivSILB6iBEhVTiNjfCzTnjIxEizLpSgtstLkeJCzunqKGzdv0+/1QQoMU3Gwf4BpWiRxypUrVzk6PKAoJswvzRDnJRcvXmM8UBiyJPBNTMO4C0ubRCOyrEApA9O0UFKRJClKGVptUsLyXIe5ThXXNtk56lOvVlCmzVF/wmgcsbS8hu9rQGA8GuC7AtMsaTQqdJoBkoSinNL+yxLXs8myCNOUyFKRFzGmLVhZXqRa8SiyCAyf1y+/zcbmPt3ZGUAghUF/2GdlpU61YmFZ4m4DsVarEw6GHB7ssjg3R//4ECFyVlZniCcS17PwfR/H8djZ2SEvElw/YGd7hyzLeOPyGzSrTZww4MbcZX7tP/3P+MIXvsju9javvPwKkgLL9Ll9+wY/89nPUanVSad7keIeWNOP5Lz+DRWv71WN3mn8GYbB+5UlP654FVL+iNz4/X7nL7v9r7P+usXrB1Vwf7t+zLozpv/JJrD/+laaalpb/b//LcZnl7FnOgyGw7sH80y3S61W4+WXX+GrX/kKjuNQCSrU6zWarSa2Y2PbFoPhiKOjYzzPY3Z2hkcffYR6vU6j3mB55TRHxyPSpOSnP/0ZTMPj2WcvMB5PUIZJtzvHEx99gnA8IhwPOTrcpygyRqMhcZJwcHBINAmxTIPDw0O9UVCSRqOOUoaOyCgVtuVhGBaGMrAdxSTqI5UkjmOGoxFxEuu4hUlIXpRUKjU8z0cpLScbDYdE8YTxeIySBkdHx4xGY9I0J0x6JMUI27a5dvUqOzs7JEmKadrEScpR7xjXdSgpgGnYcgGu46AMSRD41Bs16rUGw/EIRIk0FJVKBd/32N7eZHd3l2e/+wynT51g7cQyru8Sp7prefnyG4zHesrw5JN/wpe++AXyLOPM2ZMsLc3z8CMPIEiRIicc90izgkajqUFH45BwEnLr1i2KImftxBpSSvwgwPMDKtUajuOysb4JJRp0NR4xHA6QUpGmOZVKjdnZOfI8J01yesd9zp8/y6/8vV8hSRJ2d3e5efOGlpVVKkzCkPFoQJGnHOztkSUppiGQEhr1OkpqL2BWJNy8cZM//uM/ZjTSvmLDsKjV9CbONIy7kKs78SJ3TnkCSRxp6Ijrurz44kX6O+dwyp/RAVBFQZKl7B8eYBgms7PzXL9+nSef/DwbG5u02x0effQRbNvEdR1s26EsSwwlGfQHjEdjLNOmyAvuP3+edqtJnmWYpskD998/9RWa5FmGZZpEk5g8LxkNQwylO+rj0QQpJJZp3s2iPdg/YDQcUSIZjkakWY5pWti2Q5alkBeUTz2L+PhDeL/6d1heXSFo1Fg7cwopNbQsvvwHZFiMqCBNAyE0fTuOI95++y0c19IUagm/8POfxfNcnv7Od1CGiWGaNJsdsiwnTXNOnjhNkmSAZHZ2ltdff516rUZR5FimpTeWWcHx4QFlnmKbCpEnvPXmZUb9I7JE+2R7/UMsS1EUJYFfI0li1tfXyfOcSRiSJFpy73k+WVrw/AsXSNOc3d19VpbXEAImkwiBoiwEQii+973nGI1HNJsNvMCh2W6QGDU+cdbjYK8P08xp07IYDofU6gFpMsELapRCgZT0HzyDtX1ArtNYyIsSx/FYWz3J/PwiiwvLmrwbp4xGoSawSoGUJY5jTgujMTs725iGASVTMuhkKq8S2NPII9PUm7VSClCQFSlK6bB5QYnnOPyjf//fo98/ZjIea3lYnuvJptBTYNfzpmRORSXwUYYijlPKUuAHVUoMRsMJrhtg27a2i4iSXq9PlusGW1mWU3idyU99+mc4f/5+hoMxR4fHbG/vTTM1E2xbE86VoX2GcZIQxSFppjfTQRCAEASBrzc0QBxlGKZFNM1nVVJ7GpWyMSwDyzQwpMHiwiJpMiFNU5IsRyiTPNcwJin0tcdxHHzfB6ayNnQzQWeP6pzIstTTnKKELCtASrJc/43KMMgL7sbk2Lamj6tpY/iOciDP87uKnSwvUKYmd2ZFjh/45DqngjAKdeZ1q0maJdy6dZMiz8mSmIPDQy5fvszB4QGWY+P6PiUwNzeL67gcHh3T6nSIJxFxHBHVfJb3Bmysr/PixYv8y9/9Pf75b/wms3OLfP4LXyKo6glrvVJ/Z6KvEfAat1qWRJOI6zduUOQx+3sbHB/tokxBpVbBDXwEBXmWEgQBUhn83V/8JYJqnThN+MxnPsNnP/tzjMMh/eNDlJL0+0coBZalaNRqXL/+NkII4nhCEHicP3+OSjWg3WkzP7+AlJIkSblx/SaWbRMnCWmaTZu5kizNeOva2xweHrO6coJmoz19nD5vXHmTIKiyMK8j4CzTIhyP6PUP8XybOB4jpbZTaUmiblboz4NAKolpWIwnCdJyyKbyRSn+GoOG98gVJSn9ayEFGUjJ7NwCb1zRAEdByfzsHJWKTxrH7G5vIUROkRdEcYZpCOIsRCgFyiUvTCzLwzItlGEyiRJG4zGzsx2qFYs0iXBsU2eBJwmmqbPXkzSfUq91ZJaOihEIadPszDM7P4dhKgwhaTbqHOxvk+c5w8GQdqtDvd7EsRwqQZVTp07w2qsvc3y4TxpHjMZDlKGmfA8dfzfF/yCEJElzEIo8hzNnzmoLA5Jud44bN9/G9zz8wGd7e5etrV3OnDlHq9mhVp3hue+9ytbWMaUosQNFs+lgOYISPWVVysB2PDxPN56TJIVpsyJJEnIFtqcomGDbDofHE7713Q0mUUwYxczOzdFsdciyYgpeM/Fcj97xEWkyoDPj4ziSiu9jKH2OiKIQIXNsxwCRa0WT5VDmCULEpNGA3e1NhALLsWm0qihDIGROUaYsLrRpNQMc1wBZkhc6C56ioDVT4dSZJSbRkDiJWFo5SRRLXn31Fd66epXJOOTCC5o5YJoSx3Zptlqsrq3ywIP3kxoJVVVnubFKu9Nl92DI5Tdv0+6usrZ6miKPWVyY5at/+kXC8eguGfq9tcGdfc+d2Ju/iXUn5/Ve8vCdz8hPst4LX/pxKSf/X1z/v528vvuFf/e09P06Evfin3+84ZgfeUPv1X3/uK93L/2cypevIGoV5E8/9hP8hT/5QacfoST/2jMitrvUAAAgAElEQVRkf/INeg+fptZsYjoujmOTF/qELaVkMBzwxMc+qgFuQl/4bdPSuZlI3R2LEiaTMXt7u3iey/zcEv3BkC99+c/48IcfphpUiKOMcBLx2uXXeenFH/LW22+xuDSPFNo7dvXNK3RmOrz00osYpkmr1aEUkkkYEfgBvu9zdLSvJXcILrzwEoFfpdOZw3ErZFnO3v4u1bpLUU7wvSq1eoNwMpluhEr293Y57k9oNdskaUqZl6Rpyv7ePguL82xsbDKJImZmZnn77ev8X3/wh5z7mEW9K8gGVVqtNr/zO79LlmacOXuGoswQ5EihvVZ5roPbs0xvXA1DYBiK27duUZaCRquJlAaHR0coJYkmESsry1iGwq9UaLfbCCkASThK+e3f/j3G4YiHH36Q7e1tHvvw43S7HeJ4TKNV5f7zZxAiR8qC0ahHvV5BCJvJZDzNtyw4PjxiZ3OTxaUl4lSHyBe5PqZNZSKkMY1mKekd93j11Zc5d99ZLNsnz1Nu3nybra1tlpdWeeaZZwgCn6Dqk+cZzUaDJEkphcT3fSZRTKVSwfVcNjY3qFRrmJbF7fXbuJ5HmqQMRyP6gz61Rg3fcylLybn7zhFFYxzHRghD00hL/d4cHB7SaDTY3dvDsiz29/e1fFjqCaaQGpCzt3NMLWjpCJs8I09TWi1NOR70+2RZxvr6bU6cOEGz2ZgWKA5lCaZpTKEWBRSSSThmb3+XZqNBr9eHcnoBnsr2fN8nCIK7QKzxOKLVbOO5+qJqWzZKmWRFguO6JFNZsmWb04mSwrL19FECeZ6SRBFsHWK8do3s9/8Ztu+RpAlpntIfDimSkuzwCuXz/xNp+zGub+7Q7rRwbRdDaXjP2oklxNSbOR4cs75xi9UTaywsLhDFCa7tsruzz+1bW3z+818kTkN838X3Al57/VU+8pFHiKLJtBAzuXLlKkIIKp6JbSoUJcPBEb5tYcqS535wkfGoh+fZNFotJnHG9s4OhgEPPPAQhmHh+RWKvODa1auEYYrjuBwdHvL1r/8ZDzzwgPYa5VoSlUw3Hr1ej0qgM0CVaeJ4DnGS0JlZwIj2+PaLV3jYXsX1fKLH76der1AkA0a9fWqtJUxDcXiwx8RSNL75HPnaEmnxGmVZ0Kp/nDjW2c1iKpkqihzXczXYLNGqDMd2qAQ+Dz/yMOfPnUdMC0wpFIYpCUO9AZuEEzY2NvF8n6IUCAlFnlEWmc5WFBpGYkwnhq6jQSKlvkDo8/HUO1QWGjYEEEcTDduxrSkkKeGHr1zi1o115he6KCWRQmGaCstWFIXBxq0bNGsBihLTNJmZ7dJs1PArAYeHPQ4OjzSIpVYjydOpCkg3Heyph7vI9aZxOOhrUJWUDIZDHM+jyJjK4CdTKaKiUmmihMX+/jaCkkF/zM7WHoPhEe12l7vMB6FzXHXepMKy7bvd+nuVTBr2xN1s3bvQqqkqoCxzpIQ81eoXyvzuNfpOXJjtOCAESRKhDE1gLksJpcA0FHlRvFsqJwSOY5GkKYPRENfT8UVSCKI4RgjFcDTg1KlTlJRaMq0Mjg4OqFSrVGo1Hb9mmVpGejwiWprlahLxqU9/mvsfOMfsfJdcCj73b/0Sw9EY+xvPchgOCYSkKEvSMweUziF71xOqQQVlKlqtFkncA1FSqXgc9w+xXROv4kOWMg5DJpMIKRTz80v0e32+/Kdfwnd9FuZngAwhJZ5b05Rfpad4d0A2tVoNz3OpVqo4tktRFDxw//1IiT6uLJt2u8Pm5iZPPvkkL734Io89/hEgoyyh1W7rqZuSnD59ima7xcULL3Drxk06MzPUajWUKTFEgetb1OoBB0c7KFNqaWmSE/iBLiqFYDQa4dgWYmOXHd/hqe11HnviYyyfOIFQAil+dMJUfvVHJ6/v3ltJFCWFkEjDxFEp6Z+0WS+/g3Jc9gcpDz70KI1GnStvXOHpp79NNDrm4QdXOLnaxHfAshzyzCArhxR5SCldDo4zoonAcwKUaWA6VaJYkOSKZr2ObZeIMiaahDTqFRAFhqEoAcvWiq54MsG0TRAGe0cJb1y5zQ8vbxKFI3xPN17MqST2+8+9QKvZQimB52q7lOs5pHGIZxmM+vvMtBwMWWCZJmWpJcJKTSNykPo2aZDkio3tA9LSZnNrl9W1NfI8Z2l5kSTRDfNWq4XneXieR71e54uf/xr1ygI7e0ecONnk4UeWaFYLLCtFqYKy0JFaWjdQEMfR1IaSIKXCcRxyCeOoj+fbhJFk/yjhoN/nzNoMtuNTYGHZPoaprVu+61OtWBR5jOtYREmkkwqiCNO0p0oNDYVL05Q0TTGUVvRkhQbkObZBNQgoZE672aA72yaOh+R5BGVBFifIKZjNtrUNoSy0dUM6JUWZEVSaBMEMr7x+myvXN6i6BufOnca2HdbWTnPh4ossry6wt39MUeTYtsXFC8/z+BOPYxy6PL3/VW71N/iFz/0S/cGQ1199mXogmPQP2d7dxnQ9HnjoEdx6nYwSpcx3CtaL9l3P63snp/cWjH/Vyeu9BfIdIvudYvbeWuLOY/w4arCcWjbuLa4/yNf6Nzl1hX8DZcPvfgE/SOo7/e770oU/6A340UPoxxW7H7ymevSffoyfrHD9cc/pnnu990CUgvwf/1P2fJPWuZNYjsb2x0lIWeqTpmWZdLsdbNtEiJJLr1ym2Wzjez6XLr3OrZu3WVxcmdIcIxYWZul2uxwfD9jZ3uXBD50HQoo8IstSavUKS6tzNBuz1Os1Tp5cQ0l488pl5ma7BNUaru+zuLTM1s4e8wtLBJWA7e1dHNfGmtIK86wkSTJu3dpkYUVL/p566ptIaU6BMD43r13Dsh2ENKjVGsRJSq1eRxkeX/nKV+l2u1y5cgUlFSvLSxRlQbPZQiB58+pbfPc732N+fon7H9PSRzOZZTKZ8KlP/ZSme5Y5WRrjeTZpHGJbOuOPKYRLqgLLNrAsk2ajSa3aZGdvD2WY1Ko13YVNdcB6Jia0WrNQWlx69Q0swybwfJThsL2zxblzJ3Edl/5Rj/m5WcLxEMd2ybMCy7QpC4nrVpgkGaP+kCgMkaIgTxNajTpLCwuUSgM5ev0hN2+tMx6OqdebJEnEcDAkTVJazSanT5/UVD4MhCxotWq0Wm3KQjLb7SAEDIZ9fNdn0BuwtbXDzOwsCIlhuhSUjEYjhFSkWU4Q1GjUK1PyqEma6QmTZZs4lsHq2gnCcEK16lOUORvrm4wmI+1LFIJavcY4HFOU5VTy6mmZynSSOIkm+IGHKnOiSahn34X+d5rENOoNgoqPlDA72+X0qZNcefMNhqMB3dlZpJRTebzP0fEBw57eLC4szHPlzSvU6w08t4KUBoZp0O/1NEUxTe9OgGxLUBQpQhQURYZlKTY2blNttpGGpgjf6XjL6aY/z6d5Z2WJIQX5JMT+iwvwX/1HyA+dJpxMODw6JM5TDNvixWe+RePK/4xVncVqn8c0TKSCmzdukmclb7/9Nisr84COsnAMiWEaNFqtqcQ6Ynd3nzTNufTqZQaDIR/96KPMzumJSaXi43kOYrr5yfMc27I1jdnz2D885vb6pgZftTtYtsvc3Ayz3RmSOKPRaDMMx6ydXKHqV8mLktdev8LG+iaTcMLpU2fY2Nxkbm6WarVKXqScPHmC/qDHZDKgVq8hpoWeUoLe0QEzMzo7d5KU2G4NZdmILKRTl6jrNoEfEH3kNEIUjMc99ve2meksYhsleRrSne8QX3wdFSfEfp8iN1FCx5+4rsONm9dpNRscHR0SJwlSCjbWN5jtzGIog8GozySc8PU/+zpraydR0iBNUixbZ1rqokvy0ks/ZLY7r5svFFAUhOMhvusSDsdgWDCNcpFKkU83CPfKw8qpfPhOMWsaFnESY5gWeVGC1JE73/q/n6FS8ZhfmEMgyIsMKHj5h29Q9WxGvUMcW5HlCfuHh9SaVZRpsrm1x9LyCq7vo0yDKOxjGgZ5WpBEKRJJmRdI00QILR0Ox2MQEsdzGYcTvvOtZ3j7raucO38WhCTLBaNRzOi4z2TSw1CK8TDj+Rde4sTpFbJ4gu97lEJM58+FjhoS8p7N0/T6eGczJsRdSu67NltZhqAgDIcaDIWOCiop7havUmhwiBSCstQU9LIsNVk7E1x98waWoxszajpNvrd5IJUu5k3TwvN8oijGUCaOa7GwuMDu7h69Xn86Ca9hyIL+cIRpOVy9eo3uTJvtzQ2q4wTnofMc1vWU9Dd/6zexXO0hzMsC0zERX/k2pWPhoSXQ6XLBaDik7ZxmZ3sb1/dwXZejXh/DsInDiFq1TlHo5xtNIuoNba8QQhBPIna3dxkPRnzogQ+xtbVBreHTbM9QShthaOVBUYA0DMJJhJAGO9tbKGnQ6/W5dvUqS4vzjEZ9yiIjSiIsy6TVanH27Fm6szM0GlWSJCWKIj3hzjOSNCROQvyKz9qJFc6euQ/XdQgqHsgCQ5naZyglfqVKURoUuZpaCZKpD1QT4rM0Q20fUCwv8fWtm/y7/+g/0NnBRTYtyHRTI/sTl+KyifyYg/jQGcTq/Ds7oXdt0kGUuZafC4lRjJl8zWU9eZFcKk7d/yjPfOd7zLTaKIHOIh8eszATEHiQZ2OytEAaAbZharaBUeXNt7bZ29tjcaEFyiYXDoZTY2PzUO/dZIJrKWqVgCyJSNJY55gWOVLphpmhdNxOFBfEqc84FATVGe6//zSLC/OkWYHnB1iuxUxnjkoQQJmTJiFJMubq1csMhwNqgcv2+nUMMcb1LN2AMqfnG2lQogGBokQb1KWN7dVYWDlDqz3Dcf8Yx9YN17zQBPA0zZibm+XwcJ8XX3qJs6eX6c7WgZRbb98kHob4joVlGpQ52LZPmuVIo6TIUpSh7mZal4UGkJYTiaUEcRKhDAfbsnjgvllt4zJtwknOzu4+4SSh0WhweHCAZWXoIb2JUCZKSShKslxnbiulz4uTSYypXIQhmMQlUnoYyqIoEsoiwxCSZJKSJSm+55JnOZbtI3Kt1jAdiyRJMZR+zqIoEIVE5DlpFJNlGTdubPHQw+c4vbaMH7hQCl648Aqzs3O0Wk29t7pxg9OnT3Lu3H2EYYgzqfBo63Hqn3HY2T/iN37jn/OpTzzOr/0n/w5bN9/Waq5HP0JnboF6a4ZSKkqdJ6bPh2MB7QKxkr4vMOnu3v4v3f2/++fvRojx7sL0nXPyO7/z3oHce2ui4n2e1/sVr/861t8Wr+97+/S7/y8Wr3+19ZM9xp2DL8sSxD/5Ta6f6DA7OzfdWJsoVRKGWv6olDGVXanppG2Gne1tfD9gaWkRy7LodGbIspx6vYIytPfj+KhPtVoHkVLxDUxTkGUZu7vbLK4uIIXL009/mwcfvB8omWm36R0f056ZpSz1Cb1Rb+pO2jT+wLJMbMdEKb3x39jY4uMf+yTKThmOxpw8eZb5+UUs08G2PZJJn053FsO0GU9CLUtVCmXY3Hf2PmzL5Lnnvke9WqNaqWB79hTCZNKZ6XL+/AM8+OBDGNWe7viOm0RRrAFWhob/mJYiiUP6R0cYpoFpajhSmmUYhmAw6PH5J5+kWqnRaLTJAHNadKVJSiXwKYqc8aSH59YpS4M//IM/wvNc5ma7tGfnOXffGVzXxLEdwtEEyzJotRqUhcQybZIsn0ryLJIspxr4fP2rX0FJnW+5s7Wpfa/NNnGsJaIv//AVxuMxge9Tq1Xo9fo89dRT2i9m682r61XICw1tsm0HJS12trdY37iNZVkEfsDzP3ie77/wPB957DEqlQDTdgnHutBs1BtTJL2BbRmYhoVUhpbI5tozeLC/zeFhj9nuHJMoZHd3h5UV7SGM4xjXdZmEesrjez5CakmlDvPWsvDt7S1qtSphfgGvEmKJWe15o2RvdxepjGkjxqLRaGCYWo5cUuL7AUmcsr6+TrPV0PCavKDVbHL12lXa7RZlKahW6oThBKkEQRAQTibs7+3R7/UIfJ/h6Ig4icjydPqaDTTh1PaJkwTLsun1+ni+jhTIsoLhaIRtaZJgWeQkL77O2LUp/sv/cPrcNAjkuHeEZVlc+8J/x2IwwV75BEiDVquJ5znYlo2hbJaWFtnZ3cDzPV0AliWmbWJYNlGc4gcBlaDCcDBmbfUkZ86cwXEUZZlSFAVBEFBSIAT0+32q1Sqe51PkOSkK1wswbZvjox71RpMCONzf5a2rb9NstbEdF9d3KSgQOZimzezcPJ7n0253CMdjGs2mDlyXgkG/z+LSAtVqlXo94OLFi3Rn56cxJxJDQq1aZXNrE9erUaKwbEtPepMtRpdtmq0O1s8+ju24VKsur196mZUTZ8iLlJJCw0dMB3HhMvbZn8F1zuLaDmmS8PaNt0nShCxNyfOMTqfDJJwAgmgS02y1EVKfhy+99hpLS8tUqzVM05xORG2SWDefpFTMzy/oc32RablwoaXiruMiDEvLX6cE7KIoplPfd87L8p7pa5bniFLH6aRZOi16JbbtcHL1DH7gIOWdCY62f1y9cpPN9essL81hW7rRIqTC9hzyrKRabRBUKrpQyBJ6R3sEfoBl2phKWy7yLEMYagpXk9NJUYlpac7ApZcvMR4NOHPfGShBKZtb61t8/5nv8NEnHsF1XaTyePDBD2HZkv7RAX5QIZv+3XcI+XGcaG/wvZulaREppteoYjodvbOUEOzv70wJ8iaaQy006XJ6P2mSTKcnOYeH+9ozOolIs5yylDTrLbxAT5PvLZYpS8JwjGVZFHnBcDCg3+sz6A+YTCbUGlWUVKSplka2OzMURcntm29RrTWxbK0WaNZrOpN3+xDOrjLpdnBdl1//9f+c06dP8slPfoL9wwOefuYZzl3bpR+PcU8vk7YaFL4u/nsb8Na1azSaTUaTkGa9RRIl+G6AkgZ5CUqZ2I7FeDwiyzUN9cb1G8zPzbO8vEa9VmcwOMIPXJRlowxHq1koMZQBpY6TE+j3+Y4827ZtarUKUTSaWmHAME3KUvup01SDsKAkz3IGwwHNVoPDo31838ULKniuj2noc60QoEyJQE//8qLk8PAYy/KIk1x7FKfKB9M0ATjuHSM391CnTtBfXeCBhx/EMLXtRAgop261/BkbQoH6+23EyvyPTKXe2e8IVFlQCkFKSb7dp3imzc3J91G2R2fhJEvLq3iOw3Pfe5ZavY6pSrotB0NGmGaJbfscH4fai1+meJU2jltndraFaSZkuUGcwXCU0plZpNVsEI4POdjdxDQMiiJFKVCGnjgXU7WAqQyGwyHKcDjs5dy4tc3C0kkECa1GkywHaZhMkohwGJMkMdWqz+XLr2GYgm63Q54W7O9ssbw4g5IRpiG0b1gUKEMDFJUyKPIcAYzDMY5Xo1KfAeUhpYZUGqah32fTZHdvl1q9hlQSy7JYW1tltlvlqae+qJVfo4zFmTXazQqObSKlJIoSLNtEmuU0dk6RTcnSTEFyRmpjWlLLjm2XMs8wZcg41tPGXn+M61UQwmA4HNHtziBERDSJyLICwzaRArIpLDNJYopSWy/SJMW2PKJkwv5+j5s3N/EDHylzijzFVjZSmFBKkjS5C9iSpZ4cZtNs4zzPdSSSMkjDDMoMJQVKGjQ7Ld66/iZHBz22drboHQ9JU0GWFzTaddrtLstLSwxHfV679Bqu61Ix66hcUT425i+efpZ//Gu/xh/+/v/J2dUm27euUyIoTI+HH3sCv96ikHo6L6fHuVjJkKvvLxf+Vyle71WW3vv/u+fjH7PeWxNlU1vXncnt3xavf8OrKIp/8v4vqrz7dbcLfM/X+9/+QeuDfvevun70eXzQc3vn64PH8uXUS1MCSEFWFjiFT/q//DY8uEBjZpZJaSCBna1tfDegyOD1S6+ztbGB5zi4tsPu7gGXL13i1o3rJElErV6l0vDZ3LiFZRtUKgHD0QjXdWl1mhrPLm0GgxjHDfRF9q0b/PDla9TqBnPdClf+H/beLEbSK03Pe8759y3WzIzcs/ZiFVksks2tyZ7umR5Jo6WlgT0NSIIvZQO60aUvDEOGYfjGhmAL1kCwZ+BZNLJH6oEG6lF3s3t6IZtNsptrcSnWxtpzz4zMjP3f/+OLE8Vhr+q2JFsDzSkEkBUZGRGZEfH/5/ve93veq9dZO34OadugSjbu3yPwPCzT4PatmwS+j+955BS88dobNFttbN9hebnD0d598jxje2ODdrNG4JtMxoeU5QQvrJPnGXEy0sWY5yKkRZmM2N5ax3V9Lly4iOu7+FGIUno+JMsKHMtmff0Ongd2fUSSpqQ9n6IoqNdCJBXd3S1sx8e0HFw/wLQ8fvD91/E8j1roM+gPqEcN9rtH2I6v42Y8CwNF76CrIxc8FwwD2/MRhqYQPvPsMywtL7K9s0WzXcdzbXoHfQ72D0EadI/6jFId+i2nlq3xZKRna0yt6rTaddrtJlJKTbELI3JREqcJURiwtrZKkSZEocfW1h3Wjh/n/CMXmJmbJ4pqDPs94niE5zpEUQ1V6c2KZXm4bohlOgRhyPETZzl1+hEardY0VqdkPOjjutr2YjoWGEJDYaTk6HAfy5T4gU+WlxhVSaPZQBomX/qjP+b69Vs89sRjFGnM0eERYVRHWlq10sVARRxPsE2DIk043N+jXm/iOj4y+hBhjZn0lzFthzhJmV9cohI+hmliiIokHWPaFtJ2iCJdmBqmTaPZxDBMXVz7PgXQbLSQwmQ8HmO6JmmeYFoOQlj0Dkd0u4eMhmMajQY7Owc0G3OYhkd3/4iZdgfPi7BNSTweY9sWnu9jGQZH3UNe//6bUBaoPMGxoMpi3JffZ//v/VW81TksL8CwAia9hP/mv/r7/M36m3TKO9wYzjEYTEjjCZZtYZouhoTxeIjresRjTSdNkhjhBnh+iKoKbNNECsnW7i5lPODocBfbVCwszFOWFYcHh9RnZihLRZkXhGHAYDCkUIAhkBrNCGVFFsf0j7pQ5TTaHebnl+n1Bhz1eviOw+7WJu9c0mTft994ldl2g1defZV3Lr3HXKeN67k4jsHC4gKGJSjLHFkJilxRVZKoVkdVJcIsycuUWtCgUhUb63eZm2lg2A5y9316c8cIH32Yg6iNDGcpxrvE3eu0505QCQthBiQpuPOLOF/5LtuBBCl11I2Cl158mYcffpQkHrO8vEJZlmR5jhCSVruFlDqHVJgOp8+cI6o3MKQ+2dueQZJmDAZDylLRnmmDUORFgmlZOtrF8ZCWzSRJyJMRjuUwHuV8+cv/hs5skzIfYTkPCjiBQJIXOQq9qa+m5wEpDSzDxEBiCIGqBmTxENeUlFk8pf7anD17jNVja9QabQolpjC6jFFvH0lBnsWoMkFKRZYmtBrLSCXo9w5JkgGVKrDcAIQxVamgBPSoqU3g1zh/7iHOnD3FXnebZkvHydiWzTjNWVw5hmnaGJaiLBKytGR2JmI0innnrQ+Zbc8SuCZFekTaW6e/v4UoEmwpGfR6OL7LA4yGRBfzTO2kCr3pbjSaFKXO2syKUhfogo8bXKalYTiqgjAIMAybL33pj/nud7/H5z73PELmWFKDYx6oBYZQdHc2adUjBr0jPMfn3t11FhYWme3MIaTgYL/HYDimMz/P3t4OzbqPbVYUOfh+jW9+89s89thFJuM+h4f7NCc5+UqLI0fx7qW3+e/++/+RR596FtsWzLQ7OHaA+cKr1BeXqNpt7tzfwm4MKauKf/F73+ZX/9KvMhwOWL93n3a7Rb3eZGd/j6geoVSO4wqKaprPHsd4jkOz1SLJEhqzLa7duIoC6vU2UpqUVaabwoZg2D/k5kfX8L2At99+j2tXLzO/0KE918YwDbI0o0hLHNNje3uHyWiI4+q/syZSm9z66CqvvPYGw1HCydNnabVamJbJlUvv0ag36B72mcQJruciVEWeJ5imwDB03u7h4QH//A/+GZ2FOaJaSH84xPMDFBoE5+73KFYiNpwjzj50isIKQEk8VVDIBxEiuslqPF38zI2yIUGii1fDMNj7+ibbN27TN0ecO/84X3/hRc6cPcP7H7yL63h8ePkKVCnzMwaeb1BiYhg2qkhJ05IgCoknBzhGjG8LqgJGvT3CYImtrR5lMSJ0M6xqQLuzSFGMkVWCbVjkKZiWQykyDGFR5Xo2tagqHLfGQfeInZ1dPvOZX2E4SgjDGguLiwSej2UKJpMBo9GA02fPsL6xz/LKKUbdI7Y3rzM36xEGUGQxVCWm7yMNC8vUmexVqZsXjldjOJEc9UtM2ydNE7Y3tunMdjA8m1LleL6DIXUm951bt1k7doLeQQ9Kk831bTy3pN0S1OsSjCGlyrBMnzzXmbCGMPRFGqC08p4nJYanGAyHUAmEqhCyolACLwi1S6jVwbJ8BsOYJM6xLI/hZMTXvvYeOzt7dOYiVDGhKiRpkeM5DoaQCKUZI1mekGOwsTnh9p0xJ8+cwLFzRAVxEaAkSKPEssG0DBSSy5e3MBxwXLCkR5FnWAYYhod0TUzLQxiKQuaU0uHK1T0wGhwcxQxHOYeHPUbDIeNhzJ07HxGFIaPhmPn5RbrdLvVahHE/4BX1Da5du86xtfPs7vV54U+/TDOoCF2PmuGxvbfD6iMXcK0IX7pUovqhPf2DyyfHHX5Iif2pxeFPq1vEx5+VB/b6H60ZfvIc6ydHKh98xjTwUgrdUNT/+JiY/KMW55+2flKcz7/NavyfTPH6//dz+EVX/vf+W6o/+Q7Gr//qT/z+L9LNUJ/4QpUl5JLqn/4+7nOPUwmLSmoKcpmnRLWatqTaNp3OPEkywbJMJmOtOD300FkQMIkn1Gp1wmnkgDR0By6K6gyHI956821WV9amcwAOnudTlhX1RoP9/R2OHz/J3OwyhmlxcLhHvRZRlCVRFKEUuK6HNc1DlUaJY5q6o2tAkWcYqqIxM4vn+wxHE2zH0vNceU4U1YnjCZ7nsn7vPlEQsb+7TxQFlGVFmmW0Wk3yPCWq+QPZdZYAACAASURBVChVMej3p5sgYwphMEmNHbr7h9SMEximSTyZMBoNGQx67OwesLC4AAoc22V9YxPPDag3alOF1uL4iRPUmw0c2yVJJmysb1Cv16nXanQPDsjy/OOucxzHSBRZpk/2SumOYlnofNCjXo9vv/gSzz3/PJaplRjT0nTSB7hy29aFXhAGGmZiu2xubFFv1HEsC0NodSdNJqwsL+EH3hTZr8mvvu+Tpwme55CmKVmasH5/nckkZr4zTxRG7Hc3abcipBSEgU9VJeT5GNsKGY+G5HmGkOguvQBVaoqm4zhYpu6qekGIbWu6rGHYjMcxzXabxcVF9nc2ac+0sabKpGEIqiKn292n1W6zu7OjgU6+Dm43DJPSvE5VVST9Ja5euY5AUq83yYsS17WRhiJNsweGfMbDEWGgoxcGgx6eY09nNhRZklCVBaZh0mq1kcLEkKbeCAlJ4PvcuXeX11//Ac888yyNRk1n6pYFMzNthsMhtmNP4TkGWVkiDZNK6Q2557jMdzp4nktRFNivfYj53GMkf/1xXnvtFR565FFGcYK3/TKPV99gMplgHPs8p86eo16raaWxXidNM4RU+J7PYDCk0WigqBhPxliWTRKPieMJQoDj2Ox397Edj7AWEdYiNjY3ef+9D5jvzLO318UyLGzL5J23LrG8vMK7l95nZWUVpQoMITFMk3q9zq2bt9ja3sX3Qw4Pj7Asi36vx+rqClJKFpfWmExG1CMdo2FaNufOnWdtbVlHWlWKLM0YDgYcHR1SFZVWcWZmqZTCdSyyLGY0HLCztc3y8gqDQZ96FGJbJrt33mPccqg9+SymO4sXNggtm+79TczaHK4XIYSN79e4u7OD8+3XuJvHLJ88QZHrLnGjWafTmSP0fa1KCMHR4SGB7xGGEXE85nuvvsyZs2dRaLKwVogkSkCSpNy7d59v/Ok3uHDhAo6jj39lpYm5wMcU3SLP6PeHvPb917XNk4rl5UWs6dyn4IHd9c+iC0phgTQQ0tDdeaCoKsoio16v43o+tutjOS7SMIgnY9xPRI+gNMDJdm0ODnrU6y0GwxFRVJvO5DtUqtQZs4BhWUjTpiwfbFqmP29ppVxfV+AHAUFUw7QcDo8OUVTMzszpMQnboCpzDo8OaLfbDPtHjMfaSp6XKY5jgzBQeYmaKp66dld4XoBCb4IeqLBqai2ulMLzXMophEkITcXUKq3u/D8AkAiBzrecbsiOjo7Y39/n8Sce11RxpUBMN1VosFNZlBweHiCns8mmaWHbGjJ07/5d7ty+R5JmtNsz08cRbG9tcXjUp1Jw7do1Ws0maTphdWWZ8v4u24Zi+XPP4zkezdlZFBDHQwSSmZk57vxvv0M0N4Ooh2RZSTiXIoTg7ocTnnzyKb71zRd57tO/RFnlFNNYLSkNhsOhft5FhT1t6o3HI1zfx3JsDg5HvPLy94gnMfMLnY9p7ZXU6pLt6nO65XgkRcHR7i6u4zK/sIDn+5imyXA0oqxK2nNz+EGEabokacb+3h6mCck4IysqNje3efTRixqGmGWMBiPCqMEHl69y7/46c7OzZFmKaRrkea4/255PENboHQ05dnwV23YI/FCrYYapkwHWd1An5tieMTl++izYkT4PUFFO1fjqTX3OlPEP4N42Yu0n24aF0IVShSDNc7KbQ5L1mNKtOHHyLF7YxPN95hc69A77HHaPsAybfHREEDw4lytMUerXQJQICYE/jeMzLSzHZv+ooFAWm1v3mG3XCBxJXhWoMkaogiIvKZWgVCWmKUnjDNNwmcQ5huXjBLM02/Mc7G0zODpiaXEB05S8//67eK6NkCYHB11Onz7F0dEhnc4chpAUyRH93jZzMwF5NsK2LQzTokJMFVdFVZZkaYrrukzilFpjgaNeTHN2AT+KuHrtOobpaAq3aRH4Po6j7ceO7WD6Ft29LgiXy1dukhcZqippRjZFkWFbLt3uAENqiJLnRmRZQZLG2iJsSYoqxXZ8iqKkVq+jEORlheeHGFaAZfkYloftBCglGPR7zLQbmGbJaHDIubPLzM2FqLJgZ/uASlUoVWLbJoZl6Jx0QyArQaPWpF73CQKFYWSUecWt9ZTRJKVWr4PU6jdGRRQ5WthAkhclVeURJwo/MsnzkjIvgRLLFFiOQbPhsbw0y/bmBnOzTR46dwbHM7j4xDmiqEFZFmxsbBBFkSbIlwmNow4vjl5go7vJI49c5MVvfp2FWYuLZ1cY9YcMBwmjouRzX/h1TMNDleoBLB21L2EiEcFPBip9XBz+1J3/T64Rflbt8MlC+RdZfzYzq9eDsYxfpE75RRXavyhe/yNd1Z98B+DfqXgVSr+J1HSOiUph5BW3//CPqL3+AfazT5EVakp1VBpckRUYhkGv1+eFF15gbW0NBfieh5CC23duc+rUKTzXRSDo9wdkWc63vvUd7ty5x9mzZ7Esi2Z9hrLM+epXv4pl2YyGI771rRdptnw+89xnee/d6yRxwcxsCykrdnd3WVhcYnNzi8Nej6rSJE1jSvq8efUmCwvLZFVJGqe4touShlbWDE0s7A8GWJa2iaIqXMdhrj3LZDTm3u177Hb3WV5eplYLEaJif3+b3tEBjq0PYhW6aNcE0wZWbUS93uR//1//mFu37vDkk0/guS6j0YDxJGN5aUXTc/OCl777Mlvbuxw7toI0pqqdaRFPYpRSbG1uMT+/wO/+7u9z/PgJdna0dS+Y2jNdxyYvMkxL4joWluERxzG/+7u/x4VHH+XMmbOcOnmaf/GHf8izzz5FVVUURUGcxAAkSUxZjknTRL9vDBtDmozHMXmaYCB579K7vP797/PpZ5+m1zugNxxMybIaBAGKWr3GaDCi1WoRBgGObWv7XL3BaDjglZdfZmF+jqtXr2mldqgBE1VpUqtFWNOZQjntyCVJznA4AFVx/+49gijC80IqIUjTHClgcWGR5eVlpGnSqoVsbW4SRRFlVaLKgoODfW0ntWxazab+fhhSTS1vhXEdKSW790M+un4TzwvZ2d5FSj1zMxqPaDSbOLaGMniOw40bV3Bsa2rzmnDYPWQ06hP6AYNen1s3b3Hj+k3q9Sbb23tUZYrvuZi2xfziAhcuPsrG1haNWkCWpYSRj2FKijInz1NsS+f/FVPLnM5pk7SbTbI8oSoK9q7epH1/n4N/+A+YX60RRjWq/ibF9/8R1c2vEh1/BnvxU/p4MAXFvPD1bzA/3+Hd996l05nDsh0dD2RbQIXva9jW5uYGnuNiGgZlVRJFIWGjSVCrAZKF+UVOnz6L43oM+yPW791nf2eP+c48H7x3mSAIufTOu1SVzgb+xte/DkrgByEXHrnIJI7ZWN9keXmZmzc/4tatjzh58iQVgkqVvP3WmwRBwIULj1Kr18nTWOd4mtqi+tH1GwReQKNe06+J57Ozt0MY6szRwA+xDEkUBgSejxCKXu8QQ1TMBRZJ+1N05hdJ0hhTTdjfuMHK2acx7YA0q4iTjEazAdduY9a+hXDv4tiPIoWg1WwgpSAZD+nud0njCa7j4Lku+3u7qKrk9NnTIASGaYBQSKGjDHSH2KDZbPHUU09hWQZ5kU1zRKcFVa7jOaRhYlsGhmEyP7/I6toKlmUQBSFIQRwnWkFEgYA8y0nTVNt2pUBSIlSOFIqqyLBMR6tUUlIJoefMpNBgpwqyrMB2HJIkZTgaEoQ1Wq1ZhDAJw0jPjAmFkKYmu9om1pQNUFaQpynSECilG1y2bZMmCZZlkmYJpmVTKRMhDPzQpVQZtbCGomQ8tcK3Wi3iZIwpLaJ6SJz0MMyKLK/wvCalN4dba2GFEU4YIGyfSvqgNESryKd/A8siTVNN7FZqClN5YE0DIXXcxYOC/0ExXlU6S9QyLVZX1/j0p5+jqgqkIYnjCUWRY9uWJmB7/rRx1sDzfRS6kffGm69zbG2V4WDAuXMXCKMatVodgeDqlaucOXOGmbk5ut0DHnnkEcbjESdPnMB2bEhyGje3+K5TEscxeZXTH/fwPJ+7d9cBwfybV3EaNdwso2kA8xkoxSMnP0OSJNy7d59Bv480FJ35eUbDiYZ9TYvYG1c+JPBdJqMR8/MdpGlg2TamWSPPcm7fvsnx48eQhkRI3aBgaoc0hEFZKKSQLMzMsra6BlKQ5TlFVdBoNfA8j1JIkrTgxW9/j8ODLufOn6YoJgRek273iKNej/MPn8cyTfq9PmUBUa3Bnbv3OXvmLLZtcefmLQxL0mg0NKBOGhjSYW52nkajAeiIpMl4jGFKbNtEvPQ2V55fpW/nXHzyWVKlydqWKn+seOVP/ynq/Rs/Bmz65NcPiteiLPnoWx8QDEL2Jj1GkwzHq+H4GkC5ub6JadiMhlvUA0k9CnQTssqxzIoq13ndlm3pbAHTRkiDrIQ4czl7/jFWVheRMkdUCaaoyNLR9PdyKSsBAoo0QymDbnfIYAyF8rhybZ2g1uDxxy7ghTW2dnc5eeYslRDMzs/z2muvMR5PkFJgmSbvXXqHqx++z6ljDbq7d5nvNBBM7ZuGtgtX089JmiTT+eIcYdgYdg3DDgmbc0jTYmlphcFghCEFvqejn/b29hmPJ3Q6HdI0Ydwbce3DGyDg1Mk5GnWTmqdJ0pZtY9kWtm2yu7eH61nYjolpSgzDIs8rVGWQlwo/DMiLgs3NbWzHQ5gOk1QShk0Gw5TBaEIY+LRnGuR5gmNUrK7MEfgVRTamHjZp1mYIIxfD0MfXvJAc9XMw6kRWhaRkZs7HcxSGIbFMj53uiDQZ0um0ESrDNCRVVqBkH8+pURYmwoCXX7qCEB61GUFVZNNmv4GqJHmWE/oWgZux1JlFlQUffHCFg8Muc0szrCwdZ2Njg8cff4xarUZVwTie4OchrbM1fvlvf5ZrH97gP//CX2Fv8wO27l7DNiykcOiOxnzh7/wXlIXEtRxKpvnP/zyiumpjPJn95Pf2v6fi9ZNF5w/d709RTB8wC8TU0fDguh+1Mv+7FK8/+px+0vpPrnj9eSTs/1Ae7Z/1eD96Kb/8beCnF68/z5JTC1glBLZpUsQJapxy9bd+i2BUwolTlHnGoHdAGEXs7e7iBwH6pALr6xuAotVus37vNrNzczx68eLHFLrd7R36gx7Hj5/g1KnTLK+scO/eXTzPZaGzyAeX3+f5559ldXUZ23bozHVYWpzl8oc3GI9THr34CJ5vMR6PNJQn0NTdMIyIohrW9OD41T/5CgZaqWvPzeE6Ho5lM54kU5pkNQ2it/FdPUu6u7ONbWv4zHg0Ye34cerNBnGSoNCFn+8H1KMGmxs7WKae8z3q9Xjl1VdZXT2OEQ0QQnJ84RmeffaZqX3KohaGRPUWUgju372LFILF5RWee/55DNvANEySJJlSm022Nrf42le/hm27/PLnP09Uq9NqtfFcjWVfv3+fqio14KRSTOKUy+9fplar8blf/hy1Rh0B7O3t0N3f59SpEwihFYBaLcIwTXa2d3BsSVirAyZhVGc4HBN4AS+++F3CMCJJMi5f/pBOZ5al5UWCqMZgMNCxFVXF4dEh4/EYKS2u3/iIVruN6/l4XsD/+Tu/x1xnnkFvjOd7LC+vEYQNalEDaVgc7u+TpDFRLWISxxRZQZVXOJ6Pzk6r0W616fUG046riZRQJAkb9+6wt7OjMf95Rr3ZREiDSZxQlCXtdpswDDU9tCzxXJerV6+yvLLKaDTGDO6hlGKh9RkajSbHjq2xvnGfDz+8TJzEtGZn6A+GBEGIKU0QglqthmHKKWlYsrW1y7XrV5mb7ejXBZ0r+d2Xv8fpM6eJooDRaITj2cTxGMexmWm3EVTT+SA9a1sUU9w+esZJGpqKagqBgZrOA+VQVXgvvknxX/4GX/yf/ge+8Ot/A7HxCtZb/wjTa1EuPEciQ1zfpX90yCSOabZnOHP6NEIIjq2tIg2DNEkZjsbUoog0S1BKz4i3m22qoqLbPWBne5vllWXiOGYymaA397q7/tJLLxGGEZfevUSz2UAKwaMXL7K8usrJUyephyFZlnHmzCmKoiROEjrz88TJhPffe49HLzxCUeZEUcDCQoeNzW2yNOXihQusrqyQ5hkfXrnM7Gxb54UqrbTmWcHcXAfP83AcB9u1kabE9zz6vQGe5+tjV1lx0D2ge3hAo9EibM6i1t/CKZ5mV0zIijGjeJ/Dow1mlx4jKyssx8NyLKoqxz3qIUbvUlomrvcYcjrOUSk1jY1x6PUHtNszJElMVKshhGQw6OOHkd54lhX5FOpUlPDaa69x7NgxhNCwOs93UdXUzlVpa2tVafCGFPr/tuNiWRa1KMSUBq7vU5YFQmhipnZOOJiWjaUKxoMeplAUWUyvu4fvmgjDYTieYLt6brsqc6qqwDQ1DM14QAy2TA01Mx02trYpihLHdalKTevN0pyiLD9WXfO8QiBIxgkH3UPqtQjHtvXzqhRVUepZcaVdFB/nbUoNOMmzQseOjUYkcYxta8BKUeSEgc9wMCAK6ihl4lZjkqNtrGLE/v2P6O/cx8zHWNEMcpoZaDuOnr01dXyE9qhpYrCYxv0kyQQpTBSKNEs1obnUMXSmaTIejT8G41lTi7FlmVimRZnl2LaO/YmaLYREz5NKE9u2WVleIk1jXNcmCEIU0B/0cT2P1ZUVLMMAw8CxbYaDAadPnaR7eEiSZtjSwuz28P6zX+ODy+/x+BMXCSMPadoIYbC8vMJH/8v/wczqIs5wDJMJ+WqJUhVbt4a02w18z8H1LE6cOEGe65zM++v3CAJv+n6Rej4P2Nvf56g30Le5v8PS0iLtVo3O/CxlqZkIppJ8+P5let0DPNvl8OCQudkZgiCkrCqGkzF+qKPoHjitpLSQUs/FXrjwMAKF5/sEbogw4MzZU7RaDUxD4LkeUVTDsEyOnVhDSkUU+Jw6cRzbdZHC0CR9wZS4a0+TAzQZ2/UcbNtmb2+P8Po6jX/499nc3uHco0+QoIGRhsqoprbh4g1tGxY739L7nJ+jeDVtm/zmiKOrfYKFJnv7h5w9/zBKFkgBl966xObGFk8/s8byvIfnCWzH0nb9oiSOJ5i2pQt/w0RV2i1luwH9oeL+5g6eZ2AbBclwnyKNiSKfoizJMxgMdPKB79gYhoEyHEaxRVhb4qO765iOzfEz53GDBsJ0COtNbXc2LTqdOU6cOEH/6BDPsTnq7tLvdVmac5ibqVGVGY6jMzqFqZ1Cjm1rh5opKXLd0NnYPmL/ICYvLVqz86AqqqLgzq1b2g5vO6zf36DVnuG1V19jaXmZN199HQvFbKsOIuP42gy+rSjKDMvR2dYVKRgl9aiJNBMQpWZTCIuNjS5vv7nLqTOzFEVGVerRlFq9gWl5bG33cb2IJC3x/ZCyyDk46FKWKYbKCUKLsozxXJc0zUjSGMsRpEkMQpJnBi9+5xobG11WFl2UKJmMB9Pjo6ZFR5FiYS5EVDHZeIxjOhhCU4nzVGHZFkk8IY4z1taWcJyKIh0jTYHARlUeH35wi7nZBWwk3f0R42HBUb8gKywM2eR7r3yLeqPO4sICeZ7z7W99h9XVNUZ7E5aTk/zdf/zr/N2//Xf4zX/8P/Mbf/NZ1u/cYGdrh8BvsHTqNOefeQ7PrWnldcpbqN529HF2Wrx+slZ4sD6OGvsJhaIe6//xWuZHr/vxRJUffqxPWpY/ae/9pIX5x6BO06biT3rsn3b5abf7adcbhvX/qnj9i5zXPwfrQc6Zmr7+ppBcevMtiskQP/DZ3e+SpRmNKKAqclqt9scKkWFaPPzww/SOesRxzLlzD01PQIK9/X02NjaZTCbMzraI4zFJkjAYDHjkwnksW3L16hUeeeQ8aZbQ6x/hujaDwZCbH93k7JmznDl7CiVzyiqlSEs6nXnyQm+qNre2+PDDK3zpS1/StjHXYjTqkeUTyjIjL1PyIuEbX/8GP3jtNdIkIYlj0jglTTL2dnfodDq4nkt/NGR2ocNgMsa2HYQUOuIgihiPYrp7h9y8fodbN++yt7tPo97ki7/xRTzfo+otk+51iOoB0tQh1kmcEicpZVVimZLFhXmEgLW1VUqlcwoV4PsBX/nK17j50UegYHZmhiDwyfJcWwzLkq3NLTbW11FVRRLHer60VKAM9na3iScjpCEQBpQUrK2t8pf/0ufxfZ/xeEz34ID9/X0Oul0WlxYxDZve0YiyUJSFQinB+v37jEcTsrTgypVreEHIbGeB/nDEnbt3NWTDMLl58ybNep1mS5PzvvvyK2xu7VJWgrv31xlNJty+c4cv/K0vsLi8SHOmgeNaDCcjirJgYX6W0WiglQ3L5r13P+Bf/uEfsbGxwYvfeYnhcAjAYDAkSWK2NjfYWl9nMh4S+i7NekSexpiWph3e+Ogmm9s7VGiogpCSvd09er0eSZJw4uRJKqU4PDxkOBhOO3/QnmngeiYPP/wQj154mPn5eTqdeZaX1ygLxe1bt1BCYrsuSZZRqoqiVCAMsqIiiGrs7HWRpsloMiZOJsx2ZhmOJgRRhJA6LxFVoKpM52tWitFoPI3esVEKyrJiv9tFoFBFhlA5ZTpie3ubMArZ//pLWGeOwRd/ld/67d/E2n0d5+5XqI79DZh7kgpTQ73Kgtm5GeY6HapKYViaYu25Drbj0B8OCcKAvCwwLBOkppEqBb3DPitLq/R6Q4aDEaHnYqCwTUlVFTiuzfLKCn7k8+ynP82TTz/FbGcWL/QpVUlJxWAw5r1L79Hr9VlY7PDIhYf1xlmVfO5zvwRCcfbsaVzP5qh3SHumxcmTJ/jgg8uYpsWbb7xBVZUI06A37LO1s00QRbTnZukN9Hui1+sxmYxpNOoopbNApdCU5rxUzMzOsrJ6DGHYVE4NmZmY732d+ZkGy0tL2F4LZbYRUmFZBhU5aT4hSYfEF49PsaMajlWpakr8lbh+gGHbCMPkzbff5oMPr2LaLuM4IUky3KnVLU0zhoMRWVrgODbPPPPsn1FuDUlR5B9HBQjxZ/l5WZbphsHUvi0N+TEMryofxFpUlGVBHE+mFGtQmEjDBmlhOz5eEDGeJKiy1PFKhVZ2iyLT+btSkmUZYprbmBcVg/6QEkF7Zo5aTWcsK1WRpilCVRwdHmqqcZIzHIyoioqvfuUFvvmn36LIS9I0Jx4nqErp41IO8XiEYwukrJBITOlQVSVVpaNPqlIRhpEGLlk2jheSJiVL86ts3N8gjUfkaQ9JSR6nNMIGkR9QFLHOG6wqykJDrYpSU2KLspxujiSVgp3tXcpq+nuIEqZumahWxzBMbNtFCoE/JfE+oIPrPENJVerGpQBMU6sGCiirit29vWnDSWc0e55HpQrq9ZC52VlNVJ7oXGVdZNsk8YR7d+/iTVVcMS2wbk4dSu+/d0kXwX5Es9lkMpmwurqq/0ZC6qzTyRzVsM3srJ5DVygmY52RbBr68y6lwnEMhCyZnV/A9j1s1yWq1TR5O075wQ9eZTg64szZE3ieQ7PZJAxrJEVGZ2GRpeU1Ll+9xsuvfI80zxgnCYVSRLXa1OJv4toOg94RZZZiG1CvORhSF2yTSUFeJPiBw/LKPNKogBJESZxMprA0HZ/ieRY7OxvcvXMfphZtpUoqlSFkiWECogKhpvbtijCo6c8QHuCC0ioiVCjxw/mXv+hK05TxaIRSiqP+gM/+8meRpiDPMwwD8jwlz1Ju39zAtkyqKsUwdKPGd338KKSqtLKpSu1kM6RW+E+cOMHsTJvdnW0GvUMa9RDX1hDIPCuwbY+33r4HysC2LSaTMVmW0j0csLG1T2tmltFkwlFvyFtvv83W5iZllmCqkiIe4/k+WZYThhH37t3DkLA4P6dj+qZ2jyIvKFX1cSGRpun0uFSgVIXrOtTqM+S5ol5vM+wNePP11yHPmGvWsW1Bv3ego+08n8ef+BRRVOexJx5jdn4W05X4Ucjb71zj+o1ddg/HXL2xweUrd9CxVYIir8hzhZQWjuuBECwuLvD8L53BNA0c28KxLaqqQKDzjOvNFrbr0p6ZZTgccffuPSaTCbWojjSnELsC0lyhhKIUKf3eCNf1SZMJpllx6lRIq2FNacoCP4iwTR/XCUmzGEWJEArTsnCDgCQrSMuKqqhj2g6IHCEMHj63AqqHUUkcO6CqcgqVkOYxh71ENzOsCTMdg6U1l6c/fZKl5ZATJxdZXFigNoXiua5Hs9nk/v11Zk61MBObJz/1BN/77os88vA59rY2CYIAz/OYnZ1ldXVVwwCrn/0e/yQQ6efJZv0PKcL9NEjan4f151Z5/XnWfwwvxr8f5RUqoS9SQZlk/N+/8/tcFBnu1ph/+eYbJOMhx1cXqYSgmoKgpDSI45hmo8nK6jKXLr3D7Zs3ePSxi0g5zS6UBo5ls7O/iWFaSMOg1W5RlCm2YxEGdQwDBoMj7ty5PbUJCY6trlKrz7C7v8PCcpv7926ztLhGVmTaLmZatFptHVDd73P2zBkaNYuzp0/ghx6Hwy62LTAoOXv6EeY7HZJkQmd2jn/2+3/A9tYOjz9xEQT0+n2CMKQEglCrCZ7nkufZtOBI+Nd//Cc89+nPMT8/j+04BFFAXuRcuXqNV195g4uPPoY0TaTQ1OQiT/nt3/ptnv70s2xtrLO3u83K8jKGZU2VopKvfOWrnD93jvPnzrG0tIRt2zz11FMsLCwS1iJNXtzb54UXvk4ymXD8xDGWl5YYDPVBGUweOnMCx7VBwiSJ8VwH05C4js1oaiEaDofU63VmZme5e/cOc+0ZGq0ZECZJnNLv9anXQhaWjrG8vMpoHFOv11GiYn6hQxhF5GmGaRq4tk0YRghpUKu3eej8wzoeZjCkPTPDp558mmPHT5BnY3b3N4mTMV4QIA1BViR8dOUKJ8+cAikoKzi2coKVpVXCRsTx48c+JonOL8wjpIHnu3x0/RrLC/NUeYrveTTbbUzHxTBt2rNz1JtNirLCNAyUgiSNmWm32Vhfp6oq+oMha2vHkP5dqqrkNhOE6gAAIABJREFUaKfJv/pXf8RkMqLRrLG6cmwaUQFFWSGAWhRpFcQQWLaJaVlYtkezOcux48coK4WqdHSSH3g8/dwzWLa+TVEVeK7J0WGXZDIhCvwpCdfBcz3SNCPPcwSS4XhCu93GlIIsGXPz6hWMquDqR3fJb91jbX/M137lBOZ8k6X8MtV7v4M49pfpx4J6rUZZ5Nimwc7eDkWWYzkeWVGyvbXN7s4WSTyhUBUoQaPRnKpkJWVZUmQFEoMv//GfUK816HQ61Js1sskI33Upi4IkyTBMCz/w8aOAmdk2w8ERQmjq572NDZQQmMpkZ3ebzvwsru+RZSlZnlOL9Kz75Q/eJ4oC1taWybIUy/Y4PDyiyHLqjTrNdou1Y2sopefZi7Kk2WwyHk+0K2I44OCgS5Jm1BsN8iyj1WozGU9ww4CqrIjThIPDI2rNJkoYBNcS0voNrId/hf1ezmjic+6hZyjJ6I8nmLaJNMCyJUUyQb7zFfAcLPci8STGMl1u376Dqios2yGq1XjzzbepN5r4QUAY1rSqLg2qCr7//R+QxDGnTp2i+oRxR6mKo6MDTdAW2ppnGAZpmnJ4eESe57iOLlbFNA9PVYp+r8+//vKXWViY12AbIXAcB9CbQCUdDNuhKKGoFKbtooTBb/6Tf8KxY2u0Z2YAxaB/gG0ZFEri2NN5UMsmTVIODg8wTIv19Q1830dKwdWrl6lFEZfeeptz585/TCQNw4gszjh37hHOn3+Yfr9HGAZTOrRWPP+vP/hD/MDB8wwMA4SyiUcFwihRSvDGG2/y4eUr+J5Pq91EmTpOyJYWVQm9oyNefeV7vPrhDVZOP4rXWsZpLCGCGbyZDskkpZgyAFRVYVrWx3T3OImxLQdDWgRhQFlkRJFPPiWHCiEoS4VlOroYFAohjekML7rRaJkY0oZK4fvOxwpmJbVN2jQtwjCESpEmCUJUOr6lrKYK5x6e7+JMI7OUYXDl8mXOPfQQ7ZkZ0iwnqtVJDo8wDo5IfuVpVleW2dpep9aoYbuRpq87LvY3vge+i5npJk3RXCEZCjwvxHV88qyg01mg293ngw8+oNGs055psr5+l9Goj7QDfaxJM100jyb0+wMuPvE4o1GfG9evsLi4MI0sUwjHJqrXMGyL+aUlTp09jeHoaKD9gwMsd6qEVooyS3Bth4O9LuNhn8WlOSqgLAQ7O4fcu3ODpZUFpClAKPb2tj9mOIShT16mCKHI0gmmlEwSzbxI0xjLNuj1e7iORVGUOle+LNjf6+q4nByMK7f4r6+/y6VLl/hbv/FFcmmCKLFIqYQecVEjkHMKPtCjVT+P8ooQDD7Yo9xU3NzXc8yO52F7BnmWgAZiU8SKuZaJYRYUVUJZFlqpMW1czydLM6pSOxXGwwFK2hhWg7DWwHcFpswgH5Kn2hVh2T6DYcLMbF3PfRcxlm1RYnDj1gEb20e05mb4zGc/TTycIJTCEopJ/5D+wT7jXhfhBERhhGfbzLQaOJbg3p1bmGpC6Hs4jj216ZpkZYllOChV6ogetKWzLBVHw4qFxRPYdsS16zfoH3aRVcnKwiJR08FxfJaWlvnOiy8TRRHNZotMJQSBTVrmXLlxl/29hCx1efSJs+zvjZGGSbMVUBYlN67eIwzr2Janm1qqwvNtEIW26hYZWTLRxyNhopQEO8SytCsBIWg2mji2RRrHOK5ib28PPwgRysByQBgZVCGCAs8zEUbK7FydmdkQ23VRAgxpTSnXUFUZhhVhmA7CsMCwGCYxhQEfvLVJvWlhGCmB28A0JwSBgtyjQlCqmFwlmLbN/GIL06koUwshXfrDlFde+4iytJhfOM+5c6tTMUDn4wZBxOnTZ0iZ4G7VeKN6id/9g98h7h/w2WfPMBoccefWHcKgSWU7nHvqWTy3hmM5FKoAflx5faBkfjKyRo9M/DTK75/d/mcVmz9PIfqjyqpOftDF9oOvf+h+5I8/n591/z/v+iEg218or3r9PHSr/y+WUlrVeLCEUJ+4/Nvl9h+6rwffKkrSWM9CnnnkPM1TT+NFEc88+ySm56PsGqbtYUugzBHkuI5BFHrcun6T4eEAKVwoJKrQJLGgHhK265w99wRznVW+/e3v0jvsMeoNmQzG3Ln3EaZZY3N9xBtvvMvm1iatmQjTNkmTHgYl48OYRjTLKB4Q+i5ClexubZAnY7Y27vL8p5/EtkDaIX5rhqyCdr1DmZn0BhWpUaFsAz+KGEwmnDl3jqBeY9DrkyQZ0rTIspwiTbGoSJIhUhT0u/vcv3OHztw8Tz33HGHNRFqK7778ErvbXcpMkicVTzz2NEWSocqUsoyxTInrBlx45EkMZdBoNVk9tUZpVigqDCUp05K7d+6zf3hEVuVk+QRBTJKOGAwPgAwpC+YX5vi1X/srbO/t0mzNUVYGjfqMBogcbFIZBn5Uw5IGDoJkPGJ3f5tUJXS7O9y4cZVzZ88gqpJ4fMRip46wTLK0oMoVSZzh+z7tzgxZ0iOND/nU4+f4/K88jxSCqhL01ndwMXANHWWDISkoSIZ9yFOGh4eYqiIZ9RFFzPBolyBq0Oms0ajPMhr0UWVK6DocP/8omBZZkSNNSWVKUiHYWr9DGg9RlGAIJkmCAhzg+Ooxbt25T2t+GbfWoKwUt+5cpyLFMEpcW1ILQ4SwUMpkMpowHI6JGi1Mx6M9O4uQYFDHli0CP+DE8TOcOXOBMJghmQJDinRCkQ6xbYHt2iTDXe5/dJWNW7cZdo8o4jF5OqDIUjzPxgsdDgddlKxwbJvRYIRvC6LQJs4rmu0VGo054vEQ6ThTu26OIRWm44BlEccjhCqhlEyGgqvX7pOLik6uWLqxxYf/4It87dZNlmYC1KXfolr8LH7YpMiGlIVuVhjCIR2VvP32ZYq0xMLg/p17OE5AvTGHKWyazRZpnmlCrTK58v51TCnp9Y/41b/+eY4/dIzWXIPJaMQkVuzt97l3b4t337lElsQc7O2SZzlSGvhhjahWp91uM9OoMdcIqTVDunv7zDZnqLIC2zDxPYvxJOXevTssLXZ01l5a4gYtSgFhI+Khiw9jhx6O5yINkzLJONw/oMhLxpOMN954B9vyUDisrJxiZXmFIks56B6QZRquJcqMqpww6O0zvzA3BRLZOJMlqEqM7ia12mmcVkFhFYhSUHMNjLLCs2Yoc59JKFG+C0WJQBJFdRCS4XBCNhlgqArfdfmlz36WtdUVQtdie/02R3ubbKzfoixTPvu5z3Dq7GmSPJvaUkHIgkpl2LZLVRqMhzEvfPUFyrzEtlzu3L7H6z94C2E4WJanNVEBZZlRb9X4a3/tr9JstDGlQ5aWGiZFNY13SMiTCaZUoEpsS6IoeeT8BTzHR+UF/YMjamEL0/Sp0pyi1Na9STrADVx2Nvbo7g745le/zua9u5TKIGysMJ4YvPHO+xRKg++KbAJVQlYMwEzwIsn8fBPXNhiNhlq1FHDYH7G1uU/ktxj1YsoyZxj3GA8zkrjk+PEznL9wkfZch6ws/x/23jTGsvS87/u9y9nP3W/tVb0v0z09G8mZoUhKoihrcRzEcQIDQgwjyRcHMWxEgD8kSGDYcIB8MRAgiCIEipFASKxdlLmK+zrkkJzhDGfr6Z7eq6u6a7/7vWd/8+G93WwuQ4mmsiDRaVzgoqr61L23zvI+z/P///5z/JIhNwWzIqfRWuLCY++lGy/SCGMmw0PKYoSrDbqSBEpQC/w5XVBSFCWmKhkN+3ieQ5ZNQKQIWeC6PgIX1wlAlEhlqaZWrpZzuL+DqHJMmTIdD9AY0umUyXRs/Z2lIa8MeweHaAPGOBgUGIOh5K23XiPwHMoiJQxDyiJnadFmIpcVRHUr7V0/tkZuCqbpFKkBcsLQZqQfjnoYx+F9z36IyGsxmg7wQ4fJrM9c6AfIuZrJ0B8eIURJWaTkWcJw0ENIj9FgxPbt24x7A9aW1um2l5FVgRSCxZU1kB43bm3RH0yJvAb7O32uXr2JVIrRqIcwMzxVUuUzdu/doypKJsMx+TSxICRToLMEspISjySX3Lx9l7jVor2yQm6UpU47mlk64fGn38s3XnyZqlQofMKgyWiS0G61kEiGhxM8HeMHDbyozokTi2g9B+fh4OsIJQI83yfLSsrC4Y//8GN842vfxuzvw/oiN66/xZmLl5iVEsdkeGWJqJz5+sigfylHffj7UspHt0cX2f6sRu6MSZUipsbs6CaOY3j88XMsL3VoxjVe/MpLZNOCRkPR79+iuxKTohiODKLwcbRHqQpMVTAZHSFlhtYlQgmCehPp1mysHyVFMqLIZzbHWzooLYECJRX9owmTSYJbc1BBnSs3EvYHOW7ks7i4iKNCOottTjx2nrNPPc3a2Ys0FtYxImbz6h1EOQKmbG7eYuvuLRYWAhYWu2iRYaqUQoVUwQJ+bR3lhoBCCYMUFdoNSI1mNrPNaCNS2gtNnvvQBzl28QJ54JJTQ6oarlvDcRyOnzhOaQrubd5F4yAKhScFzz2zxod/bgW3OOTJ8xFnj/toBErXub2bQFmSzmbMxlOyaYKixFUViAIlIzzdxlEBaMUMj9zUqFRIUqQcHOwznY65e/cmSb7P9r0jvvLlm0xGkGZjijzBZAGhbwum2bRAEeAIB1VmVOMJKi8pygRUSlZMoJLoMqVMJ5h8hqOhFkXUghrvf/4YrjBofLJ8TFkp8tLH6Bwhc7QMid0W2hhCx2BSu9+0GJEkEj/wSaoBwhtY2GVWkOeGN994m7LM2T+4x9VrV5iKCe71Bf7e3/0NfuM//HXu3XyDuogQxuH63jajPKEZxAAkVfFjj+kHReOjhesP1wA/bIk0xmbsCsEPPH6kTvgx+/3hfVVV9QNe1wfFqhHYqCFh643KemV+YJ8P/s9PC4H6cVs1h5P+LNv/5yav/08Xrd/f5nr3j38ZAPW3P/LI936612jm90hTGQI/4Muf/wLnzpyh+/t/TtWosfT4Y6ytr81JkQUSKzcBGA6HfOtb3+LE8eM89eSTdJYWeef6O4yGQzqdNp7rcrC3D6Zk2O/z3PPPWWlKs2HlHWXK7VtbvPjii/zar/0KJ0+exBjJbDJmMBhy+tQZhBDUGjW0UuTz/K6lxSW0o9FKU6vVONg/oNlsYeYBEq7r0uv1Lf1RlASuQ+j7KCmJ4jpr6xv4kQbhUOSGRq2OljDs7yIdD8/3mc4Suu0F/off+i3G4ylPXHqK69dvsrSyRq1eRyrByZMnqK9OwJ3i0AQByWzG5p07nD51gqBWJ4gCCw4QgvFojDCG+7t7/OKHf5EwDPFcFyUFWZoSBHWOjnqEUTjPKU1o1OoYoVhZWeHy5bfxw4Aojmi2mwgJO/fvU4tiBoMhUVwjimsgFHc3t/j6117gueeeR0r7+4WQCKkZDEZcu3aN9bU1gsDn5o3rLHQXiKKYw6Mj4jjGDzyODg8ZjEasbmzQH40YTSb283Vc0tmUwaBPGPoYU9FqtzCm4v79+1y/cZv19XX8wKUsCuuLcjSe40AFWjr0j/pQFYSBot6sUVQFruviOA69w0MmoyGzNKXWaLC8tsbe/j5IRRBGNBothFAUWcFsloCpKPOMqsytrLAsqdVrBEGA0tbzNtyPEMU6URxx9uwZXNfFUDKbJTiuYz8fLODGdT20ctne2eX8hYvkZUlcr4GAIIyQUhCGFl7V7S6gtWNhGVRoR4PQYAR7ezvcv7dFd3EZrdX84m6lSWVREnoRh4f7zJIRg/4Q3w85vX6czqvX+NTZVX7n7cv89//yX+J87TeRC0+gGsuk2QwhKiqTox3JO9euUJY5Fy8+Tq/fYzad8PilC/i+S1UVRJE/J01XVKVh++4233jhmywtLPDq917j6aefQTsu0/GULLPgn53d+5w/f55ms0mSZORZzttvX+Xq5beJgogrl99maXEJR2le+95raNfl2Wffx53bt23W7jxHVynPEjnrdfqDPkprbt68SavdwvdtHuTtWzct0TuO0MJl/+CQlbU1hIDLb73JpUuXcB2FH3jkRcpwOKDT7TyUZKbJjFoY0Ts8mEcPDQg8gXtlRm5GzOQO0/YzxJ06nvLJS40fOhRFgYPGFAlhUFG89Cnr7/SfwmB9tCury0hTMJ5MOer1qNXqjMc247LZaJHnBVHcwPV8hLJQpDSdIqUlDxsMnuuitZWqpmnCd77zbY6ODtnYWGd1dYUTJ47hOAKpBJWpGA1HNBot9vcPAWMLo7LE9dz5osJesKtSUFWGyWRqCypjCMOIc+dO4/uKIp8Rhy5UGVqWZKVBK488M7z4jZesCiCbceb0GYzJWF9fIa7XqdWbBJ7De599L1q7ICRhFJHmGUIqDg4OLFFX2Aga17PXS6UdLl16nHNnT1lJrecjhMZxPf7g9z7K+QvnWF1dIM3GxHGI54d20lyV82u5jUlZW1tm49gqk/GQTqtlz18DCEXvqIcfRHayLWA2HeMoie9qK/mcjHAcByUF08l4TkJ2MKZACkVVWem00gKB9Q9XJUjhkCQZRVHNgVXzhe9sxt7e3tyP7GJMOY98ECihrKXk4AgjLbwwDKL5wqkiz0v6/SPa7Q5aOwwHYzw3wHV8ZJIi93v4f/dX+djHPsr73/8evvTlz7G4tsFkMqXX61H78ncRUYBblBRZRr85YWm1jsk04+mMqBbz55/5LK997w1++SMfYWlpgUajiRSKLC8wFQz6AwLPQhNPnzqNoxW1VsjG8Q08L7T+8DhGOYKqsnnE7VYbEJao7zoo18FzlZ1ES0mWV/iOheYZFXC0f2hJ7HkGZcFit4VSDieOH7cN0LK0cD4hHkpkp9OE0WiMmjfQHO0R+DFZVvDmW2/xxS9+icGgz9rGCkrZPNCLFy9y7vwZ3MkE2R+T/K1n+c//8T9EuNre3xBWPPxDi1/zia8C7z55dYxP6o6gCpkdDbjy+a9Ty1aZaUG3u0RZCsIgYmtri5WlJQu3ymY0Y0U4p4G7bkBZCbT0HsrFtXZJ8xLPD/CjNpcv35yTdgWeC66uEEJhmHs/pSYMA6aTAbWwzfV37lOZOp2FZWbJhOeffw/T0ZDxaEoU2qm6qxWX33yDMk85duIYV668ydbdTaqi4OzJDZQoaDY8JAVKa7QfI5WDFAbfUcymQwt6q2Bvf8BoXGB0g/5wRK3RYm19w2aPVxV5NkMpj9dff4PA9zhz9izjyYhZMmW13UGWhp179yjKFMkE3y1xPJfKFBiTo3VFnk85dXKRyNf4gYPnabQjmc0S23Bw7JRda0FSJOSVpDA1llZOorWkyBMC3+PtN96g3aqxurqA7zkcHe7RbcdIVRCFNnd4OOpZX7aSSKXJ0hzleIigYDKJuHUjnUeY9VAKMHJOKDaUVYVSNqYozxXK9fF8b2530ghTURY5RWHZEVbJIRHYBIzZIGMwKfjOd+8QNVbY2FjjxpVbNFsNzp9/jMPDI5qNBmEUEMcRnXaDbFjxxPIzDM4c8Kd/8gf8yi9/iNvvXCUvK5xam//4H/xDFtZOYIQlNj9Irnk4eX02+5Hp6Q/E5vwlaoEfrG9+FNj06P4e/PxfBt706K7ezRP76P7+Kraf1fP618Xr/2XbPNCjVUc8dR55Yu2R7/2UxeuDJ5WNAHnhq1/jwoULeJ/8CmpjBeLQUohNRVUVVGWFUg5aaTzfIwxCeodHNBoWxtBdWGCWzNBKcvvWLRytUcpQlsXDBWde5DiuS693wJnTF2g0GuR5QqfTIQxr9HoHrK9tMJiHwDuOtoVhMuPy5ctEUYSpDFtbW3Q6HcbjMc1mC621DaauzFwGp5gMjzCmQgnJaDzB8wOCMEYqw+//3h+TJjkba2scHe7hexWTpCJJUhr1Fr3BkKtXryOF5PTpx/jKV7/GxYuP8/aVy1y8eAEhoQg3yc2IatrGnUtzOq2m9cRIe2N1HEmWpExGduGrHGcOFSnQUgEGrRRSudTrdZAW6pNMZ5bwKx1bYEyndBe6TKZjlFRUpqTZbJCllr4ZhjHjyYSDwyPWVtY4c+YsURQy6PWp1WsMhyOCMMT3QxzHLqoPDvbpdNvcvnmTZqvFNJkxnowtxn064fjpMzb/UlkiahTFCCGIo8AW2UownowRgOdbyfWJk+fIiwwBZGlqM1iBPEuYThOqQuB7AZNJH2MynLn3xXWtZC+OI/I0pb2wbOM/KoPr+ziua+WVCNIko9/rW2mfgLIsuHXrJmvr6wwGA2pxbD0iGHzfx3UUeVbY2AjfI5lN8X0PrV0cx0rihLC0kKqCPC8xCGpxHe05DMcjtKPQzgPoUobvew/9i0op8jwjy1N8P6TMDfVaTJpPiOsNtLR5y1mW4zoelamYTRLeeectqjJhMk64cfkq52/scu3MOl9abfBP/6t/RO3G71BND5GrP4eg4v7ODs1mk7Kc+/jiBp7nUa/XrbTRkcRxRJYl8ybOEdPplLhWQyDRyqXMSxYXF7hw8XGElA9vvlcuXwFR8Nhj56mqEt8LuHfvPisrq1x+8216Rz2UFDz/3POks4TpbMpoNOaxCxdQAvzAJwwjC7fIUpTy6PWO8Fz98Jyv1xvMkil+ENhILira7SaTyZjpOGE0GtFd6DJLZiwtLuIHLsNBnyDwmE4nlkoNBEGAkLB9Z5N2q0W9FmGqjJ37WywuNHGvFZRjSRa+id54D1u9hHqtSSkDqnKMNBWitN7ko8N76LvfRo5neM3n5tFdrs1yLXKU1ta3bKDT6djIpTTjxo1bfP0b32Tv4IDTp08hMChpp2XasbFZlvBqJ0Kepzl3/hyn5tRZpQSea2Ez9sotCcKQ6TQlSVL6/SOiOLLX+rl0dTqdziPLBO9ce4fV1dU5cKWwpFZV4TiKfu8AU+akyYhh/xAvqOHokDQp+cTHP8XTzzzD0lIHUxUoUXD61Akrm5cSUVmqb1kWCClJs8xK5x2XuGa7/4Hn47mu9efPI3tczwLWsjzFVAaw1NrZzHDm7HH2D7apN0J73ikfU9n9z3n3HBzsgaho1GJbABY5CDGPkZLEcWxfo7JwH0dLXK1IkxlZlhGF9l5lKivnzbIUKR1msxGO4yFQSKHQGsYjC/zKs5KiKPnd3/3fiaMaC8tdHO0wS2b4fmDjxrSDEdZvKwGJJAwjjIF2ZwE/DPE8b34d0Ny+fZvhcICQ0G53ODo8ssVJEHJ3a5tyPMLrj7h8aoGN9RXSdEx/sM+JUxdoNVvU4hjxia8ioggnKyy07syYSo8phnWUdhBKsbq2xvVr13n6mad58803Maai3e0SBiFaKbIsI5klCARZlvPlL3+ZjVMrOI7L4uKqjcvKLDzHKlds1NdkOmE8GvPWW5dZXFtGKYGrbSSTMYJsOkJLuHJ9k4/9m4+xsbHGbDIimY7pNOskmZkv6kvbLFAKBLjamU9W7LXedV2qsiQMalSV4f79HU6dOkO/f8TFxx8njC1NPwiCubQ1p7p+h9HhIV9uJjz3wQ+ifXufl4A0gkrOF+t7EiYC86Wv2PPnXYpXhUvuTKAM0UXG3mfvEeoar1y7xqlTZ7l7d5uyLHnte99jMp0ShTXI+rQamnrNQxgoyxIv9EmmuV0rYe8H2vGoDIynFY5bI88LMAmCDN+x5G/HcUizFOZJDo4rCPwQpX1u392jkpIgcJEIvv7Vr7G0uAbCWoPeeO1VWs066WxKd2kBP/DptJosL3Q42L3LZHSEYYbvairAKCt1dZUkSUYUeQJVhUAzm4FyIs5eeB8VksHIWn48z2Pn3jZLCwtI7bO8tIzruty6dZMoDvF9n1H/iFs3b3D77hZXrt+h221YH2peUVUlcS3EcQSOBqoCKaqHEz4LxQxxXYeiBK0Fpcmt31T4jKeaVnuZZDYlS8eksyn3t7bYWF9GkqMVrC6v4LoQhorpdIxAoeeTPauCsdnaeVYxyQTXr+9w88YO6+ttfN/aNITQwAOZrZr7zRVH/YSDw0OiWmgVEJQ2e1wKirLCcTzS1JLAi6KkrCq0UQzTkszEDCYljUbAYqvD2rFj+H5Au90iiiPS1F7jW606qvDwjiL+60//E37tV3+JPBsx2LuLcjxU0ODs40+ysHoclEZoNZ86/cXF64+s83/C9pOK1wfff7RI/eHom3ff8Q/u46+L17/irSzLf/7jvv7/Fqnwo5s98QXixNoPFa7wbsXru72PUlh9t6gMX/n8F8nznEuXLmH+zRcQ3Ra545CnOXluSZr93oA//uM/5vTp04SBvWkLDLdv3mR1Yx3PtZIoG6GiuXLlCisry9QaDYIgJEkSBoMBQeAT+D7D4ZiFhUXa7QZB6HNve5eN9WWqyjCeT/pqjZiyLAmDgHanbSU4WrO4uIgUklazZSVkczBHlqUc7B/QqDcZDftordjb22M6m+F6Pn4YMBj1iIKYYxvHMWVOHPuMxgPieocwjEizguFoQhjahUBcb7O5tUm32+GZZ55CaYmpCkxwyM7OLipbstTJh9KJCoTNFTSmwnN9pJI4rofUDsk04Xf+l99hbWUVJTVhHPL6a2+ys3OfxeWFeSZuwng85mMf/zSXLl1ieWUJKZmTMQVKObz5xmVMZZhNE2qNOmVV0Wi1kEKzvbXN7t4OJ0+eoCwr6vUGR72ehbCkKfV6jaoqcR2P5aVlG5fSqjMcjVhZXKTTalLatiRlVaKVmsMUSt5663WbfyYEYRgSBgFp9iBv0EVKyXQyod87Yjabsry0zGw2IgpiqgreevNN9vd2abdb1Fsd0jTj1o1bvPLqK5w7dw7f89CeP/erWa+OUpLBcIjn2UI2iiIwFZPJmDgK0UqgtGvpyHHMZDIhjmNGoxFlUeAHAbPZdN4Z1xweHTDoj9FaU80JvCDZ3LxLvdmgqipG4xH1es12XsvSRknN4zaUEhRFbiE6GA4Pj4iiiMuXr+I6AVFkJYvD/sA2XBBIqS14q6goc0Ojbgm8C06NS/f6zD78fsw//jt85APncF78L6GcsFndcbuwAAAgAElEQVSuEUQB03HJ7VtbKOnQarWRwmU6SblzewsjSoSA4XDwEPRwdHSI79rpQBjGKKm58tYV4iimXo8JAh9r9bLF1trKCrt792i1WgDs7e3zzW++SBAEzKYJP/+hn+eN11+n2Wzw+uuv8cQTlzh+4gRZkVKWBcPBkN5gQL1RpzKCg/0eL730HdJkxvHjx+bQm5IwqiMNKCWJo5Dt7S2iKMTTAa7n0Gy3KCtLZK7VYnpH+4DBDwOUclhcXLYeUikxec7Vq9e4fWeTg/09VpYXEJR41yscXJITKWXvGuFjf4dWo06SSyKvIJv2SSYz8qzi9uYm3bxGeKtCLp9BSRvlk6YzfC+yC6wgQAgbXbN3cEgQxnzzG99kNJpw7tw5VlaXSZMpvuci5hnO3nzqZaVZFffvb6GVS61eQ2CzYWfJGCkF+/v7NvpnXuj6nm8XTEKglZ5PA+VDaMfW1g5f/OIXuHDhMfzAoyxLHMdhNDxgPLbngzElWZKipOQr3/g2a8treJ7PU08+SRwHuL6Do0qqYsbR0R5RLbaeuGSK41nYlxDCRmUhKAv7PmzMmKF3dITnB7bgnWeKTmczHN9DOc48T9Zw/MRpympGXPdxnHlurXAoiowiz5HCxpnV5jFayXSE53tz2m9G8cDfKuxnqZQ9X6UwmLJke3uL7sKSfe1ZhhBi3rxxwEjyPCHwfUzFnE6c4/uW9q2V9UgeO3aM9fVVtGuzLPMspyoNv/97v8/rr73BhYvnkULM43jgzu1NqhKrApGS6TzuzA983r58mYuPXcT3g3mUUEaaJLYhOZuxFNfRhwPSX30/d+7cJgx81tZWuX3nPr7r2Xvo514kweBoh0k+ZdadoZTmYBP8IERrheM6vPeZ9+B6LlEco5RiMh5bGrDrcXh4CAiSNKHX63H69Clc3/qrHW3ft6Ntg1Vg7ykWhGZhVuvrG2jPw5QFpsgRUoHQTCdDfFdTby2BgcfOn+fgYJcw8HFdjXYjyqJAa8V0OmMyGVOL44d0Z98PCYKAK1eusLi4SK/XZ39/D6kUS0tLHDu2QVyrgfj+sYYxuJ6L+9ZNnN/8j9gSMz704Y8gHN8SU41BCUE5L16L3w2oLmv0v/jgDxSu8EMRG6YiVxmyioh1SfWVkKzMidaWWVhcZmlxgTiKOXfuHC9841uUleDUsZh63SBlgZSG0uQYSkypmU7HuI79jNOsJElThK7T76eMhhPW17qksz7CZEhH0+sNLYRKlAhR4DiaopoySaa0F1fpLi1z8tQp3nn7Jmsrx+gurXD/3jbdTovdnW1GwxHnzp+j1qyxvbWDqAqGvR2S0S6dVh0/tNAoIR2UF+O5HulkACanzDPyJMEgECoirzTXbt6n1mhy8tQZDo/6dLtdBIIoipkmBVoJtu7e4bGL56mwjWblgXY9dvaHZKVkd69P4DdYaMa8+uo7bGws4SiJQiAqg5zfN6uqfBiPVJYlVSVBGoyQlCIiqq2QVz61WoOyzPDdCkfB8fUlXFWhZDYfjMzwfVt8UtnrpHxQvGgJQqG0y42bd7l71+PS0yc5dVri+5psKtHKHvuVsXAwR2ubTmEqXn/zGsYUdLstHCXspLqskFJRlDZC0l6frbLNcRyEUNy5v832/SP64zHHj3UZDcYc9Sesr68jpOD+/W3iWoSpKj7/+c+yurFOY7yA9yspX/nip7h+5VWW6j5pWVGoiA995NdpLa+TVQbk9z2Z4niOuphD+KMy4UfluO9WYr57ffOjk9dHC88fN2199OsPCmcp5cNd/TBx+NH/9+POzUfpxT/uZ99te3RC/P/74vX/zu3Rg+Mn/NRP+N5P93pzU1kZVAV3btxiobtAc6GD/+mvYxp1qiBiNBzzr//1/0Gj3mB5aYVLl55AKDmfBpRcu3oVrW3guwAWFrpM0ymlqfBDnyS18pnRcMzm5iZFnlCWOQcHRyx0V+x+sN2s2TTl3v0tBv0heVHQ6XQYDgfMktm8EDQIBP1Bn/v377OwuMDOzs5DcqRF688nmEIQN1q4c7JbEITzkHmF7wWsLC6QzoYYU1BWJc3OEhKB6/lUQhFGMasrK7RbLeJmnQ984Hk63TbKsfEAs+kEVRsSRiFOsWShAkhMZTjY38PV0naEpaIoq3nXTFNVFVEQcvrEaQ73DxhPJtTqdZaWusS1iCAMrAzQD3G1z1NPPIVS4HmKo6N9fM8hmc4YjjI+/anP8M6VK1x6/BJxHKIdhRFWkhTXQhuKvmAjJu5sbrK0uMJ0NiWOo3nkjeL69RtoKcnLglqzTlyPrWx3NELOo2nyLCVNZ7z55ht0Oi0klqLo+wGT6ZQ8K2nUmwz6Q5R2+foLX2fr7l1OnDhBt9u2NMMgYjqb4gcuS0vLZDlMJiW+6/GZT3+Wer1BmmW4rsf2vfv4vkOWWqlQ7+iQwPcIApe0KKzUXVhwSqPRQCuHMIzmsQuSo6NDZrOZbT44mtT5JMa5yUL9/ch5UyGu1YjDBleuXmU46NFstSmLinqtzmuvf5eVlUWazRpKSKqqwtEOu3u7c7InzJIZZVGglIPruDTqdRyteevNy5w/9xhFWRDFAY04JC8rXMcnz0s8x+XaO1fp9/qcPXuazW+8QvO7Vxj/zQ9z8Pd+nvX8CpMv/1PuDDSt87/Em2+9jUCysrxOt9ulVq/NC2hbcHu+h+O6GGNYWloiy9KHi4IszYniGLCE4aosOHnyBDu799jd2yWMArRjp1eeO1/QOi7Xrl1jZXmZs2dPc+PmDVZWVul2OyTpjE63zYVLF5GOJCtzEIayKJHKNpQqA7M05Wh/QBQGHD+2QZol9nyMY/KsYjicSzyVZDqe0KjXkAIOjg5otm0EhDBw5/ZdlpcXKKuK6TTj1Vdf5/TpMxwcHOD5Hq+/9l0uPvEMCJcLTzxFXG+yt39Ae1tRFYb9YynB/lv4T/ynBH6AH/jo6ohXvv11jm+cwSifXAdE9VPUP/EqxZmNOUjCoLQgz+xU/8rbbxNHEVVlWF5ZIytKjm9s8Pz7f46V1VVb3CKpihLtavKiBOY3UYGNEQksaAyj5oVWSpaluG6AkpogCB96hh5MWh3HeVi4VlVlozdchzCI2Nm5x2g04NjxdVxXU1UFRZbS7XYxSDw3xEiXWrNLkcFCt0XvaIdut4nUigpNnvYIA0m71YA52COdR34IQAnmAJqCIs/p9Y7mCgkLN1Na2cm9VEhhycpIK4NOkwlB4FCaDEfb96yVC0i7wFTMJ5Z2nlkZ20gJPIcsL5hOZ+zt7hMEPo60sW55ntHvD6wk2/MxQK1Wt/JgbMZmkmZWJum4aCnxfMVwOCDwgrk6YoYSDoeHR/OG6oy8SGg0H+RCl/O/T8Hdu9u0Wh1rVVEOH/3TP2N5eZmyLBkMhzSbDZTr4roe169dw3c9zp45gxQwHk9JZglSQBT6hKFLp9NEJAVy/5CPVxN+4ed/kcODHstLG/hBwGQ8wfc8+NTX+PZrr7H6oefRKx1M0McYwR/9b1/m1IlT1GsReZaQZwmVqUjSlKLMaTUbDAd9vKhGq922pOFazUokJbgqnvMMEqbTgW0e4KIcG1tUFPkcXuVRVTCbJigjGRwd4no+yvXRSpCkM+JGnfX1NRxtybF5VRHW6ty8fptut0NRFA/jwUxZ4fs+h4c9dnf3KMuK0WiE57ssL3eJYgvxevnll1haWrKNKSyRXWttM7y1hmubpM89yYGjOP/400xz+7cSpkIJQyl+MOdVPZv/5AWQzDGOwiQu+7cvM/lmxiQfc1Bk3L+3jakKhoM+ZVFw4cIl3nr7KvXYpRZpyjJDyQcFCwgsAySMfAyGJC1QymX3YEKjuczS0hJFPkKKDKoUqQVpWrG3d0CjHgMlZSHYujfGEHHt5h5nL1yiVm9gKsmgP6I3GvC+Z9/D7u49hqMRZ86eIy9Kas0aezsD+oe7dFouSx0P34FKFnPoXEgpXIQUFMmQ6WSCpEJKg9IOblBHao8o7vKdl17G9XwWl1e4fuMmy6sbCKkZjabs3N+i026S5am9r6YZV96+xs3rN9i5v8uZs2coZj0ir2Sx7XH23ApK23Wi67iURUVZVbiuT1GUuPN7Tp5nFDm2aebH+OExvGCRRrtJUZQobUjTIyajI0SVUuZjHF0yGY1wFDhakaYFtVoDISRFWuKH/sMouiTJGU9T3nrrHrVawkLHwXNcPCfA8aQFdBobUyeAMrcWpJWlBbrtOlIUKGFIktReryqbmwzYye68oC3Liv6kpNmuUwubPPn4E1TkFERMxgnffPEbnDlzCtfTVikiNSsrG9QaNZydiOipnIPhZc4ueyTTMVkFpY546tkP0lxawyjrIVXzdb6IDCJ6ZPX/Q3XDwyLzXQ7/d68z/mJg048AmH5oXw+KzspUDwvasiwfPv+Lap1/26nsXwWw6a+L13+L7VFC2LuP5O3Xy698B3N7+2eTDUuBEgLSgjdff53FpSWWFxfhf/5DstVlJlXFYDDgYP+AU6dOEgQhCIHvuSSzhP39fbSycsjtu1s88eQler0eWZ7h+R7tboc8A7BB5Hlq8/YC32Nt/QRKaooiJwhdhsMBjUaLvZ171OsN4rhmJ6l5Rr/fIwpD6vU6nuchhWR9fZ3xHG1frzeQ0nZd+v0BfuDbbMEgtO+zMnP8fIYf+EzGCZ4nGY+OGAz6dBaWkDrCczSj0QQhNQZB4PtUZUFW5nZShSFJZrZAUBrCHgZDrI4xm6W2MAIEgjjwmE1nfP2FF5ilGc32AzppSTbLEAh2d/Z46eWXee+z72M6HuL5LpPpxMYRzXMLb968SZrNCAOPw8M9MGa+8I85tnEMU1U8celx0jxBKMFg2CcK60gFK8uLSCnwg2C+eNSkSWqJs2XJJz7+CZ566mkC32NhcQEjbQZkkaWIsgQBvcNDpBAsLHRpNuoIAbVac+4NnrG9dY84rmOMQCuHJC947bXvsbl5h9WVZRYXl+zvqwxCVFSUDIcjfLfOJz7xOZ64eJ6Lj11gZXWVVqtNu9ums7BA4LpkqZ2kHBzsE0eRlWU9WCALged79A6P6PX6hGE4nyQKgjBkaWkJI6ysq5DvWDJp+RhJMrNyRCnBSDzPylk912F//5DNzU1e/OZXOH/+HHFsp/62OysfesEe5EK6rmenYcZGOaRJwsmTp8nSgjDyQRQk0wl5UaEcF1BQllRFwWQ0QlzfZPnmDv+sHfDaepO/ca5P8fof0HfPceqpjwAKpTyWV9b44hc+y6uvfhftgJAVYWRzQcPQp6oEURzhOjab1fVcxuMxoRcxHI0RQrCzc5+7d++yvrrK0nKXTtdK3V1Xc+/eNlEY4HsB4/EYsJ7dRrPJqVMnaLe682NrwMaxdQwVQgqmyZTxcEyr2WJ/f58wim0XWkoO9/u89eYblGVGFFk5sR+EvPXmVTY3Nzl+/PicgFwRhiGB79nztihwPY/xaEK708FzFY7jcnDQYzicsLq2Om/AxLgu1OpduourFEZgENSbDe53etwQPXAmRBq00JSts0gBxWyXO7eucfrUJUrp48RNvE4b72NfoDx7DKkVSTIFDFVlJVquY6nTRVHihzHj6ZTpeMidu3fpdhfY2trC9zzyLCcpkoeRHkVRUFa2MVeWFVJovvfq60ymM1v4KCszTlO7eEIw91PliHmmKeb7YA3Pswsmx/XYWF+n0ahTq9tj9PDokG6rQ1kY+v0RUrl861svkeUVaytrNBqhjfdwJVUFRaWZDO/hz5sXveEIqV0oS6RWOHNKb5al+L5VygRRaO8wxvp5EXbqqrSDKY1taiqFwaCVIE2mlCa30lsjMdWDxVRFWVrfmJ4TgM2c+DqZ2uzsnZ09PvHJTzIdTzi2sYbA4Dm2SI2imKIsUcpObctSPCx4jDFWpu44TCdjDAXGlHheRGUqBv1DfD8mjmLAEEUhjiOpTI5UDkII9vcPaM49pM888x4CP6AsK9bW16hK64s/ffo0t27doNnqYExJGIQUec50Mua7L7/MyqrNTRbCSl79wEU7guFgQnz7HgfvfRwdRNy4dot//s/+W/7df+/fIY5rfOlLX+LMlXsEnRYzR+MGATLqo5XDRvt9vPH6a5w+dYx0NsXzXRzPJYxjO42pSpYWLbjw/s4O2nUsATzP6PV6jPopn//851hb79JuN+n3BjjaqoKEgCxLedAAllKTJTnvXH2b5YUFbm3epdHukqX2PY3HIzudlwqpNWEUI7Wm3Wizvb01vxf3uXr1Ct/+9rfYOHacu3e3aLXaJEnCxsY6SkqEKOj1jnBcO7FsNFrz6bohzwtmsxlRGFqf7M0t/F/6ANcnI06eOUdQa9pYFVOhREUpbLTRX7Z4FZTkokKbGp22y71P7DGYDvi5X/9lFhcX2Lx9k+Mb60wmU15+5TWMgXt3N1lciKnXIqigKCyxOk1nSGmVcWVZMZ4k1Jttisql3V4hjmOGg12iSBO4Vt3hOBFau0SBQ1XmaOlx7fqUwaDiztYBThCwtraKEoo0S3n/hz7IwcEuWZ5y7vw5PC+w915paNUXeOGrX2B1pY4WE6o8R7oCJTVGaJygZqW06RhTVWAqPNehrAzDacrm1g6rq6dZWVllOBoTxnXEPG8aIWk3W/OkGUN/0KPRbPLit75FNTOsLi6RzSZEvqTK9nnu6VP4bklFZiOPTIHnulR5gU0Ms/nQcq5iyrIcrX1myYzt+0c0O6dw3TrD2QBHuxT5DC0zsnSM70gEBVqVSCRK26QAKtsEM8ZgSgPCSnnzqqSsDAvdReJGQbvZQOOjkDhuxSwbo4WHdqxcWClA2Ozbqkwp8hTPsZNd7bi4jk9RGvI8tVagNHvokb169RrjzMV3BGUqmUxSmt0Ok8xHAq12k7NnT6O14oUXXqDT6fDOOzdYXV9DD3x+7+u/zYnHffr3rlBrtBgMp/zG3//PUH5Me3kVlLTgz0d4uD+pgPyrKl4frUcehUO92+/+ARDTIwRkpdTD54++vp/02n5a9etfF68/ZvvZC1m7AHnwsGHu8OiB8oNj9R/8+e8/rG+k+Be/jXntKupv/435Pn7616dFQlFoTO7z2gtfJfAVrRL0H32W6rkncVyHZrvB4088TlyPCfyKg4M9fN9HS5fPfObzTGcZp8+cw3V89g56dBeWaDYa7N7foRnHmKogiEKy0pAVOQsLC4yGQ5qdJpPJjCtXr9Fpdm1QfezQWj7G1776Ers7eywu1ZE6x6CJ4pCdnV0c10Npm1epHEGaJ/iuQ5rYYOr+cBfX9fC9FpQjJqM+jqPs5ENZ/25ZjdjbOyCKWwzHOTdu3WVj4xhGCIq8REvwXcX23U3SZMrC0gaCCiVyMCmvvPJdoqBO0EnthOso4tVXvsviQtfKScuSm7fuUKu3uX7tNnc377C63CFwoUitF2M6m7F5d5NTp0+ysrxCnhekSU6j3sDVDuPxEKEq2u0FGo06Qljwi1KOlRX6LmWRcP78ae7vbAEl0/GQYb+HIwyOVLjaRUvNbDLm6GCPYpaQFSWzNCdJCqR0cJRmlk9od9psbW6hkPiBR6VA6xqN9gKuHyHmC5z9vW3i2II9prMpS0tLtLtNRuMBzVYDKjuFaTYanD17DjAcHh4S19o4TgBGzj3UCceOL9JdXCYIfYajHlWZMRlNCbwI5Vo563g8oXfUs/E3pZ10Bq5Hmef0Do8eylx3dnaJmnWklpR5jtaKsoI0K5H+DaRUmOQM0+mE8bjP/v4ORWKlaVKBkorPf+6LHB0N+MDP/wKNZgelbMQT89NUC2WLXikpSutxU0ikkChVMJ6M8AOXT37602ze3eb0qYuW7lzmTCYDotDDzOEx3bdvIHsjkv/uv+Hkf/C3OOe+RePmn+Ce+mVE1EJ6GqMMStnIk0uPv4er71zjzuZtGo0GzWYH7VgIz+1bmygqtMjJ8hlO6CN9DylcPMfl7u1N3njtdT7w8x9AuorxoI8UgtlkxKB3yL3tu6yuLlFkktfffIu1jQ3a3Rah73H18mVq3Q6u53L/3jbH1tfJsxzHtRPnWqNFURS0Gi3rcTYVEoFyAs6fO89nPvNZFhdXWFxaJssLvvHNVzh9+iRLCzGYlK3tbVqdZXAU/ckMrQPKvECT8/YbL9HsriOk5vDwkGeeeZrKlNRrdTAQeu7cQ46dMCiFRHHU3+P8Y8c42BkQNRbh7pdxn/n36d/bJl48Q2flDG9/7zsMDvdYWztFtfN1zBvfQQVLEHjkWYqrNWUOf/onH2V5eQWBoMgyTJHhCsM0ydm5v8va+hoLiwv4gUtRZnz8o59maWmBKPQQ8/xLjJp72Q3TyQwqQ6fdxHcVvvL57d/6H3nPU09BVfFHf/B7dNtNGo0aSjKHP1n1pJAWYJSlU1zXIQpD6/FSri2YtQKhEEKjtUu3s8hCdwntaYRJGfSOaNTscZPkU7R2cP0aQoUEYQPPb6CDOnk5QsqYsnJwfUVeJRjpIjEIFEJ6FKUkyXIqSsoyJS9tk1ArKw22m7TxM3Ma/nA4wHU9TGWnsAJrSxDCoJTtSzluiBQVVCn9g0NajSbr6ysYVVEacNwYqRRSGYSRVKW2sk1jKIsCx3XxXO+hjC/PSg4Pe/Z5XuIFDTsRFMLmaZsS7bgIocnyDNexkTgGQbvTRgjB//qv/hV7ezu8//3PIpWh1zsgyzLa7S6eoxgNBsS1CN/3QUqmSYIfeHYSJBWe5zKbjuj1Dnnpe2+zkhboX3ovzY1lzj32GL/wix+h2VxmOin4zf/in/CfLJ0gbLegHpIXA5z6xHIFqmWuXX+HEyePEYQhVy5fIQ4DTJHhBwFCO+RCMx0c0m7UGBwdQl6xeWOL73zzZZ5//1OcP3+G61feYTqe4rkejWYdYTRHh30+8fFPcunSk2jXwYiSfm/G5uY2R0c9nnriSUu1FgKhHAInmPuNp5jKZu9KqSlNRUU19zJ6mEJx8/odjBS88sqr3L1zl06nA1TUGjHacwjiCDUvgJW2sWeWF+GglIOp7KTHvbNN/txjvHa4yRNPPkH5YHozXxsJMZ+czYtX+bn/Cb72XcQvvPcH1lgPHrmUNLKKiQzIyRl88gDhGkStTi2uYzDUa3Uc1+H61atkyYTHH+uw0DUEvgulh6BCqBGO20QpTWkEeSk47E+pNxeodxaZpprr79xgvetDMSKnQApbFHi+Q1FaMrLSLtMC4mZM0Ohw9vzTBEEdz1WsLLe5evUKVBnry8sURQVSg3aZDof0D7aQeZ96qKnVNMqpUKX1uhrhoLWkzCdk6RipFEVpffxlqQjiFRy/RdRpUyDYOHUGrUOkUtSiAEHFbDbCda3/W0pBLWpRZh6vvfIyuwcHHPX77Ny7x8ZGm0bbfwgwNKWFNqZJhhGCe/sZpRE4vsYPXIw0SEdTb3SQbogX1SmwcuytzfvUw5jAk8xGO4gqQ2GnnXlR4oQRjuORTBOUIylFhfJcqmqGUg5FYciSDFcLlMyoeSGeU6FcQ1GVaC8EqTBJiaSgquwEWOKgPTmf+Ds4OiAvsH/fqsRxBUpBWRVILRBK4XuLXL1yxPX7Y7Z3c27fH3Bvr8cTT76Ps2c2UEqyvrHMZDwkTVOUcmk02uRlwWc/+ylOL57ign6G3fZXUSSMCBikJX//H/wj7h/1WT9xEiENrqMwlT2Oq68FmDsaeaJ4WGFYGYCgMobKmLmk+cd7YR/d/iJg0487f/6izZ6b9p8Ujz5so/HH7edntWn+dfH6Y7afvXj90f6H3ee77fdd+yXAX03OK+QIGTLujzi6d5e4EdP0Y5xPfZXk7HE7XcT6LKWUDHqHDAZ9lLQdqK2tLZ5//nkGwwH1WszJU6fY2d1lb3eX27dvEc9JlUo7uK7LaDQkDHyazTpCSa69c52LFy8x6B/x8ssvc+L4BtoNub91nzJPaDViZrMJC90l61VUmqqyNxTrN7T5n9PpCGMMtboPIiOuWS1FVRXk82xA2wUXc5iCptXqIqWNT/jzT3+aJy49geNY78NsNgNjuHnzJp7v02g1yNMUrV1mswwhFBvHjlN5B5RlydY7E1588Vs8++z7EEKQJAl/+Ad/RLPZodPpcunxx4lrIUVZoKRLkqT82Z99lNF4RFlWnDp1iij2qaqC6XSK5/scHBzYeBLf+jZnsxmHB0d87atf5Yknn2Q8mrC9vU2j2aDRajGeTGi2Oriuz+7ufbR2UI5DEIZUpiQIA7rdRcaTKZ3uAlprkmTK2TOnCeOA3Z09Go0mSZIwmU74P9l7sxhJs/NM7znnP/8e+5Z7VmbWXtXd7Opmd7O5itKM5IENSwMI8AZ5YMCG73zpOwP2tW81NgZjGZoR5sKiJJIiNaREsleSvVR1V/XetVdl5b7GHv9+fHGiimS7W6Q2wPboAHlRlZGRkRH/cr7ve9/nLZdLSKWRUjOZTLCkIk0yJuOEcrXM3u4uYRjS7XapVKr0B33j7Xw0zSzT7jRBG2BXtVbjwYN1arWqIRWOR0biqI1E0vc9PM+nVCqbzwpBHKd4bkC1UufVl3/CeBSD1NSq1Uefqee45GlGnudUqlUEmp2dHarVKkWu8XyfQl1HIBjst6lWq1SrFfb3dwnDMkdHByhlsbu3y+7eHk89/TQzszMoZbrdvucZiq417XdOO495YUBgaDPVj6IxrVabJM6Yn1+g0+mYiZVrc/3Gx7iuY4496RC8+S770YA/eHqeS//xb/LNP/l3fFF/h6j+GG51Adtx6PX7eK6Bog0HAzyvRKfTJgx8zp0/i2079HsDur0u1XKJ69c/oFwKaDSbJFmOEBa2ZXHr1k3iyYSnnr7Ej3/8EyqVCu3OHLbrsf5gg/mFJRzPo9ZoIbTE81zqjTqB70+JoQVuUOb4+Jj93V3q1RqO64IwkniNuRldfvMNFhcWULZRD6RpTrkUMr8wS6/XZXF5gTxPcWyfeq2M7ysmkwmu5yOFIVNSgK1cJuMxYeCT5feckbMAACAASURBVClBWEVZFo5jaJ7DwZBSqWTASZMxw/EYPwgQokApwWDQRQqJY0OejrDDMnK0jd2+gAzniISxDsy0GhQ5qFKL6Kf/K5l9gHs4Txx6KOUw6A9A2Lz48ov0e30uXLxIURQkiZFWCim5cOECSinu3rnDlbeuUK1WeerS09PcXzMVnIzH00xSQZFDu9WmWinT7/dIs4TBYEhndobhaERnZgbX9Xn55Vep1auGfK1sxuMxWZrheR55nmNJZTylQv7CZiRNY6Rl4TouaIyn0ZJT4MmI4XBItdYiz022t+86KEsxHAyxbSM1z4oCz5VYlgtaIGSOtAQCG12YKKAsM57+b33zm6w/WJ8SvD0sS5rmhXxo4bDJ85zJeGQ8866LJS2yLENOKexSPoxVMFAzoWE86iGtgpXlFdrtFlFs+Ae+F0zJoDmC3IAAtSROk4fWSCzLPI+e3kKVsowFw3bIsgJp2VjWz00PkFOPmyaOYzNNBNLU+KotafHmG1cocnjsscfw/YB6rQXCQkrFeDRiY2OTo8MjOp02Gk2WpdQbdZSl2NnZZnZmBt/36Pf6lMp1qvtdwt/+Onajyo0bN+l1+/T6PeYX5lhbW2X53VuMKRB3NmgkmmjOgLFUMkO9XqdcNiqTmdk5XMcQn/f29xGWkXEPez18z2Nra4u8KIiTlEajwfx02uk4NoXWaC0oVaoUCG7dvsXs7CyNVsOQhqWkXK6xuLjA4uIsWmePYGtFUTDo9Xnl5ZdZWVlhPJ5wfNxlEkWUpioKhPn8fT9gZm4Wx7ZZWVnBc32UkswvzE9Bbi5SWEhpMozNJVaYwsAynkRLSmxLIt76kPy3nuGD/W0+//wXcbyAvCgQQiMF6Kls+GHxKm58E3pDxGcAmwoUbpETiQBZREx+OGCYDpk5tUaWZTTqNba3t9h4sMnNGzc5f/4C8y1F4Ju4l1JYBalBminqeGKAgK7rI5VDrjVuEOJ6JZRV4KiISTTAK1WZDHtobU33WAVpnmEJm5de2GFvt8+Xv/48cdElTvqQF7x15SrLKyvEk4hyucJbb19l+cQqCPjg2tsc7K5TDnJajRCpU3Sh0RQo27wW21YUeQragKKKLGMyjhiMYqRT4v6DbXP82y79wZB6vYmtLNI0ZTDoo/OCra1tZmc6RHGMslzu3N7g8c+dojPTJPBdlBScXlkkjUdIaXJ6kzia7iFtBIJ33r3DjRvHnD7ZMfFVSJNXnWsQCtcvMxqnNBodHjzYYn6mQVFMGAx2sGRBGscwVQkIAXFsrkmu62IpQ5IXaNCQpikPHjygVAool0oUeY6QGl3kpEk6JZ1L8iQj06Yhi3CQlovWgjxLTVNGGUVGoQvyIsVSgiKXOM70+JNgOQohNWnhUWiN73kmo1sahdgbb1ym3WqidUGSpjQaTa5/fIO8ECwuLjLfmkNMLO5VX8R3IAjrLC+v0phZ4pUfv8ba2hnzWrMUaXK3yL/vow+sRzmvP18Q/nXTzU9Tdf4yYNPD9dBT+tc95yenpp/2OzSfHu35q67P8sL+Y/H6Kev/j8WrFIIsF1z/4CPef+s1Pv/s0/g4iG/9kOzMGoXOjdwjL0BDnsW0mh2ktDk4OGJufp5vfOOPaTWbdDpNSpUynu/z7W99i/PnzpEmGbVGbRr/ArVqmYODPR5sbJAmKUtLy0gh+OCD97l95xa1eg1dWAS+S61aQucZrWYLWzlE4zE61xwfHlMOQ+JJjJKSne1tRpMJ9UYNS2rGkwFxPKFS9uj1Rggh8DwP13XJssxI+ZCMRhN6vQE7W9t87atfxnMtmF5wDw8OCYMQsCgKQZENDSU2V9y89YCVlZPYrmSS7yO0QyNYYe3kmikUi4LrN24ghGJzY4vnnvsCQSng4OCAaqWK6wYcHh6yurrGU089xZkzZzg+Nhl+TOmFAsFgMOLo6Jh/80d/xOqKkWxvbG5y88ZtVlZWsJSk2WqS5QXjSUSaFpTCCsp2qdbL1BtNojihO/UM7x8cYDkukyjB93wqlZBWo8rhwQ6NZotGo0WaZjQaLbrdY4IgZDLuGxCVBiltsiSn02hx1D1kPB4zNzeL67pToFZArzfAUpJyJaRcDtC6ICtSU2zonCzPONjfY2amQxiEhGGA1pKtrU3eufYOP/jBDymXjeRyOOpTCo0kcjAY8fnPP8uZM+dptWt0j485OjikVqmQJgnDwQABRHGM1JpoMqEUltjZ3uVHP/wRa+eMzLXiPmkUD2jKlQqVagk/8CgoqNZqPP7EYybKxfdI4oRypYQQoDEgLjM5shlM/cJKKbN3kQLbMqHqeWGk10HgIYU2fuIkxvU8ymEF+cpb6GqZ137nSWJRcOHiRX7jLKSbb2DPPMmtu+ukaUar0aTIC/q9Pu1WmzzX+L7L3NwctrI5ODig2Wpi2wpLZHiuTZom0021zWAwwnUklhRUGxUqlQq9Xp+z586RTmN7XM8nnRa6Uio+/uhDVlZX2NzcoNfrUSqXSLOMa+9+gGUpuofHZGnO/PwCw7EhssaRUT7MdDoGXHV0SGemg7Rgc/0+aTyh2axTqZZBQikMKLSR4Rc51GoNtrZ2kVrzjT/+E5qNFu+++x4rq2scH/e5e+c+g8GQF154Ad8PDP34gw84ODggLIVUazXyPEWIgigaIWVB+80CfzPjuHlEqRSSa5ts423uWueotOaxHBtFQVCqkggf7n6f4rhP2FtCzrahsLj69rs0Ox3OnD3HiZUTZFnG/sEBrVaTOEnwPJvxaEJ5+r4qpZifn8dxXRzHbEjNDXo6mTe7a7QuuHXzBidPnmR7Z5v9w0MuPHaRWr1JlmsaTbNpa7cazM7OYSkLPwgMzElO5e7CJtc82lAVFGgxjWwQgixNHxEpbdvCdX3QKZayGQwmDEcRYSnAUkZmblmSaDIxmbvS5M1qPS0IeFjgQRKP6Pf7KMtGCov799apVaqsra1NwT+A0EzGE2xlmw10npFnKbayODzYp1Ip82B9HdtRKCUYj8bGzyjM+2NAQiDJKQW+mYK7hsI6GU+wbR+tcywLesfHxOOYP/3Wt7l54xYXL15EYNQRehpBYkkTpJIkKRsPthBSkabRo+I1nZKaozg2x6R+eIc19+aiyPnc409i24qFxXnyh5OkOMFzff7sz77JF577AqWyaajowjTipDSe3jRLpnDCAYPBiNOnz+Bv7JJ+9Ulee/8dBoM+Ulqcu3CSSTRgdfUE+rsvEzQblKSFpSTFilFbiUkD3/cpigxdaKLEQLJMBJAiKJXp9Qdcu/yWYTWUy7TaLTPplLC+sU290cDzPO6vr3Pu4kWEZaalnbkZBsMBnVYLnWvSKMHxbJJkQp7FxletC7LC+NY8x+fCxfMU2gC1fD/k9u27ONLERillgTBFWb1Zp9lsUq/VqVWrtDsdPN9nPBnhuyWU5dDr9qZArQJLSgqKqfdbgy5gMka8e4Pu//A7fO6JS9h+YKwCU4/6dEdj9kYPJ6+7PzSf5GcUr6lw8IuMFA/Hyjj87j6jdExlaYb19ftsbW2ytrpGo17nnWvX8DyH5Y7EsbOp59umAOS0SWMro05K0xRle7hegO2U2Ts45Ph4B88tmMQp7763Sb1qUylVSOMYrTOEVCA9Vs8vUm8HlCothKhw9842gW+UAI7j0Gg2WH/wgFazRff4mND3ycZ9VpaqBH6ErUykYVFILFsh7SkTochNpJHOzHWjMHs/L6yTaZcklyzMzE0Lr8BEZCWJAQ8iKIUlXnjhFVZX1yiXy1BYrK9vc/nyq9y+/TGnVxdpVgPqFRvHKpCWURc6tsKSFkKYcyYs1zl9qkO5FBDHEbbjYzs+SQa5tvDDKmkmcR2P27dvMjcbkqUDlIwpsthQpfOCUjl4dJ57nk9emPN5PBrguQYmmec5MzMdbFtNYWsRUlhobZRhcTShyIopkDGlQJBlNvfubZNlknLZnUbNGSuCkAaY5DgO/V5Er5fQ6yco22ccR0ziiCyRbG/tomzJ4088gVQWlVqFixcu4vk+7733/qP93Isvvcjyylkm4yGjwz5zxRrXy3/B5vYGv/7Vf8KZM+f487/4IXkhWFg8QaVs7AFiCvYrrkxpw3+D4vXns1h/fv2qxetnrU8rQP8hi9fP+pn/4IrXoij+51/2Rn5S0/2rrF98Dv0Z3/t/ftjme//wxavp1LvkScKVn7zI81/8IlF3jPOdFxCPnaUoDKq/yDVJnJHEEZ4Xmo3L/XWEEHzuiSdoNOocHe5TrdVwHZdTp0/RbrcIPJe9w32azTqOskjSlFKpQqPRoBKGXL16FYEwQKUgYG3tJHGcUhQR7VaN/b0D/v33/or5+UV6vS4/+MEPuH3rDqura9i24vDwgG9+61tcuHgJgHKpitA23nT62Gh2SJKELDNTC621ISRbFrblGMiPY9NqtUyXjYzJeEy71UZKi2rNZIq6CtJU43olfvjiy7RaTVrNMk5exco6WErhTum70rIIwoCFuSXevvo21VqFeqNOtVbBUoqNB9v85ff/ki99+UuMx2OUsiiXQ8LQR9k2nu8jhYljGI3GPPnkk9OYiIzVlVWeffZZ4iTl3/7bf8Pp02dwbJfd3V0DDapWEUKwtbNBXmiCsIRAmmzYWhXbDfAcD8d2SKKILE8ZjvpUq3XyPAMEH330ESdPrhmvaCyIopz19Q3q9QpHh9solZEX0G53iKIYIQSj8Zid7V1sx2EyjduRSj7yLgkpyaeROYHv4zguWxtbuA8nSZai1WqRZSbGZXFxHsfRhtCqJM1WHSE1x90Dur0e7U6HwcCQh4vCwEBmZmZQjj3NBE7xfd/EAjkO1ZlDpBQcbJbxA58b128ynkQ4jsmgVcrBUgp7KiFWlj2dWE1ATDf3UYScThM0Esf1EdpIHosiJ88ysjSj3xvx7W9/mytXLnPh4nl6x8c0Gg1KYQn7J++ga2U2/8d/wcK5Czzzta/j1OpEb/w+ojyPDme5f2+dJEq4e/sOH7z3PuVylRdffIlz58/x/e9/nycvXWI8mVAul8ky45XsHh8QJzG3bt9l9eRpev0B5XKVIk3QgOt6WJZiNBxSKpV5cOc6ldCj5LvYUpDFEY1qGeW4fPjhBywszBOGIYPhkFanw8LiMkeHR5w9e5Z7d+8xtzA/JfLGJOMRaM1w0MdSkmqtRqELtrc26bRbzHTamOiT7BGdvFIpMRiOsB0TRXLt7bcZjkZ8/eu/wWuvvc65cyZntshz44GTkuWlZc6cPgNaMz8/j+8FhJWyyZ+Wmiw18UVZllG9rkn7Ew5n+/T7fWpzZ9FbV5i/+FV0bYU0jVGF8WIWVkB+63sIKSl95MKpRfJc8+EHHyOVYPnEMr7n02o2KPIUz3VM5JLr4PshvV6X2dlZms0G5VIJZdsIqRkMe1NAnPGOTqYk0iLPebC5QbPVJIpjPvroI+bnF0yckTBF4smTp4gmY5NHrCFOYixpIkfQRh4phZkgGMiINlOFaXTTVNlONBmT5RnDwYigbGScjms+Z9sxwBUNuLYiiia4nsdg0MdWHnE8RilIkwxlOWR5iusoPNfDVi5JnNFutZmbn8WSkl7vCNtWuK6DLkzcl5TGExYEPlobKWm326VaqT6iKT9UxgBIS5JmOUkypts7plarGylqkVEulYmiFM8vodEMBl18P6BcqrJ8YpWz586awtuSj+6fZsNqSNyDwYBXf/wTlO2wvDzPcbdLGJawlKLINdc/vkGlWiFJzHuS5blpbOkcx4bF5TksVZAkI6Sl6fWPGY17LC+dICyFHBzsTz1zhrCptck53d3bJcsSet0+1YpRLdj3t3jJinjm17/OyolVLMsGkXP79m1mZ2fZ/tf/F6llESBMwzVcQUYtEMa7Xq6UKXTB//EHf8jpUycJA58wDFGWhSUlq0vLjCdjEzMnJbZrpkGvvPpTkjhidWUZ3/fItcnFtqaevmajDtrE0h0cHqBsOQW6jfE9j26vRxCUyQtQ0zxjZVnmOHccFuYX8F2jvIiisYFtuQ751GOZJAlbG5tsPHhAmmVUa1XTOIgm7Oxs0Ww2UJaZzGvBNDcX0iTFKnL0R3e5+bVzJFFCe2YO4bhGGjmVnv9Ni9dISIIsIVcuvtJs/ukGhSOYPbNCmiYc7B8w05nl8PCAna0tNAUXTlZBpyjLAM60ANsOyFIDNgNI0hRl+2S5ZjS2aXcWaDZqkEdMRilXr92le9Sj1Shj2xLblmhhM4kE73x4m3qjzdzcCRqNDrbj0mw1abRaPLh/j3Znhmq1hmVZ3Lz+MbYUJMMjBv1t2k0PXSRoLZHSoZCYhhaC0dDAKZN4guv45LkgyR2UV6PRPsHs/AnicYSyPfYPD5mdn2dzc4Od3R1WlpcZDodUyg2qlQqWJdnfP2Rv95DV5VUO9h5Q8jIaNQdJH8/PUFMvtVFjmHBmKSRBycb1QesI5UiSLCNOUvzyDKVKG2UHjMYxlUqJdqtCkXaxREqRjbEA23anzaMReZZTaEjSnI2NTaqlEp7nkOfmPMzzFNd1iaKILMtRjkDgkcQm7s62wRImSijXRv1RFIoHG9sm0SAwr922bWxHoZEUOSBskz6Ay7vv30HZFa5du8dwaLN8YomFpSVW104xMzvP3sE+C4tL5FnOnTt3uPTk0ziOS5qmLC8vU6lUeXDvJvv9e5x1n+GN9F/x/Jee58rlq7zx5hWUX+O/+e/+e7ywYjzutiLTU1/pFReEeFS88olC8ZNT0k/Sgj+5fqbi+eWT1096Xj+rJvpVitefpxn/XdffR/H66cLqf1z/r1qu6xPHMb1elzD0CYKANMkoCs3ly5cRwkyV8iwjSVKKwsAI3nrrbZaWljk4PKTQBcOhiRyJ44Q4ibh37y5B4JEXKfMLS6Rpxv7+AVffepv799dRtsvx8TGPP3aRzkyb2fk5VldXKZUr1FtNlk4skOYxlm2zsnIKy1bMLczz7Bee56lnnuHPv/tdrt+8SblW5dSZ0/T6Q1zPIU1zHDtgMIhwHY8sy2i321O/U8rR0RH9fp94Kkt9OPmOohjXDxgNhzRqRoKrpiHX5UoJzy9TKlcQSvBf/Fe/y9rJJQM1KgqQgizPmEQRBZoCTRCGtFpNLlw4T7vdIo4nhqw6GbGwsMBjjz1GkRc0m3WEgCiOSBLzHitL4TgOvu/SbjeYm5uh0ag9ktvmRUYpDDlz+gx3bt8liiKuvv0277xzDaUkQhSUS2Uq5TJZkrG/t0cSJ+jCAGSGgyH3793Htl0DEVI2o9EAPc0wu/jY+Wn2mUApRbVS4vTpNdA5YclnEg0f5SgeHOxhWZJGYzolkop2u83MzCy7O/sUBdy5fW/qbTOdY8uyKXJNvd6aklcljUadWq3Os88+h2Upev0eju0yHo35wQ9+gKYgiibsH+7RG/S5efsWndlZao0665sbHPW6DMYjbNtG2TaO5+K4Dn4YsHbqpBnqaM3R0aHxniwuUa81p1MyI/OybY8kzSi0ptfronUxjdBxSNOUPE+ZTMZIaeJDLGn+JtBGJqlzJpMxtlIc7B8yM2MmpAgzTdeX32ejd4z1+/8T3/zed02kiGNB/y7F9hV0dQVp2Tz2+OMIabG8fIIvPPsFymEJ23bQuuCf//PfIY4SXMfjpz95DcdxODw8wPUCFpdWeP7LX0VICz80U6B+b8jm5jbSUty6dZtWq41jK0PGnt4sXn75FbQu2N3dQwvN7du3KU3zfKW0KIAsSxmNR3iey5OXnpjGBGXT4HYH13G4d+fuzy4swnTqbVsxGU9oNltkWYatbMLQ58aNm/hBGcf10Rqe+fwlLlx8Asd1+eKXn2d5eRFHSVxHUamUWVhYoNfr0T0+5vDgkKtvX+XWzZtsbG6Z5oNU7O/tE09SyuXatICzCMM6W5t7uK5HXFolvvIHSJGTJzFZMiGLJsSTsfHUuQ5iMGJ0cIhSkt/4ja+bJoqS2BakyQTPsYkmY+q1KpNxxHg8wvc8hoM+tpJTCJEBNJXLphASU3KwYzuAKWovXXoSaUnefPMKd27fZTwaE0fRdFpacHCww5/82Z9x//4DHMclCEIsZSHFNAqCHCUFEs1oMGDYH+A6JqLKsiwmk4mRGmcZnueYRkeak2QFR8ddfM8oRB5OWvO8IMtyirxAIBHa0NS3dzbJ8gy0RFkWeVqAFkSTmOvXrxPH0VTKlnB0fEBe5CZuxZrGrkgLzw/RWpCkGZZSVGuGdpznpjBxXZfxZDS9/iQox0EoGy8IGYxioqTAccuMRhO0gKNuF2U7SEvheQFZrimVQxzbnubzmkmcuX5NJcFTwNhv//Z/yuOPP4bWmmq1ghTyUY/49dfeIEtTSmGI57p4nku/Z6LWlLIYj0akaTIFtWiSJKJUCvF9GyFMxvJg0DdS6Uxz6+ZdBoMRtjKqhNWVE8zNzSKlyQ0+feos41GMEDZ7u0dEUcxTTz1DlhUsLS1SqZZxXLMRl9JI7JPETIcnkwkgOLG0yHg05MH9u2xvrrOztYFrS3zfvH7Xc9ne3ub//MM/xA9CvvLFL+G5rrHvBB6T0ZB+74giS0miyaPiPyyVWFo+gZCCfr9Pvz9gc2uLZrNNUQgG/RHvv/8+Ra6nA34xBYtphKXwfJ9arc5oNCKNUxOejUZa0O60CEKTERoEAUJkOI7k5MmVR95VOc3FNpN4aSLYhGkCnTt7EWkrkiwliowkVQsjg3+47N+NsH83+qX7H2lLtMjIs5hrb79OuVyawncSarUaZ86cxXEcVldWOX/+HM8//wWSJKUUVnEcjzxPsYQgmiQIJK7rI4RFGJRJ0pTj42O6x31GowlogZKCVqPMb/3TL/H5Z86S5blpbiGIooQ4K7h/S/H6q+sUuWYw3qLetECaYr5erRkwYGxkwb7rQW6uwzrTRJMUIZ1HPBAhLNO4lAJnSm12HIc0ybm/voWlQrr9mFKlgdYWuXAYRAnCMpLnmZkO1VKJg4M9wjBga2uLza0ttNa0Wy1s22J5cZ5a2SfwBJ4rjAf052iyDwuihxO/vEjQeWLOUbTJS3U8xhEkiUBjaOpZlgAJRZqQpwlFlpPnRu6rdWH2OoCyLMrlCo7jMpmM0XmO1mav43ouk8mIhxnMynYZTVJ6/cgUojpnHE0AiaMMYT3PEs6cXmVhsWPUSa5Llmdmb5BL4gSOj0b4QYAf+nzla1+m2W7T66dsbva5+u6HlGstPvz4JvtHxzzxuUukacpoNORg/4C7d+/x0kuvcHzcpV6vEgY2vit48nHDBynnFd65eo3usI9UirBcYhxF+KUQ5dhIZf2s+Pw7qkH/tnLdn/9cP+25Put5H6pd/j6K1H/I9f+5yesve8zfRjb8101ef+5Rf6vH/73IhpHkWvD25Tf4teefRliKyeGE4K9e4Vo8YnXtBLdu3aTZaPPaT1/HthVhWGIyjgjDEkop3n//Pebn52g328SJ6QBVa2XeufYWZ86sEaeC6x99zEyrZTpN1TovvPQKaTTmpZdfYm11Fdtx8DyfKE6YRAlByeLWretsbuzya1//TcJSwGgyojMzy+HREU987nOsrq1y/frHPPf8F6jUykDE/t4er7z4Y5IkwvchCKtYlsXh4SHBVNJbKpXwPZednZ1pgLqkXKmYeIg8R0iLfr9v4BtAQcFPX73M4soyKE2hYygSon4fURQk2twQHk5YwHSniqJg+cQSnu/gBS5xEpNlKX/5vR8RRRGdmbahrPpTmaGWvPfu++zvH1Bv1ImTyEgttZHfWJagKDTdbo80TdlY3+TGx9f54hef5/HHLnDm9EluXP8QrTMcxwMtyNKM7c1tGrUarusw6A+5cvkt9nf3eOfd9zlz/jyVRp3R4AillJGBxhFyWpD3+utEyZBavcLNmzcRhSCZpFQbDZQlpzdHl15vwGQ8IQhClOuwu7vH7Ow8hTa+LJBE0YRbt26bwrXW5KWXXuG99z7kzLlTRJOIPNPT98MnDDyKxOKjj25SqzYJwgrjScTi4gmq9SqtdhukIMlSms0mQRCYDr82OXL7e/t4QcA4SnA8jyJV2GKWhdmzHBwcsLW5zezsPI5nEcUpyvEQTP2D0vhzokmEpQz0ResC1/VwHQPMkdbUPycEWRoTxROOD42HVheK27fvcu7cOarVKvVahWIcYb94Bedf/S8ciIJf+/pX2b37IbbMcN791wzGCX5rhXeuXCFOC1aWT3D39h2ajSa1Wo25hXmE0GxsbBL4IYPBgPX1dZaW5knThFKpzubWNq2ZWTINjuciJNSCGpMooVKtUyqXyNKEPEtpzs0zSTK2dg5YPLFGvTnD/Y0dut0Dnn7q0vT49wkrVaQy0xzXddB5RhhM831LJoZocNzFVmrq1TZNA9t1yBID1AqCkL/6/l9x8bHHOTw6xnMcgrBEUQhjSShS3n/nbd68+j4XHn+M7e1NPM8mGg25+fFHRHHO5Tcvc/nKFS5euIhSFsfHXY6OjnjuS18gS2L6vS5pkuP5AZbycG8MTS7n6RJaWyAF5dll0ns/xlr5Ol6pzkdvv8H/9vv/kg8/vsPT7QHCtgi68+ApRDkwKg1HMRkNcB2baDyi1z2kFAbkWYIlXSypOO52iaMxtVoZIQuk5QAFSTLB8z2YAiuyaQZpEJoN7mAw5PyFizx2/iLX3r7K4uKCmSKLnCgaMz+7yKlTpx5FO2ldIKQ0lF2d0use4bkGThR4PjovyDHT1jAMcGybNI1J0xRL2nT7xyRpxo9eeJXNzS3m5jtIJdBFTpYmSGHh2C55rpFCIa2McjnAdcugFbpI2NvdJ01ylOVw985d3rz8BisrS1SqJdrtFr7vk6c5WZYxHo3w/YA4Kx5l3wppInFMjJBFnuXYtsK2Te5roXMKafJgHcfBkq75/dLC8SwODnto4WA75jjTGizlonUOQuM4CiH0tKtvJtC97jGWJaiUy1PJtaDfP6ZarZHlObYyER5nz56nXDVZT+pa7QAAIABJREFU3VJKsjwjCIz1QWqHQgvSaTQWWlJvtLGkTZIOaTRreK5Ho9Hg+vWbBiiTmOmC1jmtZp0HD9YZjUf0ehPUvQ1eVZq1z32On/7kTXRh8Zu/9Zv83u/9C27cuEHjtXcQgYuTFTiOi5hto2x7OvF32dvdJcsyatUq8zMzzLSNKqDIMo4O9+n1+jiuzeb2FguLy7Q781SrTaTOKYUB3/nzb9Ju1Wk0agSBj60Ue7u7pHGKFiAsy1CjtSGtV8sVLGmxublLuVzj6rX3eOO1n0xVS00ODg6xlM1LL77M+uYGtZp5XkuoaayaQliCNE5Rls3+/j7z8/PYjk2WjUzjp8hMnFdhCmI1hW6ZyaFEb+widg/o/vbXmJ+bQdgOluOZ14sphIQ2G2oTIaIpvvuy+fdnTF4TBX46Ii0E926/h301ZJCMcNtlfD9gOBxx9849tre3uPzm6xwdH7I0E5BnGRSm2aK1ZGfzgEqtQpHnWNIiTjKUHeAHJdygihcGCBKS0RZKjvF8TeDXTKyRY5osUQJp7oAj8ULJRx/eJokVreYCCIvReIinbDZ3dgiCkI31+0g0zVqVLBkbAn3gG2+pLRAKhFCgf+YPFQIsJRHYNBpz3N84IitcyrVZjnsjeqOEerPFwtIScRoxHg1ptxpMxmPGkzFHhz3OnD3NtWtvY9sOr/30DazimPPnFtD5ECUl5XKdcZRh2yZZQU4n6A/Vb0opHNsljjPAQcqQ4TClPXfGeE1RRMmEILBJky75ZIJAo/MEnRtYU54nIHIEFloL4thkzCtLYCtrClM0ec9GeeQisEi15ugw5vhwxNLyLHHSJwhKpJEhggup8X0fx5b4vnwUUZZmuaGi54o0gaKwKXTGeDLh1t3r2L5FvdXh8HhAoVy+8MWv0mzNkGWao+NjOu0OrqMYjcbMzS0w05nhvfffo9A5N6+/Q/dwg0ogCUWVefEkl7vfYGZ5hUma85//1/8tlVaHBEFhQS40ElPAflI2/Mli9q9TkX7y6xcnqZ9d6zx87KdF5fwqxevPfuAXZcV/d1vmz17Hw/UfjGz4b/uzv7pmWzz6EkL+3L9/+eN/8ct0MfNvvwCA+p1f52GUghA/64b8Ynfj08nFiRBYoz43r11m/uxprGqd8ihHfvdHzP1H/wTbtmnUmiRJhiVtKpUGlmUzGg8ZjYZ0Zjokcc61a+9x/uJptC4ol0tsb21TrtSoVJv0ugO2t+6zOL+EsjziNEbrmNW1MzSm+XP1RgOlHL7/73/I+2/9hPNnz/LCCz/l4KDP449fJAwVYDY0ruPQabeJJhGd9gxhUKJ3fEAprFGtNDjqHlKrVanWO0hh4fklSqUaWlv0B31jondCbCfgL/79D3jvnfe5cP4Cm+vrJnvOD/HDClI5FLnkhb96kdZCiYX5WSgKPNtjMorwQo+4egsr7CPHTSQCCkNaHQ2GJPmQIku49vZV2s02WoMf+HQ6TdbX73Lu7Fl8z0FKzXjcx1I5zVaDdnuGySimKKY5eZZFmmUUaPzAJyyF5DqnXitx+sxJao0alrJIspxKvUm90WYURfT7I/7829/j+vVbnDt7miQZU622WDt5kpXVNZI0ZabTQQnjqStQFDgUWkKesrN5lxOLJ0hiTTzOcewSCIdas8Pe9i7NRovxaEi3e8zh4QFFnpmNvY5wfQfXdczEWWkEKePuMSeWFrCVJMsT5hZnKVdC2q0OWZbxwgs/YH5+lkKbCAwhNTNzbRbmO1SqJYLARyplUPGWhdICcsiSjDyfbpBtEzG0t7PLoNfD8xwcW9Dvwe2bh4BNs9VmZ3ebsOxRCkKEfhhmbsh8UkiK3Bjf0jTFsiQbmw+oN6oMBz16vR7Neg1RFAhyc9OjoFabYzSJqTTKzM+3WFrq4CpNnhRk33qR/m8+h/pnXzHkytu3aNXn+eGf/hGr45e53mtQrtTZ3NzkxNoqyrbww5A4Tdnc2mFve59Gq2HyE/MUx7c5dfYUSMkonuAqh/vr92l3mnhKUiQJ426XwLUpV0KSLMJ2bCNtl6bg9jyXN994nTNnVgl9iesUNBoLRkItFYHvA7mRmo0jnCl07aOPb9DpdFBSEE1GjCNNqVQmCD16/T6D4dAUp5OCe+vXabbq5IVmdm4eP3S5fn2LdqfF66//mJWVUwyHMfvHRwy7Xc6ePkOpWkVIhbI9glINLQVnzp5lcXGR2bkZI911bB577DxJlhPHGffubdJqN9jf3yQMJeFdQAr04/PEcRepRliqRpEMsSY7jL1lshTe/fAO3/vLF/nPvtLGEuCEl7DXd5nUQ7zAR2OjlCHRaq0ZRxGVaoU0Szk4HPDjH7/K4eEhzzz3HMIykRTjyKhADGnXNrLXvEBOz9E4TrGUsSyYy7zL3MIcfuiiHNM88f2AzuyMgRpJgTX1oVpCMBwMkAqSpMDzy8DPfK+OI0AXSCRKObhOyIMHW+hEk6caR7lsb61z8uQJatUKOteMul0qgcvRwS5SOig3wLJNg8ZxSwxHQxzXWD4ct4zj+EjLZLHOL87j+C6lcojAbPSUZfKtS6FPnsVkegoIyjKUFJCnTIY9bNdDFzkSM03OC1BOgC0ydK6RSoEEITMO9jdI4wFFXlArN0xkliim4DAjmxbCRG+Y+540Hv08olRqoLHQsgAJurAolfypLSImiobYjsDxJVI45h4qzETHZBRqNDAcD00jrNAEpTK51nR7PXy7gsAmjhIc12Nubo6d3W1On16jVquytbVNuzNLt2euHYuLSwRbu8hffwa/EZInx6ydqFOptjmxtMRkNCb51g9wKhWqtmOyd9f6FE4PPS6DLigHIdVyibBsprNZAVoqvKBEtz9ibmmWd65dw7UdZlozVCsVI3NVAiltXn/9LU6eOslRt0e9PodUGWFYolSqsLG+xdHBEY16lXQypnt0BAiU7eD6PlEcs7S0wLmzy6ysrmC7JSzlsbezy/r9+6yvr/P0padwbQ9LKmzXZHNry8JSDrmGZquF69lYEqKJkXQGYQnb9chyEFIhCo0lLSMRTcYkH91Cff3zHCy3aC2uGIqzrdCZ8XhKLLScVmjCzHCL70yL1//ka5++PxMSP8+IZYnxZIR8Q1FtN8mDAF1IPvjwJstLJygyzdaDLWQhmZ2xse1iqtipk2rJ1Xdvk6WmkWrZKVIVRLHFwX7M/QfbdBpVpJ5Q5CPyIoMUknyEbUuU8hFWmQfbY/aOxpw+fY5Tp04xHsekSUGeFuxs7bA4t8R4OEBmCWmakWIxiWP8wCGnoFV3ccQYW+YUWiIt4wMVQmJJDTomzwviic3VD+9Rqs3ilupkBdTrbfIso12vcHR0bIoj7fDqyz/l4rmL+G5AISWDSUy9OcNPfnKFBxtb9Ho9OuWc2VkLT1l4HkzSQ2zlg4iRhOjMftRM14UkE9oU0dIyJGkrJMptap1ltKXAErz33lt0WmWy6Jg8HQIFcWIKVM/3yXNtGmpCE40d0xhTY7RISXMLIVJsWSbLNEJG5MWEopB4oSIILer1kEKD51YYT1KKPDL2n7xA55I0ybGVJo4SA5USGqkyLMuoCBzhoayUW3f2uLOek+s6Tz71FONon/OnzjI/00YXKffv3+HUyRPs7D7AdkNeeeV1Lj35HOv31smTY5q1gsONm5w8MYtna4JiniyyKB7v0+ws0GjO8+BgwDjTLK2tkSaG5m8JA2z664rXTxamD//voewXfjYN/4VT4jN+7ue//2n04U+TJP9CZM4n66TPkBP/bdZn1V//WLz+kvV3n8j+TZc5GKzf/nXU75ip688OkM9Sa3/6FDfJCzzgwd3bFMqi1uog9ofIv/gRxYU1bMd4YQaDIa1WG891OTw65IMP3mdlZZlarY5SipMnT5ocO6XY3t6m1WpRq9VwXRfPC2i36lDAaDThratv88TnHsN2PNrtBpNoTJFrer0B9VqTxYU2ndkOa6dOc+nS59FohsMu5XKZm7duMD8/h7ItJpMxlaqhdjYbRsanlOLdd97jwoULVCtVbNvkSAohybKEsGIANFqbC9VjFy/i+64hmxYJ1WoVrcH2zMRE55qlpSXmF2cNFCnJuHP7Dn/+ne9wYvkEpU6GkBabN0xuYxRNEFJQ5BlBGOI6LvVqg1KpjLLtR/K85eUVHMfl4GB/SrZMub9+z9AfwwpxFKOUZDQacHh8NH1d+pGUSkpFGLiUS2XA5GeZyYbg7t27dNotBv0hp0+dplqtsHxiEde2ub++Tr1uPrNOp02326XbPcQPA0BweHiE5zjsbG9iSWE2Z0FIWKqQpDm2Y1OgCX3X+J1shZSCUqlEOKX5haUarmNATMpyGI0m9HsjvMDj1u27dGbncF2f4+Me7Xab8XiC1gVnz55BSgvHtkmShF63i2WZcPo4SZhMJjh+AGgEAp0XxHFkilpLYk3JqqLQ2Mog7au1KsfHx1RrdZaXVx556+bn5wjDwIBAEMSJ8Y7mef4o08yyLPb2dqnVqmSZmcIEnk8QhBwfdYnimDAMSdKYJE7Ic0EQlEBIXMdFAu+/9z6zt/YYrM2x+3v/jLn5eUaTCdVajUajzdKD/53E7bBw7hlsx6VSreF4AX4Q8taVt3j5pZfI4piFhTleefVVFubnCUohOzs7lEomVkJZFh9/eIM337zMM88+SzQ2MBoK2N/b58bt2ywsLIIQFPlUkldIukc9Xn/tMl/84leJooyNjR08P+DG9evcvnULIaA0ldHt7mxzdHxEs9GmKDT7+3uUpx7N19+8zLDfJww8ZmZmCUtlLGUzGUWcWF1Ea0mvP6ZSq2FZkvV7m9QbZbY21zm5doooimg0Kpw5fYbbd2/jOA5haKYbjlJMojG1apXxZES5FHLr1i2arQbbO9u0Z2c52Dvg+PiI06fW8HyHMPBRH5nzMDtTRhQjJpMugd+g8Nrouz+idem/RDpNLj39ZV555U1+7VRMGAbsJku0Pt6AU8sMRyMsZSMl8ND3ZNukScrBwSFvvPEWw0Gfc+fOMRqPSNJ06uEz/i5LqukxVRjCbp7h2A7KtrGkNZU2S0PJtAR5nlJMJ4FCKCw5vSEbehJSCtI0mW4+NL4fIoR5HoSBNBVFhmUpNDAajhiPJ4Z8/o1v8KWvfAnXtbl77xZpElGrlimXK4Shx+HBLu12Gy8IyQuzr8gyk7Fp4kpMXJSlpPHYCmi3mlSr5UfXkyTKDfxISKI4wnVsIw2c/i2P3gtlm6maNOd2lqbm9zguWhgpdJpljzKxBYLAD9ja3ObWzXt4XsXYAxxTLOcFWNI0oJJoTBKN8V0boU3Go7Kc6cS1mF5DLSMlLozCIgxDE10WRSYneUpsUkpR5CaCRyNwvam/3nXJMwO9SdOUe3fuE0UR4/EYIQWDQZ+ZmRkmk5jt7R1s2xwHnXbHxMQNhlT3j+HSBf7lH/87lpfnee/d93jmua/xve99n+ee+wLlV6+yPxoQCgvl2KQnUoTMcfM5trcMvThJja8/TVKMRNoi8AMTV2TbNOtNKuUKH330Id/69rdZXFqgUq1AIThz+jRLS7OEpZKRumKmdP3eEMdxWFiYN9dZAbVGg1d//GPW1x+wunaS4XDAT197jTOnVhmOxijbRUqTCzwejfjSV75Mu9ViNBpx48YN6o0G3W6XUuiRZxlplJAlGcZfaPy1QRAgpTU9PiS2bWEJA8qbRBMsS+Ee9FCL8/w0HvD400+R5/mj6/Undzn5Sw76noWodREn5hBPnPnUzW0qbPw8JRIBzUaZ/W/tsdc/YFD0aLWrOLak3W5w9+4thMhZO3WCepjhugYAVmhJkRecPrNItRpCYUiyRSGMvPR4wOKJU4a+rBOypA8UFGmBtARKSqIopt8dc/XaPQ4PU/qjAfPzy3SP+1x66iks22L/YA/XtUnSCf3eMaNxxPLJU9y8eZ3lhVlsmfPg/nVKnrGxCGmDVEbJoU2zEsw5NRlndGYW8YMSR90h84srIG1K5TJb2+vML87Rare4/+A+l556giyNSLIYLwiYmZnnxo2bPPvMMxwdHtBqVlk7UcO2C5QIjB/VMmwQLXIs20KLiCg5QjmFidmxjGInyxKkZRNlis7sCllhzsvD/T0unj9NEg3Q6ZhKpcQkiqiUy0STaJph3se2LPJCcbhvSOmeP7UkZQpLKt58813KlQqua+M4AUVuY1s+SVwQRzEmQjsFkeB6NdOY0pJr736MpVzCcpnhaIJlB6SZQ164RLGk3895552btGdWqDQWiXObLIdSGHLh3GPUmnWSNGN79/9m782eJDvv9Lzn+76zn5N7VtZeXdX7gpUEQM6InOFwKI419tByWPbN2J65kC/8B/jGEQ7rRnd2eAk7wpIshyM8UoQmLGpWkBySAAmAWBoNoAF0N3pfaq+sJTMrl7Of44sv0QRBcMihR+GQNCeiAtGVlVmJrMxzfsv7Pm+XohR0OnOYloNUipXlBf75H/wfXDi/SKftUGYjlBR4rg/CIslLGukZrvjf5dSFpwhzya9+9WusnT5LmucISvIkwTB03nf50EB4JfJi+vj9/+nG85P9Afzs3uOzvv/z2D+fPD7+HH5W/utnD45+8jE/q1H+RY+fdZ+/aV5/zvH/V/P6ycf5ZZtXlIFMYr71p39Ma36O2YUl5MEI+WffRz51juHxMUmc4DiuloRlGa5jU2/ouBGl5DSoXJCmMfv7+4/luZZlkWUZ29u7TCZDjg6O8P0Kb15+k9XVZba3dmnUq/i+x/qjdXy/wtzsPJYtOOr3qFSrmJaFZdnkeYJpGQSBT5rqRsZxtLxMKUmWRVPZiEkQVFHKIAiq9Ht7HB0eEVQrCCkZh6HG+bsuuzu7eK5DEHiUZc7MTAvHcfk4ZkEIgSENrt+4TrvTxjRt4jjhypV3ODo85Itf+CKycowUEjPtTAupHNexdYGpjMdxFWmWMZmEvH3lHZRSuI6HbTl885vf5ObtW3z5y1/CMCSNRov9/UOCQG8ai7LANKWOyEi1Z3AyCXFsV5MNJTx6tM5kMqYEdvf2HjfRrWYL13VZmF+g1z8iSROWlpbY63axLO2/cxwLIdEEy7ygEgQoJZlpNwl8j+FkQrOl42wGwyFCSqq1Kp5tEkUhw+GxDpg3DarVmi6ClI0UYkpXLRn0j2m1dYSEaTs4tqsp1LUGlmkhBFPZYKaLVaHJommWkedammMYBmEY4XqBbqDzgkGvz8MHD5mbm9VRJEpOf9+Aosip1+tTmWWKW+uRlT0s1QZK8uLjAUbOaDTWUldLF67D4RAlBYZSTMYjKpUqpmFgKJNwMiFNUr797e8QhhHtdhsBHB0dcevWAz68dp2zZ89hKh0tle0eUr/xiMP/9r/kz17+PqdPn8YLAmzH4fDqH2EevY+x8mX2uvtMwohud596a4bxaMSVK1eoVSp88YXnGY+GfOFXfoUHD+9jGAZLCwuPT/6GoWg1Osx0ZijyAs/xuH//AZPRhKPeIRcuXiTNdGN0sL+PaZr0uofMzMxweNBj+cQqaV7gVyrEUcjV997DUHpb1p5pIaQgDEcUeU6SJHQ683iuT5Jm2LZLGEUsLy2yvbWFkIJef4BlObz26o9YXVvBmErE/KCCVIJWrYXnGtRqAcPj0RSQ1sA0bRqNBltbmzQaDQRgWTaTyQg/8NjYeESr2WRubpbJZMzs3CxSKa5fv0Gn06HZrGOZJv1Bj9ojDQziYoOtjdu4rkAIBzvokPXXwWpSVM8RBHV+9z/7L9h2TxNc+m2aF07hfPNliqVZSlPDu/RFuZxuCBVKKr1pdgOeeuJJ5ubnSJKEWqOOYZka2DM944ZhhGmYOjInCvWAZbrZi6JYUzCz9HF0SxKnmmpeaEiYboNBSUmaplOypt6e69c1fmxRMCw9jdcZjgV5XuB6LpZlcfL0qSnxveT1H73GZHTMF154DiFNkjjEcy0mkzFIA2loT+bR0RFSSoJAE78B8jzRAyIpplCeiCRNKIuSne0uo9GYSrWC49iMJ0NsW8egMB0GCSF1U4pAKf3/lMQxfuBPfXLaOy6VlhdblqNJ4iW89uqPuHdvHSEsHNfGD1yElChpgCh11mie4NgGltSZ39LU6hk9wJyqj0rJaDwhCiMkgizLyYuCvCzxPW8atQNxHOuNdlEQRbG2hkxVMFJKut0u1WqVVqPFw0cP6Ha7LC0tce/eXWY7s0SRju9aWVnh/v37tFptrlx5h16vR8cPyOOI03/332PlxAonTiyTlQ43b93mf/qf/xd+v3OC2tws23FIY22ZvHasC7xxnV7vCChxPY+Dg31cz2M00hyCg8ND/MDXmeFxTL1aJwh8lGVw6tRJlGUxGU+4/dFNlpd0vraQOlc1jhKuvvcBb7/9NqurJ7R/WGnYz9lz5zlxYpU0TfmL736XKIy4dPGc5kBIRZamCAF73T1mOm3UdNDyyis/5OKli/hBAFnMzuY2b77+Jg8ePKReb5DlOZZp4tiuPveOh9i2vjaNhsdYU/iT7/vINz4g/srzqDOnac61Hw9UfmLLMy1rshcdOJAYf/8k4ulzj3/u03VXLBROkRFLmyIPiV6asLi2TNCxCQIPyzLpD46I04irV99HKliZ98hy7U/f3z+kUgkwTElZhoDCcyvkOfh+Dc8LkIaHZRqk8QjKENexKHPNG8myZMoPKAlji6Lw6I8GzMzMkmU5JSXb21u0Oy0WFubZ2NmgWa/T6syyvdtlPDzmxOI8tpkyGnR1TI6SxFmJMiwMKUmiCMuQIAukVAyOI5IUhLLoDyNqjTaVepPRaEKShcwtLDIJQ2q1KqPRCGko1tc3aLaa3Llzj2sfXKPVqHP9w6sMBz2WlzxsR3G0H6GUjRsYJElOFNkc7B/rv73Um9Iis0nScppykRIlGbbbZjzRvuXA97FMqVUWWUSehCRppHOdEZqhMB5roE5ZUAqLanUa7aQgy3JMUwMvb93cwfcMmq0mUiiyrMQQenDo+z6IQvtvy4yi0MP4goKlxRM4rq/VWNJmOM5IUpf9w4hbt9ex7TpZbpAWLkL5PFjf5Oy5s8zNzjEZT/CrHt3uAe+9/wG//pXfJAxjkjQjnkQIctZWGhgixBQJeRJSrdaI4pxqrcMozpmJz/Ls71+icqKDV29Rb80SxjGCEgXYlqnPk4C8mD5uXAENx5xuVz/ZRH6yef3ksOeTn4efGAKVP77t5zWvn7TKfdbP/ExZ8KeaV2CaFf1XxyX9O928fjIq56+q4/708bPu88uYoz/78X/26v7j5vXThuiP7/NpSUCSF/imwcM7t3jic89iewF0R6g//x5cOkWWF3qbhGQ4GrK9uUmv12NmpoUyJAcHB9RrdT788EPG4xHnzp2bUl412TfLMm7cuMOjR/c5d+YsYRhz/sJ5TMugWqkSRROKPGc8GtNuzTA8HvPd777Ir/zqC/QHvSk1T2JZhs70U1JfLKYQjd3dHVzXY3jc4/h4yN1791lePoHv+/R6fVqNKn61QpImenPUnkEpA1mWejvqOdjTSZ6UBmlWcHBwSKuhpWlpmlFv1KYh9hLH9Vg7ucZTTz2tp8QVXVSY6RxFkeP7HsfHx5RFwXiSkiUJ5rQYtGybmZlZXnnlVZ57/gUood1q8Su/+ivs7+9hmNr3W6vV9claaVqv77nkWc54pPMsLdPixRe/Rbe7pbclrkur2cJ2bSpV7U2yDIU79eyOJ2OCSoCQEscxqEybiKIs2NraZDIZUW80odQQEkMJut0uh0d9OnML2gebpri+h+d5vPnmW+zvbrO0tDi9wFsa7FOUhGGEYRrE8ZA0GWLIAr/igwBpOgRBRZ9gEXzrxW/x0UcfceHiWdJEE0k/nsaXJZi2jW1bbKyvc+rkSWzbZWtji0qtrjuDoqTZaHDz5kfML8yx192jyHJ832c8HBJUAsJIQ15K5zJhss7mA5NqrTL1bJQkcUTgB0gpyQtNxPV9n9HxAG9K8NQFbkmRgaE07EhJxfLyMqPRSHu0CsHq2mnm5xb5/vdfxlQmtjTxXn2XB7/zZTbnmzz95DNcv/4hC0uLGPkQ8aP/DjX/HIbbYDQaMxqN2dnZQ0jJ3Pwczzz1JHmWMglHLMzP0h8MWVlefhyRU5aFbkSPjqhWmty+dZtGvc5kPEIgmV+YBymo1xsIIajXGnpw4roc9zVo69ITlxhNhppiaBs4tj3NdVyi1Wrieh55XtBs1mg0m0hp8sH711DK4Nq1a/h+wOLKEqYhWZifoygFb775FucvXuTUqTM6p9UNuHXrHnfv3OHk2gkoBPsHuzx4eJeygNnZDlIUrG9uUavVqNdqbDx6RLVSJU0Tjo/7+J6P49gMxyOEhJm5DvmU8Ly/f0gYRiwszJOVuf7sTDJE2+X//Nb/w8kTcxhmgmNXKIS++Ge9O5jn/jbSKvnw+hVEAYvLi2Aoykc7lPsDslqVcTjRcSdJCqVgc2MLKQ0e3H/IidVVKEvCKCTNMpgOYUzL5OjoCNfxdLzQYMB+94BavcZkPCaOY+37si3tGyoLilzHZNmWQzSJ8DwPJORZhqEMDKU9TqPxiCSZQo2k3sqWoJtiqeNmkkRH4pjTz6VhGdQaDfa6OxRFzlNPPsnJk2vs73VxgypKQu+wq6nntTpZUWLbjo7DmF5ber3eNFs3e7wlHo1G06gmrSj58MNbvPHGGzz77DMIAUoJHjy8T8X3EUIQJQm27ZBkOhZEipIyz8mzVPtbDQOkwpAlo/EEz/NJsxzbtCnynF5vxHgUcfLUaVZXVxgcH02bYwNp6PxDyxQM+j26O9sMj/s4Xg1DWpRFQVEkKClI4gwhFFeuXOG7f/FdPM9neWUFy7Kn2yCps3mVwjBNzKlcPi8K8mKaAQ6PAVlxFLO4tESj0QBgdgoIvHXzHm+9+QbnL5zTOde1Ov3egLnZGdqGReq7PKyZNGbaDCcTuvvH/M43foff+/3fgxd/AJ5LcPokNzceEswL5HItAAAgAElEQVRokJ+ZzVJv1DFNkzhJsEwDyzCQQrCxvs5Mu42UkvE45t6du1P/c4W5hXnCMGQ4HhF4AW9fvsyFC2eYRBMcx2N0HJOlOSsry5w7d0YzBEyDMIofZ8cKqdUtKysrmKbBrY9ucv3GdU6srmFOc2EXFhZwPItoEtKo1zl58iSWbREnCR99cBXP9TANh9u377G0tKRhioZBFEXYjo3ne5QUIKDIsim9Wku1xdVbiP/qdzmIImaWOj9RpD8+pmqF4opW2Kjn08fv4c86UmHikxFhUWRjjr/V49HuOpFMuHz5HRCKlZWTlIVgc3MDy3Y4tRhgWXpoX63VsWyDLA0RKoXCREkbx3GZxAmTMCLH5vq1D5mfb1PmY6AgT3IEDkpCGB7jBy7K9nADj6WVM4RhxOmzZxCiYGNrnbPnzoKAJEto1hoYhk21Wmd/bxtVRgx76zTrDkrpv5NpuwTVBmUSUWQ5QpREiSYJ15uLuF6LOMlpzCxguT6mrfNKTcvDMGzCSczBfo/FhWWiOMcwXZQs8f0aqysr/Ms//Gf4ruRLX3yGRkNgW4oX//xDZtpVGk2b4fExr/7wLgf7fVqtznSz7nHzo02Goz6O42G5HsoMsL0OplOHMuXwYIdhv4tr5pBF5GmI42hpbDjR9OwsSZDTYZ/t2ghZECdjINPZ2koSRiFrJ2fxAxumqgllCCAlTWOSNCWMUoTwoPRQKseyBaChdVmSATk7hxE/fOUjeoOSR5sDdg+GBPUOQXWGWw82efb553nmc0/RmW0ShkMajRp7B10Ojnr4XoUH99fp9wccD0bs73SZjHoMDh4RODAa9HHtAOXYVOuzuH6b5TNPUGaC8mqVyt+tUigDw1CMRkOiyQR3OgwsPrWL+rQU97O2n1LKn2oMfxFC8M86PtlLfLJZ/vh3/Lxe59O04V/kPn/Zc/mJx57KlQ3D+ne3ef1ljr8u4/HPfnz93/Qf/G8UP7yC+srzn7jts6cWn/WUSk27oBiPuHX9Q84+cQlh2oj9EfzJXxCdWiKaxFi2y0cf3cI0LY77A3Z2d1lcXCSKYgzDxPMC1tc3uXTpwnRKHbG9vc3+/j7VahXfq9GZaU319YqXf/AylWpAZ6bD/Xt3mGm3mJufJ4lTDvaPWJqfpdWqk2QJf/onf8ozTz1LGoeYlvaORVGIbTscHfWo1WqPgTrt1ix5lvPNb36TdruJ5zn843/6f/HkE0+T5ynVao1H9x9hmxZJqGWCR0eHJGmK71ewbAdlmFimxfbmFqIE13PoDfpTKaSCUl8IlFKaAOscopSgt1VOqZCKNMlw3YAkTcnSmHrdn8aKJKRpygtfeEGHs5sGrmtz89ZHLCzOEwQV8kIXslmW0e8P8P2AIisY9I9xXQ9TGRRlTqXic+bM6alcTG944zimBA6PDrFNvflL04RJOOHGR7dYXFzSoBlDTx+LoqTVbmHbFkUBSRoRjoeYhmJnt8vS8kkODzUFM4pCRsfHWKbNuTPngBLLsuj1+liWiWlYbKxvUqlUidIY0yg52t8kiccgJdKwONg54M6t29SCCoYh2dh4hOvatNstPF/7c4q84MaNG1QrNWzfhRJmOx16hz3effcqS0srCEODXjxHh90vLs6T5RllWeiNtDIoiwLDNLBcB9f3KNRdlFJU7Ccffz4ty0bJKfp9CnKxLE3htU2pgU1SIqXB4X6Pq+9dpVZrTPNRLZqNBmEY8eD+I6Q0abYaKMPgBz/4IZcuXSR54wqt0yd548tPMTe3yGQ85tlnnqHIQ4x3/nuiOGM70pvufr/P3OwcK8snqFY8xqMhtm3SbDZYWFwkjGPm5xamsUoV8jzn1q2bjMcTms0mR70+D+7fY35ulk5nhlJo7Wez3ea9965y59Zt2u0ZhJS8/sYbJMmEdqfN1vY2c/OzmKZCyoJwEjPo9RmPR0RRhOcHbGxuMtOeoXfUZ2Njm62tLc5fOM/GxgarJ1YoKLAtk3t37zI/v8C58xemkQIpkJMmOTtbu/iujeMY/PGfvEhQcTl/8TxRlPHmW5dZO7lKWUKlUuH1116jVdfRTco0iKOE73znL3jiyScpyoJKtUqJYDwJsS0FSFZPrOo4DgFplpK2SsoTDfa2e3zhC8/QP9okjkoKcuxqm+zeyxif/12iZEKrVcWzq+zu7tBoNykA9+0b3EsTtvf2mJ2ZY3d3l0oQUKlUuPnRDSgLhiMNRvr2t76lg+qVpN3Rm3jHcfmzP/tzZjuztFptoijCcT4mrProWI8SISGaRAyHI779re8wHI5YXl4ECg1mMrTkVEm9DaTUm9cCSRxHIARqqvAQQkd3GIapk1mleryJCsdD6rUaFCXKMNnY3OZ73/sBl554ksl4gudaU7WIlhuCeCxrTtOUyhR2JDDJcm3DsG1zmsupm2elTM5dODuV6WnKdq1WRxqSXr83VXkIlJQMB31sx9b0U9MkimPyokQqgySKMC0LhERbGAsEBbPzC6ytrTE3P4c0SpQq8VwfUzrkRab9rkWBaWq40uXL7/LyD19leXlVF8Ai5+HDB7TbHYqypFqtcub0KdbW1qae2xxlfGwZkI9fw6IsdfSJYTxuaMX0oiqEYH19k2pQIQgC7t+9y1985zvUKpqkHVRcXM+kVq+Q5wVFWdJq1sl3D9jPYypfeh4hJdLU8v9Op8VgfxfzH/8hd/OQmbVlZlpt8I6QSpEOAtI0xbJMXFdHdX18vV1dXdV0ayHY63bZ3dmhLHQmZaVax3ZcgkoFKUzeeO1HLC3NU6vXAR15Y1p6SHz79k3q9TpSKpRt6ddBaFgV00iser1Gvdag3mgwM9tGKn1OdhwPRIqSguHoGMM0KUr9d53tzFAiefvKu/z6r/0alcDnwYP71Ot6Uz+JQu3fzTUkSkmDKEowLRMQiA/usPelixh1n+Zc5zOhMR8XOsXHUTmdRzAYIuqVz6yLSqWwkzGl4aAYE78cs7i6QHVhgVOnz+FX6rqmKkvu3PyILE04v9YkL1PSXG/gw3CEoTSoLY4yhIAwGiOkgesFVGuzmIYijke4domSJWUGcZ5g2TaGaRElcPfhFnPLS1h2jdW1VYLAw3YsGq0GBwdHVCs1DMti88E6pmFx++YNZBlTJAPmWjpbtSTT9F7bByRZ1IeyoChylGGSZpK89NnZGzEzt0Sl0cb1Ag4OD2i1Gijl8M7bV6As6LTb7O3uYpoOjUaTnZ0dbl6/RZrEOCrFECGrK02S6IiiTFhbPUG95kM5pEgzLjx1gqXlOkU5wnVTwvCQZjOg1e6wt3eAYTcRqsajrUN6/SGLiw1MlSKKkEf3ruE7CiUK0jRClDlyGgOmDBNlmijTIs9jsjzScKY0RSktR3bcAKkysiLDsSvEcUpeJlAaZHlJXhpI6fHh9Qf86PVHnDy1ws7uIYblE0UGH17X8TdeTcv/u4cjFpaWufT0E3QPjqjUmnzlq7/GzZsfUavVuHf3DkHVxXYV9VqbIKgSTkLOnTnLh++/z97OFr/6xacRRUiZjgk8B8fxcb0qpeFQb81Rb82QCaBewnWb7NQYu1Mi0pC6r7f3humSF1M+x0/U99Mm8FPf+/Ttf1lv8pO3/eI9zM977E96YX/i+3x2s/rXqWT9ZZvXv4nK+dd8lOs7lI+2/z89xv379/m93/s9LYdTSkvTph8BKSSNRps0yfnu918ijGLOnDmHY7tQCoKgShxnjEcT6rUGUko2NzenuZ3qMWHuY4JsmmQ4tsNvfPU3NbGRkhMnTuC4DoN+n263S6USMBwc0+/1KLOM//Ab3yCaTHh4/z5ZWvDw4SMmk4giL6nXdAZrEuscw+PBMdq/GHLn7m2iaMKZs08wmkRYlkuWZqydWCGJ4ql0NUVJpSnB0yD7otRRQK++8gq2bVNSUqnqrWVJSZzGxEmEaemiRicElI+LiTfeeIvvf/9l3nj9LRzHIYpDjW8vc0zLoF6vkRcZhqGI4wghYG6uQ56n5FPZU0Gp6ai1KtIwMAyH7e094ighzVLyPNNgoyInCAJGoxGIkuPhUFOMOx0G/R5ZlnJ0dEgQ+MRxTFCpTEl9BUmSEUcxeZYT+BVNAVQGZZERxyGzs7NI06AsIIkTKn6ARLC7vcXWxiZvvfU2g8EQJQ2yrCROUlZWVmk0WtRrbXy3iut45FmB6wRQKixlsLK4SJrEjEdDvvIbv85XvvrrSKVPYOFkQhiGKGnoQm0arZFlGYZhMNNu88orr3Dt2rVpYa6plO9/8AFJoiWYgh+TDUejkaabFiXldFRp2xaGqR5DC8bjsQ5QRzf/+WOPW/nYPziZhFy9epWHD9anPqvicQPZbDU5d+48S0vLPHz4ANNQtGfaNLKcuaMh7/7G5/mVL/86/+pf/RGXL1/mo2vv4139HyhGXczlF1g7sUKjVkWUJYaS+K5DEo5p1iqE4zH7+wd88OE1as0W3W4XwzAIfJ/h8JhWqzX1Quoc3K9+9TfY7+4xmYy4fPktXF/nGV+6eJGLFy9SCQKSOOHLX/oStUaHo6Mxvd4IJW2ypCAcRezubLOwOE+9Xuf06dNsbmxycHDIeBxSqzWZn1/gt37rtzCU4oUXnpt6IA3yPCeKNBBECMnR0RGHh/tsb21x0N0nCSNs08SxDH773/8POHP2HKUQKMPg7/z2b2M5Dp6vvbyXLlxESkmtVsMwDG7euM3XvvZ1hFCYppY5CqlwXJfe0RGzM5rEmmY5pmlhGDZxkpDlBecuXCJJC4TSULJ6tYllVygNF3av43tNPfS68r/SePiHHPX7iJPLyN4xge3guQFFUbKxscX7739AUeacO38Gw5Dc/OgjNtY38DyP1bVVLbMUkjTN6O53efjwIevrG8RxQhAEmKb5WKEglfaN5nmOY3vcvXOP3d0u25vbKKm3iOOxjniIwojBYEBR/hiuIYQiimPdJKIVLmmaIoWWgH4SlJFlKdPoUa18yAXVapPFZZ0v2qg36fcGNBpNhsMRw+GQsiw5Pj7WW15DD8L6/T4CAyUtdHMrtMxLSPq9Pu2ZBgsLc/iBlt4apkmSpKAktWYdx3WQQmcS12sB4/GYwWCAEDpDWQhBWZTT87KBEFCUGhjWHxwgZEGr3XwcB1arVR/7aHUSix6SSWWTYzC/fJI8Kzg6PMLzPI4HA1aWl0mTeEpWt2i1mkBBnuvmN8vSKfxQS7U/fv2zNH08HIyj6PF5SUnJ6toqytT/7nQ6/L3/+O/hez6rayd4+uknqdcrWJYiy5NpPmWE62tLiF8JiJKYME6ZW+hw++5Nyn6fNEkQ8y1Ub4B5PNbbxCKfboC1tSJJdSTTZDLGnOb0DgZ9htO85S//2pdoNhsoqbh37z5/+icvAoIszfna177OYDBkOBzz6OEjXnvtFQxDYFqSlRPL7O93GQ5HUwXQ9FoH5EVOEPgkSUwlqDI725m+/1JMy2Q0HOnti9KfXwFcv34dKSSW54MymF9cxLBMRuMha1Maf5oljzdsSpqUhUBJHZlSFrp5Js+J45Ddva1f2B9X/MN/QvEP/8nP/oEsRoiCOBzyzluvk2cpt27doJSCwfCY9z+4ysHBHt29LcLwmCwdMxmPGY6G+EGFEjANHa1T5Jq8L2WuqeMSTNNifWMDpRSNus5mLacDKNuDUuaUpcPRUcr9Bz3ev3pPN5pKsLu3w/7hPgJBq9Xm3r0HHA+GHPcH3L11BylKknDMTKOKKUvyPH3sf7cdhwJBEo+RQsdphWGEUhZRlDEMUzAcfvT6m9y9d5+r775Hd3ebsozZ3n7IZNRDlDEP798iy0KKPKbdmsUPAjbW10mTCZZZ4jpQDQJcx8BxBBAjyPBsCyVDfM/GtR3yFAxpoQSYln5+zeYijtvi9JmLXHjiInkWI8kRpHTaNeJoSBRNEEWGEjAeHZOmKUIq4qQgzUEKrYwwTQffqyEwp+cnE1BQKo4HEd29AUmck6YOyqhimgE5ilqzycWnlnmwGXPjTo/1nYx3r+1wfyPi2q0eg/6I1bVTLC7OcfLMMpeePsdXfvPXuHDxInu728x25kkjuH3zIQLF3fv3iMIYUZasra7i2CYXz5+FMiOJ9xFMmGnXdaSZoUiKBCldlGEyiScUJEg7w3g6ofzfKxhZSnfrEdc/eAfXMskLyEv147fvP6qS/aPqX/oZAB77wz+2f/zrOH5Cvv+pr0/e/m/C8W/U5rUoin/wi6ysP4vO9enjr/pH+qvLiQUgPhGV87XH3/vZ05Yff5XTXDYhJO2ZWX7ji3+L7uYGtVZbG9XHJeLPv8fx2iJCStI05rnPP0O7XYeyYHZ+FtO0KQo9mb7y7hXeu/ouF89foFqpsbfb5d69+5w/f4GD7gFhPGA0Dmm2Ohz0Dllanqff79Nqt0hz6A1G+JUapmURRiMWlxcYjUPCSOey1mo1Wu02lqcI/ADf9SjynKPeEX4Q4Poee90j7ty5xfz8PC984Yu0Z+YJam2evHgCKQX9/oir736AJU2qrotyKgjTISskjza2uHv3IctLywhVYJiK5dUVvMADAf1+j4rlU2YpeZZhWzZ5VqCUifCP6B31KSdN/IpPo9XCdBzeff99rn/wPk89+TS9/gDH8TGUQ5GX9A73sU2HMpdYlo3ra4ABoiTLcmRhYBsWg8MuWXSMLTI6LQ2fskzF0dEBjudimQZhHGJZJmEUUas3EFKSpAm25RHFCXNz80wmE1aWV5BCMonGWKaD43jkacFx/5haJaB7eEiWQ7M5h+NWiKIJnmdQr7V4663L3Lhxk+effwHbtvEDj9NnT5KmKbZj4Xme3sAIOB4OsB0XYSgMO8DxGximfr0ePbrP6bUVijyiEjhs7+5imAZ+vUopJAi91VhcnMV1JVLp4jVOEuI4QykLSzlcungSz9EwmDxLcWyXwKtw9/Y9CqG3QWkywXctTAmH+3uYlR0tZSzO6hiGadTN+r0N6vUmeV5qX9pMi4KCsrQoSjS9WGSsnljiwvmzWKbDa6++Rv9oyExrnh++/Bobjx7SajQ4ODqg2Wizv7fPqa19hl//Eu3//BtUgjqWZfKN/+gbdA6/zeD+jyjmf5Xu/hFFXnD/3kM8L6DebJLkGZsP79NstegNeiydWKEzO0s0iRhPhmxu7hJFBZZt8s6VK1w8/xRKuoh8TElJa3aOFMnJtbM4ZoASEePRhN29Lv3+gEajyn53l0a9Q6VSoSRHmVLnyLmB9jcDytTB7Y1mgygMyZKEyXiIYytu3bxGp9PGMm2SOMWxTUQJSZJQIrAcizSLMQ2D4XDE/OI8lmMwM9cBaWDbCtOyefhoAy/wqVYr0yzInHffeY8fvXGZ1ZNnMEyLcTihNbOAbVvYVkE8ibAMF2maFGXB/voeb73+HrMzM+RlqCf1ccqjt+4i44y5Mwv86Yvf5uTaOdJkrGOQLItsMkCYLtbck0yGI4zN72OUEdbpv4OsVjCuXKcSuLRWF1AKOp0Z2p0ZpFBcefMd3nn7XZTt8uTTT7C4PIchNLX3xMISKMV4NMa2LBr1OjPtBq5rgYQsj1EG5LmWruYZIBMWlxdYWJrnc59/FiEN8kLiui69oz6e56EMU2+ApAbFxGlI4AfkBUihEMJASgVkTCZDtAJXMBqOsAwbpE0pIw3AmQj+xR/+EUk64olLl5BSEqUJx6MRjWaTLM0whMN4MKLiVggnMaPhBDuoYEqtPCmFfJzRKyhwHQvHdsizXG9mDYNCFJQSDKGbXUpJnGSaRF1CWeZYto0yTBzHp8i1LN+wFHmeYSjJeKiJ4WEUIkvF8HiAoSSu57L+aB3HNsmyIdIwKYuSJMl0NqJfoTM7y5nVDq12DduxcP0qB4cD6vUGBbqQcz0Xw7IJw4gszjAQkJeUWUEaxfQPj3j7zTcxTcFcp0OapBR5gTIUjudQlDnkEWE4xPNdtra3aLZbHI/G5MWYSrVOrz/Gcaq4nk+tUSVJclTvmGBxkeHSPDOdDlIalE6V9uwcae8I68XXaH7hWfzNfRiOGbRH2JZFPgjY2+3i+1XyrORg75GWhMYJcwvLuJUablCn3Q4ATV/OixxDSpSUzMx3MAxBvVlFmjaWFfDuu9e4f/cmSwtLxGGCbdm05zpIWyGFqRUQhoRSoYRNmoXUGj6Dfsxed5NokmGKKq+99iOWT7QoCj1EKQrIiwLLMgkCj/F4zPVrH/KF55+jKDK29rZYWltBKBvb9piMYkxpI6UmEsupfBhVUux2kfe3efC3n+XZZz+PmsZ1/ZQValr+fLx5FbvfA0D+zld+ioYqhCAXChNJKlz2HnyA9a6H16hQWZtHGoozp05jKompBJZRcu7saSwV0Wr75HmKadgUObSasyRZTJFnCASuW9Eyfgry3GBve5t61ad3tIdjmDrSp3CIkz5ZrNjeOsSvCT7//OdZXF5jPJ5w7+46nuvgugZpnNCoNbBcB8u2WV9fp4z6nFjwqXghpUw198GwMS0XIRV5liLzgqJMMW2LKDUZjhXvvveAervF1uYOzz/3RQ66h8wvLNBuz6DKEkMpZjodbty4zhe+8AKOpSjzmPt3r1OxFA9ufcils4ssLzdxfTClTZGkiDLEshQ5gsIsKcIYabiMwwlBpUEcgetor2i9s4xRnSNB0jvcJh7u0q4potEukhDTtLAtrSxIE4kyE9zAQ4kGeXaMISYYiU+aJ5RFRpZmCCRJElIQU0Yhpqco8blxY8TWVszC0gkOBoqt3RGb3TEfXH+IYVYYHEfML6xy89YjijJgZ2/EiZPnGEUpe4d9OgsrPP3MM3T3urSbM6RJys72Bq1WgyBwqNRdvMCmVmsw055H2SabG9scdA+pBxbbG7d57tlVRHpEkYdkZYZd8ai1Z0jIsZTH4WGXyWjI5PgIkUcMog3M/Rb7W7f4v3/wT7EqbU6cu0gpEspiTD4F9Yl3Hc0TeC5FoIBCq8WE5o18XPUbSiGFHgJ9shv4eCj1U/J7fpqn8+m+4rPowh/f/vFy4GNlxCd9r4+/5Gff75c6Sg0y/fhLCKmVI8r4t182/IsCmz6tJf+s45dpXn+Z47NyXj/LKP2XHaVQDPcPmBz3aM7OUm20iDYOML71Esazl5CIqURWy8PKoiTLMwxlcnBwwNtX3mZ5eZFarcbuzjZrq6t09/d56+03CSchTz75JLOzM/h+gO/5bKyv02zWcR0dou75PoEXUBQ564/WWVk5gW1Z+H4F07BwXe/xRsDybEbDIYEfcDwaYls2Qa1Cmmc0anXCyQTHtgj8gEq1ShxFJNEEIQ1+8INX2djYYNA7Is9z7j/aYHZulqDi02jUObGyQlnkIAV5rqVnpmnpTUCa4bs+g+Exu3s6G/ao16feqFPkEqtscLg3ekzcbXc6nD17lsFUUru0vIRlmuR5SRiGGErDh7r7e1iWOYUNSJIknkoAdSbiUe+A8Xiop/Vpxmg0Ji9KWu0ZpDIIJ2Msy2ZwPKREEIYRtm1jGhaDfh/L1DEdnudh2za93hGj8TFBUGX94Trr6+ssLi6gDIlX0SCk6dIXQ0mSNEYKvdk5e/YMlq2n5ZNwwsbGOmVZEEfaxwZaVpbECUGtqiWNaGhXkmSYpkm9Wptm42UEQQU/qFEKgWno5qff69FoNKabVoswDqEEx3F46Xsvc/mty3z+c89hmBpjI6VkPBqzvbNNpVLh7t27XLz0JIKSIk/Y6+5h2Taj8QS33kUIsMR5kiRBSu0hfHDvPrNzs9y9d4eyLGk063pCmeXYjpY+ZmnKZBJx6/YdGo0m7ZkZDo/6OLaNMiRSCk6ePElnblbLS289ACD5r/8+M0sdxuOQl176Ls82u2Qf/Quq579OITUtsFarM9OZA0os08QwJEkUUm/U2et29WZmEnH/7j3OnDmtYzpcn1df+QELi3McHBzS6cyhVEkYxyRZxvr6OoHvk2Uph/t7rG9ssLa6SpamPFpfJwwjFheWsR2Ly2+9xZmzZ3SmcSlQhn5dDcOkyHNs0yKKQlzH0e9V22Q8nhBFMbVag7t37lFvVCnyAkrB7Tt3mJmZoVKtaoWD4+C6LlJK7j94QBxFVAKdD+1XAlqtFlmacfvWLeqNGidPneLosMfnnn2WkoJKxUcpG993SeIxeV7guAFlWZAVGZd/9AYHh30uPnGB0fgY1/d5+HCTUx9I2sc2+/MFnuOyujzLeNTX0CBlkiQZHN2DU1/XRfbDH+iNyPnf1kWtbWL/4B2Kk4vIKckbhM6ytWyOjo44c/YcUpYEnjfdoLocHB5hey61WpWlpSUqlYA41qqAErQ8c0rTBoFp6qisLMuoVmrkec7BwSG+59PdP0AIQaVSoSiLx7FNCDQQzTAxlPE4F1Nf/EtNA5aSyWRCEFRBCAzDZDTuk2c5Eov9vS4rK/OcWFnBdjRR2XUdxmNNdnVcn8ODQ77znW+TZSlnz59DKIGlpD5HGAZJkiKmICvt/Y30dlkpvZU0phuCUjeleZFPfUgGQgpM05yC47TKRxmKItfRNEJKkjjBNEz93IdjHNvBsXXTkmUZWZYhSi3RFsrANDS0TUuZ9bVvZ/MRKydWSdIcMYVPaY21juowlNJeZcPk4GAfQyksx8YwDJShUIbB6uoq9UZNMw6Uydb2ts5RFqCUgRL63Bv4Fer1+tRK4+J5HlvbO+zt7uO6jn49RImpLMr9I8pahesipRAlM7Md0rIgjkaU/SHet19nON9G7ffJ8oy0HeCoGqQeB4cHNJsNsjxlPOrT6cwTTCWlRV5weHRIlscUeUG1WuP4+Jjh4JhqtUq91cI0TAb9AY16gyxNOXXqFKdPr2IaBseDAdVaFWFIhJLkWUk53QSKUmo4oQlFmeG7VVrtOq1mGyksXnvtFRzXpFarsbm5owGKhkkQ+NMNdkyz0cKzPeI4Y3FxGZAURYxlKMoiI00jDFMgZDG9FgnCOEQOR4jeiLfPdXji4hNgW58tRfxLmtePa6KfqJEMEyNLKUdiSyYAACAASURBVJSNygbkbypaCx02jg+Yne0wHAx59513WF09wRtvvE6e54j8mErFxrJM8jSnKHLiaKIVU1oLiRCSJC2I4gTHa9CZaWKoEkOlKFniWDZZXmI7giiE/cNjnnnuGRy3imlXkMIg8CsgcgxT8cH711hdO8kkDCmznP7RATKfMNcJEEwQkqmFyKSYvvfzvIAsRk598bZbo8Tm4GiCUJLFxSUN6koS/MCnVquwsb5Jo9FkNByztnaKEsn7Vz+k0epgGJLAtbAtCMND/MBEiGz6edLgrbIUOuZISiggSQuUEVAWJmWZYUiLHJvBMKLamAWhCBwDQ+aU8TGTcERRlhS5JI4y8jzBtkzCeIzjBoBBlqWAJJzkOL6BYSryQlCWBkJpwGcUpeSlRRgJbtxcZ//gkJlOi3v3ttje2WNhaZnNzW2CoIahLBrtOpZts7Awz4WLF3jqqSdYW1vh/IVztFotbt66xcLCgl66NJu4rsv+wQH1RgNDmbSabTY2tkiTDN8LaDWauI7BoLdDq+Gyu/MACg2UqlRrBH6FPMuJwwiFpFGr4fsuaRozHh6zv7dDL95mcfdLrPynJc9/8QtEYYxpKFzHpSgEphLkb+vrknounSrmP7s/+Zm9wLQJ/em+5mcv035e8/pZv/Mzf+avdRH709JjoS01f9O8fnz829a8hnGCVZSQxWRCYHs+8nCM/PPvk55fQyCI44S7t2/p4HvLorvXpchLXnrpJXa2t/nSl/4WnZkZXvr+91BKsry8zLmz52g06ty/fw/bNhkNj6nVKiwtLXDt2gecXF3RBYAWaNLvDXjppZeYhDEz7TaDwTHONJYkz3XBl5MRVCsMBn2dp2YYbGxtEScJoiyo+h5SQLe7R7VaIQwjBod9oihhfWMDIQRPP/s5VlZXabWbIEoMQ5JmCVBo4uf0dSuKQjdVQuB6Lg8fbnHlnStYjsXK6gk830UakjRSWGXAH/yzP+Dk2hqe5xFHMRsbG5w7e3ZKRDZ0MSQVo+GYKMz59rf/jDNn1nB9axprkaGkoLt7wN7uPsow6MzOUm3Uufz2O5w6fQbHCzAsB8tymEQasJEmOb4f4HkBnuujhKahJomGEoyGQ33BFQLLstnf22Gm1cb1XJqtht4eUOhYiCKHsiDPEpI0Jk1jjgdDLNtESUGlEkwLNsny8tLU35vy5ltv0ZmZwzRsLl9+h9u3b3L61Emk0B7S48GQne1dZjstwihie2eXo94xQaWBKBXjwZjuzi6dTpM3Xn+N+/c3ePRglxNry6w/3ODosM+FCxc5d/4so/GQSjUgDENcx6M/GDA/t0ASp5w9ew5Jwfqj+8y02xiWhen62H4FjHvaw5fqBtCY0oCXl5Y5Pj6m3qgz026RZRm2ZaFMQ58AEWR5ieNWWFle4+r77+hYKMchTlP2D/ZZPbmG4zlMxsdsfHSTJ/dHeP/8f6RoBhiGoBQRJ2cdxGv/DcbJr1OYFSzLIclySqH4l//ym1CWuI6JEpkm7SpJo9VEKoXveTTqVXq9A4SQDI+Pee75Z+jMthFC0t3bo9s94PqNj5idnaNarWBbJpPJiJ2dfZ588iLKhKDic2J5jXq1jes7pGnCyVOruugxbfa7BxRlOqVlC7Y2N6hWAxzHJgwnOK6OUxqHIcPhmCCo6HzgIidNEjbWN3j2c5/THjll4Ji6uTKlQknJ9WvXObFyglaj+bihGgz0kGWu02EYjbFsh7W1VdI05mi/i2/bHB4NCEMtIXPdgF5vgFdxGY2HtJpNllfWyIqccTjCD2r88R+9yMW8Q7VWZXzS4up773F6bYm93Q1cy8TzfEzHo9i5ivPkf0IqHHj4MgDmmd/SsSmBQ+Xbr9NVJX67SZplOuoq1VP+C+cvsLe7zdzsDFIq/CDACyqUpcCvVKbDPj1kcV1H2xKkfOxJ1I2WQVGAlDz2yxuGSbVaRQjBvbsPefXV17h8+W3OnD5NlmW4rj6f5LmgKEriOJlaMCDPCvJC+77CSUiWFbiuQ5HnyFJgKoUhTUzDYHFhhuVl/dyjWDesaaolzK4TkBUFe91dWu0WZ8+dmsYFZRzuH2LZtt7OK2MqZS6IwhDTVFi2TZpo35+htIRZCsF4NKYSVH4MmSrKqeVDy3G1FBaE7o2RQpAkCZZhU5YSJS205bfkvXff4+233mZleZXvfOf7rCyt4QaetryUJVIooihGCEGr3gBpIpQxJXGWUGYgDJSUTMZjbNsmSxM818HxXJ0PPB3iS6UwbQuBjicrS8G1a9epVKoEvk+R5/8ve2/2I1l6nvn9vu/sS+xrbpVb7dVdvVR3s7mNKI1GEgfWANIfYBiwb3xrwJcGfGEYvvCVB/C1LcEzlERqTJESyVY3RfZSvXdXdW1de2ZWRu4ZkRnr2T9fnKhik+riSBrJBqw5QKIiE1ERJzLP8r3v+zzPj+/8uz+j2z2m2Ww/keVlSnF40KNaqdFsNjEtg+N+F4RCSo3JRgfT0HkvHfDSK6+gmZLdRxu4hsHDz67Sevdz9GfPIfYO6Xa7jMwGnpnL4yvVMsfHXXRdwzJsbNshCHOEiBB58yIJU3TdoNPZYnYmR8s1mvVckTOZYOgCTUKWxEih6HQ2qdVreZaA707DAjU0IdCEQooUXUjSOCUKJzimwYOH6wgUpmmxsfEITRMsLS1h6CauU0AgSeKUIAiQAsb9CZViiRvXb3H57fdYe7jJJx9f4+SpWbI0wrElhp6RqYA0HRPHEt3Q0TSJ7A8RO12uXZjj0qWXSbUvXzQ/Ll7VQw3hKsSDfI30tOJVSQ09jUmEiZ726b02pjs6xm1WUWnGlU+v8rWvvoqUOo82O+zuHfL8xZNoWpynWQO2ZRBFk2lxlR+7meKJjSGMde7du057toahq+mkfIChmUzCPnv7AUlmUGvXUcLgr19/k92dfY56fWZnW8RxxPLSCkqBY5kc7GxBMsSQfVoNB9vIkFquvEizDE2TaFLDMg1QMcf9PkgDr9BAtwr0BiHPPHuRUqnC5cuXufTSpSeBkhLJ4WGP5ZWT7B706A/G1Ftz/PjHrzOZjAiDQ2w7wTACGvUShsz5yUKmqBRQGmGUY6TCEDIRsXZ/zJtv3qA5Y+H7LRyvlrPBS3WEUGw8uIVnQ5oN8/MWi48+uEUYwfyJGQRDTKPAOEiIsxGfXnnA57f3WDy1iFRRbnKTHmsbh2zvDMmkR2e3x+ZWyrvvf8755y5QbzdY3+ixd9AjjDKeu/Qyw3FIozHDCy+8jFu2mJmbpdlsMB4PSNOItQf3cH0Px7GZm8vzJpTKsJ28kWu7LgcHPfb2DtE1i6JXxLZc9Cxlb+c+GgOG/Q2ioEe9WsS2czSZRDAeDDk6OCCZTBge7THsdznu7rO7tUk4PEYkE6JkQCU9ydsf/DlX1v+aNI7ZWu9w45MrnH32LHEUoT7x8tyDlyKkEE9CkH51e6oflS+SSv7xiten4XJ++YV+8fCLitZfV7dkWfbUYvvL9vGfRfH6dwlselrh+qtSlH+s7ctkMb8kefn+TwHxpHh9fED9us/wxc+ilAKp8/E7lxFpRPvEAuMwwjgK0f7qDdT5UwSTEF1qOI7N9evX0TVJo97Ath1azRYqS1leXkbXNV54/jk8z8M0DcrlEpVK7vG4fvUz5ufnUSpjY+Mhp0+dQtc1UgVRGGJqGuPRiGazyYULF3FdgeOYjMcDDEMwCQb4vkWcKibjEcFkjOvYSE1SrlRzuLkuWHvwEM/1KZbKrK+v43oOH77/MefPn+fCMxeYW5hlbmEey3VYX3vIzNwMw+EA3/dwXZfdnW0M086DfDSdMIyI4oi93X3mFk5w6vQpWq0mWZY+4ekJBUmSsbK8TLHo53INFOPhkMuX382nL0UfpRSj0YTJZEIUZpy7cBLL1rAsMw+DkjaGJqhWahx2uwyGQ0rlMvF0ouMXyyAkupGHJFm2zVG3R/94QKH4ePIFcRSxtdWhVq8BUCyUKBaL6LrOH/3RH/PVl1/JJwoS1tYfYpomkyBkPBnnkxBDJ4lzv2i1WmNjfYM4jlhfW88TUk1z6qGNcF2XcrnM8vIKpmlxeNjlwoXzzM23sUwzD86JYj795Aoba49ot2ooIRiNA1rtOW7c+JyPP/6EMysnebSxTq1ewbItBoMxpVKNSrkAajrVKBQYT8a02jUcO//dG6aB5/noWv7v7u4uxZJPpVwmzTIOuj1qjXYuWxY383MiWMF1XASCg/19BJKrV69w9+4dZmfbeTqn66LpGlJIwjBiOJhMO+guM+0qAnK5a6FAo9Xih3/1Q1ZWV8jShJX7u6jf/Tqfzrh8du0qrVab6Hgd96P/mR51BqpEkmT4vk+SZsRxymZnh5XlJeq1Cvs7j5hESZ626vuQwWQyJklC/IKDUorZmTlSFTEeD2i22vh+kfsP17h37x4721vMz81SKvk4rkW1UieIxgThhDu3bxNHGZ7jIw3F5uYG/UGfUqmco5jSjNuf32Cm3SZNUhzHZtDvP2ngRFFIZ2uLTmebhw/XqdVrjMdjkiTCNE1c16NQLBEEEaNxwPbmBq7tcPv2bT7++GNeuvQSWZZxeHjAw4cPcRybKAzp9bpsrK0xt7jIZDJGkDeVpMp5svMLiyRJSLPV4Kc/fYszZ8/iehaD4yMazRbVWl6MlyslRsMxu7tdXtDnsCwT9WwFz3GoVorohkSkEXGa4RSqRPv38M7+HtgV1MM3cjvF0m/lDFHbRl/bxgsislqZDEEYhBwedtGkzp/86Z8wO9NibmaO7Z1dHNfLvayGNmUfSwwjX1AKKfIGkqaj6fp0QqoRTCIODg456vWoVmtkSjEajbBtmygK0TUL0zQJw4ALF85jTBfyx0fHCKHxv/3bf8uFC89QKBSIouhJ4utgOCRNsvw4F7lE2TItHt5fZ2/3gHLZQ9MyMpUyHOVKENO02dnewzAsdN0kSgLaMy3CaEKtXkMIxVGvS6PRQmXZE79ymiZ5A1Jl2K6TczeFxND16VQ2nwpLTTKZTLBM6wlSTAp9quoxMA0DRO4zD4Nwynu20GTOHhVo9PvHfO+736Xz6BHBZEypUKJWqzMzu4Bu6QghmYwDfvjDv2Q0GrMwv5B744VECQFSIIVCEwpF7nuXmpxOrHIslm5bCKkRxTGj8RjLthiNR5iGQ+/omM7WDmvrG5w8uYpt5YoZicnK6uqTz7K3t4+UgiTKeO+993jvvfdoNGs06vVpavIRfrWCf+U2xf/yDyhVirx9+W0unDqJJgSdO3eY+eA20clF9IMeWZoQVXyQEk032N7awtS1XJ4rTUzTRkrJ9s42mUoZDI5p1ppYlkWjVmd3dyf/nJpEEwY3blznBz/4PivLy7mvXNPwCwUcx6FcqaIbeTBVGseQKaSE7sE+k/GIjz+8wrvvvE2j0WBhcQHbcRBC4PsOJ07Mo2k63/n332F9fZ3RaMydO3c4c/o0UgpsU5KmAbMzTe7eu81hNw8DrFarmLpJFISYhp6H7kQZjlcCkQd2ceUOvHKB2w2Xi88/TyafPkkCkBcS5IUE9YOf59///re+dE2UComexkRKY+32J5if+phFh/L8DKZhsrK8zPr6BiD49NOraLpBq2bh2JDEIbpuIoSGNAyiOCUMQizLwjQthJbfL0ulOTI1JAiHWFO8lePqhOMQRUqc+jzcOOTsM+fx/AozM4tUq3WajTaTyQDLtugfD7ny6Wfcu3uX/a1HzM0UaNYUqDG6zLs+UsqpEiMlSxKiKJw24iVIh0y4dI8DKs1ZTMPOPckyx/ANhkM8v8Dh4TbzJ+ZIs5iD7gEnFk8QRAGj8ZD1e+tEk32WFhtUSx4koFIdyy0wHA4xDR3DsDBsiW6qnNzQ3SAcO4RhwMLJEoZRJlU2mm4xGgeUix4q6eMYKSqbkKYZrlvi7t1NBBrNdhUhRoSBxHFclAiwnTaf397jmRfOkUQh4zBlEpqMAoO7Dw8wnQqJMrh9t4tu+Vx4/jSFUpHTZ1/BshS6pXHumbOsnFymWCqg64JRmGCZDnGccv3aDc6cPku5nFvBpMwbOW+88Qbnzp3j7t27eTYGGlLq+I7D/u4OQsWsP7jDZPAAQ/ZJ4gMMPaPg+OjCxfF1gmBEGIyI4wDbMpFk6JokCCJAQ6DjOjaWoVMoVojUhAvq3/B/XfvveHD7DiuLq3QerrF6ZhXDtFFXCigF2qXcL/w0U+PT6oFsmpnxq0nEXwx+fVp980tNoGl42pexXp+G0Plivfmr0uJfV8d8ea31iwnyF9/vH1q8/ufApv/E7VcNz/8Um67rlMtlDg4OcgC7bROEAUopjnrHCAWvvfYaP/7RT5hpt2m3Wxwd9bh75zaWbRHFMaA4Ourmne5ajVKpRBzFPLj/IH+cKI6Oj9na3uKw18tTIYEkzUMx+sdHFAsuBd9FaDAcDlAqJYomDEfHGKZkMDyi1z2i6Ps0Gw329rYJwwlCgUpz2V17Zo44U7z1zjssLi/juA5f/+Y3OOofIUSWoxlUynDQZ2V5FQDX9fKJ6HBIuz2DbefBUgf7hxwcHqJrOXIiTSKEyBdputQIJyG9gx6XP/oJwunz0Ucf5OxFXcM0NCrlIn/4h3+Q+217PcajEZ1Ohw/e/4BKpcRnV6/x59/7PsfHA4JJiKYJpK4xGA04cWKBpcUTqEyRRim1WhMpc9ZaHEU5i1UK4jjOu26aRm6HU5imRrtRR2UZjm2zvb1FGIb0+wNOnDhBZ3srX1hlCUvLeQqn6zhPpj0AiBzZ8Rff/yv29w9YWVnFcRwqlcqUKZmHqty9c5fhaIg2DVBpNmtITeH7/pPptSYlaarodLbY3Nyk4BdZXFomVQrD1FhcnKc/HjB3YgHTctne2uPlly/x7MUzGLpkPB7l0jOvwNzsHEw/t+M6JHHKZJyH2dy/fx/P8wijiChJ2N7ZZnZ2lijMQ6ns+L/ASf7NNI0wnV4gM4TM02kHgz5hEFAqFNAEHO7vEU0CVJrx9ptv0T8+5uGDe0TBBFRKGscEwRjT1Pn2t79NuVyhMorRen3kf/9f8aMf/QgpdCoWWO/9T3SOMqiemwZcJcRRzK3r19nf3eX3fu/3OHX6NHv7e/i+T6PZot5ocv/+Gu+99xF3bt8mGE9I05SHDx6iUEzGE+I4mYYwxFx87jl+//d/n4vPXqTg+xwf91lbW8e0c/6ubbmcPXOBO7dvc9jdQwhFGOZIligKGI1GZJmi1+0RRXnTIRjnKab6tJFjWRanTp7h+rWb+H6B2dlZlpaXSJKYfr9PvVbnqHeMY7t89NFHKGAwGjK3MM/s3CyO63Dj5k16vS6ea2OZBqPRkMq00dU7PKJcquZMXV1na3sb23EZDQZ4rsfGo02++rWvYZgW4STANLS8GRSHuT+OhM9v3eTM6VO5PF/XkBIKxQJhnFGuNXNGp5BMJmNAkBw9whCPb3q5lPVxdzf56kW07cOc20QestJqt0nShExlXL9xg939fcrlCsdHRwwGx0gyDg4OnniIpPwCzkPlniMp82A8KSV/9mff5eatW0RRjKHnkkvIfWfVapFTp1f4V7/z23nSepays7uLYRqkacof/sEf4nku4/F4ypbNAIHnFiiVyximyWAwIIoCojigUmnwxhs/p9vrMhgO8vC2JEXTDG7dvE25XOGP//iP2dvbxZACqRQz7Taj8RhdN2nUmwwGA8IoeoJB06d/qzAMeeyk0nUNyK+14/FgKnOWuF4+HR2PxtNgqwjD0InjKC96pcb+/iFJmgeuhWH4JNzmwcP7CAm/+7u/w29+65u0mzXm5pqcOXOK40EPlUEYRoRhxMbGBnfv3GESTDmtTMlaWYZScHzcf8J2FSLnkSZJRKHoMZlMyLKU8ZQtKoTE83ySNMH1PJaXlvjd3/kdyqUihq6RpQnPXnyGmXaueNB1nWKxCEg8z2N2doaXX3qRudkZkiQlCnMUVywf+8lS7ty9zaVLl9je2gMkK8snc/k0TC00DpP4AMNJYbo/o+GQR+sbJGlC76iLbhhUKxUcy8ZzXTqdTXrdLt1ej0arjdQ0hsMRciqFTrOM8SRgPAl4/4OP+OlPf5qHdQ0HKAGTyQSVKTQtPx9K5SJC5ggS1y3ge0W6h12kyJPdhUzyIB7L5Ld+618wNzfD1atX2N3dpdvtEUxCHqw/oNs7ZG3jPq985RLf/te/zStfucTC/DK1WotKpYFluSSJwLR80qm8WyAIjvv0Zqv4xUKOVPpH2vLjLpfYB0F+PRwOB2SKPO8jidjcXOPKlU8oFnyGgwGObSMEOI4L6MSpjm4W0aYWnThJiKKIKAqn95YB1WreyA8jAJswylBpSqags3XA6snzDMcRUQy+76MyxU9+8hOazXbeYJ4E1Gr1vFk1DUjyfQPHNUHkyguVpcRxiERN71EhSZInD9++/YCdvR6OW2RmPsetjabXjWvXr1Gt1RgORwxGA5I0xrIMZtpNNJlx3N2HLKZatCn5DqYmMfW8ybD5qMNkGJIlECeKIIqJkpTBeIwQKeVykWbb5YVLZ3Bsl+7xEUmaYjsO41GfvZ0OUsUkUY5MtE2DLAtZWZmj2a4ShhPiOGdCp0mAoZvUqiW+/e3f5NatBzzYOOC9D26yud3j9p1HpJlOtzdi9dRFLNvk1OkVWs02vl9CkdCeqfP1b7yK7RrohsgHCK5BvdrixvVbgGQchBimhdQMkiS3cQRByPnzF0jTjFOnTtNqtamUKxR8n0atgkonTAY7FP2MgpegaQFCRRhSQyCR0iAIhoThmDhNSJUgziQRJppdQLdL2H6NFJt7D3fpj1KGoWLiH2LLIrPlOdKwz89f+wHtWgnfNnEdm1+UBupXA4h57CH9B/tI/57bY974/5fbP9bw8P93k9enbf+Y09a/13sc9ZFLc8jnz/6D9yNOFYuLS7z+g+9z6vx5UiTDhzs4b7zNH330HpVKjfPnzqFrGisrq9y6eY1+f8DiiSXu37tPs9GgUPDwfR/HtTk6PiJNE46Pj3BdhzAMuXb9DnNzs5w7fw6/UCAIYzIlCCNFFodkaUz/uEej2cg5jUpD1yx8v4im6ViWg1KCgl9iPOiTxiEqTRkNRkipI9HojwdUq01sx2dl9SQZoFvGlMXmk0xh10IoDEPHtl3iqRw5B6WbrD9co1SuMhqPGA1H/OS1n/Dmm2/y7LPPctTdxzJ0DE0STULCccSjtQ4LF8GtKFbbl7Atk9FgwHAwoFwqE4QJnufm6ZVC4NguZ86ewbZ1Xn/9DZSSvPrq19F1nSgegyYxnTycxHEdxsMxf/6973H69Glsy+TKlas4toljW8RRSLGUL/qlBF1Ktrc20aVgMhnieAUMw+DxIurWrc957rnnqNRyr9Rw2M/3tz+ks7mFYblEcUS+cDbQpMFWZ49arUalXKFeb2IaJo7t0Ds6wtANmq0WURSSJAnbu5tkKmQ87nPU65NlCaZh8rO/+RkvPP8iL75wKUciOHniJEJRKrlUq0W8kkeSKTJl0J6ZQzcUR8dbSCEIo4i/fu11KpUaXqGAbmpoQuPg8JDNR50n6b+1Wj33Feo569L3PEbDIZ7rTYMLUtbW1rEtmzAISdIY33fRNIOFhXlOnzpFkiT4rsPnt25SLhQxdZOdrW2azQatVg3Ps+isPWB3Z5vxKC8e19bWWV1dRcYJ8sdv8vkf/Cbtb73Kq1/5BpPDLQqf/o9If57qqW898csdHOyTZRlnVpdRCobjgGKlzGQ8RNcUllMkjvPpUJbBwuwsx0dHaIbGiRPLeTiBVOzsbKFrFo7jIwwN3/UYHh/jez7dbo/5+QViNSaJMjynzGgwIY4m1GsFlJTouka1VqHfH2BZDpblcOrkKrs7u1SrNbY7W7z91jvousHC0jxCSKIo4eVXvoJuGPgFj9t3bjM/N8vMzCxXr1zjzbfeYePRJnfu3Wdr+xHf/BffxHJsao16vvhfWUai8Hyfvf09VlZWCIMAVEYcSo57RyiVcnx8zOLyEoPRiMHRMc1WA9f3sB0/D4tLA3a2O7Rn5tGl5PPbN7ANycryMmmS0NzVcFyLvWZEuVJFGAbjKCQcHmN7hXwmmIToKmVgzpE9ehtN0zFO/S69Xi/Hb7Xr2N/9a5KFJtKx8y41Esm0AE1TCoUS4+GYEwvzpHGYyx/90hNvaxiG+dQLQE4LtSx9gmFZmF/k4sVn0XWDMArRpMb+wV7OPJYJlq0DKZZpoekanudjmrkns1QqTvEzCkRGkuShHWqamJ6lGaapkyQhQhMo5eSTd9+kNdNAKZPxKOD/+D//mFe/8vUnCJ8Ti/Nk4RipSUzbRjNNUiUBHdPQcm+byJtYQgikAMd2SFMBSFAZ49GAne3HaguDLM278prUCMIA27KRmpqG1CVThbWk4JcwzTyURoo8dVnTBWkaUW828qJRplQqPpmKsV2TYqVEkkC/P8CxHS5efI5nn3kWz/NIiXNd9vT3rQmBbVr5NYg8wXc0GiAkaFLkstrxhGKhAEoRh3lCsGGapGnCaDTE8x3CYIQQKVmWYJgme3s7+L5PEIQ4jsNgMKR3cMC5C2fIsoTxaMzu7iGmYVMoevQOD6ke9OEPfot6s8be4R6uW0PqGmXThu//FHl+BbF7iOOYmC+kCGeAkc5gGCaOZVFwfbxSnoQvhKKz2SGJ80R/y8z5kMEkQNMNPK+AXygRxjGlSolv/sZvMBhOUEpy9bObbGw8YHllhWKphK5rDAZ9TE1D6BZCCoajPpblMjO7yGQS8uFHH/Piiy8ghcV4MkAzYpIknx6VSzYry8uUSyUs05pioH7M177xLcrVHM1muy6POju8+PJXsBwLTVc57iQKMS0XJXSQgixN0QRk9zbQLp1j/re/gZryZp+yUPqlb784ef3Sp+sGIgowvTLDw3X0T1xGaUhXJWxubdFq1ahUChR9l2H/iHLBp1XTsfSEKAgpVWZ5sL7P5/c3aVRyafeywgAAIABJREFULnia5LJZ07JAwM7WhOP+FsVikZ++/gEH+33qzSoGGZkQ7OwrHnX6OL4LwmQ0HKNpOmdOncX1HPr9Y2rVOp5XZG19nclwwFFvk1bLBCVQqYsiIksz0iQhjiPIMiRgWD77+wNOnDjD3Imz9CcxTqGKZ7uYpoHUJZZtkUz90a3WHFkm2NzYIgljdjrbvPOzt0iCiFdfmqPkCzwbDB3iOMAruNgWeK6JUgaDYcq1G+uUqrPYMsUxXQQxlVoZiYPr11FSo1D08VwbQ1OYMkKKiGgcYBoQJ2MKvk29XkJqKboskKoxppkhsvx4C8MRnfUhDzuHTMKM9twqnlfDtB2UyqjVF9C0IfW6jS4cKuU60kw42DmkVCpjmjaTccDfvPE3nFo9hUpT2u0GnmfTbFeZRBMczyGJMnb39rl18xYrKyeRMkeC7e3tc+PadfZ3d/BsgVRDWnWJLo/RhXiCesqvO4L+sEsWK7JMcvdBB780g1OeZ31rQLXRxi3N8PFn97hxe5MEi0p9hnEsefPyx5xpnuVU4RusG6/x3nsfMDw+4sJLzxOlEnGtAkKiXQqQWUI2zfL41YCkp21fxNX8fS2Hv7o9Ll6/+N6/+lpPm7z+0jn5a/bjcRDU396/X4REfXH7z7Lh/8j2T1W8/sekyPL5c8jnz/0n7YdpWwx3drn60QfMLi3SnJkl2z3GfO1NGr/xdeZm59B1g8FwgOu6fPTR+ywvLzM7/flwOMJ1bK5dv/aE8ZqmKQsLC0wmE8bjMUvLpxESPN9lZ2cb18vlhVGs2O48IokmNOpVjvp9HN/H0Bw6nW1AMBqOKRSKICT9fp/xcEAYjqmUy1TK1SeJx7FKCcMYy8j9WFKTDEYDPN/jYH+POJowGY1yzp3U2N/vce/e/Tx0aZrKViyWkDJnyeq6zt07d9F1g0svXkJlEZ7noUnJ3Tv32N89YHXpJGZtiGGajA5MlFKEYR5u8/DBAx6ubTAz08a2LQxdp9vt0Ww20TQAjeefv0SxWAap2NraxPY9kiTBcxykkAgFz198bto1H7K0eALHdZACTF1HCcEnn3yCY1scHBzQatTzEBPAL5ZRKvcjKaV4/fXXOXHiBI7nEAYTCgU/lxnHCTOtNlGa/UIulmQYmolte7z19s85deoUxWKR9fV13nr7LZYWc2/vaDikWCpwcLBHvV5BagK/4BFHGb5f4O7du1y8+By+X+Kw28M0c/meZdsApGnM3u4WqQTb8TFNl+7BIb5v0B/sMx5GfPrxFc5feIbTp8/lmIg0Rpc51qnRaFKtVlGK6bRXEqb5xMaaeoyZhqpIqXAdH03T+eyzaziujes6pInKF4OOhUpz9JAmJaViiUzlsutCoUgYTyiXi1QKPs1GiyTN6Ha7BEFEvVFHu3GXpFLmT2Y8Ll16gb31m8ze/V/J7Dbf+5u7nDt3Dsd18FwXz3NZe7hGZ/0BlVqDSr3JaDzC9xySaIJtF1FK0O+PKPo5I7nf73LQPaBYLGPoFrqu4XoOH7z/IQsLSwwnQz75+GM8x6FQKGA7Dq7nkWQjbt28T7XcJEsV1699TKtdJ0pTOp1N5ubnyTKFadq5/xK4ffsOpmny8cef0Ov28F2PxZUTTMYTpDSnAV15sNd7777L0uIipmlx5cpVXvnKVylXqxwd9blw/hSWbeM6Ts6y1HIkkUoTBoMBM3OzOToiU0zGY9LEYG9vh/mFeR5tPqLfHyCkxmefXkVIQWtuBqGZpEmGyiIsy0BlGmEQ8OGH73L2zMn8HKu3sO+OQWUczGaUylWErvGos0mt6JAqQaFQIuzvY7pFhs4StmUhS/NceRTQ6XQ4ceIEumXCxhai12doG5hGfi4F47y59PIrX6FereF5Pjtbm1z55GParTqJkrzxxhucPXvmyQRY13UyJaaPtTyYDYHjekgBmcoQ5H7Q4+M8TEdouX9NPJni5n72NMkQgmkgkprKA8kL1VgRhjFRGCKkwDQ1TFPHtCyyzKTRaFGueCRZgi5tsiTj/v2HvPzSy3Q6HebnZ/F9l/2dLWr1ej7L1QyyTE2D5HLslALE1BOZpcl0/8x8upllOI5JtVpEqZRUaZiWOQ1jEiBAN3RGoyGj0Wh6fRdIkYdP5ZPpCE2T9HqHCCGoVMrTCQYc7u8w024gdYESAmloWFberMsDsHJlT5amefiPyItXXddJkxRdk6gniyAwTWOqmNHJ0tx6kU4LasuykEIwDgN0w6B7eMDm5iPKU7lh7m0W9HpddF3n4GCfQqFI97BHwXewbJPDwwPu33/AxedewHF8NB2OekdUDwe8sbtOUvbY2dsljjSu37jBTNFH/8GbZGcWcY7HJFHAoDnBsh3UpI5AYAiBY9scdPfRdI3O5iazc/O4rsdoNKZUzNPmNU3j/v2HTIII1/XoD46xHRuEIAgiklTx3HOXqJY8mq0WXrGAEmBKjdFohNQtdE2SqgTfL5LGsLO7R7fbpd1ukaZQKNhILVcS6NIiScYMBiMq5UrO2LVs9vf3OXfhIgJJGE4wDItavYnQLBAxmgYHB7sYhobQNHTTfiJD1FDoG7uMT89T+9olpKbzNJ794+I1/t9dsg8NtP96GfEvLj2V85oicCRESmft9idYnxXY3Otw7uuv4nkeugaHB/sEkxH3797jqNdjtmnj2AJdM5Cax9Vrt9k77LNyoprzgVV+nEdJShTH1GurFEt5OuxkDMPBmBOLLRxdInTJzl7CYJTyzHMXODjsoWsaURSzubnNtWtX6PYOaDbahGGM47oMeoecWm1jmhOyDHRZwLDy5P0syz3PWZoShQEIG8NwGY5ibL/K7Xvr2K7PdqfDaDTA892crZtk+F6BJBWkae4bN6TO2oM1WvUms+1Ziv6QciFnqypSpCZAZKTpmCxLSBJBp9PlyrUuhqHRqjvYhkOWhQhpUGssoRsem9ubCCHY2upQ8B3ScEAY9JFKQ2oZQiQIKcjSjCSNSVMToU2IwhGa8Dns7mLZFru7Mb3BBNOyuHjxRVAar371q0yCESur5/ELCa1WBQ2PMEox7JRqoYE7tRoNBiNWlle4+ulVhFB4rsVodIxfdNl4tE6xUiKaZFSrVWzboVIuk8Qpu7u7DAdDbn/+OcFkxGTYo90oEkeHxHEfU/qYhkWcpFNVSYRhQjhWBEECwmFh8TQJLo+2uxiGZP+wz6kzF7lzd52MPCDVL9eoVEpYUlAXS3zn1v/AytIp3vvgKnfW13jx5VdxZxuwpNDqMRrql4rXx1PQ/7eK18eT3i9LGP7S1/0HFK9P368vr5X+WRevT5Ps/lN4XH/1dX/de3/Z/8kfK4TgyRdTP9KvXux/cYAnSA3e/OnPuHjhOYpemY2bN6n8/CPMS88TJyk3b30OUlCv15ifX6JYqpGkGY5tEYYj0mRIoWBR9QsYlsvGox1aM3PYroNh6TTbdXzPJktjir6P5bj0RwMMAfV6Bcf3iBOF4xQglUzSIZnIqNfruL7PwcE+QTihXq9jWE7+/plEYfDJlSu02208W8c0BJDSPz5mf28fU7MwTQ3fL2CYFtVag88+u4nrFLFtm2a9RpYleI5NGEUYhsVoOMQ0dQxdUK2U+eY3voFrezlfK1Hs7R3SaMzw1nvvsXByBbc+RtclTnaC4ShACAPDdJiZm6NRLWNZAkWMIsX3C2iaThRPaDTqrG9sUK2UsUyDSrlM3D8iiyJ8z+Pg8BDbNnNUTDimUimTJglBEJAp2OxsE0wiatUqhYJLsZjLnYIgoN2eYXdvL5/4SlhfX+M3/+W3sF0bjZTuYS9nrwqdIAzxCh5CCVzb4Z233+XKlc+oVKtYtkmjWaFWrXJ0dISUGidPnsQw88RWqUnC0ZBoMqHRaIJho6SJIU22trZYXVql2z3CL5RwHA/byT18SkEwCek86lD0q1RKFd5+820MKdD1nA+I0rB0n2a7zeLyEnESoGmKLIpJknzis7u7w2DQp16v5GgWQ7K3s8P6/YdoQkMpieU6xCol0t4kEQ/R1TyNZg3b8gmCBMNQbG93KJXL6IbJMAiJUjAcj3EQoVsmP/jhXzAajbj+2Q1m5k4gdYuNRzu4fgnPtzFUiP3Wp7zz7Ze50unwyuoM/Z/8t1i1JfTZizxaW+Pc2TMc9bqkSUrnUYfL71zm7HMXWVpdQdMUO9sdqtUKXrHKo40NPNfh3p3PMQyJ5disP+pgmhb1WpM4TVHo6KbDieUlMjLiSQwp/OAv/5KLFy+CTElUiCk9qpUy/WGPYrnA4tJp/t13/gOnVpYhFRwf9RkOR5RLRR49eojKdExTUKsXOX36DJ5fYPX0Eq5XwrFssiwkTSMKpRJxZvLxpze5cO4kumlRqjVoNBt4rgVJQLvdwDKNfMI/HIDKkAI2H60xMzPLzRt3URkMh312dzvYpk2x5OPYJltbHZaWliiXK5x/9jx+wUeTkMYTUBFJnOJ5RYaDLpVahdPnzuE6Je7dW2OmPcPgvQ1cz2e9GlAolnLuZLFCOJpw2NtC0yWOXSW8+2NMx2Jvd4/W1/8bTpw4Q/9oxGx7PsdebO9jfr6OsbyAJgVJHGNa+dQ5GPbp9Q5xHIe33n6H7tGQlZPnQCkuXHgmb6I4DtLQpsWSyiejGag0zb29MkPq2i8kXlp+vcq7yDoKDV3mGBpUxrVrn/Gnf/Lv+epXvoImJUIJNC1P5E1ixXFvwHe+8x2O+0csLi1M7yGCOJKYVoppZTnaIpVsbNyjVq5w5swylpNSq/skUUKWCrb2tnH9nMXqOQ5JOCEMRrlPOYoJJmP6xz0cJw+Qe+wSEhJ0U2c4nqDpNkGUIVWO1hFSyyWDtsVocIxr6Bg504coiVGAqZkkWQIqRSqFY5t5wWl5KCL2DvZxXJ+d3X10TScOJ7i6JM4yDFMgNEWaRriePQ1/mnbkUaCyXEasVB6qk8TTaV+EoVn0+2MUGlevXue1v36DpaUVNE0jzWKSOEIiWHu4zv37D7lw4eI0g8BiMBxS9AvYpoXnekhdIxOKSdhH000qlTrzC0sE0Zirn31MrVwlSlLKqaL9W9/COblE0bKotCucPX+KsHeE+Zdvo84tkTQrqNkmemGUe4WPC1iG5OH6A1KV0N3rUywUKJWKGIaOYRjYjoPjlegdd3E9H9+rc/PW5ywszCMyg7fffIuTq4tYpqRc9DENnVa7SZLESCHQNUGSpRiWgaEnZKkiGktM0yRRfU4sLPLSS69imTqaljdepLBB2ARhjGXaHHW7HOzv0ahV2dvf59btO7xw6SWkruEVvfycIMMw8oV6mqQU/CJSGGiaSZaBSlJMyyTOEuTlq3RffYbSC88Sy9wd+Njf9ktrpunS6HHasPav7L9VuH7x+RNTw4tCkkTRPVzHulqkMd/EapZ59/LbGIbF0uIqrlug1x3gFcrsbj1g/kQd29OJghELMzXOnpzFkNMQLJWh6xpRGGGbBrrnQWoy6O8w03JpNuokWYRnxUxCk0z6NOda6IbJ0tIipUqVe/fusbi4yNLiMlmSN4P6/UOCyYCyC3F4QNGXJHFesGZpSJpE2JZJGKWgFbi3tsdeN0LpReaWznB4NKBY8KmXC9iWy8HBPq1WM7chGQZC07BkCqTcuHmDn/38p+ztb+N7Gkk8oFwwiLP8Pmvo2tTTLrCcIpmSCGFQLFcYByM6W/ucXigTZwOEYWG68wijxDjJ07VLxTqtWgXUgDg8IBwHSC1CKYNUmUhDEiVjhFIoJliWy2QMaOD5JTTpMRqOeOWbv8/Lr3yNQtGnVC0gNYXneSTJgHKpwb17mxiWge2YXL96AykiLr/9AXEIV69+zPLqHOVqPQ+1Ehq1epuD/T5bm3vUy03CaMLh0SGzs22iOMAyUjbu30LFfU7OF5lrGTSqMagjdKnhOhVQijQZk6UhUZTlDN+1EWHqkAiP5bPPYbplDNtDorGzuYNt+VRqDV565RWGowEvv/QKtunw6SdXOBoecc6/xP3az1ia9TDVEW9fvst7P32daw/e5Pb2hzzz4ksIpwDIafp7fkVWKg+dzOuBv52bk30hdOmxXebLaowvbln2C7zOL/0chSJnmCOmYVDw2E0y/RK/ePyUc/Jx6N2XTVK/iMQRQiKYfj1lf/9ZF69P2/4pp61/1+dkax3U0QBR/iKk+GkF75d3KjVdJ4tj/uK73+Ps2XP4hRJiMMZ7/TK9uRqlUhnHcdjd2aNarTHoD7h16xY//NEPOX3qFM1GA01Ar3fMo84Wq6fOYDs5ziAYj4iDydTrEzDs96lUqxwe9ggmAVJItrY6SDEFmoscbm6aFr7rT31RMZ5nc9zvsbOzS7PRYnNzk1KxhNQ0SsUSw+GQ8ajHZDRASkUUhsy0W+zu7FCptiCF4WCEQOPh/Q0uv/s+p0+dIstSyuUSCIGQWs5tlQrTNtA1qNZK7O9tAylSN8kyxeXL73D+/Hn29/colUuU2zn7dfPOiPv37nOwf0AYBXiuh2mZpFlGv3+EoWkMj49IwgDTcclSRaVSpTBNRQbBxtoWR8cD+sMRJxaWcr5mHCM07Ym31fe9aepmSrFY5cb1m1O8QYlCwcex7Sl2Jw9sefjwIYtLSwyHQ6IwIBgdIoSiUHTZP9hjOO7jFTyOj/rs7e1zeHhAr9fj61//GsPhEBRUKlUODroEwQRNkxQKLqkw6HZ7hJMxtmOTpQmHhweUiz6D/ohut0uzUad3dMRPXnuNd955l2eeOZ0zVMkY9Pu0W01QGZPJCCkF9Xo95ydOMUqO5eYcRsNgMBjkXcw4YbOzhePkEi3X9ej2eoAgTTJK5QqeZ+N5JqapYegWpuYQ61fImBCO5ikWi/SPj+l0NqmWSzy4f59CoYBlmrz7zmVOri6jaRb/95//OQsLJ7h06SWKxSLb27u02jU6mx0Wl5bzQs3zcd79DO03X+bD1Tb/ciWmdOt/QVTOoLcucvvubVZXTmJaJsPREMd1uH79OmfPnqVUKlIulciyjHqtRpamhEFAuV7ms2ufsbSyAlLiukXefOsdtjqbnD13ns9v3WHt4QPKvodrGehSYTs+9VqNdrNJtVbBcR1My0Sliq2tDjPt9vSeIbBtmySYMJ5M2N3d4ZkLFzA0Hd/zME0XqSl2d7cRQqPVmiGKJvhFHzXlRRpGrrgQmkalUmKm1WQ8nmDbFpZlACm1epVqpfqkCWfbTi5Tk5JyqcRxf8gomLC6ukrB9ymXSrzz/ie02m12d3dZWlri/Xff52d/83NeuPQCoNCkyKdBMme4JUk69YfBaDjEth1+8uOfcPLkKu6ZFumST7Fdncp28+tiqVTF1A1UCpZXJcZEjw5w9z9Ezr+IKM1TKBXIZIxmSvolm8KP3iVulAjJkyaFzL1yj9bXaTQaKBTz83MsLy+jVG5L8FyXYqk0vfg+vv6q6WRRR2WwvrZBqVQhUemTwIvHk6NMKZTKb8xKQRQG9PvHKJXx3HMXsW1nmjcgckTHVBZrWpLnn7vI0vISmqZhWTYqE+iGwXB0TBzF6JpJHCcUiz7Hx/uE4QDb0dB1wdbWJsNhn9ff+BtefuUrOI5LmmVYloXjOARRgNQkUjdYW1uj3mwRJUm+aBFyirCJsUyTKA4xjByDJYQkSVIM3SAKQxzbZmd3C6/gkyQxruMQBgGazH9hmswDnnIVjYYQkKUanlvAdT2KxRLlYhHDNIjjBKkZqDSbeo+H6JqGoecBWXwxaHG6OFNKIaSGEFoeUBXFuK5LlgmSOOHGjVvU6w1arRaOY+f2FKnRarZZWVnBtDSklgdMkYHruGw82uDo6Ig0y6jVa1RKNZQS6LrJzs4WxaLP6uoyx4cD9nb3mUkU49UZBh60G2WGUUYYRtiJIvnTH2M+d3bqydRR9gFZpjCiNpqWT3i73S7XbtzmzLkLHHZ7BGFMmsHu7j6j4YTB4IijoyO+993/wLlzpzEM6HbzyWulUsQw8nvaeBxg2zabm5sYmo4uBb2DfRqNOoNBP2fvGjqT8fBJIzz35Ep29/YoFDyEFGx2HlEo+Ny9/4C5uXnK5SoKiem4nDl/Dl0KVBajSdBl/jc1NA2F/vg0IYyCfHopFIbMJegHezt41x5w+ZsnOXnuNKZr58m2X7Je+lvF68vxU9dPALEwcZMJETph0Cd5R4CpuHztA155+RL1epWd7W0mQcAnVz+jUqvx0jMzkE1IwwjbcklVgmELpEpRpFNsTS7dN02L0SREKlBqhG1rZKnCtCKC6JD+scPP3rpJa77JiZUZdK1AlsXUG3W2tzrMzDRxHJONjTXiOOLU6gIbDz7HcwSlgpNzOwWkkY7v2cTpGDSB1D1ct4RdmKM/imm0Fqi3ZnC9AkmWUvQKNJp1dMMkTnPmsSY0Pv70Ix496lD0i5gatBsuRT+iWTepVDykSHEdmzRNMU2LKEoRUpEmEZatMRkdMTdX55nzy6AmCN1E6C5SL3I0GOO4PqPhAF1AHPSJgmOiYIhtWViOk9sThMSyNJIoxhAWSMEkUBx24eAo5c7DHVpzq5RqbTJhYFoad+7eolQu5rQAKw8P/OCD9zl//hxpmkxxhDqtmTp+sUStUWNmbgYhdVy3wObmFu32DMP+gHgS49keH17+EMIjPr/2Kbc++4BotIumDqgWYyz9GMMIsU2FIXOJsGG6TCYBQgwJA0WcukRphSvXO1y4+E229g+49PLX8EpVFBrjUYBlmKyuLoGU3Lxxk1a7xXDQZzwZ89GHb3FicYGlU6doJHPcSR+w8soJLrz0Ih+89z5BMMAyBQf7u8y22pw/fYp46pXPi8b8OM+VPV9elH6xeP27DuSEkE+arb80YHscmSIET5P3/l3rm8fP+3Wpwv8Pe+8VI1manuk9//EuTvjIiDSVmZVZvqqruntmOIbkkhS5JEQud1fQCpCgO0G60J0gCNCtIEgQdCPpTldcLIeiuOSKdoZjembaTHtf3leld5GR4SOOP7r4o0s9M93D5i4XWGH5Awlkd3VHVkbmOecz7/u8X+S1/r55/Yzz70LzGv03/wvZq++h/ZP/4FN/+rdrXkfjMZau8+TefX7/97/Jx9dv8vXLz2F951Wcr1wjz3Js25KbNRS+8+2/JkkTgskUQ1epVioYuk6/3+fUygooMuNvOOhz/+5dRoMhSZ6wOD9PoSA3j9tb25RKsoh0XZePP/6Y4qz5+sQTps6iTLI8nTVbBRzbkzLQGXRiMplKsMveHsuLC0RRQq1aJ44z7t99wOnTZ5hMx2R5guOY5FlGq9nk8qWL0oNq26iaRpzEqJo2mxSpCFltcnR4iKHrvPvOuyytrOJ67jNScqMxR71RI7PapEmClS2wurpCwfep1eoIobCxscF7771Ls1FHkBPHEaVSkUxoaJpOEARoms4bb7xOluWU/ArjSUAQhniFAp1Om5JfYBIE8iGlKAghJdHdTge/WOGNN9+gUq2wtLTEeDzk4PCAk+4Juu4wmU6eId6nkymWbZKEAb3uEM/z0XQZrJ3lOdE0plj0aTZbnDlzBoB33nmHS5cuMh5PME2Ll19+mffee5e1tdOYtovvF3jy+AnzrdZM5pNg2RaO4zM31+Ck06FcLrO2fpZ6o87CfEMOS/IcVVNnMj+N6WTCwuICtu0QhqH0akUBB7tHTKYTbMeWQKUwoFjwybKcQkHKBO/du0e5XKFULCGEQo6C61rE6ZQ8l/JnQ9EJ1TsoioLBebIs5c0336TbPWFhrsnC/MKzeI75hXmZU5nmXL58GdMwCIOQN15/E98vcubsGoZpYZomQii8/9IPWW4PiP63/55TpSnlx7/HjjhP68yX0E2DYqlEtVRmPB5z0jlGVRSazSbzCwuUykWSVEbzhGGArmtsb2+j6vK/cT2PySRgY2OT1vwC5ZLP1uYWz1+7RqnoE0cBaRxKOIfQ0FQJIpJSMCmfT+MEx7Gl/FTIeJpi0cdxLBzH4eLFi+zsbLOzs8PG06csr6zx8cfvc+nyRZ4+3WKuMYemK2R5RhRHaKrKeDTm6OiI0gxYkcYpDx4+ZHFxAfIUw9CJkwRD09na2ubJk6c0my00Tad9JGWV7U6H02vrxElMlqUUPI933r/O6ulVgmDK1tYWF85f4PiozdkLZ7Ftm9F4JMm6YUgYxozHE/n1ZzmnSSJ91n7RJyAFR5OFXZIgVBncPhmO+f73vkcSxczN1TGKdfTKEsnJJklxHbt1iSSJyfOEnASvWIJ3b8n4HF1miH4i4S04Hru72yiKwHFkjJhlWmiKwLBMVFUFJIgtTTJUVdIpR8MRf/Znf85gMGR9/TRCFTN/umzUlGeNlkI+kwH+4R/+Ie32EXNzDWzLxvMKiBkFEyEb1yiKgQTPc6V/VzcQKDP5pUDT5SCh3xtz585domjK6uoqlXKZk06bLJFN4PFxl69+7Rsoqooz84ynqWysszyWmbdCYa7ZknTTPEVRBJPxmDiOsG2LnJzBoI/j2GRp8syjOB6PJY0ZMCx5DzRMk8Ggj6oqGIaOECrTYIrnSvCbaZj0+j10zUHkMByOmM5gM71ej2kYUKnWiKKI43YH0zSoVuvP3hs5yZfDgU9I0JIFpJBnwGyLJxTQ9VmR22iwdvq0zKsUEraV5zAajXBdF5CgtCSJMHUpcfW8AuVKWdo1dJ08U+h0OgA4jkmv28W2HTynyNb2Fn5/yGHZYlwyidOQdnfKaDTGzRWMb71GtLYoM3ERZHYHgeBkR0qVfd/DcRzSTGVpaYkf/OCHrK+fZTgc8vbb73L/zl1eeOEq49GYw8M29+/fZX6+gV+sUCr55JkEFU2nATdu3GRp8RS+XySOQtI4ots5ZjoeIxSFrc1tSqUS/V4Pkcv4GwGYpk37+IgwDvEKMqpNoGDbLrpqIBSVk24f07ZI0pQkDslzSTHP85x+v49uaMQJ6JqGIqDX6+J6DvnsSRynCU6aIu5scP3qAl/59V9lOh6jKPpn1ks/k/N670+15bZfAAAgAElEQVTJbzxAXD33M/UTQIqGk02INRtTEQx/OMS2PCprc1QqZaI45vGTJywvr7C7t8/u7h6X1itksYzJybKcJI1xfYs4CEnSZFa8S+95luU8fLRNGitAjOOYKLlGlk+xdJtJoPB484hMqDhuicFAkuUNw6DRqLKzs0WepdTrNSqVCvduf4xjK5iGimnIHGVVVTE0nTQLyBXIMp3BUCWKTaqtVeYXl1F1gzjJGI3H7O/tSVXJ7N503Olg6CZpklCtNbj58S12t3ZpNcqcXm5S8gWOLaRMXpODpSAIIZ81MbNmJphMMXWdfv+EPI1wPJNpCKZTxbBL6KZNmuakcYhlaohsjGuppHGIqirEn4oLG4+GCHJM04fMYX93xLvvbXLUjhlOFFbWLmPaZYbDHl7BwbLMWf5xBdM0GY8n2LY1s2nojMdjfL/ENAjx/SL7B4cM+kNGgxGT8ZRzZ89w+8Z1XMdE5AGH+xsojDl3uspiq0zBVVicL6OJKSohjik3jQoKpiHzp6fBmIwEJdN5unXCcSfAdOdYP3cZ2y/ieAXqc61ZlJzOg/sPmKvXmU7H3Lp9i5XVVTzP5Z133mZtbZ2tzfsEQcClyy+gdEze2XuXW933+Ye/8zs8vneXR4/2+XLlV1ivXsZtweryKcSM+ZELhVxRUciebVjhM7aln2pev/gRz17r082rBJZqPzdO9F9XjvzTX/uLvta/d83rFzl/l83r5008/qZJyGflvH5W8yr//8+WQhumSRpFDI47vPHGm7Q7XX7tH/02/p//kKRZYyoyut0ulmXPPBsBlUqFpcUF/IKHaZqE04hWa0HKTiwL13WxLIvmrNBK44hypcxxp4OqadTKdW5+fJNu/4SlxVNsbG6iKAoHh/tkWcJ4NCRJYrIkI44Tdnd3MUyTol8kTVM81yNNUr75+99kcWmRP/+LPydPYGFhEVU3ieMcv1DhzbfeY219HkhI0hBF5Ozt7jAaDfnRj16jWPJRNVnMpFnGG6+/xdL8KcghCiOmk5BqrUmztYhdcEniRAa2CyGLFksnM4+JoxgxqeA4FltbWxwdtqnX6jzZ2OTWzdt87etfo1QqMxyNZmh6n1deeZlHjx5y6tQpLMsmDGJqtQqe73Lm7Bl297aoVUqYukamati2TU6GaRh0O8ckSUipVidOElrNeUqlCpPJlM7JCc1Wi7t3H3J0dMSZ9XV0Vea+fv+73+HB/Q06nSFZpuC5PpZpc7B3wFyzgePYRLMInH/+z38PIQTnz6/PYn7GKIqK53lcuniROIl4+vgxzz13hXQGbsmynKLvk6Q5W1ub5GmKYRl4BY9yqUwUBSRpOmvCFe7cukO5VCbLIkajEZZt4xU8hCK3gyKDYqkkG+MsIwimxFFEsSwlckftI8qVEiedE37wwx9w+/Ydrl17nmkw5ejwkHAyoXd8gJYn5M4mQgiM/ByGZrIyi4l4+813EYpKqzXPeDzmrbffplwu8+PXfsz5C7Lg+ctv/RW/9Vu/xeraae7dvc8Pf/gjkjSjXCyytt0m+e1f4WlT4H30v5L5a9x+0iYXgiSVOX/RjN5tuzaVSoVSqcTh4SG2bbK9tYXvF6SUcjwmTRPSPMGyZINsmSatVotKucRkPKRz3KZRr/Pk8WOGoyELCy0QsHtwSLlU5O6d25xaPgWAbpiIHGzHkptJ22R7a5PRaIjluBwdH6FqGq1WU8pDXRevUGI06qEqCo4jATTTyQivKNUdezv77O3ucfHCJRShzLb8IQ/u3+XsmTXCKOTR40dsbu/QajSxHYfjdpv5hQXyHMIgBEX67bxiAc3QURWVyWSCVyih6xqrq8sYhk65XMZyHOaajVnMlrxPWLbMf5Zk8Iz9/T2iICLPM7yCh2EamJrO042ntNtHJEkspfjHx0zDiNPLq6gCNC1mPB3huGWinfdQpm2ci/+U8aiHpmZEwRhddxCjCcq9p2jLC+i6ThTFMu/64JBSuYBf9FA1hfF4zP7+Abqu0e/3EEKh2+vhF/xZAykHe9/73vf5x7/7j7h85SK9bgfbdUgSCf7J85w8y0gzycj9pNg4u36Ws2fOUSqWUVWd/qCP48jcXelbUmZRLSppmjx7FEgPnCY3QmqGphoYus316zeJoimt1ikM3aR3ckK5VKFaaVKpNTEsGRkmhEKv10fXDXTd4Lh9gO/75KlAIL2kqiKZSKqqz7br4lk2t6pqJLGEBmU5WKbFcbtDwfNQdAXDtJiMxjKeStGIkghDk9aCza1tSpUKWZ7KWBrFYDqZ8Kd/+v+wvbNNs9mkWq9Trzc5ODzE94uUKzVUTUfTDECQzN4LXdfkBhxmMT3ZswZDURQQGVE0RVFVDEOXVhNdJwgDTFNHmcljJYEYFFVIBclwiGlIqFGSZSiqoNM+Zn9/n0KhJGF8UUCcJGQp/NEf/TGXrzxPp9Ohv7PDqe6UyT94gTCBemOBRmMOO81R/uJHKJfOYG8cIDo9soWE0WjMq9+9xcUL5xFCUt2LtRpBEPDBhx+wvbXBhQvnMA2VX/rFXwYSbNvm/LmLvPjii+i6KiO+ij6O4xJFCaDwwQcfsrK6xGg0kN7f2bVnWjaKKuFZrmdR8EsMBhF/8q/+FVmeomsGTzee8qMf/ZArV67y2o/f4P33P+T06dO4tkOaZOzv71Nv1hFKzmQ0kKqPJEMIFcdxZO6vqpLnUkZvWQaQo2o6/d4Az/OY3nqAdmGVvfUWZy5cIFVViU17ZpX6VG3z083ru9+ErX3U3/3Vz6yl0tzBzvpEqoXIVO794K8oGvMUV+a5efM2p04tA3LwdfnyFQ4O9in7FoWCRpbG2LYtGwBFIU94FoUFcpgGgmptCU3z8UsF0jQnS3UsU0GjgNCgVJvj6rVfJE0shBKjKir9fp/RaEi9UWMyHnNy0uXBg4f8wpev0eu2ieMEVZiMx1N0XTAOhmRCkKQmulnj9bcesLr+ArsH+6SAYVkya15VKRXL9DtH6IZJEMdysZFmxEHA9vYRaRSRBCO67Q1qFRvPVsizGMOU6pHhaChzoWfZ11EgX8MyLFzHI0dmW+dCILQattfEdIvohkGSpCRJhGvBZLhPOB2iCEGay7ogT2UObq/bwXKKPHrURtGhN5wyDAQXn3+e5fUlFpZbuJ5FrVolDKUibHtnh8XFJZIk5YP3P6RaLT8brA36QwQqWQLjYY9uZ5/zZ9Z5/623mK+X+Oi911herHLzo9dZmLcp+RmOPcbUxmjqFMuWfn8VgWM7kCl4bgldN4mimGkYoFoWkzBmOPZRjAqFyjz7xydcuHwBVYfRKGRnZ5dev4/vFxiPRjx9/Ih2p82Vy1dYWGgxHPa5fPkibqFAp33AuXMXuHvvMWkI68pFomsjFpfOcOvjW/yzf/aPuXryn9DiHH/49v9MyXVwfB/dcsmFitAMVDIUMnLxk9ThTxrMT+e8ftHz01vRZ5Thn+Nh/ds0yD9/C/w3N6+fzp/9++b1M87fdfP6r3O+aPM6+yo/8zWfad6zjGgkI0n+6X/0H9NYXsb88YeIko8oOBQ8j9FogO8X8f0SN2/coNs95trV54jjWMqKVI1wlivW6/UolYroui4D6sdDSpUyiqYyHU/54P0Pmas3aDTr9PsD5uaaLC0toekqrmuTxiG1Wg1FUbFMi++/9APq9Qae5zIcDiXCX1NZWV7BdVxOOic8/8JVdFPHtEwZsK5plMtl0jShXC5x4/oNRqMJo9EUTdU5bJ+wsrLM3t4OrfkWqqZR9EvEwRhF5LgFCdbp9nqEcYjtOkgceY5lygdsnudM2SPPcqxkjuFowHAwZG6uSZpkdLs9XnjxRVrz84wmU5SZr+Thvce8+vqrFH2fK1euUCqVSZOcg8NtGo0qvWGXNI1wbUvCmWxJMDR0nWA6ld9T0SdXFObnW8RxwgcffkStVqdYLGIYJtev32Jzc4NzZ8+gCEEwnTCdjEnRWFk+TbVSpds5Zm9nm3KxQJwlz+JQsizj7NlzXLp0CU2XcUqd486zB0OpVCZLAmq1Ktc/vsHu3j5vv/MuyysraLMi17YsDF0jCkNyITg6OiRLM/r9AWEUU/B8PLdAGIQIEnzfJwwj+QATIFSF9n6bgl9AUWUkSqVSQUFCIoQClmXh+wUODw9pH7d57uoVbMfDNG081yUKAjaf3MXUUvAOyNIMPV7njTffJs+hMdfE1Cze++BDGnNzeL7PNJgyv7DAuTPrJGmMELP4p3KZKIr57l9/j35vwK//+m9g33xAXiyQ/Lf/hPzl/w6vdQ7KZ6jXq3LrmaWUKhVsy0QzZAzKyUmH4XhErVZFEZDOoA4SiJPLqIU4wpptfD3HYTjoY1k6fsFB01Q+/vhjrr3wAotLi7ieR5ymHHe6FH0Py9QJowjTdkiSHEOVxFbD0GkfHTLXmIM8xyuVaLZaJGlCr9dld2+PSqWMplk0m3XyPKPRmOPo8IjGXI0wktf57Vu3WV0+jWVZbG1vI4BMZJCnVMslFEVhMBhz0h1w0jmm6PsMRyMG/T4F32d/fx+/VML1XDTDIPskHw4F0zBRhNxSbW1vUZ9rUK1V0Way0UajPpv6B4AEuNm2i2vZHB4cMDc3h2Vb9IcDzA+7LIoyWcvGLxZmDYmHZqjsbm5jGyoFX8ewTDIsaN9BdWoMyl8hSxJcR+f+vVvUaquoqcD64Ttwbp0kzRCoBEFIEkU4rkkQTGVRHqczEqyUY+qGgaKouJ5HnmUkWcbRYZv33n2XL3/lRbI8wrJ0UGYqk5nXJ8tz6QVF8gvyLEdTNXIEr736OqdX11BVZlNupO3hmbJmBstAzKS8MhIqSiKyTJJoJ+NI8gN0jUajQZIEZHGAqgg5WIhiTNsmSVJUVWUwHOIXi8RJDGkIGRi6TRjMom6ikMl4hKJqsy0MdLtdPE/eMyfjEablIISCIiR0ytB1UpGTxAmT0WSWSStm3l1JEPcKhdmzCiajASB/l99443VM02BtfR1N10mSjHK1In82qooi1FmxJqnmQlHIs4wwlGR0OQgbE8UxhmERRRGKmmOYqnwf85zhaIDrerIp1+T3FMfRM2tLnmeoioTwtA+PSLOMQlFmLjbqDQQ5Qmg4joUQcoBw4/pNOp0eF69cISdn4+EDLs61OPnaC8yfWsMyDdrtNmacwZ+9hHJpHevoBCVLiRbkpnS1+SJhOKXXO5HqD0USk1eXV7h4/hyloodChq7rpHlMEscEQcLe3h6KqlCpVnj48AGaKhsJx7EplUo4jonvewyHAxAKQlXRDRMUg4PDfSq1MqDT64fcvHmD406br3/tqxR8l0KhQL3RpNsdsPF0iytXLqCgMJ1MWFyYRyg5iipwXJc8F4RRgmXbUjGgqWR5gqqArsmmTddMciGwTIcgijC6A7oiZ3ztDIunz5AqKsrnFLE/07we/AAA5Xd/5TOroiw3segTKDa+U+Ltb/4xdfss1fXT1GoNNFXHMm2C6ZRwGnDn9m2ebjxheamMoeeoioqum+SoJEE8Uyg8+4uhagqZ0OmejDBsucVP4hyYkCch27vHbO/1MUyXSrXKo0cPOH/uAodHh+R5SqNR5/Gjx6ydXmdrc5u5epnhqIdtehy3u1QrJYJggO0UyHOTINQ5aI9YXD5LtdGgWCygaAp3bt/CK7hoisbu9g797jEIhZP+AHJ4/OAhlq5z48ZNTo53OH92gWIhx3MFlq2DEMSRVIppqjbLR5b2JUUIVCFIs4wkS+XzWwjCOANRIcMhSBJUVRohtzc2MPQEQw3I0wRNt4iTCFVT0FUZP2WZFprhcvvuDpWKT6FY5dzl53F8h6WVechippMJ5DKndmNjg/F4TKVS57333ufLX/4yDx/dx7ZMvEIB1/EwDYsknFLwFGwrZX9ng2B8gmMnXDzbQjBhruFhaAlkIZqayXuikFwBRVGxHQdN1cnSnDhNyPKENM9xvRLtTsBgkLO5N2D1zFlaSwtU6lWePnlKGqVUSmUKnsut2zdZXz9NwXVYO32aar2GbkgY3HxzTlrYdJ1mfY7xeMr27g6nW2uUsjL/54f/O6eW1vj6138R3yui3K+RxBGv7P0BQmQ0l1aozy+h6Ja8B+aplLMr6s9cL580rz99DX26P/gi0t9n/yx+8rX/9hvdL3K+2Ob175vXn3P+/9y8fvoXazKdSDopgocPH3H5uWtUGg3MH39APhiR1ktoqsr29jaPHj1iaXEFoQjqtQrzrRa9Xo8kkllY3ZMO1VqVx08eo6oKt27dkpNsTSVOYnZ2d6lWqtSrDWzTIYimzDVbpEmK49oYhkah4GKb0uNo2S4vv/wKhmlz5fJzTCYjfN+XgA1dlxmPUcRzzz2H42moukDTIScHFWzXouCUGY2m7O7sc//eQ/xChVs371CqlLl27TniJEY3ZJbrH/zB/0XRVUjSKZ7vIJQczTQQmoKuW0wmY8JgimkajEZDhsMBVWcNK1okigLpMcxBU3V+/OM3ePz0MVcuX0EzTTJAN010y8RQDb7x9a9x9uyZmafIoFDwqTU8hqM+lWoJx7U5Ojygc9ymUKnP/AuS5NntHFP0CxiOPduqCOIwYXFxCTHLTzx79hxf+9pXMXWdJIkxdClHfP7Lv4Dj2FSrZb79rT/n6GCHs2eW8UpVFKFgmha6rrO9vSP9ewZMxuOZl8+iXCrLWI+gh2NZ2LbLyuppyuUKfqlEluVEUUyWpkwnI2zHwbZtdMPAdaTUsVgs8+GHH7K6vIqmahy39yhXKnR7clsVhoEEexgOG5sbkljr2PR6PSqlMrohGA4H7O3vUi6VaDTmOHf2LFEoJUHkKpPRlHq1zJOH12kfPcFvxpiGiRavc/PWXa6+8CJCUSl4RV544UtoukacpiwtnyIHVDLppZ6O2dndoTU/z1H7kLXT53j++RcQh0dYN+5z47/6HaqH/wLdLfJkUKBSLjEeDSiXy5TKFUn0jCMmk8kz36BpmrNAeQWv4MoHfRgQBIGUz898zZZpEIUhlmWQxBHXr3/MmfV1SqUyN2/eAgGmY/PKa69y9bnnIM8wTR1V0wlmWXXd4zaInBs3PqZareK6LoZhEKQZ+oyyqqoKp0+fplarMRmHgJT2pSnSw6Pk2K6MrVpaOIUiVN59512SJMG2TIoVH9M0mI7HpFlOo9Gk1mix0GxgOw5F36daq9HtdimXy2zv7iJUVWb1JonMMZxM2dncJgimFEsFmq2mjMoQYBkmaZqS5elsuyiLh1u3bqHrEpLjewVu3LjOeDKm3mhQ/mhCdDhC/1KDw4NDCn6BNE2xXYNGuUYcTrAdQZqDaVdID28g7DKNF/8zLEMjz2R2rOU06SgC/wdvEvoewySWMui5JlmS0B+c4Bc9hsMhhmExGk0Y9PvYjo2um7OCPSeOEylrz3M6Jx0uXzpPmkbE8RhFMen3+2RZxr/4/d+n1WrJwd//V2+QzRpGVdEJphGqLifMqqohZg19FEUIpGokSWN0XSdOIunBQ4CSMRgMKLgVPM+jUJC52mkcEAUDur1jLMcmzVNsx5cxYnHCeDImCiMeP3pMvVyAHHrdIX/0f/9LLl28SJrE2JaOohmoqpzCyw2sShiGpEmMppszH5Q683ZPUXQNTdVxbRtd0QgCed0bqk6cZpKQnOdkaUIcTfE8D8s26fa6HB+3OXvuPP3+gGq1RhCGCFXmxDpuAaHILNM0jWZ5v8psE6zKwltJ5VAEFd2QNPLBsMvG5gaFQoFKpcxkMpEE4hnUUFEE02nA9vY25VLl2c/FcySxVdE0qcLJc4a9PqquE0UBo9GQarWG6xY5s36eTIGC73Gm3kAfBSi/+1sMggxDzSgUCmhBhPqXP6I7V6EwCiDPCbw5zLyBrspmWFWh3T4iV3IKnsymtkydu3dusnxqgXanQ71WxrIsFGFSKpYRAgajPqPhiJdffpWrV69hGJIQ7Toaw9EA07KwHAfNMBGagWk55GS4nkWWq5iGz+LSAq35OaqVIn6hQLlSxbY95udP8dyVaxSLFt/6y7/iyaPHGIaOZeukWYxhOSAUHLfAk6cbTKYTLNumfbxPyS/Q7/dkRJFQEIomJe8KKG9dJ/8Pv8Er2xu88I2vEWQZxqdsUP+mzatJn1Bx0ITB9T/+DmV1CXN+Ac2QXugfv/oahwcHBJMJO9vb1JrzeE6Epiboqkaea5z0xmw+3qTZbGK79ix5IJDlmK6QoSHUGAltUxBijK6O0dQWe/sxtWaJ+pxLrdzilVdfp16vsbS0wOHBIefPnUMIdfaRsn+wQ687pNcd43o2cTLm6HDC3btbXL7yVUaTiN50iFuy8D0f3VCxbIvNjU3IBUuLp3Btneb8IqVyVSo+koSb169z4eJZVDFhabFAtQK6Icnmlm1DnszuOapUxiHBVHkWPPuzNM+wPIcwidAUmyD0aLROE8RThMgIg4B6tUIYnmBqkmGhCBVV18iiEEURZHFCkmWkmcaTzT5L8+f54L37rJ19AYTJdBqxv9NhrnoK15PPBlVVWV8/y3g0ZX5+gdFozOLSApounxc72ztomsWN99/k6cZNFlsupp7iuwrlkkDJe6gEkEeyEY9TPKeMqhuomonlFLBsB6Eo9PtdclKiWGbZJknGNBQcHwvOnvsGrbVFCpUCii7odnsszC2hZRZ+QaYEtBaaWLbF48ePGA6HlCoV4ijk+PgQTdNmrBSBJgyGozG37tzArZucSa/wp0d/wJef/yr/w//4P3Hv7gN+pfbbjMdjNs036PdOuPfoMb/2m7/DOEpRDRslTxB5RiZ+Vqnw85rXnwGhfVoe/DnNa/7pz/P82cffbQP7983rz5zPa14/y8z8d/HD+LxfjC9C+3r2d/7M5lV8zsdnH0UxydNMNhwIdtuHzC0skPa7aDfuw+llslxwuLfP3s42y6eX6Q9OcF2HSqVKjuDp1iYZ8MFHH3P12nMoIqfdPmRtdYVWq0ma5OzvHXJqcRVNtUiSnGkYoekCxzT58WuvoqkaG1vbNOaXOG4fUCj4TKYBzbkmV69dIU5CXLvAoC/pikkc0ekc47o2hqaSZgoFv0YQQxSGjIcDBidHmLZOLiIazXmarSW2d3b59X/4qywszGFZGrZjzGiHMa25Jp6n4dgOhmmjKDqq0MjTHEORvhJV0UiSBEWV/i/bMphOAlBk/IPp2mimwflLF1heXMKyTKJgyuuvvkqlVMRQNCmLNQziKODRwwe4ro3paJBkmIZJlqTEUYQ/i2vxHAclF8RhSo6KYdoIXaPb6SJyyJJk1tSHHB21EUJjZ3OTer1Emif0h2Mcr4BTdBGaQhiEKIrGwsIi3/ilf8A0TVDUlGkwkaHmhsFxp83ptRWEqhPGCaVKBcMycf0CQlUQSc7m5haaqrG5+ZQomNCo1xgNB9y+eZtypUSh6JNmoJsuW1v73Lx5g3g6xlTAMQ18v4hQFXa3jphOIhYWFzEtg95gSLFYle9RHCMQhEFItVJle2cXzbawLIfrH97maP+YueY8qmGAquC6HpohQEmI4wm7G08JRyHLlwyiJKO928B2SygEqCLAtH00TSEMJxi6yknnGMvUGY8iGWuh6jRbLRRVIU1S+sMO8+Ui2o/ehv/6dyg5PyAf7ML8V7nx8W3m5lrcunOPRqOFYZicdDpYpoVl2miaMZOOBgiRMR5MmUzkNDvLM46PjylViqQYZKig6KDqxCnolosqNIajCcE05M3X3sTQLUrFGoPemDQI2N7coVqtz0Ltp2iawCkUGE+mXL9+k6tXrtHpdMmTHEXLJUxHN4hnRUdGhmNqmIYkvD58cJ/xeEAcRVRqlVlsC2xtb7K7v8Mv//Iv8/jxY1qLi5iGhl+wCcaSSLu3s0up4SCEjVB0DEvn4aO7LCwuMumHOJaFZatYpiz49/aPUAyb0+vrGJZDmgs0XRaPxBF5liEUje5JH8t2uXf7Hq7tsLB8CssxUQ2N406bxYUFJsMB/kZKGEZkVxooqoZlCEQWQebS7vUp1Sr0TrqAiu2XSPZvkFtlotXfQLUs4lzFLlTRSOj3Thg93SJ5vMk3v/8dfus3f5MszThqd9jbO0JXHcIwIQoj6rUatuvKplEVCFUwnkzY2NygVCgi1IiLF88COopqoBkWiqJj6BbkKrdv3KHgusw1qliGTZZmIGTEVJrFPH3yhG7vhMWFKsNhn+Gwj1/wEHmGoSsoQl6/INBUBZWUYfcY2/1kg50RREMyUnTDwTJUgmmIafh0e1PGkwm1RhUl88jSmMm0T7VamEXuuPglX15risAvFiQozi8hhE4YBc+2q2maSR9dmqNbLkJRUYRCnkv/qWbo5GmIqsqNTZhEWI7cvo4mQynTzSQcRgBxkqKbFlkKpxZXWFtbp+g7aGqGpkTEiXjGUMizhDwNCMMhQZDg2C5xHMuMXkUCmXTNQ1E0kjhBnUnfSAWerWPokqQqEICCqpqE0WRG2LfxPI8wiAkmMbblPqPlKuSE0wDTsBhPpAppZ38f3ZTQuesffQhZQjQZooqc6OQEN0o4enEdSzeo+jZZHNHf2sb87huYV86id/pycFmfR2QyIiwIQwaDEVkGlmHjWPZMjptSqtTIcpXBdIzn+QhFo318xCSKKFUblP0yt2/fo33U5ksvvkCeZbSPDhGmjl8sYRny/TZ0gySNyYilbBqVPE0Jgz4nxwfM1Wr4BZsUgWY7iFzw+muv0Cj5mI6N4zosLS+ytLxIHEZYhkWvM6bguJAnkMXYpomlWxx3OpQrNTTNZBrG6IYh83cnYyxNgw/v0v7NFzixMp67dg1TU8hmcvmMXMJH+cniWTg5ykoK77ws65zPaV71fEokJEuDZMjNH92jkp0CX8cxLTonXWr1Jk+fbmLbDrVqnaP9TTTdolCsz/KBwdJyqhWPnJjxaESaqYxGECcWIs9od6fs7R3TqjoYYoKKQZIraEZKuepyctyn3jyLsE0mwxPW19dIk85N9yAAACAASURBVJyTkwGG6aJqKlvb2+ztHXDh4nMcHnXoj6dcvPIL3H14wmQKtt9gGgtOBlNsu4hfqLO/d4BfqmE7PpPJlKWlFoP+EcMwxHHn2D24S5oMCYY2Sg7t9gFp1KXsa1QLHq4lVV+QkiTpT9S/cRSjawZoNopqkMcZhm6RC4MgAsNaQncsDEdlMDwhz0J0LUaZ9pmOOzi2jaa55LlCngUksYR5qbqGYhToDjN2j6a01i7SPHUKv+iwufmYeq1KuVYFTSGJInIhGE9G2LYB6ZRg3MUrl5kGCapqYGo5JD2Itym7oOUh01Efx1TxXA0hJC07jjM03SAXCqZlYzouKBlpnpJnAdNRj3A0xNZMRKYgNIsk19DtJvvtkPmVM/SmHW7ffECrtoKS6rz1xhucPbeOUFSmUY/3P3gLFRUFndE4ZPdwk3GvTxiHlKpVyrU6SZrTPmyT5IKdvT2qtTqXr1zF6Nh03S7Wmk04zvngo/f5T6/+lwyHY/bctwkn2+w/OWZtfZ3WwjzoGuqM9YDyk8OeZ9cJwIy+/uluYSYE45OYMTl4Zfb5ZzeQilA+9RryolSEmC1e5Pki8T0///z8CJ6fbpb/vW9e/22cLzI1+JvOZzevf7uTkaIpGtPBlKODY9ZOn6VQKMP9xyjv3SI9vYxQBIWCw7mz67hegVKpRKlYIs8gTmKq5Qq1Wg3XczjpHGPbJisry7iux+bmNgVPgjdcr0CaZXz3e9/Fsm2SZEK1VsPzXJZOncJxC3z08XVUJaNSruK6Bfb29rBsiziOMA2DO3du8yd/8scsLMxTrVQkECTLME2Lm7dvU6/XMQwd05B5f9MgBnLIwbFd6SOpl4gTGTivCAXbdiBXGQ2nLMyvoqg240mM4xQIo4w0h7/+1rc5d+4CpmnzL//oTygUijQaDcgV6f9IYwzdwDRkvpeqqJizJsJxbI6OjjjpdNANjaJfRgI/EjRVxS149PtD/ILLYDAgSXK+/72XAI1yucYkyTEck0k4xnR0TMcGYdBpH1Iqleh2u5RKZSl/UxReeuklTp1aYDyR0jffr5CmOfv7+3iFEtPxFEUIms054iRiMOrjOSVcp4hleqQJfP/7P8BxXAolSffUdV2ClhTpnYimU5aWFolmm7PV1VXSLEPVNBaWlrEdm85JB9dxGPYHtJp16nNzNBp1Cr4seg/bx2zv7jLsDyS513PRNJXOyQleoUCWRJimwXgyplgsMRqNSdMMt2DT7/W4f+8+aZLhed4zaaiK3EQzu+mWylU2Nnc5tTqPoTXw3DVaSzJKqFyp8cEHH6Jp6mzjbDCdhuzu7iNQ5eYoCGeE2RzdUPELFbTXPyT5hdPE86+SKxaDwhU0y2Vt9TS2bfPw4UOazSY3b9xkeXkZVUtljFEYMOj3MS2T4XBIr9tB1zVMy6R9fEy1WsU0bfI05eT4GNeWhU+3c4xtmUBC0S/w1ptvcvXqVfqDPq7n0JqfJw4DhsMhK6srJFlKluc4roOKgue6nDmzTn84RNFUnIKHrar0T3pMRxOePnqM7xSYDkeziasE1xiGSb1eo1QqyWZS05iMJty4cZO5uSa27bC4uMTB3i6OYxFHIaqhMxxPMG2bOIwgk3TZp08ecPXKJfq9Hp7v47gmH370AY7tkqPhOj5z9SKT8RBdVYijCJHnmIbJaNAjCEI0QydJEkbjCfPNJvVaA0Qqc0fznEajgWFaGKaFfmfIaDzhZEGDHAquS5bL7+vRk0fousDUpCxX0Q3y9l2EU0U9+9sEQYBt23JTa9vYtkuqabSuPyJfP8X3X3qJL734JfI84+Uf/Yh6vUa5XJbfSy6vAU3TSdIMz/VxPZdyqYyuG1iOPiMyy41pHAWohkJORhyHvPClazRbNYQKZDJCByFIs5TBYMA7b73NaDSiWitTLlXxCgWOj08kRAmBajlEOai6SZRmCFXBdn3IQlRFQVN0wmkEZFimyqA/4enTLV55+cd0TwYcHLRZXDqNboCqCAzDIs2kn7VQ8BgPx9i2g2Va1Op1dF0jzxO6vROpehDMIn9ksaSo8n4RxzHazEbySd6vqhgIoZGk6Swj9VjmFzsOmibpvtNJIOWEuorI9ZkMOsSxVaaTIZqi0j46wbRkTIQQn2ToSluBput8YvFQVEGSJGiaBDkhQNdVmftKLqFWmommGWSZIM2z2fY6RtMMdN1CneWAf/uvvs3Ozjbnzp0jFwrTIMC0rBmxXptF1DiUKxUcx8XQdWrVKgvzCxQrRdIsoWKY6KMJB9dOU/YLPHz4gL29PZbKVcRfvsJwoYYzmJAkKUHJxTTNZ9sM13HxfZ9gKqGF3W4X3/cxTRNd16lU5zg57hAGIeVyhWJJPvNefe01fu3XfpUvfeVLciloaFRrFUxbDkrCQPqTO50TLNtGEbIYTJJEwqtymE6m6IbBaNSVA0hFoX10hGNb1KoVhCpwHYssz+T9zTSI44jBcCK5DaZOu90mCAKm04CV0yvPKNCKEORZhiIEhmEz2tnFerTN219aZe3CRZZWThOG6bN5/OdtgUQjQzQy8r96Vb7u5zSvMopFlRvbNGLr9Qe44zIL51ZJ4kRm2Q8HtJo1To4PWVxokkQjalWbd966xfpaRcYFZQl5nmJacrCjaiq7u3ukaUKlVEO3avR6Y1r1CmEwxXV9BAqj4ZRpKHj4aJfG/BpZLlheaqFpGnGSUi5X2djYYHtni/lWi5JfnP1OC2zboX3ckfdG3eCrX/9FRpMpa+tniZOMTq/HoNtn7+CQWq1Os9kkjmNu37zNhYsXeO/djxn0+1RLDV5+6YdUqzrFoke/t8N8q4Jr689k0Ioq31dFUYiiSF5bmjZTZ8TkWYxu6qRCYxqZNBfO0OnGOF6NIMgoForYhgFxxHh4jGkKUqY8a4oVBYFJlmvohs/9R0ccHE15ujXgy195kVKxSOf4iO2tDc6fP4NtGSRpxMcffUSeZ5RKZZ48esyg1yOOYoIg5OnjO2w8voFjhKjZCOIJlqkzN1dDkGKZBnkqnx+ZouMVi6R5jm5I602SpUyHJyRRQJpBGGXYXlWC1cKMrb0phVKL0URw5uzzjEYB9UaD1bUVcsBybExbRdM1BuMpD+89lJaiLGZ/f5/79x9JcNThHsWCy/7uDqZu8NorrzDodXG8IisrK2w8fcqpU6cIOxFXvnyJk8IBf/wnf0GQTPjPr/4XOI6H9ULAw8d30YXF/kmXWCicPnNODgyR1onPO58VSZPzsw3iZy3WPu/zn/h3P/Ua/yYLwE/sMT/dpH7e53/fvP5bOP+uNK9pEqMIhYLrs/F0j5JfxtZ1zNNLiP/j98i/cg1VVQimY0xLetR0XYdcEIUxvV4PTVNxXYtisYTjWLiOTb/XRxEqt2/fwXGln+OVV1/lzr27XL5ymUq1TJ5HJElC+/h45qVQeeWVV1lfkxAjVdPw/aKUUaQJ4+GQaq1KpVxmdXV1JtUzJFhE1Sj6xdnUR1IUPa+IYzuYhkYwneB7BVzPoVB0SeKUOI556Qcv8cYbb7Kyska1UufV119nYXEBv1QkF6DqAqFAqeBQLhdJkoiLF89Tq1cIgjFqdZ/U6GPldUajEaqu8fZb7/Ctb30b27Ko12vYjsXq6gorK8szQJHg6HCfer1KrVZBUVUs2+PkpI1tuyiKyrvvfoCiGqyvn8O0NDQtQ1EiDD2FNEZFw3UdVE2VG74TmSEqhODatWu05uc4Pj6iXK6SZ3KD4DoOoGBoGrs7Oxy2DygUChQrJVShcnB4QE5Kr3+CosDzL1yTMKtZM55nGY8fPaJU8gkmEwzTRFUUKrWqzIt1pETS9gpkeU7B9WQ2YBRgWzqaYaDrOr2+9FUpmorvSwL1zs42tXoFRZ3BmoD20SHVWpU4ThkMhvh+kUq5iqpmGIbBwsIia2vrlEpFNE0hmE6Jwpg8z1B0nSTLMW2P1fULjDo2Nz8+oD/q0ZxvUq830TSLxYU5CaDJc/r9AcViiVu37hAGMQ8ePODSpUtkeQoiZzoZYd14BPqUgwvvcDBSaFz8DUzXRdU0XMdmY2MD0zBn9GQbTdewbAXTsqQ835IxUo5joyqCubkG0yCkVCrTPupQrdYZ9Lsc7O/TbM5x3G5Tq1ZRFbAdk36/x9kzZ3j08CErqyvMLyywsfmUg909NrY2sV2HVquJbhgMR0P2t3fJ0pRiqYRpmYyDKaVyme3tTY7abVZXV6nV6zieh+MWGAwknKfdblMsFlFVnadPN5hrtMjSjChKuHD+PI16k29969sYhsmgd4Kh67i+N/uZltB0DV0x2ds5lORIkVCplHj08BFz8zJ+ZGlpiRyFt996l+WlFZJ4xK1bN+R7MhkTRwlPHz8hSxPSNKVYLoNQOG4fc/PmLVZXVnj08C4CcBx3NrSQfkf30YTRaEjh66fo9Y6BlCgK0BSF0XRCo1HD0gWDfg9VN1G6jxB2GfXMb2MYxjNFjJThxhjzDeyX38NeaPKlX/pFVEVuMYWAC+fPo2kaw8GAo6MjBoM+w+EIXbfJZ95XXf9/2XuzX8vS87zv96152vNw5rlODaeruqoHjt2iZImWJRGyZUBAkBiBbMBIrpKL5CZAcpH/IBDiGFBiBIlEWaQsyhRJi4NIiVRPZHWz2V3zfOrM4z5nz3uN38rFt6vYbHa3KMlGbMhfo4DCwV67Vu991lrv+73P83sMpMwZDDtAjq7baLpOliUkiaIlW7ajavhcg1xHZvIpDEbTdVzH5Zm181xYu0ChWAAEWZbz6qtvcPfuXer1JnEyJPDcMagjIxr1sS2T0bDN4X6Lgl/i+OgY2zY5Pt4hySQTEw3CcMja2gUuP/c8rutz2t7DMFVzORwmSuqoSwzdHsfGaIRR+BQQlaYJjuupCeS4UJJSEZZzFMhGE4J+v086bmRlqrJfs1Q1CZ7vKjWAUMCnJEkxDRPynOFoiKV76LpA5iPCUZdBv08SZdy8fp/7j9bZ2txhcmJaTX91TU0CNEmeSwaD/hhApSBW2rh5zTIFkJFSWTLiJFe/Q3mOZVpkY3q2zBQp+knc0aWLF1ldXVH+2STFMC1AI5USNI1MZoTDofLb5jlhFPLowUMEAt2x8HwPhkPE4z3WL0xysLvHwvKyih9yfeQff5vDik9DKhL1YHqAsIacHiYcHB4y0Zyk0+mSJBGmofzceZ4z6A8gh+EgZnNji2ajoawppkkQ+MwvLiLJxsR3TdG+81xNLrPxs3M4Io5TgqDAaNAjGqkoHV3omKZFsVCkXC7jeg6arvJaNQ2KhQCEei/DMNTnJjOGgz5f/vKXmZ6ZZ3d3h3KlhKYJZqanSZIEx3WIokgR/8fZrUouDje+f5XyMGTn73+cM6vnMG0f1/NIsvhn8uP9dZrXeNTn0Xdv4Q8qHIddmo0mt27dwrEtPM9mfm6a2zevEQ17zE2Xubg2jWVK8jzDMA10TRGr5bj5rpTLTEw0yLKYzd02Ep1KycH3DIZhjzSJcDybre1d+v2QXJjML84Tjoa4rsvj9Q2iKGE0GnL58rNs72yjaxpBEPDOO+/y8ss/h+e4FEsldo9aLJ05Q72pPJOVWo1qrc6FCxdoNps4jouUOacnHSqlOnE0otmosbm+w813b3FmuU6zriFkSqPuoYuUYiEYx1ABGsq3n6ZomvbU7pEkiYpQM3U0y2WYaBSqy4wSh8Gwj9AMKpUqp8cHdNsHkPaxLJB5ihAZMk8xDYPRMMG0DTTdYXv/hB+++5Cj0xH/9T/9b5BZzMlxi8mJBstLC0olZZvkufLG3rx1i8XFZWanZxFkkEssIYmHByzPl3H0Eb4NMgrJRYSUEZ5rEkdDtZGYS/Vsi0Yk0Yg8S8gStXlq6gFppnPcGiEJGKU+rV7O+Uufxg7q7B62WD37DJblYjkWQkuJYsne3jGHh0dUaxW2tnf49re+S+C4/OiHb7K6MknntMXO9g4acH51gR+9e51W65RqYxLL8Tg4atFut9E0wZnVMxiGwY0bN6jtznCn8TbbO4f88//2n7HQOYfvB/zOa/8bDzceMer0OO31+Nw//HWa01OoXVDtQ5vXJzLwn/r5f6zNKz9+tmjaB1sH/s41r1LK//Unxunvk/M++dl/iPWzGKM/6DXi8nm0n//4+3Jef3I9eRh80PvmeY5t6aSp5OaNu3zzT79JGg+5cHaZoUww/u8/Ir2yBkL9shweHlCr1YijmDhOMQ0VDZFlaidOvS6lWCiwu7uH47iUSiUajSa2YzM5NUUYhkzPTFOtVgg8l+LYs9jvD0iTlNmZaTQtp1QsY5oWhmFgmDqQk8uMwPfHuV0WmcyxbZvDgwOOT9qUSyVM02IwGI4LL50kjciziHKpwMHeIa7nEcYhWZpTLpWYm5uFHKrVKq3jFoalIcnwAwd9HHhv6DAY9CgUfLIswbQMRqMBug4EJyBSGKlszXA44vj4hO3NbWZmpnFdJenKpUTXNRAQxzn7BzuYhqK1mqZNLjWElqMbBq7nMzU1zfzCAo8ePqIUOGgkOKagc3rMoNPGsxxOOl16vf44tkVALvjCF77A/v4+k1OTuK6FJgx2dvaVbFXXQBPEoYplmZqaRGiCPBfo4ymE51ljGIwgCDyy9MdEuU63TalUxNB1drd36Ha7NCeaxInyk8ZJjGXbjKIIQ1dgFikzHj18gB/4HB+3sG0HmcOdu3fxPY9SqUiew+LiPI5t8oQIamgGnufR7als1GKxSJqkWLYFpOOsT4NCoTCe9gg2Nx6jacbYZ+swGo0Iw1hl2UUh0zMz40l/wLvvXqPZnGB/f3ecUeqxt7fPjes3uPTssxSCImtrF0BT3rJCwYerN6G0T/iLh5i1M1SWPo3MJYwlbL2u8rrGsQLiHB8dq6KSBM9ThUCWKp/Q6ekJnuuiaUoG6IyLkJwc1zap1aqcnp6OQ+gzyqUySRpjGAau43L93etkMkNoKhB8aXGRRrPJysqKAqOFIzrdDqP+gFqjTrvTRjcVtTqTEst2aDSbKkLGMMhySZQlnBwdUa6UcRyH+/fvExQCqrXquFkT7O3vUa3WSNOUlZUVRXwuFrBs5e9UUaWCOIowdIteb8jrr7/Ciy8+RxLHOI5HuVYlyzIlS0JN5TzXY3PjAZefvUwuFbjK8zxq1apqlMKIQqmkohR0ndbRCZtbm5w/v8pgOHr6/6UJBf3Rbxwr8NXHmmRZQrlcpN1tc/vGbcq1uorcCfsEgY9h2OSte0izRHD5NxkMBgDEcazkrQhyTaCddPHWd5GzkyAEhi4IAp80UbE9ucxpNOoMhwMcxyPPBaZpY1pqQvHg/kNqjcr4Hqymg5oGUupcu3YDXVPRNLnUWH+0welpS029pcSyLWSmIEGaJpC5JAxDwjDiO3/+56yunmVxcRHX0SCNGXbbmLrgaH+fPEtB06hUGuiGSVAIFCU6Cak2aug6uI5FtVZRU9IsxXEVhA80Al9lbkvk2K8Hw+EQx7FJs2w8qXYQ46bviTQskxk5uTpvXYc8x7JtNSk8OWFzc0flObsOOUqd4Dg2cRzhOA5ZqnJPVayWgUAfX+tSRe4YFqNBxPdee5XBMCIKYxYXl/B9H8M0kDJDkj2FrUipKLcyy8mkJByp8zY0nW6nq/zUtotuqDxioakMTWSONo76Ud8dSrWjCSAnijO++pWvsrp6Rk23dZ1W64jtza1xbJqS0bVPT3Fsi3ev3yAahTQXZ7HubaH9ystsHx3x1ttvc/HiRU63dmi8fp3qSy9gtbrkeU66HIER4WSTjIYhJyenNJtNSsUCnuexublJq9WiVC6NvyvBrRvX0HWNSqXMrVu3aTSbT4tVXROKxDomhvf7A7VJY1rs7e3xb//tlzm/tkaeJWMVkU2/3+f4qIXMJTk5+3t7OK5NnksswySOYrJM5cDGUcxoNML3fXrdLtevXefln/sFJiebCioXqUl1saDueWmaqs9//DmrRinDafcoDWPuf3yV2bk5ipUycZKomvw9Nc77ayN50yA/0hB7dxClAtrPv/jBtdd7mtd++4Te7SMap+c4zA7Z2d1laXmZmZlpwtGIJA6p1apsbm5y9uwcaTLA0LP31Ob5U9+n7wdkaUoUhQgS9lshJ+0e1bKNzIY4jlI2mKaSdAphkubKD2nbLnGcEBSKmIZFq3VCpVIiiiIQKHBjGBIEAeVKBYnEL5aoVKusrz+m0WgQxxHt9im2bqAZOnESs7uzi+8FtI5OuHv3Fg8f3YFMcHJ8TKMmmJ0pUvA8qlUP1zGIo5gkSXFcG5mpaeYTZoK6llQKQJZmmJaLFA6OV0Mzy7h+CfIhhaLKcd7efkCl5GDpEUKo6K08F2RphmHayt8sI+JUIoVJqxORSMGVF14gTRLefvstbEun3W5TLBbU963rmIbFwuIycZQQRyGWqQYDgZOz9fgOo8EJlZKCIFqmjTBzcnKyLFHEbEttjumAqQtkliETia6ZaJgMQouHD3eZnrvAKNI5aI0II0G5MkW712ZmboZcwI2bN5mabuK4OuBz0upw0jrh9Ve/i2VonBweQRoyHIbMzxfZ390mTWIuP3uBYtGj3e0QJhmdXsjtuw8YhTHnVs+yuLhAFMUEfsAPb/yQS4XnKHza5Itf/UP+8W/+I6YPFtE1g+8cfI3zF84wV68iLBO/WGBxZRXNcj9QMvzkz/t7gx+/8Cense/3vH7QsT9x/Y2bS03TfoLC8zdpXJ/0MOq4HysAPvC03ycf/jvTvL7n73/ll/Pvc33Y+/5V/54oF3+qcf3AJvcjmmI9l6SZYGJyivmZSf743/wec02XURZTeuch5JIkCHi8sUmzMUGaRqq4yzWuvXudWq3Ol770hwiRU6mqXLJet4vrekw0J4ijFKEJet0utmMzNz+L7dh4nsfe7iG9/gAvUHJey9SoVyo8ePSQICgQBAW2t7cICgGarjT5YTiiWq1g246KQcjh7t173Ln/EMswEMDm5hZZBketU2w7xzZh/cEDNGFguwHHrRP+5Mtf5cpzzwIZc/OzaDpMTNZUKL1jk2cZmhj7OsZT3ZOTU+XxQDVOYRih+V2EppH2CoTjps1zfYb9AZ/45MexbZs4ibAsk5u3btLr9fjSl75Cs1llenpCwXOihOEoZnt7C13XGY2GBIUAkMzNzzAKIzxHFbUaCkY0GHao1CfxfeXnKgSFpyTNl156iXKpimEZ7O/vs7iwxOHBPn/5ve9wZmUZx1EPoyTJ0HSTTi9kb2uLbrdLseATRSOKQZHjoxaG4ajJd6ryI0cjhaWv1+tPfpnY2txSE0bPJSfH0EAXKhex1TqhUCxgOTbrDx6Nv9ciuczZ39lhb2eb5TOrmJZBnET0ul0C36fT6fL5z39R5aGWK6pJ1HJyMrY3HhMEARk5x60WhUIRmSX0ul26vR6lUqDyRk2dwWhAsVRkFO0wHLUhdSgUijSbNQw9x9AcojDm5s1blCsl5hfmSdOEjceP2dndplgqUq2U0X54E1nZJn5xD6ZeIA8W0TTBrVu3aE42SbOUa++8S61aw/M9Dg8O8X2f+w/uY1kWhm5xctLm1u3bLCzMoes6hm6Ry5wbN28wPTNNFI04bh1SLFbY3t7Fsm0ajQkePXqM43kcHO5Tr9Y5PmoxMTFBuVTl7bd/xAtjCWuxWMRxHbJcIjRBUCjQnJhU0SC6geOoLELLMBj0Y3zXw9A09na3QOR4gUcpKLG7t4cmNKanp9nfP8APCgx6XXRdcHJyghf46LrAsm3qzQa379zm7Llz5JpOr9vB0g0OdnbxSyXK5Sobm49ZXlnie6+8RrXaxPIcpMzRhc6rr7zGM2trjAZ99o+OKRRL7OzuUq5U2dvfxy8EbK5vMgqVJCvLVMGdJilnVs6wsbWlsmh1g+2tLWrVCq2jQ+p7OlLmPPbblIoltnf3mZ1doNs6ZXJ6Xk0z8wzXcTg8PMaVHYKP/3PSYI5Wq4VlWRwcHGBaFoPhCNtxiGYnCf7kL5AzEySa8pemacLO9g6NRlNlFo8igqJPluYcHLTY2d2l2WyQZglRlGA7utqQM2wQKm6l3+1SKgSIPMU2FbBoY2OTt99+GyEEk9NTKn6nfcrB/i5CCGxP+ac7nQ4vfuxFpmdmcD1XkUCFxqDXY39/n6BQUv5xvziWymbj+AgNw1RSeSmlkumOf0dSmdM+6WAYOmkW0To9plAocHzcQcqITKbouvZUNqgJtbmgj+NocnIymWGZFrquI5/G0ahiV0rJnTt3aB0fcPbcyjgHVnuqShBCEMfJmNY8zpLU1EAaARKBabr4QQnXC1haXOSZZ56lOTHBN7/xDWr1KqVSiTAaqgZ67NUiN8bZuSA0RRZWih8T07SV3FjXx7nfinCephmGboKWIjQFgFKkYW0sTxb83u/+Hv1ej2F/yMrKMoYOhYKHbbnkIsd1PTKZcfX7P8CxbdYfbTEzPUu1WsV4tE32uc9QmpqiXqtRqVQIW6cE37mKOL+MKQSRDrKpPLR61MB1VUxUHCXkZKRZSpZm9Po9mo0mAP1Bh0sXzyPThM2NDUqVCpZpYZkGucz5xtf/HefPnyMcDnEdhzCR5DJnd2eXfm/I8y+8SKFY4urrrygft+MSRhGlUgkA13Uplio8fPCQ6cmpcYauxWm7i227JEnGcBgqTkC7w8bGFs9evozjqImc67iAijCKknHkjJQITSMby8ht28F9sEH02Y/DcyuUKkVK1QpxEqG9b1r0/pon/SOHfEPH+B+fRXzmhQ+vsd7TvJZ8l2t3vs6lw9/k2N/l8OSIWqNJUChwctIhlzlBocTNO494dP8WczMNbEOClOqcTbWhnmU5URThua6aSuqCOC/z6PEuczMTFAIT2xIkkcoJ1nSTo8M2ldo0r7/+BqVyjfX1debn5mm3VVZyjiIbT042iOKYcrmM49i8+vpfsvbMefYPTwiCgImJJkLA/Xv3aDTqfOPrX8P1bH70zttcvHiJMH5IjQAAIABJREFUvd197t66T55KylV49GCDC+dWWJiz0EVEwXM4PNjGLzhjvoYzzrzOKARFRqORsgAYxtNrWbcsstwmTFwKpSlSdHRLIxmecufufXRNZ25mioJvMRq2EELQOh4y7CkInecrpYuh5bQ7IQiXKDX5tc/9Q3RdoFsWlm0SFANmZmaJ0wzdMDk+6fCDN65iGBY7O7uUywW2Nu4xOzeBmZ9SLfuUC0XyXEPoNpnQSWIN3fDQdIc4FmRSQ9MsoighzTR0yyPBpTfU2Njts30wJBUurXbE/lGPiclZLj/3PJZrUamUMSydw8Nj5uaWaLc7pFnCxsYu25ubVIo2m4/uszjtYmsRFy8uUSnl1IseKwtzLM5P4Ngh5YJJvVbCcx02NncQQvCpT34KZ2wBGI2GJHHEzOw0VsfjzYdv8E//p/+SP/7jP2D5N+bZrW3xL//F/8651SU8I2dnb5uj40PqE5PMLa4gNJWO8f7h3Af1BU85PB/ByfkwDtB7/+i62sjMxtGIf9v143P92Xuwv03z+rc/4/+f1pMH5pMd5P+U1odNcT9spany9ajokBovv/wip6c7/J+/83+QLs/AKMS2bXrdPlGsJFSlcomtrW3e+dG7SCm5cuUKFy9d5LXXXmFudpZKpcLR0RGPH28gpaTTbvPaG6+TpAlhGOJ5Lkka06g3KRbL9AfDsT91xPbWYyrliqIOoh6SSiom2dlRBNxut8vW9iamqeRSy8vLrK2tMTU9xdbmJq+//gZXr75Jkua4rk2axpw5s0Kz0aBUKjM3t8Bv/dZvQY4qFqLBmPwZkktwHZ/joxMsw0UmMOrHxFFOudTg+rW73Lx+H10oiiMIhKZh2baa5kQx648e8Uu/9Evs7u4SjTM+N7c2OXPmDI1GneXlZdI0od/vMRoNGQx6nLRarKycoVAs4Ae+2gyolACJZrrkusfB0RDTrlJrzlKfmEQIMc6djMeRJ22Wlpbo9/vs7R8g0JiZmQEg8D2ef/45wmiEaWhEcYhfCEhSiecVCIIKq2cuoAkTcoMkljTqk2iaYNDvqyI0U1PDfr+n8jZth3AUMr+4QKFUJEkSpJQk0Qgx9koZhokXBOimydq5c/iuj23aqslzHc4sL6tYmSzDHEvNhBAMen2uPPcCkxPTJHGKMd6YSNOIqclJbNvCsiwl70bt8k02J1heWsJ1bIaDLqNRj3q1zLDfxWtex21c4/69h/S7fTQhaZ8esbu3z+bmNnPzc0xNTVOv1yiXS5w7fxYpM7XL+2CDoXmX/pUjzPOfw6gsYFo67c4pMk/JcwlIDvYP6HQ7mKaiZWcy49y5c5RLNXKpcXR4zNnVc4xGI9bXH2KaNlGUUC5XgJxer8vs3AxSCmzHwzRtZA7tTg/DsJmanCKKY0qlMuEoRuY5L37sY0iZc+fOHUaj0Y+nRYBpmUiR4/geznjCBAqsEPVC7l6/w70bN7n5o3c4PTjAGO9wDvp9ut0u9+7fZ2JyEkPXKRR8kjiiUPA5OjzAsFQGZpalRFFEIlM0XeP27TvsbO+QJSlZnpHlGc89/zyplPzcz/089eYUcZzw5ptvo2m6kopaBuVKAU0zsW2X5ZVVTNNia3ubwXDAweGByoQcw4D29vb51re+xcbGBp4XjL2Gutpoi0JOj49ICiZ9M2XQi5CZzsH+KVmqNqHUg1UwHIzotrtkqQShExtKPt5qtbh37x5ra2vYtk2xWFQyyGaN4TNnMPaPlb/a0CgUCiwszNPr9Xj8eJMsy+j3emRpRhhG3Lhxk3v37zMYDJicnFQP8/fdm8slj1otwA9MTEMyGJyytDDDL//yP+D8hQvouk6WZVQqFW7fvkOn0yZJEhA5M7NTuK6D73sIDWKpEWeCNNf54Ts3GUaSUSpIU0Gv36c/6DGKhuRCoGk2Uprk0iTPDXZ3DwATw3C4evWHDIcjoniE4+pE8ZBcCj7/+d9V/j5UYTIYjJTawQ0ghzAMx1E4luoXZf4UCiKzTDV9msaVy5e5fOUiw2Ef17PVNFk+mSaHWJappvMyH2/ohWSk5EKSSY001RkOlPxYN1X+9OHBgeIzBAWkTJ/6tk3DwjAsTk5OGY0iwigBBLbtINAYDkN03SCXIJFqYpvnmKaNZdmARhwP6XZPMU2d0WgwzvBUPtlcZtSqVSYmGsgsZTjs0+u26fdVrBtAmqQcHh7y1ls/5HO/8jk82xtfw5IklUhNx3EU6V2dt2rcw3qZdtHmvbWb6zp4Y8Lxk/uy4zoEfkAURWi6RppF7GxvMjHRZHp6ivnZOXXOKtiRaqWKTDP6/T4729sEfkChUKDf7/PKq6/QbE4QjiLevXad69eu02opFUCSJKqB1VTO70Rzkjt37z55W8gFtuVgWRZTU9MIoSiwn/vcrzMYDAjDUFGfDUWlTpLkqY9SZhlxFD2FvBwdH6LJHAKHt966ys7uFnfv3kY3+A+y0jTlyovPkhKzdvEZzp8/zzvX3mVnd5+JiUmaE1McHrTQTBfNsDAtB9tyAAW4UpAbgef52JZNGIakaUIUJvS6Q/r9BNctEcU5UgrIdWzLR8ckDGMOD44JhzFvvvkma2trDAYDjo6O2d8/oFQsMhgMELrycgeFgG6vw7lzZ9ne3iQcDbEskzyXROGIRr2KoQleeulTzMxM8ZnP/BxCqLixVuuErc0tymWPSsWmXPQYDE4xdEjiIeVyAUPXkLnEMEyEpv7e6/XI83y8+aYyY4UQpDLHcgqUK1PEifLH9vundNtdZqZmKBbKCM2kP4yQUmXOj4YJ9+9uo2k+UZSSpDFZKnCdAmkMd24/5MH9dU5OWiBy5hfm8f0AmedYlgOaiesGPPvsFdJUMjs7p0CF4ZCNjUeMRqeQSwb9EbZTJBcWvVHMwcGQcKhzcDAAPPZ2T0lTi1Z3RCIs+rFGLzLYOOiz9vwv8NwnPs3i6nlmF5doTDTxA4c0HaARkaWSYT9EEyYCC8vyOT3t8+jRPU5P9giHJzz3bJPpCY/La7MEvoZrg6HlyCRCkyGem6ElbUw5oF60qBVsmqWA470tXn31FcIwpF6v8+DBA0qlIlvxOp9O/z6uLWjUK+zubvP9117H0EzmZufRNI3D/QMeP3qIzNKnGwzvXe+dTr53vZcQ/LOun2h433P8k3/zQye7/5Gv/2Qnrz+LjPej0NE/y/pZmsz34qo/6Njs//0y8p3biMvnP/IcP8rcjKZgIWgZphAc7B6zNPcMnc4mlxdW0b73NvHyPKVyEdcx0E2HLMs5PW3x0kufwDR1tjY22N3e5bO/9Flu3rhHlmVcenaNk5MT9vaO8YsFbt68w7OXrnDn1m10Mgwd+t0ujx6v892/+C6Xr1zm1u1bFAtFKvVJdvc3KFY8BX0wbLIkYdAPkVlGsVQgJ0NognicO2oZOqNRRLMxwfLSItVKgbPLcyRxiONXiXITLJskD0FLyNIIy7JJk4yTkza1Wo3tnU2K1QYZGYVioABIwmRjfZsv/fGXOXtulZXVBTzfJElCvvKVr7P24iRpHHPnzT1qtSq24zI9O4sUUK7UsByX9ccb3Ln7gIXFJUzL4+y5szSaDRzXwzQdup0ep6dtBu0OG+tb3Lv7kDMr58hygTB00qiPaQhMS1ceV8dlFKcgUwb9PgW/xIP7j/jqV77GyvIyExN14ijh6g9+gOuoiJ92p8udOw+4c+sOS0vLhJGScNq2x+/8zr/izq13mJqexC94RHGE5bjYro/l6piWiWVatI6OyJKEwLHJ9RTTsvGcMnmWcvPGVQpOkSwUeJUSSSrRdQPHtjk5PqFUKJHIBAQYpka312F2fh7XD9CEokYKTSeKUo72j5iZnKQ2V1egFiRHB/uctE6wLAfN0J/64dJYFbC5piEMA921GYYhnu9j2g45GonMGYbvohsGnaMah8fH9LpD3rz6Iy4/9xyWY6vMV8fhzTffYnn5DLmQrJxZYf/mbdzuVeJPn/L6ts39hy3u37lL4LvYlqZ21xNB1I9YXJ6lUa8Akt29bSanmli2AbnAMHQ2H6+zMDeHyHP67R6mbbKxsc7Kyiq6ZuI6Advb+/R7J+g6tFpHY1l1im2Z6JbN5tY2QanMKIxxbJs/+9NvkscJGDpxGlKqlNCF4NqPrtM97lCrlzGETpZIbt28jeNYaIbA0EwODw9wPYvzaxfIUUC1XBgM+kPmFxaolEv0uh32dncp1GpoukGpUBjnmKZsbD2m1qhRKZYpFFyQMDuzSCYhTNX03jQVyblaKfPwwT10LaNareEFLoZtMLewQLvd5fq121y8tMbGxiaWaROGEUtLS1i2xeTEPOvrG1imCWScnpzyeGODbrfPxz/9KZIsQzdN/KCE7Xr0eiP0C3UGUyZz83MkWcr9B3eZnpnAdBzu3L3H1tYOS6urOEFAJiLEySO08nkOj/tk0T6+k1D26qSawDKVdy+KIo7ikPp3f0i2MoPQdQxDKL8XgpOTNrbpUKoU6Jy2efvNN9EFnL1wlonpSXQTDE1H5IIsTRAa4ybSUNe6ZnL3/iMmpqfpjwbUG/VxjIt6DqRpytnz5/GDAq6tk6Y5oCF0A2GoKa6p6chccO/eY/q9kEuX1nBsDd2y0A0T07BxbRVR1Oue8vZbV6lVVfyV5/p0uz1s08B3AxAjIMHQA3ynxmn7gH4/ZnpmnqDgkwtJLnKOWi3lYdcU3fLJLn+eCyWPzoExG7bf72FZNlGYYJoGnucjZY4Yy9RUbrijJqO6qcjmSCxT0OkO0IWJphncv/8IdB0pBUGxjKkLCkWPZy+vUSwF5AIlb8yV31/XNBzbIkki/vzb32JpefnHz1dNjKE0Go6uWKCaUL5Vw9DJRYbITSzDAWmQxhJy2N3d4bTd4pMvvcSly5eYaDaQUuJaLjIT6IZFuVQmjkLu3r3FCy9eYXF5jlq9ytHxMW+/fY2VRPI9z2N2aQmhDxkMO2zeus3c2w8ZzDWQMsM0LHL3lDiO6O3mmI6NsCz60Yh4EPGNb3ybOMxYWlrm6OiAre3HFMsB5XID3XS5f/8xru2haTq7h4eUyxWKgcfhwQEzM9Ncv3mL5kSVfr+LZdl8+pOfwrIMdDJqUyvsH7cY9LuEo5hqtUkkQ3KR0jk8IhwNmZubJUeg6wbdXhfP0djZ2aRU9LEsnSQO8XyXvb0WpmXheAGtdlsBvjQNTUqscTOEmpYgEDiuh/bn30f/7/4JG6M+L7/8GaqNSTTT+qka6v010pOoHP1jyQfWXk9fB2giIUdDWC6EQ9LXA3Z274IZ8sylF/ACD8OA9Qf38GwHXZdUgpw0aqObGcI0sP0yw+GAgu8wHLQxTQ3dtEA3yIWgOVGnUQvwfRshJKYhSaSGMAS6nTExUWCiUaLoGaSkhMMRiIBqvYlm5BQLDpVykV5vgGG4BEEJ2/Zpd/sgDM6cWYLcQ9MTTNNl2INBv01zfpJhf0TrsEVrf5d+e5dyMaXstlk7M8vKYpGCF1ItliBT9xLTFiTJCNPUGA6HqGgmDV1CprmcdGNMq8BwEGPqFkMCCqV5ksQgzWK0LCQZ9jC9CoNRzNHxIZYBaTqi4LmMhm18r8jR8S6T00VyESKEha1b6KayNnV7CZPNBcKBpFYrMOz3sWwLw9DpdNsc7O+yvbXOmTMreJ5D4LmEwz5ZGHJ63KJWLnHUapPrFr1+jGWXSGKTe+tHPHy8z9Zuh3ZPMrt4kaN2yuZhyMLKcwxjm2pznjDKQWhUqw0KhSL7u7tYhs7cwjyu79MPI27duka9MYFuOBiGyZ9+7U+4c/0mzyzNUS3phMNDzq3OoGsZup7S70quX99k+cwUKTFSk0hpMhzFuAWbYtnHdWs8fLhJseSwdnGFcNhnY32T1dUz/Nl3vsWn/t7LeLtldpbvcH71EgYWMzPTzC3M86U/+TrD+JQ8DinYJs1qjWeuvIjh+GQy++AeQ+iI8X8yk+RjyjAf0Ze8t1l9MuR7ck1lWfZTMTvvHZa+vzH+WZrbn7i28w/pYz7kmL9zsmH4CPPxB6y/afP6t13Jb/8e+cYOxm989iMb7o9qwt+78kwS+D5vvPoauhVzZu0ifOHP4OI5dNOk2+ni+x65lJSKJTQhaLVanF09S61WRTc0JiamyLKEe/fuQq6z8XiHo+N9PvmJT1Aqqh3xSqVEu91mZ2ef5ZVVoijm6OgI01AxBVMTc9TrFdIsxfeLtDs9bNelFFR5993r9PsjFRNSqWPbPqNRzBe++K/JspRv/dm3WHvmHPPzMximII3DcXGkYxgmg24fXej0uyGu63P//kOWFpfJMkmlUgPdVA7GXJLLlDSNqVZLFEoBU1OTgIbrqJgF33ewyl0E0N1XsAnHVdCRr331a0w0m/ieS7lUolGv0e/1efWVVzh3/jxSKrLjkwnG9PQ0B3t7aLrB+Qtr+GMARxxH2KYD6PT7A3Jga2uLar3KqK8mAAcHhywsLPLMM88AEAQBnu/TaNSZnplSPmEpicKYyelJKuUyuqGTI9je2UVmkiTs8czF85i6pnJZDYskisiFYDgcsbO9SxQnfOWrX2X1/Dl0XcdxPJIk47TdYjQaMj+/iO24ZGK8+zb2upWKRY6OjvjXv/8Fzp07h+f6eK7D7//+56mUS/Q7PR4+fMTMzAyaoVMulQjjiDTJcC2HYX/Iv/k3X2J5ZYWJqSk8x1bn/x45YhLHY3mKxDJ0Dvd2xpI4l5PWCaa/gef7TNY+xfTsrIo9qNdpNOocHRwQRwrms77+iGazgaELtCzHu/N9wl86YNu5wsrax9nd26FYLvHo8cOnxGSZC07aHVzH49HDdarVOlmGgjiYDuQJmiYIigWErqMZJvtHx0SjERcuPMNbb73FzMw0mg6GqTPo96lW6wwGQ6rVCru7ewRBwPHBAZVyBcsysUxTEZItk+mZac6ePcPU9DS2Y439fRmlUpmg4JOmGbbt4LgOJyctqpUqrucjx5L5RI5hSJoBQsMLPDUNCUM6p6dMNJuYtkPruIXMMt58803m5uaoNxtoQhCORuiGYG/vgMAvMxoNqFbLeF4RckG32wNgenKK+/ceYBo25hMydxRSLZexTRPH8fijP/ojFuYXaDQapGmE59lcu3adC+fPqrxiS0mp5+cWOXPmLJ5nq4YQ+Po3vsHs3ByTU5O0WvuUy4HyiA+7lCsFimWVx7q0tITn+5RKpbHv30Ee3gTDQk68QK5rWH6ZUmkaYaqp32AwpuwuzOJ8700IPIRfGHs6FVAoikLmZmfwfJ8gKLG2dpHZuXl0Q3lZo2iIqZuqURvLToWmI8bTjMPDQ65evcrly5fxfR8hIE0VgEzXlb9SgYhgNBphWa6idL7HDyRlxmDQZ3pqmvPnVslkRJrG6Loq+MNwhKYJLNMiiiLOnl2l220TBAFJkqDrBpZl8cUvfpG1tXNMTU+jCQWbcj2HuYVZLNsgDEcYhmok+70hv/u7n6dY8qlWy+i6UnaYpomUkn6vr6SP4zioIChgWfbYO5cjc+Wb1XUN3RDYmiJkylyCUFE6QtNxLAddU97ZPEspFwMKgYXj6OOscE+R458Y53PG56g9nQQcHx9z+/ZtJqemxzLlcVaugDRLGQ0GiqCsnpRoQpCk8dgbaiCzHMM02dvb4969u1x69hK2ZdLr9Hj99TeUAqdUJklSrl59C8/zCIKARr1BOAoplcqkqVIULa8s4W3t0X7pWUJGVGoNTts9VmcWML/2CifNCrbUcCwLWeig6zoFbZ7+oE+7rSZLX/iDP+QXf/HvUW/WKVdKJFnM3PwcxWKZPBfkUrCzvc39+3fJ84yV5UVkFo0z1QtEacLswhJJOKRcLCuuRLFAJhVfoFJtcO7sCoGv1DK6rmNaGpoOlmnTHfTZ2t4hTlKK5RKFYlExC0yTJE0xLQvX8xiNQkxdp1wpIwyB5ym1hCZUtZykKWmWqs94fF+XaYb25g2S//6/4urbb/HpT38a2/MZReFfWfQ+aV75v/4X8q9+D+3Xf+ED658cbSwRzMlkyp13XiF+3EEbepwmO1Tqk7z2xvepVKsU/RKddp8fvnOTpbmzBL4HoouuWURDE8exiEYjRbNGTWFlnoNMydEpFIvjmsYhTSI0LSYMh9imjWU6JFGEaWp0T03eees6/d6AiakKk1MNHDvgpNWjUPIZjoYYhsHX/vTf8clPfgIpMxAWneEO6w/b1GoVBsPH3Ln1kFdf+SGa1Lhz8zrbG7fonu4wNxOwujSHzCKEyMhkSpTEJGnK+sMdSqUymmYShwbkDoN+TC4NbEugi5w0CvG8AqbtkQqTauMsApe9wwO2t7eYmZ4jzyyiCApBgWqlRJZ0SKJT0qRFnuWAoFYrY9kahqGiWLI05bDV5uH6PvOLVxC6w/zSNN/81jefku+F0HBsmyDwmZyaIo5jLMvm1q3bTEw0kVlC+/QUmTssnbnIYCQ4OB6wf9jD9epceeF55hcXmZmd5/kXPka3P2QUxrz08i+SJJL+IKRen6BYrJFjUK4GHB4esrC4SHNCgRBzoZFmOZ5dwLZsXv3L73C0tw5ZlysXV5icgMCH6ckqhpaj5RqmZuP5KYuLKnLO94u8++59ksRisu6RZiFRNCLHJChW6HZj7tx/xL2Hm7hOCd2w2D/Y5cLaGvq+w7/61r9k8lyT/f9nwP5rJ9wM3+bGzRucXZnj0toqp60jiqUiZ5+5opICxlyUn7IU8sH9gnh/A/oBr3n/9fReq+VPHCN++tj3HvPXWz9b8/pk/efm9SN+9lE//6j11z3mg16vaMPiJ5rX9x/zVzWvQt1HAIWpL1Vq/Ivf/m2irMPlz34W+w++TTo3BY6D5/qMxiQ8TQhGwxGlYokbN26wu7PL4tI8N2/eIUcyPT1Fvdag2xniuAbz83MIAUfHhxRLAeQ5U5MztNtd2u0OpyenTE1NsjA/x9bjXSxLYzQaMBzFFMsVhC4wNYNOp0OtVqVWq2OYCvyQpinPPnuJ5aVlnlm7gJQRe/u7mJaGTFNs1yOJJaZh0DntYGg621v7VKo11YRrGqDxzjvXmJiYRAjo9zuKWmcaRPEIL3CVdymD0TDCMA3q9RJ4J1iWTdVZoVqr4Loug8GAZkMVK1/5k68wPzePrumEYcj29jYLiwvouq58wJZFFEYEvk+r1eLBw0c0mhPcunWLuQX1mWVJzutvfJ9vffPP0HSNqalJLMdU2aumSa3eoNvt4vm+okIayoulgCopvV6PQqGIpmnUGjW+95d/ya3btzl//jxpnBLHEfVqoJD3YwCRrunjmAuTJE5pTkwRBAVWVs9SrpYxNB2ZMSYPJkxNT5MmGVtbWxTLpXFEkIeu6bRaLXzfp1GbQOSCUqnIweEeszPTWKZOo9akUChg2Ra9Xo/BcIht2QROgSRW/ppc5qysrqoIjnyMtyfn6PCIYrGEZqgMRKTKWzw5Pqbb6RB4vvJPlbbJZIZnXkLTDUaDEQ8fPmRyYpJ6vYbv+2iaRqVSoVQsgcwZfuMvSP7BFsxcob74AkmaEcUjnnvuCo1mg3KlwtzcPKVylXqjgaHlFAoBWS7p9btPmzjL1InjmEKxqLIqcyhWqlSKJRCCcqWEaakC2rYtyqUqpmnxg6tX2dnZ5fnnX8DzPHY3Ntnc3GBhYRHDNBW8Kof1jQ1mpqfGOZsCyxpDy3SdKFEKA6Epifn29jZTU5MctY6xbQNN1/B8nxwNhE4qU0CQ55J79+5Rr1bHUz8FjQKURDEIVGySEGxtbtJo1HAcD8tSTUpQ8Gi3+2RpSqt1Qp4LCoUio1HI0eEJSZow0VAwm+FgyDe/+U1mZmZ58OAhL7/8Mmka47gW/UGPakVFYvm+Un1oQuPVV99geWmFPE8xTYs0zXjttde5cuUKuQZJHCIQBL7Pvfv3mJicpFKpEI2isYc65/DwkGqlQqfdwezcRWYZzU/+E4JSGderYJgBuaauB0UgVh5J8hzzBzcYNKuqQNcNTk5OqNdqHBzsEScZg8GQv/jz77G5tc0777zD/Nw8xWKAlDlplmGa6v1gHC0jBJ7nsb6+zkSzieM4aBpP4UxCE4r6HoXEcYRAfyrpE0J7EnJJlsVE0TjeSeQ4jsnp6QmOG2DoOpZlYuoGMpdj+rikUCjS7w/Y3NzCD3zanQ4TzSaB7zEMQwzDwHFsBdbyHWzbUpEshkUcZ/i+z+LiMtMzTeWBfXLeUvn04jjFMk2EUJJH01BNK6jNGk1ohNEIx7Hp9broeU6apRimAZqSeAsEeSYxdB1D0zk+OqTRqNDrnOC5Fjnaj+9durp36YZGlkk0TUUNtY6PcV2XSxcvUq3V1GajYyOzTE3BZU6eJyRj+rEx9vAmcayo6VLRtmUmqVVr1Oo1XNelO5ZxT0xMUiqVydE47XT5zre/zZUrl7FtNZlxHBchNHRNNVZpluBu7MKvforjYQfHL9GcmMKMM/jSt7GuPEN5+xCj3SOelWi6hhyUsW1b2XcKBe7dX+fC2pqCXomMYqmoYm2Ehi50BT2yHQLf4+y5VdI05uTkmM3NDZpTU+imhW7aOLogHI4IggL9QR/X91Q0VSzRybFsXRGjNZ1u5xTbMdENE88PmJ6eGzMaNKRMkTLFtu2nmbSGaarNTstSBOJckZ1zmY03ikEbA/4Gg+H4+QU82kb0hmj/7B/xxvdf58UXX0S37KcE549aT5pXsf9tdY19aPOqo+eSXJMIHTQ5IL9jYg/LaNUB+4ddXvrML9DtdCh4RWVhcWzu3XrM6ek+k5MWAo3Xv3sTYaSUxqwKQ9dJxxnNpgG50MhkTiEocHLSwnVcTCNFZjmW4SjJehqjaxLHqmIaILSYo+NtyDM2Hh9QKNR54wevsri4hG4YxHGCY9u88uqrLK6sUq4ElApNDva32Vi/hY7GztYGOjEy7bM4V2FlcYJa2cY2NBASTVefRyZzLFsRpT3fwbZswOLOnQccHbWYnZvDMCV5kuC7LmmuE0u5nvAEAAAgAElEQVSd+vQi5D7oOpat4wUWQVBkc3MHKRMKhYA0CXEsgWODJmKSJBvHVUlsx2Q47GPoCrCW5SadbsLNO7uUqw1KtYB+r8fh4SErK2eQecZoNMK0bCBX8XZD5cUulYrEUUixWGT/oMPE1BynnT7DKGVr55DVc89QLBewbJegUEJoOt1en9m5Oa5du0FzYoLBYEBQKPLmW1dZWl7k0fpDJiabirCu6yRpRjK+vx/uHXHrxjs8fnifUkFw/sw0jaoHeReRJ4p8LCUyS5XNQ4tI4giEzmAQkUkF6/SsFNPU1YCoN+Txxg5RqBHLlDjOOO0M8IOATveUyckJRqchv+b/F0zeP8MZ+wLz5UX+5z/9H/jVX/tVfuVXfpntxw/onBzi+jZHnQFRnDCzuPQh/cBPNoMf1rx+ELDpydLG1+OHKUU/rHl9vyL0Z1v/uXn9qfX+5vXJ+lnkvf8+pqh/1fqgnY4nUTnGb/zNonKEUEUBQoAmSOIEjZzpqSk+8wufIc01vC+/gvSc/4+9N/uR9DrT/H7nfPsW+5aRS2XWyiKLu0g11bZGgmYwCxrjQY9t2HAbvrXnyhf+M3wxtgEDBgw3DLjd7lZPL5JaIrWTVIsUF1WRrH3Jysp9i8zYv/h2X5yoEsUWJbX7whhMH4AAKysiKjLzO1+c932f5/eQ+D5JFHNwsI9jO2xubjELZwSlEvV6A03XsUwDCkmpHCi54CzG90s4toHnuUynYxYW2rieT1FIbt+4SblaJcsznnnmaSqVEr7n8L03fkS1VqbVbrC7e0CrtYCma2w9ukur0yBJI2r1CpAzGJ6QZjMs20U3dOIkptVuUSoHaJqKkuid9Kk3W2xvbfPtv/42ju3xwQdXeeedd2i1W9TrdQxDBdzrugqof/edv8EPPHzPxTAUwTbPC44Oe/zx//PHnF1b5ai3j2YWGDIgHEpM3SSKI+J4huc5eK4/P5CNWFxcpFarcvnyZZACy7a4+vOr7OzscO7cWaDAsm1WVs6wsLBApVLmzp27tFqNOcERXvvSawoo5TgIUTCbTikKmEynRFFEHMe4nk8Yzjg43Gdvf5dqtcJwNOT05JQzZ85gWgYXLlzg6aefQdd04jhiaamLa2s0m02yLGd//5Bmq83e3h6eXyJNFDVU0/QnES/93gghVPbpNAwxTQ/HtwnKHkKog44Qit5nGAoY0Ki3GY4Gc2mY5LR/QqfT4WDvAKlpVKpVTMtUBbiU7G7u8uMfv8n6+jrdxS7NVpOiUB8G/X5f5UFqOjnqxpllGZqQUBS8/7Ofsbq6piib7Q65cU91TaM1pJCc9Hp0F7pEUYSu6/zgBz/g5KRHtVrhhz/8IYuOjzW7QfoMfOtanzTL+Iu//Ev+6T//xyAKLMsmywt0w+aNN75Llhf0etssr3SZRVMWum0qlYBZNEEUgoPDQ7IsJ80ytrd3qNUbHO7vzQ/5GWE45eHDdSrVMiBJ0pRmq8WFCxcA+Oa3voUtNc6fP8+jzUdUazWGwyGe75HnOYHrMByO+PHbP6G7tMT1659w6amLZFmOZVnzQ2VGs9lSh2dNUiqXiMIZCDBMEyF15eHNMzRNp9VqYVk2R8c9ms0WcRRTUHB0fEy1UmU6mWDoBrValSgKcV2fLBUcHh6ia5KNjS2SJKUoCjrtjspvlBoL3SVOT0+xLBNdSnZ2dzl77jzVSoWzZ9cIAl+RI02dOJ6RxKk6mCQxN65fZxbO6PVOuXXrFvVamSwruHbtY6rVCqtrq0BG8Bf7eA8iiitNfK9MtdZASpOjwwPK1Qq247C/f0C1WlPf1/ENMiPAuPA1ao0u167dpz8aUa2VkFI1Hx4XnHmzhv2NH7FrSQzbwbGV/1A3NNXMSTKu37jBw4ePmIZTnrp4Ccs0SdKYeqOBphtEiYICaVIHoei3AJcvXyZJEgxdR9PV6+VzgA2gQF+6DmhoulIaiCIHCqTgCdkYinmOtMT3PcQ83kYKMf+7jCSKmUURSZJhmBblcpV3332Pza1tnn/+aYKgQuCXOe4dkqQRrusTziZzUihzCZfEMHR830U3JEmi/PemqXymaZZh28qPK+ZS3jhO5vcEJSN2PedJPJFhGBhSkGQ5pq1k/yozVt0zCgpEAbduXedgdwvL0jE0mMxmhNMZoJFlCkAlJGiaamzMwpBv//Vfc+HCBTzPYzYLsS0LAWiaRKCk3Kf9YzQpVYNBV80hqUsFQROKHp2lOQcHh1i2ijY6Ojigd3JKt9vFsV0KAUHg88VXXuXh+jrVaoWtzS0M02Bj4xGaphNOpziOiXEywKyWKb30LEIzKZXK9Ld3sb/zE9ILq7gDpVoIW4I0hmTiYdsW49EQKeDpKy8QBB6OY5IXStpuGAbTyZRwGiqIm2UzmYyZjMdYtkWj3iAoBRimTSEkcZZz58YNNje36C51EVIwHI6xLQeR5kymIyVf1zSiWcJ0OsazHdBUfFCRi3kmqkaR/cIPrWnqWnzcgEyTGVmasrW1i+O6mLqusqE1nSiOQTCn0RfEUYQ5nCJmEfG/+grhbMozzzzDNIrnfZpff+b6dcXr4+mQOjwbaCTqMC01XFtnPNzG2Vwi8XY5e/5ZMmlQqVSYTkN+fvUav/Mfv8qjjW2Oevu02x6GrnHp/CqGbVEOPOI4RNcleQF5DprMSdIM17bRDRPDtJhMIlzHJJzGKhIry5AyR5ATlAqCIGd5uUylYrGz9Yj3f3aD6WhKODmh225hGRKdgo31B5xZWsI0cw62p/zw+19HyxPWb2+yvOhz5UqVWgXOrtaolkwC10AjV3s1S+Z7RMO0TIQUeK4OIiHJYkCjWqvRbNXIiwghdcbjkCSFoNZBGAFJYfDg3n3CaILn69iOYDqdoGka7Y7H8fERhm5yfHiMbViYuoEUObpio5FnGQqAKeYEdLDdCg8eHjIcT3n2+adYXlqhVCphGMoHHkWRisESgq3NHZVd7vtomsabP36Taq1OqVJD6hrlWoVLly+xsnqGwXjE3v4eN2/dpt5sYtoOUZJSb7aoVHwm0xH1RhXHs1heWcSydUqlKoZhE4Yzbty4gef5vPfee9y9dZvjvQ3qFZOVrs2l821cK8PQcgSCo4NDLMtEyBxNz0HGiMJDShOEhhDQbJYpVQzSOCZJc7IcRYKXMBpOaXcaiAJmswzX9zhzZolWvU7sTBg2TrAv6mRHBUZi8X9s/K/8t//mv+PgsM+d6++zs/0AihndlVXa7QU6Z849IY1/ms796R7QL8vpf+Ff/fTjP1t8fnrS+mlv7edNXj+9fuWU9tesoiiUzPk31GOfXv9BF6+/zfr3tXgFeMzsKwRP4gzu3rlDUQhu37rPmcUlxI37RK0aH3/0EdeuXeXihYtQwIc//1BBSPKMrZ1tXMuh3x+S5Rmnp8eE4ZTpdEZ3YYHpdMLJyQmOp6IpRqMJge8yHI1Y7HYZT8b0To4o+R5n1s7T6tSxbJPhaEy92iCcTpAiQ9cURTRJUg6PjrBtk2qtguMqYIiuaQwGfaSQ2I6NJg2CUpliPj26dPESmiZ59tnn+fiTa+zsbHHu/Nr8cCW58cl1Bv1TBAWddovxeEKeQ5aB6/nous7CQpvl5UVsy8KWDUY9Nf2xbYdPPvmYWqWMPY+M+fqffZ0XXnzhSTzFZDpla2eLIAiolKtMpyHdhQ5xouJSPNen3x/wxhtvcOWZZ7BtS+WZ2Rae78277qpInoVqKiKlwLJMDN1ASoOf/vQdXnrxBQxTSQArlQqe65FmGZohyXPldSgKsEydk5MjdK2g3mzR7485d+4CBRLDNHB8j0LAn//Zv6NarhB4HkWeYpqeypGtlYjjBCktEDmz2QTDsJW0Ly/Y3dnBtm3W19fxfI9ypUySpIwn43mEkqMmnVKiGTqjyZj9nV0qpTLT6YwkTbj8zGU6ix00Afu7O2jzHEXHdrAsi5PTU/z55FRKnfF4DHmBYVqEs5hHmzvo3gaBHxBYLzAajOgdHTEdjYizRB0GxyNe/sIXmEUzrjzzNPrrbzP5F+fpc8jGcc5Xv/oVAt8jCFzef+89jo56KpIiK3jrx29x7txZlpc7DAYDGo2miqMwdPIsRwqNwWBEvV7nB9/7oZJHAw/u32FpflgsVyr0+31s28G23PkESx3aTcOk2Wiy9XAdwzTxSwGu7xF4AZsbG1SrVQ4P9onTlFqtzkK3y9LyEpom5pJPlcOp69p8SqdAWkWWkySRgqiYJlLTEHnG3Tt3qdWqTzry1WqNu7du4zg2hm1Tq9UQUrC/u0+lXAZRMBwNcF0fcl1l3noOrXYbw1Betq3tLaQU7O7uEGcqc3U0GKDpOlvbu1y8dBld5liWiRSC034fIQSWaeIHJX784x+zurpGu91CSsnly5dZXFxUFEqvxLVrH/Hyyy/jeTZFnlLZLBiPJzwKVJSU4zpzUNZDlpeXyQsVs+W5LnlWoPVvkwibhd/9L7h18yGPHh3yNz95m1d+52UsU8W7qOtco7BN9I9u41bL6OWyirIxTOUPQx0QPD9ga1uRI5955ik0qeSnlWptfq0rSi+FggTNwhDTNBmORk/APXleIOdUXE0qmb9AqLggw1BZicwLV5QELEkUCThNFbBIm98vEXIO0lDRHuogIJCakp8nSa4iZYRBkmQMTo9YWV5jNJ7gBzampZMmxacKBw3bcsmyTPkyDX0OUzGfTKmHgzGW5TAejTFMnaJQgB7TssjzgoIE0zKZzcInU2iBxsH+Ln65hBAao3luqaapTNIomqFJSavVQtcktWpVEbADH4GgXK6pnx0Ze3u7BIGSho8nY9595x0uXryI53pzAJiaEKtopAJd19D1gsAvPZF2U8yhTBRz666SZxumxTe/8Q1eeOEFdvf2eOutt3nllVcIZyGObVLk6uciJHPfoIpjazab/PH//Sd8cv1jvvSl1xDDMUWzxvrcz20aOtHRKe53f8pkuY19MmQ6HTMzO3jGotqjQtLvn+J5LnGUqUN/HDKZjCkyBa/TdQVOunfvAY82HnF6cgIIOt0lNZmVKh88TVPVQMkFaZYSlEp4ns/O9i6u45HMEk5PezieTRxnDPpjAk9RytHUvaR3eIptWfNJao4mdRVrZpiE4YzpZEoBzCYjNh5tkheSVqtDnhU8eHAP3/exzMdk6oJ79+7RWVigOOghRxPG//w1CnIWFxfJhfJE/n2K11+avEqJpgJukbrNeDTipLdD48ZLTIxHOJUGphMwGA9xbYeF7gLTqYqIC8MphtRxTBPXk5iWyWQ0wA8cBRtDYLsuulBRQ9NpyHA0YTqZYdkBQqi9qRsS01BWD3U/UFBFUeQYusC11X7yXJPppMewv8+of4jvGpz2DggnAx6t32RzfRvXibhwbpWth+v4XsaZFR/yGUUeo+tC/Z6E2kvMYZNJkqh8ZgFFkSLmygnT8onjBF0vME3JOExwgzqaFYDmkqQC07SxLJ1OewEhlbLOsSwMTac/7mPoLgcHPX7y1k9Y7HZI4hDPMihICMMxru2TRDmmacwjqQwOj04xjBL1eovFxQWGoxGWZeP7nmoWHR1RrSkoaKfdBSkwLZM4jmk1W8qjur+PY5tYlsFg2CdOItYf3Ofll7/A8soyP/vZe3OuwtnHVwzD0UiB2kwDw9QZDPskYc7h4TGtdhtd17lx4zp3bt1EFAXPXGzTbrrUKhqWrqwdRVGQpznVak3F2AFZliJ1gRAumaJ6oesaUTTB80w0w2Y6zebXRMFw0KNZb1AOXJWRLg2yPHsyoe52l8iFqjrlgYXMdI6vbPLqq6/ywc9v8NM3v0O3HVAJHCr1Fs899xJuo/Mkd/vxHhBCwOcUr8VnttdnJ63wt7NWf+l1f+mLv3ar/p3W48+J33b9Q/H6G9a/z8WrwmuoizUvCpI4YbHbpRx00AwL07Kwv/4deO4SC+0OK0sr80xHl5WVVeWPNCyCcpkojBmPpsxmEy49dY7ReES322U6jnj3Z+/y1OWnODnpYzseWQr1qk+9Vcc0DfzAZWlxgZPjIyqNFv3BMQUZtqW68luPNmg125imh67ZGLpDEufYjkscJYzGQ/xATQmrlRpppjyerl8mmvtpSpUSeZ5Tr9UwLYsXX3wWP3DodjsUhZpu3r97n5XlZVZXz3B83GOhu4zr+OiaS5JEaHqOaalpgxQWhuFguQau4xJFET/43vehKAhKHtVmixdeehHX83B9D6lpnA76XLt6laeeehrXcbEtG0PXOTnt4Xk+k8kUwzBZW1tlNBpRrZSJszHb25vUajWkpvIKDdMkTVKElFiWyXHviChKcT2fhYVFwtmE09MTSqWAR482kVLD93zSQsletre25zmsCYHv4Hg2o/GUKM4olatkWYFp209ougudBTrNJpPRgM2Nh5iGj9TAsiW9Xp9KpYXQCpA5ElXATCeT+fVhYNsWUZ5gOQ5e4KGZFq4fkKQ5YTjBK/kgBK7tIIGtjUd4pTLLK8tUG1VOT3sYmqRRUY0I13GVlC9NsW0HpMpaNQwLcsFCdwE/CFheXlVFcrCNphvsPHBo1Or4jk00nbB4do2igIVuF83QuH//Pp1JTHh8ivF7JnFhcGN9l2ajQq2qomgo4IXnXqBSqbKx/gjP87nyzBUmoymd9hJ37j6gXmsTRxlSqIzJ8XiCa9sMBwPajTq7m5t84Ysv0esdc9ofMByNWFs7i5Q6UZQwnkyIkoT/64/+iJe/8Aq9Xo/zZ1eRmqRcqRDHCaUg4Hj/kDSOiaKQy08/Q7VWR9P1+QQs4YP3PmR1dYXjY5XfOh5N2NnexbE9bt+6TTidsLTUVQVPlmJKjVIQoGs6QtMopMRyHCb9AZVaTfkQNcEsnHHj+nVWFpcZT4cEpQBdN0nigsODQ5IkYjDo43seb775I55++hJZmnLhwjl6wwFr59ZwHQdNM+guLRNnBZaRsbW1yclpn8FgSKfd4d69B0jNoNlsY5o6BQXrD9bn5NKQerNOmhR0Ogvs7e6w0G4Rz0K8jRjLMrnnHNBd7CC0gjid4VgBSIlhmvPJpKamkb0bmEENbe01GtVFzp97jhdfepqUjCiK51RvdeDTdR3j2h3ykz55s048i5FCY+PhI1qtNqapYVoWvZMTXn7xRRzTQBOC1kKHSRhiuQ5JkjILZ2hCIDQxnxSq+BnTMFAlkpoIFnOKqZh/VXnpMhApRZ4SJxGT8RjbtpCaOT+kyPmUIn5SvM4i9TjTNOaHmILJNOLrf/bnVKt1SqUK+wdHvPPOz/A8yZmV80hp0B8dEYZDSqX6PFrGnDdFcqQmQOQUpGjSUhJnVWJjWjZ5pui4ck7Bftyg0XWDPJ8RJxGO7c4nhjZ5JijVAvJCNU5s20GXGrLIyCRPInpMQyk09vf2cRwH13cpBRWKQkMgKUROueyTZeow5TgOzz/3HNVqVU1t5k0GFfuhPbFvFKQkaTYvpJR9Ik5T9X0ioFDe1yRO2djYACG5eOkyV648qz7HPJfD/R1MQ0XuBKUAIaBerxHHMUkSEwQVvvjFVzFNHfN0RCgkzhe/jG2nfPeN16lIHfM7P+F2HtEulMfZWGyQFiA1FWnkODZIjb/8d39Fs1nDc22kQMUxGSZhPEKTSuY7Hk14+PARgR9gBxXSVBWIeZZTqVQRAhyvRKfbVRPxvOCdn7zLreu3CDyfcrlEUPLRdZvvvv5DfvyjHxJHMSurK2RxwfvvfcDVD35Oo14jnIzY2tqm1WwSzWY82tiAAsbDEa1mg1q9xdtvv0O7vcAsDOkuLACq6fGYWFxvNDB0HfHedYr//J9x1AoYDPusrKwwFxr/xjOX9kqC9kpC8c031Tnnc4pXhEBT2UmEqcAyfZqtKpO/OWEwOuWT9TtUmgt4nstg0Md1Hf7kj7/Onfs30TSf2cjg/t07rKx4atJGgpQqo9YwLKIkJYsLQGXZmpaD4wZMw5SH64ekeUacDNENgW3aSGkhsIjCHNcuYRoCKRO6i1UWOj6thoNtJawsVzD0GNtKaTVcuq0yKys22w8PqFVtllck7WYNkeTYloPv+diOTU5BnCXkhcB2PbKsIEtSLEvHNHTyXJGFKTSyVJBnEEVTbMeg0HyGsUa5uYxmBtimjSkkD9YfMJ0k2HaJclChSDNOjk9odc6xs3tKHEO/f8zScpN6wyYJE7J8RkGCFCa2FZCmMSJX9gjTsgmjnLt319nfP2b5zDKe5/Hnf/4XVCoVlpaWiKOYjz66RrPdIc1S8kKpmmrVOrpmcLx/RLVSQdc0LMskcD1Wz6widZUf32w2WFpcIooiTk9PyTONq9c+ZmVlFV23yHN1n50OYk5P+8xmMz7++GM6rSb7O9v846/+I9r1CN/JIRuTpTPiKMNxSpiO+v2DhpAWmrQxzRLCSBBS4LguohCIPCcOZ8SFxs0bG4xHCfVaCcvMKfkKmOY6JgiLKImRUrK0uEK1Wse0laLE6QfIVFL+VyY5OZ/cfEgW9WjWLPJ0zNbuAc3WIsuXrmCa5i/tgb9P8fqYKPzp4vVzVaqfs1X/v0Bv/6F4/RXr84tX1dn+7H+P6Yi/6of+9yURf3p92gT92df8TcXr48f9IrBXezLaf4w5zyme8C2kEErKZhroWsH2zjad8+eR//ufkl44i3BdLMtDMzR0EwxTMBwPMS2XzUc7/Py9d3jtd16hVArY3zskT1RhcuPmTS49dZFOp0ngucgiQ5cFlhMQRQlJknLv7n0a9SbTMCaezjg57qHpAiFzTANMXRBpBuHwiOHxFu1Og0IooEm1UsJxXfZ21rEMME2dLC/QTJs8j5nNRhSpIJmByFUkwXjaJ89zFrpdDMOiEBoFUK56NJoNkhRO+yOmoQrazqSG0HWENLEtFyiYTHqMoz0czyAcqyLqzNoq7W4L2zUppIWhG+hCR+QQjgZUApdLl55FgMpnDTyiKML3A27dXOf111/n/IWzNFs1HMdG001G0xmO4zIeDXEsE93QyXKBzKeIXOVoSU2nWq0gyLh35ya1VhtTl/QOdvFdk8logmU7SNND1wz6/T6WaRH4ZSgk0rDRDRs/CBCaYDwZkaQxpCmWbuI5LlmW4jgWuimp1jxO+yfYbhnXr1AUGWQpBjqTaYKpGbiu8kbv7+7ys3ff4emnnmd/Z5fpcEzguqRxys7WDvVGBU1KDCmIwim7W1ssdNtIQxW6QmRYtkGcxkRppujCoCBUcz9anudMxhMs3UTXYRbNsG1bdbktFyNvcLxtcXw4QrcMKq06mS7QCxvHsRlPBliWQTydUnn/Fnf/yWuUq/dIrRpPv/RF/FIN168gNQPH84kz1Ti4v36f3/3y73JwtI9l2Mo/mhc4tsPGww0q5QoFsLm1RbPdobu4hGZYtLuLROGMR+sbXDh3julkSrlSIckKikQSTidoElbXuviBzcnpEY1KTU34opRms0O/32c86tM7OSIrdJqtFsxje457J9i2TaVawrSV1NEwTIoip98/pdIoY9k2XilAt6QCSQmXeJIxGp3iByZZOiVLMjRh4ZY8TNtCGCpzMwpDFjvd+aQtwDYdiiKj3+9zfNTjJ2+/x+pyE9syWDt7hsOjQ7zAoz8aIpIcTWp8eO0qK2tnsAyd7Y2HmNUK5XKNsuvT7/Wo1+vkmqDdquF6NseHJxzsH9Nd6FKu+Hi+g21ZbG6uM5kOOH/hLHmRMwlDShtqguC82sUwTeIwZXAyptqqcPfWbeqlCjub23Q6XfaPjrHH9zDcKqG+SGroDERBJbAIRA5pTJFEaEJHaFBIHZGm2LfWmdV9Njce8I1v/Dm/89or6mdTaEzGIc9euUIwl7MhBHsHQzSpU2QZ/V6PLE6Zjmc4tqFkwhQICoo8RdcgzSSGIUnSECnVQUGTJnkmKNKcIgUKiWO7TKYhrueCVL5YFVUj0HQdzTCeSHJt236ScZoXcLC3w6OHD5Xk1XWIs4Tt3W2evXwF23WxbIM8HEGaYLouaaIm+f3hAZZloGk2QmhMZyGyiLAsnSxNoIAsTSmyFKGpCU+WFnPfJORFgqa56JqK99B1XeXPaoI8TxS5WJpoQjUZCpFgaY6aTGXJfBIb4XguXlBmMp0hhMq9VX5XdT8XeYYmBHmWEkUhea6ydnMhEY8nqkIgdUlOgSFNDMMBYYFQmbkiTRGGavNKiQIASsl33nidtTNnaTZrGKbOSe8IIQtK5RKzKMTzymQpqBax5PDwCN/3MaTANHQ8xwFN4l67zcNnnsKv11lcPoeVm/jf+wnZUxcJxqGiM9frzKIQ17ZIkghdt5mFMZeeuowQKb3jHaJwgqHrOLYHWcZ0FFKv1KlX69SqVXzP582fvE2exCwtdKl2mhiWycn+AYIEx1QTY4Rg92CfG7du0qoHNFtNTMdnGkecPbfKyfERtUqFheVFClGg65LpNCScxZQrDdJcFaBhFLK0tKjgW+SUazVm0QxNL6hUff7mp2+xunaGXOQYlk2SZqRJSpZGSJGh3dmG3/8X6GcW6Q9O6SwukgoohIb8LY9Vj4tX7V9+9Vf694yiIBM6OTqaEJhCTcw3P7jFNJzRH2+QxzaiKFFpl4nFmMnRmKefeZbllRU+ufFzFpcXKJUbpNEjdK1QLAihY9oeCB3HEsyiiKKAOIqwTJ0kGlNuVZjOZqyeOYvr2uTFjMlkgCYdSpWAWTIhKxKEJimKFClyZBHj2AZ5mqivyRxdT8mLCDKDu7d38TyNdqdBLmcY0ka3JbM0JE4i8qxAZAbTscD3S/R6+1i2PlcghOgiw7E8ZlFKodlolofu1ilEwMlY0uycwbIDjg4PECIny2eMpikra8tYjkmW55ycTvj4+h3Wzp6lUjbodgMadYdavYwQJmQCtBm67kJmUjBAFBm5pe4vlu5xsLfNZNqn0E12Hg7w/TIvvPIcTqDuAbbh8vD2JmfOLLG/c8Tmww3Kvo9tGZiWi2VJDvb3uf7xRywtLzCLYjY3T6k3FvaUBhEAACAASURBVDg+GhDFGaNxiO0G2I6H0E8xNA/bsbh27QNqlS6z2YBJovPw4Qa3Pv6I08MdmmWTKOzR7ZbR0wmWbZFkAterQQGGnmHZ7lxtkSNFRlEkCJGhS5ciLRQYT9cV6VrTGccW7/xsi06rTaWmpNeWHqA7LtFsQq3iMYsTdo4mnD/3FJVyZe7L1zGObbTM4H+6+j/y8Uc3+PZ3vsWlrs/zZxc5ePSQKLf4Z7/3+9QXuggJuqbOxjlCNcIEKl5vfi8U8z9/1lH+edycx9LhxxPdNE3/Nkztc/bqZ4vdJxJlNEAxE4riccGqGqK/7j39qvUfdPGqIBBqfZ7R+bPrt/HJ/l3W50Xd5NduISoB2lde/bXP/XR20+Ni+HHn5PPeYxYn+H7ANMswbz2kOO1zr3+K7/mYpoGua+zv7eH7JUzTJo5iGvUqUkpu3LzJxUsXsR2HZqvNyuoquqZx8+YNHNfl9OSEaq3G9s4e3/7Ot7l69RrPPnuF6XSiMuQKQaPVQEpBo96g1zshLwSlWhNLSqJpSJrDaDqlXq8yGJwgNRvHUpPix1l+rhuQZ4pCCZI4Srl9+yb9fo/FpSWyLMOy5lmtQsl+bMtiOpny4Yc/x/c92u2WgoSYCVIWaFIyGc/QNQtd9zDbB2TGKWJaJ8+g3x8oGqxpIqSS5uZZzk/efotarcrB4QFhmBCGClAipUaaqsmO43pUaxUWl7rMZjOyPMd2HBzXwXVshoMh1WpVkUoNg+lgQBzHaIaFbhhMwwjPD2i3FygyyWQyZqHTxnU9/FKZze0dSp7LbDrl44+uUalUEAJ2dncxHQVh0XQFUJlMJjiuCo7XdJ3NzU2qtTqT6Rjd0BkOBpTLNeIkxfcDsiwhiSJ0TWc8GrK/v4tuaAyGAzoLC1y8eJEPP/yQH/7w++i6ZGlpke//4Aesrz/g8pVnMHSDu/fuUalWMUyTcKaKTpX7qm6KpmFj2x5SgmEY6JrxpJuoaer3V2QqK1IIJWspCkGcJLz1o3fx/AaLyytUq1WSOCbwfBUur+sU5Fz9+TUuSpekd0r+3/8+9vofU37qa+QIojji/r37PLh3l1aziWWaHOzvsbS0iCYlzUYDx3HI84xZNKMoch48uE+/f0p7oU29XsMwdCXf1RRcxjR0XM/l3Xff4eKlS/ROTrl79x6dVosbNz7m7Lk1siwlCMpUKlWyOGY8meK4rpIk5xlLi+payYXED3yuXvuQVqvFSe+YaqWi4iakhm07vP/e+9RrdSaTCceHx6wsr0KRE0UTbNsmSwrC6QjbNtne2aVcrjKZhE881lmWKnpmAZ7r0Tvucf/+fabTCUIWTCYjarUqlWqVWq3GmTNLTMOQLFcTHst2MHSDSqmK1HXanQXSVGV/tpsthC6ZDEdsPXrEweEBrYUFas068SxkPJ5QrlQJgoCNRxv4vqf2pW4+kdjeu3cf13WxbRv3wUxBUy6X2Xj4iPsPHqJpBqWSx7WrH7HQ7nDz1k1a7Y7y5PVvURgl3rofUessIUyf/kmPwPO4c/cew/GU1kIXqesgNLTtA7Srt5Bnl2m2WqyeOYPjuAomoml4rs0snDIdT0iSmHv373H9xm12d7d5+eUXSNMEwzT406//Ke+881N+93e/RJZlZJnK0u71TvD8EkWRk2apum8LSZ4J4jjhf/5f/i1XrlxRE1ZN4Pm+ajahCKcClM8wTXlibBIqbkdqGmmmipTRcMxrX/oStVqdNMsIp2M+/PmHPH3xAtW6muKLQvmlvaCCxETTUfJsBAIdhEDXBFmSkibpPJc2x7IMTk56SM1gFsbzPM9k/j3q84lyTpKmqtlkWaRpRr/fw3E8QKPIi/nUc54pKyRJHBPHkZJZDwbEcYTjeIRhRLPZJssLxuOR8v4WyqrhOI6SA+oGw9EYqRlomq78llH8ZKoNOVLXlI9eExSkIHLVDBUSKTWyNEVD0qzXWTuzgmEpj/Hh4SHvv/ce7Vab4XCM6/romq4o+qaJ77vzaW9IFIXs7G0Sz6aUTyf8bMmg7Hv4roUYjUi//h1e37jPotSZTCYUV/rY9ZDJoYltuwxHY2UZKTLi2QTPMahW6wihM5qE5MTohgJzPdxYp9Nt4/k2V55/gWa9SZZm+OUAioLDvX3eevttzpxZ5fr1GywuLnJmdYXXXnuNdqPG5tYmpqPeexqnfHLtI9ZW1zgZDPC9Es16k5UzZ2g2mty+c5t2q42ma5yc9vADD9dx8TxfydSFpNloYtuOklE3GuiGySxKMDQDTZNYtg5RjHzvOuIPfg8qNpapUylVyDKQmoEQv10W5ZPJ67/8yq/8e4mCKT05z2UJhiYZb+3Q3PsiQ+shSapxcNAjzjMODg558dnniTJ1PT+4c4vFdg2KkIpXRQoLz/VI0oQ0TxCyIIlnmJbKg9V1E8exiaKINC1o1JokUYRlGYxGQ+K4wHE0wnCErguSeYPL0BwoDAxNNUJsyyHNCjShoUnlI82znEuXVqhWXaSeUxQZmhZRFAH7uzPu3z3AdwNsJyGNY6RICQIXQzegMEhTDcPxSAsDL2iQFga2W8H1q1iOj+0EOJ5HUSgQnuf5bG3tcGbtPGEYkucZlqmotufPnqUQYx7c254DqBw0CUKfKMK0jLCtEuE0xbAUbX0aDjG1giILqZYdLl1cY/PhLrOoj9RivEBBMyeTKcdHh5w/v8okmbLQ7bDQbaCZKVLLmEyGiHmM1qVLlzFtA8uxaS+0OT3ax7F1bt38mPX7d+l2mpg6xAmU/DZpnLLx8C55DFmScOP6R2zcv8lT59ssdct0mh79/iFrq0toYkqShUhdqvOILEjzKXGcz7kDPCnsskz50fNCRckkifJZJ0mKaVn0ewcsdtuYZoqQOf1+SJTpcwWKzmFvxOHJBM92CCcjprMpBweHdPJFSCU/s3/I1772VW7evsV/9PLTDHu7ZMkMO2iwf9znlS9/BalrFLkqmJV6uZgzEH6xnjR4PrNPPlt/fNbz+ri++LSn9hdP+M379PFrSimfjH0/XbN83nN+0/qH4nW+/v8oXh8Xnp8dzwNoX3n171S4Pg6Yfjzu/3Xvz3Yckjjl6tVr1Cs1rB+9i/nsZSxbBco/BnN4rk8+Bwr1jo8ZDIf4vj/3XyVITbC1vU2j0WBhoc1woPI9Z+GMZqvD2toqq6tnKJfLTCZjyuUy6w8f0usdE0cRtuUwHIaMxxG25yMz5S+L0gzHCxDkOI5JGOYqjmIWY5g2jq1uylIzeLj+gMl4iuf6LCw0qdZ84jjFtmyEVFlmcZoghWRvb49qtcby0rKCE2kapmny6OEtqpUq/dMBjx7tYNkeUZxiVkbkWcIf/W+vs7u9y/qDdTzHxzJtxFy6l2cprZYicdbrdQzTplwuYRgGh4eHDAZ9yuUyluvQ7rRI80xRMAueREYICirlMuPxmHAakheCjz68yiyKabXaOI5LISVZDnuHx7z30/f58IOfc/HSRbygxGQypVQqkcdTDE2ytnaGeq0GUtBdXFKyadS0RAiBrmkYuo7pqAK73myiGTqWbaObBgIlnwOwLQvLMEmSGN0wIIuoVstMwxC/FKDP8fKrZ1a4cP4s7U6LwaDP+sMHfPF3vkiUZMxmEQtdFWovhMTzfQzT5MaNG5RKFfIcbty4Q+CXGQ4HmIalruk5rCkvMlRAe4xtO0RRxHA45tat23TaHUrlMp2FLo7j8oPvfZ9ut8uH73/AypllhATDsuh2u+hvfcDsv/7X+PUNkuEOsbOI6zjEccLq6hlm05BGo0GWqoxdTUoMXaPIc0xLZzQeEsczjntHPP/Cc9QbNaQo0KRQsr5ZyMHBHrVahfsPHuD5PoHvEwQlXE8FtrfbNSqVEkWhQD66bqFpJhubG/ilEo7nUsCTiV610aDWqGM7poLnuA6VUglNSrZ39tGkRhIl/PW3/ppXXnmVPM2YTibcvX2Peq3B7u4mo+GAWRgxHveo1upUyg3293uUK2U0Q7D58OHc36oO+Vmm/OealNSaZYKSi+2Y/PSdv2FleQk/cPjWX3+b5154AdtyeLC+rgrwLMOyHN788Vt8/3vf42D/4AmUShQ5p70ek/EYLwiotRropsne9g5Xr15lbW0NTVOS/d3dXabTkMPDY0zTwvN8zp8/x3A4wvcDnLtT1aC70sBxXN5662129/b4whdepF6rEScJuqEzGAzJi5xKvo/VfIr/4d/+KV/92ldY6C5Tr7cZjyc0W23qzRb54+gLIG3UcP/kdaILS5iWhWWq5o/jOOw+esAsnFKfU5JVVJFDuRLw2muvIoSi7FYqZS5dushLL7/4C5qxoYopz/NJswwpmcfqqLmsarQJXnrpRer12tzLrM+lwjpCKHCZnPMLoihS006hsk7V/6v7vtQ0/FIZw7JUVI0UFFnG4d4eL73wHJph0euf0qxX0YRgGiXomqmmwUk4P6Cpe0CaJ7i2N2/GpTiuTb9/imEapKngD//w/yTPYXV1FcMwnsRa5XlGNFPQGl1TEVD23OOniOdCRakkMVmWKR/v3K+pPsNgMhmRpYK9/UN8v0SWg2lZgEQIHd00leJXqG6+ZXtKOQVkmVIBKDm2JI4VvErMfYFCKlm3gfFkap4lMZBRrQRoWoFuWGpCgKDfV5736XRGrVbh8OgY13M5OTlhPB7jOBZFViA0cBwLv1LC3thn7T/7p5xOT/Btg/W336F19T7ey89ywS/j+z6b+g6loISVdZhMQ4pC8I1vfJNXX3yWaDbh9OSEZrONbjrESYbvB4pbYJi02m3G0xGGqYEwsE0L17HJpZKr60IihEGn3cGyLbI84+S0h2UZ5HlMmme02wuA4Hvf+wFf/vKXqdXrVOtNRsMRjzYeMRj0ee+996jVqty+fYcLF88xC0PlFBaSWahAUpNpqBquuq4+j/KCLFfEbHNOqtY0QT4ak9/dZPZv/hO2Nx6wuNBBl7qa3OVCWVR+zUr/1Ca/oaN9yUE8dxGx2v2Vj/t08SqEQCNHUnBr632Wbn8Z6+wxg/4J5y9e5Nz5Z9CkyWm/RxSHLHTavPzcFSplhzQZc/XDmwSlANOUZHmC1AoVuSbEpyBWkvFkrICSSI72D+mf9jFMneksYjLN8G0TTRqKRGyYmKZNluZUyhUmk8ETcrxlW0+mUqauoekFiBmgvPmeVyKMB6Sph67V2N87wXIMyhWl3kqLDKQNms84NJnMTB5s7tBaWKPQXCy3BprL3uEpuuliOy6zMCKfe/xv3bxLs9nFsG0ODw9x5+Ttg7190iRBaDlL3TVEoWNbDpChG+ozMM0i7t3Z5+7tbTrdBkmWkeUOAh3DENh2ShJPWFtZo7PgYOoZ3/zmm2RpTr3epnd8RKNRxvTKSN0AkWDoguHgFM/1ePun77GzfcJJb0Sz3SBOY2ZxiK6ZnJyeYNsur7zyClJojIdjbt64zdajIx7cv8nyksPdWzc5OTgimuxy4WyL557p4jkxvluwstRCFzlhOEA3deIERcGXBZpMKZiDypKENE2J43jO41D+eV3X0TWNWRghhU6RT1lcaBMENrqhzutppvPDt64rGb8weLR9wKuvfZlR/xTftai3VAyiHpvImYb1T1J+8IPv8V/9wX9DEQ8Y9PbY3HxIbzTlX/+n/yWNlVU0Q0cKbX6uVErMz1YAf9fi9dN/FkI8yXn95Sf/2q0K8Euwp8dP+Ifi9bdcny8b/gVp65fX356E/hb/xt/p8Y8f++sK4V91IT1550Xx5GJ6XAD/yovrU49//BrKIB7y3Te+S/3KMzS+/h305UUK34EiJy9yTEPh8HVNx7ZtiqKgVqthmCbbu9ssLi3i+T7NVgsBGJbKlgunUx5tbuIFqhjzPJ8kiVlcXGQymaDpinTabjYpcrXR/vKvvkWcZDQbVU6Oj4mzguksotNu8GhjnXv3ttjZ3VG00XmHN81SkiSnVq0gpZI2Vasl+v0TypXqkxzC/mCAYarcSYpCeaaKAn3eMV9ff8iZ5TUkJnv7R7zxxndxPZtGs0pqHBBFEVFPZfklScLly5ep12vkFOjzjMFSUMIyLXq9Pm+8/l0uXLyIlJJPPvmYd975KS+++CK6IQmn4ZwKqqafrucq0q8UpElCFIaqsLNsPrn2Mds7O5y7cG4+PQTTtBmPJzSqdZ55+jInpyf4gY9p2+zu7jI4PUYIkEISpwnb2zsIIYmTiCJXZNpZFDEcDtnd3cXxXTRdJ8ty5fmTkqOjQ3TNII5iNfkRgiiaEccxcZJgGxrhdMYsjkBITEsdNKOZyjIzdI1yucSly5dxXY/ReEqpXMJxHLI0ZTAc4DrufOKkcmc1zeT9997n/PkL2I45z2hUendFeVV7YNgfYts2ILh58zbnz59TvtjKAwynz8E2bGxscOnCefI8ww98kjRV5GDNQPvkLn+oTXjmvGB0coDXPEtRFPRPT7Bdi06zTZok8wn8mHqtRpqm+K5LLgp0Q1OTSinQDW3ugwLmHrs0TTg8OKTT6eAFJcqlgI2NDRrNJkVR0GovIEhAQBzHjMYhnh9AAZZjz5UFIZPxiHKl/MTIACpPUwi4f+8eQgh81+HjT25yZnmFJE1YWlqiWa+zt7/PZDRk9cwaH3zwARcunJ3Lf23q9QpSGGQZ/MVffJNGo0657DM46RGUAtIkU74/qaR7QcmnXA44OjpkNBpy6dIlNF1jOBywvLLG6ckJtqN864amJoFJmrG4tMjx0RFPX35aRbYIQZFnvP7tb/O1r32NxeVloiQhyzN816XdXuDo6BBnPkmu19UE2XU9KpUyk8mUIPC5fv06i4uLRO/vous6x11FHJ9Mp7zyyiuMhqd0OgtYts3CwgKGplMuldFm+xRP/wFPvfQKT108S+/oiEqtw2g8wy+VlYdJ0xBoCCmQhob5Vz8me2qNfC5tElKSZzmOrWOZNsfHPYRUst7BcECn3VSyUXMO4xIqHienIIpjDNOEOZBJSgWvmV/iPJZN/SKSoJjLguWnDhpqDxTM43ekyk6kKDDmUvtirrbJ503NvCieBNif9I7RNI3uwgJROCao1lRMGQWWqROnOaZho0nBLJ6QJhmGYVNQYJoqOiuczTAsgyzPlbrAMtnbO+LunXv0Tk54/rnnMAydcDbF0EEiydKc05NT+v0+9XoNOQcxFLkq18ejEd5cPaNpEnIBQjVQ4ygiCDzu33/Em2++hW25LC0tkyQJ0TyWAlE8IRVrmk5RCExLn8vSHn8u5qp5IFUEUJKkc8+oIjuTqxieJE4wDA0hCvI8pdc7plJrEMcRnuuxuKh8o7VqnSSd4fs+/dMB3/rmt3j++ecwDI3hIKTTWWA8nuCXK0QPd/h/2XuvH8nONM3v933Hu/ARmRHpqrJ8kSyS3WSz3cy0MNPawY6gnZF0OTcCpF1A99KFgAX0B+hakFlgx+1ipw253dNuZ9oMe8imKfoiy2QVKyu9i8wMH8cfXXxR1exust1KAoSdAyQqUeGqzolzzve87/P+ntPFeWJfY21tjdUbmzj9Kd7VC+SlgLQcYLVUDq6RzGFZimD/1JNPIYuUfr+n4oxcjzTNuf9gg3KpSp5BEisQ19tvv43jeHi+Txon5FlGIWeRGHlBqVzmxRdfZHFpCc/3qNVrRFGEY1uzPGnlrtra3OLihYu4joPtuAyHQ1588e/Z2dnmyWvXuHDhAkVR0FnoUCr5CCkxDUtZUnWN9fvr1Ot1KGA4HKpOkFQdV+WWSUnTlGw8Rb+/i/Mv/is0CgLfx7AcCqFTCDGLsPrpGujnt+xFEyYC7b9pIlZ+Vrh+dE31C53XPMW0DL7/d3/HWS5RcsqM0n16/QGuV6NcrrG29gGXLp0ncD36pycMBsccdfdYOjPP7u46nU4DTZ916TNVeFFLKzG7L6iCT5Gr2Ujf82d2+YJKpQGpgaE7jEZjTNukKDKkDgUpQkCSRhTk6IbONIrU9QRddXo1gSIuWQh0cmGQZpJGq4HlGjiuheP6mEFAiom0ygi9xOZun5+8/j79YY9nn/siWaEhNZs4yXmwsc3cfIfhoE+vd4JtmeiajmlYVCoqLqxSLROHU4QQVMpl5ubmmE5y0iQkTka8+tqPkZqOLgM8x0LXJXs7A7Y3j1hemQck47DMxuYerucjtJQojcnSAseEwWDA5taA3umQg4MTHrtymf/wvW9z9eqzaBhMx2Msy0LkGg/u73L56jVM6XB+9TwnxwcEgTe7Bjh8//s/YmNzh0qlwXA45IObt4nCY04Pexzur/PYYy06cw1OjvZ55lOXaNY9LDPDNCDPI4TIcWwTTTfRDYck0djbPaZU8omjKUmqimxFoSzCpmmSZRlpGqPrKr7KME2KHNIkxbE0DF2SpYm6LhomWSY4Oh1CkdM77dM9nVAInZXFBRrVKuV6HYqCtEjIuoLupQ3+6q/+DXfurLFx9z16JwekaYQ0bJ781LOcvfoEOYWKDtM09R1Rd4yPnVv9uNLQw87oz9K6f1affKy2+DVmXj/62Y/ueB+je36dxuBHHaX/yYvXj99+c/H68Lm/TUf2V1UfflmV4uEX7qOksV+16aaBaVokacY7Nz5gJ01Y/clbHM/XMG2V0yeEYGtrG9/3GY2GNBstsizH9/0ZhVgtCIajEUIU3L27xvqDdRzH5ezqKg82tsiyVIW4NxtMpxPSNKXSaHDjvffIkph79+4hNZ2LV69w6fJFHMvg5PSUufYyluuRxBGOqapTumlQqZbpD/oEgUf3cJ/j0x71WpVer0cpKGPoOmkaIYTGdDLFtC18P8A0LRDw7ts36HTaWLaJFDAeT/ja177OU099lgKdSrnK6rmzLC3OY5pglEdEYcqlpc/Rmm9x4eIqjmcyHA3I0oKXX36JWrWCbhiMRlN6vT55ntNZaFMUsLq6ymOPXWU4HGEakiSKSJOMf/V//Ss2Hjzg6SevgRRoQsygUmrhaRgW5y5f4oknr2Ga2qMFTFGAaTr4tsHR8RGlahnbcRFIXMelNdekNxhRbzbpHh1TLpWpVCukSYLrugBkScrXvvZVdnd2OXdhFdMwZ3AnoADXcTjc69LrDzB1lftXq1SJ05SNjQ0c22UwGjGeTCmVyuRZxtHhIa7jUimXVeV9NntxdNRlaXFJGfbSBMsy2N/bUYtVKXn55Z/w4MEW58+dJygFlEqeitMwTIbDAZZlce/eGpVKmSgKWbt9h0ajyfHxKZ7n0WjUmUxGTMVPSIsTXvzeFn/8J/+MOA2pN2ocHp6QpjmlUoXXX32FhcMej//L/4Gj9/+cQppUOxfJC5VHZ1sGRaHOjThNFODIMh/lIgopSROVk1oul5FCqpu8rrO/t4fnekwnUyrlMtPJBLdcIo4iHNuZkYC12eI6Zmdnj83NbQK/hB8ESE1g2g4CGPTUd1qTksk0QtNNSFVmpa6pWAfN0OnPxKzn2nx47y6LCx2Gwz5hOGH13BKVSp35+QWCksdoNGZubgEpBYeHR5TKFaTQaM2rLNZaySOJYz64eYd2Z5G7a3dpt+cVLOyoSxCUaTRaHHePieKYVquJbrkUQsFyFGCqRJpmbGxtstBpc251FYqcZquJ0JRiObu6iuXYpHmGoWkK3rW5w507d3jssatMp2OGw4H6vHqTarVKUSiiq2mYtDvKxt2PemxkJ4i6Q6PRoDnXoFqv0j85xfU9TMtShRbbIY0T9PEG3pU/5CTJ2F1/l3rZ43QUMc0NBqMxXlCCGSwmyzKKLMf+xo9Izy4gZgsVCkiSFMd16PUHhFGE7/uPbLt7u9sYhoWhmfzkldfY3dujUqsBOe6Mlv1wHjVNczT9YYdUV6PMM/EqhJg5qwpFZJgJVmYwqaJQ4w3FjKicZhkCofaRZZEmCVKIGecgI0tVzImmq8/xPJ/AM0E3QepkSaQyfXUDUQj29rbxfEdRbTUbQcFw2MOybEXZlhoCwenpKWmS43k+y8vL/M4XvzizsipATH9wTJ4X9HsjXn/tOo1GA89zODg4wLFtpKaid2zH5vT0FCEFWZYzGYcIqZHECY6jYqDm5zuUgjKXr1xW7gBRMBqN+PDuh1QrJTStUCTch/tSpFDkM7uyQxiGfOWvv8rO9gbnzp5BEyp6SNd1kLPoobxAM9TxEUIwmYY0mi3WHzygd9pTkTWujSAnjMYYs+g413U5e/YMlmVSkFMu19SxsE1c10MbTnALg5PzC3SWz1BfPyTaPUBbaPHOjXfwKhXcxhTd0AlPLGzHQtdNwmjK1tY2P/zRj3j6U59mfX0T07ToLCyws7XF88//e3Z3d3nsymMUBfz4xR9z9fErDPsDppOQbu9UcRccD02XeJ4C2WS5AhhlaabAW6aNFMrtcOvWLS5dOoduaOwd7DKZjvnyH3wZIVSRwbIs3n7nHQ4PD1hcXOD4+ATH8Qj8Erdu3wYEm5vbfPvb3+FTn/o0L774ImfPrWIYOpPxENM0GA5G+CcT6J4y+q//c44OuzRaTTB0UiEopMoo/WVro4e0Ye3Z5BPXTOqM+ql4zbJM5Z9mCfd3NrgSXCPbMTlO7jAa9RlPIybTMdVKCc812dvZw/MCTMumUq8ynU5YXV0hSSZYpkkapySJmmMXUsNxXbK0UNFNYYznKkib6zloWoHj2uiaxrvv3Gd794CgVFKFrUSBDrOiQAgbzTAxLIcwytANl+EooT+KMOwSBS79YQrSA+mS5mWCahXNlhiOSanaRGoVYkxMu45uVjCdKqYd0Fla5qmnrpHlyt5MofZJpVxGlxLTMDk+3MGQKafdA7IsZjIZYxoGaRxSq9cASIuCAg3PKrN38AChR5w5s8RoGPLKyzfwHYs4GeG5Lo5tU64YOLbD2r197t9fx/MDWvN1hMgxDB1DFNi2y9LSGebm5jk96XL7g3dZXmjx3b/5Nmu3brB26wbzrTov/fgV1m7d5623X2N/Z5M7t96mXjUIxz2+9cK32No7ZNA74fzqCmu3ZsH2YwAAIABJREFUb3Dr/bfonx4w30ywpcOVi2fwvBHVisVcq4wlYxxbZxolaLqpxiiAOFaRQVGc0+uFbG3us7y8gNRSVXicNaoe2oeLosDQpUqIkJq6Bs9cBhTKhWIYEiE0JuMQ09CZb3eYb1VxbBvN0NncPkAUBatnz9Dt9XEclzwEo+/wE/kj/uAPvsy7777Hwd4DvvS7n2d78wGjMMH3yjz+mc8iZ2kDQoX7Ki3yc+fDrxKvDxtlDxk6HxWwn7j9mjOvP32PX+5q/VXbR23L/yheP3b7zcXrRw/WrwrZ/rjX/vwW/bf/M+k3foD+x3/wseL1o7Cnh5/7y+ZcP7rlAigEgR9wdvksHxYZk5+8wfTGTeJ5ZcV75513eeedd7l27Rp5nnNw2GU4GnH9+nVWVlZUvEQSIaWKrWk067Tn2yRJgmVZtFrzlMolTk9PiOOY6VRV7pJCoEtJyfcZDQdce/ppFXujaeiy4PVXX+PGzTUuX32c3vERuiaYby/SbDUZjUfUqhXyLOWFF77O3PwClqVzeNRlf++Q9vz8o8q1NrPGhjNrXZImfOOFb3J8fILvu4zGY6rVGk88cY2clCSJZvmFOp7tqU6X1yNJM8x0njSPQWYkaUQYTQiCCmfOrFAKAgoKNh5ssbCwpMRAraZAJEWOrmuMRkOG/WM810OTOlmS89xzn8EyTQ6Pu+SZmg2cjiesrd2l1mgiTZ0sTxGziAVNaKRJpmAnIqHRrKtcuVk0xUn3hChN8YLgke3WtEw1g0lBOA3JZ7mgt2/fxnEcVs+dVcK+UN3syWSCbdmMRhOuv/Y6tqkRhSHNZgPH87BtmzSDtbV7XL16lSxVM3z1ahUhdOIoxLHtGayqjGW7QE6aJnx4767qWGcp49GQKE557bXX+b3f/ZIiNrsWhiFwHJ84jlXXRBNkWYrr2ggBvh+QZwXt9gKWaZNlGZPJGLu0TZLE7D9wqTdrOL6Nbuh89SvPU683qdZqZLv7VIXG3S9doHn0H3gwrlKrtdjd2aFSLRFFEwzTYXbFpzIrShyfnODMuoeariOkRpzEjCdThNRYu3Ub27Lp9froms799QccHXVpLy2iaxpZmrC9tUOlWqU/GOI6Fr5XotNeIE6UBVNISNMCQ9fY39tBl1JFuBgGCEn/+IST41Nq9TpH3S6W7TAcDjhzZhlNk9imycnJMX7go0vJ+uY9FpdWSLMC0zZnOaMaSZySZSmGoVOtVfA8D00zSKOBcgNMYiqVGvV6g273kNdfe41OZ4F33nmPWq1OkiR4vq9uIJqhquFCEk6n+J6H7dj4JZWN6Pseb75xnXZnHqlLTNNkPJ2gGwbTyYQ4ihiPxrTnO7Q7bVzXZjgaIBAEgcrDFVLw8ksvcdTtUqtWVZde19HqOvqcj2U7aLrG3v4O9UaNWrnCwdERQbms/p+awd07azTMPgfmeZauXqZZAj3PCFpL1OfP43o+ju3Q7/dmljlNdfvXdyl6Q6iVESgb99bWFmmBml+vVqGAKI6wTZNSKaDfH7J290Nu3b7D9u4uzzz7jAqolxIp1Kyo6r5KwnCCbqis0aJQtF51nRdITfVixayD+1BQ5bP52Gw2GvIw2+/h4/ps8aUsjBqTcZ9wMsaxXUX2NSwQGq+89EPOnL/IYDzBMgzC2XGRaKRZQpZFat9qSrg7rjPrIEcqzkVqmKaDphvYjoXrKLGr6YI4DlUHIgmRQqNem+PsmVUqlQqWbVKrVtW1Mc+RUmAYOpZpcdTtMugP+OY3vs3u7h7Ly0skiXJz+H4Z3VBzrLqmgYDvfe873Hj3fT773DNIUTDo93AdB5FL4mxKkiSzkYAITdNwPY+zKy2m41N0vWAyGagIoJn19aHLQYEPQdcNQNLv97mzdofz51Y5OekyGPSYm28ikLN8YIPBoE+lWsY01XzixuZ9/EDF9WhZjkhSxJc+T1CuMH3xOtnWLrLdxLEtvCBAeD1lOUzq6l8hlB212pjHdQPq9TqVauWR/dyxYXlpgdXVM+zubLO8tMDVq1fIBbi2je+5lGo10jTj73/wQ5ZWOtTrdaSUbG1tUy5X1PmFxmg04Y3rb7K7s8Pe3i7Pfe5ZNJ1HglcKaM+3CYISW1tbdLtdms0Gy8vLSrzaLmmaEQQ+ruvx/vvvq9nfOOHJa0/i+jZCFI++35bpID/cIfrPnqN4+kl29nZYWFxCaBqZlKq7+InjXLP1y0y8yumrsLH3M93XTxKvmqYh8pST7hFvvvcmz37+GtOXbMbmOhcuncMtlfng5vtkSUa55HP71hqbmztcvHyZ0XTCW6/fxrEtfMdUyQQSHNsmihKCIAAkw+GIKI4plUqk+RRN6himsmfrmlAurrggzSJs15rNXpsUuUEcS466QxqteUajiKwwMM0Ax62hWRZ5YeF6TXIs6q02SVZwchLjlepkucnJ6ZhKpQmFTlFo6NLENEzSJKHIYpqNyiOQ53G3S6UckMQRhq5BkeE6LkU2oVErUxQplUqZzc1NLEOd39NwShjF2I6HYdns7XyozmnTRdMcatUGvu+hFQlBIBDEVMoehhmhaQLdiFhabDLXqFBkIVLkaEVOlqnRiCgtePfGO4yGfZI44ezKHO2Wj2XkPPPsY4xGXdbX18mznEYz4OjwlMcuN1loBxwf7XNy1EMTCfWKS8kVROMjLq62WOqUWeh49I9TDvb2OXe+SZGnSE2SxmOkphNGgsEwwnY8pCaI4rGaczUMRoOIg8MjlpdbWLaiDINyTlmWNctZz5FIirxQYj9NZh34nDAEqUGWp2RJjuf6TEYjbNuEPIW8IBc6B8dD0jijWa9TqjYwDIPpQYwxtKn+Fz625fKXf/HnPHb5DE8+fpnRqMfewSEXLl7iwpOfwvFcVPf/P068/ry78/8J8fqz7/GP4vU32rIs+18+/hHx6OfhfEFR8Ghm9FftzI87OFmWfeLrPvpleLj4+Gi146Ove0gb1v7Z73+sKP7Figa/tnAWuQaFIIkSMqCzuETtS1/g3Lf+HnH1Im6lTJJENFsN6s0aQhTYmsc3//03GA4GXLywim0baLLgjetvsLS4yGg4ZjSaEIYRO7u7aEJnc2uH+/cfUCmXWFlcIJmOuX1zDUOTLCy3qdYr9E5PsEwd01TAj72DQ86tnsH3TJJ0yiuvvzZbyMRYpqnw7mnO1cefxHVMwiTmzOpZavUK8XTC6dExc+0mBTlZriis4/GEPCv4wu/+DucunKc8i6UxHVtV29EYjoY4rs2LL71IbzCg3pgn1vcZDgcYWRup6di2D+hEUYHlqJv/u299gO9WaM3PY9gm3/3m3/DUU0+RFzl5kWHaJqZr4VfLoEtsy6RcCZhMx5SqZQK3gmv7CKnh+Sr/sFatkGagCQ1j1kU+PjrENE2Ggz6WrtD3WxsbjPo9quUSQeChmw6+Y3N8eAhk5EWBbpmqOSRUXtpgNOAzz32Gy1cuInIVX3N6ekKexUwnQwLfoV5xuXzlPEGlzOLyCnEm+cY3v02U5KyeWWD13CpCikdd1uk0YnN7m2qtjmFaxHFGluazcHuDNEuoN6oYpobtuGpeJxrzhS9+QWUyIuj1e1iWyTe+/l2KDFzHIvAdPNckTUOODvdxnZKy6gp4/fVXmZ+fo1Qqk2prJEmKnp/n7OoZdGkx6A2pz3U4OT5iYb5KI07pnfZYP3+ZheQVWpc+j+UGvH79DRYXV3DdCnmRkmWwdvtDGrV50jgn8AJGwxElx+PtN97C0k0+vHsPUzeolMpsbO6wsLTMy6++xuPXnqDRaNDpLHDzxg2q5ToUBq7jI7KU+3ffx3J9TNMijpStezwcUikFuJrN4d4hO3sHrKyeowBGvR6eabJ31MP3fFzHUlbL8ZjFxRVknnByOqA1v0BQqjEeDkmiGFOvUgrKjCZDEFCpVOiedDE0Ze2XUvL9v/tbzq2uYEgQWsbxcRfPMXj15R+zvNTGcR06Cx2KzGR+fgHTNLAtRSwdDYfUGnWEEIRhyOHREc25BuPJCHKdtTu3MXUIApcgKJFmgihJKJUqykao6zy4f5/OYlvZGzVJmsUcHOwzHA7x3BK27XDv3i2Wl5Y5PDzCc33SJEPXDJIsxA8CgsAnDKe8cf0NfNfHcX36/aGKCFErcJxSgHZwHWd6hFz57/irr3+LS48/hpN5TEOJVhT0jrvUqzVkIUminDyRGHc/pBiOySuegnFlCeVKid7+EVmcMJmoLrHt2OS5muns9Xs0W01acy0WFzvMzc2hFSaa1IkiJeoQkKUZ/X4fwzCVsJXKPyxnkUZSKtuhFDm6BFnkaqEjlDhV3U9mXd+C09OTmZVRXd91TZ/FQUgcp4IoBHE0RsicooBXrl/n4oWLeJYJWYplaexs3sNxPSzLxjJ9jg6O2dneotmo0e8dk+QJpmOANCgKU8Vt6aBLiaFLTAMoErJU2e4dr0SeC/qDIaVKiTCeoumSDCW+C3KY8TvSHDxbWdprtRqtVh2ICUo2ug7C9NAtCyE1pKahAXP1Bp7v0mg2MU1LuYlsk97gGNsKIM8wRMb+zib6LJvXD2qESYY0TGzXJSvA0HRAkiYJhmaSJjlFJojCDE1alKs+5y+s0h+c4Pk+pVKTONK4e+8urmtz794a9VqVaJLSOx7ieAZFnkCWUmQJYZHiX7/F5rUO927fpHZ/l5P377BLzFwmKRWSfC5ECMHowMRxXESRoWuSKA5pzzUY9I+xLAvXdzk6OcZyq5QqNQzTIssSoumI3kkX1y0ThgmG6ZHGGYaU7OxtM99uzgpNgmqpwrB3yne/9Te02mWiZMJcq0mW5fzRH/1TTGPmQNF0JDrTSUqRq46qH/hcuLCKZdqUSmWKXCNLC2zLwXY17t+/xxd/5/NcuniexaU2nm+jaUpwCzSk1Dk6POH2D1/EvnoWnrnCxu17rD52mUST6EWOmWSk2i9vHjwUr/zt/0bx3hrpP/kirhMQThXIKk1jsnyKhkoOyCkwTMWnsB2PhdUzmE2L9O9sxuIB/fEOk8GU1eXzvP3eGo2FRertDm5Q4ujghKX5VfxmiaOTHpbpMp3GmEaOoecIGQEZQksRWkxQ8pE46FJQ5Dndo0OOu8eUAo+iSAgqGosLTQLbpuwXeE5OfzChWmkxSTKktIkTievUmExSjo56hNJjafUcSZ4RVMpsbm3TarUZHA+BIzbXhnhWGdvpsbfVJ8v7hONTJBGGFpHFPaJJlzTsIosxpozpn+zjO5LDvXVqZYvJ8AFFPkECtuURTgc0GhaBayJExKB/wks//geuv/oevlMj8CNsv0L3ZEJQnWcUhtTnqtx67z1azQ6QkqVj5KzYFliCerWErqsiXJEkaCKiMBxGkxGuK7mwOs+l8/NcvdTGtjJazRLtto8uR5hahK0nBE7Cs89c49L5MvWai2XqNBslzqz6XF6ZY2G+xM72hzz11CUaDYOSl2EIm2l0RKvj01lYJI4TLENi+5IojugeDfng/QcszNcwtBTHLkgzDUOTeL7O6uo8SRJRFDpZFlIUGqbhIoXOeDTEcQ0KKZH6rPgiNXTdJo0FhgdSUzOzkJFnOablkxcRum4xTW2yQmdzc48nr32Bt965z8pCha/+9V/zTPA72LnDg8WbfP1rz/P0s09z68ZPGPU2GfT3OX/xCnt7J3z6i79Lo1qbWdlzBenKfzp09Aui9BME5Ef1yMPO60Odwuwe9Qs/n6QxZs20j3nkF573y/TNx73vw+0/cfH6i9tvYv39ONrvR//8uPf+6O+/rLLx60bl/DabCtBWX/Jer4+p6xAEmCUP95vfZ7Q4R73VotGoAWp2atQfE4YTPvfZ52aef9je3uHy5cvs7u5y7949yuUy9XqdhYUFJpMp9UadlZUVHNcmjiPW7txmMo04PDpgYbHD7u4uS4tLqC+0jmHYpGmBZbo06k0sy6Y916FaqyhLnqmC0bM8m3Ux5aN5ViklZAWa1OgNhjgzcMfu3gGeX2I4HFMuB0gEuqYsvJrKRCdNU6rVCpPpiLNnz7C8soxhmJxG96jX6/T2JOVyGSEE3/ve95hOpywtLXJ63ONg70DNV5Z8CnKeeuop0iwliiKef/7rHB0eMddqkeUaluFAJvCcgNPTgSIJyoLNrU1cVxEfB4MBSZIymkwIfJ/19XtUKxWSRBGid3f38H2fJMsIyiUmU9VlODo6Is/B0DSm0wlZluL5AQVwsH9AedaNKpVLjIZD8jzHMl0GgyHT6RTPdSmXK+zu7OGXAnr9IY7jIaTGZDxhPBxx9fIlNF2tkLtHXSqVyizzzqTRbHB4eEgUhhwcHFCplAEFRbNMgyRW/0bX9cgz8HyXGzfep9Wa4/DgkBdeeJ6rj13hjdfeZH5+jqXlDrqhzaBqGlLoWLb7yKoDEMcJ3e4xWB8q+3xyAdNQ35GbH9zk8pUrfHDjXUbDPrWdE7Q/+CJ30gcs5jcw2p9CCAUIchwXXTcwdI3RYMid27exTJPRsEeWqu/JYDRAaoKDg0NOen1WVs6wf3DE2bNncVyXdmBj5QmYDi+++CLXnngcw1A2u9dff5Xz589x3D2kWm8ihOTg8Ii9vT263SP6fZWlmpMz15lXVOjZDPu3vvVtDMug0ajy/o13yfKcer2BEJLT4yPaCwvs7R1QCgLee/ddHn/8Knkh2Nvfw3ZMRV9OU3zXZ3Njg3JFdbGWl5eJwpDjbhfdkJTLKjdvvt1h7+CQ1tw8o7Eit373O9/m4oVzvPve21QqZUqlgF6/BwVMRmMFKtMlcRQyHo0olXx838VzPcaTKT/4/o84e+4MmpScnp7i2Gr+2bJMBdExVJzM9tYWy8sr5HmO49jYroflOLQ7bar1Kj/44Q/pLHYIDjK6azv0tZjpdMJjjz1Gs9ni7bfexg98fvjDH2KZBpVygKCg6L6P9Or4n/pjPv3sOTbuvkE8OqUyt4jlGMTxlHKlQrd7QuBXOHfxAv/jH/6X6LtHpC1ltczSHNOy8Gwbz/dUtX127Y7iiJPjUxzHpVqtMt9u0+l06HaP+bd/9W95+umnMNQQKEKoMQ/HUYTSh7P5fOR6nufZLJZAIw4TppMIgUQaOvlsQaFyWFVWrGGYShjPGMHqeiopyNnZ2uXWrZs0mzU1eyh1Op3OrGgEw0Efz3Mpl3wOj7rYtoVpGLPOg47jWIoS6ziq6CpUnI8ulB1OFILpdAwUs+tOjhAauqmR5Tl+4CthOCNoC3SKQnWOLcumKAQUgsHgBCkL5ubmsSyH3e1DNCwcp4ptCkbDIbqmK4BVlmFZtrKvGzpCgGUrB4oizINp6IzHI4QU1OpNNF1FCpVKJWzbQtNUhEieF+SkmIYGZKRZhJQFr7zyY2xXJyiVyfNsRuE3SZKMra0d1tbW0KTKnNakAmjphkav32N+bp6iKBiNJwSNJubaJtqffJml8xfIXn+fWpRRffwy5vYhRpKRLs/mk4cBw+FQkV0tC9N0EUJgGSbGjHDvOB66JtGEIE1iKpUK//DSy0RxwuLyIjdu3GCh01F5v7qkUgkoVStqTZHlqvgnJZVKlUajhecFWJZHEKicdN3QsUxjllub4jguf/bn/5rDw30+97nP4QcOQRCQpgl/8ed/xngyYnl5ESEUdMiybcbjEZqmkyYp0yjEtmyyXNnbXdehk0vypRbOc0+yuX6fc1cuUUiBlgtEUZD9muJV7H8fAOtP/pAkyZDSoMhB0xV/wJAGCCikchxF0ymj/ikvv/z3tJtzODsBTGwIJhwfHXNydMi1T3+ahcUVTMvF0C1KQYBtW2Q5pFHG7Vt3uPnBBuVyiRwb16kQRw4HBxN8r0pe5BT5SEVeUeD5HuVSCU1TM91RHFIUgjwriOIxUtcxTZc4Tmg0K0iZIYgpiphSycK2BNXAYXy6R5EMmQ67BJbGZHCMHzhMw31ef+UtTCOlWi8oMpiOupR8G4qYcDoiS6cYusQyC8JwiBAJliWJYyUaw3CIJnM0Cf1+nzffeItGo4plaSRhpOKtREEYTqhUKrTnG5RLCj739a9/h0ajPCu05Rx3TyiVK2xvbZNm0O7MKUgXGmmek2QZmqmRA1mmrnWe65JEEVJIDF2HImfzwQZ+4OO5FtNwgmmatJpN6rU6Wj7Gc0EXqqus61CkBYaRkBcJCwsdwulEgQ2FTp7F2LZFtVYljkIMQ0MXgmkUIqWOH5Qol22CwEGTOXmWIWcjGo6jODCapmFaKtc9SWKkLBCywDANsiwnR6BpOuE0JAwjsixX1vK8xvXrN2jU56EA3TBJ0phJqNE9mfLW2/cI44KT3gBp5rTmKzQaDc6cXaU8bSAzg3/94H/HL5X58pf/kP2teyy3m0ThkOPTIb//+/+EZ37nSzPAo4pVzPOHs64fry8+Sbw+PN9+XqfMfvnE13zS+/wCmVg98mu//ldt/yheZ9tHd/RvaxX+dTq1Dz/ro53X/6/Fq5qb0pmMJ2xsPKBariIFTC+v4rx/B2tjD5Y7KmvKMJhOQgLf58MP75FkCQudBQoEvdPhDMa0SL1eVyRQx1WLT9fBsm1yUSCkUAH0hs7y0hkWFjtQFLTn57l95w4Cia5b/OVf/huiMOLZZ58BCmzLokDBH0zTZDQeE8Uhea5uCqPhEH1GfhPA7u4ur776KgsLy3z1q8/TaS/SbM1z/Y03OXPmLLYhGA0HSti5LnEYkmUJUlNWQcPQH9nMpJA4WgMjb2BozsyypapJuq7TqDXxvYCVlRU838W0TDXjIAST6YTpdMx0EtJs1Gk1W1i2S5qkiBySJOPvf/QimmYgNWW5CgIfTWoYhomhW0hdqAWTUAuVQgjiOKVSqzIJQ2VNynKCUoBhW3i+j23ZmKYCHG082KB7fEKrNYdpWmRpShAE5HmuLNzAoD/m+LhLkqTMzRZcrusidR3PD5iMJ1iWha7prKwsoWmCvd1dDF3nvfdusLd3oKx8uoblWPQHfXzP4+T4hGaziWmaxHGCEGohXalUCachW1vbTMOQxcUlLMueVfQvUC6VODnu8dTT17Adm+FoCEiyrCAIKiRJTBSGTKchjUYDyzJpNltE3MT3ffTsIq7rYVkGjWYTwzTZ3Nyg3Z6nNY6ZPnkFbcWhkm2wNTBUJMzJMbdv3cY0Le6u3aHTbrOyvMLhwQGNRoW7azepVkq4M8F25erjtFpz/PjHLyuYDzmmJiiND5HRGGyP2/c+pNNpc3R0xObWNvfvf0i9WqVSKfHBzZucP38Bz/VZXFpC1zQWFztYtsnNmx9gWuYs/knQP+3z7nvv4QU2K8tLbG5ssHLmDFGS8p3vfE8J69mi3LIsBoOBKihkBdevv05BTqPZwDRMkiTH0CWj0RjHUd32fq9POJ1SrVWwLYf1++ssLy8zHk/44NYtbMeh0WhSq1UoVwJ0Q+P4pItpGLz55pssLS1h6DpxFCGFwJrBfKzZuTAcjvD8srLZ1ktoQmIYCpz2YP0BnfYCN2/d4fTklLm5OSzT5OREQUPyIkU3HNIsw3EV4KvdaeMHLpWfDKhNbAYrGnNz849ouwjJ/t4+6/fvsbK0SLUckCUhRfcmoXBwrv0RUoZo2ZC7N9+h3F7CMCRBKeD4uMf29h6m7fKnf/qnhOS4P3mXcbuBZVozsFmGmAHthsMhQkh8z2MyHiOEpNlsKlFm24TTUNFds5xSEFAqByRpMgM2KTLww9y8RxXvmSDOUgUUMgyLyTgkjlU2qm48BHHMFgf5LJeUn7qF1OMKAOU4Nrdu3WFpcZFqtaQAPkJXDo7RkLffeot6vYom1bHTTQPf99X8p64zGg8pAMdzyDMxK+armIosTUkT1U1O0pTRaKTs/56nYEmywDKtRxbmNE3IshhdVx1AUzc5Pj7GtT1AYNs6ruuQxBnhJOTbf/Mder0Bj199Ak2MiUI1CxvFMZZhkWQJaRLj+74SoY8KyHIGv8oxLQPbcZQNV1NE4bxQ4xzqHqwRxxm68dOO93Q6xjAk7XaTOJ7i+RW1N6WmIsYcj36/z8svvcKD9XVKpRL1eo3A99F1HctyODk9xTRM/KBEkqQY/TGUy0SLbYx31yh2DnnrYJcFzVLjN5Uqk16BKQMVTSXULHleKJu0lOpcmoYRBRKRpwz6ffb3DzAtm9ZcW1H+wynf+e53uPbkNYajAa7nsP5gnWq9MbNHhkhdQRg9z1VxZYZNvz9gOBxycHCA57vs7u7g2Db37t2j0WxgWQbz8y0qlYB+/5RKpYymCTqdDk8++QT9fg/TtDg5OcUwDCXs8gLbsWfrgYzpdKKARrqOWFtnstQkvrzCzRs3eOLTnyLTBFoBMhdk2i9f5/y8eM3+8PfIsoJbN2+zsLBEGIbKwl2oblEhCuIwJAmnjAdDbn3wLrbt0Wx20G82iBvHHO/t0m7V0W0bqdlIaRGFCeVKmSieQKFxctzjyWtPk2Yp2ztHnPamWLZHXuhcf+09Wq06vmeTZUM0zSWJE4SALEuxHTVOg1YghToGCg4mlEuEAkGKJCOJJji2xnh4SpKMkUWMKELIphTpFPIIUUREcYhlJ+RJQadTQzfG+K6PVoToIkPXC6JwrGyyMkcUKRQZghwpUoRIcSydKByhSUGep0gk9WodXYMsC1W32jZIk5DFhXk8x6IU2GTpiDiMqVUDTEOnVg2gSNANG9NyOHP2An5QAjKkzEljFQvmerZyxaUp5BLPV+6BolCFvCgKSeKY3b09FSsYTZCacpuowphApBPyLCJLI4oiJ0vBsetQDMnzlMlkQr93SikIEEBRxDiOTZ5nMIuxE+QYhqPSNDRBueITxxNMQyNJUrJCQenyPMO0DMaTMUJAFCVqxMiQ5HmqjmkhieJkFneWYjsOmpTkecHpwGRjY5uV5WUlnE0NTZOkhcvOzjHbe33G05RGu8biYosrVy5QKtUJShXkgYVRGMS/M+bH//AiaSyolSwOdzeZn6vRH45pNFo8/uznVPF+FpPzcIzktxUiyM4fAAAgAElEQVSvDzXCz7z2/yXx+knd1n8Ur7Pto+L147zYP7+jfhth+Mu6rR/9jJ//HX6RzAU/axv+TbZfx6euLNKqSj0aDbFMZcX0A5ejq6uYf/sSxn4Xsbwwq/Sr/LvOQptGo47nBcRRxslpHynyR4u2brcLgOM4HBzs4gUBcRxzcnpKuVzGcx2kBrdu3aLVmiMMI+Zac4pSHI5ot5ssLM5RLjscH+9TFAn7ezs0Gi302eKxVC5j2zbb25u0Gi2mkymWaTGdTAnDiKuPPcbmgx02HmwQpym27eB6Hvt7+3Q6TUajIaVSoIjDhsaDB+uUZ51Nx7HIZhTcMIygMBDoah7X0EjShPn2PLqhc7jfxQ8CZSu2DN5+602WlhYJ44j+oI8mJctLy8y35nAsm97gmHLJY2d7A8vUefyJqzTn6/iew/b2FuVyeXazk1x//TrtdgtNSJIoZnt7lxs33ufq448hNA2QJGmGClebdZ9tC1kUHB8fU61XqTcaFPnsWBcKy39ycszpySnt9jyGoeO5ZWr1GpubWwRBCSEUph9dZZdNxhOSJOHkuMvB3h6B7yM1jSAoc3p6ypkzq/i+mnV62PnxXJe5VpOjo0MA/MBjPB6rWKZ6k273mNXVswSligKmAOPJiHKlhEDQbDYwLF1F8+gGk0lEmhRYlsdo1GM0GtFotGagMhXdobsPCMMpvvE0W1tbhGHI5uYDDg4PefLaEzRqdcyX3uLfNRw+9bnLmN03sJuXmU4VZGthocPR4RFPPXWN6XTK3bU1Op15PNfGdnRs28QplwlKJSbTCMf1Oe31MU2LNAkRJzvkRYLh2BThhLNPPI2uSbI8Z2l5mbm5eS5eukitWuPc+QuMx1OElCRxwt27d1leWQYNVs4s49gqqJ1Cddae/vTTLC8vEIchtVqNUqnMZBJy5epVzp49w3g0ZKHTJpxMkZpGr6dy8F59/RW+9Hu/i67prK9vcHhwSLkc0Gw1GQyHzM21mEwm7O3usLxyhqPDLq3mHFGUUK5WEZqks9BB03Uc12Z9/UOCoESr2cL3fTQp2VjfoFqtsbmxQaNRJ5ztT9MwsGyHN958m+FgyJmVs2RZxHg4QgoNc5ZdfH/9Pt3jE55++mnSJJ1F0ph4vkuWphwd9wkCn+FoqHKTNcFwOKCykRFOp1if6bC7s4sUBd/+1t/w3Gc/R6vV5MlrT/D2m29QCjzu31ujofewK22Ks/8U2/CYdE/xTZ1hMsLzHG7dWmNp6Tz15hyW52O7Dnp/wuR7P+KlvS0uXbqsqua6AUKdY74fYBg6e3t7mKbJdDp9BJja29+n1Wrx11/5CocHh3zmuWeBAtM0Oe31uH3rDs1W81FGYJyofNSHc1TFTCzlOUips7mxxUsvvczZ82dnXAM14mIYJpqms7+7h+95HB0eKliYp6z4WZHRnu8Q+B5JGqEbOlJqiJlNdnFxAakJFXmTZVi2SZzEM7Gs4Xm+mnOVQolOKUDoJFHKX/3lX2DbGo3mHIZh4PseUtNULI+mE8VTKAolrqUAcoQo0IQ+Iw0LHNshiROKXC1mdU2jyNViF6acWZ1jMNxn0j+lUi6TI3Bsm6zIZ7E64pFoD6OQ8WSCPQOfZXk2E+EmeQG90x6O6xDOMitVLq0qEggM8hw0aaBm9xM0qbO/f4hleSAejhNp6LMYmCevPcUzn36G+bk2N957D9tWsCVF19W5d+8BoIqRxdEJo0aNdwY95rePGd65j3l2men6JoHvsx0WzDdW0DWdcrmE67oqnkeaFHnO3u4OlVoVx/XU7G+mciQ918P1ApA6huWga4Jz589xeHRIpVohL3JqtRpCqm6rJiW6LomieHbtEmRpzksv/QN7e7t8/vOfQ0pFyRZCx/cDNF1QqZRozTVVB900cF1XCUTLwHFsXMfizp17eK7HD37wAy5cuMitm7doNefI8gxN18jSjDzL6Pd7BG/dxvmX/xynVafiB1Tnm2SymJVcBIX2KxxwY4Fo5nDjhwCYf/JlTk9PGY1Cbt68xcrKmZnDIaeQM1+XBN+2+bP/4//kX/z3/5y5Tod4zqT4roOxbCDEhPGoRxiH3L+/yauvXKezuIRhGXy4fg/HtDBMSalSpjXXpt7qgLR5sH6f9pLN4hkfx1FJAlms4pksy0TXFYU4SeKZS8xQc+4UZJkkSXKkKNB1GPQGqlghgCJTjp/+KbYlSbOpOi9EjmHqICBPU5JozPLSMuWSMxO1UKRTpMgwdYmuFWhagWlIRG5gmyZJHEGRYxkm03GEKAS6rlHkMY6tRpMMXWBqhYrzIiWOx2TpFNMsEMUEUWS4tkG15OK5Jq5jkmUxp70xe7uH1JuLTKcpR0cHFGRoWYomcibjAUk0xZACrZCkWTK7TiihqOuqiVCtlJAz0N/DSCLD0JES0lRiWGWiRGC6AXuHQ/7hpTXOLtfRNRPT0HBsnTQPSbMITVNxY4KCPE3gYfFKUy4NoedAiq5LRAF5BoalzpckSVQkFCoLXaDWA1IqpkiaZpimjdCs2RrSoaBQcUJCMk4jTDOn3W7g+Q6bG9s4jsc4CRmNJ+hGBYTBcDzhs899AdctEyUZSIl+aEMM+1c2ODw85GtfeYHTwy3ee/s1jg72KJB8+tPPcumpZ1SRUDfIZ9cpACl/UXd83MzrRx97CH79jxWvD9/3Y/72N3z+Jz/ntxWvH5/H8o/b/0+2/NHP1atXFC3NMEiSCKdVY/C//k+wtk5yf/PRQqYoQJ+BWPIiI0kTbn5wk9dee41u95gHDx4o+0SeM5lMKbKM3e1tijxnbq5FlmcURUE4nbC8vEQcJ2xt7fD88y8wmUwYjXpUKj6GkdPt7lKvl/A8m9XVJZI0pdfrKQw4qsuwsNABJOEknEEFPNoLC7i+z7nz53jyqSe5desD/MCj0ahx6fIF8iwnjGJOT3skSaryR9sd+v0BWZYxnUZKtALvvPMuL7zwAlmaqkD7QuXdJkmMJiXPP/8C9+7exQ1cptGUTmeBJErRhKDVaNBoNKhWKximRZoXVEou0XSM65ggMjUHoSk6YbutOtGapqFpggsXzzMc9tUNxrL54IObjCchcZJyf32dv/53X+G9d29gGTaa1AnDKaPRmDgMieKIKI6YhlNOeqd0D7sKJGCZVCoV5ubn6PX6KIBqzmAwYGtrkzRV2b66rjEZDUniiOGgT7lcpt3u0GzNYVgWpVKJLMtYWTnL1tYm/X4fIRRYyXFsBWvJUibjMdvbW/zf7L1ZjGRneqb3/GdfYo/IiNwzKyuz9iKLW5NN9SJ1j9Re1Grb8MBzMYDtubIvPDDgC8OAL4wBbMAD+8KwB5AtjceSPJDYkrqbvUi9qJvNtckqVpEsFlkrqyozK/fM2CPOfn5f/FEldqsX9UgDzHjmBwqsYGbGiYo8cc7/fd/7Pm+aJvi+z4ULT2JZDoVCgTRLkbmmolkA17GVBFMDv+AyHo9wXQfXdfjRj96g3e5wdHSosmltGylzut0uYRioG5qo4FrTjzwfQqjC68KFx/B9tdEiz/nqO29RLrlIwPd9HNfl9KlTXLl8BSEE42DEcDigN+gDgna7w3A4xjId8izHsR0q5QqaBufOnuHUqZOcO3GcmbJPKDMyQ2DkGVYS4NgOxWKJLM8olgvYjoNu2uzvH+A6DgLB4eERlWqVIIgwdIMwiOh1uwTDAbqAQtHBtjR63T4XL71NpVxVmwzU5zXLcxqNxiSKpMPtO7ep1uuYlsHf+0/+3uRz02N9fYP9vX2khDzLkXlOnCSkaUKz2WR3d48gjNje2aXd6RCEEUvHjqEbBrnMybKc9fVN9g/20XSdLIfVtZOcOHmKYrHMzNw899c3MEwbQ5jYlk+WCebnFxWl+OgA27B47933CEZjXnrpB9TrNc6ePcu582fUZgxUbqZXYDQc8+abb1GtlDEMg2KhgMxzbt64CVLh8m3HYTAYsH+wR5qkPPfsc7z26iscHu5j2zaPPf4443HIhSeenNB3BUmSEY51KpVlNh+0SaKIerVBv9MHqSFRUlg0iT07RcvzObW89JD7S5olCF3D8VwAgnHAseVlKuUK1WqN3d09er0erVaLwXDA4eHRo8D6OI4ZjUdK/tZsInMlT5NS8vbbb2OZJkEYqmaMrnIgVVMz5/TpE3zqU89jWSa2ZSGlII4TxqOA7e1d3n//Gru7uzRbLRqNBjKXE0msev50QhxW2avqa5VyhUpFNQJ1Q8d2PaW0MQwsy6bT6aAbJpVKDct01fUPSZrERFFIs1nn+PFjKHqymrwOBn18v4AQGp7nY1nOo2I7jlM1kSUnSSOyLFUKF02Q5wlhEPDRR3exLA3XMzhxaolGw6VU1slySW/QV2AcoawIuiEmsnOVTem5yvYgc8nWgwcMBkN00yJOFYOiOAGNeb6HZSkOgGlYZGlOFKlNaZJI8kxgmh7dzog/+9b36Ha7RGGCnECc4iQmlymua9Nut+n2ejSb0zx4sKUipjQl227NzCB0na2tbQSwt7enpsSbOziex9TUlPKf6zrTrWnCQF27Dw4OANB1jSxL0HWhJLCGauiFYcTe/j4CwdHREZcvX+HO7dvc/eguhmFRLldYW1vD8zwVg2PaXL70Dm/96C3yPCdNU/b3dieTbHWclZVlnnjicZJUFbWW5XD//iaWZTPo9+n1esRxTKFYoFgsEwQxo+EYz/VJk5T+YEiaZkRxzO7uHgCnTp2m1+sRxQmDwQgmDZfmVBMQjEkgj3n3ymUQEilAopGLX7y11H81Rv/V+NFjTc+p1SqcO3eGWq3C4dHBRIo/8f2JnCRJeOX7P6BWKZFjkWMg3BTtbI41aCBNj1KzhSbg8fOn+a1//9cpehbkGZ7j43o2U60Glq3jeIoGPRyPWF07CXqGU9DRDJ0sM5DYbGxsEUUJYRSRppGKgZKSNMoQQJwk3Lv/AE1T90yNbHIPCNCEThJnmIbF7PQ8lmOj6QaaYZIhkJquGhaahqU7yDQmHA0QuY6QEsNyydEJJk2KPM1Ioxgh1XVQSIGGThxmaMLCsUqMRkrqGkURjm1imYI4CXDdScSglKRxiMhjNFJMU2M4bBOFPZJoQK+zjyZywmGPaqVAEIzIkczMLTPVWsK2XIqlOuCQZyZpohrluYR0EvGSS0mSpkjAtBRs0tBVs822bOIoIhiPGEcZH93b5+69A6JEMBgFBFFELk1VkEpwPQ+ZS3TTQmJiWu7EBqXOrzTPieKANEvJUkkUJaRJOgGOWipaT1PHz9MM21SE6TSNlWJOsxGY2LZLmiUcHXYABc/ThIINCpFTqwmmWx6aFjEeKZCopqsmbZYlxOmYIBzQakyhS5et9UPeevMSnXYXXagG/YcfvM/e7jY5I46tLPKFL3wB23YJgoiXXnqJdrv9iET/N10Pn+NhEfv/x/Wv9eT1F62/iST3b+u5/kUnrw+P+fOPq6iXArVBGg9HJHGMbgJCsnVwgP304xR+72tkjRpXbt+iUW+iG4LRaMjGxgbjIORg/4gsS5hqTDE9M0upWGJnd4+tB1tUii61an2S75lN4AUHbG1vUCqVsCwXITRs2yZJYpYWlx9N4rIsxbIser0hg/4Ixy1weHhItVJhOBpOdHMSy7B5+9Ilum1FNK7UqmRIwtGQmdkWMzMtpmea2I6BaWlkUld0UNdXUsQ8nwBKPOWnMlW+mWW7RGFKdT6mOe+hpUU14dE0TNPkgw8+wLNdlpYXKVVUYeJYLl9+4Y+5c/sGa2urdLpdbt66zXA8ftRxzZIc0CiXq/R6A0zLwdD/EpAhhMC0DGzLYNDvEUcRWSqZbs3g+T5xmmA5Nk8/8QmmW9N8+csvsLq6Sr/fp9tuEwVjSpUSqczwvALNxhQFr8DW1gMs0+Tw4IBqtcLB/j61WhUAwzQolwqUK2XlwxOSLAnRhETmTGh6kKPR7Q2plEvs7x8SBGOuvvf+JN4ioFIrq0n+YMD9+/c5sbZGvVGn2+1iWS5//mffYX19nZMnT/DlP36B+/e3OH36FJAjJgHfoCYpruciNNWdrjdqNJoNhFDo+WpVvW7XdZUs1fe5dW3MsKPomuvr66yuHiPLUmzXJU8zjja3qG7s8bnf/1955+U/QTu8yqvvbjDVmOLdd97lxNoaq6urpDImyRJyCfVGE8dTuaPXb96iUqkhhJIOakLBcd69fIkFOyMTGV5Z+ZrCOEQMB3RS9W+pTzUolctouqJF67rgypV3sW2HP/mTP2V7e4uN9fucPn0WU+gMuz2O9ncnEr0jNF3ylT/9NlsPdqhVK4zHAbV6Hd1U+cs3rn/IeDRkYX6e8ThiMBzRmmnheS6u65DEMeSwvHSMYslnY2OD1vT0JJ+4yKCvzsOpqSa1Wp033niDU6dOK6qsEMhcQwiNubk5mlMthKbkrlJoXHr7HaZn5tBNk2KpjNA13n/nOu+88z5JJjlx8iQHB3uQZ4yGAdPNWW7fvs3q6iqWrWPZBrajZM9xlDAaBniuz+3bt2m1ppluqQzpPM3IM8nB3gHTzRkK9yebwcdqlItFHmyss7g4z+LCIrbtcHh0iGk7lKsK0GN0b5KZHtfCJq5VJYtifvjyN7nw5NMUvBqt1jEMq6xiIPQctBS74GNcvIbTaqBNaNdCQJIpqa/jOGRJyp2PPpp4ogwGwyHFUolypQISHr9wgZMnTnL1vfdIUgWTKRaKSoo/8ZVGcczq8Ule8cSvOR5HjzxyuiHJswTTEpiW8mqORwFf+dOv0pqeQebw3jtXePqpJ3FdRXbN0owoDB9NWpM4Qjcmkk3NQJMKxjEcD/ALnorb0S2OjvYxDAtds7Bsl067R7fTx7Id0iQglxnZJNd6eWmeOB7geqrBYDs2lu1MJgCGks1loAlDTXVt9dqTZIznuqq4kBLTMOh0DvFcNW0Jw5DxKKDol/C8Epvr29QbLQqlKqMgInuYhYviGwTBeJJfHU98XqpQ9Qs+OcoXjxCYuqGyYDWdKArRNJ0oSvjKV15kdW0R09RVVqOp809/53e5efMWeS558qmn2NjYxDIt5aeVEplnPHiwyddf/Abtdpdeb8CN69dZXV1jHAzJ8pxafYpr167x3uXLnCxVKD9+mvpT50j/5/+T9sIUX37xq3zy2CpC09ixj6i1CmiZUgkFwVjRooOQQb9DsznF5oNNSuUSuqlTLJQQmo7nFajX61x7/31u37rFwtIxCoUiWZ4qq0gOQpiUC1XaRwcsLy7S7x3RbEzxxutvsrA4j25AtVrEcW3CIGQ8jrBMm6vv3eBr33iR1eMrzMy01JQ8Sfnut19iOByzvLTC1tY2ruOD1EgzRVI9cfLEhGKups5InTyTXL16lcXFJXRDR7x3nXvPHgPb4s03XufZz36WTFNzVw0mRecvXvIbL6v9zhef5yEEs96o8+qrr3Du/CmSNEGiGjimJvjWV75KtVDi+PlfIddTNBFC5iDvmtTP1elGIVaWc/nyRWxbx/MLZInk8LBHmsPhwQGlYpEwVDFx/W6PlcXjDPojrl/bwtJmuXHzLjMLLpVCHccxcT3lrc4yNe0PxwlSSuIsZ9BPuPz2LY4faxLFAxzPxrIMhJB0uh2yLMMyTcLxAEPXlOx1oibI0gwpE+XzdgS5TBCaRhSP6ccmB0c9HFfF91iGoZQY5AyGXSxHNUI0XQG5drb38Yo1TFuj3+tT8H2UUkSQS0XRLRaKWJM8YF1oij4eBpSKnmpYyxzH9bAleK7JKByTI6nWGuztdEjISKXLQSdh7yjAKVQRtoYmVNSQbpgTFZk5AbNpJLFq1ji2SzKxWNi2hWHCjWvrIAXzcyVmpgscPzaHZqUIPUfmGeSCLHdIU5e3Ll2lUq2BVLwTKSDXNDSRo2k6uu6iaxYyl2RpghApAp00SZVyQkoECpzpFxzyzCAY5QwHkWrc5yG3byv1nG0Zjyaehq5TcFxkmiHTHJkLSuUKm1sPyFOfNNUplyocX11G16FRbXLzg1s89tQTKn6vV8QSFn9w77f5/Gd/jd/6jz9Ho2Jx7/aHZElMbzDmC1/4d3nyU59R+zQJTDLJVR3wsc/Kx/k8P0dp+vFJ7Y/Jfv/WaqIff56/Lhz3J18f/BsqG/5F61+F4pVyEe3xU2jLc/9Cx/z5x1UdSYHAMEzCcUiapOzsbTMcDllcXMI+foxgZRH/d/4I64nz6JaN41rYtkmpXOboqMPJk6ewTZ2pqSmyLJv4pXJmZ2cxyBkMB+i6geN6Kp+x26FaK1EsltGEQbVa4969uxiGTqlUeURqrtcbZJmkUq7R7w2xHZdytcJoPOLw8IBqrcr6+jqvvfI683NznD17joOjQyrVKgiBb9sMh0N831MSOqE6zJphYZgWhqlySC3TVDOVXDIOxrTbbQp+ASHURaV+LESYIdmgTLvdplQsoWkar7zyCoPekEqtTKM1pSYKmaQ11eL48SUq5QoIwfLyMXTTxLJtLE2Z+Q92D9nZ2SXNJY3mNN12hyiMlARxdwfXcTAtE9d1KZdK3Lp5hxe/+SIrx1ZZXF6kWq2gY7Cxvs71G9eZnp6m1Wpi2zatRgPN0EETE2prge0HO2i6wPd9ur0ulmkhJ569g8NDbNvCdRwc12F3dwdNEziWxf7eHgeHRxT8AlGcYVk2ru8zGgyQUoFVzpw9w9LiEt/5zneYX5yhUimzt7eLaRiUSkU1zRwHHB4ecePGTVrNacIo4MaN6/h+laWlBTzPgclkC6kkVlLmxHGoYE+TOBZd03mwsU65Unl0Eb527QNmZmZwXYerV99nbe0Ex5aPKSCDoYOmE4cRzf6YLS1j4T/7DxHDDcrJJrm/yMmTp2m1mjSbTV599VWKlQLlSoXZ6VkQgk67Q5blnDx1Cl032N/fp1Ao4DhqE5sN2pTNnEBmaoNsGmiGgZHldMYx9dY0YRyhGSbkAk0zVARGtcpoOCKKYuI4Ym5+HtMwqdfruLbFwf4ejmMxjsaApNdJ+MynP42uCRqNhqJh1+uMgzGuY0+aEjV29vZZX9/g9JlTCAHBeEwQhFx++wpHhx2mZ5sAFEsl9R7mOb7nYVoOrudhaJryl9uWAlGgGhhZlinZrG6S55IbN25SrlZpNKZwXH8il3KI45grF69SKlV44qknkTJnqtHgnSuXadSmmJ6eYX5+AQDbtQnDMbqhJHCGbnHn9kfMzMywuLiAZVmYhqDf63Pr9m1azRbzc/OqULozJEtTsrNlDF3HMk163Z7y8gjVcHFcj4OjNp5fQBxeQ1o+e/4ZslTn5NpxsvSQwShkceEECBvNcElljjQyQDIe9PE+eoDcP8Kab02KVyW5unv3HpVSCQlYukmxWKTT6ZFmKZcvX8EvFIiiCM/3aB92ePvtS6wcP8b0zPTkPLEmKo4ETVMSXsdVctfhcMjv/u4/4/y5s6RZgu+5JGmEEA/zGdV/FxYXKZdU3JHn2DSbU4ThmDiJlZzYMJBCwfnSJEXTJIahk2VArqsmVZ6yu7tDLiW+52Nb5uS+obzJd+/d5zvf/Q7lcgXTEKpAtWw0YWCZGr5vk0sTyImTiDRNcV2XMIgJwgDDMMkySRyryaGmC5Bq8765+QDbcTAtgzSLGY+VRHx3Z5/xOKRWnaJ92OfG9Y9wPBspNArlsopcGg3wJ9Pv/mCA67qYlsqrVlApBUBKskyxChDITG1E41i9tjyTZFnOxbfe5szZVRzXnvjUch47/xiAImy7Hhcvqni4SqXM9vYDwjCg1VKguU9/+jOsHFvBcWw816Pf71KuVDBth1q1hg4sWw5iZYFho4L+x9/GPrPGQbfDualpBWd6XIA1wpEzjMdj5ftLElzfx3NdtrY2lXRRCAzTxDIUS8AwTIaDIcdXVrjw+AW+/o1v8eEHH3Ds2PIkJs3g1s3bGLrFeDyi0ajiuTY7WzucP/84SR4zHg+xLJM8z9jY3CKKUqI4ZmFhmb3dXR5//Dyuq/KEx+MxZ888TrPZ4nvf+wvm5+bJsoy9vT0E2iNglmVZaA83v7rJ7t4eb715kQtPXIC9Q7SPNqn8t/8pEsnu1i7nnn6GRFcyUk3yC4tXua/BSCB/8EP1P37zeRCSPBdEYcRg0GdmdlrdV4RSLxzs7WMisHSDuRNPILQETQSYdY/kRYOsmOJO2XQebGKYGpquEcU5G5vbRKEkiGIqFRWnc2LtBPc+uke91uD+nXUO9jvEgUU41KnWS1SbMXmkY9k6w1Fvsu8XJEmKLkziJCJMEsrFJo16FdNI0Y0coatrgtAFYRigT2TqpgZiQhYXQkzyxkHXpLo3miDzFBUvlpOIIi+9dJ1SQSmMjIn/MckidBNFM5dgmjZJInnt9Y/wfQPTFFRrah8GOYYh0HSbLFfJAdpkColA2cmEUsHEaUoQJgzHISLJeOW1N1lePYbnF4iilKJf5vrtD1k8dpL3P7jD5Xfu0JypU6556DJFPATQKY0yea5kveQSIcGxbZI4xZxEgUVxn5mpFeZmZ9D0AUIGaDIj0zNMQyNLEqTUqVTmuH9/n2HQY3ZmBtexVISabWE6jvLiphnjICEKU4oFH9vSGY36mKZDnkuCQEV+eZ4CgGYyQuYmdz/aBDQKRZdcBrRaK1imQZ6nxLFiqeR5RjBMsEyHOMqwbcWBsVyba+9vsrm5x/7hIfML0/i+gyZsjq+sgqFhGCbNbAZi+O++9Q/5jc//HU4+tshHNz7gcGeLXqdDmsNgMOKz/86/p3K5TUvt6n9K8foTBcJPPPzLxw/jNx/Gbv7LLl5/2fro3+ji9a+zfpIi/PElHkpR/tp/fpYX9i+/52FX/+FFDkBbnvuFhevD7sgkDnDy8z/92D/mrxWZyiiQSpIUjgOSJGJubkHJSaUgCAKCRhnrqEfpw9uEC02CYMzm5iYFr0CpUOJHr7/BJ565wEd37mHqDl/76os0p2p4rgra1gy4e/cmpaKHEBoyMzhqH1CtNnn32g1007S0IdgAACAASURBVGZ1bZVmawrPMnnwYJNub0ChWEE3HKJUYnseQkvZ3drC0HVmZmdAaNiuw3xrjvn5BR5sbTM7O8fBwR6VUgF0Hd00kUJNK/JcKt9DLEnCEYNeG0OYjAZjHEtnY30bz/HQNZ2C7xLHAQf72+TuofKgjctUymXiOGZ3Z5fPfPozXHjiMWq1KrZhIqTEtk1c38EydMI4IY4ygnFEHEWUS0Vu3/4Ax3OJkgRNN6hWKhiaYHtni6WlxYe/JJI0wbAs2odtNEPd+Hd3d8jyjLNnzjDoDbhx6wbHj69w/twZSmUFezJtk34vIksVvS+NQoSUlMsFdFPHK/jolsNXX/wm3W6P06dPY6YGvW6PQrnAKAqoNhrk0kTkBsVijdb0DKDh2CajYR/PsdnYuE+r1eLBA0VIjpOQc+fOsv1gm1q1pmiDpTKddpdCsYjjuvgFjyeefpLWtMo2bFQanD1/lnqjNoHWmEqyKQQ6arKS5hLNMDF0natXrjDfmsbxLbqdLqWi8nPNzDSJ4zGuU+LEqTVs1yDNAnSRE4z65EHCxbfeYqUyhbO0wPjXPoknusidK7ROfwqJ5M0338T1HNZWV3D8EqNhgONarG/co91tc3xtjSyXICNu3rzO4uICCI1cSvRhB00mtLtdBALHdZCoDUXFdci8InGUYOkGUiaMxl0c38MvuLQ7R5w9c4qTa8dZnJ+lUCxhmCaxljO9tIhmu2jSgdxifnGOLIvJyRCaaghUK1VkFlHwPXqDAa3WLOVSiTzNlDQuz8ml4Pr1G1y9dpUvffFLDId9NjbW6XY6NJtNhGGAriuJlcy5deMmhUKJLJe4hSJC03nt1dd598o7nDxxgjhO0A2DQqWMY0osw2LYH/LGa69jCNjcWOdzv/55qo0q+wd7dDtHuLaO7xi8+d77HD+xSpZlHB7u47kOOjof3buJaZj4fpF799Z55513WDuxgmlNfEoGTDXraKZBlCRYrov1YRdd13mle52NjS0qlRrff+kVHn/yKT748Aa7e/uUCiUerG8yPzMHg49Ip/8OkX2Obthlfq3BdKPOxs1ruL6DV3IJ84xcy7EMlzhMuX/vQwox+NtHyOmpSTGmo+U6QuYIKRmNRpPOvMZRv813vvsXJGnOybVTgGDj/n0Mx+LJp5+i2ZpG5bn+5cZCCDVtOjo64v69dcrlMppmUCoUlYc4CibnlGo1GqaNzFPiJCDNIopFDylymq1pNEMo8q6uYVimAkEJtRk0TUORzYWOJmH9wTZHR4cUCj61egVnks1sWA5CqBzXLE3xPZdjy8ssLyyyvrFBrV5FoAE6UmjEaUYOKhrCVNJ/maWQKlgVZOhaRhIHGLpBt93H8xWYrljwGQ37hOMxJb9AqVxiZ2efYrFCtVIjlzm6pfPmxTcYdIdUqw1q9RZCN7FsF1CSdsO0iOIY13ZI4oQsSdBMGxAYQjAe9HFMi9FwTJYLFY9mGISxorQ/9fgTuL6rCtyJ59+wTSrVEs3pJsPBgOFwwLPPPYMQymoxOzOLYWicOHkSz/dwPYdO94h6o86DjS2q1Rq2bXJ0dMDS8hLB3Q1YWyI5No35wrdJFprYpTJlzcTyfbLZBIDg0CGJQsajIQXfxbZcNjc3mJlukqcpjVqN3mGHIAgxTeUNNk2XV197k3E4Josj0jjgzJlV9na3CYIx5XKFLE2pVEoE4QjfV9JJ0zYUBMww+Z3/65/x3rvX+PznPsfO1gatZo399h7zC3P4foE0VXYYv+DR7x8iNFhbXeXSxbdptqb41re+yc07t7l+/SY3bt7lweYOi8eWsF0FyPrud79Do9Hg2PIxjF4fbRyg/+f/AeSC29fvcO7JJwCJJcGUkuwXKIfT33PJPzQw/tGvoH3xVxEYKMkmWJbBcNTHMHSKmoNwbVJdUrAdrl68yPbBNo89cwFNE2iaizRSso5EHFoYdZvGzDyWoSHTiILnUm/UuX7zOmgaTz59gVq9xmA4ot5o4vlFmnN1pmeq7B/e59yFJW5+dItr7x+i0cX3fEiVPNcyTYQOwlTe8nq1jsxDPF8itATLNB5FUMkcCp6PYzvIXKoCXCiwmyZ0TF2fTKhNdF1ljqprCSrqy0y5c23M/EKFUnVMlrjYro2WSizDVJAiBGkKumZjGBGWblMpCTQZIQDdMAnTnHA4RJCroiwKsSxD+epdD5lnSCRS5pi6hmeZmK7DeDxi2OvgO9A+WEeTIfVyld3dAyQGv/ml36LTGaJrFqVCgThR2dlJmmHblmoMZxk6OaatkwsJukaumewd9nEsH8vLSbK+ymWWOlIKDGmQphFZViTJdKJ4h3rFp9Xy8Ao2mYQ4zZG5JA1HoGkIvchXvnaV/aMjVo7PkeURMlOTVl030E0L1/cJ4ggeWjFyDd8vTDgMGlGU8P5792nOlNANF3BADnCNMkLLQOQYuiSTKUEY0OsH7PYF++0hhlNg/yjg8QvPMT07xSjo8P7V6xR8F2lkuGmB5//7Z6jNzHDpB9/l+3/2e1hihMg1TMfjs5//FI8/9zk001Lya0OfsFBASDGpAcQkNUf9XXxs2vmTU1cpUAMEVHTbhA74Y/XDx3/m4/E6P1aTCGPiYJ/koT18Hb/E+mnQp39bvP6C9fNG2b98A+JnFa+/3Pf/9OcQkyI7f1Rs//hr/hnPJR7KhpWUTE78VcNhgOcVHgXf+76H/ckn0f7wm9iaRVavYlkWlmkyGPSZn5+lMVVnqjXN/fV1HNfmzLnTbO9uU6s0cBwXwzDo90eUS1VkLhgMttANjfv371PwC4wGAe2DDpWah18oKC9eJpFMaJoZ+K7Nzu4ejakJ5CTP6fcHDDo9ms0mum7wwgsvsHZiTcXIxDFRGKkIIFWNs7uzyze+/uecP38eXYMgCJVfSibUqhU836Hb61ApV0iSlKmpFlqxBxK0uEkUJziOR6MxRRwn5Jl6D0ejMXGc4rq+ktk6Dt1uH79Q4NXXX1WSYt+hUPSxHZdiuYLreziug+d7VMpl0jSl3+/jui627RCGscpL1DXm5ud56sknOX/+PDDxQpFhmQZvvP4apmlRqdbIJdimzng8RDd0/GIJYZjkQicOYmzHx7Z8dfMzbGZbM3zz21/n7PnHsGwP2/ZRwRsKH3/p7YvYtkWShPgFH9exMQyNWr2KaZlUKlUlC0NHEzpBMFLf57oMBgNmZ2bJ8oy7t2+h6wZ+wceybWxHEWw9z+fSpUtUa9VJoDeTSZEkiCJMy5qQ/CSlYklNViwb1yuQ5ZCkGULTuf3RXbzWG+x0XoP4OOWizd7OXVxHcNQdceHJJ+HGPXYNycrf/Y/45//b/0jL2GZ7aFOv18jznFq9SrvT5v79TVaOHSPLMppTTRr1KaIwxrFdBqMhO7t7FAsFdnd32Llzg+WyQ27pOK5DEAb4fgEpAU2gxQmpV2Z3dxdzIvF1bFcVwghKxSJJnDAcDLj6/vsEYUyr1UQIlYNnaDqapvODl15iaXGRWr2K53kEQcjc7IKCx6QBbH0EhQr7h21arWksy2Yc9NANDYlSFDz7zCcwDE2dc55Pu9Om2Ww+ihwZB2MQgmq1jK5JqlUVfaDJjHcuv8eXvvRFXvzaVzm5dhzbMUFmvPLy6ywvHUcTihLbbNYoVwqYtoVlGfzxH79A++iQlZUVdrZ3+cQnnuXO7ZuEwZijw32WFue5ePEtlo8dZ2NjC9Ow6HY7/NqvfZbhqIfr2nQ6QwB2drYplYqkSUQUjjCudTENg6M5yVNPPwma4MzZ02xsbHLq1GmSOCbPcxaXltjZ3sHLD7jSnmHx5CdZPL6Gadi0d464/OabtGaXcLwK7cGYgl8kiUN0DSzT5h/8/X/AF906ztlTj4A9SHVVDaNQvYbDNuNxiGHYaJrOzPQMJ06u4Xo29akq9cYUhqFzdHQ4gdmsqdicj2EzBoM+5XJZxZvoGs1mc0Js1ifQEsUbkFLJDx96ntUkf5LHpws0TRBFClCiBjXqEw2gCUF/0COMAsDkD7/8R1x4/AKmaSq/YhhhGjq9bhfD0JTCpVpBN3R6vR5/8b2XyfII17PwfY88A4TOi3/6Fc6dPT9RzajLrZqeqEIwjEL12dUVub7fP0QTgigOcV0b05rIeA0L23LwvAKmpWTVmq5z+vRpZJZw4tRJdEtNkxU1NFPeZ1u972mSEUURoKEZ+uQ+mKuiAQUieevNi+STiKZiwUcjx/cskixXEk3LmoD8TAzDwHVdDN3mzOnTikdgaFiWQX/QQwg1tbp75y5hGDDdnELmGQuLswTBiNFYFY5RGGMf9eD4PMaJZawvf4dkoUWl1eSFv/geZz7zSfA6IMBKZzFMC9ctEseKgjocjZBS0GrO0u+N0TQVm9PtHqFpBqbh0ZqeodGoYZsms7PTNKYalMtlPNdHSsE3vv71SVRIZTJ9z5TsPcsJw5ATJ05w8uQpLMtkZmaaYrGI55fwfI9iochoNKTXVdBF1y2QxCq/u9frsry8QL1RxXN8Tp86RaVU5leef47trU1c28T1XFZWVjhz5ow6P7pdtMMOyd/9HEkY4Rg2jflZMDR0KSDLyfWfvwd6SBvWn0n+yteiKCKOY3zf58qb7zK1MIemGSSjkIuvvsGTzz7P1Ozso/1dlmWIOzayJxC1HFKLB7sHrJw4i+N75GnIeHBAMGhjkFKvlBF5zps/eps4yUjlGMvyOL56hjgVDMOQRmuKo51dhNAxLY13371NuVwDWWAUpKS5RpKF6IYkTmKyTDAOU3Rd7T0t2yXNc3IBGBpZEmLZKirQth2G4zFpqtQ+D6nZoBRktmNjGjnDTsiJEy1MIyWJdXRNR8pIFdACFa+lq9zkcrlEpeEgNBgHGa5bQTdMTEfDsSxl/cpyTMPi4OCI0SjAL5TJcolhWBMmilC+1PgIy4Jjyyqr1fcEliWwdMjSmOnpKdIsw7ENmlMNYhkxCjNcr4Zm+CRZhtQgySNElqLpFrrmYBgFhv2c11/9gHJVQZ0831WcFttFSohEArrLyz9c54MPt1ham0KzMgxNZzhMiEOd733nGq1WHc+x0BDoQqfZ8llaamIaGVmcEI1jxSrJEhA8snTEsYrl0SYQrHKlTJbCwd4Qv+xQrhS4fXuX0TClUDJI4hipC3VdEYL+MCKTFhvbXXZ32pw9c5ozZx+j2ZphZm6Ora1tms0Zmo2ioqlHOekB/Pa7/zu//X/8NmdXW/hOQr1aYnurzbknn+WZ536F6vSiUmRYlhpZPZy8fmz///GaRv6ssmAyAftpRePDxw8nsx9fH4c7PSpyc35GTfLXXw9TWf7Ka5ysfwts+ld0ZT+8SPbDi//SjxOG4SN6oOsUFXERtSHSdYOxoZH/7v+E9qO3Wf/wJgcHR3iux/z8PIdHBwq/rwsKJZ+z585gOzbz8wtEcUK/P8T1iriuikO4eesGlfIUtuGw9WCLnZ1tLl9+k4uXXieKY8ZBQL3RwDB01u/f59KlS+ia8lwsLi3heh79wYA8l7SmmlSqZeSkS/fUU0/TbLZIkpS93V1s00LTNLrtDo5lM+wPCALlJbMsiyzLJ3ErNkkakaQxreYUCJVfe+fOR+SZkmqlaUYQhORSMg4C3r/2Aa+99jqj0Rgh9EeRMCoDLCVNM+6v3+epp56kNd3CNCxcrzDxfCk/quXYRElMGIbc/eguURxzcHCIrhu4nsozNS0LZI47yVhMkpgkSahWyuR5wsrKMW7dukWWZaRpjq7lIODg8JBxEJLnkOYSz7fRhGTrwTqnz5zkscfOECchmq3THw4QwuBPvvynvHP5Cu2jA3Z3tzlxcg2/4NHpdgA1ZUqzBJAc7Cv4T7fbU91Jw6Raq6JpaorUnGqSZin7+/uUikWq1TJyAgvJMiXB2tvd44cv/5BLb10kSzOyLEdmOVKofDzDMBgNh1iWRY4kIyfNJLnqGSA0DYng8LCNlBn1WhXPsxkMhmQpBOOUQrmkZIm7+3w/7nH59de4fOkKMpeTOIecubk5gnHAweEh58+fIwgCkiQmjiK1EUcjiTMqlToXLjxFpVLFsW3OzDZINMne4R62bdFoNHjwYAuBQBMa5Bl6mlAsFqlWqxwcHKqNsa6gGipHMX4ke2xMNdRNI8swNEU9vHPnDs888wyep37/ea7ooaZlMhgMiA+2AaiYGsVikTiKKBYL5GmCY5voumB+YY5avUqcxOzsKArus88+q240mkb76IiNjQ3CMMS0DMIo4qi9T55E9DpHnFhbZTQYcO7cWUqlIm+89irkOcvLxxmPI/7ohRd4++23SbOEUqmAbZsIIXn6qSf4zGc+TRzFnDn7GELmRMGYhblZ0iRGypyFhTkKfpkwiKhWq6ysHCNNE4IgYDgc4Dour7z8KqZpMR4NMQ2B79mMvzTN7WdyTpxYJY4j4iRCGBrLKytIKZmemWZhcUHd+DTVdc7SlH/8j/8XXvrBawTjjFJhiq9/7Vvo6GxuPKBWrrC/vz/x6unkGaxbBmWhkfRHCDQO9g/p9frs7e1NfJYRzWaTYrFEuVim1Wri+S5RHCBEjuPaKtt0IhHe2dlGCEkYBhNpnIIPTU9P43kuURQ9yinN8mySYaquP6p7PvGEO+6jbOuHxGLgUfSOyp/VlBI/V5uYOE3wXCVbE0Lw65//DbIso93uYhoWpVIJ27QwNB3T0KjXK4zHI3Z3d7AskyiMef2NNzENQZpGGKbOoN/juWeeIYkifM8jiiIkSjGh6/qjrFDDMIjiEIRE1xwGvRHtgy5ZKoijjDxXMK1ciglBPJtQMzWCMMR2VB52miZAThCMEJqYQMuU0mF/f58gCNF17ceUUwpWZWCaFsVCkVd++IqaSEiJ5zog0wndV6rJMajPfq7AZoZu8M1vflOxIcZj2u0jHMdWU3Agk/JRcaxopJL+oMv+/h5hGHL9+nUODg4IgoDNzXWklDiOzQfXPqDRaJBmMQ8tPErK6aAbFoVShV6vx9LiMsVChSTOMEybre0dPvzgOv3+iN2dA65ceRfDUDE4jmthWgbb29uKjA0gcn7rS7/JhSceo1qtoesWURQTxQmWZeE4DuVymWq1ShRFKopsPEYIgWVaxHFIpVKi1ZomjmLiKKHX69Hv9zh//ixZllKtVHj2E89w4bFzLC8tIGWKIKdSLpGkMa7nqHxTcoxJY0E1TVKuXr36aC/yt2HXCkMVo1apVHAcj2F/RJ7kkGqkuY7t+I+Ok2XZhHKbq/NW08hkjNRtYmHjlpo0WgvUynXmZ8v0O5sc7d1DyDFTDZ/HHz9B5+iI3d0DTKOA49UoVabZO2hz8sxzFMrTBHHK08+dw/YcBsMhF1+7zsFWgK1XGPZCht2YijdD0Z7G1HQ0qRGHIRogZD7xmkOW58RJShjHCM1ACtWMVHnFatjwKM4rT3j2mZPoIkFmEtdRECPDUucoGqRpTJLGyDxF1/JJUeZycDhm88ERg0FEHCaMw5BxEKjJrxC0pmeYW1hA08G0lBUgjgN0LWM87qCR4ZgaQqZYpiDPYshjTC2h6Al0xkTjIww9Q8qMcSip1mfZ2unT7qbYbhPbbeAXptDNIqNxwubWLuPxGE1P+dVfvUC93iBJMzShvLJhFBFFMVkM4SgkjgZYZo6pM7ErSApFnzAKKZbAcVxsx0JgKDCir1Hwld+60+7iekXGoaL3J0k8iVBMSKKELDbQ0NE1yWjUQTcyWq0as7NTCDI67R4ffnAPy3LQDHU9G4xHoOlops0oTAkijTzN2dzYZGF+nkqlzFG7zfr6A3r9EbZjMD3deDR7+q/+y/+CZDTiysUf4Tk2B/u7hGFItd5ke/+QbMIUSNP0b/z5+WXXTxa6v4x/9eetv2nh+/PWv1aT1zzP/4efFZHz0/78PGrXx9/Ln5VR9BM/8Us9z8PvT//RP0G+d+PHgE0/LQZHPf5ZJ81f1Zer7kr+aKRv2zZJnLB+/z6acJG5oN1pIxAMhmoikPk2YrdDa++I4tkzaJpOv9en023j2Epy9vIPX6Lf7zE11SBNU4TQGQcBaaqACY7rUm/U0KTDYBjx3POfZHZ2mtUTy5w7e4I0gx/84CU21jc5d/489XpjEulisrezTalcJs0zfL/AsD/Acz0cy2B3d49v/dmf89xzn0QIQbfX5cb166ysrJAmyoM1Go3Y39/n13/jCwpdL9QFLE1zLMtEkhPHMb1+H00IarUG169fZ/q4Itu+/+YDvv3n3+axc+cxDJ1gPKbVbPHtb3+bEydO8srLr1IqlYmjGN+38Dyb2ZkWvq+8vmmSKYqd5Uw2czqGocimQkparRae5+EXity9e59qtUYcB3Q7HfyCD0AYBCSpitTIZE6tWqVULHJ8dYUwDNjZ3WZ7+wHT09OA4P79Dba2tih4HrWKR5bFlCbSsZ3tB7iOyeLKcVrNlpIJaTA1VafZalAq1SfUUYvp6WmiKGJ7e5s0VUTEUrlMlqpi9IMPPqBQ8On1OirzsFbnrbfeYmZ2BtdxMS0dKQTaZLqqawaWbtI+OmKqMcXzzz/P7s4uV965wrGVZfqDLqViiTgIGA2GMNlcbG5uUqnUGA6GbGzcp1DwEWgsLi4j7BscHR1ysOkxP7eMyCzu3H7A0upxhd+/dof63/8i5bUlnj43RzW9R+LN841vfIOz584qEjbQPjxgff0ug0GPmZlpHmxu8f/8/u9x7+49VlZXcByHXrfLVL2GOWyDbVIsldB1neFgSK1W4+DgQPkXJWRhxJ2dPTzPpV5vAGrzMB6P8TyPw8MjpppN1k6coFgsg5Dcv3cP33XRdRVV0esN2D/YpVwu4bou775zlfE4YuPWDeaLFtLWIU1pR4rUuLOzS6NRVpM0y8LxfEzLZn9vn6npFratsjfTJEHXdcrFEqauc7h/QJLErG+sY+gGMstZv3efp55+Ftf3eLC1RblSBSkoFUoYlo1pWLz66mvMz81x7+4dFpbmEUL5Mj3bZqoxRbfX58atOxi6UnkYpsHc3By6pc6jXAqmmioT2C94GKZOqVjCshxAsLa2im3ZkyaOQzAakKbquRxXQd+SOKF9eESxpCaFynvpEYaBIk8Gd5lZuUDgnOTcE0/wxhuvcnx+Hpns89alyywdO8bs4hKlchnTNNT0Jkr4h//1f4O4tY4WJwx0wR/8v7+P5/o8/thjdDsdSsUS6/c3eO/dqxwdHbK2tookx3bV5HA4CrAdlWtaLpf45POfBJj8DnJ0XcGwlNzRmigZmNC2XbI8U5tSXdHes0xlzOYPoUVCRXIYpka/p6TUDydqvd4I8gRtQpTV9L/c4JbLFRqNOq7rkaYKjqcbgmGvi++5hNEITUgKhQKmpYqdkydWeOqp85SKRTTNJMsz8jyi6Hn4vvcISKVpQsV8iBzL1LFMgzSJOdg75N7de7z8/dc52O9w8dIVZqfn0Q0Hy3JBVzmFhmErKbIA3dTV1JYU07JBU2Mj257ESQmNLJ3Qs8OYP/zDP0TXdFoz0ypqS9cIgjFxFCNQG++z585iO+6jfN07d25guwX8QoFcSvIsU2CrSSH7g+//gCSNObayjOu4OK6jQFQSNCQvv/wya6urFMsFkixhf3+PY8dWqFQqFAoFZmdmKA9DwrkpihdOYX35u3BsjoXjxzm2skLn6BC7MkLTdaKuT6fb46jdplAqUCgW2Nra4Q9+/5+ztLTM+++/TxiHrK6uEARjZufmKRQq/NP/+3dYXV1mcWGOTqfD0vIy12/coF6vI5EUCz79vqJfHx4e0m63mZ6ZVtM00+TKlXdVDmaWcbC/R7VWQ6IjNMFoOCAYj3BdjyRNGQyGTM80kXmGaRmTxoA9eb8k+we7NBo1WjNNFbFkGQrAaJokaUx87SZxEBB88VMc7u2ztrJKZbpJrilBmI4gEz++Z/nJ9Sjn9Tv/BPnKZcRnnnr0Ndu2eeeddyiVSty9eQu/XKRUKHLxtTfwXZcnnn9uwlWQj6ZR+XUD+hpUMzQ9pVafwjAd8kygSZOpxhzVaZ9CwWPY77C1dRfTzHDcnGqhyJ07dyiVy9RqDeq1GvVagzgxWVg+huub9IYDTNfGcBwsTadc8dCNmHJJwY7u3b2HpgmSzGDQizBNH8e2SeNJcWm45FLg2B5ZpqQNUoJuaorWm2RIBFmeoWmCOAwxTUGaKhWVzCVJFqPpSrGkwIEGumYQhQFZmhInMUJz2FjfZTSKWF5aII6HCFQ0Xz6hvOu6RhRFhElAlqfkWTJpWKbYtkDHxHeLhEE0Adnp/x97b/Yky3me+f3yyz2zsvau6n07+4KdJADukm0FRxKpiXHIHk+E5fFYYY3DMWFfzB/gCzscE3PjC984LDscYYvaKI9EUCORIAFCXECQOAAOgLPiLL13Vy+1V2Xl9qUvvjpNEARE0pYVdkgZcQLR1dVZiarKzO993+d5fshMQyMhkwm6yJFZrFA+lk40kRy2DnHtAp3uANspYDtFktyk3xsTlGYwbQtNB9vNMawEXXinFjtDN8hzDdOwsPEQxFy8uMrZ9Tp53sHCIdcEWQ7CMFlZXcAvmEwmPWSmkaQTTEul6+7vtanVmiroMU+njRaF8MkSyQ9few/TMAmCAnmurn8yi5B5hEaOECm+W6VRr+H6GToammZg6Cq0zrQLvPPue5x0Ep586hM0Z+c5bLc5c+Y8P/jBaziWSxIlRJMBDx5usSwu4KcBX9n5nzjcuc/aQomH99/C0DVyzacws8SX/v3fpN6cg2lz+1Fqcz5tqn1oXSD+Gkyo+HER+sHa4cO2n5IdP5IP8+Hq1Y+SAH9wUyhEcfq8D9vX309e/45vUkp2dnbY3NxECINeb8Bv/dY/5e2330YIQRSF6LpO+B//BmJjG7l7wK1bt3FdH9Oweeftt5mEY+q1Ks89+wnaJydUymU8z6VUKtLpdJRvNJdkMkHoGqPxAMM0SbKMJMnJsUlT+MIXfo3nP/lp+v0+5Bn9Xode94TRrok0fgAAIABJREFUaKQ4r1LSHwyoVqvkec5kMuH+g3tEUTQNczpmc2OLN6+/Ra/fQxg6J+0T/KDA2XNnGQ77CmIdjrh16zaTSYQQJratphH1ep3xeEyWxXz6M5/CmCbeJXHEbHOGcDwkSxJmalXefPMtkiTFMm1W19YoVyq88eabDPttknhMt3PEZKzwNTfeucl3/+o7JFHM1/7sBeIwYjIas7+7BznsbG/T6XTIJZxZP0MUJTiOTVAsnJ7EpqkwFiftE4JCifE4ZDKZsLmxQZxEVGsVHnv8MQb9IaNhyHde+SsOD/bZfnifna1d+v0R41GIZTjILOfkqI2hm5iGDsSsrS1QKgdYjpK+GobN0dExb735Nr5X4MzZc1SrNUbjEDFNie522zzxxGNUq2UWFxZ5+OAh4STkiSefIIoitra3MCwD27WBnDzXePPaGyRRjOd5nDt3jjRJ2dzcZK45SxInlEtlcinZ297Btx2GvT66JpifnSOLU3zXZm1lGVMX9Dtdjg5apHFCqVSiUZ+h2+0xjiLa3S5pliN6IRgG+pVVFtbmCIomaZJydHjE008/jeO6FIICtVqV8xfO8MzTTyJEzng0JM9VcMVw0IdMNRpu376NOTgh11SxqPwjAtf3pgtiqRoTtomdhshpkFkcJ4zHIQ8fPKTgF0iTVKkefA+ZS27evkUUx1QrFXShs7mxiWXbRHHE6uoKUqopwdzcPEGhwJwDw2RMrgu0eELFten1enQ6bXrdPsWgjKaJKTZFUK3VVHjZlPdomiZbm1ucnJywv72FTs6g3+fCxUssLa+gGzafePaTIHIymfH4U09hWi61+iwaJmE4pt1p8+lPfRrX9egPhnhugTiSyAxOTjr88LUfce3aG8wvLrGwsMj+QWsavlZRCZO2Qgb0ez0ymUwnWAZRlPLw4RZpFqPrOsVCgYP9fb7/3e/hOg5uoUCxXOHGjZskcQK54lV2e11A3ewGgwFBUOTmrZvIeET/7tf57d/+bbrdNlevXsYvOIzDDr/5H3yR+fk6o9GAXrvN4f4BaRRTKgcYpkAWPLTBENd1+LVf/VUuX77M4eERWZbR7XYBwXg8ZmVpkYP9XRzHpFgMsGznxyzjaThWmiQkSTINJ9GQUrEDQSPL5PT7o/iBUkpMQzEhH1kUkiRhc2NLpZBPJQh5rpiChaCAaRrT6aPBq6++itAhTWKUEECqYi/TCCdDNA0MYzqxjyekaUS5VCKahJiGjqapCWKxGFCulNFEhGkK4jgDBK5jkaQjojhkOO7T63eQaYKGJEtiJuM+o0Gb9nGL7Y2HaDLnh99/jU7vBKHDpYsXmZ1r4vsulm3i+QFCTBd5pq0mt0mCJrQppzEnimKSRCr1Beq7rWkgZY7ruszNzdHudMjzHNt2ADANE2c6bZZIUjXSJdcEeS5YWFjBcd3T741pmqf3RV0IPvf5T/PFL/7aKb9RFxZSaoSjLkKT/MaXfh1haGTkGLZFUCjC1P/ebp+AlmNaJiftoylrEmQuSZKYwnubLJ+Mp8qZlN6gS7VWYna+gaarpOSgWMJ2XG7evsntOzc5f2EdKVOGwwG+7+EXPM6fP4fjWty+fWuKD4pVoNtoTJomxElEoeBRLpfZ2z1ATfHzqZonoVarkmWS0VjdZy3LUu+FYRIUCwTFIpNoQi6hUi0xGg0xLTXxz6WmPg8BwhAsrSwitUxN9/KMfr97egyu62CPI4J/+Vu4rku5XGZh4RcPpHy05Vv75Fv7P/GYEILz589TKBT43C99msWlWUaDDjo562fOqC7t+7YfN/QfPWIqd16uOhTSEOSejVdaxnJrCGEplY+jMey3yNM2z338HMUgIwxbFHwdU8DimVUM18crzVGtn6FcWcX1msyuLVOZm2UwgYl0SHCpza/QjRLubvZ56Xv32D9O2GuFHByPEUaRTntILg3CsZLFn06OpSSXIHQD3TCIohjDNPG8KlmuJK+GYZPJhCQek6QptuWAptRE8fQ+bDsWvuswCXtcfewcS0t10mSAbebouoVfCNCFPj0nI3IyXKfAsD/BtAoksWQySaf85pw0S9E0RY1IkoQsS4mTFKFDnscgQ6LRCcmkj62nNGsFmg2fs2fmGI66jCcRWWbilxu4xRkKxQa2WybJdCQmOzsHmKZLmuZomolh2OToCCPH8x30qe/f8zySNMFxqpi6RzQJKQQ2mlDXkHzaIEPTGI8SDKPA3sEJUpNYtgqT03VxGhT15JPrzM6W0bR8GrpnYpq2snRkCeQxtapHo1FAphPyPEem+anS46h1iGVZPPbYE+y3jimWa1y9+jhpmlKrVtjaeEhzpo7vlTl79hLGyMbAZGWhwUlrg40Hd2nUazSbTfygyJNPP0210STL1HDk58XbvF+Z8jeB1/lFtve/3t/2az/a/n83ef2b2tdHNQv+n0xeP+z5H4XK+fAJ60d9CT7qRX7seZVS8SujKMK1K0STmFdf/R6f+exn2Nx8yKVLF4miiMQ1kTGMX/4uW0LjzJkzWJbFwuwstWqFUjGgGBTwvQLjUci9h/epVWsERYUt0A2NdueE7Z2HNOcbOL5Pkkq+/pffplKZxTA0HNthY+Mhs7NNcpmRJBG2ZVCvNxCmgW4ajMdjbNOi1+lSKHisrKxy5cpjxHHMN158kY9//OM8//yz+L5Pq9WaemJ1XNdVCbakOI5NvT5Lp90nSWKkTFUisi6Uz8lQnrRIdrANl9niGS5euEC33aZUDDg5PuITz36SSrXCYDBAQyXILi4tUgp0ut1j9nZ3aDZmGQxGLC2scP78ObQczp45iy409nZ30IWG57sUiyVsx2N7e4cHDx7y1a++wNmzq7iuiy4MOt0Oo5FiRHa7Xaq1GYQmONjfYxSO8AseuilIJgqY7Ts+Z9fXuXzhAp5rc3TUo1KZQQgby3L5yh/9CRfOX6RYKaOLnF7nGF1XF/NxJEknKeNwjIag2Wyyt7c/LfAFpWKZ0XRRVCwWkTJlEoVYlkUhKGDbNqZpsvFwg/MXzpPmiUr+TFL6vQHf+MsXadQavPhN9VkVCgV832d+YR7LVMml4XCEyDXKxSK3b92iUqmwf7BPoz4zjbLPGQ4GCE1w6+YtSjPH+F6BovUU7U4b13dIs4i5xXWy4ZD+xgbeP/sS42xC8u6X6bSHLJ59GsMw6HTaU/+xz/HRPo5r02w20QQ83NjgU5/8DGfPncV3HXa2t7l06RJGZ5fI1BGGQZaohGxDV0nCtqO8REkqicchq+tnSIXBnTt3mZ9boFwKTgMp0jSh0+1SqVQoV6rKG2uaSj4NtDsdVlbXcGyDZFr4FApFXA3K2oTM1GkdtvBcD5lKyrOLqoivVabNIYlumIxGoeJu2paSluo6Ylr4eI6DLjNKpTILS0u4ro8QBqVylYODQ9ABXSdKMl5++RX2dg/Y2z3g4dY9ZuozNJqzlEslrl69wu3bt/ju916n2WhiCkGhUOC55z9JuVZDpgnLyyuMowlffeEFqrUqjutiCEGpXCTLUtIs5eDgkO/81fd4+ulnsB3Bwf4BeQ67OzssLS1SLBYRLx5ibY75xsMfEY0jXMdlZXEZy/eAnPv3H/DgwX0WFxZZXl4ma13HLs3xr//gJlLPuXBxmVvXf0QtmFCp1RiEIdWZeVzfV6nnqZpUxHFKlue4127QLXssLMxj6CZxHDEcDBiNxqwsrzI7O8tMvYrrO0RxhMxzDNNmMArR9alPSNNOUSuPUoallFOvqMLiSFWVcXx0iO8rKWu318M0TKI4wrJUg8J1XRzb4VEPWebp6STR0BWndWlpmSjsY9kmcZSgmyagg6ajC0mn3cFxnanvDTrdY1zDoXWwj+MY7Lf2aDZnOTg4ZDgcU/Dz6RSvRi51ci0lSQf4fkAOJKni2WrkDHpd0rhHHEeEoxG9bo9yUGF5aY0nnrzKbHOG1fUlwijED1zSLMIwPXTdANTEU5KjGxqarmFrGt3+AKE7GKYFuYYuDNI0RtOEYhfnOcvLK1y9ehWhq2m20BUL1pg2AYSh0sBzTUPTdHLAtkweNQGEEHQ6HSUjhmkhrU+xRQaj4Zi9vQNcxyMJe3iempz5xUAVRUIw6PQRuk673SFJYzrtNn5/TPnpq9y8d4fmN68hr66DYZIfHGPZFsmyQoWVrFV0QwchGY2HWIaD0ARPPP44q6vLrK4vY+garVaLxcV5hqMx7XaXxaU5XN/EtV2azVnQBJVqBcs20Q2d4XCI63pYlsPS4pJC2Rg6R0dH01T7Mru7O6ytrRIUfPb29xhPEv7oj/+A5cUF0jTlqHVEvd7AMAW2bQCSg4MWw0HI1uYuiysLpDLFL3ig5WhCI5MSx7HQdYWF0jQN/eEuyTPn0c8uc7C7x0yljubYSAEi1xA5PxHY9NdOXg++CYD44udPf+f5PlmWEccxrqmj6ZAmKcN2hzRLKc3WMaaL/EdrKXnLIO9piFqO0FwMDchTpJaSaSmpDr2BgdAM5udnqZVLJNGQLI3JojZh1CHNR8TphDSZYOoWb965SVAMiCMgd8gyj29841Uy3aVUWaJQXiWnyl5rwuLqVVx/lnHmMkk1ltYusHdwyO337hOUyszWZpiEESftk2ljxgJUWng4VvYg0zBwHIs0TUgyg1yLsGwHoVlIGSOEQtKgCUajMa6j1AuWaU4ba2O8wEHXcxxHYBoxmhYi9DJhOAFNqhyFPEMTOVDg3XduIzONcqmCrqmmaJbHKiDT0MnyhCyLcT0fw1QeUE2DaDLG913293ZozlTI0zFpNiKTIcIwiJMUNFvx4HNdoXy8ErkUeG6ZgutgmibbW9vT9ZpJ+6RLoawTxhMODmLuP9ij2vCJ4gg9r/PGm9eZxCF+wcU0DAK/qILIdMXM9t0q9+/v0+33KVVcDE1JAfI8w7YsJmFM4Jcw7BFSZkSTBNNwkZmaiBvkRFEfXTen/PkEmRnkUiOOIwb9AbppUyrP0BukVOrzmJajrkd5Tq1SZTIa0xjNU2stY7cKmKlFmic0viQZdve5dHaVra1buLbFuUvP8NQnf4m55WVFadCnCp33VQPiIyav8gP1wk9MQ8XPnrB+8PH3hzW97zcf+vxHqdKPbFA/z0T3o7a/E4FNUqb/zYclAee5/KnHPiyl9yfH1h/+72cVox/c10ft5xE2JPuzlwDQf+OXTo9LyYM59VH9+HjFRxzT1Dz9Ux2O6fM1MEyTXMvxAh9Dh+2d+/zOP//PcD2bM2fOkKaZkrraRfLZMtXf+yq1Tz3NREquX79OUC6TJBl37tzDMG3KtSq50Aj8Cl/+8pfxXIcsjbEdk2q1SnVmiTjJ0aRGFE4wdUGtHHB8vIcmMiqVInE85uDggHqtgWW7DIZDJuMQx7TQNThstWjMzJDJnDSVPHy4QaPRBGB5aQXTtYjDiO5Jh7u37zI3v4BEYzzsUSgUSSLVcYqikPm5WRCSPNcQmsnu7gFRpAKY9KRGMtLo9Ya8/c67nD9/iVu37xInCTMzVTrtNq9+//uQ55y/cIYkDok1g0KhynA4QdMEhVKA5auEPk3XsB0D3VAe4UqtgpTKv2kYBuVymTiOWFpaYnF1Fdv1AE0FPQUBMkuZmZnhpHPM4cE+71x/l1JQ5u23b2IKl8B30cjY2LrH8uoShmWhWy6N2RklFTF0JBmNZp3Z2TqGKTg8OiRJJEJYfPnLf0Sx4LOyMMtg0EHXM0BBuz3PVRIkAXESYbuOkqpoGo7n0x/08fyAOE7Z2dplbW2FTvuE7a19DGFR8H3SJKbRqLF+boWnPvZxoiRkFPYploMp1FtH0xJ1XIctiuUSzfl5BuMJy2tr7O8d8IPXXufoqM2lS1fY3tng0pWz+JV9onjCWz/oEU8kum7Rap3QaFSRmzsUTIvCP/tHdNsjottf5+79TRpL60STUIU2pZJep8fhwRaeWyAMFbNOEzmloIxtOty/f4dLl67Qe3gH28jZ2NlmPBxSKgcIXSCzDDH1NO/s7uP76qZKknE4SllYnOf69WtUZud46eVXeHh/k7Or65QKATdvvqv4h+hs7bX433/v97l06QIzFQ9bJEhNh1zw4jdeZmVpCWvcRsoI3Z52mQ0DV6ZQbWJ5PtfeeINqbYZet4dME3qdNpVKkd2tLUrFEmg6YsoeFhq45SKW5yFRPsler8N43KdQdNnbPWTz4QbVUpFht81o2OWXP/c8K4tr2I7yDCZpTDgZcf7CRR5/4ixoKTOzM0rqn6b8L7/7P3P1iSsIQ+DYFisrS9SqFXQNjtpddNOkPxxhWQ6lcoXltRU0XfBn/+ZrXH3sCp7v4hcL1Gea6KaN+UaXSXvAY//R5ylVSlTqFRKZsLP5kMPWEa+89B1qlRnCcMTsXIO0dZ2jQcK/98//O7a37vH8J56j0lgiHZosnz2HpueUKzUEDkeHaoHY7ia88MLX+c//y3/Bv1g4g3HxDGEaMYn6lEoNSqUahiFI0wnDQR/dsMnSnDhMeevadX742uskcUy5Ujpli2rao4mXWtwLXahiZXqLUH7PlK/88b+Z+gmh3w355ovf4v6Du5xbO4+hQ7HoKsSJaSoGczpBn/rtdUOlTqJpuK6n2H+kJNGYyXiAaysZ4PbWPlsbu5SKFnvb96kFBYRtUK1X0YRBwS+TSxvPKXHU6jAOYzRh4bgunW4b0zCn8j3BoHdIEnYQ2QSRZ5iGgylckmzCS9/+Dm+9u81jT34Wp2wQDscUK2U8r4AmdO7eu0+jOXea5ClzqYpPNPJckEuNRIJpF3j5pb9ib2ef+bk5hNAIRxP+8A/+kCxLWVpewnFtNB3IE3Rd3QMVo1oDITC0GEMAufI45qCuObnyDCdZiuu76hhyMHUddMV2ti0TZxpgV/DVVEbmBlkmuHvnPkLkeK7NeDjCsmz2d1vM1Br0ej1qcUa+doaS5SF3D9hMQ3qDHnOahdAEh5MKBW2VKIynvmaFKzN0E5klDEc9hsMejmWpSbJp4AclisUyW1ubFH2P+3fvcfbceWSeoZsWw37CyXGXJBpDbnB0dES1UqbXP0HKBM+zCQoFbNtAWDmuX2A0jMhkQrNZxbSLHOy3uHf/AVcfe4yZ2RlyTZLlUxuIYVAMihSLRRrNJlLTkVLS73fxHJdhb0CxUCKbNhr06VRd3N9h8thlCmcX+NG1N7j89MeIcx1NCnQBuc5paMwHLVyP1jMfLF71L/3S6fOTOJ761k0yw8DRLbZu3aNz3MYqeCytrvzEvgDynkZ+30BrSHJSJLlqcKArf2MusE0Nw7ZBd0g1F8MqUaksYrgek9EILYnRsoRBf4Bte6SDAYKETEagw+HRIeNxyLOf/CRHh8fMVKuk8YQf/vAHnL94Adt3qNfKXLpymXK1TLlcolQsMTPTJMsjXn9ni9ffbrGxG3L3vV329tssNpfJ85zRKERmAttyCaM+kODaPjJXScS246GbJloGWi7wXA+0BKlJwkjn6CSkWgsUPipVU9MkTUFTGLssHUOuUDy9nuT4JMH3JctL83ieCXlIKiPIldQ8y1QjyNBVyrnMMpJ4jGXbyExi2x55rmNbLnEywjQFg24bU4AQGbaV4zgZBaeAbuZYeg5pRJxBe5Rw9+Y2pWqJLAeJie0EGLaurhnSwg88Gs0qlnCwdIt20uH11/ZYmF2nVMoxhU4UjslEisRga+sE03ao103mmz4V32ESDYnCsaIFWDaa0IiSkHScIVyHXIApFE4oSjPGaYRXqICmkyaS8SjHsARBwaJ1EvP2nSOu3Txmc69Dq9WjMzhmYXGOV7//KoEfUK3OQG4w117mfxz/a3au7NC93WXi9fnR6P+gXAjZenAL362wvdsBt8wX/tFvYriFaTNOremFUO+DlgNTpu0Hq5ufqlCm586j4vdD65X8xzWGpolT2+Hpz9rPlyr888qGP+p3778eGIb5d6F4/cXShj9YcP5cf/FzFq+Pto8emavHf1y8/vIHXuenk8A+err7s489SRR3r1wuc9w6UVOn6ZQgy7JTSZPQTCJb4NzbRO8OMRfmqM/MYNsOW5tbnDt7ll6vS5ImRFFMtVKmUPA5f/4cxVKROE6mwHiB5zl0ux3mZptMJmM0AUvLi3ieTxxHVCpVPLeAlBqt1hFRPELogm6vh227xFFKp9OlUPSxLItGcwbLNJibm1MNCQ267S69Xg8pJatra+RaTuDbxHGKadrcvXuXixcvEkUxMs+QGbRah4xGI1761kuUy2WCwMc0DPb3WgSFEkmSsra2ykyjThSHWKbFM888QxD4eJ7DxuZDSqWqQtQUy8g8VxfsqWRkZ3eXRkOl7Rm68gIJoXxoKjgip1gsUS6XGIcjLF1nZ2cLLZdMwlB5iHRBJjWEprO+tkqj0aAx26B12OLB/QfUZ2Zozs5NmV+C4TDEtkySJKXT7WGaJp7jcthS3ibf86nV6hwcHFAsFjl37jzalM2bSUm5WkXTBONRyP7BPpVaEYRGKlOSTIWhSIm6IUQxaZJSr83w9a9/neXlVWzHxTRM4jilUCiqQC7TBJFjmgaWZZzKXfJcBdXoukkYRsgsx3Y9dFO9P3s7+zz37LPM1Ot0ux0ajTqWZZHodzBNC09cZXNzh6WlJTzXxfVsBq+/jf2FT7HX8LEtB+fwNYKgyjixyRFUKqorq+smQdGlPjPLzt4BUTJhbm6G7Y1NwuGI9XOrTIZ9StmQ3LUIikXK5Qon7WMMXXm/Wq0Wvu+T5/mpf9HM4U9efIXllRXOnFkHTWdtdZXlpSU818O0dGbnZrn73k08z2Y8HjIa9nj88Uv0e8fs72/TaCo26vLyKrapY3RbZKYglZLxaITjucgoIUMH22XY77G0tMhwOKRer1EuV+h0OtQqTW7dvovMoX3cplQuAUrGOA5DTF1NmWzbwrEtNAHVepMHD+6ztLTEzu4u51aXqU2OCcdj9rsDwknI6uoqOzu708mzg2076rySmZICC4Fp2xQKKiTLMhUHst3uECeSYrHEzs4OpXKJKI4gB93QuXL5EkkSAfDCC19jff0MMoPJD/fIsowHhT6NRpNWq0WlXCEIXMbjCXfu3OEzn/0scRwRFH04voFdnKXy9H/I9vY2y8vL6IbFv/2zr/LMxz7G0fERORLTNjBNh9FohOMHdDpdfv+rf8p/ffFJmK1heA55Lnl4f5ftrW3u3L5JqRgQFIrs7u0qtqunGk6zc7M89vjjikFqqsmToStPaA4Y06AllXgqp4sPFeR1+9Ztrj5+GdOw+NoLf85oPOL8+TO09g8xTJ1qrYKuKzwNaJiWTpIm2JaFhlQoHxISlPzW0DUcyyAeDTA1yfbuNm+9eZ07d2/z+BNXCYoFyqU6UjNJ0xxyA92w0TSbXn/MCy/8W2q1MrPNOaJIhTXpulLSGEKHXOL7PmEYkaSgaSZ37j7EsExu3X6PLNE4d/YcjWaRUqmM7TgYpoHMcxYWF6bpwGrRdXo3myo5c3LSRAW6ffOb36J1eMgzH3saIZSs9fVrr1MoBKyuriCE2kOnczJli6upBpqmPIFxrNK+NTEtkEBDyYMVGkIVqp7rKslfpjyEh0dHBIVAfb8ti3AyYTQaoBsWw9FIXectlbpt6gaaJuj3B1iWksWXRhPk6iK3H9yjedDGWGjieQUKw0hN8QsOb755neXlFZI0IU1T5FRmPh4PcRyHcrnE/v4e9Zk6hiHQDTUxrtVmSKKU5eUVJpMJSRph2RZZKtnb32V5pUmWapTKJZWYrOt0u11lDRE2vX4P0zIxDQvTtMnSCZ5vE8Xw3r336Pd7XH3sMlJKDEOFA8lckuePcCuSMJwwHkdMJiGGrp+yw4fDAc40rAmAVCK+/ybfX59l9uIyraNj1s9dIJt+7kJTUd75z1jPiJUMcTk95byKL33+Q59vWhb9bo+/eOFrvHPzBk9/4mPUZ5unCofTzQD5qoW2ID90PwA65hQbq5FnEsswMF0fw3Tx3IAszSFPCUouppVSCQJ0kdPu9EHqVMoNVlfX2drZQhc6pmGApjEYjUgyxQAVQp0Tk0lEqRSoXAdNw/MqBKUme/vH+H6RSRjhOCW29444PO7RnFslSZW/WOgJrq3k4FkKju0yGk7QNTWFNkwVNIeucHR339tkd/eQ2WbptFBR6xJDWQ2EkgFbpo/E5dVXb3F4FPLUE2ukWUQUJUwiG8sKyLTRdIqbnsrvHykaTNOc+iBVwZNkCY5tk+cZpjENkkJOvf3KIpOmI4QOB/t7+J6PbrhUanMMBz3mFhsKFSZzXMcinAwICu50smewtb01DaqSmE7G6vIqCwtV4qijpLzSQJg5k1DwyrfuU63aFEohQkvIUgNhKLuCUu15ikwhJb5XoDfM0HUfmUpVqBsmQqDyXaS6nzquPf3KCx5sHlKuzpNkktF4zLOf+AT9YZ+lpSXm5xfwfA9yOLh/SF02eanwNb73+nf5bPnzRJMx/9v3/1scI6e1t0ejsUihXOXyU5/gqU9+GsNxFProAxNW7dGk6yPOow/6SE+bRR9yvk1/+ojH/9/Zfp7X+Pvi9UO3v93i9Sdf42+3eDUMdYKmaYpMcpUYOfWTWpaSGQ4GA2zLxfdt0ijG+fYPGC3P89Zb13npWy/xuc99jp3tLXr9HoZlY1kOne4RhYKHN5UrpUnGJIwwDJBZiuNYtNvHCr1i6mSpxPM9LNOi1xvwyivf5dzZi/iFIpajAOie76OhYxg2jcYcJ23lIRBC8VGTJOLb336JlaU1kiRhZXWV+kydNFXd2P6go1ASwuD+/Qdcv/4OGxsPFVvy3AWKQQmh6/T7fZ544jFu3LhBtTLD/v4RpZIqxvM8m6ZeQpommJaO49oYpkGpVMI0lL/K8z3SVKEIRsORmjpXq0STCUkc43ouk8kEMX3vDV0toE6OTyiXy3SPT+h1O9iWwc7WJvNzTYaDAY7tIAyXSrmMzDIs28QveDiuSVAsExQVL1RZ3Aw6vR4HBdbXAAAgAElEQVT94xM2NjZ5+eVvs7K6Sq1apVIpMxgMKHiK4+e4LktLy+SaYDiZYFg2aZZz5857NBszSv7tuZBGGEJjMhrR7/QoByVkkpFkKVJqtE86U86hw3A4ZH5+ic2tHb7xzW9x8fIlLMtGNy2ybEyn01Ypj5pQCbOjAa5fJE0kvqu8VnEcga7kg4am/GvRJEQXUK6UyYFJKBl2XQreImE4IZeSW7dusrg8R6kf0msEfKff4t79e1wKjnDcAi9+54esn1knyzJu377F+QsXqM/UCCcJnl+k0ahhaJKb77zL4vw8pmfgRUPSJCTXBScnbdDg6OiYmZk6hmGqFFJDYXF2d/cwbRstSbh05Qm8Ug3bVpD0YX/A3u4epXKJR97DUrnMwcEBq8srKhBK16nVagxHIaVynSRJ2d/foxz3ycnITfU9fXSeD0cjiqaBKNUoBkVarRZBUFBJr5EK0zENi0q5hO/b7O5uUq+VGIdDDNOg2+liWzb7e3v0+l10Dfr9Prbrs7K8zNHhIZevXMaTEXoywdYyBppNsVjC9Ty6nQ5zc3MkqfKBt1otut0upmnQ73f5y7/4Js1Gg5n6DDKVvP76G8STmLn5BRXxL3PlibNtLMskTWIe3L9HEBQ4Ojpiff0MrZZavDVbAtOyeCvb5syZM1MWZYZhqsmmEDrN2YZCvegCrX2LVjfiTryC4zgEQZEbN25x6eIVbt64w7/67/8Va+sN0mxAc34ZNJM0jalV6/yTf/KPmWv30To9skqA6/ikSc63v/0yvV6b5597lvZJl+989zt86vnnieMY0zJZXFINB8tWgUf6dJooc4nQdLI8O5UT60JNrcJwguf5XL58ifG4j+t5jIYhX/gHv0KlWuSrf/bnnDt3jnKlrDjWOcrrlkwgzwjHQzSZkmcxQiYgczSZ0jk5UX403UA3LILA4PLlKzzzsY+h24pjOBqnaEJJ4TWhFj5REqvv8t4ec00V8PP1b/wFVy5fBiSVcplcwtb2Dn6hRLO5gDAcDg9P+NrXX+LKlSd44qmneO7Z51DWsgQMm8FohGmr/6pFlkCgTxd/SkKrT/3jo9GIIAgIwwmj0Yharcra2qpKhJaSJ598nPUza0omLIRKZZ0k6l6haZxKq7MMz7IJw0gpBjSQMiVNQpI4nU589an0WeNgb181cR0HU1fYHsu2sS0bwzApBD66rjipvu/huS7hOMSyDK6//Tbr62cwTRUGaJ/0SJebHPe66DfvIeZnCYpF2D/GNA2yRoXZ2XlM06Db7anFLJAkEyCfIssSyqWAOI6YRBOsKb/85LhDpVLn6LhDHIdT2S7oukFQcBmN2hRLdfV+amCaJpVKFSEEjlVUXjlTLdSFprPx8B5CA88vcfbs+rSp7CE0hU8yDJtHidmq+ICTkzZf+WOVVn/50mV0XTAY9KeTcA2haQhdZzIYYdy4z6+/+g0+/6mnuX33PT727POk+S9WvGp+jubn5C+8ov7uI4rXnBzbMHnq6af55Kc+RalWRTfNnype86GGfN38a4tXjIhci5FaRJyOMT0DREaS22QpeF4RQxcYOkzCNuPBCeFoANIkzzSuXXsT2zYRmsbc3Kw6Ntej2x9w7vxFLNtF0w36vT67u7tKHuy4mI7L7k6HSZLx/Kef59KVK6ytnSeKYEKOF9Q5OYm4cWODfj9iMB4R+GWyzCKa5LQOjkGT2JZBjuLA60LDMgS6BtVyldXFJWxbxzBMdKFQhEIIHMcmSRJM0yRJc8DgqN1nMBoyO+ORyjGTSc6r332AYfoUaxlGLjAM85QCIaZeWUOYKFat+lzUmjMmz2LiSJ03tmkQRRN818EwBCeHJxwdDfHcgMB32NzcIklzZhdnQVOKMNdyGI0GmLokyyKyRK3NysUiSRRh2xZpFGJbYBjqPLctk/ZJG03T0YVJpeLRmCljmjkCDUO3sCyLyUQ1Th8lUivBpOT7r93h9R/ts7ZcwrY1DFsV37nUGY0jhsMBpmOhYZNS4OBwxL0HuwxGIV/4wq+wuLTE+toZXM+lGBS5du11tre3mcuW0H3BX03+ApklfDr4HKXA509v/g8szzeoVUrcub9FfWGN3/mv/iVOscJ4MpmmTX9IIfoRy//3Y3P+vnj9//j2UcXrBzsQP/73PibSz20q/qhi9Gd3Pz5sP4+KV+Mf/js/pSn/6b/5sWfng6/xcx15niOl5NqP3lA3yXKZKIrQNA3XddXFNNUoFFwmtSLu736F6Pwqdx9uMOqPmZ+b5c03XmdhcYE4TlBBMck01KSH5/n4vs/29o5aeEuVmlkul+h0lcfI81x2d3YQQrC7u8cbb7zFmbPnkZnEL7q4nvJ/2rbypOZo6CLHMFTAQhiGmKaJlBmW6ZBmGUExQOYZw+FwCpfO8LyANFHIkcuXL5FlGTdv3sTQLe7du8/K6iqXLl3iwYP7nHlWgtfmhT/4PnEcs76+hu97DIcDkiTFdmwcx1YcyqDEzZu36Hb79Pt9vOnzXNclTdV7apkmk8mETCr+YJLEpGmG5ypU0fHJCc1mA/KcaDQhHI+Ym2vi+R6GYTIeh9RqM8SJZHdnh16nQ7lUJEdSLAYUA9UI0HQVPGKYKlCgtbtFqVTk3PkLzMzUAYlpCPJMcjTlOfb6PTRdEMcKVeK6Cmf0ve9+l5l6HcsySaKYUbfDZBRysLtPrVpjd2uHclDEcj2uvX6N3d19Go0Gv//l31MTAt2EPGdpeYlqtYphmSqlUCoZpWXZ6LqpbjJpiqGbkKtgk1xKslxFypfKJSzT4dbNm2h5RpImuJ6LMA2GXY1339rB9wNcx6U528D1HAqBh35rg/G5Fd6VE/7Tf/qfMPjh75LbFfxqk0ajzvHJES+98jK1WoW5uXlu3rzN4uIiUiboeo5vuxSLZaw0RAuHDNIQy7an/OKBQkVUKoRhOOXdydNurWmabG5u0gw88qDK9s42tUpNTSyylMPDFo5jAjkbm7ssL65y/94DLMthZ2eP+cUlbMdnY2OL2dkmgaWjD054b3eLmZkGtuNgWTZHR4cUSkXsXENaLi++9DLr62emqd8qgVNKOfVp9jF0MA0Nx7c4OGpRKlQ5PjomTTNm6jNsPtxgEoWsLK+AUFIwz/NU46p3gLR08kySpBmxZmLbNrdv3+bhg4esrq6CBq2DFrVaDd8vcOvWLXZ39phMQlZXVtnc3OD6W2/x3HPPkWXKc3/t9Wusr68z6Pd4+/pb5HnOTL2OlCoJfG5uDl3XqVZrWHf65DJHXq3S7/cpBAGWZfHGG9dOr7fLy8tYlsV4PMbo3cGvLiDOfIFavU61WuOt6+/w2OOPcXTY5faNWzz3/EXQIurNM7RPImxbo1wsKfyQ52O9dp18bWHqc8559Qffo1T0WF9fo1yu4Bc8Cn6BQqFAlmbsHxzg+i537r5Hv98niRMqlTK50vEi9EdyrJxsimQBpv5K5SscjcYsL61gWSZxPMY0XTXJq1SQgJQgDJ0c1Xl3HQcpM4bDAbs7O5hkkKvpQKlcR9gFNMsli/qYlo+mWyDUVFIIE13P6bSP8QuuSiZNYtI0YmlpHsd0eOWVbwOSxx67qlJEZYYuBEFQROgWiiymkpGPjvucPbtOMSgwGA4ISr7i7wodZ4oDch2Ho6MjgkKBNFFqFOVHzJW8Wigvn/Jse8zPL7C8vITn/TgN1NAV1i0HxqMxSZJgmaqo0jTVEJRSNQpMDUzLJJUZQlMqllwBa0+ZuoZpqmZonNBptymXypwcHwPTlGgpSbOMNIkxTItMSh4+eECv1yUMQ4rFgNnmHKapMDSZTNH2D3EunqXV6zJ/NODeUE0+q4m6F2bnxuD0MLMZkjQhKAZkWcZw2CWJY0zTQmaS4XCM7wd4foGTkzbHx20KhYA8F2SZpFYtKgKAq6gBlmUSjvtYlq9SSKces0zmjMch3XZfyTzzZDqtzZU1pV4HTZ33lqWmqIDyqBsWWZZMWcUw6A/Z3t5m8+EGc7Oz1Go1SqUy1jSkUeZyyi6fYA9C9Ac7/Pqf/h62iBiFIecvXSEXxrRpMLVxfWCC9OHrJE6LV+2Ln/uohY2ST2qamu5Pmxs/9bSPKF4frbt0XVfHKAw0dJIUEDaa4SBlTOtgT/nZp+dxlkKxVGAcRtTrTZIkYn9vjzgOKZXKtNttDg5azM7PEycJ77z9LufPXaDT6xL4BYTQCIoFer0efhCQRBnVWpn+oI9uCA4OWvQHA64+eYlGs0EUJYRhRrvdZxIl5FLn5HjM5uY+nW6fldVFdAtIJri2hyEMknik7gPCUEie6XVDCB2ZydM04iTNpiF6IUKHoOiyuFjHNkHTJJNJzqAn8TyLUk3D0pXHPJumdj/6zo3H4anHXzcMhC6mAWjq3DN1QZZmOLaLMcUo9TqSd955yPLiEqaRUSo5tE+O0U0dzzVIoog4jDGEwLI0hEAFq2WSXGZEUQgixzECklSxzNNEZzDsE5RsHMNHEwluQUMTMBlpWKaLZcNkEpNlGaZpTL2x+vT4Y9xCk0YjoFG30Y2YKEmmCc4KoWU7JmEYEscGG7td4lin3R0xOz/P/PwcpmmrsNDpOqFSqXD58lVKhzPcOf86zORUKyXODC7iuzbZ2l3qFZ/xaEx7GJMJi49/9t/FcD10QyCEcXquvP+ceX/x+lHF6k+dXx/4m/f99OHn2N/g9ted6x+2/Z0uXj96+7/zQf1ixevP2o/+G798OnX92R/ohxe1v0iHxDAM1lfWVZctUeEbr7zyCqVSiRdffJEX/+KbfOFXfwW7FKD9/gsYtSrzVy9z6fxl/vRP/096vQ6dbpdarUG73eW9925z+fIV3nrrLc6dO8tgMMBxbBzLIklSCoWC+j8VAsd1OWztkyOnslGdxx97Ag1BsVgkkQm51Dg6OcYwTeJESX2TOEMXapHnuarTPj83B5nBuzffxQ8CbMfCcx2i8ZjXr73JD197nSeeeIpCoYAmciqVIufOXaI+06DRmOX46IiZRh1d15DOMY5j8YmrX2B2dlZJcWRK66DF22/foNdToR2tgxZzc4tUK3XqtQqlSpEMFVYRRRMO9/bQhM7x8TGWZVEulUiz9JTP2Ot1CYKASRie8gQ1qfOtl19G5hnz87NM4oRKtc4PXnud77/6KrnMeOft68RJzPLKCkmaYghBv98jjqLp4kwnjRN8S2d5dZX+oI8mIE4mGIaSwNlTVJBlW3S6HcrVMo4GZCkvfuNFyqUyzzzzDN1+D8u26La7NGfn8IPiNKlQwbyH4wjTVFPw+fkmS0uznDm7ylvX3qB1sIcuYGF+Ft1QnVdDVwFdQjPUxTfXph3anDu3bnDUOuD46JDxaMzq6iqt/UNcr0AWJzTqVQoFn1RKMiAdR1SrdR4+3MB2bHRTZ2l1iUGnh3ftNnu/9UWKM/M0Sy7p2/8rxvJnCIKi4r25Lg/uP+Tzv/TL6DIlKAQ8ePCQcqWIpkm2d/bwXB+7f0RmauimAZpKetze2WZxYREpJUmS4LoO/X4f13UJw5D9/X3SXFILCkhhIRybB3feY2lpCcf3KFfLuI7Nwf4e5XoT1/dwbItKtcLy6gpJnpMbOuWgpBbBJ3tkeYbUNGQmCaMQx3YoFovcuHGDwPcwyVm5/KSCuHseBwf76LrBcDiEXHDYatHrdJhtNsnRCYpVNIQqhNBV2nOW4zgOx0fHlOs15LQgH+1vYuYxiQDdNHCyFKNUJ8kkr/3ghzSbTYbjHrPNWYrFEoeHR3ieT6Mxy8rKMrVqlfl55VesVsqMhgPeefcW62trLCzMI2XGxsYDrly5PA33MFRTZjqBt22Lk5NjtLdPcF2H/ZkIKTP2DvaRuWR9bZ1JOKFWrxMUihwdH1OvzZC23mKc2VSf+cd85U/+hI2NTX7917+EZuXcu7XJf/E7v8PcnEYYnVAqncNzF4iTI7JUMhoN6cmUmVffQTuzRCoV//rihbM88cQlJpMx+3t7LC+vMBoNMQyTBw8e8O6NG8zMNFhdW+fPv/Y1ypUytVp9Kr0UpGn8Pm+fahpF0YTj4xNcx0I3NTzPn7KGcyxbZ6Y2S70xo7xLea4W5CjO6XQsgNAMPL9AtT6D53rkmo5XqJILUyXsgkpyHyTYTpFcU+JcoRn02h1KxRJ5lrG1uUGtWsWxLbI0oRgEXL16iXPnzir2slTXLrKEYRhhWg7ZlNM6HA+Zm2tSCHwymVCpBsRJjGn62LZCskzGExzLxhA6neM2X//Gt9A0hRRSU5uE0WiIZakGnBBiihMyiKIxuqGK/EcN2yRWFow/+sM/5sGDDc6dO6+anLlEkiN0QRqP6PX7/xd7bxYk2Xme6T3/f/Y196y9upbe0A00AAIgJXEokVLI4ZnxaC4cMbZjPCHHhOfWvrHv7JiZK9s3Dt/MhcN2OGSPQtYylkQNCYIUCYIUF3RjbaDR+1pde2blnnn244s/uwVQgETKo1DY0onI6IjqrKysyv+c833/+37Pi+e5xEnKdDrFc1VckGXbIAV5nhPPc2sDPyBLc2zbYTQa4Tju03sWqFzdKJoxGg45vX2ayWhCEHrYjsPOo8cEQcCVK5dZNxzKjUXGWUrl4RH+mdM4toM3nCA1QbwWI/USI11UlGnDZDQa47rW3MVwhG05vP6d72LbDpVGG9d2MHWDIi/QTYt7D+4TTQesrq0gpOCtt95nZWmVIk+Rholu6Jz0ehQFc3ozPHqwwzde+xrrG8vouoHrBBRZSZ7l6JaOEIrWPBwNGY/Gin6NQEiBrmtQltiWigFrNlRWbKu1wIOHO1iWg+t6apQky9E1E+3+LvILz2P86s9RDywOjo44e/4C+VwdFxTzkbk/v27Jv2tSPtAQ1T7i1BLi+XOf+dxSfPLxqc8ZfXrz+qR+yvMcE0k8HDMdjnAthzyDslDUbdsyGI16CjJmOOh6QK7ZBNUa0ayHrqUU2YT1lTbV6gKd40PyIifNctbX1tnf28eQOoapsfvoIbVqhUG/R71RR9MNkjjG90Im4ylX37+GYZjU6hVajQaCFNvRcRybra1tzpw9T388ZTyDwShF6h790ZQPP7rP+qllolgQxSVZniM0BXDTDZNsPiJ2fNyZZ6CXKrve0KEsMDVJPBtTr/pIkWK7GmBimTZhYNBuO1i6RpalZJkah1DjQOqcMk2lwD4Zm5hMp2qDx3GeEtjL+X01zwvG0ymG4bGze4JhlNSrAooxoiiwbIsii0mjGFnqPH68i+NYxHGEFJJ4Osa2DMoyxbQMirjE8kqSTPL7v/8hs2jM6dMrZLFKlrAde56VqiMlRLMI07DQNEmeZ/Pfo1DZ0qbPg0d9ms0mUvTR9YI8txCiII0lb7xxDcspCasNrly+y53HJ+SFSRwXvPzyK/hBQBhWufbhTe7evc/a2rrKlhUu1kHAjZW3uXz1Haq+T3YvZnE94ND6AR99+CaeF7J98SX+o1//Z2ycu0QuJGgCij8V2T4hYP2kjXh+fByU9PHIqJ9Wef2rOn5WRfdvm9dPPf76m1fgEwvyr7J5fbKYNaGyAGezGa+++iq/+qu/ShzHSCl5dHcHw9ao12qU/SHawz3uJxG3rt/BdS2q1ZCyLHj++RfRdZMoGnP69GnW1tbQdR3Pdzk4PODhg4esra6hzWc+DMNESMnB3g6nTp3CdV0ajSZ5UVCp1Oid9JC6xsOHD7l+/QbthRaHR4fYtsXjnT2KPKfVas0JfILpbIZturTaLVzfVTNTSaxiBbwKGxub6LrB/fv3CUM1Y+s4Ad/65h9j2zbt9gLvv/8ep09vg3eiFMCJyuybTCYcHh6i6WpWMoljtre2WFhYQNMM0jTHtnRKoXAg0+mEbueY5aUlwkoVfU49LuYXYICTkxPCMMS2VIag67rYloXE5ODggFMba1i2zWQ6ZWd3DylNRqMh/V6fixcu8Nxzz1FQsru3T+A5QEkSR8xmqrHRdI3OwS4Atuug6ZLReIhtmxwfHLC3v4eQgrAS4nkuCMH+w/t0jo/YWD/Fc89d4uDwiKPjQ5Xhm5fMkoSckiTP8CshmmlgGA66ptFoNggCh7DioeklhjBYXVmmVq9i2QaGoVOU2Rw6pmh8UuqUlCRJTDIbIwVsrq8zGoxot9qYhs23vvVNzpy7QJmnuLbJ22+/TXtpkTjNcL0OSXFC6K2ydXpbUQ7Lkm+9+hrPxILXT7X5X3/j/+ALL1/C3X8Ne/kLFIUgSXKGwwkvfu5lpuOIWmgr23EpSOeQscWFFfTBMWWRMkljyrJAzh0ZUkhMU6ld1Wp1XngqvL4iJZasrq4i8gLNsNCCgGgSIXWdKI5wfY9bt27QajcwHRsp4Ohwn3qjxmDYx3RsJrMJ92/fpeoYWNGEVANNN/B8X62hkqekY9O1cAuIrZDdvT1lQ944pbI8LRPPrpKnOf3egHq9hefXmEUZaZxw/foNFtqLDAbDp9FMa2urTOMIXdfJ4gi9u8ckizBti6KENI7wDIPLH9xka2trvlZ2abYaTGczfvu3f4f9/UNOndqi2aiysLDAaDjg4YMHtFpNHj18wMLiCq1Wm+9//3usra9Sr9dIkgjbdtA1i4cPHuD5LkWZK8WtyGkfKLDEcEMnCANWVle5cUO9f8MwqdZqFHnB0VGHNM0xkgPis/8Z/uI2i4uqQfCDCqYreXz/iHatzp07P6CUCcsrn2MyNni8/yFbm2eYzSL2To5Z3ekgNEkeOEgkjmMgpPrcQz8kzwuyNCeOo3nTukl7sU2a5Vy7do29vV02N9W1p6Sc21ZLpU7MY3KehM2XhSqk8rwAlMKZF6r506SG1DRmUYRlmRQU8513Zb+dzmYYukmWl2TSoBAmWaGIx/F0jC7VWnScigJ0yZI0iynSAgoF3ej3+zTrTbWpkavG0DBV/EtR5iSJmu1NkpQ0nhJUauSl4Mc/fpPxeEwl8FhcaBLHEcU8Ik03DRynApQU+XyGXyh4zI2PrnPto+vUqjWWl5exLQtNCqLZDN9zKdGeWvcAbNtQyvWTe6sQ83NPKT6Uko3NTUzTQAh1H9SkxNQK+v0efhCiaQa6biCFRNc18jkrQc6tjRQl9+7dQ5MGUpPUa42njasUkiLP2H28i65p1Gt1dKkp+zc5o+GYSqU6tx2bVKcJ94sZy9vb8P4t/NNb3L17l/biIrlvklXHgODgXqoyXoMAKHFde67gOhwdHuO5vmoGS4HvuPz4xz9iNBoRVqu8+uo36HUP2dhcByQ/+JM3OTo65tlnL6CbKnrJdVwVqyLVaEOeZIzGfV7+wucYDEZ0jvsYmsHu411qzSqapuyQRVEghcTzfFQYisq+1DWNJ3mOvmvSbLYQaNy5c49er0+j2aTX71GpVBXh/OiEslXD+sorZLMRN27d5uz5C5RPlKOftnn9ukV5LNH/860/t3GV5ceaVvHZlVj+QxMygQj/rMtOSsne3h5Xr3yDMhvg2jmDkz1sR2AYOSJz6Pe7OK5JKTJKBLYTIEyfssgoihGOLbENDYqcTmfG1avvs7K2xvrGJo6jrif7+/u024rKHgbq2m4YBmmecfP6bRbaK8ymGefOnOf2ndusrKwwHUQ4riTPp6yurjCLJxRFSnOxRbO9wOLiOprmsLt7yGA4Y/v0Gnfu7TGNUxrt5hzgKCiFjj63nuq6jut6FEWOZdmkeYwA8iTFtTySWYooNKSVkSc6AoFtZWgyo8wlQqhaMkkSNQ5Szu38eaKYHbpBluVqPUhJmilAlnhCURYaaZ6zt7tHe7lF52TM6moL104xtYLxYIqQuoqyy0skOlmaIWRBnme4to0hJUWucmURJUWakokRRelw6+YJk1nOxYtriGJMWZhooorUSjKOyfMIS6+S5QnG3IWhDDIluiaJYskb37uPlAmLbQtRFpS5T0FMkav70cJik+k0YX93xvrZ89RqbTTN5OTkhFu3b7O8vIZt22xubKHrBn/8x3/M2coFklnCv7r6P3Ll3ff5pS/+HB37Xbzzx2jlkEF/H8MI+NIv/z2WT53BcGvkAnRdoAnlXPh4n1CWJXyMHPyT87CfqXL+NSuvP8vxN6J5zfPiX/CUgiXmu9l/Suj6ycefZxX+bGn7z76O+hk/2wfy5L09eX+f9R4/+eCTi/bpa/3FlueP26PjNCbOEsbTmPW1bRxLWTDWVldY22yztFDlaH+HYpZQ+fabxOurxPmYi8++wM6jDmWpc3S8S6sV0Go28H1XzfmVOdPplGazSVhTkKcPP7hG4AVcufwujcYC48mIaq2JEBpRpCzHhwf7LC61QZbc+OgmH3zwAb7l8szZs3xw9T3Obm8QeA62a/Fo5wGGpZFkCft7e/zmb/4WB3vHXLxwEYCT/jGmrbJnDV0nDAJKJI4XcPf6h3SODzk6OuClz32OSjVEagLp9ZhFEXqxRFaUeIFPvdkkqFSYTKZUaxV832Fvb5ejwwMW2k0yoQMSbZ4fW6s3sGyHMlM00b29Q7797e+yvLpOkhbcuvkR21uniaKY2XSm6LGGZDY85rlLz2CYDrbr4zgu/W6XxWaVzbVF1lZbhKGFZerMJmOa1TqpKJCaIKxW8NwASo3dnSNSMtKiJE0yGo0mYVDBMhwG4wHNVktFJ0iN/skJmpAsrJ/GDRucdI5p1SuUZcpkNsVwbCqBS+BXOD4+Iqy4TCYTPCdElgXRbILrWHSOj/D9gG6nSxzHLKws0l5qIaQgSwtIBdK0lA1LCBXLIwS61NHsGrpu8fDOTY67XdZOnwVREs0m1KpNOp1Dev0uo+GIvJAstlbI3O8zmN7BEhewbBNtHheyHVTQ7u2S/dNf5O/+g19mcve71NIdhnKZ777+Oisry1iGxt7uQyqhyzgucbwKezv71MKQOJ4yOe5gRkOEa6LrKmv35KRH57DL+vqmygItlO2+LEriKCaJUyzPxvND8ixHkqPHMVNdcnDQZWVtBddXsS6teoNBt4+OQxKlTMYTbt28RcFcsNQAACAASURBVLVaY//xAYutJSzbxRl3QRSkRYHrukxnU7pHR+SZUpxM21KNM8pqqXs+S0uL9PsjDMNGSoPe8JD2cosonbGwtESRF3zrtW/ynW99na/80pcQoiAIPEzHwvE8dMPi3p07VMMQYzZBzyLissD1VGySZtpo0ZTOVOCHFW7evM7nXnkWUzf52h9+nYX2Er/0i7/IrTs3EXmMY1nkZc765gZeGLKwssLiQos4nrG4uEC/10PXdFzL5ep7V3GcgG9869tcfO55XNdFkwJdlMS9GcZCgL3d5MqVK2xubnL16lXW15e5fesBYVDl+vWrTCZDVlZWMSYPcU7/Klpli6LQefvKB4ROSKNZ4Xd/86u8+PzzOOGUk8EhreZ5ZjOJZka4XgXLcllcWiYfjdDf/oji1BpREqEbGqAxHI4wLJ0kgfF0gm7pzJIZJ/0TqpUKtm3y/POX2D69TRCoeXTVtKp1WhYokmUcYTsWmi5wXZ/pLJlnPJfohk6W5WgUaFJn2Bvx+7/3Bzz37AU0SiazIZal7Pm6pkBtWVoymWZkWY6hg2kIECVpkpKkBaalURYRmgbJfCZ30Cu48vY76AZU63UQOsPRCMe3yNOYUqSg6UhpoWsaSTIiESaOqTE8OeKNb3+LMPBpLq4yHo64/OZb3L79gKWFdXwvZBaNKPJCbUR4LlJTHYUTuHz4wTV+/hd+ASkFjqPmKmfRDMex5lRg5rFDKh9XSJ1SqAJYIFRedVlgWyZnz51X+Y1SKFv0PFVASF1FWCUJmi4B9V7QNPb29giDQKlD80Kw2WrhuMrGWMLcGppTlimabuK6PvfvP8DzK2RZSZzkOF6AEBLDkPS6xzimhnbYQZxfZpTOkNfukrcbNJtNBkkCroPwB6q5moVMJz2ESKlWXI6PjqmEVTRpElQr1JoN+uM+0egI23ToHvZpt1ZAgO2aaLLk2WefB6Fx/pkzbG+vk8QTJiNFMd7fO8Dz/LkFEnqDh7z08ouQS0SpEU+nfO3f/iHPXDiP5bpICg73HtOo17Esj95gjCkLRJmiSUGaFwjNIorVxoHUDCbTGa+//jpf/vJXMHQToYHnu2r+8d3rDM6uMT69yuMbj7hz8x5f+IVfIheCQpYUMlcWeOSnFyvz4wltWHsl/fNrqY85IT9Rhn+s5hFCkP2OA07xtHkV86lbCRRZQu+ky+rqAq12nTQaUwkdHt27i0mO7ftMJ2NM3cQ2XWzbQ2oS8ojZZIikpMhLwrCG7frYzpSlxQDP0Ol3jwhch+/94G3iRHLr2nXiJMZ1PS5fuUK1UsV3fdrLyxwdPeKk+xhdLzh/4TkQJvuHd1heWcPzasRxTqO5gKbbtJun8D2PG7ff58KlM2yfPUchdAoZc/XdIYblUmozfvyDx4xGMUEjRWCSlSad3oROd0gQ1pXFWpSAg+dVyESONBV4tsj0uSqpdgeEUKp8IRTMyDQDBAWTaY8szdANjTRRcNAkiinTHEmBLASyLMjKhLzMyJMMvdSpOiFJPmJ1sYKppUgxZwI4NrMkptvtYVgmQc0lqFqYliTwfJIkUeppNFOWZEpyfYZOBbM0OLUquXSpRZbDNC6RukCWA7LZlHSqYWgupZHx1jt3qYYhlg55mmI5dbr9HNvxWV4yOHN6ca4oe0hZoMkUQYltgakXavypMDnqR9y6dZ0sizl//hxf/NKXlF1axEynQzzXJQwDgk6Tq8EPOPOlRd5/5w4vPLfFb/zv/z0iH9A93sc0PWaTktbWM3gLa3iNRQwhMHKV+PCTa1sIoTYFPqVXebLun5wDTx5Kef0UBRf4+Cjlz3p89njmZ7/WTzO2+Tekef2zyuv/mw/ir/L5T47sX/4rijcuo33583+p7/9pj58MLDYMk3v3HtJuLZJnKVcuv4nrOayvrOMGIa2FRfz2Iua//irpuU0Wlzd5/933uHHzGmk6I4oirl+7wcbGJocHx7TaSpVM4pQPP7xGq7XAZDxme2uT4XDAW2+/TbVaY2v7lLLTpcou5rouge9jGAYfvP8BreYCp9bWWV1bJ6xWaLXb9PtdFpcWGQ5H1BtNSiS25eD7DhcuXmRzaxMQaPqcoOq4TMZjup0uge+TFyXjyZjm4hLPv/gyW2fOUUod3bLJKJFeH13XSHshezv7JHFCEkeUecH3/+T77D5+zObWBvVaDSkkg+GQ3/+D/5vFxUVcx2E4GJAmKRKNbrfDzs4Op8+c5tLzl9CkJMsyDvcfoesGjVpN2emiGY5tMhwMkJpkMBpSqYSkacLNm9dZWFggCCsIqZPlJZbtcnDYwfNDBsMxYaga6ziOODo85NGjhzz33LN4nkdeKGVnMBhgmRZBUMGynKcB5K7rKHgWGoKCWugz6PcZDke0Fhap1RrEUc6d2w9ZWlzG1HRErnH7o7skWYxtWxRlju97jEYjFbOU5KpgL0uSNGHYH1Cv18jnl0kppVJxoph+v4/jOYhSKTqW5dBoLZFnBa1mEyEljUYdKQULCwssraxRAuP0XVzX5ebVjEqlwo9//GNWV1cpd0+Y1AOWf/3X+d4blzll9rBEhNPcot6oU61WydIUP/B58OAR/cEADXjr8mXOn92mf/CIZaOgtEyQ2tP8X8e2sW0b09QZjccIwPM8Dg4OGA4H1Oo1DN2kLAsFKMumyFKg6xZLmxfQdZOyFFiGxYdXP2R5eRWvGiB1QatVZ3VtmTxVBaLvuliyQAw7RBQMhgM831dU7yim3W7P7acoa6ZlIWczupmg2WoxGg14+OAevudQb7SYjCcsLS7T6/XRpEG93uCLf+dlSpRVOE5Tvve9N9B0A8d1cB0b2zIoDh5yPOxz6+4d2gstlbdsGYxGQzYXatRPbWA7Fg/u38V3fc6dO8etW7cIayHL6ytUAw+ksnpqugKm1WpVsrxANwzeeuctFhYUCfT3/+APOHPuLLt7O0gdzp7bptPZx3MthqMTWAqIGpoiHu/usbS0zNbWFt1uh2++9m3u3LnLpecvqvlIxyM6vMYBmyxsv8jBwQF3bt9mMhpz+sICncMx773zIY4tOD4+ZnPrNPVahcI0KYUBUifJcvKtVdyvfZ+iEjIuChV/EyXYls3e/gGvf+cNFtotRd51XRbaC3Oly6DIFaDEtEy1KSbncTlCNa6UJfqcximFpuYDTfPp/6nrss5kMkYIGI7GbG9vYtkGRZljOw5ZmoF4khUryIuc/+1//l842HvMsxefIU0STMtEN0xM02Yw6CkXSFnM1WDB7s4+P/zhG6yuL2JZJr4fYDsmaTojS3KG49G8SNUYj5Q1j3yGKFMsQ2Nre5uz58/jhlXKPGN1ZQ3f91leWUIz1Ty47ThMxhPG4zGa1LBsC9M0ObWxMXfdNEjThJKCIPAZjycYhvVUjXsyamEYBkUJeV5QCkW91Q0DKTQQCaalIUSJLiVaKdBLSSEKRX+eK5EIQRRFgKDVbDKLoqd/b1D37s7xLp7nKAthliCESqHNC7h39y5nz5xD1zTu3rnNt775TdbXVxkMewR+SAk0mi3KvWOqL55nECfo1+4jllokccLjnR3qjSqJfogQcHgvZX19A98LmE1jLMtCCo3xeMJoOMLzXKrVCssLK6RpwnFnnziZsba+QXthmVNrSximiabrT7NAu50O1UqVJJ4pK2qthmkop8ZsPMT3fLKswHV9CuDcM+cxHZu8KLh3RwHTfD9U5PrJjHIOromiiCzJ+Ne/8ZvIAkbjIb7vYdkmd+7c5tKlCxwd7+O4nvo9pES8+xH2f/VPCU6tQjoALWdt8xSl9kR5LRHlX1yXPWleZfshDEaIavAz1Tyf2OjvaORfs5CXMoRkrix/rBmQusrMNRRzIooTbCdgPE3Jhck0SWm0GkhNI81T9g/2SNKEPJ4Q+A4n3SN0XSdHIHQL1y3QpUSUGZ6bM+g9xJRTVto2neN9wtAmCF1mcczW6bMgDYp4gK1bbKxv4rkBs9mIy5e/z8ULl4iihPv3H1CrVRGipCgycjKSLOHU+hZZVvIn3/8ez168wNqpNXx3iUsvXOLo+Iijg5RqbYEHOw9x3DbvvLPPvTs92gttDDNBmgPKDIRISdMphiaRpUmZa+RlMod9SihLTMuY/+VMSqHO37y06XQSpG5hWEKlDAjQDYnUS5AFUpTK0VEAQqm/UoNSqA01KQpMU5HYbdtGSLCMJ5nyJoauMZuOmY4HZGlKkkRPgZpSCISUSAyKTCn7Qsso8hKBww+v7LGz06G92MD1XQqRYwc2UTplNJjheTaVMCRHp9OLePu9G1ScgtC3kRTz9aExm8XMygCEhWVJhITOsOBH7z2m0+1x9sw5HMfj8698AU3T6XZOuHv/DmfPPYPULSp+HX+3zlvbb5BQ4FswG+1xqm2zutwkmsxI4xJphixunuMLX/oyqqpU2zzlZyisJZ/d53z869pcBRdCbSZ+GlvnL9pQ+mnOt5/1e/62eeX/m81r/n/+IQxGaP/wV/5S3//THh/3u4OahxFCZzyaEs2m3Ll9m+3TWyofzPOIk4zEdTB++A6a53L90SE3b15HypylpQVMw8C2XDY3TnFyckKa5QgpFO1SCCq1KrZpcrC/T5okfHT9OqZl0WzWsB1bqUaGahKOj49IkoRoGnP16lW+8HM/T1gN1QVJ06nXQibTKXGczOeiDHTdBFKlapRw584d9vb2yLJ8Dv0xmIwnhEHAb/1fv81H129w+sw2aaZmoI47HV577VXOnz+LdHucdLpo0wWuf3SDt6+8RZFn1GtVtk9v8+yzF5lNp4RBON+ZtzEtg1qthuM4CCF49GiHdnuBJJopNaAsybKU3b1dmo0G7UaNk26Xfr9PrVol8F3Gox6u5yF1jVqjThRFaJrG0tIiumFg2R6O4+IHKisxCEL2D45UXIyjwCidTgdD12g26ziei2VaGKZBp9Nhb2+PWq1GUSgwye7u7tNZsyieoRsG0WzCqN/Htmxs2yGs1p5wVBBC4xtf/xrNRg1dSDSh0VxqYloGSaIIpdPpBIECIJz0Tqg3GxRFTqNRZzKZgNSeBtcrxUgnjmNu3b5JvRqSZwmr6xu8+/51VpaWuPnRNUohiaOIRr2OlBqvffNb1OsNdO8BlmWzufwrOI5Ds6lmCx9efofJbMbyf/qP2NnZ5blVnYPbVxjkLnEc8/ZbV7Bsm0pYYXl5iVq1ShRFLLRa+J5Jk5ikyMgp0XSdNFXU6gcPHxAnMdVqBdNU9q7xeETg+5z0ulQqIfEsmTeEkkGvg2mY5LMMvbagoqck9HonDAZ94miGHXgICQf7u4ShTzSLEJSURYE17lLKgkKUBGHAZDKZx+A0iaIYIdR5PJ1O0E0dbT7X1o8SXMdBlAWLCy2krhTTLMvmBFGNwWCI6+lUKiHD8YggCDl37jzVao3dx3uUZYFfRBSzMamUVMKQSiUEJJouSfIEB0kudaqtJQQlCwsLUEK9Wae9tKAso6bBm5evsLW9zXQ6JS9UvIph2+wfHLC1tY3jOLiejyYlZ86eZTDo8/lXXlFRS3HMYNBHSMHJcQ9TN+menOC6Lq1WS8UT2BaTccTFixdZXV1GCDg66uCMr2OKiD39rCJhmxb7u7v0x49p1tbQpMVJ95iHD+5RqXg06yGFFZCmBZpuKCuu41CeDMhu3OX2aEC71VKzWnmJ7/k8erRDq9WkUgmpVEMs02I0GrO3d6RmuXUNKZ+oh2ruWzyxSJbKlQGCOE4QkvlGCWpGrCxJsxRdU5Rlz/MwTH1OoU3QdANN1+euHZX7G0URJ0dHc9VohTiJMQxrPt9c4Ng2SaJm4ymhLCAIKgiZ8+xz5ylLsC2XosyQWokuDaJoRr3RQtNMXMdSTXg+RVIQRTNqjTZIjTQH33WRUlHXTVNZpZ9EgvnzTcnpdDq35kls25nHhkk8130KEYzj5OmohaCk2+3iOM48WkOQFwWj0RjHdcnSjHw+f24YJlJAWWQkswnTQQ99/jpPCiLDMDBNE3sOFEqSBENX8TrZvEk2TYmm6UzGszmRV7LzaAfP93FdjzRKmM6UY6Zeq7KyuojrqLilKI6xHB+7N2TarlAaBrx/m3Hg8qMf/IjurTs4ZYm7rpTefFQhCCqkac7duw9YWGwzHI3IspTpdEKjXiPLUnRpkucJeRHz7HMXefPKO8xmKVk6wfeDeaNfousa0WyqoFiBT0mJ6yiY4WDQYzwc4Dk+SZoiNElQCTFtG9t1sQyTVrOBOSfXZ7naeLjy48usr69hWxaPHjxkf/eAlaVVllYXlTtCk5w+vYlhKsgPQo3KaJqGuHqT7Ne+QlkN+PGfvMY0mnL24kXQFLTuaVTST9m88rv/A+X330H+gy//TDXPx5vX/EcmQgdRfVIkP3G6zZ83Pz90KbFtmzSJQWjU6m0cN0AWM0wNijxCJ8PSBaZeEvgWo0FXwQelBKmR5QWGITAdn9ksQpMJRT4j9A1MLWOxVcPQM25cv0qzWWdpYYH79+4SRUN8v8rNm/dpthbIy5Ras4LnVHjnnXdZXl7m4cMHVCoVPvzwA3RbYho2hm4xGk6xLYPpdEij3aZSaVOWKX4YIEXI2tophuMBy6tnuHP3gCwXuK5Fks4wDA3bDMjzhKJM5gq2Po8+U/dD0zDmMTI5UCCxEFrCLJ6SxhZvXr7Jcy8+R5HGaLqi7atNO6lcFKWaMc8zkFJXs9TkpEWMZTjoGoqiLgRxkjKfdEBKDdMwGY+HmIZG4Dn0+n3KoqRWq6jZ9ShC1w3SVNGWdbMkTSNsxyZLBG+/+xjI2dpqkGUqKk7N/0vazUVMQyMvSnqDCf1hxOkzz2CVI4LAQ8onm2kFsyjh8WGEZ1sUyZCyyOkOC/pTE01orK9vcHR0xOkzZygRfOf119nYXOfu3QeEYRXjxGVwMuRfvv7f8OKLL7GxWqXml/y9+L/mVPQlfnz4W1RqyxhujX/vH/6HaI4PuqWSVgVzbsEn1zb89M3rk3+LQq3Vj7sSnj7/b5vXv56jKIp/8Wkf1r/L47Ok8E8sps+Mx/mzR/FVRRuWv/bLf+7zPv56xRxx/rM05p8M/dVJkpTO8QmmbuHYFhun1llYbJPECUIaarazyNAf7CBv3KF68Tls2+Cll57HtkxGw+E89sLiwsWLNBr1ORXVpFqvITXJzqNHrCwvQVly//5DRpMx5585R5oq22TguxwfHdFuNzk56bC9dYbVtWU6nSNsx+L3fu93lc02mmCaNlLT+dGP3mR1dV0BXaS60ZqmSbOtSLn1ZgPTNJTimWa4jsOFi8/yuZc+R5lO8F0bxzI43t/lxUsX0coMnC5SSspRg3Z7gXqjxuntDTRZ0ul0yLKMpcVlxBwrn+UZjm2Rpmpe4qR7wjdfe42lxSWWFhbQdZ2D/X08z6PZbJBnOd2jI/wgoNVs0+12GI2H1OpVpG6jGQbHR0eURUGcpLiuh9QVej9JlM14/+CAarWG6/oKr28qJSOJY4LAp1oNEUIqFXcwoFqpUq1VSZOU+/d3yPOC1dU1RWMun8w/F3iOiyY1RsMRt27epN1qkaUJjmfj2DaaVhAEFlLmmJbJaDLGdlTGZ++kx8LCApWwim17NJtNkKWCdBUlv/s7/4bVU+tPqaNP1qBj2wShTxpHdDvH+EGN5dUNHty5zcapVRqtNnmWoUll1W0ttNXNj2s4to2rX1JWQ1cVqdW7j/D//S/ysKbzwovPkl3/LTonR6yff4lGo0klDDk6PGR5ZZVeb4DjWuztHZBMJyzpMRQpwtaZRRHFfOf3wYP72LbF8tISmq7NL7AFR0fHBGFIu91W9vDHu4qyGjgUeYqQElezKQKPxwc72JbBZNTHcUySdEqt2UaTAsvS5xFJFruPH6PHE1wSsA26J118359vdFQwDJPJZMJ0OiOOY2r1mroGmAZWHEFjgclYZe8pgiM8fPiQVrtFWaoi/oMPPsByDUUE90Mmk+kcvS8JfF/NEPUOwNbJ8oIojjAMHV23mU4jkiTlqHNMKCA1AnTLJY7V7F69UUc3DLUZVSpF0HEc4iiaw70kx90TWq02hm4gEKRZxvLSMsfHHYKgTiWoM53E6JpFGNaoVOrUcptJdwiOTq3RwDSVBXc0GvDWlXf54he/yMHBLnme8eabV9gMxjhBldniL3Hz5k3e+O4b/JN//I+xXIPRaMbq+gbnzp3jn/+3/5wvfuEFPEtghUsquqPMMHSVy1g6Hv4P3+Xd/gm3bt3kO9/5Dr4fsL5+ClEqq9pw0Kff6zEZT9jb3eeHP/ghj3Yezim5NtFsiq7rTGcz8kJRtTVdAcvKUu2CG7r2VE2XHyu0dV0V7UmSIqRA0zXiOMW0rLliqJpdNW9mcP7MGYLQY3V9lWA+JmEYNkkcsb+3q2KIjo6JpjNFbZeCjY11eoMulUqVPFdKTr9/TLNSI8sVyKTMc7IkIk+nzIYdOp0ulWqdAp04LbAcD4kifwqpAD9SKpgT82vMeDSm0WjMrdESTdeeUkjzPJtHajCP3BopDoCm4c8dJKZhqHKqVLnBWapmM487XfYedbEMl7LMsW0d14H7D64R1lfQdH1u9zPnCpugmOftPsk2L/JcKZhSItGxDA9dtzk5GWCbNr3eAN2QiELiez6u4zAa9VhYbHF8sIdpqjnZaBbjuD7y4JhBzeKoP6T+uItYbHH1vff4YmuJM+1F0vW5fXUY4PvKuuz7AbphkiYJeZZSFBmT0Yh6tcbu7gFhxWU6UbE6YVjnD7/6b9naXFEbzHHyVK33PXUtrFSrBEFAfzgkyzM6nQ6+G/DR9RssLi9hWAZIidA0yqJEmxeOk/EU21axbwhwLH++2SgxLZNXXn6FWzdvUm/VsW2H2WyK66nZ9CxLqVQb6IaO6PYR1++h/Zf/hEKTvP7tr/F3//7fxw6rIFVigCxBUn6iGP/U2uiKiomSh3+sap//4E9pwz9N3fOnRbEg/z0b3BIRPLEMzy2TZTHf/CjonXTZf/yQwDUZ9ToYGmiiRJQ5crpL7/ABw85jhp3HFHGffNpjPOpjmwJdgmXqmPMIsCQzSDOdSq2N0CSGZVKUJVJoOGKM7whWl2pYMudw5y6OzAgbFXTDoZQWYa3B7uEhmmHw+OFjXnj+BUW/nhNxT585TaUSUOQlx0ddfD8gy1I2N07R7ffoDU5Apniez917D/FDj/MXznPz1mPSYsozz24xHI7pdVNkucTdu7tkZUlYCSkKnSSNyYqIOM7I57P6jmPPo2UiZKlTimg+b+kyGhf4ocuND6/TqLcoC4FlWgg0JCZCFmSZmq81DYM0U7F7pRSUuU1ezKDM0aSBZphkRYwhNZI0pShyDMMkTxM0WaJpkmo1VO9jfl2JohhDc5jFY5JMbe4mcYahSc5sr7G+4tGoSshiNAzypEBHp9vrAuU8y3lKp9uj2WxglhOyImUynSB1g6IQTGcJx/s9FpoBGilFqvHwUY8Mg9ksUdnRnseZM2e4/+ABFy5coFoNWVpa5q0rb1ObtImY8YeP/w37+wck0z3adZPW0Vlm0yk3yjfYOx6xcuYSl17+ebxKhWIes4bkT2f/P1ZLPd14+Yl1/2Q29qlNuPyktbj4mPPkJ86av/C8+rSf9ZMN6Kf1R5/Vr3za+3jS48DfoOb1r/pnfNZF82f9+pPjSfP60yqvn7Zb8rMeipjqEgZV3rr8NmHgE/g+o9GQwPM4POqQpSn9k2MqQmB99zLFmTWCwFM3t0Jw+fKbtNtNzp47y3A4mFs9BCcnXaQmkZrG0sIivV6XyXjM6TNnaLUXaLeaSCE4OjxQMS+6ZDjoE4YhpuWgGRI/cBAC9vb22N7aYuv0NrM4Ym//gLNnzuLY88bK0NGkNj/fSjxf2YUd24GypN/rk2cZQRiQ5QWOrYpH27KZTmfUq1XKvGDQG+NoLeKJIiK32g0MU1KKTDWMtkOvN+DatWvsHxywuLSI49jcvHFLWYXyjOlkQqvZZDIZ841XX+WFF1/AMA1VpBo6H12/Tr3R5LtvfI9XvvB5dENnd/8xg5EqFCthQBKnVKt10DSKUtLr9gjDgOFwQKPRIMsy/uiPvsobb3yXF154QWVZ+gECiJOI4WiMYRjzjEJdxR+4Ds1GS83Y6jqWZXN0eISu6dy/f5/ZbEaj1sAwTF79+tf53EsvsLPzkKBaI44SqrUK1Vqg7IzTiKwooIQkSRQd03FwbJd79+8r27ZjUZQlaZpRFoKl1WUV1D6PuWC+di3TpMgzpRTbDkidt978AVk8pVpXa+Tenbv0+31ObW5gmCZW+FjNcc1OcXiklC7bsYnf/4g/osf73SNWVlYw7/0uonGGSn2B2SwiimcUecGtm7fodLqsbayzuryKPTshmw2YkdDt9RWBtSyYzqZUq1WSJIUSslRZm7I0JaxUVHMhpMpOFCpexgsCynmGp206iCShn+RUwgoH+/ssLC4QxQmuG3K0f0CtVsV1FYGxEYb48ZhEFKBpeL7KM7UtG4FA0ySzWTQnGIbKzhfHGKaJzHI0IXm4f8zC0jJHR8dousbtO7dYW1vFNHVmkcrWPbWxBUJD0wxmkwjXdZnNpjiWCSd7CF0jJcU0LQVNynOSeSSJbTnkZYksC6xoSGY4dIZT6tUK+/u7VKvVubJXYJnWXC3MsCyLO3fu8OGHH7G5sUnv5IRBv8/RwSGj0YhmvYEfVolOjrn3wdusGFO0PGGm21S/3cU7KDA/v4zruuTztZOmMVffv8aLL76IbkhqtSrNZhtnepdcD7k6WqHdbrG9tc2fvPF9trbPsbm9xR989fd4+eWXGJx02Fhb4pkzpxFODcqELI1wLJs0SpC1Kvr3rlAJfK7cuskLL7zA0eERZVlyctzBdV0uPHP+af6pJiWLS4t8/vOvEFaCp6MZlCWeH6LrhrKw5vncrjW/lkvxsTk9lb2tXAryaVMnpUaeF4oyruto+hNYUamaRaGaxrAaYtnW3I6nk6Y5iP2jPgAAIABJREFUBwd7NBr1p9eh2WxG4CtHi6YJbNsijjM8L0CTEiELZBaTppGKLooismTGSWcfz/dA6Oimg+UGmJZDiUQilIWxyDBMXYFhSubKimps8yJ/qrAWpaKNPtmEfUL0RQgsy1QFDhAnCZZpqjzh+QwspZq5LPKCd999l/fevsqLLz6PpqPmfFNFqjacGsxZEgotoZgSURSR5+q9mPMcUP1JtEwhnxKfiyLH9Syq1YAsTen1Bxwfd/jhD/6EDz54jzD0sQydVqtJt3NCrVqjLEr2334P95ktvEYDee0uSS1U0VeT+UbbUpU81vCMlsqINHVlYS0lQsB4MsSxbcVpKAom0ylpGmMaBo8e7bCyuobjOCwvtun1+yyvrNDv99A0iWkYINVmiG4Y6KaB5dgsLi4T+FVW1tbR55A5ISRprNTrosgw5tmvg+EITdcZTya889b7bG1tYtoGSRoTxTF5WVKphnMKtfo8p7MZQRBiGJbK0B3NEJ0Tsl//NYQQ3PzoGn/nF7+C0GxKdNTkco4sSwr5FzevQoA4UM2r/LUv/0wb9k/AX+UdnfwNE3lBWYbVchMISvIsJYkjpBCMRgM8W6ARE427GCJjPOgw6h8zPtlRTazI0MhJ4jFS5ExmU/IkQhQ5J51j0niGpEAIDYnAshwm0xGmZaJJkywtoVS5vmWRQZnhmALHFPRHfR7v7HD+wkWiWcTjx7ukcUar2cAyTcajEVE049q1j7jwzLMqg70/JAh9pIR2e4FZHCMw2Nt/xPr6KpSSWr2u6Ni2ycF+hzPnN1hdXeL2rTsILLrdEUfdLnEe02ot0evFWLaDMEAT+tzdVqo5UyEVhJFiDkoSmKYi4SfxjOODAxbaDUX0FaXKHS4EhqmTpTmUObqu1OkCjd29E0bjHNfV0XWBbQUK7Cgy0ihmPJlh2y7D4ZAiz3EcWxHFMzVXm6UZV67cotEIkMJD6pIoSTEMn7I0sG0NshmajKFMUYq7iUAjy1N0UzlfjHlUVKNeRdcKKFM0w8A0LXTDpCjBtGzqlQqObZDmkrwMMN0WlXoNw3BZX1+jVq/TarV5+523GI1GzKYjmo0m0SRmKzvH/7T/3/H837nIwcE+z13c4NIzW2TvVwDBB9m3eennf5lLn/9F1k+fQRgGpZTqPiHkn2krnzaN4tO//vFe4SebVz5LhPsZlde/bN/z07zuE4FO0/S/bV7/XRz/f2leTdPi4OCY//gf/Sf8yi9/hTDwlSVEFmgoyuH6yiKvXbvC2Vcv091UNyjPrmDoJrohqIQuyytLgBr4FxI8z8UwFWE4jmbousZJ9wTLtlVRY+hzy2cDQ9dwXZs4mpEXOVlZ0O0egiiRlJi6wentbQpUjmir2VKzhtUKcTwjTVU0Qlnm6Lqc7wCHSlnMcwI/wDJNbty8RaPZQBguw3FEKUzSTHDn3iPai0tIQjwn5Jvf/DaX37qC7Vg021Wm0ZBed4DnBcxmMQf7h7z08ud459130ITOmTNnCMKAShhy9txpNA1sw8SyLHzfo9/rcXJygue5rK9vMhxNeO7SJYpS4dhH4yFhpYVl2mhCEZmzvEBIgywX3L15XSkOpk5ZZhweHPDKK6/whZ//PLqmI4TGzZs3qdVqpGmM43pMp1M0TSNJEijh+PiYXr+HYShoUhwnzGYR167d4PlnL1KtVBmPp+zv77N+ahVNFLRbdW5c3+HKlfd46ZWXycuCew8fsbC0hmlKHNdlPB5jOy7VSo0sy3AcCy/05jY8gSg1kiij1qioCyWqyGe+yy2Fxmig1PtSaBiWxebaEnk6YxrnBEFAY07+7J50eefddzh1NqPb7dA7qLO0tIRl29y5fZvlwyHP/Rf/jNNf+hX6u/cIj77OSFvjg48+YmlpiU6ny+rKKkFY4f6D+yyvLqMf3ccsEqRnoxsaYVhF0w2yPMb3fPr9AY7tPM1yTZLZvDmQxEmCrhtEccxJ54iFpWVVyAsNx/HojUY4UuKUgtKsUK00kdKkFDrH+4fYlq0K9TzDGPfRh12ErWE4NnleqF3ROaG231PRVK1WmzhRJMcsz5BCWSkxdLRoSttzGCc5o7jgW998lY2NU6ysLjEc9TF0naXlJYR0efhgh7euvMPZs2c53N1BH59gj48pi4RUpOR5No8P0ImiGV7goG5pGv1+n8ZiXeVFTkc4yQgoKaXGtWvXsUyHvf1dHNfBcV00KbEshzxN2draplGrIxBYhoElSpxkAqMOzvj/Ye9Nfyy97ju/zznPvt2tbt1au6q6m91ssrmLtEh5LEeCB55kHNszjoNMJgmCLPNiEgyC/AGJXwZB3iRBBgHGsJAYzsTr2JY8lixZErVQEkVSXFpk711de92qu2/PfvLi3C62FFKiNE4cxHOAAm8X79J9n+c5z+/3+25tzHRI5AoM30NkMSKbYd0HBMweDfR3btsoAclsSqPe4vDwiMGwh22b7O7sUy32MKNFNn7+P2dtbR3bctjduc9TT34KaeVcu/Ea59aXWKwvUEwSbGFSX1lhZ/sW01GPWhRiSYM//L0/YOvCBRbu7fPk3/1FatUKVx+/ShiGfONrX9e05cmYINC018lkysWL5ynLAnfuHmoYuuhrn3RRpcK27Ln6W4EqUBRnTjMKTRf2fV9v0EpnqOpMWI1kmoati76swDC1E7HUTEcKCqQp58YdBmmSkyU5v/e7/5zLlx+ZMyi07GA0HOu4jDLXiCkmhrQxTEmWxcz6xwhyZpMxnutSpFOEyMD0aC2tYzkBWS4QUjfZ44luwqQB3e4pvh9QlAqVazrueDTGduwzF2FhzNGAB8whtJ5Mr/ebXNd1KMoCKQWD0xOSeIZtWSilcB2baqXKM09fwnEN3Llbr2mFuE6DQpVniEyaphjz3E/L1Jp/pbQ2+ax4E4KyiJnFU5JkhG0LZkmPvJgQhQv4Xkiv02c6nfLUU1e5fOkCpmlgWxaz6YTxcIhjW/iDCdalLYTjot6+hbO5rgfDk5nWKVfOMerkhKHPvft3CAMX05QIYdE+OWJ9bRXHNjnYO2A4GFKSs7y0jOv6WJaL5Zisri9TjSrakMnU91LXdRj0u3hhhawoMOaNbAmYls1kGjNLYlzfYTqd6Ig8JTClwa1bt/A9n3t3t6nVG9iOgx94bK1f5M7d29rU0JIUAlbPncMyjbncR8zNyCyypMBxHaQhETe3EWmG/Ie/RJIk7O0c8eiVJzCsAM3JUBhKNz+l/NGFsrpnIAKFvPtlBOInbl6zLNM07S+5UAjk0vsROb3Ttm5GJeRpCmWBbZqYakL74C4OM2aDY7LJKfmsj2HbmLZmDNiujWlpJ3QpckylyOMYxxCUWUw86TMdHOOIAsqSNJmQpVNkqXAsFyOq40YRtuNSFAmCgng2pO4rAk9yfLDL4d42B/ePaO8esrKxipSSyWRMFFYpS0313751l8lkhOtb2K7W2xqWRzI2MS2lB9tCM7Qm0zGHR21ajQat1jlQLitrS7RWIpxwxs5RnyDyuX79gFu3ulhWxCxNCV1LD5pLNc9mFnMkNkaVel9Cpkih3c8dW9Go+yAS0nQMKmcyHiOEqwduRoYUiryU5LnNK9/axnB9FloRrmWQJVAqUEIjzI4bUJRQbyzgei6z2ZTZdIRj23PmicO5jRXSNOf2rR7CcKg3Vvnyl79HFDYJfAmllrSlyqDExfIjUpVSmDGW1J4DZZEjRYElc2yzQFo+xtzADWmglJYVCAp6kykvf+cO790dcPt+h9PuDk8++RwXL16guagBjKWlFkvLyyw3FzCEIExruLOQ3+v8Mz79yZ+j12nznde/TTzpcH7yHK7n8r3sS3zq3/xVLl/9OI7v6c8XpW5cpdSeWg+tf5XmVTfE/99tXh8ko8yZSP//b16zLPuND/r9wwfzB3/mZhpn03BdXDz8+Kf5efB6NafQffDSzojln34FAONXPvXQe/zoA//T6ngfLNO0dayGZfEf/If/PsIA03WwXJcsF9Rq2ixgkqSsX3wM7zN/gP3c85iOy2Q6Qpqw2FpiYbHFvXv7tI9PcRyfzkmHXqePKUx29+5Sr9cxDZtqtUalEhJ4NkVSsrOzj+uFyLnZhCEUpgTbtKnW6oRBhbwQegrY1S5soa8zusIgJE0zHNfDsrSJgCF0fEGWZVCCIV0QMBydYjsG49GQ0I9IpwnvXfs+liH5xte/wqVHzvPKK1/j5s3rrK0ts7a+wgsvPEdrcREw8Jwq1Wqdbq+HYQquXLkEFJxbX8PxXG7evE4QuhiGbpbDMML0HJpLTUqpXYsdt0KpTN589W2iMNCFYTykEvpkSU4YeuRZgmGa89DvnCLLuPnuu1QqLlmWUokqhEHIeDzAMBTHB8fUGw2EUFiOwVF7nyyeMBhmtJqLTMdD2scHrK2toKSi0WzR63XoDztYtqBaiVhdWSFRBY7rYVgmzdYi9YUmputTSgtVKja3zhEE2mkYVeI4Gs2VhqNvErU608mAa2+/xsJSi87pMb7nEk/HGFLr0HqnbULfQwrFdDomjqcYlkQJxWQ6o1JpcOfOPcq8wLJcgkpDh6pbDrt7hxiWzdr6MufPb5DK69i2w2L4M9iGw7jfx5jOiHbbTP7Lf4833r5GmN2nnm9T3fpbLK8vgpBUqwvcu3ufnfv3cW2bi3UX0gnK1QY2SZzQ6bSJQpdOZ4LnaUMS19P6Yc0ksHXDmOfYpkGeJqRJwuLSCvl8em/ZDnlR4Pk+mDYyTzEnHZAC4Xl4vgMyZzjqsWAbyJN98myG8B1KKYlnY9I0pSx13qoCokpEFEUcHR9z+/ZdilxR5CX7e4eURUG9USMtC4QqCbIZnlSkecLjTz+DMEx8P2R/b5fQdTANwfHRLs8/fQmrf0KUT7ANRSoVSVniOB5SGNzb3kZKHZkxm6Zcf/ddlMpotw9pLrawHJ9REpPkKZEBUZFglppKX5geq+sb5FmJUoLhcITtuFQ9gZr0sMYdnGkXJxtjyRzXsxhmMwopSIXC8XxKaWBmKe6ugZCSwarCxEYomI4H+FGVhYUarmsRhgFRWCGNY+ocItw6d/PHcBwf13V44pkn6Q/v8fWvv8K/82v/EUVpsXF+neVNn3e332R15TyDScbmxScpjCrTTPIf/6P/grf3Dvn1WPA/fenPOe312LpwnpNOh5/7uU+ysrpOrdHk7t1tlCqxHZNqJSDJUnKVcXzSJgwCet3uQ0Y2xlk8Szkf3iBKRqMhjmPPj7dGXzU6paf/k3EP35OMx6c4nj+/b2gKmVI68saUkrIomE5GekgltWb2tNvmiaeexjBsikKilMloHPMvfv9/QyiN3pqmpCgSTMPAtBwMN8ANFwgrDbISXD8iqDRRRo0SndWcxGOEyphNBoQVHZsihYnr+FjSRChFUZaYpsS2DWazKY5j6qGpIRkNhrpRV+oMqS1LxWg0mNOndXZknuUUeYHt26Rlrk3KDJNyjvYYlnFGsS9yfc2UcxfNsiiQwuDV77zK1uaWptwVKXkaz9EgOO30CKMaIJlNBli2re9Lpos0QwwzghKUKqk3amxsbBCEVYR0KJUJhgEGuIFLs7WE15uiLm0R37yLMRwTBw6O69N79ybj8RhzfZnDwwOqtRqt1jKW6etj0h8QRQFlmdHtdYljTTV3LId+vwcCdnb3aNRb3HjvNv3TDrbj6AgtKSgVzGYJJ8ddFhoLGrlSCss0SbMUlaV0Ox2qURXH8hFItrfvkiQJFy4+gpSK6XTI8soyGBZpLnjv2hu8887bjCdTAj8iiiqgdMzeA3Opu3fucOfOHaQU1Jo1XUTduEf+D/4u6uIqjsx57fvXePb550AUCLReUglBeZZZ/OFLXs2RV3PKz35Vn/P/9g/Shs/qIPl+EfdQiAOlrShRqN8OEOdTlF3Mn6OQasbp4S52ETM8ucvw9A7d4/cYH24jsgllHuMHIbm02DlsUw0rZEnJdJJQ5iZZYnKw38d0q3R6Md3elIODNvV6QDVyEIaLlFCkI+JxF5HGSJWRJQOKeEQ6HEFWaNaD66JsC9soMIySwFEETsnKgsfGSoU4LtnbOWKhuYLl+hwe7dNYDFi9uIgf1YknCpULqmEFicGo32aptUJZSmzXYm//PqiM9bVFuoMJ48lUO2oLE9PykUZAI/KpBhUW6nXidMZ+u8e9vRGhNPCCkqJMKTObySjF8yTC1INEw4Ay12iqKQq80NOaccMBZVEqievZCFlgWXqglGU5EokhFK4Zs7GyiIWhI7xEiZQKSr0nqBKEUqgiI89TPM+eZ2grpFFSlgn9Xh9LGpxbaxCFNkoV3Lp9hOUUNBcrmA+GZWRYNvMBWIVk6oCYgpRYtoOc74WuY6GkT5YXqAIoSyhzinSG59tYto8XLBIEERvnVpgOR8S5webmefb391CqZHv7Lqury9y5u02JxGwHuE2H+t92iGfHTCdt7rzzHZ5/6jLnk5eIk4yNX23x1PM/h1mtIEx9/xdKIJVAKigFZ5FQYk4nfsBiebhZPaPhyoevCT3sVjwAfNQHX0sfgTb8UdJNfnj9gK72Q/qxD3v+34jmtSiK3/hxX8QPrg8+CH8VkPf7jz9skjG/yZ41rw9rXj+anuOnXWd22GjqY5qmGvXLcypRlbe+9zqT8QjPD7Bshzt/+DkqCGa+oymSQTDPhitI04Ib169z+fIljo+PufzII2R5ihLQbC4yHk0AwXg8plKt6ELOlFSqEaZhkCQx/jzA+p13roE0cByH6TTmYP+A5aVlwsjXxYcQHBweMJvF1Gs1ijKfF0Y2CE1lNQxJGmcURcZ4PCCKIqKwSqfTZef+Lo9cuoTrOjz11JNUKhFra6s89uwaqRohCgfP8zg4OMS2HdrtNn4QEEXaPMe2baZTHfdiWe483kHNmzsYjSbsHx7guQ5hECKlQTJL+eY3vsm5tXXee+8dBsMeW5sbDEdjxqMpvh9xb/s+nucz6A84Pmrj+z7NZpNatcZJ+5R3330Px3bwApfFxSamdBiOpnieduns94a0FlrMkpSbN2+yurLEysqypnEZJqY0qUQhtVoV0zDo9vpzmp6m4AAkScLR8RG+p02fDGGcuQx2uqc6UqLZBCAvFN997TVee+27RKHPY1cu4/oarazXa/p9peTgcJ+lpWX8QGfnpnlOluWEUURZPMi/tGi321x59FE832I8HiCV1kQHYcjSUos0Tbi/cw/feJyK8yynnY7WIhc58WhEfRxj/Cd/nwsXzyNv/xF5lvGX37pGvV5hPBqDEhoBjwICkdJyFDMJu3t7uvAtClzXw3IchDAZjYZUKhFpqp0WH0wty6LAkBp5tWwLy7K1iY5hYNsOeZ5TFDnD4UhTglVBXGR4RQqTAaVtYcQzFssEkUzpziYo08CybZI4QQhFEIRIwzi7vkzLnOtWmTeCDkIKoiiitbiIFILt+9tI08DyXbLJmEdaTayyJE5TTNen3+vTatQZHBywYmRYcQxGyXG/z3H3ROv2khQ/8BFCEgQBoPA8bcZTrURnNJ56vaE1ipaN6diUhiRVJa4pCEVJXcWUCPYOj8kGpzSNHH96CpMBKp0gDCgMyAyBMg3MuUZsNB7RqGuTryxLMRwb755CFgX9dcgKsCyT/qCLlCZpkoKAWq2ONAymsylhcp/CDAmf+HcxTIsvfvEvWF1boVnzuHP7Lr4Xkac5gWcz7p9y0j5m89wlvKhGlis6nR5RGPDE1Sv8s8/8Fv/45z7N+dU1mpfOIwQstpqosmRvb5fBYMBffumLpMlsnlnqk+WKNCuo15tMRjN8P+Sk054bXyniuQZYCEGeFyAUruOcIfnMi6wszedRMYVGXMZTZtOYINRuq6apG0LjgauzIZlMRlSrFcpyPvxUcPnSeZQqdPSQqemxt2/d5P72bZ544kkuXb6M4zgIKZlMJ1imTalKkiSjLMGxPUok0rS5d28Xx9EDHMe1yfIMVRbYtochBVo3pinOCp23qvWvcq6BlTi2jxAKz/PeH9MKqSNrDIk/ZzaMxxOUAsvUCLZpGu9HDmki/fy+qlkenudR5MWZcYlmI+vPr9VqCAG2bZOlU9I0w/M1oyJOU1zHniNoaITc8bhz9w4LjQbTyYR3v/99arUqlmWRZ4XOAD86Jo6n1GpVBFrjPxyOcXtjktVl7LeuI5XCWm6S5zluf0QQBKi1kIXFKqZ0UKWa0+KkZnU42hAnDCKCIGJleXU+0DQwLYvl5RWm05g333yLw6MDZknM+QsXKPKcLE0JPA/TNDg6OiQMAvJMD8FmsymVqEa/36cyl0WAYn9/n1ZriVIpknjGbDajWm1QFNDrj3jv2ltMp1M63Q4vvvgilq3P2yJPKcoc0zSoVCKazQXW1lfPimi5vY+6+gjm1QsUecrecZsnnnjigwvej1jDqM++DPADhk0/UP98yNuUpYdxx6N8WyA3E44P97AtCUXOqLOHKCaU2Zh43GE06FDmOYap4/uUcDCsiN2DEdPEpNJY4t5em4XWBk7YIFMW3eGMSnOF6zfvY9gR5y5cQlgekwxMM+LktI8fRpSqwLIMlMgoyTBMyPMYIQrSLJkbRVlYpkdWQK4UwjRREgxHkKuU0ajH6ckRg36f+/fu0mo2aDSXOTns41oBb731PdY318hVQZwMsVyT/aN93nrnbc6fP6+HzsLEDyKaC01sx2F/b5davaqvD8NhZWWFJJnRWGhw0mljmIoscWh3hlRqLWxPMklGeIGLVPNhXMk8wxqdxTrPi5XoWKui0I7Ees/LAW1+JIXeK8Iwwg1MDFOhVIpSOdIoH+wO2qBTSLr9HsDcFK5AzP0wLNPWvgqGoMgy8iLFD31836ZWifA9iWkISlXO47QECAPLMFEUehhWWpSlQ1kYmFJnHudKR9EJISlyhVZLGZTYTGaKr3/7GnsHHV588SVWV1c5Pu0xGg2IIi0VWFxcmic+DAmCkEZnmVOzzf/wZ7/Bx194ipe/8kUubS6z3KqxcPo0eVHifwLOPfI4Sj7ECuEhsOrD0NIfagwfsE5++Ip7uLn94df82Ivph97nJwXQ/tXAtr8BzevDhk0fzTTpr795pT9EbK4in7ny8Dv8RJ/xk6738/AEju1qiutcO+PYHrYp2dvdoVTguB7f/p3fpX7YwX/8UdonJ3i+z7vvvcd0MqNaqWtTgDt3ePrpJ5nNpoRhwN272ywvr3LnzjZ5XhAEPmmSkWQzTEPqvEPHIYlTLNNBCJ0PtrG5RZYV/P7v/wEo2Di3jjQk+wf7vPnmm1SrVZaWWhiGSZLO5s2k1HquKEKpkm996zv82b/8LD//yU8ym8Xs7x9w7dr3efOtt3n22Wcfcs1TOvaluoMTFeTDSLsVV+v8+Z9/nuFwhDRN6o0GQRjCfENwfZ8i03EMtm3jeT6maSIwCMNAh8zHKXu7+/R7fV54/mcwTUWne4KUgo3NDUajGbs7B1SqC6ytbTCdxnz+81/gZ//WJ3BcB891uXXjDl/72td56cVPsNhaZDjsMx4NcV2f0WSC47i8+uprPHLxEo7tkpU5k/GISiVkNpsSxwmuH3Dnxi2iMNIGJo6LQlBrNLh75w5Zmur/l+cazZkL5b/w+S/y6qvfYWNznaWlFmEYMhiMcByHbreHkJKtzQ1C32P3/g6eX6W12CLPCoSQZHlMpRoxGk+IKhWKQsf3BGHIdDolzxVBEJDnGaury8TJCEXK0fEeIk81Si0E0pRIy8B2XSazmDCqcPPWbSrVKgvNJn5/RDEYYPyDXwQE6p3fJDEbSK+O5zhY0mJ3Z4dLVy7RatRYkjGFJZCWSaVanQ8iHGxbn4Og5g6DhXZM5P0sNCkeGAiYDIajsyI8yzJuXL9Os9nEsqy566ag3W5Tr9cpJBgCrNEQs0wpLYPeVNOuXddDlYrRSJvVZFnOoD/AdT1MS1vbl4V2Y11dXeH+/fusrq4SBAGltoTG9z38wGcyHWP7Lv3pBM80sOMxceeEZuAj+m0cUSAci0mZMMsywjCiWq0QBh7SMDk5OZ2bY1jaRTVOyPKUKAyxbZuFhSZlMW+OBJy0T7QhjgDX9+gMBziVADkZUifFFTlJOiW3DITnIB2bUkCaa/TwQYNumyaep+UDeZ5hWyaWbWLf13r2vDlgpiSj6QQ/dDg6OOZrX3uZRx+9zHgyxnEdagt1VPsdCrOC+cgvM4tjHn30Mrfv3GJwckDoV1hZWuVw75A3vvsGt9+7zpVHnmAcj6g2l7Acj0oloEynbK4t8o//yT9B3t8n6g4IL23q5iKJkQYM+n2m0wkvfvxncFyb5eUWk1GM74f4QYjjunzmtz7DtWvf52c/+aLWWNrWmUHWcDgmSwvSbIbreTi2zXQy0UWH0AZNCjWPYZLMZimLiytkiY7WUUVJmsxwXYsiT0jnWs8sy3mgJbUsC1RKksSosmB3ZxvTlPPYsVUuXb6MEAYKgWlamIZ2BO92+liWS6kkSljMkpJXvvUar3/3NZ5++mlthmdKlCrxfJ/DvV0MoR2Gi1KRFaVO8BTlWaGUZYU2/UpKkJoGhxBMJhP97yn1/UiVuvF1XRcpJFlezKl6grIUGq1W8gwhEGKeOyq01lOVUJQlhmHNB7T6/mvbNkkSY9s6skfrwk1tDiUlve4plutjzGnaruNw++ZNRFmy2GqRZZq+nOUZYRiyt7fH0tIStq2/s+lkqr/L/Ta3y5x6b4xhGvTIqUQhTlfTHMcbx0h/wt7NMbbtoJRCSgPLkhwdH1OrNRiNpgwGYwaDCcNRn3q9xnA4ZDQe02y2mEymPPf8x7h46RJCCibjMaftUywpcRxTy2rqumEXQJYk2JZHGEaMRqO5yY1Bq7WMIU127m+z2Fyk2WyRF4qD/UN+/3f/gE+89DM4jsOnPv0p4iTRMgDD0OipgKOjQ6K5H4Mf+Mj5QFy++g7l334J5/Imw94pp8Mx58+f/2Cp0//DzWtRuvAXEpkohmpsEoGoAAAgAElEQVSbPB5A2icZnyCSPvFwj9Oju6h8hmNZqFwiHRPLq7G4cpk3rt3nmed/gZVzj3Ptxj0uX32BwVSxfv4KKTbV5jILixsMJwVPPPMSlt9glBgE9XM06stYXoP7u8fYbsA0LkiyklJpV2fLsSjKTA+XhCSeaHMk0zTnUVsgzZK8mOLZGc2GT7PhUQlMLm62WKz79Psz9nf2OWm3ee75Z4jTBNPysBwTy3Wp1ptEYZWiVPiuj2U6XL9xg36/z+rKMtvb2zQXmwghiAKPOInZPL/JwuICq6srNJsNDrr3GAwKtnePqdQj3nnnDvs7sFDXMiAhIEszBNrVW2ouhTZHM7SkXY+2tIg/y3Nsy9WmbVJLvaSZI2WJ59nzoV1JWbzvFl4U+jqvVivkeUZZpkhpIpRJnukM17yMNe3bEkwnQ6pRhG1KbFuQkeJ4PmlaYlkeeZZRlgmmkZMVNkks+OpX36IooF6PMC3I8oyyLClKRac3wpA+Jydj+hNod2a0T8eUGIwmU7ww5LmPPcvBwSGGIbl79x5bm+cZjafEcUxk1Ii6Df7H6X/L5rkGvaO7TEdd8mmXo8MDnqv8KkFUY/PXN7CiBuIDmkshxPtSix/RvP7AkOgD6MRnUTkf8vp/3bz+Na0HUTk/POX70IP7Ic3rT7N++IC+/+cPO+HmJ9MzjyGfeewjQfc/CmL/cSfTDz6nfP/mLgWGYXJ8fIzvB+RZiaRkealFGFUQ0mDjyhVWvvM2PHaJbrdLGIY0GgvUajV2d/Y4PW1TFDmWZXDr5k02NzfwgxDP8zBNi/F4zOLiIlmWIk2oVms4tg2AbTnESYpSgtFgQLVWw7JsHnvsMQypXR4txyKKNGo7nUwxDZPBoE9UqQAQhuEcddXaqWq1xtJSi2ZjgelkyulJlzfeeJOnnnqac+fOcXp6QrVaod/vE4Q+IugjhCDu+pyedkiTjBdeeIHbt++wtLxE4PnzYkAx6A+YjEeMxlN2d+4DUIl083f79h0WFxe4e+ceN2/cpiwUo+GIeDZjbW2ZSjUiDAJcz6cSVanXm0jD5PXXXqder/H0008DirIoyfOM5kKL6XTK5uYmqiyoVCLCKASVE0TBHL2WmJYkCjxGkykXLp7n6y9/lZOTEy5fuQJC8MU//wvG4xHLy1r/OZlO8QOfpVaLdltTHMeTCePRaK5NVlx75xqf+vTPI6XAkJrCEvja2GU0HhMnCZUopNftEEUhCG2e1e8PNTJvGpQUFMUDN1I5v1nlZzrBIAzIs4zZbEKSTAE9oZ6NxuwfHLCyts7R0bGm4gYBrhMghaDRaOB5WkOT3bjL3cWQ1V/9RYrBLvm138be/DfodE/ZOrfJweEBQRDQai1i9g5QKkc4FlmqnTpnU61Hy4sCKU3u3L6pUeuywLR0zM8Dh0dtOKPOKOqu72nEVEqdnxsEZ43uaDikVqvpxsA0SfKC9qDHyaBPgSLwA46Pj3WzYpicHLepVLW5z2g0ptvt4jqOjpQyTQzjgV6vnBenupjvdjtYcyMWy9IRJaPRBMvzODxpEwU+qkgxfRdl2hRovfWgP2Q41DRTjZgpkiSm2WxycnJydpMLAj1EiGczRqMxIJjFiXbUTBMd2QEYhtTNvIBcKFJVUFqS3qBPFEVIU9NGpaGpwKZpcnB4iJQGhhQURcH+/j5hGJwZPTnbeo/qNkfULUHUWmWWzVhurRL4Hot+QTY8INl/HXt2AHGfm+Mm557/NXr9Pnme8bWvv8wv/1u/wLvv3eLy5Su8/vqbfPnLX8aWJlcuXcEJJVG9RYbCNiS9k33qoUEqbArXxv2Lb6MunUMIgW1bc7mFzcrqKnmWMxoN8Tw9AEyzhFxlOI6N5zm8+OLHcX3dIGmUwCFJEv6P3/nntFpLLC0tYMwNmUxLU4cn0xm2Y8+RZUmeFhwdtTGkgTDAdTTb4wEyOxwOUEIboAmhj6MQOmM3nozY290jDDSTw3NdojBkY/O8jvOwbfK8YDabIYWgVArPC4jjFNOwsWyHe9v3ub+zSyUIuHjxAoYpmc5mGhm1HUb9HoZp4PnazO/7796g2VwCpRu+Ii8AyTe/8Qqj0ZSlZZ2VWZYlqiw1IiSFdnnm/Ui3oijOEATQ8hB4P95BuzYXcy0xc22USVkozWRIEj1QFLrplFLMnbgLwiiaX9cFyWzG9r17LDRbDEYjrastFZUwYrHZxPU9wiBAKTg5aeM4Dnv7eywvL2OaJqenp8RxzHAwxj7tIy9sYe4e4No29wanVKsV7M5II+rnNGWv4V7QPgRzx3hBydHRsc5Gn8yYTWPefPNNnnzqKmpuUlWvN0iSjK3z5zHmbA0hBMdHx/S6XaIwIk4mLDYXNC0a3VSPx2NMyyPPc27cuI6UAs/z6XZ71Kp1DEMwm86wHYe8KPnDP/wjTNPkkYtbrK+vkeU53V6XeqNOmqUYUlO6gyDQTu/1GsAZJd745vdQ/91/RZbOSKdjgvoCjUZDH5vyfc3pWRH0I1b2T33K71qY/+kFxCef+9Cc1w+r4ooiR/3vLmJrxFvXvsaof0SZ9vEcyGYjppMetiUACyld7tzZYxgLdvZ7PHr1Y+wf98iVZDiZ8sj5iwRhlVptAdtxsSyTYh7vd7B/yNLSMu12h15vwNbWRUzbYBZn1BdaLC1t4HoNDBmBiCgLizjJsR2fNM1wHQ+FQpCiihxV5JhC4FkWFCXigTtzkWLIHEMmmFZKmqd02sd02sdkWYxp2uzsHNI9HbC0vI4h7TmTYUSRp0gJnhcwi6dUa9V5lroxPxQxjquznfNcYVseeaZYW32EIrY5Pjzm8atrrK8vMOgN2ThXpSxzqrWQ4WiAaeqkA6H0/mDbOt7LdWym8QxDGriuR5KmMNfx65rR1OaDlkOWFEihc7BRBtLQ16xxhiQqkjTBNMTccyIjL0tcz9FGkQVIE/IiRRW6WTYtoVMzDG04qQ32Hriig2l7pLlid/eYw8MJly41ECJDSxcsHRcWNojjgu+9dYv+KOPudhtpOSgEL3z8RVqtJVzHptls6kbbdIiiCq7rcXiwz2K+RiEKPnv8O2yuLHD/7tss1kOO9rfx/YD9YZuLn95i6dkNSsNEzPWeQogf0OY/fJ4/XM8/qHt5aP/UT/rB3300uu6PTzH5MArwR10PhpofhAB/0Hv9jWpef3j9pMjrT7M+/DM+rBH9ke/2E37GT7re1+c+OIEcW2fguY4PZY5jW4zGE53JhSD43c+RPrLJO+9eZ2VlFdu26PV6tFpNGo0662trWJZFa7HFzs4eQpYkScLh4QGNxgJJMqPZbFAKgzzL2NnZxvdcTtptompNR5Q4Jo7nog2gIPBdTk+Ocf2AslDU6jUajRqn7Tb1WhXT1lqyIte0T13YAKLk3Ln1OXIBzYVFXnjheVqLS3zus59la3OTKAqRUjtuEvQoyxJfrdFcbOG5HlmW0+8P+MqXv4TrWCwtNTHmwv5u55TDo2NWVpbwfY8knYFSjMYjFpqLLK+ss7KyhjRMOr0uSyvLRFHAzVu3WD93jkqldmZ7/971a3i+w/kLW7zxxuu8+967XL16lTTNUCplZWUZP/CJZzNNZ8kyndtoapQAoRgNB4yGXZbXzwGKxcVFtra2CKKILFdcvfoYhmnhOB6NhkYHh4M+pjSYjCd4np5GLjQW+O3f/m363R5PPvkUCwt14mRGp9NhNk1xHR9hQLVaJawEcx2zTxzHHB0ezV2sQ8bjGdVaBdPSNKVSabJfnuVYlk2WpIRRdHb5hWGI57n0eh0cx2V3p43rRXT7Q0oEjhcQBBHS/xaFvE8+WWI2mXDzxk2sdo/m009gfvw50u2XSbr3ia0l1tZWsRyPP/3TP+WofciT51qo6ZDCkhR5QZom2pCmLNjZ2WE0HJMmKasry2Spzk2N4xl5XpClKdLQWp0805QlrenTjeUsnlGJKnMTHU1v91wHpWA6nWEaJralEe+79+4SxzGLi4uYhqTf61HkGa3WIqPxFNt2tRN4JTpD0MbjKdacPuz7Oifz5OQEyzLJ84xgnrGZZTr3uFKrYpkmvu+TFwU3795Cmob+c64LBtvxCIOIa9feoVKpYFkWvV6fRqNBFOlsS9u2uXf3nqb8RxG2rRua084J/W6PVmtJO9nOkcI0TSmKEsMyMS2LLNXGcMbcbVrnDFfpdE5xbIdKVMH3fUpVcHh4SL1WJwgjHFcbVznbOhImuaCNf7x0hmeklP0bVGfvMRkPMJwQ5+IvoFZepPrEr3DkPUf7pMfS8gr1eo0XX3qR9uEJW49c4d7OPs88+xyPX7lCvVbFdnyG42OWtx4hB4RK6BxuY5Yjcm8J0WzgfukVWGzQGQ1JZjGlKvV+Fqcks5Q8KyjLEse1dGMQBIzGI1ZWlhj0+5SIOVVYzoswgzRNWFtbIZjTtB8UcxqhdciLbG7mUmCaJnfv3MULfBYWamfRH0JITNPC90Mcx2Y4nAAmqpTYljbPsSyLpeUVDMNCKUGaZWRZju2GWLYNSJ0nbduMx5O5E63J4eERf/zHf8KFrS081+Xc2hpPPnEFP/DO4i4QBkKY+L6H64VkWcloPOXaO99HSIPT9jH1ep1O9xTDMJhOp4xGYza2NilKbZjkug5Zkmgn8rJAzenOAkmR6xidBxpYKY0zY2KlCs0QMA3SNGN//4C3336bzY0tpJQkScpXvvxVbt2+xcbGORSKvMi0uVBWYBqWdk0tdFbs1tZ5vQ8FAZ/93Oeo1+q0llZI0oy93R1u375FFEX0en0WFxdZWztHp3M6b8gUUVSlVqvRvfYenYrLWlpQ5Bn20gJJkqFaC+SLdQh6FEVBb1+xvLzMcDDAtm0ODo6oNxa5cfM26+vnSNKEd69f4+L587iuw9HREa7r8fbb1yjKkqODI774xS/y+NxEbGVlRbM9LMmNm7fmfhA2tusTBBE3r99m0B/y+ONXaCzUEULyx//is7z++vf4+AtPY7sOx+02YRByfmuTjz37DAitj2u1FgF0frBpYZrW3E1aP9bHxUCpguFoiPf9u6h/9OuoImb3/j2WNrbw53m+/zfq8I+pZx7kvFq/6EM1/PAnfsjbqFsFvOXCVofh6SFCZZhGQfe0jR8GOG6IkCFp6TOYKLYefYrN8x8jqK0Q1lrUGk3qCzWOj/boHB+zsbVJlufMZjO+9IXPc251Cd91WF5u4bk2YeBhWRbf/uYrrKwt8+prr7O2vslwnNHtxaydu4K0qhwcnNBcvsTb13YwrADHj8jKEkVBqSR5qihzhSpKLAwcv0KRZVCmmGaOUglJOsaQMYt1j/XVBiYx9+7cYHlhgbWVJSqBhyoyOidtZtMJt27exHVcmostFhbqSENw795d6vUGJyeneL5JnpckmcJzQ+7cvotjO/Q6uyw2q6yvr/DdV9/m9DRhOlUsNCyEaen60LIR0qRUgqx0yXKF5bo6zitLcWxnnl9tokox12SXQIntWBiGixQGhtTDJ8Ow5saFKZpWn+p7QpljWRbxVEvdbM9mMOxTlJI0FQjpgADPc7EME8MySdIYMd8vy7JAGgZgkKRQKhvDUKRpzOpqgytXljANRZrOQOlBoDRMXvve9/GjJo5fp9E6h2HqDNwXX3qJ0WiCkCZ/+aWvsLV1gcXFJQzT5PqN6+R5zu137vCYfIbep+7QvBBw+93X2FwJqQQGaa5wwwZbLz3G1U8/RVCvk5cZhni/YT1zzNab4UOXzvuPH5gbPYjG+eHr6ydCSD+CYdNfBTP1J2l6/3Xz+oHrr795Lbf3Uf0Rolb5CK/5K2pehdZbMTfLkFJg2dosaDpOuHv7JmWRU6nW2Ns/YOGRixif/yrTwGfzsUexHRshJYeHh9RquvHwfZ94lnB60mF7+z5ZEXPhwkUsy+bkpE21quNWFKb+b1lSrVS0sYSjC31LKjq9DkIo8jwjCiOaC3WEqaM3du5vzy3ZE3Z3djnp9FhZXeUBDU2jOCZFkervtlAY89iIN954A8u0dNRCWfCNb36DKIp0tIXXxZCS/VszqpUqSaJfv7Kygil1GPZ0MkaVBfe373LpkUeIqjXC0McwBZ7nzB0yPXIURVEyHOrMr9X1daq1ClmW0263tXPoPMbmtHvKY49dwrZ1/IWm0K7iOi62Y9PtHpMkOt6hVq/T7XSpNxrUa4uMpwm+F2BbNrbt0GwsYLoetmWSxDGT6ZQwjBCmiW0ZuJ4PCCbjiTa8snXe4wPKFwoc1yHLMp586kk2N7YoVYZpalSx1xsSBhXa7SOKstANTSViMh5jSlMj2AiEMBlPplSqFRCKstTDEZ0Bqh/PpjMcx2U0HuPYGukdj4YstVoY0qTRXKPWWEAYJq3WEicnHe13G9xgMDymVfk4n/vcn/LE41dp3NxB/tIv0A59pvtvUi3bxGYT0zIZjiZsnd/k8YubeNMB3emQoiw4aZ9i2w6er90Lt3d25kYnGuGZzaaYlkme54RhiCH1FDjPCnrdLvV6g1KVmJYuXjXdUOfPPchiUyonTmLE3CJQGnrSvLTUorW0BCi63Q5RFFGNKtiWySxO2d/bx7JtLMvSqMycGSHmmu68yLFtG9vW7rOOo1Emz/Pp9wf6mBsGEuh2dH7xcDRk7dw6Yo4eCUNiGub8ej3BMLSDaBAEZ42WRr60MU6j0aB72qHe0M7SjutgW/Y86srUEQrzG6fjOFimBUpPfA3D4KR9Qqk0c8CyTAI/0OfiZKSnxkKj867nI6VBu31KEISwYjJZiMmNgjjNyFWK7L2J2Xqa7qP/GZ/5dszP/8P/hiI8zx994Ts887O/yLvvXufCxcv88q/8Cp/4xEsMhn0Wmyu8/sZbpFlOVKlQa9R44/Xv8r/80/+Zv/drfwc7rFMKgSEKOgd3Wa4HZO4KhjQx37sDvSFFtTKnxmnt2MlJh/feu05RFNTrDQb9AVmuENLEMPRzbNPB9T39ffBA86XmWbC+1mE9VKQIqZs227G1drQoEBLW1tdoNOooMX++oem+pRIgTKDANG0s02U8ms4/R5CkGQgJUpIXJUVZUiiF4wYIaczZJII0SQgCH8OQFCXkRcad27e4+tgVXNtCorBsgziOUSgMy0EhSeb7SJaXqFJwsH9I4AU8cv4i9XqNyXRCo1HHsS2qtQqbmxsaSTGMefSN1smqefGFkPP9grN9UhdlOmP5AeKsG9u5q7kUvP7667z2+us8+cST+rowNJp7+85tnnrqKZJkRrUSgdAZxswdU1/+6svUa3Wk0MZSpycnXL78KN985Vssr6wihIEhSxqNxhkCov9eBocHBziOc7a/TSYTVoXJdLmCs3+ClHD9+IDNrS0CP0QYgsxqazaRsQ5oJ+D9/T0sy2Wx2eJP/uSzfOz5Z/F9j/v373Hh/AXCMEAaBlmes9RawfcD7t66TVmUPPrYozpbVehrTxqadVSUJV4QkuUlQphEQZX9/T3qda3RtW0doTMez3jsypYesvZ7NOp1hBDs7d4njmPW19aZzWZkeY4zp3JrhoBJHCdnjaw0DAwJbO9j9se88fQ62WyKUDnhwtLcfdv4qZtX82fyH1PPfMjvvxhgrGfEyYTj/V2uv3sby5S4boiwTDrdGcOpotbc4Nb2IU8//yLjScL93X3WNjYJowqOaZFMZxwf79NaXcWPKownE555+mmi0Gc0GeMFPp1el9F4xNLSEr1eTztTP/kkYRjxu7/3f7K+sUalHpGpFGmkNBbWiXNJnCmWVtZJ8xw/ajIc5dqZXgmUyinKjDjPkaLEsgxAmweChSULKAoMciwjJ4ps4tkAaUwRIkaVCX4Qsruzh2k4bG6cxws8RuMh3c4pGxubDAZDllpLxNMC0wr47ndfY219lZ3tmzQXKqxvrtNaqXPz9i3SLGI0FgxnM5YWXCzLRQiDLFM67kk6ZKXD9u4O1WoV05KossCUBnmRY5jG3GFdEsdTXM8hjifzoZXCcWxNpS4L/W8v8rk2ttC1nWGQZSmOFWDbJqVKcTyXUlmkqUG73aXeqIIqsObnJhJsw9bMDVEiDQHSRkiP6UzgWgqBwjQFliFwLZsy067tpmVTlILdvTZCOuzvd+gPxwghuHr1cTY2NvjWt76l4w0VOI4zj2p0aS4s0Ov1eNZ7iak94mXjc/zWb/6vqHRI5JXcv3eDwSSnsrDC3/mlX6OxtIIXeliWQJU/iH6eaVgfZsp/AGIJzPfW95HqH37uj1v/bzevH2X9jWheH9a8frQlPvRHzLPhHvw8aPQePP5Rr3n4dx/mzPXgr5j91/895cuvfUTDpgdC9h/++clOJoE2a9Lf1QMKs8J1babjGWtra9pdEFioRbzz5uusfuMt2sLAa66SpZDkKdV6lXQ4pSwLDo8OGM0mCMtkbeuCRt28BXZ3jqlWqtQrFbK05Pikx2Q8ZrG1yGg0wDQkqigoE01tvHF9m2ZzDcfxSPOU4WTI8e4eooSF+iK/9Zuf4erjV1g/t4bl1ahUq3zzm99kdWWFslDkaYHr+aRpTqEUg9GQP/uXf8Zzzz/HW2++zXMfe46V1RWSZMrG5jlsxwK/C0ox6TikaYxlm+wd3mcyG3D16hNEYZU0KYnCKrZlYpsmbuTjeQ6HhwdIIajVdINbqzYQlLzyystUIo/W4gKdk1NEEBJUIlrLLUxT0e+1qYU209SkWqkxGvQ4t7bK/sEB+wdHrG+e57Q/wo8qRFFAHM947dXvMuwOCBshw/6AMAzonXYwBOzt7xD6HpSKooCFebbrcNghK/TN4Qt/8QUMQ7K2uqJR6TmiAZr2l+UJ5y+sM5n2+d7rb4JQrK4ssdhYRJXwuc/+GUoWPHrpMpUoonPSYbG1hGFZ+IFutO5tb3P9+nUef+wxvZGKEikE4+EU07RRpaI36OL5PrPJmO+88g1aCwtMJjOE4dEfxrz69Zcpc0VUqfPad1/n9OSYZDbC9LexbQurvMKFS5eoLDRwv3+HV5/YxF/wWfF6lL1bHI4tXLdCEve5c+s2j1YdUpWTFCWVSo12+5jJRDffWZbTarVoNhepVCo4noPrhUwmM8JQx36USJTKsCyTqKIzGG3LJkszSqUwDZPxeIRj68nvA1pjWSp8PyCJE+I41gwHzzmjYtdqdVzPYzqLsR0XaehGdTTqU6noZuLooE0lCBmPxoShNlArSwVzuq0uJFNs2ybNMvr9Dr7jk2UxcTKlUqvTbC7RPjpGiIJqtTJvwAyOj49YaDQIg5Co4mPPi/FBv49jWRgILMdmb/eIheYilqXD613HBakIAofhsEfntMNCfYFer4Nh6pgmVShUoUiSDMt28QIb13MpCkX3tHemC06TGX7gM5uluJ4HShszWaZJZv5f7L1XkGX5fd/3Oef8Tz43h85xemZ2ZnZmdncWgEBkGDQJQGIoipJKluRQJdsvfnDZry6X36QqlvXqKkGyaVKWKBIiAZAIxGKRF4tN2J20Mz2pp3O8OZz898P/zuwCu4tAsuSyyH9VV3ff231v39vn/M/v9/ummNyUdDodmlMNjHCHkSzgmw2C5hof/7v/FNPxMWyXxvQCezdfoFnw2DsK+Tf/9t9SLBW48r5LRO2Mbz/3PGdXl/iX/8e/IAlPuPLsE3z273yS9knE3EyFPBkwGo9xSnPopWWycIDv2aRhhPXiNcYLVXJSNNMiihM0Db75/NeJwz6nTy/guEX+8PP/gTeuvsniwjKB65JnKYZlTFBz5bQ6GPSwLKWttmyHcDxGPMpBnujNNXRFE57QvXRdU6YnmETREE3P0bScPMtI4lwNKwyTKIwIfBfbMtjd2eRLX/4CFy9e5FHBa9seEhC6rhpGJBJl6CQf6dTQcV2PJ849SVCskmmCONUwLRUDYuqS4/09/tW//hzvf98vTXSfqiAZjYa8cfVHrK4tYzqCICgwHI4n9Fh7QgHM0LQcTZNouiSMRqR5ShiNkJpLGKbkmaIFauSkWUgcJxiG/hiF0A0DQwhMQ5ClCXNz0zzz1CVMU2M47D7Oazx/7iwaEt/1lHNxnmKbAl1TGvRyuUStXsX3XA6O9iiVS2w+fMjszDylQhnbtHEdGyEURTnLFIrk+z7FRpM0yzk5Oubbz3+LK888g3HcYtNJsbcOSXLJ/KVLhOGYrZ1NPNfECBR9eOtOhKHZBK7H/u4B1aqHEBrHxwfUq2WqlQJnz6yh2z4SjXEYUq01iDJJKsEWBqdOLyMEeE6BO3fuoxsa416PYlAijSTPfe3bzM4u8uL3X+KgdY/LTz+NJl2ODlvcvn2N+fkpzp5dRTMspDRwA7UvtFvHLC0sUK2VkVKj1epSLFZwbBdDF1iGYDQac+vWmwTFAMuxJwZOoO+1ySVU/tt/il8O+Nq3v86zH/iwGrZoGhJNfZ58vLNWYnI9Ut+r5lVDe/OPkW+soz919h1USSklIi+g6yHoMabhQGRiZRrhv7PYHWzwoxsvceP6LZaX5yfmi2NafYujdkScCgZhztqZ8xi6jUxy5ueXeP5bX2eqWeZ73/4Oa6tPkMqQxnQRQ+Q4jkOcJxz3j9ClQNMddOErxE/krCwt0u4fMzXVZBRFPPv+99No1CFPMA0oezZ5bnP12g0WluYJihUcr4nwmgSlBV59/Q6NmVN0RxGaVUDoA5JoAHmCoYGh6ei5AXaVVGoYloWUEs9xKPoO3f4uZD2iwR5Z2MYkohgE7O5scXJ4xMzsIm5QYvfwiGK1QmfQ5aVv/4Dd3W0+8vEPk0uYnlmhWJpBuC69XsL0zCKOK7h77yaeaxElARkBL/7gLqNRmfsPTsjIsWSb7Y1DSgUXz/FA18lJKRWqjMOIcZQgNQvfL5HGIzwnxTA8sjQhHA8V5V2qGCbbCpDoCpHNJUk6GdJpGjLLScIUMkGWO9y9v82b1w9pNooYhiAnBS1DkxlJbCBziW2poYsk4JXX7vP6tW1OrdbRZA5ZRBxHaIYJwiHBAz3E0HNcp0SxNMNrVxyFTD4AACAASURBVNdJ84zhcMzRUZvr129y5vQqp1bnaTbm+ObzzzO3MIfvu/SO+qyMzyF0i94/3OZ//V/+Z86dXuTkcANhathegOWWKNfnKA8uMOuvYS+ZoOdIqaImpab2ukdfq77hLd3q415HV4Z3Ejkx6TQmhlb54995x5Lv1ce8rU/4OWjG7/Xzv8h9P+3x1ABc/PVoXv+qHuu93uT3uv0XtY9WDqKS7Asq51X/tU+8jQf+M0ye3vlX/ULP/ZOP8/bXlKUwHg1pdzr4no/MJDMzs+g37mHsHvC5P/tTtrcfcrC3jW0Z+EFAoVhQ8SASmvUprr5xlUHvBMu0efnlVwgKLo1mla3tLQLPJ/DdCbLqs727O3E1dtB0wf7hnjLwCVVeaRTFCN2g3elSq9eZm59jYWmBN2/dolSuYJoap0+tMuh18FxbbUC6QZZnfP3Pv87K6gpPPvkkpmniuf4k17TPmTNnkEiSOEaU1DQt0JeoVGoMhyNq9foE9TtQeZpoBMWANElV2Lsp2Nh4QCEoEIUxwlCanuE4xLZtGo06tVqNVquN5/n84IWXcG2HarlKnkgMzSSOcizPJc8yjo+P2NzcZHl5mamZaWVQUCiSxjHbW5vous7K8grLp06RSfALxQl1y8IQBmmaIkyNfn9AluekWUocR4pq6irK1bknnlDaqDAkiiPSLMb3fVqtNr1eB9/zyLIM3w9YXT1Ns17nYH+fKI7p9fosLC6wtraGbui0Tlp0uh1MYdI6adHttZmamqbZnGZ+YUHpH6UkTsZK1+Mq3ZWuaTiOBTmUJii647psbW0jUXrazskhZ8+d43svvMDC4hJLS0ssLy2T23fxgwAzP4euGVi2TfbaDdx/9JtcfXgHK9omPLjBgCpZDjPTTRoWGHmEtASHR0dUKhUM3aBWrynTFsdBmCbhRLsaRyGO7RCFA1zXYjQc4bkBUuYkcTpBJXO63S7eJO9WNWI6rdYJtmUpIwtAGAa5VBeUOIrxPG/iKqxN4lIUTXJra1PRjnUd07SwbYt2u6WOgXKFKFYaU03XHmcXGrpBLjPiKHrsdOx6LqViUdH/XXtCDRVkac7tW7eYm5shnZjgCGHi+56ibHsOo/EYwxDK6AfJwf4etm1jOQ5JktJqtRDCoN/roRviMWIqZU6hUMLQDVzPQTcMBoMB3U4HIQSbm5vMzM4ihAZS5/johGazgabB/v4uQSHA0AWHx8fs7e7RqDfY3t6CCYXWshx0w0SXGXnnDs7p3yYtz6M/+B5JFpOWpvjBi99jfmGawpv/Eqt3k31xnn/w9/4ee4e77O/t8eSFywhbsLC0xPLqMucuXKRWn0JYLrVqmTgbY9oW/UFIvTZLEqnxnpQS2axj/8nziJUF7EKAoemYQhD4PmfOnuHipUukacr29j7HxyfoQnDlyhV0HV568UUaUw2SNKHd7lAqlbAmWv8sy2i32rieMnt7tA9rmnIi1nX1/qq9+VEEm0EuU6TMJwY5BrpuoumgSYkwTPJMRcYUS0XOnjmNZVqkSTbJjM0Rhq7cmuMYDZ1ut6e0YYZig4RxovJ9g4Akiblz+02+/a3nWTu9QrlcUNo2XafRaDI1M0OSRI8duUulImtra48RScMQyh1UPkIAQErlFqxrAjBotXo4to9lehhkfOdb36RareDYFrpQjbsQSt+pa2+ZMWZpqqQXWYrjONiOo5yXHyEumkJld/f2uP/gvmI7SEhTZWoVxTFRHPPlP/sy07Mz2LaiVjcaTfr94QQ5EqRpTJ6nE/QXTKHeT1032Nx4SL1WZXpqiiiNqIQJ1afO4f/RNzHff5lI0zCFxXR3jN7qk8/nIDVK1iqH+/vomqRUKiBsG9t2WVxaZhyGPNh4QJarWLjhoMfm5kOiKOb1N17n+ee/SdG3WVmZIwz7mKZNGI0plTyKBZt2p4UfeEzPNNnaesi9+7e4/PSTlIsV+v0RX/jCn7CyMs/8/BztdodWu43tuBwcHFAsFIjCMboGvUGfk+MWlmVRLJb4xje+wfdf+D4rK4u4rvs4wktRFnXIBekLP+K1lTm+dPcOZ1eXGXbaCN8ny7K3Mozfo+54t9seIa/aS/83bO6h/9rH37WaMaQAPSbXNNJEA80k25NkL8HD9FXi8Yhet8vFi5dJUkmnN2Tt3CUuX36G+cUl7t+/z5mzZ7lz9x6lss9rb7zOp375E2RS5VN3Oz2q5UU8p0DnZMTWgyOM3KLolbAsh+e+8S2eevoymq4GVO1Wj4cPd1haWsF2VE2SZ5KtzR32do/o9zt4hQqNqRq6yInCkM5JF9f1aZ101ICv3eXipcvcuLmO45TRDQ/bLRAnCeM4IdckSf8ELQ/JshDbNUnyFMt3KfsNlU5guwwHA0xTx7QMqhWPVmuXdltFKt1d3+DVl15Hzy3e9/6LrJ09TZxkaIbg+9//DkkyplKtkKUZnU4HXddZWzvFuSfO8dLLL7CyOs/Gw/tMTZXZ3HpIq93m4vlZllamMS2dTKbILCfPdKJwqGj2GIxGKZub+xjCwjAtZK6R5Rmuq1IK3tJqGsrVHCUzMIQa+iVZSC5TbFeQyZQkS5iebiD0kEajguMoNkqWKvNI3VSsBOVODpmU1OplikUHz0EZBJoqAipJctAE2ztHOJZi7dlOlR+9fothlPKhD32EpaUVLlx4EqTG/MI8uczZ3tnl0uVLyuciMaltLbA9fRfzv9EI0wEvfu85VhYbzDQLHO5vsbqyxNnzV/iN3/6HrNz5JYw9F/FsRJ6lgHjPc0R72x74thsf3/bIo+MRlfi9zrOfp2f4q5Mp/sUe661B1V+sef3FEmv/mq931XW8x/p5BdT/sVexXCRKE7a3t1WBbQqSPCc8tYit6xQKHifH++ztPOS733yOXJekMsNxHCzT5uT4mN3NTW7fusnJ0SFhOOT6jasIy2B6dpo4GnHz+nXWb6+TpDkrK6ewbQ80HUMzqFXK9HotsiwmHI+plOpU6nVOnV5DFwbLqyvsHRxiOw7VSgEDiZSJylvVwdClKnyFSb1WwzQUqmGZJvfv3ePmzZtYE3MUz1XmMEII0jQjz1Xczb17DxBCuXdKHYJSgTAOGY3GKuZFqqJqujmD7xdoNJoYwiLLJeMJkqLrBuPxmMAvEIYR927d4sXvfZ9+u0un1aHd7mMId1LE6Cwvr/DMlWcpFEsMBwPurN/mxtVr9Ls9lpeXVe6f55FkGZmEk1aXza1d7t67T6vTY3Z+nsD3sR2TIPAIAh9hCEajiJ2dHaIwfFxEpHmmImImG1ylUlKmUFKj3xsRRxnhKCQMY8ZRjB/41Bs15uZn0HSd4+NjmlNNarWaim0pFliYX0I3DCzLolIuK/MGXcOxHGQmaR2fYE20ImmsmliZ50RJzJ07d1g5tcr25hbzs7M0pxocHu3zyU9+gjNnztA6aTMYhHi+/4gIg4bG7uaOcjq0dM4/9RTLq6vU6w3WTp8hKAS093YIZEw+0WAWCgUODw8pl8tKe5gkpFmmNIGTyaNCiyVJMiYKhxQLwUQjm6I0gha6ruMHAYdHhwhDKEMNTedw/4A0SVR+Za70dKPhCMd22NvbpdPp4E7cZZHKmGs8GmHbDq1WCyklaZoShhGNRkPFmKCiSaI4ot/vqwIeZTohc8nxyQliMryQuSRNlZZ6a3t7ksmrzKgcT+krhTA5Pjl5TOMaDHqkaYznBRiGQafTwXFsCsUA21ET/Vq9xsnJMQ8fPlTHT5IiTKUntyxFNY+TiE6nTRLHFAsFavUaQggqlQqQkyaqgU8SFUVxdHwEqNiXXEpq1Spra2tkWcrC/AKO4xDct7Bvod6r7h0GYolB6mF7Ab3yabT1b3Ly3X/L0xfO4dmOMsVJEu7eW1cX8zyn1+ny4ss/IMlTglKR73zvRZpTi4wjSDObMIk4OTkhTVMKQZk0yQmHMWkCea6D65J87FmM9U2QBo4leLhxn+HgkXlVjGbYrJ5a5aMf/Qgf/MD70KRkNBxy+uwZyuUKpWKJRr2hcqh5awBRbzQQQkycvtU14VHcCz/xWRUnObpu0Ov2HtNVNZ1JwaNcr/f29+gPBmRphq5pSkIw6JFnCrXpdtsMBiN+9NobIMH3C/S6feI4JYoSDFPg+j6GoaGRUasU8RxV3KVZSm/QJ5UZq2srpJPG9e1/q2maExq5MZEbdB7T2N56PYrFl+eQ5xo/eOElkCZaHvHMU+cJPBNDn7CMNH1yvOuP3xtD1yfPE+E4DgCj0QghFNXenejCdU1nbnaOC+cvIAyBbugYwiDJUqIoolAocHxyrPLDC0Uc1yWMYtbv3CaMxvR6Xa5efYM0zbAsh0KhRC5zXNfh/p07CE3jzu11XN9ThnT7x1zd3AANzHqVne1tXn31Ncwkx87UviWB8Sik2azTH3TRDUma54yjCF2YFMtl5uYX8YIihqFTCHwqpSLDfpcPfuAD/PZv/RZLC/OEowGB72GaBlPNGpYpCOMxjmvTah+xtbNBc6rCxz/xYaaaTSzbpFgMKBQ8bMdic/MhN27eeOxfMdVsMh6NqFareL5PtVqlWq1OCuGMi5ee5Fc//Z/jOBaalitNfpZDLpmM6jCSlOtpxPNf+wq1gs/Rw02mpqYoFt8uifqrWW8NRDQMqZoSiU4idTI0spsGkb9J92iTLB7huj7bu8dookCuBTSac4zjFL9QZHXtNKZtk+YJpmPxiU9+cjKEG7K3f8Cbt+/gBR5xEnHjxjUMQ3L/7jobD9a5fu0WF5+8zHg84vDogJNWi2KpzOrqGaRU3giaoWM7NstLa5w9cwGvUEYzoFia+Eb4HsVihVdfeYVr165x+ux5eoMQwypRrCwQpiW80jLCm6EzhHY/RgoHS5hkSUoaR4yHPcW2CfuEowEyU+d/pexTDEzS6Jh4fECtDFrWQcYd8nGPZy9eYHByQioT0DW6nSHPP/ctrjzzNAeHO6pxbbcpFArMzc2xML/AKBzzt//2Z6nWyvz23/8sc4t1XF/guDaDUU6SQaZwQNJcnTu2bQPgez6aJri9fkyaewxGAmFYBL5KekjShDRNyPIUyMmyBClThqM+eZ5iCA3DFORkJFmMZel4roHMR6yeWiRJxhwdH5LECbbtkuUauoBcyycyCwOh5xjamMV5j1ymaLq6XutC5dK+/PIb3Lm9jSE8DBFw994WWa5jWTZvvHGdV1/9EcKwWFpexrZc4ihl9dQSQeDhah72zTLh9IDy33WQtkatWeczn/4UM9NlTg52mJ5usr6+TrHeJCiVHw98d3b2kPnPV///tH7hkbnjX/f1/yvk9adpXn+2y9a73/9ok3w3d6x3C/r9aevHH199/wh5fTtt+Gc5FL/zeX6xhleJ5d/6m97+dS6lcm+znUmxa5MlGWL/GOe7P6T+4fdx5ZlLnDu7xuVLT+IUimgTrZLnuOxu7fD0U0/heSarq2tcufIsFy9d4MGDOxRLJZrVOs2pJjPTswxHYyTw3Dee55Ufvcbc7By1WhnLEhSCApbpgNSIEoXOJVlCq9WiVC7TaE6RZyn7Bzsc7O9hCZUZOxoO2d7Zp9ftcenSpYkmMObk+JjzF55kbm4Wy7b43Oc+x7lz53Fdj9GRgxk3MS2bL3zhiwqVlUqH5wUOtmVRKpcwdOW0quuCPEsJgiLkOi+88ENG4zHTMzM4tos2cc80DIGUGpZlcenCKZ66dAHL0jFNgziJSfOMclnRUIVlThAXHcd2+POvfQ1TF1y4cJ4wDpXBkSEwhMXW5i7f+ua3eeXV1/joRz7M/v4uzWaTVuuEXrdHsagiYAaDIVNT0xSDArquc3B4gK7reJ7H9s4OlUqNwWCA43hvMxeyODg4Vu6ArkOj2QBNI5MpnW6bQqFItVoliiOyPMMQxmPt5+HhEb7vMYrG9Pp99frzjCiKqFUrDAZ9Dg8O2NzcYm5mFk2DdqfD0tISnheQJhmNRhMvcOj2exy3WnQ7XaIw5uTwhOpCmzAM+c439olGY9IkZeqog/jHv4bdrJHtvER0dI/13TGzs3OU4jYZGbolWF9fZ25uVml8daXfG4chhhAMhyNuvnkL0zSplstkWUKWKdQ6S2Fv94iHm1sT7dsjfavSlpSKRdLJBb5WryFzies4yDxnZ2eXR3mpxWKRW7du4dgOYRhRCAoglTNqIQiwLYskTfG9AM9ziOOILMtUeLqukeUphYJyex6Px2SZMjWrViqPG8Ld3T0KhSJZmk5QU2XK0+v1mZ+fUxRdT+lasyzDFIJxOFK61STFMk2G/SGWKbBtGyEM5ITa9wiBqtVqHB+3KJUqE/qzRrfbJ4kTgoKPYSgH1mq1iiFUdFSWZQwHI1onLWr1OsPhQFEvS0V0TSGBj/SxmgatdotisYR/Q4NBzMC/TiaKdEsfZHpmijSRvPbadVqxzarTwzhcZ1y8wPjuVyiVSyx/6L+kWi2zu7PDZz/zWZozTf7ZP/9nfPozn+YjH/0Yv/M7/wIhXJrNWWDE9TevYxiCaqWJgc35cxf5oz/6Ir/1W7+JbQtS28L9+g/I11bQtRSZSUzb4uDgCMOwaHf6kEtKpRJHR0cUCj7Xrl9j7fRphGkSRZFqnCYFhTCUJng8HmOZJmmWPd57NVTx0e32JnFeat/Pc5X1+1amcEYSp1iWDXmGMAzQDIKggG7o6IZg++EWhSBQ1y0dZP4IATPxfX9i1DTgd3/vd5mbmaVcqiB1Dce2QOZkaUwYDjn3xGnsiWO4JFcRU7qGaSp6mwZvPYeUhNGYo8O2Oq4dG12XCkVGwxCpoioLHSlTHMfG9VwcxyLsH7Ozt43tquEJ6Eqby8SUZHKli+NY5ac6KqOWyRDlkZY1jCIV4YSkPWEAGEJgmSZJmqo9dnKOfvCDH8S2bZIsxRCCKIpZXl3B9TxMy2J2Zoper0fgB4TjkIP9A8bhmKuvvcHh4QFX3vcslm1TqZZxbm/gra3C+gbiiVUKxSLN5hRy7xDQGFgN5LjMyy+9TrHg47k2nufguEq+8G9+///B8z2mp6dUdy9zTo4OCTwP1/PwvIBc5ty7fY9ypUyhUCJLDA72W2iaTrFcwbQ8XLeAZXkEfkC9XieMRpimDbnG+QvnqNXKuI7PwvwywlTvXzge8wd/8AeMxgPmFuYwhUm/P+SLX/wip0+vUSwFFAsBUTxSw7QwUkOzJEYYBnG7g3n1FvX/7b/n7/8Xn+Fo/w4vfv85Pv53fvvxXvnz1F9v/zp7WQ1G9INvqM9vQ17V+aCQpmwcIlxBgsA0fbR0DN/VObh7m1QcUqvPcNgaMYoybL/KwtIp7j7YYGpqijCKaHValMslisUCluMTRxk6Gof7+6zfvotjBXz5G3/KIOzQ7rbY2tkizWLcwMIxbDqdNi+99AK1apFwPOL61ZvMzc1z88YN0jylVCzywx/+EM/22XjwkIWlabKJRjnPEyxhQ27gOJJzF87iug71qQbXbtygUq9jOh5hmlNtzGB7VZLMwXEa3Fjfo1idI8sFhm5j5JKwP0AzY8JwQH/UJc8VU6Nc8NBJ8VydoicYD48pFwSOHeM4IRs7h9SrDXa2Dji9uoYxcUebmZ7m1u3bOLZNmiSYpsnde/dYWT2F53pK6qHpTM8ugfS5desh2zst0gz8wMa0TDRNDS6llEhNU+y+MGZ6doFrN2/RrBZUDnwSq/NSU3msMs8xhPGYBaMLZfZp6DbCtMkyyDJJEiWYuoHUMoSh4fvuJIpK1dJxkiGEQ5YZaFiYpsCzTWQ2wvUDNF3HFA5RlKLpFrOzc0xNzdLv95E43Hhzi6nZZVq9Hk+cvYiuG1y/cYMwDFk7fZpr124wNVXH1Xzkay7jjxxz8MwWzz//XX7nf//nfODKk7z+4tf4znNfolL0qNSnWVg6zTMf/RWmF5dJXnWxLRvr/Rme5ZJpb1Fmf/IcebTe7kKs6dqP9SmP1rvF4rzt0d7jdt7R5/xVrJ+HsfpuP6Nc5M2/QV7/suv/a1T0P8rS1QXB832E5UwiQXySj34AvdtnenYGvxBgOg62q3R5moTj4xM63R61ep2Dg32mZ2cJgoCdXVXAr546hT9B/Y6OT3ju+W+qeI4w5vy5J3jizGl836XbGdDtDEmTjP2DPbr9Fp12hzzLGA8HJHGEzNVmqCJKBHMLC9iO2rBK5TIrK6ucOnWKXq/HgwcbjEZDoigiy1L29/cJw5Asy3n4cJPxOGQ0HKPrOq+88grj0RjHtqnVVIyFzLQJgjYgjkMebjwgzxJ8TzmiJknKrVt3ePnl13iwoR5P5mDZNuNxSLfbZWdnh+G4T3/YwRAapmVw0jqiUi3T73awbaUF7XR7gMbGxgaf+tQnmZtQux482CAKI5AaSawaCNu2WZibp9PpcP78BXZ3d/jSF7/K9eu3EELR9uq1GlEUk8Qx3U5HoVlBAU3TmZmdVTE2TkCv1wdgZ2cbPwgYj0PqjSpZlrK1tcP9+xts7+xRazTQDY0wGmNZJpZlKrdRRxm41Gp1JMr4qVAMVMGuC8IwBCS2Y1GpVui0Ozzc2GBvb4/lpWUMUzWEmq5z/+49SqUyjUaTU6urLCzOU6lW2NjYAClxXZdiIWBpeQkhVLMTx6FyPTx4ldxtInMwkxFamtDq90iSlKWlpcd0W5nnBEGApik3U9u2WZifp1Iu0+8P0HRD6ZstRYOt1WsYhvF4uDAcKet/z/NI0hRN14hiheTYjs1wNCTPcmamp0njBE1T8RQLC4uq2RcGrXaLcTgmjmOGoxHZJDYEVN3qed6kwFZorG3ZRGH0WBdmCBXj8ygWJUkSBoMBpmnhOh6e6ypPNikpl4roupxkw2aYlpjoYySu42FZFlmePW4IhCEmJlFKj64B8wvzrJ1eQ5tEHnS7HYXKSBiPQ6rVmqJ/pTmBHzym2md5xvHREXEcUy6XSZKEUqlEFEVKezvJPlWoo/qbHNtG1zRC94ju0kscDzSeW3eYnp7GMlVMx9TUNNdvPeB3n7urmvWrv8vR0RESqDVr7O1v8fxz3+DFF37Ig/v3adSrHB7scXf9Nv1elycvnGNnexPHK3Ph/GUM3cS2bSQZn/nVX+HM6bOTCKgU+cQC0rXRW10kBlGiMgBPjo954YUXuLN+h8FgQLvVxjR0bEvw4Y98mHjiTHp0dMxoNCLPJDKHfGI+5Hoew9HosZmNlJIsVy7tpVKJOIoUBV3XlY4JHqPn9sSVWpKjT8LrdRQt9s76XdA0PL/IcBRh2TaOq7IVMykxLUGjUceyLYIg4L/6x/+ExcUFdWzqOkmcPGarzM7OUq5UMA1lnuQFJZJMIaKPch5BMhoNJ0ZKOXu7u/zh5z/P3v4+h4cHpJkyYQEYDPvEcUiWxWi6RJgaM7MNTBMcL3hsEKZM8zSFzk6KqXa7rTS7E8M7NGi32xhCTKjCOqZp400kC5qmUSwWJ7mRGXGaIkzzccGXZOr/o+k6tu0gJQSFQDEedMjzjH6/NxnOwu7uPlPTU6RpwjNPP83y8jKmadJqHWMKRfM2hwNCx2Q8HmBZal8zhWA0GvKH/+5P0XOXCxfOI4T5Y0MKIQw+/ZlfpVAI0DQNy7Yenx9hHGNaFq++9hqf//wf05ya5aTVQ5njhdiuR7c3oN0ekucGUpo8fLjNtWs3kbmGaak8dSEsut0ueSaxLQ/H8ckn5z1S8tnPfporV64gkXQ7PXRd55c/9csTpoCGMBVbKQrV8CCJQxzbJM8ijOMTKPrU1hpIY4jt6nSHg79UKWJ8PMH4ePKu9z0q7tM0xXatiYu6SZYmOFpE/LogdnZxXYfD4yMWV1b4+H/2KbI8xw8CFTc2GQSaQhlIOraNhuT2jRsc7e1gIhn3uxwf7iJTwaiXsLt9zHgIW5vHXLt6B6EP6LX36LU7fPub36bdOmF7+z5p3KfbOaJ9dEznpINvu3iu4OyZBfqdY+LRGDKNQqGsWDPkzM3PYlkG3d4xg36LixfP4dgCzzMRlsnhSRcnaDAYGxRKC1RmL3JvJ8QuLGB5Mxiigu9NkWGQ6ybjGJJcEMYZ3W6PcDxGyhxDzwg8CIIEIbrY9gDPzLl78zUaZYvuyS61SgnTEOzv7XPh/HlarRZ+oYBuGFx48kkc20OIgJ3tFq5fodXuM44lulnjpJOzfxjT62vsH/QYjkMct4Dj+qRxjKHnrC7P0++dcHptZRKXZagkgiQjS/OJ0WaKoU8GGLo+YU8YGLqJZXqgCXTDxhQOQlhYpoFhqHguxXxKEZbA1B00KRQC7LjqOTKJJgVxmpKmGWEYkcvJcSV0To4OODw6IYpyRmHGSatPnkMYhly+fJlf+tAv8cS5s+R5zuWnn8LKXawbFR5yh+RyD9M0WV9fJx72eXhnnZl6mY/90vvxC0WK1QUuv+8TrJ69QDLJrZaaSl3I0/xdj/efXHmeP/54+znx9vX2SJpfVNb4n8L6TwZ5/Vnr3SaBb1/vNsV4+zTx51k//nOTAOb3QF7fbT3Syb5zMvIX17y+44A31OtyLGUkk+UwHIXYhsT6v/6I/MnTCNfBdn0wLHQtR0MnS3LiOOarX/0KFy89ydzCHHECx8dt7t29w+03bxL4Be5vbDI1PUelUiOJYyrVCnkWsbQ4x527t/nKl59HGC7TU1NUq0WybEi5VOfk5Eg1RLpGnuUcHZ3gBgWlgbRsDGFiWQ5xkuPYzmMK5p07d1hdXaVRbxBFsaJ3Hhzy0Y9+jEKhyI9e+5Fq6PScQqFAo9FgYXGeMB6zs7tFvzOkVAjoddqMx0NmppsIQ+keB/2QmzfXKRRKOK7LE+ef4MH9B5TLZQxDx7Is2u0uYRiDMKg3p3nxh6+wtHwKQ9hcvXqNfq+taKyGQJg2Dx9u0GzUqZSLBKUSEsns7CyFQol//a/+T+rVBnOzM/iuh2vbrJ1aptM+Jhz3iUJBsVBmZXVl0jwoU5j7d+/h+x6lYolur6tyNi2TYTfh+W98i3q9yt2760rPY7CHrgAAIABJREFUqhl4vsubN98gyzLqjSmK5Qq1ZgOJMpUxDINevz9xneaxtjJJEkxbqGJa10nSDC2HLEsQQhCOxzzc2GB2Zo7F+Xm2trZoTDWxHIdet8+oPySOYnJdY2pmGsM0GA4G3Lx2g0qpRGOmgC3qrCy8HylzZmZnkFdvc/LJZ/nz736P9sNrWKNtxplPUxuS6hJ7oinsdDtYlslgOEDXNDY3N2g0GjChTvu+ioY5abeIoxTXDUBTjq3CtFT2KzlhGGLZFsYkt1CqbA/lvGupgjRJE8hV1qtEIfj9/oBKtYLn+6Bp+H7wWC/W7XUpV1RjlyaZcjIWqqnLpSSNFc2x1Wrh+wG242JMHH0fodeVSoVyqUy/P8LUdZI0xrKUfjXLYuJopJpC/ZHeVtFAHVvRfi3XhlxiWzY72zuKoqnrDCcIumkKZSglTLygwMHeLkHBR9NAGBZ5Jjk6OsSybArF0kQne4LnerTbbaanpxkOh+RZOnEWdgnDCEOYnLRaeJ6LJGdrawvQyPtbYO1S6F3h26MSe3tHnFo5xebDLbZ379JsNnnyyQsYusbs2pPIwR4V9tFMF3f+WcadI54+f5pG4LMyU2V4vM8Tp9fQDIPLl87x5T/9E9ZOLdKYWqZaLwO5ijfKc2q1Mv/kv/7vuHbjFfyCKmztYYJ2b5O4UcMv+GjA5sZDjg4OWZxbJMkypqeaaGQ4jo1p2xiWRZ7l/N7v/T6v/+h1pYU1DJBM8l0zLNOcmDQBUpJlGXku2d/f5/qN68wvLEyaVuWenk8yYZHahH4rGQ8HSgOrC/r9Adu7u0zPzHJ81OZLf/ZnXHrqKYVQGgZZrtDyNE0wdA3IcRyLLE3J84SdrW3yLMPzfHRDV4ZlkkmGogW6TjwxKtNkrvY2DaUdF4I0SykWinzwb32McrlIEHiYpv448sa2fDTN4ujwBNf1MQxlyqNrOpppUa030Axjwlox0DAQQjUqjutOGk91fdR0Jk7ZynxO5oqKLMmUyQlSFb2mSS7lY3RfAnmmpC7GpCmPkgTTtH7M5CSXOUkcYgqbJFHMh263g+s4lMsVvMCnXC2zv79PGseUd09I7m/SsjUoe+zt71FrNnDaQ5I4xlqap1AoUq83ME2L0XDA4eEReZ5Q8AMC3+dgf5c8S/Bcm42tXQpBgVKpjCEsmjOzTM3OcebMKtV6iVxLcVwfx3NxfIsojjlptchlTr1e49SpJZIkwnZcshRGw5CvfOXLBEHAv/+DP2b99n0uPv0EvU6XOIyZnpnGEDpxmiBzyXAwYml5UTEqhIooCsdqADw9PcVo0MM0dba2HnD03TcQn/0YW80AQwj8YIpvfOsVfuXXf+1d64x31jbvzH7UmxK9KZFf+pb6/m3I6yONn67rkGYctlu4roeRSwbrt+D7s7T8q1SmpinW52nOrfBg4yHVSonAc2hM1dEB27KoFIv8+de+xuLCIttb69xffxMjHzLo7WEaCUnUZ7YWMNv0aR0ccGpxBi0P0WRIox5T8AvMz5xia3ObOOpz4dxpWq1NRoMee7snPLi7yf7uNmncQuZDiq6J0EtsbOxxctLi4fYm8wuz3L51nzzTcGybq29cpVQoUi1XGPa7LCwu0mp1yKU2YQwZaJgsLq1QqU9jF6rc3+0we+oy6zd2OTrOmJk7xziUhFGM7wlMUyfJcuI4JIkThGljCAs/KEDcxxFjTH0EjFm/c4fhcMT8/BJJmvDG66+zdvo04yikN+iTxEOCoAKajR947B/t0u32ef+HPkRjap77G/tsPTxie+eE5aVlQDIYjrBN0LUcmcVUKh6eq4YijzLVhTCRuY5hWMgJ2+QRbR9Nw9AFMktIUuVRYdoqJcMwNLIsxbZcTMueAAgWcRqiJTnheIDUU1Kp/D50XSAzA800JwPtSfZsnpHlKZ7rEpTKHLUGpLnH/mGLOE04e/YJGs06jmsSpxGFUgk50vFu1Xi98V2OrmwwOzvP0fEJz1y5wpuvvcB3n/syjUASDjoctoZc+ehv0ly8RHV+ihTgNSV94HKIqVtkev6ufcV7opc/x/n1zt//2SzRv8r1F+nBHq2/cRv+GeunGTQ9gu9/2vRC0+SE1vuTH+/V4KqLefYFRYkRv/HLPHIrfjc6sja5+L+bo/F70Z1/8jnTNEVK+RhV0SbB4m9/rEcHta6DJlN0I0cYKa2dewT39kijhLHrYqArqloece/BBv/+85/n0uWnOXvuDFNTNUbjlDyLKQQ2p9dW8f0ium4yM9vAc21c1yEIAoQwJpNdg6BYxbZtZmZnsF0TTZfs7O6RRiOq9ToIE12YWKagUgnQ0Wgdd3Bsl73dQzRNUXI1Q6AJnXsP7nN4fMTa6dPkKFdYz1WanzxPMAQ0GhXM5h52OaFgzVKtlxn0+2hSwzRsitUavcGIaq2O7fjEcYKwTPb29yiWS8zMTLG4uMC5c2exLYtms8nB4R4FXxXjEo1iuYaMUzqtHqfXziJMNSleXl2kGBTJc0n75IRquYQOdNodHjx4yO1b91hfv0W57NPvt1lYmGZpaZbMtHE8h5XVZfI84fjwkPmZWeaXZ6nWqwjLJwpz7ty6T++4S21qeqK9AUlOEsccH7ZIcsmFi+cwRM7UdA0pc+IoJUtyMjliZWVlUtBJer0eruupWIXDEw52DvBtD00TaJogGsLuzg6Bb5DEQwwMDGmTJkPa3S7VRp3uoKdyax1BlvbxfJsbN29RLteo1xvE0ZiFhRm2tzYwNPBcZZB1+tQStVqR9Zt9pqqXeeWl17Atm+eff461MMf8B7/B+z7xSaZLGsnhdZZnlzEFaI6YZJCC5wVIiSqADSiVy7RaHVqtNrVajfF4QBSOqVWqBAUfqWtoujKFMnSNJB5jWza2aasMUstSul0p6bQ7BH6AzFWerRqe6Niuh227gMqWbbfajyf8AFmeTSiNBv3BAANNFSUaRIkylgnDEM+zGYdjSpUycRyD9iiWZ7Im+4VlW9iOyeHBDsPhmPv3NslS6A9GFApFdM1iPI7Y2t6iVqtimiZbD7eVWZRQlPQ0gfXbt4njmFq1RrcfYpqCXrdD4KqIlTRJqFQCLNMkzySmMNCFgS4EvX4Xz3NIkugxZRhN5/DwkOnpaXw/YH39LpZps/lwi2q1jh/YdLo9pNSoVMo4yT6CmNLWh9CjCkezBbq9IZcuP8NgGLK6tITruGxtPcRxBM1GncjwEb03yUcnxNv3CTp3aGY7lMN7mMc3uFCN8Y9eQTu+S3T/RSqjB/idOzjHr5PceYH96y9TWnqKURqydGoB186ZX5rDK5RV1m4cY790DX1mFlNXOaGu5zO/uMTps+eolN2JjlpTBZ1fQJcaw0GfOIrRDYPz58+jGxo5CWg5MlcDAVAFiKELkiQnSSJ2dvao16aolFWEU5qlGIbJD196mTTNcFyHNMuULMH2kJpGLhMs22BhYUHFn7ke7W6b1VNLOJZOnkboWYIuTIShkecpQhhkMp+Y3MHv/f5/wA08imUXXWgYQigzL01DGBqazLAtgaFLWu1jXM9HCGcSURaCFimdtiswDEmn08a2HDRNIShKnyuVOYumoanZD1EUqkbeMFR0l6ZPqM4JcTKaSF3kBOnNkVLFaDyKPtOQKq5FZoAy+pNZjmUKdE1jNFAeA8q0KUTTJ4wG01axL6YACUmS4lgOtnBI4gTTcTBMkziN8QKfYqmM1HTiWKG4vmtRr1YoVSoYtx4wGowoXXoSu1anVK6qaJ2Ju7b/lItVjCFxePhwk+E44c7dDdbOrtHrD9k/OMYyBVONJuF4yMz8ApZwGPXHFDwbSwshbqPZGsNBiG0UGPZbGEZOGsdUyyX2drY5OtynVCrguh6HB0dE8YhCsUCUpVRqdaqVKo6pcWZtEb9QZm/3gFqtiWtbdE5OKPkee7u71CtlLA027t7F8z0s00LXoVIpsbOzRbVWJ4pzfL9GffcI8dFnaX7ywxSLDTKpMY7HXHjq6Z9aX717nfNWqoKua+Rf+hZooP/6JyY0dU3RRPOc733nO/zB5/+ET/3qx8jiFM+wGXxrl+Otbcy5MntHXSqNJuNwzOL8PJVCFVO3iGKPk5NDXnrlOW5d3+H4YIQmeoishy1yqiWXSslmbsphcdZmfqGEwOSJ00v4QR/L6vDsU2couSUGnSOSaJenL83zxFqdwE2YmilRKVvoWZ9GWfDEqSnqJYGRjzg8CnnppTdwPUGxbLC8MEfcT5man8bQJPu7uwz6A4TpUChWSGSJYXKXYjCL71ZpTAm0vMbrV9+g1+tQKARYlsA2VcROL9W48Myz+MUyhWKAJUyErk90/EMsw0RDnf+jUQ9dZDhuDb9cJJYRji0JjDGzRYjiAe1uj6eu/C10yyWOQsiGaKaLZQvicMBoMGLYT2jUp+kMupw5u8ZTT18iyXL8QoUfvnqbeDTGsnwKBRuNFE1XpmdJoqPrOWkaIbWJXlYvEKUuGhnCNNAMCKMINJ08E0RJRj6JeNQ1QBpIBHk6IEvTyQBZsXhM20FmCUwQWSGst5pUctJkgG5pyMzDMhKirEeaL2EkA0ZjuHbtHlGm05ia5uLFp9BkTq1S4+7d+1RKNfTUwL9dp3P5AUfzuzSnlvgf/sf/Ccj4wh99Dj3ZwxYphrAY5waf/a1/xMc+/atML0whdbXXyVdtNED/QEKm5+8AxR71IJK36n5tskc+2ifffh49qv91TaChP/74yRr/8fDnXc7Fv+zSNONxj/FOV/EfR4t/lozzb9yGf8b6af+wn29q8J73/PTfu/wE+sfe/xM5r7/oc7934/329aihffsB+87stbc+ZWnGzs4OaZKQhiNK1zfQpY453SDLVHxBp3NCtdbg0sXLVKtVXNeh1+1g2i7j8ZjDvX3G4xG7e/usnjqFJEPXBePxiJdffoXp6Wls2yJJEwxDcHBwxMrq8oSWOqGTIshzsCwXy7RJ4oQbN99kenoKx7aRUqNarSqNXq6iI5BQr9e5cP4CuczZ2dmh1+3xwg++T71ep1JRpkKObaOXWghLw0yaSDW6597deywsLKILwebmQ2q1KtfeeINqtUKWppTLJTwvQNeUc+fW1pZyEO20J4hGhhAmnl/AECYb99c5OT6hP+gRFHzVQJPiWC5f/epXaTabFIslpIRqtYrvB5xeO8fUVJPxeESlWkXXBcVCiVSCJZTuNk9ThsMh/V6fWrOJ5wfEaUYSx3zvu99l8+EGi8uLNKeUOYzj2gghKBbLBF6R73/vOxgGmKahNFSZGriUywGmaTMah7z66mssLMyriA0NHMtiPBwpPRcSTVdW9LohcV2LXq+PY/vomtK8Piq0HcfBtgTDfh+ha1iWTX8wplKpkqYZ165eo9loomnw6quvsXrqFLpucO3qG4zHY7q9AfVaHcMwiOOIZ993BXHrHsmv/zJ9meOGW4jObYzcQjom6PJxnmQuc3q97kQn98gA5y16rmkKDN2g3W5h2TaapjEaj1ReqabRbrXwPP+xS3C/15voRU1G4xGmqVxVDw8P8TwPXdcZjceTBnRMsagMWEZD5WytzjNNub4aKt/z+OgI+/9l781iJMvuM7/fufsWe0Tue+3VKyku6hYpaiRKFIzRzMADG7ZlGBDghwEsA/bD+M0G/G7DHgO2B2MYFsaGRhprIyWRzZ2U2Au72Vt1dVV1rZmV+xJ7xL1x1+OHc6uaSzenqbHgMYYXKFR2dkZGVuS9N853/t/3+xwFb2o0GpiGQRzPMHSds7MzKkFFka41NZkq1C+LPMvUpKmcGk2nIa1mm2arRV4UzHU6CKEANvcf3GdldeVxDu1g7wBd1xXQCeVqyLKMuU4b13VIc8nOg/u4joVpmcxiBeNJ4khZJrtdNaXTNCzbVn2hhkZ/MCBLs8c29Xa7jZRw+/ZtFuYXqFQDKkGAaRrMZiGe56PLCfRuonsd9s1PsHiiNggeNjI+//lfBVGwuDinXscowvM8ms02SZrw7o0bVMQJ0yTn2/cMNp/5ZazOJiMRYHUu8odfeYnTmcGFy0/TD3MG0wzDq1OdW6I/jqkXZ8xmUzpXPsFp94x4llGgUaAEljQsgq+8SDZXwwws0ixGUuD5nrIQd49ptVpICVEcYVkGaZbgez4rKytcfeJq6VCQaLqamuqahUB1WhuGSZYVxPGMeqOOYzssLS+XkCYQmmBne4etrU0Mwyh7WY0fWuCgNmqkRC/rRgoJ589tYVsGSTIjCiO1iSOUuyZJk/JrwTIVnOvq1afQDUG1FpS2dB1ZaIDqNRaPanWkqrMxTJtklqmJcZ4SJzNsyyMrHQ3dsy6NpoogKHpoQhiF+J5f2txN5VwwTArU5K0oCqLZDNuymIYhlmWi6wZhGOI4DkXxaNGlNl+lVJPUoiiI4wTbdiiksuGr3LCyokt0dF1D0wRpmmCaanFXFKpv9pEwisKI4+Mjtrd3qNYUUXd/b59Ou8M0nGJbypo/m4WYhs5kPGFw5z7VSUx6f5fJ1jJurUKWq80p7aSEsZ2boVkpWtyiWqkS+BXWNzaxDI0gqPKHf/AH/Mrf+RX6/S6up7KEaZJjWzavvfYqcTylVq+i2xaOE5DMMvYP9vA8B4TO8dERlYrKPIfTCNfz8H2fIFD54e9+53t8/9XXaNaavPjX32N9bQPLtZibmydLU/I8Jah4dHtnBJUa4TQkz6USDrqOH1QoClWppOs6juOQZRme66C99CbFf/OPEK4NUp3TZ2ennLt85SOvY35opQJA8a6BPNUQh7cQtQric594f4lSuhSOjo6oNmtsbJxDExrJtMu93ztmXNzDqnZ4sPOQ9Y3zvPLKa7i2w2jQY29vm25vwNHRfZAhD+7tYBkGUXTMuc1FTk8OWV9fxDQEQiiyt6abXHv7Fp7n0Jmr4romeSqRhWRhcQ7HsbAsdV2apgl5jGtbeG6FyVRVHR0cn2C5Pndu3yeKUxaXOnzvr7/H8mKHIpNMwpSjw0Ms22J5dYX5xXl0Q8d1fBxXQ0iDeJZw/d13WVxYYX//mAsXL3Cwv0+j0SAMZ0wmIWGc0Go2mUwnOKYBomA87JMXBbNwSrfbw7VdLLsUcnlBEDQoJAoylcmybi1D6pqKz2iQZaoa6vDghMWlBXRduRps22JhcZEg8PjBG69z9eoVdE3d87cfPCBNUoa9LrVahXo9IE1Uy0GRK2eYkIq/AIIoShmOUt544zrryw1MSwcKBXySGtFMXbeWZRLNQmzLptfrIyX4vk2eS6QUKobj2BR5hqkbanNQN1SFjIQ8Uw4Ww/BJU72E9M0wTI+T0xm6iMkxuLd9SK3V4rnnfpFavcJbb77F4sIiZ2dnLC4uYj4IwJKkv37Mn3zxSzz97LMsLM7huzoGM7Koj5ASz3NpNNr88m/8Jp2VdQrNKCGRvC9eP5E8vlYe/fmRLOsPqdQfZdXwIZ//2+9s/fDv+9Oe+6fnXH/8+Ll4/Vcc/5+J13r1Q4XrR3/ujyZeH+3o/FQf/A+JVyQsLS0RhSGz6QzzdIj91k3E+XUEBYic6XhCrd5UPZWaRpal2JbFa6+9xWg4xDLVDf3WrZtsbW2RJAlRFLG/f8iD+w8UaVNT00bP81leXmIyGZeLE4lhmDhWwGA4oVppoOsmg95QTUCNgn6vz+uvv8H6+jpCaGWRdcbt27eZxbPHiH7XcWm3G6wsL1Fv1B/v4Od5juYP0TQdbdZiGk5U7YfrMhqNCYKATqtNkWdMpxParRbHh0c0Wk1AI45VWXu1VgEKOnNtdK2cXAuB47qcnJ6yvNii2apjWIbaETRN3n7rLVrteebmF1lZXeP+g21ef+MNlpZXcFyXr77wNZrNJusb6+pnclwc10PInKOjfRzbptfr0Wq16czPg66zu7dHs9nCtEw2NjepN+usri4gNJjNIsajiQJ/FPB7v/d7FFnG+fPnVN1DmhAnGbVGDdNy2N8/psgFtVqVPE1Vrqu0RTaaddIsxbItBTbKQ9IkJksElUoT07QRmiSOM8JwRlFkuI7JdDzGdW3CachkEnLzxi3CaMbK0ip7e/ssLa8gEJw7fxFdN/je917kmaef4eT4mI9/6gK6mXJ8NODc+S2iaIJx8wH//fYNnv3sL/HyN/6ElfwGWmUJYej0+100TaPX6xH4Pqapo+tAmbNECEzDJEsTxsMhtm2TxDG2bSkYkRCAJE9TPC/g5s1b7O4+ZGVlmeOTI4JATeLV620xGg2pVqtltY2FZSlsfaUSEMczdncfsryywsnpCa12GyFU3lYIQa/bY35uDsMy8YMAgXhMDp5Op7TbHSaTiQIxmbayQQoNgXicB3rv9m067Y4SD3mOECrDl8QpmmZw7drbzM11ME2Tk5MTXNel2WgqsW2oXrjxaIRtq7qeKI6oVuvEccTCwgLdbg8/qDANQwxNI5kljEcT4iTh4PCQzty8umlISRAEqnQ+y9XzHZ9wdnbG1tYmruuo609I0ixRtObpDnK0jb7+BbLOczQ7HeybZ8xmEd7zW1SqnqpfKGLipFDl9MCXv/IVFhaXOX/hAmZthX7e4FPPf45JOMULPGZJTO90SJZlTKYxD3YPaC0s8fq1a1x56hm+871XWFrdQLh1/O47RPUNWotLvPzim1y+8gRZIaDQ+e/+x3/CZ4M2upnRK6ZUaz6GqTOLQk7PThAlXXo8Hqn7SpGqzlEvwCjpj3mRl+JP2c9N01FCsChKIQovvfQy6+vLJejkRx09tZqyqNbrjcf3ck0T5LnEMAyGg35J9VT/zxAao0EfoWk4tovj+hRSPX+WZ0gpHjsrADRdqEx5zVd2U9sFqWMYJqZd7vILjThRU2ChmRwdHPEXf/5lLl+6gldSfg1N2XuLvMB1XDSham7C6RS/tPFrmkYhVWdmlmfv776XcQ+tzAE7rotAI0kzDF1H03TlYOD9vs+8/PpCyhKKJcpuXSVy41lCUeSqlgPQyny9eGRXFoJcKqLxjZs36XTadM+6fO1rX0NIybnNLQLfZ393DwrJ0cEh2zu7fPGLX2RtdZUonLJg2swMjTRJOA4shsMR1WqVvf19TAnCcynmYiSSbBiQxAlHR0c06jXGwxG2ZVOpVFlcXMIr+5yjyYgsTXnllVdodzp4lYCgWifLZnhuBV23qNYUkKt72mdjYxXTsqjX6kjgi1/8ElmWUfcrZEnC5sY5Pv3JT3Owf8Bv/MZvUglqVFs+qFshQdVH6MrC6fkBkzDEMA1qjQa1ep3RZAzSYDQao+sCwzSYTqdYx3204x7x7/wDBoM+ge9zcnzM9evv8MwnPvmR1zHvH+p8zP7Iodg2MP/xM2if+8SPrE0EakG/sbHBytYSMm9giII0u8vgKwa12jzXd7f57C//GgKHYW/A22+8xtycjWOlvHfzGrYx4eLWPOsr8zz95CbrqxUMGdNqubiuRpanJKmG0AL2d3fY2lyl2XRJ0xG6BrVqnTQP0fQC09SxbOWoSpIEV8vUtNF0eOOt+xi2yTvv7YEOH3v6PL3uEWtrHZYXqhw8vI9MI96+9oDdnYcMBj2SNKbebtAdnBG4JjJXeeU7d7bZ2rxKkvU5Oxuzvr5Omin6e5xkzM0tYBoG3bMub197h8uXr1CgMxiFJLlOoz6P5znkeYyha+hCI0sKwjjEMBz8YB7bqYJmIgyLlARZTNCLCSQhr7/6Oklsk6QRk2nI9vY29x88YGFxnq9/86v81t/7u+S56sGOpiGXLl1maWkFYWg4XpWvfe0HeK5PpVJBaAJNy9HKrGmeF9h2hdOTCacnQy5dWCRJ1frqUU1dUShCvarQUhwK07RwXZcsz0GoTmHHth9v/BaZRKKRZQWzKEGWG29Swp07fd69vs/6eovJcEQ0dbh15ya277F/0uOZj38c21FAuem4z+bGRbI84+7du1xsX8E9rtL97ffQA4//45//c37z3/kNvvHVP+PZJzZ4750X6R4dUq/VWFhd41e/8Hd5+pO/RKK7SN1S9yEh0D+Zon/qh+6BvC9gf8RBKX506PT+IOqDxeDPxevPxevfqnj9V3/f/3fE64dZBH7yQe//9WhhbBoGb7z+NlGvz9KNB8SbiyAluqFR8askaVbWIegq02bbSKEziyJcxybPM0bjMSurq5ycHLO+vsFcp8OVq1dZWl7i7t27FEVBu93h9OwU13XY29slyzLarTbjyVjlyCwdigLbVeCfeDalXmuwsbHJw53dcrKgslq1Wo1arQZSdSpGUYQokfp7e7s4rothKOCNFgzVzlzcptfvlb2HJl//+jc4d26Lfq+L6zg4lkUSJ4xGI6ZRSKWcKgE8fPiQOI6p1gLee+8WzUadhw93kRK2d3ZZWlzAcQNMw+HGuzdpNTs0Gi1OT0+Ym+swnU5UjnNxEd/3yLKcWtVnaXnh8RSnkClnZyfMohDXcXEdR1Wv2Iq6meY5zUaTOJ7h+x6O61Bv1JF5SlHkWKb12MLx9lvvYNsWS4sLDEcD1tbXVMeo46gFYV6UIrfAsWxsy1RE5yTCsm0kkjTPH4tXWSTIAt566waGYREEPmk2IwoTpuGEl196kcWlec5OT2g2W8zCiDTLWFlZYzKe0m52iJOUmzffw/McdEPlXxYWFpFSsr62RuZ9i2l6m+5BldXVFSWCrt9h87/6Xdy5NpX4FG/wMoOijmWZ7O7uMegPabc7gOqylIVEM63H14euCcbjMVmaUQkCdEMvSdvlrqeE05NjdN2i2+syNzeH67m02wqapZvmoytMbZSUSsMyTbrdLnme4bgO0+kEXdfwfZ9ur0e93lDXxWiI56pFv+/7yr6IJEkTNV3IUur1BrpeWiSlVLAjw0QTgqJQm1BRNGNpcQmAwWCE7ViEYUjgewxHYzzH5+TkkI3NTUzLIpxG+J5XCoD3a0hMU2WIXM9FALbjqH7aOMbz/cfduNv37rOwsEAUzZjNZmxubYEQnJ6elN8XhKbxYHsb3w8UyMvCsVh0AAAgAElEQVS2cRznce52MlabVFZ2BkgGnd/Cn7uIoCBLY6zjiMwQWE8sk2YZ49GYfm/AO9feZWNjE0M32Hm4y1NPPolhmGiWhxvUeeWVV7h48QJSSpIkYRamzM3NkaQxk+mE+fkOmqZxdnbC888/j+f5+LUG0yhE7L8N689y4fyTRHGKYTkICf/ZP/pd/v1f/wLV3WNY6ajX1AuwLJd3rr3L919+laXFZYajMfVajVarzTvX32UwGDA/v/D4vqoATOq1yLMChHIHZGnKO+9c57nnnmc8HlKpBCpjLgs0oQAdtu2UE4sM1X2okecZRaFeT8/3EKXVUtN0ZJ7iuS6GoSYOsgCEIElmgCL05mWOFoFyrWhqCum5blnHo8SgFDlIBU+ahhGO6wECTUhu377LxvommqYWllJqpLnKTZqmiaYrWrZpGo9dB2maMh6NsW27tP4W71dMZRlmKXDVBqumbPKaeOwYcBxPCdY8L+3TKMJwUag8ejkdzPK8rKtySfNcnetFgUCAhCSOy/5J9W8LAp/RcEgQ+Gga2KZFs9Eg8H0MXedgfx+kxA8qpGlCp91ibn6O4uEhRn/EydkZcav2GKrnOA7e4hzUahTOmcrdJh3CMGRubo68yDk+OML3fRrNJkIXTMOQ/nBAMh3TbKjvX6nWaLZaSKEh8xhdt8lyiJMZx0dHBH4VRMFwMKLX7+E4Dgf7Bzz33HMcHTwkSxM8z2E8HtDutLlz9w7VRhXbNdEE7B3s0W6r978sl5i6iR9U0Awd23WRQnB2dka92sL3PKq1CsPRECkL/KMeCIHzO/8ur37/FTbW17FMk+PjIy4+8eRPXaN88FFOXl9TeWjjU9lPrE0e2UPzLKOwcgxZQS9Cdh++hHN9je39fS7+wpPcuXufdr3NoHeCoaWsr9YxjZTlhTnWVhvIIiVwLZJZH98TiFwQBA7jyQjH8fnuX10nnuVcvbyOrheYliTLEnwvULlKR0MgsW2rFFUas1mEbtgUQifLBe25Oo16jbWVNvWKT61iUK/7WIak4jvUqj6OrbO9ewTEjMcDKkEV0/E4PenRO96n3fbQhUunvYTv61i2get5VGs+lq3gidVqRcWjMJmEUyrVKtV6HdN2SdKcVnuJ3Yc7WHZBns9wbQVcs0wTdB0hbPLCRug2lutiuy664RBNesTTPoam6MM3b93h6hPPcHRwxLnzF1leXUc3dLa2ttB1ZQvtnXX56gtf5cLFi9iWQ5ymnJz2GA4HCM3EdSxG4yGtVhMpc7I0JisyDN1kFilb8NpKkyxTwMO8KMjzAtOwFHtB1wkj5cR4HM3TVKe50FT+VQVrJNNJpGCLQsNzfY5PTgiCKrbjsPOwR78/49z5popFiCqFmeFVFrj13gMOjs5wvYBLF68QTiMarQ6a0DjXvoj/sMnbH/suB9Eep6Mxq2vLCHJO9u/SqplE42PyrMByXJ7/lc9z7vKTVOeXyIXJLM0xtA8XcR9sG/6wr/m5eP3Ax/3/Vbx+FC/1h33Nhx0f9tgfP4F+7FGPP/ogLHT2e39K8dYttGevfODzfJTn/6AJ6gc99qP9I9//61GmzzJNVjbOczgYsPjFb5GeW+Pg5AxQbx6mZT22k1mmAsl4FZ+V5UU0oN1u0Wy2cVyfRqPB3Tv3qDeaj7sI/UBZyFqtpqpMiCNWlpfLBb5kMu2jiZxeX8EtCnK6vS4LnXmOjk7J84J79+9x/vw5DAMFNEFZ7ZBqqlur1nBsk7t377GwsMDdu/d44/U3GI2mxPoh9XqdYlIjqARYpoXreRwdHvPuzevMz8/hez53792j2WgyNzeP7TiEYcStW+9xfHzMxYsXmc2mtFptgiAgS5T4m4YRW+fOkaUgsNjfP2I4GLO0vMLR/j6WrSabQeBRq6maFMMQGIagUrFxXIu79+4wmQzJi4Sl5TlsU9FelW0URmO1iCgKnXt377A430EWGVmWEmcJvbMTwmmEbTucnnb5yldeYHNzna0LW2yd22Jtde3RCUoUTnnjBz9gaXmZ27fv4FgOk8mUWrXKJAzJ0wTLdpQFUtdJZomqpjANNGHw3nt32djYxLYMTFMgURbkC+c2uHv7Fq+9+honJ2dcv/4Oy8tLrK+tMej3kbJgZWWdMAyp1cvuXFNH03WyLOHB/Xt4jWMs26LufoybN2/geT7i3bukf//zWNaMyoO/pIgeEukdVdkzjZlOQ+bnFtA0gyRJlfCW5UIdNeUxLRNN07FshzRLSbOcPMs4OjzCsR2arTZRGLG+sa6qaZIEhJqMzqIZhm6wt6eyo2oHOSeNE3Rdp16vEYYhvu/j+wHKkl0nzzOVubMd0iQpF/mqr9UwTUzDIEuU+CgEFIVkOBrhex6O7RCFoZoeCY3BYFBaJmNkOfU8PTvFNE1V9+R57OzskGUxi4uLCKE66wzTIE0SRqMht2/fodNpI4QieA6HQ2VB1HT6vS6zWQzlpHgWxbQ7LSQwnowJAr/M6grqtRonJydE0QzHUbnB2WxGs9lkOp1i2xb37z9gOp1SrdbQkGij2zgX/z0qnQ0MQ8fQNfq9HnfEjLVf+yRSgmk6qsJCs2i2G0RRRL1RY3FxUVnXhVqwRNEMw9B46+03WV9fxzBM6tUaX/3aC3zmM79EmsZUq9XSBZLiex6Hx8ccHh3TDxOW7Ains0ZIFdt1QNOIwoj/5D/+bRYbLczvvoq8sIXrVMgy0DCoVhtQSFZXV2m12hwcHHHz3fdwnYA7926xubFZWtXLvtPSyi40DUMXpfVeEcAVldspq0By0lTFKZBqUShQ9mBdEyRJjATu3dnh3evXWVpeeCz44niGZZkKbiQ08jwvCboZmq6IvbNZQjyLOTk5pV6v0e2dlJlTZakXmlbWTUjSLEZtZyrhrZXQpzzLeObpZ4miiGolIElivvSlvyTPMubn5xFCCXakpNc7w/N8ANIkpdlsqmslSVUlgmkqmnB5HTyaLghhYBgqowcS3TCgtPtqZfZR2eLVa1zIHFAdt0WuLIfDwegxaE2gl++JGmE0Ic1ShKZjGgaGoePYNpZtsra6wtLSCqPRiDRN8X2fTqdDq9XCDzy2Njc4PjxRdPrdE6IsI+i0aF06z2Q6wTBNPM9jPB4j0JBeV/Edogaj0VD14QpIkxyhSSxLV4LZsbAMC5kX9Pp9EBpBNWA4mqiJdJYgNJvD4y7z8x2qVZ9aEJBkiQJJuR7dbo9nP/YsZ90zFhbnmIZTdF3QbNbI8pjFlQUcT0HaxuMR8/PzivJqWMRxzngwxLDMEoal1he+5wMaUkiyPMW2LSUmXr5G8p//R4zaVeq1Kp7rcuPGuywvL9FeXPqZF8hq/0+Qv6Y2BvVPKuLw41WOBL10Wc2iCE0vsAuNg3uv89aL3+TK7n+AsZLzg3de4amrF/n2N/6Cilsw33IRhBi6ou8aekbg1jCNnMAXiAJsy2M4GBAENYpCRxM603HI0nIVNHWeClw0zWYWTymyWG265LkSrUJt9nfDgsEkIoxCFuebGCQ0PJ3ByR5excXUUzQK3rt5m73dQzY251labbO1vkCzXqHIc15+8VWOD47QszF+ZcirL77L66+9TaEd02lu4voFD3fuUan4ZHmKYWhMwyHT4QwEbG5tPo6nHBycMp5EnL+0xbvX32FtbY04nqHpmopsGY6aSJo2WZaR5ZK0kDhWHd9X9vPpdECWhVy8uEI4TDg+PmTr3AUOj45p1Ju4lsv29n18P2AyVhGf4XBIo9nA8Sqsbmwxv7TM+YtXeOmV13hw/5RqtU2SZaUrIkMIiefbzHUaFIXqBZcSXEfZsYfDIaalEYYhnhuUG2yQ5xkCTd3zHr0fyAKkhud6j0n+QgiaLUUzL/IC13OYX5zH0JUdOZcG4yjh5CwjyXSuPvlxTo77jIYhgVen02kz6o2p7s4xafbYXr5Bp9PB9H2+//KLfPrjT/LGy99la22Rw4MHeLVFKs0O//C3f4fq3CKpNMhlji4kmnh/Xf6jovPDPn6fvfOoO1tKSSHzH+vRfp+R86PX1d9QE/wNjp8mXh9d3x/1+f+tE68fdvzt/cL+1eL1g0Rp9j/9n8idA/S//2t/Sz/Xz3j8mDXn0ce67RLLguCPvkq2ugS2x/7+EY5tYJT9eaB2/DWhUZCRpSk3b7xLu9VmOp3x3nt3mJtrUxSS+/cecHx8QqPZ5Ac/eJXLly9x9/YdNjZWmUURw8GQyXhKpVLFdm10TafIMtrtOXYe7mPZLr7r4/sVKpUK9XoNw9Q5OzsuK3x0ZVm0THr9Hq7rMhwM+cP/+19Sq9bZ2NjEMh0uXbyM3ZhgWRZR18GxbWbRjLOzM564+iQXr1yi3x/gei6WaVGr1+l2e5hlt2kUzbh06ZLqDvNd4jjBsV2m4xCJoNlqo5U/S1EUtDtttrbW0bWChaUOlYpDMgsZjfrs7+/SatTI8xSKjMk05Ac/eJPTkx5PP/UMjuMSzSI0zeTk+Jh6vcZ0OqHZUN24UurkaUqeJZimznA8wnZdTE1nd/eAhYUlkILJZKz6bj2XoFopqZopB3v79LtdlhbmyfKMTrutKiTKsvFur0ct8Nk/OEQ3LYRuoAlVM2GbDiDY2NjA8x0kCkevSLUC37U4OjxkMpmwurZFtebRbrfRBOzu7HD/wTar6xvU6nXCcITt2KBpdLunWKbBe7du4TdPFNU0u8Tt27fZ3DyHees+hx9fp334RUbGHOb0Bm7rvMq25BmTyYS5uTn29/ZpNBtMxxNGoxFFnuOWU0DdMNnb38eyHawyx2XoBsPRqMx15RR5TlxWBPX6PYIgUDUvoPI6EjzXJctydE3jsMyfjUZjarU6RaGypKDs24ZhYFs2uq7T7XZxHKfMmqmMXTSdqsWilGVeR8cyTfJcVaOcnJwQJym9Xpfl5RUMwyCOY7Isx/XV5Ni2VdWOEIJhCfaoVCrEpb3VDwJ63TMGgwGj0YROu0NeZpM93y8BRLGaTAZ+aXHWuH/vHu35DqZllpU3hnqc6zAZTfA8j9PTU1qtFocHRyqja2ilWFFE4TCMqFVr2HkXzarR1S8CQnVGxgmDwZDz5y6RpDG6rnLDrqegMb7vcOf2bTQhqFQCirLyZP+tv6Cij2ksXWZ1ZZkiLwinEQJJpVKhVlOZ8vn5BUbDEYZuUMiMer3Fyuoq1WqAFg8wvYCeaFBv1UnyhCicUq9UKTp17D/6Gtn5NURZXaMbGpquQRFjmALLEsSziEuXL9NuddAtTZGqy8mgijYIwlLc53n2WNjKoijFmNoMFUL1RUupIaUgTePS7qqO/mCAZVl84xvf5t7du3zyU5/A0HUFL9J1RGkFL2QBslCL20lfbZRoOgIDWcCXv/yXXL5yqeQAGGUGVAGWKDO3CtGrIDqGLsizFMvUmYZTKAmormsxHA545+13MS2TzY2N8ueXaBoMB0O8IHg/voJ8HCPxA5UnN8qvz8vMrG6orKskxzA1ZOmeESgrdlHkjy3XjxZMhqnOoXA6pVZrcHpyyh//8Z+wdW4T13GRhVSE7KLAtkySOCbNJJZlKhCbpgS0RGLZLrZjEycx/UGfSrVKlucURYJhGLSbHXo7+7SHU9I33uXhWhuvVn1MRp5FEb39A5p+FVkdEoZT6tYGk/GIpcUlLMtiFs/ozLU5PTtG09TGmuM4nJ6cUQCe53NwcMC1d66xsb7OoNvFtn32j45pzzWQeYrMcyzHfUxUHgyGNBpNVYMlTCq1Bm+99SZ/9d2/4qmnnkZ16GqIXG0kqN+1wDQdppOI8aBHXhQE1YoSbBI0oZFToJXTtaIoMLIC8dp1+G9/F7cSYFsmjm3z3e98h89+9jNotvOzL0HKE/yReOV/+6+Rf/5dREkbVpEmSRiGWKaJqetYRsx3vvz7TPdmrI0+S748ZGG+SjIbIdMRc02HRs1BCMnDh7s8fNjF9x1u3dhmeXkOREqe6UhylZUsJIHvY9s6zVaAFyiQXpYJ9ncHDPpjPF9X54mUyLKDOUkS0iwlSTParQa1iovMU4RQbpp6q6GcDnKG63hU6x1anSaarf5N08mIerVCreaTZzPm5+qsLTSoVjWG/TGabtLp1Dk7nVKpWjiWS73WQi83Zx3XpV5t8Wdf/DOuPHEZKQuiMMSxHA729rEcC8dUE9w8K1QEwDTRhFnecyQIiV+pEpcbsNNohmY65LkECmQWkSUJlYrD/PISfuAziyLeufY2mmGSJinXr1/nueeeY//ggFxmdDpzpQW9hm7q3Lp1F1lobG+fMEsU1M9zbXVvSTMsQ1MUYsN4XCtVFFK5nXRl91dxB3Wv1HWNOJohUD9/UULoNN0ijWeq9FNKJlP1/pTnRenCzdB0SZaqjbkkl3znxfcYDsd89pc/x9LyEptbW/T6AzShkQ1yKg87TI0hvd9S7qNr167hBhX+53/yPxBPBrzzxvdpN2uMpiM+8ZnP8+Szn2BubQvN9siR6OToMi/jS4L8j1yKGybaE1l5/n+weH00ef0JHSHk4yHWj+qbnxSrH9xW8jc/Pqyn9aNOXj/K8XPxWh7/ponXR7Thf9PFa6EbTIZDZm/fRBycUcwvcv36LV577SXW1tfwfb/sUT1mf+8Aoedlb6sisb7xxtuMxiFr6yt0uz3u3r3H5uYm7XYbSttNEic4jkWaJSAFflAhnEbopo3MoVlvIQuNarVFvdHBKG9gk8mkrBYpcByD0Shib3ePdqdNPIvxA2UlPtg74Jc/+yvUajUajVbZTQlOawJS4hSLnJwcYxomspBUKlWEqeEFPpquE4YhcZxQrdUYjYbMzS0QhhEPHtyn0ahj6Brj8ZSjw2OGwxHLy6uYpsVoPOKb3/oq4XTM3Hwb2xZkeUgU9cjTGNPQCAKPdqtOkacURcpg0CWcCk5P+jxx9Vnq9ZbKmaGjmwadubbKM9UCsnTG4cE+h0d92s060/GIJIlpd+YoJLiWQ6VSw7aVAD9/4TyaLjE9H6FrjIYjijSnXq0Rh1Oa9QZCL6gEAd/61rf5/iuvcvXJJ6nWa5wdHLK2vkFaqImGlIriR6EsubN4gmEKZJHz5pvXWF5ZxNAF4XSE57jcv7/Npz/9Gbq9I+bnOtimjmGo7krdUnbwWr2iFrFIHMfGdW3ObW2i+3sqo5xeUJby9hzajTu4l8/Qmi3shSvI8Q6TUZ/TfoRhSBYWF4iiUMGHUnV+iULddF3XIS9ypJA0mi1M+1HfnIlVUgm73R6NZkN1s3bPaDQa9PsDmo0WvX6f0aBPpVIhTVKSOKbIc87OuszPL2DZNralFm/dbk9N60vQUJqm2LbD0dERrVaL8WhEq9NWQgg14xIC7ty5gxd4j6dC/X4Px1bWbtfzy0mjga7rZVelRDOkmqwaFtvbDzk82KfRrLG0uIQU8Pbb1zi3dQ5d07EsE9/zWF5exTAMTk9PCYIKWZqVQqLAME2mYVj2TmpUKlWMkuTsuo7qKZbqrdWyHCzLZBpOCfyAk5MTlpaXy5yruvd1OnN4nkcym+Ek28yan2X3eMjLL7/C008/w1tvvc13vvUdLl2+xDvX3+TGzWs88cQVBKjahjde56knn8B1bb72wgsMhwNeefklNv0Tqk7BvVONleUVvv2tb3Nu8zyvv/Eqq6vL3Lx5kyAImEUxi0tLHB4es7a6TH84olKtsLe3Q7NeIR338C9+mtFkUootsE2DLI3hzi5mnBA60B+cYVkas9mEVsujkDOkyCikmgC7nkOcxtSqdb797e9Qb9TxfR8ppaoeEkIttIq8nLSq94iigCxLlWVO0xU1UugkaYTj2BR5Tl7kVCsVBNBuLfC5z30OUVKoNV1NIbMiR2h6aWPXFbk3Gqv7qRQYhg1C5+qVq+iGRpYlaJqJaZjKjpnn6LoAUaBjqAkqBZZlcHZ2SprOsB0H369QrVTQdYHQJLsP95lMJtSqNeqNBmE4wSm7nwv5fhylKApMw8RzvcewKVU/VVbglALaME0MQzANx0SzCNf1KApIU0UszbLshypuNNJM0YMdW8GdXMflYP+AJ595CoTA1B/lfCVpMkPTdRzHU1GIJCHPM9I0VmCnXJLlBQ+2tzl/4Tx5IUmzjCSZkMQxk/GUVWEgxhOS0YTpuWVq9TpJmjAej9F1nZVBRHHapVcfqt/7TG3i6LpOHMfYngMUSNQ9WBMahqbj+lXlDvCVDf/KlSvMohBLN0CYLK2tI7Sc6XjAZFj2aToOpmHiOA77B/vUa3Uwq0ipY2gm8/OLjAYTWq15th/s0j89Q8qCf/H7/4Jnn/04hm7z1Re+zpNXLrG/f0C13PARRenE0kAiyYuMMJph7Z+hjSaI//QfMpvNqNeqyKLg6OiQra1NhGX/7EuQHxOv2tE31Od/SLzqQvWyL8zP881vfIuz/Te49fpfkZ06PGX8Ft9890+Za3toJKwsBAQuWKYgyyTVSp3l9fPKBXLnmLWNRRzPIJmZCCMqHS2AzBDaDNtOyWSmJoR6wN7uEIROZyHA0k0c2yXPC4wSCOTYFq6WQj5DFhnj6ZSDk1Msr4o0bfQix/dN4lkKwkVqgr2jh/TPxlR8H9fRsS1YXWlSr9sEloZlWCws1Vhf22TQy3jjzTexTFP9XnWHWZjy5S9/nY31TYpM8sSTV0Ar0HXYebDNxuoquqbR7Czw3s1tuqdTqtW6uh4Ng2wWk2Uz0mKGEBIpNYQwkCLC8utoZoDjVKAocLSMJOljOYJMwmQ6IstSWs06gd9UERfLolqtsL6xRhQp235epGgmjKdjdN3h05/6HA+3z5jOCnZ3D9hcW1QWbMtA5oWyrFuqfzmcqj7s2SwijiNqtTr7+4dE0YxKxQckptAoiowkiUs3oInjViiyGUIoYrHjOEyjUHEtdA3H1ojTiN6pmmbeuneHS5c/T6vlsry6SFAL2N7ZZndvl43KORbPNvhm8ud4/6HarN3Z2cH3fVbX12gEHt2TI0a9E5YWF9jY2mJ+/QqXnnoWww2I0hxDF5hFik5OoanO6fy7FoTaY4fBh4pX+ZN2YlDU5Q/6+h8Xr+p7qHvsR4oQfoTjw+pCfy5ef8bjw8TrR8l7/k1E7aPHqJ2MH0dR/+TY/oOODxav76PiP9qfn9WW8+GWY1Faw0DZbgspKQAMjXrF5+4XX8DaPyFfnmd5ZYkrFy9Rq9VVSbRjq67UdougUmEazvCDOhKdrQubdOYaDM8GeI7D0tI88/NtJAV/8If/kjCM+Pizv8BkMuP/+v3fp8gkSZxwcnpMo+4jNEmv10U3NUxDcHy0y0n3lEarQpxMqdUCppOQNJE06lUqlQrd01Mq5ULcsW1sW6dSqZS1KZJ7d+/S7jRIsinjfohNHb/MzKa5qp24ce0G0TSkUauRxgkvfOXLXLp4gVqjihAGluVy7do7tFotHNeCQqNaCWg0K/QHZ5ydHqMhuHr5aZaWlgijKY7tYJoOk0mK5dQwrAChOQxGM0zLZzpNqdc7TMIuH/vYsyoXaJnM4gm93jFBtUqSFAreZGgMxxHN5jqGAZVqlVqjiesHjCZjPM9BpgWHR7voRoEwlFiznQqOEBzv7+O7Dp7roJs6mVTdqEmSsX94wurmOZZXVmm3qlRcC69aIxcSx3UwNB2ZppwdHaGZCs3uehXSNCttrLB9cMpcu0aajLE0+OQvfJKT033OXXwGz68zmST89fde5fnPfo6gXiXLM+JpiEDw1Re+xtrqGoeHB8paaT8gnIbUvV8AIfDqOsaNuySfnOPNvqTRaKKF+yRRiFft4AdVLMvGdTxG4xGe7xNGUbmgDolmM87OuliWjWUqu5FEWTOLvKDb7eK5DpZp4jg2o/EE161Qr9UROhi6oN5qgSbwXI9Bv68stKbaVLEti0IWaIaB7ToYpsGg12cWzVReGmXBfJRXlBIe7jykWlFUzzhOiaJYZeGkup9MRhOV/bFsoukEQ9exbQsheFz2fnZ6yiyKSJOY+YU5hv0+lmHi+AHTcIZhmDQadR71lFiuhUAQjsc0G3UKTWLapgLkCLVoTeKY3YcPabcV1TuJQwXfFwJTN+l1e0wmE1zXQug6zVaLQkrmFhaUENFhPB4qsIlp4Hg2rhygOXVql76A51WpBFUajSaLCwt86tOfov6lW2wNHWq/dJU4ilX/nu9Sqfncu7fHcDjh6aefYGlxiZs37nNhLmMahnTOf5bReMjTTz+DadmkccqdOw/4xec+w8sv/4A4Tnn9tdd4/vnnyIWk3mpiOSb1WhVHA4aHcP7vEIVjbAPOTk7QMfjLv/gqm4nAmITIZl3ZwDGUhXAmcL0GhulSqTZxXI80SWm1W1iWxfnzF/A8F2RGlscYhlAT1aIENmkqFyplRlHEOK6NadrIQiJlRl4kOKZJFs/QZF7a3nXiDJoNH8NS2bv3QR46STkVF7JQuVChY7sVbFNnZ3ubWq2iAGZCvX+Zps1w1MO1DeLZBL2si8ryAikFcZKApiE0HdfzMEwF5AI1Mc1zSZ7rvPjSK3z6+c+xtLyI0BSFXN1b9PenrmpU+njSKiXkhUDTnTKDXQJaMpM47mPoFo7to2tWufYpMHWN6XTK4eER3/jGt3jiqScRQiJQds9CFuq/NcHWufPomkDTYDodUqm45GnG66+9zR/98Z/xxJXLROEE17E4PDigUW+RJrKslWrRajaZRTOVM89z8jjCc3y2d/aJb91h1qphpwmVpy+VFmCL4WBIu93CPBui6wan3pRqpYWWtHAcl9OzLlmW41kOB3sHaELFJAxT5+jkkPG4z63rN9m5d49OW73HzqKCP/3SH/Psx57FtSzOjs/QNRPTsYijGWmWoVsGmmURBFW+8pUXOH+uhWcbNKodXMcmkzMst8o3v/My195+i/WNC8wtzDG/0EQItRniBy4vvfQSnuuiC4kkYW/vAbXWQukeMDGEjnFvB+1XfxHrU0+RioJZnqKnObdu3mLr2adU7dEPrTs+7HjfIl5a1ks0w7cAACAASURBVIVWilehxKsQyH/wqxhFgSgg0306cy2CvMfrf/rPmA522O/2OZ/9PebFOdLqCa7l8sbrb+I5DmE4ZTqekuUZRZHjmODasLHZwvVNBAaFUPVLRS5LmrGCmmnCokhVPZYsZiyvBPiBLDtHHe4/2Cn7u8G0dQqZIaSBYRlgOezup7z95hHPPrmK7yYgTXrjhCyXGDLBNi10rcKDuwdsrq+jiwzLFKDJEjIo0HSBaVkcHx9Qq1q0GwEL81Vef/Md3nzrNpoUXL16nmqzirAF/UGPaaio3o7jghDUGnX6/RHz6+u0lpcxHBc0G9uskqRTfNcim42wDIPRpMALWhi6i6675FmKFAnCsPFqqwjU+kyXEWeH23i2ia5pHBx1MS0Lw7aZpTmj8YR6tcbd+ztowuDOu3eYDqesLK8gDMna+RWuXXsLy9Q4t7mmYiNGhm5KkDbTKCLNEjRDlFl+DdMw1frHDvBcXznVkEzjBCcIcL0KUqpJbZbGZGmGaVpYtkcUJhzsn2EaPpYRMB3H5HmV779xgyg32duPCAKfs/6IS5eukmc5nWCBq9qzVHpN/nf+F17Nvs+zn/4Y9U6df/ZP/1f6x6e88Ef/lLWFgFvXX+Njn3iGjSuXufDs83z8lz6D6dhYloGQuYJAagZSM+ERFf6xPV7FHT5IS2iaru6lqhtIVayVML8iV8JWdX//UJ2O9qP1nSARGmU929+eZbi8oj/0z0fRWj8MlP23puf1gz7/Ucbk/zri9W/6ePgw8fqz7Uz8656IPy37++jzaS4QRcHq1ib6H/wlo/V5KtUKZyclObWkR4JaExcUFIXE93x83+P05ITXXvs+u7t7VKtVur0ulq1qVer1Jlvntuh2e7Q6Ta5efYIrV67w1ttvUcgCz3Op1eu4JSTEdhy2t3fYPHeefq9Pv9/HNCzyvKDI1a7w9oNttrbOP4bDpGmKYejM4hmWafH1r3+dl156kSeeeAJXb+OKOrpuoRsm49GYNFX1Dw93Dtnb3UcWkqWlJdbW1rAsUwFJpMB1POY6c8zNtQmnE5BamdvTOTw8ZG1tnVqtxrgkxR4e7NNo1BUhsttjPJ6gaYLxaMz1d69zfusc90sYTq1WZ293D9e1ERpEs6jExc/wvUqZV+yrqbHtc3p2gl/a8tI0xTKVAAmnEa1WE8NU1SuygCwtODo8YDweMz+nbMKO7dDtdnEdlzieEVSrBJUqf/1X3+Xy5YuMRkPOuj2Vi9M0LNPi4c4O9+7dozPXwnN9lcUUkkG/R7VS58K5i2giReYp41FIHOfolsvJ2Qm7Dx/iuS7nzp1X1RiOi24YWLZBNJuxuLiM5/ocHhzhewFO7QCQGPllPM9GdO6hv9pl9oVPklqq4sKK97BFzGF3VtKRFUTGcRxsx8Z2bDShMR6P6MzNUa1W6fV62LZDGIYYuoahKRtskiR0ez0W5ufVVEpoyLxAN3SyPKNX2n11IUhKGqLjuWWdRIFpKrvTo/x4miQYuk6v16Nerz3eSZZSEoZTgqDCeDRE0zWCIMBxbDzPx3ZsBKKcREn8ICCMQg729un1e7TbLQpZlOLRxbYsjo+OCYIKj+4lQRAQThUFeW6uRZYpIJSmaeWbX8He3i6duQ6jyVhVkuSKxl0UEsdxqdfrJEnGwcGBWkSUADBFVK7hOA6zWawEuZTESYyuqWqSJI4ZDAbU6nUmkymWaZH1buMsf4q7+2PabZUlTNOEvFDWZevmicrSP7WArmns7OyQF3npIgjw/YDDw31a7Ra+X2XR62PZFqJ5haBSIYxmTMNIRQosm2q9xiyOufrEVRaXFtTmHDmykFBITk+OMRwfrXcf/6lfxTQtdM3C0Cwe3D/gv/wv/jFf+PXPM39rB3FuFV1X1Su6pgTYw90dHMeh1+2SJGlpc1OviWEogFe1WgGhzkmkymc+AhbpmkGaZNiOy6PKCilFSeX8f9h70xjL0vu87/e+79nPuftS2621t+nu4SzkjGZIyUNKMqRIjuUIcaQggADDSBDAQeAgcYAgzgd9zCcDRgIbASKHkQw5EiWbpECLosRlNnKG05yenul9uru6q2vf7r6dNR/e0zVNsociZRlQYl1MowbVt27fqjrLf3me3yNBqhzoJUBIlHoENdKkTiEkk+lUy9i1rVZD9NI8xzXR2900iWk0GnnDmGnidqyjbFzPJU1y+XIG0jSRuT1A5yfGGtCW6eznUjFgMtHeOSE1xXN2bpZqrU7guUipt8FxHJMhf+hOleQb0yzVYCqt7guRMs0/Z6CM/PySmjasDJM4ijRAKtWN9d7+HsurKzryShlEUUSSxBhK+8I14VgXbVGkvXSGMoijhOeee44kSfA9HyEFg8EI1/ERQlKrVsjSVF/zwzD31MHW5gP8IGD93gOeiwRxnOqhZ6NMGEZ0Ol1mZmZ0I7Z3hFQKu3ERM6nr7GPg3r11bt+6yfzcPI7jcHh0SK/XodlsYCiTJIoJpzFSCZaWF9neO+D1N77N3/k7f/vEs7e/v4fj2BRLAdE0YnN7i2q1ToqOe/M8j1df+yZ376xz9sw5lBSMwyGe77O2tspss8lgMOTKlcs0mzVs28V1AnZ3HrK5ucm5c09x88ZNKpUKnh/g+h5ZHCHIsAwJr15C/le/yr7MMD0HZRqEgxEAzcUFdL7kR7XET1KHJO8YIARy90918/orn0NlCQJJmAksQ/DOa1+ls3WJnYMDytVVykdPEagS7syIy997l3KpyOpyi0LgMhyOmEymzM7NI2XKaDzSEtL0o+WDFHqbZNt2fk7k190sw1Q66zhNNPDLcz2iKKN9fKSH2WRYeZqARBFGIeMwYtCPEES0WhWiaEiU2CRYDPpjJsMepmXg+DblShFDpaRprOXkk7E+90VGp9NDCMUHH9zCMAT1eokonDAcpwRek73dPYplh3I9gFQQhzG2ZeO6Hm+++Sanz5xld2+fctVHKS3F9RwPS9n4XpFO5wDLUGRxlNc+WiaunEx70skwLYMszpCpiWn6OI6vY698F6lSDg826banJHGMZVgsLi2jDEmnd8D87EIOEdtkdXVVAzNNk0KhQL/XZ3l5CUtJrlx+j1q9SRRlKKmzmw1DMp1MsR0XKU16vSFCgOtZKJXhui6j0RjT8DCUSZZqG8Oj31+SaLChtu4kjMYTKpU6H1y7TqlS4vB4zMOtNoVijUKpTBzFFEtVSqUixqGDv15jao7Y/KVrTEsjPvPpn2am2eL6B9d5sH6N1pzP+dUG4WRAlsa0llcpN+Y4/4kXMHJVUpaT0L9f7qvPjfQdvYE1Xko+9hwR4lGz+oQaHfnEGv5Hn27/vpvXH/Ev/wS9khDir5vXv25eP+YrHzvof/B70LEDEIYhYSRRhsQwIf0X/5r2YgPTtigEgaa7pSkISZZkjIYj9g/3qNX0JNc0tAQsjmMG/QGnz5xmfn6e9668x/rddR7c38B2HBZaLQ4ODwjDkFq9xuLiImmasrS4xPFxG9f1dCGiTKrVGsqwcF0f1/Y4ODjCsd28wU1ozsxw//59fN+n0+nmUrMY23FO8mtffPFTCCEIgoCd7R329g6plGq02z2+8pV/y8WLT7PYWuHGjRs8+8yz2I6N53l0uh3ufniXubl5Xchsb1KulEmzlOOjI7rdLrV6g+bMDKZlEscRvV6Pa9eu8u677/KJTzzDZDLFNG1mZmdwXRelFPNz82xvb2v/pO/R6w6QSnLc3qdQ1Fl9jh3geDa97pB+f4AQKcVikfffv8rC4gK2Y/NgfZ3pZEK33aZaKpFkMBj2Txpmy3JIk5harUa90ch9ixa9fp9KpaoL8PaxziYVOubiUWNRLJY4PDykWCgQR5GWkZZKNBoVBr0hSkoMCWkypXPcpRDY2EbC8fEerhewvbNPrTnDNBwShhMa9Qa9bpc7d+8xMzuHktqHuLe7RyEokyUppUKZXqeHVX6IFIIPvjdm/imFoIf8bpf0b56jtjSXy+U8wv33aC5/AiUEh0eHulgUAtPSQJiNjfvMzc1qcFOWUSyW9N+bJmkS0e10dObw/j5ra2vEScKg22Y6naCUZDKZ4rp6oEKWkCQp3W6PSqXKcDii0+1SKhVPCKr9/gDXdginU1zPp9FsAIJut6u9r46Tb15TSuWyLhoMxWDQzyM/8szMoyM9EMr9p5VajfF4zOzc7IlsMpxOSZIM1/XwfS+PTskoFAsEfgkpBdPpENOQ7O7usLu9TziJ2Ni4T7PRoFAsYHsuCFBSIRBsb+8QBAFKGWxvbVGv13UuqzIYDkd0uz32Dw6YTHRznCHyos9EZClpkiANI/c0moxGI8zoAMgQi7+A6/oEgU+n2+a9K5exLJNSqYR5fU8XcM8vgBT6WiMEUSr5F7/128RJzCc/9SzXrl9jZWUN1b8JZJjNTwBou4DUDWK9UScTgnqzSRjpCIUg8Oh22oyGI3Z3d6lXKxro096gXVqlUm8wGoZI6fDmty9hWQG/81v/nL/XOsuOb2m/5mjM0fERQeBTLpXZPzjIKd264W+325TLVfr9AX/4B3/IhQvn8xgcwWQ6IU1TLNNGN1V6QxDHGVkui310jVZSkqB0oa10pnAGJFFMHAmiMObo6IhbN2+xtNjKKcX587JHMjOZb3JTlFSEcYxlaR+zUEp7qoQu1IUQCGUAiiQFUwniJNFFfaSjOQpBAWUIer0ulqm9ohkpSRwRFAOU0pI2KQTD0RjLcvItwEf3m0fgkU6ng+tY+fY4otc7ZjgYUAyKjHNInBAKIXUDbVoOSmQn9OszZ87kVgPdWERRiDI0jTlL9SApijSc7RH1OE0TisUixaL2pk8mE6689z7PPPMcUurho2FI2u1jpBQcHBycDB4ty6RQKOH2xlSjjMnla4wvnkUFOqc5DENKRd3Iir1D0jThYTwG4MGDB1iWTRhOKZerTEMNlhMiY9DvUygUNEU6TlhbO83M7Cyma1GtN/ELFe7cuo1pmCy05imXizo7PAj49re/Q6/f59xTT3HlyvsszLeYn53j5s3bHBwc88KLn8S0Td2EZAmOoxBIVldXeeqpc3R7x9r+YpokSUijOUO1WufatessLa1QKlXpdfaZTkZYpkG2e4i4t4n4H/8Lbt6+y+LaCnGSIKOESqWC4bv/Ts2rfDFCvRiR/tE3gYzsV17BINEbattjOunz9a98gYa3T2vpIr/3h2/wa0v/A64v6MV3uHDxDOWSA9mUNB7TaFYoVQvE8RTb0gOOQqFIFMXEcUKv3ydLNfyGXHGSpom2mDiKyWSUH7MGru2yu7OLbbsYpsSyjBMvcBxFOLZHmj2idUOrNYMfaGl+d5jxx1+9yqm1eRq1IhCSiim+p4fUUioMyyAjQZCRpBGuFwAGypC0FpoYZoRMBEEx4M69G9QrLjev3+L99z9kZ+s+zz3zCUylh7Ct1lIO+9OEZMfRtpX1u3fodjsEBZ/eYEK308cyFL1uD9eyyJIpQblIkugIRMc2GA17+I5DajgYloXt6qHwZNhHSZhtBji2pFwoMJkmjEYTTNvBVHrwWq9r76vr+gyHI8IwwvMDLNNmPAo5OOiyu9em209xHe1JN6TCcVySBIbjiCRKqVQrIEPSLCQMEwzD5XB/yGQSYloWWZoQx2E+hFCarB5HWJZFUKiQSQvLKZIKxWAkaXdjGs05kjSlWqlw/tyzRO8KqlGDyd/d4XLjNaQL49GI/b0juscDHq7f45nzM/j2MQcP73D79i2KtQbPvPg3eOXnfxnTr+C4+j7xKC3g8V4kyz8+2rymz40Jw/DELvGD58bHNa9SqCfW73/dvP5/qHlNkuQ3H/3/kxrLH2zUftTG8Sd5/Lhf//0y43y6+JfUvD4qBJ6Y3frnvKcnyYdP3kn+Xg3LQqiM1LfIvvIamWMSOTbFoICTB6oLKen1elx9/yqNpob9PEKn9/t9ms0GhWKZNNWerXq9xnA0OmkCz5w7kzebbcqlEoZhUK1VODo8olar47ruiSTVMAwyoTcO00nEn/3pn1EsFCmXS7iuzWQ61YRhR9NW0zTFD3ySOOLo6JBypUypVNa+VzVhMOrQOR4yNzvPzs4ui0uLFAtF2kfHnDt3Ng/0Fty8eZOlxSVmZ2ZYX1+nXKloqqYU3Lp9C8exNX3OtJA5wOH+/XWODg9ptRZZXFyiWCjR6/U12j7VcBIpBaPRSNNhXZfxSG/kqtUyh4cH7OzsEEe6eLRdg8ODNo16E9PUm7z5uZb2cQiJ73n4nk84nZJlGtVeKOgtXBKnSCGoVMpsPNzMM2+FhsekCVJpL5rjOI/wAEwmE+qNGq7n5kCZjCxN6XTaWLZNuVJBSlCGSTgNiZMp7fYxr37rdcKwT6UaIETKdBohhMFwPGJ5ZQnTMHVjoxQLiy0yyH/OEEcxnU6Xw8MjbMtiNB7RqF7AEqeo1WYxZjdIN2zEtQOinz3Le7du0Jxpcv3KJZp2l1CVNZm4XMbzvBMAjRQC3/eJIh0fdHR0hGXlFFIhNPAqSfONp6Plwr0ejmNjWzbFYhHDNHSBYRhMJ2OSJNH+aKG37sVCgTRJOTw4xDRNTFNvawaDQQ7nESCg2+vhem6eVfeo0dDP81yXLNNe8Ml4pLe6roftONp7lgNt4jgiyGE3WZbieV4uldZeW8MwNChICsJpxO3bN1FK4roOpmlTrTUplyvaS2dbJFmKMk0EgjjUw4lKpcKHH34IQKlUQhkGWabjTqIoYnt7B8symV/Q0/WNjQ0q1SoZGdOJ3r6qvEnvdrrsbG9Rk/vY5/5zEhnkJMiUYrGAkLCwsKAJzXeOMQyTyVO1fEOcsL25RWN2lmqlhhCCSqXI7MwM77xzmbq5y3Q6xZ1/XjeGCfh+wOuvv8ryyir9vo5micIQ33O4f/8+zUadyWjMaDiiWNIwHgYHYLvEdolpmOI4Ae1Ol5nZOn//H/231N++hppp4paLJzRZ3/foDwaUSxU0AbrL3bt3+eDqB1w4fwHLtrh2/TrPPPMMlp03UqaJUnpry6P7UAa27dLv9/nt//t3WFpa0ttaciiMVHobnqRaxgpkqW5uP//53+LM6VPUqhWdsZtmuUxXT+b15F/fXoRU+rWy9KSIykhPnisyLVHLcrCPyo9b3QhaJz7To+N9KpUqhjIIw1DTwvNjRAjt3U2TFKn0xhSyXONGnm+ri3vTMDCk3n4Nhj1297Ypl6vYlp8TkMlfL843xSnjUR61ZDon11BIIRMapJVL7MajEZbl5j9fLV2L4wgjLygFEAQFyuUynXYX0zRzojIcHhwwOzNHr9en2WhgWw6XL19mZWWFOEnx7m4xlQJGE7Knz+pcYt+nUdcxOJ12B7vdp93p4K4u0ev1ee2116jVqnzjG9/ik598ntnZWR48uI9j2Sy2WkgheHD/vr76Khvb85AG7O0dMByFdI4OOHXqlM5aVQrf9xgMtMf81KnT2I6D7Xh89+13MJRib/eAX/pbv4SUmR6GHne01pCEMExwHR+lJLZj4Nh2DmqbUCqXGQ6G9IcDavUaw+GA7a0NLMvC9zyy9S2MNCP69V/EUCbSNjVgq9PT11TfOWlen2Tbelwq/Hgd9niGpVKK+Ivf0Mfvr/4sBhlZmjGYRhgy46nlJm66R2/sMoxKvJL8OsPKHcKojeNkZOkU1zUQWcxo3NfNoSmIQp19LWV+/JlmrkpK8+GEBnqRb2LjKDxhTmSp9kEbhsK0HIajIY1mnTAMc3BiRhzpvNc4SXnw4AFB4GBZEsM0sKwiQkYsLcwjmSBVRipSyBJMw2E01gPRSqVImuioGMf2SOJEy09limmAZ5WwPQvHg3LJQmY23W6CZEQjjz268v77LC8tUa5UkVLx6je/w/LyCpubG9y4eZVqrUilWmB3r43nuviuzaDfx/dsXMdid79DpdIkyzKm4RAhUgxLMBhPSEWCMjTsybJ9stRkMtnFdkzGozFRmHLc7hIEVeJwwo0b17Fsi1u3bnP37l2UVNy6cZPBcMidO3dJ4pRKtcbO3hGd7oi5+SpCKgb9QT6cVRwctbEtlySN9SIl0/7cOBZc/t51qtWyVjUZOus5TTKOjgdkpPi+o2ndwuS4M6LTm7J70GZ3v0+7OyZOEz772VcY78Ysdc9gFAR3/tZbjLwuq6urpEnGxvoD3nvvCq9985sMeweMB1tMBlv0e2N6oylr55/m5c/+AqXaDIbtkWbRycY1zY+tR3V3mn/MLln62P/UNB82c3L8f5/HVX5Usz/+HK2S+eHG9gfbksfr/MeHSj/4nL/s/gj4vu/7Bz//yNb5+Pn/+HP/g25e/6o8ntRQp+/dQJQLqM/91GPP/Mka0J+wX33ie3pS8/rohNAFRkIqIzIJ4t2bmNuHjKsVDg728PwAaUiSRBvrO8cdlleWECLDtg2ynAjpOA7FQolCsUCaJnS7HV5+6SV8NyCJY6I4wjINDg8OsC2T6WRCEie89Z23tZQuzUBILr97Gc/z8QouW5vbjMcT9vf3efHFF9ja3sQLPAylmEymbG/v5NPViLt371CplPEDn0qlhGXpIigp3aXQyDh8kPLFL36J1mKL02dOa9KdmbK9vcnu3g4727usrZ0mTTNef/VVkiRheXmJKI1J0oRKrY7ralCOYWgoSBRHFEtF5mZnGAyGuI7HeDwly+D3f+/3uLe+TqvVwlBGTmnd52D/AKUMCgUfw7DZ3tpjcXEZy1aYJhwcbGMomw/ev8qpU2vsbO/w1ncusbW5gRKSSrmM6zgUy0UNO7H1xTGJE1zP1REmUUi5WtOAICFO5J66sRKofFvePjyg1ZojzTL2Dg5wLJu3vvMd9vf2uHjxaWzPRZgKDUrJGI3GeTZbxr1791ldPcX+wQGu5+PYRSqVJjtbO7i+R6FQIoli7ccpFUnShDiJMJG4jotl2czMzeB4JjNzdbLUZNgPOYjfo+iYGPse8tYu4pc/hV0p8/6VD3j26YuIw3dY3xsRlMonkIOjw6McMJUSRwk7u7tMp+FJXIcmwWaEYcTW9g6NRgMlBKahECLDtBySLEMqxWSiQTVpkrJ+7y6Gaeh4mv09lABDwv7+oY7uyOX0tuPmMT36nAqjEKmkbm4Ng9FoqGWZUcxwOML3PaQSjEdDDUKydfZtt9vVsKOplkVblm6OwyhkPJli2TaT8Yg4jpBC0u122d3bo1DSMmXPcykWy9qzZtonUuRSpYLruoR5PmYSJnSPOgRFHX9SKpXwfT//OcHly+8xOzODMgxmZmeo1qoneaW6UPAhg+OjQwxlIPNto+Na1OQ+WWGV63sON2/eotVapNs7xvNcfN9B5dAs+8Yh/V6f6YWGjoshQ0mJ7ZjYpo3r2BiGztQd90PKchMhBAdhlfZRm/n5efb2dllcmOX27duUikXu37+PAN58/XW67WO6vTa+47O6vEI3l5JH4w6H/QGrz36GTrdPoVjEDUyW1hZYWFzAePV7HGUJQb2eA600YXg6DclSwWg04d7de7x35QrlcoVTp04ThhHPPf+8zjcd9CkUAsiMk+tvGE5Js4QMLYM1TYvhaMjZs6f1BlNBPBmTJgmWZZMmGZ1OR+ePGoLt7Yc8++wzOK5No15nf/+AQtFnOBrm+aua1KtjZCRRHJ/kv2pIkj62syRFkhJNJpimqZtqBGkSEUcxW1s7J3Jk23awLSv3WmlflmnkkRQKkihECMFoMNEy10xLIDU5VDe0URgyGo/zos0gQ2JZFpVaFdv2SROFlCmCFCkyjo8OCXyfNElRMtNAKvRW+dFmQkmJTknTcvxSscQ0DDEM7aEEPegJwymmMkizNAdWxczNzeF5Hu32Aa5r49gBf/LVr3H2zFkd8VauYJoWYZSxs7FFa+eIg5kyZruHXJnH9X3u3LnL7/zLf8kzn3iWBw82OFMoa6r5cwOCxpSCWqJQKNLvDdjd3WP19ClmZmbY3d0hjkMMZbC6skKxWsUJCsRZyngy4t7d+7z1xnf59Gc+yWg8wPe9E3Jy53jAcNinMTODkIppGHLz5i3eu/weL7zwMuVKEWlm2LbL3s4x//oLX6AYuLSWlyGTevAw7uUqhpUT3kUUx5w/fw7Xs+kPurQWWvR7A27fvsPC5jHdX/uPMJ97jnLBJRZaDbB+8zZPXbxIJNITgsaPkkP+KLtSkiTwldf05371FRTa4CdMB7KYo83bfOcb32Ru+afZH2a8EP0sUXmf0ahHmvRwbQuZA8Isy2YahmSAFAaGMpmGISkZUTTFC2z8PNs8zXSMX5LExElCEmckCcQJJFmWK/czTNPCNBWgwWtCaMCYMsgHbimzcw2KBZc4yRDShCRmdq6OEBPiaQ/TsjCdAoZISVKLa9fuYpkuSqVATIZWI0GMZen78mQckiQRKZKjw2Pmmg1mGyUCXxL4PvV6hdnZGeYXFrBsmxSQSjLbnMeyDLa3Nun3e1y4eBFl2MzMt4jCiFKhmA+eEsaTESU/t04oC6QkjBKiROI4tt5yuiXcQg1pFPBKTRSx5jWMBygRQxoSjSPiLKO1sEChVGJ2fp6Z5izvv/8Bn33lcyyuLbGysoLn+tSbc5iOz50Hm4ymCUdHHVaWVyGHzx0fd2nUa4ThFCVNwCSJBbblsDC/yN7eNtVakdGoh2U5xFGKYbk4rk0YjhiNhkxCxd31Pa7fesjWbo/hJOHTP/NpDEvSClaYO17jSutN4l86IpURuzv7DIcT/ujLf8IrP/0K4WRIqZjR722yVA+4/f41xqrIP/jv/xd+/m//XfzaHKlhIA1N6X68CXy8yRSPmtp882p9WkubP66BzOkzP3Q+CeQTKcJPOuV+nOb138fjz2uEfxST6K+b178Cjyc1r+pzP/UDjSv8pM2rJif+u72nH5UVm2WZzjiTKakQGKdXyP7Jb2O98DxS6ZPQME3SFGzLYn52AWVKLNsEklyuYWtEvFDEccTW1hazM02mE+3diaKIwaBPEAQsEO2YygAAIABJREFUtloc7O9x7eo1alUNH1pZXtaE1dwrUSwUiJPoZMp99uwZfeMwJJ7vnUxtdQg2rK/fo9FoMBqPCAKf0WiIaVrYtgv+MUmSULFPMzurvXDFUlFfLEREoaABT2fPnkNJgwcPNpifneX8hfPcf3Cfe/fvUa83iJOU3/o//w8GwyG1WpMo0vmdtmMihSDwAzzPZzAYYZom7757CSEl9ZreLA0GA+bn5oiikKtXr3Lx6aeQwkRJl2ajgeuZdPsHBIFPrTZLq7XEw4cPWVhYxLF9Zps1GrU6UayzNeMk5r33rzAeT9C2vgzP9TQyvt8DoZuEg8MDxuMxlmkxnox5uPGQQiEgiSOi6ZQwDPXGzzAYD0fMNpusra5iWhYJGY/WImmm5T2ua1Eulwj8EvfXd/F8n/EkptudsLmxj2XYKEvi2A5f+9qfEIZTWkstDZKyTZIw5tKlS/QHfebnZ4jSKR+u36Z7fEyzVaK43OHo7Zigm4CUfMPrsrp6Wueq1mbJ2h9guFWCUuVk+NI+bpOlKdtbWzRnZvE8D0MZFAoFDEORogv48WhKq9XiYH+f8XhIEofYlokwHB07kSZMJxN6vT6e51EuFjTwybIIfI/peMSw16VcqVMqlRBSRwkJpaXAZCmHR0eU8wGDaRg5TdWgfXREqVw+ydEEndcZhVMsW3tpnfz3lyQJhhRsbm7qRkgIDNPKfYH6GtLvaTlhqVJFSImU2pcnlcmtW3eoVKtE0ZTReIRp6MY6ThJsy2Y8HEGcYvs2m1ublIpFZL59m04n1GsN7YvNEgxT0e11MC0LyzBxPffkRr21ucXC3DwonbeSHl4Db56s9UssLa3QWmihDAPPd7QPl4zdvX2++sdf5ewwwHFdDhddPM9l8+EDTKnIZMJkNGF+bo7L37vETKPJTHOOzu4HOH6ZyJxjeWmF7e0tLNPENhXlcpnvfe9dPvn8J/E9l3NnTnPx/HmSNGEyGnPr5i2UobQvmhCZTpkWWwyGUyr1Mlu7G1TrBaaTFOPDTQrDEGO+yXA0IIqmpGlCHMVYlovn+lQqVZ577jn8wCeKYlxXN/6GYZBmCUpJyLR/NSPFso0cSAJxnNLr9VhZWeERhXY6HXPn+lXqtTpCKh5sPKRWq6KkICOkWq1QLAT4vgdCF7CTaHrif1eGYhpOieMIJS1c1yF7NInPt0sZGYaQDAd9DZciy//7CAyYphmf//z/xdraKS1DJNHDCSHz25Y+3zKZMOgPGA5GgORLX/oy1VoN2zEZ9PV1/pGC5tFmIk5ASEP7/JQkzQRpahCHQ0xDEEZTut02hSBAokjSENvR0tQ0y8gETKdjvT0jIwwnJyTsOEqQUg9ApAQhMo6OjgjDKYEfkKQx/f4Ax3bY3t7iW69+gwsXnsK1CwRBgXe+e4nZmTn6/QHFYombt+9y6dvf5oVag/TGXdLTi5j1MtNpSHOmyXPPPkfga2p6YTjBdizClvZXv//WJpVKlfNPXcDMCeuQUatVKXg+cRQxGo1QtkmcCJASw5AUvAKL80ssLs/gug7DYR/H9Xhwf5NXv/UGH7x/mdnZOfwgwDBNVpZWOH/+IrVKgzv3brOwOEuSCsqFJkqknD61xsOtLWq1hrauGDA7O5P7AzO2t3doNhu5dSGmWPIZDabMzi2w/fXXKfsFhv/N30N5RQ537tOYn2M8nfD617/Jpz75STJLE+gfryWeVGN8XPMa/b5Net1AvGwjnz0Ha3OoLNXHpLJJ4wnrN95l684D9juStU88x+ydNa7tv0m32yaeDgj8EmQK0H8yITEMG5FlTCYh3W4PL3BI0ghkShpzYnGK4wgptSopxeDmrTvs7O6xtLSIaZsoU5AlGuwkpcCyLH29jiKiaEwG2KaDaUp6/S5CmBiGQzIdIIwMJUNkFiMNmzBRyDQhEy5372xSqzWoVgPSZEqKhWPrjWuWZShponARZshxO+LypfucWjqNkm380oj93QnXrl2lWCpiOS6W4zKNYqbhBN83aR8fsLy8wrlzT2OaAUJ6bGzeRQhYv3cPx7GI4wlCCVR2TBwL0kyCdCmVZzDMKtPRkEKxyubOEYYVYLo+yrIIzHKeUz3FUFM6nQOyJAEjoNPtUKs3UKbJB+9/wGQ8YabeYBhO6LQ7tFqL2I6NZTucOnuWm7cf0Ot06LaPqFWKdDptSsUSGSl7ewcUCmWSOGN7ZwfP9zg6PGZ2tk6aRUgFk8mE0WiKabtMJkMMBUIo2u0J27tdDLtMf5jyN175HGfOrrAQLODfrfPOypt4LyXs7G0xGo24/O57/PzP/SJnz1zgtz//28zMlsnSYwq+YNxtU7KKnHrxs7zwmZ/DLdUQlkcmUsJwiKms72vcVM4LkTn4DiAbgmxmyJX0hH/wuK3i5OvlDzeBmvIvv0/F8NE59MPn21+F5vVJvcZ/8M1rHMe/+aQfzsf9Qj4uo+gHH99/wDyZBHwit/pzXufHy1gSP9EfkVPH9PvQH7VP7sc/QB8/WR6Zyx//PJlEpgYqVYhKmeTz/wZV9kiDUh7rMEWZAqEk0lRIqSNsQGFaLmkGkzBEqYTRsEshcHBsRZpFROkUr+jgewVs2+bw8JBOt0uxUOTateuMx1Ncz8F1JJ3OIfVakeOjXTYf7jI3N0u3fwgyxXJs4ijFtiVHR0cUgrKmgSqFY3tIaeS5nXEu70lRUpK5x0gh2L83ZW93j9Nrp+gcdXi4sUlQKFEsFrUXUUne/d57/Nk3v4GQiqBQpN3pcmrlFBKJa9tcff8miwtLgAYdVMolhv0h0+mYMJyyvb3F0vIy0yjkzJlzBIbJ8vw8B/s7HB7uUSqXqM/MML+4TJZCt3eM6aTYjkEYCrrtCMO0MAyTBxv3KZXLFApFXM+iMjsHhollO7ieB0C9VqPWqGPblvZ9pJn2RHpFHfAtNeioWq1iWQ6vv/4WM815goKH7Xi4XoFCqYIQKZIEZbhMwxCpFJalCMcDVBqTxFMsA8ajAe2jNr5fQiqD9a0dTq0sUPBM5lpzjOIJ0lA4IuZwb4/m7ALbO/ssLa3SP+5gS4ONjdsUKzWa88tkmcGlt96m1WhwNHmH2koH1S/hx2XEjS3Sl0+xUxaUSh7z800MS5K0P8QQKcouaTnjNNTyaCmp1msoJfnwzofUGw0tF4tCDNMCIdje3qZQCAgKPsPhEMu2QUgsQ6CUQOVF+nQa5hCkEY7rkgpIsoQwirBsG8O1UYbBeKw32koHOJ7cjCzLhCwljkNElhKFU7wg4OhY++uyNME0JVkaERRnSJKEe3fvUCkXiaOY9nEbLwgoFkv6HEWcbKX6vR6O4zKdTgmCgH6vi22aiDQjDhMePtzkzJk1pMjod8Z0jwd4vo5CcV0XQEtg61X2tveYn58jjDR0KAwjpDDY3dunEHjE4Zg4nHB8eIznao+pvgTpEHYtH4ZkuEd6cAWjchpj7T/WkS4ShsM+ruPqeKjjNtOxbiZq5SrNPe0Z3m1m2JbJ/fWHNGdbWG6A5TgYlkmlXscLfMJ0wt3tGLN+jqBSxit4FAtFLMvC8kpMpjH31h/guh6eH3Dc6eL4AYNBh/evXmNxZZnF5WWuXLnCzNw8TneD4OmfI3Fc2sOIuZlTKAoE5RLTzS3UxjZps4JtWfT7A9IwpdftU6uWSZIo/3lJxsMJxWIJx3bo9fqsr9/jrTffYHFuHi/QEShKStKUXBcmCcOML3zhC9TrdYKgiJI2WWrw5S/9Cc8890kG/SFf/Dd/wHPPPo0yBN1OGyUNlLIQUpKkCb1BD4UiCUc4JhzvbxKOhxSLJU0Jzr2gJ3KtTG8JknCCZZoowyRJYZokTKYhtm0RRxmGcjBzGIthaBlkmsObkJLxWA/mJArLcvVwEMHe/gGNWpNao4rt6O16fpjoaLIkZTweMpkMsAyDNEkIJ2MMlWKYNlmakMYRZBmu54M0EDIDDLJUkKUxSRTx5qvfBZVRrVYRQmEYFkJqsJWSmtwaRSFCQhAUcZyAONHZsHGSYJkWjuOyvbVLszGHHRgMhxNu3PiQ9XsPyJKImZk6xaJDGiWcSiTx7gHjZ0/jeDWOjvZxHRfXcel0unS7fVS5TNookhX6SGXwzrc2sG2Tufka9XqJLIkwFPS6x3iepwFZhk0SxcgsRSQJw+5QS/ANcL0AKU36/TGlUpV2u8PyyjJJNuX06dOEYYwUUstAAwfDNymWCliGwrUkh4c7LK+eIskU3U6PKJrgBxZRHOlIkywlTQWe72OYJkhBhiDLFK5rMex2WLu3x/5/+Z9Qffk5bNsgKAUMuwMC2+Pe/QecuXjxsT3Rk7kjP6qhBUi+ZcJIYP7aDCzPI1ILM4nIBIyVA+GIt37/f+P2wy6/8Q/+ob7Hf7uAPzPC9aBcquH5LqmcYlgWhulwdHist/xZimU5OvbLtPNtrB4uRijeeGODrc2MZqOGoXpESNbvTnj4YMLpM3OQDskmMVmWw/kMUxPx86gzS2kSt1KQxFEOfYqRWYRh2CiZkaQZaSoQmUQmCQkZUsbU6y6eB1mWYJg2UmrqcRjq50shQIYoyyNNQhwjwvcVhm0jhMW4V2Q0OKY1X0MJE9cugMgYT3p0O3qgVSwXGU/H9AddhEzxHEXnuM/u9iGtuRaWjDGyGFPYRNkI0zWx3DkMs4KwDKQymUxCxoM+jqmwHR+kTSZj+uMp0nRJEp1T7VoxJAM21m+yuLJKgiKMBXOzszzceMDS/BxeDvu6v7FB+7hD4PlMRh16gymT2GR7r0u7M6ZUKBElBh98cIf5VpMwimgf9ajX5ni4cYdqpcZ0MiUjww3KvP3OPUq+SVAw6Y+6JGnAt964T28MiRnyzNMXOd1aQ133KBzU2PrZG5hPR5hpxj//3/8pp0+v8uKLL7DxcIOVtVXibMpSw6N9522ON27QG05ZefZnqMyv8vzzz6NADyTIMKSpXctCkJuZ9TkhZW7V0L2EXE2QK8lJ/Z4JTQX+CByss2s/rmYX+bBayEfWD/21WSog++iP5qmKj+0LPu48/HEfj3qHx5vUJ8mFtQ88JygLyUeE5I+e+/0Nv/H//+Y1TdPf/LjG7C/v8eQt549zQPz4zetf/D19/0HyF5uu/Hk5UFmWIWZqZP/qK/DUaXrDAUKC63m5h0SQxDGu6z7m5dMekQfrG9Trdfb39tjZ2aHfH5IhqVbqWKbN9WvXkVJDJIJCwNVrV3mwsU2WZZQqJYbDAfv7h3hewNxCS09Yo1BLw6YhQaEAmZ6ym7kXyrEdur0OUop86zrK6ZkGo/EEo9BlNB7T3lacv3iBMIoxLYu1U6dy75QiikLu3VtnYaFFHCWE4YT76+sEQcDW1hZz8xoYtLK6xNzcLJVKhW63y1vfeZtCochgMKDZnCEISpou6Gg/8OzsLFevX+d7l79Ho9Gg1VokTRJIdBbkzs7WiT/u+KhDp9un0dBQpUKhwGQyAYEGg0hJEkeYhglZxocffkipWKTb66KkgWkY3Lp1C98PMAyFlBZbD7cQ+c+l2+tSrZSZm5vDMDWYiAz2dndOsga1XNDGMDXFOIpirLxQm0wmlMsVlFTcvHmL+fl5VtaWMEXEZNinUCpj2z5bDzdRhkmnO2B+cYnN7W1Onz7N7/6r32X/YJ/VtTM0Z2axPYc0iSj6RT68eY+VZ46wvD7G7irxJMJ47yHxb3wGd6ZCqVxCmZIojlDplKT/EDOYOfHVPRrMTKdTxtMJMzOzJ8fmZKRli2mckCQJQaAb1yAIdHORe+MOcg+rZdn4fsDh4SFCSEzLZhppWJFl2ZiGyWiiqdZWLsXe39/DcV2iUG/jyUAqxXg8ZjgcInMoRZbpfGTD1M2DZWnC9sbGffb396lW9e++WCxqmqqptOQz974IKXBdvVX2fP+EeJskWpLquB6mZeHkntjhcMTO9i71RgXb1hAZ0zDoDzQFW2QCz3PpdjsUCgFKmdx/8ICl5QWSJKXfH2CY2gtsOSZhGGOaht7EmiYiSxjtXUVGXYy1X6Frn6NYKDEajQmnIVkGb7z5bVqtFn7gc7B/gBCCubk5OtEYuVTBWahBJvjjP/4aaQrtzjGzszNIJblx7Rrz8wuYlkngBziup8FOCF577XU27j+g3W6zvb3Fyy+/RK1WBTItU09iet02L730aTwvYGdnl+FwgMhiymLEQeEszdl5+oNBnmdrcnTYY3hrncL1u4StJmEc6q1YoUaSwXAwJgwjyoUyURjz9a//GecvXEBI3Ug5tsPDh5usrpwiyVJsx/5oiCo4mc4/9dRZHMfC8x5BjuD48Jil5UV2dnc4f/48lUqNe/cesLe7R7M5g+sGOs5GaF+3Y5t4vsd4NOb2rQ8plesUilW6/b4ePpnacx5GurgWQiBz+TA8KhwkhtLwmCzTMQutVgvD1Jt0qSRJrKX/lmVp1YBS+fekvx4EK8sreL6HaUqUlIj89dM0ZXNrE9dx+Vf/z++zv7fPmTNn9VBpEvK1r/0pa2tn8ixoA9O0c0CJVvUItMcwTUOUkXH2zFkqtarOYo0eNQ3aU2wonQmbpDHk9O4kTk/OP2UY3F+/T5KkPPvMMziOo9MsEg0fe/mll1CG5Lh9hOcH3Lp+k09YHgcVl2FgoqSBH+jz6+j4iCiK+PKXv8z88hKFWpVQ7UIG3R2Ln/qpFwnD6Qn4bDAcUSyXaXd7xHHKV/7tV3nj9Te4ePFprl27zte//g2ef/6TVCpV+oM+hmGwu7vL66+9wTPPfIJmo8mp0ys4rofjuOzkkDUpIYkFjmlxfHSIQFIqV8iEwWA8pt/tcPbsGaTUHsHhYMjDhw85Pu4glaRQKOi4r3w4b5qK9NVLTM+uIP/rX8d29HACtMx2NBzieR6z83MIQ/HjLgieVJ8k72hOgflymtdOBoqMFEU4GeMy4eqbX+XuRo/MKvPU+WdwLlW4cvc1mq0Ay06wHQNtXXWYjBOKZZ+MkNEooViqkOSsgCxNkUogzQJRluAVi9y4eZelpQq2K3E8h2p1HttTlKsOyhSk6KFmmtuGdLJBhqFMLacX5OTrGJUrbDJ08d4fJijlk2aSMJzieiZRHGumxWO+xyRJQHJyviiloU1hGDKZ9nEdxexsHd/3GE8Em5td5pc8ltZ8hNmjN+rQ6fUJIxtTBdy4cYPzF84xGo64desmUZxQKpXpdTrU6jMcH3doLS6yd7DHu+9fpVoro4yUeDpm2B8C4AQBwrBxXI9qrY5t64FLmqUIKbAtl05Xq378QonxJMQyYWFhlv7xIfduXeUTFy8SxRmNuRZpGuIHAQ+3ttjd3uLCU08x6HdZv3+Pl156ma2tbYbDIY7r0hsM6XTHHHf6lCsVkkzSmJnn8nvXqDWaRIlgY3OXcr3ONIKDowlpZhFnJigHoYrcubtPvdlktbXEp2qfofiwwf78Jv/r5j/mF3/j57l06RLfe/cS//C/+584Pppw9YObvPmdN/hn/+yfcPfaW8SjNuGkSyotGksX+dwv/2f8zCuvwCNwqXoMUiYf27T+UP3/0bnx6O/1RlbwpE3qjzpfnvz8Hx4W/SS9x+PP/XHO4yf1N4++px945se8zpN7q79uXv+cx48LOvq4l/qLNq/h3/+fSb709R8ANv2kj7+85jXLJYk/qnlVSpGuLZL9wdcwDJOHoz5BoCFBUirSLMM0jJN/P0mSE4Jalmb0uj3K5TL1WoMkhZmZBaQyEVnGnQ/vaAntUEu4Tp86zdqpM5w5c4ZSschMcxbHcTUuXSkdeVKv0+126HZ7BIUiUmSAJI4Sup0u7777Ltvb26ytrZ7AiB4+fMjBwQH1Wh1V6GEYBvXgHDIPGkcK0kxLRG/cuE4YapDP3NwsKyvLrK6usnZqjVOn13jw4AGDwQDTMvF9F9d1SdOERqPJyuoq5XKFaq2OEBKpFAIdH6EzEE2CUoHWYouFhQUMZXCwt49paC9jp9uhWtU+q2JRQ6Y6nSOsfPu6s7uTS1YDTNvSGw0BSRKTxHEu1bN1Lqsy8pwvSZKkHB91+eIXv0ilWmZubhbbtnOZY5RHpCSYSuWyKEmn3cGw9CZze3ub8XhKoVhEKYs4jqhUqjmG3+KDqx/o7YwFo14bSJlMYkaTkG67y+Fxl6ef1VRPwzQoFAusnFrBD3zmZpcwLFPHiBgGJJJabRarfh2VKszeIuG9PQQC+Z++gO3ZGqqRxBocYnok229yPHV1o20YjEYjDg8PNbhKoIFUQns0NUFVS9kLhQJpmjLo9/Fcj+PjYyzbRinFaDzGzEEeURxrj/L+PrbrnhCjp9OQcBpiWOZHkCgpcxCK4Oj4CM/1yMg4ODjQv7uggKFUDpGKUYbuVqQwSBL48M5tfb406hSLRTrdDpZlEye6OJd5XE2n06FcrjAcjEgSrSrY2dkl8H1s2yGMJkilME2bKM6jRIwcTEKM63qMx2PdoNs2jmPjOC7D0YB6varlhFmmB1RZzHAwoFSq4nk+GSmmKRmPpnpLF8fE4Rijf4vMXWDbepF66wJXrrxPq9XKo120cqRYLNLpdKhWKty7e/ckYmjoZvTNmDsf3qVYrGBbLoVCkcD3qJTL2JaV06ILujkRRg5ny4jjhH5fR16dPXea8WhEu3OM73sMRwM2Hz7E9Ry++/Z3KRbLxHFMvd6gUq1Qa8yg+tvsRj6VhWWqZe2Z7PV7KFxe+OVf4B8tPUV0WkPSDg4OEMpia2ub119/jacvPM3hwSG9bo9KtYwyLe7cuYsfBPT7A25ev8HK8jL1mRrT6VTLes2P/K9pmnvwPOeEjJtl0FqYZzqZ8vZbb/PSy59mOBgzGIzY39+j2Zjhjdff5J1Ll3j66ad1I4y+fu3u7rKyegbXDRiPI4rlooZ+oQcoZp61qq/tumBWRi5fkyLP9Z3kwyvth3+UuYjQdx/bsk7ub/rzjwoUfQ8wDEMTiY2coZATtMm0vO/y5cu88tmf5cKFiziOzrd1XY+F1oImyGcayKRf3yTNIIx07JcyFEqlTMNhDqEC13Vzirr2k4UTTQrP0ozJZJJL82R+v0q0fioFz/HY3d2hVq2xu7uLbZsUiiXCKMR1HJozDUAPhLbub3JBmvSzmKxeolgs69gKqcnlw+GIl19+mWazoRt694jhcMTo0KXZbOD7Hp1OG9vWIDYhBMVCifF4guu6BEGBVmspVyMdEYahHpJaJqPRmH5/QK/fw3Ec9g/2qdUqbO/sEAQFLr1zif39feYX5ul2+nzpi1/i1s2bXP3gGucvPs1wMqXT63Lm1BpZlubRanpbWAgKlMrVE9Dh4wVocniM9dYHZP/0H6OqJTIEtu2QphHXr14jiWMuXLhAnCZk8sfbtH5cffKoeWX0HbL7W8jlVn5cSUQ0Yv/BTb7+R7/Lpfc2eeVv/goLC0tMHnRxR0Wy4JhyxSFNE8Bg/d42xUKJjCmua+L6VcajCUmqo8+kkCRJxjQUCJngOiathSqlgoNtKZJ4gkDRrJeRMkQITSEm0cNRPQzOt/tCq7p0rZdvoxB5pneG5TocHY04Ohoi5f/L3psFWXbf932fs69333qd7unu2VcAAxCgAIqbJVEkJSuknEjWYsdJlStJpcpVeUjl0S95SZXlqBK5yqWSZElm2Y4pgNRCAAS4gCA5AwIYzGD27pnpbXrvvus59+x5+J9uDECABClZiUv+V90Cpuece27fOcvv9/tuMrZjAhGGIVhh+88M8QxOURWZLN3X0CYksYhUsUxXGAzGw1wqlPH2tdscmnWJY4WNBwF+r8jC/DYTU1NUq2UaNeFzoRs67XabI7Nz+J7P0uISpWIJ2ylg2SZ7nS6H546RJCGqlCCnIaokTIYSSUO3imTIB/r37EBZIIZAIt0B4jQjQyaNBsJ8Kg0oWDrIKqVqnTCTMXWFMIooFItMTkzg9buoisTh2RmajRYZ0Ov10XSDdrdHmqrYjsvO3h7VepNvf/sSvf6Q0fFx5u/c5/5SjyPHZri/vMb2rkelNsmt+Xu09wLiLYfThx9jVj/OSflRZFVh5xfvsju1wYkzJ9je3qLVatH3Bxw+fJySW+Mb33gZQ8s4eXKCpLdOp7OJoqjUR6fY7KV8+he/SCYJDwEtH0ZmQCq9vx/Ne5vXdFMi7QN2jjw+VHv/tM3rPp34vdv9tM3rh9n/4c/xMOL6w0ay/6V5/aH1cFTOe7nh++vg4frQNh+mcX3nvT5o2x9Ngfkgt633dxt+v+O+e737M3+QXvUnR3j3J/8/fIx3L1lVkCpF0j/9KhuNIo5tC4dUJJIM0uSdk1hMlcTntGwHx7aQFYW93TaVao2d3TaKovH6pYvMHZnj8PRh7t69i6ZpXLx0kfHJKba2N2k06oRRxM7uHpZpUW3UKLoupikQDbdQRNF1FGBra4eF+bvU63UmJicYGWkiy3Dp0iUGA49ez8O2RVakUugKY4Z+WTQDipJPonVs06DREJEBtVqd4dCjUHCR5YwHDx6InEdF5esvfp1Tp06jaQqO4/L2229z8fuXGB8fp73XRrdMXvn2K0wemoQsY2npPlsb6zRGxlBUGbIMz/fY3d7hlVe+Q7lYwrBMHMfBcVxkSeXSpddYWVlhZnYGTdNYXllmbnYO8mZ43zFxd2cHx3Up5UX33t4OhUJRhLMbwtpe13RKxSpnz51jdLSFLEskqTDrieOEQa+PaRioqoyua3iDAYZmIMkKpmFSrlQoVyroliko1K4Lkszm5hZLy8scP3EC27GJkpDQH5CmCVEsEUQJcRTS6Q84NHWI4dCjVqtiOzbbe3sUSmVe+/7rtFrCUr/X7eM4Be4sXqE5vQW+gjacQLu1wcKIzFpZpjlSp9vt4joFtrd3STMNeesibu0QSSYfNEOmaaKqKr4/FBmd+X3A8zxc1xWGTnmxZtt23vTbrK2tC2dJTafTaaNpArkUZlyl3IVZptfrkySxiJVRFQb9AYau43ueiBBSxTE1VUORhaFYsVSk0+mWYfACAAAgAElEQVSK81BVMQxBPxNOsSpJCq5jUiwU0VSVOE7Y3dmhUHDRDSOPc0iJYxF91Ov1sS2b9Y11keVn2/j+UCAnCsK0JhOmNv1+L4/8KZFlMUEQUiwWAdFsZFnGYOCxtbUpoqAEtxXbduh192g0myyvrFGpCjQzCn28QYDt2OiqjNK9Sd84Qvnkr1KqCBOh5eUVkZ+qqPzFX/wlr7/+BqfPnKFeaxBFCYqqMjE5mTdJMu12V5iV6QYTExPiOun3aY2MsLuzTaVawR/6ZKTsvv779Fdew2idR5VlWq0WzVYLx7Zo1OuUSmU8z8PQDZIkYWtzi4mxcZErGAr0ZH1tjUazhdRbxytOU6w32I+YUjWDV791kaef/AiP3l1HPTlHAli2gz8U1NpSsYRhGFQrFcrlMpqu8eyzz7K8ssqxY8cxDJ252cOYloGiqXnjJSir+/dfSYIkFbEu+Q8FvQqRaXjq5CmRh6wb9Ho9Ll9+g4mJSSrVCmPj41SqJfr9Dpoi4fkB5Uqd3//9P+bK1WucP3cOzdg3YhJrOBzmebwCJY3CKEclYyQpQ5Ekojg+aFqRyK+Td1CC/YHnxvo6Tm6oNBh4JIlw0hYNraDJZVl2gORFUYRt26yvrRNFMSOtlnj/nHK2byrV73XZz+weDkMkWRUmVKmEqsooCly/8TbjY+OkmSjyRdQT72QuyyKf+Q//4N/QaDZp1JtIskS32+WP/vCPefvta5w/f56trU2azSaKorC4eI80TSiXymiGjqoqIqpKN6hmMqXdDsOjk6ApGIZNmqTESczm5iaWZWCYOvLqBpoXkLVCVE3h3vU209NTyJIY7HY6PUHbBtbWHtDv9zh58iQZMpqqYpgGjz76CK2Rhrg3RBmeJ55DMzOzbG5uoigS1VpZyAWGIdPT01SrVUGHjsD3PZ568ime+MiTKJpKkqVEcUipVBJSAITJ1fLyMrVqhdX1Dcrl8sGgb3Nzk831DeoX3yb9779I/9wxNF0X++bDrNGREV599VXOnDmDpMiCrfiwQc2PKXzfW+vsN6/SC/8XXLmN8svPEMsapCnh5i0Wr38Xr7fBidOf5OVXX+f6jVuUuy6mb9JjBUmKSeKUYBizvrYjWDUFHUlOCWNx7uq6AZJGtzsky3QM1cAyVeJogK6Kc9/rD5GRsDSVJBqgSAlZEqHIEsNhhiTLxKlgR/legKJopFk+AM6EMVmSJAdD4SBK6HQCrlxdRDfAdgxUNSMM4wMX7/06TNd1kjjKhz0io1mWJSRkhr6DLKuoGqga6KZKueJgWy4Pljos399GljXanW10XWbo96k1xH3z4qXv8/jjTyDlGvWR0VHa7TbNZl0YqaUSrbEpDFNHV4R8JQw7xElIlqooVil/fkr5/UnQmdNAIb2nkG1raD0XZaGKtTmGvTeD2Z7B7szh9ufQNxukiwbmmo26aqM/cNBWLJQVE3ungo2LFRVQuwaFsMRs9RiltM6h4hGq8ijj9iyPFj5OKzjKmcpHeaTxDM3oGLPmBR4deQa3Pc1YepoThScYiWc4WXic49bj2HKZ1myTYbPLX0R/SPXXTeSSzNe//jKbm5uoqsKlS5e4v7jI0dlZ1teWuPjK86wtXcdSB3R3VgCJQuMQv/Arv87Tf++XKNabmJaSM1bE/TqTJZClA8RcPri/PlRD58Od6I9s0usa2kfEMyAj+6Hr5ieVI/609f973/fh//9xn+O96OzDvc+7/07+gPf5m21efzhw6L+sv/X1fk5i/1+ug0b8cx+Hf/57NFa3GTg5XU/VkFUVWVIJowBJEgVImsY5/YiDIujKlSucO/8ItXqDpaVlOh2RFyhJEuPj4+xs7/CZz3yG3U4fyzZBhiQShYhbKADkdFqR5Wk6LjLgddo4jsOxY8ewbZv+oIskSXi+x2OPPYaiaGiagTfw+Pa3v82Tn6sIJ9gkERb6ioyiyNy/f5eZqWmyjDwuxUTTVeI4IEliqrXKgUPvEx95Al3XWV5eRZY17t69z9bWFlmaEichYRRw4YkLXLlyhSOzs0yMT/Ktb36DielZHNsmsSwsy6Sv9fmvvvgFDM3k1vxNjh49KhzzVJXXX3+dp59+hju35zl+/BhksLKyjO/7zB2ZI45CNFWh1WoiyQopQpspdL4Rvj8U1N5SRWjVkgRdU1B1QQFMkpTVlQeMjY6jFhXCKECWhIGKazsix1MzyTKEplrJUMggN5lJ05Q7d+Z59NFHWVtbE+60hoVmWLz5+ht87JOfIUxgdnaGy29dpVCwmb9zgwsXHiOOQopukSAM2dpexw9Cev0Bly5d4vixo5x40iYOJEgz2POQtnoov/0Mu7ubQl8iSQx6A3rtLqFuUHRmYLCB5EwyHA7RdZ319XVarRblktCJxnHM3t4ejXqDJE0xDNHcDodDtra2GRsfR8njjqTcuTeOYxzHIcsybNsmiiOyNCXJUjRN0G0LkgRZShgEpKaIPoqi8J1CXpFJ0pRarYYsKxSKRZI0RZKEfkoMUARKtLe7jW0Ll2TRrHTzAYM4Tweeh2UKhCQMI7rdHhIS9Xr9IKbHtIQz8tbuFiMjo6SxcFd17H0quEyv22dycjKn0WWEYYimqsiShGWZ5I/UHBGIcd0iIDHMG0fIUFSdYslg6PtovbdJK+eoHPo0cRyjyApLi0t84uOfYHFxEd8f0ml3mJ2dxSm4mKYwebIsEzIRpVXaiCjLNXqGMMsaDoe4BZto6LN47x6WY7G7s0ulVhF0NcNEUWTeevMtGvW6MBKTZRzTpNVqcuP6LY4dO4rjOHh9j6EXsLWxgVso8f3vX6I50sL3PU6cPEmmqDRtSOKQLMtoNFoEIShyQqlVoz3ewF7ZRJ4aJwx9lhcXOXP6DLVKlUG/j+lYbG5sirziYpFarY7n9xgfG0OREnrdLlA4KFLlLEPep1lmCJOvvCjxfR/bstF0Ef2AlJEkEXu7exiGyM3t9brMzM6KGCcJHMci8D0KbpEwSbnwxOMUCgWho85ptPv3ctM03zF2UhR0wzigQQbDAMkE3bAgS8Q5IEEqC31umsSEwb7LtU+r1cplJ+K6KRYLOfPmocInb5yz7J0s8XPnzrG1vUOcRJCQM1PE5nEcC1MrXaDBSRIIJo8k3O+TJCVLY06fPk2SCL+GYBi8Y0KlCkpjGAUossrY2DiVco3l5RUmD40TRSGGbjIYDEjimFqtTrvdpl6vc3h6mna7TRgN8TpD3IKL6xa4O7/Aoc0dkEB2bcJum73dDmEYUK1W8H2fsdFRkDIcP4QgZhCHaKrGk08+TpZFrK1vUy6XqFerLC3dR9eF+3K5WGTp/j2mp6cFyyMKSNKQoe9hWgY7Ox2+9rWvUa1WeOqjT5IkEY3GGIP+gFKpjCylbG1u0e12OXrsCMWKw0effpr27g5kGVEYokgZ9VrlwGn6wYM1+r0uJ08cJUkiwUhSRc6z53mYhknh9jUyQyf54s9hyAq3b99mdGyCSqVGloLfF1KL/2RLCskkjUyCpfkr3L/5GkHYRS9knDp1jMOzJ2jdG8Hf8rHtApqig5SSpgFzR6aRZZVOZ4tiySbLfArFMlGcMr+wxKGJwxRLVbxBF88fgmSjmyppIqGZLigSwzjAdkqEfh/NEAZzumkShAM0VSFKMhRVo9vro+r5eZef+4oqBjhxHCPJMiOjDZ6ybYpFG1mOCMM+hm4dDGyyLMuZOOJaEkZu4vpMEnGPvvSDt5icqDE27mKaCsGwS7lkoqk2rVZEs2lRqlns7CrcvrPE9199jS/+egvPG7C7vUMQ+EiSgqYayIoGpCSxTxjF+EHA7TsLHJsdI04jssADpY+mSfR3N1CdFla1RiapBy1H1pHILmlQS5E/EpKlGdqnUrKZgPaDWxhKzDe++ocUrQxDd4gyE8WsIznjnD73BP/id3+f3/jN32bcbRK8lZBlCr12l6gQEoYxaSXku5cuMjszh4TE737vf6dv7bF47y6ua/Ozn/gYX/6z53Bsi3/yT/4B/+ZP/4Dh0OGTn/w0jzx2gedf/AYnL5zg73/+M/S2N2ner7O3t8ehyQqf/OQn2dvbI0lFNNHi3WX2tleJhjvMHrLpuAXMTOQBl2oVfu5zX+DMhY8imzZRGiEhHXwP6UNl+n7Dup/D/v+XGv7vwvrPFnn9Uev90NgPs89fB3l9v+PCj0de9z/fj25ef7LP9Ndd72i0JMKPPk7hX/975tWUQrmMZTsMQ3Exb6xvUig4goamCDdd09BJE9HIzhyeQdN1llZWGRkdZWb6EKqqsry8zOjIKKZp0u/1CeOIkdEWkpSRxBHrGxui2FUVAm+ArqrYtoVhWii6gZ4XVpZtEycxf/7nX6VcKbG7s02jMYo3GNLe6+A4BWYOH8aUa6ReAdsokCYJl75/kbGREcIgpFgUWXc3b95ibHSUNIvodPbwff8g89PzfGRZoVyu8Gdffo4gCCiXS/zsz34Mx7Gp16ts7e5QrpSp1ar4A4+lxSUmxycpFkvsI6e6oQsHZNMkShImxse4eeMWxWKJjY1Nms0W58+fo1qtEMcJtXqNYDhkbHyMJIlYW3uA44pcREVRRWC8qmLoysEkrlQq0e/30DSdW7duoWoKmqYK2rOqEwYJzz77FRbv3+PIkZkD98RgGLC9tcPdu0tMTExw//59SpUSKaKg1RSTNE1ptUYwLAPTstANnUxRsQ0Dw7AwnSKSbrC8co8zp08ShUOWl+6yubHG+toGE4emcdwiR4/PsDB/j+lDRzh+7DjllopUXiFp7yFJMtqrEXziBMVPnGV0dIy9nQ1Mw+DyG1c4d+YcV69cpVQsQu82dnUaRVHY2hJ0IN/3sQ1RqEpIDIMhQRigahpRHLG7vU2326FQKGIYQrcURhGmZVKpVA8chIe+T5plBIEvYoUUQasWulBBsxR6O4Fs3V1YIAyCg4zZKIqQJJF/KskCvY/TWDgQZrmFfhKTpiF2Hjuzt7eHY9uUSgJFVzVN5AnnxgcgiZxT2xSoGRDkGtvdvR1K5SKaotHrDvAG/RxRreSomYKm60RRzIMHDyiVSmQZmKZFsVQgzRLeZa6QU4ibIw0yBI261+5gOwVkfxk0B3nq86iqxlee+yqmaXLixEmSNKXX7TE6OkprZISzZ8+iaApZKiFLCr7ncX/xPnt7O0xd9fDvrLNUzqjVa1iWjqxkVAoVbt+6xczsLLKiCHdxRSbbvSkkB/Ikjm1TLJXRdZ1GrU6302NsbJy//Iu/QlFUqtU6Y6NjOWPBZO7IHK1Wi1KpxPLyMtWKC5HPdupQKlXQtCJpZnD8yBQnT56AN66jSApZqcTObpsX/+rPqZRLrK4uo+oqSBmmbdKqj7D64AHzd+epVIocOXqYdmebYtHCMAskafoQNXOfNizyXLM0AcT3kqag5fRdXRe6N93QCEOfn/noz9Bo1HPmhQ9ygqrKxGGEqurIisHY+ASe12PQ38UtiGxnKTfX2keGNFXNjXmyHFXJ2NzcoFQskmYKWSYMtAQJUkZCRKjtF9xRLNCnJI6JooRCwT14bu6DNPu/K/lxwjBEQji6ugUXVZXpD3qYho4wKckEOi2nqIqUD20UZEVQM0E5MNoBiCKhDxz0+1x+802ajeZBlqusSPR6fc6ePYdpWBRz3bPr2pw+/QitZlM40g8G+cA1YWHhNjMzhzEtkziJsCwbz/couBbSi9/DrJbJDo8DEpZV5uWXX+Tw4cMUCgUMU+PWrVtUwwRFltnRdTSKqJLBzZvXmZ4+RBTFXHvrbebmZmg2a6w9eEAUBhi6hqzpSHKGoslAyjDwKBRdbt24y635m1SrVc6fP8fU1DSSBJZtEEUCbXzxhRfRDZ3JyUmiTDjC/8kf/zGqImOZBu29bWrVCp4fkiYZf/onX6Lb7TA20qS9u4NdLB1IfdIsRV1ex7p1j83f+9+4tbLM7/zOv+TJp56i0WwRhhFZGuENBmxsbHDkyJEDnxhRJnw45PW9ax95lde/Lv77K48TySZyGrP8g79Aj3dwyjZv39zjIx/7FFGc0b/cp5RUaMyYvH3lFr1en2arguMI7XixVCSJEzrtHXHvVA1UrcTXv/E9ev0MyS3wre+8yaGZk/SHUG1Oc+3OGiNT59jY2cNwXHSjiB9kZJrO5kYH07TEkMJ1CMKAXt+j2aznQxuN/UxwSRJyHUM3kGSwbQOJBFlKsQyDJGcIyHl81X4TK+4DWa47F3nPpDJqoUhrpIGmSCiyipob/WVSH03WsA0Hb+Aho9DvJkRBxOtvvU2tXuPEieMYholpCHr9MAgol11MQ0ZVJAzDotvtY5kWS0tr1JoNZD0kCoZosYLhlNE1DTmPn0qXFdIfGCj/XQf1v/aQ5yLkuRRaKZgSktOiNDqBXjEYZD6+t4pKG8lbonX0NIZrMnX8BEbJQW3obBU3sE6Y/GD1m/zen/0fSKM9yqctPvLFs4w+XafxeAl71OJX/5t/wF8+/1fsdtt89BMf5/TZR5g5Msff+4WP8ctf/Puce+xxPvtLHyEloh8lLK7c5+mPPcbVty7zyJnHeP7lFzh65Dg/eO11zpw5Q7Va4Utf+rdMjc7w5hsvsHD7FabHdKL+LkXV4sT5Jzh25gKTxx7FLjVI5RBTD8kywZJJc9+CLJdTpHF6ULv/MA13/zwX+6pPxPlf/PB185Mir+96o59y/XUa7R/9eT9Ikvh3mDb8QVE5P05s/GGow++cQO//enj//WnLhxE5/7jm9WG6cRiGB9EC7w74lt/1IncUe5gi/dOsD6IKPPxzdbzE8OYy7rUFvFYRVRXUxJ4f89WvfpXJsQkM1cAwTPGwkNQDGlySJURJRL1eE3mwUsZgMMR2inz5y89y6/ZtPvLkEwRDH3/gUSlXUFWdrY0dvvvdi8zNzrKyvMpg4FOv1/F6XTpbG/hhgGUJtCoKA+7fX2Tm8CyTk9OCuqlIWJaGbsikaUSWgqkXiKKYjIzDhw+zu7uHpmvYpkaaREwdGieMfJI4RkZG0Up861uvcHhmBrdQIIojVM3gkcfOMzU9zeTkpMjtDAMkWcIxHUgyhl6AZTv84LU32Wv30EjzrD4VTdUPkNIkTbh+5SrlcgnHsSiWXUZGm6RSgpSbqvieL5quMCQIfVy7QK/voRkOKRJpFLP1YEU8pEwL0zBJ4wRd1cjSlHKpQhInbG5sEkcRuqlRLLscOzHLaKuVa1gNtrc6GKbLwAuZGG/kdCtd6DgVCW/QI/S7uI5Ju92h3+1RKVVBhiweIisyTrHI6uoKWRpSrzVQNQlv6HNoaoZO10PKNLbWt3FNm9XlBeRMxjR17i/dYajepyCbhME6WZZivhKz8Y8vsLW3R7FQZGe3y+3bC5w8dQqnYDM+3sJ0XKSt18icUQTV1WZjY4MkibEKLoqmIksKg4FHv9dndWUZRZapNiqUq1UMW8QtZXGCJkv4+b/L5sYGqqqyubEpKMieh+M4OeVIRVUUYVKTUwL1vAEul0uUKmXiGEzLRlU0er0eEqmIO0li2nt7mLpxoO1TVY2B5+M6NpKkEAxDlpdXqDcEtavXHWDoBsGBHlHGLTgoioFpavjDAY7jIEkKkoSgHUcJQ180QLVGjQxQFI1ut4OuiaZoZ2eXcrnGgweb6HJIlgrk1PO83PwqQ5EVNjfWsQwLRVKJwxhZ1lDSAVlnHmZ+DUk2GHQ7PFhdRjF0RkZavPaDS5w7f5aMHGGWZXY3NzEtnaHv8Yd/9EcsLNzlsQtPUFrsYRg63myRwPfodvusrW0R+gmqrmEXXGzHIA1DwkGPZPcGZBnuxOPMLyxQLhWJwgBFF47Siqqy124TJwm9fp/bd+5w8uSJnHGwxve+9z3OnjnDzs4WUW+XcqPFawsLnJxuIkkWstlgt9smiBOsjod+c4FwpI7rOpw//ySabnDj5nUcx8K1XfFv3G9TLhU4dfwYRbfA+vomrfEpMsUg8GMWF+/iWIZAFTMOslAFOKqQZRLPPfcVLMuiXHQP7ulpJr4/Q9dZ3+3x5We/wrkzZ0izTLBIJJmhFwhDHUkmQ+Jb3/wWc7NHCIMEx3LodnsCmdRVEhJ6ntCMplkqcAQJQZXVRORJr9sjDEPhSC1BmkW5xl7Q0JXcHEmSJNJIZmH+DoYmU3ANkAVpIk1jFEU45Gf5uS8r4pWREkUJ29t7lMoVPG8gYpcy0QT0ev087kYW7yOpZGmceweIrOogGKDqFppmUqs10U0HAY+Cqqjouo7n91E1BUmRCONYxPOQUa5WkTUNt+jiWDqWpeMUXQzToNPpsrqyTHevTRQOqXQT5FsL6LUK80mIohjomsaJcydJyTBdF82wcAoVrHYfWVJ5/d4ureo4kiTh2C6a6mDoDuVKmUKxxNLSKr3+gOMnhMGXJIWsrt6lUi6gKzaddptBv83hw3O4TpHV1QecPXeCJA1ZWlyh3elTrdbxfJ8zZ8/QaDZEhZylbK+vUy44HJmbpVqvUq7XyWQZVdYY9D0a9Qa+52NbDqNjE6i6iTBIT9i5coPKGzf5t888SuOxU5Dq/Mvf+df8xm/+txSKFnudZWpuncXlZU49ch7FNkDOUCShd/xxNdD71R0A2UBCamRIb78MgPLZz5JlPdTYpr/xgJe/8e/YfBCw1lF5sPKAX/j5TxEPApqdIwzMe0wdGmVktMVuu8dutwNyhkpKyXVRdBXdEDmusmRjuS7be5scn51AV0wq5SqyIty0TdOiUHCpVhvIikOCiWoWWd/oc/HyEnfurTM2fojhMKLkFDA1hSAIcGxXDD5NiyhJSTOVDJUEUDSBxpIpuet3SoxOrpYUzIQEsjhFtwqkWYaiClZFkqbomobjyKhyhCSlIEGUR03JmZLnt8fIioZlupSKDuWizuJGH9upM334CNs7a9imgq7K/ODSW3jDIfXGOGEk3JM1GQZem0LBplCwCby+6M7SjP5gjyD0MUwXAp3ssoH5P/ioZxNBlc0EjViWJBRJwtATUinFqYxTGz2KZZUxDJtBv4O/s8r3vnOJOCkwOTlNlHS4fu079DcCLNvi5z7zGZ545hPcWljk4g+uMjs7iT/w+YM/+H3OP/oIn//lX+KZn32Gv/zLL3HhifP8h//4/3Do8DFGxqaYnB7l3//Z17jw5EeZnZvkmaefZGt7l9def5Mjp47yyNmneP3NG7x66S0uX3mLs6cO0arJnDvh48o99lZX6O4OGQQplfEJRs98mhPnn+DMuTPoWh4LlmlksgIP1+GCiP8us6aHa2dZlpEUQblOLokhjfpkApLwupCQEfnZ+dQv++Deg0zK9a3SwbE/KArnw1x7798sH1gf5zpe6eB4+yatD/cgD2/zw68fvtbzP73rffdfiqL83W1eH14/isf9o5q1D/O+77f/j7thfxjk9b3H2acg/KhjfPA05m92JVmM+/QzyP/qT+mFAdTKGJZLmMCJ48exDENM0clIEboeMb3P6HY6aJqImjBNi7W1NSzTxjRtej1RuM7OzhDHMUEQ4HkDsgwsy6FULNHp7HL06FHKlTKyKoEkCwOh3NlPUwWSWa83cF33gPrr+z5ZlopGxrLI0pR+v8f6+hrFYoHXX38d13Gp1xvIB/TSNsVCkfX1DaGZVFUOT0+xtbWOJEnYloNju0gKzN+5g+sIreGli6+xs7NDvVbn/v373Lx1g0a9QZomHDt+hEKxQKlcRlFVut0uaZayvb2DoRuUigXq9bpwDPU91tfXKZdKhEGEYVhIkow38BgM+tTrNba2tqnV6sKKPctEQVYS9M5Ou4NuGCwvLVOr1YnCCM/zeemlr1OtVjl8WCCUwyAgTVOq5SpxnLK9tYPjuHiezyuvfJtWs0ZrZCSnLgmHRsdxUWQp/5nEwPMoFUu5Hk5o31RVo1AoYtuOCE2PBUW5vdfh6NGjDH0f3/eQAMc1KZaquIUiVhEqMz2UBy6p1EbaiVCMKfpPTjPoD+h1OlRrNVZXVyiXy0gSmIbB4so6bniXVDZ5sLGDYegUCy5GTkFNMzEwGAw8Yby0tUmr1cS0RCaeqgpjKknK7f5tG0WRcV1XaII9j1aries6wuHXtNB1XaDessh0zRCh41qe4ypMcvKog/z8DyORyRuGEY7joOl6/r3l1/FD8SO9Xp9+vy/QqX4vN8sQqG2aimY3TQRC2ut1kMhEVIgk53Rl0DSdNBFImW4YSLJwwzR1Hd3QkCSJQqGIomosL4uG3rQcNN3Im2CBBEKGaYvs2evXrxPFMetrKzTkFcLRXyRUKnS7XSRJZjgcMjN3BFVVabZaJEnM1atXmZqaJAwDolBkCYOErCjs7u3x9M88jXFrizRO8OYEvXFjcxPTspienqJUKaHqCmmaoKgKCwsLONEqumFwfTVlbm6OWq2ObTuYls7u7g6rqyscmjyELEk0G00ufv8i7XaHOE7x/aHQhSPo44E3oJps8b3VAYfGWtjFEZ5/+Xt89c//nAsXLiCHEcaVmwSj1bwZU1BVmaNH59A0jWqlSr/vYVkmpVKJUqlCsVjELbhYtsX6xjovPv91rl59C0M3GBkbEw2rIr5bSRKU/8uXL7O29oALFy6g6xqqph0MJgF8f0ilVuPo3Fx+7psgS0Rxgpvr0SVZIU0zms0GtmlRrRdI0ghdU4W5XJIho2KoBnEQoOYGLIqsoapG7tYKet7IioJM6FUlhOnZwTMUMT9fW9tkfv4mZ06fot3ZJY2TA63zfhRblpt/yXlsjpQXetVKjTAMybIULUd04zhC13U03WA4HKJqquhJFUVEd8mi0QDh/i3LQoO2r60ll6sMh4E4z2TBitBUTZj1RBHtdhuAMBgSBj5ev8fuXp9ioUKaQrFQptkcoVFvET73PHKlhKZp7JSE2/b169fRdDmPp+oiyzKGpqNv79Hv9/mrN1/nqY8+QZJE2LaLpuoMBgMG/R4LC3dotuq4BVdkP6sqcZxRqVSIwpQ0USiVyui6Smuoz18AACAASURBVJpJTExMsbm5Sb1WJopCRloT1Gt14jji6y++yLW3r3H27FlkSWY49FBUmdmZGVRVIU4TZEVcl/1un9WVFWRJplqrUK6UhYZY04TpYhRhfPM1nh0r8XLs8w9/69eIwpRTp84zNjGGrEj4wz6O7nDptdc4/+gjZBJI+bM+48PXQu/dTj6cIh9Oyb76TQCUz3+SRAqQU4N7V15l+f5rjI1Oc2OxjVMoUSzXubN4k6nNR9lT56nWxH30wWqXu/PrHDtynCDaJUn6DIMCIJGlMt/81veYnZvi8Ow4e3tbzMzMkGYJ2zvrKIqMaZlsrLffuUekGY4tnM2brTEsU2PQ79BqNsiylDjN2OsMSFExTRtJkQSFVlPRNAVVk3KarnYQJ5NmAbrhoMgiWieOk7yByfCGgYj8SYUeVsTziASHNJdkCOfwGLIMGXG+B2EAUkaSxcRpjG4q3Lm7x+52l+EwZGd7k7Gxcdq7PQ5NHaZcqSDLMktLK9y6eZNyqUytVkGRVYLhAMvIWH+wTBqGyKpCGMYYdhF5oYRcVJA/NxARLfm96WHgRZGFD4qi6WiaxkijTrlUZGN9k6W1m8IUK4wouSaKYjP0VUZGp3mwuo4saxQLJb75zW/iuqIWOnr0KIOBT6PR4LnnnuP4sZNU6gWe+djH+eznfhnfD1jfXEeSZbbWN4WHiGmjGyayovIv/s/f5Wc/8SmuXX2LcDjk2S//Ka6R8PiZSbLhDvduXaPbHiBLJig2jYlpzjz+FMfOPMHo6KgY2Om5d4Akfejz/OFGdj/+5qB5zTWv0k8x8Plpt//w+78/gPXXPeaH2fe/NK8f4ucPvz4ISf0w+3+Y4x185p+geT3QR+W0kh91jL+t5jXOIsJIwf3FT2P+33/CopbSmJgCSeYrzz3L6dOnGPgehmnkhhsQhiKHSzcE0lipVPH9IXESsr21TaPZoFqtsLO9DRlUqxUKhQKmabCwcJednT2iKGbu6DQ3b1yn3engFotYjguqipLT7NI0ZW+vzdWr1ygWS5TLJa5evUK32yWOhZmCaRhk7jaK6TFWnRE3f0lhY22DsZFRtna2RWaqJOVOsxmraw8YG6uTZSnlUolLFy8xOTHJ3YW7mKZKFAZYloksKZw4forBIMA0dcbGxzk0OYmsSNQbFYolF8O2kfIIFxFNk0GacuXyZco1YUazsbFBu70naK+ez+bGDu12h6997QWKxSKjo2Nsbm1SLJaYn59HVVQKrsOdO7fZ2toS1OeBR5qmNJtNJElhZ2cXWVY5fvw4bsFlOBxi2qKxE3pY2N7ZFkMAXaPT6XDk6FGaIzUURRSwYRCxMD9/gBbKsorjFCiVygduzQJptul2eriFAoosGq1ep0+1UmPQH2AaBrV6lcWl++iWSqVaodsdcOPGdWbPugx7exi9ClK3hPlCh8FvP4k72cJxbNIspdVsEEUhaZqwsbmJosiUSiVibwedPuX6JEaumQyDQDT93iBHpE2QYGxsLM90FW68siyiObq9LpZt5f8s2cG+5bLQtWUPpRl2ul22d7YpFIokcYyuiWNqqsiQlRAZk6oi4/s+pWKRUlHExgwGXl7cqARBIOaPeSMcRiGGaWLoBoauY+WGQEj7mbE6i4vLLCwsMDY2JhxX01g06YLpKTSNsWg2NM1gc3OTbq+H5wUsLq3gDboUS8U8J1Q0Da7rEkQRyAqmZR80HlmWESfi/VVVywtumYlCj9CcpHL059E0jTfeeAPfD9jc2mJ0bIxer0ev22Mw6HP6zEmyLCGOA25cv8nk1BS1apVmq0WhWKTX6zGyLnTC8ekRSqUitXqdMIyI05AoCQnCAElW6PcGhFFCiQcMh0NGjn+CUrnCxYsXcV2HhTtv06zXqVXKdNsdZg/PcOvmLQbdAeOHphgdG2N2bpZmq4UkS8LVudJA3btDMH6OJAxoTMwxMn2U9k6Hre0t5sZGMV54FY5OgSKKdc/rHbiOttsdojAiTlIcx6Xb7fHKK69w48YNZmZnCMMwj92KefzC4+/kaWapQLxyKm6j0eDs2bMiPkOSxGADMahDklE1A0gxDI04DHPDF+G2vB9Ts6/vrpTLqIpKlAYkaUKSpni9HnEYoMsSlq4ipRFkyQFlMQhjFFU/MHRTc/O9LE0Ih0M0wxRofN547ses6YbOiRPH2NvdIgoCOnt7SJmEZloMh8EBY2hff5umIit2X4ctSRKarh2gFIJSqR98L6KYSvJsUgOhvxUNtywLGjRwkIEIGcNhyKVLr6GpmnAVT1I0Oc/7VkTT+u++9CWiIGDm8BSqLNHtR5RLZXRNxxt4bKyvs3n5KpX5ZfyZUewkY6doUK1W2Nra4rln/4xHzp3HtW3BFujs4fQ8shSO/vwpMsUj9LK8UZYE20eKKZaKIm5KF/KFnd0tVMVg9cEKpWIZVbHwhz5pkvDG5ct0Oz0uXrzEYxfOUy6Xmb9zj92dHUzD5MjcHOfOniWOYnRNYzDoMBh0KZVLqJqKmg/Wup025WKBiYlxGvU6mibTaDbY2tlCVRQxNLt8CyVJ+V/jbf7p//hPuX7tOtPTh/mHv/GbaLrBqdOnKZfLxMMhb129wvFTJ4Vz9t9A87q/DprXz32aRB4ipwZvfPur7G6+TRJLnHvms/zab/xjCpVRqs4o5flRbu69yUi9jiQp1BsuhyZrROEA16mQxjr/8Suvc/rkFFEQQpYwPlpF02Jcx8Ib+HR7bSQpo9losb25y9T0CZ5/4QV03cB1i2zt7mGYNtVyhULBZXR8HMN0MewCux2PcvUQhcoIe50ewyAgyzKG/oAwGAIRYJIkBpZVEoN3JSYOE8IwQMpEnaepaj6IV+j1u8J5P8vEgIoMKUvzKCsFb9BnP7dekjLk3IxKUnQkWSNFwg8C4kii1x2yu7vH7MxhVpZXmBg/xPzCPOMTgi1WqVTY2txmduYIQeCzsb6FpirI0pA09ik4BsQRcRSjqAXMu+MY/8sAyZHZlxHAu3WegtEBSAaZpJGkKqZTZ3zmDFevXiIZ7uKwwevf/zqnTj6B4zTY7gzxhiG3by+QZSn1RoVjx2eZmJhgZeVBbuqpc+L4KcbHx5k7Pkuv79Hu9LAckVe81+nyYHmN115/g09+6tO0O31u3p7nf/qf/xm15iinpptsPJjn2GSB7aW3iDt32V25hj/QGHgpVqnJL/zqb/Hxz36BI489RaPWQNM10bjmdxahcf3Jm9cMUZ//59a8vh/o9zd9vIf7L1X9O0Ybfnh9EOf8R9F6PwiV/UnWj+OpS5KEVC4inTuOPD3+Y9/vvU30B32m/Z89fPP4Uds/vD5sZNDB9sRkocJOHNKJPSa+cxWv0UB1XUqlEqoicswcxyYOI7IMVE3LkcQ1XnrpJY4dOY4sy5TLZRRJplAsYFsW1UqN4VBERty7d49utyOaqCPHODR5CE2VcAsFWqMjrK4+wLYFRe7ewl2SJMbQTYbBkJmZmTyb06ZYLOQolYJlmQJ5LayRqQFKWOf27Xk03WBq+jC9/oB2Z5dGo8FwOGRtbZ1Wq8nExARpIjJQPd/n6pVrBMOAE8ePYdkGxYKbZ37qRFHK7k6b7118lSNzR1AUhfmFebLcQMQPQmRZyQ1pfFzHpdfrMTc7x87eLq3WCK7rUK/ViOOYpaVFpqdmWFpcJk0SpqanGAz6jIyMYDsujWYTQxd27ZVKReglkXAckf8naB8CaarV6iwtLeIPfTzPo1avESfCcThNEUiirKAbOoViEduxkKQUzxui6SKWp9GsoaoKg8FARM7EKUgymZTlFEGZNMlod9pYpgUIk63N9W3u3b1HpVLJi9GM6ZkpSqVSfi5Uubswz+gRHX2ggKehXlkhm20gf/5Rrl+/zujYGJVqhTiOSPLomnqtxvLKCo1GgzTsIXVuIDujeN6AYDgkDEP6A4+hP6RYLOSIjQa5aUmlUiGJo4MJt2WK+IJ+r8/8/B2q1Qqu69Lv92m329iuTRwn6LqGZVk4jkscxWxubqDlU+b9RkD87ir9Xh/HsfP8zAzHdnAcmzAM0XWdjc1N9h35tJyencYJcRzj+YKmvL6+juu6wi0T0cBmWSqQmjg+iG/Y2dnDtm3iOCIMhb5NUTSCKBBOoYqK47gUXWH6ZJgGSq7301QVp+CgaeLPaSIMQxRFfK6MjIHnYRgqxmABuTBJNvpp9tptLNOm0Wyg6TrfefU7KDKcPn0Ky7QoFUv0ej0UGW7euMGg7zMzO4OqqmxsbHJnfp5ms0njwRBVUfGOVokTofE1DIPlB4tsbW7TajXxBj4vvfQSh6YOo/VuY+g6m1H9wIF5fGKCRr2M7/tEYUSrNcra2jppktFoNLBcl0LBxXFtgVIkiTiXdYOks4LTnGJxc5vRiRkwixydO8LMzGGycgHj698lblWRDI00jTFNQf8lgyiM0HWN7Z09NFVHVRS+8fLLPP7E44yMjKBpKqVSldXVFdbXNjg0NSUGjpKEKoPn+Ri6cUDZlWWJlPzaAoFoB4EYqJAJGruisjC/QBCGlCtVYbgUBGRpgqoopEmKrKp8+zuXuHTpDR579FE0TUGREhQlxfc6DIP+QZyWlB9TkqWc2ijaEVmSiCMhzVBU42DYEUeRuH/IMkmaocgSlmmiKgrlclnEhKkaqiJQ0TQVTqz7VGNdN0hzDfC+/mnfE3k/doqcppalwrhKXFsC2ep7ProuTLv2o3xEI7wfP5Swsb7B/Pw8J0+eYGtzA13XRKMlZ2iqhmu7HD16VDBACi47u21UVWZtfRXfH3Do0AT2tTsgSVgTI2hegDQzhiwrrK6u8mB1lZMnT6JIEmtra4yOtNB2OsRJjHIqRHcj1LDBzZu3mJw8hO/7qKpCuVIhDAM2t4TjqYiuUWh3dnAckZ/e6+3RGqkzOjpOsVBmanoK09KxLAsJlW+89BLNRhNJkhj6PrZts725haaRu62Le0Wn3cG1HVRVI4oCDMPA94fcun2bUqlIoeCiqQre0gNKl2+x+a/+OT/3K79EuVJifHyMJMlYXFrmt/7Rb2M7tqDWamKAMTk9RZZrlSX+erThdFMiG0jw0jfEOfD5T+HHXeIgY+vum+xuXeOVb10jMso88uhTPP/iq1TqDWrXx7mzfhPLiVB1mTTromohaRKgqQ5ZpjA9V8U0MkxTo1QsYpoGSeKjqRbfeOnb1Ko1wiDANFzCYcLWzh6QcfnyZc6cOyu8AlKBfr755ptYtousahimSyqpWFYFRTXY3tlB11V836deb2DkjWcq6UiSjmbaJGmI53cwNT3P2dbQdV0MKzJhqBXm7II4itA0jTiKCUIvl15IB+yFJE3IspgoTpAVnSwz6HQDvH7G+voejUaZQqFGs9ViZ3eL6ekpyuUSnW5fsGLy++bi/SVqtRq+P6DZGGXoDVhZuo1lSAR+nywKUTQDY3AIgwLq5wNEIG16UGe+iy6LcGVOkfPtZBIUUEwa5TFWluZRkh3qVYfm2BhXr19mZvY0Cwt3aNQbHD9+lNHRFq9+95vcv7/C888/z2//9j+i1x2wvr7J1tY2R48fwbJsBoN+Hi1YwvOGvPjCi3zhC19gfGICyzTY3t5gefEe/c4uD+5fQZMD1KQDcY+ipdJu7zEIXFLN5vSFp5g+eY76xDSpYqCRIeUDyncaV/Eb7q/93/uDanPBlhIRXQDJpVzzmjev+2LxH3W9/CQ5sB+0Hga43gvYvc/W79rvvZ/l/d77w/QcHwYM/DuHvD68Pizt929zHVBjpseRPkTj+vA+P+lx/lP+bkkWYDtFdNNmo1XgrevXOfLaDfxWncpoC93UcVybLEnodTt0uwNsy8K2bfZ297h37z6PPnYBVdVQVJk7d24hyxLzd+a5du06H3niSba2Nzl0aJKVlWVOnTpFt9vjypWrLC0vMT4+ga5rFFyXO7fv0GvvcejQBLVa9SA+xrZtQDSsaZpSLBYplYoij09VyexdFEUFr0690cQtFBkOfZ597jmeeeYZJEmgcIPBgGKxKBADKSPNZLJM4fiJk7RGWjiujSKBRMpg0EXVVMIw5P7iIhcuPIqiiuy2F158kbnZI1SrdSzbQpGFRsWybCRJwnJshmGAbugHTrX9QR/LNCm4rnAvrdeZnp6mUinjujYDr0ecSnQ6bQb9LmZOMVzf2CIKIp5//gWuXbtGtVrl+9+/yPHjxw++k0KxiOPYwjlZllheWsS2XZEBqWsH7tCKKqMo+j6cgaoqrK+voGkSumERBBFxmqHkebJpliA8aAQNMs0SgmBIlqYUbBddU9nd28UwdBzXOTC1UFUVCYnJQ+NITpvtxQ1Wr63SXO4z/Gc/R6KrrKysMDE5TkrGjWtv02w2SdKEYrHIvXv38bwh9UMnyDbfYBBk+GEmTFQME8/zabaatNt7aJpGmgrDIsMw0BSZzv/L3pvGWHaed36/933Pfvd7697au5be2aRIiou42JIoyXa8zHiD45kkngQOMMgC+EOSD0EQBAkGSOzxAMkAMbIBySAZTyx5ZI0lW7JEk5RIikuLbPZCsrvZe1XXvtz93rOffHhPlVoUSVOyY2TRAQqo6q5bdznb87zP///7dztkqc65lUIyHI6wbYtWq4lSBqORpmpWqxXiONKNXi7HPSg8KuUKQkidxxrHhGGE42hSs2VZOUhJN5xBEOic00Y9X1Ro4LhO3qQI/OGY7e1thsMhzWYTwzQplyuYlkHg+xz4RNI0QSog1SAq23YIw5g7t++gDEm1VieJ07xpFYRRwPTMDLZtae+taWDkeZ1kGYN+H8e1EQL6/d7heSSAIAgwlKGne/uXSd0pjOVfxit4BLmss1AsUq5UeOjhRzh2dJb1tTWq1Rp7u/sEfkC7s8/i4gKbm9t5hBR0Ol1OnjqFYzuYb2+QZhkbk4pKrcrKnRXSJGN6doaZySmyJMMyTRYXllCmolxrIQozTMwcYzQaMTMzQ5IkbG5uYFkub7x5joXFJaI4oVAsYjkW43GIZSuef/5ZThw/ipRa9n/hwkWOL0xSrjcpzizjVhoIu0CW+GhGSYb56kVEBlm1AllKFMU5PEjntNqO4sUXX+PbL34bJRQ/+4UvYFtW7vGUxHFKEmfs7uwBgkq1gmWbesqZN+v67Mny6UVKliaIPFZle2ubguuRJAmeW+Dcm2+ysKCL0XZnn0KpDJmWKx7Ea8RpiudVOXPmAQylEAogpttro5SgVK2yu7+H47o5XVrl/tcc7iRBZAnbW5vUKmWiRMcqBUGAVCon+2Zauity+bEykKYJhoJMy9yTOM3VDClaji4PqcBZlugJtpBkmcyl1LnfCt2ophnESaKli7ajfYC2jTK0FBT04plhSJI09+FJxfTMFMWiR9FzadSrbK7fpVatEJGRxClpDLbj8M1vPcv84gKu4+n7XBIxNz/L9s2bFF58C3X/cZRlYY4CehNFwjCm2WzRak0yNTXN5uYmzVaLXr9LBQWGIp6JyLKMlSt97rvvDBlZvshkMPZ9hsMhYRgxNTWNEBIpMlrNCQzTRApDk82JsO0CO7v7TE9PYxq6GP7zP/8m07NTnLrvPi5eusSp06fZ3tnh5q1bKFJ63R6tqSmUYbC72+b8WxeYbE5imBIyWF1dY/7IEW7euo3tOLiWovLSWwz+vd+k+rmfwik6WI5Ba6KB7Rj89Geeolor43g6dmo86GFaFsVKWcfoCQ37/utMXqN/5pC+a2D+o59G/t1nkJgIM6a3P+L8y19j+YjD5z//GdzyMVqtef7gf/hnfPeV13jm9GcoRQ1E/QaeZ2EKjzQ0MJVJTBeMIY5jkCQjJCmGYRLHAUjto3Ztl2LRpdmsQZJS8Aq0u9tYluCJJx5lMBjkjZ1Pt9vl5KnT2JZLrz8iSTNKpSpJJnG9IqZtUixVyDIDhMPIT8kyhe15GLaFaSh8v08Yjon8MY7lAJIgDPSCGhlxEuJ5BZIkxTK0+st17UO4UxTp93DgP1SOQ5Iq0swiS02uv3cLy3RpNpo4XkaxPEkYp3zysUfxCh6pgCPzs/iB5lOkSUq1UqVSKWEYMOj7mIaBY2kasWVoT34qTWrZfaiigXxSU9k/lMUjDmJgUgQJBx7KTBjYhSmm5o4ShCGjIODqu2/gD9Z578o7/Mav/BKvvPwin3zkMTa3t+gMepw/d5HHH3+cLBV0Oj2ee+45trZ2eOftd+j3e7iOw/T0FMPBiFqlRZSGjPwh5954jWtX3uLJR+7jv/1v/gs8GdAohty5cZGzr7/IYOjTi1wWTn2KL/zS3+ORz36eB554iurUDEmmMA1Lv/a8pk4F+iAXOcDuA5q19zdx99KHhcyb2aUE4/4UcQjq/vjnyd908/pxJ68f529/3NfwV20/aV75q2W/f5vbj9uI/jiP+b/zvVmmJI5M4jhjanKCM7/x65y/eJWZF19DHD0CjvbwpUlMqVggCLQ0xsynKI899jhSaJ9SEsdMTU3iODaj0Sj35lm8/PJ3CMOQhx56iH6/z5tvnGNlZZVnPv853UwMhhQ8F9dS3F25Q61Rx7TM3CdlkySaoFouVzh37k08r6DpxLbF9vY2mbePZdkEvRrXb9ykXKkgDYNT953GH41zaamgWCwRRhGj8RjbdbHtgi7OTJM4jZAGbK7cZTQaUK4UGPtDkiTl+PHj2LbNF7/4Rer1Bp/61BMUvBKvvvI6liExTT1V2G/vUygWkaaBU9DyuY31DbyCx+rKCjNT03S7XZDwpT/+EktLC6RJQq/fwfNshuOQl196iZm8MZtoNimWteTtgQce4OTJk3rqrAwqleqhLC+K9WquMrTcrlAoALph1RfcvIAGohCUNFhZuUOtXsZUGaYhcAplLMvWdFMpSFKdm0kaE0YBxWIhb/5LWJbBhXMXOHHiOFevXOHylSssLi2TCV2g7u7ucvPmLWr1CmZrjeGNiPnVmOA3R/Sjq1zfNsjSFNt1sByL6ckWcRzTnGiyvbPLuTfP8/TTT2PYNoQdzHAbszTNrVu3aTVblEtlhND5kN1uh2KpyEHGejAaUCmXGA4HeG4hJ0ZamKY8bK6zTBfsa2trVCpl4ijGtm12d3cxlMmgP8APAhzH1R6oOD4kAqdpShInJEmcS4R9kiTKp0Uqv6kJBnlG7GAwoOjqqezERANlGrqDkII0Cej3+nhe8VBJYJoKy9KxSwjY223jFQoIqb3iILh+7QblcoFytZgHomfsbG5SqWopcuCPMU2TMPAZDXUUj+t4jIZjwiglQ/Le1as0mw2y7i3CwGfTfZpqtcY7b19i/sgRbty4SaM+wcbmFhfffpv5uRrbO9uUilW2tnZpTEzoWJUkw/d92p0OxWKJDCgUCijDIHnzNp7n4Tx9giDQvthKuYJA8srL32XxyBE21tYZDHrcunWDvQHMHb0fEOzv7+F6Lvv7bXw/pFSucGRhGdOyOfu97zE7P8fK6irHlpe5eOEcp08f5/r1q0y2miwuLHDs5Cn2Ol2s3St4Jx5nEKdIr8houIfnuZrkvT/AWN0kbU2iDO0nTuIUSBkOu0iVMX/kJM1Gk6JXxDI1zEuZiiAYc+vWCtvbuxw7dpy1jTXm5mdRho6fOZjWJ4lWzyRJQhzmecFKN5RXr1xlf29f+x+3djj72qssLS6SZgmdzh6N5iQiy4jDkF6no6f4XgHbBduWGNbBtMagVJ4gwyURErdQJU0khuEihIHEICUjySXvcRRRKniEoY8wnNxq8f3CzPd9pDD0cS+ULlcFGlQjdI50muqs0jTVAKrRaISUiuGwryeEAtJEyyeTNOUgLxG+fz8zTRvDtPLJtCSOQ33PQ4HQBPfhaEiWasmxyGms9VoVIVLIEooFhyxNiIRkb3efcqlGr9fn+KkTGLbNn37l63Q7fRqNSW7evE3r8h0sqVBHZkm7fTLLIKiXae93qFRqVOsNpFI4rouQkmqtStdSmJM1Mq+jX+u4Qa/fp1Qs4fs+716+iuN4NJstSqUyUe553N7cw1Amo2HI2dfPs7q6zsb6BuVqCYFkd3cf01SMxz47O21293e578wZpmemc7uHxcLiAs1KhQwIk5QgjNhY22J3Z484iPGDAfVGk0q5hlcs02w2sSyb8cV3cNoDsn/0HyMNE2FCu7NH5A/xPJuV1VuYtolUAsfxCEZDWpOTeKWiZlvkzWua/WhF772/d0AbVjmFNUsEwowoOhWe/ZP/jYLTZXNzl++9uUGWmTz19Bf4e7/593njjRdZDh7g3I2zeE4V04hx7AQhIYltlKiQJQmWYZAlOuJEGRkJPiQJnmdh2WCYCZalSNKQickapaKrYWqAP/bp9/vs7O0zOzOPVCaeoxeA2/v7mI7JYNjTCw/SRBkuaWaSZDZkEtsT9PptsixCCTCkQGQxQkja7Q6e5xKEQU5514A8pQxsy6Hb7ZAkEYnQ9gFlmoRRQhDGWq9gVBiNEy69/S7TUxM0WyUcO8BxIza2Rty4tc+Nm+ssHTuO6XgYpkMSjeh0O4zHI7I04/atW+zv7bOzt04UwoW3zjPVqpLGY2wTOr0RTqFCce80/i/cwTuiyeIf1nelQsddSRJkFqPIECJDZilZMcMu1yk1liEr8fbZ16nZJkVvxNlXvsux5WP88b/6M1787it0RiN+/Zd/jUF/xOLiInGc8NZbF/id3/kdFmbn+Cf/+Pd49JGHeeDM/WxvbPP6q2/wUz/z0ywfXeaf/O5/SckR7K+9x6cfu4/3Lr2GP9qm391hbnGZYmOen/v1/4DHf+bfZP7EEk69QZpbxZRIUXEESjepmTzwrermVfLB09YPmkAeZr4K3Y/IIvc0rvoK9nHPk580rx/xuP8vNK8H27076YNDfT/OdiBp0l9ZHh597+T8R9m5ybfPkt1ZRy7NfeD4/uPKfT9q+1GkwO8/2f6q504TgZAphglRGhMR499/hO67N6m9/R5yeYYoC0nSjGFvSL831hmGCK69HJOTcwAAIABJREFUd43p6SnG4wFKgjSUDvdOI65eucba3Q2Gg4CHHjzDREPLeC6cP8/jjz/O0aPLeJ6NbZtcu36NUrnMe9duUCiWqDdqGMpACBMywerqClHsH3rPJien6HS6eG6JO3fWMMpdlFAwrFIsu6yt3Ka7t0d/r0MQBpRKpUOSrBRSryyTMu4NsU2HLEWDAEyTIAhZ29gmCDNmZxcwDDufAGsfpuvaNJt1TFMy0axz4dzbGIZFoVQkJcXzLEhCsijAzbNfBdCY0EWRMgxSHIa9DvedOkq/v0eURHiVGpbtsnx0GdP1qDUaeZOTovKpp7QUYRJSa1RJohDTNoiSiDRJGI/HFFxHB6KnMYZl63w6pTMllVQ6Q9FIiLOIYllnnVqGh6kcMjIGvS7aupdiKpMsFmBKbNvFH4eYykQZpg6wT0KiKMAPfcqlMhPNJqPhGCVNRDDi0sULFEtFykdG8MoQN4Tw0zZxmvC9mwFPPPUUw9GYQqGoIwSEJM1AGgalikujVcGWFoPEQ2y9jFGapFCuIU0dIZRmKX4QUC5X6PV62qMsBeM89kjnjsLt27dwHYvBcESxVEJILXvPELheAXIqcK/X19mWUUi326PT3qFaqRBHMYYy8MdjRsNhvightCw1Tul2egihKJUqjMdjhqMR49GYarWKcUAKzzSgSUo0/CzVUA4pDYbDsVYtqAMfYJZ7/vTzlsoFlJJUK1U63R6Fgstw2Ofu6h2kULiOl8vRYqqVMoPegPFoRBLHFIpFlOGQRCnb29vs7uwiBIzGQwI/oco6pAHJkV9iY7dLa2qa2ck6u9vbbK1vk8UZ83OL7O3sMjM3y+tnz/Hgg49gux6mabG5vUOpVKZUr1KfmCAlo1Kt6GgUQxHcN0F8ZpJbN68ThyEzrSb9XpteZ0ShWKRYqWB7LqVqmbn5eYq1KgXPIwp8Xn31VRYWlikWqxQKGhT0/HMvUPAKdDtdJidbbG6uY1qCqck6Rc9ie/02sd+lWjIRRpXL791ithDTUzX6UYeJwphYtHCkgSsUQknUKxdIlqYRmb5OXr3yLq1WE9NUOlO51MQfj+kPh8zMzJJmgk6ny9bmLmceOIFlS6ZmJllcWsQ0TUAikow4TLEMm9s3V3n9lTcZ9Ea0ZusIaYIwCaKUWr3O9MwUcRgyHAx4/IlPsd9u89JLL/NTT39a51UbUktWDYXjOERBBEaiZbcoskxTgpMsAZEihUkaRTimIgp9MpGRSYkSAJJMCJRpkAqBsnQhfkBI1ffDDNtyEGjvq1S5rzXLMKWeiur4D3jzjTcxlEmxWMGyHIRI9KQzU0hh4PtB7tfWknWpBEkcAno6myYaNEb+96MgwrVdMsinvkJLtg07P8YTLNskTkKCyMdyXBIMhHIwDIVAMRyP6A8HNFstHTclY2r1mgbXrG9RuXSN+MQRLM/FiBJCx2QnTXBsff3wxwNCf4wpBEXbQUhJGEVI0wKvg1QSM27RabcpFlykEvz51/6CxcVFyqUiWZYQhSEICIOIIAhwPAehQFkWV67e4JOPf5I0k5jKYuz3qZY9jh1d4OSJ05BPrkdjnVlLBnE6YDgOKVem+ed/+Efs7m/wzKefZnZ2itRQ2J6LNARp5GMqCHpd3FfeJvmP/l3MB5YwjIRw7FMrNTCiDCltSpUmu20tY7ZUwre+/FVOnz6JZVvEIo9TysThlOpHqV8+rHlF9EiETTzu8r1nv4L0wcgkr752ni/87K/iNWf5p//zP+XXfvsZCpdmGQVjKMaILMP2UoLEp+ebbLcTKmULMkUSpVi2SRQlSGGCTEniEKVgNBwSpS6vnX2X/e27FLwagZ9hOxV2dvdJRcrR5RMEgY8hJLu72xgKTCUYjIZkmQAMLLvIaBxRLFcRysAr1el2RyQROIZB4OtruBSSOM2o1qpapo9e/BXSgCwhCMZkItXqBKUgzTCUJPANRFrl+vV1mpNVhLB49523CQOfVquKZSpMQ4GAzT5cvdxnOB5x/ycn8Uopg+EAkXo4doE4SqlWaxpsaNscOXKEsT/K73VKW1CSDqZRhExR7p/C+mwPY6JKIrQq5P37EfSCkkAhpYkQxvcn8gJILVIkhucyOTPH9k6HQSCx0g3KRcXm+hXeeet1nn74Qf7yK9/gk4+f4fd/73f53Gd+ka2NffY6bY4eX+Qr//JrrK5d5xMPnmJmZp6XX/4u/9P/8o+5eesN3r3wEv/Wr32BhUmPu7evaSVTmBJkLmt7EdNHH2Hx9KN84rEncIoWKDQpGYE6IOgqRSZy9UdO05VCHV77P+g4z4SWfQspDsQj+fcZZN8n+P7g18ffPqiP+VFYN/e+5g+r/fXXhzXn2UH/zr190fvfxw8yhPjAx2j8wQ8/x0+a13z7sIb1419cP0zf/eE69496HdF/9QekF65g/Mrnf+j//7anwT/udo82HSEErusSLC8T/8W3sdt9oqkJEPoi8M//xR8hpMAwDY6fOAYC7IPpbHoAK4FqpY5je8zOzrO+dodyucLq6h0MQxGGEf1+n0qlTLvdJggCQHspl5eXUaai3+vjugUMQ3t9mq0WhrKo1Wpsb+9QrZYPVzWNSp+C55GNaji5PLRSruCPR7x+9nvU63Wq1SoIQRhH7O/v8/qrr7C9vcvExIT+DNDREq7t4PtjNjY2aDZbdLudw8ZC+xIF3W6f/f19arU6iwuLNFstwignCiYa9GMoSZoK/CDUAKQMtnd2qVSqKCum2SwzGvYolcpUahNIw0GigQ2ObWmPYpoQhzFZmmHbdu5lTSl4HhLY3+uys73HpYtvkyQptWqd1dW7WvpUKJIlCe39fQxpYCiDXreHoSRJnGDa2tu3ubmFbdsEQZRDh0yyDPb39ykUighDe17JdDHguHqKncW6wPH9gKWlJQzT4F/84R9y5MgcURRx3/33Y9o2lrWF++w+W792CrvWwXEcTj7xqziOTaHgIqXMpzUuX/3q1zhz5gy1WiUvaBW2WwLDIdl6A6M0h8wnzeRZloZpUijqZc84TiCDYrHI9vY2pVKJeqOOFFrSLaUgCkOGoyGO62og2H5HQzMME9d1sCybUqmIYSpKJQ1AStMUy7a0l1AIbt+6TblcIU0TSkU95TUNE8d19SKJoSM9MkBJyWjkc/36dRoTDSxLT/c6nS62beI4DkLoc0fk8lItxZTs7GwfTnfSLMP1PAQw0ahTrVawLItCsUgYhNSqFUAQhRGViv7+YBqsIUAJk1OT2I6N4zi0ypJsvEEw9+tUmkcoFkpIZfLcc8+ysLRMrTbBxOQkiIxOt41tmxw/cYIwiHn70tu8/vrrPPHEpwijkCDwGQ4GlEslBv0BUgjSRDcE7713jcWFRQCGgyGeV2A8HjM3N8toPAKhJ7Vbm1t48RZRf4tYeMzNzdLrdJhoTvDWW+doNltMtibZ3d3lxo0bTEzUOHb8OFEUaim2YRDFCbfurLKwfAxlepimQdE1cUREXJ8jjkLK9QX63R6uVyQyDew//TbBVINU6tiNVrNJEPiUisXDDFfbNnj38kWSOKBWL1OrlanXK8RxzERzAtu29BRTCZI4wjBShNQAKM+1OXFqmbn5KQxLN3UHU3zTNPN8Vg0gEgJqtSrKUMzOzpIdTAPQyhfLtvDHY5D6Wh1FiVZeRFHuO9USX0MpxqMhu7u7FApFDNPUftkcfiSE0MRfw0Ap8/Da5/s+htJNY0aqz/nROKdhp5DTU5VSxHHEhYsXuH37Dmfuuw8EGKZiNBoeKhCe+8vn6Ha6NBpVHfmDOFyokbnM2B/7+RSD3AKQ5raG3HcpJEkSaTJrmmDbFlGkveVaEWHoBatMe89dx6NSLmObFu39Pebnj1CpVHEdB+fZ7yLqFdy5aS3/H/uISoWkXCBNUg0xs3UT0u/3NYBLQLffw3YcRuldfW7HkziOQxCGxGHEo489xuzsDO32PmfPvk6SptTzBsJxHQxlUKvXmZmd4777zuCPBwx6I7785a/wuc9/hiwTdLpDshS2tre4ffs201NTGoLV7TMcd2k0JkkxGQcBTz/9BPVagyjO6Pe6eK6eGMZRzHg8JnnzHYwgZPSf/DukxPn+HnPz5g2mJ6c16CuOqFTLJHGIaSj+4mtf59PPfBZhKFL5/TI8+zFKmPc3r3zrvyd78Q2ypx5CWi6WEMT7t7h++U1sG04//AnK1Tn+x//1T/jt3/5t/vJbX2XpeIuF8cNE5S5REOpFZ1XkOy9corsfc+xYAy140vF4lmUB+YJN7jHXCy8GSZwwMVHEMEzeffddjh5bplIp4Dom3V6H8XjA5uYGvX6X6ZlpokQDuNI41naSVEtmw9DX7AfbpFIuEPgj0jjAcx2kEAT+kCzNUEocZrtChmE6ekiCQEkdsWNadh6lohdPO50OSgm8ok0S+SwuzDE3O31IKG93ejhOgUvnV5FyxOOPfpLuLmyujNnb8ilXPXZ3d5mb00OUnZ0d5ubmyLKUYrHIxMQEb1+8yKC3S8FNIM5gXKKYzDN68j2KlRZZGnJvhue99etHNVQyr6kzoe9hD5w+zeLSMusbQwa+wTiS3Hf//UgjxTB9kqjLqLeFQcD+7k1MuUfB69Pd2kTR5vhSg//u93+X29cu8+jDJ/jMQ0ssTBTZun2FW1ffJUsSrl+/CVLyq7/1D/kHv/0PKVQaPPbEkxi29pAnWfrBr/UeP+u97+nDpMKI77NqfuhzyU+O6HlFekuiln68IdP7//1HBbV+vN/9sN/5sNf8URPoD3+OnzSvH7H9P615PaAN39u8/k1MW/82t3tf70G4dn8c8MLmKve/9g5qpkVWKiIRBEHEqVMnmZqazE38IIWm7eoCR6/YG8qk0ZjQ00fbpFqtauJoo47nFmg2m2RAkqTU6w1u3rpFqzVJtVZjZ2ebK1euMjMzSxSF+Y054rXXzjIzPaOnUoZBlsUkaUR1OtWr435dv/Zel0KhQLFYZPnoMWr1GuT4CSEljuOwuLjA9NQ0Fy9cBKBcrWhSaxQSxwknTpzANA1KpTJXr16h1ZrEsiw8z+PPvvZn2LbN5OSkXm1N4ryuSxkOBzi2jchg7McIdDHo+2Eud1VkImBvZ5tyqYxte2RIMhSG0ARCKSWWYZDEMf5oRKFQ0hErpm6MMkAi2Nvt8eorr7K7u0ez2aQ1OcVXv/ZnbG5sMTXZ0osRmWAwGBBHCdVKlTjU5FspFUmaEccpQkps00Wg43KSJGE4GFCtVYnjPMsRwf7env4baYZrO2QI3rt2jaWlJdIkYWtrkzu3b7O0fJSNrS2mZiYxnrtEcuoId+6vURdbABgTZ5BKHEKJtNfUolwu43l6snn9+nX299sUSyVSu0l37W3EeIP2AIo5UMs0TZTUMuA0yeh2uzi2Q5wkbKyvUygW8ybR1tTfwEcpye7OLrZlEUcx9Xod29aQGCEEnU5bS9IdlyiKiKKIIAgxLRPXcRFS0O/1qVar7O3tUShor6+WGGsATZokpGnKKIdgRXHKYNhnanIShNASSCVREuIoZDgYMh7phYPAD3S+rKWjdRzX0e8zz549gO7EOeAKIRiNtRx1d3eXTkcf+zpaR/sTt7a2aDYnULnEXQhB1r5MUH+aqaOPkCQJl95+h0Zjkvm5GV597Xs88OBDSEMRRCHNVoOXX3qJo0ePIYTkxZdeYuyPefDBT2BZJnEYc+7NcywuLLK5scHe7h5JHJMeLHg4LobS0Vebm5uMx0PWtzYIw0AXWKkG8vg3/pxsuMHQmKXoeazeXaVRrzM9M8P1azdot9ssLi5SKhWpVLTPWzdlCtv1KBQrHDtxCoSezleqJaRpka6cQ8w9QJSAV2qwvrZJpVIlFArz5hpq6CMaVZRSdNptPXEUIqdV93Eci+npaVzHRhmKnZ1tGvV6DkfTPnhlCExTEYTj3JsfEwTj3O9mk6YRw1Ggs5pz6rWUeoEhiiIGw0EO0YLGxARpliGEBqEJCVEUak9lEOS+ZokhDUzDJAzDwyiaOIqBjF6vi+u6SEOrPbJMA8zCMMTKm2YlFULoKX+GPnaDMEQKlUt4NUhmd6eN63oYhklGclhgLSwssLi4qKFyWab92vkiXxRF1GpVjh5dxrKMw8Y0zaesQkqU0FPfcS5zFwiGOUX84D6dpvr5DoA2WZays7ODbdkoqXR8j5SEY5/VlVVKxRJbm5uUSyVsyzokzI+v3MS4dBV5/3GE1LAsdxyyUbIp1WoUCgVs28YwFN1eD9fzGAc+lVqVxp1tzN0O6aJgOBxSEHqBTkpJsViiPxzoaVqaUa6UIYPBYEC32yUIfE0QVzo6p93u4FiKZqPFiROniJMI07LZ3mlz7tybLB9dZjgYMNlqEgQhQkm6/X1K5Tp7ex0cx6ZY9Oh1h7z44itcf+8yhmky0ZzIwUsW9tm3if7zf58tN493sRSmYdJqNQl9zTXoj0a4nkOWxsgs5e7ddR5/6kkw5GHh/+M0rgf1BHy/eZVXvwLdAfKXngHlYRBx4/zzGNmAJ598iOdefoG3Lt5meu5Bfv7nf5GTp2aJyxu4786RpCPciTGuJ3BcxURzgrm5CZSIgAip9MKLEIowSDANyDKJ62gOgGGYVCtVXEfSabc5f/4ujYZJGvsUi5ZeLFISQ2nfcpxljIOA0XDA3bU1pian8og+G9u29CTdMlFS0O20sZRmFZBleuJOihSpzpOXEqVMpDIPf8cwDZI0RSoDJQzSLCZJIizLoFqvap9xEiJItR1JCOJEL2amSAqOy/xihVqjyuW3V1haPMHq6ioLy7O8+OKLLC0tARCGIZ7nsb25SbffQymT9t4Op04uoeiTBBEF/ziZksQPrJJkNrZtgDR+aD/q8+4H6+Z7/09lie51JGQpmMrAdgrY5XmcUp1ac5ooHrG6ehspI+oFk8lGBc/OuPbemzz8wBwlL+KFr3+DX/7Fp4j9Pa5eukTqj3j0weNsXDuP3++wubZGimC/79OYnOfhJ57i1GOfZXL+CNV6E9NxIF/o430N5191rH5Y8yrkRySQHDSvf2aS7cjvA5s+5vP+v7V5/ajH/KR5fd/2/h39o8hif3j7sJPwx7tS6+ZV/EDz+lEEsB/l4PxoGcDfTHP8/r9xsMrkeAXeuXOH+iMPU/7iN0jvP47lOLQmWxSKHkkck6QxpmXR6/dykqhFmqZ02l2uXn2PYrGAaRncunWL+SPzKEOvtpuWzYXzF7h15zYvvfwSN27e4LPPfJb1jXVM06JQKFEqlQnDIIfMaD/W9NQskFGplEnTmCxLSdII6fokocCI64dUV98fs7G5QaFQYuz7bO1sE4YhN27eYGp6Sk9ZHRvfH9PptMmyjEq1hpV7eTudDuvr61SrFarVGoYyeeeddxgMBpw5cz8rq6sEfohtWSil+NOvfY04jmk0GtiWzfr6OpbtYRoa2vLGm29Qq9Xp9/r86Vee5aknPk2/74PQ8SvIlP3dHaIoptvVDZdlO3Q7fZRSWLaNVIrLV6/qyAxpUHAqrKysIpVke2eLEydO0JqcplKpMTPVwjJtkiTDH4eUikU21te1XzPNNJzFtPKV5ZTvvPAdLl16m9OnT2PbukCybJMk1ZPa965eYX5+jn6/z9raJo3GBEEYcuzoUb7+9a9z6uQJLNNkZnqa2kQLP/ApR1sYb2ww/k9/AWXZdG69oj2zrQdI0xiBJEs10fLatet4nqcnUIBpWBQKZQyVT6rKx7HDdTzRIZIlwnxaPx6NEEJw48YNGo0Gw6Ge7u3s6Km6bdtcvnyF/b39QwBQqVzCNE1c1yOKIlZXVymXSyDA87zD2CBlaIq0aSh63R6D4QDPcSmXS6zdvUuv18MPfC2/tnRhE0daKujKMXJ4A/p3UP4GzbJJEvRRUiAMnc86GnTxCh6epynHtm0zHI5ACBzHpVT6Pk15v91GSpHDsPT77g8GGlxkauhKuVKmWq3pqXO5TJzEJEkOrpJSH2dCIKIeadCjeN+v5XTYjNbkNEIZFAse80cWyJSWmBqmQClBc6KJ63pcvnyFo0eP8tRTT2KaeeOTZvq4sUyKhQJbW5ssLS7hvXADcW0H78ElTFNL+2qNCQpFm+vXr3Hi+HEs02ZtbR0BVMUGgozEO8rKnTvsbG/nkCzBtWs3ePDBh3Ach2Zzgt29HZ5//jlWbq/RbE1iOx5BlOCHCYblQhYDCdu7u9jpmFhYeJNHkbZJpdoAYTAKEhzTxnztAtG8BoZBRhTFjEc+nqdleNtbu9y4cYu9nTZRmHB3ZYNnn32e4yeWMZSi3WnjOBadbptyuQiZiRIGluloi4XQwCLT0gscUaxJxtoPq4sB0zLJyNjf3+f5F55nZnaGMNS+aikElmXqBjDJcAvFPKIGAl97s23bJgxjTYePIs5+73t881vP8uRTT0KWECc6AsOxNck8CiNc19OeVSVz+4zQzbFhYloGg8GQ3Z09/s8vfpHpqRnK5QqIiCgKCaMQ13NxXVc38GmCEORka+1h1dJ9QZql+Xkscw+6JjCPRiPt20egDHUIsAFyn6ymJgeBr6Fz+QKTBuPpa8f+/j7KUGys3mV+bp4wCDl37hxFr0C5XCLJ4LXXzjLx6gXGroUz1dKUccfBHodkc1MYrs4OX1lZ0bRpIajWqxgHedLbba34OKJl1d11yZ2Vu0w0J4nihHKlCFmWT50l1UqFyclJHbmVxPiBzwH87fr1m9y5cY3JyRls22E4GmBaNrZTYmpmmrOvn2XhyBHKpRKO6+G4+jOW0iQOE55/7lnmj8wipcOlS5c5c+oop++7Dz8HbmU3VpHrOyT/2T/gL775LXq9HsViid3dXdrtfcIwwbRtvvHNb3Hq1AlEmmCQ4dSq1Br1wzrgR21c761JDuqbw+Z18y/JAOtXfpYoFWzevckbL/wJ/fYKjQmH5dPLWGaLTsfE9Vz+j//9D/jk4w/wx1/+Jg9ZP8trV96i3fMJQxPHNHj5O+dZWKjjFSwyUqIoIkvBtT3SJERJ3SyaliKOQiQppAHFgsPiQpV6rUihYJLEIwzDwcihSYuLR3G9MoVCBZGFTLb0PTRNU65evUKlWqY50SCJI15/7SzFQgnH8RgMR9hugSDwKXoelqnzq8MoI8kkfpBgWyZpGiFItWoijEjjGMsykTLBsgVBqGPZHAukEgSBTxBqcv7I19CnzAi5dXuENAoYxZSpI3WWji9RrdRYXNRZ75ZlYds2ruuytb7OsRMnSdKUarnES995lmbNYjToUYxPsFp/nuvjyywsncEtuKCMD6wL319vvr95TbMsV4QYJCgyaeO0qswuLbF8/DTLR+9ncek0m2s9wkGf4WCMaZiaARf7uJbi2NIsd1ffxTIyHrr/YaJxSHt/k93OkHEsoTjJM3/37/Pw53+Fz/ydf51PPPUFyq054kzAAfVcCZ3Tbuq6TNPADT5oO1AaHryX96d76B9++Pi+51MBID6rF9Y+qHn9cWr1g9+9t0/4sO/fvy8+bPsw5+G9D/3B1/ohDbv+ax/yWj94weD/983r39z28VYaPu72Qc0r8AMX8vf/+99GfuuPs917IGIodte2uRPFHN3pkHX7hPUytq0jYWzX1tJIwWH4fJolJHGiZYmtJq7r0O/36PcHAHS6bW7dvsX8/BHqjQlm52Z59JHHWFxawrZtBv0BX/ryl6hXG8zMzLC5uY5t25pGmaS8fekSd1Zu58AmLZVyvQJh18FT0ygMvv38d5ibnUdIyUSzieN4jMZ6Zb9cqWhio1JAxmg4oOC5TE9NHU6oyuViLk+z8+lBLf9MII5j5ubncBwHx7GpVqs6lsOxePChB6nVahQLRdI45Xuvf4+5uSOEYcjm5ibHjx3HdmwyMjr7A5aXj+I4LndW7rC5vcnUVAvDsCiVyoAkzQRpAnv7Hd469xamZVGr16nVaiipGI9G3Llxh/F4yCOPfoLPPvPTIKFeb1Cp6ey63d02586d57XXz3L//Q+wtb2FMgwsx8EwdfEc+gFZnHL02AKLSwsYSucIIjI2Nza4e3eLeq1K0fOQef5qGCZYtiJOIjzXY3l5mSRKGA9GLC4s4pYK3F25xcz1DcaPVjifDCgWStjjmxiGwmjdjxQSIQyeffY5khSOHT1OoahjXbJMF6hZkrG+sUG9WiMTgjdu9Gg5Q6x4j55voJRxSM2tVqqsrq5QrlQolUs06nUOaMzdbpfBYMjk1KSOphG6OU3TlP6gR2uyRRxFhFHEcDjUU6C84ZBC0Ov3qFWredxFnyzVEt6NjQ0gy2MyQkSWIP0N7HCNNBqRNB5nWH2a6rFnMGyPzPAQozXSzjWIB0gh8UMw8hxeLb3UUuCM7DDuZzwaAVAoFvLpcIdarY5tuVy+cpVbt24zNz9DEuspVb/fp1QqgtD030qlShxHet9bJln/DrJ6DEqL7O/to6TB9s4O5WoZlSa89N2XmFtYIMu0D9JWBlmq5b2+HzAzM00QjHEck3Znj2q1wetnz1IslXBcl7fOn2dhcYHyO3s4qeCK0yeOY/7oS19k7e4ap+87SaOhKawvfufbZGnMsWNHiXffAcCZephr125Qa0yw3+5SKBRpNptIqTh37k2q1SqlcoE4jlhaPJY3+zbvXn5He7cHfbY2N2jUqyRpiKkUlr9P15shzWIqtSapsLQMs1zE+epzMFEF18V1XDzXQ6CjX4IgplqpIoRgf6/D5OQ0K3fucvTocWq1Iu12h0q5jGnpRnVvt03BK+vj0rBQyiQMEkD7xDa3NjUoK01IEk3JVqb2s4VhQLVeY3Zulkq1guc6HPpD4wSBpNsd5J5uDSrKcqVLHMWs393ANCSGZbK4fJTHHnsUfzzEsS1G4xFunokMIJWRe9gE5NyHOI6xHSefEkYIFJVKlfm5I8zMTiNkihAp4/GYarWCUoog8HVcjRRIJfKpqsil0SK/ljpEUXwIPovjBCHkodpBKf3+0zRlOBiilM5G1soBrepFq6fyAAAgAElEQVQxTTN/vyCQpCkkScZwNKBWreiFq9GIm7dv895711hYWqRQLJAhuPjVb3CsHxAdWwABzVYTGcZIPyCcn2J/v42QAsd22NvaYnp6GmUYSKWQCOz9HkIIxuYs3Q0t/V5cWkJIRQZ5nJVLrab9iXfu3MRUAsNyKJdK+r4qBMqwaDVbxElEqVRhc3ODuSNTZGmCZTjYXpH27h7rq6sYUh6Sf4d9H4lkZ2uLp598jEZdK3geeOBBzV+wdaTL3dW7VK6tkP6dz3O7aXH69P2cPHGGUrFGoeBRr9cwTZuR7/Nv/NZvceTIPO3dHfa2tphYOkKxVNQ5o3pdhFR8/Krog5qde5tXAPGLT5NKSbVkcfvid5ioGpBF/NGXvkajvsxu2+fkyWV+5uc+TxCkTJw6zUS1QXlrmrVgi2s3rzM/W+H+M9MUih6jcYQUNlKYuVJCnwtBBNIwCaOANI6wTRNpaJWDZSlMQ0dFWaZgHIzo9fYplYooJdjb3SFLQ2qVClJoMvb6+jr1eg0pYDQcoCyL5eWTVKoTBFGK5bgEkT6mDUPqGD4pcYt1Vta2Ofv6FZaXp3FsU08FM9B+dR8ygzQVJEmIlFpREyc609g0TRzbJo61eiNLQlbXxrxzccjqape1rTVm5ha4dXuHWkWrka5fv04xt9H4vk+v3c1VZQpDSmYn6ww765iGouk/A5+6zIOfeZx6a5koTsGQH7g/P2p/pygywfczmTNFhkSqIRKFwEIYJUrVaWaW7uORJz5Dc+4EXmMas9CgPcjY2vUZRILdgc8oVmy34cT9n2L+2Cke+ewv8/O/8W/z2Od/makTn6S1cByv2kSYDobQi2YiB3FJgV6glRqYd69M+KOGPx80edU/fOSnAPzVzetfZ/s4StO/zuT1wx/6ozWv+vufNK8/tP2kef3b2e5tXmPAxWR9ZZN0YZbJrz2H/OR9QKYL4FSH0yt5j68uiQmDCJEXk3Ecsba2yvHjJ5FS0m7vIaXCMCyiSANlxuMxly9fwXE9VldXGQyGPP3UT2GZJvVGHdu2NL3PLTLRbFCtVnEcmywD3w8wlIVp6DzFOEx00yF0oR9EIVIZutF1nLxIEocXtSQJKZdKqDzmZmV1jULBywurA1+aofMLs4RKtaLzJ5MY13UoFot896WXmGhOUK5UdWTCeMzzzz3H/t4+n3z0YWzH4tq1a9i2SaGg80CXl1uMgz5CptQbDRr1hvalmiZCSjIEUhlYjsvt2ytcvPAWM7OzNFutw6tNe6+NPxrzxptnOfPASTrdPbyiSypELjOMMEyT9Y0tBqMRx08e48jCEQzbBCHp9vv0Ol26ex2yNMVyBOPxCKn0vnRsLZOamj6SNyoWwXhMHCf0ekMq1eKhVC6OIjbXNxkORlw4f5GpuWmicEzt7jb8VIuw0aDd6VFlkzAM2Q5rWKbF/m6b69duIpXB5NQkN25cZ2pqEjLY3dln5c4KJ48fZzgaUqqUqNRreLMPk3VuYMZ7rO/pqJiDiZnreRSLRcIgII4jLbNVkmKpQKfdY2p6KicF6uNgPPZJ4wjXdfS01PUO/appktHrdjGUwsl9dqZpEoUhSimKnk2rqqhYI6xsgDG6g+GvM0oLWAs/y6D0CE59iUq1zmg8ZrsncCaOoZoPkxSW9I12tIEZrBNnBqV6C2XoTNmDyVUcx3raBrl02Mj9jWAofazcWbmLFJJarUIYajr3gQRUT7909E2306Ve19mhyd67OKd/k/3OgDiMqdZqubzQYNTrMTs/h+24KMMg9H0sZbCysorjuNTrDV544QXK5RKFoqOvFUnGYDRidnYWpIadtKYmcd7dIs0ywtMNSqUyx48dZ6LVpNPpMDszh2EoWs0J5uZmuX7tGsV0HWUY9OQs16/d4Oixk2xt7/Lgg5/gvavX2N3bxTAMZudmKJX0xPrm9dtMTU0SBmNNZHZsmhP1Q4JzpVpkFIZYe3e4vDekMjWLV6wTxAolbYSp+P3f+695ODIwjy8gAH88ptvrkaYZXsFGCnBcm7nZWZIk5sjCPFIKanWtDCiVKqSpvnlbpothZjmN2iRNkryAkkilqFTLBIEPZIzHvvaASoGQMpf96kUU27KIIh9ERuD72JZNmgpsSysDDKXodtokSYxjOaQpfPlf/gknThzDcTydw5plOJYumC1H7yt9zTRzSvXBpr15elFPvw8BeROr/X+GoTAtRb/fpVQq542oxPd9kiTFtizIp2CmYeaROXoSq5SWWu/s7B5mQjuOczgOCIKAKNL3jSiKsGxNrs9yf61t2/pzVAoyLRGNo4QvfemLOpPbthFC4BWKDIZDlpaXqNXrehKZpky8ehHftSnMTuM4mh2Q+D6ZH5IemcYreNiWXqwk1r7RFC3x3NzcpDLUGZ23hj1mpmdwvQJCGQwGI86fv8DV966ytLxEp71Hr7PHRL2KaUpu316nUCiQZAmbm1tUqnWyDBzPxrQcPM8mDIdcvfIu1UqDFMVkcwJ/NGTt7ipLx5YJwpA0FvR7Q1558TuUSg5ROKLd6Wl5tUwxLC0DbzYmcM9fhf/wt6ifnKdUrKGkgxTGIUnbsEyUZbGwsMgv/Py/xtzUJH/5F9/gkWc+jaUMTGUg04xM6OnrX6d5lUsp6kxClue8il96mlRJ0nDIG89/hZlmkUq5wONP/hzf/OYrpJhMzejsZqlKzB5r0J9e5e1z7/K5wq+wIzYoeCmeZ2BZkkE/5O7aNtVqNfdrRoyDENstkaTgOLZmT8QpUZIc8gvCMMjznDMyGWFZkjDyCYIRWqkbI6TDcDhifX2DQkHDDUejobaJ2A5JIiBT3F65w8z0LO5BDJmIsUwNBYoSxeZ2G0lMo16GLCZJAn3/ySQIHylcpLDymJsMMoFpeSAkaaZhi2QpIoshi8lSSWOiSH2iwERzkoX5oziWS6ul2R1SSkqlkvZNT08jkpROvw9S8c6lizhmhqN8zLCFFy5y5+S/YmL2JJgNDNchJfnA/flR+zsRJqnQcmmRpodefSuV/xd7bxYjWXaf+f3O3bfYI3KLyK0qa1+6qzeyJUpchhQ1MzJGAiTMg188hv3gB1v2wIBtAQb0ZmMwgwE8fjEwHowsSyOJbJESRyRFstnNXtlbVVfXXpVVmZX7Ghl73P364UQWq5vVC1ucsWaGB0hUVmRE3Hvz3ht5/uf7/r8PJTMBnUxRSNUUu2ChWwVKk1OMN2ZYOH2WJz7zy5w89yQzRx/n9ONP8vgzn+P4mWc5/dgvUZ6YYmp6nupEHbtYRTctTE1FI8RSYpSRTVsRQqq/Mr+GbrfH9vY2hULhExWvDx/XL4rXn37+L4rXjxlpmv4+fPTJOCz+Pn0BKB58HRLHDm2pj7qgP6zYPCxK0798AchQ/8FP97we2hAedQwfuncfuHkOj/XTjkcV0B81DrfXCzMqY0WmJnNcWrvJ8VdvQK2EGIGPEAKSBE0RZEmEZWiEwZB7d+4QDn2uXb1OpTJOuVwjI6XZ3Gdubh7Hdvnud7/Le5ff4+zZ8/zh//OH2LZDo95gd2cXf+jTmK7TarcRIxprmmZYjs3GxjpTU5MjwI6g1T6gUPTQNAkYCeOA8ckqQgXX9dBVFU2R2YNRmtDc38c1LbbXNtjf2YVUJQhigijGjwLyBUk6LRTz6JqOaVi88MLLvPTSq5iGSiGfY3NrnSDy8fJ5hKJSLFUolIrcvHGdjfVV5mbqCJFw+sxxfvz6JXJentOnTuG6Nr7fp9NpoYouumohMpPl5Q0MyyRTYvZ393BtF13TWF66h6YqFHI5PvPML5HP59jd2aKQdxBI9WOyPs6TTz2BZVmUSxWyNENXBXEwZOneCo7n0Jipc/bMKcLhENe05B/FJENXTH74/I+4cuUmt28vszA3Tc7LE0ahVIg1FaFrmGkH0oCNtTUCP+balZuyYJiaQlU0dF1jd28HRMbde/d4+jPPYFoGl1/5MUe7Ef4XJ3BnjpAvuqSJSn7qFLlKg5yjc+PmTT77+S/KyZ6hMDZe5q233qDRmJR21yxjd3+Xoe9TKhXx/SGKqmHXzhKvv0SxVke3PJn3a+gyhibN2N7aJp8fEVAz2Xc0NlGTBWEajzIzM0n2TCPa7Rb5QkEuxAiFOApJ0oT95v7IqiituwKI0gQ/CFDbVyWlsnIexZsido8znPwNinPPoudr2LaLaVikqeD+yn0mpupEcQJCIcBELR4ldo+R6gWU1jWiRIBmIQRoik4Sx7J4SBKyLMHUdVQBcRSRZrC+to6Xy1EbqzI1NY5umWSApukjcqrs8TIMA9uxyY3yjZPeJkL3UKaexs3lUDQdzTRIAMt2ScIETTexbIskiYj9kNs3bzIzf0QCqFSVYwsLuK7H3cVlLr/7HkcWjqCpBlGU4Dou1WqFVusA8e6mzPI8Ps47b73DrRs3cUyL02eOEScpnd6QfLHK2tom5VKNeO89TEPHGL/A9OwMYRxx+swpvvOt72BZOidOHKFcznF3cZFwmGLoHidOn2RjfZmpiTFKpRJCURGaQTCQQDiShG6nhUZCiR6iVkFRXAzVY/nOBrubO5x59klmryxxc9DHyRUeWLaFEAhdgrOSOMRzLWzblPEtIsO285i2zd17S5TLRXzfx8u5DPwQXfH41//3vyIIOkzV62iGRxyGCASW6aAqcgFQ1zVSZAuGzI8VZFmKoipowiVLk1EWscL9+xsoWoprOzT3m+RyLqZuSAiMKnjs8XNohuy3NQxV9oJGEbphkQlIE0aUbOkSUJWEOFNJM2S/e5yQRDG6JinH3W4bf9jHsXU67QNUAa6bl5ZeIbNsZQxZQqvdxLVsdEMnHJGFszRm0O+QpBmOI39mmAaGYSAERGmEosoCuLnfZHtzl8nxSdJEgvFM3aTf69DvtbEtDdDx/UC6M9KUF55/nr//638fTdHRFYUsS6iMVcjnc4SDEM90UQY9rFcv4T57AcOWPa1CKOjDgKSYZz/LJKk+EziOg2ZrtDotmQeuahSKFbS9A6IwIhmrsby8TD6fl/20mkq1UmZifJIkDnEcXSrfmkHroMN0Y5KNtTW6nQ6BfxgTlWHoI/eSYWBoFppqcHCwj6ZoNPf3WFvfoN3rUK/XsUwT21ZJk4RCscbckeMctAfcu7fOlSu3OL0wh0Dlr7//A+Zyeez7G6i/+1usre+ytduiVJsgUzTu3rnN1FiNQRCi6SaDIGaiNoauwKs/+gFf+MpXURSJ3knET6anHzYvetQ844PfCzdDuBnZt16Us6zf/JJkFAhB3x9y/dZNlLBNaPRQFHj15Yt85pkvcPnaEo9/9hn+t//1n/Klz32F/dx91lZWOZ19hjtrW6R2hYODiGLNZXd3H8+pyQUP0cXQNFbvryEylV7Xx3EcMpGhKzEKFgoaqshGvb4KWpqgomKZKmQ90qhNMuxjGSoiHaKqGePj45imSafXl/ncGrRaWywvL1OfmMNxLVD6dFpDMpERZz5ZGkHUZqxoUCoW0DQZLXPYitBpdTFMhyxLSJIAx7ZHKqUALSUJBcQqnusQRAPsnAWawLL7KAbYbo441qlVytQqNkNf1m2aIbi/skRtfAwUgR/ElMoVTF0j7ygEwyamAfZglkRk9M7sU5pYQM8V5TkX6aPPdfaTebP8tBhxYpBzL4FAksvVwxeQCkUCeZVUWqaF5KMIFRRNQTNNNMtCMS2sfIHyxDiVyRkK1Tq1Rh0zb7O8uUH96DzoKigpWRahKFI4SYUgQyFJkZ9hD3FrVE0nn89LFVbIOCUhBJlIkdYC2S5x+LnLSDmWX7LVQR6X+r7jfv+XHB9VvH7wHnnU/P7D7q2PVobV0fEq76tj3neOxMM05Efvx4cd20cXxx+2rUePT1u8frKu5f8Ax89Dufw0fvT/2Mfh78OxZa9Hb9Dn4OCAu1+6AG9dfV8xragKmYCDg4MHvZSzc/O89vqPuXrtGneX7qEZJnEcMzkxwcr9FTRN58j8EQmxUBTK5TKnT59GVVWeffZZvvrVr1KtVqnVajiOw8bGBm+88Qb+cEgu5xFFEcPhEFAoFYssLS0R5m8S5m9iWRZD3yefzxNFIbdv32Zvb4/9/X0ZqS0kkEiCNAJM0+TmrZvYto3neQ+IxEmS0ul0ybJMUk87bYZDn53dPYqFEvlcgW6nS5ZJuIoQsLe3h23b7O3tMT09CygYI0hJGIajeIkM13XQNGvUaxpTLhUY9LqQgip04ihGIHsMe90uYejjB0NUVZAv5IhCqVCUSkV0Q6PdbpGmKVEYce3aNUDQ7w8YDHr0e106nTaaptLt9dja3oZMnq+VlWVW1+/z1NNPMj0zNaLpyg9xXdfRRipHnGTs7TcpFIs4rkNjpsHTzzyF53kPFkZqtRqVSpVnnnmGNE3xfZ/PHD1BWtKxGnN4rodh6LgTpxhqY/T7Hfxhj6effgLH1gnCgM3NTYQQPPbYYyRJSrFYZH5ununpaV577TXCMCSJEwxdJ8sMKJ6i19ohCEJ8P2Bnd5/D/NZKtYKmquzs7Er1XVEY9PsSejXK38zSFE1VMS0L23YIw0ie924XVdVG575BOPp9K4qKpuv4gwFevIaWn2Uw+dsk5Qvc3jPZ8V3GKmWGgz7aCPiTJLL/enJyAss0GfR7koBcKuK6DoPBkO1BDnX6S6iDVYbdFkJIxTVJEjRdAyEzCX0/oD8Y0B+M4Daqih/4GKaJMYLXmLoBwNramuxrHKlZkuYtDZfZcAeKJ1AVhSiUPdukGY5lE/oBpmU+yGRVhIQJNaanUUaqxeGinBCCI0fm+dznPodhGGxsbCAEBIGPEFAoFvA8VwLbHJuTp09x9vw5Tp46Sb8/wDQNXNdlMBhQKVewrFEbQibzPXd25Kq5IgS1sTGEEPjDIVEUcmR+nqWlJTY2NkizlG63RxDGJGnKq6++hqZp7OzsyD/sKBRLNYZ6DifsoSQZ7eYBSRTzz//5P+N//r3/iWO/+ktEp46RW98hyzKCICAIQra2NhEo1OsN4jil3x+wtrZObdQScfHiRe7cWaTf7wOyn399bR3TMEgSmZM8NzcnF9ZCH81QOGjtE8cBWRYThAOiyJe9naPjS5MEfQT9CsOIOI4xDANNM9BUjSROiSLZW2/oxgM1SREKw4GMMdNUGdkDAtOwyNJMAppUFYGCIrSRs6BLHEWSMJymEhiVZQ/6oPP5Ub+/ZlApV+i0uyRpOqKkKkSRjECJooRyuUKv12cwHD6YUGUZGLqFbdsYhoHnuhiGIYukkfsFBLZl47ouxWJB5hNHAdvb2yRpSqEgLcHyPgR11J+raSr/6L/4R2iaxttvv8Vrr72OomhEo8+JpaV7rK6tkrx+ibhcIBVCxl5p8jNZzTJi28AyDbJM9gPv7e9z7dp1ioUSSZLK6CMhPyuEELiNJvUzGfv7+2RZytLSPRYX71Aq5bFtk0G/T3/gEycpiqrj+z62ZVOt1hgfH6fdabG9vcXbb7/NN7/5TX7wg+cRQnBwcECj0SAIAlzX5dd+7df49V//dTwvJxVCMorFPGvrq0RRSL0+wdz8LJBx6fJlSUk2DKzVLfyxElvNFtev3cJz8+zs7NBs7nHp0jsyqiWJIY2Zn53GNE1cL4+XKzwoUv9dzy3IMhSk5Xlmeg7dcHANi2oxx3jVpd/f5ct/5wvYpsP/8I9/l69/4885+9jjPPt7p4keb/KV2d/iyrtX2dhaI45DJifHGQx6mIbsDVdFhWq1gec5SH5PjzRtEacZUSLBaIfApAz5WJplxIkgSQQCFcPQ6XSa7O5uUikX2Fxfo9dtUyrmKRRyJGlGr9enUa9TKOS5efM6nXYbXbOwrQJZYqEIhyRR6Pd9zBHBOkkyBn2fOEmwPft9FNtDUGaSJAwHvmzBSiN6vQ6aqhIFKcEwI+jZBH2Tq+8t8dabV3nllbdZvLvKO++8Q7PZ5NKlSziOM7rnTG7cuEGSJHQ6HXq9Np7nMPQHaINx3kr+L2Znp2WBnyWkafwzn9OPEkYO54ofJuI8fF188NpLRj36p06deuAIAd73/eE2DlsPDvNXP/j1Ufv3s4o7vxj//sZ/dMrrh+Gt/6bjo1Y/Pmp1RP+tL79PdT18zae9KQ5v+E+fY/v+8Wn2Q1EU4iRD16CQ8zBNi4utXY6/eQulWiTzXNSRtTYMQoqlImEYkakahmExf+QoS8srPPPsL0nFKk145eWXJWylWiXwfSqlMpmSMT3TYHNzg36/R5JEdLsdTFP2k775xhtMTk5Qn6qjKgq5fJ4kSVFVOcFfXl5mdm4O4bbkH1+/SpqkNJsH7O7ucfLkSUzTJJfPs7q6RrvdplSUZMk0TbBtm9defY1jx45hOZJwOehK++jt23cIAp+ZmQaf+ezTVMrjHBy0MEyTarVKlkrr5tb2JpqmM11vIBTBxMS4tLCkGZNTDTzPZWdnmzRJuHX7FpOTk8SxQvPgAMs2yOdsBBk5O4ft5BAInn/+eW7dvMnjF87jeS6WrRHHIWkaEyexpNCaFkE4pFDMoyqq7M9SNKIopdsZcO607LE1LB1V0zAtG8t2SEegCE1V+NVf/mVqlSLHjs1z0GkxGA4fKJCqUFAyQSYyDNOhUKxgey5ezsUPff7qr77N7u4uR4/ME8cRFy9eZHV1jVarRaMxjbh5F38a9us59lodTNPANgyu3bjOwtE5RBoQxwmKpmMd9oYhe1bkJFPSH9M05cKFx1EUgWHKIi2KBPSW0JWY+xsHjI2PY9sOw6EsBLq9Lrl8nowMx3WI4ojV+6sUi0VZ+GWSxhgGAaZtYxoWKCpCGfW5KgrDoY9lSVhKv9/H9wM5QUz2AAGzv0mxXEXXNSamJimUigS9Dvu7W/iBzJrd2d3ne99/nnq9Ji3HcUQ+n2N1bRXHseh3+hQKRfK1o7JAbl0Bs0IGxIm0ZWapjFKIokjCWxwHVdXwvDyGaTLyUUKWykinLCOXk/E6hYJceR4Mh5iGSRwMyDr3CMe+RJJAEiX0uj1CP2Bvd480SXnppVeYnZ3Fy0koULfTAQHbO7tEccyLL7zA9KiYtSwZLZQJueLsOA6KAN3Q6fU6GNd3sSyT/VmbcqXM2HhNZozGMUJR2dvb5+WXXmZudpac6zLcfAeE4FsvLxL4ASdPngAgP4K3FYqSRt08OODYsRNYo97tK1eusrOzw/LKCufPP4ZpWLiWweLdJUzbxbTzeMUxGLbY395l6sznUDWLX/uN3+DLX/0yaCDqDcZffINXttb4t9/5Dk89/RSmZRGEMa+8/AqXL73L5MQks7PzbG/v4Xl5vvVX/5bdrR1poRUKX//ac5w+dYZCKYeqCE6ckPegtK9rCJGQyzm0OgdkJKiqJBRHfoSuajKPEEGWpKOosDzf/8H3KJfKpKngu9/9Huvra5w9fR4yGXczHPgYI9uwIjSiOB0tvkiCc5Yd2rkSQj8iTeHevWVyuQKm6aDquoQ1KWJUKOskScxgEI0KOIMojOl0ehSLZUCVE8hM8N7lK0xN1VFVVdphTUn3FYoGqSAcRuiqAapUPqI4Rte0B161Q7XXHwb0ez12d3exbYveYEitVnmI2hzI3r9U5rxCRuvggGKxQBxHeJ6DbefxPGndXF9fxTIN8q6N9sM3UI7NIUaE9TAMURUVo91lMFWmM+yzsblBZayGWygwXhsjSVK2trbJ5XMIMrS9liws5mJUPaPqHJOAv0KBRqPB9uYqWRrj+yGOk6dQrKKoJoamoWgag6EvW0tyOXb3dlg4dpJz587S6/Z47/JltrY2GRsb44UfvcT2zhavvPIy040GrufS6/X40UvfJ4pizj92HtPUCOMhvX6P2bkZTpyW9OSTx48jLt8k/J2/y61hwLOf/zL3V1fxch6eZ3L82Cx37t6kks/j5Rxs2yJOE7qDASfPnCNXyj+ygP2w+cij5hkfHPELOumyilJsIWanEI+fGEWCwfb6Es29HS48doadpdvkbI2xcYdyxeM733+N733vxzzz2Sc5sjBLq9tD0XXUecjv1NB9h/ETFp6ns7+3z6DXp1TwZJ6wmiLUCN1Q0BQVkbrookQmQhRFyGtUN5DOu4RUxCBsXnn1IkmskMt56LqKboAgxveDEXdDo3Wwj2XqqLoJ2eh+C30sQ6XbbeE4FVaWd4hDjfX1HYpFGbmmKTGGbrO318LxciRZiqoL0jh58DuOY1k4apoGQiEOQrIsxnF1wjBGiDy7231IdDq9kHvLGxQrY0zPT1Oq5TENh0q5zMzsDIZuEkcpt27fwtQMer0e42MVOu1tttYXsbQQu7/ARu6HaHUXO1/C9HII5afzPR86wz81R4QR5EgR73v8sGB9uCg9fP6HXUeHhebha6IoQlVVXNclTpL3CU3vcwOMskUPF1cPR5r+tLVVPu/9yRqH+/XBufbhnPmjFMUH21pSEC6oZz++SP9ZHv/o9/r4/fp5be9vWmf9wjb80Ph5qaUPF3Wftnj9KN/833RF5/+P4vXBvgMilX6M8bEaO80m+ytrTG21SaYn5Xw5S2W3VJY9iKtIkoQwitja2WHh2HGSLCUaDgh8H13TmJiYxHVkvMhec5d+v8/c3Bz1uozAsW2bVqvFtWtXsW2b6elpSqUSuq7TaXfw/SH9/gDPczEMHc/zSK09ojimu63j2C6dThffD2S+KvID9u233mJ5aYkzI5W3VCySphn1ekNSOG0LPxjSanapVmoksaT+VqslDEMnimRvVqVSodfrSSiCENy5c4dqtcLm5iaeJ4EXqqKNUPUuURRy9+5d6vU65XIZ27Ih09E1gW0bXL36HoHv4w9iVNWg0+nw+muvMj42Rr0+STTKj1VVef7jOKVUlNE/mibY32+OYiQEpikVxJWVNRTkooKi6SSZLID6/QHRMGBre4u9vR1UVSBEKv/VdCrVqrTrJpIYnSSSTHnQahMnMaZpkmUpqq7K/SiVmJwYxzQNNE1jZnqWfL5AGGvzBCsAACAASURBVISYb72H9eUGxpEZCuUaly5dZCIXs3T7CoNIxzFMWu0eqiYjegzTQNc1oihmZWUFz8sRhiG2bQFyxbXf69Nqt+n2OuTYhXiAXRgbWQEzdF2ndXBAqVJ+kP2XpjISJJ/zOMxdjZMYXZXWQ1WTvYGHACdNk+qNzA2Efr/P/fsrUoXtbqEMVulXvkCQGhy02pQrZTIBYRxx/dIlKtUyB60WjueR8/KcOXuOnGugqCqu4xAEPtvb2yP7ZkalUiGKImJjAl03CDdeYxik5CsTknSqa6NIE0l0VRR1pDDLPrf9/X2iKJKr+4qkK/b7PTxPLtAYxqGimSKSAWQZxvSvEgZDPNfFth0MXee1V1/jySefYuHYsRGhUSVLM1ZXV7BMi8l6nXw+z9zsnMyqTRL8oU8URezu79JqtSkWiximQZZJ5bi43AdAeWKGXq9Lt9uT8TZpwubmNmNj49SnpvBcl8Ggx8XlEHP8AhcuXODgoEm9PkUYhgwGA3I5j9u3b1Eul7l/f5W5uXlpuc2kqri7u8fnP/958vk8hqET+kP6/SHl6jjKYVyF5uI0bzGonKZcm0RRNdq9FqbrYJYqcGMR3Q9ZbO6yu7sr6df5Indu32F7a4vpxjRvvfkmV65e58knn2SuMcPU1CQLR49y69ZtWq0WZ06dxrTktTwYDsjl8gRBiKYpaKpJkmaITNq9TMOCTNDv9uj1pCpPJvOKZZ+dzq1b1xmfGCOXkwpoozGFZdhEUczXv/51Fu8usrCwgCIUwijmoNVmf/+ANM2kIq8eTnJSkiRje2uHP//mX6BrBlNTU6AqqIrMVdU0jSgI2dvdJV8oSbeBqpEmKYZp0Wl3ZC++bvDiiz9ibW2V8+fPAzKGTPaeC5I0k8qxH/Gtv/wWk/WJBznVQggEUlkByNKM4XBIpVpFVRRcz8W0LCxbkuB1TS7ISBVUTtqyNKN50JRK7ugayOfKkGXcvXuHRqNOt9thfK+L2D4gmqyxePcu+Vwe3/e5s3iXhuuxYmaoikqpXMJ2XKI0QRUqzz333Kgo9nA8B2FoJLZDWpHgNDGsPuhL39rappSXVOWVlTXuLN4jXyih6Qbt1gGVShVFlfFBW5ubNOpTCKHR3G9Sq1VxXZf61BSDwYDZ2XkM06Ben6I2ViOOY1ZX1rj07hs8+cSTIyVWJYx8KpUquVxutDghEGmK8eo7vPaFJzCcHHahyL2le9SnJnEdnSQNaLWbbKyuUSlXMEwd3TTZ3NqmMTP3cELKR84Nfpafxd82ZITIf30U8dgJhCLIUgnBs3QFXYHlpbuo/Sat9jbVsRyKJvjGX7zI4p1Nfucf/md8+7t/Rb5YZuHEGZaXVlCqKUdWzuGekNBFXbWwDBtFaAR+xPLKHsViEX/YQzc00lhmNaciASGtoEmiEMcy99gPB6iKw8sv38ewYmrVIq5nkSY+rmPTbrcZ9PskUUgSR3iuQaYY7Gzvy2xvy0BRIUliCoUSmm5jWS7jYzW6nS0cT8e1NNY3tllcXGO6UUc3NeI0IIuT0d8uOefSNMk00E0TVUi4lATlKuxuD7h2dZETJ2uYjo7lWCwurXL85FFKlQIHez3GJsZlhrtusLGxyaWLFykWCpw6fQqFDNcWGGpMGvfIBacYTF7FaOSYmlkgUy2ybMQMefQZfuT5zkaU4YcfP1zsOCwyPzQn9aH/P+qxOI4lSZqf2NcfLjhBOlYe3t5P1FbxU8qr3M5PtpGmkvx8WGh/8Bjk9x9fJKpn048tXB913B/3+Ee/1y+K179VI03T3/80vRWfdjzKg/7Bxx/1vI/7+cPW2odv8k+yvx/23h/1nE/ynj/L67MsQ0Fmi2WZzANNw4CVdpPjP7qMePI0cZQw9IfEcYpp2yTZIe1Nrm6dPHVK9qbqGpqAyak6lWqVQX/AMAi4e/cus3NzlMtlSbk0TXZ390YxJ7u0DlrMz88zGAzwPI9stKr2R//vH3H27Fl2d3eJ45hczkO4LbIsw8nqJEnG/fsrnDhx4gH8Zn19nYnxcc6eOYNQFOI0odft0u8P8H2farVKkiY4jkUhX2ZtdY0fvfQitVqVarXC9evXyRcqPPfcc3Q6LXI5F1VVGfT7HDtxHE2TtFvX9bhz5y4r91fI54uYpoy3OHr0KJ1Oh1wuL2NbDlqMT9QIowDdNKmNTeDmCrKPzrGZm5/j1OlTbO/u4OVyaJpCs9lC1000VX9ASx4OfcIwwnFc9veblMsVTNOiNlaj1dxDt2yGvo/jeGRpRuAHtFstKtUK80fm8AOfcrnE8vIyhUKZ5n4Tx3XRdVlshWEoeykz2N3bw3EshCIIhgOqtUnq9TqKkBPRy+9epl5vsLi4yNzsHM71O6RfyZGOHUPXdcZqNaLVF5goCHLTv0xzZ5cfv3GRC09+lsGgg6qo3Lp5m1KxhGWZRHHI2to6uqFz66ZUrE3TJsvgT/70Dzk766FEbVS7gKYpJHHEoN9FoJLLeSQjUm/r4ADbMum2u+TyEriljBD6pmmyv99E12Xx3e/12N7eolIuoygqaZbS6/ewLRvPNVEOrqIs/EPM4iylcoVSqUSv1+GVV37E/NwMcZiysrbGU089ja6bKKpOt9slCvo09w8o5AvcvXuPWnVM5uUmCaZpsLS0xM72NoWJkwxFAde/Qxp0UZwSAoVWuzWKZPrJivPW1hbLS0scNJt4roPr2PhDH8uSubAZsLR0D8uyZQGAIG3f4yAt04wKVCslsgzee+8K9kh99rwcrW6HnJcjDELiKOLy5cvMH5nDNE1ZHCzexXVd9vb2ePmll1FVhdrYGMVCCUWoKELh9ddfZ3ZmFtVP6Zop6VSe9fVNkkTaQFv7TRzHpXXQZn9PTjZ7nTam5TA7M4MAqpUKuiEnc1kmSbxHFxa4v7LCqVOn0XWNldVVyuUStbEaC8eOSZAbCbdvXef57z3P/NHjbG7tUKlIR4ZuujDYRZAxdKoEkU+xXCJFYTgYYCgK1dsrnP/N32B5+T6DwZCZ6TnmZ+c5cmQe2zJpTDc4d/48nU6HMBgyPzdLp9Ph5ImTCMA0TUrlEmkWEacpWabzF9/4JuVSkWJxnD/9k69x/fpNzp+7MKKMSuq5bdtYlg0wol0rZJng1JnjDId9DMNicmKSYinHoB+QZVKFfPrpp/E8j0vvXqJarfHHf/wnLC0vc+zYggTWaCoZKWmUMhz45Lwc8/PzzM7OomgSIgXSZByFIUEYUK1WuHr1JoqQ+ZcguHz5PXa2d6iNj5NlGceOHePMmdPytYrC0B/KQkpRJCVYEfzohR/i2jYzR+YeHBejSamiKJBkpGmGbVtyccd1yEbgKEWR/cACCEOpwhwSuA+VX1WVNssojDg4OKBUKtDttKhVK1QqVYbfe4XYNIkci7GR9TyOY4bDPpO2i378CMVCUWblxhGdTgvSjDNnTuHlchSKBTRVJdQU9noD9vq3sSyLjUVZPHa7Pba2tjEMlcCPqdUm2NjYQtNUyuUShqXT7sjYs9W1NSYmJrhx4yZ//o2/ZPHuIj9+48d85e98mWq1QrlcxnFlv7jneXhujlarRaVaI593aDRmJCSIlCSN2dzaoVAo8Sd/8jWmGw2S5TWMvSY/PDbGvdUVgizjqSfOM1Yt0NzfIYgi5heOASqdbofxsSoHzX3W19aoTU2i6T9dYHzY/Oij5hEPP5a8OaINPx1JNU5OLtheX2fQ7bK6ts7xk2fp791H0TNKVZvxyTFOHn8MUjDsiPXVZT7zmc+xtXnA7/0vv4deSZhJjmIMi9zaXmRvr0u1NsX3f/gKyyv7JFGJVnNAp9/HME26wyaJCNG1HIhwFMFkE8eCJA3RNEGvF3Du3DFmZ6dwbQW/38M0FPzBgG6nQ6VUoNtpYhqCKOjih+DYBRShcG/5NqVyiVy+yu7+Oq7n4uVy6IZAMxLSLCYYyszremMC2zZI0whGHAOQ86Z0lBmtjFp3kli2AkShjyJUwijlyJEjWA5EYUwwTNlc77K90WZifI7G9BRXr1zFH4asrKwwNzfHqZOnaExNkKQJL730IpWCQ7nooqQBemueVuUSL15/A684wfzJMwz6A+neGY33qZIf0D8eVlQf/tHDcTMfV7Q+vI0P/vzw9YqiPHBqPGhXe/g1Dz33/XPth5Thh65LxE/29lGq68Pbl4//e7DS/wzPfdR+fVht8lHZvB+3L59U8HpUPfbBWuc/meL1Z3n+z0N9/Zu+V/j7/yfJi2+ifuGZj33fn9f+/jyK9o8bWRohhEqWqaiaQX1qnL1eC+f1qxiqjqhJ7L5hWaQja2OaJgTDASLLpNKgSTujYZoy+FwIBr7M3UrSjOee+wZHjyywvbPLndt3mJyq0+sNsEydcqlEFIWMjdXY3Nxg6d49coUizz77LGEYMjExQZYJqVDYTYQQ6NEE7XaLUqnEnTuLlIoloiSmkC8w7PUxTQOEQKgKIsvY29sfEVgVDMsgigKUTMHzXM6cPc34uIzQKZUqREnKY4+f58TJ4+TzHoqSoQgYBiFCCMIg5MaNG6zcX2FhYYEgCFFVgWlasgjUdfb3m0xMTFIsuaiajqqaePkiQtOJSYiTmDiNGRsfA0WhUCwiVA0VFdcpoKkmCEklHQz6eLkylu2iqBqFYgEE7DX3KBYLKKpGmgnckYIZByH7OzuUaxXyxQJxkuB6HkmaURsbZ2ttk0KhQBRGOK6DomsYto2iZOxsbVGtlHFth4NmkySKcXNFTNOg3+8RBAFTU3UM3eDgoEnzvetUdB3/aYfd2OX1V1/h5vVruGxSqpRxp58iGLaZmJokVyrh2RaLi3eZnJxi5f4K040629ubTDUaeK5LqVRiZ3eXwA8oFAo8fu4xLMsl2b3I2l5M6AcYuiHzTuOU/aYswlVVeWBFFsSkrTsIkRClKmmSMvQDCnmZpdpqtaiUy7JwDkM0XZNW1UIB21CgeRVt6lmG1hEsx6HfH5AkEevrKxydb6CIlINuxIlTpxGqSqvVJk1TbNPi7u1bhFHE0PepT9XpD4b0uj1q41WGwwGFgoyg2t7aZPboWeLcMeivknZWEHYNQ9cRZASBj25ImFPg+0zX6yRxRGNqklarheu6kAneevtNhIC5I/NomgRNHRzsY/n3KT7+X1IsjxFFPoZhUqtJS7NpWbzx5ptM1huYpsm/+pf/kncvvUtjepqZuTl0wyBOEkpF6WYoFosMBgNOnjyB7ea4ePFdKuUapmkxOTWF74dcP1iDRpn93X2G/QHVShXXdqmUSuzs7o96pStoqsKNa1dpNjukScre7g6FQgF/OMQyddrdDkEY4rou/f6Q4XBILp/nvSuXqU+Nk2SHAA5QRMZrr77E7/z2f86V964ShAGqknHn9jUKORujWIXVS0RTZ+n3+hSLJd579xp/+rU/5cmvfBH3O6+QzEwxPT/PsWPHuHnrFpsb61x8521UFTzPISNlMOhRLhdYWb1PFAVUKmXGx8ewbZv3rlylWMpjOR5kBr1On+ML8whVZWamwVNPPwEiQ1UFigK5YhHDNImzdER5HSmZSYrvdymV8miaMSIEx+iaydWrV/CDIY1GHcsyqNfrdNodfumXP8dTTz+F68r8VVUVNJt72IbNv/6DP2B7e5szZ09j2gaqDsqIzj6S8IjCkDRJ8HJ5Wu0W1WpltNDXZ2ysRrlSHhWXoChiFNUzmlApKiigaypJHDJWLXLi+DyqbmGaptzMSOU4ODjgT//NnxEEkhiuaRpxGqFoKpDKY80yBIIbN25SyI9yV1Op1mq6JIJfvnyFYrHE2ESVOAqIQh9/GKC0umgvX4TTCyRI5VY6RFQK+Tx2ENEsFblx/Qa12hhZJgnruiEdGeVKCSEUhKLKzGnLw6rKXm0xrOI6Lp1Oh5npGfqDgGp1HM/xmJ2pE8c+ayv3KI9LV0W/12d8bAJDN9na2Ob4yZOcOH6cX/nc57h06RI7O9sA5At5FhcXAVhaWub+/RWOzB/lu9/9NqVijcEgxLEdOp0Wk5MzgMrc9AJxGCHW1jGePM2F//G/4sT504xNjFOr5AiHPZ772tc4c+4CKQZmvkSxmGdnawPX0tne3mS6MYWi6w/+9n9Un+DHzSMethmnb8nFCmNyDaU3QJTypElCrVShkC9y4+YtJhpzqLTp+UOKpSJJnElauogYHytz/txp4thgfXWX3/3v/lseO7/AO3df4cjOU4yfm2BqvsH61ibj9QZHT5zFMPbJhEKxOM2lS8u02hqra0NKnoGqRyiKgmNWufzudYolF9NQsEwbIWLiqEuaDFESaTtVhIrnePT7XQp5F13LSOMhvW5C4At6/T52zqJYqZFg4tgqumkSRQG9fg+RgWl4gIblGJimIIq7hP4AJdNAkQ4FRQh578URqqowDAaQqBiaTRJHJGmA6WgoWoQQCoYGnu1Q8PL0e036/X06vZD791cYDkOOHzuBaZosLy9RLntkKbRbLQxVQBIStUO8/mMsj/0ZX/wHv814/RjXbi7hOjlMy3j0+c0+/Dw/LGd+HODrg9E1H3Y9vU+8UT58IUU84rXygZ/YkA+LqQ8Wr59s/LstXn+W8f5j/DRq7ScvXj/Nex7+nj/4+fGL4vUR429D8Rr/wTeh3f2pqJxHve9/SMWrksUgFDKhYugaYbdNpVTgxvo645duw/F5EAqqpiGEShRFKKQkUYxpSMVJN3QUVaoLMhMwxHFdDNOk2WoRRzGMwDILCwsYpolj2xiGhm3blMtlrl+/ztbWFtVqlXcuXpJgj0KRJE5kliUQ6VtyRT6oYttSnatWq6Ptq0RhyM3rN6hUKli2zFZ9+803efzxC1Rr1Qer+Rsba2iqxltvv8XY2PgooiHFsi0M00aIjCAYIoPGFVbur7C+uYVlWfKmVVXmZmcplcoSeKOA7UhbrKIo9Ho9XNfFthWCMEbTLZIMUiBTM0xdk8VJmhEnCYOhj6JoxGHEYDBEUaWNLyPDD/qYpkOaZg967vzAp9ncJwgDmvsthCIjgJI4odVsknM9DMvk4sWLuK6LYZhYlszQdS2bQX/ASy+/RGNmBlXXSdKEMBgyOTGBpsnIC13T6HW6xCO7mqZJ5abVarG5uSVBTvdWKZ09jnZKkJ85R3NvFyHg9LQuIV/lE2TRkPHJCfwoJo1i3nnn0qgfOKZULnLx4tvMHZkny0Ad2an+/M+/wWPnH6fX7XH1ymXG1TV8igx9Oalrtdrkc3nSLJX9l6pAjXsw2ETpr6C4E0CK0rqBFu+jESCitrw+dUfGdIyiPFRdp7W/jUUX2ndQJ55Bqf8KXq4of1+u7O8sFXNoGgTDIbWJeQzDoNPrcOvWLSbGJ2getJgYqxFFMdVKlVa7g6bp2LbN937wXebn50nThGIhL4nAgGaXUcunSfevEHfXwSoDQsavaLo8n602tm2R87xRP6203KdpynDoMzE5IZWuUT4x/TWCzCEunMO2bXRd9ia9++670j4K9PoDytUKuqKxt7vDk088ybETx4niSMYpGQZkGc1mE9M0qVYqOI5Dtzfg29/+LrZts7KyysLCUe7du8eR2Xl63S5Tk1NcvHiJ8doYw+FQklV1Ay+XY39/n/cuv4umCh6bOEAZ3KfYuCCdDYOuLFQLecrlCnGcSNvnnUUZF6NpjI3JvNgwiel121iWztT4OG+9eZmz586xvrGG7w84c/o4nmsR6jZJawvPdelreYbDgBdeeIV/8s/+Kf/NP/7vsW7dRx34pMUCgR9y69ZtNE1hMOiS8xyGwwE3bt5gYnICQ1MJgoBcLo8fBPR7/dG90KXdbVIq1xCZzsz0NKqaStKuqaNqgjiJUDUFREaGIE5+ElEhhCATAlWoaLrMjsyQEU9JGqIIjWq1wthYlcGg9yAWycvl0HRDZrQK0DSFKJY9e1Eg7YS1sRoTE+NYtkGUhAihj8jbEkxkmpIEbFkOuZxH4AfYlkW1WqVUKoI4XJXPSLP0wbYURSFJM1RNJUkiVAU67QMKuRypapClKYPhcKSgQuD7vPXG23S7Hc6ePYuqjTJjTQORjWzFo2u32+2RJOmoB1VOjBShEvgBjXqdNMkQSsJwOJDRToaJc3uFoNsjKOfwch6DwYDDiB4lTdGHAen8PIN+H01T2dnZolDIjfJqFVrtNo7rkiSgHfTQo5is3GcwGLCznFAqleh2unR7XVqtFvlCkTiJCYMhqpJh6AoJMht5eXmJaqXG5cvv0Wwe4OXzHJmfR1VVarUqIK3vumHy7W9/m6tXr/L5z3+BO3cWmZyYpD41yXRjljjOKBTz/PG/+SOOLhzn7uISpu7y+muvMNtskz5xkp2ZCk4xJ2Feacz62jJjtXF6w4hydZzOoE8+n6N3sI9rGfzgB9/nV7/wJaJHtFD9LH2uj3pe+pYsiLM/+99Jf/Q26m9+SS4mZnKBoz8cMjMzQ9C5D6SEwQDLGLlhDJ3VtU3aB13+4ls/xLbLCJHxL/6Pf8Ll5TdpVI5TPZgmrg4Zn6oSJQmFUpnW9j53F9fp9SKazQNm5ifxoy4iCsiEVBbTxMIwHGxHlecpScmIcWydLI4xNJMgCiUcLU5wHYfhoEeWxsRxyN6+z85Oh+mZaTqDDpbjoWkuaTSg1xug6zrtVpucl8N18yPQXI8081GIZcxgLBCqPO+mKaGWMgoqI00TXDtPGMSQpcRpSEZEEA4RakqS9FGUmO3dLY4dn8F2U3oDk0ZjmtNnzvLc15+j1T7g7NmzaDpsbe7Q7XR4+43XEGlI5qeUlAXulv+M6vQZJhpHKdamZGzXQ67hjypeHx4P/+jjrpdPej09rIp+cNPv36/392P/xPUofi7F68ME4w/bd/9fGMRvqh9LG/6bjr/txevh/z/42H/SxesnWan5JOPT2mwfNQ5ldZnzyiOjcoT4CZlT3owph5l67/96tPT+wX36MDvAJz2mn+n1QkI/yBKiOESxLIxCkVbQpvrNV1AXjpDZDokiULMUQygMwgDbcRCqiu159PoDDMMiCiICP2Dp3j2q1Sq+Lycxjz92HiHg3tIS1VqNO3fuSmiQl0dVdbqdHmmScfr0WfK5IuONMarVCikZ3W4P3bAIoxS90CFLI9SwQorC9u4u3XaHSrnM+vo6lmVSLEkbWJJk3L2zRKFQYHpmWgJBwiFkCY5tYVtFFhaOsnz/Lq5ny/gKIei2mnS7HXL5PCkwGAZ0Oz3m52eolMpoqobneVy9dpXx8Sr5gksuVyAhI0jiUe6htLJansNg2EfTVQmNiBNECmkY02oesHT3HpZhoKs6zd09dnfXKZfzGKZGr99B05WR4qqSZgmDXg/TMFAQ3L+3TDFfoDEzh+06pJmcUOUdm3DQIxY2P/z+D7l+5SppHDM5OYaiZjieR5Kl3L55h7ffeodGo06u4OG5LnGagiJz5zJFwSsW+atvvcDebpPxyTFMy8A0TK5fvk57v8PZQUj262dRSwMCp8Lm1g4Xnnia3tqbaKqCkj+GYZrsbO8yVimTpnKxIo5jGtPTxHHK7NwRLFsnDGJ01cTUHJ564gJZFtLuHjA2OYNlqDj+DRTDIxEKuZyLbqjYekbW3yI+uMOws4NRXkBvfJF+/hxp8STesa+y1UrBrGE6LqK3gjpcQc1CgmFPTmiat7CiHRSzgNr4Asu9EtVqjTgccuvWTQzdRFV11tY2qVQn8HJlbt25we72Jp5lMNOYRtNN3njzLXRDZWb2KIaps72zRrFUpNsZsLh4j6mJBvcWl5iYqHPt5i0mZ2ZJohDd0NFLC2T9ddLmDVTNIlNsGPUUlioVuYiiKQwDn35zDYMeatrHNRKUwRqit0bWW0cMNtGTDlnj7yEMD9syCcKIlZVljsw2UBVBEPiUKxXy+RLtTotz589i2Saem0PJFBzPYXl5mXK1yjuXLuK4LqVymUHgc/fWTXRV8JlnnkBTBaQJb/74deaKExRMl71hh9t3bvPU0xe49O7bnDh9nm6vx+LiHYJgQHWswolTp2D/XUw1xXeO4OVcbMuU1n8iDEPHMAxcN8fCwlFc12FqahJNN7h29RJallCp1MgyjTAzSKKM69evMz42xptvvEEYxvT7PtGgTbVSoL9yndr5v4vpTNCPE178wQt88Yu/wngph3jjCtn8FN/59l/T3Nvj1o2bFApFnnn6s7x76T3CIKSULzLVaNDpdpmqT7G7u8Pk5CTD4YAXn38RgcBzbRQ1xsnbCN1AEbIH+1BVRBGjaIkMbZSvrCpSdZV/BgSqqhNF0r5umhpCUdAU2buVZCGFYh5FU1F0CXpJiBBZiqoISXZVNcIk4S//4q/J5fM8+dSTqKpgOOyjKSpkCf1+F8uypD1XMeh0+thWDkWAqmUINSGKApJMRnFkWUKn08WyHKIwlNtRBKqATCgIRUcoOrbloag6QhVEUYBlGcRxzHe+8z3GanUev/A4E5MTDP0BXs7FNC2yRAGkXVkokGYJ/x97bxYs133f+X3+/7NvvS9337CDAEFRImmJ2i2PrRlbnslUefI0qXhmXvKQtyQv85CHSaXymkqqxqkaTxyv48zYojZLlERqIylS3AAQILFf3H2/vXefPQ//BghQAEVSVjb7z7qFy77dp093nz7n9/t9t6Dg4wceeSrZ3d1V+vU85drVa4hc0O50+fGPXuL553+I6/tMTk2jff+ntF2bfpZTKhfI0gwp1QAu63XpkrOdhdQbVW6vrXD0xHGSLMOwbJULGkYYUuK6NvLaLfTBiNGM0nLn/SKDflf5Ftgmmsw5PNjlpy++QLPRVDTPKKNYnyTqj0hGIY5ucfPWbYRmIIRyBzYMne3tXaq1GiDZ2Wvx5BNP8YnHP4FtGSwdncfxTQJ/gjfPX+CNN17jrYsX+J3f/kfUygWq5YBWv8+F86/xtOnR+b3PUzoyzfrKLUqBwc5Wl34vw7QNwkHGD559gaDRwDJtgqDI7dV1jp04gxuUkPr9NchHgqEq0gAAIABJREFUjSK8r/Z5VTWvcvt7AOS//TmEyBB5ThTHBF6B//Mvn+ETn/4tSAVvv/wccWebZrVItVoiStvYZsinnniU69eu8rWvf4v/+r/5Nwi7jlba48jaE2yHa3hFE9M0ePutyyydeIxHzp5mYqLK2XNnOX/+Cu1OguU2GQ2GBI6NrSe4jgCZkYQjdF1FVGVZToZJLg02N9bvsrJ2d3exLRshdRzHp1AqUK1Dp7VNOtQZHPZYv61YPYFj4Zom3XYb3fbINZO1zR5ry7dJRyHa2IfAr9aIhqpZz9M7Ocs65KDlGUJkIBIyofwYHKeIYwVoQoLwSGOJafjcWj3gyu0eOQ7zCwuUy2Us22Aw6DM3N8f6+ioFL8BxAsLcZHr+CAXHxR1M8SL/jqd/4/fQnDK5NBAkqOkUqCS5/N3/f5/PmffU5++VzN273ntc3ddY3rOysewnH8vR4OdRW/Xc3E1JuPNvlivKtZR39Pzj/UWdTx64b/m9sTLv/nyQ70DyioYAjF97SMzQA9YH9dt5WN1+r+b1YYZqD0Kr3+8+96/7e5Xxxzz+kQ/Zpwe/jr/zzeuHuf2XXR9muw9rXu+s+7+cD2safzE6+6t6rR9kCaG0QlmWkcmc7Gs/RJcSphpK5wqIPEczDbJ77MfvNO3RKOSFF17g6tWrnDhxYuxSapKP8/8azQaaJllcnMeyDDXR7vYYDofs7x+wv79HGCoX4GKhiJSa0rwt3yKJQwb9iN5+ROBOkCQZxWKZQhCg6boKnM/USVnTdDTNYHJqkonJJnmuYmyGgz62YxOOQra2tzk42OPYsSOQ5+i6hmEavP7aq3i+jxd4dylFcZRg2UrXqusGe3v7aJqk2Wwgx47Imq7iTuIoYnVlFc91yREYhqH+rmnohk6aJbiOjdSkMgpxA3TdJApjms06WZYTJymHhy0cx0NKFeeSZimtw0P29/cpFUuYhkG9Xoc8wzAVIhOGIUIILNvBLZS5fesWh+0WU1OTFIpFhsMhveGQ0SDEMEzKpRJT01MKUQHlipjl7O7sqiI7jrn29k2iaKSa9GKAbVm89NLLPPnoo3jXbxP9s5OMkohIc+l2euzu7DETdJBCMDDnME1D7ZNloxsWhmmwsbmBYepcu36NyckJtrfW8P2AOEoYjoa02vsMRn2mp2awbAen/gi407D7Ema6jxztwGCLfLQH/jxG4xw3wiPMnf08g1inXKncjWMRZolh6uE0T7DSrxBMf4w8y5FJG3pryImn8U/+HlQfQ9o1yuUiErh67SreWGOsjDE2mJ6eoj/o43o+vuvQaXXQdB3bcWg01LF9cNDGNC0QKZVKHc8tMjHZYDQa8aMf/hDP95manmIYjkgiFe+TCYPEP8Yw89B7VxGjbeLeNjLah8EmeecWDHfQwl1sLSZxF9DsMsPUwJ86R1x7muVOmfrJf4A58xkSrYjruuzsKC11vVbF9zzeeecdNjY3WVw6ojRCIieJQzzfpdPpsLq6ihv49LpdPM/jzTffvKtjDsOQcrlErV6nWCqR5TnVWo25+TnK37uFt97jdkm5RR45skhQKGBoOrZtUq1W+ckLP+H0I2fwC0WS3QukWcql9YzJyQnWVtdU3qmh4XkFwlF0dxg4HA2UYVSUUK9VCaOIKM4QwsA0LNqHh3Q6bVrtQ2ZmZwiCgNXVVU6cPEKxOUm4swLZCFFfpN6Y4l/8/u8zMVknqnh4X/sx6dwElcYEAqVDf/KJJ3Acm+npKQ4PDzAMncnJSYIgYGtrCyEUMr61vUUSxZw4eZxSpag0+VKgSUE0UvKBLE3HlNs7hYDyCtCk0qDeoRJq2h1armQwGOC53piiJ9B07S7N0LFs0jih1+1h2Q6a1O66VGd5TpYxzrtOadTrjKIhrqucee+4Ed8ZtOq6rlzAhXL67fY6SkOeZtiWO45f0giComLbSNDGzallOWMDP3Xd06RS9EmpkY4dQ7vdPqurazz1a7+GoWsq2qpaxjRNwjBCSl05Lt9TMGmaRpKkXDh/ia9942s8+cQnkBLieDR2A+9y9uw5Tp8+xfT0FNVMEr70Os650/i+TxiOcBybw8OWcpoNI1JNI6kUuHbtOqdPnUIKgWmYRFGoTKTGkVTbOzuURwlSaKQTRYzcI7AnKJWK6LrO7ZUVavU6AOVyCdsx0XVJuVJEG2fqSgSlYpn6xASVapWJiUkAbt68QbPZpFAo4HoujufhWCZpGvPMV59hbn5WRbpkUK2W2dnZot1pc+z4EaSmjhUnKHB6ahL9+gryv/sXoFuUKnXarX2qlUnq9TpbOyu88MIL/A//5n/ii7/5D6kUy9iaZHXlNnPz83gF/z4g56M0r++HvN5pXsVXPo/IFfqlS4Fr2+haDq5LqWCxtXqJ4XCPNGmTMaJS9Ahch72dA/rDnNn5IzzxqS+wsLjE3zz3H/nU0S/hxQWuH7zFRLNBtVpDN1x0TUlr4jhh6chxavUG5APW124wM9XENo0x6yHEtsZO3RjomnU3f9n3beI4IstTPNdB1zWSJCLPM67f3KJcsnBMye7+LgtHZvGrPlEkEULnsNVGaDpra+vMz88TxxlLi5PoMmV/bwvDskjSFC2zyUkQekhGDGgIbKQUhGGEaVlIoRgyuqHT6bYBiMYIcI7Dz95YZhg7nDx5gqmpKdI0pVgssbm5SbM5wf7BIY1qEz8os7W9y9LSPMODFn44xfbsc0wtPo7t1VRmaj4erP2Cz/W9t+cPuMv7IZXvvf2OtvW9tNO7DdJ7Hvfe+vqBz5mrBjgMw/viddR55UH79tHr7jvNq/7ULzZteu++vl8D+P4o9c9T+/82kNN31/vpZT/ce/X3zeuHuP1h9/swpkkfdP1daF7vLJVB1uOVV19j/tYW8pGjJHmGRKiCS1OIwh13uDsnDV3XmJ6Z5tFzj2Ia6sIxGA6wbJcoirh56yYH+3tUKkVah/t4bgFd19jY2OTo0SNsbW0xOTnJ7t4hQkiuXb1KpVqhWi0TFDxcs4hnNhBCWauPhkMyBM899zyPnTtDmqakaU6pVCIMVRNp2RbXr1+nVmtQLpcQKP1ssVSgWCxwsH/Ayuoqs7OzDPp9ZmdnKJVLCKmxs7PHxvomuqacVT3PZzSM+P73n1OmCrbDxvq6yqnUNdI8x9B1fviDH3Lu0UfRdFPFUOiGyi1EFY2jeABCItDZ2dnl29/6DlfevsKlSxd4/PFPkOc5pmnj2J4yecgytre3mZ+bwzRNVlZuk2c5m5ubTDQqhKMhumaQpJlCag2LOFUF7JlHTnPi+DE838NxXdzAx3Ud6rUaxSBgNBqoQHEhSZKULFUOqGma0e/1mGpOsbgwh2ZISsUCaZZy9OgRjMEQNrawPin48VsbnDh1llEY8siZM6R7F8nznK42i+f7KqM1jMhljm5qTM9M0W4fsrx8k9mZaVzL4uLFi1y69BYnTh5HMzX8IMAyXHq9Pusb69zebDF17p9wo1uneOw38Ze+gD71NLuRT1Bf5PCwRaNRw7bsuxcuKQSO7VIplRkOh2xtbFOpz9JNi7hTT3CrW6c++3FefPFn4wzMlHbrkBvXr/HImTOUKxVcx2Nra5uTJ08QRiNs2yJNEkqlMqtr62xubFIuFTFNA8ty+Yu/+EvqtTpz8zP0ukOGw4j1tRUmJye5ev0ah60WS0tLFAtFkjghSdKxq7COXZxiYC1iFefZGQYs70saR34NMfPr6LOfw577LPbCZzEqR8CfY7NjMrX4OEJzcIIKe4ddCiXliF0qFanVaiRJzM0bN9nZ2+XIsWPUag1AFUmGoRonx7HGNPwM23VZXV2lVqvdLfYLxSLkOaNwRKlcgrFbbJIm6IZO8uotbMum9Lkz1Go1pNTY39vj0sU3WVxYICgUOHbiFJphEkYJHFxE03Xqxz6Dpmmq8dcNsgzWVtfxfZ8rV64wNTWJZdnKBM0t0On2CONUadPjhLXVdbI0odPtMBj0+a0vfxnP85ianqZaCzjcb2G5LhwsE00dQdcrgGqUzMBDe2cZbRjhzkwyPT3B0tICQeDR6bTp9bp3i8RGo8nyrWUWFxbwA5+D/T1K5RKnHzlJrValVCoxHA5xHYdup8321g7Vapkkjcd0ewGZui7c0Y5JoSjEUtNIs3hc1GVKwpDl5LlAGJIkTXFdpWttt9rYpo1t2uRSkmcZUmrE8Z3hmWByosnk5AQXLp4nKATjLGeDw4MWxUIRMY4+S9IEIeBP/vhPldv73Mw4uznENCxarR6vvPwqlXIF3VCu6ULkyvBHqLxYKUCSKyQkQ7lm66YyZ7JdlpaOcCer1TQNTMsgSzOSJGNscI+miXHhKZVuW2gcHnZ57Nw5Go0aWZ7Q63XxfZdqtcQzX/smzWaT4XCIfPNttCjGmZ9R0SPkdDptOp0ehUIBWwgMx0GbmsB1HOIoIY0TwuGQwah3N67ENG3Fxmn3EUIwcpvsrvfpdrt4nn8Xdbp1a5mZ6Rk838V1bdIsYWtrg0qlTpamBEFAlETohsn6xga6buI6Hq+++jPOnn2EKA5J4pA0TzEMjSgMOX36FFkOflCg3TpQ0TZJyBe/+Hk830c3jLGXRI69soGMY8Q//6dEmUToLtGgTb8bUyqV8AOTeqOGoZv8+m/8DramUfBtvvPsN3n66U+RiRyhvVsM/201r/myDm6GuKlqJPmVz3IX0coTfvTcd5hpFLCax4CcYU9RtTWGmDJFRD1Wbl1hOOgQDkMOD/d56/LbPP/9b/GZL36Rem0Ke7VIXOwzHIbs7OwjNYODw30aExPcWF6m2+vjBwEzU1Ummk3K5QbbWy22d/bQzBzDUvmr+rhpHYVDkBmjYY8g8MnzjOGwj+s5ZHmKEDnXb20wWy9iypRiqYi0XLrDnOmZBTqdPsNRxMz0HKPRkF63y+z8HP1emyiOqFbLHBwe4jgWZDE5gjiWJKlOlqk6SpN3vDLiO+8kSRqpQZbQQUOdU3opuVakM3B4+unHSdOUmzdvMDs3y5GlJeXYPqOYNWmaUiyXuL18nYpjY/fqvBj9OxqzZ/GKdUzHRcqfr1D/72he382Wvt9c6d3m9X4k970N3r1N4B10tt9TZpxqSHfvk/+/r3l9GPr5983r/w+a13vXwz7o9/LeH/RGvh9k/jAq7S+C9NNnngME+j/+0s/t273blOM4ggcftO9mYD1okvSrbFzf+3x3TiT37sudAGhN03ADl+rxIzh//E2SxUmEY6FLXbEMNEXNUPqnDF3TEFKiCXX7cDAYI4xqkilQk/d6rUa5XKHf6zPoD/C8Aoahc/z4caIoYnp6mo2NDQzDolqtMDU5paiP4YgkVUYbe7ttDF1pMvOxOdTS0SNkScT+/gEHBy3KpQqmadCcqGOaJrValVdeeYUwjCgUiuzt7ZPnKRcvXOTKles0G5N3HS3DYcirr76OYVnYtsNkc5Kd7R3m5maRUjlyTk1OY1s262trTE5NjCnLDnGSEIUhj5w+DShtrCpGU6Wxkkq/JTWBrhmIXGc0jNna3OLTT3+SyekG1WpVmc+Mrd0VzS/C93yiMMS2bVzXw7aVOYph6eRpzuFhC8/1GIURcZriuzaOZZAmMZapYxo64WhIp9tn2B9QKvqYho7UNRzHwzRNXNdB13VM08IwDA4PW5RKRYqlIpevXCZOImq1Kvt7OyQXr6AvBcizdZYPUtZW1/nEE08Qxwmy8zYIwbUdk6mpGTRNw7JMVWCjdHC+5+P7PpZhYFg2V69e59Of/rTKy0SwtblB0S/zxhtvkOUpp0+fRDc0pXE2TKWbMy329/apVCvU6w3iOCbNYqI4RkjB/v4hEknrsA1Cw7IdiqUCt5ZvIaVkanqaJMuVc6Tv0en2aLVaZHnO7u4OruOOHXBjsiyjEARITWLbDlGUKKfToTJ32d/bodsfsHxrhRMnj1OpFtnd3aMQlAl8h06nzWOPP86p06cJwxDXcbhx4yaj0QjPU1q9JElIMri+fsCxs09h+g0Mr87m1g55mqnc4jxnMBxhWzajYYihS374gx+SC8H8/DzD4YB6vY6mKRRvOOrjui5JBuVKjYPWIYcHe5iWTRzHxFGomug4odfvY9o2MzMzaOM8vVK5jBSCKI7xPI+V1VWCICBN07uZhYUbbYSUrJQzkiTh+eef59FHz2JZJsPRkDTLMQyTVrvDt771bR6ZVKiqPfX4OG80H8czaVy/fp2LFy9w7tyjuK5Dq9Wm0+lysHfA5PQUfiFQVGtd58UXfsLpR04zOzfLxOQEtmOxsbFBtVZVqKNTQDNt8p3rMDmH5Rwhl0qvORyMiPMM78evkyxOIMaooa7ruK5HkqT0B0NmZ+cYjvqqsbdsev0eruOzvrZBsegThiFSaKyurFIplQk8jyAoECch4WioaKxjd+acMd0szwnD8K62eDga3HUWF6D0pEkMuXJ0J1fULtu2EYo3h9AkSRzzB//237K/v8/i0tJYMz5ESGg06nzta19jemoa3w/U+zv+T0pJkqjGutmc5Pjxo6RJBqhiOk1Tur3BXVM6hMA0NA7293FdhzRDHTeRcqo2DJ0oVs7CaarinfIcNE0dQ0IqunGWKoRkfX2L5577IeVSSQ2N8uxu1vHhQYtnn/0unxjTnk3ToN/rUwiKXLr8NucvXGRzY4tz5x6j9Z3nwbFIfQcBJGmMZVpUylV0XUdEEZpp0nctfM+n3+vz7LPP8uhj5ygVPVZW11SubaWCaepo2wekacpKOGB6egpDN1hdW6fb71Op1mi32pQrCj22LRsQlIolBv0hjuuQk9MfDHA8D6/gY5s2juNw/PhxVlZu0+10uXz5Es2JJqPhkCRJGA0VjV/TdRxb0c0r1SogeOvS29TqTXKhMewPiC5e4dKRJrVf/yxSN9lvdUgGQ7rthEqlxtvvnCcIAr7ylX9M4Ds4tka/d8Dt2zd4/BOPk2k/n+/6YWuOe+9/p4HQzqTI0wn5155XdcRXvgBCghSEgw4rNy4TtrcQmotrGEw0JtB1G5JEMQaiNpah06gWWZxtoDHEtwVf/vUn6XS6/Okzf8TT8T8hDnoMoh7Hj57GdR36gz6WY+N6Hs1GgyxNWFnZpFqf5Lvf+wnXrm+SpCZ+scoojLHGfhZJEoIUDMMIz1HXmyxLMQydMAzJsoQsT5mabCKzVNFQMdjcbPOtb73M+uo1zp49SxynvPzyK9RqFQa9Hl5Q5ObN20zPLqjrhV+ALEFoh4SR5NLlbV58cYMTJ6fQ9RGa0MmyVJ13DBVVZZhqfyzbZRSFpElKnmlcvXabUZKTphGvvf46X/zCF9R+ZRn9QR/T0ul2DtAMDaFBEvcxOjpmGPDi6I/49Jf+M4Jyk0wovsPDgJSfayjvqRvzB/z9/Zqyh617s2DvO7YekD/8fivLMgb9IX/wB3/Axz/+8bsgihCKHv7gbX3w7b+Xppu8MgZpnrzft+D9m89fTBV+v3Vv8/pB0dqHPcd7+w61Pljz+kH29++b1/H6oAfER0FYP+z0A95FXu81bHrQY+40rw/Zkw+0f7+K9aCD770npzsNE4A0JIeHh2Q/u4hpmOiNClkCcRQTJRGWpRAoISWjMEQKQTgaKcddU1Fssyzj4OAA23FJ04QoitlYXWc0CtGEThTH9Ps90jTlu9/9LgsLC+zu7nLhwnlq9Tq+7yElXLp0mVq1BnYHzc6QiaWmhyJHMzRGUYQmlGtnt9NX8Qa9DlEUKaRzNKLX6wFQrVQ5ODjE810q5SpBUEKgsbm5jWEoKmIUxWi6zqA/JIpCnn/u+0xNT5AkCZ4bMBqF7O/v0+/3KJVK9Pt9imXlJGroOuffPM/i4gJREhHHah+ElPR7AyzLJskSpDARwqDX7bG2cpsTJ47hF1zSLMX3PEZhyOHhAUKTGLqhpo3jzytNE1qtFqZpjptPhzdffwNAIWPkxKMBGhAOBkiRkyQxN25cZ2JyGl0KhSCmCaZlIXSDYTgkzTIM0yRDWdAbpkGhGBAnMYPRkFqthu84hP0+lRtrGKck0aMfp16f4p13rhAUihTLBdb7BWpHP0exWObwsIXrubieQ5JnJHFCnKgmoRQU2dra4mevvcHnPv95pJR0O11M3cA0bDRpMT0zzZUr72DZJkEQqExKXePll19hbW2NxcUlhSbpaoAShgM8PyBJEl772WscXTpK4Pt0+kO+851vc+LkCbzAo1gqYtsuUlPUdNd1qdVrWLbDxMQkvu/iB4GiEaYZzWZD6U4HQ+W6bRhkuaBYCAiHQ/rdNvMLixw9eoyJiQbtzgGjkXJELRUDNN3AcmwM00DXVfzShYsXaTQaY7RScvv2bWZnZ5lbmAPyu86tKyurzM0tkEQJckzDlkIyHPTxPI+Dgz1cz6dWq2GaKmLp4GAfXdfxXBfTcnCDgDhRAyVDV2jTxYtvcXRpaWxukmOYFmEcY5mmeg4px2yGlPW1NQq+T6VcRpMaV69cYW1tlenpGex39iCH7+9f5eWXX+HsmTPMzEzj+h5Cariui6YbfO2rX+Uffvm3MAZXAcjLp9jZ3VUxOsUyuzv7tNotZmammZqaJMsyNjY2qVZVNqhumsRZyvLyLVzXZqJZp1guI6UgikI0XVHGBQLbMSE1SLOYLDzE0CSi8gRf/fpf4XsBlUoFY2kW6xs/IK2VGAnQDYM8g9EoolgojTNLTRxHIxgfU5sb2wgh6XR6lMsBhUKRXm/A3u6B0rFmOWme0mm3VYSNYSKFHEdT5HcLzk6nowZ/hqF0n0LJHYbDIVJTdGnXdsnSlCSJ6Ha7SiuKUI12nkGeMT01xczMDEEhIM1TkmiEpkks02J+YQHbdpTGL8vo95XJTBRG2LYF5ARekThJVH73HUMZKXjt1ddZvn2LE8dP4Hkub7zxGpcvv8WJEydIU+XAbhoa7VaLOEmxHVehxUKgSYMwDMfmRGrIKIQgy1Ny4K/+01eZmJgi8H2+8+x36HY7zC/MoekanuvzyOkzuJ6Laei0Wi1cx0VKA8/1abVa5Dk8euwEwctvsNco0ZhsIqXOaKRisTTdRACjTpthFDGwHWxLRUvppq5opzLHcT1K5Qq27aIJgbF3qAZfMwGGrZGEEBQK6IZyrw8C/27T2mq3iaOEjc1NRsMRUlM0WcM21bkhzTEMbfw9Eui6QaFQwnFcpK5RLBTJ8xzXcRBS0u13aLfa4yigMghJqVRBN9X16I2fvc7MyhbZb34G4/gCfiHgxs1b/Ov/9l/zzFe/zVe+8hU63V1qtSort9dJsyGaltJt76IbBkePHycXBuMgm1+qjnjY7dnXfwBCoP/O58mFGrK4lmB3Y5nBwQYy7ZHHXYKCy97eNroeYRiCLOwyGo0QWUQ47CKICQddVm9d4j/+5Z/y2JkzOHGd0nCKrKyMtwa9/t180KDgk6UJpqExMTmH1CWDUcjc/BGqtQleevlVLKvI1uYOw36bwWCAZftcevsW9UpAninJQJqmSCnv5kpb45zzKIlI8wTDUCZjC/NTWIbF1vYuH3v8YwhyJhoN5Fjv7HoBcRihSRB5AnmIkDab2y2EFrEwPwmkaDJXkqY4xjStsTxIUfyzDNIMOu02nuMxNT1DnCV88lNfoFqr4Xqeul72ejQbDeIkpegHbO3skeaCKByhbVusmN9jWNti4eSTFCqToEkEKfDhm6JcvD/S+ouOm1+IQL6PQ/GDtpePXcqvXbt2V9pxB3zJP2QN/qDtv/f3u83rUw/R0/6C7XyU9V7N69/Gdu9/7IdHXh+2/r55Ha9fVfP6UaB7AFod5MI08rFT7/uY/680rw+arN3RZmqaRm/Up1mqsPfqm+Tnr8DSDJrUyVNwfeeua54UYkzZUnQ8y7JUtqZtoWs6hmGQ5jlJHGOaNuVShTyDzmGPUqVAr9dnenqGOE6Ynp5hNBqxs7vD0aNLrKyukGUpS0tHuH79OuWlPtutm1hJk9vLN6jWKgxHQ2zH4dLFiwyHISeOnyTLFRpsGGq/HMemXC5TrzfI8oxSqUyv36FWrStkLChSLlfwfA/PcSmUShQKRTzfIwg8PvbYOXTDRNM0nnvueW7euMnJUydYWlzEsiyq1SoAozDEMk3qtTrksLO7heu4rKyuUCyUSFOlS8tFRjiK0aVJHMacOH6ULB2xub1xV/di2RbDwYCgEJClObt7u7iOyoe0TBPHdgiCgGxM2VuYm6NQKKAbSnu7v7vFoNel1+3Q73TZ2dlmZmaavb1Duu02h4cHbG1vMTGl0EfTUkhuGCub/jRXDolSEwgpqFQU5TJPU6LVddz1bfZ+dwGvucibr73J7Ow8rU6b6blZOu1Dvve97zMzM0er1WY46ON6Hmsbm7z99hWWFpcgA13T2VjbYPH4cTrdrircSmVkriiEf/3Xz9But3nqqU9QKhfZ3tnmJz95gdnZOSYmJimXyvhBwMHBAZqmI5AIqYoBy7SZmJhkc2MLXdNJMrhw8TzNiTqNZl0NFISOburqvfU8wijCshwsx8UyNPqDAT/96csUi0WKxSJ5nnHjxg0c21GUR13HMnU2N9Y4emSJ/mhEsVhG0yU3blzh6NFjmKbN66++xsbWBsdPngAhWL61jGUYnH7k7F0H4HarzdT0NP1+n42tVTzPVYWgpqNJnT/5P/6EhcVFXN9HIPjWN7/JoNdV6JShs7h0DCEFg8GAy5cvMzs7O0Z1XYQQtLs9CoUiWZpClqLpFtWKMiCL44itzW0KhbKKQDEM8izjD//wD3Ech3KlQrFYhLFbt67r1KpVpqem2draorTcI0lSNhoaZ8+cxbUdlb+rSYKCMmXTpOTco49i6Drx/gVlsFE5RRTFFAslNE3jT/74z/j85z+H57tjKq1GqVTGcRx81yFKYnJyVtdWKAQ+lXIRTTfG+nAHx1Gu3N/4+tc5c+YRdN2l3++gGRFi/QZ/9PwW/8sf/M/8/u//vqKDSoHY3UNb2yauVbh8+W3+9E//nCwx7viTAAAgAElEQVTNmJ9f5NKlt+l1exy2NikUi2iaQTiK6fdHXHrrMpPTdTTNYGd7j2q5OkYtE27cus7SknKkVjovFWc1GPbvniu1MSsjzzI0zUBqOsmYMZAkMYWiz+HOIYHvMxgPKYSU5FIZeQ2HfVzbpt/vYVmmir4QYFsGg4FCAtutDoVCgSRJ+Pf//n8ny1Lm5ubQdQ2pCXZ2diiVqpDDcDDkb779HY4fP4bUJLVajVOnTjHoD+h0OkxNTXHq1Cmlf9U0dKkhRY7v++wfHuK6Kjc6TXI63S5f/epXOXnyBJomiEYhSaoyQA3D5MiRoxw9cpxqrcbiwjxHjh5BSBBIskwNzg4O9rh+7RrlcpmV22u4boHVlXU++9nPsHTkCNrVW2hhROXkMbIsVQ7phj52Le6rPN0oItJ1fvzWRWbmZhmFIRNTk2o4l0aYtqNif4Tk8GAPp93H0HW6c9uE7OLk0xwcHlKr1xBCksQRrucSjiLIxdhhfJJ6rYJm6NiuTZLeyU2H1uEe/X6Pzc0tAKSQlEsVvCBA1zRs2+L6tWtkpBSKAaWgSLlcxjRttnf2kJrOM898gxs3brF87QafMhz+cq7I6cfPkSQxtXqNr3z5n/Kf/7P/AsuycT1JtVZlZnoRL8iwDEjikIWlRRy/SLs7xDDusZn9iHXEg5aUkuwO8jpuXjMhyOMBzbLHtQuv8OknZ+j1d9k/3CfJRsRpF8/TMNKccBRRLll4NhgyZW66TsnX+djHFrFMnTc3nueJ9L9kffA23fCArfUdVtZWWTyyRByFmIZOu32IaXu0OvssHFlA6iY3b62iSZ1B12B9fZ2zZ45RKPgMRnDl6hZL81Vs22Y4NpcUQhDHCbomiUcDLKdAQoxb0DD0jGa9QrM+QW8wpD8ImZ2dZWdnGykFSa4xNTOPFAa+b+PYJoPOISQGpu1SqLjMLTRZW1lB5AauA0kSoxnGmPmVkWZgWw5xlhFHKQXPx9TUueOtt2+xcOQRisUC6+tr+L5iT62sruL7NXZ3dpmcmMUPivS7PSbCBdKJG7zTfpVPfuEr2H6ZXArIU4WMP+Az/SjN6wdpqh5kwqQGdtpdLWx6DxPwgzhgq4G+pFQqUalUcBzn3cc81G34g6PD792H/6eb15/Lsv3I2/z75vUjrzRN//s7vz9oEvPeg0aI+92w7v/9YY1pdt/9hBjn1d3zWd3byN277nDq713ysVP3Na73rp9viMUDf+4cfA9+zAfZ7odb9z7+vXSBe9/je08kd/5mGha50Ek9D/8/fJv+0gyW7yINiZbrQIwUEVo2Yn9zje3btyjXJhBCQ9dshKYTpwm5yLn1zjIXz19UTUue0+12OX/+Dc49fhYhYX9/l+mJBo4jsKycWmOGwA+YmGjS7XZYW1vj6NEjZM4etm1j57NYlouQGlfevkatUmUwCPE9nx/96Eesrq2ysLDEaBRjOiZCamNkTjVimq7x1vlLeL6P4zuggWEoJMuwc3q9DoUgwNA19nZ30XRwbBOpCTbWN2g2G8zPzyBkyvLyNUQakUQD9vc3cBwDx/XoD0Oq5SKt1iGtw0MKQcCN61fJ0pQ8zrENi8GgR6EUIHWJ5XrUqlUMQ7mAJnFKsVBCINlYXcVzbCxbB5Fguw7DKLyLyo6GfbqdDu1OGy/w6A/7+K4yg3L8AL9QplqfoFRpEMYCw/bwCyUmp2cQEnRd0N47gCyj224T+B4S1ajmArIsJc9iLEOn0+qQb9/A0DOy3/4ccZ4xPT9LpV7Gdiw8z0VDZ29zF891WTp5hMB3WLlxHWKJbVrYls4oHjGKI5ozM7impdAg08IPCiyv3GY4GnH0+FGCQjBubgwO9g84PNhjYXEeTUi2d3ZYXV1l4cgCyAypwygcsXp7hXqtTueghWNZ6Jqk2+9z9coVhJTMzsyTpjmCHFvPsS0TchUh47gWQqRkoeD2rVXeeustPvOZz7K1s4Pn+wipsb58lUq1jGapwUy302F7a4diuYjjWnS7bSqVKuQ57dYB84sLSE0SjUbYpqGydAMXoemKLpYlWJZJt3NItVbh+rVrzEzPYJsOUmpcunSRj338LI1mFXJFXf/Gt77Jb//O72K5Hm5QIIl62LZNLjUmpqYIswTLc9SpR4JpagiRKT2XruEYDr1eX+kMpYYXFBC6xNQFw8GAXmdA+7DPrZvLVMtlLl+6xOLxYyRpyjAckaYxrdYhV6++w/S+asTMJ+axHYtKo4HtukCMYViKSq5pXHr7LerNKloWglnGKCxiWx47O3sMRyMeO3eSYrmAbmjopn3X+boz6JHrGq7rAfCTH/2Ec4+ew7FdNFMAKa5ns729RTiK0aTBxEyDXKbkQmC6ZdLWJouzDjNP/SPm5hfwigFJFmEWLLS/eRHt6BzFcoX9/RbLt1Y5c+YM3/jG10HkmJZDtdqg3eqws7PDSy++gONYnDx5gla7Q73ZpFQpcdg9xPEdXvzxqxw/cZo4zZGGctPNsxjDCMgSBatYpqL0Z2On4DuUZSm1sZmRjmFqpFmGZhhjOqHSm0qpoUsQUsf1AhzXI80STFM1xpalzMruILpJGvOTF15kcmKKudl5VYXmksAvkknlhmwYOp7n4TkeeZbzjWe+SblYod6oMhz0KZYDdFOn3elgaZ4abOkacZLwzFef4eiRo+PGW6FXtuXQaDaRUsPULXRpKAZJmtM62KcY2EhdJ05iRUGPE2zbIstTrl+7zve//33VGNYb/Pl/+DO+8LlPYzuKRVMqBcQ/eAlMg5Ghs7y8SqWqjJVy3tXEmf0hyfwEC6dPkCQRmpRoAhzLIsmMcS2QMuy3+cEPnudUqYGUBtmiUMhbMkmv28a1LSAljmKVx20ZGJZJsRgQxSMsK1DXGKnOj4PekGgUERQqHLY6bG5ucPnSWxQCj1q9RJKCYVmESUKl2cRyHAzdQJqCVrdNjmDYH+LZDm++9jOmJup8cmmOUmuA9V/9c0zHxzBdEDqj5IAwHaI5gqBSJ8php7OLcOrkucne5g61cpUkycC0uEfy+oGRnIfXIarGiv5Xm+QVHfNfLSE+8zh22UIXgjzTyKIhr//0BU4fnaE7Svjpj77DwdrPaK29jqfFlIpldD3F9i1yqTMMXdLcIGQdp9hDz11cI+MTn5jnWvst5vd+G6cesd+6zqmTp9lc3yOJM2rlIqNBT8l04hzbcLhw/jxT0zVOnT3G7dsrFEoO1XrAYfuQg4NtTj9yFCkSZZiWJQROiTjMlfGjyNAMmzgJ1SBcc8kSofJZ+y0O9nqcOfc46JAiuXpjmcmmkgtkOThOlYPDHgkxti6RcoSWZ+Shw/PP3cIvmQQlF9MpIDUTTZrkWUoaDzBNQRLqymSKhNSwuXB5i34vQJg6gVdG03Q830EzdXTDxtIlxarPKB7ykx//hDOnz6Lf8nle+x/Z6kac/vgXsIs+wgCRa/d9pu+X93unoYefp/Xe6zb8MEDovfWnlGPNPKoWT9KMLAcQ4zr953sBKSUCTQ2nkZALFZuFRDcM1jc26Pf7VKvVMcND0aIFystDiXXv/Hyw9SB5ofBytMUM2Xi4y/L7LSG0u/uRj1+zet33OyCLsQfJe/Wuvyhb94O8np/vt+7/uX9fPtz6O9m8Pmjd37y+39YeNjX64JOXB+3DrwoN/WWnJn+b673N633DAykQORjNGvn/9pfsBjZupQRAp9PDsE2yLOP6jVuUyzUmJ6fAsFXMSp6ztrqK5zikcUy1Wqff7xPHMRcvXKDb6fDJT30KKRPCUUi71SJJEzTDYBTFTE3OMhyNONjfZ25ujlqthuPYaIWWcndNJ3A9FykFk1NNHNfG931q9SqdbhfDUPrand0tpKaxvHyLIAhYW1ujXC4jpWRmegrHddDG+aUC1MUjSRgMRmRpzo2btxBCYFkWUhq0Wx2KxRKzszMYpmR/f48sSyi5LqVqGZnlOKaDyDTWbq/jF3xc16dWqysHYC+gUq7wxutv8tbFt4iiSCETcYjrObiOzdbWlqKNAc4Yaa3Va1iWhW7q9PsDWq02nuuN6WkZlqnopUGhQJzEtDttJBoIget4uK7HcDjk+vVrvHPtKm+/fYnTp0/R7/fY3z8gTTI834UxdTJLM3Z3dkiiWBnzxDG6rjMcjjBdib9yg7cLGs3PfAzDUNRnx3GxLIsoith89U84s+DgTTyKZuqQZzSqVV5/8yKNZoPNrU0mJyfxfB+pSTQEnutiGLpChaRydK3W6vi+r+hR3Q7Ly7f41Keevov+JUlCu92h2azz7LPPsri4AKmgVmsgkIxGIWtrG4xGIbVGg7OPnuHo0hGuXr3C6uoK1VqNdmcfAE1T29vfP2Bre4fAC2i1Wzz1a08hpKIMapokimNq5TJJqgh4hqHTqNVotw6o1ZsIKRkMhpSKJdbW1lTsix8A0Ot2CaMITVOfo2Ur1+mV27epVCq4nkuepTSnJjEMg2vXruEHAZqmMTs7i2EabG3uYtkmn/vs5xQ91LaxbRvP99jY2ML3AgaDEVffeYdBt0e1ViNLx/EM44tTDmhC8ld/9Z+Yn59XSJqho+s6YTjANE1M02Rufpazj57B812OHFlUF9SxbjJNYgzDYG5+juItZXTTP1bklZdf4eix4yRphjFuYrIkpXXY4o3X3+D40WOkTh27skSn3eUv/uI/8NRTTyrDK9OkPc7HNQxLNTVpqtyhxwVQt9vlzCOnkVJT+t9OG89zWVlZIY4TmpOTTM5MkafKGMSyTfIsITVt3P2rnKxA4lXA9vEci5bMcd54hzCKeWdzg2tXr/Ov/uW/ZG9vn+PHj3Hu3KNounLeVqZWOU89+RSmaVCplhUjIRfohkEQePT7Pc6d/RimZZGLXEn/EMRxzM7uAX/+53/G7OwUnucwGCo3YIFyeRe868gJShs+GoUKsTRNsvTdyDVNqnO1QgjUYHYwGJDnGVmWY5omg+Hgbm7zJz/5SRaXFhSFF4iiSG1rvB2BOv+7rgN5zuzsNMVCwPnzbzIajZiZmUUIiRQarcOWynkWOUJKjp84ge/5INXzQk6jWVf7kidIQyLGgJ/UxzRywyCKU0zTxHEcTMtUyLMQVCs1dF3n7NlH0XSdp554EikFm5sbTE5OEQ2H8L2XyCbrmMUiQVAgiSOSNMU0TA4PD7lx8wZTfpFRKcDwXdrtDjs72zSbTdI0JRqGLC/fonV4yGA4ZHp2DntxjkHgk1o72JZFd9vk6tUryothcxNd1+n0OuNzs00cRZiGSZKmbGys0em02NndRddNmo0JLNvCdR1GoyETk03m5+bodjrYtoFp6iRJhKFrpHFKt90FmRF4PgKN737v+0w0J5ibn6VSrlAII2Sasf/FJ3nn6lWWjh7BsA182ySM1Os2TZM0T9F1NdRM4yGvvvQS5849Rq5Jck17aC31QZlu99+u/pa+otyGjd90oBQwQCOWFpnQ0A3odHYQDFi5/BIi7uLqKY1qmYO9PQ73D+hsRogM2q0tCp47jjoyiEJJSo80HTIK2+znF7GafeorX8YqDBgm+1y9cpWtzXWSJFLDGxkjpcBxXJrNaRyngOdWGA4iHv/Y42ysbzExsYBhlNjbC4nCfYJiAYHKzd7e2aFQ8tAMQZ4rd/w7xbwmVc6942h0ByMGoxFZFpOTMegN8P0yg0GXYqlAHEV4rsP+3i7VaoVufx/dSHA9k7n5CtMzFTbXtvA8pdcWUiB1m1x49Po5hhmTi5gw7GNaBtNTM2xtrNHupxw/dhrD1NEMiaEriuygN2Aw6iM1nfm5Ra7/9AZ1s4H9uctsbHd55PHP4JdK5CJH8mBt6fvdJoS4z7DpXoT0Yc3vg5pZZVgn70NX332O+x9/V8Im7zRU96876GilUqHRaNy97V7U9G+z1paN/G7j+qDX94vWg8yXPsp2ftn1Ub7rH2R91Ob14aOTv1/3fdE+6sqW18mW13+p/fhlkdRfxXoQ8g1jF2FDRzcNos8/gbm1R7fdwZAaQcFXNE3N4OjxU3hBCXSLTNyxBMlotZQGzDLMscmNTRSFKvuy30MzNBXPkia4rku5UgGhMzE5QxTHKkC+02ZtfU05mqYqBkcIwWg04sKFNxXVTMBwOCBOIm6vLPPxjz/G448/jmkZTEw0sSxLuQFLSaOhTH3unHDjKCaK4nHsQ47n+di2chTe2t6iWq1SrVaxbYf1jS0GwxCEwPM98jzH9wOKpTL9UZ+tjQ12dveUqk1IBsMhw+EIgURKjb3dPbY2t3j2u9/jzNlHaU5McHRpkYlmA9e1GY4GvPHGmypOwXXwPJW3qVAUlf84Go4oFIqUS2VV6I2dS9M0JY4T+r3+mKpt0u8NMHSTfn/A7du3x7Q6gxPHj/C7v/s7SCkI/IB6rc6gPyBKEmzbvnuNSJIE0zCUWUx+5yIiMIY3kTdG1D/zON1OF7KcwA/odjp89a+fQSDxjIi4v8vq6updI5r9vX2CIMCyber1xt1mKg4j1tfXSNOE27eXGQz6uK6DYaiIIE2TpGlCGI4YDAbougHopFlGo9nkscceQ0qN3/jSlxgOBti2D2ikac5PX/4ZzYkJ6s0mq6srOI5DGIW8/fZlTpw4oTIrDZ2V1RUgx/c8apUq83ML2I6Frmt861vf5OBgn5WVFZI4wtR1wkg5T9umjSYErcMDypUStqvo9JZpKiMfTaPb6+E4Dtvb28wtzDM3N4+UGsWiGgStr63R7XaJopCdnW1uLS9jmdZdGr2UkmajqfRWaAyGikKqDKtMZehDTpKkFIol5V6bJvTayuQoiVJGQ2UqJJAkcYqpW+RkHD9+HM910XWdOIohB8dW2q/RaIRhSAxDU9rd0YgkUbRWwzBgfFwbhkn3C4v0v7CoqPI7O8TjYcflS5fZWN/glVde4cL583zp17/EaKi0kPFYj06udF+GoXPh/AXW1tbRNZ00jtE0pTv/v9h78yjJrrvO8/P2JV7sS+5ZlbWvUpV2Wba1eJEtG9zYBoMN7cZAm6Zh+nCm6TM9nB4a/pnu0zNnhmncDRwPYDCMMdggb5Il2ZYtqUoqLaVS7ZWZVZmV+xb78vY3f9yoVKlcJUuWT9NA338yI+LF2+Lde3+/+/suTzz+LTqdtuAlKiqu63H69BlAIgxCmo0G4+PjjI6PCkioKvq2pukEfoCiyti5PJ3iFqLAwz7+eeT5F1lbXcWybFq378e6tMiu7TsYHBggDEOSJGJoeACkBNs2xeIOCaVSkZXVZV566UWWl5c5c+ZMv78EtNttfM8nikJqtVofIizGK1VRKZeL/MIvfIpiIU8URdi2Lbh+soymaSiquqkuniQJ6Ux6c/EsjiIR3ElCFC/uq73HcYyiiE5rmhbdbm/TPsQ0hB2HgCNDFAXIChimhmFqKIrEFTCQLINuqH2EkoxpapiWzqnTp5ifn+8L2SSYpkU2m+l7V0McJRi6WGjodFokCOsuSRKI3DgKBNdVSkjkRAj0AJ4f8uijj7C0tCQoKH2O/ZUkes+ePURhiGEYNOoNZFlmy5YtIEnIPQ85SdAHSpvQ7CiOsSyLOI5Jpx22DQ4jxzGRrhEEIcViEcsS9lGu6/LKy8cZGxlhYutWdN1kYGCQjtujXq8RRRFxnNDtdti9ey/nzp3HMm2y2Ry2adJtN+k0m4Rh2PdRFhY1SBJ7du8lm83SbLW4cP48vV5X2JsMDbG2toqTdui2G6yvrWBoCnEY0ut0KebyxFG8Kdx2/333sby8zMjICIVSEbnaxosiBgcrpDMWmi6sl1ZWVrANE0mSaLVaxEEouKC9JmHgMTs/RxDFKJrxGiuRH2XscG1eIcsyJAFJ2MZvrXDuxFEe+8aXOHX8WRzLwO2FVDc69LoRU+cu8vWvfocjz7xInPiEcYcg7KBrNrqWQtU1TNtCVWXGBnOY25+nedN/pti8g9TKNgbMIrHfJPQ6qHLCyy8dRwbmLs8gSwmGoXHu/DluOnQQP4rYf9NtpHNDBJGJ52tcvLQBpIgxAZ1icRBZNeh0AtptF9+P6bkevW6vf10J3V6btGPRamywtrzAwtw8A5VB1laFWvTZs69w5JnvggTZXAXkNG6oEiYJ3V4L24QocBkaGCIOI+Ikwgt9PD9kcbmBFxjCPucK5SCMcTsN9uwYolwsUm/UkGRlk2JAEtNoNMj01cRd12XPyH6kdEgQ+ui6Trlc3kwer42DwzDsP/Pfz4e+kZfrG6naXm9f18birwtTfp14/cqxZVkWHuFxvFmZfCtx/v9o/+3b36vKaxzH//71sPPf/1nyfdtceVBvVN6+GoLw2vflTQ/BK8e6st/XSyz9X/8PxN99/jWCTT9MeyN4/qu3fSvtetd27XVfvc3VLU5iolio+covnSVaWUcaKKErKrKa9IMnWcA/JJkkkUAGz3ORZYliobAJB4vimHwhz+nTpwjCgLGxUTzXJZtJs7i0TKlcQjdMjhx9ligSAhdnzpxl584dlMplEmBhfgGz2KFRb2Alw5TLZXzPIwgCNFVl8sIkpmWRdjI0GnU2Nmq89NJxtu/Y1k+aREVAeCYKwRk7ZWHZpvC2jSLm5y4TBBFDw0PkclkeffRRzp07x+joKNVqg16vy9aJLUgSbGysE4QhjpPBzKaIZJnK0ChoOn6UsF6rkc9lUVShYKjpOr2ey/z8PLt27WLL2AjNxjqmroEElp2mXCr1q60iIS0WiyKYiUNarTZ2yhEWE1FCvV4j7aQIghjP9XBSKWxHCD05jkPKSnPmzFmGh4dwHIdqtcrY2BhI0O12WF1ZIZ/LEYZ+f5VYiEXVqzU816PValKuVJDkBN/3CYMIzWyhPXwS/2fvInX3XgxdZ2F+gVw2j64ZLMwvsby0yli6IarslyPq7SbFfJZzZ07T7rrs2buPXDYvhJJUrW8XYPQtPZRNoa8kETxcMUklmJbO2Og4rhtw6uRphkYGUFWNMAj7gjAJhq6zvLjG+to66UyWHTu3YzspdNOgUCwgAYamkXZSFEtFZFVGt0xSKQfHTtFuNDh56pRQ21UUstksk1OTtFstDt18E54nOKSmZRFGgv/ZbDRYXFxkaGCAeqtDEAYEYUg6k0GWZFIphyAKcV2PTCbbF+cwmb08R6lSwjJNKpUSkgSOkyKbzeD6Abqui8UjVSUII0BhaWmVkZFhVldXUTUVXddI4qgvVKOjyApxGLO+ts7BgwcZqFRAgmPPPcfI8DAk8MqJV/roAxgeHUaSFebn5/jW499iYusEc4sL5PNFNE0RypWyUHxVNU2IHvXhXYqiYFo2ICE7Jr4So+ka2ya20e50hWpzFFMqFVlbW2Pnzh3k8zleeuk4ptLDNhTOTc6yd99evvOdb1GpFCkXCuzYuQNFVpianmJkZIRarcqxY8coZjOsra2RTqd5+OGvcNfdd0MCgeeRcoQ/6fkLk5QrA0iSzOriCplMloSEVqMOiGdKMh3QTJTZ59F7qyiDe+mOjaCfnMRq99h21230ej1OnXyFp5/+Hnv27sa2LWzbotfr4vseKdsmnXYYGhokk85QrdbI53K4nkvgeyiyhqwK31oQ3OgoCMWYGvmb1jFRGCGrGiRJP4nvj9P9MdhzXRRFodFoIKuqUCiXJQEllmVRsemLsQnrLYVms4nbc/uCRzphFOB5bl9tWPjM+p5Ho9Fg8sJ5vvTlr7J7986+V3RCGIpFBVVTIIGdu/Zw+NAtIMnC9keKkRUhLnVhcopsLi/QK5Loo3GcCHitLKGpgq6hqDJxHEECURihKqpAJKQE/Difz4t5MY5ZXV3t82c1et0eADOXLqEbKk4qRRhFcPI8UbVOXClw/sIFMtkspinQJ4qiEEcxuSihlrHQByt0Om10XafT6fDss8+yf/9+UpaFZVkEYYRmGHR7Ln4QkkQhUqqOqmn49TS2baHrBrZto2oCFZJNO8LD3DCEyJ2msmPHNjRNw7ZTLC+tUiyVBYVCVvA8T6iAV8pIkkzGSdHudLDtFH4QsjC/QOAH5PJpFFmhXm9i2ynOnD3L2LhAXBinpwk+/TNYe8YYGRtBN3U6PZeLkxfIpHP8yR//CYcPHxbPQ+BRzBg4tsWlS5c5ePNhQmKiJH5N3PFGF9OvXdR+9X3xNzzW17w4/2XiExfQb96CkQR892t/yQvf+itSSZXeymk6bsL2XQfR7QHyAzsYHN3L6kaXD/3Up7j59tvwpA4r62v4QUhMhJnSSJllep5Cu+2Ledr3ULLzdIa+hh3sYtx7HxP5PfS8Ndyoyo4d+5m/fBnX7VKu5JGkkJdfPkYYeuQKWZx0GknRWFuvMj+/SCpVolgZ5/z5aep1n9NnZ2g0A8JQJU4glXLQNB1dE9B+Q9fRNBNNtVEVDcs0qFRGCbwYVTNJ8JElGBwcIZ8vUW82yRdHUBQNogBD11BlmSQGVVJRFBmIiaKE9Y0GT353BietUSrYhKGM2wNFdpATBc9t8dxLkzTqLXbs3oPruywtLpDP5qjXGqytrwnbJ9NBmlPx77nIo8/8AV6o87b7PwiaCoqEIinfr/R7dYU1edWH9eqENr4m4XwjtLfrPmvS9fmvV8TErobHbsb5yffv6+p84dV84PrHBvqL4cpr3r9yjW+kD0SnFZJV6TXV1xtte93rS66/zQ/b3ozN1Y2Od6Pi1Q9zHv8oYMNvXrDpBgbF4p0bfP+Ge/6+xO3G+361XU9t+K20/5bV1zczwGz+L4t7EUsSyisX0M9eYk6OsU0LVU3Eyh/y5kCEJOG7PQLPQzdUut0Oiib4dFEcE4QBkLBvzx5yuRyZbAY/jCkWS6yur9Hrdrn11tuxTIuHv/oVVFVlZGwUy7aQFUXAhJ0atm2TdIpIkoxhmKI60+0Rx1AuDaAqGqtra2TSWQ4fPgySEB5qNhuofchaGIUU8jl0Q6fr9gijECdlI0sy2UwWWYYg9DhwcB8HDuwnDCPGxscplArICjTbTRwng6IYxImKrKhYZiI0YPgAACAASURBVJogFP6MWr/KYlk6yJKANBk6xVKJykAZt9um12tSzGewbRPPC1F0G1WGyckp2m0RbEWRsK8IEwGdNAwTXTNYWVkWxupRRL5Qpl6rEQYBQRCiGzqartOqt3nh+Rd4/vkX2L59O77vU61uYJkO2UwWyxLVkpRtYhgamqyShEKIIJfPUaqURfIkJdRqNcxMhPHEMdg+ROO9e1E0BV3TmJ6aRlU0Ll2coV5v0ml12VFy6bTbxOk93HbX7UhJwuz0Rbbv2kPKcThz5jyeG7C0uEAqZfPKyy+TSafJpNMsLS7QqNcwDQNJ0TAMA6QIz+uRsh021ups3bqNRI7wg4AkEbYdhq5Rr1Z56aVXaLWaDA0NYVg6sioRI0RUojBgdXkZXVOF8q+pk6BhGgZJFBN6LsVSEdMy6fkeiqZi6IIzmy/ksCyLbqdNqys8Iudm5+i02hx/6WX27z+AnU5jmhaaphNH8SbsO4hCCsUCqqpx8eIMcQxPP3NEBKuKzOLiApmMsJ/RNBVVt/BDnziOUFWNbtfF80K++egTTGwfQyIRStySSIySJOL4sWPYloAoCp/iGD/00A2DrVu39C1SYHRshOMvvcjgyFC/aguaImBpLzz/EpNT00xs3Yama0RRBBJ9iyjBF2x3OgAomi5yLkkiiWPUvvdzEAQsLi0zMDiIYSiksynKlQL5okgkR0dH0ZYfx187x/jN78OyTLZt20oun0XXFCzDwPVdLlw4T9pJkc44HDiwj/WVFUZGhoUoUhhTqQxy4sQrPH3kWQ4dvpXJySkKhRJZJ4vv+VycukjP7fHy8ZfZtm0CkHCcNM3aIulCGdcsQGMFzn8bs7yNf/vHn+cDXQlvbJiUk2JoeJB9+/awsb5OHMdEUUS33SFfyFOv1UhnMvS6XQLf58SJk0xMbKXRrNNoNqiUK3h91fUojgmCAFM3BaxWU5H7C6vrG1UM0xQWUlfgd5JIToH+djJhKNApUv+zOE6E4JUkkSTiN0rihLm5BTzXpVQu9T+/YoEmI/dFs4IgRJEFf/hrX/06QSRxyy2HUOQEw9SQZZlOu0MSSyiKxp/96Z9z8uQp9u3bi6wkQMDa2roQqitVBKQ6Cokj4VmsawaKqiH3+V2yJOCW3U4XCdAUBUWGOA5x0lkBIe6LBAZhgGmZyJJ4rakajz32GIoiMzY6AiSgyMQz82iuj1wpsrFepdPpUCjkmZmZZXV1leFyBbXRYj5n8fTRo+zcuZNWq4Xnedx55x1UqzXCOEBSZDw/otPu0my2SM+v4HgBjCVC+GlFZ2pqmiNHjlIpDxCEPkuL8zTqG6ysrBCGMdl8kZRtEscRqZTN2bPnOHL0OQYqg1yYnBKe467HE088wfjYOC+++BJPfvcpDh2+FVlR0QyDfC6HoiokxHieT9rJ9mH7W1E1haPPPYs5u8SX1xYYufMgqYyNrKogyziGSRgIKPmunTupNWqoioSthUxNTVMZHKU4MEQsJSDFYs5+C/HD9eKyK7Bh6difwuUloofeQxzGDOVSpKQOrbXLHNg9Tnn3O7HyW8mMHGbbvvt45sVpPv/Xj/Mzn/5N1Oww3zt6mkppHxPbDvHII1/BShmkrTROrsL4tl24oYcfecRJgJFTkcaOs1H5AoaaIdO8lZK/h9rlBulyiJORWVyYw+25DA+MMjA4QBTFPHfsBWr1BkHgMThY5ubb38nXHn2Me95+D3YqT6sTsrbRIpUpsbIwRzabptVqYVs6vuehqkLpW1NVJHwcx2CjWsWybcJEolIq0m520VWHdq+H6RioSszkhQsMVgZQZJlWq0ZMTOD3+s+5jq4LL+eDB8bJZnQUOcH1Il45NcX6WodsLoMXNqjWIzZqTfYeuImFpUVCz0eRdAqFPEgSjzzyGIOVIcz5FOtbTtKLpphbrHP/+z5CoigkMsjXPANCvPBV+8QrieC1Sd2bVRu+Ogm9uoByPd2Zq5+n6xdUfvh4+TXXcIOC0A9K4pIkwf+CSjyjbAo2vZHjXfPJG9jmzbX/XlCcbyV5/UcDG766M/wwlckrnegfA7TgjUAzbtQkSSLp3+vw/jtho4GqKJx4+QQzl6YgEtypKxWDJBHa7p7rQgKptINl26i6jp0SvqSjo6NMTk/T7XbpdDrIik7X8wlDUe1cWV5ifXWNTkeoRUZRhCRJwnOzb0ItSaIqe6XqLssqjpNmYmIbuqazvLzC4sISpmXhuQHLK8vIirxpTdButa/iicmkbBtZEkJMpmnQaDbwfQ9VkYmigCSJWVlZwQ+8voeoh65pm3L23/j6o6zMrxB0Qzq1NkuzC8hxgopEnMRIxMRJjOu5dDpNHMdBMxRq9SqXZ2d49uhRJEkmCGJc18VxHGzbxjRNzp8/RxzH2LZFoVjAMEUibxoWpUIR27Zpt1sU8kWSGCYnJ+l0Oly8dInFxSUazSbtdgdFUSiXywwNDbGwsMixY89z8eIlQHhMVmvrbKyucfLECZYWFgmCAN/3iSXwfQ9dV9CPvIC0EhB++j3olkEUhyRxws6dO8nlcpw7f55arcbw8Ai9vofhgQMH+LH/6XcYfPAXefTkLANDg6ytrlEoFEmSBLfvW7tr1w7BEwo8hkeGmZjYSi6XodFokCSishRFEUHoc/z4cWZnLwtubhyzsrzM6srK5kT50EPvp1ypEMcRMTFhFCLJCYkEmq6T9L8D9BMBGd+P8Dyf1dUV5ucu02wJG6Jms8n2ndvZt38viqwwNztDp92m2WoiyxKlUhnHybJv335s22Hq8iKFd/4clXf9PFNzC2xUq6iaRiplb9rOjIyM8uKLL1LdqLGwsEA2myWfywk+rOf24ZkxumZgmqYI6E0Tz/N54IF3oWsamUwGXdf7wUaE63rcfHA/mizxjW98nW6vjaKppNIpVBmi0Cfuc8J8t8vtt9/ar6KJ/v3KiVfQNY1KpcwHHvpx4hhkWaHnuq9RgG01m3Q6baanpwXULIlJYjBfXMB8aQlZEVyjSqWC4zhk8zlkRaLTbeOHHkgJiiqqt+sb6yz0n7WXLsxSedenGHz/L9PttVlbXeauu+5kaXmRIyfOsvVDv8p7/pfPUCyWBL83lcIwDG67/XYOHb6VOIZ2u8vzx16g0WhiqCZ33nEH5XKFUqlMOp3DttOQqCiyUGCVNR0GdsPgfsLnPsv9tyl420bQ5xY3YbyplM3wyBBhJOCruVxWwJ01lUw6TRQKy6q7776LOE5IOw6VUpmFhQUsywQEh9zQzT40LyQMxZgSRSHFQhHLNEn6QaLrut+HPhK+s31od5/y4PZ6JInwpuy5PVRVQdMMxsfHmdg2gaKofVg+wrva85Doo2MQ42e1WuP9738/+/buR1VVDNOk020TBN6rAVwCd955F0kMlm0BMZIMxWIBSRZUkDgW9j+yoqCqGnECUSiuwfdDEiSiIMY2bdqNJu1Wi431NWRikkSo01+Bqfuez8ylGTRN27wfpmVx6OZDNJtNdF3H932ki/NEhrAPGxsbY2xsHAkJXddxXZe42cTPpZEMnfHxMXzfx7ZtBgYqAo6dTqNbBjOzs5w4cQLP84nDGCOM0UOxUJEkws6oVqsL9f1Oh3q9ztDgILt2bCeTdoQSfBxTbzSIkwTXdTl79hwf/ehPksvlGR0d44knvk2j2eT+++/H6MOTnXSeJJaRZJWNjRqnz5xBN3SWl5bRVJXV1VX+9m//VnC8220mJibIOWne9ra38eKLL9JqNVhfXyNJItbW1kiShF27duF5HqV8gTiOuTg9ySNf/yoTExN9WaUffYj4agz22liqHZskRo5ES+Oj0wllJmeX2GiFZCoTqOlR1nsaX37kWT7w4Z+nFRcItDF27fsAW7e9i/LALRTyW0jZA6yvz7O8Ns/iyhxOziZbyhDgUm10qdZrJHKDeP9f4n3g3+K/+zPoo5cpL76d9Nx+BtLDnD11jthXeOHYS+QyRe67993s2LGbKIwZHBxgvdHg3gfux0o7ZAt5VMOk1emxvLrB8MgoyAKSqqgaum4IX2ICwCOhi+fXyeZ0orhFuVzg0qUZklii2ewIZWnHpOdVSaVN4ghcz8d2LAxTw7J04igUVlZBTMqyMPQI2wKSEN1UGBoZZnB4FMtxSGUsSqUcUeSzsrzCs0efZWJie18jQGdpaRlJkhgoDmIqJuYen9nZWVqtFq1W64a/49XcUkVRNn/Xq8WafthY+3qUvTdD43urdL/X29/1/r/R8a6t7P6P9qNr6t/1CbyZ9mYfRkl6tdT/6uT++vyN11thuVZp9+rXP4qOciMVvzcCGf5RdtSrrykSqF6kpB8YJeL1tWtIr55bLDipEqAKXsvw+ChRHKEkXaIkJElUkGTiwEeXQTF0jMQBWUOWJKJQ8LR0OabeqhMEIbmMQ622wfbtO2nXq5w9dZrpS7PY6SylchnihPe990G2bhVG30oiUylUmDw3xfHjF/jQP/kg27Z1qdXWGRio0Gq10HQdVZZoux1UXWbr1jHmZqZpNVs0egGV4gB+6FOrVimVKnTaAYYpEwPrS2sUi0VagbDvCZQQSzFRNQ0lUvFcj61btoigsdNDk4UqZ4IEUcDhQweolCtMTV0gm80iydDt9YTyayI4Za1am6nJKcbHx3CcFLpls33HPmanLjI6XsYwDGqtDeq1DbZu2QbA3Nwiu3fvpdmskUoP4/seoRQII/Woh6XnSefydFyfEMgOlNibdTh/4QJbx8e5sDTFz/3czxBGPaamz7F/30FkWWNhaYk4idl/0wFM28b3PQaGxgi9ADOdRutD4+IoYmZykm1btmHJkyjTXTb+/QdwZAlTc4AELwzp+S6GpfITP/EQLx47wf49u5AXXxHwbF0nEVKCxAlIScLG+jozM3MAfPgjHyKMXJxMntnLCxQKBQxF4dgLL3L48GEyTgqv10VRIGU5tNst9u7fyejoCEkiPIQHB4fYWF9lY72Kpmv0vBZ79m4XvMUwQFVUiBLCIMRLEhQnxY6BQVK2w9ylGTy/Q7kySBjHNDoBBw4cQJYlWo02l6am2bZ9G4apc+LECQ7efEAkEcs1up2A0kAZrdUAJaLba6GprwaIlmmSdhxmLs0wPl6h3XVJZUsYis5dd9/FlrFRtmzfhpQoNKptatUNDt16GElVIJKRk5gkDJEihcZGg+mps9x11+2cOHmGHTt2bCYoURSi6yaoCooc8IlPflJwuhVFeI4SY1gpOp0OUQyaaRFHMb1WA9tOk8QKt995B51Oh30Hd9FuNoTPcdYinxb2QI1WFcdJYaXzPH30BeYvzzEyNIqqSMgKaJdqYpw5PEQqk8aRII5diCN8H4ql0X7iFIvERkooFStkRrfiehuEYXPzvq0srzE7P0dhcIjtu3az/sqFzc80w2Z9bY2bD92MLEt0Oh0mthR58dgLnD17jp/+mQ9jmArd7gam7ZDNWRw8uJNmc51UKkUMWPlxvE6TTFrDT2RIF4m3vYN7U2cJzl3GOm/i7RwRVlW9nvBFdbv0eharK+uUKxX8MCaWZQZHxnFn5qh12vzHJx7msQtnmN1YB2BbscLH734nn37nu6lurDE8PIyaGPTcLqol+Idd1xdKxIngLHtuQK/rkc6kiJNIJOWNKkdmp/njZ57mqbOn6IQ+Rcfh8JbtfOKOe/ipu9/Zn1cioZqaSARhhB8kQr1Y0fju1En+6Klv8/zsFLVOm3zK4fDYBL/0jgd46N139S0qYjRVIAUsR+H/+d3/wsTEVn7sx36MPfu3s1Bb4Q+/+xjfPHWC2Y01eoFPOZ1l9+AI79y1j1+7733UqivYKZtUKo2iCJiyWGMUCyCFwgCu20aSIrywQyKrSImE53tEYUQQBOzcvotet4brejipNLfffjPZXIp6o0q7IyqkxXYXdcsISBKKnOB5bUwzT7lSplIsYNTbrA4XyVkmjm3SbFQZGhnB8wN6nk/PdfG6AblsEU01uHhxSsDAowQlDDlztEkmnSWOYya2biWXzhL5AaMj40IYywsZHh1lZuYyvd4MhXyeXidgcKjC4UN7Ie4xNXWZysAgu3ftwPd6lLeOMz09TRCIuceyhbqsFEdMTIwhyQGj2yaI45iBwTIPPvhuFBnSmTR4Pnany+eefZpP/cb/TC6/BS9xSWUsxnfsEM+o76JoIW7QI5dPU04fIJU+SawaICtIxEi8dc7rax0TruyvH0v1lZ7zrLNU9XEyFitzp7n0yjFuvutejr28gm5VGd82TMqy+MV/+rOsLM4iR0vgW6i6RdV1SQ+UOLUSMueucXhwN8tnn+Ad99yMFOfR5TK5bBlTbdH1XDy/Q8PrYps9PPNJlHtO87Wnf4ND/u9QuvhuBux5NCvibffcg6IZTE5NYTs6sipz6tQUo2NlVEXn2acvkMvm2b33MPVWG0lOyFcMTr+8gST3KI+YKKoNSogc2ySyhKwYkIAuh8iyx8rscfyuRmlskIWVZbpBk4yZJ2U7rAUdNupdrLTFRrOKrSboSgiKRISPokREcYIiqyiyTKzoaBIMlgx0XYG4R0ov42RqjI1uZ3FumY999J+gEOG1XSRJppAf4WM/vYekHYBiMTk5y+KSxOE734GZsklQIJFEoeGq9hrhJUXm1QiwDxWWrnTkHxzDXv2+YJ29Cv8Vsa20ifi5sr8rTVYEhPfq6u/1trvy+lphphvFztcr4vygOPyNJKo3Or8bq3hffd+vfv+HW1h6M8n0je7NFRbA1TY8b+a8fhR509+r5PXNtn8MVdL/HtoVrmGSJCgIdbkE0NMOfruL7Id4vo8fuyiySnSlA0oyiqoQRWLQMXSdIAyR+j1jY2OtbyCt0um0SRKJTqfNk997imK5woc/8lE8vy9AlMSUSiXa7TZpx+HC5CSVSoVCPs/ePXvo9VxkWSadztFsdlAUlVMnT3HT4cOk0w6NWo1iQfiupjMZDlSGSBAqmLmcEMnRDY2VlWXGxkaRFBnXc5lfmqfT7nDfe+/H7fVYX1snl8kiKzInTpzg8C23ks3mWFlaxnM9ur0eumXx/PMvMDY2xvbt22m1W+SyFXpuF1G4EBPF8MgIJ06coNPpYJomhZTDiZdfZuvYOPW6qM6VikVyGQdN05ibm6NarRKGAWPjI/h+SLvdRZIFFLVSqWCaKTbWa2imgaaqhL6PhMSenbuQZZmbbr4Jw5TxWl1GhsdRFJMwjLj//vuI40hw56KI5eUVRkaH0ZS+Cqgic+HCBYaGBtg2sY04XsD4xjTRx29HK2WJwwi3JyrEiipTKhchjlicXySTEerBV8zjIcHzPACCIEJCwk6lKJdLOE6aXreLYWrERJw5c4ZMJsNtt932GtsQSPB9l1ZrA9tOMTw8LCYuoFgoMDk1yezMDLt376RSKRH4Yf+ZRFSFNFmIJ6Hh9XoQJxiGQbvTxo9CXNel3WkzMDzCgUyGVrtJyjJJpx3GxvpVm5TF4cOHUDSxCl8q5ej0PDqdDpOTUxzYt4ckCnntMCWky7Zu3YqqQVo2NoXBbNtk567tyLqB63uMbRlneGSIbq+LmbLRFY319TVSjoGmpNB1jf3799PpdOh2u+i6JhSZ4wgkiXarhe2khMiWoQsOYn+RSkbeDAaSJCFOYjrdDp12m3Q6RxCJir9liQWbbC6LoqjUqnVUVSWdSZFKpVAUlTiOuP/ee3Fdl7W1VQxDY2CggtS/1xAjSQjIapJgWDrzC4skkkKpVEKRJGHVkYixJo4CZEmi3eps3rVMLs9NpRLNeoNyqUTk+2wbLqMoKtXqBs8+9ywPPfQQa2siIc1mM4yMDLOysozvu9QbLSwrBbKK1+hSKhcIAq+/d2GtkGiaELyyDXphgK5ruOXdSOYaqVemYeUMbmUvmqbRbDYZHBqh3eohywqf+9zneOCB+7BtE8tIoeXTvPf//m0u14RqtaVqBFHIqeV5/te/+Qv+v+ee5kv//Ndxez6yJPinuqERxRGGIXiaqqySJCGO4/D7v//7/PynPomqyhimzb/5/Bf5/LNP9R9pCVvVqHY6fPPUcb556jiPnz3JH3zylzfHWlmWN6vyQRTxS3/0Gf7yhSPi+5JE1rKpttt88/TLfPP0y3zizrfzmZ/9JTRVIwwjkjhGNmQeeuh9WJZFGPo8fOIFfu3PP0vTFRxUXVGxdJ256jpz1XWeOHOCX3r7A2SzWUxLwIBF9fLVYFdAEBU0zaTX6xAnEbaTIMvCsspzu8iSjKJIGLJNvdYkny9SbzSZm59neHgQgJQi47U6cEWVWZLQNUMs4mgadLr4skRPltCThPn5BQxTqOBLkkQY+SRJTBj6zM/Po2kaYejTbrdRTAHdD32VZuAiywGB7zO+ZbR/PQIt4vmiyjoxMUEUxszOzjAyvIWEiCiKcNJpnFSKxcV5TNPc9Na1bYtcbpCxLSNMT09j2ykKhQK6rojvJkAiOOVCJVpQHrKORWLo/Nbv/We+8IUvkC1mmZw6x613HMbzAsIwJJ1O4QcuGxsbDA8PCT9eWRYiVm8hJngjTb2vP+aeQNCHYoXZ6SlG8gmXL5xmeHiYF185x5k5g/2H7uTxxx9n5+5d/Pmf/Sn/6T/8NtV2g+JYiSj28WOJblvmwff8c0LPJe6cZdueQ3Q8ieXFGTRDJps3UY00uVSaRhQSxyG9XoSm6ChKm8O3bsNxvsb8K+fZO/2r9JoLLLgXmL64yO49Bzl65Ai3HDrI6aUzlAcOEkew/2CObDZHkkQ8+P73E0UBXn2RWlVQAW69dTu9roREgOVESLHQAgD68yl0Oy127byNIFYpFov4XkCSliE2WVie4sC+CXxP5cj3prn3nt0Ydl/gMgEJBUWWCMIQVRFzn+v1NkWJAj+iWt2gWfVYnG8zqjlomgFJwPzSHJ2LLrffcQ9x3EPb0GhpTRRFYWZmBjs/ILRBjGRzjroRNPZHGWpfndi8kWQ3DIPN964Vj3q9NO3N6Mj8KKun/xDykreCzvxRtb9XnNerrXJu1G60qvHGb/IPtsp5M/j9H5bzer39/108KInEa9ybrvx/tfz5tfyDK4AgJZcheuQp9EKOwpYxqhtVokQSdglIKLJMFPfVaHXBDQE2g4uMkyKOxYR/5swZlpaXGR4eQVJUXC8QCqwSmLpKs17FTqXptNu4nketWmVqaoq1tTW6vR5R3/bjG994hN27dnP27Dn27tsv4Dz9Kl/KSeGk09hpB01XkBBcs3q9xkZ1g3whTzaXI0nAtC0cJ0W+kKNYKSEjs7q6Sq/bo1ypYOg6g0ODaLqB53nU63Wq1SqtdodSqUS318XQdebm55jYOoHnuWia4OGeOn2aYrGApilsGR9jcGCQdDpNGIbkclks2yaKY1rtNoqi0Om00VSNVErY69i2jSyBrtsCBtgP1OqNJutrVSzTIvB9LL0PPUwSOq02iixj2AatThNZUTDMFLVamzNnJjn+8jHSaQdd15AkGU0Tiqjnzp7HtlOomko6kxFBT9JFOfo8jFaIP/52VFWlulGlUa2TdhwkRQSevu/huR4916MyUCbym4RKGjU7xsNPvcTcyjrvuHkfZiwEq955770MDQ3Q6/WEX6SsUK/X2bt3L889d4y3v/3tnDt3XqjfWharq8vMXp5lYmKCRr3F/Nw8hiZj2SblUpktE9soVSokkkja/vqvv0TKdlAVDV03qdUanD55kmePHmX79u3YqRRIkMnlSKVMnEwG3TSJkoRmS0CVvZ5LLpclikJa7Rblclmoxmoa7VYDpe87OlAZgBgsw6TabvMHf/0YAJ/+yHt54dlnqQyUMfQUzWYHz/WxTB1VUSCJQNZISFBUBd3Q6XS7yLLC4sIitXqVXD4LkoptO6iagqLIKIpGLp9FAgFDjULxe2o6Vp8XuYmuEJ2aOImRpSvBPpiGsJZKEui02yKh7nO+3V4Pt+dhmpbgGydiRdz3fVr1Gpquc/bsWVRdZ/vOnSSShHZmmSAIiG4auDKQoOkGG0tLpNNZ5uYuMzxUQSbi3JlXyLEmhLmcnYSex/TcEg8/fQKA3/oXH0dRVBzbJkkiymmbX/zxB/iVj32Q+fl5giBgy5at6JqOoRusri8xODgiIJyJjyQlfWEzCcs2UfpK567r0261MW0Dv9tEkUI6XRfdSkGCUP21M8iagvHKIp3xeRQ5g6FnkNEIwghZkpGkmJtuOogkCZGV9//e/87U+goVJ81//egn+UB6lHcWymwrlHllY4XFZp1zK8uoM2sceeYp9u3fR8q2kOgjUxIJWZEEQgC4+eabMXQdRZX47Yf/iv/ynW8C8Cv3vY8vfvo3+N8+9JP864ceouTkePLcKY5fvoSmqLxj114SBBT+yjj+Ow9/kT/83uMA/Iv7H+SLv/Kv+Xcf+kn+1XveTyXl8OT5M7w8N4upG9yzax+aqqLpBpqmk89nKBYLfPHYM3zqjz+DGwZ89La38dlP/kv+z499gl+970F+9YGHeNeeg+RTDu/ad5CM4wiqB4KbK/epHYEv7ERkWVjtLC+t0Ov51GtVHNtGUxQajRrZdJow8Ol0fAzdRpIEraNWq6HIEqmUTffSZeL5FbSto0RRTLPRZHr6IsV8Dh0Js9Wju2cCu1ACSXDVbdsW1kpxvKkPUK/XECrdAopdq20wrlvIssx0t4Xv++iGhqrKpGyDbq9DgkQum6VaXadcHqBerxOEEflCgcXFZfKFArl8miiGRx55nGKpwOjoKK12A9M0yOezyIqEaaUolSt9qyyFdruD63p4Xrip3NxqNTFtA0lKwHORz82y8eEHOXjTYaYuTJKzHeQQzIxNNpvF9z02NtYZGBhA1zWe+vZ3uPf++3Fy+X4kJMbqH6b9oMTjioVI/JXvgCQRvu/dyG6NP/8//g27hrM0ehHLvsV97/4Yb3v7O3nmyLN87o8/xx/+4X+l3WrhpMpomkY6o/HVr36ZO+58O722Ri6zlcPvuBlUG0UusbFWJZ1VNIRASgAAIABJREFU8bxZvLZHr1enkMsKAb1YwoskQreGbSlEYZskO4c2UsOcuhNHTtNkkYxTZt/efQSBSzpt0+y4tNttzl+4gJNO8/i3HuPgTQcIwpBWc43Z2RVUQ2J4LM36ep3KYAZZEkiHJImExZ8ikyQx6VSayQuzRInM6sYGI6NjaIbN6toUhWyJXjfGdiwGBjIYqoGmxQRBjKrqaIbZ9zuViROo1erCO9vQ+5xwlTiKCMOYjY06d97zDlBAUmTGxrcwOjKCqhqoekLtYptezyNzb4+vf+mvGN+2k9033Uoqm+vHgclr+KivoeK9wdD0jSSjV6xhrkU6ctU2V59HFIeb/PdrP7veiV2dHG9Wjt/Aeb+RuP96n4fPifO6wnl9I3nJG3v/7xKOfK0A7tXtzS0GqKr6Q3Fe/0Emr28t8btRGf+1D/iNIAXXHk8krwnKh15NXq90lisd53rwhWvFDn5Qx3k9z6w32vGu165OXpMkIQojNFUl7t+nq6szIAY4JAlkiSiJ4UuPg2Ojlgt0u118z6OQzYgV/jAikRSiOKTTbm8mZVek5f3Aww+ECuv4+Ba2bN2KrCgMDQ5RLJWQZUUYyMsSURgwOTlNsVTiySefZGV5mbTjsL6xwaH78lgFn7Q6xp49ezfvS7PZotNtk8lk8H0fwzQ2rxkSAZ/sJ0kpx8FKWfiehyxJxFGIoqib1VkFlUK+QDabo9frgYQQaYgFDC+XEcHQ1omtwktucBBd1bBMk6npKcGvzWaJophSqSJ8SyWYmZnB93xefvkkIHwbdcvEMA2SJKbTbrO+sU7ayfR/Y5lz586wvLzE8Oi44IEhfEUty0bTdKamp3n8sW+ye/dulpaW8D2fv/7iXzExsRVZA13XSNkOSSJjGjaGYSLJIdt3bMc0TBr1BoZpI0kqxVIB0xICWJIsISky0tQxpGWP8Dc+SJj0OWq6ztrqGrOzs4xvGaXdEtVkTdN5+ukjlEpl1jtgFrbhuT5/9a0jLFcb3LZnggFb58EHH+TIM09RGSiL6nQicfbsWcZGR8lkMoyPjwOCT5py0ui6TjrtMDoyCgn87d88zO7de3DSVn8iFGKtz7/wIuNjW/Bdl26vx+7dezh//jyWaTI4NMT6xgYXL13i5ePH2bd3L4Zp0vNcuu0mcZKgqJpQCXYcNFVFkSUsy8QwDFzPRdM0Nqp1VlZWyefS4l4qClEYIuyEEmqdHn/wJZG8/sKPP8De3TuwTAvXFRiFdrOJZRp4bo8EOHrkWYrFIrLa9w9MWRi6juNkyBeyokIXSciKyurqMul0SvBhDUNYoIRB3xdXJoniTdXauK9GqyiK+B37/GuRPMiblTBZklhbW6PTaZPPF3B7Hoam0eu5nDlzliRJcByHMPCRFYW0k+Ly3DyO47Bt+3aCwEdWJIwzq8iyjL+/gucJCKiu6XjdNk4mTbFU3LR0WVyYw4lWUBSZalIiSRKW1pv8zfdeBODXP/EBZBI21taZmZmlUCiiaMILNJvNMTQ0JBQikxhJlmg0qmSzRRrNGtlcikw2R7PVQVONTfXqbrfLxkaVgYEBYmJiv00SuiiqjGakiPrjg2EYxENZzGMronKbvYQka0RBGlVRWV9f55ZDhwgCn5Rl80dPf4fPP/80AJ/7+Ke4b89Bdu7Yxc037eXyy68wlivwYnWFi+srlCKJu/fvZ+/ePUxOXiBfyHF59jK2baPp+ia//4q11OLGGp/8o98jjGN+/NDtfPbnfw058VBUBUO1uWP7LqI45qkLZzh2aYp/9vYHsHWDKAxRVJW1Rp2f++zvEsYx7z9wiM/+s39FyrSRUNEVg7smdhH4Pk9Pn+fYpSk+efe9pAxz8/lBSliq1fjw7/0neoHPrz7wEL/3iV9irDwARJi6SXOjzu7hMR66+RZ0XUVCQHWSBKJIeMBKkkIcRzQbDVK2Ra/XY2O9ysjIKLl8BtMwiOMY3/fJZjMkcYznxSwuLlIulQn61i8DA4MCzbG6gbS0jjxQ2nyWC4U8vueS9iM6js3p+gb5fIGLl2bIZtJomkaj0YAkoVqrEoUBUZSwsVElCEJ6vS6u67ErI/y1W4MtRify+B1V2HapopI8N7fAyuoyBw4coNPu0Wi2OP7SCVZWVmg021QGBmg0q5DIHDx4mEqlRBzHDA8N0Wo3hQ2YZRMlMjMzs6xX18nl8yj9RbYzJ0+iKAp2KtXnGEMcBMgtFyZnkX/5Y0xdmuWnPvIRnnnqKX7h5/4pl1cXyOfzYtFUVzEMgzAMeOKRR3nv+95HdMVP7gckr9fGF28myL8i7BN95TtIkkTvgVuQm5c59eTfoKeKDO2+k/f8xKc4ePhuel2PZ48cRVEU3nbPPZiWja4WeezRxwjjFtt2DpFKS6B6TOwq892nJrl0scbFmTaXLzf49nePcvjWO1D0mG63SRh2aHVqOLkMmmWwttAm9BMCLyDwfLRClcv6Nxi69CleXnyUubk1SsUyvW6PmUuX2bVvL5VKhdHRUWRZ4o47bqfb7REEAZWBHLaTp+d1KZTSWFaBmcsXyKUdVE0sNgn/aRExqYpCo+Vj2xn8MKS6UUWVdar1Ogoatm0iqTHQRpa6GJqBLCskiH7f6/WQFQVJljF0kyvc+CvxZSbtkMnJjIyNoJopZNkgjhSSvpiebpgEkYu9niOVd1BvqyF7XVbWazz0Ez+Falh9j2/p+35D+nHhlcTyatuZ6yWGbyyufTVhvV6yfPX+Bcf2xrxS6ToKxVcf+41a9lzvvK9XtX295FW5I3zNdje6tuvt8/Xu0/Xam6kqX++7P6iJtYQb7fuNH7M/d/1Qyes/aNjwW21v9oe/3vbab/3L6+Lur2z/g/D21+739fD8P2g/b7UFQUASxUSKQsyrgZvwN7zSWUBK2Ky+cs9hkidfINk6wvaduzh29GnarSyWk0VTNSRViBhJfQEkTVU3g2QAO5VC08NNVc0oCnG7HUgSnnzyafbu20ulVBRctWyWxcVFGo0Gt95yC0NDQzjpNHJlEtf1CNdDHCdFFIdCSbLdJAiFuufU9BSHDx2m2WwQxwmZQhZF6ouJRBKtdhPLsSHy0XQLCZkg8FAVnThJCP2AOErQTeGVaJiGUNNEQZFkqhsbGIYh7CBUFdf3OHf6NHv27GZwcBDLMqlWa6ytrTEwNCqEUDptJia2IEsq3/nOU4Shz/3b7ieWQJFVjDjESTmk0yl6vS71eoORkTH27t1LKmURxhFxLKHrKt1eB03VkSTYvXsnhUIOy7bI5ws0mw1yhTx+EKBIEidPvMLBgzdx5sx5BiqD1OsNbrn1MHEsgsOzZ89z6OZbcJx039pD609gMnH3MuqRZaLf/CCxItFqNMUAJauUByoMDA8RhTGBH9IKe2SyWeyUQzqboVIWsFqQ+56gIunevmMn/9dfPMyXv/0Ml//jn6DIMod3b+NXf+qDJIuL5PN5YYcQx8zNzzM2OsZXHv0mPTXFky+d5sLcMour6wR/9jhDxRz7twzwm5/+OEP5DI2q8BWuVqsMDw2haRrZTIbnz8/whc/8BS+cmWSj0UZTZf7fo/+O4VKO99x9Cw8c2MLB/fs4c+oUA0PD6LrGt587ztFT0zx78gJr9RYb9Ra5TIoDO7by0++9B1OTGB4ZFTBHQ0aVJNxeh2uQTkLZOgjQdZsvf/krfOQnPsRXvvIwu/bsZvriDKqiYlu2QC/oOlHgMzm7yO9+4RG+dewEG43W/8/eeQbYcZb3/jd9Tm9bzlZtUV31Zlm4SLKNC9gYGzAYMC0JJUDoN4QASeAmQAgYgiG5oYYQimNDAu6WsWVbsizbsiXZ6tKutu+e3dPL9LkfZrWSwSamBJJ7eb6sdOa8M++ZMzPnfZ7nX8gk4mxZv5IP3PAy6pPTrL/+QwDs+8GNtKajQX1JFACRH959P0+emGDXvsNMzBTIFQMI9EBfJ9devJkbXro16PoC4pwXcXNLM4Njk6S3vA6AR7/5KSbGxvjBjr3sPHCUqdkS8WiITcv7+dDrr6I1GScSiVIuFUgk4tRqVUJu0JUcnpjhc//yE+5//AAzxQqZRJSt65bz/tdfhes6nPvmjwKw+xMXsiAk0JptRpZDxIZn5s9ZSFepVWpEIxHMRJIH9h7i9X/xJQCm7v4GqhpAfmVFwvNtnjo6yldv28MDj+1jplxlplghEtJZ3t/NS1+0mldu24gogOe6gIBl2xhGg5guYDkmltVAVgJrFlEMinXGi7rQdw0jNHVihk/gqydwSptwbIdGw6RSrhENRfjuYzsB2LygnwuXDhCJxLAtyM+O8qLN53JZLM6d/zzKSDHPdFRm3fp1uLZDe3s7oijS3d1FuVxFj4QCsSsPTNNEkgUeGTqBYQcwuvdf+nJ838V1LUQxBL4MgsN7X3wln7r9VuqWyS2P7eKPL74iUC4Gdhw7ND/+Qy+5BknwEEQZ03bnFlsS77/0aj5zz4+pWyY/3Psob996+fz3IAgiN913J4V6jY5kmk9eez3gUa1W0DQJ3/cIh0IBRJw56zQvgI8HhQoZUQzsRWQpSKos20TXFRYv6Wd0ZAI1pBKLRqlUKmiqTr1uzhUZBQaWD2BZJp7rMTQ0jKrohMIh5GMjyOFQAIuXBOLxOA2jgeL7SDWDb+5+iBdf+VJGRoZ5fM+jZLNX4niBp65t24RDIcbGxohGYyD4QSHWspCk01w8gd6lAVqmPC7RqBtEQhE0NUSlUqHRqOE4Lpqu09HexdHDJ1i+fIBTQ2OBUFdYorkpyuxsBctsMDY2xpo1q9m//wCDg4MMDCxjxep1dHR2IMuBOM7U1DShcIQjh4/Qlm1jZmaWltZWioUCiWgMf3Ac54K1GI0qre1N/OVf/xXV2VkczyabzaJpGvv3P4UeUunu7kZRZPL5fAAdVvQAjvxfGN4zEkgSwoI2XMfl/rt+ROH4Htra21nxossg0kFH20JGcmVS8QSvf/3reXzPHnRdR9QUBMdk+31389GPfwBBNBBlFUk1OXB4L4oQp6m1kzWXvZzbbv0+fcuWYUg2mjROzbZIa2F8s44kaoTCYRLpFmJhFcF3yedn8ByfTnkzXrjAyoFFVE0N2yozMjJCMpVCFmV0VccWbA7s20dPbw+qqlCtVknGO3G8GqKU5NChGdqbenDdJKKozFXGAxV7z/PmLN78gIKjJihUqkiSzBOPPsKqDRfjmGOoIQnb1hg8UaC3W0VVNBpuHVmW55Tmlbm/gT1WKpUIIMmCiO87FIo1LNfCcn0O7X2SFSs30dqa4t577mTx4n6ybT1E4hJu0WNn8y7OFWOcPHmSSLIlEEbzA5iy5z/bMuZZ69j/omvk+Tihp4/7y4z/XUJczz7+/wuw4f8O8fvk9RfEsxPFX/b9c231no7nTF5PV1Key+D57PHPt98XGr/KDf98IUkS99y7nT/70z/lznvvoaUlUGF03TPyTaI/J9ZE8FfsaAHfC3iwQrDIPPjMfs67YCuG42G7Nr5jPYs3K4gikiAgSOC4brBwFgQ810OWZXzHplauUq9WSKczGKZNtVoN+Fv+maRa0zRyuRyppEWlUibmuwiiz9DJkzQ1NdPc3IQm6jiey4YNG/BdD13REHwfz/WxTBPHrjM8PMzBQwe55LJt6LKHgIvni9i2SyIVxqw1uP3Ht6NqKlu2XEg4Gg6+V9E/07H2vfk5iq5LrVbj8ccfp1wq8eJLXzyXrARKtZIoBZ1BPGzb4sjhg/Qs6GHDxjUBKFsUqVTKRCNhsF3i8TjhsE86ncE0LWzbIV8oEI5GkSSRRt2gVCqSSCSIx5MYDZPuBd14nkcsESccCfPa172O8fFxFFlm8aJFaIrKwNIllCsl4nEdyzIZHx9nZqaA4zh873vfJ5lMc8VLLsHzPFLpJKLkIW1/EmdbL8qidqx6A1EQmJqa5o677uayyy9jYGA5lWIRRdao1upIksHll70Ex3Wp5oeIxhKUTAnXDaqUtUad1/3FjZyYyiOJItGwTqla56GnDvHQU4e4fusGbrBsfM8jEo0iCgKqqvHgsSlu3r5z/rqMhUN4tsupyRlOTc5w396/4FPveBVrF2RxDAPTMujr70VVVf7j0Wf47Hf+Y35sSAu8fkdzeUZzefYcOsn5N36EkVPDdHd2IYgS9+95ij/466/Oj9Hm/FRnihUeePwADzx+gCvPX8eN7309yXQGz7OxfQ/bMvDcM88ATdPRNJVyuUSpVGDJksU8/OAOli1ZAkhk2zro7+oiNzlJa3s7nuuyfefj/MHf/BMN056fb7lW5/t37+D2h/fwhQ++5VnPA1lWEASoVCo8tvcZ3vI3X5/fLksiuqpQrNTYte8Iu/Yd4dbtj3Dr5z+Mrip4rk8hH0CTxbOeJUeHJ3j/jd8mVyzPn69cocxtDz/Jjr2H+MkXP8rqbBv1aglcm5mpcVokhZ2jw1z9hzdRqRtn5l5t8L17dnLbzr3c+L43zx9DaNuK3BVjdHKMplTbs5RQG/VKYEmTakYQK7hnwcV27XyEczZtQNUkCoUcuVKNN3zyzHclSyIhXaNYqbHzqUPsfOoQP37oCb7ygRtoaw1stIyqSTQaoTQzwlduP8DffW8HAI//62fo7cgiiuAsbyX000HEskzI6aEeO4keL9AX6uPfvn8z7e1ZhkfHeWJ0CICLly4nFNYxDQNVjZJJZ9A1HUmSuHTZCr7+yIM8OjZIWNfnfHvNgO+thTEaBjO5GTKZpoDGoOuIIgxOT85/rkUt7fh4JJJxfE9C8BU8zyKi63SkMvO803defMX8tTGSP1MQWNbWiUiDcrGGGo4iiCqO5xEOq7QlUowV82w/uP9ZyavnCnx3d9BVfs2m89EUGd/30EMytung4zN0cpC29izNbQGKYno6RyQSQddD5AsFotEooihTqpZJJGJMjI+QiMfQNZ2u7jZcUaFaLpNpboXTv6X+6WKMz6OPPsqhg4exbJtTQ2N0d3ez3vXwVJUjBw8iSiIdHe2EdJ1QtcGQrrBk5UoUWaatpZnMSy4nXywQi8WpVytomorrOiiSSK1WxXMDBWh8D1mRGTNqRGMxQnOeno2Gg67ppFIteJ7HuZs24bg2ruMSDkdpNEzWrF2HrIisWbsO02owPjGI7bgBpLlcpV5rYBgW69dtZNvWizGMBs4cNaW5OYNt27R3dHDs6AlqlSojw8Ns3LwZx3apVgwmR6aJnhpFy0bwakWEcIyXXnMFiVAExXExBI9Go8GaNWvwcXEchyNHDvO2t73tt7bId3eoOL5P6ON/jNNooP3H/8Gq5RgdnaJHaCEZ7+PLf/91mvp76OnoojAxQSaTYXx8nMMnT3LiyMOcd+EK9j5+iK1br8CzPdpaFxEOzXLTd/43b3rnm3DkGqu3bKO3u4N6bZLC2GHMWpqnnnyYhX1ZHrjvSdads4mmzmZmxodxLYOm5gSW6yEZSfLqA+iaj42NIHq0ZiM8feAolWp9zmfYZVFfH7V6jdamZppTGQyvQWtbE0/tfxJdEdj39GE2bgwQQLMzs7RkMziOjSBIWKaD6ToYhkh+dJZINMH09DSaJFCpDWNVLWKhZmzXpK9vCXatSKVWwfdcREkMGp6Cj+vZiJ5PJpPBcQPoeq0a0Ek0TWHwiIGsC8xM19m9ay+veGU7F23bTN1wiMdjWG4ZVVE4euII6+21yLLMokWLKBaLxJuzgTL4z1wX82vcuULUf0U8ax18Vpf0bKXjX3Ts/w7Jq/4n9ukZAL9PXn9T8T8qeX2hSdyvRyY+c4OcfYhf58J/vrFnK5+9EDXh3xa5/Ozx0lknwfM8ZFUh3dKMJno8uvNBzjnnXGRVwXGDz3J6GS66oIsSLiKu7c6JrbhoeojZfIlSuUo0nkBGxPQUPM8OVCZFAde1kSQR2xYQJWUetlyulIhGIniagqBKXHjhBWiSRGEyRzqVxo3YpNMJ1pmr0XWFkeFBXMeldblCW1sbtSGfwZMnkSUZz3UwDQNFDeH6PjYukiSjR6LIoozhGNx227/TqDewLINoPEQoLFKYqZNtS/HNr3+dy664nGgyQd2q0N7RQjKZQg+pgIBpWqiahiKHMM0GTc1NFIqzVKol4tEEqVica195DaIoUjfquG5Q5Xd9D0G08FyFasVG11UGT02gKDKu4CF4Lq5pUJieoa6qJONJGjWDeDJJpVpBD4eIxeIYjQaVch5NCwWWGJKGICgYpo2s6VhmnVq1AQhEo2HqZolQTMQTJMLROJbr4fg+8WSGcrlCo9EgnUzjOdDT2YMiySRiCex6HcM0SEYieIOPIzVcii9ZR9x1kTSdWr5IV3cfgiDS2dGJ0ahRzZd4cv/TRGIxNp27EUkwadRn0PI7cYoSR4oLsea6P9/fvhvDsnnPNVt566uvIRFPMFOo8J7P3MSO/Uf43gOPs35pH29+xRXM5os89eTTDKxaTndbE++45mJ6EipXXXYxiqpRrzd4cPcT3PH4Ie58dD8f+cdb2P3NT+GL0N7ehu97PHPsBJ/71x8DcP0lm/izt7ya3PgoyVSCweFh1HiGHz2wB0WT0MIq4ajOseMnicVjXLPtXF714hexbmkf+ekpFi9ayvD4FDff8xBfvvUubnt4L+esXMw7r38pEgqmYaCFIpiNM3YEhtkAUSFfrPLk7idZuWoFpyo1BlZmA47bTJFoMoViG3h4lGtV3vvF79AwbXram7nxQ29h68ZVOI7HEwdP8MHPf5P3f+5bZ+5hJBAVXM8nHE3Sv7CPK85bx8u3nsPmVUuIhTRi0Silap1b7n2YG797G4/sP8In//H7fOJtr8a0TGJRDV0WUERlfr/v/ruvs6i7je/+9XtpCivooRD7hyb4k89+nanZIh/+0re586aP4Qo+DcemY0Ev+WeOcv29P6ZSN+hpb+HPrr+Ml207FzWUYvf+p/nTL3+HD37xn+eP4QhRXDFNKqUiKSIe1vw2RQ6TykQYPjXGj398G7PWmWfYycGTLBtYStQNIaMR1UUu27ya6y69gHNXLUHGoaW5hUK5zO07HuV/f+2H7D5wjM/+yx38/Z++nWKxQDTRBI6LFHWxnL3z+1ZFETwHy3aQNBVrRQvScAm7P4NiNGPqp6iXYjQcg1KtjNMUCZQ4gTW9PRRLJSqFAq0tLZRqFsl4gkKxSKsWASBXq/LIvidYuXgxHR0deB7kpmdpbWlBkgV830EQJFzPxfP8Zy0wXd/G98N4rjznWVxD9Dxc3w9Eu4Cnx0YCCLsgIwgevn+mEOk4Ao4joukq1UoAs1YEmVqjiDenPPr06DCOAYIsIKpwdGiQiVKgIv2ixcvZe2qIz9/1H+w8fohCvUYmEqM/muQjL38127ItiAjE9AilYgknbBGLRvBFEVGWmRydoCXTRDLRTCQSplavI8g+2HXMeoVapUhTpgVdC2PbDtO5adra2mhpbuakdpJstoWhoVMk4mH8mRJ+U3IeIut5HkKhTMO2aLRnWNnXje97GLbJ3qeeYsvWrbiugywIWJZFvW7hC4FAlueBKMg4vodtuQzpFhHHZIUYQpEVFMWit6+LanU2sH6Kx/EcG11TKBSnQRSRQ1IAIRUFJFmlXDEolhuYlsDsbI6OznZ0XUYP6RhGg2KxjCBKFGYKtLW0oYdDuI5D74J2rIs20dfTj+2Y6FqI1tZmVFWG4RFqhktLNIOoKeDA+NA4vu0QSbYQTctUqmWSMRXRqDFz8iSLB1bgaRq+a71gSOXzxWmhubPpUYFonoYv1EDQEJCw6gV8ZxZv/AjpkMi+3AwP77iX17xhCZ5jcfLwPi44Zx379z7GlS+5ipPHBlmzaAW5gydQah08/PRNXLD5YoySSG7yy8RDcT740dciCa3kZ2vs37OLJb2v4/o3fpi1q1fyxjdsoSGWMMUCqmhgTp7EbT+HSPMqauUpGvIIplEmUevBjVpUjTJWvUEiHqNcbhCPp1g6sBA8eOqJvaxY3htwvnUNw/TY+9hBavUqmupRKhZw3AaqvBzPrRJPxbA9E0QJx7KxrAa2LVAqCezY+TRLli5h4aKF4EOt0kCLqDxx5EnWrF5LRJLYvX8nqxZlsfwGsuJi2RDSwmiShyKAaTbwRRvTFpAUEdfxMRoOvlDCbkg4tkFzfzcz+TFUwSeR7sBwSlQLdZqtJvoGkrzmutfyiktWsP+pfWzcVqTuWHQuaMO3wHuOlCEo1Atn/j0XZ8N7nxv2+vxUt+f6t+f/fBPI9/1f6EHsz9FeTqsRnz2PXxVWOz/7F3B/nL3Gf65xL4z/+vPd7ud+35lmmOu6qKqKbdvP6pa/kHhh5+R328WG/498Xn8bcTYO/3Q43/oRzrd+9Fs5NvxmqkvP9Tkg8Nbbtm0bt9xyC4MnJlm8aAUCCr4nzXt7nT3WcRzcdQNw/FSwTRBobmlnzfoNWLZDpVKlWqshCKBpKp7r4jpuAA02AnVg13HmqtHlOYhewMlLJJPE4lEq1RLVeplSJQ8CVKtVFi9eTHd3NytWrKCpuQnHdTAaBuVyhf7+fvr6+ojFYjzyyCMYhsHI8DD1eh1RFKnWahimie/D+edfwCtf+SpuuOEGrnvVa5BEZY7jIvKud7+LbDaLIIqEQyE2bNxALB4jN5PDNA1c10EADKPBsWPHmJqaIhaLk8lk5kR7QsRiMTKZzLyisWEYLFy4MOALzinv6rrGOeds5KKLtiFJCp4bcEiTySR6SAPBo1QuYZgGxXIJ13WpNeoUi0X0cBjbdXDcAK42NjZGIZ+nXqkiSzK6rhNPxALhH1XHsmwOPnMQ27YZGRlBEASefvoAjXodfc5zsrW1lWg0ysqVK+no7GRiYoJwKMzE4cOoj49T+8NNpJuagoWZ4NPZ2YmmqVz3qusYHx9FURXGpyaJJ+LkZnJIUqDqq2r6PJRq6eLFxKIxAKoNk+vOXcJ7XncNuirzzNMHmB4b5LN//GqWdTYD8H9uf5B63USSZM67cDN33nmVZGBeAAAgAElEQVQX73vtVfz1u97AG697OYX8LIIgcPjIEZKaxLc/+QFetGIRhmXzg3t3Yds2+XweSZLY9dQhPN+nv7OVL3/knSQjYRYtWkStWuOSrVvYtGIxn3nX61jR10W2rY2JiSkUVWXLxtX808feyYvPXUU8rNLb14vtWAiuBYVh/uCycwH4xn/8FBDxPZHZXAHbcua9iCGwOiqXKgyfGiU3M00+P8OatWsQROjpXUD3gi4mxkeIzHHqvv6jnzKdL6GrCrf87f/igtUDgfekLLO0q4Uf/t2Hkc6yGHBsC9e2EYNqEl3ZZv7pI2/lVZeeT1dbCwI+sqIQi4R4yzWX8q2/ejcA3779ARzPJRpL0NTcgo/I8KmR+f02p+J85cNvYaC3g66uLmLRKNs2rOBz73sTALv3H2V4IkckEgv4jK7PjTNHmKrX0FWFf/zgm3nt1Zdh2haW1WDtkh6++dE/etZPpONY+PiYpoUoSHjema2NRgNBEGhuaeI1119HNts8v+3aa69FkiRuv/12ZmZn6Gxp4jt/836u3noO2UyS5qZmPM8jEtLZvKSD73zyPQD8+8N7GRw6haooeK4Fvk9TOks4FD3rWekG9AFZQlFUGps7kaerlAoFBCOMIFawnVlefvW1XLTtEsbypfmxSSVKJJxiQfdiLFOkra0D0wpQKB3J9Pz7Ik3NKIrO5GSOyYkpdD1AQhiNBoZhMJ2bBgJIX1rR58cdGh9FFM9w61zXpVqrUjYaTJSKAEwUCwFk1/fxEOlKt8yPPzg5gijK4AvE40lqtQauCxXbZrIcfI7xYp7jxw4zNTGK0ahydGpifvwTJ4+x7TMf5Yd7d1Nq1AkpKhOlAg+PDfLSr3yGT93+Q3K5GRRVR9V04okEiiIR0TUE3yMSCQE+kbA+B5UNYJayJBGLRYPukyggCD653BSVSoVisciSJUu44YbXc/755/OmN72RzZvPRZzIIba10N29gM7OLuKxOBHHR1y7EgSBUChEJBKhUW+QSqXwPBfbDqgIMzMzTE1N4XnBtWdZ9hxMU56jNwhomoYkBgI8ra2tCAR+s5IsMzM7w0x+lpnZGSRBJJ1MUymVkAWJarmCbZrsfOhhSvkisijiOIF/rWmaDA0OBddmJExID9HR0YEoCBw9coQ77rwdz/MZWLoCXQshiQq+JzB8agRFlml1BbpWL8cXHOLxaNCqEHxuvvkH1BslwGNiYgx8kcGhUbbf+8C8MOCvm7i+0AiQIDLVapWa0SCRSPGKV7yKa655Bc3NrfiCxNYtl+J5gehcKBTippu+RCoVZ8tF57Fu0wK2nv9q7vvpD/m7L74Pq57i+PFJ7rpjF7t37SQUFnEck3vvupubbvpHBlYuJ5XpoVCM0NO7BT26gEIdpkeOkgjLxCNR7JqASAhhZhERNUpLa5SurjSybKDKBqtWdjMxMcGp4REuu/ylWLaPYTk8vHMngiiyfPkAW7ZcyAUXXsgF559PS2uWu+7ZTrFUIhSK0ai7+I6MLGtEo1GSiTCZjEZvt46qVslNn8C1a8TCKm2tzXR3dlKr1KjUTNo7+wlF02h6DAQFTdUQCOg5lmXhIiDLUXA1FClMJBQjmUywdFEfsagKvkM8niCZaqa5pQPHtPAcF6EqQRiEtMJll19JPl8gnU7T2tpKd3dP8GWJv/1e1/OtRX9ZvurvGjL868TznYNfFKch5b9s4vo/KX6fvP4G47kuMnfHY7g7HvutHPs3ua/nu1nC4TCpVIr7tj9MqWjg+8GPSlDx8Z41VhAE/O62wKzTB8f1iaVSNDVnESWZaDwQ3pDkABYsyTKCKOI4gT3CaSESSZLQdI1INIIkSXP2GoAIlWqZzu52HNdC0zRS6fSclYRAvdHA8wKvTkVVyOVygQKlJCHLMolEAlVVWbCgJ1CstGyGhoYYHBrEaJiUioHZfKNu4DgukqQCgcKo67oU8nlc150THlJIpVK0trQSiUQI6aHAakUU5vlJkijjeT6VSoWhwcFAdXmuWlatVgNooG0jCiKaotDR3o4sSdSqVWRJZHYmT256Zo4bJtJo1FFUmWxbG7IsYZrmPC/FdmzKc7YueihEJBohnUwRj0SJhEKBPZEkUK/V52GrqWSarq4uFFWho6MDWVbo7+8P7CIQqFVrjAwPc2LwJFPTU7ieEyz08MmeGsc9N8F0Kkq+UMB1HAr5PKVSER+fRDJOV1cXruuycMliBlYs59LLL0VWFRqmSbke2GnIskwylZjvDGXTcd7xqpcRCkepVasMDw9SrRaZnBzl7VefB8CxkUluveOnCJLMjod2sHTpMmRZwXFdFEVl+fLlRKMRFi9exLr165mZneWK89YDsPvpowiiEHDJFBldCR721YZJw7KJxqLkZnKBGqsYqDcGHKCAd5xKpens7Jqv7tqWhawoc4JeIj4eC3v7uHjjSgCGxqcZn8rjewL79j2NLKlU69X5+ysRT/D4nr2sGFjBDTe8lrXr12KadTJNKRzXork5TWdXFkkKBM1+smMPAC/ftonF3Z0IvoDg+TiWRbVUIhGW+YOzxOIGT5ygUipRzOcx6g0cx8WybSzTnLcnEvBRFAlB8FnR30EmEaXWMHlmcBTPB8f2kGWFaDQyv9+3v+pyejo7iUSieJ7H5OQkvuezdd0Aihyc08ND4xiNAEouiiK3PfQ4ANdctJlz1q7AtB3iiSSFwiyqJhPVVd5y1txPPfkTpNknqVfrCEgMnRye31apVBkbG8OyDCIRnb7+7vltgThbmcVLlmLbLpVqjWq5giSKgXCK5wWWJq5HNttGOiTSlIzRMC2eOHQ04FP6HiOnhvE8iQ/f8DKOf/dPGbn146SjAedVlgM7JCem4bbGSBoiIhKKmUGNngpUzMMxjpw8OT+vtqYsiXiGY8dPcfDgMUrFCgefOcyhg4dJRs8kyDYiqhLCtoLnYvB89ajX6xiGEfhEC0FyetnKtWhz/NW/vetHZ57hvg++gK6H+Mwd/z7/uuO5uHMCaPgCW5euQp/jm3/69ltoNEzwRSYnpubEYARuvOeu+fGu71EsF0gmYviezYnRM9/Jp++4lZZYgm9c/0fMfP5bHP7Yjfz0XR/lnM5efN/nE7fdwu379yKpGg3Dot5oUK1UyE1NIvjuWXZFPpZpUK2WqVTKiEBI0+jItlMu5PFdm4mxUdras4QjIRA8jp84Siis4+MizeGBFFUll8vhez6SYeECQ7mgGDAxMQ74pDNpVq1aSaPRmOvWuESjUVpaggKHaZpz3RQBz/OJxaK0J1M0R2JzC2SBsbGxebXXYrFIMpOit78XURCZnJikXqkRCUUQ/OCZahkmsiRSzM/y0I4dGKbBipUrUVSFWDyGIIo0DANREkmnUli2RWu2lQ0bNlAqFSkVK9i2z/CpETzXD37XFBWpVmdycTuC6DM+OYaiSLS2ZviT9/0J0USEoVPHiYUjlPIlXBfWrT8HVVXnLpffDrRREASct32S8P/6KqIYcLdHRsdo7+xhcmqWNWvWoWsRvv+9fyMUimCaJh/44HuwnQaxZIRIwqKWD9Pbm+K6688noveTSHTxpc9/m2QqyqEjT3HnHXcwPDzK+9/zXhBdDh+dpG/hFmyhk/sfPYYhxsnnhqkVc8iOTyzUSjTSPGda1sC2q8iSi22WaGoKEdIcJsbHOXH8OJ4PjYaN70u0Zts5OThErV6jVC6RacowNHwK23YIR8I4QK1mEdZS4Cu4TvDcUWSZWFTi/PNWsWxJlkxKZXjoBLVKAUlwaW/LkkwmsUyPk0MT5EsGjieCIKEqGp4T8MPxQdVDOI6AKOiYDYdCvoDv2/i+jShY+K7NyPAolZqJYfnIokilVCGmxxFlgQP7D2LaDr29vfT1L2R6Jo9lWTi29zuBuz7fWvS5VW5/Pv47JK3m9yTM7//qif+vkrz+/xD/o2DDvw7f89e9iH9Zeesz7/d/bvzz7ff5FNp+tqv6QlXOnuv1X8Sz/c/2dfaP9/ve+0H+/qYvcu7mjXT1dNDUmmR4eIi+voXz40UxEPNxAa9cxY8GPopqKMxDO3eyedOmQJzGcwNIsqIgCgIhPQSCgDhnUg8+qqIiiiLFfIFYIonjWEiiOGd14ZLtyOK5UC6XSSYTlKuVADbhBL51QYXcIpfLYVkWyWSCFStWcPDgQWzLJNvWSj5foLenl0gkyvETJ2k06izs76VWq6GpOqIsU6+VkZTgh6I1m523mcD3UXQFWZVxHIfp6Sk0VcWUbZYtW4rve/ieT6lUpimTDrxF55LGYrGIoiiYpsng4CDr165BUTQOHTxEKp3irjtv501vfiOJaAzDbBDSdVzPJZGMMz09xdTkDP0L+1nQ040gSfiuS7Yti+mZyFKwEBUQiEaiHD50CMuw2LB5Y+AZqQsIooBl2YTDEWIxBQFhzvMx6GTH43Fq1TrZ1raAe+z5WI6NomjIAkgjk4iVOtaWZbS2tQXJm+egaSqO4yGKAtFohGIxj6opCJJIRFeZnZ1FlgRiyRS+7+DOBNeYYdSplMsAXLhuBY4v4LgeoZDGlS+5DEmCSqVMTzWHLIk4rsdjB49y9Usu5qKLLwJfZu8TT5CvNfjBfY9w8NQkk4UytYbxc9z1kakZ9HA4sNpoNFi7rI9MIsbUbJGL3/5x3vjSraxbvIAlfX0B50YQsEyXSqWCIAT2SqdFXSzX5Ws/uo8f3HE/uXKDcq2O7bj8bOx6dC9XXbyFCy/YykM7dhFubprfVilXEVwn4DkqHrIskkwFaqaSIqPLEqroYrsOnidweGgMgBetWoLgC9SrdY4cOcj6DetIxKKMDA1x3qpFfHZu/wv7+gJLFUlCUxUkVUOWLf7x3+7knt37ODmeo1CpYVr2z06bE8OjrFm6FEHwqVar5GZm57dtWrEYURBwHAfLsujt7Q1E1iSJpmSciZkCR44PcvHGlXi+j+v5HDk1HsypLcPkdI6mpjS+AJIcqBvHolE2r1w4f4wlnTp2/jgtfSswDZOTJ4bmt6XTTRhGg3BEJ5+fxTSN+W233nILF110EcuXL8d2HEqlErFEki98+4fs2HeUQydHKFZqmPYZNcjT4StBYcoyLFqamxFEDUkWSKazVCpTiK6B4GvUa3XUUARRlChd2EXqx0cxmyJIfho1OsNPH/g3li06n2QydebaGx2kRdc4eOgAoVAYEBBFiVgsRk08MxdRkHAcj4ce3MnE5ARvfetbOHz4IAMDA3iCEMzPslFkiZZEkj/eehk3br+d+w4d4C3f+BIfuvwa+lvbmCwW+cZD9/DF7XegSBL2nFZBtVrHswLbo7gc4h1bruDG7T/m/sMHeNt3v8YHX3wFvc3NnJya4pu7HuDvd9z9rPGqLHLi+FHau9qp1erz8/Z8n2+84a1csGQlpukQjYRZ0dnNn23cxtuKs0xXy3zhgbu57kUvJtPchOfapFNpRkaG8T0Xz7GplMvk8wWSySQtza0BX9t3sS0Dx3UCn1VZQZJFZEWiVC4SiUTo7evFMAwQQDp2ipoq8/QTTzAwsBzXcQmVa5Tashw/eoALLriAZCqOaQY+1A2jjqqqNBoGhUKBPXv20NfXz+joKKqqUqmUURSVUEgnEomwTNQQ6w4NQaBQLGBaImOjY+iaSiQSIRwJUSgWUDWFdDodUDpKVY4dPsGBA4dYvXo1r7v+tTTqFgNLV+EQWIHJikJS1+eKuQL1Wg1NU8D3qVTKFIsFBgYGQFAolysMnRwmHk1y55130tHRyqVAtrOdWGsLh4+fIHladyIcQpLDpJvC2IZBJpnigbvvZ/2mF2HbNrIsv+D10tncw59b4zyHiqokSXhn3Wae7yMKYBom+eIskuex+4ljbL4qx7HBHNl0E5oWwrZdBgYGOHHiBCsGFvOlm75IcyZDuqnBl7/4IK1dOc67cDV3/ejbbL1kGUZVoliYZvHSRfzVX36Sm770VT772b+iZORxzChtnX188fOfZNZoIrt4C7r5KCOnjtPe0hl4wdfz+EIgUqnoWsBX1nTGp8bIZlX6FrRw3GowNTlJIp1Ej+johk1uOk+lVCISj+C4LudfuIVKqcz4yAjhONiuyeCJE0T0ELGEQiQmI8gKku+iKCKy6JNqbyaqthCPJ6iWCsghB9uRCIXj9PUvQ9ZsVM3FderoEY1qqUo0FkMQPFzJISj2WEiSRCQeBtFHlnyam6JkUhHGhkfZ8+hTDCzpJxENoesh6gctfnDkG2x481qePnAf5Wqdu+6/lXUXX40gSngi+N7vJhGc75wKz1Yanr+GnsV/fXacfu3039Pr3591/Di9T8/z5guRv4ju90LvD0EQ8Kaf/72/yQT8Z+f1X5G4/6Lz8p8d92z4+G8iEf8flbz+Pn63cXYSHYkKXHr5FhKJOJNTY3R0t9Lfv2i+AwXgOA6yLDOzcRmZsSncRQvwEBBEiS0XXMD+p/ayesUArqxTLpdJpdK43hw/xhewHRtNU/E9D8NogOUTi8UQhMCexjAMYvFkYFItygj4hCJhZFnhyNH9hMNhmpuaUD2Fas6ip6dnztdullQqSb1e5+TJk/T39WIbBr0LFnDX3XfTaBhBZXv9Wk6cPEZra2vQCXTnusCaFlhunHWTirIAHvieh++6dHa0UywUCEXDCCJYhoMgiMzOzKJrGpGIjusLVCoVQqEQw8PDLF68mFQqRalQQJYVkok47dksL37xxQG3TRRobkpTKlcQxMAKJZlqJpXK0DAMPMvHdh0SsTiiD4LjU69XAy9OUUaSJVatWY1tOTiOi6xICAJBR3VknHg8SW5mgiVLlhDSA9GpZDJJpVJDdB0KZoFcfpb29nbSzU0gQH0qh/jwYxy/YgEdqebAO891ME0z2He9iqYFCz09pFMqFUjGMhiNBvVqhWQ8htXwgoKAEHTCBoeGkOe6R9nmNMtXr0CWBMJhicnxMRqNOp2d3UiKTDoeY7pQIpFp4vaf/IRrrrkaRJEnR/J89B/+Zb5LLwgC8UgYda6rZFgWlVoDy3Y4deoUzS1NSKLEwv4e/unjf8xbP/EVDg+N8Wdf/lcA4pEQm5Yv5tqLNyOWcsiiwLXXXsOp4WEkWWVocppXf/hzjOfy89eEpsik44Folud6zJaDDuszhw7TlgixZuUaOtrb4awuW7lU5JLzz+GHt/4rV7/iWjx80plmfEEEwQ8Sx0qVcDTB7EwBd64A0tacIDc7SSKRoKOrg4ZhkEilCEcjuCNnRHxESSASDTMxMUFbto2xqVle8aFPzSfBALqqkEnEkCQRx3EoVut4ns/MbAnbtZAkaBj1Z0FzVQFcyw48lgt5opEosiCiKgqyFCwUkskUk5NTlEolki3Z+bm3Z1KokozvBcluJt08p+QqE9fV+WMIBKI8qiZj+T4bNqyD7UHneXR0jFqtypIli2hpzhKNnPnMV199FaZpc/c99/LSK69kOl/m4te/j4nCmY63piqkYpE5cTiYLVXwPJ9CqYRpWeh6kkI5h2obSJJKONqCYRnYloEsBXYTlucjSiIsbMJaXUY5mMNY1ozmZViy0kN2wDVq88dUNAVB8Dh/y3koqookCqxevZJQSOeWx86IjVmNErValJbWFgQBDMNk/Yb1uK7HTD5PUtGo12sk4nGKxSJ/cdX1DE1P8aP9j/P9PQ/z/T0PP+s5vqglyyVLl/MPD95HSFGxTYcH7g1gjR3tHfz5ZdcwVshx8xOPcPPeXdy8d9ezx7dmuWzZam564G50WWHp4iXsfOQRVq/byOrlK2Bn4DG7vqObcxcsZGpqikgkTrVco1Qqcem2i3j97Diff/AuDucmeGTvHrKJBJquIMnttHV0ICAR0l1My6JULBOPp3BtnxPHjqOoAcqkr6+X1vZOZFlh4WKdo0ePc+TIES655BIikQiiKCOKIAkSDcFHUTQERGoz06iuz/Faie7ubgQBDh8+xNIlS7EdC/CDYpRlkUgk2bTpXIrFIolEHMuycRwHXdcJh8OoqoqIhGVZzE4bNKU7aNrQwT13383AwDJGx8ZYtGQhIU3FcRwM0+L++7fz6utfRyLdRCSW4oknHmf1+gGOnxwiP3MESfVZuLCftrYWbNumXK4SCkVwbJtjx46RzWZpasrQ1JTG8zxGR0coFousWbOKUCjEhRe+iJaIDnfsxFNDVKs22ewCEATqRoOx0SFae7rwrQa1Uh4VcFyTlWuWncUi/83G2Vw8SXg2lFEUBMKRMKlMCt+0SSaaefqZE7R1LaFQzPPArh28851v58Ed97OofyG7du0hpCf40k1f5Qtf+AQt7XfS07mEbHItvniCA08fY+M5q/j3H/2Aiy66ksMHi1z3yms5cWo32Wwv49NDdHV1sfG886hXuli18WoevXeK7n6TsaGDOG4zutSEVMtip/bhGDayGFjRdLS10DCqiJ5NRzbM/qd2k+3qJZVOY9s+qVQa2xYCepEkYRkm0ViMI8eO4zkOipDnvI3LCIc0LLuB5zlYjhPQIFwfx7SwrQqiGGXw1CnGJkZZumIl1apNJtPC1NQ4veuXUa2Og+9SKpXQdA1X8EGQMGp1fNtFEhVcX8BxVQzDI6IoeL5JWzaDL3tsXL8eSTCQVR1JElDCEapynqUL1/Dpv/w67/jDN/HOd7+EluYsniDi4+IJIqL/ixsfzxU/a3Hzy46FM/Byy7J+Dgb8q0Dcz+5mni04eraVzu/jv3f8Pnn9fbzgOLtyYlo1lq9YzIEDBzjvvM1U67V5e5PTRPFgASqRXtiLe2QIeUkvvjC3Dzw8x8Iy6jREl0xTE57rBTBhMYDG2XbALXIdB0VRgiQVAoijZaFpOrbtMDU9QzbbhiwGnR9BElm+YjmqomCZFl45hlmtMzE5Qnt7O5lMBkVRUFWVrVu3oioS+VwO3/MoFot0dHSxddtWGrUyCxf2Uq3VAA/P9wJYrywFpvDemYeeP9d1cmybSCg8rx58+hxEI1G2b99Oz4IuFEWmVqsSS6QJh4MksaenJ/DiVFXy+TzRaJxKtYqPRzabRZFldE3Bsg3q9RqaHsL3YHpmlqZ0HFVTESUJTQzUSj3XRVc1ZqZniITD4PtIskytXmdkZIRstpVQSMO2LWKxONnWLPv2PU0iGZ43vBdFMeDjJmTy09OUy2XwfWzHnvd0DB04hrN1E9kNFVDC876gqqpQLJbnbZRcz0PTNOp1mXq9TjQcIp1IIAlQrdWRVRXND8zOW1tbiEQCSGq5XMEXfDzfxXMsIuEQpmFgmCZqODGvMxiLR7jg/HOpleuMlXJ87B++g+f5vOyC9Vy5aRmXXLiZeDyK64jIssi3f/JT3ve5r+P7kMlk0DSNyclJOto72LJuObu//Sm273maB594hkf2HWZoIse9e/Zx7559tKVifPl9b8JxPer1BhngAzd+i/Fcnq7WZj7+R9ezaXk/g8ePsXLlSizL5Ac338xf3BIkEUuWLKatNcux40dpaWqhcdbv5Nq1q/E8i02b1uF7MD4+QVdnzzxvVRBEIpEItXqDWvVMIiSJAnpIxTDrtGZbA0ubeh1ZVhClM49523Go1eq0tLRimCZ/ftO/cHhojHQ8yifecT3nr1nEgo5WPE+mPndPr3vt+xnPFYjFYiiaiu3USadTNOwzi4bJ8UlimkwylSKdySD44JrWXAd9TszD9+jo6CCTyTAymZsfW62UA7sjN1jEDZ4apL+/l3xhJkgG58JxAtGNXC6H5whks2f4mTO5HAPLl1MqVeYq62c+s2M7aJpGazaLaZr85dduZqJQJR2P8oHrr2RpR4bzz9mAYZrYpk3dqHDpez/DZL6Erge8NMMQ+fFPbuN1N7wGT4CG5eOi4HtVKpUy4aiCKIfnhS+r2xaQnK6hTVTwlSQtTSVKhSmu2LqFv5pL7nI1A9cBo2HS3tHF6PAp0qkU5UqZY6Oj8/PvakoTjeksX74MedUqSqUCM7PTLFiwYL5bMDU1RTwWI51J4/si33nbB7nzwGPc/MQj7B85Rc0yaYrEuHLlWv7kkiv44M2BENbCliwIAudsWM8Te59k+bIBjHqNb77xHbx8xSq+9fBDDJZmaTgW2USKq1Zv5IaN5/CXtwU6Dn2ZZqZzM4yMTjA1lacjlZmf97K2dur1KuViieaWNiyjhuM45PN5Fre0z79vopTn/LWrUXU1oI14Po7n4dkOgycH6e9fiOf6PPzwI8zOzLJizXL6Fy5C1zUcx2V6eopIJEJHZxcLFy1G13V83ycsK4GF1kyBcDRGTQsFtjPxBHsqeTqXLwTfxbRMWlpakCSReqPG7GyeUqmKLEvoegjTNAJVVwKP5Hg8jq6HAnqKEKjga5rG2DMmcneMbFuY9RvW09LcTDQaRVdVTMPEsW2ybW1su/hiRsbGaMu2UTeMQIkfWLRkMROxGTRdpKW1Fdu1URSFaCwGiOx+5BFCIZ3e3p4gaRYFTpw4RlNTJ5FwhJmZHL29PbQ0Z/BHR/Gakow3TNocH2SZWrVOKBznyNQxMl3daJJOJtXE+NgoPf3dVBtlVOUMMuC/IgJLtTP/D/ShwXFc+vp72P3wbs67YAtf++Y/44gRKjM5vvLVz2KYVZqamvj0pz/Nxz7yMWzLo1gysa0417/hQr76he0Up+P8+cffzde+9l3CIZfmzg7uvH071WKMSy/bRmXmAK2ZdSQTTYSiDp7fYO26c2hYEnfce4RXviyLFpWpNUqo3iK8aA4pYoAn4XsenmshiIF9Wyal4jkW4ZBMLBKiUa+xaOFSRk6N4okOtmVRqdcJh0LU6nU2bNzIfffuIhWTkFUQBAtNkfEEEdtrEA0lsC0bXdcxbI98cYJkagGmZzE7M0O2rQvHapBOR5maHCMeCzy4w+EwjYaFrKrB89PTCIWD4oDpaTQsiSf3HWbbecsQBZGRkcNMFHwkwaNeK5MbnWDRwj6oi7Rm09xz5w9ZvXwBo+PjZBesJhpPYGDhCyLCr9gs+8ySAKUAACAASURBVHWT19NjThdAfrbDePbrp5Pc/yyej0c7Lyp2VhPm9/HfM/7HJq8/q2T23HF2d+yF3jQvTEHshb/n9OP5hcULucF/UVv+uWDHZ8fP3pCnYRQvpNJ09n6liI7g+hj1Bu9917v5zGf/Fl3XceoWAhJHDhymrbMr6HRdcgHCA48hiFJgm+N7CIrK0tXreGr/PtatWI5gWxgNE1XXEeTAIkfVZMBDUcQ5AQ0TEQ9FDSPJ2hzfVKG3Z0HQ6RNl0pkmfNcjFktQr9c5fPgoyWSS3HSB1tYWqpUG2bYsAhKe5zF2apR0JsnoxDjxdJI3vvEN+AhUKmUE0cNybQTRR5GDOYT0ELbl4ksgCDKmWUeWA8l6RQo8XY8cPcHk5BTr121A0AQcfGyjyspVA8xO5xg9dYqjR45yyRVXISCTy00Ri0UxzUA+v2fh/2XvvePsuss7//fp5fapd7qmqY2sLhdcsXHBMWCaaQF+lBASfpAsZJMsSXZhU4AkGMKSAvhHNd0Fg40N7sa2bNmybHVpNE3T2+3l9LN/nNFIGAHGCdnl9+J5ve5ryj3nnu899fs8z6cMoCgqrZ6P5wfMzc+TbWsmXBHFiiUSyIqMKIGuy8iqxCkRoNAJcDwX8JBklYbGJhAEiuUC8VgSXTNY092LJBk4roMgKtgeJBtSbNm5mfLyMo5VY3RsFNu26e8bxDRNWrvaaZe68DyXarVGvV5Ddz3E0ZPU/+cfoR//N6RMCwEu+XyeuBmjIZWmXChTLpbwHB3T1EknktiuS6VuYyQSuL5NMZeju3MAN4yoeclMw+oEp2I5+K6NqsSZn19gcXGKTZvXUbMclBDyK93M9tYshWKZJw49wdNzRfwgYLC7nb9775uIGzEmTozT2dVJCDz5xD4Wls7gmabSOE6d0WNT6EKSTGOMpoYUl21fyw2XvwRZVhifnuMjn/4Cdz1zjNl8mc/c9iO2DfWRiGksLOXZc3AYgD9781VcsXM937j5W2zcMMTwkRM0NmaoW6evu472DtLpFCeGj7Bp4wBTpdNjcV2HulinpU0ntzjNTx55jCuv/h2aWrIIsohASCDKyIZIV3cLkijiBwEzy1VcP8A0YxHDTwgJRZBUicn504miqurEk0lsy6LuuNyzO1LO/cQfv53Xv+xCPM8n8EWWF2eo1Rza2jrIFaPxKYqG6kOtHjA7P8di6TREtKWzlWxXG57nIYXyqgiLcMat6BQnW9U04oaGJAj4YYiWTIEYYFUrODaYcQ0vcNENg2L9NHz5lJ+mrsWoelWk02LHDG3ZhCJqiILGyZPjLC2dtnxpbGnm0KGDbN++iSDw+NHufQB8/P1v5bpLLkCRZY4fPUh3dwexuIYkhxQq0XeTJY2D+4/T0ZmlnM/j1x0kVcDzAvI5j8GuPhamR0GU8JMmgaSj+T4KDnMX99D+rYOQNKnYAo2dAWmrDVEQCMKQb9x9F9JcjquuvgLPsYknUtRtB0VRmbWjwkRrIklvax9hGFIuzeKJFk1NqYjruLyE63pgxljf308YQi5fJnBs4vEk16zfzjUbd+EFHp7vIisikhBZJe0eG4n2W1OWjoYUJVXgyisvI58vMDs7TSIRZ2tTDx+/pom+/j7qVg1ZUTH0BPl8md1jJwC4cHA9IyMjGKpGYXGJzpbM6nENQglNz9A/2Mj8/AixRCuNrQqpVBrNOC0s1bdmDbnlHJ7v0dHVyezMLEYsRsLU6F+7lqnJBZYWc8zOLCDLEoZqIAGh77B/3zOcc85mKhULWTcJAKteIhbTqZaqKGqMYHIWrbON8twcmwb6kCo1Ws8ZIBlPUqotomoJRFEnCFWCsEq2vZmmxmaCMKBeq+N7LvV6DUEIkUQNVYmsymIxE8+zCQJQFIn16/vJ5wsIhDQ0NmLGYhixGDI+szMzBF5AYblAa1MrPgKhL3L44HO8/vWvoZjLIYgwONDOzMIilWqJ3FKezvYu5ucXaGvNsmloE+MT4zhOpKVQq1pkMq3UKzYLiwuUKjnKB/Js2LgBI9aAIC0ShB4nho/S09ODEPhcccXl/M3f/A2mYBH6FqII37z1u3zoLz8KsgZ4v1LX6YV6V57Z0QqwIZBR/9BCCELc94CmxtGNDpqzWWJNIv/vn7wXRW+hq9nArphIgsrgxvV86E8/zHIhz42f+h9c+PIsN/7DZ7n+pRfwXz74Gk7OPMPxn9yOMSZxw5s6iHU08vnJ7zM2Psmtt3yJN7/lcuR4Cl2KESKz6yXnc+TYM5yYO87Vb34vPe1JZkfuw0jtw55fIi5JKHqGarmIjIcsSkiyTBCA7ENLSwJRdpiZPE5f/yZ8F+o1l2SzTt22WFpapLO9g3qtSuC5XHrJVnxnOuruB2KkKwCYuortFBFFFdfVUCSZTLKOh0VjKoOixWnKNLOcL9A/sImpkYOYpoIkSlRrJSwbNBpZWiqTSkpU6gVUTcR2XA4eGMe1ROxaDd/1aW9Koko2w4cPUKx4rF3fR62aJ2W3cc/49yk+M8kF5zXzkle+m+27duKGdSSEFXG8n507nopTytJnCimd7m6eEo0LEcVfLiB05pl05nnluu5ZxZdOiRKdmtueev/5c91Tf59a/vlUwLMlxGcbx6+rKxueYe/285xV/rM7wmdL8M8Wz6cjnspjzgZj/o/i7v5WsOm38aLCcRw8z2NxcZF169YhSRL1ep16vcpdd93FY489hqIo0UncmIRimdA9cyIqkkgk2L5tB/MLi1Sr1VWF3ugVruQv0UTv1IXguO5PFS2CIIgmzJIEIYQrMNFqJZpwb9i4AcUMkHWXarWC7TgrohSRWEatViOXz7NhwwZUVcMPAqamp2lsbCCZTKAoCoqsEgRh5J+ayyOKp7l9oiiuigcIK+JMJ05EiUwIyKKE50RgrIaGBjq7Omlr6+DiSy7hxIlhqrUa2Wwr8ZiJrqsoirQClQ4jZU1ZpjXbSsw00TUd0zAxDCPiaRCSSWfwfB/Lio6H561UfUtlbMdG1w0AMpmGVaERQRCZmZnBc10W5udYmp9HCEPihkZraythGNDT00NPdze6bhD4QBhiWXVcxyWdToHrIj60B/81V6OlPURZBVFCEmUEQYQw4sZ2dnaRSWdQFBVFUUEQkFc60YqiEoYRNHP/wQOEbVcgd1/9Uze9Jw4cJwxCPN9FkiXSmUw0kS9XeOTZw3grkJ+h3k6SiQRNzU3M5yK+7IY1HRw4cIBiqcDJkxPsffppYok4O3ft5K5HTkEhQ6rlPEIYUCmXuOeee/jBD35AIV9EFqPz13VdWjMpPvXhD3DVtnUA7DkyTqVaRZIkjo1OrJ7XLTEN0zB4/etfx7ZtW0EIaG5pJJbtXF1meTlHPBHnnC1b8AHHOt3B13STIJCxbRHDTPCGN76JRCKFJIgQhMiSjEhUBReB9b0dAPxk70FMMw4ISKKE40SWHmEAjz57bPXzPd+LREJUlZrjYa1wW7et6yUERClSTI0n4nR0tPPU4ROryxSLRRwnUmZWVBVN005/p6UFbMuCMKRSKmPXbVRZI5POrD6sTCNCAAhAe7aVjQ0R1/fx/ceibv3K/SKZTMIKx+mRZw6dMXafMAhIJpNks1lmZ04r28qSwtjYGPv2PUOtVqWx4cwOUsjAwAC+57OQK69+n4whE4YhszMz7N+/H9/zCEOBZ46Pry4TApVqGQSBl197LfML80hyhEiYX5jj0NHDaIZKEDhoso+ATRA6BIKP2prgULdEbGSJWNCKHy6gyDV2dfcBcMIqcf75F+C6HqVSGUEQURUNz/f58eEDAFw6sJ79+/czNTXJs/v2MTw8zNTUFC0tLSiqhiTLWJbF2OgIVr2G5zo0NDWysLgQwb5dh9ETJ6hXq+QWF/Fcj/sPPruqCnz90HZGR0dRNZWRkRFEUSSbzVIsFlfubRLlUmTlJMsylWqZAwtTDK/4yV7Y3M2ll17K1m1bUFUZMQzZ1tEDwMjyPJIsI0kSjY2N/OQnj3D33fewvLjI8GK0fUEQ2NDdQ7FUwjDNVUVzVVYIgpCx0TGq1Qqdne0Rj15XSKfTHDt2DNeNEDmzs3O4rst9992HbdsrBUaXarVKOV9AKlWRDJ2hTUMYjku+OYUoK4hSpLIuCDA5OY4kgWnGmJmZp1wpU6lUqFQreH6kOqwqKqqirHCMHTRVo1QqoRsGgiCiKCqdnZ0EYaSOL4gSjuPiuC6aptHY1ES1WsGyIyV9WRZ505veQDKZJJPJUC5XKJcqKLKMbTt0d3UzNzfL4uIciiLR0tLCzp07ouLG7CzxRJz9+/cjiDAw0MemTUMMDQ0RhiFSsYgbRP6t6XSaWCyGIAh8/etf54orrsDzPObm5rBtm6uvvhpRFNH10wWF/6w4VTgXRQFVj9HY2Ewm3UgqlmJowyZ8P+TP/9t/RVEkKpUKXV1dpFJpbvzkZ3Br0T7c/eR9jIxOsHXHS+joT6Omi0xOzlJatuntGaKveyN7ntzH6Mg05eUxQrdIZXme+35wJ2kjzcU7L2bztm1ULRsfCdcTkYq9BELkOiBLMmEka4Hv+ZHlnyaiayKxmMrgYC+1WokjRw8ydM56RFFiYmIC27ZRZAVVUclm2zBMDd2IEFKGGT3DLcci8BRAxnFcRClEFEN0wyAIXZpbmhBX6De6ruN5LgvLy8QTSURRQZIUTN1gcWGGBx98gnqtjChJEAgEnkdjY5rzz98BQoCiKazdsI4du3bS3NpE/2AviqrilwRCIeCPPvh+zjtvF47jrYpa/rJGydmscP5PdCyfrx1ztjhzrvbb+M2P39jk9ReRtP9vCqGnHaGn/Zcv+BsWpypsV111FW9/+9uRpIj3I8syk5MTbNi4DsPQgABxaBA29hPu2b+6viQqEc8jBFGSmZubRxBAVWR836VWr4EgYlsWgR9Qr1uoqoqmahF0VxRZXl7mq1/9KpOTkxFcRJEQJQHbsQnCgHw+h21ZdAx5ZAYKqJpMZ1cHk5NT7H1mH8/se45Dhw/xwAMPMDY2Rj6f59CBgxAE1K0qJ0+epF6zEEWF8fFJfC/Etm08z+P48ePIshQljL4PoYDrRrzWl770crZv3843vn4zvmXz6IMPE64k2LpposYMBFVhZPQEd9/9A2y7RqVaxrLqVKsVpqcjIRvHdZmdnaVeqyPLUTfLcSO7kFMiA6VyCVlSCAI/6mgLEWxb1w2suo1lWTiuy8LCAiOjo5w4McrwiRM8+ND93HzzV7jvRz+EwKaSXyB0aiD4mPEYsZhJPJFCUQxkRadcKFIrVZAQyM3MI//4cYZNmeFXvxSxPA2KAYj4QUhDpgHPCxgeHmFifJL9+w+zvJRnbm6BfK7I9269jX/9539BN3Q0XWd0YoxUUyN6sg3JbFrxBI6u76mFZW69/wmOHTuKooiEoc/i0hKSJPOPN98BQFsmQXl+hr3PPIPn+6RWOKT7j4+xc+cO0pk023dtI9vRCmHIk0eOs38sgmWGoY9fm6WYX+BVr7iWV77iOjYPbWLf08+iilpkIxIEFItFYqbBYH+UeEiShO24xJNJPOe0OFC6rRurXscwdA4fOUjfQA++4PH/3fXg6jLDx4/xne9+l2Qmg6xpSN7pFqLnBzS19pPM9JNIteAFMn4QcvLkSfB9To6NErogCwpWxeK6C7cDcMdDTzIxuxhB+m0bwuhcnZpb4Kt3nt62JMmEQcDiwgK6Iq0+yH/08BOMj57Adx3CwEHVJILQ588/86XVdW3bw7LryIqKacaJr9gZAbRn26hXSsiCSGE5TylfZP++/VgVa7WLXigUIvsr36duWbymf+3K2PcwOjWPbhinLUd8n2rN5mt3Pby6DVmSEKXT15xhGKvvLSwscMedd9DRkWXj0DpCThcEJEkgFjMRRQVNUjk1d8nXXQQiddZLLrkU1/UJQvjYV+5YXbdWrdLf14coS3R2d5FpbARBoFQtcc7mzawZ2kjVdyhXl8nPHYPaDKJkUazmceslTrZ4nPRLeM9O4RcMfHmEd14SKSgfKSzx6LFDTE3OUSxUcCyXUrHMbc88xUQu6hxfM7CRtWsHicfjqJpGT08PHR2dFApFtFgcI57ATMRpa2ujXq2gKyJzc9N0drczOTnBiWNHUIQQu1JC9D0W8st8+I7vAHD5+k28fMe5zM/NU6lUOOecc5AkiXK5jK7r3H333Wiqga7FmJ6epZDPU7Wr/OltXwbgsoENbO9agyAItLVl6exqp1go87rNuwB4cvwET02cgFBgfOwko8MnWJqfx/MDvvR4dE4ONWdJGgbN2VYyDY2EIYyPjKJKEpKksHHjEPPzMzz8yP1ceNG5XH31S0kkYmzaNIQoihw+fBRZlonFTFzHoZgvMDU9Q7lcI5nKEHM9QkXG02RyU1OEtsPR/CLLyzmq1RpzU8v4jstAfze1Sp6nn3waOdSp1+poqoYsy6iqSjwWx4yZpDNpkqkk6zesww8Cevv6kSQJRVEwOucQW04iSzK5XGSDVS6VmZycolqt8+QTT9LW0cHC4iK1Wo3jJw5z730/ZnZummrNor9/HUEokoinaEg1IMki7R2t9A/2ki8t4fkehUKe0dET/OAH32fv3qdRFYX77rubr37tS6vdYVmWCGcXkN77JgYGBujs7Fy13kkkEliWRUMmhWmafOIfPsnOXeehqTL1ymm/6V9nnE3kKQRm5vKMjM4wMXaSrs5OauUqkydn+dd/+ycee/xhvva1r/D000/z3LOHePQnT7LjnItxrSK/+44ruOmmO/nhXaPEWjX+4C+voKWlhe98/Uc8/sAB6mWP5bkSuZzL1InnWDw5zMGnn2JudIKexg4e+MF9HB+Z5pP/8jk8JYkXNJI49hZCLYdTd0jEk2i6GRViZBFREhAFGwGbZFyiUp6nXFkg3WDihnU0RWVNdy/t2Q5sx2N2bplK1QYCVN1ElEwCdOq2jygqCL5BpehSq9r4oYMgi3iBgqnLeG6VdCZGMmUiiAHxZIyLLruUUFQJ0RHQURWdZFLhqis3ohsKoQ+hL6CrGt2dLRi6g+06FCoVRqdmeejx3ZTrVVqyjdi2RUvYSdDi8Mij94LgMjuzFBVhguCsViunqApnvjwvUuH6jxLjOVusNglW5p6nXkFw2uXi1O+nln/++qeW+W385of0kY985P/0GF5wBEHwkV/Fs+mFFlh+ui3/y5PhMzH8z4cqnIpTvqfSZeciXnruCxvIrzzWn4UWPH//vJAbyYupRAmiAEGIIkWV9W9+65us6esjbuhs376TpqYmVE0lCANCPIQLt8EnbkJY0wGmQcQf8hkfGyedbiQejxH6Hp7noBs6ihp51omShLDioycQWVKw4geqaRotLS34vk8qlQKi/S6KArquEfg+pVKRZJtHOpVGspuxHYdMJkNLSyvFYpmBwQEyjRky6RQx06StrZ1UIokgCSiyRm65wK233M7x48MMDg7S2NTA0tLSis+qsbI9EIhsVMKQ1arl9MwUA71rVu0sfN/HDwICBFRdo7WlGUVR0A0tUvpMJigWCti2QyKRQNc0FEUhFjNZWlqgWq+ja/pPQbBcx0U3IrVb0zAQRYG5+TnS6QyqFimlhgT4no/n+rS2tpHNtuE6Dul0kpdfcyWqLFKrlDF0FT2ewHZsZEXFshwWF/PcfvsdLMxN0d3VRUMiifzAbux1vaRv/CuaOrIIx+/Dk3XcFb6tJCmIgoiqqNx22x3k8/mIW6wqmKZJT3cXW7ftoFAsYMR1NMOgs2sNshR1a8fGxvnh7ueYXsyTiBn86PF9tDSmaDRlurvamF5c4q+/fDf37Ym6U3/wOxfzqqtfxonjw+iGztrBQW554HEKlRoVy6E1oTDQ34cei/HF793Ln//LzSRMDctxiesy77pqiLLlkYg38Pdfu53P3XEvPV09JE0TWYy6KA1NTfzg0af42JdvxXY9rtx1Dr973cuoVKps2rCer931AFXL5id7D7Chpx05cFFUmdlSjXf+z8+yWChj2VE37+2vvJLXvOJ38AOfw0eOcPjQMe586iAA73ntFWRSGUIEAl/gS1/6Muecs4nm5kZUVUFVFKan50ilkkiSQF97htsefIpitc69T+6nJaGzcbCPEPjG7XfxF5+/lVLVWu0k/uEN15JJxlFUlbhpcO/uZ5ldLnB4fIZzz1lHV0sDgihwdHyKP/z4F3l2eAJNlXE9n9e+7CLO27KeSrWCJCnkShW++P0HAHj1RVtoTCcJQ3Bsj9bWLLfccisH9h/gqfFFyrU61128i6H+rqggY1nsmIdvjx6jYFnc89hemuMa63q7EESRfcfGeMtf3Ei5aq2qAL/n2q2IgoDesgFFUZjLl/jmPRGP+H+89y1s3byZTCaJpksMj09yywORRdmH3/VafB88L+T2W28j54hML+bYc2iYwa4spgwtzc3sPXSc9/395zk4OommKriez7UX7SClCmTb2tF1DUWR+OsvfJs3/Pmn+OTNd3D9ZRfS290JhMRUEdeqIylx3ECgkl9m49BGwo1ttBwqIMkp3KY5htq2c9f+QyyUizx4/CBD7T3Mnxjn/ofuZ0YO+dM7voHje2xKN/Ppd7yPmemIo97XuwZRkvjEj3/ADV/5Vz7x4+9z/abtiL6PbdWZnJwgETM5ml/m23t3o/gBQwOD5JeX8AOPx0+O8sd3fIuD05O0JFLc9IZ3oiPR3dlFLBGjWq0iiiITtRL/9MPvITk+kh8w0N+P5Tj8ZPQY77/1axyanaI1keJNzb2EjosZM1BVmZpVYWxsmp39gzw4fJClWpX7j+7HdAJ2rF1LsVDGbG3mv91zC8eW5hAFgU9d/yY29vaiyCogsn/fcxSLeQh9DDOJpmncfc9dWHaVtvZW2tqyCIKE7/scP3Yc1/VoamomHo/R0tLKU3ueZOuWLeiqhiQrhPuOIJarLOCTcH0WZIHWjeuIxxPcftv3GR8dY9eubUxMjOJ5LtmWDqy6S1NzZnWim8/liSfiSJKEqmnIcvQzlYrGF69YSJKM0xVg1S1UL0s22w4I2LbD5ORJYrE4mYYMtbpFb38/sqrR1JRh7dpBkskEZiwGSBw+fJT88jKNjY0cP3aU1mwrmqYST8RX0DgyTU2N7Ny1k0y6kXgiwezcJN1dnXR3d2EYBr7joj3xHKPXvQSluWlVe6FcLjM8PExvby8z4ye44867uPYVryTb2Ykfhkjivw+WeCaP8Pnqw2eDD7rfVuCoinKhiT3QRT2jIwkOMV1nct5mfHKB1uZGntqzh7Xr1rDn6ac5fmSMTKoBx67i+RV2bdtMNltnYiTBffeOcHJiN/nlImvXpmjItCMIIes29HHNdS/jC1/8Mj964CCtbRsR1CTbzr+AW+78Dle/8kr0WBOPPvogV115Nbn9Mi1Tl1FreRJJEhGIkiXHjbQeBFHAc0NURUdAAVQSiQypTAsHDx2mo6MTRAFdN9FUndHRMdas6eW5Zw9QKFaoVX2GhyfJpDKoioLrVrHsyN9ZUmQcBx64bx+LS2M0NjRgOw6Tk9O0ZtuRJJmxiVFEYHZmhmTMjKzOXBtNV9A0A/wAUZAICTBjJnW7gutI5AoO+49MUyh7nHvuRWiaQUw30E+kWLj8BHfc/xUOH3yKC899Cee/7NoViHSwioIRBOHn8l4Dwp+ag555rMPwp+fMZ4tf9v4vOt/OXPfM8+75Stdn/u+FbPvMuf2LGd/qOKsCYkuI1PvLoPWnk/OzQZpfLJz/33NN/7xtP3+fnA0y/vziwWmUxU/fGyRJ+uiLGdtvLOf1/5b4LQSBVX9IRVHwAxdRii5Cz3cRRBFJEgg7Ggn+14cJP/SPhL9zGTQ3YtVtstkODF3HdWosLSwREqAZOqKiRMDhIAQiD0NVUXEdm5DT1cAI5hqumsbX6zUM3cBzXUzTRNc1RHECx3aIxWLEE0nqtTqSJLFl62YWFxdpaW3CcawIfjcyRmu2jVRjmmKxQmNjM5u3bGF6aoqZ2SkCIkudTZs6KFfKIEAqFcf3flY44KqrrkYUfNatX4umGXieTyiKuJ5HbjnPj++5h0qlxNatW1m/fj2yLNPe0YFtu6iqhutEtgWB79HS0hKZhAtnVBD9gHwhj26YmGYMz3fxHBeILHliicTqwzYeT5BMZqhVLeq1Otu2b0ZXNWq1ErFYGkmM+JDVah3TNJAlBU0Lac3G6e7u4vDBZ8gtLpF+/Fnk7Zsw/up9BIKAIEBYXYJ4Ftf10XWZcrkCgY8f+LzxTW/AdTympqfIZptxXQc9ZiKECrIikc8XUBUVWZTw558gKIzQ5rpIbh6A/+eiNp48kedvvnwHn5AlTF2lWKmvHv8PXN3LGzcsI0/dxpb0FIIgkl1zDdect5l7ntzPl75/P1/6/v2kDJmK7eMHIZs6E7xuVysfuf0EAgKuG+A6LvP7v01YPMLuwyPsPhxxAnVFRFdEinVv1WZnbVcrH7kmztLTnwfAa2jgEzf08+4vPMv4/DJv+O+fwdAiSLTluBiqyJd+fxtv/F97AYhX9lI5MEyiqQtV6WRo02k7GH/0LqyCEUHQHZ9XbbYQxm9BWHMxJTkSKJJq47jDjyGKAs2+x+ffuYG3fPZpxqbnefff3cT7b/wqkiBSqVskDZl/fMsm3nPTs9G5OXoH9ZyGAHjpfj70xpfzex+/ibnlAm/48KfRZBFFFqhYPrIocONbz+Hvf3CcmgUQ4nkuRvUoYWmMcOm0YFSq9CT6bAxRb6S180qCIODiiy9iQHqWf3sw4o9KuWcIRxZp8qNKfbotyzeufhWv/NFtnJxf5vc+8SU+8KmvRjA52ydpSPz9m4Z47xcjxEZszeUkkgayFCUv1erp7Wu6irLCCa5Uyj/VMfD9ANeNIME7tu9g/bbzePWffZz5XJG3/vd/QpVlVEWmUrcQRYHP/sl7+NhXbqVm2UiSyPDwMJ3d3RRcBzOmUimf7lAldJ0gkFCNNMXFL2pt9wAAIABJREFUcTLpTOQRGio0NDVTq1eJN6ZYuKyD1kdmcdsTBMklvv7uP+LaT/0N06U8777lCyhCZMPkjkQJd088zV9e9HLqdYtYzCRfiOxi0un0qkozgKYppBIJXNchnUojyhIzhRx//cPvAZGSa0LVqTgW/soJPNiS5Zvv+gDNqhHtK0FENVWWliIO7ejiLDfti2D14rEnSD10K6V6bXX9geZWvvmuD/DInT9ENzUQwDBNKpUKw8MjbNm6mVv/8E94zec/xdG5Gd5/5zf4r/d8F1mUqKygFGRR4sbXvZWrt2wnXPFjdh2PbTu2IxBi2VUkScGyLC679FIUVaKrq4tqtYamGUyenKKzs4t169YjCAJ+4MIKXNe2HXRNBTGEIyOEHa00J2IkSlWOCR6dtoWumdxwwxvwXItypUq1aqEoOslUEjOWANFd7epE1BEFq24REmKaxqq/dxiG1Lvb8FUVgUkUVaWetwiCEEVRWVpa5rHHd/PSSy9l/bp13Pq973FRKJJt70AgWC2wB0FArWaxsLDI6InjPP7447z5LW9GFCOFVVVXkOWAcrlMpiFF4PvE4yaapnHVlS/DjMUIQ4FyuYJRdwkFgX2FZa5VFCqVCr7v09LSQltbG4Ig0NnRRjweZ8eu8/BWMhIxDAiFX85J/Hlx6rm0OkENzu4NujqxXozmCc8NSmT7BxAn9jM7P4foWYiZRq67/h3YdpH2bDuJtMb73/9HiIHGyLERbvrc7Vx+1fk8dPfDbN14HtPTo8iizPW/81p2btrCYuEBetaswYxJPLr3WRqyaQp5C7Qk9z20h2QqxSc++Qo++g9/yQ1vey1NusGrXn09k1Nlup+7gUrzMOVaFUUSEeKRxoSq6oShi++7IKh4gYCAwNiJ46QbOylUPCbGTmDVLLbvOheUEC/wGFw7SBjCzMwymhaiSIAX8JPHnuKql51PIDoIokw8kUGQPGRRp1xyyWQgmYwhK0k0PcHU1DSaYdDU2EJ+cYrc8hI9HQ14PlQqNrGEFolf2R6ZVCzycA4DKpU6C7NFDh+fx/J0Wlq7qFTq1Cp1MuUMFaGMuUHj3b/3dj75sY9iW1FjwPP9yDJv5biF4Skq18/vsJ5tPvxik77/v4Ry+c/a5f02/v3xG9d5/VWWfzHXywvtvJ75+8+7YH/d8YuqWL/+jYMQRi9JkhjatAlJkQl9d4XXqEQ+gGIIRGbvQl83XnMjwhdvxV7TSbFaI/RDHN8nbuqEvo1j1wlFMRJuQkIQhRWLDBEByOVyaLqxqmx8ShHX9/2oMq6qqxDaQrEQ8ezMZQRBRPbagEi5tlgqcHJynFKpwu2338Z55+2ioaGBUrFEvVZH1WMossb+5w4Si5lceulFSBK0tLbS0tKC43rouoFh6LiujSRG/LlSqUylUkYQou5vobgcWesEAaIsoygq5VKZr9/8DV7z6teQaWiid00viqLw4x/fy8GDh1izZg2VctQFOXr0KCcnJ2huakSQIqse4ZR6axCQyWQI/EjMJgwDPNeJJupBZKlhxgwmJ6cQJYFioUi5VOFb3/oWmzdtILIc0qhbdZZyBWKJFKoW+6nquetFiXOXrtN3YBR3+0bCv/1jXAFCUaBemEMdeYB6sjeyuhElPDfA8+rous78/BwtzU3IskgyGQdCJE1FFGX8IMB16mRbs2iygTv9AIIYeQF+e/cUU7k6F63L8Mm3bUZVdZZqMkuFMoamcm5fio++di1vu7gbSZJwXRfbtsmk0/hqhs0DA6zt62V+aZFSpY4gCgy0xnjnJV18+u3bGFus86P9CyRjBu+45mLiDQ2YQZ6+RpneZh1TFQlDsL2AiuWTimlsWdvH9S85h89+8AZS/gxBEKx2/NtTEhevb2S54rJcDbAch5ZMimt3ruEzb13Ptr4GPnlnxIV+80U9pBQHM95Aqn0rtu/w+dujDua7LushZcgIwkoXR5ExDB1Pa0ROtKDpJrg5FHfpFDmczsYYr9rZTrnuslx2qNo+Dak41164g8+8bQhddPn6YxFM+kPX9SGLApIoIplN9A5u4RWXnMvM3Cy5YgHbDUgZMpdtaOTjN6znys1ZbnpwnFLd48pzhxga7MErTWEV5xidnOc7eyNroN9/WR9JUwPFQEj3E4ohHZ1thPlD3PTAyWj9Tc2c05NenfjkAoPB7Tu5/vUvo5yfZzGXp+Z4pE2F67ZnufHN60nEdG5+dBKAv3jn6whDn8D3GZ+YwA4kvvXjyFLmA2+4kmqlDCvn9PGxKW576OmV966lUqmyuLDAmjVrePzhB7nh6kuouwGzi8v4QUgqZvKSTWt52yXbeM2VF/HlHz5MqVrj5Rds5YKtm/BsD0kARRZ56vAoTxyKBIvedeVmlpaXyHZ34/sWhdw8oiSTTKWQ1NhKES6ABh0l76CO2Ng9SzTGzuGV63ZiaBq5aomybaFIEgONrfze+Zdy8x9+iA1r1xKEAbqqIIoipXIZRZZ5+PhhnpiIiivvueAiWtOpKImybZLpDLV8kZhh4gcBPiFl2yJtxNjW1cMbNmzl0697K+2NTZi6wcLcPGIIlmuTyWTQNB27UkUSRDRNp2ZbVGybtGky1NLG+y65ki+8/d2kTQNN1+gf6CeZShOPJxAllb1PPUdffy/NmThv3HEBMVlnqVSi6jnYvkd7qoFrh7byVy+9jlefez5Ly8uossTU5AzJRJoHHnyIvsE+KrUynhNSrVZoam4knU4zO7tAa0s7jlOnsaGJiYlJXNdncTHyCDbNiNcZeEFkaTO/hLrvCMrW9diFIqaiom8YxDQMpqZmSKebmF+e4tZbv0emIcu69UMomgyiz8LCAkEQ4DgOyWQSWZGjZ44orCCDVHRDJxaLU/NcjESCGpPouo5TSFKt1qjVahiGwUB/P+1tbViWxcaNQ7S0tiIpMkEQrnpKeoHPzMwMQ5uGaG5sZGjTJqanZ1hYWEaUVQJfxLFrxBMx6rUqs3Nz6Jq+klD5+H6I70G5VINDx/G3DTH4e2/jxInjjI6OsmbNmtXnpCAIHH72SS64+FLMZBo/FBHwEAkjS64XGc9XcD2z83K2zqu/RyYIQ7pe2YzruBw5/AxWZQ5d8njpVa9leGyS5pYMN33u66iajBsExIwET+3ZzUUX7uDGGz9HUu2gp1Phmmu2s26DzIb+Og2qihU6NGXSSEqdvoEBbvnuw1x79YfoH6zyxx/4fVKJOHfcchu9nd1csOM8RNdFmtPpeHQnphmnkplB011MJbK/CoUVyoIbEAYg6kqk0RH6NDVkyDQkcVybtWt7GRjYSLlawTRNbMfBMGM8+OADpJJpdFNHkkRaW5vZsKEDTXfRzBSHD85y5PAYXV0ZJNlm08ZINdow41SrDvueO4huJulZ00e1VESRPRoyBrLsgyAxNVvmvoeOUCgWGRjoxA9sPN+nbgUYZgOaGGAkUxSqAfFkmvVr+9FsgcZcF/YbSixaczzy8K00ZWI0JzvZfumlka85IErS6QT2DHHPM2G8pzqzp6C8Z8apjuIvovj9qnPWnwcNfv4yL+RzX0h38T8nftr+59+z7bNdb/+R8UJyj7PtT/hZNOiL7bwKvy58+q8jXNddHewLg8O+sO/20y36X155/FlYxM/Kbp+qQtrv+DAQon7x717QWH61sf5yRbJf1/ENBRD8EHFFIEmUJWzfQ/AsQiRUxcRHwA89QiJ1RN+DcrGK86FPkN79HIsXbCPe08NiLkfCkGlpiHFiZJh4pgFR0UgmGqPqt+8jCCtKyoAXQK0WGcnLsrzSdVVWl4mWi0SVRkdG6Ds3iJSOl9aiqDKFYp5SqUi2Ncszew+wb99eXn7NVbQ0N3PguQMEQcgz+w/x6utfSyadplIpcOLEUfoHukmlmlAUNRIGiZlRd1kIcZ2QXC7HzV//Gu/9/fciy/KKJ2XkSShLagR3c30KhRLf+94dbN+xg0QygSxJdHS0E4QBExMTdPd0YdVtYqa5IiITIIoBeiyOZVkIgkAiniAIA2zLRtNNXDdK/AkDYrE4x46coLW9HVEQcD2HQqEAQFNjK7t3P8munUMkkhHMc3Z2lvnFRTZv3oLvhWi6QrFYiHw2E0n8pw+gHBqm+t/ew+zmfnr7+vA8j1KphD9/lIbh23kqF2Pb1u14no9l2aRTOvlcAVWNJngHDx5g06aNyIpEzXEolyxUWSIWU6mWa1TLLs1taSRJxbYdYjGTUjlPPB7Z74RegCLB/PwUrdk2wjCGG7p4lsf46DiVYoWjw8e5+tqraWmKIH6W5SIrGogyy7kihw8dRvQdLrjwMpDBtXPEZAnBC/BVmUCIUak7HD12gG2bz0ESZPbvPwhhyNp1g4iiwPjEGH29vYShyqOPPoooCsQTcdavX0c8FqdWylGt1XnssSe47lWvZm5xgeaWSPFZwMWqO4QenJw4ycb167HqNSQtJPIALpHJZDlwaC99g50ovh75siYNvNAnQECWNTzPRtNUKpUyphkjDERkWSX0fcJVvvCKX7Ig8id/92m+dO9T9GSbeermf6BWr6HrOrnlZRrSSSRRIp8vEo8n8LwV/pIAux9/ktbWFnbs2kgQegS+iOuFaJpJqVTjm9/4Jjfc8HriCZO5hWXS6SS1WpXm5kYgRJIF6vU6vhNQqVZRZJlEIrEiNgZ2rYqqGdQsi3QqTbVcxDQN8rkciqJQq9e57eG9/MW/fZvubBOHvvtZFhfnMU0d27ZJpzORfY7gUSgUaGzI4NguuqZjWw6SrCDIMoVcDsuymJqcZsP69eze/QSDg4N0dnVRrJQwdAMxPFV48cjlF8lmmxkbG6WzqwurbpFKNOL7DsePH6a7pwvbruM4HmuaNI5OL9K6Zg1YOar5eZKpFkQthhJrJfBd6rUaqUQCJ1ch8/XD1AfquO2b+Nw/3866gQHWDvYjENLb00XNsliYn6ehqRnDNJlfWGD65BgbNmygWCiSSCap12q0Ztso5edJpTNUqlUEUUKQFDRdRwwClpeWSWWaKBSLJFJJytUSzc1N5OcXyTQ0MDUzQ09XN5PjJ5mfnUNL6KxftwFZViiVSoRhVPyam5kgk2ngvvse4PIrXkZLayOpdBzH87Asm4WFRQw9RjrdSKFQZHxklm3bN4FooSoaCwsFkskk5XKehpYWXMejUqlQKhTo6GiNhNjCkPn5HJ1da/CDgEIphx86uLWQ6ZkpduzYShAEzMzMsbiQI9MQo6urh8XFZXwvoFgq0tScpr2tm9mZWdKpVCSw9MDjCJUq0oZ+1IUctaYGHp+awLZrnHPOFhoyWYqVWVQljmkmsW2b/QeeZvuOLYwMj9Dd1c38/Dy6oUd0lRBs310pkAYYholl2dx111287S1vw0kewnEdxvcodHV1o2oapmEyOjZMR1sWw9SYmZ0jFk+CJJNKJJienkJRJDINGaanZkml0jSsKOUjyux9Zh97nnqaK6+8ip7uFlzPIQwDdF1naTFHZ2cXkhgiijJPPvkMHe0dmHfdR/i3f8Zu0aG9s5nBwcHVibDruuzZs4c9D97J+z74Z8QyTWixOFLorCqZv9h4PnzwlALtz3MzcP856lzLGx+JnlM72vjRLf9GbzZFU+8VHBnNceOn/p7FGY9Pf/ZjPLH3Sd73+x9gz+7HaG3WeMvvfpCezFpyc9/hhrdewqYt3XRmiowfKNM6uJUjhw6zYVMvY7MW//RPj3DBef+F8y8bZ3ykwPhohcambi6+4KU0lbrJzvTCrEYxsYTfZqGIdRRxirC2hB+AoicQRBHXsXFtGymu4Nk2uiSzML9MY3M788s1pucW2bz1StwQqnULUdbo6uhiaSnHoWcPMH5yBEKXwb4uNq5Noyo1HC/GxEiZ3NIi517Qhu8XUJUYnqPi+hKykmJqNocWb6C9o5vAqpLPjdPUqFEpL+G4ArmCxPjEHPncMpdfNoSmRqJ8uZxFgE5jHB58fD/Ty9De2ctVl1+CcaKBMCZw4Nxn+Yu/+iBve8tLOLZ/Hxu6zuXad7+DVEMmogHJMv4KLFgIwrMmVT6nj/vPdmXPDod9/rlzKl7IjPX5MNXnv7e65V+S3D4fdvyL7HNebATzK8l+6y/7jLMXe17Mts/MS/6jktdfpHp8JlT7hbienBmqqr6oAf5GdV593//I2f7/8yskp7Vro46qcMbr511ErLz3/NfPryic7eYchj4Q4t8RdVSkV730rJ/1q8YLqRL9exPW5+PZz7pvwxBBFPAJQRLxViCziiiAJOEJPr4Q4oegyTpOPeDQs8M8+/RBPvbYw1zw5jeSvePHFEWBIG4QSgqSHiORSiJ6dZamRogZCpIUA0khlFwEwUcIVTzfXVE6DU9zTleGd6oD63oemq4hKTJ6JoItzo26TIxP0NTYBEFIMhmnXFzmopecjyAITJycYmDtWto6Oujq7iaWMFFUEUmRSKaSZBqa8HwfXdMpl0oszM4xNztHQ0MTMUOiVCzS07mGY0dPkIgnSKVTIASIYtQZVFWNMIRkKkVXdzeL87MYmkIsZhCLmaiqhqEbLM3laWhIUy4VKZYKaJpKtWIT4JJOZ6iU6ywuLK6oXtaRZQmBgFx+mXQmRRhCSzZLrVREEgWqlRJmzKCtLYsoiazpXUMilUQQJA4dOkI+V2Dd4HqmJiYRwgBZFGloSCPbDjy0B1yX4kffj71lHR3ZTqKHkYKumZjLRxG8Kq19G3HsOt///p08uXsfne3tyJJCuVJAVkSaW5oJkJBEDceqUC0VqVarqKqBqmqkMnEkRSW/nGN+dpZUIo5mRNA/AQlVVylVSkzPztHa2sH09BSaZmDETBobMzS1NOE4Dl0dXUiaTCAIqJqO53lY9Tojw8eJxwwyjU2kG1LIsojnuji+R7lexnYgFjdxrBotTa2UilWKhTJNTY0IokhzUyvf+c6t5JZLxMwUPj4D/b20Z7PYtTrZbAc1y+XkyRHqtsWuc3cShj5OvYIiCdQqJQwzQTyewHYs2tpbqdbKaIZGaWGCdLqJ0ZNTNLdm+fHd95Jt7GD/sYOs37iRwA+pVy3EQCC3sIhpxhFFEU1VqVaqaKq6cj0SQcddhzAMqVbrDI+M8pnbHyBfrnLlzg1cc8kOTMMgN7+IJkjE0hlq9TrxZAI9ZiLJEpKiEIQCiq6RSqdIphvxfRnb8ZiZnCe3tEwyGWPLlk0IBJF6tK6w96m9PLX7aYY2riUIHOo1B02OEfoOYeCzvLREMhlZJWmqjqzJgE/M0MjllogZcaYmZnDDED8ISWYa+IO//VdKNYvrLzuPS3cNEY/HcR0PTdOpWxaqoUMQqVdXa3Vi8Th126VUquP6IQEBqVQS09AxNI2F+UUmxyeIJ2O0ZpuQRQXb8pBkkbpVINWYgiDA0HVMI8bS8jJNba2ACAKMjI2QbYs8kjOZBB4qqXSaWt0inenAMDLYpVlCawnVjJJ4Z8Vn1hdDCoJNw9N1vNY8PQMXMjk5wZYtmwnCkCf27KOnpxcvCJmdnSMZj6PKMj3dfUiyTFNzA65no2qR2mwsnsAPBFwPKjWHcrlGPJmkUqtgWTaaIiOLEmMjo2Rbs0yenCaZiFTLC8UieixOqerwyONPU8zlkWUV27bwfRfdULn33nuYXijS3t5Je3srPT1dzC0s4YUSnmPhOh4tza1Ua3WEFWrH8PBx0pkMt3znNvr6Bzl48ADt7VkEQaBULKJrGoHvcf/997Fx4znomrEixBYiKSLHjh3DcVza27pIJEz6+/uwbZfp6Wlm52bZ+8xT9A/0I4gSt932Pbq6e8hkGpAVZaXAExJLJCiXisj3Pc5i0iQZi6PWbWprezDNBKpq0vC/2XvvMMnus873c3KsXF3dPZ0nJ8VRHGVLcsZZNhgb491l11q4GC4Gdh/gsvtcs2YvXGNgbaJxkLANDrKsZEVLtvJoNDPS5NDTPaFTdeWqUyef+8dpjeXxSAjbd2FZfs9znqqprjl1wu+c877v9/t+v8UiYeSiyDr9voMsC0xPH+b887aSxNButpk5Po2mKQwOVhAUmURS0EUP3/PIZLNIso6qWRiLDXTPwZiSUBWF2omYqalJ4jig53RYqi6RJCKyorO4WGXP7j1sWL8WURIxVA1TN3lxz4sMDQ8hqzK+HyJKqWLtlq2bmRgbpTJQQlVVBAS63Q6lQhFJknCcPr1+gKIZDK8aRG630Y6dpPvR97Ploq0MlXPEJJyuVslkbWxT5/jh/dx481uYmJzCNk0iImJRJF5hN/1jxg9EGisIXBoe/GD/68vHS/+Onk3VbMWH/5z4xcOcuOQSTu59hiN7nqAmlSmNb6YgGIRRh7VTkxzbt5eMlhAHyyRJhx17nmbmVBUnynLeBVnWj6wlWJZYVclwZLbJ008d5vCReS67ZBulnMCW9QprJzs8t8Pl3of38bPn/1suPHwj0WmJMHEQt/TRRxU0LVUX7jQSFpcXsXUNMe4DMYIkI4sicRiTMWxCLyCbyaWOBJHAcGWIXXsOQqTjtF1GR4aJ4pAwjlHlhKmpSUaGBlmcP4WYBEiChJyAInVZu24AIYmIIwlDz+D2HWRZwjItVEWm3mxRyOdIohpB6BBFPgIRgdtjIK9QtBN00yCbtRBFCREB21CxNJG5xTqHjzaIBBtEBSvKMuSM0/+FZWKph9Oq8aXbvsbqdRfy3g//HEOTEwiCgCTLZ+jCIgKxwBlf4h9YEmEFYRVXely/H2+/UvKUnPU+4Yej8pfi2dS7+2xE9wfn2rmSpldL3F4rsnoOpPBVv3/28P5GIdonIl/+DwlFvdJ2pMXoV8tJXnGNP0HU9bUcr3N95x9KZH9U5PVfRPL6WsYPH/B/uAJ01l9e8Tvnrm6k6/9+8vq6c67rn+N4rRP+nI3lxCSCkCKzooSESLfV5p5v3c0Luw7x1OOP8yu/8lHGr72SXqVI9qv3YMcJ2vgIkQRxHNFpN9E0HdcNsDMFEAUSQohBRCIIgzOIqyzLeJ63Yn8DQRCuUKNEoihMFUmNGoIo0F5QGaxU0HWNvuMwPz9HZWCATCaLomrYGRtRkqnXazz66KMYhkY+nyUKgxTpjNP1eq5HsmKd0O60yWSzeG6fer2BaZpcdNFFaLqWmoZLArKUKsa+9Op5HrZlk88XyeeLFItFPNfFdRyazTrz84vYtglCkqqq6kZK3REiFFmlWl1C0zRyudyKvY6C53m4npta0qgavh+iqRrLtWXGJsYAOHXqNKaVQVNU4sSnWa8zP3ea559/HkPXmRgbQ1E0FhcXyFSbyA89jXDd5fR/65cwJsexzRTtdT2X/Qf30WjUyPXnELwWcraC5/vs23eA0dFRNqxbTxzHDA4NoSoakpj2MHu+jyKl3qqZTB7DsPA8H003EMUEVVbJ5XNIskQQBSs0aYkkAUVRKRaKSKKMKMgIUmqvsriwiGmaHD50CEmS0MxUMCqK0sLBcnWZTqdDNptlYKCc9kFLIp1OK0X1EUBIrTm6XYeMneXEiZOMjIwxM3ucUqnE/Pw83V6PtWvX4DgOTz3zNBvXr0fTVA4ePEiuUODe++7lhuuvxTQtREni2LFjdHs9RlaN8OSTTzG1Zm3au62mVhtJkiBKAvXaLJl8gUKxxBNPPMuaqfUc2H+IZneZqckJ4jjt7zQNE8/zESUR3dCJogjTNPjyfY9x56M7GMhnKWRToS9RlHli9wF+97NfZ9/0SXRV4Q9/+QOMrBpESASWq1WKhRKiJuG5HqKYHmcQmJ6eJpcvUCwWyBcKBIF/5voWSVBVhWq1SqfTJQpjREFE1iR0wyKbyzM0PEAchzTrLRRZRVbTYtLIyAjHp4/T7zmQJIhH69z9yA7+/skdeN0Op0+eYPfuPew7sJ9WIPDrf3IbB2bnUGSJP/nYvyOXMRGAKAxRVZWZmRkyuSyyIEASIRCjKgoiMDMzgwDUqstkMzaCAO12h4FKhUaziWaZlMoFkggW5heJQg9FAllVyGVT5KvZaiOKEradRUTC81wCP6BUShWxZVmBWEI1DWTVQBRSG5VWYzFVfEUgiVNf2iRJLaLcjIRUymJ/t0p3tMB5Wy6i3/cwDJPnntvJqVMn2XreVty+g7ByrKM4xnFSKzHbzuB7Hp7vs7S0SC6fp9lu4/shzzzzNGvWTNFpt8hkbJyew4H9BxAlkfHxCTRdIwpSYRhBEvG9ANcP2LtvH1s2r2P16ilarSZBEGDoBqViGdOyGR0dYXCwAoKA0+8TxzH1+jKVgUGSBLpdB9dN78Hf/e73GKxU6PW6jE+M8cAD9zM4OEixWCROEgxDJ4piKpUKxWKeJIHpY8eoVAYRRQnd0BmfGCeKQg4fPkKxWEQQBLLZDJZlMzY2Tnkw/d1j08e5ZNvFNJsNkjhgaGgVlmUiJKDOLeEeOsYpBUYVnVkxJslmefLJp5mamuKuu+5iy9YtxFHMiROz7Nr1PJdddhmCKKCoMrlcgWNHj7B16xaCICQIQ4IwQldkDNMGQSJOBCRRoFBvUlANnGGPMIwYL2/j4MGDDJTL7Nm9GxJ49pkdZDNZKpUBojBkbGyEMI6QhLSIFkYhg0ODKKqCJKS2MKVSMe23VWXCKCBjZbnr7rsYHxvDNA0kSURRlLRHdwWFkvcfIVRlxA+8HV3XmVtYpNtzmZyaQkoiXti5g/rSaa667nVolkW310WUV4Jx4ceLTF6JJvhK4k3hs3KaFC0+hCAI5D7wDpyl4whBhzXnXUuuMMrB3Ye44cYbeOLxJ9l63vns3LmTp556gssuv4zAGeD5p5/nrW/fys2v38Tp6RajqyZodWsszbvoqso1126jOBBTKAiUKxoCXYzWlfz7/H9hVJ7iRHyE7CYNc1VCJCQIkkgQBpw+fRJZkTiw/wCjw0OoioQoa4iSioCIJEX4votA6jSwuFRF1y1UTaVQGSeOVRRVpdfvUR4YQFN0TCukOu9zYvYEAh1UJWCgNIiuiciKCMQrLKuUrSVmsGViAAAgAElEQVQK6XFrdTs4nksQJHQ6fbI5UBQRWZZx+300XcULethZg0KxQqcZM3+qg64axImPJLs4DtSbLl03wc7YXFW8hqQY8XT8KHnbZu+eXVxx6TYe++7DjE+NYhfK5HK5HwZCXgHYeLnY0Nlz4cdJoF6+vrOptOd6//Ll1UTDfpzxj0U1w2fS6+tHT15fCYz655dHvBY68dnjf+vk9bVM0H9NXl/7+FGTVwCRmFgQzoDbIiKGrHLft+7h+LF5rrpqO4oiYdsazmCe/RtHyB6dRX/ieSTXx7csssUSupmBOMZbUdFLEhAQWV5eJpvNpHQjeaUHVHjJuyvdnmp1CdM0Vyo+EvgmeAV02UIURXq9LlEYYhgatp1lcbFKJpsiljOzsxw7fpzJyTEyGQtFkVE1lWTlfEqyQq1WI2NnqNdqDK9alfZASQq2ZaeWNopMksTMzc+lPZGCgCiIhGFEq9Wk1Wpj2xb7DxzmgQcfYv36DcRRjCjEWIaKZhgUCgXa7TZf+9rXCaOIcmmAvtsnm8umD/qVVz8IaLdaWLa14kOoIa547rqut0INjpEkmUw2j2naKRIkJ4iCgGUYXHbppRQKOVRVYfnkAmtOVhH3H+WZn34jn+t3+IVbP8o1V13JPXffy9j4CN/5zkOMjA6yYcMUwovf5FQzRFBNLMtiw4b1VCoVTp48iaZpdLpdZEmm1e6QzeYIwgCFhBMnTtHruQRhiChLqKoCQogoyYiCiNPvoxsajuMQx6SVZFFGEhQEIVXylmWRI0ePcfTwUQzd4NSpk6xduwYzY9Pt9sjnC8RxTDaToVQsMDhYoeu0yWRswjBCkWXiKGZhboF2p0+pVCabyaZK1rqBKEB5YIDA9zEtkyDwSYDJiSlmT86ya+fz2LbN6Mgwuq6j6jq1ap16vcFgpUI2k2FgYBBRlMlli1gZC0jou30EEiQ57dE2NBXTzoEgMTo6SiZjsXnzerZs3YgkCTQaDQbKAyBAv99H0VRIYhrNOrIs88SeQ3zib77B39z5MJ+8/Vv85Tce4Pc/93W+8sATzFXrqIrMH//az3PtJeeBIOD2PcqlcqomKUToukmSiPT7LrIkUyqVcZwec6fnyOWyyJLMzMxxbMtkcfE0pWKRUmmAYrFE3/XS+4AMhmVhWRksU8N1+zTqTSoDg4iqiCSKtFot8tkcuqbjux6rdtV5eM9e/tv9D3PnE3v4+uN72DGzxEMvznDHd59jrlpHkSU+eN0FvPHqSzGsNHklSQ3rS6USnucTBw59x+HI4cOUSyXiOEJVUqGz6lJq+xCEAWGUntc1a9cyMDRMEAR0Wh1kSaFSLmAaCjEx83NzFEolHKePbWXodJwzARpJau3lBxFxLOAHCUjyiuJ3giTJmKaK6/vEXptCaZgoFBAljTCO0E2NcMBCnp4nu9xDHJ+iVmuiyCoXX7yNQiGPbVlkshaGoa3ME5nFamol5Pk+CCIDA4MUSyUsO4NpWExPT3NidpaLL76QYqmAaaTHaub4cS7etm1lrinEcUzf9SiVBwjDiEzG4sLzt5LJGmQyNgODFYrFMqKkYNkZJClt21AUhWPHphkZXUUul2V5uUZlYIg4TvjGN+5IabWIRHFANpth+1VXpQropnlGaMqyrZUilIKu63Q67dRixrCZnT2BnbHJ5nIEgY+sSGmBUFXp9booisz09DE2btyApGoYhsHGDetThfIootmsUyim7AsQSL71MFHOIhJFBg2TPUnIqpFRBgcHWViYZ3l5mU2bNq20M2xhbGwMP/Bot1sIgkAcw9TqSZI4wvU8bNtGM0x810cUFcII9u3by+qpCTIdB1GUOFBrUsmt5YH7Hqfb7RJ4bpqk+hGaoiEKAvlcjigMMAwNSZHo9bo4Trp/kiQiySLNRp04DlFUGT/wMEwd3dAIAhgZWUWxlNroxHGMJEsIoozrOjQaDbLP78f6xK8TDJfQdQ1j5fljKwrN5UUa1Tm2XbyV7MAIfc9F1TTilWfbS5y0n1TccK52qpc+FwSBeEfq6ywsPMSbHvw7bv3t/8Sq8UlOHXyezVsu5WtfvYfhkXWsWb+aiy7axu7dL5AvlPDDgG2XXsZQKUvGhHXrivzyb32ez975FJ0g5OrX5ShbRRqNeXTdw864lEsG/W4D+dRGJl78MCfa0zy79D20gkAc+RhmDlU3EEQZQZAo5EvIss7o+ASaIkLcx488kCQEAfpOHVWVEUhZGtf+8a/w3x74HCXd4oqN20HUOHHiJHOtObZ//HL+8K7/zk9d9GY6tT6L80tYponbrzM5MYzrthClBEURcZweoiQSBBGGriFKYGQsJFkmlyszVFlFrVonDjTmTjV58om9DA+OomoGJBJRHDB3aonj0yeoVHLohoQoxShKnjCSEWWDC9dfxGB3lHsnv8D+F15ky7r1/Of/+tvc8dgjJLLCJz7+O5QGRwhX7P1+MMA7d/KaPp9fvcf5R51TL2cUno2uvvR6NuL30vuX2+L8JFFIeO09tf+avP7/k7z+i1AbfvlF81orLT8OtfZcvPifxHgtFZ0ft7f1lR4w/9h1vTxxfekmIQgrNOKVIQkiqiBzdP8BhCDio7/0i6i6xD333M3adZPkC0Wsa69Bu+5yvO++SHLPY9h3PoRbyMHFm/GVhIAumYyBLJkkpEIHUZwKFMVxRBimSJazoiDcaDSoVpcZHBxCFFcqv4m1gq55fOtb3yKXzfC6G65DlkXiWMSyMsRJgijLDK8aYnL1JJosp32iicBytUYcxbQ7bcbGJ3B6Djk7i7AiUKTIKkKS0Os59PsO2Vzaczk6OoIkKWc80AC++c1vcvXVV4OQECcBrU6D5557jr7T48abrsE0dTQ7i6bqSA2FD/7cz1MqFllcnGdgoEIcxVi2iSgIiJJI5Mb4gUsUWciKQhzD4ul58vkcdi6LJElEYeq/W681WZirMjAwQNft4nkefhjQXlxgzdq1BPNVpnbtx7v2UuZ+/1epHT7Gv7vwFrZfei1rV08QxT6dVpObb3wdx44fxXd8lCSiMrIa2TTp911EUcbp99i0aT0g4AchL764l4FKmZg0GFVNBcPU6fVdLKuALEOvU6XX6zMwOEyCgKTIPPG9J7j44gtRVQVJkug7fUzDJI5DgsDHd33WrF6NkAhYdobR0VX4gYMoFMlmc7h9F0mWkCWRlttn3769XHrZJSAILC4uUszncfp9plavptVx6PW6CLaNJMlUqwsYhsHpU3NcetklPPbdR7ju2utpNtrkcjne9KY3o4gCge/SaTexMxYbNqzjmSef4bLLLiGMAu745jd4wxveiCgoZLJZwjAgTiJ0TWVpcZEoDMlkMxhaGd9P0RVRjMnl0/7tXjdAUVU0TaFWr5HP5ylXKrieu+JtadNsNnn9lRfSaDs8vvsgpxZr1NsdZEliYmiAy7eu5dZb3sjGyVFEUaTV6ZKxbYQk7UcVFQFVEXluxw4OHjrIe97zTuyMiaFrjI6uot1qYdsWUxPjNBpNbCulpPW6Dvl8kVKxgCgJ+ImPJMqYeZuYANO2WDU6QhjHSHGCpqrI+TxJDIqssHPnTqYShXes3czcuMUz+45yaqlGvdVBkkTWr1rFVRdsZEhy2TA5Sr/fxwhNdFVjbm6OtWvXEkYhnV4P3VQxzAybNmcIQwjDiIGBQbrdDoNDo0RRSKPeYGh4Fb4f0nccZE0jigJyuRzPPrOT06dlNm9eg6IZmHba05krFlAkhaeeeoh8Pk+cJGRzOf7uq3/PRz5yK5qmE4UhURTguR5xIuAHMb1un1hUEGKXanUxTWCTEEVRVqwnYppvnKRw7zTy8y/w1PQRWs02P/uBn2V+fp6Dhw5wybYLiaKAIHAJooSBygCmYdNqtalUykDC6fk5FFklimKy2SxvetObcB0HRRVJBBFRFLj6mqtQVJVGvU5pYIAoToiBe++5j6uvuYqHH76fm268kVw+h7wigqeoKtPHj7NqeIRyMbXcWq7VsDKZtF0jiRCQCcOE6lKNSy+5jMrgIPlcjmzWRNd1RBE6nTZbtmzB931mZmYYH58kSWLmF06zatUqCoUctdoyhcLAmYA9jGKcvocky2SzGQxTJ4xSBfW169Zy9OgRplavxQ98LFPHdV0s22JkdAzf92jU6zz+1Tt4Z2wQbJhitR/SKObIk9DtdfD8PuvWT7Fm7RSKLHPJJduIohDTNIiTiHwuy0MPP8TYxGomJ8Y4ePgwWzdvTsUHSZBkFU03MWWZiy6+mDhMmT6yKJJXV9FZFrj62muZPX6cOHLpdbqoqsaVV20nieFzn/9rPvShD5IQrXiXa7iOS6lURpQlEgEs00TTdXq9HrZt02w0UDUNRTFWWlnklXsJSEKqrWCaJpbnI7g+y+tHibw+vu+y99ABrrpsO0Qhxw4exvP7DAyvwotDBFkiPFOW/cmPV6IPnklANqW99cmu729Btd6iqNk05o/w0Y/8NFUvT7dZRTWzvPUdb8dxulzkXYCdKdDu7GGpeYzTj0GnnToeNNotFjtNBnW45IotJEmAEHv4bYHsoXeSmX4DrdG9LB7cg9NtMT5yCbphoCoZnn7iaVavWY1hmjTqDQYHh/GiNgIhntNAVkVEFFTNJPQ0fDdAkQV6vfaZWCMMPdrtJZbqMYouklHMM/sW+hp6ps8V2y/imSeeY+P6ScLYQ1U1ut02oSKj6zqSJKcCkFFAEENCTKvlUCrmifw20ARBYWzCplg8D8uSOX1qGjtjUSxUWLchz9r1GZI4IQpD+o5Et9fgyOGjSEaeUXWMulBlfNME9937TT72aw+gGxp0YHRsDKtUOkPT/aHY8Kzz+/LxSnaNr3WuvNp6d+3axXPP7WT37t3s2rWbAwcO4Ps+4+PjHDiw74cQ37OT3HOxBM+OfZMk4fOf/wK33XY7Bw4cwHVdRkZGePOb38THPvZrDA4O/sB2nU2F9X2fz3zmz/j7v/97jhw5ShRFTE5O8tbhd/JL1/0aWqKdc/9eGp1Oh0996lPccccdzMzMIEkS69at45Zb3sMv/uJ/PMMu/MeOl/f1vpbY/kftsX21v51dyPpJ5Ez/IpLXfx3/88fZnl4v2QqQJAhC+vfA94mTkGa9zte++lXe+rZbmJtrcNNNN6HIGlEioRsmy4vT5K++FHfbZdSmZ1j64u1c8tgO1Dims7ZCTRLIFkYJwwTVEJEkdeX3BDqdNvl8DkjOqO9msxkgIfUDTAWPXhISIknYsmULkiQjCAm+F5DN5YjiFPk0LQtJkkjCiDiKWa4uI8sqzUaTI0eOUiiWGR0dY+70HM8+/TSvu/kmEkFEFgRqtRq1epVyJaV7qapCt+ugrdimCILAW9/6Vubn5+n1elxw3kamxsfwvJBDhw8hyTKICaomc+DAQVaNjNJ3XJaqVWZPnsDz05upLK08VFZ8bzOZzAoCLRMlCaqqIooCgiiRkCCIUoo0KjJHjhym0WgwMVHBtG0MO0MYxSS7DqA9f4D49/5PnjJjxhWBkZERdjzzNIGb8JFb/28+/vGPUyoXsEyTPbteoGKKDLhtpEENRU2Rl36/z/jYBNXFUyQJhBHs2bOb9//sz7Bcr5LLWcRCQqFUwHT7KFLCqRNHGBkZwhHBD3wQJJrt1gqVVSRJotQxaaXSGEUhkiyQhDH9fp+JiQma9Sbr16/D6XdQlNTXUJEl4iii0+tRXV5iw4b19PsupmUzMDBAHAY0GnUKuQyO02Pnzp1s374dWZEolwt0Oh1Oz83ReeQRDFMhDAPuvudu3vfeDxD4PmESc+c3v8GFF5yHpCgYts3ll12GpissLi1zzTXbyWQs6rUO3U6PTMkml8sRBgGDgxU6nQ6GYeB7PomQUFteplIZIElEnF4fkgjbMmk1WxSLeTTdOHNOZVnCEA0URWZQ0/idX3gvkBZvVFVFEEGWxPT6KBRIBIEgisjaGcIgxA/TxFgUBQI/5vTpeZyew4t797Bt24XUqg063Q6joyN4rouRz9F3HAwzpaTXag0cx2XVqgpB5OL2HDQt9abVdRFBFLCyGZJYgsij2+2iawaabuD7HsVymfDgMmvzeT5+y9X4oY+0gtD3Wj3GxsbodNrMzMxiWRbDQ0OIuozvepTLZebm5ug5DoOrhlbUMCUsy+LRR7/L+vXr0M0EQUrVYSVJZnjVMLPHZ8hkckwfm6ZQLlCplBBkkdHRMQYGCii6RL1aozxYIUwSVE2lsVwn8D3GJ8awbRtF1fj5D/88Tz79NK7nccM1VyNIMUkCqmysKB6DaVnUm12KOQ3H7WDYOXzPQ5ENBCFBLI/TOG8/mYeqvOX8C1BXT+IHMc1mkzgJMS0DRbZZXJxDURXyhTwiKnEMcQxO3yGTSQXX4ihmoDyAQEy1uoCdsxBEAc/zcLq9NGmNIgQSZmZnyeeLrF69BtuyefOb3oDT71FbajM1NUWSQM/pUiqXSIQYWZA4ffo033n0MW68+UbCMIIooNlsc+TIUQYHB3nkke+wZctmTNPksisuBlgRfUo4ePAgF1+8jU6nS7fbped0mZiYJEkiojik0+1QLg9SXa4SBCGj4+NMH59h48aNhJ6XIsWOQxiGmJbF+Pg4igTTR49TKObJF0o4nosVJ7h9l0a9wc2DYwSygluro+byvOj2mVg9iarK+L6EJIEkiytIdEgUs9ISAo1mgwsuuAArWyCKQsbHx3AcB0GWMTQTXVMRRBE/TCm/opg2APacLuWpSWLRZLnW5Jlnn+Wm66/GNg0k3aTV6WDbNpu2bCGIAgxTQ0IiDiIsywYEqtVlcoU8iqKxZ/cexsbGUu2EXB5FUWh2WkiSiB+mz1dJVllYqDJQKaX3/6MnSNaM0eq2KJfLLC7N4/Va4Lu0mh1mZmZ43RtuAFUlFlJ5mH9K7Ea6IUAQBMK//f5n2XwBtV3l5PH9VEYmMKe2I6oCi8uLSAhks1kqg+MYhoRzHIYG13G8dpQLz1/N0RNL1BbbtBZHmVytE/gCTtdBVly0o2/BPnUt7vAuFMthzZoKxVIBWRRZmF/k2R0PcNkVl7K0MMfAYIXDhw+QzWWx7Ty1U7OULAtRSUBI2T9iIqdWfklK9T0TmAsxEDA1NUEQyyx1F8/s20Clgh4LZO0slcEss7MzFAvrMdUIWVZTGzJTP6NfEAUhjhOjmnnCQKLVbGDqCp3WEqVyEV2VSKwQ32ukLDLLIonDVCxSkHDdMJ2rfQ87YzEyUqLVFaEq09t+ivGxKd717rfw55/+DEODFeSMxfjkBAEyP7ph0o8/zpXkvP/9H+DEiRPn/P6rAS8vxV2vBNC89JnnebznPbfw4IMPASDLaSHh6NGj/Mmf/Cl/+7df4u67v8XFF198zm1oNBq88Y1vZvfu1JJO0zQkSWLfvn3s27ePL+28jYfeez8TE+Pn/P+zs7PcfPMbmJ2dBUiVqj2PnTt3snPnTr7ylb/j29++l0Kh8ApH7Z//+Ekj3z+6Lvq/jv+tx9kX/0uvL5lVJ0lCv99HV1T+8P/5A/7sf3yaXqeBQIo8fPbzX2CpWk/FUnSdz912O5IkMeP0GP5PH+WJ3/8VfpM6diJQun830sHj2HYGSU77H+M4TZJTr730ZpMk8QqdVE6VQ8MwRYWNBaRsDVEQ+Km3vY1Vw8N0ux2OHTsGgki1ukwma5OsiI6IkkS326PV6qAqOpIoMzw8wuTkagzDoFarI0kSN910E91OF891ERDI5XJs2bqFTqfFzMzxFWVgqNcbZ6jNpmli2xamaeC5XQbKBQYGylx77bV0nB7tXo9Op83E5DiiIPLcc8+xZ88ennvuOYrFMp7nEcUhrtcnDANURcO0jLSytkKbzufzyIqcIrNRWllfXFxElmWazRaaqiErKqIkE3s+9sPPEJ5axP32Z4nftJ2pqQlGRobZtHk9r7/pJvbv38snPvFfkWQYLJfwfZ93veu9CK0lRN1CVlXiOKTf77N79x56Th9FlTFXbAFed8P1CMDU1DhRHIIIERG5nMXy8mkGKzlkMWBk1QiKLKPpGrlsjk0bN6GpGpIsIgqpb3Cn0yFJEjyvTzabxbQsVFXj4Ue+g2lZDFTKSFJqaxEEwYpQlsLaNWvJ53P4foQoyvT7fQ4eOkClMsBSdQFFkXnf+26hPFBEIKFYzDM+McJP/dTbuOaaa9i8aROu1+dd73oXhw4d4t5776PZbFIuDzA5OUmlUkHXdfbt34vnuQhCQqGYR9dVKpUyo2Mj5LK5dD/C8PuiJVGEkZFxvU6K2IsqoacgSzkURcb3XBRV4cSJk/Rdl17PYfrYsVTBWpZQFCX1Dya9JliZw61Wi0azSalUQhDSh3NtuUYcR8zPz6e9ir0u83OpmMwbXv9G3v72d7Bt24UgRIxPjDM+Pn6Goh6G4Qod1aZcGqBcHuCOO+5gcWkBQUjIWDa6qmLoOk6/TxBFRElCmMT0Ol2iMKLdbtN1eiCK5IqFdJvqdWr1ZTqdFlESks3aDA5WOH78ODMzM2zevBnLsojjhDAIz9xrNE2j3W7T6/VIBJnqcoPFap04kej0XNqdHsdnT9H3fbpOjyAIkCWJXqfL4vwCopAm99WlJb59/7dpdx1iUiaGJCkpkhrHWJbBzTffAEmIoqbFMFEUiZOYmZlZdu3aSRT5tJt1iEMMPUXNZVliaGQ1zXYbSUkIQw9FUUgiAZJU1EQaHOX4NVmyc1W0pWXuvPNOrr/+el7/+ten2yuLDFTKiKLA7OwsTt8hSQBBoNPpYGUyFApFDMNMk7x+H8syWVpaotPpkMnYZ6xY7IxNHMeUywO022miOntiFlEQsC2d8fEJXor7kiTBdft0Om1eeGE3jzzyCOdfcAG+HyLLCq7nUiyUePDBh/D9gOuvv57Lr7iSrVu3EgYB3W6HXrdLqVxkaGiIJIn59rfv48jRo4RhRL/fp9FoEEVROsekhEsvvYSpNVNEUUy93qTV6nL4yGEEAVzPZWg4XY9hGmiySCFnp+dvucrAQIWvfeNOlpeXGbRs7OlTdIhZWyjyghAztGoVqqLQ7zt4vkvP6SCK0G43Up/O6WmcvkPP6VEsFjAMA1VVUDQVTdPwfB9rhYbt+S5BGKxcvwlOz0mVjVUZLe8i223yxTxjY2M4PQddM/C8gAceeJAdO57DzqR9ka12CxIRVdXIZHLIsoqhWyzML7G8XGPLlvMolQZIEoEogmPHjqOqEr6feg/LsoIoyoiiTLvTJnQchH1HWPwP72ZoaAhZEcnlcly3/XL63RaKKLBYrTK1aStOyPeFd14WT/5TJbIvTzgyuTy3vO99nDh2gLu/+SUkPUYzVMYmRth7YB933fUtXty7h7n5eQRhAljFx37zV/nPv7yeL//pe5E7Jo/c5dJuW/zVX3yNZsvHtA3C4jGEUE/nr9vCshJsW+bAgf0cOzbN1ddcRhw5jI2VsUyRK668GE0XUFUbTbXx+gESGnEo4bsCpplDElVIBEzDOINfG4aGaSiEkU+hmCUI/TP75nodotBCEOC8i8c5/4JNHDu8TJKkBXnTTFk/SZIippIIqqLxve89y+FDsyiSjCSGDJfWYMp5PCcmDmQkbFTKSFGZKPLwHGg1QMRGVXQKJRtFkVg1PMRVV2zHijPs6j/Lvr1H2H9gN37sMDKQ5/mnnuAv/uwzhILyP3sK/MB4OT04DEOSlYL8+eefz8/93Af55Cf/X97//p858/2zacUv2fW8vEf2bJT07Pj113/9N3jwwYdQFIVPfeqT1OvL1GpVnnzycTZs2ECtVuOd73w37Xb7nNv8oQ99mN27d5PNZrn99ttoNGo0GjXuueduhrLDnGzM8u53v4co+mHP1yiKeNe73sPs7CzDw8Pce++9NBoNms0mt99+O5lMht27d/OhD334J3WI/0nG2dTuH3f8L5W8CkJyzuWVR/yKS9o3ly7pYUiXl184r21drzTS9YkffBvSB99Okghnllda19kX1LmPwbl7AF7rfp+tzPYP/d7Zvw0/LIsNrKj+ilh6jhTQFzHsDIeOzvLOd/8bLGsUO59h0+a1tGpLfOmLX2DvC/sw7SJ7nt5N9fQ8ghiyces69JzO6o3r+LnP3Eb7U/+RHe/ahHTwKNz1AL2jsyAk6f6IIrKiIEgyiSghrQhP9PvuCkIhEoUSotFD0FvopkQU9wmikBdePMTIyEYytkmhkOPAvn00a0skoYfntNnx3LPUGw1kRce0stQbDdauW4OESBT4FIs5DEtH02Qef+y79PpdsjmbVruJouqMjEwgShpCpHDs8DTNeg1NlVBlWLN6kiSKsfNlYlFC1iQkRSCXScWUTNNGUxUUFS699AI2blrDZZduQ9MFFEXEc0NUxUSSFAQxwesDiUwUxTRbdVzPSSk/fopsxnGMbpqIosh111zO5NgA7cXTqHNV9G89SnjNFUz/3q+SHyjhOh6aZtD3A+aXFzjdnOXWX/8wZqZMmMh0oxjFtpGFmPLCw7jWKEKiEfsSzWoDTVbxvD65TB5V0el124yMDpPJWvQ6Dl7fRxUNItej26oxUCoSSwaCUSFMVCRFgSTE93uEhAiKgohMGMYsLMzj+X0SwLTzJKGELmskScyb3/pGREXF9YUzRQxJVtB0kxgJxwuJkIkDD7fTYfbYNDPHTuI4Md9+8AkMK0MQJESBgOdBz00IYg2kmEQAw8rT7YY8+fSzrNuwjtddv51+v8d1192A049ZXKiRBDHFSglkiXJlhChR6fVDQhKQhVR4KhYRBQVJ1omREGUVIc7Q7YSEMQQECHqMoEUIkkWUKAhIDA9WyJg6TruGZRnISqpuGUWklX984sDlwL69EEkkoYrbiyGRaDZaxEEf4oAkjnnwwYeZPjpD6IOuSXheHTsDg4NZFFEn9hS8IEQzDeyMQRR7eJ7D7PQMHcel7/bRNJF3vP0tFIsFEkQkVUNUJBICep0uUqIgxtBtNdDsDHa2gCBIiIJeGS8AACAASURBVDGIMeQMCztjEwYhgSehSBmiMEWxwjjEMCVMExxniULRIIj6WLKWIrymjmLq2FaGe755H3EsIwoCTqfOtgvWMVTJIitCasvUraFpIn7kUh4sICkRV19zKblMHgGNUqnEtm0X0u626HQcBocrCEAchPj9fooMJTFhAGIskUQJteUaF55/IVdt30636VFbXiJJfAIv5tTxKnICfq+OJ8oYikB77hSi6yLEMYEYkwgBRBFYZYYKNXq/+bOIR2b4wPgEWqNOnAhoehbHS4iQEWITRVTo9+sYhoBARGWgiCobhEGIbiicPHWMemOBfD6LpplEsUizHeKFGn/31btYWmrgBT6KZrBm9XpURWJsfIhjMzN4gU633SYKElzHxe13GKyU6HVcxqfGWb9hNZs2rmZsVSVNAt0IRNB0jSeffpwLt51PGPkgQqvhMDN9mgRYXl4im7dJhITJqSlOnjzByMgwtm2QL+Sp11p4bkxjeRGJGMvQMTSVVm2ZJPJYt2Y9hw8dYbAyhNf3cR0PEYkQkVKlQiabIZ/NoCsi68ZHKZZz5PcfI6kUyZsGsSxSXj+GaUnEcYAAvLjnAEkko0gGkqjScTx0O4Ni6AiKTJgIqIZNGEeIokKj0UPXsgSxQCjESIKEkAgQx2lBptUmCHwEWcXT6yRmFb/XY3SoRLFg4ActTFPmLW9+A9PHjqLKOnEoIqHTrLWIEhEvSfDikOXFRWYPHcYwjLRIucIaEgQYGxtDVFQKpQpxLCEKCrKUAA6h10F8YT/9rMlSOY8fiEToqEaBhZpPo93n3nu+xdvf8WZ6nSaypiPHqQW7mLy2Xtdzi/S8ihsBP5wgnGFnrXwWL0K08INKpL4nkMQjNN02S9VD/NVv/TZ+zyNyYtaNr+fKS7czMTFGp7eMrsTc8MYJEnMJO3s5C4sgKdOMjNWYWVrimd2n+OKXduD5YwiTM9Qv+CPkExegyhU6XQ3HiSkXDS65YBJNiNjx7DPIskWrI+KHKnMLpxGiHs12DzfRcfyIKOwSxg2CJCIgJIwjwiA8470uCSJi1KPfnafdXECRjTP7tnyiSrO6QG25QbsdcuzkPL24D0mAJEYkcUDgufi+mzJikghVFxisaGzeuArPbaAoIlZGo9d36Pb69Pt9EEP0bEAoLhP7AlEQUasvkMguXbeL44OAwvDwAEsHW3RoM3OiSr6Y48DuZ/i3t/4if/qFv8MRdATFJJNAIgokK24SscCZ5ezzfXb8ea549Fw6uQmvLZl5KQHdtWsnTz/9JH/+53/GRz7yH5iYmPihufZykaaXL3Ec/1DS+PLtP3LkCJ/97N8A8Lu/+zvceuutaJpGHMds27aNO+74OoZhsLCwwCc/+Uc/FH8//PAj3H///QB8+tN/yi23vGelV1jkpptu5rYPfhWAvXv3ctttf3tWLiDyxS/ezt69ewH4yle+xI033gDEiCLccsu7+fSnPw3A/fffzyOPPMr385XXNs6O21/L919+Xl46B6/0ndeaP7xyvvKjjf+lBJvi+JXUhl+pSfjV1vYPN0e/tpPy6r2p4uQowuTIa9yun1Tt89Umx4/XPH/2+ziOCYK0Er28vEwcJcRJyHcfe5SJsXEC12P/i/s4sO8Fel6Xb993H5s2bKDZ7tLr97nw4kvIWTKtZpuDhw4xOjZGr98lCHzG15kY4iayGy7i+dU9IGDgob2Iyw3i4QFEVVlBFyNkSUqpsqSqtDt27ODrX/86mzZtwih2ERCQgnL60EwSRkfGmZtfoN6oomkqg4OpWm4mk0EQREZGRhGQsO0MTzzxOLt2Pc/5F5zHyZMnMVfsWTQtNX3XVA3d0NE0HRBRVI0kBlXRmZ8/ycTEKLat0+40CCOfOA4wLZ0oEkhiSGII/ABFU2g1WwhCKmShrqzXMk0GhypEUYKqpCqGQZBSrjzPP6MWGUUh9eVaKnQiy7heKojU7fbIZnMr6EOPwPfRTi2i7TjA6Y/8DAcu2Uyn28btO3Rch1qtRqFQIJ/PUyqlFg39bpee47BqdBQAf+9d+M0FXHtsBZVICEOfOI4wLBNNSxPRXD6Hoqn4QUAQhWiGQRz6nDwxQyGfwbRs+m6Eoqa9lHEcpVQ8AQzDTAW3VjzkTNMkl8vRbrfxgwBDl+k5HcIoQNU0RFHEcVIP0ziOX9a3k/badrsdeis02iCIuPCii8jnc1xw/vlkcxZzp08zvzBHo1GnXCnTdx2OHDpCuVwmimJOnzrN8PAwhWIByzDxg4jbb7+d6667lnpjmXK5mG6HIMAKA0BRlPTmD/iBh7BC+U1IMHQVWZIJPI+7776TtWtWY1k6siil20/CiZMnsGybTDZPdalGJlsgm7fS5FySVir1qSdnFEaMjY1Trzdptpo8/PBDrF07xfHj01TKFfKFIiBgmCZ21mZoaBBVlVmuphY2URjjewGqZuD7Ab1eF0PXU9sVzUDTTOxsliSOOH3qFJMTE8wvzGNnMihK2o+TCvdwJmhot9vYuk4Y+Jimwfz8HK12Cz/wyB1vk81mkbdNoOsaL7z4AtlsFk0zyGczmGZqHxVGCYqis7RQR1IUBFFAlkSKhTwXXnAejutx8sQsAlAqlVYUWG0sy0STDRRFQxQVFFlFkRWOHDmKnc1jmAaGaVKpDDA0OAhJgiQJNJstMpksM8dPICARhTA3d5qh4SHuf+ABJElkcHCQKAxZnJ/n8iu2ISsybj/ijju+ySWXbAUxQVct4thA1jS6bh3P7ZLVMyCJ+H7I3EKVHG2SyU24116LXMoiP74bafoEjcDnyMIpKpUyqqyTzVkYupb68AYx3W4bkgTPc0iSiEqlgqYbgESn3UTXVHLZHEtLC/R6HTZsWI0kQt8NCYMIUUhpxWEoUKt1CQMXWdbodDpEkY+qalhGjmzOZHx8fKWnN6Tv9tB1BVGEVcMVpqbGUWSZU6dOslyts27tajIZC1mRqNVqlMslZFlh1cgIhUIeQUjQdQ3PcykWi2iqQhj7qJpG4AfEScj6TetQNGEFWRSxLItavc7wqmGCMMD3PHo9B8MwaDRaZDN5BgYqmGFEfO9jSOdvxPZCnDWjuEJazPS8EF03OHbsGNlchkzG4tFHv8PiwgLnn7+FOAxIohBVUZCllA7s9z2SKGFxYR7LMkmSCENJfagVOVWB1nUFw49IFJl4JG01cZdNJsbHiSKfvuuSy6dskGw2x44dOwhDn+HhYQ4e3M9idZG+26Pv9Fg9OUE2kwFRYGFhAdu2OHLkCJVKhSRJqaVLi8uoisbuXbvIZbNkMhkKhTzSd54j/IPfwJpanbbkRCGKJBP4DjnbZP70KW64+WYkVSNaCRH+MYHnj4qWnC2i8xIyJggCwec1kv0y6u9dy+333c2JEyfYftVVbDtvE/c9+h0eeHaOx/Yc5HO3fZFHvvcIg0ND3Hj9dfTaNabGh8lkc+TyeR554DE+9l/+jL/8yqO87oYrkb0TfOXzj/CpP/4/uPLKAd566xf4xF8+Q3k0z1ZrO39w31/z8e98kr985ja+vOsOHj30FL1qk3e+/u1oukp5oIgswvHpWfbu38fmLVvRzQx/9fjX+I2v/TEfv/cL/PX37uTZ2QOUrRwj+TJ/8/T9tF2HN229jE2DEwShThCqVFtNbn/qdgBuueK9LDsd/vu9f8Af3P9HfGn313l4+nHmuktMZitUCkVUTSEMQlRFJSHmO/ue56e//H/xl099lX9/5bs5MH+Uj9/3V3z823/Npx77MjtPH+TdF12Hpqksd1t884XH+MwT3+CLu7/NHz30Zf788W9wx65H2Dd3jNHCBKNsIVZiDmhPsXfPDmQx4B23/Ax/8YXP8453vo3HH/8e7/+Z98HLUMuP3Pr/sXfecXLU5/1/T5/Z3q6f7k7SSUINNSREMx1sg43BuBHXxHHiRnDJz7jHdtwSN2zjShJXwAUHbEwvoglEEQj1ero7Xb/bvb0t02d+f8zqOLDAJnZeccrzet1Lo535Ttmd3Xme7/Mp7+Gyy95Ef/8Ar3zlhdx446953/s+wIc/8lE+/4V/4t9vvAnbslm3bm2DvvSnu6eei+w7Gg888CAPPPAg6XSa9773Pc+7zz+kyPrmN6/m/vsfIJFI8NOf/gSlwf0/un02m+XQoUNs2/Y0g4MDXH75e4FncvzPfOazbN++nfnz5/Otb1095zjRv/NWd/DAIw/Qf6SfcrnMm9/85med3wc/+EEGBgY444zT+fCHr/yd81u+fAU/+clPmJ6eRhAELrroot/7vv0p41jv258SAvy/WrDpzzHmepz9qWYa/pxCkqTZWZRIETbAsiwymRSObVOamOSxhx+hXq7RM7+N9o1rSGTTLOqdT1dnJ8cfv4ItTzzFwYP76e3M8upXv5r7HniQIIhM5xcsmE/drOJ40zy9czey0cXQGVlGTzmOdfeNI/3ydjhlHcHCzogDCoiCxHRlmlQqzbJlSznuuCWkUmlgBISI+xYJPEWCCJ5vs+y4RdiOzdPbtpPL50gmU8iSCrLE4JFBWltc5i/oxvejYrG7uwvfdxkYGMAPPNKpiIPQ19fHqlWrmJyYotDUjKpqHDhwkDtu/S2pVIqLXvUKKjMWhUIBz3exLQ+EqFvtui5j4xO0tzeTSmcIPAFZUhqWPwKqGvFhJFEFISpSBTHilcXjKVzPRdI0RFHCsiwUOfLPS6ZSuK5HzEhgWTYjQ0N0d7YT3PMIQq1OcPXHENrbUEbHScXzpPMF9vXtZ9WqVbNFYF9fXzRBUatFfpb1OuLgo+gjj2G3HY/phTiOjShCLpdGkgVmajVSqUhoJJlKoSoSkiwQU6JrUlSZhQsXUquUkGUbRTEIQwnbrjf8e0HXYwR+GMF/HQtBFDEMA9/3SSSTyJLE1NQQra1t1Gom4BMEPplMBoQIUi7JYpREFyfJ5/MYMZ10IuKcZLJpJibG6JzXGXnZEdDe0Yosi7iuh2GoqIZKc3MznueTTqep1Sv0LlpIsThJIdtMZ0cnZ555Jo5rkc2lsB0Tzw0ixWlJwhcEqpUKyVQKUYxUtyuVCmNjo/T0LEBAwPMDSsUxXvuaS0AQKE0VSaXTWKZJLJ1hXk83kihhWy7xVAZdMwiIfDxFTcI0bWRZwfdCdEMnDELiCYP+/j6WLOkllUywYtly/ADCUAQhoHdxL5IsAj4yEeyYUECWFWRZ4sCBg8QTMYLAJxlPEHgCoRLZcliWSSoRp7OzjTB0aW9vJxAixVcEgSODg+RyURFv1uvEYjFGh46QzeeIxXRaWpvRDJ2hI0fwA4/QDbHdOppo0Nu7CEVRqdctHtm2lcB3Wdi7kFwuz3R5hie3bScW01i6fBGqJpPP55gulZgcL7JixdJICVgUG4rMGmMjw2hKknxzIYKJVmYoTU2xYsUq6l6AGwRoYcjIyAjTxSkIYf6i+UxMTKBpBrt37WX58pV0dXWzfMVy6mZkZXXaS04hEY9F0OOVyzBNG0XT8AOTv3nn2wn8KpPjE2QSJeLp+XiiiVsu4ddLmFMg5dowdIN4MoFb0ZAn+tCWLmFEnY+8egX5pw5RuP7XNBkaw4cHeGznQYZH+3nr296CaTq4rh8lVPv20bu4l5CQI0eGUDWdbC6OY5mUbJtUPMm8zlbSSZ3x0RF6excQBA59A4fZt2cnZ597FpoW49Zb72DZ0g4EQaWnpws/qDPQP8jtt93HRRe/LIJAt7RQLEVdfwiplKfRVBGRgL6D++nvP8LUxDRtrTny+Tx1q8rChQsRxUj5PJFIYFtxMpk0lm0BEc+0PF0GBOqhz65du1h83BLqlTLZbArLcWf5us2trdiuR61WR5NEJEnGsQM0Ncbw8CixWBzjN/citreg2A5WOkGQTpKVJCzLZmqyzOOPPcE555yLLItUazOsWbsKVdKplqeRZZGYriMEPpXyDI7nETPi7Nm9m7Xr1lKv11ADmcHhMVLZaOJSliNrn7osIEkKvrcXz3XZt38fYTAfx6qjqgrFUpG9e/azfNkKjjvuOO5/cBNLly5lw4nr8HwfQZaQJYnRsXEmRsfo7O6iq3seqqLQ1t5GtVbhcF8fy5atwnc8BvsHyOdyxOORtoN/aDD67qUzpH2BRx94iKVLl5BMxcknk9x37920dLQTiET6BoIUWbz8F8WzOndEE+BHUyQ/DLjyC//Er2/bjigK6KqCaVls276Nbdvfz959u1i9eD6hW6V90RImx6eY176CTLoAR8bxPZeLLj2PZHw7YjCFKM5wFCG3Y88eLug/l+39h5FFGU1WqDl1nhrewbbhnWQ6crx8xcvwQwddT7CweyGpDSdQM2u87B8vYu/YXgBkUcL1fe7Zu5V79z3JJ1/6pmfO3/UAj4P7D9C7ZD2JRGL2ugcqw1x57d9jeSaqqCEKImV3huueuJNbdz3MT972CVbNW4CqqYiSiCJEuhlH49GRnVx+/RdwA4+EFkNqQNeDwMd14Yt3/JhfPXXf7PYJLYYf+ByZHuXI9Ci37rqPb5/5Iy668gz6r3qa0PGYcWt0dPc09kVkYSbJzyvj9b73fZDvff8aRFEkmUximibbt+/gQ1d+mCefeorvffc7vwPT7e/vZ/nylQB8+MNX8tGPfuRF3St/TLfuDymy7rkncgQ59dRTZl0qIMpxjyoun3/+efzoRz+mv3+AvXv3sWTJ4jnj7wbgvPPOPebxxBY4/8LzuP/h+3jooYci8UEj6sjX63U2b97cGH/e817Deeedx/e+9z3uuuuuF3H1/7PjvxVs+LlwgGPd1M8Hq32hvz/meM8XRzH3/qZHCTY9+kdd959LzIUB+b4/+/9UKoWu67S0tCBJEslEmqZ8K/fffR8H9u3Htk1aOprYv38vtmNy8OBBwtDnul9ch+2YyLLMbbfdxpo1a2hubmb16tXRj76TwUhYDAzv5K7bdxDTFpNrizP1vtfjfObdCFu2Id65GayooyUINH58fEwzSpxFcY5suh824M3RvbFgQTeu7xEC7Z2dFJqakWQFPwyZmJhixYrlxOMGY6MjrF+/DlmSKE5NMTQ0FNn0iBKxWASBW7duLQIC7e0dGLF4Qx0yUuRsaWlHU5Pce89D2FaAiE4QyDiOzeDgAHfeeQeqEhWcnudiOw61Wq1x3hFvFUHEc30OHexDlmVURSWXy1GvmUyMT0Cj0zV//nyaW5oRRTHqongeru3gWBbOxBT8dhNSIcPIN65krL1AJpdl8ZJe8s1NGLE47e3tmKZJGIZUKhWq1Srbt28nDMNI0VKwkHbeiNR1IqYXcQ9Hx0Yw61VkWUQQQpqamho8X4l63cRzPSQp4mfJskrghw34gYDreVHHSBAJ8SOequfh2C6+HzTUWSOOn+d5z8INJBIR7PTo/eh5Lp7vzlpIhEE46wVMGHW3vTCgWCqiGwbNLU1MTU0CAePjY8hS9Hm2tDQjCFF3r6WlBcMwsCyTpUuXIisSuXyWMAw5ePAAS5cuQRSjB52m6gwMDlIqFpmZmUEURXTDQAA816VcnkGSRObP78GyzMgnUlBIp5MoqtJQrg0QBQFFVQmDAMe28TwP13W55ebf0t9/mOHhEXTdoFqtRhxmTSMeTyBKIggCsYRBd888TtxwAlOTU0iiiBGLUTdNZFVFkkUEBGr1GoEfkE6ncV13diIql82z6d67sS0Lz/PYs28fI6OjyKqCYRjIsgRCSLVWRRBgplyZhW1pmobXUGANwxDHcbBsG03XCcOwoVYb0tLWhvXalQyd04bve7zifZ+j+xV/w5d+dCOqppLJ5ujuXkA+34SsqMiKwokbN0YWSpqOpqhUKxVi8Ri5bIpXvv/zFM55K5/7txsolkqEQUghn6dUKmLV65FPbiwW3X8h1Ks1REQOHTqE4zik0ylWHr+SRCIRiQIpChs3nki9Xufmm3/D+MQ4sqLQOa+TVDKJ7zmIYkBTUx5dMwARTVfxAxdRUkhlmrGsGkHoIIoClumSz2aoV0YhcBCFgNbWFpRcB4zuwTRtcrkcqUyGm81pvtAewz7vFDq2D3BhMkshn2d8fJJYPImux9i77wCxRHzWgiubzZJMprBtNxKvSqSQlQgZ4rgehUIzrhcSi8XZv38flmWRTqcZGxujbtbonNeBWa9Fk2SShCiJNLc0k0wmKRSaGhZlaQRBwnU9srk8Tc3NtLW3MzY+ztTUFKvXrkHVVMbGx6hUqmiqQbkcqe3OzFSwLIdSaRrLstm5YyfVSpVUKkMqkePggX4eefgJJsdLiKi4NqRTGQI/ZGqyyPDQCJ7rkUlnUNSIH+o4HuPjE6iqBoePwOgkwoJOFMfj3qE+goalkqLI7Nq1i/nz5yMIApZlRfd5LsfU1CTxeIJiMeKY7du3D0VVSCYSqLrKspXLEWWJpuamyGJnaiL6jbZtVFWmVq0yOjqKY0f3vKKodHdHXHFN1xkeGQUieyDf98mk03S0daIoCpVKhZHhYSQEwhAKhSaOW7aMaqWGZdqYpk0ykULXdBYtWgyhwPjYOE2FAg8++CCWbUUWa1t34V/+ZkJJxPM8rvnedyhOjqErCgOHD1EsTtE1vwfL8fBCIHwGBvhC+cwL5VJH179QHOsYRye9Z+HDz1n/L9d8n/sefIirPv8Rvv0P7+CDr9nIFz92JetWr47W//hf6eyez1133scP/u2nPLz5cdrbF1IqlQEoV2wGhyssXzOPZKoZVczPAtFu33qY0Zlxrnn5Vex/+zZ2fvRn3P6uqzm+fREhIZ+95ascGhhAFEQUJVJzVxWNv/3WO9g7thdFVPj4yy5n96dv4qkPXcMDV3yd85du4LO3/5RivRJdnygQ+B6SGDA+NkSpODF7bZ/4xUdZ0DKfqy/+Nje/9SZ+celX+dalH6A93cS0WeVvrv1nZswajuPgez6u42Do+uz4D/ziS5y2aC2b3v9tdn3yeg585ld8/lXvQlFUgiCkK9fK2a2nceXqd3PnO37KYx+6np2f+BU3/+3VvHTpmTi+y+Wb3s6IMMjadctJxg0uvOQ1iLI0xxEhnP3tnlXjbay59dZb+cEPf8TnP/ePHO47wKGDe9m/bxdvfONlAFx//c+4d9OmZ90jc61qfl/M7bIe/Tt6LkcL4qN/zzf26PGeqyIcTZAcO5/ftWs3AMuXL5/d1+y1N5aProPIIuvocUqlEqOjY7Pjn69OODo+CAL27t07e3179uyZ3dfcYzw3jq4bHR2lWCz+we/pseLFTATMpQb+Rzmrc/fxp4z/VsXri40/NUH4PxL+j27E//FNz7v+T40D/6+Io5wCSZIIQok7br2bpJFhxeLVrF21nlQqRd/hwwC0tDTR0tLE0mXHsXv7Tnp7F1AsFjn55JP57ne/y/T0NJVKhcHBQcb7xhkfKrNm7QZ+cdPPeOzJbVSrGax6Hf+kVTg3fBmOX4J48yao1vD9EEkSEQSRlpZmpAakOGioAUYWIxGMM1KlFQgbvpuaHvmj+n7I6Ng4tVqNhzc/TLVW5bili8nlsySTCUZGR1AUGV3XSCTiVKtVxsfHEKUQ14uK0Z07d1CZKZMvZHn7X/8lp512KuPjE5TLFR544EH279/PU08+haLKNLcUqFRn0HQVRZHQNAVNkxClo8q6IY7t4TkQjyfJ5wtRQeo6jI9Pcu+993HvHXdi1y1kQQBRQGvwtxLJaNb3wP79+ONT9O7uJ3zVOVjf+DCtS5dTaO3AcWwIAhKpJMlsjubmZm666SYcxyGXy7FkyRLOPfdcOjo6SOgqzr1fI8gv5K4HHqFareL7fiSoE/pMTI4iySJ+4OE5Ltu3beOOW29jfGQUs1bHtW2mJiZQVANFMTCMOLoew3VtHNfC9WwUNVJKlOXIHicInnmQypIEgoBlmgRhiK4mKJdr6HocWY6g1oosY9sWnusSNOCtqWQS13NQNSVSBY7H8UMfSRJRFZlqtYKuG5EaNSJhKCBKUlRcNnzu6vU6uqE1BHtAkgW6e+YxVZzAsiNhFlFUWLRoEflCodExdpAlaRZWn4gniQp2l5iRwLE8RkenKNdmECQJLZ6kpbUDJBktFkOVVXRFhSDgX675LjPlSTRVoJBvwXODxsRIC7Zj4ftOZNukKkiSQHtHC0ZMj3xCRQnXtTl46EBkjyNGSpm6FsP1fJLJqEMvihIzMxXK5TJnnH4KnR2tuK7D0qXHYcQMBEkgSm5cgtBFVSUEMUoqHNeFMCSby+F6HoQhhmGQy+Vo6uhAUjVMN0qeXT9EFGX27+tHVWMQCrMJkmXblKan6O6eRzKVwDAMRFFA02SSmSRnnXUG46PD2KaJbVsEIfieNTteEEVaG4JsYeAjiQ7xhIoig+u5JNMpnnr6aW69+RZuv/U2stkcXd3zmNfTRShGEH5Na1hX+A6SHKBqIoXmZhRN4eSTNzI2PoLvO4SBj1mvMDBwhFKxjG5omE4N2/FQ1SSJZJJK7RBiWCOjt+BaIU4wxe2/+SVWtRQ9m7KdiOUhJEmYRWGcffbZvOP//T37lnYxcvUHEOIxLlm3kZbWDmZm6jzw4MMUS2WaWtoIBAFZjdS1VVkhpmlUqg5t7d0c7h9C0WIY8RSJVI5y2WJkeIRazaSru4uJyTEURaS9owXbNpnX1YFt13Fdi3Q6zstffj6JeIJSqYSuxxCQqVYsCFUkWceyPURJ4eRTT+VlF76cxcctIplIUCgU0NQYP/jBTzHrLpsfepRf33Qzh/sG8D0gFOns7EaSNCqVGgOH96GrAtlUHDEMKU5MEtd1xkdH6e/rI27E0BSVO2+/g8OH+rjhl//O5GQJRda4776HcCp11Ls2M5NPopcqHNAEduzdRxCE1OsWlUqNtWtXkUwlGBjop79/gHgsSWWmTlNLG5Ki4geR0u287h4cL0CQoq5WJp9DkCUsx6KtvY0Fi3vJ5LOMjI1SqVQIfB9VElEkBQGBcrlMIZ/nt7feQq1usWLlKnLZHO3t7ezctYtdu3ejKpMqWwAAIABJREFULOjkL37+fdZ9759Y/5Ovs/Qrn+BvbvgxT4+N4IcS+VwTqVQGWVYpT1fwPVAUndpMhVwmTWWmxPLli7HtOuzvIzQtePU5tM9rpWaW2bbrSd5x+TvoXbmIE885h8985at87dvfYbJYAkGKyIvPE+PjE3zyHz7FhhNPormljUJTC2vXncDHPv4JJiYmf28uMD4+wSc/+Q9s2LCRlpY2mppaWLfuBD72sY8zMTFxzDHhZ78LA8MATJdKXHvddbzxre/ltLNfx8S0iTl2gHe+4ZXkczmCIODaG27kpNPO4+tf+VfWrz6Vt7/zrwkbVjXTNZUPfeYG7n9ikOmKzOSEPVvsWLbLdz5+ASe87iliYQ6xFmf5vE6ueeNH0GSFulPn5ic2Ua/DL264kUQywR2bb+Xe3XcCcMXpl/Ou899OOtGE41h05Vq55s1XcnxHL6YbWfWEQYgsixy3pAtdc7Gs6jN5kh9wzduu5pz1p9I+r5VUKs+6eau45g0fRpVkhqYnuP7xeyJLFAHkhrDg0Zifa+dz5/4tXZnW6DnierQlmlBkHUGQec/pr+PvX/o2zl13Ek3ZBhLI8+nOdnDlGe/mlPbTqHk1vnjNl2huL3Dpa1/PCSedhh6PI0mNUkCI+K7Hyp1LpWmuuuorvPvd7yTZyC1yuRxXfe0rrFp1PAC/+MUvn2UNeKxC88XECxWss+9rgyL0XEXhPyQqlQqVSjTx0N7e/ixo+9xob2+fXR4ZGZldHh4ePuY2c8O9R6T5yDPUwblj5i53dBx7/Asd/39z/F/x+l8c/xOK16M8h4j3WsS2XFLxLMuXriSVSJPNZuno6KC3dwHNzc1EZHSRUqmEaZo88MADbN68mQ0bNhCG0cxfoVBgdOgge5+eJJ9ZwA+v/Srdi3MY2jL2799PtVohSCcQPvFOKmeegHj9LQiDIw3eZMTDlSQh6gYiIAjguh5hEPlxea5HSIDcmHVUFS2yJxEECoUmNm26jyNHjiBJIrlcNvJLDaKCJ5PJkE6nSWfSpDMpVq5cSa1WwXFt2jvaIgEMEWRZQJZDZAWC0OGcc85kyZJFTJenWLvueFzPQVEU/uIv3kA2m8F1HSqVGWRZRNOimXpCcF2f22+/i+npMpl0BlGMIJz5XI5FvYtRBAnXspgYn8B1XOqmGT3MwygRX+AJ5O5/jODytxK89zLCuA6CiCBLJJNJ4vF4I2GvIgiRnU9LSwulUol9+/YRBAHj/XsJH/0eQSigtixi/fr1NDdHnZl8PkciESeXy2EYOrFYDEPTacoVuPCCC8mkM2iKygP33c/DD26mVrNxXZ+jc7qu7zYKOgPfi+Bs1Wqdo5wRocEfPTpDWalUCIMAQZDx3ABRkNFUDVESGp3XyPZCVRUy2TSyLCEKUYHkui6yqjRURG0mJidQZAldM9i5axdm3UQUJVzHQ0CcfSjG4zECP7IbEgQYHjpCEHgkU3ESDW/YmfIMjm0TNgo3UZIQJQlBFBsCFRGFwDJtXNdD1XSGh0ZIpdPQ6L54QYggKriej2M5ERzX91nQ082rL3kV6VQcw4gjijKJeJJ9+/ZRq1UZHRvFD6L3TlZkLMvErNcYHR1lcmICWZFZ2LuwwUmNjiWIEmEQUCwWMYwYkiSRSadpb28nkTAwDI1yeZqpqalGEQnlchlBEJgpl7EsC0LQNQNFURDESBVa0zT8hu+zZVlosTh120WSVcJQQJFVzKpJMpEhZiTw/WAWphYzIi/LdCb63fB9D8sxEZUI8lytRV1eSZJIJtMIgoimqXS1NdE7r5VEYxJKEkUcy2bBwi4EwSMk4lJLksi6tet41Ssv4qSTTqJeq0W/vaKI5VhMTEwQBAGZTIZUKkFPTxcXXHh+RP+IPkXaWtuYmSkT+pHHdHGySMxI4HoOmqYhyiqiKOOHAVOTfYwMHsKqeoSBjKD4GIrI/n27I/isKBImW/D6tzI4OMjk5CSmaeL7Ph0dHdQtk8qrzkXe3YdoO6RSafbvO8CWRx7BcjxqdQvfD1AUheGhI1TKZVKpLHfeeS+SrFKrWWzbtoMgEEkk02QyWURRJJVMks9nKU1PcuaZL6GrqxNJEpAkAVVTiMfjhKE/2wUaHh6J4PR6HFnWsR0PkDGtiB9rGDEEMeJTy5LCw5sfIZ8roGk6y5YtZ8mSZYShQCKZIpVKo+sxRkfG8L2Q7u5WZsoTxGISTU0ZujpbEIWAkeFRpkvTjI+NYZkmJ23cSDwWjyaSNI3p6XIEk3/sabx8Gl+RcSWRzNIlbNx4Eo7joqoqsiyTyaSIJ6LJlM7OTkRRZs+efYiSjGXZqLqOZTuMjU3iul5Eg3EdvNBDlCVGx8dIpdOk0mlCAVrbWzl44AAxXadzoo68fW/DzieGLMu89PyXgiDSd7if0nSJjo4Otj31FNsT8Fe3X889A/uZMuvoksJYrcIvdjzOOdf8M//62P0IgkjghwwPj/DQQ5t5YutWTNMinUrS3NxEe0crS5cuIRuPIW3ZxpF/+CtsweepbVs5/8LzGCuOs3f/fjzfRxRFBoaG+Pq3vsu69RtnrTyOFVu2bGH9hhP50pe+zM6dO2dRK3v27OWrX/0aJ5ywnieffPKFx6/f8Lzj1607ga1bjzF+YBSsSJX35JM2ctoZZ6HHC3TOX8bqdSdyeM92nt66hVM2bow2P3KEzVu2YlYc2to6WbFiGfEGPLdYdnDCJu669zCVuk/X/PbZ3GrtogKbH96EmJGwuh7GKK/Ecl2aswVWzYtgoIdLAxw4MMjGjacwPjHJ9fdFPj5N8SZeueZCQmB4ZAxNUQl8HwGR95zx6jkXE6mim+YMpjlDb++C2TVvP+dviOkaqaY0Le2dbNm6l937RkiHOi9fcTIAN257ANu2EYXomTFXIOWdZ7wWz3VxXQ/X9QARVdEwTRMBEU3V6elJksmKaGrE3xYFGVFQUWSZl3e/CoDxySlOO/MMAlGie/4CXM+bFbuMcqVjF6+dnR284fWv+52PTxRFXvbSlwLMdjHn5rPd3d1UqzNUqzMvCjIMzxSmz+3gHitf/o/k+pXKM5MLR6G8x9p3LBY75pijhe9zt5kb/g4RbeAZ+Hi1Wj3msmEce/zvHr/yvNv9b4r/ZpzX56u1n7mxj86aRAXh8+/pueJDzxSQ4u9sF73+7GM8E88n8PTsL9tcVeS54/+QL9tcOfu5Y8U5Y1+MktiLG3Ns2Icg+tiOiyAZ6IpGaIXY0zabfvMQ1eoMi3oWc/eDd7Ns2XEs6erFsuqIfpZ3vfejvP6yN1DIpFHCkJuv/SmvuOSVuIFPoEhUnQph2WF4YBBLCHjwwV/z/R9/hfd/8H2s23A6sViMAzf0MXogILZkBVI8ifKBN+Ocdwrqez+Pf8YG/LY8sqxGCbogIQQxwiCM1E19F9e2SSdTyMi4gY8R0/EDh1QmRmVmGsMweN1lr0YgKv76D/fT2dGBadc4fvUyBEGgXquiyAqm7ZBMi9i2zVNPbmPxwkUoQkjoBaDKhMjIiooXeEga9HR30bOwJxJ0EkUMQ8f1XGQ56lprWpyZSo3QdxuQIQHLqrN23WrApzRdIptLMzk1ST7XREtrjrUb1uD4PplsHkGUKU4VyeRS+EBtdJzMtt14V38K9ZQTCJwAzwYUlVtvvoOTTtyArgkYRogiOlTqLkcO1zi8x2Tv3idx7TL6yiJtxTvx9ThS20psq048aWA5Dru3b0fXtYg7KknEYjFcxyXdUiDVnMP3HKZLFRwPVq9aRXF6nMmxI7S0tCBrCQRZJqY1vn9BpBQsSSHxhIrve7PFVtSh9dmzZzfxuI6iagihQCabp1qpI6sKnhcZukuBimeFjE+O0NbWQuCHsx1Cz3VxG0mtqht0L1iI67pUKxWaW9uQFBlBDJiZKmIYOrt2HCCTz9Ha2Y6sxQhDcEwP1w05MjzKvJ5OVE3FtX0ULYasiriu0+ich0SoZxHX9TGMKEGI63E81+Pnv/g5C3oWIggqfhBpMI6PjdHS3IxTN1E0FUVVUBWVC195EbVanVg8RWl8GllV0GMxmpqb0FSRWCGDJESw6sBTSaVz1M0KWjJGrrUVIXCJaSrl6RLJdAZJVvA8DyOewHIjzqbruoxNTGHocbKZDPW6Sz5XYN+B/SiaRE5JY6gavgeJZK7hJQyGIWDWprACMBIZZDnqOtuOi1mtkVQUdm7bjet6bNy4Ac9zKVenWbCvCvvKhGf2RIUwUKlOI3sCnuvgEYlWSYqKFErYtciiJZVK4ochgaAQIqDpCb71obdTnplBURQC38Z0LSRDJZASSKKIpkq4notlVvA9i9HxMRYtWoRpmhQnSwRBQHNzM6rhYtpuJBYm65TLJSRFoTQ9QyaTQdN0AkKSmRyKKrPloYdZvWYFljNNNtFKGAi4QQUvsHGdkO75pxGEIRMjh4hrOvFED+vXZAhEFV2o43shfrIV5eDdtL3i43gW9B0YpFyssPnBhzj9JSeTOnEx5mOLkHcfoNia461veS2KquD5Jpqawqo7xGKJyOKrYrF7x/bIJ9WycM06MU3CrE4ShiGphMbFF5+LiE6l5DI+MsGaNR6aksNxbARBoFaNOieOXUdRZZKJBMl4isH+Q+QLTVx33b9z6mkbWbJkMZIkUK/VqFSqJBNpUBTkmMFFl76CkaFhdE1gfGSMwLJobm3GMBSKxQl279nN8SvXsfmhR1m2fAnHr91Ad+9ijISOJMkMDY1w/OrFFKem0bUk8Vgygvgm4lz6+tehyQrF0gRvecMliN/+GcKG48nXTZ4IHRbJCksWL46em6KIIkeUBateJ5FMIogiE5NTrF63FrNq0tfXT09PD4pkkEq71OszyJqOoqhIoUJISGtrO47vE/gR31YIA8y6RXmmRouqAR7gEAbw5JM7WHfCGhzHZGhokCD0sRyLwmnr+fjNkXjPm1ev52OnX0JzKsWO/oNcfuOP2TozwUfv+nfmJ3O0eCKLF3ZjLeiiZpoEgc/45ASj46Mct3QpkmJg3fcYaksBt6eH8tgkb3zrmyiVSszrnMdXvngVi+cvZdcTd9KzfDlXfPjDbNnyKJdcfDE7HnuceOHZfpGjY2O85jWvY6pYpLu7m29+8xucccbpCILAjh07uOKK9/HII1u4+JJL2br18chvMowQFBDBGV/zmtcxNTVFd3c3V199NWec8RIEQWD79h1cccUV0fiLL+bJJ7eSyWQaU0HPjhPWn4CETShZSBmd41/6WnoKKR566mH8UpSLjE1McfVXrsKN2cgpiUsufi2PfzZSa+2e38ny45bw8G/vYv++Q/zsV3fgNRKo5Z0JLjzjTMqjY1hd36D7yIkY04voN58gq6WinEgyaS446EoNJWzlSHUIgA29J7J46UrGhvuI51qoTZRRdAlNljhlyQnIooQX+ASih2fZaDGDjvmt7B99pkt20qJTqFd8zDRohsLx6zcwdGgHRjLDiT0ruXHb/ewe6SfAww1cRFFv+JtHsaGnl4SsE4+nKJdnCIKAZCpFvW6hG2DZNXYNj/DDB3/FrvFDDM9MUHes3+GvHth/kEzrItaeOy+SfkfEb+SCR7c8Vm64ds2aZ00iz4Xltra1AhGM9oXiaHf0uXlv0JjsfO7rczugczuic18/eg/O3S6aoBUIQ3+2sXKsvPtY6ffRff8hndy5b9Nztw/DaDI5/B3X3LlOJX84rPrFRPg8py3yzGf2n9HUe3b9dWyP3T9V/I/uvP5f/OeFIESKmRBgmnUcu05f/x7uuPUW7rr9NlKJJE1NTSxduhQvDCLYoFXhhl/9ks9/4R/JF7LoMY3W9haampqoVCoIYUhXVxe6rjM4OIhhGFxxxRV88IMfpLe3lzAMOXLkCC3zFjI0MsH+XduYONIPvou4/nj873wK8d4tSMMTDRhMVBC4k22IlR5kWY6U/FQt+lIRIgoCkiiSSCRQ1YhHKkoSsXhkEq1pGj093SiKQr1eR1V14vEk9brFoUOHGR+fxDKj7sPpp59OR2cn2WyWarWC6zjcdddd7Nu3l3w+Ty6bIyQkDAP8wOfw4X6q1Rq+F+B5PpIoo8gqRkwnlUqRSCaIxQzy+SyFphzpTIpYAwqaz+fwPA9d10hn8giCiG07PPLIwxSnJgh8FwD5QD/+WSchn7R2ljtp2zYzlRLbnt6KIAYEgYfnOYyMDKHrOrt37+ahzZtYlp3i0rZdzCvdjieqjPlpQiGCwSIIqIpOR0cHra2tGHoM27IbXpwCgi8hCyqeHTA1XkJRdDKZPD3dC2hta0MQBTTDQFJkEKJOYNgQ3In4q5Gf5tyu/sT4OE88/ljEMXMc/DAgCEMULfJ0VRUFfJ877rwT07LQNA3HcREaFg2jY6PIkookKZHNEBJhICCJCoVslkIuRzweQ5FV4okkXhCSSqVoa2tjyyNbGB8bx3MjTmA8lSCeTKBqWiRY5vmMjYxi2zaGYVCr1RqewREPzfMiDm8YRlzRmZkKHZ0dLOztjdQNw5B6rUYymURWFGLxOGEYUJmZISqCI7iy77tk8xqqFuJ6NZqamiBUqNW86CEeijiOy+joOKIg0dXVg2naCKJEtVbDNCOI7XSxhGs7eA3fUs+LBMlyuRx33nUnhw/3MTAwiKpp9Pb2Uig0IYpSA+YUosgKYdBIAkIw4ilkxWBgYIjJ4hTxRAIjHiffXECWJcbHR9mzZzeHDh0kDEOamvIIRROp1OgyhEcF7iTqZoVKtUytGomtiKJAEAZMTIw37l+HyfFxhCAkbHiPeq6HYRgNFIVKKpUilUohhCGe62KZFookEY/FSSYSLFy4ENu2CMOQ5uYmqtUKpllH1zU0XW0kPRHU2IgZ5HKRSA9CiKqpqJpG4MPq1esRBY10KkfgiQjIyJKBJOqRTVMQIkkyza3tCKKKH0ogJ/B9n3pljPrMKFI8A04Vf+oIgiDR1dXFbbfdwgUXno/p1JAkiQMnLEI5Mkp9qkitVgMEREGmVjWZnCziuh6aqpLJpDn73DPpmNeG6dRon9dKvjmL6dRJ55LYtksiEcP1LDRdpbd3EZoax3UdJibGKZfLeJ6L3FArlyWZw4cHUDWdfKEJ17NpKuTo7u6mWCoiNH47W1pa2L5jBzOlMr4TfUfmzZsXqQgHPt0LFjC/p5tqtY5hJFm+7Hhq1Rr7D+zh4YcfRhBEctkcsqwQhgJNTc1UKzUMI8bk5CSlUpHJqSn27dtLGIp4fsDAwBDjt90P7c3otkM1l8FSJBw3Uj3XVAUhDJAEmCpOIAgRcsBxXJKJJKIgo6gKpVKRpqYmarUqpWKRQr6JZDKGYeiEBEDYQDVEfpOmabJlyxYWLVrEoUOHEBpUgCNP6ZiD8zAMPfKEtW0MQyeVSoAAn9n0GwDOXngcX375peRicRzXYX5TC9e86k0szjXhhwFf2nIXQRjiBQHzFy5A1VUy2TT5fI6urm4GBwdRntyLWq4h/OQr5JtbuPp736NUKiGKIt/6+lWcfdpL6D+0j9Vr13DCurX84oafkc1mGJ+Y4Atf/vLvPM+//vVvMFUsIooi1177E84884zZhHPFihX8/OfR+ImJCb70pWfGH01Sr7rqKqamphBFkeuuu46zzjprdvzKlc+MHx+f4J//+UvPm1fEE/GGh3tE/1m2bDkrNpzGmee8lMG+gwCkkwkGhkax6nU6OztpbmtD1SK188cffZTHHn2E7//k7ylPFXh0U5Z6LZqMae8MMXIjxLMeihJnbM0XkGc68cZaUcRIGClb0KjOeDyw6SlKlWGqXtQZa042c/DgQVzXJ5PJcWRomFqthm1bxBSFTCzZeD8ENDWGLCVQxRTNhc7Za5vX1MF0aQpDi6HIOru276M0VUOSBNrS0WSCF/gUK5WGl0xIPBafHZ8xkhiGQYhHLK6TSMQJAj/SS/ADfvTIrVz6/Su4adcm9k8OUHcsElqMfDxDTs+RVKJztB0H27ZfdEEROTEcW/1XlqIC0vO8F+yAPh8a8g9BSR4tKn8fj/boPo5lj/PcYySTydnluRDt50b0m3t0TOKYy6ZZf97xdfeZdYlE8pjLLzi+/sy6uef85xh/KCf+j43/Zp3X/4s/l5AEmVQiiRf4hJKHF1ocPryLnrY2du3dzc+vvY5zXnY2lmXh4jdmZFxuuflX/MuPfkAoBgwODXLmOWcREj3o9zy8hfPPP596vc6K1at4ZPMTLFu2jGKxiDIoM793Pul0mnvuO8Ipa5fjTvQzdWQ/bZ1dWG6Au6gT6bNXEPvYVXhNBcS4DvjIEoShS+DJ6IYOQThbvIZhJKZRr9UIAU1V0VQV3494oIIkIskyRwYHaW1tZbpUoVgskjDiFAot2I7L9HQFwxBxLI9yqUxvby+m7eAGATMzJe648w4uu+x1xOMJ6vU6AlHC19k5D103KBaLlEpFent7Iy+80MP3XQ4eHMAwIquPZDqL41jIiohp1REEgcOHB1m4YDFV0yaRzvLUk0/S0z0vKsBEgdD1SA6MMvOON6DZNkEQ8Oijj9Le3k42n+fd7/lr/vmLX+TSSy4ik9ZZ2DsPr25z7rwilvsQRl1E6lwGqXY0QaBTlXEcl77Dh1m4YDGyrFLI5wEoFaeJJ+L4bhBBpoF6ZQbXsziwbz/1ms2SpfOpWzMk42l0w8APwmgCQZSiPyRMs4YkC4iIXH/99cyb18Upp27EsV1a21p5w2WXoWmRVYcgR0JIUeffQQhFBvv70DWNe++5h66eLlauXB7xnhtQUNfxODI4RKFQIB6Pz8J2JkYGyWSzGLEYICAoMqokM1mcJJ1Ls/WJx1i1amVky6PKZAs5BCHEdRxims70VIXtTz3NkuMX093djWM7xAyjAV+XAIHJySkkSSSbyWAqNmedczb1mknge8iKEt2bgOdF/FHf94jFDEZHh2ltaUGWJUZGhlHkgGQ6g6LoIAToukbcMCiXy8iyzuhwkaGRAdatW4Xr+Bw82MeqNcuIxROUyxUIwDFNSpMTtHd147puQ1VRRpJhyZKF5PMFgiBgbGycRCKObbmoaiQ2FQlgRFxxI2YQBAGOCyEyPfMX4gc+fuAjiCECAr7jcPIpJ+I4LrFYDMe1kCSQxAiyH4Q0bKbAiMXIFQr84OZ7+beb7qZvJOLZLWhr5g3nncJlL0sjSwK6ohC6LnbdYmR8hPd96+c8tG0Pf/f6l/Ppd70JSYwmc/BhzV9cwchUmY+98eW86owN/PCOR7hl81MMjk4QN3ROXLGYy19/AfMUBcNQmZmpEY8nmCpOkEknyZ3+JgB++U/vp7u1wLd/eRd3btnGWLFMMqZz+tpl/L+3XsyieZH3oCDIyJJOiB8VWp7PTNnkh7++n1sf3s7egVEs26GQ0lm/pJV3Xno+a1qaEA9tQVq9ANmQef8HLo8UrO0OqnULp5Dhwh33sn/TOCN+BE1vTWVY3tpFoeLRLYtc+PLz6e6ejxFLsq3vAPf07+Gu235O/9QkI+USsijRGktw1uKlvG3jKcwrdBKPJxkZKuJ6Fl1dXdRqNdZ87kqGyiW+9uo3cunak/nsrf/OIz8cYKJeJW0YnLZwCYmdLbxk7Tps16Fsm3ztzpu5fvN9lByLlB7jZStW88lXvIaskWDR0uOiAtu3qMxU+OZDd/OVe3/Dqb1L+dEb/pIbnniCs770CQ5OjWM6Dotb2njLyWdyVnsXHR2dPPb4o5x//svo7V1IabrE+V/5JNtGB3jr8SfzUSuO2t2NHAQMZnRasgZjE2P8y87H+NqWTZza3cuvL3sXhhH5T1uWy4GDffx4ywP0xQR2TQ4zbdWJPf5bckaMnmSGC1eu4S/WbkQVJUQp8hBWFAnfdxCIYMjLli0jnU6zbNky3H39yLKIYWiMjY1gWRZB6JNKJzEMFUWTuH3nToarkajQ3659CUPDkxAIPLplC+ecczYdbe28Z+NZXH7Lz3hsqI/75a2Y9QorViyjvb2dcrmEoegkEjHUYhlx1376v/whEo6NL0jcflekeHrKySdz2sYN3PKr63Esm8UXvIWabZHLZnnLW97M1772dX5y/XX8wz9+apbPD3DbrbcBcMYZp7Nq1arfed7ncjne8pa38LWvXcW1117Hpz/9qVnxJYjEfKLxZ7Bq1arf6dzl8/k546/l05/+FPKlVqQtsO2Z7Y5OVB7V0FAUhdiCFVT27qY1l+ZpjuB7FqvXruc3N93IeeecxQ23/Hy2A3bOOWfx/vf+HT+45hNsXHYWRjqGNRpBkoMwjSg0R03yAHYPP4G/+BoW7/lrdL3R0RMCRg6btDYtoWoPEDYKJVVVaWluJRXXCcM6y1esolovY5smWlJ7hnMfivhBwNDgGKLiU5WeKW7EMECRJERCPMukOZdACUFVBOZSLGVRwrMDJNXHduzZ12NGPNIskFxsxyYMIkQSIRyYHOJzt/+AIAx42bJTePspl7C0bTG25TE2OckS75X8m/VVPv3zLyBJUtRBDf0X5Zz4QrYzcz/tufdVEAQIcy7uuSJgv+/1uXHU+u738WjnqgUf7X4ePcZzt0kmkySTSSqVyrP4p8+Nueva2tpml+dyUV9o/Eh5aM6YtmMuDw0Ns3Llyhd1/D/HmNtd/8+kQ/6P67zOfcPmYuVf6It3lNd2rHgxb/4L8Vf/GHXj5xv7H+HL/jEc22edi+dH3M4wkoePaTrLj1tKc3sTH/7Ih4jFdBKxONuefJrh/mHuvu1uXNNk//59vO/vriAUBHoWLiQUZWpmHVVWWNy7iP6+w7S0tVKcLtHU1IQsy5x66qmRJUcQIEkSr3vDm+hZuIT5S5YiygqH+w7gmWXwPZ7S4cDqXsRbNmFNTCEKIbXaNLXqDGHgQ6RLTBCG2K49+0VTG5xPURQjwRlBQNcjs/j9Bw+gqCqaruP7UC5XkCSFyYkigiARi8UplWY4cmSYZDLF/n0H2Lt3D6IoUCxNYlpVfD/ANE1kSUHVZHzfIR6PASH2dgFyAAAgAElEQVSpVJKOjg6CIIiS+QAqMzV03SCfL0QdJCGylggCH03T0FQdARHPDVAVnc2bNzMzU6a5uYlcLsPgwBEqW7ZS725jf9bg7rvvRhRFVq5cGXlryhFE9+KLL0ZTDQxVwd29Ce7+AllvkNzCE1AXn4ZW6IwSCkmkPDND3azT092NLIpUZyqY9RqV8gxhAI8/upWbbvxNQ1CqzsTkCE9sfYR4QsbzaihaQL6QQFV1REHCdVwIaKhAy5E3YcNjTZZkLrjgAl7yktMQiPirsiw1FJxdQiKe5FFFQkVRKZVKJJMJTjzxRLp7elixYgWCICLLMlLDRmjLI4+wc/uOSNnX80jE45RL07S2thGLJ5Aagk+iKKCoEitXrSCdSfJXb3srhVwWy6rjhR6OU8d3TWQxxKxWkGWRBYsW0tPTg6qqZLIZAHzPp16vMzNTpilfIAwiCHMsbuAFHoqugBBSbth1SJLI1NQEdbOGIqtIskwul6dSmcFxbZqaCiTjLahyCogUihEcSuVhDMNA1wyGR0bY/vR2JienUFSVNWvWRvB5QaK9rQPHcTAMvaH8WqdYjLp5oigQi2mcsGE18XhUDFumSbVaR9cNBEFhfHw8ui7fJx5LMj42iSypTE5NIysatWoVWRTwfZeQEMux8YOQTCZNoVDA9RwG+vtR5EhkSJYl9IY9EkSiJm/8+Df5wFd/xJ7+EURBpGbabD80yEe+cz3f/OVt9PUdwvM8RkdHmC6VZu8ZiGD+giBQq9dxbJu+Q4dmE9tYKsNrP/EtvvHz2xgcnUTTVEqVGrc9/CQXvu+zXH/nQ9TrkV1TuVyOuNsNHhTA4NgkF1zxRf711/cwOV1BkWWmylV+de+jnP7XH+fuxx4nxAbBA8EHJDzXZXB0gguu+DKf+pdf/3/2zjvcrrpK/5/d99mn3nNur0luchPSSSAkIaGELoiOilJ05Ae2sY2OoihFsYxiHStKcYCIBUFQBBEIhJJAQkhISG/33uT2evo5u//+2OfeJBAcdPSZ8sx6nv3ccvba+7vb2Wt917vel407OymWLTRVoXe0wIPrD3DBp27hh3/chNC9AewsvltGC6v0DvTiCXDrrXdwyooVPHJoH/uKGWw7YNQ+MDLI77e/yM+6t9A+s4OWlibCRgjQueTW73D9g79i7Z6ddI0Oo8sqBctk//gIt254lrfd+RP2jw5y+HAPG17YQDwexcdF19XJ96MtCJz3w6/xm/1bGS4G/fCDuSz3vfwiH3zwLnoz43QOD3L6zTfw3cf/QNoycT2PoVyGu55/mrO//SVylokoiSSrU8iyTFdX12QVw/d9vv30Y1zzyK94qacrmARxHbb1HuJTv7mLax77HUgyF735IiRZIF/M8fAjj5DNBElg3AhRUzCR8chPaaOqupqqRBU1NTUV8rWgEjQ4ODAZ+MqyzB2HtnPXyD6eObSXkWIetQL57EqPsvbwAT79yH0M5jKMjo1VCP8CHoaaL3+Gqi9+hH/+wy8rGrMB6VaQDCgYhs706e10dHSQTqdJj2cYT2fI5Uus7+0CQBclZkZSpKpr0VSNCy+6kFK5hGmanNrUNnmvbR3vp66hAVFSEASZQ53d5HJp7EO9GOteYvSLn+Cx3bu49dbbEAWfnt7DAMw+4QQUWSakCyxefAKuKiGHNHzXm5T3GBoeZuvWIxmj7/scOhz4z5o163Xf/zNnzgRg+Cj/iXjq8H/gL4ripP/Q0DBbt25DbhARal5VRfMF8EUkUQFfxPcEXCNMddMMjFBQhXTsIl+76QZOnLuQlza+zLJTV+C4QXU1n8vy5S9cz6ZNORINBl/+zvtIVgeQYNuV6esdxbJERFnnj39aTzq+FdWuolQMkEqeY9E21aWlRWX92m5UP6joDmWHcF0YGk6TyZRI5z26Dw0zNp6lbJuMV9iGHRckzSMWV4nHFA4f2jt5aBu3b6G1dSrFQhafPEuWTufERY2oqk7feDBJJ4sSCSOGrodQVQXPPXJ+MpkcAhIDA4P4XhCHmWULQRB5dMfzuL7H1FQTX3vzR5nbNANRUMgXTfRQgni8CqqOJmU6wlUiCMIbymEn+EgmrmegMy4d4y8Ix/aeHi/RPJptmkm/Y+Gsx1veKPnT0etOaApPbHtiOTrmnz37BAB27NjxutvcsWPn5O+zZ8+e/D2ZTFJfX/eadSbGMXFudg3smBzPzJkzJ8cxa9asybH++f0Hn9XX15NMJv/jk/A69veuih597SfO8/F6lv8W9n+V1/+zv8ocx0GQA8IXTQ3jlSyGBsexPBslpLJ4yWI2rN/A+vXreeLxxznjjDMICyKapqHIGvgyiCKFkoUku2zZsgXR89mxexfXXPtZpk5vR5MG2LJlC6efeRrFcvBArFmzhjdffC6ioKBU1TMn1cgfHv496r59zDvldH7wwx/S1zPIH857B9EHH8fpaCF8po4Y0xDHq3AdD8u20UIqsiJjWzayoiBAIAbveRXNSrEiXeLS3t4eEDa5LkY4RDwWZ2hoEMd2qampwfFcbNuho6ODzFiaWCxGoVzCcRxOO30lw0PDRCIBI+74+BiyLJJMJfB9r9Jz4aNpKpZtMjI8QjgSJxyOoioSCDA2Nk51bd1EtwKCIOJ5Pu3TOnBdiEc1GurrMAwdRJBkmdqaekIv72fo0gtIVVczd968gNhBEAIyFgEcxyKZSFLe+ySp/dvwNQOh5SQcwsiCT3qkD13VkCQNQZHw/AK6riGLIsMjw4RDYRzb5pVtu8hmAymS+fPmo8gytuuhhcPMnjOXmpp6BFHGtLMU8iXCWgirXEZVVQq5PNFYlNHhEXRdR5aD2XzHd4JKqe2gqEH/iud6SJKIKMp4noNX9lEllUwmg2vbGKFwIBEia7RPm4aqqFh2GbPsIikiYSOMKIqcccbp2I5DX28vU6ZMIVWdQpGD2WhZlvBwEQVIj48iyRqCAPFYlMHBfmpqa0GWEH2PfDaN6CsUSzkikRTtM9uDnljLQtWCJDtICmUkScbzQJLkyjGpeK6H54MiyxSLRRRFRlFUUqlqHMdBlisz+oKHIqsIIlimSfeBXto7ZiBIIqZjoikCsVgCXwjYmadPn87MWe0oioBlmoSNKKYZEHiUraBaqqgK1bXV6LpGa2srohj06JbKBcJhg1gsRm2twwMPPsTJJy8hmUohSqBqymS1OpPJVtivPSLRCAKQy6SRBQ/LsYnEYvg+GLpRgUx7KLJCVVUK2/ZJDwxQW1uL6x3pifn3h57C83y+/+n389bTFiPhMzCe5f1f+gGbD/TwnXt+z5tX3EA8GQdfRBQlursOYttW5ZvJx7ZNBDyMcIgTZs9GUYLX3NfvegBRFLjjhg+x6qR5pJJVbN/Xzaf/7U7Wb9vDZ39wNzUxmZUnnYiAgKYFvdUT9oWf3kcsHOLer3+SZfNmYBgGv3tsLd/85Z/Y1dXP1V+6hefv/DqNdUksy0LwBSzb5P1fvoVdnT3Ewgbf+tSVnH3SPBJhnz17tnH97Y+yZnMXX/r5U8yufTMXzH4G6YTzsF2J/oEhHvzDQ3zlq18B4MLzz+Xaq9/P0gc3UqyrodeQeGHvXn669o8sX7YUTQvukWK2SJ2o8/ZTzuaS5afTmqwlHk0wns7x0uEdfO2JB3mpu5NP/PYebph3BicumEs4Egr6y2UmmUe/+vBviek6t1/yfi48aSWKJrD+wDbee/uPGMim+dx9d9OfHSduhHnyyo8wu7oRTVX5w47NfGD1LRwcHeKHax9lZbiGdCbHm847m2QqiSwH29/ed4h1B3bzgRXnct1FlxBVFEaz49y9aR1fefh+nti1jZseuo+b33E5kiSRyeTomDEDZddGKIE2NIrSOgsbyBsqsmVVpJ6qghYCQJREaupqyeVzSJLM+u79/PKVjYgInKFW8Znz38KJJ5yAKAmkS0XWH9zPn7r2oqsaEVFBVTQcx0WRj0yQCIKAYRj09/UGE5B+cN+ptcNI4RJWdwJV1ZBlKZj8kEV2DwdyGjWiiqrI2K5N96FuFsyfT11tHYoq4fseKSPMaLFAtK2R/fv2UVdTh206lAsmVt8Aya2djN3wYcTlS1l6uJ6L3nQu73j7xZPJQ7FYIl8o4HgutfV1WL5b6f3jmERo+46dLFq06DXv9VdDLV/vsx2v4/96QWoQyB7tv4PFi1/rH5QCj01SVFWibdpMRCVAZ+TzWQYP7ecXP/8FS5cvo33aDOTK9U6lUnz+E//MU8+9hBGq4XD/IUZGgskOzRCJpyTkUBHTLPPJT3yE0fHg+Xbsyt5Fj6YWD0l2iYUamBJvY9fwTjYe2MDGDS9SW1PDlLY6YskmauobOdy9lecP7sCpHJsvBpOEkXCgBVsoZCaPY9/4Ps5yTiUeCnOgs5OwaqL4PqKs8UJXQHQ0s7YFEClZJrInIclHQvRYhaAuEU8FxJQulZYPh+FiGoA5TdMD8jRExtIZTNunobEJRgSeevGZY6/Vca9U5Tz8GdjvhE1UWCcS2Ynr95ckmcf7/W9RSPqP/I9OsFatWsWGDRtZt249xYo2+avtscceA6C1tZWOjo5jPlu16ix+8Ytf8PjjT7xuf+cTe/4EwPLly4+ZEDUMg+XLl/Hcc+t47LHH+dSn/uW443788YDx+uyzz/5LD/u/1P6e0OH/dZXX/26m/uwrKHd8+b96GH9zEwUPXAez7HKos4eNG7aybfN+Fq9YQqK2mvrGBhRZ5vRlp7Ji8RLe8aa30tc7wNSpM5BlnZ279/GmC97Cl798M4qicMkll/CWN1/M9Z/7fAAb8j2qq6tpbW1lfHycBx54gP7+fpYvX87gwV3s3r0bW6+mIMWYMWMG9VGFLS9t5pYf/Zh7fv5zet56FqXVX8OtT6LcfQC2juIWCmiqRsiofHkIARxIgEAsHiZn54FAT1XXJ//OFfKMjo7g41JTU00yWUV/fx/ZbIbm5lZGRsaJJxL09PSSTFZhGAZz58xmxYpTAxZSQaS6uhrDCOQ/EFzSmVFkRUAQPUqlPNU1VWhqmNtu/RnjY0Gy57o+tu0iCBI+AqWSSTaTZ2wsw/PrN/Kre1aD6xCLGAgCmLaN1jeMX5MkeslFJJNJ+vr6kGWZbdu2kc1myeXyDG95gua9P6Mpt4UtQyJW3SJcRZ+UGIpEouRyZYYGx8jlS3i+iCzJqKpKdaoKTZPJ5/MYhkF9fT0LFywilUrR19dH0ZTYd7CPaKKeQz0jHOoeJBJK4tkSa594krHhUfbu3sNAXz8jQyPgeJNkEIoyIZMTkDjkcjlc18H3gxk80yoH1SfbxXd80mNpYvEqVD0EkszI8DCPPf745AysqmmTFblTlixGVgR6e7qRFQHHNTEMFTUURZDkAMbmupTyWcK6QsjQkWQJVVOJRiJkc1lK5SJ2OU96bIix4QEa6msCCDNH+nQ9zwMfqpJVpFIByZAoiCTicUzLnOw1lRUZ3/eprk4RDocpFgsUCnl83wMkQKJYMBEEkXLZwjRtausjKKpL2SwgCgrlosiG53dQKhXI5XJkMmkkSWB4ZIhwJBRIEAkygi+wffsOHN9DVGRq6uuwbAvwA5KlirwQBPJSsixx/nnnMWvWLBRVRVX0gIk4Gqa/f4BSqYyuh1BUjUQ8jKaKhEMKxXyWcqGA53hoioZpOvT09DAyMophhKmtqceyHGpqalBVFT2kIwrBqyidK3DXVz7G286cj0iRnt49pOIeP//aB6hLxvE8n4fXvYwa0pF0BVFTmDnr6GAiSF5VTcGyypQnolIgWyjxk2vfxzmnzMUwQpi2TXtLHbdd9wGmNdXhuB53P7qRSDhG2IihawFz7oSVTYt7v/ZJzl12IpGwwfBQPxedcSa/ufnTVMXC5Aolvn33Q3iOQma8TKlc5rEN29i0I+jVu/2LH+Ht55xG2FAxHZGW1pncfv3VLJwekJ188f6NOHufppQLqjC27fGFm24C4E3nX8BtP/gu8cZqzCsuQtrXSdK2uWTFaaz9wreoScRwXJvBwUEk0eOxz/8rb5raTltVhHhEo/dwJ5s3vsDyqVN55BPXUxtL8PKhgxSjGpGYCvh0dh4MWJQrMZ7p2Ky+4n1kd+8L4IuCwFmz53P9eW8B4KFXXuLw+CgPf+xa6kWFNU88gSCKvP2kZXz49PMA+MX6tYwOj3DBOechSzr19XXooaCalSkVOXfaHM5PtFATieF5LrVVKT59zsV8ctWFAPz0mcfoS49juzZGxKCppYW6+hoApEyOUDxKrqOZ8cwIuXQaxzTJZtKTcEtBEBCUIOAPG1E6zaBCdmprOz+88p9YvmgxohTwHugIrGyZzk/fdiUxUUNVQwwPjVZ0jI8EYWXTpFgs0tLSQldXF67nUi6VMWISJSfNmieeolgo89STTzPQP4KATM/4KAAzGpqIJWKomkpID9HX10dvXy9jY+MYRojGWIDY6MuMsWL5qfQe6mVkYJTmZAM1e3s5eNaJDE1tYufO3TQ2NvOHP/wBv5ylqQJfPHjwIJs2b6Zx6hRqm5oRZAlEAVUKtG4nbOBVchutra3AEbbY49nR/q+W62hra3vNOq+2HTuObLu/vx/nSRnnKRlWLIL46/fxKV6exsYWZs0/EQDf97j8LRew6vRV9Pf2YXsBtwBAd1cnv3/wAZ546mm+cNPXaGmbU9FhhjWPdXLbD19C9pvJFkaxGSacCCbiZK2iD+pKGHI9nlNmxgkFTm5YDEDveC99cg/hcJQ9ew+Sznls3X6AZHUD/7bm15NjFUUJ0DDLJpaZp+koiOc96+9CjRm4noZAnMf+uJmDe7M8su4ZHtmxHoC3nHg6giyjV1BZRwNyLcsmny+gyGEcWyAcjtHfP4wgSITVILHf3d+JWbZxPcjly8SiSRqbpvB49594dvNzk9t6PUKfCftLelMnqq+T236DSeYbQRf+ufX/Ujva9+jk9fLLL0OSJHK5HLfc8pPX+HV1dfOb39wHwOWXX/aaz9/97iuA4Nm7//77X/P5ptwLPHtgLQBXXHH5cfzfDcDTTz/Nxo0bX/P5/fffT2dnZ8X/ijdyqP9t7I30Mv+19j8qeX1dvL0vTC7BIQWLKMoVJjLxOIs3uQiCf9TyejNHR3wnIHiCcCyL2LG4/eOP6dXL0dt63S8M//jL69vr7+/17PXhBMffTlEB1dBJRDReeW4NL675PaM9LzPSOUZIlVDCPtVtdaTNMu+5+jIeW3Mvp1xwFvUtteBm2bnxSULuOGFvDC/rsvqO1ViWxY7tW9mxZQO5gUN841tf5VPXfJxDhw5ywswO2hqbqUtWU1PfRsSI4RQKSD40tc9FqW6nIWZhiEVG+gZ46HdrcZs6EG7+FM4VcxC3jCH9+k84u/bhOk6gJSrqTPBIT8iZ5Cu9rwHYw0cQoGSWKZllND0USCGoGsmaOvLlIgODvcSiIfbs240nuIiaxPTZM6iqqcLzbFzLQVf1QHpFlAARWdWxXB9FcJF8E6s0jmvlUASPkCzjCyVOXrYIIxZiZHyEVG0KUfTwsREF0DSVSDRCNBricO9BJM+msSZF5749yAKIeLiv7OLQrBn09KfZ/so+4rFqwqEUD//+We67/d9J7b+faaUtOJF6/LZlzD55OZoRQpQNkGQEUSY9VuBwdxfjo730Hexi3/YdeI6H5wqIShhXMGhomMLik05i2vRWSlYayykQjcXZvnUj+/fspJBNM9DbSSwq4NgFBDyWn76SRE2SaDJO85Rm1LBCJBnB810kWaJsWfiCgC94iBIYWpxy0cUqeyiShoiELMqImoQr+LS0TkEWVURJImTobNu5jbPOXYUgC/hCoIdnlh0cx8dyQNUNkjUpQmGDx9c8iSTrCFiUzYC1WAuFCUWTCHIYwbaQfJfdO7cjiT6RkEZEUZC0KKFIklA0QTqTRxAkNCWE4JUQvBKib6MqIr7jYJsOeCJlx8X2IWSE0TQdSZSxyhaC4+A7LrIgE4slMSJVwfl1TRzHZHR0GFGWCRkhEsk41bWNFPI2EiqFTJG+3h42b9mEZ8tEjAjTpjYQDqk01jUgeAJmsYSn2lhYhKIRCkUTzxfQjTCyquC5MnbZQQRUWcVzVRzPQw+HSdVU4wsuPiYla5R82cYTZVqmTWHqzOm4ok/eLIIQkI3ooSjxqlriiZoA8ihKZDMF4tEqPNdFxKVUHCefHUTX1MrkRH4yRJvVXMep8+egKwoiHoYeIDVSqSZWLgwgibu6ehE8H9H1ccsmQ6Mjx/RZCVJAAGXbNg898GBFVgJOmdPB2UtOIhxK4Jg2vuPhuT5GKMTHLn8zAE9ueoWS5YDvIXgenn2kWnTxaUs4Yfo0fERKpkm8KomgCVTF41x+3koAfvf0C2x6/nnWPfU08ajB757aBMCSOdNZtagD0csjST6WVSQWjRKL1fK59wcBze7uQbb3ZUhvvAfVH+ClTU9TKhWRZZnvff1rRCNTqGtYSG52B8X3nE/N7kNIQ8Mg+8iygabG0fUwiuYSjijMmjWDeDxGPp9HURWWn7qMRKKasCyysj1I+P+4ZT3hWBRdMXAdAUkKMdEI99aFJzOjromzV53B+HAfVqGAYwtcePKyyXNy1YozCYk+iiIyZ+7MALngepw3byEAPZlxzr/oQvSQjqpJiKJwDDvop8+5gGlTp2OWHfBlyiUfx1FoSkuEFBXHc3no5ZcYGRhDFVXamptxnSDRkGMRrJY6xGiU+tpaItFqVD2GpkeJRmOT77ViPge45HIZYpXe6pFCjkg0geV5WJ6AKyooRhQjHqNglfFdC7OYwzaLhEMKeA5jN3yT0et/wg8u/Eey6QK26TJzxizchlpGDAnwKRVLGIZBOBxi1qyplM1xJMmh5AX3YDQcwhddFFlnSlsr69etIxaNkstm6e3tRa8Q3+RMEyOsUNeUQNQdanq6yeKiv+/96HINdiGP745SU2NQ0zGfs84OJgvWPb+e9c+tZdq0NhzRBkdCRKZ3cIi7V98zed6zuTw+Ij4iCBLnV6ROnn32WZ5/fgMT8ZPnBfHV4OAwq1f/fNI/kAs5Ek+cd16w/2eeeYYXXnih0psoTy79/YOsXr36yP6zWbydEt4OCfEfL0aoD7gTJuKvY6CeVoKi6TKeDeDmpaLJr1Z/n627nuXsc5ezc+sOJCE4b1U1cVacs4iPfPiDfObGzxEKgV4hcxrOeWixEHljP9temcHtt3XjmLsBCCkTkFqPYm6Y0b5OEmGN81cuYNWcMwC44f7P8ssNt9HW2sTIUA8Hevfyvjuu4+XDewkpEwgNCUEEwVfIjZfIpo9UXh3P5uJvvIVHNz7K9BnTUEJJfr/tZW544hYsx6YhluS9iy9C9nR8rwCaDf6RKl13DxzsEym7DpIm43gWmiZi2WVO61gCwP7hQ3zlT3cwki3Q0DgFR5S4Y+3P+X+PvJNkvAI39UH2RaRjYtCjY0Nx8roH13gSFMzxYlffPzZmnbh+E0t392EikRiRSIyvfvVrHB2LHi/ePl4sWiwWGR8fZ3R0dFJODIJK//DwIMPDg4yODjM6OozvuxXCvWA7XV3d6LqBYUT46lf/tbK/YPyiKDN9egdXX301ADfd9CVuvfX2ChmpyObNL/MP//A2SqUS9fX1fPKT/8KrY+FVq86avP8//OGPcv/9D+B54HmwZs1TvOf2dwIB8dl733vla/zf855/ZO7cufi+z6WXXs6TT66dvAb33/8A//RP/wTA+eefz6pVq/h72zF5jMBxl1fbf2ZS4a+1/4MN/5/9VaaKGrbtsXvLy6hGBKMqSbKhkZVnrKSv7yCWb+K5Iroew7JEpnXMpSFZjehCPFbNhRe+jYsueju+6/Pgww+x/LSVGPEoJ558EqLksWbNGr773e+i6zrbt28nHo/zve99j5UrV9LR3kxz0xRefmUHuVyOXTtf4Yp3vYNSSOKRRx4lEq/l09e8n5GxYQRZxZ+VRJl3Go63iNB37kJ6cRve8oUI7cFs80Tfkut5hAyjUjnz8X0RfD+QTJAkXMehKplA13U8z2HqlGn09/VQLJaorW2kv7+fhoYmZBn6B3pRVYXqqhRWPs/A4BD1DQ2EDB1ZhLJVJl/OIeCiaxFsxyMWr0KSVFQsFi1aRD6Xo66uLiAFMgzAY2RkhES8ClmRUVWDN7/5QrDLJFJVNHutSMUybN+PUJMi9J634+Py/R98i0svvZRzzjqfFY1pltZkObS/n4Y5y8gXTeLhcAApNU1CIRnHsTBLJRoa6mltbaKQzyArYWzbxHUDXVBBkNm79yDRaIip06aQLxRIJpMBQY8b9Ed1dHQQj0VYtnw5g4O9Fei1Rzgcpmya1NbWBqQcQlD5kWQZ13XRVB3P9/A9H0SBnt4eXnhhA7KkcOaZZ5CoiuH5QV+yJEk4lovrOTimTSgc4qyzzpok/VBVFdd1K/2VMv19vbS0NNPc3IJlmpx7zjmVfmIfSRQpVVj99u3bR3NzM2YxRyKRoH36dIrFAp7n0d/fR33zdOKJJK5tIokC/f0DbH55O+efE8hLDA0PUVdXH0xw+ULQcwcMDwzR0FBDemwcI2RQKhTxVJ9sJk+hWCaWqEKWZWzLxHPKqJpGW1tLMFssyuTzWXRVI2QYCIJEsVimpq6GOXPn0Nd7mFg8hlqBIEaiUSRZpDCeR9IilIpl4tEoiiTiew624+I4Altfepm62hSZzBAnLz0Jx/URRDDL5SOMwnjIiopZKqHrOpqiYZetgBbfdXFdkUIhT0jRSKfTpFLVIEqUTZNHH32EhQvmE46EMM1AN7S6uoZCk4MeCgFepdIMS+fNRFZUEBzC0RhaKIQgqXiSSnU8SEiGKtI2kiQhSiJRMTapeeA4Lr4HxVIgi9LY2DAZHC1obwpkI3yPweEhmptbJtEXKxcGfU+e5/PIU89y3vKT6O/rmyQkA1jU0YZZLnO45zDNzQ3Iskx2bJxIJMqZJ83jR795lLFsnqqGRqQH8rcAACAASURBVE5eugTTLPDS7qDqunz+DDo7O5kypQ1fFCmXTNxwwLC9bO4MJDEgetk6ZDOn9jDpgW62vbIt2O/ChSSr63h2/RrmzJlDOBxCWH4S45pB4t7H8PtHGG1rYuf+vUiiwPwF85AkeKH3EKvvXc2OwT4GsxlKk9DqIxZKpchmitiWTaomTq4wzkS1Z2YqRTqdoaGxEUXVsR0nIIqKH5FZWdjUhqKoaJpKS3MbuXwJyyrTVHXkvO3cv49FM+fS3z9AdXVq8hlrTiQJuwJPP/M4l172TgzDIJcvcM/qu+iYPpM5w41sOtzFS4cOsjReRzQaRZJEChPMm4LIWDRCMZunXCohigrJVJJCoTApveR5PunxPJKgAyLzE3WoosSu0UHe/usf8+4TT2FZy1Taq+vI53PE43FczyUUMciksyQScVRVJ5tNE41FKJXLbN/xCvPnzaHz4H66uzs57bSVxKdNwfcPIgB9vb2BrrQoMmXKNEo5m8rtjSjI+LbE3Xffw/RpTVx66aWMjA4TiUSR5SMVLNf1GBvNBM+/ryMPdOHeeh3ZfJ6Hfv84hdIwDc0XkclkmBqp5uqrrubee3/JeDrNd39yB7MXzOfsM1cgGQrrn3+ea6/9PLlcLmDcrzC5H20f/ehHWb16NWNjY1x++eXcfPPNnH/++ei6znPPPce11177Z/0/9rGPTfpfdtllfOMb3+Dcc89FVVXWr1//Z/3tH+l4vcHf7nZhEnEDYP9YAwLit1hngFCYnpjPNXO+w7bMUwjOMCOD+6BySzSNzKF57Tl4js/w8BCiALobATLk8gXiiRkYT1/N6blWVtRfRu22Sm9mMWAFlq1qNL+Z2kQ7Bw7kadcW8L0FJ/GOngvZk9nJD5+9hZ+uu52QbJC1MggIfOHsj3DHhgc4bPeij3egdp5Ole9ShYQSGpg8zm++7Tt88tcf5+o7LyN8TwTP9yg5wcDjapw7V/2CUCaFrY8jmDKKWY02eCR5bS8vJZcvEnZUdE2jXL+b+kgYDzgndCpvnfYSDx58gHu3/JF7t/yRuBonb+dxfZeFNYu54r3v4ppvfQY/L2LdYlSe8sr99mIlFbCDZNLzPNy1Cv4uBW9PMDHo7ZGwfxyMR6j2kN95hEzKeTJAqPg5AetH+jH3hjfjyMSiPyRg/2gi0a8kOoIwqTmjfvTINq1fK/hDwfi++djN3PzEaxGMPT09tLZOOeZ/6W86x/ztLz+SbXmdIuUfqMd8LiDw5anf5cDcLtZsf4yPf/zjfOpTn0IXdXIVpEbSSPGrd/0e7e4UZUA500WaG4zZ3S7w0+U/5+Lt57KtdwuXX345uhygiSZYhltbW7nvvvuOWxiTZZn777+fc889l+7ubi644AIMwwi0pivfYwsXLuTOO+98je/fw45JQP++hMH/KfsfVXn9n2jOTT/CuelH/9XD+Jub4IhYZZf9Xb3Eahq44JLLWX7+RUhKwCAqIXFwbzdf/tLXyRR95ixYyo4tW7j0nVfww+/diqxVUbYVqhvaeNcVl1DXVMd4No3lergInHn2OfT09NDX10dLSwsNDQ189rOfZcmSJYiiim17DA+NM2P6HPbv6+aVbXtpmXIi7R1zCBuwb+966upDqIqOpgZaqsqKBZj3foPCZ96LuHknwhPPgxXIQohHkQI4joPvujhWEHRIghQwFCMgCB6qKmPZFkNDQ4TDMTTV4Ik/PcmLGzazbct2BF9EEmQa6xtRVW1SbkfARRJd8G1cuwieiSIFvZyKrOH5Ege6DlMqlsGHZLIaTdPRdYPe3n48z6WqKoEoBeOw7AKa4hN3PZx1L1H37Db43ZPYsknuw6eScnfRaO/k7huv4MLYLrT1/8p5HRLRjlOpmX0qoqITjcWCF5XnsXPHDorZDGMjw2x/ZSumbXKo5xCqEUJSZfRIGE0P9A/37tnNifPn0NzWhKRIVKWSIEqULIdf/uo+RElAliUymTSZdJra2loymRzRaIyXt7yMKIooSvASmZDJ8RwPwRcwyyZ4IAoi+WyedHqMWbNm0tzShBE2sCyLUqmM67iVpMdjbHSYTZterBAM5YOZ/QpRwNEkEBOwHNt2URQN07Jx3YDe3yfo6xofH2fqtGmomoYgypQtGx+BcCQSaOtFIhV4mES5bGPZLtWpapYsWkRf/wiuK1JX10QmnWN0ZJRyucTY6AjjYyM0NzYwOjyKa9mY5RLRcAhJ0aiqThKvSiCLwXw4rkupXAQ8PN+dDDRCeoyS6YAo4ngu8WQMRVNYsvQUkqkE4YiO7ZhUJePouoLjmKiqhGf7JGJVaLKCJIDv2oi4mGUPRQmx6cXNhEJhbMtCFMBzHKLhEKViPuh7FhU8RySkaki+QN+hXtIj4wz1D6JV+gElUcI0g+Dj0KFDATOmKJDOjNPa2hI8Z6JEJptn7579FBc2kV9QT6lQmOxZTVZF8DxAlMnkTXxRxfFFLMvF0IOgSJLlQNYkPYrr2IiiMlk5GBtL47oCluUiCjInzO6o9PNCx7QWfN9BlHwaW1sCOKWqEg2HEcwjMgn5UolYLExraxOpmiOJ2rTWJgDaWluRJJlSqUS5UEZCpKnmCInGUDYLEphli5F0EPy0NdbR3t6BKKrgCtTU1FEsmyDKRIwQqUQAm+zPmDh6DG3H4wwNBgyT4UiCsu+zYtVJhBM+xVIG2/QwF8wh/8VPUm5uJLltN70HOnlx4yZyhRLvvu37XHrb93l451a6RoexXZdEyKA6HKEmEkWvXLPewSHWrd+I6wZJv6ppk72NNYkkviBSrjCV+76PbZlkRkcnj9VQVVRVo66ugYOdnQhCcE79o3ofbcflle2vIIpihb06ONb6eBUNDU2cffaZAUrFs4gnwpy6YgkrT19KtRGpnM+APEvX9UBqqRAEhGYqQSabQ0CksbEJIxxidHSETZs2MT6ePrJ/2+PZZ9cTjcaJOnDz2W/FUFRe7Onknx/6FUt+/DVmfONzfPThX/GHnVsQfI++/l4isTBGOAyCwMHOQwwOjKKqIosWzUeWRaZMaWPB/PmEdB1d15EkiUg0ysknL4YKcY3ruuTSeVQ/uD9H02l8x2XuCbOZNnUqjmuTTKZIJBL09vaRrSTm9clqDCNGZjBN+OXd/GJaKx/54g3E43EOHjzAhz70AZqbm5k9ew4hRaE+Vcs9P7uLZFUVxVKZK678IHVtc6iuqePii9/Krl27+MqXv4RWIUdLJBLHvM8bGhr49a9/TSqVYnh4mKuuuorGxkaSySQXX3xx4P+Vr/xZ/3vvvZfq6mqGhoa48soraWxspLq6etL/q1/96nH9/WI5KFMBcBzkmSgc058pKwods04gppfY8PS9rFw8FdsqVz7TsJ2AW6OqqgpZViYD8DPOOodVb3ozGzd0MzA4StkuYTkio+U+cIPkTXA1tOxU9GwbcasV1TWolup45E3P8JkTb2RGfCaiIKIICme0nMVdF6zmfTP+JWBAAkRHRXQMRCeC4ISQ3SM983P9RTzyzrVc0n4FMSWO6znUG41c0X4lT79lI4urVqBbzURKHYQyHSi5JkTnSKJlSFGqIzWExASiHUIda0bNtCGNNiGZMX6y4m6+suSbzK6aiyZquL7H7Kq53Lj8X/njB9YSqTuSCFfatF+jAQv/+d7S/zb2RuHL+Giyxm8//TA//vGPWb58OeFwGNu1aa+ewYdX/jMvfHobJzYvft1tJIwqnvjoOr580TdY2LwYpdJuMrt+Ltdddx0vvvgibW1tr3tup0yZwksvvcR1113HnDlzEAQBRVFYtGgRX//613nmmWde88z9vey/oor619j/usrr653wvwRzfbym66O3+0Yu6iTs5VDfn93/q2mljxb5fb31X72Pv8ZefYxHw3Rez44WHxYlEBWFcsli6kkzQJYJ6SFUSaN9xnQKuSy1NRkcz6eqJkXjlEYy2WHGx7LcccddxOI1DI0McsUVlyGrNqlUCteVqa6uZtNLG5k6NZDF+eUvf8nb3/52RFEkHo/T3d1NImogyzKu63PwYCcf/9i/sG3zS/T0pzHCcQ517yGTHaJ9xnREuQoPAVVRUFWVsuexq7WK+b/+BuLXf4by7w/Agllw8tyAgMr3EQBFkcnni2iaUKneOaiagut4uK6Hpmn4vh+QIIkC7e3tDA0OUi4FiWciXkW5ZCIrEqqqYpbLiAL4nosgeOiagudKeASaLz7ikZ5Lz52UISiVyhhGKCgsFQbwzSF8x0ban0Ypm6j7SxAS8eZFcZZF8aqT2NEIYmEv/uFOZEFAEAUcNYIUa0RUY3R3Haa2vnpSX1RWFCzTZO68eSgCFIsm8xcswHM9jEgEEBAkAduyUSWFaDTKvLlzggqtY6NoKpIsIQoygmDTNnUqkhQQJClKnHw+G8AzjTAHDuwnmUpVrl8Qkkhy0CPqE0A9y+UyyWQS2w6kVWadMAvX8RAECV3TKZWLOBXSI1VRKNsOfX09zJ83D1mWEQRhcoZ/oh9ndHSUZDJJPBYHQFU0PM/FrwTlboXpWa70x8qVKnAsXoUsB9LeARwpkLARXAfTLFeeCwlZUjGMEOue38ApS5fQ0hz0OhmGQT6XDTRwPYtyOdAWNcIGgiCgaQol20eWZDzXo2jmCRsRQrqGqldVXmKBRJFlWliWRyaXQ1aCcy7JEroYAgE0JRmQS8XDuK6HaZbRtXCl2q/hOi6KqiFJEsMjAySTiQDWJ4gMDg2xZw/MmDUNRRTJjGfxIagIug6yJNHZ2cXw0CBTpkzldw8+RHV1NaeuWEY2kyGWSmDbNlEjjOcVyWazaEaIeCLBBRecx9j4KIV8nsaGBjoPdrJ9+3YGR9KctuJUrLI1mewEhFyBFJem6biegB4K45Zs3Mo6lmWTSqYomyaFQoGQcYQhV9M0FEUhGo3hul5FFzEw13UplopIpoRsGIG+MAH5nHwU7DgUCpFJp4nFY6+C0/nIFfInx7ZQFQ1RKFAsFid1DiGQOvJ8bzJQr7giihJmOWDK9nwJVQtVtJqVye9dVdWxjHrcdDfeSMDgGvayFMb7sS2fcEgjEa+imPcJhULYCpTe+y6yd/2ad+eL9KxcwQM7N/PbLRuQRJFPn3cx7z1tFc3x4F7ybRdJFnjXD77DH3a9HFSNz1xFuVRgzVOPUVNbj1Q5FlFQUFSVTCZHNldgdHiEk05ehKYe3S4j4NgurmcTjyUqz59McfiILmJzczNVaghVDXSCJ4h7fM8Lej1DOkODYzQ2NTA42MeUtnZsy0XXQ5PvpsbGpkCLWIToxLkO6biVSZ6oEyGbTRMKhZk+vR1l7PDks6mpOoODg+D71NTU8K7WJs7umM3jnbt5rms/6zr3MVjM8/D+nTy8fyfLWqfxowveimlZiLoeVAolGS0UwvPdIJlyPMbGRknE40jpPI7nIsSDZHVGxwxUVcEybYrFEqVSjuZEFXsyQ4xaBcbGBhEEGwQmpT/6+gYQEOnLBkl3TSiM7/mE9ndR0DW+vW0rRiSPruucfvpKNF1GkgREUaFkOWiywpJFi/nsRz5GV38vL+/YTl9fH5qmM3/BfD70wQ8yZeoUrr/hRgCmT5/+mvf7smXL2Lx5M7fddhtr1qyht7cXTdNYsGABH/rQh5gyZQrXX3/96/ovXbqULVu2cNttt/HEE0/Q09ODruuT/lOnTuW6664DoKOjA/0tQT+6ddUXePTUU5B3Pf6aOCj0cRdftPGQuPETn+d6+zPIrkVurJ/y6k7cQpHMeB83XvP/GMl5nHHRpeTJI4gWL6x7jnQ6zZ/++CBrn1wTSNEJo3x761eY3tbOP6yczov5bn77wl7mnzyPz69YxpvO0Ng2/B5qW0/mJ7/dz/S6OOeccwH7Dw4Sby4zb9ssfnbN7QjlCJ/65ytxlj7F3saHefT883F9iWLpBYbVpyiUeyk7IYTQcrZ84H4O9BXxQnvoPjxK4XCGS8+6gmRVmB//6Pu4VesZP+/bhBokHKvA6EiacCSGIcZpc9JsuvIybAcOip9EkqoYGevENS2K+QKSrFOVqsdBo2y6zJrt8TnrFIZGT2DOkjNZeuZ5hBO1lMplruBS3vvBoL/S9wvBu4wAvXTDh6/hBq458lQLAtIZNpxhc9s//ZDb+GHl/8fXQr3qzku56s5LK38dUXHwPI9pQssxOqkw0Y9+JPY9Yke+b7VLncn74Ysfu5abhM8dd9+vtWMRJlNppVwuvurzY+V7Jo/Dv4qrrrpq8v9HowDAftX6wU95HsjzXEJIXPPJj/Np/2OTk30T8cgbsWg0yo033siNN974Bo/zWDu2YvrX5wbH9C//FT4TY/lzeczfwv7XJa//2+1v1fj812zn6F4EQXBxfZeR0QF6ug8xZdoMTNshVy7iOFkkAcJhnZu+dD3VzUk83WXuwgX845X/j5/86DamtLVw0UVnk8sMkc3ZDA8N4jgOyaoqnln7LBEjSlUiSWNjI+VymUceeYRzzz2XpqYmxkd6sUddzjhzBbbls3XLyyxYsIB///kveM+lb8N3DRYumMPAoSFaO5KUCRgXR0bSJJNJZs6cg6coCN+4Bms8i3zd9xDufwyWLYSWehCCRC2khSgWTcySTcjQKBWK2I5F2IjiWC7xeBzwiUTCJJMxTjppIYODgwz090+KdbuU6eiYiaIELLO+F2iTOo6L52soatBnKkoylmPTnKoCx8frH8Hv78dQSoh9IzSmTSh70BpFVFScKdW4LXV4H25ErE0hieC6Doe6uqmtqSOfLRKKaETCYRBBEQUcx+PwocMkquJomoZpmmiqys4dO2huaWF8bIxIOEw0HkMSFZ57dh0trc2E9QjlXJqwEWZ4eISa6hS6EcL3HVQhFOi6ShLpdBrDiLB0ySKiMQPXdRgZHkaUBMKGgSgIhMNRamvrKeSL+IJPOBzGMm1sxyZi6LiuTyxq4LkWguAjCgKyrCKFFJ5fvwFBFJnZ0YEgiAgIFPIFZEmgY+Z0IpEYJcsKSLgqVY+JRLapqYl8Ps8ZZ56OgITnBRA+SVLwCSDDwVjMQIxdrLBNCyIiIq5tcqi7k5rqFNFolMxoH6FwBF2TCUUilEomsXici97yFnzXwXIcYvEImqIyMjTIlLY2yo7FwGAALfc8h0x2nGg0jCzpOJaNJMkc7Opi/rx5uJ6H50hIMpTKRSRRRtUUSqUCyUQ1kiBSLhTp6u5kxowOFFnFNu0KXDgUJHUhA98HSZQR5SDJKBTylM0S9fWNCCLYnkddQzUrTl1OyBARBQHH9dC1MAODA8iSQFUiTqlcplQsMK19Kr+9/3dEY3HOOHMVXV0HaGpuIFwVxTAMRkdHsSyblpYWPEFAUVSamhvxXY/fPvcc0WiMxYuWsH37LoZ2dSPPW4Jje0iVPkhRlEmPDhMOB7BoSZIYHx1HVfRJLURFURhPpwMW7lTtMSyo0Wh08sXpeR7ZTJ4JIYftuw+wYlYbs2bNomSWEWQZUVEQRRHzKP6CKY1N5HIFZEVFOSoB7R0cZnh4mKpEosKe7COpKlpIp3tP5+R6rfXV+K5FJpOlpipG79AYvcNjlEsWICNLAr4n4gFaSKdYyjOeDYhjEpEIJUugs79EdV097OhjoLeL5Is/IR1twZ1xCl5tGCMcIlcqoGkh+gd6iLz1PKy+AXRB4L5N6wC4cvmZnB5roFaNUiqUwPcZGx1jPD1MulJp1jSFWDxMJByjpWUaIGLbQZBm2x79A0NomsasmbMw9BCiALlcdvJYHcvFtGx27thFPl9gWns7jmNV4OBUrmmFOE1VaG5uxtsWoB8Oj46gyDpdnb309R3mgjedTzSSQFFUBEGmLz0GQCocQdNURBFqa6rRKhMKpmNRXVOFoiiMjY5SX9+AIAikUkm03UHVVsBH1QRWrTodURKJxaOUTZPqcJyrl5zJ5XNPRtM0OsdGWL3lef5t3RqeP3SQn778It+48J2AhKyItE+fFrA5EwS0uVwe1wVdDyN27qdcLCK0ayiKjCcJDAz0I8sKIT3MkDnECbUNrOneQ1c2TXNbE0YkxtaXt1JXV4tlWgz0D5BsbiLrBIF31HR5Ze3TLB0rYt36La7bt4t586bR19fP3avv5MyzF1MoZYlFapBVjYH+XmzTQlN0fnzLT7AdC8d3jiGauu+++yff30uWLDnuOz6VSnHttddy7bXXviZGuO+++96Q/+c+97nj+v/mN7+Z9D/llOP7T9jRk+mSG+iR+siIgorlOcRSjSw/8x38+lf3sHP7NkRBZSxbJCKcxU9uv4vFJ67ks5+9lnA4TNPNNzM4muGEeVHqm9r40te/jkSJFzb8CUmtxw9n6D98kFeyQ3TMmotcCGMUyqw6pYU7f7OG4ewIl7/rH5kzewGCEKXv0GFaG+bynve8h0Ndj9BWE2e0v0BjUzum45K1RpDlJIIb5ck1L9M0Q6KmrYP9XYdYeuq5CEqShoYWuvbvpiZax7IVLahqkrVrX6Kx3qC+ropIWCeq1DI+OES21MCGDa9w/oURNCmNKoookQjtU6exb18PqholnbFY+/QL3PfQZhIJnVVnn8vlJ6/AiCbIlcoo4pECyavJliYkTY7mDfhL7Y0mKcfeE/+9K3tH2xuNlyfWEwQB0zQn30UTpJ9/T/trks7/yfZ/sOH/YfafZe86elbzr/GdGINllwKtUMemv6+H3PgYhqRUSB48hocG2L1rB/FECBSHvJVGVDXe/o53cN0N1/PLe+4iM9ZPVUxlxpRpnDC9g0I6SyGdJayG+MVdATnEkiVLEASBWbNmUVtbG7C4Ci579u5AlkUKhRzrn3+OgwcP8vs/PsTuPQd4Zu2LHDowTDHnUCxl0U5YgTJzFWEjSrlkoWsGviegyBpSbQrnlhuxP3wZ4tMvIvxpHeSLiIKAZVps3bKVF55/AbNURtc0VCVEqWRSKpUZGOxHEGB4eJDW1kY0TUZRRBqbArhUY2MTsirjeS6KoqDICuWiyehIGllS0fIu6pb98PAzeP+fvTcPs6uq8v4/+8znzvfWrbkqVanKPIeMQAAlgqKijQo4dWu3bas9+LYjdquo3Y1Tq61Nq+2ItjjgLKCAKJCQMAQCGcg8VpIab1XdeTjz749zUwlIFPxpv/o+ruc5T+rmnmHfffY5e629vuv7ve1elFvvRXzjVsSP7kDevAWhjhIYdazV3TjXvwT3c6/D/5dXMfkPl7J7RRvBhgWoHRl8z4VAIIREW0cHQpZpbW8jGomGmUdEGEwjmDNnLolEMqzlVRRs26a1tRVD12lta0OLRBCyyuTkNAcOHKRWrrL5ns3kp6YQwOTkJI7r4YsA27ORAnAtm/179+I6FpVyHoGLbdvIcpOlNx5H03QKxSKapiFJEvfedx/j4xM4jhM6lfEE+B66qiAJZuROZEngeS6VapneWT0Ui0W+853vhLIBCEwzlKRo1GrYtoXfzLaePb4ty8JxHEzTnPn/wBds3/4YqqoSNO9PEAShzm4Q4HsejUYDy7ZBSEiyQiweQ9NUJCGhywHl4iSB75DPT4d10s1HUjcNHMdGkiA3OY4k+biuhVAkZs3uR1ZVjIhJKpPGciyED41aAyEEqXSKQAI38NA0g0Kh1NT0CzV+o7EIyViC22+9nR/94If0dHaiCIEiSQQBTcdfJhqJE5I+BEiSjFDA8R1iyTipTJqG7VKtWSgqdHW109PbxaxZvWFQL0kEgYTn+rS3t2PZFhFTZ/bs2cTiMWRV4SUv/TMMM0o0Fp9xgBRFIZVKkUgkmmzVoS6jIgsMQ2fleeehKCqSJBOPJ7nMaiV23xFaMi2htjLgeQGlYgGliUDITeSYyuXQFAVNa8qfSOFiiKFHGB0ZZ+++PaG8VfM7z3eZmBhD11Vc15t5V+4fzjFv3nzq9QaF6Tye4yILgRcEbN11IDxeCHqzSVRVQ5HVmcAX4IHdB1FVtbmaLqHrBpIiI6sq923fDUAyatKZjuPaNo7jsHxuWFe/6bG9TE1NI5CwbRdN02fuz/3b9+E2UQgL+ntAKKxbfyFrFw0AsOP4JKccDSaOojz6Xbx7/hMO3EG6fhS7OErvrC5S6RiSJBGNmJyaDtmKV/T205ZtBT9AESqKFC6O6PE4O4eHAKg1agTCRYhwjJ63esWME2s7DZYuW8r8efPDoD2TxrItDh04MNMnjutiNWwGB+ewdu16otFIM9t9xn2yLIt6LZQOGx4+xfhEKBszUStTlQI6uzp44YuuIJ6Ikc4k8DyHk2Mn2T0SZk9X9c2hVCozOTlJ2glINyF5R3Nj7N23h1KpgKrJM7qTR48e5vHRE6dnLVyvQTbbEiIohKBYLGFbDp4XoBkmgZAYaO3gg89/GS9fEsq3bD52GN8Ps/VuUzItX5iaGUuqoqJrBpqq4/nNLHs9SWVSRtc1CoUCtVqdRsPinnvuZ2EkC0DVsbln/14ikRhr165h586dOI5DLBbjS7/46UyfXb3mQhZUGsh/9QryrQYdnSna2jo4evQoH/nIR4jHo7iuS6FQwHNc2tvbGR8dZc2aNdQKZVwfPP/Jc/zXvv4/AFx22fNob2/nN9lT4YOna+4uu+yyZ3T8aTvdZ8/m+LODV6lJzoYvCDww9BgCle6B1Tznsqt5Yu9BrOoki+d1MX78caJimng8zmtf8xf81RveSLa1nX9827v44pduQtFSrLtgOeVajjvueJjNmw+za/9eunrncXhY4ms/2s8XvvUYk9UYvusxNKRSq6WoVQQTowXe+pa/Y8OG83j4wQd4ZNuD9PV2kohEaMuksasWMTWKrKpIUgujwzbFvMe6dRdRKE6y5cFdlEoNLtywlkZjjAsvHOA9172KRUu7GDoxyk033U083oNhJhkbG2N4eBQznuDbt9zHl792LwcOHmZk9BjxeAi7r1WqxOMJGg2L/HSZezc9RsXX6epfyn1btxNPtlAp1/A852mJkU737++CDfaZMgH/Ptlnf5/2MdtRnwAAIABJREFUTNt9dvB6WjXht/G1fxv7Y+3b39b+6ILXJ2f/fnU72379zXx2bLznOu//3wHzVLju2atjZ7YzbMinmdSCwONsxuQnb7+57b+qx/abz/WktgoTz/bp6+igNR4llU7iqzKB8JkuODgk+Pp3buH6f/kQBlEMN0XdL2KYHnNnt/Haa1/Fj7/7c1LJhQyPjXHjZ79I/+xFlKsulz3/Cl545Yt5cOvdJGMqjUYJw1TZ9sjD6KbByfE6Q8PTyJpCui3GX7/lDSw8bzkf+eAHGJzfzfs/+m427fglgelTnq4gpxbgtgywb/8e/MBFSAGRqEG5UkQEAYqkIr/qSux7b8ZftQT5h3cT7D1KELgMzOvjwovX4+Fhu34zGJDQTZ3W9iz7D+1H1hRiaRPbsTHNGOBhu1Vy+SnSmSjFyjST03ls16c+MU3s1CTK3dtQ79lG0N+J9cYrKLywD+cFcdx3zsL90Ercj12O+6arKLxiIydW9CN3tTLVqFCr14iYJgvmzcWq1wgce0bTUJZlTEND0yU0E2RFRTci1JoZH9f3cH0bhEexVKRaq5MvlNENM4Q5GjK6qlApl9h8//28+CVX0tHTzar1a+jt76faqJNuSWG7VhPupiIUFUXTmdU/QLqlhWQ6jR5RkDWFUrVCNJagWnP43nd/Qn6qge/qFKeKrFy6hJ6ONLhVavk8YydOMTVZCDPdlocs64xPTJMvVvBcQSFfJhZLsWrVGgbnzsX1PVRNxg18XCCRzTI8PoZQpJAcJRDomo7vhavK+ekpHNtCkgWSDAEuy1csxfc9fD/AslxEIDh04CBOo4EihcygibgBgY0iC9qy7aiqSS6Xp+5JGPEMhZpFLJ0hkBRAQTdkXNdG0wzqVkA0nqWjezYNVzB6cgzf9sDzcBoOmmQg+TqKaVKsVnF9n87OTjzXRfgBtm8hKTKKFsVxJCQRBk71uk1+uki9ZuH7MqpqUi7V8T0bRQHfc/BcCXyNWrWMJDsQgCyr3L/5ATRZR3gBrmXh42C5NYQsUyw2azg9l2qpRmdnD04gcH2XUmmKlpSKbkTpmzWLmKkS1SU6OzsQqo6uGmFAZ5rkJnOYEQ3ftRCeBYHN8PAJlixeQEsmTbVeZc2atSiyjG07TBeKmM16VkVW6O7u4aGHtpGbmGbr1gfY/vgj7NrzyAxrsO8HCDQS8XQoIeUpeG4z+xqEv6u9tZXx0VE6OjIzgdQje4+wdecBrFqd1q52FMPA8+Ho4WN8/nt3AHDxyoXg1WnJJtEMGV0/I5Vz2+ZHyRXKuJaDbwc0qjUy6Ti5qUm+fVeY7XzpJWtRVANdj5LtyPLii1aH195zmCdOjKBoLhMTE5wcOoFnOdz0la/z7zffBsDC2T2sWDyfdHs3nhRl47rVxCMGrufz/m/cR7R3EDs7i4qkUT+xk+rD30Xb9HG4872IA7cQOGWQfdLR0LndPXyMpcvnYrtVZEVw6PBRdj9+kE/dfTvlJuTd0ExUIbBdl3XrV6Hpp7WnIWoYBE6Aa9uoMtTrFQr5MslU10yfTBcKoaSQkChNjONJLpFEBFk9k2nQFI2piRxGNEZXz2yKxTMQvhu3/Iz+/k5UVULTFIr5EsIXfObnt1N3bBRJ5vL5CxgbP0EiZWJt3c6yREgGtXnoCANz5pPNZEnEo/goWLbPUOCx7dRxIISEJ2NxXHx8Ibj3/q2USmVS6Ti1eoHtjz4CBMhSyJIc0cIaQ0WScB0b37PRVAlVEWRbWvBcB11TUVSJ1vY0bmAhy4J6vY49leaRe47TaNTpndXJgoWDGKbEhRsu5tK5i+mKhSULX3j8Iaancvzsp3cyMHsO4+MTjI6Pc3c+DLjPa++h23JIWS47F/YTjSSYM7CA8alJuvpbGVjQzWhummS6l2RLG1LUYLJeZv4FqxlYsxLf1BEeaN4Zf+ab3/oW9957L5Ik8e53vQsCD0kEv7I9nU8jhOCb3/zmmePf/e4nlTqdtrNZgk/7CafhkzfffDP33HMPkiRx3XXXAdKT2GzD0/gzfs3pf4UIsIWKJyTARUgOrm/hSj5uKsmqy6/gnR/4FIeP5jiwezcj+zexuNvhMzdcz7zBWeiaQmtLB5/5+H/yt3/xZj798S8wMQX3PHiUN/7je/iXGz7Ev7zvei56/gY2rF1PW7yfiXIrP9sywvfu2sxrX7KciNogEs8yuGQV77juvXzhxi+xcOlSfDwG+nvBVhkdLiHHBWU5RyQWp1arUSiNc9WfXcaWzQ9y8IlpXnL1NcRaU+jxKNsee5z9h07w5Zu+QySlMNjh8vY3rCcZr1Op5XDqFSwEp05E2Pn4LhQBvtWBrHTg1S2GcxZ5O4KhJ7DLJeYO9vGyl7+IZDRDzYLRXImdew/iSxK6rhFIMh4Cxw+hwr6Qmpq0YubePVVK5um20+I9AaFCA0LMbEE4WJBkeeazkKQn+a9n+5ZPHS9n7Iw/fnqMCCE/hQH5mW1PVvN4epWQs+3s33oaMnw2lP03ZZhP993pbOvvIpA817WfygDsE8xs51IoeabswedqBzyzLPRT3w2/D/ujC17/ZH84JkRIpT1VmAKaOp2BR//sPrKtLXz+vz/Hjf/1n9QbNQxTp1G3MU2TTCZDqVSiq7uDXG6Mvr4+rr322pnVKkmSaG9vZ9V5a9i1axcPPfQQ550XOoG+79Pb28vGjRuxLAtFUfjoRz/K9PQ0iqIQ+IKDBw9yxRVX0Gg0ZrIIQghWrlwZMlqWyzNZNs/zQIQvUjliEnzw/2B/4p+Q9h8h9osHaUVCUSRibQ08fRQ5PgWRceTEJGa2zKI1rSS7HJREAaOlTLLbgliOdK9H50BApDZObOw4ycN7MX9yB5mt24nkxuHFi3GuX423ZgyMXZhzQFywAnXl8xG9K/ETvaCERFMIZphzFTmUm5iezodBTvjrkOWQaErTdarVGp7nI0kytaZ0gyzLKIpCox72STKZnHm5mmZYQxwEYRWHYehsuOhC0uk0qVSKVDrJxMQEiUSCjo4OfN/Dc10MXUdVZYSASMRAIJAlGVlSOXr0aMiwK0n4ns+SJUv4yW0/5uSJE5QqZaamp1E1HSHJVOs1XM8jFotRKpUxm7VsXV1dYdZWV8i0pJAVQSxmsmHD+QSBS7VaRZZDkiBd12lva0dTtbMWZgSyIhH4Yd8hwvHjeR71Wp1isTgzyZyutQ3bpVIuV5iensZ1fYIgnERd35thVdZ0nVg8TjabRUKgNGs1bdsCESDLEkIwQ1wViZj09PQ86aXuui6VSgXLsujt7Q0nc8IMuiSHerHxWBxZSOFzIcsQhFDqV7/6lVxz7TVk0ilcxyYSNak3GkxMhNnsUqlEtVolEglra8vlsOZoZGSEgwcP4rgOhqk1Ydkyuq6jaSqe7xMIqNaqVGtVNE0jFosRicYoFEs0Gg0uufji8Hc2s5zRiDmTeQ2AwcEBhAj71bItSqUa3d09OE6YFTcMg/nz59LREbKHmoYxk3ktlcvU6xat2XY0zcRquIyNTjF8amKm3yYnJ6lUq0iyhGHoLFq0gFpTOsF1Xfxm/XIkEgmh482nJBE1ed0HPs1NP74Ty7aQBOw6cIS/+9RNHBwaQZYk3nLVRpLJFKqiYTWcMPPeNFWWuPq6T3LHlkdRNY0jR46yZfsTvPzdn2CqWCZmGrzzz18aZsM8j1q1xpUXr+a8BbMBeOO//Te33LUVVddIp1MMT+b58Y7jPLr3MADXv/laNFUNa+ODgL7eLj70pqsBuG3rHl77of9h/6kCarINv3WQgjmLn48leNmn76Y0PgKNMrZ4lOcsDPv1q1s28cVN9xBLJpEUmVhbKwczgm/u3E4mGsJqa7Ua0/lpKuVSk81Xnnl+RkdH2b//AFbDIpFMYOgGuVwOXTsTmLZmW7Fdh0e3b8d2HCQEsWgU7yyJIcd1GJw7yOTkBPdv3sTs/n4AkmaEbz+yhXd+/xtUXJuDBw4h6Tqfvvdn3PR4uBjwxg2X0plI0dfXT2B7yIdOcnXPPCQhKNoN3vLTb3NwfJSp6QJO4PGDfdt5/Q++QtqIAGE/RiIx4rE41WqN700d4yO7NvPDJ7aTb9Tp7OpCkiRqjs3XHtvKd3aGkOaLeweh+SzatoOsKKQ+8FayN7yNV950YxOpEb6XVVUlGo0yOjrKmjVrUTUNy3LYvWsPu3buoaOjnVQqyfsvCeWYfnFkL+++6/ukOtpIJpNEO9r47+EnOFycQhYS/3r5n5E+OoL9qivpW7qYO++8E8uyWLNhDRtfuJF3/dO7aG1tnSGxalTKtKZTfPJjH+W+e37B9PQkgfDxhc/Q0BDve//1vOUtfwfAO97+ds4/f/3Tzuc3fPgj3H777UxPT8/839DQEO973/tm5Dre8Y53cP755z/98TfcwG233fYrx7/3ve/lzW9+88zxF1xwwcz3Zxzipz0lcKYu+KkZrBDxIYglUgzOX8B4bhLPF/iBRBDUMSMyuakcI+Nj5Gs1lFiC4VNHcNwq73nvO3nBFRtpbUvz7Vu+xdo1F/HP//zPvPo113DRRRdy/PhxNDXOwNwlDJ0YQVYlKpUSL3vFKwhQEJLE8pWriMUT7D94GCHL2LaNpik0Gg3i8SgDA7OYzk/Q39fJxZecj/A9tj/yCK7rs/F5l9HZNQvfV6hWBdP5IgNzZtNo1JGFRDqRxHErlIojvOENL+eNf/MCZs9uI52KEY2nKJaqfPs7P2b7jn1Uah4Hj5xCqCa9vb1cccUVvP71r2fZsmXEYrFzd+wfqf2hEwn9yf537E81r3+y38qEEEiqwsIli7jpy19l3YZL8OpVhORTrTWIxnSGToQwq3gii5AcxoZzBCnIFwtEkxG6+3tp+DWOHZtkx+NP8OAD2yiVi3zmM5/ky1/5Im95019hmnGec8mlPPTQQwRBQC6Xo621K8ygCp+oYfK+f/pnCvkKs/p6yGbTtLWmMQyJ6elpfN+nemw7SlDHS/UiKzJ6vY7wC8QdB2FNEAgJZ+oEcmAjyhNI03tx/z6LtHkS457NeFdkCFqSKDGBVwhQZQURQMTgDAtnPSAIwCk0kIbKGJM+8lANdJlgUYaGsBFX9+P0Rjhy4ig9nZMkEwMEei9qJIHvugRN1t9ASM0VPAnbtqlVayEEV9XZt3cfAwP9tLW1kctNkEylsG0b13OoVauMj48xODiIZdlo6ulgR8L1PBRFQYko4cs/CDB0DUM3mqQ8HtVaDVWWUVWD9raWMIMpPBzHIZttZf++A8we6EfXdRqNRgiVCxwEAa4TMjNXGjUsy0IEEDWjNBoNpvNTDI8Ms37dOtasW02pUmJgXh/VWglJErS0tWHoJq7t0JptxXN9NE1v1hWC4zaQFRlNC2E4thMSJ6mo+L5PNBLFsR10Q8f3fQxDY3pqing8hpAEiirj+WHNXbFQxjAinBo+haoqmKaJqobslH7g8dznXkqtWiUajRCLxqjWXaq1CrqmoOsK8UQMy6qjmrGQaMv3EATIEhD4BKrcXBixEVKAIofsyaoaBvTxeJxoNBpKcngeHR0dBELCtuzmSnQozyTRHANSuAIsNyVpJCGoOTU0XSESTVGv1zh48CCzZvWjqjonT43R2tZKrV7DNCUmp4q0tmUwzRgCiVXnraK9oxXPtzHNBJYHsqyhJnSCWASrUeXkqWESLUli8RiIICQTk1QaDsRiGseOHqW7uxtZkUOYaDQyI01EsyRB1zUmc5MYps7WLY/w4he/mFqtgmkYRCImY2MjmGOjCCS0bxfR8yGJhywrGIaBvfkA5AP+onsecttCgmrA7r33AtChxrGsBkHg09HZTurWvUTLYbBkHJgm/sN94XOu61SXtswEY++4fCPf+MX9/Nu37uDfb/k5hqxQtJvkIcAn3vYXnL9sMbfddhsvkWeT9JQn1Sp95LwL+fCObfzlDf+NqX8VgLoVBre6LPON576IuZvDendZGiapyFQ3DvDFf34zr3n/ZzgwNMLffuzLaJJMRFUoNJmZJSH4+GXP5wVrl+E6NrV6nfY7jyOE4G/ppLr+Yj7w8P388rFD/PKx/8BUVWRVplJrzLTNv30C2dKIbdN5jzmH2xN7OVAq8A/fvIn/862vkdANio06AfA3c5ZRdz2+Ud2DNp2nbfcQQSZFzQ8X807nJVqnK6wq1ik/uB0zGkVRZFYIgd13hvXS3rOfTMnjMjUGo9OIsWkQQ6hN6DKAKJdAKLQdPMrzZZPtU+F3y6Jp1s5ayCcfvI+bHtpEUjcpWXW8pnO6sX0WH87MxbvvUeKJOFLDhsE+5kVN3r7mOXxi273ccfAJ7jj4BElVp+o6uIHPiztmsyjRwscPPorjehw6MsTszk7SJ8dRqzW+c2wPP9m3A4CYoqIIiYJzRqLj/PZe/nXWctR9R5tM9E8mHnFsm8nxHF1dnRgHTgDhomt7TxJVkwk8iW0PPc50Po+u6xhGDE2XeMXS89ifG+Yz2+7ljtGj3Dl6DGPrj6kH4dhVJIl/f/41LI2mkUZ3sW9xPzt++EN+8IMfcP7562auX6uF2r9TU1O0tbWRP3GCWsRk86ZNfP7znwcgGg0h+6eJcmRZ5rp3v4vrr3//Oef0W2+9jRtu+PC5j7/uul9LJnPrrbdyww03/NrjP/ShD/1K8CFJpzOvZ+z0wudTA9azPwtJQvggaTor1l2A49Y5fHKKRMzg4vWzkNxTBPZJ7t/6M2bP72bf8f1omo0QNUwzzbGjQ5w4eoyb/udr3PuLh/jJT37EW9/6Vt72jrdQrZbZsWMHm7fu4kUvfRXoEKg20WSMv3nzP3D7z+9n7QXn893vvI+rL19FMqZjBUU818FQDWrVKuCh6hbzF3VT8xJ4lTjxlnbqlTpbtm5n/xNPMD7t8JWv/JIPvu1lFKePYfse2Wg79rRFJmMQiQnMeIJcLgdBHsmPMlW2GZ1yeWzfGCtWPp/xksOpfJmFK9bx5ddez4PbHuCVr762SS7oNev/z2QEz2W/S3jr2ci+39V5f18EQL+Ptv6uz/Un+1WTP/jBD/7fbsMzNs/zPnj676fCU57Ofl/Y73Od9+lqSYN8CdHXjdTUETy937Nr47N9YH+b332uazz9ubxAYDfqtGdbMCMRvvKlL7J0yRIyrdlmvZ+gra2VfH6aXG6c7u5OOjtmMXziFCMjY9xz330853nPxYgYFPJTTExMsmjREu6555dcfvnzKBTyuHZItGQ5DrF4jNmzZ5NOh5PO/Zs3MWfOANVKmancNA8//AgTuVEymQye6+PYDrIkUyoWiB++HTG6E3KHCE7tJBjZhX38UeTxPTCym2BkF2LqKJQncJBxjRRK2yD+2vMI5nai/PAI0rYi0IpkRQiKCmJKJpiS8Y7UkXcUUR/MIe0oYOwuIesJ3NWzmdgwC+MtV2CvmoO/eiH09SGS7ZjZWYhYK2aqDWQN13XwXI/R0ZGQLEiWqdcb6LpBMpEk05LBthr4rk8qlSYei+MHAUHgMzExQSQWDeXDZZnOzi5kKVyRDkmAJB588EG6u7rwXJe9e/aSbcmiqiEbr6aFAaAkZHwvYOj4CVLJFKOjoxiGzvjYGKZuUC5XSWcyWJbVJKOSiEZjSHhNEhOwLBddM0glU5i6gee52LaDaRj0ze6nta0NI2IgaxL1RoNoPIqsKMiyguv7SIRZyel8HsMwZ7LmngMgc2D/ITTVQJY1giBk4ZWkUJMXQmZRISQc20ZWFFQlDD5KTakNIUBWNGzbYXR0lAceeICFCxcST8RnnCUhSaiKAoRyKz+59XaWL1uO7dgUy0V0Q8eMmMiqiSRLYeBKgOfYKEpIwuM4DvVqjcD3yefz6JoaZmGFTCaTYXh4eAaOpGkaAonh4VPkcjlaMi0QBPheszZdSFiWxcEDB2jJtDB0fIhyuYJthyzUpqkjKzITExNks+2k06EEQ0tLK1bDwfM9Eok4rgf56QLbHn6EJUsWEYuZTE5NEI9lCPwwmwsB+Xw+zLQmorieiyIrKIqK5weUyxUkodDSksXzXMyIiWZo+L7Lnr37UFWFwPcxTYNKpYof+EzmchzYf5zBwUE2bdrEwMBsZEkinoiTHqrMZAZuOXqQE5USl5y3hNULu8k2ZMyah6oqzfssuH/0FPePnKQ7GuNVVz0XVVXQNAV9X45vHdrLULnE8liSNZlWgiBkGnbaY3z+3i2Ua3WuXreK/1i+gSAIGK1WyFsNEprGpT19fOl5L+TiV1yIoUc4euQ4PXWNlB4lCAI+vP0BAP5h+Sr+ac35VHSJo/kpapZNJh7lxb2D/M9lV3J+Rze+13S65fC+7W6M0dLZyuuu3Ehr0aVSrlG0G9Rdj3Yjwov6B/nSxhdy5fKl1LoiVMplbNsmebwcziVCcEFHL1cNzsP1fUq2RclxEJJgVnuayxYv4ANL1rOqoxvJDxC2RwSdV3fNwfJcxt0GFdclIiuszXRww+ILeM+8Vfxk5Ag7i5OsyrRzVecA+D6qJKHbHjc+tpWibfGKnrmsSmYxVBU5CPAsBwlwPIcP79gCwJvnr6St4aEKgRwECNcH16XQqPNfR0Od2rctWk2LD2qxiuT7bM4Ns2lymP5Igm+seh4LExlG7Dq5JiPowmSGf5q3mv9YeiFBw0ZTZITro7humOGKRVh73moG2zrITeUo2A0CAhYmMrx/yfl8ZPlFbJ0a4f7cMP3pLOsTnRiyRNqHZZk2BqNJTDlECdRdl4rr0BKJsqKti7df9Hw+suwiop4fvoM1nVxuAk3X+ci+MCvbKRtc2juXTCaNPJmnUqngODbysgaWyBFUWonHUyxauJhMpgXbrtFohHW3G+ctZmmmjbrnUbTq1Byb1kiMtS3dfO6lr+N5sxeg7D6I0BQif/86enp76O/vY978eXzqxv8I+2fBQg4dOMRzn/tc9uzZw4K+Xj7+sY9x1dUvRzcMLNumUgmDxr6+Wbzsqpfx2c/eyLXXXBPO9OdQGkgmEkjNDGKlUmke38dVV13FZz/7Wa6++uonHX8aFnw6KDqduX/q8S972cv43Oc+xzXXXPMr1wbwbw0XpaSXPHeGZO/0uZ8KZ32Sx+L7CASSopFIJJm7cAmuC7WGj1I6SDV/EkPUuej8VQz0Zrn357cRNw1e+tKXUC5WMfUIlXyDA3sOsXLVGtasW8ne/Tv47ve+zbp1G+jpms+efSeRNeic1YGmmezeuYuv3fRlXn7VlfR2x7BrJ9Akl1QqjmpApVZmemIKETik0il6Zi/k8PFhDh05xaG9h5BVne/94Cfs2LmH3p4+RscmGehsZc6ACaqNpLfguQYtUZWSJZAFlIuTCC9A8g0mcw3au3px1FZ2759kywN7OXRsjFe+7i04mBw7fISG3WDuvDnEk/Ems7nPaQmiZxpQPVNo6NN9fir0+PR3T4XjnguGGgQ86dinXuM3les9k1K+Z1N2+H/bzvl7nvrx7D49Vwxwrp9zrpjk7D/Pfmf8pkY/C5Nl+UO/zXHijykFb9v2TGP/t4PXZxJwPlN66GcfvJ5ZGXpm9+u3WfE5V63s05/LCUAOfGrFKY4fPcxnP/NZnvfcjbzw5dcyPDyMpmlEImFGxrIshBC4boDsCj7w/uvJtrWz/bEdfOIz/4Hk1Nm1cy9rVq9n/4F9/OIXd/J3f/8WMskM1157LX/9pr9m9Zo1JJJxvv+DH/DcSy7jBz/4Hm97+1uxrDqaarJ168NksgkGBga5/n3v501/80YG5/Thu3Wcez+Bioc09+KZPgz8cHL0nDAY8wJIJpJh7UAA8um6YAG+7aDeuRfxnYfxZ2Wg3EDK10AJncvqutl4a3uQk0mKtRp5qcrcubORNZOGFcreHDp0iPb2djKZDPV6Fdu2SCTDDIZjWzi2g2NbJJMJZE3HdX18L8CqN4jFo0xNTrB50xYSiQQXXXxRCFfTVIrlIoZuUKlUiMZieK4/ozm494k9LFmyhGPHj9HamsUwNBzHJZFIUCoVMAyzOV4FruMTBILxsXGOHDnE5OQEy1csZ+j4EMuWLSeaSFIshGzNQoBhhlJBjVoJTTOZmJhibHSCgYHZpNIJrEYDx3EwIhEc22Hvvn30ze4nmUgwXZgmkYyH1/ZDrLKhGzh1m3w+z8lTJ1mxciV+EMoSWQ0bIck8sm07gwODdPd04vsukhzCRHVdR4iQXTgIAjzXY2JinNa2VjzPa8JiQzixY7tUqyGRSqGQZ3BwEPDwAKOZ7XUdFxHA6NgotarF7Nn9BMKnYVWpVMt0dnciCx2CAFlAfmoSx7WJJ2IYsSRBEFAulZAkianJKTrbO9A0FdfxZ5yzw4cP09fXRyQSoVSqMTo6QqlUbBKUwf4D++ns7kJRFAxNJzcxQWtrK8OnTqHpEarVMn19vVhWHUmScRyXWCxNgIvn11HkCLKkUW9UMQwNLxB4rs+hg4fp7+9hemqC7p4OJNmkUCiQTKYQQlAqFFA1DUmTsRsWRw4dZnBgAFVVKZaKjAyNMDh3LoEUkEwnEQR4rku+WCYej4X110H4LimViti2RTFvk8mkmZqaIhaPkEzE2f3EblLJLK1tWaanp0kmE6SSSRRV4fiJvfTNGqBarfP4YztZt24dlWoZTdWJxiI0Go2QpKveQJIEmm5w6uQo0UiS7373e/T0dDORG+W1r30Nmq6z7Nq3MjZd5NNvfz3XXHYRmq4jC5tqtcHUVIH29g4mp3J0d3dz+OBhbr31p7zyla8m05JGUgLaL/tLAG77zHVsWDEP15EIfAXLrhOLmrhuiGrYuXMXpWKJFStXoioK47kJvv+977NwwQIuueQS7rvvPpYvW0a6Jc5j2x/n0e07WLJkCRc/52I8z8W3far1Cpl0ElVXaFgWphHB9SQkWcYLPKx6nUhEw7UtFM3Gs1VUOYJj13G8BsdPnmBgzmJUTYVGFcb2EKgmYs0rkTJd+L5AeCqBryECcO0KI6PH6OpI40oqqhHDD2RURaENlLsyAAAgAElEQVSQm+L40YN0dHSQbelgx44dpNIxTFPn6/91E9e+5jVkOrrYuW8f2WwGTRXc+IkbWbRoEevOX83CRQt4aNv9rLtwHZqmcmTvYVzX5Xs/vpX//MJnWbtqDVdc8jxe/5d/wb33bGLu3LnMnTu/+WwWGBsb48///M/56U9/ytDeg1z2qf9hYs1SqqZGb283DatOJBK+wyYnp2jJJJGEhOP6yIqCEDKO65HL5YhFTDRdQdfVM84gEgIVx2vgunZYRkFIVjd0/Djz5s2jWq1Sq9dpyWR44IEHWLxgAVajgef7tGazYYVZ4BONRyB7FEkobPnRFJblcNFFF6CqCtVakXq9TibTQqNhccstt3D55ZdjWQ6TuRx9fX109/TguS6uZRH70Z18bt0c/uaTH6VSLWMYGpVKhf2HjxCLxZg3bx4AxWKRlpYWxo/s55bvf4/3/duHQAmJ46Smm+CLX52/zxW8AvjPoADubD/n1wUPp/d9uu+fdL7jwwBIs8Na6tP63MCvZcA9k1UEXQjwGjxwz10cP3KYwoG7UDWBZujEM91kst08/Ohu1qzbSMMX9M5ehBlNcWjfcXxHMLhkPu+//j1c9bIr0XWTFctX88i2XfT1zmfHE/ez/uLVSL6GazVwrDxpw+SOO79LUh9jwWAHmVQMlAaWU6I2VSQe02k4IEXn8bN79zN/+fNYvnAlrmTywEOPs2DRUq57xztZt2Y1fn4Xb3rDCvygyoEjDQw1wuxMFUtNYxoKudERrIZHNNqKpJiMT5ziroeGuWPzfhKxTmKqyn996fP89O5f0tfewnM2XkJ7Zxuu8Jrw8QAhlN/om55rTDzpXp3192+SdHzq+c4eE6fZ4J8uKAuCs2psn4Fv/9R9/hACzv8Ne+qjejaXjXSO8PKcj7f/9DHJufYXv8OwUdO03+qG/T+ReT2X/W9nXn+ba/6xZl4DXyCrEooGra0tGEKhXq7SM7iAaDSGEBKe5yOEhGlGQ0fCriILiQ0XXcySpStZvf58JvMl5s3uZWJ8EgLBihXLWbBgHt/61jepliwuvPBCWrJZ5s6bi+979Pb1EDMSdHd1UatWuPkb32BwYA7dnT2UqyVOnDhBuVTjyhddyYEDBwl8C/nUo6iywEt0U61WUTUVSQ4nddPQCfxQ7kY0iQckIfADf+alKKsK/rx2ggvnIJ2YQly6kOqfr8O/Zj3FSxcgr56D2hHj5OQkI9NTtLa0MDY+ga7HQBAy1MoSuiaj6UqoY6mE2VXRzHg9sXs3s2b1omoqjusRBPDA1gdDGZueHuLxKC3pLB0dnTOstz5BU5M0rGfVDYN6rY4sKRSLZRLxGLphkJ+exjQMBBCLxZp1n25TvseGAIaHxxgZHsXQYyiyQkd7O+lUmpaWNjKZLD+/++c8vuNx1q9fj6pqeJ6HbdvYDZs9T+xj6PgJ+vv6qVYrRKIqW7c+hKKoxKIRDNMg3ZIJAw+rgYSPqqjgw8jwyEwdr+d4+EFAV1cXsqKEiwiygqoFGIZKZ2cbiWQUWYVKtUAQSESjEXw/wLZtRBPed/fdv2TTffczd+5c4rEEiqLiun6TtEgKmWQVlY6ODkZGRkimwqAprCmlOTYkVFUnnoig6yqGaWBEIySSaYSQUCUoTk8xlcvR1t6GLyCeSiFQsBo2iXgCScjE4wmOHztOMpkO9UQVBVVVGRkZmak5Hho6OVOfpMjyzNhMJBPoqhbC0u3wPmWzWRLx1IxgebiSLmGaESrVBkKCcrUQEkbVbbSmBm8gPISQqFZqpFNpGo0GiWQcy3I5uP8AHZ0dBEGAphthfbAvuH/TZpYvXopVq3Hy5ElashlUSUNWFHTTQMjg+y6NWpVSpUY8HkMSgnqtDgQzC1fFQonWtlZ0XSMRj1Gr1Th69CiHDh0nm83iug6pVAJNlwGPes3BNOKosk4m3YKqaqFWrRxmYDUtrIs/fPgg8UQcVVGQZY0tWx7AMCJsuPAiFiychyxLOJ7H13+6iVK1xos2rGJuTxsIiXq5jCKr3HXnL4hE4rS0tOL7IEsBY2Pj9M6ahSSDYSr8+9d/AsBlqxcy2NdJqVwGIVBUgSKHyIUjR46Sm8gxq6+PRDzB3r17cR2XtevWsWDBAsZGR4nH4kxP5+ns6iQSSXDq5DCXPOdSorEouq5z883fYenSJWi6gmXVcOwGpq5hWRa23UDTwmdd+B52o07VsjF1E9dpMDp6jCBw6e2dg6LKyJKEopl4kTa8RgWx9w7wG4jsYgIhg6giazY7d+5j63176enJ4PoKluOh6BoBDpoBnV1JAhFgROL0zx5E002MiElurMA7rnsvj+7Yw/Ll59E/a5CNFz+HFavXceVLX8qq1SsZGxtl3bqVVIt5dEUilukgkc6wfefjPPDgA6RSab7whZsYOr6X9evX0N3dwdDQMQxDI9OSQtNk/vL1r2d4eIRLJZOJrduYbMsQeC6qLFEpFUgmYthWnYgRYXIqD4REMbpu4HourucxkZugq6MT17Wx7QaqqlKvN1BVjUbdwXaaiyGNBr4PhhEhkYjh+R6bN2/CNA1kWWL16lVomk5bZyee51Kt10I0iWlSKExhtoTM5Hu2jTM2NkKmJUm5XKC7u4exsTFUVWdqMk+lUuOR7Y+iNJ+PWq1GLBoln8/jHjtBquEw7wufJJeb4I4776BWq9LfP4tUpgXDMIjFYggR6nPquk6uVGDjC69AMkycIECWVCQkRCARPI2X+dTs25Oc1WfoO5ydUXu6787OsJ3r2JnPqUS4Nf/7bNKbcwXIzR0RQiaQNQIh43gwd+58sq3d1MgwPl2iVLNIpeLsP3SAjs52WhIFCvnj9M7KYNVz/OenP8r8wXYWrVnK4Jy5pNPt5PNlEDB3/ix0KSASi7D1/kf55V3385IrLqFaOUp16AC5U3tYsqCVlpYEumlSt6tU6lUMJCRc6g2HRGYO85dsoHfWStSozo2f/zxIMpdvvJRtD9zHiiUL2XBeK+lkHUlN8qkb7+Kb37qDSzcOUsXF0EwefegJBgcX0vAsynYBv1FFGG0cGa7wgue/gr//u7+nd3YvJ4eHyY0Oc/4F69ENHSQQEiAJJOnpFwFOkyadK4v66+zX7fN0Y+z0mDi9IHFupuPfnDl9KrnUs237/xP2O828Pvk8v2n/P4TM65+C19/Cnk3w6h8fJiiUEanEsz7XGfvDC141XcN2bFRFoKkqLYkEWzbfT2ffPJLJFJIU1mhC+OJ0XQ+wKRdDbcJsazuyYlCq1Bk/dZQVK87jrjt/zi9/+QsGBvpBBMyfu5AtW7YyMZmjp7eLeDxGJBrhF3fdQ39/Hx0dbUQiJp2d3Rh6hFgigm07LFq4GEWWiMWj6JpAnHw4lF1p6UdRFWRJxnbClfbAcxFSqG/pBQG+HzJPnn74Z1YLCSjjMDU3gT6/h7LV4NChw6iqRrFQZN++neQmpkinWtBUBcd1cNwg1EBVFBKJGLIicN1QQ1HTVISQqVQqqJpKOpVukrUIfAG+F3D48BGGh0+xcuUKFEXG0EzyhTzxRCJsT7mM67lNMiYV13UxDBPP8zFMg6hp8qMf/YjHdzzOqVMnMU2DbDbbnETCDKBjO2iazpYtD5BKZojHkmENEj7lUpl0OsPIyCiPbH+E7q5uFi9ZhNWwwiClXqNYKNKwbHbtfILu7l4mc+PEEybxWArTNDl27BjxRILRsVEi0SiRaARNkVDk8Lc26nVMw8QwDI4fH0JWZGQpJPXxvFArV0h2KJ0jCcrlIrbdwPcdLMvDdUPtUtMMiYkUReHYsSHi8QTdXT1Eo9GZlV4hBPVGHd8PQumiJpW9rmsISTSDWwXXDXVHZVnG0DWEFGpfqrqO67hIsgKei91oEDFNIqYZZnpUFd8Pa9I81wvrN3Udx3aJRKJN+ZfQoctms8Tjcfbs2UNPd28zWy41NWdlVE3FD0JYXH56GsMwUJWwvYVCmUJhGsM0qNfrTE9PY1s2iqqDCDh58hiuF2BbLo1GI3xW7TpBAMlkGkWWEYBpmuTzhRDyl4yH0GEh8Hwfy3Zoa8kyncuxa9dOtj/+KBduuBDXDjCjJsgCWZEBn1q1Rq1uEYmYKIrCkcOHZmCEuq6RSKTwfT+UOslk2LdvHzt27GDRwuWkUil0XSHTkmZycoJSqUAm044sqdTrNoYRwfc9LMtC01Smpqeo1+uoqkpbWyuyLLBsF8OIMHxqlPa2TrKt2Sa5V5RisczNd2ymVK3zgvXLycZ0WlpbGTt5AsOIcuTocbp7esm0ZNFNA9euM3/+QpKpdPjsqtJM8Hrt5RfSmY2TSKSYnsoTiZr4rk+xGMLSu7q7yba0hPXpmoam62TS6XChhnDhobOzk2KpRCqVZsHCxWFdbrXGqVOniESS9Pf34PkOjVoZ17ExDR1F05EVBdf1qFWrfPeWb2NoCt2z+nEdF1WV2LlzG8lEgkxLN+MTo8Qi0TAYl2U8zYR4K9LwE3B4M8TbIR7DDyxS8S5Gh+ssXtzNZz//JeYvXIRu6lhWHUUJqNfyVCpVVCXUvJalcOHga1+5mfMv3MAHPvCvDAzOQVd1qqUCV179cvbseYLZA31k0in2793N6PAp2lsz7Np/DEVRufOuO9n9xG5mzx7gta95PSMnDxKJmmi6jqoo7Nz5OLNmzcL3AyrVMl2dXUj/eiMPDR1D62gjlUyQTMaRZUHgu5iGQbVaI5FIIzUXf4LAxydciMq2Zgm8EM7uBy6aHkL1fT9AkXU0TabeqFKv17n11p+ydOnyEI6u62QyGQzDoKurC9u2cRwXwzBQFJn29g5kSaZarVCrlYm22miaTkIeQFUVFFWQSic4ePAIDz34MO3tHTz44ENkW1pZsWwFa9etJRqNkm1tJZ1Oh7IaO/cgvfgyTrSn2LLlfhYvWUhvby/ZbAuyqoc1uM33URAElEoljHiUts5OZF3H8wNkISMHAikQ+NKTUVu/KVB5tsHr2bDhs6G9vw4Wem6fJ5hBpjyT4DXcLyxcsV0PQ9UJHJdkMkkQ6STbmqK7pxNVlVm6fDl79h9AEyO4XoNyLdS7XrxoAeXSNEoizazeARLxFubNW8SBA3vZ/cSjtLU050tX52e33cmypf3Y9ggP3XkHq1ctBMooqoQRiWJ5darVEn69gaErnBweI5GZQ6EoePDRA8xdPJdVa9fTaDSoloroisxtP/kR5y9vwQ+mqNYFBw57TBemueL5C3BlB6vm0NHaS+AJhBYwmhtC2A6e1sZrX/+PtHf009PZQc2qYrsO9979c176Zy9B0zV8/JCzQJwuqfnVTOav69tnOgaezn7fweuva8efgtc/Ba9/cHZ28PpM7Hc5iM+No/c5TR4efjVDJA6A8/aP4m96BPmlG3/r9objUTyL7UybfnU7V588+Rxh3cG54cc2XrifJxF4ErFYmmg8zejQMbq7u7FcD0fICCkMENUmxNbzZR58eBsdXW0YJpTLI8hSCHdNJBN89atfpVau8bxLL2fbo5t49atfw9JlK1FVEy/wufnmr7PqvPPo6e1GSIK29nb8wAXhYNsKkuIyOTlCS6YNTTU5ceIgZm4nwrVxIlkUVUdVVfBsPLsKsgIirFwkCHAcC1WVmtCVAMexUWQZzwvQtSghylUiZkZJRmNUq2V6ero4fuwU+/cdwIjozF+4gLb2DmKxCL5fJWIaTObyEPiYZpj181yZQr6AIiskk8nw3ksCSVbwPYHjeAwMzmHFihXhJCQHCFUlFo8hIahUKkzn80RiMWQh4zg2p04O0dqWQVYElXIJz1cxzCjLlixn2ZJlZFtb+f/Ye/MoO87zvPNXVV/td7+39w3daBAAAZIgwF2WRFGWrEObSmTLkSXb45NYGTu2Y8f2ZJyZ4zNnxnG8ZJLYx1syXhTL8hZJ1kJKtFZaFCHuO0EQIHY00Pty91v7N398t5sNEKBIWbbs2B9PHzZu31tVt+qrr97nfd73eY4ef4lSpUKn0yZOM/xckUzCzMxOBocGyZdtCiWfgaEauWKOXMHDyztMTe4kl8tj2Ra2bRJFAa7nYAmTSrnK3r17+cIXvkS93mBqcpp8IY/v57Asi7Nnz9FptRgbHSWLE5aW1zCEYGFxEUMo4GKYgoGBATQdHNek3WliWZYSUkp1DN2m1w2pb7RJEx3HzpNzXR595BGmp3Zg2TYSSZqlXHPNLnZMT1Eo5tB0SZYlmLZA06HTbmOaAtsxaTYb5ArKCxepPGUNXSNJQoKog+OYGEIFw7ph9HtDdQxNR9MFXq4AhiAFUqmCxixLtlhtry8gFYUBR188Qrk6iJ/PcezYS1iWTa8T8uUvPcjBmw6RygzTsgjCHqalEyV9lWhhYjkeYRjRDXs4no2OTqGg2Hd0yBdL5Esl5s6fpVQqUa0MUiqW8TyXfCHfZ1QtZRWkSyxb9IMaxd7ESYhhqCSLoZsYhknQXqNQ8On1ujzy2JM4foFrbziIaUriRJLFGYYG66srRFHGjukxDB0MKSHNaDZaVKo1pGaovmY9xdAywjAgTjIO3nQbe/fOUKoWKJQLgMbLLx2nlC/zJ3/2EaanJymW8mRZjBCCF198kcHBClmaUq1UFWDuhqSJxLLz9IKA2Wt2MjhcxfFMcnmfpZVlRoeH+J2Pf45mp8c7bz3Ajbt3YgmDXKGEads0mg3KpQLlUoEoDLg4v8Dw8BDnz58lSUNKxRK/+oefBODbb7yW63ZdQ5ZKgp7qaU4Ti7NnzjI5OYZl6XS6HZ566lnmLy4yu2sHCwsXqdbKaIak02tiuyb5UkWtOTLG91xMoVMuFhkdHePkyVMMDgyjGSaFYpU4kaDZ/fJ3k3Yz5Nix0+yYnaVQyKMhOHHiLJNTuxkZmaDRWO7bRJlIGdPrtXBsE2E6GJUxMGzkS/eTtdfpFWbwCjmu2T2AZeZ5+9vvpNfeoFr0SYOIpx59hg//tz/l4pkVPv+5Bzhw3XVUh0qYdsYd3/Z2DhzcT7Fi0mrPY5gx3/bmOyjXEq7ZM07QbfLCC8/zY//qZ7h2700IUWZ8pES7vs6DDz3E0ePH8FyPD7zv+6iVqwjhkKbwUz/109x332f5ru+6hwcOf4Xbbr8Z9/njmJ96AHn7QfbdeAgv76IZBq6XJwgzzpydw/OLRFGPTqeN73nILMMSArJMmWYY9EXrLJDaljq2ZqR0ux2EYbK0sMzy4hKWaVCuFBGGhWlYVMp5GvU1Fi4ucnbuPJ7j9H2zQdM1pKZRKvgY+RZxkmLKUZIko77eQEcwMDjE3n37GRodRSK58cYDlMsl5ufnGR8fxbQEjUYdGScMnjjHdz/8GUStym23v5nB4RFs30U40MsgkcoXu1NfZ2NlkSNPP8WO3buU1VSaYvXXMqlJsv49vvVc1/q2NGhsj1YviQ40/ZJY5+sBye2loJfHSFeKmbaXNm7+Lf2jTyGfO4Zx4Nqt2GMz6S0lfdbwlZgky5Q4oqpQkWhZgtAypEzIdEh0KFUKjE7sYMfMfjRRoBsYCKvA8OBewm6ISUivsc7qcoMnnngekaRE3QVWls5QLo9y5uwCD37tYXJ5nZw/RGNtle+8+0b+8tO/hqd1ueW2KRA98gUfiOi0VjCSNsQ9yCzWWgaFwf3E5hS//+H7+ef/68+ytLRAKT/IFz73ADoayxdP8eY7bqTqz5MrFtH0gD27bb7rXQdwzRp53SIJe7h5kzML55B6mSSp8szzaxy85W0MjI6SCIlfyiE0yf/3O7/Jm958MzfedgiEqh7T0TGlQYJ8VTLh8gTD9p9Myq05wWXX78oJBf1V8eMrv2eXzJFX9mlsvU9VTdG/3l+/7e3q8fjV3/utGH+T+7086kcq0HpV4HqFz2z9bDufl7Q19rf2qn39dY9927ohhPhH8Hr5+NuZsK/NWKaf/jLAXwu8fvOOCd7I1HvNsg363bB9uwAhBOValce/dph6vclAbQBhO0RJhGZCqklIEyzLYmR0CMexVTlcHFDwK9iWxQc/+EF+7ud+jre/7S7iOOamO27huSNHmJubY2hgAEvX2b1zlvMXz1EoFBTTaLv80n/4VbLUoFQqM7VjjK8dPswv/vtf5gMf+H5GRytkZx9GlynmwAS6EOiGQGrK1kQi+2qwom9vIvvMo77VL6ke6OrfruuiActLSyRJSpImtNptxkenuPHGG8nSlMHBKsePv8Tq6hLDI0OYho0pXHw/j64JMimQmUku72CagjRLEYYBmlIeJdV58ciLDFRrCEMDmdBpN3F8XzHEaYLjWJQrZSzHQhg67XaLyamJvgiTEjUyTQvPc1lZWaJYLCiV23IJ21ZAMJ8v9JUeJUkSY5oGvW4H07JYX19X/YuahqHrFAslCsU8Rv/BsqmEa/RLoDcZgemZGTrdHmiScrWM7+col0uMjo2SZRkLiwvk8j5xEjM0WEO5zkkymZDFEbqWIdMY17FIk5gw6GKYJmEQIPtlszk/RxCGWKZgx44d9IJAiRIlaT+rq6xqoA/IhN5nQg1cVwlBaZpGGIXKCza7lJ2QUuL0fUd13SBNU7Is21Ke3VSC3m7zkKaq95Y+INR1nUxKRP84oigiV8hvlfqViiVarTaNep3hsRrFYpEsy2i1WjiOq4JsTeuLN2UkSYznuWRpSpbFRHGPTKZYtgrGs0xSrZW32FspM1ZXlvF8TwXYWYbtOKBprK6u4rkucRSRZRobG3WCXkQ+VyCOU5579gUqtTJhFKP3S3X37t1Lu1nnyJEXefArh7ntttvJ0oRiqYTnFYiTBE0zMAyLTEKpUiUDzp49Sy6XI01i8n3LnVK5jOf5dDstTMvqC0MZWKZFtVJheGSSIIhYWlrFdTyKxTIPfPkBlpZW2DE1g6ELjh59iWq1gu/7CAuCoIthqL5n23aQUsN1XGSW8Zt/dh+dMOI7bjvAeLVALueTphpf+OIXmdk5w8joEP34GNvMsTC/wKOPPsbs7Cy+7/GrH/4UAD90z9vZOTGCEIJGo0GSJORyOfyci5RpX2TMxPcKfO3wIwhh8NxzzzO1Y3qrlcKxXaQm6XY6SjG7f48tLS3ieS4PPvgAO3ZMEoQ9Wq0GtmUyP7/ISy+9SNDroaFz5513IgyJZbuYlk2xWCZXyCvxMqBQGiCKFWtvWTZrK0uEQQdNxkSahzm8E1ZOYR37IuvNLu7wbgxhkWQxfs7DMA0MYTIzO8vtt72Z/dcfYH5hiTjJmJqeYnV1lbmXT7FjaoKXjx3FL+RwPIeQFFOzEIaD0C0WFhZ57/e8h7ve9lakjHB9gev6/PS//bfEaULQC7n7nf+UOAo4d26OwcFh3vGO7+DAjYeYmJhiaHgc2/RI/8N/JS4XGD64n0xmGEIHqfrdkyShVqtxfu48EonreViOTS8IcByXOEmIkxghLHRN34zG+8BIgbiV1XWyNKNQKHLt3msplyvoWsa5M+e4OHeBkeFBTEOnVKgxOT2JZZoEvYAvfuEL6IaB63ogJaLQIo5iXnhsgR1TO2i12szPLzA2NkSnq7xlbVvHtnWajTUM4VCvb9Bqt2i1W1SX19GDiMH/+2e5593v5smnnmJyapxSuUS9vo7rlkDq6BI82+Pw4a8xMjLO7v17MU1zS/n+9TAnV4sRrpawvjpoufQ9V3rtaozfFnv7m38M5+bR333XJSB4O9jZBNCbwEb9/+p+pEI3QNNJdShWhxic2IG0cqysNfBLE1QGdrLRSAiTiEO3HGBspIqUXb76lQf47Cc/x8qFBb73n97N/mvz/MLP/zuOPPcIjmizZ2eZbmOVkcnJfowQYQlJ1OtgahLHtInQOXk+4NjJNro9Ti/RabYb3HH7bTz66OPc8+7vZHioiutITp95mfFakYvz80r8T9cwNINOJyChgm6VWNkIiBKXT3zqKwhR5Ht/6EcYm74WzSzguVVkLHnfd7+XjaUVfuU//xJePkeQRKD3z3G/muuSq3+Z7srl12771bo8+XBlxvS15gVb1287aNkUWrz8Gn+zx7cKvF5enfD3cWw/7s315eutA290u/8IXq8w/hG8XnEvr3srrwletW3ZHl1HosBgwXF54K8eZO+1+8gVSwRhF2FbtLttyrkcFy7OoaGhG1BvbBCGEZ5ToFgoous6jXqdrA+GqyM1LCG4eOECYbdLrVJmfu4CY1PjZJnEMm2effZ5PLfAnj3X0u11EaZk1+wst93yJtI0wzBiktOHMXWJXhoj0wzCKMa0FFjVdQ3fy2359WVZytLyIo7dZ+T6C2ov6GEYBoYpSKKYo0eOksQxmYRP3/tp8l6BOI4ZnxjrB6I2O3ZMsV5fwbYdTNNGygxJShjGzM8vYZoauVxelcf2S5cBet2Aj//FxxkfHUOSoWkZ+byPREPXNbI0xXEc5VUpDNJYqQb3ej3qGxvk8gWEYSGEQavVZGhggI31dY6/fJyh4X5vo7D7wFUpEaZprEReNG0rODeFoN1u0+318DwfJEgyHMcmipS3ahyHyhMzDHFsh8HBQYQwWd9Qdhh+32fUsiwajQ2Wl5cZHhnCsiySOMI0TaxNERWZ0eu2iaOIOI6IwpAkjrEcT6nbui5SwslTJ3n55ZeZnlbKtcIUHD16lFzOx/P8fmZ+UwxCsSNxHG+JQwlDqERB/0GZZindbhfLtlUpoRD0uqq82DAMgjAgCiNM0wKUmvDy8pLy3e0DWt3Qt1QdJRCGIWQqex30eoyMjGAIgZQZtqX6rIVhMLNzBt2Qqs8UjQtzF6lWXrF3UYxHhmVb6Lqu9mlq6IaugCuQZRorKyu8+OLzjIwMY5kmaaqEuYQp+mXTqrLAEII4TrAsG9uysUybYrFEs9nGsh2CXsji4iJTOyY5e+4cg0PDDI8MUyjk0DRoNloIYVMul1lcVP3CoIOucrJJkiJMU53Dvs9yLqf6UpM4RkrIMkkYRyRRiG2bJGkKSMplZfuUSYO5uTmOHz/O7Owspmlx/PhxxkYnyFLJkf1A3asAACAASURBVBeOcMsttyCEIOd7dIMO+XyelZUVPN/HMASddocgCHBsi/fddRtv3T3GO77tViqVMsvLS3z1qw+zsrxMIZ+jWCzgeg6aBnEEZ86cYW1tDcsyGRwc5Effcyfve8shbr3xOjRNzSXDEOTzeYRh0Gw1OHr0KOVymYWFZQr5Es888wy33HIz3W6P6ZkZZJaRSYiiGCGUL3Oz2aJYKG6t2EHQY2JyDN/3ME3Rt1NKAIMdOyZxHAfbVv6lURzgejnOnj2nbGQ2A1U0kkwpjxuGgcwyioU8lqV67U3bRzcMtMIQ0qtizj1BdOoRWkYRvBK60c+ZAIYQCF3Npc75F7DiOhU3xUmbDHk6x770h3hrRyiHF9A3TqMPz4K0ME2bnJ9jeHiIVquu1i6p1vRnn32Or331Ud7/vT/AtXsOcPttd2AJnV27rqHb6dJqtlhfW6fXC1harjMSJLj/7U/oHNyL7iphNqR6dqyurlKrVun1ehQKBXShMzAwQCYlnq80DKI44tjx44yPT/Z7WuWWl61hCLJMcuTIi0RhxOjICLqm/Jrr9Q0eeeQx6usbgFKvX19rYPsOrWaT9dVVpqeniaJYVVn4OYx8gyiK6Kx41GpVzp07z9GjL3HN7C6Gh0fIpOT0qVO0mi1816NcGSQIe7iui23b1E7OEf/z72PyHW+jF3TZu3cPQdgjSkOVJHFLZGmiKjzSlI31DUbHxvFLuW1rxV8PvG7/wNVAy9XG1wOv2z9/CXi99wHFuL37bVvfA7ji+zdViNVrV9+vKUw0QydJwTBteikUq4NsbGzgeYPM7NzHRquHJiSmpbG8sMbyyhzT0+PsvWYne3YPs7jwNFG4QrVchixiYizHzqkqli6pDA5RLBVYW10ijbuQpeQ8H1Kohxkvnw6Z3HULDz9xgsnpGfycw8NffZg//+j/4J3f8Q50MlqNdb70pc+T9gLmLpzDd10KOZ96vc380jp/8JHPoRke3UDj/IV1Lsw3OHV6getuuQPh5KnXA1aX65w+eYqFC+cZHxvlO+55J9JQ1QCapiTJNC4Fr5eXd/9Ng9ftSYZLXr1MVfhvCmR+q8HrNwPsfavG9uN+40Kzr2+73yh4/XurNvx6xt/OhHltld7oX/yfAFgf+qVXPrFNZe21JsSVMpZXe/+lsvLpa3z3b05mS2qvLIJb+00z0qDDs08+z5EXjvGe97wXwxEESUSz3aCWL3LhwnkqlRJJknH+/AU67R5TY7OcO3OW2267jeWlJT5//19y8OBBjp85wZ1v+zZsy+RrDx3mwrk5Dj/0KD/zcz/Lgw8+xHvf+1563ZBSqczy8iq5gsdjT3yFqYlxLCOHlBqzszVaz3ycUrqGO3EDUrfQhInMEoQO3V5PMZV9QYMkVfYymm4iM/oMW0aSRIqdwUKmGUkYkkQxjzz2GEEYcOP+A4Ck1W6RZTG5nIeug5MXDA2OkqYGc3PnqQ5UsB2fhw8/xcFDNyiGT5NbmeQsyzDQOXr0Ja69dh/tdotut4Xnu7iFEkvzC/iuh+d5CMuk1WkT9RLuu+/T3H33u1Qg7rqkqSQIQ0xhkoQRuqaxvrFOdXCQKI5U328UUSjkUUyETr1ex/dcsizDNE3OnDlDrVYlny8QxQmrq6t0u10mJye3LFUaG3UGBgeUbYGuo6kiPTISTNPcNg8z0iwlCALq9QbDw8OYpiCKwr5AVooutb6giugv+KpUN5Fqrtm2Q6PR4uxZZb2Sy+dYW1sjiWOGBgaZm5tjbW2NA4cO9rO6sn8t+wqHmr7FoM7PzzM4OEgQBnieRxypqoA4jonjuA+UJVmWKs9Ux0NKxeQmScrhw4cZHh5i165d1OsblMslDMOg3evi2Aqc2rZFt9vF7JemG0IniZUt0eL8AqurK+zduxfTMchSqNebigEt5JSKqpoRpGnSv9eUZ6xfVEyPYehkSUp9o00cJTzx9OPcddddNFstcrkctmVhGAaLi4s4jkepVGJ1dYVisYRpmurcJQnlcpWvHX6EubnzDA4Ncvvtt5NzbTIklmOTpapEMktTNjYa5HMVms0m+YJLEHT4+Mc/xXXX7WPfvn0UK2WCQPWkHjt6lF2zsximjanrLMzPE8Yhg0NDoGtsLK+gC0GxXFIMbBQR9AI+9Ad/wk/+5E9Sr/f7StOETrdDzstz4sTLHLjxAL1eF9u2mZ+/QJRFTIyrqoNMwsa66tNMkoTZmZktsa719TUGBgdot5vYTg7TEmiaxBAKsKRpip5ZPPf88+zZfQ1xotYCyzK5cOHCFlgBmJ9foNfrUSqVOH36NJVKhQtzF5jZOcvg4BAPfuVBbr31Vp57/jluueVmbMuk3W6Tz+eRRGR99t4wBK1WB8u2ee7pJ5iamqJSrdKo13Fdl14QMDg4QppF6JpBs9nj/s/ez+w1U9x86DbiNCYMA/yc109uGWBI4ijBtT3CICTstahUC9Q31jCETZomxFGE4/pkmcHjX76P26bziMmD6F4BOf+C0gLQVKuHjJVavGa6oEEYBAS9kDAFpzKOm/MxgnW0sAm73o6cfjNCV2C5vrHG3LnzfPrTn+aDP/yjBEGEMC0M0yJX6IuOEaP1KxY2q3juu+8+3vmuf0L7P/4G/uPP4t99JxmSTFOCXTJTLTCappJGWSoxLVVRkfWDxShSLR+mZdFth7Ta6r4whUmr1cLP+WRZ2l8bNHrdLrqmsbq6Qr2xQd4r9csaVSXIyMgkma5z/2c+i2Na7N6zm2qthqbrpKQIO8XQdbTEJo5T0gzCKCJnu9ieQ6fbwfd80jhhcWEBhMHwyCC9Xpfw3AUGnzjCmQ//OifOnOLaa/dQGSggLJM4S0HqCEMpvKdZjGWZtBobjIyMEKKqPsIw3Koq2f6cvvJ4JW65NEC9Mni95Nl/GTu6fVwpYN8sFb4aiEg+qLxnzT/4xasd7CX7fmVf8oqvb/5bajoy05C60beWk4hUoqGeCRfPncS3Y86feZnR4Rnq9ZfRsg6N1SXC7jprq0fJe2Mkqc/c+QscODCLoEXO8uiGKY3mGo6dohETdEMKXpkkyXjw6dMsdcvc854PMrPnFoJOl1/9lV/k3/9fP49hW+jC5Py5OX7kh38YkhTXjKj4PX70X/4z4mAD2/U5dW6VT33pJY4fP87E+BT33HMP+/ZdT7U2SCOOyFKTs2cusn/fAdqtBv/bT/8o933mU4zuGCURmiIUpCoQ1yWXgNerXddL5sFrXIMrX/tX97i+Mk9eiRO3X6tNVeFX7fs15tfX+w7bt/9GPvNa+3qt8a1UOr78Hvv7hOW2j39wasOvZ/xdZV43b8zLywmuBF5fa1z976+V6fkmnZPLFsMMQNfwci6DI8N88hOf5JaDNyF0pbBrmiY6UCzmQEtZX1tX2WQvz4njp3jp6FEmJyexLYu/vP9+XnzxRfL5HHt27wKZsnvvbhaXVrj/c5/n/LlFPvD+D/CH//3DeJ6H7/ssLS2wY3qaiclhbMtkeXGNJEmpVDyS5WPk9ASrPI5uOGhoCnyGAcKy0XXR72Xd7O3pl0VrmwI7IGVGFAUIYSOzlFajRRAEjIwMMzQ0hO84LC4t4HueEtvJMmUrYxhsrLfIMoOBgYG+tYJGqVTFsgRZv2S43W6jIVlZWcFyBEPDw8RJjON62K6D4zoEYYxju9x3771IKSkUiriez4njp5mfX2ByapJKpaQsZpKEVrujyhKzjPX1dTY26gwODaHrBoahvpMqn5OsrCi1526nhWVZ6JpGp92mWCxy8eJFJeAzOEgu59PtdikWS6ytrfGZz3yOG244gGkJlpYWOXP2NKVSWVnpbP2nerB0XccQOsKw8DyfNEmJIiU8opRkhVJaVnQpWaZhWkrIqBco31tkxsjIqBJ0ImN5aRlhmuTzecIwZGxsDF0IBRrNvr+qrkppN1u9kiQhipUSbxRGOI6zVR4MlyowSimVWu82KXld1xkbG2NgYGCLfe10OziO0++9pQ/kNcXkGDqGrqvzkEEcJ31W0CYIugjTJOhFdPqKvZtrysbaOmtr66pnUoM0SWm3Onj5Qj9ol8RhTK8XcOb0GW6+9VZs22F9bZ1ioajUVIOQEydOMjo6ihAGnY4Cdbqus7a2RqlcJE0zPNdjZmaGXdfMYpkmYa+DRCJMAYZOkqX9ssuML33xy8zMzODnXExLJ5fLMz05hRCGssMp+GRJQrlUwLFMmu0uvU6XcrHE3IU5dT6RLM0vki8UVPl23+5ICMHoyDi6Aa12s79eZNiOiWkKqtUysLl+piwvr9BstanVBknTDF3TSJKE8Ylx8vkcnXYb27J5/PEn2Dm7E8Mw6HY7FEoFQKKLfimbpilGUsq+uJqO4zh0u10Mw8RxLVzHIQwjQKnZdtpKfO7zn/8CN910M+sbG0xOjJPzPcYnRjEtpcpdKioGXNd1er0uQdAhn89hGII0lTRbbRYWFxgbHibn5zB0nUq5gm07RGHMxYsXabUaFAoF2q0Ob3rTm8jnXL74hS/TajaYnp5Sa1SWIYRNGDaRWYKhKb/ip558hrGxcZIsw3EsbMtkY2MNx3aQCKZ2H2AttclpPbSwhV4ZJ82PInNDiMooWX6ErDSNLI6iF4YR1THMygyF0d1Iq0CjJ3nomZeZ3rsP/eLTyPnnWZFF/FIVXTPodnv88i//ChfnVtjYaCCBwaEBbNei12tTKOVJsgRhCaIkIpUpjudQthxK/+/vkl5/DZnnsFFvkMsXkDJV6xbKyswUJlq/fUHTlOCYlJJ6vU6+UOiLAAm6nS4f+cgfMzU1xUOHH2Lv3r14rkfQC7j33k+zf98+DMOgWCxy+PAjaLrJxMQko2ODCFNn/uJ8n/nW0CR02h2KxRJnz56lXKsgdBtDGsydP4vt2GjCYH5+nmrZV4mrJOb48ePkfI8oCCnVqmRZiiEMck8fJfq+d3Pv4hz/x//+77j11pupDVRAk5ybm6NQKJHGIYW8T6/X5ulnn2b/dftIZYxhmlvPYSHEpUHs62Ber8agfb1g/2pM69U+f7XPbPq8Gv/krleO7nWwPNtfvjxwz/rfQ5KhaxKNDI0MR7NIicj0CMd3QZromkehNszjTz/GmbPnyTtVzpy+wNnT5xgbHqZWGcH1XfIliyCo41o2epqRRD16QYOBgRroJp4/SKuT8shT57ntrnuY2bOf9VaHUrHCS0eOY+kx8wuLuF6ec+cucvgrj2OKPAduPoRrwcW5c6yvr1MojxFlLiI3wbGXT2OYHvVWj9XVOtffcCOlWpX77v0sf/TfP0LQ6/H5z99PkHX4iZ/6MTXXTYM4TbZU63UuTWK8HvD6WuPK1/HSf2+30bkSQ67+dnVLnK/Hln4jsf03e3ubn7sae/03Pf6+srmXj38UbLrC+LsOXjeDyO2vX7KFNwBedV3fCr7/NsBrHweovW3euLpGK+6g64Ibr7uRX/p/fpHr9u3Htk081yZJUjQ95fjxl5iZmSGfKzI8NEYxX2ZkeIQHHniA6elphoeG8DyPzkaTVrPO7K4ZPv6JT+B6Prv27Gdtqckdt38bkxNTPPX0E6RpwvMvPMsdd7wJxzUoFgrITOerX32Ir371C2yceoJrp8dxKhNkmUYYBLi2Sa/TwnZzGLogTbOtc5Omaf/XfmY/yxBCRzeUsFMSJbQayrsvny8wNzeHY5t0Om1suy8ylGXMzV1gfGIG1yngOAWQGqZpIqXBc8++yPjESN8jUpWBhVFEuVIBQ3m4SqkEnLS+l50hTDQ0HnvkMVqtNvv3X4dmGJSLAziOw8TEOJoBkNFoKu9Oz/ewTYswCBCmIIzjfmlltmUZ8cLzLzI2PoFl2bRbDeI4JpfLkc/nt0ST8kVlZaBr2pYZveu67N1zPaYpAInn2QwM1DCEsa2fRfV7pmlKFIYsLS8hMx1DN+gFPWWnxGbCQJCkKaZlQ9+vsd5o4zgCz/PQACFMLMvul0nqlCsVPNdFk1L1IPo5pKYhhGKWXddR5dr944niiDRLKZfKr/QcSgAdXTdU32Cfec4yCZpEQ6PZbOL7vprvUomzhWHI4cOHmZiY6O9HEkaRAv99G4xWu6VsijSdMOqhawaO7WFZJgsL80xOjZNlqoSqUCiSpilHj75AoZinUq6h6xph1OuDewPXzRHFEt0wlB+tut0p5POUShUMw+DixXlGR8ZYXFwijmKmp2dwHFUS/dJLxwiCgIGBAarVKpYtyLKMamWAXC6HZSmlYz1NOHv2DANDQ6DrNJpNdN3ANDQGBoaUarRl0Gm38H2fuBeQy/nUGxsUigWErmFoklajjl8ok8QxpmlSG6iRy/kYpsH40ChSg2JZMXDNZpNOp4Oh6+RyHkHQIZfz6HSbxHFIs9nkxaMvEkXhVg9prVajVKrxkY/8Cc888yyHDh3C933CoEejUefUyVOMDI9QLJWI45i/+IuP43kutcEq3W5H2aDoBmEY921vQs6dP4NlWui6QaPRJI4T8nkPIQRra2s4jkOvF2A7LnGc8Na3vA3PdZmYnOizoC62bfLSS8eYnZ3ZUqc1DAMpMwp5jzTNSLMMx3HJgFKpRCmfV6JM7Q6maZEkGaViGdM2KZWKGIZgdXW9PwcTKsUS62srlEoFms0GtmVjGCZJ1iTne8jMQEOQK5YwDBPTdkjjHm7fskhDp97o4vo5ytUqeGVC4WE4PrppowsbKXSkrgTLOu0WGorhjFOdKEr48z//H8hUcvDgIXLFKhtYeHqMd+6vMLwyMj9OIVeiVhtkoDbJ93zP9/Lpez+J7diMTQzRCzqcP3+GoaEB4jik1+v0GbWM3Asn0Z97iey6XTQaDQYGh9V9aqgec10z+kki+gIzfUannxT2PFWhkEmJoZmKmRQGO3fuZM/uPZimSbfXIwwCdl+zG8e2iaIAKSXX7NlPoVgGDXpBG9c18fwcrpPHtR0WFhbYuXMnH/3oRxkeGWF4fIQoDICUQl61x5iWjWmbZHETTU9xXJtqpcLFC3OUigVsz2dldQVfA/upo7R+4ofYddMh/pfv/wFmZ2fQjBQ0ycDgMGmSkXNt6o01Op02li1odxp4vochrC0WJo7jS/sGv4Xg9XKm7W8SvF4OIjJNR9dkvw4owZApuozRogzbl0gjpBdHnDh+kev2HUL6OqPjo+zaeR3X7XkrE0M3YFCiUT/JzOxehClIkg62DUG3hyMzwm6T4ZEB1pt1DOHz6JNH8fI1llYtiqOj5AdrmLaHoVnceP0hjr3wBAcOHaQXpJw7u8C333UP+/cd4tf+669RLjrs2jWN5/r0Injw4SN89oFHiGP4T//5N8jninz3e9/L2uoawhLsnNnFv/qRH+eJJx9nZGyI3/69X0e4QnnDpwmu520xr5fPgb8N8Lo5Hzc1KDY/t93iZlMBeZPIudK1fK1jeKPjf0bwuh34/30Fs//gwOvlk+ZKP1KqXqor/WibUd/rVuN9RcFX9Qlubqev9HGZwtrmRNoEr/q7L12Yt9t3wOtTWLv8e28fl6r9Xar8tv3nG61b3xSt2X7D9L8pmorx0SVo0kZHUij6zMxO8OE//ANmd8xS8oqYvsPp0xeYmdkDWGSZYjwyLeHc/AlWVjYQRo59113LyESVIFaZ0067w2/+2m9x7LnjfPsd72R4qsJ11++l22tx++23snvPNezfvx/XsdnY2ECaAsMWHDx0C1/+whN85y6dkiMxqlOkmkTXMtKkh+8JpCH6ZdZsAaJMSoKghWUJBdIlxHGGMBw2VhfxXRfHdfA8h3arhe+5eF4ew1BMh2WaNBtNds7M0KjXadQ3KNdKpJokyVLiJKFSLvDwI48wPb0DKVMeOnyYl44eZ8/ufcShBhIc2yIM2wo4a5BEKH/OQoHrb7gBP+eRJQmGkTEwUOn3XYIuLEzHRk/ANFQwbLsujWYTTdsEYgXq9Qa+n2NocFD5SQZdvFwRP+cTRgG60EmyiIx0qwRW9bnGZFnf1oAQx7EwdIM0A8MwlV2FrmyBOm31GUMXJHFG2IupVCr9PuKAOI6wbI1e0MKyPeI4wRAmWZKSRjGWEBimqfpUMyVHqJh+id4vGxPCJIxjXN/DsHTqGy3Vz2kZaLokjnugJXQ7LXy/iIamSpYwVA+iYaFpylYkjlUJo67rrK+v06y3sE0HUyhV2VqtpsSfNOi0WgwNDOC7HmmcEocR0lDzyDI06qsrrCwtUSkpldxOJ+TcufPkcjk6nR6LyyuMjE4QByHLSysUi0VOnjrF4sUlfDdPpVbBsmzOnZ9Tgbumeq991wWZMXf+PJbt4OU8JbRj6KRZQrGggKVtWayv1lmYX6JWK6NrUCoVGRisgp5hmgZhHLO22ubpJx9ndLiEY8aYWoLu5nD9HL1uSBrF5FyPOAyQekah5KNrEAYhjXoLgEKtguP7+Lk8lmHTaLbp9WL8QglNKrAdJTFBFCEsR5XyagJhCXq9LnGS0Gi0KeRLoGuEUUS1VmNhaZmz584ThDGVgSHy+TyQKkVny8KwTDKp88jDD7NjcoqJ8XHllWvqSA0GasPYjrtlkTV/4SLzFxbYv38P7VaLXD8hkcqUNEswdJNMosStdPB8h/mFCwwNl9A0nU4nIo4zfN/Dtg0WlhYZHBkk0zOyfm/yytIKaZxSKpXI+T7PPPMMWZoRRTG5XJ6VjXXCIFDgc2ODT3z8E0xO7kA3NHzfo95oEEUhaLBeX8f3XJIsxrAEbs5XfeKWTnlwmNGJSQzLwXI8TNtBN3SiKMW2c6rnXxjEcQ/L1jGFhm7YpGj0wgTL8XBcF5mlrK2tsrioKkeEECAzDENDSIMsCTFMVQWhC5dMgzho4DoW3XaHuYsXuWbPLIatYWsg3RJxbhD99IOEUcBy7JCFIW96xzvI9Iw73nI75VqJemONM2dPMj46i2U6RJFiVB3H4Rd+4d/zrkdfRi+X0MaGsRwXYZn9vnEN2e/r3fRA1gBDWGSpVPenMLCEwerKMkLoRFFMJhNmd02rFoW+NVYmmwRhGz/nomk6umETxxmN+hq2JWg1Wwjd5OknnsW2RH+NEZRqFdycsuOqlmpoliQ/2EF4MVpSwnMLNBstli8uMjm9E9N0CIKIIEwwbZdM6nQ7TWrVCtnjz5HaFtkH30+n0+a5Jz9FsWQjXJdmJ6TbCSgVfMx8njAIWLq4iNB0du7ehWZbGJpx9Tjiqo/4K8cHl8ZPV44VXg/4ufz37fYom8e5VT56nwKvmz2vl4/tdjyb7VFqG6/EXq/6Hv1KKvU8V0lnqQmkaRCnGjK1kImuqlpM0DMDWzigCWIjwC4JWkRMTO0kjDqYcoNufQHCLlqWkOk2qa7R6W2gaTqWkyORPkGk89LJFjff/F3MTu9HiIyvfPmLuJbHRtSjUisxNjCGnmp88mN/wM6dNo8+9CBvfsubMb0Cn7r/K3QjC4nD7j038W9+6md4/PHHWV+vMz09A5rgxPmLPPfMs+yanebRRx6g061z97vvptPtYnsephDIVHHPm8Dw8nLyzXH1ePDKMeSmKvDm/xUAfXXsuhUjapfGxfRbGzY/sz2WvRoLe7XxeuLXbwRYvpEe1W8EMF7VIkhX8TCaxvZT9vX2cKVtfasA9WuNqx3TP0jw+vXH1W+CN85MvlqdTW3jtRdy7YY96G+5+RKf18sXjM1F+Y1OtG+kxv2NTurt/m3bHzxXfb9moKHUUUeGh7jlplv41//6p3jL296GJgSVSkX1lvXBTb2+QbFYZH19ld//3T/kS1/4K77rO99FoejR6Yb4BQ/P92i22jz82OPs2r2Hd33nXQRBl/X1VQYHa+RyHouL8zRX64yMDtHrdrFsQZJEvOXNd1BtPIMgIrTLaJpGFIXU63WlkCscQKmxqh430DRJkij10CAIsSxV0hjFEWdOn2RwcFB5Lna7VCtVwjBCQ+P06dMMDQ2xMD/P3Nx5gjDY6uEyTEEQBJw/f55CPs9Dhw9TLpcYGhpGN3RGhkfYtesagiDg937v9zlw4HrCKFA9Wf3+rl7QA6SyVzAF3V6XbqdFJiWO69JqtbGFiTB0hKZx+tRpTp48gW7oFAp5DCEYGBygUMgTJzFLS8vUajWkzGjU66yurtLudvja1w6zc+csQhhbLOPGeoskTgl6IVKCZVmEYYAQOgsLi6xvbFAoKGCIJpFZqgJKQ2yVsrmOsm4xhBL4SuIEiaRQ8Gk1W7iustYRhqEEUtbXqNaqxGmEpmksXLxIu90GTdINemRxTBiEBN1AzWcJrWaDJIu3RKDSNKW+0aBQKGHbDmm6maVUD98kUf3hEgXGoyhCSsn8/DwPPfQQe/bswbRMTp0+xZEXj7Drml0YwlAMm+8TRhFomirH7We8bdvi4tx5fM/DsiyVBdc0nnjiSZaXl9m5cxbLshkdGyOKIgxdKR9nUuK5Pu1Wm3wuT6VWIJMJaZpSLJbotLssLy+j6TqdTpfHH3+ciYkJvL7HbaPR7DOSGt1OTyUtLAfd0DBNiS40VRnQt/pQwZ/O448+yalTJ9i7dyfN5gbr62v4hSq2ZfPE408iTEGhUMDQwTQtet0erqsy+56rbHykpqt5bqg+5tXVVap9MZ0LFy5gCNG/Ly183ydNEpWoMATCNEBCp9PFsiwcx0SYAs9zqFYrjAwPMzBYRTdMysUCplBqzp7nEcUKxB46dCMTY2OcO3cWz/NwPR/LchTzlsTKY1dmDAwMsHvPbmzXxjRtDEP01ZglSZzw4otHGR1RTK2mKUG3UqlEHEWYwsE0HWzbwXEU+z82NoqUGUEQKIsWKcl5HvV6nReOHGFqagrP83nwwa/gui6VSgUv5ykv6CiiUCgyuWO633+Z0O60ybKMgcFBLNvGskwWF5eUsrhtI6WgvrFBFIY4nr+1Fm8qXLfbbaKgx4W5OWq1QXRNQ9dUn2iWpghdV6I/ukYUhgjDwNB18oUC+by6/zYZzDRNScIEIXRkJpGphikssjTCc3L025UUhwAAIABJREFUejFTO3YyMTGFaSqBuLXVZXL5Au0oxR2aRrv4DPneRc52c4xNz/YVoZVydm2gxtTUFHGoWjMsy8K0BKurK7znzXdi/pcPE77lIMI0MYVQmmAyQ5PqmDrtpmpFsEx0YdDrBX3FeDCFIM0yfM/rJ6UyLMvqW2ElaGgYQvXlel5e9bMbqjQdDSzLwPNcbMsmDAMe/OqDav3IJI16nWKpSLvdpFQsUqkUEaZJlrtIpnVJWyWCMGBkeIiR0WEsSxDHEXFfMdx1PJI0YWNtAyNKKT9zlN6v/zwtW8MwJTdcfwg3V0Y4RZZX1ylVy6RphIbO8ePHaLfb3HTzTaRkCNN8rcbWN1xo9ddh5ba3W1yNkbocrADw3DG0UgH9rTe/6n2Xv3d7hdkmMHs9YGM7w7cZc23qGhiGgavB2ZMneOLRx0jjhE63x/T0LPXFUxx57glsEbM4f54sibAsB8syyLKYOO6RSsF6M2TXnluw3Dx//KcPMDm9h9pghXze5uzpM7ieT3VgmGNHn0eikUaSD//Rh7BtnZtuuYN9+/bxu7/3ewwNj3Lo0K28/wM/SJBEfOYz97Fv3z6uv/4Gzpw+x65du3FsB2TK7/z2b/O973sP73v/eylWC2iGRNetre+6nRzZHFdqVbtyTHjl87m53mzf/pUA5+WA9IrX/Qrz4Uq/v9Y1/Xrjr8OofjPfd6XPvYqAutp7v6E9/N0bVztX/wherzj+DoDXUgFK+Uv+tv2mT9OUMAy3FtE3Mr4RFvWNgldNUw97IVTf6uZrVwPOqgwzU0q4hkYun2fXNXvoBSE5P4/MJGmSILOMQiFHPueTpBnC1PHdIjcdvJV8zsVxBdO7pilXqvzGb/0Wd955Fz/24z/BrW+6Fc8zOHP2NOVykc/e/xmu3beXcrlI2Ozy1NNPsnPnDk6dPs6J4y8wNlwiv34EmUSI8phiAQ2Bn8sjhI2uq++UpspSQTHrkjCIkBl9kY/8VinpwGCNNMvwXLcPanWKpRIvnzhBpVJBGAatfillEIaMjo2SK+RBqqTaZ+69j0M33UQQ9Dh48EYajQa+7/ezk+qcXn/DDcRxRC7vq6DNEMhMsr6+wYkTxxkfHyeKAgxDU0FvX9BIk/DcM89iGgZZkjAyNsrY+NiWH54hDGxHGd1HUUKtViWKItZWV4nCiPHxcYQw2b1nDzJTc2RTlTnnlzl27DhJElOtVtENFRDblomm6aytr1Mql/tBtAZShcBZlpEkKc1mE8uyVSZR09A0cBybXE4xX7qu4TguaZqQZRm2beH5HlJmmKbqDTZ0Hc93sftso65p1Dcaak6ikhJZlrLRWMEwdDzPx9AFnpcnkxJdM7aAdBCEPPvss9x7773sv+46TFMQxzFHjx6l2WwyNjbGzp07sSxLlRlXyszsnMH1XmHxvD44BfA8NR90oZMmCRpSicL4PrbrIYSJ5/qMjIxQLpeJ4piPffTjGLpBtVJmfmGBHTt24HouruuSxDGVgQKra6vUagOkaYZpWuQLRdVzXCgiDKEUUg0FxA3DIAxDLNMCCQsLC6RpSrVSIcmUWnbSF+IxLcVSObbD+Ngk11+3D8+z+gkHE88roKFRKpep1WoYho6wRL8MU53vdrtDp9MjjmPQFHgyTYHMUur1OrlcjhePvMjsrl0cfeko3V6PsbExNKDd7iAzbUt4SQPqG03K5QqpjFX/pinodNqAqjiwLFf1aWuoXlw0mq02hXyeJIq4cGGO2dlZms0mtu1hmjZJ3OX48eN4nospDHzfw3Fs0kzy5JNPMT4xjjBN1tfWSNKU2dldNJstXNcljiPSJFUASRMkccpzzz1Pzs+xtraKlBmWZfQTKsqWRkeysrTE8PAAg0MjBEHAxz72MT7w/d/PyMhIv21AYug658+fZ2V1lWqthjAtLFfZW/m5nFKsjpSw0+jwKEkSEcUJUurMnb/IyPAQvaCHEAoEbz4/HMfBsgS5nFprO50uaZrSbNRxXIdWs6HupzTt22NZyAyiWPnpxnGMEGa/hF4gE5VovHhhnoce/BpLC4tMTY0SRD3QlH9qvuArxWxbMH9xgY997C+48eBBEqmhF8fYOPM8ycILFK99K8VyCcexcF2XbrdDHEecOXWeH/zBH+Tuu++mUMwjhIH4zFcQF5fQdk8TRQEnT54g53skSUS3tUEQ9PB9D8txyADNMLAt0SculGjTM08/QxQnZJnkQx/6ELt378J1bQxDCWVJCVkqkWjEUUK73cK2LTKZcub0KcrlEmEYUC6XmZyY5LHHnmBxcYETJ04yu2uWSrWMpmWcOPkyq8sb2OUWSZqg9wb6+gh6v/IjodNpE/aTmWfPnmNwcIA4yhi8sIh0bJrffzf5okuh6BFGFlJ3SDWTUqWEZQocy6BarPHnH/1zdu6aVYr72iuJuKs/wF/XY/6S5/0beX37eC3wemll2CtsoJQS/c5bMO685VX7u1KcspkMvjwGea3j276t7SKCcb+VIU1Tnnv4Qb74+c+ja5CmEmFY2JZDc/UESdjGMzMMXVXyuW6O9Y1l0DJcr4BhFwlim0xU+Mznv0qlthdheXzso3/G9TdcQy8ImJyYoVoZQtczHnv0MZZW1pFIfvhf/gs+/JE/5cZDt/B9H/gB3vvP3s/OXXvZaDTxcjbvfvc9TE5NcuLlkxw6dCvPPvsCo0Ml/st/+o9UByr85L/5cdyCh6ZnxGmEoduvug6b1+ZKpMPV48Ern88syy5JGFwteXA5UL18Hlxp/1cCr69F0PzPB16vUunwDWz//2fvvYMkue47z0++9Jnlq7vam5numR5gBt4QhhJAJ1KUQFIUKYkyoV2FuFpJt7crrVYXsbcXdxF3Eaflire3K4naO50k7spSIglDEIAoeIDwGAxmBmPR47t72pbPqvT3x6tuNIY9g4EhKcXyMSrQrMnKemkq3/u9r3svnYHfq/aD4rXXNp+Ii7uLXXwF590Urxfb/sKH9VbvX6wv6zrJt+7fG7TjyylEtxpE3m5bf+ht7t/F0NckVoAETZNFTJykuNk8QtdZODNPIZejXquh66IXjdJGUTVSYkqFCtdfexOmqdFq14iCgCSO2TWzi7/8y7/iij1XoqgKhq7S7fqUSmVeeOFFrr32OqIoxrFspmam5URbS5jeNsLq+ZPkG7OQRDRFFk030HQTqZ2SGssgCCTlslc4RVGE7biy2DOlYZCC0itgVeI4IYnj3sM7JQgCvLZHPp/HNE3yuRyWbdFut2k0GyRpjGM7ZDNZiqUiuXyOrt+lkJemOuv7qFaraJpA03RMS66g6pqGogiazTZzc+e49trrWF1dwTBNLMtCAWzbJU1SZl+fZXl5mampKTRV0iY1TadarZLNZanWapL2G0Xomg4y+4Zut8vC/AKjo6OkCnhel+WVFXRNw/NamJaBUCT6MT4+uhHLoSgKSRRhmhbZbA7P67Awv0Bffx+aqhInCYuLiwih0mg0aNQb+F2f+YVzFIslTNMkjhOpSU0l3S/lDfquYRggetclTjA0nWwmS6vVIkoSdKGysHCeer2OoRvMzs6SpglT05OyUE4Fvh8SBhEAba+9MfERQpUT55OnCPyAkdER0jSl3tMyj4yMSKSmR7eSbsfmBksijiO6gd8rsKRbbBxLOqttmkShRFkQAt00aTZb5HO5jcmTUCRleWpqiijs0tdf2Yi+6XgehqGjGaJXYEjatKZpCEXgug6qppLLZ6E3gQ2CgEa9iW3ZPS1jgySOOXBAxufkC1l03cAyLRSh9nS2Ka1WE4FGp9MmjAKiSNLjwzAkCKWuUKjSdVZRFZI4wTRNFubnMY110yKTe+79Jn39/RQKeQxDQ9dVDMOiVC4jVGlwlc1mSZMEXdNYXVkhjBK+9vWvcsP110s2hqKyVq2Ry2XQDYNmo4Fj21RrNYrFIilC6soNnRMnTlAu96EbMrNYKGCaOpoqc2wz2Sx+N+CRh79FNpPFNEzKff29+6ADiuDkSelaHUcxlmlg2xbdbogiFBbPL26g6Kqq0ay38P2Q/v5+TNOk7bUpFotomkIQRpiWJXXJioImIAwC3Gwe23HYMT1NvdFA03Wp29Z1NFXFsUyazSaFYomUlNWVFTRN62mk5ZhgGAYL83NYtsnsyZNUKkMUCyWkLlRmVK8sr1Cv1XEcB1UIjF7ucrfj02g06XQ8nnv+WSbHJ9ANE9O06HY7OE6GOEoIgoj9Bw+Qz+c5fPgw5XJfj57Ze4ZHEaqqE0YplmHS158jUWLp+qvEBIEvz4PfYXRkkqnpKUzLxDR1vHab7OB2+pUqqmnR0ouEYUichHR7Jmxf/+o9HDp0iI985CPc94172bFjGuv3/5J2LsNKGuMHfi8jWC48mKY0SWs0W6AI6QWgCDRNEMWRjKHqmbYZuoEqNAqFAkNDAximgSLExnB+/PjrlIolFKHgOi6tVou16hoDlYHebx+iMCQKIhzboVqtcsedd5DL5UiAkydOcPDgQcaGx9ELTYQQnD7UYGFhntNnzpDL5bBMh7n5Oc6fP8/Y+DiapnHq1Gksw6R0ZJbmv/wnzKkxlcGylC1gkygysyhJQpIgIJcxmT1+CtM02HPN1Zi2ZFRcagFdTgAu+L+XWUBcLgK2eV5xqQzI9YJqsz7vUv14q3nK5v5drHja6rV5DqPrOvV6nTRNmRgaZHF1Bd0wWFlZ5WMf/SgryyuszL3GcKXE8tIpHFtHNwxQVDQ9IZvN47VDqo0UYZR56JGXUNQsn/v5X+X4kdf5zd/8F5w9d4Ljx0+ya+Y65uYW+Z//3W/xb377txkf245pWeSKGX7i05/FtBz6K4MsnF/i8SeeotzXz8zMDsm6KJY4eOAg/f0DLC4u8tRjD/LtZ57klz7/i+y+7ioUVRamQlUhvcBtesPZ9826462oq2+69srWCxHAxpi4XhALId4EvGyObNp8Ld/wZPnO+2qre2YrB+nNyO/Ftlv/t0s5Ab9Vysd3s22FiPe+eMvf27vtzfe7eN2cSLJV+++6eL1Yu9Qm343idasW/9d7SPYdQVx7xdZ7vcjD/r1aVXq3N+7FPn/x/QpQpCY47dFvDcvGyWR4+BuPsG3bJOVSifn5cwwM9HH2zGn6KkO0vSZZt8jZ0wvkci6PPPp3uLrK4vwSS/PLfO5nf55TJ09QqZRw7SzZTI6nnnyaHTtmWFxcJpPJgaVx4vRJcvks20b7ObT3WY6+/DRTrjSxaOqSOqrpJigq9UYTw1BQVQVV1dANE6NneqL0dETr8Q1CKLS9ltSuhSGGYVJvNEgT6dRqmRb0isUTJ2aZmztHf38FRcj3NEVQq65hWjalchEnk8H3fR588CFWVtZkrMf0FAcO7uelF1+UGX/dzgaK5jgufeUKKyur5PJ5dM3Aa3u0WjJ+odPtohsGE5OTJCSYjkWr2UJVJSU1m8siNDnQGKY0KQqCgIceeoj5c3PcdNNNdLpdZk+cwDId7v/GA1i2RSbrYFkGKTGOaxGGvoyGiCV6rgohsxOFxt5XXuHM6TNMbptEFYKV5WVcV8a+FItF8vkCQggKxSyaplGr1el2u0RxhGXZBN0uftfHtqV2DyER2TiURfbRw0fx2h0ymRyW7RLFAQODQ1QGBnBcl8ltk7gZB93UaLc8LCtD4MeSDhx6uK4tM0Z9v2f6pGIYOjfd/L5eniYMDg5SqVSkO7YQRIl0bVzPitUNHc/z6HQ6ZHrX0LQsgkBSm0mlSUgYBDSbDUqlMgkyM7NZb+I4Dl/72tcplcosrywzMTGBkqYYptQKdzod0jjGcVyEuo5GJzKDl56BlKL0Ij5iVFXp0YIFum6hCMGr+/YzPDSMZZns2rUTN+MQBilpKu1L1p9kSZJgGTqP/P1j9JX7URRBGAj2vXKExaVz5PNFjh47xuCQpLarqiAOYzpeh6i3IBCGIc888yxRrHD77bfR9dvomqDZbGKaNoZu0Gy3NpA227IAePjhhzl0+Cif/OQn8QOfw4eP8OKLL9NsNCkUCuiawd9+9atkszn8bkChWJK/O13qMW3bRtcNVE3nxef28uSTT3DTjdeRJCG1ahUhNOI4Ysf0Dva9so/XXjvExMQkQtMkHdeyMXSdXC6LokCSRL38X6mjO3XqNMPDwyjA0tIyy0urPPLIo+zfv589e/ZQKBRYXl4mm5Xn3NBNABr1OmtrS5iGimbKRQbdMHsyAmkY1Gy2OHzoEI5tMTQ8LI2bbJvIDyiXSqyurGIZJkcOHyafzaGqKSkxlYEBwjCm2WgSxT6qqm0g/6VSaUP7uba2gt17JmXcLGmaUCoV5TZxih+EGKYlCz/VQNUMBocqmKZJp9Nl375XGRocQtV0yUhVBX/0R3/MsdkTfPhDHybBRzMdeb+EMc98+xleevElhodHsZxcj+arkvZ+O163i5MvI+Zegqnbe5Rs+WzVdZ2bbnwfP/uzn8MwDMbHxyjFKeZ/+QpnxgaYW1pk9549Ut+sqT2dq0CoBq6bBUVB13QECisrS9IordslDEP6+io4ToZMxqVcLqIbOvV6TbI5NJ0gCEABN+NuTMj9IMCxXTTNZHZ2Fk1XqVZXcR2bwaFBxkdGpQmb66KqOocPH2V+fomZqUnK45JW32/vRBEqU9PTKIrg7rvv48jho9xww43k80VM08IwTMoLiyirNc7/0icplkvk8gXCMEZJEpIk7BmnxXQade776tfwOgE/dtePITQVNAWFFJFC+h4Ur2+nbdavbi4ULkTbtmqXovi+0/nMW33uUt+3bq4XqYLpK3axc2aGkydeZ/eunRw+uJ+9z/4dpg6t5jIdryEZW5aFSGI6HZ+ub9ANsnzp//0bEm2AK6+6hZ1X7sZQNUaGKjz+xGOcO7NCmmZ47tnn+LX/4ZdQVIUwTPjzv/grdu+5EhTBF77wH7np5ttx3ByLS0uMTYwSBTF/8Ad/yAc+8AEWFuaxbYvJbWP81z/6Au+/4xY++zOfJVcug1BJ0VASnVS59PndvNBw4bl58+feesHiwvcutd83snnfnRbzcu6xix3TRQv1fyjtIl35x168vlUfflC8btH+QRSvv/dnpKfn3+Q2vFU/1ik0b92/7/zsu93mnXz+ou9vKl6FJkhRUBSVNIWgGVAo5AgCn2p1mcOHDzEyMgTCQNdVBAZnT88T+B6T20Z5/snH+Ys//2scJ8NVu6/CMA0eefRbPPbYUxw+fIQ77riTKIrZvXsPrVYbu+AQRxG5vMvc7HGCVo3DrzzDTEnDNE2aeglVM9A0HRQFwzTRVAiCkHWTK0m/lLEWSZxsOlZJyxOqQNd1Go0mlmlK5CIMZfRL3DM26nSIIpnld+1117K2uko2k2Fhfp7J7dtByNDwNE7Yt+9VTNPimquvJYpCslmHXbuu6CE+0thA0zTiKKXZbFOtVikUCkRxjGHIyJkoCPB9n+WlFYp9ZSzHwrAMHNtGCIFpytgaw5S03TiOe4hLwLe+9S26nS4333wzQghy+RymYeM4LldeeSWOa27S9wS9AV8iHWkio0nq9Qa27TA4NMS27dvodjvEUYTneWQykgZoGBJJ1jSNOA6wLHvj2By7Rw9WNWlI5LrEiYzBSNKUJEykNlKoRFFEvtDTryYhrGdRppJ2kyopURhSrzc5eOAQlcoguXwG2zERQmalrut+dF1n27ZJ4ihGEVK36vQ0cuvaKrEeeSMEpmH2rrGJY9t0Oh3m5+fJ5XKYpomu6+g9lD4MA0rlMs12G8O0UFSB1/Rot9u022127NhBpV+iO436GmEkKWmWZXPyxEmZgRuG+L5PNpcjDINefqom+6UqaL2cXEgRqgJoMgu01mDv3leYnBwHUuIkYn5uCU3TZa4wCnEii3pBSl95AE3VOXLkKAOVER577NtsnxpmfGxcUloNXVLASRAozJ44wY6paTRVY2H+PPv37+dDH/4YpVIRIRLa7SaNRgNdM6Tjqm1y6uQpSsUiCgp79+5lYX6eeqPFnj27sW2LcrlMo9Fk544ZGs0mDz74IGNj41x/3Q1kMhl5TuOQdqspTco0FU2T/bKtHFnXIZ/PomkKnufhB5L+en5e6rHv/MAHcTNZ5hcWWFurkssVcF0HXdfoeG3CIKDVarK6VufIkSOcPn2a3buvpNVsUcjn0YTBiy+9hGWZXH311SiKXMxwbB1Nl3FbzUabKAwxDY2O16LUP9TT9Qr27t1LqVRicXGJleVVnnjqMd5/+21Ua1V0QyKyhqYTRxFra2t0PI9iqUQ2m8XzGmi6NJJTVYOnn3waw1Dp76+wtLTE2toaIyMjJEnC6uoqaRpj6PqGc/ahw4c4cuQwu3bNoKhGb+FGoCgydzhJQDdUWq02lUqFEydOsH37lHwW6nLxrr+vgkBjx85phBqhqi4oGrpqks8Vqa7W2Dl9JYqqynPaaQHpBoosrCzU5zAsm5rIytgrQEHFa3ewLGvDldn65hOIFPTJSbZPTUkDKQXiRLJdPC/k7NmzPPzwI+zevQeShFq1iu1aWJZc1NB1GYO1sUhlGgih9BgBBmnPtE3TVAzd6GViG6ytViXqrKh0/S4DlT5WV1ekFMYPyGQyfOvv/57pHTswLJuhoRGuueY6nnzsW/RN6mQyLmmzyMrKKoODw6QJnDs7T73RYOfOHdTrNVw3w/kTpxl49Sit3/u3WCODPTfslDhKCfwmlmOSxilpFEMcs7p4HkXRmdg+ieE6xMRvFK+XnOh857h9qeL1cuYgW7kHX07xejFkNvrl/4Xkvsfe5DZ80cPZ4vu2QnUu9zjWaa/ClYuFtWqV2aOH0VVB5HdwjA7LS/PkMjqOaZCkCSkqGcckiQUnZufRzAHK/ZOs1FOuuuZmVuvLtGpN4iDg3LkzXH31+1ha6hDHIYPDRaI44vSpOTpBwA03XU9fuUyh0Ed/3wB//ddf4fDhQ+QLGfa/coCr9lyN6zrs2rULRUn5w//yJc6deJVf+bVf4abbbiUSAtAg1SARIC7unXLh9boQAbyc4nV9MX+rfW/li7L5vfU57lZF49uhgF/uNm/19/ereL3osf6geH1b7R9V8Zok0f+mKOtF6dYOwZtvygtdzniT05lykdfF2tvbfr0PW7kNr1O+Njsfp2mCsomqcbF24cBxsVWw78YPc31/0uyFjb5vfr3B21ekbhIhB1kBI9tGqLbahLFgfHIb7a5PGEfkCyOkqUGSJGyfGsPOmOiaweTUVUxMTfLBH7mT1doybiaDYxX4k//vLzh2dJal5QU+/vGP0WzKGI+v/fXfImKdhXMrjI5fgXD6WWipXF30UNIYq3+cxbkzZF27h6rJQieOE0xNxe920AWopHi+h6bpxFFCGis0Gk0ybgYFWdialoqmS+RD0w3SJCRJQtZWFykVsqRxQtSNMS2Z9bdzZhfdIKBYLlGvVzENDaFb7JjZyfjkGLYjNW+mbWFYJioaIhFUl9dwHDlZSeMUXVep1aqgpFi2happxKHG+flFHnn4EW647hoEKb7noajqhgOyKlS8tkcURjTqDdbWVkkTuPmmW5iZ2YVh6lTrq9iGQULI8FiFZrvO7LETOFYWy3JQhIZhO0SxvMq6UEkVcNwsntfBtGyEKiR90zTIFfIoCvh+F6GpJCIlESmGJunCiqJILaNpAAphEhEHHZYXzuE1ajhOTqIsQhoqWY5NoVTAtMwexfuNwTRJJOVbQSCEjWO5zB49SMbVKOZzhJHC0SMnqFQG5GQYevrDBMPUiZMIy7QQiqDjtbBNDYhRFU0ujLg2SZqiawKvKRF4TddwMi5Ck4W1EIIwSUAoRIFPp+uhKiqaZhBFMbquEMcBu3dfQUqEbqgkaUg2X0CoGo6dIU1V4lhw9Ngs+159gZ07dqJpGppmoKCgayaa3tOKGgZRnKD2jJdQUoQKff1lbNugVC5hGhZBGPNXf/UVbMdgeKRfGhSlCp4XEAc+Qdil3FeiVOlH0Q2WqsuMjQxi2zatZhMlTdGFihJDp9PBtmyCOEQ3NPKlEtM7dtDfX8CydHTdkMfiZrFdG0VVWF5a4fEnnmRy2zRxqvDII49z++13cOedd3D27DmGhgfRdZ3x8WH6+vLksiV0XefWW25B0wWaphJGASo6s7OzKEKjVOpH6U1a5+bnJHqm6ziZHKZtUyjlabUb6JrF9M4dGLaFruvsfWkvjVqd5YVFCsUcdsZFCI2VpSrEGstLqxw6eJBrr72avlKJXDaL1+5QKBXZc9VVVCrDFItFhK7gZAySSKdWrbMwP4dMuxa8su81xid24vs1VBXiKGDXFTMYpsHg0CCtRhcFjbHxbezbd5ClxVUmJ7bz4kt7cXN5Cn39WK6LYWiQRrRaHqaRQRc2ApUTs69jW9LMynUd4iSkVCzQbNYQKlhZE8ux8Jo+AoM0VeivVChVSohEp+t1OXXyNLqmc/DAfgYH+gjjsIdCKWyfmkRKPwRJrLC0uMzY+ChTUxOkhHIBiGjD0M3NZNk2vR1FA0OzabfaJElKs+Wh6tKsyLYtIjQ4+Sxff9nn7q8/yLXXXk0UtxFaShRHoKg4bgbxxT8mdS2M0X5UIen+cSyfW47jAjGFQo5MNrvhR2BYOpqqoyoqQlFYWV6WCzyaoFpdpdv1AQXLdHpxaTLSqr5Wkw7Cuk4Y+LiWxfPf/jb9/RVyveiivnI/TiZDmqYYtkun22FqaopuO2L/vv0oSsj0FVdQGktBEejxENlMBt/vsnfvS1xxxTQDAxVs0+HBbz4gKcxzS/gCol/5KQzTIAaEqqHpGpopEIqGqZlkbJvZ40eoNpb5oR/7CE7OJYwkTR6kV5PMxeYtpyebJ/5vd+5woUzpwm22+ntzsbo5YeE7Cs1vPAp8Z5zg+j4292tz21x8rRdGm4uy9ddm1G/9v5uLrCRJiDpNRGLSqLYoZFzizhqmsgJ+ldOzR+jPZ/E9j2xG+lDEcQahqbhFnVL/GPMrPmPbr2N5rcFUwTLzAAAgAElEQVTY4Hb+5qtfY2BkjOmZKymVCxTLGldcMcPs8VOsLtVYXV5leGCQSnmAE7NHmdm5HcfW2DY5yi3vu5H/9uU/4/pbbqHd7vLfvvznPPzAN3j2sa8junNk8xYf+bFPMjC2nSCx0TWLoLXGM08+yvaZGelt0Ith3KDZ0nNmTt+YBwtF7S3+9l6bbpzN1/tCp+L183uhYdNW98eFxebmovbtFpObqclvVbxe6l59L9vm43+rfm3VP3jjXAhFYf1/pG9dkbyd73inn91qseud7O9S7b+T4vViOa8XWz3aYsvv8SrE1jmvF9v67fXt7aKi77ZtfuC/s2NQcByXIPCp1yVaoGkC3bSAGIUIz2tSr1d54IH72LHjCrZNTZLNZmk2W5w8dYonn3qa3/iXv8UP/dD72b1bUrF/8Rf/Cffe8w2OvX6Uf/6rv8rU9DR/8KU/4Hf+/e/wu1/8AuraUUgirMo4CwsLpIBpOyiKiqJKhE1VNTTDQNN1/CBE1Q25Ct7Tw7quDUjzoTgOe3ExcsFBCEECOLaN42SYnz/PyMgYp06dJpt1GRwcZmFhEd2wCMOYJE6I4wSv3iZj22gAcUJ9dY1CNkutUccyTLodD0VAEAU4toFmSTMfABUFx7YJfZ/5+QUmJycYHx8lm80A8MCDDzKza2ZDjxIEwYaGznEcGvU6qqpRqVRwHJsw9HFsG9MwMCyTMIioVevkszl0TSdJY6nXFAqqEGhClS7IisLc3Dznz5/H0HVZuPZ0ujJyQ8akCEW6e6qqShxGG/fouXPn0HWdubk5srksmhD0lUvohoVhWqiagd/p0G62WFtdk8ZMXV86u/KGjkbXdY4cOdJDRR2SNGZyYpyW1yabzaGosmCt1aq4Gemq6nkeaZoQx7GcmBoG3R5tOYykCU6z2UQRKZqhg8RgaTXbVKtr5PN5dNMgTZKNVxhH6JpG0O1i2za24xAlidTgJgkKCnEkNdBra1VUIdBNrZeNK/viui66oTM+NkYul0fTdJrNVg+tXp+MKaAIvLaHquqkKZw+c1pmrgYBqioR2iiMcByH0dFRrrhiBk1XeyZEGqura3TadSoDlZ4WUJGGXTMzGKpEFuv1KrlchpSkh5jLKJWH//5hhoZHyGQlLdM0dOIkJkljeS7ShCjyURTp5nrVnj2YhobrWFx11ZX0V0qsLq/QbjUYGhyQFFMhF8Na7SZDw0Osri7jODa+71Ov1WnU27zw/AvccMP18l4koet3KOQLCFUhn8+DAisrq2SzOTpehzCIyBeL6D2375kdOwA4+Jp0AhZCGn05ps2ZM2d55ZVX+NRPfJK+vjKQUq3WaLc93KxLvVZnaKgi7wdN0Gw2IFVJFXmPVwYqeF6Hhx9+lKHhYfr6Cj05gUIYxgRhQKvVYqC/wkCln+PHj5IkEbfeejNB0GV0eEhOFoWMUTF1jVajRrHUh9FDEz3PY9u2bZRKRTTNII4TCvmC1N173R4LwCGOIfITSUMnpt6sMTg0QLvR4vTpU4yMDDO/sMCxo8dYWlxmamo7aRLLmCEke+CF55/j0P4DXHv11Tz3zDM8+sjDXH3NtZiWRZxE8p5GEEXRBhsgiSM0XeXo0SNYlonvB5w8dZpKZZBENRHtZbKFEhQnuXLPDo6/foRcLsfqapUwjDHX6mh/+Je0rt+J6bqkSbLB2shkMoRhSKfjYVkWfX39rDMogtAnCiN0Q+8Zvpnksjk63Q5zc3OUy/3omsw0ls9CA98PUAHTMKjXaqiKII1jdE2lWO7D932iKGJlZYVut4vX8Wg0a0xNjWOaGoZhUioX0PSUTKZAvTOPodkc37/EyPBIDz0vMzExhqpKJ+5bb72NkuOQeWEf3n/6X9H7K2iagaqrNFs1sjmbrufTbnsIBC+//CIvvfICO3buYNvOnXIU/Y7B951NUN+L7bcqQC5nmzcVl/c9Bihvisq5XPRsvW3Wsm6V3HBhIbVe6Ha70kQrX8iiqiZHDx/h2OEDHD+yn2Z1AUONsUydYt7F9ztYtkW1VsPr1knTmCCIabZTXj3wOl/72iPc9eOfZmRihImJcUrlMq+9+ioPfPN+KuV+HvrWw3zmM59h+/btvPDCC2zbto27776b3Vfu4eiR48zNnSeTyXHy5Gk++MEPsXP6Rgw1pZwLWVs6SrexAEnErmtu5HO/8E9JFIMIRZoT6gbbtm2DnunadyKrFzkfl7gNNhf/l6NBvpwFkUstRrxV26yrvlTixfdyjr/VIss73c/3uja5nPZeFK9v1d5p8Xp54aI/aD9osLHadrmZtBc2WUiJHr1PxfelaYhQU4SaoigJ+YJLEHrs3j3DysoSliXz8V599QBf/OIX+fSnPyXdNLMOv/0//RZnzpyiv28ATdNpNHrxN0Jw991386EPfwDHtdD7tiHcIkJoMgJGN4mThCSNAUVSGw0LITS6QYRmWmiq1ESFYSRdIpOYIPRRVYFu6Fi2ja4ZdLsypsW2HWZPnEI3LDTDotn2cDIZ1mo1stlcLzJG59yZc9TW6jTrDbp+l0OvHWJpaZkkScjn8zQbDbKZDEkaYTs22XwW05SRDlESg1A4v7iE7wesrqzSatQZGR1CURKKpYKk26LguhnOnTtHEAQbDoHAxqpsoVAin89L7WoqnR9Ny0ZVBWEQYlk2lcoAA4ODuBmX6lqVdru9MXhEUSSdZ3tmUwMDA+QL+d6EVqHeqBP6AaoiMDQdXdffmORuivfYtm0bvu8zMjKCaRq0PY9m2+Pk6dNESdJDRKU5laHr2JZFkshoEl3XOH7sOK/sfQUFhant2wmDUKKphkGUxFJfp8pBvFDIc/jIEZ599hm63e7G8Wx2vtR1Dc/rSI10s9lzU82iCEEUyaggXZP9SZJecbBOPwNmZ0/Qbns0W01arVavGNGIohhNN/C8DkkK1aqkD2ayOTlwkSKEgvSSiakM9DE8PAqpYGlxmWajRb3+hrMyqYx3CcMIvxsQR7IvQSCpkpZlsbK8gud5BEFAoVig3fYI/GBDIycUcFwHw9DpdNuoApIkJI59Sed2bLZv30YYBdTrVRzHIgqlW/FHP/YxyqUSy0tLrK2tUutpCTVNQ6iCKJLIlqapLCzMowmBZRiEfheFmDj2mZwYY2JiHIWURqNOHEb43S4okrFQ7iuyuLhEHCf4fkitVuOuuz5BJpPF89o9BDlGN1Ty+SxJEvVygAWaahAEEefOnuP0qVNEUUQm43Ly1AlQUmZmdtLpeBw7cpSM4+A4NjNXzPDpT/8EIHXRy8vLrK6uks8XgJR2u4FQpUZ+/R4TmorjOtQadcI4JpPLUuorY5gmjUaLMJRGVLquYejSZffosSNkcy579lzBtddejaoqKEpKtbpGvVbF73gcPXyE1eWVnjs2eJ0uZ86c5rnnngOkqVoUxTSbLTpel6WlFSzLgVTF9yO8tk+36+M4DplMhu3btxFFAbqhYjsWZ8+dZWxsnN17ruK11w5xYvYEcZSwvLQi5RIpzOzcRdjtcGr2dcZHR7nrx+/CMEyCULJAojAijiKEImSuZKqQkiBUhd27d9PfX0HTdDJuFqGoUrZQ3kFu8dv8h//wf+L7PtdcfR1JkrBt2zba7TbdBx8nvuFKMuWS1NT3Ck7RQ390w6BcLuH7PkEQEEURYSg9DaJIGrut0/zX3x8YGEAVKmkCTz7xFNW1KrVqDV3XsEyDanWNYj6PqWu0W01KxSL1eo1Wq8Xy8jKVygClUonBgQEmxifRenrZKJILmN1OF1UIlo9ZHHiqwbPPPsvLL79MmiSsra7ywosvgqKwsrpC1+/iPfMihwYKnEwUFHRefXU/rVaLbNZmZWWJTscHoOt77N33Mj98xx3cdPP73vUE+cLIu7fTLkRTt9rP5gLlrVxityp0LrXf9X+/1LFd+P1v1Q9VVXFdF8uyCKOIdttjZHysZ8DYJoliFhcXaTblszwMw97zII+VUVlZXSSX7cPvdrj6qh185tN3MTY8QkxCsVxA1RRqtRqtRpOs43LgwAEWFxdRFIWf/umfZv/+/Xz2s59ldaVGPlfizJlzvPzyK/zu7/5fLC0t8eB936JSLrC2fALX6mAYMYaqccMttxEhELqGaztEQYgfhZi29R3JEO9VW5/7XXhuL/ba6vNvF6G8sG02iPpB++61d/Oc+F62f7TI65tP7Fsjr+90ZePdrjqsI6/apz68qQ9vTz97IUf+vVqluZC28FbtzTd1+iYKyKa9XuobUUSCoatYpk6j3sTvBNhuT+tk6vhdn0IhhyoEX/36fcwvLDIyOsaOnTN87Ec/Tr6YI01CMlmLk6eO8+M//nF+8id/kk9+4lN85Ec/RKPZ4vEnnuBf/ea/4mMf/xFs1yA8f5i0U0Vxy5imjR+GeO22dIxMYunuqhtvkNAVSSFuNJp8475vsLq6Qi6XlXEbukS5giBC03R0Q0fVBJ7XJZvN0ul0ZfSEH6CQMDExTqPRwPO6+H4gCzpVMDw4RCsMmJzahulYGI5JnCaYrk2n3UZRpE7L81pouoqhqcSKIAojcpkcYRByzz13c/31VxPFKfv3v0o2myWJI1Jg164Z/DDY0HCuD2adjtSXaaqcFBqGRhSF2LaL53U4d/Y0QRjj2Bnq9SanT56kXC5Rr1XJF/KkPToLaUqz3sDNZslms9i23ctwlFpK13EIg4ATr89i2xI9czMZ4jjmvnvu5cUXX2TPnj0oyhuuqpomCIKQjJuhv38AEHKSqWkbWtOTJ0/S7XapVCqkaUwURMRxQl+pH01Tybg2SgpxIk2OFFXSpZI4IQoCjhw7xvXXX49t27iu26PkaqRpwurqGqrQcB0Hs2eQ5LgOSZrIeBhFwdRN6rU6QdilVq9L9EcISGQBWy5LlEwosLa2hm05pAjpau13EaKn8+2hSu1WizAKMA2L1bUVQMG2bYSAw4eP8vgTT3DbrbfRbDXI53NyNV2IHj1aGjwFfkAun8Nx7V7sUkroBwRByODQEK1mkySJOTd/jmw2ixDSjdZ2bBQlwQ8CLMcmimPOnD6DKlRC30cIQRAGNBsNzp8/T19/haAb8NLLexkfm+hRoVVUFRwnI39DMreJqOe8LM+viaZAbW2VTsfDdm00Q6frdajVqjiOzdmzZ2l7HSzTIpuXCJtlWqyuVnFsl0cffYxjx4/zvltuJopCVFVj36v7cBwX0zA2WBBr1SqDg0MoijQke+KxJ7jx5pvIZFw0VcXQZV7oyMgY+/bt5eqrr5KPJiHjUxYW5nj11X0sLp5nz56rKJf7WFhYQmgK/f19KCKl2+0ACrpuEEUJjUZdGgSVywihkssVGBoawtR1Xn99lv7+Cq22pNB++ctf5s4f/iGajTqu4+A4Fu12C8syUYSK62aJw4jnnn2O6R07yGQz1GoN1tbWGB0dYXRslCiMeeaZZygWizJ/V1W59957efa557nmmmtJUpmZujC3wN/93UPs3nMl+UKerh+wsDCP67oykiiKKBYKDA4NMjw8xD333Es+X6BUKlGvNygUimhCIZfLMTo2hu04BKE897alE0cpURjzjfvu5/Vjr7N9+3Z0TcUPAsIgJAiCnlFbXk5cSUiEgePN8bl//pukbgnD0FE1FctyyGRymH/9TdIkJu0roAgV0lSa0fUihhQhSJIIoxf1lCapdPi2JeV/PQpLUzUZC4WCZVk8+/TzRGHIzp07OX36FMPDQ9RrNUSPCdLtdFAVweyJk3T9LmPjYziOi6bq1Gt1qTc3VJLI4E/+5I+JwpiByij33H0/SaIwNDSIoZtMT0+jqTrFfIFGo4nXatNXKbOwcB43m+Wxu+/hxm7K+X/xC/zEL/0yH/7Ih9B1HdOW44gQKgdfOcQX/v3vsLy2zK/9+q8yOjmOomkbca7fOV5f3lxgM83zctpmpHIzArNO37yQAnzhhPfCxe4LKaTrn4nvfYM2fDG651aF6YVFzOb9buXounm+szlBIU1TMARpLGQx2Gowd+oYStSiUV9i28QY82dPMTw0AErK6toafYNZksSgvpbSXynjZmxOnFrm9//TH7L34Ms88M1vcuTIYf7Z53+ZcrmfhfOLpIrCgQMHUFWVJ554grvuuotCocAXv/ifASgUCqiq4FOf+gQPPfQAH7ztVv70//kC7dpxqqtzeH7M537+n3HTB38UN1dA9Bg3qpCyoLgnWdns7Lx+DeAiyOgl7oWttt98ztffl87kb74Wm+eG6/3Z8JB4G3PXrfqwuQi+cJvvNXp54f35bvZx4XvvJeK5fu63+r2+FYX7u31Of4C8vov2/brxvxft+/nD3roloMiQ+YWFBc6ePSs1VAkEvpyUBEFErVbjN//Nb/CjP/ZxOn6A0HTcbIYoDWm2VnAzGj/y0R+mWHJpNFfxgyZDI8PkSzmCyAeRUigVpSYo9CAKURSVGHDcDGEYs7a6hqEJCtksrVaTwO+iCVVmiqoKuq4xNDyIECqlYok4TvGDLn7gE0UxaQphEOJ5HkkSoWsqzUaD6soKxXwOXVMQmiCTdeXkWSjsmN5Os1FDKJDLZpmdnQV6OmJV6m9Mw5IROilohozSWVpaJI1jBApeu8NTTz1NEAYkpLz88is91FTjT7/8p5w/P4+ipFQqlY3J3PoD6siRI9Tr9V4xm1Kv19B0naWlJSzTRlHAcRySJOXee+7l8OEj+H6XUqmErukYuqTlpUlKoZDH98MNxDIIfRqNOkEQ0Ol0UDWNbFY6CxfyBQJfRh9NT0/zoQ99aKNPhmFs6E91wwChInSdRrMpJ7eqysmTJ/GDgHyhwPjEBFEUsbh0nr7+Mo16k/PnF0mTVFI5lRTSBISQ+9JkhEmSJnzirrsol0vfOSirgmxWLlAABGFAt9vl3Nk56vUmSY9aLlRBsZjHNKXJkMw17mm5ejFLYRhCKoubZrOF3jtnQRiRzeUxDVNmaaoaKDKj1Q8CVKGR6RX4cRxT6a+wY8c0URRiGDrtdgtdF3Jyn0bESSQXLFKZ2QlvDFJhGOIHEp0CyOZyTG2fQijqJn1YglB1MrnsBvosVBVd1UjTGNe10VSVfL7ECy/sxWvLaKC+cpm7v34PpmHSaslzkyQyHzFNIQwTOl6XNFEg7WlWg5CXXnyZB+5/kDRW8P2IarWGYVqkCMp9FUZHxykUyyRJiqGbRHHKxMQEQRjwyU9+ip/7uZ+hVlvDMHQsyySfK1Aq9rGysobvR8zNLfQmUuB12szOHkfVNIqFQo8u6pPLZSn3FRGa4AMf+AC2adJs1KW+qGeC9f73v59bb70VwzA4dvQYqlAxDBM/CEmSFCGkAZ2iaJw6eRLHtslns3S8DiQpI0PDtJstQNDpSAqoaZq0mjKzttlooms6rWaTwPfRNQ2/20UzTVZWV1lcXOLOOz+I62YRugmp1EOlaUJ1bZUoCrn22uvodNroukpKytDwMMWidPPO5/N4bY9Tp05yx50/jOtm8LwuzaZHqdhHoVCk05MkyFxV0fMbmGJpeRmt97t9/oUXWKs3+fZzz8s4DlVgGDqGrvao3DV03dgwIJNoZNKLgQp65myx/D2SEEcRpmUS9u3CPvS3dNtNaRal66ytrbG2tsbRI0dhvVBVJHUdehMoRSEMAuJeTFlKKmOkevFX7XZbOhL3zNY8z2N5ZZnlpWX27dtPtVqn0+mia5IFUiqVsJwMluPyd996mGPHZ9m9+yp2zFxBksaoqkq93uDMmbMMDg72IqBMfuZnPsfExARxHFGv1/G8DkcOH8V1MzTrTeI44ezZcz16vkomk8V1XXKZDB+1i9Q/+3HiyVH+5m//iomJCY4dO8bcufMEPhTyfSRJyuL5ZXbsmMJyTLphgKK+t0ja221baRrXr8v6azMytrmYeS8RHFVVL5vGus44uhD1W2/r/+77vsw3Ng06nQ6lUoldu3Zx7sxZRkdHaTQaCCE4evQo7XabgYEBbNchClOE4vYW5ZY5P3+c7dsHiTtdAr/DsaOHmV9a5NqbbmC5XuXGG2/k13/913nwwQd5+umn+cpXvsKXvvQllpbO8+qrr3Dy1Ak+//l/yrm5U/zUT/8k/+7ffp5CTqG6uoZl5vnEp38Bs1ShUBkkFTpxkqD0flvymNUtzsTlt8uZJ25V0GyV77sVwnohcvuD9v1t6wsK/zDqgrff/tEir29ul4e8vtP2bj6b7DuMUsjy5hDud+Zc/E76cuGD5WJOZ2//GC+2KnRp5BUlQiFFE4LBoSFCP8YPYpqNFgrgdwI0XSObydFstxFCJ5uRxUIY+iwsnCOXFUSxx/jEMLXaKrlcjkKhxNLqMqVSmSuv2E0cx5TKBRQlJnjpb0m9GmplO1EYowqV/oEK9XoVr1nH0FWSJCWbzfTMfxJSIkBh+/btFAolXNdFFRq6IVCFuuGWmaYpjmOhAkIRtJtNSFKqaysMDJRpeS2iMNqgTDcbDTRVcPbMKZbOr/Dct7+NrghGBgZ56bnn8dsenU6AZbsomoqmqShpSqfVxLZdFAQdz2dichtCUxgY7mdidJrBwUEs22ZiYpQg7FIo5IiT9E2DeJIkDA8P9/SCski3bBNVCE6dOk2xWKKvr4AQBkEQc+DAQW6//Rby+RyWaRLFMUJTUQBVCA7uP8D9DzxEJuOSy2WBFNO00DUTx7WJgpBWo4HrOJw4eZJyfx+qqtLf10+hUNjQsjUajd79mWIYJqkiOHtmjkcfeYTp6Wks26ZULmPZFsVSUU5QNZUkDjl29HWeeuppbr3lNnRd5ey50/T39UuaYc+wKgpjkkjGrKi6SbvdIgiCjczVMAxRVVmgyElwi47n4bgOxUIfum6SkPZoqhGqUDYm+CgKfhigCoFpGKBoCCFpwI7rkKawVqthmrLAWTeYqtfqsijSDVRVms1Ylo3Wy6yM44RSzzDItAxQYrJZB6/Tptls4rg2rVYLw9ApFPLSwKnneCzziA0ymQyGYXL02DH6+/vwOp501hYqSZqgaoIkkcWzaRjEUUIhV8CybWxLA0Xh+PFZXnnlVT760Y+zeH6FOPJ59JHH+cnPfJYgCHFcC8cxSBKd1ZUqvh9g6AbZbA7DMCW1td1g/sw5cm6W6emd5AolNMMiTWOKpTIoQi4oRQlpqrC0tEK1WmdhfpFCvkAK3H///ezZM0Mm61KtVrFtlyhMUFWdKIqxLZuhoUEyGZckjQlDH9MyuPXmH6LT9aTzeRpz9vQpuZBkmAhSvHYLTdNQdQPdMLBNE9d1MAyDZrOJH0SUS309F1sdoUCj2cQ0bITQeOG55yiXSpRLJarVKlEY0W55NBtNwjDkoYceYnhkhGq1SpIm3HDD9SRRQrvd5p577kVVBYVCEcdx0CwHELhujr6+flTdAFXFMU2arSaWZVJv1FleWuG1g4d43y03UK1W8f0ufX197Ny5E9IUz++Qy2UZGhxkbWUVXTdJEZiWgyYE3W4XgPPnFygUclK3adiMjo0yPjGBUFXCKEbTNYbHxpneOYNm6LRaLeI4kLTpGOlQffgI27dNsbK8wtTUNp544hkef/wJpqenuf/+bzA2Nkw+lyVOIqQpTEqs6IRr5yiU+0ny49QbazSbbYaHRym9eBAFEH0F0hR0TUNT1Y1YLkUIICFN5fenKWiaSpxEG/mtnudx9txZBioDPT20YGlhjdtuvRWv3aZRr8t8Y6GQCGmolnWzDA4O0Q0C/DDkyOGDRFHM8NBoL9onRYgERVHJ523ipEsUhYxPjDMzM80zTz/D2PUebU5TOycYGx3lheef5+abbiJXypF1M2SefQVzzy6OfeJO/u/f/8/89E99hv5KmR07pikUy7hunihMeeKxx/jX//o3uP2H30dEgtAEYawglIs5sr49JPVy2+ZCZTOCtl6YbkZUtyoOL3culty3jrx+8KLbbGy7Sc96MeR1c3G03t8Lkaz1cVEImR6Q6gpxKO0lH/7mfTzy4H1cvWuShcXT1GtrGCoU8nKhsFqrUW9X8Zoqzz59FCsTYdgxY2Mz7L7yOuJYxbYdTNvmJ37qp0gNjbGpKa7fczWdTodKpcLP/dzPYds2U1NTKIrC+cU5PvjBO9g+NcHv/f5/5E+//EfYylmmJwdZW66jmX38zOf/RyrTV5LNl0ABVZHjTJqsO06rpErypvOwUYymF7n2l4G8bm6bM1w3v7dV8br+9/pi7KXmn5fqw3uxzXerfbe++71GXrdiKmx+7/t5Dn9g2LT+12VehItvJ2NeNjsBX+ho/HaaeufNFxSu9Pa11eut26UGhK1el9ru7eoP1h9c6xS9dAs350u3FAn2q6SKQFEFtWaVY/uOMn9mgf2vvMaOnVdIPZsKmpGQJDGKSCWSpyqcPXuGoaFJbKfI6ydOUij287//H19k58xVqKaOrmkYQmAZOoqmYOZc/AN/D3GI6JtEqAJN1wijkPnz5+nL5lleWmJgsJ96vS4zGzWDFJUoirFsG1VTJRqZJpDQKxRUiX7FEaDSbbcBQavlMTw6Srm/H1SFYqGIY7usLtXwOxFhEGCbFqVSAT8KKJSKTM/MoOoGA0OjtDoBwxNjcnCNYgxDJ01iTMcgSHVOzJ4kZzu0G3XqrRqlgX5s20A1BHES4WQylPv6pTOwbkGqEITBBjpKL/QkTJAoHBJFKvaVUDQFkOdHUxWmpyZQ1YRs1iEVFidPnejliaqkqYpuSD1uJpsll81x/MjrdLwupUKBhIQ4STBtG8tx0HSjpzuTDqDrRjmKAp7XxrJMPG+NOEiI/JTnn32JfC6HZZjkizk0VSJ4URSiqYIoCkkTQS6X57b3345uKASJz9DIEJ1QIe3d46Hvo6sKSRLhura851NYXV4hDLq4lkG9ukKmlCEMI8IoZnW5xsL8IoMDQ6DJTFVDN1BSZGGZJOimvkGhDv2eA2sKcdIlDH10w8KyXQzLZe/L+3CdDKahsbZS58++/JeUiyXiKEQQ4ToOftej1awBMWHQwmVxOCcAACAASURBVNCh49VRiPC7HeIwwtQdgm7EmbOnqVQGMHSJSne7XTRdk9pxRSEKU3TdltruNGVwaIjTJ8/xta/+/+y9eZAk2X3f93kv76Puqr7nvmd2dvYGCIIQsYABHiBESpRJSpYP/WGHSTtCEaatsBxhU5TDYYX+ss0QI2gyTJoQZUkgCOLeXWAXC+wurt1Z7Mwec599d1d33ZV3+o9X1dto9MzOYBcSFcSLqJjqmsyX+TJf5vt9f8f3++cEQZ/Dhw4hcsH8rUV0DQxNQ5MaiwsLeJ4LZAhD1fi2Oz0eefQxiuUik9MNSvUJjh07SpKEtDsbVKplhK5jScnTT32ZK5cvcvToEXRdQj5ymoQhe/fvodqoUKgVyUSM0DJ8t0CapmxubpAkiqgKcv74j/6Y5aVFLl58i8cee5Q4jPjed17h1MkTmIaJaUg2NtYo+B5ZmhAlfRApfsElCJWckK7reJ7H5uYampDYhkWeZhSLRTrtNoZpkCOwHR/LcUc5SBnNtQ18X6VWO46DZZksLN6mVPQwdVuxwFoaeR4w6Hdp1PdQLBVwXYs0C3FcE8/zKFdKSF2j3x9y7PgJ6pOTFEtFTNvG1JQT5vRDD1Cr1yiWSuq9hI2hGdy6dYv5+ZvUaiWGgzbLy2tMTU1z+/ZtTMugXCly4tRRmpstiuUSru/hFwp4XpE4AXM0D1577RxZnlEqFbh86Q0mJyusN1Xktl4tK6K2NCTNUhVNDYasrawQhSHBcIilm9iOQRSG/Nt//Wlsx2ViYgpN09A15aSpVitkeYIQUCrV2H94L8eOHcG0TE6cOE44SvnNkgwpBUEYYlk2V24tUmu/xX/2P/4ftJo2//x//2d8/KM/i/PC9zBNncAxEMJE0yFJY4QwEFIjCruYtkHAOsIcIGKPl178NhP1CYTU0TSD77/6Gi++9BIzU9NqPdANDh4+QEpCJgUTkxN87i++yNzMXpIowHM8VldWCcKQmZkpbt64xuGDJ2jUG1y6dIliocDzX/8G5VKDYdBhMAyQmPzZv/z/WF9vcu618/zKr/wqTr2H73sM1g3W1lapVCrMzM6iawnm89+Dg3uI/9lvU56e4mO/8ItMOyVur80zyAMM12L5xhKXXn2Tx598lOk9M2i6SZLk2KajpmcuRuz9O9QS7rLs3mvW1XaQd7eUwe3AaGtV32ZH7GZ/7DTCfyj1t1RAPHgMuX/2h46z81h3crhvP9/t4HrnNmOCv/H5jQGsFDoyTYgGfQpukf37TnDlRpd+f5VSoYCtZegyw3V9BIbSJB/2OXx4hmJxhn/xL/6M4w88QK4PWVppk2NRq81Srk4wOVlHMzL+9af+Db/3e3/AyZNnWFlZ48KF81y8dJ79B/fytac+x9LtCzz3hU/xyLFJktYNHtzXQFoe06fez3/3u/+cPYdOUS4UycUoTVdKBVqlAAm5yMhREljb50euIC4IgZAqg2H82cnOHMcxnU4Hy7IYDJRDdLvDYDfQutt8eCfb807z6m7tRwlM3SnCey929M5+7uW8t2chvNvo8nsJKHc6mrbfz3t5P/w420/A6/jbuwavP3pU9N9Fey8n2f1O3PHD+F54hPJc6aZalkWj3kA3dA4dOYxlSDzXZGVpHmlouI6qI/23/+bPmZqaZM/eOTzXYzAYUK1WsG2Hen2SSqWGJiUXzr+OyMHzXLr9rgLJ174BaYzWOAC8zVCb5zl6Dl7BR9M1BsMBhmmNxOvVQtdsNvF9nzBUJDbK859vya3ouhI5t0yLVqujIo+GQRTHRHFAnAr6QUScCnIheeviFdA0okQRvhQKBfbs2cPi0hKVagXLNDBMk2aziWWaDPo90izBsS10zcIyLTZbbUzL4tlnn2V1dYXDh4+gjyRxtnvT4iRGapJerzvSh60QRTFS6krCRUpWV1ZYWJinMTlBEIZomhgZSZDEMYah4Tg2eaZkHEpFn+FwgOu4DIOAuT0zVKsVyHPCIOCZrz7NIw8/TJRESClxXWebLpwC0EoW6m0JA9/3abVamJaO4/hEUcLRo8fYf2AvCKUlK6VE03VMw6Db6yGFIEpifN9ThncU0NpYhywjTXNsy8TQJGEwRBNjbdsEqRlK1se0ME0DfXQ+aabqfAUSx3EoFouce/0c1WoFx3FIkgRN0xgMBiPSK1W7LISg2+kC+ahu9+3nKUtVau7KygpHjhwmI+OZZ75KEIQ89NCDzM5NK0mTYYBuqLmQZRmmZRONaj4ty0FqOoNBSBhG2I6Lbhg4tovU9BGLs4oI5gKyHGX0xgmLCwu4rk0axfR6fW7cuMrJUyeYmppCCEkcJ2RZrCLIqHrowig6LDTJ2lqTbre39Wwp0rIYXddGdaYprucqJ9RmC9uxMUyTyalJVlZXGYYhlWqFQb+vUsMtiyROMA0TckEYRhiGydLSIkEQYFk2pqmYpw1D58iRwzQaDTzPY3l5lWPHD5NlKVKqSLFlWwgEftHfukeGYRKGAUEQsra2ShxmeG6BTqfLzZs3MAwdx7Xx/SLkgvX1DQb9Ib1+FyEERb+ANmIgj6KQKAq5cuUK+/btIc9gvblOs7kKIse2PYqFOlJClqUYppLNsSxHEXRpGoeOHEE3THRDZTq0WpvkqXKkRHGIX/CVUyxX8hVxHLO2ts7Xnn2WZnOdeq3O3OxeBv0BFy9d4cKbFzl9+gx5JvB8jyxL0Q0DcojjmO9+92Vsy8D3faTQKZZKWCOJHtsyGQYBvusSjq63MWJYF7lA1wxc1yVJMmZnZ+n3+/hFn5s3b5HnMDc7S7lcApETDPtICbZtYlkWnlcgCCJcz0FKjdu3bpOmsQLIUazkvvJMgWLLptyYJhl2+eRHfopXboX82q//LSqyi/GNlwkY8Nb6VaxSilZaQ/M6ZOY6eekKsrRK5i4h7QHCbpKEJlO1/SqlfyTds2/vXk6eOKEcOUlCr9enWqsihKoF1jWd7589y/vf9wSO69Bcb/LFL36Jffv24fs+hqErR1SaMj09zcVLl1RJg2Gw0dpgenoa23bodnp8/Od+jtXVNSzTxG0MyPOczXl44PQD2LaNlALrm68o0PAHvwuWuh5ZPkpbJSdNIpIw5OVvf5cHHnyQA8f2bxm/w6EijzNNc1d9TeAdweu9tHeyA3Yz5se/b2ml3qUGdef3H/jsm1GfO2z/o5zvncDGzlrXsVQOgEBg6gaNkbb16YfOEAUdrl66jCSm12mTp0qH+eiJo7i2g8h1bly7wf4DBxiGIUXfoTeIyeIcz/P4vf/r/2T/vhlWFm/zhc8+w759+3nfow/z3NNf5iM/+wT1kktn43V++Zc+RL81jy4GrK0uUC7Y5LrLw+//G/znv/Xb2IUyYZyiCcjl3ca/+++GYWyx6u+8ztuvyTgbCSAMw9Ec/mGnxm736J3+b7cI7f3Ynz8KeH0v+7oX8PpXJR36xxHh/nG1n4DX8befgNd7bj/qg/ZenMN40TMMA6fosPfAHgxdY2Vpns31JW5fv0Z1coZ6bRLLdPijP/pDHjh9kmZzFc9z8DyXL3zhi6r2sFqnVq1R9nwa1QbhIKDgenz5i1/m1KkHELdegsEG2eY82fp18uZ18uZNnOEqtOcJOutkdhnLcjAMC4TScA2DIaVyiThWMjOWadBut3FsexRxlQTDgDiOVKTTsnBchzhJaHVaNCYmsR1FCmTaJoPhgO+98jLXbt9kanqOkucRJwmDQR9NEziujSYhSTOWlpa5dOES09OT+L5HHIckgxDbsXBKPoZj0233WJ9f4/ipEwRBQLPZHBEnSZX6Fw9H9YE2pVIZISSaZtLr9vj2N75JHEZMTk8yNTWpdB4NAzF2UGQ5um5gmoop+Hvfe42V1RVm52bJsow4jigUVYRK01QqdbVS4eDBg2w0N3A8lyiK6PW7DAYDbMfC0DWEyEeeYWVsKykiVYc51mDsdrvYtkmaRVSrZeIoAVS9UzSqgbNsG8tWfWZZwub6KpP1OqSpquOTOasri2gC+r0eIsspFgoMo0hJ9ghJlmcMhgNVV5cJwjDGcR2QAsMymduzB2skvSFGhnCe58orPeyR5yqV0XYsbMtCCDAMFZFqtVqj2uGU/Qf2ITVJlMQcO36Cx594nHK1TBiHSp7GcJCaRpLmGKZNq91hMAhxHJcMQZrlJEmG63m0Wm1sy+eNN9/C9xQLshyB6FwKoihG11Ut5o1rV9k3t4ckUeDh5MkTTE9NM+irMVcq1ZG0kiCOE4bDACEkrusRxjGe6/PSS9/GdT2qtQqQoxsGWZry+vnzzM7OIoUkCCNMy2R2dpaJqUlM28aybYrlEoAi74oz1tc38d0Cw0FIt90BqaLapVKJSqWi5l0OB/bv5cTJY0rupFhEN3QmJhrkeUoQDDBMHcu22Wg2yfKc4TBicXEZQzcRQiOOEprNDc6df4N6ZZLPfOazRFHMsaNHieKYaq2ClCYCyZUr13j55Vc4eeLkiDk6w3Fs5ufnqVTKrK+vkZMzM9tA14xRdD6kXm8QBglnX/k+vV4XTdPwPY88B8/zybKMZrOJ67hcvnyZSrkE5KRZimNq5CS024rxNgwiOp0u6821LRbvldVV1tfW+fCTTxInqta4Vqtz6NBhrl9XPAGOY6PrxogBGvq9PoZh4PseFy5c5OvPPc+FC5c4cPAAaZJSKPgIOdJLzMGyHJobbQb9IXGcIEe1vWPgtLS4RKFUYHlpmYcfeoRCQUXKpQBdy1hfX2WjuY7ve4RBxIsvvMTy6jKzMzNMTjawTAspBN1uh1q1Qi7ESK4mR9N1EulgLZ9lwupz2ryO1XwD59wa+lSGf0TD9ROMvoReQtQecu3bC/ibFVixMVoeSQeYWuHqm5tMNWaQoxpbxU4s+fNPf5r3ve/9aJoky2LiRGl6tzc3eeyxhxn0O6RZjl/wmZ6eIR7J4kxNTZKkCd1+jyiOOHv2FXqDPj/1gZ+iWCryJ//vn+K4Lo8//j4WlpY5fOQIvXYbbyKg2+3CoMZmq8W07eB+9SW0B4+w/r/9Frllk6Yphm7QaW3iTNSwpaSzuMpr3/kuf/+/+gfktnq/5HlOmqbMz8+zZ+9exaS8TQ7mBxfTu6+z97oe3wt43e7A3r7fOxn2dwKv97L99nYnUHq3Md2JFXn7R44jUZpkmEQ4pQJ+vcKZ44/y5uXrbDY3sBwP17ZwTJtma5Nub0A46GNbGp6tYRrguwYvvvA8p08cIgt7bKzcJo+6uFrOq99/A9eI+eoXPoVrdEi7N3nm85/i8FTEsHWbWtFg0FdlRuXaJB/9tf+SD3/iV9H8KkKzsC2DNI5Auxvx1u6/j+fPThbindqpYyftmERxXL88Xvt2I2za7e+dEdrxvz8Br/9u2k/A61+xdifwKoTc9UV1pwfl7jfqTmkGuwsyv1OL/sE/Jv3Lr/2QAPc7ndMY3O0M999L24397Z3avVybu53r/Zzf9v0AUqFqIhzDolIt8Z1vvcD8rZs88YG/geepqMkv/dIvcfjwQRYWb2HoGoVCkZXlNR566BEajQbDYMD1KzeYvz1PHIX8yZ/8Mb/4iU8wOTNNvHAe6VewP/LfoB/5IPrRn9n6fHc+RmvdQg9aJEYJzbDIAJFnKnqn66rWCrZSb+XI+NOkRpwkauETGlIKNF2iG5IwDLBti16rSb+zSbFgM+i3WFtdxjVNDE3DNAw8z2VldRlNShYX5/F8jzQTrCytcPbsWR5+6CHSOCYIhqwsLalIjaYYei+88RaNcpX9hw5gGCY3b9xkotEYEZLECG08XyHLVMp2mqacP3+eK5cuceLUSfyiPwJxQyzTYDjo49oOSaqikUhFdPTiC9/Bti3279+LaRpEcYSKNlrqZuY5nXab4oh5eGllhdXVNWamZ/A8DyHG3leholK6zvq6kgKxbXu0iKpUdM/3UUBJMZSmSU6cKL1SAbTbbTzPUyLr5MRxqNKKpTbSetTI0pThYEin3aZWrSnypF4fwzQRUrK52aZQKo4kdRIq5RqbrU0QgmEQEIQhhmmSREryJc9zWq3WFnOz7RgEQaCSsNORlAcQRiFSalukMCol0wCRk+Vq/ACDfpdet0u73cYvFGEE6Pv9AVIzMC3FwK0ISvKtdK84iYnCmGKxSLfbo9ftUi6XR/rDinRJExJNSMrlspLfERrzC7fxfI9ut4dAsLmppG2GwQBd17EsdR/H2pa27RLHMUeOHKVQKGCayiMvNIEmJI16fcvpYJgjrds8J8tzdENHk+p5yIFBv0evO8AyHQSSjWaT1869xmA4IMsyLl26xPT0jKpBzDK8kSTPV77y1JZskQLgDlEUbml5+n4BXTfIUQaWbTtomsby8gpf/OKXWF9rMjkxxenTD3LkyFFs26JcKdNut0nSTDlnDIuTp07yxuuvYzs2tVoFhGLY1UbZFeVKBSkThNDxPB/Pc2i1WiRJTqlUoVqt8Nxzz3L06BGuXrtKvVan0+moue04vPrqq/gFn3q9rojgNA1NV+uJaRqkaU4UxfQHPSqVKo7jcOvWLZ544gk832Mw3KRQVCnVkPMXf/EZpIQjR46RxjHXr1/DcRxc1x1pF+c4js3yygpJHPORjz6p2HgldLoder0e165cZ25uDpAUiqo++fr1GxQKPqurq8po1SQF38MwLDUeTcfQdeI4YmV5nunpKWxbkcsZhsG+fft5+ezLRFGIYzsUfI92p0UUqAizkJIbN29iW7aqd9cMukHGRMWnb01wcanP7NOLZJPTiEERve8hAx0ZauiRxdrCOhMTdSzbJc9zLr9xFWmAMwF6VEdoipxOCkGSJhw6eHBE+KaTJBG6YWAaJsVikdZmE2tEwDQYDKnXGnz+819gbm4Wz/P43Bc+z7nXXuPgwYOYpsnp0w+oqL1tcfjQYXy/gGVZLC0uc+vWLb5/9ixHHqpSqVZwsjmmwgTrhVfo/de/hviHf58wzahUqmiaThQMKZeKdKM+cbfPc08/xd/+lb9FqmVYRZtsFGAdk2+9rSl+h/V1x8/3ux5vT//cikJu2397CuT238ZRy+0ETTtB7c5jjO2n7RHA7Pnvkd9YQDswd0c7btz322Rz966QcKdrs30sIh8X1ORIQ0czDDIpiAdw7MQJXvz2S8zPL9LtdKhU6ly5fhPfK5IkEZWSB2R4vodt6ti2xZ65GcoFm4dOn6TXaXJo/wyTM1UG3dv87AdPsH9PgfWVixyYK7O5sojvlQkjWFwfsLja48FHPsSeBx/jwNGToBnkuYAsU7JaO0ixfmA8Qu46Vl3XeeONNyiVSlsEZ+P7t90hsfO+jufEzvt5N9t6vN34GDsdHu9Fu9scv5fj3KszZbffd6uh3m2fe7XzfxTb+V7G96Pa8z+u492p/bUHr7v//qPclDuD160t7gO8jqVydoLXH2e73xf8u23v/hgCkUtAomsapx48yez+Pfzu7/4zHjj14MjA6LOwOM+x44dIk4QkyThx7LSKWrS7LC0tcOToKerVOkmacujwYWzfoxcFFNoXEZrEOP5hhOkibR9peUjLY2rfYfLCDMWlb5MXprFcD8200KTyUm5ubqBpkpyMdqtFt98dRSDUnLAsEylhdXkVz7WBlGDYQ9cEruPgipw0HtDrrpOnQ06eOMrDZ84wPTlNsVjA0HUmJxusrq1x9OgxgiDiTz/1ZzzyyKM0Gg163S55llIoePgFD9MycSwdjZxatcyx48eQmkUYRjz33HPsP7CPKAy5ceMa0zNzBEGEpumjl22Gpkmmp6c4deoU5VqZYRSg6Rrrqyt4tjta+0YpPnKUSm0YHDt6jL379tDpdDBNC91QbKm6YRCGIZqu5Fdycs6fP8fi0hpBEDE1NUUcK28uAgbD4ZZMj67rhKHSokzTlCwX6IZGTkartUmxVCLLwTYt+oMBUggGw6ECsUKQpxpJGpPEEWkeY5gWumHR67a26nz9QhEhDUWAJTXSNMZ2HDzXV04ITclTZJnY0r31PIdgGGAZ5pbBND7fcVpVnmWKXCoH07SIY6UZrGkGhm6ibECBEJIsU5qYmtQhz9Ek6JpGu91iZmqaPFfRYd/z6bQ7iFyoY2cJuqYhhcDQNeIopFYtq6hm0adQVIDAthxyBN947usMewMKvkulUsS0DJAapm1SKZfQNZ1ut8dnPvNZ/ILPU08/heu6dLtdqtUqg8GQpaUlPM/HMCy+/OWn2NjYZGZ2ljiOCII+lmWRxBHPf/15lZo6cjpIVERdk5IsVQaRGEkU6RKCoWJT/tqzX+PBhx4kCAMajQa6rhPHCVNTU0RRhOO45JliLz569Djnz7/B6QceoF6vE4Uxg+EQgRjJLuVomonlKKItY8RCHEUhp06d5EMf+hlmp6cpFAqsrKwwGAxpbW4SxQmWbYwAn8dwOGB2boZKtYymS3JG706JikBYJnkWo2sW3/vuy/gFj0KhQKvVplQuoesSIaBWrzA3NwsiZ3NzHd/z2djY5MCBA9RrNZCQJTG6ZrK4uISUAtd1MU0Lz/fodftUKlV0w+DUqVMUih6aLlAkdxAEA4QQ7N0zR2Oijql7LC0ucvnyJbrdDtPTU0gBlUqZiYkG1WqFkydPkOcZSRIiNUGSZHQ7fdZWV2m3O0xMTiCkpN8b8LWvfpXXX3+DD37wg6MUeJ2V1WU2mhs8/cwzrK2t0WjUieOIaqXCoD+k3+9T8AvcvH6DSqXCmYfOMD01xXDQx7JNVpeXSZKYNE0Qus5Eo4GU2lZZxo2lJq1AMDE9y3S1gfal82gPH1ASNkmEFJDEEYZhUalW0Q195IgTOK7L8vU1Zs745ImGLspcv36darXKMBiSxDGObbO2ts5Gcx2BRp5Lbl6/SbVcoOA7RCPN65XVVc6ceYjFxSX27tnL0tICH/3oR6lWqziOYhaXUhKGfdI0GdVbZ3iOg2noeK7N7FEby7LwXx8iXn6N4f/ym1h/5+OkWY7tOOqab2xAliEFWPR55umnmdm7l+MPniaRAqkpPdpx00b6tnd1SO8CXu+njQHMdnthzG1xt5rBuznydwM7u/UBkP7T34dzF3/ARrrTeMZAajfymXtpO/vaAttjIAgIoQgJRa5KA0zP48wT7+NDH/t5Wp2Yb37rVTIshHDI8hQpUiYadcIgJowikiwmTYZ026v0umtM1DwcKyUI14mHi+zbU2R2pszK0m3yLKNQ3ssr56/x5vV1fuZjv8pv/fY/4WN/8+9R3zNNmoM+IilTp66BuJv9ufs1j6KIubm5H6px3b7ddgCyfT7cDXjdy3W+133up73bft5pbu62/c7r8KPa1z8uwPrvs72bsfwEvO76+3/Y4PXdTAil4WneOdVoR7vfNIPt7V2/SLIRCUUuSLIMoYFfLFIu1jF0UzGv1krUamXSNKRUKvDqq9/HdQpb6XP1Ro1btxdBCmZmZrFdh43WJpptUGxfQogc/aAiztr+8paaRqFYo722itG8gF7bryi7kogwVGm3AJ7nKVkGQ1dyPmGMrhukWUKeZ+hCIiVE0VAxnZomutQIhwO63Q5e0SFOY1yvRBjlrDfbpHFAmqXMLyzQ7XYpjbQB9+0/wERjgtmZGQaDPmE4ZGZ2GgyNOA4hjkkjVYNr+R6aMFlYWKBRr+M6ttLwdGysUcqySguNFdmRrgEZqRSkecYgUAQ3lUKBXruNbuooBk8DKVXtY5woaSNDV2PXRtqpY2BnmiYCxQwKgq8/9xw3by3RbDZZXVnl+PHjGKZKb7Qte8sTLIQy3kEZaYr1V5JlKZZpkqPqAIORNq0mJVIITMtSaUypRNMFUlOkLjmSHIkmlYHj+QU0zcCyPQbDEM2wyPMYKTQlQZTnytMuBZblECcxeZ6RZQnrq00KXgEhFRuybdujtFIlz7GlnSdHUjdhRK/Xx7Yd8hzeeusCtVoNXdfZ2Nik02njez7kOXEUYBoGtWpVgbcoRJMa/V6fJIpHoC9l0O8QhgH6yBu+sb4GeYbr2wgUW5RlWgwDlWL8ja8+S7fToV6v4rg2GWCY1kiHNsW2XYKhquHUdYMPfeiDGIbBYCT/YBomfqEwAuWC86+/zvzteZ543xMMhwN0Q6PX7+E6NrMzc+i6TrvdZRAMcS2T1mZrVCelGKyllJDntNZXaDSmWFhY4sq1a5x84AT1yRqGNk5pL6FpEtO06PV6GLoCGXGUcPDgYXIY/W4yGA4VSdUwZG1tHd8rEIQDDNMgjmOWFheRmka321FR1tYG/f6Aixcv8tzXv86ZB88wPT2L4xogBEKM6lUNjdWVJRVVt2ySNFFaoYnSqlX10wm1Wp00i1Xpgutjmgat1iae71IplwmjIVEUIKXAtlw6nS6e67GytkqlXFTHROfK5Svs26fSQS9cuEie5UxPzxEGIbdu3WZpeRHPc8iyGFN3aLW71KoNDN3EMCwKfpFrV29y9tWzNJvrfOTJD2NZJr1el5yMzdYmURSi6xqmpdNubxJFAXEsCIKAxx59jEajTpqlaLrk+rVbDIdDTp48Qa1WxTAM5udvk6UpU1PTrK81WVxcZHJyEts28d0ilmXheh5xFPHGm29gmSalSpk4itF0SRIp8GhZJq7r4hcKSvvY9ej1eqytr/Pyyy9jGrYi2UJiPv0m2ZEJkiQhiQKCYIjreSrVWDMU8UyuwIuhG9QrdYgF+swALZwlSzNsy1JZI6MU/zAM8X2farWBQNJo1PnWiy8ACd3ekMFgyNTkNKViCdOyMAydfq9Lo14nCkJWV1aolMp0Ox2ESFlZXqbgeSwuLFCv1cizFN/3KU4n6N9eRTt7m2//J79A6ZMfJiMlzyWGZmBZJv12l2qtzKuvvMLK1fMsr6/zkV/8RXS/qN6pSQq7RIXuus6+S/C6277bbZzdQPN7CV7fZht+Z/B6p+vxozId7+xTjiixdAQyB6FrJHmGWypRrDQ4fPg4rU7ErRu3CIIE8pA9M1NoUmOj1cXQbfxSCc+zKVeKhMM+paZfwgAAIABJREFU9XqZiYkqIhecOHoIhCQMUs6/dgVdL9JNJWvdIR/++V/iv/jNf0h5coZQCKQcRVrzEXAVkjFj9/2C13HN9Fg6b/u93RlV3z4Hxs6T+wWv43av9+V+279P8DpuPwGvb7efgNd3aFmW/w73wdL7XoLX7cfZnmaz0yOzc1Iq8CrQf/mj9zBh32Y6zvO3v98JnN+xlyxhdXUFx7FH62C+7XPnl/r9PFCqdlGts9vP9W73Y+fxgK0Ih4IRKVKDHKX7um/vBJ/59F/iWEXKXo3VxWVKvsugl7D/wCEKBQ9pCDrDLkLXcKWOyBOyPGIwaDM5UcHWwZ08iLH/MaRdIklUfdiYdMewdG4vLfCV773JIbML0YAUA93wSNKM+aUlJianibKcLNexTIc0zRQLcJ6RpDFxnGAXiuRSw7Q9dMNGN5S0jJACxy8QxCn1yRl0y0MaFqVKjZXlFbIk4/bNW+i6zuTMNIMwYK48gaVnxHGXYtmnVK0QJgLD9hHSIEgTpGmh6TZxlGFoIX6lSqlWp+DZ9LsbVCeq6NIjS0FKlVprWjYCnV53SMF3kLnEtnTyPAIpsNwipm0hpQW5QRIlpPGQYkGRsOTkCCDLVcqlpmlYhk4cRRi6Sm0Kw5ijR46DSIjjkI9/7ONouk6WZ+QSNF1uPWLbyTLSNMU2VH8AUjOIYlVXbOpK8zNJlQ7s/Pw8lm3herY6JynRNQvDsLAsmyTLKZZrpHmuIhm5BmiYuqU82YaxVWubZxmWaZEmSrv22rUbTE3NYFoWCLBti35/yLde+g579+0fRUAyBDpxGBMFAYYmaTU3KRWKozTilLm5GZI4RtcMnvry13DsAtVqTaXKpilf+uKXOLDvAN9/5TXK9QJxltAd9JCmTrFYYBgMybWUQqlInKZYjoNfKCF1kzTNicMYkUF3s0WpXCLNEg4dPobQNA4cOky302fQC6gUq6wsrkAOCwsLuJ6D5zv4nsOx48fxSgUmJmqsr68y6HUoFsuAxtlXXuXk8ZM88vDDWIZGnmd85tN/zsFDh9ENnTRPiZKIcqWCrhlcuXyRL33py8zN7sP3imw0N9E1VKTbK5CJFL9oc/LUMaTUkLmO5+oIMhzHZP72TXRN4PsOeRKxttYijnOefuYZatUicdjGsApYtoNhmEhdY2JygtW1VYbDhCzLCQKla+tYDpMTM+SpJM5DRSo1Ypl94YUXOXnqFAvzt6lVS2gyZ6O5zqAf8JlPf5aDh46wcHse17YxdYkUGaYhSWJJvz/gO9/5DseOHkfTIMmGxKnA9Vxs16Xd7SKkjm5Y2LbHZrPLZ//yC5w9+yo/86EPIiSkWcTa4ioiB9fxSOKEfXtncWyDNA3JEJx97Tznzr/BE48/Tp4kCMtnGComY03m9Lt9DKmuQavV5vTpM0w0JsnSjKWlBSq1ErquMTk5TRQp9tD9+/eTk3P56g16gz71RgNN0wkGMc3VNlMzFZIkGemZGly+fJFDh/bi1xuAztEjh3jk4QeYmKhju1XyLGBtdYX5hdsUKxWmZ2exXB/dUPJeaZphmAaGYeK4HppukCYRfsEnzlJcx8ExLQadLo3pOWbnZhFZjvnUG0QH6ySJIgOTo2dUCFRqeooKPo0IxzSpo8UWqddndXMePS7juQ62aaFJTclQ6QbBMCDPIYkSfv/3/4DHH38fjYkZLl26QK8bUq9Psbq6yvLKLaZnqySpoD8YMDkzxdyeOTJS1pprfOnzX+L97/sAly5dJo4yGo0JNpotSuUq2etLWG+s8zsPHODNYZczp47gGhq+69KPAmKRMjdTwcojPv3//D6Xb13nv/+f/ymZbpNpJpIUXSQIafyQYXzXdfku4HU3EDrWgt6+/d0icePv477GoGZn/+N3+fa+xxJt29tO9toxeN3NRtp+rDsRB+0cw2622Hj829Oidx3/6JMLJT+TpAmQjzS8UzAsTj7yGD//sV9gZs9hzr1+k+s3Nul0oN9KePP8NYZhwKAXY5k+7VYf2/a5dWuRjetLBL2Uc69e5dq1FXpDQYbNmxfa/Lf/wz/hk7/xn5I7PplUZRegIdAQQiffYpgGhGIU3k3x4U7XYGckdfv13e2e38lpsTOFeLz/TiKs7b+/G7C2HfzujBjvdv92G8f283s3IHznZ3u/79TPnTID3otU6t1Yn/8qAuM7zc2/JuA1+5372f7HBV7vp9+3wevuXsU7HfsHH777HUe+lVr5w+f6Xk3qd0dsdaeF+QcWvjTizJlHSZOcl158gTAaMDc3hev6vHbuHOWy0oA0RsQC+oghslwu0et1uXbtKlEc0upH1PceGmmNKQCVpumIVTKnWChy5sGHWWrFFFfPotX2oZkOrXaLYqmAFCqqGEcxY71WhDpvTUqVSpkm6FJFzDQJZBlZmmJoJkLTSLKEIAiRI0eE49j4rken06ZUKrFnzx7anQ69fo9eN2BtY40wifF8D4REakrvMMsyLMPAMiySKEEgWVtbwvFL6Lqp0n9dB8crEIUp129c48qVy+zdu2fkWhAsLy9TrpS2aiQt22Bzs4VtewyDgDhOabc6/OEf/t8cOLB/xCCqk2YZQRBgmibN5jpCKPmaMIphZLxomkYO7N+3l31795EkKZquCHaEyEdyOW+zPI7T0yzLYm11FdO0EVIixjT/eUaaKGNLSexIfN/DGHmQx/chiiJcR5FEqSiNNtKlzFSd5cYmUiqHhZBii3lx3NJUGchJEuN5KmItpSQIhwghSLOMmZkp0izGskw0qep+Nzc3KJdK2LbDwsI8X/jiF3Fdh1q9qgx4w2Dvvv00GnWiOCKKQjY3NziwX6VG9vp9KtUKrudjO46qPc0yLNNAM+TI8y0RaKRpTpbmBGHA+uoaea5YJC3LUuzEpsPERANNKubgOI5wXY9Op8tTTz3NQw+d4VP/8lMcP36M/Qf2oesSzbAwdJ2C56FJjbcuXGRqenqUcZDxqX/1p5x58CHa7TY3btykUCpTrVYwTXNEDqZqgKcnJ9i3dy8z07P0BwM2NprU6zVs2yYIE9IkwXEcBoMhnushJNy4fhPX9dA1QzEtpymWbZFnOTmSNM2ZmZmm0ahSKKg5LaVgcXGBfr9PsVCi3enguorAzXUt6o06mlSpv1me4noWhm5QrdVwbIdr169y+oEHqFbKIDJF5iUE1WqdemOCvfv2srHRZHKyQZomaJokGA4Jo5jnn3+exx9/YosVenl5BVWnnWMahooyjtk5paoXlVIwOzvL3J45kKhsCcNmGIYgBEmaohsaa+vrmIaJ4/ocPHSIEydOYuo6hi7RLR3PcUmSnDhUwE/TJLppEScJnXabudlZ3nzrTaamJjBMC9tySNOcPAfXdUc1wTbLS6vsnZsjJ8NxHL717e9w5epVZmcnqdcnKBaLpGnKRKNGlqe02n3arTZFzyOJI86dew3TcOi02tTqdTZbm0xMTBBHEc3mOoZhkKSqzjtJUtqtFsPhkPW1NbJ8xP7b7yl26DhkfW2Vt966RKVcpN9uUXj+Gm/G60xNTiktYk0bRcglFy5cpF5vkOYpArhy5aoCN1JDC0zcw0M6Cw6m4bK6urqNYT3AMpUGcpKk3LhxE9uxmZmZoVYvs3//IdI0Y2FhgePHj6FpGuVydWt+a5qk02lj2zambjA5OYWu65x//XVWllfo93u4YcjEuZvk/+s/5tSvfIJjxw9QqfgUCj45Gmg6eS64eeUq33z+eW5eu8k/+p/+EZrtk2smudSRZEgyct5OFb4nW+MdIq/bweX2aNudAMVOEDv+Pt5npwzIdoC0fb/x9uMypu3b/QCo+vxzgEB+8m2d1521s++mBOpOYP5u12vn3+PfdF3JcOleifLkLI//9If4wEf+I0488n5urLY4+sgHWFzcYO7AA1y6vsqeg6fpRwZff+H79DWX/Q88zpO//Gt89G/+Oh/6xb/Nx3/17/G+D/w0p594FMN1yaVEIhG54gu4Gxi/E1DbbRzbSZPuBph262f79ncqSdvO3rxzbR/38aNEYXcb+27bbG8766vf6VjvBujdbR79OI73Tv39VQevu7WfgNdd2l9X8CrlnT1nf9XBKygAmiQJuiEhUyyeK6srZGmClBnzC0vMzs1hGEpWZiyR4DsOCMjyHL/oU63VmZyaQtcNusMhpZJi/BxLYSjCIReBBpmgPH2Q5cuvYXZv8dnnvsfx48dwbJtOp40uBaZhqghCmm55g4MgYDAcYJuGItgRAvKcJIlZX1vF88vAiKk2A8s2yfOMzfYG9Uqd9eYa5Dm+7xHFEedee40ohiiLmZ6ZQmqCKIyUEZSBITXWVlcZDoYMBwFCCObnbzAxNUea5fyrP/1TDE2n1pgky3KefvppZmamKZVKo+hoTq1Wo93exDKdUcrrcESApBOEIXGc4ns+r7zyMocOHaBSVkyhYyM9CEOKxSKmaZBkGaalUlPjJFE1kEJAltFud2i125TKZdI0Qde1Ud3t28aZrusEgRqHkALDUCAZUCm55MhRSnYQBEpjUtcUKytsEcsYukGSJureSF05DkapyXGU8NRXnubEyRO4rrM138b3cG1tDdtW6dbb05jVQp1iWRaVShkpYTDs4TgW5IosSmpjYw4c2+XwkSNYlomua3iepxwmyC2A/o3nn+eVV17mySc/PAJpUKvVVJRZCizLHNXESTJiNE0Z3OOI/3PPfp2vPftV9u/dR7VaVQzRUqDpGoZmAjnDEUu247q8+dZb2LbD6toaJ06cwPVsavUahaKPbiqG40Gvj21ZtFttkkztPzU1ges5TDQmaDQaBEHI6QdOMzk5jUCQjupx8zxDStjc2CAMFSlOmmVMTk1imCa9Xp+FhRWqtQrBMBiRmqnr3u8GGKbFysoKYRjh+S5JkjIcDHj5e2d569IlfuoDP4UUOaahESUJuqFjGCbVSo1XX32Nrzz1FJVykampBkqIN1fREqGcTJoGmq6NIuaChx9+GE1Ttc9JktAf9DFNi35vwOzcLCCwbJPhYKDOJ1UsnZ7vU6lWKPg+cRwzGAxpdzpMz8zgjIjExky3i4uLlIpF0iRkcmqSuT171Bszh+FgOCJA6nL27FkuX73E4aOHKZaKCCHQDZWy7VgOlmnQH/TIRYKuGVx88wqeW+TCxTcRMqNWn2CiMYEUEsdzqVTKlEtFhNC4ePEylUqV5577OuVyGd/3yfMMy7SpViqsr69RKBbVvDh5EikyXFcRIUVRhOva3Lp1i+e/8U2CfsD+vfvo97t861sv8dBDj1EsFhn0+1iOyoCwLBPDNDEMk3hUazoYDMjJKRVLVMplmhstypUKjmOTZQmaBNM0KPgl5uZm0bIM97krcGSSUrGonv3x+0QIisUSvZ6SXRJCUimXKfi+cjD0AgIGWGUDM51A1w0KBZ+bN29uvbc8z2P+9gJTk1P0el2EgHLZ55VXXiVNMxYXl5iamsIwLNbX11lbWyOKVMrxG2+8zr59+5memmZ5eYl+f8DmZovbt2/zyIGDHLhwg7Xf+rv4n3iS5uYKU9N1eoMOhaLH0uImC4tLlKs1NppNrl26wt/9jV/H8GysQoVc6uRCIskQ5CTp26yu7yV4HQOIMbjYDYhu3/+dwOt2G2U7OLkbyNgJXoEReAX5yQ9vbXs/pVn32u5EJrUd5Ow8/+1j3O5MSIROisAtVxCWR3FimuMPPc6RBx/l5PEzFGqzeJUpfu6T/zFnHv8ZHv2pD/Nzf+fXOHzmMaqzB7ErE7iNafqJZG7vNNK2SWHkuFWpwfkdIqm71aK+E3jdDiTv1t4JvO4Gnnce617b/YLXd9vPu9n/Xvb9CXi9e/sJeN2l3cuDfO/tzqBsN0C4M61hp0dqt5rXnef+9vc7pTXcjRr9fsYA29epd3et3u4oz3OSJCEMQwzDvKe977RAjPtTxDgqJdQwDExDxy94TEw08L0C5WoFwzBYbzYxLHOkE6ljWAaXr16mVC5jObYiy1h6hXjtKu7cCcVomqejY+XkqQIeUmhkwGJgUejf5nBF0pcetuPg2CZRFKv0NTn2PGbohtLZtCwLOcqaFoKRLqki2Wl1Bti2M9KI1SDP6fU7+J5Nt9unVCqOZDBqbDbXmZqcYJjAy99/mfn5eR588DSlUllFJXUVlZq/NU9zvclkYwJN13nxxW9w/OQDBEHIytIiP/uhD5FmGn/yJ3+M7/nMzszi2O4WS6+mCTRdJ03gxRdfwrZV7RpIbNvFspQMiWNbTE1OUKlUyBEqciw1jBFQH/R7SN0c1RsmGIaOYRp4o5Rkd8SAaplKRiaKAjqd9giA6lvgsdPp4DgOQRBuMbymqapZGw4GI2M3xbatUYr628BzTIg0npJXrlyl2+lRLlfVT1mGYZhMz8yoqK/ICYIBnueNwLPGrVu3KBRcNF0x5CZxOjJWcnRDI00TbNsky5MRUU8HTVPR/jRLRgysCV/72tc4/eBp/IKPym/MRjJKkm63g2FYHDiwn+nZaVzfQzdMPN8nCiM0QyPNcqQEU9eVca9r6LpJnkG73cG2XTzP5/r161x46wJTk5NMT00RpzG6ofPUl59C1zUKBR9d12g2mwjA9z0eeuRhhIBavYbrOURxhGWbJIlg4fYCQkjKpTJpljIY9qnVywihNHiHgyHdbhddN7h08QpXr17h6NEjkI9TyJS8U7PZpFwpY5kmpmVye36Bb337OwyHIRMTUximSRAMSdOUfr+LqbucO3eOM2ceQgjl4HEcl7W1NSrVOnN79uB5LpZlcOvWTQxL1T1vbm6SpCme7/PE4+9jOOgwNT3BuHRB0zRVE2kadLuqXjnPM0zDREhBniWEUUiSpHh+gW6vj+O55CMpoLGhqqKyEikkFy9colgq4hd8NE1jaWmZgwcPI6RiaF5ZXaVYKnHh4kWKRVUPurh4G5DEccrKytoWGzICKtUah48eYXpmBr+gmGt73R6a1FhbXcNxbD7/+c8xt2cPzc01BJK9ew7x5psXmJis0+1tYtgO7XabNEl49rln0TUNx3NYW91Q88VxeOCBU8RxRJqmrK83eforT3Ho0CHqEzWyLGVu7x4KpSKuZfPVrz7D4SOHGA77FIpFPNfjOy99i7179pEkOZVqmVK5RGezy3Nff57Hn3gc0zTIsoQ8y7AtG920CEakbFevXqVYKKJrGv3BgHp9kkG/j+vaGJpGmiUE4ZBysUKWpphCx3zmLcSRScXablqQK5mPQX+4FTUlz/FcjzfeeJ3GRANN14iiiDQAZybg5ecVCO31e3z2Lz5LqVRienqKjY0Wju2Q5bBnbhZd1+n1uszMTBNGQyzLJIkzmuuqhvno0SPous7q6gr7D+xnfW2dLM355jdf4ODBg9QbdXzP5czCBtFv/gbek4e4dellbjY7NCZrDINAEU3VJqlWG/T7Ayzd4sknP0ptchKr4JNKQ6WBop4jhKrz37lG3nUtlT8Mbravrdttkp1/b69rHP+9c5ud6/adInfb04a3R7+2p5ruBn6yzynwyid+9gfGvZ1d+J3UE+4lqrfdftsJ4nf+/25t/P9pmqITomspIk+UNroQ6LaFbhoUJxrU5uY4cPIkuW2T2xZOtYLjOhiWhdQNhKFsRcPSyXVNOS+EiriODrZl9+021jvZbbtd5+0R0e33ZDtj8fha7CTpEkJsOeW2y+rc7fpsd3DsFqXfPsd23oPd+tyt3Q9Hy9362OkQuJ+2PQ195zntPO6dns/7bTuf0/H3Ozlm/kNof+3B63vX7g5e38mD80MPQamAPHMcuX/2jvvcy7Hvr93t4Xh33rLdjiHE2wQ844X3ndrdPFZb11lkjEs6sjTlpZdepFgu0d5sU65UlE5oHGHaShfPtQ0Gg75KLUtT8kxw69ZtCkvfwoja2Ed+WjEHb9E5juuJc3KRY1smYQbB5Gn8uIPXukCSZoS5gdQ1HFfpmgqhooRhqAhRdE0njEK6va4ieUljldZYLKKZNnGSYBqmklSRYBoGURiSxCmGqUhIpBSIPCfoD5icmeWtN18nS3M++IEPstnc4OrVa0RhRBhGTE/P0OsPkJqkWqty9MhhMqEkS04dP0oShWRoXLt+hUcffZTDR46wsrJCEAxpTNTVFMgFQZDwuc9/noWFeR579BGGQwW0yDMMU8lL+L6HZVkYps25c68poOs4CqRrkjBU4E1FERXD7HAwpNfu0Ol02WhukI20FDVNUiz4I2Ijeyt11zBURNh2VI1bksSqT1REOstTpBwtdmIsE6CNgGvG8vIyruuRphlpmnHxrcsc2H9ARcJ1nSiKuXjxInGsUn49z9t62WdZytTUFJr+dpaDoRsIoVIFx7qXw+EATdfJM5CaApVIsSUh0+/1WVhY5OChwwoE6XKkBawWOd3Q0ITx/7P3ZjGWXHea3+/EHnEj7pZ3y8zKyqysnWQVi6J2qaVpyS/29PRMj42x4QEGhmcA+8EPhg3DA8MwbAP2i58M2O4HjzGekdSNbqhHvakptShKoigWN4kskrWxFlZWLpX73ZdYjx/OzWQylVmVJVJqtUcHuMib98aNc+LEcv7ff/k+kiwhn/fVoq5olxTAtkwkKi2t3+0hhK5kilKV7J2m6TjipMi3ivk89WpdXX+mThRHLNxbZHHxPhcvPgUwLh3Qxun1KWE4Qh8TcNmWRRRFRFFGNAq58uYV2q02U9OTVKoTu9kb9vj4i8Uiy8tLNBpTnDlziiQJWVxcwnVd1tY2yOV86vXaruzOaBTyV9/+DkJoPH3paRzXpd8f4Ps+APl8nubWNq9cfpmLFy8Q+D5XrrxNeaLCD174PnPzJ6k3GqRpjGmZpEmMbpjESYomdFaWH3D13Wu4rkOh4BNHEfkgIMlUnbkYSwxpQmBaNq1mi0yq/5XjROnZGoaFrhmYpoGuCaJkx0ki8X1/rKGq4bo+g/6Acrmkos1CRdZH0Uilbo/PTbFQIMjniaIIP5ej3x8yGoVUK3Ucx+G5577D6VMnx6ymGp7jYRgaozDEstW1pJx1Sg4oKBQwdUE4jHFsl3zgs76xSpAP8Hx/t7+7d+7y6huvcvHCUxTyZWbn5nAca5c8Kp8PqFar5AtFGpM1VbMvVGTzwfISlmmTZRn1elVJEoUhjuMyd3yGy5df497CIpeeuUShEAAa559ULMZCk7iOPdYfdmD8fMzSjEqlqqLWuRyj4RBdN2g2t0FmOK5Lkib4QUAUJVy7dp2ZiTrW89cwnprBGrOYK0byiJs336PZbKKPpbaq1Sq+76tMBVQEt7nZJDhtMF2+gI5FIZ9H03Rc10MIiefluHvnLpubW0xPTzEcDTl56gxf+/q/4tatW9TrDYaDEaDR7bbGTNAW3W6HxcVFisUi+UKZN996U+kaHztGcON9LE3j7j/5HbyF75NLthAzl6jVaji2T5ZBKpWUVjgM8fM+ft4nkRmpro9rGRk/CXb+Pua6fISo0sPW+r11fIfVFe7f32GfHeQQPyhKexB41f/+Vw91qD+urfK4YGjv2B/VpJSYIlZp3hIEKQKJLjM0UjKh1nnF6afeCyGxyBQrOyCyDF1IDCSJZmFIEFLsXgdSZOMI7M+3h0m1HHRMD3NEHATc96d57xzzo8DrYf3uTzs+yEnwi5yvx9nmYb89yj3yqx7Xo/b5tw2gPqz9Brx+bO3xwOv+h/3+B4U2N30ocIX/f4BXlYK7Ew17/NSJg+ZUvVGVjwj12bOfeJZmq0O9WhvXUApMy8KwTAzDIE1HrK2v4bgOum6AELheDnn/DVzPxTn9BbIs3TXMhUDVGIkMREZGiumYFMpFXnnzPkNhUYoe4KZdyFWRmkWWjsW6harl0XTlWUxSiet5yqsqNFzPVcazoQTQhdAwdINoFCGEUKQijrs7XXEU0dnaVmLotkWlNEE+yLOxvsWJEye5dfsO5XKR1dU1JqdnaExOITW1yFm6SSIV664uEgwDLMfh/PknyOfzyEygazp3795ldm5GHbdmoAtrXDepc+rUPJbloOkCKVMMHXI5d1zvKogjyczxGdbW1ggCnwcPVojikFcvv8H8iRMYus7iwgICSRSOSKKEW+/d5uWfvEyWSSYqZba3NwnyAYPB4EMP4R1WbN00VRRS07Atk2g0QmbpmJRHMQ4LlG7tThpUmqasr69TLJYwDBPTNDl96iwIQRSF4/pXDc/N8b3nv8fp06exbGvXg76zIMfJCFDzFI8By09eeplGYwpN13ZBappJDN3erUfaST8XQuPU6TOqHhrQdUizhDiJiMZG+Nf+9R9SrVYoTZSQ42jl5cuvUJ0oqSi+riGlIBopRmRdV+RMjuOOa1CVzvBkY3rs/IjZ3t5ianoK0zI4feos8/Mnxqm8yrse+AEAYTrEsgxMy8KybHTdRGgqG6BcKHPjxk3q9RqOa1EqFUEK+v2BYjs2NEbhgHzBp9Ppouvq+i0Wi+iaybA/wsk5JElMt99F1zUGgxGjUczk1DT1xgTLS6u88P0XSJKUyalpTMMkH9hcfPrCblZCzs+zvrZOY7LB7NwcqcywbItBv0c+CNB0B8dx0TSNxaVFDFNnanqSQi6g2VLg1PU8tHF9oUrF1Mgyda62trYBlSmhG4LRKCZJsnEdm45uakoL2LTGTqiUt99+m2PHj7O2soWm67iuTRSNGAz66JqG56sIvjmuhUuzTD0bDIOtjSajYcz3vvd9XM+jUq1y+tQp1lYfkKUZ3/o3f0qtVqPValEqlBhGI5I4hiwjHI3o9nrUGg3++rnvUavVKBRzpFlIozFJLhdgmNo4xV5w9uxZPv3JTxLkA0zDpj/osbq6RL0xQZxEaJrKcJicnkGKjHsLdxVD6uamipRbLg8eLBH4OVXTbRgkScbq6gon5k/j+nkKE0U0Q+A4Lq5rYxiCNE1ot9p0Wh0c2yNKYnRdZ2Njnc3NTSYmJtA1jeXlZcI0Ynp6kjgMSZOUbq+H0AzanS5nzz03ej1mAAAgAElEQVTB6LtXkIub6PN1ReInM1X7nkn8XA5T10nShBMn5ml32iSxSjUHiKKYcrGIDCIsvUC/nWAYJktLK7iuB6gyhhs3bnLhwkVWVpYZhUO+8fU/4u/9vb/LM888zezsDGEYcXxmFt/3WFpcxDYtsjHB1ES5jGm7nDx5ismpSeyVdSbur7L9v/3XtE2LerKMpmtMXPoq3d4Iw/QQwuW9O1dASizTolKtkMgY3TaIMXcq+xFKXRzG1f6P1T4ieN2xYfaTMD1sf0fpY79NdBh41X73K2i/+5Wfi0w9qjb3Ye1R0ba9admPE7XadXoKhwwLKXTQ1Jqv7bwyHR0dXepomYbIBKYwkZoJwhzzXgiE0FE+egsj0zCzHb+yJNUkmnw4eD3qPOw/n3sjpHujdvslk/Y7Eh4V/d6Zn73729uXEGJ3zd4/tl938HpU4qlHOX8+avsotd+/ru3favC6t330EysOean2sJD/QSQGB70OH+8H/ckPsch9XMfw0byZh/WxEwXbC/Afddx7x7DzgNvLgiiEIBuDPpkx1mGTLC/f5/Z7N6g16iAFum6RSZ3hIEHTEnw/wNAthDDIUsH9+8uUB3cxbRM588y4jlKgGPtUqvCu0aDpWKbSTO2OYLEVcbufY65WxFh6HWSGtEskWUoYDzFMjVEYgdQwdR1d0wlHIYY5rrEzFFtgmiTYtsVgOCBOE4RuoOkmMo3pdlvYloaQilHWdj3kqEWSJpw+fRrbs1hfX8LQIr79/ctcuHAJyzb587/4Fj974xV++0tfVJIouoYuJO1Wm1wuT3N7C8vzsGyLbq9LPgg4OT9HEocgM8J4yHDUY3Z2hlNnTqJqbBJlRAmBZlpESYZlGoBihG61m5QnSmQyw/U8XNdj/sQkze1tbMsgH5isry7guzl0LcexmRnOnjnDcNjHti3ygY8uNGxbx7Edet0+O5qPhmEgx3WJuq5SaNNM4no5PDdHLhd8kFonM9IsIoklhqlRq00QxwN63S6u6/Lu1atUa1VefPHHNJstbNuhWCpx8eJF/LxLu7WN5znq2hUGWSbQdEOBnLHBFEUh8yfnx3WTOpZlj7VoVbRJCEk2luPQhI6hm2jKG8JgMMBxPMIwodcdYtsurpujVCgwOVnDdRQQRUqWlpYoFku4rosmNIaDAa1Wk2s3rlEqTDAYhXSHQwzTZGt9g1qpQpIl1Bs1ypWyug8EKiVdU0za7U6PW7fucn9xkVzexbQ1br67wPL9ZVzLZtjvY1sGUTRCiBC0lMnpGtOzxwjyBeI4GztcdLa3OuSDIr1en7X1VSarNRzbxLI0kiRENzVMWydNDITQQYJl6bz9zhXOP3GORqOCoRmUSgHT0w2OTU2xvdUk5/p0eyoVenl5GV3X8X2PcrlEcaJIliZYloGQSvJLAoNBn7t379BoTFKv12g0JrFth6vXrnPu/BOATpai7n8EMs14/nsvcOLkLIiMfD4gjiJGoxhdBMRRgmUbSKnSXpM45Wv/8muUSwUKBUUONTk1TZKCpQ2o18tkMqPb7REUSliOiyDDMCz6vZBBP+LOe7dxDB1LaHjFMssPlvjcFz6HH6jon2ZoRNEQyza5eOkC7fY2x47PkEmJyCRxPCBfzBHFI0rFItEo4f7SApPTU3i5HP3+QDmkkMgopd/r4bgO79+7y8REmSxRKcqDwYDKRAXLdFS9tWXjuq6KXGPiOD7dXp980afbb2HnHOqNafxcgc3NFjk3R2t7C8/LUa3mOX6sSrfZ4fb1Bcgk7y/cZXp6BoGOrpn4foFWs02Q83Esm0KhBGggdHTLwS8UmSgGbKyvoxkCN+fh5/K0mx1cu4BhSIw7azjtCCYDoriHqTmkWUoURTRbLer1BvV6A03XGQwGH6pR1zSBLgxiInAFCzdbALz0kx/xxJPnmJ6qUywUmajWqFRrTB8/hl/K84lPfppi4JFzLQa9DhONGv/iX/0/PHPpaeqNGgJJOBpRrk7w3u3bZPGQ9fVVBp02E6++Q/e//y8ofOHzFCcm0B68iZSSQfkCoJHzXZrtTU6cOkVQyJMv5RE7wSspMLRsDFqlcnwkMbomQB68Vso9y7jQhAKtD4moPcoo31l39zPEHkSWtH+/O6+9gPfnxjt2MB4GtvYCl/1MwPvLsQ76zUHHsncsB/V70Dj2a+geZq98eB7YjZKq+YNs/BKa2NVeSLOd7LG944MdxuBMCjQhyURGIjLQlb66Jg9nkD2orvEgxtm9DMB7JW8Om7e9YHJvmvH+tPOHXQd7U8cPGu9+MPsooPdR7fn9DpSDvvsoYPOox3GUMWVKCGz3ejnYhP/g818WhH2clOxHtaPMzW/A67j9qr0Sj/IYpT98DXlv+UPR18e92H9Z7W+6/4Pa3jHJnRt0x5OXZkRhyMzkLLph7i4YSZaBkMoAMpROqRAat27folQs4TWvK2bVE58+4IH14QjyzoPYd3M8+cQ5trdbODOXaOsVcsMVxNZ7SN1mmIkxMYkHCFzXJkszVTcpBFEckiQJpm6QxDFJnNButVhe2tEGlLRbTQI/oNXaRmYqwrawsMDWxgZBvkSSSdrtLsViEcexOT53mkajzsbGGoHvMwpHzM+fGEcK1fHsRDEty8K0HUajED+Xw9ANlhbvMxwOKBbybDVbjEYjTNPCtkziOFJzl6bohkmSqigfWYZp6OOI4weSBTtap1kSMRooNs9Bv0Mcjsh5AUK3MXSDwXCAoetUqxVAsLS0qNJZNQPHVinVpmWSpjE7zg8p5a6ebJIkaJpGFEWY5o5GHcRJjGl+ECmO4xjbstF1g2996884efIky8vLXLt2jS9/+csgd+oZ5W5U0jCUhq8mdDKZjhcEtbjGSQwC0kTtW6XUjRdfodLGoygmDENcx0VmCoxK8YFBoPR2Vb1zkiRUKzW1MGhKhqPT7XH6zBn8nL+7fZIkrK6ucurUKRzT4MHKErV6hTgM6fd6RGE4rjlWqa4gieNIAWckaZJimjaWbWPbJvm8r2qSI0m1VoUsYWt7i+WVFRqTkwqMC21XR1cZVnLstBDYtsPq6iqu62JbFndu32VqaopOt62i4a6LZVp885t/jp/zqdcrJElMrV4n56laznCoSM0ALMtmOBgiJWxsrOH7Ac1mE8/zyNKM4WiE5agU3J3otjpHYvf68Lwci4uLVKs1NE0jl8tx5coVBoMBpVIJ0zR2z8F3v/vXXLj4JMaYIXx5aZlbt24xNzvPtevv0JisjbWFJXGcsLq8yrnzZ2m1m2O2WZV2Puy2cT0XhMZwOMKyHXTTQMYRK0sP+Mu/eo5nLj1DPp/H0DUymWJYDtVKFSHg9u1bBL5PmsZsrm9gmib5fJ7t7W0C3yeKI7JE1UmDZDAY0mp1qNenmJqexLQsdE3DME021tfJeR5rD1ZpTDYwTAXi2u02vushMGh32ggBi4tLTE01GA6HLC8vU5qoqHtI09A0gWFoVCoV4iil3+vTbrcZDoa4rr17zsJoyHA44I033uLWrbvMzBxjdu4YlqWIrRYW7vPqq6+OmarrY+dTShD4mKZy1OiaYDQYkS/k0XUTEMRxxuuv/5TLL7/GhQtPklxfwlrrQaOIEJIoSnfvn3yQ/2DdHBu/Qd7fvV+TROkjG5ZONtHDS+fxfZ9z585RLk9w+/ZtJipVcrlxJkI4YmN9Hc/30ZDINKHf75NmghMnT1MI8mo+Wm0WF5eYnZtTNdvDIY7jUl5t4kmQ//w/Z3NzE92ysNbfRghIJy+h6zrN5jaO4+B67vh+NT8MPMQHgHFn7RHicPC611r9ONbu/eB073732icPi0zuAN+HOasfYbge2sdh4Psw22nveB+L8Grfdo8Cr4dtf9Dvdurv9bFSwF4HwcOOYX87SJroYXN8EEg8qO13WOw/pv3Hd1jbex0dBpKP4kg4aL8fZZujXId/k3bwh+zdQz4/9Le/hPH8XB8fk/PgYe034HXcft3Aa/w//Z9kV24ckW34V9t+ncDrQaQMe8GrYSipmPdu3qTbDHnv1l2klOSLARtba3g5Bw3B0tIyQijPfLVaI5Mp+c4tEGCe/OwBD/8PHhkq9ViltBimjee4VMplfvTCjzGCSV68lVA/dgy/eQ0v3Mb2ywgrhyYE29tbWGOyqjiJMQ1TsZwmyRhQZ0xMlCmXS6w+WGHQ7/HTN97h+vUbHD9+HNBot1pMTk2SzxcYxSlT08dotdvUGnWla1mrMhr2qFUr1GpV8vk8L/74JebnTzIYDFhcXMLzPEYjlaZqmQZJFLG5vsk3vvY1qtUqhXzAysoKE5UK+XyRJE7QNB3HsQFJHEXopokQirwoikJklmKYSuTctCyklKyvreHncox6beIoQQBx1EfKjF6nj2l79PpdvvEHX8dxVNSy2+1QKpX54Y9+zGAwYnp6ZuyZzsbsowowySwjCiMerDzAti2GA1VX2O/3cV1HnTEJoLzDo6FK+bVMi+Eo5FOf+hS2bTM7O8PFixcUwcYY+GaZOr/N1jalYpkwjFhcvE+xWEAT2hiEgjVOHR0ORywuLlGpVAB2yVEQAoHAsRVjczYmLJJIbMvalTUyTJMkjsfXSBvP98eGjMDzfEzDAT7QurVtm2KxiGEYPPetPyQfuJiaZKJcpJgPlHPEUOzLjGulh6MhkgxNU8zEO8ZSpVJheXkZ23Z45fJrzJ+YA5FRqVao1erohoqWtlrdca2zJEljdAPC0ZDRSMkEvf7a61SrVYajCJkJTNum0+kgNB3fL5Cm4HkBlm2Rz+fVPAmNq+9e59t/+Rz1WlUx4RaLhKOQF1/8MaVSmY2NTer1Ser1SWzLwrZtHNshkwmjMNwl+glHI7a3txmFEflCgZXlZd577xZLS0ssLS1RqVR5/vnnWV9f54knzo+dHCmj0ZAvfvGLCKHu7SiMKJVKHJ+d5Z1336JaLVEoqoi+zJSszBPnz6PpKpLXbrfZ3t6mXC7jOTaLyysUSyXy+QJC05QWYzIkCAJOzJ0gExqvvHKZM2dOoxsG712/rZwAUvL2W28y6Hc5NjXJteu36HS6TEyUsSwTw9SQMsVzc1i2uUtmVq3UWFp6wER1gmRcp2yOJXkc16UYBGRSYlhjxmlNI40TdMOkVCrx4o9fZO7ELOsbG2RI8oU8w+GQMIpUpF/T0YRBu90jCSP+4Bt/iMwkp8+eZrvdpDE1SRKneDnFVp3Pl0jTjHqjSsF3WVtbJRyN+OGLP+b43Bydbp+nLj6JaVuYpk5/0KO5vYFlaoSjHo4TAILmdpNyqcLqg3WazTY516HfbyNvrlLopIhGiR25ISkVkBdC0Ol2abfb5PPB2EGhJK5gXKeXSYh0ZLVLNsxjCIelxWUq1SrFiRKdXp8oirBMg+889xzzc3P4+RxJHBJHEa1Wh2ptCtcLeOH730dDo1arA9Dt9dE0jbyfp6hb+K+/y+h/+a9w5qdxXAtNt9Ee/Ezdk8c/tZu9USgUMMfn9OfBz4flQ3YAzmG1jr8s8HoYGDoMvO6P1D5qTPt/szcKKIQg+Z//L+SPXkd8+VMfG3jd+37va//v9kYXj7L/hwGzg77biT7vH8vevvePZycSvDftdj8Yfxh43X9MD7tW9oPpg1K1kyTZJXM6LHV47/wetM3HDV6Pmp77qDn6m7CB957XvU085ph+WSP/OOfmlwleH53E/pv2sbf9D7F/29thC8vetvPgPHnyJPfvL3H58qscO3aMLMvwPAfXtWk221QqNZrNJoPBgHa7RaGQ393Ho26kvQx8hmUyGA5YXV/DcRx+///4ff75f/vf8a9fuk/3M/8N8YnfRi6/ibZxHWKlXZll2e4TRS3QoGsat2/dUjVsnQ62ZVEqlTAMg8XFJd5fuM/62jZLyyu4Xo4oiRCGQX8wRNd1JfWjG1SrdaJoyGDQI0kiTMtgOBix+kDVg9q2g+8H9PsDgnyAYRg0t7e5v3CPwPchyygEAblcjmPHZrBsh3AsPZOmKWmaEYbRPvY8NSdb29v0ej0lfTGu961Wq4od1nEZDYdsbGwwGoZKY9ZxWFlZZmKijKHrWJbF7Owsg8GAfD7g+MxxlpdXCMOI119/Q9XQeS5Syl1m1Fu3btFqNRFCyccIoYhsOt0eIMayHIq9eaeGM5NKj1fXVVTJNJXRaFkmSRKTJDGGYaLrxjhCnSJlxubW5m4tzs5CHYbhmGzGZ3p6Gl03xiBVglTp7MY4khJFEaurq2hCG9dmKiN0u9kEqQipsizDsC3CKCRKEjTNIEskw+FodzHLsozBYLA77mc/8TTFwKPT3CaJRnS7bba2N9GEqgfMpEo06vfVuRHoah4yiWWZ9HpdJienuHvnfRaXF/mTb30T17UYjQY4rqrJHg4igiBPLqc0flUqscokkDJjY2ON4XBAuVym0+4RFIpsbGyTywUMhyFxnJBlksXF+/S6PZIkRtVRW4CgUCjygx/+cJeoybIshsMh/X6fW7fukKWKhKvbVXqrW1tbJGmKY9uKYGlsxOULBZVBYBi8+uqr3LhxnXfffVdJJgn4p//0n/F7v/d7bG1tYpgGq2urrKwsj0G2RppJMgmapjMcDjl79iReziNJMpKxw+r6tWtcv3GNIAgoV6rU6w2mp6cV+YppMn3sGELou9unaUKv0wEpyecDcjmPL/+dL9Mf9hmMhrz88mVu3b7NlStXePrpi5w/fw4v5/GV3/4qZ86cJYoi6vU6jmPjuBZXr71LmmZkmURKMX6fKokhocodDN1A0w3CUUin00XTdKIwIolTbMfF83IkSUyWpWxvb9Nut7Esi9UHa+RyPl4up9Kn45i33rzCrffusnh/lTTOeOrJp3jyqSfJ530mKmXEmKjLMJTMTL/fVxrRxQKWaTLo9ei0Ozz77LM88cRT/Lu/83fJF4vKcBbg5VwWFxdwbIM4HJJmIbduXyfnK7Bab1T44m99jvPn57l48TwSxSfQajUZDgZIOX4GpSr7IU2SXQdUHEf0ej0WFu4pkrhhSLvTRmYZ2ZqFUV5TpGHP/RXdTo8oTsj5OdZWH9DtdPjqV34byzCQWcrmxgaXX3mVqenjLCws0Wl1uHP7DkIox1iWSb773b/mhR/8kD/7879AvHmN0VQN7dmn6Pe7JERsbGyQJgk77MimaXLs2DFc191d46IoOnT96/V6R9d1/TVqO4buXnD6OLZNlmXIhRVYfPChzz+qjbQfkB7UjgLujtIedtyPiloete+9KdWPanudDPv1zI/y2/1txyZ6WM3rb+zZ37RfdftbG3k9yGv4i3h2HtX2ekgO6+Nh+lnpn78A8KHI61HSMHa2+6jtYQ/Toz5sjurlfJy+D9rfQTUA42TBnR3iuS45O2B2bpb79xfIBTmCQgEhNDRUKqVpmliWigLVahXSzbtge+jTTx3Q/8GpQKkwsHQF0lxDRxOSarXC7/yD32Hm+AyyMEM2+Qzx9iLa8k8RuonmKnbLLEsZDgeKYEioes6gUEAbe5xd10VoGidPnsYwTN544w3ef/8ev/WlL5LLeRimjeu4PFhZIYkiavUarXablaVl4jCiWChh6AZvv/0uv/cP/yFLS0vUanWGwyGVSnVMCAFpMsLP+diuw+c//3mK5bKSotHEmPhGx7IcNdcyJU0SJUsjGRvQKt1PZikgsB2HbreLbSs21s3NTaLhiBd/9DLFUhnT0pmenibn5rm/skwmUz7/uc9RLpcIwxAhNHzfp1ItEuQDyqXyWKvX4Pat22Rpxt07d9Qcpilnz5yl3e6QJCm6bqDrhpLd0cSuQTsYKBbThXsLlEtlkjSh2+1hWdZuBGtv/Q6oxdixLQaDgXIQ1OuqXjkM6ff6+DmfN15/g0qlMq6DNgnD0W6qdBxHtDttdN0YE0hJ0kTpZK6sLFHI54mjiH6vz9bmFvm8Snl0XGdcmyfI4pQ3Xn8DQ+jkiz6rq6ssLCwwNTW1SyRVrZTQDZtWu8NbV97GywUcOz6r6F3SDCT0B4rB13VdNFRUPIxG9Ps9fvCDHzJzbJZqpc78/BwnThxH0zPKlQmSVNLp9PmjP/5jzp09h+NYChygjkMTGoPhAM9zuXTpElEcs3h/kc1mi1OnToIQTJTLaGjcvn2XU2fmmZqeRMqUnJ8bg5AO586d5/Of/QyDQZ+trS0KhSKTk1P86Ecv8uyzz/LSSy9Rq1eRWYqmC/7gD77B0888TRLH9LpdkiShPDGBbVm4rsug3+f06TNYlsVnP/s5nnzyyV0pqjRJqDWqiqHY1FhaWqReryEziWU5vPbqa7z44o959tlPoOuCzc0mhXxhnGptUG/UmKiWaXe6bG5sKkBoWegCUgmmpaS3hBBcvXoV13WxTJ1USlzPZ2l5CSEkW5ur5DybZ575BFNTDcrlEpNTDezxvZak2biWWhs7UFTddCEoYNsOmqbT7w0wDIsf/ehHmJZFvd5ASuh2u8gMkiSl02zxx9/8JmfPnWdpaQnLtPjZGz+lUMqjGzqf/vSnKBQLOI7LRGVi7JwSdDtdBoMhN27eZGVljdu332dlZYmvfPUr+EEOoUna7TajUcigN2JzWznIcjmfKEp54slzdNsdVh6sMTU9zczxGdI0IR8E9HptkiTGNk3EGMD2+31s18VxTPIFnyQJcT2HKA4xTQPPMzFMSa0t2L5ym7jiITTIMjBNk8FgoOSELItiscBoFCIlOI47joKrbA3PdRQTeGwjG21++N23ODN/YcwmbrK2tsbc3HFc193NPtnealKrNZibm+fNt96mVquTDwKmphrMHDsGwOuvv8bM8WMMhwMuFidobLRI/u//lcjWcXIe7U6PUrGC9uBNlYo99xm2t7dxXWfMNG78XMRRrTcfrImWZe1Zgw5ZTw8hYjyKnfCwNNX9wGhv7ej++smd7fav5Q+LBB70/17b4AO24a88MmK4v4/94zioPvNh+9pf6/uoqO5BfR90/Pvb/qjlfsmevVHPnb97JYz22ph7+3pYlHUnA+cwO2x/XfFh539vNPYwm3HvPvdHsQ+qcX2U3X7Q5/vPz6PGsv/cHNXuPqj9InWgD7ueDtz+CNt86Bge8oOD7ouDroWPqx1lfg4797+JvB7QHhek/ab9zbSjPFT2Rme3tte4fecGi0sLvPXWWxi6TRyNNcqyD7yOjmORpBHGJ/59rE//R483JjQM22ZzbYW//Pa3WF1f4MyZaWxHMBx1qdWqWMUGyYV/QPT0f4BoL5Hde400UrWugR8QxxFxIgkKZSQ6mm6RZIIkEzheQK1e4ezZ07iex1NPXaDX7bOxsamiakmE51j0Oy2EzLh+9Sr97oDZ4ydotToYmslnPvuZ3XowwzCYnJxSQCpNVSqw66AZSs5lGA6J05QUiRSCtfV14jjh9ddep9vpsnh/EddVEhnAOEKpalsLxSKWZY1rfB2klPT7fYrFIv3hiFEU05icJs1gc6vJMFQguDJRJoxCPM/DcVxmZmYwDAPHNTg20yCKhySpirTmcj6FfJ5Tp07huS7Hjx9nNBrhOiqi/ODBKq1Wi36/p+5noSRf0jQjTTJeeOGHJEmCruuUSsVxtBZAjqOBKor18k8uc/v2bUDpc8ZJhJQZcRzvRjyHwyHvvvsuGxsb6JpGu93ha//668RxolKQDZNCobg7z7pucufOHZIkpVgosr62ThRGVMagyzQMsjQlTWN0AXE0QhOSeDTi/dt3AJienubMmTPIcYo8QCxNTC/g9t1Fjh2bY2ZmjiyDdquDNtaHtCxbSfugqdpnTTkIfF9FjKM4xrYdgnxAqVTAyymGa13XsB2Xf/yP/2Ns22I0CnFdl3vv3yeJUwb9kFJxQkX10gjbNrl69R1uvncTy7YYhUNM2yRNEwQSKVNarS0c12Q47JOmMefOn6VULsLYgbO1taXIb8plfN9ne3ub2dkZbNvED3JoGpw4cVxphjoOhUKBQj7PaDgkyzKl5ew4OI7DpUuXqNfrSCl568236Pf76MZOJN7C81yeeeYStm2Sy/kkScLc3Am+9KUvEccxo2HCg5U1QEdFUxMMQ8McA6SZmRlM08AwVD2lYdqMwohuV6VYnz9/nlwup6R1XKUR6zgWZCmN2gRkEaN4iNQk+WKeME7IECRSoBsqMyCfz6u6aynQdRPbsdjc2uTByirFYol+v8/ERJkrV64gJYxGI4Ig2H1mmqY5lkOCkydP4vsBr7zyCkLX8fwc7y8skKQplmNjmDYL95dYXFQp157n8Vu/9VuUSmW63S5b2002t7dYXFokHI1IoghNgkRQq9WZOT6DaZncuHmD5ZUlvv3cd3niqQv0B0OSOKbb6RAO+2hSIqRiS07iBNf1KZWrlMpVNjaabK43WVlZI00FmrC4f38F3XRIM40oSbFtl5wfoOkG3W5PaS3rSk9bSuXMTOJE1aJHMf1eb1yvr5jfozAkGsSITYdTn3CpVKroukG31eXqO+/QbjVJ0phao0YYRWxubvPiiz9BN0zOnT/P2toDvvPct8mk4i+4des9zp8/Tz6f59/50pd4sjWk91/+E2StiDB04gTyQVnV3T77z4if/U8RQtBqtYjjeKwx/OgI3w5QeZit8lGM74N+87AU0P3vDwMMHwKhe2o6DwMkwG408KjH+nFlqj0KwBz22VGdA/vTq496nnZ0VA+rPz3q2B8HVO385lfRPsp1++vS/jYfw6PA/sfVx696fv7WRl6P0nbqF49C8X1Ye9QJ2Xm4HrbNQZHXx+n7424f18K33wP6Ufo+7ML/QDxgvLgDSMnszDRnzp3hxNwJbNvDtB00YXL92jWOH59hNAyZn5/bjW4IIT7EgfHhfg72GGWaAUmE7xr0OlvUJgpMTlcxbAs/lyMcRnQ7TaqVIp00w7n4u2jDbXj/JaxCDUyHdqeD4/qk2VgBVdPIpKTX7+O4LmkyxHUdPvnJTzM1NcV2c0vVdMoUsoxopKQzWq0W8yfm2dxos73VYnV1lSCYvgAAACAASURBVGPHZtjc2kLXda68/TYTExN4nsvdu3cZDodImWFYoOsGmmGSIRBjA08Kge/laDabxElKrV6jXC5hmCatVhPH8cb6qBHsRJFdD3P82XA8LpU2K4hjia6bFMt5NE1jdW2LE/OzuK7Le++9R6PRYGtzezeiGKc9ut0OtuVgOy627agoqabx0ksvYRgGlUqFxUVF7uTlfKIoIo5jtrebSs8zTUBKbt68Sblc4RPPPEu/38XzXDqdzu75VBHA1i4ovPL2uywt3ef8+bPYjk2aJIRhyL/8F/8vp0+fplqtEoURz37iWdZW1wijiK9/4xv8o//wH5HLucRxshtF1jSN57/3PU6cmOfln1zm6tWrfOpTz+5GfKWU5PN5knHdc5ZE6rgNk5s33mOyPkm5WEazNEVsFIaMxqncUkpiYdLrDXnzp1dw3BxTx46RIbAMi9XVVYaDIfkgzw5z5d07C1y+fJlTp04iNMHk5BRpqjznjmuiG7C5uYbn5dBNG92wcWyTXr/LxsYGlmUxOTmNEBrD/ojFxfvkC766HgVMTU1z5vwT5AsBhUJAlqVkacbk1BSOZxBFIf1+j+3tLUrFEsNhiG1baAhM08D3fdbXNzAMk08++0nq9SqnTp9CyoytrQ1G4YCnnnoSidi9R+IkYWlpiZzvqzpyTePdd69x/foN5ufniaOY7373e3z6058iSSJsxyJNY7rdNo7jEEUxSJ00zQiCgGKxgBBgGDb/5k/+FCnh+MxxOp0mQZAjThM6rQ5CaONSgJR+v4tm2ErP1XUQgDFOt9d0HcO0SdMMP+eSphGjQZtyMY/muLiuyzAcATpJKkmSDF2TbG1v0R8z5uq6wWAQkiYRoDExUWE4HLG93eTkyXlOnzkLwOrqKv1+f9cIKfh5Tp05w/rGBrquMk6ePP8Enu8qSa9M0ul2KRXLxHFEEPgM+iHvXr3K0tIi8yfmOXXqDIZucv6pJymVizTqVTY218m5LkIKVtc20BUhOK7jcenSs1QqE5w5+xR337+3W5ZRLhcxNEmaJAwHA3K+z/LyMkGhiG7aJJkkZxfwcwVkpuF5BV65/AYn5s5gmLbSi36/hbPWxzhWp9lsMhqOqFYquxksYRQqMG46vPPOO7iukmvqdjvj2u8RruNy/cYNqrkGxXMCI5nA1HzazSblUoGJahmEWlt0y8Kzc9y9e4+c7yNlRqlYwA886vUqD1aWadTrOLZyaARv3UD3HBb/k38P3/eJ4oRMCjzXJ47jMeFaDEjq9TpxrGqL0+xgO2T/cvhBROWQdVI7eJ18lNP3MBtm5zmzd5sdx+9eptodJYCdKNr+/e8c216m2Z1o3d7xjaMsu//v1naOI687cjkfmgsOtw8OOqaDgNn+4zssqrdbc3zAdw9L6d6Zs50o5X7JmYPGu//93rTcgxia9/6/F4zsOAL2f7d33wc5HB6nLvZRNu7+MT1qf/t/c9TPd7571L5/WXbzLwLOHus3R9jsQ/t6ROR17/ujlOZ9lHaU+Tnsu98QNh3Q9j8A936+0x52Qg/a7jCv2N7+9r7SP/0+CDD+/ld/bp/720Ghd/VXMVD+/OtoD4iDLqyDFolHtYPm4KAH/WF9H8Xzs9fLqgttLI8y7kMAmiATGZlIsG2d11+7TBYm5Owcx49PMxgOKU8UQQepSTIRK9FwYXxoHDv7TNMMy7IBQZZJ0lTR3guhFuJMGJw+/RS1+ixXr93h/Mw0N65fZ/rkLH65zGiYIWMLNAP7+CdIC8fh2l8gpETP19A1DV2DZDjCEAKZRsg0QpCg6Ra26yBRC2fO91lYWMTzc0TxkDAcYZke62vrFEtK2mVlZYl2t4ftOtTqdSVVIiz8XMDKyipSajSbHUqlCs899xwzx05i6QGrK2t4roYmBaZmIEWG69psbKzh5Vw8T9Wu5gIPwzBV/RYZhqmRpAm60AjDIbYlaG6u4+gW928vUqk0mJs7hhARQkh0zeDe+/exnDxezmdx8T5Ck2RpSqvZwdAsBCaBH2BZOqahoUmd1155A9v2mGxMIyUEgc9w2KfdbpHL58kXA/KBx0S5iEwzbr93B8MSnD5zUpE9GSqtWdd0cjlvLA+ggMGbP3uTmzfe48TcPI3GBK7rUqs26PcGBIGP0AQ3rt/g3LkzgNytka1WK6Rxwr27d1m4d48LTzxFlmbYps3CwhK+F3D27HnIJBefvsD5J85hmAaWY/PKK68yO3cChEDTTZI0Q2g6+XyRTAiqjRr5ch7Ht0FKlZbp5bhz+w4TExWQggcLSww6Pb7whc8xGPVpNOogJUv3Fgn8HBsb6xRLBYRQUf3LP34Zz3Go1SZwbROZJQS+i2lqSKG0feMUcn6BOI4JwwGZ7OG5BbIso9/vgJCkqcQwLKWda1pYlodpOhiGzcryvV2nkCYEmq4RxhFCaBiGhWXlsEwX3TAxTJ00S8jShAcPHhAEAf1+n3KpiNAgTPv0hwNGo5Bet8vi/fsqmujmaG61yPslXnn5NeZPnMS1HXRDMByFxGHM6soq5WIBXZMcn5/FD3wsyyGNYv78z/6MkydmsQydwSDBzzmYhjYGLQLNsNh4sE6SxHzm089i2wZZluJYNq1mlzBSGQZhHAECw3IwDR2EJApjBYiFjq4bZFIxnQ/6CkCBRqcT0e2nBDmP++/fR0Pj+tVrvPWzn3Hm5Ck2t5t4ls+w3WU06BLkC2w1u6ytLjI3O4tEMopC7rz/Pteu32CmMUMUxvzhH/0R+SCg027x19/5DmfPnySKQkzdVM8bIRBaiiZ0RsMhExNF0jhECElzq4WGzsLiMrPTM3z22QsMBk2cwOXY/CkKgYvMIr733b9mdaXJUxefQXd1ZBpTKpVBM4nihF6/ieuY2I5Jo1HEsnVUApeO7Rj0+xFLSyuEowjTtFleeUBlYoI4ihF6TJSMWFxeIigEVKoTRMmQ1QeLDAdtsiQkd3mBfsMh8PMsLi0pRuwsBanS5G3LYTgakWUplcoE3W4H3/fJUkkul6ffH5CmEIcp4XBEbi7k3rUmvu9TrlTo90KuXr1OOBxRLgZ4uQDXc7n67rsUC0VcxyJNE5JEYps29+68j67pFB5s4qYZW//7/0ipMUmSSgoFjxs3rxBGbXJ+nm6vjeNY2LbF8vIS9XpdZYMYOkkU4YwZnuM4JpEZSpVMY1cDR6rXUSRxHmYsHrY+H7b9h3kOPrzGHyZrsvN+b83r/nTTvb/Zu5+d73bB2m7a8Fd/bgz7I5qPakcFNztgdD+43/luL8nSQaB957uD+t1v8+ydj515Oihldwck7/3ssLY/yvswOaK9YPUgO3Dn/73HvJ+052E27n4QfJjNedB5eJzPH/Xd42yzf/v94/04gN5j//6QzYX8IIiz1/w/6jzvjOVR8/oogHvU43nUNbK//Qa8PqIdBl4f50Y56AZ+2PYA6Z8p8Kr/7lce2d/h+zoM9P3iN9cvemPuf5h93H0c5dwIqebe1HWeuHiRKEwJhyFplpJmGUID27HGNUIZ0Qu/T3L3NYwTn/7QfvZ6Sne80DsLgUR+8JAAHMeh2+nygxe/Q6GYZ6Z+jCSMQTdJNJ1uu63IOXITiPpZuPFdRBqCr6IeMs2wLZMkTRGaRhJnWLZFMo5UaJoCA7qhKxkNP4eQ4Nguk5OTmLaOlyswOTWNZdrMzs1hOw7tdotqpcr21hYZGaZlcmxmGpBsbW1y4sQpwjAmSSK6vSalUpEkSXiwtkrg+xSLRYIgQADtdhvPyxHHKWIczdN0DU3oCFQ0UdfBsW02NjaZmppmMOyztb1Or9vFcV00zeCnb7xFmAyZnKzzgxd+xPzcKTRNZ6JcRNMhTSS5XI7NzQ18P0+z2eG1196g3x/w3q2bfOYzn2Zzc4O7d+9SrVYoFIvITLK+vkrO89A1g42NTdIsJpcLdklRdh7oURQRRhHmuO6uWCwy2ZgkX8iTZgn1WmNXXsN2HKTMuHTpEyAEtuOSKrE+DNPEdmwuXLyAbuhUKhMYpkGz1eSb3/wm77z7NhcuPIVh6kiZYVoGYaiA3JtvvsXJ+VPohkGWSgQqXVTKDMM0djWNDV3HdhSJUZalPP/88zxz6Rkymanjr1dwPJdGowECRnHIz974GYOBIlGq1hQLchLHzB6fZXb2OINBH8e1yWTG5tYWlm0rNmEBw8FQXXdxQiYzNKGhoeqILdskyxJarS69Xn+cSqvvZi9ouk4hnyfIBaRpimXaLCzcx8/5rCwv8dKPf8L83Aks08IyTZrNbW5cv85EuUKr1ULXdSYnJ8eRKIkudExdsUnfW1jgiaeexHE9wtGIqclp1jc2eeedt7lx4wanT50klSk5L0e1UqVRr9NsblOr17Bda+wkUprKd+7e5fz5c+iGtZs+HschpqlqgqM44ubNm1iWydz8CdBA03U0XSeOVCp4HCcsLS3TbncIgjymoRMOQwzd4M6tW1x9911KxRJxEuPlXKIwUtkSUQJS8M1v/glTk9NkqWLLrVQqPP3001i2hdB1bMsmyLmkaYzt5ohTyfr68m5t69bmFvkgz9zsHEEQ4DgWxWKRxlSd+bkTlEslTNuk2+1Trzfwcj66YajMCpmxsbFBLufh5XIgNVqtNr4f8P3vP8+zn7yI5Thouo3vecikiyE0+p0Ok/XjTE2e4CcvX8YL1PfFYgnG0TdDH0tFCZPBoM/t27eJwpR6vUGv38bzAqq1Ko7r8vaVt7h96wZzs8fxHEvJ/zRbTE9OIaTk+rVrNOo1PM+kUCix0e9RfXmJdt3Fti0KxRKGoTgE0izdTa9stdpMTU0SRiqyr+u6Yh/WNMIwpFAsqmd25mPlMwrTDvdvtikWSnz729/mxs0bnDw5T71eoz8Ysry4zI0bN2lMNhj0uxRLRe7evcva6irnz53Da3YoXLtL+3/4z+gUFOmdikYmFAoBruspsrjrf4nVuoM+9QSTUw0Gwz6FYp4oljQ3mmgYLN1fwfFyDEYRy8uL2LaNbdv7FriPtoZ+aFcHrKcH/d3PaHuYfXPYZ4/adj+I29v21rzubHuUvo/aDgLej4pW7toBh0Suj5qCedD878jeHAaa9gPR/X3vjOthx/CwcRxlu8O2P2rt50HjPyog/DjA0+O0j9rfx9YOA6+Hbf4xzke7rTKVPkqW6uP0t7f9Brw+ou2/mY5STH0YON3vRTxse1DpwjtR1190vL8u4HU/8c0vo48jgVdNHzP7CkajEQKdzc0twjDEsi18X0lOIEAISfr+64BAH4PXvV6mr3/969i2zcSEkqPYPZ87Uy6V01u3TAqlIifOz/LWz96kvbpJNV8iMXSsvE/gqNozwzDQvCKc+i1Y/Bmit0HqFDBNnaWlJaIo5qWXLlOrT47T+zIMw2Bzc5OJ8gRvX3mbaBQTBO7YMLNY39ik2W6SD8pYtsPG5haGbvDgwQqWZbG1uYWKGKpaP8NQTMenT5/CNCyWFh+wvrlGo6FSi7M0IxcECrQbBnLshfaDAHX4GnGUghRomkrz2mHzHQ4HCCHwXIfNzTV0XXLs2DSaLrAth1KpwtZWm+KEh+M6vP3WddbXtzl+/DhLi3dpNreoVKa4e/d9dN0gCAq02x1+9rOfcvLUKa5fv86pk/MYhkEYRczOzuHnfDY3NzENHdu2kBLKpTKFUgnTtNja2sZ2nN1aUWN8TKZpk2UZ6+sbaJpyTrie0u7UNEXklMSqHlYYOkJoLC0/4PIrr3D+iScQuiDnWqg0wJqKImaJkjixbU6fPs3UdEPVshqCVnNbyY4kCaVSmWKxRJKkfO/556nX6jiuIrrq97q4rsv21hamZZFlqkYYKXniifNIJIZpUG/UiZMY13PRTI1UZuoaExb9fh/HdbBtG9cxSeIQy7SJ4whd32FChoWFhbHWZA6ZSVzXG2czaGM5IJNMahiGBiJFSqhM1HBslfIqpWKAFkKj3eqwvrbOvXsLuK43Znk2cB0Pz3Pwcz66puM6Lpqm0e12CMMRCwtLXLp0Cdu2FJt0FmOYGs2NFv3ukOEoZGNzi3euXuXY7HEKQUAms12W6S984fMs3FtgMBpQyOfRNY04DimVS+ra1caOF9fBtCxOnjqFaTr8f+y9eYwkV37n93nx4o7IO+vsOrqr2d3sg0eTw2M0s6PRCtJC65XhhXZgQ9Yf9v5hWYaxBgz4D9swIMC7XsBYG7DXMGDIu8AudqHFameoOSgNySGHnBkezXN4TDfJZl/VdXTdlXdmXM9/vKxidk5WX+yRVtb8gERlZUa8ePEyIt77/o7vF2VgupKd7S2EIdjd3WG3VqNUKjMxOcHk1ATXri9SKBb3o6hJpPjWM89w/PgJ4ijh2Wf/DNf1KOTyXDh/gWqlgm1bLBw5gsoyCqUiAJ7r4tgunuexu1NjZmaWLIXvfOd7XFtcpFbb5dixB/r3piDqRly58hmuZ+MHIZ4XMDY5juqH3VSW4ToOpWKB9Y0NhIBDM5OEgd+XQRrDDXJUqmO02m1qtRpCGnS6XZ3NYBj938Hsp0yHSFMyP3uIUjXE9nws06dVWyfr3iCKe7QbLZr1Fi+//Cp+4HHm7HFUnFGr1TGkREqJKQ0s06TTjigU8ni+R6lYwXZcFAk7tRqVagWVpYxPVDh54himBN919rNIPv3kU+bn5siFPq5j0ek1MXDYWttl8u0VnIcO02ju4vs+vUjXvWdpRr1eJwgC/CBAGIYmRBJaIiiKIiy7L0+WZTi2zfkL56m6k5jjLcZnKpx75TylUomNjQ2OHz9OHCfEUcT7779Pq9XCQFGtVrAtk0IhT71eI6y3mPj4Ctv/83+D+fjDFIql/ef81vYWYaifmYViAXvpLUTSQc4/jus6fadJRBIpOvUe//Hf+118P2RnZ5d/9cf/it/6rb+F4zj4vr9f4qQnqC82hx40n+79PwzeRpEBjYpC3cphP7zf8CJ4MF142NRuHTE/jfHoyZuON6rf92J3C14H608POvao1N7bHR9uJlEa7hN8nr68937UOnNUCvf9AK93Msb3E7zeKkPgVm3eaQrzndovwau25eVl1tbWqFQqI7+/E8x0N8fbs7924PVWF/6deHju9QI/6KE6yjM33K9RD6pR2/x8W9kBF83oB8GtvJyDpAD3cnOO8jgelCp8NwXiex7HwfST4XPan2yVoRElGSgdwak3GyxeXaRcqWBZJrZrg1AYBiSX3wbEfuR1ME1nYmIC3/f3pTz2jv35PyCEQZKmGKaJ7Zo8sPAAS5ev8cOXX+FX/+bX6UQdXMtDSu35N03J8o0bhMe/Ap++hJl0MPNaEuPNc+e4+NllpqYOMTZe1ectBEEQUK/VmZubwzIdms0d2q0Wi1eXSNKMiakJhLD5/nPPozJBEITs7G7jOBbXri4yMT5BnCQsXr/Oe++9x/z8PI6jZTWEkASBR7O5gyEkjuOS9DVbBXoitmybOIrIFDqKhGB7e5tcLtRMrplCCLBtXQDn2Bbb21sYQpCmMUmS4fkBtu3RbLbJFXzSJKPb6XHmzEMIFEJkNFtNDOlQHavQbDb225dSMj09zdGjC+Ryub70SEghX6DZaGBKQ6fk2Q7CkCSJjsI06g0Wry1SrY6B0BHIS5cuMTY2hhBabiRNU6IoJvADlMrY3NwiF+paVEP2ryWlFyO+63Po0CE8zyHLYqJej1RpkJ+pjG6vh5QG1eoEtq373W61CIKANE3J5fJa2iWf39d8vfDxBRYWFvr6o4rXXnuVhYUjSNPEtjTpkWYn1em2gR+gsgzbluRyIXES0el09j2jFz/5DCEEp06e0qCTFGmAkCYZil4UYZqWjuDn8xRKRZQS7N1OhmFQq9WwLJtOt4thmNRqO/i+i+v6oCS27bC2toYhBZ1Ol3a7zRuvnyOOEj54/31OPngSU1o0Gk2iKMZxTIrFEmtr6wB4nsvGxjpXr15hfv5Iv0Y2o9ls0mw2+04Uzbz74osv8cSTT/D4lx7DMAxsy6TZbLK+vk4YBqwsr3D8xAmK5QLNZpM0iYnjmNdfew3TtCgWC0RRj8D3SdKEJEmwbQ8FpCrBtkws0yKKYjbWN6mOjVGv13nrzTd56MxDqEwhDYkpJbVag7fefItSuczkxCQzM7MIYZDFMZOTk7iuS6fdwTRNzahrmhiGoZ1oQpCm2kFQLBSxLJtabYcTx48xNzdLsVhkfX1NS83YDoqMYqlAo9FEZQLXd6nX6rqWOZ9DSsn29g5pllIo5rAsSZomZGmGUjpNvtfrEkcRW1tb5MKAb/67b3JoaoIo7lEsljEMvRA2TZP19TXGx8cwpMS2TLqdOuurVyiXQhzPp91uki/k2d7e4Wtf/yqtzi5kBtvbO/hhiO/7NBp1sjTh29/+HlNT4+TzeZaXVykWi2QqwvNDVKrHXGun7oLSpEu1RovV1VVWV1d44IEHNKAxDIrFPJsbuzz3ved5csOgdSiH77tI06LZbO6n/6d9Iq9uL+pHZDO63Q4A3U4Xy9aOpm63R9SLmJqawrZssm2JqO4SVixqGzFbW9sIYXD61GkAJicnGa+O4XsenW4baYBlW5TaEVMfX6P7v//3cPYMKyurOK6zP1dZpk2apeTzRc5fOI914yMajQbm4afo9SI8T5dgJL2URq3Js995lrfffoePP73AP/yHf0iukMNxHJIkuXkdYBwMIH9ufhqacwf32csoGtXOKPbgUf8PA6/BfgyuJQ6q89yzQUbjYaBmPPIg4pEHR8rBjALHw8cY3u9u1n+D+wwGJQ5Ks92zg4DjqLEeHpfB+tlRtbLD7Q/3c1AzeNRvt2fD6dZfxAEwqv29/4edG8OvwdTlgyR/7gZA3u76/yI2qu930+Zg2vdBNiplXAgBB5zDXwSE1kSXJeI4vmktfFM/DsAqo/DXrcosRxz7rxd4HbR7Aa93a/fS3v0D0HcXeb3Tm/l+jdGdeuNuZ7dzDAiha0YSZaCzerN+qq1JuTpG0ku4+NlF5ufnsBwLYaDTVPuRV2vhqZ+bXAqFgpauudWNKYROQBZgGR6m63HszEnGpsb4o//7/8CJuuTHDmEYAsdxyLKUIPTJl8rc8B7EWH4Ho7VJRzgcO36cJ596kkK+qHU6lWb2NYTWQ1UK0kjx5rkfc/zYA5Qr45TKVTKgVmsxNX2In310njRN+dnPPuLJJ75EuTxOmmaMj08C8NP3P+DMmYeo1dcIAh/b9jT48xwKhTK7O3UKZc2WG/V6WlvUNOn2ejiujWVZpGnKt555hrNnHyVNYzAUhmB/obWzs4sQYApdK1yr1dnY3KbWaDA3P0elPEEY5jh8eI7qWIkg8Piz732fUycfQhiCcrnUj+JCLudTLOVwvYCxsSpRHNFqtSmVy2xtbtFtt1leWmJiclzrzXY6ZJnitVff4MjhBRSKYrHI5tYmuTBgfUMDFKUUURSztbXFKy+/wpGFIwgBH314nueff4ETJ05gWTrV0jJha2MLz/XwPAdDZHTaDTKlJW6yTCFNE2nq9ETLtLl06TJjY+OalCVNsW2HG6vLjI1XsW0tr9PutDh37hyPPfYoIDAMges6+IE/QGyiyXCkaRFHaR9kCnrdFp7nsrO9jes4uLaDEAZhkNfySGMTbG9t8PbbryONDDcIcVwHw9AOi14U43oOUhr9iN7nCyrXdVlfX8eUBp7nU6/vksvniHoZtd02UgoKxQJSGpTLJQDa7Q5nH3mYifFxgsBHqYzt7U1e/clPmDk8g+t5LC0vUy5XMEyJH/gcXjhCuVhESsm7775LtVqlWh0nTRVBLmC3tsvc3DzTU5N89MH7zM5Ms7h4nenpKUxTy4wsLl7nxImTSNOg1WrQaNZZWlrkzOkzTE5Ns7y8ul/r3Gg1cH2P9fVNpGVh2RamIUmihKgXMzs7TxJnvPvO23xy4QKPP/a4BoOpwsBAGIKzZx/tp6vnWV5e4sSDx7Fsm1y+wHvvvctPXv0JDz/yMBggTS1xsrO9hUDQ60VcvXIN1/VRRDzy6COUK2U6nQ5LS0tcv36d2ZkZDEPi+S6ZinFsh5WVNX708itUShUqlTKNZpNr1xeZOzyHaWvW4yzu8oMXnieKUzIEoechpaDXbWMYiijq8eEHH3HmoZNMTU3TbmnSJ8uy2NraApHhhjlsI6TbWKPVuIqUKa4zjTIdbNciirtcvnyVn7z6Gr/y5a9y+fJlSqUStVqNfD5PtVrGMiVnzjxCELhI0+hrbXtkqsvK9SUM6BOyOTz/3AtMTc+xtV1n6tA44xMTnD5zhldfe42jR4+TpBmrK+uMj08wWRmj8vo11DFNdmTbNo7jsrWxzWeXLuva00KBTreL73solZEmMb7vg1JY+/JY+nXx4kXy+QJpnCFqDv54yvQph5MLT1LbarOycoNcLsAyLb7//T9n/vAcU5OTxHFE7/Iis5dWSf7p/4R44iH+7b/9EyarOlI/OTmJbdvYto2gLzcmJPn6RXw/oF0+g+Zokrzyyk+YmqpgCYvHH34CP/T4z//+7zE7N4m0rNFz9AFgZA9U7Wlz3wosAD8X4duLFg6Cn4Pm4VsB0APnyRH9HbX9MKgaBXpHgbC9z0dF8G4F4g6yQdB9q3O+XS3g8DmOYg4+qM+jzulO1o0H9fd26737vS6+3THh8993uB/DdbX30vbtttkb22Gpojtt626xxN1EJ39uu7uMvN5Pk1JqWbpy+ZbSn7ezu70H+8f+JXjde//vE3iN/vD/In35TeTXP6+3vNML/PN2bt5v4JsDj3unN9D9sPvp9bpduzpd2O6DKYXKUkypJ+Ox8jjHTxwnCLROoNYKTEguv4UhBNbRp0dOilJKzQY74BWUwtj3hClBv3oWbBwSDLoyIV8IOPfii6hGjcgpsL6+zuTkJIYhqNU1w63rj+MtfJn02muo1gZZn8goSVIcty9gnylUph+wpmlhSYf1tSV2aztMTc2weH2Zyakpmo0OAoNTp09jSpNMpTi2/V512gAAIABJREFUiW37fPOb38SQJu12h1/7tb/JtcXr2K6uq8wFBVrtFrZlYVsecazIlJaGUUrXn8ZxjG1ZNJoNhNDst3Nzs6RprFMdDdgjCRMIbMvCtV1KhbyOShsmSaqwLBMvcFld2UZKietJOp0GvV6PzfVdCoUKm1s3ePHFlzhx4ji+75KkPVZXl9nerlMoFLhx4waZ0lHLNMto1uvUajXmZg+BEGxubtNoNnn9jXMcPnKE6elphKBfo2lSKBT7pBsK13XJ5XKcPHkKz/O4ceMG09PT1OsNXnvtNU6fPoXrODQb23iezwcffMiVy5dRxExPTyBNj2azpUms0ow0zbBMmyxVLC0tMTs7qzVxM30d+YFLo1HX11Cf2OjRs49i2xbS0KRh+UKerc1N8vk8nXYbx/b2a0hVBp988glJnBL6JkkcY5nWfhTFlBKEyUcffkS9XiOXC3js7EMEvoOwdHolGFy5eo3FxUVK5SJKKer15j4zpV7cS1ZXV/F9B1NaFIp5hIAsNYgj6HZ1dHTPcSaEQS6Xx+8D72azSZLEvPzyy9TrNc488hCO6/LGuXPMzR/GdmwMKWm1W4SBS7vd4bXXXmdu7jCu42FIkyjT0alSoagjg2urNGo1jiwcRQilmYoNg8nJKc2aLHV6c6GQo1qtEoY5Wq02ldI4zVaTRr2GF/iY0sTzA+2Y6C/2kzjBdQMMoaWNXNfikUceYWVlhSxJqVQqZGmKITWA/fFPfszly5d59913mJk5RCFfRAjBd5/9LpZlcfjIPFmW0YtiDEPrdD733HOkacaZU2cwTYsgtDCkIEkS8vkCE+MTHDmyQKNRI4pjkkzr0fZ6EZXyGBfOf8yjjz7K+vo6b7/7DmcfP4u0TGzTQqmUJO5x/Phxpg/NakZwoNmocfXqJebnZon7LNlh3uPq1Wukia7BzeVyeJ6L77s0owgZezS2rrCx8RHV8QlQ02w3e7iuTRTHPHTmMQ7PHSMMKyxe+4x2p8PDjzyin4FpjBDakWFakGYxrusjUHR7TSbK41imZHtrhzRVPPHkl1nf2GJ27jCWZ5BmCb1ezOEjR0iV4P/9Z/+cVqPF0aMLGGmC99InpEfH8Fx/P+sFDDbWN0mSBMdxMC19HxlCEMURO7u75HK5fabuNNGRrdXVG5hSSzRZ0qazmiBNhT2zzc/ev0S7DuVCgXqjzsT4BONjY+RCn9yFS0xc36T9v/63NE8fYWVtjSefeIp8kKdcLWvQKgTaGWXQbnWxbA+x8g5pmhKe+HWUEty4sY7nBZB22NrY4Z/90T/nD/6r3+fIwix+zibDGL1WuQV4HQW4BjOtBoHWMI/DIFi83Tw8ai7eS20enJf3yI0G02iHwelwu8N9z64soXbqGOXCfv9GgfZBQqj7AV6H2zton7tZ3wyDsoMA2mCk927PYTC1eNTxb9W3+7kuvtW4jcoEvJd+3A/wOngv3G1bvwjweuD19JcIXnW2kk0URXcE8ofHcpTj5ZfgdcDSNP7DPRYdoQNiCAGD43hQFHDwgX+ndtBFdvMxRrEAq/6kC8m/+FOoNW6Syjlon4NfBvT5xnS7guFL+n4ByPtpg3066AE3SBKx99nwNoPMgABCJUihQZ9hSBSKJE0wbFBGSqqSPtgCpQTZlbdACOThJ37u+hg1gQmhI637E5Aw+sQ2QNojIyFToBA8fvYp/tH/8k946bvf5Wt/4ysoEq6sLDMxeQhDWMRxh4wE+9ApxKUfowyTZi/FD3xSFREnHUwJaRxhSgsyg5gm5co40nRZvHYdKWD20CTCEniuze7OLnEvwrMdkjhhcW2N7d1tlleWOHv2UbZ3tvnpe+/zK1/9Gvl8CYyUbtTW2oWWhTAUBmAIpUmeLBNpKNI4wna0JE6Spjiuhe1KLNtAZfr32dM1TRVYjq8lORA0mk0ajSaT49PUai1yBYtcwWd7extT2liGxdbGOqgM0zb55LNLHHvgOGHOI0MR5ErYwiZOUkzLZnV1mempKqiYICyQqoxcrkiSZgS5Ap7r8enHP2Nudp5ioYgQMZZpsLaywfLyOlmquHzlMuVyGSEyLFsAKUvXl5meniaJY2bn5pmcmMI0HZQEz3FxXZvdnU2OHj8G0tJgUaU4rglktFstXUcYp4yPVTEMheXYdLtdTNNGYWI7PtKUCEMgLRvDsBDCpFlv8eIPXuLK5WucOfMQjUYNaQoM20Fa5v7d3uuzqRbLRSzH+5yt2DTJlCBJYlzX5oMP3ufLTz8NSLZ32kghkIaJY7n88b/+Y7Y2Nnni8S8R92L8XIAhZb9esY0lTQIvIFcISLNU913p+8H1TXI5lzRNUCharTaGIeh221y9cpVCoUgUxbQ7HR44tkChGDJeHcNQgp++8x5CweyhGQwUH/z0pyzMz7GysswjZx8hLORRQoEUmEphCpskjWk2a3Q6CcXiNLZn9u8vg7W1Ld54402OP3hCZ1qYCmEYSNMDYWOYBtIy6XS7uL6P43iaPVworT+bRGSpBuwZIKQm2rEtE9dzuLp4DSyDYqWEkoLdrXUa9V1OnzrFwpEFHnn4ERzLxvEdoriHaZo8/dTT2JZLlgi2t5dxHc32+/rrbyClyfTUFKAQ0iHJely5eoV8oUwUR5i2YmtzG9uU7Gzv4Dg+fhgiLcnM3CRBGHLjxg0AHMvBdRwMqTCkpBdnmI5PloFpWbTbbeIkod5oMjM7jzBMrly9zvWrq8xMz3Pt6hLnzr3FyRPHkQbUdrdwPZMoi9mt9Vi5tsvhIwuYYQ+VmnieTxjmERI830JKhVAuxVIZx3OwHBOhFFE3ws/7aNVVSbfbQwkD2/LJDAvTcfF8ne0RxT2KpQJ+6EOiyBJFp93BsbT+calY4OgD83zy6Sd0Wi2m31glnSth2HqxqTVdNeEcAsaqY1imBQranTaWZdOoN7Bsm143QQhJu91GSkmlUuHG6iqtZpPp6SmiXsTmYh21Kzn1GxXGc8cYK07R63WYmZmhc+0a+Z9+gmq1ufqP/wGLLni2xLMMimER38ujDAMhM7pRA9eXZCojU4qoV8fdPI+Qku3ScUwJndoWUafO9UtLJFnKsVMP8OhTZ+mpjCgVCG5mvN3/e8Acerv5dRAwDaZqDgLF4f2H571bAcS9tkbNmaPYaUeB1cG0yr332X/3T+DH7yB++9dGnvMoEHzQ/3e7BhoG9sM2uEYZfD+qneE1zGD/B0khRzEdD48/3JymPdjmcHnVXvuD0fjB70aB4jsZp1FrssFj36qOedTY7G17O3B0t2vZW63Pb/XZ7dq6E7wwzNR9N5www/1Smdpb5bNHFCrgJvbxwddNTOR7z43+d8YBz4ZbvUZd34PX6a3sdvfoqO0HHAt/HcBr8od7728enIM9Znt2kDfwTu2g/Q5uTn+RfvtFYFjn9c5rQQfbulU//qra7TxUo97vTQJRFPHcc88xPz+/LwY/PAEIIUivvAmwnzZ8kHds7+YdvoFv0nhTCRkChYHn5YjbGedefZsHT5zm9/6zv08uXyJfKhDHEVkcYfsF4iSmG6XIwjTy8o+QYZnYsJEqTxJrEGy7DkIovegWQqeiKcH62hrdTgff8/jk4ifkczny+QLXry8yNlZhc3MNy7JpNescP3aUaqWCY9tsbmyy8MAR/MAnSRI8T2uUmqZFphRSQJykOJ5L1OuRxDpKKwyDS1cu64htGGII43O95D77cJqlSEOSJDFSmvSimDTTC8tWs4FjWURRjyuXL9OoNXVa5OoqM3NzTE5Psru1yczULLkwoFjM6ck3UaytrtDudpg/PM/YWJVet0voB9QaTUqlMiurK1y5fJlD01MoMo4uHGZ8fIqVlRXCnIeUkk67x4cffsT6+jqffPyxjrwGIb4fIg2TSrWC6zhUx6pUKmUsSwIZUdTFsS1cz2X60CEs29HR8D6hVrPZQBomQZin14vY2tjGkIa+7sj6aY6a1Er0ue1N0wTVJ5BSuh53dmaWRqPB9KHJ/ZpZMBBAmiY4lkW1UtUEOwY66mvpfvWiSDvqMkE+X+Dhhx5mcfE6hXyRfL6AYegU9HqjweOPPcajjz6MNLU8h9kHC1EUcfHTixQKeba3t3Fcp5/qriPVvV6XOE7IMkW31yXqdcnlfExLkqQx1WqZRlMzS3c6HSYmJpmanmJ7ZxtDSh56+GFs22FraxM/8Jg+NE2mDJ5//gccOXKUwPdRWUaj0eDiJx+Tzxe5fv0ajmOxubHJ7m6N8clxUALTNOn2Opw8dRJIkdJEGPq+N4RJrxsRRd0+OY5O2bdtm2az2Ze/ghuri5iWYPH6VVzPZmt7A9My8PwA07KYmZ0liWMCz8M0DF5+6RXm5w7jOA6dTputrU0q1TKGqdnAbdumkM/j+x4ff3KeB44tEARaquWRR85y+PARQBDFCc8888x+Cu/uTh3btrBti9DzNVFPoB0KjmODEMRxD6V0jfHp06d1lLGf9aAU2LaDQGBZFq1Wm9ruDr7vUamU6fV6+H5AtTpGN+kwNT2BNA3OPv4ofuiiREZYCjH76dXlvMPkeIHF69cI8xVyuTEUGUtL1xFCP5OyVPHuO++yubXO4cNzRFEPMsHzz71InEZYlk6d9VwPaZp861vf4vTpMyxdv04hnydJYnZ3dkkzRRDmaNYb7O7uUqlUME2Tzz67yIkTx3E8m5mZWQqVMva1HUSUkgQOaZJiWzbS1BkI7U6HsbFxGo1Gn2FcsL6+TpYpKpUKrWaLXk87fqSURJGue/V8D89z8TxfE5iZPsGURXNXsrFaJ1tdp/zRRYrX1xG/+9t88Du/SvXB48zNzxLFPYKcjyEFhoREKRxH3/NRFGGZLoYhWb2+SLlzDQB79imyOKbbbPLC979PojIWHljgoYfPkKH0tSS11314LhJC3HGo5VYL/MHF4V5k9KAF5kHAeNBGpe4OL2oPSisejrTubbsPjr77OdvwMAi820XxYBT4ftiexu0wG/OtbO88B8djMFI6CoCOauMg4DDq/4NA6kH9uxMbBYKHj3kvdrdA6IvY3bZ1L8cepcF7L3bgvgd9fKu1832K194reL2Tdvfsl+B1hH1R8HontZy/BK9fzO4FvGqZE80MvLCwwMrKiq57OmBb4QQY1SPIwsQtJ4JRXufhSVqolEwoMkySXsIP/vxF/un/+f/w+//l72M5LqVyCc/3yYchadYjySSu4yMticxPUjfyeFdfQUpJDwfLMpBSk+wIKckySLOEbqeHbTuYhqTRaKBUxvzheT2Zxpr1dmNjHSklM9OHOHXyQY4fP4bnOmxvbfH441+iG/X6C+DPayuFkKDAsiyQ2lunlKLdbBEGIYapdQfLpTIgIEvJMl2HqRcFUsvnGAZZX1JGmia+HyBURpxE5IKQwPeQQhKGOUzTolKtYjkWtmPTaTaIo4xOp0WpXGB5eRnfC1m6fo1cLkcQ5Oi0OywvLWlyoXpDkwgInQbcbDb6Ka0Z9XqTqclppCm4euUKk1OHePHFlzl+/Dg7Ozv4ns+x48d0jbQCRKZ1NDsdfN8FAdKU7G2g9Uot0kxhWRqMatIYgWXZdDtdarsNrl1d1Gyw5SJxEmE7WppJZWjAK6VOCXZcvaBKE2zTxvUcSqUizWaDfD7fT1XVCxuDvQwRTUTWbDVI+x5127GRhk6Pd11Pkx+1mrx57k3m5uZYXl6hUMxh9J0KnufuS93Ytk1G1mcZhjAMCUJNlGXbFlma6ghSlpKlmgSrUCiQJgnlSplut42UBpYtyZIMz/PwPJ9up0umMkrFEt1uhzAMCYMcURRjSAPf9zFNSZJpJmuzX6u3urLMWLVCGPqYpk2plCfM+YyPT2CZNlvb27xx7g2OLizQ6jTZ3t4kCH1syyVNI0wpEUiEkNi2lh36/p//Oc1Wi0K+sJ8WvbtbY3VliUOHZnBdlyDMAVAsloiSVBPjoGWwom6PVrPJ2NgEpWKRXq9HEHi4ns3O9jZxHOF6HlGvx+5ujUIhj+PomkxTmromWmqpniAI+2OjmJ2bwjItrl1b4pvf/CYPPXyay5cua0IvpbBsS99L2iuBNExKpZJOnc8yDNF3GvXZsqUhSftRnO98+9scOXIYz3dZW1tDKU2MVB0LsUyDbqeBKRWWBUKkdDot4igliroY9Fi/sYQhbVLhkCSaZCtNUnzPp9FsYghJLh9y+vQp0iwGpbBtl1dffY0nn/oSSils29Fa2ZbOUiiVypqEKOphmRa5XA6EBvO2peuDu90uYRjiuq4mXiIlSWPSLMV+fwXDMIh9DdwNKWnUG1SrY4T9a7bR0CDYcz2KpRLFYpGVlVWEEPsM2YVCQTO/90GHaZrEcYJhGIwfKSGnItz6DO47nzBxfZ3rf+MxPvi932L2G/8BK1ubTE1PE8cxcRLR60VEcRfPt0BogiUA1/Gp1Rq6/CKNcUSKEYyT+NOINOOdt85R393l737jd5g7PEdYKpApnZqeqRRDiJ8DWrcCrweBlmEbjADdikBm1IL7VmmPw8ByeN/h7LZbgdeb5th98PrrPwe6hzVRb7f+GeV8/iI2LKM3mDp9kA070UeNyd7nw20Nj//dgNe997db634R8Ho3v8Xt2r3X74ftoBTWe2nrXra/X2vyA3/zX4LXkfZXCrxmWfqHoy+WO7tJ79QrNcrTNGyfP2RGf7+XNqzBq9oX4NbfHdjsAXbvKcF3mi5x09Hu4Pxv9XC902PfaoI86CE8OKnt1aoWCoX9nP3h1AelFCI3jixM3NX57e37cx5nUv0DZgZSSIQ0+U9+9z8lXyqSC7X+ZW1nmzDw6fS6CHT0zTBNQOBVDmFMHEed/zOMbJc2XeKk2weZHlkmdaTMtNlY36JWq1OulInjGM91WF9fJ44jjh5dYLdWw/UC1lZXMaWBEIoLF84ThCGNZpNcocCVy1fI50JdPygMoC8Rk8QIafRr/AwsSzN72q6L74daesR1SZMI2zIxbevzsUOQZgnCEPuL6kxlOJbFZ59dpFQsUq/XsCwLKW0a9SaNVgPTNrBsg267g2N7uK5DvVFnZ3eXibFpGo0dSuUyjXqd64vXiXtdnVpYrZLP5+h22pSKBVZXlhmvVvACD9f2iaKEbrdDvaEZdOdm58nn8jxw7CgqyyiXygghiONYg3MUtXoNAZj9yCtZxvXlZZ1aa9kYSJ3eadskcUyv1yOOYpQyWF/f4KUfvsjXv/6rIDLSLEWhI6ymaRJHMbZt02q1ATBNCQIajQZCQC4XYFoaYNVqTYTIkAKkIejFPaKoh2WZ+K6LMCS2ZQGiD3AESZqgyLAdh/HxcS5e/IznX3ies2cfI00S6vUaQkAQeGxubuJ6DoaUdDsdHMfF9TTbNIYg6SakaYrn2RhCR/cCP+D8hY+J45h8PoftaIZVlSkc1yHNUhzH6ztqPNIs1UDP90nTDIWWDrFsk7ffeQeQLBxdwPe1/BMowlyOXtTDQPYBtuTypSv8+EevEuZzfPUrX8V2TMIwIPA9LNvkxuo6hUJIlqV88P5HLF1f4ciReaKox/zcPKvLq4yPT+C5Pu1Wl+9991k6rR7Hjp/EcQKEMLEsjzRRvPKjV5ibncO2LFSWYRiCa9eu0W51+NM/fYb5+XlyuZDtnW0+/OBDJqYmcRwPgS4hcF0X2za4fOUa+Xyeer1OFPXI5fOAYmdnm42tDQqFgI31TcKgiOd7TE5OUMzn959dlmWRKs04rj+zyDLFd7/7Xa5cucKxYw8glEG71eaHL/2QLM2oVnV97pkzp3E9R49nGHD9+nXGxyeIOxtsr6/Qa+7iyAyRRjTq2/S6baQVgiFQaUSpWKDejLC9MmmSsrW5yfT0NACO7fLCCy9y6vQpbtxYoZjP6yioITlx4gSOa/XZdCVbm1s0Gk3Gx8cRhoHTv2eyVN8XaZbR7UWsLq3w4osvcfz4MVqtJuWyZrdMsgSlUsKcj3rtEkmS8NNLn+C57j4xUqPRIBfm2NjcYH1tXT/jBQRBiBCCzc0tpqYmiKIecRzTbPYdMGmyn0bcUx28BzPs2ZTejxT+n79P9vAJrvyP/wXur/0KCyePk2Yp04emcQMPzw+xbIcwlyfMhezUtlhZ3iSXyyOEpN2KNDGV45DLB9zoubx3cYuHTz/E+fMfsba+xkOPPsyxh04hpEEU9VB7i8H+mmUka+3guvWAueogx/zevDlKo/Qg4DFq/8HU1uHvDwIzg1J6g8B5eP4erI0VQtwUeR1cT4zSnf258p4REeDhYw7avRAwDf+9HYgbLoca9f2o8qi932wvpXrU77Y3LqOui1EA+X7bqOMORpiHo5CjXsP73eqaGj727fp0p9fBF7E7XT/ebVsHOh2Gngdw+5Tm+wVeR/aHW4/5QffGQdvfK3i9fy6q/5/Y3oPlXkDfqHbuPsr6l2/3awx+UTZ4EziOcxMD40ET7f0yJUAgMYRCmoJDs1PMHZ2mk3T5/gvf50c/+hG1nRrnP/wY2wpwTUnaa9Ntd4jjFGkYdMwSH1Z/i7Rdx95ZwVAxSdRBqBSzHyHNMpiamubEiQep1epMTEyyfH0VS1okaUqr1WZsbIJKdQzTNFldvcHm5hambVMsFTGkBqlRFBHHCbs7NTKlox57k4Y0TOqNJp1OB8u08DyPKMpIkowwzJNlKSvL1+m2tWzJ+voa3V6Hnd1tOu0OcRRp4CUFUgiiOCbMF7h05SqmY7OxtUUcJ7ieR7vVwZIGtiWZnZ3BC30mpqeYnZvj1KnTrK6tsXh1EZXB+PgE09OTeJ5DHHfZ3NzUfbRMpCF0VKnbQqmUldVVpNSR3yzV0cNiMc/k5BhbGxtMTU1y4fx56rs1Oq02US8iy2B8bBzTsjBNyfb2NkmS9KNEYNkO9VqDN14/B4DrefhBSLvdwXEc5ufn+cbf+7u4roUiQydZ6rrgdruFZem6u3feeZdnn32WbreDEFAqFXEcmzTTNZdpX7uyVa8jBHQ7bQwBfuCRZSm1ep0oihDGzaL00gTHtREio1DM8ehjj/Ibv/EbJHGC7weMj48Txz2EAY6jGVjJ1H4KapKmSFPSaXeAflQq0jWFQhhEvYi52Tmq1SppqlBKkCSKLBWkmaLRaO1LB8m+Pqzl2HQ6HaRpsrS0xFtvv6UleyyTYiFHmkRIU9enF8tlojSlUh7Dtl2SJKVea1AsFvnN3/xNHnnkDIaEdrtFs9XCdT0MIcnncv3osWBsbJyLFy/S6XS0bIll8dTTT3PjxhpvvfU2nufzt//238H3cwgkKC2bFMcxSim+8vSXSeKYzc1NelFElCQcPrrA+MQYlm1p544wqJTHePrpX+HGjTVQgiRWuG7I2toaaZbRaNSR0sAPXIqlPEJkxEkXSCmVSph9durp6WmeevJpDMPk2uIiV69epd1ukyQp7XZ734GkF/0pjz/+OPl8vk8OJNnY3GRjc5N8oUCWZbTbHRD6N3Ucnfo9Njamn4WmQ5LpLIvl68uYpmYZn5ycpVAqEYQF2p2MTDnMHT5KsTrG7m6NqampfZmWRqPB4uJ1Wu0u4+OT2kmVpsRJDyX25Kd6GIakWCoxOTnZj27GWoarH/W0bRvD0PWn+XyBb3zjG7iuy09/+lNa7Rb1Ro3QD+h22iRxD4HClAa+7+I4OiU3y1QfiKb0ur39NM5yWbM4K6X2pbHCMKRSqVAoFKnX6zSbTZRSNI1dgkcyXHOK+BmT8K01lv7RP+Anv/N1fvj+u5ieQyeOMByLSKXUGrtc+PhjVlY3yZRNFBns7LRotRr6N0UShnmmp2ZYWlqiGXUpVMr8nf/wt9nZ2eGzzz5jbuEwT3zly8RZDBL9Etnnr/tke6BxuN5uVETqIAC6BypvmutGzKV7n9/J+uAgIDNYMzlog+RPd2K/KMf8L8oGHQPDv9ce2L8J1Cv17/VabHBOGnYm/NJ+MfZFyx//Iuwv6h77Kxd5Hf3N3adHHPTdrbwGo9o46BBK9cmGvvMSwBeOvP5F2p2lS997asYXtcGbwzRNut0ulmXdlCY2uE26/BFZfR0jP/6Fj7n/HoXjSqKkg19wmZiY5IkvPc5Epco7595mamqGytgUH7//Zh+0ODSbDa5dusgDh2e5evkzzFwOP6rhNDZpZiZCmpiWIMkMup0erXYbQwhmZ2Z57713saTF7OwcQqD1NeOUanWKcqFAq90mE4JKdYxCsUyxVEUakjAM6HTaeJ5Hlql9Rlurn0rqOu5+WlQSpwjDJo1TNtfXaTR2mZuZwrYM3DBPEARIafYlLBxN2JCldPtSO9LUjLqT0zP4oUuYy9Fq9ygWS4xXK7QbuzQbNVq9HteuLem03tDDMC3anYidjU0qlTGEANsxqde2OXfuNWw31NFLlZGpjEqpQBJH7NbrjFUnSVNFlqUUCjk8z6fRaJBlCdPTU5q9eG2VLMu0pqzlsLu7i2laeK4GTu+9+x5HDs9jOw6u7+txMm0mxiaxXZvabg3HsSgWSzpt2jAJQwshFJ1uG88LMAwLlMGrP36ZanWcLFW8/9773FhdZW5ullyoiXaEUAhDaFAqJLmwQLmUQ2UZ9UYDz/fp9XoYpoFrO0jTxOhfd4bUKaOZioAMYWiZIsdxKBQLbK5v8d3vfQ/Ps5mbnyFNY3w/oNPpkGUpIEiThGa7RQa02i3efO0tsizBcUxQCmmYpElKN+qBEtQbDXa2a1iWo4mtyPA8rWmbJDHC0Knioh/Rv3HjBjOHZnBclzAMKBWLSFJM0yBKIqSt6zsTlRF3YnZ3Gly8+CmzczMYhoVte9iOQbfb3mfINk0Lw7BwHV0X3mw2yIUFFhYewHV0La9t67rXF174AdeuLmKZNp9+8im/8ZtfR5FiyIwo7iAMhWmCbdi8+pNXOfPQGUzL0nXcpiTqtPmVr3y5TwJmYEoLy3apVKosXlviww/PMz420QeqinK5hOs6OK6DKSWmpSP7juswNTWD7UiKhSIfX7jIt771LR5//CzVSrnNLMNsAAAgAElEQVTvODExpI48CyHodNqsrKwSxwlTU1McPXoUyzK17EoGTz75BJ7nEkURVy5fIpfP0Wq2tNMuywhzIbVaHeHkyZfG+OCDC8zOP8DGdotM+mDnMCRkWKjUJAwKJAp6SlDK6ZRqXdcu6fUivva1X8ULQlrNFo3aDq1WEz/wMCy5/7zdY8DudrsYUiKEgW1ZJHGM6zisrq3p1Ghp8u1nvsNbb77JmYfOcPz4MWzHIgxDOq02hoQ47iDfXASlqCwc4vzPPmFra4vxiYl9x0cQBoyNVcjlc5w/f76vqaydGns6r1EU0W638DwP05KIyQj3MLz0zcssfJDgNDq0/rf/gcKXHubQkSM89qXHMExJEGryMtfzsExBqVjFdfL0OhlSOoRhjkJBM1wvL63TafewbIlpSdxSSLy9wivP/RlbtQ7zR+Y5+/SX8HIBmYpJ0qQ/iysM1ScTOyh2MCLScisbBgt7IGi4zvWg6JZpmiPbGd5n7zUILm+1DrgVudFgP/cir+Z/9OsjQfRBfbpV9OlOonT3y0ZFnka1PxhpHBXRHkxRHiTdOsiJ8Jdte/0aRQp2p9ft3ZzTvZz3Lyry+hdqA4e7VVr/zbv85V0jdxsF/2uTNjzolfrcbs34C3cXiRstEJ0NtU3/r4QRVGD7x9ltYBw+hDx7cuDYB70GmMfu4PzuBdQO1sMcZHcyTgdNWrebVEbbzWOrlK77E2J0Pwc/i+NYe8JHTNZ7Fr35b8g2r2AuPHXLfg4/GEZdM3tsz0IYpKnCMm1EZiCNFCHBD0Nmjxzmx6++zp9991m++pt/C+l4qCzDcWy6vS5erkhYrNIVMRd2Yg7PzWOtfUrsFLD8PEkkaDVa/Ls/+RPy+QLFQpFOp4sf+LQ6Hbq9GFP2iWksSej57NZ3sG2TVrOJZVk0ai1+duFD8vk8lXKV7e1dXMfFsW263Y5OTZaCNImJI810rDCoN7pcuXSFb3/nGZ54/AlubGyQK1VQyoJ+yqSUJlIY9LodTDsgVYpMKQxTa6JKU9Kr1zGATqdFu9MiUZArVfFyRba3dzl1+gSdRp2o26WYL3JjdZXqeJmJqXE2NtZJ05T1jU12dhr4rodluszOL1BvNUhVSi5fRVoBlmnjODZJlPAv/8W/ZGZ6BpEJur0e+WqZRCg2t7fJByGO6dCL2ywuXmGsWqbZaOPZAT999yMqhSq1ep0wFyAMTZy1tnGDYimP77tIaWo5oCThhReeJ8zlMEyLYrFCkuh6x0xlfP97P2BjfYsHj59EGIJOt91Ps/RJsgjT1CnAWi9WgMg0s66QuF6AlA5kBgKLnd0dDMOE/fsgQ4gMFUtsaZPECb1uG9syESg8r8T58xdo7u5QzAUAuL5Ps9PC9/P9VEsDx/SQWFy9tMw7774DKI4fP6broDNFp9PB9vL85NXXMYSlZaOUIol7xJl2FNjSwDQFQkikaZP1MlSmuHzpMsVCgUIuj0oVju0ibQFCYJkWKgXTMOk2u0jTJAg8pg9N9ccjo92tY5s2cRyTpQn5YoFMZRimICPtH8/RDgZH62ymQpGiSNOUhx45w+mHTqJUzJeeOEuapURRB2lCt9NDIFCpRCiYn5/lwoXz+IFmKFaZwjBTDcSlxZtvvYth6hpvSxqEfkAYhnzrW9/kwZMnsSwbIT2kaVFvNjFtzZJsWh5KGSRppJ0GQjA2XuH48WM0GlqCyDBt4kyRK+Sp13bwPZfN9S3Gx8fJ53M0mi16UYLjhKwsL/Haqz/mwZPHkVIQxym1WpOx8TH8IMTxPJI01c8mAyxhkEYxpUqVYrlCvlCgUCjw6ccXyAc5eu0OL//wh+TzBYIgQGQRpsgIAptOr0W31wUhSJWBZ8PVq1colccZm5xGmja79V3SXoxtCzrdJs1mh9XVDQqlPKa0SBIFykQJk0q5QtTrYYiMYrHEU089QT4f0Go3SdMYwwBhGezu1ikWxzA+uoFYa2AeqjI5OcH4+Bjb29tcuXIZz/XZ3tomDAskSUqr1SHLMiqVKlevXaPZbpLvyy75QUCr1aZT3caesFn/cIxTV3pkc9Nkf/SPudqu0em26fR2MA1BLvDY2dpCpYokSsjSDAOTV3/8el8Oq0uadrn8wTWe+ea3+YP/+g84deoUk4cmqY6NIet1ePtfY+1cJJo4wdd+/W8QZ7F+1mJiCP0CA4QEIQ9mEb1LkLIXwdwDfnv7DTtxh1NmhyOpe++H58jB2tNBSZzheXJwbTYcRdw79h44GwQ+2XduJmwatkEwPpxmfSeZVnv73wvoGE6L3vvsTjRKhyOoo/o36vPBtczw2O79xndSezs8BqO2v9NrbVSq9UFlXQeBluH9h7cdPs87BT+3+u1H9fdWbR1kw9fz4GdfxAb7dODzYIB52BCGzj6Cn1v+3zQOB3w+bLf67O7X8be2g36LvzbgFe78whsEr3djo9s/KA//1scwHj2J8ejJOzzyvRM53fEe9+livL/g9eCxvdMbbvC74e+Tyzr983bg9SCZgDsxy9TAxkBiSJPpySlc26PVa7G+vka1UsJ1XYTQE1+axHx28SOSuEPXtAnzZZy1C3QTQWoFGAI2NzfZ3tkmn89RrpQwDEE+l8eyLYShU+Rcx6W2u4sfeBw+chhpmVSrYywtL+v6rSkNDBqNBr1exPraBoV8kSRLSJIY0zL77JwmSglWb2z0wUcBz3P5yauvUqlWCXP5/gNTgYJOp0Ov18N1NRPn3qSKAJVBkkQEuZBuL+pHRCCOYsIgoNPu0KjVmBifYGlpicMLR0myjFIhT71Rp9PtIIRga3MLz/MYH6vSarXxfL9PPgVRO6HdTyU2DIPLly9x5eoVLNtm9tAhisUSpqOBYrVcJulFfHbxU+YXFjBNc3/sFFCtVjBNyWdXPmNmbgYQmqwmzCMNg7QvyZSmCYah2WHDXEA+l0dLsog+UVLKtctXuXL9Ko+dPcvyyjIT4+PMHZ5HKbVf+yoQZCoDpReecRz32Zv7OqyGpF6vsbm1wcrKCtcXr1MdqxJHPTqdNqura1y6conZuRmuXrtGqVSh0+khhIHvOTz55Jd4443XWFtfZ2Z2DtvWUfI00yQxhpQkaYppWly8+BlB4OG4Nq7jEscJtq1lcs698Trtdpsvf/lp7Thpt4jSVNciWhaNRgPTtEkyhWlo51sQBASBT5Kk1HZrOjJnG5psCkEcRayuruL5LltbWwRhgGHoe9GUJn4QIlQGBoRBiJQaPKJ0lovYm8b7vq4kTlhZW+2TX+nIhZQSo69VLAxBqjSA/Nn581SqY3rhJ7REVBiG++mpQhis3VilUhkjjlNu3Fjj2e89y+kzp1hfW6XT6TA1NcXm1iZTk+NsbW9SLldQpLpvQrG5uYnvByhA9uvQHcfp6wNbbG5uUSoWSDPF9597jmqlQrVcptvp4HkBnu9qvVLTpF6vk6aKD9//gJMnH0Saklwuh5SS6elpbNvrSyv1NJAXOp087sX0oqhPrOVhWtY+y28ulwM0i/nU1BStdosg9DFMydZA+rzKYHVllVwuwLIctra2KVfKZKTYtkUuCEnSCKUypLTJMnQKObCyskK9Xufbf/qndDpt8oWQQiFPqVz+/9h78yBJz/u+7/O899nX9Nw7s7P3YgEsgAUJQpQtiiIlShRFlcKYqViSaSesqOSUlFJUqoqTkkuOxNguO04pVmTJlGjqKlEiaBm8SZAECJK4DwJYYO9zZuc+unv6eO8nf7w9s72NmdnZBXjI4m+rq3a63+d4r+f5Hd/f94dpWSiq2l1vJIZpkWUCx8mdLXOLC/hLAWnZgU2SOMHo6GgXHm2gaSovvfwSx47dQaHgkyTp5tzL5TJpliv2TLZwBjVWz40yuhRhLa8S/eH/RSwyymWfTtCkOlQFKVhaWmJoaBgpuwReUcili1f4hZ//BR544AHG94yiagLd8DAtk7vvPs57f+o9WLoOWcqVC+donn+C/QcOMHjPjxPEEbabkwgKtqn1uc1espWCvxvjor/tdn33Gknb/b6VYbHT/Pp/6zVUN77fKr9XCIE4fgTlR96CKBd2PXfgOgv+Lgiabtd43ckw2m37m/2/9+9+h0PvuP35xLcyp91G7G7lfHr/vplOtl37m/X1Rq79TuPdTn9bB7XeRNmmu35D9GbH3+SnG4+7iX79nTJee+UHxusW8v1gvN6afHeM1zcDN//9Yrz2ns/G37drvG6X+7MbyQ3APIdSVzVc38WyLAaGynieQ7vZpN1us7S4gGmalAolbMNjZuYyg2Ml/L13QPkO9KtP0I4idL/CwUMHGB0dQVNVHMfBtixmpmdoNBoMDQ3RbDa5fOkylXKJhaVFFheXsO28NE61OsjBgwe4fPkyg9VBHNvFMh2SWKIIjXpjlcZ6A9uyWKvVscy89IRuOHz8Tz7G1OReCgWfiYlJfL+IaZnX8QFS5iUyTJOsa1TkivqGlxgUQyOVEs/zEAI6zRbVSoWFuTmEFJtlLfZOTaHoBlII6msrVAeqWKZFZaCCX/A5sP8Aly+eI44Spqb2cfHiedI4gVTFNHRazXV830MoglNnzjC1/wC6CoZpgKJ289Mkrm1THRwgkwqlYinPL1RAUxUMU8O0dIbHRkDk0UQFhSROcuhsvY5lWlybmaZU8rEtA9txus+d2CTYADh04ACDg4MUCj5f/NLnSbKUI0ePbCpyG7BryBWQoBN0/y+vG16KQFUVTE1jfHSM06dOsXdyEts2sS2LQqlIpVICJAOVCqpqkCSSxYVr7Ns3iWWbXLx8mQd/6IfRNRNQUDTZNb5zqL0icrKqoeGRnJjJL6DrBs88/QzlchlVzXOHVVVhYLCKZVugCc6cOsee8XGCVgeZwezcIqvLNYSSkGUpnu8RRTGrq2uUywM4jksUx90yPOGm4+WP//iPEALGx8cA0TVmlDx3WAbEcZy/s5pGJnMUTSbTHG6NIIkT/vzP/5y3vOWtCFXBtEx0TWNhYQFD19G1/F2UgK4bIKFcKuPYDoZpEMcBtmWD0AiCmFOnTuE6Ln6hQLPZ4bHHHuOtb3mAsbExojBmeHiA4eFhsixlbGwEyzapdkvorDcbOI59fe2QEkVVmJ2dxfc9FEWh0w6QUvDphz9DHIVM7Jnk0OFDuK4LMs+dFUIlSRNUVSFKEgqF/J54joNt2zz55BNMTk5i2xZB0EHTbF579RSvvXaK0dFRNF0jCNromsnS0hKVSoVXXjmJ7+cs1Lbt0Ol0uHjxEsvLyxw4eBDD0EFIpKqBEHiez8zV6Zy8aXQYx3XRNI1KZSAnCpOS5aVl0iTBMDRqtRqeX96Ektu2iV/wKRXL7D+wj0OHDqJpOTQaRWV5ZYUgjMgkGKZNEKZcvTJNtTpEEicUDAv10y/DVIW1Wh3f95mZmdlkx86yDMNQ2bNnfNNppqoqpmEyMTFJFEa88OKL+OMG3l6dmZcqTAQa+vMnaf4//wfevnEMQ+XZ557kwIF9ZFLBMCwKhSJZBqZhdx0lgonJPXzoQx9ifM8YYRhgWiaq4zM0XOX48aPoQtJYW+WTn/grfuwn3skebQ1NU/GO/UgXip6hdstl3a7xulvZzZ7eawj0ptdstX/eqvHaH9nrnc8GLLnfeN34Oyu4qJXSjvPuJUHakC3JrraQW6292T/2zYyn2zHc+vWOrXKW++9Xr3H3ZhmvtxqN3Gp+NyUP+g4br1vldt9svFt9Hnqf117UwJsq3yHjdad7/APj9bskvaVyehfLXijLjXLrN2H7425uvG6VM5JdvoasNRAlf8sxbnywbpxH/4v7+v5vjBpu9ZL39/NmeeC2OpfXn8/OcI7r319vcyNZw/aMw73jbbXA9y4wSbfO64bxut3is92iud01u+EYIUDKbmmTHELpeg6u57C+3oAsJxNyXZeVlZW8VqTt0wmblKolpGrhDd+JHHk75qUvoGdtFpoZ5XKeH1ev11EEzF6bpVQsUfALqJqKZVusri5z+PDhTQOp3W5Tq60QhjG2ZdFqtdFUnfm5BZ544imCTsC+g3sRioLj2NRr9ZzYRgiEovHSCy9w/4n7efXVk9xzzz0UigUyKZFduPwmbEVKFFUHcqipEN3nEAUpJIqqIrOMMAjxXY84Cjhz5jSTk1M06nWGhgdz2LdhoKgaZ0+/hqqpFItFojDC8zxOnz7N6PAgoOalg9RcGdozNsWF82dptduUykWiOGJq7xT79x9EkNBstlhfb9Jpd/Lc1jjiypXL2K6Prud1V2u1Go1GHU1XMQ0Dw7JI4gRDN1FFTmhUq9VwLBtVVZievprn+qkqhmUikcRJvPksBUFAu9VidHQEkOw/eJCJyQkcx+mypuqbz/gGjA7g5MlXqVQqm8/wBnO2kHnUrt3uMDg4CEjUvHZKbgR2De0gjKmt1Xns0S+zd3KCIAxJUkmpVObs2XMMDg7SCfPap7pukGUZ9XoNVVMoFkqMjY3iFwp4rsfeqb2oqopta1SrVYaGR7Fsi3bQZmFxga9+5VHuOX4cmWVkqWR2dg7PL1CueBimiaJqxEnMq6+9xsTkRF4+SEo0TUdVFbI0w7YsypUKd9xxB5ZlgVAwDYswDPMSN2srlMrl3GDNH7PcSFGUbv6rsll/N4liBkcGu9+lm9G5JIlzJ4qq0gk6pFmGaVnUGw38go+qgUQFmcMhXTu/x6aZMyJPTu7ddMg8//wLOLbRJYcTeb1WU2d1bRVd11hbXcW0LJIkI4ljlpaW8DyPRr1BoZA7AC5fuoLrejz55JOcuPce/GIRRVFoNps0G3UMXUftGtyGYWzmxOq6gW3m+cMHDx4kkxLD0FleXiaTKsVigdGxEZIk3oQTtlsdwi7z8eLiIkmaMFCtEgR5TVwp4Y6jd2BbFo1GnVKpSJxlmIZFJwgIOyFuN2po2i6qqrLeajI/P0epkCMwNFVH11Vsx0ZKjSTO+PKXv8jBg/tprje7RqVOvd4AKVlvNnALRUDw0T/6Y65cnea++06gajq+69NsrmPbDmnBgFemEStNFrIOjuNQHaxuRufjOEYoedQtTfLSXRu8B6ZlkUlJqVSgcFxQn60wqI9gfOVJ1n/rf4HjR1BzG5rl5SWmpqYwbY/p6Wksy0FmuRMpTfM87pw9XAUhiaKQJElQTRffsWjVVvjS5x7mG49/nQ/94/+BkYkR4ktP5w6qfW9FdomvkNfTe16nZCuvj7D17l877dXbOWx7YbobBk6vc21DesmRellu+/fPjXn0rlcbx/XmZW7skzvlZ/Yfk6bpDf1sp5P097vdNbhV6W3fW8t1O8KhfmN5K92q/7f+Wq9ZlnXrfssd28ONUNV+w0lV1S3v1VZ60g3Q1G2guzczKrdyHvT/vpt+diO3Y1jupGduddztPDv993ersbe6j7s/ka2/VrY5N9lnk2w8b1LKbe3a/vdnu2e9/9jvpPydM17h9Q/R6+XN9CDcXuQ1/l//FdnXn+0jbNrOG3Src/ruPFy3K7u/5tuxIt48r+Rm4wkhto283s5Cu90iKYHrOUuAkChCopkC09Qp+C4D1QEUoXDx4kUe+qtPMblvksmpQ0jFx3QGiFFRXJds4q2Itat4nVkCfYDVtTqaqoFMaaw3GBsd44UXXiCOYoIwIMliSsUSnueh60ZeWkRX6HQiKuUKly9dIk0TXMfhySe/xcrKEkePHcXzPAzTyGF8ioYiVBRdcN+99+A5FiMjwyRZ2mWUFXlpHASKqrCyvIxlWTkJkbJRK5XuPVM2I1CqqmJZueEWRgGaoeF4BarVMp1OE9uxOXPmDMWiT6fZYnzPODLLS9nMz83juA7N9SbF0gATU1P4JT+PbusGimbx6GOPksmE/Qem8As+uqZx5syraJqKbbl89jOf5dCBA2iGQhh2ULvGz/zcPJXKAJqm4fse6602QRBhWg5ZltGorTF3bZq5uVlOnnyFoaFBxsfG6XQCBgeHaYetTeIquvfeNAxc1yKKAmzXRtFytlXLtoENBSlnT42ivH6k4zgMDg6zvLxMvV5nZWWFwcFqDsdU8vqYY6NjIPL87nbQRtNtVFVDqApplpKkKcVigdde+TaWbTOxdx+Dwzk52djIMFkao5s5ay0yZ4XODXEFx3M32brPnD1No7GGZZl4vgco+XVWFDRNpeh7HDlyFMcyicKQL335S1y8cJmDh45QLPnoupHnBquCAwf2E6c5oc1GnriUUK83WF5eRREqpVKJVquNqqnMzc2i6ypplqCgo+s5hFntRtsgV56iOCYMIxQUPM+j2WzhF/1NqLCUEplltJpNPM8lA1TVyKOvKNiOTRB0aLfaGHpOYkYm8XwTy9IQQkNRAJGhaTns9/CRwwxWh7rRVYlQctZu1/FpttdzB5NmgFSJkzwHMwxDBoeG6HTapGlGlmbEccL+/ftRgE/+9Se557578VyXLIm5fOkSnl9C1dRuRJE8Yp1mQMzKygpJkvHQQ59ifn6Bo0fvwLR04jggCALKlRICmJ9fYHhwCNPMHTHDwyNUB6pkUnLl8mXiOGJgoEqtVsN13ZxMSQgQGWtrNYqFEqVShbmFBSqVCppugpAYukqpWKRRb3Du7AWyLGe6zmTG/MIyhm5x8NABEF2uCamQJpLTp85gGiau62FZNq1mix9++9u5/8S9xFGIqijIDGr1GooimL02gz01iPnIWYp370cxtLwOcdfIarfbufOvWERVtJw5W1GxLItr12bxPRdlIAE3QVuZwvriN1n72Xdx6dgh5mbn0HQdpGBycoKLFy/jeIX8/qkGcZwghOCvPvFJHn/8cQ4c2I+qpbiuRacdYOg2qmqik/C5v/kkS7NX+Z1/868xHRdpCNLLz4IAZd9b+3eNrfeP7SItfXvMdvvaTobtxju9nSLda4D2tusfo79NL6t//2c3RkTvfDYN7T99mOyl04h7jm459sYcd4p03Y5+1zvX3pzenfraStnf6ty2GmcDSr0Bd96qj60cEf3HbRjEUsobHAC997t/HrvJ0d1Oeu/VTsdsHPdGc0HfTKNpN3292XN9s41Xsc0Prwtl9RrOt0Fi+72Sv3PG61YL/E6Rye+V8ZrXee1nG/7OGq/fLw/objeB3sNu3AC3yRXaZoH+ThmvvZvJdptAipJHJgGlJ8NeEV2CLynzYvaZ4MD+Q7zrXe/m4pXzGFaZOC2g6T6JbCOVBpkocGbdpSzrWCuvsNZRefQbz3D87jsoFApcunyJIAg4fOQwtbUag8MDqIrK9NUZ2q0WreY6aRpiOwXmZueYmJgg6HRothrYtsmRI4dI0hzaKAQEYYihGzl0VYNGbRXPczFNA8d1yGRGBmRpiqLk+Zq61mWn1fJcO0VViOIoZxwlVwRUodDptOm02ziuzXprHcux0S0ToUhMXafTaeN3809HRoZZWV7BtPJao80u+VQUpwhFY6A6yMy1q9hOrmg++tjT/NR7f5LKQAnDUFhdWcK1bYZHh/Bcn6XFFTzX59rsDAcP7sMvurTbLUqlMpblMDNzjXarje8XMCyLs+fOUygUEYBjafi+w+DQIEeOHMYwTQzD4tlnn8NxPAplDykl589dwPN9DF3PFQmFvISMqqAoas4W3PW4Z2m+sQdBwNe+9ijj4+Nomo7MJOVymfn5OSzLzBlduzV0EWKzD1VT0Q0NVc3rriIgDAMs00RVFe65+zjV6hCaadFqt/nc5z7HPcePIYSk0wlZXalRLJYQiqA6UMHzXFByRUNVVMqVMtVqBcsxydARigZSoAhBbXWFoN3E9TziOKDdXKfT7vDA2x5kfGwcRVWJ4oQoirAtE0mCqgoyGXfzXfMg1ONf/ybT09c4euRO/vPf/A0PvPVtuVGvCiBFCEkcKliWzfLSStdgBKHIPKdcqLRabV54/gWOHDlKsVBkZvYavu9vKk1JmmAaJlmWkiFRhEqS5IgEmWUIRWLbHgoq01ev8fjjjzE4WCLLIqRUOXP2FEJIPM9BVVVa7RZplENAF5cWiKOY8+cvUSkPoBsahmFz+fJVXn7pVaanZ2i12kRxzMBAmVptDc/zcF2PYrGIbTu4tsmdd96VRxKjCNPQcR2HdifkwsULDA0PcvnyZSqVCgiJTCNcxyGJU+67736KxRLtTsBfP/Rn3HfiHmbnrjE0NIwQCq7j5TBrRUE3DKIoAiHQdB3bcdA1FdfNo+TffvFFzp49w+TkBKqa52BHUcr84hJje/YgunBPoQgUQQ5nV1Q0VadYKmJaOq1WC9BQFR3HtZGZ5JN//RDT09fYu3eKTjvAdT2WFpdp1BtUBwY4fepVVEWQxCFJEqJqOn/2Z3/GxMQeDh48yBIRbjNGPXmNYNDpkqFJNC2H3Du2S7vdYW5ujlKpRBRFXJ2+SmO9QblSwtyb0ljy8Z+bJTu0n5975jE++gcfZXW1xnvf+1PYls2rr56mOjCIZhq0WwGGkSMSVEVnfHycu4/fhetaLC3NY5oGxUKRKEwJ10M++vu/y0+88+/zwQ/+HJmmEaIgVMguPwuA2jVele420BsHuYGZdZu9p1/5vVXjdeO7XiOnP6LYG63bmFevUbXdvttrxGwVdeqf14Yx09tHr6EjhCD9938BV+YQP/PO151D77jbXYudvt9JtouWbdfXTqRHG/Ps/71/jN5Id/8x/f/fKUq68X1/tPxm+tBO328nt2K8bkT+3gik9gfGa//XPzBet2z3t8t4zX5r0yrofnJI2XUG2N7fdlrge2UnY+j6Z7uFbee+tzJe+9l1r396ehW9LHVbMxr3H3+r59rb7o3ITtCD/rH64Uj5gpdDq3rvX5Ztv2Ftten0zqP/WiQXn0YC2r4HXjff3V6P3vH6i4hDXjD5Og/c9U+akpdEUFRSKVENDVRIRcrwyBi1Rg1NS4miJq5T4PRrVyiXfUrlMnL4LlKtSGn5Kc5NL+EWB0nTDNt28As+QsDw0BDTVy6hqinFgo3MBKbhkaaSVn2JLIsxdMfNtnoAACAASURBVAPfKzA8Mort2gwOD6HqOk888TRxmPH0E09z/4l7qa8to6CgWQ6RFKimQxol6KpK2JI0G+uYpoama0ghEapGHIRoqiDr5lOqioKUCkqXpMTQ1K7RLmmvd0iiDL9Ugm4UrdlqowgVQzVRVEl9vUF9vUmaSUqFAgXPY2llgVLZI8siNEUhTVJmZq5y9fxZ3nriLkxNImVEIiFRFFzbQgqB6xXQTYNMZhimgabpBGEXeihgYW6GUtHHMU1Uw+ZTn/gk05cvMTm+B9OyiTLJ6uwyuqKjqAqaoXL+4jkmpsYxLJ8slRT8IrqqkqQZqm6QkKDoOnQZRjVVRZAgs4Qkyclnkjjkc5//LI21Ogem9hEkIWQJvmvjOlYOo9ZyR4eUudGQppIwSkkSFVVJUATINEOgbUbNM5GhaCoyTdBUhcOHDqGoBhIV07IwDQ2NDF1XySSoukWSZYgswdAkghSh6gjVRJEpgjzKGEYBhWKB1Vodr+gTxTF+qcTk1F4qFZ+MAM00iOMQRZU4tkmWxHRaTSzTIJUprXaTJI04dOgAhw4fwLJ17j5+FEWVaLqCpmqYpoem2MRpgm6q2K6Jpovu+WfoqoVAwTBMJicngRRFgzDs4Lo2G/pSEieouk6nExCGLTRNYW11hUe+9AhDgyMUvAqaluYs27rGN7/1Le5/6wM4bgHNMFhdWmFoYBgFleXlNfxSEU0zkBJsx8UvFhkeqbK0skBjvc7AQAXfL/DNx7/BzPQMURjylvvvpx20KRaKaJrG1emr2LaJpissLcwTBi1On3qV6kCZcqlErVZDEjC2Zy9SGHzyr/8Ll85f5Mi+vSi2garraIaJZuT1mBESVVOYmJxkaHgwT1dIJNdmFjl/6gKaYmBoKosL87iOia4q6JpGluXXp16v02q1qNXqjI+No+smirBQ0HnmqaepFH1cWyfotDA0lXZrHdO0iMIYXbewTKMLF1Z4+NOfRYqM0bEhSBNkmuex3nnsTkqlErquMTt3jcHBKtNXpymXBqjV6zz22KPccccR2vUVRoaGMQ0L23bwfJerTkjlkQuoY2VUxyDLkny9FoKlpUXm5udJs5RSsZgTx5km1YFhFFuijAe4X49Rl9ao/etf5z0/+35+8n0/xnve+268oovQBIPDg/l9FcomW7ehq6RJiKEr1GbPUx4Y4PzMMo5fprmyRLx4lb/8zN/w4z/9kxw7cYJYt4jFBiJFySOvCNSpt+V7Wfcj1C6RHRvbQu4AvGH/2AKSuhOE9ca9SWUD8ZKjXtRNvah/KxNCbMJXew2mDcOst2Zsr/QaLxuQ1Y39sBfC2j9W//ltFXCQn/laft26bMO9ffcarv0wxzcb8rhxzXf6fTcGXK9sXLfee9mf6tR/fL+TAF5fM3erSPdWY/fLRqS2d867ka2O672n/WP1Rsu3K620G7kZpBxudMDsdD1u1n6n67eVXSClRIottPjcWNhV3ukNc70e87jh0/8ebLbt++TtN3TQbUQRPY3E9c82r9JuHBf9sqtz7ZG/I8br1nVe30zvyvbeqm1b7Njf1sbr7oy9jfnshhTqVh6u7Tx932npXeT6c3B65wPXvcUb/7+V+9d/rLb/bZuG607H7Wa823mZe+WGzQmFUqmIlBLbyst1lEqlnAE4lQhUtPJ+GtLnfn8Ov1TGr+7JS0HYNqdPn0IiGawOMDhYodlsUi5XabU6LC8vMTg8TLFUIQgTpmeuceniRdYb9e56pTEyNMLoyAgHDx3My5+YBrW1Gqah4Jo6ugpJmhFGCc8/9xyvvPISk3sn8lzA7qbk2Dn5jabn5Dh5zphEUXN2WSnyuEMqJb5fxHE9EApaF+bp2A66ZnDu7HlW19aY3Lsf23YpFUsszM+RJhFRInjqyWfx/RLN9TbjYxNUyoPcdfxurly5RK22hmFamKZNpx3QqDfotDusLK8xOjpKdaDK+noT3/M4d/YcQ4NDzExfZWrfFLph0uq0WVxYptGokyYJU1NTRHGE57k063n+Xq1RBwG+X6BarZJmkHbzDOMozuGIIo9OyyzfRCTQ6dbAbXc6GIZFq9VC1VQGyhUGq0OUymV0wyDotHPimS6JkMwEYbuNZZqbJUWQsLK8hF9waTVbWLbNpx9+mKNH78ifJwWSOM6hlJqWb2NC6cKV89JIzWYTy7KpNxq02h1cx0NVNFZX1uh0IsIoQVHyfEbIWaUvXLiA67oMVqukMo9k6qqWR5YVQRiGJCm4jouhG0RhSNpliW02W1h2Hlk3TLPbRsvhxSJniS4Wi2iqRppmrDfWWVhcpFQu0Om00PW8lmhjvcGf/smf47oupVKRNEtYXVsl6HTwC14OSw8jrly5wkOf+hT33nMfhmHiujadToRju4RhjOf5OXy1Xd+sW3zixH0YpoGUGVkGtmFx9uw5fL+A7/kEUYRMJSvLywwODhDF0ea7bFpWlwBL5c47j1GrrfHTP/2TXQdBhmGaJGnO7N1oNCiVSpSKFVzPRzdMHNejsd6kXBlAKALL9hBC4cD+fdx7791oGmRSIQwiXn75FQYGKqiagq6rDI8MoyiCubl5bMtF0wwcx8PQFeYXZnEck3K5yPLyEppu8Owzz3H16hVGRobwvJxg6dChgxiGSbNVp9MO+MQn/or3vvencFyHhcU50iRjdXWVOIpxHAdN0zGMnIxodnaOj//Zx/mhB9/O8XvuxjA1VpdXmJqaYnR0nAsXL9JcX2d4ZJjhoUEKhQKKULhw8SKHDx3k/vtPABB0OuzZM8HC4iKFYhFVUykND5CNVNA+/zKdsgWamiMRAJlJ1hsNJvdOomkalmXm8OxEUpPzeC8kqDNt5Kf+HdIp4Ls+pq0zNDS0qeCapkkcxximzZmz5xgcGu4yo5uEUczIyASGYTIxNkDB1rl88QKPfPUxPvjzv8Chw4c3NoPN7V8gEANTKGN3Ikz3xv1hG8W395je/NSN/SFJkl1GsHZyZF9XzDf66s3v7N8Ht4IRb7TdgKZut5+9bla7NJLyOq8C5f0/tmUf/Qb1zQzlm423k7yRvX0r2bjX/c7ujeu4m+jqBjy4N495uyjwTvPYkDcCIe6XrQyVjXPaKkp/O/3v9lzfyPnsxjHR//8c/bRDm130dStze1Oey+36eBON1+3mu10ft2u8vsl0Wd9fstPC+t1o/0bktqEHN5E39UV4A9Kbc3PDYvC3QN7IPG+8/vmi3Gw2WVxaIE1jhJBoqo5p2kipcuXyVf7gb55mdvQDaM1p1PoFPM9DM3TGxscZGRkhyyDLwPd9HNtlbi4vHTI8OontlbBtF1AwLQvHsrEMC0vTUYXAcWyiKMSwLTTLJAgjludmaK0toCQBigKqaaHrGifuP0GxUERKiKOEJE5J04g0jQnDoAuJ6kZahQooOSmOoubQWQRxkpdrkTKPrs/OzvPIV75GJqFYrDA3t0i1OoRhGFQqZTpBhwP7DwKCixcvoagaiqptRjQMy0bRTUDQWm8zfXmaJ594CsPIjYp2u83FC5doNNZRFA3PcQg7HRzHRdN1XM+jMlBhdHSEd73rXRw+dAjbMqmt1YiiiKWV5W5ZoYQslXmdW0VDVUR+nmlKFMYoImfAFUJ0CRYUFASWlZcz8TyPNE3xPA/HcTh8+Ah33HEHhpGTC+URJ584yZBSydmD5+YJO21UIdEV0DXJyNAAuq5TKBaRWcZPv+99XTKbXLFRNQ3TMGi325sQZU3TCDohcZwShAGdIEAoKp7rkkQRqysreJ5PpVKl0VinVlul026TSUmj0eDwoUP5JgYoQmV1eTU3cFUdhIrr+rRbbebn5xEoWKaNrpmoikG5VM0jUKh5JDnbYBaWBEHMyMg4hmGw3lxH01XCqMMXvvhF1tfXaTQaKGputDQa68gs4/zZsygCTF3Dd13KpQqmobG2uoKha+yf2sc/+dA/wTItNEUnjrI8Kp1Jjh07RhAE2LZNsVhAQrecjJMTHglQFYUgDPnWN7/Fysoqiqriuz5ZlnLp8kU6nQ6Nep00TSkVSzhd1mlVFWia4O0//ABCyVBUiWXbXaizYGhwkMGhIYQQJFIiNI1KtZrXbY4iwiTB84poqgoyo1opo3Qh6M31FlkqmZmeQSBot5sIRbK6vErQiSgXKzlUP5VcOH+OmWtXOHbnEVzPRtNVRsfG8P0Cd919N/fffz8LC4tkWUapVOT06TM0Gg1s26LZahAnISdPnqTdajM8NIbr+oyOjOdsw0kCQjI9fYWVlVUKhQKmbrC0vECaxDTXm5RKZXTdYH5ujldPnuSpp58ijkLSLEXKjGKxwD33HGd1rcbq6hpJkublkRSV8kAFyNeWLJUEd48RHR/Hem2BsBMyPz+PTDMKxSKjY2PEcUyz2SROYlRVRddUhkIF5VKTZ3/jv+P87CyKEJi6RrFYpFarbZb4CoIAIQTNIABNoxPHpEIQpiloGokwQUqS9RX+859/lM989lP8yj/735icnNyEGPeL4g+h+EO3vTf0K+q7hV726inbRT02jtv4frvje/fi3eggOTv6jYbwm6FfbDf2G2EO3s2Yb7YOcqt9bme87saAv5V+36x7tN35bRVlvt3xvte66vdavl909t3Kd2u+f2sjr/0ewo3PdgW0b0arvtG2H5bS78F8vWzrTcgVlf/ylfzvW4y83jjHG+EiG7KdB203G1j/b9stbjs9iL1emd0+rFt5nrcaZ7vftju2f/ytvD69n40cn62u4U7n0nv94jgmyzLSNL3BI73bzUoReTjNtm10XaNWr7O4sNglZ0mJo4SXvv0S//Jf/itmV0O0g3+foeAsVrxKahZZb7U5ffo0640mURJiOx7TM3O4rg9CEmUqp147jef7zM5eI0sShgaHaLfa3bI6Fq7vEkQhqUxRNZ2iXyCLmszPXOaVl1/k8LG7idOM0aGBnEgISJKMVruN47goIkbTdMIoj2Js5CmnWU7iJMnYBA7IPDdWVfXuNcqZPZ9++ll+9J3vpFwaYH5hkdn5OSoDFZ5/7mkmJydptZvs37+XQ4f2s2/fXlZWFomiAE3X8XyfZrPJM08/y+jwCGmUcODgIQYqVYoFn/VGnZGREdZW1wiDiGq1TBgGjI6PMTc/h18skqQZlmnx4nPPEwYdqgNVqkNVwijg2WeeY2llmf0HDqDpuVMhSVKEKonCmCuXriCkgut5tNtNdE1DQWwS9GiahkSSpRmtVrtL8JTXco3jhOeee45isYhhmeiGQZZKVlZr/NFHP8bp069w9OhRoiggSSKkzHNDFSVnPE7TNC8F1MUMaZqG3GBe72KDHn/8cebn55kYH0fVNRRFYFo2S4vLyDQjiRqkaYRUMjRdoVhy8TybIIgIgyCvK6rkxFPNZhMZZ5TLZU6/dgpDN5hfmMfzPGqrddZWV3NioKtXGR4eQSgKcZoRdGJM0+iuiQpZlkO3O50OhUIByPPBkZJrs9e4++7jDA5WKZdLZFmKUBQs0+GBt7yVQsGjWPCYm71GtToEEsKwzczMLKViEYHg6tVpXMdDIGm3A2q1GoZh8JnPfJo9e8YplQokWUCaZAih0G41N1lldSXP49RNY7M8laHrnD5zire85S2YpgUCnnryydxZ5GyUcImRMiXLUsIgIAwDIIfGm4ZBnMTddS8FRUMIhcWlJcoDldzgMwxyoiPJyvIiaRISx3mNZE01mb02i6IoTO6dxDBz5mbPcdFUDV0z8vzyoIPve0xNTWKaBlKmGFYOl0+SjCRNcez8+bs6fRVN05jaO9ktb9QBAdWBKl977Gu4tkOpVKZQKKLrGmkak2Yxuq7juR6FUgVFVbjvxH0cPHQA09AxdR2BoNMJ2DMxwT333stddx7Dsg1mZqZxHIfLly8TRzFrtRonT55kz57xvO5zq0mz2aRQKCCEQBUa586eRX/rAbLXruFdqSMmq5iW2YXc5s/MxvNjmgbBtWUKJ2t8+2ceoDkywujIHqTM2cl1K2dvrtfrZFmGbdtdtIJGpVJBUZT8GSR3aASNJp31Zf7g3/02p09/m3/xL/8t0hlASZOcudo0SbNsc/uX2fZQT8nrDbF+42SjDFD/vrg7ef3+d10f2n5v7I3A9rbbbvyNfm4l6te7329AjPt1mOzTjwLyhsjrbvreribqbq9b7/XvbdvvQNiIfO6kX/TKzVKR+om0ttMXNn7b0C96+9nQN252rr3n0D/ebs+h/7xvFlHtv65vVHp1tq36vJnut1Of/c/MTvdiyz4Usf013cIxtNP9/q5I3xqx+XXPIb2ox7zJrTtKbkX+zkVev9+jdEmSbMkq9wN5vewmwt1L7X+rEj79CcKnP/G68d7owmqaZg4ZvE1yAqFIhJJHbQqFAvv27eO+E/fm8M8kQtcFh48c4td//df4xV/8eX7onT/BypF/RFqawlp5mX0TY9x9/Dj79h9k7959KKrK6OgYhWKRcrmMrmmsN9e5ePE8lUquIK832+yZnKIThCRpiq5rBJ02hmZg6Hm0wbJdxvZM0g4CaiuLeKaSlxbp1tlcWlrmoU9+ina7TZpKarV1BCpS5gZTGHXQNIW0a3AhM9YbdSQpIEmSPOc0SRMKxQL/8Bf+IYZlohkqru/gex5ZlnLo0CEajQaqCqapkyQRK6uLZFlCseRhGBqzs9cwTIMr09OYlsWePWOceu01kjhCZinFgs/C/Cz1tTUGKhVWVpd47oVnicIA3/OJgpDF+UXm5+Y4cGA/pVKJOImQWcbstVnGJvbkkUqRG4RrazXOnTlHvbaGpih4no+UEIUhuq4hZJ5TePbMWc6cOgPk0UoQRFFEFEUoIs87C4KAp558kq8/9hiKotAJAzRDp1IuMToyxA+//YfRNJXqwABhGOawSZkbf2tra92SC9l1WDG5UrMBG9Y0jQcffJDp6WnOnTtPkiSYlk0YhAwOVCn6RXzPYnCwgmVZtNpN4jhCypwFOYeJapuEOWmS13JdmJ/n9OnTrK6t4HkuiqowPDzIoUMHcW2bI0eOkiRpDhuXEIYhWSq7LKUZUmYIAYWCjyBXsFU1zw88cvgoe/aMAzK/D1KytlrrltpRGRyqoqhQrpTJsrTLqpsxUBlA03LjY3CwiqLA5SuXeOWVV5idncWyTN773vcwNj6Crud5QY1GnZWVZRYXFxACVFUjDjsMDg7wtre9hULBY3FxngvnzjA6NkqjUSMMO1iWxeXLVzh/4eJmTpeqqiwtLrG2uobnFWjUm+iGQZokXLl6lSuXL5MmCbVaDVVRQEjGxkYxDL3r3JGEUQRkRFGbRqOGaRrMzMyhAJMTE/ieB5nczGnqBC1qtVVAsrq2ShxHaJpAUbScOdu0CDoBSZIrv67jEAQdBocGKZdLuK7DenMdXVNxbJc0SRkbG+VDv/iPuP/+Ezi2RZYl3etsghTITG6WH8qdOTppHLLeqIOEOE743Oc+x9zcXO4+UQRra6uMjA4RxxGPPPIIAwMDHD16lEMHDyElGKaDrmmkScLC/DzT09O02wFTk5PMzs2T/NN3QyYxX7pGlqSbxl7Ujeiqqoo8M0/51DLxB8Z4tVxhvdnmlVdPEcUJdBXGTqfDQw89xLvf/W7CMKTT6dBZX0cDsihCxjGqlETtNjPnX2L60ilUy+CX/umv5tHhLMWyLM6ePcvq6urr1vP07GMkZx69rb2gN+f0VmUrx+xWeav9sllnta90127ldiKK3+96W79swHW/l/PeKgDxvZrTxri3o4f9QH4gb6aIv02LSRRFr5vsTvPv94Ju5+3qjdpuH3nd7mXdeoPYhE1cmc2Pmhrv+fVWX/xb29B2G3ntlZdeeolPf/rTlEolfvVXf/Wm/W703Z/LsdvnabvF71Y37914yoKv/L8A1O76IN/85jd58cUXefHFF/n2t7+9qYR86Utf4h3veMeW7bcbL45jzp07RxiGnDhxYvP7F154gd/93d/lG9/4BktLS1QqFR544AF++Zd/mXe+853XxyAhp3na8MTm5/7Y17/Kv/+9/49nn3mW1bU1SsUiD9z/Nn70HT/Of/uBD2KoCumph3EWnycsH0Uxq8wvXEXVBPNzy7x4cZ6//MrjXF5YpR2EuKbOj9x7B7/y378fV1GZ3DvFwsIcy8uL3HnXHTTX13n55ZPsndzH1NQeUFLWVpfRVQlphKYIGhGMjuwBoRNGKSdffZXDhw/hWjpJnKLqel5DVCas1ZbxvCKSDENXUVSYn51jz9gE589fYHxyCikzEBvPjkqSZMg0xHE8si4LQhaHRGGHJMmo1+vEcYKUGUNDQ0RRhKFBGMe0g4BSuUSr0SSJQoIwZXh4iCQNmZubxffLlEsDWJaD7ih5eRahsry0wtjoKGfPnkM3TCbHxmk2G3Q6HZZWlti7fx9+sUy91sD3fT7+n/6E0ZFRpBS8411vw7E8NGHynz72cX70XT/CnokRLl28wsjwKE89/SxeocCDD76NTCYIRYDMyYfq9TXKxRJZCp/59GdwXZd3vvudJDJBM3SidoSuGUiRkiYJmq6iqhrLS6t5lE5TSZKYMIq4dm2aYrHA4GCVTifGsW3CKMqjbXGCoqh0Oh1mrkwzMFSlMlgmSzJ0Vec//N4f8HPvfxcDw6OopoNuGDTqa/i+S5rm+a6O4xBHEUIIkjSlsbLK+fMXuOv4PRSLRZqddWzbxFB0kjQlivKyPFGcoOm5wdlpd3BdN48iZDECMEyDoN0hk7nxoao6YZC/D6omkKREYYjtOKiKRhjEXL10EdPSKJZcSqUSK8sNvv7ot/ihtz9IsVhkaWmRldVlJvaMU6mUkUiWV9dxXBvL1FFUyLKUNE26eeUCw7DIU5e6Ua8kYaVWY6A6kL/vWcb8tTnsQoliN7IbxzFxnGIYBlHcQShgWxZZmrLeaBOFKZ12yPjeEVRFIZMZy0uLVCoV0izJ7y104fO5Mbi8tITjFXCs3OnTbDQpFCtEkaDdWCGIIgaqI2i6TiZkXnc5XUfXTJrNDrpmEMcRigqGUSGOI1rtBsWiv1kTOE0zFmevMTo2RhAEtLps3o7jIFFQFEG708JzPdZqa3iuj6arRFGYRyqzjDSF1dUapuvieg5kCULm0f4rl65SKlf4/Oe/wIkT92MaBoNDVYKgTWWgSBgkxHHKwsIyY6NjtNstyuUSzVYTz3Nyh1YcU6+3ePjhz6CS4hdKCFVn9dwVfum8R+oZzO/3GR0fzaH8SUz76XMMrKa0PnwE7YfegnHPf0MYpnz98W8QpQkPPvggmp6v53m0dw++7zM/P8/kyBBLS0ssLi6yurrK6Ogox48f57VH/5K/eviz/Jv/+CcIwyETBppUSRFIAbquE8YxcmObyCTx138fIQTGj/7PQI9xuG2lAnGD7nG7JUZywqbXw33zOWzdpjcvcatI2lbO5K1+u5X5bqcvZL/9H0AI1N/85V33datjb9d+O0d2//nfSjRqJx1oOz1zq3578597pZcZeid9qVd/3U6v3Y3+tJWuvJux+6/ZG5XdviNv5Lm4lchrPqn8+y3RCNnW9/VWba7ea/iGnQbKNpHXnilt9Yzeiuxkf2wlhmHc1g37WwYbjn/rRl4v2Y2C3/j3xqc3GP76xSLbsp/e9tf72b5g+HblXDY9oaUCSrl4w/dsySmWK7YbsuHhyj/ZDRGLjTn3Pls3jn/93Pqvz3Yw5y9/+cv8xm/8BmfOnNnWeO0/v60e7luF7vRugr2wkJsZ3Td7sXrbb7AN/97DT/Brv/ZrPPnkk1y6dIlOp7N5zIc+9CH27t3b08N2jNDX+zVNE9/3GRjI64UCfOxjH+ODH/wgL7/8Muvr63iex+rqKmfOnOEv/uIvkFL2GMnd+pd0uxWS3/6d/5P/6Zd+ibNnz9Jut/P2a6ucu3CWR7/+FaqVEocOHkWp3kljvYW3+DRXZ5ZYXeswNDjC//4fP8EffvZrzK81iJIEyzBotAPOTM/z1498i7IuGXR0HE9lZGSI9UYDQ9cYGRmgUDBzJmFU/FKFTqdDq74EWYe1xQa+VyRWVBTDYHRskDRqoqo6r756hnYr4qWXTrJ3cgrbNtAtSSaT7jlqOE4BKUSeqykkqqYj0FFVA9GNvGmmSau9Thi0sAyNOAwxdJvllVksS0dVUiClVC6xsLSMEAbtIGSgWsWybJqtJpZlEcuIjJQ0ComDkInxcVzXZn5pLq9bqqoYloWiKCzMzeHZLrZf5vS5izzy1ce457778H0PTVGQaYrr2GSKYM/kBKqucezYHXh2HpVsd5rsP7QP1y1gGC6VUhUhFMYnhhkZqyJEiqIqSJmXylGUPA82kzmcev/BKaolk04rwDJdWq0AXRNoBqhCo1FvYegWEAMZjz/2NKdPnWFiYi+O4zIwUKXdbnWNEJs4SQk7CbPXFnn15GuMj4+i6xqDY1Vc20BF0um0sRyPe+6/n3JlhCwVkOUwTNN1iKRECA3TMpFZStgOuHj+Eouzi0wcmKJQKXLp8gVGxofRVAMFjTjI+Oojj+Z5kJZJkiUYpk6cxCipxDRUgk6T9XoN27I4c+o0mq1iWQ5IlfX6Ou3mOkGnia5kREEHx7ZZXVnjpZdfwnFsTp89w5133Y2mWyiaSRTFVIcGKBTyiOIzzz7L3/uRd1BbX0eoCpZtY1sqSSwwdZcolOhdhuWVxWUc290k1orjFF23iFJYW23QbgbYtotmWXiVCqamkaYJiqrm9y9NWVlZJksSfM8HoZJkEkVR+dM/+TgjI0M4nsfc3FwO7xWCoNWhs97G8T3iOGZ27hqe77O6uoqiKhi6iUwEQTvEL5ZQDQPN0QmTjK989TGqlSpBO8Dz82i3Y7ooQkOQM8w6jouq6qRqgNAUZqcXqZTLrC3PItKI2tIKhYECoGIYNppuYZgWtXqdouOxsrLEeqOB47tYrovQDBTNRtWNLvJApbneollvUykX+cLnPsPk5B4sS8+dFoZBaaDKvn37KRULoGalAQAAIABJREFURGGbou/Saa4TttvoXplWq8PiwgJxEPDY177G1J4JNNPANHUajRqaoTM3N8u9997L3ccOEwRNJveMMjBeZfAfv5vk5DTlq02ykoMwdeTLMzitlNV/8VOkVp1zSx3mm6BoUCgVOXLsTrxSgSTpoOkanu8xMbEXoWh4no9nphSHxlhphdx19z2MlSxOvfAtPvuFz/MPfuF/ZPLYCdoYpIpEihCEAUKQdpXojX8oYrNUjrLvAXJ2YbkJGb7ZXrWTwrexN/ZDI69/YCv9pxcyvGE49qdXwY1kUb3SvxdvQFd7v++HOve334AK90Z3e8dRFAXlRx9AecdbbzDAt9MftjPobsVg2ar9Vuiv3nPdOI/d6Db9MNft5tl77XbSf/rH2+5+9Y7d32bD2O0n3LpVuRX9rtch8kbG2wrKfqt65k7z2I2Rtm3bTIKUNzD+blE85Dsjyo2GynU9cjstnxvqYfSyG7/uuC3Otx/hsR1cejf3pveYv3Ow4f8a5WbQ2f+a5Y16UXc7xp49e3jf+97Hb/7mb/L7v//7m7/1573sRrJu7pNlWQA89dRT/Mqv/ApJkvD+97+f8+fPs7CwwMzMDB/+8IcB+MhHPsJDDz20ZX8PPfQQH/nIRwD48Ic/zMzMDHNzc5w7d46f+ZmfIUkS/vlv/3NefOk5VtZWaI/+PS46D7LPr1MyQ/7w4S/zyAuvAfCr/+C9fPP3fpNnP/o7fPH//mcc37+HIE743c9+g2888zwXLlwiimJGRsZQVR1VUSmVSl0G9Txn07ZtkjQFFMqVIi9++3k0daMYOl0iKDh1+jVmZq7kzMBRSLPZIk0krWY7L4Mku5umzI23LSH1Ir8HruviFwooQnD69Gk6nQ6eV0LTLGZm5gnDlKXFNUzT4dq1awwPj2CaFs1mm1KpTKvVJokiVCGI45QkTnnp5ZcJooSlpRVUobC2srqZk1oqD3DqzBmuXr2C77mst+oEQQAIrk5P02l3iKKcVbhSLvPkk0924bMZSTfn2fPy66DrOufPn+sSMNndnOhu3hmCNEs2HSZpmuabjKIwOztPqVzGNExMQ0fTNcIwJk5iTNPc3CSSOGV2dp5ypcy58+fy/tOUQqGIbds0m21URc2ZYhfmeP75Z1lZWUJR8vHWm3leoef6OVTc0JGkBGGHhYV51lZXCTsBigSZpcg068LILfbunWLfvv2beYZ33nknilDQNC0nqlLg2J13oBsGTzzxFK+8fJIgjDAtiy984QvMzMywVqtRrVaRUjI1NYXvehi6TpZlRFFIoVjAMHPjwLRs6vUGpVKZe++9l0qlwk++5z1EcczVq1fpdDqYlkWSJNiWg+t6/MRPvAchBBMTE5s5rEmSk1YtL68gRB41RQo0VSPLJGfOnCFNEgzDoNPpIISCpijd6w5pnBBGIe1OG1XTAEmjXuPkqyc5d/4cAwMDrK3VcjKj7nP+gQ98AN/3efrpZ2g1m6iqgu26XLhwgTAMkWQ4rsPk5BSKomKZFo7tEEb5b0JVaLfbeSQ7zCHcP/uz7ycIAxRNpdlsIgQ0Go0uFFt2c5/ztStJEjRF5dgdx8iyjPVmC9vx+f/Ze+/ouK7r3v9zbp2O3kGAvYkUVSiKpBrVZUuKLbkqLrEje8Vx4sTPcRL75Zf42cnKL82yk9jPjuNuJ26Ri1xFdVkWJVGWKJJiJwiilxlg+tx+fn9cDDSEABJU8YveT3utuxYwc9o99845Z+/93d9dLJVxnRACXC6VOXbsKKVSgWg0AiIMXejo7MTUjfBgI2BifJxCoRDuS0JQqVQYGx9FIrn6mqswDQPfl1gVi2gkhud5JJIJ4okE0Vic0dFxpBQ0NbVSyheZGJ+gVCzS0tJCV3cXx0/0USqVkRJczyOTyWCaEeLxBFJAS0sLza2tdPf0cGJ4gIFb1mBfvBT9l0fQHjiEkbMZ/dDlmEmdpOqQsTTq60MvuT4Daw5cD00zQuUgEJRKFaLRGIVCkcmJDMPDwzQ3NmEYGrZtk06nCRSVZStXUbJsQEGR4fWbllpo70sptcpaLeHS6cZRhdDOlTMZsmv7qHrPXmgIUHXf+E2cF15oP4sJg5qv/KkOi/k9sy9UqsRanue96LZelVflxcrZ/kbmk1cYbNiad7ALWy1Pt9nMv3CezjozPwRjYQsZgPfVH4TWhd95/WyZhec8OOMDPZVcYf6+pfTn/XxunVr5+te/znvf+156e3s5evTovGXms0qezrJ4pndrvud2OqjL3LqLhe7Y938GAH3H+0+xPJ48eZK1a9cC8Itf/IIdO3bUtHBmmHiVMKdqCb3qqqt49NFH2bBhA7t27ZolAKnKzTffzD333ENPTw8HDx48ZSy+77Nu3ToGBga49tpr+fGPfzx7H4qi4DgO27ZtZf/+Z7lk23buvft+gkDy+GO7Gdu7i/PFbjb/Pz+iZLvcds12/va9tzEykaGhoYGpzCRTuQK/8w9fYLpY4erz1vC373t7mIZEU2lva0FRJeVKARkoBEIlGo1jVwqcPP4sbc31BJ5kKl9g2aoNGPEkEBIGqbgIRQMpSKcz1NUlicb0GVilSRDI8JIeihLGuyIVNN0AqTL7CEVAgEAGLqoicG0Hz/EJfImmR9A1leNHj+B5Hl1dSxgYGmV0dIjLL78cX/q4ro2pa5RLRZxKEdf1mJ7O43sB3b1LcYOAuvp60iODOJ7H0hUr8TzJ0PAwD9z/IOvWrea88y7Acz1GR0fYcM56yuUinuuimQZSgBmJcs8vdrJ+/Xpcx6GxqYFIJML4xDi7n9zD+vUb2PXII1yx4wq6l3QgVNC0EBJbsSzi0RgSOHrkCCtWrsK2LBCCQnqCxpYOypbNT3/+C2668TXEYyaKGuDYAZZlk0jG0FSd4cEMFafIk0/uZunSXtasXUMyEQtT04gQHnry5EkaGuvRNQVEEJIlKSalYoF8LsfIyBid3d0s6elFShf8ALtiMzIyylNPPcVrb7wJzQjJnXzpo+thvKPrBKD5YXyqDOg73kdvzzIECn3HjhKNRmlr72A6lyMWj4FQSCQSSM8BQiXLtm1c1yUeT1Ao5HBsl3iijlKlTCIRw/c9DNXgZz/7Gd1Lejhv03moenhfmq6SyWTQNY1YLIaiKGE8redTLJZI1dWRmcogpU9bRwuqKrBLNg88+Cump/JIAY5r8453vA1NhGDO6eksyVQKTTdm0ikl8T0P0zBwPAdFVXADH00E+H6ApmkMDw+j6yZNTU1IT1KxLMxoZCblUQVRzVGtauiahiDg0MGDjI+OcdFFmxkcG2LZsmUk4kl8PyAIZn4EwiHwAmzbIQggly/Q1tGB74cwcl0xyKTTWHaF5rYWXMsil8tRLBapr68HQoU2VRclmWhAEEHXVVQ9jEV1bEk8roeKsedjGDrDIwO0NDcTi6fI5aZRNRVd1fnVr3YxMDDMpTt20NHRSl0ygVWp8PBDjzAyNMrV111Ge3s7mUyGXDaHomh0dfWgxw2kH1ApV5ieytLe2sbQwBCO63Dk8BHWrV9HS0szruvS1NzEkSOHcZ2AtevWoiiC9OQkhmGSSKYo5ic5cvQIF225GADP89ENA9v2kL8+QfbACRpu3YYtfGL5Y5zIQfT8N/HwL3+Fj+T6195IU2sLqqrie4LJyUm2bt3GL36+k56eHhRFw1TLeIoREswpAX5+nB9+71tcfdPr6F2xGmk24AUBWiDRpIO7gOdKCnAf+Gy4z1z5BwvsHafK6aCZVQnj2k8Na5q79y20D1Y9o/OVq+5Zc72wC3kkNU2bV/GZL39ptb3atC7Vv2c8LbP1a42YC91fMENCV1WgF/IKLVbONIfznWmq/c6ScJ3mbLNYQquFnk2tAb2q1M5HqrWQt3u+Nmv7fCmhvAvJ2ZwDz9RO7bszX5uLffYvi+f1N6A/LTiXytyz/fww4EW1NaedM6EGqnK2KZvmkxcKG37V8/oyS/DwbvyHdp/y2eDgIB/5yEfYvHkzzc3NpFIp1q5dy623vpFvfvM/Zjw/p4rv+3z1q1/juuuup6Oji0QiJPi57bbbeOihhxbs/5prrsUwInziE3+N67p86lOfYtu2bbS2tmKaJg899BCmafLe974XCBU6wzBOuT7xiU88r91cLsff/d3fcdll4SEmlUqxYsUK3vGOd/D4448/r7xt21x88cVEIhEuvfRSPM+bF1by9re/nUgkwtKlS0mn04ub5EXK6SAz1U3ibCzCVeVUSklfXx+PPvooAB/84Aefp7gC/Omf/ikAAwMD/PKXvzzlu4cffpiBgQEA/uzP/uyU76qb5h//8QcA+NWuRxkY7kfRBVu2X8hbP/Bn/My+kJLtAvCm89oZGx2hq2sJmmZQrti0NNZzw4XrAXjk2ePEkymi0Ti/fPgRKpaNlGCaURLJ5CwRVSwWp6NrCYHQcTyX+vo6FBGgSh8Z+GHKGgVcz8EPPDo629BNjYpVRtdNKhUL3w832mraGlVVUNTqQaR6GApJaJSaDUrTdSLRKEYkAgpohsLS5T20tDYSjRncd//d7N2/D8uyGRocJhqN47gevh+QiMUZGRpmz9PPcPRoH8VShRMnTqIoKpMTE/iui2PZlMolOjq7KFUqREw9JKjxPEzdwKqEbLT5QiE8OAmFzOQkO3ZcTn0qSW9vD9npaRRFob6+nmKhiAwk5XKZXz3yCIqioqkaoBAE4HsB7szhr7OrG9tyMIwIruPS2taFRHDgwCFy2SzZbBbLciiXiwSBh6o+9551dXXi+x7XXnstq1atxjRNfvazn3PgQOhxdxyHZCpBuVQgkD6apqJpapWvnHg8ydq1a/E9l0IuS7GYQ9UU8oUcpqlTKhR54tFdICUyCMhNTzM9lcF2bPpOHJ/9nWiahlAEuVxI1NO7tJeGxgZGRkY4dvQ4MhA8+cSvqZQsxsfHZ+/djJghqkpKpqemZ3Kxxujo6CBVX4ceMZBScPnlO+hZ0oNm6Hiex+TkJP0nTmDoeuglnVHc+vv70XWdaDRK4Ad0dXXR2tqKZVUASalcpqWlhY6ONrZt3col27fjOO5srtampibEjBLsui4yCDAMA8uymJxZf7QZ2KNlWXieF3oDm5sBUBQVwzAxzQh+4BONRunvP0GlUiYRjyMIla5EIkF7RzvReJyuri4URcGyHSqWTT6fn/kdBHi+h+9L8rkiQSBxLBtVKBw+dIg9zzxNIpmga8kSLKuCYRgkEgkaGxtpbW3FdV0aGhrY8+s9+K7Pzrvv5s7v38no+DiqZjCdKzA8NDITB11GVQXJZJJINIpEhszbrkupVOa8TefR0tTKst4eBGDZYdzr5OQEjc2NNDc3IKVPS3Mz9fWNVCo2Q4NDpCcnUFRBNBqlq7sb2/E4OThEuexQLBToaG8jEonMGDdg3/79HD/eR6FQZGJ8kunpHL+4eye6pmNGI1y0ZQuVSoVsNofnBxRLpdBosb4d5eYLCEwdw5kiqOS4uz/CY48/TUt7B6lUPb9+8gl8x6aYy+L7Pk1NTfzXf/0XS5YswTSjmKZJLF5HJBIh8F0Cp8KTTz7JM/v20bViDS5amFJHhodBEWin3xBeBnkxRE6Lldq973TjWMg7+2I9r/57/xL/vX+5qLHW5kf9TcrL6emthQ3PJdt6qdB4Va95NbzpVXlV/k/KC4F9z5VXlPI6H766+v98E1G7eM6H1z6byVvIMrm4dp6r841vfINzzjmHO+64g71792JZFqZp0tfXx09+8hNuv/09HD58+JTauVyO17zmRt73vt/nwQcfIpvNEovFGB0d5fvf/z7XXXcdf/7nf36KRXHumCzL5pprruUjH/kIe/fuPWVxbGtrm0k5EG6SbW1tp1yJROKUe929ezcbNmzgYx/7GLt376ZQKGCaJsPDw3z3u9/liiuu4O///u9PuQfTNPnGN75BPB7nySef5C//8i9PsfAEQcCXv/xl7rzzThRF4Utf+tLsAbEq1113HdFolDVr1pxiAZ3vvufOgeDU92Huc5xv4ziT1Mbw3HfffaeMcz655JJLSCaTANx3332njLFaP5lMsn379tk6Vcujqqpcf8Nz7d5z/06EGqDqYAuXx555CoC1K5dz6Tmd9Bij5Eaf5ek9u6mrT5CZTnP+ym4AbNfjsf0hW2xmKkM6ncGegdX6MlTKFSEIpKCppZOG5k5WbTiPziW9jA6dpJyfQhcegWtRyJdmrOkKtmMhANt2kTKYVeCDIKBStgh8SRCESmp6YoKf/fQn5HJZZOAjRA2UBEGhWEDRVDRDR4+quIFNsZRlIj1CxcqxenUvne1hPGdXdye+7+J5Lq7jEDVjLOnupa2tC6EZFPJFHnv8ESbHRqhrqEfTdYQMSERN+o4d5nd+57dZuqSTYn6avr5jTExO8PgTT3Dk6HEaGhqwLAspJa5rIwOPcjFPOp0hGo1SKBSoq6vn3e9+N729vdxww/X4vhe+j4qKDEKvlwwEChB4HoVsnnt27kT6kqGBEY4e60PXDc47fxNbtmxmaGCAeDSKpmlEIzFKhSLZ6enQE+xbpDOTnDhxnLr6FJFIhAs3X0R9XQOVss13vv1dGhoa6OrumnnHFaRUUBWVRDyJquph3F9XF4YaergdxyUQoBo6N958I3X1KXwf+vsHiSXiJFMJhPBZvqJn9hmVSiVWrlhJXX09z+x9hnLZAqHS2to2m1MzYkZgBg6qGzoogmwuFxIIKQrLli2nWCzhOA6e6+A6FhFDR4ua1DU2YM7kIBYi4FePPMyvHn00NOwJQcQ0qaurY9WqVVSsIiMjQ6iaCNMYKWoYn+2GTMUbN57D1q0X09XVyfIVK1GEij2jNFqWjaaqqKpKNpvl2//xn5zs78fxPOLxOK7rkstMI4RKKlXHyMgYluWSSU+hqTrjYxNU4ciaphFIn5bWZuLxKFPpDNNTUwgBzc3NLFu+HNM0iceS5HJFTMNEU1XiiRiZqTSBDHA8n6lsjrGJCf7ru99DFRLHsuhZ0s3K1avQIwbjE2NMZzJhCpgZxV0IQVdXF7FYjK1bt6FpGuvWr0VRIAgcHNdmZHQ0TBuka5iGxujoCC3NrRAIbMtCISSwamhopL6hiSt2XAlIMukMgwMnKVdKXLz1Yi688AI8z+eenfdx110/RVUNVq5YydjYKMl4HCEDSsUCfcePoygK27dvZ83aNbzltrcQmXmvNVUll52mpbmJyfQEv3z4EQ4ePMzAwBCO7ZDPZ+k7dpxyscRXvvJVKhUL27IpFkpkMhlsx8HzPKRnY+b7CTa9A8c3WbtuE1/9yn/w8f/111x11VUcOrifWNTA1AVDA/1sPGctQwMnyE5NUCnlyJVsbMvFUBWiEZ2f/Pyn3HDTa0GNgKZj6CoCHykCvLMIF1wMLG6hMnP3rrnK5dyzxkKKZy0cdW692j5qx1GrWNaet2rHON8+qSjKLDS1tp1az2ptm6d6FMPIu6oCNzcNTLUf3/dnYfLVNhaag9p7mjvPtR7U050b56LBas9Mp5Pa2OC5z2BuP/MZ1IMgCMnIagwXC6WJma/N+Z5r9dm8WPh59d5r35H55mPuuaz2szPN+ZlQAAudcRcz9vmu0+kG883lfO/T2TyXxchi382z7WOhNWfuvZzpmZ7uWS5GFrM+nkleUcrryxX/8ZuSn//859x+++1YlsX27dt54IEHyOfzTE5Okk6nuf/+e/nd3/1dDMM4pd773vf7PPzwwxiGwR13fJJ0eoKJiTFOnjzJu971LgA+9alP8YUvfGHBvj//+c+zb99+vvjFL5LJZBgfH2dkZISNGzcyODjIHXfcAcCSJUsYHBw85frQhz40205/fz833XQT4+Pj3HrrrezatYt8Pk86nWZwcJCPfvSjqKrKX/3VX3HXXXedMobVq1fzyU9+EoBPf/rT3HvvvbPfHT58mA9/+MMAfOhDH+Kqq67idFJdPBejcKqd56B2bThtey/Wslr1fLW2ttLaOn+ielVVWbNmzSnl59Zfu3btgh7i1pZOWlpawvLPHpz9PFB9nj3wLADrN51H/M3/L/Ftb6Er4bKt2yM7cpDOzlau2n7RbJ3jo6MsXd7NW297C20d7UgEjU2taIaBboQ5R+OxBLlCGU+q5MoSI1bPiuUrGB8ZYODEIVRs6huaMSMxUBRUTSMAUnUNFIt5SqUCICkWi+ze/STRaBJVMZieylBfX8eS7u5QSVMVZOBDIMMDqZQkUyl8GYAiEEJHUaI0NrZx7oYLiEaTLF++mh07ruCZvU8TQlJ96uqSqJpgYGiY9HSOlvYOepctIxYzuXzrFnbveoixdIZKpcKz+/cxnRln3ZplJGIaxWKeE33H6OrsYM+ePWiawejYGJoe5v2slEs0NTQwePIk6clxmpubic94vYLAp1AooBs6DQ0N7LjySgwjJLGRUiCDMA2LaRhk0hlM02Trlq385398i2gkRkdXF3v2PI3nO6xbv4bzzjsX33OplGxy2QKGHgmZXj0bIRy2bLmITZvOnSWKaGttZ+nS5cQTcdauW4vveUxP50gmGzD0BKWix8H9BygUijgz8cZB4DOVmUR6Gr4PjS2t1DU3oUZ1Nl5wLlI1WLJsBfFEElWROJUigVtCEWE+zGgkjOkFWLNmDVPTRe67/yHSU1ki0SgP3HcfzU31TE6M0t7REcZvug519XUYpokUIHSN5rY2ItFoaN/zJa5lhbnzVIglopgRDceu8IY3vo7bbruN+oYGxsfGyOdDVmjHdSkUsrS0NmIYYdxnaDCQqIpJIpFECPD8EB0QBAE7d97D5/7t3ygWizPsw+GBuKenh5bGplmlsFwuk8tmMXQdzw3hvUt7VxCLJmhsbCHwBY8+uov//M9vUalUCPwAx7ZRFEEsFiWbzfKjH/2IfC5PJBqSdJUrZX7y47uxyi6Dg8M4jo2uC+rq4shAYBhRupb00NrWxk0330illMN1w7jXaCyKF/g0NtTT3d01u2aVSjMKnW1z/PhxpFAZGR0nkYxz7XVX0draiOeUaWuuZ0l3J5ZVQtdUpO+Tny4wNpJmOh1euq5x8NBhPv/vX6TiekxPTdHW2sLS3l4URWHp8qW0trehKDpXX30dl1+2g3g8gabrbL9kK77tUMjmScRirFjWS/+Jo5TLeb70pc/j+B7PHjpI/8kTPP3Uk6gIzt+4kXe+822sXr2CTCZDqVTkrbe9hWjMZM2qNSgoXHPl1fiOS6VUhiBE8dx3770hJHvk1wzqy9k3VOB9v/9HNDS2cfNvvZ6/+7t/wHNsli/rZSozztBgH12dzfSfOExXVzO2VSCZMJFoKBKmp9IcOrCf9evXcssb34gQasgDL3wQDr7q4KqnjxcUyRZEMlyfz9YQuhh5IW3VxrMupEjVjlWbSbFVTQF3tsbcsz2b1ZZ/MbGwL0Rerv7mGgBqFd+qLATNrJW53mo4u3PKy/EOvhQes1flVXkp5BWlvL6SxfM8PvjBDyKl5JJLLmHnzp1ccsklswtLKpXi0ksv5XOf+yzr1q2brbd7925+8IMfAnDHHZ/k/e//fWKxGADt7e184Qtf4JZbbgHg4x//+LyQY4BiscjXv/413vnOdxKNRoEQMtfY2HhW9/GRj3yEbDbL2972Nr71rW9x/vnnz0JRWltb+djHPsbf/u3fAvA3f/M3z6v/rne9ize96U1IKXnPe97DxMQEtm3zzne+k3K5zEUXXcTHPvax59V7MQumvu4q9HXPKcOLtaCejYyOjgLQ2dl52nLV76vlz66+UlN/7LlPFYWxmf87OjuQmkJs41U03PrXpC5+I5t7U/R6fSxNWNTFw2dfsl3i8Sgtrc0z5CwKsVgcy7JwHIfHH3uMYqmE7XhIBEYkRhCAbui0NDcSixhMT4ewShmEV+DPWGIDiEQN4vEYmqZy9OhRhoZGZnKVatTV1eF5HqtWrcR1PUAwPT0NMGO4CTk6haiy6GlIGbIWS6miaxG6OnvwPJfNmy+kSpun6xqGYdDR2UVdXT2/2vUoJ/pOhHlDpY/vWli2RSwep729FWTAyf4+bKvE9FSG3p5empoaqUvVsWnTeWy9eFsY36gZJJNJfN+no72d7q5uHMcO4zmlJJfLEY1G+c53vsPJgYEZhTbMKzk0NMiRo8ewbYdSuUQkEgkhrhLi8TiGYaAqCvligXg8HsaZ+h66ruE4Lnv37mNgYJD6+jAvp+Naz6EJFAXHdWfz5iqKwvnnnY8zAx8NfImuGZSKFtlsFl3XyeVySBkylFpWGYHC0aPHQSj4QUA0FsOTAcf7+imVK6Fn1LbxfAdNFTNkXZJABuiGHjJuJ5J4vs/AwBBPP/U0hm5gOxYjoyM0NzeFxGaGORMrquPYDkEQkJmaBiXMfwsQ+B6OY+M4Dq7rUi6X8DxvxvMLcuYw2NzcPANbVpjKZLjv/nsAyfDwEMViEV0zOHrkGFIK2tvb0TSdSCQ6axScnEyTTIRMzZFIBF3X0XUdKSWbNm2itbWVPXueRtd1pqenSSaTKIpG4IeH/9HRsZCQyrLRDYPm5mb6+/txPTecF02jYll0tLfz1re+laamJp5++mmeeuopNMMgny/w8MO/ZHR0BCnljGc/CAmE0mlURaN36VJWr15JQ30diUQCIQSO6zAxMcnY+Di2ZYUx56pKU1MTdXUh/DWEQat0LemmqamJSNTEtW2KxRzd3Z0kk3E81yVfyLOkp4fJdJrm5hZSiSSaqmHoBkePHUPTdVIzHvQqC75QFAYHBpBIImYUTdPD1E16GOsLAflcjkqxxJHDh8hnszQ1NXLg2X1ce+3VSAXWrFlNNBpl1arVOHaI1JAyYMWKFdxwww20tbWhqSr5fI7RkREM3WD9unV0d3bT3tZGPBqloT6MNRfTfeiGSeK8W2htbWVoeJRnntmHomiMjY2FhE26SmN9PdGYicQjHo/heQ4NjXUUijl8X+K6Lo31DTz88MO8//3vn1noEkvMAAAgAElEQVRpA1QhEUKizNCHBuL0So62+c1om9982jIvhZzNvrWQ8rSQvBiFbq4npfr3mcJ1zkTNWuuFrJVaD+d/J6lVGmshwXPLwCvPEVMlW/zvNuevyv//5BWnvM4H+QjznIVXeEvhJWXokRFCzv5dvWrLnVpHLHDND4M43TjDcmHZBx98kBMnTgDwT//0DxiGRkgKVHspocVX0WbH873v3QlAd3c3t9/+HhRFq7nPUKrpjtLpNPfdd9+8Lvn169dz442vnXec8206812ZTIYf/jBUpKvxm/PBGt7+9rcDsHfvXsbHx5/X12c+8xmWLl3K+Pg4t99+Ox/96EfZt28fyWSSr33ta7Nw09q2pZTcfffdVCoVDh8+PC+co1puIdjTXOjT3PZPlfnfj4WkUCgAzBgG5j7X566q4aBafv7684ui1NbPP3d/rj9bPxGLo0lB4Pl4hkn03GtJvP2fid78P1HrWojO5DvMTQxDJYOqODS0pqhvSmB5ZaQnCLyAZUuXUamUUJAYmkrU9PACh5F0iXjDUmKJVrLpKUYG+vCsMoaiIKSCpuhh7k4tCkKhXC5xzoZ13HrLTcSiBjJwQDEwolHiqTiRmI7rByTjDeQLUyhhjgmkLyEATQhE4CGExBcSS7oEuiTeEKG1uw0UDVM3kU6F3PQUU5kiUlUplktcdslW1q5eytEjB1m5ei3tXUupTzSwa9cTGEaUjq5uOruXECA5Z/0aHLtIoTDFjisvYWJylIbGeiKaRktzM0GgoBoxoqkUUlcYHR2nUrYpFipEjQSFXJbOtkZ00yQSi5LL5UjF47Q3t/DwPfcxNjBE4HpMTIwjFElbeyM3v+56Orua0OM6l162HZDks3k0TWd0fIJ4Ismm8zbS2JxCUQx8X0MRJlJ6FEt5PM8CPCQu5Uoe16tgRFWSyVCp9gMXyykihcWWbZsxTZPeJV04TgFF0xibKIEm6Fnaga4KInqcUtFGqArHDh3j8LNH+OlPfoFmJojGW/BkAt/zIQDX8SkUSlhWGcsts3pNN7/9tlu46OJNtHe08K53v5vLLtvBY48/yf69hymVKvT2LMV3A3QtSnoix7e/eSe5qTxCEbieQ75UwYgkMQwdTdNIJpNIKSmXLVzXp1ysgAQ9EiWSSCCFoKmhmVikEUOPEzETRE0TGbisXb0CEbigKIyOTfKLX9zL/n0HyExOsm3bRbzz3e9G0Qx8qeB6AX7goGo+LT31ZAtTbNx4LlbFDfPdOhaVso2qqpQrJRobU3R2tVGuFLn++mu58PzzMYXCt778FbyyTaFYQqgaZswgMfMsWpubWL1qBVPpEX77tlu5ZPt28A2+9+0fUioU0FSfiGnS1dmGlC6uZ2FZNgcOHsF2Jd/8j29TzBXRxIzRIxJFGlEGBoaRgSQQElcENDU188uHn2RqqsxnPvM59vx6P8LXSMWS5KfHUHSVsm0TiSZ4es8+jIhJqVLAw6ehuQHLrjDQf5LLtm5n9OQgK1euBgUqlTJD/cO0NnaSHhul4jgEBExkxvFx0SI6QjOob6mnubOVtRs2oppRmlvbuGDLFjq7O/Ftl8D1CNww/rXiBNhSJz0xRd+xYyBd2lqbsK0yYyNj1DW1k8mVePLpfQyPTzI4PMZ0toBTKXHJBWtpEHn2xrdQqBQZzxV59OG7+ebXvoBVzPGGN9zCwOAoo+ksWjTJ+EQGocVJNnahmHUosRQiGsdXbAxDkstMMjE8iquYFIkQAL4UeIGCxECRBnqgIwXzXnPlpYDFVdup7nVVGO5CMOP59uxar+tcWO6ZZK4iOx+MuPp3dVzz3Xd1HKqqnsIW/BxB0/wQ4Gq/VSW1Wq8qVZTOmRTzufDPWjhu7Wdnel61Z4q5EOa55aqQ4LnzU+23dl7mnk9q56b2nqvvwJmYoatlayG+pyt3Jqltq9Yjv1gv7HyQ1NNBgmvLz333Xm5ZDLR4oTrPE0XMXgFy9qrWgYXh0rVXbd257Sx4H7VrU804TgdHrvb9chmEXmqv/StOef3vIHMXlYXK1FoVd+3aBYTe0gsvvPCMfVQf8lNPhbGMV1xxxYKL9Lp16+jq6gLg17/+9bxltm3bdsY+zySPPfbY7GJy/fXX09PTM+91/vnnz9apkhDVSiqV4mtf+xqaprFz504+97nPAfAv//IvLF++fLbcYhbp00n1Gfi5cfzc+H87a+HZHnBeCCRrlumxoRvz8tsR0TC2WSSa8EcO4h16AOfII3gTfUR1lcbmFLqhEkvESKaSoVfFcvBdH1010DQd3/dJ1tXT3NaOqascOvgs09NTNXFPKjLw8b0QKqooClII/EASAEIY+J4g8BUcW3LsSB+aZqIArhOmahkbGUH6Pr7rnvI7EghUVSNMMaKjiIDA90OWWl1DEZIDB4/gS1i9eg1CVens7iaRSLHh3E20tbfS0dFOuVJmbGyC/v4B4rE6KrbNVHaaslXGNA3MiAGKJJ2ZZnhohEKxgB94CEWQSIQe6rvuuotKpUIun0PXNS7cvJk1q1ahCpW7fnQX2ekcZiRk4B0eGUVTdRrqGzDNCIqiIlCQEhQEgQzT0jQ0NGDbdgiJdVxUTaBoIPHwAzeE3MowNlpVNTRNR8oQloyQVMoVXM/FshwURUdKQUNDC4VCgXQ6PXPwULFtmwsuvJD6xmbiiSSe6yF9j6bGehQZcNON17BxwxrWrFxDLpPH0HQEDogw/7Gua0RME9u28DyXdDpNJBKhtaUVKQMee+wxbMfioi2baWhIoakqUgYEgaRcqpBMpOjp7ULTFRRFYtkVXNdG19WQvEtRIJA8s2cvux57LDyoImeQAXYIz0VgRkwKhTKVik0qlULTVHzfw3FtKlYZ13WJmBEyUxmmpqfwfZ/ly5cTj8fCuZ3Z0BWhASoyUEgmUggUhFBIJutIp6e4//4H+fa3v4MiBBMTE+zZ8xQ/+/lPyeamaG5poqOzkze88U2USiUURRAEPo7rIRDcc+99LOlZimlEiEYSIAQ9vZ0oqscFmzeRSKaQUscwdBQlfNZIl2hMZUlPG4qicOGFF5JKJUgmk+iaxnQ2i2tXGBocYM9TT83k0pQIVeOGG64iGTdYt3ZVSJ4WiZCsr6expYXsdJampiYSiQRr1qymu7sLM2JSLlcIpEQRCrfd9mbMiEahmMWxLXRVxTD0kGhKQOC7aELBd70QyusH4AfkpqZhBiUR+BLTjDBwcgiBgu/LEAmg63R3L6G+oYEHH3oAGXjEYrEwFjgep6O9nVgsSnt7G6apU6mUKJUKRCIGlUoJTVcIrBzN7gg/HUlR37WSpoZmzj93E+euX8fGDevo7mrn6V/vprurja72dp7d/wzLlq4inytjWz5IDc/1sW0XQ1fxfZfJ9DjRRBxDj+B5/vwL6n9Tme8A/FK3u5iyZ/puvv08/AzmVl/IQVCryL3YQ3a1jaqSWWscONO+XOtEmSu1hvTa8rVK0ELtv1RGj8XKi52/l1tehSn/3yMv9bv9qvL6AuRslFfR04no7Zz1QPb09Cyqj+oPdmJiAjgzHLWqvE5OTs77fWtry6L6PZ3UQl3Hx8dPe1WlXC7P29aWLVv4wz/8w9n/3/jGN/LWt771lDKO47xgWE1VkVJVFffJ7+I++V3g5bPgJZMhqVWlMv/9VqX6fdU7Vr2qRE7VPKDzSRAEs/OZSCTn9H/m+kIIKpUQVl639Bzit91B/C3/iLrxxjDk8MA9VPb+FC1ziHiQI2KqNDY3oZsmnh3g2T6VioVUFIRu0NjeCSKgvb0lPGQW87iOjZQBe59+BkUITMNkYnwSVdHxJQihhTBXBYQIyOenePyJR3HdCol4FKREVQX1dSmQPun0BAg5Y2sM4cFShgRkU+lJpAw4fvwY+WKR6ekppO8RSEFLaweqYbBu/XoKhSLP7NtPNlckEjHZsDFMdSMQaKpJJl2kWPLRjCSansAwE2SzRQr5EslUA9lsjgfuuw8R+JSKRRRNo6urC8uyOPDsAdpa23Bdj6bGRlRVYFllFKHgeQGO7XPV1Vezdds2RkfHSaXqUYSK63iUyxYHDxzCcRx81wMhMEyDuvp6li1fRiIZwopbWhpRNYHtWKGCp+nIAHw/wHM9opFoaDCQAa7nIAN44vHd/Pu/f4n9+w7xwx/8GCEEsVgMy7LIZqcRQjA+Ps7dO++nUglhu5qi4FplSoVpVM1C1TxWrVqFaURwbAspXSAAEVCxSkgZpo8plkpEzCjRaJi+xjRN1qxZjes6JJMJOjpbSWfSyEBw9Ohx+k6cYOfOe7jyystIpeIIIUkkYrS0NGPbNtPpDJViGddxSSaTuI6Lpuvoehhve+d37uQH3/sBY6Nj5PJZztt0AZZlUywWmZpOoxsq5VKY81bTNFRV5bxN57HhnA00NjXiui62ZSEDD6SP57n4nkT6Ck8/vR9NM9H1MBcqhIrthg0buOnGm4hEo3R2dbLjyh287bffSlNzI7qhoega8VSKJb09pJJJInrooXA8j2uuvY5//cxnGRoeJZGomzkou2zctJpzN61DFSYEUTxfwXMFgQvlQpl0eopIPI5pmqxfvzaMMRZg2RaRiEnE0Lhg00ZWr1xOLpfD94NQj/SLRGMK27ZfHO4bQsELJD4QiYSESbZjEU/EOHz4ILG4SXd3L4pQUBSBYWo0NdXR1t6IYZjYFQvfC+dqcnKcRCKO5zj4rkt3ZxfFfIED+/cTi0Q5fLAPq+wRBGBZFj/92U85duw4hhHlW9/6Nk/ufgrXl6Tq6rnxtTfQ0JCg78QJ2js7cFwXX0ryhSKJZApEQHd3B1u3XkQyGUMokmQySrM/xnT7FcjmjRzYd5SRoVGGBvs5eHA/1151JRdfdD6XbN9CpZTn2LFD9HR3EY0kcWyfDZvO5d8+/0VAQ1UMUqbJ8OAQ//tzn+PP/udfoBoGsVjitGv4QuI+8NnZdDkvh1T3s7me08Uqr1Vv4fNybC8gi4EQ13oTVfW531v1bwg9pJ7n4TjOouHLp1Neq1c1t/Fi72eu1Hpbq0psbWqi050VTmdYr+ZTdWcNr6d6U6se4zN5IH8TUutNPlt5KQwIi+3jVeX1lS+vKq8zstBEnM4tPhc+8mImci7UZCHIjPaxP0D7qz9YlMJ7OjkbC+h8c1ALvTlT2YXmsLpJRKNRHMfBtm0sy1rwsm2bHTt2nDInVchJLpfjzjvvnG17z549lEqlU/pbKDZ1IXjFXCjT7MI8Z+5fzHNfaG46OjoAGBkZXXDjDb8fmS1f29Zz9UcW7FtV1VkDQkdH+yntV+sPD48seH/lcplsNgvUGEPMBOaaS4ld98fE3vFZotf8IWrv+fiTx3Ce3Ulw/GGipUGCYppyJUw7Eo1HkYpAqBrtHR1ouo6qKqiqwHUs8F3WrlmNOkMA0tjYGOYhVTQ8P8D3bRQlwPNt6hsTvO6W16IZciaPpkqlUkEIQaFQCGPbRBViJfDckDRF03Tq6+oQKCRS9TQ0NqNpBvlCkSce383xY8ewbQtEGNPW3taBQKGxsRHLsmhubkJRVO6+eyfRSIyGxjYiZpK21i6KhQrdnd1YFZtUfYpypcTQ4ABTmTTDw8OomkF9fT2rVq2ie0k3vu+Tz+cplUqUSnkymUmuu+46mpqaEYrgrh//mGwuSzweDw9xrgtCkEqlKJcrqEJBUzWEBNcN4yYDGTIFq7qO5/tIAbF4AlU38Wc8BL7noWrabL5hKWF6ejo0hqSSNDY2UiwWGR4eQtPCeOCpqSnEDOmSY9scOXwYTVMxNB3Pc2eZraezU2iawlRmkkg0wvj4BIVCEdd1AIFpRlBVjWQqRV2qgVgsPqM8hYez1rZWIpEImUyakZER2tvaEUKhubmFJd1LuOGG6zEMnXK5hOuFh7zw3RQIKdBUDVVRWdq7jCuvvBIZwNT0VKjQJpKMjY4yNjqKYRj09vbMeG4CSqUitu2QStVTLtuUKxX8wEfX9dm4UEUJ2Zc1RUURArtSxnMcVKGwfNlKAj/MR/y973+Pvr7j1KXqWNLThW5oZDKTlMvVdUoglBCaFUvEQQ0Ppyf7+3DsCooqULXQk3zL628J8+oC3gwCAaHiuj6KpnO8r5/+kyMIqSOkRrFgY2gxfC9MYxQqET6TkxMzB+cQVu+6Lp7nU8jnUVWVH/7gB9y98+cIJTRoLV26jLHRcTxfYlsOpmkihMAwdGQQ0N3dNRNn7eN6Hpqug4RABjM5rGfG6Xmc6D9JIplgcnKSzNQU09kcpXIJTdfp6l5COpNh7779KIqG67rous4l2y8hFotRKVusXL6c9RvOCZX3mfXpsUd3hWu1lGSmpjAj5qyCbppmaABwXTKZMGd1tDREoEUYpINiucKWLVvZt+9ZZOBx//33c7z/BAcOHUGicODwEUZGRlA0lYpVoqGxjk9/8tO84Y23oigK0WgU6bl89WtfwXIdVF2jXLHxvbNXKObun/N990L2nNp9rFZJW+jcMRfiWPv5XAKfKrx17phr25gPZlz9vlpv7r46VynUdf15Snft2MTbfwvlHa+b/a4WMlvLPFzN8zpfWNBcmQ+KWQsXrs0dOrdMrVd1McrTfB7VahvVdmqfXa0nupaMab4xVT3CZ6vE1Xp/T1dnsei2+ZTU2ns93fu42PGeSZmfe757qRShxbS12P4Wq2MsdIat/W6+Nk/3HrxUc3Kmd+aFykttiHjFKq+vNKkqF/39/WdVr8pcOzQ0dNpyw8PDAM9LL/NSSltbGxB6944dO/ai2nr/+9/P4OAgXV1dNDU1cezYMT74wQ+eUmaxh4bF/iBe6MK6mDGtXx/mUJ2YmGB8fHxei7Xv+xw+fASAdevWz1v/0KFDs9ClWst3EASMjo7OetbPOeecUzb5av1aFuO5i92zzx6o6e85UrDZ8qqO2rEO49zXEn/LPxK79X+hX/xm1IY2xPh+IhNPoWSPE3iVGZYmCFSNomUxlcsyPZVBV6CQmWByYgJVUVAIc6T29fVTKJaRKOi6iT8DIdRUnXgsQalUQqg6XgD5YpnPff4LlCybSDSOlD5qiKfEjJgEvkSggqIiNJ2u3mWoRoyK6xNPpmhubKRUKDA2PEi5mKMuFacuGcexKuzff5DhoREikQi53DTve9/vk5maopDPkkxGKeQz+F4ZVTiIoILnO6zfsI6LLrqA7u5uOtq7cBxwHJs1a9ZgWRY//smPqatLMT09TWN9nFQyQjxmoKgKnu/ymhuv54c/upO+vmME0qdQyKJpAiEkmzZtwDQMxsfGGBoaBCEQioInAyQqnhcSI3leSGwlpUIQSPxAcuTIUQI/mPG6QsSM0t29BNM0WLNmFW94w+u45NKL+cMPvA/P82aU9mZisRjpdJpsNovwPY4dOozj2EgEARBPpGhobEXVdVo6GnH8Cu2dXSRTbWiagW05yEDB8yT33fMgvi9C4hvHQxEC3TBwXZeKVcYwDXp6ljI2NonjeDzxxOPs3beHaExDNwyi0SiKUCmXK8SiCUrFMgefPcCB/c8yPZUlnU6jaTpCUWlsChmFG1L1XH/NDWy5aAsgqatL0NbWTDIVp7OzE10z8FzB0SP9CBHmMo3H42QyGY4cPsKRI0fITGRxHT/Mpet7M0zFkEymUFSBpiv8+Z9+mO3btxKNRTAM0HRJPB4lFgvHvH/fISpWiYAATwZ4QYAfBLS2NKMgn4tOEj6p+hRCAdu20DQdRYnwz5/+N37ww59z8uQADY11HDl6gHKlwE9+fBcPPvAghUKJSCxJMhHH9z3iiTiNDQ2Ypk42m6VQrnByYBghFNpb2/Adh67WFi6/6ioszycQCkIxOHq0j6988cs4tk25XMH3fcbHxpmYGCf0x0o0Tedk/wBIQS5XYHJiiqlMDscH1YgSjdfR0t5Jc2s7jS0toCg0tTSRK+TRTZ2WthaW9C4hFk2Qz+dRVQXDUFm9diVLl/ai6QrF4jRjYyMc7TuB74NhRDl65CgT6Uk0XaOtre05xVYAMnyvjhw+ghAqql1AFMcxLv0Aqm4ycHKUiJlk6ZJejh0+xPrzNrNp8xYwIgSawQUXb+Oyq69DiyWQ0sUPHG644RqamurwfRvHLSF8l4ETfXzmf/8rqhlBVXWkVF/yw3F1PT5beSEHvsUoEVUj1dzPq8rMiyFsqo53rhI7330oioJ25cVoV178vM+rbVYV2Lljqm37dHNQK1VFUp3J3bwYRfhMMldpnTuOM7V7OofLS6VIvFSKw2KVzIX6O91zOdP4XowR6FX5v09eVV5/Q7J161YghNsuFJc6n1TjYx966KEFN5RDhw7NKq+bN29+QeNbzMKwbdu22XLf/e53X1A/AF/60pf4/ve/TzWf6+c//3kAvvnNb/Kd73xnttxiqN4XuyiLOe290HjahRbfq6++evbve++9b15416OP7polVrrmmqvnrV8oFNi1a9fzFNcwxcfO2fJXXrkDeM4yffXVIZvyoUOHGBgYDO95jvJ6zz33AKHnvDaXbK0EgUIQzFiBk02YK84ncumbMd72OZQtt6EYBv6h+wmmBxFI0HSWLF3Gxo2bWNLdxcjQIFYpTyRiMjE+ThD4KIrCzp33UCyWyOXyIA0IdAJfQ0od2w4w9ASu7yNUDd00+aP/8T9oamlFqFrIcBh4M3GhQDUmUigIVUOioJkRepcuo66+gS0XXURzYyNNjXVkJsexKyXy+RwikChCY9Om88nlsxSLRU6e7KettZV0eoh8fhwhLMZGj1OpTBGJ+ERjJpGIzto1q5GBRNMMCsUKJ0+epK6ujvb2dmLRGJZlE0hJvjCNEAGjoyMUi3n6+o6Tqkvx9ne+jQsuOI94PEo8EcOyypRKBYqlAsGM57ShoRGrUgm5TQOJquooioai6GiagRChMlsulYjFYqxZu5bBwUGCIMC2LIQIFXw/8Emm4mi6wPMsFDUgEomQSCRwnND71tzczJq1a7nmqivp7VlCuVyeyXWaZyqbJ5AqXhCgR1Q0Q0EK+NfP/DulUjnMkysUHMfj6LG+WRZeVQ09iZ7roqkqdakkuhbGQHd0dKIoKtddfx1XXHEpCB8ZSAzDpFQqh0zWuommmRTyBVavWo2mqrS3dwACy7IYHBpEUVS2bd3G6lWrkEFANBalYpWYmBhD15WZFE1lvv61b9LRvgTP8ygWizQ2NrJ3717uufceGhsb0bQIQRCOOZlK4PshJFqf8UB7votllQiCkAE5kB5CkZimgapq+L5k7779iBkvYfW36Po+DfX1BL6L5ZRmY4QjUZNEIo7jOlgVB02N8J7b309rcycPPvggx/uO8JqbrsZxi9x08/Vcf91VtLU34Qc2rhdCyqenptD0ENrY1taGqps89sRuHnzwYTRdQ9cVtm29CM2MoGg6vi8Yn5jkos1b2HzBhehiJg9nIOns6sSMhGPK5bLYtk1dXT2WZdPc3EYq1cAjj+zi29/5LyzHJZsv8J/f+g6W45JI1dG1pBvNMGhtb0fVdVzfp2Lb+L6PbduUykWmptKYhkYgPSKRCDfdfCNLl/bS29vL40/sZmRklLfd9nZec8NrQsiyqiAUBVUN1+aTJwfQNJ1oNE4inkBM9zGRPI97HnuGSsXm9be8Ac8LaGxspL2tjRt/63VI1eCcc8/niaeepmR77H56Dz4qxVKeqak00ZiBGdFA+GQyk/zozu/z2c9+lng8jhTgy1MRQi9FmpH/k8rrQveh6/q8LL5Vw+liSZ1qZS5BUe1YzpbFuPY8Ehrunp8q6Exw5oWUdk0L95S5XrLafs9GniOeWpg86oWcYWo9xC9WzhYyvpAs9D7Nd7Za6J7mq/+q8vqqnK28opTXhS078zO7LsRCHLL6ytlLUZi9FmaKXYh9dqG+w7G5t/8F7u1/wZVXXsmyZcsA+PCH/xTbthflBXzzm0Pq/eHhYb785S/PW+bjH/84EHpdQyWodnzVxSBkTV5oPlOpkMgnm80uOKa2tjZuvvlmAO644w6OHAm9iAs9i6mpNBDMzq2UkkOHDs3mc/2TP/kTduzYwc0338zv/d7vAfCBD3yA/v7+Uyy3tWMNNxp/Zo4lpzJIPyfPWyBfAOxmvniQhRbZ5cuXzSqEn/70P+O67kyZ557FP/1TmOO2p6eHyy67/JT6l19++Ww89D/+4z8+D5LuOA7/8i+fAWD79u2sWLFidpwAr3vdb82ys37yk598HmxlenqaL37xiwC8/vWvJxZLUGXSrrJsBwEzxCiV8DcjdQJfR/oRdBEQWbYZ46o/InrDh/FHD+Ee+SXB9BhCUfBlgBqJ0rNiDVOlAOl4CN/HqZTQVcGtr/8tWptaUFARigciIJDhYVFRFYQOCgpCCmKROKoIWYRVoWFoEYRUEJKZZ+0gpYPwBRoBivSQro9ru0xNT9DQ0MDylStw3YDx8TSeH+A4Dqqh0NPTxvR0hooriSYbQFFRDJWoWY/juqiaTiTRQsUx8USSfN5larpC2Q7wZcDoSD+BnSFfKiLxaG1Osay3Ddcu0dTURP+JCcolSUdHNzLwaWttITc9RT6b4/9j772jJbvKA9/f3idXrls3h76do7KQCEIkgyWiCTagwYDst8bG82wGz/KbNw4PY3vgLXut5+c/ZnmMcQAM2AZsY8CDIgoooIjUaqnVOd2cb+UT9/vjVN1bXV11+3ZL2PDMt9Ze99Y5O+999hf39/lC4gegSxvl6xw+dJzScp1qEGEkE9T8OpZtISOBhs7M9DFsWyKESRhaqNDk/nvuZ3J6kTCAwPW59667EAgM0yYMA6QmQcXms2GgMM0kmnTQLJNIBjhpE2lI6kEZjDKGHVFc8Thy6BTlYon+wT6yuR6E8jGERuRKdGwc0+QjP/8eEraJW60gVIguFT/zjrehSYWp6xiaxtzcNIgIoYOvPAxHR+iADPDDKoHvUqlU0KWNEDqatHDsDAkng1KCWq3G6978BmqBS913iVRsIm2aFsoX6KJCP/wAACAASURBVLqGskK0pEQaUKtU8D2fWs3DcwWJZA+aafHGW15Prj9JykkwOz1JGNTZv28Xg/299OSymAmF0ATnJmaZm19hanYWJSPK1Tqe71Eur2AYQORjGwZeIEDYhEoniARCl/zMe9+JqacwpE6luIAUNRRVim4VZVrUVnxCX6E1QvHUa3Vs08a0HKKwzvLCaXZvH+Td73ob1117HXgWhcIAwtBI9aTjvSksNN3C9wNs06S4sto4m8CRkvf97Lu49V23EvgCgww/eO5F/JpJadkj9D2OHTmIFDX2793G3MwkpdIKx46/iB94ZDJZhLQJQp2F1VUefuwxHnnscSrVEpmswy1vfT07d/Uj8HB0nSv27yZSHlI3UL7C1AwW5+aoFFeZn5lGQ5BJJigXi9xzx3dZWahAaDB9bo56xaXuS6Tm8MTjT2HbDmPj4wg7Nl8XQhD4PoKIE8eP4Xl1stkEp0+fwHVdFiZO4GgBx/1BHr7jW5w+/AzP/+BRTp04jNAl9TDi5MkXuOs736BeLZFPZUhZKfbvuhavDIZMkM8XqLpVUqkEM2fOMX92mhfPnqV3aAxppQmUJNQVnnRRAiIUoYq/++bvjfBFt//bie5OJpgbQRMXtf7fziC04qtW3NfNJLGpeW3VQDbft2pe29tuh1YGsvV9s572qz/tjKJSiuiBx/G/+/2O9baOsTWue3tf2001W3F/09S4uRad5q9VmN2sp3lntV2r2k63NdtvMtrt69JOS7TSD51o2mafwzA8by3a53mz1mat4+1kAr4ZC4N12mvz+S+WLrUf7fP3UjTJGzHCHTX5YnOpeVYocRmCpxavwOel1n5sMJ+t67OZMpsZ38sNrXPxUoUyP1bM6w8LNvtBvhTQNI0/+ZM/QQjBww8/wq23vpWHH3547WAqFos88MADfPSjHz3P9POGG25Yi+P6iU98gj/90z9dc9ozMzPDxz72sbW7o5/61Kewbfuy+nfgwIG1fnz961/vmu+P/uiPKBQKFItF3vSmN/H5z3+e1dXVtfcLCwt84xvf4AMf+CAf/vBHzyvrui4f/vCHqVar3HjjjefFc/3DP/xDDhw4QLFY5CMf+UjsnKQNbrnlFmzbZs+eC01eoft9AwXQkAbPz8+zsLCwZjbZhGKxuPZ8YWEB13XX3jXrectb3oJt2+zevbtj+5/5zKfRNI2DBw/yoQ99mHPnYlPvpaUlPv7xj3PnnXc28n3mAiSiadpafNw777yTX//1X2dpaQmI78HefvvtHDp0CE3T+PSn/+CCtvP5PP/tv/2fAHzuc3/Bpz/9mbU7xMeOHeO97/1ZpqdnSCaTfPKT/1fH/kO8RnNzcx3nvwmyfyf2+/8Y4+p3EM0eJ5o+QqRCFCB1jWuuvQYnYTAzO8nEuVPUa0X6erMEXgVbB0UEQiEad1l13SQKBUEYm5pChFIhURTGmisREEYeQiqUiqhV6+iaEYdpqdcoVVbRdMHy8iKWafC3f/dlnjt0EE3X2bVrN4VCL5Zlke/pQZeSaqWCqeksLy7wL9/6FsdeOEy2kCNXKJBMpbhi/xVMTkzwD1/9GmdOHUMTEZl0HCZGaDrpTA9XHNhPqVSkVC4xvnVrfA84ChnfNkahN0e+kMeyLZyEQzqdYXBwCEMK3FoFpQJqXoX+oT6qXoXI90naDoVcPiYmG4ijt2eQO79zD4HvUymXEDJkcKiXyckzKEIsy+A/fOg2isVlpKbWNNNBGBCFEaIRM1YphcBGChvfkwgsNJHAsXKMbhkDIXj8icc4ePCZ2DEPonEvU8am5IaJF4T09PZhGDbJVBo/DLEdm4HhAZykHTN8lTK5XA4hNEqlKrpmo8L4zicKkokkZsOrbOD7hI31fu7QQVy3xukzp0gkHTRNI5PJ0N/fj6br6LpOqVhESkmtVkcKufbNWqaFk06xZes4xUoJKQWaENz5L9/BrdYIQ5+BgX4mJyfZunUbb3/bO9B1kyAI0DSdHTt2UCj0MtA/gOt6fPlLX2JmZoZCoYBSIDTJ9x/7Po8/+hjF5RUIFaamIyKFY1p4LgSeRsIpUC1HfPXvv8XKUo3A11lZWcS0dIIg1tw6CYsoCnjwwXv5x3/8GuPbtpJMOWSzGQxd49SJo4S+i2mY+F5IqGIT+uLqKoZu4jgJ3FqdlaWVuG8SBocGMAyJlPCdO77NwsIcWhRQXl3i+UPP8tqbXoNC4gYKL4R8ro8tY9uRaMzNzfHikRdJp9MUF1aYODXJ6eNnsYwUmnBw7B6uvfo11CuK7/yve3jh+aMEniLw42/4+PFjCClJZWKT4ko94M1v+SkKPT1ksxk0XVKv1UilkkxNTlIuriAIefaZp9k2PoqhC1aXF5mbm6VareB5HkEQ0tfXTzabpVSuMDAwyOjIGMN2lS98b4Zde/fz8f/6X3nn+97P9a98FTt27CDyA67afwDDMLj99tuZmJhgZGRkzVGQ7/vYto2u6ziOg+u6jI+P88gjj/CBD34wvu/aOI+lWhf3tp7NcGnEVpOYvBwN5mbrb/5tZ37ama0mXKrmqhOT0F52s7FWW8u3/x9+8ZuoL31rw7KdxtOESwmV0wrdnBU1n21W696J+ezWj9b6N3q+EZN5ORrIbqGANsMItzLglwMvldH8YcClCAB+WO3/uMX4/VED8cNk2F5u8Lz6Wmc3t+k2Onw6Swwvva7OGzDW9oL3i7/V0g585eTzfPzJe3H92MOnZZg4QrDirTNLj7ztI1zVE991Nf/qM6yurvK+972PBx98EABdSNKGyYpXX5MFf+Kn38kffTtmYqPTkwS/H3s9vPWuv+OhuQl+88pX89tX3xSX/+T/jtw6glKK8AvfIHrwCQDecc9XuX8mDm2TNkzyiSQil+FXf/VX+fjHP47/v/02AM8uzfIfHvhnzlSK8ViBXCqNj6JcLq+N442D43zrzT+39vs3nriXPzvyA9LpNI899hjbt28n+P0/RZ2JnRQdXlng9Xd8iVoY8BsHXsmnfu0TaB99d4zgTp7jlje8kYfmJtiSzPD8u//jefOt/c4vw/hoPP4v/jPqe0+ur9DCaQDO2T1c8c+f67he7fA/X3UrH/7d30R7w40N6fAT3PrRD7W0/0vn5Tf+8vcB+Ku/+ms+/qu/RtA4mHKmxarnrq3Tb73jfXzy618GQJ2eJPiD/3lePZ85+DD/93NxWCUhBNlsdo3J1oXk/73hp/jozivPl2CND6N/8ldQSvHLv/wxvvjFv4nnRAhSusmqH++thKbzpU99mrf9H7+GUoLogSeI/uabLa2rmCgWzTF9eu3N+jopYi1+g/mMfMLsLNGrexHjr0BfdOGvHyL0XWr1dXNKTdNAaMiPvhZvMIMUAvGd59Cfn2q0KQhDf43gU/0Z1C+8ljAICcIq1h/f3yAm4ralkGuaxuDN+6nu6UUTMH/Xk/Q8PksikcDz6vGdKt0g8H2klBy6ZZRKpczo6BiJf3yW+plZCoVenGQiFnIKgQoVy2MZlm8YIpFwSFUjrK8+habrSCHikCSSmAk2LSrvu4IFI2Tr1m1o976AfG4KlEBFEbV6HduyEVKi+pLMvXUn/f0DzC8u0v/XT1J362hSwzIthIxD5gghqbxuB9VtBVKZNIljC8x+8R5MwyCbScdSXUBKjSDw0X/nHQRhBGgEn7sPe6Uen2lCQINxFEKgrh6jeNM2HMeG6WWMrzxGGATU6z6rqyvkc9mYCUcQfOhVMJRHKYlxzwvwTPwNSQGRUqgGMaQN54k+GlscPHvwINd8J76DqVQEQiKFiL1Eowjfsg/zxl24dRf5zAT1bz5OGEXYloWm6SgVoel6zID/xq0EYYiuaYgvPISYLaGiqGFaGo9LoFBXjRG+9UpUpFCTy1hfeZwwDFleXiYIAvr6ekEIfM9HfPRm3J4kvufjfvsxBma88zRRUghWiyUS2wZQt78G2zRxPRf/D761dlc0n89hmhae52IYJk/3KfRX7GT/gb2UvneQ0tcfZnR0FE1qSBFr7hDxXoh+4xaklLh+hPaFh5DzZVy3jmmYSE2jWq3E1hNXjRH89JWsFsssvnCKgX95gUw6hSC+VmA7zpqn1ejDN1JJC2wrS/UfnyB1YmEtnmatVsVxHDRdR/VnmP7p3VRLFYZGBnH+x71rxJOux9rPcqlMGIb03PYmVrbmeezxJ9jnJxg+OEulXMI0TZKpZDz/kaJWq1L7zz9FMp3h1Omz7H54Bm1ulXKpzMrKSsyUG3Eop6NOnQP/5QOUyxWeufMBXn9axsIpQDSEEWEYO9aq/Ny1GKMFZqanse4/Ts+ZFfSgzFNnKlx3/XX4YYAmNc6EPk+89lq8epUPvP891H7t9xoOuTQsy8LzfWq1GhOTkzgffjf5d/80q5Uyw8cmMb52B1NTU4yOjaJpGkEYIJrMyp//LpLGvdf//mdwbmbt3GsFcfP1iA+/Kz45z0wR/ZffjJ8Xtp53poJA/PYvI8ZjJ3nqb77ZwE8daJgtQ8jf+djaz+iXfvfCPDQYgp9/J+J1r4j3wf2Po778rbXzsZmnCfpf/MHab//3/gecnVnvYeMsB4F43fVoH3l3/OLM1Hn4qb1e7Xc+BuPDDQb0G6gHO1+HEluG0D75n9aZoMaY1hmxeI70vzhfKNvKEDa1h83nrUxcq9Oj1vlp1d52gubd1/b3rRrazWo3m/1oQmt/msx3q3lxuwaqk8a4lS5tZ2y7CSg69a1V0NF+XSoMwzVtdjc6uFW7fDlm9K3tvVz8xktlOtuFPe11d9JMbrbeTnPUWp9Q6568mx65gQu0rN3q7wab2fOiS/Fu4+uW/3Khk+WFaZqXtZg/VprX9kG/FG1pt/Ivl5Soc93woR0HePYv/4aPf/zX2LdvH7qm4YUh21M53jG2k794zdvYk+1BqZjZjaKITCbDHXfcwZ++/QPcPDBG2jApBx4DTpKf2bKb//Xm9/OZn/359UDYlyBZbfwHwJde9y5+de/17Ern8aOIs6vLnDlz5jzNKsDVPQM8+c5f4P+54ad44+A4BcuhVKsSRRE7d+7kA298M5+/6e18+XXvWpuH70yc4M+O/AC4MJ5rE/blevnMdW8A4I9feJwHj75wHoLazHiEEBfQBCI3jMhtHGqoE6zFgJRxCIkL21tPTfjFX/wF7r/9P/P+rXsZdlJUg4A+O8E7Rnfy7Z96P7/1zp9tk2SqRorht666iW+96ed4x+gO+noKVKtVhoeHef8Nr+HeW267gHFtH/+f//ln+dLN7+RNg+PkTJt6GLAlmeH2nVfyyNs/wq03vqplri6ooVF3M3WDJjIEpI529bvQtt+IevG7hJVFFKAZBql0mkQy2WBMQ6qVMsuLC2vEKnLdnKpaqTZCdcRCnzCM7076gRfHMG223NjbfuA3pNPxAli2jWVZ5HJ5Mpk0UouZzOan4HkefuBj2Ra9fX3Mzc9i2RYDAwMoooaWV1AsFgmj2Ey7UikThT7nzp5BqfhZEwI/WPO4m8rkyeTyBGEYC61UPN4witA1Hc/3CIOAqakpVldWOHLkRZJJB0WEY9tEYUitVou1pcRERK1W5fnnXsCteXiuj2WZrK6sEEbhGuMYRSG6oROEIWHggWjcv4K1dfQ8j6mpqTiEjgpIpgyCsI7U43WUWkzoDw/HdyBVpGLz7Ybn3Ga4qjVhRaNu2Qwr0dgNgYrYt29fzCgGPsViieJqsfF+fX97rksYRbi+TzKZIplIoBtG7NVU16HxbSyvrDS0wOD5fvz9rREbEIaxhjiMQpSKqNYqzMzOEDTudCWTSdLpNNValSgMmZic4PCLL6JrkmQqQaHQF7cVxfF1NRnvpUw6jef6GJpB2LDacBIOhUIPvYVC/N1A41oA7NqzlcHhPLoBqVSCocFBBArXq6/FTRWNO9pBEHLi+ElMXayFFLEagg3PdUmlUg0iXcNzPR647z7y2SxhEGvSfT8OHWQYxtpZNzl5jnQ6TblcJpvNouk6tWoFKVhjHjVNp1yuMjO3wOHDh3nowe/FztSkRJMy9lotIZGwyeWz+GGN1eIcJ0+9QBh6hKFPMuWQTNkIGa9opCKcRALLMjl06DnuveduyqVYwGCaBqDQdR3LstA0SS6XY35+Fk2T9PX2EUXx3djm+VmpVBqekwOk0NB1kzBUTE9PE9bLlCOHweFhZmZmqNbqgCSVyrBn335Gx7ewvLJIrVZjZXmFarUS1yMlk5NTLC0tYVkWhw8fpq+vjzAMmZycZGR4BER8R/w8ZkK1EIli/bxrPac7gUgWEMlC+9Nuudt+K9pxwVpOwRr+2Zg2aSe6u2kVxXnv1s/8+HEnTVuzyXVmc51+iL+J1j41vvo2xmmdebqwLuh+X/T8vl8InRxDtZszt3oqbtWKN2nJ9ju5F9NctzI+rU6uoihau0vc2q9WxrW1fCdivrXP7fRPp/ztqVO9zfG2z3E3zXnrmLqVbV+bbtrnS6XV2zX+F6PH28e/2TaaZTvVd7mwWeZeNiIxtO+DlzJPm9H+/1tDN4HM5cCPlebVdWuqk7Sk+2Jt9LF1vrjeXUp0aZrXjdoWotsCdpa6tUvpWvO0S1s2PzfrdbRL3S5nT6wfXt3rkfJCJuTy4Pw5X5eQXloMuXbY7Lx1kpJutA9aD6RuktV26ORYIb6j/XKZ4Fy63KoTMYJcH0Mwe5zw/s8iR/Yj0wMxsxMGqDDg0MHnCdyQ6667nsgwQYQ0hY7lksvycpFMKonUYkFBFIVomlwLubHWa02sEQiWaaKEQCGolMukkwkCz8VxLEqlCqVihaWFJXK5LKurS7FWS2hIKfDcOkIp+vp6UVFEte6RzaVZXFgmk+pnYWme1dICSSfJ2bNn2LZ1G319fbEptlJ8/5FH2bV3H0I3mJqd5aqrriCbTeOHgiDw0YRAIz5nlhcXKJVK6KbF0NAQYeijaxLX87AsE6np1OsBJ0+e5Oorr6JcKVGvV/n7r3yd62+4geuuv57llUV6C3kq5VV0wyCRTBOoCKlpGJqgVilh2mkUimq1jOM4GHrs1XlyYorBoQI0mATHcTBNC4EgECBDg7OnjqPriv6hQXQ9Qb1eRNdN/uovv4AQgve85930D/QR0dyXsW1zLGBTCK3hDEVqCAFLCwvkc7mYaESCCpmbn2V4cBjX85mbnmNgaBClYsI89pis0HUN3/eYmZkhmUqRTqXwgwDTMBBKgFDMzM+Sz/eQsC0W5xeouTV6C72UyxXSmQxRpDAtiyAI+Kev/RPv/8DPUatVsSwTpSKkFMwtrHLixHFueu2ricIQTTM5d3aCHzz9FG99663oRuxoKFRhzOD4Ys38tEl4rK6ukk5bGIZJqVjBdhIIFLV6lfn5OYYHBwmUQtMNhJKsLq9yz11387Z33oLnhUhpsLy8zLNPP83NN72GWlhneGiUetVFCsnCwjxR6BFEOvlchnQqweTEObL5POcmJtm/fz8zsxMMDw9x4vg5LDPBwGAftcoquVyOWr3K4tIyR4+e4FWveg1f//o/krQ1du7cQW9fgVxPD8eOHieTzTM8MhR7nFYRyWQKUJTLJUwrja4JBF7DMsHAC+LvcGVpgUwmTRgEpJNpJs5Mke8rUK/XKZVKTE9P8apXvZpKpcwzzzzLK264AdfzsG0Ht16PmWERh/CJIkUUKR599Pvs378fx3bwG46/cktP4r7iE8hML/c/cBf33fcUN7/29Rw6dIhkOsEv/OKHOXHyBcZGtsa+JBohsUrVKssrRaIoYrgvT8Wro9sWvfke/v7LX+EXb/8FPD1YO1uEEGvHWSg6n48/LMJwI3zfqc1WYrf5v6Zpa0x7M097mJXWM7wTo9epnWaKTe218+psLdsagqe1fFMz2kprdNIQtdbXzNfaTiemqNOctUNTa9tO42ykeeuUr/m7E2Pbjhvb62vXGl+MEWxfr/bwPhuV7RRicKPxdoNu896tXege3vBS4FLps43WbzPlNwOb1bxuqu2W7rbmjy4QKF2kng2+h679+zfWvHaCfxea15/A+dBJ4vajBJuVnP04tt3uUKkbtCOQbtLXTn1vh3+rudwIWg83bWgX2pt+hejsM0SlBYJGjEikzlVXXYNC8NnPfo65uQVUpBoxQxVCKly3hucFaFJHINE1gyAIqdXqKKWha7EmBrUeN09IiSAOtGma9hrTEhNyklQySV//APl8niAIcGyb1eIqq8UiQkrKlTLHjh+jXq9RLVeo1+r4XsDd995LEAbYjs2W8W0EYUSlWmV2ZoaVpSWiwI+ZjJqL6wYcO3YS20lQq7mUS3UeffQJJianqbkuUmr09w/Q05Ont38AhMS2Exi6wfzsLBNnz6EZBvmePJrUCYOI0ydPIhSMbxljemqKxcVFlFIkEylqlRqOkyBmHiVSGqgoNv2MTV/j+JWa1AijEBCMjI6iaRaatMikC/zTP3yb+777EErF7dVqNYaHh0kkkxiGCUqRTiVxLJO3v+1Wfuad72Sgv7+BLJrWAjTqlwihUalU0WRsfqmigGQqgaYJYodtMbPX19e3xohu3boVwzB58sknWVxcIggClpaWcF0PhKDQ27tG5FbKZUqlEkEQMDs7y/DQMLZt4/s+hd4CA719SCnI53MxM28ZcZAapbjpppvxXB/HSSA1ge+7TM9M4Xk+r3jF9URh2LhrGWAYJje/9iampqaYmJhESq2hmQChSf7my19ifnGBSCn8IMBybFzXY3Jylr/726+D0vE8hWUmGR4ew9ANDMNEkzq6bpLL5SmWKo01TJLO5BgaGsHzfGzTpm9wiDBSlMoVSqUiqYRDf28Pd955J6srq417wiFBEPLoo4+yulIknU5TqVTp6SmQy/Vwz933MDU9S6VWw0kkSSWToBRHDr9I4PsMDfYxvnWMvv5eAs9DCI2t41s5eWYKaSQQ0kLXLFQkSadyoGS8r4tVokhSLrscefEkQRCwulpkdWUFoSIi32Py3Cnm5mcxLYO+vgK79+xmZmaKhcUFtmwZBSlZWS1y5OgxqrU6xXIFP4zWDhLLMhkeHuYHT/8A3w8Iw5CkKqM0m8V6LCy48cYbecsb3swD9z3Al770ZQYHB6nUaywWV7Ab1hcDAwO4rovv+1iWhWVZGIZBf38/YRjy7W9/m9tuu63R7rpG/0cV2pnUixGp7czqxRiQl4JXmpq7TmU3wnWdymzGw3M7491J+9Spvdb5a+/3xZjBZnudxtbODLavTTeGthvt0KpB2wx9sRGd83LQCz/K38Wlwo8i/fQTuHzQPvWpT/1b92HTEEXqU+smja2pm0Rm3SxTrJn/NH9rCCGJTRg713U+qPPqaqZ1j77tKTqvzEZmQev9Xf///A+tc11N88sLP8iN2r5wHKC6tr3RwRj3uZP5Ubd0ftlLgfP7cX5qrmO3vvqHv0s4fwqtb1tXJNsq6e3kkn8dkcRxEYVomhWvm1R16XnHuerUh/a+t89/03TsQkFFtz3YPXVDyu3Q6S5Ra9+kjO/zqUihCYmW7EEO7iF4+p+QdhqsJAhJEIUMbxkhkhGnjx3Bth1S6R7KZZdkIsXdd91JdWUFJ5XAdCyUEBiaRdJK4AUu9brLY489Tj6fw7IMpBYhQokgIAo8wgCqVQ+pSfwoxLAsDNPCTjhouolpJjDtJOlEilKpwtiWcTTNwJAGIoLFhTm8ekAQKM6cOUO1XmHHjp0cP3KYZCKF74V897sPcM0115FMZ0jnk/T392EaBs8+/SQq8LENDRm6OIZkbnICiSAIIlL5HgIk3/mXO9mzZx+6qSM0SSqbJpPLYuk2gpCeQgo/qNE/OEAYhmzdOs5TTz3Bvn1747uRloGVsJBSsLS8gqZbhEFs2uvW66RSycZmAini/ex7daQEoTfOOwXZdIKko+OYcPT5U7j1gErF5667HqDm1Rkc6set+ygUmWwKJ2FRrdZA6CgF8TXOOKSSW3eZmprkxaNnyed6KS4vkXQS+G5IzRUo6SCjOpEIkbqGZhhUay5CGggBJ0+eZPv27fi+TyaTiRldoWEZJkuLCxRXl+nry1OtFnE9l0IhTxQGEIYIoF6vI3SNuufjJNIoJZBSRxALR/7+b/+B0bEx0ukMCjBtB6FpWJaJ7dgIBBOTU6RSSTLZNGeOnWB0bJD5uak1z9uOnUQKydVXXUk6lWBpcY50KoOh6WjSpFyucP3117K0tIgi9nweRhHleg3LTiCEIAgjhKZx7SuuIwjAtnUEEQLBlVcdIJI+Dz78JIcOPsMV+3djmQbPPPs8vQNbue76/eTyaWq1CkLTKAwME6LR15slmcxSXKly5MUjGCYkEjr7r9iPZdtMT8+STmcZGhmi0Jfjqqv3s3XHXjTTwlcRhuPQOzBEqCQP3PsoCceip5BFaCGarhEECkMDz63HprpCkstlefHF5xno68Wxk1QqLrl8LxGCfF8PUhi4tYBsNo8iIJ02KRZXGRoc46EHv8cLh57j6JEX2bd3F4HnYuo6UpcErke1UiWfyzG+bZxUOsnK4gLZ2mnuOisJnCRbxkZwawG1WpW9e3bwK//pl7Asg6SToL93CGkaaIbB8soK6UwGpRS5bAZNEwjHRkUKt1Tmc5/9LO97//vwRdQ4vGPrDSE1lJCoDXBJ67nZjvuiqedRpXlEun/DM7W9rtbztBuebc/ffNdJywrnm5k2taXtbXcTkDbft1sJtZ797X1qz98J57XW0c5gNgWSTTzbesfyYm03/2/93a7ZbX/frV/t/WvN0/T+24lGaNU8tu6NTvi83bNxa5lO89KtrfYy7bDR3ll73oVE6EYVdM//0pnkjb639jwbCQw224+OtODGpOuFdai2bF3I7U1Uden1tL2TIjbfV5HqTpQKEFLEXEhLZV0tP7r0tes8XSR1alvXtN/bYFq6wo8V8xqG4ac6v7m4uv3C512X5aL9OL+uy6+nQ81d2uhW10tru9s4NnPo/WtI87oeuJswH2l9l1wMTgAAIABJREFU7j/7LaLSPNq2G7v25WJ9Wj84ux+0ncud7yCh2wHc+q45llbEFj/vts8vfS3aEWUnaCcgOo1BtBx8a4RTMh8zsD/4BkJqCCe7Vl86nSabzlCuVmNtmu+TcixymSTbd2wlkUoidY1SuUilsoJuCHQjjr15/333c8ONN6xJzXVpEAQeru+hIq1hNpqi1eJPCImgQcwJ8Op1BoYG8XyfaqXM3MwchmEwPDzEC4dfJJ/voae3wM5dO4lURG9fHrdep1ZzEcDu3Tup16vYtkOxWKZYLLEwv0gum2XPnr1UKhWWFhepVmoMDg0xPTtDvidPpEKOvHiEXbt24PsepmWgaZIg8BFCW7OBUUphGCaWbaNLwfDwEIODw7he7FzIdmyKpRLpdI6vfe0fSGcy9PX1YJtGjMMaRGTYMJVbXFrCrdexHCden0iRSafoyefxA5+BoRGef+F5lJBoOmgajI4OE0br0v8wDFhcWCKRSIIKKZVKRGFEFARIIZibnePo0VPxfVkREQY+Z8+d5Zlnn2XXrp1EYQ0hDZA6pWIZXdNQUex0p7+/H61xv1ZKief5CBQnT55g+/btpDMplIJsJkcqlaZSrsRMqBlr2IMwxLQclpdXmJmZo6enhygKCQIPTRcszC3T21vAti0MU0ehMAydM6fjOL0Q319NJJONu5H2miOh/v5+pqamyaZzSE2iGzqg4pigjW/H9wNM08CyTKIowEk4JJzYs22tVsXUdXRNIwpDpBDUa1WefvpZLFvn3Llz6JpGMuHgeTWWlsokHIuRkTi27dDoKPMLSxx89hm2bd1GtVbDthPMzS9wz733sjA3w769+6hWKgwODaBUxOBgP7phxJ7V5xZYLRY5dOh5HDvBwsIC2UwWy9SACNM0CbyAlZUVjh45yitfdT2aBpZtEvgBpVIF05QYpo7nehw5coSBgSEs0yLfk2dpaYnBwSHqtRpCQK1eIZPOMD8/TxiEJJIOuqFRqdSx7RS9vb0MDQ1RKpXo7S0wNDSIbhgoJahVawghqVarGIbN7OwcPYaLGVZIvfojjG0Z54477uDY0RPMzi5w9dVXc/c996DpOrlcjqPHjtI/OIBlWdx1111ks9m16waWZaHpOlEY8tijj1AoFLjymqvQDSMmqC5ynre/bxfgNVPw5FdRi6fRt79yU2fwZvDIZvrUSRvZnreT5rYTg9mOqzYzhtb/28PbtTNfG+G31rrOx3vd274YLm01We5U70bMcfv6tpZvXuvphBub4+vWz/j++3pInSaj3fzbaprdaZ679W0jaOZpdXwVv+iSv2tFl5h/k3Cpe639+aXOR9f6LnEgL3XcLyc092UYhsgNvJxvhtZd+79rpsvoYJe2f8K8NuAnzOvm275U5vVSEdvm2t04XzdkfCnPg5OPAWBsf2XXQ64T49ipXiHo2Eb3MXRnXtvbbUdmFyLG88fa8mtTfbmwbxcnDjoJEM4fw7rzi9a8MllAG95HeOpx1OIZpJNBWglM0ySdTpPOZPDcOqtLC8ycO0VYr/DiiVNEEeiaQTKRIJ2xQYZoInYWkcvlyed7kFJDCkkUxo57fD/A80LuuOMuduzcitUwHW4SLlLT0BoIO/Z+GvL884cYHh5BCMnU5DSjoyPU6nUSyQSWbdLT04NtmSTTFpbjQKTYvWsnqyvL1GsVSuU6s7PzDA4OA5K+/j4s00I3DDQtDkOyb9++uC9CIaXgumuuQdcl5dJK7D1WxNYhSugNczkt9krcJHRCj3Q6zcTkNFvGtuB5PrpmINAIowg/CHn6B0+xZ/dOTFPH83zm5udJNBhVASSSyTg0TRgiFNTrNVQUh9FRkQJdY3hkmMGBPvr6ehge7AcV4boBYdQIbB/EznV0XSf0PAxdZ2Zqmnq1ji4lKoo4c26ayYkJDuzbSzLl4Dg2AwO9uPUyTtLmiScP8ugjj3P9ddeDCgn8Kq7rkkwlmJ+fxUnEjI5paAipSCadNW+gUaTwgxCl1r+JUqlMKpVC1w1AMj+7wD1338O2bVsRIsKydRQhE2cmGRoeJJFwkLpG0849lUrHDjMA07LwfZ+Jc+fYtmMHYaSYX1igXKzi1wMcy6FUK+PYFpoW38cOw5BIhWhS4nl1LMukVq/gODaaJgFF0nEIAx9URL1Ww3ddbNNgZaXMzl07CDyfnp4CYeShlM9A7zC9hTyGYRBEEclUiuWVVeo1j6XFZcZGxrj//vs5duwo733vuzlwYE/j2xM4CZtcLsPqygq2Y6FrOouLy1iWw1NPPMXkxBSvuP4GPLeEUArTNPBcj4mzZxkdGeLKK/ajaRG6IXEbnocdO4nnVzFNk0QiQSqZoV738L2Q6ZlJBIKEk2Bmdpbe3l5SqSRSKs6dm+Dc2UkymTSJhEOlXMcyUywvLyIE7NmzB9t2MAyDaqWGphvMTM8wPzdPPt/D3NwCDz34INcPS6rjt9C/4wpOnz7N2Og2iqtVRkZG2LZtG4Zlsv/AAZ577jl279mD63skEgkSiQRDQ0NMTk5iWdZa+DiJ4KHvPch73vMeCoP9RPEyXRKT1P67NYWnnwAh0Le/8qKmvZ3q7ZbnYmVb8UU3hraVoWwXWm6ETy8GrYxQJ0a0nVHuhmPbx9XuFfdic9B0KNQeB7a9T62pE4PcHe+f36dups2dxn3eHgnDNUc9TWjiqlYGs12T3czXrd5Omt5Oe/CCfv//kHl9SW3+mDOva/voMs6UTu9/lJnXH9s7r50QSvuH2f5xd0uX016n593SZmEzB/ZLhW5z0gqtz7uNo71sJ1fr7e20ln05x7MpQoHOH067KRNd8l0uNE2gOpkDtSZd19f2b6dA7O37vJMTik75u8FmiZXWPXkxLXwr8SClRO/fgfP230Tf8WrCU48RTR9GqhCpSxJJB9M00KSIw7XUYs3TxJlJdCUQYYTn+khpEKkIXdfYunUcw9CJIkUYRqAiEgkHXddIpzPcfPNrcZwEQRg0PBfHYVVKxVWEAMPQsR2bpaVFRkdHqFYrJJMp9uw7gNR0CoUChd4CUgrceo1atUYQBlimQbG0im1beF6d4ZEhhoaHOX3mNEpBIpHguYOHOPjcQSIV37WcnJxECkEmk+LokSP4vketViUK47F6ngcRsWMaz41Dq0gdFQmkEJRKRTzPi/ePCvF8HwEEYcjEuXOYpsnAQD+33fZBVotFVlZWcRyHvt5eyo34vgArKyt4vo9pGEgBy8tL1Go1lBLoho1uarHXZxUgROzRVkUK0zRZWV4lDBSRimMVK2JnR/VqlRcOHWJhfg7PdTl96hRD/f1cc/VV2I6N6/uYpo7v1UGFRCr+Rg8cuCLWKADLS8vUXRfPdZmdm0NreC8ul8v4gY/r+/hhQKgUYRQxOTVFuVrBdhykrlOr1wijKHZy0bD+vOEVN5DP5kg4CaIwJPA8kqlEfP9Wjx2BSREz21pDG+r7PhMTE1QqFfbt24frubxw+DAPfu9hMtk8E5PTJFNpSsUSddeLNcNCoGnxPV6lojVhiW07rK6uUCwWUSoiCiOWFhYJPJ/S6iqgMA2dq6+5msDzGBzox7ZMHNumXC6joVhYWKBWr7NaLOIHASMjQ+zbt4+nn36ap55+mr179vKqV76SbDrVcB4FiYTDwWefYboRn7YpqBnfMk4mneZ9730fb731rViWzeLCHMXiKijQNY2hoUHC0AcRMj09hVurc+b0GWzLIZFwSCYdlpYWKZfL1Go1UIpcLseOHTu55957OXz4MP19fSwsLDa8BGvs2rWTldXVNY/BpVKJ5eVlLMukWq1h2zYHDz7HI498H6VAkwZbtoyze/duDN0gCEOuHE1yfFljXo4SBoLxLdsYHh7lta+9mW3btlEsFikWiwghOHPmDENDQzz77LPMz88zNjaGYRiMj4+TSCTwfR9NSCI/YPfOXRT6+wiiEL+DU7xO0I4Pu+WhkTY6kzdDR3Q6XzuZozZNWZueq5v5Ws1b4UKHRZ3wcuu7TrFp2/F9E6e1Ms7tcVObDFjzWVPA2RRKnRcmZIM56IaXN6LpWsfeWkencbW23z4/rWNtxYPt42yf0/axNJ83w1i1ttMa+qZZtjWET3POuuHn5vp2i1vbPs6N5rN9Hv61oN3bcxM2871sxoqsE3Saq6bp+g8rPvMPEy52RrXma4fL4VcuB15O2v/HVvN6nnTgsub70rSW3Rf15dO8CnGhec3GdV1625c+jouDEOKCA761rR8GU9jaxsU+2KbmtZs516V9tJe6rptDuO2H8MXaPn/cL21em4ivGfNtw9FcMFcb700hdbShvWjbbiSaPUp06jGkkyYyE+SyedLpNKdOneTcuQlsJ8O73vUWlmdPoWsBlp1E02w83wMkX/3q1zh+/AT79u1ByjgMSRT5mLaJQCOdSSO1qBFaJVarSCGwLINSaRXHsVBIkkmbhG1x7uwESujMzi2yvLTA+PgWhFQIFAsL8+iGzvTEBNlUBtfzSSRSFPr68AKfmZk53HqdsbExVldXKVeK7Nmzi0JfH/MLC/ieh6YJLMtkfHwMiDh25ARu3WVsbIwwjND1mEE8eeIk83MLZNNZfM8nCgOqlQq2aYGQ6JoJxMSf7Zjk83kSCZtEKolu6A1PrxMk0wkAHMchCAIQgkQigaHrVMoVQJHLZzFNC9fziSKBUgEqjHBdl5mZGequSyabo1gsc+TFo5w6dYbh4WHS6RSyEdu2NbSOlJKeQg/JhEM6ncAw9fhutopD0FTLZSwny/DoMH19PQgVsbK0Qi7TQ7KhOU2m0pw5c5ZsJotp2bGmXNeYnYnj9WpG3EYcO1tgWfbaHdZ6vY6hazz91FNMTU+SzWQJw7BhumswOjqCYeiUSkV838OwDDSpIWgQiFJSLBbp7+vD8zySSYuhwSFuuOFGSsUyk1NTjG0ZI5FII5B4voeu65RKZcJQoekmiti0XZMSy7LXBVGRRGoa585NUCqXGBsbZWFxEVB85zvfZmhoCF0zmJ6cxPdc8oVe+gcHsJ0ECoFtmqwuLpErZNm1cwfbt24jl8lQq1Vx6xUM0+LYseNkMmnKpRJhGJHNFHDdCp7rxc7PBBi6hm5ISqVlhoYH0TSDWs2l3gjBpBs6IoJMJkulXOHOO+5ieHgYXZNrYYxMw+LZZ5/F83y2bh0n8ONwSJlMlsmpaZ584gmUinAcm8CPOHniLKMjoywszDIwGDtNi0PoQKlUZmhwGE03ePHFIzz00MOMbxkjlUoQhiEHn3iIm/YUWBp+O7PLFeYX5vjmN7/N9NQcv/Wbn6RcKTI8PEytXmdxaYm7776b17/hDWzdvo10Ok2pVGJycpKenh6klBiGwcriEl/8wuf5pV/6jwhN4kY+aLLVWfqmYCM8EZ56PP5Ot934shGDrfW0CjTb359n9dLi0bcdP24ktGzF1604vRNeb83TysA2oZ3JbjJgzTBPrf1r78fLAZ1wbLsgdrMC3osxRq3Chc3Mc/v/rdDex04KgvayrfPYbLf1WSdt7XpHOo+5aZFw4WA7dvtl0by+1G/m5dg/ok1IdNH8L7nFHxJsomOdBDebruZlHPi/O7PhTszrZg6kdfgJ87q5ui4Ovu9jmmbXtn7CvF7YVickdznMa0wwrOffzIF0Qa2qs6OqjqO5ROa1CdJKom+7Edm/g+DIA7B4GqVb6Mk8q6tlrrnmWsa3DPPEI98m4dQxDR+hOWiag1ICQzfp6+1D13UGB/uouxVq1QoQomkChaTu1tB0sGyHwI/vYyLUWtgdTZN4fkjge6yuxCaVE5PTPP3Mc2gCXK9G4HsMDg3g+z5e3QM/ZHlpmfGt2zFtG6SGmbBxTJ10OkPddVleWeLqq69icLAPpE5xdRXHthgc6GdicoJCoQchBYeee4HJyUn27t3H9PQMqWSaF55/gUIui1CSnlyepYVFCj15VpYXkdLg3NlzbNmylYmJc7GzIgJq1QqRChv3ME1UAMeOnqRUibV+qVSKw4cPMzkxQX9/PyhFvVYj4dgsryyTcJKEoeLYsRN896472Lt3L4ZhkslmCZEIqVOrVtF0ncmJKbZv3x4zOCLCNEyEJhpMjYaQzZivEsvSCVVMoGpS4/SJkzz26PfJ943R25fGtKC4usLEmUkeeuAxdu7ZGcc5RZBKpvD9AMu0aDrTa96ZhIgoCjAMB9FwRBULWjSCIMTQYXBgkCuvuJJkIolpWviez7Gjxxka7Gdmdobevl6SyWRMbKuIJx5/Asu2SafTpJJJNF3HSSSYOHuCTDqLV/dIpNOMbBkhJOLEsbM88MADXHXVlXFsXNPC0E103Yz74YfousHE5CTZbBYVQRgKTMsi39NDb38/UaRIZzL4Xp2R0QGSiRRSGExPzzI7M0PvYH+sDRSxhviJxx4nYZoksjal1RWiIOKhhx5ifHysoRXNkkg6HD9+nJHhEaIIvvfAIySTVqz51OK7dX5QZ2l5jkw2SaVaQwmJbadIpzOcnZwgn89z+Pkj5LI9pFIZcrk8oyPDBGHA8tIquVwPvh8wPDxMb18BP/A5ffo0e/fup79vgDCMuO66axkcGuDzn/8CUSQYGRpn67Zx8vkUiogg8Dl27DhSahiGiYpgcHCITCZDNpelWFyiVi2zsDDLgd6IE+zGHL6e3kIvpqmza9dubrrpZvbuOcDff/Ur3HbbbZQqZc6ePcsHP/hBMtksSLGmhcpms2iahtFgvu+/57uMjAyzZ89ulIBIQqRJtO5RYrqef93gh828Que7lJ2eN61fuln9dBpT82/UsEzoxrR1Y4jbw8G05m0V0HZqu/3/TnkuqvnuMm+tIWZa4612w3ft474Y89pNC3s5zGurxq/dDLzZ9/Z5btWsdxpft/VX6kLHPj8KzOtLqeMlwyVW8RPm9aXDvwuz4TjOZTOWaLSW4jjzgng460kpsZYufNfZNDYmnOK0ubqiLmk9T2udcepmRhQhhIq9g543VrnWbrNf8e/19trzd0vdx3E56xEjA9M0O8aKu1xzjkuBjRDaee126UMn5L8xdF7X7nO+QU0tJrbtDH6n31EEUQRCaCgl1v6uv79Q2vpSoH1/djJr74Z0OgkslFLIwb3Y7/nvGNe+h3DyOcJj97NrNINLSBD6lIswPVFlaaGC61WRBjGDJhR9gwXGt46gIkXCyZBIJihX64SRJAx9UpkEUjMQBBgGKBWiazpC6hhmAs+PnSFJ06F3aBwnm+Ps1AS3/fzPUugrMDwyRiKZZuLcJJouSKYs+ka3sH3vAVbLFYIgRIUhQd1Ht0zcwCNX6KHmuZydPIfSBFGosWV8K9meLGen5rnvwSeoewohdW66+SbS2TSVWoWhkUGEJgiikJUFl+8/+iTLqyskcwlCTbJcdYk8QU+2j+NHjzE0PESlXkNJjdnpIlEIRCGRF1Cp1NixaxvDo8Ns3bYN20kRBIKnn34OKQ0UkoX5IpFSKDy8wEMpnYe+9zQKQalURpMSCRSyaWxdkEwmyGZzTE3NUSrVCLwIz/MJIy/+1pVEkyaGbhFFCkN3iAJJ6MXvhNTZsnMXt7zrZxgbGyDwfITSSCXz5Hr6ecNbfhrLVERBHV0KquUSQoWUVpfQNB/DgCj0QWkQmdQrUFpeRSqFCl2kDNENMG2DWiViemYSzQjQbQ074WCnHLZs24IQNtOTy0S+gVsNmJ2aI3QDThw5QeSHBJGPaWsYWkCttEC+t5e6W8MwJKYGKdshYSfZtWOEa67aj4bArdRYWpjH0CI0XSFkgGFCGLkUenJ4boDAQEU+mlCo0Gdq4gyGDr5bQzMs0ukCiVQa3dJJ5/KslHwCN0JXGmHdhzBibnaW4S1bqKyu0JPL4wUBV151DXYyARJOnT6GaeiMjY7hJJKMbdlC70APi4srOHYKy0nihyGZQi+j23ZSDwW5/DCOk+cb/3wHq8Uaw0ODQEDf4DB+6LG4PEciZSIklEsloiiB5+u4bnzPVxBx/PgR7nvgblx3lXJ1gXTG4vSZk5w4fhLNcDh28iSZQgJP+XiRIBIGSurs3befwaEh0ukU6UySB+6/l1TSZsvoKFdddS1SM9naYyOlRmLP2zAtkFrI9h1b2bV7nJq7wHU3bOeDt9/OQqXIvquv4PVvfiOFwX4WlyuEgUQKC0NPIIXRiB0bm8I/+v0Hefd734l0dHwRxlG5wyj2FtohbXQObvZ8lVJeEJJlM+Vb83ay0BFi3YNwq3a0WbZpRdPqcbe9vebv9npbGaBu0I1xbW+zlcn1fZ9isXiBOWz7WLvNTSv+adckdhtH8/+mJUS7WW4njWQnPNep3darPa1MZms7nRjqZpnWOO6dfFx0GmcnxrVVKNC6Jq1On5rlWtdore6WPS8R8d6Pzl+H85jgLt9Lpz1+MXg5GNb2+XmpdE/X8W3inHipoMTLl5rr2FzTTkkTci39sOepfY/FQQ7jdLnwY6V5jaJuDpsuLtG6oMRlfGyd27hUrehGZbq2uNbu+dK7bn36kZUH/atB62Eezp+MNX+jV76sbbwch27773bp7GaYwk51vBzCgs3V0X3/tyOUdQSvIfJjyH1vRtppxMTTWOUpVqsuvQOjnDp9Ess2yOT6SThZIiXwPBcVKZLJFFLqsWSYCCfhrBMjjTZXV5fRNB0EBH6wFgPVMA2UAk2LNRKmaTA+Hjt4skyDpcUFBgYGiFSE73ukUimiML5XW6tWqNUqLCzMY1smZ8+dwa3XSTgOW8fH6enJE/ge3/zGv2BZOtu3j+PWPQb6B7jvvntIJm0KhX7uveceTMNkZGSUIAjJZXOYusH8wjR79u5iemaabDZHoaeXuekp8j15+gd6UQ1/+J7v0lfoZ25+CkSIbac4c2aCI0eOsGffTirlCpqms23bNq659ho0TRAEAX19PQS+T7VajxlCBHHkJZ89e/as3Z1bWVlpOFKKY74qFZHP5zBMDcOMCc94njWkphMpBRJqlRp333MPQgr6BwbQdT02aU6nMQwdxzFjjWkUjzmZSmEYilq1vmZqaxgGyWQSL3AplUokk0kOv/ACuVwWJ5Fgfm6OTDZDuVKiVv//2HuzYMmO887vl5lnP6f2uvvt7tt7N9AAAWIRSVC7RpZIjeTQjOyYUUjygyL8aI/tBz9ZY0Uowg77SZ4HR4xkefwgcShSFCWSkkiQhAhwwUaAAIle0Hvffa1be53VD6equ2511b11Gw2KIvFFVNy6p/Jk5snM82X+v7VFnIBl2Cih42UslKaQXYFOHMfcvHWdfDZHqVhASEkQBnz9a1/j3PlznDx+EqkpHMciTiJu3rhJGAQUSpMYmoGu6ezsVGi2mtiOhaErkiTu+uU2uH79Oq7rYVomtVoNwzBYX9/Ec7Osrm7wn/7T/8fc3DSZjEcUh5SKRSqVXZrNFkql0Yl771cmm+XU6dNoClqtJo1GnVwuy8LCMa5efZeFhaNcu36DmZk5dEOn2awjZaq5FFKgGwY3rt+4d5CPY+aPHuHy5ctMTk5iGgZSyLu+uWEYAgnHjs0jtYSl5Tss3t5kfn4O0zRxXYckjnnhhRfIFSawLI1arYJtW/zt3/4tR48ssLVVRVMmL730HU6fOs/kxDRvv/0DfvM3fwPTNDh9+hR+uw3EmIZOu9VECsXly5dJktRvdn5ujtXVVTq+z40bNyhlbfKdRa66z/Hf/c9/xHMfe47Tp0/zqU/9Z65eu8a5s+dZXVnl0cc/zPTMFFEU0m63uXPnDr/2yd/g937vd7Esi62tDVqtVjeAlKBarbKwcISZ+Tl267WUDwhAgEoOViUN8uRR/LFf89oTJu6XY/WwZ5V+GiYUHgSB/dcGy/bvjz1t3zCwNC4NtjN4v2EYd9dfP4AcVs9+10Y9w37lRu2Jg3Xt14dRfRolPB82HoP9HgXEh9F+WvBRzzfYt2F9HedZ+310R9GDnDcexhnlx4oe4nD0qhp7jN8njfp99fUJWHqkfhLMht8v8HpY+gC8/vMiNXcB/cjjD73ehwleh63HUevzIJOn+8LhP4T+jaI0l/Kw8vc25/7+iL2LFlk8ijj9M+heAXftTTLU0TVFKxIgTDqdGC+bRSkNKSRBECF6aW86LYSUKJX60iUAicCyjD3SdiXvSaGFTCM+KqlQSqGURNc1JLC7u4uSEl1TFIsltrd3II4JA59mo47nuuRzOSo7O5TLRbLZLPVaFU2TrK2uUt2t8OwzHyHj2aytLaFrJrqu89Zb3+XRR85i2Rl2d3fxPI9CocDSnUUmJiZwXQvd0PAyHsViiWq9jpGqHmm3W2TzWeKuOa5pmpi6Rb2xy+bWOvl8Ccty+cY3XuT4iXlyuSyGbqaRhIEkjtANnY7fIokFurL5zF/+FWHg8+yzT3Z9QvW7kvp6vZ76fnoOcRwxMTGJbihMyyCKfKTU8P0QQ0/dBKIoJIoispkcnU4Hx7GZm5sF0kBWQgg0JUhIg25JIfE7nXQ+ZEy1VqPT8VlbX6dULhEnEc12HQDLtPB9n1w+TxSF5HN52p02nY6PbuhEYYxSOrdu3KZUypMQgdDQlN5lgQmea9PxAxqNBo16nctXrvDYhQsopeG4TuqfS8LkRJmdnR1y+RKdto9SCtu2qNWqOJ5DEoe4rtP1VU5NxuM4wXbSwGONRoMkFti2RxQKbt26g6bFTExMkHRFD1EYEScxtuOytLSEZdvUqlUsyyEMQoKgBQJy+Rwdv4NhGHiZ1OxWCMnFS5dZXFrkxMkThFGIbTmEYZiW8zJ3NX2TU5OYpsn09DQrKysUS0XiqJt7tl7F8zLMzE4jlaTRqBKGPl97/ltpwCRdsVup4GU8Tpw4gR8E1Os1jh07ghBQq9aZnZ1jcmKOUnmCudk5XNfBdV1M08B1TAr5HJub61R3K2lANSUwDIPbt5eYmpqiXC5TrVbJZbOsrq7iuh7TUxPk/WVud7IsyhM88shjXLt+A6TiyQ8/xZe/8lUefewxrrx7lfmmG/RwAAAgAElEQVRjRxEClCZoNhu88sprvPHdt/jt3/636HoqYLFsI02PpOu8+NI/8ku/+As0Wy1s1yVNj5OyIDXGqW1c8KqOP7snHdug5uq+Jt4jeB0VoHIUeB28v3dtnHrG6eNB2tqez+tB1lK98oPX+r8LsdcceNSz9fafYULf/jIPE7wOA66j5uVBwWv/31FzPHgOGLVmDqKxzEs/AK/vnT4Ar4eiH2vwuh9AHZdB7SdBS+nhgddRDFEIOYLZ3e+vmP5++CX3fpj3Dm4i76Xuw9az3yFjsI/jlDuojYdJvcBJg6bY/eZMvaiFg1GJB/1gBmlYYK33QkKMkjKLPe0N62PPhEwpDVk6ijz/y+jl02TjKlPxJlrcRhkZTC9DEicsLa7wuc99ngsXLqCUwu+0Ma1U85qQmlRLqUiSCCkFgR+kIEsIlFT4gY9UqQZNIIi7fUgScB0Lz/OwbQfLstLgRe0OgoRcNke9UccyTZaXlzh69Ch+p4Oh62xvb0ISMzM9zfLSEq6TIQjaJHGI3/GRSAr5LKdPn6DdCTl/7jye65Lx3DT/pFK8c/Et6o0609Mz6IaJ57jEcYSUoDSJl/EIwxBNpVFFW402tq3juDaW6aGUztmzZ3AcLfUZRdBp+1imiRAJAqjVq5imS6sR8OYbb3D69AmgQyabJwxTAFqv12k0GkxNTSEUxHGIH/jESXT3sB+GAsdxEUJgmAaqqzG9cvEyUgiOHDmCaVmYZi9lDCwv3sGyTAwjzT9qWybV3QphFFAqlxEiDbYlpKDT6QDgOi5KpZrbVquJbugoLc2Na5gGURjhOVmWF1f4uy/9PZOTJUzLuKt5FVKg6xph6LO7W+UvP/2XXLjwGE899TS1ahXHdXBsmzgKqVar+EGvLzqXLr6D0dUCt9ttdFNDyhgpFe++ew3bdsnnC7z0zZdYWDiKphs4jovreGjKwPcjbty4wbPPPIFSiq2tbXRNJ5PJkslkWVtfp1qtUioVMU2D9Y0N/KCD69g4dgpIW80WhmlgW3aqtbIssrkcCWDZBq7rcuf2IlIqOu0OnuehlMRxnHRelErTCAnB0mIavCgKQxIRd7XNMYahoWkSJRWl4hxT05NpGiWRWicYuoGXcXE9myRO10Cr1eb48ZNohsJxTcKoQ7lcIIrbZLI2rUaTXDbD6uoyxUIeXU+jOislyGaLuI6D7/tIKfnsZz/LhUcv4GUz2FGFaHeJt82P0mwF/NEf/W8cPXaShePHmZ6ZYXJ6kjfefJOf/4VfoN5sUKunAdjW1lb50ONP8Lu/83tICZou0bQ06vH2ziZf+MLfUigUOHH6JLphpAFZuoK19Fs/L+sDGt3/+01GB3ncMP/EYQBlON/cP893j/q1or3vw8Ba//dBk9hhZsX9z9S7r3dvb+8YpXHrRQuGvfx9kAb3n0GT4cE9qte33vV+09xR9Q+CuEFQfvD57d69PV/fXvu9a8PcZQbHdPC3UdRbU4O+qcPuGVx7g/UfpFkdBqr7n3fcM8BQwfMBtJ/wYRTQ7v+9V8dPFMB9yOD1UPM1It3ouDUcdr4/AK936cE0rw+HHr7m9f6+jdoAR4HOB3u2hw1ee3UO+/5PVc+weh/0ud8vxtrvFzNs8x7caPv7sd+mP3gAezg0fC0P7sWjGFg/05MKcOdJjj5FcuwJ1u/cotC6Rb1Rw8wUsCyHD3/4KTRDEcUBjXod23GJwpAwjDEMkyiOECKh2WxgWlaa35TUdNbQDRL6NkkEQqaMOwpD1tc3yOWy6LrRBShFbt++SRhHlMplVlZXiZME07SIY+76cHV8n1J5AtfxcGyP27dvYTsWy8vrrK9vsLW9SbFUZH1jnZmZSS6+830mpybYrWxz48Y1SuUpHDvD0tIKX/6Hr/D44xfY2twAKcjnC5DA66+/QbFQ4o3X36RYmCBJUk1grdbAtGxMS0PT0j7pemqet76xhuc5CAGGaQCp1nN7c51HHzlHxvWod1OXBEFAu93GsizW1tbI5rOk+XQF7XaHrc1trly5yjde/A5PPvlkavbaDdYEkqyXoVKpUJ4oIwRYlnl3nG3LIo5i4ghWVpZJSHBdB8u2EEKloFTTUCo17VVSR9MM4igmitN51frMwuMoot1q86Uv/QMX37nMv/k3/xbLNjAMnb/41KdZvLPCoxceRQi4ffMOy0trPPHE0xSLJb70d1/C8zw2t7fIeB5REFKv1cnnCwgh6XRaFPI5TCMdw3bbx3ZclEwQKAzDot1uk/G8NHdrGJPP54ijEKUprrx7Gdu2eOSR82QzdlfLXqTT8Wm12nz72y9z7vx5SqUCYeij6zqtVovNzQ2qlTqGYbKzs8vExBQkghde+AZz83M0Gk2EgGIxT5KQ1tfskMvlCIKgyysEYRSgtFS71WjUWVxc5JHz51Eyzd9qdueFJKHeaNCoNzBNm9LEJELGSAUdv8PubpUgiDBtE0HC9tYmhq5RKhbT20XQzedrEsUhtWqV3WqVyclpEgRBFJLN5vDDgJiEza0tOp2Azc1NLl++nAZqymTRdZ2dtduUoyUqp/41xfkz/O7v/B6///v/LR964kO88MLXePLJJ7h46R0+8pFneOvt74EUHD9+lO3tTQqFPJqmY1sOhpkKUizLJCHqpufRee65j6GMFMjfPcBz/y65hz8N7DfD9tlR+bjH5bODZcYBuz3Q10+DeUMHAekw4eF+bfb2lVG/9/Pt/t8H/XsHwd2wPo4Ckw9qOTTMj7V/vMaZj/5n3M/KaZw6R5Xrpb4ZFDQMlu/P+TrYv97zjhrLcYDDuP0+LJA8bNuj3pkPwOsPp6r+49qDgNfDzvfDAK//rAI2/bjTQf6MH9CDUfv5P6b9/B8P/e3hg7mHQ8M28MH1sZ/U+6C63w/qPyztp3EddY9K4jTYgG6g54vM/eJv8wqP4/pbRItvkMQBURRSr9dJiCgUCoRhSJyAYZhpPliV5g60LIvAD9JNUXZz4yYxcRx1c40KeixbADs7O6mJZgJxnFCr10mSpBt9tYiuW+i6hetmcL0sX/v6N6jW6gipcFyPOE7Y3KrghxFSaTSaLSYmp5iameVnf+7naTSbZDIuYZhGMzYMDddzKJWKOLZHNldgfv4Y1WqNaq2KYaYRWVutNh0/YHZmHsOwyOeLLC4u852XX8X3gzQVji5RKmF7awtDN0jzmQqSOMHv+EBCHMs0z+v2Gs88+2EC36dRb909PG1ubqapeLoReJM4NXPVdYNiscTRowvkcyV++uM/k+aV1BQJ6XgKKahUKiwsLHQBgwWk8x2GIS9/51VMw8bvBNRqdTJehjjqanfiezkpExJs2yaOIQwiwjCh2WjRafsIoUiAIAyRMs3rW6/VKRaKRGFMs9lEaYqTJ09hOw7VapU4Tlhf2+LixStsbGxy6dIlNjc3sSyLk6dOIoSgXq/RqNeJohg/CElIozhHcUi1WkvXVZxQb7SIkhjLsVGahh8GXHj8AidPnoQkXUmNRo0jR2axbQ2hIjY2NgBotVrcuX2HV155lSNHjqJpqk9zFaHrGrOzM+SyebY2t/mrz36OOEpIEsF3v/smncDHdh1ikjQtlJJYjs38/DyNRpNOp8M777xzV5DVaDWpNeqYlsW5c2dpt1q0Wi12trbTfMJCsrm5iRACw7SxTBupku4HMpkM5YkJ2h0fpTSiOEbXdZaWFzFMnTDsIJBpDuAYXnrx23z2s3+DZWYIoogwSQjCmFgIcvkCjpdhZm6WYqGIYRi8/vrrNBoNZudm2dhYY97Y5Uq0wBe/+QOWlpb48z//c9rtNn/wv/4v/ODiDyiU8vzKJ/4FQgnOnj/D8RPHaLVa1Gq17hiGVGsVrl27etcPNooitrY2+MhHnqVQSCMR7xHysf/hpx8cjFNGKUXw6qcJX/v0fSBuv/sPKjMMjPXz0p45bm/uBwMG9QSZ4/L8ft59EJDuH4PevYOAub/vg88zSjA7rPxhqb+e1D1E7dGUD6NBDeODtr1fn/rrPWhO+oH34PwPCihGAYd/qrPNj+q56gN6f+ifYr7/WWleoyj8973ve6VByd1P6oOXkI7hXo1U776H4Q94j8SIz3j3pOlxBEnC3e+D10fWIuTdDwjiOEE8QOSwtK6DF90wae1+UubDSNCGSTj76x40gzpMv4elytnPXKdX77CNon/djfeiputx+OfgzWu/sR3m87NHkzlgNtW7bz86/EY4KjjI/W33l+v/2/PVixFAgCBE0yxq7Yizz3yUL3y/iqouMZFsYZXmUKZNIHUkoDQtNYeMAiK/Q9BpgtC6KTkUQiTU6zWUSk2HdQIMXU9NS4mp7WzgmqCM1IxX0zWCKEQzdJSu4WVtMpk8ly5d45vffJlCoQgyphPBysoqj114jPWVNbLZEptbFdrNLWZmptje3mFmuoznGSRhk92tdU6cPs3inUXKpUmUZiDQsN0sXs5gbXmFqVKZxVu3mZoqs7q6xOzcAo1mg3wxi5dxCKOAym6VSquB43hMT8zQrFdRIg0+pVklQEOQoGSM0hV+HKbpfaw0X26hXCARAqTEy+ZRMsayTJShoXQNw7awPAcZCxqNJhkvx61bt3Ach7n5WY7MTLO1fgPPEYg4xm8lfObTf8VHP/4xqvUaU1OTWLaFFAlKCoSIaTWaeJk0l+vXv/4ijz72BKbp4rdb6KaRCiwEyAQ21zeQRprnNYwjVlbXsR2XWr2F60pEd73Fcczc/DzzR+Zx8zZBGPL22z/gmWef5syZE2hSkMQBuYkyt26vcOnyVT7xiV9lYWEe0wTDMqg161TrDeaOzKMZitXVZTw3h64bLC2vMDs3i9IVYeBz89YipVIJqeDO4k1mZ2eIophbt6+Rz+UBSacddE2m07RCuaxDq93C0HWKxSITExNMTJSJo4R3r1zlB2+/w/GFE7iOi650VpeWmZ6Z5vEPfQjNMmg0Gzz33MfQbYvd3ToZr4AmDQK/w43rVynPzmCZOlHgMzs9TaPRAKlS03fTQdNMSHT+7u+/wuV3r/HU08+gjNTCod6oYmganuumfuJGQtDxifyIzfVNTF2nUPD46vMvcvLkaXTdxMvkuHbtNp/5zN+QcXs+pRq2beO6LqdOn0Akafqi115+jVKhzNraKkQhQacFSYxjm0xOTzE1PY0yTcqqiha1uaieJOj4zM/OcvGdt3niQ+dxCpP81n/9X5HICD/yyRYtNFMQaxZ+nOB4OSzHA6mhaYpAj8nmPFQc8fZ33+D61Ws889GPEJEKRvq357tROaW460Pf800e1EKM2m8G94/g0tdJOg3kwjP38dQe9QBU7++wdCaDeTvvcdoAKSSgiEJBEhusre6SLzh7Ig8Pywc6THg42N4wDXJ/fcP8JXvl+81s+8v2rg1qDnvUsyAaHKf99o799t5h++EwE99+0DcMqA8TtPaTpmlD6xxlZjyqj8O00/3zMpiNYLCecQUThzuzcDegGYI0KJ9I3wsphs/je6VRmQx+2HRYEBZ3eUbKQ7q7U3fc+msYp96RSGLELfueD8fqfd9zjFrrQgzt1GD9vfZ7FgWHoZ8Is+FB8Nr/t5/uTeZw8PSjJA0a1a/DgMkevd8+AqPG/GG1uf9cjn/PII3K8zpuvf3Sz3H7dY/2k96+t3E7aEN60HnZD3Dev4mOZzbfn9JhmJ9ur0xvQ46iiEajQaVS4ZFHHmWx7aJVl9F3b6AKc91IswZRlM6Nkqmf285OBctxCYOQOIpIkjTSZRInSKXY2lxH00wazTaaSnOIBmFAInR0XUcI0fUXTA8nrW6U1K2tClffvcqTH36C9fVVjhxd4Nq7V8hlM3fNMW3bRpPpRlYsl7l+4yaVnW00KchmcwRhqsHare6Sy+YIwxDLtgDFO9+/iGs7vHvlCoVikWPHTmA7DgkpCAyCANf12N6ucPrsGUxDo9Nus7a6huXY6KZBGEAYBCRJSNDpICRsbW9TLJSIE1haXMR1bXSlIaSitlsjiUMsy0YzDAzD7G7EAlPTuvmbTXy/QzabSfOGBhGmqWjUdwnDmDjWeO27b/D0008hpSCK0nEPAp8ojmk2W5RLZZSmsbi4xPrmJlPTU+TyeZqNKpZtpweAJEEKiW1ZyK6vrCYVuWwO1c1XqusKXTfx/QApNeIowvd9TNvCdRwKhQKOY5Mk6Vrz/Q6G5ZBxMzi2ydGjc+QKqZmt5aR+ua7rpXmANUkURqyvrdNqtSgWCkilWF9fR2kauVweyzKJ41Tjr2s6cZKgaVo3sFSAEBKpJFJCrVZDyVSwWG80aDXbhGHIV77yFXRNpzxRplQqcefOHVzXZWtrK43CnPGwHIswjJBCYBkmftBhZWUFiUBTisrODsVCnq1KhXKxyJ07i5RLJXTdQDd0pErz7xKnh8IjR45gWSalUuHuexlH0V0NeLvVoeM32drcxnFccrkchmFw8+YNHDeHbVlsbW3ymc98lqeffprJySmioMX8/DxCKQzTxHM9TMtiaXm5G6TsbTq+TybjAgmFQo4Ekb6flk0+n6OzvYjbXqFy/r+hND3Hrdu3+fhPf5xCsUCr3eKXP/kvU79gS+F5Hrfv3KaQzxGjoUmV8okwxG+10XUd2zIgitlYXqVSqVAql5k5MkcYRXfX1Di8rp/fHXS933Q4vPEKCLEnaNN+NEwwOgim9say6LUv0TSDJBH81V99jieefOTufb2ASAdp94bV28+LB/8fVtdhzgP9IHJY+cF95WHuab17+n19e9fHAX+j9sNhYzOOmfE4fd2v7fdCY9c1oph8n86XPypn8sP2o+cbP+zeQfD64J0acfkAIHwYGunzOuo93KeuD8DrEPoAvI6+F344Du7DNsUfNngdJcUdRQ8LvPZf721eozbke/TDBa/9Y9MPGA+zNvbbrO9P/TAeeFVK3eeLO3hwG3yeJEkolUq4mSzHjh7jrcUaE3qLcP1d9NwkoKf+mBubWKZNtVrnL/78U8zOH6VYLGFZFkmc5nbVlEEYxjieR4xAaSZK19F0PQ0YpfQ9QUjCMOya0Rq0Wm3CIOLRRx4lIf1NNyxOnjiOVBIvY2M7FkHYZntrB9OwuXnrDlEUMzU1zfraOqdOnUFTOtvb23zly1/m+PEF4ijA0CWf//xXOHP6OFHUZuHEUUrFSTY2KggFzWaTQj7P0uISjUaTqalpdF0gErBtk+mZaYSmIXWDzdVVWs0aSRhSrVZQUjE1OYkUAiUUjm2RECM1DaXrIBW1agXHdUmDRqfidYGkXm9iGAa6rlEsFYhCHyEFzXqLbN7l1q2buG4W28nzkY9+BKnSAEl/8id/ypEj85iWheOkGiHbcVGaxtTsDI8/8SHyhTxKV2Rch0arma6JJA0sJYVAioQrl68Q+j75XC7NRSclYZiglE4UxXc1TZlMFsNMo0ubpklCgqYUQqTzaOkOX37+ixw/Podpa2iGjm7YSBKEULz04otMTEzi2HZqMu3lKRZLhGFEHIPf8cnnC6mQQSSEYQpSBYIwjLAsg3arzd///d/TbDaZKJcRQmBbNqkPrc/q6hrT07OEYcTCwgJhGDI9Pc3ERJlisYDjOPhBh0KxgGYaRFHE9tY2ly9e4u03vsfZcycxdY3NjU1EAp/59F9SKk4wNTtJo9HEtiwMw2JldRmlFKatE0UBQkq2tjYxTB3Pc1EKWs0QpWksLS7hOi61ai2N/JvPkc8X+fKXn8dxnDR6sRLMTM8ThgGFfI6zZ8+Q8TJMTkwyNVlkp1Kh024TRTGu6xLFEZpmkMlkWDi2QJLERGFEJuPSbDTZrlSRQlIs5Ll86R2m2WIr8wgvXtqmPDHJTmUXw7RASBCSwmSeTqdBJuOhaRpTk7MsL2+kmn0pUz/oMA0q1Kw3yGk6b73+Bq995xU8z+OXfvmX0R0bzdCH5iEfxev6edMg7XFz6DNDTZKE6OarAOgnPzLSAmaw3cFzTI8HDt/j0jULgiiKCcKQJIn4j3/yfzMxMUG5XL7rBjBsn95v3xwEzoN5UYeNSa9c/xgME3L2xmrUXj4sndCofetB9rP+e/ufo3/fGfz0j8Gwfve3328BNdjXw/bx/QavY/epr0j/ukn6zhT/JKD6faZDz9eI9Q//vMCrkPfW7zjn61G/PIjg5gOf1w/ofadh/iw/CdS/Sf0k03uZ+x7YGBzDfm1rj/HFcUwQBJTLZWzbJoohSmKWN9a5JI6i/Brhxk1CP8QyLKamp0mEoFKpMn/kGM1GC5CEYZzmeI0SoijGNG3CKEHTTDodn07bJ4pgZ7dGFEVUKhXq9fpeAQUCpek4noPrOeTzeSYmJ5mdmabWqLO9s4Predi2hdIEtu3Q8X12d2tcvXqjC7gMKpUatWqNXCZLIV9g8c5tlpeX0JTi1z75CV586WvYnsbC8VniJGB7a4NarcrGxgbttk+nE1Cp7NJo1An9DiQRtm0hlCKMQCmDOPSpbG8TRSEksLO9QxJF+J02rUYTTaUaqzhKTfWElLTbbTRNp7JTodVsIYREAq6bYbdaT+ckTrXTtWoV3Ug1n6dPnaFYLBMnMWEYpKA+Cvnd3/sdvEwG00gDLjm2k/rkkaR5WJVAdnPPRknqr2fqBppUBGFAuxtt+PjxYxhm139Xpnl+pVBcv36dRqNJkiTk8zkc10bTtLvmhz2hjZQyzSHabnHy+FFmZycwTYWmpSaicZKgpCSOE7LZLD0zd9/32djYwDBSQOx5GcIwIooiwiBEiDTVEgLWN9YBaLXbLC2lWm3DNAmCiChKUp/lZodyaZIkgaWlJb76/FeJ45harUoQ+LTbbVbXViiVSihDsrG5RrPZYGNtjZ3tbWZnZthY36BZb2AZOkqmEYWjMEZX6TtjO25qVbC90/X5bHXfJ0E+n0WqNHUMAr7whS9x584KhWIJpXRyuTwzMzMEfoCUknK5zJUr7yKEIJfN02ika2BjcxMpFZsbm3Q6bYQQFAoFkiShVk/fnzCMuH37Js1GA9d1KJdKnDp1kmwmx8bmJjPTM0xMTCKAhaKFSgJut7J89LmPoZsG1XqN//yXn6bebBAlMZoe47gGrVaDMIyo7FRx7CwCiMKwK7zIoCuNQqHA26+/wdKNW5w6dYpf/bVPYrgOjUaDdrP1QDzrILovON4YvLF3MNzvkNcPhIZrUGMSIkxT46mnnuQP/uAPOH/+PLqu4/v+WH3v1xiPan+/MoPlB30v+/eKntBzGP8fLPt+UK/uQWA/qk+HqXOQBsHwjwr9qIDDH0ca1ML/JNL7IdA4iP5ZaV7jOPr3gxKuwUXTbway33razxzm8P2636x0PxqUSu7Xj1HS2v0kgaPK7Efj3jNKCnvYekbVe9C1B6Fhmtdxn7P3vf+QctA4773+8DSvg/M/rm/NYSTCB9XXb26W1jOq7N7UEcMOYaM0rlJKNE0jDMOultMgjEIevXCOydl5Lm8mTFXeZDe2qTfbSCExDINsPs+p06fJZDKEQYBhaHQ6nTSYShB284MatJpNvvfdN7hy5QrHji3geVmEAN/3qdfrZLPZe2MrBNVajUwmk+b01HXanQ6dTpvZ2Vkcz8OyLBaXFgmDgLnZeZSms7Wzw82btzh29CjFQoHVlVWKpQLVWg1dNzBtm7W1dSqVXWxb5/EPnScWIfVmDV1pLBw7gmW7OLaDbTnUqjXK5TKGrnPz+jWKxSIIScf3sU2bZr1Bu1Fjenoa3bQIopip6Rma9QaNRpN6o4lt2wglMC0L4oQwCJmdmUZKxerqGqVSibfefItSscSVq0u8/fb3OXXqOMsriwR+gEgEtUaLfC5DFMe0Wz6bWxWuXLvCRKnIbiXV9n7vzTdptdrdXLkVpFK0mk1syyYI/S6AjLuaUQORpNGeNV0nJkEkMbbloGs61WqNP/mTP2V2do5CMUc2l8VxHQxDhyQhjiPS1DiQxGlwLk0pGvUGrXaLKAgpFPOUSkUSEuIozfsbdHya9SbT0zNIkQK9WnUX0zTwvNTUNQwDbMfGNNM5X1y8w+TkxN21X8gXu2baEc99/DnK5TK+73P79iKVnpaxWEJTOs1WiziKePLDH6ZQyFGt7mLZJpqmMA2Daq0KSUImk8E0TQrFMrs7FcrlSb74xS8wMTHB3JE5NF3j6WeeoVgs8cabrzI/O0+r7RMncOXyZY7Mz6CbOmEY0m53WF1dw7Is4jjNTxuFsLGxzskTCwSBj2lYSKm4ffsmjuORzxfIZrI0m6nm/eaNG+i6zsvfeY3XX/sub775Bq12k6NHZqnX6ximSalUvvvulkpF3rn4DmEQsry0zMTEJJqm6LTb2I6LYZi89dZbzOs7rE38LDc2mpx74inCOMYPQx5/4gnyxSKW4yBkjFIaSmoEQYiuGwghQcaYmo6h6TTrDVzL5sb161y5+AOOnTjOx37uZ7ALOZqdNrpSKClTH74RNGgqux8/7+e7g3t3eOMV4N4+MwhA+6/1t93P/0ZpM9N7+vekbl0SkmRv6pt+ntvPU4cdsMc5cAoh0DTt7v/9fp3DtJm9OnvCpEE3kUFwPuz6YPuj+tX/HOPeM7h/92tYR+W8HdQOD2poB/ux33P0u88MarhHpeXZb476A2wN02L3Uw/AD56h75uXEfcLHux8dxCNU98oLfj71Y+xzrJDzoJ373lYePYBHvfQt4xxw57xH3i2YbxuXPqJMBvuT5Uz3uFbjLi+3z2Hp4f1Uo26/zDRAver52HeM6r8ezHreb9olNnwfvRe+r53DPZt5YHbeC/0MAOWjX6+vcKlUWu4t2H3a2BhwP81DpFKIDSFMEyOnX2axZt3sCsX+Ysv/iP1ejWN4mqkIME002AySRKhaZJWKz2ICyGIw4go8ImCgA89/hiCVAsXxzGe5+F53t1+QRpuy7ZtSO4FLrEsB8fWqVbrBGGEZbsYusnO9g5RHKAbOrOzs3iex8zMDNevXeX48QWu3bzOsWMLZHIFbCfD979/ifXNHR595JjpGB8AACAASURBVAxBJCgVZ4gCye72LkkUkQiJEIpGvcXn//rzTJTLJEnI5MQkUmlYlsXGxjo33n0XDcgXCyRCsrqxxW61ztZ2hWNHF7AtG822aDYaKClIooStzS08y2FrZztNV7JdIZfNsbmxies4/PXnv8rubpUnn3iMUjHfTQPkUixNUqvtdM103W4k2Wk0JbEsE03XeeHrL+B5Gebn58l4WSrbW3TaLfLZDIKkGw05XSMCiKOYq+9exctlUJpGnCT4YdhNoWNw+swZpmfnkMonjgJMUwfSNDapBlkBqdlxEPgkSWo67LouuWIOXbOpVVvsbFXIeA4rizdZW9tidmaWMIio12p861vfwnVddFNhmgaVyg6e5yK74CCKEvKF3N11rOs6SUxXe5tqZlPNskY+W+KrX/06jz56gT/+v/6YifIEM9MzbGxukMQxpmWk4FDXuX3rFuVyicU7d4hDH8MwuzlqDQrFIpcuXuK5534aw7RwXAvLtVI/aFNnfmYKy3YQSkNpBkfm5rBMjUSK1H85Edy+dYed7R3m5+ZRUlIqF2k260xMlpFCslup0m77zMxO0ukE/Omf/j88/cyzKCmxbYuvPv883/r2t2nUm/z6r/86p06e5MyZU7iORaPZxLQsgiBkaWkZyzLx/TaO41AslJicmEwjgyf3ouIqpcjLOqaM+MwljV/8xG+QyaXpf06dOo1tO1y6dJnp6Rkcx6Nea+K6Hs1mAykFuXyGOAyRUuJYNu+8/X0+97nPsb21hVXw+Ln/4pcIdIGyDKI4QsWgEojGYHnj8PzeAa0fIN59vi54lQvP7KlrLDO8IcDofiAk6Z0a02sxQiQkycHnof0OlsOA06BZ9GDZYc82DJgexvR31PXxznrj/9bf9167vXtG7VGDZsX9v/UDxl6dozTao/o3KrPAOM8zDIjuV3bYeXXwGUdt7O/XiWXc89YPE7z2u12NbHO/vvyYgVfoG/+HqGj+ALwOvf7jA14fRj0P855xN/ofCTJcZPk4Mjs59i0Pq+8/SuC1J+19mHRY8DpMMtwDr72ow/dpIxDESUQswTRs4kRDL5+jdf2b5DSf7166zczcLLlsDk3X2Vxfw/NchOgCpW400SAI0JXG6soKc9NT1Bt1pmZn7wY5gXtaBSBNw9MDKEmqsesdInWVoEwTpMSyXLY2N8nncly7epkgDFlZXaNQLDI1OcXW5gZxHFGcKNFoNIkTQRSD52U5c/YcjmUQBOD7CZbp0mo08Ts+QqWBghr1Jjs7O4RhwKnTp9C7GkqtG1SplC9AFLFV2cGyXSanZ1lZ30AAhXyOZqOJaVuYlkmzXsc0TdZX1xBCUq1XSRJ4/vnncV2P+dk5LNviznIF09Q5e/YEpp4Gh1JSI4hjatUdwjDEddNcsIlICP0OQkgsy2JycpL5+SMoqVGpVHBtm6WlRWZmpkEkdDodkjghEQKRJEghqOxWsF2n67dKn5l3hGml14UIaDWbqTmxUAgh0ZTe3UdT8KqkJAoDhBBUq7tITaNebxF0Iuq1KkomfOFv/xrDdJmbP4Jl2bzx5htcuXKZ48cXmJufIQwDrl+/ztTUFJqmaLdbCKEhpeDy5UtkMllEN+5xuh7SwF6WZZMkgk4nFTB861vfZGZ6hnPnzqI0jddefZW5+Xk0TSJEanaczWWxHQfX8/BsizhJ/WyVZqDpOp6XRdcM1jfWmZ6bTlMC6SmoiPwOcSJQmoHSdKrVXZRI2K3XyWayCBRJAqdPnyZJEiqVHSzbZHJyAojRNQMlNZRMfbt7wbXm5+axLJMoCtE0nUK+yKlTZ9B1g0ajRrFYwA9arK2t4/s+ld0KR48c5e23v8/2zjbNRoNmo8XO9g6FQoFr164xM5NGQ/7B97/PabfGzal/ycSJx/jmy69ydOEIUinanQ6245DL51OBUhRiGAa7u7u88cYbnDp1shsULEJXGru7u7zwta/z//7Zn/Fbv/Vb/PKv/QphEiMMHWloEEaobpDhhwVe97OUSjoNRGYSWT4+Fvgap+0ez0z5Itw7NcZ94OtgYfJBfRh2fhnMQXoYYDms/ge9/n6B18EyB4HXUXX073EH1dOj3tj2m2b3B5Qad5z7yw2zbhrV32HgdaDg8PtH1vze6EcRvI5lnfkBeH3P9BMBXvsDNvXonkRSQF/KmUFecz+jSrVi6eXBFCbDPgczj8My8kFTHiGGt52axvWnABq/r4PS0IP6NOr6fpLAYYx9FPMe9tmvT+Mwq4PKyOzkoYBrr84H7dOeAAf9sdMRSJkeuh80pdFg/4aZvB12nA/7fHsDWN179+I4ufv+9frW389Rpu39m2k/iNzTLyQykcRRQpyEaLbCW3iKwuq3UHae+aMnyWY9DFPHzWVSP8swJokSAj9E6QZBFPCtF1/mhX/8Bj/1sY/iuHbqrxkHCKWIgxBNSpqNGpZtpP6ZSUStVkmDKxk6yDSYTITomqhKOu0GX/jiF5mbO8Kps+eRSieTyZB1HVaW71DZ2cL1HHJZj06nzerKCvV6nVNnTtJpt7j27mVmZgpEQZMb127geR4TU2U211eYnJyg0W5S2dnisUfPsnTjKu0kYHZ2liAIMW0X3XZxsnmuXbqC32lRnsjQaXaYnztKs15nafk2M1MFmq0Gbq5Mpy0oFgtUdlZxvSKNep2PfPSnKBQK+EHAnTtLPPvsYzi2xtTEJEtLy5QnSnTCJlHUZnJqDiE1kCHV3XVMobhzawVd0wmjgGwhi+OYaAKWlu4QhRHnzp8jjCI6QRodGCEwdKjXG3T8mGqtQbFQRgqR5jPVdJI4wm+3MTXFzuY6QSTwvDxRBPV6s2tKqtNu1NCkIPA7SNKIx7qms7y8zMz0EZI4wLAlhVIJ28nx2OPPcPLEAko3CBMolso8/tjjSCHJ5z22tzZZOHaMwA8gidGUQtd0bl2/Rsa2KOay1GpVNKXw2yGO5VCv1fG8DCQCw7R4883vcfHSJX7zX/2XZHIZ2p0WyysrnDx5mrWly8zNzVKvt5ieniURgjCK0W0PKTR2tipsbWymmmBbRyUhO9ubFAo5DF2ntlsn6+ZotyoEYcjO9g67u7t87fnnmZmaoDg5SydoExGgNA3bcBBxiN+q0Gq1abdaCCS1WhUn4yE1yerKCpOTk+TyWRCp4KbRaFAoFThz9hSFvMe1q1eYnpklky1giBClAqKojWm5uE6eTLbAqy+/ShjETE1MUN3d5dLld3n9u99j7ugp5ufmmDabXLq9wZcutnj6w49z/swJvvLV5zl75gRS+lR3t8l4WZJIUduq8YXPf5FHHrnAyeOnCf0QkoTQj1m+dZv/+B/+A+16lf/9//w/OP/Rj6CSCE0pVCLADxFJajkRiVTH3+PCsisQE6QHgMF0NYM0zOx3kHcBqYC0fHwofxusp9/Ed5Q2s7/NFOhEeziiEKnPdq/MIAlxvzZ18DkH9/GDcocPPnMURSNBUz+o20/re0+bme6LYRjd3Vdk16qiv/1h+9N+e92wuRj1e/8z9v+2H5AZNl/D8rMOpkDqzc8wbe5BQHjYmI9aAz2/3mHzM6p+KWT3OJnseXeG9WFU2w9KB51Fe9/HPdcMrtlx2x71fHvWGoz8jKS+9Fz0QIjYm2ZnnIrkXS7WnaHk3i2j+p6M6myc3IUP/fO9pxt3fxOj6xGjuzzqXPoTB173LsT7mdUg3X/tsKKDBwczI2scYGSH7dPoNkcztP0Y/EFtjNog+q8dFIjiMDRu+Qexs39YbY9z74OAyAdt42HXu1+5wTYHpfTDyg4eEkaNyzjWDNLOYM2cp7z5MldurZApTKIpjRhBu90i9IM0yrGSSE0RhjHLS8vkC3nmj8zTbLe6/rQRshvRNkmi9O2RkkazgaZUN3engZSKuAvOlYQw8KlVd8lkM5w+fRo34xFFIY6TRq595ZVXaDZbTJSnWFg4QRgEVGs1oijmxMkT3L55i9nZGWzbpF7fJZfLs7a2TRILVleXcT0HP/DptNucP3+WMAjwg4D5YwtdrauPVJJKZQfd0HAMk2a7QaGUxzBd6rU6N2/dZHKyTMbLEMYRhuXSqDe4+M7blAoe1VqbqalJ3n77LYqlIrblsLa2TkJAksQUi0Xu3LlNNpuhXq9Tq1ZxnAxCKlqtBo7tsLqyRrk8haZpVBs1stkMAEpoaTRgQychxjRNgrCDrmuQJDTqDZTSMQyTSqVCGIZ4XoZ+uc7Vd6+Sy+fY2NhgZS31y+2ZM1qW1T1wh7RaLRzHRQjB9es3sB2bcnmCIIxpd9oYhgkINKVz9dpVTCPNfbu9s8N3vv0djnfHVFM6GS8PiULXLeJYUKs20S0DXdPSPL9Csry6RrFYhiQFekGYRvEVUtFu+8zNzWEYGvPzc8RxxK1bt3n1ldd4/PEnKBQcmo0W+UKJb3zjRY4tHKPZblHZ2WFjbY1XXv4OFy48iqZraLqGEjr1ZoNcLker3cJ2HBAC0/IAAy9TwDBsvvfmW3z8488RJSnYrtfreF4O4lSIkM3YNDsRnY6PZVrYtpOCwSAgTgSmaSOVZHFpkVa7RTaXphhqNpvUqhVm52bJ5QsEQYggwHIMMlkP3bAxTYcoDjl2bIGTJ04ghaDZbFIqTdBstZicnCZvJxiVK9TP/TYXnnqWVqvFkaNHOXf+AlJJ4khgmS6ddoCSBrdXlvjmt7/Fz//czyKJMZTkf/zv/x3b1QalQoEoCPgf/qd/R2GiRKRA9ltrHABm7v0zmq/tx6v6AeHQw/8Q38me2XSPP/bzyGEAelQ/+v0Wh2noDtpr+g6NQyPq9u/lw567Z8EzjM/3U785cr8wcq9wt38M1J6AVoc5Fx1mjx1VZti5ZrC/PRoEp4P1DAOX/XM2yrd2nP132LyPqmewvYPei1FjMKofD/NMM06bhynTX/ZBwGvv/4d+fntYZ7Ux1aX78bv+ug7z7jxIJJdRdX8AXvv/G/FS76UfDfC69/6D+zRempjxwOs4krP+66PaHvflPuwYjctsoijat3y4+H3i6voPzWz4sIeJ99pGfzsPu95RZYa11zuY9eYDhvtEDdYxrK7+SJ6jhBOtyEflJtCnzlJaf5m1zQoxBo7n4tg2QZD6xkmliKIIKRVzs7MsHD+Gbui4rgukByXfDzH0NLgLJEhNoWkGEolU9/pM96OShDgOaDYbuBkvza2pFFHo02jUcV2PyakZpqZnmZqe49btFBBsbe5w8+ZNZqZnaDYbXL92jdOnT1Kt7eL7Ad997S0KxSLnz5+j2WzQbjbTwFPtNnNzc9iOx52lRSzLolarEcUh2ayHlGBoJrZjUW/V0XQL2/aoN6ocOTKHUiamZRFFEUtLS3Q6dRaOz2PoLpZtkcl62N0xs2wb19NxHAvLMpiemkIIieN4WKZBGCRdf1SNra1NXn/te5RKZRKgWCqiNEUSJ4R+SLPZxPFsgihAKnE3eJYQAr8TpgBKCCYnJ1FKS9dCd6x936dQKhH4Abquc2xhgU6ng+u6aJqGUopqtcr21hb1egPTNLEsi1arza1bt5menkZIwd98/vM0my0myxO0Wy1y2QyuZyGkRhgl3L55i9dfe40rly9x7vxZgiAAUjPzJEkwDINYSWzXI47TNCVuJsedpSVcy+Wtt95icmqS23fuMDk5iZQK3+8wf2QWTaUmwplMjmee/Sle/MZLPPbYo2zv7GLZTgpOu7lidZnmuT1z5gwbG+vksllazSZb27scO7aA1DRafgepKXRTI4gEYZxG1Faa4MNPfYgoCanttLl67SpX3r3CsWPH+fI/fJWlxds89vijuF6JfL7I5UuX+N6b3yPyfaYmyrSCEMNMAyLVG3WmZ1JhROB3cB2bKAyJwpCLly7juG6apkCkfqxS6CRJKjDaWN/AcRxuXL/OwsICn/3c5zhz5iyXL7/LY1MJ0cxTuKd/mnK5RD6fp9lsEiOQUiNJFEmsWFlZQ0nF9JFpfuVXf4ViIUezXmNrY5P6zg7Hz1zgkQuP8Au/+HMYjoYfd4gIUUIbyleG8cq736XY4yow6t5R13uHYqUU1DcQQRNlZ+7jW0lyLwfrICjqB4L9wHBYn3ra0f7/lVJ3wVRPsLMfT9U0jSjqRtDupgQb9qyjwGuvrl7ZwRRo/eM8+EyDn718fm8wqHv9P/hcNOiTut955qAzTK++/nEbVr4H/kc9d+97//XBoI+DbQ+uq2E0rI5hdQ2C5WFr+aB7DzrPPexzzajnepAy/WUfBLyOw0seiB7WWe0hglc55vPdXR/79muMfvTRB+C1S+NImICuGW7//wct7h/GC3o4Jj26v+NJzg5qZ/BFHtpSH7PVtPTwEEURmqbtkS735qE/Mt7DooMCWvmvfIp488aeKJC9Ph+WIY1ibqPK7EcPy+xmXD/W99LeOJvqMG3rsPb6vw+u50GNRL+50x4/WCGQmiAmRrgFZOkE4tZ3iJtbXLq5yuzMLIZlopsmfhh1/f8SDENH13U2NjZwXQ8hBJqmp+s1jmi168RxiFQ6CEmz3iDu+popTaZvaJJuG1IK3IxLFMUkCDSpY+gyjeYrRDeoURrYJl8skMlmKE2UqexW2a1WefTCY0RRQqfdIYpT/1rDsHn99dfJ5TxmZ6ZRSpLEPq7rsLG1TaMVsLG+wtFjR2m3W2iajt71fZUovIyLYRt02hE/+MFFXn752xw5Oo+UGratI5AkccL09CRKEzSbAZquMCwDwzCo1urkcjlMy+ge0CRK06jXGoRhjEgiOp0A07LR9PSArimdK1eucvr0KZSW+gcLBLrSabfbGHbqo+p3fJYWVyjkC4hEYph2t2wKglqtFjdv3mKiVCZJoNVMn08pxZ//xad44okPoev6nrWgaRqZbJZMNtfVxEIml2N2djYFylHIk09+mCNHjtJqNInC1Pz7G//4DWbnjiClZGd7m09+4lc5d+4MmpZgGIooDrh2/V0MQyFkgm5aEENlu4KmdHQz9bXN2C4vvfgSxVKRhYVj3QBOMdvb2xi6RpxESClQ3TmqVqvcubOIUhrlchnXdXAdD90wEDHUmy2y+Twbm1u0Wh3u3LrNwvHj3YBhiiSGKIzQNQ1lSqSI0VUChMSxT9tv4VoZCvksc/OztDsBX//aC+xsb3PhsUfZ2tjC8xxWV5bZ2d7hsQsX8H2fTDZDFAYkcYyuaTi2R6fto2kau7sVdisVXMdjcWmZ77z8Kp6bI04iqtUqpdIEcSRY31gFkabbCYOAQqHA8eMn0+BRzS2OZwPip34flEGr0yJKYizHJhExYRgDgnq9wR/+4R/y1FNPUCjlCQOfRr1KEkWsraxw69Z1fvETn2T+yBQRIRF+lx+k+U/H4V97f9jLv/rNZkeZ+w7yq96+5r/0Z0TLP0A/8VN76urtT2EYjuzfIA0T2PXvpf2gr19YOArEDX6H+1P99APjwTHp/4zi372+DbbR/7dfUDB4f88Eur++KIpoNhvouj42kBosNwhEDzo/DYK9wWfsf56D+jM4j4PnocEy44CkcS3N+ut50P2+195BAaj2o0GLrGEgvf/6Yc9l+839MMA+Tvn+fh+GBusd+hyHANGD63TPXAxxjRy2vvYWGtHgGI86Dgg+4Keh9AF4HXp9PxrPT3NYG+8fvf9mww+n/r0UBAG+77Ozs4NlWWhamqKk96L10jTAcF+N/5+992qSJLvuPH/3unYPHalFZWVp1V2tCIIgwCYJYijGuANyFG1nHvgwtraP+w2WO7bfgWa7nLUdLndBEiSGGEI1CNFosLVAd1dXdWldqUVEhnS9Dx6R5RkVkRlZlQ0CRB8zt8oKv36VXz/3/M8595yDokHgrDfacD8AOiwNU3a/9T3pOxpmQ0639TjtDaPI6FK/fqT/PyiK317v5ZH/R9H2SheZMtfqWczKTQ6ZdZqhxMyV8MOQMIoQSKIwQkgIwjDJ7SkTKxqie3okxPPanTlViWORBLVRJDEP8wFqmk4UASLRQAZByMbaJhc/usjIaAk/8LajG4dRQEyEVARhFCbpdnQDXbcoFcv8/Te/RWVjk/kjSVRgIVSmpycJQhffD1EkGLqkVq+TzeZxvZgoajMxPk4YRpi6ycZGBZDcv3uPXCGHVAWKYmDbGQ4dmiEKA1ZWVjspbkIcO4Nu6Hiey1atyf0H95iamiKMAmwnQxjFaIpK4Ifouo7bdrfPcxJ53Llzj/HJCVyvhaYqSBRMw2JkZAQhBX7go2sacRijKCpIgev63Llzl6mJab733e9x4aNLnDh5CimgVq+BgDiGH/7gZWzLpN1q8a1vfYvnnn8OISWzhw5h29Y2HxFCcO/ePZrNJrlcDkgE3fv371MqlbYFbT8MUKRKGITomk6tVqOyucHpM2eJYtB0g+npSXyvje+3sCwbRVFRVRXPTXJmer7XsTZKmo0mCwuLlMslgsDH0C1mZ2coFAssLi6Qy+Vou20CP+CjCxeZnp6iUqmQcRzCMERIwauvvcGDBw+YmU0ULLKz/jY3Kuhmkrs3jOC9d9/j+vUbzB+Zw7FtpFBQFY3lpeVEUagmZ9PiKCLwfCobFW7eusXM1Ayu18TO2oBCvdZienqKiYkxFh/cY2pynFazxZEj8yBF4iLf2MK27SRtkFD54P0Pefft95g5NI0QkLGzLC+vsL5RYWl5laeffo5Wq8nk5ATLy2tsblYpFgpcuXaNQj5PNpMhCAIuXLjIxMQ450faVOZ+D0pzKKqKZmgIKXA9j3pjA9O0URQdELz44q9yeH6GOIhZW1mCOMkle+PmNb74L77E2OQ4iiYIYhchk/NXMlZ2twYM4l8pIXOYHKy9daaF7+j22yAE+tHPDgR0aeX6bsrEQeCnN0LuXsJq2qqbvtfdM7o8Lc2PB1kadygO+1jyetvrHftue3/StnzEciylRNPUHUH19kuDwMogoDGMjPKk8stByT+9c9LvvR2EsaDf8/sBlzAY8A/a6w9ijoaV1/Zq70lkpkcVZvuTIQcC8j7P7Ll29/fzLh18rFt96VPw2vf33ehT8Pr49T9aTlVVcrkcvu9z/fp1isUivu9jmia+76ciJn5y4HWQW/PPKnh9EjDZfV5KSRAEQwldPyvgdVA/Br2XQZpYGQUgk70gJmJkZJSpZ3+H119/l+n4Pu21u/huGyNbIBYKiqISRl6ibHE9VEVLfgsDojBGVUgsjUpyPlbVDBSp4PkeQeCxvLKC4zhEUYyQWpKyRCoQxayvbjA5PkWu4KCpiXUwjMPELVRTUFWJbhpEcYRumCwvrxKGERMT06yvrBJFPrquY1sOiipouw2mp2e5ffsGlqUnrrZSw7ByjJSyXL9xnYyTJZcvoWkmitAoFPKouoJQwPchly9gGjqFYp6lxQXm5+e4ef0GqmYihODylY+Znp4h49g0mw1M04RYJPPTDlA1FU1TcT2Xu3fuUS6NoMiQv/mb/8b8kaOEcYBh6mxuVhkfm+Dq1StkchlMy2B1ZQ3TMAmCEKmpXPzoIq+88mNeeO4Fbt26S7VS5fSZs1y5epnvf/97nD17Fsu0OHbsOHdu32ZpcYml5WWee/55pCKxLBshHq4LRVGwbbujJJAoSpIXuFgsEYYRtVod0zQxrOT+2soaH/zkJ/zDd7/Diy9+nnY7AKGgaCpCxISBC4RsbCRKApBkMjmkVHGcLIoqkEIQeiH37twlk3VwMhaaYtBqNbl9Jzlnmy8UEtdr08T3IyzbRFUkrXYLAWSzGV544bOcPnOamBDbtjF0nSAIyWULKJqOVDSiOCafL3L29Fnu3rqGpmqEQYQfhNy8cRPLtHByWVRFpVap0W62GR2doFgaw2/XiOKAZqtJJpNjdWWDY0eP8ndf/28UsxalUpFSqUQ2n6PVbrO6tk4+Y1KtbCKFgqGZNGpNZmfmyBdzhGHEtavXMA2Tp55+lrt376MqJhMTo3zta39LuTzKodnDhGHA5OQkq6ur6FoSMOvdd3/CbEEhp4fYn/+fOwqjxBoNMc1mk9X1B2ScPL4XUCoVMEyNK1c/IqPZVDc2efedt4mI+a3f/hIzh2cJIx9kRNfYKpCIWCMWO72phuJfKeDSC7CGcUHt3lcUZTvPq5h7YSCAGwSY0m0MssTFcbzDxTfN73vL9eOj/dpIA9FeYNqbvqy3TL+2B/H0LlDut0elLa9CiO0gUN1nwzCxWD9upPy9QCqAqqpEUbQjANVBxu/o9/ww62uYenbb139WwWu6T4P2+mHr3w3A/7TBaz+F1CPz/yl43UG/IOA1+hP6h8qiGyoreWcP/+5e26G0tu89ytDS/z5K8YBr8Kazf9o5rm7EvW502t6rt+xBRLHt7f8wm1L3ftfa0Q2qktYSq6q6/f/0BtFL6fM8B0WD8rweJMgcJDx80vS4G9N+x7QzwvDu7fVuqL1zkhYO+s1Vem31urt1rRdxHINUiSOBFApSKCi6gQccOv9bvHLHgzAkE1bQVj9GuFtITUXoJluVSnKesNXczrcppUKj2cL1QlTNRNN1fN/HbTewTAPP83AsiziMMHQlcR0WMa7bQtMVTEclEm1MIwcIPM9PQIkfoGsqEBP6IUpnLFOTE2i6Qi6fZWx0nK2tOsXSCBsbK4yPj6CpKrlCHkUKKhvr2IZFs16nVq3yxqtvk83qzMyO4/uCtc0aVlZHUxMl0uKDReLQR8Q+Cwv3KJeKCOGi6QaR0CiVymxtVpkem8L3PdZXlpgcH0nyZyomzZZP6FcpFfJUt2roukUsFGwng6Y4rG1sMDMzQTbjoCAI3DZmpki+lMd2NIgU4lBg2zpChMSeT20riSacLxaZPTTD+eeeQRExD+7fxzJMDs/NEUUertugUBglDENGR0cSK2GrRsYyCMIkiFQ3UKOiKKiKgk+M6JzlE1GEImKWF+6iiQihqEQh3L59h0uXr/K5z7+I6eSS+dJVTMMgjmNu3ryLZWawHJOIGD/wQMSEsc+9B3exLQchFFTdMXHI1QAAIABJREFUYPbQIcIoseQiBKZloipJBGdN0xCahpASUwq2tipUNmqMj88RxRDFHkIKpBTomoWIlU4U2ZggblPb2mJ5YYlCLk+72eTSpY8QccDI2CiZkSKqqVEul2jVa6wvL1LI5tB1i/uLDzBsA1UHRbPY2NyiVBqj0WiSy2X51re+SS5f5PChCRzbZPH+PQLfozQyhmE4LCysMD05TaNWI4p8NEPDyjg0GutEoc+VSx+DkOQLBUYmJ7AzGrpucvf2IufOnadQyHL5ygeMTc5SHhlBt0wKxTLT09MctSvU5n8fozxORIDnewghiRCYVgZNGBi6QbGQZ3NzFdvSEQgWbt5kdXWJFz7zPKfPnUI1dfwofBgtOJaIONkHYxHtGgGzKwgIKYjiePvvXsVYml/tJRP08q5unldl/jM76urli10gl86jmi7XewY1bRHtdV/tAtp+/eotn26/d9/u7UPaStzbxm78HHjEmtu912utlVKFWCEMY6JQEMfhdlCr7vGApJzY0c6TyAdp1+je/akXyPfzDNpv2/32wn6y1W4y1pPQQYDX3jkYpr5+CoB+62y3MQ/b770A/KC6d+t3uv3d6uwHnAd999u/i/7Pi/ghu3oYOVj0ooLte4PG2Pt97uhL6pJCsB1Rep/rIx2xPd2nx1llvyDg9WGe1520N2jcSzvz+AzxoOrpU/MBArgnod0ARr/fu/e6G1G9k1uyX5neeoJOAvp+m/fj0iDwOiz9rLyHg6RhN4Xe/x/UhrqfMunvqtftLr1Wun8rhs7hY8fIThzhb1+9jFs6SzHnoG9cQ1buYWZybNRdcrkcqqqgKAqe6/PBBx/w4YcfcOrUKRRF4vs+ipLk0Lx85SrjE5NoWmIFDcMwsaLqOgCaaqBrJhAhZIyqKp2orhZxLHHbPqurKxiGga5pNBotLMsCwPddbNtiZHSE5ZUlojBG1w2Wlzdot10s08QwLRwnC1IyMT6GpgmajSaWlUnGHQdoatLWgweLFItFDMMgl80SxzGBH7KwsMzc3DxxLHjj9TfY3NikVB5FIHAcB8uyuXHzNjGCkZEy1VqdTDZLFIYYus5WtYJUVE6cOk4256DpOmEYolsmUiiYukKrWeP2zdsQx2SzNnHk4wchmq5z7NhRLNNILLqqShj4fP3rX+fFX/91VFWj3fZ46813EEKhWCxy7NhxPN/HcTJJnt3OuwIIwk5gFylRlZAoCFAkCCmJopBcPo8b+Gi6gSI1pJA8ePCAO3du8fTT59D0xOq+sb6B7wX89V99lTNnzvDNb32bp58+j6pqQBKB17JslpeWE4tsLGg0GnzlK/8fIyMliqUSSc7UxIIvFWU7KvWN69fJZB0OHZpn8cES/8+f/1dOnzyGFDHNRhNd1dB1Fd9tUa1uousGmqbTbDZ58/U3OH/+PEeOHGF8fJRWu02+WEIKyeb6Bq/+4485c+4MluUQhBHNpsvVq9eYnJymWdvCtkw0VcVrt7EMnWfPP83x40cpj5RoNlvMzR3unPt2MM0EPN6+fZvV9RXyhQJhFOM4Dm0/Yqta5/ixE1QqWyBgZmYay0zctw8fnkfXdRaWFpifn2fhwSLVapVCvkCjUWfCDhBuleaZf0tlY5XF5SXy+QKqqiEVhSiKMSwD0zRYWlxEAWqbFS68/wERMT94+YdMzkxTLJWwHCdJMTFIObibNWAPofZxeF2vUBp23IZ322f6Ce7DgJY06EzzvS71A6nd33v7uxsITLsjDwIFe41hEEB79HlBEITb592lBE3TaDQaAEnO57hrJKBv/cNSGrT29reXDlqO2w8NanvQUZth6jsIy+t+6xsk4z0O+D8o2k1m3e2ZA+/vgCIHudr2s4YfZ44P8r18Cl47NEi78il4fXzq5+4zqG/9Ig92N6G0dnNQHWmtc3rD/hS8Hiw9CYD8aVCvxja9DsIwRAixw3qRTvAeSYW275LN2hw/fpIPLl4hyB7lVjzHxNGTyMUPyLSXkIoKeoYgDCEW2LbFqVOntkGlEALiJCDKSy99l3NPPYUQEsO0CCN/21VVU3WkUPG8AKmE1OsNTMNE1y3CMOav/vKrZDJ5JiZG0HWdGLh69Rpf+9rXOH/+PBAwOT2RROa1HSYmptF0A7cdJmdVc3lajRZ+GNJuu9RrFUbKo0QhNJtNMhmb5cVFdCOHaVn4nk+hmFgBFUVB03WkNMjmCggk1c0qp0+d5uUf/YitWpP33nuPwA8YG5vg5Zdf5vSpk6CoWJZNs9FMzp0pCpsba+hOhlp9C01VieMIRVWJkLTqdTRNYugqhmYyUioTBm02N1coj45imCatVotKtcLVK5cplQrYjsPxEycoFcuoioZp2nhesH1OdGx8lPv37lMsFgmjGCFjwjDadvG7dfNWcp5e8VnvuKoqqgpC4kchiq6hKTpxLLAtiyNH5imPlBkZKRNFMVEY4Xk+xUKRX/qlzyCF5Oy5p3jpO9/l8pWrHD92AgBFUcnlsrRaLi+99BKLC4scnp9jZKSMk3WI4xBVkRi6jpCSuJN/c2x8lCDwCf2Y61dvMFIqcujQFJ7nYRg6lmVx49o16ltVNFWhUCpx/fot3LbLkaNHII5wHAtdU8nm8gRhTBzFXLt6lWvXr/L8C8+zsrJGbauOouisr1V4+YcvE3hNFCEwdI1c1mFzYx3T0IkCnyCOyOTy1Gp1yuURdF1jZXGBXKFAqVxmdHQchEiCLMUR/9f//Re02x5Hjx1PlA6KQqNWQzUSbwfHtvjRj17htdde59jxE+SzOa5euQrElAs55MoFvLN/SF3NYOs6TiaDaVoIIVC1REEgFIFUJKsrK9S3ttBVlXu37/Brv/kb/A//6l8xNjmRpKGKok46qycDr71K0YMCr123YW1I8DqonUHgtX8amUfPv6bdfvtFEh50TrYLih+1kA7e+/ud4R10Hrb3+QSXCm7dukU+X0A3kmB6qqruiJHROx373Ye6wLU3qvQg+lkEr4/br39K8NoNJtbPxXw/7R0UfQped9IwluXd6j8oelzwejA+pj9DlNZOpql3oxnmmUG/70Z7JfneD+2nnsfpay9I7P7WS/3cm3Yrv9cm1v1ouptKv7537/XWs9v49vT37zPuQb8P+/EPs9YOqr1hxjNsPcOsl94y6XeSbns3y3z3HFH3t64w1a1vEKW/o+5z6ZyEaQDb/a37t+8n50eDWMHKFfjMr3yBb7/0Et/9h3/gb99e5sbh/4D1G/8LVO6i3n4FpXIbgEKhgN6xJoZhmFgAhEBIhV/+7GeRMrH8hWGIpiUuwXEUd9zgIzRNIwiCRFlDB2wjmJqaplKpohsGrWYTgEajDsR4noduGgRBgGWbmJaNHwRoukG9Uefa9evohoUfhIRRTHl0hHqjRiZXxPMS8JjJWORyWaLIZ2urQibjEEURd+7cpVrdolrZIgzBbblcvPAR1WqFRrPBl//gy8zMTpPL5Th+/CQSye/+zu9i6gaKlLiuS7vt8s4773D9xg0KhRKarpLJOKiKRMZQ26rRarfQdQ0pBO22y/rGJqITaKXRaHTcZCWLS0uYhs65s2fZ3NggiiNy+TxCkWi6DlIwd/gwQoHp2SmEFMwcmkGqKmHKFTEIfKQQlEdGEmEbwcjISHI/AiEkum4ghYKQScRkIQQXPrrA2NgoiAjZcd3N53NIKVA1hbbbghjWN9aZnJhEN5K1cOPGDb72tb9D1w3abZd8Ic/zzz9HoZAHIqIopHuKI4pCojAJPpOkJUmE8RMnTqKqKrbjUCgWO+A5ZG5ujlK5TLlcwvcDZmdnUTWVRqOOpqlUtyrEIkkjIhFIIbEsgxdf/DWiKMIwTdqeh6qotJpNpqemKZdGGB0dQyqS27dvo2oq9UaNa9eu0mq1iaKYpZVV1itVXNdDN3TabjvJKex5WE6GO3fv4Lptzpw6zelTp7EsC01L0kuZuo5t2ZiGjlAkbbfNsePHyBUKBHHEpY8v8fHly8jKDeLRE3ilExTy2UdcUaMoyf2rIvDbLvlsEjOh3mjw+V9/kWwhTyBiFC0BMr35QtM8ZDeeuxcYHMSLBvG1vfhrt49dwJRuL93fOE54R/psaTcuRK/Crsvfus926+7GO+jOT2/anF6e3RsxuLeNbp+6PDvdl27b/eaoN33PIMtt9153X5BSks/niaJoOyiTqiZKwfS+02ttTr+bdCTkftTPhTUdoblf+X7XQdJufe3X3jCgu5d69+YnARxpJcZe2R1g5xnn3rWz11zuRxZ63LqGaWOY/j6prNiv3OM+u99nhn0fe9V/0N/GsPTPzvI6LA3zYQz3Ee3U6B6klutxadiPP30/DTaG+aAf936XNjY2tsPfDwq0tFdfh21bPfLLO6yu+31+GHpc0Lnf8oMY8TD0JBvZoPlPr/m08NKrlOg+k95Q99OHtODb2680mBVCoHYATZJ71cBwbH79i7/Ja2+9wdXLt7HsDF/79g849rv/E6UzX0AsvI+yeQOhGihmniTvq4tt2yBAVRVGx0aIiYiJETIBgoZhdKyAAULGCBETx4IwiNB0gzhKwNzY+DgzMzNIESEVZTvYUKVS4cyZsx33YwMhBNVqBT/w8TyXfD7D9PQUcZTkqFU6UTdfe/1VbKdEsTRONu/g+W1cL6JYzqNqEk1XWFhYYGpqmuvXbzA6Osbfff0bFPJZXv3HV3jxxc8nFmAJU9MTEIXMzEyzsb6JFIK79+6ytrpMvhPF9zsvvcTZc08ThBHZfJa15SUsTWN5aQk/iLCdLPce3Oed996j7focnjvOzZu3GZscQdMVGk0XQzfJ5wtImbgMX7l8hfGpKT66+BHlkTKIGE1XUFTQTRVVk4RR0AGQAXfv3cG2rY4XB6iqxv179zpnXSWGYaOqBlEsHiowNA0hJGGY8LRcLovtmCiKQCoiAZzEEMfEcYSha2iagdtu8/wLzxOGwXZ6m+npGQzDxLZtxsZGsW0TwzSoVjcxTJ04ilhbW8MwLBRVS1IXhRFEEblckUq1xnvvv8fZc6cIoiT1jucF1Gp1fvTKK7z73k84cfIkluUg4phKZRPLMqjVKmRzBa5evY5j25iGQblcJJvLYGdyaJpBsVgik8kwMTFONmszPTPLhY8ughC8+trrPPPsMyAkzVaTcjHfURQo5AslPN+n3fYgjqk32+QKBfzAZ3JikjDwmBqfwDA0VF0l7nwL7XaLRqOdeBiYJqdOn+L4ieMgk7RKz77wPCeOHkJd+5jlyS8SILFViWVnyeXzhFECUGKS97h06w61apWlxSVGJkY5dPQwmWIBoSTR2OLkQwcSbXt6t++mZ4vjeLvM49Iw/HHQ71JK1NF5lOmzCMPZUV8vb0y3lwas/doaJHR3/+4Fdr05z9PALV221+rS++9uYx12XvaaQyFkx+PFTrxE1GQMvu+zvr6O4zgoikKjUd/u86CAT7u12StfpIHYfuig5brec897tb1f2bL3XT6pfPPTkmv3I5sfRF3D0IGOfdB3MaCt/YD5n0f61G14n/TPGbz2Bh0YROl+9kYWHOaZx7mf7qOu64+4CQ9T716b4l7v4OcVvD5pPU/CBIcBr2mryiCBohfsDtt2r+a9d0zpdatEAqKYWCggBbppgoSzT52jut4kJuI//+c/4dDcLE9/5nNkzv0GoZIlvvUKorGGrzq0vcSioShqYkWNknQ3nUSvRGGcWPQkxHEEIqRWr2IayflMKZJ17bouf/Znf0axWKRcLiCkRJAI7RMTk1iWhaJpEIOqqdTqdcLAJwg86o0amqZS2dikkC+wsrJCo9XEsk1y2TK5QplMzqJS3WBsdAovaBAEHlevXmViYhJV1bBth3q9wRtvvMWZ06eYmhpjfGIiyTsaBQShx/jYGPVanatXr3Wihuf54P33ODw3h5CSw/NHcDJZvv7fv8GhuRmKuTzrKyt4noeiqBTLI7z3wftcuHCBL/3Wl3DbIZuVKqOjBUxbx/MjhFCo1xqsra7RqNWZnp7CdByy2SymaXTmMUBKQUxyZtj3fCqVTQzD6ASB6wapg2ajieM45LJZhBQIqRIjEUIhCPzE9TuKCMOIVqvdsYAqKFIQR1GnvW7gnOTsbOD7XL9xk/n5w1iWiaapIKBYKlAujbC6ssprr7/GM888Q7W6iW2brK6ukM1kkv76AZqmIxUdzwsI2y083yOOoFqrs1nd5MTJYyBUpEwC1ei6iRAwMTnB2MQErVaLWq3G/OHDZDI2UoKUGvlcgVqtnqxJVYKIaLU8NE1HVTSiKGR5aRFDV7GdLDGJt8LZc+eo1Wu88uMf8dRTT6PKGN002aq3yGSzeK6HpmlEYQhSYhoWUUzi2qxpPLh7l2arSb3ZYGx8DFXTCIOAtZUNisUimWySozYIfVzXxbDt5Hzy+jWEZqKd+m02lpepb1aw8wVUXaNeb2yDzY2NTb7/99/kuWee4fCRecanJwlERCBiNFVFSEESUbjzvbNzt2+32w+//ydkp/tVoj5CugO6vcOzqPtMv/14UNqcdFu9qXHSdXWfS4PfNDCFh0d+esFrer9Pl+918dyL+lk193r+Yf+7ASm7njUP5RDf99E0rXP0IYmonw4C2a8Pu7XZzxq8XzpIua773vbT9qfg9SHtJ53VQdCn4PWTo1848LrzhQ66Hg1W8PAZuctze1/J3tv/LMheTCbt5pjenIbZPHvb6++eszP68s6rP7Dt5+L7OB9L73mbQeC5e6ald052o73KDBuQYRClnxm0IQ4aT3fMe7U9SJBJU793+ug77t/v3Wi35/cW2h5G8o6iJNWFEHS+g53zk17L/ays/f5Ou5NBf215em7SAllv32OZXBBBHEKcuPXatsXR2Rnu3LrO//jv/x2HJqfZ2qgwN3WYcOoQ7uznibZW0RfeRctOIqSxHZUvCgM0RdBo1DA0BalaQNJQ4LqEXovQayMJMTQVRHIWVCoqn/ml55gYH0nOyWoaUSyIIkk+V6DddFEVIA7xPQ/LNHAcB8M0GClnUVQTVXeo1DbRNJXAg1p1mZHRIrV6lepmlQf37iNiF8PIYJsO9+4+YH11k2wmR2Wjyk/e/QmKAlPTk5w8fZJYJnPWbrURkYtlZYhEwNShSQw7T60R8c57b3L+/Hk+vvghJ48fJQoDxicnKBYytFpNymOjCJEEdtKl4MHiKu2my4kTJ7Edg2zeRlEUFMWkVWshYnCbbUZGR/HjiEyhhBQCXdcSqzXJ+4qiMFlUcUy73SYMYyzLwW0HLC8uknGyRIHg5vVbHDp0CIHA9V18LwAEURhz+/YdCoUCcZxYvi3LwjB06vUalmUhhCSOwyS/qhAEYYiqSqSqYDsW+UKuEzguEZajEFyvRbGUR1Ul4+NjrK2vMzY2QRyF6LqNplls1Zqoip4EuNJ0VFVHKmA5Oo5jcXT+GJ4L3/zmN9jaqtJsbhGELidOnqBYLKFKg+9867u8+o+vMz4+TqFQwHZMJCq6rlKpbFIqFqht1dBUnVhqNJtNpIRmu8no2BiarqNoHo6jUywVMEwdXTexzAyOk6PVbiSuw4GPFCRWaSlxnCxxFPPO2+9gGibFfAmpGPzd3/93Klt1fun5F3Asm2ajQaFYwMk6BHHI0tIyiqpw69ZtSqUSqgAldFFWPqJy9o+J7CKliVkKEzOEqkAIEy02USOFK++/x4+/+00ys2McOX0cM2sRd0CrJpUdUTe3v23YEVVY6QDcNCftF8xoEG/bSwgeFBE9zZPSbfZ6mezGVwfd6/dcGhD3c/XtfT59nCLNJ/cCzN17vS7a3b18N/fh3faP9Pw87AOEkY9UQMhEXunuK5ZlJvm140TxlXyLnXRnYdSRvR4NLjXIpbXfnA4jr/Xu108KItL746D7vf3r199BZfpRet3Azrgk+5H19uMeOpxMsb/jToNkp2HlpGHG9ST1DEuCRHCKo3hHNOFu+79o9OmZ158jGvRR/FP7kB8Edc/w6Lq+b+3i41Avk+k3d+6bf4n75l9+ov34505dYDnorE63zJOs32E3sG5bj1N/YbTI7//B79NsNzBNnYX7d/nf/7f/lbDlks1kkE//a7xz/w5l+T3w68QIPC9gs7JFGAFC4AcRYeijKAIhYkBgWQ6l8ii1agWv3SIOPQQRntcGBFu1Bu1mCxFHuO0WqgKbm+t8/3v/AFKg6gYt10XVk3OEhmni+wGO7aCbBrppMDY+jhCCp59+FsfJMTszx9VrN7h06WOCIKZRr7O6uorneRw7dox6o8lrb7zJ/NGjfPGLv8nk5ARxHKHIRBB1HAfP83DbPlEgqW01MHSF0ZEs46PjuK7H6Mgoq6urLC8vUS4VMC2b5ZVVPM+n3mpRqzdw/YDzTz/Nv/43f8j6+hpxHNNqNvGDgM3NTaRUOlZdjZs3b6HrBoZhEgQecRzhuV4SNAuJIjV03SDZziW25XDxo0tJnwlRFIlhaByamyWKQra2Kly/fh3btgmCgG9885vMHpoBSCynJIK867oEYdDJ2Rvgtr1OKiSXOIppNdu0mq3OebvETbu7ZnRDT6yrisKZM2cwDIPx8XGajQYZJ8v1a9dot9vYloWua52zexH/x//5X6hs1fCDEARERLTaLZaWltnaqnH+mWfRdYPkk1JoNZv8yuc+y8zMNEeOzBOGAXEsiKIYKRXKpRLf/s53yGQcdCNJJ/NXX/lLXn/tDRzLxm01CQMPgWBxcRFVVWg0Gti2zfjYGBknWaO6bjI+MYltWbRaDbYqmwghuHDhAh9duEDg+6ytrVGr1ZiYmObM6TNEEbRabRwnQxxBq9XE9zyOHDnSOQOuYVk2ge/jL17EHT3Lhq+gSYXI94h8D12qeM0WleomSyuLZIsFvvzv/y1/9Ed/xMjIyHZ6lIOmvRSesHdOz70E2jiO8S59j+DyD/bsSxzHQ5+57NePvcbU+8x+Ka1E7FK3v1035265x6HuPjIMiEsD0jAMaTabBEGwXeZJPN0e5/jKk9J+ANqTlOml3jOKvdcvMn1SIHUQ/VOsu8el3kBnP0v0c2153Zt201A9+cIZpBnr397OcnttQvvRqD1adjdm9PjtDUMrKytks1na7TatVitxSesEY9gN+Azbh720u71nfoBEoPAae0YbPqh3cRBzuZ96nrTccON72KedQsejVtf0/V5GPcw3s9vYe7Xl/eZ8N827amrEAk4eP84PvvcPmIbOkfnDGKpKKVfEMg2qOKilGZTr30VkRvHCJH+qpiXpXDY3q9gZh2q1AnHcObstCUOQkcfG+hqWbaEIiVQUvvGNb7O8vMqxo4cIwwhFSSy5qhT4bot8sYiqqJiWRbVaBegAoICYxL10ZKREu9VGVfQkaI7lECOZP3IMy7IpFIpsrq+SzTg4ToaW6/LGm29y+PA8qqZx8cL7nDlzktW1VXK5HMSCwA+JQ4/6ls9X/+rvKJeKWKYklzM5cfwUjWaD8fFx8vkchmmgagq64ZDLFRBCEncsy6ZtIwHbttE7LqiqquDYGXQtyQeazyXBsL7ylb/k4ytXOXHyFJqeRI8FQbvloSgammYlAWMCUKTOG2+8zQfvf8ip06cplbJoHddq27bY3Nwgk3UoFksd90KV9fV1jhyZR1EFURzyla/8Fevr68zOzmLbNqqqsrm5SRiF2FZy1i4mxjCMJChULPDaXgJifQ/fDxAdb4NXfvxjDh8+DHG8fd75L/7iL5g7fITR0VF0I4nQK2XiMp4vlBgbH0MqCiurqzxYWGRu/jCvv/Y6R48epVQqUyyWCYKIy5ev8tYbr9Nqt8jls0xNTQIxrXYLQ7d49913O1Zkk0zGxtB1fDemsrlJMV+g3axh6Aq5rA1CUi6P0Gq53Lxxi4mJSQSC+w8ekC+VUBQN4hgpYHlhgWIhh2bajI6M8PTT53E9n7feegvLsnjj7Tc5fuwEW1s1crkca6traJpOoZjDdhyIwbIsisUicQxRu4ZRvcHm6f9IrlDCtk10KSEKeXD3AUQhH1++hI/H+c88i5XLJtGsO/vDUGBkr9s9Cq7dPIB6+dQgvrEXeI2iiODDbxLX11A7eV57+9NtJw3I9moz/Vy/qK27ee+kyw2KZdGPHw8Chd3/D8rFPqzSMe1VM4h3p92aE+WN3A7y1I1InORH3r+rc5ceZ79+0v29O6Zh1ttefdhvP/qtqS4wOWgg9aSy3H7KP2nf/ynA60+zvSchKSX1ep1qtYrjOJ9IG78QbsNRFP3JMEz74WIczOR7XX73Q3st9odMdydYS7vO9IvElmZsg+p2XXcbpHXL9DLD3b+Jx9PEDvuhGYaxnRpHSkmj0SCTyeD7/iOMs0vDMs9hyvSrqzdVzjDCyONsIo+7ofS68OyXhhGCdvtm0jSIsQoxyOVpp+CRFlL6WQ66WvvePqXXcrr8MGeV9gKv6TaCOHFn1zSNs+fO8ezzz3P7zh3uXL3K9PQ0uqGjmQb5uVP4VhkufYvQKiB1E13XWVpaolwuo2sGpmkiFUlls0IQxmi6gamrGIZFu91iZWUpOcuqmpTLo2QdkxjQDR1D13DbTWZnp1F1O3F97AABTdeII/D9FqaZwTBsPK9NNptBlRqKonHrzl1abhvbdoiJWVhY4vSpk2xWtxgdG2VtbZ2pqUlmZqexLYMzp0/QqNfI5bNJwJ4YVlZWCSIfVcnw4MECuZxNEDTJZmw2NjZRVRVd16luJfk9VUUCCq7r4nk+b7zxBnfu3mF+fh6ikCuXP6ZcTtyBr1y+QqlUSiybcczdO3dQpKRQKvHsc8/iZBxUFXzfZ3V1HcMweeP1t5memcX32rSaXgLUbYfnX3gBVZUEoZuk5olidMMgiiP8wGM7urCUzM3NEQQeUkIQBkxOznD58mUOHTpEHEdsVbcoFAuYhoWUCisrq9vuiPfvPeClb3+XXDZHJuNgGCae18bQdaSUrK+vMz4+TqPR2LZAHTt2kvGxMaRMzuUlxyEiRMfd1ES3AAAgAElEQVT10TJ1FClRVZWx0VEg5ulzTzE7O8P169ewbYfNjQrXrt7Atg1OnjxOsZjHMHSiKMI0bVrNJCdxNutQKpWQimBpaREhVE4cP8bU1CSqArZt4rot1jeqCCFRFJVarc76+galUgnHySAVNck3rBusLC+jSEnGyaAaJvfv3yeby3Pp4kWuXbvesSY7zM/PMzExQT6fY2V1pRN0TCIVie95uK6b7GeKgrZ1C0pHMY/9KoaqIonYWF/hJ++9RcYpcuGjDzhx5hjzx45gZzO0gwBtgPt/v29ciJ0uwruBy3Sd6b249wxoP+qX8q2Xevew8PbbADvAa+94BgGtfntIL9/rdQPu5z7aj1d2eXa/CMZdSgPSfuByEH8dVLYfD04rHPeag53u1w/Xh6qqqYjKD92G01Hs0/PYb1/vPtNbbliZYC/qJ9v0Rnj+pCj9HtNrP92PtLwxjEVtv/LSbrLGMHLVbv04iHrSdf20rM7peR50RG+3ud2PDD5s2XQf0v+mSVXVHfFpnoQGje9Tt+GfMfqktCtdC1A3ZUe3rZ8VUlWVK1eusLy8jKZpVCoVPM97hEk+KfP550A/bQY6DH1SfTqod90rdOy3D0ocIeKIWEQIQ8ETAZ//F79OrljgK1/5f/ng/fdRpKS2tYV99FfQPvfHmKsX0GkjFYV8Jwpq4CdWOmKBaVk4mQwIBfQMQrOpNZtsbVWJopDTZ04noCoERdUJwpC269L2XCIiojg5pY4QuJ5PHAuQogOaBJ7vo3bShWSzWZCSU6dPMzUzjVDAyTiMjY9x6849CqURolhgGDqTk2O4rRoZW2dxcYEg8Ljw4Yc06g2azRZjY+PkiyNkcxk+88vPc+z4EZqtNm47xDAUxsdH2Nhcx/U8mo0Wpm5y9/Yd3FYbBcH66hrnzp7j9q3bKBLm5g7hum2CTrRagWR1ZQ1NU6jXt9iqVnn66XNMTU2gaQqqquHYWbLZHFJKbt+5TaVSodlq8v0ffJ+FhQeEYYjrttB0hVyuQBTDBx9ewPMCLMsmm82hqlrqHYOmqyAifN9ldHSEL3/5yxSLRUzTRDf0zlnXJP1MqVRG1w1UVePixUucOnWKUqmEIlVarVZH2xwRhCF2J9pvo17HNE3gYUqnei1x2YYYKQRxHGEaAkXEiDjE1HWIQkLfQ9UkhqkzPTOFaeq8/8FPuHf/Lk899RSZjMPY2AhCxlhWArAty+b27Tud4FYmQRBQLBZptRvcun2DDy68TyabwfVc7t1/gG1ncOwsqqJx5MhRisUivu8TBD5EERPj46yvrzM6NpGsF5K0SJOTk7iuy+raGocPzzM1NcVnP/vLiULS1PF9D9/3qNeSdR3HMaZpdoSaGKr3EfVV3OO/s+3aubqyxMbqCrauUanX+J1/+bscPTmPkzHw/DaOeXDa/PTRhjT/2kv51Y/SfHAvN97dwN3jjuMg6uml3eYg/Vs/l+a9QOl+9ouuYqBf2qNeq2+67mFB5rA0aK/b7X0/rpvtT0vO2Ws+fpHlrU/pUdprLbfb7W0l9kG0dZBu6j93ltdhyj38gHeLtPtklte9aDe3m93q2UvLIoSg1Wrxne98h8OHD2+7RO3cPHft/Z59H9TuMGQYBlEUUSgU8H2ffD4/oI8/PfDaz/J6EPSk9aQ3zyep6yDncFCf0k3sbO/Rtvsxp3Se1mHa7/d3+tvo1fDuJjymrQNKlLiBxjJGsXR8GbFcWceIwA9D7ty7w/raGssLSxyeO4SfyWONHiL86Nso+VGyxTKqqhAFCsQgFZnk+VQSS1wgdFquj+81OXRoBsuyUaSBrifnVkMSN+NYgONYRGFIjAaITk5SJUnHg6Tt1pFSQwgF32+ztLhENpun7bbRLQOpKqiagmVaOJaNUygTxbC5uYkiYv7xlZepbKxxZG6WzUqVKIqYPzJPu+0S+An48yKQisLNO5exLIWx0Uny+VFWVm4nrpAxRLFAxALf9WjUajQbdRzH4cyZ0wgSAGOaSTTfVqvF3Tt3mZmZ5dKlixw/fhzXbZLNZchmM9iODRIUVUGisLFRodVqo+sap06d7uSo9ZmamuG9d9/n9ddfJ4p9jh2fJ4oSZUG5PLZtaY1jUDUFEEipEMUhUkAcR0CEYWTw/UR5FhNhmVZnjXbXiOCtt94iny9w+vQpDs/OIQDDNFhYuE8chaiaiqpq5PN5FhYX0XWder2OpmkYurW9vsMoRFNVWu0WqipxWxUqG+vUtrZYWVolY2dw2y6Wk1hIi8U8QRjx1ltvc+7sOQ7PzWJZOoikPkWq3Lh+k7v37lMulTFMAynB89rYtkUm61AeLaFrKrZjYzsZFEUhny9x7949TDNxwdZ1nVotcfvVVclWtYqhG5imxYULF8kXS1y6dBHbtrfPWT/33HNMTk6i6yqbm+sU8jk8z2V8fIxcLsvmZiWJKqyoqJqKErmoyxfwnv9PKOU5Khvr3Lt3mw/fewdFxhydn+P4+RdAiYhiD0WRKELtRF/q74Y6iC/0Wl57eUS/fKC9+81u1qEuz+g+P6y1Kbz5JgLQjn52IADdC+T28rhBY+wHrPaqd7c9Nx2QaT+WnkFW1N2om5+294zzIEsy7Oz7Q0X44ysl4NF3vNeYhHg0FdF+2/ykabdozP3W0zA0TPnHmf/90ich5xx0vZ9Ee/v5HvfTRj/FUC91vRwO4szroO/qF8LyGsfh9pXYKrrXQ9rpNip3ufZH/Zj/Xhtb7/+7muE0A+7VRvRdpLG6fUWhxDQyfOPvvwOwreHeUbxHW7yzjWjAxcBFmmZ66c0zrT0Nw5CNjQ08zyOXSywphmE84ibab656k4w/rmbmpwGID7KNYTTswwhOB0mDtNyJsJ+kIoljkboe1ZbDQ+162v1uLwbc71vo93sYhttXl7pu9L1t9rYbSo1Iagg0cEHzFaby45x89jl+7w//gN/60m/jNltsLi5RX1zGyuRpjp5G/9U/Jrj5JnFrK8ktanioRoRhJulUFKHiuR6RWyPr6JRHp0DJEgqdgIim2wAR0Q2C3G54tFsR1S0XGcdsba4TtNtoCrTqWygiJHBjZAyaVFCFQ6EwwXp1ixAviZUeRty7eQdDFSiKR86MyVoKM1OztNpQKE6ztdVmbX2LRs0jly1haHk0JccPf/gjqlvLvPfGB/jNKhMjGcbHRnC9mK26hxJFNLZqvPzyq+QLY5TKk+TzZSZnD/ODl39ERITntxgZKVGrVdBUC4FGq+nz5tvv8b3vv8zKWoVmO2R5eZVspkg2V6Ld8qlubNGuNfH9mFarxdjYCLqu8f3vfY/VlVU0TGQscCwDVZFIVHxXEvsxhqpj6sl54Fa7gaIpxKFCHEniWCCQ+H5Iq+lCrBKETXQDhPTxXJcwjAkDSUxiKI9FwGc++wJOxkZIiWKorGys4QUeM7OzFIojqNJhc2ODdqtFMVfk5rVbXLl0lciLqFUrSECVCrlMls7HQ73eQqg2upknjDSkFGiawHUrtBotfC/A8yMMw+APvvz7PHP+DJqmIBVJbauOInXW1zcZGR3nzp27OJkMC4uLRBGEUUyr3cZtNGls1SiXyiiKRtv18IOYWKocPnqMewsP8KMQwzTRNZMwEHiBIJsrYVoZ1tY3mZmdJY4ilhbqXL16nwcPVjhy/Che5BHJENSQTD7Dg8V1rt98QBBK/DDC1jWKGQcR+cigifLgHaKn/oBQHcX0fPxGkyiEL/7+l/nMl36P0tEzaHqEYWgYuoMijc43GYAUxIIki7Jgz2sv/tH7zafTxXQDCvZGpk/vU10lW2+Zft5DO/gTCbDuBZ+9e3C/SOy9PK93XN1y3bK91snd+jhM+ru0tTptER2kBOj+1o/fdql7RvVRoVWiqnrPPiK2efqj49kpq0RR0JEBd85Ret4HWXkG7bm95dNKkPSYh3En766fIAgIggDP83YN0NV9Jr32HlcG6s5f73fQK8N176WpV0HQC3Z380LY7d4gOmhL3CDqp+x5Etnrcdru9Qbp7Uvapb+3XES8zSP7XUKRCEU+5I9yOBmr9z0P4j395m+3egeSFP2vx6SfK8trGAZ/0v/O/rUaT6J9Sr/4x3k+vVCHSo8jABGDiAnDgCgK+a0vfRFVVQYw090szv3bCYJw+9zIoAWYflZV1R1jaLVavPLKK8zNzaFp2q5BGQbV/aTasIFj+4Qsrz8NGtTXn7a2sPf3fu80HZGy38bfr85BFoR+39sgpVFamTJMP/uR1FRcz6NQKHD23Dn+9E//lFPnzvLRhQvk7AzW2GG08gzeu3+TfPuZciL0SgVVVWk2m2hakhM2CTjUyR8qJFIqqKpCHCdCcxJsJBEQm80mrabLP776KlJKisUijWYDPwhxbAPP8wDJ/fsP+O53X+Izv/wCcRyiajpSKKiKShgEeF6ApmtsbFTwghAhVQqFHKdOncAwNCamp8nkHG7dvM3NGze4f+8OR48c4tXX3+Xo0XkCzycKouQMbRRiWhpBBMXyKKVimUsfXeDenVtkcnkuf3yJz33uV1BVFc/zyGSyaKpKHAucjMOFCx+xsbnBb//Ob5PNZHHbDTKZHFEc89W//uvOWU6DXCaxiuqaSm1ri3feeptTJ0+yurqCZZmcOHGc2blZhEws3Ddv3KRarTAyMpIAHWIMTSeMkjOmDx7cx3Ec4jimUqnieT6KmijRXNdL8r0qGn/2Z/+FqelJCvl8cnazY8GN4xi37XH37h3GxkZRpILnunz1r79KJCPm5g4TxRET4xPohs7Y2Dgv/+hHXLp0EcMwKI2UgSTYlm3bKIqOEBofXbhEoVggIsLJ2Mk5ZsskJiYKE2uwlJKFxQfousHa2jr1epPRkVFM0+TIkXmqW1WCwGNkZIQ4jikUCgSBSyaTQTcM1tfWWVlZY3JqmiCMCYOAxYUFWq0mxUIR0zAQAirVFWpbmyiKRE1yNDE6OoKUKpmsyfETR9F0FdM0MHQTz23x0kvfY2N9k6tXr3LkyOHOGAyqtTqyuYq6cpH47JdxJ3+JtcUF3n7nLd59/z3OPXWWbD5LJpvBsAziaIAAPwQrG6Qk6/dt9+Md6Tp6hfTd6u0FQru1F9x6C2DXwIBpIbZX2ZfmZf34VvrsYrov6fEMCszUrx/ps7/penrrTI+zF3T3m4cupeWk7riT/skd/e3ObcIvHw1oNIxcsJdidDfabRyDxrQX9b6fvQJ0ATuUKo9r6Uqv635tDPt3729PAjD7ra9B7exGT/J+H2d9HISM1U+e3vcc7NGNfu9o0CMHAcj70dA4JtWPLinyFyBg088KeB3WkjTo+d7Nc+/FtK3TxTQNXLeNZZm7MLn9g9dbt26TzWZ3PZTdOwZVVdna2tqO/nf27NltANzv2q3eTxK8xm4DmRtDGZ1/7Lr/qehnHbymGeawwR/S1Kvl3w947RX4eiOH9t7fbUxu4KMZOkGUWHDPnX8aw7HRvZh7t++wvrJKYJaY+Py/wf34B7BxFyU/gVSTlFC6puN5HpqqoGoqzUaTbC6LqiiEYZKDtBtqptlsouv69ncjUPnBD37I0tIyp0+fYWFhgVKpTBy7rK6sYBgGhWKBZ559hmarjm3bnXEI4gjuP1jEcXJIVZIrFBGqimZoZLIO2axDo9VAaBqWY+DYFlvVLaanJrBtnUPHTtBuulQ3amxV6xTzNp5XY3GlwsjIBLfv3KdZq/Hs+acI3CYffvQxX/i1L+A4Nq1Wi1u3bjMyMsatW7e4f/8ejWYT27Zp1Ov8yuc+SxgGOLZFEETUanWu37iBIObEyRPomkqjvsWtWzdYX13lS1/6EpZpks1l2NhcZ3VthdlDs2RzGQrFPPlsnlKpyMLCAoZpoOtJTtUoDlDUJPBQEgBqjQ8/vMjpU6cxrSTwURQmwFwIyfT0FOPj43i+Cx0XbSGTc8xSCEzTwLLMJKJv4JPNZDj91FmCKELTVTQ9OcuvGyajIyOMjY8zNjGRBLSSiaY8iiLqdY8ggEOHDvPaG69x5uxpdFNHERphFIIQRFHI6vJyZ/24ZJwsIAmDiPv3H6BrGqZlUK/XKJdLqKrKgwcL2JaDED6u57GxsUkQxJTLo2iqSaPu8l///M+ZGB/DNA3yuSy+7xIEPq7XwLJsiAW3bt2mWBxhZWUNz28xe2ia23euUyqVCcKQMIyQiqRYLPHx5cvkcjmee+4ZYkIazQZZdwm1voD71H9EjL/AvVv3uHz1I371C5/nCy9+gUK5SLVWRTd0/MBDHbS3DMHKBu0jewnc6e+/15LaDzymn+uWSyt1d+NL0dothOGgTJ/bczzpPOf9gMEg8JoGg71j2Q1g7zZHvYA+fX8QeO3H/we9m0e9bx7N4Z1cO63nXRpG3noccDVISdBvHfQ+sxt1301altoLvPYC1/D/Z++9YyxJzgPPX0T65+uV6fLtzfiZHkdPSiO6xe5BEG6llfaMdoG7FRbYPeD2boG70wG6vwWckyjo/tkF5CgJEBeSdkUtSZEckiNyOMPpsT09Mz3tu8ub51/6+yNfVmVl53v1yvQYcj4gUa8yIyO+iIz44nPxfb6/LwF2GMPDML+TY7MfV+kkpINI7YZfP/hIeO3fBry/wutQ8JHwmgXZCzDJGGe52WS9sxfYTSDr9/sgEyi23GTVtV3n3gn5V7/6pzz++ONbxBN23yyCIGBxcZGRkZG7IiDH+MU471fQPwxQxo9vCa7p+gdtvlmw1/J7gVgAG6R13m3e3GsXnDRkMT3pdTYI35gRS2/UyXeTkSTjMUqXT0fxzGJIBn6vOOKpjKKoFopFcoU80+OTFHN5llZXuHHjBsdPnqXwyBfo1NYI3vo7QkVDWmWEFOiahqJGqR1M00CRCq7nbq2LKI1KdDbWdd2ts1/LK2tcu36Nj3/8YxyZPEK1WsUwdKT0qFRGCAIwTAvXdTHNKKVLCCAgCGBsdAxdN2h1WhimRSgEiiLRVBXPs8nn8tiuR7NVZ3V1jcmJSTqdNhPjY5SqYyzeWeLm1Rv4noeVU8nlTdxA48qVa5w9e5aRSpnVlSWkCAmQHD0WeVc0m00mJiZRVZ2x0VHGxsbodLucOHmChx56ENfziITDENf1WVtdY2ZmhvOPPRYFoArD6DyqgG984xs89eST5HIF7izcZmp6CmArEFHOstA0g2arxdT0NIauIYWIjk1IEEIihcQwTKRUmJ6eplAo4Psem5s1hJQEfjR3isUCqq6iKiqu50ZnN6UKSLrtDoViHtvu4thdFCXKlVoeqSIl6LpKEAYYuoll5sjlLG7eusXk5CRS6bkjS0FIyI1rt3jt9deYnZ2jULQYGalgu10M1eDimxc5MjWJFAK7a9NutcjlTDTNwDRyvPzKq7zwwoscO34UIdgKjKRpGgsLC0xMTLC6tsTGxiYj1SqGkUPVdPwg5PK7V7h8+TK6ofL000+xublOs9Gk2+0yNjaBppq4bsjY6CQ/+uGLXHjpFd69eoknnnycQqFAo9kgn88jpUYY+BSLRU6cOMmpkycJQo/axirlxmXIVwke/+9oiDJrq+vUNxt89vOfQtFUpKpg5XO9uaigqeq+mbPk+u23fyYjqGYv720rY5KZzXLhBXqWQGVHnsO4/LalcDvfqZQSMXU/ysyDO1LzxPtkXHe6vRiPLItp2mIVt5uODJw8bpP8PWjP7beXDLO/pMc9i0FP15V8HgTbysWddLy/+3N8v9//SaX5MLEVsurbwiIxN5JCXDpF0DBjlfRC2g2XZLn9Wl77KWyT1zD7crIP++VVk555MQziZ/YjYA47TvdKWBtGlhjE8w/1LRKPsrzOdnllz3DPeNxDFl7Fe83sHgQcp9sH2ezFkQ5PnmaADwMGCUKHN7b98qP2S/A9+HxFZk1S3crH6nnerptf0kUUtolv1nmZ5Oa9G7wX8/Egwuu9hCzhdT91fBAgvUkm8UrjmGQo0/eymJ/9bqZ7wR2iedtYXuNHP/oRP/zhD+m02jxw//2cP3+eiaMnKPrrhC/8IUF7HeXo48hcBSGSG5Kk2WgRAopU0NRIaDUMY+tsku/7NFtdisUirmcjhUA3VISAdmMNKVVMs4iQkbBoWgZCqoRBdPZfVRQ8L0AVKh3bwbQsQhEShD4iCOg0GywvLZErjhCEXWZnZrDbAUHgo2khG5td8pZFq1bnzUsXOX5innwxx+tvXOPGjescP36U+++/D9d1MAyVXK4MImR9fY1ms4kQKhvrNR5++H4Abt2+xdz8HJ7nItUoInp9Y5NWs4NumExPT+O5Dqtrq9i2zZEj40gloh3tVhddNzBMDdt1o7QYqtJzCxYEXsilS5d4+KGHIAxptRq4jkuhXN46xiCl7J01i49BhKiqjutGxy10XaVrdzBMCyGiaIqGYdJpu7z88qt02y0+8cmPoSogCGk0GuRyeRQ9R7O5Sc7So2/nC1TVBEEUYEsIlJ5rOAL8IEAGPt/99vf55Kc+Q62xSaVSxPE6qKGOFwZYuRxSCLrtNp7roWkSIfQeLq/w7ruX+eVf/iV8P8CyTLo9j5tOt0W302V8YhTZyyVcb3QxDYuNWp23Lr3N2bNnKJfz+L6PoauEAXz9b77O5z//ZRYWFikVK+iGwXe/8z3W1taZnR/lwQfvx7QMcvkCCAGoiDBgs7ZJuVzC9z2EvYm+/Ab+5MPUj34R1w146/Jlzp07x8kTp7FpbH0Lx3GiwFO9yPhSqJnrbdA51vSaTEMsYO5G99KM+5bAmRAK43JZ9CkWVNMCTFw2CIKtMkmrWdqyeVffE7QvqZiOIdleOjpvWqiK6+gnLAwamxiSZzP34kmTJXyn99lt4XtbKbmTrg9vOU7XH7eRdf+gkDX+h8vfHR70G4PD5HPi7BHpudoPn7TAOmzZYeCg/NL7DcPg3o8+DvzGH8AhSfYjibuuavuakD/VltdBC2c4d91sGIYQHC4B7TcT+7Wxn5kroiioKbedQcKrpmlbRD1mVHbUmNrg3y/hMKgvEdothFEYiMewG/29FJ6G0ap9WKAfYU7Pr6QFIwnpsUhrwg8TlF7TAqLl02NOhKby8PnHOP/4eY6MjXPl3Xd589XXcaXK6MwJ8g9/AWkW8F7/OmF7I2L6jXyEr5BbkW4RUd2e50UCa7O5lbNQ03QQAYah02jU0HUNCLG7bQzdQlUNpFSRikIYhEglsv5JJfKykILo7KhqQchWxF1JiCIl3U6HZ5/9e6ojJcqVCrbtsVmrMVKtgC959/JbjIwUGR0doTo6wRsX36ZUKKEqCvedO8fi0gK5fB6rWEDXdOLjCzdv3mJpaYWNjU3GxqoEQcDo2ChCwPr6Wk/g1Vm4vcCVK9eYnp7B0HU6nQ6FQgGhqOiGSbvTjgSq8gi1egPDNKjVagRhiGGYKIoKQuB7AXNH57h96xa5nEWj3mBzYwMzl48Ee9PE9z2kFCiqxPdddN3AdT3eeP0it2/fplgsYFlRft4wDNB1HSlVbNvl+vUb3HfuHPl8DogExpAQTVUhlNy4fhVVFbRbLQzd4p23LlMdr24LaKFPSIiMPQW8NnNzcyiKxLRMDEPFcWwMzWRtfZ2AMBL0goBmo0mn26JcquK6PkePHufEieP4vkulMoYfBHTaLYrFAo7TRetFWK7VG+i6gaKoSEWiaRqzszPomoKUUcqk9fVNwlBgGJGleGNjg0qlxNraChNHxnjggXNMT8+Qz+d7qYGiyM2CiLZbphUJ5Z0N9NU38B/7VZT5T7JZq/Haa6/wyPlHmZ2bww5dpBL2vAIiT4QtS1Jkks5efAcQXpNW0EGMYNqyFd/bTeBKW8KSgvKgfW2QhWlQ2SxmPPnuoN/xe3vlbZKCZb/9p18fsowDWf3a2d7299g5xjv7slsf7hXvle5Tv373+/4fhP37XuGUnCfDBALbKz+zV/zebx7pPeHX+gh9A9fGQZq7V/05ZMvrh0x4DX4rGoH0lQ39PnT0O05yPfgSIiaqw53jTLpKxAQuGbAgK5BR1pV0W4rS+gzf78FnXhVEL89hsq5YCE1roftBMmCTEIJ276xbu91GSkmj0cAwjK16dtO47QWSG/agMvFl/+Df4d9+PTNg0wdho0nici+hXzCPYcegH4PST2OarjPpPp58luXelHwnLpMul3x+4E05Y2kJEZ3r9n0fzTCYPXGM+VMnOHruNM3by1x48QVOHTuOOnUC/eGfx243kCtX8a9fAN8FxUDLFVhcXkI3DARRipgQMK0cQkhs20FVBRKJ13Uo5ixCt4MmfISeR0gDRVVx3AaqpuC5Cvg2UZ5SSYhCp90iCH1CVLrdDsViniAIcT2fAJX1WosXXnyBY0ePIfCxciblkQphqNJq+XhBh5XVW3TsDstLDW7fWufIuMaxY9O88/YlHnrwIUzDwncDOna9F6jJp9Pu8OCD93P02CyaEgVte+GFF7FyOVrtDoXSCN2uQ2OzhW3b3Ll9h1K5xMWLb1AqlrAsnZs3rnNkfIKfvPgiU5NHGK2OsL6yRm2jAUjK5TIhPpu1FQqWReAHqIqBbbuUR0bQDBMjp2NZ0TlgIRVCEaIokQCrairvvnOFv/vWt3jiiccplYsIVUFKBSkUgjDEcWw0TWFubppSsUir3URRJKvr6yiKjmFEuUj/9uvf5Pz5p1EUk1bLxvE9Lr/9LteuXePo0XlUVSKFgFAghYLvhlhWEUXVaDZbNFsdpKKweHMJp2OjS5VqpULQO1fbth1yxTxSwsbGKiPVCnbHRlVDdE1haXEZQzdZWlykWCygqBpWzkJVNer1JpZlEQQhqgZBGKCqOr4X0my1qDdqTE6N0aw5lEo5yiMWnh+l67FME9e30U0jUpD0BHDHtdE0wdrqMrq9ibH+FtqT/4zLqy63NzZ459oVPv+lL1IdHyNUQmTPfTteREEYO40LQiF3rK8o3NbdO1UWfel3HjVJCwZZ/gZFsU/Tj2Rat+SVjl6ebl9KSffvfgfv6o/Re39Bx5UAACAASURBVKlystxF0zQu3ZdBbojx8YMkzR10jjcNg/qUfDdOa5a0NKbPLSbHPenK3A+Sdfn+9j6QFJyl3GnhzNpbBu1Vg3iyGPoJ9v3cnpPPd7YdzfOYl0pe2bxapGjcL/TbZ7P40fR8GHZv7MeLJiEev3Rsk/32KYZhDUJZuPULurZbvWlefS/vHhYMM+ZC7pQLYpCInSxLuLtkkG4bev2UIkGbt69kXTHPv1/YuRq2cf+ZSJXzYYB+iyBr8u1Wz37cKN4PiN2kOp0OrVYLoKfB/wg+SHAQb4PDhCTD8mECIQRjY2McPXqUs+fOsbi4yO/+3ldo1uu4vop44Mto/+A3Mf6L/wNZOoJ39Yd4l3/ARE4SBj5r62t4nocgssp6vkecb1qIaPOQUrK2tg4iCpShKBLXdVFVnW63y53bd7hz584O90Bd1/E8D9u2yRcKdLtdPM/DsiykEFy9ehXdMCiXS1v3YuuyldNpt9uMjIyhawbtdou3r7zJxmYN3w+oVqu4nsvCwh3a7Ra6HgWo8j2PiYkJhBA0Gg1sx6HRbPCTl39CdaTK9PQ0edNCldGZ0eXlFXTDoNFosLKyiut5W8HeNE3jmWeeYX19nXa7jef55HI5Fhbu4DkuYRCSMy38ICAIQ5qtJoZp0O12KRTyqIqKkD2XRxEpHH3fp9Go47k+R4/O8+ijjzI1NYXnecje2G5sbNBsNLdzEBOi6zqmaaL1xlT2XF6FEPziL/4iQeBjmRaFQoFTp07x6quvcerkaVzXw3VdCKP57Qceuq7R7XbpdiKX3kKhwOLCMvVmg5XVNaSq4no+m7U6yysrGKaJ67iYhkm3a/PWW29z4eWXaTabEArGx8dp1BtMTh4BQNM1rrx7FRC9CNZR6qELL72UcCFVeP75H7O4uIyUGtevX+edy5exbRvTNDGMSGAtl8vouoYQbHng6LrO6soq7p3XsepX2DzxS9xy8mzUaiwvL/NLv/RLWJb1Pq3G4WEvTHbaNbdffUlI07J7Rdf6eajsB/rR4KSFOTluybaTqe2SZ4EHQTKlzgdhD/oIfrYhS4HzEQyG3dI9vdfwIbO8+r91WHUNSzu3Ce3uL2SdNUm6WGRpWwfB/oXXQZbX7MW613aS/QqCYCuna7FYJAiCLSb3XsEwZ5xi+DCnyjlM6Kc82ct4ZGl+h52nWW0n51GWRQN2BuNIu5PdKzfiLIiFGEVRGClX+fTnPo1hGPzl177GZz/+CQq6iVADFDOPmHsY9b5fQNENgrefRavdIJfLoRWqNHoKHkIwTaOHf0STXMemUMyzuLhMsVJCCEm73cYPPHw/5I//8M957Y0LPP74E2i9NaapCpqm4rkhX/3qn6CqCrOzM1FQqDDk+LFjPH7+POVyGcPQEFJF9lxxPa+LZVh4LiiKwdz8HFIGTE5MoRsWuXweCDEMHdd3uHP7DnbXwfej83k3b1xnfHwMwzKxCnk+9tTHaDWbEISsLC9TW19nZmae8fEJ1tbWOH3mDO++e4VOu83Ro3PRmGgauq5vRVEulcr8x//41zz80EOUSgXarQaNegNN1ZBC5dLFS3Q6barVEYQICYUPYcjiwgKVShlCHylDdF0j8AWtZptivsg3v/VNcrkc1dEqksiltl6rIaVAV7UowJbj0Ww2IpfhMOy5SQs6nQ6maVCv1xEiChRlmCZTkzOUKyVEL5WZlIIgCLG7XWqb66iqyt/8zdeZnT2KkApvXXqLRx89z99+8z9jmBYTE0colMq4vs9IpYwAOu0uYShYuL3E0fnjOK5Ds9WmOlJldX2VkWqJRrPOzZsLHDt2nEazSb5QxHMDLl58k2e/93ecOH6cfK5EGArGxo7w3HM/5Mq717h18wauZ3PmzGkURaHbdfBcDyHAdpwtTwNFVdnc2KDQuklB9bE//m8pz53lO9/5NqWRIj//C5/HtMxIGdNzi4/X7UGgn2WpX5kkHUhbg7Isi7u55fajJ1n/p62xwbUXEIA89mRfmpR20Y0hxittwRw0nntVcGdZuvpZq4Y9cpXmb/opCpJCr6pqW3zDzm+2E7csfmk/82sYgXmYMjuf7RzLftfOd+6N5XU4fIdrYy94HOZa3/v4341TVpl+9Q4zpz4wipZ+/T6Qc3Cq333aUBJWbdd1txW9B+Ttk23v1/L6Uye8pglov2sYQpIsn/xW/dwJshZ2evJnEfV+z9J1DL9J9XehkVLZsdD7Ley93M9KWdJPUMnqZ/9+DHYRgp05c/vV6115HoRAPfH0nsZ/vzB43n14IAvvfnN059mlu79/cl30S3GTVe+g+/vZRLNcAvczH4UanUudnZvl4fsf4Cu/+zv8v//n/w10mZ+ZpFgZwfUDvPIs5Y//MnblGHLpLYIbF9BUDSVfQSoqYQiu4+C6Dqoi0XQNzwvIFfLRQg4FhmmiKJEr6vnHnuahB89hWrnIxTMMgQAB6LrF6dOnmJiIgiDF36DZbKLpBp7roKk6QkqEVGi12ximSs7MY1kFTN1kdX2J+x88Qz5fwfV8FhcXozy2nRae5/DyS6/y5puXmJ2Z5a//6q+Yn59jbW2ZWqNBqVikkM/RbDSwO106rRaX37nMSxde4WMf+ximaZCzTO677z7Gx8f50z/9Kvfffz+27bC0tEy5XOb27dv89V/9Jx559BFmZ2cIAo9Ou02jXiefL6EISb5Q5M2LF/E8h1zeRDNUpFSi3KpSod6o4Qcenuti5YpoUkfXNJZXVsjlc4yOjyFCetGbzSh6sGngui6vvvIa09NT+L5HsVDA8wPeuvQWMzPTGIZBu93mz/78z7j/vvvpdDpbCoi3376EkDAyMkIYCnTdQOICklarQxhGEZW/9KUvE4Q+1WqV2dlZWq02QQhSUanXapiGhaaqLC0tU9+sMT8/T6PZpGvbtDtNpqaOoGkqpmUxNTWDEFH06s3NGvl8AcM0qY6WGB0dIwwFzUYbXTdZXVmjXm+wWV/ns5/7bKSk6J23fvPSJSTg+T75fB7d0KPI041rKFLCp/5HfCXHV37v9/hv/9mvc98D5xBCRkGpIl9h2OM6HEQfB63rfvf67VfpvW6QcBg/jyPnw90pTrIUbHE7fi/Pq3L8qR0Bm9JMevr9ZL3JPT+rH+l6sp6l+ZB0lOWdrro7ozTHwRqzxjjtQZbsW5b1OVlWCLHF+MZztp9wl6xzL8J8Gt9+uGaVSX+HfnVu9y/7fhzMKHlsbPsb7Mx+sR9+KA3pvh1kT9ur6+5uY7UbHsPgmI5zkVXnXsexHy4H7U+6/DCQHvPMuZqa/1t49MF3N4VWpmKqX/HE2A7y/NjhzjzE0cgkfCS89mD4CTy88Nr7b9f20gR+rzAMwz4cDOrbTsF6L3AQ4rCfeoYpNwxR8a48TwhbZ5EOb5z74/TTAMMwj/tlLNL/ZzFgw9S717W237l/NyiEMiQIQ4rlIg8/+AC5YoGXn/8+f//cD3jgzBnyuSK6ruF7IXplEnH0SeraKFbzFuLOK6DqhHoB3/MihkdA1+6CECiKBgJ8Lzoj1uk2sXIWUmrkLCNy7Yx6Qhh4KIrEcYLILVjpyb29Uys5K4dUVf7+uecAohyyAjzf67XhE3o+ttMlnzepN2qYRgHDNAjDANf30FUVx7ZpNto4tkMhX+DmzRs88MD9qIrAtCwIQ0QIgR+Qz+ep1eqUy1EaoanpSWqbG5QrJbrdDqury1y8+CZzc3N0Op1eeiCD5eVlLl9+lyeeeBwpBe1Wcyu41SuvvE6IoFwqcfLECTRNpdNpoxs6nhfFBlB7TLFlmj336Yhx/PHzL4CAxx9/HASEQYAiJfVGo5eLN6Ber1MqlbEsE9M0cD0PKRUsK4dhaLRaTfL5AjMzMwgh2NjYYH5+lpCAfCFPpVymVquj6xZhCCLwsawCjuPSbLWZm5ulUinh+y6+56PpGpcvX+a1V17jxIkTBJ7Hxvo6lmVRHakwNlZlY2OV8sgIs7MzLC8vRhZ232Nzo0axWECI6CyS0Uulo+saM9OT6LqBqkRRlnVdo1wu8cADD1As5Thz5jSu66JrkSu63bU5MjGOaVmYpgmBA0tvIp0Gxuf+Lev1Lv/mf/qfeepjH+P8E4/i+C5KguGJAjQdcDmlYD+MYhZTm6wnuT8PajO9p+wUWrIZ/LTwOoh+pQXqQX3Ker/fvax+xP/3Y8zTfYzfSysUs3ib3fBKCjk7BcTtFGnJckm+xXEchBB3RbQ9CO9wUEFqZ5mdCol0X+KysfAVHa3qr3g5KOy3jr3yQofNuw1T5r3wrtqt7veCV04qOlKV9Xlh/+3f9bxP8f2M+F77/pHw2oPDFF5TNe/a3odBeI3dhvfj639Q4jGMoLnX9oYVXgG0kx8bWO9HwutO2K/wupvmL6uOtIa9LyHPqOsgG8W+QSgRSRACoQhCVXD/Iw/jLt1AD+H3f///o9vpMjF6hEqpgqrpKKokPz6HevKTMHqK8PJ3kI0FpFnGFxIzF+WG9UMQQkX2rihdTJdmq4lp5JAiCsYkpQJEbsOB7yNllGJHUSSNZoO1tXUq5REgxPdDypUK5VIZVVN6wXQCNMWiXt9EKj6mpWJZOfLFEs1WG0TIxvoG83PzbKxvMFIZjSyKQnLi5ElM0yDEp1QucGx2ntXlZW7evIlhGDSaDRRNJV/IU66UyOUMms0GI9Uy6xur+L7H0099nFK5jK4bdDsdKpUKnuvxxhuXOHnqBKVSnk67FUVpdn2ef/5FjkxMcuHCBb7z7W/z4IP3USzmMc08hIJOq4PreORyOQhDDMPAdn18N8A0TObm59F0LXKNdRwc20YAxUKRMAhwbAfDMCEMIAzodDoYuoGuGwgJ165dZ2x0jGazybVrV3n99dd45JH7cH2bZrNOsVhBVQ08T/D1v/kG9507TRgKRkfHqFTKTBwZBxHi2h3KxQKGrhP4PmdPn0FTVa5cuUa5XEIKgaqGrK0tcvToNLbroWoKuqFSKBTQNItms0utHlmSFVXS7XaRikSJcvz0cth6KFIiREirVSeX1xmfGO+la4rOqkpFYXRsBFVRojO3dhux8AroeXJf/t9498otvv3t7/ClL/9DPv+FL+DhoeqyFz24t5Zgf1zOoOW1j30ibVXMKpdlCU0LG3HZYQIuJe97V38MQmztM2n80jj2y/+Zrj+JW1bbaUtHXHfa4posP8jSG+OZdOmN7w2jAEj3o5/weve72781TcvMZz8sZLnu3ivhNd6/kvnI47/JoyZZfNkHSXg9iOvufsrtVXjt7459cPggCK/xe3cLlh984fUgLtYfBWy6B9BvE/www71Y+MPCfjah3WAQs5Ju+/3s+88S7GXNvNff415sel7gIw2NjufwD37lV/nn/+K/5x9+8cusLi7xe7/7O7x96S3+6N//O9555x1arRarq6u08zN4z/wm8vQzKHd+gla7jhQSPwxQFa0nmAqkjCL8GYaBpqrIXjaqwI/SsoRhZKWIhP/omR9EwZpmZ2ewbRtFUVA1lXKcDzVgK0+f7weMjlbRdYlp6r3xkeQLOUzLRNWiMlNTM3Q6XUYqFY4dP46mqkxNTUUBf6QSpbYJAs6dPUu1OoLreTRbLVZWV3jttVep12tMTR/ppfVxmZmZJgSkENi2jeu6tDsdmq0WxWKRSqXCysoyuVyO6ekpqiNVjh0/xpmzZ1hdXcUwIjdfwzQQAkzTAgSdThfbtnvWkJBGvYkf+BQKBXJWDsPQo/uN2Mpq4fsetVqdiYlxVFVF0zRWVlbQdJ1ub/yCIGB+fj4S+LWo74899hh+4HHjxnWEED3risLS0jLXrt6g27VRpMLKygqWZeJ5LiE+BJGb953bt/E9D11TMQ2dly+8jGVarKwsAyEjIxUWFm5RKhXpdFs0Gg0838PQDSYmJpmYGENVJRBFTJZS4Dg28fkkKSSmZaAbGlPTR7CdDqZpRpGZgSAId6Rvsls15K0fQ+AhP/0vuXprkZdeepkTx0/x1FNPYZoG5XIeVTMOdQ3dK4iFir0EGkm6+yb/fy/hoPtkP/o7DF2OXXv3kuN1r5DEI3YfTn8j3/eHCp71QYB0FOgkxIoC13XfJ+w+gg8LJIOlfQS7g/gwCWeO4+yK7E6COmgS7CTO22c1+2902QLQ7kQ+vREOs7mktbXDtpGGQRvMsN++nzU5KTSGYRTpcj9Rhu/1HAzqSwDI0pG7nr2fwuygb5zcCKOosztz6G7P17vPlmbVk05ePwwew8zBpEY0rXXPUirsprXPshTsFYb9pv3c94Y5h9KvfICPRKAJiRQKi9dv4HS6vPrKK1y4cIEnn3ySpaUlTp46RRAEPProo3idVbjwVTq2izX3MLV6g5GREWzH3WIku91udD4zCPBcwSuvXqBcLnDu3GkQArvroKoGiiJw3C6ua2MYBmEg0A0d2+4gpURRNHwvQFFUgiBg4dYKly9f5ImnHsNxHHJmEdPMc/XGFY4dO4YgxLE7OLaNaZnIUOXq1WvkCyXqtTpzR2cIAhchbdbXmuhqBcPUcN0uf/zHf8To6Dif/uwzqIpgpFrG9xw8z0GRgk6jybe+/Sw/9wtfpFIdwXUdarVNyqUSS4uLzM7NUa/XGBmpsLa2SqPeYGxsAkVqlCsVXN9BVSWu57G+tsbk5BFarRZWLofnRgK9qZu0223W1taYm5tDCEG320UzdQgV1tdr5HNR7tQQn5Fykc3NBt/5zrOcPHWKs/edRjdUXNula9sYuhZZdgXY3S6KpuA6PgIFgsh98Ctf+R3On3+cT3zqU+i6wu3bN5g8coS333qH06fPIBQFQkFIdB75pZcu8MjDj/D8D37I/LGjOG6Xc2eP49hNOs11cpV5Wq0WExNHIkWJEuVwbbdtcjkTKaPcvoQCQsnGZhTVemJiAoiUG3EEYT+IUx4E0EvfIYQgdD2UldfALKF85l9x6+pt/v1Xfp9/8b/8a+bn5+9iqMKMJbZf5eBu9CB9NjOJS9IqOEjgGnSeL4vWxG30y12eBd6t1wFQZx/MtBIN65XVj7akradxlP+sb7FVjt3rGkTXsr5pcvzTUYh3tJ063xt/o2TawGQ7yffS+0DWmBymFTDZ1/1Y2XbyQtvfO36eZanfniP+wPOEe8UlhkFzfjcYhp/sx3vstp/uF/a6r8fvZPFKe+Wvh+3PQRRH/dZx6Ad30aH9tvFeQL/v1A8/Xdf3NSl+yt2GB5/9zH539wP7/dxH9obb4ZV9r+rpV5eqqkgpI2b5A7KAkiCMAsIoZD/7gAivSUgqBJLEd9j3s8oM6+q13/rTv5N9GCT4xcxorIE/jPlzEOZjN1x3baNnVUMI/NCnND6KUSpw/L4zfO7nf47x6SnKlQp/9idf5Wt/8Rd86uOf4O3LbyOmHqLSuorXWMUcnSHoBRRSeqlaarUahUKBVqvFysoaL774AtXqCJWRClJE+Uwdx6NWqyEl5CwLRSooqkoYRP1qt9tYZg7btrdytvleSBD6jI6Nks/lUTWdIAwZrRZxnW7Px0/FcT0MM4eiCoqVMq12i+roKKqqIaRCrbZMGML4+DQ3b17HtAxKpQqf/czPUW9sUCoXqNdqCCFp1BvcvHkHzws5fuo0tUadmalJrl+9TN7Q6XQ9JicnWV1d4/r161TKFQgFs7MzWGaOTrfDxsY61ZEKXuDjOTa+50WBjEyTMABN09E1nTsLd6hWRykU8lH/LQtEpBDyPA8pBa+++jIvXfgJp0+fxDRM/CBgdXWV0fFRjkxORrQvjKIGHz9+nDAM8H0XTVNQRMDqyjKu4yFVFSElP/zx8zQaTR599BF836NULrG5scHIyCiBH3Dn9m0810VXNZYWF3nx+R+zsbHBL3zh82zWN2m2orEtj1RRVANV0ykWC6iawDB17izcolQqoWsGiJAwDFBUBdnLMWkYOoVCgdj1MxZeoWfpCgI0TYty7EkZuRavXSJEwqO/zl/+xX9iZXWdf/4//GvGxyu9VE2pHH8iOeV35m/eKwxDf3ZjppNCUdY1zNrNCiSXdfazH8jSBLI0MRDHuP5BETv74Z12zdt6NmDI47W/W11Z/cvmd+62ziaVo/2sxsm6Bgmf6T0g+X9aSDxM4TVZdr+C3vY4bx/N6rcudo7zznE5CBxkLz9I/eky9wKPYd/NmttZQmY/5cxe2h5EZ/aKa9hP9thFMfdBg72OwUduwx/B+wau6+L7/keuMfcAYgb0g6gUSEOSiCfvHeT9ewnD5ijcC2hSic4DAm7g03ZthKFhy5BQUyiPVZmen+N//d9/k9/4jd9gbW2NZmOTm7cXuJh7HElAsHARKSImMXZZnZiYoN1uYxgG4+Nj/JNf+RXOnr0PRWp4ngdE+V4Nw9jSv9l25LYqhEBVNcqlSpTGytAIw8jNOJe3OH7iOJquo6haJAQpkm6njdrT9pqmiaoZUfRkQnwCJiaPYFg6rU4b246i9o6MVFEU6HbbBIHPqVOnCYKQ6liFnGWxsbHO6uoqqqphGCZS1XFcj2IxsnwSBoS+xw++/xyEUNusMTc7RxiElMsVRAgry0usriyzubmBoiq0m01arQYTE+M9JkDiug7dro0UCp1OF13XUZToPG80twRd20Eqkav0sePzPP30E7iug207aKrKpz/9KU6ePNFzwwXfD3n3ylXa7Q5Bj0lxHJt2o4Hv+QSBR+AHIGBmepYHH36YIPBRNYVGvc7y8goAy8sr2N0uhq7TbjVZX1vliccfp1qpoOkauXweqUoKxRLrG3UWljYQQqAbKp1um7W1ZcbHxwgJEDKaw57nEvg+EKXqia2sUkY5gjVNIwiigFRSCqQUW98/CHz8+hJs3kH/5L/knbeusrKwyOTkJEI3ttw5B63Je7VmY0veYbiwDqItsQv9MPX1E86y6kxGnL0XcK8Vr/32nmSe13739+P6mBZOk/Xud095L2GQwnYQJBXMH1ZI5vH9MAlaH8GHFz60ltdhNpHko2RAmKR2LIZYczsMvUlbXpOR5vqVz9IipzeGpIY2rbFL93cQoRs0NoPy3PXTEGbd9+IIqQlipWnajiAUSeZjkKZ5N23tIPebYcB989sEq1dRxo9ntn0YMCxTM0zbWfmCB2lu03NoN03vIDwGvd9P491vnsaCYTodQz8ckht+GqfdmIHkmaksLWv8t58bWtaYp/Hr9/+O/sZumAKEIkEKfLaZwCCI0rIYhsH8sWN4hKxu1pg5eoyF5XWs40+S33wL1anRVYrIXhCQRqOBpmnRGutZPpRewCbf9wlDH8/xKRYLBIGPVASaqtHpdNF0jTCI8QRd11heWaZSLiOlGllSRJLRDonzlqqqhtdLmbNwZ4HKyAiapqH0ImcuLS7iuz5j4yN0Og4IhZnZKSxLx9ANNN0gFD5CsCVIjVZHqdfrfP/7P2RkdIQzZ04S+D6lQoGFOwssrawyNzeLaZhcfPMNCoU8y0vLVMoVrrz7LuPjVVQ1Eqxt22FsbIJ6vYHspeC4fu0a1WoFIUNUTdtyuQrCANf3+eY3v8kLL1zg3LlzaL2gUpqus7a6RrlYoWt3MUwdIcDzfDwv6LlaS8bHRwmCgEKhQKfTQVV0isUKUtEJAuh2upw6dZKJ8TE0XUHXVBzXxTQsclaeQqGEH7hYOQtN16hWq7iuy/yxeTw/wLU7SAGVUgnNMCmUK2iKxHNdHLdLoZBH03TCMErfJmX0TT0/to7eTTdjmmxZFq7roMT0OPChs0l4+wJrZ/5LNm2DN9+8xGNPPcEnPvdpfOGhyj7CY2I5HNTSMsy7sRKnH6TpQ7ym03QoKSAlf/dLyZKuNz7fCNy173u3XieoLyNLEzvoZVa6nXT9Satx0kUwTVuTdWz1Q27jk6ahMkWLk+8n6x9E89MCeBbtS45vsq30vrAb75HGJf07OT57FQ773e+37wwDyXmzjevdfc2y/ifp7V6syYN4jYOst2HbyCozqK9pSO/Hwwr6+7Fw7kabsjwrsviNYcZhULlBczxRKPO+PABt3Q/0o32H3UZ8fWR53QWS2sB79UEOE5IT6DAtUq7r7hiHQWchB4Gqqggh8DwPz/OwbZuNjQ2Wl5e33NRUVd3SaO8laMZhg3/7dfzbr79v7f80w7AJqwdtzllMTfr5bmWS7fRbM0lmtV+5w6QNIgQlAK13xRbZIAxxCBA5g1MP3c+nv/CPOPPgeR57+uN894c/pvqlf4Pb7ZBr3kAQrTXTNLdcP4WI6FlkcZVYlkUYBui6ju/70ZoLo2+z/U7EWHbtLq7jMjY2iue5IEIUNYo+jIjOz/mBTwAIRQMhCHyfi6+9znPf/x7tVhdCgR/4uI6NZeisrizheiG6mefGjZs4nk0oAjbrGyADpJC0Wi1c12F6eopOp8Xs7DQPP/QQx47O4wc+jWYdqSjMzs3z8EMP0G23sSyDVrPB2uoKOctgaWmJublZEGAYGq5jEwQBju1x/doNAj/6/oW8het2sbttkAKkQCgyUgRIwSc//SlUxSAIwA8CFKmga1EQpKvXrtFpt/F9j5Bw65yxpik8+eTjqKrK+to6ruujSA3dLHLj1gJCavzkJxf4D1/7Gk63S6tRjwJiBQG+51GpVKhtbqLrBvliHiufY219Hc3QmZ6bplgq0e10URVJuZCnXq+hSBEpEUKBoqi99CFy62wrRMG5hIzm9draGr7vbe11MXO2nV9T4DoOyysr+L7PpUsXYfEi9qkv4ipHubOwzNFzZ3j4qccI8Mhpe2MQd2XODgBZrqNpetBPwIqfxcGbhhHc+kFyX06Dd+nbeJe+vfU8q94k850WenbDY1ir5r1gOvvhN4g3SfMww5TvF+E5Xc9h9O9e0Pw0DPtd4d4GB7sXa3I/kDR47BWn/Vh298M7f5gt4D9L8DMjvOq6viVwfRgm570SXmNYX18Hts+r7hWSWmWIXAvz+Ty5XI5ut0un06Fer9PpdIAPh8LgI9g7hGG4Fa10EMSeDelyIOuAJQAAIABJREFUsYVkEEMWM5yDghbEm1ry7GxaU9vT8u3wBDhs4TUQ0QWghNGlBtElEVEeVELQFDwJTdcmP1Ki7Qqswgi1epP/6//5HV5RH8RzbcKlN8B3t4RXz4vydkaKIQ3TiPKZ6poenW8NwXEdQiJmfXVtlW6322N6w+isY0/YQUQRZyOLTcpqo2oEEKXUCQNUVeHs6VNoqgmhRBESx+5SrZQ5d+Y0plmgkCtx7r778H2Prt2hVC4QBC6O4zE2Os78/FE8z6UyUiYIfU4eP85IpYzvuti2g6Lq5PKlntDn4jg2n/nMp7jvvrPU6zVuXL9BtVqlkMuhqgq242B3o9yziwsrrK9t8NxzP+D2nVsgAjrdFoqi0Gg0CPyAkBCtN2anT53lz/70z9FUDd8PcN0od+prr75GpVLB9z0a9Tq2bWOaFqoWuee6rsvCwiJhAKaZx/HgP3/jOywtrXHtyjWajSaFfA5FiEiQ9H0qlQpCCFZW17h8+TK259DqtBk7MkEo4Nad27TtNvlcjrXVNaaOHMFzOrhOF0WRXLl6Hdt2AbEVYXprPksFz3Vpt9tUKuWtORKvMyEEa2trW3M8Z+XQVY3Q8zhrNVlXJ7jqjvPWS2/y4AOP8sRnPolnKDh0UDx7qDn/XgivSYVrPyY2vdZjupL0EkpaVfaD6173yrusKD0X5djVP0uAHdT2vY4EPKi+vQqvWWUG8TOxgiHLOpuu56dJeH0vosx+UITXpAJmrzjtxyV9r7xzltX1I/hgwodMeA22rjD0ty4hwq0rWSbqXnT5fpTrMJr3MlUu2Kon+U6/K3LZii4IkBKECAkCjyha8eDFFS/YmFCnoyemmenkprVTaxxmXum+Ja94Ax8ZGQG2hY9+i1zrud3FFts4yqGiRm1JqWKZFnZHUt/0uXjxItVqFcdxovQemrYrIejXduyildTG7rZJxgFK9gPDErost4r9avj2q5ToZz24V3j0syTEkZD3ylAl8U8y2v0ss/F6iddKmglKzpEsxjSLUUprgZN4pdseNId34ILcujzEjiuiFxKJghoqmFLHlDpra8ssL9/Ac2z+m1/7dT7xxMe5+PoV3tZO4QbgX/k+odel67koukrXcXF9F6mFeIGD5/oErkLouoggQNcMAhSCUFAsFNFVDSEii62qqNsMIAJFEUCIVEQvYi0oiorvKHiuAkIFVeUzz3yOx54+T85S0NQARAAKqDkNraATouCFHn7ooRk58oUqQlFpdppoquwF5VJptbuoqomm5whUl1CGaLrO9OwstmfT9trYnQZ2p4PnutTqDfwQJqcnmZmb5vqNGxSKFQJfkjPzVMplNtZvcd/ZYxB6dDsur73yNr6n0WmHdBsN6us1VKEiQ0kQ+Lhul7nZcVQJnVYXkOQKBQIRcu6B+wmFghBRvlZFahCG6KoBQYjvdXn0kftRRIDvOviOg2WqXLr0GuubKxyZnsB2PRRDJwglnh/iByGu41EsFLlzewHVCcjrZkTfFI1crky347FZW6M6OoYnFLquoNFy8OwoGNPC0hKWVSH0dTzXp9NpAxAEoCgGOasEqHiej+sHdB2XkGjeG7qOKiWh5xGqCvlyCbW1gCRgdeLnuH75Gg9+4WHKkxZep4Hq+chQo4OSKUwMnP9DKlv70ax+V5IGJNdics0nPX1iiIXFJJ2IFVxpoSFLkZW2ECWfZ1kJh+lrMnp8v/fjtmO8BuIX7rwkChEbsk33YtqZ1bdkG0lIj39SuEzjkWb6Y5q+5QnC9h6S5mWyhJkkfsn3kscvBtHmYeh2uu/7EVh22/diXKMAcc4Wf7iTd71biTKsMmCQAuagfEEWpOuM1+QgHNPvZ62bft8gPR/ia5AQ248XSNebbDeJR5JfSK7DfuOR9XsQhCL7GqZ87EmEvNtVexAMS6uSdd1LAf4w5uOH7Myr91tZ9/tvAIMmXd8ne8IpWc9OBn+v9exnouznw+9tscWbfByWfyfRisb4D//gT3j8iUcxDJ3qaDkKGgNbSbsPoi3dyztCCJaWliiXyzvue1eeB0A98fTQ9Q+z6e0Vv2FhmPrvFWHZ7zcaRkGR3FCy2ornWZKx7IfffubTYc6/g36XZDnLMikVy+TzBUaqFeZOzlMcG+HChVd5s25x7MRZ9GvPsr7ZoTgyidN1MHQdU9fxfBdFUVFUBaSI1GYyoj9BEBJ4PlJEUYeDICAIo8BqruuhKlF03JDEWIpobFVVQVEFjmujKipSCEzTQorIUokIyeVyCCFRpIrsnb+NGMxebkPHZaQ6giJV1jc22dzcYLNWQyoKruMxOjaK53koUsFxXDzPiwI6KYLp6TnWNzb53ve/z9GjR5GqwNTNrQBMjUYTiBjflZUlRqpVIApMNTo2iuPYTEyMoygKmqb3FCwC13Wp1Ws4TkC704kiJksFRUhazSZzc9OoikDXeq7XQrCxvoFpGLzxxuucOXMGIQSe66PrBkHoc+rUKU6cOM7x4yd58KGHscwcf/u33+DI+BhSCG7euEmr3WbiyCSFYpFcTsfxPEIEqqKysbrO3/7N12m3mxw7dpSFxUU8z0fTNP7oj/+YmZlpTp8+1WOkIu8BXdNwHHcHsxUFb/IwTQNFkVtnpTzfRyDQdB3X9dEadwjXrrJ8+r/inWt3+PwXvkRptJzJqPWdzwckPwdZu0nBJfk8iyHNUl7F5dLHiPoxUsMKqP32max6D0q/k8JkzOdkM+rb86MfA78XnPoJmHA305ucl+kxiAXRfngn/0+en00K9MMKFe893N2PaJy27+1awz72kfcCku0lhdfDwHeQkJmGYQSsveC0m/C/H8iiOdE/+6ru7nrCD+482Qvs98zrR8Lr3U/2hNNPu/DabEZM4u3bt8nn8wlNdsDq6hqFQpGpqUm+9a1vMz4xjqZJfvu3f5szZ85QLBYjLA8guKYZj0Fg2zblchnHcXa4mP40C6/7Hdth2h62/LDfKYtBSUKs5IiVHoPwG7RhHqbA/14Ir77noesGYQi27xLokK+Weejc4xw7cZrrNZUNZZ6p1qt01xd47ieXKJfLaIqCripIVSEgwA9CFFXS6nQwDCtKgYJEhAIv8KjV6uTz+Z4lRCAVSRiytV6EEBBCGIRIJcDzXDRVw7a7CBGVde0gSo8jooBBiqLh+7G3BwgZCwUCwzDwvchbw7Qscrkco6OjWDkLXY/OsFpWLhLUVI1Go0m3a/doapS/1fcj4bDVbNLpdBEiCha3sbGBoigsLCxw8tRJLCuPlCq1zRo/+tGPKBULBIFHuVzhG9/4Fq1mi5nZWURP+BsZG6dWr0Vut55Ho1bnr/7yr6iOlSjkC6yurVAqlhBScPHim1y/dpVHHnkkEvZ7Cv8gCAgJ0PVoPMrlEQzDpNXq8Pbb73B0ZgrTsFhdXePZ732fqelpqmOj6KaOEJLaxiaGptPYrPHYo48gFcn4+DiqolAoFWm2WihSwTSN6L6qIqXYdoNVIjocuaAKIOx922BHfk9N00FE52bZuIbYuMqlI/8IWyvxsU9+AtXUsXLGVr1Z8/QuOvM+Cq9JS2pSUMoSQtOW01iQSApUcTCovQqvaeZ0GOG1n+Jut/JpSHqrxB8j27pyuMJrXC59pdMlJb9FWnjdCqCWsp4NUkYkreP9+7r3vtwb2Klo2bordsdrJw85REvvo/Aa78F74UHeK+F1L7xjkkZk1bHfMe5X70fC6074mRBeg8D/rb0t7J0RRHdOxn6Tem8EXcq7z9Ak2+6ndU1rDneLxpsNd29yaUJyd52DtcxpiM/EVqvVHVrPMIRcLkcYBmiazuTkEXRDI5ezOH/+PIVCYagos4cJsXtS+mykd+V5QkA9/hQwgKj0gcMUhrLe70f8s4S7NFHei3Dfr65+be6l3rQLSDpNRFY7sQtYEo/YBTmuLyugWL+cgsNs/MN+s9025MOc06pUopUsJIEIo+i8UpA3KxSKZTqtNj966TW++45LRTZ5dMLh4ttXqLUcKpUyQoDru6hC4vve1jqQQuI6LoSg6Rq6ruM4ThSVV1UIewGLtJ4wSghuT2ANwhDHcQn8+JysxLEdnv3u95iaPIJpGTsECNd3iOiRSAjBUYRfRUqCXr5JVVUjFzo/4NnvPsvY+DibmzWazRarK2vcun2b2dlpisUS7Vab2dlZpFS4s3AHVVEJghDTNJiamsT3o2Bx+UKeWr3B4uIS5VKZzc1NZmYmkVKgajqvv/YGdxYWefKpJ7EdG0VKfD8S0sfHx9nc2KRcLvP22+9QKOQoFousrKwyMlLF0HQ0VaFYioTa7z77PfK5HIVCIToX22wghMQ0LVzXo9FoUSgUKBZLTE6MsbS8TLVa5bVXX6c6WkUQksvnsG0Hz3Vp1OuMVqt4vsuRI+PYts3yygpHjhzByllMTh6hWq0m4jWA73s9GidxXQ9N1VhcWMSycpHbt4yovACkVCJLOeA1V1BWLnFt7h9jVKYoVyuUqhVUQycM7hZc0/N9h5uo3Dtjl1yfMeM7bJTffvQxKcyk3VuzBNosgTfZr3jvGIahTdNH7+qPgWif6UdHs3AatL/EnihpoW3n1V+Qi8+yJ/fE9N7R7ztmCalZ49GvH2mvgBjSFu90vVlt7DXATzy3Dlu5G0OWy2aMYxBsH2NJzst+aKTn7F7OVQ/q20GUMcl7yeNbSUj3MXlvr7jvttem19tOXnv4/uwGWXP5oK7Wd0FS/txj3TvGLMPCn4V/v/G5lwHCdoPkWv6ZEV73Un6Q5fWwhFchshld2cuvmCbQ/SbVICFkL8Jr1u+dbQ9HMNLvD7J0qapCLmeh6wpCyK1zrvdi09gP+CtXEUYedfahfeF1r/oxLPG+F3gMYpj2C2nhNXkvi7HJEnjjZ4PGJovh2m0j61dXFu7D1HWY36I3QhAKwsBHFSGqEIToLK0sMVopcuLUcc5/8hOIo09jjs0zH9yiFNbY3Kxz+cYtXNdBD8FQJIahExKiKkoknOoKth2lqYmthLHVw/cDpBK5a7uei67rkRDrAETrWVGiCLearjI1NYMfeFiWEeUx7VnBFFX0XFUjQVVIGaWXkQpB6Ee0WEQBokKiFDRvX3qHIAhpNlvMzszxF1/7GiOVKvc/eB9SKpRLFexuFFF4fn6efC7HwsIC5XIpyj2rRsqyZqtNs9ni9KnTCAH3nTuLpkgK+RyeD8eOneDJJ5+ka9sUi0U63Tbteodnv/ssjz/xBKVSmVDAw488gtv1uHnjNieOn8Qw9J6l06VcKnNnYZEjE5OsrKxTHalgmAamVeAP/uAPGa2OYdsOlZEyy0uLOG4XIaLzrs16k3arRaNW4+qVd3ngwQdxHYfbN25AEFJvNRibGMdzIzfgo0ePbkmf7XabUqm0pZQIAj8KzAWoSpS/9Y2Lb/Lcc89x5szZiJkUPpcuXWJiYgIhFYRUCDdvoy6+wl+87rEeFviFLz5DvpRD6AIPFyUcjpHZWnfi7nu7CUDp+8m/MSQZqt3eTd9L0pP0uzHNGBT0rZ8wNQiSZbeE1xNPZ+I8aHz63U/TuiyGU4idisK4XGRR9u+is0mBY7/ZBmLIouODYC9jcFDYi7B7GO3EECYsYsmxCcPsbBe7Ce+7tb0ffHeDtEFmmLO9e8XnsHieg37f95xPPUBzO4XXu2EvwuuhC+V7gCRO+xVe1d2LfAT7gSRRz4qK+F7isRP2tnKS0Vt3Qhz0CqLgA9ubYrwhvp+LIwnG0//kAyNIHwSSDNphEOzDqitZ5zCQZjJj2I/mOd32ICXQMO+/HxDhGyLCEA2JDHzCMGB5c5Xbt2/yxGMPIA2B1PMUpwy6m1VevNOB1e/zZGWdsYpCV+2ycvsGimEyNjVFaXQU1/cQAlzP641LJDzC9ndXFCWykoYhnXYnEkaDEClMrlx9l2PH5vH9EF1XCUIfyzTQ9BwhUe7WVqsBSMycDgiCcFvJFVtZhWTrzLxUJK7rIgQ8/fTTvPraqzxw/wP4gc8zzzzD2TNn6XQamGYOVdewHYcw8KmOVAAol8sEQdCzdLo0GnVKpTKVSpW11XUcp8tSu4UiQ9bWVpicOUa73UUqKpNTR3AcG13TcaTP1OQkIoTNzU0ULQr28+qrF8nnLRRFw3U9XNeh0aixuLREGApmTs71+hmyuLjIkak5fvVXfw27axMSEAYBttNlZKSMaWh4Xsid9Tt86pOf4lvf+gaGphAGIY16g9npGVZWV5mdn0PRVDRFoCgaYRgpFlRVJZeztgSRRqOBYRgIsR29G+DUyZMUi8UtZQVhSLlU6rk4BwSbt1FWL3Fj8ovk7U1+7b/+pzQ6TYSpR4qTbVI+ENT43HQQRDmMe7CTcb87QEt6rsd7YtY+0Y/pGtb9L64zPj+friueh1kQK3WGpT9p/Mxn/tVQ5XaDZOqUYd5N0rykm27aahuXTfbzoNaXpJdMGtLWybQy4V5ZReP63yvLUtyHbRfhbOHU94NM5UmM625R999LSH+v/e6rB4W0UuojODzIih3wYYIPleXV94Pf2lJJJy4h+mnvwq0rehQmrm3YqZ1Nl7v7itpjq92ke0yi1q26k8+yNM7bz4M+be5ued3ZF5kYG7njivt50I1DVSPLcq1WwzDMrfaazSZCCEzTfF9zu+4HkprG90JrexBta3LOZj1LXsO4p+0Hj354pevLYmCzGKf0Gkpr9SMGwN8RCCzpnpxkjPtZcfv1e5hng1zssmBYV6roWUiID4ogEJJQKHQ7LebmZ3H9EKlqQIgMPXRDZfb4UY4//fPoD30JVxro9iZV+ya6cPG6TuQyF3hIVUMoKkgQUuB7HlJIwiBEEZJABPz/7L13nF11nf//PPWWuXd6pqYSkkAoISQhVJcmqCALIuoCsiwqioUvKLv7XdFlVWBdXMu6+tuf/lyRIiiIwBKpAZcuvYQAIb1OpvfbTvn8/jhz7px75pxbZiYh0bx43AeTez+9vD/v9nl/ZFnBFoJYLD5GJxTMnMXIyBA11QknIrFkIzEutLiUSVE0NH1MCBIubZPzArEkyWRGUvT3DaBHoiiya4E10VSZXTt3c/gRixFSjmRNAkVVqa5K0NfXTbI6jpAsYskqhKyg6jqJZLUTAV1VyaYzWJbN0MAo6fQou7s6mDNvFrGqKN3dvTQ0NvPKS2/Q2bWb5SuORpZh165d6JEoXd1dLDnqSBA2tmXQ19PN6PAQa9e+wUfO+gj9/f3U1tYxMjJKVSJBMpmkubkZTVPJZFK89PIrZNJZmpvqGBwYYNvWrbS1tHH3XXfx3rp1NNTXIyHRPKOFSDSCZVmse28dZ37owyiywY7t29i9ezeNDY3c/ZvfMdQ3xKz5s8iZJiOjKSLRKEIIdF3Dsm1UTUOWJTRNz9Px1EgKYVmomsKMpgb6+7tJ1sSI6Ani8SS2LcHAdpSutYwsvpjbH36VL/7D1aQsCxQNVdGRhYxiO+/7ukeqJBcccPmPZVtjv4crY4NoT5AA5f+/n1YVQ7G9GdSuUuV6z8NSeztM6ee6VgblD6N/XkHSTef+O8ji5f3bW79tW9i2o0xSVSdwmpc/8bp3FvI6wWMeNFZh9NRvoQui4UGKbL9gNN3nbDlKkD131k3k4WzbQlE0YOzuuYc3K2aRLaZsgYmeCt59jCSN1S4muJiW6lOxveT/zl9GuSgnbTGFzXStm6A5nGy55eT3SS/5/xDj38tS8PduTAqJieNXsKc9lRRIPYF0fqKEsaeVS178RbgNW1aw23A541vOJJQ7UUGC50TCE6yZDiMK44JzUH1hdzTLc30u1vZSCEvjHrBuZGFvetM0+elPf8rKlRMDJO3L2BsbdTrrDSIwYYyd/zev5W26DvSpwrUGeO8qBUWzdA9s71MX3rtq4FdIVS68Tlf6SveY92/nTrnIu+a65bl9VRQFyxZEWw5GO/h4OPRE4tUzyO7eRGRoE7mBTgaG06zftBPbNInokXxE33hVFZZtk8uZgIymagAIITE6Osrq1Y8zZ85sEskEw8ND6BENI2egajq2sEGM3YdXCi1olu0wW4Lx+UqNpBDIPP30M8w7aD4jI8OOEkKWmDPnIGRFIh6Louk6mhpFV1W6u7uJRmNUVSWJRGJIkkJk7DqCMjbHO3bupKGhEVWL8PTTT3HsypXomsZ769bT3NpGIllN44wGli0/Gtu20HSdeDyBsCVisSiKoqCqKju2b8e2bWpra1l82OFE9Ci7dnXwyiuvMnvOLGKxyJhQAKqmoGkajQ31JJIJquJV6HqERKKaXM7kpZdepr6+jvr6eurq6ujq6kZVNHp6ujFNk/r6eqpr6ujrG+CQQw8jYxi8t3EDsqaw+LDDiEacdpmGharqTnAoyY34bo4pbgAnFBeKqpLJZBgeHSaZSDhXNhTNeVqhbzP0bWLL7PMYFFE+du5HyAmBruvoul5o5fEs02L7xR/sqFSecjBd+zDsXC4lJJVkNsugJV46GiSEFGtrEA0vVYbXI8or5JZL77zpwhQLYcJMqbaVa333C757CtNF/yut07/23E02UWEQHn+iVBsnrPmwdBVeFyunvsn8Ptm005l3T5Y1XShnnIumqbBLYcn3ZeF1P3vndc9gMv76011/Mc3wniDwUy3L1QqGaWm/9rWvTan86URm9Y/JrP7x+92MCZjKuguyaFQCt873wzoexDS53/tdh70RKYMCN7nfB72ZvCfbXc7457Wgk9zftm2jaVrRNK57pCRJaDU15GYv52V9BY+kFrFVbqU2t5ujEj1UG92YmTTxWNx5Ksc0kVUFVVGQJQlh2VimTSadBSGxefMmunu6AaiurkaRVRznEIGMhJHLIWwbM2cwJkshyRKZdKag/aZp8PAjD/POO++wadNmspksVVVJJ8qwlSOZdAQugcgHjkqnMrS3zSI+FkFYCGns/eYsiiIzOjqKJEk0NjYSjUVRNZW/OvlkYrE4vb19JBLVtLa2o+tRWtuaMS0DSYa+/sGxJ4KcgFSui3RrexuWZaHrOrFojO3bd2CaJhs2bSCdGgUEhpmju6eTwcEBZFkim8ti2xYDg8Ps3t2NqjrP9yQSCTLZLHokgiRJDA0No2nO80LV1c5zSJYtMWv2PCKxOI1NTTS3NNPS3grIqIqGpumOpVVx7ir39HQzMjJcEGVXCJtsJk1Hxy7iVXFmNDbm78KmMhno34o6tJ2+w/6GR59+hoguiMYUotFoXsFYKdy9uK+4NlaCYmeol96E5YWJ9MpPB3Iv/obsC3dOany8dRR7fsaF/21s9zPZuosJT9PBd/gVAHtaYH0/ESS4+q3m5ZwflXr6HMD7j6nyZQdQPv4sLK/hFshwFNMk5kutwJXI/f94+uJ5gjWPlVpSK7e8lmKiS2lu/dY+f3rXmjFZocito9y7R+UchMWeygmD/z25PXGIVFpeMderoDK9jE9QXUHjHGQBCKqj2Dop9YC8353Pvw/cMfemd8txrY5BTJ2/vmIui976J3vHrbu7e+wdUW1C373le5mXsPrC7v/5I2a63/ldASVJQsigKlHmzDmIFcevpGnhUYw2nsj6XpUmZYCqwXcY7tnFE8++zEELFqGqGsJy3n3Vdcey6jyP44RCaGyoR4/oaJqKoqhjrshO3a7Q62e6ZVnOuw87bZNZtGAhLa2tzJs3j0QygcB5wxSRQ5Id662iSpiWwDQEt9z838SrqsjlDJLJagQCw8iSSaVRZYWhkRGqElVEYlEnIFU0QlVVDFWR2LZ1K7V19VQlkyi6hmUbxOJRJ3pzIolpGNx+2+0cdsThRCIRFEVhdHQUXdNJJpOMDKfYtm0bL7/8MvPmzUXTVRoa6ojFYqiq8xRPTU0tQ0PDKIrChvWbePHFl1i4cBHJZJL6+jrAca+tTtSgKhpDQyO0tLSwefNm5h00L393VFKc9ZGsrWbBwgVYhoWsONdgQKCqGq+++jrPPPsURxxx5JgLoXO22LbF8NAQ27ZtJZlMEI05d2MlYaP2rEce3sXQkRfz8Oo/svKYo1m+cgVCUbCEGnwGhFhevWmDhKpS8AtXbt5yz1+33mLlh/3ujWbuxWSexgiqx92HLk0y3/0jkpFGP/i4CfTMX1bY/73p/WV46ZWfBvtpalgf/P8OO1P8af10y/u0UJjl2EufvGX4adxkz9aw9eR+F9TvsHkJ4m385QQhKPpzeHvHx6IwT2G6Uu6aRfnSkH1MCC/gluUE77Mm9MVNWy4vFtT+sPYWS1NqPZTz+95ye/XXW856LvW7n3fxepSVtV+maHkNowF+VBJdOgwHLK8HsMextyzUxRgSP8I0XQXazSm2589RmzYVpqEceMeqXE1zsbL8+b0MSNDcu/AzTtMFy7Korq4uEFzd+sL6WWyteg/bsIPDL+i79eX/NgVYoGo6WctGS8QwFYjNOYrhxRdz4/MK6/tlzju6mUjPO0TsLJqukjOyCGGTM7Ikk1UMjwxy+BGHIyuOpU4IQS6Xy1sEkRyvC9M0MS0LMcbImobj1mqOBYhyIUswOjJMMlmFLAkiUR1JEphmDkWRkSTn7VbbcoINKapzD8w0Deee5diNHU3TyGaztLQ0o6gqSBI2AlkFWYFUagSwqW+oxcZGkiU0PYoYuwDkPAcjMWtWO5GIjmmZWLZFPB6nKlGFZVmk02m2b9+BoqjOUzbDw4yMDmMYJlXxJDNmNGFZNjNmNNHb2wcIYrEouq4xMjLMnDmzWHHMcg4++CCGR4YxDIP//d//ZWhomO7uLnbt2kUum6KvrxtZklA1leamFlRFI51KYxhZkGxUTcE0c8RicRobZ+A8SaYWMMuRiM7ixYcSi8UwTRM1N4S85U8oiQayK7/M2vc209zQwIkn/RW2pGEo+lSX/T6HqdKTqSBMON3fUOlZMFmLYMUMeAkU8wSYrjrc+AphFm1XiN8feISw8bBtm76+vvw7z9PdB7+CZbJp/pKwp/mzySBIsfF+rvkDltcy0hXXpoVc7t46AAAgAElEQVR6i0+iHWGX08OY7sotr6XaUkxbVY4GbaqYzEEa1A5vOdYkLK9h9e9LxCQIla7roKBJ5eQttU68f4dZHsK+82r0hXDeKPS+/xqkPS+mxfW6IPvXSLl99qdz3930lu+mCbIYuQxQ0B7yWiTCrEIuExXGAMqyjC5JYEkomo6tGFjY1NS00NLWAgiaZs5lJNJGp5hBY20SteNlRoaHiNbOGHPLTaOpKtXJBLYtqK2tHWPanHedTdMkNTKKhOQ8iWNZZNJpctkcyGCZFrIio6pq3j1XCIGmSsSrYkSiEUdgVWWyuTS2mSMSqUIgkGUJWVGRZY3WlnrmzjsITdOIx+PYWOi6gq5G6OzspKa2jmwuC7LMyMgwii4hYZFJjdLW2urcgY7o4BlTRZHJZjOoqkxNTRJZ09FUFV3TkBXHYpxKp9m2ZQe5nMHKlSuprqlm/vx5jIwMEY8nMQyLrs5u0qk0sVgVET2CJMscvfRoJEkwMjLEwGA/DQ01jIwOga0yMDBIe/tMUqlR5syZQ29vL3PntCABVYkqZ21rOtu3beftt9fQ0jIDRYGhoQE0Tac6Wc3CRQtwLbGqqjI6OkokEmV4cIDa2lp0TUHueQ/R+Q7WkRcgH3QGt936a5rqEnzkzA+ixBOkhYIhJ1BEiLtwmMUmZP2Xi3LKmoqVopggFUanws6MSuv30iBJkir28KmU7vj7U4wGl6Kx3n/7FWOl2uG3/pbblyD67eadzNoq9vZrpXxE2Hr0v0nrR9ATgpXzhJUHPgrtW8g+lggfD0VRiMfjBV5Nk+HxwsYwbL0WSzMVmuD+/n5YXstFufPr70fZ/Zmi5bVUm4rxX5XiL8LyOlmNXznljjPZcv4jSc5D8I7mvvB79xMOO/9xnpIp/ICNJImCdN46Cj/jaSRJ5D+yrBa0Myj9xM84/AsRJrqHeC1WlR4Ik4Ffi1lKsxPWpgIBahLt8LpFTWe/w/rnrS8MQcQjqN/laMPKSVcsjZdw+dvuuo96BWQ3vV9T7Q8A40ZX9Lozu3m9azFMEPSm98+hv15/P0rBX5brIu+Hn7Hz5/UTfSFEvt9BFlav4OtnlrxzkLMlbEVgiyxYKpIdwxY5LJEmXhdnyTFLOPWjH6R9+UrWVS/mcetQIiKLsvMVhnZtcKyeshMQSY2qoMjYQgEpyvoNm5FVDTUaQVbVsfiVMthgGSa2KYhGYsjIYFtImEhSDlk2sJEBBVnSELZO164hVKqJxuphLOKmbY+9catajGbSyIpEdU0SISyMXBbbtJBkhbZZs7Ftga5FyKYyPLjqIWxTIMsalg2qrqNoGuBETNZVFUVWsW0JVY0gqxqNzc0k4zIKJpaRQ1iOO7SmKDS1z6Crv5t4TZJ4sgbUKChRVDlOJm1QXZNgaLiPt99+kxlNDaiqimkZpNIpHnr4ESJ6jC2bd1EVq0fTFdauXQPYzJ4zk4aGemrralD1GFWJGkChu6sXO5slpmusOGYZ8aoEihIhkahF1VT0qIyqSY7bnwVW1kaRJHK5DI2NTZDuR2x9DmGmMT74beLtx7Nh6wYWLTmcEz5yHnLDLDJCR5ZUdCuDkOz8B1nkP9MlBATtmSCviXLg3ytB0DRtQrRe9xN2dcXLKJdqux/+SMBu3d5naVz3S3+/w57MCzoDvG303+cPsva59XrrLnZ9I4jGlBJcvVZO9+9Sz+342+2W5WeAvW3xr5Wwc3I6GGd/H/00OBwOr+XeyRdCQpZVLEtMaN/4WFhYloFtm3k+MGjogvoTpGCo9IwPOn/9+yvIDbScMzLozPO2wy2nFL9Wbt+8/Qv63l1r07VGyuWrKinPX27Y2PiDUObLkMI/kgj+TLXN/s+elgeKYb8SXvcVTPdCnmo79iS8wXD2NvaGsLyvoBKivT8giGkNYnT8DIk3krBXyPSmh+KHUZh2MCxoxnSiWMAU13rqBsuplBmZClRVzVuwFy9ezAknnMBfnXcJg0dczEZmUZ3eSbZrIwO9PYwOD4FpIVkWMjaGkaG9vX3MrUwByXnuRlZVNm3ZwgN/+AORSAQhBKZpIgBV1RgZGSWdzjjzIINpGagqdOzeTiY3iqI49y+3bt3KwMAAg4ODyJLMokWLxsYDQEJTHeuoZVsoioTARlYkZEVmeHgIyzTp6+tz3kCVZSxLIOE8MwMSq1atYteuXWRzWSRJQlVUZFXFEgLTEsiKgqwo6NEI9bV1HL54MZqs8Ngjj7Bh3XvUJKvRdJWXXnoB07RoaWlj8eLF9PX2MWvmTN5bt45oJMKpp5zC8PAwbe3tjKZS2BaccOIJtLW3Eo9HSaVHWLRoAYZhEolGQHKiF5uWjRDkgym56yCVSuXnTdN0stkMIIhGosQiEdSRnShda8kuOgvpzOswbJV0Lk13dzenn36686SQVqhc2ds0tRyF21TgVxCVs6+nytAGlS1JEox9vNYSVyACJhUkywuXfoZ5Z0zH/bNyUO48VjrOlmXttwHB1LGo37oe7prvnTsoFLJKYW/t2/1x7PcG/pJ40f0FB4TXSWBfE173JMFxBYugx7X3NP6SCMafu/DqMnF+YdQNeOJ+764zdzxKaWiDECa8el1999S+8Quk/t+8gZv8affkPvZr31VVpbq6mkVHH8tRF/w9b9edTkTkiPS9S3qoh11btzPU28eDD9zPk4+vRpEBIZBlxbGUCglkmUMOXcy5532M4eEhbNsim80ibJCQiUWriMWqAIFlmciyjazYHLnkEGIxZ94ty2Lu3Lkkk0kSiQSDg4NYlo0seZ8CcYJASdK4QOvcwVX57Gc/i6Zp1NXVE08kGU2lMSwTCYGEjWEYnHnmmTQ0NDhRjYUACVKjGSJ6lHXr1jE6OoqqqmSzGTRZJhmPE9V1NEUhm07R3dnJ0NAABy9YwEMPPYxp2tiWoKrKeZe2vqEBRVGYd9BB9PX3U1dXR0NDA7F4gta2Nhoa6ujr72H+wfPY1bETNaJjChshCeobG1B0jbrGxjFhHmRZQVU1IpEokiQ7j+LIzp3ewaEBsHKIna9ipAZ4PnIC3ZF56JJCRJO57de3sPL445A1FXnseR8bj0b+fRRe90S0Yq91cW8Jr2EWau/ffksiMOUzNMji4X8Hdm+c03tKeN1TgRH3Btz3x7PZbGga/7p0reXlYG/t2/fj9YH9AX9JvOj+gv3qzqtt2//i/l24mEoz/GEMrf8375kXtlALyxr/3l9mpYJI2Huu/jrGyw3bUOH1ynLw4eY/fL3leg9jf5piF/xd5nRvaYS9KGirXoXcOA+5umlay/XPd6nvyy0/LE/YOJdLWMPShe0Lfxq3DWF7p1R9Qa5B3jXmWvm9rrFuGv9j7V6XJ3+7i92F8qZzLaGTgdf9ym2fq+QJK9Pr/ue9w+sX8L3MfthY+vsTVmdQNEw3rSzLmMKx7M1ZcCjynGPIDPaS6F+LJCt0DWZ48dWXELZjxayKVxGNRPPP84Bj/VQ1FVkae/fVY11wBU2BzdDQAOl0mvhY5N9UagRNjYy13+l7JpNxrIy6jmUJDMNACPJPxICEEHbBGGuahiI5Fi8hQNN1opGoc48WR9iWZRlNU5FkCUVWsIVNKpVCj8RIVtc4b76qyli0XohEY/m5mjdvHpl0ihlNM4jFonR07MY0LRpnNCFsAZLjZv3c889z0EEHgRB5ITyXs0ilh6mpTZJIVpHJZujr70ePxpBkCdM0UDUV07QZHU1hGJkJ0asdBtdEkWV0TSOS2oXa8xZSrJaRFV8EPUF9bR3CMhDCYuvWTaxYeawb8JmcaToRswBJkXEejg1COM0JWneui6praSqXsQtai36aU4pGlWpnEN3x7pOwcsJ5gkKBw/s8VYHnRHYUOdmEMmNeII1z83r3t19gK3Wm+N9z9ZZZbKzDzu9yxjYoT9CYFVPc+ctxhb2wYEvF2hg2tuWgGJ9TTl63zlzOyNMh546/gWl632GeqKz00/VSLtdeBJ1z/v44X0xssyRJBXdeS/EBxeaw1NkfpKipdJzLQTn0o1SdlbRnMgqvIAVWpWUUS18sFKk3R8FYlZG+oI4Q+l8JgjzovJjsnVdpf7L05HK5fGMLN0xpbVExoltYlhSaJ7jciffa3LyVj23wBPvrGCcuYQsiXLNtWaLgYr63vUGoNI0X3ruLxbTt+9MaDCLU5X7v/62cOirNOxmEtd1ft/sJe1rHn74YghgdP6H0Mp2uIsTPfAQd6mFt8jIOUF74/3LglluKXriC+bgw5sAvvHq/99YRhHJpTli5lrCd+zDYYNmoskKuaxO552/BHulhKNZKb1YjHksgyyqqqpDJZqmrr0eWZSLRCJZtg+RYI51nYFzrro4EGFaKTCZDVTyBLcYEeEugKNpYdGKDTCZDIlFFNptFj+gYORsJCU3XMU0DgYkiq5imia7r5HK5vLJAVxVsAUKSnbjEwkRTJEdsFu47uWDbzjlhCxuQME2nvY6rs42uq+RSORRZZXh4xBF6dRVVkRkYGEDCuZu7bdt2Zs5sp6uri3kHzaW3p4cXXniBD3/4wyiqSk9PD9FIhK3bdiArJkctPZLdHZ20t8+kr2/QGb+6WrLZUZLJanJZwfDwKL++8xauuOKLWJZFPB7LC+wjI8NUKznk7ncBUI7/AmbNTN569z0WzT8YM53ByI7ygx99n+99/9+ce7qMW1yRPU9C2WFnZfBeCGPADMNg7dq1HHnkkaFry12TQb8VozlhTGkplDrjSzFh5bavkrZ46VNQOUHK3zCG0f+cVpigEdRvP33aE3TQ/x73dJ1XxWjfdAkC/nLD8o6Po5z/e3jYeYNZ13UkSUJRCoVA/1nnf5KmXAQJUBPmPqS4cu87Bp3xQW0IqhuCA1xNp9AaVGZJgb5IGUE8SBDC6GAxBCksSrU9rJ1BsIsJryFGuLA8YetjMv0OKqOYkUvX9UktkANuw/sQvALCnkKlmsowlNvWbDZb1JXmAKaOcudiqutrurWn3jJdwc2xNFkT0lTCqJSreZ0KvC6Q5d4Jd8fetdIGvWU8lTkK05x7y/SXK5NFlkwkSaBEVSxFQm07mKrzb0A++YtU57qZae/CHt5NV0cHg/19yMIml04hYTM8NIiwTKIR57mY/L0+IZHNZDFNi0wmjW3bZHNZshkDYcvoegwhyD/P4LZT13WEDULYGKZJLpulr68X2xIFlnlN0xgZcQRMYQssN4CX7ERCzmUzGGMCrjvmkjxuwZdlx+Lc2dk1FhlZwcgZKJqCoqlEYlH0WBQtEsEUFpGIjh7RMU2L1Giabdu2U11dTTweJxaPM2fOHHK5HBFdZ2hwkKHhYQ5ZvIhEsgokkGQJgUwuZ7Pu7XdRZQlNUbBNC9u00VUdISRy2RwjI6O4QQJlI0NieBNSx5tsix/KnxKn0GvqWJbFvIMOpqGhgebmZrZs2cTMtlayZjYfms/LyE4M1zc1qKrKzJkz99p1ksnsiz1xnvr312SEJz9t8rYxSBDdE/zAdNHHyZbjHcdi+cvt+96g+UH1CSGIxWJEo9G854n39+nE+xV7ZDLYX9oJe4fvPoDpx35mec0EWl69KLRojLvHlaud8Vpx9wYRLMREt8hiGo9iGsIwlJOnmLY8KH9QGpdh9N7D0TTNcdfT9QJNlF+TPN0wd7wFgDrz8JJpJ9uGcq1v+zOCrJxelGN59JblWOnsgoPDdSVzmQC/tdULV5jxjr1fy+lN69br1u2W7acPfk25dx+67m7+NV/OkwnlaF+934+75xbCv1dddzVXDg72cgjz6hgvy7UIewOnCMvE3vwC5hsPgLBQapoxky1s3LQFyzCJ6RGSySRDg/3U1NTS3DaTjCUQskLGtFEUFVmYYFooOFaJdDZFvCrO8EgWWZHRNcf1VB6zrluGweDACJ2d3SxYsABVU1BVEEIBIRzB1sihR/Sx8XPXk0wu57xdm0mnnLL1KizLGQ9FkfPCsiQU+vp7eOqpJzn77LNJpzJouuMSrcgShpEjEtXHlAwWZlomEpMYHOxj44at9PePcNRRR1JdW0d/bw/J6gSyZNPd3UVtXZJtW7aw8LAjMQwDTdOQZZlMxglelctZSAjiVXEMw2lvNpsll7FIZzK0t7Vhp3qRBrYjjezGnnMsYsGpdA9lqa+pZXR0FNu0qK1ppb6+nr6+Hu77n/s5+6/Ppr6xHlsp7olUilZ5o8hWej/VLbPUEyPleBVMBmFCoFew8e/1sHPWe5a5rrnF6Iw91OU8+VTdnC/L+39v29yrA0FKrCALqTsX7h4tNX6lzjEvLS+HFpVrnfK3wf+7dwz86ytImedH2Frxr7ugtrnnTSlMl2XMW0bQnHnXXiVwab4kSUWVR0HrqJz2um0ulT4oTSnLaznlevfddNKGSmlROTx40LrLv4gQZhm1J3pGFNvTYdb0oLbkxz/E8rovynuTtbxOfOfhAP7iEbbAOzs7qaurIxKJFD0kYPxw8muX161bx8KFCwvudbmbzhUMphvmu08A5QmvB7Bn4D+I3Dn3M5teZi/oYA9jbvyBS7wIujvqdcHzWv+Cys1b7gIE3UpQivHywzs2YQeQy1jDeD8ne+g7d0wL7+VJqoay8CTUBSdgb3sdc+MzSJueZ0FVPUqyEUOtxjAFhplj+86djOYMFFWjsbmFuBZlcGiQRFUCRdNQZBnDMBGyimFLRKIxhLARY3debdPANAxkWWHjpo088+yzNDXNoLo6gSQ57ruGZaIoEpquIYSNJI331zByWJaFJjSi0SpnLLCRxp6CsWwTWZGQJJCFRCKR4MMf/pDzzmFVFW++uYaIrtPW1sbQ0CAzZ7UjSc6dNiWqkMuNoOsqhy4+hN6eQZLJBLGYzrCuIIRNOpNGkmUyaYOZs+bmGUxd1xkdHc0r7UZHBmhpbUUIC1XVMA2TSCSCLpvU2L2IzU+BrCK1LWH4yEuoamxEliRq5QyZdAaATZs2seDgKDt2bOH39/2eK6++ipraJMjWpJVL/nTFhJGpMkF7QsnnZTKDGM7JttkVerz7K6is3Eu/BSB2+pWBdfrb5J53fmVYGCpRJpimWXAneaqoVPiB4PH2Muuu0m06EKa08NZb7tjtKQZ/utZ8uULv3hRUSo1/JXAVRFM5a6cDYXSwVJ58+n3EjrEvCqzTgQPC6wFMQJgGqLW1NS9kFmO43d/8gSQMw2DGjBmBb2NORgN5APsfvBpn/1utfg11kNYz7K5WkCBcrA1+ZixszfsZnlIWjVL1uiim7fX/HdReb5pxq1KhdblS9Pb2IoSgsbGxYD86fyvIc5chzVmCnBnE3Pgiom8H0rbX0GyDRj1JbZ1EWowiESU7MoxcZTOjJomBhG1YGJaNkCQi0SoyuRwKjiA5di0T2zaxzRySFqO1pZlTTzmFWCziWD5Np3+apoy5XdtIshuAzsYWNjkji65FAGnMGus8qTNOk9z1BaYpnCBOkjo2vhYtzc2k0mnWvLWG7du2ccEnPo4kyciyk1dWHNdfXY/Q0NiArEI2lyIWjyDLMoPdQ9TW1rF54yYOO/wwTGEVvL0JzpptaW0ml8uiqs47wbIxgtLXhTywHbNhIZn5Z9Ibn0dLazu1kQijqQFkWSYWixGPRFm/fj0zZ84km0txz31387GPnUtNbQxL5BCmhVAKBRavgqMchDFtXi+Aqd6T3FPWgGJ732tFrQRh3kbFLNflWEMrZY69lt9y0k7XXVa3vEoR1Fe/AnO65t7vKRP0W7ljt6e8AqZrzZernNzbwqt3/P8cBKapWICFELCP8LN7aj2/3/izFl6LHQ5T1U4HlTPdC6PUxinF9JZqU6WWIJd58VtTYdxCFXRweNHU5ET8dQ8S93dFUcjlchVpiidrqS3mDhJk+StH6+zt+2TGP6gdfqGuGLNU7JHwsLonQ5j9D9+HrbtyrDZOsB5zQjv8gq3rYudvd1AAJ/f/XmukEOPP4gSt07B+uIyud/5N08x7Dbh3V9383na6+b1rIqit/rEKEkzD9pUQwhexM3zuvWs5TPhtbGwMbLsXtqwhVTUhH3EWChK6ENjpIUTne9hDHUS7NpLt2owytAlTyPQqVcjJZhL1TUhqBEPSELYTrAnLIKJHMI0stm0zODhIdXUSIcm0trXS1t6Wf35CVRWGh4dIJhNOfyXBzu07aW1tpa+vl5aWVuRYDNsSY4IryJKCYWYdd10kqqqqyOayRPQIzks/Mun0KNGY4y7c0FBPoyzxwgvPo0ec+7sRPYosK6QzGTZsfJfZs2diCZlYPMnu3TtpaKxDksGyLZqaWxgaHGLBwkNIp3PIOui6cz81Go1i287TPZZloVgZlKHdyKOdKJaB1XoU9pEfx4o3o8kytZkM/f19tLW1kcuabNmyhaVHHcXw0CCSpFBdXcvv77ubr/3D1URjOkKyQRYOv1TCz8y7rorBGw07SBgKEgbLVSD5lUJBAdkmA/8e81pL/W10//aeYf42uv3zXhfwnl1BdNC7512a4FVeCFF4ZcKbz7tHpyKAum7fbv9cl2MXlmUVeD/5214uvPTE7wHiP2OCxsmvjPSOq3d9eRWbxWh4EN3ylxl0PoQhqM5i514Y/P0pFuSsFIqln65AXOWObVhd/jMmTGkUVG6lSp1ibQ9DOWWXQ8uC0uRpjh28XuQSPPKE7zzpXX4kaC7CPAvK3dP7m9LhQMCmKcLLyB9A+XCfCpEk5/6GaZpEo9Gy8robN+jw3ROodI5vu+02YrEYixYt2sMtcxAUPfr9hnfMgpgJKP6mnDdfIpEgFovx5JNPBqYNEvwrCaRUDB/84AeJx+Ncf/31BW03TZMzzzyTqqoqbrjhhr32xqIL/9hWchhPqV5PEbbkiMtSrBoxewkcegZVp32Zxk98F/WMb/J3t7/N3Mv/H675j9vIbn4Bc/0fkbY8DztfJTbagTa6m/ToELZlYts21TW1jlCLhKLIKIqEGAuWZBgWiUSSo//mqzSffil3PvQMLa2taLpOvKoK2/YKIAJJEkgyCCEhSyqWLRBCIqLHsGyBY4W1EdjjSjnZsdaeddZZnHnmmcSicSzLoru7BwREx95dtS2LbCaLZdrYCCxhk06nsYVNvKqKt9a+xb333Us8HkdV1QJBRTeGiQ5sQN/1IqKqkYc6Z7Du4M8wuug8MpFGotEou3fvJpvNOk8ZmSY9PX00N7cyPDTKju27mDN7Hi+99AqnnXEmyWQSVYtgj20xsReP9Kmce376MBnrRin4FWJhtKhUP8oV9oPgzVcsv1/wmy64ffPTpuliVPcV/seraChGh72xFFzFaSXwKjumgsmWsS+d8Qew9+E3IP0l48/a8ro/YyqauamWuyfC6AfV4VrPNm7cyOzZswGIx+Ml87oa21wuRyQSqajeW2+9la1bt/KBD3yAk08+eTJNL6t93v8fQDiKPQ0TZG305w1aw17GzF+OV/NezAU5CF4NvNeK4QrLXs38ZO/rlGPl95ZdqPktbkFw/x9m6S0HijCRhVO/LcZdo0wbND1C1rSIaEne2f4OiaY5wEsMxufynL6ShJxCpEeYKdnEBoZQ090k7DVOwVWNCDWKrcZRYnWknAKJRCJ07OpgZvtsDNPK99CyLIychaZKxGNJslkDVVWRJOEEZrJMTMtGQiedHhkLdCMBEggZSRKYlgECZFlCGhubTCZNIpFw1ocQ5AwTy7LZtn0n8w6aDzguzJoWpbVtJkK2sK0skWiUrv4hXnxrPc+8uob123fzL7//PCMp547qyz/5P8zVBkBWGKpfTO6oj5JsnsfiGZ3U1zViGjbxuEomk2LmzDZs22bjxo3U1CRpbW1zOm0LIpEoP/yPH/HaW6/zxprX6evvZ0ZjIyeedBJf+cqXWLL0yJJXre6//37++7//mzfffJOhoSFaWlo49dRTueqqq5g/f37RvEIIbr31Vm6//XbeeecdMpkM7e3tfOhDH+KrX/0qzc3NFa0nF9MR7C7IxR8m0omwgFRB+b3PvVWyn4PK9ntm7A2EKQW8/ZoKpiq4htXvvfe4r2E6xs3rLVUuvOdMWN59cbwO4AD2BA4Ir1PEVBjBv2S47o5CCNrb29E0rWxL6lQsr7fddhtPP/00QNnC674+x25U533J7cPfjiABMuyR+mL5yqnLdUF0/55Oa4bX8jpz5kwWLlzIjBkzClzb9ia8bwaWEl6nw8IlYTuCniSQhACculVdQ5EVcjmLoeER9GiMefPms3DBIg477HDO+euPsmPLejZu2MALWzqYM2cRGWuQuQcvQotEUfo2UFtXj7ntVbTud0jkRhFaFFuSaY42IAZ3EK2b5WmHRCwWA0CWVSwrh20bRCIaAkEmkyKbzTI8ZPDkU0/x4Q99CDNmo8gyti3I5VJomsLQ8FDebVhRFCKRyNg8gm1ZKLLMyy+/TCySoK4+QU1NgoGBQbo7t3Do4kVIskQ0GieTyfC9W+/l7tXPBY6bnBtmeMVnyMWbSWdHQMhUSxIbNmzgAyfNJJPJsW7dOg455JC8YBGNRtmxYwczZ85BCMFg/wA/++XP+fnNP3fGQJKorq5m565d/Pa3v+Wee+7hh//xQ/7ub/8udA1cccUV3HbbbWPjJpNIJNi6dSs333wzv/3tb7nttts488wzA/Nns1k+8YlPsHr1asAJZBSNRtmwYQM/+clPuPPOO7n//vtZunRpyXVU4EY3SQGxnDpKvTlarseC1523XFTiXuoV1qaTXvmveXjbFuZ+uD/CXTulvG3c8XCVCJV650yn5bXSsd9XzvYDeP/g5Zv/HPbtVLDfqmm8dyDCYRf5lC43rA7v9+FuM3KRTzCCXAH9B1lYmwrzjvdTCCv0E5ZOkkT+Uw68h7QtJHKGxfBIClnRMEwbJAXTKizLuwETiTiKIiHLlFW3V6MehnK0mkFj6+9TsTkOc9ksx03M/T1sDfvLLuXW5o2GWQ7KKdffnqD1GTbOQW6BrqXdP7ZuWX4XO//YeJlb77/XlPAAACAASURBVBrw1++9R+u+O+rWHfS3d/yKMXvedsuyzM0338yaNWu4/PLLJzCpYZZOfxr/GHj74z5ZE0aTJjJADn0RQsJ9J9T9t8sYe931y4XXvdu0JGyhIGwFWdLBVsBW0ITAzmWJ6DJVCZ3DlxzCd278Fm+8+To3fO8mrHgdbYcs47SPfYpzL/wUC4+Yj6rHeevNNbyzZg1PvLaVN7cNs0k/jL7lX6J/xRfJLLsM46DTENUtKMYQ1nuPIJlpALSRXbB7LfZIJ/ZwJzFVoKgqpmkjoRCPVVOdqCdZFWXZUUeQiEdQJRvJNkmNDPJf/+//RyaTIxaNeeZdRlEF2dwoI6P9DA71A4ITTziJbGaEzo5uTAPq6up4653Xyab7UFI9yEM7iPauRcsNMq+pmr9eNod//tjR/N8LT8+P28Bhf8dzb3fz29/8D/W17dTXz+CNN19h5bFHY5gpNB3mz5qDZQhAIZczmdnejpkeomNLB68+/zK33HJzXnD97GWXsWXLFnbu3Mm6des4++yzMU2Tq668ihdeeKFg/ty5/uEPf5gXXL/+9a/T0dFBR0cHr732GsceeyypVIpLLrmELVu2AIWMvRCCf/zHf2T16tVomsYPfvADuru76erq4umnn2bRokX09vZy/vnnMzQ0NKH+YueV16PBi3LO31I0NIiGu9+7d9a9+f3KMpceuHvAL+zYtp2P7EvAnveeUUH39sP6EXb2B+1bP+33luW9++rPU+wOYrlnmD+Pd6xdhJ2TYWUF9c9Pf4PGMMhS67/369bhdxsu5v7sX7/Fzrug8XDrduiwgmUJJEkBZPxHdjFeI+wMLsYTuuMXhqAzOoyfKdamYgizoJfL24Tt73LyFDszS42zF84Fk4mfYmWXc86Gtck/L/659NOpYvTVj7A2VTLG+wIOWF73IewNd909DSFE/p6XaZr09/fT3t5KJpNBVbSCdOAeDNPfDu9BpZ/65bLG039Avd+h2stFpcLIdCIoIEoxFJuHwjURzIwGRQkuVbeXsfELmW6b/AxpKbh1V2IxKscl2GtJ9T5ZE9YmbzAY78HmvUPnuitO1nXRzZvL5fLlhgXvGWfUPO7ZIoMsACEwcpCsbqG2to1Z84/AMgwef/xxjj/iKHRdZ926daTefIlNm7ahyBr1dTNYuPAo+lPzmHf2yYh/eQwYRZ29DKlpPvbgLiQhkDpeQ5ed53OMWAOSFkOSFVSqOGh2q+M2DE7ApmiUL15xBanUCI2N9aSGB9FVxblniyCmKKAomLKNZBtsXvc2py2bhyLZqCObYKSLC1fMQOp6hVxyNooWgbkn8K/Xn4as6Zj1C5AVlef/9Azc4VgpOzo6WLRoMa+99hrpdJpIVGHe3Pnouo6uxenr66ehoZasYfP2u+9yyMEHkxkZRrVBknO8+Mpz/PruOwA4/bTT+MmPf4iJM4/t7e3ceuutnHTSSaxdu5ZvfOMbPPbYYwXz09/fz0033QTAZz7zGa699tr8bwsXLuSee+7h6KOPprOzk+uvv55f/OIXBfnXr1/PL3/5SwC+8Y1vcPnll+fnfdmyZdxzzz2sWLGCzs5OfvSjH/HP//zPFa2x9wuVXs8J8+SQZRltxSfH13wZNCRoD02H+3Q5KEfoCBPqK4FLw8LGoxhdCxLgodDTKAyu4O5N46fT3n8HCQV+lKMMD1MKOGuisKzx8so/O9w8XsFmKpjuO9b7C8LO4nLO6H0Ne+q+/L6O/VNCOoB9Fpqm5d+uM02ThoYGBgeHSSarCtL5LW5eV8/phEvcb731VqLRaN5l+IYbbiAWixGNRvOfLVu2TDjcXn/9dS6//HIOPfRQ6urqaGhoYMWKFVx33XX09PRMul2ZTIaf/vSnnH766bS3t5NMJpkzZw4XXHABjz76aGg+t61PPvkkw8PDXHfddSxZsoTa2lra2to477zzePHFF0vW/9hjj/HpT3+aBQsWUFtbS2trK8uXL+fqq6/mT3/6U2Aey7K47bbbOPvss5k9ezbJZJKZM2dy9tlnc9ddd00QDN3PokWLiMfj3H777QwPD/PNb34z3+b29nYuuOACXnzxxbIYpeHhYb71rW+xdOlS6uvrmTlzJueffz4vvfRSaJ733nuPH/zgB5x11lkcfvjhNDQ00NLSwnHHHce3v/1turq6So5XkOXijDPOKAjmFMRIvPvuu1x11VUsXbqUpqYmZsyYwZIlS/j0pz/NvffeG3jPziuwup8f//jHxONx5s6dm7cme9O79du2zcKFC4lGo3z3u9+d0B7TNLn11lv56Ec/yty5c6murmbmzJmcddZZE+bQ21fDMPj1r3/NWWedxcyZM0kkErS1tbFkyRIuvvhifvWrX+XboOs6iqJw+eWXE4vF+MLlX0BIAlPYaHocU8gYtoppS7y9fhOPPvkkn7r0UpafdCIXXPJpPvMP/8TP7/otq597iq6+Lh55/DFMYbNr86axYEswaOvYC/4K6ZgLSS35W+wzb2B45VU8kl3Cu2YTV93yNMd85cccdvH/ZdEnv8bpn72Gf/vxfzK0/lkiXW8Q7XqdhtENiK0vEu94Ea3jVaTtLyNtfwV5x8vIO15G73wNZddLLIz3MNy1lVz1fAaic8is+DxV530P+ZybuOnZFOsbTyPTthJl1tGIpsWomu48gSOPKwnmzZtLIhHnb/7mk6TTWSxTUFtbi6ropFIpamtrGc2k0aMRdnd1YpomuUyW1156mSeefISDFsxh2/ZtAPz9338VUxSuG13XufJK533R559/ns2bNxf8/sADDzA8PAzANddcM2GO6+rq+OxnPws4d2JHR0cLfv/Nb36DZVkkEgmuuOKKCQzTvHnzOP/88wG48847J5Tvro1KrSjTkXc6UYw2ydVNKDWTu/M7nSjXIuamDcNUx7wSi2sx+O95ltMmv8eKt01BFsxy4BUcg74vZrUsVWalKCefW/fevmd9AHsXla7jPxf8WVhep0MDNVmE1etdSxNN+sFlhbkwlKMNms7++10Sin0f1GbXunPjjTcihODaa68llzORcA4V/+PpbhETLVhT35AukxWLxWhubqavrw/DMKiqqiKRSBT0xxW83X9fd911/Ou//mu+TfF4HMMwWLNmDWvWrOHWW2/l3nvv5aijjiq7PUIINmzYwHnnnceGDRucXkrO3bXOzk4eeOABHnjgAS6//HJ+/OMfF+T1jnVHRwfHHnssGzduJBp17uz19fXx0EMPsXr1an7/+9/zwQ9+cEL9qVSKz33uc9xzzz3575LJJKlUirfeeou33nqLZ599doIAvHv37ryQ6aKmpoaenh5Wr17N6tWrufvuu7njjjtCnzvq7+/nxBNP5L333kPXdaLRKL29vaxatYoHH3yQn/zkJ1xyySV5zbofHR0dfPGLX5zQ54cffpjHH3+cu+++O7DP55xzDtu2bcuPYU1NDYODg7z55pu8+eab3H777Tz44IMsXLgwP0d+SJI04b1O/+9eC6gsy9x0001cd911+f0bjUbRNI3169ezfv16fve739HR0UFtbW0gDfO6GX7yk5/k2muvpauri8cee4wPfehD+bZ69+IzzzzD9u3bkSSJT33qUwVt7ezs5IILLigQ9P1zeNddd3HHHXegaVpesWTbNueffz6PP/54Qb7R0VH6+vpYv34999xzD5dccglCiLw73jhTB45LrkomZyJpOkJI3HLHrXz5y18ik3GCGum6TiwWY/vODrbv7ODVNWu55l++xSGHHEo6nUWMpDByWQBeeOpR4kY/Rx19DNt2D7LwkMXMnjuH2+5/kEcffyw/JrFYDNOyWLujj7U7+vj185u5+fs3cuShh2BZAllWsKI1aLUzWHnCCnbs3MExK1Zy1x13Yxo2mhZj2dJjuf7b/5emoQaOXHI4hqYwZAgsy+af/umf2LJlC+l02hFGVdWjkBs/XjVNIxLRSCRmsGN7JwMDfRx2+EJyuRzRaIxc1qS+rpaRVJZlS48ml8vRN9DP7IPmEW2o5qFHHAtuMpnk2OOOB2kiQ+pd+0888QSf+cxn8uviiSeeAODQQw/NB8fzQgjBGWecwQ033EA6neb555/n9NPH3Z7/+Mc/AnDCCSdQVVWVL9fNC3DGGWdw++23s23bNt577z0WLlxYsF8qPaPKYcgq8VZy94rf2lpKaeZ1WzVNc0K/gyw3paw5/rHwWgn9LsDecvyCSDnCkd9K5/3bu0+D2h3kduwVIMN4BW/ZfubaryAOy+9XzLn013tGBwmUXi8bL80O59UK593rkeOOg999M6y93rb507tlesfPSVPYnrC8Qd+XshQHWa+Dyi0mAIWNW9j4F0OlQlbQeqyE3/fux3LHzUUxHjefpsjYFhs3F/5noILKKdXfIItrsfRTUUaV4xniXU/ljMFk8WdheZ0uDd++hH1F01wp3MWdSqX48pe/zLXXXutjZEX+nlAQgd4TyL7wG86ZbbF161aOPfZYAK666iq2bt3K1q1b2bJlC1u2bGHWLCcgjCRJ/Od//ic33ngjiUSC66+/ni1bttDb20t/fz/PPfccJ598Mh0dHZx//vmMjIyU3Zb+/n7OPvtsNmzYwMknn8zq1asZGBigs7OTzs5ObrrpJhKJBD//+c/5yU9+ElrO1Vdfja7rPPzww/T19dHb28szzzzDwoULMQyDL33pS4FE7fLLL+eee+5BlmWuueYaNmzYQHd3NwMDA2zcuJFf/epXrFy5siBPLpfj/PPP58UXX2Tp0qXce++99Pb2snv3bnp7e/nFL35BU1MTq1at4utf/3romr3xxhvp7u7m9ttvp7e3l87OTl599VVOOukkbNvmyiuv5PXXXy+rz729vfT09PD000/n+3zllVdOuLMqSRLHHHMM3//+93nrrbfo7+9n165d9Pf3s2rVKpYvX87OnTu59NJL8/WEMVze+6LFiLIQgp/97Gd885vfxLadp1eee+45BgYG6O7uZseOHaxatYqPf/zjE+7x+gM/ud81NzfnhYk77rgjlClxrV4nnHACc+fOnTCHL730EkuXLuW+++6jr6+P3bt3093dXTCHXpdSgLvuuovHH3+caDTKf/3Xf9HT00NnZye9vb1s3ryZO++8k3PPPbfIgSWBGLt/K4Et2Tz46IN87nOfJZPJcNxxxxXsg51dO3jw0Ye49LJLkTWdnG0RS8ZJNM+gakzh9KGzP8rCw5aSyqkMdHegWGn+/h/+nkdWP0o8Hueb//RN3n3zXTat38b2LR088tBqTjzxJDp7ernsH/+F7ZkYZt0CjJqDMfV6RkdH854fhmGwe3cHkizIZkf5mwsvYM2aNSxcdDCyLBONRhkaGgCcoEWNjY15wSaTyeTfBNXU8UjoOSODLUx2dezglVde4bzzzqO3tw9d1xG2xMhIijdeeZVMKoVhGLz+5hv09PXS0NzE8uXLeWONE5V50aKFKEqEIL1zU1NT/q3ed955p+C3t99+G4DFixcHrlv/b++8807BPnDLqyQ/7PlzrFwLWpDFrRxGM6icsO/Nd/+I+e4fA4STiQJkkKBXapy89KHSQEP+usqBK4i5d4PdNkwWXgEwaM784xQ0fjAuAPrnr1iectrmluP/d7E5D6snKAaFV9ALm+9iAtP+xgtWgnLXv5u2XFQqXPvbVE75la61oDr2Bh+8L2EqY+biz8LyappmYOj7/Rn7K6FyLJgOk59MJqmqipFOZ9E0hVzWdJg6TcMwjLwWfE93VQyXdguFccG7t7eX6667DkmS+O1vf8tpp52WJ6yKonD00UezatUqPvCBD/Dqq69y880385WvfKWsOr73ve+xdetWTj75ZFatWlXw5EpNTQ1XXnklc+bM4ZOf/CTf/e53+cIXvlCQxoWqqjz88MM0NTXlv1u2bBl33HEHy5cvZ9u2bfzpT3/i+OOPz//+xBNP8Lvf/Q6AH/3oR/l7a+AQk/b2dj71qU/lLXYufvnLX/Lyyy+zePFiHn300QKLdVVVFRdffDGLFy/mhBNO4Oc//znXXHNN4JMZg4OD/OEPf+DUU0/Nf3fIIYdw3333sXLlSjZs2MB3vvMdfv/73weOnaIoBX2WJInly5dz++23c8wxx+T7fOKJJxbkc4PUwPi+0nU9PwdLlizhtdde49lnn+WEE04oqoEO04p70/T19eUFwAsuuICbb745r7UUQlBTU8Mpp5zCqaeemv/e7Y/7b280TJe+XXjhhTzyyCM88MADDAwMUFNTU1B3Npvl3nvvBeCiiy4q+O2Xv/wlr7zySn4Ok8lkvr3+OfzZz37GNddcw4wZMwDybuQXXnghf/u3f5tvl6IotLS0cO6553Luuefm65pIg2Xco0ZITqCUr331/yCE4Pjjj+MPq+5H13UkTCRk6hPNnHJiMyefeAq2baOqMqaZY1hOjsU6Bq26kZPPvhDT0jhkTjMZ0+LuVQ8gAV++7DIuOOccNFnkx+7QQxZz+y13cs55Z/Hmm2/wP6vup6tjkPPPv4D58+dRXZvMW1o0TWXGjAaamhowDJurv3olzz31R1paWgCBoqmoEedZnvRommeffZZzzjmHkZERslnHMrxr1y4y2Ux+BEZHRunTeonFopx++hkYZo61a9cya9Ysmma0EIvFmNXcyrq332UwNcKcg+bSUFtDe0s9kqaya1cHAG2t7SBkhCQhBQQebGtro6enh46OjoLvd+/eDUBra+uEPC7i8Ti1tbUMDAywe/fu/BofHh7Ouxy3tbWF5vf+5tYfZk2YLkzG4hNk1ahEeA1KL0kS9q61zt+LTwu1CHtjBIQJz17rqvcqjfvur1eQqWRMK+2r6wHjXumZquDq1l/seTQXxcbPvQ/rtjEIld5l9o+NV0mgqmo+eJ63TO88uVZeb/+C3tZ1A0UVeicVlhukBJzsnO8vKIdOTKbffoXBZNsU5gTob9Nk6ihlpfxzxHSs4f3M8upo7x0aMh69V5IUhJCwbXAjugV1zSVODhGafBTichAWvdcfRdevMaysjtKRysrVDIWlqXhDCQsjl0NTZWJRnWwmg4SNaRj58vxPu7jRUd25cz/ljoFfuzZB81qk334LlyRJ/OY3vyGVSrFs2bK8oOW/Q6MoCp/4xCcAJgRH8cI/nrfccgvgWH5dodQ/xueccw7V1dX09PTw6quv5n/3Hp6XXXYZzc3NEw61ww8/PG9xe+uttwoOZbfuxYsXFwiupXDzzTcD8PnPf55kMhmoAT366KNZvHgxuVyOp556KnAtH3fccZx66qkT1m08Hufqq68GnLEcHBwMtFBcdtllNDQ0FAiCtm0X9Hnt2rUFkUFd+CMJu38nk8m8sPvcc+PPnPjbXmofeS2h7v1CTdP47ne/W+ASKEmFrmVuHrc/fibRTS9JEh/96Eeprq4mk8lw3333TWjDqlWrGBwcJBqN8rGPfQwgr9Rz76R+/vOfJ5FIBAri3jl88skn822sra0FmHA32D/H3r8Lx0jkaaGMxNNPPpWPaPtv/3YTkWgCSdZB0rBsGcvOYoscYCPLjFkyNZIihTQW3MQwbSzZQNJStC49ht889iSZTJYjjziCT37sAv734Yd57/U32PLOm1RpClFVRdF0/vqvnXuZf3rpeb59/deZv6CVhhlVpNMpnn3yOda+9TpPP/2/NDTXYQoTRZepb0pyzic+hqQrxGuSGLaFJClkMiaZkT4+cNKxmMJA1jWSNXX8109+zqUXfoaenvHxamycwfyDDsE0JEZzvVx08cdZvnwZ8+fPR2Bh5FJ07dzMU4/eT++ODdREoL2ljpwwydkSo6kUALF4DEm2kCUTL9x16b6TPTIyUrBWXeEzFosVuEH659B9fmh4eDj/vZsXCt/h9tMt729uHpeuBq2XoHUU1KbJMjpBjKFXKPFGG/bW4e4Z78f93Wvx9J4ZluW8QSwYF6hcwc9bl4sgwcb9uNGLgyKfu/UFtdGlcYV8zsQz0p0Pv/Dsj8brHSs/zQoSNvy8iH/c/BHeve3ylud1V/avU3esvfTca7TwujlblhUo3AZZrb3fFbolO9GBXT7T5TllWcW2wbIc/gVkFEVDVfWCMfGOgZBsbCwUTcbGQkg2Qgq2zgbtEdfzR0hgCRtL2AiJgo8/T542S8U/yFJoOWHwWsCD9q53PZX6eNd4mAHKv87CeNMgGlLMqOVvr79/AJIY/2CL/KcY3+7NU5A/pE/l8OmlaGU+XYn5Lvfjr7sULQ7b0/42eSM2Txb7leXVL6RMJu9U3G3+EjEVrZC7kN0opV4NbjnR/aaCgvYWaXtQ/a4Qs3btWubMmZMvz582nXae7XDvU5bCO++8Q19fHwCf+9znit7Rcl2Rt23bxooVK4BCbfIxxxxT0AfvPLW2trJlyxb6+/sLynQtaB/5yEfKai84TOiaMZfFb33rW9x444353/xj4vZt27ZtgeN68ti7un7hzPubbdu8/vrr+X974Y5DELx99t9REkLw0EMPceedd/LKK6/Q1dVFakwY8GLnzp1Fia8XYb/Jspwf56VLlxZYurx5/O7BLryMgH8MY7EY5513Hrfccgt33nlngaszOO7EAGeffTbV1dX5sic7hy7OPPNM/v3f/51Vq1Zx7rnncuGFF3LSSSeF9k2IiZE+3T4pipIfn5aWFpYtW1byUAyiPwXMrgRvrHkTgPc2bODDn7wA0zQwDAMJUFQVVdUQjO/ZHTt3EE8m0GNRVE0jWVuDrus06fVks1lURcfCbZfMyMgI0WiUVCqFZVkYhoGiKMRiSZK1NWzv2E37zJmMDo/ylSuvYOWKpaxZtzbfxt6eXmY0tlBXV4cl2wwOp4ioGlbOJjeaZcumzTz68O+44ktfYvbcOVgymEKgaDr2Hj6uip2rYUyiV2ExlXPZn29Pnc1Bgqz7vV9ILrbWwsrM02ZPWV7GOWiNV9rXyZ7BLoLobjEh1ItidKmS9oaNQTGFYKm7zH6mP2j+vErLoPrC1nBQWS4dC9sbXsHVj6BrIZXCHZNSgZi8e5SQPead14I+TEO8kUpQKY8Ztq6n2oYDmBr25hj+xQivrrtNpRe+/9JRShNUDC4TaxgGqqpi2zbZbDav3S+mPZsqChgUQr0+AhmnXbt2AQ6j6zK7xRAkCAXBLRegu7u7rDzesr198rru+oVX16JrjFm7XXR2dgLkBfJy0NnZmT/wXcGmFNLpdOCacd0Kvb+5ZXsFobCx8fbZD2+fdV0vsGBceuml3H333QVp6+rq0DTn6aahoSEymQyjo6MFB/5khFdJkvIumv7AOH5XtqCna/yaWD8uuugibrnllnxgJreO7u7ufJTqiy66qKB9u3fvrngOvevuuOOO4zvf+Q7f/va3efTRR/P1tLe3c8opp3DRRRfxgQ98IN9HTdMmKAnd/iqKkl+Hs2bNyltSvGPgt/i4cxk0HpIkYSLYNeamWu6eHU2NkjUdAdQUNpG4S5MMJBRkWcWxFksYRo5Nmzbl73SqqsqmTZs4/PDDkSJJ0rk0tTV12LZNVSKOncuyfMVScoxbR2VF4fvf///be/Nwy8rqTvi3z3DvrSqqCoq5VLAokaGcIhIRYyJB0qCtxijKYEdjYbdP2gh0R2iTtj8ThS/4oDZo7KgkdpSET7E1rYmCYZRYIuCAgjJaFlBQIlRdarjDmfb3x6m179rrrPXud++zz7nn3Hp/z3Ofe+8577DeeU3vej+Gp556Cn91+cfwL//8dbzljW/Crmd24K7v344tv9iMD3z4L7FixQo0EKNSraLZamKiWgNacTL3s9pG40Zu4dT3++23H3bs2JEa10qlklin6vU6oihKyqf6KpUKVq1a1VN+FEWJVZHGmUco5vVnYRjCK80pciPn9VGdlkLJYpSlMkoDCTo0h3k6zZ04qw150rtol4KetO7KJ4H41SyrfFfdsg6exuIxuMLbBaItS8CmOUvnAr+Owy3W/HPN/ZgrK7T203dyX6PvKN5H1nM/FnhbfSxhcRynhFFt3va0Y8iCXN49oB/h36o/yAXFQfOZ/h4Gxkp49dmwrQko7w0O4sC0ytQ28aJwaYEXyl/4nEcHk31j0atZTCRIi+k6jOhQqdfrmJiYQLvdTgTXLG2qL3ibrA3N1dvaONFh+e53vxuf/OQne9JTGy1mxyqfH8JbtmxJ3VfNmo/yoJJCjsV09WsZ4TTfeuutPdZPjW4epZGPs9Ts0yEs55HL8kkuYjyfbBc9JVOpVPB3f/d3uPbaa1GtVnHRRRfhnHPOwbp161J0bdy4MfW8BzGckmni84vvJxbDJNtE6Szmgc8rEuqIYSS3w1e+8pU44ogj8Mgjj+Caa67BRRddBAC49tpr0Wq1cOihh+K0005TFQQAcMstt+Ckk05KjQH/zcGtFBdeeCHOOussfPWrX8Vtt92G22+/HVu3bsXVV1+Nq6++Gm9605vw+c9/HpOTkyqzyRlfuU4tBlHSYDGxMQuOct67N+KKK69I/l8+P4+7fvQT/N+vfxMPPPhL3Hjzbbjrhz/CxMpqNxLx3j2q0WigXq+j0WihVpvYq1gAmo0mOp3u8z+NRgOTk5OIogjr16/HzMwMllcm0Gq1UsFtnpmeRtSJ0WHP2XTabZxzzjmoVqtozMzidb93On75i4ewc+c0ds/sxhn//nRMrliO1l43qnbcWfBUQQWHH344fvzjH+Pxxx937jekIOPKoEqlgrVr12LHjh3Ytm1baqy5m+WePXswPd0NRNW937sg+K5cuRK7du1KytfOYq6co/p5Pdb5bVmCLGGEnzFy/5b7ojaPXNFXpYVOg9xP4zjuKgqNceFrjNLLfUDen+Rt0/Y4y6qXBWl91DwkrL01i7mX/aLllX3Lx9HiO1x8lRRweXvkfsMVYvIaCT/P01GW9TbyvUjOsUolSspItbVaSc4WrUwX+Hxux9nWaF52FEUp50xeH39X3MWzZtFq8YHauah9JvtTG3tOq1ScWfDpSrXlkQAAIABJREFUWxe/USY0XsdLUB8kUSVhMQT/MbvzGpAXpPWN43gg76i6MDk5iTiOsXz5cszNzaUOilEGBRu65557nOnyav94EKN77rkn2cRd95/KqpvXv2XLFu88XMC+9957k7o1YTlLe7l161b181qthkcffVStUys/q2/obhCAJEDVO9/5Tnzwgx/E+vXrew5+sgTyOrIOGYuZbLfbCeO/ZcsWs6/oLWSX6xcJyPJd17PPPhvAgpsw//vMM89MnmuhHwq8BHTHsKjWeu3atXjve9+LL33pS9i8eTPuuOOOxHX5a1/7Gq666ion00P1Uf/QvVf6Pks5SZZyiVoc4dBDunP73nt+lvpudmIZXvjyk/CB//HfccJLX4jnHL4/Zp95Amv2W4WdT21Ha2YO87v2YFm1jqjZRrPZ3qs0qKHT7golMzNzmJubQ6vVwu7duzE7O4tarYZarYZWexbVGhBVOti1axdm9sxiy+bHsem7d6LNxu2www/HmjVr0G63ccctN+PHd96Oa/7x7/HLLQ/iHf/xXDz3+CPA7/tHcQWVTvcHWIjke//995vPFTz55JPJ29PHHXdc8nkcx8n/FHVYA/9uw4YNqXUi82sKM56f0udlDPOeEdb6KoKsfY3v1STkpITkvT+SdhKUarVaj7DElQdltWOYcNFtjaU1J/JeJZLKDe1/raw8fJDVPj52Wh55VpHyTRPc8tZdprDFFc2LCZ91z9stlVM+GNc1FqAjCK9LHHzDHPZj1XQvjKyviyW8Vp/1AlSf9QIADjcZhle84hUAgDvuuMMp6OUVAjZs2JC44F177bWmUiFPP+XpS3om6Jvf/KZ3ngMOOCBhRMn11jq4s4RXCgLEQdrpf/u3f0v+f/GLX6zm58xJlpBEtD322GMAgJe85CVqX+3evTv17qkvY2AxZMDC/PnhD3+YRG21GFoX08CDkHBQJOEHHngAd911Fx544AH84Ac/AACcffbZPczTmjVrkjH8yle+Ulh45XmiqBsc7NOf/nTS3ptuuslLeKV5+OSTTyZ0A7arNEFq55OxjiK84qTu80533HEHHtmycF+3UakhrlRRnZzAuza+E//vJX+Bz376Stzw7X/F5od/gZ/e/ROgE2NuZhbT23dg165diKIqZmdnsXXrVkxP70yssitWrMAhhxyCWq2G2dlZzMzMoNGcQRw3UatVsHv3HnQ6wEEHHYaDD1qLRqOR0PHrX/86cYd/1sEH45mnn8bG896Bt7/zHDTjBlYduHKhPYgQxQshCQHglFNOAdC9v/z9739f7SceOI5H9I7jOPn/vvvuSymKtPzLli3DK17xitRYUv5NmzZhZmZGFV4p/xFHHJG8mTxo4bXMM8VHeKU5SHsMty5VVh6MysqD1b2B7kha9I4rY12m8Cq/z4JLeHXRlaePXUKqBUt4JfryuHy7hNcyYJ0xw0YQXgPyYokIr9mRg7VNTdPSyQWykKYbaY5Hxo0dYdlci9Gq225HvsjI/P4Gr18u2vRiXojenGpjBP0njtVDqBtNuQOKshzHbbRaDURRnGLY5UaibeqatrLIxl0/7ndRP67LfJHw+Mwzz6T6gbsQnXvuuVi2bBna7TYuuOCCHqaZuya1221s377di0mr1WrJUyNXX301vvvd76rpqF+efvrpzHkk+1Km5d/94R/+IYCuheQzn/lMT37r8H/Xu94FALj55pvx5WuvRTvuoINYjUq4ffv2lGsv749Nmzb1CLDtdhuzs7O44oorAACnnXYa9t9/f/Wgsdz9ZJ/zOUPjTQGLKB/9/NVf/VUqmmqPNUXUR23i1lBOW7VaxZvf/GasWrUKrVYLF198sbrfaPNftol/R/MujmOsW7cuCdh1zTXXJC7PGzZswEtf+tIeujqdDjZu3AigO4akhOB1cBesp59+OvV/s9nsmffcYjQ1NZV8RpBjQnS02228+tWvxrp16wAAF110UeoOGO+DLEYmoSeq4pxz356s2Qsv+C+I20AFVUzGbSBuI46A/Q45GL/z+tfjhFNPxdNbtuJHm+7Csw49AnPzHTz+62fwnvP/FCe++DXYM91EYz7Gjmd24KBD1mBi+QQ6zTbmZ+Yw/fQOzO6ewezuGdQrNeyeqeCJJ3Zhfg/w+JZf4bu33o75RhPf+NZ1eGLbQsC0Rx7ajOv/79dx34/vRnMFcOY7z8JRzz8G7VaEerwMzV1s3967x7b3/gDAq171quR+8+WXX97j8thsNnHllVcCAE4++WQcddRRqfn2hje8AStXrkQcx/jYxz6WGv84jjE9PY2rrroKAPD7v//7WLFiRWq9nXXWWahWq9i1axf+5m/+pkdg+OUvf5l4OZBnAJ9X2hnL5wr9cIWOj/DDf3j0U25R0txDtXUm5x0/k+Tfct3GcYz6iW9D/cS3JZ/xNcLPPW1uW/sD78NWq5Uqg6LuWnwN70O+/ni5vQq0Cih6Lr3s0On0Xs+x9i5JOz9jeFtkP9P/PK8cQ4le/qn3TJRusTzQkXbnNBVhVvBk/AWJTqeFOG6nvq9UgEpF90oAkIpWG7c7Cz8GL+RaL9a4m/3VifcqxKJ09FvjDOXRYItEhnXxLUmdBm/pajcvW7aTr3X6X+tbi8+RvEZWGp5Og2xXBzFQcXjTGf1hoSeKMYuCbH2eF3lpAtJzJzWujKYKouSnKMZKePXRzgyjviLauKUMiiYsAwT1i06nk9yhozsk1kbhC3K/u+666xI31ihKW6UPO+wwfOQjHwEAfOtb38JrX/tafPe7300EljiOcf/99+PKK6/ECSecgG9961ve9X/gAx/AUUcdhVarhTe+8Y248sorE1c/oCtUf/vb38bGjRtx6qmn9tVWahv9nHLKKTjzzDMBABdeeCE++MEP4oknnkiUBI8++ig+//nP4z3veU/SzjiOcd555yV3Xc/buBF/+Rd/ga2PPZasi5mZGXznO9/BBRdckPQvd1cnrF69Gueccw6++tWvJn35wAMP4A/+4A9w//33o1qt4oMf/CAAfY1Z2myNuSXaTzvtNADdd07/9m//NmFmtm3bhosuuggf//jHceCBByZ5OQPMy5X1ySBLPP3q1auT+fOVr3wFZ511Fn76058maaanp3H99dfjbW97215LX5S4FMp20DhIpv6cc84B0LWGk/DKhQbOCEdRhPPOOy8ReDdu3IgPfehDePTRR5N0e/bswS233ILzzz8fGzZsSNFx5pln4j3veQ+uu+665E4k0BVyP/rRj+KWW24BAJx++unJeMm9kcaS2vqJT3wCURRh06ZNOOOMM7Bp06akfbt27cJtt92Gd73rXbjvvvsyhR6gu2Y//OEPA+iu7de//vW4/fbbU8zMgw8+iCuuuAKXXnop5ieAJ6efwtZtWxG3Ozhg5Sr88Ie3YfvML3DmuW/AZB049pj1aLZmMVGr4ZhjjkGj0cCWLVuStm3evBkTK5Zh+crlaHbaePbaZ2HduiOx6bbb8KqTXg6w/fD/+ciH8LwNR+OUM07Fc448Ao1Ws+epiw0bNmC//fbD6aef3jMParVaMqeuv/56XHjhhUnwrccffxzveMc7cM8996BareKSSy7p6acDDjgAF198MQDgqquuwiWXXJIEWHrwwQdx5plnYtu2bVixYkWyBjmOPvroRIn14Q9/GJ/73OcSy/KPf/xjvOUtb8Hs7CwOPfRQnH/++Snas85sudYthtelUOonT7VaVWNi8DRc6PX9kWtQCllWfdwa5srLr0f4QNLGPwN6GXaXsplQhBfidLi8eKSCRAp08qdSqaBWq6WuF2jeZnL/lrBcaTmtRXhRn7PLUm4MGz60LjYkTTLQmFzTfNyyyvRt6yj3z1LHWAVs6ldwyQtrMg6bjlFHtVpFs9nE/Pw86vXl2Rk8QQc5BUqhu3x5N4nOzl+h9Ys70HlqM956VAdXTNTw8MMP4+ijn4eDVq3A1Mr9EVWquPHGG3HorgfQ3noPNh4bYc8fvRZ/8ffX4dZbb8Wpp56KiXoNK1etxs6dO1OCeutn/4rZG54G4hgxgObP7kroB4DWY/egdd9NAIDlAL76Z2/F2y/5e9yz+QlcfPHFuPjii7H//vuj0+lg586dSblHHX4g5m64MvmfXJ8BoLNnB+ZuTAeTojrbOx5L/o/jGM2f34T24/ciAnDF216Mua0/xzc23YPLL78cl19+OVatWoX5+XnMz88DAF6w7vCesv/x/DNw3l/HuPV7d+Gjl30UH73so1i1fApRFGHnzFyyJmrVCuZuuBITv/vehQ290WWSLzrzVfjf130f5557LibrNUxO1LBzz1xC9xWXXYIN05swd+MmaIhnppM+bf78JrS3LtxJ7uzoKiJav/g+mnd+CbWXdd/gveCCC/C1f/g8HnjsSbz3ve/F+973J1i5bCqh+V1n/wGatRX44he/iHhmB+Zv/ORCdOooSpVLdEZRhMYd/1/qu3nWX9VnvQDnnXcepqen8aEPfQjf+MY38I1vfAPLJuuoVSrYNTufpG3vfBLR3rFv3Xcz2o8vPK8SYW+whjhGtPJgTPzmWcmaeMOh07ioVk0UH5VKhDc9exZzN34S9WNPQXR4V4kQP/EzNO+7GQBwzfln4I8u247v/OQhXHbZZbjsssuwatUqVCqV1Nu6tWoF8zd9CohjIIqw5/GH8IVvfxtf+MIXAACrVq5E3G5i18xcQusbX/lCnH3EbszdcCVqL3sr6gccnoxV+4mfY5bN4yiK8Du1GJ/+b+/CBR+/Gps2bcJrXvMaTNZrmJqo45k9CxF1//jkwzD/xFrUjz0FlbULQnXzZzdg7sbppJ8A4LxjgT1/9Fr85ReuT63Z/ZZNYNfMPJot5p7/y1vwJ296K36+p4r77vsZfuN5z0a93a238dRmdDb9L1QqwGQcYWZ2FvFLz8a2J7vP5Uw8+j1Un7gXB8/OoP3oBParT6JareCHdz+MN33oKmjY8sRmvH3j25P/v37Ju/Gat/5H4LCuO3f78XsRz3U9ADo7tqJ5818vZI4iTP7ue/GWt7wF9913Hy699FJ87nOfw1VXXYVVy6eS/qpVK/jEn/1nvPzlXRfqeNeTaN21EGX7j19Uw89f8zL8ww134dJLL8Vll12G/fbbL/FCWT5Zx9/96Vtx+C/+GY2HmTfNyoNRP/FtuOyyy7B582bccMMNuOCCC/D+P/2vmKrXkvm8ZtVyfPl/XYbVq1d327T1HrTvv6V7FxTozieGid99796PYzTv/BLiXb9O2svTVtZuQO3YU7p9s/NJtO76cqpvOOoveysqq7p35uV6SrKwNpGSLZmfe+d8gjhG7dhTUHv2CxFFEVqP/TRZTxLV556I2lHdvufBerQIvZrwyv8mYc0SlCiSbR5ehKfVrJZamgWLlU5rEfjkp32OK6wp2JIG674sF9T5Z9rnvCwShnkaPo5F7oj6tFsK7IsFk9YRYn2lMkcqv7T+8+nbPP2vrduA4WCshFcfWBuxC7RhyMNCK1t+3mGm+KJ1l41haIA43aTh6j6vkB2lUeaP425gFArwxA/+TqeD5cuXJy5AGiOglc+/a9z55eT0Xf+sg/GNS/8TPn7tzfjB/Y9g+64ZtKa7b6pKV9D3veUU/PuTX4ir/nkTbr37ITz662lMT09j1apVWL9+PV555H543UkbcOKxRyTlR0r9Es89bA1u+Z/vw1e+cze+9p27cfejO/D000+jWq3iyMMPxgufeyhO/83jcMZvHu/oS/Z3utHOA2b51AS++Gd/iOvu/Dmu/vad+MGDj+HpnTNYuXIlnv/85+Pk567Cma/+jZ58B+2/H77+hb/G9Xc/gmv+8R9x5/c24ddPPQ0AOPzAVTj+yMPweyceh9edtKEr/ClzcP/9luPGj/8JPvHlm/H1TT/F1qemccDqlTj5t34b73//+/GyY5+L5l7G1JrBfA44jp+EyTnggANw/eV/jI9ecwP+5fZ78cTTO1GrVvBbLzwK7/x3L8fb/tN/wXs+9D9TPZnUrYwfdztKfZ4qoYv3v//9OON3TsKnLv3vuO0nD+OJ7TsRI8bRzz4YL1r/LPz+K1/UFQSTsvQyEUUAq7NWq2HNyuU47WXH4l9u7zLnv/Pi5+FZB61OaKxSAClG14GrV+CfPnIevnXnz/Hlm36Iux54FE/t7Ao+a9euxfHPXoPTfmM9XnfS8am2X/aeN+KmB3Zg0wPb8NBDD+FX27ZhrtHE4WtW4SVHPxtnn3oC3nDyCxf6YO9e2jP/9woG9Pk5p/8WTnnH+/GpT30KN954Ix7Z/DCarRbWHX4gjj/yMLz+lS/E859DwbuMPVn0/flvfjXe/F8/is985jO45ZZbsOUXD+GZ3XNYuXwSRx1+EH7rRUfhdSdtwMuOORKTK1fiuPXH49Ybb8K//uu9aO0VbicmJtButbBndgarVq7CRH0Sy6eW4Yhn7d91Tf7Fw9jxzDNYc+AaxEAiRHTarR76LERRhFangxoxWq4tmwkRf/7nf46XH9TEZ7/8Tdx53xZM757F2gNX4eQXHIX//Kbfxgm//Xus3yOqLPnvUxe8Fb934nH439fdjp8+8jR27d6DI444AqeccBzed8aLcdTag9R5H0URJicn8U//9E/42//2Dlxz0w/w8y2/wnyzifVrD8K/O/FYnP/mV+PwFxwnMyZtkEKpq73ptP7XRvjajNmeHKcT9bgPJumiqCc9CZJAWmiJ43hhvUcR2r+8E+1f3ompU/8k4SUoD0UMJ2HZFfGYwKOx07lI9NL+lsUwc8aeW3b5fV3+E0XpzzudDlqtFiYmainLlsYLuayIXCgja64UDiV/wPPxQFkaZN3SY4f/5u3lV1x4+dxqTuDp+uWxrHOE08HHQQpJWeVSurQCwl2WdJvVhLjI081Tzi0AuZQtGq1aGg65pqy6yPtKg1zfGrS8mkKKPu/XY9C3DKtNqTH2qM+ad77wVdL0i2icNAWNRsMgNh16nZCnbXxT12G949YbMj1v3RY92WVZtBaJHGe0z5qHhtDurtu+E0flWIuGH37yc52O3sOzDJSpGe13k+AHMIFrjV0MkpaXPlfriqDSGXl0wTHHHINHHnkEn/3sZ5N7t1Z7XLRy5kcyN4OyBrhocpXDaaT0nN4idKj9rzAiWjRa+p8ObqkkAvR3LnmAM5eVxpeJzjtORCPPr91L5n/LtLysKOreD63VJ9FsNBDFFdSiKq7++3/A9PbtWL/uedi85UGc+JsnYPWaA/Ds5zwXiGvY88x2HHDAAZifn+9GDL7jDpx88slot5qYnp5Gs9HCXT/8EdasWYPnHLkOa9euxcr9l6HVamDFqhWYmd290BfoZaxd8OnzLMaa9gSN4dOEi7LAy/TZ7yh9FC0ER5JvjvrCZ2+Qc53yaHunXNuaoKD1M601/u6nqz3WPlEWUykFk/ScqKTm1de//nWcdtppmJys9wSoykODdRb3u28PAnLP4H/Lfb0ofM4Da7yz7kFq+WW5CSrZZxqH7x1FH+HVakcUL5x3xJOXcWWsLPiOPfFMPUoaoxlWf1jCqw/v5VtHqlyffdpRt2tcNUxMTBRaTEvO8jpsDGrzLVMQHnU0Gg3UarXUwT7syMgSo37AWiDX6nGETz9zQYYfjC7NtCmQD3iMrcAwZaBMBUoe+NRXZl9yqxMJM0WZxxTj2W4hirveFlP7TeHcd74de/bswf/54v/BgQccjOkduzC1bDXu+v6P0GxFmNv1a+zYsQPPf/7zcffdd2Nubg5PPflrHLpqJbY88hh+9NOf4G3/4e044qj1ePa6I9FstDFfaWByxQTmm3OoxJ2E7WtFfu9xan9LocjHqiEVF1q5Vt28nmHsg7KuOI6Tt3g1+mR/AO53g4HuPKjVaqqlhu8tXIjWgvtQn/Mfni4ryJD83OoPaR2U6X3HRQuiJxWDnIxqtYpTTjkFK1euRLM576RT+05ro1SuLubZSkoKlwWYgwd/KpsOwqic3f0qSspClsU9D/IaHsaJ79sXMV7Cq6ElimJ+WPEM/haOOI5RrdbBLanpDc0kKvXfwoac37rCrZZSG+oDfojSAdEvKCKdXOzkGsqZi+7GwPKyfFEUodVacPm0LEYUdMHVRvl/FjPQo7l0MHnWhi2Zk6IHr491oxupuTfoh2a5ltp0Xq6mued5LfrUz7tfJnWxDD35sw4Gy+1MK0cyjpz50dJbY0eQjC0XjDSaJNOrfa7NLVkWt9BImnh6qw2u8lqtFqIo/XC7zC+tWDKqpozwSvvgwlwEgBhy2kr3Q61t9FnWeuFuljI9ZzKJRs3lzzV+nM4OYkRVoF6toNGaBSrA8pUTePvGt2N+fh733HMPomoFtYkqNm95EIcftBZHPvdg1OorcMyxL8Lq1atRrVax9uiD8durV+PsVivZt9qdGVRq3dXabu4N8hbpe5rWV5rlTraJ9t3JyUnMz88n7eSWctlm3j/0OQln1v4o1wsfAz42Gt08H69XjpeVh3sC8HHvdDqo1+s90UVlezWBk6yf1h1JXg6VRZYfucf2uBCLPYuXxX9zIVu60GrryNrbrX2Hf8b7TirQJB0LfU71tbBixTK0281UejlOVIbrzJR9yj/PgtYm7XOfsrU+yxK6fT7nNMmovHwuJ3lovNGNzpqUEaUyJmWm6nYpEHj+qMunUWr1fONFpf7uusRHVAgrU0PWPgwsnEEJHR2pONk7tspe4YKbn5ENjPd2X/bcc/GJPojivf3XiT3t1ToqrAwf3qlflOl5w+Fj9c2D8RJeA0xIZmXQ0AXXCHB41WsacQDJG7CjitTBNCJuLEX6q6w50u9YuQQ4ghWCnis2LAHQl14SWl3PEviUY6XJqyTwHRMusAJpC1BZsBhBTjYX+jn9mgBpCeUEi36enoQC19pz9YMVPTTlJjhRxURlAie98iS09gqkLznhJZiqTqJSqaBer2FmZhZTU1PodDrY097Zc1d+WPjVr36F5zznOZlCgBwXzixmwdozisw1bexl/1vlVioVtFot1Ov1lACd3Dc2rJyuun3o5UKR/G21zbcu13rR2pC1PlzI2tc0C5dss4uOYcE6O/hetdhnc174KPaKlgsMhyd0nZ39nHUBaQxacB0nBOF1iYBrsMh11H2Ht5z6tCc+LHBGhW9e1Wo1eX9usd2FNfC+5dr/xdxEijAT1Pf99nG/jIxmBZDlUhrpDkmfy/7nllMXMyiRdY/LYoCLaGVdzHSWcCfTciGeC7JlMUJ8jNJ0p/cTLjxYzDhX+PA3k/neRG+9Ssh9Qht7md7qZ6m1JqtXaj1UW+i0G+hEQKUONFoz2G/1FObm5lCr1TDbmUe0DGhEXWttJa4kT5YMmyFbs2YNarVapvAsrRt54LMu8pQl/7eUVBI0TjS+vM1W2/oRXmlfkEGX+G8OqRjwQV7h1edz3zp4fhefoFnaR0F4laB1MApXjvKCW6/LtHr1s+7zQs77ss66gDR4P+/rCoCxCtg039QDNlkXgYsxktbm4XdPSVuYvm4pVt0xs7fLcvnmJC0lGpPnI9D6Mum6AOKaT+6ATb51c/TLXLmY4EFAzhE+V2js2u2mwQRZQcP6szBwWMEqLGh1a3OMmApuqddc/qxysw48KaRwWE9VFLGWDAKWdYWUOvSbPuMBY4BexsEl3ElBneZc73zvpPYTGjfai4gmydxqzBd305TulGTdlK6n3J1S9hUJ774KJK3sOI67UYVZG6jdGuJowRuA182vrMg2SjdPbb/k0Fyw88LluitdX/MKQ5I2TbmUBT7f+Pzia9IKaiQZN16vz11T2T5tLdG85rED+HqxFAVUpgyeR59lKet4m6SHkqvdvE7LFXrhXNEVR3IeWGcqKcl4XlIaameFtieVqeTp99zrRyB35ZXukfYem04j21CNKuo+6FKem8Fy9qbtcWkvic0pqrQlowXNDSnA++xR7vO+v6t4LriUWBLyjFd5VqMLK/C7f+yzHnxcd314c6KJPk+1L+dSnKyHgE2LDkvLOUrIK5C40gxCwBsnZUq/kH1IjPViYlBzl9rmu/m60mRpk33bkLetZSoJLEjmlwtbnLmVfSBp0+jrdDoJY055uCeEtTe0Wi32NEc6+q8PLLdQYszI6lqpVNBoNJL2aYJRHssWz0N1R1GUstLw9kVRhI6IBJz0O90rrlS7kdY7MfZeCjNhXZPQaMui34d5IbiYORlELA8dHFzpUGQtcIGOW+a5AMrL9XUZ523JUhTEce+1F5qHzWYzmYOyvKL7hlyvUvh20akJMHnBLZJyHfqUqyll5Hyiv4ehFO53Dx51XmMQ/GTRssqiRe45fD27znQXRpnfHib2tX4IwmuJ8GUuFhM+G4QPU5MV8KIohiEgjBIkMzMoN29fDKrPfZhcL83hgIRXX8E5bx15IRlDYjhdWl5pIdLo07S9vgyJtNbyvD7gdGlWoziOMT8/j5UrV6YC6mjvOvvQ60rLLWRScbSXIpa2G7wm7nRQ3RtwKYr39kVcQfeRV7tunz4ahPCaZ51peXzo7tc1U1PGELSgJNwq7SqTz3+XkBtFUerpGr6n0N+yLCls6vPHhrSe9rPXL4ZAYwmvQFoY18ZKE3DLpLuI0DPqvEaZwqtl7cuDMlyyLSWrpoT1xSiO3WKg3/Uwbhgrt+FGYy4hNj1QlpuTnwtrGsXdhtMLM3/dFmPuw6Sn09iaVKuvfGExUT5R0DgDbtHOrUHyPmJZcAnkqjtHzjXiI1iRuwy1TbMwaREcFwucVjl21G8uF0I57nycObMo65F9w600vhYDTquVLktAyHLFla6GeeArhHP6ZJ9r80crL2VlNNwr5Rhzd0OCNdaWVZYzuZwemgfUf1wo4G6urv2G2qIJBJaQYO2v1h7MrXLc1ZgEbdeap7ZR/0shSRNmpIDAhT1JkxTyeFtcrtdULrXJYnC1dcnp4W6+lFfu4T6u7Lwsqx+pTKnY0PqO1yf7Wetz3j7snD+RAAAgAElEQVRi1F3PC7nOaNlWmss87gDvQzmXs84hGlc+76gtfL3yelzMrbbv+bRVS5NXKC/7fJew9nbX50Dv9Rc5d/oFv4agrS/ZBk6HC1p+V9l5wNnHlLLIs0jtqpAPv5SLxgL8Wp68rvT9zOM4ymd99n1rNbX3Ga5Ced9mLRPhndclgnFSJhB8NXr9aNfK1EIG5Ae3QsjPpUVBS8fTyzQWw0xlWp8PYy6QwDFIi3iRw1Prcxc0RsnVhxaDygVFjUEC9DvGkm5eXqVSSVxQi+wNXKjxhby3x+nhNPP0cRz3PKlEAgm1g4MLUVJwIljrhf/Py/e5VsCZbksAKrJ2uICVBS4YW32aRZM1B31dlV196pM3j0t0Vjp5H9p3v7NA64WPtbYe815DsRQYGq3y76K8y7D2cl/QGpfjz69YFF0/fN+t1WqJ0oi+LwPaOOSdX4MCb/OojPli98mgkZpfS6ipQXgdMWga4XGAr/CqMb0+eX0suwGDAxc0XQKlDzNuCa+aVcnSimtWk0Fh0HOuCAMomZEsZiCvsOsSXrVy+Jhq84NblTS6KF8ZTKEPXJp+rSxNIJQ0Swu1VPhYwqtLeSNp9ZkrPn1RtJ9980sFiwtWH7jarT3t4qKX1+OLPOldtPOy+BnI5xP/zpc2mZfXwxVMRdrssgDlmQc+9fF6RwHW3JXruUi5NCbVahXz8/OYmppKvDFcfZ4HWUrJxe7nxa5fwtpnlgpS++sSEtTH1m04DSs6n0vrWL7bsF856bIkI0MMUL1eV9Nw2IyMXXcU6UEbioBcEF3MR6PRwNTUFKanp7H//vuj2Wyi2WxiYmIi5VKmtYmDDuMoilKuZb6uo3mjLMt2aGl8rWSWUEcayHq93hPFUrNy+NRdhiZcK4vGST5ZoWmmeV5pFZAHtE/fyj4k7S2li6LeCJgc1rhbjJoPTTzvoBQr0qrCGR/+t6+FyFIcWUIVH2MeXVhaJSgaMc9Ln1Mdcm7w/8mNWdPIS/dK/hnvJykAyDmRp2/43T7JyEqlieYuLoNgafmjqDdyrcXAchdWGidtzlKbpYJAc8WVa8QltPDvNCWEFklatkvSxOuQ7r98LLQ+pzbKuSKDv3AhzqJNzp0s+lzgdWtr11WOXG/avONzR7t3ytukXb1x7YME3hfc1bnT6aS8NvL2jQV5rsuzsqhA53OWD6NMeX7w9tG69jnjfc+WQfPz0m0Y2DvHXC6sxrnpyz9l0jSgNvP579rbLFrkWGa12+dGX4rfiPXvusTr57o1TsN2G+Z9U6/XCzFOwfI6YqD7fKOOrMOY0tTrdczPz6fcRVatWoX5+flUwIwsEJO+GH3Tj1CiMXsSix1heJAoW9NL992y+nQxMEitNpWrCYE+zHE/ddKByw9eHrwjD/MQx3HCCPO28Cc3rOjEmnVqsZWv/F6kxshoig1N8eMC738XHZpyomz4KM3yQs7pvP1jYZDrUatrmHPRtdZ9glu5oOVzRXnuB3yP2ZdAwvqg+jUgYKljSQiveQO3jCq4JWMcNrQsOokZve+++3DEEUdgamoKjUYDW7duxUEHHYSJiYme+4RWeTLA0SBgabOLaEB5XqlN5nXEcdwTFGRU4LKkapAWKWk5oHIs4cNSZPA7f5ZVxmWJGDSGsV753C/6PEkeyPK1OvsVmvn7r/R8jQzEw8eaBEUuSOfpC2uOFLlTqpUjwec6Xz9k9fSlm98f9Zln1t1bqlNrK5Xt05/ybjK3sLu8HqxzmpfFXSj5uMiAR7IMi84swd9qt8+ctuaBS3C05pd2LkhlrbTkWrTye5RFgidRvdKiXrRMF7jwmncdDhtlnjG0n40Dn7evIsujRMOwrjIFjJnbcLM5nxCbPsTSrrALJvperT39nd9tuDhk3Tzib7+CEc/r575oWTV0wYGnmZiYwO7duxHHMSYmJlCtVrFt2zYccsghmXmJRldbOIMmGY5++qkIeB15lSNp5sXtPs4tiFq7uZugRZ8FzpBJxsPl3mKUZtTR6+JMDBD/zQVTFyOpWeMlTZYwzPuK00MMNReWeLmSiZB9I5lRzS1Tc2Msw3LEBTVOSxGXuvTe2CsES0HUsibR59J9nAuUgO42rM1t/sOZWU6npI2Xx8vUgjdxN+A4jnusvppVVOsLLdJotVpNCVyynzisPuftrFQqKSFd0mEJ7S5GS9Itx6qIlY4s71LI0SJTAzCVEkQP/1xz/6XvtP4geug7ag93L7bcz3m5/axXTdlDZUphjI+1VZY1Xj51c3CvAGufl4Jwv0oprdyyzmxr78viLbR0/fC+WeXwPUcD59WK7OWSjoSH8HD/HEYfWONRlqEpndfmsTiv3V+7LaWT23NQnhtyTaXWYYmuu3nL6rdu64z3QdFow6PvnxowUqjVamg2mwkzMj09vdgkLWnwO0f9ougB6QNihPkPbda+ruF5tdGuA5LT0A9z4IO8lrSyMCqKx6Lt5gw6WdcsIUAe+ladPkKkD7TyNWGez69+wT0xisCiwVJClAEuEJa1R1G5vPw8eelvmjc9976GvE45uHJmWPVpdWkCbcDioN1uo9FoFF73AQH7IoLbcIA3br31Vhx99NFYtWoVoihCo9HAunXrhlL3YrpjDKNu7jIlmTDS0lvWv7wa8jLdTjld9JuXrzFrLiY7C9KVUAa98cnL6dCsWL5l9Xu3zCqX06dhVK4V9DuPuODjq+AgkJVP81SgsuVvbuG0kDU3ZX3a2pS0ULosSK8Amuc+4FZuy1OB096vpZHPfSlw5qFX5rPK0qzMAHo8OqjPLKGXf1dmDAVfwd2nz8t0n7XmprS2DgKj6EI5Kryi5ho+DrFO+sUozolhY1Tm4Lhj6a+WgNJw/PHHY+3atZiamgLgF8E3oD+02210Op1StLKDtrxy5pEHo8jD2OW5/+sS7rglL8vy2m+fFAlcVAZG5fAv4wDmlnIOGsM8cyjLnc3Vb5Y1yjV3yrJgFbljJZFFR1lWWF4PrfUy+qBfl0ZN8SfnVRFhu0wMk2G15maZHj0B/UG6ygcEBGRjrO68tlqNmB++C1aTtNZ+gWG1o1JaT8ZEA4gN3evGVt79D5/60nksIahcDbS2GUvGJIqi5M4YsBC5U0vP4dPufl1P87qZ2entJyJ8+tx1X0daPrJo7e9+S9wztt269Xtj8r6tdteDPreEE+1ek2tcsu4ZaXk0+Iw90ZK6s8JcYKlNLktXHqZF61cXrZwWnk/ra/65ZqG06iPLEFcOyLuNFp08D+9LSpfl/ivp4POJl8EVbJagabkC09/SMszTa5GGtfqob7mlP4/Qy/uJ2sbvdLrGXrM+a+2Wbdb6S5uzct1LumW/yM8tq6rsG0m7a3+R+S3hVdtDXfT57qG8/3ysnNbctOJYaOuJzy2Ndg55N1zOCT6e/ShT+NjIMyJPGQQtbxmCX5492Dc95bHarSnq+oVkLZNzKO793DUWPvPfWreAe54XmQOyvnSZ+vva3e/s8zuLrnQ5Ot8sZY+8fGMqL0ueytvxn2vJOFSMdou7z8mZ65He1bYi/DLtW/vcUznUQXSI69+Pj2CeB3RIjaLVkx+krsvp9D8F6Gm1WiOlBR4V9xaLDsmQLja4IJMFPkfk5wSrz139oTHyEj7u1kXHXnPzKxrEYJTg4+ZEQYtkMCQg/S4nhxT+y4CvIsfVJu4xwIVELb2Pu66cZ1Jg8IGkCeh9qzVPORIuhSBXgGjr3DWGec+oImuPvCystQf09rUWSK5sWHRlwRXkh1DmfuIa+8XyKuEYlbO4TBQRhEcZo8iLDgtleMyMA0ZtHY5tb1PnaYdPHo32uIEYmFES9Dja7TZ2796Ne++915mOrFONRiN5LmeQjMRSwyhsHoSi683SfmpCLTGCFsh1cbEOEK0PXFr3UYHlPigtx1mo1+upqMvWWHIMSnjNa9WUNGmCqE+dEjQXm81mz+d55qpFk287+VmZld4SwLkSxkqzGHtS0bXF2zQI8KsTHP3MzUFBejzwuTlKdI47aD/1WYcB44PF2vv2dYyV23Cj0UgRm3VwuV2Ae58MceWxNWV2uHs9PWCF3ZbuRQuMr+XirNch3cYsFDH1c/qI6eXBO8iaOjk5aVoGesdNf75nULoVq+408tZdVjk2uLWVo1/B0aV512C5duehgzO8mutwFEVJVGu6Yy0Z5yyXJ+k26YuyhE5Jh+t5Fssa7VsHp1Wz9sm0nA4rvXQj1uiTT63IPpfjyiHnjgz0pc0JzijQHqnNZemqyNPR9QSrv13t0fqPf87pJ2u01Xbf8ZbtlnVJWrQ6NZpleZJ+qxxNeJVla/A5u3z2JVKScKuwbz8SuDCuuZpb+XhefkZT32l7GV932pUCF53WvHOd7ZZXlnZuaOun6F5UJqy9wWftWXuCqw4LPnn77qeKsRaEiyeH5U5uIS+v51OO73z0KYsj77hoSvAs2LKB33NeVt0+8Lk1yOd8BXqGjsOzVHMTLzNQZxHwc4zPl33ObRgoRyvYW4Y+IYaxkY+TJk4e9qRNpIk5TkqRccGwGQqfw6XfOcs3MVkWDwKjMVS+DERRJU3Z63EQ65szoD4WOEtQHSR8xknr836VB7I87XPt/mZWOb5peMCwvC6+1pzVBA5XXo3GrH1EE24lHUXgI6xZn3NarPvxElYfcu8AeprL9x6y1X+uftWUD672ueouE/viGV2W62ORvD6KgdQYj/j4jCq/WpagHlAuyuarxlZ4pYMnT3RSmV87qKz9YhgLYpwWGp+InNmhw4G04wHloVRtrwfyCq9FaLLy8/tilpbZ9w5YXoZlUNaHQYyfZm3QyqZ9UrrmD1spx8dCs07xNkiGv4jQzYU9WRbdt5fziNJq9GXVxdul1euLrLXnq6zhdEgLlktozBK2iiCvtdVlgaT2kHVbc8PWLMudTgf1ej3VPvrccpXl5chAR1m0AgtWslqtZgrhPn1bJn9ACpV97apOWfeGi/CDeYXXeMRjtowqvzpqdzMDuvBVsvtirN2Gs7XQLuHJYoTyClzphZIVZbebLq8WPtvSVcQFo6hFCuge4vV6HY1GIzmUuZWBH9TSzarXrclyo853oBdTMIyP27AEMWC+c8LHklXWBiMZeW5BtRhRaZ3iDCZZSHj6LObb9XcRLBWNrry/yBkql6WQp6N1TOtcjhWvxxUVV1rAOOReagUFc5Uh6ed5rHZZn3Oh1jUHqd0UeVmWw62yErQv8veLKU+9Xk8EUNkPvC4JbR/ggprVp7pytzc6NJWv1U/paa5whUHW/uWj7OH7iiV0yjqIfpfVXUvvOtddCgOfOvh3eZlvuddy9PvsUtYYaenl3/3ClzeRSvSyguXxoJLaHC/CY6XmhMhObbHcRTlksCBL+WahSN/kVXrkVVT1C781Y3kAledVlq6PeX5A3yss+LoN0z7ryrOYkGNP83RiYmLfcxsOKA+SkczCsmXL0G63sXz5crRaLbTb7WRCUsTRcWbwlyI4g+c6OLK0w4Okz/p80LTk1YqPMyxFAmArRLS+8WUQ+b146740F+iI8XKNuUtYywtXFF2qh9LkmYdc4SIFKfrR7vRqe6cmyFuCdpE+8WEkOW2cWXa5RGtCcpkeOUUtYJowmlVHnn4t8hySdV82a18qQp8PeD8tlb2vCKj/pSJqFCDPc1qPg3qNotVqOZVvAQEWyl4zQXgNAGA/Z2Gh0+lg27ZtWLlyJSYnJ5MyZmdnMTU1ldyDDRgtjKPwSi6eg0Re4XVUmJeisJhqTYHF3zKVFimfwCE+lit+95AH4bHKLft5Am08aQ8jAZYERt+5SP0oLZWEKEq7cdP+K4U7ilrbbrdTQaB42/vtBx9rnxREfQVALqjz/iwDRQS3vEKZywptgcY9Kx2BzzEZB6DT6aDVapnnqWaxLQN5hfylCJqvzWYTtdroscvS6k7zKMsLpSgmJiacgegCAiyUbWkfK7fhZrOpEjso94M08rqFuu5WVHpcW3whte9JbY5Ipjxtp9NS01ntsPq2Wq1iZmYGtVot15MPnPb5+Xls374dBx98MOI4Tr0R6WaGrTnroqO4O/jooD/X5DwuaFZ+F8PH51qZ+wpn6ImJz8tIEO2uuapZw3yQ1R/Dgst9UEsHuN0xtfHmjLx8M5cLEtxNmFsduZsxj9ZK+WQbZBqtDRKJ2x27pqC1W1NWSEHbmi9amTQ3+X1aLpBbc0sKRtzyKi0oXFmg9Yl2PvDP+LjwvvWxovO+0c4bGf1Z0peOoK+7fkvliLZuebs0Oqxx5XVpn/PveP9zxQ3PK8vhFnzZn3zN8LJ4u3kZeSDv4foK5FYfWOkHrdS05kfeyLpFINe9tccNwqNMzqk8bc1SqPC9mP537btWOVn08dgzWedsURTh830U0YOCz56Tos+IOi1dgK31UNa69OlneT767rXa+g5uw/sgFlPx0Gg0MDk5WZgGYmQPOeSQHoZlMax+Af0jj6UhD+RGyb0EfNyXgpbYD9qhowkU/HsCMS8W05I1Tlq5UiAuAkuY4lZUH0ZLY24lSKmixQEoQrekGUAhi4oUmMky46OkkYIvFxAJvH/5HJCePJJZlsKb5Qot6bDuHuZRcFjg+0o/rpFy3mWNWZayxIVBWdk4BrW3c+QNkDYMjPrZ4dtPfN3KdZellO637rIw6mOxVDAu/RyE1zHGYm7wpPUu6h5MwmsULdyZ4gd4HhfmgNGAtFaUBZc2OY9wMy6b8mJBEwbkZ1KII8iAWhxcmLGYc6tcSwD03RssKwDNUV/G37LI8rwU1IUCE+WxhFl1av0v680DaY3Ogkv4lDTJ8dUslVI5yf/X7hxrykzyurDmCv0tlRU+kONaVJHK552cO9qe1U+AIc1KWDb6EXJ84fIqWCyM+pmRR2HD54kmvMq1m7fuQcO0WAaUinHp57FyG5bRhjVYi7Ff8AjB6YVtLfjeoAv0t8tFN8/mXcwlovcB9u6hsSCA8k2tTPBDu9lsolqtol6v99zXkOklikWK6223+8AfvttwNk3ZUZldY+/luuJJp8bIuNxNfFxRXOVyly2eRrv76MtwFDmgqf4yD/ci/Zm37qx5oTEvch5K4YTy5NkvrDkuhRy+F9IPv3sry5TWhCyBVwpf1pzifZNlQeOCDx9L3m/8GR0tEjGBovNqAh23UHKXZBd9st+1uabNa585aAmssjxtzLWnm7S5JNc/tyRxBShvC4967aNg9RXQNAVAnn2XC+raeV9EeLXqs8DPWkvILyKwcj5HCksaDXKNy+/luJUpTMq5NAjh3FLe5HX9tGian59HrVZLPCm0AGlyv43jOPFesNaFVV8xnjMbeec/n1OjGlslbx9aj2uY0YYdcR/GSa4LbsN7oWk1y8AwNHBpAXfpgRiQZrOZilppMaWDwqj2r2Z9GEVYayxL69sPaI5Q3TIy7ThjUHtWP3VrliIXuNuwK73PHOf3Bnk+1/4oBRarboJVv2X94v2UpWCQDDC5oMonbnwEJBe4wK7Rysvi6bU08i6sbJPMYymG+TyQgdY0uorsxfypHY1OTgsA7/vxvm7UPkKOyaAq80gqjvL2iW/6vIIHP6Pz0MTnklavVBxZZ/+ghRJJZ5G25sEg+LuJiYmk/yi4FJC+psGVctzjZNT5DBeG4SofMNpYksLrIAQh6xAvu45BaP9GBcQc1Ov15LCem5tLDqlhtnkUN75xGXu+xiwG0sWwFOl7fgAPUlO+GLD6c9h1y885svZU7jacVZ/PmHGGkufhllBZpvxfCrM+84Rb8bjQ4zPnpSs7V7TId1u58sWiI6uveF3coirB6bIsyDLYktY+628OPg9cAiZfz1Z9FriyU7Nq0t+8LC5EW0KRT2AgPrdcAmeWYM3p91k3Lrj2Wle6rPTcwuy7dqge6W3gsvDlPUvKghZgbJDKYz7egyhT9pkWmElaaMcZZUecDxgvLDm3YV/YG9TCW3TpwzrtVutTTt6+jaLuwT89PY3Vq1ezz61yshetLw28jnQew8W5Mt/9Lq6jXq9jdnYXKtUIVUx60eJzQGiHchYzl6f8Loq7DWvzpChctJcl1PRXRnnu1TZjrgfs4GvPKgfojUyrMZmUTzJUeRk7Dl+mi9PJBSTNndJiwocFrsGXgpt03+RCiBbkRroo8jGR1g8AyZ1R2QdSeLUYQRIW5bMjFrhgXK1WsX37dsRxjNWrV5t7Dh9L6g/XEzouwTtPxEYJTeCy9k0+XppSgJdDf1ObrP7nbdCEUa3PeHmy3yxaZTmawCNds626fecEp8kXVvs1ei3FkSyP59XKsVzHtXK19WP1R9Z8zBpvS9nBFRd5BQ+rr/jeROVzjwfqH8sToMw9Nrb8P40XKHzWvS99vP3aupHj3W99Wv1A7xqTe8awMIgxzlJuZeXx6QOfayplwMVPl16XqIbqnqwHt+GxBy3w5cuXiwk1egqGKKoi7lQQdyJM79iNhx6+H8ccsx7LJm3htZtvvK1kg8JS6xcfa4CrzXmExiwLjKSF7hMO+yDVns7I6icrXRZ8rTEWLEZDEyhcVifKo5Ul75bKzyXoMOc/sj6ijRhXn37j7el0OlixYkXKaiiZCK604vNMY9hkPRqyhC2X4KUxqfJ/zgjJsujMofZKZZzlnkdpOPOTV8grqpjhdXNIoY2XPeirBVkCowatD12w2l0ELnplfVb+LOEzK3/ZZx6fT7VaDc1mM1GczczMYGpqqtT6LAxKKPaBay0uNR7DB+PaZhf/EtBFEF5HDPTcQpo5XESCDESYQBx3hdeJ+goc8Zz1qFaWOfNwDWhAGnk1c6MOH+2ki4Hxmf+WJcLFzBOzzt+ly6K3LPBgGuMgvGoMvxReNe2wVrd2l1S7uwj0J7ySxZZbFLOgCaK0B1tMILfyURrJyPsITFywtMbI5Z6quWvLcmR0UQkutGrjTt9bLtgul2ULPFiVy2KtgVsYtX0zy5I9CMi6te8krHZYyJs+i94s5QGfB5rSJMtq6rLqEZ9T9lknXZVrtRparVZiEMg714pgMfkbLrwuphA9KhhXvsribQIWsOTchvMsUu2w9okq7Ad/Te+CJt8KUJAdZTb9edqN0kL6O8vdqZosIK5pbXeAZrOD277zPbzqVa/C9773XbzmtN9Gq9lItYszhM1mE7VazWSMXfBxxyiG4u6wPq4dkr7FXG/99CFfF2n0d98kfbi0e77rzpP8kYQtcNcpGSgsi6FzfU5PpBAGaenh65C7Y3HmLEuABxbceakMba5KNzMO6YLnEuL495zmosy4xchrVkf6nMbb5epPQU/iODaf/+H0c4UcHxOqQ3Ojk1ZVab2UigEeiEXWx/cf3ickaLbbbdOVj/9PwkSlUkGz2exhnniZ1ljwsqgvZZRTfubysaAfuW64BZ3PR595w+sb9L7L65Dt8BUitD7g42BFN3bVzaPKyjkp6af6tDPNumLhu259mHGXsFsWBlEulbPQr+nzauHahH4lTSvLBVcbrO80hWIepUnW9ag8PFDZKEqXln9QfGbe/UdTQLrOdJ7O+q4o8rgwu9a35U0f3IZzggajN2DEIhFUIjjz0y+kVSKpoxJjcnIC3//+93DUUUdh/fPWYXZ2DvWaLczU6/XS6BoFSKbRB+OqCRwUzI0uxeyUWydnlqWw6tJYc2GNM/6tVgt79uzB1NQUJicnBz6uUrih+lyRbLU2ccuHNoctRlaWI8v3bT/ff32ZKPl/1oGuuWq7FBQ8GqdLmSH7UCr3qD/5vTsCnzuy/RqDz8dIBpHS0tGdYfqblAcuIY6EG+6RIGlyWeJkWVo6opcEKoJUHvG8cRz30MT7Y1Tgu05c+V15te+5EsoSXqWSJ0uA5FZ0a4xHqd/zYti0p/fXoVbtRB6eJSBgFLHPWl4tzb11qX6cLK9cE+ivlbItkLyvEstr3EIUVdFpd5m8ZctqmJufQzXS3/yTmr68825QGrF+AxFZFgP+vfX/sJ946Y+5GozlNS1Upe89Ujj/drs8bTkXKizLq0Wfa84m64IFOho0NKHEFbSGg1vSeH/INC4mNk+kWLn2paXHB1IQ0hhxa/y48OPaF6WgaQmTmvVPBs7hdLrayMvg+4nsG9lnrv1V22ddfcUVFVxw97H88XJ5cC55J1KjldZ51lyTdGQJYTzPsALFWEK1j8LSugPMz17tc+rjLCUU987Q5r90g3fNlSIKWGu9yjZp5ZYpcBah3bdMzfJKdXSVQ63M/SevosNHSSk/14J7uZBFsyxfyz9IFKVLyz8oPjPvXNOUsFmKWkpnfVcUo2p5HTPhdS4hNi0EpLXwfsEgsgUHbWPwnxT6AV4E/QgO2qFnfafBJwqxVWaz2dwbiXgWy5YtQ6vVwtTUFGZnZ7FixQrs3r0b1WoV1arVp/miIFppXOmsNP2sC1c5GtOXVVdZWlKfg83uz8EIr+k6/A5efj+v0Wh4R5V1If+60Bl//jm5e5Jg6BPVU35uMbSacCPTWAytpJ0zlTxtp9NJBbcqg0GR9WlCC/WXdDvl4H2q0eiybuahNw84g2EpQqRAKAVReV+T+oHScPd0TYjljCnNEbq/22q1Uu7EWXuAFPq4gsNnj5N9YCmCpOAty5HgbXGNd949gV9r4ftamp/Q3YFlnZrSQTKgcRwn48td+KWQp+0t1A9SYCblg3VfXUOal/KzrvM2+J6tfH1mCch5znjXPWNXHRb9rnlqtQ3IDrzmUgBo/WEGLXbAfJhC0KTN0zLRr/LB4nk0QaqIAK/tub7wbZsPHXmRKkdUndpzkNfbw+qD/NcfLFh56vV6ocN4SbgNuxiGQSDvBr+volarJa7CwALTQZiYmNj713AtkAFLA+12G/V6vfBhULZGX5bXaDQQx3HykHw/kFavLAuvxtgS5CFkCa+8/Cxm0ypf0sgFASsKLjEULoGG00XlWrRQmmFYACRzzunIW5bW57xfSOiRd6BJMJUWFumqm8V4SZp9rBIyjctaq8EVnAcBlEkAABLbSURBVIrn1fqGl1FkT6C9pNt/ehqrXLlOuBdDq9VrcSPaycU7K2qv1l9ZwpCLdh9BNqAcTx+CNbc5/xrghzLmqbV/jBpIQTss+cbCqO0NS0Z4HeYkHLVBHGW0Wq3ECkAWg4mJCczOzqJer++9/7TIRAaMJTgjX2T9l6UN1coj+spyDbeEONdeZDG3lvutZKwl0+xrGXMJPbIuF+3ysCYhQFoNpGBglVf2eGsoS3i1PHa0uS4FOdWKIxQCrjHQIkBTGZpCxNVOHyFJs2Bm5XXR7xJsXbAUPj6WOHm32oJcV/R/lmueJbxq69SVJwuBt0mj3z3DJz9XMIX+90NZ4zIO/T0IV+AiGMb5mQdLwm2Y3/20Orh34PO7DfukX9iErPurrjzW5OjvXqYP7HlgRyHmGn3fzZcW4tzcHObn57H//vvDck22+tBXg2y5DlnwPWjywJeZc+UZNPysacN1G7aYubI38KKMrg98abeYYyuv750/wL4DSwKfy5WZ1jO5NvZGZne7RWlCJv2WQXvkfVseZVbukbLd/Hvaj+gzTrPL8pG1f/nsDWWudevqC1npyDU0S2inOsjK56qP7piTwpG7Ymt9nhd8fKgd0kpKf/PouFQXbyuPnEvjLfd8aZEmyPNKH/tsNzoAKSt3KpWnMJsFokuOs3ZnXGurXBtEj9/Vqv6g7Vn8nr6vhdxXUZKXJgs+ygptTvLvrKsKWbwen8c+bsM9fdBxB9ry2S9GCbKf+jmv8/J0Rca+iMIsD60pVOy8ltuwXW72fue79rL6TWKfdhseFWha26JIT5S+ixsJ8EN+2bJlKZfigIBhH6rc+jEq8OkDH7rLbBt5TMh7kkUgFV4EecgVvY7BmXnZ9lEa5yzQfU6pYCCBkoQ/rhBwMWdZjCuvj+qR6f0Vw9ng85MzpaRs0N7jzDpfXZZLLV0ZbeD3jzlIQOceR0VAiiPtHqvPfX+trYsBGl/+k5U+W6k/eGQJF2XzegHDQZ5zNiAfhtVvQXgtEWW6fSxF4ZW7o1EQkS6WSAMD+sJiHRaj5K7lqwXOYuJ4mrIYvrL6SVpEgd529+Mq5WMZHZXxdsFHiOfCK2BHmM8SXjUhQX4mLWna576whFfNIupbR1Hhtag1J8tSX0aUY0sJxS3OWTRmeRUMA3Ke5hFeOYa9hi3BeXC8XuCFhgGfPg/jUgzD6rexchtuNucNYv1cfPyQz3xettskMXbpzxe00OkDPts1udeVLdttIO9i5jRlaYEJExMTSUCbsg4Bzd0njwUnr7tDEVh1WG5tg0Jedy3K06+bjEYHMY9kZZDl9s7hwbn6UvkafcPYK7PccYbJgEohQlpMuAAjLXec6eaCqs8a4/VZ95pJGMvaczi4BZLK4hFrtfZr9PULLlDwN1EtkEuv9pQRdwUmgUa6SbvuXWtz2xIcZD66g0w0SHd2ohvo3lcmTxvNgi/XmZxr5GbO9wr+3BV3QyW3Z3J1l+3zGVcfJVJW+rLvqlnWSC1dVt3SbXixhNu8jK6WPktJ4Kv4GGW4+AO+r8m2ZimtRh3aXiDB17frnJZ9mJXGRROv25Uuq/+1fVBTGqouyqJIvvdzNj/vXlYEec9Knqao23AIlRNQGvJskLOzs2O7oQYMBnneKB11ZmNfQ7vdHioDXPQ5FEIeS95izzUS1rjwolknB1U3oFv+SDj0Gft+5wUJwdylWAqtXJlBrrYa7QEBSwWzs7OJEcBHERYQMAiQgmGYPH1wGw7oG0U0e/V6Hbt378aKFStGhrnweaYhoH/043Ion5sIWDxob2vmyZPHxVOCz4Eia5VbB/Na3/pFP/OX5+FvHrtgCfjWmPF3lF2WRkuw5eAeOdKa7kovy3WNkbQ8kbWVhGoAKcY+7POjg37dz/d1LF++POm3MmISLGWU9azloPYPn303YAHB8hpQGvJsnI1GA8uXLw/awoAE/VrTAhYPFKm27EPXsn72W5+P4EVWvbLnY14NNVlVSAikn2FYXrk7HgcFECLastz1fK9hWOPN3zXmFlXpYi7HtVqt9hUwKSBglMGvQATBNWCxsBheSmN159X3qZyFA82vbelFb9951Q/odPq89+Msn/f0vQa/un0g789SnT5lWfdT5OfWJjo7O4uJiQkn8+Zzp8i6n+WyRPSzsZd9300rd9jrsN/7fLzPrXI5uLWprLdPh4FhMwSu+SHvBfYruOWhiQsItMY4PVn3KqkcSsfdQOmuJt/3CDwwjXX/Kcvyp+Wxngopc03y9SGfGJLjKGmx5kE/9yil27G2djldclx9LNTcoq21gVtI5Z4tz46sceX0c8sufa+1cVDIEshd+fLMM5cXwmJD7gFcMV3W+eaag1yI8+EjLBQ9G7W12Wq1EuXOUoCP0m8Q9fVbhsYnanW4xt71dJcFvr/71GHRr+W1nsrpEpddh6/nk1YO7wNXHRZ4+vBUziKhiOsch/b+4rAtT93FXF5Z1qKYnJxMGNFxEmDKxL7usuYadzpUXO+PBiwd+Fja6/U64jjucYkrM9ptmeUOGvwtz0qlkgRNKio8Wekpj89+Zb39C/S69XJFhUwjYZ2trjOk7CBJo4RRD7xjvXULLM3x8IFUvI07lvL6GhbGiQccZVoDh7gPYxjuZhKdTgetVmtg9QaMJgbhUhowHiChJUtxQWk5Wq1WYr0oAus5EXLD1d4THWUUZRq5MFr226C8TPlDNHNPIs3abVnHrXljWc2tOkYFVlvzlhEwHlhqYxXO8IBRwdi6DfuAPyXTqxF2u/L4BvKwD0xbYzFMd9GsujVXvX5cHFx1DwL9uAfJdEVclvtB3j736U8fIdE1J3yR5ZbH3dN7kS9MfZkMQFluY9q6kemLzP88YzyKTLoa0t+zP63PObOvtdv3eS6qX7rP8jJc7rr9Ch2yTbxMrc+0NZbH1Yu3iX5crpyahYj3lUyrCf5yLLjFnP+W7eN1y3OJt4e7hlIbZPllw1rTrvVXdN+23IIHqfyT7uL9liP/LgItLx/7orS6FB6uugH/PWDgPJ2jes+bcgOHqz/zuB778dp2nrJ4LEkHXYvw9Xjply9QPRqF23DKOwXZ5+wg5ZA8MlRwGw4oDeOk0OgX+1Jby4JkIAMCXCiDifVxM82Cr+BXlpDqAx9Grkz3y7z7HdXnYkRcZUoGyRLUiTHlFni+z/gI2mUo5fIiDyMeUByjqqwLyIelsE5GZS4uhb7sB0F4DehBmdbFUce+1NayMGwGP2C80Y+GV1pG+nG79LUAD9rSxeGybBLKvHeUd7/j95Ktul2Wb249pb9brVYqAjBvv6xPGwtKwy3JlmvxIDHMebKvI47j5G3hgP7QbrdRq9WSN5qHiaXAb41KvJZ9fd9Zcm7DaUapNzrWAsqZgDYTVB5zb2mdi+a1vpPly+AaPi4AVK4WdGcQbgqSqeHPKFhacZ9xGYar8GLAckvLk4//bTOu6fWVrrcct+F+BA1fd8xhH7A+bj155mMZVnKuadbK4dY5WZ9005X5uNVNC+DkMy7tdttkaim/1Q+SIbbmtq/gS79JsPIJSiWFc02rr81xno/u8FJd1J80z8mNS4swLBUDLvoImksvsGChlXOGj7PVPvpNdHLXPPpe3n+Wa0Smz5r3Pq6Ig3Kvk+uiqFKQ015UmM6yJPm6bPpCcyvMcsEs0j+yP7iF39cTw6cOnzz9KDpSfeWIMjsMt2FtL3XxWwltGeOrneX9zrVBrF1+3vH/XZ4gZdKR7L2ia7hSr1Zxn4cumrS1WQas8oLbcEBpoM3d9fRMFkK02NGDZFSLYlAC3aCYxKy6xg15mbcy6nMxrSQoWS6hVoTKsphhi3kAeu998vT8rqUsqx86+smfJRhnfUblSKHdt/4iij7NrTnv2HLLaxR179Ny6ytZibIYYKLBlwErYz8sCll30bVQxr7pq8BcDOtnlnJlXNDPmTYq7e6nDWUpPkYZw+RhJLS4DUsZQXgN6AExHhoz4IMsDVzA4mFfF16LWjdGCT79RE+o8IivZdXJQfsEMbU8HRdarfdONased2XzUYK50nBtNI17FEVJxHNpge8HZQgh2t5Jwhy3rtLn8jMAqedzarWat4WJBMS8wjyP6EwCZl5GiuZBpVJBtVpN5gC3csRxjHq9bro6Ul9ob+q66tUsPsOAZpkuAssSlIcO6nNXXlJoL2Y/lW0BHib6CfqWarcRjGcY6Mf6PY5jlheL6VIcRRGazSba7TamJiYXjY5hYWzdhq0F4b848jIs+qSUEY2lO1UZ4JGR/cr1a5uPe4flrlPENcSuW+9b3zoWaMyvEfahtwgzYOVdzPXm6zKiga+3onX3oxnkczCvNwC5IboY1Lz90e/8t8DL7Yexlu6qRRQDFrPB3U+1eSH3QGvsOTNnMd5F5qnWDl6XfB/V5R7c6XQSpl6zOBW12nJhTStLS6/twZr1ToNlFed/Sys1F6qkNVSWzRURnBbpks3PyKz+4GVrbZFvvxI0BpLfjbX4BY0m2WfcG8lqi0S/ez4fC41uX/QrRFhjlKdu6brus77LaDcvS5s//ShO+dgMSgmS2mcLuA1bEYr7cTPWxiVLgTIqSvNREqjz0JGapyJ56gxGeo8ryrv59lPe9cPTB7fhEYBlSQgICCgOuaYkw54F661PV3qyQFkucsTIL4YlwgdZwkw/IAuXJVwX2QfpfqjrkHQpEiwhXxNUaOx4fg3EiNVqtUV9D5b3pWT8SZCi35ZgmAXOfPJy+P1Zq0z51A2l5Xd+feq3FBeagrrdbme6sGoMVRnKJSnca3eJA9Kw+n8U985RREo4XmRaAgIkFmMdB+G1RGja54CAgP7Qr/Cady36uHfxwGCjCKkJ177rp2yXcKpZj7PA+7yodVyjSbO68LGTeTRhd7HHWFqx5ed8PViW5yzIfpIBk2RkUs0CLK3DPICXzKPVr1nDtPOUysy6e6nl6VfZpCltFnt+jBNcwmvgmWyk5lwQXwNGDIuxjsfWbdgH7k70i2i5cHBab+2V94yBDdutVmf4bJosBlBOvixG0kKxPsjnNmzD1n67rDZZafKW41PGIKK5DRJlMmo+rig+AkwZdPC/8wp6WZFkXWvPlU5+rlmkpDVOK6OIkM8tSln0ybwE2S/SaqkFgstyO9LcN13WUOofaankn2lCoRWNl38uXUepbG6Jc1nttTLpc63v+XjzMnmUZeoLbS5mCecyjZWeW2ItBYW2T1hnCReSXfTxqPdSeHTNm36sobKOrL3PtcbK4gu4hbfVaiUW7zKsyYSyzyRp0fflKbIUVa7PtbKGYVTIcl0vC5YLMLDgBtzjCWG4Gg8qOnHWmu6hI2P/90HRa0ll1F0UfdHqMQ94PfLM6Ye3z1pvgPuKBkdwGw7oC+MkSAWMNyyhiu4WDnMukrBBf0smtVarmS6Ng6aTB6AZRp8MyoqkWemkS6mr3jiOe57DIbfuPONAFkRi/Okzen5FKgFcygbODPAnacpikLMUEkB3bkrrpoZBK4h4gCVZNhfoLWHSxdDSWHE3fV4XzSPeD2W48Eqre15lW1nrlZfLXbrLElwHDRqbpexWLefKqI/JMJC3DxbbiDYM5ca+gmGtgyC8BgBYXO1TwL4Fy2PA9iQYHB3aj7Qiandmh3HYue4xDgJceB2Uhdv6zCU0RlGUCGpaHs2CadVB9yS5JYgEVznvsoRXTSjPyusLGSVZtk3S4WsV9LGw5j0LeJRaLZBXHqulpI/GSoskTHVTGVzJ02//S2vrYgmvvBw+R8dFGORP7i1VcEsT/39fRt49ZJDWf18sxjNQSxH8XB4k3zJWbsMBAQEBAQEBAQEBAQEB+ybGQ30XEBAQEBAQEBAQEBAQsE8jCK8BAQEBAQEBAQEBAQEBI48gvAYEBAQEBAQEBAQEBASMPILwGhAQEBAQEBAQEBAQEDDyCMJrQEBAQEBAQEBAQEBAwMgjCK8BAQEBAQEBAQEBAQEBI48gvAYEBAQEBAQEBAQEBASMPILwGhAQEBAQEBAQEBAQEDDyCMJrQEBAQEBAQEBAQEBAwMgjCK8BAQEBAQEBAQEBAQEBI48gvAYEBAQEBAQEBAQEBASMPILwGhAQEBAQEBAQEBAQEDDyCMJrQEBAQEBAQEBAQEBAwMgjCK8BAQEBAQEBAQEBAQEBI48gvAYEBAQEBAQEBAQEBASMPILwGhAQEBAQEBAQEBAQEDDyCMJrQEBAQEBAQEBAQEBAwMgjCK8BAQEBAQEBAQEBAQEBI48gvAYEBAQEBAQEBAQEBASMPILwGhAQEBAQEBAQEBAQEDDyCMJrQEBAQEBAQEBAQEBAwMgjCK8BAQEBAQEBAQEBAQEBI48gvAYEBAQEBAQEBAQEBASMPILwGhAQEBAQEBAQEBAQEDDyCMJrQEBAQEBAQEBAQEBAwMgjCK8BAQEBAQEBAQEBAQEBI48gvAYEBAQEBAQEBAQEBASMPP5/NtHCgmnoJfUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Run object detection\n", - "image = skimage.io.imread(image_list[0])\n", - "results = model.detect([image], verbose=1)\n", - "\n", - "# Display results\n", - "ax = get_ax(1)\n", - "r = results[0]\n", - "visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], \n", - " dataset.class_names, r['scores'], ax=ax,\n", - " title=\"Predictions\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing 1 images\n", - "image shape: (1824, 2636, 3) min: 0.00000 max: 255.00000\n", - "molded_images shape: (1, 384, 384, 3) min: -123.70000 max: 150.10000\n", - "image_metas shape: (1, 17) min: 0.00000 max: 2636.00000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA68AAAKbCAYAAAAaBLzmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXeUHMd97/ut7ok7mxeLxe4CWBAgCAYxg5JIUaSidWWlq+csi7J9FO879/nd9GwfS6ZkBfvZvr6Wfe+7toKDgmkF25Io2TQtiiZFUhRJMSeAAIEFFtgFsMDmMKG76/0xW7PVNVWdZ2dmtz7nzMGiuyvHX/1+VUUopdBoNBqNRqPRaDQajaaVMZodAY1Go9FoNBqNRqPRaPzQwqtGo9FoNBqNRqPRaFoeLbxqNBqNRqPRaDQajabl0cKrRqPRaDQajUaj0WhaHi28ajQajUaj0Wg0Go2m5dHCq0aj0Wg0Go1Go9FoWh4tvGo0Go1GswEQQvYQQighJLX2/7sIIb8SwZ/dhJAlQoiZfCw1Go1Go2ldtPCq0Wg0Gg0HIWScELK6JiCeJYT8NSGkM+lwKKVvpZR+KWB83sS5O0kp7aSU2knHSaPRaDSaVkYLrxqNRqPR1PMOSmkngOsA3ADgY/xLUkWPoRqNRqPRbCB64NVoNBqNRgGl9DSAuwC8ghByHyHkM4SQhwCsANhLCOkhhPwlIWSKEHKaEPJpZs5LCDEJIf+dEHKeEHIMwNt4v9f8+wD3/w8SQl4khCwSQl4ghFxHCPkKgN0AvrumCf4NifnxCCHkTkLIDCHkKCHkg5yfnyCEfIMQ8uU1f58nhBzk3v/mWrwXCSGHCSFvbGB2ajQajUYTCy28ajQajUajgBCyC8BPA3hy7dFtAD4EoAvACQBfAmABuBjAtQB+CgATSD8I4O1rzw8C+FmPcH4OwCcAvA9AN4B3ArhAKb0NwEmsaYIppX8ocf53AE4BGFkL4/cEIfSdAL4GoBfAnQD+11qYBwD8RwA3UEq7ALwFwLh/rmg0Go1G0xy08KrRaDQaTT3fJoTMAXgQwP0Afm/t+d9QSp+nlFoA+gG8FcB/opQuU0rPAfgTAL+49u3PA/gspXSCUjoD4Pc9wvsAgD+klD5GqxyllJ7wi+SacH0zgN+klBYppU8B+CKqQjbjQUrpP6/tkf0KgKvXntsAsgAuJ4SkKaXjlNKX/cLUaDQajaZZpJodAY1Go9FoWpB/Tym9h39ACAGACe7RGIA0gKm1d0B1UZh9MyJ87yWM7gIQRXAcATBDKV0UwjnI/f8M9/cKgBwhJEUpPUoI+U+oanyvIITcDeC/UEonI8RDo9FoNJqGozWvGo1Go9EEh3J/TwAoAdhGKe1d+3VTSq9Yez+FqlDK2O3h7wSAfQHCFJkE0E8I6RLCOe3hZt1jSu+glN6MqiBOAfxBEHcajUaj0TQDLbxqNBqNRhMBSukUgH8F8MeEkG5CiEEI2UcIuXXtk28A+HVCyE5CSB+A3/Lw7osA/hsh5Pq1k4wvJoSMrb07C2CvIg4TAH4E4PcJITlCyFUA3g/gb/3iTwg5QAh5AyEkC6AIYBVVU2KNRqPRaFoSLbxqNBqNRhOd9wHIAHgBwCyAvwcwvPbuCwDuBvA0gCcA/KPKE0rpNwF8BsAdABYBfBvVPbVAda/sxwghc4SQ/yZx/ksA9qCqhf0WgI9TSr8fIO5ZAP8vgPOomhZvB/DbAdxpNBqNRtMUCKVe1kgajUaj0Wg0Go1Go9E0H6151Wg0Go1Go9FoNBpNy6OFV41Go9FoNBqNRqPRtDxaeNVoNBqNRqPRaDQaTcujhVeNRqPRaDQajUaj0bQ8WnjVaDQajUaj0Wg0Gk3Lo4VXjUaj0Wg0Go1Go9G0PFp41Wg0Go1Go9FoNBpNy5NqdgTCUKlUKCEEjuO4nhNCQAgBf2ctIQQA4HWPLaUUhlGV3x3HgWEYcBwHsjAMw3D5RSl1hcv+z/xif4txYW7Y/6txgMuP6r9m7VsxLiw+tm3X/LIsC4QQpFKpuvDFvPLKlzD3/rJvCRxpGUjdyOKUwLcMlnZCiNQ9JHVE6ZfiW5mruOmSwYfpqtsB3QPrafCLvxguq4+yuKhozTuj69tOlfDrdkHyIGj4lMr7B/c3rH+q94P1FaxvEPunVocqspL4JEEsg7q+zqj3WOWnNA5O8Dx0QOv6Pb/4J4k4BrVKuH79RtC+RCxXcZwF3PkdNA/EcdiyLJimKf22XC7DMAwQQqTfqProuASZv3hRLpeRTqfr4sfmOzzSMhSKyDAMV9uQzXuYX5RSGKlqXont0zTN2lxFhiwu/DzI8Bl9a+2QGHXPmF88XnMlWf8Qt32r+j0ZccOSpStIv+s7hyPe37Fw/eIfdn6RFGHKNUx51fyKkRY2jrOfaZrSOiprc6BGnV8gTt1cThWetC/j/FR9W+dGDMOstjP3HNbdl2az+dCZ1raaV9ahxe3kmVu+M+YHtzCTA+aODXZ8/IKkxzRNaVxUcWWVybZtpNNpZLPZwGlWxS9MvMOkT6PRaOKi6he3IkmMfY0g7NgnQimFZVkJx0pNKpWSCnUAkM1mkclkkE6nEw3Trw7HreOZTKaWJlYWbL5QKpVc35ZKJaRSyegxbNv2nP/Mzc21TH1VTcI1mmYgKg1ci6JCPfXrH8IsaLK+wQ9evhHde7UjmTyVBFp45VAJr2HjFVV4ZW6ZECuroKxSstUYSilSqZRyVdUvPC28ajSadkELr+tsVuGVEIJMJrMh6bIsq7YArKIR9a3RwiubgziOU/sxTU4+n3d929HRgXK5HDkshmVZNSFYVQf6+vpCzVMaiRZeNa1EM4RXy7LqtKIq+H5E9lxFo4RX0moDnxeWZdXMhmUDt8wMQWXWIzN94rWZYr7wHS7/fRDEONfjuL6txm1dgGXumGmzKv5iemXp9jL14k0U+MrI54sUagc2W4xrXmsozJWCuocir2RppIA0LEM2aZTEJa7ZsCrfpYZTirxnT12mdtx7Vs6EEFy4cAH9/f3SfGXmXul0WjnR26i+xL898XibDfN+RelUVe1wfTFpPXx3B+89gXPHxan5GYcwq7Giu+D5HYyoZsO+GKQuvio/HUgmBiHMhhthVriR+PbrAYgiQEdqZwHrS9L1tFHIJqWyPFS9D2K2F8ZqrA7O/J5vR2xrlWEYWFpaQiaTkWpteZN6cS4hEiYP5O1LNgesj38Q//m4EtOoeyaaLYvKDlkZucKUbGvgv/FPqzzefumqfaecgsrn0dKwAjavVu0L+fjLxgjXOC3bhuLTJv3aoV875mFbGvh+mvfPJfBSwyX3UEpB4Z6rsecqOYf3m1JaZ94rQyVg1/w0qGuORQgBddx5mMnkQnfabbXn1Q+ZgBnWvcq+XFwRafQgyfzn0xRE08zvgQsKr83lG1grTgL4fGm0sLSRYTULvp7s2LEDlUpF+h2/gq9Zh9UNVX+wGfKLLVbMz8+jt7e3ybHRtBL84ldYN7y7qGONS7BoEY1eEPhFaPEZj+q9bDzi3yfZ79TmFCC1OYJlWcjn865zN4KMkX5KBf4MkmbgymPJM154ZUK8KFQwZPniKJauZfVhI/GrW+06/4lSn1ztUCK8xs2LqHKKrO24/zbq5u/i3u+g/SyThaAQ6luhr20rzWulUqlFNkiHya+I8Wa2YifDd0KiFoZfMeELj5nq8kIt2+9hmqZLOyXbdO0Vb3YYEzsggteG8ukWO07HcWoHNvHuVAOg63CjNf/8VknDUd9hEEncqVILJXcvQxZTVjZiPkndy96rtLSKOHj65cea5tuyrPWBLLjrcHHxmBA1sj9QaRtiaQh4/yXPwkyJ/dzL2q9fvaCKDl96GJhKe04k7SBUVoUfaNztpl7YUGr6Y2sjZXGNN5FNQsvbCG2Dyvqn5lcLLh5uNDWrI8jzRZbfqm/DaNXjEkQzCtRPAkVLn7Da1ihxcbDe1sUxiI+TuJC+7oFE2OFe80oBv4V/vh0EXjQOWa6iRjhMO6O0/nBKVRT9/JXlq196lfliSOqL3HRN6beoJU+n03Acx7VAAWBD25EMWV/MLyr4arqd+jYVZoygrqlUMI236z3qrSqZX0HrPDHW3YraUt5flxbVNQc0agtRoiY3qJwSFL90EUKQTme3tuY1KmLBMW2bbds1gZR9x2AFz1cKdqiDaoVDtuIsg/c7LLIVJllYfFpFjetmIcyqviqP4oQb1g1vFp4UQQZQ/u9Gatz96qEsTjL37VRHw+Rl0oOGRqNpbVphsYKFyyaYQeLhinfAb1UTWN3XtRa1BSNtaeVLkovvMlRaVmYOHGSxg7l1CbJr7/nzeXiFW5SFHa80iPFMwkpEC69wCw7i6iCzNwf8hU+2QqUSQIJWhLjCq+w0MFlceEFdpZFuZ/xMlGTfqiYTUcw7wroRzZCSwFdT1gThVcxjLbzWf9tOadRoNNFoFeGVn8CK8ZCNCW7h1Tve/NzKT3jV1gbNh5WB1yFmmiobKby62onhth4Qv5XFz62Frb5XnfeRZDuUWVuI885I/rbTJMmyrFpk/dT1QcxEw6rIlSr4NVjHL6sMqrtf+bBlZgTit7ZtI5VKSTsWZq4sCkCqNMr2+Ko2csvw19YGM/vlzYbd8XZXcKN6Ia48LnwYXP7z+Rp2n3IYE+UwyIQ30Pq0Ku+ZFephlHR51eMg5ite3/hZFXi1A1k44rdKQVzyzM/sN4x7PxxJnxKkDtU0E6rOvQFmw+EG3eCLWI02G5b1wfwzV7isvpD6Z1Vvg40hoh+1mAr33qnvoQw2HsniEucwsXZG7NdUZehn1gdwfZW9rk0I02dG6WN5t4QQlEolZDIZV5ziIG7xiefZuqYtSl0jtF7AVZaXJC/FNkcpdc1l2FyH3cLAvqtFH+vxl/nJE2SOx39bP8bJJt3ytMjSKt7jGQdZfrv8dCTbElTmsWHmD7Q+rEYtvEoFnzBjTARz6sjfKuZSQLXu1sYpx1uOkLUN3gIUqGpe+QUhvl2w9iPGjz9szbaClVFY+cjrW142ErcRbPkDm8SKJHbuskoRtaHFbaBBKj1bCRWv3hErPUtrEO0a70a1otpoDZwX7jDdecSbO2xlWL1uVhm1K+20UKeR4ycEBnUPhFuY0GiiwCZpvODaqohzjKCEGYdkArfM+ocpAsTvZfFiJ7Imrf2K4p9qAY1/n4TgqtkYkhTK1+ty8JGHt1qIC2unNUUQGmddGSTfKKWxtso1/8ioBOE7Bt4E03NVPmJnwruL615GpVIBIaR2MBQfZ/a3qOVVVURZWKqTlZvduao010kPTO0MM2VvhRPf2olm121NfJIQXnUd0GwUTAPSDouMqrE3SVTCq6g9Ata1VbJvedLpdENuBIgqvHopAHT/014kectCFD9qVlkJzPWY0LoR2wGD9CW8rBYpjHZqRJVKhcpNOerhVxdk+B37zDoeWQfGazr5cPhOVxY/rzizsGTmwLJVDJV5b9DJnWEYtRVLFbJrd2QmepTa3N8Jnh4r0U7HHlYVJmByc2aFFz7f8osJSQ2qvIkFw++uLn5Vy3WKtHDydiNRrcDJ0hPV/ziWAn5uRFM0r7otM/MOEyNlLaGyvUf1fRYh6it76rz0sfxoB4KuHidh+uRnquZn6RMmXBniWBOWZpd32LwQzQVV8ZedLMyXSzvNb5pFUvWBH/ttKu834dT3UcSUmN8rTuANarLqqiNO/QnBPKrkt3rVSbJ/CYPU9NjnBGJZX+qKk+QE4CSIu41F6t5jTqN6FoZaP+Yxh5aZE/Ptr3bNI0nJ54iG9yJKbTyjRt32GFGJxi868efn1Pwmjutb/jv2dzqV3zpmw3HV3rzQFnSAU33ndzKX7L2f8Kzyi083IaRuJUV1MnIUtGYvGnx58x0RW8Hzy9ckTTpUp083U2Dhr6VqdeLeHa1pHO1QfzTJ4yp3j6s/NBsLP/cwSPB+k5/L6D5Ws9lhc0DV1ZRBFuKZ0JdKpVzKtDhEmeuwtIhjMb9A5XeH8ZbTvDK8VuC8tIuiCS17Jq748t/y79yaR/mKOP8906qmUtX1Al7DKquovNZO5TevdhdXFoMcvOR1dD0LVzSvFr9bi60yjKRx7YiVrqL6HNSgeE/E7wJ86/Jf+mVwZBprr5VVUXPpl27XqleIFdvNhN9KtdfiUxCBX5aTQabWtUFLEh/HcUAgK2Pvg40aqWlrxJVOjSRqufM4ktL1W8GPGlZcomhhGq258e2XFd/6WRJR4l7xBxqreQ1r4dFojXcY/8No6lTuRPfsDvs6jHXLHpfGxpHsczPqD3Bh4YoWDTLNa5j4y+ZtVNAScy49wxLrXSvQqP7FcRyk02lYluWrOWUo803iPtyhfsFptOY1SYIIrDxBlCD8wUysLVYPA7XgOE7NSpQ9Fw+EJXAr+cQ5qqo/pJS7M9qs1yKL8teW0ryqhC7x/3ynKKq7GVHuNBK/DTKoRbU39xIw+XBllcPL9CAu6+E2xPvA4Yf5tnWGmWSRdSyazUHQQa2JynSNxpPN0CeJ460mOi6hu8FHp/nVPT/NkEZQ3GzaWVRrE9ZMvHromXpboKgoqQm2CVg0uc3/vf2L2u7aZ/lcQKUJFH8qwZQXaKOYUYpugxQAqxhhC0uWLmZ2IGpHeTcsnlFpdUEoTBk221S20SRR3prWxK/u+llYaDTNRjaGtVudXV1dbSuLg1ZmI+uAX1hsnqO3IXijsgLUbAxhZBXeclLmRmblx1tKJBHXoAt9UcNrK7Nhy7Iov/rptbFftprGryqEse/mVeQ8fAUIe18qHxfZigqvxhc7DH5TtMsclPPTZaqD+kMLeHe8eQ4fluNY0ryqD0/VoYUfDFyVPULdVB2S1CiTz7B+qvx1qMRsmHfDWwpw37IVNsBdL2rfyvYkSEzNlCY+NSdcO2qygNxoUzwVYmcfJ15+NdutmZC1I9khc95bEaISJb9VbpqxyKIKi5kCRzVfCzN2ytIdZPU8TlxUYTXDbDgMjQ4rTLlVKhXk83ksLi6io6MjtPuo4TYiD/xMt8PWl9p4xZmB1uYSli2dvPKmtjItD5uH+B12GDUtcj/k5oyqGQCfhqSI0iaD+qMirrUWP4cMEpbMfasTxGxYrA9x5ycqC1EZsgM8RXlBeogjrZdPDNPtRoYot/AygyiL1IJyJHNM4o73pjcb9lsl8OuweGEtzGAfBLEzE+Ma1E8WB1b4YkVUdRhBVjJZZaOU1u0DlnVijdLoeuGetIenXU1n/YRIFaw8vSYeSa2kadaPzk+n03XvwuRRnL5Go9FsDGycLBQKgU/y3qqE7cf85ipRxi5dPppm0YhxXKaQ4583apFaBi93+bXNIItAcWkrGwCZ8Kr6+Ql4MmEviACoQhQyZZUrrHmrZVlSDaIYf/7aHln8+ZUS2f2gqnzxyq9GCq9RywBYz792M2+JKrwCqFuI4PMwSeHVr+5uBdgJfzLC5JHOT42mPSgWi/jud7+rF5l8CDt2y64FZEQdx3WfqmkWjah74jxfvHM2yXmEX/sV5a44fvFsidOGRbNhoF7L5Geuy9yKJ4jy7kS1d5AVV1a50ul0XWGwU4+Zyp35JVvBkAnT7LJu2SnIMq0bbzItvvcyt+GvMKn+7TZHZXGrN9dW5U3MOzwV8fRa+VFp4v1gd3S68srHjW9cFO78zIa5ANbd8GXMuZOZcfDPpe1ESEOd/3xafNxvJDKT/zAkqe2MO1hIzdQFs5ta+w1oNryRp3774dcOo7bTRJFdsxLivsEwdUj2raw+BsmLoH6p3nt9x38b9JTtRtLoRVI//9nWndXV1ZrZcJwwvYhrYhjG/6B1hIflBf89IVWzYfFgTN78XnVdm4wo/bKsL1H1L3L/Vd+uPwtaX4JQKpWQyWR8/UraOke0DlSFH7S8xHEqKFHq3kbD0iY7ZZ6n0WMba0/ilTpM1mHvTNOU3mAiyjrrc4r6U8KJoTKfr8KfTCy+9zroiZ1Y7J5Xuk8Xz2YKoTOqrdRTQbSZTPjy0zj5abr8Vg74uLCKxApXjFeYqyVkWmR+0s6nVbYyKWqdRb/8kGnrxHyXXT20UcTRULYb/GFcKvg9zoB7QcRLsG5HMpkMKpVKs6PRMBpt1bCR8NYgGk07QwhBLpdrdjSkxLVUahRR49XsxZJG06p1qVXrkWYd8YBWAGsnCrsPR1IttISdX8j2ziZVP5jfXtYXvn4kEpMNIozw6icwJim88sKlTMUfV3hlQrFt2y6zgUYJr6rLk0UtdTPYSsIrW4RRmamyb4B64ZU/8GKzTAbK5XJLDvxJsZmEV9M0pVsUNJp2go2nrVqPW1Xo0MKrHDaP8xrTm0Gr1iNNPXz7YPM/0cpOprQIM7+QtcMkhVcW7zjtoO3MhtnfKpNRXpXOP/cagNh7duG2qGLn/fWChas6BVk0TeaFSlVFE//2NQfgBEzLsmpaUt7Eg7kXhVzx0mKZ4CM3ZakXdIHg5qVhzGtV30pNUVBvmh2mtm/kEOpw5VMrQ6Fca/VaUgaG8Iz3ixdkxXyKe8dxq/cfjYyr6lRr10Ciipf0Yf1KadXEp7lmw2HMvFp1ccnLCkHsG2UEGfi99u74mZeFIak8VrUNP/8bLVy4TOYj5JtX3Qy7v8ovX9T9i2w7hndYSearbE4QBn7M8f2W1JsN+vW7Lv8dWvdOatIP1H0rhuXPuvv1cVH+pSgkqMJJysrJtu1QVm2VSgW5XA6EEFiWFciNqPhhqMrIzw+GzLyWNx2X+eXXznl3fmXcrL4qUtsK4UQso9piGqkX+mRzEd4UWPQDUI9ZfF/Hbydc92h9/sFkHdnJ4ao2IZooRzEbbq3ln5hEHdRlk3wZ4rHUImxfayqVklYKXktWv7/ULWDzcQhzrU9cWCct7m/RbDx8WYQpd9YO2GKEF5v9gnbVhKoV8etf2oEoiyEaDU/Ufq8ZtGr/0k55yFObXDc7Igh+xgI/l4taByqVCjKZTKiySqfTsG35lURBaHbdbdc62iz4fPLbl1xT1ghlXHseML/5s1Nc7YDWtwnZQbCqNpFE3WsrzWulUnFFVmy0ohAqTt7ZyhazE2ewFQJ2lxuvfRTvMZIhrsSySiJqYdi3TMvLhEOXVo3zR/a37BlLj3KVg/uWT4vjOLV7ZL1WwFRxWRfG5UJuGM2rNA8U30r9UGhea3/7aMKkK3wNWs2TLbJQ4b1hGK6Ox7Xg4ZNWVVxlmtdmE0az0epItUSqbyXPxG9rC1rSy0fDa17D5GtU7VZcmqHVDxOmn+bVT5vpx0ak2U+bGbcd+lkKbSSy8ggTlzAaacGlLDaBwlMtVgctNy+/42gIlfOfuEXq1Gt5HSgOA3Liba2gVNZHts8YkyRJ9rXSOiDRkovh+vqboHUJ/4y1s6gn3XqF5acF9msvqnJxHc6JeqWEVLvNfUYIqZmssy2IvKUqC5dZoMo0qbWwHHcixD2sXvlOKXVpXgkhyKQ7to7m1cs0iL2Tna7mNWjlcrlaBWEdvUqL6hUnVeXlB0+VOYRfw46qXRbjwATesBqeRkyuWk2gajR+6ZUtJGylPGongVWTLFupnm9WdPvVaDStSpJ7NxtBEnFb74PVgjQvH/HzTX7+GSQuvLIuClHT27bCK6uAvPDFn8bLfuLx0TLTYJb56XTapeGilNZpaWWIK6WqguRXPnnzujCru3FXipi/bHUlbKXTwmt8guzjcBxni64Ht9eeWk2ytKvWXbOObr8ajaZV4c8DacX+KYkx0E94ZXIKL7yKfwc1545rVRO1DNrWbFg0MeWf8wKgS1UtmMyImc5vmJfli2jqy4epciM+5yuGjHV/HemdsI5Tv5cxSBl6mSPx793P3Xt0q4dAOXX5qA7fLaBXTSDDH8DB/AjrLkpjEg/BiuNXXMK0TJmJtOhHrR0Iz0Q3Uv8TmJDKwmp2HidJ1Dzi+w+ZqZyYR9W6GW8/eiPMscKEm8RA1wwzc6+662Vm5Uejx+FGmYlv9jbN04y5UivlX5gy5udeLneS5PBmnLX6RNfHYlm+b0zbCmb6rTLHjmsl12iSGK9kxO0TouThRrYTldmvAck2Qe5b3zjS+u2JFLZL6cbeU8etAFNZcPIyjksOMmi9/CTZxwpSf9gnIQRwJO3AO3V1/vJx3VJmwzKNoXySF75RqlYRmF9RN5iHaWAs/qJqH9j4De7iYsB6XIIRd8Kq0WxlWn0S1Gx0v6LRtBayCfVmZav1z0mlc7MucsXFlb9ctrgPEHMrtVSyjrgQzg5iNVWneXvgOhsnQbvAqPWpPY+0hHu1S9ZRslPYwuB38mrckzRVcfX6lg9PFJ7FitkotPCq0TSPrTQRjEKYflWj0TSerdQmt5rwmtT93Rs5h20n/PJFpqTzsozhf3FMpZlSL+k7ireE2bBlWZSdliU7xlxmRiya34krFar0i2p2/jnfWbH3fieX8YKvbM8tfwpY9fv1O1rdmmC1ubEqfP70ZD/c94PW3x1GiMm999t/KzHr9o3BOhth2igr4zDueX9Ed151K5Cf3N+8ObPML5WPspOJITFJbdYkI4nVV7nJe+PdioQxbRf7FKD++Hivupnkna5xTd380u1nnuZnkqr6ttl1l4c3z4rDRi5GqsINUwcaZda3uLiI3t7eSNe1RTWHlLnxq29h6nkYkqxHsjKK4n/YdiybKDMzSr7fFa8NBOA6qTaqyWl8gpkNqwgiKCTVb2wkfvVJpeRhZe03b5TVM76eqOq2lwZSVjej5rvKbFh2KYDKTL72nk+L5ARh3rzW7XG9HCBLi/TEbgDEqH8mniDsGT73ba0MhHAB1J05pPI3yj2vbat5ZbAjnVUNgq0S8atF/PeqFaSgd3wBqHW8QWDf8j9Zo076GO+gsDCDhJ3UCpzGH9M0USwW22qQawea1c54vPovjWajCVMfG1F3CSHo7OxEpVJJ1F9Na+ESVjchuk9PDtM0YZqmdD6viU4YOYfHrwwcx4Fl1Su/vOIQlrbSvPIHNvECn0xzEmTFS9RsyNTxokDJ3PDaTBYXUZvLu/fT7nitBPmtalUPUrJqcZIh5pfscBFZemVxka3kyOJOYmqHqEPq80WxEuS3RipbHRK/5bWbjuPAoRSZTKZu9Z/567ciHEYbwbTvjuOuM7UFAAAgAElEQVTUzDLEw5bOnz+P7u5u5LLZOn8cun6oFlsQoXT9gCzRAsErLpHNOCTa+DD+biXBPL4GwX0HcDJ+RmMjw01S88rcsbuuZZoC8Vu/tCSpsebhL4tPKj/DtE0/zUaYsBpFYIuWmGXoFQ6zrAo6cYtKGGsHGWEsIKLEyVGMtIZEcynVtIXRbsVsD0mO43FJwhIpUrgypZsi2X59YdDy4Od2DRtDjPp5tawOhmo7ajO3unm+sh5L+lKm+eQtsZR3PhvrY19NjuE0t+L9rezvmgyDeouWUOMddQuuYZR3MmvWbDa/9TSvfrCCE39R/OAnS7KJExMavE4B84ujDF5LK/suuBlv+xGlvOLCJrNsc7sovAY1wQ6D334CwzDQ19eHXC6n9COMBYBGs9Vh7Zi1OX7Rp9UWdVs1Xq1Es/OHaRsaLbhuNnTd1jQK9bab5Am6sOdX35mAOTMzE8gvFrYqDF52AJKzCGj2fbmbVnhlwsdGCq/sb7b6GjQsP9Nnv/jz+wE2E2HyMCnYNUSlUqlWJqJA2YiBltcCyWDafq+ORwuvGk1wWDvmrz9r1Yl0q8arlWh2/vDWV5rg6LqtaRTtKLyWy2UQQtDf3x/ILxY2D5u78n2Sav9rVBzHiXQmQVK0ldmwZVm1yKrMhb3Mb3nTJ7/DnfiC5k22vBCFWmYKKlPB8wKxn7o+TOOTpU210V2lwvdCzG+vPYNxzYb5Tem1cGOaDTuqfGXmSlx5Q5EXsqd+JnhivorlJMt36WFLQvi1fdw+6eIJYx4Sd2Ekbv+yFUyJg5qqsTZb7fvCh7MRfX0Us7tGo2qbcftaMYygJvP8OCS+94qrq2+Cewz08ytsWsTwWxVZGv3MEaOaDTc7X8R6I85JVOUdtz5EIYzZrywNNpVbmjGTz0aVQRR/+XLx60v85gmquMQtO785iczMW2Zey/zyik+QvixI/JLAzxw6Sr7GPbBJ7XHwQZ2ZDfu5Vyq61syGWb6LihHf8ggRVz8/bdtGodC1dcyGo65wxtFOBV0h5M14vQYUXngUO+moWmJVWMzPuCQZr1aE1atGpi9JszJZfdQr2ZsTZs7ezNVOTTx4M66w7nSb1mx2xDnRZjuUp53asSqu7RJ/jX99a4VyDGIeLaNte4ZWFF4tywKl1T1U/Eq5DP60Li28tg5BtexxSKVSKJfLifglq4/6NL7Ni2VZyGQyzY6GJiJR22Y7TXo1mqh4ne2xGWinduwlvGraA7/6lk6naxaizSKIebSMtjMbFk2nRESzYJV5LCA/IVdGlDyK2vH6mVz4+d+I8mT7QMVwWT4rzazWzIbDmL+4zOsixzg8oaw7Yrpne2grlYrU3CgMMlM23pSQQlInJOXhZ8IcFlWbi0MYsz0vU32vbQWi+2ZRM5+z7Ugmwjzt1MdHIUxf6Ws142MSpjr9EQh29Uecdh60TTXDTNSPMKbbcWHzA37cAoKZEG7UmQFhxvSgRG0Hza4nsnLhTVaj1Q2Vm3DbopLHPU6vU98OGlFH+Lx21QGFOXfQOXKYbQstOR4Zii1iMU2Bw2wNkRLBPDdIXPjtd/w9y1Hno5RS+T21wjcqcrmO0BVbfrRpG9CKA/RWgB/c+YmBF14Tvq1IpVJBOp2u6zSSgl9pcwIKkO1URmx/RqvHU9MaJLkwk/QijyZ5ot5dqNFsJO6FkvXDPjWbCzbHa/X+qFHz0UbRVprXcrlci6w42RZV4+y9a1O6YlU1rmaVNw+W3bcq3kfLv1OdILuR5RJ1FdZv1TzKgU0sfwzDUB5YFCZ+QbUVG6F5Fc3Iw5RxmLS4wuTccwFL/Y8SL2mYDaq7bCU4lUrBtm1YllUz0Y+jvQ6KXzuJaiHBvlGXQcz7kiNur2D4aazjkmTdi0uYwzik3zXIYsatiW/tSVAUklyQUvWVfNnWzFKdaIc3tTphLEvYc5ZfQdu4qKmObG3moxGPRvM0r2ycl7d/lat4hxgFLW/V/btR8tsrfrKDgkzTbNgdyKrxSfZc1j8E6ff9vk0KV/2RHVoKeXmHmiOSdctU6Wuf/JTOY0NoicW6s+k1r34F4jIRYpqnDbw6RHUCcs2EU9AWx9n70EoTvlZFa+eD0w51iLUjtj9DdSduu9IOZaBpDryAsRkR7yLUaDTti23brvk4O9tFHzaoSYq2WsL1OyxIpoHdyAOGRCFV9ZyPT1TheiPT1a5o4TU4srbTavCagc1Ypu1QBprmsNnrBiHVk2U324KURrPVIITUteOlpSXYtt2U/mszWqpo2sxsuFKp1CIrmgOLQqNscuu3ITlMXvANgj8cKqhfoUw/I5SR4zhIp9O1e2ZlQr3M/6gaXVm++pkNb2Tdqy0WKE2cq6hMflz5AskdexI/VWZY0rqHelMNVQ3xyzVf8xIf93FphT5FZtIexZTOy6xGtkjVCEhAm64k2jHvXiYsNcpsOIpJ/EbAm0wD3nkc5z5kP6KMJ1G3g8SlVa2CZIvaYdw0Ji7uA3rWx9HqsyTKLYrJf5i+0A8/8/kgeSyWl9tN1I08wcP3c7dRW1daCeV2sSb34VH6vSTublXdixvUfajDmYhkbh3mnlj2r2tbRQhFmiwslfu1b73axqY3G/ZjIxtNEvsCG9nhsX23ze5IvJAJGI1iKw0qmsbTqsJWo9lq1gyURr9abaui+9pouMfDrdG+NBqNJgqbSp++0SbCccy4Gj0JFA9TaEU20vxzM5vcaZrDVqxPW60d8f38Vkp3HHR+RWMjF3M1Go2mnWkrzSvfqTMzLd4U2O+0MZlpsSjgBdWmqMy0VOEA7gOd2DdeG9jjaHZ4M7cwg2FUE8Mobv0EeD//opiE+sUwiEk5M/H1I2y+JKXJ8zPJalWtmaw+RDVBDLotwM8CwivMRpqJucsoWDtI0lzT6x5t0f+49YmPv7TNxjRP84qr2OZU9YFtExHHIP7vRgodLD4q0+QwfSXvZxTi+rWRfVLcMkmyTancy/p9VtZJEGVcCVPH/PyOkoeqrQSNaGN+8w+/uMj6ho2g0dZ7YbZziN8204S6WfOb2Fs7Eo+RmkYoz2TjqNc2m7i0lfAq22cq3k0Up1Bqew0jNjw+LhqNpvVp1bvN+D5EnzehaTZ+V6Lo+2+jwc85NO2FPghIExdXu29zgwvVlZ+N6tna6sAm27ZplBVuv9UjfgWNTWLDDMbs+6h3eMYlirYiyCqqaoVczE9qO65j0T2RbOpWrc440p3tqk3hradhVNUA6eFOAb8D/MvbnYf1PhucpQJf5+PSTn2JnPq65Tio3SvrahsS13FzUMw/pn2RHdjUrP5FhqzuePUjsnv3otRBVd23bbt2WJ0qflHx0561wqq/TEMbJV6i+6BamLA08qArHv5gRa+y8ooL6y/jEkYD2WxYmbO0i3OduBYSQfJCLC+3m1Cjp8SPRuWxd7zCtE+/PpL5RWn1PtV0Oo1SpVzvTwLNjN0V64oTd18yuxZH1i+nUqlNq9zxu//Vz7JM7ii5BRJZO3O1Y8n8R3mQFeqvJVUd2ESd+gU6MS6b/sAmNngmPYDyZr1RJlFiZ67RaDYHqVQKlmXVDkDTBGMj8kq1uLZRwlCrIluQcmvyw49VjTAza4R/msbAt6lWKDP3YkqzY9M6MIGyVCoBRutkDFtQ26yCaxBaod1sJtpK4uKF1yThV2INwwg9uDfTvl+j0TQOdtm6bt/haFRfLQuDh/XfXmcJbHZk+yX9tI1B/GT+JIluV+2BZVktJ7wCuv6oaIUy4pHtgdxqNNMyZzPSVppXBm+iyh+CpIJVGtnBTcwckPcjqma3UWZWQc1qbNv2FbyjHOwhex+mI1KZ+DSjIfuZ6iRh+hTEX2aKGgU/M80wJGnFEGVCwZs4xp0cxTWTVMG0r80w1a2mg7qerT9H3fNGxcXrEA6VOZJKYy0rm6QOPbEsyxWG4zi1OpZKpaRCdZC6wo8NUeC3ojTiQBOxPgTxO0z4fm3br46I35qmCcuyfLctJCkw8WmQxVUWlmxMT6Lt+W334OHnLVHx2tbkly9RwvbKw6DfyhDbYTVN8cpAZcrbaPzmCWK+yMrFy69GwY/ZLFz2L5uDyvr8MHMNfs4eNE6N6FdDhRvwYMVm4dfOZDKLX1/J49V/hI1LENpK88rDTHzDoBow2n1FiMU/n883OyqagLRzfUsS27ZRLpdb1uyeEIJSqdTW5RVXAxplUSLIoqIYv6TzmAnQCwsLoSZCjYAf2Nn/NxNh0sXKolXbPJtbbDUTx81aNzcDjbZiCcNGmP+2Unq3Cq1kWRGE1hw9AhBnNZCfSGwG4ZXFvVyu36CvaT0o1SdSM5iZZ6VSaXZUlLRLZ64i7kQ8qkY9aL/aKOGVUlqrV80WlLTw6v42SYuPpIlrYt2ubNa6uRloJWGu0W23UeOBxpt2E17bymxY1mj8TNlEVTb/LzMpY2bDXuFGiSuLX9Bv+e+jmLcGMXn1MvuKetAJMSgo7Lp41nziHhOfk/1c6Q5jDhTQBEdpnib8Ww1f7hf7y+UX97fshF9XVA2jLmVhuguZ76HccyZXSQ4QcU0qZe07jHln/E633qyOkI3rzEUTynUTnvpv/fKaN+M6dmwcu3btgmGkauFQqjJZl/WD8nuyZVBSFZbNVAqOQWA5FGkuKBYv3qxYFKxZWMysnp14SOjagUxrUXDWTri04QBG9ft8VyeW5heQTWWBioPSbAn9w70gDq3GDRQg1TZqkvX6X8t3Yy2NDsXC7By6u7vRUSigYlu1LSalUql2mjEzf2WnaHqdus6XrWwc8zKfdWplsBZnakhPh+T99urrxfd8uDLNisykTOanKv68e/7/jWjTqnvdG4GfubPqmd94xLuJu+c+6EJSmDmLak7B5hGqb73C9qoP3vEPU0fq482f5s4HLw/PbarrfcBncuNG0O1gLlPiBlV9A/Xp5rdEsH+D1jfeHf//MO13IxdeXCfwkuos1c9kGBBN3WMiO9k35snE4rzDMIxaDa7LV0n4hJoABaqfBq/7UedXbaV5lVVQ0zRdk1/+O5l71sjabZVB09ro1cJosAHKtm3Ytr2l869RdWh0dHTDNI9OsYwMMWHaFIblwLTdaWH9r+M4tT2oPLI8INQ9EXNI9UcNAmoQpFIpEArYFQvlC3Po7+7DLa+8EQuzM7CIDWqQqhvHAbUdGCBIGVUh8/Tp0zh9+rT0nvDp6WlYloXlxUXMnJvG6RMn4ZQroBULp0+crH1vmmbwq8IEWN33E+QIMQBwkzlh8hCl7oTRMOrxMj7N1ug2O3zN5iVK3dpq9THJtDY639rBGrXthVd2kEqQo9xF7avXtxpNGLTwGp1UKoVsNlsVQrZwe2xUHcrlcshkMoG+NWj9Lwxph+D5J5/GuckpWMUSUsIC7eLiIsbHxzE3Nyc9BEuWB2JcKKn+iGnUtIQmCHLpDL7y55/Du17/RvyPP/pDZPI57Ng1XBPciUNhUIBWLFjFEhzHwcjICDo6OvDiiy/i1KlTrnFhbGwMhw4dwurqKorLK9g+sA2llVVMnzmLvu4eLM7Ng1o2jh5+CUvzC0gRQ5p/XnnITLr9hFcDJgg1AIeC0OrPL9/80MLrxtLsyXqzw9dsXrTw6o8WXpOlrcyG2eo4b2ommjux7/i/AW9TST+Tg400SZARdkLi5d5LsI8K3wkFNZcKEnYUv4L4G9iNIiw/sztZfWlURxN1UimaaanMwGRYllUrb9M0a5ojpn0K0478FpKi1ucobER5eUEIqVuE482Gw5SR20TJcLn3cjtz/gJ2jI7i+WeeQW9vL/r6+oC0+3wAwH1vKBPAZmdn8dRDj+DwkZfwsz//c8jlcnXa9M7OTgwMDGB2dhaEVE190+l0TQMpxtE0TZQWllBxbHR2dcGiDhyHghoEhlM1TjJAkMvnMTd9HjAovnPP3aDlCiyDwIINhzogFDAIAa1YeOG559Hd2YWdB/aBUor+/n709PRUBWHuZOdCoYADBw4gnUqho6MDmUwGjuOgu68XJ06cwNDQEADAtizMzsxgYX4eY2NjqFQqKJfLIITgpZdewlVXXVUz8OXTRSmtaZ8JIahUKkilUjh69Cj2799fE8wppSivljExMYHR0SGYKaBcLiLX0VN36qdYn1iY/iaO68jGVoZf2/b7RjZGOI6DYrGIXC6XiIWA36m6YpzEvjDqOB/GTFKGLA/9xtQg5dno+YtYz4KYg8vi4uUmqOlzGNbDi17ejRwnGj3XiYPYTmXbDPxo5fm213y2FYgSrzBuau0tdCjqcFVjRNQ+v600r2HwO6SEHRSjyji/95rmoMslPnHzMJ1OI5VKua67SKXaah1Mw8GfrvrU40/g2KHDKOTyGN09BjPA3pVUKgXDMDA4OIh3vPtd+K+/9Rvo6uuFBQpbcG6aJorFIgqFAiiltb2jq6urmJ+fr/vWsizce88PsLK4hFKpVB1QjereVJgGiGEgY6YAy8bn/vwv8P5f/z9hlZdRJhbKdqVmlcN+2XQGo0M7cPGei6p7etYEaNlExbIs5PN5pNNpFK0KVitlOAbBSrmE/u2DyJgpmCDYNTKK2fMXMLRtELAdZMwUFufmUVpZxfD2IZRWVl3jEaUUq6urqFQqNYGyUqlgYmICMzMz2LlzJwghNc10uVzGZ//4f2J5cQmZdLpq9mxW4+s4jvLKrbia/DCn7sY9obezs7Mh9ylv1vGiFdO0WfNas7UQFV+aePj1CVHzmbTqyoKMUqlE+RURlinsbj/xvkigfvWK/fgMk630yFa9+NXrJPNNFlZc/6OsfIaF10DK9nyxA0WiarRCrRRJnslCcqj3wVSuuAYOXYFKyy0LN+B3Knj3fvlmrk3a43TOorYCCF53o2gQRXdB36tgaW/mREuWh+L7qoDlbYGgcsvwswRgBw0xjbr4XnTH2o+sLwxaBmG1CrK8ckjVJJfYDv7zf/x1XHHgUnzgP/9fdWHwbmZnZ7GysoKRkZFQ9eXs2bPYvn278j3LQ3Zytm3bnqbalmWhUqkgl8vBcRw899xzKJVKuOGGV9Wl3XEcUGt9vFtZWam6I+57UkXNeLlcRjabreWDbduuu26tVHUvcZr13Q4FHIoU6u/cdQzvA5tUZcS/lyHTCFPJp1EPnxHrGd/u+bYf5o70OFolL8L0i35hhhn/pXcsG5IyVETJL1+ixouHtzAIakGgCEHyTOVXvYVVArMCz7DcuOtD2AMW+XbE3LJD5piftfch7rr1sgRgYQWZI/Np8us/whK/nqzFMYDzoGXja+UmO3BJdjATFGO6xL0qRswdr3SgkvkgJW45SVZGbiuv9b5ULAOXG8edsdlsPnRBtZXwWi6XXcIrUG9W49cAZMKrjGYJr0mhhVctvKpIUniVTfjaQXgNMxFtBPxAoGKjhNcw7UwUejci//yEV7tURmlpBVOnJ3Hx1VfU3svKuFwu1/qqMIcsMcFP1WZEUzNVvoir+oZh1DS/MgGKtdMUqT5fWVnB0aNHMTIygt6Bfpd/ovBKKa1NTtLpNM6fP49MJoNMJlNNu2ODMs2zuR4uCTJjC4kWXv1plvAq/VYLr7VvN4Pwyo81rSi8Jk0rC69qjzZeeHWNgbJyDSC88n6Ki6nKMhDiGkV4bStbP9nqsriaLGZukAGh2RNZnlaKi0bjR9wJV7NodvtqpXxjg0yQvYKyASlKWpJKPyWAYZrId3fi4q5LfL83TdNTCFWRzWaV5rmAe4HTa4AXTZT5/1fNZmXxoqCoasVz+TReceVlKJfLtauGvOpypVIBIVWz5NXVVfT29tY0w8XpGTgEmJmfw669e+CsmWOzOLj8ddR7VoF64V3TPug5x+aHt5ZpRbZS/xF1wb0RJKGs4eUxQH0FY6KKIbSZ5rVSqVBWuWWNUJT6ecS732QdtqpSqfyUuYuCTAtDCEHl/R9TujHf904Yt74SAGDf9yicr9yp/Db1xU/V/rY/9eegJyal3xm3HIT5K/8eAEDHT8P61J+rw//YR4CxEQCA8+XvAA8+XnXHZQUBBRkbQer2/1B7Vnn/7/ik6Yaqn/c/BvvL62kSczj9xU/W/rY++eegJ6cUaboe5vvetZ6mT3/OI00f5tJ0J+gDj0u/I7uHYf7OR2odrvXBjyv9NG57hytNzle+q/w2xaXJTihNxkc/DLKnPk0E7jwlu4fd5fSB25V+kl9+O8zX3VAVZO5/DLZXmr7wu+tp+tRfKNNEXns9zPe9cy1Nk7A/41FOXJpsn3IyPvbh9fD5chLasvHed8C49SAAwLn/J3C+2oA0ffovlNp486MfBsaGq+GLaeKcVOveepqsD35CHkkKkPe+DcatB9fK6Sdwvvo9jzSt+2N/6nPuNPFt+pbrYb7vHdU+8eQZ2J/+fPUTywZePun29PrLQbo7AVDQw+PA5DT3kktUVwfIwctBaTV76L89pownLhkDGa2a79LJaeClE9IVYwAgr39lLQH0Jy8Ai8vVcAnW3KzFYWQQxoGLAFA4C0vA4y+seUDW0s71ywevgJ3PVseDIyeBKT5NXNq6OuBcewDmtj4Y//d7QT/yKddBSC5NxXvX21P5Bz+G8bV/qb6nqN0fSAAYBkH6C7fXxqO53/pT5Kbnqn4Qw9WoyWuvA7nt7Uin03j2e/+Kfd+8r06zaBfLgEGQv/0jwL6dsAmq/dMPnwCl1fBq+3QdwLxoFOSjH6yNs86HPslyt+7+7sTqHu/na6t1jxACOj7p3Zd/9EOo9RFfuhPOA4+747j2pzE2gtTtH6mmg1JUPqDuy83b3H2EV7+X/uLv1vwMkiaA9XufD5amL3/XZ3wK0EegWvfc/V74cmJpVSFq5dj8LYywkpxg01jNa/RFubi2VxIfZRYMKgsISfBRNLCAwgy9hQhl+eVTBIkKnz6aV9+wnPr3jo+gzD8zJAuvMs2r7B7wILgWdrGu8XUcB/l8YXNrXgHUbPaDVhqW2eJqADuxmC8oleaBv0t2o/ASXDWaZiJaQGwEXqaYgWm2ZmEjwyfY2DI6dAy4MA9w5qd44AlQ1qcWS0DFkrudmQOdngWwNoVbXFaHs7gM+syR6t8Vq+qvAnrXg+v/WVkFbEX/PbcA5/ipauCOAyyvqv28/3EYZrA0kWOnQA9eXj2Xgau/S0tL6Orqhm1XtamWZcGga/e9OiYcGyDEqAqubPZEHJTLFirLJeTzediWjWw2C8LufjVQjf/a5xQUuWwWpVIJl156KRzjgfW58JpQnMplAEJgm4brXaVUgm3bKJfL6OzsrO7nTWXgUAoT6yaITGglNSG/9agtUisEAT/TfU18mq1d0mi2Kq3U9lwKQ35BPGIc207zKh4sIiJqSfn9mKLJFiGktufIC7+JcyM0r9YHqhrK9F9+OtS+vyBhBSXMyptsHwVBcsK+b1wkz2Qp9csp1yqxzwodb+oSNE5h4hWmSfPu/fLK8NuPEAB+T4NnvBJoG7Zt1w7E4a/JCoK46p9UvKIQZM+IDBbtqO08blpl/Q8zM66Zv/7q7wAD3SBrlgtMDci0qfV+ivFddxMqbvzfxH2nKguDD7+m3eU1r7V0ucNm3xCC6vU8lALgt6S465Oxtk+wXC4jnU7jzPfuxdDAAPL/8Fl86Utfwq/92q/VThCenJzE0tISfvKTn+Dmm2/G/Pw8RkZG8M2vfw9f/vKX8ZWvfAXT09MYGhpCT08Pzp2dwB133IHbbrsNfX19ME0TXb0FTE5O4t5778V73vMeZDIZFItFpNNp1zU7/GIT249WqVTgZKr3xpqsL6BVDUzWtnDixAkMDg7i9OnT6O7uhp3N17bo9PX1uU5JZqbYMqL0L357XsPUbZWGT/UsaaK2Pdmeto2EL4NavjjuuDCNrp/mVcxXrXmNG6+APmrNq5StpHmFT1o3UvPqMg1P4MCmtjvTnBdAxcJkgzMAVyGwI/xlk0c2wIsFq9o/K2qdkmigvDAtE4b8NF1ivLx+fn7y6Q6OI/1RZ62SUqP2q07/3D+vfJGZU8vibRBSFcqA2k8G8fkxfwxFXvPx4uuALF1KIUXyk8UlDGJ99asvQLyTdqPsn/Gqj17hsKt4olg/8GFFq9vRULUt9i6Onyr3BmjtR6hT+7FnJsj6jzgwYFffU6z9DBCH1H522UY2lUWp7IAYGaQzHVgtWrBsAkpJNURa/bvaAqp3ypbLFgwjBdsCTDNbfU6q35pmGoaRgmECgANiUFDHgkEAx65Ur4ExTFCbwrJsiMXtanPEBCiqwpdtw0AaJlIgSGN+YRWEZGASE6mUCWIbKC3bmJudxdzMAv76r76GC9MzOHP6PP72y18HHFKdwBETFy7MYWW5WJ0MOABxDJw+OQXHspA2qwLfxPgprC6uYmrqLGyHwqFApWRhYuIUJiemMHduAQN922BXHExNTmMgP4Azx0/hxKEjOHt8Ci8+fhiH7n8Iwx3dOP7CEUwdmcThR17EZ27/BGYnz+KJBx9GtmyjeO4C3v26N+FDP/MBjPUM48LJSRgV4MH7HsW5l2fwyL/dj8v3jmH29DxWL5Rw+2/+FqxVClpKg5ZSMGyCjAGcOHYY5ZUlwLJRXi7BWrWRKVNYCyvIOAZySIFUHNilCoqmjdFL9oJ25DC6/xL079yFTjMNe2UVzmoRWMuHtGkgl+5ALpOGARuVYgmGk6kdfsQE9bCCBxOi+V9UmLCuDCtEX8Tg+xFVnxK0L/YLQxZfWT8Stk/zHSP4vF87hVp0HxRZPvHlQkn9TxZfv8XiIOkjxKj91kda6eiN+hE52HgVbYyJOwOoxwCp/WRtKmr7qpURu7LMINIy9pvPyp4FmeOq3gPqdhB17JXlVZh8DZXXxAGIAwq79pOlW1m3CKn9+DmoV//kfmYDcFA9ILI6h+dmDHBsVOfwMiFZwHVt1trcn8CUuo9q0dp2ZsNeMAFVtTLAv+cJulIku4g56ipEs5FdFdRq8OXkl8f8frJG0+ori5qtie1T9/nDgKiWZfsAACAASURBVIw1s1QKoPrYWHtefZ9OpwHTQMmqIGvkkDVymJuZwze+8U0cPHgQV1yxF6sLqygUulApUywtrIAaaXTuoHjhuRfR09ODbDaD0dER2HZlbesoBQGwurKCU6dOYe9FewFCkc3lMXV6Eh0dHXCcIvr6enFm6gyOHz+O66+/Hrl8dj0NjgPDNGE7NggFKuUyYJpYXVlBT38HSovLsByKv/riX+PivXvRVchjz55hTE8vYmWliP6BXqyslFApOvin73wXV155FexyCff/4F5cetkl6OntR2l5BY//+FF0dhZwZnIKN954Iwb6t2Hq9Fl0d3cin+9AT3cPDj37BEZ37cHS7ALKFYrpcxcwNrYdR146iqmJKVxD01hZnMfxQ89j+7ZBLMzNghCCb//TP+CNb3gLXpo5i4yZxfCO3bApwYP3P4TX3nQT9u7di0v378fy8jJ2DA3hmuuvw79760/jiisux/LKPP6/P/0zHD1yHNbbZzA6vA17d+1DKtOJI0dO4N77HsDr7roL2wa24zvf+S5+6i2vw4WZc+jLFXDqheMYHRuDBYr55RVcsecSPPn0U1itlHHZVa9Ad38fisUiOh0TFUKRzeRQLlvI5nOwO2zs6ukDJVibVgG2ZcMwLYAAFiyYuTSWivM4O3UG6XQaAwMDtauARE29Jll03rpph/nNZkLf7Zscfnm5kW2db0eu/epcFGULB+75un96otBWwquoOQRQW+FlF5wzTQ17z985JB6ND6ybu4omlH6CE/9eFRcGv9oYdFWOkKqJW5QV1SS/E1HFR2aCymusw9wJycqQ/S1qOWU0Y4ByrYYpvokiVIdJa5RV+I2c5HiVsUozrUpLXM2lH3E0GSJRykX2bbUvqd/WIPs2nytgeXkZjuMgl8uhWCwin89jZaWMSqWEXC4Dyy4jnU6hVLTX7sc2kM8XMD+3iGw2i4xZLRcTJhYXFvGFL3wBXeluXHzxxfj85z+Phx56CK961avwU295DS49cBl2ju7FwsIyykdexrHZGWw/fw7nL5zD0NAQuroLODt5GjuGd6BcqaBQKCCTyWB+bg4r88s4duQY+vv7YZgG0qkMzk2fx+jITqwsr8IqV9CZ70BxZQX5XA6U0pqJ6urqCk6ePIlLL70MTzz5NPp6e9C/bRtWFpewOr+EhaUl0IoNOA6uv/Y6LC/PoiNbwfPPHcLRoyW85qZbAQfo7ihg79hupA2K4eFhgBKUiyUUcnnsHB6BaZooZPM4eXwc+fMz2LVrF6hNMT87h0KhA/v37cPM7DzmLsxjYvIcps/PYefwrdg1uhMPPvgQVrr6kc/l8JmP345Pf+qPkF6L+xWXHcCf/PEf4W1veRNGR0fx9NPPYNfuPfjG3/89rr/2AHaPDCGfS+GxR58FdRx0d/Wgo5BFqbyK8WMn8NyTT6O7uxsX792Jx596BD09fTDMCv7uji/htTfdgG3dHbjvX+/Gtq4uzJ87j/6eLhirFnbvGkV/Tx8OHTuKfQcuwenjJ7BnZCem52exODOHxeUlENNEaSGFp59+FjfffAtM08T4mQmslJdw5swZPPLYo9h78cV445vfhN7eXthOEY7joFS0AVTH2l27dsGyLDz33HO48cYb4TgOVlZWkM1ma6c2i9t7xDFC1NbylhNRkfWrzF/TNGtzAr8xio1Pqv5L5S5uXNn/Ze+Cmt6GeR6WIFp2vpyD4qdt5esGX5+84ulVdsy9tbavvFKp+MZPRpIL6vyciH8mxkNVJ6LEIeqcQtXOgvrl57/X+yCaWZkcEXReKVNgJY2sXPmy5eWcsH0A72eU79aVdep6xvfhbNGyEQo+8xOf+ETinjYK27Y/wf4WzRN4+ELlhVpZpVVV6ij4CVlh/HfuvBcAYLzzDaHikMSgGd7MSW7Oww7J4CszRX2HJgtJZR7VLKLkSxg3/Bd+g2tSE6NWwE94FZ83Mu6N8Duun9UJS7BBybANWKUKqOXALltIGymUV0tIIYN8NouMmYJVKuLIoUO481vfw6tvuBELM4v4yAc/jA9/+EMY7BmEtbqKR370Y1RWy1icW8C1V12D1flFHNi/HzffdBPe8qY34d7vfx+XXbwX+Uwen/nkJ5FLpTH2wji6Bwdw+auuxbb+fgzv2A6TEHQWOlAuV9DVUcDqygrymSzm5uYwtnMXzk9PY/L0aQwMDNT6BYOkUKlYKHR0YHCgH4tzc7Ad4OTJk8iksxgfPwHqUHR2dmJlZQWd+Rzy2Wx1T7SRxkM/vB/Ly8uYuXABfT09mDhxDN1d3ejq7MXLR4/BNCkuv/xSHD1yBNdeezUGBvpwbvoMuru7ce7cORipFFJmCgSAVakgk8lgdnYW/QO9AHWwvLSEv/vaHbj8sktQ6OoCgYGOjg5MTk7i6mtegeLSEiYnp3D27Dlc3NWDtEHwqtt/HU8/+wLGj7+Myy8/gJ6uHtz8mluwuHIB1LGxa3QEU2fOwMym8Oabb8JAfy8WFxdhWxZ6+wawe2wMPYUU/uD3/ghwCG549Svxlp9+E3buGoFhOhg/dhLPPPEM3vaW16CQW8W1174KX/ziX+Lqa67BDTccxJmpKfzg3vtQ6OzC8uoyuro6YRAHPV2deO6FZ7B//z6cnz4DalfQkU0jl+nB4UNH8Ae//4f45+/djbHde+GUK1iYW8QbX/8mrC6uYGTHKBbnl5A2KHKpLpSWLGRTaeTSKcAwkE6nMTQ0VJvALC4uoru7W2o2CqzvoebbjWy8Fv+Oiuh/qVSS31WuEF6DCElx49fyfs4tgoyNwLj6gCuMIIKm38Iv70MQP2V/e+H33fj4OAYHB1Eul32/9XovKjLiECceiZa9zCsuidK5YIy4J00URQJDJUeEi0DIzxX1v+5ZhPu5XWnxaYkuIVph/ywuSFbzy1tTbBgGTDP1u2Hj3rbCK5+R4goE/38/U2HmV12HGmEVg4+LbNUpTEWnTx0Certq16yEjUtUeIEreB40TnhttMASlI0UXoPs04pDK+QnQwuv3oQRXs0KUFpZxdSp03jgvvvxv/70z3Dv9+/BX3/+S3jl9QdRWlnG1/72q9g5PIziYhnLC8sgDnD/vfdh/Og4hgaGsG/3blDLwSX79sOgBIVcBy4aG8Zzzz6Fgf4eWJUirrv2Klxy8SUol0rozuXxS8dnsePUOaT2jmIBZTiOhfm5ORQ6CyiuFtHZWcCxY8exb+9FOHlyAtlMGt2FAg4dOoS9ey9CxaogX+jAt7/zbVy0Zz8c24ZdrmD2wgV0d3eBmCYKhQKsioXOzgI6OvKYmJhANpXB5OlTAKXo7u5BqVRGNkXQ39+Ha6+9FqMjO2AaBFNTZ5HN5HHDDQdh0yJ2j+3EQH9/VQvolDE0NIgzZ84hm83hkUcfxWWXXY50NoPu7m4YhomOQgEzM2dBQNDb24M9YzuRz6WwahF05PMwDYJsNoXO7jxIhWBmbhbbtg9irNAFcmIS5acOYW+R4KJfehvuvvsunJ+ewSUHDuCJp36MQkcOJ8ePY+rMJN77q+/FmfFj2D22G4VCAT+49z78yWf/DB/60H/AYEcWBkzc/vufxPvf/wGMjo2gZFfQ2dWB7s5u/Nkf/w+8++234NzUc9i9/zrc9JpbcOzYCczOz+Ljn/g43viWt+KWN9wKM2Wgv7cH48eOgpo2Bgb7sLKyiL7uAh7/8Y8wOjSIYtnEf/svv4GUmcUVl1+Jq668ClMnT2B5YQkGCA4fPgwDBI89/Ahmp8/jo7/xcRx6/iWcnTyDgzfeiIpdAiEE6XQahFRPU+7r66seErV2Nzt/rR2AmlZd3C8na0dJCq/MrzAHTmnhtYpx9QGX4MrCaGXhNcicwnEcpNNp5HI5T7/8wiSE1M5oSQItvCaDFl7lfjRLeAWwNYRXURAVBxFZo+GFS5nQG6RzVFUemaDB4icWJCFEakoii4Nx6w0wbr3BNcgG/cnMDviwgtqYywYaWXjVPfvcIUe1MKqVnFJnrbJT95EEhCgFV1m8xfCj4CcGUEpBDKPuO8r9ZBDJL8x6K58aPysAWVzq8pWve8KP1dmNFmJV5jBeE9Uw+LUL2bfiszhkaPWwAwO0+i+hAHVAKK3+sH6gGFLLgNMJSg1QLAOEwqYrcCiF45gATNiOBTPloFKhIE4Os2cXsbq4hN6uThQr5arZrw2UloswbQMVC3j2uRfwG7/1m3j3u/8PfP0bX8ett9yC/aPDeMUVY1iZt0GtDmwfHMJgZx+++LnPob+3gKMvH8XU1Cx++7d/Fy8cfhFDQyN4+dhx7N41hrm5BWQKWXR2dSOTTeNDH3w/fumd78DoV+7E6D2P4+CjR2BOTaM4MghcNobBbdthGAYOHTqE3bt2wTCAru5eHD12FP393chkAcO0UXYs7Nw5DMex4FgVrK6s4JL9+1FcLaO4uoJKuYgdOwZRqVQwd2EK585MYnh4GBQGFpeKuOvue7Bnz148+ODD2LtvH0ApFuZmMNDdh4qzilQ2DcPsQNl28MIzT2Ju/jy2DfZi9+49OHv2PGwHGNk5BNPMolSi+Na3/wmTk9OYmT6Fa665EpOTk9VzaoiJh3/8KLb1DKBUKmJgoA9Dgzswe2EBxdUVLK3MIZfPo7d3OxyLoquQR7FUBgVB90W7sXxhBumjE+h7eRLp7z2Ii47P4pLZMibufgAv2DZGRnfjyuuvx/CuITzx6MN48oUnsXPXLhQKBZw6eRzHX34eV122G/3DO/H84adw6YE96O7sxJ3/8C/I9+Swc9ceTE+dxBtuuQrHX34Mr77+KqygEyYMfOtb/4i3/tSb8eOHf4j3vu9XURjYAZLvRndXF5544B7ML9s4ceI0Lr/sFTh9+iy6e/rxK7/6frzy1W9GNpfGbe+7DT09/ThyZAJPP/dj3PL61+H02TO4/ZOfgpPK4tU334ITLzyL/RdfhNe/6XXYMTKMxfklLM7NYXVxFbRiI5dOI2uaKFEHllO95o6dammaJoor8zjy0ksYGhyCsXagh0kJCCWgloOUkQKhBA6htfGWnXqcSqUin3bu1f/5jTFRBde4Y1fcsCKPmSwPDSId6JivdeOOYm5SP+mu91aVpvVRz8+yTTRlBNzBqkdnQggymQyc6gk1Lveyn5c0IlOsyOpA9TwCKsSxvuxUczGvZ6K7oCjbjuQnC8trThoUr7E7ansK871f2DxUljF+meXht2cfBLM+QLI2z3adDqXuw+rboqxxc36CgoLN5eV+yepjbf6viBelFKlUemsIr0EGnSCDlrIzlbgR/Rf94r/z8kMlPCY5qC0tLSGTyUjjFTaMQPkj0bwGCSdKejdq4A/tJm6YIeIg7STChLUBeRgUWVziCK/NCJfhGAAlpPoD+xnrzwhqP9uhoHYHQAiISVGpEFCkYBh52GUHhkNQKRbx5KOPoTPbgcce/gl+56MfxxVXXo1srgDDICivlrE4u4AfPfQjrCwt48zJs/jLz/8lvv+v9+CWm27Fu9/1M7jumhtQLs3gvvt/gKXlIh559DF0dGbxb/fci3+663u49PLL8PZ3vAPHjx3HwLYBfPLjH8WunSOYm51BOp2CZVVgwsbg//46Or57P35mxsGOOx+EeW4edm8XpkYH8UBpAVOmhaEd1atVbKeqWTNTJvIdOQAUnYUO9Pf1Y2VlFblcB7K5DsxcmMXS4jImTpzCJQcOoNDZhRMnJvCD79+D66+/Do5dPT+gp3cA3T19WF4uArRqiretvw+nTozj3NkpjIyMoru3B//wj9/CRbt3Y3BoG1ZLFZRKDqhTwVVXX4Ph4REUCh0wCEF3VxcMStHR0YGUaaJcLmL3rp3Yt28MhBDsHtuDnp4+AAYmTk7g0KFD6OrM4Zprr8b09Blkc1mkM2lksjn0D/RieamI1ZUyylYR48deRmdXAQ89/DC6e3uQ2zOKL//kR1gdG0Xn6DDmJ06je+o8tp8+h2unFrD9xZNIPfw08uPnMHp2FfTgTaC0gIX5CvbsuQy33vpG7N6zF7lcAQ888CB+/ud/AXfd9c/49rf/Ee99zy+jt6MH27eN4vCL49i3/yqcnV7B8alzGB7eg717L8PcwjJuff0bYKKC5194EYaRQqVUwvDQdoyOHsD99z+Ic+emcXLiBI4dP4oPfej9+IPf/yMcPfI8Xv3Ka1EpL+EbX/8Kfu5n3omTJ47hhuuvwwP334fB/l688uC1uPLqa9Hd24Oeri7AcTAx/jJ2DA9XF2oIcGL8OGzLQnFpGYV8HoQCqXQaDigsx0Yul0X/wGC1HRhmdXnTtGHDhkUtGCkDMKvnPwDuLRV+V9x50YzFu40k6X6VEFI3yNDxyarpcG9XLP9DxUH+1tdt3LB9vgjkh/fcVRZO+DL0W3DZCKIu7nj5FfV9XDeh/I+QXP96oXov+97PhsHtb6CtkgGPog6SBlW8CCFaeA2yKTgp4VWmLeUFVJkfLH6y08KSGkwdx0E+n1dulg9cadfQwmtAN3HDDBEHh0qucQoTVgtN2jaT8EqNqqAKXsdKU1g/bY/UBgNKM7ArGczOzoEYDhw7DZPkMTc3D1p2sDy/gMWZeUxOTIFUbBRyBXz1jjvwi++5DUYqg9PHx3FyfAId2Rz27t6Dwb5+PHTfv+DM6eP42G//PxgZ3o6Z82fQ39+L4dFedPfmAZrClVdcjXTKxht+6s149Y2vRqFQwMX79mFgoA/PPPUT/Nov/ixuevIYbpg4j6EfPYXCHXdi5z89iPTUNNCRgzW2A+SVV2Fq5yA6L9uPFQo88uOHMdDfg5HhIWSzOQxuH8SZqTMYHh5GqVSCba/Csi0YhoHZuQXk811wKAUcYGz3HkxNToGCoNDZidmZWZRKKyiWiugf6EcqlcLE6bMoFsvIpLMwDQJqW+jp7sT2gQGsrCzhyiuvxPiJk1hYXAJxbGzfsR2lso2uzh505NIolm2cnpzE8fFjuHB+GvlcDs898wwcG1hcmMHpiXEcuGQfFhfmcO31B0EpQalYQXG1CNOguOGG67Br9ygobMzPV82hlxaXcPTocRQKeczMzOOBBx7CZZdfguHt25DOZjC2Zw9GRkZRsSzs2jmKpWIFJ+dm8ezCDEbefCtw0U4Y/V2w5+aRnVlE+ukjyL54DKm77seFO++Gce9D6JyYRP/4KZy/9wFkX3UQn/3sn+LKK6/EwYPXwTQpuvNApVxCPteB8YnTOD+3gOHdezE8Mozu7gF885vfwo6duzAzt4S8aWFhYQHfufO72DW6E339/fj+3T/C5Zddic985tPYu28M73nPL6CzswDTsfHg/f+Ga668HKsrc3jbW9+AmQsz+Ol/9xbMzkzjXW9/K25+zatw/Ogh9A2OoLe3F8dfPorujjwu3jOG+ZUV2LaN+YU5dHYW8Nxzz6K/0I3JkxNwqINsNguSTgGmAVpxcPr0FHp6equLuoSCEgozZcIwTYAAtuOAYP1QnsOHD+Pw4cPYsWMH0oZZb/ESoBlr4TWcX4TUGxXa//W/g/7wcZjvfD0A9yn8SedtOwuvfgIK/42fv1p4TfYgqiS/jTIJ9LOCo5K5njqw5givTCHHyz+iLMDCk8WLELL5zYYdx/kE+5tliFj44mFNDF7YFC/I5hsbu5uI3ysry3zeLS80y/bginGWqdgppe49QO//GJw774X5rmgHNnl1mGJaVA0o6Gl5ovAatMGH7URaVXAF3F2EarAP414WL9lP5l7mLoy5eKPwin8YN355AawPcLW91gpT+iTjYqTScCwHxKZIwQSpOJienMGLzz6PnkI38pkUsuk0nHIJy/MW/vf//Au8772/hPnZaewcugjfvOOr6O0soLuQw+rqKlZXK5iYOIerL78cDi3jl3/5F5BJp2BXSqisFjG2cxTnz0yhpzOHp596HKdOPoNdu4fQ19+F1dIy9uzbjXxnBk89/STSWRN7xw5gd+c2kL/6JtJPv4CxnxzGtkdfQPe9j2Dknx/EG8+v4OL7n8L26XnkHQojmwH27oJx5QGUrj4Ae3Q77M4OkGwa3T29oJTizJkpjI8fw2tvvhmEmOjo7ILjUGwb3I4f/vABDA5uRyYFlIoldHX3wLIcrBTLKJfKAKXIZNIoFAoYGtqOU6cn0NPViUsPHMC//MtduGjfXvT09iKbzuCOr30VV1x6KQAHllUGAOQ7OrBnz0W4MDuD0dERvPDi8xgdHkbFsrBtcAf+5m++jNGR7aDUwFNPPoFbXvtaZDIpVCpV89X77rsPV119BbZt60OxVER3dw8qtgWrYsFxHDz15BPYt28X+noLcGj1aqGOzgJMM4ViqYwnn3gal1xyCcolBy8dPoKu7hz6erpwcmICRiqNQqETF86fh2mYeOSRH2Nox3ZMT5/D0888hcuuvRq0Owe6awdwYA8ql12EU8TBheU59IFgf28/tk+cRdfJs9hxZg75ex7Cz9JO7Hh5CtufOYablg30n5vH/8/eewdZfl33nZ9fTi+nznmmexIwgxmAAEEQgCixrJVM0pItm1pJuxJ3Zblk6Q9Xebf2D1etXdzdkl27WytLZinLliVaJEWCBBMIgAAIYAgiDIDBDDA5dE/n9HL45f3jTQ9ev3mvw8xABAmeql/16/u74dzwu/d87zn33PSVZcJXT3PAE/jClTfI9CQprs1TLpYQRJHP/NZnOPnm63zm13+DdDLDffce5fnnnmH/5BS9fUP88R9/jqvTl/n0p3+JZDLG+fPneOgjH+Izn/lN4vEkvT195PN5FNNkcHCIUrlMIb+Ga9fQFIlc/wCe4xKLRlldLeB4IZqhUi6XcWybudlZjhw5jIjAwvw8yWSKU6dOce7sOVaWlpFcGSkUsKtVnFoDp15DUzUCzyf0A0QEFFHGDwNkWcZxHHK5HCMjI811Kwh54tvfZmJ8vHkXNM0bCjeofW1r/+53QjsW9LahO+W4Z7d0u2vnDRmlLTx4/DkA5E997CZhtZW2q3fH9awt7IcBXjt5lO4MnLoDj63K367eu1nvtgq7ZZnmNtfGTl5od1LX9nx3Gnc39doJ/7vOv0v09vljN75cBEG4cTxi01zWYYdOEG6ux1Y7eTviQejchzdknhbQ2qlvu1vAvluXIAhuSfP6I3VVTifayf2fG43c7p6/091zQRDsepFpPePq+/6u03fq/Peaul0F1MrDT+4z/Qn9hHZOoesj+AF//sd/yv6JvaSTKcpln6eeeoqVuQVkRUDXZWynzj33PMzHHnqI0cH/gGEKzF2Z5m//4j8xnLPIJjUq9YDltRpPPnucj3/sYWRFpJSf5+KFC9x77AEWZq8yd/UCY8MDVH7vj5hUZfaLJrVGA+ml76N6IVbkBCyv80ilQhgGiA0PoVqnTxIRBAgTMQRVxlUVwv2jrIcu8tQAXiJKrW7TNzCIEDRPutRKZdbX1xjo68X3fWYvXiCdyTA0NMCHH3wQ1bR45eVXyaYzHDhwkHw+z+LiKvfco1Epr6EbBrZtk0wmkTWN0PdZW1nhpZe+j66rHDQPMjwyQHG9DELIp3/504iShOf5ePUy//QffQpZFlBUhYge4cr0NAIKvT1ZAt+jXMzz4IfuJRaN44U+6+t5TMMkmYgRhhKHDuzj6pVLjI3vwfMCqg2PvoE+rGgE26mjqxaSrLK0ukg6lSV0PQ4emGR9fQlFcVG1HsrlMolkHMdxiEXjfOITn+Dq9BUS8Qx33XU3g4NN7WwsFiWVzRAEPul0moX5Oe4+fJBDBw9RqxSJRaMszUwztneCwPcprC2TjMfxLZG+h45Rr9vQO8RCvoim6zSWlsmaGn6xhpwv4VbryLZDer1MEAaIIfiSyL+JGshvfpOqU0UZ6We8bvP01EepGQrR//YUF0+c4P57j/LT15ZZmr3K2avXiCUU/uzP/5Dx8TFeeeUV7jl6mHfOneLI3Q9w+eoyFy5c4lOf+gS+7BHICpMHDnDyxAlW11Y4cuQIa0szOLZPGOp8+ld+nU//8q/yu//yf8CzHRYW5hgdGwY/QFBkIok4hUKBiZExlpeXsSyL//DZ3+Pn/+F/RzweZe/eCfLlAsX1GtBcf6LRKLmhAQK/iud5OE7zrHcsFmv+th0mJ/YgCyL4QdPvQssy+pP7Pn9CP070fh3PrXx18tr9E3qXWu9LvVWFwka69+IKmlulVqy1HWZovz/2Vkj4UQImnufdYHY7rWDrLkdrWOsdSa15td9FFIYhiqLgeV5XbWp7eGv+3fhqB9Dt6TbI/Z/+DQDKn/8fWzVJV+rGc7d2aU23sRvSKW5nCjrutGzkeqtmHtsZQWzHV1fnSi07Pu187eR7uBWDjV3Ve4OHLmnEtvESBEHXK6E6Ubed5J2+f69ou53qjfeiKFKtVjFNc/s0Xcq63WXfJ0RVJOxKDUuLYtdszrx9lnx+DVVVGRzqp1wuszQzy8TevTS8EEESUUWf82+fZHjvEYSGTfyxJ3nn9Gmm9k5RLDqU15cZEgIEAUSx6bhJlgMqa6uoy0V0TcPzPRzbwzR1hGodseEiyBsCg4AjgjCQwW44aPE4djaN73oIkoiYS3Hm3NtMTAxTqbucuzTDocNHiUYNCmsrxHULTdNZWl0FRAJAEVx0Q8W0TPL5Ikvzy4wOD3H2zDkOHrwbPwjxfI8v/d0XUHSNX/vv/xlrKytohomsm0hunh+8fIJHPvYPEGSNut3Ac+qIooTv+iwvLxONx+kd6KfSsPmLP/kTfuXTnyawbVaXlhneOwhoyIoOYsDaehFVjmDoLrKss7K8Tr1WY6C3D9evUK6UMQ2d8xcuMDW5Dym0KdQckukMmiRy+co8+WrAyvwV9uzpQ8JkdXmdgYE0vSMDyLJMvV5HEARKpRKpVIrllTz9mRh2rQKySs0JkAOZYrHIyZMncRyb++67j9HRUWZmr5FKpZEkGUlWCAEfidBzQAhYL6wiayKiJ+MHPn19vazl14nFolRXlwkQ+c5Tz+F6Pj/7HvosOAAAIABJREFU8Z+hVi7jSQKWZTWFnjCgp7eXl37wCtNXpjly12F6RIVELEoohIgrSyj1gDAUUCTwZxbA869fJyQhKDKOaSDLItcWF4ju34OsKiTiMequTdiXRdN08oUCj3/rW3z8v32OZP891KsFEEqoksMLzz/L3vEJXEckGxvmxOUTPP3M16hdW+V//ff/EV0VWV1ZRJJlRifGcVwdSQZCGymEl196BUOxWFpb4JGP/SyyoqIqIrOXL2AEeUIpya//5r/iX/zO79Lbm+K+YwdBVDl3fprDx46imyqSBdUKOG6Z1998iUc/+hBhIOOE3qb16MZxHcSbnDT+sOWf3ZR/q3zfKZDTvi64//P/DoDyZ/9uS4H1dteYTpqqbml2I9S/u+Z3jtsuB10P3Tbf94I6rXO7kau6yX2d5NGdjq3dlN9J7u6WVye6ozKJeHNe4jba83Ye7lT520a9/l11+r5accuG4uwmbWrYBRgKm48wtuOPG9G2kcXaee2UrqOT2mBzvppm7Lpxf2Q1r7c7kNqBS3vnBUFwA7judLG4FTORO0GdPuzt1fbvn127v0/aDUj9YdENHncZ/4NCG1dtiKKI53n4vo9pmtteJn8nKcQj8CAIRIr5CqvLqxTX84yNjHHt2jVePv4qmWyKgYEBXNelXKjQ94d/jVEsc2RlDSX8G+RSFWSJe8MQ4fw8kSDE8zxKloYUs4jH4gRBSKNeQwl88kmLvok9yKLI2tIiUjxCvrCGOT5MzfZJJOJA807NZDKJ4IMnSCwuLvPd559ldHSUhwd7mNq3H02RqdeLnD55htWVEo8+8lFMPUKlUuKrX/sa//ATn+LtM+9QqVQ4MDWB6wpUymWKhQK9fX24XhXTUlhYnMELAnI9WT768P3YTki9XkeUJQrFIlYAS9cuY0WjLC0tYcUSSIqMYZqsr64Rj8bIZjMYVgTbtrErJSKGxty1aQb7+hgZG6Zh14lEIlSqVQI8fM/ji1/5Ar/2q/+Ya9euQRDy4gsv8PM/9/NopkQqlUGSJSb2TJJMpcGzccUaiqoj+DaVcoGlpSJz12b4+McfYubqAmfPncWKHCJWzaEoYFkJLl28SDqdZn52mZm5a4R2L7IQMjA8go8NvkeAgxlRGUr3YUY0QtEnlY4jiAEr60vYtk1PTy+B4KKgYOgRkrE0V2eusWdiGEVWEEWBRCRCIb+OJEo0GjbZXIbLV6c5e/4c/b29DI2ONz2FCwK+51IpFhgY6ENXFSxLpxQEmJkoiqbi56IsLK8gIJLNpKlM5HC9kGQySa1ex51fIWFFCERIpqIYtovgBni1VcKVdfTXziOIIskg4Nf1Xuq/8++pN1yS8TgVSyHSm+WhUhk5dpXvvn2S9P0Pkfzkh/kX//JfY9Z8FMtCkgQmJvcjCAKxeJRqRaRhV3np+8cZHR5gcLCPcqHE/fffT71eRXQdMHRkWeSp73yXX/qV3+JP/vJPqLsuiYTJSqnEwvwKMzNzvPXOKR5+5KNEoiqKHifXk+TRjz6KG7hIooDoi5tcsguhgCRJ7ystxa3QTjbHW+N+EOlOruvvxdnd9xO1Wgy+n+WhH2e6ZcVOh7HZalZ8K3PdbsrfyWbFe00/8uC1WyPtVDO78bvTJenw7iXTN+/A3Uzb7Yy2gtc72blbgdd2jfJWaT4I1Gmj4v1Gu9IC/xgvrt3IME3q9Tqf/OQn+au/+itisRj1er3rXY3vBYmEeC6sLOZZml0mm86QSCQJQxgdHUMUm3dcJv/r44hvXyI3t0RgaPiZBPn+BF4goz5wN9FMClmSCf2AEydO8tprL2MJGp/+5D+jGgqUShVUBJaWFlleXkaQRNK5XtK9ScqFdaLZKCtreRLJNL7rYzs2ju1RLlaxrChLS8toqsLExDhDQ0MgSJw8eZKjRw5Tq1bZv3ecM+fPoyuPEHguq2tr1GpVGo0alqFz/uwZ7j12N6HvIUsySwuLZDI96IpAX38fpXKVdCKDIMHY+DggU6tW0XWT1984CYLIox+5h1K5jhc00YQsidQqtRsmnsVCHklREGUVXYR/8gufwvc91vPrDA0NIjsqZ8+dY3xsL9/69rc5euxeCDzshs9gXx8nT77OoUNTiHKIYUawHQchlFhZLWBFYni2jW7GCIIQp15jcs8o43sVFucH0XWLXC7Lp37hE4QEiEC9WkUSRMbHxvE8l+WlZSRBQtWM5jVIyBDYmNEoA6bJwPAw1WqVSCRCAJy7cJG+/n5iiSSCKKLpOrXyErbfgMDj/PkrvP3OeXp7kggCWIaJXatRXssjaCpWJMq9H7qPuw4fJgwD0qk0sqrRqNep1qtIAtfP7jrcffdBnEbj+hzv43kusqAwPDyA49Rp1B18XyaRTuJ5PqIok5oco1wskC9XGDl6AC/0sO0GgiBQqfSgyiKCKNJo2PSrFjOn3iaIaXgxCytfpjEzT8KMEJy8yCdrEo1XT3FPoYw/NowowNwvPIKqGUiqgaGprCyvUisK/Plf/BH/6Bf/Ab09aXRd59XlOSzL4PNfeIyJvXv4yIMPEIlEmLrnMFWvTrI3gZ8voBkygWgwPhknFEQSsTivfP84vutw3/0PcPqNV/n4J34O1wlwBB9VbAF5gOt6BK6HG/homvZDP/t/q7RxF27rfbjd6IO6vt9p8LoTE8gfVWrVuH0Q5Yj3A7XORbu1wmifx253nHYaA7eq/Pr7+GZ+pBw2+b7/bzd+dzsA3RreuhPRyVS3NWwr9XjrQGkdMBv5d/Ii3GriuBFvu0milSf/a88AIF13hrDVA5vNkbcCP53K386UuBuPLa3UUaMsbJmmM23qy07lb8tLZ7qTmmhxmzK79VE73a5JSuvY7ab179gv76OFaicmZa1jQhCaDgxmZmb4pV/6JRKJBPDut7hT6mj63VZOe36tbVyv1akUbJbn8gSuz5NPfJOR4V4MQ6darTL0n79K4i//DvPUBcKoiXN0P+HR/ayrIZXQZqFWxw19EvE4YRhQXF8nnU5w4MAkrusQj8XQNQ27UcfQReZmr2KaGulcipXVZRqNGlHLwnU9FhcXyWSyeK5DNBrFrttMT0+TzWbxPZevfvUx+vsHGB8fx7YdfvDyyyQSJvG4RTRqMDiQI5mKghigqToXLpxnz8Q42UyKgwf2IWsqhqZh12oMDQ+jmxZ2w+GNN05x8uQ7JJJZfF8gEoniuS6iLKMbJnv37mF1ZZlsLollRfGCgIgVwfUcDN2gXq+hKhLJVAJBEBFlGbtWxXM9IrEosXis2VOCgGXGWFlZ4fU332Bq7wQjw6NEojFqlTyphEUsEUOSVJKpJI7t4dg+iqqiKBKKIlJruNi2g6kq+L6HIMtYpoWmmoiKiB96WJEYL774DHv2jnPx4lkadpWGXcW0dPbsmURVVdbX19F0neXlZZKpXoqFKpKoMD+3RKlYRVMtvvGNJ1iYX2F8bC/f+c4ziIJKJplGEqDRqGBaCncd3o8VSXDlyhUcu4FrO0SjEVwkkskkqVQT2MYTCSq1GhCytLhAb08OTVObps0Nm3jMwvdtqtUKhmFiWREkScH1HIrFAjPT11hfL2FGInz7W0+wd3IK267j+TYDAyM4ro2iiLiug6YZLC+vMjQ8SLlcIRKJIscihNEI8cEc1kAOY2oUtz9DIR7hsqmSePAenEYV4coC1om3CRaXiV+e5erTL6B/9AFEEc6ffpN4JMa3v/U1fuZjH0XRZU6/fZpoNMr8/BKqYXDkyGGq1TIRQ2NkYoJQUlgrFojFYmiKhiDqSKLA6MgghcIalmExMz3L5NQYqqISOAHfffK7BG6AZ9uossr66jpry6vEIzGK+SILK4uIooiu66ytrRGPx286KrShob1dC6ntzDy3mnPa5x9JkvA8j3feeYd0On0jTbvwupv1cDvqJjO1/g4efw4BAelTP7XjvG5l877T3N6trp1koFttj87pbm2dvl2AuJO63ql8d5u2XQ7pJmPuRmbauM+59f3t8NgWeHO8Lbzy3ok22rThtIVsvaFs6gRMN56N+an1G+o+vrrwLWxWcnWTdVr57ua8dqe+cTaVEW6eF3/sr8pp9TYM73b2xu/WRt7K3He3k+dGmo2Frl1z1z4pb/C1MWhb0+2U2sHrVhSGIb7v3zj72In39kHXbVHajjrH3Rq87oa68XInJunbeX8reW2X461OjLcrmryfwGsn6rb4bVCpWCSXy93QQmyVrmsZW5S98a23Lwgb37Uoirh1gfPvzFDOV/jf/pd/xdGj+5maHGb21dfY8+/+GPncZZYTFqv3TBK5ex+r9SqqLOHYFULPZmBwjCAIqFQrVEolEtEoqi5Sr9eYmBinUqlSLpeJxSKAQDIRxzA0yuUSpmkgyRKNWh0CyPX0YEZMVleXaDQauK5PtVpFUSRcz6ZYKDEy0gR7oihy4NBBkuk0sqygazpDQ0PkCwVcz8eyIuRyWXzfIxGPoqsKoqLiuw4EAXNz8wiKguc0cF2PK1en+dD995POJAnCANdu8IOXXyWeSKLIErIkIisCgth0vhQEAdVqBUGQMHSV9bUV7EYdXTNBkJFVDc2wECUFLwiRFQ1RFFhdzZPN5tg7MUylXGZ1ZY1XT5wgHlGQRB+QiMYyFItrzF2b4/jxl5BEgbNnTxM4FfoHBzGtKMX8OoYZIZQ1LF3B90VUTUJWJWzbZ2b6Ev19/aRTTe2grutEI9HrG1ZQKpdoNOo0alVWllfo68kShj5XL18kYhlNz7ySyL3HjnL8+Ivk19fQNZX+vh6siIGiSBhmBNcDVTF5+qmnOXbvfbx4/CV6+weYmV0g8Dw0RWZxfo50OoVhmihigHD9vGu94aBoBk8/+RQT46P4rkMkEkHXLYqFMrVGFcuMosgGY6NjZDJJlpcWmZjYy/LyKlY0QiqbQhI0arUKV69eQlFkBEFCEhUS8QSCKNGwHdbXi+i6iSgE6JraBLmGjijJpNNpXnrlNVLjGb63MM96Xx8iDrELc0TmV9AvXWPu2ecJDwxw6fJ5PvMbv4rnN7g2N08imSGV6mVhYY5MtofBoWHsRpVcOkmh6FIs1Qh8+PIXvkLCTKApzTt6G40yiqbguD73HLsPQfVJJDMU18p85QuP8aW/+TzH7jsGIayvrnPuzDlSiRSxSIx0bwZd1zFNE8dxUBTlpjXZtm0kSbqjIHAncXYSLxaLoaoqlmXheV5HMHOnaLs5GEA8PIX4yL037nl9r+hW1ubtjnDdBje7T3EHwOt7QXeanztVz04b1nd0A2IX4PV2qVqtIgjCjaNO3cpvp07WIVtt0Hdvn63B63Y8bIWhWjFFe5xt549ws1z1gQSvGzsRrbQVeG0VTttpu52hjbw3/t8QZFvfb5S7ASZbaVeatngE8fAUwujAjsBrcwB0Npts39FqN4V5P4LXMAw3feS3a97yQQWvt7tZ8cOg7SY+TdPQNO2mc2x3Erx2areNc/Cu61Ip+vzB7/8Rly9e4jd+45cx9ZBD//HLDH7tRdgzhPvwh5jzHa7NzxKPx8lk0whhQK1cZGVpkf6BMbzAJ5vLYhoG0UiUWqOCJElUyhVSqSQQosgyf/lXf8Oe0QlSiRTRSAxN1bHiUTRFQ9c1HNdFEAUihoau6ZiGxeDAIMXCOqapMTQyShgKFAoFzp47x8DgAAEKs9cWsIwIsqwjyRqSYiAQQBASj0U4e+YMKyvLmLE4lVKRuZkZfD9kZT3P6GgfuVwaQQiZ2reXhl2lUisiiwovfv8H7J2cQtNUUvEYpqVRrdaIRGKIooDve+TXy6RSCQxDRZFlHM+nUKzw/Pd/gCzLJJNpVlfXScQTgEc0mqBeq3HmzGkSsRiTe/dx4fIl9owNoMgCoqgSjWVYW1vE0C0qpQrjYyOcO/s29x49gB+KEEqcfOMkDdslkkgj4VMq1ilVC8TiEWTFoD/biyypqIqOqugIyAReiB86IEA2l6FWq5CMx3DdBqomo6oikYhBNGIwONhPKh2nVq9gN2oYusrDjz6EqHhUynlqNRvXFXnssScZHx/n2LF7qVSr6KZFX38/3/vei9x/3zEatQq9PTk836Naa1ArrFIoFkim0iiaQYDA1MQUuq6gqjILCwvE40lMI8bK+iJRK4UiGSD4VKt5suksL77wfVTNYGhkmAAPu+YQiVj4gc0zzz7D4OAwX/rSl7n77rvJ5wucPnWal19+lVyuh2hEp1AqYjs2ddsmEokSCvDtbzxBzBIYH5vizMUreCkBJoa4trTM4EIe9co85vQSqVKVxV6TWqNKxIrhBzKLC2s88shHKJbLmBGL+bk5fnD8ReKxXkJBZHZ2lqnxSZ785pPctf8Aqiozc+0SiVSCdCaLH8rMLl2mJ9vPO6fOceyuo8iBz+jeMZTr1+aMDA1TLpWaJtdenXg8jiAIqKraUQ4oFAqYpvm+Aq8bll8b/Gq6jue6P3TwKiSi7zlw7cbLdnFbwc8d5mb3KX4CXndNrWP+jist/h7Bq6Zp1zWLLbL5FgC0k4Vn6/t22n6c7xy8tuaxoXHtBl5b+2YrC9eu/LeB1x/7e17DMPy37cIlbJ78O93N1TooWj+wjUeSpBtmChsCcafzr62eudr4uinvjTzbO7V9sHXiFUAYGUAYHbipft2oXaXfvgPZyuvGIrgbdX9HcHoj/GYe28HnTukGJ4Kw+fL5DuW3891+Lvmm9G3hYmu9NvpwB8+GL5BWas1rO7PibvUOwxBBFLd11HS74HXj/27nuG8FVG81Yd1uXp363fO8jqbyN+XV5enULhIhodB8EJrzqyi6hKJAiERgB6zNTPPcN77G689+hWMHB/nD3/8/+bVPfpJj//cXod6g8dMfgolhAiGkv6+Peq2ISIBr19FUhUbD4cyZi5QbNSRZRhQlFE1nJV/E0EwQZWTDoFipkkhmKJVqCKFLJJkkkc1Qt6vUayXMSIr8+jpOo44kSdRqNqoisrS8hiQZfP0b32FgZIKnnn6eqBWhJ5dhoC9LX08awfdxHJtGo0YymaBSq6DqCo5Tx6lUSCSTSLKH79cY7O1H1TRisTiKZhKKCqdOvUNPNkc+X0RWFKLRCHbdJpvuodJoMDI0hKlrrC4vE0vF8X2ZleUFVFnGshLohkEsEUGQoFguoRoqnu+SSSdYXbrEgf1TuJ5DvVYmcKuIWgRBUnA9n3g8zSuvvorjNnjk4QeplAs0GnUAZFkkmY6jKBp79+xFVSV6elIY8SyCqGKZEeYXl1A1hVw2Rd1uIGsi8VichfklJBGSiRjlepVoKoGgNK8UKhULKIrC1SvTZDM9VKsO07NLjAyO0LAdDMtCN6MEooYkaUiKRqa3l8GhQQb7+8APCHyBdCbD+vo6um5x9sxZ9kwe5OrMFQaG+xBxCZ062UwOMxLih3VK1TrxWJbV1WsIkkjf4DiVqksYQKWwiqQpCJKMqls03IBINIkgSmiKSrVSJsRDVkRcz0UUYHU1z9UrF8nlItSrFaKGQH59heJ6AVDI9Q9ydXaW/fvv4rtPP0MsYtLfE2dsOAP2KmLo4DgNDN1gdWWNl154kYcefAAjaZCMGZgKHLnnCPlCif7DB7loCFy6eoUDNYjUbMoXL1AajXLt6gXeev1lXn/leXp6YpTXV8G1WVmc48iRg2hGU6P7z3/7d/j4xx/m+PPfRDBkDh87REDI0sIKhhrlP/3+5/j4z/wU01evMDE5TKGyyod/6kEkKcov//Kv8dFHHiUWSfDX//XzHDpwqHn3bMVBExWMiIYn2siBCrKAH/iIoc/6/DKRZKI5twQhIgJieF3W28XRhK3Xy+2PlXTaXBZF8YYJ8Q05oU22aE9zqxQK765zgig01/JtFsZ34wk3wEC7fNPRdLpTXm1xOsoXbe+6bTp2ymfz+52s+hvPrdF2/bGTNriVMrcaZ7fSL9cXz47pd6rt3u6o0J3cdNgOvN5omy7pu7bBDvsrFEAQxc3fyBa0FWDsNOY3yf3BzUwJYrjxSXLde13zCcXme0FEaM5ym9IFQQihQKsn7m5mwzd+X8+z+W8rDzePldZ7XoEff/DaSfPaTu1hrQCt20fRerfrBkDdsLe/udGFTQC5/aPbbiekdXBu5LXTHaatdrW6AeINXiVJ2uRK+87uBHbRvN5m/rtJvV377WSs3A51mshvJf+dpNltrt36ZqvzKbulbnm1ntXYjeC3U7ptIa2FPwkRgSZQDQURX5BxQwtBUKmsrvDs43/L/Ds/oMcMCOMxxiYn+PDeSQ599vN4mkj1nkkaQRVVcqgWS1y9MIsp26TjEcqFdWQR5mevEfgemm6QTqTQdRNZVCkVKqyvL1Iul+kfHMQwIziuhxWJMtDfRzyRxPcDKpUayWQaSRbxfA8v8BBEiWg8AUKAruu4nk+hWODA/v0Ypsaly7PEEnHOnn8Hx3NwfRcrFiORTKDqCrV6BYEQTZNZWyshqyaC2NzcSCazrOcXEEQoV0qcP3eOxcUFHnjwQSrVKufPnWVkZBQEGUnScX0bw9CxDAPHc1B1A7veIBYzKJdKKLJOpVZCUFRCYK2QJ5FKoRsWgqSSTfahG0lqVZcnn3yGqamDGGpI4DooooKpW4S+QDSaRJFDBgb6CUOIxOLUbQczkgQhxPMb1BoVotEEoiKiKAr5QhHfDxkf34Pr+iSSccIguG7S1bSWsf0ASVZAkhBFFbsRoJtxiut5EGQU1WD62iy1Wh3LSlAu1+jt6cexPbyGx4k3XiMaiyLJEoqi4Ps+ruMiqgYNu04iHkOVJQb7+/jS3z3O1NQkqUQc13GpVxoMDA0Qj0UolUuoqkY0GkXXNSw1yunTb3P6rVPsn9qD79mo2OC6VMtlDNVkeWmZeDSGLPs4doO11WU0RcJ16tiVVXRFJpeOEbNUxBBqtkO5VMZxPcrVGvsPHuCuw3dTLxapV8tM7NlDJpelb3AQSTaJJnPUHJ8gFEkl00yMjxNLxjGjScRApl6roUZMXnz+FUbGJkhns5iDOdaiIhlfJnN+lR4pjng5z+V0HDsQmRjZy/TVU0xfOsl4fx/L08t4zjzf++7XCdwKn/z5n+XD9z/AgYOHqFZKjI0MEjEsTENjYmwcRbN4+9RpDkzuYfri26iCTSxqMj7ax77JUWrVIkuLM0yMD1Evyfj1PJfOv0XcjBOLDCCK4IUibiizXmqQ7RtCFLzm3CAJhCIEQvMhfP95oN1KHri9jLfPy/8vjxOePId4ZArYPJfS5VzudmV1C9pyg/Lvcb14z2gHbbDrLLep67Zt0RXRbZ3+vZJ7boW2A683grpmsIuytgnc6Vn6bu87fUubvrkOHIRh0EX+Em5K37mtNoPUreI2r/brVJ9O/G9O/4EDr9AdMLaDtI2D0B01LtfPzbXemdRJK9mefwtfm/JtBZHtOxQbu6ft4a2PKIoEz70C0/OIY4Obdllby2yvoyB0dh7VaorQDmxb63jrziredVIV7mbR2jbbrXeSu+063w5126XcSbr2PLajTZ6gO6TpthFyp0D9VhsvOwWc27XXbt53A9md3rXy2F4X2JmzMkEQbpxvC4IAgutnMx0H17XRZQl37hKXTr7KS88+yUB/P/vuOsbAnkNEkoOk5utM/j9f4bV6gerBYcSgwsryJQTq1GtVPDfk6rVrLK2skUxnsT2QdYPLM9eYGO8hkYxh6hpLiws4rs2p156nvzeHXashiSFS6CDhIkrNs4bFUolcrhdFM5mbvUxPTw/lSo1kOktAiOcFqJpOw24gSSKZbBpRFNizbxRVUxgZGSUaTSJLJppuUa3UEEIRSWien7VMi3y+RL5QJZNNNz3aOj4IAqIoYRpR+vsGOXzXYap2nWjEJJuOk0olcF0fRdMgdHHsOsVigXgiCYLE0sIcvT0pTMOgVCgTS8QI7RBVktBFBUPRcaoObtWlVrtGOb9IvbqKobgIYYVGvUTg2dSqZUICnv7uk5RKeab2TUEIiUSK+cVV4ukMkqjiuDaiFDQdQqk6pXIeSRRJJVKsrqwxfXWavr5ewEMUQJGaZr+GoSH4LgQOxdUlfLuBJkucP3uOSNSiXC4TiUQxDJPjx4+zd+8Y5y+c5cKFswwN9VGt5jn9xg+IRw2cRhlFClGEkPz6CoFokIjHUWSJerXMwtwM0zNXOXJ4H7IY4HkNBocGqVQqSKKM7/nYdgNZFvD9gEJ+jTC0kUQHQXAgdFHFGouLs6iqTLGQR5RCiqU1wsDhypUrnHzzLTzXoV6roegqud5B+gYGsD2HEI1ILIZhWczNLaCqGoPDw1QqFSxVYXBoAN3QiURjvP3OOdbWKzTckEgsQalUwbHt5hlUz8N1RZxqBVkRMeMZVlcK7JmcxLEd5ubm2LN/H+e8Cum9E8hPv4Yu6xzpHeEj//p3CRohqupSr6+xeG2Rx77wOHfdM8SesWFSiRjnzlzgpZdf5UP3f4hiYRW7UeNv/vq/kIhFaNSqOE7I7/1fn+UXP/VzRCMaiuixuHCN/v4eRMHney88x6OPPkQoBPz2b/42jfosyThMX77Md77+HY4//Ti5RIKoZhBVZS6deZNUNkUY+CCEuJ6LH/qEkoAY3LyudZMPdmLN1Cn97axl262Hu1rTOsr8mwP9P/g84fTCDYdNmyzNdsAj3Gyh9W76m+f8TrLLnaBOa1BrG3ayoGt97ggvXcBre1/uZD3uJDfsZjzcSNvWVxt5d7Is63bH51b5346stdtnc7065Hn9/U1H6sTucslNcTsy+27c7e7U7SbjbmCCVlPqzmPzXXn+xvlYobNDuA2z3fbxvpH23Xc3t7csyx2PRAZBZ62xKHaaj5pt4rouctMC7YMNXlupvSNa43cbJBvpugnQW9F2+e6GBEHA++znCN86h/Spn+4YZwMAt4PmTibMnXjo5sHv1qjzueI7SXc6vztdzq32842Pehdj571oiW7j5e+r3XdCrSb5gtDUlG2cJdmJwNe+aDRCJ4AFAAAgAElEQVQn3Hc3q0RBJ/B9DFmEWoFTL7/IS9/9Nr3pOOPDwxTKNpfnS7zwxHHu/dPHiX71OdzDh+j9qYd4/LHH2bdvCEXTUDWTuhPQNzyKbqUZHttLMteDpKh85ztPkevppbcngW3b5AsFFFXl+PePc+TuA/T391OrNTj79ml0WcB3KpSrNZYW5tBUGcdxqVTrJCMyqqqjmxHCUGB2egYEFUlWiMVjpJKJphdWL0CQfBLxKLVqFdMwURQNURCplMq8ceI1Bvt6WVqcRxagb2gQVdHwfQddl6hVK0SjKVRVQ5EVFufnSCZiqLqBoYpI2JQLq3i+i26o1Ko1ZLGpptIMC9cLcRpV6tUCjm2ztLSCLIsQrrK2NkOtvkwYVlldncP3KkQjGWRRIZNM09fTh2lFERWJIIDVtTUuXbzAvccOc/juAwSI1GoNJFknlkzhA5okMT83xxsn3mDvnj1oqkTouxAETY++lsVrr7zE+OgQgeewurSApoqU8qvk15YJvICz75yinF8llYhQr9eoVyuUys06Hn/heeKxGMlEAssISacTnHzrTTzfIZGKooQew8NDuK5NJptmdXWF1155hUtX56nXqkQsC1ESqNt10uk4iZhJGLjUa3UWFhdQZJkXXniJZCKJaSpUqgUiVrJpDi2Drslomka2t59qpYQo6ciyQTyZRBA8LEslncphGhFisSQXL1zhoY88wkq+QCiohIJAKAj4voTjOdi2Qzwep69vgPVCAd0wyK+tUa1VCAIfWVKaV0D5zXnBjFhNTbBpoKoKRiSG5/iIYRXXbRAIcd46fZKpqSlkWSAej1EoFcn1ZNB7emiMDrH6witkzs8gXLlG8c0zfLe8xv0f/hhTdx3l7JUZHv6Zn8Z2Q/p6B1lfL2JGk7z5+mtoqgyhy4F9k+iawuy1aXyviqELVBsVZFWl7gfETJ1ytYyk6EweOMjSWp6pg4f41f/xV3HdBn19A6QyWbIDWSYHR/j8X3+Rq5cvIwcOzz7xZTK5IXpzPTiNRnOdFEUIQkShs2bhVqibrHC74PV23m+OfHNQu+YlePw5gBvgddP7Xamsbl5vtgK/rX/vBG0L4m4x/QZ1M7fcnEnnoDsFXnfD941w4ebwbn17J2WGO2n+3jH9Fm19Ux9tMzZ2Cl5bQeh2vLaD7u0sLjdoAzy2KsdawedmtjqfU70JlHc5G9t5HHfBGlIHoH8daG9YJ33gHDZBd/Daborb+kFvBdq2yms7atdk3iqIEwQB/2vfBegKXjulaR/8W01i7ebL7Rqs3ZlH/QS8vpfgtb0v3k/g9U4uNNvRxvfVet61fbNmK1622sQJwxDPkymuLfP2m68wffYU+YUrpMYPMTw2QeAGXH7nLA+vuRz96yfA0vAf/TDVdJJ6rYqhyfT0ZKjVfETRom9wDMmIcOniFU6++QZ790wwe+0qhw7uwzIUcrk+RElDVU0EQaZUrjCyZwI3lJBVizfePElvbwbD0FEUhXgsQrGQ55vf/jaqbpBLmsiKhh9ArVbn8uVLnL8wTTwWJx6PXQfjIo7tYugWruMQBi6qKlIsrBIEAb5vU68VUWR45eXjmLpCLJFElFTC0KNRL2E3aoSCiKJIFItrWJaGJAV4voBdL+M2yoShg27qIIRMX50lk02iqirnzl/CNGOoUogk+lRKZQYHh1lZXyEWjyErOggKhhHDshI4rkAsOYBtBwiCTM32QdawogkikQSO7dPX04cINGo1IrEExWIZ04wiSDKhIGJXCxCInHj1DQxNwzQlDF2HEBq1pkZ8cnKCeq3C+toac7MzmIZGuZCnWikxuvcg586fo6c3R29/P9F4klCSyGVjZNJJAi9AVTTOnDnDfcfuglCgUXcxrQh79k5iWSarhSIDw2NYsQSRWAIrluDUm29z4MA+otEoiioRi0fJZXvwXQ9d1YlYUXQjQqVS4o0Tb3H//ffjeTUcp0462YsXCsiSzPr6OqlUL4GvouomhUKdEJVUMkMQ+mi6SrXqUK056LpFpVpHUTUqpSI9uV4UWSTwG9SrDZAkLNNC1ww8z0OSJQRBZGlhEdPUkSQRXdOo1xo0qlWWlhYZGh7ADzzy+TUEASwrwfLiAqbmEoYB75xbIl9c4cDB/fi+i2FoBKGP3Wje/Ts9v8Tx5Xnu+qmPIH3/JPGL15BPXmZUSqA88iBa1GB4/CDf//4PuHzxMocOHeHQkaP0ZVNUKyUuXTqHqkhoqsLiwiKplMbBQwcwTJPxfQcxomlOvf4adx2+Bz8UuXptnqkDd1F3fOpuyPjoQdKpQaxIHMXQqNYEzl+eY/+ho1iWztTkCO+cPsflixeZnNyLKDZN7xzXRpa1LeeU3YKMTmHvZ/DaLuy2g9dNMtduqvA+Ba+dPM7vJv3umOgc9BPw+uMDXrvy08brxrjb7dhrGjG0YRuxC3gVuoPXzXLpzWdb2+t9g8+w25jrAIARbygPgiBAUdQPDni9MYF2uBOpnVrV7q1h7YNjI6/2j6dT3Hbz2PaPt91Ud+N3a9p2s+KNqz8EQcD76tPNsDbw2mkyay27HWi3Drh2Bz03q/fFTfF3DkKFG09zR2Xj984cNrTTjfZpDbv+dJtMEISbnvaPsz3PjmW3lrULCnfxbNShk8fr5ut3QWt72E3lhuFNvG6EdWuv1vc34rV9Gzut13bUKU3X8SAICATU61U0RUAWIJQVbMfBbrjIkobgCzRmV7hw+gzzs/MkEkk008R2XULfR1VlQiEkkCRcUUbyZQRBRqD513NDRFHBl1Qcp4alSdiVAlIQUL78HP/5c39Ao9pANRQCNWBo+D6i78wgfvZP2ffE63B+mvrRA3h3TSJqFqas49TrDA0OUHfKqEaUWLqHIBC4cuk8vYN7WFhcpCeXQFUE+vr7QdRQ4zE0NYkISLJDT24QN3DR1Chf+OKXGd87yl1HjtLwZHRDR1INipUGxWKVPeN7EbUobqPK0uwVVhYXefOtswgElIvrDA/2UC4sgV9BpIqCh1tZQQrKuPU8c3MX8T2JSCTC2mqBeDLH5ek5+gfHWFmYRlZFvvmNb3LvvR+mYftUKhUCT2R1eZ2opWHba9TtBrVGnUS2F8cNwHPQBJ9vPXWcyX3HCAWF7z33Astz6/T1pRAlhbmFJdKZDLFYkppdo6dvGFE00NQ4phmjUMgTBnUU2UPVBIyIiajplAs20VgcL3CQNZlIIoERibG8uIBl6ciyxNWZeb7+rac4cugQVsTEsnTqjo0ZT2LGVHQjhaLFcEOXQAhJZrJIksKFSzMcuecBdCtOLJ4itKtYsTiZgTECScfzfCJGE5i7foAVj5LOpnCcOmY8yfTsPMfu+xBjE2OEQoClmPiBgGFG8D2fSnGV8++8RbHmEo+Z6GqETLoHzVSolkpcu7bEtblVhsfG0CMKODYjI0MUSmVCVEplh2QiycrqNKaqYWoWmq5jRhVKFQfHDXj8W08wPDqKIoEYBhAqXL58hVK5zPp6nlqtTq5/nMe+8kWGB3s59/Y5TDPO8soVhkeGEGUVVVMhdLB0gULeRtN14skkDc/huRe/x+z8OrbtMtA7wPmzF2k4Ln1DIxTyK5iaR6VUZXmtwsLyElNTe8kmkzj1Omura+R6B1hdWUFAwrUdxsdHIKYhHh7HziTJrleJvXEW7akfMPr6FSrfeYapvM8JK8axDz3A8GgPjlqlp/9unv/eVTQzxr5DU/T0pxifupuXj59AbAiMDQ1BaDOzvEK+1BxfF85foS83QsxKoPo13MBjZX2NWDKGKkr8wV98nc/81j9neHSQdG6AL335e2R7mtdTzV66yl987o9YvHCJB+86QkmrIRLBczREUUIWXYJQQgybJsVK2HR8IiI2nb7tgDatTW3ywE7TdduQ3+lGZEdrsw5Pq3QuiiL+155tnm39xCOb+L9hCnw9YUjzf0G8vv4KXP/ddFDYsQ6bCm+mEyXxxqLTrZ22a5dOcbvl1emqkE75bcfLpvW0U8MKTYwg0HT8eN17402AYqu6hDfamhttv1nmuP60ANtOcuSm8bLpESAMkUSJgPBGH96Qt9qUH7ulruNeFDq2103tt4uyOo7tFj42jZ/WONf7aMOUeEN+u9GW19t9k+OyDt/fVuNl4+/Gs9mEd3Mtb8Y9m7FM08RbercGYVM+D4PNuKZ93tlkpixIbDh0Cq8PpGZV33X0dON3B/6bj0gQbM5rI97a2hqapn2wwOsGbbc70Q18tr5vpfbBsjGA2sM3OrcVEHZbMLoBwk7/bwy64PGNe147g9dudW49f9tav/Z07R/QVqB1d0C2ldfdanBb03ZOs5u8drYH9P6jnYzT7dLvtr9200PdFvMd57HhvlMIrws2zUcIBSBEk1UkUcJzbFw/pFasUi9X8F2XtaUlfMehXG2aYJ4+dQpdUakVy2hmFCEATVERAx859AhxCQIbSQoQRB/HrSEIHlK5wJnXjhO8+ga1z/4Z1/7sb/G/8SofnnGYOrvMyAvnGP36W8S+8C2kV0/hyhLlo/s4a4qkx8eBEFH0CMMGtVoB13MwDA3b9pEklXq9jmUaGFaieSbUrpPLZFhcWiYWb16Do0oajVoZ16uTzfZTLOTJZftIxJOIQkAum0VERJYVCJvXe0xO7iWbzaCZGpIQoioypXKda3PLPPLwg2TSaRr1GkuLi2i6hd3wCASFWt1Bkg3qdkjvwBipdIYgDEmm0sQTcQ4c3I8oiySTMdLZHl559QSCKDIw0E80lkTTVdKZJKIkYBoWmmqQzmRu7PYW8gU8z2fv1CHiiSSmqTIy3I/rOOyZHAcBMpkM9UYDQZCo1aqYpoXrNrXo9UbzDG0giBRKJWRZRdMNQkFAlURUVUTXJGRZxLEdREHAdT2sSARBkOkfGuXq9DWiUQMhFEjEY/T25kjGo8zOzqCpFoV8hVwujaLIuLaHrsn09PSgKAqmaRCJRqiU82SyPai6gSjKeI7LubPnSKcSIIgkU2kadRvTMLEsk/GxcWRJJgg8KuUSoiCyvLZGPJEkDGF9PU9fXz9Hjt2HoWuUihXCMMR2q8QiFrpuMjo2ThiGrOfXqJTKDAwNE02mOXP2PK++9hrH7j3WvA5IkCkUSkRjUVzfx3UaBIGPFYkxMT5GuVzEMAyWFld55tnnuPe+o4yNj5LLZUkm49z/oXtQJAnPD7HdgLm5WXLZAb74xccwjQgiIp7n0z+YRVVVvvzlr6KpERTJpFQpsn/fFPNzs7z62qsk02lyPT2oskypUCCdToGoMDoxQW9/H6dPn2ZsdBRRlCgUCvT15giCgIgVJQh8gsAnGo0iRCwaQznUw1Mgy3giSAtrWDMrPPDWVRKPPYPzteeIP/M2ybenubfR4EC9wemoz+DgGA27ytsnT/P5v/lb0pkMc4uLPPiRB5ElGRGJqBUlDELsus0bJ15B0SLIik6tVmN+dpZHf+anMYwAQawBDXQDHDfgIx95iFg8TiqV4f/9//6AgYERli9Ps29yEkH2qQs2nioh+0LToygQtgjauwGvt0J3ck3dcX4tUcIwJPjaswCIn3y0I3hu/7+TXLTbdW27BXzX+e3y/W3n3yX5RvBONhu2zGDbaLcnVzUVAB2A6h0UrDbJLzvl684Vv21bbFS1Fei2juWdjKtuG07dqN1Pzkb8zWE3y+ydyt7pd3fb80Vb/NY0G3wbhoEsy7fksKnzxaA/RtTteptO1K3D201qN8K2usS3NayTx+N2z787NRPYSR3ay+rEX/sB+3bz4a3q/RO6PerUrneS3uv+2pUZU+ccOv4WAgEhFJAlgWqxzBNPPEFPbphMJoMohCxPz5LNpHBDEVU3yKZzXHjnPLXlAtFolMW5JdLJJIWZOXjlBInjJ6nUKiiVBm6xiuO61Asl4mUHgMkQUCTqpsKIpoOq4Q9mERUdXxCp9aYplit4vkNPbw7D9znQ34fj+ly4cBnbXmPf1BixeIRKyaZYqFIq13nr1AUa9RqPPvIgkhQSj8UwtBSnT79FIp6gVq4QicWQ5YAg8IhGU5RqVRbn5+nNDpFOptDUkHKpRDyaolKrIkoiqqKysrqMbTeIxGMoqoZtNzAjMX7xF/8xuuJSt23CAArFOqmMgKZFKdUbZHMD+J6P65bRzByi0EDyRaxohCAIWcvn0U0dMQwIRen/Z+9NgyS7svu+39u3zJd71r53dfXejcY+IAecIU1JnhhyHA7KlEgqZMoKh2iLtEw7FA6RIiPksEPBCDoUQVshU9SMSJrDIWYBMIMh9sE+WBpAo9ELel+quvaq3PPt7/lDdjWyC1nV3UBjOJyZU5GRWffdd++579337vmfc+457N2/nz379rE4fxU/FHnjjZf44hf/DmkzTasdEvp1VlfWkRSFtJ3BtAsMDQwwP79As14hk9Vpt9bYu3sCUZIRZaUTEEmSefHFV/j85z5Ls+V2QGjoYmdS+J6LlcmTzmRpNpsouoHbaGAZMtXKEpIsYRoWgSjgew52xqbZbGOmMoiCwD/8B3+fOPaprqzgturIEsRhgJ3OokgqX3/kT/nCF34eSRbJ50rU6qsMDQ6ztLxCFFtYokWYxARxBL6PKKmsrVQ49t5J9u/fiRjF+EGAbhhEYYymqjTqNZ555hk+//nPEScBUipFvpgnEQQkSWF5pcbC/DyHDh3ENDXm5mbJF/MIksSlK5eRJZ3X33iLX/jFL3Hy1HGGhvppuh5+6HLfgw8yNj6B47qEXkQoibz82pvsP7CPsYlRMpZOu9Vi794ZGq0GuUKJJI4I44hf+MUvIMkCUezRPzBAo1rB8yQqtRrZQolLl+cx9BStlkOpVKJSqTCzc5KVpUUQYk6fPcPgwBDjY5OoqsZPpe4j9APePvI2O6an2Tk9w5f/+Ct84Qt/B89xUDWdYrnMhUuzIMbohkbbcfnGN77Jww8/TF2TKRVLRFGMbqjMzs6iaTrVaoWRkRF8P8ApWcQFE2XHALUgQVNUQqeNUakj+jHBuYt4jQaGE/DAd16GBPy8xS/nsvzX9i7kl05z6fIlkpdPc/bhGQYHhvmDP/hD/s//49+SzaZ47dUj/PPf/leomkHaNvmzL/9HClmDJPZAkHn//beJk5DJHbu4NLtAoVBg3+H72H3oPv7oT/6U3/xH/4B/+Vv/lH/xO79Nrm8MIhUhiYkFCDfc8zbeZT/iy+RWXkM/oR9uupkx54eBbpBf/gb52Io25J87YZi5mXy24Q26VT9buS1v1O9+Tm+H1w18cyee8422epVv5vF26G+t5fVWAUA3MLyVtDm9fLm302Js5/q52crZDRBv1ne35XUzD9tZcre7LltpQ7v3dnS7Qmw1TkEQbgDuWz+AW+es2o5uRwt4vace4+7ZSo9rttlV/NOmj2fFvrF+L1f4T8TTbfLSU3PYo64iSoR+gCh0HEYUWcb1XAQE4ijuWFiDkGqlyvlT53ni8W+jyQphEDBQ7kOIZHKZHHHgkzZ15ueu0PAiMpkcc7NXeeSrf8V999yHtrRO9g/+GOX//jO0//cRxLdPUTl/CZYqBLUmdUPGERICXUG8dzfugX34u8dJ9u2A6QnYMQkzo8T5HBQLkMsxv7TM0aPvMHd1jlK5hJVK0ag3OH/uPO+9fRyn3SSdSqEoBq+9coSJ8THeePMItp2lv69MuVxAVhQgIY4FLpy/QuD7DA0OsLy8ThS5pFMWy8vrZLI2oe8hiSrvv3+ctG1y+fIlNM2g7bj4gU82m+WZp58mbaex7SyO43DhwiXefuco6XSWwaES+XweRdWwM1lMM03KSpMpWMRJxzKUtm3iOKJWXcUwTMIwZnVtnUwmg6Ypnb2wccL4+DgikM/a2HaBN998nbHREWRZ55FHHmN65yTZXJ6sbWNaKTwvIJXO4LQb5AtFgtAjnTYxNItao0mz1cDzHXRdZ2RkFMtKoWoKpmXheW0MXSeKIzwvIIoTlpaWyNg266uraJqE7wX4XkgQhBiGfs0KE8M1ayEkmJqCF/isriyxvDjP7OwV+vrLSLLM2lqFfXv3MTBYxDAMarUGpWKOhIRGs0mCyOmz57lw4Tzj4+O4rockyuSzeUrFMnbWYr1SQxBlLl68zEsvvARJjOf5pFIda2IulyESBTKZDIIgIIkSCBItxyed0lhaWuTw4XtQVA1F76TvMawUI6Mj+L6HaRqouo6VtjFMi4QEw9AhiZBllb/82iM8/LnPUyz1YWdsausrNFttcoUCyyurtFsugR8y0F/GMA00QyeOQ3RDJ3DbtNousmpy5MhR+vv7qFaW2btvD2nbpFzOIUkxuZwNQoq+0hCaZnDmzAkGBvJoqsbi0iKDw8P4vk8cx1y8cIFUymJ6ehdxIjA/v0CxVMAwNIaGRmg1HWZmZkiZJl7gkrFtzp0/R8rqWNzT6SyplImuG6yvr2NnbEzTQNMsKtUqQRSimBrzbgNtaAgmR1jLKvi7+9Du3cVaoUgsJ1R8j5QfwcIKuRDk984x8ex75P76+/zdVJn4/TOszgyhKQb7D93FAw88yD/7Z/897xx5C0NJcebUeZ566nuIgsYDn/kpQCKTtfG9gAuX5piY3MGv/No/Qi6YPPhT9/DEI1/jzSefx3ahNDqCIAp4cUCYxIiAGCdIsnJdQf3DQp/Ym6mrmiAIJO+dRsimkT5337Ztftx+uw0EG/9vqAc+jnfRnaaP1fdNLK8fu+2bVL9+vdha/ugll/ZyKd1wm90KOPWim8kp3fdz87aljePbnr9FW3eSrmMI4aM8fVyL+c143Sz3d8vd3ed21sPeMn+vNm51+1436NzKaNGrrc33cnOdDTyxkenlxypVzu1YrzZPjtudXNsdu1V35O3Ke41lM3jtrtsNvDaDz1vhu7vPrcazua2N8o3JvDlVT++xbsvCJ6abXffuo9cfoh5lfxtoq7H+TYDX22oj7vC3ERI9iiL8us/rL79OKVuiVW3xxKNP8Ogjj3LPXXczODDEytISfcUSb7z+JmYqj66p6JrC8uoimqbyyLe+zeG778ZE5O7HXqL07edJf/NpEgnC6Una9+1H3DvOa1fPkL//Pow9O6FUpLRrhtTEOJqdRVB1BEUmFkQSUSKhs99cFEUEYkLfJWOnmBqfYu/+vVhpi5gERVJIWWmKBZtUysJKpSnkC+TyGSRJJJvNs//AARRFZHFhlna7Tb1e59LlqywvryEKIn19JTL5Ep7fIA4jlhcr2GkTO2sjyRqtVpuJqVHGJ8YRJRnL1Kk36kDHVTYME9LpHM888xymZZEkCQcPHSCII1zPBxIMXWNtdQnbNqmsV7BSNmEY47QcLF3Dc9pYZppGrcW3H/8O+/fvhwScdgNN05BEgVplDbddJwwjzp09x+pqDdO0GB4eQktZ5HJZarV1Pjh5EuNa9FnP9zAsm5iYRqOJLJkEoUsum8Y0DS5eOI+dShEkEZIk4PkOqZSFJCqsrlYJnQaGrlMslWg0mpDEJInE6TPnee75l5jeuaujgBLBbzfQjQ7w+d5zz0LoIygiigilYpGBwUGCKEGWQFV0HKcFhDhOGzudJYoi4jjuRGxG4p133ue+Bx7EzuQQ6Fi+j777Lnv37sNxW2iGgarqSJLMgQOHmJmZ4d2jx1hYWOa+++4nimNUXcN1HIhCXMdBkmV27d6FmIQMDPRxdW6RCNAtFcvMoBsmAjG2ncb3HcIoRFFVoihCVWQ0VUJIAlotlzCOmdq5EzNlQhIjijKZbB4/iDj9wWmGB4aJvBDNkkkATdUxzBSuG5JK2VydXyWMRfrKZWxLZ/fuvURxDAKomkIURlQrFWpNBwGJV156hStXLjMyPIjnBAyPjGIYJqVykWIxz0BfmeHREZJE4ulnnicIQkRBJHJbpFMZ3n3vOG+89Rb33HfPNZd6FzudQhAlkkig1XS5eOECSQzZXA5BEGi1WgiCgq7rmJaBqqpksxnarRpJAtlMBoQYx3Ew7TT60CBifxlxxyiVook/nEc5tJcrtoKQt0m3fYxjZzGefYPs+Svk623u+x9+nSQJ2L9vF5mUSjptk8+VuOvwvVy9usDS3EVK+QKhHxBEETO7dpMkCW7QIm+XGSgMYukKL7/0FK1Wgp1Kk8pnQYDqyhqGqBAKHwpmPyz0iYX5TaeLD9+D+PA9tyX/3CptNjR8yMIPjzLgY9Etgtc71e71wxsy482auRW5tdf9vkm7N6Mt50sPoLhNtU+dBOHmcVPuJGjuZXDqphu8Nvko0Pykz+bm1KG3qhjoxgY9DR2bsNOPFXi9Hc3KxsX/ODlMf1DgdTNf0i/+7PX9rpvBa3e+1u7P5oBL29HHBa8b3xs5YbfT4vwEvN45+tsKXoU4IY5iXnzhRd47+h6mYdJaaTLUN0jgBhDB808/x0MPPIRlp1Flif5ymcWrV1leWqLe9imWisRxwHp1DdPSuf/+z2J/+3vk/vW/wxZE5MlRWvfuQ5gewU2bqIYBSYQiC5TGdyJqOqKqUWs7SLrB/MoqmiigyCKarlKtVDEMgzAIcd02geegKCLVyipOyydKItYqa535jki70UbVfHbsmCafLxAnAc32OrX1On39A5hWimpljUIhg6yo6IZJsTzA2Ngkp04cR5Wgb3gMaOO1HU69f5aMbXL6whlGRifIZvPIakfD63oBhbxNvV6nXmvw1lvv8DMP/wz5fB/79++jr7+PHdOTPPfcs+zctRtN12k1GwhChGVquE6TYn4IUVRRVQNTt6jXqrjtJoqsYRomxUIJz/WxDBPHaSCJAmEQIEsgJDGabnDxwiztpofne9z/wF1EgtSxkskiA+UirVYThAQznUbVTMIoRlF0iBVct0Ych5DESKJIEsVYdpqEjtJtdWUFTTNx2j5ZS8K0LNquj2GYCCRcmV1CEBQKxT7yhQLzi/O0nCZFO4XjupimxdjwEKoIKbsTKMnOZEEQCOIY01B44/tvsLKyzM6ZCTJ2lpWVdQmzfysAACAASURBVKyURbVWxQ9Ccrky09O7MAyLOAyRRPA8h0ajgSiJSIqIIMoomoaiKOiqRtt1UVWdsfEJ6s06z3/vOSYnJ5FFAVkEQ9epVCvUm00+OHmcc+fO8c7b75HOZCgNFNGUFK7bplaroCgivu+iaiphGKJqGm67Tb2yhu+6KKpGoVxG1XUSYGlxERKJtuMgqxrTO3ZgqgZCDG7QYq1SJUkEZEVDFCSWllb55qNPcPjwvWiqQhy2OXLkBCPDY2RzeQzD5J2332VocATZiElZNlcuLzA+MsXo6A6i0O+AU0UijAIW5uaIQp/ZuVn6B4bYtWsviwuLLC8vc/eBXTSaDoKs0nJcDLOTWsdznY77u6ohCBLNZptyuQ/bTtNqdlzjAVbXaoiSQBD6OG6bJEnQNBFF0hAFGYgIfI+19VVIVDw/wExbqIpMEDgUin1YdpqmmHCsvkLuocPoqoZydpb+pQqNV99CnZvH2TPG//fnfwTEZHJZVtaW2b1nmpQiEkchTz39NDO7duM4HkmcULl4gdiVKQ+MUhwtcmbpBP/qN3+PWrPO9J4Z7KzN8txVsqbF7NIS6XT6juYj/aR0p8Hrdu1+0r42W2Y+ZOGHB7x+rO0/PwGvt9XvxwGvt7Ot6XbpBw1ee2Uwuc7HRzxDhRvOux0MshXJsnyDm/mt4qdu8LpVWs7udn/kwWsURb+/8bv7JnZ/b6aN8iiKbmsh6bVndDOI6+UOvLnfjd+bz+nF461QN0jdeLFv5qO7zuYIw5vb6jUhewHyXsB4OxeGTjlwK6Hitvz0uFZdn57lwocR4uJkU9RdQbieYFvo/r3Vtb6Nz52km70gttJk3fKLpeuzcQ263cU32kiSZMuFautrECMLAhDhtFvMXbzEl//9f+DZx59kpDxKqTyMaofMzs9hWja1eps9e3aRShlcvnwW05IIApn/9OWvMTk9Qrk0RLHYR6PhUyr2o3z/GMXf+b+Qj5+h9cABggM7CUsZUDpRupv1GpamIgoClUoN0+xY0RRRQBESZCEh9n3cdou25xJFMUKSoEkSUeghCTKhH/L449/GTqdZW54nm7ZoVNchCjugMKWxvLiOpluEUcjVS2fRBR8UmVq1gqYqpFJpFpdXEIwijz36GIf3TtJu17hw+TJDg4MYhoCIhmFlGZscQ1JVxsYmkWUBx6kSBB6NRhM7bVOvruMFCSk7z4FD+5CVhDjyqDdWWV9bJIkFhESjUC4QBj7plMVrr7xGHAn0948gylBrVBHFhGp1mVwuRSh0IswGcYhuKqTSKpIcowgSkiBBAsura4SxQETI1MwucoUi99x/mFarSjqTQRREEiQQpWuuvAmqauA0awRuGztl03CapLMpkjghCmNSKQsvDAj8Tn7YvJ2iVfdAUPnq1/+SiclJElFBN1KEscgr33+b9cV5du6cZPfeKS5ePMulsxc5vO9uEiVmcbHCmTMXieKEkYlxVCOPJEW0mg2iSOSb33yUfQfvplDq49SpM4wMj+G22yhyjKppJLHAqRMfkM/l8P0W1fUq1UqVUqGMquoMjY5jZW1aTZ9Go0U6ZRHHIQkRy6vzjI7u4Gt/9Q0+89BDtNsJk2ODhGFATMLVhXlGR8fI2DZBFKMoKYZHxhmfGCEOQ5rtJpomIAoSKTNH23ExjSwnTnxA2rJQFAVN1zAME001SSIP36lTXV3m7AfnOHfhHJOT45imiuM00UyDd44dZWioSODGGLpKs76GqRsgwD13H0KREjIZmyiGVC5NEnskYYv11SUWFpcJE5GMZSEJIrZtceDQXh5/4lucOX2SqR3jSGKILILn+xT7BrCsNLoqcenCWY6+d5TR8UnCBKxUmnzOJmublIp50oaBKEtopkWr3ckFfPHcGQxDJp3JoBkGiirTbDR48jtPMTkxhqbKpEyTarWOAHieR8Y2mZ27QqPp8sxzR9g1PUKukMP1fXzfw2+3qTQcoiThO995gp/72Z9FVlRWCYimB7D6h9BPX8Q4M8v66Q/4s/PzpDSbnRMT7J6ZoeW5vPXO++zcvYfJ6SniOOJ/+q3fYsfUNH//136FP//aI4SJyOG7H2J6x2H+m1/9b6msLxBVL/Ls43/FxNRe1HQ/2ayFaRg0W000XSGKQ4Q7mCf2ZhT3ivD7CVeqrdc/oeu789cdNXdjEZZEiY/Gxr/W9iZDwJYy0y3qarfbGnanaKv2t9rjBx+9dq1mE137aAqm2+bl2qf7en94X/iwbIvrsVmWg2teqNfm0Ib8tJVF4lZA8e0Cn45sJlwfRxLHm+bbzeWvT3r/b4wO3XmWNiJDf4SHW1Qg3AptlcVk47sbc1yvK3bdomtBMEVR6PwmQRA3cq4KPV2MN/rtBsy3YxzpNee3Mm5tlG0c/7HK89otYG93gT/JS6zXeVtbGT9ab/Onm24FXHbX7X6Z3wgQe/NzK1rBjTZ65ZXaSlPSfd6G292nt0D0Bq/b0Q0gvNfx2+j901v2btLvzbSMvQDlx7wHG/e9l4ZPFMXbuoax0NmDCBK19SaVtTq/+l/+EvXVJntm9jM6Os7I6AiR6JLL5Zm/epVsJk0c+5y/cJY9ex9E1Tt5P0+fPcdnP/cQQ8Nlzp07x1f/+D/x9775PKnnXic+MI1zzx5W2k10VSEIAlbXVjH0DLKioSganh/ynSeexHVbFAs5hCQiiSJqlTqvv/YGYRSQSqUx9E4e1cWFBTRdRZEV2i2Xq3PzSJKCkHiU+0pESYQoCmSzWRIBWl7IuQ9O0qxVKPcP4sYSR98/RbHYhyjKRGFIX1+ZpfUWldUVausrRCQMjQyhKgIJAvl8gbW1jkX3yuxlioUCrWaLTDYLCGiaiaJo+J5D2s5imiZxGCAICem0jaZ1wM3KygojI0Osra6QTls0m3X6+vv5/utvMjw6jtOuoek6iqIiSypJHCPJKrIs43oOVsrC9zqWznargR+EXJm9SpKI+H7M0ECZWq1Bf38fIgmqkpAk8PRTT5EyTXKZDJ7noKkKfpjQbNbJ5/PUmzUyuTSteh1ZUtBUjQQR1TTJpHNomkalWuf1N95laHiMQ3cdIFsoIcoKsqLieR4XL15AJKZcLuE4LsPDI7TbbVRVJREiioUy+VyeTCaDYerEJMSxi6HrZDIFpmdmMDWZRr3Ojh1T5HMFJE0lZWcQJJU4ERkZnyROBHTTpNzfT9pO06jXmJ2dRZZlNEUhCh1SKQNFkamsVzB0g5Sdod0KOHLkLe659y5GR4ZAiJEVBVXXQRCpN5q4nk8xX6avP0ejuYquG6TMDIV8jmajiqHpCIKELIEXwHe/+11M00IQRAI/wEqlcSMBzTRBkhBklR07d9NX7Ae4Fvioiq5rFIt5YhIymQKGZZDNZ1lbryCKMVHsoxsy7XYVWUnIZjqRlxuNBoVSCStlMzw8TL1aIwwjXn3tNWRFZHrnFD/92c8TRBGSJLO0uMjI8DCtZh3HCbDTaUqlEjO7djE6Ns6T3/k2iqLQVypRq9WQRJEYUFWNwA8xDYvZ2atEYYydzhInYkeRkCTMzV4hl8syNjZKkoDvR6iaSSIE5LJ5zp07R19/iZRtky/2kc1kaDoumVwekgRVUVFVE9Ow2D2zCwQRRVbwvE4ArtPLVxj6uc/QarUpH7vMw/1DnBnNsbq4yMrSAl/5j/8BP9LQdZ1cLo+i6Jw5fZFDB+/l/Pnz/MZv/AZf/OIXcNwamazJpfkL3Hfv/fyL3/xdDu1/CEmWWFubY6K/gKpd61ez8BMZ+QcYxSnho/LLnbZaBv/d7xE//sL1PK/d1Gs96qwntwZet6JbHcFWbsc/KLpVkLZh2bpTPN6Qa/c2+Nq8LaxT+db7vZNX+GY83q6x55Mxc0tFNzlw+7x045vN92WrLYLb3XNRFImiqKvsRnmvu+2t+rkZdfO6mf+taOPYjx143QBO2+0t6WUB3QwCN2jjBndrC7bbS7p5UvWyZG6lhdsMQuM4vu6KCxD9m/+H+MW34KfvuaH9DcC70cYG393tfqjNkG+p/+7xd49xs3ake4wbLsO9QnjfObp98Hoz+mEFr70s/TfwsoXmcquy7ja3o61c0Lej7qOSJOH7PrIso2o6SZyweHWByvIaQpxgWTa/+k9+nft+5mH0QgrZAkPI4LQC/vOffIWT759g3659/Mv/5X/jl3/516jV58llc4wOj/D0U9+hVl9gwEzxs//+W4Sui/v5+6nrCW6rRSad5vKlyzz33LM8+OCDqJrC0vIcmi7TbNVZr1S49+67sNMpmo06gRdgGCYpM8XQ8AgvvfgSO6enIUlotZsoskwYRly+fAVBFDh08BCDQwUkRSYMQsr9AwRhhO8HWLbNYF8ZWRRIZ4usVNq89c47jI1NMDQ4gGWZNGo1ZMNGEQUqq4vc98AD5ItFdFVA1Uxq1Rovv/wq4+OjvPnW60xMjGGaJmEY4TgeV67MYqfTyLKImTIRJRGBiFajjiSp1GrVDmgzNBRF4o3X32JycgLP7+Tp3DmzCzOVImVpiKLM/MIi77z9DqVCCUQFRZYJAh9dU1ldWcVxXBBA002efeZ7tJ0ASdHQFJH3jr3PuXNnGRsbQhIh8EPsdBpN0Th//hy6phEnMatrFcr9/ciKzOLSAgIJ6VQGz/V5//hxbDuDoqqIooqiqIiyiucmPPfcc9xz9wHq1TUUUcBvt2jWK/SXcuw/uB9V05mfX0KWVZ5//jmGBvtZq1TI5QqcPnOanTM7WV1dIRZEGo11SqUSrhfheB5uu0oul0c3TFrtNkEYsl6tYloZqvUW7x87zsjICIqsEEsCnuvy8ssvEwYBExPjxHHCyuo8kiRjmhaapiOKMjECxFLH+mlIKLIIooAoyQiCiCyrSJKCZZmosoHnN2i2ahQLfczNrXTcZVt1JEkhipJO6htBolAoECcJY6NjZLM55ubmkcQYVRExNBlZFHBadRYW13jppVeYnJzi1VdfRVEVCoU8umGRIBIEHtVahVQqh0QnWrWuGbiuR9bOkMSd973ruzz+7e9QKBRx2g5DQwOEQcj8wjyTkxNYaYMwknj8249zde4q9957L2fPnsZptXjn6HGuXL7M1OQEtUadWq3Gvj278VwXVVWIopA4jvCCkEwmw8LCIikrxRuvv0G5r4+lxSXqzRb9/QOEYUAhnyeVMkAQiCI4fvw0b79zlJWVFbx2xJUr84yOjXP6zAWKxUEef/wx9h88iCSJaKpGFCVoqkatVkdVNTzXw3U93nnnKHOzV3nggcOsV5ahVMDYMYX6+vtMXVqhXzUQD+/mcw89SLo4jGkYaFrHTXlkeJzh4TE++9mfZmZmGlWDxaWr5PM5ykNFalWHz//Ml7j/vs+SzZosLFzk8tlTREHHOi0pKpIkE0fB9TX+0wBUURQhyzJhGF53wYautaOr7p1wrYwffwGgJ3j9SN8b69o2Xd0KH+ItrE+32+adptvl7wfJ41bycE8eBHrW7Vl2ExHwZjLiVgaZXv3dDn0a4FXcdN2u871F/93j2myJ3A6obz7e7YK70d6G/H2zqMIfNVB8aLTajGE+kr9201i2kitvxau01xjgxxC89nLd3Y5udnzj5d+9N3bz5On1+1b66sXf5gezG0SE//kxqDU+Em14O4vqZiC6naZqY9JvZ23dis9uPj7dfaM/PuAVtn85f9yX8K08E7erYeuuGcfx9aiaEjLzVy4yd+E8i7PnaK4v8dM//zmcwEfWJTxnHSWp0VzxEWOf7z7+df7pP/6HeK06u6enKRZsdK2F324RtF0i3+Hs00/x83/xfdY1kVeFFlM7x1BkETttcen8BSRR5MrcLIVigWZ9nVRaR5bAMk36BwbQNbPjQpfEhFGI57oUi0WCMGZ5cYFiPk+lWiGTy+A6Do1GnXPnzrOysszhwwdZW10ml8vTaLaJYjqWUD/EadXQNIMnnnya/sEBchmbndO7yOdsVE2m1W6BKGJlspi6TLmQxXF9BEnCc5t4Xnw9wM34xBjlcpEw8vA8l2wmTxInFAr5666jURIjCAmh7+O7LqqmE0cJqqqxuraOqqpMTe/h3PnzlMtlLNOg3WjSrNeJoxiQkGWFSxcvUizk+esnn2NmZpp02mB5eYm+Uj+yrLKyto4kqQwMDnP0vWMUSyWKhTyIMoLYscL5gY+up1hYWKZWb3LqgzOomoFhWpTLRRJERLmz17dRrROhEAQRSwtL1KoVdE2j2XLRTR0vCECQuXDuLBMTAyiigKaqiJJIKp3CtExEWSSKQJZN3n77XaYmx9i7ZyeyZmJZFoZpIIgC2WyOlhMTR0HHey4R0XQNRVMQJInQD0mSGFWRabdb6EaKN994E9f1mZyYIPBcVE1DUzRy2Sw7pncgayqKpmJnbHTTAkHCDyNUTSWOQ46+ewyI0DQRXVVpttr4XoDnBuiagSgKNOo1VpbXOzllZY2rVxd5880jKJpBqa+IrGhEUSdokmFZ2Haa0ZERoigiDEP+4qtfpZBJU8rn8BwHRRIJfZf+wTGmZ3aSTmc4+cEHTO2YptluIooqsqTg+i1SKYs4EkmZOp7bUTItLS4jSx3rdrPVJpvPk7Yz9JX7uHLlMrom4fkeBw4cRFEVbDvD2uo6i4tL2HaW0bFxUuk0KTvNhfOXabebyJJE/+AAQRSiqSpWykLVVDRdo1gqUq3XSKfTWLpGu9Xi1JnTHL7nbvr7CkRxTC6fQ0BgZWUFQYDFxVVefe1N5heXME2DQ4cO4DgBZ8+cZ9eeGdK2jaSozF6+xPT0FAIRsiRhGCYiCY1GnaeeeYqZXTO0nTZjE+N8cPIE01OTJFFMq9UiMlWenz3PjGxRff80ORQWR7Kcu3QVQUwwDIVqtcKePfuI4xhNlzl56ijDIwOsr69jGjb1yjqFXIm+8hCVRpUgcdizbzfLS2sYZopv/tVXGSzlyJsKsaJ3gOWnvA82iiLELoX+9fV9i/qfJnj9aGcfq6uu0/+m/KF+NOi27vXtXOpPKAbeabnnTp3f2/K6BeC8Sf83k9l7dn8bhonbaUugd3yc7eTBm4HX7jq9aDPe6P7/xxK8CoJwy4tBr4nUfTE3B3XaDBpvBl630xhtLtvMwwbY3NBKRI89hyCA/KWfu153Qyuy3cTq1V4v2hxFrBd/W42lW4v06dJPwGv3sY/b5s2OfxLwujFfPc/j8rnLeK0GhhiR1kATAtZWVlGSBI2ES8deJ5O0mL16BUPzeOC+aZYWTvHumy/y2Lf+nJ07dzB75SiR5/H6q2/w1p/8Ob9zWaI1kMXfM8rk5AiLC1eYnZ1DV1VIEiqVCvOLi5iGycljJzsWNEnB92NOnjjL6NhkJwm2IuH5DpIs4jhtFMVgbWWVHZMTSLKIIApU1ivkcjksy2BsbBiEkHQqTaVaJ5cvEkXQbDm8/vpbjA0UUPQUyDp7ZnZQXZkjlyshdbKj0HLaFEt9iLKIocpIxNjZHOvVOqV8DlFUyeXyDA0NIQiwurpEsWijGzq+H1CvN5BkkTgOCaOYOIkIwwCn3aKvWGRxaZnRkVGSRABETCPFd596njNnz7BjapKO4SXGbbewUlkQJZrNJjt2TAERrg+jI8NIskAY+GSzeaIQLl+5ygsvvEShWGJm10727t2HLCmk0jZDI0NEcYiiSMiSjm1nWa/U0XQD3TQZGh5BUUQUxWC9UsfQDDKpDK++9S7pVJpXXnqJn/3cwySRz+W5BYZHR5BVBdcJGOgvk88apAv9xIKMqJpIegpRt4i8JnEMJ0+e4+rVee6//zCmpRMjY1kmmqZSq9cxDJM33zyBpkr09ZWIEwFVV0ASqVRrCEikLIulhavoioyRylAu9TEzPU2rUUORJSrVGq+/9n2KxSJWysINfSIBms02bcdBUVUQhGvujxFjIxMUCznmr15GlTUkScI0Ujzyta8zPDhM6PtYpsHRo8cZHBzBcQKiKCaTSTM2tQtF61hpK5U6YRzgem0M02B+/iqartJqtdkxNcVLL7/G8Ngk2XyRSq1OOpNFUmQWFha4cuUqhw7dRSZjo+sGZ06dpVgoIsugqTJhINBsLuN5bZIkolwqkiQJjUYL27aJgEKxiKZqZDM2khRjpTr5fw3TolKpYmgKoyOjjIyOd/LiJgm6YVIu9bO+usLAYB9xAn/1yNcpFgvXPAIMvMAjThJSGQun1aReryFLEvsO7MfxHOLQYXB4mJWVNUzDQpFkkgRee/VNDhw6TBRFHL77EOvVq+zdu4co9BGlkGwhRRD5zExNkzINosBFABzHIYkDlleWmJqaJJPNkslmqdXr7No5RbvRRhIkJFmk0aqwa+d+Fk2d/qaPXW0hVxrkv/A5ZnZNYVk6L7z4AoODgwRBCILP2Pggly5d5OrcEpMTuwibLU6fPIWVNVivr7BSWaNabZIt95PLZrANlce+9hVOHHmNlpRibGzsutfSp0VxHP8EvP6EetLHBa83tRb+BLzeEnjdjBs+CXjt5RG5cawX3SDr/wS8/mBpc6qczQtAL4C3laZiqxvXfWxz27IsX0/5sZ3b7ebzunnr5qUbfG+4LG/UiR//HsD1iMPdY+7lyrzZbeBWNDPdPG0G8LIsb3v+jeOGOO7kWuwUb4RJ6jWJ467j23+ERLwhCISAwFbZ37fam7n5sxXdTt2tzqdrTvZqb7t2t3rgN+9F3bL/m7z8b5h7PerEyNdHIpAgJjEiMb7YuY9BGCIrGnGSIAoenlvHFOHIy9+jcuUyH7z7JnOnTmMkIe31VdKaSui4OE4LM20iaiqhmCZVnGGxKmDYRcrDI7zw0hH+8T/5be6557/gxKl3+bd/+BUCz+Sfn2vz8ysBRzQJ8dAeFF0lEiSGJ3YDKu8eO8mV+RX2HTxMua+Tk/L8hYuUCllMTUUUEhJilhYW0DWB0GtimgbpXAnVsmlUVtB0Hd00cBwHSZJ46blXSaUzDI2OUu4voWsqsShhZ2wSIcJzW/z1E9/lS1/8Baq1Jhk7Q9a2iOKQesshWyxQbzTJZgsYRoo4SYi9BstLCxhWJ7iTLCtY6Tyi5CBJOmGU0GjWyRcGaNZXIBHQlDSPfvNJcrkchUIKQ1eJAx+n1cDO5HDDGEkS0XUTPwgxLQPHrVMqlllfW2F4aBA7bZMkEaIg0nBc0ukcfuCgqDKeJ7Bnd5lms4IkybRabQzLpN5ap5grUa3WOHhwBlWVOH3yHKadQlMUWtUKWbvDz8raKoVClsBvY2gKUeAy0FemWq2Tskzq1QoZ26bZavLGW+9RLg9w+dIcQRAxPDKCpSqIQgJxhOvVGRoaQJJ1JFUhCHxEAWrra1iKSqvt4LoBxXyOXTM7cdoemmYRxR5xHNFuO+i6iaZqlEs2YRhiZ3LIskIQxKiijICAqmtEgGHY6Hoax2ujalCvNjh37hLNZpORkT40Q2NkbAI/iFldWsVSdYQoREpCNN1ClDTEwCeJ2lTWK2iaiiTLaEYWK5MmTBKK5X7S2RxmOoNh2RTLOWRVQlFlNEOnf2CASxfPoEoSuqYS+A6WaSCHHpqscvqD87SaLoamksQhgih0FDOKTEyCquo0ay3mry5w4vgJ7rn7MCvLi+TzOeysjeu1kCUZEYkoDPCjEFUzuXzpMqVSH9VajUyxjCiJeE4TmQRZEDh1/CQpu8iJEx8wNjZOEAasr6/hBz7FYpG5uTkee/RRDh7cTxh4WOk0igSlfB7fC5BEFVmKmJyaolKrQRyhCglu4GFoKU4cO0vKtIkiD0VOUI0UrbZDNpshikLWq+skosqbb7zD3Yf3Mz09SBC4TI6OMHvlEpOTE4iigqGnkRKJam0FzVA67tHpFKurKwiSgp3NYNspKtV1TCNFq94ml0kTxiFe4NN2XY4ceZcjxy5x//130crJWJUm5snLpNfX0R6+i8pqjbdff5s///KfMlAoIMQ+506fYsf0Lo4dO0OhMEymnCPfN9BJmVUoUSwUEUQJ2VTQzAL9Q5Ps3r2Hl195npXTxxG8OsViBl+QiJQ0suiCEJMIkAidvfCJ8PEw3sZ6LknSh+uRIH4YxKdH3W6B+gb5qMfCtZmnDfAqfulzH13ktvL6uvbvzcDQjUFxhGsBn7YIgrSNNer6eP6G9r7CjfLYx9m3+WnytX2FG+te//QIWPSD5LHX3Pm48tHNGfhoUbeUiiB8+Hzcwn3dbBS7KSUi114OCIJ4DXSC0PUcXQexiYggdI5LkoyA2AnS1CvNTXJrmVJ68brd717y6mbALQjXAm4J14KmAtKPOnhNkuT3N6P/rTYY97J2biD9W71p3edt0AYw7rVHcavzb9ZPr0i+8ePPdSbhL37+I+duxf9mK+qGL3yvybjdS3SrMW09nq0CRPVq+0OwfdMHvafa69ZVfH8Ty8OdXpQ+Tnu95uENZb3OIe46IhALMrEggwhiEqOQIEU+UuRRnb3CC089y9E3j/Dv/vCPOHb0JHcffoDFxXnWKlX6Bke4vLhC/+g0mdwA6402Uzt3k85myWczjI6MY5kqqiYxPTXF+8dPUS4P8K9/5/f43+VhfuVKA1GSODvVT9JfZHJiFFURadTq6LpBs+5RrzeYnZ3l8OG7iKKQVMpCVVQmJsZwXQ/X8xkZmUBTDVRNRZIklpdXO66SjTbNRo23336bl159hekd07SdFjt2TDG1YwJRkrh8+SKry8skoYAkynQC6pjIkkG5f4THH/8m/X19nYA+mk65r4znumSzGVRVwWm3iKIQERBFCU3T8fwQ3w+RZJm2U0GRRWRFxDBUNENCFhRkWaVWqxDFHhMTowiCRBSFeJ5DKpXG8XzqjSahL6IoEmHkUKtXabccBFHk0MEDaLpKEHiQJHieiygKRKGPZcn4fotyqUy9ViGOQdMMSATq9TrfeeK7hH7MXXfdTSZj47Qdnvrr55BUGd91md4xhSiKzC/MY1g2mqrjug7ZXLaTd9PSmZtdpL+/H0kSabUapNMWB/btZGVpSWND0AAAIABJREFUjiuXL/BLv/QlrsxepL+vnyiJSYBMJoPjtFAVCceNMY0UkqCgKjpxnGBaCpIoIEkynuextLxIrpDDMDp7eU3DQhIlqtUqsiKiaSq63nHRlGSRWrWzNzgII+I44flnn6OQL/D8975Hq9lgeGiMdtvh7LkP2LlzB6aVot12mZ2d6wjMSUIhn2N5cQHDzpKIIrX1NQLfw9DTOJ6HZunoZgrfbREFIbNXZqlWKuRzNhfOn0XRNCwrha4bHXAhCbz0wsuEYczpD87QV+6jXmuQTqeZm1/k/ROnSdtZ7GwGXdeJIpHBwUEEUURWJKq1KkmcMD42wfT0NIrSCb5l2ykcp42qqJw5cxaAarWCqJhksgVOnjrN0PAoum6SJDG+5xIEHql0ClVTEaXOnsmNOBLPPP0MTtulVmtTr7c5ceIUn/uZz9Pf34ehG1Sqy5imgq6raLrCzMwOdN3ASqfRVJVqpcL6+hqpTB4BicAPaDSqGJaKqimE7YhWrcHq0hJp0yBwXCw7x8jQKBfOn8M0NXK5AiQRlpVCVlRkRSUKI9bWK5TLeURBJJcrEIUhURQjSRqCIDA3dxXTsCARWFxcBCFC0TTMVJrXvv8GxVI/juOwZ9cUvu8wr0bkBgaQXz6G9+IRKkdP8npYR1M1rs7PUywX2bN3DxfPn2WgVCSlySimhGV2XKGTSODJv36G9bUaO8ZHuHRxlke/9W1c3+cLX/yvGB+b5slnnsVzHAwRcqqMrGnXIpgKdPI0Clu+oz8O3UypuWVZr6V30//bWl6TLYT5TYBoq+AuPdeoWxjLrcpdP0jabKgAPrV9z7fL1/YVbqv4U6FbAYN3op2tT7xz7X48Hj56TmfL34f7Uj/87iXb36g0uU7JnUmzeDMDWa/6vQD8jzx4DcPw97vddzdAUDdtzil0My1CN90MvG68eDbvJ90qj9Fm6gUYu8FkN/iMH3++09cvfP4j9beyIneD4A0r7oZVd/OE2Qq8bgbk2+Vx/fCcWwevzWbjulX3J+D1zrV3Oy7rvVoUk/jaAYEEkVgQSQQBhRA5CqguzHL5g+M8/93HcNabEMQUCv20mj579x9m58xe9h2c4fB9D5LK9xMrKX7rf/1dDh/6DP1D48QiyLLI1dlLKIKALCW89cYbXH35Lfa88gHWk6/w61WJgiBzupgm93M/RTprIwgQuG2efeZp+vv7MQ2TEyfOcNehw7iuw9mzp5naMYlh6uSyWVLpFEEYYttZXNejXm/iuC6u5/G9F77HxNgkmqrRajW5++77GOgfYmCgnyRJMEwVQZJYXOzkaJQEgcB3OlF2RQkvCOjrH6BSr3Dp/Hke+umHMEwD1/OI45jZ2VlEUWB9fQ1d1wgCD9/1kCQZTbfQTYtvP/44d991CFXRWV1dAgR8P6bdbqLIJqIoY2dSZHI6+XwOUezs4Y2iEE3TCKOYbz36GKeOX2DPvp2Ylozve5RLg1imQbVaoVarcvnKZfKFPIkAp06cwTRNXLeF73mcO32JsYkRAj8kDCOslIUoSFhWipMnTpFOZymXi3iex/79BymVi7SaDWzb6owVEdvOEgQBpmmRJBGNZp1M1kZRTGRJJgg9wiggCF0S36fVapPPF+gfGCJbKBFHPrphIEoijut0rNyhRzafI/C9a++skFp1lTBwSOIY07JYXl1lx44dIMB6pUouW6DVdjpphbI2ogiappKQcPbcWXL5PJqiEANxInD8/ZPsmJqiUa/z0GceYnBgAM+NuHTpElHsUSjkiRNoOy5f//o3OHf2LGOjoywvLpHNZRE1AySZ+blZTEMniiUy+SySKpCIEnIcU1mvUMjn8VyXIHDJZWxEVUdWZOI4IYgCFEVh98xeJEnGMExsO8+pU2fwPI9CqZ+3jryNIEvs3bePS5cucezocYaHh/FDH1VTabaa5LI5JEkiCAIWFuZRVZkg9InDEM/1SWIYGBjk/MULPPqdp9i9ay9nzp7nte+/wcDgCJ7bIpfNECUhjuvQbLWpt5qUSiUkSeS9945Rqzf5u3/vC8zNzVIsFti3fzd2xsR1G4hix63YstLEMbiuj+O4GFaK9fU1NFUljkJS6TRWukC1WuXihXPcdXg/qiYhiAKWlWFlbZWpHZNcnZ9jcKgfQVJ54fkXWV9d5oEH7iGMEubnZ8nm8rQdl5WVNd55511WVlaZGB/F9wNWltfI5nKYpkGz6VKvNXjp5Vc4eOAQV+fneenll7j3vruJ4wTfDxkYHCGbzbNr5wSqIoGQ0Nc/wCoh4tQI6twKxTNXOdBOeGh0kn/z3OPsnNnJwX0HWF1eQhEiCFo4QoSmqVy+NIumGuyc3sPY6CTnTrzL1NQuri4tc/b8ZXbu3M9v/I//M7/7+7+Hbag88Y2/5NKJYxx68LOICR3rykauiy3e0R+HfpjBa6+0HD/q4HXj+9MNdHnrfG1f4baKPxX6CXj9KFboyPadsu4gsx3r7A8feO0Z9GlThpMfefAax/Hvb3ab7QVIN1syNyyQG9RdNwiC6/93Ry/efGM3yrr7lSTpI5GJN7e/mTZH9O0Giht9iKJ4fc+r+Auf7xkFuFeU2G6eu4F2N21MmK2SGG8Gt7cyro7LcC/6aH1FkW9YtLaj2wGvPa3fvdrs9SDfAt3M3aeX9vhO0OY9Ddv1v/nebefGvrn9KAggjlFlEUWMkQmJnTq1hVneevlF3v3+K0ihT0pVsHKD5PsGSGVyPPDTD+MEPoppkQgxiaRSb3kIosI3vvIXHHzmdXauVFGffgXrsefRnnwV6cvfxPjLp5h48X0m3p8l3XTB9Ug+c5gzWYv3r1zi+PvvMT42TKVWwTAM9uzeS9v1yOXzyLJCJptC01TiJCSTSSNJApIo0nIcJEllda2CQCfoT7FUws7Y7N69m8D3yKQtUnaGWq1BKpUmiiPiJOboe8coFMq8/vqbnDpxEtuyGB4buBaJWKHttAhDl4SAmendNJtNFEVhebXjgnz2gzMcP36cgwcPksQRhq6hXosumogi/z97bxYj153f+33Ovp9Te3VX7wvZ3ClK1D67bzwez9jxReAkD4ETIK95ytvFDRA/JEhwAwQwcBFfB7nG9XjG1iye0Wik0a4RpSElaiW1kBJ3Nntfqrr2qrPmodicZrOai6Tx+I79axx04Zz/fv7n//9/f+vi8gp7984QdFsYqoeiJpimTRIZWKaJIIaIosHf/M33yOU9bMdBFExUBbrdDgBdP+DAwUNMTU6RSjssryyhaQatZhdRFPB9H93QUVSVSrXOYGmY1199Ez8IGR4pkcvnOfPxBSYnh1EUGUFMCMIAWZJRFJWhoRLPPvs8u3ZNIUkC2UwOVZPxPAtBTPBSHrJiIEoC7Xa7Jz2WZQYHBoiiiJSXplbbIIoCLNskjiMadZ8XX3yV5dUN7n/gIfwwot2scenKLAsLS0xN7aK6UcbQJLphQKvVpFGvIksAPoHfRVEUFFnj2edeIFco4KZSiJJIECREETz77HPs2TtDHIX4fs9hk24YJAkE3S66aVGpVHnqqacRgPuPHCYI2tTqNZ566lnGJyZYWJpncmIMBBHXSxEGEaOjI7SaDU5/8BEHDx5AVA3efe8Ub7x2jAcffIinn34O13OACF3VaDU7mKbFhx99zP6DBygOFPjpkz9BFDU8N0Uch4iCgCJJ+EGAZVl4bpparc65cxcgTigUi+zdt4/dM7tQVBlD1zhy/xFUTUHTVASp1z5NUVlbW6Ver7OyskzX71AqDSIigCDx4x//lOLAIG+8+QZeOs+R+45g2xaWZXDx4nmuXLnKvgMHMC2TKIxIpdMYukkcxximRSqd5siR+4mTmIHBHJmMS71eptPt2WOXK+XrDBcV0/Jot7vUNmpkiwWqGxUCv8tAcYAwjkHUSIgoFNLYjkkQhpiWQyfwyRSyNDst0rkMrW4HXdMo5PJMTozSam2QSqVxHIdmu41tObheitW1dcrlDaYmR+l2QqIooV6v02jWSaUyWJbNzJ49GKYJxBw6tB9BELBthySOUVWNdDpFHLQIw5B6o83i4jK5fJ5nXn6Zj5rrmLtGyTZ83I8v82f5CQbn1qmdPkd73xSpTIrl1QVGJmdQFZWNchXPTVOpVOi0m2Rdi3qnTRgnfPvb30ZTNUYnphkdHca2DfL5HM1Gi+9+/4fIosTExCSiLIMoEgTBDRXZO637t6M7AblbAOM9glfBcxAPzyBMDPVJe3vks3U/3R5jXBCEG/m3t63ffng3567t+e+U/oumnfrxj0130/8bafoISKD/u90posXd0med57fDAXfKc3cV3FNz7q7Inca173n85tBHW0Ep3KwJKl6PI33zN3Xzt/ZrrPLFzf+t7dvJ5HIrruq19Z+Z5DWO4z+/E/i49SXdvLBtf74J4raGfdlqe7q13K20+RJ2Uv/oF8d1J4np9jyCIJBUaghjQwiH99zSj+1cvNvR9uc7gdat6bdLge+0KGyqMPQprU/59B3f/rnvAbzeKP83A143894JvG7//UXRvZT5WWLcRYhoioQQdggaFc6ffou/+ot/hxJ2WL42S7vZoLK2zsyuGTITByj87fOo759Ff/M0w6+/x8BbH2G+9BbO957G+/HzuD95nv8hUhmTNZTFFZRylZYs0g18uhmHYO840dQIyZF9dKaGqRfTSGYvvqIgwIMPHsXzXDL5HLKssLS0wujYJMffeJMEn0w2RRB2KZUGb9igx1HMiy/9knany9tvv8uhAwe5NneFVNqj1qghCAmOpaNIAhvNNs888wtcz8N1XVzP5Vevv4lle+ya3oVl6Fi6Rjo/iN9NCMKE9955n9HRYSrra5w7f4Uwivnwo48YnxjHS6UQUWi3OxTyhd5aQoKmiAgCKIaBm/KIoy6O2Yu3Wm3MkSQJtpnj2txlJLVLFKhcubxCIvgMDA7Q6SSsrS6gKj3nRF0/wPVSKHJIvd4gmx1AQMbQdXRV52/+5ruUhoYZHBxG03uS3Eajxp590xi2iCDGjE9ME/otNjbKNBpVUikP3TAhSWi3m3zrW39EQkQc+z3Vzjig02nQ7baIEpA1kzjqIkpCj8EmSWxUqoiixNkzHzE8MoxhmvhdHxARVJXJ6WkO3XcfoiSAEEEM77z7PvPzS+zbu59mvUYc+QiijqpYrCxVuHzxEkOlARbn5ykUBrl44QqPPfZlEgR03cC0euq0K8trvPveu8zs2YXnuICIadlIkoJpWui6iijKKKrF/fc/QLGQR5ah1aggyyrjYzP4QYQkCQwUc0iygmnZjIyOkstmKQ0OMnPgAI1GHVW3ePmFV9BFkUJpkFOnPmSwWCSf8RAT+OjMOUzL5eRbbzMx0XMW5ngeJ0+8w+ryMvv27KVW3aC8vopmGPz85z/n/PkLjI6OcfKtt/jal77EBx+cZmp6AkFI6LRbhL5PJ2hg2QaiLBKEUe+bWJgnn8tjmhaO4+B5DvV6HdsyqazXOPrgwyiaxsrKEs1Gi13TUwwM5EmnXcZHh5nYtRfd0An8gDCM6La6CLHAtYVFMtksQRDwve//Lfc/cARNMWg2WziOQzqVRRINCvkhgrBJRIKsKqiKxPrqEpaXxnNtZEkkikKqjcb1uRgDAXEcoigGy8tlWvUylmHgtzvoqk6tUkNSElaXV1AViUariiKrdMMQy7IQBIlOp4um6Xx85gzjoyVURafbjTh16hRB2CWby9Jpd6jWanieQ7NZRVZgfnYRyzSJQp9yeRVVEVmcm2VgcJgTJ97m9IcfMThYwnFTSCKkC2mUXSOIeydp1ptYlxdwLs0zcHkF8fIS/2n2LM1ql8X5ZQI/YKBYwDJ13jjxOnv378dyTfy4Q8a1ibtdxqanOfPpGTKFAkMT0wxO7mH/5BSddpv33zvFzP79+EGIpMg39q47mTp9VurH4Lxn8DpeQhgv3QRybpP9pgc7HXZvtCFJ+h6E+7b1HuhOcVB/1+me+r/TWafvue7zjednzf9FM3VuTXzPxd9T/XeMy0t/4VO/5ElyswaDIAgkxLeYVm6W/EXR3a5Pt2M0/c6D102bV/g1kNjKedh6v9/CtxW4bf7fKtUMggDgRricLfXelHa7xHM7INwK/vqB4O1t2NrmTYdJ0pEZhMMz3OrIqL+UdScb3J3GYqu34e1cq83/W8d2u3r2Zr29uuOb8m/p7S154OaxucGFuZ5665UISQ+sbr12oH717/Qp9fvIdnL4dNs8yfbYWTenjZPkZsP+LeUK3Bwv7MZhYvMdbOnTTu/wTiQIAokYEQsiYSIiqAaNbkxXEogAXZaRoxCh02b22A+59O5b/OW/+7+hndCsNTF1Hau0h/1Hv8qu4SlK/98zmM+eJPf955EuXUOcX0G4toTs2KBICKJEVCoQ759G3DXO2kCa5NAuVlJp2sNFpFKKKJfGGh2h0m6hpj3iJKZRreE3W6hWikuXLrK2vkIum0XVdKJuSKteIww7rFc3yBSKXDh7lumpaRzHQZAkojjBcV1EQeGDDz9mYGCQA/v30mpusGfPHtbXVkmnXVRVZWllHT8SEeKI2dlZzn3yKftm9vLCMy/y6GOPkE55nDnzMbtmZjA9D101QADLMrh67RrF4giXLy/w6SdnGB4Z4eKlSxy+7xACoHsaU7um0TSLwO+yUVlhbbWCqhs0Gk0MXaNWXmdlaRHTgFatjq6qNFs1XnjhGCnNI5VOGBndzcsvnWR6qogsJtimSqXeIRE1bNsiiToohkcYa/hxgmpICIJIs1ZFFEXcdBoEkVa1Rq1SYXB0gIwjIUsySBqNRhXLtnBTHrbj0u1ERKHMwtwqw6Uic/NX8TIupuuwvLqC2GmRyebwYzBMEzmJaDcDLMMEIaFWr2FaFksryzz/3AkOHDxAkkR0/S6qohLGPpquXAeREoqkECci6UwWRVWRZIF0NoesW5iqRhTDU7/4BbrtMTwyRSJqvPDSq9x35AEUReeHf/8T0l4OCNB1Bc8ziKOAvXv2Ischq2srJElEJ2ij6irV9TK+38UyVK5evkir1cK0LObm1zh+4iQHDu5jYWGWubk5Dt13CFlWempNUcLJk28RxwIDA2mERKderfLxR6d49LGvEjY3ePzxx1hYXiGKEqIw4LVXfgWSwjf/8A/o1MuYpoVqpcimbQ4e3IcgwNkz55Flk0ZjlWJ+mI8/vsT+Q/t59Cv3Y9kuluvy82eeZ2RkkqtzC7x2/AQHD0xjGCYblSqWoVFeXyaVSiOI0Gg28VIe6+tVAj/hpZdfY/+Bg+iGQRAEWJZDabjEQCGPGEcEfgfN1lFkWFqcJ5POEoYCzz//CucuXOHoA/cjKyKqqrB3/35U7bokv1Jhbb1MTy4Ws762TL5QpNWsIgkhQhJjmCbLi6tUymWCoIusaqTcNAtzsxhaL3ySH8YEUUQun0fSevbKnVaTKApIpTzW1zYYGCihGQ75XIlmq4Mi96T4V69eIJNJ0Ww0OPfJBQ4eOoyTyvDTp35OpVpj/4HDpFM2lmnQ7bSBBNfxEAUZyfJoNZuYho6kiDiehShJXL58jX379zI1PYooKExPFVFkKBYHQJBZqzXJ7tlLOJ1nVREw1qq4Zy/zeCWmdfo8tbdOse+/+2POnv2IZj2kmB/na7//dR586FEGBksYlk2iCsRxSKFQQDMNWoFP0+9SGJrg03NnUfHxG+s06xsM5HLEcUxIhCALyCRocUL0BXoo3s5s3b7HbMo+b7q2nRNu0PVNThREkjjZWeq6vby+V0+lEFHo7ZkCCGIvhmacxLct++7oJnc7vTvJDk5tbjzvv/f+5wiAt7Z5p3ieN2jLUG19R/3os0hZd2rXb4J2nLt3yvcbuBJudcQpCELPOdMtqfuTKPYX7PQcNAm9M7m4mVbsg13EW4AuQnzjnH3DgiG583j1G9d+5+GbBHBEJNf/BFFAkn7HwetWyetW9dft3Isoiu7IDegHIG9nTH+vkrXt5d9tvl8D5Vs3l17+/lyv24HXnbg7/bif/SbdTmP163dx95LXrZvG1nb/Jujzlno3+fu1/ca47pBu89fWebyZ5rMusjtRLIg9m6qggxh0cVQBNahjKyLXPvmIn/3gCS6ePcPs7BUW12r83jf/iPGZPXi5PAMjo5TqCc6f/yXOf3wSV1KJXJNPTZHsd/4Vnd3jJHumiEsF4kIGYSBLmYh2HCIaGqEoMD83y8svvoLjOli2waVLV1iYu8bk9DSGaRAEIZbp0G53uXDpEhMTo4xPjOO4Lpqm8bff+zsGBosYhs7I6AiO66ApKoV8nvVyBcsy6XS7LCwsQJLw4MMPIQhQGiyiyBKICtfmr6GpKp1OB1M3uHj+PLPX5vnKV75KGASMjgxTqaxz5uxZSqVBZvbMkCQRiirTaDSQRIF2p8VQaYhUysOybTIZj2w2TaGYJ53yaDQbSIqMJCh0Oz6qIuE4FtlshjCOMS2b6katFybF9dANHVGSaHe6ZHIFGq0uU2PjREKXKFI4f+Ey2ZzB8NAIod/l8tVrFIsDSBLUamWuXb3GO2+/x67d04RhG1VR0BSVgdIgpmVBnOA6Dj/5h5/genkyrkOz3UXTXUQERFGgWq3S7XZpt9tEYcSpU++RSnsUBwZYL5exLAvbtvHbHWRFQdU1NsoVZFkGRBrNBqqmEEcRrXYH1/VQZJXBgTzr62tYpoWm6T0PyW0fVdNQVZUwCIiTGNdzyWTTZHNZRFFAUWSWFha4fHWWb3/nOxQHiz1HTQj86vVfMTg4RCqdZs/evSwtL3PmzEcIgoBt9UKQNBoNojjEMKyehFjWUBUVAVAUhSAIOXP2LLlcDttxKBYL1Ot1JicnKBSKHDp0GEHo2Q+1Wm1mZ68xN7fAlStXsB0TSdJ45umfc/8DRzh96kMOHtiLrOn88tirZLIZpqanGSoNUm02KA0NoEpcD6gjokq9mLOiKLKxUUNAYGSkRKFQZHrXJLZjEicRmqygazpnPv6YgeIAu3dPs2vXFIYmo6kGy8srxHGC53nIssLa2hphGPLDH/yILz3+JYIw4KMPP+Lw4UPIcs+sJZPJkM54nPv0E1479hpRkjA6OkGr1URVNWRJJklE3n77bWq1GiMjQ8RxiKpp+EGAoRskUc82OpNOs7S0SDqd4tSpUxSKRbp+B0PXadQb2LaLJBn83RNPMDkxQWlwkHa7w7XZBS5cvMTI6DCSImPbNsn1g3Hgd5BlmSgB3XLQtJ5EP4wCut0WkpSwMLfGiRPHSaVTOI6DpulMT+/G8SzKlQqHDh/ikUceJvS7zM9dQ5IkLMvi7NmzBGHP7jaT9vAsi/X1VVbXVtE0Hcd2cZ0MiiLT7jRJeSlkGTY2Nmg1W9i2i2W7KJrOysoiXmmIs90m846G0vHZV+0wnc4Szi6wOjmAZXk4doo//W/+NblcBlmWkVWFKIyorK5g6hpJFLOyvEIuk6bRCSgWcgwWB/jw1If8/Mlf8OUvf41QEhFlBYSeLZuIQPw594Sd9pbb7WG33VuOvUNydQFhvHTj3ufdz2+cX7aBR0G4rnYY/2bUbT9Lm/9zBK+/KUn+vdBnnW9fdJ2/NRL644N7ObEKO/CxtgtD+oFKQeg5h9t+7tx+Nu9l+Pzj1n/sb8Ycsqz+8wGv24Ha1g9yJ6nn3QCzfvm2p9uJU9VvU9gOJjfbsRNn78azqwsk1TpCyv3c4LUf3a7+TdoeK3az7K2cnB73bqcN5V/Aa790wpZ7W9/R5u9N5ovwBXDahURGTkK0OOTFJ3/Ah28c4+l/+AkfnHyb6lqF3VN7MHSb+x77KoNj01iZAoqTxnzvAp3/6f8g/exxLtWrCF9+CO2xBwiLOep+nUwmC4KEKEi9A3qU0GpWiaOQSrmM49isri4zUMgxPDxOLpfDTbtIisbM1DhXLl/hypWrzC2s8PIrx7hw+SrEMfv27UFTe4fyVqvNnr370XUd13HY2CijawoCIp1uzw6y2+l5Ss1ms9i22Yu/mSTIkkijXsNNF+h0uuTzOSQRFFki7bmc/fQSuVyWqakJlhYXEAUoDQ1SKOYwTB1VUyhX1ijk8yDEdP0OgpCgazpxEpHPZYgin3wuTbPVRDN0JFFCFmUkUeKVl19maGiI8sY6YRj2bAhTGRqNNs8//wqH7rsPRdGvqwmq2J5DPjNArbmCbWVRZYWZmRGCIEKSREzDxNBVfL+NICS4Zs9W0nZMHEenWq2gyiob1Qqe57KxUQYEzp+/wPDwOEQ++YFBBFEmiQKa7Q6WaYEg4HoucRyxa/cUhm5x8q23kWWNMIwwDJ04TFheWUGURRzHIY5iOu3eeCQkGIaJLCuoqsHAYJ5z5z5h7569NOpNAj9gfn4V2/FI4hhNUwlCnyTp/Y7jiCDw8f0uYRgShSHjk5NEUUy1WsGxTBRBYmF+kX37DvDa8eNM797FyvoKc1fnSacznDt3Hk3XuHjxIpKm0Wx1cBwPTdEor1VYXlmiXKmgaRqTk5MYpoGiKERRTzU7jhLefPMkL77wIkvLC+RyeTY2Nrhw/iKPP/44Bw8ewDA0fv7UL3jk0YcYGx/h0KH7EESRWBAYGRllbGIc1dDoNOpM7d5FIiSEnSayotINY1S5Z/ssIFDIDyDLas8TtBQhKRFJEiJLGlGnTbvVRBREZEmk1WxgmQaNehNV1Tl+/A1efuUVHnjgQcIwIIlBUTSqtRrDw0OsrqzwjW98g1q9yunTpznxxgmmpqYQxYhyuUwmneHtd97j0KEjNJp1stkcyyuriILA/n0HOHT4EPValZ8++ROOPniUIAjQNJ0oDGi1WkRRSDabRUBgeGSUjeoGpmWzUdlAFCVWVlZRVZtWs8XBgweBhE6nzUsvvobruj0nYknMxkaVMIqQJRlVVVB1A0FRSSSF1cVZVFWj1epg2TZhGCCLNufPX+D8+XOUSiVSqZ5zJoQQz/MIowBT11hdWWJyfArf92k2WgiIjI2Nk8QKc+W7AAAgAElEQVSwvjJHs1HHtHoSV8fzEBKJTjsgCLoYhowky+i6yqn3T1EsFBFEibmFJRw3RRJHlCs1Xnv9OI8+/iVSe6Zpjg5hbNTR3j2LvVTm1b/+Lm+FDR5//EFMXe+FAAoiJEmiW68R+T6aoiEkIAsKiSrTanZxXY+0l8c1Pd54/SQPPP4oIF6XxvQc6O28z94dbWVi39nW7tZ72/OE/9tfkXxwDumPv35Lms+6p/cDrzcJFT5TqXdXL9ybTew/KUB0l9SPQf6PDWT/BbzeijuSJLlFRfi2RdwjeN1uavhPCbwKgoAs/Y6D1yiK/nwn0LiT6uz2dNsB3Xbb2J3K3KRNtd7Ne/288W6dmP3UbbcDzH6qu8H//H8SH3sb4Y++ti3vrY6atk/QfqB+a7v69bffGN1JFeTXzIL+/bwTeL1R321ruTvq18ffNHjdzvC423G70+J9o5w7lLHTppMkyY1QF7ok8M7xEzTWVrh87lMsVePoV75DaWIPew4/gpUZwMoM0O6CqFisvneG0r/9C+QXTlAfyBF/+WEuBF3G9uztrZiSjBS1qdbqWJbTaws9LS9FFlleXsZzPRRFIZ1O02k3+eSTC+RyOby0i6yoLC4u8Nprv+Logw9RKVdJBIlGq8W3/+CbiJJAGPromoYiK6RTKURJolqrUSwW6HbaSKpGtVolm832VNqjiMp6GUFMiBNQVY3ADzh/7hxDoxO4rsP66jLra6tkM1kM3WB0fPL6IbrML3/5Co89/ijpTAa/61PZKJPJpHpeeBEIAh/T6nkVliSZbqeDIAqU11eRJTAdG1XXUSWJwPdpNGqcPPkGRx88iu15qFpPunXlyiyuneJXb7zB0NAgruuSJAm+3yWTzRDHCs32GqZqMTt7jVRaw3Mz+H4bWZKuh+JJEQMb62VGxiZoNGvomoQsSsSJcN35ThfbNIjjhNW1dQ4d2oemCwiKiB/6WLpEFItEUUIQRAiCRKvTIggDbDvFBx98TDaTpzQ4SBB0eebZlzBMnbGRESRJRFF0NO16HGgBOt0upmEDIhcvfsqhQ4epVms4jktCwlNPP8vBgweRJAFREpBliThO6HQ6aJpGFCVYls1mcMkoiokTgZ/99CdMjo9x+dJl5ucXWV5Z56GHH+av/9Nf8+WvPM7RI0eJ45jdu3ezsrxCOpWmWCpxbW6e0mCJSxcvc/nSFRYXFzh46CCSLCPLMqqmkiQxgR+wsVFFURQGBweZ2bObqekp0uk0ruvhODamYdLtdrEdkytX5nFdG8vWCYOQv3/iCWRZYt/+PURxRJTEpB0bRAlREjFVmeXlNVTdQZEFnn/uOSYmJ3j7rXdpt9uMjY8SBG1iQhzLptXsUNsoIwgCZ8+c5ZNPPmFmZjev/+o1atUmpVIJSZIYHCwRRQmyIiFJMvV6i4WFRa7OXubQoYOUyxuk0imymSymZeLYDpoi4rkehmmzuLSCgEQun+kBSFkh8MPeu+x0EIBdu6ZwPQ9B7KmCXrl8EcexUVQVRVEJwhBV1wHotH0ymZ70vNlqIQoKu3ZNc+7cOebn5ykWC2SzeVLpFKXBAcKo5w3c9wOa9RrptEccR8QJVDaqWJqJbaXRVItKuYam6jSaTUZGhqjXa5RKpR5wJcEydZIkod3uIEsirmMxP7/Am2+8ycFDBygUCiiqzNUrV8hnPRzXZXl1lXQ6Q73WYGlxiddfP47j2kgyvXFAoFgcwHVdwijmVydOMDo2QRzGZHIFsrkcAwNFatUqP3vmGYSxErndk6Q+vsyeTJ5HpqZ5K1zn0qVLjAyNkMQJH37wMfcd2EOr2eTkW28jiTKdToBp6nS7PlEs8Wd/9j9SLm/w9a9+lfOXP2V6fBySGFEW6Yb+jnFO+1E/yct2TZ/b0U571NYyb3gb3gJeb8cwv1P5Nz3b8vhmdeb+bfk8dCcG//az1vZ67wUE9jsr/raB1edhNNzL++43bnd7Zvq89Nse45tI6I87+oHXreZ9m9hj01RvO/WzY9+uGr4VlG4fk61qxv1sY+/E/Np+r9/6c+OecPP69DsPXuM4/vPt9+7EKbsbTtrWFxLHMb7v92Lx9QEIm5Np68J2OyC4k/h+E1xsL38zbfSzlwEQ//jr257fCqjv1L/tfbxXumWS37II7QSG7wxed0r1WekfE7x+5nK/oA13p3mw6XisWq3y4//w78l6LuvrVQ7f/yhDU/vQ7Aym5VKr1TBNkxdffIEP3jvH5Htn2PVXT7CkSdTuP4A5OYFsKAwOFAn9DjE9CcWLz/4C2/GYm1+gWinTbTaolNc4deo0mqajqRob1SqGbmB5LvVGl7GxUWq1MtVqFS+Tx7JcbNPh2rU5dMOgVq+hyTKlUhFIcD2PxcUl2rUqlY0K+eIAsSDQbNYRJRkvlUKWeuE24iii1WySzqRJEDEMi5XlFfyOTyrlYegqzWadVDqNrhl0g17cVISEJI5ZXl5hdvYag6USzz33LEePPkij0aBWb2CZJs1m87pDN5mPPjzD6uoamUyOhblZhkqDqJpBLCokQZs4CjAtgz0zMwRBgGLolMsVdFXFsUwWl5dZXlnj4UeOIJDgd30cx6LeqNFsJdiOQLPRYniwRMevoak2cdRBU1XOfPgR2VweVTNxMx4xPSDWaTeoVaokkozr2JTXlhFFCUlW0E2bWq1MPp8lQkYQFaREZKNWRddMbNuj2w1w3RSqqhIlAh99cJZ6vRf3dn5+lqmZA0yMjyKJEIURUZywtrqC49oEQUAYRCiqjqJo2LZBHCWEfkgUBcgyuF6agYE8ggC+3yVJYnrCFQlRlFAVjTBIAJFfvnqMQnEQWVZ49533OHL4IIqmMTQyxjvvvk+j0eQbX/8KpqGgKCKZdJp2u40kyZw48QaloUGGhoYQRYknn3ySffv2MTk1ied5GEbPfjmMI1RNo9MKOPbqMaanpzAtDVGETrvnfV5VVQzDQBQFNF1FEiUymTyWpSNJCZlMlvGJcWZmptBVCUWREEQRVZRIBIkoinnh2Wf54IMztLsJk+ND7N69m67vs7q6Tj5fxHI0TNNm4doiqqKRJAkpL021WgckHC/F/oMHSKXSeG6KTCaFYaqkvBQ//vE/EIRdhoZG+e7f/h2PP/Yo9x0+xNLKPNlMHlmWCYKATCaN57qE3QBRVpBVjWazxdT4BJZrIcsy9Vqd7373b9i9ezdRFDFQLOJ4znX17gRN10l7LpreU3Xv+j6SLCOIEpX1dZIY/u77TzA8PEw6nSKVshBEgTCKGSgWURSFXD6F4xh0/Q5xEqNpBpKocvXKJbqdFs36BtVKmXwuja71AN35c+fJ5fLEcYSs9EJtDY8MMzRUumHX1W41aTRayIpKvVZno1ymUMgxOTmOosh0u20EAQQhwXJcmp0OXjpD4Af47Q6CDOlUjrHxUVrtJvncAKtra6RTKebm5rBtl8LgIAnw+rFjKJrGxx9/jGXptFp1JsbHsGyLk2c+YtHVmVJMknOX8KKEzt5xJFHi3Xff55GHHmZp5SrZQpFarcH07r385V/9v8xMDBIGIaKs8a//9L/mD771TWzXgaDBOyeOs2tiHFkRiIkQBfme94jPA0zuRP3A6xdW/g6Pt4LXL47urJ1229zbzoeKotz1OeufAnj9rHQv7f5t9/G3Xf9NtOPc7s+c2t52URRJ6C8Uux3T6U5AeTPrzWl/bXq405zup4Z+J6y1HQf8swSvW7kSm7Rd9fVOC8R2G9qeTdevn20Fqpsxle4FvPbz8NuPS7KZ517B650kzlvL/SxqPf8CXr9Y+k2D1ziO2djY4Fvf+hZfP7AL200zPXMAQU/hY6CLAUISkHQbnPzVSzwwPcbkn/8VxU8u0v3GI6y7Fsurq6wurVIoFdAUCTGJaDZrnD71PstLS0zv2sPiwiK6quK3m0yNj2HZKQr5IhuVKtWNGikvhWr1vJLKkkQYttgoryMbLvl8nlqlyt49e3jttVeJk4jlpSX279+Hoso9KUMCOc+h4/souoEoSQRBSDqdZnb2KqlUivLqGkEQ4LouQRiyUW1w/txFdk3vZqBYpOu3CPwuruuQIDA/v4iXzhLHXZIk4eqVqwwMDHL40GHCKGJmZgZZkWm1eyqLiiQTRiGqqgIC6+UNWq0uuUKeVrWK3+0SI2A5Ho3qKvV6FVmWqNd7YDkWZFIpj3azwcZGhXyhQGlkmHp9Db/TwXEc1tfWKORzyFqKhAYyEq7joWgQRRJdvw5xjKbqdPyIjVqTREnQdBtZkgj8FpqkYDpuL5Zrp9lTy9UtTp58G7/tMz+3gKp7ZLODvPTsC+w9MIOmmywvr/Pdv/0+Rx88ShjGxHGMl8riOSmy2TQpz0HWHCQx4eSbxwmDANtJkUrZ1Os10uk0qqrR7QZIkkK1WiHwQ37wgycQiBHEhFJpGN3QaLVbCAJ0r0tqBUFEllSSRKDb7fLjH/2EbDbHxNQuZElhanICU9dI5bM4jseB/Yd5/fXX+dJjD2OaOmvryz0JoKphWQ7ZTA5FE2k1mui6zsFDh5ibn8OxbAzTIoojRFFAEAVmr82ytlLl9OlTPPb4I1SrFSqVdQqFEseOHWNtfY2hoSGiKGR9fZ3XXnuNgwfvw7J04iRElhVcx2Zxfg5T76kAh3GCEMV8eOYTcvkCrmkBMogqohAgXv9mf/nyMR5++BHeePMY6XQO206hyD2HVrKiIEgyTz/zC7xUmvGJCX72syf50uOPgxCj6yq1Wg1ZVtm1ewpF0bl4/hIPHD1Kp9vEtg3CIEbVFAxdRxAFFFVBFhXCKEaURMbHxvjJj37EQKmEqqg8+eSTyLJMsVjE9zukU2m63TbLK8skgOO4dNtNEhKqtRqmbSFKCssrKwwU8himzaVLl9m1awrLNNB1icWFBVKpNKtraywtLjE4lGdlZanH8AgjKuUqr7xyjDNnP+TLjz9KIZel1azTaTWRVZk4DjFNA8vS6XSbSHJCOpNmfmG+p7oex2iahqaq6LqJH4Q0anUc28EP2ui6RqVSxjQNRFGkXF7HtFMIioJhmCiyTBJELCzPc9/hIywvLfHJJ2cp5Et4KZe1tTUGikWqtRqZbB5BlFheWuLQ4UOk0h6GoTJUGmBleZUTx48zMjLCfUcfYEFO0Ndr6LNLDBk2V7I26VSGK1dnGZssEQOm42A6Hg899Cg5XcB2PeqdAFFT6EZdDEunsTLPd//6r/G7bZIkplAqgqDc8x7xL+D1rlrT/+5nAK+SJN11NIXNvP+kgNU90L+A189I9wBetwPCTa26OLk1POWdAONN0tA+6sA7gdetUt9+tFXQd7dt+WcNXrcf3rer0m5Psx3sQX8PczuVsbWOzfs7/d/ufn4rYNxaRj9PtZsgOn7qFZIE5D/5V7DN+9j2iXK3XL6dpMDb02xt+1YAvtnmWzlBEr1swk2XQIxActPVj+5lWRF2uOgH3vv0UxT6g74b5dzFB9i3F/3U1Ldc2z0L3678TZJiFZEIxADEkAQRBAk5EUgSAQT5uqZlQhxtzruEtdlr/PCv/iP/1Vd/j9zYID/44S9QlTTZbIrK2hV020FAoN3uIPgRI//mPyAbJhsP34ecdrEtg0atTqNe4+Lly0xMTLCyuornuqyvrjI1OcPCwhKz1+Z45LHHCBJIZImnn3mesYkx8oUCg0MDrKytoKgWtfoKrmOiqhayIlEtb5BOOWi6RJyEXLl8lYcefISBgQxDQ4OUy2uEYYRtuwi6QbPVJYljQr9Lt9NEShIs08DQNTpBB8dziZKI+flFXn7hl6yurjM+Nkar00IiZmFhjjgO8TtdQj/A1A1Uw6HZ8ckXixSLWer1VdxUho1qGcPUEAUI/YhqrYmma9RqFVRVJZ3KMjW1G0mKyeSzFK+H6vG7TTTDQTM8DNMjSkR0U0eMYWVpiXTKpVmvEwP5QoEfffdHPPDQfmxrGEVPCOMQRQHfB1GzkDWFdisAQiTNwnI91iobDA4W8FIWYctHCDtU1lbIZotIukOr08YyVMQkYG1tlSiGXXv2sb5SobyxQTGXIeXZNFtt2t0mcQxLi0ssrywxOjqCKEK3HZNNpwkjn3Q6xSefnGNgqIgoSrzyyjGGS2P84ulnOHz/fSSIaJpJpVzFsR3qtSphq4FpmOi6xbkLV5nZez+OZ+J3fBRJQhRl3jj5HplMltXVNRzHQpKgXq8zMTHB1PQYsiSgKL1LkkSCSOx9R0JMaajQc0SaQBxBKuXi+23iOMC2DOauLlCt1SiNlHj/vVPMX11gatcIhqETBgGdTpcojKlXm4xPTvDIow8RxRGKquF5WSrrq5SGBhgsFtFUGVGM8TybfL6AbVnMXr2GJEromkqUBERRgmF6iJJKHIYE3QahH/LWGyfx0j0bz/179uGlHYIwRhAUFFUhlUpR3djgk0/PM7NnD4gCzUYdVTdZr6zx5a88huNa6KqGqZm4nkWz0bhuI6oyPjGK7Tk0Gg1mL1+BBAZKQ2iGQ7WyimVazF2bQ9d0kiSm1qxy/sI5ZEnCcRwGh4dxLJ1OK+Dtt97nT//0T3Bsk6d//gvuf/gIqmbw6i+PkXJcTF0DQeXJJ3/O/fc9iCwIdJtVus0Krpem2WixZ2Yvv3r9RM9GW5QJQ59ms02lXGN5ZR43nWZwcJTKWplsthfOKJsdJJNKY+gOpq0TRCGWm6NVrwMCvh9gmDaG6RD5CUks4qWzaLpBtVqh267jd7uIIqiyjGXbrKyt4Tlp3jz5NmNjUyiajqobeKk0siKjSDLVcpkkjnFSHoWBAfyow8svvYqqOOzdO83s1UsU8jkEUaAbBCwuLPPqL1/j977+VaIooDRQxNC13vqJyODAIJZlkfJcdF3nRyePMyKZpFaq+CvL/Pd/8b8zmB8kXxhhM1yXH7T48MNTZEqTJKJCEkd8dOoUpqZj6iap0hhR18czbSrlGgkqWUsnkSR8JBIZBCFASKS+e8e9HNbvtB/tdP+LAq8xPRvXTa/CXP++f70nbz393LncewcqNwOEey9jc/x6v3+d9fZl3KmOO7Xlbs5zn4U+r93yb5o+b7t+6/3aUv3N77hPu7Z4AO6p2nJdc6nfGVZi80tJkh4YFhDpxYoVSWJ6oDURbpTbixRCzy9cLPTSIm45z3NDI3WndvWkwMn1uvrMx+tphetn1X6mg/8svA1v/u4neeo3KW8X8/JeJ3E/Ke6dpJLbn/UDwP3AZ/zUKwBI/+Xv3VXb7nYR+6zcsq1t3a4m0E9tANgRrN5Sz1236B7T9unr7SSWd5P/s9JObbltnut+6mNBIEEhEhQSZHwJQikhFn1ifBICJBQEYq6cO8Ps2Y+YGcpxaPcoUWqUr/8X3+E7f/wnjI0N8+CD9xHQs01zV8qM/dv/ByHl8v2Fa7T8nnpvs94gTmIMw2B8coILF84zUCyQxDGmZTE2NsbI6BCptEsqnWZu7hqiIJFJuwwND6OqKpcvX2Vycprq+hqOrdPtdFFUg0q1zNjoBEEQIIi9hXZ0bIxsJoNhaERRhKoqPe+jYcSnZz/lw9MfcnX2GgcPH6TZahEGHcI4Io4TJFlFREIQZUI/wTRtVFVn//6DXLu2wHMvvMjvf/MPKVfq5PKDnDz5HucvXGH3zCSyImOZJr4foGsGQRhRKOQRRQHHvi6pXZrD9dJ873s/RFMtxsZHSISQerWB7bg0Gi3q9QYkAu1mnSgKsQyDoNtBleWeyqPc81osiCKpdAZBEDl8/4PIssyFCxdpNjYYKBbZ2Chj6CaGbtBqtHjtl79kfGQczfAQEgEvZdNqVWm2NjAsD03T8H0fP+hCEqMoFkmc0Gw0sCyPXGEIRTGRFYG9+/aSymRQFA3L9sjlMxiGQaFQYHh4GNuxkCSJJ574IQkJy8vLDA8P89rrxxgcHEZAIAhCctk86+tlxidHMU2TKIqxrJ7jJ01VsRwPVdMpDQ0jJPDpmTOMjk8wd22OjcoGQRBz+vSHHDywn0q5zA9/+AT3HzlC4PtkMhkURaXdaiIkUF5fp9ls4rppVpaX0XUN2zYJ/ICFhUU63Tau42DZFmur61y5Msv4xATFwSKrKytMTkzipVL4gY/reD1V1tBH1zUymTSqZrBWXsWyTVRVRZIldM3GcVx0Q6Naq6AbOl2/i2FYJCSkMylkRWajWkbXLbp+SBBEfO9732dgYADbNXjyZ8/wrW//EZZrsbpewXbSbGysUd3YIAwDdu2eplbbIJtNMzOzG8uxkGSBbreNZXl0Ox1MwyBJEjRNxTIN5hbmyedzxEmAIMZUa2VkWWVxYZHpqV289vrrFAeKeK6LJMV8+MEnLC6uIkkJpi1jmh75XE+dWFUVFEVGVEDRDHbtnsF2LYIw4siRB5EUgTiKIYEPP/6Q3bt3AxLvvfc+J44fR9M08oU8styT5gqCiK4bpDMpbNvCTWWYnZvjuedeIUHhgaMPMDBUYH11nWzaJQnbRGFIPptD0VU6rQ6tVh3H9ZifXyebTdFud3C9FJCwvrZGdX2VJIkwDIMEgVq9jpdKoVkWjVaLWq3G4uICU5PjtDsqr776K/bs3U0Ydei2KzTqq6S8NGury4gixGFAFHRpt9oEfpsTx9/k6IMPk8lmUBWRer3eM21wPDTFpN7oMDI8gG1ZXLl6Gdd1WVxcZKBY6L2XOETVFBaXFjh8+BDGzDTR7Dz2fJn/9g++A/fdR7W2hqYpxIR8fOYs9x95kCQRaNQbvPTii7zz9tt8/WtfQ1VURCUiCX0ee+xh/CSi7Xe48NE7JGFAJptCEuXrx9TP79TvbmK/96MvCrwm3Hp++aw772fbs39TYObzgdd+Z61+ZfymwNhvHeTdhu40Lrej33q/toHXvg9u3LpVsLUT02LrWrBdgHarYOdmgdymNLZv2r59uFtNy/5pt9ryxnH8u+9tOLke53U7+Lsd9RN3bw5aP+cFfSfFXd7rJ0ndTNtv0t3OecImeBX+6Os3ytgee/Zu27W9z1vb2a+tW9NtTR/H8Q1b3c20t+tHL1TbXYDEO6a4c9p7cZLUr0398veT1l9/cMu9ewXV29vQV+UiCZE1jdBPAAFd0UiiELHdwhZj9CREaDZYOHeZ9uxp/q//9d/QWF9j74EjDE7tJ7HzdBKNKBb4g2/+PvffdwhBiAk3amT/l3+P+f1naOweYXUsz+LCCosLi0xOTnHlyhVGRoY58eZxVEVhZHgI6IXniKKQMAiobKyj6yqpVApNNRFEiVJpgFqtjiiIvPTSK+i6TjaVotWqIysqIGEYGrVaHUmSefnlV0ilUuRyORYW5ygWi7iuQ7VWRbxuN/j2ybc5evQojuMgqzLZXAbLMen6AbbtQCIQhjHtZpdMziWfzzA+OQxE2I7J5PQ4siJh2zaLS0u8/c5bfOP3vo7rmly7epVsNsPK8irZ/ACKLBGGAZ1O+7o32gTbtWm3fC6cv8L+/ftRVRHLUVGVnrOaOIp55913cR2PlGuRTadZXFjA0HuSvvW1VVKpFFGcYDseQRAQhSH1ls8vnnmO0mAGwzCJE3Adm0ajyaVLlygWijiWTRJGyAbEUYgoSDz98+eY2XUQWZNpNJrIqnbdtq9DnESYhopuqLQ7bWRZ7jlJUmRkTSaKYq5cucpTTz3N3pndVKu9eK+maaBpGvV6g6WlFb7ylS8zNj6GrEhMTU3S6fjYlkWpVKLr+73wMtPjXLt2jVQqDYmAHwTEUUS12cK2bC5dvIhr2yRxyNvvnqbTavP++++za9duZvbuxbFMLMvgwL79zM/Pk8n0wor4YQxxgiKLqIqKqhmQCPz0p/+ApisMlUogyPzDT55k3949mKaBIIgsLCxw/PgbjE9O4rkOjmMjSQIIAp7rIUoCuq4C0GjWcF2bMEowTR1BhDAMqVZrXLo4y6nTp5iYGsNxHURJYmFhCcM06HTbSLJIEAR4XgpF1RAEEU3VyWRzpNIpTFtj3/5DKIqGZmqc/uADPC/LQLHnXOz06VOMjAyjajKqZmC7NqLc05iIwpg33niLlJcik86gaxrVjTKptMvSUpViYYAojlFVHVVVKa+vk8vmrqsYp8hls2iaSrcdcuL4e0xN7qHZaiLLIp1OF8M0MQyDK1evohs6CCHdTsgTf/8Djh49guM4qKqBJMbIsko2l2Pv3j34gY+p2ezfv58kSRgaGe6Z1ygqvh8wOztHFEV4nkur3cB2M5z99BNcJ83i0ip79+3Bdk0USWajvEYYtrl86QpiIrFebeDYDpIoYNo2L7/yOpqqUigOkCQJiixjGDoblTVEQaTTaeO4DrbjYFgO3cBH01RS6RS5bI6FuWsYlsnI6BCNRpXRoWE01aDV9PGDDpIo4nkOhqFTq1VJIgnXtUil0mQzeRRVolGvYJo2CSLnz1/mpz99kj/89h+SJF3q9Rq63lvDhoaGaXfaSLLUc8qmKKQzGU6dPsX0rl2sWQqZVoBycQ59vcJLzQUeffRBFhd7qsqV9Q0WFheRJJHDhw7ypS893mNCyRKaKhF0A9bKFcanJnBSFkKnxSdnP/7/2XuvIEuy887vlye9u7Zu3fK+qr2bnsEYeIAiQDJIUIpd7YJUKLSUQopdRWhf9LCrpw1JEYpQ6EGKjViSS0EkFiABDjCDwRiM96bHdM/0tPe+TJe73qXVQ1bP1FRXdVf3NAgsFl9FRty6mec755578ub5f+b/USwUSbkuEcpn9jG38tCtfZ7diaxnZJck6d6FDa/znF1N43h33tDNjeFOOUDW2xOsHtbtvKEbfZa78X6vP5bPP0frAZjNpN9tpGftcS9k7RjvFtzfznCzWja7x7xt+OyGm9j1vuNPX6/NO71J95r2ayNLV+MHIW5+745uBemzayMZ12fXo6Zp+L6/bk3atXP1Gw9ewzD8Nzdeb3bBRVG07gK/G0/Y7a69ncf1xuvN9BP+/LOe1/U8hhuB143GcLvPv/q6G32tfTBupGO9h9Nf/tMAACAASURBVOdG4Q039XnLs5u79nb33Sfjv5O+Nhr3et/9vdC75nxARByBJsnIgYccd2gtXePtXzzHkQNv8tJTj3P++GlKM2Xmr53lwunzfPGR3+HAB0dZbEYY2SJaFHPsyGFGRgcQxNj/+1+Q+fNHQRZEX7wPMdTL5YuX0HWbgYF+NFXjww8P0dffy+69uxjo6028ibbN1WtXkYTAa3touobrOkSRxOXL0/T1DVKrV2g121QqVbZsmaTRSOo+pnNpTp85R7sV8vrrb9BdLOC6KU6dPIPjOOTyabq6cjz19DNYlklvbw/lUhnHcenqLjA0PIQQErlcBkkKkVUNw7RYXi6TTifMxgkAUyiVF2k0ajiOxdLSEgcPvsvw8DBHjx7jvffeY3JqjC1bJhI2XNvCNHScVIpqo0G1XEIICcs0CMOQIIiwTRfLNBge7qerkEEWMa1Gi2glf1JRlJWQUgdFkWk0aqQzWVRV48rlGWq1EsViEd20aLY63GBInV8qcei9j5ia6iGd6sZO52l3mhi2Tb6rO1licYhtW8g6eB2f+euLdOV7cJ0cAg8nlUFWdVTNQNN0Wq0mqqowPz+PoqoEQYjv+RiGjZCSvD9ZFpw5fYb79t2Hrms0mw2Wl5fptD0ymRxTW6YwDJ2Lly7iug6GaaBrKhAjyxK2bVLs6QYpXsl31QiDkFa7jRACy7IhljAMk6PHjnPfffczc32Bvt4iD37hATKZTMKI7HUIfI9Go04+n6NRq9NudVBNm06rQWV5iTiO+Q8//Du2b9vO7l07CEIPx3FptT0kFOq1Cl1dXcRRRC6fR0gKw6PDzM5Ok02nCMOQZruJ69pAwurcaDQwdJ04hjiWaDbqeO02vudhmzaO41IqLdE/0EO73UZIKobhUC4tYzs2kgStVgfLcpBE8sAWskwmk8YwdMql68hCRVFkVFUwOTWFLKuoskCRFUrLZXp7+vj48DHOnD3HwOAgETFLS8sISXDqxClOHD/J1OQkr778MoVCFiFFPPnUC0xOTib5mqpKHEsIQmRFZmR0jF27duO6Ds8/+ywjI5OMjo3gOjbd3d3Uqi0GhvuZm7tOynVxHJtKpUwUhaTdPOPjE6Rci8XFeTRVp1Ip8ed//hc89PDDyIqMrAgWri9y+vRJ7v/CfSiqjKrpCEXh0MGD9PcP8tRTTzG1ZYJcLksQhKRSFtu2bcfQTcbHh1fAp4KQJJrNJlu27uLa7BInTp7m/XcPki9k0HSNqS076Ovrx+t4aJqKkGKEkKi32hR7iqRch0uXLpHNZllaWsZQBO1WG1nItFttDNNClmMyaQdN1RKPuaSwsLBMriv7icGnVmsQA7OzJWJ8+vv7kjXYrlMoFPC9AFlWSKVTWLZBJpdCUwWO4xBFSXmoZrNJFEUEYUi1UsX3A5AkBoeGWJhfoLtY5M3L5zC9iL4rCzyc70G+PMP5tML//f/8W/7nf/2v+f3f/RZ/+t3vsm3rFrZumWJ5cZHpa1epVusomkVP/xB+GIAMpplmdGSMv/3BD0m5aQpdRWJZ3GRUvtvnzp20kyQJ+Y++flfA9SadazxRknRvKhDcTj410G++zfpzcfM1dzvXG3lbN6vvV+5V/BXJr8PnXr1HvuUa2HCod7a2btZ/83pZz3GXHMn/n1ln8R0YGKSbnV6rwfMNYJz8Lt3+BvsteL2F3GBgvVX7W4UYr5VfNnhl1xTyVx9AZNOf0fF5wesNPWuJotZetxa8rmehuh14lf4hPa+3a/cfI3iVIghjGqUyP/7//j3vvPAkM2ePJhuouEMqZ9M7NM7u+76I2ruDR775HV5/+W0e/9GP+L1vfIm+vIl3fZHRH/yc/LNvYX/vJ0hziyxtGSbYMUmp1UCVZdKuy/kLlygtl9izZy/btm0jlXFYWl4k9D2WlpdJpVJohoGqabx/4H0mJye4fPkyhunw9FPPIYSG61o888zTfPWrX8V1bYaHh9Ash0hEvPzS6+iazSMPPYwkYgzDYNvWbSshmhrzC7Ps3b2PIAiAmJ8+9hjj45NkChmiKAQpJgw6eO0mXiAwDAtNV7ly6TJRHGLbJtevL9NT7MWyHEBhdnaR0ZFh0m6WTKqL8dFJpiamsEybxcUlXnj+OVRFxnIsVMPANS1sx6JSrWDbNpcvXSFox2iqTKOxhJB8bNPG1CwkJaJeqwMxjmNTr9cxDINwJRxGVQ0Mw+GZp39Gb28PmpF4V9utFqauomoa9+95ENvxyWQHQDUQIkISMn4YEUb+CjgKCcKktm0q5WLbBroh0axVsGwXWTHww5gTJ06RtlPMXV9EN2xcN0vox9SrTRw3RblUwjJ1Muk0hXwXvh9imjp/+e//imq1zN59+4ijpNROtVYlnUlh6DqdTofrs7McPnyYvr5eqrUqMzMztNpNstkstVodXUu8TpqmEUcxi4uL+F7AK6++xuDQMNeuXWNhYZ7JiTGuTV/lwLvv0pXLcuXqFbryOSzLJPADdN3AC+Hxnz5KIZfBNC0uXZ1m57aExMt2zMQLaLrU6m1Ky/NMTI7j+z6GYRFFMalshhPHj6EISGdSyKpM4HdothpYtoWiaNi2g6JoKAh8r4Pr2AR+gGWaeEHIxNQYYeiztFzCtjNcvjSDrArq9RpuysXQLVTVoFxdRDcM/MBH1VQkEZNNWwR+SBCEaLpgeWkJVdV59tmn6e8fYHRknBdffIVdO/ciZJm+/j4UTca2bFRFp6+nj21bt9FoNJhfuE5vbxeyHPHgIw/RalXxvDayLHH69CkunDvL4PAIlpOUsDl29CgTY2N8fPQwxd40QVhHURQW5st0F7swTANVU2k1m6TTLuWlEqWlKqWlEpomiEKfMPDp6upi7959+H6Aoir4oU/oBQyPDOL5LSzXQtU0PC+gWWvgOA6FQoFid4Ew8pGFBHFI4AUUCgWazSqpVBpZUjBNC1lRiIXBK6+9y1e+8lWGhoYZGu6j2azjpDIsLCzx9ttv8+GhgwwO9GEYKlYqw+LSEiKOiKMQQ0+Yj99/+w2K3d2oiopumMzPL1Ivd2i3PK5evYofdUhnHZy0haKYVOtNLMtF102qlQaa5uK4JvV6hbSbwjIUZucWmJu9Tv/AIJqmkM2lqNaX0VUtMdJIEplMlkajieeHVKs1lktlnFSKVDrN2bPnqNfqRFHM4NAgUl+OwNbQj5xHvnqdfD3g24NbkPbu4itf+xJ/8iffRVETA0i70+LU6ZP89NEn+MY3f49Gy+exJ37GFx58ALQUlmmxfWqC0ydOMzu3QL63uFJu6vYkQfcavH4euR14/Zwlbe98DJ+jzb0ErxsBn18n8PrrABTXykZj2qxH+l58pl82eF29D18fo6x/n64FvJIkfQI+P4MDPgd4XWsE+ixP0O3V/caD1yiK/s1qcHVD1iNeWgtUNwJs6y20mz2IN98Aq99br5bSumG0twgrvklvNoWUSX3y3toxrPfjtlFYw3r6Nwr1Xa1/vRCY1a8/DStOvKwQrznWGcs6x0aybgjOHZhJP9PP7ay5CdL+7KhXz9savWv13zZUZJWIOMKXZEJJIpJiRBwh4laScC9pBFEMMsRC4dKxj3jhB3/JR2++wsDEFsb2folMcYjiyE56x/bTM7CFOJYJ45CD77/HN05c47/O9NP33in0HzxD+rHnEZU6HU2mMT7A3186zdCOrZw9e4Zid5ETJ0+QzWQZGh1hcmoCWYkRSkwYekCMYWjYjsVyaZFms46qCCzLRNV0DNNFkhR2791HJpvG8+rsu+8+arU6qqYSBD7NZo04jJGQGB0dxgs8nn7qZ0xNTVKtl0GAphoJKUscIccB9XKJuesL7Lv/QeQYyuUyruOiaTqSpKBpOvPz89imRS6fIwxDVE1DFiCJiOvXZ3Ecm0a9xnsHDjExMYashDRbJcLIxzB0FFmnXm8yPj5JNpNFFTJLpWkCz6bV8ZD1AEXL8pPHfoJu6kxMTeA6LsulJUxT59rMIpl0Ad+PCSMfVQPNSNP2mkm453IF4hb7Hvgmz7/4Grl0mk6nSaHYTaxqyGGM7y0SBx5+GHDpyjwXTx+lO58n8joQhshIdNodhCwj5KTGrKa5yLKBbqdo1Ku0a2Wqy4u02i2Onj3PAw89hKobxLHEEz9/iguXLrF9+w6QkrqqqqqRSmVQFI0olti9dy+OnWbu2hz5dJpICpBFAqYkIZKQYcsgn8sjKxqqavLoT37G9rFRFMVCNRxkQ8bzQyJfUK+WiIKIfC7Lvj07qNeWKXT38uFHH/DAF/bTrDeYvjLNwUMfMT+/wLYd25AVBSErSJJAlWXOn7+Ak8owOj5BLpvh7fcPsGXLLgzVQoiQEJ9ib5H+/iKKrmPYCdvs4uICc9eu02w26OvvQ0IiDiVM06BSLuM4FrKIKS0vEEUeAJEko5g2fhgQCwlD1/B8D8/ziMMAXZXx2lVOHD/Hx4c/ZmlxicHBPsKwje5kiCJotzroqkppaRFDTdamoWtYpk0YhpiGhm2YHP74CAMDQ0xMjqPKIdlum8D3CL0A4hhFBdXSUTQJ32vR19eD6aTRnSxEHU6fOI3X8omCGN20mJ9epNBdxHQcwjigkM1x7sxprs3NsXPPXlKZLH7QxvdquJZGFEZopkWj1URVZK5cmaWvb4AwlBLWY9dCVZN8UsNQiSIfRVZo1tvJPHgtoiigXW+gyQqh51Ps7yWbzSBBYoTwPJRI0GwHuNk8B955i5G+Xq7PX6PZbuKk04SRQBaC7VvGQPL5wY9+wJ59+0mlc7TqNRTV4fTp09iOw549e1lermIaFrbtIqsGuuEwv7iM7wX4HY+BwaGkvqxQaLZ8HvvZEwwMDXLm3FnSrk3stWiVl9FsF6/doVatkHYsVFUmFj5RFNJTTDzty6U69VbIyNgokgytdhPdsKhUGoRexMGDh3BdB0mKMU2VqN3BtlL09Q/jpiyuXDzP+wfex3Vctm/fRhiHaKaB6MpSGy5i+hHWh2eQZxcZqzcotlucdENabQ/HTZMv5Kk3qnz7d/+A8xdOUq8v8fCDD6JKNh8eeJ5CcZBQckilHGpLF3nl+ZfZNjGOpqlIAoQUQxyA9Nn0no32NJt5Xt1OPnf7lSBhCdbdOtxJuObtx3InO5D1ZL39zc1VI+L4RmgmN1376TU3k2N+ZqS3A0HrXHsvZK2j5VYOkc3ouVORpE9T1+7k89+u38+ra/V8rHeslCn/zApZr7f1VqAErCZm+uRYI6v37Tet91XtoniFWV9a30kVx0AsfUrihJQYy28QKq0zFiFLrEe49Ok83exYS3AEnxJFrXNIkkBR1N988Hrj9Q365rXEQTfkdjfdnf3gfdpuPT2rb7K1Iba3AsWblc38iG1sjbmzfteO93ZzeMOystkfqjuZgfWIHO5EVre6V1bWtXrvpN0NUUMZSQIRgxpJqKGgplrEkp583tBDjT3e/8Xf8/yTP2ds2x7+6J/8N3zhS1/HtKwkikBI6LpC59o09v/xlzg/forx594hdXkGKYppRSGLhTTWN79EaaCAPTWKmnXJ57MQx2SzOV58+SW2btvBk888S09PgenpaXzfR1EULl++gmW6SKi8/da7DA6MQiwzOzPPyMQUmmFx5eo1eopFfvCD/8CxIx/zO7/zdQzDxDQtXn/9NXr7eomjCNu2yGYzyLIgm82wc+d2hCSoNxrkc12EUcj09LXEKyPFmKbJ+MQkpu0gpBjbsqjVKqiqTKVSJpXKoGs6p06fJJtJE8cRy8tLhIFPHIXYtk2n3UFTNQrdReI4QlYEtm0TRTEz0zNkchY9PTkQAVHsUa0tkckVOHDgQ954/RVSKYOBvkF6i0Wy2TSuY9FstZAVFVUzCHyP1159jY8+/Iht27ZS6EqYaok9HCfN229/gGaaqELl1Mnj5HNZDrzzNv39faRSKWRZRVEFpXKZdK6bazPzfPDum0xOTpLJZJKao50mMSG6YaHIKjPTi6iqTkQLTVMJfI8gDLHtNPmuIj19fXjtDkc+/pjBgQFy2SxbpqYwTQ1VVTEMk8APOXz4KKdOniGbzZLvylPoypFO20RhgJ1yiKOYGIiiGCFJqCv5fGEYEAUB2YxLGHhJCREZZDnmg/cPcvToKd547SUefvgRzp8/j2WbmJZJodBDsbuAYRjEwNTkFuauz7Nt21Z6eorIisLZs2chBlVN7oGZmRneffc9tmzZSrtTo1qu8d67B+jv70ZIyUNvcX4e13ERskCRZM6fPcvCcplqrcaevbtRNZ1Gs8O5c2cYH5+gtFyi1WrjOCl03SSOQVZUYhLgJQsQkkDIIBFTqdT44P1DCKHx0BcfYsfO7YxPjiHLCpIQCEVOSraoGtMrNX+brSb5XC7JAY5jOp6P5/vEyLz33gfIsqC/t8iFs6dx3SJvvfkeoyMTyEIhipLfUr/jo+sGfidgcWkJx3UJAsFrr75FuVxj/wMPku8q0NeTR7cNytUyiiKjqQqZVIovPPwImp6QMjm2Tcpx6XR8dMtGlhVkkZTz0FWDV199DWKJgcEBSqWllXrIOXRd59KlSyiqys9//iTdvT3opoGm60iyjKoZSEJBEVCr1lBVnZjEAPjh++8xNjmBomo4rouiqHheh+5iH5VKnVdefo2B/gEa9QZxBFu3bMPQDarlZdqtOvV6m9nZab71rd9F1RSmr03juGlOnTxNx0tYsBOjmk06naHVaXPu3Dneeecd+nv7+PIjX8C0dB588AFUXcF2LLK5HJVKLTFoRBLnL1yh3uhw7Njx5H4UMk8+8RSe5zM0OEg+n2Np8TqqIlOtlKlV6+SyXQwMDNJut8nn85w5cxZJVnjhxVcZGxunUV9GFkAY0Ts4TDab5cMPPyQOYzRVw3Ftqo5KvHWYVqdN/soyypUFUssNoiMXyH7jK8xOzzI7M4ssTM6eP8NDDz6EabgEQYRuqciKyWM/+3lSmmfvbk4ePcLFCxfYtn07iqYRSTKhJG/qGfV5AU/4v/0l8RuHEF+9/6513BjLRu/dCQD61XkE72QeNw8Ef9Uezn8Ib+VGem+1n73bsdwNeL2jPtY5fUczdBfTuTljzWaVbZ435nP3tUbvf1Lg9UYu61ogekNWu9dXy1rv7C8LvG7Go3tD1rOCht9/gvjjU4i9W39l4BVuThJfb85/C1431+6G+EImEiFIITGCUCjIUYwed9CjOodf/wVvPPkjls+d4Itf+hq7v/L7BGYX7SDA+t5j2C+8h/34yxh//QT23/4CKY5p2xpizxTt/TuIJ0YRI4Po3d0IVSHwPaLAZ2FuDuIQTTeYuz7H6bPn6e0b4Itf+Rr5rIttWzzxsydYmF/k1KkzbN2yHcc2GRgcoKsrTxRHfHz4MFt37kEImXfffZehoQHGRofZvWsHCJAQhGFErVZlYmIcXdeQJKhUK7SaDfL5LJVKBcd16bQ7nDh5kv7+ASQpyV3TVBVJCGqNBo7r0G41mJmdQVFkdF3DMHQqlRqmaWAaOpVymUJXV+JFCUMcx6ZWrRDHMZlMltdff5N8Po8kgaIoOI6FZZkYho7neyhyQpZjWTZC0RkcGETIMXt2b0eVZSzdpNNp4boOXhhg2S5CVhFxRD7XhR945PPZJBTT0fH9FqVyHV1Pcf7CZWavXGH37l00GjWmp68xNjpCq1FHNQzCKERWDVqdgP7BAR56YD+aptFoNqhUSjiuw/LyEoZp4fsRj/74CR56+CHCqE6jXiedyTAzO88vnnuZffvuR5VlSsslrs/OYRomL7zwAqOjo1y8fB7XdRBC5drVGV555TU6bY9HHnkESYoIgg5+0EZWk1JMkiTRbLZQZJUTJ05ipxxq1RpXr14lDgNMQ2N0bJwojonDDl67zkD/ELqRYmS4j0qlShiGWLa5QiwTke/KI4uEOEuSBCMjIwwNDaLpCq1Wk1QqxbGjx4jjmGazyfnz54miiJHhUQaHunEdF7/TplDIEIQBjpMi8Dwc26Hd7tBpd+ju6mJodJQdO3egruQ1yrLMRx8eYmBgENdN8/xzLzI2Noki68n44yhZA3FEq9VElhXCMKC0tER3d5Hh0Qly+SJCCYmJCcMgAa5CRhWC0vIyKTfxhCXllAwUVU3qz+oGhm4iKwrpTBe6rnL4w4Ps2bUDTZX5ux8/zuzcLMMjQzz6kx8zOTWKZVhcOH8BTTWRJIUnn3ySibEx3HSanTt3Mjk5gWrIdMImoe+haiqGoSfjb7aoVKrYbpKXKYREp92mUa8jZANFVnnzzTcYHR0hjsA0bSYmJsjn80BEtVYhl8txfW4eyzbJ5XKUSiXu238/6WwOVdNAkjAtiyCIefa5F+jKuZi6xV/9v9+j2NNLsbcfSxV4vkfb87Adl1q9yeuvvUpvbz+zs/McO348YS43TX7++M8ZHR3l3Llz1Gtlhgb76XgxM7PX2LF9G0EQoao63//+95menqVarTI2NoppmEntZSFTrdUYGhygp9hHFESEYQPLNpGExHK5nEQuCEHaSa3ky+Z5/fV3UDWbs2dP88jDDyPLMo1Gg4H+QbryXczNTFPoyjF//ToSErPTMxw7fpaJiXE0TSMII/L5As889xzNdodtW6dQ5ZBKaYmR4REKff18fOQIs9MzbN+6jcX5JQxTRVUUlmtV0hMj1Abz6H6EdfAMlqzwweNPM/aPv8PRI0fYvXMff/Zn/4yvf/MbNOpturt78YMASZHZu283qqETRoKdWyZo1Ou89srLbNuxA1nV6EQC5Xb77HsAXqMfPg2V+l3nva4ey1rZDBHVDbkTD90vRzbqe72Q1d+C1830+1vwuskmtxjrWm/obdv9Frz+8iRexTZ8g0V4bbjG2gUqy/JnCA1WJ8TfuP5WYcEbydoQ4LUg78a5jQD0emNefYT/9odwZQb5O9/cPDC8xz8mmx17Uitqc6xyd3Yzr/N9rHx3YRhumLd7N33dEdHaeu+t87nXzt2N8PKOCAm9GqYuUy5XiICZjw7ws+//BYde/wXLV84QVisMjO+jf2AK8y9+hvo3j2F+76eoHxyHUo3YtvDG+ogf3gtbJ/GzFr6hoxs6y6USpmkBMZ12EyFJlEtL9BSLiSfUcSCG/fv3Mzs3x8T4OL7n4ftJzdXu7iLf/va36cp3Uasvks44NJpVPK9FX38PP/npE4yPjbJz53YUWWAaOrValavXrnH58hV6e3sZHx+jWq1gGCZRHGPoiackDAN0zaBeq1Gr1SgUujEMg8cef5zx8QlMyyaOY/KFLi5evEAum+X06dMUCgVSqRRLS0ukUxk6nQ6u62DbFouLi1imiZvKIGSBYZo0Wx4XL14hlXIYHh7BNCyIIyzLBCmm1fQRkoJjp6nVmqTcNAkpUUx/Xy+aqjEzPU0UCWIJ/CAJozZNkzAIaNVbxESMj41gGCqGrlGtlJEViSgSXLk6y7Hjx5gaH2Vubpat27dhWhbd3XlCr4Nh6aiqjqoatNttbEsnDAJkRaHd7pBKpQmCGE23cN0srVaLSqXG1q1bqNVLaLKCJFQ6XkSt3qKvfwCikHK5zH379ye5t0JicHiYN954jUqlzvjYFGEY8sAD97Nv/z7arQbz12fJZdMgg6KrKJKKH4RUyhVA4oknnljJwWzy0osv4fsBExOTvP3eQerVKvgtTAOa7Q79AyPEoc/g4BBPPfUUu3btRMiCRr1Cp+MhhMyFCxcpdHcjJBlZFkhSTL3eIJPJMDY2hmXp9PYUGRsfZfv2HWSyGRQN8vkChXyeEyePMTgyQuDHWKZJRJK2Ua3V+OC999m+ayuNRmPFw+oQhgHjY0MEgY8sFMrlGi+//DrF7l4MOylpZJsGEFMpV4gkBaIIWQLTNImQ+dmTz5BJmeRzWdqtJsQRxBGdVgNFlpGFRK1aIZNxqTfayIqCbhhJGRkhqNZqaJpOLp3CtQyuXr3K8Mgog8O9fOMbX2V+foaHHn6ATqdO0PE5d/YcbipLKpWiWCyQTbuEUoAsoFxaxLJ0vLAFJODZtl0s0+bYseOcPXeeyS2TIEGr1aJerfHWG2/xxjsHuH//PnRVwTINFpYWeObpZxkfH2dpaZGf/vSnfOXLX+H06TNs27aNIExyzzudDtlsFkmSCaNghdm6gyzLTExMEngdFFWn1eqwd98+vE6b5597jt6+XroKBYIg5Oy5C1w8f4779u/HshwmJybo7enGNFRiBOlslg8OfkB3dwHXsZmfX6S3t4gsy2i6QbsTEgQdSqVlgiBgYGCQMAqp1xsgJWVtXDdFEAYsLCzw3AvPs3XbtqTGq6YT+D6tZoOFhTJ9fb2UK2V6enqYmpxi27YteJ32SnSFjW3bXLk6Q6vTJpvL0ul06HQ85heWMK0U+XyGTC6NaZkoio6dshgfGyObchBygOd7OG4WPwwp5HNYtoXrOEmNWTUxqBuGga4bSEJiSYvRd0wizl6lsFzDWq7w9OIlxkYm0QzB4GAvtuvQbrX5s//un/GP//iPOHfmOAvXr5PrHsDzAk6fPEkhl6LRqFPo6kLWjGSNrvOMWu/13Ygkfco2LP7wazfp3EwK02b7uRfX/HLlzlmLN6V1nc91t+Hen3ePe7fOmM3Kek6ljfpYL8Jyoz434mu5G7ndWFjn/C8bvH6m+Tp789VK187xzQo2TiO8FU/OJ+fWYUte3e+txv0bD17Xel4VRfnEA7uRleZeW282unYj6+GNekZ3OoY7rfP6y5DNe6bvLA/188oN48VtLYP3oK/Po3c1vfwNwB1FEVeOHady5Twv//QnfPDqm1w7dYHa0gztdh1N1zGdPF96Y5Hx969h/vBZxKVpYteiOdqP/8h9fO/d92hkHcb27qTaaIIk0/LaaLoBscSlixeRpYjpq5cRxHx46APq9TpdhQLXFxbI5XKYhkGjUWdosJ/F+Tlq1TY/efwxHnnoi/T29hIEPo5rISHR7nTw/YBr16ZRFJUrF86xZ9cOLl+6yNLSv4ycqwAAIABJREFUAl1dXbTbLYZGhllcXGJwcJB2u4XjOpRLVQzd4NLlS+TzedrtNlIsoWka2WwW101x9uw5Ll68wInjp9i9ew+tTgfLNjF0lXbL46OPDjM1OcWFixcpFAq8/NLLNJp1crncCg17jK7rRJJCFMeUK1WErPLzp54h9DtMTk5y8uRphCxwXZvl5UVc1yVmhQgq9EGKqZdL1GpLhGGA78ekM2kWlmqcv3iBLVum8P02zXqdOAj42x8+Sl9/L5lMikazShQHNBs+qXQKTTNJpTLYtsH+++5jYnKCSqPO8MgwvtdBSBFe0EJVdEpLZcLAJwyaKwymLUzT5syZ86RTBVTFwPcjJJHUd5SQSKXS1EpVLCfNcy++ytnz59m/fz+XLl7k0IeHGJsYR1YUhsfHEgbX8SkmxrcwNzuXGAa6skgi8RI167Ukb1iCWMgEnZDv/8332bVrN4qicOnSFbZOTXDo4CF27NjN7NwC23fs5Z33DtJpNNi9fZxyaZbu3l5K1QYp22F5uYSqquiGypEjH5PLpXDdFKpqYDsuqq7QarS4cuUyYgUkyrJMu9XBtBSarQbZbBbd0BBCIGsSUSRRKlXoH+ij3mjhpLKoikyj3ULTdYQk6Hge6bRJpVTG7/jYpsnRI4fJZK0Vgh+FRr2F46R46623OX/pIroqo4ikpmx3dzdRrGPqOrPTV6jVamimjR9D1rZQFRlNEQgpJo58oiApG6WpKrVaBUUROG6GcOWZFEUx4cpzijBE12Qef+wxvvjlL6NZDrapsbi4hGlYGLpJNpOFKODM2XPs2r0Xw9SJ4wBdlVBUA1OzIAQQaKqOJASW5TB9bQbXTbO4uEyj3kLXFdKZNLpu4DgOkxOT7Ny7D0VAo17GtHR0wyCb7aJYLKJpKhMTE8zPL3DkyDGGhodQFJk4DnFdNzG6xTFxHCKv5PEJKclT1HQTy3QY6B/ge3/1V2ydmmDL9p2kM2miKEBVFHqKRXbt3Mbycolibw+OY1GtllAVQa4rT9/gANt27KCnpwdN17AMg5mZaSRZYNsOL7/yOt3dKb79rW+Rz3cRhvDKK69jaBbPPvMLdu7YQSrtoBo62XyOh7/4CKpm0Gp1iMKQyPMgirh4ZR7LNkilLSxTQ1Uk6q0WjUYtqXtsqDQaDd774AiyrDA0NEQUxxw5cozzFy4xPjFJo1lF1QSKqgISqgyuaREEHjMzl+ntH8KPBHHQRpEFruvQarfJFfK0mwkXAMlmDc8PkEWI0FW8wSKGH6EdOsH2XBfVHWPs3beDdMbBthLD2/69e9GER3lxhi99+ct0fEHDF+zcuYNrl85SXp7jzMlT7N67N+FNWPvcWgNc7jTybK2uT8DrH33tJv23ardZ/evJRhF1v1q5k/m7+z3mnZ7/vG3W8qOsXS/30miw0Xq83Rr9hzRu3N7z+usFXtcqve09fwvwuvr/9Rx1kiRtCF43M+7fePC6lm14tVXlxnHDy7rWcrP6S1t9893tj+B6XtbVcrsb/HYeyhulcsQffeOuxreR3MqCslZu5028Md9JUnhi5UlOJ6+lWOKmP3GzJWajb0Baddz4fyNCpY3ab1akOzkiCRFJCAQxErGUfNaYiIiQjtfAdnVUVKR2E7nV5om//htqly/z0qM/oVUvszi/QN2LmNiyl+HxXRz46AR7vvBNvvDSWbY/cxijE3I89DluSBiP7MWcHKauQMtrMzW1jWq1huukyGUyXLt0gThooMhgmxZCEuS7uqk3WgShz/vvH+b3/+Db6IZKNtvDhx+fpthXxDQVLMvE6wS8/PrbfPe7f4okoLe/Bzfj4gc+umZTrTcwLJdfPP8iO3fvZ2S4l2qtxtHjx+nt60NRVT786GMct4vBwV7AJ/B8lucrhIGHZRrYjoMkNNrtEE2TsWyLKAq5cvkqPd19TE1s5/ixE+zaPYXr6jQbTWwrhapJTG3diqQkOXYvvfQKf/D7v4fruliWwbVrV5CEhBBQLi2Tdh00RSYKfIYH+8gXushmsrRaHa5eukRPMUcUtIiFkpT7kFWCMMbzfTJdeSzHwbLSNGstLDPxlvT2FNFUjdJyBUPXiKKAkaEBkEIMQ0XVdIIQCoU0zUYdVUhYlk5Pfy9xGCTkCbHgsceeZGBonKMnLpB2s8R+xKkjH6PIMfmuPJEUUanU0BSDp598lm079vDjv3+Myd17MU2DbDrFlSuXyeeLRKqGH0Mul2PXrl1ksxnyhS527NhBGPrYtoHXbiCICBXBtStXef7ZX2AaGj39RVRVJUIik+tC0zUWF+dwTI2oHZJNpzBMg2arwSNffBhJCLq6uujr72dsdAzTNKiVm3z9G19DMyUWSgt0FYZx7R7OnTrJzPRlvvSVh5BkiWwujxAWuZRDvXIdwjah76GnUiBkOl6IqTvMzS3gdTwMzaDjx6iGSRT4NGoLCMMh8SNF2JaFYxrUSouopoYqK0ixxKGD77Jz5zZUxSWdcXBSOrPXZxgeHsOxsshyTKNZob9viGwmx+jYMO+8+wHLi9fp6+um0F3g2vQ01VqTRx/9Cd/6vT8kFgpx5NNbTBP6CqXSMrZjJr+hsoxi2QRhQjgWtNvIcUi1GVKvVTA1BV1RkIWGkDSkqEK1WuaBBx/EdlyiKETVVYSQSLsOntdGM3VMTWFgoJ+IiEarjusmTMiqoVGt1fnxo4+Ty+Up5PN47Q6qKuMFbRASQlYZGB4mn8kgSwkgtyybKJJwrKT0lpsvoGgGMjFd3TmQYoLARygysiwzPDyIaZmoqiCOQnwvwNAsvJaP62ZAJCWYotAnDj0006HjeXQ6bcLIY2Cgh0wmA1JIo16jWq3z7oGDBFET10ljmSm8dgfbkilX5/A9GdPQVow6Ck/+7BkmJkcYHBxC05Kw62PHjtE3UMC0DEzTJOWmWF5cRFVVzl26gO+1GR7qQ1NlZFUh8mWajTrptIWQodHyEIrNL37xPNu3j+G6KZaXKwgFXnv5APffvx/f9/C8EE232LJtinTaxbEtFCEYHR8jl8+xZXIcRfHJZfOcO3OBKOywcL1KrqsLzdTJdReRFA1V11icvkx3Vw+XL13FsU3KlQXsdAbbSCNLEjPTFzE0FdcdJAhBN1VqKQM1V8B+/wRWqcqZgsPE9p1Ilo2ezVIs5pA0g1SuD1V3KZdKqLHMn/zTP+Gf//N/SegFLC9Ms3z1FKMTUyi6ilBVohC0MCZc9UC83f5jMxI99RrwKXjd1HP2c4LXjYgmN6PrRorTeuc3Pxfr7Qg2s4P5dCez3h5sdUThpxF7n5Jg3iuceLeA907m6E72mOv1sd77G117K9LRe5FGd7t2n5kb1lkZd7CxVFUVz/M+wS+SJEEkfUpshPhkH72ugvUIkdYZ74bfzXphw3Gyt5cQn/Sxeo//yblYAilifdKp28/3bzx4Xe15vSHrAatbhTbcK/B6O7ndDXK7fj/1vN5b8HovrXWyLN9yDte1A91B9+td+hnevl+R5zWOV1gEpYSdOBYgkAijAAUJWQikKEaO4fq1aQ6+/z6vvfIaQwPD9A8MYaRcin19jIyOoxspoljwv/yL/5F/db6MfeYinS/sYXHLGNnxUdx8Dtu20A2D5XKFYk8PQqjJBjf0OX/uHKqioOkq1UqV5VKZKIzQDQNJkhgcHKDV7NA30EuzWce2XBRFIeVadDpNdE0nigSFYpFcLkO71UJVBKoiUyktI8sKmUyGSrXCufPneejBB2m3WuTyXeiGxeGPj/Lxx8ewbIddu3YhpIharYJtORiGiZtOI4Sg3WkjZJlOxyOVsul0OiwuLPDKK6+RzeTwPI+JiXFkJSaKAkDCNEx836Pd8TBMiyuXr3D048Ns376FOI6wbRtJkvCD4JPaqqVSCUWRKZWWyWTSZLM5Go0msqyyMH+dwaF+fL9DtdHm1VdeZXxsAsPQ0XUVz/dpNutoqoEiFJDClZqeNgCu6yLLgo7XIQoi0pkUMXFCgiMnuZtSLNFutfGDgDCKSDkOc3NztJotTp8+hSKrZHMZDh06mDA+F4vU6jW6e7oxTRvbsgGJjw5/zOTUFiRFMDI6gkxIFHikUmlUzUAoMoamI8syxe4ixPFKaKKCJEEcRXheh2qljJvK0mo0aTWbPPCF+9GMpG6rrmnIsrziZYsIwoBmrcXI6ChRHDN//TrWSvh5JpNFURQCPwRgZGQYIYEUhxQKOfxAIggk8tk06WyKKA7RDRPDsFBUDYmQmemrdHf3UCrXcFJZXnrxJarVGlEQ8vrrr5LLZujqzqNpOqqqARHNeh3dttFUFVkIhJTMr6ImxocoiomjCNMwV+rS2ly/Pks6nUKRNUwjmU8hR7SaTQzDTkCRoSHLGl/+8sO4jo1hmpiWjaqZtFttij09aJqKpquUyyWCTsQTTz7O/fffh6YrEEO90SSbyTJzbWbFowZhrNFut9BkBVlROHnqHEePHseyZNrtDtlMUmtUCEGz1SYMAmzLQojEc6xIcOr0Wbp7ej/JD9ZUBT+MMA2LhYWFJJdcU2g2WwRhQByDJAmOHD3OgXcOsGf3drSVXNhGo4lhmiwuXEcoGkJJiKGCTgdVU5NNEhJvv/UWJ06cZN+++9BNDVWRWViYx/cDjh87ycdHDjM0PAwiud9mpq+RzaSRFQ3iGNMw6OstknJtavUGEqyEwzu88857uK5DsaeHdrONEGDZBnEMup5CEhKKLBPH8O6B99i3byeWZbFUWkaSEu/l1m2TtNsdHNvhypUrfPDBBzQaDfKFLoaGBjB0DdM0EIqKkGSEDMulRWShoCg68/NL7Ny+i+5iljAMcd0MfhBw+PAxBgf7CQKPdDqNoqrIsoTv+/heB93QCcMISQLHsllcmscybfK5ArOz05w5fY6R0RGCMCCKIjwvQJZVDFWmVm+j6yZBFBD4HUzb4fzZizQaCZuzoqggFFRNEEUhCwvzhCkbt78P9e2PKMSCpR2jzMzNk86kE1Z6Iciks0RRTKfjUVou8ef/7t/xx9/5Y/oHioyNj3H81AlsJ4vQNEKkhOBszV72XnijfhXg9W7ks/vBda+4Z31tVu9GkXs39lPJ//eOEfpe6/l1llvt/zd67071br7R5i8NgiCJIFuJ1gRYWzv188otDRDr5rzeyYb9VkacW8t/8uAVPhuqu/b8ejH8vyrwejv5ZYHXu5GNwg3WFkBeK78M8Cqt8rTfTft7IZEkJQYxkdCjSzFIUYgiCeQo5off+2sOvPom//J/+G8pdhWQhcZzL77CnvsfZHzrLpxslm//wR/y3/+L/4lCzwDZuWX+xaGLSIZO53e/SMPQOXjwA8YnxnjuhWcRQk6YPBHYlgNRlJRw0LSExKYrjyJrNBptMpkchqHjuC6NZp1qtcbxYyfZvWcncRzSbvkIyUdTZRaXlmm1Ag59dJypLaNIxJiGihRHWIaOoSi0Ax/Htmi2muzatRNVk8mk8yiqTiqdxUmluW//A/T29uNYCkgBc7PT9BR7eOPNNzhy/BSF7gKu43B9dhYhQbPRRFEU3JTL+Pg4589dIAgisrk0lqljWgaO41Kr1YmiYAU8SpiGwf3370PXFbSVepUgIQuF06fOUKs1GBwcTFIJiJCFROQFeB0f4pjRiVEUVdD2Oxi6RcpNk06lkSTotJu0mh1arQbtZocwgOmZa/T29TAzM0MYRmQyGcIwxDDMlfDXpDyFommJxyeEd946wODAMLIkaDVqxFJELpfBdS1GRofZsnUK13UYHh1heHiYiclJhsdGiWUZScioikqtWmHnzp0ousLHRz7i/OlTDPR1oygCSchIQtBq1lEVGUXIEIVIccyZs+dIpxKALQSYhp54+FSTl158kT/+L74DUkyjWSUMk/w8TdVAEnhegGnYCFmhXq9jmiZ/96MfUVpcoO0F9PT0UCqV+OlPf8LQ0BDl6gxvvvEWkxNbqdebOG6aOI6pVJaIibDshFG53fZBllB1FcdxUVSDhcUyqtB54YXnsTSDvXt2Q+RT7MkjKwlglJA4fvQ4k5OTeJ0O7WYTVUnIlKI4xk2lqFSrhGGMYzvIssylSxdJp110XUMWckK+FCSGJlmWqFRKWKZDo1mnXJlny9atxFGA69hUq3Wq1QayrLBlyxQfffgRzzz9FPft24vj2CiKoK+vSHd3DohZmF9I1qRpsVwuUyj2cnV6Ds+LeOXlV+gu5KlV63QVu5FlmZ7eIpblJMRjmorXaqGbDpqm06jXkURiFOk0W6SyCTiRZZVqtcrFixdpNDt0dXUxNjaKJIWoqkAInXarQyabxdATMLh75y40jU/Kl2manvwSxjGlUoUr16b56NBH9Pf04QUeQRCiairFYpHu7gKqpuIHHUrLS6iqhm06DAwMYdoarpt4wJ9/7nnGRyfQdIMo8Hnn7bcol5bo7SnQajdwUhkkKSFuU1SNnTt3YeoO+VyWdMZEEjGNuoduZDh8+BhXr1xFkiRq1Spbtm5BVSV0XcU0E3K1QncXiqIgC4Fpmpimhuva/Ge/+036B4YSRuWUi+8HCEWm3WoiBGQzGRRFQUga5XKV5158lt17d2AYLnPXS5w6fZa52Vksy8K2rRVjgYQsYjyvg6LIBEGA12nRlc8SRUkpmkqlQS5XIIpDTp85y/DIEG7KRQglYWiPZZbLJYTQOXfuIpqq01Xo5vTZ08hC5cK5s2QyLl2FHkrleSRJ4szp85TLVUZHBxE5C0nT0Q+fQe/4fPf/+l/5r/7JP6VaLWMaBkuLi5imia7pqKrC+MQEB957n/0PPsSFq9P0Do1w8cQ5oiCiq7sLSZaJhPSZ5+GvO3j9vGHNG/X5W/D6ywevt8pX/YeQ/1jBq6IoLC4uouv6J1w9q+/azzuf64WBf0bnXYLXTz3tvwWvG8pawqbVZEkr5zdMTN8o0f3zLORNg6hVYQyblX9I8Lp6XDdCFlYD07VhI+sd67EsS6w3P58vP3YzrW+MXdwB0L2d3JijKIqIiPDjEEVT0GUFv9FEhAGP/t2PeOnZ5/j7v/0R/+g7/zlf/vKX2bPnPvoHhvnK17/Fm+8eZGB0kpbn8Y/+yz/FsTPI736I9a/+T5oTg4T376Rcq2NZFuPjY7gpl7nZWb76ta8j/n/23jRIkvM+8/vlfWfd1dX3zPT0dM8BDGYGIEASonhIlqhdrXYl2yt98cpeH+v1buwnf3KEg+EjwuHwyrthyxsOW6IcFCSCBAniIi6CIEgcxI25MPc9fXd13ZV3pj/kzHAw7MEcAkitgv+Iiq7OynzzzXzzeJ//8TyiyIljx3Edi9OnThH4HgXX5u233qLT6VCrjeD5PsPhkGq1csWLp9LpdFlaXGF8vIEsSxiGzfr6Ap1OjxdffJlytcHlywvs2D5NHEeoqsyg32N1ZRnLsthoNzENiyiMEIQ8YtLptlB1CVmRSIlxChaaLtPvtuh22kxMTLK4tEShWOTSwgp79+7BD3xs22R9dY2h5yNKAgXXBTLeeecdavUak5NjCEJGlnGFrdZkY30Nt1AkiSPC0IM0Yej1WV5aYmxsDFXVkCWFIAip1+r55DsKcV0HURQQMwFRFNhobWA7FoPhgGKpRBpDEqcsLi6iqjKOnddFSmKGIIjEUcaRo0dpNCo0mxt8+OExfC8niYrCEEU1SdIY3dBJkoRBf4CAxPz8LmzbxTYtSBNScvbcq/W1mq7mNXDFIpquMfA8wjjGsh2yVCBJEuIoxHFtVF2jWqtyYM8eojhi6HvIqoooSSiyiD/0UOScQCfwfQ4dPkyh4KKpKlmWMhwMsG2LbnfAm2+9yd777qXX66IZCpqqYZpmHiFOUiRRpdPpY9ommqax0WwyMT7GzMw2JEVBkkQcx+G+++67IlWSMLNtHs/LkORcMkUgRTU0LNvl0Ue/jesUiKMYt+heAWcxvd6QQqFEGidEQci999yD69rMzGzBtHVM2yFNUi6ev4BpmGiagWHISKJwhaTLRZIk4iQljhMCL0BVNQLfZ2HxMo1GnTiJabc7eZoreVRrYfESoiiysrxOrVZmo7VGtTYCaUoS5XJEtu1iWQZBGFCv1dkyPZ0DaSFDU2UKBZsg9MnSjEKhhKZqrCyvUCyVUXWTSm2EYkHj3nt3kiUBpZKD5RrEaUC93kDTdURRZG1lFdMweOr7L3Lo0CGKboFypUwYhVimiSwrqKqBKAhEUYwggqaZOLZJkoTEcf4hU/A8n8uXFigUXSxTx3VNMhIEIEkTlpdX+fqf/39UKlXqjQayKLK+uka9NsI3v/UoD3/+YcIg17yt1qrYVp5qq2k6um6iKlruDCsagMDpk6f58OgxDh0+giJrrCxeYnJiElWW82ut1wZJJggjFFVFkVWCwOd7jz2JaakIUoSqqRw8eJxyaZQ4jXnt1VfYe+89VKpV3nr7bc6eOcH27dvp9rrIikQU586nqxN6TVOxLRNByFA1CwGBZ556mlK5xLHjx5icGGNh4TIIAoO+hyhJ1Ot19u3fy8rKMrrmEIcCaZphGioHD37A/PwchmnQH/QR0ojhYEixXMYPfDRZ5sL5MziFAu1OmyeefIZ77tlHt9dh//792LbN0uIisijz9FPPUKvUKdUqNDdavPHGTxkfm8AyLCojdUzdYuuWSQxTod0dYNsuw0HEM0//AN+LGR8fp9/vYU9Pw4VFBitrGH/wFabHRzGvpJDX6zXIMs6eOYNp6Zw7d5bR8Um2zGynUKkiKjKNQo233nqDme3TKLpKJsqQbs7KezdpngBZu4cwNYp439zf6N16K/u0gdunVz67+f5uN/X2boD2zealt6oV/iQZm6+fE97NdXUntln95fX9uGo3Bqw+qWO95X7vwAGRZTkh5EccGDepI73a6o1lkx93XDcG8n5ujDbVld18+0339avI681ts8jr7TL63mzZ3dqdtHWzvnzchZYdPI5QdBB//YG77uPd2N2ct496C69bvunKnz6507WH011u/3FtpmmKKksIsogkCiSDIYO1Ji+/8Dxz22cxTJN/8S//FcgyfgCN0UlSZM5dWuDS5UX+5N/+G37vH/x9CpZL8G//jPo3niT80gGErVNIkoiiKKytr2PbNgsXLzE5OUUSx6wuLzLWqNBaW+Lw0SNsrK9RKhXZunUrpXIRw1CwHQtJFml32mQZ2I5DuVjCtlwqtTJZljLo+1RrFUDBMFyiIGL37h2UCg7D4YA0TekPh8iqilMosLa6gmHYHDp4lCSJQUgJ/QGQcebsaWzTwDQNsjQmCUMc22Ho+ThuAcOy2LVzJ543QJIEpCv6kEeOHOXee+5BkgRWVlfYv28fjUYDWcm1m19//XW2TE/nhDS6ShiGiJLEoN9BFgUsy6FcrjAYDNA0nXa7RbVaxjBVwjDANA1arQ5LSyt51EyRUDUFXdeRJZkojDj4wWGOHzvO8WPHUFWZgmuTJTFB2MO2bDY2uhw6fJjde3ZgWRa+H9Dr9XGdAgcPHeLMmfPIski1XKLbbqMqMo7lkGYiUSLQ7fdZbzapj4wyHPpkWUoG2FYBBBmvv4EkS1i2iSCKqLKa10+quSamoiqkSERxxtFDR6k1GhQr5St1MT5BGKGbJoIg5mnLsorr2NRqVSBj0O+RZSm6ppKlKTvmd2A6Tk6OJEqoik6n02VtbQ1dN/D9iKef+j7FYiFPIyZjeus0tmtjms4Vdm9QVBlRhNAbEkUC/8/X/4K99+6m02mhySqqaUImUa/VcR0XTVcg40q9u8CRw4cZb4ygqjKlcolavUYmQm/QQ1Yl/vKRxwg8ny2TE1QrZXTDJE4CBElkY6NFmqT4XoCpG9iuQ6fd5fixE0xOTDA2NkacxpiGlUvZKArt9gaapuK6Nv3+kB//+E2azQ0cx0LVbB75xl8xPbmVbq+fgy1VxBsMkCWZs2fPcvLECWa2baPXa4OQEfghkqSSpiAJEt1uB0XJiX7efec9JqfKDL1enoqsG0RxjOO4+IMhoR8gSzK9/oAwirl4aZkwiJienqJQcDFMHUVVWV1ZgwQe/87jTExOol+5x2RFYH19BUWRyVIB3bB46+23abU2qFXLyDLIUoaq6qw31yETcZ0i5XKVPXt2QppimTpTk1OsrTWpjdQZGWkQxRGSKJKmMb1elyRNGQx8FhYWKbg2C4sX0EyTJE6olmuUSxV8P2BiehJb13nzrXd46HOfJRME4jSiUCghSwq+H6IoMpIs8OD991EqO8RJhCgq1EfGWFhcYnrLOHPbZzhz6gSLy8s89PDDTI2PIQoiumGi6RrdbgfTNIiiGN/3UWSVJEqvactGYcSunbuRZZnprZMokkaxVCZJUkqlnJk8y5L8frNMFhdWeObp5xgdrTG7fSuiKDE/v5Nut4vnDYj9IYIgoZsO0hVZLMvQUU2LldUVHrj/87z8ox8zu2MbmqZfidKKJEnExQsX2D6zDUXN0/enJifzKHC5zF/99V9j2w5jYzVa7SbjE1votHNJqnK5yP0PHKBULGOaDusb63QCj8ZyG8kPifbNUK/X2Fhvsr62jqaqbJmeYrm1zv77DzBSr2PoGmIWoSsSYSDiFix+9PKL7NmzC0nRbzppv5t5UZqmyPt2Iu/f9amTJ/37m+p65/3+m0aJbwVcPikW6Nu1T3vsbjd7crNr/hcDXm/eh9uyuyRBuhO71q9Na17vIND3K/B6c7sevN4Y+v73DbzeyET7c7//+gO/cOB6vd0sOn2zAvm/jeD1I239Dcf+arQ/CAJOHTmCU3RRZZkzR45x7O336HfbbJ+dZWR8jFSWMUpFSoVxWt0+R4+dwDB07r//AL/1m1/BOr9E41/9jyiXFmnu34FviSQJBEGIIOYANk4SNFFmYWEBXdOpVgpEww62IaOZLg88cD+tZosg8BkZadDurBIEHu12m8mJSQRR5PLly9i2g2U6RHFAGPq88PxLaIbFYBBy+OBRzp07xWcf2sfS4jKaplOuVNHMVdK0AAAgAElEQVQtC9WySUUBW9M5f/4yb735Dl/68peQZQlZVJEEhUZ9DF23aG90cSyXOPTp9QbIioZhWEiSTOgN8P0BQRBgOwUUzaDdalGr1fB8D9fNgVFOTpGSpSm9fp9ypZIzCacp3V4fx7XJsoTBoEscC5imRRRFaJqKrOTRtSDwcueCqmHoNqKkIGl5JoGqaWiKgiRIJFHCpUuL7N+/nz17djM23kBWJLIkRJJSgsCn1e5z5sxZZrZPQSYwPb2Vxsgouq6zsrrK2bPn+dznHsIb9hn2B9iGge979AceXpTyrce+wxe++AUunV/kzJmzzM5up9lsUirVCIIEKR2iGxrhldrYJE6RZBXPH2KaGpcXltB0h5/85E3SOAFZJhMELEsni3OinCQBQZQYDH0M08LUNfr9Pqos8ez3n6FULJKlCaqqoBkmmZCznCZRjCSqGKaJ6+Ypt6Zps23bNkgSHNeh3+/ltbGSgIjCa6+9xks/fIn5uTmaG+skAXzzm9/hH/3+P6Rad0njGE0xkDQNkJBEiXa7SaXsMuz7aLqGIAqUii6WrpCSoptmDtKzDFlVQBQ5deIC3nDA1ulJ3j/4AUePf0ilXkFVFUzD5Ecvv4yh6ZQLJQRF5szpM7z+xhs8cP/9+P4QUZJRFJXV1bXck23mkfk8fVqn6NZ4++13eeizD/Lqq28xOT7F5UsLLC0tc/rMaZaWL2LbDoZh8vrrr7H3vr0UiwX8cIgoijhOAUVRiSMY9AdUqmU0TUZXFSzdQJAzLNPBG8SYehEEjXNnL+MNNtBUHVXTMUyHp77/LBcvLPJHf/SPeebpp9g2sw3hiuZwu9VBFmWOHzvOAw9+BlGWcV2LTncDRZGwbQdvGKCqKmfPnaVcLlEs2MhiShQNkRQDVVGJ45T33j1EY2Qc3VRQFIHl5UV832NpaZk999xLlmZIYu7wKhaLZFmK58XEUcrzzz3Ljrlt9Ppt+n5ItVRleXGF0UaDnbvnKdfKbKxt0B94jE9MEqUxTrFwxaGiIssqqqYSRj79zgqe71Eu11BUA0GSGBmtsbBwgUG3zbmzZ5mYnKQ6MkIWJ6yvb6DpGnGc5JkSaZJL56gagRdhmjbra21UTeGxbz/G1MQUZ86eYXrrJGurLQzDot/vI8sSYTjEtFQunb+EY5uQShi6wfraIt1uh3379nPq1GmSJGJ6ywSJH3DwyIeUKiO4rkuv02HQ6ZDKIrVqDQGVVqvDxNQoWZpHyBRZQFVl5uZmWVtZRswybMtA0xQqtSp+ECCrOvM75lhvLmNaOqKg5pI5Uky94dDtrRGGAbpmIAK+IlJoDahWykj/6AsIqYDnDTl96jTj4xOcOHGSYq1Ka6OFJimoYsrG8mWCwQalxlbarVUsXeLgB+9zzz37ibLNlQ9u9v6+1fvw6rv207Zfgdfbb/Pm0eWPJ7q6fjx/WfPku23/TsDrzWR/Puk+XbVfFni9nSjv1fXuBrxumsn6K/B6c4ui6GvXn+yrf6+Gva+/KG+se/24m/OTTpe4GXC6WR82S624k7SLzdq91XabaWXd7Tm46cPjCttYxvXMY5usdpPPpkD5Jp+PrPMxY3DTx5xwXX1BJiIikCYpYiYjZCKylNHvNen11hgZ3017pcX5I6dYu3CZiUaDLbvnCEUFq1TD9zzk0Kfd79PcWOf//nd/xpe/9BV+9K1H+fIjz+E++RIbUyNo/8HnMcplVN1FEmQUWeXypUuUi0X84ZD2xgqVUpE0DlFlkVarxdD3mJ/bhR/EjE1uAURCv49ZrGHZLqVCieZ6k0K5jFso4XkRfjBE1Qwcp4KmWTz34ku4BYcvfelh9t67i4sXLjAyWidJM3TDBlFGEEVESaLX3iBKPLZunbly8iJ6gw62U2KjtY5l5VEnSZSwSwUM00WWdWRFRpIEAi/iww+PMz29DUmWURSFU6fPsn37Ns6fOYWiSCCJuMUSnfYasixTqZQRhJRBv3Ol/kMkywQ0XadQKiKLCqqmE0cp/b5HwS2RJBliJqJIMmsrq9iOi2Y4PPHYt5mc2JLruQ49NNOk7w+YHKtjWwq6KhB6PZLAQ9HzOk1N0xAFgSOHjjGzbQ7TNpAUAV03ENMYxxC578EHQUjRDR3NtMkUDVKL4SDguWeeRhQSdu2apzcc0O7kLMWiJCHIMpptIptFkhiC/oCiW0CQZCIhQjdcSFUyMkRF4d13D1Kvldl3372oskiWJDRX1llZ7eA6GieOHuXtn77P3PwcrdZlkjRCkhW2bpulWh/DtIt4ww6CkCEJIpAiyQoIuaPAG3qIgkgSh0gSDAcBFy8t8NM332Z+1+48RTdIOHzoCL/9W1/FthwKrovpuoxPNRhplJEkhSyTiVMBWU6BiP4gT2UHjWeeepb5XXMEkYemKyRxhh/kaehZlsuuSKKAkMZsn5thfm6OYBAwNT1NpVqmUi7SarawTJN6tUKxaJGmHkGcMTI2woEHDiCI0O8PsCyH1157nV179iCrKggCWRIhKRmCJKBoFidPn+HshQt89au/zdDzKVXKVGtFtm/fQjAcsnXbDLppUK1VmZpoIEsZUQK2XaLVXiMIfTTVQTUgEwQ8L6TZalJrVFBUnSxOaW80GQy6IIgUSmUMzcR2HMIkQtVVqvU6e+7djevaFEsF6vVarkfqDSgUXUrVEttmt2EYORAVSTC1Aoqs4Q2HSKLGwYNH2Lv3HipVh2LJRZJ1NK2IoKpkCCRRwg+ee5aCbVAqlXnkkUeY3jKFKEuMjI4hKxAFIV//+je4d89evGGPOPYpumXefutN6rU6UZhy7MPT7DvwGWRZ5fSZM8iigCqLDFotwjilXqsxHAzptntUS3X8KCCJAgadJv1+h0KhTJqFCKKM58ekKQShjySJuGaBixcus3PXHsYnJ1FUGVWWcudUGPPCc88ys22KpdU1Cm4BUZRYW1vBMFR63SZJmKGqIk7RZGJ6kjQVUQQJVZZRJIHWxjqiIGAZBqpdQdZskGQmJ0bRVIW5uTmazQ1GRuoIQg4Y1ppDJqemMQwVXZNAyrBLLr12k+HAp1AqUq/XMC2L0O8ikiIioqsmgqwiGwa6oqJIJq32Mmni0WuH9Nstiq6DLMnomoWqyiAILC0uIooSg2GAaTpkiPR7a8RhRhyn6Kcv8+GuOpVKmTiOKRTL/JN/+l/S6va5//6H+ce//x8yUnYYGalSaYwRSRaDfofPfPYh/qv//F/wk5d/gBQ1qe3cRpZmaGiISf4sSIUE+PmU0ps5/6+fY2TnF6HdQyg6N3urfmL28fOTX7Zszu3MSm5l2Uf+5of6N23zzu2WAOU6u/73G8v1flEOh+v3e736yI3Lblzv59q5yRBudhS3YhDO+aHv/Krc9JzdtF8/LxV5/Tz+2vHexj5/tu7PVEOufkQhu/ZcFHJtDQQyELm2/NrcPvvZ9oIgXmMmvhGHbdbvv/PgNU3Tr8VxvCnN+J3YL9qTd6so8K1SPe6k/avfkyRnBb0T8PtJ2+02+4sYjVveQPktCUAmZqRCRpBJxJkEggSCTJoKOJbL//affYXWpVOkGWy/5wCFyR10uxvopkOYpGiaiR94mJbN2NgED1hFtv2bP+P+Nz8kG60RPnQPTDby85OJrK9tEIYBR48eJUkiDEOn2+0wPjGOZphEUcLQ9ymViyRphunKRFGAqiv0ei1MS2VpeY1Kpcz66jKdbgfDsvF8j9Z6i6NHjrB9ZitxFBD43hV2UI0dszNIZMiSiOW49Lp9ZFlGkSUEISUOPIpuCdM0KZXqqKqG61roho6umWRZhh8MMXQLVTUIwy5h4CGKGWmSp+rJqoJbcInjCMs0WFi4zOuvv8m+fftIojyCsri8QqVcw9BlgiCi3++TpimFQoEkismyENOQWF5ewLYcdEOnud5kbW0dyzZRFAlVk0nFBENX0A0FQUg5deo4R44c4cCB+2i1N1hYvES57BKnYS5vkqSEcYysKFiOy2qzg6qp9Ho9RFEg8APmd+0gI0LTcsmJQb9PmsXYpTqB76FrGoHvMRz0efrJp3nggf00xmrMze+gWC4hICJJEm+88QYPfObBK098kThOCYOAC2fPYVk2YZIgSVfkpdIMTctTqOfn5im6Nooqk2UpaZKy0VznyadfYGpyjGq1ijf0GJ8czWsi4wzLdgnDEEGENIswLQtRVLhw/hJFt4yISBAF17Sy19fWuXz5EkEQ8OGx47z//gf8J3/8T4AMURLQFJnLC5eYGJ/AdkxESWBxcYHRxihB4ON7Po9+81Gq1RqSlJOKRWGMabp0e32Ggz6jYw30q7qtooyiKkiSfIViH8LQRxQFkixFk/NoumlpZEJ0TR+21x9i2w5JmmC7BbxhRAoYusGgP8S2bFZXV6lWq7iuQ5bl9bhpAooi0+32MHWH1aUlHv7sAyRpwvPPP8e2mWmmpybQdIXx8SlUzUCQZZIsIY5jOp0utlMgDGJUVcWxXaIIosin2+1z8INDrDebTExMXEshLpVKmJaNH4T8+Z9/nW5vwMTUJIN+nziKSeOESslFkkRq1Qrnz57F1A0KxQKKqhKFEUmS4fs+vu8jSRlRlBKGHr4/YHV1jcNHjjI7O4NhqMRxRJpeSeeUMnrdLrpu8NDnPk9zo41jWxw4sB9N06jVRzh0+AgjIzXOnTuPLKscPXKYWq1MrV5FlEQEwHULVCpV0gQcx8DQ1FwXVlNZWV1jo9WmVq8wUq8x9Aa88OLzVCplKtU6oiAQRzG2XWAw9Nlot0hSiOIUx3JYXl7C0BS6vS69XpdKpUSxXCRKInx/kJ/Dcpl77r0XSVIoFGwEoNvtsbi4RLVWx3FdLDuXdbIsk2F/iKEbZIj0BgOSDE6eOsvU9DYGXojn+6iqygvPP88br7/Gvvv28v3vf5+TJ09xYP8BFDUvUXBcC8e2sW2bMIxI44xms43juJTLVQaDAaapEwRDZE2lP/QQRYlLFy9RqVRRFIUzZy/SbLVxCjaKpnHu/CXeevtd7t13H5Zts9pcR1FVmuurlEpFPC/PoGltdOl0+kiSxLvvHaQ2N0vp8ir1tk/7wCyeH1Gvj7Bjxxy//Vu/w+TEFJ/5zANAwtZt20DMZ8+KpPC7v/P3qdXKbJme4MKFc3gbQ7ZNb8MnI5EERFLkLCMVPn6OsBmgEQSB5L/912Q/efeOCJvu1j7NSNnfXvvlHu+dBDVunIP+Msbq+n3GcYwkSbdc72dRw5u0edsL/+Z2Z+fs4+ezH13r9va5KU65GQS/xYm5HXxz/e9/58FrlmVfu8bCdauTvomH5dP2Ct0JKdStfo/+6X9H9tTLCL/7pdsa/Bu/X/U23XiubrX9J2l/G8FrmqbXUmhE4WeKWddGTkgRyPWqdDyEMKC7uooJXDp5nP/3T/+UrQ0Ho1TjwS/+JosbPRTLRkJEt6xrxCJie4j7P/0p6p/8OcWXXiccqdLeM4O4YxovDRElEUVSSJKMkydOk6UJ77zzDg899BBPPPE9qtUqly4vohsmjuPS6w1otdsIokCr06JcrpDGIAgilunglkr0uh3IUqrVKoZloWk6w57HyvICrmOhKjKB7zE/P0fBsTE0lY2NdeIwxC1XKJcruXSKKJAlIa+9+gqTk9s4cfIkw0FIu92lWLRZW1slzX0jZFlCFKW0Wx0c20ISJFRZpdVq0+8O0SwdRZGQJBFVUbAMnVp9HM/zePG5F1BVleXVNcbHJ/C9PqZp4TguhmHQ6bRIwhDLUuj3NxCFDElQCKIQVVP5zncfZ3pqGsvW8fwBcZzLR0RRjGEYZHHMzOw8qmrw3vsHOXTwEGNjY2RJQrU6ShCFOG4BSdFYa25Qq4+SpnmdnCSKbN2yhYQE3+9RcF2yVMQwTWzXpu9FmLpG5HuoSs6Oe/rUCXbvmsctuqRZiqIqxFFCo9Fgbn6eNL3iJLnCJKvKudyJbdvIiowoZawtrbNw6SJPP/09tm+fwXFcdENFUVQkKa83ffH551E0hwMH7kUUMsbGx1F0ifWVdSzL5dSpc9RqVSQZPK+HbrikSUa1XCOOYh771mNMbZ2iVCqxurJKpVwhiWPKpTLbZ3egGwblcokkiTF0jWZzhbm5HbRaLXQjP9fFUgkESNNcx61arbJl6xZOnDjN6GiDNM2IopjXX/8pvt9nbm4uJwbKBIZDjzTNaLfz+krTNGm1mpQrJcIgwPM8DMNgvblCt9tCt1ziJEFRNGQlB06aYUCas/222x2a6+v4Q4/RRh3D0tBMg267jSwpSJLKyuoySwvLfO+xJ0jjkJltExTLJe7buwdZFpFVCUkWEUSNldVVBFFA13TSLMN2CoiCiCzrZGRXHDw6WZaQpXkN9vj4OJZl0m63KBQKBEGIJMuIkkS/3+XhL3wZx7ZyGSnDIIliDFMhiUK8wQDLsEjihCRLCKMI0zQJw4BisYgkSaw3l1AUA0WRUTUJTdeY2T6L6+ZRr8FgiCzJDAYDhCxPp4/iGNO0KVdr+IM+SZJy6vQZLMuiVq+jqiqNkQbFUoFGo44kCVimSbebH0M+rvXce57FaKrChYvnWVtb48SpM7TaXfbes4sgDFBkic888ACWbXH8+Gmef+4FLMulVKrw2muvMb97N5bl8uwzz1GtlKlVy2iKiKSojDZyMjlZVWh3O7i2habryLLM8RMncJ0CwbBHr9fHNGxe+fGrlEoVnEKRjBTbdvIsjG6PJx7/HuVqjYMfHCTLBN5++12SBHrdIWNjtSvX5OuYusHu3buZ27GDUydPMzs7yyOPPEKpVGJ0rIbve6ysrBJHCWtrGyRxiigqfPObj9IYqWHbJnEcImomhmmhqTonT51CURSG/T7PvvBD+v0ek5OTuIUiG602umZSrlR455132bfvPmRFwbZ0FEVlvdkCJIZDjxdeeJGpqS0cO3aczzz4GXqRh3N6gfA/+k0KxSKKrDAxNs7JE8fIECkWHHbMzfH1v/gLVCVnhX7n7Q/Yvn2GKPQYH29Qrdb46//zzyjXKtS3ThBJGVIqIKcCqfjxUbXrM7uuB693wzZ8t/Yr8PpL2PtdgNdPmwzpZpam6TWGXlEUkWX5IyWFm82RP7L8V+D1V+D107QkSb4GPx8evxnD8FXPy42h9BvX/aTsdm/2G3/fLI0hffJlAKTf+8rH1vbeuP31627Wl0+yRmWz1OMb1ritdj6JkbgVPXsURblsQgbLi0t0Wm0KjosoCKRJQiKI6KpEGoToQsaFk8d54dt/wWsvvcjBN9/Ca7cxZJHP3n8Ae+cX2HbP5wiQOXXyODu2ThF4Adp7RzH/53+H8X89gvHIk5CkrIxXiR++n2SkgmKbqKqCKAgEgX9N2zCJY46fOMbv/M5X+fGPf8z8/DyiKOH5PhsbG1iWxVNPPsmOHdsZHa3z3PM/5o3X3mFudhetVhdBUpBkiWaziSIpmKbFytoavd6ARr2BZVvU6zVWV9colSrXKOQM08SybDzfR5YV2q027XaPKI5x3QLjExMkSUqaJvzwhz9mcXGRsbE6lWqFs2cusm3bVgaDLoqSS9uoqkFzo4VpWsQxVMojyCpIosRwMIAsY3VtjbHxcYaDIR8eOcrevXsplotIsoBjW2xstPG9gOFwiKoqBMHgCpAwiIIkZ3sWBLqdHqONSaampknSEEWRkCUdTbcwTZckydA1k0KxSmujy969+xgdG6VcLObar54HgCSrZIKAqumE/hBBgF6vT7fXp1QuMxz6dLsdREHEtgv0h0MWVhYoFyoIpKyvriHKeU3plq1byATodNq4jk2v28VxXOI4xg9CbMelub7O0cOHKJYKSJKILMm4BYcwGLK8ssxIfYwoiPniFz+PqqmkqUCaBoiijCBIDPt9CgWbme3zuK6Oqsj0+0Msx0QSBFqtLu+88z7bZ3cgyRmyIrK0sEYcxXkUsdth69YtlColsjQjTRIEQUBVFJobTYrlMpVKhcD3cV2bTnsDVVO4cP4CgiCBAK7rEkdBXkcqq1ecBTpxHHHw4CEmJsbZaG1w7tw52u02X/zKryEKImQizz//A2Z3zKHIKpcuLeB5PqVyCd/3UFQJb+hj2Q7dXp9ioYyQgW7oDPoDbNtBUhSKpSKCJHH+zBlsx0bTFJ544gnu37+f8xfOoWsKUeihKGqeERAFOI6Fbbs4TpEt26YolXK91ygOUDXlima1hCiprKws8e1vPcrY6AiVapVOt0sYDHn9tTc5fuIYtVoFTcsJlAzTxHVcdF0jCAJMUwcENN1EkCSGwx7zc7OEYQQkOLZNksQkSUYm5s4n07Q4deoU58+dp1AqYxoGcZximAaDweCKXJSOiMrFS5eRZQHTNECQcyCtKiRJgh/4lIpFet0WaZrhui6e7yNKIkcPH+aNN96kWCghyTK1ahVFVojjGEEAVc51ikVRpNvrMFIfueKACDl+/Div//Sn7D+wH11XKZYK2LZDoVDiwoWzTIyPI8syYRTx1ltvMTszy0hjlP5wiCAIbGyso2sGqqKxtLjEm2+9mUcLBYEkyfKSA9shDCMUTSP0AtIkRdc1zp49y+OPf4/Pfu6hvESgUGLXrt04jnMlEyFmba1JHMU888yzTEyMUygUOXnyJMePH+MP//A/5pVXfkSv12ZyrIEoity79z7u2bOHMAiwHZ1isYBhGARBwP7999Fs5jJI9VqdH/7wZU6ePMXevft44sln+MIXH6bRqNPaaFKrVgGRJE4QRIHRxgi6qhKFAYePHGPf/t1Uq3WG/ZCpqXFmZmY5euQIo40R2p02jmNBBgsLS0xOTud6sghMTY+zvrbGxkaT7TNbcabGEY6dw3vtA+LfeIi333oXRZL4l//1P0c3dGa2z2IXSuy9bx+GoUEccujQCaq1IikRoixjuUUapSqvv/VTZma2YmgqmqIhKRrxlSytj7yTN5k/fCRlOMvInnoFhLsDr5uBihuX38hr8knP2X42f/nk2v1kQdy/P2B9s8y2OwG/18u43Gr968kzr6YJX186+HHqIjf2+U7A67UU5Fseze3b1WO4sV+b9uX683mLWtjbHYOrv90sQ/N68PoR7LBpez+foXE7/cuy7O8+eN2MsOl6u9mD8Kp9ktIpn7ZtJpVzJw+BT5ui/Eb7pYPX6/qxmSmKkj8oMrAti0q5TJbm0dcszUhlGV0Ueewb3+DV7z/Li999nK07drDnns/wld/6h2CW8dCwaqNkYUK/12fx8iI7BQP3a3+K+6ePoPz0IF4a0Z6sk/3aA3hbGmiNGkEQ8t6777K0tMDISJ3V1TUMXWdtfZVet0NjdIR33nmPWq3G4uIi99yzh61btzAxPka5WGTQ67Nn907C0KNWr9Hu+Fimxa5dc9iOgahISKKGJMrUKlUOHzrClq3byTIBx3F44snvMTk1TavV48mnnmVu5xyFYokM6A2GFEoldFVFUTRefvkVKvURVNNEUnVWlxeQJIEdO+YZGxtjpFHmxIkTvPSjV6jXariujapoiKKKoguYlkav30FWckDtDfpkaYqu6WiGgVMo0NxYp1go5NqUZGyZmUIQU44fO8GRwx+SAZcuXaRarVCsWEQhvPrquzSbLQoFC9stsdHs8MLzLzO7Yx5dU4iTkNDrEERBvt/AJ0lCkMCyNbIsRhJiRDEijj101SSJIzzPIwgDbNtGTAKSJMFxi1iuy0ani6m6XLx4Hsuw0FQT1VAxbR2v0+XY0SOYpk0qSGhWXqsmKwqappIlCd6gh25arK6t0x96lMtV4iBgrNHAKVqsN3NW6SxLiGOfWmOcJILnnn+emdmtxGmGour0ehtomgkI6JqKLAmoRi4hM+j3iaIUy3FQlfzFevjIcZIkRdMVLMvk/JkLHP3wCLOz2ymUCmiGiiCKrK2uUSgUePmHLzMxMU65XAZJxPN9vMEQTZPxvQHFYpGzZ89x/MRJ9u8/gKIobDRX0DUdRdau3cOKLDI7O48ogqrm0imTkxPYhVxy5Y3X3uTDD4+z/8ABfvLjV2k0GkxNTeMNh9i2ydDrU3CL9PtDTLPAt7/1OJpk0GgUCcMw1/vNUoIwII4jSgUHVVNIkpiZbVvodTtMjI8jSQJRHJIkGbKkEcceaZaQxBlBmNHz+jQm6qiShiyJRHFEEERouoksyTz15Pe4Z9cckxPj+L5PqVhiefkSmmowN7+DUtnNnyVSnrnhBz6DQR9NV5AlGc8P6PYHGIZBFPpomkK/28YtWKRZQhBFlMpVFEUnilMyQaBYKjG9ZQq3UEJRFBRFIQh8EEDTVLqdLu2Wx8WLlxkdG8GyTKI4yaV9/ABRkLBti6E3QFYUDNOkud7EcUzCwGe0McZoY4yRkTFs27nW9yRJrmiqalimSbFYpN/Px3xlZYVisUBzY5Xf+O3fRRRFhsMu3XaLLVPTZHHCYDCgXKmgKCq+5xP4AY1GnWKpRLlSpVIpMzU+imM7fPc736XfH/D7f/AHqLrO0vIyg8GQx7/zXebn5pE1jTCKef7J59i9cyeh79Hvdnnwgc8gaRpHP8yv69ZGi5defIGV5ZzMbtAbosgqM7PbGZ8cJ/JDDuzfx/hYg067yW/+5hcZHa2iyjJuoUSaZKytr+fAX8kj/6ZlMhgMrujDVvH9nBBr6YoO7Pvvv4eqGczNzWIYKmmSkUQp/XaHOAhQ1Rz8r68tM1KvsWXrNI6jsrba4vtPvUilXMDQNYpFl0ajjmObeMMBaSpy+NAxPvjgELOzOygUbQxTpVIqMVKvUq2UWVtfJasWqRy9QNwd8E42ZHJ8jPv23kupUuGd9z4gk5SclVpXePLxx/jDP/pPUVWRcq3A5YUFkkRkdMcUBdvkib/8SyarIxilMp4I8m2+gW8kmfy0weuNyz+9edsnD16vfv9lgNerYOQXQaZ11a4fs7s57qvX1lWpxlvZZs6Nu7E7jbwKwk1jkXdlkiRdcZxeV3t6k2P5yPFye/P724m8fnzk9maR148Hr/4aY4EAACAASURBVLfs1w3b/50Hr1cjr/CztNir3pAbb9bbjX7ezg1wq4vqbu3jAHj21A/z6PHvfeWOHga/DHAuXqU6yvgotcBtMgsL2c8Xiue3zU2YjbkyJtcdpySKORC97nwmaZoz90YRiihx4sNjGEqMZNr4ik0kaGixhxoP+V/+h3/Nn/yv/ztf+MJX2DZ/L1/9/T9ky/Z92MU6YZKQZhHdbgvXsXBcB2lxDfuf/feMvfQmmWuzvH0MDuwkHKsjVcsIiowkgiLn5CFv/fQNtkxtQRYkFhfPIUkypmVTLFisr1zi17/wFWQJKhWXWqXE5QsX8cKAomvjez7F+ji2YxL2NxjbMkOpUkJUJJaXVtEVjYuXFik4DlHo0+m2sQtFZN1geXGZjVaTWr3CxPgohYJNmgYUiwWyLCWKQhRJQpA0VlbOY2gJO2Zm6LS7SJKAbaioholdcqhUSwz7Q8a2zrH7nj3otoVdcJE0FZSMYNAnTaDfG2JZJq3WGqdPnCEKQyrVChsbTXRdQ5Ukhl6fdmeD0clRRFlGUTQqJZfllWV0XefYhyfYvWsvJAKablAql3n1tTeo1ycQ0pQzJ89QLhZxLQ0IqJYdBsMURbdJszySGAU+hp6zG8tSTgKjqiaCoDIYeoiCTh4N00jjhEy0QBRJM5Fe1ydNQxQsXnj+R6x3hoxPTeE4Np1WB83QWVpdZ9uOHbk2KdBpNjFtmzhJSbOEgmMRZwK6ZvLeWx8wu23yCoOvhqHm4F3TROI4ZG1tA8XM04d3796JputEfkS3tUF1pEGaREhixvr6CtValSxJMHSLIEqwCi5RnCAKEkuLSwyGXd59/22+9MUvk0RglV0a9REszaS50sSyHARRwXULKKrMlq0TSFJKRogoa6RxShgGWK5FkEZomosASJlEc71LqVLEcmySNE+zHXoBSRbjFmwkKSdkGg58iiWXMBxiGWUGA4/J6Qn2HdiLogmUyxaSDHEcMBj0sS2XwI+JRRlZ0mg111levMDkVBVJTkkTePWVt3HcKoIAsiQiKSLnz53CtUw0w8YujjActBkOPUrFCrKkIGQiiiogCxoZGSkDtkxvgcQkifukaU4eVbgSkew0L/DAgw9QrFYxbBdv0MPrd6mPVBmdqCLJCopm0Ru0UeVcfqTb7eE4Lt3ugB88/1MmxiZxXRNVFUkFmSRVCIcb6JpGr9vHsmzanRaypBCGIYos4dhWHgWVJRAEojhG1XSSJENRNAzTwLJNJibHiKKEhaVFZEmn3WlTKNpstNZy5lpRAjJEgVzKKwoJgyGOW6TTaeP5Qx7/7nfpdXpMT48zHHYRxZTWRhNJlhEEAadQY3V9nfHJKXw/oFDKZXg0VUFTFfyhh+f1sG2NamOEJPZprq3y/aefQ5ZtbN1EN3QkOa+57g86rF9cYvv27bx/+DA75ucpFos88/Qz3LtnJ6Oj40hKgiRGdFttJrbs4PLCCmGUMTGZ60/HQ49uq0Wx6HDixDF237Mb0zKZ3DZJozGCNxgyMT6Grpv89aOPMTc/j+2YKCp4wzblkk0gqAyGA9IkQBFSKiUbz49ZX99A0XRGJyawCgUCL6DZ7FGqjjC/czuubZPFIvfuy+V4Fi4vU65UyARIMpVOv00QeBiaiaZKaCY4dpU4EekPBiTEzO3cyWDQRpJF/CBAUVSCMMJycofMaL2GaRmouk7PD4gTD9s00HUd1dCJDBV5tUPa6vLf/OhZJrduwXJ1apUR/ot/9s/54oO/RrUk8/abP+E3vvw79IdLnD1znnplO7papdXpE5plXMdly1iFn776MrblUC/VyUyJNI1z8JAJiJlIJvx8xEXTNOI4vlaK9HHg9XYjXx+3/Pq5zMfPaX5+7nA7695qrpRlac54f0dw5XrCpZ/9/9H9b7avj2/1Tud0dwpcNyMhEu8gcnqrwNEn2d/Norx3fLw3Ejkh3NZVdOO8c7NjuCX2uG6eTJaRpSlZmsEVwqTNiJOuLr/6udbWnUS3N1n2kSCXkHKNfOna52ddyMj/SrJElm4yX78JCexm/bvRyfN3Hrymafq16y/Wq6D1ym93Bdpu7+HIba9zN3bjQAIkT+SRV/EffPlvf6Q4uwlovl3werMH+k3A62bfNzNRFPF9H1nOBdrLpTKybqPrFpk3QI19mssLPP6d73Lo6En++I//mNnZWRzHQRRFOp0eYRjk9ZqqQqVSYX15heRP/pzG//EIxp45Lu3aRjI1QbExgiBK6LqBLMukSUK/3yPwQ0zDYGZmlvfefRfLsuh0PQZexLaZHfzgxZeo1RoMhznonJiYYHlpmbHRMfwootPaYGJiElFRiEMfU5VRDAfLMtFVjUKhgG4YvP7a63x49DCaqjA/P48kywwHQw6+9x5/7+99FVPXWbh8mfHxSYrFIgh5NHp5aQld1/GGAcVCnoIZBDFpKmCYGkIKvcEA1y1w8cJFnnnm+3Q3OsxMb+HcqZOsLi1TclzENENV1Vzaolgi8D0kWSIKIzzfQzd0FEVBlEQMLU8xHWk0SJK8VqXb7aIqKvV6nampadbWVsmylPpICbIMSRLZOT9HHIfURyrMbJ+hXh8hSiI0XSUIfDJybUhV01hfX6NULDAcDjAtE9MwSZKUtbUmYRhTKJVZXFpjdXWFUrlIFGdIkoAsCXS7Pf7yG39Fo1FFk1UuXrrA3M4daLqKqsr0Ol2q9TrVWg1NN/LLPM04e/YsY6PjDAZDXNtBkSTOX8zlipYWlvnw2FFm52YRBYVLl0/j+X0URYVMZaM54Ozpk0yMjZNlKdLVdB5ZRFFVBv0+QeBTLBZJkgRBziVmdF1HIGfGFgRwHZfZ2R00RkZwbJuFhQUM3eSpJ57i/fcPMjo+Rr0xgiiJxHFEFIV0Ox1MwyBJIBUEVEVl0PcwdANFUel3+4Shx2hjnFde+TGTW8ZQVQVVVXnn7Xd56aWX+PzDnyUIPEjh0Ue/yYMPPogkyyRJwvee+B7bt2/HMAwGgyGqqiOKCo5VRFUMskxibbWJ4xSJk5i11TXeeOMNOu0WD3/+c2QCBGHKK6+8RuD7XF64QKFo47olysUi3W4Pyy4iIBEGPiMjI3Q6bbQrNatra8s4ToHV1RUmp0YRBJE4SpHljCRJKBRLObs2YBra/8/emwbZdZ53fr/37Ntd+/a9vW9o7CC4gKtEWrIoy5YX2RrL9oxlW5WpmUolGWc+TKVc+ZAa10zKmXJSGU/FiT2yZUeRpVg2RVGUSIkSSYkUV5AiCZAgQGJfuoHuvt1917Mv+XAaIAB2YyMkx2M/Vbeq+97zLuc95z3n+T/L/yFJII4THMshDEKKxSKBHxEEAWkiQyrnuaeqRrvdQpLkC+tx4K23qdUraLqEECBJeRmiOPZRNR1VVdF0DUWWUTRtLRdcod1pYVsmrpcTqpFluG4f0zDyNAPfQ1EUZFnB912ElPHMD55n164dqKqKbdk0m8sUnCKariErCq12m0qlSrfbJUmgVCrRbrf56Ec/wuTkJFkWoigqktAwDBtVVXC9HmEU86UvfYntW7eRZVlu9FFl2u08fL5Wq/H9p59h25YdRFmGrua+u4nJaU6fPoOixZQrJVZWVtE1m8BNaHeWefa5H/Kbv/VZhBBoqsyWzZtQlZyV8oUXn2NoqE6aSpQqNUxD5/kXnmXT7DSClDffehs/ipiYnOTg2we57bZbKRRyZnRZSKiqAllKz+0yNjZKvVHDMHSKhZy4S9N0TKuIqRk88sg3uPPOezh8+Bj79r/Frlt20et2QWTomsqpkyfY98Z+ZrfMgkg4+Pbb3HPXPSiaSt/t851vf5tNszN0Oh2+88T32Dw7w9T0JEmcYZoW3W4XTbNz3UQIpianKBQKkKW4fZeC46BpOtoaGCSFUrlEGEWAwHZsJCFy9vkzcxQKRRRVIywUKO57B7Pto//0T7NydpmxyQbbN+/iwQd/msXmSW6//RbcfkSS+UxOTPPKq6/xy7/yKZ56+il+57O/ipylDI+OIGSN559/njt270RoKqQgIZEJQSpll7yRz7/bLyaBvB7P643oL+sZ9W+OHnQ9fdzcsjHXP/5FrdaZx0bpYjdtWh/AxXi98/i70HGvRZdcN01vgz6u1teF36/yy09yLS4Z6yr6+iVYaZ2w5esB0v/gPK9Zlv3+5Ytz/oF6+WJciwv+2i17XPMxNyLrbaL00aeRJIH8yw/+WMa8qXKepOjyUJWfJHhdL284y/Jw4SRBEgJFlgmESeJ1SVZO8b/92/+Rt94+SG10it/49d9iYKCG5/n0++6aQqqTJAmnT59CCFjZ/zZbfu+PMFpd/I/eRWegwrM/fI7Ns1tIUkGr3SUMfDqrq3zn8ccYH5/gu088wfDQCO12m8bQELqm8/wLe5mZnaVcqXLkyBFqtTonT52i3qhTrZTx3Hz8J773JFs3z1IpVxCKCiREfh9Z1knTlAMH3qIxMsxScwkFmJqaoFYboFAo0Ot2kUTG/Jl5RoYa+J6Xe3AM68KqJ0mUK0qShCwrGIZCa3UVTbNRFIWTp06gayalUhnPC2itdlA1HVNRqRQLdNsdSo4DaUoWp3hBwLFjJyiVSvTdnJGzVCzhuS6arlEqFUAINC0HzbVaDU3TsAyTdquNIqlUqhXm5s6wadM0E1NjxKGHrqsIkSFJoKoyaRbQbrcAGBwcBAG+l3uIOp0umqpQKuaMu7qhkKYJaQayrLJv31usrLQYHh0FFFRdpVguI0kaihQRhR5JlEIqMTM1RblkMbt5E2Pj43z94YcZaQwxVG+w3M3JhrI4xe33MTWdajUnhDF1izTL6HS76JaJbeUGk+PHj7D71t2kCH747PeZmdnEynKbYrFKrdZg7uQxpicnkYQgDAKELGHbTm5oUFQURSVLUlzPQzWtHITFMb1OLzdOzJ3FcRwgVzBtxyLNUrrtPvV6nQc//iD1oSGSLCMKA1555RUc28GxC7z80iuMjoyDlNLrunz94Uc4cOAgO3beQsG2SZKIMIwYHs29ioahokgqZ87MMzIyhKoqawaCkNdf38fWrduxrDzUOYo8qtUqAti/7wCDgw1syyZOYjIy2q02jzzyDU4cP8Xx48c4ePAgjfogE+PjDNbrFCsV0kxm69btrCw32b1rG8NDA6SZwcryCo7t0O32iaKYJ77zBAioVMqkac44WSiaBGtMwWkW0+11MQwrD8/VVFZXVlHVnM2533NRNR1Dt0jShCRJ6fX6NAbrtFvLhEHCsz94FlNXKBQdDMPE931MwyKJU6Y3TTDYqBInIRkZsqSSpSlpluUkYmQoksRKcwlFN0jThH6/h2VZZKRoigpr1yeOwgt2bT9wAQlJEiiqgmnq1GoNSsUSS0vNNZBZIAxD4ixD0TQM3cR1PWynQBB4VMplms0lhobqxElEnHhIko7vCt45dJRev0WpZOHYDlu3bEMWCkmc8sjDX2fT7CRpmmKbDp2OS5bJVCqD6KZB4Lu4bh/dMBgaHaE2OEi728MwLL79rW9DmlGomtx3/4exbQcJ0FQ5z5smQUjyGgjXSRMZSREEocvMzGSeO97tsGnzDsYnxmm1Wtx7zz2oiowkwLBLtFZbPP3kdxmfGMV2HGzHvHA9m81lHLsImQypxEsvvcKm6c0cePtdgjDj2LEjjI9PUlnLQY/jEMc2mJ3dghd4kEWYuo6umYRRhKrIefh9uUSj0WBsbBxEgqaqHD18CkO38rrJps1jjz+G4ziUy2V03cBz+1SrVfbufYVjx44zPDRCr9ej1+0xPJKTxaVpSugHpElO6mYYOWGf7wdEaYhsWdweSdDrcbJscejIfrZt28nIyBCHj+xnaHgQWdJwCg6KolCuVPiNf/objE+OsmW0glUo4mFiFMs4quCxh75MrTbCYLUKkiCRBKkA6bL6jkK8l2OYrOXJ/6TA6/UoxVeX/zLB6wdeo/XdjFcc/4rd3eDxHwiAX6dcL3i9MEeuvC4/SfD6QXl8rhe8XilP/B/B6xUkjuPfvzzU9jxgWs8tfU2u9GuMr788NOHyG/9Gx9qo3XuETR9b9/fL+z3PsAY37oU+P5/rfQgKLjUCXGgvrm1DSUJad42vtJmuaX5rx0iSxBuvvc7I8Ai6JFieP86f/sc/5Gce/Dh3f/hjTMxsx9Ater0eYRjyuc99juHhYTZv3szJkyfZvHmWbN9BJv/9nxFumya971a6YcSb+99kYnQc3/N5ee9emouL6JqKbZm0Wy0qlSrV6gADAwO88cY+5ubPMrNpE0kacNsdt9Dvr2I7JqMjQ0RhAlmGs8a0qak65fIAmirTd3ugqMgStJpL+FFCqVSiXC2jqAq6rlMtV7BsGz+KiKN4rZZg/v2+/W8ws2mGIMzz+prNFTRVIQzyvK6+6yFlEoah5V6uIGc+vmXXNlTdZH7+LGdOnaE2OMjW7dsYnRghTCNGp8ZJJUF5oIpqGjz8tYdxnALT09OcPnWSkdFhyHLiFU3X6PX76LrByvIyg/U6q6urSAjefuttnn/uOTbNbsa2LRB5iRZJgjDwEZJMFEWompbXHU1CCsUiZAJZVlhZaSEkGadcxLxQFxYkWSOIXIIgQFV1JFlmanqGiYlJMpHi9n0MU0dVZeI4JQ49kiQv7/HOoSOkaYRdNFhttVB1nRPHT7B923ZkScpzgmUFRZYxTRNBxkMPfY2Dbx/Cdz3GxyeQFAnTtoiTFFXWmd0yQ7vbBtQ8X3fTNh566CFmZyfx/FVUScWyLI4eO4au6zjFAnEc4/l9VFVFCEEcJTmIFRIL5xYpFoprZVVyNt5Dh96hXC5jWQaKIvPkk0/SqA0xOj6GbmrESYSiSvhewDPPPMPk5BSWbTIxPo4sy7iexxuv7ef2W/ewefNW3n33XQZrFQxTw/cDRkbGUFWJMPBQVYVKpYwkJCzLolwqE4Y+O7bvxLYdZFmm77qMjtRRZIUojHn00W+xutKmOmAjSSlR5GGaCpqusmnTJgSC227bza6dOxioDWA7Dkma0O+5FItFCo6Jqkr0+10Wl9qUKxWELLPaalEsFCiXygwN1cmyHHQahkmaRvzwmRdoDA1jmBqOY5OmgpWVFQzThCwlSRJkSZAJhW63l4dRkqEbBpZtEycuUeJRKhWZmpxgsF4kyQRRHGFZNmEQomk6SHl5Hd3QkYVMmiS5x1RRSJKYnAE+wbZsFN1EknMwYJgGbt/N12yNTKzXz1mdMyBJYizLRgiZbreLLMnouk6/3+Pxx77NmTNzjI2NkZFh2jZZmtLrdS9EkZTLFVqrq2t5sS69Xodischys83rr73Jvn37efDBj2BaGkEQkKUC07CJopAkjahUCli2ha6bNJsrvHv4KKbl4JRsTEPDdiyEkDEtm4MHTvDtbz/Bfffdw8BAgYKjUh8ZJokTojBCFhJv7HudickJPN9H1y3iOEJSZAQqpq0jiYxiySaJY0zd5Eevv8HQ0BCO45CmKZ7vE4URim4yP3+KLI0ZGxtBUXWC0KXdbuEHAcVSGVXTSVLodjpMTU0zMFDj0KF3qFQq/NRHHmBgYABJQKfTotdpUyoV0XUDWVFZWJhDV3Waiyt898kn2bFjG5Zt0Ov10XUT183vlX379vHyy69SKhapVEucPnmKKIyI4wQhSRw7dpRKOWehTpM0L9tk2Tz8tYe46667SNMUx3YIPJ/2aotKpYaiqnS6XcgyFFmm21sgKOhIzQ6Dq13O3DvJHXfdxX/6o/+TT37yk4yO1VhqLqIqFp6X11GOk5hiqcjIyBhHD70Bso5THURRNIbrFVaXm6w0VymVSziFAsgyKXkE4Ubv3POGarF7C9JP7Vm3zuvNAJyXOxd+XOB149DGmzDcFca/GuHleg6BjQDX9ThhrjKti766sWv4Qa/5B5XLCUuvBWBuNO66fWzQ9zUDt8vm+t4P75FOXU2uB0tcPr+Lj7uUkXnj49875ryR4f3jnj/mcjx2sSNxIyz1Xzx4vTjn9bxcvqjXKjcE0m6qBfAqY5ULSLduRUyNXvXYiwF8muZvnQ8CXq+7DRts3Gv0vG7InHat7a8iAhhqNNB1g8f/8o/4/J/8CZ/57D9nfNsdxGh5WYog4vnnn8fzPD75yU+yZ88eFEUhjmOyF19j+A/+jHjPDjpjgzSX25iGiWWYTI6PceTwIbqtFn7goqkKk1OTGKbJkcNHSJOE02fmGB+fIE0zhCQxOzMFpJRKDqQZR949zNYdu9A0Fcsycft9+q5HvT6Mrsm0WiuUB2pkSYqhKqDpyGoeCp2lKbKQkBWVnhdQLFUJwoTDhw8zVK+j6zozszOcXVig1hhisbnM977zFNMzk3kpFd+j2+1z8tgpGiODGKZFq9VjemoS123jFEtoqsKmmWmEIlBUlX6/S6lUzMuc2BZZBnGa8Nqrr1OrDTI5Oclgvcb8/BkCP/c2CJGT0uSU9rnHsFKpsLK8Qq/b5fbbbqNWr9HtdqhUKzSXFnMPk1UgycAwbHp9D6dQJIkSNFUnSVJc10PTDF588SWmNk2RRAELZ89RLldI0rzsYRTGJGkeYhvHMZCRJB66phOGHoauoCoqvb5PKiCOBS+8tJdytcimzbMUyhUUTefWW2/jzz7/eW69bTedTh9DNy4QUy02l6gP1lhaWGRubo5bdt9CJgsyUhRZ46UX9zIxMU6pVEJSNHZs3UwYBJw+c4rhkTqD9Srl6iBe4FMZqGLbFkmckGYJmq6RRAlZBosLSywuNnnuhy+weXYTqqpiWiZCEZybX+Spp55mz513IARkpJRKReqNITRTpdfv0O+16XfbSLJOt9tl27YtSAL6/Q6KIkgSmRPHTjIyPMrBdw7x7uF32LFlM0KGQrlCFCUkkYfvu6RpiqrmIfKt1Taddo9ypYyq6mvGq4w4DtAUhdXVNpaZA/4jhw8zPTNFqVRA0zR0Q2NsbApV0RkZGaLeGCDNImRVAiEhiwxNUdeIjBQkRULIMoauIak5K/c3vv4I9YEajUadKAqxLIvvfvdJ9u79ESMjQ1TKg9h2Cd930XWDLAVNyyMYdF1HVeScwCuI6XbbjAwNIpHmXv0wwLJL6IaOQKXfd1lYPIes5CzFK8urRFHCk08+xey2rViWReBHSEIiTWJEluK6fbIswzRt2p0eqm7g+RGSJOdGEEVFkVWQVTTdRDNMnEIRhEycZKiyjOsG/OhHrzMzPUMQBNiOjmmY3LJ7N/1eH0TG6Ogwbr+HsQZsy6USZ+fnkYTCkSNHGBioIUsyfbdPwSkjywrVapnbb78FVVXWWI4tnn76GcYnptAMlaHhGrZpEEcxQpJZWV0hCAI2bZpGUgVxHJAlKUGY0Gr10eSEBx64jzgNOXnqJIVCgU6nw1B9iINvH+L1N/Zx/0d+ilQiL3dkOERxQKfTpl5vkCQpcRyQphFn589RLg3wxBOPc9ttt6LICmkGqmaiGRaZSDENhXKpAAiKpSppHFMql8kQa8aBnBSrWHRQVZmvPfy33Lnndnbu2IqiyiiKRLfdwTJMCnaB/Qf2US5VMe38+IJdxNBtiuUywyN1JBnSJEWWVAqlAqalMTTUoD5YxzR1JDlFZBKbNs0yPz/PwbcPcuddd+agWNMZHKxTLJYol8vs2rUDRVWI04TFcwssnjuHrRn0fY9SucSZuTMMDFTw+728bFq5irZtBmnfYYbPtljYs41tW29leHiUHz7/9Jqn3uR3f/ff8Cu/8mlUXWdldRXLLDM5uwVZliDySCMPSTGpT27BklOeevr73Hr7baRpgixJl7yTN1L+RbmwLnD9ccjfjef1xyEbg6T1vruS02S99jcXvN5gVz8hz+mVxr8R3f7aD77Bdu9vftlcr/0aXg4sP4i+fyHv9SJ9+zyO2LAd7ye/3ejvK313Xv4RvF6HbGQFuNY2F8uPg9BJmhrjWoArcIl17rzX9e8XeN2o45sHXtMk4ZWX96IsvcPPf+rTlMa288pbxzBNi4Kh88brb/Gv/tXv8slP/jyzmzavkZ/AqRdeZvv/8RXiu3fTrpdRVZVSeZC5M2d49ZW9TIyP0u93mZ4cZ3JqglKpxPzZc0xOT9FcWESWZaanphgZHaVaqyGE4PW9r7Nl82ZOnTzF6PAYxBKlahUhQFFkbNum2+nSc32yJCJOQoSicXZuDlVkFGo12q0Wlm2yf98+2qutnH3WLnD85Gnmzs4zd+oUu3buoNfvoRs6lmMjqxoZgl67z+TUGOVygWPHjvLsM8/RWe3gOBaZLBgcHEakCZoqMB0nV+wsi57bp+f2KegGkR8SByG6orK81KSzusode+5i69atRFHIcnOR4ZEGjm0hyfKF2p5C5LmAQRCQxDGu67Jw9hybpmfyWpuyoNPpUC6X0VSdFJlWq0OhWCIME5IUsiRF102Wl1eoVgcwDZPa4CBxFlMqFLCsvNQIQgWRoqoappmHd6ZpQqu1Qhr7VCsDtFtNXLeDZZosLrXXSKVsjhw5xic+8SCZJNNzfQwj98zfddedrDSX+e4TTzE0PIRh6ghFxrQt+p0OD3z4w3Q7HUrlMgkpmqbTWm3z/aefwTRVKgNV/DBG13PG3PGxSRqNEdJEoFg6ipbnQ6ZpiqIo9Lr59UuTlCROeGXvq+zYsZPhxhBFp4iq68RZTCagWqqydetW0izJc30tkySJ0TSdMInQVJli0aHkWKhagcnJSTRNyfMxFQndUPnhs6+yuLDI9m3baQzVqQ1WMXUNWZVBSPzFF/5vpqfGUVUZwzCw1+oJN5dWOHNmjsZQg3arg65rIFIyEuIw4eW9r6CpOjt37mRyahLTLKCpOqutFlkqkCWddw4dZ2R0AEgIQ58oiWkuLVOybVy3h+d5JFmKZhg8/u3H2bZ1M2ItN13XDKYmppifP029PkiaZYyOjnPfvfdTKFrMnVnka1/7BvfedzedbisvvZQkaKrG0uLCmlc7xCmVKRYcjh19ByEJXN/DMC06nRBZVpGEh8JA5AAAIABJREFUjizr1Go1FFUiTTLK5QqqojE2NkGage8HGFpeOsftd/EDlygMsW0HVdPQDJMUgZDyUPAgCFhaygmX/ChCVhQQEq7nr9X/lVGERK/rcuLEKTZv3oyqqihKulYOTjBYrxPHIaZloOs6IkuRRE7tkSQRiqwDgkqlTJbBwEAVWTIIwgBEjKrJhGHMynIbu2izstJhfGKCjJiMCL/vU3Ac+v0+lWqFeqOOpAiiJCKOc5buMEiYn19CYoXh0QZRnDA9vQXLrKJrgixJsQybxvAwRsEGWaLX7tHp9Hn74FvcettOgiACJKIoIIpCCk6BleUO996zB8e2idOUp59+hn1vvsWBg4fYvn2WpcWzVMolFEXji1/8CqViAU3Lc+yFnOeMy4qMH/pEUUS1XEJXJCQpJSHjxZdeQtd0TN1ElhR6bpdiKS+TdfbsHIEXkCYSp86coli0SNKIEydOc+zoCUbHRiBLODN3mk3TmygWbSQp4YfPvsjs7CxhFPHAAw9QKhYJfH+NvdjmK1/5CkJI1AeqgODEqVMMDw2hyQrHjx5l6/ZtSKpMsVQgCHzcfg9ZdogSQRRleIMlqgdPMnhskVe//jjjv/wLIEJ27dpFmsh8/MFfoFAosPeVl6k3hvjDP/zf2XH3vRw+8CYTdYfA7REpBjg1JmsWru+y1GwyOT6JREZyGSnM+96pP2GA8o/gdePjLv7+H8Hrjev21z7ADbZ7f/NL5/p3AF4v5g26WBE///3FIPZScHrzwGuWZaiq9g8PvMKli3I+hPb839cSHvBBH4zXHC5wDTfa9W46uLbwkyuNez3nvu68cvQKImcIzji/Da58Du+FGMD7Wc6yddnfNvqkWT5unCSosgYIhJwR9X0sofGVL/41u3bcit7YTGFwnHZ7FXdlCUcxKRUGcKo2g/UR/uA//CG/+uv/BM1Q+P5ffYlPfPHb9LdM0mqU8f0AXdd4a98+VpbbLDVX2LFtKyKLcQoFwjShUhtgaGSYpYUFZrduY7BeY6l5Dt0y+eZjjzM5M8viwjmGh0eRFI3X9++j2V5l7uRRZmZnEJpCzw3w/YSnn3yUe+/7EIZTpt3qUh8Y5O1Dh9F1hSgIsS2bgWqN0bFx9u17FSnLeOp7T3HPnj1MTY+jmQphEKHrGs3lJv1eF8sy2Dw1Tr/fRjc1ioUyA5UaW2+7haHRcRy7yMK5eaLYIyND0xwUTcsJkIpFSrbFqTNzOAUnL/eztMDhw4col4pUB2ukWYIkgSwrCCRcL8IPQmzbJI4jfN/DcvJcwQyZufkFum5AqTrIS3t/xPj4MKahstBcwiqU6bVba3VFI4q2Tn9lAUmz8rBMJQ/LXGk1OX3qOOPjm/DcHkkSY1oGbhAgCYU0FXTbHpbpYJoGmqYQBLDaalMZqFMoDND3Qjr9Pk9+70n23HELd99zJ5kkISUpqiTjeR6WaaDIgnK5SGWgxtBInV6vh8gkFHRMXYGMnFwljPnhD37I7ObNmLpJGsfsfelldu/eiaLEaKqNrjt8+a++SsFxGB1p4Pk+geuiKoIocEkin3KxAEKh5/bRNI3ZLbM5cZSpXACHe196mSyKqA5UURSBogjCMKDX83j7wGG+/+zzbJqeouDYBH6ArGq4nSaSopIKmdj1kIVK18t45rlnuOe+e/j6Iw/TbC6jKzqbt29CIKFJMrMzU2RxQqU+iFjzLK6sLFNr1CmVSxw/foJTJ+cYnxgGKQZUFs81eeGFl9mz5y50XcV2dIK4S6Fg0Wm3qJQrzM0dZ9OmBplqoOo6mmYiMgm362EXCwghYRcKBEGIYdi88foBduzYDiRUSgUMU6NULjE3f5YMQalSQTU0hAJCyBiGxvbts+iqgiKDqcn0+x3iJCZJdb73vR8QxxHDQ6NIsoSmG5TKA+i6jSoZeF6Pw4cP4wUuxXLOLh2HLpqmIYSEH4YcP36CQ28f5Oknn2b/Gwd44YW9tNs9tm7ZiapLdLp9DMMiCvw1xtuMwO0hkWIZOr7XxzJN0jgiSXzSNEZVcm+ookCvF3P77bextHyaOBLIika73cnL3Wgq1WoJTVFJM0EUJ+i6AZlAUQ0WFpd4+9BBBmo1uj0XVTWQtAxFVVAUnU6nz1BjEN1QcX2f2sAguqYjsgRJJNh2iSRJWO20SDMolatIsoa72sR3UwoFhyT2mB4foTQ4RKfnYegGkNLtNKlWywhJQlYUKtUKXq9LEvgUiiaFokmjUScMYpI0pru6QMEpo2slMqHjRwGFYoE4TghDj9mZSQYqRUYbDeqNIZabyxhmkUe/8QQfuv8uZjZPoGlF/t+vPEwcuwzWBoh8QRz1sC0LTdMpVqokmUCSYyzTplyqMj8/x+HDh7j1tt14bh9Vlvn6177O1q3beeyxb6FrCjt37sTr+zz+7e8wOTHF8NAA7VaHsdFJzp6dx7QMjhw5wqnTi6RIzMzMsrK6gqLJ9Hs9ShWDI0feZefO3czMTHGueY7BoRG+9tA3GBoaoVYrMTUzhhf6RGGAKmu0Vjp89W+/xq7tmxBZwsrKMs++/Cpbf+4T6G8eYodTQnU7NKer2E6BL3/pWyysLLJ75yxLZ47jWA7797/LnTtnmRqf4N/83r/lwU98ClOzKSgyJxbmmZgY5Z2Db+XP5kIJWShIIo9cSYUgkSRkLtUvkv/nm2T73kW6deu67/YPakS/uP3l6WEXGI9vSo7k+0M/3+vz6trH+0MoxSV9XstYaZq8L3TzYkD63pwuJ7I6/ztcvgyZEO+b7pVmdflnI7n8ul5+DW4WsDrf9/k+ryTrjXWlnODzHsdrCTF+31iXfMQV7451jQKSuKAvX3Jtzl/Di/XgjYwdpHBB0177rKNDX4sJ4sI+4j2dO0szsjRDSBusyxXqzG6EPy5dg+zC+cqKhCyp1w1exU+yFtQHlTAMrzrZiymwr1RHbKO2PynZaKwLL4Yf7AVA+shdH3isjTb05fO5GPhvJFea9/vXduPQA/+pP17rkPftL3XrR5FHdwKQzB0geucHG/ZjfOy/AyAWCsnevybrLkKWv3RFFnHu7DlCP2Jw+wMcCkeY3baTrD+P9u43SeKIJMlrkAZhRBTFvPvuYUY+9l9TOzCP+b/+Od4vzdAdCCiViniej67rkKXESYomFTi6t8/E2DBCMVFHTxFFEbqm4fs+mmGsESWpKN4Qjz38Au1un1/61ftZCQ8yWKvhei5pklIo2KiqhiRLiOYsEgqnTx1ldLcMakgYRgS+TxzFeIFPo14n7lmEy4XcY6tHyIOLCCGvWcxyMhxJyCiKQrY6TL+dK/J6bRm14F8g4MjSjDTLSWVUCjz2V29yyy27GB5uIDWOEUYRnU4Hx3GwLZvV1RUqlQppp0rY1nnj9dfYuWcCo+HlIWfk91IcRZxbWGJ0dASrv51ut4PvBdjjbRQjzzNstzv0+30ajQZzc/M0ijPI7gCyoqCYEqF5NM/lFmItjDsiTlJ0TSdbbaBmFkuLCxw4/Ry33rsZXdOQZEGaZKialt9rvYyVYxZkGdWBMsrQ6bw2pKaxtLRErTaI6/YZGKwh9QdR4jJplpGoLaRCM79F1/JR4iha2yMCubUZgG6nx1z/ZcYmKmiajuf5mKZJkqYIRUGNaywcTjE0hWrDIHROoCgqSZKysOadr9cHkSRgdRhNzkvfJOY5MHr5TkpTsjQlThIMXYfYwJ0fwDA0nnryKX7mN2cuHMeajuN5Ppqmsffpk3zk3l8gjDwyrY1SbufstaqGJEnEYQgIJEUlOjeDyDL+6q++xGf+5d045TzXVpak/HyANEuQowFEr0Zz6SyFio7WWMnzjCWZpWaTaqVMRookZJaPKgQ9ibHRMVJniVBqomoaWZoRBAGmaZBlKWkooYezLJ5bpOgUCEuHWW4u0xgeRlNVzhOoZFkKvRpSmJPsJFqbxFxElhTSNCZNM6S12nlxnCCWhonCBMsqkZTO0OovUnAcMgGqohCGcR6uKQ9Cf4hiqYisR1CeX8tRzetB9/t9bNsGIYiadSzZJBMSgXIW2cm9epqqEscJkKdwtJouI9ZdhLFPGMQYY/Nrz9n3Hnq+7yOEhMMEYb+AEBmS2SFS5xEIkiRd21M52VmcxBjdHaRZ7qGUKnOkspvv4zRBUfO8Vdd1GbCnUN0GiYjx4y5ydQFBbmQMvLxkSxTHdLtdRgt34/cSvvylL/OxX7qVoSkLSRIkaYwk5Tm7kiQhUh3RHiNJM+ZOHsWYWGGwPkgSxyy9WcAqKDhOEU3XaXd6FEtlpCxGCIkoSoijCESGZRksNc/hFEp0uy7FYiVniE4j+j0fyyzyhS/8OWHo8l/9i/8GVZURxHheH8/zKBVLZJKOaSoszC/y6COP8tu/9Rl020CSTMIgRpIToihEU01cr7vGriyjaiqSkHD7IWkWYugyq6st/vorf8NnfuMz2LaNpun4fsjSUpOz8+e45757c8NX6ON7Abpm4Ht95s+epT44RN/toaoyrtvjzMkz3H33ffzp5z/Pxz760wSBz70fups0c+n3XEyzjKII3H5Aq9OlWKwQxT5SFubGFbvI/Pw5HLuArhssL6/QGG7gez6+5/PlL3+ZX/mVT6PIKdV9xzHafRbvmOH4b3yUNHL41//6v+e+++7ggQ/fy8jwOEsrHnfds4NXX32VW2/fw1sHDvLTD36cKIqwCg5S4nHy8NucOXOSX/r0p+lJen6tJYk0S3JPPsol7974X/4+AMqf/f773ssXg4IPqlddrNNdDujOk0et0+o6RtjYI3St87vQ0yVzWa/9Rkp/tk5f79fF0jS58PdVdbX1HDU3QcW9GFCup2dfKTrxeuV8PzdTN7/43ozj+H3reCUP4Ubz23Cs9cDr9YD5bP1rLNbRrdfFkxu0v/gaXthbF/V54VylDea6Qb/XLOLSsQzduW4LxwecwU9Wzi80vLdxL7+5L35YrneT3MgmWK8e6420v/hztWPTLz1K+qVHb3jMjcbfSC5e2yvJzbCmXdrhOv+Kix6A61kLzz98LvyboQgp32dpisgS2q1Vzpw8DklMqVggS2NmNk3S6nRZbXUIo4gozr2S3V4PIcAwdLbPbmLoP/xnjP/4lwQ/cz/Lao4EPNdjeXmZ5eVlVFVB1zUkSVBv1InTFEXTc+VdCJI0WSvdkJePicKQXqdLwbZYXVmgudzEsq08Z9Q0qdVqmKZFtmb56nZarLaWqQ5ULyxIp9NhtdWiVC5Rr9dB5Iqs4ziYlkkUxSwsLObEJ1JuDdZUFVXT1hgsQ3zX4y//4i/odjpAXgc3DNdYUeV8/Vy3z5kzZyiVyiiqRpZlNJtNPNcjTdK8FE6lQhTHSJJMFIbccccdObulrKAoMlmW57WmWR7WqGkagR+g6yaD9cZazmuEIssUiwVGRoaRZYnJiQl0w8APEySh4Hse/X4vf8kkKUmaIUkKmqbR6XQ4dOhd2u0u5xaa3LHnzhy4SgJZktfCKaHVaqHrOqOjIwzUKjm5kshrhFqmztBwA6dgoRsaYRCQpClplj9fVFXJwWBGXosty1AU9YKlW5bzUkCqqrF582Ysu4CkqNiFAkgykqwgSTIZ8OZb+yhXirhuH0VR8pBU16U2WCOKQoSAKArxfY8zp+eJUxCykqs0WX4bqKqCaRiA4MzcPCdPnmJ1tYNp5QzSSZLkNtg0I45jTNO80KbbbuP7Pqqu5SV2dOPC/tJ0jTRLOX36NKqcn/dnf+ufYZpmniPHGnjOUpI0IQ8ZysuAlMuVvH5qlte2jaKQMAgv7MswDLEsk3q9ipBSAt9dC0mSEZJEGIaEYch5h4XX71Itl3FsB13XaQzVURRljfk3904kSYJEDtRWVlaRRB7iFMcRaZqQpHlec5okQEZzaYFKtYSkyARhhGnahFGCLMtkWYYsSQwND2GZBqVyAVkWayHm+QtWlgRxFOV1LpMYsgxZEiwsNRFCQlkrFaOq+fWSZYlOp027085LG6UJumFRKBXzZ5xYq1W95rXR1kroRHGKkBUUVSXLcuU1zVJkRc7L7GgKUZzn0jaXl3j4a1/H98N8beLz96ey1qdGuVwBoN3t4HkRqmIgkAEJMoiimFOnT9FqtTBNk27PJQhjfvu3Pke9Xr+w5pDvB0XNc3wlSaLVWuXk8eNMTEwRBCFJknvCnv3hc5iGsUYeKDBMiwwJz/MJwwiByJ+JUUic5CRXumZQqVTR1NwD/Mwzz2OaNlka8ZlPf4rf/s1/hu8GPPODZ3niie8iZIVavY5umciKgiRJmKbOxPh4DvwllTD0UBRw3QBF0VhtLeHYRRQ5z1EPAp8oDjl5/Az9bp+M/N797d/5HI2hIeIkJQhCnILD9Mw0B95+k+MnT5FkSR49YJl4voskazz//Mu8+qPXOXz4GKVShcnJaTZvnuGhv/0qv/hzn2SgUqFaKdNpdzhzZg5N1zh7dp5jx45x8vhJ0jghTUMUOQeL+XtYYnh4ZM1YAmEYEEQpfpAT1+3Yvg2JlL7XY2HnJN72TTRePcK2v/gu/h//Jbfftotf/MWf5/6f+ghHTxxn4dwchw+/y4c+dB+SBI9+8xGefPK7WJZBv90nSWRGxqbQFZ1/93v/A2qWEkURmZQbgRTxHmi6ptf6VUDH1fSIi3WW9QBwblS6cWLKy8fYSD+6kk50sz2Ml3sBL57XeSbqm65/XWEuG8nFkY1wZbB3s3Tni8/9g/Z7cXlNec3IeS1GlvWu9wcF1zdjjdaTD2o0+nHfY5ePdUPt/j55XqMoujDZ814juHTjfxD5ca3FjfQb/4v/CQDlz//9zZ7OTZP1wjKu1fN6WUeX9HOlsS63wp6/9jKCJPBJQp/P//F/Ytf27bi9ZQYHGvhewujUZgIhUaqM8Gu/9k/45qMPoyoS/V7Ak088xf27tuP8uz/BOjFHMjZMcs8u2n5eXqLd6eTgBVhdXcXUVCoDAyDn5XTiIETRVQLXw9QNNF1npb1Cp9enUW/wwjPPceede1hpNRkdH+Gxx55ifn6ejz/4MWZmptcUREEUeDiOTZJlJJmELEIkRSNJBWEYIwHt1RUqtQHiOKbf7yFJEsVCET/wiMIY1/OoVgb41rce58EHP4YiK/R7eQ3JKAx58823uP+n7kHIGp4fYugGp04cw7B0KuUBhJBZXFjIy9qQUiwOkmYpL7z4IhOTk4yNjdHvtxFCYBoahq6zcO4cmqblZClZwOLCPJZh43khullE1RRUVaLT6VAqVUiiAADbtjlz5gyTk5P4vk+cZOimSRTnjMkiy+i1O8iahmE7pGlMwTHJhEy71eLokWPs3r2bQ28fotFoYFsqqmEiZDn3wiUpmqrhBy4ZCa3VVRqNYcIwRBEZmQDX9RCyjCRkTNNaC8bJywh1Wyv4bp/BxjBnzzVRVY3Wyirbt21FKBlRmNBsrvLKq3v5uZ/9BAiNw4ePMDwyxl9/9au0uz1+/dO/RKNR5+WXnuOWXTupDtZIsnxrNJeWqA0OksYJURhyduEEm2a2EicCRTcJYo80jTj4+tvcsecWXNcFZMhkzi01c+97HNLvdakNVJAUCUO3eP31/bz00st87nO/wzPPfp+f+7mfJ00jJCX34r315gE0MsamZwjiAF0knD27zPd+8DL/9Nd+mXI1rwMsyTJpmuB2WtiOQwb0XRfbtlEVg4WFs1RKRYLARzNMPC8gClwq5UF6/U5OnGSW0Q0Zz8tZWcuVMqsrbUqVQVqryziORZqEeJ6LqmoouooiGyyeW0bVFCQ5o1ioomoyrte74ClVZJVOt0W1MrhWi1nGtHRC38X3A0CgGQZJkqJqMufOLvK1hx5hanqWn/3ZnyXLUoScQRqgCB2EBCLGDwMM3USScrI2z+sjKxK6ahEEPoZprnmj0jUAndHpdqhUB4jiBEUSJHHGiy++zO7du/Pzy2LUtRDaNEvIUoEQMmLN27K0tESj0SBNc8AkRIaiSPk1QML3QiQhYzkySQySMFhZXaBUGiCOI1RVJgp9sjTBMHQ6XohpGDkbr5wbcjr9PoZq8dqP3sA2TVaXz7H7jtvIgaxEr9/jyJF3KRYL3H7HnZw7d5Z33znE/fd/CEWWiLOMIPBQZAm376EpOoqq4fZdXt93kA99qookC7SVraQiYmlpmVptkCNHj/HuO+/wwP0fJsugWCgQxSEZEYoioSg6q6ttDNNGVXUWFhZ57LFH+bXP/BqqLKGrGr1eh04v5tFHH2FqZpJP/OzPoKgKaQKKooGIIRWITGZx8RSN4SmCMPfO6mox5wyQfXTVya+bJIiinI33lRdf48679qDpKs3lZUrlSu7djiJWV1cZqNVIkoRDBw8yPDZFpWzj9rrYlkmv2yclJyPbNDOL57soiiBOIpaXFul1XSqVKrXaAFEc0u8FaHpKHMcUC1X8wGV1aRnNNCiUSwRhSJbEpElCpTyQG1UBXddJs5SVVpf9+/exePYcn/3sZ4nDgFQEnJ1fQdMsKv0+9mvvEO+c5YwjMfepe5ndso1uq8vyuSW27NyCZTm4gU/f9WgMjeQANYFu3yWKPIZrZb74hf+LgmPwm//8v0UpDRCnCUoWkSJf8k6+kuf1anK1aLDLv7t+ZfrqOtd7Y1zqNbzaXC4/dmP97to9r+eHvbiv9bu9uq504cgb9Lxei+HhSoQ+N8vjfrFcHlF5+VyvRzbyGH9Qvpj15Gqe16ueyw16Xs9fI3HZnr183I08r1ea/5Xmdc1yGZ25rtnXveh/r3Jesyz7/fPWkvOWqIstYz8uS8FP0gpxXs6XypE+dfVSOf9/kPXX6PofXldb59zqn3sKLhY9y3j6u4+TuD26y+fYvmmKLbv38KMf7eN//oP/hQc//nEsx8Y0LG7dvZ2y47C8uMzKD37EXX/zXcpf/iZ+lvKSnlG45zZUU2dpaQFN0+h2O7iuS7FYoFIpIzJIBfhBSJrAsWMnGagWkIVEt9MlExJhkmKYGgIJ27QpFhx8r4+uq9SqDU6fOsVdd9+Nbuq4vkuciJyUJ00RskyUZWSZx1KzieU4KGt1DVVNptdv4xQsVDX3QFq2Q5wlmLaFquq8e/gYaaagKCbd9ipj4yMYukyahMxMT9Lv90jiFEM38xq4WYpVKqPpBs3FRcZGGrRbC4RBl5Wmi6aqGKbO9PQkQehi6ipJFBJHAVEYoGsqpWKBswtn6XVXURUJIRQGKg1anRa2YyBJYDsWYRDi9nIvzNzcHLqu88orrzI+PkEQevT6PQzTgCwjiQKcQpXvPPE9NF2nNlDlzKnjCFlB1VQM3eS1117nzTcPsGPHTvywj2qaBFGErGj0e/08J0UCITKyLEXVVJYWm7TaPUzTYaXVoVweQNUNJHLvrhcEqIqC45g4toWQZWy7gGU5eK6HZZq0u6sgZCzTYXx8jCDwkJKEg2/txzJ0LEOj1WxSckwKtsnY2DADgwOkQiaTVHy3j+u5HD16lLGxUZI44dDhQ0xMzZCkOamVrssgEgYrDWQl9+iZpo3vhgw2GjnbrpTvM1nOE0gWFpcYGR5n69athGHI7OwmZF0hjCPiKC9T4rkuI41hZM3AcmxCt0+n7bF95+0MNUp4nocky0iSTJqC111B01T6vT6WaQMK7c4qlmnQbq1SrQ6gqAaqahAEbYRQUBSJ5eYKb+5/h6GhYQoFhyDwkJXcC5d7HZOcoVtTMQ0LSaggQZoI5uYXqdUHKZQKJEEIac4sHcUphWKZTKjoWm50EEIiy1Kay4voik6aZnnZDwRB4NPzY2q1Bjt37Wb3LbuIIx9NlYiikCwJWWmuoBs2QRJimTqyJJNleZj6+RrDcZIiqwqKqhCEAZIsI0sySZJgOQ7tdgfTNNYIlhQcp0AUR6iagqapa8ppfr5iLVRfIvf6WqZJHOWeN02RURUZIdYUNkVDVnQs02J55SyaZpAlCoYp03M7a+y2ArKUvttHkiQMyyaK4zU2aDUvCWRJGKZBfXCQom1iOyqZqlCtVPEDn+eefZbI9/nQffeQKTp2wWZ60zRRHBMnKc2VRQaqFXzfx7Yduu0++954k3bXZWxsCmfYJ01i5g53KVQGUBWNKI6oVaq88PxzbNu6jYLjcOrUKQrFAivLTUxLp91ykWWVQ+8cYmiogawIpsdHkKU8PN2yTcIopt/pIMswOTlGo17n6JGj1OtDNBfmCSMPTTNJM4FhGWSpRhj1SdOU//ynX+SWXTtx/RaOUyEMQ2RZQpYlFEXG1GVee20fTz/1PA888BE6vVWOHzvB/NmzjE+Mk5Ghqnm91CwBSWREgU+31aZgO3z+C3/BUnOJzZs3o6gyURSSZjGabuH5AbaTMyIHkUdr2eXJJ7/D+PgkgR9jmQaH3zmA49iomorreWiqgeuFFBxnLYonLzXmeR5RGDI5MU65XOH06TO02h1SAmRZ52/+9iEmd23HuWULyov7sR0LfWmV9M6tuH6PSsFicGiYb33rm0xOT2M7zlpN8z5Bv4NRKFAarBMmIbNbtqAsz/HK6/vZtutOkFSkLHufIpt+8wf5O/kqdV5v5D1/sZwHGdcSGXZjsj54vRoAuzGd8Mphw1caKx/vOoDbeuD1KrO7FrmWdbnZ+vJGgPhGwet6f1/s+b5WuWqb6wgbXv/7DY5d7365DLzmgPTKe+biuV+tz2v84drkMiuKIv8DIGzaKCz4wsW6zKV/LTfkRrHsl7e70YfnjWzmDwpeP0h4ycXrdm2SInLd+ZLPRhLu/SrJ3AHk0f+PvTePteQ8z/x+tXy1V5393LXvvd19e2+ym81NC2XFa2wnztiGY2cmCBBgnPyViTMIgpkEg8CY8SCDOEAQT+CZjGHH1liSTWuhSFErJVEim2Q3RUpNUiR7uWQvd9/OXvuSP+qy1aRus7u5eCYev0AB95yq+r7v1DlV912e93mOvzXhridl8g48qCiuN8YbWUEhNEaqhqRKmOGQtZd/wLNPP0USp9hekyP3fJzq1DyOX8OAAAAgAElEQVRXFzdoTszy67/193BqNWRVQRUG+nqPxv/xZ3ifepT26Reg3WJ1/zTGvXfRTyJqFY9+r0cUZ9h2lW9+40lMy0ZRFKrVCpIsYds2WZbS6/Q5e/Z55g8d5cq1RRZXlpib28uLL5xjdXGJerVKvVUjzlJ0y+PiwiLTe2Y5dvcxZCEjdA1ZEUShj9AV/GCAUBRMoRFFGVIhEwUhjmMThiF+GKKrJWw5jCJM02Y4CEmjEeHIp+JUuPT6BVaXltk7O0MUblF3ZVTLIJIMFGGxvp0w1mwR+0OGwxF9P6fueeRFQa1eQ9UM0jjn8qWrvHltiWa7xsREkzSNiMII0zIYjXxMyyn1E0dDXM9la32V0chHVUxcp8ZzZ77PwsJVDhw5gqxp5EhcvbzIo48+jq6bhGHK2Ng4U9OTREnAaOjTbLfY2BxS8erEiU8Sl9/8GwsXmdszw+uvLlB1bfI0Y+naIkIIfvqnfxphaOQ5WIZBd3sT17YpshxVDdnYXMPxqmi6hT/wMTSdaqtFnkKR5li2CUpBlJSQYcsoocVFLiPLgmAUkaY5tm3hVipkgOM65AWARDCK0TUbzdSY2b+PSr2G5zrM79/H1NgYYRgTJwWuZ5VBdKZCnmKaOuPj7VK6ZBQwOTVTQrdH28ikKMgoCPIsxNBNojjnz//8Lzl+8iQr66s4nl3qUrouaRjjByGt5hhZBotLy0zvmcJyTKSd51uvN8D1qrTHxhmOltENHVOrsrLW4enT32F+X5tKs4XQJbrdTRzbLmWG4hghLB555MuMjU8QxgGWJbBtB8vykGSFkd8HKUah1OJdX99keXmVbneL43cdQ5IKur2tEh6bZFTcCqZhkmc5RQGmZTLyBwjZRAiFZqtKFIXIskaWZZiWhaqqrK6u0qhXSeIASZJQZZBVhVxScKotJEUhTkpt0DhJibOCil5j2OlSq5oEwTqd7Sso8gi7NkOMwG20CcKAcBSSZDFC00jzjFySCeIESdGJgx6ry29Qq9qlzm6hkaKgKDlyXmCoFkkYUmCTpQGWoVBxvLL3OBqiphKSpBJFKZoqKLKYKA0RCgy6WwhVgKKVZB6Ueqd5BkUeMxhsomoGcZQiFBVVSGSFhJDKym8hKQjdQhMGsqSgSBmyrCJE2fNd5CkkBVmSEccRQtOw3Sq24+48cwumJic5eOgQQugIVYa8lI8ZDDuk2YCx+iTd7S4yEnGYkCTw9a8/wczsOLOzE4jKEAqJz//ZU1Q8G1kucFyLNM84eeoUQvLo9zvUmxYjv0O91mZlaZv2mEee6nznW99h795JNCHhemNIioSqyRSUes2b2xscPHSEWq1NmhaMjY8TxwGa0Lj65lUMTSsTKq5LHIQohUQ0GrJ37wSt8TqOV0WiQNWk61n/AoksDpmY3sOpBx9gMBqQJRHf+PqTHDx4hB+8+BIb65s0GjVGowFXLiwwGnSRpBxN1xC6zvyBw9x//wPouoAiRVFktrY2+YvPfh5dN3BcB9f1yHO4fPECv/gf/wKOa7O6sYphu9jVOsKwMK0KhmHzla99A6EZ+L1tDMPAdSziKCQKfNIkxnYrvH5+gWfPnGHf7F5arTEooFrxmJwcJ5UhnqhhPvsqUcVmYaLCP/yd/5G/81u/yfp6lxMnT3H69Gl0VeH8K68w6Hbw/T7ViouQVSTFQDFrtGbnePHZpxDBFrMzY4w0HZm3t/EUjz6JxPsLXt+Cpb+br3JrP+ZO+1vLTZZ32h9umONGf3H36mLxjr/fjRRH2mV7f72fb/fr3n278ZUsSSUBzzt85t2Cwtvx+24FmX23Md5PcLsbbHc3X/V2fNjdzrmddRVvu8zlDbHjCvzkdiefp9jl9N1ImKTiOunT2+Yt5B+/KKRbBq7w9phmV+qpm5Xqb0EOVd5b0s2h/f+hBa95nv/uu+3f7SLdCoZ6J2Pdzr4Pyj6I4PW92p0Hr3eWsUpef5Ii9lH3PfCux8l5ccNjuHxoZJKNIuUY+RAzC/iTP/x/OH36LPVWm/seeBCnUkVWBIEf8p/+0m/w67/6m+yZnkNOJar//N+g/8tP4X3p2yBUsoNzdI/O06vZrPS6xGHE/Px+JODKlassLi1TrVS5dOkikixx5Mhh3nzzTSQEg2EfSSrlNe6//36yLOfb33qC0XDI7OwcTz31NGtrK+RFzp6ZaXTdQJZVnn7qaTRVptWssbx0jTxNMXQdVREURUG1UuHatSUGA5/RaECtWsX1PJI0QZIkTMsk8v2yyjsYoKkaX/7yVzANk1azBUhYtsmBA/vp93uYakTsdwmCECFMsijky1/5GocOzKEJidW1VS5cvMT4WBNNU4iTUjYlzxLiOMKrVLFtnXqtSrADGd3c3CLPIUky6rXGDqRHwXVchGbw2ONfZWNzm+1Ol+mZKcYn2oRhiCwr2KZNTkmO0my2eencD5nfO0eRZ7RaLeI0purV6PdLNtpzL/2I8fEmk5NjCE3l3LlzIAR7Zmep1Bq02uOoqlYmLgyNwB9RbzRKshOviqJo2HaNrFCRJIFl2ghNZ31zDceyyfOC8xcuMj4xwerVRaIgRFVUfN+nkErYZpbnfOELn2f//v1lv6YiE8ch5AX9XocvPPwwnmPSbrdLqKJpYphlP55jW5y/eAnLcTFtA1UTgEKRJyRpjNB0kjQnTgvSNMZxXXTTQDPMkrU4yQiDgByJJMk5//p5jh09im3opHGMYRhIsszCwgKze/bzne88QbVmsnffHoIgRJE1sjTANHQMwyBLUx577FGOHb6L0ShANwVIKffeew8UZW9xMEyoeW3SOEFTZVBKrdGpySlMU8cydNI0Q6gao2FZSbRMgyiMicII3w9oNJq4rsOhgwdBytja3qDZbGKZNmGYYJgavV4Xx3Ho9bqo6g5E2Q92pI4ywjBCkcvKZ4m0gXqtiR9EhEFSCnooCmtr61iWUwYjaUKepWhCJY5j3EqFSN4kykcUkoKiVrHtPQhtElF06W1vEvtDlq5ept2oMhwFuI57/bkjVBVFltFUmVqtzXBUwicVTSBCldgfsrG5jl3xCKQQ15IJ/Q3W1paI0wynWkESMlGakEk5tmuSpj6DwRa6pKJqNpliIwsLRVLIi5yRPyBOhpiWRknS5CBBKVkkw3A4KLV/0xShGSRpRpomXLp0AUMXZMikeYEiNBRZQqhyyeCsa9iOjaQoJWFTFOL7IxzbJgwDhKqABGkWoygKQug4jl0yg2dZqedKDlKO45rcfeIYtWqNKAow6iFhEDBVO854u1H2s4qyHzWKIjY3Vjl/4TyW6VDxamUgqUKemSxcusKJE8dwXYetjQGPP/417jp+nDAIMAyHl196jQKo1Rqc++G5Ugopz7AsncAPqdXqpSa0aRFGEVEUIysl7LreaiJ0E2SFJIzpbG8jVMFo6GPbHkIuKArQdQOhyji2iWO7CEVlY30NwxDMze7B0FVWlpZ59bVX+OjHPoZpWfhBgFetomsq/X6fwWCA0DQe/su/Is9yTtx9N7OzMwSBT+gHuLZLlqfkwFNPn8Y0LeZm9hCMRqRpTOiP6Gxvc2D/XkxbY+j7+H6A61WRFBVDM/nBD19CNwwa9ToXzr/OvfedIs9zHMfBDwLG2mNsj0bIFYvqS5cR2wOeTLr83f/873LxtVcQomwzmZzeg+VV+O/++3/Ilx55hF/6pV+h2Wqh6hpFkaFJKmkUs3DpDUynQn1smh+LeZSWP/YkSO8teIWfLD58WAHPO0a67TV9UGO+V3s/BYibjXer1x9EULnb2O827/u1m/n9H0Qr4e4TfoBD3XgP3MFcd1KlfT/zFzdAiW99Ld9+PwM3/w7+Nnh9u+2WCbqZbM6tMk27vXdjVu7D7hX+mxy8pm+WTMpvBa83yx3K2c648o8zTHGuYSoxL3zrUf70D/5PZvYe5pd+9b/k4oULWG6V8+cvUas1cVyHVr3GeKNK8/f/Nea//BTF2gbhoVmWZlo8ubiAt2eSXMrpbG2yvLrGsaNHKYqC1dVVjhw5zOzsPh7/yuP81Cc+wd65OZ555jQvvfQS164sMxoNmZwcp96os7a+QpZmVKsVVpZXOHzkCLqhMTMzy/j4GJWKx+LiNRRZ5uDBA3i2gSpkPMfBtm36/R7DYcBoOMK2Xba3u3zpsS/xU5/4OLph0O11sSyLPM+QZIlRr8doNKRWqdLvD+l1+kxNTVOt1pAkiUcffYQHP3I/tbqHokjYjoWiOwjDJQwias0quqaQJCGtVpM9e6bRTRWKnCgMGA4HmKZBlCaMtdoM+j0M3WA0HLK6ssLk9Bybm9t8/vOPMD9/AMdxWF/fIM1STNNlc6vLiXvuYWV1mYnJFs1mkyzNsE0boWrYjouum9RrVRzbBgpMQy8dacdgMBhgWQ6Xr1xhMOyzb99sKXEjVO4+cYJKewJklX5/SJ4X/Mkf/yl5LjEzPUZOhqYb6IZFFGfous7IDxG6XkJspZQkDbFtk6XlFf7q4c+zvb3N7Mwc1xYWeP7MGY4dO7rj5Ms7bdsSzWaTZrNJIRUlXDRPKbIc2zRo1qt4joWumxiWWd4/EgghiJKQJM1wvCq6qe2Q+6homoym6whN5/yFBVRh8sQ3HufEyRNlr6lUkhpRFPzwhy+zvr6BIst8/KGPk6YJw26Hr3316/zgxXMcOXqM9vgYly68gSRnTM+2kOQcXbcpchlFTvB9H1WR0TWV6alJLp6/yvjEGLJI2dpawzYdHMsjywNkBEIWdDvrgI/mVAj8gLHxMWLfx7EMFE1HVTS++73vMjE+QVHscA/kGc899wz7989jGAa6oZEXMUVeoOsmvh+Rphm2rRNGAapQMPSS2dR1K6iqYDgcoO4ET08//QytVo0kSVAUlT//9Gd57tmzfPSjD6FqMppQEYqK0Erm5JLxV6Hf65QSS3mBWtSxjRr+aIRpSiTpNovLr6LkCvVGC820aLXHQJLQVJV+r49jWaRJwnDQZ9jvI0sy25s9HKeKYVskRYqs+ORSQKveRM4FumQhjTa48KOXqLkV2o09xLFMloKpu5BLaJJK1OvhajoEa8Rpiu44yKQUUR+1EFhCxjRV5CJn1PFx9AY5Af3eNo5lMvJHGIaJquglUZIsI4Sg3aojywWqbqGKch9FjgykeYqkKAyGA4QmyIoCXdfQNY04CnFdlyAIUJSScC5NM4TQyNIMSVJIogRJUuh1e4xPTOywboPlOoRRgG16SIlNszqNqYtyXqUkwet2urTGalSrNaIo59Of/iz33n8Pkpzij3LOnn2Gg4dmCIIRGxtdrly5yv798/T6Azy3xjPPnGF1ZY1Ll97gypXLnLznBJomCIIRpuXQ7/eRColri4t893vfYzgKeebZZzh89Ai9/gBdN1lZWqNWrWDZFkEQ4jguEhLra0vUqjU6252dZICK57h84Quf46c++Qnm9++j1+tgmAa24zA7N4vlOMg7ZF9CCDqdbZAkXn31NcbaE5w6dS/3nzqJ57lEQYAuSm6AK1evUm/U0U2TS5cucc+pezE1FV0TFHmGIkOrWcN1LCQFLNumVm8yHAV885vfplGr43gu8wf2Mz09gVQU9HpdNMPAdR1M02JldZVWa4yBLqO7Ds4PF/iVn/k5ntxeZWtriWrFQ1ZU0kKm0mjTHJvg137l1zh67C4uLVyi0awjkZKGChWvhmGbdPoDTM3A8dzr/5sLCfJz56HiIn/yvtv0E27wGIrdq4A3sw8jeL0Zgu/GfXc65gdpu2lpvld7q2f07ePvXoV9L/ZWpe2vO3jd7XO9NcffBq/vf/6bSuXsPtpPjPu3weuO7abzutuP9K2/3xLafWt7Z1D7TijGzeyd+95r4Lob5OFm894qeL3V+e/2/rtttzp/NyuK/I4g1e8MXuW8uI48yNMMXSurCplUgCyhIKELDYFMMFjnL/7k35AOBzzw4CeZ2X8XilFl/tBBdNNm/sBhVFVw9cpVmsvLHP0XfwLr2/QOTiN97ASxZTE+NcXs7Ax5nhMGAYqqYjkeQeBz8eJFDF3DMEy6vQGTE+PUGzUGgz7Hjh1jc3OL2Zk5KhWX9lhzx+l2uXT+AvV6gwcf/AgXL11kdm6GqelpXNcjyWJ0TaDrOnEUogmVza0NAj/A86qsrq7zpS9+kT17pjFNC1lVsCyTer2KpmkMh8Oy+prEJElSOvuKjNA0kjRjbGyC5848x/z8fuI45Pz516h4Ho1GnURSyLKCWnuKVCp7RSfaTXRdoAoFVahoQrC9vUmr2SCKIlRFkOY5pl32XY1PTJHloKgq7bE2BWVg1W6PITSxA6HNMHWNLC2rsKZhcPeJY2i6wDZt/uLTn2V+/gCGpaMJmeefP0Nne5s33nyDuX2zJTFKEpFmPq7j0e2PqDWbzM7MMBj2CaNwp2dVJ0kLrly+wsN/9TAP3P8gJ06cxLIsGq0aICGEoMjhqe8+jevppY6YKpGmZa/j5uYqeSahqhoXFxYQQrCxtsqDD95PvVGn1qiT5zmqqkCu7ATTFkIoyIpUMhpLEkkcoyoKpm1TqVaRFbWEdZtlNTRPU1ZXl2g2WiRRgee5JFEpszHsDUiSFKFq1OpN4iRj+Y3XOXBgnjQvEJpga30DoSi02uNM75nG2Om/zJKI0B+xsb7F8eN3s7KygmkaVCsec3tnKMjp9wfYtgNIDPqltFEYRgSBj2Xb6MKgkHPSPKbdHqPI4MrlqzSaJdTV9weoIqPb28Sw61iWTb/XpQRyZjx39nnGx9uMjbVwHYuiKKs/62vrtNttiqLs1ZOVkik1DCPyrCTpMk19p4dbJoxKyZEgCOlsd7h6bYVqtcr6+lpZIesP0E2NZrNNEES0Wi1+5md+GglQNIVBv49j26U8TQG9/oAiTzAMtWSiVTTkPIQ8gjymu7WJZeiMj02iWXUyWSWXBIUsoQjtOkN3f9DHNk08z8P1XFRVUKt5xIlP4I9QFBWUOnmWMNhaZv3aa6xfe5HAX8KxUsJgi9WVqyTZkDDaYDRYp9dZJPLX6Hevsb1+idFwyGA0RJYhjYaQB7yxcIbLV14iDtdZW7nEcLCGIgfImo2pl72zuqYBxXUpE0UV5HlGHEWMBkM812G7s1XKelEQ+H7ZzySVzNKyLJNnGYPBAMd10YRAkRU0TSB2GMYty6YoIAjDsvqNTJoWxFGGIgs0TWc0Gu3oyeoYaoVoJKGqgpXlRWr1Ot1+j5Hv02qNkeUJum5SrTY4fPgw3d42jVYTiYxT955CkksWXwmZ++6/j8ce+xLLyyscPnyEAwcO8sYbV3Bdm4mJMZrNBqqqsry8ilep8uk//zR7Z+d45eWXsW2Hw4eO8bGPfxShCxzHZtDrsbq0yMLCApOTE5imztbmVkl2V/NIkpKZuz/sY9o2GxvrnLr3PlzPYxQEVHbIlGzbxrQcZEUjjGOWllcxNIM8yzENg6IoaDZb9Pt9NjbWyPKMV199lbHxcb7y1a9y+eoih48eRpZljhw5QppkOwiXmCgKsSyLJInLardpMdjRBX7t1dc5d+4c05OTTExOoO70RK+vbTAxNUmj0SBNcy5fuYrrVdA0gziO6KsSdndIeHWVtR+d5xO/8/epN1rU6222O10ajQazc3OEfkCr1aI9NkYYRGysbfHM08/zv/7T3+U3fus36XW3eexzf8FHH/okqlDJ8pxCkZA+eR/Ff3Qf8m6tcjfxL24WaLzb+Te+fv92ewHz+/Wf/n2zW63tThIJ7zxPkn4MsX7rO76dMT6I63azItO7MSHfTuHqxiLVT6xR2v3Y95KA2S14fFt8cUdJgNu/jjeu5bpyyy7HFe9RcuqWJLo3BK8lS/7f8OC1KIrffWfl82YZlrdev0Xs9E7s9Z0Eav8uHkryf/Yz71p1fa9r/nA+y631YW+0nwxef1xtVRWVq1euQlGgenb5fl4gpznf+8YT5N0LDHt9Dh7/CI3po6xtBmhGWe1aXFqiWqsRjUaM/7M/ZOIrz9CZm+HNqSbX+kNMy+W118+jGwbVWp21tTVqjTrNVpM0hccefZQHH3yAZrNBp9Pl8uVF9u3fS5JEpGmK47hUqzX27p2l1WrS7/dwXZckzjjzzGmmpqZRFcEoGDExOYYkCTRNpdvdptGooUgSw8GQ3mBAGIaMTUyi6SaaYTG/fw+t9hiO4+G4Fo1mjSLPsG0LWZYZDPsYRkkII4RAN3QGoxFCN7Adj+eee4q9e2cpioJDhw4RxTGtVpssydCkvCT8SGPkIkAVBoqi0Ol2URWVPMsQeskc6lgOWVZgeR6GZTPyfZaX18gLiUqtBsgsrywyMTmBaRrUdvQ8NU0QDnp89rN/SaPeYHJyDIoE26lQpDkLFxeYnd2Dqktk0RCZnFOn7uWukydwazUKSUKTMq5cuYhhmHiVJmkho8oKuqFhGAa27bC2soZQNGzD5NjRo/i+T5bnNNrNUk4nTcvrowpUWcZzXYpcxnOrKJIgjTIs3cIwbHTL4p577uHI4YMcOrgf1dKxPRfLtllbX8MyTRavriDLMrV6FUmW2NreBAqKNKU/6ONWa6iaCWqpQyqrKoooIXd5kpLlKZ5X5ZEvPEZnc5NGvcrilUViPyaK4lLXMsvo9wcsXjzHzOweFE2j0+lScR3yNKZQSuIgyAj8Ek6dpimHDh0liXOuXL6CbZmMT9aRZQVF0XGcClvbW1i2htAM4jRDUdVSckXoDAbruK6NomrkuQRFQZ6lpKmGaVucv/A6e/bMUqm06fX6aKoGRYFmqGRZzNzcPrIshiJFiPLeD/wQXdcwTQPTNNE0lc2NjfLayyqO7VAUGaurS/h+SKVS2YHFmgwHPrpu8eijX6FaqTA/vw9NKMgyBFFCrVYrIdJSgeva+H4fFBVjJ9EVxUnZhygMNE0mDEoIJ5JKSkRWZGimjePVQDJRhENOKcSuKBKakNleXUKYJoqi4DhOmQTodShVUWVgSHd7iYrjISSDYXeVaLjGYHMJf9DBtBR0bwrN9qi3pqm3ZvHqYyi6Rb0+ge01UISJZXlMzs7jjR+h1pzEMBxMq0KYq7Sa80xP302tfpBK9QC1xl5UvYai5GxtrtHrbBOGAcgSy8sruF5ZScvzHFUpK/XRaAtNVZF32NALYG1lkWajQRREJHGZTLMslywttXgHgyFrK+tYpk1eSKytriFUlS8/9hivvfYaM7NjGIZg0O+TpDHVqoumqeimgxAam5ubWJbD//UH/zcVz0Vogmq9jmHapBn0e0N0XWcw6uF5zo48kEmWhhhale2tIUuLy8zN7aOQIqanpzh5zz3IsoTQVObm5hgfH2N+fh+6pnPp0pt84+vf5r4H7+PUyXuoVars27efvfv2sb3V5+zzZ1FViYpnkQRDlCJj/8GD9Hsdojig1Wzyyiuv0J6cwh8F2I6LV62RywqmaWJaVknipgiSLCVOU4aDEVkmE8c5mmbiehVs00FRVPK8RN4oioQQCrVGlYU33+DuEydLmLYkcejwERzbxrQMirxgNAqIkwjdsEjSFFUoOJ7LtWuLaMKkWqkSjHwMQ8dzHfbtnSNMAnRD0O326HWGtCca5HmO7/t88YuPUK3WabfHWVteRJZk7H2zmD94nQvDDrVf/2WWV9fZ2NzEsS0G3Q51z8GqWCDJ+MOQH7zwElGQ8c1vfp3/7ff/BY2xKlIeYkgxry8scmB+HllVysqrVFZglZsEr7vZjT2ud2IfRvD6ns6+k/LY+7a/Pr/z/V7bGyttNxaGPsw5b8d2m+NWwfU75WtuFby+n7XcuvJ6k+LWrr2k7+16Xk8Q7brzQ0IgvLPy+jc9eL0RNvzOrMi7ZcJuN0t24496tyrtreZ8r3arsd4S4r7ZTXerNdz4YPkgHxg/nvPtiYTr+2+yZW+eRQLEvgfKCkqagASqsOgPQgzTYTAMMOsutmQgDbb5vX/yO+yd3c+gEJx84KewvSZFUfCP/vH/wNRknfHJaVzPZe3aNSb+wT8jX13ne66EsXeazvYm66vL7J+b5dtPPcOpe+8DSeXatRUuv7nI9PQ+TE0ljSNmJseIgyGWkMnllHq9hqLoBGFBGGZsbg14443zNFpNao0mvl/2enlexsHDB+mPfAokbMvi6rXLhKMRUp5jWy6jIEHRTUzL5vXzF5ienEaVQJUAzaKQYrr9FVQ5Ixr5GJqFLGd0Blu4bg1TGMh5ypUrbxCn4NQnCKOUNPGZGNtDt7NBwzPIk5TTT3+Xg4fmGA4jFMNEMw0kWSFNy35Tz3EJRkMaNY+NzRWiIKFRr5IXMXmeoSgqsqQiSyl/9fDnOH7sOGHQI4x6eLaJpMiouk6SZaiKxNrKMpcvXubwXXdz9OQJVAWCQRfN1On1ukxOTiAMC0mYGKZFECZ4tcqOdEiGUFUoUtI8wjQapJHMH/3rP2BmpkXFtelsd3AdD0lS+NYTT9Fut2g0ajz7zGmee+Y5Tt59D0HQva6LmeUZeZry4rkfUa3W+LM//VPm5/eT5Smq0EBTURWZLI7Q5Jz1tavoZpXRaIDQVBzHQZJUPvOpTzPy+2i6gqZA4ofkfkwumzzz7Bn2zu1FkgpkqSAvMuLYR5IL0jQjSkC3KqiawXNnnsM0DeZm9mLqBo4rEYV9tjvrNFo13JrLwfl7MSsNZF1H0wxIZS5fuMazzzzD8buOoygKYRihSoKVtR6mbRElAQeOzOM2KoRpSKc7oL89IolSalUHSc4Ybq/gVRxkWSbLUjbWV1AVhSyHMEoRukWa5Py/f/opLr5+mWPHDjM1M8l2t49uugRDn3/7bz/Fnpk96KZBECXYtrVDYlVhMPCpVB2Q47I/U9WQVBVJFmjCJAwTfD+h091E1SW8SgOnotHt9dANkzQtELrGm1feYHNrnYce+gQjP0RRZVZWF9m3/zBCaCRJWiIZ0gzLtMnyjDCO6fX7O/epTJJFGJqBZTokYYiSB4SphKYb5JJU6u5mGXJekGsqw/4IXfoIT94AACAASURBVJdZ3VjB8GqYeY0sWWPp2jkqTgtFOMg6yP0lzr34PWQ1R1JVslxCNiycyjhecy/1qQPYjb04tUksbxJJq4FqkEsqYZSytd7HH+X4owKnOkGca0i5ACVl5A/ICw1Ds4myiFzOKZSCJE/pj3yiOCMebaCZHqlsUm1NomkmtWqtZC6mIEkSVFlFRmHkdxj2NpGzAFOoZGlOtdEmTUFV9R096RxJVksyPEkijEKa7VZJVCXHVBpNZEWDtOBnH/opFKFjWVU0UyPO+vjDLrVakyyWiMMQ1RmCHDDWGGf/wUNYlslw1CON0x0/xdhh2C37zIuiIE0TkmhIlqd8+7vf5YfnXuHkqXuwNZUsTbm6eJmCHMsxOXP62xi6RqM1SX/gMz4+xt7ZSWzPI4pDZEViFPqsbW7yxBNP0O1scurE8TKJYjvUJ6YIRyGVag3TtDl//iJ3n7j7OnO5pJTMvqoi0FSZ4WBIliakSUx/u8uXv/QYJ++5DyEkfvjiWVQKRCGRyiF5VvDyuVepVl0GwxGKYiGMsrfXNA2KPGO81aBWbyBUweU3r/HSuVd4+aWXOXr3cdJURtcNkiyGQsHUa2iqQb834M0rC0xMtPCDPmMT08TxkCyOsUyP5184i+c4TE9OMegNOTh/mEa1iSbrnD37LH7gs7y5SbPRZGqU0lA0tucmMS0Tr16j1mqSS7C2ukG1WiGKff7n/+V/4jd+8+9w4MgB9uybIwgTDKFjGSYvPvUkR44dBsMgV1TkQkHJZCTp7U7+u/kYtxvY7OZn3OhrvHe7k2DjrdjhvfGj3JlfuJundOd2O77gblu+U2Mr27MkkEDi9n3bdwZ67yww3Ym9szJ6o0xilmW3LJTciU9+fXxZuuHSS9c3aZfv4e3f0o9pjt469Fbxgbxz1o3nSkBOUapN3LCWm32GG2OB6+PfVNfmJ62g1ECXJJAVCUne6W/9CRKm27diR2iwVD+Qd86/kWSqPKrgJwPvv/HB642w4XfK5NyO3SrzcTvnf2g4+lvM+0FkHj+47OU7bfee15vN9M7Ka44EssrIH/L0U09x7OgRXEsnCDpceuU1vv31r3Bt6TK/+qv/BbVWm8e//DUqXhPTtPn4xx6iP+jRbI1BFDHxD34PDIPk5z5Obaxkct23dy+ua5cwOc9iZmaKl869QJ6FqEqOZamMgpBWq4FpGgxHfXTdYHpmluXlZb7wxS9y7NhRnvjWEywsXOJjH3kAr1rlypUrTE6MEwYBUjYkilNcr06cpLiOg20ZNHacalmSiJKkDIqKjJnZGbI0JQgjLi4sMDU5gRAKlllKjlh2he2tDYQu0HWb1ZUO1arH+voSzeY4lltleXmNrzz+OFvrK0xMTXH48AHWNtZJk4wHP/pxer0+tXodVZSsir3eAEO3CAMf2zIxTZ0gGOF5LpVKjTRLWF9fIwoTLMsjScte1Hq9Qa1ewXFsHNst9SM1nTwr6GxuoikSa8vLXLj4JtVmi2qtgaLIhGGAInQqbhXHcbh27RqL166xZ8+eUitU0yjykjBFlmWSNCaIfGq1MVZWN+l2Oxw6uI9+b4imG8hqWUkba7Wo1ipkecL09BS+71Ov1zBMDdf1kGSZ0cjn9ddfx3UrTE9P8fLLL3PgwDxFnpcVwDwjT3NkqYRfq6pAEQamWVb3wjAiLwo+cv+D9Ac99u2fwzRN/FHAGwsLJEWB7w+ZmZnmyuXLuJ6DbtjomsNoGJPGBaqioGkKaRyRJjGfeOghJOBHr/6IKEqoN1q02hPYlsva6jpZ2iHNY3TDKGVc0oheb4P5A/sxbZMwDNE0jTAI+Na3v8uhQwexbXMHZmhgGAaGMHnkC1+i2azjehZhHNDvdlEUHUUVKIqK6zpoQqDrBmvrmzv9fzA9NcX++f1YloYiFHTdRJEFWZLwwAMPln3XRU61ViPPYwbDIbZloygq6g5xkudWkRWZPC97gzUhWHhjAVlSmJ2dZruziWXYDEcDikLCthzyvCCKIhqNBkeP30WRg2mYCCHKPjtJRZIkNK2s8BmGQX8wwDAEqqJQqVZ3IK4xhiaIohiQiOOEKImpejbkIMmC/qCU5gnTCL+zScN16G+tYusKGjnJYJPNtYtMjbUg09jaXGd55RJxKDE1M8/E5DxhJGHoDoZpUOzA5RRJIs9LWZmSbCrA9wOEKoijmO8//wIvfP8FKtXqDiqjQKLADwYYhocq60gSCF0jTVMUpZQAUhTBt7/9HTqbmwyGIRMT0wihI0sywWhEvz9ENw3SNC3JqtIUWZF3KscSSQZb211002BrawvLtNB1jaIooeWWaZJn6U6QlSOEArlOkYEQCpMTDbq9NUy3hBPLiort2Fhmla31EWfOnqFWq6GNbaKYEWPOIQqp/N6TJKVWrSGEzsZmh8985rPs3TtLpeKRZSlFkVP1bIIw5uiRYxw+ehiKsk83Lwra7TEs22bQ7zM9MU6zPUaWw5tvXObrX/8qH/nIA0iyYGtjHUkq8DwPx3OZnZnnrrvuQtcE3W6HeqNOnuVYhoWiKFCAZZuYpkmeZ2RpTL/XKyWKkEiSEhVhWSXqxbZsLMtibHycNIlxPY9KrcZwNMK0XM6eeZE4LD/PE996kitXljl4YI7PfObPOXHibjqdDnGSIIROkecYhoHn2jSbdYSucfnyVQLfx3VNtre22dzo8OST3+Guu44zMT5Omma02+PEcYLjGKiygmV7zMzOUKt5dDpbbG9v0R900Q0VTZeRFcHCm29w8p6TKM0a3utX2NYkPr9xlc2tTbIsw3XLtpBarYHv+2iaxkMPPcTY2BjtsXGiMEKRZfI0YtDpcPfJu/nsww/ziZ/5afKiIP/t36V47DvXCZs+TL/o30Xwetsj3qJocJujfKhrueX+XXzM97qiD7KY85ZFUcTm5iae533gvzNpJ1jfdd/tnHu7B9/isIKfDHxva97rA9zJdXm7ziu893bIG9f0bmt/22/rHX//B9Xz+l4CyRuP3Y186XYYiP+6gtfsn/4hxXefR/7k/e8pW3mjvRf9qjuc4Y6C1yIaIbttlNZeABLFKPX05JyjB/aRJyFnzzzLueeeZNQZcd99pzh+911cW97AMB3m9x/mX/3hH/HzP/+LGHrptIuiwP6v/xGKbTG87zgDf4SpGViWzfLyEmmaYFoG8/MHkGWJLInYu3cP1aqLoSnopstoNKLb7zK9Zw85Od3+EE3XURSFPTPTTE2N89prLzM1PoFX8RCaoMhSlpcW2V69gu14OF6l1KEsIM8SKHLSLKHT6+BVKwT+iGG/i+e6aIZBgcT5Cxfx7BIaBgo5CpKkoYmMKE7obgdkqcKFC68xPdOkN0wIwpjADzn/6iv8J7/4CzTGGxQFOE6FJMtAUtB0F0XNKPIcWVYI/IhrV5fKSqImUJVSH9P3Rzs9KwVhUIrXj0YJmmYhSzKVqo2s5DuamgI/jFAkGX84RM4zttbWeHNhgQcf+iSNHYdzaXkZCgnHqyLLChsbm1y7eoXxsRaO45LnOd1utwwcFQVJlkmzHK/SQFIEjuNx+OgRknCEZTm4Xo1e3+fTn3mYyckmX/3q45w6dZLt7S1kWWJ2dqYMcBWFPC8Qqsp4e5wzZ89y7FjJZOq4dhmcylLZd7yxxXe+81003aTRape6immKtKPX67oOURDgBwGGZWKaFqPhkIuXFli4vMDP/8LP4XoOg2GfdrtFnOckCZz+3rM88Y1vMLunjedadDtbVCoOpmWgaiqu5+FVPRrtdkngVOTYpkaabyErMqpskSUFSAmGKeN5Hr1BjzTLcBwXXVXZu28fmq4RJwmGoUOe0u32Eapg79wME5NtCjnHsExqlTq5pLC11Skz1wB5Tn8wIs1y/uiP/2RHwiamPdZC6GXly9At+v0ho+GIy5ff5EevvsqemRk0oZNlZW+0opQ9wSDjOhXCMLq+JlmCOAyxTJvTp5+lVq/QbNUQqoaiqJiWjaqq+H6AoqgUOQjDRFZUVFUjp0DTdPrdHkEYIISKaZn0+31c12U06OywP5dSOZKikCchiqIgqwJZFdiuy9APUIWJP4hxLYM86TEariCHXRbfuICOz+LFl1GvdEjWN3BSGSvUkLoxTpJTKwR1yYNOghjkmH6G3B1QbHQo1rto/RHSVg+t76MNQvRBgDGMsP0U0RthjWIONca4b+9+pgwDebuL0ukj+gPMUYrWi1C6I+ROB7Xnow9CpI0OSmeA1vdRewOqiUwTDdOPWPrhy0RLq+iDkGKzgxfl6AMfrT9CHwZInQClH2EFBUaYU0kltP4IN8oQgwA2OqjdIfowQPSGSJtd2OphDEOK9W1MPyav2ERxgKJCSkaexRimQxCnyLKKhABJ8MILzzM2Nk6krqLrBmnfK6HKeVFWE5OcKIoQQmdlZYl9+/aiqAq6pqMoaqnzK7Qd3VWZosgYjQJcz0MVWplwdFyyLEY3TEAmS1OOHz+Gbuh84YuPEox8Ds7vZ2V1Ga/iYVo1vvHNb/CjV17h5D0nSeOIYDRAN0x6vR6f+9znqFZq1Gp1RsMuWRoz7PepV2sEowDLtkoyp/V18jSns92h2WwShgm1Ro21tVWqjQaqbqCpgma9xcR4m0rN5ofnXuKek/dh6RKHDh+i1+/RaDVRhcbpp57ly19+jI985H4kKUMIia2tDk9972nm5mapVp2yMp2BrqtUq1WyLGdpcZlKpYasSmxsLBP4wY6UWIxQdZBkDF2n1WqWCCZVIkXl+F3H0DSBbumEvQH2IKD/cw8iVIW5uWksU+A5FotLK6iqgiJLfP7znyOOI2bm9pOlBdtb20hFVmpRFwWyKhOFAe1mi/yx71Egofxt8HpH799klA91Lbfavxsxz79PwasQAsdxbqvyeif2Fsz5Zr+qv+7g9Z0V1dua9/oA//8NXhVF3HHwKn3YrLkfpMVxfH2xt7o5rv8ob/h8N1Zr39qf5/mu8IY7kdK5ZXPye7Dk7/8TAMQf/957Ov9m67+d63bjsTfVaXrbOdlPJAKg1BYD3qaXduOD5/qxwiILB0Rba5w5/RRXF1eoVJu0qxqTU0ept1tkxZAXnn+Vw8eOIlSTf/57/zu//dv/LXNzM4T9Du5v/2MK3WDl0CxhFPPVr36NX/nlX2Rre4tDhw6gGTrLS4tYZh0oOHvmWaanJzh29DD9fh+rWuWFF75PrVph//59aELFD2OyLCPPSlKSxcVFwiCg3Rin0W7iBz5bm5v84IXvc2jvBBPTM6DqKKrBYDDi7LPPcPT4EfbMTBPFEVmaYzsuaRziVaolHDDJyPKC0dYammmiahrVRput7R6Xzv+Au44fRxc2z599mR+99gP+3n/1axhGjShKSJOcM8+e5iMP3keQjqjXpvD9BCSffrfPl77wNX77v/ktkixFlgWg8sgjj3PynqNMjLVxHIsiT0p2V1XHcSySOKLXH7K8skW13mbv7AwjfxvdUBn0fRy7RlqkCEVCyDJFlrC8vIxlWQyCgu+/+CI/+7M/z7XFa5w+/TRHjx7hwQcfYOQPUWVQAN3yyu9/5/fgj0ZYtk1v0KPiNYCMXr+L61QgDUjSHKEZfO+pZ3nt9Yv8ws99nG63x5HDR1EUhdXVFWZmZ5BklYzyXsyTlJXFJeIkZXp6mixPkYDNrVKyxdB1sgzyHLI8xbQMojDAME2SJC1JmRQZfzAgzXPcapU0zUrim2wHZlQUpFmKrun0Bz3sqsOgO0LIOmfPnGZ+3wxBmFKv1ZFlmavXrpVQRUlG6AXb3R6WZbO9sQZJiKTmWGadka9Qr7dJsxGyktHvdRgbnyYMY7IsRVcVvvb1b7L/4CH27Z8vA9ftNZpj00RhQBqH2I5NIckEUYyt6yArKKpKEockUYBtmQyGPosr63zp0cd48L77OXrkCEO/x9zeOeIwQpIUJEkhCkN6vR6KWlZAm602YdhHCIF1fqnsmy4K4igmz0sNTFWoxO0qiWtwbXGVhTM/4JfvOoGiSmRpDpL8Y1IsYHu2jWO7DKOIyuIm+CGyIpMmMUKIkuGUgqzqsmEq1Go10s4W1nKvhAIXO9QSRX792Z4dnGGQR8hWC+3KNcxenyKLGA27yFKBJMvousUgHlKJzRIpJsuQvcvDbgemW8K0CnbEfnc3ZccpKoodBNXuxxZvwdR2NCOlXfUlf3xslufkRY6QlV0dobzIkSQZFLmcU5KQspuPyXU2dwkpL6FesWMgy2VSCSSyNEaSBf7heSQtIY587MtbiDjH9wPMSg5FQTxS0TSNrOpyTSoRKGqUYFxdR5IlhFBJ0xRN00iTss8zm5+kFwcMByOqgxgnhjzLyLIMTRM7n6cgVmTeVDPaY+Nouo514RqSpHDt6lVmZ2dKWGFeJtmCVp2OUuDYBubQR17eQFFU4iQhz3KEppFnObouCA5O4Ps+cZJSWx+iF+Vl297eplFv0Ov16PV6jAyD5qnjSEqBJakYl1dKBEdefnZVyBSFRJFLbDdsnHYLPwwxNruYo6is6qYJiqKgKjK+7yMqHp954SzjY22OHz/A+OqQxcVlms0GlmUxHA7Z3Nxiz549+E2XnhqhyirGMKcyjCiQieOYIs9Znyh5GLa3trj71CkUGaLIL0nWNrrYz7zM5sO/z/e/f4a7j/9/7L1psB3neef367f39ezn7vu9wMUOkiAliqJsbZY9Y1uaiWc8cWWpmkmlkpqk8iGpmk/JaJJ8SKVSmUo5GVfK1mKNl9ii9oWkKJGSuC8AAYIgAGLH3bdzz35O7/nQFyQIXgiASNtlj5+6XefWOd1vv939dvfzf5/n+f/nCcIeYegTSiZzc3MEQcDLL7/M/v37sbwBXnv5Vf6/P/tz/uf/5X/E8VRQVPxWg3NvnOAzn/t1gv/u35KkoP7RF8mGzz2kLd6j3/mLwOtfHTPw+4Maux/j3fuNtwff0vva322/t+vL7bRWb/imdwJ8u+Gem7NG7+Uc7+YLvmdfd9CF3e33e9WhvVP/bm33drjvXjJnb7RxKzB7nw+d3OYaSu/2aTcAeCt+ed/2yT2cF+m9BFu3nvMPiolu/v9Gv9M03RVPSJKEplr3fFH/VkVekyT54vtmh3a5qW/+/tbvbnx/u8+7tdtdqA/Lku8+DYD8+V9OKud2dq+R6rsD5beJvN5yjnZrJ0kSZN9n5dLb/Ozx77K1ssbHHvkUxx5+lMrAILo9RJAK+mGPiZFx6s0aAJ/5zGczcozzF3H/5b8mtk1a9++j1e7w8589RxRGPProRwhDn9p2A9fL8fgTTzEwOMBmbQPX8zhw8BBrq+uUK1WCfp9SsUDg+wCZFIWqoigKuqpz6cJlioUiObdAksQkSUqv16VSKuI5LgPD45heHt202NzaIvQDus0eDz74EJppYBhZCpqpGQhVpba9jSLLCCnFtkwMQ0NWFPKFInEc4zgW5fIAnU6Dfq/JxMQY5WoVWVWxDBW/38W2DC5fuczA0CCmIZCFw1e+/McMDecYHqxQ9Cp4eRtN1VAUmbX1dcYnxpmamsCyTEhT2q1Wxhaqu6TJjZoSidp2nX7go2sytu3y4x//lLnZOaLYz2oz4gBVken5PrliGc20+eY3vkGpWKCQz/Psz59lfn4fy9evMjMzg+VYmJaJJGQUJUtBlJDo9/rZQy1OCfw+qmwhKym+30SRVRTDwPcDri8usLW5SamYY9++ecbHJ+i0e6iqljmDiqDT9TOnNAVZlomjmCgOKVfKyEIg76RTShKouo6qaCiyRK/bwjJVJCGIowRZKKRpQprGKIoEkkDTzQyzCoGQJRRZJQhC2u0OaQKem8t0OuMQ3RCMjo4ThYJKdZgUiaWlZdbX1xkeHKDTbhBHPsVShXbH5/hrrzM+Ok4SSZDKPPbYY0xMjlEoFQijMEt3VAziOCOD2dpYZW5ullq9wcDwMIHfw9RkEBKKnKLp8g7w0FE0myjMCGeyGibwu10ajTqul0coKo987OMMDw1hmibFcokwCABQVUG/18Y0DQxDo1ar0el2sGyLNJLIX117ZyY8iTONVlkIdEMnSRICU6Ed9iiVBxgrVVH7feI4RpEV4mQHqO04pOlAiSROaLUa6I0u/Xab9dU1PM/dqcHOQG6sq+iVIt1uBxEn6K0+YZhpIEukxHGWcpskKbGr40ddbE1Dqm0S1mtEYT+L8qlaVtMpqWiuh9KJCIdcQtdG8iNQFVJFkCoyqaLsfMpEOYeo6JF6NomqICUpqSKDopDIYmc7mVQW+NUSq90up65dpZjPoeoaqSJgpz0UhVQWXKttcqFRpzQzRaCpSFGEpGb7S1WFfhwj6yqxEPQ9i6v1bfSBjOk7SRJSVc72KwtiIZBUhUTX6BVcrtQ26QgJVzNAkUkVQXxTP9k5pqSUo6fJhGmCFsbEegaMxc55T+IARVEIS3nSNCYI+tjdELFz/SUlAklCFSZpmtKOQ7qK4Otf/wuOHtiP3vGp1WoYhvnO+0DIMoEf4jsmludmcmOSStTuISsyQkgIWexMTKRIqoIoe3S7HTRdw2r2SNMUXdPp9/vougFILC1dR8472NUSqqHTWd9EtLtourHzrMjYldvtNpKQ6OXtDISpGlKtjdgB+jciPaqq0u31KI2OEhgaP/3pM0yPjCFq2cRJGEY7LzmALNU7cD22290sLXu7Sb9Wx7TMdyIrYRgihEwiC0YOHczSeD0TY7uL47ikpMg7Kgm6oRP4PnIxh+zohH6Ap9lIrQ69bp+19TWCMGBNgpyX4/EnHmfP3BwLCwu0W21M20PTLDh7kV6rzehvf4aVpWuUix75nEOxNEyz3iAOIyYnJjhz+k2qQ2O88uKr/Cf/7PdoNhs4RRevVMGzTFrry5x+4wQTF7ZIAOXzn3zf+/7Dtg8vc+zDAz4fVps3t/HLZhLezoQQyDuyTnex+zt9ddf9+iD+9C9q88MYA7u28UumDe+28q1+7/t86PeQCe8eub2TP73rd/cSeb2lTh3uPKlw26ZuuTa/qJ3d8IQQAlnce+T1bxV4vZlt+IbdQPJZjdB7w9a3nqgbL44bMwFJkrzjFH1Q8PphR7D/LoHXW69J0lzPUocNhyRJePFHP+Kbf/Y1Hjp8gEc//iiy4RGj0+r5tHwZWTPQjJRTrx5nYekyg4ODOMtbuP/D/4b+2JMsDeWxHj3G+sYmxUIJx3GYmZklTbqAxNDwMLKis7S8yqEjexkcrJIveIShj+3YXL12jWLOQ1EUyqUSrVYT23YIkohWs4lhWKyvraOpOo99/RscOXwI27HY3NrAcWzKxRKoFgiZOM1kE8qFPNMTc1y7fh3N0AjCgCiIabc6RGmM53k0G3UkUrY2NrAcCyErIEEQ+mxvbVEoDBDHPXrdbTRVo1IdQtNMeu0aguxB0Gi1GB0bo1FbQxEub7z5FvsOTFDwXKqlIeI4wg98bNsiXyjguS6yIpHuRL1URcEwTYRkkcQxQs4i5uOTk1QHqrx+4jU8t8z42BTN5jaqCpIs41gm/V4XhEIqazQ7fR596CGq1Qqry8tcvnyZz3zm15gcG0Y3s8ifkDO9SCFkVlZWcF2PdrvD448/wcGDB5GkhIXra8hyjOOoKLKOH8eYlo2uaUxPTbJ3bjZLl1N1FEXnu9/9HiMjw6ytr1IsVTMhlyjG7/u8fuIkU1MTqIqKoiqEQcD6xnqWjicJICUIejS2N0mTAMv2QJKobdV55ZVXGBsbodWs47gucSrR6/VRVZnt7W0M1eTateuUyxV6vYCnnvoxJ187zaGD+/CDHmEE3/7mU1y9do0XX3qZj3zko2ysrjBQLaPJAlkoNFsBKQbFQoUfPf4j9szNsLS8SKnksXffLLX6FpZto0g6jz/+I1568WX2ze/BslQK+SKSrCCrKqqQCLptFleWqVSKSFJCq9VhaaXGT37yLPN756g3mhnwliSSyEcCojhGEgqWZSOEwPf7xGn2PDV0jfW1FdrtOrquZ2nmioJpGti2zdUri+R6AYahU5so8p1XnqeXsxk6cpCaIbNtSqieRRYvVehLAnWsQjrk0XZMVlOJrz7xXaYfOUZQythnk1RCIoZSnnPbW5yvb+LNTsJwiXSwRNczaRBjGAYAumPTsBSU0Sq9nE5a8YiGCkiDJbquRpSGxGGfztI1+mzT1jdxZvJIw2XSwSrdnIM8MUfHy2EtrZGUyggUEscmtnVSRyO1DFLDJLEtYksnUQQSMmkqE4mU1LFJbJPYNrNPUye2dGLLJI4SvnX2TQYP7Gfgow/C9Aj+cAm/4BL1AyLNJNBS0FVURePCm2dJL19HDWPSbp+g1SbudLNo62CeyNKIJwY4t71FL5/HCUPqcUBsGQjPJdA1Ik0ldUwiXaPX96nX69S361zd3Ga13aI0OUpXgOTaxJZOX1VQzAz0SUKg6Bpyxye4b4auK7MYt9jUEi41LlA9tA8klTRNMTWHKFek6aRIQwNcM8+hzbko1XmisgOeg6bqPPTQg0iaIK6UMafGkIYHkIYqdFybP/jWY6jjo5SHByBNkIXM5fV1/uy5Z9EnR8nPzxJX8tQNQVixEeUcsgSalhHFyWODLEZd0kqOhaCDOTVBy3bIzZTZ6rVxcjniFCTbQB4u07INmpbGYhgSV0osxwm5fVMZEZrv86OnfsLkAw8gj1Xwix5hMUc/5xCXCzBQ5kptm4GBCjOTk1y9vsDjr77KFT/mehCR3zONOl7lp+fOcaHZ59zly/R6fWRJQnJtoqKLGB+hpilcaDV4/uIF3NkZnjj+Anv2zKOpCgsLV7GmxmhoJv2CRT9vExQdorKLPFJhvd0mTUMsw+TUhUs0bI0nT59gX76EEAJreoTNzXU0VWVsZJRvfetbHDx8mHK5ysvHX2dkvUY8OoD1qY9kOtMKLC8tcv7SdSBlZWWZJImZn9/L0mqNP/nK1/jspz7N0MggqZKiux6d2iadzVVsy6R6ZgVJVhC/9Sv37Fvcq/2HcyE+SQAAIABJREFUDl5/kSbt7eyGb3s32XN/D15vs+49Nfz+9j9M8LpbhPTDBK+7Edbe7QTJzdvdK3hN0/Tvfs1rkiRfvDVF9wYYvd0Ju3Xw7MZkdrtQ9m7LzW3s1v7twvC72S8aGOn33gWvu6VM3JhNu3Uw7Mb69kFu/LvaJk2QhdgharsJqErJu5lyqUCkEpGkEz7/ZdKlM+iDB/jaH/w+e/dNM7t/P1MHjhEbeS4sLuAnPV796SvMz89y+vTrDFUGyTkW077A+zf/L9rXvkswWMH/lYdQRodJohRVlbl2fYkXnn+Jhz5yH2+fO8/hQ4dpNltEUcj09BT4IWvLqyhCpra1hW4YVKsVmu02fi9kY22LykA1kwBQZNKgT3NrgzhKSJDR7RwpCVcunWewXGRzu4ZXqYKAlcVFgm6XQiGHqstEaYxmaNS2tmm3W+TyFnHax7NtWvUW5k401st7xFGKomqkSHTbLRxTo9muI1IJQ7MIwwjbslhfXydXLNHp9tA0lUq5ROj38PIFoqDHnrlpck4B07JYWbtGkkRICNqtPsgKiSJIwgQhCza3NjEsm1ary/K1a1y5eoXSwAD1VhvTtAn9gG9/+3uUBirIJFRKRTTLxFQdVtfWyeXzLCws4Vg2OdvBT0IkSaDICofvO4KTczFtgyiJMXQdkkzzM01kgiBAlsHzHErFIrZjkyQSTz75BA888BASCkka02+2SXa0bbudDrXtGrlCmTDMmECXlxYo5fNMjU/yyvHXeO3lV5idnqLX7fDi888zMjrBwuISxVKBMPLxcjaaruCHCbXV62ysLjI1uw/ZLOF3+sRRxJ/+yV8Q+Cl752dJoiaWW0SSDDrb2xi6QSeIESnkcwX6vT69TodCLs96bZFKtYyExPZmDccyOHBgnlazwdTkJFevXSchpTpUASEwTIvNjQ2eevJx7rtvP6NT01QGqgyNTLCx0eUv/vwxDh3aR69e4+zZi+RLHqPjgwRhimnZdFotZDJd3Wd+9hyXry5y4NBRJBTarSY5W6OcM9jcXGN7s8nzz/2cSjlHpVKhF6UIoeDYLn6/h99tkc/ZRFFEGkvUa3UqlQqOY/P//Lt/z8TkNNVqmWazjqlpLC0uIXf6rG83sCam2VjfYOn6dWbmptEdC9fLUVtfJ+y0UXQTL+fQ7/fpdftouo6IE/bv34+mZlJPJAm9dgOQEJJGLudw8OAc7U4bVTMwDJ1ur0WukBF2dPs+igJh1ABUhOKCJpH2fIKwT7u9hS5CettruHmJIOqjm0VicgijQizbSFKChCAOO5gr28SOhiRlqcpSEJAenCMpFYnLBZJynsRQSesd0iSm391GUyQ6rSbS2hb+hauk6zXi1U3S9W2i1XU4f5VDkUR1dQvp9TdJXnuT9MRZxJuXCEIfWQY5SpCCGFdVKeVcll2ToU9+jGC0inFgFqaGkUhIG33StRrSi6cZ2WpTOn+VzYVlwtUtRM7JZEt0nWcWrlI+ME88UsVt9ijkcwwNDWDoKuVymSSRSJIU3VBR5J2UNiSiKCIKAxQhEJ0eraEysmriOjkKjkt1YAxVtVhYXMS2bYLYR9VBJNkksDOQRV5Fv0qcJnT7fWzXIUWm7wsWr1+g12kTxRFIIKsyh44cYqhaRlOzrIhLl64yPj7NG6dOo0iCzY1V8p6F51moQqfVaiMrGn6YSSddvXKZYrmKEBq2kyOKAjQtIpV0HKfAxbcvcfH8efI5D8s08P2E5599BttUsCyVUtlD0y2iKMSybSzTxnVzxHKEJCRSErZrW8Rhxq795BNPMjG1B8OxqA4WGBsbZXbvHHN7plBUQb/vI6UphYLNyddP4FiZdmy5UqVcqRJGHVqtBtVqmdHREWzbZmlxnYmJCb701S+xb99BDMPhT//8z/noww9TrzdJkfC8PFGUQOpjGS6LS5vUGy327d/HYLVMwU8wdJ2eZzM0MIjrOMiK4MDBA2xtbXHx4gXWN9aYU3XU0Sob+2fY2GrSj1MGJsaR/ISh8UkqQ6OkIuHEqy/hFAr843/6BZ54+klWNzaYntxDN+nh2S6VXIWLl67gvvwWhq6R/qNPZ35C9odI782PTiW4lWj31s3f9bV29VLuYdmtgV8MGN+3tnRrKuj7M8xu5zfd/vf3g9fbKV7cLlDwi/Z5J9vtTP2y9kFB5r34qx8aoL3NcvPYTG+onu6MdSR2mIF3lpv69M7/KdzKKszN29w85m86lt2Oa7fxeHMasSTdnb7uzUcskZWFSJLYYQu+aQ0pK4Egld5/k0rvxyRJnJ2wG23evO6dwPDfefAaRdEXb4DDm+0GgLsB6G5+sNwMLm83a3W39ao32n1H1PeWNu+18PkX7fPmyOvtJHJ+Ub//KmdB32fpbZifE4UUiVTKdO4iIaHFAcnV10jjiD/89nMcOXSY/NAktlsmSVQCP6RSKhD2ukxNTRKlCWPlCuYX/y/sL30D49s/JS3k2Dw0S801iJOY5cXrBEGfUsmjtlXj4IH9rK8tcuzYg/R8H8uySdMUTdNYWV5mcnISJAkvl8PQdTY2Nmg0GghJ5uTJk0hCQlZkXK9EbWubgcFBdMPk7Ntvc+atMxw8MM/oyBCVagXHy9Hp9gn7CWfeOM383llUGRr1GrXtNgAbmxuEYcDk1BSkUN+u43k5kFKCsIemCdqdLpZlEwQhZ948w/DQIL1+wPrGBrZlZZIWskxte5tisZBpNRo6YRDQbDYxrDyW5bG8vMZ3v/0dRoaHkCUZxTAxTIfaVp1+t0fO9ZDllCDoo+sKa6urVMoVrl6+SBiFDA4NksvlaDYbmIbGJz7xq1iOy+WLlzI5hShAlgWFYpbSqutaRqQigaTIWQqyZeIHIQhBEvZI4xhSEDuMvn6vz5e+8kd8/JGPEQQZq6eu6++kyGVEJRFCCAzD4vLVq+TzeZI0EwSWZYGmazSbDfbumcO2LKIkorbdwrYtKpUycRwyNTXJ0MgAK6tL5PMeXi4HSFmdayixdPUalVIF1/OIE2g3G2i6imlatJptDh7ax/LiIoXiELXtJhurK1xfuE690eLZnzwLkuD48ddpd3scPno/s9NjhEFIIV/AyeUYm5jg5GvHmZ2ZIYpCLrx9noMH9rO8vMTg6CiyrlEol7nv/vuwHYs0SpBFShyFyJKMaai4jkG+YDK//wDjk6PIioQqa0jA+fPnKZXLKIqC67rcf98BalsbWKZJHMeEcYKbz1GtDtOod5mZm6ZcKdNstem0Qgr5Ek8++SPW19cyDV5Fpb69SSGfI04iUiGxtV3HMgxmp6dotBqUyxVkVWdocJC+Y/DypbfZu3eO0ZEhHnjgfuI4ZH1zCy+fEXVZjotm6CBBp9PG81yiMMDz3KzOOPRRtYy4J44C/ChAkgRCJIRxn3yhRBxnz3ZZlonCjFBLVRRUxURoLrLiokkp/doqURAggjZK3KLT2sQt5mh0ZHSriFccRugeAo0rMyOIzRrGqSvE11cwJUHv+grJ2iZcWSS5tEhy4izpa2dIj58hPXEGTl9EUgVJ34d+H6mfIIKEWNdoTg2j7Z3i9UaNwYePoe6ZJDo4g/4PfwX5Y/cjf+wI6sfvR3n4KHzkAMqBGZT5/ShzUxgHpqiXNNwj0xT3zmANFkk9nVrURS5adEom1sF9GEfmUR99gPj+edL5KcJyCX2oQi5KUOMUcWmBqbU66qnzKCfOsn71GsnmFkmjhTFY5dKVq5x/+23O9Rvs+eTHENUC8vQYYmULIQSqmjFLq12fcGyQTruLqiooioJQDaIEcvkCkgS6KtPrNDNZqCRC8dqEYYQWDZIm0g5ZUwyp4Mknfszx117ggQceIJfLIwlBt9vJ1ldUICEMQyzLQJbh/vvuZ2V5gYtvn2N+fg9+v4dqaSiaQhSHWIbO+lqWxaAoeSQSDFPB93vIQkWWs7rfJElwHQ/XddFUjZSsBrdSKePl88QJ9HothAwQ0et10VSF+tYWlm7Q7/aQJEGpUuXsufMksSCXK1Io2Ph+lk6vygIhQBYynU6XcnUAocg8/NEHabUbrCyvsLVVo9PtUiyW+Ooff419+/bjOA6dTgvHsahWi1QqBSrVEvl8jvGJUXrdjH373PlzbG1tUSqVUBWF02+8xeuvv87s7CymZVEuFXE6fpbSXfQwTQPX89A1FYCTJ1+nUqnw8MMPw9IqfqvD17tr/PgnT/GFL/w2b545w5GDR/H9ZEePt8PoyCjDA+OIRHDl0kWGqmWGqkXkvIWhaUhIrC0vIf3oRYqlEuLzn8rc1B235x2n/25tl3VvB17/aux27d4evL7X97r7ft3+EN4PXn+ZoMOdNEz/OuzDAK9/Fev+UnZT87sRp+62//dcwzu0edvt7nAOd+0L905k9d4x9u54fxfD3K6z7103W//O697O/s6DV+CLt0ZAbz75N4PLmwmbbp3N2C0cf3Oo/Ebbt4LDW2dGbrX3RB3vogb31t9v7nPy3WeADLzeC0D965z1emcbdp9VEYlCFCeomkIUBUhSghGHXH3+OzQadfTxY8zN7iVINYRQkYWKrhokUcbSe23xCtP/x59g/p9fhu0Gwdw46/OTqHum0WyL82fPosgyczPT5PIeftChVCpTLpVod+o4+SLtdgfLstje3iZNE6qDA7TaLWzHZm1tDUVV0TQNx8mYHgcGBhCyoDpYodcL2djYpFAoEEYRI6MjnDhxnEcfeZjFhQU0Q2d7u0Eul2NteYNyMU8U9ohCn06vS7k0zJe/8iU+/vFH6PWy+izHyWq2TNMiikPC0CeKA6IwU1/UDZPhoWH8Xh+vUCafz2PoOpZtomo6Xi5PFIUZk6vvY5kmqqogK4JOp0W7Xefgwb04rk65nEez8gihcPy147RbTRzbQFYFSRLT7XYo5otcu3od2zQYGx9DM2wUVSUI+sRxuKPBqfPtb36LmekZnJyHYegEQYCiqBiGSRAG1Bv1DHQoyg6pDei6QRoF78hDyLJCKlSIE8ZGxyjkcyBBHGcEM0kao8gqqqplZD1xyNNP/5yVlVX27p3Poq75HKqmEkUBkGbMwTtppCdefwPXdcnlXEqlPJqm0GhsMz01iWGarK9vgCRhmBaqLFEoONS3NwiTAMvRUYTGxuYq09OzVAeGkERKznYRqsmXvvQVJkYH6XY7TE7PcOHcm/z6r3+Wc+ffojpQZnRimKDTIQU0I7tWSDA9OYmqKlQqRcbGRuj1e+zduxfZypiRkaQsyhPHrC6t4/tdPNdBSDLj46Nomowsa8iaTRBE+P2Qx/7yuxw4OE+5XM4Ym1WVQqFAv1tncGCAMIyxHZdUEqQSNBodXn7pNY4dO0q9UaPd6vL97z3J0OAQgwNVZFlQrlZptTsUPItWu4mb82h3Oui6TuwHlCslVE3FME2QFMIwq4GcmBhDVWQMw8QPfEzT2omiJ7TaHXL5ImEUs12v0+22KZUywrRut0OSpjieA5JAVTJ5lSjJGJWj2CeMfAzdybRM0zSrZY0jTNui3ayjGwYxCpIUkfibpL0ttrav0+9sYhsaquERSi6mVsB+6Bjxwja8ep7kxy+Tf/1tzHIF6TOfIPn4UazjZ+k/dJjT9VXGPv0orY8eQP/kQ8gfvx/p4Qx4hg9Mox2YJ52ZQD8wRTI5zZd/+gzRyBDT9x+mLRJ+fuo0D33mU0SWzkqrDkgYukUYhQhJ7DzfodvtouuCMOwSJymW5SLLGeCTZQ0hZRM3klAQZCnvsqKQJgmddoduHJEbG8KZHCWdGUGaHcffN0vy4FF48AjS1DDazBjK7DiaZRJvbqMnKcUEDtV9OH6W5PlThKfOQ7NDtLZJahqgyqgdn265QPQffx750Bzb+4aRz1wlSUEImW6njUSElCawM6kg98uIfglSCKNexg6syYRhj/375xkeGWZwaAhSWF9fQxaCQj4PSYKm6Vy8eIHR0WGuXb+CbbvYlsHc3Ayu65Ivlqg3e8iyRmO7hSypkAjePn+JU6fOkiYBYdQl5+VJU5lWq4Zpmti2i2VabG5sEsUxmibQDRPD8mi3e/R6fTw3j2O7BH6AY+fQNQtVpGiqypUr17h0+QrjE5PYnociNMqlErouUaut72Q/1FlYWGRjY4sojilWiiiaQrtZw3Ecjh49ylZti3y+QKlU4uxbZ5maniKOIuqNbSYmxtna2mRsbITteo18Lodt21i2QxRHGLrB8PAQQRBAKsjlcszMzDI6PoqqamysrSOPVIlKeVRNQRISq6vLrK2toaoqU1NTjIwOk8Qxat/HSFL2/qv/gkc/8QiLSwtMTE5z5fJVdM3k3//xn/LAsWOEccLv/9vfZ2pygmP3H81IrwyNUE7wbJcwjDB1EwyFrbzC0KOPvNd3ugvX4T1+xi4+x18HeH0/CH2vCSG9z8fczf+7YznpHaKltwuq/FXbLxPhvFtwfa/Hcae+3HoNbudnfxj2nvZ5l9z1Tn3d9btdd7D7vm6120Vabz7u9/Zt92tzp/P6TqboLdHUNE2RhbL7duK9x3vjvbabCfnd++h2Wam/DHjdvWd/b39jM1fvXORPHPsb2f+Haa+88gqmqTMxPky+4BL5AedOn6Hf6zI0OETxyIO88MJLjEyNsWfPfhavLZPL5RCyhPH8KY79338GQrBwdB53chyhSCjdDkkc4ff7TE1N0+/1aDTbyIqEH3RRlARJkpmYnEQoKpVqlTiOqFTKtFotgigkTGKELON6XlYrDRimyRsnTzM0OJQxXCYJL77wIp1Wi+GhAeI4pttqZey77RaVgSoXLl7iyJGj9Po+jz/+OL/xuU8h79QEbtZqrK6ewd6pJ5yf30u73SXwYzwvh6IoNJtN2p0uo6PDNJMOcZLRnIZhxNLyMkOyjq7KKJqg0+4QRBFeoYCmqWw2tjENA1VVabVadBo18rk8lXIuOy4hCKKIdrNBGEVcvnKZ8ZEhcq6DpmtsbKwzODhIp9Pnp0//jM986hMsLCxRLEdUBwbQNJ1+vwtE9DsdfvM3fysDowmQSkRhjCw0wijG7wcU8kUS0h3nNaLVbGOWTYRuZE5ukhAEAYkAkFDVTGal2+tgWw6dThdVl5EVkUm/kJDIgk6nz/LSMkEQ4nke5g4bcLPRwjAMFEXDD4JM/7TfxXEsdEMnjhNc12N9bYPL9avMzu2hUqkSp9kkQZoGbNY2qA4NUG+2IE0xDJNcPkcY+pw9+xZnz57mC7/9DxjIV5icHKdcLlAsedimzuf/0W8Rxj6/9rlP7TCYBoRJTLFcJkmz50cY+YRhjOmYRHGEH/mouoZmmIRpmmXj7Ah7J0C1OswLLz5DdaBCq9PCdquEfUhQifw4S+UOQhRZo9/vY1sWlUqFfr9PGAQ7pFwb5PMV0kRgWTatdp1vf+ubtFs+kLGrlksVXNtEEVCsFBkbHyaMIjyvgKCPoigkUUwcRWiqzuT0NKqm0u+06XV7dDp9+v0exWIBWzWz9Unp9fpZBF0CSNEUmcD30QyTHJDL5YjjhDiOiaII3bSI4wQ/iDENndD3sW2HKIpQVXVHn1hB07KXc71Ww3VMtjfWCII+qmUhKyb9/jbtjWvkDZViycZvB7ASIg2aWG8uI11cJHj1HOmDhxD/ze+RHN5DbCioskbws5OUv/wt/IlBpMlxGpfPEA4UcSRB6IfohpQRFEUpvW4XTbYJ/Dirb08i7rv/KIcOHUTXVYRw+Se/8zsZGY8sGBoczo43iYniBCFi4ihBksA0Ler1DfL5EqSZBFWSSGiaSUY2LEMqkNIE09CRRMZom6YpXs4jti2Q5J3onc3yyiqV8gDPPvsc46Pj5PI5sNSMbGvPFGmUEm9sosky2DatbotKsUj34nUSSWbx0hVGO11EOyUIQ7wXTqF++2nSXp98tUAvZ2Plc0QfOYRVHEHoEB6bQv3e8ayEwTKp12tUymX6QUAYBrQ7DXK5PCkhwyOj71xXz/NQlWwiotFskCYply9fY3Z2Ftt2UFQF07aJwkwep9/tY+gZCM15OU6dPEW73ebYsWO8ffEnGOYkgwMjgEy31yUIIjTNII5TVpZXefyJH/Iv/sU/p9XYwM4VaTTbLC6scP78eT79qV9FQiChcO3aAoZuowifkqoyMjJCo9kmTWBlaZXvfv87/N7v/h69fh8352bSXLkEVTc5eeoMy2+dZXxyLEsnJ83IxtKYw4cPoqoa1xeu8E9/9z+CFKI4wrIswjCmWCiRpikD1UG6XT+b+Gl1aTQaJElMu9NC1zUGKyMIIRPFIZubmySJhN/rsbW5lelexzHtdos0TRioVun1enTa7YzVW9OI/D7a+ha5vMOZt94ilyui6zqTM2Osr9R5/Iff53d/73f5+jceoxu0UQ2ZUrVEf7lH1w8Iwg5d1aLd6bHdatGerSACJ4u6JikScC+Ep39vf7vtZhWJv8lI738odqfJlg/TPsz9/FX1+W9V5DWO4/fUvO5GyAS7F7ff+P52daK3i5Tey0m/uf1b0zfuhmb65n6Jo/OIo/Pv68NuUeI72W6F2B+uvTs7eTMl9tj4GOWcTXtrg/b6KhfeOMGZsxc5OqSSIlhIR5meO0CndhWSCNf16Neb5P7lv8b42asE983TObyfSNH48Y+fZmp6liTosLG6iuM4yLJCvljK6oIKLpZt0u35OE6W9phIGblOpuupIklgmNY7/VMVFVkIet0eSBLP/fw5jj3wIKqmEMYhp46/yuTkBOMT45CkKLJMpVhE02Qcz6Pb7VOpVFheXqZcHSBfcKlWiyBlLLPlygClUpEbUkLXry9x5cp1oriH4+SRZY2LFy4zPjGFriv4QYiumdTrdTzH5bkXXyaOYnRdJYojUgniNEHXtB3HJyRNEmzbwtI0cq6LJCukyLR7IYpm02m0cD2Pub2zjI0P0ffbSEIFBO12h1azy9LSKsfuvw9F0fn6Y99manoGx7bx/R5+P+CJHz2FYzqMjYxiug5IkCYyGxvbrKyuMTwyTJKmdBot4jhhc3OTH37vBxzaf5BUlUnjhOtXr6AqMhcuXeH6tevoupbVBqtZetvm5haOa6JpWYS20agjKzKDg2NcuHiRQ4cPomlqNhOagOd66IaJJO3UVwhBpm86CGTVHL4fQCQ4ceIkM7N7EKoCkiCVUlqNJoVCCVW1cd0iqaTh97skSYht25i6zerqKo88/DD9MGJubprFq29TLOaxPRfHzdNstnFtj36nj206KJaGEAqBn6VTk8SZVIZloOgC3dCwXRdV1ZF27kkhZSmHuqqSJgZCgVKliKJqRHFEp9cmSUE3dNq9OsWCx9HDRzBNnU63C2mKpuukaYphmdS2mqysbAISmiZDmjA2Msb42BiqkqJpMoZusmfvHlRNxjB1JCFx/LVT5PIlojjCtCzSJEZIMrqqoZk2rU4byzSJopBTJ15nds8+cpeWSZbXYaBEr+ejGiadbpdep0UU9JBJ6XfayIZHmkrIQqLX7dDYruPlc4AgijMCHpIsUu8HAbqR1SFqugapTpT26XbaGLqOIkO9voFtaahGAV3I9BoriG6L9EqTYKtL7uVNFCuHmJxA/mefpvVffo7WFz6B+eu/QjxcYWHxKs56De9//xrmy28QPjBPOjfO68ff4NxbJzl44CCGYfHyK69QrVRQNRlZVjENnX4/AskgTiRSAianJoAEWZZI05DV1W1efPFFZmamqW3X+N73fsDw0Aiu62ZjfefdUK/Xeev0JTyvgKrpBJGfZUTEEZIEaZoQhj6apoEEUZIi5J0yDEAWCiGgqCopCVKakEYhq4uLDA8PUSoXcV0PSaiEUcILL7zEM888w6GDh1AVBSmVCJIIuZBnO0148e2zHPz8bxBNDdMdKfD8qTcZrw5g7p9DzE+h/We/SeRYyJeXSDe2CV96E+UPvkdy8iKqrCJXivRnhlDXt0mFgmVaO0RgChKZhrOuG2zXanhuBniCMCCfz4EkY1suz7/wAvcdfQDFUDMiMs0gScD3I/rtJpVykSgKUFSFJI2Ynp1icCBHzs2Tpho/e/YFnnv+BY4cOsDx46/TqDfRdQ3XsyiXi9mYlg1efOkEyysblAoVxscrbG2tkc97XLlykZWVZY4cOUCz2cKybAYqg5w8cZJOu8fS8gJDg1VGRwbwwwBVc0nSCMt2GB4aY8/cLL1uA1nEOLaH7/dRFMHS0gKlcgGkbOJiZWWZSmWAQr5Aux3QarVxHJdmo82Zt87iOnl+8IPv88gjj2AaBrZl4XkeVy5d4+zZs8zP7yVNU775rW8zOFClVCqxtbWJ49iEYUCz1eTKxcsMjwxTKBRZW1/jxPHjFAaqlBY36fyTT3B98TqTE9O8dfZthoYKKAjuv+9+puZm2LN/L5/7h5+mUCmgmQZhkiDJKnocoCg6bqGKZVusLV7hwtlTjM8czEpbeLc87p5c1b+htOE7gYHsPvzgjvc9ZbH9NUdeP4j9ohTlXyby+kF+/zDtPdjgA+7/biKvt9pu9c234pXdo/X33sf3tL1Lem+a3hKdfWe797dzO2ghSbeu9+FEXv9WgdckSb544/+7TcO42W6knt380LoZpN4JaN4ghrrdA+12+78TYLwxWG+upb01TeHmtu4VgN4K2u/2RrxboKzHCiCIJGUnpUgnbrXxVQlDkug0Ghx/7QQhKlauwmC6BsC6PMLnPvtZ/sFv/w4jY9N017eo/Lf/hlTT6H3iQUSlzDM/fRbkhEZni+efe5mDh4/w1E9+ytz8Pgzbptf3yRXyrK+vIaHSaXcJel3arSbEMX63h+fYRKGfaZhubODaGpvrK8iSSnN7m1xOZ32jweTUFLqp8fQzTzM7Pc2+Q0exHRdN01BUFVVT0Q0D3SoihASpD4mPpctcu3KZQ4cOEIYRW1tNFNmgUV9kaHAQVdGxbJcfP/0k7W6djz38Sa5cucjTT/8IyzQo5Auksky328YyNU68dpzTp8+ytnmFyalRXM/FMAw8y4KVQgxhAAAgAElEQVQoQEoDFpeXKFUHSIFOo0aiJCwuLdCo1ZAlCdOyOXvuPJqiY2gKcZhQLnsYhkOr00SSNJ566uds1tb51Gc/iqLanHv7HHGSsmfuMKppotsqpmpw7eoCsqpTHhwkihKuL61R265x4sQrPPTg/RiGRrfdwrBcvvqVr/HAkQe478hRHnvsL6hWC+TyBdxCmTgSLF66zsL1U+TzNpph4fshmpAxFZlESqnXt9A0GVXNonbPPPUklUqJkeER+v2srtWxdbq9Jp1um1bLRxIquqFmEhWBjywrxDEsXFslXyoyMTlJFIcosoKQZIglLFPN9EFJ2W5sYxgaQmh0+zH1RpvXXn2J+w8fIBU2lmEQxwGVwUEUTaPX7yKpJkHQRyLhxed/jm1oFEp50iSl3WrjBz6QIguZVrOFkAxCX6fd7uPkBImQiJHeYagWApQEzp17C01VUWSBrunIksZ3vvUU83v2YqgKzWaNza1l0iQln8/xla9+lQcfeoh2p42QLYRi8valKwwODaIrmQ5vqVikF7SwHIsUgWnZBGFAGAWYukYU9Lh+5W0atWUGRidQtUz/ttftIKQ+qmxi6oJ2Y5Nep83UzDRxZxM2s+j3uiaT88o8/dTPuH71GtWBAbx8nu1WF8PO80f/7g/56IMHiYJMHspxqgRBC1kWhEEPU1eRFej3u2i6RRJ3UGRBnGqEUkLU1pHlDogmcWLiFMbwEwknimg9/xL68jbGK0sZyHrwGNG/+s+J//k/Rv/UQyRjZZa3Grj5AkgydFO8p05R+tPHaRqC1oFJjGqFOEopFfMce+A+gjBENw3ypSK265IKgSQEYZjS6wX80R/+Ia+9/Cp7Z8ewbZN+HCDLCrrq8OzTP6HbbHLowEGkGE6fPMX2xgYzszNESYyyo1sa+SFP/ORnhAGMjQ/j+00sTSeoh6wuLNNqNNFUDVVREIpCGifICewI2BBJAlWKCPwACR3Tcmn320zMjeG4WgaQa9uoAr71jb+k0+8wMFBhaKjM4z/8IVEU8/SPn2ZqYpx6o8b0zBhJ4pMSYroFfMdg3TOw/Rh3cR1qdchZGP/9f0ry8UO8PqYx9b/+1ySf/DWC4RJR61W0y6cRf/k6/nYdVdZQHj5GuLBOFAb4QQdDM9B1jxQJSU6Q9RQpFpiGTBx3mZ+bRVcV+mGAQIVUY/H6EufPn+XkidcYGx9BVbN6+9HRcTrdAC9fRNMNrly5RKtVo9nY4u1L5/jVX/0MmxsdVtdqPPTRB1ENQZxaNLbb7N0zR7NZZ9+hfST9EC9v4cctbMdiemqWjcY2uqmj6TJx1Of0Gyd5+KFj3Hf/AdZXrjM8OESj4SNJGkJTiaMYSYqRpASETJIq9IIOru0SBzFeoYyqO8hSguUWyReGSYFup8nFy1c4e+4tZmenePnlF3Esi8HBKgcO7KXd7eK4HqqmkcYRYZRy+OhhpIxElj175jK5m80WBVS2VB2ESqlYJYoClhcXefbZn/Lgww8xN78XwzHQzlxFbvbI/dav8valc+QLDrLkkivlCdMQSZIpemUWrl5lqDrE9lYdXTVRVINI6CAkJEK63TZDC21yoYM3Oo6Wt/CVlFREyGmEJKm38dFuOLM3OcJIWVZBkiIkkRHc3ORL3Vzf98FBrHTTcsO3ur32avb7u8vtiUHZZbn7vr57Xm7t6wexuyenupPvvNu6txKJ3upP32n7e/GXJUl6J9J7pz7uRnB6J7u1ZPCGxBBpipAywiXSLLPsVgKmd0bTXUzCAEjil8MJ72y/K3AlA5+3LrdLJRYpkpSl9CLt/L+jwHLzujdqAN4f3HsXRN/Y5kZb2Ul6d7mba/d3HrymafrFnc9df7/bG+9WRt57aetebvJbt7mXdtJry1BvQt79wLNOv8zNfGO7u2JNRiKWIJVSVEXw5smTkCaYusqTP/ghP3niKT7y0MNMTM0QxSnG9llURSWsHOL73/8BX/jCb2GubDDwX/1PpMNVoofvQ2gqQb/H3Nwcfr/LhQvn0VWTifFR3njjFKdPn2ZyYpzNzQ1KxRK6rhGFMZ7r8frrJ5ianMCyHRzH4ZVXXkMWMq7jUdveptfvMTw6ylatieu6CEWgGxae53Du3FnGJ8aoVCrEScLW1gaGoaHIMr1eB8s0ee6554CIoaEBFEUlDGPGRseRhMTlK5cZHBomTcF1XEhTGq0Gqipz5Oj9TIxNoasCWZGYn5/HyxX43vcfZ37fXhQhCMMA13GplMs88sjHMQyLcrGC3w/o9QPa7S6kEULRQMhZhKbfw/LKWKaH5xbo+yHlSoVSqUQYJHz3O98jX9TZWO9iWgpxLKHICoVijiOHjxAEMZad4+LFiwhZ5Y3TZygWXPI5iyCIsEyb1dV11tbWWVxc4oUXn0ORBb/x658jjiPCIERIEtcXF3nrzFvcd99RPNfl4sW3mZnah2N7vPDC8wwMFBkcKjI7N0elOoSq6WiaRrvdxDR1kLN+6ZrG+voGhUKB8clJJiYmsW2H73znO7xx6hQTkxMYpobj2Fy9dI3hoSq6JiHJCq1WE2WHZEYWMj/4wRP0el3GJ8bRdJWUlFarhSxASDKSEDv6kBkT8sWLF5mdmSFNYwYHqggtRFbANE2SWEaVLYI+9HptFJHVas7OzVIsFen1+4DIUiWTBE3TEJKObVu8+eYpLl28yMsvPc++vTPouoWcCkQqMnbOMOT/Z+/Ng+247vy+T5/e17u9+/YdeA8LCRAEKJKSqHVmZNnjmhnP2LE9sSeZVCqVVCV2xU5cWfzHVFJJTSVVScqOnbIrdiqjsSiJkkZDipsoauMCcAF3EgQJgNje/u5+b9/eO380SALge1ik8VKanKou4PU9ffr06e57f9/f8v1urq3g+x0qFYcoGiKRkucxJ195jb17FzEtE8uyydIcRVaQFYWlpSU0Xcd1XfxeGyEkTp48ydtvvcXhw3eSpzmyKmNZJrKiEAQhvh9QKhWRwHa7VUhrzM4wMzuLqhr4fg9VMVBUnYyMIIpZW9mgXh8HUaQIe24JoxuCJNHSZKIgwrVt0ixBliUc18F1HRRF5cCBZTbWV/FcF1XRkBUVIUtkV6KuaZoSRXHxnaPapFmEKgsG7S6WLhFxEUUqoWYjhP46yoUPEI0+6aPPEE64OL/7FfL/4T9F/Pavk9y1gFypoKoag4GPkHMsu4qegvPY83j/xx/TO3ee761eZPFLn6Y6WgdJIopCdFNn6A9xXY8sTTFNgzxLEORkqYQQClmeMVKtce+991Aq1YiSGFkINEUtWMJtg7HxOpqmoMiCffv2MT8/iz/s4ro2nXaTNE6Iw4g333ydfq/PkSN3gpQAEroueO2NV0jSIZ5nkUsJQspAZIRhUU+fZBFIGWQ5/V6haz0zO4tlmxi6TpYoDAcJcZizudHkyF1HWdq/l8WFOcrlCocOH8KxXRYWZhmt16lUqxiGiSwULMslzXJGR+qMj4/z4qXzbGiC6SBDP3WR4Uun+NmDf8p3T5/iy1/8VZKSg7RQR8TnYHGU4D//u8izJUScwINPwPOvoU+UEV/4NNJ2F1lTyWVBkuYIxYA0o9PtIMsKqq6zublFJoGuGnTaXR555BGWlhc5cvQowyBAt0xUzSAMYx5++BGEVDh+xsfHmJmeZm5ulk/dez9CyLzw4glW1y4xOjZCmiQMhxHfeegharUab775JgfvOIClF/X5ilJE003dJI5SyqUKslCQJIXFPcvYbolut8fMzCw5guePv4BXqeCVPGQhkUQREjlCVpFlhTiOiaME9YrjczAYFNJiFLI8uqZimTr1kVFmZqdpNLZZXl5iZmaWlcsreG6JKMlIrzB4djtdzl+4wMTkGL1elyAYUi6XuHDhPBOpQhpGfO2HT/LKyVeoViqUSoXTbu+ePYRBiOM4ZJmMsrqJNj1JeP8RRkcm+a/+3j/gc5/9DOfOvk+e5ihC5fy5y9iehq7pvPHmW4yNjZNLRVmF7ZhAhmma9P7hP6J0cYPH4w0OHztKKgrHisjlG0Yzd7IgbmSf/JuMul135h323Y4W5i86738d13179u4tj7qDfftn2XYKON2o789ro199zG4SQ7uOe4vgdZeX4M/AMbPjqLvs3inK+nHW6Mc7d3+PdwPRN1qzP9fg9XpAdbNFu7rtlFZ8O+D153kprj5uN+rzna4n+ft/SPazlxC/sTth0622n5eB7laPSSWZXMpBSgiHfWrVCqZu8ciDX8MzPb74xa+gGDamXcJ2DKzx/cSlRaJcYc+eRQ7v2UPt7/8h4dwkw0P76Ha7AGyuXcAyLEyjkM74/Oc+T7PVYTAY0O/3GRkZwbYdTNNgc2ODd995l+mZGXRDQ1YEQRCTI3H27AcsLe1DCBnbq6CbOpIEJ0++wfTcAr3hACEVVOiu61Aul/D9PpqhU61WSJOYOI6AjDSN+elPfsr8/OwVrdcWtfoYFz44jyzLhFFR5/j1B7/B8t4DDIIBSTIsfvRzGX8Q0uus4Tg2XrmKrBq8e/oMx597hqNHj3H27BlqI1VGRqqIXDAc+JiGjj8coGoaTsmj1dzEth0cp4QqyyiyRC5soihla3MLfzAgCAacP3ua6sg07713liP3LHDmVI92d4V2e0ip7DA6NlJE4owKqSSYmp5ifn4eVVGZnZ5A0yTiJGV0bJxz585z9uw5jh27m9HRKseOHiUIQrqdDpVqBSSIoohBv8/iwgIrK5dwPZvGRov5+RmmpsfJpQxJzlEVG0XRGA4DwjDk9LunqI2M0O33cBwHSRJ4XolOp0dKThRFPP74Ywx6ferVGkeOHcNxTPIsZaw2QhoNCQYtclnFcWxkWSAkQU5ayPLEMfV6jSgO0A298KTmObJSkM0Mff8K2JWYnppCkqSChEjTCNLeFRAjaDY7SKj86Ec/4ac/epJ7jt2N63lESVSQVGUZpmmRZUVdp5Bl3j99iVdffYVP3XOIetWj22qytDCPoltIQkZCIJDIk5Q0DgiGPt1Ok7HROlubG1QrFQ4dOYyqyiiywptvvcNIbYz+oINpWpimWZBbJQmuniOkggBncmqKVqOJbTsEoY+iyMRRjK7pWI5DlqWQ5ziOTafbQ1GUIuU8TQsysAQU1UDVtcK5ozkMehkXLl5mYrpOvzfE6gYkScpra5d54fhxpqemmJ2fJo4jarVqUTOrKZimQtkrF3JZskqaxSiKhqwoZFnBAk6WX4k0Z/j9JmSF7qciS0SxSpa2CV97E/u1FbKBz3vlD+C//HW8/+JvESwdYrMRoAQxkgrN7Q5xFOM5Dmmni/ODV3H+t6+Rb7XwD+1BP7yf+vQEIyOjBQlUliKJwnOs6Q6SkEizmDyLEVJOOBySZgpbG5tUyyXSJMTzHP7Fv/w6r5w8yf59e8njIYYqkKSE2dlpGtubKIqMrqtYlkme+UThEMs0yeIYxzQ5d/5dPvfZzxInIVmeYNg2EFKpVZibm6Xb6+JYBn6/e6WOO0VRVPyhj6rJSJkgTlLeffc9Dh8+jCLLpFlGu+Xz0Lf+hDPvn0dC4tSpdzly9x0YuoYk5bRbHXTdxLENVtfWUFUV03SRhUaj0UZRBe12B03XmZyYoDRSI50eQ6pXkC+usddP2BfL1MIcf7GKZUgMz7xInqU4d9zHcLpC8qllsr/+JbburBNfXMH+3gnyn50kq+gMDs2it2OiUCArOaqqYdo2ILCvlIP4/rBwKOgq+/ct49YqlCoVBoMAQzcYDgPuvONOZClh0OsyUq0xDPyPrqXbbXH02CEOHzqA4ziUSlVURWFkpEqtUsErudi2TZ4OCKOM4RBG65M0G1tUy2U6rRaKqtBsNjEsiywH0zCQZBVJKOxdXsYrewXDZ1ZIxSlKQSESxymWYREnGZ12F0lIrKxe4gc/+CGTk1N4roMiwPf7yLKCJGWUyoUEVK/Xp1Kt8PQPf0yn22dycobVlVWajRYH71jGNDU0TUYSoCoaJc9DbfQIw5BTzS10Tefe++5lZW2bV145ydKePSiyTLvV5PzZ84z1A7pJhPTl+7h8/gO++qu/gmNqrK+ssL2xze//3n/Mlz/3qwgj58KF8zzwwAPFewpkWY4kCkk6WZZRnjyOkATPGm2O3X8vQlWRUACtiELvaFPsuPcam2MnO+TfTvv/westj/pLBF4lSWJwhaxwt747f3BLu/6dBa8fgvVr5nAb4PXq+7NTJPvDfju1X3rwmmXZH3yYRgLX3uzrAWmWZdewDl/drh7jeg3YnSiod0tjuL79vPWkO71s6Z9+Uuf16s9vFk29eszdXvod5W1ucX5Xt1xSECJFpAEijZFSiX/yj/4ph5f3UB+dwa2MIWs6GxtrJGmIn8Cl9SZzc7OMVKq4/83/wjCNSY/eQZIkdNptKuUyIo8Z+jGapmHZBhfOX+Dy5VUWFxY5duwo5DA3Nws5XDx/ga1Gg8mJKYQicFybdqdFvV6nWquiKBoPffs7TM3MousKg36XxcUlNN1EN3VI0wLAyDL9fv+KQVto1/q+TxxHdDptJicnWVreh+vZGKaFEEU9XKVcpdlqUS6XcV2Xja0t9u3bj21byLLAMAz8gY+u6lhWAQolobC6ts7s7DT9TpPxiQnOnDnD4cOHaHdbKHKKkFJ6nU2qVZc4jchFhmNZSJJMHKWFRqFpkIucNMsoV8q8/sar1EdKLC7O0u6kzM7MUa0bbKxGtLorZLnM3uU95OQMhyHf/e4jvPLqa4yMVOh223heBVmALEOSAQhmpmeYnp5icnKMyYkanVabtbV1Xn/9DfYs7SHNUoQQ3HnoEGmSYhoGExPjmLaELEO/7+M6VbJMQ9U0Ll1e4QdPPsG+5WXiJGViahpNVTAMk7NnP6BUKjEc+iBkLNNidnaWvYuLzM3NYNgumiazunIJXTO4ePE8cTwklw2SOCGOE8hzFEXQ7Q44deotjt1zN2lW1B7nGUhZRhAEyEIuCJ9UlSyJkIRMnKS4tkOWZqiai5AMshReeulFLFvgB03KrsfevXtpdVqYtoUfDDF1E98f0Ol0sCz7SrS/QqXicuHC+0hI1MpVGtsb2LURZE0lCENkRabv9+hsd5mcnCJLC4NeVQ2GwwjTNZFlhYE/wPcDKpUqrmtAntPtdtE0jTAK6Xe28IcBc3OLjNRHqVTKOI5FmIQ4poFtWuQUkkXiSgRaVbUrzKYpuSTo97vIssTZsxd45tnnKZU98jylsdXm+w8/xgOf+wxCzrAsF2mjiSwLVuIhB+88yNTUJHEaFrIkWYoqy6RpRJanhcQNoOkacRKR5KBpKsPhEF3TiMIAIeX4W+cIh10qtTGEViaWNcx4gHjybfQ058xfVAj+oy9y5K/9zzBaJZbKaHaZalVn6K/R68c4lscbx19i72vncP7xQ4hGm87+edQ79iA7JkJIWLaNJEkFeVSWoukaeZ4hJIU8iwmCPmQJAglN0XjmmeP89Cc/4uCBZRQFJCkjijI2Vi+zf2keXZFQ5BxZEcRxUeuoKBKGoREEA3RVkCQRvj9AUxXSJGbf/gWyFFy3YFd2LJs0TpEkhTyTSaIczysXf+cSEiqKamKZDkmckMYhpqkzPz+HEMW1ZFnO9vY6779/miyL2bdvEX/YYe/SIvIViRrH9YiiiDAY4HklvvXNh+h0e1QqFR5/7EkO7N9HEAS4jsPW5gaXL13E9TSskTL9mk1g60wEGeq750nOrRAcmoHVd0iTBGnyIKozjqqVkWWL0b3LKEf3w2/ew6kJCavvY37nOeTnXsU6egfB3/gS+nuXCIKIPM/QdQ3fDzB0nfX1NY4ff4477ziAouuFk0lWMA0DXVfZamwyWi2TJsX9U3WNJE2LxGoJICXPCyeIEII4iaiWS7zxxmtkWcry/iU21y/x8MNPcP78GtVqldHRGnEyAClF1QWmpRU1xTIMegMGg5As//A3OMYfBAU5XhgQhSFhECIrBeHf88+/yPLyfqI4QlNlbLtMp9Xk2Z/9hAMHlmm12ziOA2TFsz8cYloWSZKiaxovvPgicZxw4sRx7r/vXkoVhySJGAwG2JZNHKWsrKwwhoKqqIQVhwce+Czr6xv86Ec/pdNuUq9VsG0b13OpVBzkMIFujzcWdWQlpT5aJo1BUWQWFuZoNJqcOXuWX/2LX2ZxcQFV08jIiu+HXEKS8mK+QsCjz5LnOet31HFLJSrVUSShgCQjke5iL3xSh/7qvz/qdZXNcqvporfSbq906sbgdadxbsQQW/S9HRvxk/be7diANxtz1x63uD672YU3W5efB1T+vLXHO9n/N5sr8FHa8K3a/sUHt7Trmifg+vu5GxvvTvO7HrvsPK9bB68f4qJrwecnHUvFubMdeYJ2kgvdCbhe/+z80oPXNE3/4Pp9N6oNvZWH/lY8Rtd7ZXaLlu52zK2c9/p2NXjdTV/qVsff7eWEnx9wXzOWpCIlEVFnm9dPvMCpN05x37FPY7oWmlMjyWWQUvJ0wDun3kFRFGbnZlldXUP/2vcwTr7Ds1bO4uIiQ3/I5OQEkHP58gU8r4bnlWl32ghZpVarUSp5lEslqtUK/sCn1WpSKVfodrrMzs8RhiG2Y5OmIbZtAaDrOpcuXmZ0Yor6iIcqQFN1Or0eumUQDHxM06TRaKKpOuVyFUVT+VBTsmDIVOl2OniVGpZjMxgUqaO6qqGqRXponmf0/QHjExN0e82CZVTSkSUVRQbDFARhiKqZyJKM51oIkXDvPceo1WrMzM6h6Qa2Y5NLOWkSoQqJ0PdRVY0kzoiimM3NbZ575ji1apU4jdAUFV03aTS6zMwukl2JFK6sbtFobNNqtjh77ixB6PO5z38W1ynR7Q4wdAPTUrj3nvuZGK+jGxpP/uCH3HnnYSRZwjQ9tja32draZHZ2HFlktFubNBotskyi0+2yuGeRlZXLmJaNodsEfgCA63kYjs0H5y5iGQ4Xz1/i7XdOUxurYpsmdx+5C103qNRGyVEwDYVWq021WkUWCnme8+DXH+SOAwcplTx000DVVTRFp9HcolqpgKRgWBalahnD8Aj8CMfxyLIizbI+WmN+foY4jjANiySBb33zOyztWaTVaGKaVsGsHEVkSSFTEgYx//T/+mesr29w8I6DbG01qddHmZqaRNMF4+MjTExMYtk25XKJKIwwdAOBuBJt09A0jTyHs++fQtcVNE1n5fIWr73xBgcP7SPwfU48f5xXT56kVi4zaLfoDwZUqhWarW0yUoQsCIKASrVOkmQYhk6p5BGGQ4SQiOMYVVPRdJ0ojomTlMrIGEGYkuUZ62uXkaQEr1TmjVdfRVNVTMsiEwJVlmk0tsnyHFXTGQ5DNMPAdS2EIiEkmfn5eUbrFfIsp9tqsrw0i2Wp6LqOJGUYrT6SJFHat0C1PoJqGjiWUXiscxj0exi6gizbDAYdPM8kjAKQVBRDod1p4zgWUTSk122RpTGykIjznCCRMKwS0oXLSD97m+iz87z0GyZ3/ubfQS8f4mLvNKo1gaXrRH6b1dVV7OoYqp9gPPochx49QbbZJD66nxVDYbPTxPVcZFUpvDKygpSnSEIqiK8kgRAKcpqQ5wnDYQfLNpFVnW5vwPzcNPfddw+KAlHgo8gStXKZ2elRSo6O6zmFRi0q7U4HIaQrclMRqiaTJBnIAk3XydIUz7VBSCSx4Plnj7O8tEC/2yZLYzRV4+UXX2W70WR8cpIkj+m1GnilMoNBoc+sqQIhZzQb2whFIqeI+gtJwvUsjh69m5mZKUZGKkzPjNPr9tH1om4/jmMM00RXFXq9Hnv37mV6ZhpVVdlubDI9PcPq5RXqIyPFXEsetm0yHAYEwxCfFHXvJLmt47y7gvGzt8nNgHzExT3wefJcEMYJWS7IJRndsFBVn9LcLPYXP8OPRjSW/pO/SfLEM8h/8M8JZQnnL32O/pkPaLW3KVdGSeKIctnjrsOH0DWNbruBZ7sYulY4tchwXBMpL4IDpmWTIaGbNsGgTWO7iaqYkAmEkGg0NyiVyrQaDSbGxxgdGy0IwVKJfQcOcuiuO6mP1tBUQaPdRtV1fH+IIhSajTYVr0KW+Dz4jW9jWi5lz+F73/kWJ154GV3T2bswz0svvsTxEy9w6PBhyFIM02ZkdJx+r08cRExPzzMzM8FovUyeZ4xPTuH3e2xvb33ExaEbJkmSEQQ99h3cx9zcLHcdOUQShyhXGNpluZCV63YHlMoe6nbxvJWXFxBCplwdYf/SHsZGKiiKYKQ+gqxpJGkGrR5Gd0j17/xtNrZb1McnGAwyDNtkYe8Cd9x1kAe+8FnWN9eKFGkpRxKCi5cvMjo6AVKGrIgr4PUZJCSad8+yubHN0r79ICRSKUfsYnfs3G4ebf2zjEr9WYLX2z/+dtq1Kaw3Jpe6/bW+Efj8RdqtkJPeavuzuOe3Y/9/2IqMnN2yB37RyOvOY90uQL+1+3br4PXDMW4GXiVJuqKPsPPx16/bza5JkiRkWf3zA16v9gJcv+9qL9VuD8RuHrhbBa83A483S9W9HfAqy/IN53Sz8Xfyzny4brvl9d9OU2SFfrvFq8/9lOM//Sm/9uWvIoSGNzZCgoZm2WgaKFLA9MwCtf77WEkD6/E3KD32LP3PH2Vybr6QTvF9NE3j4sWLzM1PAxrnz1+kUi1RrdWRhYxt27RaLfr9PkIIHMdGETLPPPMcR48dK9KCZXA96wp7qokkyezbvx/DtAj8Dp3GFusrG5x+/yyWa+FaTsF0KwTlchmAIIrRVY04jmm321c8+DJCM4jjkO3NDRzbxtB0gjBFVgWmZVIqldA0nVq9hGU6fOPr38XUTQxTpt1epz4+QxQVLMJZGlIqWQwGfXrdPppuIiRBb9AnTnJURUGVBLIk4w9ifvLj57jr7kOsrqyzvbnN3r176PU7+L0A16myvtHmmWdfYnVlk/m5ZS5cvoCiCqrVcc5+8Da/8zv/HpouE8cZrlsu0lG1DEuz6XSbqGGArbUAACAASURBVIqMqlrUx8bJJOh0+nz7298uNGIdA6QUWeTMzMxTq46xsLiIosp4nouEzKlT7+J5JchBliUyyeT7Dz/O3XfdRa/XJkl8pudmi5Tc4ZD33zvLj3/yDIt79yOLhCxLMU2LNMvodfv43QHzc7MIWSaKI4IoQFdNsiwhSWMkoWPYFlESMfQThFQwmzYaDVzXwTQ1ZFnCsixkRUVVDebm9/Dayy+wtr7O3Nwcm5ub1Go1NFUlzyXW1jdZXNjLmTNn2XdghuFwALmg0+ljGBaGbqHqCkgw6A/I8yLlNY5jcjI0XSUYhuSZoNVc5/wHZ5mZnidNVM6cO8fR+w6R9gJUITMxOoYUxfSaTRRLoTriUam5+MM+M3NTJFmEIrtEUYiqKggZkiTENAyEkInjmCRJUBSFIEpw3DIImSgM0FQJzzNJc4GmyAz9IUmaE6YpUpai6QaO4zAMIyzHQcgKQeiTpmFxjbKC4xjEYcbU1Cieo2PbBlmak8QBetMnTVM6loJqmoRJjEwhVaUqMoauMhh0sewamp6zvb1Knue47ghhGpEmMUkcoWkKnmejqTKx6uBWawihobz0Nvnrpzjx2YR9/+C/Znn/30CycyhrpNos5ZqGiDpYioJbmkU+uUr1D/858foWr2gp1fuPMshiRkpl3njjNfYs7UGSZTJJkOUSEsXzYloWQhRM1M88/QPGRmvIqkSa56QJ5Ci0WuuFZA0Zw6GPYehIpEyM1hDkRHFILglM3UEWMhI5lbJLmkZAimWViZMEWVFI05g4iQiTDNeu8sYbbzA/P41t6miaRDAMOHX6NLZjUR0pIesCKQtIs4yUFFUThMMukiShaiqmqeMPCsb0Xq+HZTkoso6u65RcD1VV0HWNICpkWIZhiKJqiDwnTVNcz0PTNZrNJuPjYzz+2BN84QufxzCKaOcHV57f7a0Wm5tNthtNRkfHkEoOw9kpdFnGeHETZXMIl/rEd46i6gq5DEkWEcYBmQqyPUoq6ozPHeBi0iP/K58m/6ufw2wFRP/3n6CfW6N0ZBl+76+gn77AdmMLIUG5XMbWVbY2NjF0g3a7jevZpHlIvztA0TSCKKbbH5ABZU+n1xvy+KNPU6uN4nomORGN7TZTkxPIssD1PNqdNlvrDUZG6+hG8eyT5RhWmSyVsC2XJMyQJQNSmY31s3Q6A5aXD1KrVpibmeL+z3yecsmj1+lw4sRxfv3X/zKu47G2folHH32S989+gN8fsG95iT/+Vw+ysXaZo3cfQjd0MgRJFBalKpUyWZYjyyq6YWJbKq7nMfB7lMslFBnyvHjfoyjGtOyCmb7TpJ5AmiZktTKyrDAMQ9LIZ3ysjus5BHEEQib0M+zaCOLlt4gHOY9vbfDQtx7mt37rt0mzmPXNNaq1MluNTebmFhgOfVbX1qnVRrBsG1CQZYkkjZFlmfThn5CmKepfuJe33jrFsXuOkckymQDBjQHirTj/r+73ywJeb+8SPu4sy/InWGh/0cjrzUrXft52uwGjG7V/G+A1y7Ib2sX/roDXnTJKb3EG/1rA642IbG/UsixDUf4cRF6vDk3v1q4GrR96Aq7+wrr6s+tf3Bt5ja4HxTud92aAdrf5Xt+yh3+EJIHyW7+6ayrKbvPdLUq8277baYkQBVskhcyHQCKK4ew7bxA2N/nUsWPolVHW+wGu5aDIKUnYZ3uzhW1PsdXo4m6cIH/nTZT/5wXW7t6PU7Fot1u02h2eefZ5JicnWZxboNNvgiQolStYlg15gpSGkOdXwEGOqqt0ux1K1Qp7lpYwTANFlcmzpDAiJZV+L0SSZMIwQBYapq2SkDI6Os9TTz3NgX2L1GoVwnBIHEc0mw00TSMKfHrdAbalYVqF4eA6FU6/9SYyBq5byPMMhgHDQRsJiShK6XX7xHGEKtkMBl2QApaWl0jSlPGJcRpb27iuQ7/vk6Ogajb9bptyuUwcR8RJUhDyCIFmWvTjGKsyQn8QsrR3H1GUsLhnD5ZjIMlQqVYYmZgjCEMe+tbXkaWQr37lAXQ9RVEFhw7fSbVW5ejRTyEUhe21FSqVEtuNTUzbIk4lFFkjzwN0TWFqcp7+oINqpGiS4NLKJe751DEWF+bJ4xivNs3m2jrPHT+B7pYYqZZQBciaytrKJWQheOpHT/PBhVX2759B12xGxsYp1VxGx8eRRfHdKZAIw5DV1Yvs27dAmkGSRggpJw4j+j0f1zUpV0eI4gzfD3jv9PuMVBxMw7ji4UtRFJkkzvl//+XXkIXOo99/jDNnznDgjmUyUURlSHOGgwFrqxcwLZluOyIKfCqeRbvdxCtXkITgxPETvPzCi3zh8w9wz6eOkIRdXMvGHwQ8+OA3qFTLjI7VGQwDuq0WtWqJMBiQZjGSFJNnIJCJ4xAhYky7ysGDd7G+vsmbb57k3//d30HOwSy7yJJEpWSRyxHoDqdOncbzKth2mXK5ThxDFOXohkKapaiaRpoW4FDXXdIswR/28bwSumahGRayBINumxPHXyBHo1ybxjJ0BlekbL77J4+gqxYZEuXKCKfffZ+xep0sCUljH8O06HZ9bKeIUvb6A0zLZH1jC910SHJBEEYIJGTLIjR1tLJHHg9Jgx6aptNsbqGoCnEmMOwqWTak2WhSsisIWSdDwshDcsVGtyv4nSZyMiTKZKIwQfR8tKdP0hm06P69L7P41/42ZqVGI2yhmQ6ZPyRuXSToDOgGGWZ1EvW7P8D41iPEx/bDwQXm9y8jyzLvnX6f+tQoM4uL5JIoagxzkIWARKLXbdPrNjEUmU6jQTjsMD4xgWnadFttBq0mhpQQRhCFAbomk+VFlNP3e2w32kiyRhilOLZNFPsM/Yg4hYy0IP3JdXp+h9ZWmyQYYFoaUSxQZRAiY3FxBsNQyYhpd/qoqsbCwjxj9TqB30emqKHMs4wkjnFsF4RKt9fGtlxUWUcgIInIkqAoU1IEkqqALJEkGaqm89brrzNZr2NrBi+98BKTc1MYVuG0SNMIvxdw4rk3aPda2LaBrMh4XhkhaSi6iuPa5KQs71siRyDLGoqSMbQ1wsUWSjNFf/US4s0LyOfXSe/YSxrHxFGIZ5SIgpQkCVBFgJEGjJoGjW6Dsb/0V3l1ucT45w6RP/ce+X//f5IZKuXf+BX0zoAg8Gk0txibGCeMYmRZAUkiClNkZDRNxdBVHNsmT0CIEoPBkKnpOmVPo+Q5REFEqVpiGAxRFIUwDCHLqE/MoOoKaRbQ63YJgwTLluj3egz9iK8/+E0s16Q2WsJxHZb2LmGbBmkaUi6XaHdbSCLHq5Q4fOQucilHKBKmoXPvvXfiWgZ3HLiD5vYmn3ngfvbuW6IfRQhVY9Af4NhV8lwGJLa3tgiHAwa9Dl6pTJrkxFGKdaVM5MKFFSzLwbJcOv0eURzxjQf/lGNTM6iaRljzEJJEniZoZsHmnuWCNM05d+YDThw/wfTCHNaFNRpKyr+6dIqZ6WmIM1577WXGJsZ44cWTHLrzGKuXLpDGGePjk2SZRJoIJJEy6PdZX90oGNF/8DzkOepv/Trnz1+kWiljlRwU04B0ZybaXKJAcNdsBd+EJAryrOLv4t9r+3CF5/XmttZubXcDf6dtJ9vqY8CXZTmFVNvu5ypOd02i6HVzka7Zdw2IlKUdpnSFzZX8umX8ZHYeQnzUoVhPCUlI1+z7cJP45Hrmuy3LlS0nv2aMD7er79nH28fn/UXh6E73fre57nS27Kp5f/SsXXWLbvZc5dL118ruGHHHveLjCeYfb8Xy3Bhof+K6r7bj86vGvdGkPprZTje1kLwpHjNpRwdH8e8nj5UQH90IIeRPXB95kdFVXKug0NcujlEU9ZcbvF7NNny1F2CXvjuC1Q/bbuD1Zu0X8QDejifnw8ir+I0v3bY340ZzvJHUz620HAlBhiCFJII4Itn8gB8//TT3fP7XiBUHQ9cpWSpC1pBEzubmJq1mh3feOY2SxIy/9hRyt89lbYZIlcmTGNcrU6uPcvKVV1heWiIKA0zLRpZVLl28xIsvvMDMzARhECKEQqPRQDMMKuUSlmVh2gb9fh/LMBh0WwT+AAlBOAzRNZ1mo4FlmkhCotncouS6GLrB2NgYqiwwdJVWs4GmynzvT77L/n37SLOMen0MScrJ84Reb8DAD/nhM8e5fGmVfUvzDDqbJAMfpzZCMAxQVQXb0sizqJB7iXuMjY2SpxKGblCkuzn0+j1cpyCHSdIE2yz0P9MkQVYkkFI2N7ZRVQXLMomjCAmBomqYlobv+ziOS6lUpqh/HaCpggP7D3LsnvvQTRtFs/C8CrpWRB/bnRaua6PqJoqioqoaQsoZDvqoikaSFLWf3W4f1yvT6/cxNI2R0TEq1RHSLC80PxsdnnrsUb7ylb9AqVQm8nuoIifKYrIsRNcEvX6XyelxPMvk6R/+mGP33EOUxPT6QZEaGsekScL5i+e57/5P45Y9oqBHGKR0OwG255HmKWP1MS6vrPHIw4/SajTYvLzGgSOHELKMoqhsb28jy4IkCTm8bw8T9SqH79jP7PQonq0S5wJN1Wi3GtiWhVAUWq0uvWabpcV5NFXh5MuvsH/vPnJN4Loedx0ujFAUCb/fx7RcDMNm375lqrUykpRh6BYl16XT7uC4HopqYGglNE1jOOxjmibBMOPy5Q8wTY2Reo16vUoUBsRxTLffxXNLeJ4DAs6dv8zZ997i0KH9JHGIKiuEQUCaJNiOXdSZAL1eD9M08Yc+wTBltD5FGEQk2ZA0zhj0epiqzsbaJs89e4KlvfvpdYrU8TxLufPOO3jqB0/xwP2f49vf/DanT58hDCMmp6Zw3BLBYIiu6kgIoiDENm1ycgzDoD8YoOsGSZrilErkpolwHdI0Q1U1giACWSaOIlzHKeq8h0N0VabVauK6LkEYkWXZFdkYsxjLLhwRw+GQ8uUQ6QfPs3G3gfwPv8yKVMOt70ExPPJc0G5usXb5A1QpJ5dUKnYJ43/6F6ivnWb4mcOIWg2EICNHkgXjk2NIKPiDIbblkKWF9AFZRpYFRKGPZWrIEhi6hmHopGlCs9mgUq4ghMLlS6u0Wg1G6zUsy4AsJQwCKpUxJEnwyiuvMFKvAimWVuIbD36XcrlOueyRJjHhMETTZPqdAbZtkmYJmqqTpz7B0EcWEmEQIOXFOgshkaUpaRrj2BbDof+R/nGaJvT6XVRVxbZd0jQnDCMM06Q/6OOVPS5c+ADXtdAUBUWSiYMYSYJSycM0DcIwolwpF983cfH7F0cBlmnieh53HNiD7Vi0222++dC3mZtfIM9TVLUgRFNVlQsXLlCt1ei0m0RxRCZihhUdefEg+fkV9LfPkz/3CsraNvb9h0njwlBRdBVVlVlbPY8scurjC2ysn2NxT5kz/TVmfu93SX//N4kvbpD/0ffhJydpT1Wp/vVfY/DWOfIcZKXQvZaERJanaLqLP0gLJuw8ptPscOL4c4yP13FLHkEQoKgqumFh2y7dThd/4NPt9ilVPISUkecJSZwwNjpKEITomsF7p8/w5V/5EmNjIyCl9PoDEBKKKhPGA/qDDi+/9CqGoWNbNrZtIcGVDB2lqOMWGrblcv78WZrNBuVaFSEEhqaRxjFhFHL2g/fp9rq4noOsynhllyQWdDsDKuUq/nBAu91kZWWVx594jL179xKGIWfOnqXVbDMzPo7q2TSioCgniCLSLGZzc5OHvvVttraaKIrOuTPv88ADnyG/cBmrXuHz/+PfJY58Sq7O2XPvcezoUZ5++sfcd+/99Lptkjil1e5QqdbIMtBNjfzKM9rr9VGefB5JEoS/8mme/fFTTE2OMT03Ryqr14DXa+2H3dut2CS/OPT5Rdu1wOH2I4zXHn8jeywnv6ZPnufXXP/V0o07zWentb5+vI+O32mftPO5buU+7Xae3c51s7XYbeyP+t4GeJR2yIq8rafqqs43m+suFv+Oez+MZt7Mdr+6NvYaQLsLudLP03YqVdzp8xsF8nbquxMplCRJyLLyyw1ePyRsunrRdvJCwMeaRbt56K5PS/mQ4On6/te/JDsVVO9GCnX9XHcDydeTR+V5Tv7Ix+D1+hTk3a7/+mu/+jqvn9duc93pej6Mdud5ThKnxEGAyBLOv3eal48/w+rp17n3gS+il6fx0yICkEc+ul0ijIZsbGzwH/ze77P3coO//M0nCQ7qSCNVwn4Jz3UIw5Bef8DzJ17gS1/6Mp7noes6cZySpTlb21ssLe0hjkOqI2OEUcjM7Ewh/yEX3qY0Txn0+iiyIE8TwqFPmudsb7cwTQvLtMjznGHYw3Ndtre2SNIQU9eYGJ8kTQriHMuyCqkUcnTNIIlTtrc3GA77yEKBTMYxBGffe5+77j5ElEn0hjlplpKToesK7VYLVVHotpvIIis89K0+Y2NjXLx0Ac/zIJcIwwjHsa/8MAyLSIrtkCWCp5/6Kb1uh71799BuNYmimGp1hGEY0u02MU0TwzDZ2trC0E36vSaWbaOoOkgyzzx3gr4/pNPuFWQh1hXGYlVF1S2EXDCh+oMuqiywXYc0ThFSQR70xJNPoWsu4xN1ut0ujuMgqxr5FV3SffsXiPMEo+TR97sMgwFhKLB0g0qlwuKeZcbHp9BVwdzcIjk53//+wywt7Uc3DOIoJk0jJCnH9UoFqGxskmcKm5tFjalmKAgSRkZHOHb0CPWREvOzk8imgW07IAlsyyFNYnRdY21zC7dcYhAW4NerVNFVgzzPCAMf07JQVIOLK2vMz88yPjuJZpns3b8fwzKJsxhDN0jTjJdPnmR2YZ52q8MrJ1/D8zxeOfkypZJbsIXKGqoqc+HCedxSGU0r0msff/z7VKolyuUqUZDx1luvMTpaJ4lDRkaqSELCsh1sxyIKU7q9PqqmUq9PcmB5DkmCcrlCnmXoul4QgikKkhD0ez0AbNtGVRUeeuh7PPvMCWZmphFyVEi1OAZhMGBqcpw7Dt1Buewhi5xSyWVkpMbmxiYPfPaztJpbVKolJqfGmZwawy3ZSHKOrgr6/Q5BMKDdblCueIRxgmEYpFmOaZpF7XUKYRiS52AYRcq0omogSTi2RRiGdLodyuUyaRzgOA6KqmNZFqoig1oARkUUYGRwfgXv1fOErXXO/Yd3on31fuyRQ7QylzAx6HQH1Mplyq5Nq9lgYnoKRdGxHnwa9dwqyRfvRTZ1UsRHUYU0y8jJEKh0O1163R6WaRRyM1FAkgwwdJXADxBCkMQhwyAgiqJCugnBcBjzwcUVPn3/p/D9Ps3mdgEwJVFEzCQJ09RRVYGqqjS2Njn3wQVm5+YwTEGa+ihKESV87LEfcuyeY8hKoWUZhH0syyGOk4JxOS+cg3mekaYJiiJI04R+f0CWCgxTJyctmG1lmSRL6HV7V6SeJLK8kJ0pew5CgnarRZbmWJZLTlI4q5RCYikMAxRV59zZi6RJhqbLbG5vUiqXMQ0Vw7CwLAfbclnYswBZhqopCCExHPrU66PIQkFRBJub20yML2NodVqDPlHNwh9z0QcR1lsXEG+dI7u8iXr0IBk5rXaDUslCM1TCVEM1hnTb6+QRRL5PO4wwvvBp8r/128hfvR/j1XfJ/9dvoG12UJbmSH7lXsyNFooqY5gmFy+u8vDDj3Hu3DkOHlxm6PcxDI2pqUlsy8Y0TZqtJkmW02o28VwXkDh58hUmpsbpdTskcVxoC6cJeSZIkhTXdSiVnCLzIUn4znee4MhdR1E1DV3XUTWD8dE6uq5TLpdoNhoMhz6uY5NLgtW1VQb9kLffPsXcwjSmaeAPA2ShsLmxgSoL4riQw3nu2RMkCUxNTRPHKVubTX72s2eoVKp4JQfT1KlUKmiKzPzC3BUnh+Dtt08xkAWpbWKYBpqq8v77pxkbG+XcuXNUK1WmJqZYmF9ge3uz0Mk1dIYr62x9drkg1TNlHvjMA6RpjuM4GJqOEBK16gimbfNHX/tjLMuhMuIRhTG6bqIoOulXvsD7e6c49d5pPnX4AB+cPc3Bu48SISN2CwhcZxddH4S4/rNP2De/IEXH9TbiTqQzN27XGt230m5kg368fwfpEnYobdshQvhxBPf6429jXjt1/jmDPTcDoeIma3EzMLTjeu5yK4S0w/O0Q99buZMfzW+Xee3YdixP3C2IdePzXv//j0+RfwK8Xo8RPtyuf+bzPEdRlI/uWVFT/3G9724Zntc4I6475/X36mb8Q39uwOvVf99uYfj1i3r9WDeKjN7oS/ZW2i15Fa/2Vhw5gPyFTyGVvR09Tbs9DDsKDf8c7XqnQJoWbLK6rkEac/HMe8hpSL+5RWVinsroFEku0GSJJAzRFYUwyelvbrLwz77DfzZQOdrsc2q8RPXYCLKiMNjUuHzpEjPTs/QHQ9599z32HzyAqqpIUs76+iae55HEBYlJp92jVh9DN4zCSyVlBEFIFIQYpoVp2pw5c5ZqtYJTcun0Bqytb+CVysRxzJNPPsnBg3uIowzXcTGMolbohROv4HoucZKQZTn9gU+tNkKn3cFzS6iqzObmKmOjE6RJTtk1OHL0KN1+B9Mt8Udf/w7LC9OMjo6QJIVeY5JCxSvR7/cwLRvL9shycFwLCYUgiCiVyvT7gyv1nD6+72PoFlIueP/0GWRFolIu09zaQgiBaTs88uijyJKgXK6wublFqeSxvb2FUGQM08EfBti2i6LKzM3N8Pbb7/KjHz7J4TsPIAsVVTcJw5BBv0eWpWiqipAFrXYLx3KRKIhgXnr5VQ7deS9eycA2jSLaLguGvo/tmWhqjm6boKi0W22eePwJWs2QmelJNE0lzQoir5QITTNIkoCx0SrvvPkOTzz5Q44cOUyahoyOjxLGEZpqsL66ycTEFI8/9hjdbpf6yCgXzp8hzTIMyyCIAlzPIk8TBr0BTz3xNLXKCO+ePs3c3By2VwFZxXZcHK9MkknEQUAYBATDAYqqcur0WV588RWOHjuComt0Bj1My6DTaaKqKiIXnDtTsB2rioaiypQrFSYmJ7h44QK6puNYLmEU4Pe7TEyMk0uQSYKh36VWq1Aul0mSGCFLLC/uQ5YVms0GjueQ5RlJnqHIKiurWyiqTrlaxfdD0iSmUhkhjlNa3R6O65KmGcMgIBgOsWz7Sn2IQpzExFHMSH2EpaUFsjylVh8lDIPCWdJpYzkmklLok5pWASjTLMN2HCzXZGxyjPHJCXRDR1UVVtdW0A0Nocg4rkOpUqbT7WBbpSvRVZV+r49lWaR5jtn18be2UGyTLMvo9Qe4pQqCQjO3VPKIo4gsjdhqNHG8Emma0uu20W0PkYZ0V1cQz72F8dZ5Gl/dz7m/aVA9eA+Te75CKI3zv//jf8J/99/+AY2NDT593zE0VWYYZ6SKjvGdn2C9/B7D+w+DppImCVfgX5HEJGSyLCdLcny/j2Vo9LtNonCARIamQqfdw3VcGlvbpGlCdaSKZZrIAhRFY+DHvPPuWUxNYFkWlmWiXSHzef31NzFNndL/x96bBllyXueZT+573r326uquXqr3FQ2AJEASJEVSlLmJClG2aGskhSM8ExOamPkxdtjjCdk/ZokYybY8EWNbkrmKIiERCwkRBCkQCwmg0Wg0lt7Re1V17VV3v7lnzo+sBrobVd0NWIqQLZ2IjLo3b35L5s3Ke97vnPO+RRtJytMzdUOk2jfI5atTbNw0CkLOeNtqhizXO2zaPE6jVUdTNcIwJo4FdN2h2/WI0wRFVmm32xRcF6/noSoarVaXi5emqFbLKIpAliVIokSv2yD0e7iOQxhETE9fo1QsoRsmAhlZlqIZJqKkIAgpPd9HVQ0EUaRZXyFLM06eOM2ZM+fYvXcXkiyjaSY9z6Pd8jhz6hzDIyMUCy6Wbeaazqs11rZt43k+SZxHMiQpZ7yVJImzpy5QrFXJBkv0+oqYU8uIl2fILl4lOryDlXoDXTWwLRdJtWi2l6iWx6mURrl45RTbNg2yXG+hqA49VUb+yD5m/94+ivt3w8lLiL//LdKrszA+jL9tnPqH91O9OkscBUxs3Uqv02BsbIxur0en20PXdWRVQTd0bMui1+0RRxFbt27Jo6WCgKaoef2mJCPJErqmUiy6dLtdWs0WgR8wN7dMpZzzBChyTpqkyPnCchJHq+RWBQLfRzdtrly5wgsvvMzc3DyOq1Or1eh0ezz6yOMcuucQsgSu4xKFEX3Vfvbu2UuaxGiqgu3YnD9/nm3btuaM8qaJJGb09/dzPSgWRwmiJBPHEUImMDa2gSgMMUwd13Eol0qUikWq1RKKIqKpMiMjQ3QWl3AXWqj/6ItcPD9FlqQcPfI6w0Mb2LV7N2fOnaRcrrC8tMLVySn+2T/75/yL/+1/RzMU4iRCkTUa9TaXL00yMDDEPR+8j8xvcOH0m0zs2QOqjZitTehyJ5RwJ3/lrzLuuhZQei/g9b2M834s490+3G3ivHe1a9153QG8vh9b15/+67iG60Ze7+663C14hfXZgte0bC0/fL3J3r4O9Ua7lRV4LfC63uu1ACfwLlB76xzuZLfDT3ey9wNe704r5W+wrbUCcH3/jRHP95IafKvdadVsrYfge0mFuLWWVhAEpE0jiJtGbr8KuU5f7/dhebs+FSVnqZyZvoZASrO+zKXzbxF2uzhje5irewhhGznq5NqEl2ex/sm/ZPgf/XOkt67SGx9h6sHD2BNbkFZXeq5cvpTXUWYCi4tLJGlGFEUEq6mVQ0MDbxNEPPLII9TrbZI0I8nyeo/5+XlarVb+jM0Emo0WW7ZNoJgWmSzT9T0uXLrIWxcuoOoGummSZQnFQpFmo4XndYijANMwidIMVTfRDAvHLRLGKYosk6Up7VaLkeERAt+n4LrIbg3FtBEEsGX4wsc+wsLcPHEQocgKhUIZzXBpN7rYpkMapywtLoEAQRQQR5AmEIUJiqyRxCk/ffoYk1eXUGSVVmeRe+7bxu7du5FFiUqlwkD/AM1Wky98UKpz5gAAIABJREFU6ZfZtXMfrlNidHQUSRJpNFew3QoIMo5bxA96lEsOspRw+P7D/OZv/Qa9bg9BEEgTMFQFx7LQNZ2Vep00A9exaTTagJCnD6sqtlUizaDX7dCsLxP12vidJmIcMj91lbDVRggTqk6FzlKXIPBQNQk/aNHzmsgKiIpCSkqSBqhyxsLsVRAkJEkmy0CWJBzH5trMNY4dP0UmpOzeu42Za5OkIWzZtItjR08AOuXKMN0gRZeAMOC+Q/cwPXmNq1eusbLc4vSJN+jUl1GEDJIIKcvodnuQZZhWHoEZHhlldGwjcTdASkXaK03EJCHu5czRoe/z8pEjRH7AY48+RhzHVCtler0upVIJXTGYmZ6n22kSBD38wMMPAxBSdDND0xRsq4BpWkRxh8BLOXfmEtPTs6RpimbkUcrFxRXefOM0s3NLxDE0Gm2mp5eQFAtVszn26uss15t0PR9D19H1XBonT0v2CMOQfft3cc+9u0FMsMwCaWKg6zWSVENVHRBURElD1U3OX7xEGCcUSiVU3SBTNKJMRlJMBNEgy1SGBsZQFBdVLRCGEmmq4br9pGR4QQCigCCJZALEYYS2UKfY9Aj9LrIkUi6VECUZUZSQJYksTXJtXVWmVqvm0kSKTJzE4PmkzQbuk8cRNg/DM/+Oi1tFqsqH6d9wkKimEjkJz/3keTqdJr/wsY+TRBGdXojbN4jz5HGcl87QPLiVWBYJwiAvCUtjhCzLCWMSAQmF6ekpvvGtr/PCiz9HkUVsU0MSYjzPo1QskSUZpVIJ13GZnJqi2WqQxDGBH7C0XGdyaoZXXn2NDBFBkul5AZbjcu99hzFNDcPQkCUFMpEEkbHxLXzyU5/DLQxQKA3iFge5fGUKPwYvyugbGMYwbQyjjO1UeOzxv0AQFUzLIQ5TGvU2zUYLQzcQBRlV1pjYtgNRFPF7PeIooNtpkcU9DE0g9LtcOn+eMydPY5suoqwTxSnaanQuyuJV9uOIZBX5DAwMYFk69eVlHnzwQZI4RdcMFFXnJ3/5HCdOnuXEidMcefElkjCk3WojinlmiizLhGHEzLUZ/vMffx3LdJlfmKTTXeH8+Yu8evwMulEiy2ScgX7CBw4QDZdQXj+P8zu/x6YfHsMPodtLaHVbFAqDdHoFekmBoa2beP3IT1DSHoqQ8tX/9J/5X//nf0qpXKazf5z6//RlpKPfRv5X/z3pYgP533ybTf/gX7JV1xn7xGGan/0whYJNlsW8fOQIvu8TJyl+4FOvLxOGPo5jkWYxkiyyuLBIq9nBMG2iIM4jqooIQsLS8gJRGGAaFrXaIAf3b2dosECvs0gad8lijzhJ0PU8lT6OY1588cX8mkcx2ya288tf+hL/3W/+JkNDQ2RpwsjQCF/+8t/HMiwUWaLTmkWgh6ELeL06czOXmLx6Ft9v09dfxjA0LNui2+3SbNRXyefyZ0ih4PLgAx/inh07cRRltRREyTWcAcPQcVwT09KIEo++vgrlchFpbBCp4zH9v/weJ964SOgJ/F//57+h4FZ54okn2LZ1fDW7Q+H+++/nxz/+MYIgEMcRmqYRxzEzM7P8wR/8v5RKNdp+j0qljNftIGaQrJMy/Hf2d7ae/VX46X+b7G6v1XUW8/XsxmDX9X6TJLnpPbz/BZjrbW831/f7nf9XFXlNkuR3b9RvXSt6Cu+kuV63tULZcDPT7log8foXf2PIfT2weidwCzcTNq0Xbr+xfmGtL/X6nG9dJbkdiF7L7kT4lH+oAPmPYhh7dL062XzIY9/+YwpmgukWGNn+AdRU5uzp0wyNDGMstZD+h3+N86dPkPaVCfbv4KKrcezyRUxD5bXjr7N5bxFRFHHEMRBEYgTK5RIn3nyDHRNbCLwuVy5fJMlEPC9E123OnTtPmiVs3bKBwPeRFAXDMOk2mwxUq0SCSLvdxDI0TEPD73QIvDzFbmryMrt370BVJPoGhkiTFNNyaDZ8fC+iWquwvOIzOFBFEiMEUvxOF9W0kHUdL4jQ9VyGQiAi8lpkaUK77VEZGMIs2RBEKIpKlCQougYiaEpKKgCihKJpyIqKJGmsLM6SpglRHCFKInEUcezYSWxLoVwyMXSLcmUU2TaRJJ3Q92l1lqj0VcgyEVm3CTKJ5YVF/MYi/dUKquEgCCnzc9NAhm0VEFExdBlV1bFsl8XFJVRF5vVTZymV+uh0mqgaqJrJ+VPnQVJAEZElGBoawK06aGIuc5RmKUkqYmhFLFNicWGGOGxj6DKibjC+Yzs1x8bv+uiqjWm6+EFA7HdRdB3DLqMZRbZNbGfz2FYMXUbTZDrtEMdyuXThHMMjg5SKJYaGx/j5i0fZf+ggmqEwOXWVjRs3IEsSkiiTiiKabWPYFimwc+duzp49z4svvsihg4dzJs8sIUlD3KpFlMTohgOZQKu5xN5dW0FIEMUUSZaQFBXNslF1jQSZYrmfn73wEvVmnZ0TEzi2RafTYGFhgZ4XcfToce47fIgrV6cZ2rCJLMvlKzyvTalUI06g6/UQZTAdB7fkYFgWaSowNzOP4xRIo5hKxWTTpg30uiH9A2UMMcXrNpienqRWGaJW7UPTJHwvQZJlREnIU62lDCnLNYllWSaMfXpeG0U2yUiRJJE0yzB1jU6rQRz4nHztIiMjZRQ5QEhlsjhiZXEBTRFJ4xDf97h69Qp91X78sENGrtcqyxr1xjWKtssrR17l7JkLbN02QX15loKX/8hlgwW6gYeiW2RhD0W1SZKYOAmQVhmMxbSCIkt0m1OYSgHhT58irZax/u/fZmGXzaVLpzj0C5/F2bKNKNNpLSYYYpFduw/zD3/jM9xz3/2oegU5gsq//QbaibfwP3gA07Vp15eplIr0PB+FXKLHMHIyszAKOPryCdqtDsvLS/QP1NANBT/0UESBOArJhLwGN4gjnvqL5xjqH8TQZcgSLMNkoK/GmfPn2T6xAQGRXi9G1vPIqaqqpAnIikYmyrjlISRNIxFiBDFDSBPiyGfD+E4OHNhOwTGQZJ0EHc126QYJlyevMb51G26xhCRbvHXhCqMbtyDKOj0/4Pyli5CBokq4rsXczDyuXUJWFbJUQlJ0an0DWI6FaRt0Ow0sxyFOBRRNQxAgzUQMLc9aEIjodldoNEOq/WX6+stomohhqIR+h77aKLZpcPDQPg7dc4gojtANmU63g2W7zC8sYtgGsiaxcXSQU2+eYeveGD+epmJtZuvEOIoi4nU9uh0PTdXxHANpxzgiAvLRk9iTC4gP3UcmaBQ1jbQ3j11U6UQ6laHdGJbLc8/+mPsPH+ahT/w9Fq68wdJyHaNUQbYs5E0jNPeOsPjJByl+6TNIS236nn0D7Q8fhUqF3tAArQ8fZiKSaDaWcC2DTJCQJRVJ1ojjDN+PsIxcBkggJgh6mIZBEqecPHWW5XqLkZGNnH/rPLIo0j86RH1hiZkr05w68RbV/lEs16Lb9cgyyFJoNTtcuniFwf4hhEwgS2N0XUEQJRRdQ5QSikUNQYiJowS7Ws1/H2SZQqnC6yfOIKs2k1cm2bNr/+qi7DKzs1PU6x7FYpXJyWnOnT3Hpo0bSeKIvsUGI7rBz8+f5cc//gmkMgMDfWQZdLo9bNsmTRPCsEOaCNiFMtnMPFa1wNWJjZy5fJlD+/cwN3OJQtFgaHSAJBPwfB9ZVXALLooh43fqyKJE0I2oVSp89sw0ytFXUD6wj04Q8aMfPsaHH/gAolVCyN7xU26NHN66cYfF+ZvSH9c84u5tLV9r/eBAPsObXaR3qImy9aLLt7H1iYVWP7/RL3x7uOsUme/2G2+e6y3+3FoRxkx457rfxLK0xlzv+qzWGEdYOxX6xmFvJVa60z3wdvu1rl+2zr21zvjvHmDtTRCFVSKx1XSHWzpdLw0WVsvv1vr87eygm7ebiJxWt9vwgb091jupwDdnS16/F2709W/1968D11vTi6//f9yIWW5HOLseJro1qrteIPC/+bRh4HcFQVgXdN74/m7sRvHc9cDn7fK01wKodzP+uwqtb2knCALJ1x8je+Ms4v7t7xp3rbm8X7ttW6mFQErQ8fFWupT0MrMzZwjDhFJplI2bdqMYFpIgY5FR+B//NerXHiMdqBF+5H5aVRvJsVAVlfHxzfh+QLVSo+lfQxI0ysZGZmauYVoW165N86EPfohGo4lt2zz//HNMTc8wNzfPlStX+NUv/yqKKlGrVVbrXEFXVS5euMjMtRkGBgdwHZtOp0OcpMwvLlGr1hgcHGTbtq0sLi0y0N9PBsRRXkdWKec6eLqu0j/UjygIyJKM73WBCElW8XwPx7EIgh62adCor6AaJmmSUavVCAOPXqdFtVbFciySNEHTVC68dQ5ZEpmdnadYLNHzAtIso9Nu88rLL3Pf/fejqhqaptNst/C9mK1bx4njAEEQkFWFIIpIopRv/8m32L9/D4IkY5oukpSRpil+r0epVMB0Crx89DjNZpvNm7cQRRG2ZSNKEkkac+nSJRzHxjJziaHFlToDtX4cy6DdqZMksHFkDGQFTdeIgm6u2Wq6CImPppmQKrz88jGefvov6R/oo1QsIcsaXS/EMAtoukljZZnvPf4I+/fvZ25+nmuzswyPDK7WSWl5Ki0ZvZ6H4+j0vA7HXnmNF154icP3HKJYdMjSBE1VuO++wxi6iiSJFFwXw9DIshhRzFAkG0GQ0VSNYsFBlBLSLMAy8lppx3HJ0gxZzrMFNMUg8CJefvkYQ4PDGKZFr+vR6fTQNSO/3pKC1+siIvPED37IL37qU1y9cpktmzdQLDnous7iwhKNeptf+sznEMQAy7FQNRVZzhlopUxEEgVEMaXZaNBstFB1A1VR0VQVw9CpVMpkWcI3v/UwlVqVDaNjJHFK4HtIskSSxXR7AZrhIqsymqEgiSKWZdLptImjBMt0UFVlVUs2o9lsU6nWEKUYxBiBnIXZ63Xp9brIqs7w6CYKJYswDul2Q2zHIUNAUQ3+6I+/Rq8X4QcxAhmFoouqagR+xNWrU/TVKmiqzvDgMJIsUawUsC0DebGZy1sVcq1ZUVDxgw6qrCHLAnEU4HsRuuGi+R5ZFiM//DPE/jLq7/0rrF8/zFTzOAtLbzK25RC6foBMUEjjENtMaDXPsX9fgbOnL7FpwwakV05Q/X/+iJ4sknxgN5msEoQRp06fZWWlzXcffhRVkxkYGCQMAtI0QSChWq0w0FfhQx84TK1SRBIFatUqSSqRZgKqahD4AZZhMrJhA6WSjaqKRHGEJCtYts2OrXuQZBHLLFAqD6AZJqbtYBgGhmURxSmG5SBIAkEYoMgqYRCgKAqqrCNIMs1GnUaziaYZLC4tMzs/x+DAADt2bMc0NAQhA1FidMMokiKj6TqGZTE6upFarQ/DNOj0ekzPzHH2rUuYpo6mWzSbXb73yKPYls2m8XF0VSdNodcL0FQTSVTJ0ohWo0kURfi+h+8FVGs1yuUSQRDy5JM/olbrw3FcHMdG1eTVKKvE+fPn0TSDbsfn+PE32LfvIEkKb2dp6BYhU5SKJTqNAr1ulyzNqNebvPjiEaanZtixaxzP7+IZEjNySvnyAvzweZTzl7n2sxfobXSJkgDd0BElgSuX3+LwoZ14nTnScIkdO7ZS6+/Po96FAkEQ4RQrOJZGYdMIzS2j2L/1RdKP7gNRof3402x75DkEAZKJDSzfu4XqSojvh/R6Hq8cfRXdMCkUC6zUl7EsE01Rqa/UWVpscXVyhm0TO1FkBUPXcWybhbkZnGKN6sAIpmPT31+m1elx+dIVBgcHKBZdSsUCrmth6iJh1MMpOHiRh2mbaKpCGPpIokgQBCiKStf3MXSDOEwIgwCAM+fO8eCH7ufM6dOMjIxQLBaRRIlms40gCHieR5IkVKs1vvntbzLhllE1jZ9dOEu5UsEwdQYH+5FEEVEQ8H0PY/VcwzChvlJH8H2sXkTnEx/g0e8/ym//1m9SdItUKv2cPXuRoZGN9PUNsLCwRKlURVFNJCElS0VarS6f/ezn+E2zD7HTQ/38x5EkkW5jgVK5jNM/+jZ4vSv/5C7cl78q8Lrm8O/Tf7qT6sXag62z/z2WwL17392mx76Hc/3ruNjrdHynoW461/eZ9vt+Dr4bHHC7fe/tjl2rr7uf343tb8UTa2mv3g6zrLVvvSjs7RYc7ga8wvtLG/6vCrxe13mNouht7dP/EvB6vTB5rdTetaKzN9qN7a5HZJMkuW2a8K1g+Xbzjv/gW2RXZ5A+/7F39bFe1Pe9pgyvt2Jy3TJE5FRCl0V+8J2v0mdnHD3+Ert2Haa/bwepqNHz2rQf/REbfvffQ7nIwsEJkg0jefRhNfJybfoaly9fYXJyivHxcSxxgOnzDYrFAo8++ihRHHHgwH6mp6dYXFxgdGQUw7AI41yL0nFctm3bQrHooikyszPXCIIeK8vLLCws8uprb7Brx1aWl5ZzhmJZ5Zt/8m10RePMmVO4roMsy1iWhaQoyJLMzMwMqiIDCaqmEMY+WQKSqCAQc/HSWQYGR5EVmU6nkzPkhh6qIqGZBY689DKmqdNtNTE0GdnUUXWVOIqoLy9TdF3K5RqiJNPp9pAkiUcffYzDh+9heHiILIPZ2VmMVUIRUVTp66tSKpfyfuKQJM1IkwxVVtixc4LZ+Tlsu8Dy8iy242JaNkKWEgsKZ06/xc4dO5FlGV03kBWZOAqJ4ohSqchTP3qKoaFBZFmm1jdAr9NDUyWSJKBUqkIKrXaP+aV5BgdqCKKEIKlcvXyO7/35D0hTicnJKR548H4WF5cYGd2ALOvopoMoq6RJSqlcZOf2nTmbpmkytnEMRRJZXl6hWHQJfZ8gDCgWi6SEdHodhoY2sHfvPrq9LqWCRZoleL0OgpAiSQKCkDMXh6GXp8vFIbqh4HkdVE2BTODJJ5/i0sWr7Nu3jyd+8ANUVeVnP3ueXbv2oMoaIjICArZlc+zYcaamrvHii0f40IceIEkSfvzUjxkcGqS+tMRTT/6YL3zu87z6yis8+MD9DIz0kWUp7W6H8fGtWJbLc88/z74DEyDmjqSiKpClXHrrKlkaoesSogCtRo8UAdt2WFpaxHUdmo0VJElkaGQLGzeOkiSgqQaPfO9h9h08gBcGlMpVKpUBVF0jTkNMQ2dleRnXLaKqBmEQ4/kdJEnOa5xtFwSJlZV5VFUjywRCP6bT9igVa6QIuG4OhsMwplCskJGgaQZxnFHrG6RWHeDo0VdxbBXbsTEMCwSRP/+zRyiXy5QKJcIwIE4jSuUCGRniXAPI8Io6sqIQxxBFAfXlJqKY0FhaohZKiNMrJM++zJwU0f9Hv4f06x/Gj6e48NZxlpcWGB7dQWVggsV6l2azg2XKeN1lnnv6SWLPY6g4Qu27z2D/9Cj+7m2slF1Mw0LUNHw/wA9ixsY28+Ybp7g2O43rFhCFlMDroikimiZSKtqkcYDv5VIpcRjSCfKUbJGEMPSQxAynWGJ+YQZBhCTN8kWZVpvz5y6wc9cEYZIgSDJxFhIlAkmaEoYhsqqTIYKQS3RlaYYkyMiyiiBIpEKG69iYpkGSZdiuS7VaRZakfI1dyHL91yRG1TUyMtIMRFFGlGRUTUWSFcIoYXh0I32DwxSLBbJMYnZ2genpazz0sYdoNhpkaV77qygygpghiqDIEqIkoqkasqxgmBailKcS5yUCLr4f8sorxylXbKI4wrYt4iTh+49/H9c12bplM7IsYzsWqipj6CqKqjAwOALSHGma8dYZj+PHX+XgwUPMLyzSanX4zC99higIEBBZWa6z3Gwhb9vI7LUZrLkGpWsN7MkGi8+9hnjPAVTJxnGLKLKMqYlceusUp86dZef2bdSX56iUiyw3VlAMCznr4fW6uG6RhfkFChvHiLZtQPnix5H+4Wdotlu4x87hfvUpooKD+dH7OLttFP30FWzLQVAESqUC3U4HIYM333iD3Xt3Y9kWGWCYKqIYI0oxiijzxFPP0Dcyilt0SOMuhlFgYKCfZrNJlsZompJr0MYRkiyDKGEYVl53nCVvp+nJUq69KysaQgYLc/P4PY/zFy6wY8d2XNdieGQISZKYn19ganp6ldHYIsvgxImT7Nq1m/3791IOU9IsY8sD97F16zbGxjZiGVoe0QRM00QURTrdTp5JUW/hFh2UNy7SWV6h+MkHKRZKIEhMTV7DNl2efvanTEzspFYbJM0EMkEgjSPa7Q6Vcj+/9mu/hvbMEWRZIvv0AyBkPP/0k+zZuxezOvy3ArzeLTvuzYOt01d6+/TMvwOvfwde7zS/tcDrevO+FbusBUhvxRrX9621/3Zzuz7erftutL8V4FUUxbeB6612HVDeCDivv14L9MG7weCNAPPG92vZjTfIdaautcLvcPsH3fXjbpx38vg7Oq9rjXX9pluP0vrWkP+NY63FJrzmDZwaCIkMYYsTrz/H7MxpNm0+QLU2gqg7+GGA+yffo/zwD4kfOEy6ezOSphEEEUmSE8PUV+qUikX6+/upVMp0Ox61Wpk0i6n11ZifX8QpOIwMDyOtymxUqzUEBC5duUoUxTz00EMsLMxRKrk0V1ZwCxaSCCvLyxw4eJjhkQ1YpkaS5PqLb507T6VUYXx8E1euXEWSRMY3j/Psc89hmha9Xo/vf//77Ny5ncDvUa2VkBSV+bl5bMuEDBzbpdnuYDsFoihCFAVMXUfXNVbqTYqFIqZhYOgqWRoTISIKItZq/17PY3JqltNnzrJhwxiObTGxbQuylMvdtNsd+gdyMNlsteirVdF0jbn5eVy3QH1lGUkSKbolBodH6XRbVMoV2q0euq4gyTq+5yORomg627ZuzqUYiiXiOGcqvXr1CqVyieXlJe49fBhNV/E9j//0R1/l6uWrjI4OIoo5iJFFhZ88/QxRElEuOqiajiBrlFybHdt3UKtWaDSXGRkdZMvWbSSJwMuvHMctlJAkkTDMI8uaoqJIMv/xD/8D9xw6nGvjWiZJFLC4OI/rugRBjKpJ2I6JZbmoqooo5w62IqtEcYSqaSRpQhxFXL16mdHRDdTrdUzDpOcv0+m2cG2XKMyoVYY4dOA+ZCXj/vvvw7Zz4GzbFm++9jquY2MYKooqU2+0GBkZZXm5Tl9/H45toesKjp1HSIMgoK9/ANe1UVQBt+gSJwmWZbNSzxdcxjaO0mqv5MzEaUqj0UBVVUqFInESrf73SBSLFVTd4fSp0zz77LNcOH+B7dsniKKQWt8gkpQSRTGimIOAQqmE67oIgsTiQh1dU5mfu4aqauiaTpaJqwtk4Ac+mmag6SYIAqIkY5kWS4sriIKCqTs8+r3Habe6bJkYJ01jojhEFGVUVabTaeckUrZDt9vlsccf497D9zA8XMF1HeI45bsPP8zE9gkOHNiXayCHPuVqmXj1OasstRAEAWmoTJblBF22U8A0DLL5RdzXLxPNLiF95ADHfu0gh/7pPyZUYq5ePk2aXKDZzhgf/yj9Iw9y4fJlKoMJRbOGqoikMezd/WH6Gw59v/ctLl66zMNTF9h232Gee/55FhaXGRkZRlZlDEMnjiIkBHpem0OHDqDIIqauksQRnU6LMPARBNB0NSceSvIofhB6BIGH53XJspRumFKr1dA0A8cpEcYZmm5RqRawCgYZIqIAQhqg6A6iICBJUq6VmmVkWYKASBJmnDxxilK5QiYKCML134CcXdkP/bymntxBSaIIRZVBEBHFvFwlJ4GK8tSxLCNDIEpSNN1A0w10VQVBRNd1DhzYx/LyAqKYoakib775OmHoUyi4hFFA6MVMTU/lBEVi/gxKk5zw7pmfPsvOnTupVmsUi0U0XcN1CywuLmJZFgP9A4yM1Gg0V3AcG0gQpBRBTJEkFQGRIJ1ElESqhT1UqkUs28J2HAYHB3DdAoZuE4Up3Y6P65axnSJLacoTp05xzWszrjn0NXzCx5/BeP0tzEtzcGUR6eABhgdG8KIOriHxxsvPceL4EUpFG8t1SHwfEJFFDdu1WWosISSgaTIBEezYiPyFT1A/uB3vyhTKnz9N7YcvUPzcJ7B/+8sULl1FEiUsw6LVbrN5yziCGGLaRk5MlkbomkgQdDD0ArKiUqtW0FWB5eV5LLtIu93E8zzKpSICGfPz85img6oZJAmEYYwkyvh+DwGRpcVlNM2gvrKM5RSIgggREAWRPXv30GzUsV0HP/DIybMFRoZHKRRdvvUn38K2Hfr7B2g2WsiKSDGIc8Z+S2d+fo5isYAk5VHXZqtFr9eh2WwiKSqBn/Cdh7/Lpu1bKMzUUQdqnO13SQWoVsucfPM1No6O8NCnPo6iKCDkPpSsysiisMo0rJJlCdJPXsDzPdJPPUCaJTzynW+wYWyMgfHtSMI7vsWdbC1W3bWcXvhrxFPvw95LoOSdRu9uLwjC28Q+a/V/63VZa1uzzV8TeL3Teb8zh/WOXaNt9u574Ea7qcxtLR963dmsNcF3Xq4XnLp5amunw96p3XtfbLn5e8zPOVvXl791fjdqEK9lNwLVW8sGb2x3IyZaj8vnplnfAcDfmL68XqDsbwV4vREk3mrr/TPDO2DuRnC7XgT0+vHvdWXtxjHWmsON8j1rzf3Gdun3c6kc4bMP3XT8rXW4t5vf7ca5m/MThAhFU3jt5WP4vYTh0W3YWo1e7HNx6izDjz+N+sOf4X/ywwSWhuf3mJ6exveCVadOoVAosLy0SKOxxNLSAtu27cR1bZIkYGpqkvvu/QCu65ClKYVCgUY9l9c4deoMU9euMTgwSLvdYnzzJpZXFqiUSiiiSOB1OXHyJOVqH4VyjSgK8vNJM6IgyOWPJRFVVTh9+jSbNm2iXCqh6Qb9fX3s2LGDYtFFFLLcsRU1ZElAVSXSGH727MuUqxXSDBzXxdB1siRl5to0iiKjaRqtZhPXdVE0Bd1w8b0AWVSQZIVSqcKly5Ns3ryFaqVMp9vGdWwkUczZNg0DWVGYnJpiaGgICJEUGcN0kCWTEEeKAAAgAElEQVQZXdNoNpeRZZ35hWW+9o2vsWvnTkzDwg8idNNleWGB5flrGLqGF7QplgosLS4zNzeHW3DzyAwZruvi+x6qojA1NYnjFNm/7wBjo4O023Usu8DctVkOHL6XsbExsiRkZaVBJsqkYZ6S22wvsnPndpIko+t5uMUyjzz6fUZHRujrr+TXTtH4/qOPEXg+tXIVyzKxXRev1+HEG6+zeXwTK40mS0tNqrUy165N4zgugiSQZiFzM8u4hSKabhKlKVGckEY+GzduJPBDOm2P+kqLSrmGLOrIkkIU+RQKJoIU4/U6+H6PgmvjOg6e18M0NLIkIo4DkjRmcGgQEOj1Ap566kn27t1FkoZUKwX8KGJkZIyvff3r9A/U6B+oEkQpoiijqBqu6yLJkKQxuqajafoqQdcqa7QMxVIFRbXxgxCEhOXFLn21AY4dO06SJNx3773IsoIoZkSJn7MAhwl9A/3Ioszk5BVM3UIWVL7z7W/jugajoxsBgSRJEUWBbq/L008/i2072K6TC8+TkcQBmqaiKjKyLKFrCgcP7UcQoNdr5mmK7R7RKomSiICqyKRJxMTW8bzmW07z+m5JZPv27QwODaIoMlHok6YxpmnR7fkYlo44V0cQoK5lrCzXyTKJZrOLeeRNxDcvMPXJLdR+/3eYHoGNI/diqhlnzjzBQGmQVBjFKIzSyySsaoFms46SaRx9/jiyJPDG6TfYdPwK+tcf5Xy1xCOnTyLqOqfPnCFJU8qVCkP9NVRNRlEkSCOqxQJ79uxCUxUMXaXVaqKoKoqikKymTSmaQhQnSLKIqTkYuk2WyZw7d5nRDZuxCyVUxSCOUkRB5fU3TjM0PIbtOmSCgChoRH7M5MWLOOUKInmx49vPdUFCEhSOvPgy589fYP+hA4iyiCCkhH6IouZyQrIqX6cTRQBEUSCOA0RRyYmZ/F5OgKaIpGn4dqGYIquIq79/aRavPjdd4iSkULDw/Q7zM3WGhjbw/PMvUKsOomsWc7OLHDnyEpvGNyLKeTQ38GLIRLq9Ho5tUyi41BvLHHnpGOPjW1ZlE0RKxQKWYTA/v8SxY68xPDSSlzs0W8iyShD4JMI1RFHAkMewHAPDNJBlmWKpiOf3QMhod9tohka5WkbTVWzXZmJigr0PHCYeruCN9CFqBrLfQ5qaQz5xHuEvjyK8ep7qcsBkOUTsLhI055FIGBwaQBAcBEHGsm0WVpYwHRXXLAIJzU6DjAzTKNDRVCq/cA/hFx7EmthC7z9+F+vhJ4numeDEzmFq0w1UQycmod2oE0WQJDLf/OZ32LdvP37PRzFM+souvcYiiiKgri5eGaae/z5kGWEY4ToFQiLSLCHwe/S6LTQZJEVncWGFocFRoijXEnaLRbI45eiRo1y+conpqWlK5RJ9/YNkpBimli9ipAmkKZs2bmJ0dAMnTpxC0wz6KkXMlocoiFzttXn9+HH6qlUQQJZlTEMnA0qlEoIkU3Ar7Nm5mzQN0eMUoxfyvbhNJqZM7NrC6GiNLOwiGTqmaSArIpquEiURJBBH6dvPIeknL6DIEiv37cGyTd469Rq7du2iOLQJWbx7t30tVt3rfsm7ojx33evfULvhBG7ywdY69C5A1W19uL9G8Ho3tr427Frg9fag+Kb74e6nurbd8h281wWI93L8fwl4zce5e8Ik4Q78u7feL+tFQ++EK9417h3A63XQfJ2vaC37bx68Xtd5XSu6eX2/JEkkSXITGL3x8+v7rtutYPbG/e/Xbhxrrc9u/Htr1Pf6++TxHLxKn//YHVe5bs1nv7H/9drctN1QuC/kk0IRJWRJ5OH/7/dpLl1jYu9+CiMTnDtxkigT2fviVaTHfsKbQ0XsUoFuu4miKrz8ymu8+vpp9h38ALYakMU+3U4HzSpSqA4Td1YQBi5j1WLUsJ9u0MMtVACBdrOBoWs8/Od/zp59+9k+sZnBwT5GR4dBSOl1e8xem6fb8wjjlC1bt3L16iVqFZdTJ85gOwVmFxaZmV+g0e4wsXWCqckZZmfnIcsYHKpiqBKyLLBSX8I2dVorC+iySDcIsSzr7ajx4tIC5eoA1VoNgYzQ7xJHEdVSCYDp6Vm2bt9NvdOjGyZYbhFRUpBkGVmR6XoNHLdAmiUUXAtZEkiTjCROMPUCsijTajRIowQhTVlptXDsHMQ36nUWF5bo2zBIJmQUXIswCNi0dQuSLmOYLn4v4LlnXuCt8xcoFh2K1TKaUqLbiTh56hV2TGwji1UQBa7NXKRULOL1cr3OasnEKbrIokhraYUgSHj658fZtnULUhYira6w+z0PVTexLQdVyWtzC+UyRcsmDDwOHtyLZZu0ux1My8Jvr7Bn7y4kRWTXnt2IsohpuywuLXP89deZ2LadUsHFtHQ0VaXgFgl8jzAICFbljgBESULVNFRFw9RMojgFQaHR6vCDJ57k0P33Yxg2URQhZBlh6OcgRhR47fgxBgcGWFpe4Zvf+lN27d5JnEa4pSJ+EJCkGUEUs3XTFvr7+9A1LdesVFSSWCIIAsqVYk7so2vohoauybRbdaKgR+iFdNtdLM2g3ZrD81t87avfYs/u+4AucRQjIGCYBooqUyr3oRsKhw/tYXSohu93aXZbCIKKouSOabe1SNHWieIm9UaPRx97mlrfECdPvsbe3TvQHBNdV5DlDL/XwlBh57YtqKZGJ/DQdYXEa9NutnEsi1azkddx99dYWVkExUDVcp1VbbVOFtlC1S0EWcKwVAQ5Jkq7FNx+kDQyQUbIYpKwDYqFZmhIskCagWG5EPpks0vIskjYV8ApVFDCFOvyAoKbYv/Zv6f60fya64VtlGsJJ17+CwytilndgmIWKRbLmLqJEEO5MMCVKwv8zu/8H/zG3/8Sw48/h/nGRZKP3Ic2tomBoREA0izj05/+NKOjI0CEkCZ4nQ6qKiNJAktzk0Rhhzj1cYs2URqi62V8z6fVaCCJEoViGcWwaLcbSIqK6bj0j4yBrKEZDnGcARKyoqHoKoZtkCQRoqCQAecvXiIRZcrFEgjgB16ePpllSFmMIKSMbRxjx+4dCFJO7JKlWU7JcT1raBW4ZmmKKEmkWUYYpSiKTJplSLKOpprESYogCiSJgKSodL0eiqqQZSmqogIicZJHhwVRIRNkFCVBUwTGNgxiWgaSotDuhrz25hl27DqA7RSQRYnnfvozXn/tdQ4eOohp6YiyiGUbCMgUCgWeeOIviOMUQZABlf6BAQpFi1LFBbKcMT3K044FdZkkyfjD//BDdm3fiiIpeF2Pnz33c9rNDiI+pXIRRdVQVRVZFKkvL4EUIcoKkqzSbnbIbJ2zK/P033+AbMsoqaqAF6K8NU35+avUphJG5wTK51eIXzxO8fwUyYvnkV67gH36AuYbV4hfeR7hQh3hUAXLcUmTMZ569k8ZrhYxrD7iTVv5x88+wQd+/Zdx/+wvqf7FS/BL97P81kUMzUDOoFws0uk02LV3N4JkYBX7qS9OIakisq6SZCKSpBN4XRw7z1SYnZvFtEw0QyH0EgxFoVGvMzg0SpgpRL6HaRosLa6QZQKXL1+hWHFpNhpMbNvChrExhjduoFStsLy4zPPPvcjE1j2kicCVK1cY7OsjimJsx6HZbrNz925UWSebX0A3DLLhKt2exwtHjrJ15wS6bvONb3wHTVExdIlMEJGEjCQKaTSamOUiyskLLP3iNn7li79CqTKMpNnIbhHJSDAckxOnz6JqBi+99ArnT55gaLAfy5RJUw/hqRdRZBnt858nExROvnaEj3ziQdRqATG9OTvuttGjOzi/N+1f16u52dZPa8zWeL1er2sTZl7vcy0n/07plNf9K1EQV4mY1h/9riJ7twF8whrbeznXtb4X4G1/8aZ+b4ko59fl3XPMslUm+FvndstY1/tYK6117fNa56zucPDb/vg6hE+3bpKYkyHe2n49e2+gOgMhyzNt3nbK796XX2u0G7HSre1uvXdFCUQp1xl/h1Zr7UDgWrZeCvKtc1jrc1lW3jN4ld9rg78ptlZYey10vxawu37sdbuehnzjsesxA99uLu9lRWY9IH237f4qLRV5W2JKJK/d9ZOEk0deotHu8PGPfoRCbYBGEPOBD32Q+dlptIcf4+hAleV2k22GQZylrDQa7Nu7B9uehDjg5aPH2L9vLwsLi5w4/XM++vFP8qMfPcWvTdxLp9vFssfJJIjjCLKMOI7zyIIoMjk5yYbRQVRVJY7jVcH4ApVSDVmWuHz5EgO2w8DQMM12hxSRTrfLlvFxIGNiYjtHXniJvXv3cvLkmxw4sB/Pb5EkKcvLywwPj9BuNWm1u5iGTqFoI4oinudjOy7bd+2mWi4xPz/D0Mggvg+KohBnEEQJpUqVNE2plIooqkIUx3i+h5+mlIouqmYiSSlZZhDFEd1Oj8CPcN0CqiwwP7fAuXNnuDp5la1bt3DvB+5/u+7FcRxKhSKpBFkc4fU8PvjBDyEIElGUghSQZTGf+IWP0lhZ5tKFs/SPDBKLEeWyyy/+4qeoN+r4vYyBkT76+0ZIE5VLl86hqBljG4aRNIckDHn6mef48Mc+SRwHLC7NkyU+sihiu0W++vWvsWvnPpLIZ27uGl/80hdRJIVex+PU6VNsGh/HDwKGhocQBAE/jBHlmGa7S7Uvw7JsojCgv7+PL37xiyiyTKPZxHGLeJ6XS8es1i06ToF2q8upU6fYvWdPrn0bhrz4/PNUqzU2btpMtVxGVVVIY0I/YnryKps2bcTvBYRJyspynYP3HEbRNAYHbT7y4QcoFYqIEvQ6HVzbIc2gVCjxyJ89wkMPfRTLMvGDAK/RwzSK/PSnz/Cxj30Ex83JaqIkJfDDXIIiSZEkiTiO6XRb2E6ROEn53Oc+j6JAFKYoupinmcsirXYT08qd+/n5KaYnZzh46D6++2ePMT97ma/8xlfoH+jHdhy8MCRJJApukS//6heQZZXPfe7zlIoWSZiSqiK9nkcUCQiahiJLWLqMliXEfkQQZGimRZyBYTt4QUgSx1RrfcRpDqBEMqI0zdNSyX2TZqNBHPn099cQhIx2O8SwTMgyekFMsVQmzCTSOL8GUZzS63XRBAFp3wSL7SZCJKAFEdkzx8g+cx/aP/kKDf8sWlzixaN/yYH9BnMLS5SKVYq1UXpJxsz01dVSghppIjA7O4vjOPzKg/dj/ot/CwWL6EP7QBExxZDBisHYwGHCwEfTZEQRul5IGMQoskyzXseyLH76zAt86tOfQNdMsiRDSAVazRUKro2uCsiKQqfXRTNMisU+VF0njNL8+ghS/hxKIr76x1/lK1/5dfr7+0jJ6HZ6SJKI7wfs2DFBHCfIcl5TKklmDkozgSzNaLc6uIUSipzLRCGAKOX3BfC2FIG4KgifrS6e5nJI+e+XQJ6lo6oq3V4bw7BJkwTLskiSfOx2u4Wm6dTrDSqVMkHgYxomqiQQej3cgk6cQhr7DPZX+Mo/+DK2a5PFMafP///svVmQJdd53/k7J0+ud7+1V1dVV/W+Ag2gsZAQQHATxbElirQlj0YjWqb8MJalmIcZxzxMxOwPY0/MxFgz47AVY0sURYiLKIoAIQpbYyUJNPYdaPS+1nar7pY39zzzkLebjWb1AogKD8P+Om7U7by5nJPLye9/vv/3/97lE/d9HK01lWqF1bVV8jzDNC127d6O3/fxSg4LC/P0en1efe1lqtUyu3ZvK8TQTBPPk7z77vucPnOGez7bRCmDm/bvwzQVCE273cYwDPp9nxdfPMa9930Kr1QBIEkTwjBkvDmO7bgYhmJ60xSdtRZHjx1l9949JFlCfWEKvWWK6KYF6PfR5xYxuj3cdkTYjQmXz+FYHsglhIQcieoPkOlp7Ed+RDrWoJtB6bWXafwquP/lDuI85d/+23+FYVroL91H77uPM/ovv035C/fw2t4pdjzzDu2uj+2WyDWYCgyRUqvWUMogCAK8UpnV1Tajo02CMOSJQ0/hlUqMj4+T5xrXdTAMmJqe5Oy5czRGJ3jxhRfYv/9mvv3tb1OtVvniF79Ae71Ns14nyzSlUon1XgfHdej3+7TX25w+fZqpqQkq5QoPPvgQe/btxXYctm/bWoiKhSmu6xZ514Zi9+7dNJpjuLbL0tIKu3buZnZuM93uKpWaAbZDGA5wHZvDb73NfXnOpplZWu11vEwQJil2yaZaGUP9u1FuYo70hym7V1xqFQ911iRzLIJ95/A0dLtd+j88ivXKDJ9ufQX7WzuIpU1Kesm/cH4/uvQ9+oaFXrnCeR3+NfZlmJ8qtsuXBPE3rav6LNavR8jxYsvkkEn29hWpZMOdirEc+z+NLy0O/2/3snU+CF7VfTHGvuLZzN40SJ80r3p8+/eCS9/jb9rolatElPamqE8Wz32+LEi+5QwPKX5KpEn9WogcL3zQ9AmL/O2N3XMxlmP9g8vO6eV9usJ+uk/2VdbUP92n1Y3T84w9G/TpStd32Df16yFi2KfsCYvsLbVxlHksx/z1K/v0QfB09T5d4z75/Z/0KbnWddqoTxuZKPp08d5LD5lkb218nsRYjv0PLr/3rrLPodm/H17z97+p3Sg9+qoaONfBOVfDWtdinP5N7OcevF4Z7r68lM5Gv1+5/cXv15pB+yhtuZFtrpyR+vcFXjNRDBESCkqbUiyeP8/Ro0dpjowziHPMMERIl0TneK+8Re7Z7LrzNrJsgDRNGqOjWI6DZZrUK1WUTHnr3ffxg4hbD9xCt+eTBn0SYeAPBtRqNbJOkR/m2BZREBCFIX4W0Pd9xsYnmZycQgiB7/cpl8skcUJmCBzPY2ZuHmEoKrUG3//+97n77k8wNjqKzlO2zG/m7KnjVOs1DFPyT373v+DsuVNMT08QDnw8r8TQo2Rh2zb6nQ5+r0cYJTRGJlCWQ2PMpds6jzJyEBrbddA59H2fSmMEcxDxxBNP8OlP3cfZk8dxPI9qtY5UNmmW0+0PkDqlXqshhCCxPUzTQBoWb775NtVahU/c90mSJEbrHNt2ybMUKSWDKALLxNAu4cBHGQYlr4wwFK+98QZ79y5glk0G/ZitW+eZGG/QarcJB8t4nksexbieR6NRIs0SlhbXeeKxHzIxMYJTSpjaNIlIUlzb5eCdH2Ol1eE3fuPvkaUxvV6HWqVKmkK1VGXf3n24jkEQ9KlX60UU4PQZJqc28a1v/TmDYMDv/u4/RWvNxNQMnU6XXAv+6Ktf4x/+9j9EDoU7lFKstlo0G81hTl9eRAu0xlAmuQbLNnnjzTeY2zzHyNgorudw5513otHUGw3a6x2+8pUvYxkCP/A5/PzzzC/Mk2qNUBaV5gjHjx7Dtmy2LMxzy837WV5epjnSgFxDnhOHESLPue3gzZiWoN/vUipXqFVr/PVfH+LALbdSqdZAZAyCAMv2UKYiijLq9TrrrTblcoko9glCB9N0qVYElq0xzQroQujM931KpQrHjr3D5s2baYw0GJ/YRBCk3H7wTlrLDUwlCKMAaUi67S6N2jijY4IsT0niFMsyCQY5ExUTJYuoZ605Rr/vo7XESlPyKOCRR59kcm47k+NVqtUq1WqFMAxxvBJJpjFFSpzkBFGMBmzbIhfFzHizUS/qQmrF6kqLerNOniXkWYZhSFpra5Tr41iWIg5DhBDYloXUkCQxlUqNuLUOz7zA4Nc+TfV37mLxxDKBPkOlvIO7P/E5OqfeR0pJqk1W2xGjsxUWFiqkaVFrNUshDEMai23+m1aXxWqF+199ld/9+J1kOkAHPiVb4Q96lCoVVlbXmJyaxEwkynCJwoBqtYzv97GcKu8fPc0ddxwgGPjkaYIyTSxbMQg0hhCYtoVlW0Vpk14PpWxsy0HrIrJrGJLf+vJ/RqVSRqOJ45hSqaiZ6ro1sqygtBuGTa5TkjSlt77OSHOELNOFkJooSmwINEkcYZpOMfHCMIdwWEM6H47/F1Nh4iRFKRNEdml23HPLIMQlurAQgjRNsSwbISSPP36IL33pi9iOSyFAVwMUg36bJB5gmUX9z5FGiTRPOXfmHM888SS7dm7h5MmTbJJzlMseQkj6vT61movlSD73uc8QRQnj42OMjTdxbBtpUAh3ZSFowd69e9i5axe59gHJfZ+skaV9dK6p1qucv3CB7dt3MTq6lWq1hpAFu0Gii2Nqic5zkiyCLKHfb/N3/+5/gjINhJKEoQ8iR9k1qJkYtRorS2dp1iookdFfP47nNllcWaPRHMUpNbCdMXqr72ElFWR7gLe8zN/fsR/x3DvkL/x3WBM1GspECFVEm5MU47Z92E+8yscOvcxgrElNyGG9VI1SiizLcAAjTilLSSddZHykzrrVR0qDkdEx0jQlDApRvzAMudBZRylJuVpFkHPPvfeSZ5qvfOUrdLtdpJR01rqUnRLNZoPV1WXKlRJSwNTUNF/80q8ShhFRFLHaWmPb9l3Mzc0jhMZyFH2/i05NvvXqi9x+x+24UUK93sSyXWzLY9Bf4rnnnmNqYpQ4zqho0FmKayv8Xpt9e/agL7zE9h37OHHqLLsbI3iVMsoyMb46eon2ic6pVctFCoYu7l/DMIhv20l7bQ1/9TyTYhN5moKQQx/sZ+6m/Ef7j/bv2fQwlPuzNVHSqNvT66/4Nz3OhwCvG617tSjujWCtK9moPwsgK/42wNDfliVJcqmxF9utlCLP878VZH/RLuWhXmVm4eLyK0WQrvx9owt6NYpx+j/+PwCo//6fXnf9613DjWjRHzgWGiUlhhakYcQ7b77F22++xUityr69u4mTjBOnilqEtmVj/eN/hq6WSXfuJM0KoRGdF1SYxfPnGB8dIQwGKK+CISXttXXq1QorSxfoJZrZAz4C8E9MEUQBY6NN8jzj1ImTjI5N8vpb73DvfZ/CkjnHjx9jbGwMyzKJ4wjTtimVSpw4foJarU6j0eCZZ56hOTrGloV5lBT0el3KnkucSVZXl5mcGmd9bY3xiXFIYzINhmkhDYnOYrIsxUCihcS0XLSQZFqQ+i1K1SpnLywyNbWJNElZa63RbDZora7zg4ce4su/9Zu8/tor3HzgANIwGUQxCCiVPQa9Dt1uh5GRUc5fWOHw869w/vwiWRYzt3mOL37xCywvrzA+Pkqn22Ok2UQITWt1lSSJmZqZR6KHdTgjhGHx53/xl9xzzwGmJqdRhkWW5SwvL2GZVc6ePc627ZsR0kQKA8exCcKQbmfAC8+/zuzMJJsXmjhehShXlBwHI0tp90IcV7C4uMjk1CRKGnTWOzi2O6TTBqRJxIPf/wGjY9N88lOfJE0Tup0uy8vLzM3NceTIEfbu20u1WiFOYtIs5cLSItPjhRNkmtZQ3TZHk9Hr9ajVawgEg8GAbq9LyXUxlMKyLIIoKoB8u0OpXCbPNZ1el5GRUbKsiCralo1pWeRSghSILOe5Hx8mTTJ27dyOYyuOHDnK6TOn+exnP4ulFO3OGmmaMDG1iZMnT7Jt23YGg4B+v8/4xCY6nQ7t9hqTk+P0/T7BIMR1bSYmRofAvsaFC0uUKh6uU+MHP3iEkmdx18duJc+K6NkgCKjWaqy21qmXG+R5ipYaqQRRnGAIhd9eIdV5UQPXc7GURRSClDlpGmPbLidPnuPZZ57jnrt3IZXJpuGETaah3x3wzmuvUnZsTKfM9MIOHKso07S2tk6lUqbX61GtVkmCHnkukar4bdPMJrQQCPJCbCxNkSh0BsIqBInyNKPbXacxUiPTCgOIw5BCrUjieRa9Xhfr1ArG8++Q/97fYfArt1JOZ3j5zfs5eNOXkJUOax2JXnuXWJSZmttLKh2WlpZpNEdpt9soZTE1OUPv+Tdp/Ktv8O3TR1kWkgMHbmPvvh0oM8E0bXKdIw0ThCQeXvvFU0do1OsFdTyJyNKMdifjoYe+x2/+5q9hSMiSGMsyENIgyaFWHyFJM7I8xzBzQKC1QMpCdClODMhSLLOYcMm0JNeCgb9OpVod5mYNC79riSYjiovZfcd2yfIUgURggM7R5ETRAMsuXXoHSCk5e/YsY2NjRURfa4zhhGscF3nLQVCUNxHCIM8gSgLkEMAaUl6iHKMFeV4ALE1KGAU4VkFzztOYKOhBFoMwieIUZXl4TokfPfsMO/fuYjAYUG80qTcapFkR6U0Tv4j8atC5KMA0OcvLy4yNjRegq7tOtVKh2/UpV8r0+z5uqYRt22RJSBTFWJbLN/7sW1QqNbZtmWHf/ptJc02eZyhDFuq7qigJlqYpOo3Ikog4ifGDmInpTdiW4vjRI2xbWEAoE5CkScDq8iKuaeDYEeutCwitKZXGML0yymrS6Z9AilqRYhG3qZe30et1kYM2xloH1ykVpYRK5eIdmWakcUz7lTepdwLE9s0wM448t0ycRNi2XdA9bZs8ScnbfWxDkZUcskqJlZpdsAIsSa1WoecP0AKq1RoaQZpkiFywvtam1xswPT2NEJrFxUW63S6vvf4av/KFX8ZSilOnTjE5vYlarcZgMODkydOcPHEK07TYtGmaqakxzpw5Sb1eI89Mjh07xszsHI7r0Gq12LtvL8tLKxw7dpzlxSU+9elPFtRuUtZaK3Tba+zes4d0EGP95ZO89W/+a+Y2T9PptDEsk7GxMeTXNpEmCfK3z1IquZw6dYpGfRopJW+++SZnTp/jrrvuYnJyEpWZBGnM//sH/xNf+s1fYebWu5Bp+Zo+ycVnQQhB9mHqpeYfjQX3kwDFhi35QJt+ss2123UxWPJRGHc3YteKcF08d1cGa66/r6vThq/sj74KGGEDZeRMf7BNF/d5+faXxEaHuZnX80s3bv/Gy68MRl36Lm4MKIkPA4M+RD43+bX9/MvtIi6+Wnsvp95ffp9fuma6+O1i6uRFu9bxP7BM5D+1XHCVqPI1qPKX3wNXtuVqZtvuhwZvP3c5rxstv9HI588a+V9uN/IQbsQ7v9oy+Ynbkffd8YHtbmSQ+ihtM4REpBn5IOLHTwbORLUAACAASURBVD5Ne2mFrbOb2bpjB0iLVEts16NSqfLan32fhadfJLhzL165QZJp3j/yOr1Oh0q5imGoYYRR0Ov26fZ8Gs1RpJCEYUi14lKdypBC8NRfvUEOLGyeRQgYGxvj/OISQZwxMjqGKQWNeoOTJ09QKnl4XomV5fPUqzUsU2FbFufPnWPf3v0oA4LBoCj7UK0SxQnf/OY3mZgcxTQl4xMTHD9+grGROkiD5dVVbKeg+2kgitPCOaYYm0wlyXIwbQevXEHkRX5Xs9ak32sjpUG/PyBJigid6TqUqzV6nS55nmIIMA2baq2OPxjQaq1z6tQZtu/cxec+/0vcdPN+hJTUm3XSPMexHaSQnD59itm5GYQAx/Xodtbo9dbpdttUqw127dxNueQgpUEQ+NiOjRAQ9gSvv/Ei+27ahTI8BkFU1E10PFZWz3PLLQeo16tF1DBK6fQGeI6NTkMee/wx9uzZQ73eQEiJVJIkjih5NqYyCQZttE4wLRshFJvnZzGUQaVSoj6M9A38Pp7rkmdZ0dZKmXqtSpYE2LaN7wc88MBD5DmMjDWwbAshIQhDlGlQrpSxTAtNEQ1zXRfDMPjGn95PqVTiqaee5OBtt/LWW2/yyhtvsGfPXrI0ZeD3cRyT1dYyruMQDhKEMHjq6We59eAtjIxNsrKyju8HPPbYIT72sbtwXYfHHn2KgwdvJ89zzp09y8TkBGEU4JVcavUGSZLzztvvcejQIe69514GgV/UyW23i7JLlTpCSk6cOEYUhezetZsL55eo1aqcOXuaSrWGUg6WGCraphHKssgzePHFV3jskUf52N13Y1lFPdAsjonzGCkEraUW9doIWZ5x4ODNjI7UAUm5UiXPcrIso7/W4rHHn2L/gdsZGR+jVrGJo4A4DKnXayhD4rouAsiFpFSpYwxzsvM8wzJtpNSEYR/f72JIWYAlZRTsBKe4Pm7JQ+eacBDgOi6maWIog8HAp3lkGeNcC/l//R5HpiEK1uj1fG65eYH33z1C318mDiNs12JkZjcrgUmpPMpIxSWMk6JUjDJZv7DM+P/xdfo75zmXp8zNzXLrbTehFMP8ToFhqIKODZBnRYmo0CeKQyqVEmutNQwJju1w4MBeNCmlkkOOhixBGIocE6SJ45ZQ0sS0bKShQBhYygINynSKGrVpTJomGIaJNBSObYEuRLM+kDwlcpQyhqDUQFOUdxIIpCFAZ2idYSjrkvOhtaZSKcp3QUEfzvO8ePZkkXMUJzGmaZHnoHPI8wTTsoqxnKFbOMxzKvJo9VC1FUK/h2U7SGXiOh7tbh/LtDBtFy0EXskjiUNOn17kqSefYWJykkazSRgWVH5LOcRxwvpaC8exUaYkCPqMNEdotdYK9WvHKvKApVE4VCJHKkl7fQ3XLQ9LNmkmpybYsXMbb73xFrnWPPjg99m6dQtKCYKBj1JFCZcgCKjX6iRRzNh4A2FaKMslS6G33iEM1slyjTAUpu1eEiPKckmWdHCVQApFx++RS41t1UFk5DojTy3SfIBT8VjqrDO2fQHfBHO0RtZooOsVVrIYZ3YKb/9O+iMN1ItvwnKL4PadaD/CcD1SQ5MKgVWpQKVEIjUqTlFdHyfNkX7AWj5gZKSGUh5hFJNkGsty8Ps+JdcbTjau4Ps+6+trzG+eIY7jok6yNGnUR3j6yWfZuXsnpqnQOqfZbFIp19i5axcIwXe+/R02z24miRJGRkdBSwzD5NTp0+zds5fFpQs8/9xz3H33XSxs2VxMwuQZX/3a/Zw4eYJPfvIT5FqjU1DvnuDc5z/O+HiTxaVTHD92hPW1Ft6RcQxD8mr+BJ12jycOPYWhDN555x1effU1xkbH2blzN65bop87IA1k3qO9vszW/fvR2dWpnFf6JXpDCZ6r2A2uenWws+HSq2x3fUD4UQR/btSuBWKulj94/X1dO3/yA/25GnjVGyy7wVNQjF8f3O/fBLxef8MbBK8fap8fYu3rCFFt1Ijr5bhe+f+fXLONccKNH3+jbX76Wl2vfZeD5RsB7cBHynn9uQevHwaQXi2h+AaOe81B6lqh9CvXu5HtNqIwXy+kfy27XjFthUBmmsd+8DBryytsm51nZnKKQRqzuNJCSAMQOJbNzINPFVTazdNkqcAPYp56/CEmJyap1eskScog8LmwtIjOch597BC7du0hjmIGvs9Io0RkriCl4PnH38f1SkxOjJDECb7vY1oOTz79LFu2bWfx3Bkmxsd5/vBhdu/ejWma6Cym02mTZxmmMlm8sIipFKYhKFfKpLkmSTOUafH84cOcO3eae+79hUKtEQO/18a0HUzLwfE8TFOx1lrj1OnzjI9PFPUrhS4okqooi+MPBiipaC2vEg4GVKoefn/A5OQm1tfavHfkKLcePMjq6irf/Yu/wHNtKmWHhx8+xMjIKNKQTExOsW37dmZm5yiXSyhTEQQBQkh8v08UxghgdGyE1uoKSRwhDUV7vUWexsNC9Yosywn8Aa7rEcVRQd+KI2qlaQ498QP27tuF49RQymJx+Rz3f/0bTE2PUKkWZVTCMOTE8ZOcOnOOuU1TdNsrzMzOoAwbqRRRXNCYyVNefeVF/EGI5yq0Ttk0PYsQinK9TL/XwzAktlUoGM/MzmApC8MoNO+kUUjlx9GA4ydOMjE5xY6du8lzSNIB/X4P0zQJw2HUyrFRhqLT7TA6OkIYBmRZxt6duzGU5OabbybLUhqNOtNzC5jKJE1jKuUS3W6bJAoZ9Ptsmp4jCGLOnjvPvptvolypMjU9w6OPHiIIBmyamaLTbfPWm0eZ37yA1jntTpvx8TEczwIEDz7wffJc0KiPsnXrArVqFUMVkMGxbRzHIdMGWZ4wvWmiAK4Xlllba1GrVbFsmyRJC3p4OUMYGeVaFWm6RAG8ePgt9t+0G9fzUKZJybGReY5dsVHS5MSxM4RBxMhYE2ULgl5ItT5Cmmq0liRRStRvM7ewg6m5rRhKYhspjmUN8yY1S4sX8DyXJI7IpIVle6RpSpYm2LaJ3w8xDEEc+zQbNZRhorOMBBB5XpS6kIIoSTANBbkucjjzHN/vYTz9Jm6cke3bzvqnbmN+bhOT4xMsrr1I3dxHq/tjJhp7MO2QQSZxRxaQzhiGNFlfOo3lOBiGgVImZ/7XP2RUSw4tneUT931mKAgUY7sWURRjCMjTFEVOHockQRedhNhuMeFz4fx5xsdGsSyTNImJIp8sT5GGxC152LIAqF6lgWl5MJQM0SiEsNC5gdAKQ1rk5ChD0u+vUy6X0FoU9Vv1MFdYGBiGQgqDJE2GzthPxueLYh5FdEEz8HuFSJYwLlGDsyy75GAkaYoyjEuRVCmHQHSY+2oIkzwTpHlMlmUkSUGD1lqjDDV8HxTjuxTF+8ExIU5zkApl2khhYJoWmS6Uwk3ToN6oMjk+j98fcO8nPsHa2ionTp5gZKRBlmh832d8fBzLNllbW6VcLtHpdGk0RjBNCzHM5Q3DGNd1wLqANHpUK9NEQVYIsDkOhpJYlmLXjl289NLLaGB6eppSycVUBj2/Q63eIMty8jTjtVdexVA59eY4GYo81Tz0vQfZd2APXrVOKk2kaSONQmfAECYri0dxTYlSJZxKiUq9iWtPs9I6R7XaoFbZjOmkZHnC6MgEcZiwtrKCZQrWW12iMLwkgmW7NokSiFt2oIIY+dAPMcdG6W2fo3f8BEmSoUwTISXCUlB2wFSY631s28TRgp6RYKgSXqU2zJm1UFKRZymnTp3m/PkLvPDCC4yOjvDEoUe46cBNzC9spVSqIYViy+ZtmLZBr9cmTVOWFpd5+OFH2bFzF+VSidnZOSzTYWJ8kkcfexR3tcP8yBgTO7Zz/Pgxjrz/Hvfdew+dbhvHsRFS4Dou41MzHDx4G4888jDNkRG8pS5iENH8vS/TWl9ix455tmzdQqVcxj0yhWO79DcvsX3LPn7nt38Xr2Lzy7/8y9x118cQQjIS5Oh2DzHbwPE8nnnsEerVEcamdmPaV88XvWj/Ebxe264HXjcSKL3+vv62wOtPR0A3anMRIfzJ9jcalbzWubjW7z8P4DV700AvS8TEjQk0Xfn/v1XwehlN+kq14qu17/JreqPBtv+gwOtGCB8+ehT2WrTcq138KxX0Lm/D9WYprnYjXB5l/TD9uZZ9oK8ahMjRpAgpSYUg6SX88NAh1hfPMT+/icZYicd/+Bi7d97KKy++wP/+z/85tZLLznIF9//8dwQfvxXh2rRaq3iOy0h9nOnpGc6ePYmS4JgWs9NzrPcDzpw5hxCCJI14+fWX2L17J6oeYNkOMyO3sGXLFpTMSOIIx7VxHYd9e/ZScV1GRqv4gx4LC/NIwyCKY2zTQRo5/UGfKM7ZsWs7Ydqn5FXxBwOicECWxtimojkyxY6dO6hUSvj9DqYhqDfHSOKEeq1CHA5YunCWkufiWpJSuUSWZug8IUtDXKfMytIFRms10jTjBw8/SpxDnoS8e+R9ZmdniKMAzzUZH63x7NPPsLzSotmc4PALr7K+fJYdO3ZQazRRloUyNFniYzo2cdCnt7aCbSpMpfjqH92P1hmzs5vI85xyuUoS5fz1D/6aha3bkErhlUqYpkGSJziOgxKKTmsd1zIxPcXs/DbcchOMmCxPqHpNcgzAZG5unvX1NcZGRzGl4NmnfsTE1DibF6YROqXfLyKYQoJAYJsuP/7RYe6+9zOgDWrVEZRpYbs2lmEWwCcZoCxFqVpFKoPV1fMwzM0Mwpg8FwjDZGJiisUL57FMQb3q8K0/+0vefvNdbjlwkL/4zvc4cPMtaCRJ2McyTfxejziMadbqpFmI47pkWU6j0WBpaZGJ8UmiMKBSKZFlKUKAUiZxnKOcMiNjYxw4sIv28glsyyGOIyanpmi1Wtxxxx2UPI8tO/bwzFOHMCUsLV5gdm6e0PdZXl6hXq9TqTg0qg5Tm6ZJ85ggDHE8jzTP6fR7yDzCtW3iMBnmp1psmpnhhRdfZWlpjVZrHcOAzfNbkMohTAVpCsvnz7J3x2a2bp/FdgqWQq/fw3IdJDZaGywuLVJvVpAixTYN7EoJrXMunL/Aow8/yoFbbqFUbVCv14iCLq6tMCyXLEtptVoIqShVqijbRSoL1zZprazwyMMPc/bsGfbt34upJFEY4ToVNAZCSJRpYkuTOByAVUIqF0trpM4IoohUCGTHx3nhPfLRKtZN21DlEt4vfhYle7zw/HeYX7iDd174Lm6qWekHzOz9DFON7fjdLjXPIMtiVGmUXLokaY57eoXph37E4Ja9CKloTFaxTYWSJlmSI02bLIY0i4iiAJ0LbNsiivtFBFJnKNMgzbICWEhoNEcR0iKOBcos0wkiBlGC65UwDQNBTq41QkmE1ihDkmQx2tAgBGmW4LoewSAgS1JMWYBLIQQI0OTkeQoyIYwCLMsZUogNhAQli9I9URjglSvk0hjmQheUWdNSpFlClsWYqjj3SZygNfT9No7jFIrHQzpzHMfc//VvEkcxC/MLCKExJAR+t9ieIf0yzwpHVrlIs5jckTpHpwlaGZimgWupIvIhbAzbYGHLHP1+h2Pvv8/c9Cz1cp2YlHK1Sq/r4/cHlMtlnGG0M4oi8jxDykI8TqiijFTKMbQIUcyQRoNCGEpJkjQtUh5Ml207drJlywKOZSB0huNYBFGKZTl02j2WltZ57KmnaVablNwGJ48dY3y8yejYJDoPqdXqtJZXqFdKGKT43TWkKnP0vfeo10scP3WMODdwqhPDaHmNPNdkOqaznuB5DuutDpVqE8O0kabF/d/6C3bt3kc4iKnW6oXwg04xLQtr22b09nn6r72D8+QLlPbtxLUsOp02lmkhhIHOMqIsRXsmZi/CzgSuLNNROYahsEybQb9LmoRooZicmmR2boaJiSnGxmc4duI027bvBHKUIZAi5/1j71FrVPE8F9O0KZdr3HnHXQTBKv1+h4nJCUbGJ8gQeJ7HbSPjlKXk6SNv88Lhw3Q7fZI8Z37zLLaC1vIKP/rR87z6yvPMzcxw4OYDLC0t4/UGnD19ivd2TvHsM8+yML8djYWyaqh3GgXGuNlnrdPnn/xX/4zP3PdJTp48i7IcRscnMf+XP4TnXkd8/l5SnTMxUmJ0vIk3Oj6kml/fL7kIZi663ht90JpL4qfXsWtVjrgxH0pzwwe74X1+cP1rMu6GARbYODBzub940Ue8PChzrf0Pv/3UsuLvBnmLXHkNis/FeqIfMJ1/YN1i7rMQsBOX/l08zPUDPVfahwkcfeAc6KJ+8sW0tqvdaxuqEourgNrLbpGL/RI/3a2LjRm+M66+z/hbNvlJA3XnT+e9boQNijZIiqPLobaCRMiCeaPJi8MOT/jl3y8qGl/6XLZMYAxTXiR5/pNJ0Q3P6zXscmxzJT662n36HxR4vdw2eqA/ShT2RmeBLrcrB8mLA9D17HpR4OR3/lvyBw4hf+VTN9yWG7ECuCrQBgYmItY8/v37abdW2bf/ZiamN2M4NTZv240WmrMXzvNbv/2PsL0S9adeQi210Hu2kkQRZc/BVpJ+f0C7vc7s7AyNZo0zZ0/hlV2E0PR7PTbPzTI1OcHU5GShBikc8tDjwskVzp07yUhzgueee57ZuTlqjRpSSV597VXWuy1eeOFF5mY30+8OaNZG8f0+QsL4+AS2VcL3B5RKHsvLiwWtbbVFFCUkSc7m2Wn6/Q71WhXHK5HlkEY9Sp6D3+8RBgHLiytMT00ThQOklHTb67i2jdBgKEWWJViWiTQMDhy4ldnNs/S7q/z4uR9z4MDNGKZgZmaSC8sr3HzgVpRpsWffHnbt3smttx+k1hyhtbaOIQWe6+L3+5hOGceycMtlbNdDC4PJiUnKZY9Gs8HpU6eplCvEYUQchRw58h7NegPbdkiShHLJI89y4rhoW7/fx7ZMyl4FQ5oIndNv9/naH93P7n3b2bN753DAzIiTiGa9xsE77qBcLSOVwPYqlFxvmOOmiaNCIXd+8zwnTp2iXHJRhgQB/iDg8I9fZnl5lbnZeZQySZNCPMZ2HDyvhCElAlCGxHFKSCFZX1+jUi5jWRbN0Uluu/12llaW8QOfXbt2ISSsr7cL0GWaOJ5Nz+8hEGRpXuSoBQOqtQrrnQ6e6yKEoNvpYNsW/X6faJBRrVZwLMnp4++QButYXp0819TqTXSeMzbWIAx8qtUyJc9h08ws8wtbiaKUYNCj0WgyOj5KueKhDI3G4Mzps4yOjg5f3vkwL9Gh1/eHyskhtuOgDKPISZueYGx0hNGxBo5VqJOalo2hTF544UUee/wQ9WaliKYbxiXxFqEsoigqaJyNOrnOMG2LNBWkica2Xfbu2YcyLJAaqSRSSpYWFzENA0MaOE4JZRS5gW+//S6jI2OcOXmc6alNCGD/3r3oPCdNMwzDQMpCXTwKQxzHIei3kVIgLYcs1ySxjyQBNPZrx9HPvUH+5c9T+5//c/Sz7yMQHJ9eYuXCSW7Z83dYPP48QfcMF1or3HXf3ydX87z2ygs0xhokWSEc5ToemQ5RSYz9L/6YfPM0WbPJAw/8Fbv37caQCoHk8cefYGZ2BkOYJEmAaRZegKkE3e4qpunh2CUQinNnFxmfmCLLc7JcY9ouXqmMadogBPV6vaDhDnO7Cj9GAIW4jJACjUBnxX0LoKQFKPK8oABnWXbJKYOCXXDxXMNQoElI0BnonCAICrowxTvhYu6PEALDkKRpIc5UCOAU1zIMBth2Qc+WQ8ZLEAw4fPglPv6xj1MqlRDD41mmRAiJHnpewihoxxdznwQw8H3yJMV0ypjKYr3dplSp4AcDSpZNlqb4fZ/x8QmEFCyvLFOqVnEshwcffIBbbz1AGPWxzBKDQUCea1qtFo7jDAWj8iK/1lgizzIcNYNt2aR5NszbdbEtGyE0UOS6WpbNubPnee/IMRynQqlURUqDRrNJuVRi9+6taCQPPviX7NqzA9M0CQKfSrmKkIo8LyLDnucijBjPNahVaoDL1p23cX5plUZjnG5vgO1ahHFCpdpACs2ZMycYGa2AgChMufXgbTiOw6HHDhGEEVPTM9iWIElShBDktkWydRN66xzGocOI6TH6O2bwOiG9bo8ky3AchyRLkVUPkWSotS7ldR+r3Ud1+kh/wJl+mxcOv4ppKqqVCmPjo5imwa7du1GmgRSF6v762jrtdofR0XHCMKRer+P7PTTFu1QaBqWSRxyHJElItVLHXu/Sbrd5fXmJrVu2cvcv3I3nFmykWr1GlsE7R44yPzPD1i1bgIyx0QZ212fEcel/7gDTU9swjRrHjh/lzPkjzK3tB+B88wgzs5uRyiWOB7ilElIpUnLcJ18iy3Nat++hVK6Q+OsEfpfGxAyGujEt0J911PKjMOv+/2BXBjKu9EM36tOH6efVwOvFcemj7ety25hpuHGU7sNfn7/JNb14T1wzP/nDLd64XTfYxCtXSw8Xz8r1wOtGe/lg4O2n17o8CHbd6PxldWI/DKPgIpa5Htv0Wvv7KOD151oT7nKhpssHrYsnMk3TD8wCXG5pmv5ETe8yu9ZF2yhKenmUtXAG5aX9XlkT7Gp25axaEfbn0mz/Rp8PM5v4gW0x0EiyWGMqydM/eAAj9dmzezuzCzsQlkcqbJLcRLk2d3/iPjq+z76RKapff5D8wG6EEARBSByGXDh/hompMbZt30rf75OmGfML88RpSLnscvC2A4yNjnD29GlKnkeWgaUn+e7XD2HbFvOb5/C8Klu2bKfv+6yvr6OBar1CayXg/LlVTGWyMD9NknRAS06eOMV7773Pu+++h+uWWFxcIssy/virf8z4+ATPPvtjgkFEt7NCOOixutoiCqNh2Z2EIPBpra4ghWD//v10ux0cx8MQkmNHj7K6ssr3vvcgcZJQKhXUYrSm01knz3PqtQm+8Cu/Rrcb4nlVkgRm57eAlNxx553keUq55OCWykVZEdMYKvl2qVSrpFFClKR0+z5JlpOmOaZZDACnTp5h69btWLZNo1Hmppv28cn7PkmlUgMhsMxCpKmIAmkM06Rab5KmHXrdRQQRa61FHBt+67f+HlOToxhCcO7cWZQy8EoOwhCkeYJlGaQ6J8kpxIOUSRqnvPH66xw58j5eucIzTz3BsaNH8H2fP73/69TqdRa2bmLnzgUEKZYtMVROFPcwVFF30jJtTKU4efwYnU6XVmuNl196BUOZdDpdnJKHW/KYn5/jl37xM0AR7R4ZGR2q3CqSJKPVapNl0BwZw3YdwjDEtm1GRuv4fp9//a//EJ2DaRZ02emtswhbkgqYXdjN8TN9nnziEGEw4LVXX+HZZ59GCkG55KLziE0z06R5zh9/9Wv8yVe/RpamxHFEGAYkcUSYFOq8C1u3FNTuKCDPEmrlEn1/gGnZmJZCWQqlDMIo5sj7R4oSO2lIHEdEUUycFGV94mjALbceQAvJ5NQ0/iAg14LxiSlK5QpZlpPmGVJBEBX5zEEQoEywHYEyc5SZEYTrBHFIrnOUYXDu7Bna6y0uvtCCMEQpk127diOkZGJ8kpdffIlquUKj2SjAFUXppyzL8H2/GK+ynCDsF7Vb4xhpQLns0Dt5DvOpN9ASVv/g9+n90m0E3SZ5HpDEa3SXuozXpzl7/lmOv36Yt94+wi13fxbpjiKFS64U1UYTaSp6vQ5RFCB0jn7wSWSSEs9Ncvb8ebxKhZULq+RZQaddba1iK5NvfePPef+992EobLS8tEy92kQIyeHDL/P8cy/T60doDCrNUdxqnRyJNEz6/qBQ4RUGPd8niuNC3Gs4ThuGYG1tdTieakxDood5rRpJnGj+/DsP0O/2QGt0lpNnRc5+ngmEMAiDcAiqDaSQGIai0+lSrdaQUhYgVBfsgAJsFvMgcZwWObVDByMIfMrlyqUZ7yzLQBRlV77yj36b0dFRfN/niSeeRFBMihQiT3HxrrkkssGwPSblUolKpYJpmmAoas1RhKGo1ap0u+scff8IL734Et978AEaIw2mZ6dwHYcsTfn8L30Ov99FoDGkiWna6FzQbI4ShhFaF1RynetLZb7yLKO1tgY6RwmNGNKf0TF5FhMEAVIa1OujvPjiq5S8Ku31Do8//gSdTpuDB29lEBS5zF/5x19hdXWZUtmj5JWxHQ+tJd/97gN4pQpxkmEYZZqj8wirgVcfpdttMTe3mThOaDSarK6tYTsucZqy1mpTq1dI0pAwLGrzpmlMkkQgNIuLF0iSmDQtIstaa4JwQLPRoDS/ifw3fhH9xlGaT77Ga4SstdYAgZQK23bwg4DANUgm62S1MqAxOj1Kqz32d+ELm7cxH+Q451bw/T45EXESYNkKTU67vU6tVuP55w/z8MOPYNs23W6HMAwwDMnUpk3UanWyLMd1bDzXItMD1tstwijgjjtu4c6P3UKW+8zPTjPSbNBqreF4Hl/81S+yd89eDEMiNPj9PnEU4g98BoMu85u38cNnX+R/+xf/kttvv50oitEa5ue3sLLS4siR9zl+4hzr7T5vv3uUcqVCFEcgYGpijCyJ8HsdXn35JRzrp6OuVzq3l2j2G4hgXhlJvJ5txGK7mt/3UezyfX2Y/W603pVtvQiqLtpF3/Fq211tXxe3vfxzZXsv9x3TNOXIkSM3HGz5MLYRkPmbMggvnqOrXYtrXaOL5+Pydvys7OKE5OVY43r2s6SaX+2e36gtl0f1r3aNLr9XLkZOPyyIvWhXHuNyvPVhn6WN7Ocq8ppl2f9w8fuVAG4j6sDlJ//K301z4wH2enatGbAPEwG+2ozExe/5A48DYHzh09dt04dps0BSlInWHH/tOY698Rxbd+5lbmEPMTaplnS6LQwi3n3nbaYnN6Gkif0Hf0xrbY1s2yxJnGIrm/Z6hyNHjnBu8SxSCMIgxnFLpGlGv++T5eCVqjiOh1f26PV7VMtVgiBgx/btOK5Np9tGSMUPf/RDcp0zv2WBNM2YnJxmbtNmHHeJAwAAIABJREFU9u/bgyCj3+8SRn0cu0Kp7HL+/HmyXDA5OY6hwFQ2y0srzM8vMDU1TbfXYdPMBOvtDlOTU0RBAaaVaQ1n76FWr3Nh8QK1ep0/+qM/4eBtB/E8j3q9SZTk9Pp9KpUKhjQ4evQEjzz6ODcfuJUL5y7wwIMP8fFf+AXK5Qq9Toevff1+7rj9TvIso16vkEQD+v0OeRajswjTUJQqFZJU8+xTz7Jt+1YGgY/reMRRTBj0eeCBB7n99juIoogsTzGUJkMTJRm242A7DlIZJElMnMRYpgVCoLVk8fxxxsamEFIRhH1sS5KmhRDImdPn+OEPn2NhYR7btkizHMcuIUTO6soyjlvBVAat1hp/+idfY31tndvvuAvLtti9cwfddptqrUK702Xbzp3UyorBwCfPNWmacfTY+5hKkWfF85gkKafPnKVeH6FU9nAdm+07tpEkMVEUUK3WsS0DdEYSDQiDHkKnmJZNlmXEUczrr71BlmrGx8fIc82rr77G5vnNdDrrDII+tWqN8fFJoiii22kzNt4k0QVVTyPJMTGdBq+9/CwHb7+d5sgI09NTSHKyJMbzHFbX1qlU60MA4rN9yyxhnGAok1K5SpqkKMtGZxmmMkiTmPbaKp7rFDUgsxRlKvIsYRD4dNsR3/veX3LPvXcTRSGO42HaHjmF6l655LG22uKzn/0MnuthW86lshOGVGSpxnNt0ClpHCGEoOyVWGuv0e/1KJdc+v0uaRZjWy5Ca6QhmJycoNFsoAxFmiYkcVFnVhpiWP+xoCbPbZ4rlHFFhjLsoSCRQaVSLgS0hCAXIIVC2SXiTpf89BmsZ99Df/mzBL/3q1gjZSaaFcKBRD73IwZ+h+Yn7iFJ+xw5/Qjds1323vV5prffwyC1WG8tsml+gUxnRQS0UScKY5yVHtV/8x2Sg3tIrYISn6QZLz73Y2bn5nBLLtu2LtBaXWakMcmZMycYDLpYysUQFv1e4fSniebwiy8TJQn7bt5PhiDNNI7rkmuQSmEY6hIgVMq4lGMnpSRNQkAXarJCEg56WFahYB9FCUfeP8577x1FGinNRhPXdcnyAvDbtgMIlFHMnBfvIwla4w5/yzVocdnMtAadF6JblmldmuQUAsIwwHXLw0jITyZBkyRGGhJDSU6fPsPq6iq7du1CGfpSHq6URkFP0zlpHCMEGBIWz59neekC1WoVdM7a+jqe69HvtHFcm0azyeLiCgub56nXKihD0Ol20bmmUi7h9/tUKmUGg4z3jxzl4YcfIU5itm/fzvnz52g0mkRRTKrPowyFLWeRhkSi6XbW8EoF40XonPW1dWzbQQjJQ3/1V+zes5ft27fi+33a7TV2795dvPMUJKnGdmxq9Rqm5eB3+6SZpt31ee31N9i+fWshMubUCtEmYWDaJuWygyEE7XYHz/MolVzCMCLPFbVKMbYzLGXluIVaeRLHPPP003zmFz9NuVqU7zl/7gK+P+DHP36OKI6Znp5GOybWHfvQ752mdm6V1f3bMVttPM+7VAPaMAyiJCYRktwyyD2b3HOQhsKMEuj5mH6InWkYr7G62sIreRiGIIljet0+09MzTG+aYnx8lOXlZb79re9QKlUZnxwrJj2SmPj/Y+/NYyTJ7ju/z3sv7og8KzPr6rq6+r7nPiiRInVAxnq5Nix7LywM2FhAMgzYMPyHIRu2dm3Di4W89mq1Wq1oHaREUhRFzvAecjgX556enulrZvqYvo+6q/LOuMN/RHarplk9FyktdqUHJDo7K+Plq4iXUe/7vt/f9xtGxFGCH3RppPl8/c6xVxkdG6VWL7OytEKxXGIQBNiWQ6e9gZSSazdu0Bv0sWwHfWkDRzNIP/tp1teb3HPPEf7u3//7PP74txj5pQIb264S+j5eocxnfv6X+dZj30BKxT/9jX/Cf/Gf/wrWs0eJo5j4F/M4s5uXzlKrFpma303Cj0sO77Zo32rttrl90OL2owDdn2b7sJ/3QWvArUiRj/O7vN8xd4ISgEqlAnx0I9APw7xu/qzNgOknZVB/Gm3Lfj4m8/qedb54n/43t+y97/lJmNf3vnT3a7gVWP0wjPhHPedblUJ+UF9CiP/wZcNxHP/Grec/KXjdasfvpwFeb33erRvCh7mQWz1PvvEUWXZ38Hq3G98HjVlkGomQtNaX+NLv/0vmJ1x2HPgk/VARCR0hUyJ/HVuPKRVr9LsDLn7rSWb//Am+1W/TGK9ScIucPn2GdrvLiZOnePDhe5iYnETTTLrdPlkKpVIFyy2g6caQ6QDbseh3OoRyBWnG2EYF03GwDJOZmRnGx8cwTYsgiBAouu2rBH4X0zRRuo3vwzcee4zdu3dQGSkzv30XQehjOwaatNi5czdxHHH16lXW1lfZNjVBoz5Op9PhrdOnMHWJ6ZYxLRt/yIiVykVuLtxk29Q8hq7hOA5xKnjs299m++ws58+dQ9d0klTQbneZmd2OplIcz2GkXiJJfCAiTXL344sXLjDottGVoDZSoLm6TNF1UJqGUAZhlHLt4kVa7RZTM1N5GUQmUAqmpmZQUkNpGr/3ud9lx67teIUijldEN0xScqlo6IcEgU9/0Md1CzRbXVYWFqk3Znj88ScYHR0lCHyU1Ll0+RJzszvpdvpMTE5SKhVAaYhU4HfbFAo2EolmmJi6zs75HYyM1Bip1cmEwLUMBn4f27HZu/8AKYL22iphmFKpjCExiMKU8dEpet0mr778CtumZuj1fC5dvUqWRtTrNdI0xnEsgjCX2EoBuoLI72PbOoNuh77vo6RCZIpvPP5tRuvjTG4bR0pFoVDCdkxMy0CqDMtwqJRHMHQTTRMkaQSBIg76hH6XNBlQrrjsnJvFcRzCIKJaqVDwbAZ+jygIiVKwvQLVSpmdO+aJgi61+iidng8obNuj1Wrjug5kKYHfx/McOu0WBa/A6soyg6Ez76DfxXUb7N69C8+1sSyTdruDVShjmBaOY5ElMbValfX1DVIh0HUDTdeJ4wQQmLrBzZs3WF1dYqRSodXMHbw13SVNMtIEDMNESY0sTtENnZWVZRzPIUpigkEfyHA9BwClKaQEpTRs20YqSRQFGKaOkvnnZlk6dDwOGfgDbLdI2B6gaSbqz75PxxNUPv8bnDIipmamaDeXcS24uvQi9tFlSt4I73g3kHoTpQpsGx1HFPdjVvfmdY/pConMDcrI8ogkXTMo/NafkVYKRNtGMU0DzTAolYqcOvYGCQmT2yZwXZNBt4vnjdDrNdGkwNRdTrz5NpZhMzpZwXYKTM9sZ/+BA9iuhVA6StdzA6AhmFRKJ8tyV18pxG134CTNECRYpk46ZFp1lcvClSbRNBPPK7Nr1x4mx2tUq1XiOEYIiWM7ZMMaKoBkaAucIYay+RwiJ2leRysyco+BJEZKMQSn2dDEKSVNE0zLJI5v1RpltNttLMvKo2W03JG4UinlHgBCMBh0MQwTyB2Hu71ufi6VJM1iBBmWkbtHx7GPVyjkUVRKp99pY5ccWu0OO+d3EUcRWRKRJiGFUpHBwMfQ9NsOz1LavH70daZnpnnk0UfodjtUq1V6vX6+CSMXSZIEjQkG/QFS5sZ3vV4fy/ZQArxCETkE5cVike07tiNFimUZNBp1DNOA4YZMFOYnVrcM/EFEtVpBKQPLccmyjImxcSzLJMtCMqXQTZcoyvjD/+8PGR8v06iN0mq2WFxexLY9vv3N77Fr5wxKmChpEoYBjqeTpBJd07nnnsMgEsK4j6EV6XR6bGy0ePTRT9BoNAiCENdxcuA4OwFvX6SSCNxykdbGBkmS5kZtcYRpDiXVktyIMPDBMslck8S1kaaJsdGBtTZF3eB6v42mFGfOnGHnjt1UKlWixMe2HXzfp14bY3p6O3EWYhgGumZgmzZRkNDt9qlFuVT85YtX6fcDdu/eg22bKMMY1nlLLCWxvAK9Xp8kSRkfn0Q7+S5ifoblAzuZmKpz9PWXuXDhCv/8n/1r9h7YwczUFK7t0OuF+FHCv/rNf4lt2fw3v/qrVKsl7GdfR9cUrUf2YTkOYWeNd8+fZe+R+0nFe2XDfwNe7/76TwO83lp73u1c3QleNrOwHzXu52/A63vb7bii9+t/c/srBq93MvybsdF758tfDXjdar4rpf2HDV43M693kyXcarcm1GaQeueX9/0o661O9FY3mLtd3Fv9qmEMwp3HbLULsnkyJd94GuDHal43j+vOMX2YpoCgtc63v/oVpsZnePChzxAWx8DQSdOYOIooVRoI6fHW8aNMz4ww8S++SDK9je2fug+JgWEa2K6B7ZgUy2W2z86yuriEIOXY60d54eWj7NxzgCT2MUXG+tIiYRhj2h6lkoeoLaB7IV/7/DMcOXwfly9f5dSp0zTqDQaDAYWCw6DfJQ194kRRr0+h6QZJ7BOFHaa3jaNrEl2XxEmKptkMeuusrK7yzHPPs//QIXbv34+MIgK/R6e7wfTsLLZbxbF0rly+SqlURQrFysIiywsLFIouI7UqcRqjaQLSmNHJacYaDWojVVzH5sg9B9E0QRT67Nm9hytXrjO5bRuW61KrVLhxY5FLl97l8H0HSDKFbhXxSlXCOEMzTKIkwTQMioUKP3r+BQ4ePEgQhRiWjqXbKBWRZjFxmHH2zDmyLKNRa2CZer6wjGNElrK8uEq91sBzXFqtDQwDxrbNkGEQhjGrayvs3LWXXj/ljddP4DklOt1VXFfkNZtxwmOPPcbOXXvptrv0e21klpDGKVKzqY7U0QwBIkJIDa9UxLQdNF1DiIyMlFK5hGZoLCzdYHyiQbuzxsbGgE63x/j4OJVKgUG/y7tnL7Jj5xyd3gbKUGiGTRZHdLttHNciA6IYTMvj2LG389q1LGN8YoxCuUy5UiLLUqQS6JpOFMVYhiRLBc2NHrmM8HHuved+Op0NKrUapp1vQHRaXTxDMPB7SD0jJiKIIyzHwyuM4trQXL9OwSugNBfb9Wi1enz9z7/GaKPGSLWA77dxbJdwAJ22j27YQJ5zahgGpu0So8ikjmlrbGwsYZs6umaQppJUxkhiZBri99rYlkEQ9nFtF7KQoO/TWm1B4iP1BL+j+PY3f0C1plOpFEkiE90SxEkfw8wNfHTdJZMaQkqKpSJJHCJIWb5xEUP3WFru4pWLJGmKkAa99koOUjUdMsmgF+J5NgCGadIfBPn8DBOy85fRXz4NuqT/P/0DrP/qP6YvTcZKDifOXGb+0D1cPfYYXrRA2RhjzREUHnFJ2tco9FOK84eoze0hQBFF0dB8yUFkKUkYcOXda0y9eBZ14gydg7tygzCZ+/+qTDK35yAjIyMQR3TbbRzHAXxmprdRq49SKHlopmJu5xxRHIJMcAsGbsFi0Otj6jZKSjSV59Valk6S+nS7TTRtmFmXSfKKmYQskwz91hFCIqVFmgmEUrksXwksywCZMggGGJY1rI+FOIuQKgeqcRjmcmJLkWQxKRlKSQxN0ms3UZCz9BlIqRFHMdcuX6Jc9IjDgE67jW24tLpdbMMk7A3wu31EJjF0CyFTHMcmDPMIHSlV7nirdDIh6A+6GKYkinx0kRJnIJQJyqBUreMVCwx8H8M0yZCYTgEpJI7l5vnZmsR2TNI0RjccskzQ6+Z1pVLm7sVxGrJr3w4cz0aTOoN+SKvZxw8GtPsXWFtbo72uMz45jWZYGFZej6xpijiKabWa2I5JGEbUqmN8/3tPkfRWKRQKZEgsK1fiaMLg+rWrVCtlBt0+rmMgdI0oCnAtg5mpPCPVsE1kkuQyX6XQDYMdO3bhiJQUwDAYaUxx4eI13r1wifGxcUplF3/QIUUglEM06JBJheEW843Lfp8g8qnVqkyMjw9NsEKSNETpOu21FTQh+eYbx9h5YwO5fVt+nU0T0zQQAoSAIAiQUmGY1tARPkSofI5FZISGjh1ErC4uUzJs7PEGSlN45QKZEhRKRZSEfqeNoetYtonjFkhTQa/vk6QgNR0pE5yOj0BwYnmBfr/DwYN7aK0uoimFJnV63R5ZHJPIlELBoVYfYXVlEevqMmp6jOXD07z2wisc3nWA9toin/3spxm0m0yNj7G2ssKlC2f45Z//FD6KIPZxSyajkyMsf/7rFAsFsr/9GWzLRU9Dbty8zsyBe1Dq4yvb7rb4/Shyy7uvz8QWjw8ey+a+bi38t3rvne1uzq+b+xNCkKEjZYQmE0SWIVJBqoa1qEISJZCkIjdBlBnIkCDK/T+iKCbRFHnxfj4+3TB458QNSl6MCFK++Hvf4N/+9v9NabTE3MwcxECSkZG74Vu6TRyF2LZNlubmSxmgRIYmE1Qao0gQIiNFoLIElaUkQKRA3fGrCyHymLJbjOTw34zcQGnzuXz/63prnfsXzzdfszuB2C1H9/drW35WlhtLSSHeY+q05Yg2zYnN/UnxF8ZUW86yofLmzs+/BV71B+MtjrnLQ8KPmS8NTZw2PzZ7Lm1Fsr1nbkpu37+kFGSkt/u+9fqtB2TveX8+qLsbMv3Y+Rd/0TdkaMr46wNeP0z7IGb2VttK1303ZnSr1zZ/zp07WZvB892+oLdA9ubjboFX9Xe2Bq8ft+mmwcXTR1m8eIYHHn6IwvgMQRhhSIkhBLqSKDLiKEBXMPjiN6mfuIj41COsrq2QJdAf9FlYuMmuXbspFIoIZdDv+3huId9p7vaYn5+nUi3RabWwbZtXjx5lamaGJI6JjVV0XWPxQshIrcJzzz3DRnOdn/3Zn8E0dfqDPlEYYBs2hVKRftBFiDzcenR8go12F7dQIEkyHMflyR/8gPHxURqjo7z55nEajQalokeWBARBwsmTZ5if34FhSZIwpVQq89U//xqO47Jzxw7eeOPNIStZRtd1er0+pVKJqakpbMtmaXGRkXodTdMJwoBKpUiGyMGLYQLQaq4yM7OdQ4cOsri4wNjoZH6Tl4pOu41SGo5bZGlpGSEk8zvm6fZ6FEslshQEilZng2KxzB99/ks88sij3HPPIaIownEcoihECEGn06ZY9LBsg43mOkmSUSyWUEpBKqnXRnjt6It4nk1jtMb89u0sLi7x2muv8PM//2mUMtCUyfmzF1hba9JojDNSGyWKfHq9AY89/g0OHjqIYWj0+30MTafb6eDaNoN+zuzpumQwCDl//gIj1TqWZWOZLhkx+/btAZESBiG1Wo2xiQmSLMZ1cvdWz/GIwpA0y+j1OiRJgmXmQGrbtil6vQ61kSrlagXbtuh1N2hurKGkwPNs4ihifX0lN7UxDGzLZG77LEHQo1obZWllBSEltmngWCat5oDKyChBmFEsVDGUSb87IAgGtJpNNtabmIaBbgik1FlfX6fT6VJv1Ic5ug6m6WBZNleuXGZ5+SaankcEuV4xz+i1rFwdoHQq5RKDXpeMFMPS6DZ7iDTPoIyCBKXZRInMXaPjgNXVJpoyWVi6QbFcJQgFp06fpjZaYXx8kjQ1SNMAKYb1hYkkiRL+/OuPs2/fPvyBz/LyEmEQUm+M8vY7F/ju95/k3vsOIUnQpMQybTIydF3DsgwMU8+ziXXt9nIgbXYxL1xHXVsi/O//Lu7/8I+wJussLy+gi5SNhSvs27cH25X0ly9yo9Vno6jIGhHnT/yI5RtrWIUJRGUHqSpxc2GNSqHAj55+kvroHGQZ7VYHZ92n+keP8yeLV9lz4ACZgCSNydIUJUHpCsfSsQyFZZm5Wyyg6QaaJlEiY6RSIolDHLeCaXkkcR6ToqRLnIT5PTlNCcIgj5uRGoZh3Tbh0XVFGOZRQUoJpJKk2TBQlfz/DONvpMgXRZZlIoU2/FuhiKIYTSSkcW5mlWQptuMQJ+ltdpEMgkHAieMnaTa71Op1pCZJkog4jvjRs8/TaIximAaDfsDJE6eYmsnB0PLiCs899wJnzpwjDBO8gkea5t+rXOKdM7RZBmQC3dBJkhjd0Bn0gzzDVub1jWkUooRgYz2XDN+qU1UqYzAY5IZDcQIZGJZFs9Wm6BX58pe+zNzsLHGSEAY+lWoZpSuiMEGTOo997TFcz6beqKJbAc31PvXqbtbX1/FclziKsCyTKAoQQyYuSfJcXNM0ctWAY/LCy6+wc/duoiDgmaeeYmxsjHq9zrPPPcuB/fsxTZMoSWk1Wxx97TXGx8fp9/soTZHGUR67pOUxSaZpIN06yvIQUqGJlKC5wi996lGcksvG+hJh2KNSLdPtdem11imVc2ddP/CxLBNzCDjXVtcwTOP2pofSdBzbZOHmDfY9cB/uwT1kX3+S3v17iJbX8P38XPqDfp6HrPLjsgxM0yD0B/iDAZZpkWQp3SyhrkyIYwbrG5ijNaIoyTNyk5TrV68xUqtxc3GJyelppEyJo5DPfe73ME2Lo68d5elnnuahPfvY6HZ548olDh7cT61WQdM04hRSIXBdB8PUuHTlCo16g6XFlTzi6NoKxxcWuDk/wTe+/jj/2a/8CpplURufwHtxO+7SGG8OjvLQo5/AjyKWlq5yz5H9OLZJEkUUXzpNv9dD/09/gSRO6W8s4Qd9Zvcdeo/5y0dpH0VF9lfRPog1hbuD6o+iuEMM6/AzQYIiyQwShmAsiUn8HioKsIs6YRCiZS6OyI0fz5x8A7He5+o752nfXOW//Hv/iHdPneP4ay/xud/9LZ747g/JUp0v/+kX2bh2iX/6679O1O1z8uhrzIzWeOv1Y1y8coWTJ44zOzdFnIXEhCAMUiFJhUYsFKnQSIUikWoI0STZLUCzBV68G4QUm8yGPug8362HzcfdAsCbDfHe9+gPea0+qI8PUgx82M+/zbw++OPM6/t0stWL7/u2O8/3+8mI328T6dbPfwygZh/het4xYf7ag9c7d7i2MnPa/PNbbctdiI8BXm+5tt0Co3c6ud3tgt4a560/dvCXB14Xby7w0hNf54HDexmf3Uknc0j7HTQpuHrlEs3VFd49c4a56Smydy4w8Tt/TvTJB0kcjzSLAZHnipaKhGGE6xVIM51nn3mOnfPbsQ2Lq9eusn9vnvWmGxq9fo9t09MgBJZp0cmu0m53mB+7D6UE8/PbmZubQdMkaZbkURhBQLVSp+d3WWsukyYJnVafYrWK43pEaUq302XQ7TE22mAQ9CETHDx4gGqljGFqdNpNLKvAyRNnmJ+fw/dbXL1yg3q9zqnTbzExMcnCwgKPPPwwhaKHUoqbN29imia1Wo0w8NE0ja/82dcoV6p4nkeaxigl0DQ9d5k1rVwup+WLm7W1dRqjNTTNJo7z2jZdKVaWV3DdAqZh53VpccK7599lcnwSgURKnULBARRzs7uYnplB0wABx15/ndnZmeEckSCSocuujUASRjFpFJEkKS88/wIPP3IvTsHEK7j4A5+RkQYPPnQ/6+trWJaHrsHuPTt5443Xmd8xj+XYuI7FN7/1Le45ch/lcomXXnqRbqfDSKVKwXPJ0ozmRl431e/3KBSK6LpJGMZ4boF2u4tX1Ol22vR6+c8t08J0LQxDR0hBEiV02rm00XFssiyhWCzR7/vEUYxpmVimjpSCaFivK7OIQsElDHwM3cAfDLBdi26ni+Pk8TBZFmOaBikaX/zSl3j55ZeZHB+nWiryvSefYveefTiuS6/XxbXNvP5LZLz0/Cv8zCd+Fk0X+FEXTbOpN+oEYcgrr7zCo48+gm7aw3zdPNqjWi3l9bVRwqDfp9vpUiqXiaOYJE1pNTcIfZ9qtczS8k0a1RF0XdLutChVK/liAIijgELRRVMGjlvAK7pYpodSGu12i0cefggyiW17kAYIoNfpIYXi5PETHLrnXkqlEmmaUKlUsCybZrvNtul5Hn7kYUwDNJmhMoiSlCDI8zjTLM+7JBNEUZSbPt1YQbx4AvnJe0n++a9ROLSHF194nrm5GaKwT9hewbF0DOHTWb7Mm8deY/eDn8FIe/RvnuDmu+coNHay+/5P443eA9KhXhtFRDFz27ahWUWyTBBuDJj442/z9soSCyLh4KGD+aI+DAh9nzDwsR0d0gjfHyCBIIzQbYssSwlDn163zcrSIrWRMlJ3cqDkFej2fH77d/4N1ZESlUqFLE0xTCOvG00Vf/RHX+D8+fPs37+POAlRSpBl+X03S3PjK6WGJSYAGfjDWBjLNpHkzr9K6SRJXmuqq5hut4Nt5RspUZwbMIkMdJUvMtudPM+4NjKKW3Dz/FmRkSURxcII3V6XSqVCHGeUK1VKJQcpFKbp4Hol9u/dzw++/yRnzp/l2tXr7Ni5A9PUieMIgUYUxiRJcrveElJ0w87rvuME0oTQ7w9N1HSUVARBgK5pRMkAXdNZX2vieQWiOMnzr22LVrPNgQOH8TyP/mCAFCmlUn4di8UinVaHfXv3Mjo+guMYNFc1wn6ZJ554glOnT2BaBqZhUCh6CAGGbg83+3J2cuD3KFc8ao0GR+57gH6vD2nKxfPn2L5zJ++++y7NZov6aIM0yxgEEY7t8u7584RhyNTUFCDyeSKHLsvkTtNRnNePRsEASS6L7/Z6ZFIfOqdrvHPmLMVihaDfZuD7uK6LH4RomgYZdDpdSqUSvV4vl1obBkrTh3PUxis4JI5OkKUUXnmLCzvH2aZZGIaRH6M0oihnyRkuAnUlaLfbKKUwTZNOt4/wXBw/wjJMBgWbMIoZDAbEQc70eoUCjbExoiRlbXWBjIz5+R3Mzc0xGPg8+MARjPFRjPFRHnroQcbGRvH9AeWR+pD51clI6fl9SsUqUmqEQcxofYL2sVNcjyNqn/1b7JzfQbFcojoxwc/90t/ioeTnWLi4TP0XSyytLFMql9FEl7dPn+LShUss3ljmmqczOLwLbaxGHCWEnTUuXDjHkUc+SZJ8PBOWO5Vlm1+78/lfdtuKYd1qHHdjsraS8d7tdxFkCKny+u1MkgjQpUQH0l4bf/0Gb7/2LOcuv8PYyCjHXz7NYKPPn/3RH7J9aow//sMvcOHceR77+uPcvL5IEqf8zD3biaOEqek5fvff/hvGNjv2AAAgAElEQVR+4dM/x6DrI5SFbpf4/J/8Kdev3uT5Z19gpDiGQuPcmXOsLq9RKhbwbBOQJFLlMWDDcWYiBW69liHIN/1+7Pzd5bxuBV4/WtsaZN1iXj/w6PdZz39Ydv+nCV61B+OPBlzzTrZ68X3ftnkub8V4fxTwequ/9yhJ/wa83r1trnn9MO1Oqcdmuv/W880RBlvdqDbfkO68IJtlx3fW1t6WEmx6/RZIfT8XsNut5CEP70bMTn6UX/k94741xlvS5VarxVuvvICu6YyMTmF4da5cX8aQAIJatUZzo8n+fftZ/9LjNP6fL5D9zL341QppCr7fHy6Acgt+c7jjvb7eIgx9xscaXLjwLl7BY6Reo9Vu4RVcFhYXaDTGMA0LiNHLvRwItssoTRJFEbZt506UQrK+voFtO6ytbVCulikUS1imxeVLVygW3JzpsnNDlEatRq/dxnZtojjG0A2kEmRpTK/fp1ptYJkmnXbucjo7PUUQhihNwysUeOONYxw6dJDVlRWkUqyvbaAP4yvCQQ+pdF47egzbcdi2bQJNU0hNIVBoSieKQvrdFk7Bpdf1qY5U6XRbCKGxvrGObRlYpkGlWiVKYpSmsbi0zDtvv81bb73F3j372NhosraxhuvldZKXL19jfX2NtbVlJsYnmJ6ZIo5jdF2n1WqSpRmOUyCOU9IEXnvtdU6ffIO5mXlmZmdwPQvXcwj8GNMwWVhYxrQMXM+m3e5h2Qrf77FrzzzFoovSJGkKs7NzZFlGq9Wi6BW4dvUae/ftJR0u8kuVEoZhEIS5CYhp2Pn5UFAsebfzMcMgzOe4gDDy8zkoNQaDgCeffJJi0aNQKGDbFoPBgChKSNMUTddRw+9jkmasrK6RxBm6bqLrxm1TodyARwxdXZvouo4fDFDSII4ier0+9913H+1Wm127Z1CaROmKXr8DIsIwFa5XIklS6o1R1jfWKZSKCKnw/QBN6Rw4cADLstloNRFkGJYBIsOyTTRNxzKtvA7OzU1tbMchyVI8x+PSxUuQgWmbrKwskomUUqWMH0VkJPj9DpauI5VACYM0EaQkGJoBImFmZhLf91GaIssigmCAUhquWyAjo1ar4RZKBKGPY1lAhpKKMApxnAKtVgvX1em0W4g0r2e2LANIGQx6JEmUL67DEP3iTcTJC6j/7R+z8ov3kqUREkHRdXFsA5HFrFy/RGWswdrN87zyzHc4/PDPU62NIm9cpnnxHF5jhurMAzR2HiBVY0glc1m4ZaN0k+6gQxwnaF/+LoPTZyh85hMc2L8rd/EW0O32cSwTkWVkWUpzfR0lwPd9SuUKSZJw6uRJGvV6nh2YZTiuQy/ooxkSqRRxnHDhwkVOnjrOgQMH8Fx36H4eI9BI04SLly7m8VZK5psgpkmv2yMIwtx0KYWU3FhKytw53jB04jhgMPBvz02lFBcuXKTgOoBANwzCMKLTziWempJkZEPZskmhVMQr5BFgURyRJSlxFLG8usHFSxfYPr+dYqmUb8oFfYRUnD71NmmaUq+PcO89B9h74CClUolGvXFbpdNpdnnzzeN02h2q5QppEmPoGkmSIlW+YWTqeQ1sEERkwNLyCpVKBSEFg34P1ylg2S7I3BAqThN838cwLHTd5Nvf/g7vvHOWiYkGICgUcpVHHjflcOPmAkmag7/aSAMhBJou2LVjJ6VyMXfKlTI3NNJUXhs8VG/ohsK0XFIEuq4jBIyPjmIXXIIw4KGHHyaKYxzX49Kl63zlK3/GP/wH/xBNV/mmoKHheg6tjQ0s08j7UIrlK1f42le+yCceeZgwTjALVfRClYWrN/nRM89x+NBh6vVxOp0Buq5w3AKmZQ+9DTLiKKFQ8NA0SUaKZeWlAhlDx2gpGfiDvJa+7KJfW6YcZ+gFDwDDNNA17XY9c6fTxTANgiDEcTw0PXedTtOMhcUlymMNjFYP/IC3lheZnZtD0zRszyWTAtO0efH5l+h1e2ybmMI0bUzTZHxsjGLRI00TDEOn1+ti2SamaaJpBkrJYfbzOt3egKJXYm11I/dJaDYpL28wce9h1C/8DDOzE3R6TVKhqNcnGFucol6r8ZUzf8CO+e3s27cTKRM8r0yxUMfzKhz4xMOUZyawiwVMw+LoC09z6NB+atPbPxJ43Ypg+DCkw19G+6BytK3GsJn92zzuD5KvvseJ9ZY8NstztXUCNL/H4sWzfOlzv8Uf/Mt/xslXnuWlV17hN//P/4Pmyk3eOXGM++85zKXzF/gXv/97HD1+jOnt01y/eY311go7x3WuX9/g5Fun8byYnZMTPPrpXyaWBt968il020XTDG5ev87umTn279rJU9/7HpfeOcXv//a/4vzx54h6TQ7s3YsuUrR4QNZfR8kIJRRCaChyGJtuAk63f6+7XaotJMYf1O6U6m51Djev6+8EX3e7Lh9nfv2kc/DjHv+e78SWXbw/eN1Kvv5+Y7qFWe58/52OwTAk4D6K2mITeM2yDE37G/D6Y+1OO+atbpB3urBtPuZuNa93071/0Fg+rGRBzEzycYHr5s+6xQIrpXjiiSdYOHUMo7KNqd0Psr7RZWasQaqGWZYjdWrK5Obf+a+ZOHWB/oOHuZIOqFRqLC+v0u93+PY3v43rudTrNcIoAiHptVqM1kcwDcVTTz/F7Pw8M3NzCAGaodEYbZCmGc2NJr3eOlY1QApF2qmh6YpqtYqmGdi2w40bNzn+5kmmp2cZaVRQykYKk8EgZNf8LDLuc/r0SQqlMo7jMuj1aDY3KJYLZBk4joNl6ly7dpnJyTnSLGdFr1y+wulT5yh6Gtdv3mDb9DR9f8DhI4fw/QEnTpzI5cblMteuX6dWqyPSiCCM2bF7H/v3H8APcrAglE632ydNYuLYxzI1wihDCD3P7FMZcZJQLBSwbJO1tRXW1laoVkcAKJUr1BujHNh3ABCcfecsL77wHAXPZGZ6mrPvnCOOIhApo2OjxHG+K6frufGOpmwGg4A4zvjed59gdnY7riXw/QgpFKVKgW63D+iEQUSnM+A73/0WR+45AECcKJSm4bo5o7qxtoFuWWRpHsvx+tGjTE9NsXfPXjIFYRyRkhFEYW56gyBNslwmZ+tE8YDBoANZzuz0+wM0TbK+vo5tGighiaKEkVqNickJ+r0urucBCWtr6+iaQbVaJUPR63ZZWlykXBkhzQS2VeHqtZvU6g2QAtMyEJmi2WzlgLpUGmZlZpw/ew6lKX7hF34RTdP5kz/5EvOzkyilc/zk28zN7xq6TSvCKGZ8YpQwCrCdIlJ5LK/eRNcNyuVKnvlJhuNZmLZJEkd0u100ZSJQZCLFcV2aGxv5ojlLibOUXrfP5Pg2bMtBNyyK5SqWXSBFx9AtdKVh6RqhPyAYDNhYb/PKK6+zvr7KSLmIICIKuziWQ6/bwrYVaBqabhDFCUrX0QydKA6xbXPoSJs/NE2iKT1n52VCmmTYdpE0i4jikHSYvVkqlXIQdvYanLmC9oX/leTQDrrdHrYhkVLDtizSJGBtZYHpbeOcvXyF7toVJso2IzsfQPWWGPzrH9Fol0gePkJ17n4y2yANHQwjY9BvY7oFEkxW165TXm5R/fITfKOzxK59e4jiLrdqoRzb45mnnyWJkzzexXHy2vtSiThNCQYDQt/HH+QOzoViGcct0un1cpCpDKQ0mZ/fzf33HaHgFUBkGIY+NDyCWq3GAw8+QJpkWKad5xOHEbaVL+DyGuUMP+wPmTyNLM2Ik4h+vzvcFJOkaUJGRr1Rw/djdM0gjmNCf4BrmTRbGwgBUkAUBfT6XQxDI4wT0ixDCkHkB7x57DiH7j3Cjp3z6IZGt9fFMAwsQ2N9fYMXX36Vy1cus31uil5njVK1Rr1RQ0qJaVhEQxVDtVzlR889z9vvvM2Rw4dIkoRup4lhmEipkSSAUMMaplwWrOkaQRTgDpn+IAhBQBAFIFJ0zcAwLI6+9joXL16m0+5w5NBBLNvFcdw8Xibss7Jyk5nZHbQ767iuh2U5TE5MMDrawLbNnHE19LyGTkGn08Z18tznMMyjdpRmkmWCQRCwvLJEY6yOHwyYmpomDMLbZmbtdp+lxWX6/S7Hj7+JpmuMT4wN42UKKAntToc0E7hunZsLi9RqZTzXBnLzKENTjI5V0TTBysoSyyurhBHUaqMsLixQLuUKCsu0c7ZUZrz66quMNsZvM6hRnCA1DSm13CzO1GBsBPnEy6S//Am0VpfcUjpD13MWVlNquNFrMAgCTp48NbyP6/QGfcojI2RSYPUDxhsNgqJLBliuDVISDUJOvnEC2yoMTeRa/PEXvsCevbvRtJx17g+6mIZ2e3MlzTKa66uINMVzCySJRNcslpdXuHDhAs88/RSzUYYzvw3rs79IxoDFhSu4jkcYphxM72XbtkkO/r1ppraNoqmU1iDCdkb4nd/9PGfPX+bwfQfp+i28YokojHFUSpJGGKUahm5+6LXKR1nM/1Uyrx+nfdzxpQhIM1xTx0i6vPrcd/n1X/vH/PHv/haOCEh6a8xPjxL3wdEjxkd1Hnz0IK8fO8WTP3yRnQf2cvPKJbbVK3zygSNs3LjA4SPTfPeJV+n7Xf7bX/0VqqbGytICT//wOyytLCOzNqtXL7J3ts74pIOSbQqWj5k2KVt9WpdO8twPvsuPnn2KK+++zfW3Xydp3qTfX6dQqCI1m9xFJdtMum06GXc5Rx+Def2gvNKtyKO7rd3fM5Z/B/PpJwGvf/GfLd+xxTHv3+cHlTVuVfO91biyLPvY4DVPW9D/Bry+X7t18m9JerfaodnKxGmrL8CtY2+xmj9t8PrTaJsn3MbGBlevXuXwzAQPf/pv000Nyp5H1G0hTIuyV0D77jPo/90/wa3XiH72QbJKEWSKppm5W2u1wtkzZ9m+fY7GaJ0zZ84ilcb42CiClF6vw9zcHDt27QaZS7cuXbqIZVt5/VcQUio7yEKPZrPF20eXsIf5nZ7nkWVQLJaIophCoYBlGxw9eozR0ck8/1Om9NtrlCoVXn39DbZNbsPUdVzbJs4Sil5xGP8hh26SZaRMaW6sU6vVGa1PYtuCPXt24xSKKKUhheCZZ57m2pWrFItF6o0GV69eZTAYMDpSxrBdbKeYLyYsA9PUGQwibMtGSYFpKgZ+lyRTaMoEkRLFA1zHRSnFoN+j1dygXq+jdI0sgzDKWVQlFZ5X4Jmnn8H3exy55yCVcoWCW2Z5eYnxyTEq5bx+SQhYWFjEMHSkNNjYaLGyssqFi5e49957qZQs2q0+rpcDZtOyiOMMTSnefvsMV65c4L77j+SLL+lgWRaCfENhrDEOcrgwT1N279qNoeeyaMMxb+cXC5kzSqZu3t4QQaRImTOSly7cYKQ6wpe//GWOHDmEbmjYho7vB3iFIt1ul0EQMLNtkk67TRAGhGGI6xW4cOECpuVQ8Dws0xoanWhIaQ6ZC32Ye9rH1E2kUgyGtWVhGBGGEZfevcDZ8+eZmZ3FtBx63T6HD+xBN2zq9QmUZgzrinKZV7vTIkkSXK9ElEggB0diaCgRhAFJFpPE8TB2JqJYLJGmKVEc0Ol00JRicXERXdNwCh7dVo+3T58hyzK8YgEhdITSCcIkZ0OEIBwMGPR7pEmMFAbH3zxFEPnMzUxhGBLHMVlaXEEqQZoEGLZLFMVEUYKu6wSBjxhKJaUQbKyv5rV0hoEQim6/R6Fg0+8NME2XNIvzqB3PI4pC0ihGP34B7doKzd/8VazdcwgpWVlZZvv2WfzBgGZzncuXLjA2WkOSsNEb4KqAsyffYOd9n6F94xzGyUVAYH3mIUqj20m0jNA3yAhyhtqwCRIw9YTy//tV/MlRivOzVMolbFsNc08VcZzyxutv0O/12LNnD4Nej1KxSLfXRekGJa+A53o4rptfGynJMoFl2wihINN46/RZNppdJifq6IaOaRgkaUIYhlx49xK6rt2OpJFSomkaSXJrUygHrlJK1lurFAslwjAe3t8lhqnTbrfR9ZzxNwwjj9mJM6Io4stf+hK6phht1JGaGppM5YoXwzDQdA0pc1lyEuWAd6wxilAKpW7VsRfJMkjjEMOwGanXeeCB+wmDLq5j4Hhl4jhnRbM04/q1G1QrVVzP5eCBg+zdu4c0S/D9Aa6d11+fe/cijpuXQ+h6bvCkhvW9hmWSJRlRlHD23DlGalWUJobmWYogjBgfnWRxaZEgCLjn8EFM02Sj3co3ShQ4jkmcKDzPpDl4jVQuookJHMfK5+bQOAtA02Ve6xnnCqDBoE/Bc0lTQSYka+tr1EdGctdl00IIQZLm2dOmadJsdjl75gyf/tSnOHvuHZI0oVgqoTRJseAhsgzLcuiHIYZVYX7HPFIk2KYiDgOUystdAr9HseQSJzGNRoO+n9BoNNCEzGuVs1wSDhndXocnnniCvXv2ce3qdUqlIlIpMgS+7+dzKktITINktUV65hJZwRmuKVKSJHeuNi2LIAgwLZckTugP+ow2RgHBtRs3KJdLCENDZaB1+mgZpCMlwjjKSyiCiEqhjGE5jI9P0Ol0cByLkZEqSRJTurSA0xywohIM00RTeX6za1t0221AgtB56aWXOXbsGAcO7KfbaTOXSLJGhSt7p3Fsyde/+hW+863v0ahNciC9FykF8Z413n7rJMtLC9TGpil4VT7xyKc5dOgw9je/z8IPf0T5kw9BBiePvsjefbuxq6Moqf34goStXXH/XYHXv5AFfzyJ81bt444vESAz6K6u8MrzT/F//e//M3S6VIoO7569yKF9M7imwjCr2I5g36FZLl2+zI2bXV566Tgr6yvMbpvEUYK333iV+w8coNlb4saCj+ka6KpDe3GVZ595GkRMuepRrxb5uYcP8+lHHyQUXf70S3/AQw/spddeRCV97Cyi3enS7PZ58fkXuXj2NKfefIX1VpMg0Zie3UuKQEr+0sHr3VjCzZLtO9//7wt4Db9ikLylUAeSD3/cTwheNxN17wdO/yrAa5qmf72Y1w8j57iTdb31nlsn+9ZNdLNc+M7dmw+6cJuPv1uNxIeZGHe29LnXyK7cQMxOfuAYtmpShmRCI0tNZJTy1c/9Fm88+Tif+ux/QqYswjAmjiMGfhd57iqlX/tfkK+dIHj4HtKDu4mlQBk6SRCgmw7Xrl+lYAmKhQp2USNB5/vff54rl89x8MA+bM8lJsPyHIRIWV1eRMkM13S4dOEKcRIxtq1BEqUMxAK9bo8zx5Y5eGgvQhpcu36dykiJKA6o10ewHRfSmGLRxe+3UCoDJXPQZ9i8evQY27dvxzQMFpdukkYBbsEhSWO6/T5eqcr66k0Gg4Cnfvgsly5eYueuWdxiiXa3lxsvlcosLqzw1ulzJBns3XcQ07L53vd+wP0PPIhdLmFZLgJobjQpFktcunoNmSY4js7Vq1fQNQvPq6KZBoaSLF25jq3ZRHGKbRdyZ9EkJggCDGVAKtAkBH4fw9ToD7r4kc8v/0e/hJAajuNRKHuYjkm9VkMoDZSOblgYmsbxN9/EdT2Wl1bYMb+LudlZ6vUyYSaY3bGdUqWYR4RkoGmS428eR4iMe47ci225GLqGadosLV6mVPBYWWmiWwbaMN5DCsHC4gJf/OKf8uijP4NhSHQhiYOQjfUNvGLev9IUwaCPpZmE/YA3jx7nxMlzjFSrJEmEzBIKnoNh2ZimTRSGhKFPmgRotkMQDLB0DU1qFAtVLly8yrbJCRAZfuDnbq8oeoMmo6NVwqCLpgS9bhvLymtglSZxHIdmcwNdM5iZ20mjXmdstEG/22Rudgo/zrAdm25nnaDfolgo5PWp4QBD1/IaQN+nvbHGpQs3KBWL2JaOpmBjbRVLSUzdQAmFVyjS9wcoQ6Pf7VAsllGaTrFUyaWE/QjQeeIHP2RhaYnD9+xHSUm31cIyNdZWl9FNA2kYoBQkET1/wJ5DB7jvyCEG/VWk5uAnNl/56jc5/847PPLg/aRaDqgtwyAY9HOjQQWaUCRRSsHzkDKBLCaJA4pFl2CQS4iRkKY5GyOEQE8F4ulj+IaO+9v/I0ndJRAOlmGhBW06fkTFbUC6Tpz1GKnv5c2rp3ho/lHeeuUpJnebOIHPueOvMrlawPaq+I/sQdM9rpxbwPY0lhavQ5qhoSFDifvcG4jX3yZ6YO/Q9XaA1ByiOM+U7bSazEyPMzc7geE6OJ5LkiZIKem0muiGRt8fEEYJFy9e4ZlnX2T/gcNEUZ8nvvcUIjM4cfxN5mbH8YoFdF0f1vMKkkjw+Ne/hiZ1JsenaG60yNKYLEvQTIM4SYjTNGdaAc8t539MFZAmKKGTRgLDzCNpNE0niROkkPjBgGuXlzh9+m0OHtlPtdHAMB2CMHdtt02TXrtFFoYk0sjrcDWFEAlpFvHCcy8yPj6Rs3pkQ3m7SUpKuVRAMGSivSK6YdHptOn3ujiORRj6FAr5vTbNIpyCTSoyXM9DKIESgtMnTuC5LoVCASE0EBlpmhBFEboyEEoQhRHrqxu4tkcURlhmzsyKNME0FFNTMxy57z6kBqZt4bp2bra0uobtlvB7PZobPs3ueQoFj+VrAV7JA5HR3FhHAEG/j7QKCKnR73dRKncxdUwTNAuZZdimThrHdNptXNdl0M+VLWSwvt7m+BtHCfw+09PT3HfvvUxPb8O1TTzH5f9n782DJD3v+77P+7z30df03LOzc+x9AksCuwAJUpQoWaIkSorkI1ZiqZTYkWXJThRXkrLjJLL/cdlOlauiKkupJCq5KJOiSAoSBZAgQNw3iAUWiz2wx+zs7tx3n+995I+nZ7FYzgILWlaqpDxVb21Pb/fbT7/9vu/zO75HHGcoqkGOimHapGkHhQhBhqHrIDRU3aAAyrU6CJncJ1GAZbgYtkZapGw2G2RxhkJIN/AxbY8DB49i2y5pklKp96MoCnEU4Dk2WZoQxhJWrE4Po3zndU4XCelWh77+GkHoUyp5pNl2t1YhikMGBgZ654LO3Pw8gS9fp3oWeZxgtLpozTZWkBC7FlmWUBuuU+2rIbSMMGoyPj5KGscgdMLr84RRRNu18BwXigTDMskKBT9M+dIf/CFxnPDIpx9gz56pXnd8hMrKFs9cuMDQz/8k8zeX0XSP3//3/4GJyd18qvpjFEVKsOcafhRx5P6HaTU7qKrC2to89XoZ5f/6OrtyA378fqKi4ObFNxkeGkQfOojG3Tl8HxYQ34rVRA8a2du2RVZ/sFTjbo4Sd/+/j7X3O6Cq7+//+7+fQUImNDKhkSsFkGAZ0jrr+W/+Gf/mn/1DnvrGlymLKoUCP/+Lf4Nf+Qf/HVp5kk989hEaK1fIyVByk7dPX+LmwiJ5FnL80Cii0+Lh+/qolto4lsf15Vk+sX+QuuLTXNlgpdXmwoLKqaN9HOiLUBOdjY0l2t3zdOcXGCzptLdWWFlewrbLRFFOf/8gRRwyUPao1Sr4nYjO6hwr196gtXydJAgo1VSCOKRkeITNVYq8TZ4oqJosFua5VJM3ihQzS0jFNi/1dvncO38bWQACpRdTb58vHyw23Nl0upeEVZ5b2xtwNxTuPfzeHzW20Y8fdo4kz+kUvnKL9/oBeK4itRbosYu3Nwq5yYRx+0L54OfK/chNUWSFoSjoCYSKW8/fenzbvraFAFX1/dzmdoSqwvvzen8eHzxGt8/l+w8it76DUATqXyWf153GnRWZnZLXncZHEZM/6iS9/WS7W5J6tznc7SJI/8XvULxzCfVnf2THC/OjRp7Lk1XNYXNpiScee5zf+I1/hNs3ShQVhEGIpuVkv/cVBv7t77Nc9Sh++GH0eq0nXCKYmblCxfW4eOkKYRgi8oRSfQTLdjB0C00I7jt2GFUDRVWIkwTLdjB1G8f2MB0LQzcJugEDA4NYhsXG5gbJVgU7G+Pw4YMsLs3xrW99m2PHjlLp8Xe2thpUKxVWlpcolUoAEkLYs4rJspTDhw8ThwHNxia7RodRVYUwTshScL0y3W4Xr1wlywqGRoY5cuwIKDnlUpU8yyVfKUnpr/cTJzFHDx9icnICRUBOzuj4GKqqYZgGqlCwHRuEhLct9Qzsd+3aRacboAiNOE8QQvDMM89QHxygWpdJXJJE2JaFbTvomkWz0UYRElasCMHlS1e47/770I0ex840EAIsyyIIYhzbJYpi3j17Bl2FfXunKQqBEAWeJ3mg5969jGEKSqUSge+j0FvoFYWnnnyOid1TXL58mQMH92E7JoqiY9sGcZTwB1/6Kg88eJL1tXU0TZNCIq0uja0209N78cOGVFoVCuWKh+930FSDV195RSq0UmCaFu1OG9txmZjYxaFDB+j4HYYGB9jYWKZU8mhsbVDkGSXPxlAtHMuEQgbbSVEwPDpKHHXRdQ1dN3j22RcoCsHu3btptdqcefsMGxubTE1OEccxqqaQZglRFFIuVXnpxZcY3jVK/0A/eQGm5WCYFrZlSdh1kVOtVns3f1CKnDAK8f0AzyujCg3PcyiXHJqtLYLAZ3B4CKFJHl2WJhRFRqvZQFcFca5iOh5JniF0Hd10MA15s19cWOSzn/0MruOQKRlBHOA4lkQZ+D6mpqLpBmkcohsWbrnG6uIiQ6MjZIXADxLOvXuOKPI5dfIkuWrIToaioOmSz9bpbvagoBlx3MXzbLa2urhuiThJyPJMwgjz9FZXUW11UP74ebSHD7H+z/4+ldE6WZLRNzTG/I05XF2wsHAD01ilz+3HbykIfYMh7yR55zRf+8bvcuD4Z2h0NvAqn2Xgpo+q25g/+ln8IGRwsEZuevT1D6BbDprpEHUCnH/1/7B+YDelwX4UcgxVoOmyu5WlshPZaDQpl6qSF5lmdLsdoiiWEF7FoCgUKpUaUZxx7vwFDh44hFAL9u49gOt5vHn6DU6ePEmlVkIIenQBFVXVOPngKeZuzjE6NspTTz7Jcy88x6HDh/FKLqoqCxi3AqIe5DeOE1ShkecFM1dnuHltHlVoPPqNPybodgPtQKgAACAASURBVBkdGUYjYmttHcfSGByuU6lUiRMpEKSpOu12m0qlilA1NNMkiSOyNEHVdKIowvdD5ufnGR0bRdVUGQf01okkitB1Hdu2abU7CKGyurrKV7/6VQ4eOIBt22xsbJBlEo6vKApKLygrCiiygsnJCUzTksGZInpqytIrmEIhLyDohvjdgJmrM0ztmUbVNfIsR1dV2p0urushhIamKaSZ7EbHcUylWgFFIYkCbNdFszYRqsJQ/bAU2dI0LNvudU4l1UIoClmSSn5mp4vtOLS7HYqiIE1S5ucWGB0ZJ4wCiVzwPPJMqipfuTrDF7/4M7iug66rqJqC45lEUYphWsRxcmt9DPwuuqrdOh7NVhtFERiGcYu3SpFj6jqKrt+C3esoPPHYYwyNDtFX7+fGzTkcx8VzXer1PpI0RAgwdV0WwLIcU1fRVYXN5iZ2Xx/e987zhB5x3+AYjm3fQodsB3qapqIKqfMgeqqt1WoFU9MIggC9XKLQddQwQWu00dcaWEmG7xloqtZD2is4tkOn6zM4OEQtynAch6Ds4nkOhqHTarXxu10qlTKnHnqQcsklSRNqfTUWF5dBUdCvL3Aj7PJmKcN2DMpll3/yT/9Hjh0/jHahShxFzNUvMjW1h9nrcwwMDLC8vMLgwDBZVmA9/waGoRP+8AOQpqwvL3L8xCk0rx+liD80PrlbHHNL+Ohu77un6OcvdtwN0rrTdwwVXQb7RYaIY4w45rnHH+PNr/0O3/zS/4Gnb1EtW3zixA/x4Of+KxY3YjqpR//oXoQhWN3a4IkXL/L4sxcp1wY5Pl3iR04OsWtEob+iUnY0Dh84watPv0fFP8LnJr7AXxv8TR7q/1ucKv8iP9T/RX54+K8z7X2K2eQms0tNDhw7Qd5uEMQ5tYFdKGad8b0nGJqY5OLV65z89MNMTI3S7qwSJltkIXiexulXX+HSmTd45dk/4vTTT3Hhlef51td+j6vnX+LiO6c5eN8pdN0kQwWh9ZSL1XsqF7yf5O0UH3/4Hj4qRs53SnTvYU7b46MgzHfO5aOEv+5UG76d8ld8xMzutaN8L+fmjgWA26b9QTuiD50W26jUez1Gf+mT1yRJfuvO5+48KYqiuIXjvjNpvFMJbievrnsdd4P/3t7RvbOLe6/7yPOc/JvPAlJt+AfpvOqGhY5A01TWb15nYHCIXVN7KVSHNM549/RpDjzzBqU/e5azYwNciqW9jaqqZJk8fpVKibWlJbqBhH1O7Brl3UtXeO2VNzh+9AiGrtBX68O0DIIgxHZdDNMijVOyVJq2N7a22Fhb44XnX2B6ei9CCOr1OkVegJKzsbEOuWB6ehJFKUiTGM/1+MpXvkKr3eLQoUMIIeh2OjiOw/LKKtVaTXIpVQXXlUFcGPi4bpkzZ94lTSUvrVyr0/G7DA0PUamUaLfbJFHG008/g+u5VKsSotzfX6deq7K6vkp9oJ/xyXFs18a2XPI8w/fbskorBOVKFUu3OHfuHPv27+f8+YucP3+Rg0cPogqVkdFR6v0DqJpGp9OUgYsiCIOYKIz59re/zcBAP5VKFcM0cD0Xw9AxTYOtxhaaprG6soJSFJRKFa5fv875c+elSmoSk8QRnlei1ldGiIKtzS1KXh+mKUizVAqFCEGeZei6xr69h5iZmeH6jescP34ElIwsV9A1hReff4XNzRbjk1KcQwb7AtfxmJ29wfDwCIODNZI0od1p4/sB5VKZtfUNXM9jdnaWI0ePUgAjIyO4ro1lGWR5Sv9gP5uNLfr7hlhfbZAm4DhVlhbXaDeaRFFEqVwmRyHJMoqiwHWkRcXKyirlco3FxRVKpTK25eB5Hjdu3GBgYADTkl2MIs/xPI9up8v+/QexHJulxRWefvpZRkZGZdKqSG6u7FbFJGmGpmnoqqAoclrNFq7r0dhqcvm9C1RrZRxPwpajOMY0yqRJRoGC74cYmsXNG4t4toFKiihSuq0mrmWysHATz3U5evQIfbUaioA4ifBK0jZkc32dsucS+j6KZtDYWGN4dIxC6ChIL2BVM1AUweTkbu677xilkkeBhAerQkIWVVXDtmwoBJqm02y2yTOo1QfIiwLLsrBdh42NVUqugx8kcH2J+LnTFL/5CwS//MNUBsYxSbl44RyWWyWOAob7SpiWoNm8SBoalOx+rt54lamRPTz7zL9kcnqaB079PQzdxezXMd6ao1BU0kceoNMM0TQHDJ04KbBMlxs3b1J7/EUaV2+Q7t2N6znEUUiRZaRZikAhCEKee/Z5zp27wJEjR2m3t2RnUDelvZTt8MrL3+Pq1Wssr65y8NAh7r//ftySi2HqGJbJSy+9yM/87M9g2Zbk/pkGeb6t8q6QZzA0MoJlGgyNDPGpT32ql2hGEpIvFBSlIM9T8jyX3NqeingSxyRJzNunz9JsNjh18iSHDh1A01UUVYCiMTgywsjucVLFQBfi1v3TsmySNENRVBQlR9U0FEUK/ximzdDwCKNjYxRKgSKkSFSWyY6zpuugKESxVN02NJ0ojonCkIMHD2IYBq7nUfI8WYzpcVqFEKiKSp5mKChkRU4URczPL+K6Dmvrq5RKkgaRpQXnz53nze+dJghDrl+fZXrPNJqmS0EryyJOUt586zRbjQ0Gh4bkmqSpvblF6KpAqDqG06AoCroNE8vyWFpaoVyuIFSNKE7Y3NrCMk10VWVra4tKpYoiVIQq4cQzV6/zwvMv4fsRlYpHnMSUSmU2Njap1/vpHxiiWq3yne88yeTUBAVSfdq0PRQhyHqWVVHo49pWD+5tIVQd23FAgSzPyHMpHtdsNNFUlbSQa4VpmNiGSa1cwi15oMjvFUUJpmESBgGaJl0ct7YauK4rLXVI6bRb8lwbrmNenuPIoYMYpsnG+irlcokszUiSDNsySWJpeWaYJkEQMndzjjxLe/dOk7yAdy9epE1B4drYpone7GKuNdFbXeKKh+xGqZTLZZaXl+iLc/Is53f/9Ov4vs/IyAiWZeDYNnme0W63qFRKOK68lziuQ17klNohU8MjVP7LL/LAA59kdXWVSqWMbVuURA11MKdRWafT6TIyNEz/UD/9/QMsL23ypS/9AQ83Yooig5/4DDPnztDXP8SuPYdBUSk+pPMKOwfK28/fmbxuv04IwUdFzR/VqLhzbGuC3Ou4G+Lvzljv9u91O7WsMExEFpNsLjN/8Sxvv/Advv31L9NdukpawNi+aQ4++Dms2gFW2vNEaky5NsrzL7yNMBycsodTHWducQNXDfniqaPU1YBPDf8qR1q/zqHw7zHd/C/4wvhv8rndf5uKOoYubHTFxTVdSo5L3RhjRHmQz9V+if988r9nV+chRrxTvJWepTx+kO+8foXxQ4/w7W+9zEOPfIEv/NRf58mnXqDIdTTN4fChT9DuNCgy6PdMpkZcrCxhffYaRtHh6KFRDKHw5DOvsGdqAstxsRyXvCjIio9Kx77/uG7/Tjt1LqXmw90Tsx0Txx3iaeUHKIt8nHh8p4789vvvTF4/uN+P/xm3n393+9yd8onbn78dUn/7tdrpxeF5/tHX2U7X9t2+lfaXPXm9W+f1zi7r9rZ9Yt+Nx3rnTeY/Nnm9myH1xxnbc7o9ef1BRphnkPi89cwTPPn4N7n/5CnKA8O0/QglL5j8d19Gfe41Vk4do/A8jh07RhzHiB4sQ1UFSRBgGzrlaj/XZq9z4fw7HLvvKBurG0yMj1AoMZvNrvQADWNKZVmN97sd5ufnqVXLaEKhXq8RhCGVWh9ZIj0LdUPK+NdqVXaPT7K2uiq7boZOFEaMjo3ieS6VahWKAsdxaDWb1IZG6Po+tmXQajZ6CzJ4rsni4hpvvvk2KIITnzhB4IeUSi7NxhblUonZazfI4gI/CNg9MU61WiGOAyzbIogSxnaNk2YZRV6QF9BudDE1QWNrvdcF2Lak0KjVKjiOzcTEJLsnJlhdXUHXdfyuj+eV0ISKUBWyrODK5RlWVlZYWVni0OGDfO3rX6daraFqKtWK5Onqlo1jO2Rpxnef/C57pqZpNjcplUo4rku1UmNrfYORoVE0QyMMQ6Iw4trsLHv2TFMue9imydraKp7noWsqjUaDJE2pVivU6zXiJOp5/ulkaYKhmTzyyA/hlRwUIQ3IkySmyAsuXrzI5NQUZc8iTGJUTcfzPOIwIs8VarU+9h/YTxgEZHmGbprYlhRpyQvw/QAUQZ5rPPonf8bMzDyDQ2PMXp/n4vl32LN3L6br0Gy10VUJD1UU0eO5qpiGxejoGG+88TrvvHOGqakJ9u7dQ1HkWLZOnEQoCgR+gG07hFEs36c7FLnC7Ows+/fvwXYsCQ9WBRsbG+iGgaqp+N2uPL/KFQzdIIoS0jimWqmg6TpClfBqQ+iEoU+axtJzcWGdbz/xXU49cD9pGqLroPWCqlKpj80NmXxtbW6iCsH6+hqdVptSqSyFrnqQa82wEBQYpgOqRhZHCFUWHqLAp+w5mKaOYWgEXdmtF0rB+voqBQWGbkuzd6GQpRmW6aBoEEVRz0alQBUCJS8Qb15GvzpP69d+joFf/s9od6U67M2ZCwR+A9V2GajXSP0NOnGXifEpzr7zFoiEsfFJVtfOkkVbHDzyOUxvgnZzmYX1c9Qv+ghVZ+v4HpIUbMdjfWOZgb4BDE3HWNug8nuPwedOYldLCCG7faZpogmB3wkpCnjuuRcoioL+wTqD/XXyLCMMQsnPVlWqlTpr6+soqqDe34ft2qh6j/ua5/T192E7NqqmYurmrU5jnoGiaKytbvCNP/4GwyOD8jqxHeI4xXbM3v0fgsCXXGIUCTUtFLY2G1im9E898clPsri0wNFjhxGqwPd9ck1QLtewXUsmoIqOIJXHXYGs6GmICgW/075VyNoW1FF6PHJVlYXU0PexTFOqGue57JYKDRTJ0TVMk4nJSdI8QzcNlKJA1WTg0+12sSxT+ttGCddnr6PrOrqhY9mSQ12uePT39/dg0ZKvOToyypHDR6jVqhw9doQg8pm7ucDszDVc12N+foHXX3+DdrvJ4SNHJHy6KCgKaHc6lMslEDq5sizXu3yQbjugUqmiaprkNasqlVIJVUhVaMuyMW0boaqsrKxgmha1ak3a9SQpE5O7qVWrBIGP3/WxHYdKpUSz1eTIkSMYhkSc3Lhxg1qtLvnfioJQQNc0Ou2mtDBD0A1CNE3F97uoqpCdoDzH0HXeu3CR+mA/qm5IeJ4iqPXVeOfM2wwOj2D11FjX19bY3NzAMU1a7Tb9/XXiJJS/cRoTJymqbuA4HvFgHfXxF2mfPIjlh6iqSpIkdDo+mqqi6zoFBUmaYBgmIyMj1GpVdF0jSRN03cArlRgdGcawTIIiIy/ZCEB0fOz1FmoQsZ4mqIqgWnIR600A7MndHDxwAMuS97w8y4nCCNOwyNOcIIrI0hTLsiQXN8tRuwHVX/kF4jjG6qFUOp0Og/dXOLN1mnr/AGEUUyuXuTE/y8zMDSZ37+Py5RmOzK9JDYafeYRLp59l39H7sPpG0YuY7CPCnjsFdm6Pf+SDnWOjj2z5fMzxcZPde9nf3YL2oihIA5/W4hWe+Or/jb86w5UzLxG3lzFrA7x2dpl//C9+mxfeeI/KwBS7d3nsnhzjG3/8GE888TSvvvwsT3/nBWobJX7p4N/gN8Z/m32dv8Ou4O+gb+0FLaGoruE77xH0vYTvvotS3iLUVzHqDbrqJahu0hEzXGm9wpubz2OOQREI9pun+Lz3S5SWJjlsnEQsufzyP/+7LK222NqKUFSXbiD4tV//pzz6+GP0DY2h6jWWl7ZYWV4kykKCIEU3VaLEZ3Fhk82FG5x5/RUMTWFyagIlT8nTiBz1rp3I7x87nUg7adJ8MHm93ary+5PXnT7lL66nf+c5/+E+rx8/f7hbPvOD5CK3c1MVRekJIO5sjfSx9n3H33/lk9fbk9VtO4Hb///O6sx/quT1w/xl72W/fx7Ja1pkvPDk46zeuMTh/XsZmthDpErja/f3v47x4vcIf+yzmNUaSZJQrpSJ4xhNU1EU2NjYII0COs0mTqnK3PwCaRTieDonHzjF6uoihi0YHNnN6ddPE0YyuAewTB3Xsbl66RL1virLK4vsPXAAp1wm6PoYQyvE6jphQ2Nu7gYD/cNcv36Nc+ffZXhYij0MDAzIxBXodjpSZdM0yXUH27Yp8owwCtB0E6HprK3MM757mpmZm1SqNcbHdxFFAbZlogmF+ZsLzFy9gaGb3Jy7ycTkOJVKiSRJMCwDzZIKj0VeYGg6eZrx6NcepVRymNo9xrWZq/g9uwFV17hx87r0PVQKWq02333yKQ4fPESr2WZjfZ2zZ84yPjHB1SvXuHJ5hjgO2btnCkUUnHzwISamJuh0O5TKnrTVEAYgRUMcy+Xpp5/l5EMnKJVLJElGmmS88OyLjAyNkuQhju3R7cQ8//zzlCsWQqgsLi4wMjJMFIYA5EWO6zlYlsHI6DCmITu9aRYTRwF/8sff5MEHT6FbKmkSEcdhT2xFMDExSbVa4cUXn2dyahpN19FVjXarzcuvvMrBgwfwfV8mjnFEXhSS26bpqJpOXkCpXJX+u4rgvhMneOLJ7/CJT57g0MF9nLt4keHhETzPJQkCHvuTP2Fyz35s26IoCoIwQFXlPHaNj2HoGpZlSPXSIiPLpB9itVKlKATtVocXnn+JuRsLHDt6jL17p0iSrgwAA19Cvy0LoaooQsU0dJrNJpomO0NJnGIaBv0D/fiBT5xIz8ssapDlXYSa0Q26qLrBw498BsNy0S2TQgg0yybNBZcuXIFCwXMd4jjC9TyeffK77JnaA0huh2nb5AWgCjzbJCsgKwR6z75F11SCbhPHNtA0CbuJghZJHBKFAZ7nUhQJuq4RxV3a3S1KJYfA72I4FkHQBUATGvl6E167wMrWFou/+TfxPvsQ5b4Bcs3CtQuuXX6HseFBzFIFRUlYmZ+hvmuUNCjR8m8SFxsM1I+xsHiOqZEHKZUnuXzzDM2tdygbB6hdaqJqNuWf/jyIGM1I0IXG9Ws3KHkl9N97FCydfHyIQkg7CKGpCFSyJCUIYtbXNllaWuJTn36YsbFR8lQqzH71j77OwUOHqFRrVMp97Nm3l3K5LL1xDUGep2ia0bvfGD1/zhwhdBQU2WHTNMkx101eeeVlxsZHqffXEULH0E3yPCWOQ+I4QqgC2zIRQtBstgj8kCeffBKUnInd4+SiYNf4GJqukaayWJOlAWG3Sxq2KVIfXREoQhYQdEPr2T9pUqU4S9A0DaHKrqUiBIUiO3kKhUwmTFMu6opCmuYS3ioEQqjkRU5Ogapr6KZBXhSkcYLW8zU0LJmI50VBHGW8c+aMFJSzLRzXoeRV5L1Ql6+XaIKMOIxkR1TXiOKQUsXDskqsLC0zPT2FaVkMjwzzwAOfvCXc1vV9tJ4wVZqkGIZDygIAnjlFnoFQVd48fZo4Tenrq6MUEMcxXd/HcR2KHBYWFxkcGEZTdYpC4fKlS8zNzXH06DHyQiJHzF5CHsY+pmVimjadrk+cpNT7pUBWmiTkeU7gdyUiI43RTZNGuys5wL2giyIDZCFAKAIFhXK1QlHIIkGcpKAKButSbbzRbBPHKcNDQ1TKZV5/9TV8v4sQgCgI4wBN0+l0upRLNRRFJTMNlCxHP3eFouqSpSlpmjO/sIhh6BiGDgrvQ4l7BSihgFBlMcN1PfI8IUtTkiTBcmywTXLHRCnAaPvUmj7uWgNzeQs9SihMg/qRg3R6vsKt1iaaJn2AHbvE3M1FFpbnGR2VEPU4iVHWtyiCgI1HPoFp2lSrfRiGRavZpkgzLM/FtG0AVhYXGJsYZXhoF0Wu8+ijf8qB64v09VXRfubTXHjtaczaIJXRSUwlklDRexx3xmWS63cXpNqfc7J5r2KbH2dsJ0zbSet2HOr7PpffeYOVq2fRgiWuX3gDLW9Sr1psRjn7Dv41Ls1scuLIJ5i/MsO7Ly1Ra0/SOp3wWyf+Jf/1nl/nHx383/hM/xcYKw3gG+do187Qrc5D/SKBdZ1WvMVmYx1TU4iiAt1SyQqfJA1RFA3LVtEVnSCIGR4f5sy5t6iOqnx35jH0Ws6QO8Lh2nHu8x6AN00mVvdR3RjBvjnMT0z+bd5+cpZw0EcxyyRahWYro39gGLvfohMpDI+O0uh0OHfhBoNqwub6MmfPnqXjd1A1cC2dVLFvaTB89PhoyOlO+9lW3U7T9Pu9X///5PWe93WnH+ut7u7HEWfaad93/P2XPnnNsuy37jxZd/JOVRTZ8ZJPSQ7Qtq/aNuRm+19V1fhBSPs7VQ6353H7hXl7cvxh2Pfbh6Io5N98Bri35DUTeS8IEmRZjCISLr34BptLK6xtbnLfQ5+iEAZ+q03ty9/BePQ7PGnknL82Q2NzkwN7JonTpAehA8c06TYbLC6vo5oWtWqVsdERJqf3MDKyS3qzphmD/eMEnYi11S2azQajY6NEoc9rr3+PvoF+xsfGUDVDQkAXlnAtm4sXr7LrkA5KilPsYnFhjZbf5eixY6xvbGCbFpVKCU1VWFyYo+xZtFubkqNjOShFQRZHZFmG5bgkcUbox1SrFVAEfQN1RsfGSNIMr1oiTwpee+l12q0WBw7tZd/e3YxPjFHt6yMMAtqNTYwiQzMt4shHKCZ5ltNsrrC63mZq/z4KTaNvoB+v5BFFPq12xLcef5xPnDiBoQk0kXNo/xSmpWO5FpbtsrXRZu7aVTY2VvjCT/84g6ODDA4OszC/Qr1eRTM1nLInRYxSyU9stRqsra/R9QOWVtY5fv8xkqTA6Imo7Du4F93WIE2l8qquMb13H4ZhkyQFl69cZWBoEKfsoeoGaQGmbVNkCUUuRUN020FTBElzi75qiVgBt1xGIce2TG5em6XsueimRpxGWLaF5dosr67iuRUMw6bsubgl6aPpuh7dZsilc1dwbJO+WpnV5QXKnouhyo6kY9k0Njf5xP3HGRyskiYJnufRV62SpgnrW6ucfPgkpXKNOIrxvBK6phGFAU7JxnEddNMgSiIM2wBNR2gGluVIKEu7ietZ1PsGsC0NyxaUSzbNxgZeyWRzcxPT8kDVQFVQNIX2xjJuuYKimTTbHcq1Cmg6UZKxtLJGrdaPYUhFVoGFqjmkiUKlXCEvErLUR1cNojhE1RSSpKCvvx9dSxBFgd9JEKrOvoP7KVVKtLsNyhXZWS9yFcPQ8bsdNtaWqJYs4jyVUH/dQKgqrXabkusxNz/PQH9dKlWTo5sWlukStNfJC4Ht9KFqlgx8lRxVKPidFu56G/H6RZo/+TD2//QL7Lr/OFGcYxs6phKxdOlVvFIfijnEwOAeLKOM6Q2jmQ7tZofRof0oWHT8RcbGDtJmCKeUs7VyjsmDP8/Y9EEWPIXik5PkZQvT7acbGOiFgeOpRDNLVB99nvaxSQynIr1GQ588TdCEiqqq2LZFu9WiXPYYHR1C1yWUu93ssLnWYGh4mHK1gmZopFmCokqBiTCIMHSTQukt1kBR5KAUFEUKSo5QBUKAENANNnn4Uw8x0D+EZbrkeU4UB+iGiqYaaJqFKgwKFAxVZ3Nzi2qlyvT0NGNju8lyBcOSHsPbyt/yevIwbBvddlBNh1wRqKp+C75bFDlpkqIKFVXTCaMYrcd3VYWAQiPLWpiGgkBDEYI0B1BI0oQ0jVEFUPT2IQRCgTxN2drc4LlnX2Vqeg+WrZPnqVx7hIauFkxMT9E3NIjrWERBh7xI0HTZBVRVFUUoqMius1BVNM0gSXKyGLI8Z2zXKJZtsbS81FNA97BMHcjRdQ1V0ykKQZpGFHlCLpYo8py47WFUKghV5+mnnqHi2dRKBpph31JK1jWNvIjJMullnGYpllGmr6+fkdEalmXg+z5ZluHYjlw7MeVvnucYmqCxtYnn2GxuLmGbDqbusrHRwHNdVKufuRtzpP4WtZK088jQaW01cV1JBYmigGpfBaHITqgu1F4YIBCUEZrOSy+/wv59R9B0A1XN2TW+iygOGRkZlr7Tqo6SZ9iWTZJlREmAqRcs523ct2YRx/ZhqwY50FevYegauiHtc0zTII4isijC73ZZWV3BdUq0mh2yrEBXNQnxdSza7SYUGbpuEguVjiZIPZvABKXeh9ruUhga3apJViTEUUCpWqPZ2qJa9djc3OKbjz3JwtwieZYzNjqKQHDxhdeo6iaPuTkHDw5wc+4spqdTqCaX37iBg4dRVqjXK1iugaZ66LpOWgSceuSTDL11RULhP3OMZ556nAc+/RnK9VEKYcjrsTc+SrxlO466nW6F8v7zH+QmbnfZ3t9uj6/u3OeHBewfNpeP1cgQGaq6PU9BVhSSW60a6AYUqaCxvMJbL36Tfs/k+rmXuH7mJYxWif3uL/II/zv38cs8ZPw0+zZPcGDhYe4Lf4jP2D/BdHKYfn2IOI1Z4Qpb9lt0K++ResvkZhvX1SHzCbpdskTFth1UAwYGB6UgXRFRoKHiEYUZcaiSKF0W1zpUyjXGxzzWVzaliGNni5nODM9cfYZ3N8/RLlpMHNpNe6lD1anh5CX2iCM8kP04p6Kf5lj8GT49/tMcGv08r2+9wYlTn8GpDfLZH/lxzl+6QH9/mamJUayszfx7p3n1qce4ceksS1fOYVsO1YFdxOgITZdOsULIYlye9mSJMoodkqSdu+Xf35hK03RnAdUdzqI7Ibc7nSO3v+Y/Zty5z+wNHQDt1A7Jq1LsuG1P8W5w6Tvne+f3utc5Kggp8NQTdtredhp3E7K6G9Se3tbTIfjLnbzu1Hm9vbu63W3NMslt2f77dtjw9sHdrsZsw8b+vMadN9Kd+Bz3Mj5O8tqToJHpq1IgRIG/tMjc3CwHjx7BLvdj2hX09+Zw//Xv0v7RR7D6qlQqJWavzzI4VEcR0gIiz3O6nQDbcrhy9Qqzs7PYjk2702ZoaIiFhUXCMGR4eEhW+eOEodEyIyMDGKZOGKY8/d2X2qj78QAAIABJREFUOH70ARQloduVnaB6vQ/DMBgbGQB3i7zIKfwaF967xPjYqIR5qCrnL1zk0JEjFIrAtmx83yeMYlzPxXYcdFWTvq4lm267hW3ZLMzNsb65yZNPfpfJiWm+852nGBsbo1KSAjmu6/C906+jGhLm5/X4VoZp4TgOjueRFyrtdgvbdikKBcc12TO1D8s2UQVSKCqOMTSVUrnC/n170HVdGs4LFb/bIAh9Cd0rCoaHhnj99TdY39jkwKEDlEoe3U6Her1Gu9Wl3ZG+jp7nQSF/PSEUKuUy1WqZw4f3o/a6HLom1UibzS2SNKFS9QijiDTLqPQST03RGBkZlt0VVZNwMd2g224S+QGe65IkUkAqL1JcS0eoKvWRMVRVIUsSOp02u8bGpJhMEPDyy69SLpWp1/soeS5bG2tYhkqlUiaMAhzHRtM0XMfh5s0bjI4O0e12sCxTLh5JTkGB67i89dZppqYn6HSaQEGp5ElOWs+WplKpkuUpXb+LqkrYT6nkkeU55GAYBo2tLQxdo93uoGs6SU9URwhpQWQZDiMjI4Sh7KRZlg3CJgxS/G5Mya2gFgp+q0scBWiGRRgluK6HKsA0LJYWF3nnzBmGh4bwXJc0jiiAufl5BgcHKQrwu12SKJDJjK6QxCGuJVVedV1aW4yMjOG4FkKzSZIMVdMwLQtFaOi6iYJAUzU8u4widHTVodHcwLZNsixDN/RbSAhN12Uyk2UoqAhVQwDtbkClXCWOQ6mMbDmQZBivXkS5tkz6j38R8299gW68xPL6CuMTwyhFl+bWddpby2iazdCuCYK0oNlu4ZRMGlub9NWHsSybal8fceCzvrFOxVFZnXmNip3RKmr0eQ7tImYjCHHtGhou/+Zf/Vv+53/yPzA2NsSJt26CaZIOVdEMm4K817mTnN0sjel0uqyurvHyy6+ye3xC8lw1uVC6XompvXtQNY1mq4WqqrJj1rO5ET1orSpk50p2LCHPUooCVFUjDCLJAdU0Kb6mWyRJgiJ6kGpFoCiqPF+EFDRSe2uqY1sIVV6T12dncWyLbifAsl1UzQChI3o82SSJSNMUXZOiREov8FZVrfdYLvbbBc/ttUcoCknUYWtjA9cpk6YxipDJnK5rUqCn9/o0zYii6FaAb5om47vHMQxpV1UUufxuikKWxmiGIVeGrMAwTFRdRRXyOBTFtql8gapq5L1C75e//IfYjsO7585x8OABqeZtO/L9QhAnUW9u+q1AfW1lgXKpRBikpLGL6wzK+1mm4Ng2e/ZNk+QxpuH0EA8m7Y70at23bx8oKpqq8b3X32R5eZHJqREM3SSOpX1alqXkeYZQMuLYx7I0wiigWitRKDmW6dHYavPaa29w6dJ77Nu/h6WVDb7xta9w7OghLMsiyXLSvKBaLvUsa2SnvigKGs0Gmqb3YNkGWZ6ztDyHaSn01VzKZY80C0lzH1WY1Op1hCpfHycxURiRZDluuYJhGIRhiOm42LtHyb/1CvzYKYymj67pUIAq1J66tDzRdN2k63fpHxhAKArnz58n9AP6+vvk91a1W+sMCLpdn4sX36Ovrw/DNEjTDCNIaNU9ctfqCetVUNDRNYM4jMlzKFWq3Hf8GMMjQ9KiS1VYPHOeuu0y8Kt/l267gyZcFGosL0UEX1IIzhYUx0OWlpYwTZO+vn6JyMoyvHIJ49J1GkVKfHySimey//gnwSpJ3shdFX7vLf5RhPIBFNv7sc5O+/zBPufOxPgHhRAnmUaaFFi6jpJG5EGXsLWFS8BbbzzP0uwMM+fepojWWZ59laUrF3hE/HM+Y/xrrHyM8qSDOiqI7ABtQONa8R5PX3+CTn+Da+kZlqPLLHcuYHlNtjoxS0trDPQPcPHcVUxdp+yWMVyDKIpQFAVDV0mSmCxVEKjYtifFGL0c1ZRe6ZvrKlmqMDxsYpk51b4y7c0YJTGpehpjoyaXl2aY27qOPiw4c/MNlotZtOmAR9/6UxbEDQZG6rhxhf7Gbj45/GM0riksGSucPX+T+x/8UfbsHSHNBaalo1GwvryAmkUszF5hcW4WTaT4zXUGyzaqrqMUBUmWgKKSKwqFon6MvuP3J6/bBZF77UB+KIz9Ht5/zzO98/1dBTGYo07twL2+20cV944WvddizE6Fm9uvkY8q7GwLNN2rSNPt46988loUBVmWfSB5vX3c2S3dDohurxL+IOP2m982OX+nKsR/0uRV6dWQigwlijjz/FNsNDfYf/QE/WOTdDZ8qv/gfyG67yBibIhypUy1WpE8wjyj5HksLi1Kj8Mw5Z13LnDs+GH27t3L8PAwJa8nPBFn9PX1MTd/E8/zME2DjY0mXqlMkqT4vs/+A/vodFrU+6r4fkBR5ERRiGHorK/N4wwkslMUDDA2Po7nSIGNm3NzbGxusmffPoIkxW/76Jq0jFE1lSgKEYoCRUoYBlimiaHLQMJxy2RZQbfrc/XqDOPjuzFUFct0iJKMkw89xPDoKJppoRsmea+atLK2jq7bCFUnSUIsU1b6pdiNS6fTkr6OCgR+h8bWBqUe/9UPQ7IC0qyg6tUwTYc8Lfje997i6tVZ+uoDHDt+nP7+Ggvzc9RqVSxLdnr+6I++xoH9BxCqiqppdFstySdNcxqbm+gaqJosJqRpxuXLl5neM02lUqbTbmI5DigKmqqxOD+P55ZYXV7GtAxMwyCMImzTxjJUGlstGcALQRwF5EpBkSWouklSKChKThYlNBoNHM+RQVGSMTkxyeryCmEQ0ler4ToG83Oz2K5LXkhOSZzEbG2uceDAXlRV58WXXmBubo7dE1MUKKysrNDpdjhx4j40TcU0DVDAtm3m5xe4ceMmpmWTJilCE1SqFbp+F9MyaTQaqJpGlkqxm21hK5lsalBIeKVtO8zO3mR0eJR33jnL5tYmpXIFr1whzyS/bGN9hbJnE4VdTEOnVCkTJxmOWyIMuiRRiGGaqKrgwMH9lMulHhdRYWV1Dc+TyrTtdgfbtjE1hSJXcGy9FzzJ4D7PE7xSmSwvWFqaw3brPP7tb3P9xg32Hzggk3EFkrBDHIXkRUaSpERhiFAzLNMkDEIMw8APfISqYFouQRDiepKvWeRFT500xLIdfL+D6zkoW13UN9+DsQGu/cOfpfrIg2iaiWYJqrUhZmevY+oaOilqEXF5ZpZKfZj1zQ2isEWtZqNrCnECYZjSbW3iWAUiiyiiZeK193AsG6VvmmBri9XlNXTVZqA+TrMZ8Gu/+mt0uk3+27//37Dr68+zeWgvuUBalagKes8uJE9zVCHh9vW+fqqVPsZ3T8ikJerglcoIzcArl9AMqT6dJCmNZgPHcWSZTggpTFYUrK2u4HluL1iRaBoFIS1feqITQqh0Oz7PPvsse/ZOkWYJeS55rQqCjY11hFDQNNB12ek1TAlL3tzaoL/m4rgWmi7IkXzVsNvBMDRMQ+t1RVXJTZa40t49PycIZQHqTnGYIk1RRUHkB5S8CigyISxymYhmeX4rUdz2TS0KuY5JWLpFp9MijCKZ7GpSXVrTBN2OjybksZNFpOyWSqRclwQb62sUBeiGtAE6ffotPv2pT3Ps+DHSLCbPM5aWl3jttdfZNTaKY1tEcSS5uttrXhqR5zmu24+m1cjRUPOC9957j5dffpnjJ45jORa60Ol2fUzT5vXX3uDdc+c4cf8JdN0kTSKGhoYYGR1idXUO07RxXZd2p0UQ+NiWhYK0rFrf2MCxPdodH9tyufzeLIqicm1mlnanzdT0JKWS5Ffv3bsH07KwHIe8yGhsbeK40oc1SRKpmlwpI1QpspVlGSAFz1Q1R1EK8lTh3XffZWBwEFUz0XRTKoAqCqZloRs6tiOLrKJnAaIZFsZQP9nyBtG5q+h1uQ5maYJl2xLergiCIKDrRziei2Ua+H6HocFBRkaGJNJCUciynCAMsSwbpZBKyY7j4Dju++r0nYB8ehR0jWazRZIktFshQkjxvaIoGBvf1bufgaoKNjfXOTQwgholBD/1aaplh8GBIaIYfvKnfo7/9Wf/OVEUYT+scOz4EQYGR2i1miwuLjI1PSUVWx85gfEjp3j9+WcwbZXpo58kzA10sp19P9k52N4paUyz7Fby8cFYZ6d93tvn7PSa2wU2d9JFuZeRpQp5HBFsrTN/9V3Ov/EcT3zjPzB78XUaKzOIJKDf0Vi49hZeM+KHgt+hxCRnwkdRxjXMkQqbUQM/D+mkbeaX5wgjn7n5ZVaW5nCNnL3jfYwOlFDMKsvLK4yO1BkZqUk7wZJLmMWYlo6uCVmwSTPSIpHFT2GxsdnEcg3Onlmnb8Cjr2ZgmAl5GhN3y7TTgk7HJ44aOK7Cnuk9XLu5SJrkbKw1icOYI4f3EwQtav27OXDoIDc3b/D8he/i7TKpNYfZZe9lyJvmidmnOHHyEf7d//nb/M1f/BXefvss9993nL2T48R+myJqEbbWWJg5z/rCNbYWrlOq1LF0Rd7vhAoIMkUg7rmg8MHf6m6c6g/7Xf+/Sl7FVI6Yugt8/S8wed1Rbfi25PVuolnbI7vLNXu3Od0+/tInr0VR/Nb249sP6naFLk1T4jjudVzf577e/p7bE9f3YSoffy4fBhve6fPuHHer9m0/r/3c51G++MN3ff8HlbsKsh7QwlZVLr71Fs8/9RgPPfJZhif3ExcGzu99A7G4QnHyPpIenCJNZUdIU2VylkQhmqpx6fJV3j5zlsXFmwwNDVEUBZqmkRc5L7/8OigwMjJMliW02i280ij//ve/xJ6901QrDs3GCnv3jvOnf/ItJicncF2HNI2xLJMwaOMO5hQozLzbxHVcSp5NlqXsHt/F8PAQ5XKJVmMT23FZWlpGU3UajYYM0IWKaepomsrm5ibNZov+vn6SAhzXob9e53M/9FnWVlfo7xviK3/4dUqVGkODI1KkREjBFE2BhYUF6n0DfPWrX6PklXE9m431DTyvTBh20XSVRrONadlINVyHt996E0UR2I5DuVwmSzLyNOPihRnarS6eW2Z0ZBfvnD3Phcvn+PznfwTXsXBsm1ZL7ivLco4eOYymCmzbIk4SbFNH00xeePFlzp59l4c/dYq8kOpumqbx+uuvsef/Je/Ng+w60/O+3/d9Zz93v72vaOw7AXJIzj7iyCOVJlpKilJx7NhRHCfKVlH+icuOXa6x7Eoliu2ykpRSTsqKK+NRzT6SZuWMOEMOOUOQAEiQIAgQO9DobvR2++7nnj1/fLebIAWQmJGcqkw+VleD3bfP3b57zvu8z/M+z54FpBSYpkG728dxfTqtLmdPn2HPnn185+lv88STjxOEoY5dsCyyNGEQJpx66TT1eo1KuYTpuGysrlIbGSdXJo4hcS2HdqeNVJJBGFIslnbMp1rtLoZp0djapFYtUijqmbBBGOF5OjIpy1MQils3bzI2PsbU1AydTo/R0TFc16Xf77INItqdDpbtUiiUaGxtMT4xTqFY2GnAWJZNu92hWCrtRG3kWaalmkobFAHEUTJ0adUyxu988+scPHyQbr/L1PQUmQAhUhApjmPQ7myRk1GtVhmEKabpaGZLiqFrqoHj2ENJZ04Q9MnynHKpDGg2+K03L/G9p7/LYx84SZZCP+iBgiQBx3aJkhDLdgmCCNc16PUi1tdXuXr1Ko8cP04QBDo+Q0YYlp6HtG2DcNBBKbBMi34wwPV84jjCdi1M0xuaTPV3WLzN9VWyPKdYKpKHCcaP30C8fAF+65ex/85fx64VCKKQQdjHxKPgj+M6NQp+jbCfIOmR5grbdOl3GlRcwaC5RK8TUKmOEkV9wu4SUXcRM26zunEZKcGwpgjNUVzTYvKNderNlNZ4na12i6Xl2+zbf5C/7o0hGx3+4Onv0O212btvH0oK4jjaOWMF/S4Alm1TLA5NyyyDKArIEdRGRsnI6ff6pEnOmTNnuLN4h13zu1heXqFWrZGLnE67jefpeBAh9FxxnmlnWYEcNj7yoRGTzezsHFuNJjlw5uWznD19llfOnmVqaoLRsTpRHOqMWSXZajYRcjh3PGiSpTouKct0nq7IIUnCoU+AwJB6blRfezSza5oK01LkmdhxuG+1WriuO5ROZfheESFMwmiAUHIo41VDVYL+yvNspzHa73cxTRMhdeSXFMZw/lebgQn0THccxTQaW5iOjWmqe66HgvX1DcpD86o0yVhdXdOye9dFGgLIGAwCAM699hrtVoupqUlarSaFYoFer6/zTZUkzVIcx6EfhLzxxkXeuniRmZkZJibGkEpRq9UJgh5pmmJZNpcvX+ZXf+VX6HTaCAHhoIdjOZBDtVokTvMdgFkul2k1m1hmhVdefZ1abUS7bqcZZ0+fYdfCAuVyiYUFfZ0Jgj71ep3dCwta0jrMKby7ukyxUMCyzJ3XQAhJv98lTnR8T5ZDnMRaQm8Y9DodXj37BhcuXOGjH/8EWRrRafUI+gFhGCBIMSyTOIq0+ZphkKQ5yjBpbGxg7p1DPXuWrYkqd67dJBwESHSknBCCOEk0GHXdoVmTod3+k1Qbuw33ga4L0Iy2FFimQZpq13RBhuoGdEoO0rFxHJcky3juuR9iKEUc6fNMnMQMgoBCsUAw6DE2OgKNDnJlg3/Zv8qd21eYmRkniHr8J//Zb1G8NsGNm9ep/rxBTk6z2ebSJf2+VmvagNGydEPmzAvP8cjJRyiOz5FKBzOPeRAd8LBgQMj71z3ynuL57SL5naq695JIvvs229+3j/cwx9h5LMPII9HdoFJQ/O+/9w/5/jc+z8btCzSWL+OJAJG1MQUY6QCna3Fi+Z8T2+usu+cpj00QZTY3bq8wNzPD+fNvaBf+YoHr166SRgG2gNmJElPjRaIgJpcZc3N1DBnhOoJazSdNI5IsZ9DvIoQgyRRBojBtgyDoInNw7CKtzoBC2cY2Y9LQZu3uJoYZM4hCXru4SrvV4ZETY4yOV3np9HUcy2Nhdh5TCoJuG8cyuXLxLW4uLnP16mVarRZJmrLv2F4ubZ3FTGxGOjO4uYd/XPDkBz7IF7/6TT75C79CnJmMTE7z6rmLSENSqVgEnTVckbG5skTQ7xH2WtSqVTKhUJYFueR+oUn3YwC3G0fb690y4MFgMDTbvP8s9sMC0oc3mnrwej9M8M4fvv3Pd2KLP88ov9d6EHH2bpLtvQD8g8xv3/Px887360GfrZ958Jqm6Wfu7Qxsf09THbyunTaTHfC6DVzvlWptv3jb4FX/7Cd/LPfrUty73i8L6v028LslLe+1BPlQZiHIwgGnvv8DJqbquOU65cl54q0ehb//P5N97HFCyyZJUnr9AL9YIs8FZ06/yvLSHSwlKZWK+MUSS0vLmKZgMBjQ7XZ5/oXnOXLkCHEE58+fp1j0GJ8YJctS/GKZxtYajzxylCRJKXhFTMNjenqGYrFIlqXkZLTaLSzHJnNbWKaNFY7juhZJErGxsQ55isxTwl6batnHcDyq1RqvvvIqb164yNTMNKZtk2Q5URwBAtvxcD0fZSg81+XKlcv4BY9KuYTtW0zPTbFn3y76vRZx0MF0PRzT4NaNa0yMj6OUyf4Dh2i3uxRLDsViESE0QG63O7h+idt3lpmcmCTNUiYnx6mPTuj3J8tYX12l6Ll0g4CXTr3AnoU5kixiz74Fjp14BM+zIU1RUrK+tkGxWCHNYq5cvkiSRBSKPtKSBEGPfhBx8NAx5nctYFo2nmtiSAOBYGHXLg10owDTdhHCwDBssiTj5Rdf4tjJE+xa2IVhKkzLxLAsen1dYBq2x/k3LvHYY4+x1djE8Qu4toNl++TSJOx3ScIIpKBYKdHt9bBMi8Wbt5GGwXeefoZXX3uNj370oyRxPJxDUdq5M82wTYPNzXVcr8CR48cIgoBms833v/8cc7O7KBQKbGyuUa3WMJRJuxtgGBZvvHGBffv3USr7ZHlCnmuJbJbmGIapj5/ELC0t02g0MA2DOArp97Vde7vTplqpIpTCsm2OHTqA7VraWMe2ycnJkoy11TVGRkcplasYdoE0M8lS/RnQMlRB0OtiWQ5JrBlohglruRAkScpgMKDVbNHv9Th+/DhJluAVKghDZ/8WihXiOEEqCdLUM4RhgGka1GsVfv6pn0MIgaUMTMPEt13uLK3u5F8qoBe0sW0HqXRcjjF05E5ThVSKPE+xTBOJwrEFrmuT31pDPXOGa4bA/ew/4oeDNSwT0iwkTiPKlRJrd25TLFdIEQhD0h/0qJc8er2IKBiQdJs0br3JxTM/5NhjHyJNclbXbhH3btLdfJP+0nUiJ6ebV6mPPsbswhHW1zfxnz6H2uySf/xxTN/g4PF9/PIv/hpj/+dX6R7cQ2liisNHDmnTHYazjlmGIRVxNGAwCInCkFq9SrfbJEkGWIYJysD2hwZqeYZluczNzbJr1wJxHPP1r3+d6ekZPN+l4PuYlp6RVEohcrlzVtzY2GRl5S5+waA7fH/JJM8//yPeOH+BDz6p52Aff+ID1GtV4kizYIZhYZo2jushlUGxWKJUKGEYDlGY4Jg2g16AaSoMQ3L37jKmYdHYaJCSIKXeu0miHbz1peDtuIzl5WWUUjhegTzPyDFAmChLEcfhDsjN8ly76EqFlBmdThvPc7XD63DGOQx1rJAUBmmWaWWKMMnTBMc2ufTWJfxiEdMcSpCHigXbdhCkO6y2YZj86Z9+nbcuvcWBQwdwXZskSSiVihw9eozduxZwHFvnXg/zc/NcIJSJUBCES1h2ymtnL+O4LlPTUywsLOB5Hq1mG8sW2LaFUgZTU5M4roOSEkOBMnPiKEZKk06rieMWMA1rCMi1tNtwPL7xza9T8G3mZyexDMHijSvsO3QIKXPyLGNicoJSsYLjmiRZimHaxElCGPWp18qEYYRtWTpCazgr6Tg2/X5PxxoN54GVaZImPQa9Fk9/+2n+2t/4m2RSQBIgENimhSCl3dY5u6WiTzIIiMKAMExwHRdDGaxubGCMj+A89wq9Dx1jDINCQUe2ZVlGqVTemWMWIgcBlu1ow7sk0yMYtkUY9smzlCgM9axsHGE7Nkkcaxl+NyBzbCgXhjNkgkOH9jE+NoLjOPS6XUrVyhAI50TRgFarhVcpY752hUP/7B9xaP9h8izHL5awPRP74ghhFBAdX2N2fppGs83czCzVapV2p70TyeX7PjcvXeBDH/4QqVMiEeZPDF4fUNTcd+XZ20DzpzFbehC79BM9tnuWaZqc/vof8tXP/kuy3irt9euIaJO/8oknCHtNKhWXNM4JuwGP3f59NtWbLCXnGZ/axY2bSxw4eAwhFBdeO8vhAwdxXZfvfu+7xEnCrkmT2fEaUxMeUgRIw+POrWvUywVc26BWLTEYRIRRRDQYUPR1QzhMDc6+doWNBhQLNpWSTRQOuHLlKtPTk7Rbq5T8CpZpYhcslFlmYtzl8O4JHAGbmw2cQpUsTOj3NtmzZ5T5uTrLi7cZq49iezbjoyNsNRuYlsWdO0scOnSYjXQNlRnsk8cpiypqfkBtZIoDxz9EJzb47/7BP+FDn/xlPvzJj3Pp0mucPLqHrY11eu0urfW79FoNrl6/zvj4DLbrYto27yeK3G44ZNk92aj3mVk1TXMYA5n+VO/zu4/3F1nvPka2Jsh7Alm4340fcIyfwjDpJ2Gc/99eP/PgNQzjz7zdiWY4u5PuMK5RFJEOMyO3c4i2u816k+tZDC0P0ydyIX66Dfl+XbmHnZ94kJb83r9PkmToTnj/46YyR2UmVmLw4jM/xDckmRGze89+HLuAevpHyOuLhMcOkg4GXLhwgR888wwnT5wgjWNGRsssLt5i7769LN65Tb1WYW52gt2755mYGOfipbdobG6xa9dumu11BoMYx7EZHavg2B6d5l3mZiaxLJNut0OexSSxdqKN42gIuiIKxSKl4gh4DQxTMmiaw+B4i3KphMwzXNfF8oosLq9BntHvh2w1m7iOi20YlGs1pDRw7AJC6LmljAzbsFi7u8lLPzrN1Ng47dYmpqWo1co0Ntcpl0v4hQqtrXXyFK5dvU0cZ4zUy0gZU6nUiCJdCILeQ6VyGfKMkVqNZqOFZXlI6dBeX8H1Cxi2x7PP/YhTL57hEz/3YY4ePUiahBowKgdFhOc4NBst1lc3uXj+Ereu32J+vo7vF7FthyAYkMUJrlmCdICJxbe+/n3KZRtpKTIhCWMthTfyDJIY0y2C4UCWEw1aPPKBk9poy/foB30KxQJKCiBFWR53V+4yOzNLliT0el18aRKEEY2tTdqNFZqNZcbHJ7RBjDKwHY+VtQ0s32NscoyTx/fz+MmjNBpNqqPTKBXy4o9fo9lsMTJepBfEVKqTkGX0+z0gI00zPb/Va+J6ilqtCCKj0+3y0o9fwbZsfvTCDzlx4ji3b90gHAyoVEsIJOtrm/hegUajwWajwejEDNdu3aGx1WRiYoyya3H1ymVmZqZJkow8zuhstRCuRxj1GIR9NtdXKToFDMulUq0NJf0mSiquX7vGW5cusW/fAlJmrK6uUq7WCHpb2KaH7brEWYxh+5BKfLeA7/j0+31m5mcZmRjD8X1ymSOVwlYmMk0wrRyRm8jUotvu6BlKz8fzfaI0YWtrk4JX4vJb1yhUxjlz9ixHjhxgfX0Nzy9QrE4ipE2W5di2RRiEKGGytbqCZRWQyiQjx1Ae+VYTsd4gPnUe/3f/NsG/9yuoiUkmpvdQG9+NMCvUx6eRpo0vuwRBn4IryAebqHiFi6sr+O4cCpN/+s//W0Zny8zue4z63JNkjk1JbSC2LuOaiqtX32Ji9nHGj/0mxtRRXLrYxTKDPzuN7TjkTz2KLXJKpoV/7Q7WpVssFgySuM/01ASgP6d5lpKlEVkWgnKQhoHruWysr1Iu+oRBF79cx7LsYU6xBdJgc+UuzzzzDHO75vBLBQ4fOoDvucMQdw3wDEMRRRFKZTu5p47t4vtFHMvBtT1ElkOWUC76zE5N4NgWd+7cZPfe3aC8iGzRAAAgAElEQVRAWSZkCTkwiHV00XYEy9r6OpZfwPaLCKWwbRtluQhl4RerGKaNVyziWCVMw0IIMAzN1gfBAMseFttIKpWKNr5JI9JsOHeaJ0gUUmT0uh1MQ2GZikHQQ5ASS4WSin6nh2XaKMOg3+3huT5K6pGKLE2wLZMgDFCmQQY4rkOpVGDbZTfPUzIS0jTEsgqkWUqaJZiWyYmTJ5menaXoO6RJhG1Kuu0Onu0SxjGGZZKkGVLqOKssS2lvdXELHql8i5w2B/Z8gtmFGXKZ4/gmWabZaikEW1stHNvRLLnKsB1JlmYIYWGYLtK0cItlet2Gjm6xPaIoJkljlEowDcX+/QdwPZd2t8HU3BhxpHC94QyxtFGmQb/fwFQmWZwjsox+t41lSEy7RLffpdvvgtAKj06zrc8PUmpTLCRhGpLGEUo5jM8vUKn6WKKPYde4fOk6a6sbzM7PU6hUSKIIZVisbTYolKo4ro6S6PUSvvilr2FPTTEVJpQqZWzLIE4SlDJwHGeY5auzm3t97VwsxLbMXQ6ja1KdJ6t0jFyWJTqaC4GQ2m/B6PTIophotDq0bYRO+y7hQDs0K2ly68Ztvvv1HzA/s0s3qAtFjMUNiFPuPvEIzWabUq1Op9fj9u07jC9NUq9XmfjFEq1+jFcsY3tF7jaaVEbGcB0X+V/9Y7qf/wb2v3OUqcOPMUgtVAYyy8jvcSl9B0sqBe92y7m3+tqphe75T3tCDL/uw5z+JHXX+9Va27fZnulWIsOQOXJo/plZLuEgplQoMFi+wqt/9kd8+4t/SNRvYjnwyIkDjI+V6Xe3CKKUQsHFNCKOrf49RGKxnJ+h2VNM7T5MdXySi5cuUy6U8cs+liFptDus3F1herTI1ESNIAjxvCqNRhfXUyzMjWFbBuQpQT8gjhLIoVAoEycpaZYy6HeJei3ydMDuXfMEgwjX86hXq3h+gso8lDLJZEKuRvnxqeskQZe5XZO0ez3KpRG6zQ2MaMDcjEu1AgJBqeoxyNaZmqjT2GhhSock7DFSs2g1Ym5cv0RpTlExRzCbPoQGa/4y16/dZmJyhud/fIrf+u3/nGY348t//G0+/elfJhpsMj1mcPb1N3nj9AVGJGzeWSJsNii5JlZpnEDGZKbEyCV2lJOq+5FBO+8muq4X7xgHFOJeIun+7/2DWMF798u799z7mZE9zIr+L5fsgoF8QufJ5wit+EFAnm0/pXcaTN0H1T6IJHs/JcGOApVseO9vf937Jw96fjsNg3e/lrzzs/1en82fefDa6/U/sy0P3jZmiuOIJEl25l235023X7Z7mVal5M6c67Yj8E+74e53EvzLXOnv/gH5c6eRn3h858T/oE5jjkDmEgksXr9Glka4lRJ+oYpQNs4XvkMuBUzWaWxsMDk5wcTEBKVSgTAKUYbJ3Nz88DXNNdAsFPALPs2tJvPzu3js0cf4+te/ycc+9iEOHz5GpVJiaekOtdooQa9LtV7HsCyCQUCpWKTTalMsFUHo4qzVamsHYN9HqASRWHiqTrfdwXFddFxEgOtqc6hyuUKeRxSLPtPTk8zNz+L6GuwpqYiihLsrK3i+SxiGtJod+kGXk48ep91p4/klvEKRxcVFiqUSUZSAlGRpgmU5mKbD1OQki3duUSx6pKkczjpJnXWa56ws3+XVV8+xsLDAs88+x7lzr3L8+BFdgAuBYdtMTU5z/foNDh05RE5Gr9ej2erwtT/5BgePHsW0faRhIpXJyMQEd1bucuLEMQZBRL0+ilSCYqmAYUmUymhsNWi2Whw7cZAwijEthyzL8RyPaDDANm2iLEQohRAZneYGhXJxyM7o/d3v97VLHAKRZ9Rrdb76la/iuDa1ep2XT53h/Pk3uXjxCh/92McY9ELiJKFQLLF9eqxVKxhS6M5u0KPTblGvj9APB2ysbvDaqxe5s7jEkcOH8L0SEhPDyDWL4TpYpsUHHnsc23SZnJzCsl3CMKFYrDA1OYllGTz66EnOvXqOl156mY999ON0uk2yVDcwPvdvPscHHnuUJA750pe+wlNPPcXk+Bimymk3W5x/4wKzc/PkCL761a8QhgPm5+ewHT1/aFsOtu0RRgMtIRU6qiOJM0qlCvWqNhBrtVuMjozR7fRxPJc816Yyhikwlamffzjgi1/4PKZpUq5WtBwvjrFtHWejhI65EcokR6AMbYrzzW9+h9mpKbqdNrVKGcsy+MEPvs/WVpNiucTa6jILC/OUikW6nS6Wo02C8jwlzzMcx2Zx8TbXb9zgzYtXOXh4P7LVIbhxG/mdF4mPLuD93n9JvHeWQRJSrdpEQQvfVoh0QJ4EZFHAoN1C5DatRoelxWXi3oBSpUbJqXHjrWscP3GET/3Cr7N0d8BsOWd55TZOHnD9wissL6+x79FPkmQuY9P7UVaJ1uYKaRxRPn8LhGTtwCxJEtNsNhh7c5l8fQtr16zOFLZMlKEzjzfW1yiXSwT9AKTSzuFpgutYpEmsL9DKGsoR1dCgSpDFKfWROvXR+hAACvIsHzKAijTRjLdmVAT9fl83oQRYlkmahEP3YUFja5NKuYTrudxeXOTo8WMASMNAKjE0ABu6Aw9ClFAE/QGlUmHHGEzPv/eRytiJYth2GBZCP6c8y7RxlKGd7ZU02JaqZlk2nD8dxuEAptIRPFmW4vsFpFRoWWugWVJDuw27tpbXIgRKgmlapGnG7Vu3MC1TN2aHM6xpmuH7ejZS5NsemxBFIaZpkecCpe2MEQKkMvBcj5vXbzA1NUmWZ3pmNs0wTAtDaaMsgUAqSbvd5ktf+grHHzkKahUhJLaaQ4gc17Ehy+i2e1imSxzra4ph6KgYKQW9fpdGYwvD0E3MdKiUMg2BobThUKfbwfc9EDmTk5O0tjo7r6/rulimR7vToNfvUypWSfMEIXI9EoBifWMdQwmUITFMByFyPNcbMs+SPI3IBVrxkW2rLUwsqXjpxdMUijVMw8K3XZI8Z2uzwdz8jHayVhANtJcD6L02CAIsU+/5zY0NCsUCtclxjB+fIx6pcXd1jSTRzT3Lsrl1+xZXrlwh6AeM1OvkaElznunRiO1Z5ziOSdIEy7SGxnvawC0nw+6F4Dqk4zWiMAIBzc02/X5CY7NNHOeEg4QszUjzmGLZZ2NzncqtNaJygcaHj1GuVymUCvhFn9GJMazzBYRUhIcb2I5HjiSLAqrlMnkOlgHR175HY2Od07WMA8cfI1f6Oi55J3iFewrf+xXYP0V99JMo037aY2uMpJ9Ris6oVuTcfOsCnaXrfOsr/5rbV15lYX6Wcq1GP8548iMfp9nsk2JSqdTo9Loct/9Daiu/xB33T4gyRaU+RbEyQqFYolQqIzGJk4hnf/B9iuUyzcY69aKiWrG5ef0Oc9OjvHbuBnNzFchTwijUs9NApVIZkjchSgksy8SxXcrlCqWSj+sqsizEsASWpZCWSdAPyfME09Kzxa12m5Gyh21nmKYer7h7d4lHjh/EcQVCKTrtnBvX1xC5w3i9jpB9jh7bRblQxHfq2L5FFIfU6nXycoTbqBBuxkQbKUv2DcIo5mMf/Thj4+O8+cYFfvPXf40zL7+EbduUaxPUxiaYHHcxrIg7KzdYXL5BEkeMTk5huQXA0pJxUjLxcDOV92PX4f5pS++1j+43Hvig2/00a9ttWD2R3udYDwJ8D6/mfL+18xrd777Eg2eHH+aYD7t+5sFrt9v7zDaTmqaacU3TZOff27+7F7ze6/C4DV5N03zPge6HWf/Wwetn/xRaXeSvvm3Y9CC9fS5A5WBmKZ/77L+mUPQ5cPJxbL9Ev9HD/2f/ivTRw+SWpFQqAzmVShmltIFOmuTkGbz+2nlOnzlLpVxhZGQUy7K01NPQxh+GqXBcA8vSIecjo3WUtOkHbQqFIt1+QKFQpLGxQZomFMsF7t5d5ebNW5w+8yqHjxwlSQJ6WxmdTR2XYtkOnXaTwaCPYUgNTg2FkmApxebmJmqYd6gMi9XlJcrlMi+9eIrz59/g5IkTmLZFtTqKVzTJiKjWx/jq175FGEQcPHQYw7IoFIoEQYDn+bzwwo949dw5PN/H9Rz6QZ84yfB9j263R5rGmJaJJV1OvXgKKeDkiWPsXphDSrBcnRcaxTGmZXH8kRMkSU6zuUW1WmN5ZZX1zSaHjxzBcV3yXEd3FIseC7vnuX1zmZs3FzEtE2dogtLsNEnShEq5zNzCLBkZlqmNjL70hS9hmSavnXudJMkYGashDJtBr49rmyRJTpokmIY2qInDBFCkSU4W91GGwfHjxxkZm8AwLW4v3mb33j3cun2L/fsPUCjp7FqpFL1enygM6LS2KBULmJYOvC8UPFbXV/ELHptrTaQQLCzMMjkxjpKSOOwTDPpkWabBq2Vi2RZBENHt9SmVSkRRjGVYbLU2mJqeIAfiJEEIhe+XqFd8kihBScnE2BiDoMvY2ChHjxwljmLyLKHd3sIyPW7cus34xDTBoM/83AwH9u1BsD0PaCGlyRsXrrCyfJtKpYQ5dJwNBzHf/uZ3OHDgIL6v2VTbclm6s8zIxARJoucQtzZXMaSWdrqOTafd4dHHTgLgFwsYShLFsT73hBEvnzpFpT6JkNAbdDAtm9GRWRpri4zV66yv36VUKlCtVThy9DCFQoG9e3djmJrB8nwHZZr0uh0c22IwCBiEAwq+z8T0DAf2HCA59Qp8/zTuB4+T/4u/zdbjxylM7iXOUvxyzpU3XqTgKEQSEgdtZDaApE+SBESDmNU7K/z9v/t3qVVq3Lx2kTTo8Q/+3t/hP/3t/wK/MkVmFrl15ssceewjdLoRI2Oz+CO7kOX9DDo9pqZnyaRJkibcXbrFyMVlHTX21OM4toNjOWRfeBo5OoI9Nort2Nox1ZBEkTb9EkJgGCZSKtIkRgpt0hFFEY7jYrkeGt2AFJIsS3n51CkOHzmC7WgFhxSKP/rcH1EsFRmpj4Bgp8uupIllOcMaWUt20yxGye25UZ0XLaXQJjxKaqk3WoqVDX0A8gykUHzrm99mdmYO09au1gyLou3P2r2sklb9JMMsYUG/F6CkqRsjtk+e6ZiDwWCw02gSQjNLWZqzePsOxWIJOWzOgcQ0LYTQ2bB5lpOkyU5WbBSFSKFI05zXXn8dz/fxC74+X/JOA408u1fho5k7KcXO9VJJ7WkQRRGLt+8QRiG1+oiWkvo+arhP8yxHSEGWZtiOTalUol6vk4llQGDLGcgT4uFjsw2bZ773LPO75nBsByEFvV6XIAhotzuMjozrWd48G5prCZQQKGUShhGWZdHr93B9zSAWCyVMw9asbJgQJwlZpo2XGo0WjqsNlTQjlWOaBlmWYFs2GYosTzFMg2azRbFYIgz7uK5LOBiQDrN4B8EA15ScO/sKd9c2+cEzz1LyfKqjZcbHRlFKYFiSdreFa5nEUYhtWSgpsEyTTruNaRvUalXGRkdwJkbJn38FnjxB3unS7/dZX1/HsXWj1jRNpmemsR17532RUu404w1DN0mcoVInCvWcdS5yLMvA7A5IDUU0os+x4SDih8+dYnNzi067y+uvv85Tn3yKVqfBzdvXOXBwH0Xfw/zR6wS/9zsU9+zC9myCqI9b9FCGQXbG0pmzH5FsNBrapE7kGEqRxRGDXgf1nR+TxCGP/cPfwXQqIA1dAIu3i/Dt9bDg9YGxGvf52b9t8CqF5qIStNKPPGNw9zZnf/gdrp97ngtnnqG5doNHnvwI+w8/wsjkXr74laf51Kd/A2EWuHH1Ciftv8r07f+IrbEf0BpsYbtlcuUzNjVLp9shzwRBb0C3F7CytMTt27eoV2wWJgvU6zbzc6MoUvbvmyBLQpQhd1R4Qug4mCAI8HyHJImJopCcnCSJsU0DKbSKp9ncIkpSGh2I4oRb128wMlLGsU1GR8sUHIXrCkwlMKSgXi+hzJQoGTAIYrJcsbbaYH5uN3bex3dTkqhJnmUs3loiymPAoN2OOPPqOZayGzxa/xAFUcFLff63b/wLzp9/k7t3N/jFT/0SQhg0WgO88jSF+gIH9h9lefU6M7NFGo27NBstGiubLN65wHh9jkplWpMPRgz5+2cIvzd4/fNs6b1jfvc71v9XwevDMMPvBV7FQ4JXzdy+92N5r/UzD157vf5nQL8w2yf2LHubbX33QPO9wNWyLJSSw+/qfZ2zHmZprf3bbOi9znV/0ZPq227DP3/f399bNEnDxBE5QuS8/OMXGJ+ZYc/hY4SDlLvPnWL81GvcGi8zCPo0tlo6sB1YXV1FCIHv+whpQCbYtWsXrmuzsrLMyOgovV6fVqs1lKb4uK7FVqONlIKt5ianXz7L0vIiyjAplrQcrjqUxfX7PSYmJmk2W5TKFcZGxzCNdKeA6nS6xFHI6t1lJqemSLMcy7bYamwi8owktlDK4guf/zJHjz5CrxeRxZpV3Lt3H5ubm2w0GpRLJbIso9lcx7AMnduobG7euM6u3QvYjr4Q5wgc26FYKnP8+HHGxkcxDINut8upF18mSRLGx8cIgh7dbpegF9Lr9/jABx4ly5IhS5GhTJs8z+j3uji2jVCKVqtDseCRpjH1ep2jx47jmRB0W9imxBApWRyytbHKH//x09TqddY3VpnfNc/WVpNqdQTPLmJIiWGatFsDXE/PYD726EnyNKdYKvP09/6MJx5/EiFsvvBHX+aVl1/htdcv8eq5lzh+/LiWKfYD3rxwgctvXWbXrhnCMBhKzjKC3oA9++awLMnevfOUSx6WY2kpolKalTFMPNeh2+0SJxn9Xo80y6lWqzQ2N5mZmWdu1xiWo7BMk0ZjBSG1dL9Y1E7M5Dn9fhfLNbAcnWHbam6S5SGj42NEcaT3SrXGrl278XyPTnuLgl8iz3KiOGRkZIRBFLK0tML5185z/vzrHDp8AITkwKHDSGXSajYpFn2iKMDzXaIoplgokaaCWzdvI/KcWq1GlqZ88QtfxDQs9u7dO2SskiGIMPALBeI05fd//39lz8IClYrPIAhx/AJSSKYmJ0nSRJvISoGh9PlFCYiCgLnZGZxCCde1dQ5ylPDVr/4Jl998gzAKGR8fxS/49Po9CoUCOdqBezsPdGtzE9N2hnFVqc78jBOMIEStt5Bfeho5N8H6P/4PqPzGp1jtrVEdmSXJLXKR0dpahihmfa2BwGByYprFxetUKyVW1xcZGalx9fKbfOLnPsyR44c5vG+OQbTKr/zaU0RpSj+MWNm4zdb6LSaP/wKhMcbaVkh1Zh81v0Bva5W7a6uMTO2itdVmtOyQ/vA8QkgGHzpGmqTILKf02W8THt3PIElAgGmZpJl2cc1zCAcDsjQliUPSoWFNmsQ7DKQYMnPbMuM8zyDLqY3USNKEKEqwTJuZ6WmK5aJmG4VkEG4bcmiDme35RSnlUHaqgaIGCHD9+g2qtRpZFtNqtXRzTppD0CURUpImKT96/kcsLy0xvzCHbTqkcaK1CUqSozNRd/wThkxyFGkQpAyD5eVlXnzxFAcO6NlMKXNttoQiTmKkkISDCEMZpGnGm5cuMjU9rQGwkkNnX0k2nNNMcu0sr2e1dd62Mkwmp6YoV8qkmWZzozDEsuwhU6pZwm05apqmWtosAYQGwFnG2bNnWdi9wMz0FOVKRTcaTEWSxGw1m9i2zbnXzmHbuilhGIpyuaxnRPMlIEekGvAahkGv16PT7nJncYnZuTnS4d+EYThkhLUTerlSotNtY9suhjJZWV7S54Ec7q7eZXR0hCRNaLc7mrVH0Gl3uHnzNq7rU64UiJOUYrFCkiVkKZiWnq/tD/q6YSsgG5ozRmGo3fPTDGtouJTECVuNpna6Vhl52ufqtYsUKyV+4VOfpFbxSXLdnBBoQOl5PlkcEycxOTnB0ODK8zxM2xyCiwhJhiRHvnmNrOJTqZapViv4BY+lO8vs37cPy7S0BF6+XbckSYJt62vN9v9bljUEsymGaZLEEU6QkJqSqK6vu4Yy2L9/D2MTdeYXZjly9ABSpVRrNeojdWr1GqLRQtxYIfxvfhPbK5CkEfVaFSUhiyPy2RD7mGA92KBULNHY2CSNI8IwwnU9bd723R8zGAwY/+2/iTRM0jwFkd1XCrxTt9y3mHn4uuh+IOJhjJW2YxOTJNGu3A+YfbwX7ORZAtLCc12SoENnbZE/+oP/ibPPfwuHLrYlePSJjzIyd5BmD5Q1QrMXUSnWmVh+ghNL/zW19uOsV54mVm1yoZBmEdOp0OoGVGt1gn7I6so6o6NjmIZicekOM5M15scLWGZClsTYlkmSREP3eb0/TMvCUIr1jQ3tqO2aSGFQKpXfJnESSZrCVrOH7VXJco/NLVi6c4cjh/YiMt04kzLDNiRR1EMJrThKkwFpCoNBil8oUKpYTEyWSZIOritQWLhGgYJvUa1JWs146D7vEAwilKlo2yuUWhNMhguUowof+luPkaTwytnTGJbHnZV1du07yiB1iAOD20urhFGK746weHODbjuhWoq5fu02e/YeQrk2uamQ2dskznu99+/Hpt5LBr3fcR4EXu89xrvxwLvXu02ktm93P/C6c9sHRk69dwTQT4pptMz3z//NvZD0vYDwg8YfH/ax/MyD134/+AzwDrC6DV7fHZkjhNxxF9sGr5alY1XgL8817C9r8P/d62GicrbvJ0MQd9v8x//+b/Lr/+5vcOLxx5FC0m51mP3idxCOg7FrFsdzqVXrOI5DnkOhUCLLcsJogKFMVu+u8cILP2Rzc439+3cTxzmer6NjqlV9YUzTlIJfhjxnbHyE6elpRuo1hKHzK5UyCAZ9Oq0WeQYbm5vU6yNMTk5gmAZx2EHaKYWih6kcCp4+fpLkOJ6HlAbhQEuv1je7nD7zMp/85Mf4ype/wKMnj+OYuut29uyrTE3P8mc/eIYnnniCeNBhcmIScgPPLTA6NsrRY4dptRq4rq0dPIcSO6UUUskho2yilMGFN96k0djk5MkT5HlGsVikUq0zNT1FmiU4novt2BjbcjuRo9DGQluNFt/65rfZs3uezY1VCr5HlmWYlkGn26XgF8mRLC+tkCQ5V67e4Of/ylPsP7BXg/5imTDo4Tse3c4m7fYG1co4GfFw5i7DMA0mJqc4f/ESB/btIkdSLZfYv3c3hVKRVnOT+bl5PM8lz1MWFuYYG6uR5jr7EnK2GpukSUyr1aNSLEGS4NgWnU6H5uYGSmnp9GajQaVWRyiDNEmp1UcI+gMMZdPv9nnj4nVmd02wtbVFrTqOYeiYGKUUKyt3h27AOVHUp1yrE8cplUqNSrmMX/BQpjlkjhL6QUCcxKRZgut6mLaNYVnYjk0wCDBsl2iQUK+N8IHHH0dZEr/g63lEpRl1Qwr63S6doM/YyDjra+u8fu48q3dXOLD/MDdv3sQ0DQaDPvv37cVxbWzb4Wtf+zLzu+bY2FynWqkShgOOHjqOYUpKlYKewzM046SkxLQMcqHZYrKccMiAxGGIyHIdb5FBvxfSabd48slHeeyJD7J77168gs8gHFCtVgn6fZIsGn4O82EcSopfqOjcRtMmv75EtriK9f2zREdmKf6r/4Hsrz3FrcZdhLDot9pMzc3TjfuIPGfEq/CRj/8av/Tpv8r+g4/SG6QUKmW6QYjjT5EM4Mzp17l6bZGJud0sXr5LHHcJ4walwgSFUokkb9Pa3GLy4FPYdoWpms+1i+dYeu1pTCOG0ijVqT20l5dI4x7F1+8glcH60d3Yros4fxXz8m2aoxWWlpeo1WtkmQZdpmkh8hzTVAT93nBP6tgOIQRJmhIMQqRlY1s6s1AKMJSkWq2iDEWa5wipWFtdZ+nOMnO7Zun3+him/hwLIcjJiOMQISRxnCKFlgMjJGmqGcYwCBkdHUOZijTX8/tKmNxdWeOHz36fg4cPEgwClJTs3bOHo4cPYbkOFy9cIokSiqUSuWRoOKSGxlL5UP0jNBDJNYArlQrs27cH8ow46Wv2MhcYytYklJA7GaC2bTM+qdngnLddIMM44ouf/wLrm5ss7N6DlpVmwyxMhvFAaljUapdh23G1vDpHN+6ySDsppxoAxUlEmsZaniwNkjihXCrhejZpFuvsXAk5GZajUFK/vuPj45TLOtNUs+g6fidlGcix1TRSOWR5jm07WLbFzOwcIAnDAUkS6Zgfv0A4iDENizgZ7GSvCqFI45RWq8MLL7yg425siyzPhlm9Wp4o0M20L3/lTzly5IAG7JHORzYtff95nmEZBnmWMwhCPdYS9BgMtAJHCEG318cybLI4o9cLcL0CwjAgT6iP1Nh/+AhCgKmEdgAPQ5IkJk0zTNMdGqppCbAQOlM4ihOiKMWxHXzXJY4CGC8hfnCO+LHD9Fc3KVcqrK9vYNsOtXodJbVr87ZqTApxTyN8OxJQj+BIFKah95hl2KhOn0avz0qupdlKSWzXwPUcDFPL6oWU5GIIegwL9dIFopES+a9+nDhJ8R2HJBogs5zmxjqULcyKSRAMKPkFigUfYVooyyHOJf1+j8FXvku9Vkf86qd04Z5nO6hV3IcZGv7iYX70vjXPO9f7+49sg/9Op4NlWcMGzHu7AUkhSbKcfqeBl7b5zO/8LdqrV9k7W2dufpKLN+6y5+SneP2tO1RHF2i9qfj40t9g95VPYXcq3OVVepWXyOkSxxk5Jt0QegHMzO9GSMni4iJZkvPmxfNYlkGr2yNLB5RdRbHoYBom3V4X13OpVmvkYlt1mJLlGSMjo0TxUMFiOLRbPaTQWdG25ZALxdlzV0lzk1NnrjA9OcnKyhJzM2UMpbPHcxFBDpZtkKYQxSlxEmK7PpZRZHlpjUrFI4pC+t2QQaJoNbaolj0gAVJEBjNTdRw3Z6uxipKS/iDm9bWXwM34xMgv4b5VQW4YhHua/PjUj5iaHGdiYoIzp08zMTnFBz/8FNdvr/HMcy+wsG8fuYzJB02iuM8gCdh78Bi58LQp3V9w/SSqyfe67bsB3cMSV/eayd4PvIzBGwwAACAASURBVO4c80F7+z7S6b+wivS+9/XwLPOD7v1hYPT/L8DrvW5x2yf2eztw21/ardTEtm0sy9IGCcbbDsPvJRN42PXuzbrd1f7LAMY/CXhNspygtUVva4Pp2RnKo2MQp7i5xPof/w8aBxfIh+YPW40mvueztraOoRS3Fxf58ann6bR77N+3n6mpKaZnxpmZmcRx/KGDc0yn0yZNUzzPp93q8eyz38e0oF4fwTRN4iQlShI63S5pEnPlymUmJ6a59NZb7NmzmyjWsSq+ayFG75JYLZqLOb7vYRr6/RHKwjBMkiik4HlURkbwfBPDyllYmKZaLtDc3KJYLHL58lW63T6/9OlPI6Sk390kSxX9vnadNi2BMZwnVYZCSEWvG2hZ2GCAELpwXl5e0YYqpsUnf/6pYVyBHHY5Fc8+9wOef/55Dh06hOf7xLEuuMhiwkEwLCIkZ06fhjxhbnZSm+MUikRC4nhF4kyAtMmFRRDqjMt9+xYIo8HQ7TMljlo4lk3QbyBUzOVLN/jGt7/FyROPkEQhV69eJUPyoY9+hF5nlVK1TKu1Sb3qs7B7F9PTU5q9TnVRGgx6VKslcgwKRZ9ep8X46Bh3bi/y3e+9yAcff4LTL51ifHwCqUwcS1EulVjf3KA2MkKUpDqv0DBIsxzPK5KnObblsrLWZWp6lEq5RnNLsyhBECBlzsi2mYcUFIs+gwhsp0AWC/JcsrR4hzjVJhNpmg3ZfK0E6PcDsjQnSTIW7ywyNTWFNC0MabG8tMLYxDjC0LPB/SDCtl1aW23evHCeA/v3YXkug0AzA45l88ixo1Rr44yPj2NaigMH9uIXPIpFnRNpmorp6UkqlQpSSUyp8P0ihYKv8zJNm37QxzQNGpub+nFKQZImDLpdfN/HsiyWFxd35vIkBq5TwPdcoriN4VbIpdCFSas1zKwUdHptPNfbYenSNEZ0Y3LPI/nDryG3Onw1WOXQF/4X+o9PcenOXUq1AjNzM5QrYxSVpBv1UKbi6qUrfOsr36UXl9h/8CT/9+e+QC8YcOT4UQZxxOuvr3Pt0iLddsiBgydxi6O8/vI1fvef/Pfs3zfPz338V1leWkOIECOOqc8cp2AYrF09g51u0l08jVupYI7txavOIHtN4miAeaeBNVJHPnkCkHgvvgbrW3z++Wd59dVzPP74BzQTKC1dCMYhkLHZWMdzPXQxLjVQVQrX9bA9j8bmJnEccuGN85RKRbqdngb6Qs9tfuub3+LmjZucfPQEUkks0xyyU5pF2I5NuH79Ji+++BL7Duwjz8EwDC31N3TmqDQAUgZBH8t0qZTrTE+PYtk2QurZZd9zMQxJp9/n6uVrOJZNfaRORva2gQyQJhqMW6a7o/qBbGd+3jTVUE6ZI9DxZNmQwUuTlLXVNf7NZz/HB558VF/TpDYcGQwCDENx/NBRdu/dSzyUvfZ7PeI4GppKDbvwQ/m0kGqnOJLD4HipEoSANEmHz01hDudxQWKZNq6nGdUs16ZCSimCQY8w7AMKx7GHz+3tzD/tliz4f9h782BLzrPM8/d9uWee/e577ZtUVdq8SV4wLSRkwG1soJmmbfDAMNETwCzNdDQTzMDExKxN97DMNN0MYMCNwdh4t7Uv1i5VWZJVqkW177fudu7Zc89v/vjOLZVkyZJs0xHDdFbcqIhz856T99zMk9/7vs/zezJ1CSEEtpwiVzqiJssShBB0Ox0+9zefZ2xsjIkJHcezutrE90uUghJrzeWrct9ms8XRI0dYWNjEli1bcVyLKBpQKEEcRTSbq8RRRKVcYnVtjYX5bYyM1kiTDNfV+dNZrqnLUaz97pZlYdkWCoXvu7iOS5pmFIXCthyyJCVPCyzLwS+VyQsTc6jusryy9ur7Af0wpBT4GNJACAshTdIsvsaKZAztNbqxlqU5hoB+v0O338GzKhjnl0gcG8dxaTbXiaKI0ZERrVIY3nuEgDiKsWyLbBhrJ4QgjAa6+RIleiIvNfDKGkTgWKjJUWzb1nFcUaQbAZkiSXKKQpCrAt8PyNMc48BLiN/6p7ibZ+m0u5SDEs3lZQLXQeQFVrlKp9Xhd37nX7IwP08UhZRqo2BYJGlGrVqj9Zdfolqtwkfu1Lnfw2WqkiDeMOj1LT30pmueV29vvobbaBJuxPu8UeH6KlBmrr3JR58/wP/yG/8Vft7ivbftZ3K8RnfQ5+O//M/48r8+x8ft32TTsfew0N1LO1vBvu4ybfcIrfAMWdKl5HskSY7Cop8IFA6jk1Pkec7Y6DiD3oD19WV6gz5hkjI1OUY9sDBkjm3bIKQmZEsDIXRGehSFBEGJKApRiuFE2UFKk263Q6VcxjABQzIxPY1XrtPpRczPjrN5UxVTRgglMBwDJROSqECpHMtyKAqJ41jkKuPISycJ+xl+4OOYFV741in6ucXCfJksW8VxPPLUJwlXKVdMhIyZnB4nTTMuLbYxDINusc6yc4G4nXJL6b1UT08ykcwway5wcPkR3v2ud+B4BSdOn+Guuz7Mvhv34FcNaqMWdEJyIwETeonB/MI+hvSs72v7forXa8+Ra6epb7V4fW0N8h+L1/9fFK/9336FJgYbb8u1J9CG7MY0jatAFdu2rnb4r3qAvoeOyevt99qT+u2cQN/tAvpuxatQWq4mDEmmFF4S8e/+4He56847mZ3bSpKY2F4J9egB5FPPI26+DlUUnD51Csc28YKAIAg4efI0B589QKXks2XzdhAp1YZHtV5FSpcCyfLiFdrNdR556GHa3Q7jYw3W11s0my1uvvk9PPHUk2xZ2DxcyJvYlokpDU6dOMWDDz3Kzt17SAYdvvzFL7P9+negpA3eKgIoeg0sS9AeJKRFhu1IsjTBtBw8vwpAtVKhXK6iCgvTDnDdErkS3PfAA9x2261MTk3qv7VXZXHxChcvnKNRrTDo9XCDMiiDleU1HNun1Wzh+SaO44DUeYqB67B0+RLbtm/Fcwy67SZZpov0IoOZ6WkmJkZ1REyudKEZdoiTiFqtThglCCQXlxa57vobGBuf5etfu5vdO3cipIlrmvRbTXrtJrV6QKnqU69XsA2TqKe7ir5foVACx3Ox3DK2PcrI6DQWGSMjDZJcEEWCOOxQJE0ajSnSOGZyYhxpGiAKqrUpWu01XM+i34tJ4xzPcxl02jiWhe0GtDoDelHG8ZePsG3HVgqgUi3j+TZJquXn5XKVEy8fx7Ftyr7P6tIiRRbR7bTo9XpcubJEr7+KZzuE3T6NkTLS1MduioJ2q41fKhFFMUihwTYowmiA41rUG1VKvotlGPTabXqdNvFwUZingj/6d/8P5VKZhbl51ptNVKHwPYfpqTGyNCQNB6ysrlCrVJAURIOQPBc0GhMkaYztlClQZGrAYNBGegb9QRvHdbh8+QooQa/TpxA5mzZvJk1hfb3LZ//6b5mcHkehATymtCiyYZaiUvi+z3qrTeCXsA0Lx3Ip8gJVFPhBgOU6hHGIZXoocrqDNYTQE37HMlFFhhTgWhamIUmjLr4fEIcR9rkl1JUm4t6nkFWP3q9+FPnr/4SFD/8Dlvvr1Een6K8t0XDL9LopIQaLzQuMVSdpXe7wb//gU3zyl3+F3duqbFqY4J67v85dd/0otm2xurJC/9IFJqZGeO7QC9z5oTv57/7bf85P/sLP8l/8s99g5w3vI7dsRibH+Ma932TfvluJe23MSpWgUWXl1HNIJ6DTXcIPRghqm+kNujhuhvXCedyHXsD5woN4X3gQ6+hpetsXuLi6SuB51GtlatUShcoRZk6v38J3bBws1jotpJC4lkNnvYNp2sSJXrD7vo/nlgCLtbUuq0uXGBsf11AmYPfu3Vx33fU4tolpWighyJVASJO80FA2IWB0pMb05AS24+lCUwqEYAjoMbCESRiGlMpV7W0rckzLo9law/UcDOEQRTHCKPC8gM2bN+EGzlUJcp7l9Ho9LeU0LAzTxDCgUNnVG7ltOqAkucoRwsSQevEsh5TkQmk6cmu9zf49+wjjVcqVCZSSGGrA4rnjXLncozE5qr3zKEQB9937AM88+QTVUplGvYYUkGepJhcXDCeqUk9oEcRxhm15mrhtWCgFhdLwJSH0hJWhYonhsQp0tITn+kOwn0mWZ7pYzQvyLGcQdfX9VF5BAGkygpQghCZXJlGiq5k8Y3RshFq9QhiH1Op1bMciy0KEULiON5yAKi6eu8To+DiGZbK8vIosDD776U+zsLCZkZFJvvSlr7C8vMTC3DTVRl1nTVsSw4A8KxB5gmWYDLohL337ELYlCHwHgYmQOkdVFDnd5hpuqYppmZiOSafbwnUMoiQhzTLqjRHaa02ee+Y5piZn8Twt7S4UKJXS7awSlH3SJCVLcuxhNuz66gqmBXke0e11qdXHSTKT3POxHnmG0k//OEuHjxCUSszNTZMXOUWevQL6KrSfeMNWYBoWYGCZmkuQJAm2bZJlKaapsHoxuWXx4JGXMExJuewR9jsYlqkVB0VBnsZUSh4XzpzlmfsfZlciOPaRdyMcQbUxhTQLoqRPUK1gOgHqsQr2ok/9ep/A95iZmcRkQF5IfOlhDFZof+5uyo06xoc/AForAIg3LlzhKoH02q83216bRfnWnvk1371mwPAdxciw8bPRjFJCqxXC7ir3/OW/oX3qIEeff5IP3nkH9z9xkE27b2Vq0/sxvnIr73N/AjWnWKueIR1dZkVdwC0J8rRLu9XFdy08zyVMBeNz2+hHsHv3TtrNFgeefpY0yanVakzPjnHwwCFM0WP35hLj9TKmpT+ThJAUueD0yQvUShUKlWLaJnkuQQhsW2DZrvb064fIsow0z0izkCAwkKrP5rkalhHhOWAbNqbhabuFJQn7EVESY7omRaGbTlFekCQututSHy0wZJ+ZyQkmJ0uoJMI2XOI4wbQUvufSj2MCz8QqUvLCIvB8Os11Ns3UWFo8SzNf5Gj3eVyzyg2NdzKZbEJcqiBbNao3jfPw/fdxz4MPo0yPI88fIltaIY3XMTNBHvdwyxUWdr4TYYKm++kGoVAZiDf3wb72XHjVpvOqrn7pKmNDNPvKoOzNnuu7naNXbYX6RLt6quYHtFXGeFeqF/fXfOl/V4HD2jJiyDeNELr2eF7v67XHBG9QKF9zLNe8PUPFz6ulyxsgy+8Y3r2FRsHf++I1DLVs+Fq9+oZc6tpuxoZM2HEcHMfBNM1X7fN6Bej3Wrx+r9ubTXy/6+RVDH9vISiSDNHtEvYGbNqylcJykL7P2VOn8T/9ZQzf4+VOUxdswNzsHGmeYwxhSCjF9dftYmpqljSLuXz5IqOjYxjSJstSjhw+zHprnXe88x2MjY1TrgSUSgGOY1OpVnjm2aeZnZ7GGaL/pTRwHYeF+Xm63Q7bdu6gFDjs3XsdYZpT8j2Uu4wqFGW5gKAgT2IMoUiThJXlZc6ePkOtViVJU9I0ptNuEwQlTp44xeHDh3EchxtvvJHGyAiWPZRP2faQZmkyOqZJfkpoWqNlWwihKJVLRP2eLkJKFRCCwaCPX/JBaRmgZZgMwgiF4NiR4ziOzUhjhEqlOsz7jHnx0Its3b6DXIFCsrK6xrve/Q583yOKIq4sXmJ8fBTTtmm318nSBGFI/KDMoBdhWQqhAJkRxX1czyPPhv7ANBvCZxRHDh1h565tCCPXwJtanWqlSppnFEU+nB5Ap9MjCCr0+y0QBaoQPPboo9TrVRzHpDcYIA2LanWUamWE2fkZFAZf+epXuX7vXqQhKZU0EVRKQVDy6XQ6pGlCvTFKXhSkWcbU9BSVWpX77nuErZu3st5s4boelq1hKoN+F8fxMQ1Ni03TFFUIgqCMYWjZ4enTZ5ho1CjSlEsXLzI3M4NlmsThgFQotm7bRq1ep9Zo4AUe7fVlAt8liiPSLMd0HIQo9JRTgmnCyKj+3cMoIQjKKHJsWyKUJCiVrvp5lYKnnnyKLVu2UKtX9PFRUC6X2LNnF6VSgO/riaCG2eS02y0tWyxyAt8njiKt7si0rNWQgiyN6bRaeCWXPGfoh9O04yTsk0S6gO/3ejiuQ3ttDedSk/j8Ev69BxHVAPlDN7D6Kz+D/Ic/RFovEcd6IrN4eRG/Os6pl09z6fwiD97/CF/58j3c9RM/qmNGcjhw4Gn+j9/5n/Etk2efOcChl47wif/0k/z5Zz7D+z5wOw/eezcj09P82Ec+TJzl/MWnP4MfVNizZx/ra31qlQkunVvnbz/3Dd59281MzWwilgGOLWlePsHS8WdxZIr0RhmZ2cva2hKTI5vxHniefMcm0ht3ES1MEG+ZwaxVqNVrLGxaYG5uVsOPkCgh8LyAJM64cOESx0+cYmpiagit6RFGMbXayFVKaZErSqUSn/3sZ5mdnmVqehqEhjvlaYpp6AVmFEW6wSAFOgpN6gkkQkdqeQGmSqHIYSg9LZTOibZNU8eVIF65wRbgOCZCKIpCDlUbhS7kihxDGkPgk6RQOb7vX7WvCCFIoj5ZmmLbjr7LIzAs7cUVQBTHekplSAxhkGV6FfLE448COVu2zJErA1UoBv02Qgnuf/Ax9u2/AWMoYTctg507tnPDvv14vodl29o/O7TIWIZFnmuQi2M7+rPN1KqgOI5ptVoEQaDtNsPFixzKKvuDwbDZaw0JygYCiWFKoijWv2+hht5aDegxTQuDGUwxPbTl6OlsFMWoAtabLdrrLUqBR6VcIk1iBIIiK5BDmW2cZMRxTlbAQw88wLbt2zl69Chnz5xmYnKS8ckxJqamWFpeBSER0mRmZp6g5FEoRZEXDPoDPF9bNv7oj/6UKExwXZ+t27ZgmhbtdougVCJJIk0UlybF8O+eZ+lVMvPnPvclFuYXsAwT27ZYW1umVPJJ84x2q4c/fO98P8CUCkNKojDC9QKQEmEY+F4FhRjm8NqcPXMeq+phdPrIMxeozE5hmRuTwFcSEQTXsjMYNkokSRyT5SmmYWGaGma1vt6iWqsj+iH3XbnIez/4QSrVCoXKiaIBo6NjWJaNbZn4nouUFkGpjHV+CUsIjt64lcmpGRzP0zwHVehc924X/5lJZNtm7icncAMPDBMjbRHHGUWR8dD9X+emH/kAxc17MTfNfp+roTff3s6k7O0/+Sv/WYaAZEDS7/DkZ/+ME9+6l0HzHL5b46Yb/gHB+H4OvbjE7ev/lLxlcGH0NNaEQ7VWYm1tjVNnzzM6UqPTXMW1JbapP4uiVNIPFaZbIgjKrK42mZ6Zpd/r4/k+680WRZEwOVmhUQm4fP4KeZHjuiZCZgSBi5QGQUl74aNE0u/r/BRVxHhOGSGVXtuZHpKAdn9AlkuarQF+eZSTZy4xWp8jSROkTCnyVBccSYIfVCiUS6ejkNIlTjPOXwmRMmLb5jpxL8J0KwjfpLPWpF6vUhQZlqX9w4bwwIgxlYkvK0jZoVLx2TxfY7Th4nsmmxfmuHTxPC3Z5eDik6z113jn5G2Mh5NElyLOOy/x8V/8Jbbu2k23s05z5RLbFyZ46YVDhGmf8ZktbN/9bpQDtikRKsOQGv+u1NtRO75uFfqme76V+uBNX3mjaL32sU058roMEXzn/q9tthiGLtLfqmD0rRzTdy9e3+CH1OtfjxvK07d7rf69L17jOP7t13YPrp2mmqY59LbaeJ53NZj49fa/9uuN8sJ0Lt4rIKjvN9Ppjbog18qer75+q4NYmEbs3/Xq51C6ke04Lukg5LH7H+L5Jx7Hsl3GZ+ZJclhuNqlhUP/dP+fi/DhXWuvUa3VGRkZorq3jBT55ljE+Ps7szDSDfpsTx09x5swpduzYhmmarK6sY5mSmdkZRse01KtarRLHEaZpMD4+hkKxa9cexJAUmRdamtPrdsmznHq9Sn18jCQa4Pse9jBrUfmrCAUrZ3N6/S4qi5BCsra6hkDy8ssvMzo2hkBqqdrwvcnSjGqtxsLCAp7vgxDDxaXk8sVLlMtlojjmvvvvZ/OWrQihC1Lb1gsX13MJOz0GYUSjMQpD+Zzt2FiGxcryMtVKBT8I6Hb7HHrxMNddt4dHH/0mlm0xMzODIQ1GJ8aRhqWnswUcOnSIyakRLMtibW2Nnbt20O9r6q3nevilAC8o0Wp2aLe7DLohp09fwHJsSkGJNM6H0ts+jmOxvt5ESoFr+xg2QxhSRrVc1ZnFpoHvBxo6lOkFu2GaIDaAIpK9e/eiyKnWakhpYJo2YRgTRQlf/eqXWF1rcv3e/dRqVRr1KhcvnqNWq2qJnaUbAa7rcfTYMaZnZqnV6+R5wZUrl7n1tlsxTahWPSxbUy+XV5YYHZ3AtFwMaRJGIb7n4vklVlZWuffee/G9EuNjk3T6EUurLb78tbu5vLzKpi3bkJZDrV7Csmx8z7/q+/PsoYR7WAQFpQoSPRUqCkWaak9lmmZIaQ1jlCJMU0u2W80WnufRWm9jWRZ7rt+LYZqEUZ8kjodgsZ4mPzsOSZKgVD6kOA6oVitkWYqU2mfYaq2TZ/qmadkWqtDTNz8IMG1Jv6dlhP1BD4FB4GiwRrvVolyAuryK+/WnsUYaiPffwNqv/gTy524n3T1DeWSORq0GKiNLY+IwQeUGlfosn/ubz2NgcPs/uIvf/de/z3/yyX+MyhThYMCn/+zP+IPf/z16nZB/+JGPsNJcY98NN/GeW9+LaTn837//e3ziFz9JCrhewCc+/gvsuX4zZ8+dYGyszpnTJxn0e/zMz/wjoqRHrTFBLG1MURA2z7N26lsYRgbuOI3ZvQzCHoHj0L/7cQrfITQV5YqHNAqEoeWnQqLzWgt1dVKnlKTIClzXZXZ27irg6OyZM0jDxDDtoSdPSzyVgl27djI3t4Bh2ggpyPMU17G05PVq9mVOv9fFNDTcSKiC1bVVTMsizwVrSxe0P9WytG9W6By91eUlHVUhDTrDyC5DSKQcdpmHZGUhC6TQMDMtk9VyZ8syaDabVCol0jQZNhS1bDnP9cTTMKHTaWIaEmOYL25Zlo7dGMKXhJRs2bqZ2bkpslh7M03ToORqou67b7sNgYGUuggNwz7pMPvbHMa0mLY1jGjSjbEsTfn3n/40e/def9UzCgwtE2J4b9wAGsohO0IvPOwh/VkOPbVCSIRUVz3aIDCkAUohpYEc8iWKPNeTAWFpj6oUoODlY8eZmJpkYnwMicIyDdbX2zpKzZAYho1lOle9u3v27MI0DO69556rfudde3YTRwn33HM3d/3oh9i+bQdHjr2MUhmNegPbcTWNOcswpEW1WseyXGbn5jBNSa/fY6RRJY5jwihCCpM0zXFdnSmshyGSOIn59gsvkUQxmxY2gVDMzc0ipOLe+x7k8OGj3HLLO0kzPSVJoz7tVhvTshFC+1Yt2wKlG+ie6xGGsc71dk3i6VHcR75F8a592Ek2vO8zfC/FkJ6sz6ENqTtKISRkWUqa6r/70aMvI6XEdTysQcRDx48iHJuJyXEM00RILT1evLSIbVtYtkGvF2MaJtULV3CmJ5j8z3+OMEmp1spYpoVjOVdJ/9lzLlIK4r1t7X10XfLOKu1+BEJw/vRRbvypnyTbsROZf6fc8QexvWINe2Vq+oN+fg1a4+pIadBt4cuUX/nPPs6IGVNuSMoTI2y/6QOspxWOHb/MJ7x/juibrIxdJCej3esRhQNeevEwN91yCweffoypkSpJ0qUceOS5QrpVVtZjGqPTWLZLp6NVTOPj45w9c4bnn3+BvOhz+fIaY7WAShBQq5ZJkhDbkeRFNmyaZSAk6+sDjhw+Tbe7zshomWjQoZCKtMhQSiKFSU6Nc+dWcb0RzpxZ4tCRJVQWEUcd6jWHNE50RrZhIAyXLLd46skjTEzMcPbsec6eTZmbrlG2JYYa5b4HX2JiZgrf0qqKQoHjOkgB7ThieV3gBw2kaGO7BtWyjUGEZwsMmaOKgsC1WOskmJbN2MIoxzsvMjJSZ7q7hZ3GjThRhS8e+QIPP/ANbr1lF8QtVJYwNlYlQTI7u5tTZ5ZxpcniufOgTILyBEWRXl3Lw5s1O77z8dcVzIo3cm6/dSnt66kG1Gu/H4AsvcGhvs7zXZum8h3H+zq1zZtt30vxqtOkv3O7StB/m9vf++I1TdPvKF43Jqob+a2WpaFMG1mub7S9lTBrfRORr7vvD7IL+HrPL/fvQr6mcAUwgExAkqUYueL80eMUecjm7Tuxgjqm6XDiyFGmn3kJ6+IVnJv3USqVqFQqehptexw4eIDnnnuOLVu3EIcRg36HLFPs2LGd1bVlykEZ1y1jmWB7NrbtEJRKuutrmLiuQ57n5EWBUgKVZyAESZqQD6WUnuvoCYRfIgr7uLaN55c4f+YM1emcxcUrvPTMItu3b8WU2lviuiVOnj7L/MJmFq9c4etf/xqjIyPMzc1q+ZrnU65WOX36NOMT49r3Y0iWlpZp1Gq02m1q9Qbbt+1EmrYG42TF1VD4QhUIIRkZG+PpZw+wtrqGZRiUfJ92q8P42Bj9Xo+iUJiWy86dO7Btg23bN2MYgjRNAQjKAUtXljFNG4HC92wc20IVUCqV8NyAu+++mxdfeJH9N+xHCYVA4tgeeaILo6NHT3Hg4AFuuvlG6rUGi4vnqVYr5FlKFMUkccqDD9zPvv3XIw0b1ynz7DNP02iUyHODIleYhsXTTz/NAw/cz779+7EdiW0bdDsDAt8nHHRJUjBNTdQ8f+4Czzz9NDPTY0RxgmE57Ni2leXFi0xMjg9zJguWl9dYurKC7wccOXyIsZExvdhLUjrtDnESMzM9Tr/fRkiBH5R03lyea9melKAy+v0uUurr8fLli+zevYelpWUefORR3vve91NrNNh/ww24voeQgqUrl4cLMpcw7BGGPTKlqNdHdeGjoNVsM9oY5eyZs3z+819g//6bkNKgUqkhpeDB+x+iXPYZGa0ziDKqpTLNZpN0KAW3bYcoinAdG6W0f2hjUR5HEZZl6qkZ6Ol2kmKZJuEgxHUdqpWqjugiJ1eKVqdLf+X4IwAAIABJREFUpVYnKxSuY5FnEt/3tWwwyzEsDzoh9noPcc8zFLdsZ/A/fhz5i/+YznwDt+yQpQNyVRD1CnzfBFLCQczpE5f4P//Vv+VrX7mH3/qt/4Gnnn6K/+sP/5D5+QXu+MkPUfHLdJsdSl6FyYlp/vwzX+T2O+7i0ce+yf69e/it//63MJH817/2ayANfvf3/4BKuUbgepw5d5QtWzahVMYXvvB55uemOXHiCIFjEJTKpIXF+bPHWDx2gCJao1QpYZRm8Ea24FpQ5DG1rzyL1e5h79p0tYCUwyxNz3OvTj8NIRBKDid1IFROmuZYloEhFdVKmfvvf4BnDh5k6/ZtlEplilx/9vq+j2mYKKnlfVJAt93GtV3yYVGligLbNjGkQKoCKcH3XFC6qXnw4HNs2b4dhc4sBC1x0pNzkzxXuJ5LkWdksY5j0jmK5lCqnBFHMUHgXyUab4CXPM/X5FdTw+wM06BQmtipdRkJ0aBFv6sVGABxlGBZNuQRhYI01UoYRE4WpZiOSZYron7MY48+ydj0mFbOiII8T696NaUUVyNm4iQZvnaBynMc16ZarTA+NsZgMKAY3mNcVxOtoygaFuFa2r6RPes4OkfUNAV5kQ2jX7o4rj0sZIeasaG0TmBelZQVqkAOwVgb149lWdSqdaqjDTzfpbO+ThgOqNTqGJbFenOVwCthCO3dDcM+I6MjPPH447Saa9Trdbbv3I7vlzCEYGykTrVSxrZMRsfGaIzUiMKEIlccO3Zcg5wadUzTolCKZw88SxQPmJ6epMgTDNPEcjwMafK1r3+Dkbq2pwR+QHN9nXvuvoe7fvROdu3cyYEDBxFCEJQDCqXYu3cvfhBQLgV4noNl6SLRD8pIKfFcByFy+v0OruOzurpKHEcMBiFnz55ndnYe03Y0MfnF4zjTYzAEc6nh1NP3PN2IRLCyvDoE6dh6TSD1JF8aBpVqmaDk43ke5iBEzE7x+DNPMTo6Rr1W11P1HCpBBdd1iWINyeq21ykfPUf71z5Ku2xTazQwLYOVpTVKfplCpdi2xHipqiFAtySoDPrdCN/xcPwGQkpefukFrrtuH3FmYL51xeb3tP1dFa+vvEABw8W4b8Ha2WM0L5xiefUy+9/9Q+y79ccYmb8BrzHH++O7sC6XKPZ0qdYrmIZgenaWs6dOct1111EuB1Q8gVn0cR2DPIuJk5zOQLD3ptu4eHkZIQwqlSqlIKDVWqdSDgh8l1ZnmdnZSS5fuMjcbBXT0CCwpSvNIaE+wRI6+sm2LGq1KqONCpIcQyoMKyDLbYoCLAv6cZd6IyDPuswvNHjHTfPYpkG97mOIAtNwKIDuoINSHRwPbDejUrdpjARsmR/F90KCAKQJQUkQBALPNIfwL4c4SoijEGE7PP7EBcbGAsqVHNcrEw36QIFt6egvw3I4fPgSg6yg04vIlaAxUqcyabNmrVJqj+BGAVvqC+y5vUzROYfKB8xMNLDslG6/x0ozQggXT6TkPa0gidNcxxe+5Ynf601e3/Keb/zo67z26x7PNQ9tDN1M03xTgNibHcP3WpN8T5PX13v97+nV9fb3vnjN8/y3r0XJX1u0btAPN+jCbybxfStT1Hg4mflBFa9vVDBfSx57s00C+YZsOMl4+uFH2bZ7C2ZQwbR9JAauUIz+4V+xXPYozc/iOLbO5xOCIleMjI7h+x71ep04CvEck5HGOHEcUa9XWWu2yNKCPB3QCweoYf6eKtQQABHrmIgcoijjwQfuxXFdJiYnWF5eprm2RqWsb+iPP/0s87NzdNot+oOYe77+Va571wy+53HpeMyuXTuIBl3SXJGmiieefpaZuXmu27+XrQubmJya0LCIoIwqtCwmjCJ839fdfdPA8zz6vR5TU1MUCqRlohR86k//jC1btlAqlQCdL1gql4mShNXVNZ564kluvuEG0ihCmHo69vxzz2m6bhQRhX0QOQg9ZRsMBvi+O1zAwaf+5E/wPZvRRhU/KA+jHmzSNOP6vddjGYJuv0dQLpPlBa1mm3u+djf1kRI/fPvtXLdvB2HYIo0HVKpl+v0elUqFNMmoVOpMTY7QXF+nVBolTw0efOAetm+fw7SqFIWehJTLJRAFU1Oz5FlEkkaUgzKLi4uEUZ/R0Vm+/eK3qddqjI+PU69V2bwww7MHvsXFS5fYsmmebnOFkXG9QJbCZGl5hccfe4r9+29kaqKBY7k89s3HGfQGnDxxkpGxaSrlss78KwSeX6XIDdI8Jk0T4jjCsS2CwNWyTUuyddsWAl9LptaWLpKnESP1ErWyRxL3iQYdPLdEtVIjzxM816bf7xBURiiU4O5v3MPTTz3N+257L1nWpyhSbrr5RlzXGcZDSC5dXmTz/ALrzVWkIXG9Mr1Wm1MnTzE3P480hlRaaWgvoJAUw+tCg7gM1pprVKsVut2OboAN5cMapmIihKbCGo6etBQKbMfHsl2aaytUyjoXOcv1+WMcuwxPvoB8x14e/NAenDtuZmxuHGU1KJKIRsXjwIGn2LR1C4awsGzJkaOHCPsp7VbOSH2Ow889xy3vvJlN2+a5/c47+OhP/xROxSVPcn7pE79MYFd44bnDtBITL/BZXLzI+9/7LvqtJoYq2L51Oyura5w8eVrn0QYVpOGzaWEbvlvl2y8c4sc/9OOUSlUMFRF4PlZQxiwinn/sq7S7LWojVerTOxmb30unuYzr1HHvexakgdq8CZWDY/nkFOgYUqEbWUoi8hQQfOYzn+HypYsszM2AFPieQ5oMSNOYbdt3MDe3iZm5WYpCX28CQaFycpUjpSAvcvJMNxRc26Mw9KI/zzLsIcU47vc1ndsw6HQ6lIIyC1u2gzTZWBpIQ1+/OqJHA1EQWvp74cxFHn30YRYW5nHcgDTPMC2JUOicYtsmTZNhFI+NYAOco5DCIMqHkmElSKIendYylpGTp5HOIl1bp15rIDDodpZx/YC8AMOySNOUfrtNLhRJknL+9EWOHnmZd733nRSFlmumqc7DRRhaOj/MfN2g8QopkUpRZDnlUklbISwLMcw4T5KEPM85fPgwE5Pjw8z0DSiQnu7FSUiaxaRDgvjGvTXPdQzE1b6/0qoPgWKQfptcrWCKcc6cucBDDz3Ijh3bsUwTx7ZRjo5EKge+/owrCqRtU6Qx3XaPxcuLHH7pELt37xiCkQLqlRrv/8D7cT2Py5eu8Lm//iy7tm9hbWWJPM9wXHsYHWJiGhb33X8/N950A3EccunyZUYao2zbtpVHHn2I+YUZLAN6/QGlcpU0yZmYmCYadKjVajz97LOMj09w4403gcoQQrC2ts7SlSWmpqbwAp80jZiemiaMIwaDHq5r0+2FKBiSxyVJ1GNt9Qr1kVE8z8GxHZprbcbHp7hw7hIPPvAQ5R2bGT90CnX9VmSq6bHmcB2DECRxjFKCC+cvsr7eolGvaT//MCZHCkGWJli2lsvbvYixWpWZm/ZRbzRIkox2u8M937iX+dl5LNtGmpIsz8jaLdzjFzB/8+M4QYDje3Q6bcpBFdOwWF5ZRBUZxqEKURhi3ZSwvLjCl7/wVf7kU5/h1g/eSbVS4fP//lPcXl/AvNRCLYy/7bXQ29n+rorXjTWiASghUUjysMsf/97/zqUTL3Ldrr0IOcXkxI28+NJ5zj+zyO6X30l30zLCMoijFENY5Col6vcZHWmwvHyZQecSvhHSGwywDIHllijVpyiMgMmpOQzDJEkSDbF0HZaWlpAi5crSEo4VMDM1iueHSJHi2BXOnrnCSKOB6wtUrFAqRRgZjVoNxzIxhMKULmfOtvnWc2fYe/11tFvLCKMKhaTkBrRWVnAklCoSobQP3TIDHN+lEAl2UaNQJtXaKElk8sQ3X2Z+LKVUqpIri+6gS9n1CcwyioxBmOB6OrvaMkzM3GF6zsS1C8zURBQJmTKRUiukCgwGccb45AhnL3VICkGaK6YmJjENQWWihjNV0D+RUcrK9C62GZjf5KmDT+AaOVF/FdP3uOWdP8TmHbOcPPwEImuyuHSWVr/J6OSWV6kr4bsxaP7DF6+vOpbX7JY8YJCeBGPLfyxe384mvh/a7n/oLQxD9VqJ7QY57rWj+deT4r7WqHxtLutrN6WUvqkMo3V+ENt3O5bv2PfsJb3fphmAqxlltmmR2U2yQYlzL17i5Rce4Zb3vx/L9Dh58gwL81t5+k//kru+eD+Dj92FNA26vS6t9RabNm1ifW2Nc+fOMT0zjW1rSqdfLuOXPM6dWeTAs8/RXLnCvr3b2LJ9O/VaXYe4JzGLlxeplssEQZn+IKJaH+HkqVOsrfXpdNcZaZSoVktMT8/QaXc4ceww1WqVPbv3sryySuCXWF47z+b32BR5zkv3tDh+6jIf/Zm7UEqAMnjs0W+ysDDL3Nw0jz/4MIMk5c4f+zHyFL725a+SkvOxj30M0zRptdd1zqAhUZZB0oup+GUGUZ8oDVG5xWc/+9d88pM/T5rGdHttRkenKIqM5uoKQRBw+coKFy5cpIhT+uGA6fk5RifGmZ6dobN2hXLZJwg82u0elung+2UGyYDueouvfOkrfOynf5beIMY2M8qVOuVqjSjqQ5HSWu3x0uFDvOc97+LYkaN861vP87GP/hTQJqiOIG2fJEkwhQ4HX1lZZWxsnChJWV5eYX35AuutDu9+962UKhU6/Q5KFTz68OMcO3aCX/9v/gVnzp7i+ImXeM/73kca5zTqFcJonTjNMaSLbZf42te+zOhog1tuuoVSUKJnfJHBYIDruXpiUuQYpu7uJ6158nCcSq2B9JaJ8m8B0O31CcOQiclJorCPZTlY2YexTANZZITim8TZCtZwoavPWS0rtNQC7eUZnn36WSo12PWONr7nk2UZy8vL1GpVgiBAoUjb+3DsceJBhPSOI7w1pNT5oIYhsR0HlCIJHUrqAwx6XV1gVh/BMC3STHvMtA8Olq4sYhX7Ga/dhOt7ZPIsiXhBW1yUvq5Mw0CpggKFHf4YjiW4ePkc1ZmzIDtkmZbFWZapC90swze3knYWKJcCBukqqf0sAk0oFQy9sN0+RlIg7vgNjJvfQaFi1LEvE51+Es+pkkQtDCMnDBPKtQkSq4bzjl/Bd8ocffEI3uHfwXMcZLREETY1iTtLsR0b4dbpRQVXrlxhZqyGzHpkWYbraThRmibYG02rygwoGPRDst4i5cBlowIJw1BnX5sm4vqfo3TLL7Ny5TzT3oC1h/83pCxYXzxLELhYfgVlVXFsn+7On2Xhf70HbIv+rQVRdJxK+eMUecggDKlVq7Q7HW2/cAMMYXLx3EUcyyKOBpimgWFKgsBlI9rMdXxyFJ4XAFrKGichhmENLRyCEydO8vBDj/DzP//zSEPged7VzG8hBGFvQLlS0vWoKbW3VYqrhWcBetqZJKRRi0pjjCyXGIYkGgxQSjAYxFQrFVAFeR7ieja9QQ/XLyMwkQWsN9eoNkpIw9awpzTFsWwslZGkA/J8QK+7pm0Llo0bjDEYRPhBmVxBFCWIYoDp1LE8jyRp011dpVSb15/LaBlvGPWxLQvXLmkIS6wnwOvr61QbY3oCzJBiPCRQGkrQ7bcJKmW0otMkLzSITCIY9EOeeOwx3vPe9xIEDgWJjvYy9LRZqWSontAT1iRJ8ExdvBuWjbQcFBIhDcRQrrfafRjbshHpPlzpEecRTkmfZ4aSKEO/8UnYJwojDNNGmgaGNMkKbQlJoj4l3yMvFElSYDsulmMRJQN6/ZjnDj7D+257P+SCv/rMX/CPfvZDlKqTJElK4Hq8/PIxNi3M04oE937ja9z5wfdTrVboZzl+uYpJrH03eJpcbcSIXOrPlzih2+1SqdQRMkdlcPDZ5xgbG2Prjs1YjkmWFnqyLyBXigKJkBntlp60ajVHSpKEFAUIDFzX4/LlJer1BpbrMQhDQFHuR2R/9HnM//JnCZ87imEZOLZDoUBIgzTJME0Nl8qzTPuQTd0sQ2mQj5ToZvXiColvszTXGNLrMzyvQqe7jpSKarVKUUC/s05tsY06s0j7z/8nlIwJox71sSksS2eJbuROiz+eRBqSK3d+G9By89SIGPHnyMMBX7/3U/zSMQspA6w//s3vY1X05turpZevZ+F6vbzOt0YgBrCEzyDrotSAgw9/nW/86R/jpRmf+Be/wUon4W+/fC+33/Ehbjx8B2ZkI7YlXLxwmbNnzzA+0aDWmKBaq9FpN/HNhFMvPUXJVTiWgzAL4szD9Gc58OIx7rzzTgDOnj6jc5NfeIE9u3dz6dxJTpxfoeLBO2+YRhoDcixGyg4q6mkquTCxTYM8T1HDSWunnXPo0Al2Xr+ZuuezdGWZsdnNOJUGLzzzPJOTE/iegyETTDNGOSZGOqDk2HTDDN/1KZKQTGSYMiDN9DV/4dwKM1NliiLDNDVh35AmUprYngOGQRTHyAKkUnTDDgKJ7w9hjShslYDp0Yng24dOs3PHDtbX1nn+1CquX8V1ffbt3c3s9Dj9XszI+Ahry8vMnN1Hd+xljl9+kmz/X1F1M8IwpqfG2LbvR0iUiQrPcf7oAY4cPcfk7E3sv+MONm9/NwQTOBWTNO4hsTENnWQghq1LqQpyYb1yEggBSESRvcFZ8vZKsteSrN+soFRKkf4bHRdp/2r0Ojt894bNq+XI+Xc+rl7v2nj1628oVMVrHh8+0ev+/NsqlMXrFOWvOS7X9d927fv/qcmrUuq3X4nCMV/VibvW2PzaIva76d+/2+N/l5CAN3ve/Nf/JerRg8gP//DVE8wwDApRIJSFRZWXD7+EX8rZtv16lpdXmJ9f4NjR49z8yAEut5qouXFK5QDXdalUyggJRaZ48dCL7Nu7j1IpQClF2GvTbq0zPj5JFMVcuXKR973vXXhemV6vT7vdAQSjo6P0BwP8cok4STWEyPNYXl7lxRefZ/v2rTQadXzfA+CRR59g157rqdSqHPzWQXbs2sFoY4QsLlH0PESqOHPuPNfv3cXa6iqKgt27d1GrVugP+jRGA67bt0ffqE2DpaUlPvyTHyHLMxBQLpfJ8hzDMFGFIBx0+dzf/BW79uzGdcuYhi7MyuUSBw4cJIoSDNNBCEGlXGZtrUmlWqPd7rJp8xyXFi+yf9/1TE9NYkpBtVKm0+lhWzary009oVFaLnPp4kXu+JEfwfEcarUqhhQMBgMs2yIM+8RhyOhojUajohc0WcTtt38QyzFJ4pA0KzQUpdDns+e6OI5Lt9djEIY4js32HduZX9iEYTo0h5AV0zRprvRoNOrMzE1Qq5UYGxujWq/j2B4oXbj0BzHV6hh5XjA/N8vE+DjtVpuV9K+RMh+CrBwE8io5Ls8ySvY83bagVC7TCxdBrpAXBZ7r4gcBcZyglIZL2cVOBoMeKk/JzQs4noa+XAsVEFIgVZWSs4kdO3bg+QZBvUleFBTDzF0hwDANOu0Oo7UbQDmEgz7KXGG9fRHf94YwQDGEWUGem2ThhD4PqlVSeRINctGL7Y2CtNfr0Vt3mZnYwdLSJYJSQqoW2ajeNm40WZ4jhYGIt9NabzI61iA3LiOkXtBtSCuHIydMMYKpJojjmP6ghemtgJAUqtBe2n6E8BzU7s24N/0ImbApez7hhUNEK+d0Vp3KSGJdnEnTIS0Ete23IYXBF774Ffz1g0zPTCJaJ8iEg2HY9AYRjheAUyc3K4xOzrG2toZl5NiOp7/vBvT6IcKwtBevtoCSDp1+gmPkRKGGXzmuR5LpiBCZ9THHr0NN3oBj2px7+QXc9lENuspiTUEVBm5QJktzatffgXvfiyhD0hs/Tp5nZNlWPM/XXlelcF1PS9hsB4GgWq7hOg6PPvpNLlw8z/bt21BDkrP2BZaQtokcTqA2POlyGAuiPzclL7zwPOPjY4yPj7HeamoprKOzYT/9F5/myNEj7N17PdLQoBsNajIYhKGeQhkGpmVhW6Ym7ko97bJMie34+J5PmiYIFLZt0e20KZXHkNh02j0dd6SUbgC5OjrFQDDotEmzZeK4jxASx66QZh71xjxhmpJmOYbloJQGW7SaLfJcy1iLPKVWrpEV2he7QUbeyG4tCi3ljZM+cdJDqRjTsFFDUJQGQemJ9cb/pmGSximHXzrM1MwEQih63Q6+57Fjx/ahR1YXv3meX/WdKpVfMyUYgoSKnMWlJSrVuiZfKj0xVPkwY91Y1mooNcXipUWa62u4vje09Rjkhe7sD3o98rwgKJXQJhjIh3AuQaH9p4bFhfMXGBsfIx+Soyu+z8z0JELA6ZNnsWyLaq1EuVxHIFhdW8XzfPr9AYM456Vvv8A7brmR1dVVRkbHyXIFFFi2RRKnGEKSJoOh/9ek3W5x+fIVpLAolX2yJGVmepp6vaabapmO9yqyBAH0ByGO65KlGXmuKJfKKKWIwpBWu43n+QzCUFtdyhX6/T6O52GZmhLsjtYpVtdhcQ3l2MOoHV2cSmkiBaiiGHqk9WeZVoLZw2gkSJIYy7Qxu30Ky0LOTQwVaSZSGASBh+PYw4aaIEliePEkxsQo4qM/TKoyHM/DcVws08E0XeJIIbDh256Wt37QJShXmJ6d48rSFTbPbaHVXGb7zk00Dp4DDOSH3/8DWhVds/7J81etv76XNdxb3QZSERjw4iP38Re/96/YsjDD5Pws33zqOIZd5p/8wi8RnB3DPjTC+sgih48eYdMmnbCwtLTM5PQ0tmVx/PjL5HGP0ZqHyiOyPEJaBoZToRdJ/HKN5vo6x44eY9/evRRFwerKCuEgxLASMpUyUrVpBDYmFo8+dp5tm6YRqkAaWrqr8oI8h14vRSlTx7itrzJSrxJ4BrZjgenjVyYZ9EPGJ0cpSEAIXK9OURiEvQFFmmO6PmEYoooUaVsgDKKkjyKkUvPJ8xTDlrj+xue4izD+X/bePFiy677v+9x7zl379u397evMm3mzL9i5g5slWRLNohRFiRIlilKVFF2RK4orrrKdKiXlkqpSkZVEsWXLtDbaoURSJAEQ3ECAIjAgiAEGOzCD2d/MvH3rve9+88fpeQApQAQtshI7Oqiuabx+fW+/7nv7nt/5fb+fr0GeRkRRQBKHSKkhh7FihjE8toe2Mk32yHKNNDEY9PtYVobtJiytxmS5xuLiIS5dvoTveyzfuk61Vmd3d4uuWGK0eQLXNrAGY2xkzxGEFtKuUB8fQ1Y8Lp0/z/atFcLWDp3dJb79rScJWwFVfwxDCFynjJ55QzW4jvquEeRIBBGCDJ0MmcWIPCZ7W1rxOz+23rFs+PseT58ZRuXc+1YF9A9+/hvjrYrLd6Dm3Ou8vuUO3sF+f8DQfnAEz3/wsmFN037jrYrT2//+KItXYK8r++MoYH/QNrMHv6Vew8c+tPe7aZqSixQjcdhZ2eK5587Q7m0zOroPt1BA03RGL1zD++LXMX/yfRRKys8jhE4cx8OcSY9atYplWyRJguu6pIM+cRJhSJuJiUkOHz5IoWCS5xLP89jdbVKv1wmCgCiN1b50jSiJMC2LkUaDgutg2yYz09N0222yNGHfwiITkxPcvHmD+X0zQ7mejmWV0DLIkoC5/fsJgj5nzz7NysoKk1NTSMPAcQpYtolh2YCk1epx/PhpkMqfZtoWURxhOw67rRZnn3qG/ftnGB1vUK3UiSIIwhYHDizg2A5nzz7D7Ow8vl9m6foSwaDP7u4O/X7A0WNHqY6U2LdvHvKM5u4OSRhiWQ5RGNHt9Hj4y18hiVOeePwJpDRZPHiAZmt32J2JuLl0E88vkmYxpWIRLc/Z3m7iOgUyYHZ2jt1mB8ctKKm26zEYBBQc5afqtNrsbO9w5sknOXXq1FDqpaAiujDwPI/t3S1My+TShevs7Gzilyw2t9aoVuuEUTz0H+dEUYBXrHBzaZ0kCSl6Hp6r8nSbg+co+SXy3fvpbTcomicR8QIyX8CTR2nu5oyOqqIwjVw8eQwjPUhvd4xzT7WwtWM0ivfi6EfJsgQFqUxx5QJ5sA9HP4qZLSCi/ejxPgztAHlUJU1TBr2Ax775HU4f+RmC3TFccQwjO0jBOoYWz2FzjE4rUhe/JKJS3E9/d5YH/+wljsz9JEY6j8UCg840vnOEOI7wy2U2NreoFe+iuzNBQR5Fi+ZIOhM4HKJon2ZyfJE0iSgWXPSswPp1g3r5XjZuFti65TNWvg+Lg8j8CFIYWJbJrVs3+dLnnufk4t/B1g7jaIewOEjan6JoHkXPJ9FR2ZOe18AWxzCyQxi3auSfX2KndheVf/i/MRg5RS5dov6AglVkIKb4hb/3z/jYJ/8JUf0Qzv578A7/BMaBn+a7F5eZnZ1je7tNL4w59JP/Hd6BDxO8+uc8tz1B35ymqY8wffLDPH9pA92u0Y4kY/OnyYr7eODMJRJvgRstC9k4jKwfxJ06jlWZJDfKuJVpHn3mOh05xfmVmJ4xjagfpjBzB7SvsTH589TGpjj37DmsQp3asb/No+d7PPnCK6RuhcapD5EtfAT/yM9ilmbQH/g2CEl3dB3DkLjuaYSu/Hrkmuo+aaqT02y20NB46aWXVC7x+AT1em042bHpdDqKCj30IqtSJ0cI7Q04RA5pmnDnXXdgmSbLy7cIwgDbsfeUMvfeew8nT54kQ8G8zj37HPNzM4pIbhjDi7G6HiRRNoTr3KZXa+qurqHrkCQRaZrguh66JkiyBMuS6FqCaaJIoFpKFPbRspAk7JIDhYKPZfug25iWR6ZJdMskjIcLJDmYhsEjj/wFtfokXkHRpaUwEYbYgyvlQz9rr9vDMBzyHOWtJyNJQxzLIYkjhDCwbAXY0YdZGXmekyUZ333qaeq1Go5nomsajuuQZinoiiQ8GPSxLRsh1IJBu9MBDYzhAkJ+m/uQZSRJurefwSBACgG5Rr/XRzc3ATC0aTzPx/e9vUVXbeiD1QHLtHBsm94gQEoDTQO34PGNR74BeYYUOpev3OAv/uLbeF6BWr2qFrc0MAz1d62ubtJudzh64hhktOEkAAAgAElEQVSWaRMEfUXVtSxGRsfRNMmF869y9113oEuBNCy1MCKVX7C506RaqaJpitsQRmrhpOiVWF/bwHEthFBy57X1tb3rXRxF2JZJEkcUfZ8witB1lSdvSKXK6HS61GoNpDQoFDy63R4vvPgi4+PjmJaNNpRxC6GT1HzSrz2J/aH7EL2BklcqhD1JHJKnKRo5QTDAcWyENMmyTC1YoGCEUZRi9QMyy2CFSNkg0NXJomXs7u5QKvnkmYY0TezXb5Af3kf2kXswbIsMjYJjE4UpaaLzv//OP6fbiViwD6J5Gt3ZFoWiTz8ImRibIk8jrl5+hWq1RvGpS2RkiI/d/yObF90e6RACtTex/jEWr2vdHdYvv8KZP/00VtRnfN8+djSND93/i+iGx5kvnuPk+Q/Sa2yxtLXE7OzsEAxq0Wy2mJ6eRBc6jXqVXmubJGiSJyFOwQQhKNfnyDSPdrfH8RPHqdVqrK+tU6vVqNZqxHHM9ZurtDttjh0cxXdyLEMwNV1CJ8JxDAZhH9dVUEcdkzDU6LS6FIsmI6MFHMPGkCntXptUdzHtGmtrG5gmlCouhlVAkxUuXVqi1+oRhwmaoRYmkjhCmB5ra01838eyBXmeKIiha5HmKdIw2d5tc33pBmONKmE4wHFMul2VlpDlGXGiYIdplmJbNv2ege142I7G6EgdNIfLVzboxQauU+DkyRPce/fdlEplxsfGuX7tJi+eewFNdCnP9nHb85TCY3jM0hCnsRc32e2u4tDBzjUa9XlizeG9P/W38PUezz99lu+eeZztzZvUqxWKThHTUARvTWlFAJ1U18g1QaYJEoRiJ7xtkffOj623UnG+o+L1rCLe/03x+sONf6+K1ziOf+PtZM5vV2Tehi7d/p03j3fyAfy4Oq8/aLy5eP0eglqeYUuHf/Xb/xNpssvf/umfxylUMU2LG6+dZ/wf/VPWF2expyZJkpQ8hyiKCIKIQsEjCiKuX78OwMXXX8e2HSzbRBMallOkudtmdXWZxkiVOB7SJHXlDfR9H3SNLE3xvAJS18jShDxX1MbJiQnyLCMKAz796T9W8Q5Cx/cLFDwXyxLs7rSxvQJh0McUEKc5lVKZxcWDlEolHLeAbbs4ThFdSLRcQi558IGvcPzEKdJ8QBJHQ69WSp7Ba6+9xjPf/S6nTp+mUq2pVXFDgW9UzEnOgQMHGB0d5QtffIBWe5e77ryDiYkxavUaQuokSUiWpghdJwwG1Os1bt26xUMPPsSpU3eoiRYaH/zgB7hy+QoTU+PYjoVjW+g5OLaHNHQcx2ZrcwPXdjh39kUs21FxE0J9kScplCtllm/epOT7DAYDer0+Z86cwS+VuPvuu0mzZC/6Ymdnh0EQ0Ot2sU1BFAxo1EfZbW4xPz/L5MQEQRjiuEVefOFlHnzgAd7z3vvIgAsXLvGVrz7AXXeeYnd3G9s0MfxbdHsBX/viVe68+w40kdMbdLAMg26vh1csoek6Uqh9abrOgw88yOzcHDo6Dz/8MAcOHsRzbZJY+eKa7Ta27WJaSgbtug5Bv4dhCOI0R0PDtm1s2+bggQWaO9tcuHCRJ7/zFAcWD6mLneuSJTkl36fdau2RYX2/zPz8PELXEVJN0tvtDn7RG4JIYhWLhI5lmOSZ8sIF4QDHcdAFBOEAIdUCThCGSGEQhX1KpQojIyMkaYxpW+S5Rprk9LotWu1dPvjhj2AaqvgaBAOiMFKU7yhBGha9Tpui7xFFESKH5q1l7EfP8rk7xvjIv/wtMlTnpNVqMzYyzvLNVfrdPh//+Cf4kz/9A971nvcibB/dLCGkS61aQhguO9s9Ll+9SdEr8czT32G08ySJf4ClpZucPH0K3ZB4hQK+71Mpl1lfW2PpxhKT45Ncu3oVKSW9Xpf5fXPKO6oLlq4v8eILL2GaFqfvuJNGvUGe5zxx5gzHj58g3XyVxj2/wurmLi+98Cqf+v0/5F33vZ8vfuEhThwZYXFuFMu1Ed4YhlkmSCTu155S8rGJrWE3cR5pqIiYKI5V1xbI0oTf/5f/is3NLe7/wAcolUvUa7UhsVfS6/WwbQchJEIKOq0OhYKnJu/aMOUmV/ReaQgMQ1LwXGzbZnRkhNdff53R0VEljOD2dUBj+eYyE+MT2LahimqNPXBRDmjCgDQlGPSRQicMQqRhqoWbJEIMC8dHv/kohw7vRxgampbQbG4QBR22Nm8x6HfQ9Jw0iTAMjSC2cdwqgzBBlzr9sIthKT+/6zjoQ++orgtK5Spf+tKDnDx1HNc1yVJAU4uNzeau8lbr+tBDa6FpAnIdXRjYVoEkjXAclzhJ6bTa2LaAPFLSU3Ru3bjF8WPH8Es+qutoclttkOUKdGVb1nDKo6ZvUgpVlGrq94Suq/csz3FcZxifo7gTQRBgmFJBntJbqoupT5DGGZ///GeZn51VHdZh4ZHEIaYh6HY7vPTyy7ju0P+apszPz1Msqs98ZHyWixcvcP8H308YDLAtS9Gcpcba+hr79x1kYnISx1GdcCFUvJdhWQSDGMu0OXb8KEHQo1ytADqt3RadThPblnhukShU3mlpquJT08AwTEZGR+n2Okgh6Pc6eF5BvW+ajltw6HXbRLeJ0MNoODWUmsW27aESUXEXXKfAzMwMtuOQa+p9u13o4liw0yHfbqI7Ngy7+aprb5CkCoBlWCZp9kbqZBxHkOdkWcbNmyvUhCSVgmSkgusWSJOMOB6o6LVERSYJYZCmOeLSDeLRCtF7TiB1E0NYxFFMvz9AQzA6Mka9XsO7W0McidGBrY0NapUKaWKQpW0uX3yZQwdPoz96Ti36/OwH9+YnP6rF/u+H7/x1VHBvtpDd3u5tQFmapjTKLmZ/l1ee/CbXrl9j/Og9fOyXP0lzvcfy2RY/1/5V4qkekddmc3Mb3y/y9W98jemZKdrtDqZloOkaG+urtHfWcYwUPY/JgTg36IcGrtfg1ddeY2JiQnXBwxCAb3z96wghWF7roOswO1GmYCUgY1w3xrYZ5vkaSGEThH1su4DnFSmViqBFmBLiOMZ2LEzbwzC9IeTRxbElUgo6g5ixqQXGJ2dJU5VCIOwiL736Oo5bxCtWOHfuNWyrgOtaFD0faQh63R6WZaNpOoZhDbv06jUZhkWS6SS5gSE0HNvCskyEkIRhwgsvbA07tE2iDF4532Rj2yFI+7z/fe+nXqvR6/fo9vuYpkOp6CNJGG8UGRv3aPICeZ5Sbr0PI66RLU+ib4/w2Ll/QbuVMXXoXhbv+xk+/9jLfPyn76bdCZieGufcs9/kysUX+PY3v8KFl56nv7tGwdTp7q6jJQPl/9d1ojRDM1xS3ULk8dsdPT/0sfbDqDbfKF5/cOf17Zpzb9z/y+fJO3GF7ilYv08W/Obz+Z0oIN52/IDiVdO0//CL1zRNf+P7f3bb6/R2Zv7vCeF904f//3Wv75uL1zcPIzf5e7/0cxTlCieOH6JeP0UqDaLegNFf+19Iyz69xTk811fUXGHQane4+Pol5buRkpdffoX5uTmWlpbYv38/haLHjZVbFP0qjzzyLZIoRNcyKpU6SZLgeR4vv/wy9Xod27Fot9toWU5zdwdTCDo9Ja1dX1un1+tjmpJDiwfp9TtkWUytViEYKE9epVwhdtbQrR566PD0M89Tr9TQdYFX9Flf38S0CqSpBlnM+uoK5WKR2blp0izClBqmaSB1nWtXrjM2Ok69WuPQ4j5u3FzHLVSwbVNFe6BW/Hu9HreWlxkMBmxsbFIq+eybn2ZrexO0jILn0u/2Ic0wDAPTsmg2m5TLRVrNNo3GKCMjI9TrFbZ3thh0+5TrZRxXxTPcXLqJYzs4rkOv16ZaKdNt9zlz5gnKlSL7D+wjJWV7dxvLNdlc38Qvegx6XTzPR5cGpaLPK6++QqVSwS2oHN12s0nJ9/k3f/InnDh6BNcx0bWcVnuXqalJ6rVRBcUhQRcO5BpL165x4uRh0ixhZmaWU8ePKN9T2Wd3Zxunso40DI4d+hks2yLTdGy7jNBTev0BQhpkGQSDPpYhyXKY37efwWDAk2e+w89/4ucQpsAyJWkcqwmaV0JKm28++hjzs7PkWcLK8jIF18awvD1aaRwFBEEfLRdMTs1w5MhxMjTcYpE0yyHP2FxfR6BRrlQxLJtcgOd66MLi/IWLFEtlykUPXVNB3VIoWEun2yWLQ0xLsrm+TqVaI0ej12uRpglSGtiuB8LE8Xy6zS28gqIPd7s9ojhC0zW+/OWHOXzoAGPjDaRhsbOzNvS66rgFjyzVkNKg22vjFRwgg80d8u+8hJmmvPbffoipD92F7UhWlq9TG51hY3MbxynSG/TRhY5f9lk8tki5PkovBsutECaaoqQaPqZZZH52gV/8j36ef/hL92A0XyFy93P8xIlhnrJka2OTUrHIE088wcLCfsrlEpZpsnT9OocPHyZOYhYOLgA5aZ5T9ksUnAJSGvQHAVGY8Oprr3L06FFu3Fhi3GmT93coHPgAn/70Z5ifWWB2doHDR08gtZs89/SjVKt1GjPHSHOPYnkU46Fvo0mdYHKHnIxy+W4Fwxr+pwvVCUyjBL/oM9IYZXxinDRNCIIBYRjuSVQ7na4qHPMcr+Dx4JceZPHgAcL+gDjNVPdNKG+qrmukaYKQBoPBAL/oAyANiTQVo6Df7zNSH6Hf62PZku2dHZXjOewEarqKYtI1CPo95NDPnmQJUupAhmUZxGHC+Pikou+mGUmcUfJ80iSj6NgYpott+2jCJsOkUPFJsgxNF0ipOnL9fh/bkESB8jQZpqVIzFJjbm4fIyMVhJ4RhOFQ5pkNiyCdwSAYXt9Q8Ko03pNA57qGNCzlrbQkneYGvc4Otl0iTXJW1zeoDhfn8iRDCtV5Vn+7IjfneU6eqWtkkqZKsqypTNh4uAChoeY1ulDwlSgMFFHeUZFImg5JvkyWpuj5CJZdYHpqkigKKPk+cZqhi5woHKChYjZGx0YRUtDr9pGGks32Om3lX8fk+vUr7N8/h+tYDHoDLK+ILjSq1TKGUFJuQ0ChUKTb69Lrd7CdApev3qBgu7Rau5Sr6rhYXVmn3epw/rUXKRULWKbDd77zDK1Oj0qlimVa6EKjP+gp72ecKFp2npClqutkmhbtdhN3aMFptTtDH7bymkVhn3Z7l1arreYYwuTpp8+yvq7imMIwIh3OVW4XLvqQ1ZA9fg59Zmwvxqjf75OlufJfBwNMyxmyN5RtQtNywjCAHBqNMYxeHxyLuFFB1wWWbUOWkGXxHjArGISkgxj31cu0fv0/pSuh6JYQGMSpej2ua1Orl6hUi2RRH9IYS+pkcYhtStBKbG5c5taNC5w6+V6Srz4JWvZjKV6/f/zVk+Z33p16cyF7Wxlghl3+s4//BKaV8L6f+hnu+egvEmQj1F+sc+zquxlMt5HjOa1mk83NTeb3zeI4JiMjDbyCx/LyLSzLYm1lmfnZMcLODoaekusWjfEZwtTlxq0NTp0+qRb3o4hisYjv+ywePIjjOARJRLPZRk9TdrY2qI2NIZKMPBPkmj48b/M9WX8ShxiGUnAkcYrlmoRhBphIYbG8vETRL5NFCf1eRBAmjM9MoxkWg36XJE3Z7UY8e+4ix44eJ9e6+H6Z5u4utZpPmiaE/WAvEktDXZ+1PCNOUwX/SjSixODZF15nrFFC01XHPBiEaBiIgkbRcygXR2m2dM5f26AZx3zkwx+iUiqxub7B6Pg4upQMBj0216+ysK9Gt7VMMGir7wq3Q9N8iTyTOK2DlHvHmbE/wUz1o2ycl/zBt/+IR776HU6++71MzdzB4996kjuPL7B89SJEId31q1x57TleePpxvv7lP+fsd77FrRefYOfmRTq76/iug+faewtDP+yx9XbH2Q/znHdavN4+Zt98jn3PPt+qSMzfeef1+zNl4XaK1F/TPvk3nVfIsuwtZcNv9cb+dSW/b1Xo3r7/doXvm/f51y2O8wcfBSD92EfJNIElTAgi2tdu0dk6y9h4gbGp41TGjpBlGc5v/TO0nSbBu07jF0uEqcq/FLqS333zm49wxx2n2FxbZnZujoJXYmxigmLJZ2NtmWq5iiEFBxbmgJRypYrvl+j3A65eucqrr77C6GidYsGm3Qoo+WX6QY8s1xEZXL96hY2NFWamp5CGRbFYxnQ1dN1ESBvDkERhjyjWMGqb5HofM60zNzPFyvpNdAluocS//fSfk8QBhhFgyBLLqysUSw5CQhqFCNNkZ7uFabpYloNpGsRJQC5szpx5grmZScolVbhnGTz2rW9x4NAiRc9jfXWF+979LhYWxmi3biG1nH6njWVkGNLm7NlzPPLo49x733sxnSLt5haHDh/CdhRY4fkXnuf973s/jalxTCExpUGz3aE6Mo5pmAyCpvo7gwRpwvy+KUbGR+hHMULYVIs19ETHtFSWX67p5JrynhpJzObGDaRu0trpM9IooJuSbNBnbnKKUqOOblqYhkuaRXgFD8t2VVC9X4IkxHMNjhxeIAwGBIMuBVsQxDEaEkOECFJya5UsS6lYd5MkGevrm+zs7DBaKxOHAVLLWF+5QbVcIhgEtJq7+EUfKSTPnP0uhw8vUCjUMGRGq7WOZZn88R/9KdtbLd7/7nvp7C4jTJP66DRZAnoecG1pCWHZOAUXU0IQp3T7XbZ3NsmyWEGPul38YoFur0PB97AdiygKh+ASSRgO+PrXvkKjVqNYGuf5557HFDrrq7ewLOXzKxYtmtstCgWHMB5gWh6maQM6juPQ6bRJ0gjTFNiFOhmQ5wlewcUSgn6/w9zMfjQhkFLQ63SwCraKvVhfwzIyXKeAnpnkuo68tUn72i2MJ18m/+WPw3//U8wdOczV6zdYPHyAne4aXmmOen2KMBL80b/5FKfvuAND1vnN//kf8f4P/C0ce4I8XSJaLeG6gtW1FaSd88r5F/nEXVW8K3/MmnmEOBdIqfH882fZWL3B9sY6jdFR0HX8Yonr168zNl5jdX2DhcUjHDh8iIwYKUHXi+hpznNnz2IYgtWNdXQRMzU1Qr+7w9Eji/SDGKd7AevErzA+Psm//v1PcfzwEb7y4EO87/Q87ZVLLOw7TG30MI4DTt6l9+gLyPEGfW8J0NH1Y+iaKoakEKr40TUwDBojo4yMNsjTmFZrC9uyVbxOr4dX9LAtg1ZrG8NwEbpJuVRDQ3Dl6lXqjQaWZaDpCkoURzmGdEmSAWKY9WpZpuqApimk4DkF2t0mnf4ulufjl300bVhWa4oumsYpmpGjC5sMgzQHW8bkWUKn3UJKiW2boKUYhiru0jwD0yYVBpbpk0mLbhBi2g6GYaGlOVLX9zyLg0GAY7vkmlRVnqahaTlxHOA6FgW/QK7r5AhcxyZNNMIoxDA0pKErOS9DiM6wO5gmOUKYSEOSZilxHKDpIA2TZruHbdhIaTMyUiXJE8AizfoIYSA0Y1iwqlzkPAchJXLoq4QMTRMqdkhXiwVqCqO6kzkJhinVZE8TaEOZapKvqs6rmCLPVJc2jpWvOoljZBaRxglRGLG5tY1l2RRcl3ZzexirlGObBlsbqyxdu0a7ucvUxCTdThev6KGT0W13sOwCg3CA6dhs7OzglV0cx8I2XbrtPk8//Sx5r8tjjz3K/oUFTNfBKxbwPJsDhw7T7+cUig6jEzXW1jeZnRojzxOErpOnGlouMK0cLRfEUUYUD3BdhzzVyZKQXn+AbTmEoYrb0tOEfrdL0SsTxeC6JYRhE/Z7dNp9zjzxXe64804MU3WukjjCcWy6nZaSgHsF8ifOwX0nCLd20YXAsgxu3LxBsehx8fWLWKaJISTCkEP1gYlpuQhpkiYBZj8kyHPans3GxgaFgkOcxKrbmuV71+CN61epbDR56UPHmZqawnEKxFFKP2qiaRnN5jZB2KcxUmMQZpi2j2H55LrG2tYyXs3CHiTsru4wcXqR7KEziFSg/Z37v2fe9KMYby4yb99/o0HxZkmkxjuBM93eZig13EgnldAzA0pBly/+zj8mjQNmDt/FqXf9JH/yqc/z7tc/inbBprNvnfVoBce10aTgxtItyuUKExNTe8T/68tLLB48wni9xtWLL7K9uYlllUBPuLXawnErVBsNkjTCK/i02y1K5RKXL1/m/IVL2I7HC88/x8GFaQaDNn6hyMbSOrZn4rg2up4hhYauabSDAsEgwitYCD0jGc4j4kECpk6UCdI4o1FyCVOdZruvspWFjl8bxTJs8lwjDELSeECj4aMZOkkMBc+hWLTRgTCM8Ss+GQpQqGCICZVqBcOWCGmBLqhUauh5SnVEkmYa5DZJDoajU3UtWr2Iiytdnj2/gi4d9s1OIQWYUuL5RdY3NhhpjKHLDFvvQ38Vgz5h1EMzBMKwCFo9crvDirlKp2hQikuUt6doZDPcUfwAv/ShX0G/VuKp69/krjuO8ugjD3D3HQuM1ODqlQ1qlQJHFie5545ZJmoaq2vL3Hj9OVq3rnBr6RroNmMj+0DPyMSAXFdcGZE6aPI2BOl2B/IHH7O3778dDPb7n/NXFq9avndTndXhbaiU0TTtjbNgCHP7nts7GG9Wpn5/cYw+3D/5974W/vJN197o4L75db1xnr759sZQDKP/HxSv/2/s963yo97OnP2jWnnMHnwM0NA+9hH0LMeWkl//tb/LY1/5EieOH+LknfdhlaZxyhPIL30N+YWvk3z0PeRSKMiJpmSSuq4hhc7JEyfo9XoEYYCuS4qez2c/+6cUix4T42N7cifDMHBdl0LBYzAY8PnPfZ5BEPBzP/cJbMdCF9Bu9XALLp32DiOjo2SpTrVWY2p6Csd1uXrtKt1uD0uIYW6dThxnXHz9OlmuUZ5I0XSNYMeh1+1Rq42SZSlRFJJlUCr5TEyMQyaUNCbPGQQRSQqFQoGiX0JDdWB0PceyTaQ0mJ6aouA6dDothIBuq8Xx48eIQhUz0G63qZQqXLx4nka9imP7lKsjREmKNC3On3+dwSBgZnYaKTSau9v4vo+uCRzHJU1TXMfF832+/tWvMjU5ie04SMPgmafO4hYsfL8CCIJwQLVSG8qyXRVvEEU88MAX6XV6BEFEtdJgMIj48oNfpVIrcez4MbrdgNnZfegiZRCFWNLika9/g9n9+5GGQRyGlMqegju1O0NZdEoYRcSJ8ptUatVhhItJrx/R6/aJwgG5pvPIl26yMPt+ut0WcRjx4JcewnNL1OplpJS0O+1h/FABTUhqjRr9/oBWu8tdd9+FX/JxbJtXXn6Jglsk13TuuuceZudnaLe2GR0ZYWu7gy4Ngn6LMIh54smnOXr8NOQCLc2xHAPXdbh5Y4npqSkMw8QYknQBCp5HGASEYUgwiIayPo1TJ0/i+0WEYTA61sC2DMIopFJrIA2DVmuXWrWOAtgMMG1PuVx01UlyXQUTyvNcxa3YBlEU0u50MUwLKQWm6SANHSk08hycYXfCc222d1bZWL6Fe+oAPPA4XF8me89Jlv/zn+Y3v/YQUazzmc88yC//yicZRNDphJTLDjdvXMX3HI4dm6Xf3cZ3fA4cPEi9McMgaPPi88/xv/7mP+FDH/kQDz78IIuL+5jYehRv6Uu82prg6J3v4cqlK5RKZWZmpqk36lTKZcqVCrs7LdZW1zh29Ai6pnHx0mWcgketXmN7a4OC65BmsHLzBufPn+f06TtwCkXGxydZvrnK4cNHSBINtzaH1rrMlSc/xyutUcgz3v+B+3n0Lx5jfCSkWoqJyXDqs9zaWCHXi1Qvb5PWSnTz80ghKLgnlWRVu/19qaFIoMNCSNNJ05gkidFylTkqpaTX7yGFGJKkJQ8++GWuXL7C/L59PPXUU0xOTWLZNmmaqG6JVFFoUgj63QBQ+wvDENcpEfRD2q0eRb9EqVIddvsyuu2WokAnKgpFALoWoxDEYJk67WaTOE7U94umD+V6kiwXyvuKQGgSqQk0LUMaEmuYMSh0QRgExHGMZVl70kSVpaokiqZpDLvIkjiOVFa0rh5jmKNqmgaDQV/ZIvJ8KPlUmalZpmJ02u32UFYsFOxHQ+Xbui5b65t86lN/wNFjhykUHPJMBxKSOEUbvs40TdE1BSKDfAguU9sWutjzzYZhoLIIhUmep3R73aEnVtkx8kxtM4p7GNJHaGWUz1mxCdIk5Xf/r9/l1MnjuK6LLiWlcgXHVYTNgltAlwY7zdYQWmeg65LLly8xPT1NvV5XbAPLotvv43ke7VYHx3WxbJsszem0OlimgWkqyN1Yo0EYhxw8tAiaykeNowghdApuAfIEoWtMjE+ClimfXpqQpTntdgfLMlheXsc0bar1EoaURHFCFCmKdq/XG2biWvR7PaRhsLq2zquvvsbs7CzBYEAcDThz5ilmZuaYmp7ENE2S4eef5xlSF6ysrFD0SiRhxNZTz1GensIwDNI0G3qLVbRRp92mVquRZgl5ng3zXjOiOMSQBrIXEFVLnF9bI01TvIKL47oIoWPbNmmWs729y8q1JSa7EfzXHydOE2zHxrIsNJFhmiaO4+wdt8anx9Ged0hP9tC0nHLFI0lSnnn8DPfcdy+y7JM/cAYd0H4Mntc3j79cvP67j1zTkJlGqisfZLy1xZ/94f9BjMb9P/GztNvws71PYgYuO1M3KVY9KuUypmWh6zoz0zM4jvpsgmDA9vYOEzMjGFInS7rYVoznqhxsy7LY3OpSrU9gF4psbGxQLPrs7OzgeSrObmx0nNXVNSwzZ2trg/HxGpNjJeZma1imjjT0of9XRxoWL7/yOtWKj2VqqgObpui6QNgFotzgpdeWCCPoh31st0QuDDRUBrN0i5huEduy8T2P7Y0Nip7H+NgYtikxDYEhc0p+gSQOMG2TOIqoVqtKKi8l/eF3dZ7nCE1HCGUdM6SJIW2yJKHX6eAXfFodnc2dkEtXN1k4eJyRxih333kX/X4XTdNxHBddF3Q6bTxXQ4/bdHdWiaMADR2hGyRJQhjprMh5uyUAACAASURBVGy1Wd3qMLlvH1ojpF9tYngmbljEvlXEo8J08RDta5LdRo/7PvBxLt+KuOO9H+Xlyyv8wn/5SXqpR2JUmZs9gWkZzEyPMDY2yrcfP8Ps4iFKlRJJKhWwTINcS96m+PyrfaA/TONK0zSyawKtkCOOpT/4CXuv4C93Xv9d22VvdV7tbfctu6Zv/Q68mfr9w9ZAf1O8ft/46xSS72TF5K1+9qMqXtPPfQ0u3UC7vIR47Cme+a3f4ehml484JWbXEkoXuljPXUf73MPIr36b5CffR+7aaFq+N+lRsRQBURiSZgll38ccRpTousbmxhqrt5aZmp4iDENarSb5MC8wy3I2NjY4dOgwly9d4uTJEzRbuwyCPtXqCFmWUiqrIPYkNfnMn32WU6dPYpiSer2OLnTqfoGNjSX8okUQJTz++DMcOnoIp9pXBNt8kgwdxyphWDrCSKnV6mxsbFOrNWjt7rC+tspT3z3L8ROnKVXraLm2J83PsljJ0eIQXYOi79Hv97AMjTQJKDgW/UGP3qCHX6pQq4+gp1CtqOK33UnQpE2c5qR5xtGjxzh16gS2JdBI2NltUSz6WLaF67iMj4+zsblBtVaj6Bfp9/tUKhV63T4Pf/mrHDt6FClMLMsligMcx2cwCIfQgIxWu8W+fXMIdIpFn6A/4LN/9llGGg3q46NkOTz8la8zNjaKaQqKlQpb6xvMz89Tqilwyc2lG3sALss0SNMYwzLIkdiuS7vbpeAV6XS7REmCYxd4+OGHWTxyCNcrsXj0GFk2oFzykbpgYnwMU9d49InHOXHyJHGaUPRLmJaDkAbrG2ug6dTqdbQh/XV9ZYmXX3yVQ4dOYFg2SR5hFQzCQZdeK+Cxbz/N1MwUhlT+M7vg0u8HFD0P07DIs4CVWzeZmpxkfW2dsdExVpZXQGcYUaI+4DhJqNdGSNN0SHwtsL29Rans0+22ieOIUqlCGMWEQYjnFYjDFMexVKxEqrGxtobvlxQRVgjl4ctyRJ4wGCjYhOv5ZJpka2uDcrlKkoT0Bx1s2yMIAlq7u1itDrYtKT9+Ce3KCt8sxPi//fcpffC9jC8e4dSd7+LgodNsbLeZmt3PF77wEIePnKTfXUdL4IVzz9PvbBN2uzz69W9z8OhJPvCen0EaHU4cuYf7P3yEhx56hP/453+a/JFfJ29ehcn3URudQ0rJyy+/yvnz56k1GjRGRnj+3LOMjo7z7HPPUxpKsDa3tymVqxw5ekyRnHVYubVCq9VC12B6apr1jW02tnbZ3toc5nYKBkHIE2eeRPfGmLdusXXjdX7xf/inzC3MsNvZ4Z7T8yTBOuOz+8ncKboRWMVx7Kdew6qWic0tNGyCXg3LcZWkVwiiKAZyMoYFLYr7aJiSXrenoEJZimM77OzuKl+VaXHo8BEOHlzk8pXLDIIB09OzakJvmeR5RpalJGlInhl896mn2d1p4heLlEtloiTh5tISg36P0dEGWZ5CFkOWYhtSdUWFUJ3RJCQcdOi2OyzfvIUhNHSpYHGOW8A0beJE+VOzIZE7S2L0PIE0Zru5jW3bJKnqPuZZqqBQMCw0s72FzzRL9+BFUaTiZXSUfDdNgSwfYnbeyF0VQiKloX6a5QihJrIXLlzg7DPPcPz4yb3rRRD0yLKEXq/LWGOM++57N1EcECchUhfoUidNVDGd5dlQ8poPO7ra3oJDmmbDfYKuaSqzOEnQgCiOcBxn7+8SQkdH0ZoNWYHcJ4lTkiQZbj8jCANOnjyBToZpWXv7CaNIkbCFsiZkWUacJORoVCtVFhYW0DQdaRpYlsNuq0mpXCHLcpJUbd8yTMDAkIKN9XVKpeKQzJxy6PAimmAYd6cTBH2kLjGkwebWKqap71F74zhSAB7LwHUcVlc3+MLnH+De++5ByIzBoE+/16dcKtHtdvFLRUzTIklSDNPEth36gz5SSsbHx1XETRpy8uQpRkbHOH/+AvPz+0iTWPEV4hhDGriFAs2dFnrJo/jUy7w8XWX91QvMzs7hODamaVKpVBQvwHXQdI0kTgjDAHPoZ0UXGP2Q1kSDM9/5LhfOv8ZYY5R0+BkDDAYhDz/8MMX1XQpSsvyBk0zPTBBEA1IyHEcpeIQusUybMIgQLxYBEHfHCKGTZWDnGVevXuXUvfeQaDriYx/E/tkPk/6YsSA/yuL1zVuw0pTP/N7vs7z8CqX6BHfccz/FR+/C6hV5KT7H3MIca2trXLt6FVMa3Lpxg2vXl5RFY+jDXltbxysWIM2IwxaD3hpkfbIkotsbUGtMUaqNs73bwXULasE3z9jc3OTSpUvUayPcvLnM4qFZms0ezWaLsVGPYjHHEBpJEiv5L4IoypgYH8PzLLI0Rpcqu1lIAVIQRjovvHiD7e0Wd959jHK1QX1skiyDRqOGZjoIu4iQkq3NLQwhSIIBze0tTDNH1xKydEAQtEmTkCRNiZOYfq+LlAKyBPKcPM0QmkYQ9EnjEMvSSSKpyMMywzQkSZjz4uUWy+sdct1mcmqGfrdFpeLz+oWLuAWPMAoZH23g2hZh9zrNrRtYQn0PCmkhhE0UJ2x0dErj+1i6scrM2BTLayvMzs3xzGvPMHlqhBe3n8U3ihRXxjCCIqf3f5hH18+RygaHT9+F5U+COYpXXeCrj77E+PhR0DIuX36OoL3JoLnDrZ115uYWcOxRMmzQYnIRkKdvWA7frMD8q47TH7Z4FcdSVbj+EOfR3xSv/54Vr2/leX0recnt/3/z42/1u28nQf5+c/IPMix//+M/ipH99h9CL4Cbq2TXbuJs7FLvxxR2e1ibHfKb64iVTbRen+T++2iT0ev10HXB0tINqlVF8nQdhzRO6Xa7WKYxBCLZyGFGYqVcJslyKpUSnW6bUskHdM6/doFWu8WhxUMcPnyYza1NarUKTsFD103W19YQAooFjySXjI2P4vsFRXPc3UUIgRQR16+fJ81DbKfAsZN3UPSLpOa6KoKuxaRphmEU6PY7oOWcO/cSs7P7GAz6jI81kIbJcy+8yNlnz3Hy9GnIVAei0+kMQUsRuzvbmEIQhgl+qYSuZUT9Fu12l/rICKbloOmSNM1YX12jWitz+dJlHLfEZ/7ss5w8dQLbsQkGIdtbW0DGzs4WXlF1CL780JfZt7CfbreHVyziui6e7ykQiqaxub7FSGOEkZE6Ulq0Wh3iuE/Rr1LwHK5evohtW/i+z85uk1LRolTx2Npep1i0OXL0ILP7FjCkw7PPPkMUdzl06BBBluIXihjSICUjJ6dc9LFdl+bOLsVCgVvLt7hy7TpT0zPDrrmKKXIc5ZNKEzh2/DDFYpkwTDFtgZ6ZSGnSam2j6zG1hsviodOqSy8FUkq63T6WZasiuugPJ7VSyeVsk4WFQ3zhzx/g6LGjmJY+lP962KbDbqvP1MwUtYpHGPexCxYT46NASpYnSCEolSvkaBQKHlubW1SqVXWB1DTa7TZ+sbg38c+zTEkaNRCGivcAJf20XQchdBxbgYIMaZAmEa3mDr/3Lz7FqVOn8LwCUaSiT+IoVOTZYXad6xWIkowcFZ/U73axZI7T6ZOaLoPzr1F57jLJtRXCho/z9/8r8r/7SZ7t3iLNBY36JP/gH/xjRkdHMV2dL335s+zsrPL+++/l0uuvMj+9SMGqoecOc9OzmMJlc23AxP4Z/otf+m8YdNf53f/z9/jVX3gXC9tfJHvpX5OaPtrM/Txz7iVazR1Wl5dxHJdjx47TGGkof6nv89wLL3Ls+AnCQcC++X202h0OHT7C7m4T13XptjuQ54xNjKOR0+50efGll7l5Y5n5fROMjDfYv7CPQtHBtgRjk1P0Oh3m6+Cf/k/YaW6wePgAtibRkw5hYqC5B5iYPEppfBzr4SfJ05S4uIhtLqgOozQRQhAEAc1mk1KprCA/aCRRjGpz5gx6PVZXV3n11VcplyuUS2V0TRAmyu5g2zY7uzs8c+5pFhcPEYYBpVIZKSRCaIpcnkmeeOIJ4ihiaekqR48ukmkRlYqH5xmgJfT7bcIgIo4jojAATVP+vzRD6BppGlEoFJmcnFGwEdMiy5TPMQgCXnrxZaamphlE6pzOkoCd7TV0LcGwLIRhkiQ5QhdomZL2DgYDBUUa3vI8R9M1er2uglIJVRDqgBx2Uw0pyZIYIcWQ4/BGxxresKREUcz4+Dj75vehCwlDIjN5hm3ZBIFSr0jTQtdzbEeBoIRUMKxsGC0G6j3sdjt7ygbyHCHk0P+qug75kHZrDzuBoAradruFpueEg4gsTxBSkOcgpbnnY9aHZF3TNEmTmCCMyFGecU1XhXymgksxDbXfdCg513UdaRh89rOfwzQtZufm9zrZtmUhhWBlZRnP87ENg1Zrh2LRI4pDTMchCMOhtFdR6dM8w5QGGxtb1Opltrc3qJSrRFFMvxdArhGGEZZtYBo2i4tHcByHKBkA4Hk+SRwP83cTwiDCNCxW1zcwLBvP8zGkQb+nCl1pCLq9HuVyhTTLFCk26GKbJv3+gDzL2FjfoFAo4DVqRNeXWV26wfETJ9Tixe0IMV1gWia6rqGh/I03btykWqmhayorWXYHJGM1DMdB1xU455Xzr7FwYEH5rS2bkZFRKkFKfXSE8q9+giSN0IdMAylMDMNE01SskW07JM+ozGz9roA8UzL1wcYaeqFAbW4WEg2BRqzn3zOR/qvmRz8MyObNz7s93jzJ/t5tvfNpu8hyIgnEAS88+g2+9oX/mwtXX+eTv/Y/Ut25E+/iDDsTa0xOjdPpdahWKly7eo08VxR+y3ZoNBq02008r8DS0nVmZw5gSpuw16ZgQ9DroWUS0zYxrBJBpFGpjeD7Zcg1njjzBHNzc8zMzBJHKZcvX+Hm0g2SxGRmep4sDbCMXGVYZzpxohYgwijCkhqQIgwV9xUMQqQ0yKI+WpZxYG6e/bMTFNyMQSQYhCl5lrO7u8v/w96bB8mRnmd+v8wv76ysu6rvC0A3GvdgMAfvayiK0nKlWB22bIkytbH22t5dhazDx4atWEes7bDD3tVK9EperSWTMyK1lHiJw5kh5+CcAGYAzACDGdxXo9H3UXflnek/sgAOhwNyKCkcIWu/iApEVFVnZ6O+yvze732e35NKglyhnMG+ooDY76GJCFuXsU2JKOyRxB6moWZ+/yhEESJjiEgSrtvHdftYhonnewPgniCKAlzPJ5VCVF3DC2JiNFYbCdvNFp7v0W5t88EPPMjJEy8xNztPkiZMTI5z4/pl1lcW0NhCSUOkNCKKEiRZo98P0HJVJmaPUBqexDRtcrrF1I5pTp85g4yMky/QbG0hHFgXt6hYVZxbNeadWYyuzG//m/+aD73/g1RLNa5cuMr99z6AXRrlW996nMnJcW5ev0Ic9Dn+yjH6nR5j4zvRDQtFl4AAGe0d1v4/usf6neb19732lyhef9hx79ZQu10ffU/E6FuO8d2c17ucwDtmvn5vDXSbN5S8Qy329gL/b2Xx+sOATXebSHfzyX7fh/eW976TD/Zux/qrjvgP/xz5732CaHaS4xuLGPumcCeKdMYLmPffQ7xnjmT3LpiZpBvF9Lp9tja3KZUrWa5ct8/Rl44xNDxCHMUZSVNRSeIUIcPS0k2q9Rqu7/PG628wMzOFZem0mk103URVDM6de4OJySl0XafdbmEaOn0/ZG1lixOvvMLY2DC2aRMkIaMjddIkYnHhBidfPsHczlnsUh7HLuD7CbpuY9oOcRggnDZxHKJ4ZTSh8PmH/4Td83NIqUq1OoaiCApFC0kRWDmHmZkdhGHIjplJer02rWaDQqGEoigo6sC3BXS6Hvl8gW67gddtMzQ2Q4pMr++hqSpSAq+cOkW1VsGyDEqFMg88eARZhMRhyte+8nUqlSpCVXHyeQr5CgDjE+ODgq6DEDLnzp1HM3R6bh8JiUqxzPr6Kmma8Phj3+LkiZPMzk2jGzaB10cVmRQwjiGKU+Ioo1XWhmogZKr1GrrQWVla54EHDmPnBLX6EImqIiVp9n+mKsRRhKlrXL+xnBUCcUKhWGJ9a5tKuUCr1SRJYnRNRREC33excg6t1gaGlqO52eTW9r+jNNzHbRWQZYlCuYisqKiKSRQFWKZONp1T4ihmY2OVnOWQJhCFIY3tLZxyhX6ny72HD3Hp4gWKhSK9di+72clQHR7CsHLEQZRJJVWNZrOJbVlIQkJRbE6eeo3xiUk0Q6dYLoKU+Ye6nQ6O49BsNjFMk16nRZrEGek0lZCFijagoVo5h5SUJPKRyeSLSRzTbm6jahLzc7up16swgMQkSUQY+ZiGTq/XJ4xCdEOn1WxjyIL2aJXChQXCp14hubFKOlKHnZN81l0j/xuf5ndOf4t9P/4JCsUh9uzfC6nO//zP/1fm53Zx+fxZwjTiv/iH/4C98ztYunmDew8cAlXl//7jP6JWHaI25LC8ssgjj/w5w9OjTI4M0zn7DT5z4AbB+W+w2YkRYw/y+qJPLpfn5s0blEtF5ud3ce36NXbNzSILiZ7bIw0jXjlxikq1hmmYBL5PsVznxaNHMS2LF154HjmF106dZm5+Hj/wOXb0KIcP38Ps7C4kOWViYgrPjzIKc6/HwvWrJEaVOot0Vi/TNma4dP5NUq/N+vLrjE+OMzX7XlIMcqUCPPwoUs8jGCujaDpCNZCQs46ZUNB1I4PUyFkUQZIkqEoWz6IoglKpxMjIKIqi0my0MyCWlOLksw20QqHAPYcPkcsZVCoVXNcjSVJkIRMG2WcX+B66LjNcL2MagihO8NwelmmQJBGWbaPpNqaRSXsVRUU3TISqoao6qqEiyTpJqoAsESXRnSIJSWZ4ZDiTrWoapKAoCqqqYVo5otgjiSUkOSu8er0Omqbhui62bd+5L7mui6prb1nky8iywvLSAsVifiCzjYmjgG4vm/+ynPkbbwN6JDlzOWVkZj3LHU4jVFXJJLGyiiwJ4ijFdPIkiYyii+w7qWRRQqQJSZpkgCZJkBLj+/6dXObbHeZk0N1WRAbfyjJIB/e4wW1PUQSyLKErBikJQdRC1WSSREUMOkZhGBLHWcfZNIyMRD6AZkEm8zY0Da/fJfQ9dF3PXpPijFmQQrFUZseOXfhhSBhG2XUpjoijENs08YMAVUgoIusaa5oBSrbg7HV6BH6A7TiEcYLvhbxy4hSTU2OEcYCiGoRBgq6bSFJml3G9Prqu8bWvfZ09e/YgFLJ5HMGVK5cYHq4hyxKtVhtDt7CcEorQiOKEp558mrm5eTY2tojCgFKpxKVLl/jmY49y331HsMwsi1jIAl0zuHTxEl7QQ9NUSGJGtrpoY3UUNYspur2qSOKMrL+2sg5APp9H09TBmidGdD06qkRtcozR8VE0TeHAwXtI02QQsSPQNQ3HDVBJ4Wc/yvrmFtX6MEu31rIN7CgezAOJ9fUN7EsVVEVBecBDkgWqYvPaU08y98C99ITAQkOkKb6aIJLvdqfeafxl1kfv1L26e+f13RevaqLg6aDGfZ5+5I+4de00uw9/iPmdH6D61Htoltc5ef44Q8MVzp45S61aQ1UVhkZGkGSZfL7AsWNHmZmZZmVlmW63RxQlWKZOGvcw1IgkDJASgarLtHshrU6IH6QIRSGKYpI4oV6vc/3ajWzzRTfZf2AfW40GskhZuHGV6akJwlDmpaPnKJeKFJwccdTHUASWbRHECZubDUqlMoZukkQhcZzF1wiRoqgSqWTT9xOiKMGxTFrNDpZlYGoqUhqxsXoTx5LwvQZR0CaN3SxL2nUJ/BBV07K1QJLB2yzTwDR04kE2uuu6SJKcqbRUiSASvHzyEpJapRdqXL22yI4dOynlSwwPDSELQblcZffcLuojw6i64NrlN5FTj3IO0iREkgWamSNKQDMs1poy5foMfc+nXCyQJGTXddPitdfO0Gm3GR4ewvM93rz4Bp7VYT1aZKi5k0LFYc/PT1Ot1li4sUCxlGfh5g2+/uiX+PQv/mdEkc3c3oNM7BxiulBlbKjGH/zhZ/nAh9+LomiQaHfyxb933H2ev1t74Tsf4F1P43csXvlLqEF/6IbSXYvX7z3G3d78bjrW8Le0eBUD/f3dPqAfpXh9q2H5nY7x/2nx+m//DGanuXj5ElIYEPhdbMvAsGzMvEMiSXQbbSzFIIizm/0TT3ybgwcPYugGcZRy8uRJ4jBiZnqGtdV1bi7c5LWTr5ISMz41RqfXZXRsnF6nx8joEIoqUygUkWWFJE7ZvXuWKIpxHIc4juh225iWw+Z6kwvnzzM5PoIqFHRTI0lChJTi2DYjQyNsbmyRK1cxNAe3F1GuDBMmCbIUk5jbWaehnSNnO5g5h1zO4Wtfe4zLl24wN7eDVPIw7Rzb201qtRpjo0OYloZlGfi+T+Bn+YZLt5ao1+s4psHzLx6nWq3R67QQUkw/zAixyDKGZuC7LqV6HadgYZsm21vb6IZCu7NBGgnGxyZ58umneeCBB2k0M8nw4q1FJEkin3cIwuyCXilXUTSFW0tLpHGCZdhUKmXW1ld5//s+SKlcplbLgyzQVQXbyvLQ/CDh6LFXKOSLCKFiWQ65XIE4STn76musrWwxu2sKL2xh5wqsN1rkdCOjIBs6URwS+QGl8jBe36VSLuG6LjO7ZjH0TD6nqgqNxhae18e2LZBV8o7JlQs3KDpFiqNLpHIfJZkily+iGXl6/ZTQd0nThO2tTdIkJu/kuXTxItMTk0ipRLPRRJYk6rUqkm6iqYKtzTWqpRJpLFMuVjFyJpsby5i5HLJioIlskS+joCoa3W4fWVaIE4WR0TG6vR6arqJqKlESEfkBURTdWfhHcYxlqrRaTRynkAFnFJUkiuj3PVQjK1AkIly3Q6vdIQxCigUHIaeYhoWiqbSaTYqlPHESkcvnkEiJYzCEIJisk7u4hPTYS+i3NggP7eTGj02y/Qv38a/euMDMR3+JR587yR9//o947wf28t6PHGGjuUahMMnF81d55HMPc+TgAXqdLQ7f937cXpvzZ8+yemuduZ17+LlP/11+9df+Mfv2z9Px1mi21vn5n/sFpsoR4eOfoRheIXVGeOI0TB84jJErMzQ8ShCEjI+PMjk5QafVYHV1jZkdOxCqQBYSzz/zHOMTk8zNzVMul8k7Dl/9+jd46KGH6HQ7HDl8GE1VmZ6aYW1jk5XVVd7/gfdTLpeIgpByZYgvfOHPQFJZW9lg58wO+u0uq9sNpiZG6a2cZ+IDf59SPsfokMLVC8/Q7jSwy9OkKFy+do2hF88iCZlG0UA3cwRx1jVL0gRJltA0DUUopJB5syQJkgRFkdFVlTAM6XQ65PN5Ou0Ojz/+BGOTYxi6dacDaZoGUewjSzI3btzE8zxyg+tRmsYoQubWwg0++MH3oGsyulHC1LNImkajjWE6RAn0ez2iKEJVNZSBHFhoOpKQiFNBkgpSJFSRomoq3c4gAoNBURdLkEooalbopKkCkg+SgizryLLANLKiSdM0Wq0M+KRp2mDRnSALQRhkvm4JmWLexPX9zJcpSQSBh5WzSWIIghBZFsRJjB94WdyWlAGb7kR+yJkiQdM0SCXCMMY0csTSINVQTgkCH0XJvLF+4GWQoFQiCCIUJetwJ0mSdUyTjLl59erVzGMZx6haBnhy3T6apuN5AbKUQaeSJEKRNJI0JFEuEKWbqNIkQeChquodFUcUZdRi07Toux4g0e12SQBFluh1WuRtC0mWiBMQQsI0szlgGhaddgdV0/n8w5/n8qVL7Nu3h16vSxSGyEIi8Fwa29uYloWqmSSyjCJUVKFgWmbWiVYVTDOXQZx0gVBlZKHh9QI+97mHOXzPEXq9Lo6TI4oDrl9b4MLFi0xOjg188gJdzwrrNI0xDRvPC3nuhWO89NJR5ufnefGFl5ianGTx5iITk+MIIajVK9x3//2oqoKqZARqz3VRhYpt24yOD5OkCebYENK3jtP/6D1o7T5RnBU5t7vgmqYBKVeuXqZWrSALCd93URUFteuhxQn9sk0YhRQrRUzDYXNrgyDwuXXrFnknj/HGNRitEv/E+8gXC/R7AU6hwpnTp6hUKuTzedI0xbZteM0CEpaGL1LIlwkD6C5eIz8ziV6qoAUQ/vM/IH7+FOJD9/3AddBftXj94bLhd1+8yhG4aoSI+vzFv/ksu3ZWeOhTv8LGV3KMONP4o312797F1asXWVpYYt/+/eRLRYIgYLvZZGVpmfvvv48oyj6T4eFh6kMVJEI2NxZI4xZer4OEQKgSTmGI+vA0ldoItp1DyAqlwfFyuRz1+hAnXjlBlHhcX7hCu73Nrp1jKDIsLK4xNTVB6PsUHRNDk+l1OiAJgjghRWZpcQnTMJGEhqxm9icUjQQJXS/S9SKEpBD0+1mXsrlNu92gsbWBIkekURdTA1WN73ip05RBDE5m/8i8+XJmP4tjkhR0XUdRNVzXR1WzeJyUHItLLj3f4OTrFxgq16lV6+zbewDPjdi9ez/PPf8SY2M13jj3JmfPnmFu1yTd1gY5NUYWMnbOodf3SCSZBIlifR9OvkwYeghF5sLFK5TyDqqmsWPHLpaXlzlz5jRnL79JmASsrG0QCYlzt86xjyOcP3UN+/4cv/abv0Uiw0d/7CF2TpXxXI0LF1Z5+dTLGE5CPkhZW1tiZLrO4vISipJnYnQXEe8+e/WOUuyH1AZvf87/rEn8inoX2vA7j39fvP4NLF7fGn0DDEAT2Xi7xOT2e9/+4f0g2e8PGm+ncb29kL2bBPmtjywzNbnr77t9rPT3HmFjY5W2GlGvlVlZ3eS1M+c5cN8HAQNSBcM2iUWMbVp0ex3On3+TA/v3o+kqfhhx9fpVlleWqA/XGRoexikUOHRwL512E9M08FyPcqlKp9njjTdeZWx8HEVYXL50laeeeYr983tptjewcw6yJMg5OmmcUCzoHL53D+VqGT+M0HWNZqNFsVwhSsF0HIrVMpKU4PdbxJFHoVhEEirry+vIVkAUTWne+QAAIABJREFUSlhiBN/vYhkK/V6Xffv2kMsb1IfrGJaDJCvkLJN2q4nt5EglBUEmsXvmmWe4fuM6c3PzyLLCxes3Wd9oUCoWqdQqOKU8Tj6TTsuSlIGmui1sTSPyY+JY5itf/xr7Dx5CM3KkcYpp6owMD5PGCd96/Al27Z6n0+nx5NPPMr9nH1/4whfZuWuWQqlKr9NjeXEZVRLkHYc4ljn60jFqtQrTM+MYuo7rdgmCgLWNbYZGMjphtVJh4eZ15ud30Wo3SJKU5VsbvPjid/j4Jx/CsG3yTgW336fqFGi32ziVEkGUEZFV1UI3IEwCVF1F1RW8fhfNziMLQa/fo1Ku4vVDtjfbhJFPEsUoIsWwdTAXWV/fRpcPYpk2SRixsX6DYrGMYdo4+RKGYbFw4wary0uMT+3m63/xTQ4dPkS33yFOA6K+i5BUStUa640GTrVAKEeQShQLZeIgoNNpols6UeARpzFCEXi9FkoSEHlruN1NZELcvoup50hjCc/r4PsR7XYGQVG1zMtrOQUSWWT5t2GfhTeOYxsJ3eYamqag6nlu3Nyg12ozPT2VRagEIbIqiD2IkpgoDUlSiEKJpBXiy6B/9QW8N67Smh1i7Zc+hPmff5LG5BDffuUS8/MfpF6o8z/89j/lww8d5j/85Z/mZ/6DX2R9xWfxxhaSn/L0M0/yUz/zd/jJv/d3mJqdJV8ySEOZoVqRA0fmUXJl5sb34Bh5/rf/5X8i8SXGS8OkR38b+eK/Yz2pUdr7SRquw/z8bi6cf5XxsUl8P6Hf9wjCkCeffJLDRw6xubqMpacoqkAWDlcuXsDOFxgdH+fCpYt859nvMDMzTblUJJ+zqZRLqKrghReeJZ/LUSqVsa0cl69cw7BsNEUwMTHOyvIiVs7k2s0Fdh84yMLVJcJYoiSt47znP0WUiiiJSWvxVUqlPGp5N3mnRLVSR//mUYIoIpo5RRC+QSrtJvV6CFWAENkueZwRGjNla+anl5DwPY9Go4mmGjz+2BNsbTVoNlscOnQIIWfFURRHWTREmHU9n3n6KXwvZGZqEnBRdRsnn2dm5y4kRSeVswga5BSEnHXmU5mlm1cYG80iGWShEsUpYRgjSPDdXgZfShOSyIWBvUAIQRrHyEC71cA0DbbWVtBEJnN1/QDNKkAq0WxsYts2EZmMN00TbCvrdkqKQjzID05TCV3XgQw6FSORphKmYRJH0SBHuAK4yHiEfgipShC5mGpGL80WKNnfqcoqbt/PurIyuF4PzRDEUYwqpcRBlg+ZShJpkgHcojDA7feybq1qE0ZZFrGQJfygj0TE6vI6pVIRRVXZ2trKCn6hkiQRQpEQQiJNJBRZJ0xCFEUjllYAUKQRhJJFbZmmTZpKKEInFQl9z8OwLKQUIs9Dl0EzLTTTIkjAc30iL0CVFVZWVzGsTP77ta89ytT4KFcuXeL++45w+rXThGHEjp27UA2LL/3Z13nz3BUOHjzMV7/yFfYf2IPvu8iKTLffG+SxKoO4I5/AD+l1fXTNZHNlgQsXr9Bo99l7YB9R3CeJE+Z272JmxzRhGOE4Nn03s9RomnJn3mZy8zKaLJOGPvfeM48qBKdOnKbn+kyMj7O2tk4+l0fIOiEJUZxgWSbt9jaFvEWqq8RhjN8PaVxdoBBLYBqkYYymiez6HScoarZxNzo2hq5rd/I34zRF7/tEisAt5bFthyhMuXnlMsW8kzEoalUQAuX8NZr/5c+hTY2jiCw32O25/MTH/i7/5L/6DVJZIJAhiJDeMJCFgv1+ncT3uHD6OOW9+xgeHkONEhIpIX7kUaRmF/kdgE13WxS/Wz/g3eWWDKjY6Vse734kQYipxjz3xc/hLl/nyMffx/bpUe6Pf5LVwgJe5LG0vMz4xASjQ0PkCyU8P8TQDV45dox6fQjd0LByFjduLjA0OkbgxySRSykn6Lc3EcSoIqXVA2dkDrtYZenWLexcDtfzMS0Tw9CJo5DtrXVmpic4ffYsciIxPV5hfDSPpeuMFPPk7AalgoOkhAhVIzZMZCnjlrx4/DqNjszwuIouQxoJLCOjuHs+SLpOqThEz1thY7OJociEQQdVTvDdBrWSgYJLEvaJ4hQh2SAEfd/l0pVNgiDM4tVk0ISMLBSiOMW2cvT9Pq4noSo2EiF+EBKE0HND1jabKMLm8AP3sefAPiICco6FpqkUiyWCOKFcKDJRL9HdXsZUM2mzbev4fh9JdciVJljZyjKfg9CHNKXd6jAzM0UYBmw3ujz5zHMsrywRRT3KBuwcHaFgBIyP6KxuXydC4h7jvZw7fpavnPsCJ86c59HHn+MTH/4pfvt//Kf8xm/+A+Q0ZGJoDy+/+TpNr8fe+TGuX3ydWwsLEAWMTc7Q2NykVHJIk4hUlgbqortL4X+YfD69rTwePOITamaJeuBHKF7l7z1GVjd+/zncrXCVB/Ti7wLg0u95SBKD12//vTLfc+Iy3HnTO/z+wUn8wKidt9ZyfyuK1x/kp3jruCP94q8Gbno340cpfn/Y+dx+Pvndh4mDgBdvXaKYz5PKClcXbrJn3yH6ro+iZj4YIcvEYYRtW8RRRLVawfM9NE1jaKjO/O55CvkiCwsLbG1uIhQZXdewbRvLMul12jiOzd59uwnDFNcNGBqq03ObDA+PUKwUkCTB+XPncXstytUa129cp1gsZd4lSSZwPXJ2LkO5N7OOQ7/XGyxeI3KOQ6fXJ0Hi1MunOXX0GiOlOYRI6PVarK1vUh8awc7lGBqqoQ/Id36QAQLy+Ry+HyDJgubWNq7rUR8a4vnnX2RjY5Pd83t47LHHWV9d40Mf+hCum1GVdc0AIAgChKQQBjGlYoEoivnGo99kdHSMoZF6Ju3rdzh/7jzb29tMTExSKBRxckVKJYcg6LFr5xRD9RqFfBFFVTAMHYmEifFRPK9HmMCNhRvUh2sZLdcPeeLxJzh87xGefvoZ5mazPLdWu8nc7CyLiwuUS2WuX18gCmPyuRx79u7PQs81leb2NpatZ1TOVEEVKoqQ8LwuvV6PYiGP23dxHAdISWKZfrePrmrZrr6Vw8nlESKT+5ZKRTa3GxiFVdI4Ju2PZVEPksjCzVWDMApBkvE8D8s0qJTLhEnE+fPnGR8fQ5Yl7JyNJiyazQ6SrFIsltE0DUkSJFGA2+timFYGjeq5EPcIQx9ZTlE1BVUTGKZJp9tDUbSBVy6m02mSszQ8N5u7cZxki3BNBSmD7KRJjK6qkAYUK0MUysN4foqi6li2QalYQihK5q1LJRRFy0jvQsYLIgw/Jnr2FdRXLyAbBsFvfhrntz5Nf/cQF9duogiJqakdbG81OXjwEFevXuE//vSn+bMvf4Gf/bmfRjc1FFXnD37//+KJxx7nJz75Y4yNDOH3OvzbP/h9tltbfPgDH+XM6VcxLJV8vsoXHn6Eer3Oj79nB/rio1RvfR4vTHj+ikp5cjeFQhHXDcjnc7x8/CWcfIml5TVq1TqFfJ7ZnTvRDJNapQZpiG6aPPXkc7z//e9ncnqG8+fPk6YJ0xNjjI2NcevmTSqVMreWlnjjzXPsPXCQer2GNygWK7Uqm5tbRFFAHMf0XZdSscTk5CRf+fKX6ff65EyJ0VyAsvcX0HSTlevHEfEWpj1EeeQg169dw6nU0b55FBQZf6yBBGjqPgzTBFmDQSEnEcEAjCMLiSTJOqZuL5NPttttJiYmKBTzTE1PZj5yUhShYFkZ4fu5Z18EEh588EEs00FVFSxbJ02lO9d5SZYzX7+uA9nvisIAZCgVKrhuRvbN8mcFiiIjJCkDvgUhum6QJAEMvJhA5pFNU3RdR9NUVEVG07KcXEVTB37XENPQB925zEebxCGh75OmCWEUIxSFlVtL2JaZyW2RBlAmhSjMcmVvqyaSREImptftYRpZ8SdE5uWWiIjCECFrZB2SrMMthKDX62FZFmEUZed/O8ImzjZ3ZVncIT1bpomqKCzfWmR7a4PhWm3QXRHIikLOymEYJkmSomk6YRghZOXOfes2AZk022SQJImEFSRJRkqGiaMA07S4vZhJU4iikCCIsjihVEKWJXzXI4gy6m2SJFkcjCQTRxGartHtdTENiz1z8whFYmpqkl2zu3jl5eNYlkm1WiVOM8Jy6PvMz+9mYmIsA7cNiM9hEKKbBpIs02lvczu/d31jnVKpgJTElMo1pmdmcBwTWaSEfoCu61y/dp0wDKlWKwghaLcbKCIjync6XRRFJiGhUqqgqyq2bSAhuHT5BlbOQNMUNFVF00xWV1exnRyh7xMGWVxOEidIioqhGfQ6fSJVxT5zCXl6lCgI8QMPwzAyH7Ik7iwyl5eXWFpepl6vZ+qGTp9QyHjl/B3f2ubaKpquYVpmJusMEqRXzpL+459Hylm0Wq0BWTji8IHDjEyMggTtZgOJFOW8k8nbj/gEbp/XTr3CwfsfRFGUO5vvyTeezebWXYrXv+6RdbZ+NCDO9w0Rc/LoNzj55Bco2TIH9/8UO07/LEvqFYZm68RJwvLyEjMzU+iaQavbRdN0NEUmZxmUKzUkCRYXbzIxOUmSpLj9Htuby1hGiiKFxKFPmkLHBbQiTr6E2+vR7nZZW1sbZKmWef7556lUKkCKSEJ2TE0yVC+yvbmCoqg4ToQfNTD0CmGQ+cgXt1WuXlliaKjA+OgIY6UiVccHJZt7QeQTJ+D7CVbeIUkUOr0NysUacRSQd2wC32NkpE5zex1VZJ55Sx8mThNkNUYWKos32txaaDAxVkGWM8q1qllEoUSUpsS4rC15mEaZMF5H0utcvrKE68sUinUefO97GRrO4GW+75N38mxubOF5HoWKQ72a59ql09RKGn5/k7yTI0kSev0AoRUpVsdZ3Whz4+YiAPV6fZA/7/PKKyc49vJxkthHTn3qZY0j+8YZreYp2AJVcpkYqWGWE5rNNQ6ZH2XGmOWJ5a/T9mXund9BqVyi0e5w5L77+dM/+VP237+fpaVVNMXii3/yJT74/vfx7DOPZZFZYcxGx6VQqSO+W6n9yOPOd+JtP34nKudHKV7f8fv17s9Lesumzw8EoUl3ee1dZLe+q/MY/B3/vy9eoyj6Z2IQOfBOUt63Dn+A9v5hbfO/jvFui9cMePNdj9HdjpWmKfFnH8ElRpsdYXxyiiBOufeB92LaBbYaDU6fPs3Y6HgGyRBZwTE1NUmaJiwuLjI0WssohbpBv+9y7eo1zp8/x5VrV5icmkQio8YlUYhhKTQaDXTNYXOrSRD2md09wdZ2E81QEUKh6BSIfA83CCgWi1SrVTbWN1AUFSFJbG1u4roupVIZ3/N55OFHqI+M4+QcdF3HsC1SUkaHqrz62qvMzMygKhqGbpErlr67oJTJPLm3FrOYElkijrJYB6GomLrBnzzyRfbvP8i9R+7DtGzK5TJpEuN7AfPzuzF0I/NHSRnwot3qIqEgyxrtzlYGNrJz7N27D1mWuXjxIqalMjs7iywyeZlpWKSRwuc+94d8+CMPkMQhGTNIEMUhnXaDej2Ts3hhn0KhxJ49u8nni/h+QBSnbG1uUilXmZ+fJ4wier0Otm0hyyqmmXVBRkdGUYXK7K7d/N7/+a8xTJvRkZFBxEmAIivIZL62zc1Vco6OppoD31QWk9N3XSI/IJcziCMfVRF0ux1kWabZaNBobuMFAZV6nUhcQZEkZHcMRdVod/oIVSEKQ4Ig5C/+4i949jvfYdfOGXRdRdUUpmem0TQ9k/PKEp1ulyefepJGs8H0zBTRgEioEhMnKQkyyALLdlAI0DWDXtdDMyziBLw+bDe6mGYO284RRxGe59JpbTE2Ok4u52DbOQw9Q9aHYUCSpoOFf0qqKuhmESQbWRgEvodlq6iaOYDKZJ5LISvcunaSIdVEPnaB9MQ53A8eYv2//Wn+9c0lhg/todvrMjY5yvjUBFEQZZEodp4bNxdICPmX/+pfcv8DR5icmmB5aZl2o8OZM6/za7/+q0yMj/Lnf/pFPvXJH+f1Uyf4lX/4KySRRBhHnHn5cUalVea8J6ltP4F889uYpsWpRZntZIgDh+9hYnKUpaVlnnnqOWbndnL48GHy+SI5p8DW1jZrK8s4do7jJ0/j5ApUKkU2NtbZtXOOQrkMSPS7XQxNpeDYLNy4zv59+zh2/BhvnrvAgYOHCIKQTjuLfzl37k2KhSKe67KyssrBgwfIO3ks06DZbHLj+g3uPXyI3bumsaJ1nHs/Q6/T5cYbf46kmSj6FI3tkErdwQsTCt85g6QIvNFNwigiZ91DmCakqAgUJGKQAtJUvtMt8b0enufS2uqDJJPP55AFGIZGrVah1WqQJAmFQoE0yUji1fII33riMSbGJygUKiRxhK4rSLK4A4SIwhDTNJGRSJKYdruNLCR0TaXV9Gg22+iGMYATZdda33eR5TQrwpAHMaxZISwPisI4jjEMg1ZrG9vJsbSyQq1ey4jKijrwgwogJQ5Der0Oiiyzub6GqmqEQYyuGdi2RRRHeK5Lq91EVQWqrNJpd1AUQafdRlFloiAk8ANeP/NGdm0VMqdOnsq+6wRZRmS+iCQxKIClQQSPfsdfGkfxHbmyqqmZjFdR7xRTpBmR/tVXjiOkNIuj8QN03cxgW64/+HmBLCvcunWLL3/5qxy+597s/1Q3kCSZVquDbmggScQsZ//6lUHmbiYzTFOyrNiYjLmQSHiez+999nd58IH3IDRlIC2OEZJMGmedANfzsG2bVqOFrihESUCpXCKKQo4cuZeh+hDb29tUqhWqtSq75+bodtvohooiS2xtbFIsFYnThCiJSaQUc7Ap5nkhtWodyDrS1VoVRZUymbgEQs7ARaViiXKplFGVZRlNk1AUE9eNMAydrcYaoR9RrVRQhaDVatBodlE1hwfecwjbstENkyuXr/DYY49z8NA+TNMkDELCAXFaGRTz62ubRJZJ7uxlpHv2ILkehqGTDNYuWUSSizr4XMvlgdcxiVC7HugaDSMD6qmaiqapmLYFkoyqanjtPsr1RbZ+6WNASt5xSJIYQ9eYnJzkzXNn+Z1/8X/w8Y9/HFVR8dU+brWDPiYgDrhy6Tz7731g4BvPNjL+JhaviQQ3Tn6biy99g/fc95OMHP0n9KsNzAmNZ599jtnZWQr5PMeOH2Pnrt0EYYSqCjqtbQxN0O67gw0BletXrxEEIbVaGVWO6TSW8XuNwTVJQuhVJnbs49jRE5RLRSRZplYpI0tw4sQJZmZmQIITJ05SKZZYWVnn7JvnCdOIhaVNZneMoGoqnaaCk8/h+k1Qq1w4e4HhuqBYVNEVgS57uGGKbedpNhtIQkHVLFAsSsVRJDmiXh1jbWUF05CR5YQ0dLFNhTBwCQKPKGnjhR16Xg/LMhkZKTE5OoKipqSpi6JJSGSeejSD828uoog8zXaTYrnEm1c6bDZ9Or2Ihz7+Y6yureC6Pmura7RbbU6dPEUY+NRrVYLIQyQuqb9Nv7WCrWfXqUTSUKwarb4gSg3qw5PsmZ9jeWUZXdN54olvs7y8BlKE77aYm6lzYG6IA7vHMJQeliEwDUGxYJDGfSxNwqn3iVWf/ebH+MmJT7DHHOJqcJQ/++pXGZueZXF5i4985GOMzk0yOjbLgw98HFIZJfVYuHqGieoQumWy58h7SSUFjXcdn/p9429i8Xp7I/f7aqh/X7z+aCNN03/2donu3fTUtzHxb89ofevu8Q8qOu/muYjjmDNnzvDSSy+xd+9e+v0+6iAe4YeNt3aD7zZue3jD330YX07R90wTRQk9P2RscppUFhQKecbHRkjiGFXO5FyynMUdCJG9LhSJJMm8Vb1uj6MvvcAv/tJ/xO7dO1EVFc/zOXr0GLtmd9Fp94iTmChOWVxcYmVlibHxUSqV+iDoQmVtbZNWu8n4xAiWaSMhY9t2lkcYxZi2RaVSZXV1FdM0mZyaolatYFkmnW6HOIoxdIMgaLN7z25yuRIPf/6L7J0/RKVaQNc0Gttb5HI2fTfAMCyiGCxdZ211FVXVaDSaJFFMpVKhWq2Sc+ws91NIOLbJ2toKMzNZtIhumAgh4fY92q02TzzxbaIoZnHxGpVKhYWFW1y+fJmh4RHqtSEMU6PbdbGsHG+8cY5jx4+TzxeYnduBrqvYuRyaZpDLOcgiJV9w8P1MAuQ4GXQlCDyCIKCQdxCKzPDQMLZtZ9ETEly6fJkzZ17HMC2azS1IE8IgYmtjG9fr03P7BEHAd77zLEkcMzExyfVr18g7JlHoDnbhVTw3yOZJktDpdGi32pQreWSREqchQejR6rToe31GR0aBFNd1cfJF3OQcuqqiM0sqCRTFRDd1wkEW7t59+ygU8xiGhmXoyIqKbTsYekay7LQ7xKnPwYMHGR8fYWl5EUVJiSKPXrdPsVJDKCqNRgtDU/H6Poae5+zrF+n3Q6rDI9hGjvW1TZ5++lmmp3eiaiaFYhlNhSDI5mESJ/RcF1kiy/8k66QFgUecyKiaRbfdRzd0trc3WVpaIu8UsmK+10UVEiIK4NU3Ea8usL1/mj8cK/Pgr/8aH/7Ip/iN/+63+H8+/zkOHDxIbXgYVTdYW95k1+xeWs0e+/YfYG1jmfHpHdx3/xGGR8bw3YhOq8tnfvlXSKWUleVlPvWpT7Gyssy9h3azfPJL6K//HsXVx5kO30BqXCRWcuQmjqCMPoBZnUPoOUZHRxgeqdLuNBgZHmV7u025nOf8+QtU63VyjgMkbG1ukCYJy6srHLrnHoSAVqdDsVBF0WU21tZZXVpm8eYiQyPD2JbNsZdfJufkqdeH2LljJxIphqkzNT3F+voGZ06f5r3veS/jkxOsLK9w/PgxxsbGSJOE4VqdS1cvUSpYFKUmjfrH+NajX2U636YwNkuslChbOW4uXsMyJCovXUdSFHpDGyhCwTAOZQv9NEHImSfSD4IMeiENombiBE3VWV/ZIox8ypUimq6giEwHpRsaup5J6rJiU0HXbC5eOsfs3CyXL10likIUVcK0rOxaOShcM7JvBiGyLPuOvEvRDPIFB1mRcd3eYK6rKLJCq93EsQukSHQ7LXTDBilzFMlSZvFotVo4Tg6haOTyBeIoJgxC4sAlSWKEotFstTHN7HzbrRbVahVFaLh+hCw0dE1kG066hixJ2SYWaVagxDFJkqBpOhIxsqzTd0P8KGBkpMb1a4vUhmoYZgaSk2SFlBTXzaSjQgiSJB4Um2KQvaoQp5AmMXEYZF3eKPiuT1IozM3NUq8PoSgq16/fwDKtLMoqHUT1KNm9KJfLce+9mW9TklOiKCBJEgxTzwjTskyYLAGgiXHiOMmAS0kmC5NliSSKkZDY2NzCsizWVlaYnZtF1bJcU8vKsrDDMCCMQ1TdwHVd8oU8X//ql9mzbw+NRgPLslFVnaXlFcbGxgmTYBCBJQgDD00TbKyvU6vXkAaFlqbpqIpCHEloqoGmZl2qVrOD54UYpkYUejQbDTTdRsiwtraG72cROmEY4LoucRzSaLQoFAooSnb/67Y7rK6sIuSM3vzm+Svs2XMPKdmmDcjUanXq9Vqm+gkjcjmbKMqI1lm2bsCTTz7F8ZMv8+CHP4R09iKiViYZ0J9vr1BkIQ+gYSqaZuCHIUkcYnghiaaSDJVptztAiqbbKIMi1vcDthcWcda2yf3qL7K91WB1eQ3f9SEF0zHJGRYvPf88+/buxykXyU1p6GOZskBXBVubS+yYP/g9Nqm/TPH6w6TE7yS/hLeu477XsvVuLWC313teq8nXf/932Dk+zJ72f0/H7mNOZioDO+dwcyFTRJWLJdI05rXXXkNRFVQhc/PmArvm9wAJpmVgWRalQhHL0rh6+Q0cPSYN+8hCQTMdbq40yFfGmJqYRhESa5sbjA8PoQzI2mEY8NqZMxw8dJDVjSZXF27xoY9+AEnRQbZorGRAppdeeJMoblOt2Yi4zT3zu7AMnwAfodlERMiSgoScdetNi0arhyQX0LQiSBFxqGDoBltbN7FNDV2FwO+SpjGGaZLELrJc5NTJJTbXXIp5CSEnCCUlSlNkJZOoCyFY22iiMIpTNLCKGq1unlNnziEUk3y+xK7ZOQxDx/d90iRleGiIxvY2w8M1bFunnNO4eeV1NMlHExK6kUMzTDabAZXRPbT7mffdMDIYXBxFbG5u8b73vZ/A9ynYMZYWsGuySN5OUeWQttfDDVIQJlGakJKgKgpdPyAU2wTGLYbkPRwuPsS8sp8heZhLXOSZ517gk5/4GEdfOMH+/ffyv/+L3+Uzv/IZmq0mumEhIp9jLz9Pv7vJzPQ0ppEnuhMvdncV6A+SFd+teFUejO/6vXmn79E7PPuufjZ75/fTht9ppG8hCH/v9/Sdj/qDxt1YQvC3oHh9a87r3S5ybx/vJNW97T19+/Pfg41+h0mXmddDqtUqR44c4eLFi+RyuQFM4a/tb0RVVcLffRi14OCOVpCFoFQbwrRzxClAjKpIrCwvk3fySHKKqip4noemDbrNSIAgTTLJ2d59c3R7DQqOhSpUyuU6OSePaedYXFhlx45JkBPa7Q6qYiDLKuffeJOh4SHiRHDt6k1ePvEKc3MzqGoWB2NaJlEcouo6ds5hu9mkWqui6jqarhF6HRqNbSRJwrEd+p0uNxdWSGs3KI2l3DjXZHJyGOKEF198gX1797Kx1SDnlEDSCDyXOIqwTIPAD3D7PsNDNYaH61y7dpV8MY+iyrTbLUK/z86dM1iWiaIqJAl0Wk0q5QppkjAyMoxlGuzfP4+qaOTzRSwrl31+uo6iaGi6iaJojI6NYpgmTz37LUZGxxgdm8Iwc0iyIJUSWs0tTMNEVTVWVzfI2XnazW0C38M0NCAmTbIFYKfT5vWzr5MmEjduLBLH8Prrr3Pt2mU+8qEP0Wo0uHLpCjtmJ5nZuYNabYhbi7f46Ic/Rr8XkyYBy8uXsGwVQ3dIMbAsE0mCTrtDsVhEliTSRACCJJXwg5hcvky+WIFB7u/rp08zOjqBd7FaAAAgAElEQVQO+g3CMMIUe5FkBcN0kCSIQj+TCEYh9XqNfM5GVQXbjR6e6xOGMbquEQQeumGhKgaeF9JqthkbnUARGvl8HkkouF6AY5ukkY9m5eh0uzz3neeI44DR8RGC/jalUo4H3nMfmjnoysuCxtYWxXIdRdVJSJEVKcuoFBmx1bJM3H6XnF0GEja3VtA1gSyrdDse9VqZNIlQIp/2yTOoL5xFmZqg8d/8AvLPPsS+991HvpzjP/n7v8zY5CjT09PsO7Afz0/wQ2httflH/+jX+chHH8LJOyRpzD1H7sPJFbhw/ipf+uJXOff6eY6+eJxGs8nk5DiFdAXlxD9HXPkSTrCCWpoiKOxiQ65S3fkeXr24SmVkkstXb9LtZlmQ3/jmoxw4uJtut4Wu2Zw/d5nNzVX2HzqAbhrohkK/10EVMp1Wi4989H1EUUQsJZmf103w+tvcWrjJwvWbHDx0D9984lvcc+8RJqemqdXqqEJGllIunn+T+nAdIRROvvIKH3/oITY3NhgdH+epp5/iyL1HePaZZ1CFwvTkFPvvOUQ+ZyJ1bnBso8TP/PQnuPHy86hjOygMVVi+chHLcShZKcaz10AIvLFtkhQM615EEuL2tnB7DWRVQ1ZyyFKc0Xg7LoZuQyqwTAPDVJHkBCHSLM5F6PheF0VV0XWDRmMbRVEwDIudu6axLJObN5dotbfZuXMKWVFByqwTWXa1TBS56LpJEks0m11M0wYRk6QZkOS2PFeWZYSc+U9lOfNEGoZOlGSdwswLJCNkkRXGcUKUSEiymhWhqkZ7cymLfJIEumERxknmZU0yWW0YJfzRHz/C5PQOIr9HLmdlNHBDp7G9TRJ7SFImWxZCReL/Je9NYyTLzjO959xz9xv7mvtSmVmVtVdXNbvJ5r5IsjAeaQTYlrV4aI0Hhg0YBsZjGfL8MOSxNIZhWNDY8MwIGtuw1uEmkSIpdjdb7I3svVnVa61ZWVlLZuUSGXvE3Y9/3KxWN9nNZo80/iEdIFDIyIi4VVE3bpzv+973fXQGgxbfefwZTp4+x+z8NErE5N0Sbs7DydmZqkGYIDSkzIKehsMhSglMw0LTNMJghG4c/Fs0gT/qY9k2cRRhmTqdTpvRaEyMxLRdgjDiueeeZ35uHlBII5NdKzI+rWWZSGmgSEiSCE1TdDr7uJ7LcDjOUr7ZAiEwtZm3QposyyJJsoRg27QIo4jzF15hcekQx46uYhp6JvMWgn4/m0BHYYi0DDTDOPAsp8xMTxCEEUJk2C6pGdiWw8bGbar1Ivv7+3iemykzJDgHCpEkSRj0B6RxjKYEQlN0e+3sfdPgheef56nvPs9HPvwhDEMwGo15/tnzzM5NImV2LPMgcfVe49AwBP1BB8O0kMLCNDOfoWWb7LV2uHRlnSjWqdUqnP/+q1y48CqTk00ajRqGIQnDkCRJsR0bqenoOpimydGjxzh79ixWziX5i+dgcfJgA5OFd6k0RZClVA+HI4TQuHT5Eo1aFWsUkhqSQd7Jzm0EF167RKVcxnVtdF3i3tkFKYl+5rNITefRRx7jEx/7FJ5bRJgJjmHyuc/8BMVyGcvLoeIYeYBGu33zOpPNCoXa1Dv3Kv8OJq8fpOj9cZ9/b2iQJAnPP/wHvPjo1/nU2V+mcfunsZYSNvdaSKlzY32d48eOYugGlmlhGRoTE5OUKxU0XcfL5UBqbN3dpFIp02ntZ8FquqLkmQzad9CIEdKgUKriVer4oYZlWPj+iPrkJJ3WDrdv3aJcrTA9O8vq6ipBGHHh5QtUyyUuX3ydcDxg2BvR2utxaKXE3OwM5YqDaeropk84BKEUhm0jcVDhCE030ISBaWXeaNcrYTgFVCq5uvZaxkP3Bzh2CipEFzGaSrPmUQqO6RGmAc3JCfb39lmcn0CJhDDW2N4LcL0mN29uUSyW2dvtcn19jYWlRW5u9bm01qJZK/LZz3yWhcVFBoM+l69c4cSJozTqdbqdDq5rUasWCcMhMtxET3u4tsJ0XRJpst8ZUKwvotk1XK9ErVZhd/sO5XKdJ554isXFRXI5l9dee4WqO6RRMvDMGNIIqRuEcUSh0OSpp16jXPKwTQ2RKoQSoBIS4RPlbkGxi+fPcLrwWZr9KSaMCWoPWCxXlxkMurQG2xw9c4KFpdMklPnyl3+Xn/07Hyev99m4fp2Z5bMg5XsWrz/eSf7OH+8Vr9qHwh9bJfrXVby+VxPo/V7z36Z4/VHrb13xeg+W/vb19qL03uPu/fmD09q333/v9e51GN7tMeqg83TP91GtVj9Q4fqe3UJSEhki0DEjiy//zj9n6XtvkpqS6/RB6uQLVXTDysIylABhsLFxh063T6NSJ9ZMVBpjiBTdcklTRWd/n9dfPY9pSIbjEZVqA9sy2G936LR7OF6BONZ45LFvsrC4xH6ry8z0DPv7LTbvbJESUSrXkZqkUimikpj5xSVMwyBNQka9NuF4hJNz2G/30KVLGMYM+3v0O1tITBzHo1JroAQkmqJULmGVfSzb5MjCOQzTIpcvMDs/R5IqvvGNb3Dy+CmG/QFf+fK/IV/IMTE1RYri6SefoOQ5tLs9Zg8tg9TRUXi2gWa4rF1fZ2p6EqUS1tevUp2sgRQMRgMmJ2cxDI9Op0W+WCRNFX/4R3/EwvwhNCSeo/Pmmxe5eOki03NzFEolTp85zVSzyVe/9EVWDi0TRhluKB4NSeMY09SzABNdoFsafihxvAKDfptea49cKYft2jz+xBPkCznubt7i7/6dn+T4mcPMz0wxHA6ZnjuEUyjj+yFBEDDRbFCr1rBtj8efeoQ3Lr7JuQ89RLHcQOo67c4uqDGbt2/QbNQBHWnkQIakRLhuHpQFJAyGu9gyRZcW8wvL9Ab7mHaMIeuoqIFKBXt7mfRbNwVhGBEGCedffhUvlydKFF7e4+b6LVzHZTAcUKqUSVNBFPv8v7/3//DQxz5CFKdZAI5l4Y8TPDuHLjXCcIzULYLxgMMrCxw7fhRpmPhhSBDFBGGAZVvEUYqGRqFUQaWZh1uSEgdDEk2QRD6WThZMY9oMwyjDKTkuo06fnOcxGA3pbm1i3dxFf/kavVYP+3/8Fa5/7jTNE8cxvDJoDpu37vI//8Y/ozvs8RMP/QxhN+XipZeZX/ZQSZU7G9fZvrPGyZOr+InAHHpceuVNNq+e59MfPU5Tv8ZnJ9c4611Bv/KHiNtPIQtzxMVlRH0VqzKHdMuYVsY8zjt5Xnj2BU4dP8Oz33uOeq3C8WNH0MSIUnUG3w/ptu5w/wPnCHyFbVns72xTLpfIVyvkqhX8sU+uWCQeDvjuY3+Bppl0+n1Wj9/H8tFjrN9Y59Of/BgPP/wI/W6XGzduMDc3x61bt6hUa1nK66BHrVKi3+9y8/ZNrt9Y49jRVTQJhw8fZm1tjWvX17i9ucfiwhSiu86WfJDuxisocQfHnSCV0wwDi5WpaTqpR/lmh3R+msC4hiYgZ68SRQHdXotKdQISgS4CENmkK45Srly9wtPffYqz962yvXMb27FQCkzLwXZdEDr+OMKxc1iOR6oZBGEP3TCI4oTJ6QnmF2ZJ0oS9u208x0OIFEFCHPvohpOxO8cjXn3tAtVqCUsXxEGABplSRjdB00iISFNJ4IeE4ZDxuIfl5bLvESEYdDsYeoJGhNIskmCASH10KUilQLPzGf4qiDENSaJi0lRlaceaZDQcoqUJtWKOxkSTKPFJ0Rj7IW7RIUkNdNMBJALJ3l6LUrnBwsIMtqWABH+cpZKatk0aRcTjEa5tMOj1ca0sQd2xnSz8QmaySqmbREFAMO5jmSamkWFqIMUPxmjSoFCsIg9sNVJqrBxZxo8GmLYkTgck/W32b17FlCamVSJJQQkFWuah9ZwCWqKTJgmOZRKqg8kr8ygBUupsb+9QLJYAwfr6FUxTZ+nQArq4N0UTxFp6MN3TkQI67RaGVSAOEjQ0/OHgQPnS4O7WFl/5ky9y5MgKnf0Oj3zr20w2JyjkLHa271IqVDPW6niA6+TRNJs41ti6u0uhVEYIcE2PNPaRUlCpTPLA/ScQKHw/RAiD5597gUq1SbM5gS4Ft25tUKtkTNUkijENG8f2aO3t0u93yeVK7LdbSFPR7fU4fvQ0337kUU4eP8bu3jaHlg5TqtSxPIPWdp+vfu2bHDt5htFoRHt/Fykkw8EIXdOJ/JiL6xvU124Rfe5+RKuPlEYmHdYEI3+I7/sYhsn29haddotarYETRMS6xqjsokkdpeDKxcvsbO8wP7dAFAfor1wmnW7Cz3yGVEhWjpxgHMYIaSIU7HY2EOYITU/Y3rpD/kad7fObVBdtrl29yn0ffpAE/Z37sYPiVf7sp3/kNPTfdl/0g+sv93riHbe3P//etk0qUEKQCgNdtzCEQFcJv/db/z1TR6p8qvXbBOU+kWtQKDqoNGVxcZGdnR2GozEvvfwyOTeHSkLKxQKDQUCxNMnmzQ0Knks46iNFwveefpJqQceSIYYaAQlIizcuXWNm4SSmU+T6tavMTjZJkmxfWSpVcdw8SgkuX73M+o3rSBlSyOWQRo5SMc9i0+QjZyeQmo/rKnKeh1IJpswx8DvYTo6tW23iZIztSnQjJU4VKklACCKpkytU6A5G7O9FjAYDdHwcN0U3BINhhzAcY+kGg14v87GGEZKIatUhSmK0pM8o0njkqRsYlsfm+g1m6gXKpTy5fJEr69e4cqVNFA/5yZ/6OdbWbtCoNxgNuxw6NM3dm7fY3++z3wuYm5tn6+ZVajmdeLiF73ez67bMPO6BmkTIDJHT7fWIo4iZmXla+7tM1SYwi0XW13dQg8uU8xLHMXEOQvEsy0QXgsEw4NbtNl6uSLmUI44GmLZ9YNUSaBpgDAnMG+yqG8zpxzlTOsf4ruLLV77KM8+/yIMfeoj5uXmMvIZZNrGTCBHGGGGLOzcvkvMalGaXIIkhiZFamuVqCPFeFd0Pn+8/cPvLyWv8LhPOHx7SCSEQ6odf5+3F4/tL6w+eJbS3bupdX/Tdj/+usmGh3v32PkWtEOJvfvF6D5Xzg/+hb18/6nfvd/9f5Xd/lZUh9BJUaqCFKV/5o/+Lh661GYsUuTpPbWIazbDRpEmcRCRJCghGwxGvvfYaxYJLvlQiTUIkKQqdVCks0+Tq5cvk83lqtRpSSsLAP8AtgKHrPPHk4zz44IeYnpqm2WhgmDpSCqLI5+zZc9iORxTFuLbL1NQkYehz73OaxDGj0RCh67TbPb7whS9x9ux9VKtFkjiiUKxw48ZNCoUiSZogUMRJhFfPPqR22qTT7mehU2lMmiYcPXos+0wJwerqKrl84a2I+bP3ncW1HF59/Q1KlYy/Fkc+pq4hpcVLL79ELpfD98fZlFHBoD+gUioz6Pd5/tlneeKJx5mdm2V3Z4+lQ8u8cuEClmURRxFz8/N0e13G/pjmRIM0idBl5lPxvAy7IgDbsoiSBMMw4SDsOoxjCrkyhq4jZYJjW4Rxwmg45r6z52g2m5w8cRxNCOJExzY9bCuPplm0O30MXaNQyMKXSuUSF85fYH5hmo9//GOYpkWvN8RxPMIwhkRnZnqWVmsPw9KziPxIYTsG7c4exUKJbqeDoeu0W/soBFKXjMcBOXsR4jq6rhOGIf1+n1qtxqDfw/NyhGHMzvY2QeBTKOSwHZtSocRrr75GpVomjMID/ETCQx/9CKZh4djuATpA8o0/+zorS0sE/oCtu3coV+pYVhbEJKXO2M/CvQrFQuaNEwLdMEiSmH5vwPXr1xmPR+QKOSzbRJMWaZLiuHmCIEbqFingmAY6gueff47NzS22nn2ZhV6IaRhEv/J3qf3mP+FG2OPkqdP0Bj6lcpPf+Kf/jDMnT7N5+w6/8Mu/zPeefprf/4P/m3Zvl3P3348hHVQaIoViYXGZtfVbfPUPf4/TfI1V9ST5zovUtT0MO0+q5xH1Y9izH+Xmjo9pG0RJiq5bCM2g3e5Qr1UIx4qrV69xZHWFaq3Eiy89z9Wr1yiXC1Qa01y5dI1iwaMxOYHr5dE0gWlKhFC0O52ML4oiSRVJ5JN3s9TtTq/L9PQs589f4MTxY7z+2qscOXyEdrtNe3+fxcVFavU6Oc+jVCng2Cb7rX1qtTonTp5mZnaRRx5+jDTVmJ6a49VXX+dzn/0phqMu83NNVHuN/+yffhHP6DE9XaTUPMT04lFIUvbu3qTSaOC9dB08l7G8ciDvWgSRSddMM4em2QfpvxKUQkqNej3zgAsEXq5IEIR0Oh1cxyUKwgNPn0TXNDrdLl7OwzC0A7WMxLYchBDs7G7zhS98mZnpSYqlwsF0RcMPQlzHQ2o6S0uHMt5omNkQdGkc+C4zWXqaCpJQ8bWvfp0XX3iB5ZUVvJwLaYqGQGiCTreL0ASGaWMaBkEYMA6CA7+tRCBI4zhLxj64JkqpHyBsLHrdXpY9YNsE4RjH8bJCKAlQaUSaZlLefq9NvV4m8EPiODwIOcs2MrpuMBxlDMfAH6JpOn4QsbV5h3K5DEIjSVKE0EhVShzHbyl4pMwCUwzdRJMZQsZ1cySJQpP628JaFZ1OJ0uFVxZJogjjiHEwJJ+XGa9XKNIUEBJNaCASdEMQRiOSyMa1phgNfUzLAThA8OhIXc9sCK73lp1HoVAKEhWTEWzJUotThet4bN7Z5Dvf+Q4rK4cyxnZvwOuvXaDZrON6LmM/wDAsnnzySc6cOY5hmJimTRwFDAddnAO1TmbpSfjaV/+E02dOI5QgDEdYtk0UKVAJw+EgU7Og0W53qdWrVColgnBEqVQgDH1GoxG2bdHv97IGZpyQJCmapigU8hi6QSFfYTzy2d65i2boTE1P4Hl5ioUCSTTi0puXaLV2SZKIlaUFPNei2+3QaNTRpOTKlcs888z3uK8xjTQNSFLefPMilXKFwPfJ5Twsy8743MUi9Xo9C2waBfSnykRGhpcSmsb0dI3Dh1e4eu06lulhX71FvDTN3rF5yoUiQqWMh0NsS8fLm8TJOENZKYNKeQL1dQ+vXUKd6PLsi89x4swZlHhn8ao6fcT8FNqZI/9O9kU/uH5ksMwPLIFACQ1QhMGQNOoz6rf48r/6l/zc2f+SYvsko4ld9to7XL5ylXw+T7/fx/cDqtUq1WqV25s3aLd3MExJqVTi2WeeYWVlmctXLzM5OUGn2+eBBz5CqeQQjvsMeruoJCZJFIVimVRzSTGZnZ2l3+8z9EOGoxFBGNHpdDK12YljvPTiCyzMHGb9+hphGtJq7XJkeQLXNrBsAyEE41FA6I9wHBvHtTJmspsjX3BQBKjEQqGThBGa0LGcMr1BSLFYp9cbcGhxmvFgl2LRzcKXpMxsS0GEZVrohvHW/ta2s4Az27YwLY9GrUQ47nJkeRLbFrQ7Cb1BhGF7LC6e5dz959jZ28E0DDzPxXZsTNPEcS3qzTqapnDtlLXLz1PKC5JwiGVLDNMkijWCSGJ7kwz9kObEFGvXr7O9vUUcR/R6PWamJ7i1ucazTz/LdMOh2cjheXa235UZTSQKYqIopTlZw3UNygUHXWaqhTRNCYKAOEkO9poRgRzhO7cZDyMmR8fo3drkwV+aZ/fuFuV8CXx486XXWV1dJg4ivvbVL9GYmuWZF6/y4c/8FJaZef0RMsP6iHtXsQ++hKvQFhJE80dPQ99R27zHWf+Bj/2OY30AH+u7el7f8yjvcqx3/h3+xhevcRz/+vt16d5t0npvvZfP9f24TD8Op+ivsjQhSUWKSHR+/3f+Nclgi/sutwmKNs7xIxhOHsPyQJMEvk8cZ/ytQj7P5uYdVlcWiAHLkJlESlqEcYwuDWampnnumWc4fHiFNEmQmsG1a2vUalWiJMRxLI4dOwEotjZvI3VBsZg7iDZ3+cY3v8XLL32fw4dXsE2TKM7QDN1ul1KpiK7r1BpNNE3n1OkzCJGCihn0O4zCmEce/Ta9bo/Dh1cwpCRRITI3RABRN0chX0Zo4PtjbMcmjAJ8P+DatatcvniFufkFbNdFpSm7u3uYhk2hWGWvtU+5VMKyMhmcAg6vrBzwBTM5miFNVJqASoijkLznsn5jg5mZWUqlMtPT0zz99FO09va4cP48R1aPsLAwh+tZCKHI5Vy6nTb1Ri3zf6VR9neNEnJenjRVJGHMzY1b1BpNNm7cIZ9z0LQY3x8hZSZP9oMgC3ZB0em06fVCvv3oXyCExsMPP8yrr73G5OQk3/zmNw6O75Av5MgXcui6iWXZGIbF+vWbNBtTmXRPCOIkRDckd7e3yFsVxuMug/5uliYcCyzTJpcvYpgSKTUsK4cQHpqWYNsW4/GY1197neZEk/XrG3z7249x9OhRjhxZoVItYxj6W1zClZVlvFwO27EYj0ZEYYihZ6zOe57vm9fXOHf2LJqAVmuXSqWEYXr4foAfBCRJSiFfyFivcYyUGqPxEF3Pvkgt26Y50aBYLqJI6Q4HkKRvBb9k4HCFShUa8OorFzg9u8jMZod6BM5/9Xku/+QKLQdG45TZo6f58hf+DXPzS1jSY2Zihjubd7hy+QoPPPgQ/8Ov/yq/9du/yeLiEsXCJCQjNu/cplypc+H863zmUz9B/dr/giVjwsZHOb8R0Dz8UVqBDU4N0yshEDSbNbrdDrVaA6UEmtDwvEz9MOwldDodpudqeDmdEydOYFl5avU6ul2gUW9QLedBSpQGqcoaO63WHt12O0NF9XoUiiWGvS7VcoXnX77Ahx64n8FwwOOPP04cRQz7A+r1OvlCgUI+z4ULF4iiCNu20Y0s2f6Jx59gf79Dmmq0O122tu6Szxe4dPES8/PztFr7XF9/k1MnDpO01th3T7I8bfDhT30aaRe4fXuXcqlEb3+Hod+n/Npd9GIevDK2NYvrToCQlMplghDSJEvPVUJlbFDt3vUUxn6KadlomkQKgakbGJqk3e1mDTapox1M6NRB91aXJmEUgVI4rs2DH/ow+UIe09KzxGEBupGlEAdBhCazDZguszRsBZz//nl03cC2rMynqElOnDjG8RNHKRQKGYc6SZCaREojw4TpWXNLaAKpG+i6iWFkRbY/HuP744xLq7KU5CiK0aUkSVIq5QqWYzMcDPE8B38c4NgOg0GPJAkY9nqUijlKpTz+aMho0Me2DExdMuj1ECpFamBaNkLF9Ps9HNdFkwb9bpd6vZF5S6XGaDRGaALL1A/CnoyskFUKITLcgZQ6KoUozALo4ihCExkyIZ8vMOyPMXUP6eSxc3k0Ilqb10lIMHQd08yDMIiSAGTKeDQkjENyuSJpIkFk0lYFhEHA7s4OxWKRVGWS9zhJiZJMRq7pkn6nRz6Xp98fYRg2mm6g0oRrV69y7eo1JiabVKoVPNNicWGO2fkZGo06umlSbdQIxiFzBzLfJElBpAwHPRwrk2oKodjYWOfUyePopolpmHQ7LdqdNtXaBIaukct53Lhxg3qjTr1ep1or027v4dgGUmaM4Hwhx3g0AJExLq9dXaNYKiO0CMf1UKlOkoBhaqwcXqQ+MYHlmHz9a19HCkGxYPPK98/zqU99guWVQ2giZX93G900kbpGmir8YMyDH34QYzgiurGJLBXZ3dlle3ub+YUFojhCpeot9qZlmgihYYx9emWXCLAsG9OwiKKAN9+8zIsvnefm1XVOjWPEb/+3DNOE8WjIv/g//w/+ya/9d/zDf/CfkmhBdl0fB+zt9igVGyQvAQL8w9t0ByMOrRwB8c68Du30EbTTR/6d7Yt+aJ/0AYpXJTSUyM4HUwbIuMsX/+hfU9WGfKbyq5zfep7+KGBuaRrfT5ibm2Nra4tisUCaZg2JaqPKxESTcBywt9fCcRxcz6NWrxMl2fdV4IeMRy06+ztYWoxj6oRRxgHuD1Pqk3N02h10qWO4OYqlIqZlMxqNaO3tcWRliZmpCV6/cAXFmOXVQ0xM1bEPvOeeZ5HGIbZhYZo6URxlChNdolJQxAgtZdCPsT0H29LY39sHZWM4RQzLIZ9zUOkAz0kJgyGGrhOFAa7jghLYtoMmswTw5EDNqEsJhkno+5RcnYIrKRYtxtGI7z6zhpsr4RY8jh//MNfWr3D02GFcx2F9fT1rRBkGvdGA0WiAUCO2b79JvSKRYoRpSJRKSRKdoS/JlaYZhia5XJHRaMTS0iFmZ2awHZO8V8TNSfb317izfovV5QkKeQ3LlKQqzt4HJXAMF02mmFaKbQNJjEoEaOItT71S6qChp6FJiOOUHf8um+0dPtH4e2xd3yGcD8h5Zf7i4cf4xEMf40tf/ybb213KlSrnHniAxx9/lkRITpw6gRI6idBJhJZJ+j8gtumt87qh0BrqrTrxb0Px+oM119/44lUp9es/OFlNDr4I7/38tse+4757kt+33/+Dtx+UC99b7wYffq/Xufe7d/PUvn2947ipQtMk1968xrf+5E+YKMQcudZlf7WJWaoh7VwmFUahS8l4PM66Z4bOwsICg04L3bIYD/sMe5nR/JkXXmBmagrb0JmcaNBpt+h0WrTbHc6f/z4rK8vU6zWK5SKBH7J99y4z01MkSUwYBpmPyC1RbzYJw4CXX36J5aVFHMfEdV2EppHL5RiNx+jSAASe52GYEtKEfD6Hly+yunqU2ZlZev0elmkyGPZxqxFKQdT1UGk2LUiSNEOpGAYCwauvvUa/P+K+c2dpdzs4jkscRVy7do033niT6+vrVColSqU842CMoRv0el1KxTKmYaIQ7O+3ySznGe6i1+uxvHIE13WpViuEQcjs7AxHVg/jeQ6LSwv0e11MUycMfdIkwbQMut0evj/GH48Zj0aUyjVG4zGWkW0e4ijGsExyXh5UTJJkcfVxrOh0ulSqVZTK/GKBPyKXd3FyFlPTE9TqZRYXpjh69Dirqys4boYv8DwHqeuAIAhCkjjli1/8Eq+++ipnzy0jZTaRSRKNcnkSQzdpt7exbIN6Y5ooSFGpwnJddnd3Me1M7vb8C4/RnCqQRBr7+/nG2joAACAASURBVG1WVlYy35mSHD58mHK5SK/fQQiyTbhpYuo6t27ewHEdNGmgS3BsO5vCqJQoDImikEatimkYPP3d79Jut1lcXCJMEjQh2bh1k+9+9ymOHlkhDGOSJKTbbZPLuQeeNQ+VKoJgTByH6FJimBaD3i6lUhGpS4RK6HX3ae/32Vxfp3Jxg9ylW6w9cJiJf/UbXHE0qiWTRrXOn3/rCcaJYm52mm994xGWF5b41X/8q3z0ox/hlz7/C+xt7/Hv/72fplguknMLvPLyazhWysbN2xw7cZLQT7Cuf4Gcf4W2e5I4hXq9wd5+B13XyRXyfPep5xgM+vR7baZn50mSlBvrG7RbbWzLIghDOvt92t0WOzubzMxOceXqGjmvxBuvv87C4gq6Bt32LoaVFTSmkSW1dtodFhfnCfwxlUqFoe/j2RbbW9tI06NYKtHr9/jEJz/G1OQknXaHwXCIaRjMzM4ihODQoUN85zvf4dSZk9imxcU3L6JpknyhyONPPsoDD55jNOoDMeVSgWq1yIMfOYfUEoKdKzxz2+KnP3sapz5DkmgEoxG1SpFur43jatSeXEcOA8T8Ko7dZG9vF8fNQtx03eLRR77Dk089wX33nQWRZmmpRpb4+sIL32cw6NOo1YAEVNakEFLL0GBpQhQFDIdDErKQJ98PsB2Hu1tbVKsVhCbRdUkcZ4D7wXCIbTkMR2Psg8IYFOIApYOCIAy4dXOD+dlZUnwsW0fTIQh9dEOgIfD9MPOMxhlvN44TTENDCJ2UrODt93po0sDQJaaR2UhM283wO0IjiiOkLrNEYtNEoDBNiaEbWVFOTN7JoZGl8ko0/NGYfN7GHw8YDQaUiwU6nT00kaJLyc72bWxLp9NuUyhV8A5wNAp48qmnWFpawg980jjMgt2CCGnoGJaBIPuOSRPFeOzzB3/w+5w8eRpUjCYhDANsyyUIIkwLUiFRwsS1XCzdRhCSJGA6eRQaiYrRDYlIbVwvh1IammYhpU2G8cm+915/4w3m5uYOUDtZsazr+kFxH+NYGc5MN3T22/t4rotQCRPNJkdWD1OrVdENyf7uLgiF47r0ByPiJMFxHSbqDXQD9lp7WKaDZZkEfohpWgxHQzzPpVKtZBN3BYbUESKl1qgRxeqgcE/w/RGFQh6l4MbGBvl8jkIhl3n8TSsjAKQxtuXg+wHFUjlrKuqSvd0Wtu0yHA2RMvPWounousb01Cyj0ZByOcfyoSX8MKBQzNPe36dSKmI6Dr1elkLvum7WgCkV0L7zAvqhWZqTE1RrNTY3N9nZ2cGxbQxdJ4yizOudJJjjgEHRQdo21kHS/mOPPMOZM/dz6fIlTi1MMxEkDP7+z1Ct1rAdm7Nnz/Ir/+BXGI8H2J7NzY1bNBtTFAsVhNARF0yCIGR8ZI+Z+XnsXJF7yaPvtpf5/2O9V/H6rhJJ7eDxKsKSMf/Tr/033Ll+iU/cf4raK/8RXX2HxuwhLCvHhVe+j+u6OI6L57lcvHiRQqFIpdokGMf0OgPm5pbo9ofs7+9huy61ep1rV6+SxAHt1k0kEbaegkoII9jb71OoTLO502Gi2eT27VtU6nX6vS7PPfssszOzWKaJZZmsra3RnChz5OgST37vRfrdMf3WgL292ywuNEjDAMu0M9uM1IAEXZdZEKRSWLaBaTlolslw0MtyUHSTTi+hVq+RJBGCgCTqo6UBApUVwVEEZKnlqcp8wXEcY1kWCkUYxUilGPT6jMdjBkGM6RWxvTqVeoOVo0tsbrVACyiVy8RxTLlUIZfLcfvOHUqVBhP1GoPWFo4RIFVImoSYlgGpIE4MbtzpMLVwgig1kLqGlBpXLl/GcR3anS6VUpX+oI0K77I4USOf13AMiCI/m6j6IWGY2SukDpaTef5TlZ0EqVLYtk2aKuI4Jo4TlDJIwoi9/TFvXrrLyvEawTCHN6rxW9//Xc599CGqEx6jqIXUSjz0sc9iWJKJZoEbVy+yceMGH//ox9BMFyUthNDQRGb/+6DrHefu2wZvf3nXe1kN32398PPeb72zfvnh532wtOF3X0pln8X3kjL/rShe3+55vbfuFYo/jkT4fZO1fsSb+173v98J8mNd2GMYj8esXbrO0488TOv2BT47yMOhBjJXRuoOutTQSBkOx3ieSxSFWUKjJvAsC91yyOdcep0Wbi6PblkUCjn63Q4aKULENJs1HNej2WzSbDYJwpB8Po+UBvl8nna7Qz5fQKUwOTFFr9/DdT1mZqdZv7HGsaOHUaSMx6NMChqEBxtFh3ang+u5mIZOEkeZ7A5BHKe4rodpW5i2iW1axMY+cRxjJzWuXV1j4+YWC4uHGA6HaFJiGBbLK0dYOrSI4zpII0vTzHku+bzJ0aOr3Ny4ycTkJIViIZPkBf4BmzAFIbh65RrPv/ACJ0+eRDcM+v0hAsloPGZubo47t+9w/sJ55udmmZycwLJ18p6HaRpYps03v/5Njh47lgWvJDGmaTIajnAtC9fLEQZ+Nl2IQorlElHso+I0m5ToGo5XxHM9HMdFCEGcRNimTprEuDkLTZeUK1WazSamrmPZJmE4JlUJju0gZSYXNQyT4XCIaZnMzk3zwAP3s75+hV63x3AwoDkxye5eiyDy0XSNcqVOFGpYto3QU4Q0yOWKWIZD4I+pLb1JLG4S9CapVCq4bvaeFQtVdEOntb+HYcgsvCbO0u8Cf8Tk5ARRHKMQ2Jak1+2jUkjTJMMUBWNcN8/GzVucOHWKyekZTMfFMCRCZrIrz7GIwxGvv/EGRw4vY1kGw/6QfK6I1AyGowHWAU9z2O1jyyxtMIoUmmaiEnj1+xew1+8ye3UT49RhfudojqN//+f5R//oH7M0X2N+cYFCZZpiYYI//9M/pjkzyfKhZb7yx1+ivb/D537q0+zub/PSC09Ta8yxudXm85//PL/48z9LzsnR7Yy4fv0Gp4zv41/+KrvOKWyvkHXcGw1s2+LO5m0ajQk8p0gcjVlZXWIwDAn8AA3B2tVrLMwv8uwLL7K0NEMYjcnlikhhoUsbEFRKOQaDIW+8eh7iiLEfMR4McB0Xw3SwnCx8BSHo97rkC0XarT2efvq7fPqz/x5PPvE4p8+cwrQM/vQrf8r87DyrR1epVavcvHUr+3xZFvefO4cik7PqMpMV1hsNlpYPUa81WF1dJU0SBsMhuXyecrWcpZy2LnHm536NON5FeHWSMMKWks3N29QnJ9i5u8bs+R4qTYlnm+y19qmUy6SJQuqK0A84efI41WqeQrGKJhVjf5gl1grJ7OQUF86/zNR0Eyk1wihCaBLHsRkNB5Aqbm3cxHUd3HwOwzDwg5DRcEy5Us7CfeIYJVTG9vWzz38cxXzxi1/GNE3q9TpCg0QlhGGIaeqUiwU8x8a2Te7e3aFQLGWbD90EJUkFaNJAagZ3bt/mD3//D7j/7FlMSwepI/UMSeM6LkmqiKMQTVNYtk2qBOPR6CAN1iQ+8J8hNRxTYzzuo5KUJAoJgj66lATjIa5tkMTBW9dpTQiiIMoKIVLiyEdFISoNIY3I53IMB8MsGVdqaFI/4AWPyefyqCRAkyZpqoHM/En+eIht26AESqV4OZdmvY5haoThiDD0UQpybp4oTRkNhti2hVIaupPD0HSiWCFNPZMfCx1SDanrJGlMpNZJaSMoo2kHkmHDYG52ltF4jClNHv7zh1k9sprxUeOMWSsMM+PhhgGFvEOShKRRnKXFazqD0RD3gEmepIooSgijGA2N/b0WzWaNOBlTq9VAGeiGwWgUcvHKFRrNJm4uB0JiWQ6Oa5NEMZqWkqgYhY5E4Ac+nufi+2Msy+LP/uybnD13H6PRCNMwGI99wuCewkTQ7XWxLesggEuyu7tLnPg4djaV7+z36HWHByxwg6mpaRzPZjwekS8UMR0b28nCtaI4xbIdUpUFN9m2RWIZpN+9QDRZRjsoUrINnsmg30fqWhZOdcC/Noc+SIneKAPQ7w+4uXGLer3Ghx44y9QoIFEJdz/xAP/wP/8v+I9/4ZewHZc4TcgXiyB0qtUGUstwSkkawvk8AsGLwdN86IEPIwz9h/ZH6sYmdPqIcuH99zh/DeuDTF7Dg4A2XSme/NbDbF27ipkKlko/jTeewFsxuHLlBrbr4Ptjjhw5QhgG7OzssLp6NAvNDCP+4rHHKBSKIAWNqQbt7T1GYx8v7yJUTMEzGXe3SMM+UmV7siDRmZw7hLTKzCysoJKERq3C1t0tJptV2u0O23d3OHXqFDu7+3T7AzRDcPvWXcIIojBgtpnn1MkFNDVGkqWHa5ZF5Efk8x5xEqPSDOkkhCIKU+7cHfHGmxtMTc1huDlGozTzMpKiixhDxMRRjzSJCYMQUJhmxsxOlTrAmYHv+5kcNxyjSZNQOfiJhzSr5PKTdPohbq6E41rUarN4OZMoVujyQNEiNUxL5/btDUQywlR9eu1NPM/KfPaahhQ6Uvcw8xMUG/MUSiX2dnaoVSskScrkxBSbWzt857FHWbu+znTVoGhqWF5KHMboMrPGoRnZddDQMAydJFb4QZgplfwxnuPR6/WwbecthZhCwzYhUjoROtM1lyu7VzjqfJi6X+CRu1/jpz73SSwp+NM/+RYffeiT/It/+b9jGz0+cW6VG1evce3aVT7+mZ8kQYM0RqqI92Si/oglhCB9Q0ftau+QDb/v8z7Ave93/LeGaO9WfKsfLqizO3784lXwo9+Xv7XFK/wwDuft692mse+1/rqL1x+3+6ESRafX4+7NLfZu32Bx0uTMRoy5Okt7FJErVOAAP5H5iRS+79Prd7FsC+IUdIMkDhEqwww4uTyWpZNGIfutbWzLYGf3LoViBcu26LQ75HJ5BoMhUkoGgwHt/TalYpnxKMAwbHRd4Hguuq6xtLSAbRlcvPgmi4uLDIYj8vmMx6lLg7vbd9F1iWVZjEcD9nZ3eeP1N6jVGwRRjOM5CKnR3e8xZBPXdZB+mU63h2nlyXkeGxsbVCoVWnv75PMFbNug023jeC7+eIhp6ETxCAFMNCcxD7qRg+EA08iwCLpusLGxQbVa4+SZU2gy22BJafLlL/0pW1tbrB5dxXVdjhw5TKVRZ2P9OsVSjjgOkbrBcDDk2LHjpIkCTWC72dS3Xq0xHIwYDPqYpolpmdiuTSoUEFPIF7m5sU4YheQLFYLxGE1mhaRSKe1WVhj2e30q1SYCgySGOIwRMiVOQkrFIr1e/y2ZoxAcpFT6lCtFXNemXGwwOZEhcFIVEisf181jmAadzpBCoc5w2EM3FEKTCAxAo9W6i+asI3Wdkn2GMAxptzsYhsG3vvUYKyvLmJZkPB7ieTkMI+vAeq7NzZsbSF0njlM8z2a/tU+91kAI6PU7B0W/i5vz0KSOblokKWhaQhAG7LdbzM/O4FoSL1+gWMqj0hTDMOl2B+zttsgVcriORWtnBx3Ji8++wHAc8sKLr5Cmkr1L6yzsDMj7EeI3/2u+ZPY49sA5Lpx/heFwTMEcc/xDHyYSHlI4fPzsYfR8nlI+x/rVNT7+sYc4fHSZL3zlj/n8L/48s/PH+A//g8/zz3/7f6WYl1x74yqrkzrlN34DJ9jkZjLLhdevYts25VI5m3JYJjMzU+y1Olx8/Sqt3U1ee+MCx0/eh2vbBH7A3PQMjzz6KK39NqdOH6ZYKuK6JfZbfaIo4fkXnuf+00fJFYpYpoGKIoQ0een55zi0tMydrW2mpmcIw4A4Drm5cYN6cxKJYv36DRqTcywvHcK0Dcb+iOmpKTwnx87ONo7jsLm5maU8drtUazUeffTbTE9Ocu3qVdI0oVQuM7+wAmhIzeTK5TXGw5CZ6TmEpWF5FYa3XuF3v3aBpZVpZldPE49H9HZ3ME0Dt1gkDrvUX26jNI1kPsCyfVBFdCHRRIIARsMBtVoRNDtLRDclw9EIzyugA8vLhzLeqSGJ0wQvlyOOQvzxCNuwQEGtVqPvj7BtF8MwkdoBJl7jwHMKge+jGwZpkhCFMW+88SaD/pCjR48iNUGcxlkjQKX44xGlYoF+r8sjDz+J1EwqlTpbWy0uvPIG07PZdUUpaO3u8ZlPfZK85yJ0SNFIU4EuJUJlntEoGmPoGr3uANfLI1RWTHe7XXTDQBomCsWg28JzrYMGB4wGHVIVIkRCr9tCEQIRo1GGHiuXSoyGQyBFSojDgDjycR2Lfr+P7Xj0hxneCgFhFFGvNxBCYBqCb3/7OwRRjO1YGJaBbQriKFNBaFKjUinSbncoFD2CMCvSwjDG0E0uXb7JzNQEqIiYmFgKtBDQNDQjc3ZJzSQJQeghmpbiR5dAjNG1iQzXo7K8+9FohO04SHRu3FhnYWEeTfxl2GKssiAVQwqkpthvbZMkZJJGTeA4DkmaEITZNDVV0Nnv8md/9md8+MEH2dndIk78TIUSa4RhRBAqvvfMs5QrJRKl2Gt1MS2HNA1pt9q4roUmJYN+pqQpFPIEYcaVHY98zt3/AKZpHmzyAwr54oEiSCMMg0xeLgU3blynmG/QbNYZ+13G/hBNmFy6uEYhnwdgv91nOPbJlzw810EzMoTRcDTGsS0Mw3rrnA6C8C9VXq+vYZ5aQkQxSZLi2C75XIFczsumwHH0VmPUGIzQhEbXM9jd3aVQKLK0PEM+75AkKfpmC8O2cf+Tn+f+Bx4ATSJ07WAqb6JLE03TEZrADwYMBh3khQpCaHQXtjl0eBk/9tF+QDac/Or/hnr6ZeTPfPp99zh/HeuDFK+aqWXqDT/kxaeeYmvtOodm5jni/yKVVYdES7EdhyTxOXRomVarRa/Xo9/vMz09zc2bG5TLeaqVEp1um1K1SKgCNB96gz6FUgGV+gy6e0xUXdJ4TMGz6HR7RBj0BiG1icWMXSo1WjtbtDsduvt7HF4+jGU72E7G4Z2ZnePpp55jv9VjOPZZPtRkcdbFtXQ8BwJ/gNRthkEmHx6NB1lwqDxQfsUhtlXi9Yt3gRyzc4totoUhLVKV4roO/qiPin0sPUTXdTRNYpg6SRoRxwHiwM+8v79PPp8nDEMcXRHGkrvtiPU7fV55bY0zpx/k2todjh49SZJEbG8PsCydvdZ+puoYjTAMSbGYY2qqjKbGBIMtHDPNZNxSZmoTP6ZQarDfj3GKDZCC62tXEYBl2ty5c5ft3T3qtTK379xloqgxUS4wTrro4sBvqkTWMBxH3N7aoFKpYZkeUhqEUYgSKWmUYts2u7u79Ho9crkciBiBD4bDOEypFySVsmSgupywP8l8cQJzIUYEsNvucGhx+f9j782C5UjPM73nX3LP2qvOvuFgX3tDk1Q3ySa1UttI4oxnIhwa6WYuHOG7ifCFwg5bVthh+cbhsCyPLGlszmhEiRIlthikyCbZZO8r0ECj0WgAjX05+zl1as89fZHVrW4QzUWeCTs0kxEngFOVlVUoVGX+3/e97/Pi2Dm//LMPs3H9LZr1Kc69/TahsKlNTOO7NqbMi0L2x9yEEER/aZHdVO/nvP5/Vrzm2Yduh2Jqet865scpXoX8gRTl/yiK1zzPfxs+fBK7tzi9V977wX3vJRHf7w39YVrz97YP5sh+UEJ87yT4R0Ff94dbXD51h7sXzrNx9wXcksfJCyN0O8A8dghlmAXUhgJEQJ5jGSYlv4RWipgUQyuCMEKaNgiFY3nEY6mEa7p0egNaCwskYUSlUmV9bZ03z55jbnYe27LYbm8zPTuF0oLd7R3Kro90HaJgyOb6Gl6pgjJcquX6+xKTKCryxTbXt/n2d77HkWMnSPMCVrS6ukK/G7CwtIRlW4XEJYOgv4NleGythoisQnNyilbLY2trjbXVFRq1JhPNKbIkZ3trhWqpzM7WFlIWVF8hihiN/mDAjWtXWV5c5IXnXsAwDKrlOmurG7zw/Esc3H+Yy++ep9VoksU5pmGxf/9eTj76GFtbOzz1jW+ytLjAKBhy5doVDhzYz3CY4DgllDbJJWjTJk9T0nCElCANDYbG1fDcCy+ztdWlXm1iGQZxNEQqQBS5fkkcFgCSJCEYDkjjCG1oTMvCr9WJoxStDfI8JU4itre3qVUbRTbv+HN0Z+UOpXIJUNiuR6/XJYwK/6hpO+PpCox6A3yvQX+wS73mI4UoMs66PRynQntnkzgOaU1NE8l3AUj7s6TREN/3EFKztGcOw8zJk4z2doBXriB0hlYGQRRTrpRxHBttSKJQUK769AYdbNvBdRq4Tp1BuItjWYTBEKUgCPo4psWg08azDJI4Qtsullui3xvQ6/TY3FinVi/jVxw27t7G9coo08F0HBzP4q2zb/FPPv95yldvM3X1Du5/8U9xfuc32fVMUDbHTxzni//uD/gffudfUpvez//yv/4RiwsFVv+/+53/iQcefIBms85f/Pmf8tb5s/zCr/w809MzmI5L3N+BsMfxBY/tp/5rpnvfQq09C7Vl7H0/ieNUOHD4IK2JKZ597mVs2+X1Uy9jmJJWrcHUVI3J6WkeeeQTrNy5S32iws5uF79Uw7RMtjZvc+jQUUbDgH5vQKPR4NVXX+bw4f2EScbZM+dQyuLtS+9y/IFjY7CPyWDQplr1C9mr0Jw+9TpL83vodAN6gxDPc6k0K4hc8r1vf5c7t+5QrVfHxVVGyXd5+/w5picneevNN/m5X/oc3d0uE60prly5xsc/8RMQp7xx+hTT0w1akw2W9y8jlKBWsTl37k18+jy6r8xqIChPHiHshIh0QJSPCOIKti1ovLpOLiW91psEo5v4zkMkeUpOMRUVuqAYam0DkiCIcF1vLFPLC2iPFGQCPMehu7uLVEXhaFga27VpdzrUykXUj1SSjBSRp5BmCJmTJvCFL/wJx44eQxsarTUPnDjM4YN76PfbaFMVEK28mJJatkWuDDBM2ltd1jdWWF6eY9TvMuh2mV9cLDKzyanVK1iOSZJnZEjCUYxSEiEyUhLSLEIZmv4wxPPLQE6WRkUxnhTTvO31LRzLxVI521vbKJEBEbZlMAqCItpJCbI0Q6DwnQLa1u22sSxFGAeF5FYm4ymKxnZc0jSk4jmEox7hqEcwGgIZUTAkyQWNZoM0DahVfUwpCJMUw7AJo7jw62qN5TgkaY5tl5DKwnY8BqMh7Y01XE8TR4rXXn2T5aVppOmjLUG/s41jFdJhYUCeSYgTUu4yGPTw1CJBEqJUUaCa41zbjJi9+5fJRV7YPCwTbWq+9bVvs295L0pBluX4pSqmWVBzhRDEUYREYJmCMAgJg5B6rcYjJx9CG4Jqo0rJq/PmmfPUahXibIRleZw+fYonPvUpqmUfS+fYRhF1Z9sFUI1c4PsW5DHkKetrG1RKFQQwGMVkeUQwGmBoF8s02NldwzAU5II4TrBMAylzhMgRMseybDy3QhrntNsdzpw9x+zcHK+//grvXHiL40eOkWtJnsRsrd6h5DpIpdlYX8d2LKIoLLyzuSKOM/JhQH5zDcqlwu5EVsg/pShiqSyXrY0tkizCj3My0yCsFw0217XIUTiejzYM9Btvw74F+o8fxLYsLNNBK0W/v0OaDdnebuP5LmmakmcC03BRb/qkSchg7zVmFmbIhI3kw4vd7KvPAPy9itcfxi65d9/3i3oB9xJRBWN2joD3fHta2RAE3HjnNAy3efPMK/zjX/5nVF5+lGxCMsgFtUaJqusyGA2Ym5ulP+gTxwlXr1wrYpG0xZWr15mfX6RSrhCHxf/7bn+HialJpFBYRoLMdsZqigCvXKI6sYjjzxCmooA6Sk1vGGKZFru9IdowqTcaSCW5dvUKX//a1/FKBp957FG2N9ZpNupsrq0zWTcwbRupNVJmSBKkFkhRgOuSNCIfMxLSZMTCZI3ZGZ8wi/Ar0zh+BdtyiMM2WvUZ9XfJU8jzIlrMGEeSpSmQxIRhQq1SI08Fp9+5SxgJclXle8+/Q4xJezDi+p077F1eotlqEgQ5ysi5dfcuB5b2c/nyRfbuWyTPQkSeEG7fprtzBbIuJIVaw1IpQpqEokYoGzjlJqYlIdO0WlXOnnmLAweOUq2VefPsq1RLBnMtyWTdwS2bIHTh+5YFyVZpm7urbe7c7TI/PwcyRMoYLQ00BpnKECqjvZ1z4/oO+w4uoLKUIJZFU9oTSJGg4gEb8ZDOhqaZThG0B1zyLnPyYx8nTDL6gaDTT7DKHp3Vd5HJkHSwDlnIzPJhhvho8ePLhoUQJK8VtcSPk/P6fVRgcX+J7w/yz37fPvLD9zP+XhWF6r0EYb7vue49/t/dlxffTwkFqq+AC37wNfyDL17fm7z+oAr+3jfzfsXtRxW/H7Xdb5/7+WM/6HX9YY//4GYKj5tXbvHcd7+J0gmZSPnY5QBdKREszhcSnyQmjaO/CwhPi851mmYFSVJIlNQkUYKSimG3jWmZGNpg5fYKjYkWlueh0dy6dYt+f8BwOMBxLDIMtts7lColLMvCcR20qYtsRAR+yUcpXdDahERryWg0pFKpkKQplj3i4ME9DAd9HNPFUDZ3b6/z+uunefxTnwQpWF9fJRgOKFV8NB6GLIEQOI6NaSo8z6dSrlBvNBiNBiglcT2XdqdHvdnCsh2kUqhxSJ/Wmmqthhh3Lmv1GkEYYDsWJx99BKEgSSIc20cpg2effZapqQmQCbZtsLxnAaUUlm0zMz1DZ7eD47psbGxw6tTrRaSDIVlfW6FaKRcdKCS97gAlBDdv3iYIIw4cXCYMC0leEWEkiJOkkHqNv7Ray2LavbuN63oIYTDojzBNmygI+b/++F/z2Z/5maJrG6dIbeB5Jcqlggqc5RGbG2tUy01cu4YUMdubm5RcDyUEOTmGW8a0NcPhgGAwJM9jbBOSxMYyzYLMnCak+gpZmpB0J0nznFxI0ly+L4V++8I7GJZLo9UkSiJG3Q6ObSLynHA0IhgNUeSsr21SqTaLrE0NcR6gZE4Sxzi2y3AU4ftloiQqJi9S0u0PKFdqhFFQtPRymJ9fIssUZJowjnBcryDspil5lnFkC2Nr4gAAIABJREFUaor89bdJleSrn3uQxf/81/it3/qv6A9CPvuzn0MoxScf+wSmbdNozvCLv/SP8Ma0UiUkxx5e4MLbZ/jP/vGvcu7cWYI44tGPfZySa7Bz8zTHel/CWX0KuzrJ2ZsRb21oDj78aSxtMOyNUKZkY32DU6+f4pOfepxatUKtWiXPYGNzk1s3b9He3eXggYPsbPd58sknWVu7xRNPfJJ9+/YBKZVqmTCMcByHPUt7aLUmOH36FMvLy8zOzrOxsc3e5f2g4MWXXmJ5316UKuJdTK2YmZnFMm2eeeY57q7cZXZuhkajzs7mFvv37uXFF17gic98hjDoEQRDDMNkc2ubudl5Nje3aE42cR2b9s42tWqNSq3G2vpt5hamubtyh2qtxpNPfpXnn3+RQweWWFhcwBEJpozpYLNw+AFGgz5B0EPqnCjRzM8dx/rO2aIYmV7HNG1s5yEGgwGO46CUGpODJUJmCJEVUkdZZE9vrG9gWsUELIkTet0evuvRH3YLKa4Q5BlUKw3C0QBJASWSSiO1gTIs4jgmjmN+4rGfIE1TlJZILRGy8IHajs8oiAtvpgApxufssdxy79IyC4szaENhWTbz83MIQ42fOyNJIqQUjEZD4jRAKYWSkjAKx1PfDG2YeK43ptHaGMImiWIMLQlGPSwT0rhPe2sDSPH9whO6sbXBRKNFEAyKglcLICWORwghMbXLaFhA5tIkoGSVydPCh57nCUJnhKNCCp0Dtm2RZUVshG1ZGKbB1PQ0pu2R5Aolc6SQGLqYUGdZglTvga6Ka2IhrTap1WpoQ+E4LhOt1jgf1yIKB9iOTRgk2I7L9vYmtmcjMIiy2xhaYlFH2aUC+iJBZCmKhCDO3n+uNM3eJ94fOnigsEtkKXGcjvN+FSurq7iui2UVZNXBYEQUxdRrDaRWdLq7aLOAZCVxwsTERPH6bYtyyefIkUNYjoU2DUZRiDJM0jhH66LhJ6Wk3x9gWSZJnBCEIUoqtrd3CrklGXEc0WpOEIZDlAYli4mVlIrhsLj+dbt9BIJOp0uv18d1PdbW1zjxwAlmZ6cplX2OHj2MlIIsT8nShBzwS2W2t9sIWfho40iglI0UOVLnSAT5qbfJphtorRn0hwz6Q2zHZhQEDIcDwiBka3uTadsn1pIrwx5SyuK9RZDEMVEQYJ27Qvbf/5foyRa3b9/hd3/3d3n00UcoV3zSNKNa80nSiDgJx3A/4IzH1tYmD/yLg2S5ZNyp+NC65f9N8frjbn8nbbzPffe5LY41jpK89J2vkQ23MVXI8e7nSZwEo6UQhkJr6HZ7lKtNtrZ3MC2b5kSLucVZSmWPm9dvkucpy8t7MEyzAEomA5b2L5Eh2NzYJI4GuFZKZ7eLa1mFRSO3UMpH2z5BGNIf9JiarNPrbHPgwCEqlcq4MRMzNzfHtWtXmZ+fp+SUCSPJ1Wu3sKTi0P6JAoioNXEckyY5lq0ZhUOkLNR346kVkJPEhfDT9qrkwiXNY0b9LqP+Fjof4Ts2g0EfOVY0SCEIw4A8y1BC4ldKDAdDstTiwoUdrt9uF2CmUpUHH3qEn/mpz3Li2GHyLC2sYKaJaRU+a60gzSSO46FVSBDcIRpukkQDFBpD26AycpEQZTam08SrTjEIEpRpkYUxpqlp1CcRQrK1uc5b58/gacGBvRWU7KCVJhgITFMCxTVFGRptaIb9Lq1WhTwNMCQMej3IchzHQogUU1vMzrYIw22EKJqccRTjeS5RGKJljjQsnn37dQ42TjCV7qOaTRBPD5BkbG7d4syZ1/nZn/s8Xs3npZe+y+E9Ta6/e5nl448h/SkM4r/X5/rvitfkx378h47Fj17X3M9X+8Gi9Mfxsf/w4vU+z3nPlPoffPH6XlTOveCke7sI7/157xv3XmH5Xmj1Byel9xai9+tYfNjc/P25se8d54fRiz+4ZVlGbzvk7fOnsQzNr//z38TwHfY8e5nUtjGOHybNsjGdLUEIhZSSW7duYhomo9GIdruDZdlEUczOdhvLtlFpEfY+GAZFZMxgQKlawtIW5UoFz/PwSz61ep0v/cVXuPLuuzz66CNkWVosDno9ujtbVKoV0jQjjhOCIBjLjYsQ+AIYlNHv7lIp11BS43kOGxt3WVyaZd/BI5i2hVCQZyn1epXBcMTm9g5T09NIJclziKKkmKb2epiGQZKOpxFZTpzkGNpEyGKhkmc5SRKjDY2hFUmSMxgM3y+SMjLWNtao1qrjSYmBUpooCqnWKpi2pL2zjWUW8ju/XMYwzAKAYGjCaMSxo0dIswwElMs+hpRkaUav2yeOYrRhUPJLPPjAcYJghJBgOx5CSOIkKRZEaUKeF/EdSmtGoxFpllIqlbh7Z41yuYoEVlbu8tDDD1Cp1nFshxdffJEDBw4yGo0Qmcmf/MkXWFyaodVqcvniNVbubmKoECXl+OIl8VyPVBiFfC8YUi3XGPQ7WDZcunSbr/zVl3Edm3qzQWZcRQCN0sNYjovUJoblIvJCtlcu+3heCWUYRElI2bXpdjpEUVgAt3oDrrx7iT179mFaLghBJlKkEpBlGMpgc3MLzy+Rw9j3apLGCWtrGyRpTpYVJ+mnvv4UeSZ5/bU3SDOoNWoYSrO5sYGtDXrPnsI/f4MrJ5e4+xu/wOO/+EuQwcF9Bzn5iceQRiHdvnnzNhffucSePYd4+cUX+e3/9r+h1WzQ6XRoTkwy4bmY66d5UJ/hkLhA9s5fEZz+15jrr6Iby8STJxHlWWy3wuTUFNtbO1y9co3r164zMdGiVPI5evQog36POAzZ3t5Ga4O5uTmiKCIIQ27fus366jYHD+ylVi8xNTVBGMa4XkE5dFybU6de5+7duywv72Mw6LGwsIBt29y4fpPvfOdpDC1Y3LOHuYX592WukmKS+cU//XN+/ud/nlKlzNLSImmcsrW1ThKHlMo+l65coeRbNBpNtBrDVoIRDzx4glKlRJ4mvHH6FMdPnCCKE1AZlmMxMz3NYDBgYX6Rne0dDh85iOu7DHc3GK5d4spOzPzRE7S3epiWRRAGpKliauYo1ndeJxMZvYlVpNIY+gSO65AkxTRgc2MTx3EgT9jd3SUKY5Q0uH7tJt/85lPcvn2bo8eOIqWgWq6QpWkhL9YaxynIvEobRMFgLDNVhbxRmSRphshTHMchz9OxvL6IRXkvnifPBYZpFavbLC/yBMMAKTUZIGWOYUh2O7vYto1UijQfN5yMolGWJjG2bWFYxe/v0czfA1xkWTExNE1rDAVpo1ROe2eH9dUNuu0OEo3jmFhj32sUDpECZJ4jiAmCLlJkKJEyCrvYlsmw36Pk24yGO0TRDkk4IM9iwijG8yqMRjGWqYiiqAA+6WI6l2fjyTSANECqIl4qDkmTDIFAa8lw0Mcw7Q9dw+I4LrzDY4gSpCRJxJN//VXu3L7LwsIMpmmitE2n3aZc8YiSGCVtcrmKkDmrN3v4lWniOEZLQXd3i932DpVaa0w9FoXUuehdFdnk4/daSoXnlkiSuIAXURCLpRw316IY0yrAfFtbW1QqVSy7IDnHUVhkiDtO0eyQgizPiZMEr1QmzcGzHZIkQ0nNl7/8ZRaXFrEtG8MwcF0PKQW3b9/iu08/z759e5iamiQMIyzHYre7je9WxyCbqPj3aQvbLq67jUaLOE4Io5huZ5fNrU2azQatieaYPJ6gVVFYIiSO4yOVolp2SZMcMHjj9BnW1laoVkvoeg2eeY10ulk0M0xzDKEasr2zw9bWFq1mk6npKaxhSGpo2rbF9es3aTVbBEHEk08+yf7pGdxba+T/8tcR2mF7e4vZ2SkOHzmAYZj0en3qjSpZluE4zvtJBre981yvnWducRGpDPK8iJ350Nrl31Pxer+11v3WUAWAKf++odP9tmCUQzSgfecyd6+/w8kTj9M89UtsW9cwfAfTLqwMp0+fpdWaLoourbEsA6kESRIxPTVFqVSmVCqxvbONbTtow8SyXcIwQQvNnsUZlOhjGSaWqUnznO12SJY7ZGhaExMoJTBNQaNeYTiMuX7tOnEUEUURL7zwwlg2bnLj6jXQ0B9u0GoKJps+hqFRUmBbRR620qo4T47Pd6ZpE0cpkGGaNkhJrl0cb4IoCdECZDogT/ukSYxlW8WE2HMJo/B9+1M0ygjSGCEThv0efqnOMFHcvrvBL//y5/nWt76Fa1vYpkEYh1SqdS5dvMzK6hq1Wp3NzVvUm9OMRhlJGBJ0t/DsfkFZdyrESYrl2oyiBGlMUmstIg2fnd0O9WaDi2+d5+KlS4yGEa++/DKdzjqNqsG++RKVUgmZFxGOiJAkywu7TVao1gxDsTQ/T5oESJEhhcAcswnCMEDk4NgmYdijUnFAmKRpXBStWqGVQZwKtDKYmWqyIdbJMpP61ixnnz3H+dHLHDy4gOOW8cqztIcD3nj9ZQ7MeGyu36EdKOaWjuDYxn0Lth9URwA/cvF6r6L0+2qLj/Kn3ud576tOvY8U+KOO9aPUOD/49g/f9w++eP0oz+uPKj95z2fz95mOwg//D/uoY9yPVvzBY75z9iI7W9eYmZ4mTjyOPvgw1p9+DTwHDu0lJyuyBA3j/XG76ziFDNUwef655yHPWV9f5/nnn+f40aOUfZcYQW8Q8NTXv46hBHPzU9y+fZdqrYZUivZuB98vsbxnmenJFvVaEShv2g6m7XDprTNMTc8QRAWBLklimo3mOFuryJrNc2jvDgBNHBaZeV7JJSHGNAuwgGmaOLZNEiU4foXqlCRIOsjMhVzx2qunqdcaZDlobRQnJNMgGAX82Re/yEMPPgQyL0ieFJPfzY01KuUy//qP/28OHzhCrV5BSolpWLiOx/ZWm0q5wvXrN1FKs7y8B9s2uXv3DlOT05DDSy+9xNz8PEprdnZ2yLKYarVCmiYkcUqa5yhRUFZ3trdJk5h/98U/ozUxycLCIn/5pS9x6NARpCoiYwrghl1MHbTizp27mKYFQhKGMaVShSyDZrPB9777Pfq9LgcPLOPYBlGS0W7vsLa6imPbVMplsjTmgRPHyPMM27KZmpwiSUImJipUKmW0aXPtxi0cz8c0TCBDS02WglA5ne4O9fokC/PT7N27hyhOEfYNsjQhHe0lQxb0YCHRStDr7iBERsmv0O10sSxNe2cbr1QiihP8UgW/VKZeb2GML/JBGCJyAZkgTTIkRUyMYZp0e7ukmUTmRVTKrZu3WJzfgxASJRS727vstnd45OTDzMxOI1UhWS9lAvfuDo7l8PY/fwz5xMd4+OTjfOELf8I7b18gSQXT84v8qz/6Qz72iU8wPT2NY/v8wf/xR3z205/kEydP8r//3u8hkj7T7e+ysP7nGOEG7e6I0J7FbOzhtesRcw//AtKfJopTtCgUBo7rs7XT5tDhgxw7dpjXXnuNA/v3o6Tk+eefY3p6mlOn3uDkoydJk4Tnnn+efXv3cvv2XfbsWWB1dYWTj36cza1tTMdk5c4qruMiJExOtGg2G9y4cY39Bw7xzDPfY8/yAvML87zyyqvUKw6TU1OUKhWEUgx6XaIwJI5z9u7bT6VcxXUd/LLP1vom8zPTrK7dQUrN4uIeNlZuY2iTGzdvc/z4cXJSNrZWmJqaYbe9jWUZXL50ifZuj6mZafxSCak0Fy9e4uzZN9Ha5PiDD5DkKVEUYg7uEFbnKU/O41h1XLeG75fJM0WIovr82wglCGZ2UFqjzRPkaYZpmuR5jus6RGFEmqS4buGN73b7fOupb/Mrv/qP2O20aTQaOI4Fecpo0AchUFIiANMwivXyOJ+03x8Uk8OxrzRLE5QSdHsdHLtY3AVjYBJjhcig20ZIG3Iwx1mgQhoFaVamCCFx7cInNRyO2GlvUyqXEIKiSaY1UICCtDbJ0gJsUqyjBUEQFN9xgFwQJR2SOEEpCyU033v6WRYXFumPRvglpyA5j/qUPZfRoEMY9vFckzAYYhma1bVdtJIoFRMMdzCNnCQKyPOUXq/HcFBMeBUCx1YEwahQVSQxWhV/SgGj4RDLNImiGCklwWhAmqRYlkWv28G2TRBFBqyU8v3zl+M4aG0ghUIbGaahOHbkJMtLC4RxMC5fCrqm59uIXJPnioTbZHlO1TuMNgtSej6GwJSrFYQs/Mp/t2gpFjBRMCryeYPR+57PMAzfb/g544iLOClANZBjGjaNehPL8ojTBNdxCINhEfOhTbK0+LdYljmGYg1Jo4g0SYiiQjrebNVpNmv0+iOiOMLzSwWd2Pf5zBNPYJoQxSMs2yGMQrI8xTLdsac2pFSq4Dg+g+GQ3U6Xr3zlb3jwoYeK5k0WMTe/VCyix98FISQiTwsewPtxTkVuc5qmGIbk1u1r2I7D9NRsAfC6dJPRwhTJYITWRcTdxsYmy3uXmZxoFd8Ry8Loj8gti77vU6s1cF2PbrfDpUuXcNa2mPLL9H/tU5hmmXq9zszsBMPhoFgLCU0QDHFdjzCI6HZ6rK6scen8WT73C7+ItmxyoZG5KjyLH9j+Q05e77fol1Iisu8vXvP7LLtknrK7fpMbF8+ytbXBZ/PfYtda59kzz5KkBUDw7p2bzM3Ms7JSXHPDIODu3TsIBBvrm2xvbSKE4MKFtwvoluPy0jMvMTU9wbDX47mnnyLormDIITIXdHbbSO3Q7udUmguQw9b2Np3OLmurhfIsywRZmjIajlhfW6NcKnPykUeI47vMLc6y3R7g2CXmWlNouVtMGfOMMArRUpFlBrbtjGO7Co83uUAbRWMvBcJEMQg07e6APEnZ3byL7wqiMCwSA8brXykFWVYUeI5pkwBplpAkIZVaiZWNmN1Ol5XVNU4++ihTU1N4rguiADYuLCyx095hanqCer1CnAj8Upl41GF79QaW0ceQDrblUqp5dPsxO+2U6vRhwtRgMIrxPY9wOMRxXY4cO0a73eXm1XeQaZdjByeZaNmsrWxSqTSIkgCpYxAa8nFma5IU0LgkxdASJYs4sDQrZLSWZSOkRmmB1II4zlCGSRgERa4xgjSXnLm8gW2YmFpy9sJVTl9/i0OHD3BYPUy4G7P8k9OEowCv4vP2uWscO7CPdy+9iZBgaIua79GY2/sDp40fdduPWrzeb3B2zx4/8PH3O1bxOfjxi9cfR/b/Ea/gQ7/9p+L1h2zvezWy7Pv2/0Eo5/e2v2/x+sOOqVLBu1de5/HHf5JvfuN19h4+jPdnT5LYBhzaU7xexJjuWkyNi6lAimFoZqanuXPnNocPH+LRR08ShEFBeHQ9DMPGMQzmpyeIoiGzC4usrKwAkr/666+wudnm6OEDrK+ssL6yWnh3/DLXrt3g7o3LTM7M4vllNjc3qZRLgGAw6GMYBhsbG0ihKNVd4iQhHEU89+zL7Nl3GL/UICfGdopFZRwmBMOATGhS/zqGF6PDSfJM8NJLr3PhwgWW9+7Fsixs2ySKIkhSgtGImZlZbNNkOOxDVmSQea5Je6dNOIwYDkIMU+A4LnkK3336Gd65cJl9+5a5cf0meZ7j+S55nnLq1BnmZudxHZdKpYo2dOE1tBws2yAIhxiGQZKmpLnAUJLRoEdnt029XqVS8Tly7EHCUcjJR06ytr7FmTPn2HdguYAfmZrBcECv32NqahbLdhiORihtFFNzoRn0O+xZWqLVatDvd8aTBwPTUExNTtCo18mylCjuE8cxnlcGJHkeMxp1KZKJJO1On737D6BNgzSMyNKELMvIckVv0GdiqoVpGCgBhmFy8eIlqlO7xcKwu1Dg9YVEIyBPicMBWuZ0dguwQU5BS/VLFRzXI05Szp49x5Vrt9izPEeah2Rpyne//RzPfe8lHnr4IUSec+PGNUy7KG61crlz+zaj/gCNYrfd5envPQcZaCnY3FxDG7C5tcalixc5KCzkK2+xtW+eS7/5T3jy61/h3/zbL/Grn/9n+F6J73z7W/z6b/wLoiThsU99Em0a5Cl866nvcuPaTU4cPcT69XP86tGAn26eYaLh03GPcW1bsNpNWTxwmLcuvYtCMT09x9NPP8PhA4e4fOESmSh8ztOzs2hDceXqRVzHQxuK82+fp1qtUqs2OHL4KP1Bn9OnT/PEpz+NYVrU6w02Nm5w6NAxgiDj0uVL7DuwRLXcoohTipAqQ2lFo15HoEnSmJu3rjMaDXEdG99STExO4Pg+SIVpWmitGQ4D1lbXaTabfOc732FissVbZ85h2waeZ3P95k1My+HA3mW+8Y1v0u30mZyapDVZI0lDPK9KpexTLhVxRJOTszh+GcOwiwmSUrR32nzu536WVMhikp6FyN4dtq0JqjN7WF3p0+1ETM9MsbPVZWJpAuO5d0gdi6ixgdIGln2iIKBKxWBQSOlHoxGO7SOFHkttFfV6nUazyvziPI5rI0ShplBSIERhdYjikCSJSZIYYViA5Py5t8izlFqtRhJHmKY9jlcoVDVJkuAYJiBJ0oQoHGIqaO+GbG9uUSlVyNKcM2fP0WxNkiYjlDIgLxQgSmlKZR8pi0ZjFIXk7zU8lQ25Ks5l425/no99naYJuUBIiRAWSjlYpottmczONbh67QJnzr7L0tIsZCGKYjoRxn20AklWfD6QvPT8u7iOg+tIDEOQRQlxkLPbDalWm6RxhJARWdrFMFy0VoRRhGM7jIKgkI3qoig1tFGoIWQhtzZNCyEEtl3kdcdJ/v61pMhJLSa2BSApptfdQmvJay+fY2dni0arhlvy0NpCS1hbuYUhHEzHJs5vgRCY4gBKC9Ks8G+ZjluwGvLCj817fIjigolpmKRpQr/fK6JzHBsp1IdiO3Z3d7EdkyAc0el0WF/fZDSMeeqp77KwNE+/16Ver5EjitemFd1uF5EXMWl5kuLZFsNwRLVaYzDoAxlZluJ65UK5kqVoQ+P7Pkpk9Hrb5GSEYYrjuLi+Q54qLLtongSjkByJZZt4fomjR0+gDQMhob27wwvPv8Kjjz7K5uZm0TDo9TFkQY1d29jGMC20UkTDiF5/F8NMKJU8ZqYXaLcHeJ4BowhrbQd3aoIwiuj1BsX5wXGQssjlHA6GeHFKkOd84alvMjk1RblcIY5jHn7kEZa0BbaJ+LXPMAogyxKGwy7VarmQ+tveWCFkkOeMGzGCZ5/6Oh9//DGk5ZKjChnz/x+K1/tMXu9XvAa9LV557jskozYH85+jfuVB9FHFzOwccwt7uXLlCkuL87i2R5JECHJu3rjOgf376fcGlEsldnY28X2fxaWl96XseTii19ti//Isi3M1VL5JOOgy7PcxDZPNdpfKxB4aU/sYDTpMz87iuR6ddptSqcKli5fYt28frYkJ0iyjWq3Sbre5eXWdSxdvsN3p0t7dZM+8j++kWJaB1hIhCoXg9taIKIrIsrgAnRkmSVKoxAb9AWku8CsTuP4Ul6+v8NzT32N2skyr6YEsAGp6LEMubGdpcf5ixCgGrX3iYYbUDqlwWd67h+MPPEC13kBriyhKiJOEICgsbKWKh1/yyGKDlbU1pmerbKxeoOpFiCwGDHJywnjIMJDEoU9qN3D9KjmCzY01RJpQrjfpdLu8+vLLLEzX2b/UpFkV2FYJx4fN9i1A4ZgtpEreV2U49li5IMefGakIw4QkzYrhgzJIkpyM4tyWZwaZyArPOiClJsng1KU2ybBPs1bmnasbHDxygoWDU8T9nFljCTGwCCbarKxf4cEDn+T5559lc3eNiakGzZKDJ2LmTjzxIykv/30Urx+xxw98/P2O9SGr438qXv/DbR9VvMKHPaj3kw5/ENL0wcfcC3TKsuxDx3jv7x8EMd07Rf3gbR+UJ3/UmP6DmxCCb3/7KfbvPU4UxjglwZHjB8n+8EsIzyVcnCumDVlayLpGIyytGXS7WLaF0JDGgtbkBKZt0+116ey08eslSCKMvMhw9Eo1TLuCFJLd3Q6NWp1LF9/mk49/jLLnEsUx7165wqEjR9jtbtOolajXZvDrBmmSEfRTLK1I8iFoRRwbXLhwg8nJBpZdwjIdsjxjc2uNY0cPQBqTRAlhnKPzlN32DsIu8fW/+TIHH5ooOtHDJq+99grHjx/hgQeO8MUv/imHD5/A9V2EKuS5M3MzlEo+2ZjuGaQpGYrRMMW2bGxLUq2atGbnUVqxvr7K/gN7OXXqFTzP5xMff4Red5t6vYbp+ky26mxtbY/jOywMyyJJEtI4IstSsjTF0BajYYASCY5tEMdhMY0xNLMLi2SZLBbBb5zFsDVHHzhcLNQMgzzLMLXCNk3iMS64oCBL0jhCCghHBdhIKY3peqS6OJGGoxCRSwzTQ5gu2nBQEpKgy2jYQRgGllciinbxS1Us00fmgo07t+gMiiDt4SAoJjFRgmOXC1+bLvxlr7/2KntmH0Hlc4hc41iKOBwRhCFxOCJOMwyzAER4fokwiHGdwq+ZZ4UEutmssbiwTJ4VObKj3pDJZpPPfPpxclLSJKZarfLCc8/Rqjc49eopThw7Qn/QISNnYWGRVrNKqeRx/eYt6s1JPvaxn8A1bA5shkQ3V/g3++p8Q/TZNz/J2+9e5Fd+7fN841vf4rNPfJpBd5v5+TL/8//42xxYWuAP/7ff58ald/jph+b4dOU02cV/y1z4Cq6rWVP7CPUCo2jInv1L5MJnYmae2cUppmbmyPOMarmEbRlcefddppt1nn/mGXzH5eqlK1y5fIN2b8CBfYfJ0xzX8ZicnsLxXMgTRoMBSgo2ttZZWl4kS20unr9Ar71Nv7/L4vIeLA137tzE9T2GoyIfMleSVFrcvHGd+alp8izjxMMPU5+YptFssr2+iu86jKKYVCqCwYh6zeed82+yvrHJzMwSM7Mtrt28xf6Dx8gywfmzZ1mYn+bAkcMsHtxHtVVDkaOFwCpVSXJBikGl2uQv//wvOH58L5ahae/0GAxCkjRlemaaUWcbKUsoacLmm5hLx7FnHoLcoLPToVn36fduMQxrlN65RVg1SP07SKVBPkCWBAilGYY7OFad0bDfmAcGAAAgAElEQVSQ2xX5oS4pGbV6BcNgDEYChCJNBWgHITKGvS6+bdPv9XH9MhaKq5ev4PsVQOB5DpapECKjN+ijTXtsp1Cs3L5ceE+VVcjhlcXf/s3fcO7NN3nowQexTIO1ldtMtqqs3N6k0agXi3IpiwZTFpJnKWQZg/6AMIiwLBspzfG0NUWpQnGSfABIhCjyEpWRIyREUYQ2JJ3dTepVD0MIfCtHpkO0TMjyEDWO7grjhDyFQa/P/iNT5ELx4ssXeOfduywsH2Btc5fvvnKd5b2z5PmIi+9cZ6eTY5UUadBHZTm5chCGxrIEw36bTBhk4YgkGJBSkJmVEoyCAKEUpu0iU02vOyCOElzHJctTTEsRhQGGZWHaPhKDJB7i1coFUCjLkQqEFAyDiEbZIc4SUtEvCnfdIiMhHAVYhkWegVQKrR122x2yOCWJIrSpkUqRCU0uwLQdbNuj0x7y7sVLTE1OsL6xRrlaxSuV6XTWaNSn0NrF9xx6nR221zdYXJomDkdUK2XanV0yUVB7fc8bS44VjldmGI4zZUVGEA5xPR/DcoizgN3ubqGWUZIwHCFEShAUMmvb0igJg26fIBwCEqXMglpKSjDaJQpGGJbF6uoGju9jmDaTzQrNZgPDMkEqtGkxGg0RGPz1l5/k6uWrHDt2HG0aOL7HIIjHsDqNNAThqIdtOnBjBdGo8ubZM4zGtp3pmSmEEAwGA3rdHjWhiV2bqQePcvqN01y+fJn9+/aiDYFz8To0a6S/+LN0d0d0Oz2azRabm+vYjiInKIpXwyQKQyyZcPfKRT6b/QbWrRbyRMFUgIR7F5w/qHi9n8Xqxxkw3M8Oluc5ueD7f2SEynN0DoZpE+c5Z7/2NXaHMUetz7Fw/tNcdV7i7NunaDUbOF6Z+lSLIArYWNuk3+8WDZReb0zaDZmcnMAql8lzjW0ZnH/zDZrVCrfuXmOyNYkt4Ma7b5JEXQwMMjIybVBuLOCXFzCNCq+/8SrNZouNjU38cokwCjl+5EFu3VnhzNkzTEy0KJdshv0dqq0Zrl69TLPVoOwplmeaeK6gvwu2pTDshCB0+ebTF2k1G8zNNsjSfpE7bfgYeYYwBOXGPJlqYnllNm9d5/atVY4cmEDrPlpJtPQRMoE8Jk8VCoMojNCmSYbBrdWQp1+4QqU5yRtvvsut22tMT82zcmcFbUj6/S61WoPRKMT1HLShyEWK6UDdb3H36mXMfAviDlLbWDYk8ZB2O6PcmCPIQyr+HFEwIo5GhFFAtVHj9rXrmHnG25evcnNjnUbNo+UK7q5tYzs2vpIYuU8oN5GZJk0TbMchBwxTkwQZcRyQCzAMn8IdHRGMRvSjPrZ2kDGYliKNQ0Re9NG0LuLKHjw8z/SEyygYUirV2dzuE0uNrktqO5PgwO3mLZ5++gV+4onH2H/8BL//+7/HZx7ez9r6dXTZZ6K5SOrU0Upg5gnpfXzi99YW8KMXrx86BmMVywcIZvf9nomMD4GWxj/3ek7fl/KOv1RCyGKfH4MqTC7ffy0//OcDD8vz/ziL1/udHN+TB9/7IflR9Of3FsAf3O+jtg+eYD/q/h801W1U65Bm+H6JO3fuoGyTyp9/EzwHcWgZIYrXNRyOKPlFtitI0jRHaYO8SGQmzTPaOzuEwYjGRBPLstjc2CBLc2q1egEEioa0Wi0M02BioslwNKDT61Kt1Xj45EkM0ySMA1yvyDEsVarEseall15hbeMWc7NzDPp9bMvha1/9KmHYZe/yPvI0IYkC9iwtMBr2CYIhtu2hLRtJxpf/4i8ZhDE/9dnPoMod0jRDBS2U1Fy7do3FxXkeeOgBHNdDiJz+oIPOC5BKr9fHtCzSLMWzTUSe8Qd/8K+4ees6D598mDCKsRyPKAjxXBfPdTl86HBBr/QcgKIYi+LC+1mvc+fOClIKTMtkFIyAHG0W0sEkyfH9KoZtMegPi063NrHtEhmC3XabarnMubfe5PgDx8jyBM/xxsHhBWm12+uhx57kYDTCtkws26Tf740z2nKSNMOwLJQySNPxRTvL+eM/+j85efJB+oMupqkJgyHVWpH3K6TGECXCMMMwFP3+NoYJpm1hOyb9fgepCs9eu72DXy6k4EIqDh0+jGVViQKNlLqAfCnFxsYaju1gWRZepUSe5WjDQEpFnBSkZdMcZ6Tl0O2sYVlgmgqpBSiBNjWjUYBlWZw58waPfeIxLNvi+q077N2/l3KlQm8wwLAsyqUSjuPQqNeYm55Gnr9C/syr3PQtzvzTn2LxMx9nYXGWBx86wVtvXuTM2bf5tc//Cs8+821OHNmPHWzw09M38duv8fH6DQ7zCmr9BTKhuNPVqLnHKc0eRxo2vmdz6vSrLM4v0mpMcvq11wkGA8qlCn/79b9lMBgyNT1DqVyhOTnN4p5lXnzpJQ4dOsTSnkX27ttDt7vLlXcvAznnzp9jbn6Wu3fuoqRkdXWVYRAwMTkBOezdu4eVldt88tOfIs1TbKeC0ga3bt1hcWEJgWB9bZVypcao36fVqDM1NUUUJ8RxzNkzb7C4tISQEpCsrq7RqBe+OaUVExNTzM4v4FU85hYXQQiajSqeYxAGG0xMTLK23qZRn2Rza51mq4oSiigYYsgcSwsa9RLVegOlNEEQ0et22LdvH45ts7ZyixdefIUXX3qJE4seSX0J5U6SRhnlWo3p2Tmu3rqJ7U/QunAb7dsE5g2EkFQqjyKVJssFji0RmUE0ajMMYl555RWmZ2YgzzEt830/olSKQgoqybMYQxW+ISkKf2B/MMA0FJ7vY5gGrckWo9GANE9JsxzXK5FlFFPRBFzHwTCcwqdHIdE7fvwwJx44huUYxMmIerOGaRlsbmxSKntoQ48lZDlJUsiDpSq+Ixub26xvbFKuuERRgNKFz1SIIjInz3IQBRU3ByQQxxlSKAyt8V2XKIpQaYKhRlg6Jg5D4iAlj7qYhvn/sPdmQZac55ne8+efe+bJs9e+dnVV9YLuBtANgAQ5kiiJGsthDyWPw7YUdsyFJ8IeRUw4fOG5sUMOX9g3vvCFb8Zh05YUNinupEQSO4ilQSzE0o0G0Ct6qX0/+8k90xd5QLVALBx5PDeajKjo6qqTp+qcyuX7/u99n5fnX3yPUn2Cy1c3qZRKDIcK5cokY2NT3Fvb4MyZC7R6XW7euMrS4jJppjMIfGpOE1NNkWoHIRPIFJRYFpmQmgFZjKbnBMmQJIwhzzC0ovDrdbpomsHlS5ep1RtIVaLpWgGus9zitSgKggzL1KnUapimSRxHCEWQJAmqqtI+2MerVFDEGKoyjkJOnoOh64XVOEsJ45g8g5deepHDg33m5+cK+J4qiYY9pMjotNs4ljuK3Eio1ar0BwN2tndw3RKObTAcRORI8qygVZ47+xCKoaFpBq1WiyxLKLkuQ7+PZelkaUSaRfQGXWzHxNAMgsAny7ORaqkA2bmug6JIdM0kS0FTBYPBkGZzbHSfzZBSxTKLqfDd23eRShFRomklhDDodIZcvPg6Za9OtdIgSUKCMBr5sDNUqWCZFooiWVlZRtUUjloHeF4J8pw8T0fvuYqu6piGRnTUQVy5STZeY3JyEsd1qVQq6FohhzZMA8/zUP2QuyWNvVaLD97/gKHvMzZWo16rol25Rfyn/5SgZPPSiz/nn/3Jf8GTT/6Yf/yP/4AkibBtiyTOCcOYwWDA7uYm927fYqXzRYSvwoW4qI+K4La/VbcoZ1dRfuMColL61Jro/8v26za8MpckikKq5MRhj80PrnLjyhWWyheY/8UXOBy7Qifcp9FoYjsl1jd2qNZqkKfoaiEvj6KI2dlZdL34vOyV0VRZeFPDiPm5OTRdZ2J8GoWIjbUPEFkP21BJsxBVM9HNKjsHPvWxGcI4QNcUZmdnufTO2zQbNZqNGlfeu8zqiZOUvQYbazvs77TptSP2j3bptFskacrhQYeqC1GcUa5q6HpOGKaoKhxfdvE8jTTOyFN1JGRIUDHIpIblTJAJF8suo8s9zpyYRoohqgSRFooWRYCi6gRhSq4mSCNCzUyCMCBOBds7R1y7tQtAo9Hkscceo96oUy6X0XWtiOnRJN1uh1q1zGDQxbRthr0jTK1LGu6giZg0AZGnpLlKlDo0Jo9hl2tEUYgiBa7jYZkeb755hYXjc5D6tPbXSYKQ1WMehgz58cVddFulWbfQhYmUxbmoaTrD4ZA8z9E0lRyBpqtkCKQ0COMIQ1f5xdUe1z8MmJyaQLdD4qwAQRqmgVAUkrSI4ZJCMhh0UFWVa9fWyBSDre0dFo8dY7O9znh7Fks1qD5kU3UXePa5l/nDr/0eN6+8wPLxMVqDFlNzD1OdPEae5QiRklFYTj7v3FAfTVAfTf5VBqe/0nx+0vMWX/yUodnH4E6f2u/8qzSvf4eoHijuM1Kqf7+b14/kwFLKX37v/u3+yen9+2dZ9isxO/c/5tMowvc/x/3/fpLu/bOaV8/1GPT7xGHE2QfPsX90SPXHL5E9sExWLZNlGUlSmPTjKERKjSyHiy//nGZzAqmrvPGLN7BMi4mJcSYmJgABWVGsdNotbNslyzMUJSUIAgaDAZqhoRs6i0vHKJXLBSofsGwTVZNomkGSqFimS7VRod9vMTc9R3/QR5Uay8ePM9b0KDkum+vrlMsulqlz6dLbjI018P0Eu+QSBQPiOKRSH2NmZhrhHBGGIXo0TqlcYazZJCeh1T7EdT2EAlIKwkFEEETcuHmT5tgYqqFzuLOJVAQLi/O4rkut2aRabxRe2FFebZoUfgjXsfF9H3sUGVDIAaHT6XL9+jUODvd58qkneOyxRxEKGIaB7bhIaY48cYWsLc8EaSpIMkEYZ1Q8h263x/bONqWSg+taSAS+7zMYDilXy+imia7qJEmK57kIIej3+1i2TckraINpmpCkOXGSkiQZpmGhSoXZ2UksXcEulfCHA6rVGv2+j2WXCIKY6x/cxDR1pFY0AiWvga6bZBnYjlvETKBSKlUQUsUfkTQRCkKRqNJACFkQgz0P09JRVR3DNNjb20PVtCLKR9PR9HwEuSkmWwCaEmOMclzX1rep1hqkGezu7BZ0681NyCEIQ5ZPnCg8KGmGW/JI4pjrN28QDIYcvHMF8/pd1rY24b//r/gzf5ff/Ue/z4svv8DO3g5XLn6HPz7V4veX2zR2f8BJ+S7Vo5+hHbzG1tYOhiYwG8e53StRXvoHPP/GLb7wm79PpVrDD4bYjo1jq6hSkiQZaZSwt73Lwc4B/cGQ3/mdr3Lzxk3m5hdAKHz9z/6CRx59jOFwAOR0Oy0cx2RycgLHsVBUies4jI+N0+8PWJhfoFqpYto2qqbx3LNPcebMKRSpUCqXubd2D6mZ6JpBvVbnqSefZH9nl2atjmYauI7Nzy/+HNO0ODpq4dgW4+PjSKli6AUI5taNG0zNzOI4JkEcoRsGum6SihypFkAh8oTd7XWkMkBVTTY3WjTqE7TbB1RrHuFgyN7uFqWSgabBsN9CdypkWXFdcxybH/7gBywvH+fK5XfIUfja1/4RsnebjrlEtTGHH8SkuYJiWDTGZ+l0hkxcvkeUxsT6MmPjXy4mNNIkTTMOD7fwrDJx2MEt1VCkSqfdYWx8jCROSBG/pIdLpSABF/EwNmlaNLV+EOC6LmEUoGoqaZaS5xmGofH2W28xMz1f+JVVgzTJCf0IIVQ03SxKhrwgFKeZQpYLNF0jy3JU3URRNOo1jyD00XTjl4A2KdWCGo7AtGw63T53762xsrKArmu/bGSkopKm8QhOxQjEA6qik6OMJNKCKIrodfu8+PxzzM9VkCImChMO9voI06I2PsfU3CKq5nH1g9tMTNS5eWud8488zsLSMXq9bpEZnQ357a/8DuQ2UawwMTPOhzeuUPVsBJIoyQmGfWwtJlEEpu0gshTXsQmiDJFFo2l1jiZVyHNM02F8bAzTtOh2u1y7dp3AD6jVmgUgL8tQREaexmiGjZTKCCCjEEcRtm2TpzHDwQDTNJAjubVUtWK6IfICvjeSgXulEseXljBNc2TLyOkebuO5JTqdPqZp895773Pz5nVWVlfwvBKu62IaJq2jA4Ig5bvf+QHLy0tIqXHzxm0SoHV0SL1WQ46sP5bt4fshUihEUUK5UiWOU0K/oPRWqhUs06LX7xeS/iRB1zS2t3axzRL9QYuyVynsHqNCudvtYpsm/tDn7TffxjQMbt68wfrmDlPT01y8+AorKytsbW2SpRnT01NAQbwvPMwQBvEoR9OmXHaZmBxDlSqGUTRQRdRF4dlTpYJSLZM9/wZidgJV15CKxLYt4iRCVQvisRACPYiQc5NYXpkTJ04wNj7G+FgdM8nQr94h+JP/EHSVZnOMP/jDr/FHf/Qf4fsDZuemC/WD0Oh0u0yMj1OyHXa3Npnvn0MIBePLysi29KvNq6iUPrFx/Xj99Hfdft3mVck0EiUnkSlaHPG//Ol/R21sgsdu/DHaoiD32gz7XXzfR9VtpqYXGAwGuI5F66hFFIUMBgOuX7/O6uoqW1tbhFFIGATs7+9ysH9EqVRGyJRXfvYiu9s3aNQUSrYgCQKkBqZVIUod7NIEpUqFod/DNsyCkBv4VKtlhoMeC4vLDAZDSl6JhYVZTB1uf3iVm3fuMN6sEyUxDz+4ysxYmeFQp9aUDAZDWvsJppWjKyalks4wKnKk0yQliUKkqpAKiWpW0XWXvYNtykZA4B9hGaCQohtqEYcHBL5gMJQMwwQUiRIJUqIiAkuWyHOd2blpTp48xeHBEe+8/Q5euZhKm5aOaRrcuX0L17GwLZ2drS6mFhIPNwn7R0hk0SQrkiCS6M4kutskSHO2t3bRdQtFCrqdFvPz00SpQuQP8Mycs6tNaq5BHEccHPY4fnwax/JRkCR5jlRkcY9QlBGwjwLQJzKEqpOjj6CZIa9d2qTXNcjjFlUvwXMa5Hmx8PbRIqRj2yRxgmMXqR3V+iw7e11a3S5plOIzYIwpDE3H+QLcvH6Fhx97mCd/+kOqpuC1iz9nOIQHH/kSpeYCIldQyEgV8Ym936ce039Pm1f4eyYb/nhW68dlJqPH/4qE+CN58Ufy3o/LhH9dL+tnSWE+/rXP99LC2toaXqlEmmcYroP1naeQjz6IMrqphWFBls2SImagN/B5551LKCg0J8eZn53FMoxCYkvO2to6jXqNw4MDpqemaXdaDIY+nfYBtVoTVdMxTRvLtun2OmiyWFFbW7vH0f4+eZqQZgp/8WffQOQxx5ZmmJqeJY0iVKOQlQZBTL1WpT9o02jU6Pa6hGHE9OwspuXS7w2J0ox+94ipqQkWlo4XBYZ5QLfTZrCvFg2SqqMbBaK/AKoI2p0Wumqhqirf+d53WTp2jDxNqHhV9vb2mJ+fK3DtZkHb02Txt9zd3kGVReHlODZJlrG9s4uqakhFoGsWmqoxNTXO+MQYp06eQqpFlIaqFvv1ewP+6q/+mhMnjqMAWZogFMn16zfY3zvEdUykVFleXaVc9sizlDRLCvLlcICqaoRhjILKxYsXqVRqOI6LYVqkWYaUOlIW9EbTtNE1i2GvBaMiOIoD+r1OAc7SDHIE3f6AMIzoD3q8d+UXuJ7N5NQMaaoQBTlRmNPu9LEdh37Pp9cL+N73fszs7DheqUSn0waRk2jvkSs7/B//8q/Z2d7lgTMPkCRRQVCMQmzHptPt4ZZKBFEMWYpp2Qz6hYex2+0xGAyLKXSq4bo13nzzEnGYsrZ+m7nZOfyBT7VSI0lSnJKDguS5Z59ncmKCPMvovn+DlSCn0R7yypzLF7/7dZKpSX74vb/kP/t3z7Pa+yHnjUucrbXxw5TtnkbXXOHla30G+iyl+S9xez+hl5fpRSqzi8vF5K/kcfnddzFNcwTdUei195HC4GC/xTDoUa1W2d7ZY2d/lyiOSJJCit9utfjdr36Vixdf4h98+UuoqsLK6nFee/XnHFtcZHt3l/m5BW7cuEkcxXhemYsvX+TmzVs88uijCEXhzKlV3njjF6ysrPCLt97m5MnTvPzSizQaNW7dvAk5nDt7jtdee53FpXmiICTPBdeuXuPsmQd45ZWLnH7gDKZl8+QTTxEMB0xNTOC6ZTRdEicxZa/MSy+8RL1exTIsgqFPFAS8f/ldVk+dQtNLPPvsC3TabR77wgWyLGF7Y43xyTE0VY5UEzqq4Y0Kc8krr1zkD7/2B1y7eo1HHnmU1ZMnsR2H7r03URd/j1yzCaOU7b0DKo0m9bEpjlotpn72AVqQoC9PsrO7zTAYFNYERcE0BHmq4ZYN4ihnbKyJbZuF9/rqDeIkwzKtX3qu8jzDsmzIKYA2CIQiCIMAqenESYzrWsXkT8gRvEzBdhwQgt2dHf7sL/4vtrd3qdfrOG4Bi1OQDPsZL714kThOaDbGyVMJucbQP0TXDRSlmGBkWYqhGWRpViwYxinlcpmlpSWyEaBOCAVFFNPXD65cZnZmBqFAHMdATpbkxT1c+cg+kuOVypx8YIUszzAsl1KliaJZtGKbRJjYbgVVUTn/4FmOeoccWz7BMIxwyjaVWoUkyVg5sYoiNQ6PBrz+xiXOP/oI41MWlllmdzfhrct3mJioIpUeQZKC0MjijCyGIBJUXJ3hcFBEbmQp5BmHR0eUSi5xHPHaa69x7+5dNje3OHX6FFItGtwCnpUTRKM8yTQjTuIRFT7FsRxarTbu6O+QZiAQiDwrMmxVFVBQpILrOORZhqppZOSkWYZtqCQpNOrjHBwcMDc7QxTHaLpKrVaDHPyBz3DQoezVWNvYQjdULMvkxRdeplytsLF2j4nxwopiWDZpovPKxVeZn13AH4Zcu34LVZocHOwyOztDq3WEaVoF7EjqI5J/hD8c8O6ly8zMzRSLdbK4PymKim6Y7O5uU6vVOXnyNGMTY+R5RmfQY25uhpJncfz4Ak8/9QQf3rrB5PQ0mqbilVy2NjdGE86CuB8EfrEIpRkEQx8xOlYGg2EhvcsUFCnodbtob19DXZxmGIUkcUG+VtXCD2yZJsPBACvOaVkaERm+7/PM08/w2GMXiLtDjK194n/yH5DmGaZp0ByrkpPhuhaKkKMKRGJZDlJISFPW7nzIXO9sEQ/3aCFl/Hjz+nlS4M9ToX3SIOHzaqj7Bwj313u5VBFpgowCvvl/fp1/8IVHmWifp5HOoyyHrN++jpJFlD2HQQi9nk+/1+fwcI/JyWkMXafT6XD+/Hl2d3ep1Ws4joNlubTaO5x94EFarSNsO0MJ24T+AaaeUrINpJDEaYpQbZpTyxx1Q+pjY+zu7mDoJjdv3cJ1XCzLxDB0wkRhfX2NyakGg/4BG5vXqVY1dvcGeK5Dt9+j5Br0W9vs7XRQ1QFlp0yvG9NoOGhZnSgbEgufIAJDt1EVCKM+ml0iSg3iNMMwM4aHR4g8IE8jVE0nzROCcDiCqem8f+U2O1tHLB87QZ6FQEa71ScIcubmFkCqLCws0Gg00A0dw1BRVUlKRhRGzExN0+91uHP7NieWTvHMT79B09Mw1YI7YBgaKQKkR5i5TMwcY//wgEZlGs8rYZoaXtlga+s2MrN44uln2N7Y5sRCA0WkCEWyutAsJqV6iBCSXC18zx/RydM0I02LhIwwjklShZLXJAiGBOEQy8gIBj4Pn11gvOYwHCRIvQBNapoGQhDFMbZlE4RDslwhiDUO2gFSMxhvjHPh/HnWN9YYZxo91cnn71FultB0yesvPM3e+i7nH/oy1Wad+uwppNCAmFQBhU8emH3yQf+r59any+9/zUbx05rP+4zin5mS8m+b13892/3N6/0E3087GD4zZ+i+Zvaj/98/gf03uamazu72DpVymSTPmJ6dIf7fv02+NAe6hqIolEolhkOf/e0Dao0mpm0xMzXFs08/zakHz6JJyY9+8ENWV1dIspRatY5UBK5tFeRPx8FxHaqeR54LhNTxwxBN1/Fcq6DLagb9bofpyUnqtQpppuGYFrduvs30zBi6XmboDyhVPHKhYhguUioMhkdITVKp1dF1C10v0R9GvPnG65x76CFMXcEfDrDcMrnISOQ2hqFhpE1QVfrdIbqhEAR9TMtGKiqWbaIbhXzN7w9p1upkccJhe8D07Cx+MMR13eLigKTdPmJrc4tms4ltWXzj//5/WF1ewvXKWE4Jw9Q52N/l6KCDaRl0ex0Gwx5T01Noqk4WJyRxjFSg121z49pVHnroAbqd1sgLFbC2vsblS5dwLJswTnn6mWc5eWKVJIxRTZU4jYu4hCCi22rjOGXW7m0gpYaqaViOi6JIfD8kDIaYlkGWCYIwIQsPCxmbYeI4HpVyGUXRC//g0Mcre+iGRFFgdWkRr1xMtnVTpzc4wHHKGKZKGPUxLeOX086lhSmkUqxwemWPVH+LlCOOz36Vxx//ElJK+v0Otu2QZhlJkuCVyyijkHaBQJU6w4GPNppee5USrVYHqWi8e+kSszOT1KseXrlMnmaMjY+zdm+dRqPB22+9xfzcIvVqnbuXrzBvOTTX9rj92Cql/+m/pPKFB0mEhta/wW/LnxDe+BH9RCetn2U7m2XrKOX9D7eZX1rhwoVHURSFu2v3yMnZ2z/g/IVH6LR7vPXWJZaWFpianqZcLjMYDljf2GB3cw1/kBKnOafPreBVPepjk8wvzCIUQaNRp1ouMz7W5J233iCJQqq1Mq5rM/CHeE4JqarYbolnn/sZk2NT5ElOtV7lyuV3efxLX8Irezz1zNOsHD/G3t4BM7PzVKt1yCUfvPcmS4vzTE1O0uv1mF9cIkoz3nn7dc48cI4gKHywr73yCl98/AvcuHELr1yj3mhy9d0r5GnMndtrBFFAvVEljVM+uPI+Zdfh2tVrdNpdOq0O5x+6wPsf7lCpjWM7NucvnOOZp59ibnaBVmuPcqXCwA+QilrIYjUHTS2ySo8vLpJEEZcvXWbpxAmgkGElB1fZXF/H91ZYWFpGqBLTsLlx/QaVWp3qS7BckF0AACAASURBVO+T5TnZTBXVUKnXK0jFRlM1hJKQpzqKkhL5CXESEcYhhmGgqjrf/ua3OXniBFKR+GGIaTlkuRjF5SggC8lVFPiYlkscx0RRiOO6xFGCgsrVazd57/33WFiYo1RyeODkCc6cOYvjWoRRQZPc3NxGU3QMXfLmL37OqZOr3Ll9h06rTaVmo+s2QqhIRUMqCmQpChD4PnmWYRo6IocozomjhKefeprlleNIRVJ2LZIkJssyVE0FRSCFRKrKCPbjo2tFPrZme5QqE0jVpRfEaI7Jc0++xMAPeej8BUyvDJqBbVpMTi3SGJtCCMnB4RHf/tYPi2JSQGN8AsupcPfOBjMLq3jVMfaOOtiVBocHPbJIJc80XnvjMscW5oAQw9EI/RBF1YiikDCOyMkIwoCSVyIIQpI4YWZ6mlOnTuCUnFFkkIKSC/I0R+raiIori8zxNMUyTaIkxzQNIvkuCTtIZRZBThgMkTJHShUh1AICJkZ00BERVJESIVXiOGc4DPjmN7/BYNDj8S9/mUqlzHA4IPJDNjc26XT2EULl/IVHqTcrWJbJmTMPMlavo6mSSrlMLhSEZrC1scXFiy8xMz1Oterx+i9e48KFh6mWyxwc7VMul8lHnjeRq2RZBCTYtoFUJVLTUGRBS+50uoiRYkWREIQxmmEw9IcYpsH07LEiG7dSpdPpkqY5//Cr/w5CE7glB0UILNPEMiwGwyFhFODYNr3ekCSGbvcIqQgGw4L4Oxz42LZLFEeoioA33if74lnMKMXQdYIRnVkIiOMI27HRej5GlMDUONVqjdOnTwM5zjAmvbvB5QdPMDM3i24oxHFBdHZdp8gQ1YrF8SSFMAg5OtjDs23KG7OAQDyafKJsWAhB+ud/RX75OuLc6q/UNJ9VQ31UKN8/SPh1tk+zgUVKgi3g+W9/n/31dZpL85xa/11yNwcvJewd8c6br1GtVnjtrfd56MELpHGC61hsbu8w1mxg6AbXr1+n7JVxHZdr168xM7cA+Lzw/IssLcwj1Q5qfIBjKlhGscglFIkiDOJcpevHWF6Vvf0WczML+CMVw9jEBAhIspRqvUalWmVne4dqucrB7gG99oBuP2TY75HmGeQRSzNNxps6Y/USCim1mk1KRJYdotmSvUOFp5+6Q6PmYVlDTNMjwcKrzOLYHkk8JPEPUWSh1AsCnd39LpbuoBsavt+mVnVZWpwkS7tEadEQWrqHodu4nkptfL5YqC15VCoV+oM+v3jzdU6efIDhwEcZqfuODg+Ih0e41hBdFCovwynyp6MkJxUOnV7OxvYOXtnFKRXxZr1+DwVJ6Edoacj1tXUaEx4njjXRZIJhqtza7HH1VouxZhUlzZEyJf8b7ttIciqJs6RQ10kTx66QZgmaBmXT5vjqNJpWDKkiUYABDaOINhsdSQRBTBiH5IrKO+/e4rAbs7BygkrJo9PpMLZQx91rMJBt9tx7TM2dIslC7t14ld//6oNIY0i1ucDk0oMIoSNESiIzZP75E9LoWzrp+xL5QPq55859z/JrnTOf3nx+djP9b5vXf83bp8mGP9ruX5n7aLL6t1bo7mtUP00i/HHp78flw582Yv+knNj7Vxg/a/qa5Qr1UoOwF3D75nVa3V1q3/0ZvTxCrZVJo4woyCg5ZV5/43WajSZP/vQnrKwcx3ZtqpaDZViFf8ez2TvYpOSN0W13aXc6tNttLNslzwS5YaLqGru7hzz1xDNMTtaoViuFb0wU0rowDThqHyCEwuT0OAvHltANFyEKqZnIBSJL+d53v8HYWJ1GZRxVten1Q1zHI/C7RMMO88fmSZMAy3HRTAdDt9DShEjbLzJi+xUc28SyDVTVxLSrBGFCmkRIcvI8IY2HKErGIOjTmJqkUS3TabcYDAsq8O7+LuVqidDvMjkxgRAqSZLy6GOPEQQd+v0eP/rRDznY3eXsqZNcv3UD3w+YnT2G51bJsoQsi0kpojkEYFsG83MzpAlFIREl6IbK9PQYK6sLTE0t8KPvfx/XMpiZncIuOQRH+1hOCatURtN1ep0OP/nJzxifGOPVnz/HIxfOoMscTeTkIicIYnIyVKmjqyUMy8O0zCLzMY/J85TDXpeSV0ITCocHRzhuFakZSM1A1zVEnrCzs4FbshFpiGVaZBkoMsO0TGr1Jjtbt/HqNYRhgdSIsquQp5hyFWTOnTu3mZqYJFWVwgMSRdi6xv7mPcqOSi4VsizFcSySOGI4GNDrdAkHCeWyg+fprN9bo93q0ChX+eD6h6RCZWJ8nGeffJLf+K3f5fLFl1jySoy98QE3LYXgT/8beOQcma5z+95d4p//j3gbP2CoTvLy7ZT504/z/ge36R91sN0iFqDkeWi6yrUb1zmxtEzr6AhFU1k6fozLl98mTQJagw71eg3d0HnuueeZnZrFq48TxDGLSwtkKaRJRrXqoRsWwbBDyTHw/YAsURifmkOg0W71WJidZ3Ntg4mZOTY2txkfn8KyLLq9PidOnwSZc9g+4Bdvvs75R89jWCZVbwKpSp555inGmjVaR/ucOfMgeS6Is4yJ6SmkodKYaBANu0xONEmSmFpjjHubO1x65x1+47d+h4OjNh/evsu5Bx9Caga1RoUsTVBQ6LS63Lp5m3MPnebooMXq6inSLOfO+j26B/tcfe8D9rYPOXv2IcI4Ympmgkq1iqaapEmAaWn4UYZtV0iiCCXP6LQOCcOAjJTm5DiKyAn9IZsfXmF6vMn8V/6EYeddKvYcd7avUrNhbOkraH/9HBkprcY7pPkmlrlEkqoMfR+BhmlJkihGmiUUTUNRJRkC07R58MFTdDptbty4Ra83oNFsjEBAhf80DIrsTqlKVBJMq4g8CKOEOAqJooDr71/h7JkHgBxVLRaHVF0iFAVN1VDyDBEP+d5ffZft7XX+kz/6j1E1hUrVod4oIbUSaVY0WMU1WyElJkxiDFPn7t07KIrA0DWiPEc3TJaOLxcxYUqOYbuomsHADwqokyiyqQsOQYYuNUI/KppXxUKqLgmQSYnrTXLq7AqTkzMIYSDyQhaaZIIkg3aryJ6VElZOLlBvzKCaOt/81nfZ2thle22d6ckFdNOjOTlDtVIl8COCSHJ01OH67UMapoFthgSkfHDtDuWySzDs4TkOEkmpVOT/pknEzOwMzeYE9doYiZKh5AkiTdA0g1waaCJH11V6vS6mZSGERp7LQkEiBKnYKfxnYhxV6iOLgk4uJPmI5qwoRWMoFGWU8ZoRRRHt1hDbtVhaXuDEyTMgYTgM2Ns/YmNzh0qlydTiPNVaHfKMNM5IwkIuqRs5lWqNJMnZ3d1Dlwqlskmv12Fhfp724QEXzj3A/vY69bFpDKdMGgas372NW66zv7tNyfEgl8UilWOgqgZSFsTmer1Gq32IbqgE/Q61Wg0pJTkpYTRESYtcTCk1fD9gZm6al159gRNLp0ZBtgqqppPnCobroGkuWaqTp4K/+POvMz2/RLXexHU8Bv0BTz7xE15+6TnOnT2HZRukuwdITUXkoBTDcPwgGimlVIbDLnaUk6iC7TzAMHS21rf567/+KadNl8Nhj9sPzzA3N47p2CAKW5BQFDrdLrqho6YZ/STGyCX/9T//Zzz0G+cZ21pBCIH6SDwSGAqEVBBKoYjIgeR//Qb52jbq177yK5Oh+zgyv/IhFDH6XIw+Pv2xf7NP8bOLriUHkRYANRKED9mgw4cfXmNsfoFHLvx7xN+y0B4O2fzwXUTiIxCUKzUeeOhhojSh7wfMzsyycfcWVqmMYZmURsqAtXt3UBWBqheU6XqtimskqOkOwSBA11VUCZpmEMUp/UjilMcReoUcnddeucj89ATd4YA0jei225Qcj95Rl831eziWS3NshsEwxnTK+FHG8spxarUyZWfIVM3k6uU17EpOtdzANBTCuA2KQpDnJGlK0If1221OLDcw7SFSrSFKEyiyStDrkGcttHyAQk4cR+iqxvq9bcaqJqbukOYKqiGIM8HVa+tF3rEzzU+efwe3Nkm5UkPXvEJeP+iytnGXY8fmmVuY5+igRaNa4cadNTTLpln30EULUx8Sh0McpxhS9AZ9rFKTSnOJTLU4eeokmhQE/Wx0LBZ2rLV7O2xsH7K/v8G51TqenkOWk+WwvrHP3Xt9Tp6YRNVDNOEyci+RZcXUNcsyUC3Kdok0glw1yYVg2O/h2Aa6AnEYkMQpqiiI9yg+SZZCaiDJcT0XIRIURSC1Mne3e2zsdpibmmRmbo6XLr7M+EyD6uEUnjXDzfQdJmZKbG4fsLw8TxYfcri1zrHTZ0isKoo0sJOMRN5/fI+O949NOOMXNPKhQH8sRTD6/ugwz3PlEwhlny+n/2W/cd8+BTtK/Irk+LN6k+KxxQsoTr1f/V0+Wkz4tJ7q19n+XjavH98+Pv6Gz/ZO/F2+/mkrFZ/mqf281UUhQVc17ty8RbPZxHFsrD/7EVqSsVt10A2Dq1evIxTJ5cuXmJyc4PTp0+wf7HHy5AkOj9bZ3dth6fgyuuZgm2XCyCdNIp564qccX1qi3mjy5ltvMT0xjj/oYVkOnU6HkmfhDzMqlSZJnKNqBo5dQtcKz12cxIRhSNnzUNXCvyFEkds5NjbGc88+S7PZoNPtUKvVOTraxzJ1LMtA1Q1UTSXL80IGiMLO9hbdbYWSMotumPh+QL/XJ0kSvv/9H9JsNvFch4ODfaIEdF1HkHPs2CJCgTTOUPUC0pFm4DglBBJNleSZII6TorFTcqLQZ3xikhs3b/H4F77I4cEh4+NzvPnmm0xMNDEtlX63V8gWyel2OmiaSqfTxrZspCLRdR3HHuXVGhpB4BMEKZub63zp8S9iOXbR8A8CBkGM1HT8oU+zVmPlxCquYzE+MUmtUmNra4NS2UUqDoZuoMgEqWbEcUiWC6IoRNNUBoMhQz/EKXm0j9romo5XKpHlKSjQ7x7h2jZpkuCVShiGgaZJwihmOBwiVYUsFUhhFPmXFMRjRUCm3iJLBbl/ElXXmZhokqURSZoxHAzw3BKKAhsb65RKHkiVKAx/mamWphmu7dDvB2iqyv7BHiW3QhxlmJbBsz97ga2dbc6ceYDjzTF2rlzlgXsHxKeX+OlvneAL/+2/4H/+l/8b7165xG+edGhe/h9wHZM3duoIq4FmGiweO8bNmzf4zd/8DeaPHWNjc5PTp08jpcKHt25y8vQptvd2OX/hAlubG5xcPYHIco6vniwyVVGYmphAKAqVapVbt24ipcTzSnz44S0Mw+TwsMin63Q72I5Lc3wClCKn+M7t2yiKpNPpcP3GDVaOLyMVSa1aY2xsjO9/73ucf+Q8EoXf+s2vECcpjl0mjkPeeONVzp49xcL8LOVKhVde+TmzM7PYjj3yXSv0uj1EluJ5FRRFxbRs5ubmOH1qCVWXuK7DWLNOr9em2aiwvr7J5OQkaZoQxwnb2zsIkXHq5Glu3rrF8vJx3n33XaYmJzg6bPHQww/z7e98i6XjC5RKdjGhsSySJMJxi8UYzTAY9Ls4lsGLL75Ac3yCsbFxDMOm3xtArmDg0+t22FMmGB5dp92CxlQTv9fHbRzDfvJlciHwp7ZQtZzWYY1GtVmcJ1FEkkQEYSFJT5IYVSt8oEUmn0RKlYXFRQ4ODxkbbxaFsWCUOVos0MRxUpCd/QBFahiGjmkYKEJwbGkJ27GJogQUBU3Xf0kCVjUV3dA5PDzg/IXHWFtf58SJE8RR8dxRFBeNlIAkjfGHAzRdo2AFgFS0YuFI00YRMkXG9P7eXgHfsYqVeyGKVfyiLhGjyJHi+kiej16TYG9vD9t2UeQonkbRUaUCucS2XAaDIVtbm8RRztFhh3p9rFhQROA4Lrqq0e22ePfd92i1+iyvLDM/N4Pj2LRah0gp0FTJ5uYGj33pNMeXpxCiaLouX9ni6nv3OHvqJNVyCURGnCaEYQHsyfKMdrtDHMU4jkMQJ0ghCHy/iH8RCiLPiiLY0BBS/jJaRQgIw5BcFoAXJRtHUYqpuaLkCAHdbhdDN+j3C/CeMirikjRl0B+yvbVHpVKiVLZJkgR/2KfkOjiWhWVa/PQnP0bXFMplr2i+LKuA97kug0EX3w8QQhAEPq+//ionTj5QvGeaSblcIQMaY2PkSA7bbapeiSxNsFyPS2+9yczMDO12YavQDa1Qmeg6g0G/yO1GKa7XCgghCcMIRI6qST689SElr8ze3gGO4+F5HsvHV9B1ha2tdfr99gh4J4v7aZTwrb/8NufPP8z84hzlagUpFaQisG2LU6dO8tijj43ed+D2JkrJJc+yglOhGeRpTrvdIctyvLKH2vcRloG5NE+cpkRxwvT0GF5nQK1e4/i/+Kdsbu9gOyXiOEFKlSzLybIcy7LZ39nDLpdJgoDXX32F//Q//yfwdgkByNHktShU/nbd8plROf8/idcKOGVOTjaqrTKyKOTHP/oeiwuzPPalx4nfLJEnAqUakEY+4dDn9p17lLwKcSo5PGxhmDaVagXPKyEViambmKaJ47hUqlWOjtrMT0+xu7OOa+ls3CmyR30/RtdUhCiUCXGcotsVFM3CLTcpeRXOP/wQw+GAdrtNo9Hg7r17CFFQtw/399ndP+CVV1+lWqsRhT5RGPLyxTfZ2tik322zsjxJteoyOVEmy0J0VRCFOUlk8eKzt1lensO0hyzOV7FMnThK0e0y0qkiMolIBgwGu+RxQBQHBUQyitB0HcsssmHzPMWydEzdwjQcuoOc9a0Oh62IwSBClRqWYyFVhV6/h1cuoek6e7t7QI5l6KiGQaXiYmsp7b27aGqMqavkmUKUxEitSak8TSo8LLvB3TtrVKs1NF0y9EPIBYrIGPZbbG6v45ZKjNU8ah4IkYDQqDVqlCyNSlUnSweITEFRQFXVkY0hLa6nukkchKQpSMNC0ySWIQn8IXEU4TgOWVpMX9Msww8kaapy1NrDdqzCIpWn5GlGEORsbB2RC4llaExOTmHoOuVpl3A3JT3IcYXHtrXJC88+x28/fpqJpuDe7S0GucXc8dOkKagCkk+Kn7n/cyH+hjb86CfRhj+7P/k0+f4nS40/vxf6pH0+b/vosWmaju6B8vN3um/7e0sb/vj26zavnzZFvX+f+x/3ec/1aTmx909gPzUuRyaQC+Ig4Tt/+V1qlRqNHz0Pro174VwhA65XuXfvNoZpsriwSLfbwTAM9vb2mZ5pousGnXafNM352c9eZn5hmjgKMY1CDpelOe9/cJ3Ne7dYXJhDlRqVagXDFCiYPPHTJ+h0uqzdW2NmZo5+b0ichliWRa1aIxkFvB8c7mAaJmmSMBwOOXf2YQxTLYoaAUEwxHVtvvnNb7KwuIwiFMIoAhR03cQyNBzHIc0LqV2v14M84+tf/zpxklFv1Gk2anzw/ns0Jwsok2MbHB3uo2sSTXeQUuMHP/ghN299iK5ZqNKAPMOynOImoQAiRUqV7Z09zj/yGAIF0zRIU53Ll95mcqqO61pkec5gEIz8eBqGbmLZFmmW4zoOg8EAgCQpPG1pmlL2qpx94AFUKVlbW6Mx1qR1OMSyHNqdNrVqhW6nDTIkThIWF1bRNBPDVAmCAVEUo6oq+/vbkCcoQpALjSRLCumO7eI4Lpbp4A/9oqBPQjRN0modoqsw7PeIgxAQZJkgSiKyTPklQCZJcu58uM4TTzzFhUcu0O93UQA/fZ+jVpdXntvj9KlV0jQiikKiMMWxbRQFWq0WU9MzBHFSFDimSZ7n+H7AjevXuXLlPVaWT/HyxVc4cXK1kDlXG1TrFS48+ghz01OUb65hvHqZ0uOPsP7P/xjn3/89nnzxFY4vHeN3jnV5XDxBfudJDuQCNM+xsLjI1MwstVoD3w+YmBxHMxSSXGM4HHDl0jvs724zMz2Fn6YsH18iCn3iMOLdS5e5d+ceGXIkiSsx6Pc4PNyn3miwemKlUCU4Dq+9+hrdbpe93X0Wjy3iVSuYrkur02Z3bw2pCM5feJQrV95n/+CQ1dVVarU6iqLg+z5D32d1ZQVNL2AZN67fwLFLvPjiK8zNjXPy9CrvvPMW9XqNdrvF4uIxgjAgBzY3NymXPUzDwHMc1je2yCmK1suX3sa2LWzLQRstgFy7+gGGbrCweJxqvYLj2ARBSBiE+L5PyfMwTZNKtYJpmZiGxvLKCu9/8B6mqXP+/EPYdpHlGoUDBAppQgFu0wSaJojCgLm5ed65dIXZucUi6D7JabU63L36Jg1P51ZLYbKZUi4f47DfwzZLIA28594hUwT+5D5pllJ2HuLocBuv7BHFCYZlYVo2vU6vmJ6gMBz6KIpAHYFw0jRhYmqSNEsxDYMkjYsMSwRCSDTVRFeLVXihFFmkhbxfwQ+KJsOybdIsQxGiiPswDJIsI85SLNfGscssLi6NVAkqilIsfuUUS8amYRS+KUWQxRJ/GKBqGqqUKFKgSIU8Fbx35QphENBuHTHWbIAQI0Js0XSPruaF9FlQnIsIVLWgEmdZQQFHFHm2gR9hmg5ZlheNs4BL71zh5Vcu8uC5B3nvynvMz8/T6/UZdjtEsY/rlLl3b4vjy8cRxDglC8hwbItbN29w9twZ4tjig/dvcnTUZWOjx41bLU4fH6fZKCFEjGGp+KFf5MDm2YgMbxJFEbZj0e36vP322ywtHUORAqFkkDEC3hXwQEb+3yxLMQyDONsgz3PSqI6m6eQkZHkBztP1guypKEpxrRtldUZhyN3b93j2mZ/xhS88XPj2tILQrJBzdHRAs1FHkHP1g3dZmJvDtCxa7SNUXSOIQmzTQAil8OSZBrNzs6iqyb17G1y5cpWrN26ycvIU3YHPvbt3OWh1cC2TJI7QTIvx8TFevniRU6dPj2A0JoqiEIURtWqtsNMYBoPhkCiMCs6CYSJVlW63h+eVcZwSluUyHIaYpkMcJeg6IEDXDFS1aPQlCmmW0W61CZOI6bkpVEWQxDGGaaBKld29XWzHIU0z/MBHXdsh9gPyEUDxYP+A9bVNLNum3+9TLlfRBkNSXSebaoCi4JY86nUH/dIt5Mo84VcepdEcR1dtpNCQikaeCizTIY4KoGCcJdiKgqIIVs6eQgx0lLEcZSH9m1roY3XNv8nmNc/zUU5w8Zvc37z+8Bt/zoNnVvGDDnalTP6TJoqektk+h3t73L5zlzMPPoxTqhDHGeVyFcOwuPzuZWbm5the2+Bgf49Lly6TpDmmZSOkxhuvvUwShUyM1WgfbmGZKo5TIolDLENnGASoho3ujKHqLmubu5S8ClEYEAQ+UxOT6LrO5Mwk27s7zMzPUa81CKKIhx5+GM9z6XY6vPD884xPztDvtDl/7gTkPm5JRctTyhW9iIDJNaS0IE/xXB1NKtimRZ4HmI5A6A1SYSGykGS4h8QnDoNikqjkKAoYhgb/L3lvFiNJft/5ff7xjzsi76wr6z66+u6ZIXumKVKUNKQorijswovFytgFtIcBLwzD2Bcv4Ef7eWE/GIYBw7JsSbC14kI75AzJGY44M+SQM5yr72v6qD7rrsysvDPjDj9EdWvU6iZH8i52Df2BRFVlRkRGd+Y/4v/7fS8Ro+kmUgjSNEKgMRwEtIYqO40ubr7K8y+cZnFxiXLVIQgDur0O+602C/MLGJbFztYWcRxQrpbRZUR77x7BoI6SBph61uzqDyNUc452PyURGdIbxTGFQg7TVPD9lIvnLjE+VsDQAq5cu4w/0pipjZGz+0SpT5IaqEqIbRnkHBVTVyERZCTBjPGhyEz3atgu3nCYMSaimOGgT+QPMifiJM2aYqNhthZWUq5earK1tc/sYiEzbEoSFBQc0ybwffbqHQ4fOsoo8FheWiROEnq9Ph/f+4Dn7ZfoR33GWeB/e+1/xbUGaEqDezce0O70OXz4OG6hjJ8+ipl6cmr85XriUfEqXwwfP/fLJtLTitenxXc+q3h9Wi3yWfDtb1K8/nX2efJ9/1a5Df+igvTJ7NZH233WnOlZ6Onn6VJ81iTqs8XtZ1HWz+772W2ehsIqEpIYfD/i8sXLHJ5foPza2wjHhmPLRHECaULOsZmbnc/C202TJEnRNQNN5tF1G02TmKYKImBiYgqpKFi6RqFQAKA2NYllaMRJRKPRolarIbWU4WhAFI+oVos8/8JJPH+QuTLm8xi6zu3bt/nwgw/IuS7TM1PZBVGqFIslRqMRlmNiWxbdTotBv0elMs7s3AJJLLAdG9O0ECKLHNBVyYcff0Sr1WZ2dg4hBKYhWVk5xIsvnmF+foFBr8ew38N08uiaSppE9Ludg0WQQRBGnDx5ipnaDOfPn+f999/nxdOnCcOsS6xIQZJkLpeqZjAc+dy5cxdVSr7zynf5h7/799E0hSDwyLl5vOEI3x9laKuUdLo9CoUinXaL27fWCMMIRSqZhqVUPjA8SVFVmblypikffXiB23fW+PT6NVZWlsi5LokIcd08vp854wXhkCD0GflthgMPRUhcp4hjVUEJMQwdVep0Oj3WNzdJgpDx8TGCMMAwdEbDYZajmncJ/IAgCHFzeaRucP/+A0rFKrpu4Dgmmqrz4P5DvvyVX0FXFeLQA1IS/R65nM3S9FfY2XlAPl/AsvIYmoEQKa32PpZjoxtZPJAms4JYERnqRJqyemiFzY0dDh0+hNQkN27d5dMbt5isllCu3sb+4DLKZJX/fkbnetXi3Pmf8KLyFrXBu5S3/pTBzjVE+Sj6/MuoTpUPP/g5mxvrTE5NcfvmGp12h26vA0qKky9RKeXJORb7zSb15j5HThwDkSIF7O3ssLx0iPWNLYrFAmEQYJoG3W6blZVlpJpFgzTqzazQKxZZXj5Eq7nP7MI8qYBms4kUgpnaFPlCEUXqbG5ukcvnuLO2RqPRwLIM3n77LUbDPs1mgwcP13Fsm5naNFEU89P3fsZXfvUMUhXMzs3gjTw0VWdraxvXdcjn80RRyP179zIjHJFSrFQQikocx9y4dpXF+UP89N33KWPrfAAAIABJREFUMcw8SSIwVIvd7T1Uw6BQyON5HhcuXODMl85QKBQZjYZ0ux0UKSiXS2xt7XD33l3OnDmDrmk8eHCfibEJVF1D18E0nMxJO84670EQZIpx1WB+cRmhaogELl2+wvrDDdq9IcfGYx4ksyi0WFg8w9Z+nWqpzG79IVNnN4iB4eROZtKkHEEQYFo2qmkRx1nBqalZ4Z+hqTqQokmDIPAzsxopUDWNKIoJ4gBFyVAqVaoEQUintYeuGwcI7l8E1JuWSZJCr9dDU7Nmgu8NMsqqlNk1WBGQQrfT5fU3XkcRCuMTk5mmNwyIwqzAFAikIun3RvzZv/szFubnMEydOIlRZHaMyckpLMuiVpskM4aVKEIQhgHywCQujrNGpe97mbZTkSDAMC2EUJFqtqBJkoyOJdVMI5ukMaqmsrgww9Gjq9i2xsLiLFKCaRoYmo5p6Fy9co1Ou8+Jk8cYr2bX9SweSGV6dgapaWhGnjs3tzj94q8TJCNq4zrHjhaRckiajgjDCFUzEWm2gM2uLQMUkWkpb928S6fTYW5+njiJSJLowF05Jo6jg+JUoMhsbkFKkGwgpURXphFCkiQRaZLg+T6q1NB1/XED1/O9A/28wqDXp1QsU5seQ1ESRsMRJDGBnyFF+kFz4vixIxSLxez7pOuoB5naJIJur4fnjTJfiNEQy3TJ5fLst1r0hyOmp6fRdI1iPs/FK9dp1evkcjaaaaKpgsWlJWzLISVzp06iEMs08UYe9b06d9buUilXD5DfzOxFKAqm6WBYJrppQSJ5uL7B+FgVIcgM4gYB3/72n3Hj0zu0Wn0mJ6vEcczi8iKlchHbsUiigDfffJPVQ4dIyRqwYRiiKDL7f45TlFsPkOOVg3VDxnjK5wuUyuXsnjockegafqVAnCZIVcX3exi3NklWZ+FrL0GqIOJM6JsmCaEfoEmVJIqRukan26LxcJ3nTp1AKxWRCynKYvKXF8dPrJX+vxSvf9PF7qOtPW9EkiT4vscP/+//HW/YZG5+EivNo3x/Dv1Ej2tXLlEsFpmozRJEgr39NlEYE0cZit0fDul0uvTaHSqVCu12m/mFOZqtfRYW5tir7zIzPUuhaKPpKYVihSTycG2TQa9LkkpGocQtL/Dzj87x3HNfwPMCCsU8d+7dgVTJGGmVKuVKlSCMuHHtBqeeO4Wmq7Tb+9iGydTkFNdvXqCUUxh0GtxbazIzW8HVdIZ+mzCJswgY3WN8soSqhChEkAi8QJCmFopRwAsFuuITDXfxRxl7IQrDbJ1CCmRu7XGUoqAQBDFBKGm0Rnx85T6KVDj53Emmp6cI44AoDAiDkHK5Qu3gPhfHKbZpPHYd7ne28dvrqCKLphECkBqJkidWCozXZhCajqJlEW1XLp/DMjVM082KYUPB87qUChY3bz1kvGRQcFJURaBIDVVL0SQoIiEIIuI00xk/Lr5ExrZLpUoUjNBUiWZa6JqCTKPPsHmCzCNFKPhByNXL2yyvzGNamRxHUQWxDyJNUXXB9Mwiu7tdOoM+w+GI+/cfcuz4cQ6trhDmO+Q3Jtnc2+SffOtf4B7zaHe2qG816O432G/sMjO/iGbnSXhKPOcTkyP+OIshfIS8fp7i9Wl1xC+bU08D4Z5VqzwLiHvW45eBgY+O/ag2e/J9/1YVr08bT/twfpnT75P7/bLtnvYFefT3o3zZg3P9S8XtZ/d5EoVNUYiiTNeXhgFv/eBVztzcQjgWwdIsgR9gqjrBcIRumQR+wPVr15mfWyBJUj744BzTM7UDquwQQ9fo90PWHz7EdWw+/vhDHMdiqjZJqVLG8z2SREGkIqOOWBbT0zXcnMPW1gauk+d73/sBw36PYqFAbarG1NQkqqph2iZ7u3Vc2waRZlEAuoXve5DE5N0CqSLZ3W3y/e+9wdj4GI7rPObEB77PxNGYiQWbqO8gVZXO/h6WbaPpFmu317Ask/d+9i7dfoe8a2ObJraTR6gmb7z+IwAq5Qqbm+t86cxpnn/uBL4X8PHHH7O+vkGplJkL2JaDVA0erm/w4MEDTh4/zurhGuVyCctwsKwc/V4Hy9LJ5wu091uouo5uGIRhRByFlMtl8rkCrVYL3dCxTItWu4ltWQwHQ3zfJ4pjTDuHqsJv//Y32G82abc7VMamSFJo7TeQKpnjoGmhGw6XLt2kUCyRL+QPom08RCrY2NiiUilTrVZwTI1ev4dhZgu/YX+AqWfHME0bXbeIgVQoFPJV/uD//GMWFxcJwyH9boe52TlULcYbdrBMg8Z+F7fSZDAY4HenGauWsUwLP4xQZGY4pRkSVaq02z2k0EnjkEsXLzIcDJgYH6dQKGQFAgrlShnD0pkan2J5GCN/ehZ1vMyN3/0qxn/1u3xlyeML6Ru8VLqHH0YMRJm6XMTPLVGdPkyn02M0HLG4OM/0TA1FpAx6A9bvP+RXvvQlHNfJELskpL6zxdLyCvfWt3FzLrWJcSQJd+7cYXN7j7HJaWoTRaanp5BS4dLlS1THquimDmlKo9Hg7t27RFFmZnb50mUWlpfRDZ3W3h5qkuIHKRsbu3z00cccWl1l+dAix48eIfBG3L59g9/51jdpNHY5dfIYYahw/eoVbNugUMzR7rRYWlmm1+1iOw6qqqEoKmMTY1k0SJSh6jMz0xiGjqaltDo93HwZYsH2xgaV6hhBGFIolhgOhly6dIEjhw+TCHBdlziOuHfvLpOTk3z84Vkc12avvs3C4gKKlNy7u8HS8gpXr1xhbm6OSqlCFESYtgWMINURwszMlNIsTzIzE9NJRGaeM+h2EKQcO3GcqYkxaN1k8tf+a6KghWnPYRYM/EEboQ2o/nwXqWr0JzZRBMSjGbzAw7TzDEY+pAqWaQIZPTFJDq4BgYciVKRUiJIoQ/4MM8s7Th5fFAEwDY0k8kmFgu+HjEajjCEgBP1RH03VMpfig33C0McwLVRVgyRFpClCUbAck+eef45SuXxwDgGD3oBut88PfvAGhUKJYqFESshLL34Rx7WJ4hBN10lSkKpEUVUM08iaY2mcxUoAUlUfx5aoUj2gPeuP7w337t3jzR++je+HTE6NA1mRq+qSIBjR67XRDR1FSHRVR9c1NC07TprA3m4TJ5dn0O8hkbx4+jT5okOxVGTt5u2scE9SeoMhQlUxrQRDxlRrRXQ7xVV9LEsjDAOSKIIkRZUSIbJztC2b8AAlDoOQamWc+cUlTMdBSoUw8NHULBM1cw8+0EKlmUN7mqYkYiej9OrzkGaNSlVTUWWWF50V7AnDYYbyPrr/STL6u6oKWq0GqmpkiLY4QAGkxLAsVDXT0YZhTBRErD94iKEZpKmKYRi4OfdxzJFuqiRpwsz0NFOTE7z5+vd5/tRJgjBA0x0++uDnnDp1HLeQR9MyF2+hKMQH0VGjQZ9er5s1HhB0Oz1qkzV002IwHGA7DorM9NdeEBBHCSmCsbEKipIgVSgWSmiazuXLVzly9BjHjh7DzhmZ3lSkpElMEsUYmmRufg5d19E0jf5giGnbGLrOd155lY8++pCT3Qi5UCOKgoy1oKoZgk+m11a7A3yR0rJVXMclCiP0OEX55FOi/+m/RSkVUFUTjQhFSVGlwDQ1et02pVIeP44J/SE3Ll3gxImTeJqKfCJK4zNT8vFz/zFow48Om8U2aei6xg//4H/h5PFlpmrjxBcmURKTvf5NVFWj0WyzU99nYekwYxO1LBpL1XBdF5KUu3fv89KXvsTlq5epVsssLM5iWzppEtLv7JCGAcFoD5FmDbIoGiKSgNAPSIVBZwD7Q/jKV77KxsYWg0GfcrXM/Qf3WT18nMrYODvbu1kUnWZSLJaJ04it7XXOnzvL0sIC77z1DqZlsjjn8PyxBVYWx1BkiBQJuqXT6UKnA7aroEkbzxugaTFBNETVS1Sqq9y4fYtqdYZO8yGWHhAcJDBEcUTgZ82QJMn8NgzVZHdnnzBRaA8V6q2I/ijiG9/4JnMzs1y9epV79x5gmS6uk8N2XLZ3djMGwmBAGiVMjFeRqqDd2ECM6qiGyKQQqiRIBbnSMql0COMU1TDwfQ+VlFG/RxwENJtNLlw6TxjF/Oy9D5gbG2P5UJ5iTsFV7cwJWwmQ0kARCYOBh6ZbKHpGFw7DEHlwjbQdmyhR0FXQNIU4hTSJSQOfhKxZAykkCX7gowiN5UNTJIwo5gskUYzt6EReSuAFeNGAvdaQy1cfYrtZw+ob3/gtRqM+KRHdThN1MmFyd5levsNufpP76zskXhc1HtKub/Fwa5vDp55H0d3/IMXrX93u39/4azeUxC+XRgLPjDD9m9KGnx1e+p/4eBY9+NFrcRw/09Xuyec/73hW1+Gz5/Tog1RV9fHjyf2fHEmsoOpZN7tYzFMtFw40KREiTfBGHnEQk3fyQEq9vscXvvAFkiRhfX2dTq/O2p0bSKlg6A6WWcQybG7euIU38lhZXmJ+YYbNzQekqorlZp3pdqdLt9NFEXqWiyc18vkyApW52SVOnz59QO2LKRSKvPXWW3z3u69RqVQYDgd0Oi2CYITvBwyHI9772fsZeuLHFAplvvzlrzxGCKMo4vXXX8f3fTQrQTVjpKaiKArTtSlMw0BVVT786ENyrss/+Af/kN/8+q9RLuV44403EFKj0xmxubWDYVh4vsfOzhZhOEJVwbR0PM9jfn6eSqWKrpl4nk8cR6yuHuZb3/odUgSWDWE0QkoDXbVx3RxxEiAVQS7vokqVer3OrbXbGIaObdt88skn3Lt3n5ybz+iLQtDtdvFGI8bGx7l67Rrbu5uZgy0JlmHw8/feBwws00HTFVQd9up1vFGIrlYxjTKl0hiN/R28oE1rfw9/NGB2usbuzi5xHNHab9DrthiNhvR6ff7033yb77/2A9qdAXv1fT69cYt6cz/rzKaSf/J7/4xCoYRpmriuhWnpdFp79PstdF1lZnYORZQR8Tjl4hyWniMMQ1QVdvZ2UXWNKI7o9XpUimUcy2E4HHLs6DHm5+fZ3d1lNBxiWjo//sk7eIM+g9hH+bdvkEQhP/z6Ce7+y79Lx3sf+fo/hrV/x63diE3rS8i5r2HVTrFw+Dj9Xo9XXnkFVVXJ5XNcuXIFTVNpNHa5ef06hqbjjwLOfnKWJPK5deM6pAmXLl3m67/5W8xO12i1mqyt3cJxbOYXlzj1wvPsbG/w/e9/l0Z9l+eff44rV64CKZqqsbyyzOHVwyzML3L/wf2MWhpF+COP0PMp5nLs7XbY2Wrw8td+k1Z7n26/g2nqzM3PcOrUSa5fv8rEZBXL1pmYmOBb3/pt8nmXCxfO8lvfeBlN0ymWy5nxThjj+yGXL19GSsmtW7e4du0ahq4ThyFrd25RLBUJwpArV65QzJc4d/4D5udrhOGA2vQYtqVi2ZJqZSyLXpECFIGmaRw5cpSVlWVs2yKXc7l48SJfPP0Stu2yunqYn7zzE+6s3eP8uUvoukGjWSdNyPThmnZAtZd0O32iKEVIBc/3+fn772WU51aLUZTFx9gqFCfmGQUx9eYe1WqJZmOdgaMTzk4gRJZZLEhwcnl29/bQ1Yx2S5TAAcUvi6WRRFFMo7HPYDA80CIXiKJMz9tsthAioxQrUuCHwUERAYahUyqV2d/fR1VVxsbGQMDu7g6hny3s4yRGEYJep0vgeeiKSpxEpGlCt9shTRPCMOTatWv8yf/zp9xZu0sQhIAgDCKSOCAlBpGg6zpJmuUcS00liiNQMuOa6CCG7VEj0rZtwjAkObj2p5/5+ed//ueQKqyuHsmQXsEBOyREquC4VkbJBdJEg0QjiRUEOt4o4b2ffUKqqERxwtmzn3DtyhVMXaXZ3Ofw4cPkc3lIIJcrZI2IyMqyE0MPx5ymZDzHaGihiCKGloM4IRx1SZOUNE6IohApFGzbxrJM0jhAiBRv5GdIi+UAZJTtKDygPR9gOQf32ew+lhkwQaYDVsQBepgItre3Mlp2ktGzM++AEYVCjp3dLYLQp1KpYlk2pmVl5+K4oEiElCQC6s19QPBHf/THvP79NzBUg9u37/Kd77x2gKjF2LZLGPsE4QgpU7bWH1DMu9y6fh2AXC7Hyy9/jWpljNFoRKvdyorrNNPmpmlKLueSz+eBzGTq5MlTDIZDojhGURR2d3f4kz/5NwwHHoZho0iV22u38LwhcRwQhR79wT5STfi93/vP+epXv8T4RBnNNA7mr4qh62iKwv5+E5KEen2PKIqxbAvSlNb+Pl//+m/y9/7ZPwVFkEYZAq5pEqFkMpYoyXR6iGxulItFSFIM3USEKaltMsi5xHFKnCbESUhzv85efYf+oItUBb1+h15vgKIo3Lt7B0VVUXWdZE+Q7P0HqkD/PQzHcdB1nWaziRr49Peb3L19A+P8CnZZZ6xS5u7abSamplhaWSWMU/pDD9UwGJuYwLUdOu0O83MLqLrB2MQk9x/cZ3trg+GgzYcf/JQjCxOM5TQsxcfVY0TYJ0lDfH9EFIW09ru0Wn3Gxmu0Wj0mJ6c4duwoiqJw5ktnSIRgcBAbt7O1y35jH8PMJAqzs7O8/PLLXL58GQGU8hPsbW/jj5roRoBQBgglIIxi/MDmo48eAiVSdZ8kFRBNIRkjUYbs9c6zOL9E3s1TrZSIohDTdPH8ITk3h6bpWQShUIjjmCCICMOE3iBEqA7Xb28yGiZcv3qLixeuMlGtcebFLzNdm2Nvb5/Ll64xNVVDVbNiMYmhvtek2+lhWxl7QchMFhbGKVEKQQS2lcex8zh2AYnGxsMdTM2msVun22ly4uRRVlYPU6stc/f2fdJ0H8+rM+gEKKmOoQs8PyZJwbFzCEXL5kICpmWRXWdM4ighSRM0TcvAhDBAkDXWRqMRYZitP+M4ztYcbh5Em3JJhVih1WzTabcysz2p4hZyWK6Lmy8yHHqoMlsDu67DcNhDSUBYIc3CBrn1Msf2f4vp+S+y3xugKYLU69Lafsj+7vp/3Enyn9h4dK/8LDMWfrFh1C8a/79CXtM0/R9+Eb/6s3/LR7SxJ7bNKDnKU/ndv+zxpCHT016Hv3A9flQcf1bA/DTEFkVDS4YkJGzuNTGiPrM/vkRimoxmZg+iTwRSNUnIUKSxahWpCEqFPHOLh0jjmHargWXp/Pjdd1CViOefP4FQUhzbZtDv49gOQug095oUCy5u3kY3TQadOlIqWE4O28nyW7c2t5iYLGFaOTRTIyShVKmx39ilXC5RrpQJo5gU9SBHzKY8PkO5Mo6uJdy4fpZ3f/Zzdnd3KRbKmLrFubMXKBRylKYTECC9MUASE7G1tUfeLfClF79IGLRptzcxNYcwTHnuCy8RxSmubTM5XmVqcgzfG9DptCkWKphmjnZzj2PHVimUcnR7HYrFPHEYs7u3h5uzUURKe79JvlAhCA/eX0tQlZTGXp2N7Xq2eExTLNMmDlLiuIdpOJCoFItFgnCIoQve/MG7nL9wmd/4+ldZ33zIsaOnmZwaw9Cgvb9HisKJE6fpdPaJIx/bNvGGQ6qlCs1GA6GErBxaZq+5jmMbqDhIVRDFCrrh4hZKxEIhjCIq1QlQNHTD5cSp53ju9Gl2Nu7ghxH5YpWJ8SkkCaNRk3zeQgjQNYtud4Bhaii6hWVlhlNJArc+9bl8bpeVI4somkYqMqMby8kT+h6WqnDt8kVIU+Iowsnlubt2k0+vX8UwHSZrC+zttpgfROTP3qC/1+I7J6fJ/6v/kkMTu9hX/kcKsoe99DW8whHMfI07d+6DgMnxcRr1OtOLyxw6dIhmo45rWWw8XMf3Qmy7xOrRVXRbpVAq4PsRg26P6elp8qUy5UqV82c/YfXQIiBxcxV03WZ3d4di3uanP/kQ1y0yPT3HzZs3sUwTKSWmYdJpZQtTRWb6uFptnB+++UNWD60yHPkYhosmUwbDLvOLc4yNV0nCGD9KuHPvISurhymWyvijIa5pcmd9iyiNGK9NMr+wjKJqPHzw8CDfNkEIhb16neMnnyNJJWOVMWqTmXlHvTGkWW9QLBSy73iQ0tjf5ld/5RtcvnyWickc5XKZldWjbO5s4xQsVFNDTWC6Ms7d+/eYW5xnOBqyuLjIfqNOqeAipI+hSaTU8cOEmblpTp/5IkkaYOoOg2EPzVQO0HqNKOwj4jbN3bskvk99e4dqdZJ8Pk+SJPzoR29zaFzl45/+hIWv/B6D4X1EEuMWlkg6PcprHYZTNr55D6HrhJMvYfSzCBHNyKHoFomWIISGH4agpMRhiC41dGHw6muvsdvYY2Zu9iCuKuEH33mV3d1dlg+t4I2GaIokVSRxnOkke90OrmMjhCBKMvfiUqWKoqoIVSKVjN0hhcC0bWIJMhWEfkB9dw9Nlfi+x8R4lY8+uUIQpIR+xN7eJidPHCKKU5I0Rigp3V47KzK0DH3N5B2ZqYciVJLYe2yiRpKiCokiZEa1FWmWZRoJXnrxyywszWHakiQJD3Jiw0zX2WxTyBWJ4+y+cf3qFW7cuM7c7BxnP/kE17V5/vmTxEGP77zyPRTVZnZhiZm5eWzHxg9DuoMB+UKBYX9AGsWINKTTHRD4EfvNOputHQbDhGK1zNr9TR5u9bhxe4PVxSmSVMGPEqyczXA0IolAN1R000UzbBRVww8DdF2j1e5g2hZCCAaDPqpUWL93n1KxghA6InVQFAM1hTQVRGmmr06SEfl8CUUR6FqGiJu6QRzG9DttkriHZRRIQo1ba1cplyaRUieJM21bmqSIKKRQKBGlCqee/yKTU7WsuWiYHF5dwgt6WJZJkgjiyMP3POxcger4JKbpcOTIUe7df8ho0GN2fpog9pAyIfEzpsNgOMSxLSJvSBSlgIKhm8RJhGUoBEEXlZA4CjBtB9PM8cnZi8zWxnFtG13T+f3/4/c5duQkqrSwTZt2q807b7/NkaOHCIMR77/7Y4JhwMREjVang5WzMCwXIRRcy0XXM3O9IE5QVY0kDsnnHNLLtwgOzWKS6QkBhsMhuqaTClAHPl6tQjsNSdKYOAlg7R6d+1t4f/83KFfK7Oxu0R90KI9VaOy3mK7NIhSVKErI2Q5GEJHaBuX5GaxIwfsjk+SainYm/gtkBR4/SCG9eANRcJG/8eJfXax9DtrwozXSk4vZXzRUfEJFxQtC5LDDv/5X/w3TEyb5sSppt8ZC42WU4z777SZ7+x2kNMnnijx4cJ/tzQ12traZqNX46Nw5jhw7xvjYGJ4/Yn5hDoHC+MQUuVyJ8YkaSTygtXMHVZOkik4UDjCUlE6rx2AkmFk+iV2epT/wmZqaQogsq9eyLOIwYdBpc+/OPWrT0xiGhhcOUQ2JY7t0210+/vBjTpw4wl5jm+3ddc6cmsM0E9y8SxqmGYtA1XGtlCOrJdJomKU2aCoJI1TTQrcn0IwpElVFpUO7sUGaxChqikyy/+MgDJCaQhyHWLkCI3+EWyqgmkXe/+gaQnOYmp7iV3/tqyhSYX55AalLVKng+R7TM9MYusH9u/cZDj0cW6c6PcX1i++RV0d4gYehgaE6CBERpRH9vk5pYozrN+6RL1RxCxpSQr8fMX9ohVypQi5XoNNqceP6ZU4er/Hp1V1y7iIfXfiUIO3j5nPINEQRKUE4Io58ZCogjYjjiMDzUGT279M1Fd+PkbqVZdIbOqmiIIWKYZiYlgkiJUwCpBahRDlIBAER33trnZkxBydnoZqCbm+ErRq4WsSdhy0OHV6h3e3gjTymxmf44OIF9ttD5o7PYqy7pHmPzcpN1u526Q26VMaK9Ltd7t24xZdf/k1C1QYF9NQjSgSKeOL7PhAo4wnK8oED3l+aaM+gACuZcZkQgEhBpAfilyd2/8x4mib2WfPyWfs8a/wiluuj/R7JNp+G0v6tN2x6sjA82OdxEflkwfq0/T7v8Z9xfn8F6f08F+ZUSGQakqBQLlX581e+zfOXN5E5F292BpQUXVMZjTykoZLP51BUSavVwrRNdFXjp+/+mKX5OXrdDs+/8Dx+EBKnMaVSCcu28TyPOI6xXYdyqUAYBtmN2bF45613mZqexvMe0d2SzI3XNFA1E1XLQtN//M7PKOZdpqdnMA0LTdNx7BwIjcGwR6XqImVIs1FnarLG4SPHGJ8YI5/PIRTB1auXWV1ZpjidEe6+/X/9CFVqTI5PUCkX8EYtNh/cYNhpUczlSXQbw7ZRpKTfbaOKCGIlMxnxPaZnZ3DzBRqtFq//4HU2t3c4fOQIhqVn8QKKyvsf/JyV1UOMRh4TExO06/eRCvhBgKaZ9HsDDMPm299+hVK5zPzcPHfv3GN6eoY4THBcG8fVcV2Lq1evs7VV55u//VusHFqm221SrpTQNQNDt+h02oyGA2zbxnYcEjIEI0kyM6RWq0W1WsEydEhFlmXYG6EkKqlIMp1Wo4FpaMSBRzAaEYchjm2RJlEWbSKgOj6G4xYwTIs0jWjVd7HdzOhnMBig6wamaQIKqjSQUkNBomk2qtQpllxM08hQa6mw32zgDXx0VXL/7hrTtWm2t3ZYX9/M8hwti/m5eWwrx49eeY0zuTJWu8+n/+jrXD29wsd3b/J1+6eE99/EOfRNru9q5Mvj9Dr7bK9vc/rF01y6dIlcMY8X+FTGKhimTi7nEkUxilS5/+AhYeiztLSI69psb23j+T5xrHD23Hl6/T7VSoWV5UMMRwN6vR5v/vBNTpw4wcTkOEKkHDl2nNn5WQzbwg99SuUyndY+t2/dIkkSPM/nte9+j698+VfRdJ3JqSmiMMGxXT764EOKuRzbOzssLCzQ7XS4e3uNickppJRsb++wdnsNbzRieqqGphlsba5TKZdIopj79x4wPz9PvV7HdXM0Gw18P8CwLDY3Nnn44CEbGw84vHqEnZ0mR46u4OZdrl2/weLSCr1uC021qY4VMW0T34uQis5oNMIwFFRNwzZsXvvua5x84Qvcvr3G+PgEG+ubpAimazMkqsS0Hep7e1RKBfYbW+RzmXmRoesZEoggjBNZuTaxAAAgAElEQVSkkmkoe902hmEzNl6jUp2gUChx9/4D7t27y+9865uo4T5SRBjzvw2+Tm18Ad0wqFQ1GrstCpt91GiI1jMonx3RzAk0VUXTLJJUICWEI48oylx+FSkzvVU0YGJqgrPnLrK6ehwhJLqhsbK8xKHVFfr9PrZlkyYCPxhh2zZpmmaxNX6AIiWD4YgwDA4cugeoMjMEMgydOE4ypEyqiIN4iVwu9xix6Xa7nDnzZY4dPYau6QcxKTkc18qQKyXT4ULmiowAEsFomLlsS0Vh0G2javqBvlZBqipRkGkOhaIcLCBiNCmQBzRPIQTnzl3k/fc+4v7ddS5fvsaJE89l2iwUxioVZmZmHrM7NC3zLBj0+1y8eIVioYLjuJlMRKSPpRiapvHaq68yPT2NU8ghFIUwjqnVauTyed5//yytTp9jx15AU1QsI8J1QYgEVdWJIjJnchESBAlBEGI52XVblZI0iTEM/UAXqxz4HigMeiNKpSKqmkMRNkma0O3tYlgWUpEo+Ny+eY5yZfpxykmj3jho6ipIKXDyOeJE4eLlq5w9e57V1VU6nQ6maTLyRtiWhVRERu8VkKYxY2MVhsMeEKGq0Ol0cNzMTTcKA4rFygHCDaWiy3DQwS1Wee3V7zE1OYWSAklKuTKGIjV6vS66ptLvd3AcmyRJUQ+yrvf2mth2njRJ8cMIN5cjl8tz+MgRbFNn5HkHn7VgdfUQhqETCdhr1Ll06QpHDx9ha2uL9c09rly9zurqYXRdpd/rMhp4/Pgn7+I4blbcm3qmi876q5lmsTMg7g8JkpRet0+agqZq6JpOnCToI59wYQqhG4Cg0+1gPdxCK+WR/9lX0SyLwliVom3jjzw03aDZaqFqGlJVUdKEezdvUFuYwS4UMQwb/8NsraN+pnh9cii/fhrl108/fV30OYvXJ3//ZUOQkorMyyPsNXnt3/4JujGgWlnijPjnpJ7CdniW5r7PyZPPMTY2iecHTExMMDc/h0g0PC9kbn6O3IGxH0nIztYWnXablAzhL1fH2Lx7hbGChWao6KYBQND3SFKF3iBkbGqZ9a0mx08cZm9vG8c2SZOYQX+AKiWGZWI7zgENHh5uPKRULLC2tkajuU+70yYhZXN7m4KtMTfhYpqZE7RIs6hreRBVJxSI4xCRaCRxTBCGuMUxfBzypTkgpt3YwtEVosDDtixCPziIN1IeMyV0FPq9fRAxrd6IWC1juJPoSsKh1VU0TcvmGdDrtqhUyqRpwsWL5zl+/Biz8zPsN5t4vkfREWjpEKEkaKZOmgqC0Ec1bJI0h2IUGQ4DqmNV9vd3sSwDx7FxXZcHDx+SpinDwRBd1fGTIYvz41SLkkrFROgWWw2PiaJNHMePpTePGB2WbQNppp2XgihQMLQse9cwsvgyqRkIEaNIGI2GB8Z6AiIdKSOiIKbdDKlUHMar2T1DYJAmmcN8FHtIcwI/CNja2sZx89y6tcaXXjqDZVrZOcUh7Gm0NwZ8619+i35nl1vXz1N0TZbnZyhNL2AVJwjjGF2BKBV0O11s2yZ5xN5ZTFAWk6xw/bwTSTwl5vOvwdX/vFTfJ/f5vONpySu/6Fh/q4rXR4Xi08ajD+ZJvekjxPVJzelnu4BP08p+Fml9NB5t++g8noUEP23fJ4+ZpAqSiFRIbt+6g50G5N8+R/TlLxKpGqZrAgmGYSFlRv0wTBOpSTRDR1UEY9UKo8EA0zQzgw1Np1KtMhwMCYKAUqmElBIvCOj3euRcNzPT0HVMM0elXKFYyBNHIYauEichUupIqRPFAYNBj6NHT3D0yCqe57G5uUW/N2Bvb487azt8/MknGZrrOowGEfn8BPmiQ851UTWJ49q88MJzlAoFErtJr9fn5MKvo0gFI1em0++hqAmV8Qq2U8R2SkjTIooyI5M0Cum2GrTbg0xHm7NRDR2paiiqijfy+eLp04/Dqkeeh2PZWTi7aWR0uCRBE362KFXUA3qihqpqnDz5AtVqFVXN9FLb29t895XvcWh1CU0XRFHEzPQcK8tHCMMsY9a0NUajAa39LmkiefW7r7C3u83i0hKmbROEIwqFPDs7u+TcHGmSMhgM2G9s0e01M3dPw+Tdn7zF9NwiUkpUVTAa9hFpSq/TI593IYnw/RGmadCs18kVigeUS5X1B/fYb9apjI/T7/cxDOPghpfy8OFD4tjHdkyCOOTNH77O0tICiqJQKLgoSoqmKMRByI1rnxJFmcZuZmYG23K48emnTNZqTE9N8/P3PqCmWTzXGCK/8av8/orN3/2n/4jJ9T/g1yvXGY4C4tmv8dGFGxQLORbnZ+l29tlvZB3L+cUFbq+tcfT4MRQFoiCg2+3y0Ycfc+bMGSYmJ6nVJgmCgI2NLeYXFrhw4QKnTn2BmdkZlleW6Ha77OxsZ1pW3eTY0eOsra1RLhcwDCOjPUcRlm1SqVTY2dnh5LGj+J6Ppmpsb23zzb/zd3jrR28xHHlZ8U/K7s4Ox44eZbOxy4kXngNdJYwjLNtCIgjjiJ3tHZaXlxn0BuTzBa5fu5bR3XUNQVZAXL12HU3VyOVczp09x3OnThHFEfV6gzhIUAR8cvYTHDtPkgTkCg4PHq7zzts/pjY1wfr6NkImGKaOKk2ajSYfffQBL734BRJg7dObBKOApZVD/Pjtdzh+/ASXLl6mWh1D1wxGcZjp/1yHyxfOYhmSifEyqmFni/8wJEWAkKiqThJH6JqBabn4YUwQJqi6ytj4BGtrt4n8Po4WoKspS1/9XfYbdbZ27hPTY2d3nVw9RalNcPPUAtuVMeyZGmPnt4incthOnjiGwPfQpIoiJVLN3IJH3ojBqEUuV+DEyVNYho0QKSiZoYxUJFJR+aM//GOOHDlCLp+Z2KiaSpIkOI79+Dpq2xaKyKjUgpRePzM1k0qmVWw09nnjjR+yunqYx1opKbEsG01PgIhSpcDKoUXyBRcptWz+pJkuVcoMnUrjGFKJFBkVTZECTcos+kWqZM67CcHBdy0+cBwWaUwShwipEccZdS1NFG7cuE1tcobJySmmpjJX0uFwwL27d6iUy/zhH/4hx08cY7pWo16vMzk5QZoI9lsdXnzxNKqWmWBpmo5pWFy/njlTt9ttZudmMw1t5uJInCQsLS8xMz+LYdlUKwXcXEocDpFqlu2dRBI/8BEypJCr4IcRUigYpgkiayCYhkkQZFErj6i/jpMnIT4whMnyCX3fw3WrRD5IAZqSYjhFhFAIvIh8vgBpgpQKQeiRppIwjNir1/H9mOXFBZqNBqZlUd/bI3cQ07a5voHvj7J4kNCnWCxiWRmSlcsXUdVs4W1bNr4fZAV8GOB5AxQlwYsUzp09z+z0DO//7D1mp2fIl4sMBz2SOELTs8/RMjSSJKHd7vHqqz/A82NsO4dlZc7GhmmRHEQxqqp8fM2t1aYwDzTRQpW4bo4vvvAC9b0683PzjE9OUyoWmZmdJopC8rkcrf02d+7c5ciR4+iGjpApUeihSB1VqsRhTK/Xw7y3zYNuG1Vq3L1zD8Mw0XSNIAqxgghvrIBi6BiGiWM7KGdvEs5P0nxhCb+zQ9RdRzVKWKaJaVrYjotQFAaDAa6psXHnNgtHVpCWDbEg/Dhji6ln4qeus57FfvuLDZ7+9NOO8+jn56MPKgiRosQ+Vz/5gN7eLrMzz7MwX2H8w9+hXbnIKBhh5Sdx3CK3b9/hwoWLTE1OEEUBWxu7TE3XDpyLY0LfZ3PjPqQpS4tLbG1vc+zYcYIgpOSCP9hHKAmpUPCGA3Q1AZEyVpthEMTsd4ZYlkEYBFy6dInZ2Vlsy+aTT85SrpSxLDNb/zg2uVye+vY+aSKZn1+m1e5z/foNwiih6sQszlaI45Cba2uMVcoEwQhIsyIpzAwdSZOMEm8aaE4e1SyRKDrEIx7e/ZRK0SQJfaIwOZBLpCSQ6cFR6PpFgljFdvK0Wx6dVsiDO5scO7bKxPg46xvrTE1O4fs+ly9fIpdzSUkoFAokScz29hbFYpFC3mHY3sLRY4LAAzVz+lekitQKCK3AjbU95uZmSNMA2zKzeBuZsL21i2XbVKtjSEVy89MbXLuxh2MOKeeHuLk89UbC1WtdTq4WUDWZRa0dSPCCIHj8e0pKmoKiJihKggDCSOXtH1+jNnMU6GQaYVUSRzEiURiOhihqAKlA00yqYwZx4lEsltnZatFstnHzNv1+myvXd7Esja2dXVYOHWZpeRkBGIZBp9Nmr71Nrb+MfVgjPZxyaGkGNfVpNzYJh/vEmCwcex6EhiACoWKZ1lMLx0ff/s+jec3Mlp+oKf6axesvKkZ/2Vx8Fmr7y477rPf6W1W8wrMNlD772ucZzyown3z9SZ3sZy+4v+jDfLTNswrihEfFq0KlPMb5n73D0ie32bUF08sr6KZGEEVEYUoSBo+7SKqaIQKtVpsffP91Jidq6IbB+YsXGJ+chBQc10HXNHr9PkEYYtkWIoX9/TaOm8OyXSzXpdft4Q36BxpVn1whD4rE83zSNMqy6lSDQb+NaVn0uj2GwwGHVpeYnV9maWmBKxcv8+DeBsXSGFLqDAZd7t67y8T4BJquZeBFHNMOH9Dt9nj1T9/na19/GYSCpmeaLlDp9T1MJ4c38ogOKFSmYTDo9fjR2+8yMTVJLp8jTSGOE6TUmJ6aIIkT9nbr2HYORWikcbaQUaQkDrO82nq9Tnlsim5/hGFaDAb9rFNfKqEbKo3GHpVKlWKhzOT4BEKkvP/++5QrFUzDIAx9hCqJY7Atg+FgQKU8xmjko+saZ156iXK1TIIgjgM6nS4T4zXiKGVjfZNarUY+n8fJ2TSbXeq7+6yszFNvtGk2GxTKRUzTptMf4JoOt9duUyzlcBybbrdPoVAkjkNs26Hb6ZPP5cgXcuRyhYPuakKz0cBxckxOTCFlTHQQZ2EYOm7tY3R3k9Sbx7ENhoMhEpU4Tjh37jwnTp2i1+9TqZSZnZ2hWqmwvbXJ8bEpzHPX8f67/4J/ffs8/+LkBqOz/zNJOORWr0QjGWN8YpJOq50ZPnX2mZ+fI18os7O7S7FcIoljyuUKt2/e4sH9hyRxzBdeeB75/7L3Hk+SpOmZ3+9zrUKLzIjUmZWlq0u0nulZYMQCK7AzWDPSeOCJRp7IM8/kiX8AzbjHxQLYxYAAejB6MNPTeqp1VYvSWTqrUovQ4do/Hjy7pqdRPWgssGvkLr0srLIiM90rM8Ldv/d9n+f3KCqbG+t8/PEF7tzJvcW3bt3iyaeeZG1rg3armS90w5BaucbW1haj0ZjXXn8dyzIZjYZEccBoPMIreIRhiKpo1BsN7t6+RxQlbG1v8cSZ06iaQKjQbk1Rb9YplgpUq2Vs06DRmkTRNBQ1p8Q6lo1ra48yWg3DxPfHvPbKq/z+P/993nn3bZI0YXp6isFwSKPRZNDv06g3aDabfPLxx0y2JhFS4fInV7EMI4dNtWcxDQVIGY99kijDsUy8UpHp6Ulc1yaOMuq1GvVaCSRcuHAR17JZvb9KtVmj3+mysLBArZbH+Ny6c4eFpUWEgCSOmJqaxHEcwjDEK5aJo/AA9GKg6SahP8zz/9IMw7QIwxjLtkhlhhQqCwsLyHSEFmyhairG4pNsb93CtGA46oJeYOr9bdxhwtZiActI8a2M1rtbjEoawnYYjX1G4xG+H6ObJiDpd/fxbAtNtRAyw9JVdDVDKHmUzHDo8/qrrzM3O0u1WqVcq4CQBGEIUtLr93EclzAMcW2H8WhM4AcYet5EKJZKuWxOgSROee21N9nZ3eGJJ54gTTM++uhj7t27j2XZ2FYu8TUtHQkkaYLCr6ESiqoCCqqiEQRjDM3k4sWPePF7LzI7M0WpXCaVECcJmqIgU4mm5lWNoqq570pR6XY76Lqb03h1g0q1wuLiAktLc8zNz5CmMYh8QdKo11A1la2tLcbjEa3JSSzLIgwDWq02W1vblKtFSmWXf/fv/oQPP/yIpcWlRznEs7Nz7O3tYls2e3v7mIaRy+a7Xdyig2aYfPfP/m+m2m0sxWI43AXpYxoFFNUgySJAJ/KDA8q6xmA8xNBVFEVDyPz3o6gC3VBQ1byxGqcbxHEfyygjMxVF0UHJ82AVYaAaOUxJETr93oBf/vLnzM/P4tkWaaKwtv6Aer3M8WOnyJIYx7ZxHTfPPLdtEBqaqmLoGkkcYR00NqMw4MqV67z00qtUKjUazSoylcRJiqrlDYPN9Q1KpTwm5YlTp4Dcx+wVvTxj3VBxbQtF0XILgSEIxiGvvfoGaQa7+/s8/czT6KZKhsRxXBShs7GxTbHoHhClJbqhEYY+g0GPJE5wLB1/PEZVFSzLYtgfUGuUUdX8vpykKaE/5MjRI3ilMoZpY2gqZBnDsY+uauxu73Lt/YtMx+AuzCAl9PoDXM+lWPQQioo5Dslsi4GQj5rzfHwT8X/8r9QOH0IjYX9nnRs3H3Lz5k3mFxcRmkYGKIZGOupz/dIljp55glTXkSmk7x9kTz6b/tY10Rcvqn77px+3vy9TvGaAKjJMNeH1v/kJs5NNwkBjrncGqzPFnnWNWmOZYZQ3HCwrLxqbjTpJFNLZ3ydOYh4+XOXypUscWlxisjWJ47h09vcZj8dMTjZzpdu4A8mQkd/D0FU0QCFFaDqKYeGVmjQmpokTBdcrcWj5KFJCEMY0mg384QjT1Ol1u2SZ5Ma1FRbnlnFdjz/54z8mDnySaIxjGzx1qoVrSnRTp9FsoikSKTNUVT3wyeeDEs1UcbwSUWZhuA2COLcnZON9CrYkjYeYlgmKjqbnfIMskximSRBG/OTVy9y+u8tUe5b9fZ9Od8y5c0/SG/SolCs5uf0gz3VqagrHcbl75x7NZpOrV6/juh5bOzvUakX2N+5A1EPXVUzbOcj1lty4vcPCkSdpTy1hWgAxYZAw9kPCeEyWSGzHQUq4eOFDZCoJsx6LM/Nc/+Q2M+0ZikUdzwuYqHkkSYiqKo9+B6apMvLHKEJBSsgkoOVWDFUz6PQSPrm6w407GxxdqqMIiaYryDRFUVQUXZKmFggdw8iI4yGmaZMkCYZh5MV6uUgYRZRLFVqtSRTVYHNzm4XFBXqdfe7cvkmSRgz8LqWkjmIJ+rPbrD+8y1tvvsKwt8mRQzNsrO1w+MzzCKuQN2jzELjffE9vC+RIILzHnVtfVJM85rm/Z/H6D9n+od//+e2/quL1cZ7Uz27/kOL1i0BQnz/Wf4riVdN07lz6kPabn9CvWZiVCl6pcJAVp9Dd2c6nvVnupY3CnMRZrdRot6fJpOTsk+fQNA1V0+l2OwgEu7s7NJtNOt0unuNRqdQA5ZG8eHtzkw8/uMDDBw8pV8qoek5LRaq8/PJLLC4uoGsGqiaJ45hSqUylWqbT2UOzMgxdYX5mnjiMWN9cozfYZ2FuiZWVFaanp8nS3FSv6TrC7VGuVDgy97V88ZCNiEYDZJRh6nkXOwiGWIaNaVoIodLrDjAMk1Nnz2F7NkkS5/tTNFShItOQQX/Aq6+8zuzMPEJouKbK5tYmnucSBj6KlFQmpohSMEwHyzYhyz0VQRSgqgLDMFBVjTCMUURCkkiOHDmG57lARpoFmHYB23RzaEYS4zoFOt0O49GASqXK9vYObrFAHAWUSxU6+wPefPM8G+sbKIrCRxdvgKqSJgaVcov333+Hqalp2lNtUpnfHL1SjWgc4hVc+sM+nufS6w2wHY84GKJrBoqq8e5773Pi+Il8IRSGaLqCZdsYhsl4FOQ5rU6BMMyolmv46RVGozFl60xO0b1xk831be6t3ueJ009Qrtdwi4X8Rqmp3Lt3B//eGvaF62z+D19j1P+3/G7tOlkcoE4+za2+Q3N2mWqjQdlzWV9fJ5MZS0uLOK7Lzu4+3V4Pz83hT0kYMdOeRRUKszPT3Lh2jcGgx3DQp1DweP75r/LBBxfRNI1Dh5YoN4uomuBXb75BZ6/D++9+wNz8HDMzcwghOHP2DJOTDfb3dmm32ty6eQvHzqcPw/4AP4hZWj6E6zmkMiGIfNpTk1y7eo2JySaqqjL2B9xcuU7BLvDWG28y6vXpbu2yt7bJyu1r2I6Nomq4rott2zzxxCl+8dIvOPfkWSYmJ7h9+zYzs7P0en2Wlpa4fPky09PTNBoNXn/9dWzTRlcM9nbzgPcwijFUhb39LY4eOcaVS1fJkphyrcrM7CS6rnHj+g2iKOSTTy7S3R9w+uxZdEWlUi6xtrmOoWpsbqzzwcULzM7N0261sEwDVVHQFIU0Tbh58yZLS4fIBIyGA4qFEkmaIoWKpkrWNzao1upIIVA1BU3LQUS5qD/D1GKizgMsq8CuucD+zkMKbgnXmaQ2MYPz0UMQCt35hKB7H3QN13fIKiZBnFCu1DFtE8etIkWeNbi5/hBTE1hWDUOD0O8Shd2DrrMBwuDdd96FNOP4iWOgyHwaZlsIwHVc4iTPeQ2DANM0kDK/JgGM/ZDAH2MYGv7YZ3Z2keXDh3EchzTNaLfbtNttqtUaqjDp7A946RevsLB4GKHofO+vXsTzXErlUi5z5SDSRsDbb73Lyo3bPPP0UywuzZEdyAE1TcMf+azdf4BlKXmzyLKRUqApCt//3l9z6cpNTpw4ga6rIA8KICUmzXJrwacy5TgIGI2GLC8vMzszQ7/fw3FsOp1dTMOkUq3iejZBOGJ+don19Q22t7d57733iOOYe/fuUyoWKHhe3rTsD3BsB1P32NzepFCq0WzMsXL1ATcvX2H5SBspByjCRtUcMiRkuVRY1TRsx8W0HXx/hKZqqEo+0Y3jgDSNUVUbTYNIXiOjTxrUQEKU+mhWnsmo6S5pGpDEKYrQSdOM1197mePHj5LFCT/8wU959tmzKGpKwS2TxDG9Xo9ytYIQIoclJYIf/+jHrK3e5+jRI+iaTpRmDHsD0kTh3v01Dh1aZG9/G9fxMC0LRdV5+HCN0WDIRGOS7a1NDMOgXm8gVMHUdBvVAE1V6He6/Pmf/wVPP/NV+p0tOp0utuNy6vRpZudmsF0Lw9DQDZ0wjInClB9+/8dMTtbzvFwy0jQHgxWKBdIoJI1jLNPC0HXu3LvDz378IxYWZimUXMIoIpWCOOhTrtQYjHwkCqGfx30IRWU8HBGFMddv3eLYVh/jv/2nWAMfw7SoN2qPaM7aYAhRwt1ojO3Y6EEEF6+h/8//DYFioZVbeLPHmauVWFhYIAgjwiRBKnn25s7qLZqVCrWpFpGqoUqD9L3c7vTbitf4f/zfyH74Gup3vv6YL/iCxdYXbF+2eI0laMRc+uBd3nr5JerlMtNOlenL/x0PtQsUGpPY5Qort+4zNzvPxx9/zP7eLl7BIYoCsiwmCMecOHWSWrXG6v37lCtV+v1cjVatlpFpwvqD+3hFh73tuziWCjIji3wEBnEiCFONcaCg6SUsp4pleeSS7QE///nPc/CYqlCvVdnb2yUOYxq1JufffpPt7XV+71tfo1KymGx6TLerFKwQxxSkSFAFCgmKkqvCcoo2eWKDbuCHKpXqMk6hjaoaRJFP5m9DOkQRCUGUILTcFqSqGqqm4Qf5pHF2bo5a2WU0Tljb6bM98Lm59hDPMLh//z5379xlYWEBr+BRLlURQmV6aprd3X0OLR3CtGx6/R5ZGjDYW8WzJKad26CEyNDNEqmoUG8fIs0gzUbs721RcGpYtouiwrA/xPXyNcb6w3W6nR67u/uUSipnzs0hZA+SIbWCSZSG6Ae2tSzLG5KZDDHNPCZNEbmCbndfEgYZnlckloIHW9uM0pRj8xPYtkUaB7iugz8eg25w9VKHJBaYdoRtuqRp7s9HJJTLRcIwJonzKC6AcrnBRKvNcDRkqtVierrF7u4WC4vzuHGVuxu3qX1N4/33zlMpOYyHO+ztPqTklDDr8zTnDoPM4JEz9ddb9Ec22RUN9dkvTxv+/4vX/48Vr2ma/u+ff+7TbsynHz9O9vu47XHF72cL0b9rX5+fwH72b/hNaNMXHf/TzwtSsgPws6opdOKU1l++ghyMSRpFvOokmaagmwmaYtPrDQgDH5FF9DrbJKEkDnMwUH/QI4kSssRnZ3OTfqfPnVt3KHpeLkHb3mBqaoq97n4eoaEI9rY7bGztcePWXSZaU9xauUlnd4+LFy4y1W5w5OgyCIFqaAhhIoRgr7PDhQsXOH/+bZZm25iGRq+3Q6NZp1lvMDs9j6orzM9MceP6Fa5evcLSoWXSOAU1RZM2JCaqJoiDlJUb97EMj+3tNaJgRNkrkqT5zUA3DFQ1IwyHJPEYsgTX9lCFSq/bQ9c0hqMRxVIV1y3xxhtv8PTT5xiFPvVGM4+l0A2EqoHMswVHgwGamge/x6lEyhTNtBBqTsd8+OAhoT+iPlEjUyReoYiu2txdeUChqNPv7+EWPFIJqmHi90bEcYpXLLHf7VEsFA9yBC3+6i9fRFVV/tW//gOcos1EvcitO/fZ3Nni8NFFZmdnqbfy/FzSlCwMGOzt8t2/fpE0zmiUy0RBn0ZrkigR+IEPQmU89CmXylimxV//+Xc5cuQIbqlEnEmSNJ8oqUZeeCVxTG/QwyisYVkWOw8sgtEITTMIU0GSZJw9fZoP3nmLqldgfX2NUqnK3cuXWK48JP6DCMe4SKa6+PWnKc6dQyoqH310keXlZa5duYxnVSgUHAqeyfVrV5lqtTGdItMzszxc32CiMcHdldvs7e2wtvaQhfkFXn31NU6deoKlpSWcUonNjQ1OHD3C6oP7NCcmQNNR0Cg4HlmaMr8wh4IBEu6v3qdarxLFMbppoSom77/7PmdPn2E0HiJUGA8GPHx4n9Goh8xSoihD1yxazQa7+x1K5XzSHUUxvcEI0zE4duIwKaAYHhAzOzOD69poqkAVGcNRn+npaYqlCleuXGN58RDb6+u8/vp55menaU7UiJKQGMnC/CLlSplrK1d5+rmnWFhcpNvbp1QSFIstrl67y3PPP8nM7BSKarG6us7mxg5Lh6NFHf8AACAASURBVA6zvb3PvbsbnDhxmM5gj1qlyK0bNzh+6hTVcpEgiplsTXNj5RZb25vML7RB1chUE1U3Kbg2Mg1JsgxdUw8KuhGmaRClPmurW5SLRfr9dRzPJYg0LCVGKg46PR7cfo+CKgCNrP4M25v3sDyT0sRx2svPwOvvEQZ9hPUO5mADdeZ3KFpF9CubeEuLSKGhajaqKvLjqwq1chlD15FohPGQcTCmUJzGMiuE0T6qKpifn6FSr+RS0YcbeMXcqx1HKXEUE/k+rmPTG4wYDEdUKuW8caOqpFmEph34T7MMIfIoGNNU0U0Ft+BiWi4IjURGOK7H7u427Yk6STxmbv4Qpq1i2xYqJlc++YSJRolhELO2tsto1OP555/EtuyDaAidNBOkKfzoBz/l1IknSNI8f1KQ3yNOHn+CxcOHUE2VIPIPZPM+KQqKoqMIjUGvRzQeYjoOHPAZhqPBQVZjyHAcUihUsUwNhZiyV6E32OfI0WXm5uc5eeIUluHSqE7w2htv4Id+XnQ5FmN/hKIpyCji4d2bFByd23dX+MY/e5ZuZ4CpGBhaTKaoIEoI6TMa+2h6nq2rSIltlfFHPqPRAE1TMQwLVbHQFEmaxKRsMx6PkVEV0zExTBcpDLJY5g1CJW+mIjKESDlxbJks8lFUnXNnnyIMUmQG3e4maaZx+fIVjhw5Rpyk6IZBnARouoZu5sCqKJFsbGxj6ykKDjdv3eTcsydoTs4g4wFSqnS6PapVj3qtiqlZ/PinryKUlHa7Qb1WZDQcoggNw9IYjQM8t0q55NIbDWlMtJldPISqGcgkpeDmmZn+cJRDp4Tg2KkTCCSmaSIlmIZFp9tDVXWSJAOhoKgKYz8gyzIy4bJ85AiZTDEMiwvvfURrpoV+ALH6sz/5EyYaDcIgYNDroqoS3VA4dOwI2uYeMo0RWUax4CIQZGmGBPTRGGmavHbzBq3WFGYqUFc3kP/Lf4+igJAhJgn9OEa3HVShMeoFjPoxrlHi1R/9e373X/4BqeaBVICM9L1fT16/aK2U/vDVfM3yuOJVHuiq5a+X61/0+HTN/RsWr0f7kAeAqDzeyYwSdNPig/c+YOfhPb556gUm3/5XbKUrFI+VWd3YomgbZKaJa9kkYczCkWUsx+bBvfs02rNMTE7y8ccfYxkmS4uHyaTAcRwGowHVWhVFNSiW6wz2t7DMDH84QBEqUhXINCROJV6xTncQsnL7DoeWF3n7rTdptZpYlkm71aZWqxHEKfcfrFMsVYlTydbODsfOHufDty9xc+U+K3duc3f1Af39AUXXRrcsNF2SJVEOhJMSVYVUpnkETZyi6ibFcgtpV8iEwdjvI5MAS8uVElJqaIqKbWgg86ixOAoQZKiKkkclEbC2toZVnCSOBaePHmVufppjx49x7qlz/OKlX/DE6TOsrt5jY2MTzTCIowiRCW5cvs6pM8co6j6mNiJN/Py1kwlh5JOi02gto1oelgGdvR7lUgMpUuJ4xPbmBlGoUK9U0RVBOO6jEtMf7tGueoSjEFQ7v/YYAl03CUI/lxxrCpZtkZARx0pugxsPUVOdzZ2UDz++xcziIUxD5dhik5PzZXQ1QhFpTlaXgsHQRxEGtp1SKuWWgzRNCaMEFQ1T04hSycZextsX19nuRly6vcPaZocoGHH42DGGowFBFDEzO8/6xjalqEFqRrzT/QUIwcLiLJ+8/xZLrQnSOGKi6jC1fIqhVkYnPtD8/voESN/XQfz6XPvNQkE+9iFQ//aZJDKEkhfh8uAPyHxdeQB3+vTxaVny9/W8/jZb5W+e/p+xbD7unP/cfv+LL14/P3n9bDTNF70IX5aW9Y+5fZmp72/7/zabTfg336UfBDReeBZhOaAIVDJMy6JWrzMcjTAti2q9cYD1LuAVC+hmDivyXIckzUiSjFMnT1Eul7h95xaO4xzcTOUBwVNw/9YKi4sLLC4sMD0zhWHoPHywSrc34NDyMoZp4PsBe7sddAVMI7+xTbamOHHyNIoU+L6fT/lsGyEULNNA0VU63T3aUy10w0QzDGzHRUkLpIFFv9fDMky2tnZ59bXXuXnrJmkmebD6kKnpWR5ubHP5ylUWlw7lWaq2Q8ErYJoWcRTzox/9GNvOwVH/4c++y+nTZ5icnOTkyWNkMsHQBUkcI2XGzZVb+L5Po1HjxvVrDPo9JicmkFmCrqm5xDJOMA2DLM0oeAVefeU12u02E5NNwiAgy1I81yGVgihOMU0rh9AIgW2bWLZJnMSsrz+k0ahj2ya6pqEAy8uH84WzaaFqglZ7ivn5BSzdwNRzT+BwOMAreCiqztrGNk8/8yQnjp3AMDQMU2M48vG8MpAdLMhzsEyh4FEplyhXKsRpiqbl3k9FKOxsbWKo8N3/8KcsL8xhltZRUDCTZd5/5x1OPXGGX778Khsb6zzzzNPEUcjY94mimLsP3uf4k6vIlsKt1GGlUyTRaphek/Nv/oq1tQ0WF49SLDZJU4Xb9y7xyeWP+J3f/QZJorKyskoihzQmqpTKHo5jMDPToli2mVuYYewPKZYLzM7NkKQxu3v7NKq1PIc2DKnWajl4S0pc26bb7XL16lXqjQbvvvcOTz/9FHfu3qZcrlAqFolCn6l2m3v37rJy8yZCUdE1E8d1WVpaQiKoN5r0+gPeOv8rTj5xKp+2qwoyzW8q9+7dwTA0FheWEELh6pUreF4B23JACra2dqlWaly/epm5uXlmZufZ2d0nCENq9RaXL19mNBxyeHmZLJP0+zHDwZhLn1xmZ3uX48ePMRwOUNWQjY19QKVcKTLsjxFCYXq6TbVSZGtzjTu3b9JuNzl66gTlWgXPcWlNtHCLRVZX72MaudSx1+uxsLhIEozyJowKIgvQiCD1ccv5glggEEIFRUNJLepNg92d+0w2DpPGgiTdQ6YCRXeIgwEyDhGRT5ZKSku/h2lo9MchTmmRYtFl9LPXCcMx4/p67gGff4G7/U3mzz9kVFAQlo7MsoOsvZTA9wmDgH6vi+kUMUwt9xUrBlEco2iQZVAslbAsG1XTcD0PTVWIw5if/vRntKfaFEsFesM+xUIJXdfywljXcwCNkgNK5EGX2zTyzGZVU1FEhj8aIpMYTUg0w0ARgnYrhx8pquCjDy9RLuceyw8vfsz21hbzC7M4rke5WCFNY2Znp9A0Ayky0hyJi8wyzp45g5QRf/EXL3L+/Hs888xz6DokyfCAKivyyesBkEVIQRJn7O91uHDhQ/Y6XZqNOjLLQSQyS0mThM3NDXRTQ6YgZYwQEf1hj431Ie32DKZlMxh0+OjD9zh56hCHjxxncqKJaWqoqkYQhICkVCyQxAnXrl7H9Ur8zc/fYmZ6CWSCZUOU+Ag1QxF6zhJQNeI4od8foBs2hmHwwx/+kMnJSUzLyhdBWUImU+JsAwnEUQ1VAesge1cRMofNpRmqquVSalXFc3IfdpCkDIYjCuUiSRpTrpaIwpijx46ycnOFRmOCIIy4+MFFdrZ3eO6559FUHZlJ/uiP/oharcrCoaMkSUS9XkJBcu/ubeq1SR6srlGrlbEtg/v3HjA5NcHUVJNC0SJNI+LEJxj5CCWlXK7Sas8gVAXXMTAsi8FghG3bvHX+V7Rbk3nMSZIcXMN1rl67QblYwLJter0eWZrH1kRRyHg8olQq5VnGSYznFZiem0XTBJoGqlBoTUwy9kM8t4yh27QmppienuF7L36fmdlpJiYm0LQ8n1OTAuX2Q0StTJwkhGGAaeVNPH3oIy2D1lOncT0XpduD1XWU/+kP0TRIs5DdvW0KXhVDN1lf32Rne4tf/uInHDu6iD/cZ/nkGTJUpMgXuo+yJ79g8gr8Ouf1McXr38v/9tgp0ueOlWUMh0NEwSTIFJaPHmH5SAv7Z+fY39sim+7hVVtMTE6zt7ePWykz6nZxHYdipYiqQMGxub5ym6nWJJ7rYVk2/cEAXde5dWsF2zZxHIdet8e7775LyRMocogiY1zHQdUUkjhG1SyCWFCqTTI3v0wQJyiqim6YfPjRR6iahmXbCAT1eh1D16lUKqyvrbE4v4CjCVQlZHq2zmTdY7LiYZopFy/eZGa6dCD9VjFNgzAK8uivwZBer49dKJKg0+mHaIaObcJosEMSdBBkaGq+FhmPho8831LmvtlOp4fjmZiaSqlYZ22nT6c7II1jSqUCpWKJCxc+4LlnnyEIfRr1OpVqGddzCAIfgWTt4QNMSxD7u2RxD5lFudpHNQ9irQr4kclglOA6Fnfu3KFSrqDpuU9+aqqNYxsYpkKvt89oPOSjTz7mqaePszg1xfrDDeLYx3UVHDsmDHMAU4YkThLiOEWJRuhCRdcgI8Z080SIXm+bqelJ0jSgXLBIwjFewSVOogM4nMbm5ha1ahHHNjEt80ChqCF0iW5YjAYhaZqhqCpJEjIxVWd3fx/HcTFUk0OHT+J5Jrs7e6iqytUrV2hps4yCIcYZOPv0U6xcv8J00+Pi+7/CcywG44hDZ55HWhVU+bcL1F+fa8nffa48Oj8eA4IVv1kP/VY7pPztVsnHHvPvsFV+0XNf5gj/1RevjytUv4h69UUQgv+Y7csgqL/ssT59Pvu//gxfCIrPnEHoRq6Uz1KkyDPbiuUKpuNguS5BHKIbBrploJk6hXIRXdeI4oS9vf2c9isknc4u7akZPK+Apur4fsCVK9eYrJZQVAVN1xACqtUKpmVx7slnaLUmD2S0EZ39LpqS511Zto1QdDTD4d233qbdnqLdbmOYOmEY4bgO6UEYu2mamJaF5bgILQ+ZllmGY9mkSYztVXj6mXOcPHUSyyrSGwwplFwct8SJkyf58U9+wocXP+T4sZPILGPQH9Dv9zl27Big8Mbrb/LNb32LWq2Gbigoai5RfLh6D1URJHFCqVCkNdnCH4+olstMNBuEgY/MUpI4JopiTMtE1TSC8ZirV64QRynHjx9FCMl4NMQ09QPkus3+fpdut0u5XGZra4NypYRhmkRxyNzcLI5jkaZ55mQYBKRpcgD2UOn2uliWxe2VFTbW12k2Gii6hqapCEUhk4JKvUkwHrCzs0uz3sihKJqGzFR0Lfc793qDnCBo6QgBpm0TBAGOkwMBdF3DcguYlkOv3+fIkWNEYoVet8PmTYP5hQU++eQKWzs7fPvb3+HO7VskSQ79CdSrLJ/ZQL9fY/SVb+JnJnEQ0e920S2VI0eXOX7iJPfurfLg4RonTpzA9iwOHTqMVyhRqVZotycolwpwgHOJgoiV6zdoNiZ49bVXqdXrKELNc+Tas3Q7+1y5dImlxSUGwyGGlUdVjAdDrl65wonjx9nvdLm/eo9vfPMbpGlCu9XCtmziOMF2TASwt7vH3NwCc/OLaJrOS798ibn5OVZu3gKpEIYxL3ztqzxYW2V97QEKGdcuXSJD4dyTZ4nCkCxLKZdKlEpVypUaH3/0CdMzc9xcucnt23co2Cb1xgRpBtdu3ODw8hHqzQlqtSrNRo3NjQ2q1SqO6xFFAefOnebUqSOomkRRM0K/z9Hjp7l24wbTszPUqk3SJGE87HPz5jXq9TJnzp5kolFDGhpoGsP+gPNvvkV7dgZd10mSlHt3bvPcs8/huh6mKri5cgNDB8eAfmcb1zKQeoEsS+n3hxQKJZIkIwq6jEcjtrd2sUwbISTmQQ6rUPMs2oLjEg33UEXGalQiifuM4xERBkVHJ339IgoZ6dQ+iqIycg/jyxHNoSSeK2JK5UB+6WAYBr1eF8/z8gWDYTD2fdIs9wp2e108r4SqHMh01dyHfe/ufRzLIIpizr/9Fuub6xw5fhSpwKDbx/VcpJQEQUAQhnQ7PRRVwbGtT6+ouJ5LFIUoSPqdfbqdXVxLJ87yQkNRFDRNxbItpqZm8DybIPCZn1tkqt1C1UDTdG7fvsfHH1/gyJFlTNMhk+GjAk/TDPrdDo6jc+XKCl954Rs0JyZI0hEPHt6kWJwglSmKgCxJyJIYIRVeeeVVisUal65c5fadezz91JmchtzroiiCbqdDZ3+fl156BUv3eP/9D5ieaVMqlmlONtE09YCKDLqqUSwUsR0X181js3RdZzz2cb3cC24ZBrNzC0y2phnGKRubW1y7cplq1cF1HAzNJIoziqVyPl1LMxRFEMUS07TY3dtneXkZoYg8VzeNc8+dsp3HUlnTB/mKYzRVIUkidnd3KXnF3EN7kKna6XRwHRfDtCgUiwhFEEUBhqljmQY7O9tMT8/kHjVF45cvv8z01DSVSpU0yTh//jx/+J1/zdVrN3Adm5mZFmkcoYgM3bAoeGVqtQZpGjIcDShXqtiOy82bN7l86TLlcplCoYiKxDQ1klQyHkdkQqLImPHYp1Qq0e/3ef+dd2k26pQqFQxdZ39/H1XR+OCDCzi2i2VZ6HpOT7dtC8uyDuwueWSfrhuYpklKTJrFjIdDdE1jNOxjuxamYZImMZZt4hYcjh5bRlM0siwlSRM8z8OPIrT3rpC1GyjqgYxeyLzJ0B8SClBmJkjTBPXWKqmlE3/7a6iaYDjsU62WUYWDUFR6/QHtVoNjy7P86b/9N3zjm9/CKVTIVP3RSlNdkKgnU4T7xWuY/1zF66cqNlVVUYiRsSAZ9Oj/bIx1a5796hWa0wuguqxv7tBqT2G7Jo5hoQiBVCShP2bY7+F6RTzXIwhCNN0AkRNvHdcmjmN2dnap1+s4rk3BSrGNhDQckyUJyCynnguTIFIo16fQDIdMSizbIo5j5ubm2N3dxXVdatUqN65fp1wu47gOEslgr8+dlY8pV3QsS6FZciiYkol2ifn5GlEYYFs2aZrL0JMDCB8IPLeA1CzcYg2vVM8VD3EPx8wIBnvYlkng5x7rOA4PYHMxWZZhGCZCqChKisgkmu5w7dYajWab+ZlpXCe3/PjBmEOHDmHbJnfv3qVcLqFqKq7jEvhjjhxZptfbYNTdwFAjDF0BIRDoCNXkxu1Njp54nrur6wTBiJnpWbrdDkmSIMnY2tpkPBwxHPmsrNzCsDxu3b5Pd3NM0R2zeMjEK+rEIahpCSny3G1Ny5koSZxxf1swHH/qG/fz65qus7A4nb/utsHezkZe3EqBYWj5dV5VKRaKJNEQw9CBHGaVCUEqfYJxfKAslJQrHtWyQ6cbMBwFLC4eQsiEhcV5kjihWq3ij318P2R2ag6tZ/HjrRdpTE5z9uwTvPLyDzl3+jC7Ww9IMsniqWcwS5Po6t8uOv9TFK+f1j1fONj7z1S8flmi8X9M8frlA7b+X7p99pfzRT5YKeVvZAx9iqj+/MX1s1/z+cibz378+a/57Cj908dnaciflRh/9lif74x8epEWIl/s5+HSRn4SJgmk6aP8WkQOFEkzmXcRbQtVUTEN8wAYolGuVjl2/DimZR14feoIRUUIld2dPQpekX5/wIUPL9JoNCiXyzx48JBCocDc3Cyu55JmGWmasr+3x/z8HKZpsLW9efBzwSeffMLa+iYXLn5EKiVb2zv4QUCS5pMW13Xp9wesr2/i+1EO05ADOoOtPJTdcvD9gIwEKWKq1Qrf+MbXKZVdKpUSQTBiPOwRhyG9Xp+VG7cxjLwYTtOEjY0Npmdm6Pf7BMGYJI7IspTRaMxPf/YLzr/1DpmEXr+fe+V0DdO28uleFGOYOU2z3++hKiob62v4/pjjx47ylReeR1EVRoPBwWuaMg4CpISf/uxnXL1yDSGhVq3jhz5CAcd18P0xUZzDmsgkzUaNhbkZpEzRNY1SqYxtmbRaE5w+fYpUZo/iLuI4Ik7ySJxqtUy1UmW/12XsB1iWc7CYy4VYnutSLBRQVRUnz73ANAz2dvdQhCCOE1A0xlHE0899lSCBOE0ZDodcv3GDu/dWGYyGfP13v869+6s0J1pMz8xilfeZP76D/csG0Tf/Caqh0261MCyLVnuaw4fmsW2DIBozf2iWSq2ApmUE44xyucFgMKDT3abb36LfHZEm0Nnro+s2m1u7mGaRhfkjTE5OMzE5hVcos7W1R6lQAAmj0YjNzU3q9TpF16NaKXPqxEkM3eTpp5/hqy98hbE/wg/GXLt2jTAIuHr5Mt0DMMbq/VV2dnaIohDDMJiemeH73/8BrVaL1lQb3/eJwoBKuUy9Vsc2HUBhdnYW07A4f/5tdnZ2kTKj1qij6TqFUpEkTVlYWuLIsaPUGvWDc1pSLpXwgzGWZeD7ef6woij4QQAiwSuYKGoKIqXfz+mVMzOzZGnKwsIC5UoZ07apN2p4xTzjtdfrcXPlFo7rYRg6UkpGQ59uv4+iqBTKJX7x0s/Z29vlvXff5t69e6SZoNPpYpnmQUMmQShGXjCQ5/nGaQ6y0Y2ErY0u9+7tgRZh2AoK7kHQ+wjLtFF1D8NySbMYy5Zk6ZhySWNmqohMc19plqYYhp5PVcMQw3bYa+m4V3eQWZLHeom8yCkViwgB+90OSRzkvkqh0OvtUSrapHFCmuWRAanM8IOAt999hx/95McUigW+/e1v8/Wvf/0gaN6jWCwSxXHu945ChIBmcwJd1x+BR8bjEaNRH8e2iKKYRqPJ7OwMfjBiPBqwvr7G5cuXkAed/ZyYmasZsiyjVCoSRQH9fo/WZJNv/dNvYTs2SZri+34ucVQ0kiTJp2RSMD07w+LiIhKJpulMTLYRSBQhCHyfOM7hWfudfTa3tkmShO985w/5/X/2+yRxTBLHKCKXxWVZxvLyMr/ztX/Cxtomve6IOJSkqQDho5sS3x+xv9/jvXc/5Kc/+WUetULGzs4O4/HoILcXsixfrJl27sP85u+9wOlzx3nq2adw3TJZomLpHqqmMRj0EUhsQ8+VIQcgoK9+5avkzQUFoeT3mSzNHk0dTePX9yRVUTANg1K5wvXr15EyRREKGxubmKbJcDRiZ2eHOA4ZjQakaT7ltS2LVquFlBm7u7soqkARgvn5eTzX4d69O9y5cxvfH/Hss88zMVkjS6ODaKWUar2Oqum88/bbaKrCaDQEIVEUHX8cIzBoNqYYDgLCMKZQKJLEcb5QV0FRBKVigSAMUFWFr3/9dyiVivT6PQzLZDwek6YJ/+Kf/wump2d4++13ME2DOEke3SdUVX009c5lehJdAxVo1JsYhnnQLE5IMx8pYnRT0OltMxh1fiPi7tInl7iytYlUBFGrgW4YZFlGkiR0Oh1klktqkySfALK9j3QtbDsvyBzHIUkSyCLSNKbebKLrOrahUC+5TLRmUA8yYwEEGUpTojS/eP3y+e0fS9X2RVDMT9dYwU6HV178S97/4UtU332ODes8ozjBdksYpk2xUOLChQ8ZDUd0uz0erK7S6/VAgGO71KoVNjY28bwipUoZy7FZW3uA4zgYhonneSRpTKVSQqiCceCj6Tq6YRIEIUmaYNsOmYTNjS2CIEDXVExdp1QsEIUBc7MzNOq1XPVF9mj6LmXG9tYWR44eotvp0u302dhYo+BqBOMhQmZ5dq/MUFQFkDkd2rZRlJwKnkoFSd64VkSKyCLGgz10XSU9iLiJwhB50ABE5ByPOElyRkqUAgqdTp9eb0wUxZTLFXTDYm5+gWZzgjhJiOKY5sQEUh6sbcm4sXId08qp7pVyCVU5GBhJkb/3hcry4eOoqk69ViVNU3Rdz1UJMmM0Gh0U1IJud4jjltje2kdRTIQY47kmaZxT3guujWkJdCOXT+eDAAVd0/ng+jYf3tgkiFVsq5jnhhsSiInCgCiKMC0Tw8zhS2maHtCJ8/dRkiRkWZbHqR2Q6bMsQ1HU/BpmGTnxW2as3lnHH0f0ul2mZybpdDe5fOUK91dXuXnzFpVKhUzJsCyL6ZkW65ubbG7vMQpSMtXMYZCWCmnIY+rWf3Q16OfrlU+TVR7H8fl8zfL5c+9xW36/+80f5HHf89tYQP9Y238Rk9fHbZ8tMj/992+Msv8eXYTPPv/5fXyZDuPjXsgv2l9+Eikk/+efEoiU8WQBP4xwbZtXfv43LB49etA1yeU9UkgU8sJXIh91LDMglZIwCNnZ3sI0NQqeS7fvEwXRI3lulmY8+/xz7HX7DEdjpmemsS0z72IbeRSMZebyv6JXxCo4WLaDQLCzvYNMM+Io4oUXvoqua/T7fSaaLXa29/JphmGiCI0ffP/HHFo6wvbmBoXZHcxiiBLViZMEzynywQdvMjs7ieuUgRDLDpFSIw5GnH3iBEcOH8FxXTbWt6nVqtRqZVRVxTQdFhaWKFc8hJIdgGc04jhjamoer1Bmdm6eTq/Dy6+8zOLiIXzf5+H6Bs2JiTxqwnZwbYd+f0C1WkHXNcLAB1XguQ6d/T3q9QaKpjMa+wih8OGHF/na117Ipc+mSYJEN0x0PQc+WaaFpto55dMxGQy6FIsuYRSga/lkBZlLKq2DaZTvj0nTGFNT8ymOZ2EYFqZpIxTQVA2ZKfQ62wyHIyzbRjN0UARhFOSkvDSj4HlsbGzk4BC/jwpcuXyFqfYUfnqZYrFAwTpDa3oGmYFj2ySZZGXlBs1GEav9K5zXi+ycnueNB1cQUrKzu0O92SBMEuLxmPv3HzC3sMQvX36ZufkZkiSmUqqw9vAhBc/DsWx2d7cZ9n2GwxFSCDyvwPzCAi/+1Q9ZPrxMkkUYlsbc/Dx3797lzs0V4jDi7p07nH3yHKZtoZBy9/ZdLCufduuWxdgfkGYpjUaTfr/PW2+9RWuyxebWFtNT08RxnuN35eplPK9AvVHl+InjtNqTZDIjjCI8U6dYKBJFCWkmWF1dp9PpEUUxZ06fJQxDfvCD73P6zFkMQ+fnP/8FCwvzmKbJzs4OhYLDT372N5w4cZwsjXBtHU1T+OSjC8zPz9JsTeKHMePxiCzLfXFJnEsOszT3qA+HEYZtYbkmiBy+du36jQOSaIn79x+yt9ejXPTo9YZUilU8r4BbKaKqCstLi2RxTJKkTLanMRyXvf19ZmbaCKFw+fIKC0vH8JMUTc09MpqmI1SNUa+PbnicOn0W3dSRMiWKcrK4ZiiM4Nr1iAAAIABJREFUBwGW6ZH428gkIJv8KltrD8niEDAYDTokNx5glEwG5l10w6RjHmLu2HF8K6P2s1t0J110swBI9vZ2KRYKjPwxpVKJjfVVGrUG4+GQUslid2eTolcDVRBGEYqiYtk2k5Nt5hZmc2uE5+G6Lpqq4I/HOI5HksTomkYQBniehyryn8WyTMIoxHVd0jTMM65tF4lAKgIUQRREuI6HY7ukWb7QAoVMxgwGfUzDIYpC0jTCdQu4nodl66CAEAa6LohjSZZpvP7aG7zx+uukqeTcuSfRDRXD1EiiGMcuHORKa0iZMR6NUIXAKZQ5eeoJCsUinmOzt7tNHPo5mXY44Pz5X9GoN6iUSxRLJq3WFE+eO0eh5BDHEaqhEIUJf/TH/54XvvICOztbnDp5nFqjgmnqj+SHcZzyZ3/+V7z/3nssLi6ws7OD5VqoWkzR8WjUymhKDDJBV1XCVKJpGmGQx4oJMgy7iGGYJAlEUYymK8RJiKLmU3vUHZCSoKdge3XiMEKmCYZhoekWP/3RD3jiidNIofC9F7/Hk08+iW07BOM8EzOOQtIk/n/Ye88fu9L8zu/zPCeHm1PlKlaRLJLN0LkndGtGrV1YWGlXErwL2Gsb8Du/8v+wBgz4tQHDgOU1pPVCoxmNZnpi94x6UqcJndnMZJEsVs4335PP8Ytz2cNmsydoYQNe6HlTVafuPfei6jzn/sL39/lSKhSRUqHd7uTexk5OWj55/DilUoHhYEDg+xQLBVzX4aW//w7FkorjWJhGAUWBII5ZW93gzsodWq0a9VYdVdNJk4zJiUnOnD5Dt9smy+LcBzT0cN0Cg+EI21IZ9Xv4QUDBLbK/t8f01BSObYGi4nsepUKR4dBjZeUOxWKFa1ev02y1CAIfx7EYjXISapomtNvt/G8ZBBB7/OgffsxoFNJoNJG6xB/2GQyGqKpGGIUgwTAN+r0uYRhgmTa/+MU73Lq1ytnWBHacEaQpAoEiVYaDEYUkJZSSdKKZF6c/uMbo5DzpC08ShjGjoYdjFxj0D8gAoWqkScRgf4fNlZs88eIfE8QJCHU8T5c9srPzcIxzv/Oq/vmLn6l8+53W7yAbhjyO+sn3vkuzAtqbU3hyn63OCs2ZJT748DIzM7kH9cbGBvVmHV2oVCs1/uarf8uJxRMkYcTG5hZSKmMXAyX/PNY01tfWWF4+ze07txkMegyHQ5oNlywZEgYjDMNG1TXCMCAMBVFi0O75IDV0ReHypUuYuoFljC35VI1MwP7+Pq2JFqNRXpCdnJqiWDT51TsX2drqUHY1qmVy8FyaIBVJGAaYpk7gB0glt+BK0xRNM4iVIoVygySReIMexD1EPIQkJYkTbNshjGJM04IsI0lipBC5i1UG99aPKDg1+sMMo9BkdW2bu3dWmVtY4t7aGksnTqAZBu1OB4nCYDhE03Q67Q5R4LN69y6WlrG5dpNWvUiWpCSpQCqSRKgYVoMg1qhUyhRLBQzTpNlscv36darVCjMzUziFCpZl0+v1sEwTRQi++MUJqo6DSC0U1URRYqToIUSegKqqBiLvvm4fDHHUjNnJIlnqYVgFFDUlTrP8ey1XMoRBQBB4KIokCIKcVKwbSFUjTcXYWzu3uQu9CMfKC1bIlOHAR1MdDKuE7RRxHJelxUUarUlur6xy/PhxZmbmsCwLPbZQfYOLxg94/a1fEqcpf/LHf8hX/ub/YnG2TK/bpdRcoHXsXA5BfWhP/Xq+/D+98/qZj//UfvxPSyp/H+XqP8mG+ccnr7+PhOV3nVX9rC7vg6/54HMePq+U8uNE9eFzSymJ/9f/iC9Sqk+fQqoaP/3xTzmxuEilWgdkTucUGYLc2yrLkvFg9v2TKUiRz2gUiy6KyOh0jmhNzPCVv/0qp06eptlsoioqjalJkgwarSa2ZZFEAaoUKIaJZRl0OkeUS6VceqHriPF71jWD9lGHuflZOt02nW6bqekZpNTQdRNT15GZ4N7dNV544csMBx4F22IoNjBNA4I6iqpgKBYTk0VCf4gmbaJ4wM7uTQQWo0H342B1MPSQQiNNE+7eXeHll1/GcQrcW91g/tgU7c4Rvu9BKjk87KIoJrNzczkR2LGZnZ3GLZQ4OmrzyiuvcPbsWTRdp9fv4Q2HFIpFkjRhNBwghcAuOISBT8FxCPyQGzdv89rrb3Bi+SRnzpymXq9Sq1YxdB00heFwiDcc4Y18FEXl7u01JidapGmUU/ZGfTRD42ivS61SwjR1UiGQek7glAK6nUMcy8DSNTZ3tigWKiQpCJnSbneIwgTTkDiui2FaJGlKp9ulWC6RxDGB50OaUSyXycjYWblM5+iA8489xve++12WT14gDWtoagPHLdCoN+l3u0xOz7B0Yha9+TO0PUHWm+Kr3kdMtCY4PMhBXItLS+wfHuF3A5A6K3fXeOKJp5iZmsYyLdbuXWdmaoa33vgFo36AplgsHZ/j4qWLHD+xRBCM+Pa3XuKLX3iB1kSNG7cuM/J6VGpFXNeid9jj1PIyqqqyu7/H7v4ekpSlpSV+8uMfg5BsbG4xOz+FW3DZ3dklCiO+8PnPY1kWlWqDN157jUajTr1eY31jjcWlxXzecWz4DiL/OY7Y3t7l2o1b7O+3ee65z/Pmm28xNTXNyy+/zPHjx7lw4QLXblxFKpJz58+N92dKoeiimzrnz58nDAJkliCzlIODPZrNOlEcYNkuimFQKtSIwoQ4yvjxj35GrdJke3sfmUUYpkupWkGq5HJdJBkpfhBQb7QoFqpsbO6wunKDpePLaGpeHEkVgaoqaFJQsGyOLx3n4qUrTM4ucPLkcb750jdI02w8j1wnU3JIg2HkPpVZJujsJ9RbLqotEJTGqoJNDM0GBVyziOfHCBkh26t0il9mujGJoakkoUoqQozHJ1nRj3CGa2i6wckX/mtG6OzsrDH5/h7abBPhFFElWLaF7wd4vo+q6dQqDmksCfwARQlRFYnMLBKRdyvvz6tqmo5ddEiBvb194ijCMgxMXc+VBoZBEHiUSyVGnodl2Hi+h6KIj6VTYTCkUqoQJRlS1QnjiN5wiGtaeZJs2mi6hu/7IARh6GHbFr3ukP/w13/FufOPYYzp3YaljavZKoKYJJUcHnb40Y9/TBT7/NGL/4xytYxqSNIsRlUM0kQixyCNJIlxLDMHxtk5RV6Qz46WijaWaeH5Pvt7e9y4foM0TZmcmEAqQzqdHpomiVMfLxjSPvTRdZdLl65Sb1SYmiozPV1FyFwOmZHbcwkkZ889yd07d7h+9QpPP/MkUhGQgipUVJGQJX0G/T0QMQk6aQaWnc+tCmAYZJimgxAK7733HrV6JffORiONI1K28b0R2cjEcBukSTKmXmeEUcbMZAtV09ENi7PnzhH4PrZlYhm537BtmaRJgm3ZpJnANK28mCAgCH329na5evUK5VKJ6ZkpVFWhUi5z9vQ5mq3CeHbaot05wHRcrl6+gWs5nHnsJJ1em+HIwy2YKBIOD/fQdUmhaBNEECchUkoM3aDb2Ucde0LGSUK1UkUKwf7eLqV6HQns7+3jewE/+enPWFo8yd7+HidOHEeIDNs2x9dd7sfuOC5ZlqHrGhoJ5XKdX/7qfaZmZ4iSkEqhQhSm2HYRVTXQtLyQpSkS3/fIMsmJE6dZmF/EsHW0izeQU02U8diAqmlYfoiwLaJmHVIQH1zh6H/8t4wMg0q5MvZ+T7GtFKlqhElGGsX88sc/4r/67/871jb3KJQqZEKCyFCyjOinOuldiXIs/czY6OPk9c9e/LjD87vGUZ9Yv0fyGkUhg/1NHrv+b7naf53n//APqdSaZFluz5QkKbOzsyAyekc9JAqlSgXPG9I76lKtVeh0+szPH+Pe+hrFcgFT11hYOEbgR3Q7XRaXFmhNNGgfbWFqKVmcF2EykXelvSDj6vV7VOqTzMzPk0YhnaM2J0+c4N7qKpcufkTRdUGR1Ov1jztgUZQ7JLz6D6+QYTMcxjz9xCmKdkCW3bc+zFDUXEKvKQaaquSdRN0gCmMwq0hpEIQJIouxtYjQ6yDIC1VhGOXjS2FElsYkSQxCoMjcS1nR6nSO+ly+egenMkOn5/GlL32Ju/fW+MLzL6CoEkXTUFSFcrGC47ikWUah4FIulmk2Gox6B+gyQldydaFhWERJhFANVKPC+uYB7fYRGbC+vo6Uub+3Pi6oxSJDKhkTrTrDYY8b1y/h6Aqm5qEbPigiZy8kNoqeN0dyxZlCmggWJgoszZSxtBDNkPixyJ0hUkmcSvwwRtNUkiTC1LUcUBgGv47DFZ0kSccqxRRBhq6YGLpJnEa4BZv19T00tcjV61epNOp89NF1Vu9sYJgVJibq6LrOtWvXmJ2d49aHK1RpcHLhBN+59hJ/+qf/ElNL0JSI0dFdNE3Hqc0xe/oZhPj/Nnl9eP71N++w37z+seqLf0peyWnD9xO+B7XdvymJ/Szq7/3294PHH5Tt3n/OfenW/d9/Vgv+YSnyo5Lah489KsHOsowwDEn/t78htU3kubM4boFbN6/yzHNPkSnq2KJBQpbiDQZ02j163T6KVBkNRyRRQjAcoSkS3TDwvIBed0CzMc3W7jZf+OLn8UMPP/SoNasYqk4Wh2yu3UE3VaRpkCgqw16bMAhzWVWSYNk2QkAYRGNvO5iemcQ0TEajEa3WFJZp58maTAkDn0uXrzC3sIAQCZWqgz8Kqc6lQMYHr63w/tsXWT4zT687zAO9NCCOExyrgevWUDQdyyngFEoUCmW2tjf58OJFms0pnnr6OQpFi9NnjpNmkt2dfTY3tpmbnUPTFGQasLe3Rb2ZByCaqrG3s0sc+Vw49xjBWGKSxlCt10mymCAMMQyb23fXqZarGLpBEA05PNyhWWvxwdtXOHV6GVOJsVyHII4hDul39mnUm4CKFKBpUK03iJOIjAShSDKRUzrDIMByC6RCZXfvgGKxQBpFmIaFlBpCqsQZSM1A0w0kkoPdAyolh3LJoDcK89q4IsnSBF3NLY2SNEUooGg52j/0PSy3QpgIpGFx6uxZfN+kXj6OriromsLFixeJohRBiCj/EJkmOH9n8+b5gOdffJEzZ09RqZRxbYfVtTwZjFLQTYPLly4zPzfD66+/zrXr1/n8C18mSkJKJYckCTk6OOD6rZu8+OKXcxBGr8+Jk2cQqoZt28xPz6IrGj/64Y+ZnZ7Hsk28MGJrZ5eFY8eYnZvDtG0My2Jmbo6JqSmazQbBwCNLspwSHEcUy2Vs1+HOnZucP/8YlUqRbqdLFoPh6hiaBkmGFErePUoTXLdIEIUUCg7Ly8fp9dqcfew8UhGcO/cYrptbIc3NL5JDWHziJEaRKnfvrDE7N4eUuR3L6t1VKpUKWaZTKFSwLJfNjU0qhQK9YR/TNPj2S9/mj/7oRbI0odmoohdKlMoV/u6rX0cVCs16lWHoUS4XOdzdY2dzh929XfzAZ3+vjaboOK5DEIVYuoaqKpBCu93DsG0Oj45otixIE3Y2D7h18x7PPvccUhNkZAThAF1zEWh4/hFFF7I0odftk4QDZBpiSBM/gIJTJEpiFFUikcQHNxDHvkjYX0HVfKpTyxzsd1i5/jZaNqQctxGKQad2hruX3qdedbF2R5BkqLUC7fYehlFF1XQ0HQzFYPfwCLeUw27aHY9SsQXkBQZBDoALAh9Nk+hSEow8tjc2ee/dd1laWsxlZLqFQOZdtRQ01SDK0nw8QNVIk5QwCrFMF4RkNBrie8Pc9ipNSdIQw7AwDB3fG5HEAYqQOKZN6IdkWT73PDExiVRM7txdpVKu4Hseup4i0oww8iiVa3ijkMWFeY4tHcuLiBkfWxYlWUgaJ3ijkL/9268zMT1DtdFEKgqqIkjiECFS/NEITUshhR/84McUi1WazQaVShkyBUWqSCFQhCAOPEzbhlTh3uoWL7zwRYRUMa0KQtUQMpetpglsbe4w0axz+tQpXNelNdHEtnSEppEAqmGjKApe/whLS9CMMkmSEIYRUtEYeQGqpmK5ZZJUcOPSByyfXELoOlkcEYUBtj6Lay0gVJM0iVA1lQxQZMaot099chJF1RBS5vdH08ALffrdNqahsLV592PZaxAmmIbJcNin2+mgqwphlPHG629x6tQZfvjDVzk43OfcucdQLUmSKGRpzOHhBkW3hMgE3V6X2YUF3GKR3uE+zVoRVbVRdEEUw+F+h/XVe+hKjKoZKJqFVFU0xUQ1coK0IPdF7g/6RGlMlkSoikYUZ+iGTRCE9AcdKpUSjUYV28kVMoPhgE67zWjk4XkjqtVKHjsoJqbjcv7xc1iWiWM5dAc97IKJqikkce5bGcce/aMjqrUGmZAE0ZCJqQpKtUz22rtos9PEWYqq5hJ3zQvpLU2TKoKs3Sa7fpf/qbPGn/7pv0TXFNrdNpZjoagF/FjHyjKMwS53NteZP/ccbrUKUow7rpAhCb+vk+5L1GfjRwa/QghEuYC8sIyYn/pULJYJctrpeATqY8zoOHb6BIsk+/Wv739PlhOdZQaKphIlMUEUMzjaZ2rtPJt3VqDiY9Rmubu6TrFURtNUpMx47913mJpp8f2XX8GxLd58/SfohsJHV69RLFUYjQbous6x+WP0OgcUa5MEvsfmvRVajTLbuzskGexubDLoblN2dGSWEYdBDspyqpw+/ywoFkkmUFRBnEK5Umd7e5cnnnqC3b0tVu/cw3EddnZ2SbOUZrPJGz97gzhVmJudYNTb4dhsmUuXblFwqxhmLou1zEJehE4CUPPYSqQJsdTQSyVMrYFjlNje/BBd8RGpRiZihskITerILCUiwDTtPMnJQNcNUpEiFIEmYyanZ3jjncucOnUav3PAwokZTFMy6LXxBz3aB/tIKVhdW6HZqhMECVE4QjFCSrZg1F7PVW6mSRz7hFGAZkxx1JfMLC7RmpgmyzIKhQLdbo/JqWkM3UGg8fobb9FqTOIPh1y/cpG5mQZXr91ldi5XOAQjH0UVqBYEfopUNEzLwPeH6MZYtqqmSE3F8yIcyyTwExRVRSo6mmKhqxJdjyGLyVJBFEf0egFHBymqDCkW3Fw+nAnCKMa2NPzIR7dNvCCi4FjoWkK91uLSjXsMIp3nPvc54nBAqVzEdR0GgwF37t7l1OOncTaqvHz1uzz7bx4jGgbcvnKRP/7nFxh0d9HTiKEXc+LCFxBqDpUTH28JgVxIUB5LPvZ5/W0rzz8eNWf66cd+TCXOfv2Kn5VOyofzE36dE93f849an9UY/FiN8TsUsv6zT16zLPt346+fvFH+Ftrwo3TaDyaLDz72Ya34w8951Ppt7+G3rQcT7Ps39fQvv47XKqPPFllfW2F7c5fl42dI9bwrEYc5+GFnc5MkTCk4LqpUiIKIg/0DRiOPJEmxbJv9g30MLZeqlsoVpJDYlk2pVCJNklzSpisMhz3KpQJHh3uQxQy7g7HvaW5Jo6saoyjCdfKOpCIzhv0utuvgui5ZCl/5yldwnHwOMwh8pqZneO/992m2Grn9hKYTajtIRTLbeILbd+4yd2yBJM0JlXGaoRkGaSaIwpwSKgR0u0cImZGmGc88/TSlcpFiycmDvsBD00yqlQq2bWMaJoPBACkFbqGAYeV04m6nS6XoUi6VUDWVYqnMV7/29zz//B/gjXqYujbuAliEQcC3v/kSreYEbsHOpZVC5fk/eBFVS7BNlU5vwNALUAVEcYhuWAiZE+jq9SqHRx2qlQpxFNDtdrEdF1XVcUtVoshjOOzRqDWJvZQwGmA7NmmSz15cvnQtl9EVS7z0jZfY3dnGtgwcxyZBxXULCCRxlIxnW1R0TaXTPsJ1XJIEut0BdqnEQbsDAizbZG1tlXd/+T5TU9Ps7e3RbDWwbYvy1F1U+wjnlSr+uQbdZYcbN28x8HoUCy6FggsiQzd0ttbWcV2L06eXqVbL1Gs1nnrycXp9D0NTybKM2dlpRqMBmqZTq9RYWbmdB/4jj2q1yv7+Dm+88ToLCwvMzM7SaDY5aB+RIXjqyad57513MHSNeqPFoD8g9H1IEwqWRRhGvPTNbzIx0WLYH1Cv1xkNh0zNzKKoOqOhn3t8Tk+xu7ODoem8/cu3mZqaojfoUyiU8LyQr//dN1AVhfmZWd5/711+/os3MU0d07QY9Ef5h5pjEwYhB4f7VEplhFCYnZ1ha/Met26u0GxOUK3V0XSD3a1NLNPk6pWrKFLl9sodFBlBlrB4bIFavY6qa3zw0UV6vR6K1Hjy8Sd55513SJKY1nSLwaBHmsRUK0Xu3rnF0rE5zl94kntrq1SrFZIkZu3eKj969TVGQ4+NjQ2O2kecOHGcarWKFCrVeosXXngBiEnS6GNvUV3Ju4VRMGDQ2cMwNVRdJRXgFF2Q4LoFDg6PUBUVIQVxHMH+ZTj+J1y5coko9rh9e42nnnkew1bodA+pLXyOQ22ao1HAsbkJyGKcTpzLvDQL07DRNIMkTXJZp+9RrjRy4FiWUSnnBO12+wBNz2fZbdsaz/SnSJF3pSuVOqdOncGybBSpEEc5RTdDgFRA5smgaZrEY9lYbjHRZzDso6kajlMi9FN0zSHLInq9PrqukyTJuEMVo+kqGSlRFNJs1lFVyXA0pFwuoqlKDlKJQ3TFApF3PBr1BhMTVdI0wjQM0iQhihJu3bxFtVznzp27fOMb3+Qv/uK/xLYdDD1PWPJ7vuDo8BDbspBC5lL2OGZqaoKp6Ra2nXcsnUIB0zbx/ADDNNF0kzt31nj++RcwTCUHlgkFRckIw3ymuN3uUKs1ODzaoVhwMU0DKXKZYpqG4w6oQRqN6BxsksUeumkg0NAMlzjNKNcqJHFMikQzLBaPzRFEIapuoqQxkOH5QT42oZuMBgMc1yUD4ihCVRSkpufUXKkQRxGCBCnBsU12dzYpFl2kqoDIye+HhweYpsn2zhbFgkupVOXUqVO4boF33nkbQcbc/Cz7u5soQiHOknxWuVTDD6M8WDZtojCkVC6hqioDP0JIga5ZeF7AxuY6Z8+cw7QLpJkkjtLc7uZwh0a9lss2x4Vp27JQVAPfDzEME6lIfvjDH7Kzs8fW1jbnL1zIr58kwzQsTNNEVVVUVR/HBYIoisjSjNXVVRzHAQFRGGIYOsPBkK985e8oFFwUBbIshjEtXVMNeu1+7jjw4U16F5ZZv3yNwWBIoVhA8wKSiTqZpqB0hyjb+zz3v/8vDEf5tW27Np1uB0UBITVEHPGrN37Cn/zZX4BTIkuTT8Uv8f1u0Dh5fWTcszCFWJh6dBwkfn3sE2scUj3MDPlUTCQCMpF9HOZrQqF9cEjRLjH6exvVEoiiwHCrVEpFOp0unXaHVqvFxMQE/uiQ99//kE5/REpIs1GBJKRYmcQtlLlzd5Wp6SlUTcOwDeIgQJG5YmtqepZKpUEw3KNe0YmCARIJMkPVLAajhL2DEdOzSwyGI4beCE03yRCUyxXCKKRQLBOEMY7jUiyW2NzY4ubNW+zuHtCcnuODy5cpFG0WJoucWWxh2BoZHnGcEHghkJCJhCRN0fWcuC9Nlxg7V3IQk8YdSDwUqeL5XW6sRty82aM1HXO4GyGFhaoKpJIQhiEIHVVzCIKUm3d3qTbn8PyQer3G7Pw8YZQw8gKKlRq1RhNdGlQrFba3dqiWS3Tau1h6xv72bQommLZBikBmGWEi2T0IKdfn8cOYQqFEGHhEUUSz2SKOE5I4Ic1SZudmcG2Hg4ND9vf22d07ZK894vSZRRQCNJmiKikQYtklDg728iJIlubgpji/5xiGSZaCFFruoSollltGSAOyEH/YISEhCDTi2CBOFHwvxrJzP2ZlXPxRVQUhJGmWIaRE0xSiKEQ3dG6sbHI4CDHdMpcvX2JxaYGJ1gRBEJFlGcunTrO5tUFtMEnQ6lL7nMvWxg5x5NHv77KycpmDrU0mZ44zc/o5VKv0iVxOCIFwyMFov5dY4VGy/kc/8nc+5yNO8GD+9NtsPx91/P9NYNP/r5LX+7Lhh1vh92ESj0pmf9OM6oNApQe7ro967oPr4dd+8HXvA5UeltD8Lv/ET3x4/NVLbE4W6XS2WF+9zTPPPY9ulYlFRhxGeMMh3mCEa7tYZm5jEIUhaZLy0Ucfcf7C4/T7A9IsxTRMbMuiWCiQpDFxnM/ira+vUXALpKSYpk4ceqiKQqFQ4OrVq7z/7kWee/Y5NE1DkSq6rmO6BZIkzv0iNS2X25aK+GP7nSjMiXuaplGplUnTjPmF+VyG1+8hpAJOPgcU9orMzS8gx50CXTfRDQNdN0mSFE1VURSFKIxQVRXT0un3PDY215mYbBHHUf6ejNwyJElzCXW/1+fSpUu8/8FF6s0mpUoefEkh6HU7qFou6zJMi5mZedJUEEcDFEUlCiM6nQ61apnFhSX29g6YmpliMBpQrtRIM4kQAUcH+1RqLY7aPb7z0kucXD6BVHLg0v7+PqahU63XuX79KrZlUq1WUFUdEMSpGFcEY7yBx1/9+//A9HyLJM7BAlKqzEzPMhoNUMa4/fWNdZ5//ouEYcTlqzdoNptjG4selVqNJM3wvSGjQZ80jtnZ3qdSbbC+ukEShLiGyfe//W1OLBu0ZoooWYUwDHFsm0CsIAofIDbnsD4MuPZfFNnc30E3dKZmp1HHczf1Rj3vFklI4ojd3V3eeftt7t27R7vdptFosbu7x+7ODhOtJjt721y+dJ0TJ07y4QcXEUJSq1URpFSrVeYW5jBMm43NTTRNpTE5wXDocXhwSLvTZunYMXTD5PXXX6ff6+I6DjdvXqdYLDMcjVheXmbQ73Pj2nWOLRzjxq3rgMbm5hZRELK5scpjZ8/yy1/8agyuKdGanOT9999nbnaeM6cfo15r0Ou1mZubJRMxi4tL6LrJ5UtXiKOYYqFIuVxid2cnh8ikGWkKqiqIopSVlTscW1zi8OiINAqYmppib2+f2yt3mJtdwNAztrY2qNcbREmKqms0Jhr5B6AfcOXn6WKmAAAgAElEQVTyFS48foFKuYRlF9E0g1Kpymjo02pOcvmjK8zNz3NscZ4f/OD7PPvM07z9q3d4+ukv4Hkez33uOQ4P97FtA0NLkaqg2+8y8vtIJUZXU7JUoqo6R0f7DIcdgmGPoltC1UyQBrZTQkid4TBA13LgjjPe56quk7TvUTn3p5Trk0R+h8lWC81oUPrrnzO7o3B3yqbamiONB0DC0dEBjUoT7a27WMuLOSwoSwkCD10zsEydkRdh206eVAz7KBLCyEPXc/un7e1tCoUCAGHQJyPFMDTSNGI46iJkiioFIsulqWmSz4uRpeN7LXmHT1VQdRfHKZJXoBMcR0OKhDTLk3UpBZZlsb9/QBB4RHE8vl4KBGMasWHmYxi+52GaBoN+n3ff/hDLMTAMA8uyUJUMXdPHSpwsl57GCcVikXK5jKJqnDy5jGlZZFlOkmV8zyq4Lq+++iqTExNkacbM7DTlUglEDsQyLDf3a05iRp5HlMRkGVy7doPBcIjt6jiuTRJnpElImkTsbO/wox/9iCAIqVSK1Gp1RiMP3dDZ2dml4Nr4fkAap2RxROh1iQIfRVPRdRc/zMbqkhBDESSZROoGZLl9ipAqJFHeYR1b68QpY+sdiyCMMUxzPGN4H5oCupYT0wUJaQqKBMsyAYlQVOJQYXNjh+HQ4+aNFc6cOUu316VQKCKF5IknHufc+bPkAayC7ZSwbRvLsugPhjjFElJRUBQFyzQ5ah8x8gJ0w0RVJCJTqJSrzM5NcbC/QxCMsG2DIByhGSqWrhNFefEjDCOiIOLa1evMj+2zpKKgagqXr1xi6If8+Z//OYZmoGkqipBsbKyTJCmKVDk8PKJQKI6JzxZSkTmpWZFIKbBNhzDykFJw4fyTaJpGGPoIkRdzNU0nDhJe/+kbzM7PoRx2UNtdNg8PAUGlWsEaBfiNCrHMkLfWELaB/d/8C9yig6IqpFmW231ZGlECwWjAa6++zHNfepHYcBDJpxPUB5PXR7k5PBy33B+DeuDgJxoBH8ddvyGuenBJIjIhyIRCEqdoWcaV99/B8B1qvzzBRuEWs/NzSM3GMlSGgyE3bt7gyuUraLrOsNtm8dgy65s7RJHPwsws/XafKMu4fOkmZ86cYmKyxu7uIYWSg65p7O0dYBg5lHA0GtGsKiRhmywKc7icphBGAt0qU6xMYlhF1tY3OLZ0HFVRc/CeoSNE7u27uHQi32+age/5nDl1GsM0Wd/aZOB1KboKy/M11HQEmiBJfLJUkCR5V920DKJUYIxJu6pbx7BqCFLSsI9Ih+iqIAoDpDR44xfbHLQzji/qZH6VdveQUtFGiBwAp2kFbt1aJVMLqGad23fW2dnZYenUMm++/iazc/MIqeCWSghFRRMKly5dZHJykkG3x/bGXUpFE8IuighIRYaQKjIDNBfTmUB3ahQrFaRU8EYDsizj4OCQjy5+BAgmJiZQVY17q3fZ2drm6tUbxGFKkCh0D7c52NlhYXYaxsoyIRR0Q0dVVTRVQ4qxdZSi4vk+mmYQRQmKBKnqSN1F0xySyENkAYqY5pvffJeFhTrFaoZTDDB1Gykht1MDTVNB5NJmstyejEygqDpXbxzQGaSEoaDkFjlx4jRxHBEEARsbG0xMTuYchi2LDe8e9lNQLlXpdnpIJcYyBTt3b1GtNXn6n/0ZqWp/XMB5xEZ65N6CT4Np7yeln1BzPlI2/PDPnxyj/E17Oj/nZ+dPv+0cvw+06T/75DWO438nhEBRlI//MJ+4YfKbE8XPIgjff97D5/lN/5xHJbj3E+CH39ODyfGj1oMX1P0bffyXXyeabbKxfhcymJhdJNEMvJHHsNfDMUw0XUfRdDY2NjAtC103GI5GJGmKquQBlTKmrAWeR6/bIctSHNvGMs08OCJDHXtd9vt9kjQlyxQazQmefPqZ/OIVAqmqdLo9JLB69y6GYdJpd3jj9TdZPL6EYZhoqs7ERDMPBAKPJB6DA5DESUwYBJimSS9eRdcNzGSK73/ve1SqNaqVCgLY29nBsW32dvcIwvzGL4TKYDDANEx8L6FcLqMbGvv7e3iej64bIATD4ZAsy4PGUqlEpzegNxjm1j+GjiYV3n73PU4sL6NqGv1ujzRKIE0p14ooqk6aCYSU2I6FoptMTE2TZimGqZFlEPoRo1Gfg70DavUpDg47tA92aTQb1Br5DG+j0UAKgVQVigWXKAzxRh6W7bB/cISmg6VbbG3soEjJ+fNnKJbzACwIorFkz6feqCMUhUq1wuzcHP3hEMt2KZWKedVQCtyCS6fTRjdtTF3F0ECREtspsrG5w1S9wSvff5lquYQmVWbP7mMWB1x938d1Cly+8gEz5y5DOI3184TtJYPLco96vcaTTz6JYZtsbW4R+AGbm5tsbW7hFlx6gwFnHjvL2vo6X3z+BXr9PpBXRquVGq/84BW+9KU/oFSs8u3vfo/zF55gcnoKVVMQaU4m1QyTJM3IspThaIDjuPz8rZ9TKBZZXFrksH3E3s42x44tML+wQLFcptqokwEnTp7AMA3KpTIzM3mwUatadLoDFo4dZzgcUq0WSVWVW7dXePqpp6lUq6hSY3NrC5GG7OzuoqoatUYDRVOoVAogVEzT4fjx46RZRBSleVfMtsb0zoQP379IY6KBZTkMegPeefttysVC7v14/RrVWo1zF84z8kfEUcD0zByeF7K7m8M70jEc6MqVKzQbdRzXplIpksYJnfYRQqpUa01e/Yef8MILL6KbCn//91/lzJllhoMhJxZPUCgVObZ0jCgO2N7ZZHF+Dm/UJslSqo06xVIRXZEMel00s4CUBnbBwDQlK9du4JRq6KaLUHRA5hY1SUpGjGk5CCRplpCkIdnRHeL+ASs9m6IjGPba+J6kfHOPNEsYLJdIwxF727eYmT+bz69Olil99zrDmTJCaiSZj2FYZKlKp32AZbkEoc9wMCBJYsS4G6ipud2RbdsIIRiNhtiWie/7vPTSSwRBQG3cCVQ1nShKCYKIMPAw9LwoFYYBipJL5xUpkYpFp9sbW0v4+P6I/qCNZZXY399F03V8P+TwsM13vvMdHn/8cdI0IwwjXMclDCPSNEJTNUYjn+9/9/tcvXKNzz37HIWShabrqIqGlLmvtqpoRGGErms4jo2mqui6ysTEJJkQeZNYkgcbGfi+x3AwZG11lVqtgqopuUplTD32/YAkzgFAQeBTLpeJo5yEXC5VMS2DcsVFSsnmxg6jnsfu3i61eo2FhWNUalV01WRzc4d/+OGrCAGnlk9i2DaKYvJ//vu/5urlK5w9vZy/nxB000IogiAIiMIIW5OM4gSh5nN4MkcNoyoqIMjUFcJ4mzQsIrKYTreH4xbGklFJJjIUmXetkzjEG/YZ9LpEicAyDLqdDopq0OuOKJdrfPTRR5w8eZLjx4/nIDoysjT/rFTH3W9NUxCKxn/8v7/GxMQU+wd7FN0SUpUo5IT+m9ev8corP+CZZ57FMDTaB7vYhkUUBHjBgELBRQgY9DsoSt59kVKj2+3j+QEvvfQd7txd5+xjj1MeW8oN+kMsy+b8+cdZPnOGVqtJGPpkWYIqBUkc8Td/8zVarQnee+993nzzLdI0Y2KymZPhx9e2oiiQSrIsJk1i4iglSzN+9rOfcnL5NIPBkDDIx0katQZf+/rXWZpfoBXEuFMtJqanx7PyEPV6JNUi4s460jKJ/+RzbG5tUq83xr7HGd6wzciP0KWCzAJmjh1niEEuHv/k+l06r+lr75Ld20IuTH/6l58VN31mFPTJpWYJoJEKDUmKEg0R0QDn6iSRUKgsFDg6OkDTDUZjK6SJ1gTHjx9nbW2N69ev0T1q097f5clzS9y9c5eDoz69QQdF6Dx+4RRh3GFv95BGs06SpLiFAmEUYlsGN25coXtwB9vICIYDDMPEj7zcn9oqcenqCm6pSqPZJBiDgW6v3CCJI6IgJ19vbm+j6Tq6rlEtV3jl5ZcZ9NvsbK6zMGly4dQMBQsMQxn7s0sMzUJRVAxTMhxFgEoWZQhpohcnsewag94Blh6TRSOkyIiiAM0ImJqrc3Z5inLRx7QVHMdBUXL4WhgkxDGsbezSD1Qu39jA1AwWjy9y9omnOHXqJLphUK3VuHLpMkmcoAiYnptmOBygKJL52Uk21lYoWTppPEIzc6VHEobobh3NqnPUCxh5I3RDw7EtBoMBrlugVqvjuPk9and7F9u22Nra4OTJE6xvbuIags8/s8xUy8XQdcI4QdH0fARBVUmShCiM8gZFpuXz5LZNEOTkdpllCFWj56dIxUQSEvgdonSEbSQUCiampiEzA6nwMUQxDMN8NDDLx2hMQyfLBH4IUlr0+rC9386BWTLXASwuLtHr9Wk2m7zz3ntMTLTQQ5MwDTicuYdpFvnWN79FkoUcO9Zkf/Um2zv7zC0/iV1tIR+ae41/qpGuKsjF9FFbYbydHj2z+onjjwI2ZZ+dEH/q+O/wmH/M+qfklV/Lhh+0mYFPd0s/K3l9eOb0Yaubh17rU/OtjwISPPi8B9/X7wMveLA1f99iJ/3Lr6HNTHB77R5hEHP26WfwswRLMbFNg8D30AyTg3aHjy5d4viJEwxHI2zXpdFoYJk2o9GITICuqVy9fJlmo4HnDz+2t9jZ3WE4HNA52CeOI2rVGqVSBd0sIFSDlBQxJvMhBUedDt/71rd44sITFAslHLvA3uERAJbpMBp5QIJp6di2gZQqUlFpdzpju4+UYX9AoZVbUhyuZbz22s+I44Rj83MoUrK+do9ut0Or1UTXVUzD5pVXXmVtbZPlk6e4dvUmqqpSrpQouC4ZgjBIGHlDfvKTn3D+3Hks08RxHJZPP8b07AyapqIpCqqisHDyFJ7v0em0UYTgW9/4BmeWl0lViaLoqKqOZdtsbW+jqDpvvfULpqYm2N5ex7EcJAojz+fb3/gWj51/kiTLiIIBJ0+exA/uo/QtNFUjiAIEGY5j4Tp558QwTKKwR+hnTE3OYZoacTrg4HBAGOa2BrZt5dW9KAaRkaQplmvn8AQpMPTcLieKwpxIaZmESUKaBNy7c4tSsUiSCVbvbfDWW2/y5T/6Q+YXF1FNA2nfQ9UUHOUsvd6AU08fIJUUa7OGfjOk96+P8ewLX8Cy8k75zt4BZ8+cpdftE0cJ01MzmK5Fo9HMO9ezc3Q6PaZn5qiWHeIk5dbKbV588UW2d3YoV2r0ByPOnD2HaZn0h132tjbY29/nw0uXWTx+goJrUyoWSZOUer1BuVyhVK1gOzZ7mxssLi1SKJYIsxTVNNF0jQy4fOUKSZLwwYcf4DoO/e4GzdZsPrNSKoKI0dwCpx87w/7+Ae+98x4z0zN0u13mpqsIobB6b53J6Un8KMS2dCzTZf3eJqZpsLF5jxNLpxBSMBwOuHt3lSiMabZaOMUCumZSr9WYn5vmxtXLXHjqWUrlCqZlkKQxs3MzxDEM+iOk1JifX2Aw6OM6FnES0ppo8aNXX+XJpy4wGHRZu32NeqPCYecI1ch9ePf39xGktJp1KpUio8GIWzdWGPoDJqcnEApMtFpYukHBdRh5MYZdQlEsDveOKBdqoKpk0iATIUnisbO2xfyJ43T6HdyiS7uzD2mAoYFQBIOBT5ZJVFUy8vpoiU/qdVn+0n/L1sZ1Cq5B1Z1BfHALTZFE9XXigxWscpX69HniOCSIQwpbPpxdIOqOGPodCm6FwAfXMRCKHM+oiY8VAGR5shrHydjmJrfaMowiaaIQR4I3Xv8Fp0+do15v0h8OEChoqoahCoKgh266pElMv9/Htiw8zyNKh7iuOZZOm8Qh/PzNt1k8vpTLNKXk6KjNaORTqZSZnJzKPUDHHq6WaYOICYIYVTG5dOkqX/jCC0xONIhiD8ux8UYhcRSxtbnPpUuXWVlZYTjsU6tV2NzaIIojdnZ2EQr5vZDcCijLMizDYDAYcObMGQqugWnpRFGA540wTQeQ3F5ZpVh0CXwP0zCwbZcwCnJKbRhQrZVy6Vsi+MbXvsX29jYL8/M0W02yLCX0M3Z39njiiaeYm5tlff0eUjWRisnS0ik+uniRRr3Cz37yLrfvbHPm7HGEDHO7NsWm390DzaJcaxIEft5hlhpxmqJqGl50GyFjbGUaVVVQVB1kbrETBEFuFxJFKEIiyNjcWGNmehLDrBCFAb7n0T7q4rgl/KDH1HSDjJBi0WbvYJtKpUGSJnx06RKmabKzu83GxhqNyTkU1eH6tetcv36FuZlpiuUCZCnDbgdT1zh58mQONjJ1In/Iyo1beJ6HYarYVg3TMImCCFBwCxXSLMupvFLy3vsfkqUqTz71HKqRIUQ+Yy2kAkgMUydJk/yzSs/HNmzL5HOf/wN0XefChQssLi5y7NgicZLL3MMwxPM8NE1DlTqGqeIHI8Ig4d133+fOndt87nNfZOSPMHSdg/193njtDf7kX/0FTVVFrG2x/z/8C+KDNmmlinbUYdDpoM9Pob1zlfjMPOofPUOpXM67+0LkECwD3GKVj97/gCcvPIZZqREpFmoafSomeTh5fVRMFf/P/wfZRzeR/+rLnw5qPjN5/d2CYjVVSIVCLBRG/Q69gzU+fPs1pn71ZaKCz4AuIo2RiuTmzVtUqzV0TScIAkajETuHmzz9+CkmyxmtmoFdKlFpTvDEhcfY3txnODqiXFaZnz1OnObWhr7vUy4X8b0ec3OT6GJIGg1gLCdVVIFQDcJEUm3McPGjy8wtzKGrGlJkGJrCZKvJ0eERh/uHzC0dY3dnh53tbd587XUmJyaoVV2evTDPbF3B1iNsWyfOMnTdIopCsjT/+wRBn+Eww/MiCk6BJFZxqrMMhgGKDBn1dyAJSdMURREEvoJlRZRNhcFhhjQFUkZYlk0cZgR+hFQlreYc93b6HPUSdAFPP/MUmltk2O/geSM0RcG2LEb9Pq//4g1OLC+haiqaorF27w5zc1PcuXoZx9H+H/beLFaS7D7z+8U5cWKP3Je7L1V1a+/u6mY3SVGkR6Q4MzBoa2QZsAc2ZAGGYcPjl4H9YmAwgAD70X4wNE/22JYG0oiSRhQpUVya7CabZJNd1VXd1Vvt+9233DMyY/dD3Go2m9VNSrZfNHMKibyVmTcyb2RmxPnO//v/PqShiOIUPYf94ZSDbsjamaeRSnKwv4fnFiHBQTAhjmKmk2kRSaQbuK7FzEyT0XjA7s4u59eqzLZ0LCNB6JDLHMOziCcTtCPOimma5BmYhsfDhw/xfaewEitJGifkUuFVWwhhEgU9DBGTZjn1WoWcMbpIMfQiEkrTRBElSJEfrIkiakhQHEOl7vPqj67gl30a7QZ+yeHc6VVm51pYVgnHcXFcl2aryF02EptSXuWV8C+ZXzjGsdU1dnc2WDvRZHKwyd7eAQehZPXMBWzb/5nPevzXJvm+eCKw6RcBl/624vUXLSz9O/H6//FI0/R3P7zjpZTAz+emPumA+6QSPPDEquiHhe6TbnvS/R93+0eNx/c/Fq5CCNL/9f9Gn0SMlheotudx3Cq6bpKLnDTPEUcWrEkw5tTJs4xHQ/7qq1/DkArPLjGOxpi2WQRbZzm1WgNN6BjKwLAKLL/nVnDsCoZlY9ouuqmzub1VWPAoiq7BaEw8nfLm5SusHT/OyvE1PN9mPO4hhOTll3/I2bV5TFPh+B6GbRNHCaNhcEQCDfA8hyzV+P73XuX46VPoeQ0tqqJ0m7n5ec6ePoFtOty5dR8pTK69d52LFy8yO9NCI2VpaZaTayvEUUB7ZpZ6o0J/cEhOzsWfXOHWzfucPnGMxaUVxuMiF+/46ipB0CeaBuhSIKXOO+9do9WoogtBkiS4vs/TFy4gTcVk3EfTNHRdI+j3iYIRl19/D7KUhfk5yqUy3V4HSLFNgzPnzoOAatWjPddGU4I4nOJaFpCT5BmOWWTubm/vUCpVyLOM7uEhruuSZQnTcZ9h/wAtT6m02th2qXAVaClbW3t8/c+/wgvPv4CQ+lGWZIrQJFGaInUTJQ2EJuj3DhGk2JZNrTFHME15+913WVld5PkXXiBOQ0xTUSrX2OtfJBgNKavzeJUJ+BfJB0uYLw84/GQd71dPoOk6pm3j+2VarSZCgmkbvP766xxfWyPPU7yST6ffhxwO9va49s47NOZbeJ5HNJ3wve++TLPeoj3TZnPjPtWyw49+8AqL8ys4lovn+pxaW6PX6XLr5m3m5hcIphEvv/gdjq8ukyYRaMVquK4Ub719lfm5WUSeIcnIM7h37xFz7RkW2jXCoItr6Fy/cQs0jfm5Je7feUgwGlPyyjRbTSq1KrZlIIBXfnSJNE351Cc/wbV33qTmuWimh9RNJsGUr3/9L/n0pz+FWXJwPJdKtcawPyCJYmqVKsoyiaYhly5eJE0znv/EpwjiCM91icMQKTWSNEbPFetbG5x55hxZMiWNQlCCKC56UT3fpVarI4Ti5R/+kNXjJ2g2mgSjANcp8eK3X2KmWcWVMcooM7d6msW1BeYWami6RE9h8+49lCXY2t/Hchx0AZNghFdyyAQIpaEJSTjYR89i7t59yOLxC1imSxJHRNMRrq2KnlPlYBgOQocoSbDMOunBDay1zxPPPUeeZohxjxs33+BYxyFJBXHjIUYekM+eZzQds72/TnthDhHrmFfXoV4u4p60HKlyMk2n39kiz3LIdVy7TBBM0HWJ49RQhk6ahJimjpblhOEQQynqjTbPPfdJ3JJb5EKnKd958XvcuX2P42tFJT7PDaRuYtoumtBwHIs0KvrIlCpaEjKhsbi6ShoXlfHpNKDdauM6NsdPHCv6RVVReU6SECnBsiuFPU1JTp0+iWEpDMfFMIvs5X7vEMNQNKoNlhYXEJrk5MlTvP7661y+cpk3Ll/j4cN7rD/cZHFxkcm0i2067G7v4TqlAvYjIUsjJpMpYVQAV9IsZzKJeLi+wZtvXuXsuXPEaYwyJFkSsrtzSK0+i5Q6QpP80b/61/zOf/k7PPeJ5zAsRa/fRRNQrdcpVx2kSvBLNtVajV5nhKalJPGI02tLLC3MkyQhx46X8U1FkrrEBLhmhUwZKMNB6TagyBFoZECCkIpU2wY0cm2GaTZB5QaWoYiyEEOZQGEdLhKbNGy/RpwrlF4IB98v4ZdLmLZJmkqCIESXJq9fvsL8/BKWZbO7e8hrP7lCuVzjO999iSiecuGpp3AsxblzRb7k0soKSVjE7xwcHhLFGY8ebmAaNpZro6TJwvwchmWg6QrTUQipkcQJSZpg2gY5RRZkTs6pk6dZWCiiwLySxTQMcOwiZzXNMqajPo5lo+WQ5VMsx8SyXeIoLs4Vjo5XshgHXTQUL7/8Ek8/9TRJGjMaDsjlBE1TpKmkNyho/bdvr1OtVpiZKVpJSuUKSZ4zO9/Aee8e+4aGPkywnRKaAPOwj23bZBUP7fI1xv/TP6GbR5RKVcIoIo4TTMNgEqaI4Q5/9Wd/wPNf/A+JNAeL6IkT2Q+K14+awzymDcvf+PzPPyYvhOqH/z2e5/yiOVHfdLDTAWYcIOwyL37tyyzen8WdHudhep9JPCVMxihNZ2frgNEwYGdvl5s3b3H9vWvIaMzyvEujLtGlyxuXr5EnCe/d3GA8TKiUy+QkVGtVOp0+49GYZr1JGIaYho2uDJJgh17nEMtSQE6WgG777O/GaLLEqTNn2dzcojfqMzs3SzCJiOMc3yuBJhgOhihdp9FsMplEhGHGew83uf/gDvW6i+famLpW0HR1DSEojpFSkWcGh0HE9Ws7rJxuo9k+TmmJLDpE12KC0SG6iFFSIDQdTcsQmSDNcwxbhywnzacQK2RmYNgKDJP13W3u3Z6wuLjMhWeO89ZbN1hcmmVvY5dGtc5g2C/md9Mhz5x5FqHBcBzgGC6+mTHs38N3cjTTRIkcmeVEmUmYOhhOiXK9TZLkeLbJ5UtvsLK0fBRrZtJs1rh69TLt+QVAEE8Tbrz3Hs1ahdWlFCvTkEKQahkCDT2RZFmMhoYudeI4Jc9ytExQKlnoQkJukCYxEgGGiXJnePioj600kvgQIfQCbCZ0dGWR5llBSRAG/f6UKErQlUTPM6RUZLkkTODNq29x5swarapGu6JTKZdIjCqvvf4OeWbQ6fTeh7UNBwN8t4S+51J2mgwqO7x+6TXGo4i/9+ufYdw9JOnv0NlbpzXXZnbhdOGwBHI00kuq+K49Qbx+dOviT6G1P/3OaT9zEZoELXtsniwu7zt+nrBdLSvu0x4T1H4WDPVRQvrJ4vrj/4YPH3P+zovXLMveF6/vg42OBN/j8eHK6i8Skb9oxz9+zJNWHj9sK/7g/X8Tv/eThHTye39I7lhMFlusLK8wCgI8v6hOCU0QhfGRtUOgdIO7d+9y4dmnmZ2dY2d7h+XVJYQQ7O3tUfJKpGlKr9fj/r27JEkBrsiyjJJfod8fUCqXSNMM0Cj5FUzTYjwZUC55dLqHtFtNhIBSuUwch+hSIwgmVKpVTp46iVQF5n8SBNiWiWsbaEIviIM5SKlYXl4GkTHoDXFMj163Q6NRR9cFjx494tq1a5w5e4p6o8b+/i5ZFjM7O4fruGhCxzRsLr7+BqPxkMWlhWJycfo0nu9i2mC5JtV6hUrVIwzH7O4ccOniJdozs5imxcLCElkas76+TrvVQumKySTAdYucVdNyiKKE7e1tdCm4e/cBg2GPZ555CiEfv68F7XocBBhKHQWIQ7fbwTQsxuMJg8EYx/XodQ4wTQPXdYmikF6vS7vdIsbCdipsbu8zO7+IW6oRjEZYho2mwXQSUPLLfPL558kA3TCKfmpd5/DwANt2SONiRdwyDAxDJzkC2wyHRWbgsWOr5GlKHCVMJxP8UqmI8HHvoetginm06k842MkpXzKIyx47X2iAVgBvDClQUtAfjI8snYr9vT2q1QpxHFOpVsjTvIhuiVMmk4CZ2bmi10tKTp8+RRxHDEZDZmdnSNNighpFMd1ulzv37rK1vdbMU74AACAASURBVE2j0eCNK1c4/9R5fvTDH3FybY0sy4jiGNdzkULn4fo6Z8+eY3t7h/X1DVrtJnmeU/JdyhUX08wZDg8p1WeYWzrO3n4Px3F59KCActy8cYNao47r2BhKoUtBe26B7Z0dWq0Wt27d4ubt28zNLpAlKTeuXWdhYY6tjfWi2p2kdDtdur0ua6dO4zgO3/r6X7K4OI9pKFqtJoapsLyi6jcaDLh2rehVTaOYXMsp16qQ5vR7fbrDPtVqHdMsLGLf+MZfc/rUSc6dP0cYhuzs7PDo0SbVah3PK6FlUxxTcPmNd1hcOYGWxyjp0B/2GfY7NKo1bty+T70xW/SJagk5CabpApIsSxHSZDLqEU3HlCtNHF8iREqWpvhehYcP95ifP053sItl28TpFGVI8iwn3Xyd0mf/W5zGYpHVGgT4ro5/a4gmJPHcIULTiEonmSYJy8tLlKo1JtUapS+/Rnp2melkSpxEpGnRF2qbRYSI45rkeYQmcizLRuiCPM/oDwYkSY4mFVFSEAvHQR/b1pEakGnoOiwtLbN/cIBhKEqlElJoRWsrxWl3NByAKKixSinSNGHY72Gqwnrqei6j8ZjJ5MhqrBUIqHA6xbbtwq6WpEWW7HRMnqWYpsLzHPrdDllS9Hx6XglNSvrdDqPRENMqVviXFlc4dnyNT3/60wih8bnP/hparqEryZ99+as8fLBBt9tldXWF4WBA97BLmuTs73fodHosLi4yDoacOXOGer1GrV5HClFAg7SMN6++y9z8Ao5j8sorr1Ap15idmyXLkiKexVBYloUWC27fvM2d23eZnV0iiTW++9KLHHYPOL62gmXrQEwUT6n5Obo2xbQ8MhkRhQn9/oj27By5pjMYjtnd2aZSqZBmRYZwkm0UlW2aSGXS2d7HcT2QkjyXGLpOnqVMRiOSOMVxHIQmiLMcLS9yj7Mkpt89LBbafJ/9/V1GwyGryysMhkNqtRpnz57HcW2Wl5f4lc98mizNsO2CdtJut5kEY7I0ZxoWlu9arcbsbBtl6CizWOxLshRlKIQs2lkODw7xfR/Xden2e8RRflTddvB9D9c5ghsmhQgMp1EhGHKBlAKlW2RZEXEyGgY4Tomc7Chfcsq777xHuz1DuVylWi1YA7Zt4/s+SgmGgymWZWNbJhvrm1TKNZaWZwiCIWg5rufRarYZHx5S3tgn+a1/iPnSReKZBnEa4wzGaJpGmudoW/to//Q/p1z26XS6tFotpNTp9wfkWcLu+j1KpTIrp58BXZHH0/ej7z44svsCzc2R53/eUvz+Yz5OvH7M+GX4H4IELdeINIPDwx7/xz//5/wn8n/jkXqHxVPHUGYBYTR0h9ZMizAKqTebXLv2NrYlOLHcpH/Yp+r7SDWkPVun2WixfbDFMxcuUKvX2dvvcer0c5TLHt1ujzCM2T/Y5+7d21QqFXp7dzB0DeMIrKYbJnsHPRyvie1WmMRTJpMJtWqNPMuYTCZ4vs9Bp0uSpUhd0e91GA566FKyvvGIJJqy0C4z1/BwTUUUxUhZ2FdzimNjlqVAhu8plhaOYboC3awSpwYyHTEJBkgtRpcU/cDKBKGRZsV+VYZRVBVThWGbhNqIlBiFg2aWuf9ozHg6ZnV1Hsv2MTwdmUsMQ+GXykUWeVbkUI+nYwxDce/WdaajHTwnR0nQDYUgJU1zDvsBUeawtHqSd6/dgVxQq1SZX1pg//AA07ZQpsFgOGRhaRnTVPR6Xd59912arSbXbl5naX4ZIUIQijjzEMJAV1OElOTwPnxU0zQyFNh9BmONn7y2x+Z+h5mmgzRdEly++tVvszjr4TsCZZhMJpP3Ww3TNCUnRQiJ0nV0JXBckyROieMYTRNIXVCvV0BLKbllhoOAazc3ef3qXeJQIxgPqFQ8VpYXj/LTITdSzK0yQ6PLpd4P+I9/67f4/T/4A6ZByImFOUadDvcebFObP8naU588UpGA9vHi9aPGE6NyPvwYrZDHTxxPFK9Pcov+zYTqR7+Ojx//VonXDwu+x5bbx/Zb+Hjx+tHl+Cc+78dWZ9M0/bm+1r/J9tM0RR4BJh7/fenv/SGa5zCareN7PrbrIXVFnuYMBgMc20FD48qVK5TLVS5fvnQU69A+CpZPuXvnNt/4+jc4e/YMQuoEkwlX33iDs+fO0Kg30DSNwWDAO0cn18FgyIMHDzFNE8Mw0CR0Oh1M08Rx7ML3b5ncunWDWrVKqVKm3myQC0Waa8Rxyq2bN/Bdm8lkzGRa2Fa6vYJ2q2k5hqlwHBtdSlzbLiabgOu4SF2j3W5SqZbIs4zl5SWiKMa0HMgF3//+D/nUZz5Ns9VAV5IkiZmGU2qNKrrU0U2LLAfDMOj3+yjdZH19g5MnT2FaVjEJlWCbJpqmEYzHJEmCZZrousFkMqXfH9BuN6lWypw7f556o0YQjCiVy1hW0XsXhiGLi4sIWVBCbdvF8wobabc/xHZcXr90ibm5FpZlYloGtmWhlGIcjNE1i0F3wEvf/Q7HVlbY3NxgMurjOSUmkwm+7xKMQjY2N2i2Wty9fx+/5Be9gKbFq6/+hD//yldoN9vUamWuXH6dWr1Ft9snTXKkELzz1lWGwz5KmWxubFIpV3jxxW9z6oVdlBWRGXeYjKF1fwmxEdP97VM0lmapVqtsrD9iZ3OTB3fvMQ6Lfr/9vV3m52eLymocc/29a8zNzSFyje2dbZSukMJgHIzZ3dtB6Tq2bXLY6bCwuIRhW/ilMvu7e7RnZxgNR7Tbbe7du8eXvvQlhoMhs7OzlEslRuOA3Z1dKpUampQ0mk1yNG7fucPayZMIUbzHvu/w6NEdblx7i2cvPMUktbBsj2arTZamLC3MI6VGu9UizQrwiNILq6puOywtLzMajTEtm8XFJXzHZ2tzkyyJmU4Dzpw5gzIMsjRje2ebLMvpDwaMg4BGqciWzLKM+w8f0Gy30KTk9o1blEslZmZm8EslbNOgUq+R5pAnGTeuX+epZy8gtSLG5OaNW8zOztBs1EmzImT+1s27OI5Ls9Hm1q1bdA+3cGzF7sGQan2GSskGLJAZWh7zrW98m+c/9Tkq1QbDYQ8hE8JwgoaOaThFULswsU3BW1ff5My5Z9nZ3aVWraEJyTSMqVarpFqGZdrEcbF/0ySBcEp2cB3x3H/Nm++8S6lSI9UM9rbvUL01KMi7c4dMJ1P6xnHCcIxfKRElOb0gp/HqPfK5BnaljK4bWJZFmqSYysUwJNs7j0jzAlCj6yaDYYcojjGUia5MlLIw7RKaBCFiBoMupJCnGtIo8nFXV1YxTQvHLgjCaBrkOQIwdYW03KI3UNMK8akkppJIXTIcDvG9wiKsaUfB9VoBXFLKIIpiQKBpKaZlkqUJcVwQYtMoYhKMEVIidJ00zwmDMZVKmSzP8DyfySRCKQvLUrRaDdIEvv2tF1k7vsLW1gFBEPD8C5+gXC4jdUnnoMt4NOXSxcvMzs4hBDSbNfqDPt/57ndYXCwmTMPRGF1Cvd5GmRb9QYdwEjLsjzl+4hh/+qd/wslTJ7FMkzRN+dq/+RNmZ1tcuHCBNEvZ2Nzg1q37/OZv/hZ+qXS0bzIuX77CTNXBEBEID3SdLJN4nk/nsEe52sB2XMbjMZZpoBsG4XQKco80iRnuSyzbx7MUpmmSaqqYP+UpvU6PjYfr1Gt1Dg4OsV2HME5488oVWo06jm0wHg1otBrkeYLneSwvLRfEe6UThhE/eOWVYhGUDNM0UbrOD3/4Kru7e9RqVSzL5K23rnHx4iVmZmeo1auE8ZTJdIzr+0WlIysEWZxM0aXC930ODzsIKbEsE12aPHhwvyAgi8LensQRm+vbCDTKpRK3btym3xtwcHDA/fuPqFRq9PsdyuUy5DqGqbG3t4dSiuXlVRzHLRbk3OKzWCxEHpKlCWSSKExx3cK1s7K8jOsZRNGUcqXCeBSwu7NPO0qQWc7O5z+J+/t/wQ8+c47o+i3aaXEOTTs9pgLePtnGMHVKfvloDiJI04yqb3Hj3at8/ktfIpVuQdjWEjJN/tycRJ5PP1a4wv+/4lXlIYmmiLHJRoesXfxVUrq0n5/jrXfewXFLtJqzSE1HVxpJlvGNb36TYDTClCHnTlewlY+hS9xSjJQGV6/cplSp8nB9g+u37vKl3/iPCOOYMAjY2d1lZXmZcqXM0tJC4b5IuuRZRBKH5DkIoag2Zsk1h2mSUaqUaLZmimgXTbC5uY3jFbmotXqdfm/A6soiutBQhs5wPESkfV545ji2ijAMUIZkEkXYplkIZKWTJglSaqRRH9etEcQhml5HSIWtQoaDDloeQ5YWi4dx8tNs4aN8Yss0IYMgUjzY6OL7NXQEGwchdx4coizB+XOncdwy5YaN0kym4RTTNOh2eniuD2bB+RBkEPep+hl5MgIyNCkQWk6aClAlZhfOokmTUqlKnoNlWoRx8fm1bJMkSTFMk6997a84ffIsP371Ioay6fYGHBx2cL02QvaJk5yXv3eNRrOCkAOEZpIkBfgtzdJiLk6xUG+aZW7fecD84iyVso6yqpQqc5w5ewLbiEmiMQCeV8TiPF400kRBQTct8ygPvLAl60qiCa1wlnk2WZ4gdQ3DMBhNoDOMOXPmLGk8ZXlpkWq1erRIIbhz/y7pMMeXZVZ+q8mL33mRM2fPsHp8kbcuf5+333iFTIs4fuYsa09/7qjtgH8nXo/G33nxmqbp78KTbb4fJg1/VKX0gz9/3BvxpJ7VD1OJPwxa+rg+1182i/bxNtLf+0PwHAatCr7nE0ymhVU4z6iUS4STSQFdqpTY3NjB91ySNGZheQHTNrENSb/f59O/8iu4R7//jW9+k9/8R7/BdDLF8z1sy8KyjKIXbzjCdVzu3r3LdDqh3W5iWiae52NZFpNxQL1ep9sfEU5Dms0mWQ5CCtJcsLmxBUkB0wjjEMO2qFRqgIbjuFimIk4iACK1SSYGRCOd7mGHOIYgGFOrVYp+KSmp1+tYtkMwmeJ6Hrdu38FxXUolC8exCMYj4iiCPOP733uZYysnmYZFmLjIizgG33c5fuIYAEmSYJgGghQhBLosQBe6lAhNo9/rHREZTbI0Ynd7k739w2I7pYIW2ev2qdWapHmGYZqEYcjuzh5pnKHrsL2zy5/+2Vc4eSSwCqBAhC4VW1vbOI5DFMW8eekiJc/m+eeehjyCPGZxYZFOp49f8un0e9y8dZcH9+/RaDWZmZ1B13XicEoSRwyHEz77mc8x027zw1de4dSpk5iWx6NHm6RxwuzMDFsbjzh18gS3bt3l/LmnSeKE48dX0fy3iKcmZv405tsK437K/n9zlvpqi++9/DKtdhvP9fnJj37CqZOnWTuzhhTQardwbBfH8cjyjEkwYfPROqPhiN3dPTzfI08zvJJHqVJBHgm5mdk2KWC5HjvbO0XVsz3D3Pwck2CCrusc7O0zCSZcuXyFldUVLr1+mbt37vLcM88yGPaxTJPO4SEXf/Ia58+eI05ihJAgclzbIghG6EInSg2mk5BBv0enc8B4NGJnY5PFxQUeba5jHkWYjMYj/EoZXUrG4xFzs7MYyuCHr/yIcqXM6bOn6A+HLK+sMA4CqrUapVKZer3GYDBEGQZ7uztYjk290cC0LAbDIY5XxDD9yR9/meeeew40wXjcR1c6SMWwP8JzXHTHPHJN6LRas1y7dg2ldMoVnzyHWrXB/XvrhGGIbduMx0N83+Pc0y/wcGOLSdBF6QbKVigp6B50OXHmLEIWtkzXdclzgdJNsjQnHA8xLRcpUm5cf4+V46fo9WIcp0SSJMTpBMPMOTjYwvNn0IWNLnUGgwF6OIDpAVv+pzhzugD6lGt1Zps1+PFtBDnhzH4BhKmcwncUtVYDpM3MwknEXkBa80mSwpaVJAmDQa+YrGlpATQyDAzDpNvrYyoNzy0q7kJKkjQmS/NiwUIphND5l//y/+L8U0+j6+KoP1YhhMagPyDPEzg6LsVRiJIauVbENxWk8SI2aDwJKPkeYRgxnUboun4E2itiX2zbJs8hOYq7cR0Tz3VJ4oQ4ihgOBhiG+b5rIwxDlJJsb+7QaNSREqI4IkuPyM1ZzO7OFn/8r7/M3//iF3AdnfmFJS5cOE+15iOFxuHhIW++8Qa2ZfPo0QZnzpzBtBTTcIxte6ytreE4DlmWkucpcRQSxzmu74CW0qi3WFxYxXYNjh0/htC0oypKzky7zPLqEkmWYrkmtXqJUyfOomnF4myWZeiaztbmDvVqGSUn5JlHqul4bhHvYFoOWS7Jc62AwQgNTeikWQxyFyl1Kt4aum6QRB2krpNSEH7zPKVzeEgQhLRnZnn3vXdZWlkmz3LmZ2YwdJ0HD+4X4g8NKSRSFBEWo9EQ03YwlOLkyTUAqtUqL730fWq1Mu32LJZl4/seui7IUjixdqKI0grG+L53tKDZw7ILNkMwHuE5VgFOFhphFBJGUfF9CBO2tjaxHYudnR0ss+idvn37LmfOniYnQynF7v4ur79+mXv3HvDCCy9gmEVF/O6d+wgJ9XqdyaQQBL1eF8f1358vRFFErV7D0CVprPH22+9RLnuYliIKpyA0HMdhf3+fer2JY7uYO4fEvssn/tn/wD/+9Of4/h9+mWeee5ZmkhexVjsH5LUyS//db6MMiWlY759zAIL+Ppcv/ZgLz75AJOyiSpdFpB8CyHzUXOjD85dfVrz+spGDP7PtKCATDiqH7/5X3+KM8ytc7v019YUTPFq/h9IN1h9ucePmNSolmxs3brO3t8PKQpVnzy3gWDGVcpntnW2ELtBFmWppnk5vUrjYSlXm55dxbJhOYkqlClEUMR6PSLO4gKrFh5DHGEoipQIh2dzpkWFj2h5RmhJFGTOtNmGcMDc3j+04WLZdJDy4LuF4jKHrfO/7r7C+tcPp4w0sI0apEIiRSqIMdTQXUcRxfDQfzBFaiqYqWJUWymhjOxr7W7eRIiOeBIij/Sik/n4BJM/BskyCICDJJzx8OCSOyty4eY9qvUpvDOsbh7i+wbnTZ8lSgeFkaJmi0WgcweUM3n7rKmES0ao1GXf3iYJtHDMiDEaYtkOa55BlxIlOmNlkWon9gwPeeOMKJ9dOMJlMcV2HbrdDuVxhOgkxTQupSWzLR2hF5TNNIibBiO3dHVaXq5RLHrOzs9QqDoYs+tDzvMj/juOwAD2SYIoWcThmZdWg7DkYjoVXniVOFVImJFG/iDCMCyCTEOKojS0kzTKUKo73moA8yzAtmxyIk/hogTUpUL0iLaqxhs+Nuxvs7m7yxS98AduykVJhOy5pntOeaWNbFn63wb2b97DO65TKZaJoyOKsy8qCTb3uokyd2bXPYpjW0ZdBvC9e5Sd/vvf8I23Dv4R4fUzd/+D/f7pd8fPbfkLP7JOe52/zff64UbTr/R0Xrx/Mef04IfhRPRUfziz6f7OK8OHrx8/9YSvxk373lxmPxWuyMkeapHheCaHrhNMx/V4Xw1BsbW+QpDGHB32eeuY8S6uL5HlGkqVs3L/L4cEhi0tLOI7HG1evsrp6HCUFrutiWRYHB/ukWUy/36NcLoTj3Nws7Zk6uir6jrI0Z9AfkmXFtV+pUi1X6Xb6RS4poHSDJIwYDIasrq6iHBvdsoinIUo3SdOMnIx+v4Nh2Oi1A+J8hBG1EUJy8bUrHHY6nFw7wcHhIUopLMspqtG6XghMXTC/MEuWBBzs7VCrVJFakT977sxZdne3aDbrhZDRYTzoInVJqeSjK1lMJLOU6WSMZZlMp9OiOqsUWZYW1dg8ZxIM6XUOMCTMLq4SBBPK5Sqv/eQi4/GEpcUVhBT0+wOm05DOQZfD/R6tmSqNRpvzTz1DrVYljiY06k0cx0XpBoZhFZP3OGVheYFqvcFgPKLSqFL4IMEwHXKhYbk280urnF47QalcAqExHA1wTJNwOmVldY2b12/yrW9+k6fOneX6tfcw7TK+7zPo9RFajufZbG2sc+zEaSzT5tVXX0UpiT9zF6nZWG/biNtTov/xU9gLVYLeIcsri/T7g4Kw2+mRozO/1ChWJqcRve6A/f0utmsh0Wg3W2i5hlQ6pUqZzv4eS6tF9FGtUsfULR48usPS6jHuPdxgdWWVOJzyg1dfZWV1FdsuIpxazRYbGxs8e+EZfnLxIp///K9z8/oNHMvFcQ3evHKFudkZWs0GlmlQqtTRhCBNUwxloDSD3e1DLl95k9MnT5BlCc1Gg3K1yttvvME7777LZz7zGW7fvsXcfFHdnUZThv0eJc/ntR+/ysMHD/i1X/siV99+k5nZNpVqFd0wkIZewEeyjPt37zHo9Tm+ssriiWPsHx5SrdbI0iJzTjd0tje3ONjdJwgmRR+iSEnznEyT/ORHr7G8vIRu6ei6xng04aWXvs/K8irj8QhdgaFsLMsjnMYsLS3z4MF9Pv2ZzzIzO0OMgev71Go2WRbjeB4aOp7rIW2JphVOAnKDJCqOgw8f3UeJDMcrAyFZGlGqNXBKJYQq4hhGgyElt4SWaQjDQtMEWTZFygxtuEUmLFqf+E/Z392iXvFZf7RO2a+x1dthzxpi6JtFFuaxT7K/s8VwPKJUb5FoDnG9hff7Xyc/tQoIojCkXHLZ2rmPhka3M8QyfPJcYDsGO+sPiaOC1pmRkmVFz2kwClC6i9Jtnn3+edI8LXqh9MKBoeuCQb9/lHlY5Luaps4kGKBpOlJouK6NrvQim1DX6ezvIaXi1Vd/zPHjx8jzlCAIKPklhJDcu/eAa9dusLp6HCFydF2RZRmmadHvD3C9EtMwPMqltcizBKHZdHtddCUKkaOrQsTlGbZtcGrtJLalM532cH0XpXLyLGYw6JMkKefPnaQ906bRaAI5MzMtchI0FK7jkOVHtjcJhm7guB65loOW8dprl5hpzyP0wn1hmBbBZEK308Url8mQhNPCspukEUk0wHEEQqRE4ZiS71LyXSr1MuPRI3RZQreLPFghTKIkwzAdTMspiNICNKEThlOEOiAHlL4Kacz6g3dxXAdhFHE/SRpj2y5zMwukWc7K8dXidccxhhAMBn0s26FSqzOdxNy6dft9q1+WpQxGRQ72eDzGcV3u3r3Ha69d5MKzzwBQqVTo93scdopznmEY/PBHP+TUqdNHGZcCxzQQQsexnWIhMJwgpSLNUkqVMkmcUPZLDId92u0m5ZKPLnUOD7pUKw2Wjq0QJiFC5kRpTKVaxbVtLMtmdXWFfv8A3/eo1xtIodjZ3aXRqKFpOcNhH9P2jxrPIIzCIgc3mvL6pascHvawbQOlNMqVMpMgodvt4LoemqYxmUyw+2MiDf7w4S2+8Nv/Gf/B1fs4z57DGgYINOJbD5j+z/+EyLeZTAsi8mg0Ym9vv3ATTId0D/Y4/fSzhMJGkKPyaVEd/5jxeF7z4fG3rbz+MkNKHSFNDv7PbcwHHpvWFc796r/Hzk6fC8+dIwimxFHChWfPMe53uXb9JlLTWJ6rsNx2WH84YhIGaDpsbnWoVGp0uptsbR/w7AvP8PDRHtNAo1WtcP/hA5aWlhFC4Psutm0UEKTBZgGFEjANI5IM6s1jdDoBlXobhCSKM0zHIgcePHjAJAgIgym+65ELjZe+8x3yNCfLBONpTBaNmWk3sJTEdVyEZjCZxOh6RpJmKGWRpRnKVMSZhuHOEQsHy2oRBruofISh62RJDEdgMdfzSLMiE9ayLTRNK1ImpGSm1cQ0EuqtBpeu3ufB/U3+3hf+PotLbd598z3SWFKqKgzlMRj2mQRjNC1lYX4GU0nu3bxH2TYZdgvycpF3q6OUQRonKKOEU1vA9VtHJHSfVqvJ7Tt3qZRLbG/tUClXONg7IEsy5mbnCOMhtiXY2X6AY6VYZkp/1OHU6iKulWNaEUomEOZohkLqRZXSss3CUi0USRqSi4ycguOSkKMJD8upMRjskYR9DF0RhsH7n+EkKVqtTNM+iu+Kjz7b8v0+TylkQZdPMjQEuaaQmsWL372KbrqcO3+WUX9EHKfcuHmHUrkAvEld590bbzEXrzKxRqz9o2WUaWCqMknQZePeuziWxcF+n4Xzn6dSrRYaRHxAvP4Nel4fk9d/ccvjR9z+JPH7S4rXX/Y1/rLj3wrxmiTJ736w8gk/uwrwGKktpSSKIuI4LjDYH4iu+WD22Adve7zND8fcfHD8TRqVn9SH+1g0f/D5PlzVfb/y+i/+CDyX9PgSw4Mt0nDEm1ffQDdN6vUWwSRESEGjVWd+YY6col81z0FoAq9Zp96aIYwz0ixnbqZFyXNIc53hcMIf//Gf8eyF59jfP2AyiPjqV7/CzEwD27Hw/RJJCp2DHUpuDanruCUbw7DZ3dpnOOjTataKrKwkQWAWgtM20U2JYegYus7h7j73793FdWwEGhoSz3XoRQ+wLJs8qLPf2cFxXZ77xHNIqeM4DrvbW9RqFTIhSaKYna0tyr5XEDq7IfXmLLmUDIIAz3NxHAfI6BweYBo6Ugoc18V1PLZ393G9CrpyiFJI4glxGiOkwPPLZJmOrlySNCSMpnh+GU0zcfw2Uiuqpy+9/F02N9fxPIf2XIs8TwhGI775199kbn6WU+dPkSofXUiycERnb5PF+RaD4RDLtphMp0ipEEIRJxl3bj4izxMs0yGc5mhoeI7NJJziuC77B92j3sWioZ9MYzAo+gsNy4Ik5dVXf8DS0hy2o3jhU5+gXi9h2watZpPeYZc8nDJTrfP6W2/x3rV3MS2D555/gcS4jPnKAtmdCY/+iwUiV1DySxiWxWgy5eBwn1Mn17j82iVOrKxycLDLzRt32Ns/5MTJkzzc3GBhoU21UQdToWwL07K5+ubbPPWJpxEyw7F03rhymaWVJbZ2CjtWpeQRhRM0oXHi+Cl+9OqrLK+sEiYJUhlUG3XeunoN2zZZXpqn0Wpw685Nxp0hzzzzFJubmyyvrOB4PpNoxGg0QCmdOE2xPI9yo8FgVAiJLE2p15pEUca7197g8JGCuwAAIABJREFUhU9+mp2tA+ZmFxgO+0TxhLLf5FvffJHDgy6n1s7Qbs+xce8a61vrHDu5hm4YXPzxRZYXV8mznEGvT7VUZmlpkXfevsr88jLlcqkAW1XKGI5FMJrSbDU4e+4Ms7PzeH4F1/ePqkYGiyuL7B7uUW/UyVLJOAhYXJwlCIa88/bbSMzihJll7B3sMDPbJopDfvzqZVbWTqDrKabKGffGOJUWuhDkWcxo2MfWDKRdZhJM8CybcX9MueRSrVpE0xDLbYIWIWWKZfrILCYOAyzTIEkycmliWCWSaIgUOcpQdLoDzPE6LH+KdOY4WQr15iwb968QuQ3Kay0ybwrb7yA0nQP9DKbeZ/74cexykzjV2BkHNN9+iLAVqa2Qhgm6hV9qokmjWNwxDTJNkGkmteYcynYYjgdFb6eu2NnZplT2i8zKrLDLOaZCk6CrokIXjKcF5OzrX0cpxcxMGyEFYZKglFUIJZGT5RmapgjjHMtKSROLt9++y4OH62xsrXPmzCmmkwnhNERosL+3xcm1VVy/RDRNsaxCjPb6CZ6jIwSYhkESx+hSJw0Dbl2/ztLSKmmak2spmsywDJ0sgz//yle4d/8RZ88/h+MUkTrhJERJHUFOnickScq1a+/x2ms/5vlPPIfQNJSy0ERKt3+ArUyiUcJep4NGhhIpgpx6o4njOaAkQssLCqZpIk0LKWE8CJiOJpiWg1QWtrKIoglJOCGLcqLphHrdozfqok2H6HoIuiLOBDIt+sNM1yBOE4SwyVMDjWkRs6SlCM1Fy32mcY88lwSDgLLnkaQSQ3eKXFctIUlzdCXJsoggikhz+IuvfIWF+RlqVZ8cQbXZxinVQCju3r2LKTT8Sp0U6B1sYxiS0089xWjYoTUzi9ANfvD9H6DnYJW8Ap5Vr2PoEtKYYe+QNAWN/ChvXMf2KwzGfUzDQGoSmQs6+x3GwZg8E9y7vcFsex5Biq6nGGaxv4QGQmiUfI/5xUWWlxZIk7DIKTdc4iTjj/7VH2FZina7UQjwBDRdksUT4ukI3/NJc4mWS1zPY2NzgwvPXsCwDHIScqFhKBupKchjyAOMB/uIf/AZ/vE/+6fYyy2Mt26hrc2jhcXCbPpoG/2//x3iKOHu25ssLLR4tHGD5aUFHN3nwfUf88Jnf53UqoCmo/IIkedPrLxO/4VFckl/H9j0pPFh8fq3HZlWwL+EFpHnEbmI2E/LqJtT4n9j03EvUV2ao9E6j1QpcSRxPZuZ2TqPHm3z8kuvMw1CVuYqrKx4KDOnYdfxmjqVqkHLaqLrPqEUpJbDjXsbBFHK53/913A8n3qzyvV330CLIw66PaoVn/7+OvfvXaNe9SGLijmF5xOlEmVW8EsNBqMxpVIJQ+V0DvcJgjEzszNFFJsGmsjodrtcv/eI7YNdai6sLZWYbbmQpJi6Q5TE6CbEUUal5BNNAgzDII5ydLNNbipMt4WpSwj3yZNBERcjdZRlIZVgGgWQga5LgiAgjhOkFKBGZCOBlAm6F1PzFtje7jI306ZaruNXynS7uxxfXiPWbUzDZDoJGI6n5LpNyTXZ2zwgCg6pVKYYErLYwfRslJaxu3OAW13k+q0d4lhDV3kRa5Ubxd8wTY4W/8sF2b7soUydjYebKCbYjk2YKW7fWueLn3uGSjlFqZwkFERxCpZGFqaQZuhCJ4xSkkxD13LSHAzLIRMSaerkwsd2msRJRpr2EVmMyBRCJChdJ0sLvoMUAsQUEFhGiTwRxFGMNHMmwRjHUUhlEEQl7j1KyDWHjAlLcw7xJOPanU22trb55Kd+hatvXaNSqVLzS2hpTKZlmMqllc8Td2P+92/9L0z7Q0y3xMbdO5yYqbK31+PkyTWqMwsE0kWRwX0BnkA/lxScpA9cPignf9Y5eiRM3wcs/TxcqdA4P92a0GTx85Msw8VWf+6iiQ9u/6c/P8avaUev66MMykEQoJT6OWfqB0ee5yhl/N0Wr49pw/BkC/Dj8fiNC4IAy7J+5jEfZxf+KLvxk8YHRe5HlvY/9Dxpmr4vYp8Elfrg9ePKq/vsOQ62N7h2/Tpf/If/Pp5fIU0zLMtGGTpSCJIko9frYZomcRwzmUywDINBp8/m+haVcvnIMmWRJBPeuPI6zz9/Ad83mZmpY+gWe/u7rK2dYG9/n/ho1cmxTe492OB73/sui0uLaEj+4i++xoMH9zh3/sxR/pdif3ePKJryp3/yZZ7/xLOE4ZQ0jqmUKziOg1KKPM8Zj8d0OgdYtZDJdIqZzKMJjUajebQylpKlCfVGg4P9fQzLw9ANfNdjc3OLarXGiy++eCTamyhDZzIpyJJK19/vJ8qyjMkkYGdvm/b/w96b/spy3nd+n6p6au/qvfv02dd7z9038lKkSFmW5DgS7DE8mAwGBiZAZhJgMMiL/AeGMwmSvEsAI8AADiYeyIo0lpXRYlGmTFJcL0Xx8pJ3387dz7ln7+7TW+315EUdEvQVKdHjyYuM8wCNe9Gnu6rQ1VX9fJ/f7/v5jo2RyYTRoIdj67iui2PbgIKu55let2+vEIUB5VKZGzev8/LLrzA/P8+tW9colUuUKxU++OBDnvviFxkbawESx7Y5ffo0mtApFAoYpsleZ5c0ivA8jyRNcAsl/uRP/g/8kU8qJY5rs7q2yhuvv87ZZ05SKHgkUcqNm9cQIvdbGKa1D4rJIJMYer4q5zjOx368l158iVq1xhe+8AXCMGTQH6ALk3t376MJg8Egz6W7e/8+hmVx5sxpJsbHidc3URu3SK+V6fzBAoGZce7Nt9hY28RynDwP17GQKBw8uMxYa5xSrczE5ASt1jhJkjA1MUm3s4NhmjktNlMQqmBxfgHXdVhfX0fXdBzbZXenzezcHEmSoAsdy7QwdIMgCBn0+xRcl1KxyMgf0d7dpVQqYZgGH1x4H6TkqaefIUhivEqRa7dusnRoGYTAMk1sy8nPX5avQq6urnHw4CG6nTbzc3PcvXuPu/ce8NWv/CaKIrh+7UbeFWCouK7N9k6XerVKtVLlzTffpN/vE/h9nn3hBbxSGSkllpZ7+m7cuEGlXGJ7e5tzb5+jXC5TrVfY63awTBOZpUC+KNXv9+nt7eUr00nK97//72nvtGnU61y+fJk7d+5w4MABHj9cgyxlY2OdZqPByZMnkBJu3rxJs9mkWCrlreJJzGjgo6ogNLjw3nlWbt3m4OGjSJlDYTQh0E0LVQXHMtjrdNjd7eIUXPxwRJYpGHYZlRBNyfBHIW6xRBjmbfymaZGmCaE/Qoj83hTHCZ7nET++iHnqv6Y4tkDJbZD60KhVUKwio26X/s5jSrKDsEv49gQaIV61RZgIDKvC3OwS8e0HZI1y3kIvRN4dEsUYQkMIldAfgcz2KcMJILEsA1VVcmuCCpbl0B8M0I08Z1Rm6X6bZ8xwOMJxPcIw5tlnn2VqagpVyfOahRD7mbUy98j7IYqiIjSBSkrBLTI5Oc7yoUUmJ1t5tm8UUyqV0XXB5OQEhYLDYBQjM/a9/AE3btzmZ6/+lMXFRQoFlyyTjEYjVGB8fJJ2p5NXQHQ9j8BI86ztY0ePsXL7NgcOHEQTkk6nm0dbpRlRFO5T4As06k2++PzzhGFAt9tm5EcEUUKt1swtEIbGK6++gaYoVKploiih3e2zurbB+uN1XMdmOOh/3CqnazpvvPEmrdY4pVLuIc6kpNvr4HoeFy5c5s23znHsxElkmmIKyWg4AsVEFTZRMELTDZI0z8198GiVYskjCkeoqobQqiiylB+bKFBwPTY31/NFLl1BS1PieIDYjyRL9s+zadqoisqR5cMYhk6/18dxXXr9AZrQsEwD09CpVsqg6ei6gWsbICVOsUSz1iTJYDT0GW+1mJyYQDcN/FGAbTlE+/FlxWIRYViEUYDruoxGA7yCiwLYjkMSRQR+wGg0ojUzR4rGlWs32OsPaIw3Eaaxf53ki+Mf/ab19gZkMqO/t4eqqrzx5husrj5md3uHU6dPUCoVUVWBruskaUoU+ji2TRBGSBRUFL7zne/Q7/V55gtn0cQ+8yKVBH7Eo4drVKsV+v0BtdUOg3/8WwSagqqpKJNNxP/6Z0SnDxI9WkeVCmtfOYlE4hgmtuvmoDbfZ3t7leuXPuTMC79JikBRVFQyFOSnel6fpA1/2tB+7yt/Z+GaT3jy/EypKGSKAmiow4yd/22XUG4y0LcZRAZWqcig22ZrawcpU0rFIu+9e4Gi43P2bJV6WWPzYRdTE3jlGKkZJAlYZkqn1+feox02VzW2dgbUKxMcO34U0wRFCHRVoVqtcXNlBVVNKRUsKkWBISS6UPHDGImGblcZDFIerW0wOT2JZVk8XltjfHyCZnMMTdUxdAvHcQnDEFVqaMLJ43cmSsxPltD1CCl9kjREE6CoKVmmEEchQtOIkhTLtkmkzTCISTKBa9nsbt4njbrEUZS3uup5TJauKUiZx7m5rouifFRpVFEzgaZ7PN6JeePNK1i2y15/wOb2DsdPnmJycgpNqJh2gY3Ha3TabcbHxzENkwsXznPk8DGqJRPJHkkcYxhFMkKSOMKyPXSrSqYVMG2P2ys3OH7iJGmqUiqXefR4lcWlpTw9I8l/T7I0o1arEo163H+0yq3b9whHQ+ZnyugiX5jUVA1VzTDNPMHBtAQoeYuvKjRSmaFqBqblEocpQjhowkZiIIROHPXR1ZQkjojjEYZp5JVoRSWOEka+hSYspIwZBXsUCgajYYQuLJBqzrbYC7lw/jpZNmCiVURTVXa7ERvtEeWizViryTPPfoH79+5SrRQQuoJXLNPL9ihtNdgM1lGP+pw6cZzt3S0K+oibl98hkZKJxROMLxwmUkx0MvSjMRxX9untT14bn/jvr9Uln22TfPL5z9t1+tmV219mCT0pTT/i+Kj7XXK/6nj+k6+8fpp4/eSJ+KhdOE1z0EChUPj4vb9OuH70ms8rXj8SoZ/mv31yfx+NJ72tH23j096TfOuHYFukmzuIzTbFQYSz58PaNqxtkj5cQ9/cRen2EJ6H7jpIKQnDkA8//BBX1zn39jm6nS6zc/NoIv8C7Wyvs7iwQMG2CIMBnc42EoXmWJNqtYbnFTEME12YJGlErdrEsHRK5SKOW2R2eobl5QOY+2Z+wzSxdINet82hQ8toWm54VwBN6Dx48IDxiYkchuHYFFwH6XQIwwh/t8APfvgj3n//PIcPH8K2c2jAhfMXaDRa6KaVk2xHPlEYksqMk6dP4Hru/g+eJEv3/VrCxPcDhJ6T9hRVw7RcfvKTF1mYn6HX2WGvvUuv7++3j6ioqkYUxnz7299GVTSSJMXzPM4+c5ZypcjtW9dYXFxkNPL5yle+yoX3P+Dm7dscPnKIwM/9mgC2W4A0JhiNyGTunxCmRTCKcGyXhcVFxlpNFAUazTqnT58gI6bfH1IqVxkfbyF0DcctEARBHpgt83DxwaAP5CAHBY0PLlzEEDquW+D+/QcUi6U8izcG07DpD0ZUa3VM26E7GLIwP8Not4N1dYXirUdET/W4d3CWQEk4sHQAMpXDy4e5c/cuY+MtTNsmlRnb7TbC0FG0vJr/8OEjguGIQb/P+toatu0AKi+/9NcszMyx1+3mrXmOi6podLt7lEoVyuUi3W53/9rKKxYySVlfW+PO7RWC0Yj52Vl+8Yt3mZqeYXd3m2fOnuXho1XGmmNMTE1i2gYzc7NcuXqNSrWKUARJlJBl+fn/KItT1VR+8e4v6La7TE/PML+4wIcfXGY0CqhVG7x/4Txe0aVQKOC4RSzTpFQq8mj1IYsLCxw+dpRREOK4Ln/+ne/m7bRlj0PLB1l//DiHA83P59nBQmU06NPe3aFULKLtRxaYpoHnFZBZxrvvvIuhCY4fP04SR5SLRebn5wlGAVkQ8Yt332V+bo56PfeX37pxi52dnfxGr6pUqxV6/T6mbjE3N41jWtQqNbY2til4ZVRFIwM03UDRddQspLO7jRAGr/zsTY6eOE5Mgml6KEJHJgGmUNlYX8Mp1UizLK9ajkaYQsM08gxjPwgwDTP/Xm1dxz70+2A6+CMfXbWIkwBVL8D7N5h1KtzEIHDqWJZCwfGwvAajSKc+Nsf2dpdISrw3LqHOtsjSGJnm8CzfH6AL2N3ZwPMcOt0dhGqhaSppml+jSZJhWVYeF6VpxHGMYQjCYIRlOzlRVzfo7fX53vf+PTdv3uDkqZP5vVnT8sWsNG89/UgoCaEjhApSY3P7MV7RRDc0DNMAmdOyc+pnhq5rjEZDunsh9+8+4Nq1yxw9fpQ4TrEdk+ZYkyAMGfkjbNsiy+C98+/z6OEq773/PgvzcxQ9j3Z7l2LRwx+NOHPmNKqag4MKboH19XVkJnFdF9u2GAyGWLbFcDgAoFarkmSSn712jumZA1i2RZQMEJrLkaNHiaIQpIpuOvz0pVfYXN/k0MEDhMEob1tVIU1UNjc2c6iRo5PJmAQVYQokKtMzS9QaLYRh8P2/+B6zs/OEoxFpIrHcEppIiOIU26kihE2h6KIbSv556jqZhCiKcsGumQBUalWkohCEEbYaMRx2UBXQNAtNmChCRSYpQjNQVJW11TUKboH+qI/j2Bi6IMsSNFVFKAoZKoPRkMgfYjsOqm5x++Z9vvvn30NVVX726qs0mnUkKn/x53/Btas3aLUmOHfuXJ7ba+oUSx4KEpnG9HsdLNsh2Se3v/7665x56mmCJMZxHQ4cWKLZrO/7lwMUNIQmkFLZz68NePDwEUJovPLyyyzMz3P4yFEc16XTaTM+MZ63sOs6/cEQ27ZQlZzU+hE9X2YZS0tLHD2S+4/TNAUpCYOE7e28Wvzw4Srnzr3L2VKN9OvPoxVcHNdhr2jhfXALZXke/eJtlP/ia1jPn8T1XDSZMhhlaHoFmQTIbAPLaVCpNdFMZ3+i+ZFo/OU5zOcRr/+xhkZKpqhIBJkiGAwG7PzoJsUb8wxbF6jUD2F6LcyioFoscvXqDZYOLHDv3n12d7qMleqUvIhmzcRzbRxPJxMJQrfRdYfdThtVd3GcCpVaQLVi8qXf+CJhFHPv3kMUXaNeqxHFCRNT05RLFvfvXqVgKcThkLyApWHaRYaBimmX8UoVUhnT6XQZDAa5rUsV9PtD2u0u6+ubqEh+9tPX8QoV/NE281MOFVcg8TEtLW831QS5wzW/RylqHms2CkJiWaA2No0mLNJoiJAjlHSIECLvrFAVsjQGme3PZ3Jok67n8LkoEKTZiItXV1l5ILG9MidOnuCF3/gy03Pz6JaV8yM0waA/QFNzoF2WpOi6RrXWZDjYIw536ffWcV2Ph6ubVGouMoNEGmzshMzMH6XebKFbAsty2dnpcWvlFqVKCbfgEgQBK7dWcC2bve4eKBm6ovDhpSt09/ZYXpxjckxgGiq6UCGLydIQoYEQBlmaEEYBqVTQhMnINzENm8GgTxwlWJZDkAgsy6HT2cV1NKJoSBL7aCqAQhTF6MJkMBjxs5/dolxx8Eo6UolRFA1Fqigyvw7SNMZ1HSbGG9RrLqYucR2HvUFCfwQz02OUimW8YgnXcbl0+SKVconhKMR2HR5t3Wc+PUS10MBv7lIbr3NgscnNS+fwKgWKzSWmDhwjETY6GSp5fNz/2+L1k1bJX2Vv/Jvb+Kw9/Wrx+tG2n+xy/fR9/D0Qr1LKP/p1H/hHH9STLbrw6Sfz1xGJf90H/9H2P8qb/aSQ/rR9fvI1Tz73yX/Vr3+B7JnTcPYYV+hwv2Zg/2cvoH7xOdRnn0aePYU8e5z4zn1Y30a0GqiahhCC2dlZZJJw8OAhGo0x7j94gGXl6P+CU8I0bOIoBVRKxQqGbTEaBbz5xtu4bj7x3t7cpFKvYloO5UoR07ZIE5XRoIdhCFRNwXEKORFUU7BtC9u29ldYNFzXJU0ziuUSg+EAFAXTNIkCH5wutm1T0GY4ceIEBw4cQJLhOBaaqvHg3iqqqmO5Nv5wxLf+7Js89dQZhBAEcUChUCBLM5IoIY4S0iQjlRLTMDFNC98PSJIEoRXo94ZMTkyiC4NqtYFTKGE7NsPhgF6vRxwnzM8vYBgm75z7OQeXl/eBHCpTkxMAlEplhqO8zeXUqVNIYDjosba2lnuJFw+wubpKtVIlzjIKRY+d7R0q5Uq+6qdpFLwCa2trlCuVHE5VK2HbBQYDH1XsV4l0/WMqqqnrfNQ4Ypr6Pi0v4d2fn2dhdo7p6Wm2traoVGroQrC11aFardBo1Pnw4kXGWuPMzC2w8eY7jN98xLqj860zM5xq3qNaLxHaTda3dni8tcWhY0fxB0P8MIeIKJqCLnQMfX8lM0kQQmDbNpVKFVM3uXbjJgsLiyiKyuPVVUzToNFsMhz6qKqg3e5w995dWq08vsX3w7zyFQQUC7mIq1QrLC4ucuXKFcIoxHELzM3N0uv3OLR8iNdeexNBbgk2haBcKBKNQlRV8N5759nc2ERBodFo5GKDjImxcbJM8u6777K+vs6p02doNBo5+Mk2sWyL3Xaby5euMT7eYnt7k2qlzIcXL7Db3WNre4dSscLs7CxhGFIoWDkx2jQpV6uMggBhGDx+9JBGo04URVy6dImJiQkGwzxTeG+vS7FQJApjDiwdpN/rsbb2kFarRblc5vKlqzxee8hzX3yOWq3OK6++gmnaLC0uYtkWbqHA3NwcGxsb3L93n9OnTvLeL95l1B+QppIPL15iOBoyP7/Am2+ewyuV82siihgM+vT2BrQmZil4RdyCA4oOmoIqM/Z224xGA0r1OkITaPueRds2GA77uIUiipKDZ1BUsvYd4t0V/OZBTBN22zvYnoY/THD/3SsML9/HP3uANNxDV32iOKM1s4xilGl3B7gFF7E0j/WXb5GaOtLJ7xeGlX+uw0Efx8kn05btMuz7mKZBJrOcAKxpCAX2ev2c9pslKIokCEa53zKKkBIKrkez0WJmZhLbsXH3F/MUVSGJ8wzkKIxzMIrQQGZIqeAVXQbDHoqiYpkWaRoTxwlxlGKaBmEYUPSKdLo9Xn71ZQ4vH6RaKzE5NU2jXqNSqaAoyr5P3yKJY8bHW0xMTLK4MI/tmIyGfSzLzMF3oyFJEgO5SFYVld3tHT744ALlcgUA0zSxbRPXzas3nU6X8+ff58GDVY4eO4FpC6QSUauO5zFZUQSqyre/8xcomk69VmX54BLDYZ+C56HpApXc1zXWGsOyDbIszs+PYxGGIYaex8Housb0+BQ/fulVNBkz3qhgFUqkaYTMFGyrgKIKhGmQyhRD5AR13UjIZIxpFlC1EFWVhGGMZZVQVZsk6LC29oh6cwykgVRUpJIRDkdoukATGj8/d46pyUkUoaBpKraRd5F0Ol1e/uu/xnY9fvijHzHZaubdLRIe3V/jmWeeplar8vTTZ6g3m1y9fIXlg4ewLItOu83NWzcJo4jFA0t5OyV5HJm5X6G1LAvDMNna3sayLIquQRr5yCSg19liNOhQKXqomkkUZbz44l8xPTNNoeBSKpewLYvDhw6CoiB0g8FgyLPPPsveXo+9vR7379+n2Wxg6oIwjvCDgIJXhEzmWaCGjucVyGRKlklefvlnjDXHSZKc/nz8+EnOHjyMu7nDtaPTfPPb/xfPv/A8tuMQL80g/vt/jdLeI/7v/gCtUULVJJ3ODi+99AZ/+If/I//iv/mnvPP2j3jha/8QYTq55/sT8w7JL89R/mOL1181l8qrvyoZGjoZ/u4W4c/2uLd1nspMGamNIVUTzcjYWnvM5MQMaRrxxhuv0d7t0uk+Qk09Cq6JWYQPLm9RK80h5ZB+v8PNWz6KaqMpfYajIWPjU4yCjKvXbjHWmkAVGoam8fDRKqgKZU8n8dsYIkUlyRcsFIMMjdX1PsVyA7foEYYj4iiiWq0xGuWRe3dW7lCtVqnX6vjDHgXbYuXODeKoz/HlOgXDIJHQH4Efajimi4pCmiUITcMwTNB0hGHhlmfIMHEsm73OIxxDksZ+LkzjCGXfo5ilMl+s3+8MiONoH0akoagRu32VjbbKwG9z/Ngxrt+4ydjEJKqq8vN3zlGv17BMk/6gz/jEBN1OG8vUKZbqbG08wDZGKDLAK1YoVuogIza3OnjlCR6ud5mYOUAYBdy7d4dapYHreNQbFcplD1Byn7pls721TRKnVGoVFCTCtOn3uriWZHzMQmY5oC2vluqkcUIqrX14m4Gi2mxu7nHt2i6mKdD1BEVLEaZOmDiYpk6ns41QNaLAx7GNvIii6aRZ/v1ThWBieoxyxUJREpIYdC2/ZyloREmCpktQIsgCdD2nKsssQ9U1Hj7aYNT3iaOUm7fu0R+MOHL4KHfu3KU1PoHr2uwGW9R6U9zzb3Nl9D6d4YCLH5wjGm6wsDhPJmosHnuKVHcQMv1YvCLTX75Gfo1e/Zs64pd1zGdpm08+91l6RFEUniQQf/xA/eX3fYoo/jwCGf4e0IafjMr5LOH5qyqrn/f5TxO2nzU+eTxPPve3KdH/jW16BunkJGJyjNX+BsXlWRa/8mXM+SXO3b1H6/Rp/HKBGxWbqZ+8BZpGUszJl6qqohoaumEgdJ1r168z3mrhOA5Xrl7jrbfe5viJEwhdEMUhqQRFFexu73L50iUOHFhgNOpTb44TxTGmrRNGEZbhkYYjoijA9QoIXUcqKv5wSG84RBgGmQTHLZBJ5WOjvZTy4xigOI4RxQGKCnHPJc1iiqUqkBHHEZ1Oh/PnP8TUHabnJyl6HieOH8W0DLxSAd02iaMU27AYDX0uX7rG7ZV7CD2n0um6gW4Y/Omf/ltWHz7m61//LRIZIVUQus2LL/4Vly5d4tTJk+z19qjV6pSKZXa2t9jd2aVarRHHEYah7yPrBds72xSLRTyvgGWZpFIis4RqrcLkxAy6YdPrdClVK9iOTZIkVEolpEwwTROvWCSOU3a2d3nzzbc4duwE3W4by3YxDIvu3g5xnDIa+Vi2TRQGOUgKhTRN8P0BUkpMw+HhgzXdMwr0AAAgAElEQVRmZ1q0O7us3F7h5MmTvPjii5x+6iw3blyn297h/t27lB2P8CevUoslPzwzR/cffZ2VrW2er66QKQJZXKBUrHDw4BJZFhEGKShgmgY3r12nVW+iZjD0AyzTRDd03IKLKjRM3eb6rZskWcbi0iK7u7u89/555uenc9iNJmi2Gli2ycrtFQaDAbdv32ZhYZE0zbhz7w6FYgFN17m1coujx4+SAbOzM7Tbu/R6PYpeifv3HnJgeQlFVXj77bc5cvQoq4/WsB2bXm8PzyswNTVFGPi027sYloFre2iKRr8/YPnQQdqdHcbHm5iWwfzCHJqmM+gPqVaqrK4+QmY5bKfZrLN88BjraxtUKhXGxlrUW0322tvUG3V6/X4OWdiH/Xiug26YlMplSuUKhYJHGIYMBwMuvP8+c7Oz1Gp1oiilVq9iOQb9QY9iucJoFNIf7WHaFrdWVpiZmaVcqrC5uU5rrIVuGGzv7FAqlahUKkgV3nn7bRzHYeSHHD95muZYlUqlCjL3nxQLBZJMpbu3x8T4FGmistfrUSw6OY2SGE0qGJpJuVaiP9wDKdFFXmGVQCrTvKUzzcikROgGWThERiPGvvCPuHbtKsvLJwijlM7uFu6HdzFMm9o//G36u6sQ9EgUaE0eQDE8ytU67b0dSqUqarePlkl6SZhXu6RkMOijKCqO4yGEC5qFaegkSYymi/y4FI1gOMBxXTRNgAJbm+vUqmUUVaAqCqqq5RmN2zvMzE5gOxZSpqDInCyp6fh+SBRG6EIwGPTodndxXBfI95+mGarQSOIEKRV0zWBvr89wkINvytUCC7MLTE2NE6chQjfyyJp+/+MOGiklmcwzkE3ToFT2sEyBzHIBMBwO8LwCmgZZGhNEIQoSRZEcOry8ny/YRNcFQTAijEJUReMHP/ghv/uN3+XsM2fIZIhlijzOolAmigKGo9xb3xsMOLi8zOEjy1QqJQoFD9OyyRSN4V4Hr+jhlUu0d3cRqoohTAquha5pDHt9bEuwsX6fRq3O/OHjyHCPoi1JNRWFfBLZ73cJ4xDdKKDpLlE4wnELDKL3kWobjQlGvc7HCwphGCJUFaHbSFXFsBxUzQIF4tinYJtIRWFze4uDBw9gCoFlOygSdrd3+Pa3v8Pk1Axnz5wGTefMU09TKrrESYKqmyRhzIP7dxhrVnELBQZ+wEs/+Uu+8Y1v0GqNE8YhY60mx44fw9AFSZyQJBluoYTlFNDVHIZkmhZJktAaHydJUka+T61WJ04S6vU6O7ttuntDfv7z85w+/RTVSpksS0DJSfWObaHreZ6wZdlEcYjremxv73LunXf40pe+hKbI/LufSTIpSZME23KJo5BOt43jOARBxKuvvEZ7p82h5WWOnzyOZZu4WYY2GKH8/ldZOnCAIAzp7HUpz86T/PQtXNtm+x//JmkaEQY+SZIyOTPFP/vn/yXBqMO7b73Nyed/G03k5G1tn6fwacIVPp94Tf7VvyZ7/Tzql5/+XHOaz+SDKBKJQJWSpL/L5o0LKD+fJJh/yNzUczx6vJW3/QcJt2/eYmZmDl1XKLgme3t7nDlTIRn5NKplkkTh/PmHdDobTLfKgOT6nQ2Knslkw+SddwdsbSfMzB6m4BWJoxHNVgvHtDANg5E/xNVTZNhFpgGaKpGZRBUmYQyTM0fYafcI44g4DmnUG5TKJUzTYDQaMjk1haqqPHr0kI3H9yh7Aq+ocmCpSb2oo6kxUnN5+xc3uXS5zYEDYyjqENNw8P2AOMkQpoMqbIRTxzA8+v02quwSB3vEYZwXErKEJEn2F+DKRFFIkiT7lPQ82jFTUmRm0ekLVjc6HDo4T6VUYjAYoKCwsnKL559/DsfJrXW266KKvMV9r9vBtjyyaBfbGKLKOM99RiEYDihVxgliQbkxiVusIBSJ69pcvXKN6anp3M8+6BOFIdVylSiOEaZFoznGvfsPiYKQN956izAc8rXfOI2uxvi+CmiYloqmaQjNQtUNFCXLI9kyjQ8/vIVXdJicKGEaKcVSBUVUKFen8IM9dKGycuM+K7fvMDUzgVA0wihCVRQy0pw1YiukaYipm6hK3tIcxSGKapNII8+WzVIKTgFFqBi6gaKmGCaEQcjU9AJewWV+YZ7FpQVe+ulf8fTTp/nxj/+K8fExxlpjiKFF0S3S/GqZzLD47a99iVZZZ3dnk41OwuEzz4HlIWRK+L87pO8JtLPxL18j/4Hi9dddc79ufPy+T4E45Xv6u0Ganhx/r8Trp63kfVTx/IhS+OT4DxWvn+cL8GmG5E9WYf82QhiAP/sh2Qc3UU8s8+E7ryPJmFs+ghAF5ucWuXXrNi+++Jf8zu//A7RGFX7wMsn0OMq+ePWTENOyidMMoQnKpRJSZpiuyekzpzAMDd1QGQy7GKaLIUw8r8jxo0cJgwGtVoOHq+s0mk2SNMQ0TTrdEf/3v/sOqcyYW5gD8mDsJMnDnf/Nv/lTTp05k1dLdB32b6Kj0YgkSbh58yatZgvhhIBGfzuj4LloipH7yGWCgsLM1Bxrjzepj5WJAp+trc0cAmUapOTI81Hf5+0336bT7fM7/+B3KVdKlMsVHMfBsiyeeuopZqZbKCIhiPoUKx4pMDe1wLFjx1hff8xgMKDeaKALnXKpiOO4SAk/e+1Vzp59GqEJfviDH7J8aJkkiUnTBFXkrSuWqaOgYDkFkhRe/unLLB86hKYL0jhGV2HkD3jl1VcolUo8erRGrzfg6afPYlo50VBBRUoFoSs4rofjOPj+vifK95GoWLbBzs42lUqNMEzY3NxhffUeU1NTH8cAWbbF5avX+fJvvMDVSxf5rS99ibGLt+hMtTD/+I9Y+sZvUyiW+Z3f+33Sy3/CTsdnrWNQq1SQacKw3+GDD65x4MABPrz4AUeWlyHN+Msf/IhjJ05y6fIldnZ3KVXKdPY6dNt7zC8uUKlV0ffBKPPz8/ijIQ8ePOTBo0dMjI8hyRhrtIjjmLGxMTY2NpiamqI51mB1bRW34JLJjNW1VSYmJ1BQMHQd3TCwLZe5+QUyA6I0QtEFpUqF3W6HRq3K7u4uq6sPMU0DITQMw6C712X14RrbW9vMzy9Qb9YZa1WJk4jN7U0KhQKKonH37j3GWi3au9vcu3eXra0Nnn3uWVYfbnDq1Gl6vR6q0Nhq71D2HC5eusjs7BztTpc0k6yvbzDWaHLl6lUyCZVqjSRJ6e/1qFYr1GtVsjSjvdPm9spdtne2uP/oHvPzc1i2y4MHjzh68giNZoOxZoveXo/x8Qk++OB9bNvGMAxW19ZoNpvstnept5ocPXKEifEJfvziS0xOz2KaCpbl8M7b7/DwwX3GW2NkqkEUR5AprD/eYuX2LebnZ9BUjYQEUzMRmiBJI8Kgj2Va6JqFVFQyJGESMtgbUvA8dF0nTTOS3gZEAVdHUywfPI6Cx2iYMBysM3ZnB2GYbO/8W+TaecaPPc/q5iq11gJhKtjt7lHwLEgkPRK8772OeWIZRdUYhgGmZaILA0UVJKmCqpnoasaj1UdUqlWiKEboBroKiqKiqCqmkYvC0aCPJIdeOY6LaVjs7nSoN0sIoREEQe53VaC90+Wb3/wme90eBw8exDA1Cl6ec5mlKv4oQez7bxWp5FmJccb6+gbvvPM283PzCEtimS6Ok7fajfwAVVVxHIc0y/azXjV2dtaRMo9fyH3Q6X7rcZBHnAVBHo2hKiRp7vu0LXOfXZBHQ6RpwnA0xDR0DMNiYmISfzgikyFe0SGTGZbuoAqB0BRKxQKaLlhaOkhrYhLDFOxsb2FaFlJRSDMFJYtyOrWmYRkmaZwgM0jjgDj02d3eplR0cR2d69duIE2XRkEh8XeJVQUoECcBlqUhDBPTLiOx0NQkz19UNvOOETFNwSiiKmI/Hz3l8fo9HHcsX5hLUrJMRVFhMNzD0FQQKkma4to2o0Ef0y4w6O2hq4LW+AQTU9PEUYCqmxiWiUpKt9vF8YpoqkLBtXJPf5qCJji0NE+SJPz0r/+a5557jjiOeP/C+6hScvHiRRYXl9ANk63tNkoW78cPZZQqFSQgLA/L9ejs9bDdvOJquR5hEDIahmxv7VAsenhFB4Ag8BGahu8HRHGSV88U8P2IN958i9mZGSYmx+l1d0HVsFwHpEISRWiqYGt7k0qltG9D0pidnefg0jKGqaOocO36FcbLZfR2j9FXz+IViziug2lb9DtDkkvXKR5ewv7GFwn8EUIoCMthanqCKB5y/eplnj3zDPbYFELVcnGj8JnCFT6feE2/+SPYG3xu3+tnzn8UiURDJaO//oDv/skf85z2z2mOzxAKA1VXuH75EoeXTqAJhXK5iu/3eP/Ce+xsb3P28GFadZssHGDoJsdOz1CtW2ipimOXqE+XKXkqWpJAUZAqIb1+jyNHjoPU0DQFf5gLujAKkXEPT5dE8QDSFCklidQoFCt0uimlSp3W5Di+PyBLJUHo4wfBfg68z49//CKFgsv8zDimEZHhUy076DJGNwISxUIz6ghDYWzMxbYDZKqDzCv3UZzheiWkKCA0B3/YxdBHpOEAXbf37x0xpmWjCUGcSOIoxDB0fN/fB+Qo+EGAPzI5/8FdgiRnaKhqxtzcHM2xMWq1GoqS0d7Zpj8cstcfUKpW8kXWgsOwH2AZITLaQVchlTk7QAWE7tLzU8q1FqowefzwPrVqmSyR3F25x/RUi36vR5Zm+IHP0M/no0I3CEYhO1ubTM/OUPR0LBGiKgmbm0Pu3L/P+HiFJIlR0cmIUNQYRZVkUmF2fo5G00XXA7I0IMPFLszSH4yQhOiqytZGl6mpKYpFB9KEOE7yjh1VkmVJDnGTKkLV8Uc9DDMlCDVGI4UPPrzJ6uo601NTkKqkRKiKIE0CTFNBaCa77R5Xrt8gzkIs22RpaQbL1pidOcRuextdF6RRhrJlUrYauGdKvPiX3+XNl77LeKtBd6Ry6PSzKHYRnSynDSvK/y9e/5bj/1PiNU3TP/qszDHgb0TkfNx++ymxOJ8lJJ8Uqr/qxD9JDH6y0vpp2/3ka55saX7ytfEffwvur2H+3tcY9iMs06ZVraCaFZIsodKo8NyXnidTVAbNOuEb72JOTxJGMZomcE0dsnx/xZKH45j0B3vU6y00VaPb7jIaBnhelSRKefO1Vyl6JlImTM0tougW1bKHouSeU1XN21+PHDvKwtLS/rFmJLFPd3cb23Z49rkX0FQNXZWk0TBfNVM1DMNi7dFj1h9vUGlUsdQW6cij4JVyAm8a0O10+MmPfoJp2MzMzdEYb9JezzNn55aWkIqCokC308vzHoXCVmeHa9dvcPrM06hKQL/XBZmyt5dTOG3HJUvh2tXbNOvjCEWQpiHBqI/Q4Ob1G8zMzKMbDt3uJuMTLYoljzNPn0IqKZowOXr8FBcvXWXp4DKalk86TV3Q6XTwg5Aw8LEMlYXFQ2RpQmd3i2KxQKc/wKs0mJ6dx3Ycbly7ThZnLMzMk+kZg94upD5+0McwbIJRiOXYCNMgyyS6MIiVGDKwzdyfbJgO1fo4x48cI4wCiiWHNE2o11pcvXaNpcUlbl6+zIF7G6RfOMo7Xz/Cj7//fb78W1/nf/7D/4mfv/EqLzTvYZdbTB3/MjdWbjIxPYFuWoRBPukJRwPu3ruHougcOnKcDy9+wLFjh7m/soJjOozXW+xuPUBVFCrlMnfv3qVa8ni8toquW/i+z7GjRxj0erz1xltMTU9RqzUQmo7nFSkUXNqbW/R6fQqux+tvvMkzzzxLmkgymeJ6HkLX2drZojfcy9vahc54o4k/Crh88Qrj42PEcczCwgEcx6XfG9BotsjiENctMjE5iVdy2d5dJw6h1xvy4MEjHKdAsVLCD3y21zc5duwYB5eXGfo+zdY4tfEaqgCFFI2Muzdu4NgenlemXKlz4f0L3Lt5m/5Oh6VDy7lHvOhh2SaKCtVqC6ErBPGAK1cuU6+PUSw7TE62sO0C460pNFR6ez0MDO7cXgFSrl2/yvhEi5nZORTdwKtUOf/eeapFl2TYp1Srous6YRjRbu9y7Ohh3vvFBaanp1k+tMTOzi5bW22uX77Mw7sPsRybxQPzrD5+xMzMLFkWMuy0sXSV9a3HFMs1JAaWW0KqObhFlwkGGV6pyKDfxzQM0jhGCI106wpjL/xXGMJme+sRxaJGNHyM8+EaqqYTtbaJoyFrvqDoNcicAk51AdOqkyUjDL1AX/cpvrtC8vzTyE4HoRkEfoRlWShq3jY3GHTIlIx6rcrKjes0G3X2ej1cS6ApKkEQk6aQZSqGXSAL++iaIElTdMOgUqui6TpZlhOBkzQgyxRMq8DZp89Q9Fw8r4CqGSSphqbqqJrAsPTcq66bqCKnguumRb3ZyPOmHQvTdPH9ESApuC66yL20mgqalneUaIpOpVzj4cPHVGtNoighTlN0wyTNEsIwwTAdVFXkNgFNxzRM4iRFEzq6YaIZecu2qhm53yuL0UTG9avXKFXHKdcbhOGANPRRTJ0oikkT0DWbTOaeyaDfZWtzG9CoVKpEcYAuXDY2VzENhTjyMXSbYTQiTsAtVIiiECESNjbX8MpNzCzGK8i8miEFhiMwDJskEyhCR2h2Prl19/erbOD7AZaxSJoNGYwGpFlGu91jojVLJhOEpvPd736Po0cPI7R8ETJTVVI/xTEUOu1tTNND3ff9OV4RNBXdNHjt1XN4BZdgNASpYBo2QhF8//sv8sKXzhCMhpjC2weOqbQ7e6ys3OPUqdN861t/xte+9lUa9QZ73T7z8xMoxKRRSpolpJlE6CbD4QA/8EmiAZYuUKSCLgyiJMxzu12XKIyYnJig097m/r0VarUGrpN3BVy+fJ1+z89/a4TClUvXWLl9hy8+/yyWJXALRQaDHqqUGEIjiVN0XadczrNt93r9PD7MtTAtBUM3iIKIx+tbTBkWwg/p/MZpLMchzSQ727v8q//hf+H3KuMI02Dn+CJJBrplYgqToVKkZBu89v1v8bV/8s+QaYyUuZ3pyZnHR8WAj5kbn0O8/ira8KfNbT6rfVDJXHR1QDboc+ncz6m5ksn1rzOY3KA/DCh5DZrNcbp7ba5cvsT4TJ0f/PCv6O62+c0vHaHgxEg1Q7dNNC0jC0foikGqq0gto6AqmKpFjMG5cyuceeoZlg4cxnLz35okTQmDADJJKmMqRUjjXZIkwjAMgmiIKkz8SBAlFlEi8f2Y+/ceMjXZIs2gVquzvr5Bo9Gi1hijUCjxs9c/ZGVlDddUcQ2VKADLcVGVlJKbMD1uo8gERXEI4wBDc0izAE03cArTGO4UmaaC7JH0NomDAUIopEmELnRUBcLAR9MkmqHvn98UVdWJUhUhJRdubTBMHY4fPcby8jJzCwdYX9+kVCyy1+3ki4GlEkXPQc0ysigiiSIKxRJx0OfRw2tUSxZCNUEmpFmPXieg5yeUajMEPvQ6uxRLZTRNp96o0WjVCeOIzY020zNzmKZN0fMQmoqmQH+4zXvvfYCjWBxaMDBUH8e2KHqCyVYNTclteHEWkoYJhm6RpQqqCrqWksZ5QUYVFppRQjOLpCikSYapQ7kEXgGQMXE8BCmwjAr9oMfP310jUw1KpQIoAUiQskCUZly5fpcwzhcBddXH0IcI1SLLIqRqsLEV8Nbb9ygVC6hGgxt3Nnn08BbHj50gTgpsb6xhGRbFQpHH7VWmwyX8VodL2UV+5z//TR5efQ9dpHjFAotHTmF5TVQkyXsiXzT7QpJfl8onHp815D5JWH7i8clr6teI1k9qoY+G+jfagvcPQVFB5ryS3GyQ/0XuxzR98vF3Gf/Ji9csy/7oV/39s0Tqp1VQn8x8fXI7n2d82jZ/Xbvxp/WEP/l3gOyHr4KErbOHuXHtGmO1MoYuEG4uXtMsRSIRQiOOQl66cYVjP3id3WYJzdTZ2dnCdQug5MRNpKRQcBmOfNI0rzSMhkNee+01lg8cwDRNVE2jWm9gmCaKquCPfDKZ7efKGlhW7kEyDB1FURC6jhAaruOgaBo/f/cX7OzsMDbWoNvp4BRLH1ch6rUas7MzuaBGkiYRhq6BTAjDCNs0uXXzFidPnMpbna9dZWHxAJX6GImEJImRWUaxWEFRct+aqig8+4XnsPdbbU3TQlW1HN6jaGxtbeVREZqGzDKiKMJxvf1IA4NisUiGRNHyz/3ipSvsdrpMzkyjqCpbm1vEUcjU1BSQ4vsjAn9EnEh03eTNN97ixMlTaJrOw0er3Lp1nYMHllBUFcd1iMM+oT9AVTJm52apj42xvrXF1sY6jm1TKlWJEjBtL8e1C0GSJvsghgQhTJJYYgiDJA3RTZP33j3PzvZjkiTl8qXrNJst7t67xfMvvEAY+hzdGrBactj+l3+AVAzGG1X8VOIaDv/tv/wXhNf+TzbbA0KzRbHoMRwM2NnZYX5hmWqtxvjEONVKhVvXr5PGAWEcMzU5Qa1ep9locPvOXaKgh2GYFIpF1tbXaU1M0en1KHsFKpUSGxvrlMslfH/I3Pw87777DoqiYhgajx+v0mg10fQ84HtpcZF7d+5i6SZBFABgWzbvnX+P1tgYJDnZOUljrl+/wVNnn8EQKsPhiGvXrmHbFlOTU2xtbtFsjBNEQx6u3sWyDGzb4/9h781iLLnSO7/fOSdO7He/ue9ZmVXJWlhFNtkLu9VUd496MDPySGPA8IPHDzYwxvjFDxZgwPaDBwYG8NP4wQZsAx4JGnVremQtTUmtVrOb+1Jkkawqsoos1r7kvt/9xh5+iCxOdTfZi6QZGNYc4AKZlTciMytv3Djf9/3/v79pWly5eoXTJ0+xv7uHzAVr9+4zPTNBpVIhCEOuf3yDubnFIvopy7h37z79Xp+Vx04iDEWt0UAoxYV33uGb3/wmlmMzHA4wtEZrg+FwWEzaxJBWq03Jr1Gvj9BsFhlwQRgw0mxw+fJFbt26hec7bG1u45c85hfmWFo+gWFosCyG/QGeYaLI8SsevSSgXCmzsb6JbdksHVsGBLdu3WNxcYH19TVmZ6exbRvbcmi1W3z5K8+QkzM/P0+WFZO/freHaVlYVjH98j0XKUQhMYxCRJ5h2TZRrvHKFYZBgKEUwWCA6j6g/KV/SpxKqvURMmHgmAL19m2UoRk0N9GGwF74PFE4pDE+yUEbKuUpkiwjDkMMnSMcD/v75+lVHLRV+IgfTkiDoAixl9op4gzI0aqgqZumpt3uFiH3hjoqIoui0bRNkiQuAFr9DlII8jQniSO0Lj6WSqC1ge+5xbQzV/zuv/o9Lly4wLmzZ1AKEBm9fg8liizQw4M2w8EQy7aoVWtFvmqWFTJtIUiSBMvzyYUgzlI8v4I0NHHUp1KtsLa6xoULF3hs5TGiKEYZRViY5/msr68hlaLk+59MSsjz4mPTOpKxWnR7HXzPRQjB9Ow8jl8lI0OIFEEBmOv3uuRxhJIZ0sjJswjLsrl/f5XpmVmiKCwKItPg9ddeoVaro7WN45aQAizL4eWXXyeIMsYmZjFMnwf373Hs2AI72/dJki6mkZFhkyQCy3JBQqfbp1quEgRtTG0Q55soZdBvlVGK4vWcC/74T/6YU6dOI5UAAYsLxzBNEyFzhIAsFxjKJM0iPN/Dsjx63QMcp7Bf2I6PlCYil/zg+R/gOBYzszMF6duxeerpLyBERrfbQ0pFnMaU/BJJknD61GmGwYDHH38cANu2qVSqHBzu4ngu9+9v8P2/+CFnzpzjo48+olQuk+cZpUqdVqdo4AiRE4cB/X6n8JKPTRCEAb7vsnT8GBCBECSR5OLFy6w8tkS5YtHu9FhYWOTzn3+acrlEFIW89MIr9AcDpqdnju6LAmXIIocVcD2P1dVV7ty5y9T0LDs7B5QrVcYmx/F2D4lLLn8Zd5hfPEaSZZi2jakNpu6s43ku6VfOFf5C18XQFoaSbD64xYnjxzFsH2n8dCTOoyvLsk8eyheo+Qw5+tl7ob+pqBx0h9ZWj7df/WP6/QtMDT5HOT7BbraKUhnd3iGO7dBrd9g72OBgb0CvEzJSN6lVYzypMVSKkjFhFAMeIQPW12P6fU3JFwyHfYLIYHcvI04Ud+9vUK83uXPnLuWKR8l38D2HdnefspvTb29hmwVRP81THL9OqTLJfmvI1PQM2jSZnZtjOBwQJQmu46ANi06nQ5Zk9PtdNnf26Xb2eOzENJ6Tsb2xilQ5vldE+1mmWQC6spzDgw6VSoU4y5CWj1ceIRE2mUgJBwcE3R0cp5A2x3Fc5J1SRNNEYVhAi4ZDXMcnSQR3721Qr9S5v9Fnd7fP4W6Lz3/+SwwGA4QQ+L6P7Zh0u236/R6Dfp9hEHFw0Ga00USSobJdtBwisgHmEeE9jiKQFt2+xvUmsF0X33eoVuvs7u7R6RRchjSD8bFxTNNkMBywtblFp93G9Vy0ijnc22dzbZ2JCYORWgmlIoRIMVROAQZOUDLHNl3CMCro3p+88IqGk9A+ltMkVy7D/gG+p8nTAXkWkiQBWZ6ipcfGfsrt7S2css3ld1u0h21mxkdwJOSZyWFfYBkx9brPsWPj1KoKReF3RWjSNEegKHku01Meo9UKVz68juu7PP3U5yhXarhehfHxsYJ3cnDA1t42s9YCYT6g9EWLzvY9ettXydM2pfo0M8fPYfgjSDLSdwxA/JL+8l+sOP1lvv6px/yCw7y/7vr/ffGa5/k/exTE9JO030c7h49ONz+tYPzJAvfRf/tMb8YjUuW/ipf1Udrwo8c/Oh1++DNmz70ACCr/2W8gydlee4CjDGqTc8RJjFCFp3QwGNBptXjq730TefkabqePmhqn5Htw5GmRUhIf+au0aUGe0+102N/bY21tjbm5acYmx7GcQgKXJIVx/PBgn1q1XnSWpaTV2qdWqyOl5IUXfsj09BTtdoegP6DT6TAzO0Op5FGvVrG0SavTpd/tsbmxSRxFOLbN3u4unusSBAN2d7aolNQobkQAACAASURBVIsCQ2vN+OQk5UqZne0dXnrxRS59cI3jKysoQxFHEUoU0wopC9mZ1sXkQiAwTU2/P0BQ/L8opYroFdOkVCrhOA62ZSGV5sqVq7z80sucOHGCcrWE0gWhb3JqiqmZmSPQi8I1Td46/yZTUxNkWYxtF9JqQ9vEccLE5CS27YAooEHzc7P0ex0MwyBKEu7euA05lEsVlLIwDIe337nEWL2K5ThYjovj+IA6ImtmICAYDrG1RRzFfHD5CvVGg0rVY29nj3q1Qau9h2N5LMwv89677zA3P0m5WkWvbhPfW8P+F/8Twq+A0MxMN/kX//v/Rs0v8fjpk8Qf/yvsUhN3/CRxFCFlAY3Z3Nz5JPs2TWIMATOT41TqTX70o+dZXl5C6YLsWi65lKtV1tc3aNQb2J6HZbs8uHeHyckJyuUytm1RbxRel+npGXzfp9frMTLSRBoKw9Bc++gai3PzbKytEwyHZGTs7e3TarVYWTlBrVbncO+Q4WDApcuXeOrpp5GqoPIdHrY4dmyJq1evMjU5xb3799nZ2qVc9TBNhef5WJYPec701DSGUuzv7rG9ucmTTzzBg9X7CCmpVmtMz8wW1yAJShqUy2Xu3XvA5NQ0nW6bvb19atUay8tLaNumVKlwsLfHzVu3GB8b5b1332V8bJwHD24wPTVHGiu0oQniIaZlow1NOAy4ffMWT3/+aRrNBpbpkFEQZhGC3d0DhmFAo1Jhb2sTrRXlRo2R6UmiQUC1Witik3LBt771LX791/8hWmuazRog2Nnd5cMPP2J8fJzdvR1mZ2cxtMGVDz5AWyZjI6OYpkUQhvilClubGziuTRwGOI5F6/AQECjbJ44TbNPE0MXfKd64jHfqP8JwqkUkTD/CcQzCFy8XxevoFkoI8ukvEfd3SYWk0VjA0EU2q2lIknRA6fQK4s/fRD1xgs7eAYahsSybdruF7/tF04Zik1RyXbIsxbZtwqSYrAZhESUhEIRByDAKiKIIyDGUJM+LCaaUBnES4bom5BKhFEkcYh5JoZWhWDn5GBMTk/iejW0axTm0BhRZBmura8RxgtaKnBxlKNIkwTRNlJRkWUYwaEGWkKcJMk8xZI7tFKTd4lgT3/eOYlISBoM+YVgA50p+mW63Q5KmmFoTBAGWbbO5tY02jALY5DqkaVr4cU2zKEi0RKkcKXThp/c8tJaE4QDHsciyDMt2GRkdxTQspBRHr/0tVlYeIwhjPL+CUJIkCLAth8nJaUZGJ1DaJs0VH135iKVjy/i+z87mJkok5Ch8r4JSBaipiLGxkSojSzIyuYtAUnGOo3TBN4jimBzB9Mx0YbmQEiUVD+XUg0Ef0/KQBbIGRM5gECFkijIM+v2APFe0210qpRLVapn5hTmkhE63y7vvvleQ7JHYlkWcRHi+z+9/+zucOXMGIXO0VriuU8SSpRHPP/8jjp9YOoI0eRjSptU6pDFSZ3R0tKC/GmYhB08LOJhlanqdLqbtIoTkO9/5fZ76/OcYDofEUZ/BICQMck6ePI1tK8KoS7ncKO7jWUqn28axbVZWziAQlEo+W1vbeH4JyDBNXUShCYFpWszPLZIJybXr16k16pQrPnJzh8hQLPwX/+nRz25i2zYnV45TunS9oNV+5VxB5paCXCnMbMj7l97j7NNfRJnWz5QJP9yHPHyIkQwx+tnQyTzPyf7s5eLrv/7sj+3FfpHm/49FZ6Qxw62A/+a//EdMTxqcU/+Urf4uMwvT9IcdLEuzs73Hg/sPWFo+xauvvYhjDVhZGocoIxMK17eJ0gjt1nj/ozVMMwTR5I03r/DYiVH6/QH3V9sYdpVStcqpM6cYnxgly0Iq1SoiTxgMeow0qxzu3kdnAVmeFYkKpkUmbdLcp9ONaI6OkWQZ16/fYGZmliguGs8A4TDEMBTvX7rEQWed0yfnsa0BvpcwPzeCaTrkJCRpjBBHQw4BUZRiOyba9omFR5wbmKZLTkLU30Om/aJROigad8bRHkeIglpeFFhFUz1LFesbu8RxiuU3CMIE37GZW5gjSbOjpu0Q0zTQpibPMxq1Jltbu9TrDbIkZHfzAabYZtA9pOw7QEK320OgGSSSEye/SpQadPptfM/n5s1bKKUYGxunPxjQqDdptw556aUXmZmZ4c7d25w6eZLNjQ1ef/lFzj2xgKEGTI47OLpKELYLYrq2imaf0mhDk6ZpkRmbJIAgy8AwIJcOdqnw3ZqmQxoNkHlGv3OIlhKtNYNBQBIPuHr7AZeutBkfnWR5vkJ30Gai6WMbKUIprt64S+9gj7GRBp6rICuizSQWSZZg2w7hMDpS2PTwTItqs04mNcN+RL3W5LU33ijujcMhnuexvLwMA0nSTbjhvc/9m5ex8wPGR30SWWLliS+TqBJK5P9OitdPW4/WRw/Xj9Uin3LMwyv5FwEv/VX5PvC3oHhN0/Sfwb8tIh8SfT/NA/vL+FUfrl/kuY8WvT9LwvyTL5SfJUl+dDr8cGV/+iIgEL/5deqVCqu3b1K2bLyxSaSSKK1AgqEVZd8njiNSbWA8/zrG8fmj13aRkwjQbrVotVtUKhWyNMVzXUq+z8TEBJ5nHU3CfO7dX+XVV1+hUa8xMloniVOuffQxtWqVKAwxTJMkibhw4QJzcwtUymWuXfuI5ePHC6hSyedgfx/f80hSeO673+Xs449jmZr/8//6P5hfWKB5soNZ7dFwj7O9vUfJcxkGAf1BnyzLKfkltFIcX15hanoSIXNs10YbJkmUcvfuXSDD9zzSNMEyzSNAhos2NUoVmWdpliOVIk3TI/+bIEpims0mj608xiuvvkaj2aBcKbO/s1lAAqTk7t27dLttsjihWiszPTdNv9slywo4TpQkuK6DPjpnGIVkWUocDen3emhtYrsed+/cx3Yc6o0Rut0BCMnzz/+Qv/ONr1Gt10iznN/57X/J586dRRoQJcVN0DZt0iQjSwbMzM4yGA7ZP9hFCcn+7gHLy0uMT0xias3U9ARxHCGEgfnqe3x/rkb9V56hMTrGH//JH/P1r32FL3z5C/zJH/wbbKWZDF6lHwuM2iKVSuGz2t3dJRwMKZXLfPTxNYQU7O1sU/JdhNRHsKwSWpu4vs9ht0upVKbkufglnyzL2N7eYnlpmfNvvY2hDbq9HuVyBSkVly+/z/jYJK+88gpnzpzm/cuXefDgAY+feZxOt8vs/Dz1RgPf91lbXeXMqVNcvHiRw4MDDG1y/eZ1nn32qwwGA9595z0WFuaQUuJ5PgsLCwgh0YbBzZs3OHnyFI7jcefuPUZGCz9zHBV5ptV6AXUxjjxBIyOjPPfcc8zNzxEEAUqBaRaEZZDYjsvtmzeoV2tkSfEaGoYhluNQr9Vo1Ovcu3OHpWPHWH1wnyCIWL2/QRwnXHjnHeYX5gnDjAtvv8vOxhZPnDtHpVoll4JrH15jcXGBYRiwsbGFVCY//N5znDixRCZSRicnEFKTp5LW4SHVao1Wq83NG9f5u3/319je2eOddy9QqZQJhiHNkVGiMMKxHcIoYGpqijRLaTQarG1sFJmWAmzHJYwT/HKJNEmPvFIWwrDQjochQOQZBwcH5FlOliSwd41g9hv0giH9XgfbctCWg/PedcIwIp7cZxgEXNyvMVpK0Y4mzU20U6YbHuJaLgeHW7TaPdJSFf/KLfJapZCHClFQhYXg8LCYuClRANHSJCnoj8pCGaogOXfahYR4GFCrlLFMixwwbZswiomTBMt0MbSm3W5jWR5hFKMNTRIHDIZ94iTE0AaNRgMlskIyb9oIVXjvhYB6o0mtVqFcKWFaGkNJup0O2lBIKej1eti6IBSbhkmWprQODzBth8FgSKlUplarMgwGaEPi+yWiKMC2iwZaFMVos8iIlkfv/1EYsr6xzfT0NAeHe8VmKSqyafvDPlJIkmhYTF6FQa9fqGjyLMWybTrdIdKwkUqQF4MZ8qyAnQzDIbbl8cYbF7h69QonTizhWDbdXreIBzIAUoKgx+uvvk21XuHG9bt8fPUKK8dnSPMY07AJgphcUMTGGBaWY9Hp9DGcNlub22TRKI5rI2QBDBwbH0dKWWTz5sW9zrQ0nU6LcrmEFJo0imjtbyHI0NrC0Io0KYBhSml++7d/h82tB3ztV7+KXyqKvAsX3uP2rbs885Uv8q3f/Q7NRoMw7pELyeeefJr9/R3KFR/IiaOI4TCgVPbx/TLj46PEccLubotep8vi4jzliken08H3a4g8Q0lBFAUopYjiFNt2cRyXTqfDF770BUzbQkiJ75ZwbB/Hsdnf36VWr2EYxbSmmNB6hEFAnCQcHnQol0sctg6Ym5shjiMMLY+i3opGbBBEhGFIEifML8yTZjGubSA/uEX6n3wDxiuEwy5kEZtr91HawH77KkJKgs+fotPpYNsOhm2TdTe5cOEdTj79K/wi26BfhgkCfFK8Gr/xdcIwJE0/hZb6M77Xw33PcKfNS3/2L/nGl1YQcoST7f+cRMTYDZtuP8TQLjdv3ObkyVP82feeZ/nYBKdOjFD1DPa3D5lamMGyDKSQ9Poxdx9s4ciEmbl5SiVFtWIzDKA3yLm7vsXmziZf/NIXyUlxHJMsN4pmnmXgeiYi7kPUJxc5htJESYLtNTDMGiNjU7x/5QOmpmeK+5tQmK6N1ibra+tsrm+wt7fH+toqw26AkRmYQtCs1SAzECI5Il6nSFlQtaMwolQqk+QRmfCoNhdItY1MI6KwiyUCwu4OcRJjKEWpVIDQ0ixFSYmSxb1KioIvopSmVKkwCDRBqonijKeeOkepVuXwcJ8oDrl+/ePinlip4XklWoeHTM3MFfaN9g553MI2uoUP1zBJspAsF/S6EdIexSvNggFJNsRzqkRxn7Gx0UIRpxRRFHP71k2++uxXiaKIWrVWUNRdB0sf8vYbV5gdO8b4mEGS7JLnClMXEM6HhWuW5UTh8AjulmCaNkmSAgZ2aYJUlrHdEsP+IY6ZoUiJwx5CZKRZEX+Vpj3GxkfYvDvEVkNOLGsa1TKuLZBKkImMRr1KvVLB82yGwz4CCm+xMoCUNE1I84xcKEy7gswE6zv73F/fY2ejhV8qc+z4AqbpMDY29olqJBgOsVouPxr8ORXfYLKm2dnbQpplTpx7hkgU99t/X8Xrz7sW/7pn/OtMZv9WFa+PTi0/reJ/1MPx6DGftn5WEfqT61Ev7c8776PHfJY8+OHHn1a8CgT8xtdxHIfbVz9gd22d6ZXTdDqdT2i/AKYyCinJ3CTxd39EPBgiGlW0NgmjIp6kWqlQqZRptzs4ts2DB6uMjY6itcbzLIZBBFJTbzTpdjpIoDlSBQTVchVTm8RhjOs7OI7Dyspj1GpVTNNipFEnThJMq5B27O7u8qMf/pCl5RM8/viZooudxDy2ssLs4gKR2iqihYajVKp1wkGHbr9HvdksshYzeOGHL2AqxcLCLMgMQylyJJfeu0Sz2cD33aOs2ZzVB6s4rkWvV0RSdDrto6zInMODA3zfp9PpYGhNGA1ptzp0Wl3OPn4W23XoDwaUPYMoSvDcIv5AGwrLtKg1qrRb+0eSNgttaAzLJCcnTiKkEggpjoLri0ZCGBZ5s6alGJ8ogFdSZpDHPH7mMVyvhFCKYTBgaXGOLA6JshBtmXQ6Pcgl/+Y7f8i5s4skSYbj+3i+w7A7oFKu8cKLL7Ozs8V7771Ns1nH80qEH9/BiRK+f3aRJ598kv/2v/stDG3wxBOnscsey7PzPPOFLzL88HdR9WVurhaTr/39AyYmJinZJuffeovG6CiNZpPxsVEuvP02e/uHLC7OIZVkGIZIpSjXR4+kmoJ26xBDKbSh0KZDDszNzdNqd7h27RpSGiwuHGNzc5snP/c5bNshHg6pVao8uP+A5ugIW9vbXLl6lSgYUj6akl+5coVnnnmGTq/P8ZXjOJbFxx99zNL8IikpH330ETs7uziOw6A/YG19g5npCQztcrDfYWZmhiyP2N/d5/6DB5TKZaQ2cEs+uZLUSlVWV4tr4MHqPY6fWKbTaWFZDt1en3KlimGYtPZ2CQZDuq0ON65fxyv5xGlKnhZh6pVKmSgMyNIErcosLC4SRgOe+vznEFJjGA77u/t4tsvu1jbjU1O0uoVXszHSxHFsur0BluUghm1Gx0dw62UyZdA56PPWa29z/MRxlDK4ePFdzp49TRgPuXnjFidOHOfGjRt8+OFHvPfe+5x7vCBoSymYmpkijmMcx2b8iDQuEBwcHOK4HrmUheUgjtGmhdA2KRIZDzBUMXF1HZf08C4iGWCc/g0cWxIMe8RhxK276zT/0TeJvnSK/N5LKGWw9Gv/Fdu3L9AdtLGdGomQtPuH+HaVXv8Q1ylRDQTizirGaPOTplKeF5JF3y9BFjLs98jSGMM0UaZFkhSbtGDYZ3NznTzN8TyffqeNYWiSHITUSEMfEc4LD5FlW+S5gZQaJQSGobBsA9uxGIYDTNsijQNMbYDU5BjkJORZhpCQ5QmHh/tF/vQwQEnJcDAoii4pSZVmEGSYbgVpOijTIgpDtLawTKuYspYc4jSk2x1QLvu0220810fKgkJcRP3kWLbNYDhkbHwKyzLo97tH4BWFbTm4rolr22RZiCGh3wtwSmUQ4Dg2/X6ItstI4RDGfSzbodvpcXhwwKDfZ3xqiiyTfHztJpWyj+sYSGWSphFSZnQ6uxgqpdvZJ8/hzLmT+K7H/s469SpwxACQykJpkywXWJZHkguk0gi9h+f7lL0T5CI/IrUXExAli+z1LMuQShbE+SPSvUJhKUm3c0AUDo7u2UVmY5bBYDBgbHycL33xSaIoIE1ThoOAxYUl1lY3GJts4rsN3n3nbRaPTeK4JZQ08XyXJAmL/GWljyTFEUppPN9hd3ePu3dWuXXrOkvLc5RKPq7r0Wr3SeMAQ4E2jUI+b9okKbz4wgucPPkY2tRkgFASA/dI+i24ePFdrl+/yfjYDKal0UahAEjSlI+vXeOdC+8RxQHlsldM9PMcfUTX7nULOWccp7iuzwsvPM/E5AS+7yCzBHXtHne+vIw0FWkUEg37jNRrWL6LeuP9Iu/6mceJogjHcQjTlAs/+i7f/Hv/gKw8gSmyX2hy8nClVxX5jkSOfvb+5mHxqv7h1z7hjeijPcnPWw/3T1mWsXr1Mh+9/3+TBTv8nWd/C3V+kfO7P2Rtc5uR0VlefulNDlotxsZGuHb9Ciq1SYZ9FucbjI0WPlGRhNjSwFKaibEmnnLQdoRbSiE1uHVrixSFdqrMLyyRoZDCQCCRyqRZq5ImEdtbG7R21vBNibYM0iSjPwxIsDjsZDhuibWNdUbHxzEMzY3rtwmiIYPBAMeyGR8bo1GrYWqTsbrCcySOHVGpKiwbDClJ0hjytNjfHdHiszwnzSO80gTSGgHThqhbQIkG+7hGCgi0aRbNjSQ5arQJgmBIFBX+e1MbRHGEoU0uXtplcz+g0x0yOjpGtT6KXzJJ04SFhQWazVHWVtepVuuFDcKy6fXbRME+FQ+S8BDfa5BmgjgLUcrEsatUR5a59MEtZhYnEDJGUaZU0kUjLc/JsuL9rF6rYtsWQggc1+F7f/G9oknXOWBqukS1auJ7MQYeQhbRP45tIxUEwaCw8ZBjGMX1m2aQZTnKKmGXxkiEh6UNuofrWGZIt7eLVjF5HpDmIUqDyAw8x2BlaYTJsQSVOhh5WJDqTZckyXEMQSZD0jTC0LpQwsRB8TsLgaElUhtEieYvf3CJkmORGhYPNg9wnSZnzpyiMVqh2x5w+9Ytbt+6TaNep16ro9d8drf3+PI/fpyte9fwqz5xAgsnnyIzKyj+/U1eP/NM/6F4/Xe/HnpeHxZ7P4vw+5Of/+TY+9Oe8/PWpxWgnwkh+IlC+tMATQ+L64cT5EdX/txLhQf7N7+OyCDsxeSJQefwPsdOPU4kTchzTCJahwH//J//L3zhC8+gBiHmbouo4tLr9UjTBMexCm+FFJhWAdgolQtIxGAYsLl9wPrqGuONGv1Oh6XlZcrVGr3WLkIptOOwvbPLn/7p91hZXqDT7VCpVQiikH6vi9ImpmURRQlCSCrVMl7Jp1wuYZoGhiGxHQ/b9hl091GldrGxzsfIRGHEzwUYWjPodknjgNnpccamJiiVS2RZYQ6XUtAolzAkCJlhOg5xKilVGyRRgOeVMAzNg/tr1GpNdnZ2+e5zf87JM2cxTZtXXnyJWzdu0261uHv/Fo+fPUW/d0jZdxn2uuRZhCTlcH8fkYHXbKK1QRSFhGGE0ia5NMjSmLAfEA5DbMchkxJHK6IgwNAWSKPw2joe5AlZ1McyNAgHt9QkUynkAlNpDKUgT+kN+jiuh2m7ZClEQcTE/BLKNBEyK2RFdp1WJ6RWMpifn6ZS9mg2a+yvbzB28QbPf2GUX/sn/zGOPc0zX3yWJ55cRFeq2JbL2NQ0z33/+yyE57GW/gGN0XH29vcoVSpkuaTWqDMYDij5HlMT4zz/gx/y7Ne/wfzSAnGckcU5F15/k7F6jZKTEAxStOkRRgG2NkmChCBOaR20ME2Lxsgo9ZEG169ep1QqMTrWJE5CcpFiew79QZdKyeON11/jyc89xeTkNI2RUWqNCkiYmzsGWBh2Md06/+Z5ji8fZ2dnm4tX3ucrz/wK22vbfHz1OqZlsrG5ydTYJB9f/5AkDWjUqmw8WGd7bYu52Xneu/QB3U6b6fEaUf+AQZRx585tjh8/ju+6DDo9DG3j+h7qKMf4wyvvc/LMOUoVn9t3rvOrv/osly9dZdAPee2VV5iaHMFyDMrVOo3xaRr1CpZjYDsGd+/epl6rkCKZnp2iPlIlygsASNn3OX/+VY4vL5HlOWEc0hwbYX37AYvHVsgTCyO32NvbZnyijmk6GIamOTpKGCdYlsvtW7dZmFtgdGSct86/w/TUHMvHl7EdhxMrJwjCAbZbeAn7vTZSKLS2ismyEiRpihSqKBLy4sZVCKdzhJRIAb1OG9W+w3DsaZyFr1KpjBDHOUobTI6UkaaJcErEN35AnsaY80/SbXeReY9gEFEfOU5ldAlLarQupMlqex97fZ+sZpNnOXkuUNIgSSKUytFSF42nnMLiwBE5XlkoZVJ2LW5/+CZpbx2ZhRzs7TA6Ok4QJ2RCYokMkSdkWYpQmlxAFucICUJlRHGCECam4aGkKMLphQFSEsYhtjA+gaBooyh8LNtFSUG306FaLSMFDKMhll3GUBnh4BCZJ0cT2PjI01/kT0dhQp5JtHYASOKE7373T1lYOIahZWHvEJJet0eSpiitjoruFG0YR4VURhiDMhSbm1u4nk/rYB+nWoYMgm5E57AghEKAshyyRHDt41u8df4C8/NLVI98l0vHFpAypdmsEoQpSdjHNnNc20RJC9erMzIyRS5MDg/aVFyB7xTkz1xZ5Eojs4xcSAzbRyiNZVsoUUUygpQGNz98k3qzRq4k2dGWKNcUf2sMwiDEMBWmabC3swMi497d+8zMHCNKcnrtARmgHU2/36Lim2SZxLZdTMtGGgohYenEYuHj1mXevXCB5miFqZlphFR0OtuEwzaDXkyvF3Pl2seM1ZuEUYBhmGxsHvDKq2/wta9+hePHj/PySy8jkLx/8TLzy/N4pTJBEOG4PqZpkcQxr7/+IvOLx3A9C1Mp3j3/Po4psU1NlsYcm59ncnwc01C0+20MbRfTadtiZKzOysocruOyt9vGshyGwz5uqclh6xDTlKRxTJIIfu/3/jV7By1Onnys2My3uqidFgd//1coN5pox8WvVeiFISoOWHcM1BfPkldK2LZG5hFG2KeVGkweP4ORpxipJPuJzMaftX+K/sAiu6/QX0h/bB/zY/ubVhcxN4k8e6LILP6U8/30ysllRJwaSGz6gx0uf/f3Wd25x5lnfp2b7xhM9JcRsyajY6OUSx6u7ZDnKfdX7zA75lN2Q44fG6XkmwzDAe3dhMPWkGq9RJh2CYMhaZ7iOgotJNps8OY7N+hHYLs1SqUSY6MjROGQPE/JB4cMkxS35BJ3VqnYGaatSdMIUwuiOKM5Nkc/SKhUJvAdl/W1B5QqPpnM8A0TyzQ5bLXwS1WCIOH1187T7kZU7RjbyKg3GkVsFjm9Xh/b9kjTHIRCKoNBOMRyK6CrKLOCMExkniGiPZL+AXGcI7UmDALCcFg07rOcPJfs77WpViooYZOkfVIS0tQhlSadbpsgTHji6acRMmZrbY0szY5AeQaN5ggZcLB5n9u3riHpM1IW5OEuuSFQKkOkMdEwJRc2ynHIZJ1y2UFrE0O5hElAa/sA0yisDQ/WNrBcD9N06fR2UTJFZTZaGNy6cYVWJ2ZlaZSKF5HGKcgYrcp0ogFxGmFIjWGYBHmKolDcxGGIkgYIg1zWsdwySRIxaG+h8x6DOERlCVkQYGiHOEoxZdFgisKMjKCIPJIaoRWO65DGAWQF5MoQCikNpFDEcYZSGktbhEmMPGqwpnFC2Tep1GQxBY4Fe60dwihlZmKJi5feYXlpiaXlJQxDcdDZx2/VOXQPGPtak06wyaU3XmTi+OOcOP45sthEWALhJ6g5gWimkIMUBR9BID4bhCTyn3oIHgEt8W/L2583YPuk/nko13n0IeRPPU8I8eNwp7+iVPjR9bemeH24PrMj+Ah1+LPW34T5+NMmpr/M+R+dCv/UuvwxVEuIZ58mDkM80+b73/serimZmV9GOw6ZKLp1w17I0tIxTEujFqex/9ffgcVpvHrtk9igg8MDLMvCMMziYlWSJIkIowDT1Hz44RVGR0dwHBtEERextX6fiakptnf3aDbHcD2fSqnIqRNCYigDy7LJ0qww1RsSUxebkyzP8NwKpqnZ3Nqk5Bfy0l6vgzsSFZPXQZ0wShFpBhkMgyF+qYRju1RqNUqVKkJKtre3C/JiFGNbHkmWE0Yx+/uHvH3+PGdOnabdPsA7iiB4883zjI2NUa9XGR0bY3xinCxLmBwfZWJinMVjhfZ+fQAAIABJREFUC8zMTJMkhS+t0+lhemWU5RDnAsst41cbIATddhtTax48WGd0bLzoAB553wbDgFa7hef7ZEmKVMXvbpkaQU4YZWRJgqlkMZ20LKIkJg57mNpgZ2ebarVKLsB1fYZBiDIMTFOjlaJU8YjCGIXJR1evUS67bG7ep9fpcPHiRXZ3dzn52Gny92+wXzIY/uOvEKYBWSZ59+LrnDq3RNltcLC3z/7uLitLy+TX/zVRaRmtDNbWVpmanMK1Hb73Z3+GoQz8ko+Silq9xvXr1/noyofsbm9z4sQyaxv3OPHYMqur91hb38HzPe7dv41jO9y8eZOJyUnahwcokRfSnTRm5cQS29ubXP3wCuMTE5ja5L0L7zE7PYNSilOnz5Ahee3NN1laXCBNI+Io5MOrH3Lz5i0W56cwtWZ6Zgrbs5Fasrh0DNf1qFSr1Oo1lGlw+vRp7t27zvyxBZShGBub4P3Ll5maHKc50uTi5cucPXuW7e0t4iQhSSAMI+rVGlEYY1p2QXnWmjwXmIamVq0hkFimZmSkQRQFzC7MMz4+xq1bt9jZ2eLJJ54gzUEamige0hsU8vIsg1qtSfuwy2DQp1Ypk8QRQRBSq9Xod3s8eLDK5NQUnu9jWxZ5YlCrNrhy5X3WN9bodnrMTM/zgx/8JfPz88RxxNbWJo16g0atzvnz57l+/QbVao2z587y1ttvkSQxc3MzR8TW4v0pHPZwXY8kjsnyhDxP6XT7uI77yftXv9/HcRyyeMBwMEAIiWnbpBuX8D7/T8AvCM95lhGFIZVKmWEYo20H7dUI7DHu7QaUfRutAkbqE3jVKXY6fTQCRIZfcjH3Oog7G/Qsieu4JElCnMSYpiYIh5DlKCUJw4BOp4ttuwj50BKS0+scYGto1Kt0+wUtd2//ENty8B2HNNNEUY42bJK4yHhVhkFORpanhWJAF9OALE2RUgGSMIzR2oQsRQgIw4CHkw4QZGmGqY1CSp3npHlOlkM47BNHIa7nE4Qxlm1+QmksonQ8vv3tb3PuiXMMhwOqtSrHj58gTVNczyFLM1rtNp7vkWcpb731JktLx3DsIr4lCCLiOMW2CmlypVpDSIVfqSJISaKITrvD//OHf8TE9DS266KkIgpiJJK93T1W79/DdCTjo2MgBa7j4DgenuegDEiSkF5/wN5Bl29/6zuMT0zgl0s8990/4vTKLIYYoC0HtI1hOkihSHKJdsvECQihkNImjgWmadOsjSGOPpfCQCJJohCVZ6TxECEz8lyRC4t+t0OWJJRLJZRhcPnyB5x/8w3OPH4Gy9RIIA5DgrC4bobDANfz0IbJYauNY5sIFF//+q+iTUF/0CeNDWzLolEbQUmXF156nTt37jE3M8O3v/MtZmdn6Q97nDlziumZSdIsZn5xDtu2OX7iBK5feI2VUjy4/wDHdem0CxDP7Gxxn+20D7l08TILi4vYrs0wHGJYmkEQ4ngug0Ef27bRhkGeZwz6fQylkFIzP79YeFYdG6EUJd/D1EXepF8uYZomt27fxvc9JqcmyDZ3kGHEwZefxDILT7WpreJ1nAv8yWlkrQ4ZCATtgwMeXD1PtdHAsF1s20XlP128/qyG/s+jDQshkGdPIM+e+IX8cD9+cIqUNjJLOdy9j2pfwylXePorv8lM98u04zYjsyaVikcYJdy+s0qnM+TgoMvplUmyZMBos0KWRQWYr+zSHK0TRANM08AxfaQ2iZPC5x7GMR/f3OapJ8/SC3KeeOIJXNem1+swOjbKcDDAr9SQKqezv47vFEWmUjnkGZbtsbPfZ2L6GLfurWFoydTkxJHFqUyeFlTxWr1BEITcuP4xa6tr9Icdzp0cZ3SkhGEJBv0OQgjK5TJxHBNFUQHKlBIpBMp0cP1RTLtcQJQ6e6TRIVrGZGlKnCV4bukIqpXguA4CyPOMD65tMDpZAmPIMDR4+aUbrO3sMbdwHG35LC4ew7EstFVI+rMsZ3NzE20ogkGfUqVMtVqmdbCB70Ia9YEi7pAsIkOxtTtg8dhZ9tsp5WoVKRRKGbQODzFNi35Q+O5v3rzBxNgY/eE+u1sDJsbmWN+6zNVrF9jYOGBlucrYiEJLIDNQykGSkGRDynYZhoJgOECbeQF/SlO0ZRMkAsuvIcwypmURRgNkHiDzIbYW5ElMmhT3N8e1SdJimGLbDkLE5HmEZZukWV7Q4aVEKonIczgqFAXGUXyhKqBYWUKWFGqcPEsp+S5SZKSZyermIZNTc+xs7bAwt4hfLh3ZWzQb65vs7OxSi0YojXiUnk4JOmvIKKGTSZYfexqhfXKVIkZTxEhxf/vpa+WXuKw+48lJkvyYCvWnjvuk+Py07//pNoC/SXSTEOI/FK/w4/msDz//tPX/9eLVePZpxK8+jRAcAY4CoiRmcLDPxPQs2vWAjFxKfNujWq2ysbFBdWIc48Y98tEGeQ5RHDMcDqnX6yhZFLKSHMgIwgFKguO4TE1NECcRaZZg2xa9Xp+JsdEjOZ+Ptmy8UoUsDilVykipSJKEQbfHYatdINqVKCZxjsPLL72M4/g4tk2p7COgmAK7Dom5h0DQWpeEUczldy7RbDYZDgeUy2WQBkkKSRQTDAOGQcgPfvA8KydWCKNiQ3fr5h2yNKNerVGtlHFcm93dPRzHpdkcoTnSJM9T4qTI8TO1UZCRfecolxYq5QpKaUyrMOaHYVRkrAYBWZZiKANDFRElo2NjOI5H6/CQIBjg+YXMzLJtpJD0+wGmadLv95Bk7G5v4ZcaOHYRpD4cDlHaYNDvIojJ8xzX9wiiCNNy0YaF7bhHNFOoVsvE8RBtWOSJIBgMaY6U8H3F3NwyY2PjHBy08C2XkQ9uwf/8XzN19gny3GZ1fYN6o06tPsr/8N//j8xMTpGEEbbWmPf/iJubEV65xo9++Dy2ZZOmGfOLC1iWxfjEBFJK/FKZubl52oeHlEol+oMOyyeOoUyBbdlc//g201PTzM5MsbGxRaM5yt7eNrY2WH9wl7Lv4/s+WR7RqNfZ3tlhamqGNIONe2s0j6jWShtkGVi2zXDYpVTyEEIwMzPD3Owsm2urxTUtcsIkotqoFzmcaYZhmFRrNS5dusjs7AxjEw2EKrrJG5tbLC0dw7YNbt+9y1NPPU25UubG9ZtMTc8yOjLKrVu3SeKEhcVjBEHEB+9fZn5unuvXrhPHCa++/CpvvvEalqk5PDwoNpaWASJjemaukEilRSSTQDCMB0glKZXLhXTU9njt5VeYn5vjwf37TEyO02g0GAwKaM/01BTa1Fy+dImRkRFMVeHChbcpV9xCqi0N/vS5v+Dr33iWixcv8tjKCtValfNvnWdyYprZ2Vls22Z8fIyN9Q3OPH6GIBgyNT1JFIVo00BIheeYZFlGGAa4rkWaRiRpIXU3tFEUuUc3rmH3gEq5QpKBSCOynQ/xnv2tQmoscoIgLPJypcT/g5fJ373G6rET3N0a8PiZc5QqVe7ceJdhd8AwNplaXiHo9eh0DoniADMTOH9+HrWyePQeKD+JmrEdm4O9fTzPxXZsLMsGJGHQx1CCLM/QsugQD3p9aiMNQFGt1EjjmMPdXdxKA8syURKyNCJPI9JcorVCKXkk8bQghzSOabe7pEmO5Vjk5Ig8xTA0wyBAKoUyNEoZRHHChbcusLu7y8joKJZtF3l+aYxjO8RJirYc5BGEZTAYkqYZQRDw1FNPkaQJ5UqZfq+HoQ2kEBiGQZIWjVbTNNnd22Vmcpo4isiynCQpYnb8co007HNwcFhE6ljF1CQNukRBRK1e57HTZ6g2GgyDgPOvvcGN67dYOX6C2Zlpzr/1Jisnj2PbBXn97bcu8Bd/8QPm56ewLBOkpFJpoA2Hcql2dJ3LAgbkCPqdTVyvhDQdbLdU7HGkRmobcTRVR0rSNCssFJj8wR/8IadOPoaSIGWGFoqD/5e9N3uS7DzP/H7n+86+5J5Z+9ZdvQPdaIDYSGkojSRKQ1MLZSlsR9h3Cof/AV/YYUfMrS9kxzhCjvAoLI1HY1KjISWREkVihwSgG0A3utH7XtW177kvZz++OAUIhEAIpB32heZcdWdWnszKOsv3vu/z/J79HVQ1xbJNklTj+vV71MoeuqZR8Dx6/R6FYpGJ8XGEUPCHQ1SpUvBKdHtdsiyj1W5TKJbIUDANC8NQMHQdgDhJsR0Lz/ZI04hMyRDS4PjxYxQKNj/64Uv87u/8Ll7B5fXXX+HLX36OXr+LlBLdOIR5SYWDZutj+etgMGQ4HOIHPu9fuMzeQZv5hTlc12JqahLDMjFMHakpDIdDSodZsZZlEQQ5vCcMfRzH+djbmqYZ29vbOI6NogriKCRLco9cs9VianqS8fFJJibGMU0Da3Wb7gtnWNJzeNX42ARpknuZtUOlT0J+TClJjGvZbD+4xMkzZzHcCoowcl81n1+8ftIKlVzKf//PK14/+e8vWrwKIFUy4iDB0SSPbr5Ne+MiYzPnGCbjuBfze4ziBPQHMaNRgmEqPFq+iypgqmFjaBlFT0fTBMPRiKvXl9FUC9e1iWMfsgw0iet4ZFnKyB9w/Phx9vearG622d3dZny8Qa1WJc0SVlfW8cpVTF3Q2VvB0FKiNCKJfOIoQtUsFOmyvtnk5LlzPLh/j8mJce7dvUe1UmdjYxXXKyA1ne2tbZaXliCL+eovnMPTfWxHoChgGUb+3SbJx9+z+jEBWjDwE1S9jG64SJGiJH3iqI3fb+f3GCUjCOJ8yi0PjxvANExs26FUcPEHCbZRZWfngEjYnH3qSxw/cRrHdlh+9IhStcKjpWVKpRJKlrMFSBMOOn1sM6PkKgSDJpoUH3+OwahLgoYfuxRL83T9GEM36XQ6FL0CmipQDANVUxmOhszPzbK1uYHnlOi2e6RZxM2bNwiDiBMnjzHb0CHpkUQhUjWI0oT9do/r19s0auMoch+hCeKsjK6BIiSxItGdGqpVpdMf4TgmqghIgjZkPkoQMApiEBq6BN/vkSgKu1td2q0+pqlj2yZhEH8M7dM1DcjQNY3BcJBbtCyXLIM4iYnjMOcBCI0wyC04aRqSJSmdbsTKRpvuIODFF1+k024zNTdLFOWwuU63R5plFNQyaRrx6uq/4f/817/PsDvgxV/9daZmT4I0SUWYQwXTfF3xGSfaFzqv4LOL1x8/xn7C6/5/Ll6zLEPT9H9axeunt8+TAv9j0TQ/zfbJgvWnef2nYQafpiH/g33lIDqSJMGybZq9LtGgTyoUZmfnaB3kCPk0zv0stm1z9+5dnIVZzD/8M5RTi2iHIIg0yX9GyRTSNCOKArI05WB/Hyk0kiyhVKlg2Tb+MGBtdY0Pr91AqnlneHd3j/cvXeK9dy/ypWefJQgj+r0+w/6A995/H9MycFwTyzIY9AckScbi4jGkVPJi8TDX8KDZwqkHKEJw/eIGr732BtMzM3S7HebnphmNhofQDh2hpPT7PSzT4PTJE0RhwLe+9W1OnjzB5PgkE5OT1Os1FKmQJDFRGFMslQ5lORaQUijkCx1F5FNUMgXDMBj0h5iWSZamCEVh1G1hSBWZwcbqY8oFG83IPZyjwKfgecRRgKHJHEqgqgxGI1Q1z6A0zdyLYtsWvV6fcrmMqudybdtyefudd3Bsi0qliJTqoV8ll58kCShSYdQfkCYJUgq2d7awTIskTpCHC/Y48snSBCFUHj56xJe/8vNkV+9wNxwQ/vbXabfg5VcucvzEPOeeegbHHuOFF55h8dgi5XIZx3GJb/0bLDVmoI5x/MRxtnd2EEIyMTHJhQsXOXJ0kfQQdHXp8mVIE86dO4dUJe1WE7Lc9zMztcCFdy7geS61+gSFYpVqrUyjXmF7awPP80gTeOmVl9E1gyfPnkNBEkUxRxeOsrO/y/7Bft4JDUMs3UCqecal7weYpoPvB1y9+gGVaoX+cES90SDJUlRFcOP6DRpj44yGQxzbgiRBIY8s6feHFL0CcRiSKbC3t8/kxAT7+3scPbaI5bhE/gDdyM+NQqnEYDhkfLxGc2+PbqvN/Xv3efHLXyEY9EjSmIWji9QaDYajEYZpYjsukxMTxFHMcDDkxs0bHDmySBSG2FY+/UriFDUTXLt6lV6vQ2OsgWEYZBmoUtJqtbl1+zZPnz9/CInQuXDxLZ566kkcx+HgoMUTT5xhaekR7XabIwvzqKpKwSvw7sV36fd7nDp1Gl3XuXf/Ljt7O0zPTOO5HmEcAQphEGAbOlma5YUKGd1uE69QQ0pJ4AcoioIUkl6/hyEhipOcPD44IO1tYz73ewwGA7RDmFWn00E3DaK/epu42aHym7/MxOQ0WSrw05Q7V9/g2NwshtMgM2w820HVBMVigdgzMf/yHbLjc6AopGlMRoamqgR+SKnoHcqg8o6xVFVEmqLpeUyXZefXu+ZBh0LRIwxzyI/v+wipsLW7S8Gz6fXbJGnu59R0h/6gT5ZlmKZ1CA7KkAqsrK7xwdWrnDlzOl/IZSmvvfYacZJR8IoYpn7ov5LMzExTr1XZ2d/F8zz8YAhpShTFqKqO5bpEgc9oNKLgFQiCANO0cuhP6DMcDCmXK6Rpgm5oDPoj2q0WnucyHA7wPBdV07Edh163S0aG53mMhgNcx6FcriKkSqfbRVEEWeQjVRU/jClWqmRZimWZVApVkjTl/UuX6PV7/O5//rtUa1U0TaJKFcdxWV3bYNBrU6vXUTWNNFWwTIfxxjjbuztoRq7+6Oxvo4sISEgQRHGKJiW6bqCaNrrqIARE2WMU2UVQRJWC+blJXEcnCPugpKhqzkpQVUkYpSSpoFgs4bkmceTT73VySbYqyBSBlCr/7k++xfnzX+Lbf/ZdTp48ScErUigWD+V0GVEU0m23iJKAg1abg70ureYelWKBOAtY21jLYTSdJvV6ET+McRwHBZiYaFApF0HJp+NpQg7aKng5JTnLpzPFYgmvUMCxHY4sLDA+MY3tmKSpj1AUHNcljHJgn+u6h3To3M9oWwZLSw9J0xTTsFCEII4S4jjGdT2CMEKoEu3wHmIZFo7rEsUhlUodlAzHdtCu32P4m19l7qmzNBp1FCVjc2udWq1Gmipor7yLurxOenSKbmsPlZi/e/2vef6ffx3NqRMnGUpuCPgH64+f9P/k/bx4lc9FP3E9kz3eJGv3UEreF14HKUAsUpRUsrdyn3df/vcUPJg/+TV6zTLlS9NsF1a4fuMm+3s+7757mY3NO4xXNcarBYqOTqmgoWspcRRh2w5kHvfvPmR8vIau53FRmZKhSSNXcqgKcWbw8OE2QSL4tV/7GoWCS5ImeVRMf5jfuw0FNekSRz0UqaAqGVmWomo2rW5EpxdRrtVy1Uenw9T0DKpuUCp4KELSbHaYnZ2lXCqwvv4YTaZUPQVVpqSkqIrMqeWHXn/DyNcHnU6HQrGGohcw7DpRDEHQR4l6pHEf29Rz7+2gj21bxEmIOLRZZalCkmQU3YxgmNLche2dHuPTJfzIwXY9wiim0+2gKOB6NpZlMejn+6pWa0RRjG2ZxP4eSrSHriZohoMmBaPhAF23kVqJrf2YiekTJEl+Hg2GA+4/uJ8DNi0LwzCwrdziEkcpmigQRgesrTzg3vV1ht0etjlislZCFQmm6RAhyFTJ5taAO7cHuAUFp9pnlGq8d6VPyVNQDRPbrZKpBUy7TpZGGCIk7O+SxQPSNCYcJNx6tEmiGJRsgaWrhJmg0wyRQsPz3Bwal0hUIyfWJ3GCUBT8wEdKBSF0khju3LlLuVLCNHUUBIqiQZbT7jNSLMOi56tsNSO299vYtsX0xARvXXyPYqnM6uoaxWKJSrWG3rM46OzQeLFFpZhy5MgRtkYap598jkxKkBHpDR22dZSxvFH0kZUwT0D4bGXEZ59bn/H850xb4dMJKj8uDc6bUj/hvT6jtso+9fwXsxH8E5y8fhbV7pNf6Of5OX7WqesXJen9pO2novkdPqTkWgZSBQqVMv1Ok7XVNWanJnn7zXfoNXtUGhWkFIdRLi56rYz8w/8As5Nk5qEsRUgGgwGvvPQ6uqET+gEF10VKQa+bd4zbnQ5SVbl/9yHFQpG3373M2bNnqJYL2KbJ0SNHeeZwiqAIBYFCvVJl8dhxxho1DF0S+D5JnHH71l1mZmcIowDdMNjdOcCxPWzPJtZ2CQKfH333Et/85u8wf3yeqclxUCKC4ZAwipGKRKrQH/SwLRNFyTjY2+Ps2TMUiwV2dnZBKJi2xc7eDr1Ol1q9TpZmvPrqq0xOTnH3zh2CMD6MB4JWs0m1UkeqeSxNksYMBj0MS2NtZYvvfe9v0HWLEydPIaTkoHmAbpoYho6ipHS7bZI4wDgsanXDQFVVVCnptPYx9PyGv3/QpFSp0mk3SZKEMIxpttq4jk3Bc5CqTRiGRFGMoZn5TVamKIfLC0PXMSyHQWfApUvvMTM9xtLSA4puiVp1nO39LWbn5lAzBfXN97F//7/nQWeVJ888x9T0FMNog8ZkhSzVcIoOQRDwb//kT1jf2uRIcBFFK+DOnMUreLiuS7PVplyuMDMzS6FQ5NGjJR49esTzzz+P5Zj5dyh13nnrbcbrE7jFMjeu3aJUKOWLtUziuGWiNGB9fYWFhTkUJGvrm5imzVhjAsO0abc7ebGvq3nhaBtUy0WuXrpEe2+fqdk5glHI9Wu3aB40mRifYHJmGq9QPAQo5VMekSYkccJwmCsKfvj9v8K1LCYmJ7l3d4nHS6sM+wNaBzvMHTlBsVDg7t07VGvVXAWgSpq7m4eLARvHdRCqRMqUJIoQChQKRba3t0nCIcVymWK5SpIpOLZH6EcgFDQpaR20KXgeQejz+NEqo+GAcrlE66CJFILOQYcgCHjmmafRNMmtO3cYDke5L6/XZX5uLgeMCUGiDDhz5hRSmmSp4MNrV3j66SfRpMH4WINbt24xNzNDt9NhfHySe/fuMT8/x82bN/E8hxdefJF6vY6mq2xsbFAs5b72XqeFrpuMhsOP5bmWUwTA9/2cWilzQFkcB2SHctnkYAmh2YhTvw4o7O7sUCx4GKZFs93Cu/IQTarE8yHD3WWssZNEioIru4S9NppdQ3olVEUjjAL6gw6WZaN//wK9qTq6aTAY9gnDAN0wkVIjDEd8dBtstdo53CxJ6PWHOTldkYR+SJZKbt2+zmDo43hFLMdh72CfD96/ilQks7Nz9AcjwihBSg1FKLksGBgMeihKPhGs1hocWVxEUVJII6IwwjBMJienc7mZAPUwxkoVCmEUMDbWAAFx5GMdUmiFqhIlCUkYYOg6w+EIy7Lx/RGGYaIZKrpuoijisNiJME2Xa9euUSwWqdcrhGFAlIKq57Cf0aiPKhQG/Q5xKhmOfLIsO4RXDRGKQpKBYTskaYImFVQF7t5botnqcP6Zpzl+8jipkiKUfNEcRQGu53Fs8RhLDx8yPjmB7RbIgEG/x/bmJj96+TUeLT9icnySlYd3MGWCJmOkZqBpOv5ggIJk4AdEISRhRJDeQ6ohw67B0vIarm1jaipxFCOERqiAkBqgo2s2QeBj2SrDQZfhsIcQKRkJtmthOGX2dg/odAaceeIcD5ZWeHD3Hpcuf8Dm5hbjE2NEUYAiUjzHIyWmVG7wweVb3L19g6mJKQbDIabl4rgVDN1k1O9x7NQJJsYn0A4bsmkSE/kx7797mdCPWFlexTJ1KrUKqprDAMnyJiOA55q4XglFSUmTgCDw0WTeECJLGQ0H9Pr9XOGUpggBpqlTqVQ52G9iWHbexNVUer0eQ9/HdQsIJGmc0m53ckpp4HPQbCGEgqEIjAdrHHzjn5HIFCFBPwR6FUsuqVAw/uJ1xO4+0Qun8GyNpfs3GZuewK3OkkgPJRNIQrKfMEX5rO2j4vXzIDLJf/v7ZG998FPlvCpAIsBQTdbvXOd73/oD5o+f48qdLk+JXyZKfdpRk4XFScbG5lleWmE02OH8qaMwTNncWWJyvIyu5w1rKXUs22d2poHraoThECkNFGVE4meMhj6KhEcrTTa3fA7aHRYXjxCEAaPRMFeZtbssLh6lubdGd+8xhpoD2xTSw+ipAvstn0zaOUF8MGD58TJTs3Msrayxtb5Krzdka3uPWq3K7u4mYTCk3WxzdKaKP+rmE/c4RZF5RrR+mNcahnmGqW6XEGaJGBfTconjIVrmk0SDvKEvjdzHL3LrQ5ImxFGKKi16vRGKVBG6xvU7qzze9rm3ssfPv/BzFIsl6uN1ytUylXoFogDT0BmNRqiajmHZ9Ic+fmcXJdyFaD/PvRYWWdInA+JYRTfrjGKDziCkWrIIo5CUDNuxsQsFDE1nZ3ubLFMwTYe//sFLuK7G9MQMe9vbzM3YnD87hqRPqeRg2wYHTZ/BUOPNt24wO9bg9Jk69RpolLh+fZe7jw44dXKGQqmMUC1Uo4yieISDfZJhk3Cwh1ASkkxh0IVLt7YZRAmzNReykFQajI/V88JUxoRBH8OwSNM0X8OSE8F1Pc8KB0kYpFiWg26q6LokzRTSVPLBB7coFCrYjs1gMGAUGVy/t41drNDrtPH9EZXaGCdPnqJarWFZVq7caWsQpdznO9SrGQ+XH/Jf/Nf/I1K18uJViYj/vUO6Ij9uFH0k8c2y7MdGnD9T8fo520f10cfF62dMXn9SvNYXhdR+UUXGP6ni9bN8rZ+W8aZp+vHY/JPQpCzLcs/lJ173RQraz/KHfLSvz/sj/SS41Kf39ckt/r3/gfT7ryN/65cOdwKaVHHqM1x56wIPbtxk8YmTzJ5/EtPS6Ay6SKli6hadzoD28gqDXh+rUgI4jFNROHHm9CHi38kjZXodUqHx59/9Ac89+xxKltBo1FAyjclGgfZBk6mpGTqdLqqURH6A0EPCNCMKNC69f5Gp6QaPl9couHUsq8Cbb7zGL/ziz1FwVQb9LoZhMBqNcpP8KOX+3SVKzgwnT5wHGVN0TTY21iiVaiTIHCmPJElCXMcjDBOE1EgReOUGf/m0MTzSAAAgAElEQVSX32d1dY0Tx49AOqLo6Fh2gSgMOTg44MHD++zt7TI+UaFWGaPoFdjdXWdqcobIH4LIWN1aIckSXNtBSQTf/s5f85/8xtd5vLrE9MwkjmPjWBZR2M89H3FIv9ujVKoiVB2hAFlK6IdEYYxl27RaHRzLwrFNpEae6ZbCW3/7d7z4wrMYuoJl6qRKLjHzPI+9vW1czyQd9eiPhmTSIIqhs9chJePIwhHev/ges9Nz3F96TGN8CtcsgIDg4ofcHY0Qv/NN/uy73+Hf/skf89S5s4jMxDYs9nZW+f5f/Q0nF87w8l+9xvHFE0z1X6UfZvREA8v08FyXYW8fXdcZazS4d/ceCjA2VsP3+9RqNZrtDQolj7HJKfZa++i2xdzROeqTDaShEsY+xaKFrkp0zWBldRPdtGiMjzMzNYMQgu989z/w5JNniCKfC2+9haYZZJmkVKpz0Opw7MQJLl++xpHFo0zNTrK9vU2/36daK5H6ASsPHqCpAtXUSBUDw7EwTB2UDM00KVSqtFv7xFHE6dOnmJqYYH9vj+sf3sR0TBZPLrK9uk7BLaIoKo7n0Rib4sbN20xMjJNlCft7XUzb5P7SPeaPznLsxDEqkw2m5udRNJW333mb2ZlpDENFyQR37t9jenqa5UePODq7wNrGOidPnGR3dx/PK0KasbS+xDPPfYmNrW06nR6TE+PUqiU03eD99y4zPTXDu+++lx9vToE0lWi6SbfTZ397j7HKGAkpQqhUKxVs2+Ddd9+iP+iysbFNpzNkfHKaSr2CP+gTRwE/+MH3SdKELFUoFiv0Bz00TSHLDqNk7AIiGaCkGZpqoKSgkqDJBEW6hMEITSrgN0GRHIgqjclpAsVESBM1jpFKhn35PooQDMTfEu3eIpn5OX74H/6G8y/8Jt3hMisr7zE79zxSsfGcOoZWZn+/R/GVi+hnFslI0aTANHSG/UHuHxMKQeCTRjGeWwBFkqoCqZtILSevhsM9bD1EkRp7+z61sWker2yiiQJuuUSW5lL+Wq0MmeTahzd4+eWXOH3mNEKVGKZLpmj0B100TSWOQjRNJ0MSJSlesZj7yYSCEDLvvidDUAx02yaKE9JQJY7zvM21xw/Q1QRTg72DPQajAeVKmSRJQREkaQbkMJ7tnT0cx84BVwZMTIwhhUqagGW4SFRWlldI4xRdMzAtE8f10PR8wqkZ+aRlc2OPKFLIkpSSYxCNeqRxhFAEk1MT2JZLs9miUHBQZXJYLFsIIUmzkIwRi8dOochcNZIiUKRBP0iYqTeol0s0D0asLi8zOwaoGgWvBOgIzSVBxXYs4iDjhy+9ysmzFdI0xTFPoVs6gT9Cd1wykTE6WKbf3KBcGiOMTF774ctIEVOseOhmCcf18Lxibq0QOTgsiWNmpnMVwVtvvE61McWv/tqvcfLUcTyvgKHbpIlA0QPSWGDqJrOz43mzxyugWy6OXaDX6fKn3/pTnj7/HKZh8Xh5mWqlBCT53z5NufLhZebmJzl+bJGtrV3K9Uo+/E8y/o8//CPu3nnE2bPPkGYROzv7HOy10E2TMPZxDY1m8wDD8dAtB/2wQeLYLmEYY1su7VaTWq1Cv++TJQmGofHqS6+ytb7D6dMnURA0W212d1uMBhGzUwv84Id/w+VLl/nS/FHkYEj2O19B1ywG/YBeN6RUrLO5uYOtGaR/dxkhJP4LJ0kGfVqrK8w/+8vo1qH8VIl/qsIVvljx+hFtWPz6L3zh/UolySFeicKrf/mn/PovnmXm/O/x8g9e4qmlr9L0txlbrNI7KFAopayv36ffaeNYKf5QcvbcDLatI0gJgwHBqI+hOliGYNDvIaRKIoc4RpUkDVANld1mzJ37TfxQcPrUWSqVGv3hiE63S21sjKnZOqQKzZ1NbCdB0zJkph0WRgmxkKB5eOVxSEPWNzY5e+5pRqOIaq1BbXKCgutQr4/x6ptvc+f2DYqOpOGZVCtDPFfF8jLQSyR+gKap6Hq+Jk1ScN0i/VGGXj6GIgx6O4+IeltEQZMoCLFMgarFiFRFalnOYdAsNKmjHmZYKySMUoul1Yj9lo8ifJ586jnWNpapVV2C0YDdrT2KhRpBNKLWKKNKjauXLzI15tHd28QyRihpglBskBFZnIKistce4lSncIqTOIUqqxsPmZyaJk0ErlNAVy2u3/wA23JI0wzTsZmdm0HXAr7zZ39Or9Xh6HwN0jYzExWEjBiOIprNHkmUEQ0D5o64gI+uGZBkFG3JfEPSqNfQrWlipYZpO6RJB5FsE0Q9VF1FUQRxGKE7GroYULIl5XoDNEkUDVGVBIjI0gRdM/K8aakzHG2jqTaqYhNHPqkSoykalmmjOipZAtlQBVsljlKULGJiskQYR2z2q9y8u0UUQq3s8fV/8avMLxxldmEyjzOLErrtHkkUoZsaZtflpc3/ifnZKik2U2e/hmlb5II6QXopX8fIFxLSLPsYl/TpuvEfr1E+w74I8FGUqPL3QKfPsgtAPmlND9884ycDmT6JdVLyke0/eO8vWrj+k5MNf5bX9JPF60dj608+9lkymS8SdfN52xfpMPws8Kjke68DIH7jn//Y4wKF/t4uhio5evwYXrmYRy1oOkIR9Lp5BqfwXMrfeYn0xAIAqqoihMgzLhVBu93KJ5pCwbRsNtY3sW0DTVVQhaDX69Np73P16hXOP/00lm0TxxFZAt1+B7dQQVdt/NEA3dTJEFy7fpNGo8GJUyeI4iiPuJA6vV6fKI6xbZt2t8uj++tMjy3iuDalkkeWpnhegTCKsCwLXdeRUjn0wsVcvXqVtbV1xsbGKHgex48fR9NUPM8linzSLGMwCAjCgA+vfcg3vvENpqamqNZK6LpzOHnOeO/d9ykWy9i2S7FQRFcNHLvIhQvvcer0SU4eP8LC3AymodFutYjTDMOyiJOEIIwpliooisQPfKIoj2HQdJ3RyEeqGoahk0QJUpXs7e/jOS4KCqViEddzCaOQTq+L6RTyztyhnzkKQ3RVohkWUjWQQmVtZYXVtceYhsGD+/c4d+4pxsYnCKOI1199lelGHfvCNf705Dxp0ebdyxf4V//qf2VnezfPUr2W+0B/7ud/hciP+Na/+7+YOzLNkfgCkWJyfydmcnKcXq9LrVIlyWKazSaVciWXPne7rK9v0KiOIRSwrSJZJqlVazl8K0lZX1tnZmoaQ9OJo4i33vw7xsfG0VQNfxgQBAGrj5ZptVocP7IIWcrDBw85ceIEXqFAY2ycwWCAYRh0O23Onj1Lt9/GMDRM02BifAJFKrz//iUWFhbo9HpUG3XIFDqtVi5R73XRtVyuZBoqFy++S61aZ3l5mUq1wmjkc+zkCVRNYmkay8sr9AYDCp5Dv9sHFCzT5N13L9LvDZidnWV+YY44zr0xB9u7uJaNJjQiP6BgWUT+CMctkCUZhmmw9OgRo9GIyelpHj9+TLFQoFKp8OjRI7Z2thgfn2Brc4vji8e4fesmlmViOwUWFhYIg4gjRxa4e/cOkxMTbGysE4Yx5XKZer3KhYsXaPe6TM9Ms721TZJESFWgayZra5sYhsUzzzxNFAcc7O0xNT1JoVjg3FPncF2XV195hWPHTtDrtqlUyrkH3HHpdfeIk5z8nGUJmq7QaR9gmDZRNEI3BL3dFVRV0HLOUpucJUpyKaTM8kZY/MZlNE1j0NjJr7cLv8Qf/M//C9/4xtdp791mslEhSgtoeg6LiuIQTRdYf/0W0dEpojjKcw6jCCnkYYSKjqFpH08XhKrm1E1FHCoVVLIkYmd7i8b4FPXGLO9d/oA7d++ysbHN0O9j6BZR4FOtFTFMm0q1ztNPnycIfQzDAPKilDQ6pDDrH1/H0zRFP/RQAqQfXdeTiCSThFGYe+oywTtvvUW3fcDkRANdNxn6MZVKjSTJCIMQ3/cxDB1VzTNidcOkWCyhqgJDVxkOfPwgzOXUcYzvj9ja3uGNN17n+eefxTAMoigkDENM0yFNYzrtNqZps7uzx8TkJF7B4eBgD0VIiuUqcQL9/iifuNTrJFmEYWgIoaIoMBwM8s+kSUaDIULJPXMAYRizt7PHnVs3+eov/jMUaVCtOJjqACHyqDJNt4nTnFqvSIHjVnni3HliZSPPc2USVdNxbZs4TjBNk0F7D90uIAyXvYM2m+urVMol3EL58H4E/mhAEgVEUUi/P8J1XITILRqLx44wNj6GZem02rsIkRCGQ4RIieOYwI/pdvpEUUS73SSOM3Rd4w/+4A94+ulneO7ZZ0nShH6/j++P8FyH5sEBGSm6YXP61GnGxycQQmVvt0m1USUOQzRV4+jRRZaWVlg8fgzTULBtl29/+9s8//xzmKZO7EeMfJ9CsQTkwDfSjM2NTUqlEkIIur0ujuMgVZ1Ou02xWGB+boF6rY5mpKyuLVOtliiXC3ieRZLmU9Jms8VTpRqakMRf+wr9fhevkEt0r374AZWqh6GZ2FfuIKQg+/nzZJHPw9u3OXb+ORRF+amyV39s/fHTFK+/8QtffL95bACWrrG5dIdXfvg9fv4b/xWno2dwD6q0K7u4hRLN1gOarTVuXXuMa2p8+ctz1GsSqeSAscGwj2U5CKmSKRClQ6QqMQ2PLNUYDg8gVRn2VS5dekAYw9HFI2SKYGJyjNu3b3L+/FNYpkEQjlh68JCCrWLpIWkSIBSZx1LpOkJ1GAwV5o88iSrVQ7hiyOAwGz1OU0SWMzo2tzYR6YgnT8wxMS7IMNjdkqi6ThrHqDIfJPj+CCEliiJyRYi0MLwx0jgmGTWRSohhQhSmCCRhMEKqKkmakSQpWQpkGVESgZIhpMPDxzusrLVxCyV++Ve+SrU6QalUZG9/j3a7h+eVERl0ui329/ZQpc7czCRXr15ivO6SJl0cR0fXTJAKI79PGGaUarNEiYFuuVi2Rb06Qb83YDQakBERhD2mZ+YZDkY095t0Wk2qlRJS2mxu7EAaUC6C6yjYlpkTf4FC0UE3U2Znqwglo1QqoKvq4RRUoVav49Un6Y7CnOwcdwmGu6RBH6GkhMEIXUoEucWkWq6QxDGObebXhihElTIfLpGzp8IwotlRWX40pFRxEEqaE6cVgalbqLrKMOriOBLSnGEhgXKpQJxBlFhcv7dMq9Wl0RjjuefOo+sqzeYBtuMxGIzY2tyiebDPwcEeO+tbTOhTNGfewLQzgkRl+sxXcRzn78+jS/n9RjwXfW6t8DMXr5/x+k9WK5/0un/6536WFJafZfuPxeunCtVPFpafnnx+8oL+/8T3+kWL188rkj/r8fT7HxWvv/hjz8ssxpAKw36P2zevc/zYAtKwUYUkjhM6vV6e3Vgpov3Rd0jmJsHQP/58UgoePXzEndu3WVxcRFUFg36f0ydPUa+VGY26xFHA9NQMtqPz/AsvMByNcl+cFOi6jeN6JElGmiTsbu/yVz/4a27eupPDaEb5CW/bNobpomk6aZZRLpaIwwDDtTh+/AS+72PqOoamcuXDq4yNjZOlGaqmEscBqqqgCEmWZtTrDYrFvOCTqkBVVcYaY0RRSJommJadB7NrGouLi3keq5Zn7KWJyImm0Yj19Q1M02IwHFAoukRRRLfb5dq1a/S7Taanxtjf28o7YmmG5eZ+2SjO8rgSqSNVnTSN6Pe7WJZ5WKCrdLtD/viP/pjFxaMoQLFcQSQpQiEnCso8jsPxikg9B+ikSUK33cYyDUZBSBAlGKbFsD/grTff4NxT53j8+DGWblKt1ugPhrQ7bRr1BoWtA5TJBov/8r9j2G/xta9/jSiK8bwCpmXwv//r/42vf/3XSFKbD698wK2bH3LqiUXmgguYTp2erFOvl3m8vES72WP+yCS9fjfPZZQqxVKROI7pNtvEcYiq6lx46x0gYX11jcvvX2JqcpLVxyu4joNyqAxwHY87t+8yPj7BB5c/oNluMz4+jtRVao0G0zMzdDptJqemUITkzp07OWypXqfT7WAaGqPhgLXVVXRTRzdN5ufnieII07ExbAuZKjxeXqJaKtFutvjwylWePP0ElmMyMzvP1vY2zYMmp06dZGJynIwMPwgIB/lxbNgmB9u7DPtDHt5/gK6pzExNMTE9heM63L//gLGxcUBBVw08r8R7773PzPQUceijq/kid31zk0KxwOraKrV6nUq1epjNKXJ4WqnE4rGj2LbN/Ow8GbC6sszszAwXL37A/NwCvV6fe/fuMTc7x+3r15ibm6XV7lCrV4mSkFOnj1Mqlel0O0xNTVCv1ymXy1SqDa7fuMFv/dY3uX7jGnEcsrAwz63btzh+YvGQlguQ4dpl4sinWPSIkxip6Zi6IM0yur0+hplHgQAo0iQIfWzTRk19st4m4z/335AkEtO28f0BzYMtPKeA9cE9sjQjnDggSVOGjef5z/7T3+bd9y9wbLrMxsoSCSqFSoORP8B2bPYP9ii/+gHpsWl0M4d+WJaFgkK328Uy8oaPpusIAWkSY6qH13CpIlSVJE4IwghVMxGay/bOHmEQMTU9y+bGCuVSmd3dLU6cOApCwTDtPP+5l2dcSylQyA7p6/JjFU8Oj8pVNIPBAF3PycEfFZa2VUAhI44DTMNmcWGaRq2CqmnEiaDbzz2zYRCRpBmuYxMnIUE4ymNiVA3LtgnCEd1OG123cN3cjyulIApDTNNidnYGx3EwjHyCqanqITgjB41oqs7c/AJxlhDFIbZj4vshQjXp9kasLC9z40Y+bX7mS08hJGiaRZKkhyCijIP9AzQJrm3T63bxhz6dVgdT07i//IDTp88gdY0f/vB7FFwd29RBkaiaiZQ6QtOJ4wRUCxSVVNnM83GjKkI3EWlKFKe5TYCEUZQidAvbczgyN00cZXS7IeWyS5ZGdDstFFKkAppm4no5cdX3B3T7be7cecDK6mNOnjxOEIxyeXsWY9tFhFDp90f8xV/8OWdOn6ZcLGKZJrquYVompm3y1sV3ePXl1zh+/BhXr+SNPalKHC+fGEtV0uv2+fO/+EtOnDqBZZqEYcD29i6FYpFiqYyQMWQZL774Ar1uB9OweP311zl56iSaKhkOc2ZBEARYloWmyUPoi0IQhKiqxmuvvcbCwgJpmhKFAZat51RlCSkpmi7Z299lYnKK2dk5WFqDr/8i2cIRFBkQRwkoGdPTE0g1wbJdlLevIIRk+OwpWgf7lMslvMYkQogfU5j9NJv6XPyP5k7+LMVrJiRKHHL7w7f5zrf/iNn5U5w48xXEn9WJa0OMisnDpRWuX7lNrW6SRR2OL5ax9BBDeqgiJI4DisUSSSrodgNSxUQRUU5sjjKyRMU0JEGQ8dobd3jy3BOkikqWQqvX5Oy5MzTG6mxubtDrdgGYmRpnd/M+ugwwdYk4lOvrho0fCoYjjV4/pVgsY1oO29s7zMzOHF47NK5fucLN69dRJVSLKvWCiuX4dIcqb7x5j5mZKiVPhSxFqDkcRyHLI1iSBPQyml0ki4ekowOkiMgICEYCf5Ri2zpZFqFKC1AQUkFIco94lrK9G7Oy0eHYyfNMTk0yPT1BFOc5y5ZlMT4+hWnZvPHyyzmbYmwMfzhifeMxRxYmULMWQonI0gjTcojijEyJQThoxjiPHu9imDqNsSJb6wekaUyx5KLpeSa4gk6SpNRrdRzT5GBng7/4/hv0ux1mZ4tMTRoUHQ2R5TnPuqYSxSNULUMRIZo0iMOA4aBPoVhEaHnGd6hVKZar+MM28WiXZLQHSYIqQCgpw34P0owkiVClwDJNsjRCKmAaefRNEIYo5PT30WjEw/UOd+/GTM0quAUTVVo4rk0Sh4RxjKKbBEFAloQQxURRyCAIiBWby1c2cMtVskzjyJHjjI3XMUwTr1BmOAyQSk6OrlSLWJbGdHUMJyzTnHqFOAupTp9k+sSX0XX945rk4+L12ehzG03/XxSvn56y/sfi9f+lLU3Tf/nRtPSzvvAkSf7BmPvThetn/XF+atQ7n21Y/uR7flZh/dHn+PTzn5Qzfyx5/v7fT15/rHglpVKrsbu7T3N/j1G3w+T8UYSiEIQRlmXDYSyLuLeE3GvCeJ3RaMTu7i7+aMTU5BSKolAoFmi121SqubwuinwyEjRdY2drB9My2Nndo1gs4YcBUmpcuXIV2y7S6XQxDEkYRTz9zNM88cQTuVxzagLTNHIwhlAhU1CUfBEqpSQTCqE4IEp7dA8CNjc2mD8yz8bGJkmcIYRKq9Wk3+8yHAyxHZfRcMSPfvQSw+GAUtGl1+sRxQmeV0BqGoaVQ348z6Pf76PrOhnkeW+xgqap9HotTp85TX2sQhANsW0dVVXIlJSTp05Q9Dz29/eYm5+n1x+yuraBInOpnIKaywoz6PV6mKaO47r4foCum+xs7/L48Rq/8RvfwHFMUEA3TPZ3dwnDEEUoREmMpmo5LIY8WFxBwTRNgjAkywSO55EpgiSKuXblA+aPHGE4GFKv1rlx4yZHjy2ytrbG/s4eEw/W8H/3V3n50SOuXX0Xr1RkfX2Der1Bs3WA45rMzEwRxio3r1/h0cNbRHHIs4WHNPsRxZnzmJaBoRvoqsooyGWbN27cRNcNPM9hNBqyt7uBbkg2NjaJk4ixiQoL84scXzyO53o8fvyYlccrqFJFahr7B02KxTLTM9PMzs2xurXJM88/R7lRJyEjk4JKwaPZarG2to56GA2UpjG9Xp+7t29haBqLx46BEGSKglByxUCz2cTSTdI45m/ffINqucRoMKRRb1CtVvHjAEM3KJXKTE1Ps7LymOmpCTRT5979+9y/fZdjxxcp1ytsrW+yvr7BE088wQeXLzMxOY5XLhD4QT6JExLTskkFqIbOxPQMXrnEYDTEdh3W1zYwTIOxsXFmZ+fwRyOSOObevXvU63U+vHqVufl5VldXKBTyzEhVCK5e+YCJ8XEMy+HCOxfyCBZdwzR0up1W3r0dDmmMNdje3sC2bdY3N2m19ykUCui6Qafd4W9++Arf/OZv83j5MZubG7zwwvMIqXL/wX0WFuaB3C6xvrbG3711ga98+Tl8f5jDkXQdgYFQDKRqIYWOppqYVpFUUXFMBzKBUE2inTvoZ/9LTMckjEL0Q2DZ/u4+hQ8fEccJwcQ+QgjSma9Sq9a4eesaFgpKnDF7fA7VKrC5sUWlUkNIif2DC7THC+iGjpRqPlE1TEzTAARxkuTXQqGQpQlJmEcMJR/JmQ4nD2EYEMU53Gdre4ul5cdMTdY5c/I0a2uPqdVLGKZFJvKoHEPPsxtD30dTJSjy8L6SIcSh8inLG1emaSAOFyKQEccpIlNJopA48kFRCP0hQTjKo2milG//6XfpdducOf0EqirR9PzYbjYPeP3Vv0XV8qZQmsYUPJdms5v7jy3j0F8pGAz6lMvFHEAXRYeLHMnQH35sgdH13IaRg+pySZyQ4hAOpTE1Ncnc3CzHjh1FN3Vcx81hWv7oYz+u63joukavN8A0TNZW1ymXPMbH6px84gkEgmEw4vzTT5CGMUo8REgVVTfzBkKmMPJDvFKFLJPEbOT+4GycVEhkll/vVE1HlRAEQ2wvBySpgGnaeKUKmpp7C5UsRZDR63VIkox+b0Acx9iOTaVW4cTiE1iWw3Dg0233KHolXLdAhkBVNaTIoWMnjh87hPyZpGlKvVFD0zWmJifZ3z3g6NEjXLx4gafOnWU4GqHqJqqaT6V3d3d48smzeIViDjJUBIVigR+99DJSqlRrJaQEw1ARQuHN197ghRe/gm1bpElEkoS0m200zaBQ8Nje2ToE1+UU06E/ZHFxMb+eqSrt1gGvvvwmy8trNBoTuE6BOAHDsrBtm8APqS5vsP2Vp1BqxZyiLVWCIKDf79LuHGC7Bcz3budyxRfPsrOzw9Fjiwjd+gdrlp8Ui/NFtzRNf8wi9TMVr0rG/qOHhK07lEsGX3rhNxl+r0A5qZHNDugPBuwfNIkDydLSLcarVeolN49vCQRCDYnjBN0w6HWHJEnGW2/dY2FhAlPLI1ayLKDTzNBNndnFEmEWsbnZJU0MvvaNX6LT6aCQN5c0KUkzlW5nk5KT4PdbQEKchqiKIMkEUi9guXWEaqObJltbmxRLRYRQCHwfhKToWAx6XQoFl3DYZunBI2anJ9HthLmFBsViRBKGJGnuIlSkIEM5VERIdG8mp0b7bdSsTxAMAGi3AjY3dpicrIMSoUmbKIpyT67IP3sQZvRGFh/cWGVtY5Nf+dVfJkuhNxgQBAGFQoE0Sen3+5i6QUZC55Df4RgJWdol8fcQioJt26Rk+H5Ckmp0+inVseNkGAShT6u5S7dzwORUA1XT0aTDznYXKTNW1zZQVR3n/2bvvWIkS880ved4FydsZmRG+szKrMws275JLj05JHcMBxqOuJIuJEFYzYWudiFANwKEvdC1AAmChFmsxmAHuxwOd+iGTdu+utldXd77Su/Dm+PPr4sT3SSbTTczC+3u6E8kEFWRERlRdc6J//u+931e2yL0e/Q6TTqtA86emqZUEMgkmRyXbC856AcYmouEhUizglaSZaJUxciVsQpVElFAlVP67QMIu4jAQyIlGkLSVFnGtCziJHqPnA8CWZFJ05+qFSSJOEqwbQvJiqnv+hxbNtBVDZHoBFGbNA4ZeIL1LZ9OS+A6ZRRFRdELNLoJvdDg+q09tnfrrBx/gmp1kncuXCAME0ZHpkDEnH/7PEKk7OxsMjExhqnEGPs1VFmnWbrL9PKHGJlcfa8WkCSJ5B0t88I/H/8cxPUXrQ++74OL119V4/x9sXzeD3uCX50x++76B1G8vnv7g2i/v+g//deR7f6mxesvep5f9jt/0uH/1QflLypeJVkmEgqV0QkMVePhrVtYpQoDz8PNF0hSQYpATgXxwRFBu4vkOmiahuu65GyLH/3wRU6dPo2qaSiqQpQmKKqBrEgYVpan2hv4vPCdF1heXqVUqtBqd+j3fRYW5zg6aPPtb32d48uzVMfGsQwj09WTcLC/hxMWihQAACAASURBVGGo6EMoUqtVx7RMVE3LpCh9H0+/j12Ev/rzV/H8gOPH58k5eRr1Dppq4Dg5VFUnTiIcO6Pj1WoTLC0toenvRpHoSIoKUjahDcMAw8x+jyRn3T1vMOArX/kad+7c5kMfegZZVpA1Hdt0aNbr7GztUChW0E2LfC6DAh0dNckXR7GdzBdlaCb37z+kfnREqVjEMDTiKMb3/cxjbNj81V99nS984QsgJfR6LYyhjNq2CvhByOHRPpIkMHSNKIwI/UHmrVA1ZNVAUjUMXSdKs4Dqna1NatURqrVxxsdqXLl8hX/0kY/yo5de5PkPP09uv0lRVoj+p/+Or371a+RshT/4wy9z6dJl9vb2ESLl85//LK7r8I1vfYfV5XmajUO2tnf59OQeVmkUuXiMN988jyLLqGpCrxdydNQa+toEg0EfVZVo1NuM1SYZGZlkanqO6vgIzXqHVqvNxYuXcJwcyysrrK2tM3fsGJIic+PWzeGkIptmtBpNioUCIk0I/RCFFFXTcfN5CoUCrVYTTVVwcgW21jeQU4EfhJy/eIkTK6sg4PKly2iKCongyrWrnFhd4f79e9mHkSTTando99qEYcTDh48YHx/nzu1bjFVHiIWg0Wxxcnk18w1aGkLILK+s8PaFC+imwerJzP+nqCqqZnLu3BssLMwDIbIkoxsm3sBnf+eATrvHyolVDo+OKJfKeL0+ly9cZHpmBjefxzAM5hcWODo8RDdUxqtjCAFvnDvHFz73OcIo5OCwjqxIrKws8/bbb/Hcc0/j+TFuvsDlq9eYm53nzddfY3lpidHaGGPjo1iWgWGY9PsDarUZcrkclUqJ40vH6LTbbG7vkyRpJll+8BBdzWiJt+7cZHJyjDSNsW0HVdUJ/IAgDNEMDVXV8L2saywUiTgM6XbbiMSHxj2aYx8jESkF16XXGxBG0O+0cFKZZKxMJN9HCIF7+osMopTq1Bhv/OgNnjzzBGuH97FzYxQLoyiqge/H2K9fJrZ1UtPIIFyqMVRRZKC2RGReUUVREUkCkoSsaiBJ6JrO3uYOoR+wtbnO3dsP2drZ5tOf+jgHu/t8/gufJgpibt28TrmSp1Aso2gmiiKRJFnxLUsZbC5FGsZWCKI4Gm6GtCzORs2aJQiBqqggqfzf/+cfs7ezyeLiHEkqMCwTScoAULqmMTU5BSSM17KolygMkRUlu+46BRRVoVgukEQRYRBiGCZJHKJq2XvtdQNsRyeOwuF50coaH0GAYWS05VKpTBTFw5gUk8AfEHg9LDPbuMmKRByFDLw+o9UqkqTgeQFBENNoHFHM52m12px77cccW1rC80LW17e4c+cOE5NjSHKWYWsoBooKuq4gIsH6gxuUymVkTUNIMp4fUiiWMuiZUyBINpEkCVWaIk4jRJTBpVAUEDHNw0cUSyOkwsAfDOj22uSKDqos4fV7SKQU8g4izcjNOTdPGCXIqo5lOSBCBoMeX/vaX2FbFqViiVzOYRAEIDL4XqVSBFJM2yaMw6zwlyQ0WaXdbBKGKdtbW5w8eZLt7U0WFhZQdBNZhV6vS2WkRN7N8c6FS8zPzaOqCr7nc/PmLeaPzTMxMYll6ezubqDKMvfv3GVy9hiapiCSEBnBtWvXh3A5BcsyODjcxzJzBH6MpGRy8jiK6XRatFp14jCbytZqE+RcF900kJUsQ12OU/Kb+6h/9PtEUh/HqrC9vc/LL79GqVxk6fgCUQLm2zeRBATPn+GwXmduaYE4+fX3Kr/uUhQla1KlWaTH36p4FRGHt69R3zxHjM8b32jzkfbvsp67TiICioU89fohB819kqSP10oJ+13GxhVMSyJJVQxzmMmtqhQLeUbHKpiGIAoj4ijFypmEoUSMxus/vk2Y2GiGy0c++hHqzSaVcoVGvY4sg0gi4lQnZ8YM2uvY76UJpBnoSjPoDWJ6XkK+VEE1NAQp3hCYdnh4QM6xuHrpAjMzMyRC5srlazz79CqanmJofTQSdC1G0/Jow+g923ay8ziVMvmzNUUUx0hhh0F7D01XSBINScom846rkSTxkKCfEoYhnp/i+TJhqPLWxdvUJhf5nS/+Dnv724yWx7l54yq+51EplTk82Mc0NManZpCV7H3nDJmRokwU7BP5fQr5KokQ9PptBBpHdUGpMo1mFoiFzO7WDqdWT1PIu7TbLfqDAbKig6QS+C1mZhew3Dx+GHD1yiWeWHUp5RWqFRvLBIkkU6CJjKSbAdyG00eRTflV3SaWcyhWBYwKadCFuIOUdBDxAJHECDIFYZZjLpGkEqZlgMTweWUQckbKlcR78DVVUUmSFMtQWT5eg9TD1HKomoIsqaRJhMDgRy8/Ioo8JifK3N3ocu32HrceHvFo4wBNz/HEE2c5feosxWIBt2DxeO3R8FruUywW6HW7pElCq9kEuU6hv8jAXENe6TI+9yFUu5gNWIa8nPi8mgHenv0J2fvvs3j9VevfF4j2N7n/bwNs+ru96v8A1k9X+P+hr3clPH+X15oKiTAB03VAyXxTD+7eI2c7Q8lnpvFXVRXl5DLO1TvvPVYIged5bG5t4nle5u8yTEzLJk7TbNKFhGXbjNcmmKhNoaoa4TAKolIeQVEkLMticfEYtVoVRcmmI77XJ2ebFPJZtuvBwT5hOMg2Xf0eKYJWu03oh3S7XTxvwCc/9Wk+/dnPwTD24KWXXiFNZV55+XVef/0NioUM4uF5fkZR1TT6/d6Q5CgTJzFCyozlcRITxVnEQavVIgxDQOIP/rM/4LOf/SwbG5v4vk/gpQihYug52q0BlplHpBqNRovNzR1efuU1vvntFxj4MdevXcX3Brzwwt/w6OFDJASmoSNJKkmcTX/iWPClP/gSmqYRxyFpGpEmMWka02i2efmVVykUixSLBeIwZGdzA1PX6HU7xHGSUQJVHUmSM1qcBOPjY1nGn6EPYxdkbty4yWc/+1mSwYDxRzusfemThEnM5OQk//yf/zNUVeW3f/u3WVpa4rnnnuPRo0ccHh5y5+4Nmq0j/uiP/ojJiWkEMn17jv6ghxAyCwvHqNVGcHNF7t19QKGQRepMTk6wtbXJ2bPPsbmxx527jwGdfj9CkiVqkxM8+9yzzM7PEUURi0uLOHkXZJnjyysUy2XuP3pI1B8wVqrQPqiTehGdeoOt7WxqqRsGqRBMTk7w1ltv8fDhY3Z390gSQc51sazMm9Zo1FlYmB9SnZtMTU8iKwrPPPMMtclJqtUq+/t7zM3NUSqX8XwPRZY5eeoU7U4LVVXpdnuEYcjR0RGHBwe4eZdev8+p06c4ffo0SFkwuWGYtJotNjc3OTw8ZOvRYxQh6NSb7KxtUt87RElktnd38IOATqeDLElUSmUuX76MZZpZtrHrIssy9aMj/CBg7fHj9+JT9vf2WFxaYG52FlVVWF5eYn19jZWTJyiUKjSbbZI4oVlv4vX6wwlj1m0PwwDPC7L36Xmsra1x9eo1Hj96zK1bd9na3CbvFlEUFduymZqa5rnnn0ZRJLa2NoZFXIIkp+iGTJwGCDlGUcXQaxeiqCntzhGma5PKKqO2h4RgY2MNXTdx3BKO47D/9DEGn3wyKwbloSwrSUiQeOXVt9D1PPVWkzjKfHdpAoV8ieC5k0iGhqZpREO5sqZp+L6PEDGe54GsABJRlMBQRqwOYThxFHLn5i3KhQLPP/88X/y932XQ75GNTQWKIqMoMnEUo6kKipqBPQb9ARISkhAkcfieTFiWpWEWXvb4ZrMJQLlUIhUii5IR8MXf+yLPPPMsmqbT6bSyCWSaUqmUSJOIfM7i7NkzhGGA7/sgycPzWmZmZobp6Wn6/T5JmnXYFVWiUHTp93sEfsALL3w3i19xHJDAsm0UVcUybZCgUqnQ6XRRh43BNIrJ2Q66pjIY9Oh1W0giIYoDTFOn280op4Zh8+JLL/Lqq6/S7XbJOQ6rqycIggRZ1llb3+JzX/g8kgyFYo7zb5/nhb/5DlEY4A0GyJLG7m6HIAgzUmeUydva7Q6KLAgCH0lYSNikZKwCQUocBdlkGEEc9IgDDykFy7AplvOEyWD4WShoNRp4Aw8hsomY1+9zcHBIGMQIIdPuHBDFPT7+8Q/zzLNPUW8ccFQ/IJfLkcs56LqKbWdRPAkpqpZRtUlToiDANgxqtQkuX7vCzMwMV69cI45j4mE8UpyEtFotoiSiVpvAMAwUWcHJOXziE59gdWUVSVJIkjjzEEspv/d7v5PJV+METVU5Ojzk+eeeozoyQq/XwzB1KpUK3/jG1+n3B5imSbFYolAokc8XqI6N8vGPfYTPfuaTjI6WQU5IRYQgJo5i7CAkydvstPZIRYA3iKiUq/zLP/5X5N0ijx6tgSyRVsukY2U6nYwtMRj4/F1X+JcG4V8aP/N3cRy/V7j+bVfk9Vi7f4eKq2Eb8F/P/jNay+sctffZ3FjH9/qUS3lcd5IkFczMF7ByQZaQEOgYpo2iavjegCjy6bYb6KaPIsc4dg5JNklTBUWPaDT7HNZlTH2e/YMG27uPqJSrSJLM2vo6aZwgyxITE5MUS3lUBdI4QqSZDzKMwqHqR8U0dQ4P9wiCAZWRMtXqKAATtQksU+XYsTl0Xefg8IiZ+RnaHQ9Vi5ESgaPkUDFJhYoQEmkKnucTxymKohFHCaaZI4liBv0ehpFJ+6MIrly+imFp9PtdZFlDUd5l40ikQuGdd27TaAxQ9UzWv7m9hW1bRFHCk2fPMjs9RafVwrFMdre3iJMU3TTw/AGWpXO4v0W/c4SmZpBMzwtQdW0Yn7eAZRVQNZ1ur8fMzBw7W/ukUda0hxTTkml3D9AUGVmBJE35yle/yrWbd+h11pifrdBtN4bUcRk/8JFQSJOEJPFB8kAeoGgqfhAgKzqOWwbJQlJseu09Aq+BJDziuI+qy+9NUofVKoZlEYYRcZISBMF7WatRlKUSBEGQRQ4qCiBw9RJJeISpWmiqTn/QJI5kFMWg2Wrx0Y+d5tjxGVq9XS7f2GL7YICTnyKXrzI2Mc76xkPWNx8hpIjySI4TJ5fQDZko8jE0DZGmTE1OU683QQyhsZpG4McI2UB/1zaWpu9l/sJP1Jn/0NbfVnb8H9XkNUmSfwEf3JV4/59/Gtb0Xg7RL5jMfpAn9jcde/+y1/LTv+cX3f/+15B+62UAlN//zM8Vu4qc5bSOTIzTTmNGNI1W/ZDx2igJCSKVEVJKWnRQ/+VXSecmiVUZSQhSAYtLCxRKGXU1jgSDToco8PH7fbrNNkmY4PW6HF+cJ0lCDEtH082M0tbYp1TMPGSOWyZFJkk0rl69weTUVAbeiH0sQ0W3cllwda+H1+/h2hZWPke+Gmfh30EFRUvRFB3TtGm3WqgyTE2NUxsbxcm7KJqadaeGofNJpKAbCt1uA9u0aNcPEbGHbVjs7OwRhTF5N8+g28V1iwy8PuPjVSqVEXwvwE9iJFml2e4xPlGjXt/Dzem4bpHd3T0ePnhM3smxMD+PboJlu5w98xTLK8scHO1hWhpomcwziXyioMvRwSapiLAdByQd03JJkoTt7S2OH19lrDqZUWQNizhNSOKAysgosqpnXjYZojhAUiQ0Q8P3AzwvRHcc0iTh6PCAleUl7t+9R+XmY6IzS5T/x3+KU6pQnaySAIMYfvzGFS6ev8APf/BVXn7th3zuC1/ENSvcvf+YldNneOrZp+HOv0Edf5b6YYuV40vUj45w8yWSxENVZdrtBsePH2dna49SsYphqVy4cJF+v8P0xBiuafDKa+eYnZ3l5s3rTNTG0XSFfD4HScLh/j6z01PcunGLG1du8tRzZ6mMlgjjCC/wGKmMUKqOEQQRjx48xLYsur0ek7Oz3Lp2mc/81me4fuvGUMKZMDFRI/ID/P6A9a0tarPT1Krj3Ll7n7GpGerNFrWJMcbGRuh1PSxL59jCHPXGEdVqDd2Q0A0DN1/ALeRwbI12fZ/NzX1GqyNcvXKFU6dOsbe1Q73ewjRM3JzDxsYaiwvHcEtl/CCkUikTRQGLSwsYjkHsBwSex2StxsNHD+n2euRLBUZGRzg8OiSfdxEIVlbOICsqXuRzbPkY/YHHg0cbjI9WMuBUv4dp2UQJXLt0gWOLC+zu77J8Ypnl1UWanTrXL9xhenqCKAowrczz9K2//gbtdpOFhWMc1hucPHWG+Zkq0zOTKJaComoEA5/H9x6Ss4scHLa5fec+y8ePY8oJQZSiaSbd9gDTzCGrGn3fQ8QRsm5TcgvIkkR49BBz9Yv0UpvSyBiypoMs6NY7WJaTeUlvfCubMk5/jEK5ShopzB2fYW//DmbUo1BIcYvH8dCQzA69RpvSpceIWvVnMo9Nw8YPB1iWiSYrGe9QUpB1hyRJiYMAU1PRdZ3Xz73BM88/h+Na9PoJV6/dZX17jTNPfRhTd7h04W1OrC6gagq66Wb7HEVBkjVk1UFS7CFVMct5VmUVGQU0hUKhTBDCzZv3+NY3vskTTz5Br3/E6MQYTrFC3xO8/NI5SkUHx8pRb3QyKW7OIIojVFVBkmUQ4Hs+hmHR7DRxDIe1hxtUx2okspRJ5QyLJAHDsFg9uYKi6kRhSBB4GIZK3/fQLJ1uu40syVn0hyTRbNTJ53MIwDBz2E4RISQMUyeKU2zHJklivvfC91mYX8LQZG5cvcmZ009i6CYjoyXW1++z/nid8dFRymWX4sg4g1BjbnKO/aMmrqPjdY9IkhDVSHBtg5xlkioWimqRhiHl2gytThNDuDjaKJEkI8tGNtE0MvBenKZoRgEUnSD2QRaoioQIIzy/T5R4eH4fy7QIwoSB72OaedptD0XRSeIYRYXR6hR7+4eMT1TJF4vIik2/10DEMY7tICsaYQpBv42pG/Q6HnEsWFvfoDo2jpsvsLC4gJB0gjClWi2jqEOfc5qi60bWxEpTkCBOs8lIzjZRiEkSmURIWE4ewzDZ2tkgl8uhKAIUgazJ6JaBFwQYpkIUpvQHIcVymb7fQ1dkZEmj1/WxTAddNxGSQLcyqrQ36LG1sUE+56AZJtogRG730b/0BXRdo92rE0Y+X/rSf06xlLENNDNPcuIY8dIUu5sbTE5NYRUqCJH83F7jN+F8xK9oMJBQnv0JROb9CjXpzHHkjz+NVHR/fj8jAVImkRWShJBkwhS+9Sd/jOpdwUPixMQ/RX97nh02sWyVydk59HyetUd3MbSI+v4eT5xaYbxaJk0SJDmEKCUIQKgeliMhiaFXMQiRZYGsSPiDkMO2xc27G0zNHeP2g3vMzS/SaA4YK1fZ3zvg8PCIcqWCmy+wtV9n/c5NcqpA1qUsYx6ZNBH0wwQrP4FhVygW8iiSTuNoH9/r4Q8yBVU/6iNLDu9cvM7tezfIGT7HxsexrSx+RdIEAokw9EgISWNo1psYtoVs5smVpvAlDVsVSLFP5HUQcR+hyzxcg939IxYXbeIoJJYnCJMBmmwQp4KWJ7hwtc/KyVX6/Q5LC/OoskKhmCNSdPqDHuPVCru7u4xWJ5F1gaXnSIM+fu8+ImpSMEsouSokXUTYIQ4UFLNGN5Jx3CKpEOiayki1kk21k5Q4ERSLo+zt1Hnt5R9zfLmGwOL8W1cI+3WWZ22OTZdRFYFlZko83w9wLDsr2DQN1ZRIkhRDLhEnffxQwbCrqLqDJAmisEPU34bIRxEppBDHKakUo6oycRyhKhJx5COlEpKw0AyBogj8gcC0ushyDhSQU/AGHoptkiZ9FDWPrOp4gyaGrKEY4HkJAy9Gt1Ru3N3hzuMY2zawLJt/8odfpt9pc3xxjmp1hJmZGo5tcnDQoDIyRr3RIJ8v4Jg6jhbTPHxIwY4olx2s1iJMdklXVWqLq+hqHiGnJEoCUorxdIr5FCTKT6Jr3jvnhmk5Egxpwe9+yUg/98XPff9M5SBlYTg/XdP89O0PevzPPlz6wO8PWj9j0/wVzwv/QKJy3v8P9ptMMX8TYNL7L/p/H6bkX7V+Rh5cdJHPLiPNTf7Cnw2CgNnZWVoHRwgpJYpjqtVxegMfEAhVIX7jIiIMSYouhm5kZwMCTVeHfi44d+4cjXqTxcUlCvkiDx8+4vw773BscRE7lyNNBZ1OG1VW8P0uAqiMjiLIOm0kMTeuXSGfz1Eo5TEsk57noesmsiThui6mYeD5HpphItnNLPswqpJzcyiqRpykjI+PU6lUKJSKODkbXbdIY4GqaKSpIAwicq5Lr9ce+oxkTMOg12/jewljtRpBEGCaGrat8/rr5xgbr2byXFkhDGMsXcNQVb7z7W9z/vzbfOLjnyCOYwxLxbQ1Tp89wYmTyzg5Ezfnki/kEIRouoJl2Uhkm+o0FSiKiheE9AcB1y5f42D/KINsIDAMDUmSyeVy3L59ZzhVErhujnyphCQpmQ9SkZClFNIERZERSYosBJZhoJkG3U4HU9fpdrus2C65Rofr/+UXOGwPyOXKtBs99jZ3OHlyhaPdOrqi8ORTy/yTL395CCKwMEyD9Y0NZFnB2fwGcX4J23G4ePESR/VDRkZK9Hp9hBBYVpaDtr6+TrVaZXdnk+ee/xCzs7McHu4TpzETkzUgpVgs0uv1CfyQwSCb5E9M1HjppZcJw5iRkSpB4DMxMcnW5gatVoNCMc/b71xg6dgxer0u3W6X0WqVXC7H7FQGwGi3O6ysrDIyMkqz1ULTNB49esQTTz5BKlLeOneBtfVNTp0+g5vLkcQRV69eRjMNqqOVTP6uaSAEP/je95mbmWdtfZO8m0fXNYQEluWyf7DP1vYWxxaOIdKU6liVer2OqiqsrqxmIIy9QyQhYRkWgR/S7fSpH9YpVEpcv3mT+WPHuHDxIseWFllZWUFVVSzLptFoEkXxcAoooVsa7VaTYrHI6Mgob791ngf3H+G6Be7cvUulPMKD+7dYPbGKbhjYTg5/4DFSGaU2OYmdM9GMTCovySoT42OZXyZNuX37JqfPnOLW9RsIBCOjo+iqQrfVYH52Gs1xuHb9Kl/8/d/FydlIEqytbZDPF1lbW8+mSbqGoWsEXhfdcDjY28HzPMxgH3Pps1iVCZIoRlUzj2o08CgFCVG9w3/1v/4F/+3/8mcYhomQNcIwYrw8yu7mJgUnT5D0KBTnQNXwBl36ukbpG28Q1SokauZJHwx6JCJG1xxSkU15ojhGkNDvtrFMDSFiUpEgkClXKnTbXQbeAFXV2dvf5/Boh6effYaNh4/YeHyf48sLjNemQdGHcWmZYkORZZBAiBhpGKTdqGdZuEKkqLKK1w8QSUretamUixi6hqroSLJE4PcxdTVrFAxllCOV0hBK5SKEQNf096AcIGEYOulQ0p015DK/ahiG2FaWHSiEwLQMOu02pVIxK9iTFElSsEwT38ums7Ozs7h5F0VRuXjhIvl8RivudNsYhoFhZtArkQqmpqezSJs4YHFxkUIhT5JGZCCvCi/+8FVOnz6N6cgcNnZw8zbdbh3XzVOr1bAMBxHr3L99nqnaCLKUoFp2JhdEEEQmpplHSkHXbYRsIUc9VBHTPjrE1GSaR3skqYSTy6OoBpKsosoZ9V7XdTRFwzTM4VRcwsnZNBotHj9e59jiMf70z/4fTp86haHZPHj4iGPH5kjTlFwuTxwFWJbD1tZ2Rs+2hl5PSeFHL75CbWKKb37rWxxfPs6jRw+ZmplCU03Ovf4Gc3PTSJKOqpookoYsaxi6xeHBLu12l3yhQLfbQ0LwF//6LzhsdKjVxjAMHZEmqJLC0VGbnOuiKiqBHyLLGppicLjXRJFM0kTi+tUbnDxxCtd1eOPNH/PSiy/T7XWYmp5k4A3I5RySJLv+5/N58oUinu9jbO6Tmhr1JxcIIw/Pj3j11dcplcqUSkVMyySIQ6Q0RhEhL7/yI55+7lnQlJ/xuv2yfcYvWsl5FQDlufgX75uK7gcWrtmdw4B66V1YJQT+gLdf+ktmqgr1bpep7m+zM9jBKjrs7WxjWDbFcpUbVy7x4PZdzp6c596t63TaexxbnCEVCe1mG93SkCSLbjtANwWGVsSwHPxIkKDRGYQ0Oyprm3tMz8xnDQlVMDtdY2J6lma7xVhtjFK5SLvbplQscPPym5RyEoalkaQJke8TBAFOsUK+PEO3D5ZbwDBNJFXBchxsJ49hWli6TepHDDoNTq7WOD6bp2j6CEXGNLMGpaZpGEaW7mCbuQzsp6noZh63NE4U6xC3CQcHiMRHVRSsKKI2nufUyWli38e0i/Q9n29+/TaOo3NY7yArE7gliWef/UeMj9ewTIt6o5Htr1QVU9cIfB9F1bEdh1bzkJwus/PgCiKqYzsGlltCUyQG/Q5pCro9Si8waHZ6HB4dEUUphmkRxRGyMrRkeV6Wj5okPPvsM/T7gtdf+zErSzNI8R4LMwaWoQ29pwmSDEKkCASypIBQEalAJiUKfa5dbzE1exYjX0VWoN85QKNHGvlIxJlcWAgUTUVXTeIoRVcNwmEG/UCK+O53HjK7UCFJLVAjpHSMfhASRxGKkvnv48RHk02CKEA2IEogDF029kO2djwGoYZul7n3YJfl5acIQ4+zZ54kjmPm52cQIqIyMpJlkkcpxeIIvY6HSGXioEmr/phua5NSIQMOmoaB2Z0hkA7ZUV6ktddEyRm4Tg6EBSLbkws5UxH+3Pn5U+XNz56Hf7d65IOaWr8SB/W3rIF+nUf9J1+8CiF+afH662qv3z9N/SDP6wcBlf59F7A/c0DNTfGLClcA0zTfu63IKuub6/S6HTRVpVKpEKeCJEnQmx3UGw9QF2eJwmx6mQ67skkco2kaE7UparVxDN0gSTNC5OnTZ7DdHFtb2+RdF9uy8Po9dF2mUCqxvbOLbgxjYog5vrxIoeCiaBqSomGYNqqmsbe3S+AHyIqK67oM/ADN7QAC2S8TRCGGZSPLUtZ99j00TaE/GBAO5R8//OGPGAw8JmoTJEmC5/XxPZ9icQRFhiQN+Jtvf5/F40ukaUIc++zv7XD2iSfI5wsECt2EPwAAIABJREFUYcj16zd55ZXXaB/tYxo6y8tLPP/ccyCBphukpDRbnaHsNMg+8BSDo/ou+YLFwcE+bq6AppmkcUiSJARhgqwYvPC9H+AYFp/4+CcBaLUa9L0enuczMjKKY+f4yle+gu/7GY1YU0mFRLfdRiJBU4A0pd/tsfboEfV6Hcdx8EMf3/O5d+8BK+MTaBdu8O/mc3ziv/8SA6/HRG0KTZG4e+sKc0vzHO03eXTvHjdvXuLBgwe89MM3+NRvfYxzb77BF7/4RVTVQLn3F+wfNbErM1i2zcrqCoNBH4HM3NwclcoISZIwWh0lDAPu3LzJ/MICyBIT0xOouoptWezv7zNaHaPZbFGrTaOqOoPBgEajzt7eHv/oIx/l3r17GGZG7ltff8zTzzyNYWYSzHKpxNXLV0jjmHKljCRLvPziy0xOTZN386xvbBD4ATnHQTcMxsarxHFEpVxmYW6eTrdNu9ukVHLRNcF4tUwsJHr9DutrjykVi/S7PU6snCIKYzY3tskX8nT6PVRNp9PqMDs3RxiEJEnMSLmSfRhHEVvDWCbTNEligWmYvPLKq1RHRzn/9nlOnjyFoivMzM4MpYDZRlKkglu3brO3t8vi4jFA4vBgF9d1iJME13XpdrocHe5z5sxTNIbd2rmZedYerZHLaUzPzFAdH6PZaqFICo7tctg8wHEdkGT6/QGSJHP18kVOnlylMlJmb3+P+WMLVMsVRkdHaTSaWQ5xGnF0tEdlosbyyhKapmaSalXDzeXxvYAwCHnzjTdYXT3OoN9FIUVSNCzDIhEpamcN6/jnkO0R1jc20Y3Mnx14bdw/ewHl+gO+Ud/m05/+FIVCgUajRcFyuXrpKq++8jq/+/t/yOMHNxitTTGIYkhV3JyNslXHK9joqsrA6xPHAbmcjSTbRHGIpEhEcZhFdAV9FFkw8LICT9MN1jc2yVkWjx8/oFabpDZewzRV5mansEyDzbUHrKwu4+TKIEsM+oNsIirJQ/AMCDJJVxKnw0abAiIhCmMuXbzM3s42J04cJ44CioUC7U4XRZbodlpUyi62Yw9hTzISkKYxaSoIwhDLsmm1Wti2TRhGeF4/g8/53tBPnnkidd3g6OiIcmWEIAhI05RiIU8QhEjDa1MQxvT7WTG1snIS3TDwvAFhELC5uUm73WZpaQkhkmE0jwlDKJAsS7RaDWQZxsfGODw8QlFkDg73iEOPkZFRhCShKFAslVAkHUs3+eu//jampVMq5XnpxVf48IfOMug0sSwFP0lIhEIURrz62lusnDzFxvoaIyOjpLKK1+8Cmb1ElmXy+RKmZZMluCr4XoSm6ohUgCTRbnUyuJMsv9fk3NzYplabpNfvUSoXyDkugR9z7twbjIyUqFSKCEFmuUAi9ENcN58pW9LkPXnm9PQ0H/rQ8+QLeWQZvv7Nr7O6eprtrV0KhRzf+ptv8uQTTxBFEf/2K/+GU6dOYGgyluOgqNmUf39/j2q1SrfrMzs7iyTJiCRh0O3z5lvnCcMYN1cgCCIUWSNNoXl0xPbODnfv3OHzX/g070J/Dd3g0ePHRFHI8eNLuK47lOMKdCM7HlqtNrphoGztQ9FF/tRTRFGIYeZ46smnmJgYJ4pCut0eiZQii5j20RGTkxNMzE6Bkk0NP2iv9Ku8dO+uX6d4/WUrU7ZKCLLiRZdTjnY22bj2Oq5l0Y3yrBz8IerJGFev4DoOdq7IV/7yawy6HZ5crlIbLTI2YlMuOZlKxfNwbAfNlLh3d59KaRLTjkgSwcFRk64HXU/nrYsPaHQjogTm5xawLJ1nn3mCOPYpVKqUSllclR8MmJqaQJcj5KSDa2V7I9d1IU2yBrWRx3KnkLQ8imkx6HXp9fs4Tp4kEezu7nH+4kUUKeHO7WsIEeNaGqqUoOgqspI1kdQhmC5JUtIhxFnRNXSrjB/IiERGJHV63W1MXSFNFCRphFBpIdI+GhbdbhdJE4xWKpj2GGubDQ6bXT7z2c+j6RZ7+3uUyhXiJEGWFXRVJokT9vf28bw+YeRRsCQOt+5SNAMcE5x8gSBN8TotoihBs0v0I4vy+CKKIlGbmGJqehbLslnf2KAyOkoSxwRB1ozf2d5hY3OdK1du4PXqrD+4xCc/fIK8lRLHCQIxvO5mtjlJyqK8NNVBliRSEaIoMn5SYHb5JJJhEIddwu4RlhQQizh7H2mComgkAmRS4jhC0zWCMMRxXbpRg52HFseWFZTUIRF1zr+5zdW7uyzMjhGnKoMgwbZUUpFycJiwvSc499YD9g67PNrusLHTptEJGPghJ06e4cTKaRYXF7lw8QInT51kMOiRy9sois7tO/cwTIejgyMMVWGkWEATTfz+NpbuI9KQvFtAlkAObKKoy675VTo7W7RCn5nJaTQ5h4ROKiWkcoREdpH4/4vXX2/9R1W8xnH8c7Thn56Kvj++5tcZb7+73tWbv5/M9es+/tdZf5cs2PevnyYrm/ki/VaLkXyBVr2OpusohpnJkO+uITVaiHJxiPB3kCRQ1YwU/K7PUh/CmyRZ4Dg2SIJep8vRYYOLly6zunqCXq8LMiiqRq83oFypDDfZEoqmoupZhuJrr73BzMwckgS2ZSMrMjknB2QhyNgNojDEEuND2p5MmqQE/gDHNmk2mvzZn/551t3TdB49esTM1HRG2q0fMjMzRRynxDF4gx6mpbC6eopEpJimgarKjI2NIkkakiTR7w2oVEb48Ic/DKS0Wk0Wjs2jqjKyohD6AbpmkXfzREFEEqUYuj7cYGbFV7FYzqJ7BHR73fcumqqms7h0nKWFOSRZ4Xvf/wGzC/OUy2VcNzc8JrOp7TPPPoOmGXT6XTRVxbGdLLdTkVFkFU3RaLfazM3OoRg6oZ+RdMdGqzhvX+Odsob3+WfZP7xHo9Vgev4YUeKTyyuURsdwbJd79+4zPVtlZGyC2uQ8s3OTzC/MUygVabdaKPf+LW7O5fzdI86ceRLP90nShO997/tMTk2h6ToDb0AYhRimgWEY5Nwi9UYT0zRRZJm79+6h6zq27aDpBvsHe+zu7RJHEa6bY29vj5HKCJZtMzZWxck5+L5HvVGnOlqlVC6jKjKNoyPCMGBiYgIARdF4+eVXWF1dZX7hGC+++CInTpzAyeWQZAlNV2keHRDHHpPT41THKhSLOe7duclIpUjOrWBZJqVikShOaLY6RFGmSNhYW+P40iKFYh5FVdnb3sXzPY4fX6ZUKnH3zm0OD4/oD/rIsjyMApqkWKlgWJk3d3RkFN3QuHgpKxxlWWYwyIqRsbFxLl26hCxLLC+voGk6lmVy69Z1bMumWCqTxEmWs6lrvHPhEp/69KeJwiwzdW93l4cPH3Dm7Jksaipns725zejoKLlCnjRNkQHT0NBUmbGxGkgShmkxMzuLoiqomsL3v/9DFhePI0kytmMiKTK67eB7fWRJoGkqaSpIopTLl68wOzNDq1HPij5DwQ9CnHwZTZZIgy5S/TaHY79FLl/KCqtSkTiM8AYtStc36Xb7fPl//98YDAbIMvzpn/w5D+/d58PPP8fMwjy54ggbd68yNV8jFgqGWsDWVdrdDqV37tI0FXK5HLadI/BDkBQURSBEjK5ryJL63nTTNA00TSMdqjS8Xpv5hWk8L+KNN36MrCgcHR0wWi6xvnafhWNzuPmRrEGmG4g089amaYwf9JEkhTSF1187x3e/+0KWp/zEEyQpNBstzr/zFrMzk8zOTQ8zS22EBPm8i6YqdLq9jFYpMhtH3s0x8AOMYfZzds1jqBrJchrjVAxVIzFJml3DdV0njmNyTkb49r1BNqkKQoIwplQewTB14igli6tRcRw7iwwbG2N2dpZ+v49lmUCKH8R894Xvsri0DCJrdMoyWKaFaVq4bo6D/T1GR3SqY2NomkkYx+SsApEvODpsMDJaw7I1wmjA8soildEpmvUDNC3FsG0EGvlcnvljC8i6jjBuErGDaUyjGjayZpCgIGkWYSLRaR4w8H10w+IHP/gRy8eXef31c8zNzWIaRuZLSyLa7QayomAaJtXqOJXRMsWyy2i5jKqoPPXUk0TJgIE3wHUKqJpFGEQ0Gg0cJ0ejkYHQNFVnamoqO95FBFKC74fMzM6QL1S4e/sOtfEKn/rMx2h32qQiJRUxU9NjmJqeNU2SlD/5kz9lZXmV8eo4r772Gpvbm9y8eZ2Tq6uIJOa1c+eYnJzizTd/zPRUtsl/8PAh0zNjWJbBqdMnCCMfVZNRVZ0wDHn22WdZWVkmCiNs16LX75PL5QjCLN9SQkFRNPRr94j+hz8kKbhoqoUs66QiJooD4iQh5+RJEZT/j78iffUS0//F7xLGCYmkDEWEP7u3+E32GFnOq4T6/AfH5QghSP/138C1e0hnl3/ufpmUVJJJUVBkIOizu36fCz/4d3TbAV/+b/5nopfHWNtYxxddWo0GP37rArKq020d4RoROUcn52gUiw5JGiPJQ/q3BI/XNhkM/KwQ1WUO6l1aHcG58/dR1DIJKceXjqMqWUMkX8zT7nQolCqoqsze3g6No0OK+QKN3fuIsImhReTybgZvi0JQNAy7jGaOgmwhpJS333wdy7TIOS6qrJAkEcdPn8QwBOPjY7Q6KVeu3UbRdGpjLnEcESdZjrUkDYnfRgaWtBwXobq0uym6GpPGLVQpgCTLrf/L795EdiTyOQtdqOiagqTKWHnBd753nUYn5DOf/yh3bza5ePXHLC4uYlkmrXaLickad2/f5PHjNWamp6lUXHIW7D66Rt5OkCUfTbdIUoEXdNGExiAUeLFBbe4EcapjGAqabtDv+zSaLUZGRzFNgySOiSOBqujUajXSNGJ0rMT2+g1WFspUCga6aiCrWZyiqioIkQ73rCCh8+D+I1RDwbBzpLLDxNISKDGSCNhdv0c5ZxF4HlHiE0cRhmFyeNhESCoID9OyCMIYRbfww0zyv/mozsysRBrbBFGCblbYPGwxW6vy5oU7XLx+xMzkCELRuXSlzr37Hl4Iuq1z5smnGRkdo1qr8bkvfIaRcgZv8wKf6ekp+oMesiqRc3OYmokQgna7SaVos7d5l25jC1XqIjNAV2Us2yFJoNXpYEXTpErMXvFF6vUdDvabSGGfXuOAUjlP9I0C6S0D9VT689L8nzqnPqh4/U0aUu8+x/sHd7+JsvTXHeK9+zOyLGe56LyvlnpfXfWffPH6ruf13fV+Pyv8YqkM/IT2+8v8rT/9nP9frvTVdxDrO/yy6eu7qx8nTI5V2Xpwn631DdxiAbtQRAhBX5Gw/9XXSE8tZXmBqMhK1skC0HUTSRJICkikbG5t4Dg2R0cHpGHI2Pg4tlNgd2+PyZmZYXC8TqGYSV/zbgHLzbO3f8iVy1eRkFEkhYnxGkIGTdfQNZ0ojuj3ehiWjWTXkYCo7aDqOn4/QNMUBr0uuqaSs3N8+PkPs7S0SJLEbGys87GPfZRisUBlpEwQ+Bi6xa0bd6hWyySJjx/4tDttisUium5weHBIfxAQxwl3795FliV0XSVfrFCtjeGHHkkaYxoaYeCDSIlCjzjy0TWJTruOZujIkkaz0afX82jUjwgjL6NJalpGvJNSNFXJsttkicnpGQrFEgLodpoYuokkqdiOg6Eb2fEppyhyFpwtydmJHEUJN2/c5Nq1GxxfOYGkaeQsnTgIUV56h+5kleP/17/g1Zd+yD/+g99ncfkZ4thhe6fJg4ePyI+XyDklbMfmyWfPcvapJ9GtPPs7u7zw3e9y5uwpDg53cda/iWQUEO4C/b7P9vYOtVqNs2efwMnl2NzaxLYtbNvC/H/Ze68YydL0TO/5j7fhIzIz0tsyWW6mp+30cGY0hsOhuCRWi4UMsBIXWGCXkFlIuhAEaKEFdCtIAiWtBEG7Ajm7JMeb7mn2tJmedtVd1aa6XGaZrMrMSlPpIsPH8UcXJ7vZfthcai+W+oG8yMgT5yQi4vzxvd/3GlNneXkFJAVNN8m5Li88+0tOLJ5GkmVarSYDr8/QcJVKtUy1VGNj8x7j4+NHG6JErVZmf3+PKAyp1YYwDYuUhKVr1xkZGmJ3Z4fx8XHW19eYm1tgbHQMx3VoNVu8fuECDz74BfYO9pAVmSjykcjMdZaXlvGDGEU2uHH9JopksLWxTeAHOLkcmm5SKFcQikyn0+KdS2+RJhG7O7v0ej1kIbNwbIFev8+N5WVOLS5yb+MekxOTOI6D53tUa1UikaBqWbfWtE0s2+LsubPs7+xy5fIVdE2j2+nQajYZqdfZ2dllbW2NiYlxdnd3mZqYoNfvIySNOEqQEDiWRXkom2w7lsWtWzd55KGHmJudZ+XOXUbH67TaTQr5HFEUIwmZxt4BcRhgmxqB30OWDYIgIhVZXiupIEwDisUyP/j+TygUy+zu7VMdGkIIGV1Rss93EGA7No29Fr98/nkWT55gb2+HSsnFMnV6QYJu5RBpjAh6JJ0tOPF30XUN90hCEKcxrqMiv3KdNBXsDp7EX3uZ/LGvoisWSeDT6TQYHhshVlLGci6N/g6FygiqVGZ/5x7paJ7cd19EPTlLlICi6KSpgu+1UVXBoN8+UvbI9IMIRdWyqabnEfkBg16PMOjhuCadTo+NjT1OnDxFq3lAMedy2NhhamYSSTZQNYU4jAmCAF3X6PXaOI6BJBlIksLszByjo8McOz6PYTkoqkatVuPcuXPopoph6fT6g4whomiQStlUIU3QtEyjqmkqnW4L23LeM+MQQtDv9/H9gELeJU5BN3QkQabTC7PpqpBker0+URhSKOQRQmCa2f+WgXkVz+9hmjZRmByZkYTvGWU1Go0M/PgD+v0+bs5lfuE4AhlVNfjlCy+Qcx2EUNjc3CRNU+r1OkkYYOpZPJJuKvR7TdrtBvmCRa02TLFcZOn6TWTZYXOvw1N//ktmxosgyUSJhD8IyBcqhKgYdhtJkiEZQRIio2gLicDz0FUNSfJRVA1ZUZidm+f5557j4YceQtOVzNFZESRJgKykDAY+ObdArz9AVgQpMaHfIT4yiyqXC1iWSavZRdEs3rn0Dq+df42ZmWkuvf02o/VhWs0GhVyefq+LIqX0+x06bZ9ytYysaNxYWuLE8VkuvPEWWxt7mEaOE8dPZrVAEjLwBoRhzPraBuVSGcd2eOTRh5menmR+bhZFzuChrMpcuXKZJBZcvXqN48ePMTU1SaOxy/DIGF4QE0QpQlYZ9PrEcUy/36dYLGYZ4WoW06OoKmkq6A88vv+DHzA7MY11d5P1r30eFANddxGShCzDzs4W5XKZOIYwAe3lt9je2qL0734dJJVYqEd0+Gz9VRrvGXjlU7Nek//tT0jXtj/WbVgiJhEqiZAhCdESj6ef+AHjhUMGYYptnKJ4Z47agxalaoHG/gG64SCrGr3WHtOTNSxLR1ETSEOSNEZC0Ol00U2X4dE85UqetZU2YaiQJCbdfmb0J6uCxx9/nPGxOqVigWq1SoQgTjMgm7mNQzGfQ5EEUW8LU41RpIggjjOTJkkQRCmaWaDVigmjlGZjl9OnjlOt1HjmF89wbGGO5aVrDA/NEHsdbi1d4+q12wyPlKmP5rHUmCgOsybcUaPTsiziKEVWFHqeD0oOIbkYcgc5DY4Mo9Jsf4mhsdtktFZGpAMU0yGNZa5e3QPdYWp+DsepcPr0AhPT4xRLBTx/wPBwDc8bUKmUKJerFMsF+p09drdu4CoDJDUETcOwKgT9HnLSJYgMUsVGcaqkwsQ0jzK5iyXSFIIwyhhqScr66gbFYpnXXrtAfbSOaRpcunSd4arNwnQZw4hJREoSRe+xW7J6IGvkabJJpVZGMWSEUcApzpLKOaQ44ODeTaR4wM2bSwzV6wiypm0SQeOwjWnls0zkVCFODLxQod1O+eUvb3H67DySlnLtepOL77RZ3dum3UnJmwpWeZpOKHF8dg5FH8HO1Th2ep4vf+0xKtURJuvDvPbqBR5//EsgUq5fuU4xV8ELM9PRMI6o1Wr4QcTKcta8Hx4u025uUsmlEB8QJ31URUOg0e4M6PYHqHoZdVDH82Sc3zCRFIG3u8eNqxe4f3+Zg9Y2U7tfIe2rSA8GH2WFvu+e+qTJ66dhnveyZI++jz7pmM+yPst+IoT4AHj9pPVvPXh9v+b1/ZPXTC/ywTDud1+od93xPvy89z/2cVPW9zsD/3XRhT/LhyT+H/4Z6eWbyL/7tV97rC5FxIpOZWqWWyvL9PbuMDp8FktXwU5R/u8fkUyPoZg5YhGRCkgSMIzM5MLrdlAkOZtu6OZRkRiSAJKsUK1W2N3ZY/PeJjKCXM5lc3Mjc8VMBeHAo9VsUimXmZgYZ6Q+zMDro8kaXreN32vR3N2FIMKUY/bu+DhMoGoOcUSWl+YH5PMFkkRwd3UNy7FBpKiaSqlSQTdNdNNAklS8Qci1K9dYurHEmc89gGYV0A0VWagEXsjA88iVClmGpirTOtxHVWUUQ0OxXFIvQPgddg/WyecqtPZDTFtGUlVQFOI4oliwSdJMh5VzbExLx3RsLDdH5A2wTIMkTWl1Opi2RSoEntfHNLSs26jqGHKAUAz8IOGpn/6Eudk5bq/eI28ZGE6BRMrcK1WRkHRbPPfMy5w4eRrbUXEMjTTVSJ9+lWRugjv/4G+zur3L8so9RCIR62W6foApdVhbXeHs4ue5c/MWP/3+j3n+qV+ydPEyI7kc/8v//s8YqsxQKZYolfNIN/+M/abH8laXiYkaSRyhKQa6qRBFMa5TxHUL6LpBFIXUR+o0mw1Wbt9gZKTGwO/TahyiqRpJnGJZFuVKketL17jw+kV8P2B8fIo7t+/S6/S4u77KqVOnM8flYjGLZk9T1tY2WDx1lpnZBd588zKX37mORML09DSX3nmb0fE65z53hlajQX2kzv7+AYViFcNyuXLtClMzU0xPT7K6eodisUKlMozu2niDAZqs0j5sYuo6gZ/RgL/y1a+SL5YoV6rIssr1K9eRZYGhK/R6mXkXaTYh29vZ4vjJk9y4fRdT1li6ep0Tx04QRzFJnGmwfSJq9TG63T6GKjFoHzIyOsnN5Rs88sgj7Nzf4bVXX2NsfI4bN1YoFIq8fv5VVFVGErB70EI3dfzQwzB11u+ucXflHo5tcG3pEnPH5klljc2dA/xOhyeffJLFxdNIsoamWSRhiudH+EHET3/yM06fOMH67fsMOk0+f/YExXyBn/z0Cc6cO4dGD11zGAQppuVycLDLkz//EcdOPsDu7gHz0yVMJ4dkjJGkAxxLZWd3m/DgLqossV99DMe1UFWZ1Y118pUhGltraK/fQlNNbnZeoJLXiccfx85Z/Of/5X/Fv/8f/z6lWoUwCVlf2wWaHG7vUB87Tl8T7G7coLLVJZ4fQ0pS+v0upqHhhx6qptPteORyJSRZOco0TAmCjPKsKAaabkEcsr9/gKZbzMzOUihZDI/PcOPGbQ4aO0xM1iFJ0cwiqZCQJJlup0shV0KkKlFy5EoZh1i2iW6aJFFEFPogJWiGimHZBFGCYdmZTisUrK7eot3eZWxkhE63g5Nz6Hs9hEjQdYv+IMAwHDQty3y2XZPQB0WSIYnptlvomophlYiTmCgN0TQdRbVpt3wQMmEUoVs2aaKgqw5+t4csSaiqBEJGCJ12p8uN5VuMDI3QaDRQNA3LdfEGHqbhsLuzz9L1JRZPLmIXHFRNxzJcrl1dolSsoJo2URogKRFxHKOqLqXyKH40QFIyc6h7G1ucPLVI3tKYn3VR1QGW5qAqBqkSoekOqqIRspMZX0U5ksAnDLOoGkSmaY69AyQsVM0miJqcODGDKmskgKYKPK+NJCVAAoqOoVtEQUSaQq5QoNEcoJs2pm3RavdQFB0/8HFdHVXV0A2HyakZJqYmkXWFfr9DGPQolwv4IYSJiq1Z2KaJ12/zqxef5aEHH+L1115G1zQaB4dMz0yDSGg2DrFtm8DvMeh3GRoa4Zlnnmfr/jYL88dwHIvd/fvotkbOMvnyl7/E2bOLlMoFiqU8YeBj2jkQGm9cfJvLl65xavEMhi6jazaaapGm4Pl9dM1AlRX6vR4ijdBVie3NNU7VhpF7HoNvPoKuJXj+Hoqm0m63qVSGiEJQFA0lDtEvLFEoV4i+9hiQoomAVFI+ljb8cev9zfv36o+Lnw5ehRDvReXIv/vVj9RIiQAlTZBSQRgJBrt3ufrsnzI7W2Xi1BcZCh9Dbrh07Q53b65hmHleeeUlOo1VRmsq/fYho6N1Or0ehmER+CGkWT0iISFLGkIC00l4440DEkXGcFx29/rMzSyyfO0tNN3AdnNcW7qO120zaB+SL1e5efMGQki0DvZJoz1cpUm/10bVNHRVIY0jwjgiSQTNTkCxOoVh5+h4TfqHPbr9ATPzc0iqyujYBBdffwGEzp3VLQadQ04taAwVY3RNgjRBFSZxmGBoMZGkZTpPYWFXpnHLE1nkU3uVNDhExJmm37B1yjkYmyzjmjEkEgdxhZt3ttCsHA89+hiFfAVTN1laWkYkoOsypmaSBAmEAb1+g8NGG6I2trqP6O0jWRpCUjENiyjo0+s1EakEuTl0u4JpFhEi06D3epkPQBILwjDCNA36gx65Qp7Wjk/kN+kHLW6uHnBz+U0Kbky1qCIREoYBiiwjC4UkTJCETBTHBHGEiEMUNSJOS0jmNGqhCn0f2EJRupiqQalYRIiYMElIFQVZhBiajFB1ur5CLAwuvH2HNy5tMTZ9hsNWyN17u1SGj5PIKvsH+3z9q7+FZbqcPvsIjm0ThwMWTj/ArVu3cfM5lq4tMT05BWmMYbssLBzL2HARDA3XiUTMjauXKVdqaLbL8q1l1u7dYGxymrwrM2jcQXj3iaIWqiaR1zX6QZ9Ut7BL8zilk0jGMNvbu4wZc6xPLPPiK8tMPXYG01HobN5A6nXJ7z2GrhkkD2QNGilJkMVHscIH7uV3weu79+7H3qWfbBIrsj/+xeT13XMd/aTvO+4DP+LvBVEKAAAgAElEQVSD1/209YFjf83xfyPA64cf+8uAy3c38XeB7Cc959+kpvXXrXfdhqW/9dVff14SEqEAEvPT41y+eAHP75AruMSyhnzxWhbr4Jr0uz00NevMypIg8D1ah63M9TMVR6AlzrptQciNGzcZGRnh7bffwvc9Xjt/HkkSTM/OIIQESHQ7TXRdo1gqEiURQkBKSrN5gGWpGIaK45gcHjbQLBvHLbB3cEivP+CHP/gR3V6LqakpkiRmMPB4+eWXMx1YqQSAaZuoSkYB1hRBHIVMT00xPTXNE088yczMDEkakkQp3/nOv+LMmTNYlk18JPIfqtVwXJf9g0PsfI7XXn6Jd95+GyuXY7g+TppCKsWYlo3nhwwGfaIwRkgaP/3JT8nn8xRLRVIhkGQZTVFpNluomkqaxFnBGyW4jku328E0TVIh2FhdwTBdms0OuiIwTIuf/OwJhoer5Aol0iRCTiP8QZft7VucWDzDhYtvUCiUiRs9pGs3GdSKeP/kDxifnGKsPopt2/zkJz/l4d/4Gq+ffw1LTXj40S8i50w0y+Zr3/oWC8ePc2npChffeYO/83d+jwcfepTLV95kbGIU5dZ38VOVhS98kySJGR6u88rL58nnXc6/+hrNwyZxEnH9+nWahw3u399hZGSExcWTBEFArVbFNg3eeecyCwvHuHp9iXa7Tb0+yonjJzh58iR3Vu6weneV02fOMDYxztLSElPTU6iKyvXr11lbW6VUKqIoKlevXOGgccC3vvWb3Ftfp1wuk8vn2NjYYGRkmHyhgJBlNjY2cR0Xx7KxHYtyqUwcR+zt7TE2OkGjcUjtKBN30B+QL+TY2d2hVqlx2Giws7NLfXiE5597jkKhwInFk6yu3WFiaorhkTobG9vomobr2GxsbjJSrxNFCaahgUh5/fXzHBweZFmgSpZ3aJkWhUIe2zTJuQ531zY4c/ZMppkdHsIPfOpjo4yN1zN9o64yGPQZHhkmny+wurrC0FCVnOuycW+DsYlptu9v8+CDD2DaNmmq0Dps02ke8uhjj2GZFju7WTzInZu3WF5exrIslq5dI+/atNodhobLKErmkh0nMfmig2ubdHo+f/TH38E0dcbHhpmbmWJu/iRD1Sq5nI4k66hGnoTwKDYGpP4eqmZReeQ/wlQN9nf3GBubRFIMcpaNfuEGg0Gfa73X6PV63PUXqFWr1Gp1dMNiaGgYVVGYHB3D87cAn3JljCBVcDQZTAP99WWiUkbD7fc6WJabUZ4tiyRJ8H0PhCCKMuqvLMtIQiIMIxr7u9SGauztNbh+fZlqtUQcw8XXzvO5syepVQrs7uyj2zqylAIxmqFm5iEkCFnBGwyyrOsgRJFlpFRBkqQj59kjP4QkzcyEJIEiC1RFpVwZpnnQQjccQEGWFCzDxA88NE1DN4yjWKMelm2iKDpxEuOHPrIikcQxhmkdZc8qxHHMD3/wY8ZGR1BVCcNQiKMQXdfY29vnhz/+IafPnMH3PTzPJw4jev0eW1tb1Go1vvvd72LaFsMjw2iqQqfbQ5Ilnn76z/nKV7+MlL2lhEHIzMwUa+ur2LZNq9XCMHSiMMSybDRVBRGjaXqmnZbkbB9OYnI5hf2ddZIoRVY0JEXKgL3hkEj7JKRoYgQhJFRNR1Y0kjTNDO7iPmGQouoW/UEXw7Dp90JUVYY04fCwQRQFRxIKDV01eOJnT7K3f8DE1CT5XP7IXTQ7XjcyQ5pOt4Wumvzwhz9ifHycp556gs8/8ADlYgldy3KmVc1A1VTevHiR0fE6SZrwxS9+CU2zmJ6d5Pixkxw2mrz6ykscPzaL7WYu+VlFJ1OuVLm7tsapU8dxHBNESj6fy0zAkpTDwybJUb66aVhZXM2gi2HoXLt2mU63wYmTc7TbLW7dWmF1bZ2pqQkgYxTEaUanNE0DVVUYGRlB22sj0hTz3/sGiBTTMgii7PMYR5kZUhwnOGpM/xfnMU2T+EufIxGZORIfU/x+Yv3wcXVJXyDVEqTpT47GeQ+8flyNIlIkIEUmjmOaG8t4B2t893t/xukHvkH7UgG1oqHqCpUj+VEY+jxw7jQSCZOTs7S7PZaW7jBUy6GpMo3GAU7ept3z6XsSewceCTZ7B21GJ0ZRNRfPT5EV+MpXHufS5cssLi4SxxHzszO4joPtFqlUyriOS7/fo16vEPa2CcMQVdUy5+k0hTQhCBOKlToxFkga+YJD67BDoVjEcXM0Goc4pkPsq+ztNNi9f5+8I3PmxAJSArppkhIjJIkoipAUiQQJ27Ix3TJhqpKisr2xgZJ2CPwOIhXESYqQUhRZypgeiYQkOzz9wtsokkltaIxSeYQoAV3TaLdbSHJCqZLDD0Mc1+H2nWU0w8TrdrDVAL+/m70buoquKoSeR78/QNHzOMU6YeqgKNn3hOU4pKQ4do6tzfvkckUsy6bb6yLLEhISyzdvMD0zz+2VFZaX3sGQEx75wgK2nmJoCoqqExxJ22RZxg88VE1BN3VAIVUsctUZTKuCECnhYJduexspiUnDlDgJSQkgClAUFaKEOBTsH3g8/extklRldm6RRqPF4qnj7O+3eezxRxmfmKB6JIXQdAPLtFi+cZ2Dg31OnznL3v4+ge+hKCqPf/FxOt0uQeDjBx12du5TKpW4c/culVqZKI6Iw5CBHxIMAuYmpxkulZHTNrF3SNhvIAhQFA1Z1ThsCcLEpFiZxsmNcOHCO+RyLjNjM0R78GL6FN/4zd9hqDjNsbkzLF2/ju1oDDcfodfdJzq2SaFSIxQqKQq6kEj4i/vvr1Pz+v5zftpQ7ROv8teMlf7Ggdf3618/DEg/TAv+y+g+/r8GtH8V8Cp+56NdzY+eOCUl07lokiDvOlx9+0lKhSK6PkR45TbK6j0G1RyOmdHLZEngD/rIcrYpvPHmW0xOTBJFMf3+AElW+PlTf45AMDc/y/z8PJNTE5w5+3kkSWDqGqqW5ZMauoqkSGh6tvkrqnykM1Podrs0m026vR4IieLwJImQ0TSD559/nkcffZRKtQSkSJKg1WoyMTFOEPgUy2Vsy0QA7XaWVZYmPrKUcn9rC4HglfPnOXvmHLquYBo2p06eASHj+wGSJHju2WdRFBnXcanWholEjNftcLjf4NEvfQ1F1+j0GriFo6lgAgMvRJZ1nvr5n7O4uMhYfZQwjo8KWgnP9zEM84g6lhAFPopmoykygoQgDNA0hWLOJhVZTm7BtSkWi7x56R0efughdENHkVNUkTDoNrFck7W1bRYXTzNiWqi/eoPB5DDF//Wfcn9vj+/80R8zOjrKM08/zd/7/X+ApOo8//SPkaIei597kL7fYzDwkISMY1n87Ikf8wf/2T/E0ATj4xPUR8vIqoxY/jMGkUxx8tx7jIVKuXpkaCI4dvw4qqIwPDyE47hMjY1zc/kGhXyO+1tbrK3eJZ9zOHPuHHEKtVqmuVu7u8bQcI1G45CVlRUODg6yJkLepj5aR1aUjG6ayzFWH0HXNQaDAZubG4yNjRLHIVEUk8/nWVlZYW52hsAPCNKYFNAUFUkIrl2+QqFcQlEUBBD4Abu7uzzzzDOcPvt5hqpV0jShUMxjuRavvPAypmmyv7NLY/8AVcnoexMzE+QLOSzbRsgqrU6X1ZXbjI2OUasNsbm1TX1kmDfeuEC5XKI2VGViYoJ6fYTt+1vkLJcf/uCHhGFGRby3uQHI2LbNyt077zVflm5eyQpVkZDP5yiVihkwONhlMOgxMTHGwd4+UiooV0eYnJpk5c4KpUKZNII7t+5mGqw4oVwpk88XQEiYusL6+hqnTp1i8eRxLMvADyMmp0YJfA9JKLz19pt8/sEzeF5Eisobb7xJp93k+PxMplNXdJrtFpoi0fdDdNslFRkTIgoCNG+XuHAcc+pxTENnf38P28kTJoK9rV3yV1YQcsJqcolGo0n59H9CEA2oD4/xT/67f8q3f/vbqIqKBLSbdzENj1arhWnUEElCatnY3/0lg8kaiBRNl1FkkyiKUVWV/f1dbMdCljOarBDSe9mwspTt8VEc0OsOePvNtzi2MM2bb7zBwuwMBddAImJ7c5vRsVHarSaGYaFoJglytl8mCbIikSZJNk0PQgzVZHd3n1w+l4FWIYjTBFnIBEEPWZHwvZhf/PmLvPXmBRaOnUDTDVRVJkniI20eeIM+qiaj62qWNRiGJGnCwBtgmiae76PJEkkcEQUeaZIwMzVNPm9DGkESEoUBvueRxiFDo+Ooqoph6Nzf2kSWUkYnpxgaquE4NpVqmfmFY/hBRBIFWVROFLC4uIiqKtn+adkYuk6SxORyNmkkY1smaZJkk1JFJgo90hQUWWHj3gbP/OJZzp49i2mbkAS0DrbRNRlVN0jSjPWkqCahtI8sycR+CVmWSdIsIqXf66EqEoNeB8vJso8VxUAIjSSVWV+7TalUwrJMNEUmjRMURWN/b59SocS5s+cI4hhVlej2uiCg3x/QarUoFYsE3oDAD3jooQexTB3T0CkVa8iSdBTP5aEoCoHvMTExjhApBwcNCsUqnhdhO5mjfaVUZPPeHU4en0M2TBASQlIolksoisrs3ByKkmLbJv1+H0XWkCSFbruLoqjIsspbb73N7ZUVZufmyOfzDPoDFhbmmJiso2oSklC4eeMWt27dYn5hljAcYDk5BNDrdbFsCyEJkjhG2z4kqRTpPXiK7iDLSZckDV030DQdIUBVZYTXoP/sBWzXJfyNzxELSKTME/9fpy6Rpz8duMKng9dUEkhpFhFDGrN88TmspIGQXEK5xLn499iJttnf3Wfn/jaNw0Pqw0O8/PLL9Pt9zHyN1y9c5tFHztDrtEnTBNfNs9f0OTgMiFKbF1+7QaE8iqpEnHvgC9zbOGB6eo5S2UDVdHQ9c/w2DZ3V1TskSYpjF1m+sUStVqPf65KKgKi7RZqm6HrmoJ0kcTboEDL58jDtbkK5MkLf66NpJp1ultlbyhfZ3tiiXDZQNZ9COWF6ykZKD0mjNsglYgZH+acpmm5lWadeQIiFrLm0Wm2Krkns7WHoMookZ2ZjxJm+NJZotkJiqcilK+uUimMk6LxzZZmFY8eQFYnNzXWKhRy6pbO5uYOsKNRHa0hC0D1YR4kPUOUQoeoouoyUJiRBQIpBO7SI9Rqtpk8qVBy3SJjENJpNLN2hP/A52D/AcV2a7RbFYhmZFKdk8+xz5znc2eXRL4zy4JlJbD1FlSJIUwaej6RqqKoKxEgiRVbkbEQou2iFSXxySJJMY3sNv7eKiANUJMLAAyIkKYJExos01u41SMmTyCViKoyOTzE+OU2r2UFVUs488Ajtbhc377J9f4eZ2XkuvXOFM6dOYpgm0zPTaIbB0NAw+3u7jI9PAIK33noLSCgXXfL5ApKiMjI6Sq/X5976GkEQUi7mGa64SGGbbuMefus2XmcXXRXomk6EzMFhj1xtkd1GjGUPc+vOOseOL3Dt6lVs2cWNSsRf9CjWJgkPY1565W2c6iiVWp7ixhyqCHj2zv/E8TMPsHHQp1SsQOCTyh/Vrh/99pe+vz9t/f/g9d/QSpLkv/9wHur76cBpmn6APvwuJfiTdK7vTmN/nWD5/ed5/2Pw2WjFH3f9T9Tnvpfz+u/8+vOKo5F+ml3DLeS5+vKPkWWDkfo88mEfpdmGWgkpza4ZRSFpmrm2aZqNLEmYpsnm5iYrKyuMjIygqBpnzpzGtMyjyA8JpMwVkjjKij5VJYoiLMsiDCMURc2KH0Vh9c4me3uHzM2f4OVXLlCtjZDKCnpth1DeZ/1Gi5MnT1IuF7NQeFnGdXOkaYJpWjiug+cNjkxqMspdFAWQpvgDH9txmZ6dyUBlGtPr9Dn/6nlef/08n//C5/F9H28wYGJsHCFLeH6IqhtYqsDQVJodj0KxgKolyIqBAO5vbfPUU09z6sxZKuUyhUKe//P/+meMjY2RL+ZJkgRVVbOpbhLT73UxDANVzyiHzcMDXNchjCIGvQ5C1vj+D37E1FgdRZF5+LHHsAwNTZNRRMLO/Q1cx0K3hhgMUkYsC+2Vt9j7u1+k8N/8Y/7nP/xDvv2t3+Ls6dP89re/zcTYOF//5je5e/sav/XVswwXFfJDo9Dq076/z53rN7l5+Sqnjy2QMw2Wbt7m/GsX2Nq+w+KpU8RX/xW6XUIpz9HrDXjiiZ+Tc3NUKxWCIGR/b4f1tVWuXr3KwtwcFy9epFAoUB+pUyqViOKI/YNdiuUqumVjmBYSglKxiKQIZEmmVC6zeOoU+VyO/YP9I3Ags7y0TPPwEEVWqJQrJEmM6ziUigV83yOfL+K6LrVqFVkIrl29SrFWQVEUHMvm9dde59y5c2xubXPlyhWmpqcQQKVcYWlpmfrwMF6/C2lCtVZB0zUsw6ZcKhHFMVNTWZA8QHWoShRlgMg0bTTdYKhSptXu4ObyNBoN2q1Dzp47x8bGBmmacntlhXK5jJtz2drYJglDfuNLj9Ppdhgbn0CWVdbX15mbn8cwDIrFInEaMjRUI4xCrl29xshIHc/zeOfSJR5+9CEkWcZ2cmxubZPLFXjr7beI44jBUYHcarVotpqYlsHo2Ch7B3voug7ELC1d5/Sp0+zs7qDqKkOjIygqyJLM5cvX+MZvfp0g6HN42CGfLzE3f4zTp0+hqzKyUFFNA800MDWNO3fvMDo+QhzFSALSJCbevoRu5THmv8bVK5cYrlYRkkSSgmHamBevZpPo2T6D/oC//9/+C5ZuLHHyxCJra+ucO3uaQimfmeNUS1x+8yXiqM/k+AKaYdElQVtag2OTyHGUFY3xkZSDrJjUNY1e38O2bcIwQhKCMPAJQh/HLdDvd/E9n4176xxbmGZyYhxLMyi4NoNBB8/3KZbGKOSrJIlCikqr2Wdn5xDLFJAmaJrKoO+jqQbNgybnz5+n0WhgmgaOY2VumWS0ZVXT0DWbdrvP2bPzVGplUikhJaTTOQQEipztD91OB03Xs0murhMdubuncYosSaRJjGWZcDSNAYGqyWhatqc6jkMYhhiGQWWohqLIKEeOna5j0vN8ZAkEEYauoagatp0jSUIgQVPV90znJFlClmRarTayIugPejz1xC/wPJ+xsTEGgwFB4ON5A3K5PP1eVqCfOH4SSUhsbm5gaBrhoIWihCAEktBI4igDokqTzc0tbG0ioweGEaZlo0iCOAro930syyCOQoRQkWSdOIm4+PqrzMzNEYRBJrcQKY39AyrlEiMjQ/S9AVECjq0hSYJup4NlmNnk2sicnC3LQtNUHCfLHT7/ymsUinmKpVL22qsqjmUTxAGqqlIolLm9ssYzv/gl8/OzbNy7R7lUYHZmiu2tDZxCOaM5hhkDKQyz19N1LGRZQtd1hJBRFINcLo8XBAhJ5vjxE8wvLOD7Pp2WzwsvvMT4+ASapiNLEo3GIWOjE5w79zkcx8ayTOIUgjDA8/oYpoEQICsy8vI9Wl9/DGV6Ets2UVWZNFHeqx0kWTDwBiy/c5H5vez9iL/8BZAEQoCUfrSR/0k1x/sb+5/F/OVd8Cr9zlc+8rdYCOQ0YyzEkceLT36H/s4yt+8d0otMHoz+NsqXA4bFCKVKDcvUub+9iZtz2W8ccnv1PkJkefODQZ+JqTma7QE3brXY3u2yunGfXDHPyTOL5FyXe5v3GapPMjQ0TC5vsLJyl4X5OQJ/gO95jI6OomoqvV5AuZLn7t1blAo22xu3KDm8VwumaSbREwI0XafV8ymUxwhiiThJ6HY6FIuZed39+9sU8gWuX97m/naL119/GxHLRL2YgjPEjTu3GK6XUFUFRdaI44goDFB0l0TJEwudSrFA2D/E7+0ReD0gM/YSIsYPQqIg5Y13Vrl/CF6QQqryyGOPc+pMZuy3tXWPY8fmiUOB5wXoukMSRezubGFIAUFvk7ydgpCwCwXSMMAbeAQBtAcKQ5NnsIujDLp9HCePky9k/hyWgSxlw4fxiQk63Q6XL1+jXK6xvrqKqiWs3FxmqKhy5kQJORmgSBGSLJEKQQIIScHr91AUgSTJJEmmlVftKrI5hKToELbQ4g5xvIuIQU4ldEPJvgtShc3dkJ+/cJNBZNLqSZTrx5g9Ps5+c4uhoRpjoxNZBKSqYdkWvu+jGwa6oR+ZVl0nX8hTKJYIwiwSrlIp0+30iOOUmZlp4jhCkyxsO4+iZnXgzevXcAydualRVGlAr7lCq3GTMNhCkxIs0yJOZFq9BKc4ykEzoFKfY2JqljiFXM7i3uYqOTdPqVrC2irjGjku9y+zfPVXfP23v0V96hi16hj913R8L2Qp+FMOmy3yhSLVSg1V14jfh18+uP71weMHTJWO1kfw1YeO/7DU8v3n+Szr/c9P0xRV1f7tB6/AR148+Cgw/HUv7mcFn5+04X/S+T/r+T68/oI2/OvB67tdEEFmyY5Qad28zq9eeIkHHn0EZbiK9IffgTOnkCSQZBlFUzP9iKTR63QolUtsbm3iug4nThwHAcP1YQwzcy1utdqYlk0QJ3zvT/80C8NWZPq+h6JkX+aGbpGkEEZZNqGuadSGhkHIjI6N4rgujmOSGNskqc/Ntw/I53NomoIsS6iahiJn0xXHsVF1HU1VkQT0uh0USdD3IzTVACGzs7vL5PQ0QhY89cTPufD664yN1Xnsiw+DiDAMm3K5RM51UFWdvudhmnmiwT6lvMbQyCRIKmniE3gQ+h53b9+iUCxgWiYjw0PEccDZ06dQNQXTNvH8AZ3mITnXodfrYVgmQlIgTRgMeshyZjMjSQqySJBUg88/8CCOpZGkCapu4vfbrN65hXtEpS5XKkTCwPZT1JcuovzX/yHtbzyCIpn8P//8XxAEAWEQ8Ht/63dZW1uj3brPcFnF279C4u8TygbPPPUrdnd3ePml88zMzjI+WadULeM6Y1QqVX725Pc4eeok5t2f0Y4t3JFjBH7A8PAI9dE6zz7zLGHgMzExxsbGBl/+8pfpdvsM1Yc5aBySK+RQdY1cMU9j94DaSJ1YwOraKqaegfEgCtnf38cyTQxd5969dVRF4c033qDVbDI7M0vezSEJlY2NTd5++xKD3oBqtcrBwQG1oRH63S7372/T7bTRNQ3LsbHNzPlzdHQURddwbIeZ6WkkSRBHMYP+gEqlwpsXXmZuZpJapcJLL71ItTZEkgp+9eKLOK7D+OQEFy5c4OFHHubVl88zOzPDwcE+URhysLdPrVpldX2DUrnCnZXb5FybwSDk9q0VZmfnmF9YQJIy5+hWu8NQrcLWxj22NzexbJd+f8DIyAiSJB0ZqsRYjotuWPgDH9d1uXP3DsVSAcu0cHJ5JFUlilNqQ6M8+aMfMeh3yeUczpw9i2bouHmXhflZqtUyQoa9/V3yeRdJVVg8eZokSVldX2NmboZUkpAkidfPX+DqlSVOnz5FnAR4fY9r15a5cOFNzp49SypSdN0hIEHWFEQskNIIXU9J45Qo9LKYLULCYIA38hAF10RRMg16KkFCQjAxTHJqnnDnFSqVAtHwMV47/zb/8k/+hO/88R+hKAJNk/iH/+gf8ZVHvokG6NoAxzEJUpXD9iHCsXDfuo2oFPE9DyFJmflRp4NtO3S7PSzbZjDIXDoHgz5xHJAvuEemHQGarLK7vc3oSAVZ0djevE8YhcgKtLtd6pML7B0cYNs5NFXj+eee59WXX+GhB8+h6yq7OzvYlsvK7VWefOIJxsbqjI6N8OMff5/FU8dRFIk0CZAVDYFKlEQUyjmK+TyyqhKEIYqiEochtpU1uBRFIZfLE0Ux3iAkCDzCIKDZaGDoBnk3Rz8YICQFSVIRssLA9+kexVbFiUCSNaI4y9LWVEGv20VARikXKZZhsr+3TSFvZTFpqnZE+ZbQDR3f90iSlH7fR1c0nvr500xNT2NZmZv84slzDI2MoCg6um7Q97KGoCAh9AN8P8AybZ5++mna/S4yEuPDJRr7awhZBmGgqSpxKqPaAxRVIfQcnFwB3TCOAG5KHAakaLiuztbmGvl8Fs8jaTG1UgnbzSGEhEhjIm9AoWDTah4QJxGSopArFdnb2cb3fYqFIoEfoKoazWaLQrHC0o0bvPLqKxw7fgxF1ViYm0XTNTa372MYJkLIbG1sYZgGh80mpuXgugVefuU8Y/XhzNAniTAsk0qtRpoK0hjurW+Sz+VRFYkf/egHnDh++ij6QyFO4N76Nu+88w4v/uol8vkC/cHgSOYgaOztsXrnDmEY4NgmQqRYVp4XX3yFWzdXsG0HyzRQNBVIKRYLaJpKt9dFC2KU5TU2f/drSJKSaWK7XRQty7BNkhjP9/D9AVffucZiC5Bkki99AYkUNU3ISLt/UWt8VsZZsitIewJhf0qN8i54/RjDpkRIyGkCpAz6bV588l9yrG5RnVzgkYd/i/ylM2iaimbK9P2UYiGPSGMqtQpuocTu/iFJHDIzNc7M7DzNdsjqxgG6U2R3r8Fv/ua3sSyL+9v3KRVHGJ8ax3VzWLZDp9MhXyjieQNcK2Mg3NvcwM3luX//gNpQnunJYdZWrhH0dyHqZXnDR5PCJMkiXqIoJhYqnT64uRpxmnDn1g2GhmoEYYBpWxnTKm7Q6u2yuDhLqaxSKibYtk91qI4kUtKjhlwc9bP8VS2H5gwhaw7EPniHRH4Lw1RRFI0kIcsj1U16HZ879zqs7vY5cWyezz1wjo3te1RHaiRxTK1aRRKCnZ09CsUciiShywm25rO3fo1SSSIRCbrhkqYJg1YTVXPR83XQKyBZaIpGp3VIt9sjCkMM0yIKIzRdQkhZMoXtuszMLHD+tYsszE2jpwkTQzLz0yZx2EPVjnSSIhsEaZpKHERHukpAqCSSgZAt7EIdCQOFHt3GbQjaRLGHodpIMoSxj5BMPE9nY8djtxVy/MQ5vvDgQ6xvbDI1NY6iQLFYQlENnJxDu9Wk3TzENAx0TYU0IY4ChmoVcoUiQlFJ4pjA99jf22NnZ5dqtcb2/W2q1Qq6agEx8QMAACAASURBVHDr9m1UXdBtbxN0d0gG+xzu3Sbydon9A1QlxTAdhGTR9QCtQKKWQC2RL49z9/YdIGJ3d4v1e/dYmF8kn8uzvrlKeTCCPpnwf/z8f+R3fu+3+M53/hRVMrh9e5uTPIYfy3SG32Bt6RLp4JBafZTULn2s9vXorv3kG/Mzrg8D4w/4AH3o8XdX+gmP/1WWEOJvxuQVPgpOP0wflmX5A0ZNH7c+K3j9JIfiT7vGp62/TvCaHE1eJRKSFCRFZ9bNc21pia3GFsdOLSL++RPEp07QGXQy5zFJxvdD7u/sEYcee3u7R4VxDtM0SNMEyzUzzZKQs5iIBMI4Zm9nm7npKRBQKBaQZJ31exu8fvEi4xMTRGFWdJB6KKqSaYEsnZgAv9dDLXQBeONXdzh27ASlSoFm8xAExEl85KIpiIEoCkiTjHZCmrBz0GHp+g1KpTKVWpVBEBDGEcfmFjh39iykCWPjw+imynPPvUh9ZJgoCjk4OODy1WtMTSxgKB693g6pMOh0PGzLQFUsVElg6ionTx7HcRySNKHdalIuFVE0Bd3QkBWZnGURxzEIgapncSTeoIepa9i2nYFa00EkEZJiEEYJ7cYB+UKOME3RpZTW4QGFQg7bcVA0jcjro/30BaJ//Pd4eyRPvX4GRWT0pUIuxw++931mZmb41je+ydzsEGnYIOmuMly2aYUabm2CfKXCidOn2TrYZWRmHDSJv/8f/Bcg4A/+09/HcR2kmz9iUH0E23a5v7NLq9VieHiYYr7E8o0lzpw5xeTkBC+88CKTk9P0vT6DI12gm3NZWlqi2WgxPj1Nb+BRqZSIA484CjAsK3OX1nQMQ+fe+j2uXbnKN77+9Wxqn6Zoispzz/+KoaEakpCZmBzHdVz29/e5cuUqFy9c4OTx46zcusXoaB0n72JoBmEUMzjKlksT8D2Pu6t3GB4eQhISuVyeU8dn2Ly3zqDfx3XzGbWrUqM+WmekPkKSpmxsbjA5NUnOztHv94hCn+9977vkcjnCIGB3b59KtUq5WMA2NIbrEwwNDbOxsUWhUEQIiQsX32BpaYkzpxe5dWOJU6fPoKo6cZqSLxSA/5e994yRJE3v/H7xhjcZ6TPL2/Zmunt67O6Sa8SVCGq5pOjuQAGHA+8EkBAo6PRBEAQBMoCgLzzwy91JuiPP7PFELpdmd8gl18zsuJ7Zmenpmenpae+qu8tXVqWPzLCvPkTNsHe2191BH3R3L1BAV2VkZFRXxpvP/3n+Jp+m7O7ukWTw/Ldf2D9Gw7IMXNfBdgq8cf5NKtUqmm6jqibJoE+5XCIIhkzOTKFoIs8STRO63Q6Fgke5UspjPVBo7ezS7w2o1euYrk2SpoRhyLUr1xCKzvETx9ENhW9/81s0J6ZZuf+Ag4cOMw4DxuMUy3eI0piNe6vYuiAIdimXKrQ7bUzHRgZtoihCWfgpykWP1dV7BMMh5WqN9qALbhGrMkm28m2yNOKnfv3vs7T8OPNzcywuLbLdWqdSKTIMxzx5/NP88b/+EgcOllldvUNj5iCD0RA7AuPmBrJaQhUaQsh9JodLmmRoukEUh6iqjlBy9odl6fm+oBgk8Zhhb8Bks4nvWxiWy/k3L6DIDNsxqNYbaI6LW3AxdJU4GrMwP8vRIwfxCi5Spuzu7iKlyuzMAqdOnqBSLVMsFvjkp54lyxKGg37udK2YoGgIVWJaCpq0AQ2JhoJAQWEchLl2VuROw67rs7W5Q5ZGlEslDE0nS1KSOEE1dGzbpd8fAILxOMwjoXQD2/by7OTRGNt2yeIBURgjhI6m62Qyw9AEZBHrqyvU63WyNDfiE6qeM3GEkss6rNwgqNXa5dDhwznY1lWCQcgLL3wH3TCp1Rp89/U3MC2brc01BsOAZmOCK1eusrW1TWtvj5/9mZ9BpAHtzj103cSySrlWWHex3TKK9CiXm0ipfaS5VBWIxiMsq0gmR7TbLVTVRDMNpIjwTBdF0wnDiFG/h6EqtDu76JogTiJ0w0QRGlkSIYRAVdVcX+zkv5Npu6iayvKBZSzLptcfEI+HaIaOtR93o0iFYsFHNfU8VzXNQAr8Yon5uVlc10YRCqquEycZyTjk9/7Z77O8uIxl5tPiO7dvsbx0lMuXL+1rhFPOv/UOxWKJxcU8iqxcLqHpGr1+j3q1wMzsFPVGBaGC4xgMhwnvvXeJwSDg2WefwXFthK5iGAbjcIwEbNskvnoXNINT/8M/oOgXWVycA5mRSBgM+vvMJAPPczh37jxnP/M5wsVZlOkmqsxQSXOX34dqjZ8UvEb/wia7rP1Qt2F58TpKsYD49BPfX5OgopInGvS7LXrrlxHDdT6484CFyWcpbBxiJblJMByycn+D9969QLXi87XnnmNiaprBcESl5DFRr/HuO++yurHH+laHmcUGSZKwtHiA18+9yUR9knEI5ZqP6zus3L2HY3koKhi6xqDfZTDok6QZw2GAaThYtsLG6m1KnoGtjikVXcIwRFXFR7VkluVZqZnQsdwGcaLRHw6Ym2yws7NDsVxE0zW2d3Zw7AKOU+Hcq2+zvrrGsUOLmMY+8BMCTZgkcYQkJI1BNQo4pWmGYYzIQsJ+C8fMa50sU3OmkiZJpSDoj7m73qc0eYAnHz+JVGKWDiyRpNm+HKCHoekoWsZbb56jUirQ3V0jjXcpWxJhxCiGgWmW6Ld3cQ0N3Sqy2U0ZJQb9bp+S5yLJmJycRBW5ceOdu3coFEwc185jYoRGEMS8994l2nstLr11noUpMIwOhu6gaoI4zRWamqoRjcfoqo6CxNANpDAQukeh1GAUQjiMiIJNSFpYmpLf46kCIqXT79DrxVy7usGBQ8d58pnPMjs9w40rFyl4Jq47yWAwoFypEicpUZIzf5rN5kd1RhJH7O3tgpT0gxHDICDLUirl0kcxf75fRMqM8XjErZvXmZqeIJVDZNLFVgIKdoZljDDUBF1VkZlJHLsMw4RxrFCozOBVplCNIo5bpuS4dHstJpp1JiZm+eDiTaqNUl7rrNrspA9YUz/g6KmfZm5qgbJfYnJ2mjjS8I9WacVv4aRd0uEuF67fwV88TtUv/YD79D+C1/9fgdcPo3IeBpEfCuw/dB3++OMfp8I8DFYfHpt/SBt5GPg+fI6PZ8g+fO4fdz3K6fhR1ws/GLw+6jVVRdnPa83PL7OEpDRJoWBx8Y3XOfHUZ1FfuYiiCdIPQ5q3tigXyww6XSq1GraTh0ZXq1WyNKdzCt0AoSKRBMMBaRzT2txBU2FpaZ6t7V1arS6mmpJEIcNgyPTUDKomGHS7FAtV+r0B586dY35ugWAQUChUwNkljiPm6rlDYxxFmJaNbdvEaYowTCQKmjBQhGAwGGI6HonUWHuwQbfbx/Vcrl6+SjAY8vZ33+D4iWMkMqBYqqBpHhtrW+zt7jI1NcEwGOB6DiePP4ZuwIP1XXbaEX6pQq1WYTgMydIAVROUKhV6vS5Xr1zGMfNrMiybQRBgWg6KohKHIVE8YBwOsE2LoB/i2hZJFjIIuri+j6JapIpFlgzZenCJYlGn0+0hhIZUYqqNBrEEYVgoqol46T1u1AuU/rv/itm6z6t//Qc0p5epVRqE45THTp1iFPaoNku0g5CZyUUKJZutwRblyhKHDp3ELxapN6e4e/cecxNzeIZDJtv8nb/7a2xubOIXyyjXvozReJz+sJv/raXAL7rcXVnl2Wee5jvf+RalcpGDh48QjMeMeh0mJqfodHqUikUuX7zIzOwiMslQEslrL7/M1GSDtfVV4iRl0Buws72DpuncuHGLzl6HTCjUmg10y+DajWvMzkyyvrnBsVMnMSwL27YY9AZUqzU+89mfwvHyicTs/CLXLl8lGoes3LpD2SvQbrVIog5JFuEWfIRuYtse3/nOS6yvbVCbaFCsFpmam2E0jhFCobPXZtAfoCgwPTXFa6+9iiCj4PtESca9u/dZWlhCdxwWF+cwDJVxNML2HKSuo+oqxaLP5uYGhqGjqApKLNla3cBzBKWqi9ANCr6HrmvstXYJ+gHnv/sWy0tLlHyfOBrR6bSZm13k4vtXaUzWsAyTJIwpFX0yEianp+j2e2ysrzMzM0MYRtiOw4W3LzI3P8s4HKNIgaHZWCLGNDS2t7fJyHJDKGkiSJidbTIzM4Omqei6zpETp6lWipx+7BiOqbO9ucN2Z4d6rYpIUs69+iJz8/NUyk0yzUUSMhoMsLMATYVk/nMYdhHXbeI4RcJBH8fzuXnjBo16jXiwi1KYJC6e4Mjp45w6cwzX07FtjYLn8tTTz5CoXT7/8z/FoNciG2yjVxaZaB5EbPaRV28gmh5IG5lGhOMEy3SJkoQkiSEdowkIwxGWbTEMQizLIxoPcGwboUhc10QRKkkacOTwQbyCgeuqtPf2UBgy6LQpFWsINQ+F90o2afyh+RZUKx4yG6EYFqZjYdgmiiKQGXieTxZLhoMBruswGgXoQidTNYSSMujuEPR2sUwN3YTRaJjrhpMEocC161cwNBvHc1B0hUxmuE6BYDwGmSKzBEvX9qUbPp1uj+H+FCQJo3xvkQooCoVCgW6nA5nkxs01ZuensVyHQT9F1SAYbWGZBTRVIxiM2N5pce3aNUqVOs1GjTgMsCwTIQws0+SD999ndeUemhDcv/eAxcUD/PVffROkYGJiEtO0uH37NrpusLA0j1RU/vobrzM7O0mS9DHcBhKJrnrYVhWZacg0Q9dNFM1EKgq6oSO0CCVzUGSAroNhVEmyEAWdVCooSMgilCzO5SemS6UxTZopBL0+plNA1y1kIonCiEEwpFyrEIYjCqUCQlXJ0gxLM9jZbeP7ZcZhgiYEupYRRX263QDP8em0W5RLHjeu3MAvlnBdE8NQyJIImWRkZJQrZfqDgDfPv8PSgUMMhiEzM3Ue3F/PrzlNWVycoeSXmJxsosgsz/Ilo+A6JFlMr9OjXKpSKFaQmompaVSrZZ546nEMS0GKhE67i2kYSAlBMERJM5x3bjD+b36Z3/5f/0dOnjyJ4xqgpLhKgOsXUQwLJYnZvn0F3XeZffoxtOkGqswzYqW0kSL5nprh4+tHUYR/nKgc8eknEJ9+4nvO9eGXlmWkikEYxrz32rdI23fo7qzx+V/5DYzsSbwHE5QPWxiOgQYcPXqQWr1Go97AtV3iOObmzTtI1aYxPc/q5ibPfvJZBq0WjllCIjn+2FFm5+cRjAhGIabp4fsepqmiptBp79GYmsQvl9ne3GZ+bp69vQ227t3AN2NktINtStIwN0YTqpKzB8IQTShIBKZXxnYbtFptsnSM65dQhMLe7i4TjSamYRNlA15/7XXCoMfZU7P4Tg5K0yzNXbllTJImaKKEalqkWhHHa5CGMZrsEoYbZIpESJ04GaGqkGQmaThEmEUWl48zOz1Lkmis3L9PuVQhjSMU8uzrMA4puyWKroGa7eHqHUylRyYkpllAVXRGg36uA9cbbLQCVLXI1OQ8u50elUYD23HoDwd0em2KpQKTEw2ScW6WpKga29u7vPCtF2ltt5ifKVMqRBxYnAAJUsmbcZowUIWCQoymGqiqTyr2iBMdzTbw/ONERFhmiSjcIY06aKogRRLFI0zDJRh3+M4rG3xwc0xxeplyI88cP//meaZm5hGGSdk3uP9gheZEnXA85M7N28wvLbHb2sUwLYSioigq7737AXEiOHjgADeuX6PZqLPX3uXWrdvEcUKv08H3dDRlhOsM0bI9gp0VzLiHLlIUmaHaOigavUGC1Epobp369BGK1RlQLXr9EX7ZR9VVet0OGRp+qcZgOEAzQFNjXNch7Qg8z0c5KzF0j289/w1sTwMyOuY2q+M7xOEY37Nx/JDxqM9MaYn67CyZdECoKGqIIlVEZuT3tyJzJ35ln3wpfwIQuf+kPK5RfM8+8X145KMXeOjpQv7NjxWZ++48hGh/1J6jPPw9oP6HAl4ftR6Ozvm4Jvbj62Hw+TCY/Tjf++PH/ziZST9sfXxa+8O0JuKLn3vk1PXjgPsHXcdwOOalb3yNxZlJDhw7Q+/iDcwH60TNMrph4HkuppF3olXTwLJtPN/DME1My2QYDOl02nj7k59gMKDgOLz66psUvALlcgXb8RgMQ149d45aY5Kl5YO5Q6auceWD95mdn8/57IaOrqs4joOmQ2rtILMMT8ySJBmO7aGpGlkGiqKhSAVV1SHNEAIs0wQJmtD4kz/9Y6ZnJjl86CCFgk232+LM46ewLItMxpi6jZSS9967wPLyQRr1BrqeTzg0zSBLFV544UXm5haZnJgmyzK+8pWvYOgOBa+MrlnEccY7Fy7SmGziFQrouo5p5BuzICMIQ0zDxbFc4ihEpiN0vUCaqLhuBaHomLogG28y6nUgU7GcEnahguG4WIZBEIRYloOhW8TdIeq5d1D+0f/E9dV7lBt1vGqN/+N//x2efeYTfPnLX2Z5eYkXXnieZrPOb//mP2DtwQMUMgqVCepTRyFT6Q/HaJrL8tJhBr2AV77zKr/yi1/kpRde4q03znPq5Fm0O19hoM9TqZV56+0LPHbqLAkZE7UqqqoQR2NmZmbo9AakUkFVBb5fwi/6KIpCpVqmXC7kweuaoFarUSwWqZSreAWXUrFElkm++c3n+fSnP4OpauzttlhYXGRne4uFuXl0xeHe3fskcUzR8wj6A0zTpFytkaQZ5869xpnHz3Lp0mU0obK4uEir1eLW7VucOXsW07T59vMvcPjIYVZXVykVfW7dvM7nP/+z1Oo1NF1nc2MDVVFI0wTTNOh02viFAuEoJokl1WoJ07Iplks8/cyztHfbCEXBsSyKRZ9Wa3e/u+4gEISjkPv3HnDk6DG+8Y1v8umf+gSup+D6Cgkp1eo0Us1dY1ut3Xwqr+vs7bTY2d7GNk2uXr3Cwvw8ju3w4MEDlpeXcWyH+/fvU6lVUSR4hSKnzjxOKiV7nQ4Fv8DERA3TFJiayo2rH/D2m68zO7uAEDq27VEsltBUlQvvXqI52SSVEsv2GYcR//T3/ilnT59hHI4wTIPxKKRRb1BrTpLFKeNRwHDQY2qqgWFoZIqJJgx2twYYmkLWvon72Bfo7u0yDkNcz8NwLDTdYPLt22h31lGe/jxtpZxLAMwaApE7BY9DxuEQv1il2+timxp3b19laqJOEqXIJEbZbGHe30FMNJDCJE1jCn6BLEtRhSQY9vA8l/5ggOcVCMMIy85NcxzP3WdmJATDHoYuSFHJwhGGktAf9PBrc1Sqi/ilGpKMYDxAphJDt4iS3D0zy2L22i0G/Q5CgqlrH00ucw2hgqbp6IaBBCw7Nz0Sqspo2MO1dDRdJU4TDMNkOBxi2w627RAEIxbmFygUXFKZYDtWPpUdDjBMD1UVtPd2UbXc8On+ygNWH9xnFIx4/vlvMzk9SYpEUTJsyyKMQjzPQ1EElUoZXVNJkwTP84njiExmxHFKFMcgVGzb45vf/DblcpX7D+4xMzuzH0ek7+vMfU6ePE6tXufKtSs88dRZDEPjjfNv8MTZJ9B0nXKlwtFjx3A9h9FowKC/Q8HTKRUcUnQsy0FRdWzHyzWiyRjDsmnttlFVDU3V0HWJqli0O5sUyxWSVCcYdzENB0UIpMxQZIqKxLB1bKfIoJ/ss4RSRuOMQX+4nwmroRtmDlgzhf5giOu6KEjiKKTTivjzP3uOeyv3qNcKlEsGw8EOteYsYRgRhiPCMGF6aom//sZfcPjIAbIsN8fK0gy7UKBcqTEx0WSiWae9t0257PHd199mYmKCV15+hU9+6pNYls1Wa5u7KyvcWVnhwMFDuflbb0CaCTzPRoiMKIoZdAMsWyDJnYpRcm1qFIXoupbTphWBcWcdAbS+8DQbG9v5BNE0KPg+UjOIFZ0wDLFEyhsvf5tPff7n0HUzZ0gJdb/QzJDK3zTgP5wm/iQ1y48DXj9ekzy8dFUjI9eUi7jPYOsmStilH2scTH+enX6LRBljex6qgL29HUqlEuVKlcFgxPbmOhONGq2dTbrdNmkUMdFsMjU5i5Q6h48eplItEwwjdD1vMj14cJ+9vT0KnkenvZkbJZZqbK6vcejADLut+xTMhKC3ie8qDAe7WI6JVFUUTYBQiOOYLEkREmKZots+vYGkVp9ldW2VQWeXZnOCbnfIYBjy5ptvc3CmSdGzqJVUpidtCo4BmYqqaQgBQTggTjXOv32LyekJLLdJGCmk6Zh4vEMa9ZGZRJD/zLB00lTh/lrIlRvrzC2foFipY9gGSirxCx4F1+P+ygq1aoXdnRa9XpuVO5ep+hq6CBEyAQU0UpJgiEQnUR26I49Y2swvHsF1i7kzum5w/cZNqtUatu0SRQlCaGieRTCO6XZD9lotup01gkGb+abGzKSHoSWomiDNcvxiGCaKmhEmI8JEksYuiRKhm02cYg3NmiCUY/o7DxDpAENNSOIRAgWZxmSJxjiN8SsLNCeXeOKZx1l7sEmtnjuYV2tVEBLH9qnUami6IBh1mJqqstsaUavXubdyjwsX3kJTFU6ePEbBL3Lnzg0W5iawTUjCHo1ySjzcYtRfR6dHNNpEhnsIAiwzxXZsUmkQJRqplKhmBeHO0pg5gedPMhxFPFjbolyuYVsO4XiMisLbF97Eti0Knouum+iaiWm6pKmC1re4tXKbvfltet0Oa2sPeOrpJ7EsE9d18Ys+/WHIlUvvY5kpYdgnDiO82iSlYhOpqqDEKFJFkSpSpN9/7/0k4PWhJT4GXn/UvZ0/8IhwHvm9+Ob7Ht7fhx61F/17D14fznl9FHX44//+yPZ8fz3KmOnj3z8qC+3jHYlHneMn+WD48Nofdb5HdTEfXo8C14+6ZlWYxP0dwmGbyuQMXiQQux20qUY+HdrdxXJsMpmRStB0DUUIdC2nPRUK/r6OSkPXNEq+T2dvj/nFeRqNMpqa25l7hQLXr92iWqvTHwxwXJt7d2+xub7KxNQMmcyo1Sr7phoat25dpzQFSZphpZNouk4QjLFth63NLZ772nOcPH6CLM0IwxApcyOXD6fq09PzdNp9ZmZmuHz5Cs3GBIP+kGLRZ2t7k1KpghAaU9N1isUy7733HjMzs8RRTBiGhOGQWq1Cs9HANDVWVq6zuDTDjes3eefdC+i6Sq1WodGoUWs2cqMTVTDoDzBNg1arhdBNTMMlDmPiMMBzTYSRu08qCFQlIQr32N26Byg0mvMgPKJMoqgCVWi56Y1p59TId6+RHl9C/1v/GXOLCzxY32RiepEzx0/zW7/1m/zUT3+SX/nV/4LPfOYz9LoDfvGLv5zTMccxx058gt/53X/C2ZOn+d3f/cc88cQz/ON/9H9iahqWrmIZKsFwzNZWi8dOnkG7+4cw3sNqHOTqtes4TgHHtbhz/Qq97h7VSpU4TnOTlIKPbZmMRrm1/MrKCo2JOqqav18AXnrpJSzLpVZvkiQhSZISRTFPPPEkhmFw89o1nn72GV599RWmpqZwTIu1tTU++OBdPvXJp1CUBFVkoKTs7PbwPA/bcdja2mJ2Zobbt28yGA6Ym5slyfKJCIrOgYMHsS2Der1CEiccOXKUXj/gg8sfoAqNol/k3QsXcL0CmqZy7dpVNjc2iaKEQT/g2IkjXLpyBcu2sSybvd09PMflueeeY2e3xYnHTpLJDFXR6bQ73Lu7wsGDB3J60kST7l6PKI6oNiqUKhNkmQsiNygp+EXSOGFufo7bt25w+NBBOu02i4tLfPeN71Kv1/D8EtE4xLFt1tbXmJ6ZYTjoY9o2cZqhahrheESahMRJHm+1s7lByS8wNdng/to2f/XX36BWa3Dp4kXW1u5z7vU3OXhoGdt2UIWFZVncuHGVuZlpiuUyKGK/My14443zaJqGaegcOLhIFI1gvzHjey6uU0A3dWTnFnLpc7hukWK5hlQE/WDA+voGEy9fgo0WyTMnqVRyGnbBn9on0EqmpydJ05hitcHa+hpRHHJgeYGL77yHoSTYJnhhinp7l6yaRxMY+264cRIShSGVapnr168xOzuHlLn+UwgVRRGg6KhCz4PhM4UoTEkyyXgQ0NnbYjAOmV0+iSJ8MikZjfvouoqpW6SxRNUNOp0+Ba+CXygRhgllv8B4FBDHEaqmoaoqwWiEpmkIVUWoeac4DEPGwQjPc+js7RLF8b5UAnTDZH19A1BwHBdN0+j29rAsC03XGY/GJHHEOMybpaWiTxJHWJZNpVjF8zyaEw0c10HTNWZmZ9E1NXedziTjce52LmVMOA5RFI04ClGEQMHAMHX2Oh1s28EwbR47eYpqtYTnFfD8AsmH7sKGRZam/NVffZ1Tpx9jYmqCOI2ZmZnm7OOPs7e3h18sEccJm5ubTExM5K7Wox7lgoGpS8ahREqB1ALiNCAMxb6zqI7jepiGiVAkGxv38NwqUomwbYcsM3A8HUUapFmGzHJwLiWkSgqYyDSnCCfpGNetcPHie1w4/xaLiwtkUmI7DqrQUXUNVVMZjwJs02Svtc3RY4d49hPPItMMMjA1GykEhm5j2xa7rTZf/fOv8wu/+AVMU2NjY5ViqUg4Dtlpd3EchzROiMIRzUaVP/iDL5GmGouLizz55BNsb2/R6/UoV8pYlsWLL77EoYOH0A2T0Shkp9WmUikiBLR32zRqTTIlZrTv5G+ZFkJViaLxvj45wjVNzDcv0/9v/w72XINypcIoHFEolnLao2YxHocUXRsli7lx9TLHnnwW8c5NxNYe2VQNqYBUJA8T+36QSdMPqzN+FHh9VB32PefIJBlK3lwJ9li5/F0qjsAs1ijuPctme5PrN67iFguYhiCOYwoFjyAIEIqGKiS6rlKtlkjiiKeeeobrV69z5+59XM9nPB7iei43rt8GJHPz81QrJZqNJv1eH9vRCMMY27QYDTsE/XXIBqhxh1rJQlcT0ixC0zVUw8D23LwWSpJcBCAUkixF6B5OYQJNL9BsNIhGfaI4Y2Jqlk6nx9FDh7l1m8RS9QAAIABJREFU4z7n334Hx9Eplh3efOsDpmYOk0RdhC7QDIEiLK5c2aDerFCszBPGKUKMIWmjJBHhaISqqpimynA0IopULl7rkWDTG8a4hQKGKaiWc6f9ne0tpqamWF19wPb2Fo4JlhrQrBgMe7tYZt5oi8cRcaywtt3HLs0yuXgcVTcZhSEPVlcwLUEw7LCwcIi3z79Nvz9gZnqGJE3Z2evR2h2wdm+TS++ex6DPZz51jNmGjq4lKDImS1MURccwIRyNkVJlNBKsriW88tplDh5folQ5QCQhkzaKFpANNkijPqqSYGg6aSaJxgkfXFmjPjPH3NLjNCbm6Q52IDUplioIVVDwXfbaOxRLBcbjMUjBaBgR9MYoMqLXabG1eY9Gzefg8jTBcJew94BmRTBs3yUerDLurUIywlAzfFdDFxGuJTBk/rkYZxnjLKMfphiOx/aWoBvoLB5/mhgVRUiGw4jJyRla++kFaZzyxne/y5NPnUWRKWmc8P77H9AfjGg0J/njL3+FkwdO4acVrpYu8plPfwLbtnAcl+npab76+88x25jh6y+/xC/94i/z2uvPMz9T4+7V9ylWZphfOkqiCBQhUbP80zUTfxP7+REg5Pv1sT/K++dh1ukPG6Z9/wbwCJzE9w7UFEX5vkHiw9PWh6/x33va8MNROT+qk/gTdREeevwHbfT/X65/G+D7o54ThSmrty4joyHC8lgdBjT+9V8SHF7m7q27uZESClJhP68uy/P4siyfKqDgegWkIkgzyXAYoGk6QlOIoxGGobK1vYWiCM6cOsXXv/6XZDJlcrLJ/MIstm3i+2UGgx6FggcKDIZDyuUqqdHCMAzWb4WYpr5vp57rTLY2t7AMk1dfeYUkjXNDAqHw+uuvUa3WKJbKSDImGhOUy1Xae12++Y1vc+TYYRr1BvdW1vA8j063tW+GVCVOYkoln3anxSjo06jnNvJxEuJ5JoYJU5MzPP30U3iF3LmyUHAJggG9bhcysGyHOMlAEbz60jkWF2aBBMexkVLQHw8xDBVVzYjDAdF4QJhqTEwtEiYKe91+niMnBJ3OHjs7O1iGybjdRXvlAuIf/vekfj7l1lSDcT+kXKiyvrHGU0+f5caNawwGQ+6trHH6qbNUJ0ocOHSSf/g7/5zxYMjKrRVG45gnnnqKP/rDL/Gffv5TCGXE2vo6pm3ztb/8Or/6t/822ZV/xTARGPUDjIKAA0tL6CKlXvEJhgPGQcheu0uKQq1eR6Yp4SjinfNvc2B5mTCK8vcNMBqPqNebNJpT+8V0hmna3Lp1k2azTpolOLaD47kcPHKYYBTg+z7XblwhigKqFQ/L0hGayrWbN3n13OsoKBw+fJhms46qKiwvLFCulDFtmwxJsVyk2x/iujYba/dBSkzTptPtEwQjpiYm8VwPFEGxXKZSbWC7LqVKkXKtwk5rj/ura2ysr3HsxHE8r0Acp6yurnHg0CGOHT9OtVphdfUBuqbR6XYY9LsoZEw2m9y+e5tKpUSWZFTrk3jFEggDoTkk8RhNVWlt7xCOx2iqYG5ummKxyPziEqVymf5wQKlcxPcrfOf5F+h1u5x5/PS+hlHZzxs0WV9bo1krE40GFEo+pm6hKEquPS64lCpNbty4yZkzpylXihw9cpCVlQccP3aEcBTyf/9f/4wTx4+yuDiDIMVyPaQiUDWNS+9f5OK777O31+L0qVOMggDfL9AfBJQqFYaDPdI0RFMS0p1rFJ75DdbWd3FsnyAIUKRkYmqK7MULuUPn6SZrd6+QqRaOX8DQBaap7Tv0hhSKZRoTE+y0WlTLJUqlEt2dNXb21qgkAufBmLhUBCVCVTSSNEE3dJIkQ1VNigWX+/fvU/B9dN0givZpfhKSOCGJExAqhmnlzQ+vyDjNmJ5bYDRMsBwLTQfd1FGFhiLyPSdOwbZ8Prh0DSkVJiamQCiohoFp2bkDbxzheR4SgSIU0jRlMOij6SppohKNx9iWw2gco+k2aRozGo2oVmvs7bXxfR9N00niMablEMcZg8GQm9dv8vwLLzI7O41lmvR6fVy3QJyleAUPVVMxTYN6vUYUhqiqhlA0dN0gTSWGYdDvblEq1RmNIhzXBARf/eo3efzs6VwrqogcdOsqmpph2hao+TmEUHMH1CTl9OnTjEdjwjjM/481FVWoFHyf+/fvs76+zvvvX6I/GDI52aRctOm0HmCIFEW3cV2fxNpE6CMK9jxJnJKkIDQNKTOkTPAcnTTWULQURahIaYES8m/+zVdYXFzAL3igKASjEEXLNaV/9P/8AZ32HssHDhJGKY1GlTOnj2PZOkIVKGqetzwYDrBtm2CYT2ZtR6XaqLG2vsEf/dEfMzs9R6VSJ85SxuMIKVNsx0FBpdvv0WzWKZYKaKpOp92jUqmyvrpGuVzGsR2kknHw0AEmGrPU6hUKBRtFwHA4pNXaJRyH/Cef+xyGodLrdXnjjde4evkKo3HIxORMbjQWDFhf3yKKkpxxYxpkMs1joKIE27ZRb94nS1L4u18glRmKgCRNQBFkmbrfHEkhTcjShChOac4vof+L5xC3HpD+9OMfUfh+VEXxo+qHHwe8xn//fyZ77qWPDJu+pwkPSCVnE4y7W7z54ldRkz6V2hTWO58mOd1hqXIA3bRQFYVGo844zL0V7t+7R71W5979exR8lzhNieMMKQWaYTM9PcPho8tYtoFlOswuzLG9tcn2xiaqUFhZuU+90cDzPMKoj6XF9Nsb7G6vUfQ1kihAE3mtI1QVgQpZhiZUkigi3ZcrqLpJgoEUBfqDkNu3b3Ds6HEKpSqDYUClVOD65XdIhc3u7i7t3S2mp2tsb+1Q8Iv4LvvTqIw4iZibmaQ5O0MqC8RpSNEXjLobiCQFReI5bt4cU0yixOTdy1uYbpH//Oe/iONY5P1ikcdtuTZCU1G1nJm0t3YVRw+Jgj0MUydDJU0VxqlBkHlUp48wDlXqU9N0ux1836PZqBGN88b0cDhmemaKqalJdna2efedd5ioN+i3d7nw5ssszvgcnPM5MFcjGLUxTTWvRVEwdZMwztkmSZKSZBYvnrtJlMFTn3wKSQlFlTiGRa93B5uU0bCLaWiMxxGZVEilh1Qb1OeWsZxJdN0hS/t4bgndyhtymUwZ9DsMB11cx0VmkolGnXDYRVf2sNQIx0wx1DGqDBh0NrHUPmnYhnSIKkMcW0VVTfxCAUPXURRBkkhiuUuUSfpjk0LlOFev9/GLB2i1AxRhUqlU2NnZwHZsbMPhpZdeYnd3l+XlZZ77i+f47Gc/x4ULb5NGIULm76sr165z69Y1BoM+C3OLiD2d3UNrbGys4Ps+zeYE7fYez27+HFPDBWZ+rsn0zDLDoAdpD0tNicaSA0fPkhkOUmVfGiA+Aq/fi1l+NL75+PqQbfrj7Anfe7JHTF4fev1HDdQefWS+/oMDrz80n+jfEbz+u1pB/yTrUedP/rd/QvbyecSnn/y+Y38c8GqZNkrU5+ql8/i1SRYeO435p88Tl8pcvHGT5cUlVF0jU0BTxEcbdhxGlItFxuMQw3by3EdVQwg1L7purHD3zh0q5SqlUpWL71/Fd3Tm5mZ57PQpMlJsx8R2bRzLAySarjEcDHIjqEzj7XfepOxNMVFZzt2P9fxDfzjoc2B5mXK5yInjx2lONslkCmQYhkGxWMLxBKYpCII+pWKRfq/H6uoDavUmjXqdP/vT5xiNRszOTVCvVxFCsLW5Tb1RYxj0MfUCluHyp3/yHFkG5UoRz3O5+O41yqUqSEG308e2XFQlJk1TTNMmySBD0A9CNu6vc+ToMsOgi6abhGMF1y8js4Q0Cenu7uGYHkZplhSNlIxBv0ulVEIXKsIQ1Os1VFVB3ryHWvbh7/06UThic20V17C4+cFN4ljy51/9E1Q148DBJSzL4eCBI+gFC9MTRJFGvbhEuaAxMzXPJz/xKfbaLb7xza/yxS98luZEgdnFA6xurPNbv/1fo5km2Qf/Et2uoFUWefed80zU62ys3SEIBkTjkOWlA+zudWhOTqHpBi9/5wX6nR5r9x6QZimpzKjVmrTbHdY31plfWOD9i5fIMonrFrhz504+JU0jkjjkvXcvsbi8hBQK337+eU6cOMHE5DQnThwHKfGLFdbWWkSx4BOffIrFpWXiOEaSYhiCC+ffxjBMkiyh1qgzHI0YjcdYlo6qyPx9myqsrKxx5MAinW6XF198mcnpaS6+f4laYwrTNlH1fcpzpcbjZ89iahp+qYTt5AZbFy5c4NCRw2h6nsuJzCM7StUy1UqZSrnMuXOv0Gw2uHDhbS6+9xbjUDKzsEBGQqfbZuXWHdZW13Btm267jQB22y0Mx+ba9RvUGxM0JuoYlsHl969z5sxp7t69i+d7jMYjFBmhqXnU1Mb6GuWCy8bqCo2JaaIoRTcsLNumF/RRNZMzZ86gKJJyyWc0GnDyxGmCYECr1WLlzgNOnDiKEBmTjRo7e22EaiBRmJ6YYG9vl+PHjzIMBvusBgXDtDDMIqrIc1TjKIXWVbYaP8PBQydJYsnqyj0MFQqVCtprl9BUjV70HOrORapnfoFhOGA47BBHIWtrD7BMB6Eb9Pq9XNKhKOxsbiDSEa6v4by5gTQLmIUiaTrE1B3SJMnjQjSTKAFDlei6zjAIAAXTtBmPR8i0TxB0MR0DyzGJsxiZKAjLxy3XyGRGyfFoDzYBiWk4BKMIzTAIk4g0jVAUlUF/wJe/8odUKyXcUhmhaaRZ/pqqUJBZCvsmSEIoINO88JEm514+RxynPFjd4OVXXuepp85gWzadTofz58/TbE4wHo8xTB3XLeSFWppx+OAhDh09QqHgMhj0GfQHxFGKW8xdQfv9Lo7tYKgauq4SjCKkVBgOA27dukOxWCaOOiiYdNo9oiRAUXXOnH6WdqeF67pYlgVCod3eZRR08fwimVRQFBVVUdnda7OzvYOh5/ncftFHaBrj8RDdMMgySblSZWJiEtfxuHL1Ko+fOcVo2CYZtTHVDKmaxImC5sXESYptzqBIgev5pJkkTROicEgahwjFIZURhmmhCptUBpx9/BO5Y3Ga0B8MMC0Hyy4i05iZqTqLSwsYustwNML3HaJoyDDo4bg2nW4nj74S+ediNI545+13OXDoKEkKKBpTU00Wl6bpdHcYh3mGrG2b9Ptdup0+qpbHEikinxxsrG8isxTLsBBCyyf9msa/+tKX8ByfQ4fz4rJYLDAYDHjj9TeJxhGnHjuOUCSWpaOQ0qhWaDbnGAYpjmujG/D1r3+Lu3fu0ZyYxPNcVC2fBCv7Uif94nV6v/ZZjAOT9AdjBsPOPvPJQlVMVCVBRTIOBty7f58jJ8+g6ibqq+8AkP70mb+pE/4tCtmH148DXrPnXgJ4JHhFSqSikiYxybDF2o23UaIuU1NHKd/8WQbjAdWJCmGaQJq7J+u6SpqmVKtVOu0+YRRSLPocO3YcBR3H9un0Opx94izvX7oApIxHEWEcs7uzzfz0NKAQjMZMTsyxublGknbZ27lHvexhqAKhp3lNogpsyyaTCgaCNE5ys0gh9utyiVAtpOqwszdmZnaRNA0xDJcL712k4Htsra/gmimJHGOIlMWpKpNVnfkZn1JBJYzGRFHuFK6LFIUQLBfNqKLpCmG0ixL3UROBZigkaUIUR4zGsHJvD+HU+MLPf5EsS+n3e8g0QtUNLNsizVJM2yRJYnr9HkqwRRp3sAyJ0A2iTIVUYBSn0EsLCKOCLgziOEFmoGsGUZhg2z4KJpVakd3dFpVKGdd1qNYqXDr/Gq4tKXkJh5dLFJ0YXQxBWPt54AJD00miGFUzCUcBQkuJlYSjjz3GE09/nkQJscw6MEJJIob9OxBLbMvIByaqznAc8+bbt9jYlXi1Bp7bYK+1x3CwRSYFYRJjORaqArZlois6kNHaWWVj7TKm0cXIeqRRl2TcwdIS0rCHpWdohoWqWzhuCd0qkGGCyGh32/SGfdIsI0ozNLXGOC6i6LPs9mD56CEa0xVUU6XZKGFp4Ls+71+6Rcm3UJAcPHQITdMYBAHnXnudtdU12q0tbNvkrfNvE6cJSjZGkRlFv8Bcephz336Z2rM2MzOzaGr+dyzcrRGORwwW1xgGYJoKm2vXaRQLBMGYhSNPoBdrSJGhSgVVQioeEX/1I2jDPwi8fjgh/YnWfwSvP9mSUv4v8Gjjo0fRf3/QBv2oyeqjdK6PArKPOubjtJmfVF/yqGPTL30Nun3UX/jc9/2OPw4FSMYJulC58cG7uGafhUPHyC4+QOt3WfrkkyiqJEtT4vEY3dD26bEqlp27lgpNI01iBu1dZDzmwb27FPwCvu+zvrbKgeVF0jRlYXGB67eusnRgCce2sA2L1ftr6KqFoqrohobMErI0RVcNhKlR9edwjTo7m2uYikSYFqpQ0BEUvAKoBpplEyX5FOpDh07HMEiFnpuBCMH29hbVao1Tp05j2yaWo9GYKPPY6TPomk8qclfWer2OEBqW6ZFmgte/+zqf/NQzzC9MIYRkOBxQq1VRkHieh2XZbG/voBoWaSIxdZ27t+/wZ3/yZzz95NPML9TZ3tmm4JcxTBtVV8mQqHHA9v3bRMmY8vQs/f4odx6VAkWq3Lxxm7t37jE53WQ4DFCEinHuIslv/irKoWnSRNDbDbh55Rq6HlMoNEmSEbvtNaSEI4ee4otf+C/5e7/x67z/zg0sw+XlF/+Cp86exio6/P6//D1+7W/9Kr/0S79Kkup8cPk+80eOk45T7ly/gWNo6Ct/yjDVEZWTOE4RBYiiGF3YzC4sE8QJrW6P6dlZLr57kXqxzPKRIxw7c5y5uSmUeMT1azeZn5+lXC2hKoL7d+6xMDNLMO5heTaOYaIrKsLQmZpqsr65Bkgef+JxgjCP1BCKwLY90kSyvrHOU089QTjso6uSJImIo4xvfv1FlpenmZqZwvUKDIcBjumixAnjYUAiMzzfR9MNipUiaBLNFMzOT+LZKoaSYNk67dYufqFMHIJt20iZYpmC5772VfrdDrPTU5iGTn2yycbaKtViiZV797h68yZbG2tMz0xiOibT87P4lSrzi0scP3mCg4cOEwzG/MVXn+PA3DSTc3PEYcTGfi5sboLUwHN8Lr3/Pq3WDu+/+y7zs7MUCh6mZXL/wf/L3pvFSHamZ3rP+c++xR6RkZFbZWZlZRVrL5JNNtlUb6OWNHKrZ6QLycZAEAwYY1kXBnxr2NZgAEPAXMxgpDFgG7K2Hql7plvqhd1NNnths0g2yWKxWPuaS2XlvsUecfbji5Ok2NXFZktj2IbsvxBIIDLjVEZEnjj/+33v97wrVMs1VpYesLywyuG5GbywT65QQBIpdt5EN3NI+MRBiKLoCFUj9pJsTjyOaLX67Ox0yBWL6LpBzrE4duwwCQmFUjXbaCQqD5ZXKOVybGws89jxk3z3uy9x7epNSqUao6MNhKQQxkNIZZAUmlvLGHEH9fCvo2sBl6/9iNlj00iqQb/bw3lnAUjolpYY9Acw+mlk3SYIYegllCp1LKdIEHXwvQDXzNFudShXa1TUKu32Xewbm6RjFSzhEhEjhMFwMERTVVQBrf0tNNUmTWJCv4esZDm2ummDUJElGSlNM1JsDLJpk6QpaZygKUZGYpd1NN0+ADrFxEmIkFK6+9uosqBaLTE2VmdsfJRg4BH5KTJZJ1OWJTrdFqqhkiKTxBKGbhCEHuHAR1Ei3JzL1NQU09P1rPCBhGnaTE9PkSQBksjIoN4wIE1SVFUQpxELd5cwDJ2cayOpCtXGCLqikMQxw0GfKAwIw4i1tS06rQ4Cib/+6l8z1hjDcR2KuTJBENDrd3HdAoZhgRSSJAGKIpOmCdvbW1RHqli6C5KabXCSlNAf8if/+58wPjbBcBjwwovf5ciROUxdY+B52RymEIRh1uHb2Wkxd3gaO+9gF132t5ZRoy6KmUNoBoo1POgOzyFJCVEQIaUpuqaiqiZJoKAZMoqqESc6QgbP90kiH3/QQrMsJFlBTgMib4iuKWi6hm27QMry4l1GGw3CVGDnSkRhgq4qB0AamcgLMFWdV370MhOHxrAsHUmKqVXL7DdblKsNZENmeaHF1tYDisUitq0yPTuDN+hRzhf5yle+hlBMZufG8byAv/z3/5Hjx0+iqCozMzOM1vP0elmEkyzk7L3UVeaPHcVyc6i6ybA/ZLwxhlMoEkURz3/z6ywtLjJ3eJ7ZuUme+cST6KaM6ziEfkZnDYMAaX0LfauJ+O9+m243G6PRNRtDd7J5SJESyyqqkrK5toiuAvjYbgn5/CUAkufOIR38++B6b3/yYZyM9KBpk0WdZLdHideH90TvReXIX/j0T483SRGkJsQhW0tv0Lz/Nmu3rlJ3j5LrfBxpdA8/SIi8GCGHDAfZTHsUQZIqGRgpDVm7f58HS2sHoxK3GR+bRFJgfGKCUrFM3rVQhMSw36LV2iZKIgZBgGYq5PM2KhHRsI0uIqTUywpQaZphuRMQkoSPR0LwfjE0QSIRCqpio+oj9PoBvu+xvd5kbHqadrOFoRuMNSbY2u3y4suv0+1GbG5uY5kR5byNKhmomoEkss+DJDUQwkW4DUw1D1GTaLiJnAYkkULIEEVOUDWNVlvmrQubjE0UWXtwnyDwyRdyaIaOqmYAJVW3GfZ7qImHFg9Rk11kOUDRDTSzShjnGYoSrVZArTxCu9liZGIc08lcA51u5/2/4zAMub+8gGsZKIbDzbubeL2Ad959i2JOY2bSRqRdZN0kVVz293exNYM0CEGkoEoEYWYRlyQN06nhlhp4aYhp5BAkEA0JglWG/T0MOWXge5iyTJzsEiVFesMyT37sSeojDbr9Fosr95icPUZzr0OlUiKJA5rNJnfvLNBs7uN7HRo1G110Sf1dNE0nTeMsn1ZXEZqGrKvoTpk4ThgMuvhejzgcgN9HlkzC0GRhucPo5Gmu3NqgMjpFTMrExCiba+tsbe0ghyHlcpn9Th/NyqGbNrpp41oWvXaHNy6+y72FOwT9fU4ernB0fgJvsI+uRBydHeOxmTEUPeXSjRVOlk7T1TZxzuUYqdf5q7/6Io3GKKW1SXwvJD0d4mgSu92ss37rne8zUrbRC0VKY3PEkoUkRSBFgDg4VaX3TtlsXOCh28NW3g/THx+qlT7sJokDwr742w+Qn/OY7x33g+sfvHiN4/j3HxaGHyYsP6qS8GFQpr/L+lkzH/+p4jX5xg8AkL/wc+S8PmKlssrO1i6t5h6TsxOodhUl1BEbm0iVDL+dpmlmi+Lgj/Hg+cRxzHA4QNd0kiiENMXJueiGyaA/ZGpygt2dbRRVRVE12s0eiqKjyBqtZptSuUyagmaoqKqg2dwj7+ZoNptIpOiqQavdplSqcPnKNYqVIgIJw9TYbzVBSPiBj6rKyEJkxNE0oT/sE0bZ66XKCjk3j++HvPPOu/R6PXRDo1qrsbW1hWmZ9Ps9bMtCkiQ67RZR6PPCCy+zvrHKs594gr29TZIY8rkycZKF3QtZYTj0ufTOu9QboxQLBRRFcP/+MmEccPLUCQLfP+g0ZnMyw+EAEfeI0xCh6Tj5Ot12ysULr3NocgKJzLKYklKuljGMzNLX3tzGvr6E8j/8Lk1/QNHN8/LLP+LundvMz80xGKasrd3nuV94mmef/QR7u11eeOElPvcrz6AbOhKCqalD/Iv/8X+iUCpQrVbZ3d0lSRJc16XVaoEk8W//9b/h9MmTjDTqiHtfph9KrHc10iQ9QMerLCzeRzMM3EKBcrmMLKVYho5tOYRRRK/fR0gZdbpQrpIr5DBME1XVGAwGvHXhAkKWDjaDQxbu3cNyXUzLzvL1NjYpl8pEQcQ7Fy9SLhT58euv0+l1iZKYcq3KzvY6lWqVr3/9mzx27CRRnLKzvcn45CE6nS6aZvDmj99AUw3WNzaYnZ3FD0LCKOGbX/8mpx87g6oYWIaDLGtYpsPiwj2q1SqtZos4juj1OrQ7LQqlIvNH5lEVFcu0uH79GvXRBiCxv7/P7Owsh+fmqFdGKZeq3Lt9j0p5BFlSEahYlkqSSEhC4Hse80cOIykqywtLTE9NUyqW2Nza4tat64yMVKmNjGTdpU6XkXqD1v4OlUqZWzdvc2h6hurIKMV8jl6/g5t3kBWdwSCzoiuqdkAUFySpoNXu4rh5tne2sr/NpUXmj8zxJ3/2J0wfmqRarSBJEpblkqbg+yG7u00KxSKWbaOZKqQp09OH6Hbb7O5tMXN4AlUH6QAIY1kmcmcFWdVJpn8ToehMjE1BLJMzywhNQXvjBgBhYycr0kx+Brtgk6YRaZoczEUngIxp2vzuP/9v+OxnPoOiCNaWb9LqL1JdC/ANgYgVEhGhaSaqlm2cfd/HdfJ0e30cJ4OjWZYDkowkFMIwwtA1ZFklRTqwE+vIB50sSYLhoH+w6dMyO2uYYBomKRKum0PIGmGUYtouQqhk0ZQS3/jG86QplCslTMMEISNQiKMIoYCqyQih4BRchNDQNItcPkeaxkRhiO8HBEGA4zqEoU8YxhiGmcVvJAn9fo9L715hcmKcJE7RNRMh6wRhxNAboqgqQlH5zgvfJY6hMTaBqqocmj7E+MQYURgQhEOQJCrVCo7r0mm3GAyGJKFHr9vFskxMw8g+O3sd/viP/w9OnzrLxQtvM1IdYX1jmcmpMaq1Ip7XZWZmAs/vEkUcZCVm3cg0gUuX3mF/b4uZ2UOEYYCS+shRgGq6JMLAyEUkCejqBGkSIUnviSWBH3houoIkZW6p9652qpx9JqoCJFlDVhTiwKfX2yAIBxiGRRgIdncHjI9lFHzDsHgvxEFRVYKgB1LMwOsTE/PEU08iy1n8TJqk9Lo9oijBdRx6gw7dVsDW9gr5XJ5CsUinu4euywgpZbQxQm/QxbYMarUarVaLQiGPm7PJF1wMw8qyQHWdJMN00uv2WVlZoTE2TpLEDAZdDEPFsi067Q63b9+T/77DAAAgAElEQVTm8cfPki845PNFfM9H1zOoV1YgkJAEWHdW2P/UWTbzOXTNxQ8HB5m9vH+tRpLwBz3GRut8//vf5xPPfYoolX9CvH7Y/uJnbiYfcbc4FCMfj34i5/Xhx78vXn/t0z/9eEkiSlIkkWKIkI3FGxRslTLP4niPMbBb1OuT7Dczsv/42Bi+73N/6T6qomA7eSSRYtkWJ0+eQzMNJqcnSWKwbev9SJQb128wNnEI0zSxXRdZ0zl85CiGYbO1uQWpj6ZCu7VLv9+lXMkjC0iSDDgYxzGkKoqsockakqSApCBJCppVQDFKlEYa6KZJPl8kShImJsbRVJU0Tbl69SpppHPqxChTYzqulkdTZYJkiygCQzOIY7BzBWKRIvQiSZSQRl2ioEXoD1FlA2KZNJEIopj9bkCQGJw6c44j84/RH3johoFt2wT9LnEcksRDJPqo8gBvuMvu3j6KXmC/k5CKHIrhYtg5klRCVfUD1wUMuhGG7qDrZpYxLFJCQiojDdJU4tr1O7z2+qusrdxEiXzOnhrHtYA0xnEL3L23zI/fyfZumg6KKpGSQNLDT1Jkq4qs15BSB0vPoZISe3v0W6uEg30sTSUMBiBp2EaJgS/xyhtblOoNdvYzwFucJMxMTaMqCsbB/63IKnvbbVTVYdDcJ417hP4OlpogJRBLGqadZaqnqZTN0foRSa9N4A2RyXgAXpDiqXXub/ZpTJ9i9thZJM3GdfMUyxUKxTKr65uMjU+SLxRwa1ViIbBsgyQO2dvaYL+7z40rl+k1u9y5fY28NeAXP3mERlVBVwbUKhrTE0UsPWR/IFhdbtIYlbDjOkJS+UHza/zwh9/js5/9LBMT44hrFmEUcil5Hdc0yFdqKJKH11qhXitza2mbudNPI1QTQUyGfftpq++HtNgefc5/8Cc+Qrw+av3svupHr/9fvPKT1cRHReh82Hq4ivh3bpvz/27xGkuCQr6C67hcvHSJ+sQscmUM+Q/+F9KTR5FkmW6nC0B6ACgIgmzDZRiZKImjiF63TRSEpGmKZhioqs6ldy5iWxblapUwinFdh/39XQrFHIVSDlkBz+uRkCIEWV7fAfCktbtHs7vFD1/5AUfmTlIsVbILvmkgCSn7Kknomk4UhyiKTL/Xy/JDdZ1CvkyaJMRRzNe/9nUs0+bC2xfxPY9Go4GiCJyciyLL6KqeVRYDH1WTMU2damWcZ599ioHXJJ9zsEyXNFVodfZw3RxBGKHrFpub24zU6yiqIPCz7vSp06dQVAVTd0GSEIp0MGwuUMOEVKg4lRqyonPv1j1cO4ujMKzM4lYqFzFtC0VWMsrf6hY9WSL5rV/l/uI9HMdhfW2Vz372H2E7Oa5cvsa5x89w+cpFXDdHvd7g1q1b3L1zEcfNsbq6QbVSZ6RW4/adm3z+85/n2LFjXL16la2tLWZmZniwusra/RUao3X+4i+/yC+MrGIVRqjMPJGBuAoFBt4Qt1ihPDKCJEs09/fwvT6x77G0dJ9ypYxh6piGjpBkXnntNeaOzCOraiYE83k+9rHHqdXqCEXFHwxRhMLb77zD2MQUmqZh6CbdVodivsjVK5c5dfIkvW6Pre0tcsUimqFjmyoSgunpw7z11kUef+JJ8vkcl69cY3pmBk1VmZudIZcvceHC2xw5coT7y8vkc0XW1zeZaozw7pV3cfNOFlNgaBRch431jcxybpmUy0Usy6DTG+A6Dq7rcn95GVlIzByeQ1VUbt++TbPVIpfLYekq165eZmpqEk1TWV5aZnNjAzdnE4QxURSxsHAPmSw3cmlhifGxMbr9PpbtMHv4EO12i3K5yMhIjYWFJWZn5lDlFPNA/F+9dp16fZQf/fAHPPXxJ0kBVTUxdJ04jlAUlTRRUDU1y3jUXTw/oFBwkWWJfN5h4e4dRscaTE9Psba+mmWBxuB5ATdu3OLylaucPXeWOImRVYU7NxeoVkaYOzzP/NF5ev0OKyvLlEsZ0C2OI2jew6+eoXDkk8hKzM7eBiQhK4sLVCYmSF5+J7NNlR+gKCq5E/+UzZ01SqUiy/eXsyimJEIWJhIyJx57jDAMGB+bxM3n0HUZ48Y2UsFBClWCWMa2LbrdNqqiImSFNIXFpUWqlSrD4RBV11FUnTCO0VSNJE7p9nokSUahDQMfwzAIggBd17FMg/6gj6YZCEkhSVI2N7fJuXlSSZCmcgbJChLW17f58pe+xJWrV1EVjX6/z+HZwwcX6qxIcevWLXJ5h6HnEcQxuqEihMbzz7/IgwcPmBivYZoWu7u7jI6OEgQ+lmUhIYiiGMMwSNMU23aYP3YUiRTbsnj1/Ou89dY7zM3PZRRjb4gsFE6eOMUPX36FS5evMjs7S7lcwrYNhEiIkwTTMhl6GSgtSRKa+/scmpxga3ODUrGENxwCEkkS8eSTH0NIMhfeepvjR49RqZUYHx/HMAzK5TIpCYqSEYozBkGKYVgkCdRGKrzy8g+ZnjmEaVncv3eXYDhEMwxQbNB7SEj4nksSxXTa7QMQkY9pmgglIfBD4jBCIjpIBTCAjDAsKRpBGGXZtXGEomisrW0wOj7OzZu3uX37KikSuVwekPEDH0VT6baa5PMF/CDCdnJIskrsewhJRlV1Ws02d27fYmpqkij22d3pYTsK0zOHIc2IwFEYoxsWiqqjKAqano0OzB4+jOva+OEQRZUhyfJ7wzBACJl+f4ilZ4U0RVWRVYFtZ8CxJI4wTYv5I0ewHRPXdVDk7PgZfTmjPcdJjBnFKFcXeH62wH//L/6A3/rN30bR4p+w84VhmDlMbJP19QdUKlVypQpIP794/dD1KPFq8xPC9b3jfHD9TPGKIEp9hCxjqDb93TUuvP0y+uoTyNWUIJF4/a13GB2boF6uEccZLGlmdoaN9XUSSWFpeYG5+XkkWefajRvIqqBcKnPx7YtoqoplWWxubVGpNbh97x7FcgnHzWOYJr6f4roWrqsTRwN0TUbXDXQ9A9+kSYKQBaqmY+gW0ntRiELghRGGZbHbSdCcGp2BjxAylmnT7nZZW13F9zwMw+Dy5cuYeoLf2+PIdB1NCTEshd7AQ1d14hg2N3aIhYximRhmjd3tNUTSRVcS4oPCliBB1Uz8SPDWpUV6vk1jtI5ju+iGQbvdRtN0TN1HSAm2ZWQdYNXAG8YolsPI2DFq9WNY+Rp+nBKGUCqUcN0Cq2vrlKtVdENha3OD9fUtHKdIr++zt9siZ6VEvRZX33kLv79HNRfxq//oJIIhqhwR+B6DYcjO9h4PNmNyjk+5KEMUYqoWcapi5sfQ3DHiVENKQTEser1tZNFHENLaG9DrSGhaiGO7DPo+iSI4f2GFVrfH5375lxFCsL6+gaYoqLKCphnEUcTK/ftUymXKpQJ+f4+cHVHMRYjUQ0rlrBuZRgz7HaLQxxv0kEmII5lmewhaAdmoYOQaFOvzRInJxmYTP0xI4gQ7l8eyXVZX19nba5IvFPA8PxOsu7uEQYysmPzolTfZ32kT+y2OHs5TyIUcmSxRtVVUzUVXDRShI6ERh4I3ry2jCY8nTs4waMU0nCNcz7/G0fl5GmNjJGlMetlCVWUav+Swen+Fe/fXGGtU6W7fZ397FS81OHnuORTdPLDr/m2n8/8x8fqfOFb5/0nx+rB19j2a1QcF5MOEq4czWj94jIdzX/+ult8PoxN/lIX4o6qhHyVeP+r4sRSSxgJTs2i3m6Qp5OsTyOffRABp0c0q1KqaQSGQsgB4Wf7AUVLSOKJUKCLJWTdD0/TM0qfIFAoFPD9AlmOqtRJR5NNuN9F0GVmWEEJjMOgjC4EsZLqdHt6wT+N0Qq4G197a5Pnnv8EvPPfJjOypKcRpgqGb2QyQptBpd3Acl263j2W7iCTN8vBIKJQK1EYy8SbLEo3GKLIsEydJRg4MQlRFBtLsuSkymqajqBCEPlEUEQbZrG+ukFUmkzghSRKuXruGbhhUymU67Ta5XAHdtJCFwv7ePr1+F03TGXpDbNtBlZ3MTjnwkEWKriWMjo4RhRGapuE6LmEQHnR9QEiC+KXXEL/3z3DPnmBybIww9Bmt1xgMh3S7Hndu32Yw6OE4Fh//+NMEQcCf//mf8a/+4F8yN3eU3tCj2dxnfGyUY8eO8uKLLzI3N8dLL73E448/Tpqm9DpdfuGZT3DmzGkaUxMUN75FkGqstmWGnke5XGRnd5tCqYok4MbNG0xOTnDr+nWOnzjO5sYOMzNT+L7H9WvXqdbqzM7Oouk6nh9gGhqqLNHvdeh2B7S7HTrNNudfOc/jT32MYi5Pq9lkc2MD27a5du0qt+/e4ej8UTrtNofnDtNqtzkyf4Q48skXKsiyyhtvvsHx449lr62msrC4QKVSxBv20AybmdkZhAyVcpl7d+7x9FNPEUU9vHCI7ZgYpkYUhVx48x129pqcOHEa0zK5fec2uXwORdPZ39+j1+tzZO4wSZywtLhIvVFntDFKbaTKV7/yH8nnTFqtfQxTQTdUTMsgikKGns/S0hK6YTDs98m5Obq9LvNzc6yurlCtVlB0lcWFJWampw8oiTm63T4vfOdFTNtkbHyCXC6DIE1OTjA/d4Tv/+AlRsdHARVVUVAUQRDECCwGfi+zhAqT4aCP7w1JkhjTtKnW6jTqo/QHfQrFIrKq0O/1eeuNN3n83FlW1x6gaSrVagUkifUHO3Q6A3JuAUXRcOwc3U6fXL5Aq9nEsU2i1bdxn/4dElPn3XffoNPcodEY4eKlt5k9epr05gNwDMLcfeI0QZv9ZZy8jaYZDAc+pVIJSZJJYoEkJRSLNsvLi4zU6qhWlV6rh3hnkcjWKLs1FLNEkoQIWSGJMwtdmiYZOCwFVdXQdINUEnR6XQxVRVFVdNOg3+9l0J80QSKLbYjCEElI6KaeEbTDGEVRKRTyJGkEkoSiyLRbLaIwYu3BKoVCjs9+9jO0222ee+4T3Lh+g1dffY35I9Nomko+59If9HFsB83IigtRlLJwZ4FKJU+x6GRxPoaZzQUmCf1eD8fJIUQWj+L7AYEfMvQHWZEgSSmXywwHQ2bmpknj+P152xvXrzPoD/n4J57j2NF5ojggDH36vS65QoFut48iKyiKyvPfeJ7jx04glKzbkqZg2TbKQZdIN0zSVOLEiRNsbm7g+zGuWyTwYhwnB6mEJCnIQiYIAjrtDppm0O8OWFtd4+iRwywvLzE+McHMoQk6rX0KeRPUHMIYgCShSqN8/3s/4MyZM4DAtGziJEFSEpJIxlA11lfvUigWkSQLzx9k3aeDbngS+FhmiTBMKBbzDAdt8gWD8YlZdN3mL/78i5SLJcqlImHo4zpF4ijFtfPEEfhehGkIwiDCG4akicSVy5cZGamgqCClBqqesr6+xe27C4zXGwhZx/Oyrm4SJ+i6juvkSNPkYBYzA0QlUUoY+cRJgO8HCCFwLJ1er0tKyuShqYPYG4letwNIGIZJPp/nO9/5DnNzhw/2Jtnnf6+XOSiUpQ1SVcX97V/nM5/+RXTNIJV8FhcXGRkZef+6LKUJg26XV8+/wlMffxahmaQpjxSvjxp7+qjO60/skXjEKNJDG9b3Zl4fKV4ThVT1SSSBnOTJOzo3b/2Yc97v0auuMDN5BtPOky8UEQhy+Twrq6u02m3qjTFWl1YYGa0QRkEm0OWscy/LElPjEwghc+v2HY4dO87u3j7TM4cYeB75XI7Fe3fJOS6d9h672w/IOQadVos0kQijYVbokrP8zjCGOAmRNZV2t0cqKSiGw9BPccvT5AtjpJLANDSGvT6FUgnP82iMjiILmTu37zI24bKyuMFEvYptd0mJGQ4suv0BlmFQrVVxCmUk1UYzyni9beSkSxr7JGGA7dgIOSAIJdq9hNsLu4xPnWV2doI4iVlbe8D8kXkkYG9n4aCgP8R1qshyDtOsEgOyVqTTj4hTiXwhT7FUY3Njm+3tHVRNJZfLEaYdNF1DVw1UWeO1869x7fJVdh5coJGXyJsB505OMjeVR5FjSDPAmarpKIpKrVJlaspieiKHQoxh5AliHb0wj5lrECUKqiYz6O8hGRpR1MMftgiGHi+8cBXHLTBSMwiCIVIS4jMgkgt89nNfQAK63R6O42A7DhfevoBjVSjkcziujue1EUqMrkPgN1FFgCQgSWV0TcmcNVHKcBjj5qvs7ffY6siU6oeJRA7FquKWx1leWELXdKYmJyjmXFQZTCfH5StXmJyapFYdQRYS3U6H5tomtmlx49p19vb32djYZLC3z/xsjnK5R71uoEoqWmrgKwNChgyDPoZj4EceUaQzN2vi6kV0UyC3Rrn89jX+1Vf+ZxbuPWB0dBx3qUKtVuWPzv9Lpmdm+eQv/mPq9Rr3rr6FY8Rs7vb41C99HmSdBBCyfGDdfcj+/7NO7p+xfiY76EO/8XMQiX/Wekg3/YMXr2ma/v7DL9ijPlQfthW/9+Y8nDP0qMf+XcXrh62/bxf2vfVR4vWjBq0lyUMVBrEfM+w2uXvrJudOnWb7/grq1TtI0xOkaVZ1khUFSYIkSTI6pcgqO0JIhJ6Hosj0ut0sRw5B/oBIud9sUanW6LQ72LaLohhYVo7AT0mTzFYniewCHgYRuVyeIPTRStlFZrJ6mlq1jGXkkFUVPwwQskKn1TkAZghkObPPWZZDlIDX69Bq7pEvuBRLRTRdp1gskHMtFEVlMBhy5+49xscmWL2/wPLyIpZt0e32sCyHnd1VDNOk3/WRhYppakgiIE409ptNFEVl6A85ffoktuUeoPsl/vRPv8j4xCEcO08YDmm2mpimhePk0HWLRI+RAAWFNIqAFMvJE6dkovLwEZIo4VvfeJ65+SMEO7vIV+6w9s9/A9N1UUj5zne+xfzRef78L/6SBw+2aTf3WF5eZnx8lGKxwMrKMr/zO7/Nl774JSanpskVS1RqJf7X/+3f8vlf/QKnTp1iY2ODz33uc1y8eJE4jjF1A8s0+aN/94c8+8nn0Ba/ijr2MS5eW8hst6FPfbSKpurcW1hg7sgciiJTGxnB83wcJ4eiyNnc79J95uePc/3KFUbrDUhhe2uLjbUVwsBncXGFSq1KuVBkpFqlUC6hkPCdb3+LZ555hpSUsYkxzj3xBP1+n+FwCEnK6uoqhw5N02q2kA4CxmdnpzFMhbcvXGT+6BHGxupIRLT2d5E1iyQOCAKfW7duMjM9jSJnAe5zR44SBBESChfevMjjTz7N1PQMkqzgByHlahlFU1E1Hcu0WFpYQFdVHjy4j+VY2I6FbmXzM5PjY4xUG4xPTHB/ZZXJyWn2mx1GG5N0ex2OzM9TLBZo1Bv0uj3Gxuu89up5FhbuMX/0CLplUK+O0Wy2sSyDOPazuCDT4uS5c8RxzBtvvsmJY/OsLC1gmnZGjZUkNM2i1+3yxhuvUyxUeffyPUZGCwyHTSzNZXNtDcPQ+dM/+zOu37jNqXNP0u90KZVKxGTEcMeyCAOffM6iPlLN5pwsiySR+OpXv4Smybz0ve/yxBNnGQz7fOlLf8XY+CT1eg2CDvHuLeQn/hlSlPLg/hpnTn8cWckxffg4iSTg7Gn682Mki9/FD0Ks+c8TJTGynHXNatUGYRhj2yZDr8Pm5gpzczMMBx531pYYH62SvnWNNh10WUM1C3hD78BeK1AUiSDyCPwITdUZej4gEScJuqETDAcZgVWCKAqQ0hBVUQCJwWCIJCQ83yNNs2ulpqkIAUOvj6ykKJKg122hqTKv/uhHDPsDPvnp53Acm2q1nHVJSbl58xaPHZtGUQSGoWPZDul7cIw0ptvqcPbMGUoFE8s2CcKQfC5PGEbEcUyhUGB3d580jen1ely/fgPHzoNIyedykMb0Om2OzB/ObMP9LhJp9lzSlBOPnWB8+hCQsrW1gWNbCEkCoWCaNqSC5n6TmzduUavWqdQqyKrOwPPRDQshFHRDJ5UU9ttNHNfmyrXLXL50mSRJ+Ju/+WuefPJxOt02spxV9oUk0W63CYOI55//NpaZ48zpU0xOjuNHEeuryyhSipT02O1E+Ole5nYKKszMztHtDg4EvAySoO/1UISJkkr0+usZ7Vey8IMhjm0RpRJJIpFGPrGUoJsq+/u72QxwEKPlq8hCIfR8JsZG8YZ9aiMlVtc2KJWKxKHP9uY6lqHS7baRhUrgx4RhxDPPPI2mqwyGbRr1aaJkgJsrsbW1x/hYiW6/S76YR5ZTfK/DS999hdnZw+iGDhLIikK71UGXVXyviywycEy/06PXa1IulxgbnyAFgjBGCAVVzjq/3jBgeWmZ2kgV08qAOdev36JUqpLL54hjCf3aXYa/+UuIQ3X+8A//HdevX+Wpjz/B2NgYvV4PyDaYpqqxu7ONaZjUxydIhQpp8qHi9af3BD+/bTj6gUqyJCNPJz/9TX4O8ZoqRGqXFIU0tEn9AavL1zjb+q/Y6q0yiCPGpqZJUonNjXUUXeXQzCHyhRJDL2B6rMHOzgZTM1PsbO+jKDJ510Y3DVbu3yf0Q3Z2dtnZ36dULJAv5lFVlZXlRUYqJQaDHsNhC0uX2N1ap9/pIaUymqHSbffxvQDDsPH9BC+KCfyEONXQjBJrmz1Gx+fpdkPiVEPVdDbXHtDc20NSFLY2t9A0nSCIGG2M8eO3rlGrudSrKq5lkaDQ87qcf32TY/M1JAJ8P0U3KnT7IaYWIOIeIomJkwRVV+j1IyTJZOjHbO62ePaTn2Zza5NczqZcKeJ5Q6IwYjgYUMiXSZKUIAqRVIlmd580Vtne3ceyLTY31lCQkFULELSaTUZGRlhbX0fRbJJYEPkhhgo3r73BsL9HtShTr6rkcymSmpAkWRSiqmvIqoYiK0RRgD/s49oqAo0gMdEL46jFUYQ7QeBHRN6QYDjAsG38YYghUhw5Juw3mZ0u0GjkQAoQxEhJiqyYvHx+GUUxuHTpXeaOzFGqlJBkwdT0IfrdJtvbGwSBTxQmdFt9dvf3mJs+zPbGHmAgdBcvNFGNKpv7CXbpMPnaMUqjj9EfxKxu7JEvlKlWa+zu7GRjObKCblrcvHWL2middqdDrVoh9LLc5c31Nfq9DjEm3//ei9RKOpbcpWQPeeKJcSZGDKQkRtVdgjBA0yLCyEOQYmg6aZyQxinlnI6mCIQeMwhCSoMz3O1e52LrDf7pP/ktXn31x/zK+BeIoohDX8ihqya6UyH0fVpbS3idVfxY4bFTH0Mz88SSlI3NPKJp9n+reP2/eP2DF69RFP0+/HTW6cNC7mGR+sicoQ/c/6gW+MOP/6A9+VFdXOD9ruXDnd+/z/p5bMOPynx9/3mgkpIgdEGYwN985et87T98hX/8a7+C+q1XiI/NIqSUXqdFSgZoUdRsXkyKfPxeC8M0EbpFqhroukZ7bxPf69HptjAsm1y+nMElLItuv4csBHEU8uYbr3N/aYH9jsfE5AS9fu9gHkUj8YcIt0McR2hBhUI+jyQLonh4QJJTUOWUxbtXKBaKJAevvSKnhF4HzXSJSen2OkiSRBREXLt6HcdxMU2LTrtL6MfUaw0SAWPj0xi6w3DgkyYpmm6jKhr+0OM73/4242MT2E6BftcDKetiCVWl2d1BFy4vfPfbTM6Oc/bxs5QKZSRkgqhHo1FH1xU0VUUWMlISk6SQytLBLFQPSUmRZcH0oWkgiyXqDHpMjjdgaYOuKvimssu5J6YwtQKyZqHoLj/64Q9ZuH2F//y//A1++T/7ZdrdHrVKiW9966tMTRRpezrN/TYXzr/Ok6fPMRwOmTs5hxf1EHLAxbdeZ+3+On4v5Nr1u3z8mVM0Gi5F10YsfJ145AlGGw2uX7vK4dlDbG2tYTtFpIP5YlmCcDikvbdPqzPAsnO8e+U6J0+dYXNrk95+m0qlzNr6CmkSUCkWuXHjGqurLU4eP8X6xhatdpdSvkQUeAz6AdPTc3S6PRRZZmFhgUOHDoGQqDdGMS0LTdMoHHSfJGJe+eHLTE9OMjU+Qb8/BKGSpOC4LnutJjnHJfQi2ns9aqOTxKlMqVJgYeE+hVyZjQdb1KojlKpV0jSh1d6nWi0T+B6akgnZ1Xt3OXRoDt0qEMfZnF6xWCFJBUIomS1t9T62qbO4tEC93uCtNy+g6yb10TrpgWhq7e2ydO8O9UaF0UadXK6IqtuYTpFWe5/v/+D7HBqbJAk8LMdiGEh091u8ev48M7PT1OoN7EKZ5YU7HJ6bw3HzIIFumIw2xnj91TdotdeZHJ/FNksgAq7fusnszBQzM5OcPXuOe/eWqI3kkWWDMAhJ0h4DP6BWO4yiQS5fpJAvISSF1ZVVTp8+Trlc5Nr1qxw/fpRczqVSKTM+NgbJEPobRL09tHP/NUN1hELBQUQddnc3CdDxW00KjoqtK/RvvUgcReSPf5a9zWU6zR3K1RKJBAExQlYw44TQG+JJKXtre3zpj/+SZ575FNqdJdRBkzjpYNs5+v0hhqGBkPA8D0OTSSMfwzQZBjGqYaHIIJIIWVGRkphIUtA0i2F7H0mziRIwbYckAU23kBP5fVCSH2ZU0xSQFQPdMEAIxscnmDl8GEVYIIms2yZSisUSp0+fJhagqhZCUlAE+MNuJiBjFX+YIgtBp9vCdnO4bo6h55OmoCgqW5s77O8PKBQqKKrB0tISc3OzSAl0W0NMo4iVqyLpNiIdomsq/tBD1VRa3RZOyUWXdfq9Dl/7m69hGAa5XIEkGhCHIaahI0sSE+OjSFLIvXsbjI7U0DVBEvuQxvh+gqwIHMdGImF8tI5lu0xOTfLU008iKwLbsvD8gL29fWShI0kq58+/Shj6EMfkCiUKpRqqInHn7g2cUh4zjRCJoLdvkjNnkEVKtzMkikLKlQpxkmZdc91GkxUUNSEc9kgRaLqGkDVWVh7g2CamRjaioWbXEcfOg2yg2gW8XhtVEUxOTXPpnVvYThHD0AjDjObb6bXRLQsnV0CgMRgM2drZJIwCTMtFVS2Q1QwqpxR547W3+NRzT6IYSu4Sxg0AACAASURBVFbUSGKa+wd08doImqnhBUN0Q0c+iBfq9lo4bg5JKCBl4ymmWcQwHXw/Yjjwefedy6iqjmXqBH7I4uIiFy68zfj4JJX6GHEs4eRy5PI2m9sPSKMY984Kvd/9DSRZ5vEnzjA51aBQqiMkMHQt22coKtZgiee/+Ty/+Ou/iS9JCAJIBclz594XrkmSPHJfIIT4W67KQzcp/em7o29pJDsC+cnwJ5xpP+Fcy7uI0/NIhxo/vX8RESLRkRMB6YBUN3jlq5sc4yj5oxBEKfvNDvXaGLFIyDlF9nY2kNIB9xfvcW/5AbNzRwiDiFKpTBzAYBBj2xqGY5MIaIw3ODQ5gaWrBIMAkQhURXDh4uuYuk6/N6BQaDAx/Rj73YCtVp9Cvk6YGHSGgkL1ECguTm6U7f0ItzKDnzpIiovjlNjd3aFRL7K+soimaxw6fJgwNalWquScIj9+9TWGw3WuL65SzBXp7O1THzGRkwAVnVNnp5DiAZqqMYwEw0QmX67jdzaQGDAIPDTdJPFCwtjkay9dZ73ZpjbSoN91KJU0SuVxgsin091BJAal+jjdfkx/4OG6Gjtb21SLIwjDxco5JET40YBCOYfvmbz+yrepjeVpeT5JJDDdmLX7Ht/6xosoXOXMdMKZySJTs6MEoYehGxAlqAhiGYa+DwiiKEFVZRRVRiLEl03UwjgoBUJfJvDb2K6DbNqkIov1sqI8sMaw20WVJBS1hRQqBJEPUYxpafihzPbWDtXqDB/71DlUwwIvc2gM/SauW6RQKLO+vs3U1Aw7e7s8duYUK+u7RNgY+TH2uhHTR55GNsqoZgFFy9xtipbldKtaBn67d3eBqclpFNVGSrpYikI8BEmK0GSJfKHCd146z8joJIV8jkGvzQ/Ov4qeyCjBFk8+6VKp1dDlCM8fZJnkUWYtlhSBKueQYgnihCgKUXUFXbGJ0gFxAtdub5BLpoklweHfmGR3cxFv0EU/kmP0UzPstDd47eVX2NvvsL65Qk6XuHn7EqdOHKc+9xh9o4IsyyhpcjDz+pNnrST9tMb5eQjE72mbv8/6IAzu4eP+rM5s+tDP/oMXr+/RhuM4fqTV9+Fu5wffmIdfxEfNzT5q/V1a4x/8XT4KFf2Rq9VBmmogzhx95O/zkTm371njgUqpxNHDRzh96jTuY0eQ/+IbUKsg53NoioKsqCiKQpIkkCZ4gz6ykBCKBrICKcgSBN6AcrmCbbvIIutwyIrAtEw0LbMIv3b+VU4cP8Fbb77J08/+wkGOa7ZBiJMEQYKc6yHLCgxLaLqOQEKWJZrNfQzdhjQlX3AJw4Q4Bc3Q6XQ6pEmMqlqYloltWei6TuBHXLjwNkePPYYQMl/+8peJopDZ2WkuXX6XtdUNkiTlxRde5PTp0wwGGfxFlgVnzp5FiMza92d/+kVOnzqBYTjIkkrOdVm9v8yxx45jO3mSJM3s0qrEcJjBNrrdLu12h4WFRRaXFrKZT5HZlJUD0nKr2eTV868xOzuDrMhUR2oE/pDO914j/1/8E0Y/9yylUoGrV24wPjHJ3n4b27T53Gd+kXyhzvLiBiOVSb7yH/6G3/vd/5YHy+s89exzaKpg9tAUnt8nFQmDwYCR2giWoXPixCmuXL1Jtz/gC7/2BRAh58+/TLFQxN36HqvDAhsbW5w7cxYhCzrtFoZmsLGxhmPbBEHI2xcuMDd3hFK5wvLyEp12i0KxgBASpVKBVqfF+OQkb7/9NidPnsKyHarVOvvNXdqtfe7dvYcQgts3rlKrjbC1vQ0CKrUSo/UG/V6ftdVVioUC7VYLIYn3RX+n3aGQz7O1uUkYh6ysPqBSqRzMgioEQYRt2dy+eYuFhQUKxTyX3r3I+HiNdy5eoFIusru3SbFoY9k2vj8kSSICP7P6jozU6Q96bG+skc+XCKKITnuPlfvLHJqZZX9vnygMkWVBkiQUy2U03cC2Hebm5nFsm36/RxgGdHs9iqUilUoFP/AJ/YDBwKM/GFAqF9E1neOPnWB7Y4tWe49Wp0OxXCeOAg7PzWKYOlub27hOju+99EMMw8AwZXxvgK7qSKnMxMQkly69nWUMujkSIhy3QC7vQpLw4x+/yfT0YVw3m40VkpqJswM7aa+bzUsdXN1YX19nfHwax87z1MeeRlF0fD+m1epSKhcwdI1gbxHZcNHmfxXDyuHq0G/vMtoYx3IKrCwtMTk5QbvdZmiOoU0+QarY+N6Q6ugoKTLrm9sUiyWiKEFLU1RNQTEt1FTh3/zrP+JXf+0LCDXC+cEN2rkYzSwTxllub5wk7O/tIR2cS2EYo6pGNpvve8iKQJazfGpZM7JNeBySCvmAd5CwtbWFLAtUTUX6P9l7syC5sju973fuvuWeWZm1rygUgAYa7IXsbi7NVaORQ0GOHkyGLI9sR+jBEbbHDj94whGS5RjZETMOyw+yw4vGljykZ0jOcGuuze5mbyR6Q2PfCiiggULtW+6Zdz3XD7e62WqCy8RYDoc1B1GIQlbiLpl5b53v/L//91MUmu1WxiMWSuYikYI0TdA0NUtejyIs2yCKffywi0xjUhISmVV+NS3DO8RRhGEaaJpCHEmuXrnKqz99iZF6GfOw3xY4dJxEXL58mTffeotHHjmN6zo4rk0hXyBJfO7du0uv3yNfzKEagiRMMU2Hb3/7u5w9e56/8Vt/KztvkdlNV1ZucePGDSYmJ7CcbFImDkOgDpoHzB9Z4P7aKtWRIooiUbV3JzU6iiIY+j5RGKLrBqVSlXa7g+u6xHFEf5D1gWf3R407d+6yunqPL33pizTqNZ757jMcP3Ec2zGZmBhF11TC3iqKlgmy/iAiihXa3Q4zM7MEYYim6yBAipR+r4cMfRQ1xbQ8NMMBoaIbOqaZoXlUTSOJU8IwJE2S7L5rWRiaTRRFCFS+990fcvvWMqNjVSYnZ+h0u+h6hphSVZ04illeXubo0hK+73Pz5gojI3UgwXVsbt5cYXFxgcGgdYhzyTIUCsUCnX6PnJtjf28XQ9cQqSCOJJpqcPfuXVRVI5fL0e/3iaKQ0A/Z39sjl8+xt7fHq6++wuOPPYYQEZquUSgUWTp6jHq9wcsvv0ySZI4IIVJqlTLqTgvVDwn/rY+RJAmGYRBFEYVcCZCoqkIQhkRhwHe+8sd8/LO/jZ4rZTZiJKS/SF544HxAiF8asvKg/5G8mYVFaR+Of/k2Z8Z4kHB9/0YFZG1DqsqJ/Q9zefklbt65xMRYjTgOsR2LVvOAUqFIs7mPlDGG4TA/v8jKrVuUy0V2dnZIkpgoikiSAEVTyefzmIbB+XPnOWi2KJXLXL1+ldGxMfL5ElNTU3S6PcIoSwFeOn6MRmMUPxbUx6eIUxUnVyJOVWxTp9sfIFSLSrVBrzegXm9gWhaaprG7f8DY2CTRIWIGkaAISBJJpVKh02xTKeocO1JFTUNMy0bRFFRdJ4kDEAqp5lAoN9ANi2FnE4UAXdfRFBUSiaZBvVZjfrKIjPq8884WhVKOQj6PH7QpFS1Cf0Cv18UxbZrNfTQV/GGA5xSJ5BDLMGkddGjUJlBSg3vrN3n09CN0mwmRn1IvO2xcvcr9O2fRlC5HZh/BsDwUK7NmS1ISmRyyWgW6KpFxgiZUUglxHKMIBT03hupUyVcmkMJA00ySsEe/20NTVJRUkiYhup4wHLYQYkgU+WiqSZSEmbNI1xgMB8hUo1CsM+j1GfgpumJy4+p5TD0lCH26/SFbW1vMzc4i05h8PkcqdAq5Enm3QCFfQtNNWq0OrVaLQqFAEAR4nksYhaiqwY0by0xPz1AbyVqjFCUligecO3eBiak5TM9C112CUBKGEa+8+CzNnTs4eszCdJHpcY+jR0YQSBQVlPd+x6QI5d02xewaUxVBksQoqpql/0qBYWhomoGmWSSRRkE2+P3v/Icszi1xdPEhYjvmxTef5VNPf5xPfOwpTLfAseOLeFpE3o2J4gijOEZ+dBZkipKZxB9wzT3gCv814hV+fbjtbzJ+lb76Zc9///3q//fiNY7jf/xBq+wvE6/vCtJfhbn5TcYHe2h/3fgri9bDoZxe+gXhCv/qef1K8Xr4Vypg0B/gOS6Xr1yhOjqBsnOAcvMu6eQo4rAfNU0lUma2FMsyub+2TrFcAaEAKSKVBL5PFEuWl28hhEqzeUCaZtD1Xq9LzvVYmJ+n3+9Rr9cp10YwTQNd10iBQb+PZZukTpM4TlCjGkEU4xo6e3vbFIpFVNUiSSSqrmDoFjLNQkQMwzi0cFmQCnq9PoEfEQUxi4uLGJZNf9DnI098hPmF2UMUQ8SZn51hZnqWTqfDzMwMr79+htm5WXZ2d9F0jYP9fQb9Ph95/FEUVfLiCy+yvrrO1MQouZyK4+TRNBeBQMqQbm+fJMn6bkulEl4ux+7uHsePHUNVdQI/RFdVFAUOWk3KpRITE2PIJM5wRJqGkSS4F1Yw/uD3MMtFdM0gn3fY3N5hYnKO55/9CU88/iTL11eQUcqt5Vt87tOf48KFy/z3//Sf8cnPfpxBr8ONaxfRNIGiqWyubrByYxnH8QhiSaFS4qNPf5yvf/VrqKrkb/zN30JVDPR3vkV5YpGV1V3mZufY3dlFypTO/h77e3vMz88ThhF5r8D21h69ThPbMgn9YYYzsG16wx5jkxOops5g4FMbGUUIlaHfo3mwTb/XpdlsMTU1y/TkKBsb61RrFar1KpplEgfZ5L7T6RAEAZVKhSSJsQyH5Rs3mZ6a4d7de5w6eQpNB9O2OH/+HLPTM3TbXd58620mJyayZNc4JAj65AoOrmszPjFBpVxmpF4liIZZyM71a5SKRWQiubl8E0UolEp5GrUqd+6tsr2zy/REg7nZeVIErXaHbrcLaYpbLBAccke3t3dxHY/l5Zu4tsWVy5dxcx6FYgnNNNlcW6fdbJMkMaapUSrluXN7FV3VefWVV8kX84xNTLC312JsvIZuZjiQfKGAaVg0GnMUCi75nEa/u084jHn+2RfJlwp87BNPYugGe3t73Llzmx89+wJLi0cZ9Hv0+z5JArqZoiomnXbAlcvXqY1U0A2BItT3+H6qqvLmm29x48YtXn75FUZHxwn8kK999escNFtMT42jahpRax3dMOhWHsEyHTQRc//eO5QrFVTdoVGrcfsf/CNGb++gfvbjvLO+w+TkJK1WB9NyCaIoCz/xfSzb4av/8svk8gUM14Mw4WevvsajH34Ce6pB7oev0y8p2PkKhuXR6XZRVJVCPo9j2URRiKpqhFFEKiVRFGBaBt1OD11TSVFQVBVdpKAqxEm28BDHMY5jE8us1zVFJUVFVXSkhPNvnaOQz2HbFooqMG0LmSYomoJM06zqpmVBWTKGdrOVsapJGfQH+OEA27IxdJ2FI7PU6xUs2zn8RQDB0Ofs2bM8/tjjLCzMUijkiOMI23GQUmJaOoPBANf1yBfzyFSi6zYIhenJGZ5++lMkCaRCyZKbU1g8skixUMBxHGqNGv3BEFXTUTWNlJQUqI9UCUP/MHdAwzQsfD/Etm2EItA0nW63y5f/5M+4fv0aCwuLOI7LYDDIAlKSAF3TKZfLlEolLMvEMnWCMEDVs7A5TdVIYug1N6jWyyQyotMLKFcmcD2Xm7dukT901SiqihRZWJNl2njFHL1+CKoN8F5PqaqqCFVFESqOZdHvd1AVgWGahL6KP/RRhEBXdT77uU8Thl001WJ5eZlypYpp2gR+yN7+PnPzcwhF4HoeUqZ85cv/F6oqMuyVaeK4FoatYJkF+r0+jm0TRTG6bhJHIbqmoGsG62sbVMo1fvC9ZymVqpRLlUx0aAqmaRKHITduXOcnP3mBU6dO8vFPfByhQBh1cRyHVqtNvzdkf/+ASqnM/dVVLlw4z2ijnqXb93xUP2D46cczDIoQ5HI5FClJlYx7ahoaw36HVnufR598GmFYvLc2/b7J6btzlfcv7r//Z/9Pi9dfOd4nXpXDClD0pw6l2TKK1mF/8za1qkd/0GasPsq9u/cZn5wiTCJK5RHuvvMO8wtz9Ho9cjkXz3MoljxMMyMVmKbJxsYmx5aOMTo+zSDo4+Rsev0BtlPEdV26vT66YZIvFA+xfRa9QYKimdhuHt1y8PJZVoeXr1BrTNAbBtRGGvQHQyzLYRgEGabNDzFtl06ryY3ly7Q7bc6+fZEwkNy/c4fxEYVaJcFQdXTdIkp8/EGGPAoiQao6DIMYPxhiigFpPCSMQsIgRIMs60MD4e8DKbpb5ubtTepjoziuQ3/Yp5AvsLffxHEKVCojdLpdohhQTA4OmqhCo7nfpt8LKZdHOX/xNUaKBWxN4Xvf+QvUaJ25Sp7GyJDZuQo//uFVtne2mT9RRYmTzN4qMnFmmBaWnUOigWJjeiV0O49TqLK1JxhGKkJk7OtUSoh8LEMniQJ0kZImEaHs0O3EGGZEvzeg29YReoZBi4IIx7ZQNYPV1U0sW3Dlyh5RqHD69Dy6qVIqT9Bs7TMzPY1h6Fy+dBEv5+J5ZZr7B3iey6A/IJcvkEhJsVgkjuMsL0BVWF1dpTYyyvT0NBsb6xRLBVRNsHLrJtVag/GJOUw3R5RAuz3g9spNLl14nbInObFQZaxq4GldpmY8Dno+UVREVWIgQVUVhPJuW6KKIjKsWpIkxEnyHic7liFJRHa+jgpKyEh0Gi1UaDwySecg4JFHl/jwR4+hKTYvvfA8llckkQHf/uq/YHo8x6uvvEK+Ps3Y3Cl0RUAcgaI94Jr7a/H6/9khpfzH737/qyqQD+o3/aDAfVdkvmv1fZCl+EF2mQf1ysLPLbzKIabh10J6f8W2H3Q+v64C/MFjUg9tqoiscqlrGoHvowkdrVJB+/MfEE020FwLBQUpYyxDxzQMhFAplMuAQhRFtFotVEXBdVwkknv31tjZ2uXo0UUcx6TV7vLSSy+ydPQogR+wsrKC6zmUalVkIkEcBhTJOLvROc1sohJUSVPoNduEcZhV3voBgT9k9f5dUA0c2yYOQwQCVcvwDVJKzpx5jRvXbzA/N0ecRHR6PbycR5JE+P4QVVVojDZ4+OGHqVQqjDbqXLt2hevXrjK3ME9jrIGmqnRaTeamZwiSPoYBi4uLNOpVdnZWaR5sUizWCIKUVrtNqVJANwSem8dxbFqtFkksqVSqXLh4kdHGKKpQ2N3dY/X+PSYmppBSIuOIXD5PEEYoqo7Y2AFVQ/8PvsDOzg6BHxJFQ0bq4yzffAdDNfjP/pPf44v/9m+zdv8WJ0/O0e7tcOHiWT73uc/w0MOnuXtnhe898xf8zu/8Do2xSeZn55icnOHMmTdYXDqGYRrk8g5bWxscPXqEQW+ITMG69y2IQ2RuhtV79w6xJCk7W5uYls2tlRVm5xZwbIdSsUQQDqk36riew/T0NFEUMjUzTRhHIBQqlRHSJEUIFaHE2KbG/Nw04+MTFIplrl27wocfeww/9ImTBMu2+dqffpX19XVOnTxFPp/HMAxeP/Mai0eXeOmll/Bcl6VjS+zu7hIEAxqjDXI5jxs3blAplpieniUlJYpjZudmqdXKNEZqhL7kzu1Vnv3Rc5TKNXTDYmXlFktLx1AUBcu0uL+6xkMnT9LrtNje2qAxPsXE5BTt/T0G/T6XLl/h+PGHyOdyxFGA5eXRDB3DMGgeHLC/f8DW9g7lYsbIPbJ4FD8IsVyHarmMYZjvJc2mAi6cP48/9Pmtv/nbWI55GCSV4noWtm3B4X3m3r17dPsx3/rm1zD1lMbICGEIly5fZ/HYEXQdfvzj5zh79jyaqpKkCo8/9gj+cMjVK1cgBduxEcCXv/ynbG3tc/pDJwnjPjIW3H3nHmNjY8hUsra2Rqu9x6c/8zTPPPNNHn30NPfX7/Lxjz1Jt9sjny8i/D2EkOw6Szi6iWUotDoH1OqjxFGKSFNyl+6AAP2Tj9JsHqDrOrlihXyhwEGzzfjYGGura9iex+Cgg+cVsXI51t65y+nTD3PsxGkcz8V/4UV6izaym5BqFkKo6MZhC0OaEkcRcRJz5dJlRkcbPw+OM0xEmhBEEapu4A/7WE5W7dQ0Hcdxs+A3M+tPSxPBysodquUKigBNwGDQIwz9zAGiKKSpliGQ0ElTDUOzabf7tPf3efbZHzI/P4ttWdmqvpYx7hzHZjDooakCRdORUmYtCobJjes3MnRVPkNLDYd94jjCsgy6/YhqdZTtrT18P6I6UgctRlFkxilVJMOgj26oRKFEKAJd1xkZqWf2XxUMwzrMvhA4jkMiJeFQ8swz32N2ZgHL8mi3+3iOSX8woD8c4nk5/GHA6dMf4sSJE3zjG3+ObVtMTU9hmgZCSPr9AVvbW4yPj6GqCoqS4uXzFMsFXMel3+uTxBK/nU3AlUIXryRQ0iJC0Wi2DqiO1LBsOwsc0kWWtqsaxEmMEDqm4ZImASKVgCBNJd1eD01oDPptkjjANAyaBx0CP+V//5f/G/VamZ+++iq7Oxs8fOo4e3tNTMMil8uj6zqJTMjl8phmht4BKJUqVGs1otBnbHwkCzlzHFJizvz0bTzPwXVsbt+5TS5fRNdUrMOq24XzlyiXaly4cAmZpoxPZK+Hpqt0ux1UVaVYKnD8xHHyhQIpKXt7u6gabG5uUavV2dne48c//jG1SoXTpx8mX8xRG6kiFBVrdRsfSffJhzAPP4PD4ZCC6yAVld5giKaAYwhmjh5DqjoJh46yNFvI1v6Pb6Ocv0H6yLH35iIPnE/85i2vxIfiVf9I8sB5iBCC9JW34d4mysz4L+7vXQsjAtKU5K5C/LqO9pCOoUn8QYtut8n09CTLN1bo9gMa4xOYlkUwCNF0QRzHh9tT2NnZQsqYtbUtxicmAIGhGxnOT2Y2zUIhT6FQwjQsoiih38/C6wzTIAgjUgQ7G+vUa1W2NzcoF/KIVLJ8c5lYCiwnh25aQCZCIGNKN5staiMNNra28WyDsfEGxUIF13Y4d/YMHz45zcL8KIaRkQeSRKJpBjKOCKVGoTKBn2iUKiMgfZLBPjIaZp9BmQm9V1+/h+uZFAt5UCzu77RZXWuyu7dLbXSKfHGcKFbpD4ckUuPSpSu4BYfGaJ2UlFKxgULCzZtXqNYKfO9H3+L+8hqD1jLlUpuFeZuJqo3UuuiWjqLojFRNpieLaKlEkRnjNo4limoSJwpKfhIzV0f3RtC9EfzUIhIO9XIdkaaE/oByIU+32USoKiKFbrsFacpwOEA1HMqlMQa9Jtev3OLmjQ1Gx0tYukARBmmaEIYhI7URIhlx+14XwyuycHSO5Tv38EoTFDwDGcssHHMwwPNc/DCkWHDpdvaJ4gDXcxBCI01ToihDHuq6jmmZdDsDhBBYlomua8RxTJqk9PsJL7zwMpsb67z26qtsbazQ3L2PbQz46IcXyZkhph6jqBr9aMAw8fjRsxcI4yETY3kM0zhkeoNM0sNchRTNsEGogMjum5pAFdZhQFGAZgni1ghPVD7DsfYjPBI8xeiNJZydEj/tPs/avbt89OnPEMU+i1M1/O4aSRKzdPopSuMLKGmKJtJsUeEXLuT0F8gpv4zz+gstAL+ho/MXdvmXcKb+qvFvnHj9y4z3v0nwc7H56wThu2/obyJG3598/OsE5weP54MjvbsOrS6imP+NzvWDFWg1zXzliSCzCwLnL15EDHxGHj5JuraJlsRIO8NNxGHAcJDZYVOhkopsYhZFIbZhouka/f6ARAbMzS1Qr2XcSk0R2G6O+fl5ut0OURgyOzOTTR7MrFoyHPjZqv8hBFxx26QyJe7kCaMI1/IQquCVV39Kzs0zPlqnVivi5isIJPt7uziuk9n9kBwcHGDbLnNzcziOgaYJrt64RqPRwHFdTNMiFYJ+v51N6JKIO++ssLAwy1MfeZL9g33snIuiChzTJBwMMRyHvf1dSFWiMKJcKaCkCapmEEQxzz3/HMeOHcPUrcP+SIFpmpimhZQwPj7GzeUVfvT9H7Kxvs6Hn/gwimoRhxG6nq2gS6mg6Rbi6grK4ydQPnqSXq+F41qIVCOOBZbtYWgqOdciZxt88xtfZWKywc7+Lppu8PjjT5JIja999c9YnJ/lwx9+gp+dOcfNu7f55refYWJ8hlMPneIf/cPf5/KFc/y7/97f5+Cgieu6/NEf/hGfGt8h1RzKM6eZGB+j02kzOtqg1e1x7ORDjE1M0O11iaOQdusAoWmkAkzb5szrr3PsxEOs318nCEL29g7QVY12s4lMZCbo93fptVuYtkuhVGF8aoqbN5fZWt8gDEOKpSofevhhji0tvRdGsry8zPb2dobrSBM63TZ7+3tMzUxy6+ZtcvkMCVMtl9ne2KBQqtBut6mOjGSsvYuXKOXLaHrK/v4ek1NTLCwcwXJsxsamMEybIIgRqsrk1BQDf0j3oEm1XCZXrpFIwfKVyziOzYXzFxmfmGR5eZlep4OumcSHq8Su45IvFKg3Rmk297h79x6u41AqVYjirGJnmhajY+PsHTQplisszE9Rq41g2jad7gFREjLaaBBFkpSUXr9DFPgYhsrtu6tsrt9namKKSqWBky8xc3SRQs7Fy5mcv3AR23I5urTEEx/7KAoSf5il7N65cwdVdWmM1bhx4yJf+PzfwfU8dF3h1VfO0G61s6p6EFKrVTl2bIlqtUKz2eTkqZMcP34cy7Z4/tnn0U0HO+1gGCrq9FMUPY+7927T7faoVOv4foRlmHR/9FNM06TlXEPu38QZP4nQbRKZYmgGYeBnFa0UDKmytr7NkRPHsFSFlZWr+DHYroXSuoe4sUGgQ7E2iaJoaLqBIlTiKEamCZpQsAydQiFbZU+FABSG3Ta6YYKioikKiUwRIutZDsPoPWtx4If89JUznD97lvnZCSxDQVOhWMzj5XIoqo5Ms32QQnO/xde++nWmpyfZ2txESRMeOrmEqgEKdHs9bNtBEUqGC+p2kVIi1MzCq4iMLNhoNGi1WzSbPQqFIpqmomkKQTDA9gr0+wPunTAWzgAAIABJREFU3LnNww+fQlFTpJIhPN61J2d2WMlzz7/E7NwsQhG8i7ERCsg4s6Z9//s/YGZqGl3TEGiEYcDM7BRCZEFVg0GPYRBQG6kTBCGu64FMSNOYY8eXMEz90N6msrqaoYn6vQG+7+N6LuahNVtRM2G3vr7OjevL6JrPO3duMzJjY9oGIq1gmS71ev3w+QpRHGOoGkkkSCRIGR9aEFWIBlw4f47p6UlkkqCpKojsc60gsW0X1y5gOy57uxs88cRjlEoFbMskX3AIwihzwHg5NE3jxvI16qNjpKT4QRb+FQQR+UKBRr3KoN+mUKogpaDT7fHcj3/CsaVFup0DNjc3WThyFEXRGQx9LNvGtCxeevllPv/5L7C4OI9lGeiGyu2VFSrlKoadVcoLpRLxoe3ZyeUJBgNq1TpRKLFtBylTyqUyU7OTqLqCk8uh6Abq3XX0qVHaD81lOLpD2/De5n2sXBFFN3B02N9cRauMoupG9jopmeNAkKL+8GeI3hD5iQejcn4+SfjNH47fV3l9/xzjX3nOH/yvpBdvon7+U790o+925IXfNFFnJIqjYroeI6NjDPpDNu+tkqAyM3+MIJYYhsbG6n1QEkbHxjBNB8t0sGwHRVEoFkps7+5SrVQIw5DdnV06nT3CICGOFDY310H4XLpwlWqljGGoCJFSyBdYW12jXC6xs73N9Mw0u7u7aHrWIlSt1Oh0+9i2w+2VW0xNTnDj+jVGqhUO9vcxzCxA0tJVVM3ijTNvc//OMp/86BFKFclrr11D1/K4nkTTUkgcoiTAKYyS6gXylVEGg5A0OkD6bZLIJ0tRVkiikLGxUdBSHMdCUxVKRRtbxCwdqRMMh1y/eof1tTWKOZO9zS16rV1OLNTRkjadvVXOvfkie+vXmKhZ7GyuEPQP+NRHjjHZUNCUHo5jEgcBmqWTJAYi1SmUbFIhEYqNapURRg6vPA5GmVJ9nlj10M08Ulgoqo3QjCwPQkQgssU5RbMwrDyuV6DdaZPL5XBzecIEHKvKYLBDGsfUyhVGx208zwVCBBqmZZDKGH8wwDMsekGXre0tFEwsM0e+WMBQBdeu3cDz8hTyeTrdLts7++zublOvVUgSSbfnI2WK7/sIAaurq3g5l53tHWSc0Ot2uHzxMq7tMuwP6XV3EanG3XeWGasbDFobTI5anFgc5fhiHUP1SZIhqYBECEzLQaQqa/c2+fgnTpMmfeI4hjTNkJKHCeVRKEHohFGCUECk8eEik4lQJcPQZ2dP8P0LL3ErvspdVhh9cgRzy0NGgnPmKzz5kcd57a3zLByZxWLItUuvcPvmCg89/nFqU0tZyFUakwj9Adfcg3J2frX++NcVWPuXHX8tXh8wPlhx/aB4/U1QNr+JFVgI8Z5d54Mrn78Mp/OrziP6z/8Q+cpZ1M9/+i8lXt/dt5JmjgEpIIjCQ8C7hej1MEyD9ZJD8Y+/QWBqqKUSqhCYuoZMU4SqIVNBnCQkcYSmKvT7PRzXpdPbx7Zcrly+jqmbOI5JECecP3+een2EdrOFYeh4rsdeq0m/P6BWrXHQPMgsd3GCIUoEHQvHzKGpGmmqoeoqUzPTFHMl1tdWsU2FYSywDAPHMYmiGKEbBH6PZqvFSG2EjY0NisUce/u7nDp9GsPUM6vG4UqdrsP29hY5z6PRqOM4Fv1un8pIFc3QESKrUF+7coXyyBT5fBFDszFNmzRNkFGY2ap1laPHjpOmgvX1LYpFj16vl1XtDy1RqSKI/JDjS8c5unSUWMZ8+U++yo3r15idmcJ1XRRFY319C3t7n+TkAu2pMpVqEcsy8OwS27v7lMpVmvu7fOjhExSsEq+feZ2nPvZxLMNja7tDpxXwX/z+f8l//V/9Q27fuk6lUuWf/g//M1/63S/xxptvc+P6TS6cO8vv/t0v8rnPPI3h2kyMTYJQeerJp1BufY1Uc6E4naW+Li9TKhVpjE+SKgp+GLC+fh9kwuz0NKbjcPvOHeqNBhOTk9y/f59KIbNHNptNGvU6r505g2UY1Btj3LhyianJiczGZNoYtsv42ChqCqONMVbvb7Czs0W1WuX5559naWmJ8fFxVFUlDAMWF4/QGG0wMTXOzVvLnH74UVqdJlIm5HMe440x7q2tMzo+llniBz6NWgPTsNjaWeHo0UXGxhoMfJ9ur8ubb1xgc3Ob0dExvvmtb3LioeP4/pCRUpV7997hzr37eLkiMghotZosLC6iajrzC/PYlomhmFw8fx7PcymWiuiGiW4YqJqCaRgEw5DBYEgKbO9vk8tlyBHfj/jJiy+zdHSWN998i/rIKGE0pFjMEYYhtltEUwVCpFiWjmWaNMbG2Vhb52C3xdGlh/jnf/J/Mj49hUgiHFfn6OIShXyFRr3OwPdRVDANlZFqFaEofOhDT2GYKcdOzOPY+ax/UIbMTs0zvzBPnMS02k3Onz/HkYVjKIrK3Ow8nXaX5378AqVimUsXL5HLFSlaIZapMfrE30EGCfV6nepoxvHtdvo4lk360wsZrzJ/BfpblB/+26SanfUJxhGvv/4ahVwexTTp7/fY3+9QnxjD77ap1vKMT82j6IKgeYf89T3isoFTGM3ShE2bbreLqWcr9P5wiOe5pDIlSVNQFDTNIPJ7WG4OiYKpawglSzn3/QBN1YmiGFIJUrB67z6qgEcfPUVzf5t8IYdh6LTbXQzTBlSkHJDKBNu2CEMf01TRdMGg22VkpJJZxZBYlkUSZ6mcURBi2VnVG0WgaxqOk/WOW6bF97/3ffb3uxxdXCSXcxFKmjGsLYN8zmNqapzBsAsiIYgFIlVIIomumaiKAahMzcyyv7/PcDBESsn2zjaFfJ4kjtnZ2qHX6RGEPoNenzfefINPfupjBGEfRATEmHpWnYyShDhJD0V9QhD4FAp5PM8hTROEgFqtQorANG3CMEBVs2PywyyJczAcUiwUMqeJts1ItYJbUokSSTjMkEu2Y2M7Lv1BFnqkSMHuThOEimlqme0uFQT9Nu5hhsHAH2Y2U00h9Hvoukrox8hEJZYxC0emMQwF27IPq2y5Qya5zubmFqZtUh+pkqJmgYCGwWAwIIpi3nzzLeanp3A8EykVhNDRdINjx45TrZbwXAvXcwnjhCgB07JIZILjeZw8dYqUFEGEUCAIfIqFAv3BAP+QJ5xV3FN6/exeYAiNOJas3L6N47isr6/x1FMfBZGSpDEoCqBiXVzG/we/w8DK3B0AQRCQt0x0N0+r0+X+O7dIwx7e+Cykh2mmMj3kW0qUV88B/L8uXt9LG/414hUfgq9YqOMSqSdI1cCwXCrFInvra2i2Q7k2ge15DPs9Co6H4ejkcwV63SGKkqU9FwpF4iQhTdNsYUE3MAyDSsXDc0rYZo5qtUhKl2ppglzOZTDsYlsmmqrheTmiFIrlChtb24w0xtAt67APW6PXH+AHfpb3IQSj9TqDfo9qtYIQKq6bo9/vsLPTYntjj3DYZKQYgt1HZYQktKg2IA77pFEORU9QzCLCLDDwE1zXIxzuEPabOJZBkmRpw0iJpUkSNcK1dYLeAboypF4wMLRhFkp5cZlg0GVmrMrNK5epejpG2uL6pTN4eshIVaHsSHK6xFQVZBBSKjXxDAWFHGnqkSYJpuJhWwaKppErTeCVx3ArZXSngVtqgFUk0fJESg41TdA1g167i4xjcq6DJlJ6YR/b81AMB6G5SMUiCP2MVqGqpELFcj1iXyWK15FhjGUq6GYTmQhIQtI0Y4nrmoKuaOQ1nXLdpliqcOal89xZeYeZmVESCVOT09y6uZIt7MQRE5NHqJQrpIlEUQ2uXl2hVC7geR5ra/cPcXBkWQdSZn38roepWzz34+colRU217c4aK5x9EiZh45OoStDSgUDRfhAki2AaiaIiGg4xEhjpidyaGqIflh1zeXzWeU8BSlTZKLyyquXKFUK2WssEvwgQCYKpqWSoHDt2gHdnkA3DIZhn1OnTqHetxCGQD7R4cK5szz1iU9jOwZf+eN/xuMPTyFTyeTRD+HWprO+WxKkMB5wzf3lxeu7TtH3h93+tXj91zDeL17fHb/Oavv+f79/PKhP9t3H3/2SMmN+qu+upr9PlH6w7/aD2/hlx/ggIf2gkXzn52nD79/nL0sTfHd77x5rqggQIgtDQrwH9X7he3/BZCPPxOnHaOULuN98DuXEESKZ0ukPMMwMHA8SFUkcCYZ+Qm8wxDQ18vkqrXaXqelxnJxFt9+l295jtDFKp9VjcnKKKAkJogGqgPur9zF0k0qpnB2bgDhWSSKVIAoQSsrm1l3KlTwySdjd3aJWraDpNpZp0e11SJVsMpGmgBQoSoKhgWnmMKw8hUo1C9hRdPYPDvCHWaV39Z11xkcnGPR7gMbZt64wMTsNCkTBkF6nQxxLxidniMIBpqnhRwMM20A1bMJYki+PYNg5DM1AxjGubZJEKVImqIeTZYlAyJRcwaRQzmNaLnt7W5w8eZyPPPEYtmMzHA7Z3dnizsp15vYG6F/4FNqpJVTVIY1suv0BtYaFTsI7N9f5zre/w0MfepzVjTVOnjzGwA949Imn+Z/++Z/wxb/9WU4+/DD/4//yL9jc3eW/+YPfR7HynDp5jDTt8+jpI1w+9xYnjh7hZ2dvkSSZsL568RJjvZcIEg21MMfdu+9kPaLVKjvbe1i6yasvvEwpX6QxOoZhWUiRMlarsnLnLqtrayzNjbPbHJDLe+xsr6EQc/zYMQp5j3avzdjkGPfu7zExvYgUCc/98Fnm5+bo9jqAxO+32W91mZ6aptvrMjM3CwIsx+T6xWvEClTqVbqtNlt3VylVa5QqNdx8kaEfo2g6d27fo1wq4joaCjE7u7ugqBTyDSzTodcfEPg+g/6ApcUj/PTVl9nf28EwNBbm59lcX+fmyk2OLM7TqFUgjShWy4Rxl9HxWVKhYZjZNaPq2aQyGA4zq6mhITTQUXnrjTeYn53FMBQ8z4HBINt3EtPc36WW88jlqlRKFX7wg2c4fuwou9t71KojxIeVs1SAH8VIoaELmJyaYHJuilQkFD2H+fFRXnr1LfJeDc/Vsc0EQ1N57tkXOPXQcYbBENXQqY+NksiAXn+A6+SRMkYImTE7gx7hYIBrWVy6eJEPfeg0qRiiaTqmabK7t4GuqyweOUalWEBREuoVG8PfoTP5RVIZ0QoFwqkw8ENMLSHRNJy3ltF0jaC+SxyH5E98knt3t4hlhzDqMjuzQBzrVLwi5y5cYGtzk8cePsnzP/kBw07I88+dYWnpIaxGgcJ3znPrEUk1cjEsm94gxPVyKIpkOIzw8gUkAkXXUTQFRaSoioNqmsRJjKqoKIpJTEyaamiqQFVi/MGQWKbops78/CzFcpYOOwxSFN0liCPyxRwgCYJhlo5LliLdaNRwXQfLNJmYniSKBZZdBKGgGioWEMcdBv2Qr3/tu7ieRdEr0G5vg5LgOmXiMKJW85ianqKQL4OQSBKk1AjDhBRx+B6FmIaFbWgoAlTDIElTUmKicIAmfX70gx9y7u3LSKny4stnOH58AU3TSMKI+YVZ8sU8e809jhxZxLKzvsjhMETTLHTLYRhExKHEsSxSYobDEC+XA6HgByG9fsbSHgzaxMMhXrFCqliQxMgoYn1tldbBDq6t4vstPFcnbG5jOw6JGSKUFFefOey9TVGVrIqtqQaa8Gm1Dsjn8gyGIdu727h5B9PJ4+bzSCHQDAtFMRFpTKfVoljIk5Li5Fw67W2CIMBximimQ3fokyo6u9sHVEfyOK4OqUIQhDiOhz8cHFquTZ75xg9Qhc3cfB0hTIbDDlHYRUaSOOjS7/e4c/sez/74RU4//Cjg49gmqZR0Wh1MXef2ygqDQJLPlYjjAa5nYWoOvUEbXddQRdaTHPhD3j77Jj/5yWsYlovrepw9d45PffrTBGGX3d0DXn7xDEtHj6FpoF+9w96XnqZYKKFqBhIVy86BqmGaCjvLr9DbukaswvjEUtYOJOWhNTfD2DxIvD6IoCB+ydeDhnxHQbgp6kPJA38uxM9ROdoXPv2Lc57DPyAIf6xDDMroIYYJJeOpJyleoczOO+/QG+6jqDaF4gS7+5sUqy5JoiKEwaVLb1Mo2OTzHlFo8Pxzz3NkYY44Cbhw6SyV2hy99gErty5CKikUR9ncXcfxbDwnx9bmDr4fEMYBzf018m4VVe3QbcUEw4Q4jXAdjdS3EOwyUl3k6tUb1BqjDPt9ms0DhCKQKrRaHZ7/wfcoWTGPnRrDcyWmYlHyEkaqWbVA1WyEmaBrHqnqoeoenpdn0O3iHbaKaEiUrAcKtEMhIgUCDVQTVbNJDZVUActQmKp7zIwbGKLFwmwO2xpgGgmlkoeipWhCxXZtUgUiGVCp5hHCBtUiBtxihfzIDLFVwMiPoXnjqE6dQaShGEVEWiIxVHSlQDIMMS2FqBfR6ewxMlIiRScRGqmiEw4UpN8hTQSaojJo3iWOehQ8kyjysd0sfVtBJ+eV0UwFzTSRikaqxYhYgAywLYMokaS6Thj1kWmM6yQ8dKzG9JiOnXa4euUGb5y5ytXlK+w1t8m5Y9xevUO5XGN1/R5+2OX40nHSBP78z7/Oo498hI31A4RQSPG5eeM1nJyGEtxl2Glz4dYdRnIhth7x5KMLeFYCSUxrr0O+YCGUCFXV0TQTTUlJZYqiqlliqZIeZrAYh4vtEVGUhakZhsb9zYi3rx9w8vQCKn0sM08cDkgVG5kK0kRg58vcXlvHD4Z87jO/hYqGuZVDsVNeHD7LzNwix5bmef7577K2u41FQKc9YHTqOLXppSwIKklAqAhSFAGQZgu0qAgOJxUPuLofpJXe/72U8hce/01bFv8qgldKia4b/2aK1weNdwXorwtu+g33+15v7IP2+8sqt3+V8X7x+kEs0AfF64MqvR88viRJsqRDU2d3a53RqXk4uoR2bZl0YwdtpJKtkKtZ+m6v20XRbMIw4dLFi/zslZc5feokUoY4lkkShaRS0jxoMjlRJ/B9Rmp1NN3AtC000yQK+kxNTaOoWUKv45rIUOXOrbvsbO0y1hjH0AzypWIW/Z0qeF4uswEKlTiOaLYOcF0bTc8a4DXDw3UzYaukGt///vdZWlogSVLCMMJxPCzLZvXefc69fZYTJ46zu7tNs7nHcy88y6OPP4ZhZDcfTVXJHdrNbEtHyoS93T2KxTLtZhs35xJESVaJlimIlDdef53pmUm8nMf6+hrFQhEEaIqFpim0Wi1kIhmplzE0jY21+ziuTYqkOlJjYnoK5dxNwv/oi0gr6y8GlVKhxN17ywwGAf/kn/x3nDh5gocfOc7szDipjPnWN77Jo489yQ9/8CNmFwrEacDm7ia/95/+x3z3u8+wfOMWb5x5g7//9/59/vC//SP+nb/3uwyCiJvL73Du7bf4+te/zud/5wuYd79BqrmUph+l1xvg5XK0Oz1MU+Ptt89SyOeplCu8/MpP6XR6jI2Pc/7sWU6eeoSJySnu371DsVDBNDSSRNJsdVm5fZf9gw5pEpGmAYauM1KtEsVDmjstdE2lUi4TxzHFSplur0u5XKLeGGH/YA9FAcd1mJqZJo0iFJli2ibTR+bptLpoigIprK2uknO8rOe0UgIyi2guV+BHzz5LvdHg0uULrK6u4jgOjXodTdfp9bp89KMfJQUKhQI3l2/yyU8+zdtnz7KxuUFtpE6+WMIxNXJekU6nTeB30TWdazdvsXr/Ho888iEUVWX13l2qpTJhFDAYDGi1OlRrdf7sq3+Om9OolErcunqDXC7HzOIRkijGMA3SVDIxPs7QH2YJtBfOUquU0AR0DpqYWmbrSg+rtq6XY2SkhqKr7O7sMz8/h2YqWf+6kWNhbg5FVVFVnbW1bcqlBnEyQFE4TJ8FgUrgh7ieh2GapCmMT06SiizIhlSDVGAYOvX6KKpqkSs6GJaGaVuI1m3k7N8Cy2WyUUIfNgkGTaRioCkW9lvX6fcHROMHSCkx5j+LpudwHOuwP9PANE3W1zco5PPcXL7OwsIU3/721/m7X/o8r772Bp94+pMMki5cX6bslREoqIaFJAt5S2VMqoSEkQ+pRFdUdKER+zFCM4GEOA5IZIhMA5Axqsj40kIVqJqFrigYmoaiKJlFWNPQTQNBimUZCDgMKzJRFANdMwjDENMwsazMLpjKmM2Nbd568y1q1TK6mk3AB34f0zJ4/PGP4Dh5rl25TL5QoFAsATAYdKmPVGm2faIILMdAConr5sg5Ga9VSommG6iGQTBMIFUOrdESTRMkcQiKxsLCIidPnuDsW2/Q6zZZWDjC2toarmNhWToc4kPy+QKqrqCoWQVYpgokMWffypwZRxePkUSSCxcuMD42gUwSTMNAOewvDAbrtFsbmLZHfwBf+8q3WN9c5cjRozhujnJlhEKxih8kBJ01Yikx8gKQyKCKbuT4zjM/4MSpk6ialqWYppJSuUqKoNtpkfdsLCNjOsskIoojojBG01TSJKvgKIqg3/exbI9UKqRSIYlSzvz0dV7/2eucf+sCT3/2Y/T6A3q9hO3tNoVSnjDw2d3bzlLq2x0ePnWKna0tFhYnCIMYXROEYUDOy2M5JTTNysKl0oT6SBnDyq5XSDNEXKfFjevX2d1rMTs9y2DQQ1FUNtZ3qfzf5L3ZkyXXfef3OSdP7nn3uvfW1lXV1XujGzvABRbFVdJoxiKtcIRHUowtWfMwD3I4bP8DivCDHeFH2+EJa8LyjGZEStRIJEGKBAiQ2AgCxN4N9L5XV9dedffc8/ghq2EQbJAQ5ZhwaDLiRlTdJSvr3psnf9/f77t0qlimSRTFZGlKUPGZ7rZRQrB8cJFKEFD1K1imVTJ/xhPOnj3LwuICaq+PvdMn/coXSdOsbASlZWSb5fokWYYjNWEUUekuUmvO3LO++EWT11+mFjFO5R8JXO/u84OT13s17AF0BPH/6SAPFggPDKGZjMdYpok0FKbtUoiEQX+TaNwjy1K6i8ukyZAkytGFIAgc3jlzhs21bbTIOHL0EL29PVZv36FebTJc2+Tipcscv+80vmcz6d0hHA/odmcZp4L2zBxCp/R2NnBsSZaA5wf0+j38QCALRVGEUDhIM+PypTtMTze5deMccwvLvPbaOzT9ClffeYdzZ17ksQeWOHaoSZH30EUpe1KGRoqkHHhoE2VUkP4MwqwRJoI7q+t02l2ybEIchfR2N9EUJfW/yJGWQV5ooiQhjpPS0VZAUSSA2De9jAlMgyQc4TgmaZ6SygLb83C8NjkWGTa15gy1+jSJVafaXqTWWiYTbZSziGm79PoxQaVFOElxbY8kypCmTZz30akPRZ+sKKUhhkqJswF5GiF1hs7GDDdWqTgZSTTEKCLS0SpSF4giRUmJkga51tieIBchWQ5p5uK40xjmFMgULSWanDQNSaIREoUhTRzTJI72cJ0UKftUfYmtMma7Prdv3GZ7fZWbt27wxmuvcuvGFXQRsbW+xdvvvMHp08d45vtPcenSFa5du8Tqyg0OzNa4efkWC7M2gRMyP11jYd6n266RpWMsU5YU6pYNIisZKXlZCxY6wTSd/Xq6NNs0DEWWpWhdIGD/GucShjG7e3scOXqSUX+AZ2qSNMJUklR7vHvmGvV6m+898yaLiwv4nk+WFjieR73XJpEx+rEN7j91kn/9p3/K4eVDLC0sYFkFtcBn+b4HcFsH0Fq972z8M+e2+LsbL30Ujvjg4z+Pofrh59wdnv1d1hzDMDAM9Q8bvGqt//heKP9ebll/l27AXUD44c7D3Wnnz9v/hz/oD973YfH0vbqhH3X8+Td/UNJav/yFn/m7HwSwHwWc7/4vH6QHKKW4evkKve0Naq0OwvYQn30M/ezLxKvrmN0WUgoG/T6VSkCSCZ566ilu3rjOV778WxgStnc3GA0GWJbFcDCgUauxtbmG47hIQ5VaId/DNB1G/QFS2lSrLUajEF0IdJGw0nuNoAXJECxLUAj1fqyHUookSUjSBJ2XJgxKlTpU07TJCgMpNDdvXuf5517kS1/6IlkWMQkTTNPk6aef5uiRowghaLUaaK3pdDo4js3nv/BZlLIQUjAajIjCCN/36fX2QOdMJiHpfm6i1gWuF6CUWU5IdIFAMzc7g+UYJGmGZZb6pN2dLXRhohT4vo8QiqJIGPT6GIZBq90mzXOElAy2d3HPXUf+wVeIigLH80Eorl68gecZNFttfuMf/RZ7/V3+5//pjzl9+hR/9Rdfo7fX59d//ddotmrcf/oU3el5Hnn0kwRuk+9881mmmjaWsnjskU/x1NM/4H/9P/4l//T3fg/Hdnjk0Uf5nd/5L7hy/QrNje+C8nlvZcTRo8d48tvf5q233uaBB07RarVIopj2VJsT952iVqvjei4/euE5jhw/gbIsXNvizuoK58+d59Cho1SrDa7fuMXNWyus37mNaRQ06nU0cGvlJvE4pt6oMwknVOpVcq1pNhq8/fZbLB1cYmd3m9ZUk/F4xNbuHjLXyELz1pkzLB45BJkmDENefP4FZmdmWb2zSrvbxQ98DGUQxTF+EHD69Gl832dmdoa5+VnSLGVvd48zZ97hM5/5Fa5du4rv+8RRzMn7TgEFM9PTtFpNhpMSxF+7dolGvU2tWuG9985w4MAinelplg8dwrIthJCkSUqWZNQbNRqtFu+du0C73WU0nNBoV+g2p5BFwcLiQYTj8MxT3yNNY5aXlykKjeu4SCmYWziI47poDCzL58+/+lcYpMwfWODtt8+yfPgwpmlgKsH83AHyIsdyDPb29sgLA2VEaAqSJOFbT36LEydPkOcxk0lIJaiR5wXf++736bS7OL4HuiyUXn75ZWYPLGCbFkUheeONtxmN+gR+hUpQA5UTBC6E28jxFq1Hf4dIWuzcvk463ikzeastfNuneP51bNsh6m4yCSf4p/4JjuXT7/ewLZfRaMzOzh5O4DM7M8Onn3gczzU4fXJhbEQQAAAgAElEQVSZjc0bPPzYE3Sm5zFtwdrVszSuDdkuBhimg2n7CFmuB6NBQhBUcWybJBqhdUieTyhUgdYlxThLwTRcJpNSp5xnOUJoTMtjMhhgWhZRFJHpgiRNULaJZRrEcUyv1yvp3oAUFgjB7ZUyxmk4HGDbJkkcY0jFa6/+hNOnTjIc9JDKQkqFZZcmXYFfJQxLXbDnV0iyEFMJ4ijia3/5DYbDCfedPokfuBQadjbWsUyz1Ai7pXb+wrnLdLsdlGUgDQG6wJASadr7xRPMz3Z5+IHTBNUGf/udJ5mb7VKrVd5ngggEa2tr+L4PSMJJhGkIbq+s0ulMU61UAcHzzz/P/NwBKkEZ81JeKwRVt0oSJSg74F//m68hCs2Xfu1zmKbDd77zXebnF1GmyetvvEHDS7FdDxWUjCDPPMhePyIvNDPTMwgBhS4QUqELyIucWrWCFDmG0FiuR5amSCGR+4ZUel8Xu7mxQbXWwLRcDAOuXLlEoTOKLKHZqDI/N4PllQZWrtPga1/9Kw4fOciwNyw1416daJLxN//+mzzxqU+TFxkCC6XUPhV1wiiKuXz5Ko1Gg6XFAxRFjLLs96+Zk8mIarXCwsI8lnIRCFzP5hvf+Cb9Xsih5YNsb/XxnIDXX3+Lne1dup0ZlpcOIIBer89LL74EWuL6pbP4/fefplINUP1R6U3xG79Smq1QmnIZSpCmmrwQWDJna2uH5ZOPYijrnnXNvcDrx5mYfNzto5hjd8Gr/K3P3vNxgOw5hY4Exvx+bVWUTfTdvT08P0Aqi0q9Rc3ziAa7zM7NIqwqeS6IE4M4gb/55rdQymNmZpkrF9/gwrl3uXrxMtvrm1w+f4F4fIuEgrffu8DhI0fZXltHZBPG45h//42/JUszDi/OYVJQa3QQ0ualH73Dg488gl8LMKTg9uZVGu1ZMpmw0wtxa5qluaPsDEKef/FFttausDQbcGixSqsGFD1MU2M7HjqXpcTAUSSZRlktHLfD2l6C41cJKlXaUy3iKKIoEiaTEfVGDdf3iZIULQyyeAxFjhICoQtMKbCVic5jonBCluQIWWAGDWJMnMo0fmuZxvQpap0TFMrFCjoEjVniwkK5NdzqNAibje0tlGMiTUmWTbBtgzyd4NqQJyMMkSLyPmmyg4xDdHyTIuoRD/cwjYjh3h1EMkHEPXrrlwkaEds71wnjlDffehPfLrBVRJGNSnA77pf6/dQhvRuXJU3CJMZ0FHlu4XoNDMMhyzQ6B2XZFIUBhYXERGJhGjaOJWg3PFoNk4NLVQ7MVWkEgrkpl8OLVRZnPFwzpuqmVNyYpfkaR5c6NPyCB04dIBkXbKxscPjwApaZ0q20kEaObdpkWUihI5QpiQuNbZtY0iKNS9+BOJmAUCDEvmt2ma1qKPm+SV6WlhRjx3EJAofhOOHHL17kxJEulZpDmg2JE8lwOKTVrOFVKwxGCVtb26Al167f4FTlYRKREj90i7/5m2/Q6Uzz8MOPcuDAIi/+6BnG/S0wJJ3FY9hOgK0c8iL9mXP0o3kUH+/8/kXn/ocbVIZRerl8EPR+MCr077L+/IMHr/eavN4FaX8frvZHiZc/zms+uH1U3uwvev29uhsfBV4/+PqP67R8F+gWRcHc3CJr1y9Tn+pgulUKAbeXZ+j+22+Tf+YRxpvbZexNJcBQJgfmZzl65DC1eg3LcfZdMz0GwyFB4BPGEY7j4Xh+GbGRJYSTCa7tlBEdSc7Vq9d59933OHHyFLkOmT4KremAinGASTTGsYN9klFpHDUcDqhXqziOQa+3ixDg2B6TScRoOEKpglrV58SJU7i+i1BQqVRQpsHq7dssLy9j2xZSgOf5mKaF2qfm3Fm/g+9XMA2L4XBEHIUlJUgXOLZLrVpFGZAkEwxpYhgKAYTjIUkU0e/t4FeqxGGM7wUM+gNs2+Zb3/wOUTKh3mhSFJDlGUG1gl+tMh5PUIaFIU2svRFyp4/zR7/LzvY2tXqD/iTiK7/523zlP/vNMpc0hYNHFimyjP/k00/gWjaPPfoAUqY8cP8h/u8/+Xfcf/8pDGXwtX/7VVRukOdbNKsNnn32BT77+V/jD//FP+cHL/yQP/lXf8LhI4f5q6//Bffffx/ByrfIpENsdQgqFe6//zRBxWdmeo7hcEQWJ1iWyfUb17lx8wbtqRaPPnSaSRIzjkJcy0RIuLO2TrczzertVU4eP8rMdIfPfe4zZPkEANsJmF9YIksyarUab73zdvk+KJNut8tkEjLVnqLT6bK7u4sfVPA8n0sXL4Ew6M7OY1kOSMF7752j3+/x2OOP05xqUavVOX/+PJcuX2ZxcZEkSUmSGGkqpEHpxptlhJOQA4vzxEnE9PQM7ak2Gxsb1Go1fvjcD2lNNdnr9VhaXmY8CenOTIM2WVm5xfGTxxHSBJ0hhSArMhASpUzOnH0X3w9QyuL4iRM8/fT3qddrPP7Y41w4f5HF5YO8+dZbVKt17jt5jEqlAlqURmIUKFOysbmL49yNglLYtsP0bAPTsjh0+GiZtxwNQSdMooSLF84z1aoiRUHgBgxHOxiGIopTTp0+Rb1Zo8hK9oGUkizLuXzlMidPnCyZDDpD65xqrYJpmoSTiNdfe5t2u8UkHLK7t0O7PU2RZ0TRhGLjPdLuQxizp6lWWiAlbrVJhiTNymzL2twMHD5IOHgNjSac+RS+oxgOR1SCJqu3N5ibW2R9Z425uRlGwz2uXToLegJk+EEHbQQoS3Jn/QIHXt0g6hrYXpVMlw0tISS26WEYijAcl2ZHaYTlmKR5gWMHhJME2/YwlMJ2TXRhlKZKgx6WaSGV8X7zTgiBbdkYUiCQjIYhpiodRoUwUMoErWk0qkBBFI+xLEWa5yjD5LHHHmd9bZVaNWCSxfR7Ke+ePc/CwjSQU6n6GMrFtGx299YxDAPHrvLQg/fT6XTxXJt+v49tOqU79L7hU5Hn7Oxs8e1vfZf7Tp9EmeWaZEiDKEyQwignNFLjOg6O62E7FocOLeHaBrZtgTTZ3t4jniSsr69jSAFa89RTT3PixHG60zNMdToo06Ag59iRkxRFwdbmJhvrm3S70xR5gTACKBRS+fR6PT77mUdptFqkaU6aZBw+chhlaqZnWox3byKkgVUV5LpgfUXT74/Y3t6i1WqycnsF2zLRWpNlCQKN1jmUdrT09gYUhcCy3LI58PprtDtTmFb5efuBz3A0IQonzEx3sSzF9GyXxYNLzC0cQCmLJJmU5mKGxJCaxfkFfvLa60hp8/zzL3L86GEuXXgP2zXpdGaA0gG/3x+R5wkXL1wqnYE7XbTQeF45KRX7TWWlFHt7e/zwhz+g1+uzdHCB6ZlZDMPB923CScidO+v8+OVXaDaadNptJuGEGzdvMTM7x5Gjx5mZncOyy8gj27ZQpkKvbiKShOSLjyKlQGuBkAopFEUaY5gG/Y1VpJDUZw4i5b1riY+tef0lt4+qYX6u5nV/S/7SQj2RweSuCFbuS5hcxL7BmjRsTGkQDreI4x5FVrCzvY1tKM68/RqOldPf22D99k2m/DqumXP65DTHjvicPF6h3fBoNH3Wbt+mt32blRtXMPUAxyyIRtv0t25z9q2X8V3BaDBk9fYFeltjxuMdhNa8+Mw7nDh+mCeffJHpmUXOvHmdd955jYqp+e53voVjJtx/ok27Aa4DhiwwVTkBQyhSrUEZpIVCiwqV5gK5cPGrFbI0wlIaSwmSJGLU30GZCmU5xJkgqLUx7XLtFtLGtv2y8ZXkIAMKZRLUOyi3iVfrICpzuLVZguYCqCbKapEXLgUxkzAhyTLSPCUvEpTWJJMdsmiLdLKBEkOi/hajvdvkyS7peIvxYI1ksksY7rFybYc8voWVDyiSEEPEjIe7XL10k95Wn1ogsM0Rg0GKKX22tjUX3tvivsPLGKqPQc5oNGRvZ4c8TUnDTZJwkzyNuXLpJlGocR2fIKghDAepPGynhhdMkRk90nyCkDGaFCTEWYFh+BgyxxApukhw3YKGL5huV6j6GlNNqHiSZmASOBmumeDb0G7Z+E6C48DcnEkmLQqZYTAgiSBJcizHJMkSCqFI81qZuavLqMO8yMEA23TenyRm+x4HRQHSUAgEjuOQZQl5npLFCban6DRNmvUAZAb7utzpbh10TH8Uc+HKBvfddz/z8wc4deo0znqFXKXEjw14/FO/wsLBo3z1619j6dBBnv3eN/mNX30M25a49S6B10BneZkh+7Nn6i99fv8y2OnuwO/vyzwt5Y7/EYLX/y+6i/fqKvyHBK/3+vnvC14/OM29ayRlGAZpBiIaMByFaMshCiO6Uw2ML3wC43/8lxRTNWqdNmEUYZkGjm2WBbZpsdvrYTs+w+GYSqWC7diYpkmSlgZJpdmBJHBdKHJ2e1uMwzHzB+ap1SoImWM7AUbQL7n5URcvCEiiiCgMGQ37KCkwBO87X1p2OQmZTEIs08H3HEylGY16REmGUAbSlORZihCCxcUDZFlKoTNMQzIeR3z1z/+SpaXlMlKhFlDkmls3b/GNb3yThx9+EMexqdXqFLnGdSxu3bpOve4z6I32J++C7a0N2lMNvH09rGm69PYGZWyHqWg0WxiGptOZ5s//3V8yNTVFdape6o6Fga0cBr0BxfmrJPNtho+foFqtkhWauNBceucqj33yfpzAxbIDXnntFb702S+ytnqHH7/0Ap947EGECrl+8xyPPfQIWo957rkneeTBY/za55/g7JlXePzRT/D9Z1/Ar9d59bVX+d1/9k/53Be/yMGlBd564zV2NjY4ZpxlUH+MVrt09g2jENdzSRPo7e3RarYYDvucvO8Evf4eEoHrGuX7vJ/jFlSrtFpTXLx4Ec+xcW2D3u4WfiVgde0GiwvLTKIcYdhcunSOBx56kKtXrvKJxx+nWqly7twFbNthPB4TVKp877vfZXn5EJ7jMzt/gEqjyRuvv8ni3CL9yQAhBI8/+ihJloGSbG5s0Gg2OHToKKZlYdlWmeupNUWelTmNpsJ3PSxL4TouYRgRhhGOWzYzDh5awnMd6vU6AIWGQkiU4bC9s0270ybTktXr5cT23fPnabU7SMNgbu4AKzdXGEURTz39FP/kN38TxzJ55833WD5yGGEaGIbi2sWr2J6i2WyycnuV4WjMuXPvMt3tMNrb4/ataxgiY9Tfpt2qoFV5UTQthyxNS1OhioPlVJienkaSIHSGZZjkuYFl+rz19ns0G20s0+Tq1eus3l5jaqrNeDLmxInj2HaZxZdnEaYqG0SWZZMmKU899X2OHTvGkSNLzM3PEccxkjIWxdh4k9pn/ojdGCwhcWpTJFYNx6tAMuDWzRvUTxwmnWqQXP1+SRM++SWKdES10mAyzvjmN77Hgw88ilNXKENSpAmmkVKvWIRRxFTnEEIFaFJG+TrN11bYeszDm9h41QZRkmNIiWFExPGolG8oh7yw0bhYZpU8E0gpkEbK9s5tDCvAkBZSaCaTPlJLClVmjQohyNIMnRcUWY6yHK5cvsbXv/7XKGUyNTWFUiWdraSN5limpN/fw/F8TFUyLd555y1arQaNdp211SFvvH6GWsOm0fBIswzPqzGJIlzfwDRMlAzY3LxBs9lmOOjRbDZAK7J92rsQMOj3qFcrVCoN2p0WtmMipCCNM2zlMR4NsUyF1jmmae9n1mb0e7u0mnWEkCBMbt1c49qlKzz80INE4YS1O3c4cvgwbiVAKoU0JEmeYjkGgVPj1soKS0tLvPnmmwwGQw4fPkxhxggtGY0zjh8/hq0SwGA4GDI3O4frmRRFSJqOSEebeEEA0iGJC1r1I9SqVVzXZmpqiixOmZmexrYUpjIAXQI4x2E8CQm8Krs7A65cuUan3eEHP3iGmbku9VpAHId4vo8ybWreFHmusRwX0/bAsNDSwlUOQsSMhtssLh7AkIIo6vPKqz+mM93lwsX3aDY9fvMff55KrXSen0R9onhAtVol8B263RmeeuZZHnroUWqNOoZQxHHMYDDAVGaZxVytcvLEMQ4dOkySxfzoRz+i25lDqZB2p8nUVJP77jtOre5RrbmMxhmvvvoanW5pcuY4Dr5n0uv394GbwL52h6jpI371ftAGSZojDRutDUwdIoTg7Vdf4vjRY1Q68+T5T09b3t9GY/TMFPrI4r0f/yW26H9zyH6ifm7O6y8Cr8WuIP2GhZgqyvQQSicNdIEUGkRpdJPlMUk4YTy6g863ScY9bl5+l1ZFsbl6nhOHmxxZrNOpK7qzY6aaGktGVByFKsDIY5q+wclDU8y2bY4sTzHVtHDNmKWZgKX5GgsLLfqDdex0hG1sMVWtYzDg4tmzjHe2kHKLIk159ZUXCfs7HFxUTFczDk47nFpu0W3YWEqTyRxDmqSJwLRcwjTGqwc4XhVlNZBmA8tvkkuDIh4TjnfxXMXu7iZSCkSWYNsOmRZI5eL6LZLcwKtNkxQWXm2K3ijCcAOqM8fJTJdqZwkjmKOwmwhZRZkVDMNgNNrFUgnDwR10Mqbq2RhFRB7vIYsR+WQXIxtSTHbxjIJ0NESkE/JoAOkIRVzG5iUhV1d3eOO1PQ4dNbGli8AhZ0SOxST2uXBxnaXlLhhjKoaJMjKCasDMtIVvbpEVNnkmsJSLLgxGw5j5tkWejJgMB2xv93nrzXc5dmyx/OylRDkeozDF8WtYahrbCsjzgiyTpJnJxuYEbcB+7xXPrpWNLs9E69I/JSdHSAW5wjQVcZbiepUy8VoWGLmDEGN+8vaY67eGLM62EWJUTnqFgWH6pKnHk99+E1PlOFaGMkAqheP6FFk5WS2jk0qjO1M5KFVmycbJhCyLsW0TnQscX+DZiixOkKakCA0czyfNhpgGhJGFtqa4fPkqk0nEsSOHsTYr5F5I9smCn7z+DmmhmV9cZHewS93JuPLOS0x16hQyYGbmIHmaodW9KML//wOvH2eo+B8NeL07Qfww5/uXefM/SK29C17vUoXvtX2Yrvth/em9vgQf3ve9nnOvzNniW8+W9335C/ek7XzU7e6+PkhZ/uAXyURw7c5Vdm5d5eiBWexuE6FNZKtB/LlP4Pwv/xeRgJFlYjsBdzOrlFIopXj1jXO8+NyzNBsN6lMdSBOS8TaWZbGzN94Ps/bJBdTqDTy/CkLQmppCGpIiKyjcLTSaZNdjMp6gdUKr1cLzAtI8xw08+qMhWijSTJcTMGGQ5QXIrIzvsV3C8ZAsy7AtF8NwGe7tkScxUgqSNKO/Oca24ZFHTiOEYBIOSxOofp9ut8uRw0cYDcdlbIncj57QOa7rkuUaO6ihtU2eg2EKLMdFGA7ojN5uj9defZWpZoVKYJILg+WFBfZ2NtE64f6HHmBj5TpVvwKFwXgU8b3vPU13ElP7x5+lNz9Ltdrir7/+11RshzSdMLdwgJnZOV545nleeeYNUnPEwaUT9PtjmtMt5g8+QMYCc/MHuHx1je9//8d8+Su/y05/wniww9Kxgxw++SAnTn6KZ57+Pl/4/CcYToboPObTjz9K1bUJ1p/GnH0YJwiI4ohWo8Ha7TtUa1VWbq/QmZlmdzCk3moxGkfMzR/AdquEYcLW+iZCmLx37jo72z0OH1pmqllhY/0mSwfnSLRJrTGL7dfRRcFbr7/KQ48+xquvvsZwFPLAgw8zGA0IqjZzc/M899xLDAdDHnzwNEHgME4m5EWBkgaDfp+pdpPBzh7d6QaW7/D2W2eY7XbwPQffD7h9a4U0Trl+5SqjwYCKaZELje15mI6LZVuEcTkFLjSsra0RhmPW1+9w6dpNFg4ugyGRysC2FC898yLLywcYT/pUq7WS5i7Ar1ToTLXJk5Rhb8SdlTXW1u9w9MgygePy1PeewrJcDh2fwlY2N65dZW6+S3duHt9vEkUZnmezeucm9x0/zs0bN9laW2W6e4Af/PDHDMYpy8ePYykb33MYjXa4ees6Urg0m0tEyZDhqEecZlTrbYQqpz2OZbC1scr0TIdUF7SbswgmOE5M4JdTvTRLKESOaXvEqSAvJKblIOIEZeQcOjSLYRkIwyIvII0HWNkAxusYj/wRttKEvTF729tMNWroZIzSOeO8AENi2Q56+yKZCHDmvojcd8iNo5gXnn+OgwcX8IyCO7c38f06rmuxcvsyrdYhLDtAKUUahWyuXMJLx1QuTtjNEwKvhmWa9Pp72KbL3k4PUZSGPK7no6VAioIompAkE3zPx7KcfXu6stAoMsnXvvrX+PSoVetI0wFZem+4yiVOQ2zbYOXWVfI05MBcF5RAWarsyGswpINlVknTCGUaSEOydPAwSSKQWYIhc06ePIBhQqXSRRkm6JzxsE/g1ZHSJIxDgopPkuZU6y0MZSMU+025mLNnLzA7M49lOzQbDrt7m/ieQ56mGEohpbEfyWJgmE5JwUVgKUG12iTPFXleUrjOnTvLF7/wBQopcTyfVqNFvVJjNNzANCRCFxRpTBJPGIzHPPnk33L0yEm6M03m5qaxHZfJcMy5c+f53veeZH6uQ7XWYLi3ybM/+AHduQUcN8C1LGQOSTJEKh+tA0yjg+XYWJ5HpVbDME2UbSJNk6IADEkhDCQWRpEw3L6NW2vTH/ZAaur1GkePHaPWqKALjYFRFoSOx/rODTQmjhOQZgPCsI+hLWzHJE4S8gIcN0BZHkVRcPTYcaY7bU6fOkG15lMUGcpuYVs1Lly4yPLyEaK4wFI2cRKShEOOHllGasmtG6skSUql5qLsgjSH8Rhs1+L6jUs0Kj71epO9fo/pzvT79Hbf90vdtGEQhSHnz51DGYofvfgiuiiY6lSxHZtebw9TmtjvXmX7dz6LbjUwpIFSBqY0kBQYxYDNG1dIXYfOfQ8gsNB58lN1BZTeLProYnkrS3ZKRqP4GWemv0uFlP2kNKAyP5l/tDnklz+3r3ct9v/q/3vTjkP+kkEWpxhTBUhBIQuEThBCgTaQGESjAYZMCSfr+F7pzaGlptv1GPYTmvVpqjWN50s8p4IpNbVKDdd1yYsCx3MxlEBaipRSmqMzjZKiNF4jx694kKdM1SvYrkEQVLDtlKovme64tDqCuek63VrOscUqxw/VOTjXQeiU8QTqrRYZGZVqDak1hTYopIXhVMlxkOoIfqOKMObIjBGB0yEK10iLjGplliyNgAhLmVhOgFAWWaFxPJ8ommApSTgYk2sTv9qmEC7VahfttAhDiWNVsKQmmewh8wiTlHi4TtS/TjrcYOP6VawsJo+2iIbrGDpGxylFNCy1qpQ0fGUARYJrO1AY5JlGGBmGkRF4AQszJp5popwcYWZEYxsTmKoITh5tkhcRGhvDVORpgVQGzn5UoWm6aCNEmhLXDqgGBqHIkGaMWfh0Gh6HDysMERKPN8ijEbIYIXVIkcZkeozlTZOrOnatieU3+dunXmdlLeFAt4vSY9JsSF7kiFSiDIkpjdJ1mwItYgyzXHuLIsIQNjKrkMkQpEEWpvS2dlg8Motj2EySTXQeoEVBFKZcujGmO1tnZrqCKAQCgySdIJWNEA7bmzFZLvArDoKCcDLGMEqDJGVYZGlRrnfSKnGFBCEkYZGyvZtjCIMkmzAIbd45t4oQghMnjjDVbmJvBzx352mMowNslbJ0YJqt1W1qbpfRaI1WTeAbA26v3iCYPY5Zb2MIWWpcP3D7KHr/B8/Zez3+ccHrvbDGR/1+d/sgpgF+Bi/dpRz/gwevWus/zvP8p8yTPky/vdf9P2d/PwPwft724Q/743YVPu7+f8p46f5jyF99DFGvfuzj+uCxffD+nxZlGxhGQdjv4/s1VKWK1KU5hlmvov/ZlzF/8CrKUKha9af+z6IoeP2Nt4hGPU6dOoXleniuTRiOMG2XZ559Hj/wCTwHSUGaJEwmEwaDAZZlIoTGVArcnfLYJk1eeeUVDh06yLVr1xmNJlSqVZRpkCQJjuNgqJLKt762wXA4otksi1qhNbbtEFSr7wvVlZRMJuU0L4xinv/hi9iOBCkIKo39E6fM5MrSjCRJeO655zhx4gR5nlKpBAjKgG3Hdii04MrlG8RxiOuaZWZlmjMc9KkGNY4cOUK/v4ft2jQa7f1Ocs6x4yfY3tnFc20GgyFBUOPO+hpplnFgbRvnP/0C9YdPMxwO+MM//K/5/d//A2rVCg89cj/9YZ8nv/ltFucW6S40uXrpBr/yxBO4XgkwnnnmJTqtGs8++wNqtTqf/vQTCCF54IHTjMOYb3/3GQ4tneDP/+xf8Y9+41dod+aoVqpIQ9HpThOf+TNC7zBRHOH5HkVWEIcR43HE8ePH2dvbo1IN8H0f07Lo7ewQBD7KEEx3p7lw/j0uX7yKZZo4lkW9USOMQ9qdaZJUY9suL7zwAssHD1LbN8cpCk2e5bTbTaQBFy68R7PZolZtUKlUmO52iOKQaq3Jndt38DyPbrdDkoT4vk+axyjTIk+h1ahjGHD96jVmZme5duMGBxYOlGZKN66xcHCJrMjJsowiy3n3nXcZDYd4vku9Vmdmdq40OpIGjXodKQRJXHZOa5UaShlcu3aNZrNVUhr3m2V5lrK1tcV0t8vLL79MvV5jZ3uLZrPBVKfL9u4OB5cOUKtOcWf1DjOz07h+lXffeZe5uVmUIZiZ6eJ4LhrB7Zs3mZ0/wJl3z7G9t8OnnvgkhhSMxyG+XwUMJuOQRrNOnsdUKgFZlpZxAUmKbZc6q6mpJllRkGYpAoNq1afIM/JMYrlOqZMyHSQGly9fQReaVrNOGme0O212dnfwAx+0II5idJFiDq5QtB7ENiwSJ0BnBq3ODFGaEUYhpmUSBBX0GxfIVtbwPv3bJM1TbG+v0Wg10HmBY3mEk5Q7dzbwPAPTdgmCgEnUR8mMStBibWuPRmuKwWCPmW6FUTCi/f01wqYiFZIwyTGtMoKm4ldwbIcwjEoXbK3RRU6aJjiOS1FoLNPaB5wGRa7Z3e3x9ttnmIRDTp9+mNFoRJqGmKZNkmoMVa63p+67jxmO50EAACAASURBVEPLyyX4sH1AlxonBMPhEFMZSFW+P3lWcO3KNQzDQBOjDBfPrxBGE2zHBZ2CKHBdmygOS6qs1JiWjecFIARZnpHlKSC4fPkKFy5c5L6TJ0iSCEOZ5JnG8z3GkwmmZe/TVwuEoMyYlmXEUpFnDIcjdAHvvHOGTrfD0tIie3s7CFlQ6IzxeEiRJQTVCqPRBCFNPD9gOBqR5wXvnjmP4zgsLMzgeg7KMBGiYGtzi3qtwdLSErZtM+j30Bh0pucQQvL9p75Lo16jyHaxHQ+0gbIcdCGQ0ubudbooKKnbssx8FULufz8TwmiCV2lSrVZLAz2l0FqX9G6ty/zHSoU0z1CmxpClF8FguEu7NYWgPFZDGft5uGAoRZYnBL5PGEXoomB3dwfPd8l1mTN+5uwbHDpUTikNKRmNhjz40INIIen1+qyt38F1fTY3t5iaau5PBwuuXL7K0UOHEcLglVfe4J23z/P44w+B1oxHI6RRUsBNU7G7vcupU6eYmZnh/PlzfOITj5EXCdVaFc8LMG+soaMY61/85/T7fYpCI6WB49iMRxN+9MIzbK7c4bNf/DVyw0TmEiGKny00P/jjRxSt93jqL9zuRuWYn/ho06aft+XxBH5iEVf7uLaHLoryCLSJRCOJKZJd+rs3GWyuQTIgHm6jdEoSjknyiO3NPtevX6fbrWBaBlJY+xTNfP8anlIUOWmWlqwCKUtAoQukNMqce61RytyPFgJkaSojRBkFaCqF6zsgCtAFyjQIqgFZliCBlVvrNFt1DFmQpxmFrIDhYrl1pOFhWgF+vY7WEi0giRKyNMI2FVLaBF6Vvd42flBBFy5JkmDZHqblkiYZpmlhCEmOYHVtnUa7tZ8jrzGIUTohGu1gy5hotAliSDTZIUt2UeaELBth2RKhMgy7QMuMXCRoIwFyTEdSkDMcD8s5hJJIpciKnAKJEBbK9MmLCMdyyjhFBGFUcP72LkmRIlWCaWYoVWZGZ0WpO9/c2cOyHZTOSYscy6oQRRGmnSKNCFPX0UVEmhbYjsKQBTLz0UWELnKGw00cOydLQ5Tp09ubEFSqpcQtk5w8cT8nT51EGgla5uW6Jw2UVa6hIDAMC1M5TCKX/iDGtGws2yrXWJ0jSNAio1Hv0G63MKwIBWS5RpkmynTJUsHaxhbLi00aVQtTmmg0uU4xLZsil9y6tUoYTuh0m6W8LSsjpO5iCKUU+X46SZZlFEUZp6aUw8svn2NpcZY8S1nbzAlTg3AyptGoUavVCPZa9Oxtfrj6HVZWVlhaOsif/Zuvsrc74NTJA9y4+CbNmsXqxoBPfv630cLj7nztFwHVj4OJ/r7s1Z83eb0Xq/Re7NR/8OC1KIo/vguiPgoUftwP4u7U9W4n4MPGSh/1gXzQ3OnjgtePe0w/5SJcr/xc4PpRX8p7AesPHkOWp/hVDx0l/PilVzn2wGksZZMkCSApEOhHT2P+7/+W/NOPEO7sIqVkNBrhOA5LCws8+uD9WI4D0kQg8HwX2/G4cvUK4XjE0sIsWqdsbWyVRUVeMBoOSJKQ7e0dgk5SWn6P6szPz2Gp0nXy+edf4PjxY0ghmIzHRNGYKArxvQDP9Xn2+89yaPkQQghurawgpMGgP0TnRWl2YCpsxyVJczwvwPM9jp88iuP4ICy+9hd/Qa0SgADHdlBK0ev1OHnyPoShS1AsxPtFTDiOePWVN+hMTdHtTrG3s8vWxjart1fodLrkhabWrBMlSelWTvndSPOCwA8IJ8My99EyydKM4yeO4753meS/+T2GWcpg2OO/+v3/kql2kywfI01BlMRYhskTn/oEuc7RmeTF517g9Omj/OhHP+aRhz/JP/+D3+e//+/+B7761a+xtHSQzc0tpucPcf7yBb7061+k4lV55P4T3Lh4loWDp8iyopxiC0l+5k+xDIHVXC4n6T9+lVajxbWbNzl86BCj8Zi5uVnSJCYIfBzHIgzHvPzyS7SmmggJD59+gAvnzzEcjtFIFpYO0h+G3LxxnVa7Q+BXWF+9w2Q0oj8YMD09zYED89iOSRiNqNQqaA3tTpegUuHixUvMH1jkrbfeZnZ2jhs3btCoVxmPy6aHbSvee/cClukyGg1Joz62bZLnBQcWlhhHEyrVGrdv3qQ7PY1AYpoWq7dWaNYqBIFPNajgeh5aCN5++x067Tbnzp7FsSxq1QppmnHm7FmUabK0tMS7754jz3JmZxeYjMe89dabPPjQA5w58zaLiwtMT01z5cpl2tMdpmemWVpepr83ouI3Wd/YIEkjWlNtrly4RLs9hSYHCZbjYtkOM9PT3Ly5wqc//QSnHziFZe9TQpWLFC6uU+EHP3yaI0eXSMIYzy3NYpIoLnMIlWRre4tqvc6lS9do1juls2uRE4U5QaVJnIbE2RCJgyEMdAHdTps8Szl77hLTs7PUalUm4xGWMli5eZ3Z2Wmy269gaB+5cRm5cQnr8CdJhURaJlleYLsBOkkJ/vKHyKurhA8fZH1thYNL82hpcOXyVXRhcPXyDS5dusqp+4/Sbneo1AOG/R5TjRorq1vUWx1WV9epVgIcI+HC5bM0tyeogw3CYUS7O4s0HaSWRFFMFEZkaQZIxpMxnlvSMXWhMQ2LNMn3DdYSlKEAQRxnXL6xwqmTD1B1FUnUx61UMeyAIktRpkIKgTQMlKkocgudFUgKwvEIz3WIojFpmmKZNsow+dFLL2HbFvVmQBgKnn76Oebm5/CrLkWeEsdRWfzk5TXGtm20NlHKZDwe4zgWej9v9fy586zcusVDDz1IFEXkuUFQqYIAy/Uo9H5Uw76ZT7nf7P1JmucH9HoDfvLaaywtLeG4Dnme4jguKyu3aNZL92zb9fH8oJzaCkmaFdRqpSGd47jUGgFbW5s0Gk0m4YCZmTnanQ5SlK7iaZKwdPAwTz75XQ4fOszrr/2EBx96kDxcJ881WpYRQFkKlmUTTsa4roOlSq2uMAQlU7RAmVAAplPDNM1S8+57KFUC2DLuoZzgRdEYZSqyKCKOIpQUxGFINImRQpaZ5aurhGFIUKkwGo+xrTIXvCweJe1OB9uyMR2bOEo4eHCB7e2tMnOSAs93KYqcXn+ParVKITImYUKeiZK5UGS0mg2q1SqO61AUAsf2ESgOH1kgzTKKPKdSrSCEII4jqtUKSRKBKFg6uIAyJLV6DUMpdJpjvXqW8L/9HfJWjU67y9raGllW5u7mRcapY8fYubNBe24W0/awsNAivyd4FWtbiNEEUQ3+g4HXn64/fvZxqTOSr/tMHtih2DYwrTIuxALG/Q3WV95le+0cRbxBNhxANqKIx+RJiGOZWG6Zyzo708VxDEQBeVYgTQtplE0O07TQhS4nX3lBHGeARkrIMsj2p/FRXBqCJVkGUpBmOWp/P4XWmLa9/96UNVNeFEjTxLQrJLnkzvo69WYDIUxUZR7lVLGsAMPywXCYpHv43hzbu9epurOgNykis3S7Hm5hOQamFWBZDYp8jDAkUkh0nmKInCwLsT2bWs0nmfSIRrtIHTPZu0UW7ZKGW+TRHuQjiiSEtNRSKkOihIUhXJBgKh8pXdIk318XDbS2AAuBg2lWKKSmEBpp6P3IsZLd5lcM0ALHsUjSGClsbq7bXLu6yuHD80ghSDObQR/6I4NGZYqtrTGeW8MUJpg2Lz5/k+GwoDXloHOFSi1SnXFnL0WYHgY5Dh5ChUg0vmeSxjFJorGUiWOZ7PMG0FriBxUQmkqrTaEclPIpcoNcgLLc/4e8N4uxJLvP/H7nnNjj7jfvkvtSWVlVWXtXN5tiS9RCSZZHlix77JFmMIb9YMswZPjFMOAXw4Y9gOEHG9YIsOyxRM1oGVIzxEji0mwu3c0mm72zu5auPStryarct7vGHuGHyCoWq6ubpAHDgHSARCLjxj03Mm7EifOd7/t/H73+AEM3SaOUrZ2UO3dv02rVgIw0C8mEj8ogiUPKlQppOkRKjzQB126T0uH20iaaZnHieJOSK1EHNa2pyNlTstykqVQsUq2WECIlTfPFkzAMHy2ESCkZet6jRTvTzE3fhsMhlWqVcrHA7m6Pqzc2kYZDHEe026O4bhFj08WaNWj/XJFCocjkxDSf+cwLnDixSGOkxDvf/Rq2ishUgUMnPkuh3CBJc/D8pFnSJ7X/r8Hr42TZx4HXxxNgHt/3bz14TZLkf3gyFuYhiHz8pDz5ZT4ewPt4e5zK/jja+/H2pCT3SZD4EFQrpZ4KbD8u//XJfj/pInyaBPnxbU+ztX78QpGaIiLFyDQsw2QQBhSKJfq9AVmWzxmGmSJ+4Tms//n/IP2ln0EOhnkQu5RIJcnikCSR/MUX/zXzc9PEacygP+TQ3BwF28a2LPr9AdVanYsXLrG6usaxxWO4joPtuAh3DwFY6Sh7e3tEYcj29g7Xrl7HLRSo1+u5NXyWUi6ViaMIy7JYWDgMqSBJUtIspVIp4zou/W4PTVMgJPvdHsVSGSEFtUqRKPLRdZutrT3Onj1DY6SGYRhsb2+j63oOlKpVDCv/vK2tLZRUeJ5HEmfMzMzTbrdIkhDfD1hZWWV0tE2pUskzNYtFLCt3c9UNI1/RU9rBtZkcbIsZGWkQ73bh0nWi/+Tfx08iKtU8X9JxDUolGz+MGGm0eOfNd5BZSqFU4sUvv0R3dxchfYZewObmPh+8/w6/9LlfZG19les3ruG4NoGvMzM7zsbWfUZbo1SLJTbXH7C50yWKE5Zu3aY9Pkly4Y/wwxS9cZQ0TWg1G+zt7HJk8QTXrl3FtkwePLjP1uYGWxsbDAYDqpUyjuMgyNA0xd7WLr7vc3jhCGEc0Wi0iJOErY1Ner0BjuOwcvcurmXTGG1yf2WF9mib7e0ter0uo+PjWLbD8vJtdF3n+o0bTE1P43m5/DPLMqqVMmQphmZwb+Ue9++v02qMEQYD6rUSxWIZ34+wnQLLd27TarfY39nFthwuXrzE+Og4d+/cJUtiKpUy9+7do1gqsvpglb39PRYOz9Pd20eTiuXbt4mSBMM0KFeqKGVQLpa5fOUySZKhlGB+fg7XcSiXK6ytrbF6f52f/8Wfo1wpYzsWcRwTBQn3V9ZZPH6Um7euMz45zVirjZBgF+w8LzaOyTKJJK/fa7YaCMkj1imOE+JYIKSk1W7iuNYjs7IvfOEvabXbB1EeOikSyyqwvd1jeekeN5ZvsHB4ntXVNTRpkpIQJQGba7tYlksUhpRKJd555y0+uHiF4yePE4Z+DhqUZHxsDG/zGsLvYtROkE2cQvp9WH4dZ+YkPS+iVCqC1Oju7qDeuITt2MjPnmFpaYnJyUnCOKXdbHF/ZYVf/dVfZXZ2GsPSMGwdZSiSOMIfemRCITWDequFYUi6OxvsbqwhsgH19/vI8SJhnGHaJYYDn53tHUqFAmQZ2zubNEbqKCUO8iLTPOIgyyNWBCA1SZykzMzOMb9wDE3TKJdcgmCAYTlEichrvj2P4WCIpmkMvSGWVeYvv/AFLE1jpF7LV/DTFMsySXNyhrm5WUbqFXTLIAwle7v7zMxNYJsGtlUkyySm4WCYDlIakMnc5VxAGPgMhzn7K6XO2Gibo0eOYBomr732XW7fWWF2dgbdMMhISZI4l4M+ljMeRRFBEGAYJkmS8uDBGt1uj8Xji9i2jRQGuzv7vPbq9zh9+hm++rVv0O/3GB0bJ81yBsw0bOLUZ3ZmnkKxxHDYQ9d1NGWRxAFpCi+++HWq1RqWbSI1jXff+4DV1VVOnz7F8u1l9jsd2jUN03LR6x2k6fPh+6s02jUykZtLhZHPxuZqLntOwNIl3nCDMIwwrApZGmGaxsH/oxPHMUrT8YcDLEPDNE2CMCTwQqyD2vb33/+QsdFJsjRB6QrTtCiVKvh+gG7oKJnXrGq6hq7rdLo9NE0njhUfXrp+wOCHfPOl1zhz9jhra6sUi0Vs22Znd5/bd28zGIScOnWWcrmAaeiQCaJoiJAZURyQkTI3N4XSJGEYUigUkELQ6/ewbfvgGZDL5gqFArp+INcXEv32AxIvIPvPfgvfC8kyKJcrlEoFrly5zOLiMcIoYvnGEodPLIJuQgKZ/NEFayFyaaz++19AfnCd5McYNv3U4FWA9qn46X0JQfI//V9k3/0B8ueffTS/eDiR7/WAr1sYFQu9kKuu0ijA79xgZ2OZcLBL0O/gGvYj191EGqRCozcYkqYhtmWiawIpBEmcoJRk4AWYZg5WU0AIhRASqZlohgVIlJIYZh5zZ1gFpNSRSqFrOrploRsmUmpkSJRmkGQGSSKwDBuEjqZbWHaRRLMp1tpMz8+hmRaGVSJRImcKVUaURHihj5ARmixiWpDFBlG4jRImupGSZF2ESNA0gzj2iKNdhsMuaewjCAiG26RJl8TrEg92SPxdVDqEeIhUIncGTsM8CixNEUQkcUqWCpSmkSQZvp/gmBqh50OSILJ8MV+pLL8HAw/L0kniiJJTI4sPVCpxTJYmVCsFvEABGkrLUEYKSjBeaXD0UB3HjEiyjCCz+e7b17m3ssfkeIVGu4zhSjLpEWQB1eoUD1YfMDPbIo0kVkHRizK+8tJdtvcCZueqCDxSPa/PTzINL7B56ZsXadYzsrRHmnhkaYzIAtKsj5IGGYpeP8FxG+hmFcuqkUmTTAiCyCMjoVFzaTYNDD0iCVIs3SBLfKJYR1cWURgRRcGBEZsgiRVR3MfQC+iahqb20ZUiS0Uu5JMyf04LEOQmeZCi64ooCnPn+jjOfWSivBbdcV3iOH40TidJgqGDU7TRVG5KZ5Wa3Lh5l6mpKRYXT1AuV3HXKxiBTfqpDrMz84Diy1/+Ms8/f47rVy/w4XuvMNi9R6neojp6hHJthJSPElMfJ+//xAWtHwNafxrX4MdlwI9jGvioXPjJvv/Wg9eHUTlPso4fd3KfRP9P7vs08Pe01z/u58lj+LjP+rg+P+5/EEKQ/Iu/JrtwDXnm6E90bn7SCzQVgkQpZJDw7vffZGpmGqdYxvcD3nzzbUbqbf76r7/M7Z092p/7GUr/yz9DHl9AHADyVILIBGGUcvXadYq2RrVSx9RNBt0eFy9c5M2332VrZ4/x8UkOHz5Cv+/x/vvvc+z4cSBFWh4Cnc17Ps1mgzAIufzhVY4fP4Fh5iZQW9tblIoV4ihGIEjSPBB6Z7PDW2+9xakzpx7JKLv7XbY2Nmk0RwmiCNPU80Hb6+INe/R7Ht/8xsu0DoxQdF3ngw/Os7Gxya1bt3jhhc/k9bCWRaFQotvpYlsO1XqNq1eX8AKf1mged1OrN2m0mrlMJElQqPxhksWkmcCPYnRdQ2QpSZqRprkEMEkFyXaHrRtLrP7K87gFi0qlxO7eJmHoce/ePcbHZzHMIkvXbzE/O4fnR7z67ddYXVnhuU+d5Jlzz9JojDExMUKx6PD8889SKrs4jskf/m+f5+ixSa7euECpVOVPPv/n/Ie/848oV4v8n3/4h3zulz7H/s4ezp1/hTArPBiYVKolAm/Iyr27WE6RVrPFlSuXmRwfZWN9Dds2uXDhQ+bmDrG5uUkcx3hDH9Mycmn09g5Hji6wubHG/fv3GG+PMTU1wxvf/z4/+5nPcOHCB1TqZQ4dOsSNG7fY2d5jfv4IKYK33nob13VotVpUymVs26JYdLhz5y737txFIBgdHWNjfROl9DyWp1hkY+MuS7fukqaSZmuULIV2s8nVK1eYmzvE9177Hq7rcvXyVWZnZ5mYmiDN8ridcqmEIGW83cYpFhBZxoP7DxgGAec+9SkqlTKrq+s0Gm2yJOH27WUWTxyjUikxGPSQQqBpJqurGxxeWGBpeYnBoEcURZSKBUzb5uL5i4yNtWm0RjBMGyEzlu/colqrEoYhSZSQxAmGYdAfDCiUXNI0IYxCpNLRDR1kQhQF2E4RgcH75y/Qak9QrY8wOT2FZuSOpIZlMAw8RtstRptNMqlotarEyZBavY5pOthOCdt2+dKX/g0Tk5PYjk17tEWSpBw6NIeuG3nOp2Uy8Dyy9YvoWpVk9FnCRGDVJkiCPvGVb3M/drl9Z4XRiSkc18B45wpKKTq9L2Jv/YDSqf8ATVfcu7dMsWBTKGp0uhs4TonKSI2B38P3htQqNbr9Ia3RMSzXYej1GSkXmGy3sA/PoL90lfPjQ8a0ClGSARIpYXtzAyESHMfK73GVGwAlcUReSZKg6zrDYZ/BoEexWMyzXW0dt1BgGISgIIliXMMkExJdz6Nu0iTBdR1SoeM4Fhc/eJ9mo5FnKBYKRH6AoVl4Q4/r1y4zNtYkigR3bt9l4fA0ppH3G0a587XjOOiGnsvoDIOh7+HYFpZpcvf2Cq98+zssLi7S6/Vy2bzvs7G+iWWbzMxMAvkkVNe1Ayf2HIw/jBQzDTPvWzdRmo7t2LRabaIkBpFHO0xNTGBaJidOnWCs2cLzBkhBbkKCZL+7h+uUWFlZ5fuvv86z557jyuXrSJlHfk1NTuO4NkKk6IZJuVImyzIOHz7E3KFZ6vU6RHsozcIoJkRxQnfHZHruEEEYY1gOmmFTKJYRmo5MJbvrd1DsAxLLqJJrOfMcyzTN0HUdpQSCBN8b5o71cYrjlMhkgmYYOM4Ir776Ou998C7jE6NUytV87D0410qZmLaJ7w9RSnLz5lI+VgDDgYcQGdVKleVbdzl79hTVau1gQhpRcEu89M3v0B94nD61SEbA/l4PTbhcu3YV03ZZefCA5kgdTYDSdAAMXSNN05xJ3ts9kITmz5p8ESI3+hEDD/2Da3T+898ibZbxBjGWZaKUYn9/j9GxFkka49Ya2LqOU68SS4nMT9NHWgao7/5kbsP/b5jXjwOvAMmffQU6fdRv/kK+r5afAykl6n5Kcl3DnB0iky4bdy9zf+k8g527yCygVitTqzfQjAIRMW65jm7l6oBSsYih6WhKkCYRcZQcLN5kGEautrAcJ5eBC0UUxxRKdZTmIJUBUtHpdHALFdJM4/yFD/N72bYI4xghNO4/WKdYqqKb9sG9FWPbVr74oesH8vU85krJlCwJIMlQMkRGHmnkkSQxbrFEwS6xs7tKuTiK7+9jGgU0PWRnZw/f7yFTjcj3GfQfoESCRJDFESqLCb09DBkS+z66TNDVwbVEBnmpMGkSQypyIzozIUERhAlJFjP0fdIM/EBhODpRFpAiyTDJpMZup49bqjLwA6RuEPh9EAaeb7K0vEuY2fiJjh/C69//MFcPaBa7ewn9YI80i0BIkkwjlRbKNDh8ZJp6zcaLIrY6Q6I0L8Oo1ou0x6ooCXE0REgDREYcCBaPzlFwA6TSAIVr2YSBRxDDnZUtjs610bSQyOsR9IfoMkLQJwk9dCI0AQkmW70Yx3HJRJ557hQq6FYFUkGUBURJRpIUCWOB1ME48AgQMkPTVV5rLRUpHoZexDIVSns4zpqkQMwQ0LCNGmHYB5GRptGjsrCHJQ4P2VVN0/JynjjGMIxH7OtDFUmn12N3Z4/NzR7rOx7bOx06+x28YcjNpVscs0/SDffxz2yxdPMu165dpz5SodGs8Prrr9IqpxyZa9AdDDl29rNYdgF066NjwU/AvP60LOtPs+/jXkCf1MfTGNq/E+AVcobzIV0PT9d3ww/R/o8Drw/3fXLbk+DzSWb3YXv498Moho97/9OO4UnG+GGL/+mfkd1d/YjbsFLqUfbsw5+nrY48rU+ATAgypaEncP3SZbb3tlm+t0KtWmdmZhbTsDl29DiHDh2G0QrW8goxGZu9PBImkZJgOOTW0h0M0+a5s4ukmcC1HSzDZOX+fZRusvJgjcNHFtB1i/GJCSanphFKsrW5jghKZF7hkczqm1//Jrdv3ybwQ7rdLgtHFiiXy5imjR8E9Ps9trY2qFSKBIOEs8+eY+gPCOMQ0oxhr8/Xvvoi80eOUKnXSbOYMBxi6fnktNsdcOXD65w8dRyp8u9xcnKKIAh54YUXDqQdJTSlH2QASoSU9AdD3nrrPS5evMDzn34ud7WVOn4UIKVE13Tu3rmHYzpkIiLOwLIcpFIMel2EUBiGkUvkdJPk6m3eXV+n/tt/j4nJsTzaQRMgUqrlOpruEIbQ2+8zMznJyoMHHJ0/ztTkGAtHp6jWa/QHMX/x53/MuXNnGR1tsbm5ztbWJs3CGLURi0LVZHz8EKdPP89Xvvoih+enOH3yFC9/69vMTc1irXwJZVdZ6Sr29rbJspjO3h4fXr7O/PwhoiCg3++ysDCPBIqlGqOjoywvL7OwsEC9XucHH7yfSwN9j3qtiluwSZKINIEPP7zC2Ng4Sko6e3tkKqVeG8E0bG4t3aFYKlOuVA6iZhRhGLCxsU6jOYKh5868lmkzNjrO2oNVslTQaDYwbZf7K/c5NDdOvTnBzaXbtFtjvPLyy0xPT/HWm29w6uRp7ty+w9EjR0nTFMd2uHL9GiMjTTqdfdrNBlvra4y2mnhJwuvf/S5HF45wZPEYYZIQRgHNRpu93Q5f++pXqVUqHFo4hO97XLt2jVKxzM0bt2g221TrNS5dusDp0ydxXYcXv/Y1Ds3PkSTQajUwLI0ozRnATIJxMJFNopj33n2fb7/8MrV6lUajThRHGIZOkgqUgiDo5xmdqc7XvvpN7q/e58jRRarV2gGjGJOmAYiUrZ017t6+hWkoSpUmpgVCRGxt7RBHCqUsLNvEsEzmDh0iyRJuLS/x5vffIInzGCO34CCl4urVK5T9e0TOIUJ3HDKBpgw8wNAEle0rtF2FNXOW7e42pQ+WSTPBsLGBVDpi7tfx/S6B72HbGjs7azSaJXb3fGr1KrfvLtNuNunu5rXEpXqNKE7wvAHXPryIliV4qYO1v081lERZilC5yUmv28GxTVbvr1AqF9nbz9nkLMvrXg1DoeuSMIxRSubyzizL3ZsJGXghmTKI05iSbRH0BmS6gTooAcnzVhOEblItl4gDn1qtim5ZoDRUztMwGHhcvnyJ6ZkJ9vaGpEnCW29+h2PHDpFGAmWCeXBWDwAAIABJREFUECn73V08f4BtmxhGzjL3Bz0M3WB/r4s/jOj1e0BGpVrC0HRGRpq88/abBP6QyanxAwm4j6Z0rl1fol4bQQqJpvKYDtPM6zwdJzcQUiqv+UPGCBKq1SJxEjD0B2RhimloLN26wYXz55mZmqNSKxMGMFJvEsUh9XqDr3/9W8zOTlKt1rHsPAaiXC5gOi5pknD06NH8uSLh9t07jI7kdV2ZNUAIxXjrLEI5mFYxn7xiIJVJqlK0TB2Yd12mVK4RhwbK1JESoihCKZkzzSJlc30NyzQxDpyVTdNlr7ONbhisr3W4eOEyv/Zv/zK2kzPbYRBRLBX5y3/9RRYXTxIGAZCiaYpqtcbW5jalikOhUKBYtOh0d/nUpz5NHIXESYymFJZp4/shJ08/x4kTJ/D9DhkB/+Lzf04YCNrtMRrNUWr1BiIVkKVEUUS/n2fBRlFEnOSLl3u7+5RL5YNa3AzTNPD6HoX3r5P+O59l6/QUSpeUCjXiODlYcBXohpbnCqeCJIqwSi6hEIhU8LSknP8/wesjt+ED8PpwrnHnzh3kuwGDrQFb/ausLJ3H276LFnewdZdSqcBgOCBKU8I0xRt2MAyLmzeWMJRCZiFZpnLX7zSBTEGWoVRGlqV0ul28ICRBYNgOQmb4YUqQD7gopWGaObMqNZN2e5SC6xAn0QG41RgZaRKEMUrpRMkQ29IJwyFhOCCIfOI0JurtYukKr7+LRkQWBIRBgGNoaAKGXkSCRjSM0QwPkTbwog10VSWINynYI2hCUi03yZIYKbromk0UpFi6hRLg9Tu4poYf5TXtCImfQKaZ6HGEoUuSICCOIpIooR+4vPP2Dbr7gtvL64y2D/Hady5z737CwEux3REuX1njw8vbXLuxx42lXQqlab7z2ofcfzCg520y0mpy5do2127ts9sX3LiziWMkzEzPkqYanf2Y939wjx/c3GGvq3Ht6ibh0OXCB8sEQ4UQDlfP38R2Zvje6/e5vRRz9coazUab27fuIROXrY1NqsUmQgyZnajjmhGGkUDkIrOENBoCfYSKOHb8KDJWyCxAl5KiU8Yf9kmzIWnSJxrskSUJF68u8fIb73F0foI4CRFKwzBKaFoVy2qSIBgECS998xI9r09lpIggRNM0/KCPZRv4QZKbqmlDsriI1HwEEUEokZqNUCC1GF1zIHGQKsA0dOI4Lw3TdQPdMPLSlAO11COmNc1z16WUbG5u4jgO/hDCOKZUrBH4EvQS4xMzzM0eYnt7j9OnT1PrNVC25L/+0u/ynVe/x2//9u/wtRe/wvHjC5w5c5S7199hpARoJq2Zk9RGRknUR8Hrj2s/jcT4YXsa0Pyk/p9kXh9uf5qU+HGlhpTqbzd4fRiV87g89uHfPzwJHz1RT3MP/gio+xjK/eP0209S4A9raH/c+58GiB/29zi1nn75FQC03/rlH/myn3asPw2tDxkqTTEMg3KpzKV3zvPsC+co2gVuL92hUiphFwwMUyCzlGx+AuP3/xTt5AJhMMSxHaTSmJgYZWKsieM6GLpJFAfEWYRbLDIxMUkaZxyam2HY20KhY+oOqfDJ4pQXX/wG167fYmp6DsO0GGtPMNIcZ21jh3qzRaNRQ9Ngf3+fUqmE54dMTM6gNBun6KB0iVRgGAYiy6iUSswunKBUKtDv7WNqGkmUYbk1Vtd3KBRLPFi7x4nji2RJwGA4wC4WqNXrBMHwIH5HsbrxANsuHRiD5HERmVK88Au/iGXbCFJEGmBaGsOBh6EZfPe1Vzh6bB6ZJQx7PW7fXOLO8hITE6NEWYiUGiIDb7gPF64x/rv/mOYvnDu4ySWdzoBKuUFCRq/T4ebVa+zvbHPv3n3+yT/575idG6PvdZk/vMi/+sKX+PRzz/Arv/JrFAyX8z+4wDtvv8deb8B//J/+YyanZ9nd9RgOPUYnmswemqJQLlIpTPDBxdf59ne/wgvV+2AW0GqHWbn9gJPHz1KujVAt1Rgbb1OulBkOI27fXuHwkQVM02B5+RaLi4tIqej3B5SKRYpuhZvXb9Hv91lfu8/ISJ1Ge4RqpYnrOhTLDuNTs6QJbKxv0WyMYJiSjY0HOI6Vr2wbJo7rUq+W8YZ9bi7dYuX2Pbq7HTrdDo3RJmkWUXDLXPnwGpVKmVK5zPr9NdI4oV6vce/+faam5/DDmOGgS6e7z+GFeUxbxy3YLMzNIwRYjoNTKlIolYlTWNvY5MTiKa5du8Hly1dwLIfI7yKzjCgMmJqcoFqrcGd5GZHB3Nwhet0uMzNTaLpE6opDh2Z47913qVbrzMwtIA2Lsck2QThkdXUdXSge3F5me32d2ZmJvCYwE0zPHGak7nJ44ShBkDIY+GxvbmGYOpZhEgUxlmGTJinDQY/Z6UmuXFtmaqaFrhJEonPj+g1iH4a9BMeukGSK1lgrn+gbDhKJ0sBxTQaDLvV6mSyLCfyAWrXF6TNneeWVV1lYOIyua3jDIXocUQhX8IrPsbHr8+p3XuXMuVMkcYpZmSZKE+TOLcKdu/TtcWofrqCkol97gKErHsg2tuZimib1kRaGU2Bzu4uTSoxCkVRZWG6RcqFAqVzgvXc/YGdnn/H2JHEY4hZdfG+VHimtl+/QGxHouoFp2JiGzcBPGJ2YQ0qDcqmG0ARxnFAslhFCAzQyKUGoHFClCikUcajz13/1N5SLLrVqlUxKgjQhjQbIzOGN19+gPTqCpil6+x0sU6dcqzD0PcrFAv6wnzNsCvqDHqfPnsELIzq7AwpFg+c+9Tz9foBuCxy3hdJM3EIRy3QZ9kOksPLYL8NECEl9pEZztM7YaBvDNDBNi1QKpK5IUsnJ02dRukmagWFZhHHE66+9ThBFtMfGCKOILEnwo4Q0A6mALCEjZjjoYQjQdJ04zRgOBtQrFfZ6Gwz9kO99713CKGNmbhrXsREiJiWi3W6hmTqnz5yiXKuyv7sPB7VdyjAJvS62Y7Ozv4dtO2Rpxni7zdbqFaQWoTl5rWHilRBKEgYeURRgGnmGrZ6YJMpHWHXq1Un8cEAmCwgRIYTDYOhBGh84DGcokRuuOW6ZTKYokaIpnUFviGEIfvZnn6VSqRD4Abqms7W5Sb/XY2F+gW6nj5SCL3zhC5w4fhKldEwz/w6G/oAsM9je2Ic0wHIsTFPRH3TpD3pUKxUyGaBpGbbjkKQaJ8+c4dDCHLWRMlnq884b3+XKtSvMHj6CUFAsFUHmBjBS6YBGEAwpl8vESYqumZAprKu3IIkJ/4t/gK7XSdIAO0oIDJ1Ul3TuLLG5uYneHmV9+S71kTqaUGhZXuD8cD7xIxI8fpjzmv3cM4/MhZ+GVD9uhpAdvElIkRewCoGwM9RMimxmH5nHPGwPwav2mz9DKjUGgY9IhujZgN1vbLC6/yadByuUDIlUOm55hP4w4/7qHppRY+hlZOhsbsdEiYVm19jYHhDjcvXGA8YnjwAmUiriMCIKUzIlMKUi8YbIJCCNPKJhn6C7jSU8Mn8fr79LNOiQxUPIhkRBl2CwR+z1CIddsrDPsLuNlgUMu1sQeGRRgMwSRJJAEpNFIVGUEoVDFAlh4JMlEZpKCKMBnt8lTQeIqMNgsAlxjFI9JBlChhSKNdLUy3PkM5842MPvDwjTBE1lGAakaYTjunT6AZaTM8q+52PqFnEQM4wkkQ/b+xkXr2/hhwrNyiiVp2iMzTM6O0GqCoxNnmJ1d4+jJ87y+hsXiKXLyXOfZmJygtWNbSr1FsMgYWR0mhOLpzCsFmgFUmlQb04SxTqj7Rm29waURkZRVp3xmaPsbG7xG7/19zGKVU5/+rNMzh7BLo8wNjFFbXQedJdzn3qGe6u3+MXPfRY0wfbugKs31ugM4PrdB7TaE+gyRJOQofCSHggwXQeUhRIaJAGpHiDR0SwDTwzRDYWWmGiaSRAEhLFHa6TAsbk2Mt6j7Cqi0EdZBRLNJYoSDMciiAxMu81eb8DUwgy2UhimyXCQIYVDkka5AWOioQzwwxipWRi6QRh5JHECWW7wleIhlYY3iPAjkyAxEImHyDLiKCZNcyduoSRxkhAnQxy7SJJIskzgOA6a0rCtfJ4fRCCJWVnvsL29zfHF44yNtjDWCuiu4DP/7acxrSITk7O0WuOUizVe/c43yYKb7N0PcWsFVGkc3ZzHLOm5ybCAjBTEw9i1Ty57fBw3PY4dPuk9H4ehPukzHu/3aWksT2KYv/XM69NyXuGj4O3xgfaTsoh+XPsk8Ppk+7jM1Z9kxeLx43y0ivM3PxqV87C/nw6o/vDYfvhC/isMQ2QGRbeAUzJptkcpNxooy8oL+TWFEgrVrMOXXkIVC6Sukxs1kUsl4jgGkUsyd3Z2KBYLNEYa2JZNu91G1xTecEiv18eyLTKRMxzz8wssLp7ANCySNGFjbZX+oE+5UubUqeNYpkRXEsMusLm9zTtvv838/CFI43wVVuT1HkJk7GxvoDRBpdo4kAq6+F6ApnT6/R66Uuxsb3Lu7Bk8b0CpXMGyXMIwYW11HU3puG4BKTLiNMKyCggEQdBnc22No8eOoOuSOPLy1VMSNGWysbGFH/g88+w5kCB1DbdQ5ObSEp/+mU9jmRa6aeEPQyzTxLI1tDc+xP0f/yv6xI8cs3VdZ39/n0o1N/Not8aYnz/M9tYOzYkm/+Af/g5Hjy+SScGZZ8/xxrtv87//wT9lenqaqdkZnv/ZF5g7uoDfH/LFL36RNMsYeh6arnHp0iWOHzuOJjXSJODX/t6vI659EWmV2Y5KzM7MkGQxlqWztHSJV19+i25nyMKxJpNTLa5fvUelUqLVaqGUYmlpiZGREQrVMrpp0Wq3SdOYjfU1TMOgWqvz1lvvMTU1wfsf/IDd3Q7z83MMBj0uXrrAuXNn0XUNy7LY3NpicnKSIAgQpFiGQavZxrULuIUixXKRWzdvUig4uG6B9fV1pJR4vkd7fJTRiXHW1td57rnnEJpgfHwc27I4euQIS7eWmJuby5UCcUAUR7iFAr4fcuPaEnGcUnAdLpw/z5kzZzhx6gxOoUQ8CHn33bdptCo02iO4xQobG+ucOnmSwPcJggCEwDJNTFsn8IeQprgFF9sx2dncx3VM0jgiiQKGwz4Ik0azzd2Ve9QbDZI0AyExrQTNlHiRR6k0QhKZ/Msv/HPOPvMMSZowHHp0ur3ceOfeCiv37nP61Al6/Q5Kwkh9lEKhRL1ex3YMavUiXjDA0ARkCfv7e1SqVZIUHNtBU4rbt29j2xZJHOd5dbrG+NgYhqGjNA1nsEEyXOPNFZcTJ0+wePzYQXSUhdRMIt1BuiXE2lVsfweWc7+BoL2N7/tUz/wmZBlB6CMkKD0fI2qlEtu7e1TqIziWxY1rV3Esi/GJKcrlOkW3yLUrF2k3q4w0C6wP9qlc32b/sIns5yHvIAnCCCEkpqXT7e7jFgrYtgPAYDDI5X9pLjNWUnu4oksUDg8cf3NmP4piTMMiTVK2NvcZHW0fsLYh5UqVIAiwLQulFIahYxgGfuBhGDqOYz+ShK3c3aDX32KkUSaOU0zDySV2cUQQeEgp6HT3GRmp4R/UYAohCIIAx3bw/SGVSvlR2oGUUK3VMMwDmZvK2TbPH9LZ73Hu2WeRmkSTkigK+OP/+4+ZnZ7GtR2kkPz5n/4ZszOz9Pt9BsMwN66zXeI4wbB0pFCcPfsM5VKRYtHB0HVsyyIKAyAhiX2SJEBg8sd/9HkWDi8wGA5xbJvhoE+SZliWi5CSV17+NpMTEww7d3LwZsakWYLOKJppkyQpjlvMkbXIYy1SGUGqEGnIfmebQrFNmsUIYaApQRyHDAcejlMkSXwMXccPApIkJIoier0+lUoVgWJ/r8err7zG0WNHcRyXb33rW1QqVVynwN5+h92dLer1KpOT4wdGUJIozMs4TKPA11/8BpMT7TyOq9ulWqugpCKMItY31kjTOPdu6PXo7O1TKZcPnKc1Go02y8v3aIy0KZdKhEFIt9NB1yTdbhdI8v37fTzPQymFvttFu3mPW7/76ySOg2m6ZHJIHIRYRRMhM2yjgBQS05C8+/r3OHJsEaT6kfq2x+cVj+YO33sK8/pTgNeHL/yIcquRA9fHP+/jwGv47/4GhoiQnbusXXyFf/kH/z3He/+QrK8RqD2U6VIemUQYZfZ7YBeb3FnZptacJMGkWGpTqY9hWGUcp0K34zM9+wyOXSdBY+nWXYqVOmg2pUKVIIQwBNstk2QCbxjhOgV0peXO8YaJyHKXa5FlZHGEIRVZkqK0mCSNMW2HIEoxLBfNNAmiGM2wCNOMTGkIpUiEQalSwXQLpEIRpQA6UmlEcYzrOkghDmTFIbpKyRKPyOsQDHeJvT4ii1BKMAwCdMs6kJcnucIgTRgOBgfbQpS0sN0Gmaqhu6M41WlSWWD5foe7Wz7rOwOe+/SnGJ9epNqYRBkmUloUClVmF+YRpMwdOsTs/CGK5RJF1+D44lHuP7jPmWeeZWJiir7vs765T7M1QalcxdRN6iN1Di/MoBku589f58zZ55GaYnHhEJVKCdd1CAMf09BxLJO3336To8eOsrGxQaHgcuLkMSzHoVAsMj2zADhIzWZ9N2W3t8PEVAlJgIgzLGlg2C5JFJIkeZmF0nSE1NCBMAqJ4hhNCFQaEgmJa5fRMo0k7GBqXYSMIR0S+j0UGYYmSUPo97cpVxxqtSZj49M0m+MEkSQWit1OyFtvXyXOCoy2R8iElkdcKROlaRiG9qgeFnKFYxRHJHGPJCvwxnubvPHuLabHq1gW6GZeLpDX6/tYloWhLPr9bZSKIEuJg4wwHpCJDM9XvPnOMtv7klK1wuHDRx49VyqdJgE+y6NXWFtb59iRo/zB7/+v/Fu/+jlKxZiKvc3V9y9hV0yOPftZipUplK1/hMTLPWs+6nnzSe0nxRI/KYb5ScsXn2yapv/dAa8PT1KSJD8i+U3T9BGdDx+vA3/aiXyag++PA6xPZhY9bh71cPuTLO3TPuvJ43wcvD4E309Km58mQf64i+fRim2akUmJlLnM+fbyMpYWUx4ZQRoWQRwjBERhhGM7xGHM8O4KRpyg1aqIg7iDOE7odPbpdvYpVypYtkUQhGxsbOA6NkEwpFKucPvOCrWROo5rcu/efWzbxhy/z/bwGsFeAdM0qZSLtEZbtEdbSJWxunqfUqmANGwc2+LQ3CyBP0QICMId0iyPx0hiiWUU2N7uUKqU0FQu5eoPBnzlq1/lzu27nDh+HNu22NnZptVsEEQpK/ce8Ff/5m8olypcuXyZcqVCEAyp1qt89StfJ44SxsaaxEmIZdv43hDXsbFMg729PZQyc2OdJMUwdDRdy+VbSjExMYYUeayGH4Y4touhaexcvY65sU/yX/4jDF3R63XRdY2NjfW8D6VY29qk2mji+wFf+/LX+IXPfZZGo8Gf/tmfcebcMwwCjzPnnmGsPcqRY0d56aWXOHbiOIV6hQfLd/nGN77BhYsX+b3f+72DfEjJ5//oj1m5e5PQC3nttTc4ZV4CvcjKvmTu0BxCppAlVOsu7759hRc+87O4pYiMFMuocfnyBTwvj6zRNI2trS1K9TpSCr7//dc5sbgIWcrRI0fZ7/aZGJ9EiJTJqQnGRidZXl5idHSU4XCI53m0Wi3eefsdnjl3jiwDTVOsr62yub5OpVojSTP6gwFXrlxhbGwUKSWO49Juj1KplLl29SrKzGv8NF0ninxcxyGKfG4tLVMfGUEIWFq6yWDQxy04hFFIwS3S7w9otUcplytcfP89pqcm8rgPAZ1en1algWXrNEdrCCHQdYfdnR2+/fLLFApFLl++wsLCAkmSkKRw6fwVBj2PTqeHZdi8/eZbzExPceHCB7RaDZrNBoZVYOh5jE2MkwGaUsRxjKHlQMdxbaIoJAoCzjxzBl3X8//ZdbAsG7eQR3bIg5ip8dFRDEvD8/bQdMmLL77EpYtXOH7iDErGbG2sY1t55IGmW4RRjBKCP/n8n3DkyBEKhQKQEvgBlmVimgZKk6g0ht37xNE+N/crnDi5yMAbHJjYbKHruduxMC1EoYnYuom97IFVIZ7YQ9c01OzPE/geSpPouo4fhOiaiZQpnV6fglsiiROazSakCYOBz5WrNzF1k/XVO7SbdTa3H9DvDjADj+KdAbJaQCqFZVsIlccR+KGHW3CwLfsg2TJvpmGimwZSCLIsH1N3d/d4553v88zZ09RH6kipkFLLDVvSFNNw+au/+hKjrREqlQpJmjIY9tGUhu8PGfR7uQzZtNjd2cEwdMIwwHUdCk6FcsUkI6VabmBbTh6rZeW1c47rUigWSNIIw7BBHGRtH7iaa0oSRhFxlLseB2GQ1/GbOkoCQpAd1L1OTUwfREDk8lop4NzZcxSLReIoIgojbt64SZpkzC8s4IcxpmVj205uaKUJdN3EcRwq5SJB6OOYFd743ls0Gk0cp0CSJHjDIQW3wtTUFOVymQvnz1N0XZI0wi0UkZpOlgouXbxIu9XGEvtEcZAzdUpgyAkMy8b3/YP6rxQE6EKwsbWC61SJ/CGICN2sI5UAFELkNXxuocxwGOI4OkpkWIaN5w2RUmIYuWmWadqsrKzy/vsXOHH8KJqu47ouE+MTpGnKiy++yMLCPOPj7UeALUtTkiwhDIdoSmNiok2zWebOnTuYpsnuzh6WZRPHMaVyAcdx0ZSG67i4rsv29jbnPzjPt779CsePn+TBg1XEgQupaZqYhk6aJkghcF2XJMlrXguuy+WLlxi/eR//P/r3iObHqVZHkFLHdASra9vs7DzAMjUMs4ZrGVx669uEQciRxePE5Iuc8rEr/SPlUQfgNfm5sz/c+JQ5wI8Drx+36WPB6998J9/xN38RJ97jva//BV//4j9Dizqc5b8hbjwg1RSxsJk6fJLOICbTLSZn5pmYnuXDa9cYm5wkSTL2Ol3SDDrdDqZlstPZRmgZURxTqjXoDzOcQpubd9YJExtpV0mVg1Ws0xw/wiCAIBTYpRHQHIaxhTRK7PV8lFlgc3tIptw8oiYxQRYplEeJUhvLqRMkBhcuLzM2sYBdbBKlJsXyGNduruAWR8hwuHz1LpOTM5iWi2HaIDUGwxDXtdC0vNZepjFJ5CGzKDdPIiGOI2zXRWgKQ9OQApQSxHGEFOA6FlII4kTQ7cUoq4oyyjiOIPS7xFnC4ulTLC4uoBlFDLvMnZUHmJaDZbn4fggqQ0mF7ThsbG4yPjmOJhM0TcN2Cuzu7dFqjyI1k1u373H8xEmk0qjXa1y8eJ6JmWlsp8yxo6foDwZYlsmwu82de3dpNptsbG7kjt6OzfTcNKZlsba2yp27dzhydIE41ghCn73OPqZjcvqZo+xuPGB8dJw337pClFQxC2VCUgIvAjKkyPIxIgOhZF4HrEyUXqLX7aMpkNIgIyKWkr2BzTdevc2xuQmyOKNg54qQwNvF1BVhsAPCo9/fpdEYyY0+CyNols3Ak5y/dJfd/ZgjR6dQyiZNJVEUo5QgDIakSUqSJihNkSYpYRBi6RWE0rAqDsoMmZscIU28PFUiCgmjKF98SBJSYXNnZYDSG/miiJEhhJ5HuwmD8x/eJ9MF62vbNBoj6LpGpVLB2aqQ6BHb83cZHx/HH/RZuXeLn/vs82zev8yNS99kpjVJL+px4vlfpt5cIBbpj9yf+bjwkwPNH9d+HPH2pGnt49jncRzycZjkSfXp31nm9bHXH/3+cV/g017/aZjNp/WVJMknUuw/zTE9Dl5/kvd+Ul+Ps9BCCDLBgc18Sn/Q59KbryJ1g0qjlbtgphKVpux2erz7xpu4xxYo/f6fkp6YJ0+6zl0+XcfBsgyErrDshzLHAZom0BSsrm7QGp2gOlKi19+nVm6wublJam3jeR4fvrORxzHkB0dKSqe7n0dnGBbd7j7d7j62Y2MaJgjB7s49oijBsssgFFGYUCwWyUSSM70HjrWW6TA7ezifvCuFaRoMvSFC5TVQZ06d5vwHH1AfqfPyqy9z5vRJNENnamqWsbExBv19StUa/f6AQX9Ard4gilMsu4DtuBiGhWVa/OAH79JuN9lYXadcKtHv9djcWKdYLGM6xkGkA2hbO4hqGe3v/waWkedH1mpVkiSmVCoRBAGVkTrS+n/Ie9MYSdL0vu/3vnFHZuRdWVl3VVdVXzM9PT337HIv7i4lHrIMWDJ9CDJIy7IgkzYMCLIN+wNhGPAXX7QNWyZIkdylRZEi9+ByL+2cu7M70zPTd/f0WX1Vdd1VeWfc8fpDVA+Hsz27KxH0BzEahUZVRmdWZ0RGvP/n+T+/v00Sp1w5fwnXNmiNNfnWv/w2n/3859jb36dcq6LilPHGGKurqywfXkZqGpNjLc6fP8+v/Oqv0hgbo+h5pGnK5z/zOc6++z0WZo+RZjrz8fcY6uMUmrM5OZr8RioxGBtrMj0zQb/fZTgIKLh59ML4+Dirq6tMT08TxzFZqtClRtkrMuh1CaOI4XBEEOW5k5oOhqGzen+d6elphNDodLqsrq4yOztHuVRi9f4qZ86dOyBIZ8RRyP7ePsViie2dXU6dehKvUOSdd85z6NBS3n3qdZicmqDb7eF5BYRSbG9vUvY80jQGJUmShL3dXaampzAMnVTB6uoa7d19BoMhtUadJEs4/eabFD2bQiE/z9bW7lOtltB0uHP3HoEf58CwJOXpp56iVqtTKZfp9nqcefcMcaKYn5lnsjVNtVrj+9//AROtFqWyx+LiImfPn2dychpERrni5VEDUQRK0O92kUojSwWGbnP39i1KJR2vVCfLUnRDQ+oHi1ZNwzI0jh9bxNJddN0iiAbs7KzjuC7Hjj3OocUlhNQhS4jDmIrnMRr6WI6D1DRCPydA16p1vvOdlzh0aJGXX/4O586e48jRIxi6gezvkfTuoYTg5Gf/Luub67ltUTdwDBOURpYlIDJ0u0RaqBBXtxlNxKi0ix8ElE78PHE8REoNr1RGN036vRGuoyGkhu1LW0txAAAgAElEQVS4GFqeobe+usrtO/dwCx6NWp2FuWnu3b6JWy5SLpQpLNTw/uQGHVcgTJFnEyoBQlL0ith2HokjBCiVF5GUyshUTiXN0gQhJQXXoVYpYxyANKTMc58hQ2p5h/bxx4+yv79Ns1FHCZmTtQXYloVh5ORxgcArFtnd2cVx8m6445oHNE/FK698D9/PSdhpmhIEEVkmUUKgGTlN9yGFHAFSSITIc0Z1XUch3gf85Au7/LMphcyJ10IDoQ5u9CIX11GEYRh8+9vf4c033+Jv/61/l3pjDNuxsFwXy3Ho9/sUiwWSg/97msV09ndRaYwQNm+dPs2hpSWkppFmilK5kr+fls7O7jYrt27y+LFjIAW6YaJpJnEc8/prr+M6LhUnp6LaVYskTbHkNHEcIITAPigkGLpGOPIpVmwypePYJogE3awzGPa5dOEyE60xTMsgU3lma5qOCP1hnhFpOUhN5vbqLCNNMwxd49SpJ5GaolTyCIMA13WRUnDq1JNcvnyJ5eUlTN3iwrnLrNy6S32sQrHkomkajmMRx30ss8jv/M7vMTuzQJZBHEU5iwGNMIh49dXXaLUmqdcaFNwicZoxMzfL9NQktapHctBlj+MATeoEQUgSpQip8m6MYdJc30caOqs/9zFsW+POnTW+9e1XOHHyMYRRpmglDPo9DG+CxN/n9Ld/l5/+/N/A8mqkwgCh0FSGEo9eV7zfef3EBzuvfzHxml3WUNvyR9qG1ddeRylF6eeXeftPv8g3/uB3Wbmzzqee/Qe0ep9gx1lnauEwibCIUxgMfRaWl+j2+qzcvs34+DiWqVOrltlv76Pp+SiG4xhEUY9Cwabb61Kt1hkfn2EUpMwtLtKcnKfnx0QpFIplgtSm3fURhkMvyChUJ0i0KtWxGYRRYK/tI80qpbFZrEKD7kiy38/Y7UQUyi1S5dDpJRxaegLDrrK1O+Tye3eYnTmMYRa5c2edSmUCqXnce7DJYJQSp5Kd3QHtdkBlbIJUmRSLFTIlkUJDCp0kyQthpqkfUNaHJGkGmUIT8FDAhVFAlgEqzxMfDjq4jkbQG6InCSWvim1WKBdq7OxsUq9XckuqYXH1vfdQpExOtIiDiI31DZYWFwgjn82NTQZDn7GxcQrFEkmaYBoGtWqFzc0NsjTCsnUOLc4jpcXLL7+EaUr80QB/NCKKc6eaV6kgNZ3hcMRYowEyI4pi6o0GC4fm0XTJznabTmeHSrVCrVZFM2BppsWdO2tsbqesb4U82NphfXuDUrmBFIpyySGMQjKVR+WQRYSxyUuvnef2vZzgLjJFJkKiTPHu+VU2dzSaVYmh6wiRYuiKJPbJCFBZiFAxtqmQWUSvvU2n18e2bJLEotePeeKpUxSKGt3ekMCPKHkupiXJ0j/LD5ZCEoZhXkjWXHQZImWP1riHQZ4va5p5A8O2LCR5M0foJisrO9y5s0W1WqTgKoJA0u11kZrFzNwCSEGrdYhisYDnFahWyxjrRYQtuFp5l/cuXWb9wX2eOnWcy5fPYBHQKA4Y7QVUxmscffqzaMY4mfaIppz619Mvj7wk/Bjx+ih98eHHf1Ln6V+pmdcPbnkQ+p+Fd39UTM2Ht78M8fpRkTw/6jUf7v/h132UbfhHPccHn+vD+31YvGYo4jjOuyVSMrh7C69Wp1QbzyMdYoUtDPSCjWuaePU61uUbMPTRWg1GIx/XzYPHw9BHScjSjF53wERrnCgcgcrwvDK246FkTK/XplxoUK1VMMp9BoMh18/tc+bsGaIgyumotkWh6FJ0i4RBSMlzKBQKJHEKmkaSZoxVmhQKVbrdEaalMQr2UHKEJvNMvySJsSybcrmCHyneeus0jz3+OHESowQUPDcPle8POHr0CFMzUzxx8gTdzj6Oa2PbRaIwwvNcesOQcqVKsVhCkYsNJXT8wCcIQ770x39Mv9uhNd6EWKHShGq1jJAS03KIsxzNLqVAXbxB+omnkU8/S3t/Ddu22N7eYmKiBUJhmzYdf4g0LaIwor25y+Wz77K7s8PnP/d5yuV83jNNEva3dvAHQ+7fvcvU9DROocC9lTsAzB9awC0U2NvfZ2dnB5VkbKzfpNeOkFjMJa+TNE6BlFhuDpe6fOkKpu7RHK8QRH363ZSZ6UOsrd9manIGTdNoNBpcuXIFKSX3V+6hspThoM9wOGRicoJ6rU612qDf71NvVPj+D94gCjNGw4DNzU3GGk0mJiYxTZvV1Tucv3ARr1RmfmGegmPT7/eIgohyrc7k5BRhGPDqK6/wUz/1GS5dusjMzBQrt2/guCZjY+O8++67vPWDH/D48WMIkc8Lx4ni9OnTHD92jHq9lndEnALlUoVL5y9w8uQTmLaO0ASHlw5Tq3mkyYj9/R0Ozc8j9Aw/iJibWSJLBa+89C+5c+ce9Xp+zo9GIzzPQ9cNjj+2zPWrV3PLtK0x3qrhOAWcgsvm1iZHjhznzr0HbO/cQ5O51TgKI3Sh8du/+Vt88tNPkSaC+/c2eeXl13nq1AlMu8ju7g6Ok1MMO50OcZygG5BEI/7g9/+Yp596nt6ozURzAYGOynLw4Chsc+fGGq+89CqLhw7hFvJM21QpNJEy3mzhuEXW1h5w6NAiE60mrVYLqWl4jo3W3iRVPVKlQe04haKDkIIgjOjtt/n2t17i8PIiUTTA0HWGvo/TnEd11sn2LiMLFdTsJzAMiJMkj8QSZp5dGfUwNJMsFYRRijB0irbJ7Owh/ulvfwHXdrENDU0khGlKGgkGozb25Qd05it4B/ZR03LRDAMEpFlKFPjousT3R3n+aZZgmAZxEiPlQ1eOoFypkURxDtCIAjQtn/0XQpImKVkW0mhU2N3ZIYxTpJaTazVNQ6Do9XKwUr/fp1wuYRgG5XKJXn8Hw7QpumNMT8/jFiRpHACCIEh5sL5Fo5HnQY+Gg/fhPSjwA58kSthvdygUiqRphq4biAN3jNRyyrBSgiyDt0+/Ra1RQ2oaQeCjsgzDsonimMmpKZrNJuVylaLnITSFEvkgY17QG2AYFoahE/pDhEoxTYNyo0KxlGe8Ch1s22AUDDE1g/ur95ianuDQ/Dx7u9s52bPgIQ7m3q9fu87HXnwBNbqPZhjoTEBaQNdLjIY9VJpy9+4dqpUKSRIjUkUiQqJAoQtFlARIrYxhGUxNTKJJiNMYddAR39q6m3esLA8hdO7cvZPD77IUx7Eoei73V+8wOzvNzu72QQarRXJAWz506BBJkrK5ucPLL72O51Wp1vJruSZt/KGPrkna7QHlco1mc4KrV69TqVRyJ40S/N7v/TOazRbDgY9pWpiGybHHHkPqksGgjWtrFIpFhIQkiSkWS/zzf/6HuG6JcqUAKOJ2B/fKHa7/J7/A2Mwk/+T/+d85dvQkU5OLGJZGogqUzATH0ojNKlbaJdm9yPKJjyHcMjE5M0EnIRPaI+/52fIM2amjUHQ/uNj4of3+VcRr9IcW2V0N/bnkozuv7R77BZPXzn+Bs699HYmkNHeSE4//B5T6UwRVRRDD1es3cvu2JtjZ6aJJg/m5Q5RLJSzTYtQfMr9wiChKuHjhIq5tUy9Ncf/u2sH1VmNnd5tKtUQWDRBCokuBRkoSDOn3I8bqdZRSlKt1lNAolifpdvrcv3ePZqPF1PQ83V5A289oTs1hOB6Vep2hH6AbNjt7+0xOz5EocIslmhOTrK2uMhgMcBwHt1AkSVKOP/EMiZKUq2PEkcC0Kpx77ybTs0tEsaLbGaBrBp3OAMd1cxtqliBVhikkKRqZSnkoXJVKIUtBM9CkQlMRjqkg7RMzQKkuugURKd3OLnNTM6zdv02pXCJLoN5oUK0W6bY7bKytszA3T6ZSev0Otcp47qjIVL5eU7C39YDW+BjFgsP91bvUahW6vQ6d/YCR32F6uoE/7OPaRdyCRbFUzpMmENRqdTrdHo5jUiqVWVtbpegVEJrAtTTCaEhzbJr2Xsy1q/dR0qE5PcXRk0eYnGxy98YNpuotNntdSkUHoSIMTaJJicpSVBajtArvnH9AnMHykUVsB3RpQpLSatgszVmMz9bRjBQpEpI4w9BdlAjRMDGEQzDsEwcDTKEoeg79fsDbp6+wtr6FW9KYnpmgUCjhODZh0EepAHkAXxNSEIURpmVimiaJ6iHiED3RMYSFrqXopnsQvZWhCZ0kThGZQCQ+k5MlFpcaaNkIEcYME7Adm85+wLkzK2SJzdKRY3iehxAKIQX2bok9Z5PmTxe5dPECv/ALP8fKratYpuBzn3yB65de4s7VVYpjNaaPfYxiZZGE6Ic/tP8/i9cPx+B8WHP8pOJVKfVvfuc1TdNf++Gf5iHCectcvv/3w7DjR1lsf5SIfPhvHmUhfnggPtzZfVRL/FHbow7uh22/77ffL1xDVDy0Tz/3557jUV3lD58kD+cpP/xa778GoIl8xlY3DeLI5dK1H3D86GFE6oJp4mv7BJ2AerWK7/sYaUp48zaxU8TUNfxhjzRLcAtFHLNIGCTs7+1SLpexbYdef4g0DSzHBjRcu8jOzgaj0YhCM8TzShyZep6lxQUWlqaxLBtDtzA0g+Goh2EKoihDN0wcxyUOIwzdJEoyTMdF0w0MTSMJYmzNwjAtOu09JPDelZu4xSpJ4vPkkydp7+/hugWKhRK93gjL0CkUbDRDotsOCZJaow7oaEKgiYRud5+iXcYfDvnqV76MberoGhiawrEd3j1zHq9c43Of/yyGKXE8idAthLTxRxFvf/8NWpMLOJaJP+xjnn6Pzr/zScyFMaRukCooV6skmSKIQoRmEY9GVC2HWxev0t7Zp1Yp8GB9jRMnT9Dr91Aa7O/t8n/9n1/g9r17/NLf/7tcunKJ6cl5PK9Ba2KStXt3mJicZHuvx9rWLq1WnWdeeB7NzmhN1ig++Dpv3wiYmJwEEhzDpOgUuHtvlempGd76wTuYtkGj1aRQqbK+toZdqpIoSbNR497KNeYPH2F7e4tjx4/TGG9iFYukEn7vd3+b+YU5atU6UjM4evwIUkUEwZDlpUNsbG2ysbXF40+eoNPtsrAwR7vTxvaKVMbGsIwCe3v7nDtzlqXFZR48WMdyJfvtNtOTM6RxTLFg41bzxebs1ByeVyFKU1IhGJ+Y5vDiIpokJ1DGPq7tkmYZ6Pm8oi5S7ty8ShKE7HdHTM0fxg9SyuUK29tttjY2MA3J1s4WsRBMjrWolD16vV2mZ1rYlokgB05MzMzgNarcvHUT17EZn5jGcV1Ov3MGx3Zpb+/w5PNPo2kG7759nkapwdbGBs8/9wyuk1fCSxWXJ598gjBKaG/FvPn9VziyNIshHOJUoFvgWibDgc9jx4+QiYRma4KR3yFRGZZbIApiulv7XFtZJUoTTp56gigKMKSGLmRu9ZQSJMzMzGCbJpqeF1ru37vDpK3Tbe+i0+PinT5GaY5arUx7bwspEgzhkCpFtTGG7ZYwTIPOfpeCVyJyamhJiBYEaEGENfdi3n1AR6UxJdelv98h8AdE/h52sMlg6w46inDlbZ4371LbfhMz6bNdmKJablJvlhj6PeIsoH5pl6juodIUSxfoQhGOAizLxrRskhAKdgWFJNMEQuUxQprUkSIvbKo0QojsgIgdo0vBsN/FMg22tzeQUsdxyxS8CkG/QxbHCAFSE/QGQyr1GlmWz21KFN1uh1QlFAtN0jQBAWfPnaNQtGk0p0hSuLlyi+ZYg7LnkcUJhi6BHI6Uz89adHbafOkrX2NiZg676CI1RaYUYRShG7lwHo0GGIbG3ZV7PFhd49ChOSzLyeMfAEPXSdOEZnMM3dRQIiNTAk2CFIphf8SgF+IU83tCHOXzznEUggGOW8axKwfMBeh1fB7cX3vfso80cLwa8cDn4oWLNMbqIBWnTj1BEsecO3eJqYkWpusQZ3lnPYkGALgFD6/SQGo20nAxDBfLFAz9Xk4DdzOQNkrl7hgpBEngY7sV3vn+WZrVKpoh2Ov4XLpwlbfePMPzz79Ap7OF41iMNSYZDToUvCphCn7o4xR0LN0hSSNGfhdNh+WlRZ588iReucTW1jrFgkm326FYKFGueszOTHHl0gXanS4PNnc4fvwoL7/yKovLh5lbWCRRgqmZWaSI0LWMYbfDuXfPEkeK9c02umFR8opoWk6xn2hNECUjpHSRZ67B3CTRL3ySUtHGrTSxKxVKDQ/b0rFcidR1DLdMmKUYMuXNN97m8Rf/OmEqEEIiyK3X+Z37EZtXAK/w59cU8ENfH7U9at8P0oYfPqelMhIjRhgStbmD1gpY4Ryv/clXaEdzDJ1FTn36rzG+doK9/g6lqsbe1hrLS4e4+N51Fo6eoFopo2smpmmwsbFKoahjWh7t9j61aoOS18APR1QnDyLppMA0dVoTTTRD0O0O2d/rUGs0ydDxqk3W19fJgKnpWaIoZjTyGfQ7mIZOo95ga2eHVGV0+12mZ6dJkxgpFL1ul8WFJdI4wC1VMUybUsHk9q1buF6Veq2GYQgq1RKG7dIYn2RzfZUoDAmDlGK5glcu4ug2umbQ6w1ptsbJUHmR3vGIEyhVG6RIeqMRBgkaCrIUlSY5cEsTZHGaQ4JUbg+PkwgZJUgBaRIQ9PapekWCNCKIElJl0N7vc+fmHUxpUKtX2N7ZpTU5ycbmZt6Z1FOSNKVabTDyIzTdoFwusN9uI4SGbRcOoHIBlXKBfr/H1MwsY60ZCpUqXrFKr98DkaJp0O8NqFbq9Nq7bK/vYNsGTtHGj2HQGRHFIdVqBdsyGB/30A2HLE6plcrsbK3z1DNP4KchD1b3Wbs/olwr4BQyhNKxhUYsLZQhaZQFJ5YmqJgGQoS5sCWl4NromkLFIZoQSKFhWBZBFOSz9AKkzN5nEqRZjBQp0XDEkeVJjh6bZ3rqEI7m4g93cMyMJBiRxhG2beeuF6HQdHlQOASRCtJMIg2DJI1IEoVUOkHg53P5Zl7oktIg0xRBEGDbFkma5etfTWMUpijT495Gm/WtHpOTM2SpotFokKYx+nYBfTHhm7e/xlOnHmN35wFjjRbDPph6n+3197ALAYXqUY6c+hzSkaSplrt3PvAn+wjo7AdHGh9uH/7+kdeFn6AB+FGa6oOsoR/XUMtHPY1/s8Xro23DHzWb+sNv2I/bPrjvwzf1IUTpg/s8Stj+RbYP07iUUmiffv6HhOsHX+/D3dofBZZ6FCL74f6aprGzsU2nvc301CwKA9M2yESKUDrXr17j9p3bSMuk8dVXeLPb5p1z7/L4EydASnTDIo582u0dDFPiugY7OxtIqahUauy19/N4B13iuhaO44DbIUli9KiJbZvs7u2hstyzr2s6mgZB6KNrJmmWoUlJmqZs72xjGHpuv5MSpTIGgz5SQHcwzOc0bZsr712nXK1TLLmYZm7Fu3HtOq5l4zruwYUPNjfXKRZdBv0OKskI/QP7axiSpBlOweMLX/wiUtNYe7DGzOwsBa9IfED9XFpeQpcSyAgGEVmmsG0TqWlcv77C8uGFfJg/ihGXV1D/6Jco18aIggiJxDIshJJEQYzSBN1uH1O3uXVzhYWFQyzMz2KYFucvXuSFj32MYsGjWqtTcstcuHCOz3/+s7z80svcvLHClfMXqHgOq3dXMHTJV778Zf76z/4sgT8k8H3a+x1uXL3FfPgWeHN4tSaXLl/i3t376NLAKRawDwAlrYkJDNNAIIjDgF5/QK1axdA1HNNAmhbLy8vEYcT65gbyIOcsGI7wSiWKnofruiRJwoULl2hNTuJ5Hit37vD4iePcXrnPicdPYhk2lWodTTsANuiSzc11TjyeRxq9+eabfOwTH6dUKhOEIRcuXmZp+TDnLl6gOdZkNBjiug62Y2LbFt1eFyEUly5dolFv5MAjy2b1/hrTs7N4XhFNCN55+x322x0OHzmOoVvs7e6xei/vhs/OzuI4Djt7+zz77PNkCtxikVdefYXHnzjJ7Tv3mJiaxg+G+H5ApVzGKxQoOE5Ob5WCpaVDZCrFLThoQkOlgomxcW5cvcrm5gPm52dwXAvDNvPcOyHZ293n9Ol3WF6epV6vousmhqkjNcWg28tjN3SD//uf/AZpmjE/M4fKBHGcIDWNOE6Ymmxx+PAie7vb1Op14iTFsBw67XZuP7YsNCGIw5AwjLFMh431LSYsRRDuo0ebnNsZZ3ZhCce2MU0Tx3aJgoz+8CHszAQUruNgv3Qb826X0WPHcQp11MYVwto8hkgZrJxFXvk6/o03MLauYG9fxbz1BmL7JsbubbLVc6juBivr+/T7A2pFh6j5DJVKgZ3tDWYmG6zs3mf+3TY3T1qUhhlh4GO7DlGW4haLjAIfTc/QtISMBJUmWJZBEA7pdvax7TzvGaERhCGWbaPpOXBFNyzIcniYbVsIAaPRAMsu4BQKaJrGaDSkWHDpdzsg8qJFGITUarVcVAiNLItRmaC932FubhoQmJZJvVanXC6TE8V77O212dvbwzJtSuXKgcDWOHP2LCdOnqBc9hAoshQUAikkHMTgREHE22+f4amnnsIwH0bEZUj5Z5ZpIUCInPiLUGhC5HOXZg4WsS09z6POFMPRgIJXzN8H6aBJHSESRqMBpmHy5g9Os3z4MEmScPv2XSYmJlFpxjtnzuCVS5QrZWzL4N13T7O/fZfxsTLFcgUlLFACyzbRNJ1qvUGSKtJMIWRCHEcoJdGli6l7aDKfpdW0/FqeW4JTEPCdb32TF154mlTFjDVblMs2T546iVIhvcEOaRZRKpfwhz5pFuUgM02SxQIhLb70pS9z7LHjlEol3KKH1HXiOOTevTtMTrTQtfxe2On2iMKYWq3Ja69/j8/9zF+ju7/FYDhA13WmJiZp1Ovoen6sHcvhe9/7AdNTc/T7w5yy3qij6wLD0JAShsMenldib69DfH2FlTig/nOfo2AZOIUidqGYMx1ICX2foq0RRxGGZdHfWcffW2Vq6QmkYYHIixgC9dHi9S9he1RUjhCCRApuXDzL//iP/yEFvce1a++S6i0OPfZJ/v6v/pcUKiWm14+T9SSynOIVPYpeibHxCe7fX6XklTh79gI3b94iCH1qtVoeg6MrVm7dYXpmlsZYDX+UoUnBrVvXGG+Nsb3TZne3n8eQWQ69wZA0S0Fk7O91qNfrOVAP2N7ZoTU5yYO1NRqNBnfvrTKzcIj62DhKKeIoIQwiAj+g3W4TRyHV+hjtdoeVm9dACCamZkmSkOZYnSRJ2d7eo1pr0OlsMTs3n5PADRPTtHKreAZSN8iUIE0UQZjS6/qUyw2SRLC726XWmCBDoFsucZKhm/YBh0SAUCgUuq6h6TmTxNQ1lEpIs7yYloQBaTKCJCTyB1TLLhPNCrqWkCqoVcs4dg4/293dZG/Hp1FrAYrtnQ2qNZetzW1arRZBEFAqFRFSMfKHdNr7HD92hLu3V6iWPeLQZ9DdR5eKJBph6hoSwWjQxykUadTHsG2D/f0dKuUqlXIF29KRUkPTTKI4JMsG7O48yLN5rQIbmx3m5o/S63RIY0W3s83M9BRnz1ynPlHF1G0sTcdxdBxPJxIDslih6zqappGmCZZlvS/G4iRBvr8GzhkucRy/v2ZXSmFI8o6uCMhUjCY1+qMR1VqFwPeRUmHZBmEwBBSaJvPMdSkPCjn5mEeSJHS6XTzPQ9MTNB100yA7SIZFxSih5RyOKD4Y/8jjc77/5g3u3t0hVTZzC4d4sLZJpVKi12tTq9ewd0vok7Df2GRxcQ7LshEoPK/I3oMrZPEWWZpQHT/G4qmfIswkumY98nP7KEH54bX/w5/9pHE5P+51PurxR3VjP7h9MBf2r6R4/egh5X998frBoeNHdTEfhX7+SbYfZSd+GPPzcL+Pet6HH8qH9ugPflA/Srw+CpH9sMur6zqt6Un2t/cgSpmYGCMWGWg6Dx5s8D/82n/PxMQET3zuM5hffYmxhQWWn30GaepITSfL4M7tO9TrDaqVOp12hyxT1OtjCJWHtlu2RRT4xFHAcDjCrOQWOiNpommCSqXON77xTZpjefROFIVkmcojDkwbIQWmaVAsFgmDEYPhEMuy0A097zBpOsVqDdu0CKOYxeXD2K6DaQqEUERByFe+9CVmpqbQNY32fhshFJZtYhoajmWgDvDmr7z8GrNz86gDC8YTJ09w7PgxnnvuuVyQpQmGpiN0jdFohG2ZbG5u8M0/+Q4nnzrBbnubYqnMkSMnCKMehYJDenkFtTiD/jc+Sxyl3Lt/L88ztV2iKMU0bfba21TKNTRh8Ru/8ZtIqRhvNvnKn3yNX/57fw/DtFhdXcNziwdABZPlpSOMhgEf//jH+caffpnI71OrFDl//gy/9B//MqapY1ku1UqDX/mH/wWr99f4mbltSrZkZLTw/ZAXP/ZxdE3HsPQcwNXp0hxr0u502N/bIw5DvvPSSxSKRYaDPkopHLeQi6AoZndvj6mZKaSm0azXuXb1KrMzM5x++zTLy8tMTc1R9Epous7IH+AWXCYmxhkN89ngdnuXKA7yRTcZlmVxf/U+tm1RrVXwKlVs26ZSqR4cF0lroonrOggpOXPmXWzLxDINer0ulUqFqalpDN3kvSvXWF/fYGl5KRfjIuPmjZtMtKZoNJtUK1V6vT7vXbnKicef5MKl80xMTuAWC0RxQskro5s5DObkyScJw4ixZpOrV68yOzvDN7/+DU48dgLTMDh79iwcZMUWvANQT5oQDCJ2tnZwbIs49FlfXyOMQ7Z3tvDKJYSUSCTFosd4q8HW9iYrt25Rq5Vz+7AQaAeOEoTG+vo6hw8f5cL5i6ys3GGiNQFSUCyVkCrCdWwuXrpEuVTF9UqMgoDf+ae/xYsvvMD6+hqmobO7vUMUKUqlKv2NVWqegxxdh6nPcuLFn80LTELQ7fYwDAuBzr/44y/xwosvIKVAkAIC+9wWWpSSnZxAdyuMRkPMlddRt0+jD7cQVgGlmei6QYrOhftdeuY45dmjqHILrUqlQuwAACAASURBVDqNURyj3QsZkx3kwufYbW/RbFR4841XKZQsPKFTvz8kMtLcHj7o4xaLGJaJbZfo9bsHM9s6AgM0iWHk4ulhHmqGyKNuRJ7WqpD4fsiv//r/QaPepFItkc/AgjQchJA5/dzzkEpBliE1i63NXc6cPcu1a9eZmZ4mSmIsyyAMIppjE5hmvnjRZA7lylTGxQsXOX36ba6+d431jU0WFhYxjHxeqlBwee75Z7HsnIqaZSCQuXDNAATBKGBra4vr11f42MdexC3kcQ+j0QjLMt8XfUplB1bp3Db7cL43jkPK5SJxEGEaVl5gc+yc/q4EYCClzs7uOl6piJQaszMLfPGLX2Rudp5vfONbPHnySTI4IHgbeJ6LEBm1eoW5qSqGDsoNSEWA57SIk5Ref4RtFwijmDTLSNOELOMgH1sjCAYgYhA5lCrN0vx4AUkSMjc3y8b6fXQDbKeAWyjQ7w2J44R6o4pp2bT3+xSdInEcEEcjUIIrl27SHJ/k8ROPo+sSITW6nR6vvfZd5uenmZ2Z5sb162RpgmWbXL1yjW9849tMTc9RLJVoNhuILKLguhxeXiIIfLY2N6iUPAxTo9cbMBr4vPH9H/BgbY3HHz+ClGAaOv7BuEwY+diWSxzETLcHXP30s7SOHuaVb3+T//q/+e/49//O3yFNIwwpsHWDeNRnb38fwy7giJgb597k2DOfJEUedNh/tHiV3/ge4uZ91PLcT7gS+fHbB8Xrw3VDmCaoFEpmyulvfQFnd5+jc8c58XP/EYnWYBBHpGlI9fvLyDlFKmK63T4b65vMzM5Rr9UJo4hms8nszAwbG+t0Oh0MPcN1jbzQInSkBq7l0e3u0enuMjU1hW2XDizkiqHv58UaCaats7/dZXV1jc3NTY4dO4auG0hdUq/V2d3dY2t7l8XDRxC6ganrFIslwiAmTTOq1TKWoXN39QGHFpeYGG9Q8kogcxtvv9vLR5CCPAfZdTV6/T5BELG7u894awLHdQnCGN10cQtltnbajEYJnV4HITTSTLCz28YplDDdCvdWtxhrTjIcRViWS6Y0kixFSgPDtIiTmMFgiK7pJGmCZehICVkSUnAkhkzQRYIuIga9bUwjYW+vTRKNCP0+KhsRBj1MQ0OpiGLBIfJHtPd2SWKBbbsMBwOuX79GtVIhTWPGp6ZBCizHwTBMHjxYe7/A1e52GWtOEIYJCI2hHzAajYiiAf6oR5IoBv0R333jNWZn5wiDGMsyWbl5k8VDS7gFl2KpxN5+m1K5TGu8SrHoommK1QebNJvz7HSHeK5AF300zWBrJ+Tts2scOzxNmqYo1EETIyFJchBVlqbIgy7rgX5F02SemZ4m+bUxCdFNiZQxEKELgenkIy1S6kTJiM7+PkXHRGoCPxihaweJFpr+vmVBSIFbcPP1fxoSJ4Io0UkyiWXoqCxC6rmg1DSdNM3X5VITlMoTWFaLWJlkJBi6ydTUJNVahevXrjOrlhmpIW/2X+bUM08RZzG//8UvcHhxju985bfx3AzT8XBry8wcexZp2WjC+GE98REO078M8fqTkIV/lHj9MBX5r6R4lTIXlx9+s5T64dzVHycOfxK778PvP3wgPvzYR+XG/igL84cpXQ9/34cgqp/keT+4fZAI9qjH32/d69Df9Xlwd4XhcI+J2SkSZVGpVPjpT3+GKAixXIfiXgcmWhhm/qHud3s4lkWpUOfu3VW+9id/yvPPvUC5XCOJUm7cuIYSAsfOO6Ch7+ddB6+HPwq4fnbnoDNqc/z4YxTcAkKA7wc4tstrr32X2dmZ3FpqW2RZ3l0plUsoAVEc4zg2mq4BEn8UIGUO7dF1nXDUxzYt7txe4ROf+ARFzwMUXskjyTKKnkcchmxtbHD12gqVSo0z777L/NwcoGiMjSE1iWHo7O7ukCQJw8EgFxUyP59syyaOUk6dehIlFV65hGlaKKWIggH9/hDv9gby3/oM4cIkpgbNVh3bstja2uC1V19nbnYOy7MQygIMfvM3foulxTle+NjH+N4b3+fixUucPHESMoXrFoCIKExIYsX//D/9Lxw9cpgXX3ye2Zkpvva1r4IQNKem0XQTXbP5x//ov+Kx40/w9FNPs5T8gF6oqMw+ycbWNuOtJmHoU6mXUWlGGkf4wxG2ZVOv1VEqJQxDnn3mGRqNMe7dX+XqtauMNcbwfT9ffAKWZdHe3WU4HDLyfcaaTdY31lHkhYc4jonCEEPqpCpE0wSWqaHIqNTK+YylMEjT7GDOyD0gJuu4tsOV9y7hj0ZcOH+Bw0cOoUmN+6urzM3NorIEU5eYlptHkugG/f6Q2yu3abVa3Lx5k2qtTBAE9LsDjj/2BCPfp1hwcV2Hqckprl2/zuzcDLVGnQxFwS1w++Zt3j37NouLi/h+TpjNVMb8/Cz9fpex+hiRH+LaLmNjY6yu3mcU+rRaLcIwZDgYMugOSeKIcsnj+z94A8u2mJyaIU5ipmdnEQeuAqUy+qMeb735DqEfceqpE/QHfTRpkUYRtuMyGI0YDEZMT0zy9W9/G13XefDgPoeXl9FNA0gIoxDPq9Bud2iMNcjSlONHj4FUOI6Tf76GfcZaE/m1c/8BRnQTUVrAmPn4ATjIRClIkhTLconilDNnz/L0M09j6hKyFD8IcW608/iiiR6Zv49RXyK0PUb2GNb4AonpoXl1hnFC21ekwiFNFROTE+i6AAW27WAWStjBNma0hz7zBJYpMbWMLA5wJmqUvnObsGnjFNzcaSHBcWxGwwQhdSy7jJQWUppkuSMPQ7fQtBw0JaQ6mKtS6JpO7tpTzE3NkSQx586eYXFpEd8fMfIjLMvEtkz29/ZAKUbDEUoIgjDm9FtvU6tWqVZKlCplRqMhlXKNV199gzNn32FxcZHt7W329vZYWVnhrbdO8/nP/wyFosfqaj5vXK6U0HTJ7dsreF4BsjxyKElSNKmhSYk4WKxJKfj6n34dw3Y5dvwIiBSBougWD+Za8wIu5IXWTqeLaZoYmp6L2CQhTSIcu8CXv/xVikWPWrVKdEA21qTBubPnmJgcJ44iTMNm5Ps88/SzlEsVWhMtLFMnyhIMQ8M0NFAJuqFjmCb7W/dxbQtZCpB6yqhjUqqMYVgWILEd5+CcsvBHAY5tg4wY+jv0BpvoooBp6uiGgUIQxRFkMVJImuMNkiTAtlwQFkrpfPGLf5BfXxotpHQ4ffo0g8GAdrvL7Owie+0etmtSKDqEkU+73aZSqfP26TMsLMwQ+iH1eiMnUmcpzWaLM+fO0+0N+MxnPsX6g/skUUS306U1McH1a9fY2NxkanqSBw/WMA2b2dk5jh87wpEjh2iN19EkDIc+tuWghKBcrpBEIUXHxrz9APmf/iJf+uM/ol6u8clPfQbdNJBCEYd9MqyD65BHInVEHLCzeovlJ18kyfiJxKv2h99BbO79OdrwX9QR9ijbsNDBdUo4xAS71zn5qo/1no/37/0tvMo0p8++TUWUGHtvmTX9Lps7m6yurfHxn/o4wWiISmMc12JzfY1ed5+F+Tm2NtZp1lz29za4vXIb2ypw+q230YVPvVbCsmxcp0AcBWRxxOm33uTEiZM8WFujWq2SJglzMwu8994VPvXpTzEY5O6bQqmEUuBYNstLhxgO+riORRRHaCIn8Qf+iELRIokTiqUKtuOSRj737q8SpRlFx8UfBdy7dy+fvTUk3W6ben0cr1Rma2ubWr3Gg7X1g2u5nttFpU6n16dcKeKHEa5XYr/dZRTEKJlnB4/8iHbPp+DV2e+OqNXHMW2POBFkmYZbqDAKFJrhEscpaZahG5Io8tE0QRr5RMEATUsZDvZJQp/O3jpx2EUon6IDUnRBjVi/d4vdzQ3qlTJRMGRnYxW/36biOSThEMcU7PX2MAwNlKLT7TDWbKBZNmEcg9AI45Qkg929fTbX12jWazQaJaI4olJpsrq2yosvPoeum7TbfW7duslYfQbTchgMe4z8Hs3xGpYluXXrOuOtBplSdPsBFy5fZ329z+xsHdOMiGOTXtdkbTVjelrHdmyGgzwf1jC0fOwhzrubSZIcNHLyApkmJWmWkqQJUpM5OCs1STIARRaHCF1imVXiJGM02iUOfEpFG8PMRzE0XR4UINODoqDMxxoO7tVpkqIbZW7f63Dz5iqTrSZZGqEZJlmqsCwbyF1RUZSxvx9y/vIKShp89vM/zfLiYW7fuY3nFRgfb+JuVTGUwc78LYRpUigVOHbkEJfPv82zR5t893vfZvn4Uzzx4s/jTRwiERJNPVo4fnid/6NGDD+qE/pR146H2kPX9YOC6Udnxn7w60dplofbX0nxms+7/vmOYi7aPvrgfBQN+IOP/6tYgz9chfjhAF7th57zgwf/USdb9Mv/LelXX0L7m5995En1qCrGh/NtH+U1/+Dv/P7vqkG9MMHZN99gbe0GS8eOIsw6kpwoXKvX8aplhALt978GC9PEkY9l6FimSRTFlMtFKpUSipQkDrl79zYvv/QyxWI5B/D4AUkU0+0NsQ2PqxdWufnefWzbwbLcAzFyl06njeeVeO+995iemqHoFSmVPAb9PkkaY0iwbIskU+j6Q+KoxB/6lAoeUkkuX7lErVohGvYoOE5+Q9E17EIBpRIM2wLdxPdDLCMH6bz02nd5/rnnMU2dKBgyPpZf3HRNo9fp0Ot0+O7rr3Po0AJCgGmbaLrOd1//Hq7j8mDrDpVaA01z0KXEH7bJUkVJGIi3LiJ+7R+w1d3BdQQ3b12jUvFwnQKDfp/x8SbC0QEDx/D49f/1f+PosSWeefZZnn3uOQRw9uxZnnrqKf7z/+xXePHFp7l44RLtvR6/+Ld/kdFwyPrONktHDnPm3TP8wt/8t5lZWKQ7DCgVS7xz+gLHjz7Oxz/+IvrK/4vuVAjdSWbmZjENnU5nlzhNqFTKXLpwkWq5xur9NdxCkXLFo1hwKRY9hJTUxsZYmJuj3++j0gwloHmQA7u/s4MClhYXkZpkYnKSr//p11heXiYcBSRRwuq9Nd49c45up8/G+jZzs4tcvXqT1sQ0e3ttrl69yhNPnMT3fZI4JfBDikWH4aDH1EST+dlZ3nn3HaZnpvKZ4SShVq0wHPTxg5hKrUEYhVy6dJnPfurTeOUyy8tLaGYuWlSq2NncYXphntNvvcHN61e5c/c2CwtztCanuXL1CuOTLbY3t0mjjPWt+xw/fox33n6HqclJkiRAHsy2kMKX/uhLrK2uEUQhzzz3HNVabtfd3tqm4pXww4A0jYmTkFOnnqTeHOfV777B3Vu3efLpp9B1jcGgh+talGsVpiYPcfH8ZYajDouLS2ys71Gvl8mQSE2ysb7Jres3+Q9/+ZeYaI1xeGmBP/iDf8ZEa4JStUSagVcs0xxrogmFynI69MrtFSYmxkGluLZNu9+moEK0znlUcQYx/7M4rp0vkIXgX/zRl9jba+O6RaSU3Lxxi6eefhopQJKhmxb29X0UMCqcg+EGfW0Kr1QgyfIIhCTNMEybOOrhFctUa2PUajUsSydNEnZ2dimWipiWTjzqs7++wn7xMCXPwjYEhgb/H3vvFSNZlqf3/e49198b3mekN1VZpsv1zPZM9/RM7ww5q+EO1gkrQSSBBSlAAggsIQjQg/hCvgiUoBcRoBZa7QKCzA53bI8R2W5m2s207/LepTeVmeHt9Xq42b21xeqeXmklAtQeIFGJiMiIG1Fxzz3/8/++33dva4V8VyJwDNzxiJRjMx4PGfV7WI6CZefoDwOEqoDwUYUgjkOiyCcIfFRV0G0lRaiuaQSel0Qi+AGrq6s4jsPp06dx3TGmaZG2bVRFod1u4XkBrVZCO9U0gSxUTp46zeLCLBnHxo98ZAGqalAu1YiiACdlU6lUKBSKVGtVnn76GSRJJpPJsLi0RKVSTaKEFJlcPkcYeAy6Xa5dvcZo6FEo5fA9F9cdQxwhSbC8fJTjT5xEUWWELCHFEmGYeONkoRxG4SQyf9O0CMIQIauAnCxIiQgR3Lp9h0w6QyGf48HWFqouowiNN974BaVSgXwuz6DvksmnCMMY3/N4951fsrO9yeKJIyiKROT7rN1fxfcDhqMxGiGEEbLtIcky+BkkxUJRNLq93mHEjQpyQvKMIxkpFkixwNAdHDuhou8+2MUwE4BcFPiYhnNIjpYwVIPeaMju7gHLy8dotQ6oTVRBkukN+szOHOHlF15jY2ubr3ztyxCOUVVwRwOy6Sz7D1rcuHaTz3/+HAcHLX7wg+f5/Oc+R6/bRVUE6UyOkesxvzhHvVYknc6xurbO/OIikhCH85nC3bt3uX9/lcl6nf39baq1HK39PW7duoWi6OzuNggjyGTzdDsH9FstMvs9PpxL88//23/O8995nv/0P/vPKZQKCBERuEPMbI04CBgGIegOSuxz89L7HDn9eWJZ+Uyy4cfRhv86i9ePhi8NIdB46fvfZvPeeb7MIv2xQvvJJXL5GvMLU2Tu11BCjYvrH3Dq9Gn0Q2J3q3nA1uY6m5srxKFHv9tkffV+AjMKh1QreXLZHB+8dwHbdoj9HbKZDDvbDe7dW6Hd2sXzEp/ypQuXsC2Hi+cvYOomaxtrnDh5DNM0Ds/9EM1O4bsejf0H9NoNLF2h29rn8rUbhEEC57FtA1kOyKay3Lh9F8O0WF+9x9GjR1F1i9s3bnPv3n3OnD6NZigcNB4QRzKeG+DYKbrdDqm0zcbqBqlUOjnvhEwcBQxHffxQYWpqASFMQGOiPsugP6ZSnWDkRVhOlonpOQbjEMPK0O/79AcengeyMPAjg+EoIIgkbCd1qCIRBCFIUYSuKSBFEAdoSkQ+a2HqIHCRGaGrMaoc4Y7azM1VGPR3kOIuKTuiXNRxzIhxfx/bBCnogdcnHPdR5RDLkJDi5DuaMg32draJvDH1Solmo0HKtvCDMf3RiEyuimMZtNqNhB9gpNnf32NqdoqR18cwBZqisrm+zf5Og4WFZXRdI5sro2lZjp84TevBHtXaDK3WkGwuRzqjMjNno6oJlT2hg3toqkoQJr5W6SNpryQRhH6ylpVAEXJy/fF9Bl7I5taIW3e2mZ6ZQtMEyD6qKBCGoKouuZRFEIzxfZ/w0IccRiFxFH28dk8UjollQ8IH2eRnr98iCEMW5ssIaUwUJYW163oJfA+QZYPe0COTL2M5aY4cPc7NmzcxTYOJiRq6biA2LdrjNmvVK7z+9ts4mRTvv/0GX/rcWa698wJmSiWUUzz3H/xdXNUGVUWEfwFLerQ59VlAS592/6fNHR8V8I97zKMKz0eL20df5+Hf/70HNgH/7NEbPpJLQVKwCpHAmh4mYT3aQv8sH+jjHvNwN/RxntjHyYkfzj96dDwsFX70OcIf/RyQUH7nbz1WAvCRLEySpI87sw+/h4eP69N2aCRJIowhiAPGXsDmbpN8Nkd9Mk/gC5QI/NEQyQ8Y2CrGn36XqFZkfWePKIgT2a4KUhyTTqUxDRNNV1FUwZGl45TLZcajAYoiyGQz7O/vkM/WUOQ0Z06fY2/ngNX1VZaWlpAkCd1QMQ2N+YUZzHTmkPyYLIZlWSEMJPq9EaqsoAmFVqNFt90ll88ThAEbW5vkclkymQxC1UDWefmln7O0dIzID+n1+iiyxr1bd7h5/Rarq5t8eP4q//Hv/xaDURdZCijl0qR1kz9//gUmp2vkCnlMO8303DSZQgpDTxEGAYHnUatWiMKY9c1dlhaX0ASMh3021lbJZCa5/bOfk1ue4+7pJWoT08i6zGgMxVIVL45J5fLsdzrkdY3drVUMLc2lD2/S2F0lZMS3/rdv88SxE6xt3ODJL34Jza5x6vQRlo8vMxwOkWSJMJJ47Y3/k4W5Y8wtLjK/VMMdjSmkJpACl82NNf72b/5trt+7S7XxAgddl/LcryEIIQyIAp9wFBJ6MZs7+ywsHSHtmNy4eonZ+UV6/QHZTAoCjztXL1OeKjMaDDB1Dd/1KRRLjEcuN+/e5vTZs0not6ohZJnjx05y585dcrkcruei6hqOk+GJ02eZWVhkv9nk9dfeYKo+RblYYHKqTkzE+Q/eY3KiTKlUZm11E9NKcfXGTaqTVQ729qhP1DnY2aeQySEDqytrzM7PJdmulsl0fYLtjXVWD3bJ53J09pu0D5pMzs7gFDMIKcRKp6jPzVKq1DA0HUkoWIaBJlSy2Qyrq2vMzCY05+n5WYQqEIqULCY1g0hSmJyc5KkvnqNQsBh2h6yvb1CtVCjms1w8/z6pQp5ypcrWxhYb6/eR5ZiMkyOOYXFpHt1MvHS6LGjs72PoChcvXaRUnWJ6bhHNNNhYeQD4vPnGW/zaU1/i3fMf8IUnz2CaSadnYekID/b2yJVqqIqCIsXoQiIIA5rNFleu3EQRKppm0Gy2kRVBLlckvP8Silmkn/8Spp0hiBVUETMaexxbPsmgOyIOYkajETdu3KQyUSeby+EHIYNeE+tOB4gZV/YBsGtP4ro94hgs06Tf3MdRwY8Tf2o2l3isgiBCMrQEHBVF7K6tIwmZXNyj/NRzDPsH3L1xCU14ZB2VXuRSf2ufblljOGxTzFXY3OygxCMk2UA3bRQJRt0mQQxRFKOqif9qNBpjp1Iomk6UeGuIooher0e9XiFlJ5tNhmHi+j5yFDEYdsikHVTFRNMtdEshCEGWBP1uD9OUGfs9gjBG10zanS7pbIpavY6TsZAEtDot0tkMg9EAO2WxvbVNKpVG00GRQYp1gshH1wwioNMdYKXSFApZut0uP3v1Z9TqVTK5FF44BAKi0ENRFaIYZCEjicNrhwRClojDECkGFIkwCpMN0ihM7A2GxZHlRTK5FCPPJZMv0mn38AOPI0fmCQOfd99+j0sXL1IuVTENnU53nyPHZlk+Posq63Q7HQIvwDBTfP8HL7DfGJBPQcqMkKwAiLGlOaJ4zFtvvsf5C5c5+7knCSIFGYGETBD5uN4I07ZQVA0pCokQOE4GRcgQecjCRBIyjYN9AneEKvsEocLewS75QpYnTiXZ3b3WPvNLi9gpQW2iTKmYp1ywsaw8jeYuhmFi6AU8b8Txk5M8aI0xnBStVpeUkyafzaMYUCplmayXiHwPXbVodQ+YqCd53UQBlqnSae1TKhRoNTt02n3eeOM1pmdmuHdvA9txyBdSVCbyyCJOZMOGTWbgIY9csn/vt/md3/qP+Po3v8LckTm++/zzPPnkkzimkzAjBgekTQFKiCqP6DY3KNWPEJkmIpbRwhhfxEi/oniNv/zkr1x8ftbxUfEqngo+pjjFsY3X32Fn7QLf+eGL/B1zgUiSGD77eS69f4npWoH0tQliX1BemoDY4xdvvknjYMD7H15mZWuTBw9a6KrMhas32Wn1afW6rG91QC3wy3cus9ds0mgf8NTpWX75ziYtt829m/vsrg84esZle72HNx5w8kSd61fWqZamsfI1KnmT0aiDHwlSdhG3s87eZpdR0KVQPsqD1ja6WaSUdrh/dwXHSbGxtU2MTL6Up16rEIzHCfhXUdENlUw6xcRkOaHQj4aknDTNZos49olij+Gwj22n0VNZojik3TwgDEMyhTK6k8MfjSiXizQae6imSXGijqrpOJk8IQqlSo33332PUydOMvZcVM2m3R2jGim6owBJkYhlgW45FKuT7DWGGEYKRbNBSgjsUeBjaBqGbiIRHiojIuJIQpbCRB6vKURxkDArlDGK5CHHLsGog6mFRF4XIUPoddGUAIIekdel196l39kl8vrEgcf2xiZyFJNORUjyCE2V6bWHiFgk+blBhGVZqCo4jklvMMCyNYSiYugZ1te3mFuYxvcH3Luzwc2bK+imweT0BPMLM9y9t8Fb711lZmY2aVSIGDkeImQfdzxAEQbuSEIxbHw/IAgGiXc9sJHEGEURCWzMCyGM0VWTUBj0um12tlpMTmST7NgwJlZjhJUm9BRUPMb+EABVUwnCkDhMbGtCTSLLxq6Lrut0+wNMzQYiFudzLMwVUeSYOJLRTYvQj1AU8IKQy1dWUBSDlfUDItnGC6A/6JIpFqnUavT6AxRVR9+2QI/J/6ZCqTJJ6Ll8+ellLL1J1hiAG4I1QfXEF7FTGfBHiUWGxBz50c+j3c7HNekeVXR+Wpf20fFJtsSH73+swvMxP49WQ//ed17jOP5nj7v9cdruT5rEP+vE/quktp/kif2sr/eohPnRxyXFKyi/87VPfL6HC/HHHe+nfdn+UqF+iJ7Pp9NoSszlD98ma8gYuSqykJAUmWarycrmJvrGNv7uAWEhj1A0fvjDH3Hq5HH6/T4bG5uUSkWGwz7NRoP65DS6rrG1tcXKygqlUok4hk6vx3A4pFAokLItisUKnu+hKgq6rjMYDpL4iBgCPwF6eK6Lqii8/MornD13lihOIjkuXrpItVbFspMIHMuySKczRBEcHOwhSYJbN29jmRaGafL8D54niiK63S7PPvsspVKR06efoNl8QG2iTiqdZjAYc3DQ5MqNWzz75S+Q0O4jFDkh/2mGjSyRhHbbDppmUCzkMAyNdruNk06Ryea4deMO860e/S8ep/obX0UIcZgpFiU5YVGEYZg4tkVjbw/VUPEDwRuv/YLXXnuRf/AP/4BOe8CLL/xr/v4f/D7Fcon9gyZz9SqXL16hUq0hVJUjy0d57rkvks0Ueeutt9E0Gd+T+O//u3+JN2hz9/5dpqYnOHHiKNGV/xUzVcYz65z/8EMc26HRbHBw0OLylavkS0Xqk3UuX7rE5z7/OXqDHqVykfWNTTbW1onCmEw+i67p9PsD9huJ70eSJSan6vR7SZTK7u4umUyGOI4wTYM7d24zPT1Fo3GQxO7cuEa1WiEm5pmnn8a2LC5evEi+WEq6YLpJ2klz6fIVhBBkc1nm5+cxTJ1CscDK/fusra2zvbNNNpvGcRwGgxGarmOaFiPXZWNzk+n5OXRVQ45gdXWVYrmMrmuMh0PsVArLtNBUjYsXD5nvCQAAIABJREFULnL79l22t7aI44DhYEh9os727iaT9UmQBFEEg24fw7CSjaM4kY1rqkwYuHQ7CewqjiU67Ta2ZZIrlrBth363z+LiHKl0inSuxKWLl6nUagRBgKbpeG7AYDDESaU5e+4c9ck6EKKqMm++9jqXLl9iOPI4e/Ycp04dZTQcMRgOSKfSBIGfSNwPJYZEIZubGyiKxp/92Z+RyRTRdZ07t2+haioz0zNE918m9kd0i1/HsNOYdgo/CNjf2cFJOTiOg2NbXPjgfc6ePceDvT3OnDuLoiTdvLTjIK7tIUsyo8peMpFkljBNk+HIQxZJjI8QCpJioOmJD0lRVGRZEEugKyqjwYCUZdN3A+ywS3f9Dlu+gSZH2LrM7tZ9MvU0VkNiqAukKMb3AzTDQFdVIlnBdlIfn4tCUZLXlCTGYzeJiCAmCA47SIdy6PX1dc6fv8DlS5fRdZ10JoOqqYzdEaPRAFVVGQ59fviD59nZ2eLosSNoqsra6irptIOiCEzLZjQakc8X8DwvkfTLMRJgmklsia4nPqhioYxhmCgCXn31VdbXdphbmEMiAdOoqmBiqp5EH6kqT5x8Asu2ieNkgaFrFkKoxBGMx2N0PYmFUWSZ4XCIqiY7/ZKQE16ArCUQvChRzyS9uyg5btNkc2MT23bI5/NEcQLX87yQ/YMmrVaTpaUldnd3qVYr9Pp97txeQZZkioU8w9GQU6dPs3xsmQfb1zG1CCWVeBDVqEQkFKq1KU6fPksYuR9n2gaBz2DQx7Is3HEizR17LpqZIiJZJLqehyZ04hiclE3gewgpyVVMp9PksjmiKKTf7eJYBsNRxHjsosg6L77wCtNTk4RRhKYJbMthe3OPd997i3PnTpNJF+h2O5w+cwpdU/j+977N7Nz0IVwuJIpA07RkUyAGTdcxDJMwCrEdG8O0mKpPI8syT33hKeI4ZHpqBtNOQG2SLKEbJqpyCMnqj4ijGO/LTyJJAqHGOOkMJ0+d4fq1q9iGzmA8hmDMtWtXyJZr9DsNVm9dYXrxFMKykWMJEceE8q8uXqMvn3vs/f93hngqQHkq+Ms3BiaGBFc+eJsji8scXffp9oZU/+AbpO0sWzurWK/NsS5WeO31F9nauI1jCIa9FrNTRQh71CopMkZEuZihc9Di2EwdTXMp5U3azU1+/ctPknYkFqYc3vvwOo3GkC89M42m7DPoyFy/2aHbGzI9X6TR6bDX2mBj9TK1koKiuDhpizu3r3Pl6k26vQjdUbh6+R75gkExV+L23eucOXuGTC5DsZSj329RyBcZj10GgwG9Xo9ev0+706HdaWMa5mGTQkLXLTKZLLIs0DSdVquNrpuUyxXiOIQ4olgssbW9Tb5YxNQNbMvEsm0UVUdRVXSh0B/0GQwGlIpFHMtAkmT6oyGaZrJ/0MQwLVzXp16fpVSq47oRzWaPXL5Ku92hUq3juj6pVJYYgRfKuJ5LLMHYS+LDwihI1lOqdnjey0RxgKJrKJqedPGFDHLCCJAVjyh2QfKQZJ84HmEqMYrkIsd9LNOlkAuxzAGe65FJq0i4KHLS9dVNNVHlyBo3bt8lVyiSy+WI45DxeEwUSghFkErb3L55izNnzzE7O0uhmEUWEdeu3sZJ5Wk2OzQbTTbWtzANh0bDw3ay6KaOJIeYpoIbDNGEjSIniRGS7hME8iE/RE/gTlFEEAUomoxpaCzMV1G1mMAfIMsqXiSh6g6+6xL5PYJgfNi5T9Qu8kecCT7qUibkb13XUQ6tabEscBwbiZgwDIliiCNQVIEXhGQyJYaezcUrK+wfDFlcOka9PsmlSxeZm55BAn75izdZ0k6AHrJSucji0nG2dtZwdJ+N1avcvPQWmqpx9ulvUFl8kiCS0YR6yCv4q42Pml0PN9T+Oja6ftX4LK/wN8XrY4rXx2myP+X5P/79kwzJjxaEj9KIP+nYHvdaD0uYP2vx+vCX7tH3+quO9ZOOSyL5W5WIjZW7DFsPKKUs7IkZQjlGVjVUXadaraLeW8WyUxilEqZtk87m0dUY13XJ5XJIEmQyaRrNA5qtDlevXqVQLPLee+8xNTVNvlBAS48oT6QZ9wO6vQ7b23sUCwXWN9YBKJfLhGFMFCadA1VV8DyPOI5ZOrpMo9HE9Tx0w2ByagrDsmg1DoiJ0VQdIRLSm6oo3Lt7H2KZM2fPMhgMaLe7LC4u0e60mZqq0+t3yeYyyFKEFwRomsX+QYurN2/zlV9/FstUMFSNa1eu4Y9HlPIZZM3E9zyELDg4OEDXDAxNoKoqB40GmWwWZEEmlcb64Crin/5DrEoVL/AQChi6yauv/pxatUan2yGTzuKNx5i2QRgKPnj3Ir/x9eeQDYVv/MY3OXpkHtOB3qBDvT7F7Ss3+N73nufZr3yFRrtBoVSi19mn33P50Y9+QqGQZ3uryZ/88be4cuFt/uR//p/4+asvcf3aeZaiC8h6hqFSYW1tPSHr7jUoVircuHmT6ZkZCoUCD/YeUKlWuXXrJvsHB+QLRUzLYWd7lzAOaTablEoVdN3g8pWrEMVkc1mEEOxsbVOrVel3e5z/8AM2Nzc4d+4sqbRDNpfDdizCKKBUKSVyuDBge3ODhaUjXL18lYnqBD/+0Y85efwkYRxSr9fZ3N6mXC4ydkfoms6lS5d57rmvMjM9zWg8pNVqYdkp0pkMQRyjGgambZPLZiGMWFlZYTAYIBTBg90HlCslOq02lmVz59Ydlo4ssbSwiGUZVMslPnz/fTShYds6qVQGWVbY2z3gxrWbFPMlotBnc32DyxcvMuz3KJfLKIrEQaNJs9Vie2uHVrNFvlpGkmTKxQoRIbqpE8YgSRrtTof5hUVkoSaQit19LDOFoqooioTnDQijMaVSicuXrzFRnWZyaoKIHrpqEYYJuEI3dMIgTBbIhzFhlm0fQidUOt0hs7Oz5PN5VlbWWMhFRK177IinsIqTOKkUQRDyx3/8x5xYPk4qZaMoMpoqUy2XWFlbZ/9gnyNHl9B0hTj0kCUF5doeEDMq7SJLEkr5OEgKmmERRjKapnPx4hVK5RJCCDzXRRwqVh7sPkBTFIgSkmMml0UyHLT2GjoynpUj9LrEwQDNcGnbaWbf3GeYsxgHQ1AigkCgGQpCS0BHvhszDjw0TTucL/5irlOEwPf9jwPox+Mx7757kWKhyO3btylXy2SyaRQtoTxLsowi64wGI+bnppGUmCgMsW0bx7YJgoDhaIRt27iuh+Okknk7DAjDCElKFoVRdEhUDEOIJaI44P7KCpcuXmfxyAKObSVEZCIUVSBL2mF3OKHuRlGMqujEkUCWEgmbqiqMRkM0VfvY+/WRAieKI+JQ4hdv/IIXX3iRL/zaU4mnVko8nn7g43k+uVye7qG3XagKrXaHe3dXOXPmLJalo+smo+GYQX9EsVAik8mxvb2DqsjYtsVg1Gdl9R7HlqYhchFOTCzFBP0UeiaLptkYhg6ESVEtx0gSGIaRbF7ESYbtqN/BSaWTzkEUoioSQlYJD201D3aS2I8wcLFME1lI+J5H4LuYhs75C1ep1UrkcwVKpSpxHJLLp9F0jX5/iO3YnDh+jJ3dHfrtLpVyif39PTIZh+VjSxBDv9fH8z1KxTLNZgtV1xi7LleuXMGxbdLpFA92d+j1+qQzWSzL/li2qBk6spAxbRvipEMjhIyQFZTuEK/TZ/jMSZrNBpZjIlQNy06Ry2bQhCBEIm1qtNstcpUaKVNj9dZ1nvj8swSyQIr+3RSvj1txqpLKjUvv8s7r/4ZvfP3raG/eQgiVzWOTmFaO3SsNKjsLfPuD76ArIQuzFeJoyOJsDYkh1bJNHPosTOaYnSqxNFuhltWZnkqRT8scXaygKyPqFRslSlGfLlIs6yhRnyPzFQoFnUzRIZ81yGQ03vnlTWqVJRTZQwOazQHvvn+Lxv6QmbkZcvlJUlmdG9fvcfRIHSEpVCcnsZwU3U4bTVNpt5pksgWG/QGem2wKpdIZxmOfufk53nrrbY4dO4EiTMajAJBot7uYpoUkCRwnje+NMA0d0zARQsG2reS7Kgu6/T7tbod2p4OuG4yHA4hJYGuH80kUxaSzBTrdAVPTc6TSOR7s7WNZeUbjgF7fZW+/Q6E4QYhge7dJJl9l6Ma0ux4IG1m1MK0UsZRsXsmyQhxCEH0UsxQhhER0KECP4wAhS4dqRUEcGUhoyJJGHMpoqokUgqboSBEoskzouRD7GLrAG7UwlIDQ7xEHHTy3QxyEHBx0aPeGTM3NYSoaQeDSbDbJZApYtoVQEmtDt9cjlbIRasRw1GFnp43nx4kq69QZOp0BOzsH3L7XZGVti9pElSgOiAkTorMnoSgaXhAwCmIU2cR20nh+QCyBqick4MAbI8UxspS8/zjykUQC9hNCQ1UVhAiAIIE8ERKHyYa7ECpB6OMHARISQlEglvDcAYqq4QcJPEqSIlQhgawk6pLQJ0ZmMAx56Y3bIFk886Vfx9B1Vlfu8OzTzxD6PteuXmV+bo50q4iLy/bsTRTN5MjSLO39e1x572ccXSwTRAKnskxh9hyypEIYJnKbR8YneUs/6TF/U7z+fzg+8rw+6kt91Ev6aFv80UL2cUXfo3Cjh4vET8speng8WkR+2hfj0wpKSZIIf/RTAMRvf+3f6vY+Wix/9Fk8GunzuGN73H1ynOwaI8tUKmXcwYCrly4ys3yM/niAYhioikYcxLiWjPJH30Z+4ihCU5M8M0Umm8uhGQbtbgdVUzEtK9lFazZYmF9EUVQsy0bXdYzaAbHoM9jXSGccspk8iir4yU9+gqqqTExM4Lou169eo16fII4jPN/Dtm16vQGGkRDxErBMjIRE4LsYpoWqagB4nofvjnjppZc4+cQpSuUStm0xNzePJMH09BSj0ZBypUSz2aDZatJutrlx4xYnTj7B1PQMxVIOd9xHVVR+/MOf0Ot2OXnyOAEyw8EA27b51re+xZkz5xgN++imiZNO0R8M0DQNrdEhXtsk+ke/ydiL8byA4aiDFEKxkKfVah0uHgWBD432AUgKv/3N/5A/+h//Bb/7+79Drzdi+egSuzv3WVhc5Kc/fZPF+WMEYZRQ/BwHxzF4/vvf5+SJc/zhH/5j/uAf/F2eeforqIrDN7/5HJtbGzz31WdRFZnM7iv46PTkYrIQdxwK+QIbOzuoqspTn/8co0Gf6ekZdNMi7dgUSiVsJ41tO0xOTmEaBpOTUwxGI15++RVOPfEEd2/f4ebtm8iSRKvZ5O233mY8GjEzNcXU1BSyLLO6usr2zk6yqXD/HpOTdV5/7TW6rRZyHCNUjXKxwNrqGhsbG1QqNaZnJrhw4SKT9TqpjEN/2ENVNBYWF4gieLC7S6GQTwqgdIbrt27y1ttvceTIEYQs47seuqajCIEQgqmpKXzXw/XGtJotdE1HN3QM00RIMnfv3sbzXBYW5snnC1y5epFisQTIDAcj3njtdWqVSgKcUjX29h5QKpdJOSl0Q8V20vh+QLlUZmlxEaGJBCAkDH7w/e9x6swpVN1ClmQKuQI3b9wiCiPslM3eboOf/vTnzM/OIkkxceThWAZRJJHN5Tn9xFl0QyWKh7ijiO3tHdLp9McAi421TV544d9g2xZOykFRkg7WrVt3uHHzOs1WC7wRy9kRkp7lxYstolhmZnYhgZH1upw88QSKJhOEHrdu3qTdbDFRr6GoCpPTkxCHuKMBiqIhjwNcW8ZV1hJvUOEozUYbWShouomiqmiajm1rdDsdJBIQRhSFCDnxb8qSzHvvv08sC7qjAMe2MEZ7ZE58mX6/g2lo7GzdInfsFGJ1jL1QI3SHhFJEyi5g2irDUR9N0bFMB6EnsClFUUiiD8THV08hBBISruviOCmOn3iCqalJJiZqTE5PEkQhyEnciYREFMr0uj2mJic+XiykHIfhcEgYJlFIAEJRuHzlKrVaDQ4Xj6qq4rreoc8TJCnmxRdfYn5+lnt373Hi+BmmZyeTHMcw8eciSYRBsqCU5OiwWywhoZBklydzdxSHaJpKHEUEno+qJnCmIAwQioIiVIqlMu7Y5cqVy0RRSCaXQ5KS41IVlTgG23GQJYkoSjImjywdJZ3JIEsx6VQGVdXIZDL0uj3ur6zxys9e4ekvfAHTNDAsC6EqaLKg02igpCJkIaPHdUahjyoM2p0WshThuh5CVRgORyiKihDiY2Ko293FUFUsTeX+nRtUShkGo2QBOh65XLp8CdM0Sdsao/EY+TAmDcDzPWZmJvH8Poapoekq6ayJ6w4JAwnPC0mlbHZ2t6lV6nTaTZxUCtux6fU72JZ52FHTCcMw8Z8JlbE3plgokUpnkGUJ13NxPZcLF65w9OgyN27dQlWTa5yiJe8lDKMEiEaiFoqiGOXOBlHaQfrKWTrdfRqNNpPTM4RR4ss7ePCAQrnEuNeiXC4TKQYiitnbuE9xYhZ0AzmW/50UrzF/edMfII6GCQ02brK+fof5VZ9Wp0P3qXP803/y32Cu5ijlyjSCJmfOHCNXMKlPlYlCn1q9Srff4aARMFnLgnCRhIuiDJHDCE0BVY4RhCiShOu1+dkrt1lYKlIpaGhxDtXsQt8hnzKwzSGVYgrLHLK1t48g5Nr1FWJFsH+wx+REijdfexNJ6tNrDSgWVCIv4MOLtxgOR9y5fZdyoUI2XWR7d4eU4/BgZwdDN7DsFJlcnjCK8HyfYqnM9es3iJFZW1tDkgSTUzNsbGxgOxb+aMCg36PZaiaKj+EIKTnp2d7eZmpqClVVGPa6tFptiGLazQayJCPLCmPXA0kmPLQhuJ7LtatXOX7yGDdvXadUKtJut6hWy6SyJSShYVpp+gOPTK7Mg0YH3SzS7wcgm6QzFRQ1QySpmE6OSFJB1gljgRRA6H80/yYFrpAUIpGAkWQBiioTxT6yqeDFMaruICsWsawTxSr6oTw39JPMbE0RKGpI5LlIMWRzOVTToNfqIQQYpkkYgWma7OxtU8iXaHfa7O/voigSuqqQL5TI5DPMzE7R67VRNYUoiml0+0iSjCwbvPH6TWq1GVbXWwn0qWKjahbvvv0Az29hGeYh5FE6LESTTFZFaKiqQRiBfBgxI8txAiyMEqthHLrJdUlJwH5hEOL7AZIEqqodngPyYT0QEEYSmu6QNEkEnjtCEvohXCtAFiqSMLhwaxehKMzNTpLLWiwdmUZXLba2tqhWq4zGY4qDOpEa8lL3u3hBRLmYxlJ6+INtWu0DrFSJc8/9HrFdQ0igERBK//Zc8HD98XDN8PA5/Ggt8XAt9Nc5/qpxov+/KV7h8QXow/fB43cWPk1O/Em3P654fdx/zv/TL8DD3tXwRz8D+EvApo/icR5+7w/f9mnj07rOShQSywJfEkRCxbEyRKjEvoeTy2I5DqEXcv38ZeJCmszzryJPVglUUJUYSU5yOpEElm3jBQGGYVEpV5mcnERWFPb2DnjrrbeYn59Hy/YYDIdYUZ0wBt8fY5o6y8tHqFQSWWen0+HOzdtMT00hSQmmfDAYYGgm77/3Pu1WG01Vccdj/vxf/TlCqEzWp+h02sQEKEJiPOpxdHmZ6ZlphCKQNZlWq0WhWOC111/jwsULnD5zBlXVyRfzSR5mFDHo95ioVYnjxNPb7Q8ZDn0M2+bI8WUkWdDvddENnZPHT6IoGoZjI0ly0vmIIoQA6c4awXSR6zMGlco0ICOLCG84olgqk88VUDUFQzdQVYtQcrFSKeJQ5RdvvM7Xv/lVXnrhFaqlMltbq2RSFS58cIthHPB3vvmbvPjiC2yvrzE/PcWrr7/J7k6DP/nTP0bRXILQ5Qtf/ALFap7Fo0dwfZ/l5eN0P/hTmHqWRrvL4uICpmmg6Rrtdp+56RlCb4wqBN1en2ajza0bt9BNi3yxgBAyzWaTTrNNJl8glqBSqeBYNovzC1Qnakk+qKrxzNNPI0kSg35CCF5YWiJGolAuY9s2umFQLBRxbIdg7EEE1akaK3fvUa2UKZfLZHM5HjzY5vjxE1i2TbOVEBENw8R1XaIQrl27RqGQY2VlBUXRmJqappDPYxkmlz68gGNZCVTM99ne3mY8GlGv1bDTNpZhEvoBB40muXyOwXDI1WtXOHrsKLlcnvc/+IAnThwnl83R6w/p9boszE3T67a4f3+NkydPUqvVUHUd1wvodtp4fohtp9jd3SGbTXH37h12t3Z55xfvEoY+8/OzxEAYuBiqwsUPz3P+/Ac8+eQZFMXg/PkL7O8f8P5771EuldAUla2dJsvLi/z4Rz9isl7H0DReeOEVxqMx3W4P3/exLJtXX36VZ7/0JTRDI18scPf2XS6dv8Tv/v7v4noeTywv8WQtTeytIya+Qm3uBOub20xNTeO7LpOTdQzTIZJjmu0WlpXm+z/4MdP1ClMz0yiqoNlIwuk1XSWup9iKOhjuOkJRiLPLOJZ2KKGKEELG0FQ2N9cSL7yq0+t1GY+H7O3uYdsOqqKiWxb1+iTNZovC1CLuwTrS3h32tAlcL6KSTxGpacJIJXt5i3FaTWInNJ0wiCCWEYpAkiOQk25kshEpPp7zhCzwPO8wPzWZN+2UyfraKtMzU8k8qGkoQmFne5NMJoPvxXz3+9/jwf4uk/UZXn75ZeZn5z+ed2UBQhEoqka9XicIklzVv+i8qty/v4KuG2iqYG5uEVmO2dl5gCwZ1KerSCSe4mazTb5QRlNVkEKCwE2KUmQkBFHsMhoNEq+rJDEajRGy4O7du1Sr1b+4Dgo5WbQJhemZaSqVEkKTsZ10YgGRkogrIRSkOFG2SMTIMezv7xEfat88zyebzaDrKp4/olAoc+b0aVrNJrl8AVlWMQwLx5LZ215D0qLkOf0UVsoiCuWEHq9IKKqBJImPJZium9DGZVkm9AZ4foysaNi2RbPRwE6lQZLQDZ1arUa1UiEMRsSSTBhLyKpGhJR4uBv7ZLIpXDcgncrTG3SIIxddS2GZaTqdfQxTxx1HpPJpVMNC1fTkvYcBgQ++75HNZvD9IMmJlJJoJdOwDrtSIYVigampWcIgxLZs7ty5i2naKIbAtCxURUOW5GRjQU2iMsydJmJ2gvBzS5TKGRwnz+r6Bplcgd2dbVKWiR9F/OK1nyYbH6qNLiR21+5TmpxBS6WRIn5l8SrdWQPHIj537K+24PiU4X1bJ7qmIE7+BZxFkjUUEbC/u8pw5HJkIyKOZYzfe5ov/NpZzq58laG2y93Ny/Ra25w6MYOIx9imSXgIM7py+Q6nT0wQ4RIRocgCiSTDU5JikGTiSCbWD+h1K6ys7DA9ncRH+YFKJj1CV0EoIZcvbLG12eWZZ2eo5BSOLlaYnspxcrmIo7scWVggn5dp7bdRxYhxf8T6xhaddoN2c58rV65gGDYfnj/P8WNHcRwTVVXpdga8++4HLC4uoukaiiooFktEYUipXKJULCFkQX/Qw7YNbE3m3v376IZJPldga2ONdqtJqZjAA03DYGttNcn5tRwa+3uEfhJ3pRkmppWiP2iTz+W5ePECkBDtkUIsy6CYzyMBg8EAx3EwTYO11VVmZ+fQdYNKpcaH5y9TKleRZA0vVHADBWGmGbkCJ1NBqFlkJU23H3HQGuJkywSxxtBV8GMTNxzRG/YPc1+Tf904UWwEEWiGim5IyGpIEAlkRSGOJfwgJEJKNt8il8DrMR4N0FUdw8jx3vvvUKtVUVWToTtGN1V8L6RcLmGZJrZtEwYRkiTYWF+nXq+RSqW4ef0GTz31axRKeWam59jc3KXT7hJjcn+9QaWYJ58ziMKQeyvbnDg2jXS4ERiFwccqH8NIJP1u4KMZZrKxquoEoUccxkho+FGEIgeMRkMUJeHQeK6HoiiH17IYXdMZj71DhUtIFAuGw4DRyE8k2VGIZtioQiUKfVTdYDiOuHF/lxPLy5QLeVRV0Ot3uXbtJplsBt3QaXXbVMczKI7gVvEDnn76S2yt3yFnBazefh9Vs0jnJynNn0NyyohohCL7hIee188yPm3t//9W8froa/yq8TfF60P3wacXr4/uTHyS9PfTOq8fIbQ/jer7WcejUKfox4lsWPz21z4+to8oXw/vmHxU8CYhzo+ngD38vh835DgkkhV8Kem+aqrF7vY+vYMtjp16Aj+MUWPBTG2KTDZNdO0u7DeISxkGgzZCs0EWBGGEJAuEIuj1B3zr//jfyWRzhGGI7/mcOnWGTC6NlukRBSHrNwZkcwVsJ5E96rrOeDxC01QURWFmcgbD0Bl7Y1w38a9pis5ErUYmnUZXNQzd4PjyMXTDwjIthAJOyiImRFeSRW2n00PTNR482ME5lERO1CbI5QqJPzaMUA0VKYyQ4whNFZSKeVTNQjdULCvF1OwC5VqFKA6QJJnA93HdMdlslnffeY9itZZ8xsT4vosqZOKX38X7L36X8tll2q0R1Vqdbq/FZK2OrmtcvHQJoSgYukkQKWi2jG2nELLJN37j6zz/r7/Lb/3m73H9yjWOLS/yR3/0v/CP//CfMLk8y3g84vjRI1SLRb7/r/6cb/7u7xMGsLu7gWp45HJpBv0B/8O//BcsHTmKrlmMxj7c+DMayiS1ep3GQYNOp40EFPIlojBgd2uD9959Fz+IqE1MkM1kub+6Qjafw/M99vd26bZ67O3vUa5UGY9H3Lt9B13XCOMo8Tz3B9y/fx9v7GKbDkeXj6HrBlEMqVQaQzO4fecuvV6fwPWpVqrcv3MfJ2eTSafJZTK8/MorpLMZqtUy6XSG/YMDisUCvX4XQzf55S9/yfz8IoPBkEqlxNTkJJcuX2N2dg7bslEkmYOdB9xfXWFmZobhcEi5WCL0Ay5euMjk7BRbG5voqkapnMgFs4Uc/X6XZqtJsVhkcXGJbrvNhQuXDrv1dYqFLBMTFSJkrl+/RrlaRtMMVtbXma7XyWRyjMZjyuUC9+7eplQsoSsGm+s7jEdDzn3+DIZpQ+yhaxpbG5v8/b/3n+CHLoNhwNTkFFOx0CIoAAAgAElEQVRT0xw7epR6rQbA7bsbVKo5PNdlsj7Nj374E5595kuUKxUMw+DlV37K2bNneeeX73DiiRPYaQeIKZcq1Go1JEVmbqJCfnjAbvMAW3QwZ75GoztiMBxTnZhAUxVMXUNSdcLYx7ItDMPm+PIpVCXCNExiCfL5LKNhH1VTGHQ7WKaFMlgliiP66jRpWyOWksB4WZKQ5RjbMvG9gFQqTRgGaJog42S4e+8eumlgOw7u2EPTdBRDJzTzaJ11ioZg4sxX6exv4sU6e/KY6bd32H2mSvxgTBR7jEc+hVwiJw8jj0gyCILwEOKXRKlJspQQIIWAGF5/7XXee+9dlo8fJZtJQxShaBq9Xg9DaKTS9mHWosuZM2epT9VwzAzD4ZAPPnyfI0eW8L0AP0ysC6NREtEVfQyLUonCmCiK2VjfpFwpo6mCMIyI4pCUk2Fh4SjIAaqioggFRegMhmNiEhlau9Pg4GA/+S4LjZgE1pTQLpLPV5WTyIJur4dlWSBLRFEMUowQyUaaaemYVtJRlKWko9budFhb3yCXSbG1tUnzYJ/vfuc7nDtzlmajSavT4sbNG8zOzDB2+whFotMeYJoG6VQqAZkoOteu38JxPAw1RERF4ljGHyd+Z0XoCFVNJIuSIA75+BqW+Il7qJqCbjpoVgaEDkLgZDKMRwPGXgJIieMQVRV44z7jsY8XRqQzOVQtkQzaerL4dZwcUawmEsy0xrAf4NgZJJHYOzTVQZgqXuAnEvaxi66qICsoiqDRbOD7PsPhiHQuTxRGiaR40Ec3NDY3NrCsFLaddJxv3bqDomhYKfNQnp4oCVRFBiJ8P8J80CbIOjyYzaMbgjBUSGWyBBFkM2kMVSWW4b/+r/5LJienmT1yApWYN3/6AmeeeppY0z+T5zU+d+yvtXAFCF5TYSghDqNyAILQxrFsxp02zYMB+V//Ov/o29/j6BcqNO5ss7T9HOH0faamSxyfq2OIEd6oQ+T7/PKN95meqjE1mUKOOiiKxGgYosY6KDGaoeL64/+LvTcPkiS77/s+7728s+6qrur7nGtn9pqdxeImxcsEBRmiTZMUQ5bJgP5VyIqw/9E/DoXCCjnsCP3hsMO0JVoiBAk3RIAAiMVBYLEA9pjd2Z1r557p6enp6emrus688/mP7FkOh7MAqLCDDtMvoqK7jqx8mVWV733f73ugTJMky9GiSq3jsb/fZ3FmGa+UE6Yhhm4SJxqsmHp7iqVjM5SFQUkZ+KaLIRRWHlMq5/i2D2JMe2KBVsvHtT3GQcATR1coVxx6/R47u7sIaXLr1k3GowHtiQ7t9hSzc0sEUcBwOEApges63Lx1g6npGWzbYWd3B9e12O/v0a5VqVZrlKs1SuUyZb+gR5fKJer1BqYy0GmMZUC1PkGWxmRpyvLKCkGYECUZeTomDEOWl5cYj4agM7JcF8wsaSCFge+ViJOA0WiA77uEQQhAFIVMTU9iWJL72/dZWD5ElOQ4fg2v1MD16+S5yXCUUapPMTG5wG5vRC4dKo0ZnHKHcQ98r4Oh6tTL04yHgjur+8zPHEdkDsPeGEFOEoVog0KSYhgF+8K2UNKCPMI2UizLJI0F+wNNs1nDsi0s2ztgKkiUMOj1e5iGYm+3SxTERJFGKrPIghaSqckpdnf2mJ6eplKq0GlP0u31iJMEu1RFJzkyTymVBQuHmhgoLMsArQmDEaahMJRBLhLCOEBIkKYkyVLSSGMaYCgLYbiUK3WydECeZZiGIooisrTQzxaSnJwsy3AchzwvfAOksLh06QZTk9PkOsH3HJK0YPqYlnFAG05Y3wzZ3rzPE0ePc+3qdWzX5/DRw1RrVRzPYaLTQWxaBEf3KT0riJOEdqvC/dXzbN+9yO31XY4eP8XKyZ8jVj5KBxgiIcP+mX/L/z94/X9Bexi8/iQq7+NMjB4Fuw8//6A9zjX4wd+HQepBX9597QPK7k8L/X2gS3rcvv7CsdQqyGeOIRdnHvv8o/1/4H78uNf8tGzYDAE6xzi4xUnAuUvn+MFXPs9HP/g+crvCMIXu9m3ccoP03hZibQM11S70WFoWMTpSABlZmjAa9nnfyReolircunmL61evMR4OaTQrCK+L7Th0qsdRUpGlmtVba0xOTWPZDloKpFIgUwzLKCiAuqDVjIJ+kTFo21iuAwZYrkkSjRAiZzwe4XsldrZ7WH4ZKQxcy2Y8GhaVINsmz+Iie7PUAJ3huJBmMUJAZ3qaarNJerB/oXP2u3skyZharYgiMZXGcRyiOMIwTaamJunu3EWJwuVUIzGjFM5e5dZ/9SsIs0aj1SHXEqV8RqMuZy5cYaIzy8xEm7VrlwiCPaq1NlFikIxDvvbFL9PdWePDH/wAtWqL1dtb1GpNRuM9Vteu0ZmcQNgWtcYE12+ucfJDz9Go+sS9Aa+8/CbPf/QXubW1ya/90q+hwxH/27/4fd555x2edi4gJ59ld2eHVqNJpzPJ/e0uURyw3+9y7MknOXriOLfvrLG8skSahqRpjO9aKKmp1yts3tvCNCVvnXkD13IAycqhYyRpSL/fZ6/bZaI9iWnbdCYneP3M6yweWiSKRugsBGVQrVS5dWuVJ0+c4PSbr7OwPI/Wmmqtxr2tbSY6k2ze2yQc9bl67QbjIC60SMOARq1NMArY2d3GNCXNeotxELEwP0GUBKR5Cgq8UgklFdVqFcMweeutsxw+coS9/X02795nZnaeWqsFUmBaJqaymOpMEQQhrYkmu3tb1FodgjBi9eZtRoMBE5MtkJpqvUNroo1pGHz9a1/lFz76Ebbu77K5uckoGLK7u8ugP6RabyMMxYVL5/j43/pVgmBEnkTYhkWG5tgzJ4h1hkby9a/8EZqEpUPLtFrTXLl6lfn5KSZmptHA7OwscZJy+fJ1guE+J548gu24XLp8i5OnTrFydJlytYxlGKzeukWtXil01OM+zt5dRlkMIsHO9xHzP0+lWqfdmsA1Dc699Tr1qs/63Vs0azUMYbC1eQ+/ZOD5VfI8w1CqyEQsVQjiED+0sXOLfHIFqosoqdHSwzRN4iQmSzVZpkmzlDCMcVwfwyrA7b3Nfe5v7ZDGMRXfY29vj/ZkB9MQRFmGW2+i777D9r010mqVaDimVe+g9wOqI4npO4WpDjH7/S626xIMu5TrHWy7DNIgDIdYhoWU1sE1UpBraDYneeL4M9iGxHU9pBCE42GRYWsK8hTicUCe9nAcE0M6pMmYxYUFDh06VMgVBMhMYtouluNz69YqvutiGhZKCHq9PRynWBgpwKdEixTTsjBMg3//mU9z7NgJoiTAtCWmZfDmG29xe22NlZUjoA3+6Mt/zKnnngedodOiIprEEY5tEQURylDcuHkLy3IolyugNVrn6Cwv8gqlKMA7Bnke/VnuLZI33jjN4eUn2Lq/R54Lrly5zpGjx3j77Fnu3N0mTkKazSrjcYApXRzHwnEcbMehNxhg2ga+5+AZOUHvHnGUs7unmZxpMer3KJWaZLkg0znkAkROmiZIVZiduJ6PlAbDvQ3C8Q71coUw1hi2gykFluUW42UaEw72CcKAaqXBa6+8iYGiWikRBQPKtRpCKZIk5t7mGuWSB8rG9jyiJEYqh529PfyqQzAc0uvugdYMBiGbWwNu31mnUqnzuc9/iZPPPs/W/R0++8Wv8uyzJ4mCIWdeO02r2eHll17lxFNPMxz2MJTEVCZrq3eZm19BKdB5TBKnZJkmDMc4ho39zk1Wf+vD1KZnMFWV9TtblDyb06++xMxkh9EoYjCM+Juf+C2WjxxHpxFZ2ONHr/yIJ554mkq5ToYkk4AQP1U79uf0bOLPXEgRAsTPpj170NLXHorKOXijXNqodMjNsy+jgy5f+943efoDp/jv/tt/zO99+G/jDKvgr0I+xjQSRJZhCUGSJZSa03zlxbMcXqjjOArXcrGNIkJJiqLvSZQipaTkuUTBPr6lmZ5wQUTEUYrUgiwdYRgJtrJQOsIWOYgxic7IJIyDiDfevky70yRORhhCYhshlsrxnJSZThnfGVItmexs7eOVq1QrPtv3uzQak8TZmK3tDQbDfeK4z/TkPGEQ4nkO5IqLF88zPd3GMAoGRL8XUu00kJaH51a5dPlqoess+QjhgpLs7O/hl32EVGhp0GxP0O5MMBoO6e13aTcbXL2+xsLiEkopbt++zcLiIkon6KzIMb12/RrtyUlEJhiPA8rlCqPRkK2dLaZnpknjlOFgTKvRYmN9DfKYcVRkrEdxhO3YSKWQpsXG5iau7aG1SbM9R5obaOXQ6EwjXQ9VbmFX5+iHmubMAlv9kGbnEJZTQ6pCDpKnRURWnuVkGWiV4PhNcspkWmNaIRYDXEegpcnm9i71ep04iIiCAJmnbG/dp1yrUWt3EMLAL9k4riROQsrVCpbj887Fi7TbE1y8/A7PPvc+pmcWuXLxDMM458adPQbDlLLjUC4V+tR7uylf/pMbTM90qJdT4kRjKRNLFbRxHccIGRSGdsLEsi2CYARaFPE6cYgURf440iCOI5QEnWYMAjj99iqGsvBLinK1ypvnCpNSgz0Mq0wax0gJYZgRh4o7dwekeUaiUxrNJrdurGJYCsuysC2Lne1d/L0a41KPN4OzzE7O06qG3L70p5hBwPzULEc+8psY1QWsLEajSPCQHPyeH57bvwdz9OH/f1I856PbPY6G/LO2x22ntf6za9Ijr/1rBV4ftIdPzgPw9nAV9eHsoUcdfh9tj+YT/aScoscB4Z/WHo3veVx7V3e7OPPngOvDx/i4/j8KXh8G7A/ff7gvjzs+0yyiJHzfZ6JSprt3n8Ujx9DSouTa3N24T8+WlH//c0QrcwyCMVJCrrMi1iaHLNO4ro9UmiSLMSzFk0+foFL3qZRqOM0xUgr0qEocjRFCMhwOKUKozWKgFhJDKXZ3dnC9IntxMOiT6IwoSShXKuRZRhKFSCEwHRfXKzQPWii++eK3aU+2icPwwI21dXBsBkkSkyYZP/7x6UL32m4ihcIxbYQQXL1yDce26Ha38X2bOArwvIJ+kqYJZJowjHBdD8OyEEohAdvx2NneI0s18o13sH7lA0z99q8jEHiuy/7+Nvc21pianWOiPY3nVXj1lTP87//yD3n6mWWak5NkGMjcRKaS3vAulXKFSqXG1WtXOH7iGD/+8Q8Y7o159tnn8HyXKBkztzCLa1qM+wP+x3/+P/CRj36E5SOH+dwXvsC/+9SnWFyY44knTnFnbYNn3LNYTondoaTZqPPaa69iWoqZmUL7F4YRtm0xPT3N3bsbNBtNGo0mN2/eYm5+HsO0iaOIo0ePYNsW7U6HcrlKHEdcvHiRudkZFhbm8DyLStVDKJel5UNEUcSFc+dxDJNKq41pmQx6PTrtFq4t8TyL1sQ0m/c2mZwsojoOHzlMEEcsLi8xOzvLeDSm4pe4tXqTRqNJGmd0JibJdMatW9eolGukWU6WaXZ39/Fcnz/93vd48qmn+PrXv44yFJ1Oh8WlRdbvbrC0tMh3vvsdDh0+zHDQ5/yFt5ifnytyOE0TtCAIhtSrVVrNRkGdtiwyIbmzeovdvV1mZmeZXVgk1YLtzXssLC4wNT1DFMc0ajV2dveYmZrkmWeeJs8zBv0Bru+xtz/AtC1MyyIKAkwlObxyjKWVRTSCz37281y5colTp54iSwSD/gDH9pBCsbyyzOHDh/jWd77Nfm9As9Wm3qhSLZUwlSKKEl555TSHjzyBGO7j9LbILImyDWyGCJ3hzr3/gXUHaZYwNTuLX6rQaDTIMlDSoOSXMS2Lu3d2Dib3z+H5/kFsgMT74xtYt/bZmjaQyqJWabPfG2I7DnEc47ouhmEw6A+wTBvTshiNCuqrZRhUKh4z01PkOsP1XDbubdBqtLDdGkmqyZIBTrBN5fhH6Qc9xtE2ZtWn/sMNkvkp0EXovLLsg0Ulie1WERQVSsOQB3rTgtZVXP80kOG5Nm+++RazMzNoDW+9fRYlDIQUnH37AteuXqNWr1Gt1nnj9Ntcv3GNY8eOIqVmMOph2yZJEpFlCUEwJokTLpy/yO21NWZnZ7FMC5BoXbjRa3KyNGM0GhInKb7nMzMzjWUb5HmCYRhMTU+zuFjQ3xzH4umnn2I8HiEljEcpL774bU4cf7owY9EKKQWNZpNavVpQhWVhIlSAAQ4WXPNCW6eKXgiKOU67M4FtKSrVEv3+PoZpUqlUeN/7XuDQ4RUW5paoVyf4w099iiefeoIsK4CFRhOGAY7rYFoGloRkfJ97m+tMzcwjtMJ2PdLMQJome91tSp4LGAfZhwLTKCqkWkM67qKzhO2tHdoTk8UCiJYoo3CMJs9xbBfTVIzGY9584y1m5mYplQq9/vbOfRzHxradA5q4RKhCohyGAaZp4LkOURiyvnafSrmCUibVSpWLF8/jeS7T05O88ML7UEqRJBHtqRk8z6bie3i+S6vVJk4zWhNNSr7HcDjg1Vde4+jRYzRaTUxTMBz0CYKIXq+H41h4vRHs7KN+9+OEQca3XnyJLBfMzMzSarVxrBL/6B/9N9y4cY0PfPAFtNBcOPsmvm3Q7+7w/Ac/Si4N9IEBm/gLU76f0h6aHrw7J/hLbP64nFfDsolHe6xdO4cjU3Z2Njn92g/Igy1+ffGTGFaIVoPi2ikDLEOS5zE5OY5fZ25uAV8FeE7B9tJpjs4TkAUtWBkKy7QIoxDTsEniBENJ8gPKsRIFfTVOogMWgkQgkbJwhs7zHNsxmWjXsQyJf+DW7ToucRwV50AGmEoQjiKm2h1aDZNGvcL+3jZSaAaDPdbX73Li+NNcuriKRhJEfYIoYHJqHs+yiaMEzy8hlUGlVifoD7l4/hzNZoleb4e5mXkunr/C9naXarVOuVRBSZMwiBkFIXEUHcSvJPilCp5XptlqFrrY8RjbLhxzTaVI85y1tXXm5uYxLYvzF87QaNRRhqR0MDeQ0kBKuPTOO0xPT1M+MESsVicLNpoS7O1uIWTGcBACgnsbG0xOTiOVwrYtEAaGZXB7bZU0Tun3elQbDUzHQlkOyiyjlY10PPLcIs0tlFHG8hrE2sbOM8JxiLIktmMTRAnKjAjG++h4TK1UxrQqjEONY9uEcYIyDJoTTfIsJRjHOK7NcNQ/yFYtdP5hMKRU9picnsR2HHzfY7JTp1SqksQCKT22t8bMzlbQSHa7I7Z2ezz11DIQYCiFRpPnGVmWYjsWFEIJ4jhGGYr8IBc8DIYoVSz8pWmO1gJb54hco6XD/kjy0ulV8iRjZqFGQsqPX10jigKaE1ByG2RZTpJGGKbFzdV7bN7f4fnn38/8wmEWlpZZObyEtVqlvNVCjS3MfQdnXML63RGRzrm3doXP/9v/iZV5j2a9Qm41mDz6AnapjSIvFqWEfDwH46dgkJ8GWN/rtf9Pt78W4DXLsn/y4P/HVTofBoXvtWLw6Af4KMh7HAB+XEX3ARh+cHsYUD7arwfv+XCF9nFuww9u75Ud+7AB1Xsd08OP/SQA/jCYf9CPBzRkIQSVSoXe9h5vvPo9nj35HNL20RnYtkN5so346neh5FGbn0ELzfr6OpVyhd3dPWzLIctyoiDFNG1sy6ZcqmCZDmiNUekhpSDtF46UvX6P+fl5tObAxU9y/doNLMPA80rYlk0cJ/i+D4Yo/lIYAwmtsS2TKM0OJjySJM44euwYnmNTrlYoV8oHdvcaQzl4nkeea2am55icanN3Yw1DmIVzXRDSbDRQQmI7HjoX9PcHDAcBn/3slzh+/GkkOZ7vs9vtYllOYVRi20DhgLezvUvz/DXSf/A79GyDSrnM5csXkQIq5TK15hRRELO9tc303DzPPPc+sngP06kgTZdBd4iJolwz8P0S/+pf/gFhGLK0NE+702C2vchrb7zO3OIcQgr6/V0qls/nP/s5FhcX+E8+9jGEUnRaExxaWubQ4RWa9Rn++3/6z/itkyPiKMHpHENJQb1eJQhDGo0mL7/8A8Iw5O23C5pspVLlzOk3SNOM+aVFHMdjGAR0d3ZI05RSqUSea3r7fdbX73L8iSf41osvUqmWyPOE7Z1Ntrb2cX0fpQRzs7OMh2NM18WxHSZaTUbDAYahqVR88syg1+tRqVa4cuVSoS0RkuZEC6kMzr39NlEQceHSRZ468SSNWp3bq7exHZOp6SlMw+KVV15jbnaeGzdu4vs+i4tL9Po9ZudmOX7iCV559UfMz8+xuLiEBm6v3WZudoY8z6jXK8RxRKVc5ZUfv0ar1abkO5R8jyAKMW0L2/URykRnCXfurNOeLAZVw7JoN6tsbN5ja2sHZShGwwETzSau6zIc9EnShIlOBwDHL+HYzoE+WrC/36VWabLf73L5yjU++MEPs7w0T5aNcZ0qL37zRbTWdDodbNcijhIWlhZYXjnE1NQMhiUIBkN2d/b44he/zH/xG7/B7qUz1FVK5kiiNMG0TPTwHvbM86xvRzSaDaIoxHJclGmTZCB0zngUsrm5VRgcCUmj1eD4iaMkaYgyBVEcMB6NqNwYo9GYLywQxSlSuuzt7eF6DrZlIxAMBiO+9sffYG5uHsd1SNICqFXLLq5jY9kmtuuitcZ1LIJwF2XaWMogVxb5eB+27rCeNWlNVKmsLOO/dg/xi7+M3tsmHA/xS1Vs12XU7+OVqiSJRhkKKLRU6LzI7ETT6+1jWQaua+L5NbTOGQ4H5Dl85Stf4+TJJxEUBiKtVh3DMJifXeDosSNsb29iO+aB23BOFBUuo0oVix1HjjzB0tISSZLS7w/55je/Rb3RoF6vc29zg8985rM8d/IU5UoZIWAcDIEH1/riGiykQOucNCnOkxCC8WiM7Ri0OxMM+j3G4xFZnvC5z32B506dJM9T9nv7WLaDFIogHOI4hQmR1pokiYmiENM00QfnwPM8pNJIJWi3OywuLVFvNBgHAWE44jvf/j4zs/M88+xTVGo+luEwGo0Kw70D4Kp1ThrGBP0t6ocUygsw4iapkCjDZzgaM9Gus9/t4rhFnJFlF98LpQx0rvFKZYRh4FWaGHaJKEsRSIaDIa5tF4tprseg38UwTF54//upVCtEUcj2zg7VWgXLLMCw5/lkWY7WOYPhAN9zUaqQeKBB6MIN1HVdunt7rCwv0qjXUAdVNNuycEs+Z8+eY2VpAduSBzRhk2ZrgtF4QLlcZmdnl2NHj/G1P/46x04cw3FMwnCEoWxazRbj0ZDqW9fZ+bu/yKhSQkmL3/u9v893vvtdPvaxv8lEawqlDH7hF36Rl1/+DlkWs72zxcmnn6TsSDbWb3P42VNkUqGFLHKlfwJ4Nf7Zv0K+fIb8o39m2CTkY+RU77H94+YH2euFps44oA0LIYgzcI2ce7fe4bsvfpHn12JOYPGJ//ojTF39JKnaIjd6hfmVY5HGGVqDadlkmcm3v/Uqs3MtTOcAlEsbZdnEUQhoXLfwtVDKIBjnB3MBCpfYLCtonbZTXMf0QfyVEERhiOt6pFlKlidAiqnM4vufF98HKSFJIpRrkWqBVB5Xrl5jebkDOmRlcYF7G+ssLs1SLvm8cfoNOu0FlldWcHyLRrNBmkluXLtBmqfs7+8zMTGBkIqS7WFZiv5gB9dxCEYpzeYUrXYVx5FAysbGOtV6HdfxKZV8NjY2cD3vYKEnJ44C4jhiY+Me9XqDJEl558plZmbnaE8UY8b+3j7zC1OYloU0FEIYXHznElNTMyglqNXrGMpka2uLifYErifIswSJQb8/puTX2Ny8j++XaHemUKbF7u4OaZJgu4V+VEkJOQXgH/fJkpBmq8HG+j08p2BgpLnL1etrtNpz5Mrn5u0tGq3jaEOTsU807uMbVXIh8F2HcLBHno4xbMFwtItpWFQqZfZ7g8IzwJAkcc44KKQJpVIJpQyyLKXdbrJ6+xau73Lu3Dm6+/vUqw1mZ+ewXBvTlly9eZW5qRpKS0Se8dSTi1giwFE5WhbGT2EUUCmXiOIQkIiDa60UxUpfnuegcwR5UVjREo0gkxJdOPhhOwYr823m58tYSJQ2OHJ0lqlOBVfYREkMGrI8RWPSnlzEtBxG4wTbqZBmOTfeus5KfoLeJ26QHO7hPCvobu+TryvylYgLp7/DyWMlBPsMRxGU5lg5+QtoYWMIjRaKTCjUY64Hjz7yk6SQfxWtmE+8h+/O/9fBq9b6nzwOcD5oP8tqwk97zeNyVx8HeB92NH54u/fa7096r8e9Pvv+6+jVu8il2Xcfe699vNf5eLS/jwL+R9/r0fcf9Edk/U2UaVCZmCXONDor9GR6dZ3AtwswatpUKlWklAdZWZrV1Vt88xvf4tRzp5BSYZjFF3c06KIqfaSUpPulwhU4Seh2u0U1Ndf0+gOuX79Os9GkmNQJTNMkyzMMJRFQuBe7HtKQSEPg2A7kGYN+D9dxEVqQpjHSUKQ6QyrJeDhECpMki5BSkCQZrmsjVMZL3/8RT5w4gVvyybMMz3UwTZfu7h5n3jjD4cNHcb0SiwvL2J5BDniOx3g0Jk8ylCUJD3R1zSRH37yD+sefZPX2LTrtiSLCRxoIrdjc6PIfvvB5PvT+U9iuhV8t06qUEaaDVC55mnD98kU0Oe2JaY4cOc4bb7zJz//8R1GGJE4159+5wK21VZ564gSOdFi7cYM8y7h95w6Hjx7hzu01ZmZm2N7cxinZCGkxHg845V/A8Oo4nWNcuXyJiYkOzVaRvzs7O0uj0aTVatFut1FKsb25Qb1RpznRIkkLd8mJepv1u+tMT0/j+2UGgxHLy4d4/bVXeeGF92EoiaEktu0wNztNkoSUSmVyDV/72jdYWV7i6uUrtFot7t7doDM5Sbc3wDAMrl69SrPRwHZc+v0hK8srxUq1yHFsh9nZ+QP9nYllJFy48CYTnSnePnuJRrOOY1l09/Z48qkTlKoVfM9na3ub6ekper0uCwuF86M0TZI0YWVpic3Ne1SrVVzXQ0kDpUymp2ZYW1un2pAtUxIAACAASURBVKyxtn6HtdVVpmdmGY0Dunv7NGo1Ws0JXNvhxvVr1MoVfvDSd3jm5CmGw4C9vT12drZYXlzi3sYGG/fuEUYRWZZTbzThAKBIUVArS9Uq40GAMhQT7TaeV8L3LYSIMQyPRqOBaRgoBaPhPl/8wld56unj7GzvUC6VGQ17XLh4mRwwdcaxmkESDclsC6mKykSWZeT713n1usHs8jEs28W0THINoNBIJDkvvfQy9XqdRqNBEI4xDMFguE+1Vn2wSlpEQZzfQkrJ0H0TNVpH1A9TrbikaUwYBViWw+5ul7fOXODI0SMkaXxgEOaik4CNe/dwvTJJkvLFL32ZWqVCpexgez5ZEpCEAaFRwx1vUiFiIBpEqUl16QnMb/2IsGoTjvsYpsloPMa1FFooSqU6WmuCKEAKRa4ThBAkcRFX86UvfZkjR4/iuD5S5di2Scmv8Nyp50njIdVaA8O0sOyiEpfFCbu7uzSataI6MooIg5z72zsIUQTbe34JZTrYtoFShc7+zTNvsryyhO2Y1Gs1Tp48hWFYKCnxfRfHcbGsB67pB5MN8aBiChJJmhaVoyQNqFYqfOfb38UvedRqFU6efB9nzrxJZ6pFuVwGJDoX2LZkNBq9C37lAQ03jmOUkkRRzKf/7Wd45ulnMA2LwslYkCQx/X6P7u4e7//A+5CqyFqVSpKngkqldrC4KUEI1tbucH9zG1saqNK4oJaGFZTlkmUG/cGIUsnn5e//kFZ7glK50GKLh6qiuSiq5JbtE6eALGI5HMcgS5OiwiYlOiuij9IsYxwESKVotiYwDEWSZGxs3MOxbZIkQeeScqlMksToLGc4GNHvjWhPNJFCEIzHKEPi+w5CaOI4xnZscp3jeA7dvS5Tk21MozBgUoZZGGHpjDRJaTULFs/RY0dwPJ/u/i71WhWhi/NYXbtPnmT0f/tXsSyDO+t3+chHPsSv/uqv8o1vfJMPfejDBOOAe5t3+I3f+E85euQoUggaNZ88GUMa0145ilBmYVCFRmnNe0U7vus2/BB4fSyF8PGbP7Y9Cl4Bcp1DEvLHX/r31OyID902mNYm/QWHxtp/STZ9jkynRYSQaREEMaZlkeUpSaLpdbvcubfF3Fwx3rxz6SqVWh3HUghRuJAbBxm5P37tCo7nYpgSKTVZnhdHIItM3uwgSirLM0xlvgvWHyy+G7JwG0+zFITGMNRBzMoBs8swkELiuQY6C1FCMDM9xcbdm5x7e5WFuRr3t7c58+bbVCoVcq3JtabTmaTRqOP7LqPREJ1mWKbCckxM06bemMC0fZRhI2SCUjnjUY/ROKA/GGJKxd31dUxTHYA0xfnzF7AdE9f1KJfLmKaFZdl0JqexbYfTp0/jOA6u6xKnhfxiZ2cPzy9RrdUZDIZsbNylWq5zf3OLJEnpdvfJ8yE6h9Vbd7EsB8OymexMcW/zPo2JCSzLxPMcgvGQOI4ZDgd4bon793fodKZJwwBETp4lnD93gZWlRbI0QFoevufjuj5RrGl15tjYWyfNSjjGLN3dERl9BBa+Vy5ismRKNN6FuMv29jaNeoNKtUGcZuzs7hCGEZVKheFwhBBgGIosz7h8+TJLy8tIpXBdn+WVQ9imz61bN/E9k8WlaYRIOf3mBZq1NipPcN0MzxEYuSZXNmmWFddUQEmJpqjmG4ZBngtMZXP23BXm5+dJkxgowKxpWaRCoAxBmgQYeUzFAWGOUYnEEhLHiyAPkamFVjkgufjOJcrVNtdvbLGx2WNp+TCz83NUyiVKWw2SUojz8YiB6PHO+kWmNg4x2BqTP9nj7qUfcnhWUCnbpLrMwtM/T2PuCYQ0MXVKLhS5kI8Fr3/h9/5/M0j9j6UQP9zeq5j21wq8Htz/c8//ZcHrw5XGR118f1bA+bNQhx8GjT8NvD6oiCb/9H9Fn72M8eu//Bf69l7H9bjz8V6g9uG+PEyX/vMrtSYy2OLm6i3mjzxFfxzhmCaGoRBJjP3l7zCcqGKY3sF+CkKG7ZhUKj6HlpaIoxHbWxv4vkm3u0W5XGJ/HUbbFlmW02pOYDv2uwOEbTs4ThH8HUcR3/yTP+H4ieNAzjgYMx4OKJfKhEGIVAplGWih2d/dYzwaYFsW+91usYruee8O+HmWIhF85jOf48iRZaI4YvXWbbIsxDA1W9t9lg8fQqjCOj0MA27cvIqpIEkCZmanmZ7qYFiKME/QGkbDEa+8/COW5heJiSj5HnmWEb76NqOTT2D98tMoQ5ImKcNBQJ5J3nzjLL/7O5/kyoUzfORDz2PYEqtksbO+R6nWYre7T6Xk8vv/y7/ggx/8G/zJN76N71d5+eUf8txzz7G9vU0qUj74ofczP7fA9779Pa6fu8rbZ07zjW98g3/wD/8hYRTy6U9/Gte08UslMDWdySmETmjvfxthlxmqFjrXmKbFaBSyu7dLtVrl/v371GpVwjBkff0uvmMwDgOarSaW51Iql4nHCS9+80WUMjl37gJHjx7Hth3u3btLu93m5o2b9PoDSl6ZcLRLpVImzlL6wzGt9iStcpksydjb7bKwuISWCtO2uXntKq5bfPa+V+b69Zt02m0838U6iLMxTItwrEmSAbduvMXzp57mjbcu4noNFhZmCIMxrm3T3e9SqVeRwiiqxOUSjmMRJxGu65BT5GUiwXMc8jxjZ7tHFKUEQUQQhkx2OkjHplqpMD09SZoURhuddgfX9bl65SrjwQDbVETjEYsrCyjDot6YYGpykqmpNrdv3uTs2bM899xzSEPRnJhAKkUUDglGIwbDIX65TIbAxEQocTDYGhgmxWTB9vAcl2q1jGcb/OiH36dWn8YyFV//2td49ulnMQ2wvArzk02OliW5yPFq5QKoK1lUpPauoMoLxM5TlBp1LMt+N39QUFDwDCOnWq0xPT1D4f5ZRBg5jk+eS7Q2+cN/8xmOHlnCubwHAkb1m+gsxOg8w87WGn7JZRwE9Psj6rUWo2HE5GSb4bCPaZlYtovUKablYDkeWsuCpr52h0ZtlkqtSq9/jyTuIQ0LHIXVu48K9/HmniCfn8D9wg/Y/tgzOFu7mJZVTKzzGNctk+WSTEOaxtiORxyNSJIU23JJE83p029y6rnnkYZESI2moKZeuPAOW/dXsR2fyakpVlev02rUMJTCtGw0OUmcEEfwvT/9IecvX+L6jes8eeI4luuiDYMkHDIej6nVajzzzDPU6hWE0FiWhdaFtCMIA9I0wjAs0jR/NwpHIJBKEoYxUiqyNOf73/8BSZQyNTXNeJjQaHTQuaReb2BZFpOTbaSCKI5QyiTPQJPi2IWhR54XY5zOC+MqpYp4jls318hymGh33jXYQmi2treYm57BK5nkRKRZjuOUGQ8C/ugrXyUMQ5I0xbItVldXOfPmWW5evsnRZyYwLJNk7GHYHvv7IW+/fYGFhUXm55YwbEkQjLFtizRLse3iM8ujiCQcYApFnsRIEnIhGQ8HQFa4NyPQSQGEHNfG83zS7EFFUBFHMY1mgzAKsUwDxy5zf6u4jmkNYZBw5co1Op0aaZbSak2g84w4iYjCAKkk/f4A23UYDIfMTs8SRWPIU+IkYntnB79URorCNOn2auGebZoGhm1hGGAaCsf2Mftj1IVrvP6JX+Ly+i0MQ1KuOMzOTvMH/+cfcP7ceX70w1f4xN/+OFeuXmB2ZpLd7h5zC3OMR30unT/DqZNPo/0aSQ4CRTHd/qsHr2mWIbKQZLjL1fMv88KwTDDqUTvydyA3Sdz7GJZV+FjkIUoJlAFCJYDm0OFlJifqWCrGt03ajSZKFBFFSZwQhtG7MSWd6aOsrt5icmoC17dBFz4Yb525TLlcxrIKgx7TNIijGKUUllWwn4RSiLygyOs8x1DFQrbWOSXlIUUEOsYxTEwE42hcUNWVouRbHD86zUSjBqaguzuiUe/w41d+xPHjR/FrNXKd4tgWjm1iGQY3V29gmjZRnGOYLoPhGMd3yNOD6nAGeW7SbE0z7nepVEpUyj55XphUThwAydF4RK/Xp1QqEYwDxlGI4zhcvPAOx48fp7ffxXFLDIYjdC4OsqULreZkZ5LXT7+J55VYWFgsHLEv3WSyM8f1a9dZPjSPFkMkDvVGEy0k6+vrlHwXw5BEwZBqpdDstjvTaGEQJYJStYawDCbaU4RhQLe7g+c7pHHI6u3bTE3NoIWBZxhkSU5/FOC3OmRGhZLsMgrHSNsmyzRmllFSAlTG7t4AafrYbmGO15koKM61Wo04juh2u4VHiePhl3zSNKNcqaG1JIoCtrc3me50IJeM+gk3d8dsbOwhdEZ7qlKM7drEdAqna8sssr9zrQ/GVoM800hMdGaAcPBdjyQOEfKA4SglRhqTJzGmMkhTTZLkZMLHMGJyMSbVHlKYuG4GQh1Eb7mYTp3vf/8cQaQYjodMTXeQGry1Fpu/dIHICrhx4wbz8wv4N9o0Gw14ao/LZ15kvq25cvUqbmWew+/7ZXAaKGFg5hmZUGTyrwa8Phol+h/THqe5hb8m4PVR5P44x+GHT87D8TMPnnu4PVrJfbDdw9mpj2aoPtju4fao3vS9zKEe1d8+6NMDt+B3nYW/8l0QAuMgKudx+3zccT0OfD/uXD3uWB59Tho25944ixPukWcRlcPPYilNnCaImUn4nz+NOn6YRBdmLkoWGVlSFKYgfrlMmqV0OpMoqRgHIZ5V4lvf/i7LK4eZnpkhShJ6wx5SSRzHZjwa0O3u4LsWozDg2vXrXL16nZWlZVzbwnQqaC0ZjsfYjgNAnKR4XgXXLRNHGecvXCLPoN5skqVhYeaUa8JxyJm3zzE1Ncd4GHPxwjs8//wL+H6Nw0eXWF9bpeJ77Hf30HnK1NQMQioWllYwbZv9/f0igzGD8XCI69ooQ1CtVzFNlyzPiKIA/9UL3P87f4u4UqLZmqNcnyrcQPMh9ZLgd3779/jdT/5dbt+9Rbs9yWh/xN/7e3+fX/mlj9Iou+RxwtqdHRaOrvDBn/swSmZsba5z/PAyzUqVT/+7z9Pd7tFpTfH97/6AJ585yfShBT7xn/3nfOYPP4dnVxj0YzJsPvKLH6BWa9Lr7RMmMY3NbyCsClbrGFEcg9Y4lsmlK5eZ6kzS2+vy4x/+CNM0mZmdRSmHMIqpVarIXLNx+zaVVo0czclTp7Adi/5gj1yHdKZmsByHLEuZnp7B90t4NY9eb8j2vR2mp2ZxPI+XX36Jw0ePICQIqen3e/iez8sv/YATT57AcR0Goz6ZTtHEVKo1wiAhTXMQmnqjRJbmHD9+kjNvX+C5U88wNV3DNmyqjRJOyUIYAlOZODLipR/+iEMrR1m/eZPTr51m+fBxdJxhGzZ31+5SKde4c2eD4f113jp3lpMvfADbd5BGwTKI44jRcIxjOWRxTBqFmIaDV3IYjIZUqk3euXiNo8dO8NWvfJUnjh1Ck7K1dZ801hjKZGlxiY0765Bp3jl3ns5Mk2pljv/jX/4BtpszM9nGtG2QDzRDQ0zbJMmhv9sFUiqVEnGSMTu3QskRnHnrPMryePKZp1AGuPEIe3+TzJJos6ga5Tpj7eYqvuihpEAv/TqtuUlM1wEh8fwSSZxhSIMszpBS4bouaVZUhTWaNE/pd3vcuXULy5LUmj6Tc8s4l3aQQhJ2tpEIzNZxyAVxnFPyKwUdmJxWw6ff7/HNb36HkydPkafJAcDYxffLgObu3bu0mhP0kxG1kkMyCvCcMk7JJ0nGRJmiFPcYDO6TVKeR+6Bu38Q0QaOwHB+JQhgutl9BGCWktFAH4fTF9UwhDcVzp54HWWjohNAEYYhh2XQmp5jqTBBHEZZhkaeAUChTEcYJSRRR8jziKGZ5ZZkkCHnm6WdpT84gEIgsK8A2JlpYGKZNmqc4vkM0jInjkDSJ+dS/+RRHDp3AMQ3+8F//a5JojGXlCBGghcJUBlmScuHCeT70wfdh2RBHIz7z2c/wcz//N3j9rTc5fOwwyAyhigmTZfloLZFSEcchShVOxIWG3caQOXmaFFoyqTh8/Akm23XyPCVNYyzbAa2oVZpImdDt7WNaLoaQZFFItzvi7bfe4ujRo1y9coXpyRnmZuaZ7EzR7d1h8UgFiURlHtEowfTKvPLqa3z4/S9g2A5CKpwD92Ctc5Q0QRsI6RQRHMohw0DYCqEVlu0yHoe4totOU0Qe09vfR+vC7RPyA6qudZDpmJPEKaVSlTwrXN9H4z6GYVAqVViYX0YgiJOYrftd/vS7L7G8MgtSoZRFtdootMTkOK5kPBrg2S773RFnz11ncmoJ2xQI5eCUHFzfLlgyWUgcxZiGU/TtjQsMf/kD/PMXv8rv//7v85u/+ZssLx8iCAK+8Pkv8PGPf4z5hSmefvYEs4vz9MddwMU2XRw35fQrr3DyI79Gpg2KUTQvtOnvMfRrAeoHBXjNfu65AqEKEA+cUR66/SRm2F94biSQ7Ry59Gfzp1QNEbqGTCU6XaN1bhffq5A7n2SYhpgTEUkyxDd90kQh1LhYqAt8LMsiTjcoOTaGMklSjSZFGZCi0HpIEPlcvTmkMWHg2iatRqPQ+elRQRNOTDy7MCryyz7SEGRZgqkshMwOst1zhEgLurWUGKaFkAbSsJDKIo0i0izBNH1Mu0RMxpkr8OPXr9JpV2k2SkBErgM2Nwas7/Q4ujyDrxLeuXyVu3c3GY9CxmGI49hE8RjPq9Ld7zE5Ocn63XUmJpqMRwPWb91md6+L45eRhqJS9Um1xitVUYZLFGeFvEFodnf71KpVkjgijhLSJOXtt97gyOFDTE62uXr1Cs1WE9urYFmFWV2/2+P65avMdKaJsj2mp6bZ2hjSbFu4bpluv8fO/hqe12JiosZ4FHLvTpc877O+cR3XqqFsA+XG5GmO1hbT03MU5mq6WMBKEmQGl69f49bNW0y3pijVmpiGh2GYSJUwGG5SL81h2EVeddlrUy7XGOcKy/KQWYAlNcop0U8klpFDPkboiGAUY5oVvHqDIEnJdEq/twd5gmOBbSryHFy3hM5y0mgMUhInCQiDJNPcuLlKySnR392hWlF0JlxMS5DkmiwJkConCsc4toWgyGlNM02aRuQixrJdhBohZTGP1TkH52CMzhXIiFxbjEcmlicRjMBskFPCUTFSJIR5YSrqaonnu2z3+th2mROn3s/TzzxLMI64c/YedTHBxrGr5Klke2uPucVF9FkLy7ZZ837AsH8F084YJibVzgrzT/4aplQoCZkopC9KZz9VBf9oQe0B5ngYhzwss3zPwthDN7RGPyj2/YR9P7zfhwt3D+OYh/sCfw3A6wPDpodB4IP7f5lq6aPtvaqZPysVGH5yLM9P2/7/Iu/NYyy77ju/z7n79va19q2rd7KbqyiJ1GYtHsuSvGm8ZBAgGWc8dmYSBJggCAIDMxNnMhkEmGTgIJPEmSSyLdnaTEskJVESTbJJik12s/d9qX2veq/efvebP2413Wp1U9QY+cc5QKGrL+479716955zfue73aG7yLL87rE051Ugff7jD3zf92vvx/X4vdrd+bGqkJi7fpHXf/Ach48epTg2gyIkXNdFKArixGlwXdq6gm4aSHuc9mDPIS+O4714inQHUtM1ogSmpqexrJRyu7y0RBiGlIplgiAkiUkNXjQDRZIZHhqmVCylwv4kwtDNvfwugziJ9miMCoJUu2CZFvV6jWKhSBS47DabqIqCblhIisrhw4fJZjOsra+xubnB7P4ZdncbXL96A3fgsrW5hWPZOJZDTEp9jeOEJIYkSVGR7e0tTNPCtm0MwySKQqJQQddtlMvziHKZz33zm7z51iv8wmd/kTPnz2CaCksLc+iqTLFcxs6YlGt18rkyCSqVPUOpfTMzbG01+OMv/Smb2zscO/IwlmHx3F9+m0K+wIsv/oBf+bVfJ0kStre3+eIXv8jS0hKd3g6lfJaPffyj7Dt8gCc+8hTfevHbPHRgP7qm4Vg27VaLzPJfIjSHrlyiWq5i6CbXb95ieHQEwzQRQL/fZ2JqilanjWma5PJ5zp4/S7lSplgpo0gK9doQmqJx9fJlhobqVEolXn/jJNNTk1y9coXpmWlarRbtfpdsJseNazeYnBin1+2iGzq1eh1d13n9tdfJOg62abLbbFGrD3H58hWqtTpz8/PohsnA9ck6WdZXV8lmLBCCbMZhcWGRcqlCNleg23XpdHrYjkMYxeRzRYglktijPjyGZpisrywwMTHOdrPFyvISqqZy4cJ5Zmf3kctlkSXBsUcfJwauXr1CHPhkstmU5mlaLMzPI8sKtm1z8+YcVsamVCoiyTJv/uhHjE+M0Gw2mJmZodvpce3aDaamphi4A/woZH1zk8NHjxJGEbmiiaFbPPXUB6hUinvUTQiD4F1zGsMw8b2QKAgxTBPX9ZCEgqLo/ODF7/GxT/wc7U6bcrmI7nVQOjt0kgDF0En26JmyrGDIIYq7jnHkt9CsHLKAJAmRiEniEEWVSETEwOti6Dpra2tIe5O4JBSSKI10OXv2PIZpMTQ2ipJE6Fc2EQK82hYgcK1pMradRs6YJgkCz/Oolqt4bsDc/AIPHT2KZui89MMXOfrQUeIkod3tMnd7niOHj1KoVOj3+pDEONkMu60W+WyOQZC65+q9Bk1nlPLEIezvvYVX1VHNDKqZJ0kESdzCjwISKUFRU/1nHKXjj6po+H5KRRVCcOn8LdqdFpVKgUSENHe3MFQdy3KQFRnLMjGM1DxFyCq3btwkiRKcTJZ+f8DY2Ah21kE3NOIkwvc8Bn2XL/0/X6Lb6TEyPISmyrzzzmlMI4Oua5w4cYJPfvKTFIspNXl2/yEsO0N9aBRFSTOXwyhGkRWq1SpCIh03A8jmSpRKFfYfmCWIfGShwLt0YwFJRByHLCwsUCqVURQVTdNS9FVINLYbmIZJFATIQqDIEiSgyOred71nSJeEaIaBoRtIkszyYvqsDNwBtm2h6xpvvPEm5VKZ557/JscfmqFUl9P5KsohKw5WrsJDx46TRCHICv1eF01XCQI/1d7uGUoJKaHZWEfXdCRJJt27leh0OnuF6l78RT9mdW2LUqmGrBh0ey66kTJ+ZElCSKkplixLeH6AJCXIitjL/JVTJkbWQpYlut0Bc/ML7JuZRjd0DN2i10s3Q+Mkwu33yDgZEIJef5C622sKX/mTLzM5NUMu7xCGHqEXkCQBuq7T7fWQdlrIc6us/ubn+LnP/Byf/exnCYKI02+fwzSy/Ppv/CqvvPIK3/jGN/i1L36RRIBmKBiagyJJbGzMs7y8wsPHP7C3UH0f7d7i9a8P/+SpPwMSI039eOEKoKoJfqvP2vx1qoUY5ZWbSJKKZvwjfnj1qywubTI6UiWO24RRhJ2xCAKJ61c2WZjfZGxsH5IUMHA9DMNA0zSiOEIkCSQ+QnG4dGkZrx9SL9sI4QIeppklCCJkJUQ3JUxLxdA1Ai9AU0wkWRDFwd5aQAeRUozjOALSZz/VMYIvYpBjXD/dDI18D8OyUUWPkVoOVUkIwwjTsnEqNsMjBuWMR71iYzoWalLh9KlzqIrN6OgkSysrDNXqrK6uce3adQ4dPpwaTSkqtXqFTDZDsZBHUxWWlxbRNPVd5tjy4hJLi8uMj00gSxq9XhdFlvBcl9u3b/HUUx9gcWEBIWRKxTICmfPn3yaTMTENjWq1hKJIXLt+leGhcdqtXc6fu8joWIXXXj1FpWgw6IgU0Szk8INdmjvLZDIW5YKDJLoUbJu4r7C0dJvRoXGuXL6AZcuIOEDVijS3NllfX2F4dJx6fQjbNAlFiOv10XQdYg3bqrC0uEiz3cDJZEiQabV3yRgFVD3D7YVVQkIUOSDryERhiKqketwwCLEtg91Wl2zGTiNqFBVN0eh1B+mY42Tp9vucPn2aKAgRsmB4qE4Ux+RyWbqdDtNTo2yuLeO5LaYnq6iKwNKtd9kmSRLjex6KlGr1JWHT7XhpfI8iI4tkL/M6/ZElGWIJSY7xQw9FyvCD75/FsiwqmTyykAjjFsRdROywu6sj6wPi0ENoFs9/9zy57Awr68tMT02l6Lg/gW968IE+7V6LiekJoiSgvDLGbqtFe+wSNK+h+DsYuVH2PfppcpXpBzA7fzbDpfuxTu9GUB9Ypzyg7/dTYfwsETx/64vXKIrepQ3fDT+/V/F6L7J6v/bTitf7FbI/rXj9ade990ZSFGVvot1bxD77w3Tx+YWfez9/mh/r6720rT/thro7U1aR4Uevvcbnfv7jnDtzmkeeeIpOP0VkFCEhDTyC63M4+6ZIkpgkSTd579zciiLh+x6apiJLMn4QoOg6Snkdxemzuxbz/HPPMTw8ikBiZ6fBYOBRqlRQVBUF+MbXv8GHn3kaZY8enEQxCXsmDCLdvYmjGEm+85lTmtz62hpRMEBVFIrFMn4Q0vc8so5FEASUSmX2ze7DMFTCMODkyVNknCznz52HGErlMi/91avs2zeLQKLfH9Dpdmm32nS6ndQgSFUJw5CB6/Kd73yPI0cPIV47Rfgf/irzwuWf/Nf/JZ1ui9Nvv8nIUI1qpUihWERWBYZpoOsO7Y6HohpMTY5y8eJFhofH0DWT8UzIZ8d6eMWHuXHtJutr6zz55FN84fO/TLffo1qt8uUv/ynPPPMM8/O3+d73n+e3fuM3+O/+xX/L0PgQhZESH/nUR7l99jKryyuU8gVe/M53OaKcIdIydLVJlndh/to5Ll26wtDYMOVymVw+z05jByeToVguYVsm3V6X2f37WV1bI18scfH8eVRZ4eLFS9RrNbLZDO5gwIFDR/A8l337ZpAkiVOnTrH/0BECP0CQkHFsSCCRJYLAJ44iWs0mnVYbRcgIRSWKEg4dOkSvP+DG9ZsMj45Srw/T3Gmwub7G0uI8I2OjXL9+gzCKyGQK9Hsuf/XSqyQJlEpVVlbWyGYKvPDt5xkdqaKZFu1OG00WTExOYmcLDA/ViKKAmZlpFEVifX2Vbd9hMwAAIABJREFUrUYDIStYls2PXnud7Y0N9u2bZXe3xYlXT3D8+CNEUUwmk+WdM2c4dPgwpmkiy4LDBw+g6hL1eg1V0TB0E00zsByLXC7P1vYWhw4dRsgytpOh299999kQkkwUphPm/PwcpVIRy7QQQkUIha999ascOHCIJJFp7OySJLC+ucmhQ4cIfJcRU0LqNmhHPleuXGV0dAxIaXZB4CG1rqJMfApXqaCqEm6/y8Z6A8u08dwQRVVQVBmkhG67g23btFptnn32W6iKhqbIbG5uc+nyFWRFZWp6Gq+zQ3auz8B1CUaaKUuk+hCN7W0KhSLdXh9V0zF0g9dPnCSbzdHtdRmfHEc3TCxTwbRMFE1FlhRURSeOQLNMLNNka3MbSZEYeC7FXIleu0emWCLq7eJ01hGP/wLixRM0pnSMxEIxs8SJgtdeJ5srkggVP4xRVYNOq02hkG4QJEAYphqojO3gej2K5dRhWdNs2rstfC9AkgStdgtFUVhZWcYwLE69fYp+d0CjscvLr7zChYtneeajz6AZOr7v49g2RLBvZpaN9U3GxsaRZcG1q5e5fWuRQ4cPMjExTj6fSyMsIhchS9gZB2QJZa/QTF2D04WDsoeg7ux0eO6553nkkUewbIMkCRFoKWMnjpElCEIfz/cYGhojCEIkIfP1r3+Do0cfxgtDDMPk/JmzWLqeat1cN9WIJvDC89+h1+9SLhdot1vEcWqg02w0yOZySHLM9evXeeKJJxkdGcMdDGh32owM5agUdbSMjywrBAMH08rR82OCIOLc2TOU6zWCYIC+5wgry2rqYRCFQIjn9nFsK43SkRQkSebP//zPefyxx5BEugECEqqmEkQhlmNimgadfgcRC1RVodXexXEc3EFKx9Y0FVVV2N3dJUlEmhlLQr+fappHRydAJGiaTL/vYtsOfhCkeZAJBEGA5/uUyiX8wEPXFVRZo1Aoo+opMmtoJp43QFVVNFXDOHeDfz13mf/+L/+CT37yaYaHR9E1k9/5nd9jdt8hhkfL7O7u8gd/8Ad0ez38MEhNZySdyHNZXLjGsUeeQNfzoN7fbOUn2v9Hxet9L+X2kCOPEy99m7C3xeTtAUI7RD9zGG14h6npEVQ1RVQlSSYIY0SiUK0Ns7m1wdBwlShy0XQ9jShxXTTNIIkkFDkBSSJTKLK+uszEUB5J9QmiCFnKIssSQnbRdJs4itPvSZIIfJcwlgiiAUKkun1VVYD43XQA3dBT0y4SNAkQCQk6jVbM/PIu06M2w/UcihztUVVNWq0O3/z2ZSYqecpZC1nSUGUDSawyPlHhoeNHWF1fQZZjcpkSJIK1tXVGR8fQdTNFumXwvAG+59Hc2aa1u8vk1Diry2tk7CyBH3Hrxi1Mw8S0M9iWydWrlzlwcD+aqtJut7lx/QZJlLLZNFWnXMyhySpLS6vIkkK32yOXz/AXX3+OXM7i8qXLZDIqt66vYip9tta3CVnn1KlT1Mr7eePkSc6fu0U+n8c0Xdx+n+8+d4Jcqcrzz/+AcqXOq6+/QrFc4ew71+i01gm8Fqad59Sp04wMV9ltdPF8j0w2k0rIEoGTzSDLMp7vY9oWSyurZA0TFIP6xCxuQMpMiWJUXUMSqcxDlhMiv0s+V6KxvUEUxWxvN+l2ByRJGqul6ga2bVOuVDBNi2zOwXVdwjDEMHQK+TxJ3CcKAkbqNTQtxlBSMCOMA4LQRxICyzAAgW1n2NrscunSDcYmUs2slAj8wENS0uck8EI0WQNV3nNJV5iYGMZxFCQpIEg0+gOBJDS6Ltxa2GTh1jajw0MsbWyiZ/Ls2z/L0UMP02q1uD13m7H+PtYyS9Q+niGTc6gOV5hbuE19bRLLNJEP3cB0l9BiH6t6mJHjfwfdcO7L1ny/xeuD2JbvJZP8sX4e0PdPK14fRA9+0Hv9W1+8xnH8T+916b3XYfi92t3uunf+vYN63puRercR0/36vt//7y12f5YW7YnK373+t36Y7k7vFa9337z3y3O90+6YdNx5zYPe991OxHfe891OyAB+HPL4U0/z6g++S7fd4Ngjj+Jh4Pb66JpGmM+i/psvIR2dRSgqvu/vobapzjAIvD2XT0Gr1WYwcHGyGYS9CSIk6uR4/IknkABZlgjCgIE7oFKtpMhtFHLs+HEazQaZjIOsSERBQK/XpdPpEEcxruchiXTHXpIkPNdDliUGg5TWE8ci1aslMYqa2qMvLCyiKCrFYoF+v8fA7fP44x+gPlTn4YcfRtM1ut0ui0sr5At5BoMBl6+kNvTlSpn6UB1VVekP+uRyeVzP5dFHj5IsrpIsrLDzj7/A448fIFMcIo4Cup0m05Oj1Go11jY3abaazC+sUKuN4YchmqVz8fxpTp8+w4c++Aznzl3g4e5LKINNXrgS8MTjj3L69Cly+QzPvfAcjZ1d6vUaL7zwAogIISK++Ou/jiqrjI9PMDI2gmqki0NHMfnTL3+ZDz/9NIePHGGw9CaKSOj0PWr900TOBNV6jZl9M8zdvIXveYyPjbO5tUW5UsbtpYHfUZxQrdVRVIViIY/jZMlm00X45cuX8AOfUrnK6uoKL730EtlMhumZadbWNmlubyFLsLW5haxorKwsk8tmsQ2T5eVljj98jIXFBTY2t+j0Oni+x/LyMp/61CcRAjRFxbEdfM9jamqKdqdDoZhnZGycbq/P5tYmIhFMzUzhZLIYhoWh69y+dRPP6zMyMYWuG7R3G5hWhjCR8AY9MpkMQgiiKF2Y206G8fEJnn/uOT70wQ9y8MBBrl2/weTkJNVKhVarxZsn32Jm377U6XhxkXw+z5kz71AsZlFUZW/xrCDtRc1cunwBWZHpdntIksw7p88yNDSCqshI0p7LIWpqqqPo5PI5Bv1uihokAknI5PMZVlfXKZfKxEmC7VjMzB5AJkbeWcISId0kYne3yfDwMGEY09xtYts20e5NJKuCPvVp+v0uspyiuovzGwz6aURBsVii2WygqTKWaaGoGlEU8cTjT2A7Dn/yJ3/Mz33yU8zsn2VichxFJNyau40xW0M6OEQ8uAGAUT+ON3B55+xZ8vkCtp1qla5fu8345Dj79k+jGRpCEhi6jucH6e69JPH6629gGjq5fDbNk41SCpeh6SiqoNVsEAZ9XFlG9wewfpm+nEPf7CIMna3mLvlCnqDXR8gmkpq6VxPJnD51kuHhEYIwQlU1EIKBO0BRQnL5DGlOtUm34/PVP/sypVKRfD6LaRpIkiCTySIrMvumZyjkChRLBaq1MgcPH8TJpAidrKQxYZsb25x8820QUhqXVMqzb3YGJ5Mnk3UQcjoedvt9DEtOI0BkgRAJQThAkox0PN6LMAqCAEVV+dEbJ/mVX/1lZE1CltlbvCuEYUCr3WIwGGCaJqqq7Y2HKUPm2PFjtHZbKLqCIiT+4hvfoFQo8fZbb3Pz1k0uXbrC/tkDXLp0iU996uM0mttUqjU0NaXYaaqOZhiEgcv58xcRQsZ2HPYfmEFVJa5eeJuJ8RJ6NkaSFCKvgCqryIaDpuvkHBPNUMnlMqk8RlIBQbO5sxc/lrqbGqbCxUtnqVWG8MOIh44eTeczWU7v2W4Dy0zpoa7bI45DIEZX07+XqulIkkK/75EkMXGc6sYlScW2HXq9LrKS3kupflLBsg10XUWSFNbXN3EyDp7vEXke/YFHnAhAIpfJYpkGSRRjOxkSEaMpKqsrm+RyOUgE8k4bZWEN67/5T/mFz3+OjGMQBB66ofHbv/0f0263EFL0rhwjThJ006DnueiKgRxHbG2vcPDY4wwiE0X5cdTzge1nKF5/lhZvCpKeQNh/zQxLWg3+5R/8Vwxamzxx/BjmyTkk69P44zL5kT664aHJGrJkIklSykRSVAZei/GpMonkosg6URTg+S7Jnjt/FElIQiDrKmZGY3QoS5JEuJ5CENmomkoY9on9kDjWU/pvnNDY3UXVDTTVRtszSgv8hDBMWSeqkt5re2G3RFGMEqRsqgiNU2ducn2uzZFpM9WvmgZeGJDEqUP3xnqTR47MEImIWA5wDA9VilC1DD986TRnz9xAFSa3bl1HUWRarRblcomNzQ0Mw2B7exNDN4mjiG63S7VaZ7e1S6/ncv7CJUbHRjl27Di2Y3Ph4kW6vTYzM1M0G7u4roemqoyPjTM6MkKn00JRBJcvXeWN109i6Q6nT5+i1dohjjz6vS67u9uIRMF2ZCqlOqrocuShESTJpb27zVtvLBAmCbpmsbKywOVLN5iarCLLEevbTVw3ZDDokxCzsbGDhKBeEowOO7zzziWWllaQ5YDdrSYDN2B7e4t2Z5ty0eSHL71Gv+czVK9jOwbuIKBeNdltt1E0G03L0GoMWFrYRjN1ZEkAESIOiCMfb9BBIqY/cMkVSuiaQbFUxjJt/NBHVlNZXcbJkJBgGCZxHON5qeHn+XNvMzt7iDffPIltK2QyKrqmECcxQuxJwJMkzWKOI7odDydrkctbyAoEXoAka7Q6HoqiYxo6Uegiaxa+H5IQoukBQdgi0SJ2O4Jnv3WBcqFIpmDQ6G9wcGaYJOmzvSs4d3Gbna0+dsYgm81RcWpoWw6tvzvP4vIy165do1rOU8yZyBcySBJc6P075MSl0UlwRh+ltu8pJHF/Zun7fcLfK7Xk3Z5+huL1/W6A3d3n+6mF/n9RvN7JM703ngbe3x/2XqrxvdzrO+1Bx9/rWve7UR4Ezd/vencyXJMkIf7WS8BfF693f+73+px3F+LvtfNxP/H1T+iBDRM/FhQcm4tnTlMolynWJpEliTgIefvKJbKvnEYrF0mydur4J0mpK7CqEvgu0d6C8fq1GywtLTFUHwK7kSI1YR1JVZDjiHa7xdDwEOVaOXV2FAmSJEASZDNZXHdAFPicO3+OoaHhPfqajmmYyLJCu7OLpmmcP3cOy7K4fPkS9eExQMYwTCQpwXe7qKpBJpPFtjJ89atfY2RkmHKlQiwkVF3BC1wUVaZYKjKzbx+lUolGY5sf/egNjhw5QibjpIv7OEZW0gFV1TT63S7quZskf/fneWH1NkO1MnapTuD1OHZolijyOX/pEuXaELVqlVp9DCFr6JbObmuTidERHn/sKeJIorl8jVLnPAjB907f4uEnP8TS8hyf+YXPMD45wtTEPt58803+we/8No899giWZdDu+pw8eYpytshzzz5LJV8kcF1++MqrfOFXfpnhsVEM20Ka+TskQ5/GmPgoVzpVZoNXKeUzNLs+tUqda5ev0Ot0U7RUwNLcPJ7r7U0asLa6hpWxUHUd10tz0g4eOYTt2AwGHo7jYJkmU5OTXLt6DV3VGRmqoSgCw7JB0mk1tmnvtjAMg3q9ztrGOuOTE/T6XR599BGGhodoNHYolgpEnsv83DzZbI4bt24xMjqOokggJGIpwbZNrl6+zNMfego76/Dmybc4ceI1JsbGiAKPY8cfIREqMZB1LCRZY7vRY3VpkTffPMnk1DSqqlGt1Fhf36Tf6zEyPMybJ08yPjnN6uoKQ0MpxTmfL+D7PvWhOr1uL0XRFYV+r0M+n8Fx8un9HyU8/8LzjAwPUyoWyGWzWKZNpVThhedeQJEV5uZX2H9gmrffeofFhVXGxodpNjqcOHGCQjGNd1KVFIkzDJWNjU1UVaNQyLO4eJu5+WVG5AGaHBNrMvPzi0xPTQCC+YVFVE3HVvrgNVBnfxmhGFiWTZyAZTnk8kUqtQqvvvoKU5OjaFqMqQmSRAch9hgFfVRFplIbJl8qYtomioi5cfUCVqFKdWqcxFKJty6SJDGhM4Ohm/R7A8bGxkAIFhYWuXDuAscfeRhFSwPoJVmgq2kmsyQrxElCJuMwNTlBr7tD4AdEQcTK0hIrS4tk8jqyBFLiY9kGgVFGaS6SBD7FKwFBRcfKOCShhyRJDPyQRJIwdINus8Wbb72VMiikdFyJwhBVU7lx7fYeNTelFGqqwsbaGjs72+ybncZ1+yRJulDq9dt0Wh0cx0ZRZaq1ErpuYTsZYiEhhIwsq5w5c4abt24zMTXNwHMZHR9BVmUyGQdJTjcXk0QgSxqSkEiidNOCGOIoQpK1vcVWvBfBkxo9HT56aO/1AnfQS+l1hoaQwLIsDN0gTgSKnOpKSVKHVXcwwDB1BGle4eLCIkmSMD4+zfLKEs88/RGy2ULqgKpJDA/X8byA7a1tvvKnX2b/gYOohoGqSMzOHuCNN05SKOQplrLstrbxuk2KeQNDs/AHFu5AI/C6WE6eKAwg9nEcCz8M081YSUUIgW6kRYwQOpqs4/abtHa3qFfHkNT0HpQkQRyl1E9FRBiGTrfbp1ysMej7aKqJ57mYlkUUxvR7Pv1exB9/6f/m8OGj6JrJ6tp6WqyEES9+/2Wmp9O8TNPU6XTT+B3fD/j2t59jZmYGy7ZIAp/rN27y8suv89jjTyJLKook0+40GLgemqoAgjffeIeRkVGCICI+fZEtU2Xw4SN0e7upVCNj0+3ucnvuGvtmJ9jY2OLw4cM4jrPn8p1g53MoiczCreuUK1lUpwRqBkX4D5zjf3ySBhyTZHacZKj8Y4f/Js3/v0ziSwrKk2m+r6IodFaW+MZX/4jhWpa5q7eZ9AVm9ucRTo7EbEBkEfgCJA9JFrhuQBCCoiloukHgg66lOetCpLF4klAYxC7ECn4gEceA75PocPFim5dfv8XYuIVlgBbnkPQEIakEkUarIxgEBnnbICHE83yE0FFkjSSJcV0/lf1E7OU9y6w2EkKRoGsyo9UiDx+sAyGJJBPGCYjUt0OVJGamCsQJfO25i9i5LJWsgYgSwtjg4tXbOBmdD3/wEO+cucxua5fDhw5SqVaZm7tNY2ebJIJmY5cbN26y/8BBbCcDspzGcFVr6IaO6w9Y21ylUilz+/ZNMpkM2WyOfs9jMBiwublBnIRIcoIQEeVqhfPnzzI8XKdUtOm0VzlyeILddoOpySmiQEaSXZaWFslnY0wr5vQbGzz5gSnGh+uMj+ocnM2yb6LEzNgYGVOhXImpFHUit8XoUI5STkUlpN1qc2h/Fkt3kSSbnZ1dxsbKWPqAW7eWuHzpNs3tbTKmQqPZg0ghCFwsW6Ox06FYyCKEjDfw8AYuhu0wuf8guunQaDYwDBVZTjO45biD6/WJkFA0E9PJ4Ac+K0trVOtVZEVibW2dUqlMEkOj0URTDVqtDpsbW1SrRW7eXKLb9zBNQblkIkkRaSxOQuB7e4Z4afa17ZhkchqyEuIOQkzToT9I+NZzl5meGcM0ADFg4MeoioFEWm9osoFIJIQwyDkK1SI4pqBSLKEbMXEQ8+bb8wSRw9MffozRyQmarRaFsIycKLzqPcczH/4k9VqN65fPIyd9sopNnG3i628wt9ZGqxzgQ5/+LWIpgyQ9KB3k/T3h94vkvNfb5+7z7m1/03Hk/ba/9cVrFEXvFq8PKizvhavvB5/f+9o7KOtPg9Hv3Um4s4txv3zZO8fuIKo/LaLm3uI0+su0eJU+/4kfuybwE/3d/d7hx/Od3o8j84P48cFggC5rnD19Gdd1yekJtQOzREnE3PwcP3r1JWp+RKlcQdgmCBAk7O7uYlkmiqykaKwMo+MjjIwN0djYBqeBEGBEw2hCQ7Z1wjjGMA1kIYh8D0vV0sWcgEG/i2NbaJqO4RTI5vPEQiApKq4XIslaihgJwVC9gqrJDI0Os7q0ygvPP8fY2Mje4g62N1ucP3eRtfVVbty4zvFHjmOaBqaS8NWv/An7piYwdZVBr4PtODQaW+ngqshUalVUXSOJIxKidGARMaoq0+9F2G9dQPn7X2Cu22D6wEPgB4hE0OkNSITKUH0YRVLwBg5vv/0WlUqOhblbDNeG6HV7SLpLKIUUl1/l2s05svVJPjBpsZUZ5+Hjx3jhxVf50Ed/ka/9n3/EjauXsXWV2I94/tnv8olPPc1bJ99ifGYfxx57gkQIBt6Apx57hKvnrxG5gpJTJOgO+LM/+yOmJ8f5n//wf+UX/sG/Qm5fRzSustWTyJbK1IZH6LhdRiZGKebK3Lw1h24YLC0skHUcLDvVQWqyTKfVYXlhlUKuxM1bV5gYn0BVdBRFZW19jVqtip3NMvBDbs7PMz07zdD4KIaZ6gkvX7rE/gOztDpthkdGiYMIVUjUqxV++P3vcuDIQZAlsoUitaEhhKpgqFr6HAgJRVHJ5/NYjoMqVCK/zzMffBJVU8iUygxCj4SQTruJYTlEkURja5sw8Qgjn5GROoZmMOh5VMo5KuUqq2vrlCoVqvUK165eZWRkFNf1MXWTUqHE9uYOii7TaGwDIcVinoX5eYqFKr32gB9+/4d87CPPsNvcYmm7QSFXwFQ1JE1hbXODj3zoaS5c/BHD9TGGhsaYmh5DN2RUQ2d9a51CIUc2m00jPWSBYupUS0V0RcL1+gyNDFFPBqgiIlIkkCRK1QoCaDab1IdqZGwVmldQZj6LpI/iDvpoehqL4vkRimFz7doVPvPpT6QOkqaD5yfp97a2iu/7rK5scOnSdQ4eOYCIPWxVEPkukqRQr48QxzFhkiBFHh1XQnPG0XSTbq+J5/WwLZtTb58FEmZnZ5AFWIaZmkMlMmEUsrGxSrlcYHFxgUKxhKYbKKZCc3cXSQjcwQ61sUl0zUFTLHzPww9CIj2PpnQwr4Y0ZyKEK4iCPnLi4IVtCtlZ2p118kWLQnmEGzfnePXlE+ybnoS4h654rC6u4GTLSJKJHCdowNjUCOMT4wxcj1yuQIKgP3CRlVSa0Om0yWYc3EEPI5MlipP080Q+nW6TiYn9HDv+EBNTI0xOjqAoUprlqySEfogiyyiyQCgRURRy5cp1vv/9lzh8+BCKmo59igRij7rqeh5+4O0Zuwg8P0TTLRRVhyQmCELCIECIBEWWuHHjKrZtpzrZOMIPfDRNY9Dp0m4sMVIt0u14vPrGW8wcHiXyNVrNFrOzBWQ5pFQYRdU02s0NHn/8IdqdXWzbQlBAyDLVWgXTsJClGFODsboGkkfoGfS6gkZjiXJthESEWEaOODHY3tokX3KIooAoDrhjUChJChI+obuDYlrkyhN4fkASx3TarT1NboQ36KGbeTrdLpmMiR+kBXkcgQx0un0sO0scR5i6jB96HDp4hO3tNjdvLvLyq28wPjHD66/9gIMHj7CxvoW1t9nW77QQss7lq7eYnpyCyMewM+lYFIVsrq8jAMu0MZ0Mjp1FCAXP9Vldm2dpcYNaNkdtbZt/qQ/4zC/9GrXKOGbBotXpoms6vXaXYi5PtTaKYRlE+HTdHlYmx/zVFcq5HCvL80zuO4DQDYLERxUPnq9/bF5PIKmXSerlHzdX4ScXqj9Li97SEEQkH3TxZB3dD/jGv/ovUAyb3/z7f4928xyZp4vkFn4Hr3AdO2cShCGyKhHGqbv/nYJRCJkkThCSIPBVQEfRIIz7hFGElhgEckCzneOdUy2MTIKl21i2oJhLyGWyqKpFJMXIiosbuWw3BN9/6QpXbq4yXJFRFZAlhfnFHi+/sUV9SEfWNFAEATGx0On78K3vXKax22RiYhjdVJD1iJAYgUcUKly62qHV88nkBBkjQ4zGzWurHJkto8qCUApAVhkazTE2rFHOCqrZmPHhQuoW3O2j2BqJEmGZWZrrLTJKjt2dBpmsSa+RsLSyTkCc5peLhGq5jGWbjNb3IcuQsXVuXV8iV6iyvrzN7vYGk6M5Bq1NfD9geMzBdAo0Oz2OP3KEH7x4mkGk0N5dY2uzTWunw+d/fj+lvAZRSBCsMTk2Qmt3gYmpIroCURCyujaHZcloqoqty5RLBrYRUS0ZjI9miLwNco5CEodousrp86tki2MMZXvMjFbImh6CPts7LXbbadDayvICS4vLrK7tImUbFJw6a/NNqqNVNENFjjTQMqgm9Po7JH6AlhgkEqgKSGGAppr4XkynHTAyM4WmG2yub1EtVZi7eRN34FMfGqbnDihVyrTbu1j5SaYmh5GEz6kzVxgeHsbUBbKUru0NQwNi4jgkEQoJAYosIaFiGjbdXhvHVtm/L4ciBZBIDAapU3UURelmbt9HUU3iEGQpoFo291yLFYgEgSeQZDulpUcuhw8dxYtcSsUi6nqGpc4SB39zH4Nmm5MXXuWpT38cL8hS2tdhpf9NmivL3N5K+Oxv/RP0wjCSlJAg/fVTLe76/d5x4D3GirvPey8m6d3jx52ff3/3nHv6fkCNcef43/riNUmSfxrt5TPddewnzns/BdrdtNm7z3k/g/3dherd59/b5/00sw/6Iu+9rvT5TyB/IS1c70VJ70dLftB7fxC6/P6gfIUkliiXStSKDmfeeRsUhUq5SrU2xFNPfpDSUJ3oKy8QT42gqCpJHKfulooCcZovubq6nhqCSArtZhuz4qLrOv0tkxe/933Gp8dxbJtWq0Wz2SDrZAiDEFlJIyQMw6Tb6eG6LplcNnX8JSbZMzZJdVEu62srOLZFp9tD0w0cK8MTTzyBJEnvZov1egNOnDiRGslUK0xMTtBoNEjimIOHDoOQaDR3KZUr9PsDMk6GTDaD42TI5fJ78TKp1lVIqd6q1xvg3FpBqhTY/dWPkslkKJSKKXq2h7pYpk0Yxpw7e5Hf/d1/zO/93n9CLu9Qq1fwXI+5m2t87Zt/xuP6Nt7yJc5vhMwceQKxfZXYHsYpj/Htb32XJ594ij/75lf4H/71/8iffv0rfPCjH+H4k0/yVy//ACEUpqZm+P3f/32eeOIxDh6cpbG9haoa/PN/9geMj43wh//Lv+HDH/kwV65d44u/+Zusbu/yb791no8UrtNwZSr1CZyMQ7lcZn5hDgWVa9ev8egjj1CpVFlZWWV4dJj1tQ1Mw+T23BylUiHVmGkKxWIJRVbZ2dnGdfs0djbZ3NxgZ2eHo0eOEoUxhqVj6Dq6omFbFm+//RZHjhxFVTSuXjlPJmPh+h6lcg0r45BxssiKtme8IaHKMnNzc2xsbFCv1kDA9vb5Ru+yAAAgAElEQVQ2586eIb8X91MqV7DsDJqu0u10yGYyqIrKwtwixUKBer2OY9vYlsXzzz2PJEnIuoyqGRQKRebm5kiSmIeOPoTv+6wsL3Pl8hWuX7tGs9mkWhvi9u159s8eJIkFuXyJudtzDDyPcrlCu91B1RRmDx5hY22dzm6DbDHL/oMH2N3epj40TKlUJIzS6J4oSUhCienJ6TSnWFLQdAtJUnG9Af/7v/3fOH7sOEEQ0lmexxEhoSazsblONpMFoNtus9vaJZPNIPeXkPNTiNoH6HUHLCwuUCjkkfdC26UEvv3ss9QrJTzPwzAsNN0kTmLyhRxf/dpXeeKJJzlw4CCmlSKfURBw9uxZNN0gVyiinVpB3+wTzOzjjXduEwYhuXye118/weTUJLaVYXFhmZ2dBjdv3eTgwf10uh1c18XzAhaXFpmcHKfX61IoFFAVZU8rr2DbGZYXlhgeqlKsVFhdXkPXFBJCVNNGc0ootRmS1Q3MVpfECtGcEQbuAEmN0I0MkuzhuV1yxTrVSoXTp97hiccfwzBUTp0+zcMPH0OzTbzAgySg2dyk109NiRzHJo5Ts5f19XVu3Jjn5ZdeI5ctUcgX6XS6ZAt5Aj9E29NyGoZBFN2ZmEFVVRrNJqZhpEwTkUorktQYACFBIV9kamoGXdfTRU+c4HseqqYhyTKqpqFraUavJASyJCOEtCfHSNkpsqzs/S69m7d9Z7xPKewSuioRhz1uXLvKufOXOP7Io1w6fwlVSGxtrNNqDcgXhrHsLH23i2Hp6IaBZtqomkkQdOkNGliWjqaafP/FF6lWKkRuCyELstkaoFMsllF0E8OwaLX7NBtt2q0GpUoNWVLRVANJqEgivQ+9fpNeu4FlZwljCVPTSVDRVJ0/+j/+HQf2HwYh88aJ17BMAydj03ddXDfNu/QGfXLFAoGfylSiKGBkdBRN07hy+Sq6oTMyOsJ3v/MCn/jYRxgdHeWVV1/h0OFDtFotirksg0GaY/nY44+iKRKtTh9dN8hmMkRhRJJEaLpKGIXMLyxSqVQQInVJn7u9yAeKFWRTp/YP/wOCIGJhfp5qpUi/28NzQywny06zy40btyiVinR7HSRFQ5U1vvm1r/Pww0d4+9TJNGdYCFTVQCTRj601/n3a36x4VREkiKd8kDRkd8A7L3+NULUZnZgm7mzR21lkeOM/IixfJoq8vfxdCVlWcPshYSRYW99hZ3uXfLGSikBjn36/jyQEumpDZCJUFT+S8QKZK1cuYOgxhUKBXK5IrT6KaedAVogSCVXNg9CIEo1avUYmp7J/337ivSidvueysb3G9FAe2zIQSYihysRhgCYJGo0WwzWTciHDyz88w9rqBiNjExCHiEQw8CIMXVDM6SlbKwg5fGQUVU1QlYiIgJVlj1f+6gYTY8Pomo9pKSAEZ89e5sb1BRrbHa5eusHqyjaJ1CEUTdqdDsQWFy69xaEjs7huD0mGJPYJ/QFunBAlPs32OitrC7TbPVRToe/1yeR1FDOh6/a5fmmLncYOly7Nsb66DrhsrDUYGc7x+PEJSuU8H/vYh0iiBpIATVWplMsIScKyrVRDqqooqqBYKCBJMlev3KBaLRAnMaqqICsygoRqbQxJAtvScT2PVmsH09TZP5ND02UsR2ZyeohKJZ9GUVVMDhyoo6khC3OLeIMcqvDpu/PYeQ3TzBMFEjutNWyjjKkViEOXROymQFAUEscRu60u/YHL8PAIoefS7bRTl/dBn4xlsrKxSbVaRdFUlpeXyToZrIxK1pZpNnbodHwGvR5D1Qq6FqfFZ5BGPiVxjCSr3HkkwiAiDGMUVU7j5BJSjatIvREg2XMsdxBCpJuIxARRsAd6SQhJptFooDsOp89cp92XUKwi1+eWUlaMZmHM5en94hpSPkYWMsMTQ8iago5Ev7lA7G1y+cJFHnv6swzvexhJS2nRiL8Got5vXfJ+x4afOPa+X/03b/de/2998Xov8goPjr65094rHube4w8qDu+H3t59/v36vFPE3tGx3s+q+t7r3hvHc7/2QHj/rj4eRFu+t5/3dS0kZAkW526mOiyvxb7pWTp9lwAFtVYn/sM/JpkZJ1EVPC+dnFJzDlKkZ+BTyBeJYjANE6vcRwhBZ0Nlfn6B2f2zKIqCoekQp3tN5y9coN3pMBgMSJIEx3Ho9rp4AxdVkQh8j8bODu1WC0PTkWSJMPBTelO3h21n0wVNGCAkgZNx0HQNy8rQbrd55iPPMDExjmma5HM5FF3HD0I8P8DJZNGNFBkMghAhFGQlDTfXNJX+oIssp46YhpG6ESsv/gjxz/4hDVOmUqnQ2NnG9XvIkoSiaGxtNikW6rRaPf6z//z30A2JIOzT7w9IEjC1GmtvfJkj2gbRyJNs7zQYGZ1gZX2TIfcm/9OXX+ZXvvj38P2Iz/3KLxLEIVESMT41xec+/0v8i3/xz+n2Bhw8eJg//tKX+MynP0Wv1yGby/O7v/ePOHbsGB946nE+kXmZenIL6/AvUSxX+Ytnv42qmeyfGEKLO3R8mWzWAQHlUglD07l9e45iqYQQMltb26iahkBCVVSGh4dYWpwnX8hTKBTY3W1z48ZNavUqY2Mj1Mt5yuUiW5vb1Gp1bt28RbFcIPR9Tr99isnJSbYbTQqFtPhzHAVVg6vXb3Do0CPERLRbHRrbTV7+q5exDJ04jJi/PcdDRx+i0+nwxmuvM397jk9+5hPstlr0en3anR4nTryGLMHYyChLi4sEnsf21gYz05PEicyZM+eoVKq4nsfDx49hOKlD7vraOqVCkauXL1GpVbEsi1qtRr/fp1atsby8TK6QY//+/ew0Gu8WGp1+j/2z+4kTOHfhPBOTE9hOjsb2NiQhTs5GKAm2qZPNVkhEgKIlKQVdWNy6ehVD19B0FSRBlAhiIVAlhWazRblUIWxsMGwpeGoaBbGwuEilWkEIQbfVolQqpRTR9k3Mg79BKEwunDvP1PRkaiQC/MU3n2ViZARVlnj9xKvU6kM89/x3mJrZh27o+IHP8UeOY5gGmm4gyyAJCP5f9t4zyLbsPM971lo7733y6dO5+/ZN3X3jYDJmAEIIJAETAlUWy6Asq0TSZJm2qyyJ5XJU0fIP+YfKVbYsl8suWSSYTFIkQIAgMAMMMAkTMHPvnXBz7Bs65+6Td1z+sc8dzoxmADCoLJlaVbduV58+ocNZe73f937PGyW88eabPP74E0jDwnjhFmy1ac2UWLi1wKmTJ3Ecl7X1dY4cPoJSJuVSBc/zmZyaINM5EGVzY4vGcAMhoFQskmYZQkiEILfQCk23G3Jo5gg3b1zBCXzKpTJkCcgMLUz8oIawHFQqsRdCwiNNRL+HFYzlMJywR+BbhL0uKBvHsXn44YexrJx0W67U6EcpQbFMNnBSuK6D7we02/ls8H1LW6lUZKg2zu7OHnNz84OolhRlG1iWhUABkk6nh2kplFQkSZLvC6bCNM18BrYX8Rtf+k1mZ+dRpkm/3yLLNEFQ4MaNmywtLTMy0hhY0buYlvmOu8cyjXceMxewuXiN4zjnBcQJlmXl3dp+H9fNf9f3rwfba8vEUZtSMWBleQ3HUYT7fR568BCOKzlz7gbjU0cJdQ/TsPit3/5tjh9/gK9+7SkqlRG+88w3OHjwALVajauXr3Hs6BGe+ubXODIzjDJMhJMgTE3YV/hemTCOKJVruI5PuRygLHtQOElJ0pgkjVGGoL2/BUmMNB1M20dkGnQ+PvPAAw/guwHKsHj1ey8yOTUxKGz4+H6BJMswZMbu/h62Y6MMyf7+Ljs7uxSLJSamJqjWqpRKBUqlIkcPH8Z1baamp3Adj3a7Q5IkRFHEx558Et936fa6vHHuPLVaHcexMQxFvV5lYeEmxVKZc+fOsbOzzfT0NLXaEMVikbHtJuLgJPcmygS+z8TkBLdvXKXRGKVQqtHqxjz9nRf49X/xGzz++EcZGm5QCAIkBk889hGazT3mjs1hOO47xP48r+NHO5DKN64iVrfeYxt+95ngLyJe1WMJGQZeFnLl7Wc49vAnOX3y4yxcOMMh8wTW/iyRcx3TUmQ6w3U9kjRDmTaeX6BQLFKq1gmCEnGiiRNFp5sSFCt02jG9rsAqBBjmEEHJY3TM5dDMLI5bJEokKeYg/qqEW6yws50QlIcoFMsUCz4T4w284giZcHD9MrVGnalDI6hUAnlUDoh8RlJnjDYqjI34KJEyMz3F+MQ4N26vYRuSoXqRoOQSuCYi6pMIRZqlrCwvUikHCJGitaDdEuxs7XL8+AyWGaNFSpalFAs+Rw4dYmdrk1LgU6m6rG3us7ndpd9vMz7qc3R+BtOQnHv9DN1Wi82NdeI44Rtfe5lLF96m09xja30HkTpcv3qdfjfm+vUbrK9vc29pl7jbxw8Ex+aOs7J8j9m5g7T2I5589CCW2qNW87l37xZF38rJyWlMliYIofFchywTQILrKeK4z85Wi3t3t5mcrmCaijSJciGXRDTbWZ6la4DrKGYOjDE6XCDN8rgry0zxXYllwPTUGAcmAzynS7lgoLQiQXL98hkUEcoYRSqTOF1le6uJTgLCvmRvf4MobeJ7HlJokriH61qYpgBizp17C9vxKFXqKGVy795dpg4cIIrCwR6tcGyHM6+9SqNexrZcbiwssbG2yqEDwxgqLxamSYJjO+gM+lGIZdmkSUoYxbkLROV0asuyiKKQ+1LOHIwIpGn+PefU6gzLzkd6kkG8pW2bJJnm+sImO3uaSn2Mxz72ONsb2ww7E5hNh/YnVtneWeeNs2/R7nQoFgP2Nxfp3lznytkLbPR2+Ozf/DnMwiiZMFAStH6vPvlB69+J13+Dl9b6H8G7AALvs8m+X5C+X9B9kLX2BxGF76/3W5Dff9t9UXrfzvvubNl3W5w/TEB/0PMahvGBYKYf9Af6Qa/zw0Tqh830vtdanWeQZUnK7tYW/W6PfnOT4fFJ7KCMUA7YNtmXn4JiAMVgUNmz0FpjGhaddodbtxbw/AJSSNCazN3MRV00xPjEBL6fz8tKBELDysoKFy9cxHYdZmfn8nlLDWmS0ut1EBrCfh/P9Xj+uRdYvLfIoSOHWVlaYmx0FK3J7RYa/vDLX+b27Tv4vk+hWKTT6uI4Dq5r0+v1cBwH27EQhkG/H1KuVnKwg2kShX2iMMG2HdrtDrZjY5pGDmvqdikUCoRhiLq5iG62yX7lP8K0bG7fvsv1q9cpV0s5qKob0en02FjfZqg+TKHkEichnueClmxsbJOuXOcYF4lGH+TKzSVs2yDwA0pD44gs5mRpDzH9CX7xl36Rjz70EEXXw9AZplYcnTnC6NQoMwcPIbTkc5/9LL//u7/D1cuXODo/xxMf/RgHZw5iWQpz82VW19cYe+LvYCiLvb0mX/ziF/n617/JUfMqt3dgZBBjo3VGt9tje3uben2IixcuMjs7y9raOvX6EJ6bZ7ouLS1SqVawLJtnn32eifFxfM8lCHw67T1WVtcwDIPdvSYTk1MYStDa3+funTsEfoDr+9TrQxhSYNuSMOxTGxrBdYuYhuTWrdsIIXnwgQeIopDheoOwH+K6LnEU8fZbb/PJT30SP/DpdLvMzs3THRzgD84cIIkiVlZW2NrcYnpqIr8gWy6FQgHXcWm1W4yMDNPstrAtl8APuHr1Ko899hhLy8ukaUoc5ZEY29tbRFHM0vICs3NH8AMPaQjWN9YwDJNKuZx33itldnd2uHzlCo5pcuPaVQ7PHSZDk8Z5zqBhQquzj6EswOaVl75LuVoiTkL8gpcXfqKIzbVNTp44yUsvPMtDk3ViJUl0bsOrVMqYg6go3/MwTYOsu440XbKhxxHSpFTMX4/WGQJBs9lCpwn1WpWrV68wP3+MXhgzOzePNARSCdrtdg5KSVMgI+5H9Lp9pDJwPC+HoL25SLPZpDsFN69d5KFHn0QjuXz5MjMzB7Fth1YrB5WYlsGlixcpV8o56MuxKZdKpFmG67oYhmJzcxOdakzbpLnfQmeayYlh2r0urmUT9jokaUixXMeyCySALNtYz96GQo2ouIvIdpGMY1kK23JJE0mY5KCc+7EyURxjmhZf+cofMzExjdaCsB8N5ufzgwqA4ziD64eiH/YYGxvF8yza7V2qtSJC5aJVoIjjlCSJMcycjruxvsmZM2eZnJhAGXn+ahZn3Lq1QLFYoFAMcF0bYzDXnCYJnudjGorlpeU8oknlHR0lJQLodXv4nk/YD2nuN7FsCynFYI42y+PILAvLsgHeoddLKcniPmnaI0liqpUanm8TOA5DQw6NkSrXri2RCdjaXSbpZbSabWq1BqbhMDk+zeLte8zPzWMqA5Fl+J6iVnVxnJRMgyjsg9lnbwMqlQbdfg/XC7h8+RpJ3KdcLZJmMQhNGPUQg/zdwHXotJv4QRWkmXf4s5ClpbuUy0W0yMny05MTuK6LH+QQIIQgjiK67X2UaWLZDs39fcrlIklKnvkZR9iODQjGxsawBj8nyzZB5PO3vW6IY9tYtqLX6xLFMa+8/Bpz8/MINKVSESk0pVIBIY1BrFaZOE7o9/ooJanvd0jH66jHT1KuVHjppZe4eOFtKtU6Uln81//dP+Q7zz7Pr/2LX8PxbIRIsSwT0owsbrO6tsrQyDDKsnKbnv4RYU2DZfz615A3F8k+/uC/ctuft3Obvm4g0MjH0rwT1d3j1Re/DvYQzzzzCodGCow9NYSICmSjLdIBGEcLSRjGJFmMYUiE0GihieKIKA45f2WN0fEZhCHYa+3iuD4pGZ5TY2d3laAgCXsSy/Gp1BpYts9us4Nhu5i2S7cXk6YQhhGFQhEpbKygQJYIOt0UPyiDUBRLDTJp0YszEhSZMBCGgykVhqERIs+v1jJiZz9B6hjfz3N+0ygk7UdIu0gUxhgqd08ZykBnJp7ncvjoKJ6fEYURlm0jJViGxDA1wyN1hkcq7O3uYptFTMOjub/N2GiFGzdv0+/2aO7s0G23aTRG2d7Zw5GScgF00uIjJ06goy6d1jbVko8kpBhYVIoVgiDm5OkJdJZQDFxGRmqsLu4xNepgyj5JlnLt2g0OTR0gjFqYA+q2ENDrdfP9Jo1I0h5KKQzlMjzUQJlJ7nzR+ftNGYqrV+6QZTGOLVEqIwn7eI7BnTvbrC6uMTk2QpLEg1xlMGSCknmKQLU0xm5nn0c/coCJkVHefGOJNBNMTtXY2ugyPDzM2voylUoRqSwsI5/z11mEEBmGIQnDLhgFDCegXB9DmRaGZeC5LlEc5bPuaZLvwNIjS9McRri4hO9EHJttYJsKZSjMgQMlTXPHnBB5YUNn+h2o0/1YrlzE5u4627ax7dz1lZ/VATRSCOI4d4EahjEgW2e4boM79zY4cfIEnfYu1WqDoFUljEO6p3bo9zv4fsDlK9cZqpUpezHu08cobM/iPNxi5OBprGKDXErmndcPa3j9ZbzX39O8+zPf+y9v/f9evN7Peb2/PkisfVjn9f5tH+T5/iCs8w8DNr17vfv+7xerf96LR/w//u/oF84gPvHIX8g69GHrwx7zPT9LLUCAZRl4jkOr2ebVF5/h+MkH8Ct1NrZ3cFwXtbqVX4hdlzNnzqCUQaVSJcuSd8T9xsYmjcYwtm3Q6u5gZA5mGoAEZdjEYY4zT6IEJRVjo6NUanXu3b2H7Ti02m1KxRJBUMALfMIooh+GzMwcplAo4Qc+jpNb7G7fucdXvvJV5mbnabfb+J7LQw8+hECwv9fkX375XzI/N4/ve5imycbmBoHvE/g+OsvzwPq9HqViTiLt9WL+n9/9XUzLoF6vkiQRlmWTJAmu4yKfP4v8lb8NRw+xud1ifHSKoweP8MWf/dv8wi/8EiD5mb/5RU6ePMmJk8e5cPESL774PMVCmV434n/7h/8Fn59YJx05iVsZYWlxhV6nw9SBSQzT4ML1RUZ9MEzBSuTy4tPP8LGPfpTf/a3fIotTVhdXmTl5BNNyuHntJrZh0u20GRmqs7B4j3v3lviJn/wJXM9Arb1EoVjkZjjKP/j7f49f+vmfx0By/MHP0Lv2B0wfmObuyjamYWAaJo5jU6vWsCyLO3fuMjs7h+3YNJtNzp49S61WY3dnF9f1qFZrHD50GCkFe/s7dDpNdrb3KBRLOJ5PP8y72jeuXSJLEo4eOUIQFEkyzcLt20xNjqOkydraNuOTB9jY3mJ7a5MszRgdGePM66+xsb5KmKS4nsfFS5eZnZvnwMwMlWqNTOt8JtB18T0PoWO8oMD3XnqZkydOYhgSy1EUix537tzh4sWLHJg5yI2bN/Pvs1Lm8qUrZGleGCsWiww3hmk1m4gByXprc4uhoTqnT82SZDFhHBKGfYrlImkc5gWNfp8L59+m1+ty+vQDXLtyhYcf+gheMcByXDqtLmkWIaXg/IVLzMwcIU4y0qTP6Pgonp8L1yRO+d6LLxGHIZPjYxwpWnT6bTAVvX4f284jQQzLJI1Trt24SblSgr2rMPZpDHeIP/ryH1EoFahWK/R7fUzT4tnvPsvq+gYPP/II8/PzOJ6D63kUyyV6nS6uY+F77sCmKmi2dgm8ACUN6vUGfjFAa0ly5jaVUpm09AZjhRB37GGazRbXr11nZHSMXq/P+QsX2NjY5OKF84Rhj9GREarVGtLIDwJKGSRxDocqFgPisE+mEwqFElEYYxrQau2ikxidhvT7LWyngGkFJHFEkoWYN3foTnmILQMKPZS1jU4cPKeBYZVxPQcg77CK/OASpxnTU1MU/IA3z73B9773EqMj40AOFpIyJ5bfp/YKmSBFDkwqlny63RamHeQCqNfntde+z7Vr1zh85AA3btzkG3/yNCdPnGJsbHRweBT8/u/9Pj/+mR9nfGIc0zLQmoGzReG4Dl/5ylc4ODPDN77xDU6ffgDHccn9bQKy9J2i4JUrV3nmmWc4fmIewzBJ05QoirFtK4/ZEYIoyoE/pmmSZRlpkiBVDk1zPZ+hejknbZoyz7m+fpvJyQoHp6dRmca2DE4cn+P177/E4u0bzB85SKlg0Wxu8NTX/4i1pRuMjRRBZjhuCcPPn6/gHKG536fTyzOXpTAwDUFQ8omiMLclyrwAKBBkKRhCYXlFUiHp99t4rpOPedSqdHttemGPJIkolosIKdja3ACdkcYhURjhBQUMI48NypIE2y7wzW9+k7HxMQrFAlIaxHHKndu3KRR9wrCPMkzu3FnkuWdfIE0jXDu3XhdKJcZGxymW8lzeTqeN53okcYomp+JblsnKyhrjY1P4gYO5uMqubZA9PEu/12N4pMHHP/EJPN+n1+/z9a9+lebuFn/n536B8ckRHFcRh122tzYwdJcLV65waHYeYZgAyDyl+Ue+lqvvvZn/fX+AeP3zrvTMoPP6aIrQAive5eKFK9Qm5ljb3EJl+xxY/Rg6vkR2oEaSJhi2wd7uPrZlU64UyLIIQ8He3g6O7bK3u8frby5w5+4CJ04cxHEE3U7Os9BZhqkgTeNc8PkFWp0em9u7uH6RQrFMu91l4c4SR46cQJmSKIpRMmB7bxsvKFAoVpHKpt8Hs1AlEzZecQjHr6DMAGkWSBIDw3HIhInjBURZTKlcpVwoEscxKTHKkGxvbLO00WJ0eIhi4JDEMZo8M1TICCnbZFkHxyoS9mOETrBMTZJEbO7sce3mLQglhw64TIwZWKbD+bdWCJOU5u4yjz00i2Np3nr7IlI5nJy3GR2VTI6WuHv7beaOlRgdLVCvKebnGzSGTEZHipSLikIQEjgKQ8R02tvcWVjh5PExHFMgpKAxNITMUqTKO8I5rEhjGvn7Q+sEQ5koKdE6wbIUSuYjEoJBY0drqrUKhYKbi0qd4jgmUdjl8qW7TI5PYNm5Ky/LBJoYspzyLKWi34957cxVHjg+hdIbtDpr3FlYY/HGHnHSwnFhcmaEQqmKaVRRhibq9zFkBjpF6AxBimHaDE9MI0yX/VaTSiUgTWIc1yVJU3q9PmmSMTp6ECFyyv71m1f5xBPzFKw2SaqJ43BA7MqQEjKd5dGNUb7XCymQMi94GYaZA0cNEyklnU43L8rojDjOu9JxkpGmkCQay8yzoZMkZnsrZnO3z8OPPUGx4NNr7SCUTXF1iHVrBX0syuf8lWZ+7gFuXrnItcvfZWL3FJ7j4X7CYurogyTCy0dcRUI+1f+vrn+bxOu/ow3zXvH6YV3LP494/YuIzPff/4PAUD/qXO67V/qbX4P9NvILn/r/TrwiQGSEUb5BrK9ssbe1yNjUISqNEQzTIktiOnGK/YdPk85MMDo6RqVSQWtNr9fC9Vw8z2NkdAwh89BnX1UI9zRb25uUq2WSSLO/v59n6/X7JHFEEAQ4vkulUqHT7uRzMlLm2XFSIlVOEfaDIq4bYDsmWZJimRbFUhk/KDI03ODokaNMTEygBfT6PdrN/DBy+vTJvPJo5pUz13XQOmN/bw+0plwq0Wo16XZDvvzlr/JzP/d38TwPRF65l1Ll3cnVTcTlBc78ew8yMnGQb337RX71v/9HjFSH+Af/5X+D6/qYhs2BmSk++7mf4Lnnn+Hv/73/in/8j/8nyuUKXnuZHwsWSIZO4NbqpFozNjLJzRvXWd1cYWRkhKF6A5wSzvoZHvob/zHzDz/OoWNHefPyeYYmxvnxz3+e//X/+Kc8+dGPEfUjfve3f4fjs7M8cPokh+bnOf3ARwjDHr/2pf+bY8E6WZZxJxrnP/tPfpnvPP0Ud2/e4vqtFabGyujeFvXRA9y5fZtSqczVa1fZ29tjcXGZVquDzqBaL7O5uckDp0/zvRe/x0c/+gRLS8ssLCywvLzMzMEZbNtkeXmRlZUtTNvljbfe5qNPPonl2pQDDykE9+7eo1qr8dIrr/LYY4+Txl12t7ucf/saR2aPYnsG5WKZsB+xeG+RoXqN6ckJJmcO0my18u6IlLzw4ovMzs2RZRAlCY7roaTGNiVpJhgfn2B1fR3XcxgeqbCXbTIAACAASURBVHHn3i1q1QonT5wkzTSW7VBvNNhaX8NzfYaHRyhXq2ihc4eAMgbRBRZRGNLpdEnimCTRrK5tMjY2TVAo49qCLElyOrPvc/zYPFevX+WhjzzA3vY2huMgTQvH9Li5cIl6fZixsRmyDP7ZP/unfOGnfwbTcFhZ2UQJm4JX5c6tJU4/cAw7bEK/SWYZ9Ho9PM8nTpKBfSmluddEGhZFO0ZHTXqVx9lYXWfx7j2W19Y4eeoE3/7Wt2kMNVi4ucCnPvc5PD/AdSw63Q7FYoHnn3+WSxcuM3f0COiUJI6RIs+KTQcXbMu20YBpubhXNtnb3WW/spQLpGCWlZU1rl29wezRWc6dPUu1UuHixUs8/MjD1Ou1Qb5nRqlSpN3u4LoeWgsc10IpgU5ilCmQysQ0TLKsz8bqMqXAx1Sacjlga6eJZRXI0pDdrVW8VGPcbaICE931cmuxt4bQQ2jl59V5mWcGKkPl1GGtsYwIpTIsUzA1MUGjUSdOIqIowrZt0jTBdZ3cViZAaImhLNrtLu1Wl6BUI45SpFAcPnKYAwcmgYRiscRjjz7B8PAIrmsTJxFaa4Ybw4xPjJFmMVIJdKaQStIPe4DmxPHj6CzlkUcewTTNgSV4AOd7F0W+XqszNzuL6+UjC/ftc0mSvuM0Uvftp0AYhvS7EUkWo0wT1/aAhF7cI+ybOKbHiRMjpGGfhWurGKLJ5FQdy0o5MFnjwGQV12vR6S4jZR+Fpl4pokjxCzUMVQK3jVIGty7GPPOd73Lw8BTlSiWPGVICpIFSFgIT0/AgMwErd65IhbAcMiExLAhbGaVSjX4/wrQcSuUKhiPY3tnKXRmVMkpowm6HUqVKnOaZtFEY02l3iELY32/i+y627fDKK99nenqGvZ0dhkfqSCVIM43nBoyOTnH54ttUywXGJ8bY3+9QH6qxv7/Hb/3mb9IYGqZeb+RW5HJ+TXj1+6+xtraB7xUplQOspXU6RQfryVOEYU417SYprXab3a11/tYXf4aXXvgOn/rc5zFNTb/fQhIjdEqvtYMT+DTGpvLOs9Y5z0H88BGi++tfq3h9LEf17i1eZ32tDXaB8ZkxZg8NEbz9cdpL36d3oIbpGCRxRMH3EVqQJnnou84gTYDMxLUC5uZGmTs4ThbuUbANAtPN3+8iIksh7Jv04wjTc4mSFCEUpWKZ5t4+t2/d5o03FtCZieVAuebT6YUU3RKmpeiGe4RJD9M0iOIMx86dTaYyUcIgSzVWsUE/ynCcClka4Hp1smwTxxjMYjsGURRjmTa2Hww6iV1sWxInIVp0EJkNiYNhWPT6+WiQZUpINVKWePX1BSx7nEceLFPzoOzYZEKSGLC/HzI+YnP0cJFSyQBhsN/qUakGCOlw8fwSvlelXPXYbQp2d/pkmaK536O5p2nt7jJU85Bpiu8pvEAwPz+PZj8XHxKEjFA6IiMb7AfiHQGGzvI9JVMDt4dFmnVA526GLM33E6EF0kiw7RysJ8jzpC3TYWysiudJTDMEIybVCcrQSGmhpEmcxihLMTRWwFMmrlQ0RhymZyqEvS0q9QJxItja7gCSRPdx7ByCV/QthEhyyJ1SmLqPkBZpBp6taO2uoEwv3+/SbFDAUFy+eYlK1UNLTdSPqDiCmidIB6kVUkKWRrmFWuYQMcty3vnZpFlCkiQAA8p/Hrd1X8Tms7ByAOs00VqysrKOZdnYjk2n2+Gp5xZY2thDmwabW1ucOvEAZbeBteLDL7dwvADH8Xjz/OucPP4Il946y4m5ArWVY0gko18YQrpVUuHkzhQdozE+8P35b6N4/UGv76+UeH0/FOn9ovEHUrXeJzbhvYTeH2W9f/71/c/3QbOw71/3P3/fAv3ur7kflXNfvP4gW/OHCfIPEtL3O8o/SjUkExoNWKaFaVks3F1AtpfJ0hTD8kkyE6ECVMnG+Od/gDwwhrZNpLo/JxDnQCWlyLI0r+qlETv7+1ieT70+wtKdRZIMvv/91yj6JTzP5+adW4xNjmKaJs986znW13d58eWXmJmZphD4dDs5xVFnmueefQ50RqnoDTbmfKMqBg6d5iZJ3MXzTFrNfdbXNnn5lVd59LFHCMOQ/f1dCsUAyzbJ0Gzv7OAXfBzXI8l0DogqFGm1WkxOTeDYNhKJYZp5XqGW6NfPw48/ydTf/Vtsrm3wwref4sTJI3zsJz+GbRnYrsHLrz7PT33+s+zu7nP+/GXurizz73/x8xi9RcT3/znb3iH+5Nsvc+TIUbIkxrYV9foQy/dWKBfLPPvss7x14RITE5OUN14nHjuFUpLR4WGOHpjn7KsXufDmy3iGzVBliGazzdSBac5fuoRMOiTdkH67y6ljJ2he/jpSC2Y+9vNIt4BbrCHNgE9/+nHurG3R2Pg6qjZLkkjKpTqN4XGGxocJKgFH546wsrRItd6g0RhGyByyUK2UGBlp0BgZI0lTSuUycZxiuz6TE5NUalWQElNKLpx9Ay0Uk9MHKdeHiNKMTi9kfGqKTnOb/b0mJ06eot3eJ0si9vf2sUyDzc11oiikXK4gHYNypYgWCaatuHXzBqNjI7Tbu+zv7mAISZbC6soWYbfJ9s4ue60uh2ePkWmFafq8efYCFy5f5vDsUZwgINXgl3y8wOX8hbewDIllGLSa29i2w9nXzzE8PIzlSEZGq1QrdSzbGsxqm2yvrrK8tMbb5y9x6MhR/ILH6uoS+5u7lMtFumGbvf0dyqUqWliMDI9jGIo47tDa26JRL1MbKpElNs9/72nmjs8RJxYzh4eRUmNsLnNr6S7rmztEiaboO2RZ+k4Hq9/rUStJsuYd5PBjfOul63zkoYcYnxynPuicV6pVhkdGODx7hGJgIHSKaeXz3K7rMzk5xcjEGMVyMY9YsW36/TaW9HnqqW8ze+wYpuOgUcRphHdtm3arTTqxR7FYYj0Z5o233qTXbfKRB0+DlByePcbpU8dQyuAb3/wWR2bnaIw2yNI8hzMvcnWx7EE2tMhw7DI6Mwj7fVZWVigXXUwjw5QprVYbZdqYdn7I9RyL1BUUXtklHfbynlXfQChJbN1BiVGEBnMwFiAH9FNDmUSdlCjRlKo5iKxWrWG6NsVSCSVACY0hYG1lCYVDHEeYtkkYx5i2y9rqXQoFE8vKrbthmCKERRAU0CJGqoxut4Np2URxnyRLsBwLhCLLIEv6WKbJ1sYOpmES+B5O4JDpDGkoDEOR6XwfSrP9/HctDYTKo0ekzPf3JEnZ2NgY2K/zQ7oyFVpAEscoIXE8lziJ0VmeWZhmmm6zR5KElCtFslRiOTZT03VGx0ZQShL1O6RJjyTrIZMYQ5pIrSiXy1Sqdd46f4lUFPEKHtJt59cX7aNTzaFDR0EYRHGYW7azhCQJyXSEJkEYEk2GkH32u7sUggIiHczxpn2kYdDr5ZmtYb+LkRl4jodlWtiORaoztIQoFZBCv7OHYWhMq8Bbb77Bxz/+UWq1IZaXtnn55ZeoDxUYHxum3+vjez67O1tUKwX8wGH6wBQHDx8himJKQUBzZxsyTWOowRtvvs30gRnuLS5RCmpsbW5y6uQxxsdGKJUG1OmVLRhr0JybQRsGQamIaYDor3H3+lkMQ3BlYYmf/PRPYtoOwrAJAg/Xkty9d5eJ6UN4xSqplKRS5O6AH3p1/tP1QeJVDxr27/73YY8pNQN7b4aWKYgMY0ojTqQYHjQ3lnEdh5XbHcL9Prq/Q3tjjfHln6K18H+xWh9jKPAQ0kRYLqZtkkYdTCkAxU4LvvrMW1xfCXlodgjT7KBUihAQp63ctZVGhGEbx9I4Zh7VZQqNKaC1u8P+zg7dZpuHHn2Yo0em6PX26HX7lPwaYbhLrx9iOyVuLyxRKVYwsjYLNy4hs5A0CYnTFNcvYMicbWF7LpbvEGUa4Y9iFocQjouSBkkSYjoKVyikjrEtk1QoNDYiNfOZd5HkFlsBpiFIskG3XCTMTJU4OOlgKQMhXXrJHpVijUZFkkQdTh0/hGlIZJZR8gWHxguYRoptWBSLHouLNzlycIrFO3fZ2ulQLE/y6qsXeOLxQwzVPbTsIUxYXk1otjXK7uPaLqnoY6gYnYChAqQpiaMYw7ABgywTSCsjTWOUyEVbr99DWRae59CLHF49e4temFEs2Di2pNvuooQCndvr09hEyBShBHGckWX5XqqEIk4iBIMYyySk4OeQzkwaCJn/PktBQOBDq7kHODRGDuAFBTLhIOUWaX8XERugQZkRpBarG6vEEQgRsN+MKNcauTMpSej1+tSGqtQqHsQG5bLDpcvXuHZ1gfkT40iR4ToOlmmTZhKUjVQ2UdjDNDWgCPsGb7y9yNjYKLaRIDSgDbJMInWKkAlhHJGlFhkSaezT6zice2OR4bEqSiYkEdy8vUuKxU/8+F+nWq5SKnhk2zY6htuT52jvr1MKLE4/+TirS8sUvZBL559meOsxqpVh1Keq+cy7jpFCgzDIPuSYfv+9LD+kSfZBOuQ99/8Q3fKvY32Q/pHv0yRKGX91xOu717tnXt+/fpB9N8uywbzQDxZyP4r4/FHWh9mJ73/8bqty+rXv5p/7EcTru6FQ7+4y/7BM2B/+gvP/sjQbBDxHjNaqGFbA/k6TL/36b/Dk44+jLYW8eQ+xsoExNT6Y2cmwjfxgnce1avZ2t9nf36c2XEAaQGoQhRG24zLcGCZLEwxDMT0zxc7eDoHvUS7nXVzLMjlyeAapBJVqObfFCZiamqJer+E4FlEUcfbcOTrtDkEQkApJrT6E1iLPtixU2NjYGoCF9vKqmZXPnAmh8P0CUZyiM4FpWti2yebmJq+fOcvc7BxKSXq9Ln7BI+yHyE4Pnn8d+b/8twi/AFnGQx85zSOPPUyUxhSDIjdv3qQxPEQcx7RbXXZ29igGBX7s4RPw/S+xp33u7mr297Y4dfoEnXYH07A5//YF6pUKhqFoNOrMzs1x5tINDo9X6F5/hd957iqL95a5ffceP/WFL7C0eINbN29x5/Y9Hn30UZ5//nkOHprhzvIST33rOR5/8mNI0yLYP8P21g7PXIWZgweZnp7m937vdzh4YILy0ATta08jlYHpN/jOd7/Lytoq0wem8F0XUxosL6+QpCnFYoHdnR2Wl5YYHR3FNC129vawTAspJZ7n4Xs+cRQBgqF6nevXr+ezQ7ZNEAR8/7XXuHr1Kp/5zKexDJOlpWWmD0zQau9SrZRYXV4lzQTLyyu8/dZ5ms02flDAcmx0luK5DjrLoxSyFDZWVzgwPY1SJouLSxyZPYppKRojw4yMjKKkRGrNc9/5Lo8/8QSHjxxCKoVUBt1ej1tXbtCojRB4RTqtHmdeO8fO7gbHjh1nb3efmzdvMjt7hDiOqNTrWI5DqVImjmNu3rwJOuX0Rx5Aa8GVK1dQUlEou9y4dZ2pyQMYholrW9y9cw3PgThqYaoUJTLqtTKdXhMlA8ZGhvGcgOe++wIHDw9j7GzlER7FAju7u3ieS6VSZnNrk4IryLobZPs3UEkTyvPsmHOkmaZYLFCrVSkUfN548w0OHjqIaRpIJYiSEETuYDBMEyEkhmXgez5KCmzLYmV1hUKhQL+XcvHSJY6fOEGv30OTYSqJc3kzP9SaVwkCnxfeXOfA9AyrKyucOnmc8fExXM9GZLBwc4EwClleWuTI4UPYjkUYRhhmXtmOopB2u0WxVCeOI9AJF8+/zerqBlMTozi2Tau5D1IRp4IgKNFt7ZCEPaSrcG52yExBagriOEZEOSQpNW9hW+PEUYphKpqtJrbjoMk4f/48o+NjGKbB1tYWX/vjr1EoFamUy6Ch3+sRhn0uXLjAt777HU6emicIbOKoT6e9jxAe5dIQluXT7cSsr+/R7XUIgkHmtRCYZg6us2wjtwFrEIPOqGlIWs0WGxubLC4uMjyc5yFnWUYchaRpQpYmuI6FbdSAPPMVNFokSKnodruYponnDboRSYIyJNn9oiwSJY2826DzPN0s1WRpxksvvc6xYycJwwTDspHCwLIckhTCfpznAqNzwS8VGoUyHYSySLVkqDFCoRhg2wZWMSRNM2RczbM1Ab9Q4OWXX+H1M2c5dfo0UipM0xrYeDPQAolJvxejM5Pzb18lCAq4bm5/dh0Xyx7swxtbuYhPM5rNFrbjkKUZhUKR3Z1dPM8hSWNa7T737i5imJL19Q20VqytrfHJT/4Ye7tNhkdG6PV6BEGBTqeHkALP81hauofWKUkc0u1F9Pt9pg9MMz4+TrlcJgxDXn7pJQ4fOZgXGRybhYVbPPf8q8xaLnp4hF/5nd9jeHiKSmmYra116pUSrf0W27s9fvqnf5bSUJlM5MIy7Ic53bbb5PDsPDESLWQuJP9MpuEP6bx+wAN82GNqcd+mLBHaRGgDXdAQSDIhKJbK9Hs9Ll3+P3np5e/x6EM/wb0Xmky3Snjx66jTp3GMCGVqoiQiCXsgQEqRxzgh2W/u47sWEw2bTPcxlEHYj3MQXBIjMFhcXKNcLpOmbQQRWdImiprEcQvfNxgdK5OmHe4sbDA5cRjDktxdvkEWaRqNEcJ+n6Fahb2tdYJSmWKpgj+wlEvTRhom6BSl8mLf9s4OSazxnCHIbAxRwDTK2HaNIJggIkYaBhkpiHxO1rAdEq1Rpkmc5nn22YDzkQ3cEYaR2+KjGJQpkVaEMmyUFTJSr2KaIYI+iDjvsBmgpMZyNNLoc3BmhDjsMjIyxOhomUrNZGTYJPAEECJkTJpKWnuas2dvI3TK3YU1RhoNDEOS6QTDgCjKZ/s7nc6fni2NEXrdPPpGDUjlWSqJ4x6plmxtbTNUK1EIDLZ3NVcvNRkeKaOMPkkkkcY2Ujh5A2MAydRZRqY1WZo7P4SUKClzerGRF1mFTMm0xrRsbNMkCjOUNDl/4fyAtp9RK9XYXFtGiC5CaZJIgdS4QQ3DbuD6dSq1CjrV3Ll9hziOcR2HNE7pdkM6zTyK69y5S6hMMHe0gWko+v02OktIEsmZ1y9SKnvYtkGaxChl0e70WV1uMjkxSZqGQB+pYqSRkGgI4xhlFnjz7buce3uR2SNDSGlz5OhBTLOPFNBtRSxvxZw89RBRkvDqKy9xYGoKFlx0LYZTIV/946c5OnsS6Qc0yg5bN79Pb/8ek/3PEpQb2B9T7zm/v582/EHv5fe4TN99+w859/9lOk//POv9z6f+KnVe76/7Iu3+x/DeasO742ve09kcbDL3rVg/iMr3Qfe//3z3P6eUeo+I/aDHerc4fb/N+P7t97uwf9bOqxB/Coy6//3df03vt1H/yGtwN51p0iQljiIcs8ClC5fZ3d5ic3WVKOxTHx/N7ZevnSebGkVJkGQIZA796bRpNvcol4sEQRFduQtOk+6Wh9bgBy7b21usrq7w2muvMjo2huf5JElIsVDEC1yGGjWCwEfrHPXebO7T6XSo1av0ez063T6O4zIxMUm1VsP1PGyvkIsTqdjfbaJTOPfGOa5cucJnPv2ZHH8uFaZhEsYRQijOv3WRlZUVdnd3kSIjSzWPP/4EvX4X3/dyG6Gp2N3bxbm1BHMzxH/9U/zJn3yTb/7J1/ncZz/F9s4WlfoQrb0m09NTrK6tMDQ0RKfTp15vMFUPqFz/A7RTZDV0OXr4KJNTo3iui+f5XLp0hdsLdzl1/Bi7u9tEUczMoYMMj43Qky61ZIMHj0xz/JNfZPrQAa7fvMrVS2/xn/7yf85f+2uf5MyZszz8yIN86Uu/xs//4i/zxBMfx/V8/sn//E/4SH2HNNWsinlu3rzBvXsLrK8skyQxv/qr/wMFR3BotEBxeIb548cZGqqRJSn7+02kVIwMj1CrVVBS0mw20Zlmb79JozFMUChg2dY7f4/dbpdup4NlWSDgtVdf5eFHHuH6jZv0w5Bjx44xPNLAdR2SJKZUreG4irXVRYbrQ7z+2jmOHp3HMAzWNzb4D372iwyPjLC0uMjo6Ajb21tILVi6t8TmxhYnjs1z+fJVhhoN6sMNumEfw5QgJEoKzp09S61aYXpyCsd1efmVlwmCgMALuLNwB1spHNPAc23iKOTUqeMcPHyQXq9PFMbMHztGuVzE933CKEZaJhn5XGGlUqFeLdHudpHKwJAm165eR5gJDz78CJ5b4O6du/iuiaRHuVCi226xv7dHc79NlsB+d5vOfsxX/vDLlAslbt1aIHAj6lpzZ32F2lCdSqVMqVICofHjJXR7Bbwhtq3jjDz4H0JxhlKpmgNqLAOl8tdXr9dy8dbcx/FcojTGcRy6vV4ecfWnG8SgIt+nVCwSRjErSxtMTk7kJGMlMJVid3uHwm6EdhTdYBGlFD3nEOVSCZ0mzByYQsocwtFthbz1xjmefOIJOp0W09NTaHJLFggMpbAsYwC7M7Edxd7eBsONIYZqo7z15tl87tq22N7ZYbgxCgh6zW2kTomiELsFsdAYjp1bk7MUHZpYtk1fXMdQoyhpvQNhUkpRH2qwvbuF49hoFPfuLXFifh7Pdel2u1hW/vVKKY6dOIXruvT7ISKDfjeiWh/CsqzBwV9gmibf+MY3KRZLlMsl+r2QXq+PzkQOCSLfw5M4BgHmYL8OgiKlUgnbtuj1uiilsC0zd5EIiJMIKfOMwvuROIh8j3ddDwDDyCN01tbWKJcL+aE700hh8OIL36NcLGPZFr1uj2KxhEYSBA0q1Qbn3ngLKQ2GR8eIUzAdByFMer0Yx/XRgzgI0/aw3QJamGQIHC/A8xwMywSziVQKz5gENEGpiOsFHDkyy9zcHKZpozVkgBC5bVsKRZolmKZkcXGVer1OtV4cXG9z8ZNlOYgqcD163R6rq6s8/fTTnD79ALbtECUh1XINtKbf7xEEJRpDDUqlAsVSkZ3tfcbGxqhUy5iGzZ3bt7EdC9dx0VoQJzGmaQ6APAopNEr5yAFp2nGcgXVQsbq2gmmbSCVBCM69cY5Op8es5bJtK8b/xmd5681zHD82x/DoKGG/T63WoD40weZ2i0LNQ0iBPeggJ2FInMTUGqOkWiGQiIFt+M9i4vuLi9fBiBASqSVCq7wDm/fRMEyF49iY8R2Ozz3I5vYej6ovYK1eJd65RjJ/AsfICKMQhEkapdi+SxyHmIbC82watTLjjRKmEaN1hG05GNLCMBWZjtnZbuK7JZKoh2H28QwJaYRlgm0ppEwQMsYQguGhGoaVEcU9KtVhlFXAsl2UYRGnCZkGJyjT7+e/2+2dHVbW1qnVa3S7+wgp0Bm4bh7DluodHAc6vV3avRZhFiItie0NE2eKVEts04VMIU2B1ikSTdTrYCnQejB/O7DvC5G7zoSh6IddEJLN9QjTMbB1HyUylBpMNguJUCa2IYnjLkppDCmxDQudJTguCNnBdxUiy0FGvV4H13WxLJvDh4fxPEHguzhOHiWmpERKkXfuBhFeylBIKXjq25e5fXuVmZkGWdpHYKC1QZx0ME2T8bFRgsDCtRWpYfHGmVXqDUmhYCKSMimbpLGBPRhXAY2SAsNyBmNY5jtnTEOZJHGIaeZnsCTNnT5xGHHv/2XvPYMlS8/7vt8bTu7cfXOcdCdtmE0I5K5AAAwAGIuQKKskqySLKsukZFdJJVdZLrtcJZVsUZZVpUDSZtGkSUIUSBCEQAAEAexiA2bjhN3ZmdnJMzfMzaHj6e6TXn84dwaL1S4IkDDtEv1+uaFP97l97ulznv/z/MOdFTxXUy4HjDTGGMQpBXeMbqeJkC2iOKLgNegPOwxjSak8y4U3bzA+PUnY6VCtVgl7PWqVKr7v0w072MomyQaMT0xy5fJFjhwq02uHFAo2w2GfJFFIUaJU0ZgszYFtFGE7Hm6pg20bLMtHSBtLlxl0FY4lIUuR0kZbPlIkNOrFPINaDEiSkEHf0OsYdrp5xvHkxBSnTj3McDigsj7BYKZJcMrl+MkHyYTm66ef4/q5p5Gdq8T9HgflJ3GKVdQT8bcwQLMsQ8j30Lze+/qfAHg1xvz5oA2/kxL8bpPPd/vHvBtg/E6A67dbbx97v9v+7u0Lvglc35kDe2/fb48AEkLcB6/qJz/6La/97fSz73zs3ZyV3+vvfOfrGWP2zULAZBm2ZSGANNXYlmJ15Q4/8JEP84EP/QCJNDgz0+hf/jTRWJ3N9jbNvW2ktHEdB9fLHVwRgm4/QhfbOTWu30BpC9e1KJWL+K5NvVGnUCzRbLVyA6X9nK0g8JFSorXKMxZLFYqFIsvLKziug+8XWVm5i+v6uK5PHCesbayjtMLsNwSCQoDvu0xNTVGrVUmzhCxL8uk7hmazwx98/ot88IMfYH5+FiFSHMclTTO+9rWvcuTIEZTOCy7fcxEvvk73kx9FHJ5jfnaBTnubk8ePYDkaZbs42qLfDxkbG8V1XVzHJ9AweuezDIVDVp1nZGQE23WwtaLT7eI6PkmScfKBE1y88DpBIWB+fp7MpNi2BqnotiPcwQq/9sU3uHTlCv1Bk7/78z/P1atX+fozz3P06AJxPOTnfu7vsLW1RxIlbG9vcvToQY4++Ahta5pHnvpR/s//41d48OSDPPnUX+DwgVlefe0MLTPGR0auokozpNrBczRf/IMvUq3UKAa5wdbVy5dp7uWRFPMHDjI6NkZqDLt7u1iWxdrqGqtrq5SKJV48fZqN9Q2qlSpSKWbn55mZmSMo+JjM0Gm3GPRDnvnaVzl+8gFu3ryBlLmeRAjFgfkDPP3MM/zYT/5Efk4qyfLSEuMT4+SXa8H09AwvvvgS0TCi1+/ngLQQYFsW586dZ2ZqkrvLS2ysrzE9Pculy5eZmplmdHQEATi2SzSIUMS023tcv3mFA4dmCfttjJG5a3bYo9tpc+HCm8zOzqBth6WVZYrF3EVbK82lCxeo1UfY3NiiXq9hTEKS5YYW167d5MSJE1h2fnPf3mgRx4Zms4eUHr5fRbkwWp9lY+0OWit+8Id/lBE1ZDgIKddrbKxvEhQLKMsi66wghMB56O9gjTxAaXSWrc1Nimca1QAAIABJREFUstRw8eJFarUalq3Y2FijEBRzx1CpgDwPcTjo43s+jm0jhcBSmiiK8B0XY+Du6iqlcoUMGKmPUCqXSdOU0y+cplwqc/7cebargni+hB8vMxgOqR35AZ79+tPYloO2LJ559hmmZ2cYhjHhIOTA4XkOHTpIFCesrq1SLpXRSvP8Cy8wOzuDMRlC6fy4xTGunZu8FAMfP/AJAv++aU4YdkmiIY5j43oevSSi/mafQVWTZnkBl6YZrighhCCSN8CM0e8nWDp3mbx27QZf+PzneOThU5SKZQ4vHIMsJez1EAJefeVlavUaU9PT+H6ZeBhz88Yir75ynsU7a4yMl6hUK4Rhl7DfpVTxOXb8ASrVMpalsB0rnx7a9n6hml9PtaWRAvphSLvd4ct/+BWeeOJxpJS89uqrLCwcRUrJ3t7e/eiGneYdvCB3EVbaAlTunCkgywzdbidvEpFLPYwBqRRpkss1JiYm0UrguHleqbZsSuU6UZywtLLMq6+d4ZHHHseYPDIi7A95+plneeTRx+6DzShKMEgs2yEcRPk0VmiGUYJwOyhlYZJRbEuB1GjbIcNgyJBKk2FQKo+t0Fpja02UhnR7e8zPz1KploniNko6QG4Sk6bZvqnXENvWlMslDh8+TBAE+5mQe2RJXszFSUSpVKHbCSmW8oJ2pDHO2Ng4WmveeOMNOp0m5UoBPwhI0jzfsdfr0ev1sG2XLDFs73b22QB9/IJPu91Ba4tDhw/i+7kBlNYWjUaD4w8ep7bbRc+O8Ydbt/mX//Kf09rbZnxqmnK5SJIYPvXvPk08TDn54BHCbg+tFVqkLN2+yvTcQaR2MOqeWVOKMmC+i3rkOwWvvEfj2oicU6yVQJoYsiHR04LkliSb6eeFvjQkay3Onb/MIG3ir8zRevMlot01zqUu02MNMmNwvGIOIsw3o5uSeIgSBiVipBb750CGFII0HaC0yjWmtoVlgZQJ7DvYRsMhZBmOZTEIQ4gy4mSHJNsmS1NEElCqVxgOQ+JoSKcXUqo2yDJBNIwYDvqMjY1iWTm7Rslc65znMeea8zRJiKIMzysjhbUvLfEBB6ldLLtAaiyk9NGWAqMIuz2qpSLxoM8gTvB9P2eMIDDk9ahtW6TpAEsV+OofXmLh6DyOjBFCEw5ipNBIYWPbLv1eiFIuaarwnSBvcO07zqZJgkkhjQWWbWNpmzSJsewYpfoUS4pCUSNkmhuk2R5JkjchczZGPpFM04Sx8YOkSYtG3cexc0kXJm9+JXFEGg9xbIskjhhmHSbHZmiM2pDFSFPEsXNnddv+Zu46iDweab/GjeM4P/0ySLMIMESRBKGxHZtOu0ulWKZUskiyiFdevoAb1AgKFVbX71KueKRxTKngMYz6WLZNmmmE9vCLJfZ2d0mzjHK5TBiGXLx4kcnpUTrNLo3REl9/9jnGGxXq1QzXdnBsges6pJlASo3lZPcj0zD5MVXKxSRFLl1cpFr3cL0EISJkohHkkVyBqxlpONjaA1KkNBg8pK7y+pu3ubvZYXp6lvGJCQaDkGK3ho4cbj11huWVZYqlgFs3bzA/5lLUu4xUBOu7Kcftn0bYDvb702/5XN47tu+2/rirwx/HQv1OZI1/luvPJXjNsuxbwNl7TUnvbf+d/O47XW8/Ed4tb/bdtr233g5a7z3+9td4N/D67f6O7/bxb3es3gleBeI+bXhze5d62efJJ99PqTFC4hSxLRDaQVxdRK9vMfLAAmkyoFwfJTU5JdegSDOB5TjgbJOmKb/2b77AyYcfQqmMTrvF+PgI5VIZITXFUpk0Sdjd28sjIgoF0tTkcQl+gSyD5eW7RFHMxMQUf/TVr3JncZGjR4/S7nT43Oc+x+2bNzl+7ChGZPgFn0wKGrUyI6P1XHxvMtIs5e7dFRzXQmubmelZRsfq+7SSiMAP0Nrm0KHDRFFOhwr7ITID/dIFon/8c/iFAoO+4Z//s3/C/NwYO7t71EcmsJRkc3ODJMm7sjt3lyhc/nf0jUaMHMQLgnxqI02uDRYWr77yGgcPHsD1NLOzs/hBwJsXL3Do4AGazT363R5YJbq7m3x4wScbf4T11ducf+MNjMk5aUFQ4BvfeI7f/9zvYUmLWzdvUKsUCHtN9iJD4+gTlAsFPvvp3+OHf/BjzM4d4r/9h/81v/zLv8qjT3w/Dh1uraxRrFbptpvMTM6QDBM83+fu3buE3Q4TExNcfPMiL730Mm+8+Sazs3OMNOpYen8KWW8gRG4mcWBujps3blCv1wnKJQbhgKeffhpLK8ZHRzj32ms89tijaC1Q0mNpaYNTjzyK63ssLy0yOjpCrVEjSmPSLMHzA0qlEr2wS+AHOUW2XGZmdpbRsRGCIKcrv/bqK2BgtF6n3+vy8MMPYbseTqHAIAxZXlokywxLSyv0Ol2WFpdZW1/nyaeewvV9MuD82QtIKSiVCuzs7pCD5VnSNKEQFFBSkgwjlhaXOHbkGGfOnWNmZpY7i7c5cuQgvR4cOHCYnd0tev0urldEyIB2q8XU7Ay1RoMzr5/ngYcfxvEcBDaNEZeFhUOQCFR7k246QCub27cXCfcdcO3OdeTsJ2h28wLf93183+OeFmhkpMFg0MO28wLp3LnzKKXzmBrbIeqHOLbDzvY2nWYby7K5ef0Gtm3t0zGLOe02MwhS2p0WS4vLFIISe9tNHjr1CO12i52dbSaDNq12B3fyg5x65AHiOGVpeZViqczhhQWUshgdb7B0dwkhBZbt4Pu5DklIiee6uG7eyU9NjKUdLOWRJhlh2Ob61SuUyiUq1TJhv4PrWGRpRKFUQ0iI44TYV1SuDugu+FjDDC3zeBqtbWQSYExGYt3Ccw4ipINAUS4WOH7kMO29JoVChX44YPHWTSanJsnSDCEF5UqFwXBAluSFb7lSpt0JWd/coVYvUSiUsfYNRPLCVpKkebGopNjXGhruqRiFFOTcYSAzlIolZmZm2djYxLIUcwcPk6QZg+GAUqWMkAJlaarlUcJegqXyY5bTGNk3bJJ5vmYS4/v+vqOlot3p4Do25XIxdxuWkKQxg+Ewj/mRBqnhwMEDHDlyBMuy8YIihgTX9Tl46DCZyRgMhjlN3PXohSG241KulMmyjEJpIp+6MEE8qCEthzSOGUYxRkosK29GSGVhyEjiwb55SoJWiv4gwnEsut0BYdhHKkiS3Byl2drL81ClwtIZi4t3qFYr+6AgJYoiytUCgVei1WpRq1dQ+2YrtqPwfY8sk3zxi1/mueee52Mf+yG0BfV6lXgfHEgFjuUwHETcvHGHc2cvcOb8G7z/g++jWi0xGISYDApBkSiJOXvmdS5deouFhWM5AB7ElG6t8IueAa9EKahx/cpN/trf/M/ISPE8j0cffYRqtUynuZu7kPZaSBPy5rnTHDz+GNKyQWiEESiTosjIvgvDpuypR/9js6Z3Ba/v/vzcYzYlHrTY3VmmUFD0Puehmzbi8R62Mrzw7NMM907TGJlCyDFGWsfxDxbYSCzU2AQTYwWitI/t2kRRH9v2c/aXZeX6WwxBkF+fsjQmjvL/PyLKjbyEobm3ie/ZaGmRivxa77o2llZ0200EGVncw/d8Br0QLVNIeiRRGzNo0tndJPA8wrCP5fh4rsMw7CJEhufaCJPhuB5SaPr9aH+gYMgSMKnEUjZJnOK7DsNBnyzpIRQYKcmMwggL5Y+i3TIohwxJYgQmje5PXJXOWT5pliAyjZQxQho8p0C1HpFmuU7W8z2SJH9//X4XrQXDSBNFgiyLsZ38WiiExLY8Bv0Ix7WJkj5JbLCUi8kytHSQWc4mSSKJ6wQMhxFS5eBnOByQJxQawGA7MY2ahyK/bxiToSxJkmRoJbD1PXZg7olQLCgkCVk2IKNPkgiUZdMfDPH8e/WLQu9Pne/JFSzbxiQZtptr8sNQsrnZxHI0hUIB3w3Q1hCpFe0WlCpTuAWJ6wc0KmOILKLTWcRWXj4Vti3qI9NsbrcwUlIfqZNkKYVSCS/wubu8xvrqDjdvXeOhh59g8eYtGjVJsZBLwwaDPlJCULSRSuA5LoLczM6IvNS9u9xlfb3HyFgAJsSkGYmSKAdSk+WfUfIekCHFYHPlyiZL631ur23heCWiYcTCwgJlv4Z/vc7qx69SPVTDdgSnT3+duek6xfAuUXSXWBkq448x+5GjWI8kCP/dPvPfW/D6Xtv+mU9e3/Hzf/LgNU3T/+ndJo/3aGDwzVB2+CalON0PEr7nxPj23Nd7270TxH07ofPbt32379/+uu82hb332Dtf81v22ewg5qaQp47de+/fQgv+btZ7TWu/3UkrhLjv9QB50aVti6gnob/LXq+DKYwgEeysdkjiFLvgIL/8HNnCDL0oouh5SCNJY0M0jMhMHlch/V2kUhw/+KEcAKRdLKVptntkKIJCwG//9qcgFTzz9Wc5+eCDVGtl+mGbwK/Q7rRZWlrk85//AyYnZmjUxzl4aI4TJ45z9+4q5XIZDJx69Al8L8DzAtrtFp5n59MKxH43P8ayNLV6Fc/PpyXVehnbsXIgmAlQimEc3Z+iDPoDSgUPcfkWZqRG8pM/gMgixkfH+PjHP0ZjdIzJ6UlsDas7bSqNEaqVGjt3b1N663exXB81cSyfTCgbhaG5tYXruURRhBSScqmCMJo4iXAdn8nJMVqtLdLYsHhrPc/BTDSlbIcx3/DYJ/5LpqcPMDd7iOeePc2P/MjHcFxNtVZmL+xx906TmelJTpw6xi/8i1/kYx/6BL/wP/8zkqTPg488xAuvvMw//Ht/lbcuv4GWinbsMbH5Gfyx4yiryNrGOq5rUauW2d5c5+qtFR599HEOHjpIo1bj8VOPsrm2TlAuYzs2QsHWzgZ+4CCSjK3mLm65xNT0BEnYJo5SRhp1KuUSZ8+e4fEnHuf0iy+ycOwBsixjYmIEy9b4fsCtO4tMTE3x4ksvMzM9Q9gLqVcrpEnCi89/g8Vbt5kcG6fX6VCsVFGWzcuvvsrMzAwH5uYpeEUuv3WFg4cWkLZDZvLJl2s73L51h0JQpFQoM9oY5bXzZzm8cIzGyChJnOHYHjOz87z+xgVqo7m51NEHToKWZOm+XlPlLqrlUo1zZ1/i2ImTOK7PxPgUm6sbFAoBw0Gficlx6rU6w0HM+fNvoEWun+52m0zPTOE4NsJy0XQYxgbHLyObG/QHfVY3t3D9Aju7u0xPTtDfvIpXapCNPsXy6hozc3No2+alF15AW5rR0QatToeg0MD16vzrf/W/IgQ8/OCDXLl4EVtK0tSwubXFzvYOE1NTNFstDIZarQoYhNIIYaGUA2nEYJBw/drN3BU8jbl17RonTp4gMRnjhx7D+Af42tPP47oON69fY2tznZ/6qZ/AmIy1xWWG/SFTkzNoZfPmxYucfu40lrbxPY87dxbxHB+lbDy/gEAglEBaGtcvMDpeZ3JilO2NFTxL0+v1EEohU0GWJUhbIG2FSMFZjEjsXBKiLZc0S5HKQqY+SRaT6OvYYgZbGvpRgnZsytUqvTBEK8kzzzyN69qMjNQYaVQRJibwbfaabQrFPEd4fvYQYyOTjEyO4XheTqm084xErRSD/oBP//bvcvLkA1iWwpgUg0EpQau5i+e6mDTdnyD36fcGhN0Ow2FIqVrB3o/WieM0N1kROucYSIFWBilShInASJTMSKIeUdxH6XxS1NraxdYZrd0NKqUCSZTrve5pvsNeiG07ZMkQ17aIo4jf//3PMzkxR7FQx3IVSSpotbpU73kO+BadQQJWmUz7JKkhM2BbpRyEZBD4hdygJRuitcVrr77KoUOHQEKS9FEibxBmZsBea5tCqYQlHLI0wvUKOG4Zqdw8RglBEJQwQiKkRBiN7br7Ls0JWgnKpQK9TkJmUuJ0wPrGOoUgwLJdhsMht2/fZGS0TKnkcuzYISr1Eltb25SKFbQSDPpthMonWUIobt++zYnjxzh6cIF42MdzNZ1OyNVri9xe3KDb2uS1M2eJ45jp6XF+59OfYuPmGscKRZ6bLFIu2/yln/lp/sbf/BsM+x0a1TIXXn+d5cVNnv7qiwSeZmJumkGrzWC3hyyMMjk3S27LmyBEDmzeC7j+cffsb5FLkeczCyOQmUZmmoFxIUnRcQ/XBktnDJMhqe6jBgqrGXL+y5/mtS/+Mo3tJygWC8hHe1iWTaAMuzcvc+HCdYr1WdyVGTrVPit7AzaX15gcr1IqGKI4ZXUrZacV4Tk2tszQZohtafaaLWyVIkSA1ArLkRijSeN+roP1a8SqjBIplhBY2iaJcwdYKQRaK5QCTP45iPttZJpClhIN27h2fo47boEvfeUMYyNFRNrC0Zo4ASEVcdpld3sLSyVkpoe2HQYoIGPQ24MsxgoClFdAJyH9MGQwHOIVCig3Z6UgbWyvSoxHoTQJcZcoGZJkHYRIMZnGVgUyEeLYFiaJqVQ1aQKZnU9eBRlaQZYa4kiSpUNWNm0uXL/O3HwVK05RnsIkFaSOiGWTze0irqWwHcFeq8nm+oBavUFiuiRZxuXLN2jU6qAXcawiJsvzSHO3dLnf6BLIyEUbn5g+rutAX5LKQd5YEzmVXqq8yZikEbatEaj8+Tp3LbYtnyyLETKDBIROIY0I+zHYHlLESNUEM81QtRlGRa5fSpieG0BmcG1/X6Ii6XcHLK5tUyopRmsTRF1DkgwYRDu4bpkk6gARxkzTmKlQLhZotdsUyhWixBD4BTY2tjl2bIHFW3co+jZXr7+F7Y8zM5FhjECaEVLTwda5JCGOIwwGYyTxMMX3irheSqWSUauWsKyANJMY00EICcbGZBJLuQz268Y4NvSHijDKCIcDZmeO8v1PPsn60ia1O5N0Htug9ljCMEt55eLrPPzgMVS/jUrPcuXaXdrJNI88+RO440V0WWFMLv0w9yvvP91g7bvZ9rsFr/ew1J8U9Aqx3zEQAsOfA/D6bprX9wKib//+vYDmvfXdUIffbdu37/tPst5VH3vq+H3g+nZH5f+31r39b929y876DcqlElZQQSHxXIcsS8hmxkg/91Xkxh6Mj9Du9JDS4uLly9iWRVAIWF5ewa/nui47HcvDvVVGlMS4vo/tumAyThw/RrVc4f0f+CCFYpFeL8RzPbJM5AHvwPd93/dTrdVI0oQo6uF6LkEQ0G63mZ6eJjOCc+fP0WjUKBQLhGFIr9vDdT3iON6P31G5Vodcl9HrdWm1mlQqZdS+3sD1XIQQ2DqPr1i/u0z55ctE/+hvE1YLvHXpIoFXI44T+v0+aZpgWQ7a9fAci/bOGv75T6G0IgymsByHYRTz4ukXcSyLeq2KFBJLWywuLlGr1Xj22We5dOkSK8srHDg4R5yElEtlioUy7XYboRXj84dR22/xa1+5yJMffpJe2KXZbGFZmoMHD/Irv/K/8/f+m3/Aqy+d4cjCPCPjNT76QI2XvvJ7xHaDWrXM+z/4QWojo0iRMj4+y2c/9yW+cfYtTh3wub60yYsvvYzveRw/dpzdvSZh2OfownFu3LxG4NtMz0wRpykrq3fZ3t5iYnycwWDA1StXqNXqvH7uPAcOHaJcqSAw9LpdlhZXqDfq1Os1xsZGc5qRgKnpaVqtHcrlEv1wwG/+1qf46Ed/kGKxwNFjC0RRH893GAwGlEolDh0+zO7uLrNzsxSLJSzXJkkijiwcZndnm82NdXabLSrVCtevXyPshzi2TTQYsr2xwfT0FO12h0KxwGtnX6NYKPLBD36ANEkYDEKeffbrNBq5aVaaJszNz5OmCXEUs7u9S6lSodlsIYVgfW0V21LUGw1effUM3W6HAwfmuLu8TKu1x9bWOjOzM3R7PeqNEUqFIu1uC6/g0WiMoCxN0tokvfIfsE/8JFbcReyuc+n2bSwt2NtrUigW8FyHEneR0x9nbafHkSOHWVlZJgg8Jiam8f0Ax3W4dvU6ru1iaYtKpcD7nniCSxcvUalWqNfq3Lp9i5npaTY3t6hUKiwu3uHkyZMoqWh3ujiux+nTLzI2MooUsLy0wszMHFtbOzz55JPsbu9x/EyLkbtD0kcOYDlFatUKL7/8CkpKjh87Rr1RxwBb61vs7OxSrze4duM6t27f4Yd/6KPMzExjDJw9d45qpco3vnEa13MpFkuk+07KSks83yVNErqdDuVKmTiJyYxg0N8jHITYjocULmm5QOXFLZLvHyPabGNZDkma5kYtgBnaZF6bwUBhiSK266O1YnNjA98vEPgBx44ep1wu0+12KJeLrK7epR/2KZaqSCXx/YDtrW2+9KUvE5Q8pqen9mm1MBzG2FaubY2imHq9jmNbxEmM47qkSYq9HxWkpMxNnZCsra5z+vRpfuBDH8JIcV93bFk618aZDAxkaUq3282jSDJDuxXuTyETOp0eQVDGGMnOziZCGmzXQWsXqWwsVyFESq/XJigVsGwbKSyG+4Zqc3NzBEFh/9qakmWGP/zSlxgfG6XRqBMOEmr1CZqtkG6rR8ErUPAKrK6t02rljtpRHBH2+9hO3oSYnpnbL0wUar8ZkiQpSkOu/1XE0RCpU5RlIZREqBSxP5iWIpespGmCROC6Lo5l0e+F7O028b0imRG4noMhY6TRoNlsYTIXx/Ww7XzKVinXsWyPKBrmLuFWrv2VUhEUSrTbbba2thkZGWFxcZGXXz3Lw6ceuk+xbtRGmJ6cxpiIODVsbW1z8uQJDhyY5cjcYSrNDpM//5/Tau1RLlewLAutJUrL3ONgdo5/8o//KX//7/9dNprbjNXq/JW/9DP85b/+1ynXqt9yj/3e3bD3ayDk/TI4Ek00Ia8892Vee/5Zzrx0ho3lDcaqReK9dT77qX/N2spZHKvPSPPDhN02X736Txm2llm5eYlh3MGt1LGCGtO9B+hwl/Fyg8kpH2ViJDZJWuK556+xsrLOAydncGwwJHR6CbZTpR9l2C55QycFkw2RygKj2Nwc8JWvXuLY4VGESBgOBqh9Q80sTbG0Js1itLLuvz+TSa7evEG1WkSKDGPg4oU3uXb9KpZsMjbi4zoeRmqiJMaxXaqlBsaAtmyU9HKAaQxaO9hegNKKYb+XK361Ruzr2QW50dlgOEBrCyUEaRLj2B5G2NhusH/scz2urW2yOMEYQxwl2LaDbQWkkSFLYjITY0SG0AqVGwSwu7XJ7OQYWmX0BkPkfiMjiiUrd7dRDCiWPBzbwXH8nK2kDWmWMjk5iRAe7aaF1iUwg/u+LvdMpOKshxQDhI4ZkkfLacdg2879YY9lWaRJet82TAixr6PN/5Y4jnFsH6nAZClC2piskCcxOA5hlNDt9BCiikHieinpMCbNupRHMmzpYbKUJO2TmYRKtZbrWiuT9CNNmvURoo+tMiQZEoso7mJUEaVdmrttWq0uflCgubdH4HmUymWkgFZzl/m5WZZXljAY5iZ8UD0QMbZtSIY2iJR032zL0vn1ODMpjuPgODZJEt+P0NEyv4bmTMSU/rCLY+9L4Lox59+4A7pMnCmOLhxD9jSze0c4477A4Ikd/ILFxbdu8IEPfIC1O1eoBkP2tu8wMnGIxsRRDp44lXtnZHkc0ffs4///MHj9bvfxxz33zzV4ffvU853g9Z3bvHN9r8HrH2dP/Z38/p1T4HeC9D/rde99L15/k6h5l1KlhF8apbm1h7IzpMq1VmuPHKPwxRdwghKy5LO2scH8gQO4voftWBSCIsbbQilJ3PbZ3tlgd3uLFIHt+rkpSr8HZDiOy8rqKkGhiKVtbly9QWxSXM/FC1x2m7sUi0W0pTFmuE+jyygUiuztNml3u7x4+hv0+yGzs7MIBF5QROwXhK6fmx5YlrtPjWbfpMXBmIyXX3yFiclJpFL0wz5aKZaXVpi/u4M4egD1c38VW1tMjI7xyZ/+a5w9c5bjJ04wMTGxf8xg6eZb1C78FiJLYeIBpJW7G/t+wMjoCAXf3zdlSRgMhkxNTpJlhlKpRBh2GR0dxdISiHBdi+FwQJZJLr91maMPnCLstHmi0eFMM2N2fm7fOTfiv/tH/z3/1c/9PJ5X5POf/QIPPLDAL//KL/JU6SrZ9mU+9rf+F27euEZqDOVand/6rd+lPjrJg488xlMf+gus9zUHm18kssY4cfJB7iytsHJ3lW44YG9riwceOE6hGGCk4O7qKsdOHCfwbK5dvYLruGyub9Lca3Hs2FFW19epVusM+31u37qF5wdsbG4yMTHBxuY6cZIwNT1F2Guxt7fD+NgoSZxyd2WNcqWC7/vcvn2D8bE6QmYo7eQdO2OYmp6m08vNJsJ+l17YzafYwzyYvToygud7DAcDji4s0Nze4fatm8zPTVOuVLAcC78YMD45QRblN63NjQ1Wlpd56sknieOQsNdhYWGBdrPJ8uIS1UqVOEqJ05RiqYiShigaMDoyijGCa1ev8r73vY+w12VqYpylpTucOHEMI8D1faTWmCyjXC0zOjaW01LTGLn0LEw8gbj9NYwpYtIIY2nmZqfodrtMTk7iZrsMEoU7/Rd4+qtf4dSpB+l1O4S9DlduLFIslbCUzdTkFLdu3MBzbN648DpjY2PMzs2ytr7OxOQkzd09vv7MMzz11FOsr69x4vgJoigizVIc26PXC2k2mxw6dIAsMaQpPPvs8yRJTCHw2d1uMdvKO9jisRniKKLVahLFCccWjjI/P8f1G9exbBvH8nFcl+deeIHdnSYf/9jHKZZyJ9mw36fXDRkbHaNea1AoBfh+AOab+YRCau6Z+ERRjB8Uc8CY9hn0hzmwlDbScfJi89IWBBqEyj9X/QFSKpTWCJkhZRMpZonTBKVk7iY7iBj0h4ThgILv8+xzzzI6OkqlXGY4jHj66ec4unCEbqeDMRnlSpH6aG6g1Wq1ieOM7a0dHDvXpc5MT+E6dn4dIO8wZ1mKRCCVQCByIySgXM4BeavdplqrkCQxtm2RJDG5XizC0jZKa1zbRds2SllYjp+/L6nQykZqCykUhaJBnKluAAAgAElEQVSPtjVCSLTlIoRNnA3yokwpoijBcnyGgxjP81E6z7u+V7ghDGmccOjIIeqNOr2wj3aLDKME3yvQ63a5/OZFbMthZLKBbStSfR3ptPG9aaSySTOB0japMQyjIWE3JI6y/eOTEoYDBA4mixBaIIXa78LHyMSwub5OqVAgTeMctCQ58yjsdYmGMYVCiZs37hCnKUmaUCmXabZaZBkUi1VefunlvCkkc4fpwA8YDAYoqfm3//aX9mm/BQbDAcPhEGC/selipMXs7DRJOqRSLtFtd6iUi6QmptMNsS2bY8cWKBUDzr36GpNxyhf0gO/7vg8wOjpCmsYgUnZ2dmg1O1QqNT75yU9iSCg3KkhjaO3u8kM//uM5fftt99hvt96LuaV/9XPI81fIHjn2thu2gXvAVRgEBiMT2pur3H7zRXZXLvMjTz3BTKPA4sVv8PnP/CuWbr/CwpGDkPmUtt6PayvS2hfI+pvYnuLQg08g3Ap3VnaZ7z9ItnEdf2edoVNic3WLUjnADWykC4GlKBXk/ZgRbVX5gy+dY21zl7lDRRQgM4csDUkygURhWVVu31nlyIE6JhuQGfNN8HWPlkpCnBgc1wYh0NqlXC9iyRSyiCzuE7iKxx6ep+BFpHGX4TDj4uXrhP0+lZJPp9lmb3eLWq1CHKWoLKbT7bPbiXCCIv1ei5JvMYgyPD+n4w/CHiJL8pg8rXIN+77reoSN1AHIAsry8yaMVqRRDGRIYTAmB0hJZFBCI8mwbE2UZCSpBqlxnR5HZuaIBxnazUgTibZThgPFzes7HDkyReBLtBJEwwFm31XYmBSTSISKaLYGfOlLN5mYLuG7uYfKvfzSKIqAGkpmxInk+dMrbO/m79HW+ecrjmNMluvltcqN77RSpGmaU4xlbsqUJrmBXJKBwSZKh0CfFMHNWx1ee3mVlfWQ6VkXF4EtoTKqQZVJhxKtJWk6QGpJnCa0m01e+MZN5o8+TGPMobm7jhkKtB4SuA2k6jOMu6SRTxQJfL/IcBDhuzlzw3JtfM9FCuj1Okgt6Pa6HJwuo3RCFEGWxSjpo/ejzdL9XGzX8UhNRGZSpFS4rksc5/cGJd37ma/DOMEJiqRRQmYEl68usbQaEpTH8UsVFtQJxloz9L9/G/vDKS+99BLYGTMz8yTdNt2d60SDa7iFMdoDzfs+9AlQPsmzNmLZQcx9M8v7T7v+f/D6/7H1zpzXe4DuHp32nXTde9+/83f3nv/29Xa68b3t38sI6u0A9t0mom+n97yXSPrt612p0HfuYpptqBT/1JPdP+16+/6LrubGpbNU6nX2wpRquY60MrLMsLfXZnOvzS9du8hHegZrbQs5OY4TBETxECFBa40M9kCAk43j+y61Wh3PLyKVJo4Twm6PftinN+jTbncYHRtDInj6K3+E7VmUK0XCsEe5WCIMQ555+hkmJ8cJggKZySlGrucTFHxWV+9SKBSYnz/A8vIK9fooaZKitaLVaqGUTZoYlDRIqfMCxrGRIqNaaRAUCkRJQqvZZHd7l6vPPM+h1hDxS/8jiefm2h0pmJ05zGc/+3t89Ac/wuzsNNeuX6UQOMQv/TqeSJEHnmAYJyiVT5NAopRm2A+xtcXO7h79fp9yucQbFy6gpODUqYcYDCKCwMPzNJ12i2KxQq83pBeGzM7OYJVGiLbvMC5DNuwpPK/EcJjyt372Z5mYnOT/+o3f4sc/8ROUKzY/9hOfoPnmH1CvN9jzHuLXf+1XeejUI/yHL3yR/+Jn/zaO69JsbjMY9Bkaj6pZY9i8S3NgM4xiHn3scRzHpbmzgyHbN9AxjI6NkWWGdqtFGIZMTk6RZRmzc3PEScTZc+c4ePAQnuuzs7PDoUOH8sm7bRFFMaNjY3meZ7VMEHhIJej3hxw+dDSPNHJyg4pCwWd3dxslbILAp9Pp5EZiSrG2vkajUcUPcn3jhTcucPzo8VzjallUK1VWVlZQUnLz5k2ae3ukxmDZNkGxgFSKlcVFpqan2VhfY3Nrk5HRESzXol6vk2UGz/W58PoFjh49hm27CCnwfJdmc5eNtbv0woSN9TU810Yryfk3cq3y2Ogo2rb2NUH7Tpe+x8uvvsbkxCSWJcnuvoIqH6D8sf+NzvnfxMoMqeNTLpfp97vEcUyx4JPsXkTN/ShOsc7u3i5ZkhD4HoHvceb8GwhjKJfKmCwlSxNuXL/KqUdOEScJm1ubzMzOECUJs1PTbGxtUigUGJ+cJAx7CCW5eeMWSZxRKJSYmpxAWwIlLQaDIefPn+eTf/Gnee7ZZ9DKYa4tKBSLDBpLRHt3uL0x4LFHH6cYBDz33HPESczhI0dYWlpmr7XH6Ogopx45hed5SDvXWVmWpl6r02m3ae7tMX/gEK1mk68/83XGRhs4jk0UxbiOh7Js7ty5g6XzcyeNJdXqSO4szJDBcA89PYHz+iZUHBC5CZ5t+3l+Hnk0SxJs4qgF7iwtUSoVMWl+/bpx4wZnz5xlamqSw0cOsbm5jslS6vUqhw8tIAQMBgNc16VYDBifzCf3QVDEZPA7v/O7eI5L2Au5desmlUqZ119/nemp6f3IGXk/zkYgyTB5nISlc514I8/0NVmK57pICYNBHwApJGmW3W/apMbcNw6Ko4itre3709wsi1B5dt79e5gQVh7bk8K///e/x4MPPpqbX2kFwtAf5MYor7/+OitLK0xOT+D5HkpppNZILbFthRIxpYLDG2+c59HHHsENfNIkQtgbGBOTRvU8FkRZuSZPKzAZnhfguj7GpERxH98r8o3nX+bI4XmSOEErD4EFZFhILrxxgampaQyQYUjTjOFwiOe52PsRbGGvz5lz5zl29Ci+7xOGfUqlEju7Gxw6PI9lSSxbkSZDgoKDVg69XsjO9h5j4xMsLS9x9txZHnroIcrlClppJiYmKFbKVCpFfN+h3WlhMoNj29y+fYtqrcGDDz20bzoUMaksaHa4MJezSErlIoYUP7CxLIdSqUYQ+KRZwq07N7EKLq7WbNxd5ejDD6P2KeLfaeP83bZVXz6N6PVJn3rk7Rvvf8nAZAiRIpMqgTbsrpzj5OGA5s5bLC2+ys2rr3Lk8CQLxx7i8184j1CHebz2Uziux8X0S0wemCMycPDQE4w0DjA9e5LsUsDo7RsEy+dJTzzE+GgN3zcMkj6DJGFubJxWewPL2s+tlQ6DsMvo+ASlIMOSApPqfSMegRYprVaL2bkxjGnj+x6B72P2PU2+WSMpkhgykxL2e3TaPTw/v19jEoRJUCLF0QJhIqRU3Li+xJtv3mXY36FSiHnr0nnGR4v0w11cz8KSLp/5zOc49/qbJGlCueijRMaNW0vU63WUkiTREClAK0UURRQKBZI4zps9jkRZNkLYZMYiTR2UVSVJQrRlk5GBkggtETLG1po0TTBoej3JKy9dJTEJlbImi5Kcem+i/YluRBQprl9Z4sCBBpgop96nGbaTOx+nCbh2kcyE2K6NrQPqYzG2zM8trfOvlmWxuraL50AUpSSmyPLKOo+cOoxkSJLk4M2xHUxmQHzzuJvMIJXMadz7ETuOYyGkTbub8OwLV5geH8HzbeLMUK/VaXW6TE9pdKZR2GRS8MqLa/QHMZWyj2VZGKORUlEuOqyu9xmmEKc9Zmdn0dJlMNzGUh5KQ6+/g0WFZjdmfHwS1/PZ29vFtizaYYjj2EgD6+sbXL78FnGccGS+SBp7vPjcdeYOTGI7hjTZj/Uhb4jm19UMIWQu0chE7jWgJVkaAglZJoiTgFdevU2ppEBa+OVx2j3o7A35SPAjeDWHa+9/BfsBQ6vVpFQq8vL5V1mYnSQNN1i8eRZESKym+MCHPoYVNDDKIf2iTbYB8onkTwwkv9314bt93nsxVN/5nO90fSeM0T9X4BX4j0Dh26NovpP1bpPa7wT4vvP5b//5e7WSf/ALZM+fQf3kR75nr/m9WMnQsLm+TLlWZ/zgMZSlGIQxa2sbjDTGmJyc4oMf+QjqJ38Yff0WzldeRIzVUZUiQpqcihsHiKhMr5PH02hlE/aH+0WPxtY2jmPjBwXqjQZbW1sIEubnpnAchedYWFqRJRmO5XHk8FHa7S7lUoU0Se+L82/dXuT9738/MzMzSCkpl8t84fN/yNbmBnNzM2RphkSRJQKI2Vjf4td/4zd43+OPMRj0KASl3ONCCGzLptvc49G7TW7/lQ/TPDBFvTHGubNn6PdCDh44zM/85b/I7u4mu3ubSAm6tUi1cwsz+SBJum9cJfZpgVLleaiuw+7ODtVanWKhgAE21tcJAp9SucjO9h7DYczY2AjXrlynWhkhM7C6tsr0zBS7uzv4lVH03k12Sw/xb37x1zhz5jw/+mOf4DOf/QxpKhCp4dKlM8zMz7L4jU9haY01/0M88fijHF44ygeffArPE5SKNp///d/lyqWLPP7QE/zmr/8GH350Crs6j6XzYtRkKVs7uxw/fpzLly+ytLjE9MQM0SBCWhZTU9PcuHWDsYlRhBQEBZ+52XksZXH12jWKpSLFYoHd3V2yzFCr1UjTJHe6DcpEyZCd3W3K1TpBUEZgePprX+PkiRN02h1sy2HQH3Dl8lvYOi/ei8UCly9fxnUd/CAAJJ12j0a1werq3X3jlpTGSAPLsSiWS0xMTzM2NoFtO6yvblAqlpiemSLDUK3XqDfqdHodytU6Rihsx0VJzerqKtMz02SZ4eatm9TqNVzbJvADKpUGreYeUhiWlpZ46OFT3FpaolSuECUxg/6Qm9dvMT89l9Mc66P0t28iFr8KXh3vyf+BoDbK9sot9O5rLEfTlF3QtoXr2gz37pAYi7Z1gkqtjtKaqakp9nb32Nza5oGTC9SqZdqtFt1Ol0qtysbWOn4QsLW9xYkTJ9C2Ta/XxfN9CqUio2PjDIcDiuUyURKTDCKiOOXKW9dI0igH1lk+PZufn2M47ON6Fq29NkeGXv6/q95AJm3qhz7EH/3RH9HptImGQyYmJylXypTKJcbHxwjDHnNzM3z9maeZmjnAG6+/wdrqOvNzc1x56zLHjy2gtEuv22Vh4Uju2GtrSPPJCyY3bCv4LskwJDOGKIoJPJ8kjlFKoIs1WhMptad36DxaQ7cTWq0+e3t7+9QyTWq3IWzSmHgApXIH8yzj/2bvzYMlu+77vs85d196736v377NvmAwwIBDgAAXiYtEy0yVSgulyEpipypOXLRiO67Ezh+RE1t2OalUuSqJo6WcRCVRgkhKosQdIEgQIAgMtgFmnzf7mzdvX3rvu52TP+4bCESBm5ZUIudUdb2u26/79ut+95zz/f2+C82RJkkScfXqZe7evcPRowcJfIcwDOgPBvi+h9bgeS7D4RDbK+DtUQWllJx48AGqlRrPPPN1avVybggSR4w0mtiu/ZYLp5AiZwYYZl7QswzW1tZ47dXXOXBgDtdx8s6KUgiRR8bcd1kWUuSZrXvH0jRha32De8vLzM3NIERu4BQNc2Mvy5TEcR/HCVBJjG1I5udncRwrj7UiN23p9fsYpoXn+Zx58WUOHzm4F2OiyZQgy/L4s2jYJYr6HDp6FAwDw7DzjEuxilIax5ohSVKE1kSDYR6bpvOMR6UUpiXI1BAhLGZn9pMMV3EsgyzNu7KbGytY0uH27dtMzcyAlBhm7nQvJag0xbZNdra32N3dplprcvXqVUxD0h/02djYolAqsLa6huv6xFEMQpMkMd1Om35vgO26jE+M02q1sGyT+bl5pDS5efMmg36fWq2A1im7Ozt5znEc4/oB21sbTE7NgM67WK5rUegOMQOP0V/4m/h+SBi6bGyuEEV9bNvH80I+9alPMdqsceDQIdyCTxpFNKt1SiOjufnWX3Dcdxv+bvB6/4dGZVFeELEVvZ0brN0+w7C9wqVLl4kiTSrq2P4kzdlHeOPyOuWxaY7qJxhGCTdri5x9/XVCK8URiovn36TTG+DfHcdZu4lq32FjYibPZB12yVKbr391kQeOVShXirm/hBCoJGJ8rEIhMAjtAiodECvFM88ukqYJI1Ufy1bYnkMhyGUChpkb5MRJkjuiWxZRLBlGKcVSiGUbb+UXi7c2yAKMnMaPkTc2yuUKBxbqzM9UMRkyMVLHNhSCPM+31ZUUgoB9s1OcPnUS27EQpkW9UkMK2NzcJPBDvCAgGnSxbZtMKbrdDo5jYwk/N1IkxfU8TCvAcUuk2qbbS7HskFRbYHgIA4ZxhmFJTMskTSS376wzO7uAEA6piLBtjVQ2li1JlcKyHcYn6kjSPHYGm8FwiOPuUXitIkrlLA1DCOoNgWNaWFbO/Hg7GHH8CMcQmIagNuowOxNA0sbYc2A3LXsv0sah1+vh+z5pEmMYEimMvWvYIh4mWKZESYvbd7e4dLnL3PQYgaewnYhqRTE/OYFtK6Rhow1JHMOFN+8QlgvUGy6mkWtIlYoRQtFs1lhZXuHkiUfRGFgFl25rAy0iwqABxOxstbHDEWzXxfcD2u0ur7z6GkeOH6PX7eVMnKDAm+fOU63WmRg1UVrTbg1pjodYTh5JlevMNYaZFzUzlWKaDiiLe/fW6Pf7OI6zx48xUMrk9lKLc5dWCUIPvzjC+nbCZOkYH6x8hC+0Pk3t75hsRxuEYcDyvbt8+ctf4sjhByg6A5796m+zb2EaKxzn4Sc+QaHaRJseqQB9xgQExnvyDvlfpvzwh33ej4pl/rIbaf9egte3R8z8ILfhdz73/u3tETVv/xLvv/b3Eib/VYLXP3Mb/n8XeDVNj3s3F1nb2WZkeh5pSERm5t0HnU+UUTwgTmOyx0/C7DTmb/4+PPIAu7s5rW7YS3EsH9v2MGQ+uWgkmYIkSuh1O5BpBskQpMSyDEwDon4H17MpFkJsy2L57ip/+vkvUas0GB2bwJAGmcoIQp+lu0vMzs9jGOYe5UXT7/e5eP4qt27d4KGHTqCU5uaN23z1q0/TbNYplas8/tjj9PodCgWfTmvwFq3ri1/8Is2VbUpzM1T+2acolGvEqaZcKlEMA86cOYNlSY4eO8js3BSOY+JtXmawtUzq1nE9H2nshZdHQ+w9euHO9ha+57K726ZUKpIkCTOzMwhBno1bqhGGIdtbG2RpxtraFsVSiaPHjyKEoFgsMoxSnKzH2P738PhHf54rV65w5OghKtUiApM//Mxn6HQ2eeT0I8way+xsbfEP/qfP89DJE/zzX/s1Hnv8/ayuXKfX2cHzLHSS8P7Hfowrb15gOrjLUy9e4dTDD3HujbOEvsfK+hbz8/MUigWuLV6ntd1mc32TjFynNzE5hjQlw6hHEIR0O10812d1dY3BYECtXsVxXPzAo9vtEAQBnu9hWQE7rU083yPLNL5fwJCSqakphJA4jku9PsrO5gaVSoWZmWmuLS5SLJao1WpUqlWUygsDnVaHYqHE5YvnCIKASqWMaZnYnpPHzUibJMsQCNZW19jd3uX28m0aI3UM08QPfCzbwrKDXAvd7dPt9WjU6/T7PXrdHrPzcwDs7uzS7/W5fPkaD544jm0a1Go1wlKRkfFJDOv+9x7jWi4vPfcMraXXCNUmQXSX53ZOUHvsU5hBkSf/r/+Nh70d5NhJnPWvQ+00ki6mBL1zhduDWYRVIBUGn/vc51i+t8L09DRJFBMEFijNV77yNQqlMq12i7n5WUbqjT3nyQjP8zAtC6UyPN/nwuWLNMfG0CKf70pByMbaNn4QMDM7xWDYQ2vBzs4O0zPTGEauseq0eiz0HEzLpNdYpd8fkAaHuHTlIp1Wm/e+9zQjo6MUS0Vu3rhOpVLG8112drYZaTS4s7zK6GiTiYkJNtbXMAydywWEzdeffppDB/cThB7bW5s4lk0Ux7luNInYWltBpQnSzjOfh4MEzyuiM4GWJt1oF+1JKmdaZGUL2y2wtb1NrV4FNFIbJP4m8XAMIcAyTaQw0BpKpSILC3MsLMyRZvkGbTDs56ZB5E7OuX63hmH6dDrdnE5nSLrdDq7tcejwAcbHm5TLJSbGp3KtWZbT70CTpAlZlnF76S6mmYNnKQ1mZxaI0z5KK7IsQ8g84kHtsYt6vQ5BGDIY5vEiSikMsacFtS38wENIGO75A/R7HWzbJBp289gg16DT2mZre41SJSTLBJBTGn3PBySXL1/lox/+CLZrkmYZqVJkGqSychJqlhKEId1+gh+WSeKYTqeF6W7lmjjVBK2xDCPXiicRkgwljBxUxwOGwy6uG2BIl27rGkon+VpgGPR622hlY5gWtcYIvcEAaVrYhgVo2q0dtE6J4yHFYsD4+BylUjHX1UqDV155lSNHjlOtjPCZJ/+Iyclp0IJiscSw36Veb1CrjxBFQxojI9RqFYaDIaura0xNTVEoFLBNTWt3B6UygrDAME5w/YBC4GM7HmdefoUDBxYY9Dv4dzcYmIL+qaMUCkXW1u7t6fIHOE7Af//Pfo2/9bd+ianpSZI0xSv4nD97lpmpaaTvv2U0+RcZ7w5e9wrv5AyMc2++yZ/80b/h9vWXEMkmJpIbN9qorMYnfu4foo1RvvHCmxx75ASPfOBBqluTrPfW6I5v8XOf+DBrV17GcHr4gc3XvvEMx5wfx1y9Ad1lPnMZqqUA14kIC7lTuhRtOp0eKtP4ro9WQywjwbMVeuhh2RlYJkLOMNoYwZIDTEuhtMDERJqCLE1JkgTLzgFVmqZcOH+DIChiWYJMRRgyL3ZrpbFMB6RBkikUCpErB9BZiqRPIdAIJbANl0G/h2HlTuwvn73FhTcvcPrkUfrdFobjYLg+/fYuUkCpWEIaeZZrGvdxXJ80UwRhSKu1i0MVlWXYtqI32CVJY4KgwBe/9ALDoWJyco5iqYHSNmj23JUztN7zehhvsrU14KvPXOHQsQa2meKKAsO0g2X5JGmE42ikliiVEEWaUrFIpnrYlkM0BOQQU7oIbaP0OjJpoGX8XV2vfJ9r4lBDxTaZHuLaFqFVJVYRUkqSJJcSRMMhij2Dai3QOi+kqUxh2iakikwp4hS8Qh0zSJlsOtiGwrEDSE0CO8M0HBKhcsfeNOPwwRncsIDjDPI93TDXvEthkiQtqqVRwnCa5bUNnn/lWebGm7S7q7h2A9PIvQI2uho/CPELRQzLYWFuAWFZRMOIs6+9RuCH3Lh5E88PCO0+1bqkOVYhzlqYMkRlGVE0xLJNzD22H0JjSIc0hVKxguvaOabIcnrx4tWbjE/tY3Wrz+5OjwsXb/HAxAeYae/n2/5zuB/sUygVmZ+fp16vs7Ozg5SSJx77IBtLrzLZlHS7fQ4e+zC1iQWUtIg1uRHWGQMB/z94/RHH/6fAa5Zlv3r//n1g+W7607eDzbdTfN9O9f0zOtV3d1rvH79/0b/T4ff+6/+g8Rf9cr8XeH17l/jdhrlncPCXOe5TtAFUJthYukAx8GiMzRD1MwxD59EQpgAyDENQqZZQGsT8JDtPPIT/609iOC4yDHMnDhRJMsx/DgdE/S4qGXL39nXq1SLbWxt8/g+/yqmTD9Nrd/LJxnEpV8fQhoMwXbww5IHjx9jaWqdYKhLHQ1QWo1RKuRSSaUG/2+H29WvUaw3OvPw67e4Wv/CLn0QaFt/5zktcXbzKYNilEIbMzEwhLYlhWRiWi+ebDHtdeq02q1ev8fDOkN7/+E/ohxLfluysLSOlYPHmbf7+3/sVPvCBJxgby/Wa7XaPweIZwmIJ4YbYliRNYqTWCAwkBt3uKqalMWWBbreP59tonXDnzhKeW+TSpXPM79uPNC1ME7Y3t6gEJcpjY1y6uMi923fZ3lil31unUa6wfO6bfPVKh1dee4VaKeTRkw9y4+ZtTr33YX72F3+RzrCPu/4ClXqd0VO/zO5Gm52Nbc6/8QoHT5xm3/5DTM6MUaqVceyQ5868xuniea5taKbnF0jShLl989TrVUzLpN8bMhz0eeT0QwShy83bd5ibm2N9dQPfCzl39gLjU1OEpSJKQKlY5DvPPo/re7i2gykMlu/eQ5gWjucjtWZ9dYM0TvE9n9XVu3u05Aa7rRaDwSDP9FQZ1ZERkiyj0RxBCIVpSV579TXGx8ZAKVbureL5AY2xJrudNtV6g/MXLlIIC6gs4/rVK4xPNsl0RnN0jFKhQHOszjeeegobeOXMq0xOzuIXHOI4wpCSYljgxe+8xKEDh/ELHhLod7os3bpNMSxg2RIlMgqVGqbpsLO5w/LSMku3bmMmLdYXz6BaNzhab1OaOEjcfILqR/4H1uKQBx85zdLti7zHWka6BbLyPBsdSbj1FNqro7urZNiUDv0UbrXExNg43XaL40eOsHx3iQcePEEqUwqlBnNz+5mbm+DGtUUuX7yKZdpcOH+eJI5ZW11lvNlEIFhfW2d6cmqPzmphShPD0LgFl/HJXLd95sUz3Fy8wun3vpdhHPOZz/4BJx88gWV6NNdT4igiGdsiSRKM+nHuLd+ju+ec225tMVIvMT45TpamOLbHl774Ver1Jp5vMTkxhtSKK1cu0+/12X/gAJVylcGwzfVrN1CZwa2bt5men8PxvBxoWgbra/eo1ioM+31sJyAolPIQ+jiiVGwQJz2C/WPI9QRrkCGKBoVCIafIohDaJXNamHEPwxlHAxcvXcBxLMKig2EZe4UmJ3ejTBV+GLK7u4sfeNi2safZMvm9T/8+E2NTfPp3fp/r125w4fIFTj70EJ4fgJSYloEW2V6mZczu9jaf/6M/5daNJdJEsW/fEWzXx3EdbEujpcI0HUzTQxp5Tqo0AW3hOD5ZpjCFSRZnOLZDr9fF9R1Mx8K0HJIEbNdBkrG9uYbr2nhhIV/XVAHLsRFmD5FZOL6HkJo0ibEsE5BMTkwiTfVnWbEij/5Ispg4jTEdlyRTBKFHmg5yDXShRKruIQTotJZ3ZHRGksZI00FInz/83GeYm50lcB2EUggdkca7CAV/8JkvMT69j7BUIooSglKBWj3P6jQNk8Url/EcgzgaUigWWV/fwvOLpJnAcgyWln9Wy20AACAASURBVJZYW13l0OGDTE+Pg6VYW+2weO0GYUkx0qizu53yxvlzzC3MIKWFbXsMBm1a2zsUCz7lapFMpSAlu60O589f5uDBoySx4utPfZNkmFBvjrK1vkE06GOYBuVaHfPqbbK5MbKTh7Bdj7BY5Nr1m+w/fBSBzenTjzE/t487d+7wwktneeDAPK6lqY2OYJg+/AiNV6Xyosb95IH7exXjudfy5KXHjuf7GQ06TdFZxPbSNb782/8zr/zJv6Wod1i6fIED+x5kZcfGah7n8OMfJ0ltRmcmcXyParWJIUoYxyXJ2AbtTp+X33yD8RGJ7vQYmxxDehX8e8fxt9bQnSWueCVs0+LanW0c16daiBkmGSWvisqgm/QplItIZZJhgZXS3dMf1yqKwE/IdE7v9z2XVCWgUpSWaCFBpuTMToso0YyOltEiAa0wTYHKEkzbpd1vY1gCQ9hYUqCSDMuwEAJsNyDNTIS0kJaJ4Vh7LrwZ5UIZx4rQskuxZNHZWcXREVk23LtuBArN9vY2pWoTnQmE0kRRhLRMhtk2SqY4bohtFXA9j+2dTUZHR+kNuzRGRzAtC2FYDCKboNJAOFUcbwwwSVWfSLsEQZ2R5hSFgk+cpGRGnudsWQ5ZmhuTpVpi2ZIsi9DaINMG0pYY2iRBgykAF8NMQVgoBYZlY1gWqQahEpSp0I4gycC2XDKdkOoUU9iYIgfIlu3g+WVSpZF7+fKm4aIyiQSUUJiOj0Bj0makGGJIhULjWHuZsVKQZAkGApXo3JSKDMuIMcgp2FoZKOWS6iGOXUAaKUr0GQwGLMyeohh6xINtZNbFMgOSLMIyQYgQLywzTLuYpoGlNZcvXmH//gNMTNYoVUIWFxcZaU7iGwlBYAM+liVQWYxtuyRxBuzRwN0CkMsxhjFsbHcolKpYpiBNC+y0I8o1l8Dx6aUOR0dPcUA/wBea/459f2MUKQ3uLt8jzhJSlXD96iWO7F9gOHwTsgGWXeXxj/48xYmDaMsmV6SDFBp1xgTAfG+e25071u3dfoDj8PeSJf5FNK/vvP9utz/P+H7P/2sPXrXWv/q9uNn3x9u/yHeC1rfnwb79/rsB3bc/fn+827HvNf6qwOsPev37C9wPA7B/lHH/fGmsWLt1Bddz8Moj9PspxcBndWWFbrtDsVDAEJKNtXWK5TJCCMLmCOrDjyH/3ecQnR7sB+kM6O9Ket0ehdAniSI0GRPjY3Q6bRzX5sTDD+O4FgioVKvYjsuNG4sYhiROEoQwsAyHarmKYZkEgYdhmfT6fbJU4blFTMOkVCpjO3lnor7ncmtaBjOz00TRkJ/8yZ+g2RzdcxWGOI6wHZvBoEepWKLf63NwZ4DxoUfxf+k/wJCSqxcv8d/81/+ER97zOBOTC/zd/+zv0GyOsrGxQbXSROAR3H0G3BLCzjs0cZQgpYHvh7z88hmq1TKu43Pt2m1eefUMjZE6g2GfKE6o1RpMTi5w59YKYRCyvHyHkcYIlXKD5Xt3sK2canL46GHK1Rq7Oxu4SYvTP/+fs7N1j7u3r9Dr7XDy1GlGm6Osra5xd+keU+oaKjP47Evr/OzPfZSPfuxxTNun3R0w1hzBD1w21jb5F//8X/H+D32MavsFTj7xU6RKUqnm+Yiu43B98Rr9bo+dnW1mpqeIo4j9+w+RJAmtVosoihhtNknimDRKMYSBJS22N7d44KETOLbD6toqwsyBhe06uLZFqVSi3e4wOjqSd20HK1i2pFgscvvWXSbGZ7h+9QrNRh48Pxz0SbXCdhxCr4jnepiGSb1eo9fvUC5WiKOEfreLylK2Nzcol0rUR+rs7G6yvb1JEHj0el36vSGVShmt4eGHH+bZZ59jbXWFcrGEbZncuX2LUjGgUPAxLYdXX32VK1eucPjIYRqNERCwtr6Bv9dRGfT6qP499gcryO4d6lOHKJ/4GV5R7yc48tM0D72PT//ekywtLTEzM4O99E3c3ho0j6JJGSQ2oedAaxHVX+XZqw6zhx5GSovNrU0WFhZo1Os0Gg3anQ6e77O92aa128G0BNPTkxw8dIiwWKY/GLDvwD4mp6cxbZtoOMS2LBzXo79XFGjt7uLYRm4opQVCS+rVESYmJ7Adn35vyOFDR+l1h6yvrTHbkmxtb9NrrGJZNsv9IocPHOKRRx6mtbuF51s0RuoMBwrX9eh2eziuQxB6LC+v0m63WVtb5/jxB3j99bPcvr1ErVZnbGyEUrFEsznBgQP7yUSKFnnudJLExMOI0dFR4nhIHMV0ez20VoRhQKINLMugPxiQTBQIzm4xqFkEjp/P7yi0ApRFFmzgWAeRUjI6OooUkjge7gGAPZfPaIBlmfT7EbZlk8QxxUKRwWCAYZk8fOokhULA/v3zHD5ykAcffAhDSjrdDpZlwF5HWyvIVErgB4yPT/Dww6eYnmly/cY1GqMN0Ipoz6nXMCySVCGFzOt85GvSYDjANCW5AakGLXBchyzLK/ZpkuG4LlLmERm+77O7m1PIvUBgGi6GkKTpIKdhukEezyUlaZrln4sgz2oUOV03P5mgtdWmVCjlGZZpRBIPcm235THoDxDm2t7n1sQyPaRh0O12kVLguBaHD+5HojGlJh50iHodUDFhfYrDxx+iUKgC4HseQljcR3Xt9i5Ld2+zb/4AUprYlkO5UiHdM9sSwmRna4e7S3eZGB/H81x67R6BX+LgwYMERYdiucLlK9e5vniN06dP7TnXu5imolQoI+Wfdb8vXrzEhXNXGRlpMjLSYGVlhYWFOUZG6oSFkCxNaTQa2I5D1O1TuLmC+JVfJnUK7Oy2iaKYifEJoiTm3t0VdndaXLhwjkqlSBjaGGbG2sYKc/vmkab9Vi7mD7sG5+813+xqrTGEQj53FgTE738EJSRKQ3djm+XLr/DcF36Lm1ef4z2PH0NbVa7e3uDAsfczOf8Y73n0Z9jaMrm1eJ7d3S32H1igVCrxzNef4ty5RRZmpjl87ASTk5OIuMXuygVW15fZ2Nmhu1Jgn3wEWq/jnH6Q/QtTTE5N0drZxTUkg6GDUCmGqfCLTg4EoyHCcEgTQTTMsG0T01IITEDjOE5exPVcomGS04ZNjRYJhjSRuBSrAY6TAyzbdvKuoGGRxjEF32MYw8tvLGNbCtf1QYi9AoyBzhQaxWA4AJnrvZM0IQwMGg2fMDSwLY0UCSqLkBK0SsmyBNexcR0b27HZ3V0n1X1cz0ZriaE9yCSe45AkfbY2lrFtcB2b5mgDUHv0e43jeXleubbReDheDWkVaDZnKTdDCuUKyBBMm6AwS6EyTiYs7KBAL8kIiyPEysB0QpR0EHaBFBvLDkgReJ6f03u1IM1AGAa24zGIEizLIU5ttHCxnABp2NiOhzAssBtI28byfbRhEykTYUhSZWKYFbZ3IwzLRu4V44S06fUGSK3xLBfD9fecoRVCGMRphmU6ecSXyK8v0Hv5swq0IElM2j3JN559g0OHxtAZCCnpDSIq1VEcu0C3v0a/s4VjS0xDo2UEZBSLdaIhCGHQbm1jui6ZgvX1dVzHwjJMhv2YCxcucOzIAoNI0e0nSJ2hMRDSBCGR0iLNIFMhmewSZQPOvHiHje0Bo1MlBkPJ2XNXSNHURhts7XZ5YOp9TA8OcfHxpzny4f0UiiWKpTK18RqT04cwDIvZ6SKd9kVEa52BdjjxgU/glMZxHBMljO8CcepM7oZvnE7f7ar/ofblP+zx7/W7/0/46Xy/c/x7AV6zLPsusHk/x/V+SPS7VRDeDeDeH2/vrL6bSPntv/ujdDT/vM+7P74XeP1BVZZ3Zs2+c/ygzu27je/qVGuLV59/Gj/wGJncR68fsbu1juPkOtXVlXtMT01iSEGr2yMIApIkIbVM0p98P/bv/gnsj8mcFDkcwTRNPNfcc8LLzUpcx8kd3kQeszDoD/ZcgW3q1SKe5+H7If3BgD/63B8zPjFJUHDfCp63bQfXC9ja6vC1p77GC995gYOHDlEqlSmVcnASDYdorWiOjmCYYk/HkuUOp+RTRr8/ZGtzi2YCYvE24l/+QxLXQqkExzT5xU/+h6yubfPrv/l/8Nh7T5EkMWNj42xsbPOP/9E/5cNTXcToQWzHwbYdtMojNK5eWeTcudc4cuQIluXhuR4L++ao1WpsbGwCEtu2GQz6dNptmqNVwtDg9p0bhIViTlUuFZmcmubsG28wOT1NUGxgtm4ip59ACoe5uQNMTM5z5eoi1UqF2ZkZ9i/sY3j1S7z44qvshsc5cWofm1vrHD96EscJ8FyP7a1tslTzkZ/4OHMLC7itC8S9Tc5fX2WkMcI3v/UtkmGEEIJms8m+fQsM4yF+4LNybxXXc7h27RqHjhzGcR0uXbzE9cVrjI006bTarKyu0B/kTra379zhxIMnCAoh586dY9DrkyQxvh/QarXZ3W0xMT7BxsY2nudSb5TJ1JBqsca1xUVK5SL9/oDGyAhxkuDaPpnK6A/6xHHMlStXaFQbaKW5fPkSx48fIwyC3OTBKVAqlikVy291YgLXww8CiuUiWmlcx+XQgYMMBwNKxQJhGFAohSRpjEphpDFCv9+nUq3guA6ddpeZmZkc0LVbBP1rVNNbDCY/Qu1j/xI981H+1a9/hvmDB3Asl7GxMaSUfPzjH8dpXcddfhHGjqIxSeKIfr/Pmzd6TBfbYBa4OZiiMTJKHKXUGjV81+Ps2bN4vkcYFkjiPMKgWq0TxwNs16LV7vDpTz/Jo+97DM/PjYviNMG1TOI45Stf/hpJkjE6Oort5JvA/mCIlBYbG5tIYbC4uEiv0+XmrVtsbe0QhiV83wbP5vXNW5Qqu5QrZbzmQ/zpn3yegwcOMD8/i+s5GJbJ177yDXa3d6nWKtTqVYqlAv3BkCuXr5DECQsLC9RrDa5eXSRNU6q1MrZl84UvfJlz584yOjFKsVhCa43veegsQ2UZSTJACJFTZn0v39j7JaSUxFGfRMd4B8YJnlqif2oUq5vtzWcGpA7K3YXeLqabG4wZUqJR+fVnWbRau4SBvxd7YrO2uka5VCJJYtrtNl7Bxdxbd4bRkDRL2NjY5Q/+4EkOHz5AoRCgMpVrzwSkWYqUIjeJ0opMDanUKjklWQgcy8o18cj8daUkU9lb700ISNP8b0iSBMMwye2MNNFwSBCExFHC7u52DpgRFAolPM+j198hS/YKtVqhdEKUgmnaeeyHYeVFwXiIYVr0+30QYs8ESuLYCYNhB9u28LwCaIduJyZTuc5PsZJ/tmoMQ9popXBcm0zlIDNRJtK0cld5x82d5f0iicyjfISQeb6vlEDulAz5a0xMjJPEuemTUopOp02mFIPBgNZuhwsXLnD82HG+8MUvUKtWaI6M8/RTT/ONZ77OgydPgJCMj43j2ja+b2MIk+2dLTzfptXqUioV0Gh2dnYZHR1j8epNOt0uMzNT3Fm6xezMFKtry/ihTzTIu3FhoUggDOTyKt8YK/PlrzzFzMwc7W6ber3K4vVFimEZ07D4hU/+LP/J3/6POLAwyfr6Kk7gUm00gfuZjt97fL9uitZ55q98/g00guiJkwiVEvd2Ofvt32Zr+U1+63/9bT75yZ9jbOYhnPAk2y2b9z7xCTqRwC8WeOWVF7h87hWWlm4jpMKybfYvHODAvkO8/OK3efpbzxNWahRck1vnn2diqsbcwgQH5t+HdWUO2XuZ3eljDHtDnv/OGVZWW4w2CqQIFhevMjJaJskMyBwc0yHJElqtPqsrG4w2a2gRkcb5fiXLsrcM2mw3Jo1dLp7fwHOrFEsOyPx/UgiV68BV3jlM0VhIsjgi1RZvXllDxR0mJsfz7pXWDPsDkiTFdk1sxyZJ01zbKgQqGWJKjUSTJimGlNiGwWDQZXtzHccy0CoBlWEY9p6HAqxt7GJbBYTuYRqaOI6QwiAapNQqTeIowjQsDGnR7yd4Xshg2AUUO9ttpHCx7AKmF6JSg2HawfcrCFkiSgRZJokSjRYOtlMjVQUsJ0CIXFcrzYBMu1TqU5j+KHFmYjlFMlwstwZmiOmWibWLEzRI8PFLc/jFMTLhowyfFI9+ajLoWriFkAyLNAuwnUL+3q0inY7mpRfPMj+3gOv5tKOQbz1/nkZzHMsWebETmTtasyezM+RbdO7c5CpCqQzb3ouiMXK5mLQl41MNXAtMsZeVbdoobaCUJAgraGWytrKCZQsKfkCSdtnZaSGEz+uvnWdycgLDtSkVK9SqNdbWlpkYn+TNNy6QpAlxHNEbCr71/BX2zdaxjBTXMbAtQTTsYRkG0kzQmcDGZ2y0ya1bd7h1c5NzF1c4cPgkjeYkxXKDqjVP5d40t3/yebx9BpubO1y8dIlSuUyxUSH0K4gs4trlZ7GNFQLD59GP/SyiPEeEjZ3FqD3W6P1rOnvZyufa9/zw4PV74YB3O/6D5pcflk36o453sl3fPt55vr/24DXLsl9954dwX8/45xnfLzrnLzr+qjuvP+hc368i8+d5b/c/K9uyeePF5/A9j7HZQ3heiGtoKuUSxUJIuVRCK0Wv28X2w71NVr7B05bJ+mMHCS58B+37mPEYlm3kC0sck6W5riVJEnq9PpVKjcGgTxiGQO4QN+gNaO22sZ3c0bJWrdJqt/BDh8FggJQmW1s7KAVZkmHYBqdOP0KxXCbbc/IzzXzi7Pa6JHFMoVAEsRfknSm63R63bt6i1qjjCBPra8+T/pe/jHj4CNutbSxLsb5yj3KpzBe+9FX+7f/+W/zNv/GTFAoBli0IgoDf/fTv8DMny4jyNFGc7OnlNK+8/Bq1epVH33cS3w8wpINl5V0SgGKxhOt6LC4uEoQezWaTm9evUGsU8YMClh1wZfEqvp8Dta3tbSbGp1DYMNxh4+IL/NaXzvFzv/gf89/9i3/N7/3u7+N7Pi+98G2uL17k0If/DuvqYQ4dO0hjpMlv/Mb/yWee/Cw3rt/IqbGlCl/92tPMLczznRe/g929xWDnDsprMDrSZHJyiju3blKqVChX8463YRmkWnHmOy8yPTPD/MI8L7zwbaZmphkbG2WsOcJwOKBWrzE+NUWtWmV1fZ35A/tQIneHztKMaNin0+mSJhme53Pu/AUmJ+apVRv0B336/TZCpijhECcxlUoF13XJlGJ5eZnA97l+4wZ3l5YZDmMOHzpMWPQ4+8brPHDiRF7JFwZhWCRTEtd2uHLpKuVKhThJ2VrfpD8YUCgVaLfbLF5dZGFhHtO2cDwPpEQaFo4fMOz2aHfatNotFhYW6HQ67Oy08QMfT/Rh/XUMy+ZPWyc59KFfRpohX/3KN/jIx36c2dkxdGZQrVapVCr82n/7D3h/8S49r4ZTbHLl0iLN5ghKCb7z0qvMnfw4TvMU+/btp1AosLO9TXWkhtCQxjGWZeMHPo5t8MLzL/Lqa69Tq1cYGW2yfHeNUqnC3NwcUhpIQ+I6Lrvbm7hewKuvnKXZHGd8YoxMpTz1la/z2tk3OHLkKIN+jzu3b5OpjEIhYGJslP0H9uEFPneX7rCpBwx8g8NjmiRNacsJlm7fQkrJG2+8iZAm/X5MKSgQxRF+EOAHPkjJ+PgYk1MTjDWb+J5Hr9fj7tJdDh48yFizwfr6Br5XYP/+BZbvrTAxPkmWZmRJzKDXYdDr4ro2vmszHPYBnet2vSKO6TDotlDEJK5DNGpS/uIS8fumELsDQGAIE6EFib+JIRcQOl9QDcMgiRPiOCaOIwSKYdTDNG1836HX7WKZJsPhAMM0cN0AtJE/7vn4fpGDhw5QrZZgz2E4ihIQ4i3jEyEFnXYb27Zw9rpDOsswhIC9bOm3L/pS5FpbpVTu/ivlHuC871ysc5MV08qzS313b3MocRyHaDAkCIr0ui0G/Ta+5+G6DkkmcBwHkAwGA0ATxX181yOJI2zLxJCCTmsXLWNc18WybLqdAf1exNLSCqPjI2itQKZIGWCIKgKJYQikFHs5tBp7ryD5G7/xmxw8fBTLDdHSRhoyd8O9v84Iid5z/0ySCMMwyDLQmeKP//iPmJmZIcsUYRDS7w+pVup88xvPcuDAQZaW7nDo0EE2NnZ55ZWXed/jj1IoFAn9gCTug86QhsaxXWzLpddtU6812NjcACkQQhIEIVOTk8zPz9AfdPE8h2q1hOs52I7Ht559FkMabG3v0Lu0SOA4bJ06wj/6r/4xjdEGpx45QVjw2N5uMd6cxDItfvqnP4HjGtRCn6V7Kxw9eQppBWTqRy8iv3NNRoLuDFBjdYz9E9hZj+3bF7h39cs8860XKTbnOf7wJ9hal0zMPsij7/8oZ964wNy+Wb713Ffw7JiPffhDCJkxNTXJ4tWb3Lu3xbE3P8RM5wjDw7ssHD7GuVdfQfV3qNQ8wkDTYQvvjXl0eJDw6Dy93oDG+BSFUkCpEKJMk6mJOkiXO3e6XL16g3q9iGUbBIFPvV7GtPb8SrRJr9/bYwCkaA2WnTHsG7z++hLj46NIo480E6R0SeM4L3JoSTSM9yJNTKRpECcJM9OzzM00cjqxmUef2I6L6/ug1Vvyk+Fw7/8ryRAYiL2OmG3nbIZ4kDMMJBkSjVYJ3W4Hy/FIU5vxiVmuLS4SFozc8Mcy0Frg+0VMw8Nxc9feOI7IkohC4OVu4kmPUuBhCk0c9TBkjBQp3XYHy1TobMj25g7Pf/NrTE6OYhi5mZltuphSkcQxqIw4jjEtG8swSTIBKkGlCYZhozAxrZwZ0ekOKBSr9AYJpu0jhMa2DKIoIiwWQVpUggBNjFI2WWxj2xmGzoiGQzzfZn5uin5vl2Lg0+qlvP7aZQwzoVZ3MaWFQOX6apWSpQmWzFknSZIzO2zbJk1SMqWRhoVQOjfwNDOkjDAwUakCMtIsI8vIDZSMEq+9fBHXNXAcjcrS3FXYEGSZoFKbolCq0h/00Bk4jothClZW1zlx4mGUjjl37irVkSksC6ablVxekWkyLWh3B3R7GcMkYunWFqFfRwmNX2hw81YLO6zTH8QcPHiY3bWI0fV9XJj+NpVHQ0ZGxjBNk3q9ztT0BIViid2tZUy9y+d+598wXrJJgwXqkwfQVoBQGqk1Wr5DwnjTQAQa41j2blf9DzUXfK9jP+y88lfReX07eH23x94+/tqD1zRNf/WdGtT7UTk/Kuf73fSyP6hr+aOMv67gVSUmWW+TarVKUB1nOEjptNZRKqPb69LutNnYWMfzXOIMPM9DCPFWXpu2FGnvNurabbgwwBwf2YsXcQnDAt1Oj263SxgWcj3GXkxNmiQ4jkXUT+j1B7lGzLFIVUKtWsHxHMJCASlNtJY8/fQzPP/8c5x+9DQjoyMIIVGJ4oUXXqJSqfLkk09y48YNCsUCzWYTpQWbm5uUSxUc2yHwQ0zbxLp0g+vbmxR/9VcYRH3K1TKra7cwJZSLZQ4fPcbf+9Tfh0wxMlKj199Fk/CJT3wc4+bz7FDINZ6ux9rqBq++dpbHHjvNyuoNwrBMp9On298hSlL8ICBJFeVKmXqjTugX+fpTz3Di+AOsr69TLI1w9+421VqZcqWKaZosLy9z++YtGpNjtNotyrrFe3/5V5CezeM//kEWJg9RKoY888xX+C/+7t/m+eee5o2zb/D62Qs8cvrHeOTU+3jvIw/zwQ98kM9+5rM88YEPcvDQIZRWnHjoJGvX3mTc71OfPo5h5IYop9/7HorFIkmmMGwTy7UwbZNKWKTb7VAoFqjWa7mmyMgNcZaXl6nUq3jFAEuY1EbqmPZ90OUQBgGlUpEs0yws7KfVanP82AOcO3c2d2VMMyrVOp5TwPDc3HTJtNBoTGny2quvUamWKBZLjI+N881vPkur1aU5UcV2bErlEhcuXqFaa+B6AUnap9vd4erVC1SqRZzA4caVWxiWwdraKqPNUXSmCEshK6urFEtlNrd28IIiSgu21lapVipMz86gAdt1qZVrDDavY268gnv85+nN/RKnfuwnEIaL55aZnprl2996irV7NxHSp1ar4asujxrn6ZoVhn4Fzw4ZqY+QpSmFYpneIOHyxYssLOzn+o0b9Ps5m8H1feIkZtAfcvXqFSanpzl/7jWksPjxD3+USqWMUjCMUq5fXcwLQp0u5958k2ZzFM+1WV1Z4+7dVU6degTXc4iGfa5cukGt3mBubhbfdalUyoyNjVOvl9lcv0eqYqQlmBibZGRkBM9zUb17OEGZ4uSDWBL2HzjIpcuLDAYpxUKVXmeH4w8cx/N9XNdjMIwoFHy2t7col0s8+eSTnH7PaTrdDjPTs0gTWq0OkxPTgGJzc5t6vYFjW2xtrNFpbdPa2aRSq7GzvYlh5DnJCkFmePh2QBK1cT2JYQaossQoFLCevomqumAYoAVkJmmwic6qoG0Egnanjeu6CKDTaVEqFXAcm263h8rSPNvRMsiyFM/P56gkViSxwrY9rly9RqNRR5NgmhIp8ygIJfSfuSdrhR8EWKaD0iL3BhACKXLDmpwSrPYoeDKn8Mqcyp2lCsO0SNOMJE6wbRMhyDV1QpLEKVIqMpUD4SxNsU2T1k5Mqezg+/nvdDsDTNfPI230XpzGXkyPyFJc2yZLIqJBn0IYYrtVID+HYQncwCQsWZiGw2DQw3MaqLSwpxPO6PW7mGbe3RdCYqsBg84uDz34AMVCiCElvV4PxzHQaYIUoIXINY46JYoGxHGUx3ZoA9sxOHjwELvtFkFQpN8f8oUvfBmVZTz80Cka9QZxHLF//z4sN8RxDc6dP8fhA4d55umnObBvHmFoyuUi0SCl1epSLBR56cxLudY5DMmyPFs8SQZ4noPrOlQqRTKVsbuzQ1gosG9uH5VyhVu37uCsbVF4/ykaH3qMYRTx+BOPMTJWIcuGhGEN13HZ3toiDFwsS3L36iKl2gi1sSm0sEBLEOr7rLrff03XOqfSpwdmUPuncYnor9/i1a9/ns2bt+nS5D/9p/8LtcnDLF1fJBGraCNlYmaWzfVdJkcn+fxn/5RqxWBsosnqBLwL9gAAIABJREFU6gYbq22qlVGqK+P4vsv+T05y6dpNRsoFejvbZNkuttXBdT1edl9n1P4p/J0G/YfPU1BTXLi4iMTgW9++SLEQImXI2XM3OHZ8lmJ5iOeGRHEPaeRmeWkqkVLQaXcIwiDXkUqB0D4YBgsHG4SlvABO5mKaNlrn3bycVi+ROkWYDt3hgDC0sXSClHkOa5JGpJnCtB36UUyWJjiOs9fxzuOkDGOvYyUBoUnVkEzF+FaIFOD7LlpnuK6D42uk6WO7FdIso1x1sc0yaaowDAPTgv6gDSJBodA6QcqEOG4RDXcYdiMG3S367S0MnZClXXZ37pJkOxS9CjrbYji8S9ErsH92FqF7CNpk6RZRtIHKhuish6CPKWOkTMhUn6y3DdEWhu6CHhIN2gw7mxgihnRAFvewZYYl+ww7qxDvkAy2GA62sWSKSneIkxZLt1dZunWXwO+SRF207pOqHVTWwrU0qARDbHB0/37qVRNbDnGFR6YStE7RWYJp5AUopTMMI4/bybOqHQQGWmekSQaZhP+bvTcPsuw6zPt+595z17fvva/Ts89gQGwEARLgAkqiSUuKFduxFJdtVVIlW6XEjhLFVFx0HFtVcjlJaQklx2VZlkxRohTuIiESBEGsM5itMfs0Zunumd6733v99rue/HEbFAQBIEgjqorlU9VVvby+b73nnu98WygwdDuZ6xBEUYCQkk5ngNAsssURBj2fcsnGtQf0O010PYNmxPQ9n/WNHrnCEFubK+SyBQaez8DrMTYxSbs7wPd2GfgDVtZ36bY61AoOF27scO7STSItjTCKPH/yGtdvNLj3geN4UcC16x3M9DCPfPR9DNfGmJwZJtXPUrk7Re+hTQofz6LrFq9cuMTsvmk0XfBv/92/4f0PP85zz32FtNFme3GBlNI58EN/B9vNIOMIqRQxEjT1Z7CGfjR6C+AK/xm8vvX4/xV4Bf7pa17WN6vFeSNt/lo/2JtR4q9R5a+/7fcab2Vefrs36Z2MNwPd2j0H0B57AJHPvult38r8/IN8EN/Ja/DacW1DZ2NjC9e2STkm0pDgZHFSqaQPz05RGppAs/P0e3Ucx8L3B1y6fIFcLsMgjMh3btOOI/JPLaHKRSLTIJdPGFtv4HHq1DkmxmZQmsDQk57AbC6L0iUCybee/jbFQpFcJkMcJvHxa3fWsGwHaVp86Ytfxut7fPRjH6RWq6IiReD5PPvcc6ysrHHt2hV+4r/8cY4cPbDHlkp2d3Z56hvf4MD+/YlUud/BCGPk6YuoT/0D4tE8Z196lvbGHaamDlEsDaGbGYJYIwpjUmkDX9MwUlk0I4XX6WEuPoOXqpDLZfD9AflCnonxCUwzRbFQIowCdFPiZAqIuINt5UBIwsCj1+5z9+ZtJqfGMByTUrmGigUvfOdZpKlRKVeRuoFhGMxfOIfwIpburFO2Auy184jmCtbsA1RqM3zyH/8D0qmYE/cfx0jlqI1M8LGPfwSvt0Uc9fmtf/tb7DQ2OXrsOCdfPMXjH3ic//vTv8kPP/EEMm2jrnyWGxsD+j44jkutWqTbabN0+yYiVjiGCaEiQJDPFxBoWLrB5z77OfLZDI6boVIbIY4i6pubxEpx5fJlttc3GKnW2NrYYGtjg1KtSj6X4szZl6hWily+lARWdTpdlu8sUSwWk4VNrJC6RJcGrXYbwzAZHR7FtCzazSa6ENz7nuOMjNfYWa/TbnaRwsC1HVbu3OXO4jJbO3WKhSKTE2N4/Q7RoIMwYHwsYSEHA4/bi4uUCyVazV02NzfQhCKXTRHHAblcCaUrYqJk0TOo0776NbTeCunH/jk/98tf5kMfehw3lWd9dYONzXVefOl59h88wiMf+Ci16iiu6tB75v9E5UawKhPsbG6SyaToD3oYlo00DCrVIq/euEW1UuXGqze458QJgjji5vVrpByHGDh06HASouPkmJya5stf/hIqhkq5gmnoXLh8hXwuz/jYFO12j+eee4n733OM69cWcNNpyuUyTsolCEPOnDnD6MgII8Mj+IHH0vIiI5MjSMskVyhx88YitcoQvi8489k/5sjQBP3haQJrOOnojRPAsXj7DiOjo7x8+mXGJ4aZmJxhe6vJmdPnSEpefHLZPIa0ePnUWY4dO0Y+n0O3IF8oMDQ8imFJzp2b55H3PcC5cy8zMTVOGCsUNjcXNxkfruKk06AbSCthV9KZKiruEwYD4kjDlA4BBsaIiVrdRe+GKFeii5ggCFBJORW6Pp50pvYCTp86w9bmDrXqCL6nOPXyPMPDQ3uBcB69bg/HtJOwDZkjjDSeeepJZuemePnMOUzLoFKpoukaQdAnjAfEgcQwZLKoixWa0JG6oN9r41g6QeDTbndxHCfxie3ZF2IVoVSEUAKpG2jCQNdNet0ed5eXsW0bx3LQNR2hBCiBEAoVKXQgDP0kVdNNo+kWfgC6tLh9a5lipUYcwW5rl26nR8rNkskWiYIQFQe0O3fQtBjTqBCLCCUS/5omNEIvwpQOQupYZhopNfr9NqZuEoZ9bEtDihAV9gj9FoP2GnHk46SyDPwIaZlI00BoNiIGXUsKLKIoINYMbNPCEDqaSGy3mkjSRF98/iWmp2ZYurXE9WsLlHKSkaEKri1JuwZK9XHSFqVilcMH76HdarO1dZeRsRKpbJEoNNA0i6989asU8nkO7j9GKmNiOTZraw0yuTwQEQw8LGmws7VDJp3F80MaOw00XQcEnt/jUCDofOg9LLQ2+MBjj5DNpLEMG6lZxJFERhq/+9u/w9yRfRRHSyxePceh++4nlC4IkMpLwPr3GG91XRZCQBAh1J7Hr7nM2ee/QHP1FHfb8NAjf4+5kXGWLv8Jyk4zNFzh1DNNtjZv8wv/0z/k0OwDTO332Llb55/92h/y8rfOkVM9tttL3KN/kEwmy0//H3+Dh46foJSvsLqyRDo3wDbbBN0Uyyse8eFtGu2I8XMf5o9Pf4VHHnqEmzeXOHTPQc6dvUypkGFuuki17CKEZNCPyDglNnd7PPviAvv2jaJLnUyuwMCLaTS6BKGiUM4RqQgVBQj0hN0TIkkSjhRR1EGFDkr1kI5LjImumURRRBiRsFtC4NiJdF9qEk2Bpouk0slKbDnS0ImjeG8eAMM0iSOFrkm8MLFetNptUimXMPBAS+ENeoRhl3QqBbFFc3sFz+sipEi8poGOZWRpbK8QhhFxpCD0WV+5QxwGWCk/2WiLzIRJtAc4hkbsB6B2UWEPqUz63g6319ZpNmPSWhpT6+AHA/TYR4t84qBPHPcZeC2MOMD3OsRxBxX1saUN2gAVDdCEj1B94rCNCjtEQQchQhzHIA4HBIMWhozxegaX5m+wsbbK8SP72A26PPmVBTKZDJbZxTEy+EETQ1j0vS3cdJGNnZBupDA0D10L0eISUeyjRIzY606NI41+3//u51gXcdIMEcbEhJiGSFonRIhmCJQS6AhazU36oUGlNko2n2cw6GKgocIY23IJxTaGUcGyq1QKJRZv3yaOAxw3jW2n0XSTSqVIOl2EIGJ6coprr67SaCnqzQ7V2ijFUo0bt+4wPDxJOjOGbtUYnpjEdHXSbgpDmTibecyVLMF/vcHtwm2efuZJhkdrzM5N0ff6bO5s8viHHkNFMWWtxZWXv8PQxEFOfPQnKdSmEJpMFCUCkj7ZtwguUkm+wJ/9evvxlsd6h+P1//vGe/5+j/h62+XrLZtvZ1V87f7/kwevr6/KeSdv1vcLKr8Xc/t2x/mPAa9v9gEU+eyfA67v9LH8oI/hnQxNCTqtOltrdxgZG+POxjaFcoXAH6ALQbO5SyZXQGgSqenEsSAMFVJa2HYK09DQ7s6jORbNg4+S+cI3UAem2K7vIAS4roNhGFSqSSCP73vYtkUUKSzbZWN9jXvvPYFpJr2JzWaLTDqHpivSmQxhFOL7HvccP87QyBDdTpc4jkCLmZqeYHh4mIceup9Op0WxWMQw7KSUWihqtSqZbDqRwRFjPn8e9eh9RH/9E5SLZWrVIYaGxmh3O7Q7HXZ26rTaHarVClLp+H6AY5lYUtC5eQrp75IZmSVWEMWKbrePYZp85StfZv/+WUDhOCmCICb2Y5QCoYcgQgzNZm1lhcZuE03qfO3rX+fA/oN4ns/4xDgXL1ykWi4Thz5jwzUmp2c5eOAQ2wOD5m6TfLiFuvEdVi88yX/zC/+Ej/3IJxiqHiZ7+wtkOld5/nqfeqPO2OgETzzxcQ4cmmBmZpbtrSa//Mv/im63x/65/chUhkvnTnJwvISVrbG+sU4hl2NpaZkDBw5iSIPLl69y5vQZJicn2NraZGtrC8d2yeXzpNNJRZBpWQlbLnWCIOTatWscO36ctfV1bMtieHiY+fkLbG9vc/TYMTw/YGxiCsuUpNNuIu1GYJpJP9zA80n8juae3Mpgt7VDs7FDFCW7r27aJpPOce36dWZnZpmfP8/Q0BC5XI6xsTFc20JFETdeXSCdzlCpDnH37gqe56OAmdkZLMvBtBI/tGmYDPp9As8nnc2gaYrL8ycpd68SbF2HyceR7//fkLkZnvjoh5BSYbsWQ7UylXIBXYfJiVF6vTam36bx5C/hDM9hVaZoNhvY0sF1XJSCXreLIeXeznXi6zx+7DCRCjAtnfWVNTSRSNSF0Pj93/ssd+7cYWZmhlu3bnLfffezsbFBo9Hg4Uce4crlK1y5dJliqcDY+BjZTIZSuUKv26M2VMO0dFzXZun2Mo888j4G/S6dTpu11TWmJsbpdbtsrG/wyvl5+r0edsrhgU0Te7uPuHcMx0knRe5en63tOu1uj5HRMcbGxiiVC7huimeffZZXX32VD3/4w6SyKQzTYeAFZLIZNKlj2gavnL/I+NhEUtUQRWxvb1EsFDg/f56ZfbOk3BTZTI7A97ENhZtKWBHf87AsC2nnCLweYZQEe0RRQCpXpNduEg7bZL69QVCwwdCRponfj1G5OoY2RRxDEEQUyyVW1lYpVyt86StfYmNjHb/XZWZ6GiF0MrkiMTq6DtJOrBHf+pM/5sGH7mdqZppyuZQElAjQNJ35+VfwBh7FUp7XelgV4Idg2VbSF2manDp5ikq1hmmasLdJq+sJsBVCEMUxZ86c5e7dZYZHhhgeqmKYBrHyiVUCxqWhQwymafHiiyfJZJL6LWmaBIGHbVmoSHHy5Gkcx6JSKeEPPALfw3FsdE0QawHtdhupK4QWEkV9NN3B0DXi0MfzuiRZVMnf4sCn318jDjv0ux4y6DLottitb+MPeuSzWXY9HTdXwY90bDeLQk+q0QKfa9evkc8VEHpSGaFJDX8wwDJNwiik3WljmjZhmEgGS8U8qbTD5MQY4xMjuOkMl69cZ2V1g0w2T7E0xGAw4LlnnyGXSzE9M43jZOj2uzi2Tatd5/CROdrdJrEycNMGvW4H23ZwbAPLkvzJN55M0rB1xcr6HYZGKvh+TDabwTRNDGmQXdni/+nuIPJFSsUS1VqZW7dvcOfOEnbB5+rlS3zi4z9KoThEY6eP399hfGqOUCThULqK3hF4fdtrs1KIjR3iZp0z8y+xtnwTXQ14/uV1jj/4Qbq9TVYWr9BoRPzmb/02Dz/4YZ75ztdotepcmL/Icy8+Sa+e4zsvf5vHHp1k/vwlQlXjiZG/Qn/g88P/8yMYhkantcODDxzFG6wT+ZuUClVSuSorm2vU8z7FR9McbD9Ea73Lpy/8E5xWkfGRAsPDeTIpQSplolTMdnObQj6LtCR3FuvMTY2D1qfbbZPOpLAdA9uRNOrbCBT5fIE4jogURErhBwqBhpsxUbFJJDx03cXr+ziORqQ6SCMmCGNMwyAMPcIoQBDtVesYaJogCJOaLUVynhmGQbxnQXtNvhyrhE11XQdNF+i6AAKU8pBGzG5jM2E+A49iqUwQCGwrjdQ0dC3ekzFHezU7A/L5LMVcjn5/F9tIcemVa9xZusvszDSxClCihVASqTn0g3UMzeaZby9wY2GdY0csUBGxp6NQ+HFIiCLyI2QsCcMBlplG0/S97mYFqKRmKAxRcZyo30IfQ+pEYYA/6BMFPqbUgQghYoaGc0zPlPAGdQaDiMZWF9tU1Co5pLAZdD2U8Mhks3Taij/52iU2N7apFHJIy8OwAK2Prjl7oWpJHY2mgxAKTUsCnUBw4+YNqtUKpmkQBBGIJLApjsEybYIg5MrVJYaGp+j0enhel82NLVxLQ2gdLKOINwhwXBMvUghdMTwyRK/fQaC4cvkCrmtz/foCDz34EFJK5ubmKJUrPPzwg0xNTZJKpZmbO0C73UsCNfUkDG18aBxzI42849KM63wx8zusiHVOvnSO9zx0P6lMlnarzdj4KMV8gbXVVfzGBivLC2zs1PnIj/5N8qMHiN7E0fjW5/P3v6Z/t1SiQogf4N7f+nhvdvy3Gkqp/wxe3zjeKXh9PfP4di/0XyR4fSf/826N1xZJrw/DequhaQbX5s/Qqa9TGxqiNjFDt+9hGTrbm5tUKlWarQ6G5eD1B0lCpGlj2y6maSfF0OuvoOuS9A//V2jPn4H6Lpl9k0iZTMy2Y5NKpZCGjil1XMdhp1FHSpNOu0kqlaLfTwIYdN1gZ3uHQiHNwPfQdY3x8TEECl03ME0DXYqkYmNzjaGhoaToe883FgaKc+cvMDU5SqGQB6GI4wiv2cQ+e431//VnsawUcayhSZN2z8cftPkXv/RLzM/P84HHP8CNmzf47O98jmajji6gvrPOUFoRtbfALSCE/l0AJzTB2NgQg34P0zDRhIZhWElMvaETqh6GoREHOu12M+kmtW0uXbpCPp/HcR0CL6TVbNKob3Pr5qscO3KY7sDj5q1bKKWojO9jV8vhplxy/hYsvoy3dB61eZm1G8+xsnSD/OH/gk//xm/woY/8EJpu4GY02p0e09P7+PSn/zX/+JP/C9cXFtg3M87wgUcJz/8aK01FoTREGMasra7RbncRQmOoNsTRo8dY31glm8mRdlP0+x61ao0wTqR4zUaDVxcWaO7ucmf5Dv1+n6PHjiGlwa1btxkeHsG2XIrFEkKXSXWOlBD5NBoN+v0B1WqNdqvH1tYmYfinF8Zuu8vKygpT07M06rvUasN7bHgWzxvgODZnz53jyJEjWLaNm3JRUcwXPv95VldWcByX+k6D0fEJMukM6UwGgFs3b1Ku1QijiFq1mgS+OC4nX3iRkckxurdfYjhaRp99gujBT/LM9V0WFm6yvLzEtSsXObB/HxcvX2ZhYYGpqUkcx0ZKHStoEb30m6RGDkB2lPPnzjM8PEx9q87S4hK+77G0eJt0OoWmgSFtrly8yPLyIoW9hfv2xg6NegPHcYiimN1Wi498+ENIqXHt2nWOHj3KnTt32L//IJevXGLx1i18b0Aul6XZatDve9y8eYtXbyywtr6KbZtYpsH42BRuykZKjdXVVRqNBsVcltDzEQrauy2klEhTp7wyQNM0vro8TyaTx3UyqDjETWU4f/48S0vL1Os7ZDJpvvnNbzI7M8vQUI2l5WXK1RrsRXwIje8qIG7dWKaQLxDHMWEQ4KZsCvkShw4fxgu8vU5Wjeeee5bhWglBmLxGhoVuOBhmKukXDX02N9dxXYNYt+i1m+TKBUQoEa2A0JZomkBqJrHRh34TzRzGdlxM26Q2XMNxLI4dPcz+A3PMTk0SBBG6tNmpt9iptygXsgjDwpSC40fmQCQBS7Zl0h/0MaSB1AxGhkcpl8t7VWIhu7vNRFIvHSCREwsVk0mlyBSKe/OxtreQi5Pns7cQvH37Nvffdx9+MMCQOroUe6FIOu1OB9uyabc6GIbFxYuXOXrkCN5eWIrUBVubm7huisOHj1LIpTENiSbANAxeevFFJifGCYQg7WbQkERhQBh26XUh5TrfBa7NxgZR5CeJz4MBwrlFRJ2on8JxHDw/pDY8htAtthttCtUJTNPC1HUG3Tam1NCFwnAdhodGAJLnqAmUivauRwopDQzLwDBMur0utb2APV0XZLJuUrFi2YRRzPWFm7xy4QrTUzNIHUxTw3FtNje2GR+fRQjJzvZ2UtEhBKlMjmyuSCpt4vsermXjDTroMkWxWKZSSlK8s7k8UazIpLJ4Xp9+v8e5515gVrP4l+tLRArK5RKGqVMdKlOuFHDTOVLpDNKQpDIGt25coFgZolAZBk0iUAjB9wxsgu9xrdck5q9+BnHmMl/dvs7ClUvcd9/9lEcfxcymkdqAbqPJgYPv5XNfeJKhWobQa7B+5yauE7N/7iBXr5/hn//ip/g3v/5FAk1w7L0lHk3/NTRN49Tgm/R6HQw9AqmRdXW6u3fx+g3Gntxldkfjqc4GtQOT2A8bdG51+amh/4EXwj/k/UceQ+ohqbRE0xSmNIhlDhUM0GXIvpn9ELcZeAGm4QBaIoMOA2zTwrJter3BXtaATqwUIk5x5swFxibGiCOXIIpAhcn6S0XECnzfxLYc/D05v2053w1MS3rfY/y93mgE2JZFEARoQuypMZLKwURODJquEYYBSiWVV2EwQCMCQgKviy51vEGIrjn4fkiv26Dfb5LOlojRcGwbQ2ooFaFUm8Dr4JgGw9UytVqJKPKIlcbmWpN02iWM+klCsgiZnJ7kwGwFUwsQGkhtnRiHrz15hbt3WuyfKeJaO0TK4lvfeoWxsSFs26DbbSd1klGEaRoopQj8IGGyBXubon86twilg/IxrRhdhBi6hmlZ7Jsdo5BzkHpM4PcxDQtNB9/3EUIyOlJmaLiEY4JhGQz6NpGK0LQIXbcIwzDx1wc+mpYAaoREoSiXy8RKEcd7Nj6SkESFIAxD+v0BUncplCYY+Arbdllf3yGXkaC1UF6WYtGl2Vzh8qtrzMxMo2mSxk6TdCrNyPAImi7IpDNoetJzruk63X6PSrVCHEd7eRFpXDvDaH6cclQjbxeQl9OofMgz8klKP+WgpTV+5Ikf4rEPvJ/l5QUMXXDs2CE0kfRs6wie+fofsra5zv0f+AjF8UPshhaW/ufR6xvPZ//XHaKXDfQH30o6/APODd/HMd4N8PpWtst3Al4Nw/xPG7y+1vMqhHhTzyrwZypyvh/G9TWJ8ZuNN4LLt/LKvpsj+vdfRL1yDe3EwTd9LO/m+H4YaqFLOjsrKK+NYVmERpqVlTXy2TTRXsG10A0iJQh9j0996lMcOXJkL3QJ/uizvw+7dyiPTqCPHEUJhXX5FvHoUDI5SwPDsFhdW6PTbpHZA6qGNGl3eqQzKfqDAfl8gVarTbVawTAkQihM02KnvoPrOqg4wjRt4jim0+7gui6ZbBZNTwCyZZtouk4YKhzbQdNB15OaHcdx0GKFvrDM5ice5x/93H/PA/e/h3wug1IeQikazQZj46NMTk8wOjbEgw8/wvjoEKiIza11ss0rSL+Flq6i4iSFLwx9LEuScpNk3ztLy2iahjfoAzFhGCJNnV63h22muTB/jkOHjyANi9NnzzIYDHjooQd55ulvMzExxvjEKNcXFpg7cAjTdgiDkJs3bpDJZpGGwdJGk1aQxiyOcOfOMjkzxPUXqWU0xl342N/8aXQt4trtVXq9Lvv2HSCKBA+992Fm56bI5Fy++fVvcPzEg3idOmF7ndZAkM1lmZiYYGNjnZmZaTY21pPwqM11pqemWN/Y5PLlK7TaHYZHR2m3dkmnXGpDNTLZPIPegFqthmEYNOpNbMvi3NnzlEoFVlfXqVVraJrA9wYEvk8ul+fZZ5/j4MGDLC0t0u20GR4eYWl5iX5/wDPfepp7jt+DpjmEfsSNhZt0e32K5SorK0uMjY0xPT0FAvL5PLdv32Lh+nUef/xxypUK2zsN0pkcgR+yvbPDTr3B0FANP0hShV94/nlKpRKGaTB/fp5jB8Yw2jcRQQ/ro/87Tec4Vy7e4GMf/2H2ze5nZ7OeyM+FoFiusL62zrmz5xImu9+g++1fYyd0kcUJpJRkszkuX7rMkcOHcdMutm2TzeVIZzIITePsmbPMzkxTq9W4eeMWI6NjDA0PY5gmN2/dYnR8nP3794NIGMgjR45y7dq1BPBXargpl6mJCVLpFPfcc4zZfbOUyhUcx+LoscMcODBHNpNha3ObWzcX93bHFdvb27zn3vtoNXa4ePESo6OjXLp8mUcefZRKrUrqRpM4jilMLmD1b7LaLXDy1CmGhkfY3t5i//45ynv+2Ww2w8zMNJubm9xZXiGOI0qlEstLi7iOjSY0gkFINpNneWmROI556aWX2L9vPxsbm8kCTEDKdUGppF7JkmQyKXRdx3Iy+LGGZSWeONO0kTKR4EexwhAxnXYLZ24C+48XiCcK8Np8HkOUqiO1aeIYOu02tmlgSJ12q4mKIxzHRqHR6fb50pe/yurqKuVigSAGy5K0GjtUqkOEUbIAWby9yOmXT+M6LplMBqUgigOEJvaCjwxi9D2Vh0IpME0bbY99VCgC30eXr6XoK3q9PtPT0xhSYtsWsVJ4nk+v1yWOY1KpTAKggwBNkxw8eBBd7qX2mha6ruM4NpZl4w08LNvA83z0vTyChYUFSuUyppNBUzFCGThONpG4SgfTNAiDxMsbR3ESUJXKIDRJrG2i6zql7AGEnUPaGQYhGE4Oy82joYi8HlF/l621JSJ/QDrlEiiI4hgVR7R3t9HUAEjCk5KOTw2lQsIopt1tJ1JNYGenDoBlSHZ3m1QqFcbHxzAMC5SPiiO63S66NChXqvT6A06feoWTL77IsaPHMO00J09foFbOJUFwSmAYNkIo1jZ2k4TY7gAhJOlMASkdbMvAtk3iWJExXXLtPg/9y0/xwAMP0GztcufuHaRh4AUBhfw0hpUinbPZbS4xf+abHLz3g5iWnfg390Kq3gq8vtPrvBcprBfOYUiNX/nOlxkdHaNUm2SocoCB8Nja3GZu4iif/Kf/grurG7z4/Jd55MQ+7j04xtCw4MzJS1h2ivsOBBQqEGpZjh1+mH2DE7ipFPoJn82NTdpiGmcBAAAgAElEQVS7beYOHSbjpFi7dZlc2iPzwgDRCbg1HjN98CiRJsneq7NwY54f1/8hr0RPcfHMTQqFEnEc02g0OD+/Rq2YQVoDUBqKDlLmAInjZBJQadoEkYZSOoaRSIEFItnqim0sM2FC/+TJMyhCikUD17KJgpgoNDn18m0WF5eZnJjhzOlXmJiYIo6jJNxvj3FNwHAi4YzCJCRI7NUQJdLhCEOae/VZwd6aM0JTEl3Tk8o408EyLAzDSlRiQYBlyb1k4oBYmeiaxE05EIcYUjDwW2TSDuGgjWCApodIQzDoR3z9a9c5eKAKtDC0EoguZmqAYxpEAxOlh6TsHL1BwL65CaKwTTZlEwcaQkryuTSmpRHFHkIkc2EUJSGY7BEUlml+tytYyiT8LYwidGEgDYMgDJG6gYp0hAZ+sIWhJ/OPJj0CL0JoBoYp0KXCcmLS6QDLlijl8gd/NM89xw4itD0WWdcZeP1ko1Ca6JpBFCV93bqu7yWwS3RNQ5eSKErArK5r2LbF9vYuS3d3ubOyTalcYmpqhjiOCIM+UuggIgxLkslUCH2ftJMik84zP3+RdCZDq7VLuVxKbBndLql0FstJVHuDrk9mUKL3aki2XsbctRHFkGZxneb7l8j/FYO5R8fJZ9LMTIyyuX4bv7/J2u15jh+aZmNtiUI+z+rqGtK0OHhwlgMn7mdo+jDCSCF1E6GCP6+qfMN5Hb1WlfN9gNd3Ewe8W+D1P4a8+0vFvMKfgq7XA9bX/+3dZjL/v4yVfuOIfu0/oJZW31Fg01/kUELSb6yzfP0CQ6PjiFQRx0mBili6dYtcLo/QDQzLQRMR1WqZcrmI69oEoc+1i1f40ss3+OGf/kdsb28iayX0X/0P7IwOYxgmOzs7DAY+Ag3bNNja3KDf79NudfnKV7+GZdrUqkMA/N7vfYZUyqFSLWFbLkLTSGezqDjGlAaRihPJipZIek2ZsFRCaOi6RrfbQxMaqVQKfa87T0ozeZ5BhH7tFvn/8b9lc3WVT/3iz5PJmAyNFOh1fbK5HPc/cB+ZbAbP8xC2wLJ08tkc+UIRu3kDFUdIJ4fUdIgj4shD6gqUZH1tjVq1imVKbEdimDG6bgNy7yIbI1Cks1kMy+a+++5neGSYdMrBH/QoFPMUykX2HzqMlcrSbNTxPI+5uTmWl5a4cPEiDz34IH2/R3FkjNLYfszCFEH9Ov0gQqbH4O7LWOtnGfUWGD7yQZRdxg8iXrlwnmIpjZA+N68t4jg2P//PPs1fP97DyRRpdENeXbjO8ePHOHnqJPccP4aua7SadRqNJnEM164tkC8UGRkbS6oK+j3W19bJ5gpsrK0TBAH5fJ5Wq8Xw8DC6ruN5fWzbIfA8vvz5z7Oxeocw0igUihw7fow4DsnmMlRKZW4vLrJvdh/ZTIapySm8vsfyyiIXXjmPm7III4/xyVGq1TLb9W3S6QyaJojiiGqtysTEJJqUmLbD0MgotZFRbNNieWmZQrHIYNBP+hQj2De7j/n5ecaHSwzpq8jmNfSDP0b34N9ldcvjq1/8OoNWQLlWoL69y6ULV9GU4P/6tV/n8pXr/Nhf/XHSboanvvhZjvRPsRM4VGZPkEqlWFpaolYbYmJikrPnT5HL50hnk1Aox01z6fIVxkZHaTaaWIbF5ladiYkZlIiI4pjZuTmkZSI0DduUOK7LlctXmZiYIAhCUqk0t27dIJ1Kcfrlk8QqOScjFNLUKeSztNttmo0O3VaP+fl5bFtSKuWpVWs8/a1nuHNniUcffRRpmmxubTN3YD+W6RCfX0YakmC0ThhGvHC5jq6bzM5Os//AfpRSXLp4mbGxcRzHwTQlpVKFs2fOUasWmZocZ3NjjTiMae92KOTKrKwuMz4+zoULFzlw4BBDQ8O8urDA1FTiL1pbX8O2bErFIqlswoT5nkcqVwKZAuWBkAiRpHBGvsfA61DJZxJpaL6EfGWTUAKOgaZpaJFFkNpC7gYos4xtmrRbLQxdYGgC1zLphyGel7yes9OTTE2N09jepdXtUa2WIPQRwsDzEzVIJpOmVhuiUMxz49UF5ucvMTY+htQlSkGcqOTQhELbM3Zqupl4XUWyUNd0Hc9LKr00AZaVACfTNOj3uxiGjWFIrL0UYE2TgMbG+gpCCAzTQKCI4oA4kuzuNshk0sQqZre1i+O6CF2n0dzFTaXZf+Ag6UyGOPao15f3AHUKdA3TdBJWLIoJw4QFsawUsWYRxRLN2Eq8hMY+lC7RdB3TsFBxjKHrKGkhhMIbdHDTLk46j26niMKEYTd0MDWfxtYyuuFgu+mkfxJF4A8wLJNcNrsnp4bAj3jhhVP0Ow1mZ6cYDLpk0y6ZdJpi0cWQJoXCEPV6izgOKZQzVCs1bt+6wszMBE46y7efPclIKYtp6jhOGt+PcdMulmuQStk0G3U+//nPc/X6dY4eP86g36HTadHrdQlWtjDaPZoffg/5Yg7DNJiYmsKyU9hODk0GbDW2abfalLJlGmu7jB06hmlbxFGILiB+m+XiO127RIaJ+Z3TtBs7rI+mmZqaZf+x+9i6u8puv83M5Al++7e+wI21Rfx2i7/zt48T7Gzy9JPf5kd/9DBf/cIrfPCJe3jksMbd1TUu325x7uRZ3l/6BI6T4mTvWcrFYR5//4c5NX+OvFuguX4D1AqFiwnAHPqJw7QHio6nMX/mHA9//AA3tOe49+5Pcdu9QX2lT6GQY2Nzla3NFvccnmDgNUllxojiJKisP+jR7/ewbQki4vzFJS5fTWqKbry6QCmXRUNhmALLEgjNRyiDXMElm3axDQMICOOQ7WaPTNqgUq3Q6/UolXMgfCLlEYcJQRG/fr34Wt7HXgBW4Ce2EW8Q7PljLaIwQtclntdDaHw3PTeOY9qtAZoO0oQ49tja3EQonTASKBXj9wf4XhfigEarT+wrNBUiDVBaDJpE6oL9+2sIYmzHIgw7xKFJva6IQ0UqFSMMiReAZUtMvU+56BArjVAlab+mrWG7IDSFwCKMfDQtqYNMnp4iiGKkYSaFYLokjJMKKoQPmoY0HGIl0HUNU+bQzT6+ryN1hzDq4jpllIoJwx6DvoeuS8Te5pgXDpCGiWkHmIbCtpMALsexUUojDMD3VdLj6w8SlYrt0O976BpJQ0S8F1IHicLCcDh5+jqF8ijVWgXXtrCyBQI/oj+4QxRKUtkSpu7RbddZX1ul2+tx4OAcpiXJZvNcuDBPKp2iUCgSxwJ/1yO3XaGwOYzQBdZxWJm6SvjEBpuj1zHmfAJzgOM47GysUN9cw+/VqW8soLPNxsLLLC4k18mllbs0un0mZmYws2XMfBl0Cz2OcOKQUPx5LPJugdd3a7zbsuEfZPylAq9/xmj8Omb09QFKrw8heuP3rx9vZjB+rYbgzXpgX/99HMffZW3fiTz59V9vB4LjLz+NECA+8cF3nWl9u8f1vYaMFAEmzcYOMuyTL9eQuoVA4Dg5dN3h1YVb5NI5XnzpGd73vofJZNIIAYbUOXr0vTz22PuJI5/WbptITxE8+W22N9dxRoZxnRS/95nPknZTjI6NoYBiqcAgGLD/0BzD46OEoUe71eTYsaPUhkcT9kPqSF0j8n28fg/LNEFP0oh1Xcf3Y578+tPM7psGFLrU0KSk2Wrjh3GSkBeGGELQ63UxpUS7fIPWjz3I+L4J/v7P/zxH73+Ijqcx6GyRH0rjZis4egpb8zEdh3QqTbfT4W//rZ/kI4eHMS1BXylcW6de38Rx06AZBJ6PYRhksll0aVCv79Le3aRQyuMFPr2BRyrtEocDcpkspmGjaTrPPfccw6OjQIogVGTyWSzbIo4jmvVdhoeGQdN49rnn+PATT2CaFos3XmVqapbd5i5KxajmFWKlUEPv49a2R37iGH57h3jjIr/4K5/hiQ9/kOU7iwwPV9ne2eDge+6jWKswNrWPytRxnPWnubve5fC9D2EaOhsrS5SrY1y+dpPJiSksyyWXzfGee+9l0OvSam0xOTFGo9lACC3xvzXq7JubZnNrBWkKUukU+UKBbDG/JxuMOXT0KIeO30OuWCAWScjG3aW7CD8mnS2gYnAsC98bUK9vEUY+KSfN+PgEk5OTVCpFNC3C8yMy6SynXjrN+PAkvdaAS+evUBsfottq8fRTTzE9OcHv/u7vUC4VmZ4Zp7G7zdzcPjRhYGRM8DtMunXU2inqxjipe/873OmP0W0NuHXjJqNjQxQrOV567kWO3nsPWspAt3Qef+wxKtUc5+fPM1St8R7vRchPMn9tnemZMYQuyReKXLtylfOnT3L8vvuSxQOSdCrDC88+y8G5GYSQRHFEOptlbX2dRrOJLmKqQ0Ms3bnLN7/xFMcOH0PTFCt3VxkeHko2VDRIZ1KYjk6tVqNaqbG6so7tpOi06khMdrY6rK/ucOfOIum0Q6UyDISMjAzzxc9/gd16iwcefhDbcZMSeSG49Mp5dupdZjsmcRyxnbqNY9ks7rgcPDJNNpvl6pWrzEzNgIIz505z6NBh6vVddE2yu7tLqVahUKyQzRboDwLOnDnH2bNnuf+B49y4cZMTJ+5hZeUu165dIZW2yOUKLFy5yc3rtzl44ACGBLUn13OdPK12G8eRqBA6nW10ERB4A4QIEUIShDq9XoDrmkQNn06rjxcPkFLDMA0i4RNpPpa9D01IBCaeF3J7cZHKcI1uP+Sl50/SabZwbJNcLkWxlGVqapyB7+NmCyA0bMdG6AIpk/Rzw9TJFbIU81my6RxCJX2tvW4HIVx6PS+p+RACoSWdlEEY7HldAwwj6WEVQiZhTFoS6iG0hNGQhkSQeESFSqTBnbZHsVhGaNBq17FsycmXTjI2PkaMQEgDy3GJojZB6GM7eTRhEYW7xNEGgScoFoYxrBSDwEeaDkHYp9HYJZcrYlg2Az8gjGPiOOnmDNVqsuhUIwgFUZj4B+M48f7pSgMlMMwUhp1G6BLYq3rRdNAlcRTj9T00S8exMhApmvUN8tmkyioMArQ99sgwJQhF6MPI0Gjy/IVGrBTNtk8U66RTWc6fO4s0IQgGOI7L0eNHSWczrNxd5viRA2TSNtlcnr43wDAFcTgAEeIPQvL5PJNTI9x/331Yhstua51sroTr5jA2dxCuyUXXJetk+bmf/XlSmSL7Dh5AaUnXp+EaDBUEd5dukB87RqVaSFSTQuMHKffT1F6VEIJI6ESaRoSN9czzLN1a4EXD4577P8j06AGc0TS/+qt/RG5Y49vfeIWgcZqf+VtV7t1/gDOnzvB3/96PMzae5Ud/bIKx4aS3NmN5/MTH38NoJUvL9rgbbXPvj+S4cOFZRoYtFu8ukK1USWVcVHuJwqUATdd4tbbL5ZtLzB16jPc++CN88hc+yezx+/j9M/+av2H/LN9c+xyjxf3kS9McOTSEigXEEetb2zz70jKzEy4ailwmDUoR+j7VkTTVsolta7h2GmmA5cT4UbLphggolGzSbh5JhNIGRCrENF3KpRQjZRdTc3DTPoYZYztFhB4TRwM04WCYJp7vs7Wh0OQAgYYj7cQHGvnoegxCYWkGRBEIhWnvbYqZST2XrmmEYcy3vnMTKaGQCxF4WG6NQuUAcdBFaC1y2QyLt1cplLK8enGBa9evMjMzgiJGxDGhP0AaAiG6RFEXXTOIY8nKusszL9wmky+RciOIYgwzsRIEQZSc+yLCsgRS6nsJzAaaMJOQM0JEbKEI0aXPYKBQrzGxMgkQ8gceuhB7YW86ftDFMBSRpxCiDwJ0UySVdrokiBqgmYBE0w10KTFNh2gvuHK4liaTNpHSwg9JWF0piZVO4OvcvVsnlXOQhoMSgkgM0C2fOMpgWg5S19A1DU3o+F6AZehkHEHaFhQLZV65cJVMysTrC/qewslJwlAiUxVU7JOWPfKOB6qNNAIcO03asclks/S9AV43pnZnmmifx80D51EfaLKqLdDPhGRzBvh1KqmQoL3B6Re+RXPrFl5Q59h9+7lw4SWaq8tIw6I6Ok4/hEyhyvET9yWeYstFRyBUDEIQaX92Xf1Wa+x3Cl7fiG9e+93b3fZ7Hev1hNwPMie9W6rTv1Tg9c3G2zGvb/XzGyWzb/z59V7Y14/Xfv8auH0nb+IbWeK3u/1r4FX7qx/6CwGv73SEUUihXKS+sUq/3SY/NI3nh2xv1cnl8uzutvj0p3+DRx55H4ePHPiubOW7J5wSe5KTmHK5zJUrV5nOFymvbGHOTaLiiJmZKUxTopQi5Tpsb2+RyWap1YaxHIcoDFEqZuB5WKZDu93B9/tIwyCKIwwrAXTStAl8Hz/wMIwkmbdWLiUF5yg67Q7+IOAPP/dHzMxM4ff9pD9RSjSlkFdvYfz9n8R1M2RzRZYXl6hWKhhaxPD4EK6dpbmzS+j30G2bRr3JnaVlfuZnfgarcSORBOOgCYlpuuimi0KiozCkkfhGNIFpmbhOGjDp9XxSbhZikvAedJ5++tuMjo4xVKsSBj6f+4M/4PbtG5w4cZxXXnmFrc1tKnvSmMXFRY4ePcrtWzdJp1LousAwLfqDJNDG2ziP6zhohcMYhkkYxrx07hJz+YgV/TDrmx2GhieZnt5HLltie3sHiU6lVCE0amwsXUXrLKHnRkmlXebPn+PgkeMUShU67V2clIvn+whdw7Yd0pkUSsHNm7eZmJjkyuVrLC0tMjMzTb6Qp1KtcuXKFRqNJq7j0tiuU61VAeh2OixcX6BWq+K6DttbW+zsbKLpkl6v813pZCaTw5CSVCpFo9mgWqnw1FNPsX//HJ4XcOvmLU6cOMFnfu8z7LZ2qQ5VyJcKLC8usn9ujnq9jgLuOXEv6XQaz/OIFbx06jSjxjbGxmkWeyWKf+1X0MY/yJnT89Q7A65eu8bBQwc5cuQwlm3zgUceRjd04jjC7/d58itf5b3vey8X5ud5rLBGv9/n8kqPe08cxw99duqJHPfI4YNcv3qV/QcPsrS4TKVSod/rcvvmTfbNznD23Hk0XWPf3L7/l703DbbsOs/znrXWHs/eZ77zPPWMnjCDBDhApEhLihQpSuQoLsuZrCiKkx925Y9TFcepOFFsyypbZTuxLZtSUbJEhhAHUQBBAAQBNGY00PN4u/v2ncczn7PHlR/7NNiCGgRJKT8ie1Wdut33nLPPcPew3vW93/Ny8eIFnvjE4yzfvs3QyDCVSplDBw8gRUoU9ZASPM8ln/eIwoBCwcfPlwh7IX/0jW+iU83s3DzVgRLf+c6LzM4usLuzw8rqMmmaMDo6jjKgXC4wOTFFnKQcPHKY8+cvkgI3FhcxTMXU9AyV2y06nQ5MN1BKcXXTYGpmmlKpzODAAN/61rd46KEHMU2T7e1tpqYmcVyHYqnE62+8zrVrVzl8+DAvv/Qyn/70p9nY3ODIkSN02j3WVtezKI0k5MFHj2PZJjdu3GBmZpIk6RGEbVKhCDoBQa/H2++8yeTkOJ1Wk5yraNRrkEISR3Q7TZRUFItFOkEXo1Sm8Moy4Uguu3ArA51CmtvDEAvs7uzy9ltvMjY+yujYMLW9PXKez/joKFubGxw5fJBWu4FtO7Q6Hbx8nnYna23QpOgUQPQr/dkCaCHvE4YhWoOhDJaXb/Pt55+jXC6SL2SRHN8DlqT9CZzIqkFkgof+NSOJ47690oL+eTVNEkBjGAa2YxNFAa7j0Au6JGnC/MIBBJDzs4VEBMQB2HYui/PBQAnJ7VtLVAdHSTUZ9dPIRKJtGjhOn4QsJAKB49oYRlZJjvri1VaTfdu2RdpfBA56PZqNFjs7O/i+ly3KCkEQBlnlW5mZZVNKHNtGKAPT8BFCEichjuOS9CtgcRzTamb9fJVKhZ3tPSoDFXZ2diiWShiWjecV+dIf/D5SJAyPDHL8xHHiRLO+ugUC8nk/+yxa4/aJ3akW5FwXrbPIo0a9g2PnsB0zs3xHKZXBIpKs9zK+uQxH57lkguW6PPGpxzl+/D5yOZcw6LK6skwvaFHxBLWtHeYPnszU55/lOk0WJ5TtDxqExjct5PMvs7x0k9XZIT7x5Oep11t0Oy1+85/8G069/G1mhmY4vFDgYw9N4nkuc3OTjIwWKRYzBoXt5Mm7RSqVIhrF5Uu3+dLL7/LcG9eY27dA1Ctz8thn6EVNquVpZByzceM01YshynAwf6xAvjrA/KGH2Nhs8MCDx2k1ulxePotYaPCXnb/Fv37jN9i6tYebK1Hf3WNkvIrpWAyPTeA4JtK0eOPNtxidmCDRKSLJkffz2bU+lZnTI9GYhs31y6u4Tg7DiPF8SOPs+0m1RRQplJREaZ0UheVoUg2NvV4W8yXoVwQ7IARn3ruIbQl8L0eqY5RhEKUKYXjv22WjqEeKJk2z7z6Ksh7yOM4qh16+wOzMEFGvSRCGSJmR4qVMaDZbtJoxlXKVVPeYmphgbLSKUElG0hYC07AQApIUcm6eOM5IvYWSSTdqMzrsU/Iltd0mysiymZM+XMo0M8dY2qeYa51xkzNIk8awBFIJer1+G1WS4hfyWKaV9dMrRRgECJWgMUAoEh0jRIIh3YyWnBqYRp40UaAz5oCUqr+olp1/4jjrrTX7sXZS9mOMBAjRt8inmoFqFWXpbP/VYBkecWhhWSlSJsRxRKKzzG6hJFEcY9k+e/Uub50+w8zsHIVSiTiRWKYiiXt4ro0yHAqFIkiLUJsEkabRaLO5egNJG0vGtHdbDN48gP7cCsWf3MOpdDlz+iVGh3N4Xo9ea4WCl7C5vgLSYmh4nIHBEpbSNHfWaOzWOXHyY0i3xODYPAPD0+y1Qm7eyngbSONHmqv/MOL1B/ndDzI+2AL5Z9EYf1Z9kqbpX/ye1x9GvH6QHPzBL/huONO9xGsQBFiW9SdWOe4eH8yW/VEqr/9/FK/ShCCWEIYsXrrM2OxBms0upmnRbDb5zgsv8tM//R9QKOQxzO9Vuk3T7IdqQ3Lqn8HyaS40FfsPzJEEGvnHL9KdGcE0JVHUIUlCcjkPz3MRAnpBgJvzaLXb5FwXUxmkWvPyy6c4euw4+WIG+FGGgWEY9MKQO0YIITSmKSlXCkS9kHq9hkTi9CMmNjc22NrawTAMXnzpJQ4eOIiIE9TlG6T/xS9w+t2zXDp3HlMqBstlemFAkvYwpU0aK3pBB9NU1Pfq7Nu3j9reHs7VpxHlKXLFagYeEoo4gTiKCbptHMchiqJ+tlmCkjaJFlkeXbtNr9cmDLM+uNHRMfa2t2g1GphSMlAtMjxUwbJMBgcGWZidZ2d3l93dXTqdNvv27WNoaIiXX36FfQvzODmfQqHA6vIy0fZ7dLpdevYstu1w7do1cn6JYTfCHT/Kc6+8x+Mfexzbtnjv3Xf5g9/5PQyhWLpxi8nxSf749WUeKZ7HGZzByuWZnZlCKwtl2Tz/7WeZnZulXC6TaI2X95EIrl+/QbUySKVcpdls4PkuOzu7DAwOsrq6mgmDiXF0knL54iV8N8fFixfZ3tkmZ9msrq0SxyHVgRJTs1P0ul0s2+L28m0KhRKm5fDee2cZmxxmeXkZN+cRhDFj4xO8cepVbNvGsi1OPnCCYjnP5u4mhjCYmpzi1o2bTE1Pk6QJN28uMTe/QLcXYNkuEwMextpriB/751xojjF24BBhr8er332V+UNHsByTianxLGqpWae2vU29tsf66hoPP/gg6JTrS0v8wqNTqM3zePs/ztjoMLdu3UCZJsNDw6ytrbF08waPPvYY7UaLublZdnZ2eO7bz/Lg/fczPDxMpTJAksbkCz4HDiwgVQpa4ebcrKdRJ9T3dpAy658V/Uq17/t994jN7vYu3U6XhfkF/EIeQ0Gt1qRRb3Du/DkeePAkV69exbQswijrSV5eXmVudo6l9XVmZ+fJ5wtMTIwxMztDoVzEvbSFEJpgdAulDGZP/gSeX8DzciglicIu7XaLVGuWl5eZmZlha2uLRr3B+uYGn//851FKsrWxiWmYNOp15uf289xzL1AoFLnv6GGiKKBcLeI6LuNj41QHKni+m1nRUsnK8iqtZpPtrQ327ZslDtskYQOhY9I4pZAvEkdNojDCNE26UYA9OIB3aoV00MPyPVqtDsQGurSLuQeRUeDsmTOcPn2akyePY5omQqR02y3OnzvDzu4WhVKRzY11xicnAYlhWpBmcJfri4u88PwLzM3NofsU4E67iVIG16/doFodQCnJ0EiFgcFyJvTShCROkaq/IEp/Qppk8CIhRT82JhO0tm31bYyZLc9URh9ylNIL2tiOgxAyqzAFAbbjYZgmvV4vi5sCTDwQCVpGgCBNNOXyEEkak8QaTQZ8UVKSpDFBL0RJg26nm2Vsx3EGexGSWK8CoMQ4nW73/R42rTUbm5tUq1Xee/ddZmezXEStNbW9GgU/D2REbSUVQhgYVo40NUh1guUaWUVAi/cpsJadiebtnR1Gxya4dfMmed/P3AFC0G4F5DybqakhorgHwsJzSxQLZTzPZ2tzm7W1dcbGRukFEe1ODz9fyKraWrO328FQLr1uiJuzsSyTJNHESVb57XQ6VJa3WTwyzb4nn2BsfIggamMojakEYbvLr//D/5NPf/IxdHubZ775Te7/+JNkKxQ/+rhDJhZkVUGJhtYyu089S7vZwvvJJ6mOTHH1+iLri5c4cvgAb7/xCp29K3zyoSFGBn1S3WZs3MMwA+IoxhAOApMz715gdHwwI7V3Y27vbdLtCfY6i/zV//yvsVvbplr2KZTHMYVme/k0w5e7mQPgAWi1O9Sbmnpd0Oj0mJqc4ff/4A9wyibN4RX+qvM/8bX2v6S37pPL2QwODRAlKWfPXSDshdiOy8joIGHUQ4iUM2/fxDQkpbKLFIokhlqthU4FQ4PD2I4EYpI4gy9J5dBqaJ5/7iyT0wO0wh5J7CJVBsYylYupEoTI4qoyd4OkOlChUiyDSEDGJAgaTdjY7FEqZBZmy1YYRpY3jI6QUmJZNlJIkiQhX9BEQQOdRNiGTRB0CLt7dOlky+wAACAASURBVIMei9dWmZk6QBQHWK4g6HUwLYFrZ/20SZwghUEQtkkig+vXlhkYqAIxthVltmhPkoZdcl6BIOxiGkZ/PhXAnflDP8JJZmG12TnLcNCyC0gkPqkOMUyTMAoJg7APdEpxczlSEsLIoVYPkUqQ8yxMkXEGklSxu9PjtVfOMjM9g1Tx+0WYbH8UWc60Umh9Z04sEBqUzOKvDCPLNE6SgCTRWKZACk0caWyzgNYtgiglxWJjq440XNqdEITD5k6HBJcoVuzbf5Dba2vMzh3ENF2isEsSNwl7CYXyMGZhjGJ1Ej9fIp/z8T2DOKqRRHW89QNYnqLz2Fd567Vn2Fo9z759VV5/7Y8JWtdJwnXSYJdKpczE9AFMN4/rW+hug+72Olcu36I4eYzc4H5Gpw/hl0cZHB5neGQMtEKa/168/qjj36nK692i815f/odZie++7+4D8IM/s5PBh4vSO49L0/RP2QI+7PZh27iXfTj92vPZ+/iZH/tBv573t/VBsX2v93C3jfqOkL/7s9x5XhRF738XAL24C9pg7fo1cjKlNDSM61VIkpQojPnKU19mfGKMiclxdna3ieMY13Xp9Xr0ej2U0oiVd+n1eow8+HmCoMP17V0mvv4iLEwS6CiLxkljdnZ2uXjxPKMjI5imhWnZbG5vQ5rS63YpFktUBgYoFEu0O/Vs0pdCEIbEcUJtdxfHtkFrTEMRRT0sw+pXnOZI0hSlJPv2LVCvNTh05Ajjk+MZKCeMUJcWeeXgGL/zO7/DX/ulX2JkZOR9YQwBjuVz/txlpmdnqe1tUy1XcR0X0VxF3zhFtzCCUlmVN1sPTdBpRjW8A0to1Bt98qggJUUqjW1L0CG+V+bq1Svs7GxS8D12tre4dPEiR48dwjJtSsUStu0ShiErK8tUKxUGBgZot1rkXIfhoUGuL95kZHSMt996i0a9RiXvIN0KUwceIY5jXnnlFAcPHsKUIaVkjeM/+UuUKz7nL7zFQMXj+NH7ObB/H6ffO83jT3yc6uAgue41dNAgkB5+ziXWkm4QcuzwQZRSKEMhleLbz30b0pSN9U067R5xHNHpNDh85DCWY1NvNDMycJpgOzavv/oaYRDQarV4+OGHmZ6dIQ0jRsaGM7iOzKAZxUIJP++jlEG326NYLDE2No5hQhSlVKoDtJotavU6IyND1Ot1SpUKXt7DcV1KpRKVYpXFxUUq5QrLKyvM7Zsn6O+jaEGpWIK1V1lxjuFNfwpTwtDEKJ5f4qH7H+Wtt97gk594nH/w93+NXrfD1OQEt1dXKRZLvPbKq4yPjfPumTP89JOPwpmv0C3tZ3l5lVKphO04lEoVlpZukcYxDzz4AKbjcPnCJWzbZntni5P3n6SQz7O6skqSaNbW1yhXStTr9cw5oEWWCao1nVaLve1tXnvtLHOz+3jxO69wYP8hojDh2Wefo9Vps7mxQbFQoNlq0mg2mZqapNFocPHiBaQUTE9PUyqVMCzF+MQ4rVYbKY2symYafbjSLWzHwrIV0lDER4dIjg6h9y6htaYuJnBcl9XVFRavX2f//v0MDw8zMDTI7OwccRxRq9WwbYsHH3kQ13ExDYOJyclMhOVcet2A69evc+TIfbz44gscP3GMKIacW6DV6hBFCUtLK3Q6AZcuXGRkdIzrV6/xmSc/QRR2aDcbpHETU2mUtNAoekEDQ1lIadELA7xiCbnVQ1RzJHHKpYuXyLk5LB9SFWLak8zNzVCtlnGdXEazjQNMJRkdHaE6MEg+XySfz9Hu9DBMmzBMQEuarQanTr2KadrvA5Nc18kItym8994ZRkaGKRTzuDkL28kmwVpntjyNzqom/aqlYRj9iusdwicoQ5GkCWkKhmmgk4zi2W610VrjeFafjJxB6UzTJtH0rclZRbfbbWNISbuzS7u71+8/sxEipdMNcd0MsKeEQKcJiU4wDJM00Vy7fi0TzKYijMJsEc7Yyq4Z6UhfbMv36fV53ydNUmZmpxH9c1+n06FQKCCFJNVk2+jbaRv1Jl4uDyKm1d7DNGy63QCzD5tJ+7AZy7bZ3NjmOy88zwMPnKTb62LZNpZhMzRcpVHfxfPySOFy7uwVzp19Fyklu7t7XLh4nvHxcfZ29jh77hwDgxlNvNNq0WoFPPP0t7lx4waHj+zj1q2bFAqlLJqtXmegWkUsLsNnP4Y9OoIgIU66bGysYlsOr77yBp//ic9hKM3Ft08xOzfPyNyRvuX7T16TP2r8iWu3Vplo1RolUoSOoXGb1S+9gBAS9y99Fr88Qt7L4aga9dY6edfkb/zKxxmtNBEqpVL1MO2ssuf7PrZto+M0O9ZlSM6zsJWJWJ5lOneUsxsvMTZ+gOPHHqPVuMKNpXUunD/NYL5O8d3tjHb96CTolJvXt/ALkyyvbXP02GE8z+VTTz7JxVvnCGWbn/f/O14qPsUIoyxeW2Zzs8P6Ro006DI2PEwS9TBIcQwT262QL1r0wnZftBusbazj2Dmk0SWI96jtRWyvufgFaLW6hAEUSz6lik+r7fLsM2c5dHA6E0qANEJILaRMs8+tFUKkuI4DJGT6z2Btrcb2doOZqSopgjSVxP1s8TQJ+r3qina70682hhhSoISB1gLbFOQcgTQcLl64hZsrUKrksRwLnQbs7e1k+cumiW1adNptbNvANFz2dmtUKiWUgrhXJEnBkCkyjVGWkUVdwfuxUXfcf0oZxFFMFMUYpkEcxzTaEcqwSZIsZst1TDRkx1ySYKrMpZHolDRVbKx3+e6LlzhyZA4pNL1OHamyar/nFci5Bq5rYJri/bYGISRJkpL2K6mtdhulTKQykWRAMsuyiaLsnBaEPZLYAZECMVHSQRoxSWihRYHt3YTX3jjP1StrzM8tcPPWNn55it16ShgpSoUyuYKPYVsoZZMmKZ32NrYhwLBpBwpl+bQaTYJul1R5GeivM42xPcb5j/8fKFPj5hwc1yLVMQODZUo5A0nC0OAQQyPTrG40iFODS5fOcfHsORwjx9yRRxg/9AilkRmQNloYSMPANMwssuwHmaDfY3w/8fpR+uaHOn984Pf3+vedcbc++Kjt/yCP+aji3r+z4vVe4/sJwzvPv9fv7tyklB/5x7tX1fZHGfd63vfE6w8PbPp+O+rdv7u7B/heAjxJkj9lmVYSiBVxbZeXv/019h+axfRGkTIjWX72xz/D5OQEYdSjWq1iWdkJ1jRN0jRleXkJv34d18mhx+8njLq0ez2cs1exhCTyPUBSKVVxHJOx8TEs0ySMYtx+BRGt+zmKgihMiNMUx5LcXrpNuVRGCcXayhpCZBCAcqlCFEVZr5RtMje/kFmK4wTXc0l0ws3FRTq9DjNzM0gB8uYy0nfxfvHzjI2NMD2/gFASrQyCMCIO96ht1Zma3s//8r//PYpONsmUnW3Ua/8Xaup+wkTiOB46lQgUnVabbquF72fQFEMZWfRNnK3oO7ZDkmos0yIOI3rtFrdv3+C+IwcxTMXY+ARSZRmQk1MzbG7ucP7iRc6eP8O++QXiOGJzY4Og1+sTfN9mYf8Bcv2K9dBAheXNHrP3PcHa2hpvv/0Ow0PDHDp0GLdYxKwt4h14kn/0j/8Z05OTXLtyhU7YYWxqjAcffQDLs2hFbW6/8yJFs8tGE3Y21okSCIOY+s4mW1ubXL5yhYmJcfYd2IepJBMTWR/q9s4WcwtThFFCp9NjanqGZrOF63lYlsFAdZATx09guw6pTnE9D61jXnvjDfYfOEjeK9KotVldX6dcKpMkWSZnL+iidczyyhoDA0MIITFMk0Ixj+3aTM/MoAyD1157g9npeZ579gWGhgZJoojllRWOHL2PVqdD3jHpdXrk/TznXvsWQ2qLd/P/IYuXr1PN++RKRXphym9/4YucOLSfr3/1KUaHhpmfmeHW4nWOPfYEI0PjHDp4H26hxMmHHyI99c+5uZvgVSd46803kIbBXr3B2toGhw7so1jwM7qlVJQLRd55921OPHASZRm02h2uXl+kXq8zNDxCsVhid2ePanUwO7/JbIX91Zdf5eTR+9Eio9cGYQ8/n+PylYtAyoMPPcjk+BjbWxsUij7Ts1MoqcjnC0xOTlCrZ/3IJ06coDqYZbJeungFrTXLK8uMjY7i2DYXL5zHVJpczsLrV3ilVCRb54nCmOfe3mByapRyucyVK1cxlIlt2QgBb771JlevXGV7e5ujR49x6rVTzM/N4roOYRBy6pVXaNQbVAfKDAxWGR0ZwTANpqen8PI+iCwTNY7uLG6l3Lh2jaHBUYqlIjoNadS2KJWHSJM2pglhmCItF6kkCBvb9gjCAM/zCOMU9/Q6ScXN4pkkSAy0X8O1DqDThE6nzde+9g0mJ6YxlGZ1ZQXP81hZ22Cv1sRUUK5USFJQhs0fPvU1bi3dZHR0jB978sey6qOS1Gp7BN2MALy1tZUBnohRhoPWd5zBAp2m1Ou1/mQaVH8hUmtNp5O5NbrdLla/mmoYdj+nMiUOM3iM6zpEcYqSFlJmk6IwCjFMu08ZjRECbEuRRgGtTpPqwDCW6VOr1Wh3G+TzZUAQhzFKyQwoRUocp5imxeDgIJZl9eNEsmuIqaooBjEMNxPJQqBk1oMqhQCh6XY7SJlRXmt7NeIkwXRyIFJc2yIOuiRxxMvffYlKpUwUtSnkczQbbXJeHq0z67DRpyMncUzBLzA2OoypBFHYw/M82p06tVqNNBacPXOFpaUVNrc2Ma2ERx5+FNO0EAjmZmeJel067Q75fB6pNWkc8c2nnyZJUh577FGcPtTrm3/0DCdO3E/e99BxgHXlNtuP3IdfGiGKItbXb7PvwH6uXLvN3/u1f8Qv//e/Sj7nQtBieGwSf2Lf9/ytP+K1XCP7ETspUqRIEl56+qt88YVvMPWTP44anEdIky998be4dO4ST331KyxeWeXjT+SYHs5hWBGu6yBSB0Pa6DSi2dwkDpoUKxVsTxH12hBpDm7/TXK1Sc7FL/K5z/wiF86t4Xt1rixu43tFym4TUV+DMYN43xhS7zE5NkQQRTh5k5GpWSzTREjByy+/QvmIieNZ/Hj7r7D+0HeoX7A5eOgktmuzvrFLqTJIzvNJU8n6Zh0/79MLusSpIk1z1BodiuVyNi9JBYbp4OUqnD17lbm5cWw7y4lud1r4eTezuZuKUkmh04A41BimBm3R6uwBBiu3t8jlbJSVkiYRURAhhaRSKTIzPUqv20BKn25Pk6YaJaIsrxRJFCb9xcOUXifsW32zRSZS6HW6KMvDdSq0Ok38vEunnWJbKa7r4jo2hqGI4l5GIRcQxSEDgxWEhCROOfX6Etdv3mDf/Bg6jLMkIanetwzf2T+SJEZrAf3ziJKKNE25tbLB6u2M1u94XeIw7ZO9U2zTBK1JdJr1pMYxvlegUDTw/YwSrOMkyzjXGp0KiiUP29Z9W7ABfWGqlAEyE8W27SCEAi2RZhZJpVFEfSeHMiyCULC93SKXq6AMhyRNiGOf77x8mpX1BvsXDnD0vgMIHVMdnuLClVuMjM9iGAbTUxMIAY4n0RKK+TLlUpF2axV0llYRdIOsLSJN6PbaFDqTyFuj7Pz8H1FcKDO571GqIwtUh+cxrAqTk4dJYw/LKrOyss2t5U3ePn2edjdgb2uT6bmjHHjws0wcfADDc1E6s5MLkYLoC3eZVZt/pJHTyJkEOfT9j/8/z/FB8frnWdX9qNe71/j34vWuca8K6t3jXs+720qcpumd1/zQ1/j/Urzq9y4hSnnkJx/6obf3werrR4nXO9CpD1aK71h97668kiaIRKG7Da6eOYWwoDJ6FNd12NrKIi0830H2V97v9Gd0u11c16VSKWFtXAAE8fAJNjZXmZyYgI0d1Llr5A7vp93s0G53MUxBPu+zt7uXkS8dF8M0UVLiWBkBsFSpAIKN1SVmZ+ZQQqGkQTFfxC96BEGIwMgyXZOIbthDA51Oj9//0peYnp2m0Wpw5OBhqoNVbMei22lhbdWIxsvcGvM5dPQ+hGESpSmbO3vsbG6ys71EwSuyvlHHzfs8fPI+ylaE9fYXSLwqamie3bVdvvCF3+XEyYdJE8npt07z3jtnmNs/g2M7Gak1ijCUgTJs4gSEMGg2Ojimi60SqpUSnW6LfLHAytomleogpmFSKJR5/sXvcvzEcU7cfxzHsjFNk1wuh2maNBoNjh49ytVr1xkfn0QAF86dxXddzl24yMLCPsbHJ7h8+TKFQoFrt1ZQSYBdu8r4/f8pcS/lD5/6Or/8N/5LDNvgxvIthCnxij5vfOmfMrX/KBOTM1RKRU6fPotUJr1GnemZGWZnZwnCkF6nS97PIcgqS1tbG0xMjJCmYJoWFy5cYmRkJLMgpjFRHPPMM09zYP9+Or0etWaD7e01jh47QZoCqeT8mYtMz07TbLbwvBybWxsoldkpHTvH1tYO3W6PN954nePHj6KlzqyWQrK7XaNcGmBkaJRXT73Efffdh1KKSrXKy6dOMT06jBSKrfVl9tnXuD3xSzz2E3+FxfMXOPPOm7xx5gwPPfoEhw8chW6L5aUlXNvma199ik88/jhLtRavn3qNZ555lsc+9jirT/86nkpxJ07yyksvcf/JE8zMzFEqV1laWqLbadFqNdnc3qbRbDM1MYXt2jiew05tl3K5wsDgEN12hzAK6XR7lEpZn1+5ksUh6VgzUB7k/JkL7D88j2VJFhevMD0zSi5nMTk1SqPZzWAoZD1SjmvTbnWRUlIqFXnnnXf4xCc+CUCcRkipmJ6e5saNG3hujtW1ZSbHJzj9zlvs2zeHFCm2XwANURQjTI9G6HHfA5/GdgRxFDM0NIyhDK5fX6RYLrC+vs7Bg4c4fPgQlmWxvbtNpVLJJoVKsbCwwOjoCPm8w9jYGN996bvs7u4wPj6O45uZa8JRaCKCoEuxlGdnY4er1xbROmVkuEK7ucvAwDjd7i5Br03OK2I4Po1WEyksdCpRUmA7DrsypPLyOnHVJVWSnOeihEXsbiN2e4TSo1QqMT42gZQKP5cjTWIMw2B4eJRCqYKSCVGcYju5Pv32FA89/AClUoVKtQpokjTGUIqnv/kter0ejz76MKalUIZGSRelDHSq2d3Zzc6ROZdcLkcUhtkklewalqZJnxra73FNE6RQvPfue3TaHQYHBjKxgEAZJqCIopgkTbBMgzjJ/vZSZITjKAxx+gt4ppknTSxMw8SyJMqws8pSq8W/+de/xezsNNKQ9HoBlpX1nUoh3rf/SilJYoGh3Penb0JKdD/OLoqi9yNK6F+LbMch53okUqLTBElKu90k73tMTU3i5XLk8zla7QaeW0SqrLdP3LVt23GIgoCXv/sdJsZGKOR9tre3kAbk/SJhAM89912OHTvG3t4uJ04c7FeKsp7cQiGPITSzs3MomUFvGnu7HLrvPkCwsLBAmgb4vs/g4Aiu65GkEVYUo5c3WXnyAXZX6+zsbON6Fqbr4peGiVPFfSePkgQBK4uXOf7ww8ROGRGHP/S1/J7iFY0iod2s8y/+yW/w8Sc/zf1PfI5/9cU/5Mtf/gpDxRyWMcDVxasUchP83M8eJK8khtkkZ5do1eHWjRUcF0wzJJezaPciUClRr4tMDSr1J7L9+MlrXLp2ld/6rd/kJz73U5x88PO8+MIpHL2NfwSWvRoDk5N0WoskQQMtJakRcflGjamZGTzXI0kiHnzgGKvyMnKpTHIpz86JS1S705w+8xqDowdY2dgk1vDiS+dwXJ+9vXV8v0i7Dd2O4sKlayjTwLYMFq/W2FhvMjCUZ3QqRxIoTEegVIqX9zAtRZpsMzxUxTC7GVAszHKdbdNFqRQpLKJA4OYspBGRxCmWYWMZFnHUQdADqbh5c5Onn73O8aOTmGaMTpOsp10LdKpRSmAoL7O1K0Gaxhm80smRYOK6ZVzPxnIsfG8I6BCGAXEUkqYRggTDyASxVCmGAUoqdKqIRQG/LBgo5XAMG8POetnvtKwZxvd4K7bt9G3vmYZVUpErlHn79RUGh4q4Xg2hXSzXIY5iRKpBQC/K7MOSEKkU+YKD7xukSYwpPcIo7hPULbROiOIOQhh9V0XW+xpFMVpkR2eqwVBmRmNOM/dHqgUIg3yhiNYSZZucPXODpVu7TE3vY/HGMr1eRIrN4Mg4pZJP0KljmSmhVvilKobjsH//PMWCg58rsLGzRLlaQaeKVrOBbbaIgpBKsYIUkiCOsC2f/O0KYscj/o/PUZobRCqftY4iER63b++wvLzL7k6Pc+8u0qiHLC2v4jo+P/UzP8vo6ASPPPgIk/NHEcVJYuWADLE1SJFZ9zUJWvTnGPpHm//LIY0curf4/YsgXn+QKu5fePGqtf47/Z/A98TjnXEvAXb3/R8lNO/c/2H9sh/sk71z/50q7YflxN79et/PTnz3/9WnHkZ96uEP3YEMw3jflnWvz/H93sfdlum7P/O9bh/cviF69Ow8Xs4hDbYw8kWKQ9ME3QZRr0U+7xCmEbVui+b2Lm7ORSoDy80RxSlx3CNdegupBO3CHJ5dQCmLOAhwnnudxrCP5yqa9U1sNwcIekFEdWCQOIqzGAZgbWUF27ZJNUipKJTyfRtpQK3VwPJckiQiSQW9MMqsaXFMLuezs7WD1Jqjhw9i2SbFUgkhFFIIwl6A4ziEK6sEjsvkf/ZzJEnK5uoWX/gXX+Tprz7L3/07/yu/+it/i9NnzvPYxx7g/hNHCPaWsF77vxGFUVruCGY/s+zQ4cO4Xo6UiDBqcf/991EoVGi1G0DK7u4ejp0j7DbQcYAkQakU2zWIk5ic56NMC2Wa5PMeSRpA3MnsluMTSMPgzbfeJIhjKgNViuUSTs7OMPOGYHRigjhOuH17hfmFBcaGCyzduEq9FTI/O00u5zA2McL1a9eojk7hd5eIhhcoD49SKg/yb//wa8xP7afgFPi3v/tlpmfmsLSNv/08xsA+9uoN5udmqO9tsbqxzNjEEN1uiEwVmxsrtNsxg8ODdMMWE5Nj1PcaCJ2dyLY2NlBC0aw16bZ6VKsDLBw4gDAkfs7h2sWLSOkwODDE6vJtlBJMT4/TaTfodto4tsvT3/xjpibHKeRzNBottjY3qFRKHD58EMMwaNZ28R2P906/x4ljx2k0tonjDrdur+L7eaoDVXa3t6jv7DIzv58wiqkkN4n9WVbdT9BobjI+M8UTn/kcvl+mU29z5sy7mK7FgcNHabeDjIy7fIsTJx/g5PGj+K7N7VNfZkbc5lY0wOjoEEnc7ccVKG7f3iTuNVjYt8DQ8AitToeJ8TFimeJ5PkvXb9FttFm9tcKZd9/l6NF5RkZGcGyX3/u932Nh/wL5vEun3UKqfp+kYWC6Ll996msU3BJb6zt0g4hWNyCNEgarA2xubjE0NJLRYoOAXM4njBOmp2fI+TkSHRJ2QrY2d9je3ubcuXM8+dnPUB2q0Ak6XLl6lU9+8tOsrm5h511KL97GuVkj2jdJcWgSIWJ63ZgwDimVi2ysbRD1IqrlKpcvX+bo0SPs7NboBBFRr8XoyDC1+h4XL11heGQUhCKMM9vb9Nw0URxTq7cYHK5imDY6EcRBimN7GNJCCZNbSzcolfMMj4yiDJco7qB1ijJMur1uZqcULt3OLogOpfIQnV5MoVJErjQJJjw8lR2rOhEkIhP1rj9NEktu3LjF7NwEaRLTbHbY2Nxmd3eXYt7PcgnjkKDbJtUJe/UWu9vbXL50hUOHj6IMhSGyvOJCocz8/n0IQyCkIOhGYEpSssXRxeuL1PbqTE4PYxomQS/FNBzW19bJ5Rws00OIzEbc6wU4tgsCxsfHqFYrIMgyrIUgTjV9vhOGEpBqDEPQ7bQwTEm328VxfXpJQLfbxTYthI6z92vmSJMQRJY1+8ijj6IMG6VsarUmp0+fZm5+liSNMwGtDNJUZER0ISDNBLdhGCRp1o+YVUszKzGC7LolJVqniKRHp9XEdXJZzioKoQRxnJJqhWW59IIOyrAIw0z8JUlCrVbDdV3CMKHebHPm3CXGJiYplQqYpkOvG9DuNIjTgEq1yIkTx3j9tfe4du0qx44fpDpQpt6oUyj5RElIt9dhZ6dGqi1GR0fxfZ98Ps/2Vh2BmVVrTY1lGUS1BtZWjbdGK5THh5mYnWZwZBjP91lfXWNhboqy77K7cpNUGAxMLxDJFPURvsKPajVSKURGl1A6iI4Ju1f5n//ub/A//I//Gz3D4Cvf+G3+8i/8HL/zhad54bvP89knxvjUgxFzI2U6cZsk7SJ0FdepUBkxyfkuQo4QtGMMWc1EsS2xCwXU1UfRKuRv/qtf46d/5q8zMJRjZ6fNoWMzVCfKHD76MHFYZ2vtDE4sMYpTdPZWEc2bJDpBdRt8++nvUKlWUA5Mzc4BPjfMt5iqH6W8N825sWd5ZPBxXNfm2rUldnY6jI2NsXhjifGZY1y4eptby1sEkaDR7BHFksuLe+jUY31jj7GJYZ55+izjE8OEYR3XMhGJIo0D8s4gqQhJpQZho0WEUilxqjPavkiQKsUyc1xb7uF5BZSMSZKAODUIY5MgFKTaplI2qJZdTBmSIHCcPMiEVASEoUZZAqE0pukQxxlsLU5jUjS9XpNypcz2Tg1kTBSnJFEPmQQ4piSNE4QwiRJNtxfSbIBpJwihKRUChstllFR0okZ2XJkuURJnx7dUaG0ipIswHCSgVD/xx7BwHY+RkTx5PwOySSmJI5H1wUdBBpVCQpIBy7QGzyvRbsVokRCLFkHk8a1nzyANA9sx6LQinn7hEmniMDySQ+Jli2k6xTRM0iQlSSEVijTqILQkiSRBkIndIOwh0ShRojhQYHNvj8uXm7QiiyvXbzM7f4B8aZCYHJhVqsMzNGtNdBRRKpdoByF7uzvk8wUunr1E2O1QLbk099ZJ0wSdaAxc7PoA9s0q8WBA96dO0RKX2Ny7yc3VRRo3Fnnju99iuJRja/02EPPAo/dz9JFHOPnESOdACAAAIABJREFUZ5k++jiiOIXIj5LYRRLTRcoUJRKkzlob7sywBRKJzGjNP6jW01lf8p++/enzwEdu6ge0935wfJR4/WGE60e9hw9qrnvFmv6FF68frLzCn66Wfj/y74ftFHe28f2eB3+SFvxh999rfD8xea/Hftj7u1s0R1GUUSnvror+AONe39uH3e753oWJTk1MIeg2mhTyJYSd65+EBW4uT6JTTMvCUSaOm5EiwyjOJgBCY6yfQacab9/H2d3ZplwqsR62qf7+t9gb8ClUK7TbXYSU1Gt1kqQ/Ge12MZXEVAo/7xJEIcoyEUpiKZWduAwTJ+ei+7gmnWq+/rWvEwQBlXIZSHAciySJqA5UEAJ6vTa2ZWEYKlv11GDsNJAln9vTg5RKZUDy6COPsbW9SRwH/MNf/we8+urLPPHE49jdDay3vkBcnCIuTWdI+SjC9/PkvFw2KTQk1UoZqRQgMQ2TKEyo15q0Wl1yrp0JECsj+AkpibUiAz1p4jil2WhhGVmvhWV7vPvuOba3tmjUdwHN9OQEURzSaDQpVwewLIfz5y/hWDa3bt6kUqnQvfJl9o9ZvHcjZHJ8it3dXbZ39th3YI5UCFQS4DQWuRZXOHriPp5+5hv8+Gc/wy//N7/Cr/y3v0rO8RBpj8ru86SFOfKFCpbhIIXBkRP3gdB8+9lvkyQxQdDGsnLs7G3j+x6tVhPHcnjzzTf7q9aKnJej025TLmf9vZZp4rk5pBA06g1kH/oyPDyCaZpYlsHVxUUW9u0jiAJcL8f07BTSUAgtCcOAYrFIvZ71QOccl/PnL+C6Lrt7O+TzHkJIrl28ztTUBC+/8iKmo3jwkftxnRzpxtsYRLyefIbTZy4wPj7Cxtome7t7fOf5F3ns0Ufxcz5h1GF0ZIxWs8Vv/tN/zH/11/9rCuUx2q0OurnGgc6rqIkHKA6VSNOQnONRKg7S7QU0WjXyhTy247KyskqlVME0TFCKrc0tSoUCAwMD+L7HgYMH8HwXIRSrK+vsP3CA6alpoqBL3vdYvnULQ0i++fVvUNvdYWhkhI996gmkpZieGCNnGrieTxzFLN1aYn1jg+GREVzb5MK581y+eJGpyUksSxIGXRYXl8jlPN5++23m5+cZGx/HtrO4lsOHDpMmCcVSEc/zsd9cQXRjkqNjdHoBKIO9nV0uXb7I7NwcxUKJSqmC67msrq8yNT2N7/vcvHmLI4f3o5SiVCpT7e+rSilOvfIySkqGBgdZurXE6uoa5XIFL+chpUKQ0mw1yRdyXL16GSkFs7Oz3Lq1xMjoBPXaHuVykTRJ8LwCUtkgHRJitBBYtp/ZqwXIrsa+XiN0FLeXbhNHMVu7W5ilAJIJDOWwurJGqhMEmvpel9defZvLly8yPTNKksQgNH7ew3Zy7D9wkNGRUfL5PAODVaTUaEJ6vQ5P/T9/1O/1tpACLMtAKgeps17YkeERxkaHSXRmQUxiTbPZolQqZRODfh5sqjVKCkTWUJZVPdMsmkFrnfXjkfYnFAohs6qrFJmgzKrvFlqTZTQKxeuvvkqlUsF2HOI4yhZkheiDWKysyioFbs6l3W4xPDLSv0ZIglYDQ0qi9AaR3iGOcigjaxHpdrvkXBe0RiGo79WIw4jf++Lv8tADDyE0xICT89H0P4dUZEVW/X6riWGY6FS/b0e+4woylMIwBMNDwxjKpFQsUq81KBZLRFFMzs0xOTnOyPAgvV6X0++8y7FjRxgYqBKGQQbTSjTSUJiWlbUvODZhEPLCC99hYmKcp576Cm+98yaf+MQTmLaJaSjkzTWEZXL7wDTKKFKpDLC9vYVpKgxTUK1UuHr5Ao1ancP3HcHyfIRhIJLvPw/4yAmjNtFCILTESNu89/qzvP3em9y/YzCvCzz8i/8JezubrNy6imxuMj8p+fiD+zBNE69QJEq7SGWzurpEL2gihEHOybNVC/jbf/sLPPnpE3iuSdSKsJYeY2OjxW+/8buMLyg+9ujjPPJIdl4ZGhpjd7PG0nffwIsMjGoXpXK4hoPl2JiOZHh4lI3NPZ7+5jP87H/088SpiaGKXHz3VXr71rnf+ByT4RF2HnuT8XiegWqFOElZvr1KwS/RCVyCpMYDDx3j8qUdpGExu1Dh0uVljp2cZHJqEL/SozpUpt22kTLFsu/YOQ06vR6WI5FKIEXWD3qHFaDJspKFyOy/zzx9lbmZMSxTkqQZ7KvVrrO70WZ6tkCpFGd5zKlPpHsksYlOs0quMjRRHPejoVIcx8rAaWlCGGcshxSNMlRGxM8PEgYxW1tbGKaNm8sRpynnLq5x4ew2CwcGUSpFyRSDDABk2gIhFVHkEEUtLCsj+lqmR9iTXL+2zMrKNr7vYNoKIRQ6tWi1d/BzHrYJiDADkFoZWd1ULmgTZZgYlklCBmWL4gzGliY2SRLgunkGqhVGRqoopXFzLs161sdfKBsIlSMRkOgcnV4v8wVIixtL25TzHmmq2NvrcuXKdfx8CaksWu2I28u7ODkfw3RotiJur26wsLCP+fkF1tbWmZiYxM8XSHVC3vfpdXuYpkmttse1a9eoVAoZk0BYdG/2sHJt3O392CsH0DseqROwevgczUeusbq5yMrKOsoqYjhlZvYf59CJRxmd2c/BEw8ye+Ao3sAYmC5aOaAUgqxF7u559/si7EMP4O9/+H7YA5NzCr0p+9XXH77i+aNUSH+Qyuuf93v44GvePf7Ci9c7ldcPG3er/4+yE3+wunrHJvzBVYIPbvODkKh77QR3W3Lv3tYdC/KHrXL8IHCoO6LzTqP+nfvvfq7sxy3c67u4W7Te/dw7t3s97+7PlWoTiUYjSDG5fO4cKBgeGqIXJLhegSiK/l/u3jvYsrO60352DifHm3Pqezup1Wp1UCTIEhoJgTBgbGODjWuM8TDGsaixP3umxmMz84E99sDY2IPBUYUEQkgggpUl1K3uljrczjf1zefGk8/Z+ftj35bbPRISHlz+PKuq63Sde8I+e79773e967eeH4HvEDEir8pJ2JK0RMwolXNP07QsKrE+8vk0ohcQS0apvXSChCdgJaKIoophGgiCSDKVAsBxHZxag6bVwLItgi0bmICARrWOsNU3JiuhTYNrO5TLZV458TLzc3PsuX4vuq4gSALRaARJCj0X1S0wSqPeoFQsYxoRJl44QstwP/F3vIXC8hqKomGYOqNjI+zatYP77ruH22+/ndHIJur4V6F9B1KmC0VVEUQRM2IiIGA5TWQJ1K0kTFZUgsCnWCwhCjLj42fo7e0DAlRdwbKbmKaJ6wWYkQi+H0qAjrx4lIgZwdBNKrUGTdulo72LM+On6enuIJfLEYlEkGQFXTdxPR8/ECgsFmhrbSWZTHD+3BmSLKIbBomuA9z367/Pp778beZm59g71EsslmL80hxdepX8nncTSbbz1ttvYmWlwMDQIMl4gsmJSyi6AQvPULIkNop15mbnaTTqIAlomkxPdx9dXd10drYyNTVPOpPcItBKTF2aJJPN0NPTw9zcHK1tbdi2zYUL50mnU0iCwNTkJNFIFF8I+9IEQaTZsAiCgMnJS0iaTiabwYyYtLS14LoegiTRqDbo6OhC01SefPJJ5ucXGB4aQRRF1qoWb/21v+SPH36Rew8N05JWSGWSjIyMEo9nMCMp1i88RWNzGeuG3+G6G29jaHCQhx56kJ/58M8QMSPccvPNvOfd93PLzYd48MG/4x3v+Dd4fuhVObZrB6oW48//8L9wu36KRqSdy6tlzJhCo9FkpbBBuVQjnUlju01a2zqYn58PKw2TUxQKBXxBpNloIGxJrA1DZ2p6EllRKJVqCITn9fLyIpm2FhzfJZlNYcai7NpzHW3ZPNOXp8m05NFNHYkAz7a5ODFJs9Egl80yNDREpVpBU2QKS8sQQD6XZWFhjqXFefr6BllYWKCjoyOUU584x4EPf5JP/9XX+fj77kQSRebn50gkMrzw7SOM/PWf8qkvPcxvvGcvcrSFRDxGb38fjutiWw5LS8s07AadnZ04jo1juzz91NNEohrZbBZJDHvXq7UaAG2tLUQiJhHTpLW1jVg0DgRYTQtZkcOeTTGk+larFTbW1hgbHaPRsCisrjI5OYmmKrS3t1IqV8LrSDSN49mYpoEfSFsQERkrapD4ziR2W4zJqSmSiThRPY3SUkUue1Qsk0q1Qkd7K77nUlheZ3p6hkM37aelNVxwUBUZggBRkrGdgGbdorOrg8MvfY/W1jyyFELZhgbGULWw4mHoGksLi0T0KLVqA0kMQU2220SUBGRJ5rFHv8HZs2fZtm2UiBlFEHyaTRtRCHtoQ4L61kTZdQkI7XJEUaRRL6OpGqVyldnL86TSOUQCHMdGFIWwXy0QkCUV27JIJpPEYlEajTq+H9p/+L6PZVkoshzSgyUJSZLIZrNXGO4Igkhlcw1N1fDkywRCHV3tCYmngoAsbdnKeB6+56LrBvV6neJmkZaW1tDaqlxBlsIqrSyH/aUb6yuvWtmIggRIKFsWVLIsh+0WtsXk1BTRaLit05MzrK2tMz+/QD6XQwDOnB2nNZ9nZWUZVZUZ2TZKPJEIbYhEEVEETTPCqrAgvpoUaIrGzMwMuq5z6223MDIyhK5rsGX9Ia5u0nBs3ve5z/Di4dPMzc0gK9A/0IWqKqiaSjyisbFZZGhkjGDLf/bqO/u18Mir77WvOw9AgEBFwkaTG3zuM79HqqWVD+iDiGtFXhSqmFrA8uIMw3mLd71zjEi0Ri6boFov0rRiRKIm0YSKrEjgiZiGghmPUC7OsW20E1GoIQQ+2vxN2I7IavYSXSOwa+co65sCh186jCgpNCoumf/5OLk5AecWI7yHxzPMLy+RTWoIsksm0cLIyDCFlVW+9+JJsi19eM11YtkksZti6OcydNS2sTx6ioXDVUbHxujr68J26qyvLpCKJ5FRseobpJMGZ09NEjG7KBVLXLq4hGm2cfzoAh4S+ZY8nm9jWRaSFMX1A0RJwLJqCH4oFQ+PeSi1XV9bDwFkgc/QcAumAbLsEhJxPUzTJJkwwzapIPSoDwQXUZZZXtikUmkQixvYbh28Dp5+8hQ9PW0Egofj1FFUkUgkgR+4+IGHJAiIkkip7GGaURRFI55IUq6UwsUvM8JLR6cYHIgxefEy3Z19BK6FJEtYTgNEmWZD5IXnTtPd1RXShMUAz7NIJiOsrG6SyUVBdIEASRKJmBqO7eB6Dq5rI4galm+j6zqe6+H7bkgZdm0uTlRIJnKhz6zigKQioeF6LroWqj0cFzQjSiprYpoKiu7TaMo8/+IxpqfrTE0vgqhTqsDhI+cRVB1ZT3FhcglPijB+fpbWjmE2N0tMX14mmc4zP79M/+AQLa2dxBMJUuk0nV3dNJsW6+sbJBIRgkAgHk/gezaV0gYd8X6SK62YG0mkhSi+WcGTV3AGDlMbew7n1lPURjeJDScpljZIZ/L0DW4n3dLP0Mgeovl2zHgKSY8RKCaupOOKCp4o4QtsQQgChCD4hwrrVYUj4fWy1Nd4+rXzhH9cOHIeVAkuS8j7X1tJ+f3iSp7xZt537dz/2m38p8YbFQpfS616bfxTklf5n7Ct/2LxenLh1/r7G8XVr7lys5AkKbRz2Uo0fthxJdm8AkK6+vuv3SbnZ/8DAMr/+t3XrRhf+1veaIBcHa/3umv3y7XhCBKGX8UVVBIdvRS//Q30uIHX2UMkkcL2A3TVQJHULYiBuGWBIBL4UK3WoP9WIqqMmEmGtjKigm5IrI60kJlYYfyVUwwOjqIZArKssL6+QTqTJhaLUFwtkkomCWSBeqNB4AWcOH6C3p5ummKDiBllavoCQ6PbkI0IkiTx4Q9/iMXFZVQl9EX0PR/H82k2LTzbplGrYUQTYaXOMHAcmyDwKSwvY80vkUhkEEUQRA9BdOjuaadRr5FYmUO49Ax07MbWEighQwdJkllf38SMGMiyiCgErK4WiCdS+IAiQyaT5vy5i+zatYt4PPReLJXW8QIHzTAIAhm3Wca1HCRRZcfYKKKo4Dg+8UQUQ4/iu9A/2E88ZiDIGrYboEkwc3mG5eUlhoeHiEXjrK+vk0rGaMnnMRsmtVoNV3FQNRWA1rZWuts6WFhaJpFsoVBdJHXk85zLv5Ppi2excdENlaXCDMePvsD0pVl+8zaDxc1Ntu0aZnZ6lpZ8HstpcO7sNLt33UC5XKPeKDM7O4NmygT49PT0cP31e1lbX0GSJXbs3ImmaRw/dgxJVkjEo2ysrlPaLFKp1kim0ly+PI3nQmdnN7Issn37GE4g4dhNbKuBpmsICPiuTzqVoVgqoes6P3LHnaytrXF5doG29lZaRPXVMVyr1Ulp4Lo29Wqd8xen6esdIGmvo7YOcq6wwbee/HMO3HgTd91xF7PTs6yvh/2X7a15oqbOe3703Wi6QltHO6lcnudePMKJ55/kVw7ILNsm6AaZjIYqJ7k8eRFT1+nsaMN2PTw3oFEtY5oam5vrdHZ3hhTlbJ6jR14iHY+ztlpAEAKGBgcp1+uh/2fg0NXZyenTp/AFGVGWKFWKJJNJbM9FMQ06u3rQtpISNWbiui5dnV1YjQYnT5wgGovheC7tbW2kM1n8YIMTJ0/T1p4nnckxNTWFoqgsLy+zuXmesq+8ut+Wlwu0t7VgmgbBNYIPZ/FFMDqRrlQJJZHjx49j1S3e+iO3s7qyQjweIxZLoKsqmWyalZUCmWyearVOYWWdUydP06xXed/73ht67XowMTHB+Qtn6Oho59533ovjiSiahiSJ9A30I/jw3LPPksrk6B0eZHLiIt3dfbi+haqplGp1/vtDD/ON548ys7iKJIr0ted4z9tu4F23H6KhNshpCvtuvIEg8PFc8OwGRKqsTK/y0pEjzM5e4tabb2H3daPohkj/QA8IAc2GxRMXz/H5555ivLBMsV5HE0S2t3Tw8bvvQ1FUmnWbWCTL1777NXr7e9lzw/W4LrS2doLv8snPfZpj5TWW3DobtSqpSJTru/v46UO38+7RnciKQK1eZrNYJBpJUKtYlHyPjo9/5Pte36+Od++4gb/+hV9B0zSazQaSBL4HluUhiQpLC0sokkg6lw79LIMQxGWaJr7voaoyiiLh2M6r9xhRChNgM56mWrcwtLAHkMCjYdlEo1E8L6RnypJErVImFo8TiUa48667thgELvFIjOeff47BwQG6ujsJfJdsphXbaRIEHpYTSqRL5QqCIFDbqNHa2oooiXR1dW55iMtUKhVWV1c4sH8/Dzzw19x9991IosD8/BwTExOMjY2Rb+nC9wO+/OWH+Kmf+kkct0m9Xg3hfwRomommGPi+x003H0JVFBRFJJfL0mjUqJQsMukE5soGzXtu5X+88zaW1yvk8ikOHroez7ep1+sUCisEdoVMLosnhBNi4Z/MIr0qxAaCF0cJAhZmz+I6Ih/7pV9n9Q8ewfd9vvf8cd71zruRArjjzhuQjTUEtYnt1xB9m69/bZKDt3YzOprC1LNsrK5Tra0jKArvf989mFGJcqWAEYkiSxKJhMgTf/NtWgbvpFJaJ6CDe+65hwCR82dmUDSDarNOqZQkqM4gaTLp1jYEu4qgVBADkVyslZOTU4yN7cd26gyMDpFubadWsyjc9BLtT48Rf2IXmXceJ7+R5ZUTx7n+ht1EjAsszq3hRX0OHtiDZTWIm3GUWATXcpmYPEm51CSVTnBpapJmo04s4pGISxiGQmdbHj9o4Ht1EAVMwwQxXNAWBJF0OguEc7JKdR1Ni9JsWmhaKP11bQ9Z9hF8DQmVABdfbOJ7MolkhCAIYT2aGsWqq5RKIEoKQeAiyWFVt1qtghguWIOEGLgQWMhyDESFWt0mm8tjNUrIQo0PvO8AquIgdkOj7hNgIwkSELYnRCIamXQS2/LRNBnPa6KoAc1mk7GxfrzAI0DEdproikWjKeH6Io7roJsJHEfBCjRq5Sr5TATLc/ADlY1ikxPjU6yv1Tm0fwDPL2LbHuWiTTYbwXYaVGo+r5y4SEtHGxEtybkz59i9ZwC76TM77ZJvk1CkNKWiQiqTYOfuG5m6fA5Zy3J+Yp79B25hYnqDwppDV/sgrR2juB44vkyuJceliXmyuRDw6XkupVKRZrPJ2so66UwOSRbZmNigozGM2owT7FlgyjjOBmfI52poUhHL8UjnuikUG6Q6EgiCQSrdQrPhku8cQpB0ECQ8/neqrxRcgan5r+ag/8QW1v/fxj9HTvMvGT+4WPpfMN4oMftBk9drE8I349X6/T7rjeL1tu8H2e43+/1vlPC+1srva+2Pawd8IAQIggOCjwMMDvbjOg0kWaCwukpjq0ImwKtUPFEUkeVQAhP4AvHBA6idOwmCAM93KBc3mbh4Hu2W3SROzXB5+jInT52msbXiH9maRMmyTCyRQtY0BEGkVmuAJzB+8jSmGYKBAI4eO7aFjQ+9HTVdpaurC9/3OXb05TCRFiR0M0LggywqLC0VMAyTtbU1ZFmkv6sDURKJx5PIksLc3Bzj4+OIUsDm6iKJcw/A7BGqmV1YUmg5cMX3TRAEYrEYtVoFVVWwmvWQ0ky4f2u1MoIAXd1dZDJpxK2/RaJRorEoIIQejvUSq8vz+K5FMhHn1MmTFAorKLKI59lcuHiOWDzO2uYmmWwLiBKu5yNLIm0teTKpJOOnx/F9f8s3dTWkffoeJ0++gus6ABiGgWWVWJybYn11CS/WgW6v4lSmOfz8Ue6++x4O3XwQWYaWXJKB/lGAELevyMzNzzAzM4mpG0xNTuH5EAgyrZ3d3HPvPQwPD6MoCs2mRaGwwsLCAsvLS0QiJkuLixiGwb4b9lJYXkaWZK7btZu11XUsx2F8/DRra2scOfISnudRrVapVaoszi8Sj8dw7NC6QJXD5NSyLM6dO8fGxgbTMzPMLyzRbDaZX1h4dQzrpoEgRlhcXKNerzM00MP8/ARNvQ1l8yy37B3h/vvvJxKJ8NWvfo21tQ1c1+WLX/wis7MzfPazf8z2baOcOXOGs+fPs7hUYKgjzSduMmmabXhmnoGBQS7PzOFYEqlUC7phUK2ViEQNenr6OHf2DKuFAqqqoBsaohx65O3fv596vc51111HJBLBD3wS8SSLi8scP/YyoiiyvLTI6uIqYiChKwbLc0sszMzTcD3a2tq5cPo889NzbBbLKIZJoVDYOpdkTNPEMEyWCytUa6G1yODgEJlMHkXRGB4epquri1QqRUs+tBm6Ev39/TiOQywWxfM9DFlmOJmmL2dAAEcPH0ZRFERZQpJlbti3j67u7rAXEx/LtsI+Z0mkUqkQBAG1WoX5+TlSqSSpdBJFUQGBp596iiAI2Hv9XiQJrr9+D45jo6kakqSAICOKMsePvUyxWESQQDd0DCMkCjcaDdYrFu/4xB/x3/7ya5ydWiAIAizH5dTEHL/9pw/zwf/nf2DdMYZ+fAGv2sByLERJgEoU1yjS0Zkjn8+hajKmEUGQfNo60th2g0bD4lce+TIf+OLneWryEmu1KhFNpxl4HFmc4Sf+/L/z0b/6PJVKA9+XeO9772f7ju0h4MR2qdUsPvKlz/HnM6c5sbHESqVMRNPYqFb51vgJPvD5P+SXvvylVyuO7W3tWJbDAw88iOdASzxBSzxBPhYPH6/61xJPkDCMV49b0gmtunw/2Lq2SDQaDU6fOo3vBzzz9LNUq9UtkIz16nXU830CAmRZxnUd/MAPlTmCiO+FXuiirBNLpgkQQosf33s1wa3XanBF1SMKWI5DIAjhWBfCyaFIwMzUJFajjuD7BK6D7ws4josoCdh2A4TQ19Y0DfL5HBDS5o2t4y3LCjfeeCN33PF2Go0auVwaRZEYGRmmr6+f3bv3oKo6pVKZxx79JlbToVyuUS5V0RQZu9kAPwA/4PHHHqdYLEIQjqdms4llNahUymQyGYSlNQTHRXrLPsbGxujoSjO2fQDPbyIrhKAa18WxaiiaGtq8BCLCD2PeKDiIW5qnC+fHyefa0NUMoiCSyaTYu2+MSmmN8+MXKayVCEQVQY6wsV5BFkw0vZOz5y7TsC0CX8TQdCQ5wK1ZbKyWKRctJDlJzVLwfQFwyOdjPP/UNBMXl2jJd3D8peMEuLR1tGJGoyiaTkvrGOXSJoouIKoaVtUC30ERfIobBfDqyIrP6PYhOvt7aVgOpVKFxcI87nteASeg7/ghBEdkbGwHxc0mm0WBGw7up39bH+cuLHLh0gLJfJTyepPapszB/YdYWaxiGhFSmThr6xWqVQE9ksVDo1rzmJxcQFPMEK4EYfVbCBfEff/KXC9AV2LUKg6qEiXwRRRFQpQCAhRECVy/TtOyEaUYgR+gahKKJoDgEfgiolLj1rd2IypOCGOTNBpNH1GQUBQlBJf5HqIgENFlFhdnse3QYmphbiHsSUdEkotIoogZlbC8Kh4+vg+ioCAK4LlVOroy1OpF/MDd8omXkSUDTVOpN3wKyzVkKYIohkoQ2/bR9Dj1usvk9CInT8xzZvwyzYaLohqIosn58wuMjPXT3z/M+lodx1Iol3ye/94pbNcnQGDm8hKNpsTEZIGV1Sotrd2UKyV0Q2RwqANJCkgkU8TjGcbPnKWru42D+/ajihK33nQT6Xicm/cfZOrCBPMLqyBKXLo0TVdXP5ulTUbHRkEIUFSZ+YVZIlGT7p5uUqkMa6vrSAsmvRt7aHTM8NXsL3I2/xe46TMo8gayv4HticQTWZYKG+h6HE2LIWkxCksbROIZBNnAFyXcwEcKvK3zyEMMXKTARQ4c5MBBDMKK67V9qPDDkdf+S8brtT3+a41/VbLhKz2vr7fzr5XHXnugrpXnvNZ7ry3Dvxa1980c/ODVPuywTyk0Wn/tRPW1Tgj/60+GfUn3ve3VycDV/a3XluOv/v+1Hq5Xv/6KpFiSpP9tW66WDL/etum+hysp+KJAXBKYOTfN7MTDDA/cQDLVi6jWmJs8j+ZF8LXwOy028ushAAAgAElEQVSriSRAo17BlbbcvwIPCQFNlCk1PXoGRtAyrWwePcH2XJ78tl42NjaplsvYrrXV76hjNysEnk29UaO1pY1AEBkaHUXTNSzXQZRl+vsHiEZjSKIUQp6CgNW1ZUTJI5WOYxgqkhAadB99+RXqW2RcRVZpybdB3UZ55iXKH3o3tLRy08238sEP/zTxTBx//mVys08iSjLTVoSOrk5s28J3bRRVo1Kr49hNmpUyiUyWZsNCVXRUVScQQZBCabPjiyArgI8kBSDIEPgIvodtNVF0FV+KEE8ksOolPLfJzOwiihpB1UXMqMn4+Gl0VaO7oxsjpuN7DufOjjMw0IcQ+ERMnTOnJ8i1pRkc3kY+14G/OY4oSOy89d/whUeeZq1c5y037uK2G/eQyufp6utltVgkHdUxStMUon1ks1lymRYikRT9QzvYffNtyLOPk+/sBDNFtrWF1q4uFi8vsff6/bxy4gRnxk+Ty+bYXNsMJVe+jamr2Fads2cmOHjwUDjBrVdJpZLEYiaba0UatkU8lUIzDaxmk86uHuqNBvFojJeOHqVvYARVc2hpzVGrNYhGY3z+8/+TgaEeBERmZxd4+fgr7Nu3n/b2NhzX4sz4aVrbOviLx48D8FN37qMtnQFZIZtvwbJscpkcrf3DOLV16hNP8NJ6mtFd27luzwgb5TLd28aIptP80ic+TiA6nLhwhu0799LR2cP+7d3Ezz2AkOwj3rmNZCJGvVmjrasTq7jOyRNH0TQJy7ZJZ3I8+ug32HfjXka2jyIbGvV6nTOnTqNrBtOTl7hx315W19fItbahGFEkVaRR22DHjiFEWWZ1s0xLOsGFs+NcOn+BnTu2s7Q4z7lz5xgeGeGVU6cYGRvjlROn6O8fJNuSwoyq9PX1MDE5wdT0HIKi0tczTL3a4NjRF+nq6iGf7+W73/0mlUoFq9lkY32DQNb59rFxAH71x++j0bDQojEMNaBnus5Hd+zlJ95vghDgmF1k2zpCqwbbplrc5OjhF8i3dZBKZUPbqkwKPaLS299PPJFhZWWT7q5+kvEIg/0dDPT3I0sS84sFenp7kDSJvbuvIxqPgywTiEIo0wU8u0YsEadeb9KsWWiiSmdXB7puMDM7xwf/05eYWlwll4rzwH/+t/zxx+/joz/2DnYO9fDEkXHmCuucXV3mxw7tQ2p4CDETSZTxXRE0C8krMrLrVnp6e6lVNmlYVaLxLIJk8J+++RX+1/eeBeD+oR18/kc/zO994IN87Ob7SJsmz02e48TcDJcunONg/xBHjhxmx/ZRHvv613juuRf46uULfOHFpwD4+dvu4Csf+3V+8+738rG3voN8PMkzF8Z5ZXYGVda4eWg73/jKI6yvrGI1qtx+0yF++c67+bmDt/Nrd7+TX7v7Xn7pjnfwiTvv5Vff8S5+8W13sVgqcmxmEkNR+dpv/DZRXUGRRQTAcSxEMaBSqZBMJeju7SaeSKBqBkEgIikydjO8jmmaTrFURQhUVFVFkgQcxwbCJMDzGnieDVIh7NkXuvEIkCQZRZYJfA/f9ZBVHVGUUJTQqxUh7KsNRJ+x7dtJptMIkkjTbrJcWKAl34LrgCxryEooELvihxveXMNeYd+1ERARRBm76dKsNenuaaHeqBKNRajW66iajmHGqVY26O/voFRaw9A1FuaXSeYimFETTTewHJfe/j4kocz62jqpZAbPs5iamqCrqxc/8ImenmT1zpto9ueo2qv09u9BVXQ00aS0XiaXSKAJEtNTM+y+/kZcUYQtMunVd9I3o6S6NgJkbFVBEpq8/PQzKFqMv3/iEe6M96MqCo3rFDR5jcce/honj5/lwA1JcpE8qcROnKhFb7vE7h0DSIGMosjEUzGaVoBuJilXa9QbDul0FkUBZWedcu8TRLQuxs8+Q0vLNh5/9nne+tZ38gf/9Y9IJSX6L61g6HG+4SwzPOiiNVwSRifPXThOLPAIfJ+11Vnau1tQ5BTNssCTTx9FlhsE3hqqrHHs6AJr6bOUz/t0VEdZ3XUCtRjD9ta4dHGSctnDdlzq1iaD27rQdQFF87l4bpq+3hyZlI5uZKiUq1g2rG82uLxcoLsjjhlP4KobeNg0Kj6y0MQXFITAxbEbiIKI40kIioUohRZSshShXC6jmRJSYOB6TQTJQxQDZElECEQipoGEiqyYOFRoNjxScRVDcQhcC0FQkZQoiiwCHqIkEvgyniPxytlluvq60I1QPZKKaxQWp8iks4CFa7lE9ASS3ECTI7iShyO6OJ5AREuiRVx0Q8f3JRTFRJBEavUSnihw4cIKx4/P0tOTxTR0zESSemMd31Ywog6qGieVjZPJtKKYAk///TnsepTd12fAj1JtrHP8eAE9apDOqvS2t1LaqKBIETRFZKg/Ty6pUijC9OwUqXSGSFxhcKCLiK6QymZQTIO21gwKFpqRIRJLUFjboFqrMzw8gq4qzM2vUC6VGds+jKaJ6JqOqsRIJFUWFqaoVRv0dPfieR6rixt0bw7gFFyODv4G6X2z5LIl4kqDy5eO0tYaRYtnyKWilOsqRmYP2b4DBJqB5ddoae8n19KKvyUFFkUBTxAIBAEEYWuOHhAIYrjQdOX57xuvA1x6gxWqfzjnr+l5fSm8vsmv4fP6xp/15uP1JLz/HEn5tbnJ94sgCP7v73m9Gtj0ZuLans0ridubIXS9UZL5Rsnntfp3QQgBGG92oPyDz+vbXjPhfq2K8bVy6tcaOFcPqCuPV3px34iYDKGdlS+G84fAdpACAc9ZYnXDQzEzVOtF4rEImhJBNlWq1SqCIISES11H1Q2ElbNYa3NYUgSr0aBhuywtLYawkVv2kP677+DaNkEmSTwRIxoLK5uOG/ZONZpNIkYM1wfP8xEQURQRy7JwXZdMNkNo0WBhWU1kWSIej6GoCpFIlEqliiwryLJKV1c3yWSKxYV5NjbWiYoikeeO4b3/HiaGszSaNiur69h2k936MrGFw4iZfoJUFwgBum4iilJoI6GbNBsW8WiUcrlELJlCkWSKxSKapiHJoUm4ROg/K0sKrm1B4OMLMqoi4XkutXqdWDSK6wnIkkC9WmF1dZXR0e0Uy2UGh/uxmhaiIBIxI5w4cQLX88lmsrS3d/DCC8/T1taKruvoepRMLo6iqBw/9jJZaTkkgLZs55FnTzG/usGhXSNcOv49XM+jXCzS1dWFFSgknSV23fVhvvClv0VVVD7z6c+wY/t2SisbOKVZTGsJT85g1S1MTefIi4e5NHmJQwcPkmvJI0sy+ZYWLl46TyKZ4MTJU/T3D9Hb20ez0WRpeZF0Ov3q2JI1hUwmi++H1kqRSIRkMkW1UqG9rZWlpWUGBgcoFUsYRhRNibC+VuSWW27F0COIoshTTz5NOp2it7cHzwslYsXiBotLq3z96AwAP/H264hHZZKpOJqhUqmUGB8/xerKCm0dPbB6iu/OJ7jx0M1MnL2A5Xh0dvTS293Lv/vFX+DXPvErjO3cRTyW5PCDf0DbwreoqTleODVHo1ZlpbBMvV7HjERIJuMkUyly+TxBAJOXphgZHGGzuIntuti2QzyWYKBvAElWWCksYxoGumFQKlcRRJFGvUksGsF1bHTdoKenl9MnTzIysi0E7WgaE5MT7N9/EN8LWF5apq+vj43NNdLpBIqisLa6hqao5LJ5BodGSCTjvPD8CzQaNW68cQ9N2+L06TP09XUzOTnJ/v0HKJdKXJpd4Lmz0wDcu3eYQmEphE2pCtq5DZrNJrXMEp7nkeo7QBDICEBxo4jneRw4eIi1tQ0a9SaPP/44nR2dJJMJRFnCdTwef+xxUqkUiWScaqVEo97k8swsmVQGSZJYW11B1zVq9TqiJKEoMpIoYVsWsiyTSWWYm51jamqKru4uzpwZJx6P843Dp/jqs68A8NCnP8n+bR04doNAUrl+dJCWmMI3XjzD9OIq171tF9snmtjXtSHVnFfbRvzIJrLYR73eIGrq6LpGs+lRtm1+9q8+j+v77M208ONtw9x04CCRqMmRF46QR6Kzu5PnJ88z36zxsR+5lz27doT9rIqMJcBvP/U1XN/n3t37+JOf/HniRoSLFy4yNTnB7TuuQzdMnrt4lpemLvGzt76dwd4OBkcG2bd/H5ZdR1JEZFXfsjNz8FwPSZAhAMtz+Mhf/AlNx+G9+w7yY/tvQRQFLMvGcV0kWUYUJfL5VjRNIxqLIogCoiQhyRL1eoO1lVWSqSSiIKKoGqqqgBBgO3ZIPZW0EKQnSWiajkd4/ZaFDmRZxrKa4T02ANcJFxWv+NZeqU76WxUOWQ4/S97qq41GIyCENxnHcZFlEcu28PzQk9J1PVzX4+WXX8bQVCYmp8hkcxw7doxGvUYmkyAWSwACZiSKKMqcP3+JfEsLyVSaXD5HNp9HUmSy2RyXZ+ZxnQDbcojFEkSjGqaZoFa3SKYTJFNJHNdHXFpDW9nE/fc/ieXYxONxVF1GEBwk0cGySiiyx9LSNPFkhlgmSyCGkmSBH0K1QwBPEJDdJo898DfYdsBHfuXfYz95isWlNT57+gwdnbvIJYd47/1vIRZvkIxrFDfq1O0yuUwW267juE0QfGy7ubUQAdFoDE1T8X0bP3CwgoucOqJQrhdpNPrJd7bi4TI3u8AtNx9iZKwP59HnCYKAA7/1MRZmLrI4e4FYXCGba6FZWycWTZLNZmnadV54/hi5dAsNzw37kAub7D9wMyPbRjh99gzdb09zeWGaoQu3od9XolMZJp9rpa+vj1w+w/4D+/C8gGQiw8WL0/T29bO4tITr28wvrDAw0EMQOJQrRQRBpFS0OHtqkd1j+zhx9CJDQ9sJJAtFDiuhmqrh+wIXLk3QkmtHEEJQoyrrBIGApqrh2FOErYV+AVU1cTwf123geW640OUL6FpYoPCQcYNQKQE2jhtguxaqpuN5AtWqzXMvjpNvaadR9zh35iLxqE4iriHgIUkBoqTi+SEN2Q9sHCfK0oLPxlqNREIJE2hAEAJEMVwQ8b0ASVaImmny+SgtLQl8z6JUDmjUAmQ5QI8Y+L7ChbMrXLx0hng8gdUM2Cwvk2mJ8dKRcxSWbQTFIhZrZWmpiOXLJLOd+ILJy6cuULV8cm09JFMxUqkE3d29KHIEz1MoFAq0dfQyt7DM6LZREokYLx05TiKZJJfPYxgGnusRjUaIJRL09HQR4KHIKoYRoVKpY9l1VgrrJBMZ6o0aVq1C/HIOQbG5/Jb/TEunzdraJNFInGazTmdXJ6JigKJTKlawPB1PSpHIdREIEtF4jEQ8g+M4/xh6+sM4EV/z6TcLZPvhJK//J3FtIe+fM3l9owj5PfL/3T2vP0i8VoL6esCk13v/D3IAvl+8Okiu+fx/zngjicDVgKYrCeybSuq3foQQAKJIujXPhbNRHv3KV/jEJ/ehCgaxuMnq0iqmlETTQl9A0zQxTZNq00K48BR4Lna0m3giSdMrk04nqZaKGPEY1h/8MpFf+jTerXux5xbQDG0LVqWgaAbpdJ71jSKPPPQQ/QP9HDhwAFEOkGSBSCSK69kosoqiCgSIBHhsFitkMzkCPHRdR5YVwiMSEIlEuX7vbtZOnCXyrWc5vnuA4Z97N2M0EVD5/d/8RbSLjyCtlvA79uOpCkLgkUpmWF/bJJ3OYhhxVlfWiMXiNBsWbW0dVKqhpU0sGkeWFNbWN0imUpQ3iySTWeqNOpMTF+nsbCeRi2C7Dq4fkElnWFsukGrtwbXrxBPprUmiQCwaWl1ousbwtmHKpSo37N/HxkYFz4X5uTkGB4aZnJxm9+5dpDMJavXSFnlVxPNcDF2nXKq/CskBgfvf814+99C3eOx7rzBbWMPQdK7rzfKe89DXt49ms8kNN9xAOp3m8Ue/ye3tMhVL4GuPH+W58VnOTM6zUbUIEEh9ZZzrh9rY3SLxsY/8OJ1d3ZimyY033oSiaJw5f4K2tla+e/Q8j700yenpAuW6g67KpOMmfe0Z9g7k+fl3386ZM+Ps3LGT73zrW6SzWV44PcW3Dp/hyPgM65Umm+Ua8ajBWG8LP3r7Dt5z/31Uq3WmZyYYHh5kYqrA2Nh2vvPEs6+O4WQySSShkUgkKZaKtHe2gwhurcnRU1Psa0vwMyMLrKyt87nP/hl33HkXjeaLPPy1hykUi3Rt30Gj2SAb07ltWyuRH383hhbl/b/3+wD86S++h0N7d1EtlZHEBIphcGpqmS985Zucnl5ivVJno1LDUBV627L89L1v546920jEEqyurpNJpVhdWyWdy1OyfA5+6DcAOPPgZ5ieW+CzX3mCJ4+dZXWzTDxqcst1o3z8vXcwPTXDwMAQ0UiUxx79OoPDA5hG2Ofzje88x3dPTXHq8jKlaoNMIsrBHcP82G17KNZr3PKxTwFw7Euf4sDBm6jV6yTTKfZcvwcefAKAbDqOYzeIRQxKxSrPN1a47wtfBODCp27i+OHjVCoN7rzzLpLJNI89/QInvv4ML5w4z+zyChvlKr/1wFPsGOrl/rfu5yffcRvve//7eOzRxwCXfD7D5MQ5hkfG+O53n+S2229j/NQ4b3nb7SQScZqWReD5IIfXq3KlydLSEttGtzE2NkoiEaderzN+ZpyHnjoKwKFdg+wb7UX0m5Q2LSJxg3qlwrvfsp9P/e2TzCyt8ndPH+btH3g/iUfPUxzLYEQjSHYM11wlqJ4iEtmFXa8QierEVY2Hn32aphNK7n/rvvcxnMhTr9cQZUimomSyGfam9/Ffv/MIDdfh66eP8tHb76DZbNLd1cXhwsKr7/93t9/FhbPnGRoZIRKJsaM1SzyR4BN33svvfeMh6rbFQ8e+x8/dcjObxSIJBHxBQlYMLMfHgxBQZzvgQaGwwhPzFynWw3P7QzffjiAKWz6xcihjDAKCABzXQ1bD66BuhuAjLwhBcWz1q3qehxcIBIGLIAhhAorI0tISj379MT74wZ9GlhwCbctAQgjwPAdNVWg2mui6jqKGHpQBUG80iEWjiKJIuVJBkTWWl+eZuDTJW956W7g4oYjUqvVwgUrTCAIfwzCoVqpoqkqjXicSibJz505EPAYjYeJ13Z7drK+s4LqwurLO8MgwfgDFzU127NjBX/3VA9x//ztRNQMzYtKqKFRLdZKxJJGoSaNex2pWMCMpvFodSRap1us0rSbpVB7lyFkW7tgLzTqKYlDarKN7RfB8ZDzMiMbJk6+wUljiptvuCn/zGxdk3nQIAQiei+A4TE1cYt/BH+HRb/w9N28WyeVaeOW7zzBxepp8PMbffOF7/OWXPkRh4zK5eBcpPUvNLqMbCkGgs7a+QiKRQFElXMcmmUni2B7LhQWiMZ21+WWcYJX/99PP0TXQRffONN985Ct85jNfIBaP8jcP/A0/HzEoblT43tPHMBujdA55BPISbbFh1qUqXsNHk13aMxLXD0XRnQsMdG3DFCWsSsBXHvwqXb05NpsNxnZfR22wxsaDs5hfzSMOCSwtr7BtNEnajFMobGIYSaZnJunpG2JqcpJcWystrVmSmSp2s8y+G0bY2Gjn9JkpIukInhtgN8ooEhQrJUTDJaOaiMhYzSaW7TM6th1DNrG9CoLkYVkNXNvGk9XQLzZwQiAgCpWyRdNWUDULXfXwAwvRFxGCOqqWZnK2TDQaI240iSouDjoBCrbtYlkCtusiBAGaqvGdbz+LY1vs2tlDIFsIOFhNN4SWyRKIJrZdxPdVXnl5nExaZ2Q4B4GDIPiIokfguwSoRM0kLi75bBxD9xGw8IOA5aUCF88tcNc9e7HtCEeOvUJlTeCWt91IEGiIikXvSBLXz5LN1Zm5vE5bR4q1UpPCcg3XX6Wl0MSxPWw/ytRciYXVs9x+aBfb9u9n/MxFevsGCQAzGiORynFDpp0nn/h7brvlAH39vXR0dCBIMoVCgdMnT3DowEFUQ2N1rYDVbBIEMDq6g3hSwPdVdu28gUqpRHW9SHqtByHaYO7m30aXy2iahGFYFCvFMBlVNDxPRdMzNCoSWiRLurULQVZIJpIIwlbP/T8Tw+Zfc/wgKtL/03iz7Z4/aPyrqrwGQfA7r9WfeTVt97VktG+0ynD1665UZ19Lgnz16699/9WPwTWUsishXUMBvvrzr02U/a8/hSCA8u47Xvc7r/7d19KNr7X/ea19YVkWmqb9o/e82biyOaqmUitW6OjuYnhkG5IcRRAlfNFCUQw0TUMQBEzTDHuJfAdt9QyCKOG17KRcrvHQQw+xd+/1yKLI3OUZyoFNvTND+x89hNnbiZiMUq83gJAw6vsBimrQ0tIaEkJjJsHWDGF9bR3DMCiVyshy2HPiuT6GGXrGhkoREd8Hy7KRpNCbzNwsEnvpLKfeezv5j38IIxYhZpq4l55CHX8QzAwlo4+jx07Q3dtN4Puv2nE0Gk2WVtdozeVxnWZoxeP7lKpVopEorhOCTmRFQZQkNFWhUa/jX6EaplI07CaGbry6Smg3a0iaie95lEpFNjfWEAWfRExHkLQQyKOqNJtNYokEp0+c4plnn+bQoUOIkowshzLr4uYalVqZZDxLX28/ZUehpf8AnqDx8DPHWVjbZKSzhT977GkeeuolyrUGhq5RrjW4vFri8cOnaGtt4Wd/+sPMXr7MubNn6drWybaczyf/5Jt89tETTC6uU2k4aIqM4/qU6xaXFjY4PLFBS0JlYeosI9tGOTN+hoCAIHD566fO8TtfeorLhRIN20NTw57otWKNy8ubvHh2nu2dcW668XqeefppBvr7mCvafPB3/44TlxZZK9VxPQ9FlijVmswWNvnWkQtcmF3h9l29tLe3YlkNkskMLfk86VyeP33kRQDuOzBIuVgkn23h/LmLdHb0sLi8guj7jIyOMr+4TNRdJnfwo9z7I3fjBx7PvfQcf/ng33FxcgLLttFkEdvzeGVmja8++wppQ+aZk5cA+Oh77kKRBNLJFI7nMn5xinf88n/jzOVlVktVLMfB0DUq9SaFzTLfOXyCI2cm+NG338LO7WNIokhbewf1epOLkzM8/NzLANyyZ5Sf+p3P8eLpibAfMYBKvcn5mQW++vQx9g52ENgNVldWOXDwAJqmsri4wFShzC/84V9ycWGVetNGUWRs2+HU5CzfPHKaka4s3z56Ltw3N+0hGTMplUokk0k2ag2+/PffA+Bn7jpAW0cHkqQQiyV59JUjPLX1mz/5rjES3QcQA5GJS5cIVJ17fvVTHBm/xNLaJpbtokgSdcthvrDOdw+f5MmXTnHrjkG6ujqJRCMUS0UqtRp9/QM8cuQcP/Ef/4iHD5/hnkPX0ZbPosgKrhP6kQqiiBBIrK6tsr6+jm7oREyDrz78CMVKhYeOXADgI+96KzcMd6FoGtVaDV3e8jn0BaYXVzhxcZb1cpWP/cJ7kEoW+loDX5PwBBCRcY11ZGkQQ9eoViuUSlX+4MEHuFjdBOA/3vOjpOJJ/vZv/5bhwSHauzowIxFmL1/mm5fGKTcbiKLA+/Ye4s8+/2fs2LGTZ2cu8NT5UIr9O/e8l/mZyzzxxBNUalWGR0JrE0PT+OLzT1Ju1JEkkffdcAulUo1EPMNjj36Tvt4BBCm0sBG3aMyBH7C6ssrvPvEol9dXGcy38tv33B9Wm7jSQiJQLpfRdR1BlMI+1S06qb9lX+XaDrqqoigynh9KgH3fJQhAFCQCIBIx6ehs5dhLL5NIxNHMJpKkoSltOHZY4VIUNbQsE0Rc1wnhSqLIyurqliokrBy7jocsK7S05IEAP3CRRAlRlHHd8HiHlGSJ/4+8947O47rvvD/TZ57e0DsIggUEe5FISlRvtmXZki3X9CYr2ewmTo4TezfObhI7TnGaU1ziIjuvi2zLktU7KapTEnsnQIKoD/D0Nv39Y0AQYqhib/Ke17u/c+YAZ+6de+/c587M/bXvt1IuYxihIDfaD/JxNcNAlgPvz5EjB1nS108mnaFSLSNKEpFwhFqtxssv7cVxLVLpBLIi4bg2IUNFlkVc1yQWD+H5NrNzBQ4eOExrWyuhsIZluSglC3VsksKvvgvHcwmHwoTDMXxfJ2zEkQUdzxXpbOtG9HW6lvZi+QHfpYiP5Pv/2wAwtmniOTZ7nn2CB394N7d/9NcY6BiirVrHlBzy6Qb97Q6rl1dpbWunf2maVCIAEbIbAqPjpzBCOj4emmrge+DY7oL3XkAkFDZQNZnEa/+VHmEb9O7m5vdcw+G9M8xOHeXGG9/Nhs3baeloJfTkXiqVKsN/+Dv09qxi//7dCEIJwQLBEPEdAholM0ckLCP4DiPjZxg5MYamx9hx1RU89uRD3HTzrYiSxOjISY6br9FfX43s6oxMn8B2TSKRCDPTOWKxJJqmEQ6H6R9YQqYpQzQep7W1nXq9jOta+D4IoorjObS3Z+ju01A0mWefPcHUdJWu1iiCpOL6MpKiBkYZz8EXHUzXRlJ0VFUCwcJHAsHHc318X2Z2Js+hQ9O0tCQxDAnfdxFlEFBomDK7nzvE6dMTLOntRBI9JDkAHxIEUBUVwzBYsaoPw1BobmnFsmp0dyURpTqKpKJqMXwERNEHX0AUdVRNpLMrRk9vOgAW831EScJzA85wQVAAGd/38F0XUbRRVAXLFonEgkiwcCzCgw/sRQ+14Xkllq7o4plnXmX0zDTVmkN+TiUc1ll3yVJ0o5XTZ4+zbv0GVg0O0tLURCQcQQQGl/bjWha2JSAKGq++9hqDy/qYmB6lpaWLWt2iWqvR2dHJxMQ4XZ3tTExOYZo2iXicmZlJMk1JprNZRBHy+RytLW3Uag0kycNzTKbGx/CnoWV2KfmeFylt/hozEydJhEKYDQtB1Km7AqlkhoYtE0n1YnpR9Gg78eY+OvqHkPXoPP+qgOdfJGpR/N8NlX37nteLh+Ve3POqbPFeV/9ie/63Sjd4s+svlHN6zZvVfavyN+p/sePsjfSPxX38H482vFjeKJd18bnFYbNv5oVcrHxeTMOFwuEAACAASURBVLl8O/3/u7GI572ZF1o5LlSGLz6uf0/p8x8psiwHG5if0LO82PMqShIuPuFoJ+TnqNXy4DfjKj7RdBinKuG6QQioLMskk0lmZyYQGo2AjzUcQdUjfPSjH0XTNM6MnCKdTuPadeLXbCPnq0S/cg+VwQ6ctjQ+NvFEjInxaVLJFpKJOJZdC8AxjCiGESbSFcc0TWKxONVqA00LeFVFIaC0qFSqFAsl0pkMoVCYseOn6MwWME+NkvuN20heuoZoNI6hKJjPfh1h9gRC9wYarsKe3c+xZngdthnAzOuagmU3OHbsCKIawm5OIYk+01PjRONx4rEE1UqVH/3wHrZs2UJbZweSouB4LogClVKJdFMzoqJiAJZlYYQi+J6NquvU6mUi4TDxZIqWpjRmLY/rBPyE9XoDzQgRS8RxfZ+rrtxKuTzLxMQYXd296HqYe++9l2uvvoyW9jZmpnO0NLci6hlePXyKpQMrqNVrAHzvyRewHZf/9Wvv48YNK6lVykRb2vndv/4KT7xymC/d9TV2PbWTm294Bxs2bCARCeG7Dh1JnQ/sWM4v3XIlqbBMb3cHtmWx/9gYf/rVB3j64Dj/418f58HP/RJWvUE6FScaVjk9Xucv/y3I9/votWu4efMSLtuynpHTJ3GRyVZdvvvoHtrb23j00Ue57pprOHvmNK3Nad57xWpuu3INy7pTdLUkqdVq1G24+4n9fPaux7j/ucNsXtnHOzf20NScwvUCapGTJ06+bh23t7Zg1mpk4gn2vfoKw2vXUMzNMTY+QaZnLcLZB3jpnq+gNq3klQOv8NVvfZNKpUJvewt/cdswg0uX0b9mM8+9dpQ7Pvsl/uo7jy20rYVCLFk6yMsvPMey5cvo7e7m+i1r+MD1l5FUPbZuXoumR9n97HMcmyrxJ1+9m1eOjfIXd/2QX7lxG5lUEs/zaGpqZrbSWGj3js98ib62DJ+/8zZSRphwJMpMzebOz32RmXyJLz/yPHf9919n/YYNTE3NkIileHrXs/yv7++kbtq0JmN84fd/nSVtMR544GHaepfxJ3f9iD/+2gMLfZTLZTo2rUM3DPL5uYBSY16aWloplCr4kkIkKjA4uHShzHUdFEXm6PGjgE+qrY3Ny7r5ldtu5PJ1K3n1xZfo6+nn2RdfxDKS/Pld9/DqsVH+5F+/x9/83q8RiUfRQwZtHZ14goAgnTekZWdn8bwBnnjscS7ZeimaoSPJEnd//9usWLGMdevWI4oCR48cZevWrUwWq/j+8wCs7O+iXsujhVtRDA0Rk3rVRk+0MdCRBmAmV2JmNkfmmj7Cu8fQXp3CubwHyuDrc1TnniHdugMEkbbWdnp7emHqVDA4UUSQJD74oQ/RqJQRBJBllbNjE9jz3stDE2eRJZVf+9WPceDggQVAJADNUNh6ySbWrlvNI08+iaIEXKzgB7ynwIGzZ/Bcl3Qywb7XXqFaziNjUynXicdjIPiEwga+D17cYOfxQwD83NYdhMNhfM9HEAOl0/M8wtEYiCKSFyi/DbNOrVIJDI1qQFdTrVWRZSkIefQC8JlzCMP4LrIskMlE2bBxdRA+K2UwTRPTs/C9IN/RdlwkRYN5w53v+7iOQ6lYJJPJ4Ng2uq7T1JyhuaUJ8AAPQRQpV6tEI4ECfY5aLBqJEo4EnMUQgCO580q1IAvE4lHecdONmPUGiiLRsKoIQqAMh0I6t7//vTz+5MPYVi+2qVGpVDFaW1FECV8QsF1AUIiFRdavXUXdrFEuZclk2hBOnMZtzWB5PhOTIzQaDfr7lmKoYax6LQDd8+HAgX0Mr1qJ6TqIagjPfpOP6U8otmmB6CM6Nu97761Eokki0Xb2rluCofokHz5DrZRnaHUHW7fF5sOvZWy/Mc+XGUcSFVwnMEj4HoSMGI7boF6zMUWfUEilXjeJ15K4jsgHbl/B5JiLVzzF7/32b/HC7t184ct386Gfv53kf/kQ3//nr/PbkoAQdrj06l9k5vhj5KafoTnRjBZRqRbnUHWNeq2OKKvMjh9lzcYbyRZzTEwd55Z3vxcUqFcLKIKL2chTv/411AdXsbp9LUpbABzW1d1OLpclGU8yevo0A0sHODM2RW9fL57n0d27lEIux/TUNIePHGSgZwWH901iu02MnDxLWE4TN0Q0Tce04Lt3v8C1166ktTmKZ9fxkKnWJaoVi96uFK6dw0fGdX10Q0cQFLp7Y7S0ga7ZATe8lqBhW0iSix6SuGL7CjRNR9MFXF/GqVfnjSQell1BklUkZBBdujsyREIrCekBj7LpuExNzJFO6miahSTICKKM4DcI6zbgBkZwyUcQQjiuxvT0LJmMCkIDQ9dxXQtRFjBtEOUkjWKOtq44tZpKsVInVz9NV3uEJ548gqyEaGpSCYdaaGluYWJ6hG666e/to6O9naeeeJJLNq8lHI6xZKCPsTPnQJRacT2VF1/cwxVXXINlOmSSKfbv38faNeso5ueo1qoMLOnn9MhJ+geWUm84TM/M0NPTzcmTx0g3daHrCpIkIooCobBOLKQxNTFCe70bpZLmcN8X8fsOolcb9HZ3YNYrCKqOoOj0d3YwN1tCDzXjCgkkPcPA8pUgqZheQIUo+IAvvaGe+f8n0X7TnP/vZ2Cw/wny0xoRfqbQhhfLhZr9hV7DN1JeL3ack8WWiLcScYEr7ny/juMsKKznvLcBMfz5MS8e34VWiteN5aM3o/z8e35i5fXtWknOoeLa9k/3dRX8eTRhQaC9sw89FKFaLaGqOrbrUq2XcN3AqqsoCo7j4Lou0WgETVMX5trx3PnQMJ+BgQEajQaFQoETJ06wN61R+MV3ED8+jtiUmL8/n0g0xMmTx6lXK8SiYVRFwrZdqpXaPAKfyJEjx/nyl77KbDaP6/gUiyVE3yek6bQ1NyMj4k3Nktj5IrO+R+nznyB26zsZHR0noiq4T/0dQjWH37kZTwnN0zBsZmT0JA888BC6boAAphl4Wju7O9F1HbNRpbW1iVA4CE0OhyPceutthMMRDh86jOf5qLqObui0trWihwxsz6WUy1EplqibDUzLQpQlNE3GshrBPDkO42fH5/kSNVzXxnVdPD9Yb8XyHNdffzWtbc2cHh2lVquxZu16zp4d5+TJUxhGhJ1PP8Po6BhDQ0M8/dROQqEwAJW6yYeuXseHbthOOGRw8tQpJN/mu3/zSbYs7wnqOA2Gh4fp6+vDLZaxvAS/d5nPL1/WT4fu4FWrATekZbGyv52P37Keq9cPUDNtvvj9JykVC7S3tWBbNcYKQVjTko4Mn/7lm7js0g14PgHlTjrJ5etX8PmPf5DVy7tJpzNkZ2cBSOsO//OXdrCyPU3cCCPLBqlUCxEtzG+85yp+613rAfjaAy/Q1t5BPp9fWH/7D+xfWLuWaSGKDuXSLLm5SfqXdNFolHAFkBUFQ9epWT4bVi7lC//4t7z46h6mpmfQZIlv37GNLduupn3ZMPl8jrBo8aO//EM07TwVTzKToVKrsmzFcjzX5eje1/jrOz/EtqElLBvoZXxqktNnzrBicBlNNPjqp+4E4Kv3Pc5cvhDwayoqoVCI06OnF9rNJGN897O/ww3bL6W3rw9FltgyNMBn7vwwAC8cPMno+ARHDh9k185dzOXyTNg6s4UyiiTx9U/dSXVqlEQiyi/83C/ilfP89W/c8joguIAkfhLD0BkYWDKP/htINBYnkUyRSGVwHAfNPJ+jYyz/AMlkguHVq7j2umtYs3KAr//Rx7hl+wYEp06xkKNUKnDzTTfyzq1ruOuP/xsAD798iOnZLLVqlXg8gRGJUK5VOXL06ELbA0sHmJubY9vWrciiNI94K7Bm7TBDq1ZRrdYYGTnNsmXLGR4eptQ4/07raG5C8B0cz8UwDHzXAhw8fJqT4YV6s8UytUad+hW9lG8fwnhpHDnfYHqfjZwqU7fKGCGDhmnSGo4tXLdvbBTTCnLt9+/bR75YoFAs8srhw0yXCgBMFvI8vXMXu3c/x+DS5XQlMwvXv3ziCL7vEo9Hec97340kBqkMk3NZJov5hes1TUBVYXj1ILfdehOWWSBsGLi2he851M0a+WKef3ny4cCSLUr8/PYrg2/R/Pfo3Lck+E75+J5HsVDA0HTisRiRcJhGvYHn+xi6ESijjQaO4+A4Hp7r02hYWJaJj4tmyLS0ZpAVkXwhN+8tFdHnQ31VVZlHGw6UZsdxqNVq9PT2Bujzoki9UcPznQDN2AsQhgVhHsxp/tMnCEJAveN5iIKAEQrheR61Wm0e9C147+uGji8E/Z44cTzI4fQdVFXGdho0ZZJ84P3vo7O9jUgoTGtzC64roShB3p4khnEdBcNQsK0aLU1pWlua2b3rObzTY3gfeQ8dHR1s376V/iXd2E6D8cljFErjzOZHaVg5qvUZVN3BF4J5/o+UaDRKIhbnwfvvY2xsDM0Ik61Z/NJv/Vf+4h++xue/8ENeei3HXCmJIk/h2RVcR8ZHRtJUUqkANA1fwjI96jUHy3SplGt865vfxjJdJElDQAbBQ1IahOwrWNaX5pOfuJzezg4mxs7S3NzKkr7lyD29tG3YyNe/9hXOzhwDKYMgdqOEFcrlOq4joGoRTMslns5gxBNsv3Q9kZBNNGbz8ku7iCXSHD96kNdefYnJ8dP0dLaxc+cjPNHzj4TkCNYhlWzXWaZmpmhpTyNJYJk1yqUivb292JbLgUOHEUQdWY4iyTrv/8D7COt1orEoR0/OUai6dC+J0D/oUKlUESSZy3asQJYVTNsCUUIQQkxPm+zff5aRkSyuJ+O4oKgqjudSrVXxfBdZySOrFiEjytGjEzz19F5EVcKyi0TDDTS5gOdX8EQfUfDB86jXKhiaAp6D6IPou/ieRdjQseoevqPj+iqPPXYoeFZcC8F3sZ0yvgu+rSG4EgImkipTqTZ47LHnCIUyHDx8DEESkBQVy3FAEClXGtx3/+McOjBGJGJw6OAo/YO9CEqDqZkSkxM+be29bNq8jnQyzeTkYVavWcPBvTkef+IhBDfKtVfeSM1usO/wAUq1MqmWDGenJ1BCAYfv6rWrmJyYJhJKEtbSdHd3MpedppifxbEaHDq0H1mWqNVq7HnlFbLZLJFImI6OgLs7HktgmiYIHrVqBSvrkjm9ioZd4NCGT0P3QeKGSlNLCEm28EWbZFMcy7eZmy0wOZGlWDJR1Th9fatANHDRkFSVAM7vZ1a1+b9O/q9RXhe7ni8MHfY8b4Ge5ZwHdfFH+2Lu9MXe0YsBGJ3b2C0O7V18LPbUSpK00LaIAJ6P5wQk14L/egClxWM8N7bFfUhXbIHLNy6M8dxxru6F11xMyT1XfmFf52Qxhc3iub1wri42bwshUI4LRhRDSiCaAp5scejIYfyKgipIjJ48ha7r5Ap5BEnEFcHzAyu+pNpouoTv1jh4aC8V2yXW2k6qrY1EKsaype3UL11O9rN3kLjnGeTxSay9JzH3nWDq2Zc589TzmIdP4+8fQT52HPXEKYTDxxAOH6OjUOIXNm8kPTNF9Ow4iUMnkL5yN8pd9yF/8z6Ub92L9Pgz8Au3kv+j3+ArDz2K5TXYsCoNj34KCYFqrA8HEQSVzq5eLNulUq2yctUghVIOx3UJReL0LVlONKxi2i42YQoVH9dXKMxmEXwPRZE4cuQQfT3dlHM5Kvk8+AKO62GbNTTBIpoMEY+HUEUwDJ1QNIFft1GQESUFQZFpam1CFH0mz54mGgoxNzODIooIuCjhVhquxsipM7RkmoiEwzyzcxfhSIRoOML+fS9w9bWXsrKtRn3sBZYM9C/Y+dozSf77L3+YJx99nEgsxrU33kAmlcKu1rnt8nUAnJ2cQFBt7NooE/ka0TW3ob/z3+hqj5AoPElnvMjZE/uYmJrD8lzC8RAbl7QBMFH1CUfDuJ6AZYskoyEgUJrLtRrT01P4eEzOzKLpOtVqGd912bvnVTZvXEcsEkVSNDq7+6hWarS3NaHIEqdHz9BomEQTERpOjVvmxzoyOcejTzyNa7tIYYVwPMr1N960sHbjsTDZyVks2yeSSOP6IpNTszRKOdLJOEptBL1lBa/MqXzqz/6Ul/ftA+BdG5fQue56Htz5MqKgo6kxjh0dwTPr3H7VloX2J0dH0SWHQm6UkZFTrF23hra2JjRVYnTkNJlUC4aq4Xkuy1etZNWSThLhAO10ZHyKRx59JMjv9D36+3sX2v3ld13J6MhpXEkFp8qqoUH27tvL5qF+VDl4T43O1jBNh6VL+pmbneWep4JQ6Vuu2MKaVYNccc3VyJKMpghs3LyOlSuH+MgNly/0MTczjVkrEwppzMxksczzG/CGWePJJx7HaljkZguEXptZKHN8cH0YXLGEVFMa1xdIppqoWxaJVBO24xHSQ8zMZHlq1y7Wrx4gHY9i2g6P7XwJXVOxvTpO1WbnY0/whU/9Fvmn7mLuqa/R0ZokmcnwyONP4SNx4vgJSsUCK5ev5Oihw+i6hmWZFEtFxifGMCKRhXG5vkOmpZ1GMY8CeGoMy5eIqB6R8Pl6jYZANB5HlXW8thilj67G8RyWTYfx7SZsfzdW9RVMu8qNa9ejisF8/9mP7+FHP3iEH/7wIWaLFc6eOUkybpBrjy2kjjiey9p1w1x9zXYiMZWrVwyhKwF/7t8/9Sh1y6VheeCDFbj/+NvHHzyvbHouM7kyimLQaFjUTRdJjSAqMkgy5UoDkIlG4/xgb5Dre8PwOtKhMJY5j8br+fiuiySI4PpIgohtBjmpLiKuL+LYNpoS/BVkkWg8Qb5Y4cf3PcwzT+2kWiqgqaAqMr6n4rtRbNtFkkRSqSAvH1/C9RV8ZDxfQBJB8G2c8iyV3AS+VyccUvBcG0UUMRSVcjGPIHhIsoJjB0quMW9YE0QhMNRZVaYmToPgUioXEBUx2EgLLoam4JoORw8dw7R8qtUaPT29lMtVREHH8zR27nqVulOhWK1Qbbi4gkihUsCxagh+A8sskp2dxLIs8gUPzUiQKxRwPYHVfd2EDZ3KQCeeoFMs+7zw8n4kTUP3RVKRBJl0G6WqQ1P3Mjw9heiryB7IvoOAh/cf4FSxRQXftnh61/PUPJnTIwd56el/5euf/ySf+6NP8d6P/ByHRsfIz2YxS1EkQaZezuNbHqIQeP9kfKKKiKLJfO6f7ucP/uol0Ffwnfsdnto3xZw5jSKAqobwPJWyc5Cp7ATlikMhl6XijNHZa/DZT/4ZTz/2DMsuWc67b76RZLqJfNnDJEW5kcA3BWr2JKJRRxRiCKaM5uYQxTpebQZ77gy6k6M0cQSqLk7DRg1H8A2NHTe+g/7OHrLXvkK9t0jnQxuQ1tq4dR/Lc1m1eohEPIIkgihL9PX0o+gS4aRB3+BSwtFmLtlxAx4lVi3tZmhJP57joqndIGvkc1UMTSMWlZB8k1y2iFmZZVmfxvVXLqGtWUaggej7WHUbwRXQZBmrUcJzRRp1n2q9Rnt7lM3rliLYDr7t4aMhSCF02cA37SAFXJSJxuJ4osG+/TNU6jUkKQDGEsUGiuGDDIpgcuMNS5BlD0WJ4UsKuhrBcSwULQBwkkQN3ymjSjEEKQ6Ky/r1y1EFkUpphpAmIPoCIU3nsq2raW9twnEhl3Po6mjm1ndey8Z1w2za3MW+vQeYnKoSz0RItXaiqiK1+gjXXnUVmuFzauw0iWiCDWvWowgqr728n7ZMJ1bVQ9dCpFJJ2ruasWlgiyaCoNCwbFJNGaLxKL19fYQjKuVSjo62FtYMr2YuX0JQQyQzcRTFpzyXxynVUE4rqIdbGe95gKfSv4OWnqKpWcInh+crNBoN9HCEXMFBVTrQQh0MrL2RJRvfR9fwVYixBI4Y0FL5jovoBxEcnsACJdfrjrfAg3lLEbyLH/48LRbSwnHu3OuON5CLjWlBn/gJUvouvP7NIlPP6Q9vdv25sb2dvt6s3uK2Fvf70/4OP7NhwxeTxV7Otwr/XawoXnjN4rDexdQzbzXJi/tcXH/xAjynSC6m8ll8/mIL6adduG/3+sXK+jklebFX+Y3mcoGORwVBgmw2y8mZEqtXryGq+ExMTNDZ1YqiCjQ1JbHtOjMzM7SJIvhBftV0do62phQrlg9RMxsUcznSyQg4Nma9RMP20DraOPz7tzPw3GHqY2OkO9JsSW7C9cDERm9OUFjei55OYXkCqqJjeD6lUpGHn3+eyy7biBYy4NK1zM6M0d7ezlM7d/Mrv3oH31n33+jSQtz58TvIzczQcuDfoGmQip7CMDQURcFzXIqFItFYmEu3bsGIRKjXKvN8iQ00zcC1fM6cOcm9P/4Rd/z6HaiCRqPRwHVdisUiy5cvD3hqo1FMq0qhOEcmk8G2LSq1Oo4rEg4bKIqO7wdejmgsRqVaw3Es4tEQgqgwfnaCnoElWJZNMhXD8x3wPSrFAs88s5PW5iZyxTmivsOHP/I+ioUSiiKzZs16atUGlM9g2RaZnqEFntfL169kfGqSTHMT+WKBeCJOKB5HEkWu33Ypf/CVe3Fcj+xsFtktctu7f5ldu3YTCoX4xhNQd1aw5+WnmMzmqVoeFz4mZ6cDD1K9XicajTHcr5GKhZjOlbn1U3fxq7dsZ/uwxPvf/z4q5RK1ehVRlNi0cSOCKhJSIsTSCSbHzxKOJviH7+/i0ZeOcGR0ikrdwnb//foMpdMUq3ki2Rhmw+TZZ59dKAvHovQ09TA2NsbMzAwnT42yY8cOdj31MJs3rMGe2svs4MdZvWY1hUKRkTNnALhs6yUIIsTiEfbt28/w8Cq2bNmMZdlcvWUN/3RPAGwkSxK1aoNoNE1zS4p6vc5kdobPf/0HvHxinKnCt8iXqpgXiXo4dHKUVZ1pjh49yuDgMkZHRhfKtq0Z4uShVxlc2k88nmb3sy+yceMGFEUmGQsznStx8OARWpTl9PUvIZZMceLsFADLO5tQFIVsNkspnyM7M8Oy5csIh8OsXdq10EepWCA7PkJXbzfHT5wAI7lQlp/Ls3HDeiTB5+mdT9LqnPfYSrI4T4kkcObMWZqbW3jq6ac4U4OHn9vLq4dPUvvGo1hO4K39zS/dv3Bte28/sqwGRj5ZYvW6tezcuYvLLtvG6MgpIrEkjmUzvGIF05PjZFJx7EYNV1QxQiFcx2f5slVUq1X27t2HGUqf/63DYTxRxUFClBSschEJj1Iui66f97wiiAi+wn33PcDg4AC9fV3Ubx5EHCmTfOA4jS2dWKFpEF6gL5VgR6aDR2fO8OrMWb7luXzqnTeTURUaksqn772bLzz9MJIg4M4/DKqm4vo+giiQjEW548rr+fwjP+bxIwf5L3d/g0+881YGWpqYrZb5ysNP8DeP3o8iSQuhx4lYHF+ASrVKNBIJolqAfD5Pcp5n9ZED+5goBM/ar+y4hkajgaYGqSFTk3kKxQLLly9DVQ1yczkMXUKWFXzPCfJSXZ9a1eK5F1/k2muuQZJFkskkO3ZsJxGPIAigKCqO6+LOI/6qauBdEY2DIApo/hZqtTqGoeE6LuCjyDJGRKJqOoRCScyGiyTq2JZDvZHDMAwkKUgxkaQA7dgIKUDgtZUkGQmDrq5eECQMQ8ZxPFRZw7QcVFUF36O7pwvXtZEVmVgigeN5aJpGdnYW124wOZ6lp6cf3/eZy84xNnaG9taWIJQ6HGPi+Ck6u2KYjSpPPPko733ve8jl54jUbNxYGEUUGTlyBMexaE2kcWsN8rkinhtwR2ezc6wYWonr+udBIf4Dxa1XmZk5QzKsMLRsgGQ0woZL+ljynQMU8nvIF306Mss4dWSWDSt6KZcqpJsyOL6H7TgoRjOSr4HvU81nyUQNBFEjO36S971rE5lQCL+moEfjOI6JJAmoqowkqlimx6P3jfLyS1lK9UO8513vZPDAETprFnZbL8cPvcbQ8ktJGSt44cUI24YzWO4ZRFFF0z1q9Rp1s0hzUzsV26Svq4lkk0IslGfdpm5eeu0AdTvPhtXXMjuZJZHqxXYlotcLiAdNWu5dg/jOIsoMHD92gkymiYZpE4kl0BUDwfWR8HFdi1deeYnBJUvYtHkDkiSze9cooZ5mRkZmWNLdy6OPPk57ZytDq7twzDpm0ScajyJL4Is+jheEoTt1C1mW8HHB93GcAMcDz8HQFGTRQ1NFHMdCViRcxwnQvhtWAAjpC9g2SIqIZdk4tk0kHMZxbBRdo+FY1KtlDMMgHBJpaUkiy0JAZSUIWLYFAlSrATaJ57nIoobj11m7toOQYeJYPqoYQtVSVBtZdF1FkkLMTM0hqnHGxyUiCZXnnjtIW1s74+PHufSSbSxbvoz29i5URQVBRdNUNm7cQKNRx/UbtLSkkQSRQr6C63qsWLGcw0cOsn7DWmQ9hOd6RIUoeA752QJyKE4oEsMwNATfYXpqYh4oSSASiuC5Lt1dXfi+g9mokp8+S5omOibWM6m+xoGtf4ijZ8mUVKq1AqJQIx6LBPRkyTaMcBO5iowRb6fuaEQz/cSb27A8Hx8H4Wc45Nb6TmDIVG//D8wxeJtyoQPt/8t+F+scP438TCmvC2BGb3Czrns+jO2tfojFyuliJW1xKO85Je7CBOTFcm7yLwwhvtgYFntqz/29WCix53l4T70YtH/F5jcd/4X9vBXK8rmxLm7jQrCnc+dc133DcOzFi67huKxYtZJDr73EmqFhVE0je3aEpqYMI6dH6ezpplqvIQgC8Xg86FfwqZTLQTiYLyFrImZhDkUWEAQJNRTGalTp6OqkYXks23opUz1tpDMRRkYnWLPuEhqmQ26uQFmTEURQ43EsB2Q9gmXZFM6c4dv3fZetl2/mxMQEbZZDX287c3N5Ottb2XrpFmamplmxbCWhpIH60o9xQ63Y4XYiYQnfkbBtm2q5TDIZm9+MCcHGUVVRVJXZ2QKO43Fk3xE2bBrmpuuuZW52BlUKkclkEASBTCaD53nU63XOATelwyFK5SKSJGEYITxBx7ZcArkFkQAAIABJREFUGmYd2zZJpxJUSgVC4QgI4Hkupu0TT7WgqRFEMdhoek5g3WvUZrjumquxbItarYZlN9A8mXAkioDPvn17KRUKbGnziEaiHJ+cXPhtm5MxVq0axvM8bMdGUVXq9SBcUFUVUrEIM/kSM2MnWL38Ov7yzz/HqlVr+LfvfZv/5767XxcRENPlgBLI93A8KNdMGpZDtVpjz549pNMpLr10G1/43dv42F98l5MTOT7xj/cCEDU0tq7up8No8Mk7PojjOExlp+np7sLzbM5mS/zcn36b2dL5PFBDUzBUaQF4LFuoBOtXCbNyaAkv7XqWubk5Ltu2He4KeF5f3vMKnddejaKoDA2tolAo4touG1f1IE89y2x0K3f+4d/xL/80QOH5b+J6wXNiVsuEQiGamzO8+vIrDA+vQhRFTp8+Rb5YXRjT7GyWDauXM5OdIp7UOXDkJB/7/F2cnMgu1NHn51UUgnmbK1XwPB9Bkrniiis4dWqUfXv30tHevnBNIhbllltuZm5uFt2IB4BViorv2ZyzGLR3dnL0+DFa2tt55J57F/Imh1cM8vTTT5NKpTBUha1bt/LCSy+y/fLLWNrbvdBHd1c33R3r5zf0YfLO+feMqugcOLifltZ2Nm/exMTpvQtltWM/JrbiXXieQKVSRQ01+PS/Pc6xsakL7tlAlgLgoNliCc/zKdWqlMolyqUKTa2tPPTww2xcv55qpUa5VKW/bzmqIiOLPk88+RiXbL2EUCSK70tMTk4wPZ1l29btmKaNaVpEM8ZCn5VqHccDIxQhl88RMXSqpRy+Y1IuFxbqRcI+vt+gv6+fPXteoa+/i1q9gjgQZXxHiiUvFJBaM1QSZbxMnm/93nXc+e3X+N6el3l+dpJ3fu1fXveeHGhqZUNLB985sAdjHvyoWg+Qa9PpDP/j5vdzdnaW773yPN/d8yzf3fPs665f2tLGTavX87eP3o+hqgFYixCgAjueSywcwbFNUokEohgYDb6y89FgDSSSXLVsCFEI3lVjY2co5Mv09/cH3jdZJBrXEQUpMChpGpbpUDdNBEllaOUQoiRRLJbQVI1kKobj2MiiguuBZbnc96N7ede73jX/7Pvgg23buHaN3c/u5sorr0RV5XmkY49aTSSR7ERSNCq1Ks/tfoJLtmzCMAyq1RqiJKPrBrbjICvqQihwLBZDEkVEScP1PXwXFEXBNC0s18RzBUZOjdLd3UU8FsXHB9/DtC00PYSPSCqZ4Prrr6VWrfOdb3+bTCbNmjVryeeKrFy+DBAoFiqcHZugVK7R2dnCze9+N7YbeICN2VNMX7Oe0ukT1CtV/v7v/54vfvGLKIpCa2sbqqpihEMsXTpIJBwN9iESb0veDAjyQpkeO4vilrnpxutoakqTK1TING2iUHgJQWzQ3TfNc7ufp9zXiygFhqnsXBFV12hpbWUmN04i2Y5Zq4JU4RMf/yCFooLrjHLHr19BwywhUwOhjuMG6TeqKuPLMvVaFVE7wZp1rVx/y9W8sPNBNo3F2XPfTp4dOcGVN2zg6JH91Msel1z2UfLjDyH4Gs2ZCLLs0mjUiKebMesNohEdRfWpmAXu+cG/4OsrWbX+MpraljE3VeP0yBxNnSFS8Qy6WuMFfsSSq4dI/XCYsZsfo8ddRblSJTWfvnD40CEsq86KlYOYlkl/X0+A3O/YPPjgg6xfcwkNs0a5bNHTn2frjg3s2v0qVdOlWqqzfEBhSagFnwaeKyMIMSzLxTBMHNuaN6CIqFrAxe65XgDuJM3zuIrKPKVTkNcdKJo+ttfA9wRkTUFWBNauHcDzXCrVGglZxXcsWptTlAoFbNvFcS0EUcR1bWzbRcBH18KIgjy/5huIqNSrOeIRGRkPSVDxHId77n+ea69bS7XqzIeGxxkdH8Gup0m3SmTnLLJzBa64cjvxWIJUUwLXrVOpVpnLzdLcPEB/fz+241IqV2lr62Dvq/sYHBxkdPQ0Zm6OltZmZmdnSLZ0cuLYMQb6+piemELXdCzbxLNdYtEYxVwJRZLJ5UpB2k92mqbmNKVSnlq9QkZN0zK+Bh+P0o57iC4/jFJsUK36dDZ3gO/guA0qlQKynKBiqbihJuLtPTgYtCY7iGWaccUASE7g9XvYt1KG3mgf/2bli89fiHFzXn465c/Pvn6PfTGd4M0cZ2/GonKxtMgL8XbORZf+JB7QC3WOc+O4WDsX87BeLNrzJ5WfKeX1YhP2RuUXk3MK2duhhDn3Q78dy8Db/fEXL/63quve9aOg7Su3XLT8je71wlzfxXUvDI9+I1mc+/t2wgBCEYlivorrOmSz0wFNTKlAc3s76XQGUZTAFzCMEJIs4m36NWTFx8yNEYvG8CWZailPo1pGkxVC4TCO7xOPJzh89Dgrh4Y5OznFxNlxTo2IpNMZbMtj5OQp6vU6g4ODuF4NwbYwVI39B16hraMTwff527/8K5LRKB//7J9z5eU7uP3Dt5IvmTS1dvIP//TPJOIpXMB89ceItTm+//wYmzYrdHR2BCAjnk8kEiAKNxp1UskkL+55lYGBfsKhENFodD50NYRlO2h6lHA4xmNPPMLk1Di33XYbhmGgKAp79+5ly5Yt5HOBMqyqGpIkBzlGvoCqqHzhn7/A7bffRqMW5LCERYFKuYyiKoRCcURJwLQC77KqBkid4NHf20m+UERWNEZOH+GSTZsRBDh89Bj9fX0oikRvbw9W+RSNRoNIc3Qhn1FA4NU9r7J23VpkUcFzPA7uP8iqoSGmy6Xza3L6KAi3UbNspgtzC4rrVZdt5+c+cDtXX7qd46/tYlnuK5Sbt/HjF6f4+D/8IEA09X1uuulGAt7VEjdsXcOery3hqz98jKOTZV4+Osap8TkefiFAvd196sv8/s3DbNqwkrHREdLpNJ/++pPMlhp0NSf49K++gy0ru4hoMqVikc7OTqZnCqz46GcAaNRNRCQioQirV6/h5UPHF+6jKZXBCOtkhAy57DTW7DEa+Z0YusoJdSvrb/gDfri9iLf/W0iLnHORcBQQGRpazWDfUvbvP0A8HmH9hnW8cujYQr3JmRl8H6anZ2lp6+FLDz3HyYks8bDOHTdfzoduuopYJMKBAwcYHFxGPp/n5j/4G6bzJdo7O2luaUVRNF568UXSredDW+/+3vf40G23EImEKJaLJFMpPHzMRmPhHaQoCluv2EE0GkVdFIkiSRJdnV1MTk0ytHkDjz/+JL39fdTqdWT1fD3TdRifnKS7u4t0MkVu8ryC16g1GFiyDN8XaWlpY1LYt1CmCXVKxQqW5fL4Y0/wWgGOjU2RikW4871Xcfm6IVavWoEiy5w8foRiocxHP/NVJucKeLiEwxFmpuYo5nIs7V/CssFlRMJhwuEIR44dZuP6tTz0wI/Ztm0rZ8cn6B8YoFGvsmPH5YyMjGKaVZqaErzvfe/new88sjCuqdkifa1lErEI5SJoqoaSTGObdcaz540JzUkZx6mxYuUg0ZiOKApEo1EkUaZp3SDFpTaRR04gjHroYjd2aI5//pXl3L4lybefOcP+qRJVq0FbPMnNazfysSuv5be/9TUABprb8F2PIwcPsXHTJnzPQ1UU/vGDv8RHLr2cbz6/kwMTY5TrddqTKa5buZrfvek9/N53vwHA0uY2REkMlLl4HN/zAmOdpFMqlYhGYkzk53hwf4BK/eFLtoPvgSCjKiqdnR10dPiUy2VkP0B/d2wbEJBllReee55169YRCYfxRQnXtfFc0FQD224gyRqKquD7QhDWazq8++Z3L0TpqKpKzbZQZAXX8hkZGWHLli2IUhjPclAUhWrdRVREbDdA6r3yqss4dGAvkhQm09QUoBy7LuVymUQ8wbGjR1i+YjmiMM+SKgTvKdNuIHoOqqJQn/csd3V14OMiiAKyqFFrlBBlBUXVmZudRRA8zEaDTCrDhg3DZNJpNE3h2muuxPMtjh07STLZxOYtm1A1FZ8gVN5zQRVk1LqFv6qXJYN9nB4d43/+yR8zeuY0/X0DCIJEqVRh567dbLv8MkDE9723vY39STZuS1YOc2rv00i6DKpKW9cAUxMiQx1dVCpjbNiQoj1zNVeuXYXpTOOUa1TrJpKqMzk9iyjkmJ1xSaebicUNqvVpVCWCZCjU6qfwPBCVEHXqGIKIgMDs3AyZdCuCaPOe2weQE5v41Ke/wfCKXjzPIZNJgSaycmgjn/zDj7Nt62UI/jLWb3gHJw9/j9NnjtOS0Emmm7AFE0Qbx/WoV4pEowm2b9uCSxevHdiHKqeJxtp4+flnWXvZKhRF4cTxwyxd2ocRdXAYo+2BSxi9/kX6pXXs27ePoRUrCEUjJLUE0XiCkOthNgKqPMeucN2115CdLlOpWniCxpkzDbKzNRLJNCuGuhgbO0lzWxeFUhlD8xB8iR/f/yxrN6yms8XGcR3CIWN+PyQFz4yq4jo2oigFnKyeiKrqSKKI7TiAi6LK4IiIgoJp1fBcj0i4CdcTaY5EQZCwTY9qqQCuhecJiIKI2XDAF1EUBQFwHQF8BbNhI8pBakYkZswjEssB0rHVoCkTQpYMCsUKr+3dj+NHaOtpZuasz9zsJB/+8M08/PAL2BZousGpI4dYvXoNiqojqxLlUo14zGN6OkuhVELTDQaWLkXVdBLJJJNT44TDGqlMM7jQ1txCqVQk3dzEbHYO1VBAFMjOzHH40CH6+zrp7u3Hc2wyTVAszOA4Fu1WPxyLUbv0YdQ1h6hnp1DKJpJXx5D9II1KUzC0EIqkgpQiZ0YJh7oINw8QiabxUXB8wHcRBZB8YcFI+++eqbf5eL0RgOobK6r/efJ2FOlzcmFa5JvJmynf/1nAsIvlrfS3n1T+j1VeL1b+k/K8vt24+HP1fpLF89btCm9a943udXHO7uJzi0OU3yg8+ZxIkvQ6/tc3U5QBbA8ynR1kx05x8thx2prbiIYMsjNFYok0ng+JeDO2bVOvl3AtCEdUpHlSest2CYejhNvaOXN6hJmZGZJNLVTrJTZu3Mj0bA7X81i7dj2WHfAInjh1gFqjRE93B7ncKfLZIq0dnch6iP6edjxRRMJCkVxk3+Lv/vIzPLf7WUoVF8fTEBQDX4CabcLccUInduF3beaaq7oxjDi6EsX2XHJzBVKpOP58LoPnwcaNG/E8B891MQwdSZLpW9LF/fc/xLXX3EQ8HuHyK7ZRKpYRBAFd12k0GqxevRrbtmlqbsX1glw0x/VwHBdJEhAlgbbWFjzHQfBdarUa+/ftI5FMMDQ0hCjJzOZyRAwFURJwPSvIiZGhmPfZvft5htdtYvOWbeTmckRCYVasXM4Tjz3G2tXDKJJENe8QjcY4OT658MIfz+axGiavvPgyxXKZcqXMjiuuwPd8Mi1pcqXAm9kZU9BFA1cQGJ08i+d5dHZ0cv899/Dc88/w5W/ejRZJsWrjO4hVpth3OFDobMehq6uLWq1KrVZH0yJUylViYYOPfeB6/Pl7HZ/K8/jeUT73rSc4emaGb+w8zuY1yxjo6eXwqTFePBSAF33ig5eyfTgwTpSKJeays7S1tlF3rIW1WSrlsKwKqXSGo8eO097RsVCmChKWXUWrHCc+9yqK0kQucTUd19+JcnyMA/v34x+/n8G0S/PyLYjil/E8n7PTWe7+3g9YuWqYvs52BgcH8DyHmZlpkM8DG1159dU4rkNnZwenRk5z784gD/HPf/MjXL95iGd27eTm99zKli1bmJsr8Pxzr1CoBMjPmqby/PPPsWzpMpqbmsjlcgvtDg0NkcvlsSybickxNm3ezNHjJ+jt7ECaz8G0HGceqTXGjVdfhfjle/B8nxOjZ+kYXsLGjeuQJIE169YSjQYIvxPZ832E41E6MwkmJ8Y5MzpGsXH+2Z+emaFcrrL/wBFczyLxurBnkVKpgm257LjiSv7s9/8KgM/+1oe4ZccWkBSmZmZJp9J0dvQxOfECuXLgrdZ0HcuyOXn8JJdcspFUMsmxY8fp6+8nGosxPnWWwWof11x3DbVajVMjp1k+tAbP9anVK/T1dXPg4H4GBgY4cfw01dlpREHA832Onp5g68ouBB8y6TTlYg7DUHEROXgq8Ao3JyPosoiuhbDsBpmmFKIIlu0FIZbVGuGIQe6qTpq+vI/atWnsvTVmsiZb2vrZ/ovNyJICxTCevIpUKkmxXOCF0RMAbO1fhq6oDK9ahWNZNEyTaDRKNB7iqhXLuW54+P8l772j7LrK8//P6ef2Nnd6lTRqo25jyQXZcpdLMAZDKDaEGkJoCSQhJIHwDcskgPmRhJAQ4tASwNjYuBfcsGVbVu9dI42mz9zeTj/fP85oPFZkXJKs72L93rXu0uiee/Ypd+979rPf530efG/GHkNVsG0bWVJ45lCgGrxu/iJMKwCHogANoxEoAUsi0UgUyzL46dZNuH7wW/2edRcgSRKiIGPZJqZZJ6THicfSHD58hN7eHgTCqKEQEh4XXngBU1NTJNIqrmeTTKUwGhaSFFiN1eoVZEVDUXQc0+Ghhx7hmmuuCiiKqowkCfhOCNd1iUQivP3tbyedTmPbJv7McyIcA0Gy8HyN48eG6elqZ8G8FWi6gqKpeB44rksymcR1PPr7+wOrHtfDsVwkRcKyTFRFwbYsTM9FFHwE0ZthHfg4joflWliug6L6NOo1QqEQplEjFNLwsejt6yAej1EuVzk1fAI9pOA4NptffIFLL72McETD82UKhQKZTDPy2BReSGNKchCK0/T299FoWEyMT+GKwbVpmoau64TDYWzbDuzZcHkt8XomdL7j09XTR6allXLdRNKjPLXlH1gwBhEtxD0/3I4kFnnzslYikRgePm2dXZimiaQquOUSpiFhGQquE0ZRdSQxitHwkSUfWY0gKVEadhW5dR+nhbL0kIyigu+q7NkxSn5SxZ2vkExGiCZkLrn6QiQ5zGf/6HNs3/YMtj3NT+7cSoijrFgUwbJqqI5Ow7UDFVjXR5LDOK6IJIcR3WkWL0gxcWoP+gKPd7zjYkpuhmg4Sbw3zdGjh9m+dx/X/M51tPgS8598M9b7xugr9zExNko0FqO1rZnRsXFSqSYeePAxrt24kdx0IbD7mq4znStQqZVpb1tOuZJnenqSZEJk+dIB9u48waL+DPGIhGP7xBIiTc1pJCmPLCs4rjdLaW9YJpooIsgqpuNiGB54JqqqIMkgCIHKtu2CJEcAGU0RsbGxLRdPcLEbHvWGRVjXwfdQZQnHg+mpHCFdIxqJIggigi+wd98BUqkUHR1ZLKeBHgrhuy74BFliUUANKVxwwVJ832d0bIIFi5ew/8gQvhuiVp1C1xUKuXHWrFrBrp1HCWkpFi9chYDKk48/w4ZLL8NoNJieznPq1DCLlixlYnySbLaJ8YlxXNeju7sXz7MZGRlHFlQisRChUAjH84knU5waOsTy5ediGT7ppmbaOnvYv28Pixb143oG4YiGMJTGz4XYsvZzLB5QMcsmsbCOrECjUkESwPeDBTXbtsnni4SjKSLxVhLNvWjxLK4kofgCvhDUtUo+yJ6INycX9UbA6yuNw1fKFv5vxutpX5Kk15RoOt3umZnc/4kM6GuN/+mFgN8qwSbHCYzSz1Txm7v6MLd2dO57c0Hr3C9qbir9taTo58aZAkdnikad+ZpL3T1TGOl0ey/PCr8yeD6z3dPvnb6mMz87N6X/ah1nLg30bNTn09cwe3zbwLVcBD1EKiLhuwZSNEU0FaNQLmBZBqZRRxR8EpEWYtEQeAItmT4ET0bRVCTBZfe2zYQVCV3V0UMJZD0TGHd7LlPjJ9n84rNMTU0R0VScukFMixGLNDOdd5D0MIIcJRprwbEFRodOIKHiGBLTORdbTXHRjW/Frbp84U//kqnxKTRJIGQV0Xb8CDM1DyEUJtnSgaTpjI+PsGvnTu6//z5KpRKKKqOGNBqmgeN4mA0P35WYnBhFFGxEPK6/7kr0kIcg2wiSSCgUIRaPIEoOxVKOaDTByRPjGLV68ABHoFoqIYmgyIGBxjXXXEsqk0GQFMKhCL4v0N3dQ61WA98jGY0geDaSJCBpYRQtju+51Gs51p3XT6NwBLMwwvObnqRqFECSOG/duaiaQjTVRDSeRJJEIhF1tub1hb2H0SIhlixfimnWWb50EYd27+bw7j1s3nkAZ6amdKC3Ezn/JHf8+B627wiyPPN6e6lUHM49ZwOhsERPbxvuwg/gnnqBrQdOAIGlxbHjR9i9ZxeZpjQTI4Ps2rGF/Qf2YVg2sqwQDofp627hPZev4P0bA6GyLYfGaOnqZTyfY7z6Ei13oCPOod272LdnD8lME/OXLseVNR55bt/sZ1RJ4cTxIcamTpFtSWGajdltjizSOLkVuzQO627lI98vI8+7licefIT21jTznW0sThm4LcvxPVjUHVB3D43mMRoVRoeOYZklisUxPCx6eufzi8c2z7Z/cvAEIyNjHDtyDF8SsWasPeZ1NBOOJdh4/VvB96hVS+zZsYXORQsxZz4jiTKd3X3E0hkWLl9Jd9/82XbbO9opFMr4jkRv70K2b91LPJyi0XDw/OA7OnFskNZ0M4f2H6RYLLC4txOAB5/eTF/fIgrFBmhROlvbeOGZ56jmyjz01Evn7tkWzzz5DEcPDRJLpkk1v1Q/umhgMWvWruGcN61i49WXzSjjBuEDoWiKrr4epsolTCvoW6v7F+D5Lo1aBdGzaNSKuDjkLX/2M74LTz/1NKIkcPDQIfr75+M4BpIgsOnp5+hqbyYaiyGFo6CEsUyH6dFRisUikhiwFhYuWMKeXfvp6+nk2qsuZ1V/oJL9yKZthJNRPFQ8W0GSfGzXxrQVntkR2CdtOG8ptmBhmyV8ySIcDmPWbHzbQxAUPD8EjkIoncJ4UzvacyNo4SimYTF2uEB+l0B9zEdIVZGim6mUnuHRnS9wZGoCgJvPvwRfdAhFoFKpMz5awrIsGg0XWdHxBTBtB0FWMKo2juHy3KEDHBofAWC5lsa1Ao/PgCInYdsO+XIOJB9JUfjBc08DcPHCJSzt7EOWJTzfQRRFQnoMUZbAd3HtBrnJSe6755f4nofje5iOjRbSkAQBTZAw6hX0kISkeMi6QiSeQAsFFAQtovKWG68jEg0jiCI+Aq4nBOrFgCD6pFJxPM/G81zUGWEqWUyDH8ZqmDz77FO4vkel3sB2wDJdBAQkAWyjjoiHJMr4vogoSAhSIICoqQHVWVF1ECREScWzXVzLITeZQ5NlNj3zOLqiIeLj2jblosFjjz7BdG4cRYsgyTFsR0OUwiQzTZimjCpHWLlsFfF4HBcRQZCIhKNB/8oVMTIxFi9ZgmWJVKomsqLR1JxlfHIMRTQZHTtJ//KluJIEsoTjv7So8zLBFEGaffmIwess84NXyowYkoigpcBP0Ki6uFaddRdcTiQcJ1coMmTY7B6tUyq28cs7d5MvjFAsHsNrgFP0KJpV5KRIxS9h+SKy6FGdPoYiFwjpaWwngoeC7fgUOzchr96OZ9tYlkA0uZADRwqU8yMsWZBidKpArWYzNjzKj7/7HxRyJSKpBBdecSWr1l3KkiX9GNY8fv18gaLVoFrPEfbS2BULwfPx7BqYRdziMFg2uak8E/kqT27aSbyph47eLk4MHUGSbHy3xtL+TmTf5HjbUXbyAqFftpFJJsi2ptB1CcdyGD01Bq7DBevWIEoN0tlm6pZCvlxiXl+aVcs66E76zOuL4Ok+oxMi05MNpqcmcF0f11WRZZWlizqJ6RWwoGb5NEwLwXUJqbEA5HsKouUh+TaammTb4SqmG0KVZEBAVkL4joDoGUhisPDreTKBfo+KJGuEQmFUPYSkh/BVHQ+Xo8cK+F4botoA18UXLBRVIxSO4As+qjpDSfcUJDRkzccTfLRwFtfTMI0KiUgcxw50OCZHi2hhmw1XbiCXt5BlnXhKRhBNTKNKMZ/j4g2X4gkix48NY1su8+f1MTJ0gpZMhmg0QiIRoV4vEgrJpNMZUokskigQ0cOosoJnm5iNCulEC48/+hi7dm0hHtOo1cpEUp0o4SSyHkKdSCJPJxm6/NuEQgKjJ8vkChU8bMYniohKGl2LgahgOxomKbLda+l9043MO/dtRJvnIcoge+AiIPgSgq/goWBJEojC7GuuONPZYq6g0tmElea+Lwry7Ots+73sNWf8vtbXS+d09vn2y877jH1Plyq+1mOdxgVzj/FqzNI3ck1zsc2ZJYlnwzNvdDHgtwq8nqb9KjMPxDPjtabPXynmArI3EmfrlK/3/N7I8V+t3Vc7r9/U7pn7nO1YpzO18UQKWVXYv38vsWiIYrFIJpOh0WjMWuV4voO4/27M7T+hXCkiyQLlYonR8UkWL11KJB4HRGzTIpZQKRSn0XWd/v7FrFh+DtVakSNHD2KaNZqb00xNjyOIgZesUa+Tm5wgEYuycOFCZMnh4N6d/N4t7+HkkWPU8nVU3eJb//A3tLRFKE0ehF9/HTnRghzvDOpTJJlKpURTNs2KlQNkMik0TUUQAnqvKKrU6w3uvPNOhk4NIQgS9VqdUrmCJMnk8wVcGxQ5RDKZQJEVpqZypFMZHNumUinjC4F3HaJIU7YFw7Co1GsYtokW1lB1DV+EZCrJqtWriUajyLJMvV4PfqARGBsfRZixhZAVhXRcQRVNOjuSqEqDDZesJtskItNA9AySMY1yYZJGvUahUKCpqZlyOaAED0/muPvJzZgNg57ubnL5PL3zezk1foqv/TioR+3Kplm07DwW+FPccstbaWkO7D4mp6YYHZ2gXKpTzpW44uJLeOChR7l9q8L+0epsX1FVjYGBZZimSWdPL+eeey4dHV1Eo1GeeuopZElCkFQkRcOoB/tJooBVmUaXFDLRl0CUpTWx5ry1rF6zBkUWsY0atWqV7z6wZfYzmqrRlMmwbPkKZEWZrYkFKOZz+LUJ4hf9GT9/fD+LBxZTqlXp6l1A/PhD1CcGkXrXIWuPEgjbAAAgAElEQVRBNmnj+asAeOC57ay7+FKuuPJKwrEkbZ3d2JZNrWFw73M7Zttvbmmmo6Od9vZWWlqzs2Pl2OgUWza/yAP33kvDdpBkjUxLG7f+8J7ZfXft2klbRwuSLPDcs08zOTk2u61eq1Otljl4eD+JRAzwMIw6Tz/9NN5MXW5rawsNo87AwACbNj1Hf1MMgOcPDvIP3/0XdmzbQjmfZ+++PfTO6+GJX/+aO5544WVjfGBggBUrV5JKpV42zn9+x12EQmGSmSiior7MYqdSKnFo/34EoKu1ldO7vbD7AJ7rEw6HiccTJJIpREnm23e95Ivr+z4trS2sv2Q92eYEguiwdGk/8biO6zVobm7Htlxs0yYSDhOJaDSMKrnpAoPHT7Jjxy4kSaarqxtN05AkkXdddREAm3YdYvOeo9TNBkpIQ4/EqdYNnth1mJMTQcb57RtWIzka9XKgAu66HpoeQhDBdU0ajRLbtm4FBKx1XchDZZwFGZpbmrEcm/bOLhJyB8pUF34+TtEp85WngrKPSxcNsKK9HaNhY5keuVyenTt3BNRAOaD9S2Lgue15HqqmYngOn77j+wCc19HHe6++jnA4ElhLzIynSCRKIp5EVXQ2Dx7n0PgoAB+8+HJEUcS2HU6ePImAgKqpQYZS8Ohf0I/juMyf34/rWDPZDtBUnUqliuO5xGKBFZCqqEiiiCLJyGLAklEkCV3Tg3FUDCjljm3j+R4CApZl4bnB36f/Bag1yiA4yLJIV1c3tWqdX9x1N9VaDQ8fD59CsQSiiGVZOK4z2zcC4Rd/5rpsfM/Dm9G3EEQRUZJIZzLIisL6iy8mHI4gCIFqe7lcoqWlhb6+eeRzORzLxrUdRoaHyU/nyGaz1I0GyVQCy7KQBAFZUhAEkXgogjQ8Ae++lnK5xuTkNOPjkxiGhSQppNNNuK6LYRi0t7e/rufsa5lonjkx9b1AQbW9o4sDBw/xL9/5Z3p65zMxVSCXr7J03gJKo2NI4jjRtB14prsenlzClYdRrXbCQjuSoSL5UK2WiKbDTOabMNwQ4UQYSREo5mpUawXqjSKyAqVyjnIlx9btD3PBhfO5ZuNatjz/DJZpUynVef/7b0GWJVzbYvjUMfbu34KeTHDuhZeTal6KovSAL2Lb47PJAlVVCEd09JCGbVaY19NKIiwjei65iTIP3/cALdlWDhw8zNKBFXR1zufUiTGyrSHSNzpMj0/hx2rYTp1EIo7rWrS1NxMO68TjURoNC03TsKwGl112MQMDi1i2bAmOVmXoeI4lXQsRPIuh0VFWrxlAD0n4WIBHe3trwIaKh3j48X088dRJbCI0vDyyGMNyDOSQiyALnBgc5ujhcWrVMq7jIIkSvucT0nREIYJt6zRMm2efPcmxEwUEfBRFAnxEEWzTZHp6CtEXWLWyn0jUmaH8BxZXfX19JBIJXDcQQnS8Oj42lmOAL+F7Ko8+9CySZuP5KbJtWUZGg/kUgsM556zlqSdfJJVspakpQ3d3HyMjYxiGQblSAlxkCebP72FkZIjxiVHaO9rYsWsHtUqZ3NQkLc1NKJKAbTQQBY9EMka+ME2jbrBly3Zsy6Var+MJ0NzWRk/fPE6eHKYt61MrDpKYiuOPRGhcdwf7djxPJhsm25wgHFFAcBFEh7JhkK+WkSQBQfSIRXQS0RC58WHqxRzCaSq/8FsFWV41ZhenXud+Z0uOvd7jvh6gfDYc8N/BSmdLvr3e+K3qCae9SV/JP+2/C17P5t36euJ/Ary+kfjfAq+v9Vie4+L4kMg0Uzcc2rJpzHKOZDI5I0gUQpZlTNPkxInjmPkRNLscKFK6Nk2ZFF1dXSSy7YxNFhmbGMeoVzl+/DDJVJTDRw6SSma4/d9+SCIRZenSxSC41OplTLNBS0sTywcGGBk9SSymMXJqiOGhEdpas/T0tvH2G66jMDnN7//ex/jy33yFbHMrYcGmfexZvGgzE06co0dOYNsegigSi0XwfYeGUebKqy7D8zx27dzNU08+Q6Nu4zou9UaDu++5B1mSkZVg4ixJCi3NbRQKJUqFCidODGIYJolEikqlRqNhzIpgKYqCfHqlVlIIhwNhJl9w8Xw3EGHxIRIJbGVUTcNxXYyGQaVap72tnXKpiOu4CKKMbRhYDSPwaXQ9JMGlMDlKYeIk5cI401NjJONhYqk2EtleTMsmkw4AYSys888PbuIb37+DhmmzYsVKbFnmrp1DbD8yDMClSzpRUm04vkjWPkR/TyDyc/DwIT79uU+xY8d2ilMlCuMj/PqZx/nqL/eTigaAURRFWlpaiUSiOI7LJ269nXd+8Yfcu2kfJ0cnWXvem6hWyliOx5O7TnLXpqA+9ZKVvdjGOImIwkBPOx0zXr+fvO1O9g3liEaj+J7DgZMT3PC571Cs1Gf75NFjR5EUhUq1higpsxN/AEWREAQo10yaWpr45B99ihVLe0kcvQevOsVxI4bjCRzav49KqcS7LltLNhnHMG3e8fnb+I/7HsV0wXEFDgxNceUffPFlYnGxWJSR0RH2H9xPNKKzdlk/AF/4xx8zWra46sqNSLLKkdEp/vz2X7L72BBhPbhXAwNLsc0Gvmtz2Yb1pBIv1bym0mku2XAxPfM6qdUrrFi5nI6ODlKp5KxgU61epa21lenpaSKRCF/48M00pxJYjsOPNu1DS2cp5XPMXzCfwckit933/KwgFYDverS1tXHg0EFi0SjyHIC6Zs1qQrqC51sIioz9ppeEniRZZnx4GN/16GhrZfm8QMH4r//t52zadQjbdqhWq+w9MsR7/vw2dh09ia4Gi5CO49Db14Omq3R1dWMYNt/62WNkr/wQ7/zqD6k6IIgyuqIhiwKXbLiYiekJpibzHNh/iEbDAF+gpaUF3xcwTYubLjuf/s4WfN/nA3/5HTbvO4Lju4hSmEc3H+HT3/gxABtW97B2YRdRLYFrGeD5iKLEV/7tTlqu/H2aL/sg5Xqdvr4+HMfD1zTMpU3sfngb3929A72zHUGSkSSFQrnOHb/exzXffJi9wwWaYyG+ddO5iJKPJMmMjebwfZ+NG6/kwRdf5G8f/AW7T52gblg4toftujx2YAeX3/bX7Bk+SXMszg8++hkSiSiu46FrIQRBRFU1ggpQGdty+ZfHHwYgHYmycckqbMvDsT2eeOJJfHwcOxCvsS2LWq3KE088zsjICKLoUcjnArAmycTjCQRBwHZdBEHEdT1cy8V3fWRBRJEkSqXSjL836KEQru0GVjwEq+oTE5PUG3VMc0Yh1fcwTZNyuYgsi4TDIc499xx8H7LNrTQ1Z/DxcV2XRCpFtdZAkiRURcX3g/dlWUHVNDw3sCoTRBFd15FmzgcCJfPTY7xeM2bq+X16erpYv/5i3JlrcG2bxx55hLCmYzUMKtVgHBmWAYJPuVjEdUFVdeTpAr6u4S1ZyI5t+4lF4vR291EpVfn6330DPIGjR4++LKPx3wGvcy3xzpaN1ZSg3Z279/Dem9/Hddddi206+IKMIKqMHtnHt7/2cTo6BNZf1YWoeCQTfcg0o4h96GGBWm2CeNRHFm0UOUyh5PFXf/0DDh+fwvEdZAV6enpojSxArjUTj0cJh3VCYZE//aPPUJqe4utf/Spfu/XTDJ86zMDSPibGR1ElGcuy6OnuYO3alaiRBJm2Pgr1MFp4JXUjhEOVcDhKo9HA9WyKxRyKKqCHXKbGD+HUx1i9dAEnjp9kflcPd/znT6g2DHKlKhNTeZYsWY4ih5jIj2NcNIL3qxZqFZOJyQkQfNramjl67DCNRh1Z0rAsi7b2LKZVJRTWcV0Xy+2mWobOdolVqzKMTpQZHhkkGtMQJR/Pt7HsYPGkWjcJ6TIrBvoRHAvf9XHcKpKsYDR0zIZCT28zb3vreaQSISRJRJQUAp6Aj+8JAXNDNBkaLnFqdAzP92g06riuhW1baLpCU1MawQNd95DkOo6tIAoSoiBQKZfZuWMHgsDM4o2GKEWQJA0PG1mBzq4WJiernBodpWYINDW3Iooa3b3tDJ0awfc0QMNybGQlzLnnrePFF7cEJUqexa6dWzl8ZB9LBxaTzqQpV8t093aRn54kEYvRqFYYGT5FuVSgmMvhOCb1eg3Hcejq7KalpZ1EOoWq6YRCIYqFAk1NGVRUQic6MacEti77ElPWIc6/eDXJtIphVrBtE883SGcixJIxWjvaKZZLCIKAYRiUSiWK01NMjA8hYCPggf9bVen4qvFG5+RzWaX/m+D1TJvOucf/74DXuVjr/xdqw3NFlF5J4Wou9XbujZmrHHz6Szkdc9PcZ3Lcz6QGzz3WmdvPbOt0nOnPeuYXfmZ7/kwNz5nbz2xjrrDS2dqdXbH9Dddw5rnOvYdn6+BntrNz507uvfdeEokEn/jDP2DxkgHyYydRPIsaIZLJJOFwmOHhYTo7O4M6qdGgbsm3TTzPQ3Jk6oaBLkksWb4S23I5evQovuBjGjbRaBRN07jlfe/l0JH9LOjtobW1jXA4guubeJ7P9OQUmiJSLE0Ri0axHQHLF0g1N/H2d76Fo8dGOHBgH/0LrsEbfAHl6IOQ6sGIdqPbLnv3PkG2NYuqqYEdhB3QB0VRZiqf4/kDg2zZd5hvP/Q8+wZPUZyp11t1wSUs7kqjh6OYpo2iqIiCwLFjR2lqTuK6Ho2GxUMPPcJVV17Njh076F88D8cVSWhJPNdj8MQpWtuzHBud5F/v/hXP7jhArlQhFYtwzpL5fORtV3LhqkVEopGABqjp1GsmvgO7d+5h1eolKHKUR148xI8f38POY2MUKjXSsTCXnLOI919zPucu62Z8YoLmviuRlBAn9uwLpPiBd12+jt3HRvj2A5v49gObEHj5SuC7L13LZSt7AQu5aQE3r3MoLf9dHvzVE2zbs4OnNj3FU5ueIhwK8y93/wjXdVnU1cQtVy7nC//2JK7romuBAmyhUCTT1MwvHtzG0zsD2qauyiiSQNVwZvtlf2cT1yxLU64UsD2F1o4YX/nIRj701Z9x8OQEV33yHwlpgaqxYbmENJnv/9UtvPMLtwPQ19eHrMi8sHkzixYuIlcozF7PiuXLCVVf4PDxIyTTHWRjIjz/r2jY1GPzESaPMTk5xYL+fgQkjh3dwvf+4mO86wvfZHB0ko/f9iM+++2fIYoitYZBLKzzmRsv5ss/fiQYPx6MT0xxzbXX4/oeX/zwjbz9T75JvtrgI1+7nY/f9n00TaVaN5Alkf/vjz/Ird//BXXDZGR0jEcffYwrr7iC/Xv2cHJkYva8n3jiST70vnfT2t5KNBxm545dtDS3oqpqoLIK1Gp1LMtk/oI+2tpaKFfK/M2H3spn/uEnnByf5qY//yaaIiNJInXDIh4J8fsbz+cbdwe00317dtPT3o4W0kll0pzc9OLs8Zcv6cOoFTl65DgDy9cwUs3NbouEwyTSSeq1Oi9sfoE/u/ktfPDW7zJdqnLT529DU2RkSaJmmMiSxNvOXcBTh8cwrEC1Mx6NIngO0VgSTYtj2y/1QEVTESWBEycGicdixJMRFi1ejO/qPPzQQ6xatRLXs7nv/gdpyjTR29vLwQOH+NlX/4QbPnsrQ+PTvOVTtxLWVTzPx5ihKw/0tvGtT1yP7zl4+Kh6nFqlgJoKIc4B7aIQ+ElKooznu9gX9JH/8ot8eevjfPnxxxEFgbimUTHNWWuchU1N/Oidb6W93cQvHubImMS2bbv5nd+5hhMnD1NxTf7PA3fyfx64E1EQSITClI3GbB36wpZ2fv6xz9Hb3IrpmDhOIEjkW4F/pKIoIEChVuG+PYGK9jvfdCGuY1OvG6iqwltvuDF4Dgoijgue7yNKIpmmFPPmd+M5FslkHNuykZXAykdWFWzLQWBG4EmSOHr0GL7v02jUOW/t2tNqDMEks24EINVtR0BgamISUYRoJIrrBbXs0UiUeDyOZVkoikoorCMIJtdeczW2ZWIYDcKhMCICqWSKQm6adCaD5wcgrlqtoCnB4t1//ud/8uEPfxhJVfE9D1GWECQRPRyiUqkSjUXRZB3HsdB0Fc+WUFUZqzZjZzOZ47y1a1FVmWQqgSCpWK5NOBZB0zRq1Qr79h3Cc23OsWH6vGUojkC1YtPb1Y7VqBKP6Hz+T/6YPXv2MDo0xJs3XD7zjP+vqv1zn+nCXJr97PP35Wqgc2MuiPV9H7NeQ0bgHe++mZ//5KfseHErHZ095MdOENElsimDqFrExuM//nWUjrZWbrhxKRZHMIwythtClX3cep2IHsV1I8hymvPXDmAaZfJ5mVQigmO5xLZ+AFkSKV/0NRQ9huE61AoqvinS2gTZdIXU6mZqoTK6KnBg3wGGRg9z/vqVHD64jdHREhdeeD7X3HgTva0J9m2expMHyeVyRGOBl3csFsN26jiWjSK4dGYz5CcOEcksY+tzT/GJj38EFJ+GZVOtBQuTk+NV1r/5Cg7s2YfQ5hAWmxBC/qzVUmtrK57r4XoejWqFVCZBvlhmZOgkuqpRdSZo72qlUQ8xMZknEUvR1KRhWTay6M1qB4Q0Hc/SuPrSFQhOBVUUMEwVRatjmQ6HD00gKzL9i+OEfRXJDRa+fVFG8IIx6osOlmMiCA4XXbCYtm4dAQ/XC2pWG/UaoigGTAdJpm5WsT2f8RGLjvYwgmiRSqVmraQEQQA/w9Zte1izagECBoZVpKMzwYsvHKdvYRubnt1OuqUFTVFJppIUS+Oct24tu3bvZuWqZWSbWzGMOpdfcQW2bZHKZOhfsAAR0HWVcLSd8YlxEukkqi9y4sRxenq62bp1GytWrAYhYKaUyxXqdZN0Ok00FkZQROpddTRVJpNIMj4GnGjB7ylhXPwii6Nd5CcHEaIitXoDRZHITVdoyabwfBPLMKnUTZKpLLarYaNTLDqkO9vJ9izAEwJqrehzVs/kl42zs4CyufPlV9OQ+Z+MV6oznVs6KA24L5tw/aa5+emY+1sxd/FsrlaNKIqzrMi5riinz8XzvJf6FWfHLGfirTOx0yvF2XDGmW4uc1kmbySkL33pS29ox/8X4Xnel85875U433O3zxUqmgtu5968MzvJ2do9s8P8pu1z48zjnP7yZn1Sz9KW+8vAM1J6y2VnPdfXkm5/PavAZ/79SnSm09tOn/ujjz7KZz/7WQ4fPswnPvFpkokoj9xzFx3NKZLt88jn8+i6TiqVQhRFDKOBMrEXWVEYtBLE43EQRBzHodawkGQVWRIxGgbxeIpapY4qyzSMCo1Gifa2eVRLFcrFMoqi09HRy+RUEQWfcETHMGpMTRUoFSqE061EYxGGR4eZt2Aev3f9WjZmDiMXj0PXKpxoM77noukKhw4eobm1hVgsgiRKQTZBkrBMm+/98nH+5t/v4tDwBKcmpmcnvwDvuno9Kxf3gxgAAt932LtnFyuXLyXb3IzjuJimzeDxEyxfsZLFixYSjoYD30fXw7Jd7rjjTp47MMgnvvF99h4dolo3iIQ0CpUaR4bG+OkjzyIIAsvndaBqKngyz216jlgsie+JlCsVvnnHQ/zZ9x7m2Og0dcMiomvkyjX2Hh/lp7/aQltLCxe+aRWlShnDbBCdepR7XjzJSMHgoh4f365xYKzG2eLoyDhXL/Fp9w5BbQi3dorc3nu5dkWa3gtvYWJygmKpiIzHvOYwH75yMV+4Is7o6BCP7KuQ0OEdSyxERSOs+MQpMJD1iIZkBAFM26VmusR1kRXdUT563Wq+8bErWbm4F6Uyglw5iZ07Qo+W4839MXI1l1zVxrJdmpJh1i9p5p8+eTWrw8e57aFTALx7FfQqY/SlPCLOOKKi86+PHgLg/ecnSDojRP0CPdIJpIN34VjTCE4ev7Cf5v71xBNJtu3YhXnsAVKcZFGqxuVLopiuSK5iUTdt0lGdt2xYx798/qP4ZpFfPLsXgM9e5JERx5k6/AxC8QBdeo6VS9fgyhEmCyUsyyYZEtkwkOXWd/RzWZ/Nvz1+jHLD4fIFMje85XeplMsokkTc2Mbtvw6y35+5WCPtHkeuHMYc30EsmUWPt5PP57n/hZ2U6ya/s0xmbVsJL78HpX4EoXKANnGcgcXrENWgTxmmSSoscf3qNv7xfcuIC3l+vmUSgE9d1kLVixFPJEjoLmMHHuGuLYGw0cfPKeLlD+JMHSRkDjJlp/n5kwFw+pP3Xk3vsguQBJEDBw5y/cYrueqCVeTLVSamCxiWTSoe5bLzVvC3n7iFm67ZwI8feZZyrcH6lf0s6W5hcmwUTwxA2uZ9R3l+T/B9ffCtl9CUjPHCpufp6e5FVTVcz2dqfJrOrnZ27txB37weLKtBW0sHoiSyZ+9eMqkkq7uz9HR3UazWKFXqiKLIws4WPvqWC/jO59+PhgKKSDSdwPU1PL+GpkX49fZDbNoZKF9/4PoNFHM5RscnkQSJ0ekxegwFORzYt9ieS9kwSYVCnNvRzh+edx63briUlBIO1LsTBdpb1zCwZA26LpFKx0iEUiiyiOt51BoNarZJKhLl3N4+PnPV9fzTzR+jOZECwcfHAx9EQUSWZR56+CEWLlpIo1Hnjm0v8MsdwQLDN2+6BatcZnIiT1tbK+FwCEEQqNWr6HoUVZYJh3QEwaezqwNNlcnlcpRKVWzHRVEVBEnAMi1EUWRkeJhIJEI8GuPpp55CUzU6u7oCECbAoUOHSEQT7Nq1i317jhMLN9PT3TOb5VIVFcdxUFSFUrFMNBJDlCREUQhqYQUXSZGRFSWw10LE88GYmdS73kyJkCAEdEzf59xzzkFV1dmJkKoqyLJMuVxGn1F1FwUV06oDPpVyDUVRyOWmiCUSZLJZTMsiHA3j46PrIQRJwhdAEgINgs0v7mRg0WIyg6e4rzXMD+6+m5vf+3vYVp56vUK9XgFcHMdEVxUWLFyMJwZKtDPayMwVXHzp2fpf5wfCGYvUcyfgZz7jPdtGVVXGxyYYOTXEze95F82ROPR1c9/O+/nMBy4mmxJw5CiHD46Ty0+wdEUTolzBt7L8+BfjbN9xkoXz5xEOyZQrRURJYGBJM50tzURDMSQZGlaR0OC6IPvetw3Xk2jr6GFqdB/JdJyrN24gGoH6ghDF7jBPbR2irXkB3d19ZJua0ZU4lXwVUTcZmRphasrg3PM3MDY8jEYe37fRdGlWc0FXFfAt2tvb8ESVQs2mVqkTieuUjTLRRJT9ew/g2g7NbRkOHd5Da2uaSW2Q1k0ryV0ySKgQo1IusWXLVjKZZiRJIZGMo6oy42NjdLb1Ios6khelUrUZnhzFNEXmz4/SqNYJhWTC4SDbCQQ1266D63swUzvuqzqCrSNqHqlsjNa2DlzHJRKRwbUQfHBmlIME18KTNHRNwrMFYlGZSEhAEgPbG0kU0TQNf8YHuW4YKFoUw4RHHtxNS3scVXbADyjziirgug7Fqs2Jk8fp6WnFdUymJkpEI1k6O5vQtSTlWpW29l7Gx8aIx6PsP7CP5pYs/QsXksuXaGrJIAng2AaKoqAoKtVqDfDxfDh5cphsSyvVWhXBF2hubqFhGpiWje8LJFNN1Go1YrE4iUScyclxUqkE+cky4pRMS7UL70AEUXGY7HqGyspfoWt57PIkYyeHUH2ZZFMcPIlsUxbbtiiW8iiIiAiBAJaSxhaTNLUvxlIzxJt7EFQR0fdRXBVPPAt4mqvR9Apz3tn3z1IM+0bB6+thWcz9/8vAW5+H2PcSmJ07358br0a1PbPduSDV919uiTMXg5wti/ubMMHZkmTAf2GMvNq9mNueJMl//ao38sy23mja9/9F2HOW41+t08wVLzpTIOn1XrNt21iWRTT6EoVvbhuvlQ788swqyLI8K0J15mrM2a4FQJD+a5pdEsRZoajT9UGn2zmbV+vcDnvmeb+egmpBEPjBD37Ahz70IXp6ejh0+DgyDR6989/pSOlkB64DVcEVoF4q0BQPfuxaBu/HsSxqS96O4YlEIqEZyxkDy7IYHR2lo6MDXYuCZ3D06H7i0RidHT0UK3k0TcOoNzBqgXdstqmJibFT6BGNsfFJZD1KPN6EplfBjSLVLbQjdyPVJyiSQMnOQ4/G8fExjSqebRKLZYKHhKK89H2KApbn8Y0f/ZL/eOBpli3oYuX8HlqaMvzxN4MM30/+5pNcum4VeBam4SBJOt//9x/w3ptvJhJRGT41RHNzM3pIx3HsoK4tFGViYoymTBrP9Xn8uW3c/OV/xvU8rjp/JV/7zPvpaGni1IkR/v6ux7j93mAh43tf/AOuu2gNRs2gUi2TTCUIR6Lc89QWPvilfwTgfdet5y8+8DYS0TA79x/m6z95iEc370USRR76hy+ybqCfilHFPfLzQBXT9fjOY4N85Z4AKHz66j6uXTuAHO7g6FCe7/7qebYcGiakijz2Z+cTpUEsoqOLFsfyAj86OoDruqxZs4ZregcJeUWmp6fJT0/SltKJRsPg+TRoYtugS+/SJYwPbuPcNhPHdqg3GoQiUWRFplQs4nseLaveAUqcTc89y5sWRvAKR/E9H1GQAQ/bcQLvx3CaQmQllmXT1dnJ2Kbv0JTJUC4VSabSwWqt7+M4DhNOC16ok6ZsM2OHnqcrXkUKJRAKJxEkFZvAmigajSDPu4ktWzZz4YUXUT1yH4JToVgskkwm8TwXcWYcSsnF+OlzkWSP226/na/8+El6mkLc+dF+Mpk0pmnheh6yLJFZfgNKJINlweTBx6F4ZMbyRKQpm8X3wfdcao5CYslN5HIVBo/tp1d4kWQ6g+96iILE+MQ4oVCYWDwOmTVsP1IgpCksbJMoHnsGx7VpaspQrlRJJZNUaxUUSWFUuxBBlGhrbUGZegrXCMaRbdv85PlR/vQn++lpCnH/569D6TgfRdeIqQ7msQdwXRtJEDFNCwQBRVOxGgb1wU46u5awK1LGrNXQVY2engU8//xzLFy8CFlXaOvqZNvWXaxY1k80JOPYLhMTJVo72/H94PepXmvw7KbnufTSS3FIpWIAACAASURBVHEaFUIRHc/32LFrJ+etPR+zaiFJIpVqmUQyyq5dO1m6dAmVYoV0JsP2bTtZujSopy6WpmjOtpHPlZAkhVxummQyzIJFi2hYQWa0UiqTiCdoVIdRENA1BcMIqIX4GQRVxJEUQEfCw7EqeL6K5/tYpsAzT/+aNS1tLHk2xy69Qt+iDnw3oMvF4mGmpnIkUmnK5RJdnW3YiXE8H5DOJ6SH8Wb6hOu4nBwc5MH7HmD9JRtYtGQJguoi+B6aLOO5Hp4vYNkeiurh+xKKomMawf1wkdFUGddpYNsWiAKu7xNSlcD2RBDxvAA0SYKLD0xNTvPss5u4+uqrkREZmxgnFI8SjUapFkqkkykcQUBWFQ4fOcpzz2ziprfdhICMHlGxrCqhSDiYZPoS9XIJBIGf/PSnLFk2wPr168G38X0Xz7MJ6TqVUhU1FEFRJGzbmqEAByJjrucHQinMLMyKUCkbaIqEKPgomoo/8wxXRAHBc/A9Fw8fWdVwHA9BkHDsQH1YEn0cIQDGougGmWEliusIiIKBIARg2fVdZFnEapgYpoFlmkxMTNNoWKxc3Y90eARhLM/EFz/O12/7W/7u725ldDpHPJnGNhsIRoVaYYxw52JSqRSyLL9B+ttL+5wtS/Oy57AWgWqewd3beW7TFi7b+A6Ghl7gve/4c960ajl/+IcrOLDzcQa6V9DS62KbNWIhjYZhgazzgU/+AMeAf/r6h0jGPJAdFF3FaFSwbQ3LVli8eDGDJ4/TtOn3kSSZkXO+hiyr/P23vstf/eV7sE0NXU8gyB6Tkya//MXT/OzhAtmupXzv7/+Vg/u2s/zNqxgZ3klXTz9btmzlsvWXsnvbFrY//zzrL/IRG6NkYx7TpQJ6ogm1ZgSZfVfgxT3DXHj5Tdx1/z4++Huf5L77H2TFqn4WL12BZag89uSDrFh2AVOFcTLZBKHn+wiNJvB7G7y49UVWrzmHRsOgrTkNiJiWg2N77Nq9i2XLllKYzrF7905i0RT5fImp3BBtXQKtyVYWdGVQ1Sl8X8d3sxw4tJ8VKwfwXIOJiWHaWgOwpeohbNtBlGUkUaRRDRZOXCfIbJ2e10lKkPk6/dyXpMCPGUHAR0SSA7/iWr1BKBpGJooo+Ozes5P58xcRUou4NHPn3c9x/rpldHfqeI0aiqri4aOoOnXDoVyusnOLwNK1YR5+6BiLly3m1KlBrrhkLaLok0jFcV3Y/OJ21qy9kGg0jmU6CGIA0hVFpFa10HU1UPRWVSRRoV5vMD01RSQSeNZPTYwTCoWIxuLk8mO4FR/zlESb0odqh7AzZaaadnNEeJj+VUkGDxygf2E3jltAUx1s20ZTdCSpgWn5hMJRHN+jWCwSV9rxxBqJlmb2HbVYuPQyMtkVkFZmFXVn551nyVIK0tl9XgVem43lq82BX89+/5NZ3FcD4qf71em/zxan5/tnuq2cjQp8Ok7/nv2me3EaV5wpBvtK5zy3rTOz4JoWet037bc28/paO8gr0WZfb0Qikdc1AF5t+5lg9TWDauG/HkeYs//cDnW2+t1XAsevtqLzSlnYXbt2ce+995JMJvmDT34KSZToaWvj/nvvp7mtk1QyTjis49pBvWYsFsE/tR1BELCalpBIN+H7HkePHiWbzRIOh8lms8iyjOv4hEMq0VgU23ZQFZ18qUAimUJTdSzbJqyHOTU8QmFqnGhYA0EgHArRlMowOTxI88Rm1CMPgB7HSveDFicUDmNaFrKsoCkaqqqCL1CpVF7G8Q/uocTa5Yv5+Duv5Z1XXMTyvjZask189xcBRfTdV7+Z7tZAuENVQ+TzJep1gyNHjtDZ0c0dd9zFvn0HyaSyNBomIT2CpKiEdD0Qdgjr/MFXv8fwZJ4lfZ387Kt/TFMqRaNh86uHH+Q911/JriMnGJrIsePgIO/deCFhPYrjukTCYSzL5b1/8S3KtTqXvmkZ//7FjyP4PvV6g2Q8xu9uvIiHntvFRL7EkaFRzu3L0tbRgtqyHLVlBRW1h/d99Q5sx+Xtl5zH77/9Rlo6eognEqxdcy7XXryO79/3OFXDpqp0sXHju5EyK5ClKM3JJq5Y083GG97JiiXzmNCXklh2A9/8+Q7e8/nb2VZo5YDRR89FH+MXz0/xyLYhTpU0bv7MF9k+1UQjewnR5e8msfaDCIvfhtJ3Az99sUas73xiXSs5MGrT/ub3E1rxFn74TJEnjmVYdv0fs3kyy927HO7fbdK2ZD1Fvwkps4jkObfw019P0Lv+o4yGV5O48CMoC67j2dEEq676CE3zL+Ar376TzYMeN37uOzC0DznWQ6P5Qu56/CCHx0WSPeejKBLj4+Ok02l+vf0U/efdwIlihPall/OrraeYt3ojm4/UiDUvJBaLUK03+MO/+z6Vhsn6FQO0tC9j8brrMbT5tAxcTqz7PARRwzBMHMen4qfYM2iyZN1bCbWuoiR2Euu7gMl6ivFGiEgkygP3P0QorCFnFpKYtx4ls5xDYyLJ3ouwo4tRW1egxprp6uokEYsjh5s5NhnBCvfgROfRt/p6lOwKrEgvv3rhFMtWrKSpOUsiHmdwyqV94HJ2D9lk+i/mU//0IPlyjfUrl3DZm69k/8GDDCxbxqmRSVoWbcBPLyLSdg47jzXYPworNrz7/7L3nuF23OXZ72/6rF5370W925JV3SsW7vSAKSaEAEkg4QVO3jcJgVxJSMDwhgRMDS0BjHEM7g1ZlmTZ6lavW9q9rb16mTX1fJgtIcsyEBPOeXOu81zXfFlrTV0z//k/z30/903ebqZvSEKvOsSvXEQymWRmZobMTI5QIEAulyORShCJxWhvbSSkBxgZGuXhRx5j5WWrEAWYGJ/guU3PkUom6ersRFNUnnjsKVpb28lksvR09SEIKoLnsWv3LmKxKIFAgLa2VmRFoVbxe10bGtLUalXC4SBHjx4lGk2Qmc74yKPoUa8bRGJRAqEggiAQDoV92nS5QDQaplTM4+FSM2qoiky5mkPWJARBpJDNoEguk1PTnD5zCk0NEo9FiLZF0TN1aAoRUHWMWp3JyQlUTSQai6LrOrF4BMOoItkabqyAUq0gaSk8z6FcLiIrMqqssmTJYgLBAGMT4wTDvl9kMe/3s0uSjCDJiKLfyyuJErZjoqoyxVIRXZMQXNcXNzMtBMG3lFFkBY9fTjA8XH/MCIeZP38BsiKTz+bYsm0bl65ciSzLhENhNFU9lwSHw2EWLVpIpVLB8zwi0RAeto+mKiozMzPsfPFFstkZbr1rPe0dCaoVD6NWpVKpEA4HMao1Tp8eJJlOIwgCsixRr9cJBHQQoFqugCvg2DayJOFYFs889TTlYoGOjjZEUUAQRRAEBA8sq06xWEBTdR/j9CRc16NUKHH//T9m4YL5OK6AIosU81mCoQC2aSFLIoLgIYqy78XpeeTzOSzTJp6I4wHpdJpIJEogoCC8eIjjN6+hYfF85szp59ChA/TN6cdxfSG5Y4cPUi7k6F20/LecrP56iuC5EEGy65QyU6iyRrqhEWSRnkKd7JHjHB4fZ8HceeRmTtDd24QkQiIWRRQlTNvl9tvu4tY3XILglvC8GrF4DFGWqVYqgEJTcxuKouLhop5aBoA0fz+hQJCGdAJNEykXbSzLpVItAgqmIdC75FpGp8d5YeuT7Ni5jQXLLyEzdorm5na2b9+FJOuEgxEWLFyCJtc4fGA7qaTfx1wo2Uiuie2ahGMxUk0teJJKS08XJ44P8u//9jOWLFtBJpvBdj0QbFqaulE0gemZCZLLEih7EhjpAv3dc9B0nUKxQLE4iYfD5uc20dbeQnNrA65rUjfHiSc1CoUsggixeIBkqIWAqhGPqiiyhChpaEENTVOQZQEBF0FwUWQZRVWw7Fkk1vN7/UXBT0gFUcR1ffExQRSwHb/Q6ro+Hi8IvpiT6zG7eORyeVTVxx3BQVVF4rEIqiLjOgaIGoGghqIKJONBREHCtCxEWcJxPHwhSRFHMomlNBxPoW9OC67jEQlHcVwPy3YolWtEokkc1y/87tm9h7bWNrZs2UI4FMZzPMbHx0ilkn6hSFHxbBPDqJLLZalUykxNZ2gLd1E94ZHItRHONpHXppjuOcOB/mcwlgxwxnmBZCtomo1n1QiEJJLJII5tEItG/PN36wSDYcy6het4KKqGa7qowRjTRZFgag6SnqKxsw9P8rgQ1LnoU/Iaj47wO5b1ea358n8m3CkBryIghF793a9KBM8H6M5+9quO8cLi2KvyiIvM739V/Cp09mLxWogygCwr/2nk9b+VYNP/W/FaAlG/TZyF8S/W/3rhcjaGh4f51Cc/ycpLV9KQShOLRJk/bz533HEH3//+96nX6+duyrM3tGVZfOc73+GGG26gpaWFUChEV1cXb3vb29i82e9zu9gNe+2116IoCp/5zGewbZsvfvGLrFmzhnQ6jaIobN68GUVReP/73w/A4OAgIdX3BQw0dfPBv/oif/u3n2H0+D6o5YmFgsTjKWq1Ovc+8Bw3fOrrLN+wgfbeTlatX8tfffavee75zYiiyOTkpO+rpii8uHMX17/xVuatuJTrb7uFhuamcw9fzTCIp5IEg0E+/fkvMXfNdVx3+9spZiaxjzxF58mfYefGyARayXkBcEU0TSWXzZLP5sD1B39R1PGARDJBzaihqCqmZfnX3wVFkmf7xhwGh4Y5f8Lher51RTAYwbY9xsYmWL7iEhYsXIgoStx22x3E4wmisRjtHZ0EgyFEUUIQZCRJ5vjpYXYc9ns/P/SWNxDQA9TrDi9s20G+WGJsfJxPvOdN/v8/meHAyVFcF06eOEU+X2TzrkMMT2YA+OO33ky5XENRdeKJFJoWQFFU3n/b1cCsJU4sxdNPPMuWzduolivc//jzVGq+0Mkn3/tm5syZiyQrmJbDI489gVE1uHJxLwA/f34nDh7P/uJpSmojdT1NNTtKfvs3qG/7Mu2H78N5+jP8/iKTB7/ytyxqUGkJyHzhvq/wex/9Q7747a/y1re8mR0v7WEqk+W+b36Dk4On8RyLe//x7/nclz7PnW+9i5aOFmzB4anNzxDVE0SCYd7+jjfzv/7iE3T2tNHb28vHPvYx/vEf/5H+/n6uvvpqxsfH2bFzD5W6y8R0jqHhKayqhYXEJas3cOTkab5839cxEVh7xZVMPfZ5zHoNWhai6kFuvuVWXDyisRjReJzVa9fg4ZFIxLBtkxeOnOaz3/gR8aYOJianuXz9FWRmpvjhw49y+5/9HWPZIookcuu6FSxbtgxZlmlubvYHWNelWq1Rq9U5efIkbS0tzJ03n1wuxy82PUuxmMV16+TyecrlEvlSno6uDjwE+vrnMjo0yg9/dD+5fJEDBw5y/Nhx8BxOD5xClmQOHDrMD3/8E0RZYs6cflpbm9m6ZTO27XBq4DRlPcl9P/sFRwYGeerZZ+js7iGXy/PUtj1s/OPPcnJkElWW+OuPvJdEKsmVV1zhK76aFpVSCUGUESSJRUuWInhQLZU5eXoAWVGoVCp+QhiJMmf+fFLpFIVSiYbGRtpa29AVFVGoc/zYMQbPTHDVVTciKgqVcoV6zWD1qlV4jk0kFEKRBTbecguGYeDYDpNTU+RmsgwODWJbFvV6HcuykWWVocFhXty+k0KhhOO4jIwMcfTYEeqGQ7lUobGxkXgiQrE0Q29/H+FIeLa4J5DLZsjnZohGk5imM/s0++qeRr1IQBco5iZRBBdVlsEV6OzqIpFIkclMc/DgQUKhENb8FpqmbFQ1RDCss2DBHJLJBH6u5YDnousatumiVOPYoRnyM1NsevpZdr+0C0WRCIV1QqEA6XSS7u5OFEVFUzVisTi27fD008/4k1PHo1yuYNkWuq4yMTlKPKrjWDUy0+MUclkCWoCgFiIUDIHgFy49PM4O65Zl+S0Roq8E3NDUzC233orvGelRr5tsfWE7lUoZWRIQBHzF1rpBPB7GsmoIgi945rgmsXiY62+4hg0b1uGJZ/DEM5SLeX7wgx+QTPpoJAI0NjbOvo88DMMAoG6avpBTLo/nOHzrG99kbHgUwYOlSxYxPjrE8OAAsgieY4Ln+SrtnksylcZxPTxP8IXSPJGpqQzLli5H14MEFAXR88dtbBtVFRAFC9tx2LlzB5MTE+SyM6iyzAvbX2RmJuujDHgkEgmUTBlZkul54zUIErR1tLJm3ToikQiOWUXyHFRVJZZsOod6/FegLedPMi8WkmPjWCZ7X95HKKCy+RePE9Cb2KiG+PD8Jezdk2f7tmEWXdo5i+77CvVnhS5DwhixQIm5fc3Iski1VsexBTQ16LsCGCUmJ8f9wq3n4tg2jmPiYTN/QR8KYYyyw5e/9G08B1q/PsrqJ6s88+yzCKJIT38D/3LfvbS3LyQWiHDi8Anuftd7WXHJGqKpVn5w/895/ImTtHVfiukqyGqQgBwiGA4gayK5/Dgh3UGXK8jSEJI4wx233cnq1VcjqgEOnziIZVmoqsyPf/xjRkaG0CMK8ltmiL7cwbQ0Qibje0m3tLVy6PAhlq9YRrlSYNfOFxkdGaSUF7DqOrkZm8xkjfyMybFDA4yNDiBINkY9yMRkmXI9h6y4KKqArPhe7WevpyLLKIrPxLAtCwR51moHBFFCkmREUUJSVARRAVFC1QJYsyrmHn7PugAkk0lkScZzbPAMDKOEIHqIog1oKLLLnHmNNDUGcV0wbBtBUUCUqRkmhXyJF7fvIxKP89wzZxg4Oca2518kM15mJl8mGE4SDKVR9RiqHkGUQJJF0g0pAoEAV191LfW6Syjk62lMT09z6tQpTp08Sa1aIBRQ6I73EptqZam5AWkwwv7cHo6t3MZjl3yFIyu2UJkzRaw5Tm/fHDLZIoqq4gh15s5roFweR/DqRMJBpibGEQUHz3GwrRrg+H3wgg4yKJF2AslLae5dT9fiS6mK9Vc8F78qflsBod92/d8mzB8rmD++uIPKa8VvmmC+Vvy65PX1XItfl/j+V1/j/1bIq+d5n77w4lxI372wp/U3ocee/9K42J96FkI//0/9z9AFXus4zl/vwt/Yn/kK7uadyFevBuAHP/gBGzduZMuWLUxOTuJ5HrquMzExwfHjx/nZz37GXXfdRWNj47ntF4tFbr31Vv75n/+ZM2fOnKM+ZzIZDh8+zPe+9z0qlQrXX3/9q475e9/7HoODg6xevZrPfvaz/Ou//ivT09Pouo5hGNx99908+eSTSJJfSRdFkYbGRsLhMOFQmGAwyPKF/XQ2xZFFGT0QZefeA7zh1jfw1I5DTGRL2LaNruvMzMwwcPo0Dzz4UwzD4Korr0RVVco1i86Odtauvowf3X8/I6Oj1Iw6CxcuwDItUuk0xWKJH/30Qb7zwx8hiiJf+qO3sFYZwClOYMf7qOsJ3vk33+VTX/sP7n/2Jd56zSoaGtIEdW0WzdV49NHHaGhKEQiFkGUZWVX8/0SUqJWrKLKKazsUi0XiyQSGZfG1nz4FwNtuvJyGWHT2npAIhsKcPHWCl3a8RDIZJp6IsGDhXAJBDdOq4Xk21ZqBKMgcPXqMb/30Mfac9P0cv/Cn7yMcDMx6V4ocPXoIs27S0dLITzbtxLRtUpEQMcmhs6uTVCrJdx/ZxK4jp9BVhb9875twXIdgyLeK0HWNaq1KR3Oaf7nfR4rndrawYu4CCvkSBw4c4dGdRzk1Osnczhbeed0ajh49QkdHK/lCiSVLLqVcrdLa3MRPfvEituPSkQzzjjtvIRiKYEs6R4ZnaJmzArWhl6G8x/hUhq62JhYkLKTsMVrNk6xvNJBGdqNMvIwcbeCFfYdINzXz4T/5KN29PSiyyGWXrmTVmtVMT03Q3dWBqihcfvl6sjMlypUJGhtSBAJxakadaDjCN77xDRYvXswnPvEJrrvuOh566CGmslk+9JEPEUvEfYscSUGPBNEDQTzXZdWqy7j26mtZ7O5HK53m4T2jhCNxAoEQekBjanKKw0cO09raSiCooygqzU2N7Nqzh13HhvjyA0/y709t42s/38TXHnySr/1sEw+/sJ/xmRySKPBPH7+HO6+/huMnjrF33266OnvAddm5cyelcomOzi6aGpvZv+9lJqemWLJ4IU1NDTQ1N+G6HslEmo7udvSATn/fPDRVY2h4kEAgzJy5c+jr72dmJsPqlZdy9NhhJicnSafTbN78PNdcey2SLHPw0B5kwaGzoxvDtOjo7uKnT2zmyz99iu8//jwPbNnHtx/+BV/84aM8f/g0U7kiqizz1/fcxTWrlvPkU0/R1dNNIBAgEg5TzBcYn5wkEAhSzBfo6e1BlmUOHj7KQitCLptlNC366JgocmD/QZYsXsz01BQtLc0UikVs2+D0qSHWrb2cSDSK4znkMjn27dvH/v0vs2TJMg4ePEAgECAY1jg9eIKGpgSNDUlqRgXbdojGooTDESYnJ0kmUzzyyKMIiLS3txOLxcjn87S1tdHW1oFhGBw/foxgUKO9oxXHFRFliVrdQJElggGd40eP0NHRyZYtz9HX24XjOgSCQWxTQBBEXFfEtRX27DpAOBInFI4RT6QYODnC8aMnGBo8Q6itkZaDebKXtqCX6him4aMsrjBb8RcQBQnH9pC9AK5eQbbLnBowaGvrIpGO4doOw0PDuK6HHgwizyowm0YdWVbo7u6lUvWRzL179xGLxnEcm3g8hiiB69jMZGYYGDiDYfhjou06Z19MlMolFFVBFP2+UcfzcF0/ifcEECUf85EkEUmWaG5tQdNlbNdBViT/O1GkbtZQ1FlqrCD4faqSb2kmCuAIYwiiQDwwh6XLl6OqCo5jY9brpJJpavU6oiigqOqs1Z1HsVigIZX2vTUXLCQQDGCadVpaWpg7t4/sTIZkKgmCAIKvEC7JIi6+9dbJYyeJJ+IoqkooGKKtrdWnTwugKDLgkZmeJhaLkZ3JUDNsBEFCEkVkUSCVjJNuaiWRTOC4NqZlEggGEXcdxrnresw5bYyMDROORghHIj71zjQolYoUSyVWrFqDJ0q/1STytYQZz8b52xZFEUmApsYmEsk44+MjtLTNZfhHD9DS1MT3Du+iXhnlttsWkM3mCOgqkgCmZRMIRZBcX13ZFQU8UcJzXFLJGMVSDUmWfMsi10VRNAJnVoAA2pJDOLaBbdfRZAVZ1Fi6dD6WXSX+so2AxPHuVs4Mlrn68lX823e/w5lBi2uvWsHXv/09uvvm4Xoi8USMfCFHNNxCV28TklijlMsR1nQMp4Ysi4SDCq7nUDeqpNIaqWgLO7cfJZ6OIahQsw2McoVnn93CrbdvJBzR+emDPyeYVhgxz9BzYDUjq/ajTIWIhBO0t/eiq2ECaojt216iqbGZsZECx46dJJVKEQgq6EGHzrYIrZ1h9ICEVZeYmJoiFgsRCekYxll/cA88v5VIEAQ8PMRZ8EHwZAqFIrLsMyTOzol8NzwRQfBF0zwPECRfOE3w7awkUcAxLd+KSpOQ5AiuIyGrDrgSllMHz0SRBRzHQ9e1WYQXylULy5JIphqYyRlMjFvMX9SNros0NCZIpZsRBJlsrkDddIjF45SLeVLJFLqmUa1U0fUA2Zk8oZBOMBDAMk2SiQSqqCOPhYiP96AYAeodOWJvEilePkxyTYRpa4xLVi3j8OEDXHfdNezZuZvGVIqOlmaaUjFkwcYxJolFw1QrFUzD8McVswwuWJbhi2PKYeo1UCINGDQQaVxKorkP2xMQRRfhgrm153mvEDc6lw+8VuL0WmavF3nOXk9CeCH6+HrGAnuHXwCTVzuv+u7X9Zmenwyefw5nwauzgk3nx/k9rq9XLOnCfV94TBcyQc/f78XO7/X0vP63R14vBolf7Ib6VTfV+Qnp672B/6uqQ2epvt7gGN6g7933+OOPc88992AYBuvWrWPTc5solktMz2TIZGfYtGkT99xzD6qqvuJm+cAHPsDmzZtRVZUvfvGLZLNZpqenGRoa4j3veQ8A9957L1/72tde83i++tWvcuDAAb75zW+SzWaZmppiYmKCJUuWMDQ0xL333gtAR0cHI8ODjAwPcub0aYbODPLxP/ljko1NHDq4n+/+67d5y9vvZHp6mtvfeAubH32Cozv38/JLB9m1/SX+9E8+iiRJfPGf/jc/+ekD6LpONBpHVFTmzpvL3//N3wDwlfu+xp59+xmfnCYWTXBy4Ax/94UvAPBHNyzktrkBSHSS1zop2C62I3D2Nq/WqiD4YlB1o4pjV6kaBebM6wVRwHZsNF33X0yyL8CRzxf44Q/+HRGReDyOqqpUqr+0ZDmXvMsioiwSjoZYsmwJN9x4HS2tbXiCiOsJOK6LHghi2Q7hcABREtC1IDNlX7SiIRGlKRVHkkRMq0Y8EeL33nU3V197Lb09PfS1NwNw+NQQ8+bNoaEhiaJIDIz5QjsLezsRFZF0YxpBAtu1fGNzTSMgC6Tjvt/ngVOD9PR1EY6Gmc5kODPpK8b2tTYQiYRJJBIUSiUSyTRHj59gYnKEFQt6z51vyYLHH3+ayckMO17azdIlKxgdmcAwHKLpNIvWXY/asQynbQXHazGc7isZFtqw5Aie7RA59R+8s2uGq1JZZkoFJmameeSRn7N/706ak0n6OrtxLZsdL2zj0f94iK9/9UvoOhw9dohvfetbvPd9H2Lr1q188IMfZHh4mI0bN6LrOp/61Kf46J/+MaLmkWiKowYEHnn4IUaGBqjXCqRTMUIBFXVyN974Ppy2Fdx6+100NjQii3D08AEURWHturVEohEymQyK6k+mBAHuvv0m/ugtG5nf0UwqEqRq1NEUhfZ0nPdsvIqtX/8sN69bjm1bpJJJLr/8ciqVCj/58Y+QBIFlS1dQrtQ4fOgwuZksa9atYXRsDLNuEdTD5LNldu/ezU/uv59YLIogCuzdu49gMIJl1oknYniCw+jYEHv37iSXydPa3Mbp02e46Q03guBiOzarL1uFbZu4rs22rNCe7wAAIABJREFUbS8wNT3Dm264kg/fdQOrFvTRnIpTqRnIskhLIsKbrrqMb378bnriGo7jcMstt8z2dtY5cOAA+VyOQ3sPsH/vfkYnJkikU7i43PCGm/A8j1AoTCTsCzyFwhGWLVtGPBFnzpw5WJaF6zhYtsLipUspFDNMToxgVuskU41MTWdZtHg5mh5kcipDurERQZLonzNn1tfUQtd0otEomqZRKBTI5fLUqgZrVq9l7px+du/axckTJzk9MMjxY6colfKomoIkS6TTjQycOo2qa1i2j5Y5joNZr9HR1oJl2/T29lCtVZFljbrh4ngijofvOywIjE9NULctX1xI8lh12SW89W1vYvnyxXTM78FY0UR09xBG3WJ8fBJZUZmYnKBULHLi+AnKlSpaIIjjeEilJE4kzw03byAcCyBJCo4jcOzYCU6eHECYneB6roum+6JHDzzw01m6rcLSJct58omnOXViEMsUsGywXYHm1jb6586lp68P2/V7o03TwvU8goGAn6gClmMjiAKSLOMJArZn4Xo2rmeRL8zgCQ5ILqZZ9xNFScT1XAIBjUgkwtTUNJLo98OBj3pKoszE+BSlUonsTJZdO3ad0w0QZ0VpAGTZR6R89NxntcRiMQRZQpQlQtEIsUScaCKO7bqYtktPv68y6gCcFQMRRSRZxjDqHDx4GA8H17XPifVJEiAL1G0TVQuSSDchCAqqHiKRSNLa2kpjQwPVSplsJoOiaHgeyIpCJBrFnZpGyBeprVvGyJivAj89k8F2HHwZP4+JkUGWLFmCFLgIz+93GLYDJjKx5g5cVUMLBbGq01iGxamTx/mjP7mcP/zwFVSzdaLRKIZhMDExgab5rTH5mogabaFiajgoyCJUctNEwnF0XcfzHIJBvzhtWb4lXGZ6AkUWsO0qeGUQKyiKQzwaQpZkNE2nmNtPRJYYOHyIt951FW+6fTW7Dhzh/R/6MIuXLiES1RgbO8nqlQsQgzrtPSupGik8Qcc0ZxClENWaLwgkuj6NePzoSXY8+yiKN8qZk1sJqhbzevtZvHgRl19+OYoq09LSwh988PeZnp4meqnMVOwM846vIZ6I47gClYrBjh178DyBa6+9jngsTlObzpr1C0g1akxMD5BqCOFKLrWaxpNPHgTJor+vmZAa9Cm5ooQsS7P6EA6SKPrjo2khnk0qBJFYLEXdtFG1ANWagab79H9JFHBtG7Nu4MxSiBVZxbJsNE2jXjNQFBlPcMkVTL7/g23s3nuGWr2O49iICIieiG05CIKLaxkIng+kTE3nGRiaYGB4htY2nZ7+IE1tCqVKHdMtoakSmioTDARRZJlQQGUmU/DvYtcFHMbHRrFMg1AgyMz0NK7jUDxTJT3YjWHZ7Fnwc45tfIad6SdQui12vLCNmalRDu7dQymX5YZrrmD/3q0snBekkD3GyUMvUc2NogsGMzMFcBUEV/W9kQUbRXFQVZl8ztfFMKo1FEkDpQ092ko4GUcSPWTXRbX+63pH/78W54N0F2sPvFie8Vrtf78tivtax3cx0O5i+3q9+/7/k1d++Ue/lqfRb3IMvytqg23bfPSjH8XzPNavX89TzzzN+g0bzt2s0WiUDRs2cN9997Fw4cJzn+/cuZMHH3wQgC996Ut85CMfIRgM4nkeLS0tfOMb3+DOO+8E4NOf/vQ5OteFUS6X+f73v8+73/1uAgHf7iSVSpFMJl95Hh5InovkOSiyiyS7pNo6Meo2ixcv5rnt2ykUC7z5rjdzzzvfzbz+fnbs2MHq1auJRaN86A8+yF/8+f8E4Ovf+iae52HZvnXKkSPHuO2W27jphhvxPI+P/tnH0YIBJqan+NgnP0nNMLikt4lPfeBuprV2DClGW0cH6cY0zS1tKKo/gQoGg0iyQjAQwLbq4Dk4jkVXTwfJRBJJ9H0DjZqBKIiUy2XwPJKJBI7t93rJssL09PS5056YmAAEzHrdN9gWXPL5LK1tTQQDcbKZMkbNRZaCFAs1FCVEqVxgamqKTZs2Y8wW2xqTMVzXpVjKIwgumi4TjUYJhUIcP3aclnQCgNOj43ieM9sLBhMzeQBaGhJEI2HMuoFtWxhGFUHwEAWJUChEUyIKwFS2gOmWufSypbz57XcwlfXX72xtRNd1Oru6cRyXRDLF0mXLSaaiBAMysbDvN7tz3wGuvupqZmZmSCSTiKJET08vsqLgAtl8Dk+EbD7PwsWLGBgZ5fjJIUanbTa/PAo9aylYEu7IXuL7vkcqFkISRJYuXsLGm2/mxJHDvLRtK6tWrODO22/nrz/zP0k3JJi/oJ93vvvdfPqv/5ZIJMJf/MVf0NTUxEMPPcRDDz1EsVhEUDz0UIC6VSOfz3HzG67nof94AE0SqZWKPPfIv8ORnzFkxjkzNoWsKDz77CYUSaQxGef6G27wVU4dl46ODl56aQeSJLFo0UL6O1r4y99/G9/4+PvY9/17OX7/P/Bvn7ibJ77w5/zBxjUMn9pLOBxm79695AsFVEUlEo1y3bXXIiBgGHV0LcDg0DAL588jHA4TDIVIpxt55OHHSSUbCYZCvPmtb6FQLFKv11m7bj3Hjh6nUimRy82A4LJh/Vpi0TCGYaLrATo7O7Fsk2TaR6A0XaOpsYGpyQnWrFvL8MgIrQ1xPnzHNfzH5z7G/h9+gaHHv83Qw9/k55/7OJ94+820puJcccWVZLNZ8sUCjz76KJZl097WRmNDAzdedwOe6xKJRDAti2KlTD5fQJIk9IBOLBbDtGwKxQI/+ekDCKLI1NQURq3G2OgYohSkUqsxMnaGTZueYseLOxifzHDJpZexeOkyXASuvf56TpwaAE8moEf5xbNb8RyJ0yeH2bp1K+Pj4+RyOTLTGXbv3oOm6cybP4cNl6+nWCyxcuVlzJ+/iObmJgTBY8P69ZTLJTxg796Xz6sEC5hmnVAoBHj0zelHFCVUVUdRdEKRIILoUa2XKFeyXHPdFSQbolh2CcerYTtlZrJjHDuxH1kG87J+5KkqgZ5m+vr6EQSPtrZWQqEA3d2dRMIhPM9BEDzcmohiRbHNl4klNGpVH13t6uqhvb2T5zY976MKgogA6HqAO++8g0AgRCgYpCHdQEdHF8PD4+RzZQ4dPk6uUMJFJBSJIMi+aq7j2KiqilmvIyu+ovfZBPjskH1WHMnFQVFkIpEwjmcjSgJ+156Lbdv47i7+OyuVSiPJMq6Lnxy7fhtFOt1ANBrFsiysul+MEwSRWq3maxc49uy7zCISiSAIArVajXwuhyjLvvXFbJ+tJwjULZvnt2zFshxcz0fCz9JzbdvGdj00PcCdd9wFuEgSOI6FHlARJXxqpCIhSLPtHI7gI4+yr66ay+Z4/rnNOI59zmJKEAScmoH60kFm7nkrhuSj+qomIwjeufM4efwo27e9gCDK2Pbr8yd8vWEjIUgBXEkh3dLOTW/YSG93Cx3tXXR1dtI3B3p6ISBFSKVSPrU5FqNcLpPP5zGJcOTEGIIaRdYjWJZJtVQARBzHfxdaluUnVat+Qm3lD32HgHoVVZUplCawrRLhiAaCjVH35wxvf8dagrpNNjPI6MheqrUTrLhsDf/ytfvYe3AfrmehiBZnTh3mmhuuYusLezGtEJMTWQQMBFFBUQLUKgamUSOoKsT1MG3pBPP6U5SKZ3hh6yY802FoaIjdu3dSKpUYOH2KI0eO0NDQwJw5cxBvzVE56PDth7+OadVQVImVq5bz9DNPcvz4YQYGjnN64AxTk3kGTkyiii3s3TnOvn1DjAxbJBOdhMIqnlfGcywMo44sqViWg1mvo2kKjuv3voqztkfBYBBZ1nBcl3DYfwZkRaFumoh42KaJJACuiyL5DJVypYqAgGs7aJqGLEkoqkI4ksJxRYy6jIuArMi+wJMnIUsqguihiPg+4C509/TTP3chSCrjw5M4loWupMhPx7HqjUyMjzI6MkQsEqK7s51qtUI8liIznWVkZBjTqmM7JoGgxmOPPea3hJWCdJYXMTzvZSpvHeE0Z4jE48yft5AXt27h2KGDSJ7NqkuX4VkW8WiAbHYCGGHg5BZcdwJZKlAuDdHc0I5tCZw8cZrM5BS2VadSKVIrV4hGw3iey/DwKBPjGcYnanT29BOIqIiihep5SPZ/+/TkdxbnW4G+Vs7ymySvrzfn+XVxNrG+0JL0YrmS47wacf5N4r/t3fHLhBM8z0fXHMcDRDzvl/Rex3FeoZp1IQx/IdR+vu/RhXGh+tavowOfDcdxXpVcX0g1frWylwd4bNq0idOnTwPw+c9/HlVW/F5Nj3PLhccIcP/99wPQ3t7OPffcc+7785WG//Iv/xKATCbDM88884rrcTYWLVrExo0bL5p0v6LaI/gvVwsZBwUPhXC6kcameVQqGo886dNWf/9d7+SSeS1YlXH6+nt4w7U3MjyYwag53Hnb7QAcPnKE4aEMsiaAa7JkTj8hReLr/3wf7W1tZDIZ/sf/+CR/+3d/z4FDBwnrCl/+vz6EHksSDYfJl4rUXQfTNpjJT/PA5z7G6CNf5fmv/E8Cio8shGJNaKE0ru1RzGTAcajXqsQjEcKBAJ5tg+PS0NhAR28nNbuOKKt4nkh7W+e50z58+Bjf+c73UUWZ0aEhRocGSSdjGDWDxx59lIMH9uO6Jgg20WgASfbABlmRWb1uNZW677WqKTKebRNSAniWjabJPjob0lh+6XLCIT95rNZtctkClUoFx3EoV31akyoJ4LpYpokmq4QCYUQkqrUaxUqFUMgvPFQME1HQMC2LeCxCueZPQMLBICfPDLB3334E0beRkFSTgBxhYGAYVfYnj+FIjFA8QkdXJy1tzQycPs50ZoxyKYfsOUiuTWEmQzQcBVdmTl8v1954HS19XVyyeiXVco1g2zzkORvwzDLuI3/FVYkJLD3ApZeupW/uEnbvO0bVUkCJYXsSo0N1amWF8ZETxCN1vvvV7zA+NM1Xvvpt3vOBP2DNhsuIJVS2vvA809MZbFeisaUbV9K54Yq72b9nH/9+319xbXAAJ96NnEgguRqDg6O88fZbcUWZlo4eHn7kYUaGhzl0cD+maXLZmrWgR4gmksiijSLW6eptRYlo7Nx1gMtWr2Z4eIiXtu+hKd1HZmKc1rZGVq5ZQyTaxLNP/gLLEVmwaCn3//DHPPvkE/R2dfDiju1YVp1ILMoTzz7DgqWL8ASXzq65fPfbP+LH3/shuuRx9MhBFC3MnN5ejh88wqYnNzE6PEVjazftnS28tONlnn32eSrlAju3vkRvVyPVygyiIpNKt5OZmEYTHTY9+wtMy6FuOjiOy9jQaYqlMq2trbiWybz+boaGTzI0chIsj+62TjITU0xOTBGLJ9FiQQqVIpVymXrFYPf2XRw9cADHtqlVK1iWgWfXcY0q77/nA9iOx/6DB1FVnaOHDmMWM4R1meamRt51991+cjs8gFHLEwjKyJqAYxoMHDiE69qIgCKIjI6O0tbdTiLRQCLRQDAQQRAkjh05Sq1aZevzW5AEgcmJMRy7xuCZYxhVg8bmFlxFIpMvcuTQKboaU+SmJhE8CUHQqFZswkGf1WGYAqFoI8VyBVkF2QsQjzajaTGee347Rw4dJqKpKEoEAR1V1Zk7fyHrNmzEdgUczSa7qgH52aNUSgUkwRcfqtUtqkbdnyCaBp43K9hS0nG0Ek7d4ejhQzh2jXQqSlNTgmXLF+PZLq7jYQsyruQjyLXiDEbdoG4ZrFu/mmIhywM/eYCBY6fwbBFVDaAqGo5lgFPzC1t4BIKB2aTExfNmqYblCp7rzipdKyhqABsBSdEoZkv+2CSp2GYd26yCICDKAd/sVoDMzDSmWcO1LRRJprOrFVnzKcdNzS0cOHaMgVMnKJWKvlo8KsMjE+x44UUc02Z6YhLPcVBUmWQ6Rb1ao16rgOdgmyaO6XDs6HEy0zMUCwW/Z1WW8VwPz3YRHXDrdQRsHKFGUPeFXwRRwHHB8SQcy8Nz/PeubVnYjoVj2dSNEqIiIwfCVE2Rk6fGCKgihewM48OjqC+fwFm5iODVa5ClANlMnUd+tplopAGQMaoGshJhOltD0kKYvHLC94r3u+C+arnwtxdqW7xyfV9B1RM4tyhYCF4dARfThboSxNajFMplhkfGkeVuWjtXE2tpJV+sMT09Ta1WQ1F0IuEWhkdy/M3nfsY73/k3VKYn0DWJUNMSBMnBMD10PY2oRBAkhaw3ihCv0NzSiWUJiIJKMN6NHk3higKOJyGJHq5bJh3UuX5DinVrr6ZsLWTLC8ewag5/9Icfo6dzLkePnCIUbaCrdwHT4wOkWls4PmzT2LEWS9IxzAx6OETNUpCkCGa9jCGWiKct5nbbXLEigZUbpJbLkmjsxVUkSlWLnp5l9PfNp6+7hR27tuOqLt67x3hf+M/4hyfvRVElLOrc+MbbWbP+KpLpRlYsWcz0ZBZRhnA0RG9/O6tXLGT+nAirVzchCi6yHMFFxLFNwPB1L+QIRt3BEV0OHZpm+/YTOJ5DrWZiWlkkycbDQhAdPMdCQUFSNRxBxBMltFAYBwGzniObg72HRrBECSQXz5GwbAfZrfOmW5ewanka2VXwnDqCrPLCrsMYpohnepStKqIUwTSLmNVptmzazKKFzbS2zSGfkygWRdZe2cEll86ho7uTWDKG6ZhUzTqeoNLRnqSltYGO7l4am9pIpdK0tTSx5vK1BK0kjdk+di9+kqGGw4TlIGtWriYcjeLKIpu2PM9HPvIRuvvnkExFGBs9wNFDm1i2IEFUCtGUCNHVHsKyiiDoVIrTGEaWaFyivbOBarWKXfeYGM9iV0VsM4jhJeladgNr73gvppJAEnVc18aSbEzVRvDEc4uIhCTIr5pH/yowSPgtl1+3TZ8qM7v8mni9/Z7n+7NerOXwwm3/koorvUph+MJjOd8j9vXExUDDs9s9X9fn7LFdTMH49e5bfl1r/R8QZ6sGnufOypHbVKtVIpHIr1znd9GQfTZhPD8JPr+a8OvUwH5VbN++HYDm5mZWrlz5G29j927ff/HKK698TV77ggULaGtrY3R0lN27d/PGN77xVb9Zu3btr+Wtv1Z4rk5rZxP/+5++eO4aveOe9yE4dQTAEVUEQeTxrY8hCK/c9vDYKRpaGpFFBSSb0ZEh2js7+acvfJ63vPNdPL9tK89v2wrAP7z/ZhqiQYrFIka1RlOTL+qkSHFwKxi1AoFAANuSsO06tXoJTfeIRGOIhHBdi7rpi11NT0+TTCWRJIlIJEytZrBgwXwQROpGDUlWXlFN2rBuHfM7mqjXLTo6ujBNE0mRUVSPa667Atf1RVskSaRWraIoEoGARiCsEo5EONvA4YtAKNSNOggKI0MTtHa0o6jy7LXx96lpGp1dHegBjWqtguP4n0uygitAMBLGFUAUZUzHJhKJ4LoBhNmhWBQENE2mUjEIaK8UCViyaBG1Wh1NVSmViziO32vY2NqMKP5Scr5YyJNMJti16yT9/X08/eRTLFy4gMaWNrSAzO49u1m/fgOi7OI6DpqqIEsgij4dtVwpoqWSOC0LkK0qjB5BeuKvuKtX4fP/+Dl0PcCxE8d48MEHef897+bLX/4yGze+gQ0b1nHw0AGa2hLcsu6NTGaLrFm9jm3Pb6KztZvepjaa4kkMw8ColcgWJlm2ZAlCocb88QhOuBUl0UWDZTBaGaG7p4+RkREOvPwyixcu5JIV64iEdCIhDcETMA0DVfTIzoxj1ktE4wlUJYYiaqxdv44TJ06waOkiwrEwoWCQUChCSFYQ8Njx0laCYYnpqSmGBgdZunQZDU0NnDp1EkULcOL4EZqamrnj9lup1QxkWSIc1unt7WHN6ksZHRtj4cKFKGqAxx95hDVr11KulNA0nX0v76e9pZF0OsmatSs5feYwCxf1ook5SrlJKlWFbM7m8ivX88KLz3LzTRsZGjzN8OAgpXKB5cuXMTJyhpaWFl+pt2qSnSnR2NRMKBLCcR2MukFffx+Hjx6mUqvyhhtvwgOqlQptbW109/Rz5N8209vXw8TENF1dHaRSDdiOx3R2hnXr1iFKEnPnzmMim6Mv2U16VtV14cK5jJ4exRFg+MwIze1tjE2cYfWGyxEEAcuyKFcqpNNpmpqaiESjiKKALEksWjIPZ3asnxwfoVAocP311+J5oOs6rusgSSKCJJJKpWhvb8MVXEK6hue5HDp4iFI+T0MqTd22CAZ0JFklFLbIZjMo4mlCTiN2LYhgh7Adm6ncGRob52LUDCqVKqqqkUrF8AQBy3EQl7bijtQJ1QWcAAwPjyKIMpqmEQwG0VQVwzQJhUJUyham5hANjLB48VKMWoV4IkLNqBCPRxFEyaeqew6KLGPVPUKxBEgCgicgCRJvetObGB4apqe/B9f1C6MTExM0NjVQrRqEwjJ+366HKCqzdVAPURCIhEL+REvw6Yx4HoIgYtkmoYhvBSdJMnXTm/Vq9WaRY9+6piHdNGvL5vePKqrP7qjjAS5vfsudxGLRc2OF41housaevfuYv3ARkUjYT6Qdnw4sCCK2ZfLi9i0EAgFWrlzFggULWLFsCbZV89VaazUUWfcpz0hYpm9dJ0ki5UqZYqHIE08+wTve8Q6U2XFQ8AdNRElEQgLBF4zCE8ETWbx4MY7r+2zHEykSdRclN8LOO/rZct9Xueeee0ink1x51eWEw2FM00DTRXbv2cG73v17yDLUbQMk9dz4+Qr04v8hWGAsm6O5tZljhWkqlRoejSBXaUi3EAnpWGYVUVB5addO2tv7ue2Nq0mmEqiagBbQML0akhtCEj2CgQiFUg0BmaaWNiYmxxAlDVmKoCkaGCJKACTZplCeBtFDVRUqRYsHHnyQBUtvYmCoxth4mf6eVq685kaKpSwrli7hwN491EoFoukkpWqVBYsuIRWYRHby1CqTCPhMo3qlhCj6FFnHqlOzPWRRZd78Hrq6W/jFjuO0tTSxeOF8KpUKuDLjEyPMZCfo6e+DlgqFrjP8r9CfMz48SDgSRhCqeJTp6o4wPJRh2YqV1MwxctM29do0LS0RAgEPVXPwXBHbVjh86CQdnW0kFBFffM1BUzQcUSMQsOnq7EQUNFxAEAxcHGzXBVdEVTU0RaJq1FEVGcuyEG0Bz3OxXY2BU6OMjGVobW4hGRcQMZEUDzyLQFBAkjyMehklJGEbOseP1untFUnETXRVQXAlAkoIy7FZu349+UKO5zbvJBJpYeu2rdx001UEdIVIrM0XmJJ8X9l8JUcy3kQ2VyQaTzA0NEgqGeP04ACdsflwJIjx1hFkw6El3EJzbwrTtXn48Se4+uqrufGNNzE4MUK1OkFPZxO4Scr5USanp3FyBulUlNHR43R1phFwKdcL6KpMY0LDqedQBQcbG1HwmCnbNHYuo3npchp7V567n18LhXslgve7fqr+z4oL7T7PB6Bea25+fk7yuz62i8X5/9dv01f7K/f9O9nq7yjOz/DPopnAOTW9s5Ski/Gt4ZUmumcrGedv99fF+TY0Z2nGZz8/f3sXQ1kv/OxiFZRX/sl+bWdychKAzs5Ozo8Lq7bnVzfOqsYBtLW1vWq988/n7PdTU1MXrWQ1Njb+p+jO55+XbYsEEzFm8tlz32dmZpjOl5nKl5nJZsnMZMjMZJjOZMjMzJz7Xb1eBdPvLbUR6OrvI1/K0dnZxfvf+75zv7vtqsu4dVkLeiCA5/nJnV9tVpBF3xMRHKYmx30/2Xgcz3OJRcM4dh1ZVdACAV+dUZJJJBMICJTKJb8vKx7FNE3A8+l0rsODP33w3P5VTaGxKU04HGEmm8WXGvX7skJhHUkWfbqe4+HYNoZRQxCFc300gVmBlqpR9ylJqsbI6BiHDx2lXCkjCgKOa2PMIrTJWATLtSlXq3iIhIM6AIZpouq+VZAoSYiSNOun6FCp1ChVfIQ2FNCo1w0USSIzlTm3fqFUxrbqCILD5s2bEAWR48dOIAjw8sv7MEx//80NKSbGxsBzWbFiBaVSmZtuvpn/m7z3DpPjPu88P5WrOqfpyRkzGORIEoxgkkhRK5qkKMlKznteay3dWbJlS7uSbJ/PZ2kf2ytnr3e5Fk0qULQCKZEgITCAFAMIEhhkYDCYnHq6p3OornR/1ACCKEAiKdt32nvx9NPzNLpC16/C7/u+3/f7XTO8llgiiR4IsPvGG1AUiXKpgGU2sCyTsbExsrkcTdsmFm1FEHQMLYLphckG1rHUMOjUK3z6aov//aYEY+OnkRSRcDjMJz/5SXbs2EE2m2XHjh186g8+xa7rr2JweJAPfvDD/MUX/5b//KnPkZ1ZYGlqZrVqXqO/vxV3+huUn/6vFNAxAyEcGogiTE5OoCgSHR3t3HjjjbS3t3No9CCVah5F9RCEBorSxK5XiIYMVEXEti2K+QLzc3M4rsdKIU8sHmdwcIBEMsHY+ATVag3B9di0aQPXXnc1GzdtIN3aQr6QZ2Z2lu07diKIEsePHef06VNMTk6w/9lnyWWXUWSBm266AVGW6entQxQEcssZrr3+KkTZZc1QH6l0hFBUB0Rsp46sSAwNDZNujTJ17gRdHd20JDtpSad9UQxFZSWbo9lsUimXwfVIJhKMrBsmGgmzuLjI4dFRkskWOtq70Q0dVVNpa29D1VQkWaKnq5vnnnsOz3XZs2cPpUqZSCRG45YRRrug0WggyyrZ7AonTxynq7OdbDZLvpCno7uLSCKKLKvMzS9z/NhJEokokViUWCzG+Pg4qqKwcdNGXjx4AMdxOHbsGLfd9nYMQ8VxTBRVpN6oguBSKK7guhaTk+MYgSB1s45pmRiBAHPzizQadYrFArIkEY/H2LFjO6Is0WiaNJtNnzZs2ziehywrWJZDvlhBUUN09wziOjr1epVE0uWOO66iq6OdaLjDbzPAJRaLks0u49gWggB7Hn+CXL5E5dZ+lPkqFi6GHiDd0kp3Vw/Z5Sxzs3MoskqlUmXszFnIR2nWaftOAAAgAElEQVQaOUrlHMGgQb1Rp1KpMjs7R7FQRMRDxGIlt0jAMECUUSQJx3J4/PE9KIpMT08nkiSg6Squ69DZ2YUsKwQDIZ8u7fk+r3iC30soCFjNps8sWp386IqKJIjIooimqhf6fF0PdM1PxriuD0pZtfo4XwVQFD/xCJAvrOC5Ps04kYhh2y6O4yeVRVEkFovyoQ9/mHAkQr3eoFAoIwsyVsOhXK7x0ksvY5omW7Zs8S2MajW+8+ijlMtl38Zs9bl0ftu+sJN/P1JVlXg8zjtufwcAjuv4lWXPI7+y4usRCL6CvYtAYaXA0/v2EQ6F2LFzB7KqUC4WUU6M437oTpR0kve+995VRWUL224CLtlshuf2P4MR1FmzbghX8FD+lSZlcOlE+6We9T0tERIxg40j/XjFFY6+8H0y5w4zPzsNnkQoHEdWVXZduRVNMHnPu69jy5YWPByarkDNqlE3V7CcPJXaIp5QwaWONbqZ9PId1K0C9cYKZiOPIBepm8uYdhVZjmA1RWxLo73d4HN/9NvkKwvcett17N69k3J2mv1PfZdGNc/jjz7C8uIyihwgGAgwPDzC5Mwi+bLMckljJVelXK6jaQaqqhIORQkFDMJhA10T0HWBvr42nn32CcIhg1tu3k04ZPAXX/wznn1mH4cOvcpVV12Frms88MA/od2Twz6rMlWaZGWpTH45SymfYyWb59y5RY4dPYXZsJiZmCARjSB5BrWyQ7loYln+sa3UioQjIVwskBwUTUBRRSzLpLs3Tlt7EMeuAyaOKaDIAYolh9HRWWp1kVK5gixLiKKAoWurSSYXXVfYuHmAzo4Iuq4QDBsIsgmejCwrq0wJD10L4poyjlniznduJh2X0SUD2/GvLdN0QFQ5fnKcFw+cIBRrp3+oj97eLhzHY3ZulhdefAVF0Tly7BhLS0sEDY2J6RnqDYtDr44yN7eAoml0BAdQT0d5eeQ7vJZ7iUwmw5e+9CUK5RqWLXPXne+nq30N8zMZUtEW5icnefHZZxk/eZpoIAINj3QygGdXGR7sYHlpmkAA2rtaSCbCOFaNarlCvtigbil4WopE13aiPVeQGNiJrflWgxdXAd9sH+Zbacn7t4h/if06jx1e76d6qfWfv09ertoKP6oq/FYA7usxzOsrv6/f7sUY6Hxcym3lzcTPVOX1YjT/A2PeH7/M5ai8byVeP/hvNl7P/34z8Ua/fzkq81td//nj/FZCVjwsS6SrewgAXVNZnp3G+v59CIjUN/08wZBKo+mwsLBENJLEtm2CIQ3Pc1iaO0NrVx+uqCAqBqFQFEk2ePS7372wjaNnztHUb0XyPN9DsOH3ezXqDaanz7JmsB/HNhFRaNRrOILfp1KvVahUqwTDEVwEgoZBrVrD9Vwk0QeWgsDqTdUXL9F1nWq1ys233MIXHn0Z8HutTLNOvlLDCAaQZek8zEVWJVRHw/MEctkVctklBgZ6sJo2nuBSqzdYXpwFYDFbQJJEHDx6+roZ7O/FEjwc18G2msxmfDuc9pY4hqFjWTbHjp5AXx2eheU8zYZfNS2WCgSDwQv+v5mlZWZX7XTS8QiVUoXZ2Tka9QZtiRj5UpXFbJ5arUqpVKSzo43FhUUs0+aFF56nb2iYYsVPJHS0JOjr7aZeqzE1PU26tQ3XE5AVXwXRdkDwBGzLJhIMM3p4FNf16O3rYzmbZXBwLfVa3e8fliSmJqfo7x3ky999grfdcj0RsYa6cIJ3hyTec3sPWmsCV1QRBI+kkMRxbE4eP8POK6/h+rYedl19PR/7D/+Bwsoyx196iv2PZahUivy7n7udLnuOYG2RvN5BS9cAltdEED2wZbZu20y1WsZxPbLLWSRB5LbbbkaRXOYXpgkGNBzXobBSpFyuIkoqa9f2E0sYWLbD3r37OXnyBOlkmvb2ViLhMBs3beTEiVMcPXKUoaFBOjrbmJ+dwmxUkRWRK67YQS6f55bbbsWzTAwjQLFQZHJikrNj4/zyL30YTxBBFMjl8xw8eJBoOMrAQAdHjh3luf0Z3n3vvQz09SKhkkzHsW2bXHaFlpSMqkWYms6ysNxgeSWDR5XO1m4y2RyxRJQNmzawb98+zo5PsphZwrIs2lOttLe1k06nsW0L25YxDJ1gMEAul8VxbErFIurqxOqWW2/FCBiMnT5NV1cHhqHj4YDg0tqaIpmIs7i0QDwRI5lMcubMGKlUhFK+QEs8zdmTZ8lkMuy6+joqlQq1Zp16rYpjOwjA8vIyZ86cwdAU4ok4gUgAVVSJBsPUq1WcpkUDyC5laEl30tKSQhBgYXEe02xy9uxZuvp6iazaXhmSyiPf2UN3dw/vfOe7GBwcYGRkCA+Hcr5Eo9Hk6FFfMdNxRdpaNzE1O4oozaHIYTrSEUJ6EFcUqVbyqIrO2TNjSKJMe3cHHR2d7H3yKdavH8HsKXLrWYG+usRT+VPcsGkH8XiMpcV5JFkiIBsEQ0EWJ1fo7wgR1mbwvDiVcpXHHn+Smukgeh4f+9ivYzWrCHYN1zHxXAXPdXly75NMTcyQWcpwbvwUp8fH+YVf/AV/EoCHJMo07SaSqPjUX9u6cJ9cXs76vcnNpj9J9KBRq+N5fj+n6/kida7n24OBhCQKiAqIooDr+BMPx/XHyXUcXM9DEhXisRSWFUXAxfU8XMdFVnwhO9u2fOXqaAjPgxde/D6FlQI7duxkfm6ejVs2c+b0GKFwCFVV/f4rx6VULlOr1wmFQ0irQlt+C5D/bjUtAgEDWVKwLIu2tja/GitKSIqM7TiEwmFc26FWr5FOp/0kh6GSTiVIJKMEQhqSqmBMzSHoKs23X0G/aaLIwVW7ktVeWMcinoihCBrvee8HcIRVJWlPfKNipv9q4QkyzY+/k6PPPMJwqJPx4y+Rbywi1xwCukTDBNex0EWZtkQYR69jx1yiUpx8qUqkM4lUqzO7OIUgibSke1FlA29mPXgebt8eItEwbrNOPpdBUhUCoTbmFgqcNDJEo61sFqrMzpY4Mz7PxPRX2DDSj2lu4fChIyxlKohKiBtuu4W9TzyJoDSQdYWRjZsY7o3z2suTaFKE/MoK1eIKQU3CbHgohoVrSQR1g1K1QK2+xMJ8jus2Xs9rB19i48aNDPZ3s3P7ZgL6FZyZnKa7Zw133nk3rx05zDW/1MbOf3gHXwl8nn/X/y5WCnWOHBmnWrFJpjWOHl7EMktEo8MUCyaqpnD8+BGuvGoziuRw3dWbsd0qiqTQbApUbXC9Jq5tI6gVRMlXFfcEwFMwmza5Qo1DR3P09fUSj0kInkvTtJBlCVkUERGRVYFAoM41Vw/5CRK7gevYeLhIkodhBBAQaFoWmqwjBUwChk25vEAs0oKDjeOIFMsNTNvD9XRG1m3m8OFxSsUFrr9mN68dOk57Z5oN69eiyCJrBvqoNxrMLS7QM9iPIqkEjBCKLCNNBFGXNeofnEbOO2zesAPTrLMwP8P02GnWb9jC+IkTxMMGxYWzHPr+EoZUI5UI0p5qpVLMcPrwK2h6jfXrB7BMj862BNmFJQrFKoYiY6gakpQCNU5L3wiC0Ua8bT1SoAOUIJJ4aTVcP/7XL7Oq77N+8pf4wRz9rVZT/yWx0E8b58H46/ti30z8zFZeL1XNvNwy8K8DXt8siH0zy0i7r0DafQXt7e0ATE5OvuFteJ5HS0sL4HvD/riYm/NtWlKp1Bta/5sJ26nhejq9PWsBaJhNTo2dA/zqZCAUYyGToV43aWvtYvTwCb784NcJGBHy+SK67lKrF0EUqdUtVCXAx37r48zNz9Ha2kYinuDcfJZP3/c4qqJQq9WRJQlJkqjWqnR2JJibnUVAQxJU8Bzq9QZGwMB1bOxmk6ZlEQqHsSyLSDSCqqqUSiUALNuvuAYCAb+PTBAIBAKk0+kLv1GURELhIMl0AkFw8QQH06r7mW3LQpRkXFfg1MkxDr82yvjYOUzTQhAk6jWTnetHAFgulJiaWwQBXLdJZnne93/zXDwPxmf9Cvz6gW4cz0FRVDZt2sSuLRsBOD01h+ACrkez0aBRrYHrkcvlUANhSjW/t3Xz2n6CgTADfWvAFRnq9lWMz84toesaLS0p0q1pEokk8XiSkZERKhfZHHe3xFjJ5dB0lfb2dnIrK5w8dRJRkhBw0VWF3NIylUKZJx97klSyhR07riCdbmf0yAmOHz9N0ymzkp/nke88hKo6zC+M8wsfvpdKtcrX93wfs30HVmoEankaj3wKa9+fYD3/VzSe/kuc5/+edcv7qP3zb2N987fgsU/wX99l8IU7VO7uL/KRa2L8ztu6GSweIuQ1MBP9qHqK3HINy5JQlQjNhkJrawuSLKIoCuPj44iiiKzoeK7E3MwSdlMgHknTOzzEhm1XsmHzdYhKnL/9+//O0WOHiUeT7NiygxNHT/L8s88zOz2LrCjMz8+zdfM2ioUKx46d4tXXDnDo8Ktcc82VuJ5NZ08noiRx/NhJ6rUG1Wqdu++6l+uv302pWEAQ/fMtGAqjKAqRSBhZVJBRCQfinDp2jqmziywuLFKuFNE1nVg0jWGEUPQWzk4ssmZkHcGISrG4QksizbqNa+no6kBSZK7adTWKaiCKCsNDI5w7N0G5XOaVVw4gSSL5QoFAMMChw4eJxmJ0dnWSiCc4ceIE9XqdPXv2cPzECTo62pibn2H83BiVSonjx46QWV7ihe8/h2U2yGazjI2N0TfQT0iXGTt5kicff5KWljauu+4GLBwUXWXDpg2sZJcRBY873nEb3V09Pn3QbNLe0U6zaZLP5fneE3vRFI0jh0YpZPPsvmE3hw4fRjN09IDOwuIiW7Zuo6enm5Z0C4IIqiKTy2V51513c+uttzN65IgvUlMvI0gemq5iO02uve5aHM/Fcl1ETUZWDFQ5jCoq4BZpmpOAQDAYRlU1NmzYRHtbJ9KqWNnOnVdiGEF2vG03C3d1kLsqyS2BPvQji4RVja7WNnzRI5eenh76+vqQywnsQB7Xs5EkBdv2Ka1vu3k30xNnKeYWiYZUcpkFdFVhOZPh6l27fGBXyLN+wzre9/PvvSAk565WZPz+VomxsbPYtoPnObiudUEfwbFsmg0TURCYm5nlwEsvUymXqdVqfiuH699vHMfFth0c26bZNLFWK8+23cRzbZ/ajE+TBBFNM3BsF8d2MZsWex5/AsuyUFTfFkeUwfVsorEItXqNQMBgenoaXdP5wAc+yHve815qtRrgkUwm+fCHPkQykUBebQkSBAFREhk7M4au+yJhoihiNk0kScJxnQsg3mz6vrCKLBMKhzh9+jSSJBEIBYlEwmxYP4KqSphWDbtRRzo9Rf037uErX3sQUfKwnSae56EoCqlUAlVTfPVxSUPRg3go4KkI3v/7uf+yGMcKt5Jcs5mZvER6YBdSvA8dh8LSAtMT56gUVqgVl8kvLZPPzqFINopikEx1Ua43sEyNgb71BI0k0XAHZ88soSgRSiWT5QUHs6YheAHaW7YSCfbhuirReIjI23sI3dqD58jse+IowwM3YTUlFjMTdHQO8uWvPMw/PvAVrrvxJl45dBhXlunuSuOJDo5ns5DJIalhBFTSLW2+OFSjQaPRpFqtUq+WyRdyLGfmkUWPpl1FUSSWl5eoVErcccftJJNxxsYmcB2BRsMms7TCk0/s44/+6XcQb1jhLvVXGJ84Rku6leG1W9h1xQ7WrosSMhJs2rqG5fwCL706SjiusW3HBlTF19nw7DpBQ6FZF6gUFb75rYNYbghDiyKJKqIgI6AiiQbBgIoo2XR0ttHZGfN7rL2qL94kS6uCOB4gUClWEbw6ilzHtWo4posmhxEli6ZVwbJrVGslJEmgIVpYKDhCGEmLYgrOKu1dQpZ1dCNCoVhneiZDT2crmzcMYtarhIMxBFGlUS1QLuWZnZ2htb2N7r5eRFlE0WQkW0Q4YVAtNXB/p0h8m4FhGDQaDUzTZO3atUQDdb751b9j/96vMjP2HBuHVILyJD0dAkcPPc6xQ09Qzp1kx+YORtZ1oMhN6rUi9UoVTdbQFING1abZkFBDXSixYUx1gED7FSjxtaAnkSUBTaj+0Dn9/9Uq6r9WiGkPMf3GWI1vtXB2fnm4tBLwv3X8NFXf8/Ez5fNq2/bvX1w+93+49yMvQfjh6ujrwebrD9iPE3Q6/9mlmqZ/XLyennvxYF1q+deX0MWt6xC3rsOyLB544AGq1Sp33HEHHR0dF/12LjRFv367x44d4+WXX2ZlZYWPfvSjl6ygnjp1is9//vMAfOITn2BoaOjCPp73ed29ezc33HDDJXnrgiBw9OhRvv3tbxONRvnYxz72w8cNFU+ySKbC/PmffxGAoKxw/WAYTwT6rkJXDaJBCdcSqVdrFAozbN20GcEOoIbDNExffGM5M82DX32Av/37f0AURe77b/+dHVu2sGfvkxybXCQVUtk6MsDSUgbDMEgmEliugCg4IFiIkoAjKAiOjGd7CCKEwkEqtTqiKHF09BjhUBhdM/A8gTOnzxLQQhiaiuPUaTSqiLhIksD8Uob/+egzAHzgHTfQ09aGKEgcOPAKfb29voKgKFJeyaPIMkgycwsLzM3NcfU116KGQ4iiQCQcJBkNcf9j+wEY6e9k6/AgoqQQCIb9LjLH48Dxs9y/ur3f+aU76W1rAw8USaZUzPOt/a/StGx2b99MVzrFysoSjXoNXQmxsLTEvlePsPflowD8yUd/gVBQQ1EkWlsTFEol9h44Rq5Y4c7rN6N4DXTFQ5Yh1RJDRODLe1/khSOn0RSZezb10je81veSlWXiiQSJVBJR9kUVnnnqaeYX5lm3fhN9a4YJxsOrvnQ2vT2dSLiEglE0NcDa4Q3E4i0IokyhVCaSbGHt2hGi0RhaOIobbUcItyHiguetgnkQNQMxtQYp0c2hMwtE2oc5OVPk6GyN6VyZuVITvWWQkzNVEl2DBEIR8rkcx48co6evF9nwcFwPxxaoVWqsHR7GMFQEz78mZFUlEA4QjoWpNWUUWUEWXSbGz9DXN8jwmo20tUWp1Cpks1mu3LWLx/Y8SXdPJ5u3bSVfLtLV1cX+p5/F8wTuvPMun84tCJQKRQ4fOozVMOnu7mb//ucYP3uO6alpHMGlq6cPy3FRNYMTJ06zYeNmjpw6yeatW+nq7mRmbpK+/i5Gj5xgYS5DqqWFbG4R3QhiNsH1IBGNMjM5z/btV+B4Dnsee4L2tk6i4TBzc9NoGkgeDA2toX9okOxKjoBuEAtHKOQyeI7HodcOc8UVVwAuwajGmuG1rORKLGey5FeyJFMJWvaMs6ZmMJ+SmZlZZGTtJr9yJ0oUy2UUWSEcCDA/O8fGrVsY3rCWSDyM4Hq4dg3XsqiUyxx67TDpdJpgKMDE2Ul0TWfN0BClUoloOIrZqLJly2bGxsdYt2E98WQC27GJx1pwbJvjR0/Q09VNpVSmvbONmalZWhJp9j65l1AkRKVaJhaPEY/FCRoBZEmkWi7huQKdnV0UyyUs20I3DFxRQJYEnGYFwasjCKu2GIEESCGeee4gr75ygOziFIP9azCCAVLtaRItvrrrxPgSK6JN4vZN2L0RlKkiwbEyjTAUM3lmFxdpbU37TFzFQiBDpRLhyiuuYueOHcSTIo5joyghjEAcx3GolnMEVAVJ9NiyZQOJZAJF0XFsh+Vl30txZSWLqsgsLy/z1FPPsH3bTl78/gu0pdOIOAg4yIqCoYeo1ht4HsydW+Ls2DiRSJhAQMNzXRRRQhJlBM/CbtZRNBXLE6DpIsoSkiKt9ss6mLU6RkjHcU0ct4nrutQaTb50/4PkV3LMTE3Q29uDHgjgmhb1ao3RQ4d417veRTyRIBqLkEwm0AwZWRaQJAVRUPBo0rQtanUTVTN81WNRwvPgyJEjdHV1X3ieSqqKB74lietQr9ZRdQkQwZM5euQEqibT1pbCsT1q9QbhWJRnn9tPb08/WraAUKrg/tq9dHd2c+zwUZItSZZzeQLhMAI2djnDkReepn/TdkLhEAgenujiiu4lPSf9flvA8/1+hdV//qD/8DzlcnF+iYtfr59/CIJAQPRQpSB6qIXWjhZWVhZIBKPMZhb4y398lnJeoScZxVFNgqkU0VCMaqFOvVrErOaQGjXqnkU81kK52KBazBIKWjC+g+WVJvuLe9myPgiag91o4roVBKGK2yzSntIJqU0c26QjmUJ1C9z5ju1ochahkeOGaz9ELuew//sPc+XWLjoiMY6OTZMMJVmcnUKWHIxgkicOFhgeGiE7c5qQ4SEHAoQUFdd20XUDQQrgYtHRIvPKc6Ns2jJMOBZFVAy+9ejjeK5BQA9zbmycRCLKbe+4me1XdiC1J5FO6bQNtHP69DxLmbPogRqjrxVYWpmmr3MAQ3HYub0dERdNlZFkB8d1UY0ITbuG7fhWabVqnkgojm7U8FwF2wVJFZEUFbNm4rkOiuSypi9FULfRZRFBUFbHX7wwioYewLUFPE/GdT0UVQYESqUGqhYAUUaWZHChbuaZP+cRjlXIZRzmpktIWiuvHDrB2PgixYrDmqF+Nm7YQDTWiuMZGKEoogJrhgaZm8vS2dmNZTk4tkskHMUxG9hVB/1kHHHQpHbrGaYmX8WIx8hkMrzw/DMMD3TS1mpw9thh4pEQt914Nc1KBoEys/Pn6OkMENSbtKd1vGYVTQBJ0bBrJRqlrM94kDRf3TuUomF00TJyI62DV5PoWo+ihpAkARF7tQ/48jU0D4EfhViXAl0/OMYXv/4t67aiIPxAxOkScTls8ePiYh2di6nBbzQuXv/5uf15TZ6fBghfLl4vAHW5fteLf4sgvDWf158p8Oq67u/D5cvnP01m4idVb1+fJXgjJ+Cl+lvfSJX44ujt7eXBBx+kUChw6tQpPvCBD/yIIvKljkc8Hue+++6jXC7T0dHBjh07fmTdH/3oRzlx4gSpVIovfvGLyLJ8YT0Xg9fdu3dfdp8nJyd56KGH8DyPT37yk697gPsnbiBgcPTwYU6fGePIieO8a9cI8XCAWSeFbVm4VhM8lUgkytXX7GB2bg5Z0vFEh3AojqYZ5FYK/Mr/9u+xLJtf/7Vf4z3vvptdV19B9tQBDp2Z5sDJCd517XbSqQTJRIp6owGui66qyKJEuVwhHI5QqZSRZBEBl1KpRLVe9f0fbQtD15FkGXOVStjf34Xn2oBAw2zieQLNpo2oaPzN1x8H4J7du+hIxTCbJj29PX6iw7Gp1aoEAgEEQWJ2ZpbhoSEOvfYq8UScdHsaWZZwLBtNFHj5+FnmlleYyeT4pTtvRpEVJElCFiSqpTKf+qsHmJjP0N2a5P/+jx9EkmUcx0MAetpSPPDY01QbTRazecRihjWD/YSCIZpNl4XFBT7zDw9TqNbZOdLPL9x2LZIkIYkimq7Rlojwpe8+R9OysR2HO67eiG3ZVKo1Js5NoOgBPvqn/0i9afHOa7bw9p3DKLLCUmaR5eUlWtvSOK69WpmW6OrqJBAIEE0kEGUZSfSVTW3LxnN8MP7ygZdQFIVYLEaj0UBVVVpaWhAl2ReukmXMpolpmihaiInFFbR4GksOI0fa0aIJmo5HZjlHa0c3c0tZXElBlz2SiSiIAucmp7nhplvRdH9s47Eond0dNC2TarWCqgZQFYV//vrDrF8/guC5jJ2dYO3aYdKtKRRFoVqpYgRCyJKI0zQJhYJIsuzbAnkuzWaToaEhQoEg7W1tdHZ3I4gikUiI1159lW1btzA8PMTC4iKSJPLwP3+Djo5uBEGmv6+LTCZDKBSirbWVoeE1rB0ZQRBFEPxH9prBflZWlhlaM4Suqezb9z0GBwdIt7bS3d3FwEA/J46fJJvL0tXVhSgIzM7MMTp6lEAgwLmJcSanJnnHO9/JAw8+SEtrK/VGg6Zt0dXVjbhqJ6IbIUqFCoViid7+LuKpFFu3bcPFJZPJ4OFh2y5zswts374dcInHY3RlBUzT5KHTL7Jh/XpSLSlEwSOVbsF1XYaHhjk3Pk40EiYaiwEe2eVl9u3bR19/P2fPTiAKEtnsClPT0ySTSUqlAl1dHWSzOTo6OlhczDA1NYEoSdiWw+TEBPVanYARYGZ2muHhQcKREHjw5JN72bZ9I50dnSwuLSEIPkBPpVqoVqu4roth6EiiQLPZJBZNAB6P79nD1q1bkUQJF4lmvYboNalXisgSCLiouoEgiAwPrSGVSNKaTqMbOpqu07QsQMC2LDzXZnCwl/mFWSxDwFnXwqHmAo0j8wxUDcKJGFLUwLJtxKaKE1vBMePMzy0xOnqYUChIZ0cv5XIFRVHJZJZIJOPkSw3C0Tj1homiqIBHsVDl2NFjdHV2EQwa2LbD6OghVvJFNm/aSKVSpr09TbNpousaruthWbZ//UsS6XSKg6+9gu1a9Pf3I8kalUqNL33pflZWcuiGgaKoSLKC6Pk9e4Ig0qjV0TXNF0QSfXqy6RwHMcfUmTwzswukUwkGBnrp7+vFtCwKuSIL84ts3bIdIxCgVC7T3t6OJAooskijUcfQdV+YS5HxXHeV8SLy6COPMjA4iGHorFu3DvV8NVcSL6g7l8oVdM3v1y4UC6iqDp5IOBjCMDQkUcR2XU6fPk1rupV0awuiJBA4No519800utMYhkG5VKKrt5tYIkGpUEIRFGqVBotzGbZffTXuqtjV+Vmx4P3oc/jyz/S3Nun8cSHiwT88jHb8HOq12+kZHuHVg68S9/JceeUO1g0mCetNNCPO8lKWYCBEvVolEggzMXaOUCBArVEjn5/FbGSxmibZTIHw0q2cHZvhSOkr3LC9l3qtTKm8iK4FcCyNctEiPOYiZ5vYiSqRmEL/YIq2tgCtrRHyKzPc//X/QVuPSjzZQ71RJ1+Z5JO/9wWuu243GzdtYnp2Gk902LHpSmbn55icmyEc1qCW8YV7PA/BdVAVxe+hlgW2bL2al145QVvHOk6dmSSVTOK6LkNDaxkfH2fr1s3kcrgMRTsAACAASURBVMs4nkk43MrTE1+n9+j1hG/32NC5nsxilpmZAu3tLWQXswQNifZWDcex/Gpno+73auPiOQ6iIKKpCq2tSQJBGUn1kyyaJmNZNTzbAU9C0SQf6CL7nsYiiKqMCziuf67aroXr1kGwEQQXUQLHtvFw0IwAmhFG00PUG/53bCvC88+MsmFTLysrJqm2Pl54aZTlbIkdO6/l9OkJorE0p06Os2ZoDadOn6Kvv49YNEqhVCTdkqJQzOO6vh3WSj6Hl3OJnOuCa4pMb3yJcFxk4txxIqk4qhhkeb5APBYimz3H5NRJNB3KxXmWl04TDZqsH26nmJkjqINVLyI4DZpmFc+1qFSLKEaApYKF6UWJdr6NrsHrSHbuIN62nkCkHdfTkeUf7X+8/Pl+iWvqktfRZebUb+gq+peJNwJEL/WZ9ZSEOyEi9f/4+8NbZXtebh0/beXzzW7vcuG3rij/a4NXz/N+33XdC1XKN9oY/JPiUiDz9f//ZsHrpQbtcuD1Qhb5ouqrOzmHVygjJaIMDQ3x1a9+lenpaZ599lmGhobo6upCEARKpRIvvfQSn/3sZxkZGblA/+3s7OTYsWOcOnWKvXv3EovF2LBhA4qisLi4yCc+8QkefPBBAL7whS+wa9euH9qfNwpeZVnmr//6rzFNk3Xr1rFhw4aLwKuHJ/giSju3bePBL3+ZUrnMN54/QiJksPWGOwjoAXK5DJOTC4weO8If/skf8fA3v8kvf+iXUQ0VQZCoVRvc+/53Mzc/z+aN6/nbv/wzgkEd14Pr0xaPvTjKfLbI0XNzfOiOG/2mdQ+mJicJ6AY/97t/xu/93T/zlT3f51fvuhFR9KtgeB6SLJNIxFAVX1xBEkUq5TLJRIpY3EDTNAqFIq6o4iLheCKLuTz/+OhTANy2axt7H/8ukUQMRdPQFAVZlimWyoRDIeqmyfs+9af87l/ez1iuxu//x1/0LZlWrSeCgSADHW18be/zLK0UOTkxw851AziWxde+/i2+tPdlHnn+IAB/9lu/yJquFiTJB7ee6ycPUrEQT792ismFDHXLwywsccWOnTz30kH+4ltPc+jsNKIg8On33872DeuQFZ9mV8wXaE234NgWzx0+xZGzs6iqyta1PSiSjClo/MZ/uZ+x2SWCusb9f/ARJMHvCbatJv39fZTKRcLhkG/YvloZ0HUdy7bwRA9Z8miaTXBBUzQe/fajDK1dw8DAAOBn5ur1+iozwGPPY4+TSiVRVQ3X86jVTA4fHmV4eJhKucrY2FmiYQNdU4knEqiahiD5Y5eZn6S7t4d0WwfrN29FUnVk0fNVSiUBy2qiqiqSKFAoVREFiYChY9YqqKpEOt2B49pIq5PpeCyBZbvg+tl3TVNxXAcjaOAKAsVigdFDh5k8d45wMMixE8dZWFgkEAwyNDjIKwde5syZM8wvLHDllVeSzxfYunU7kqQQCKokU0lK5RKqpiHJEhMT5+jsaMdxXb7xzYcZ6Otm794nSCZTLGeXaW9vI5vLkW5txdBVFhYWCYVCrBkc4nvf20fDrHPNtdfR2pams6uTUrFMa2s7rR3tCJJE/8AgiUSKQCiIEdSxbYdypUYulycSidHX108grJHL+cDllVdfJZlM4nke+/Y9ze7duzlx/BjFYhFVlWlbciiXK2z84O0kU3Gmpyeo12qEwhHSrWmqlSrPPP0sPb3dnDt3DkkWya8UGF47wiPffpTe3n5URaOvb4CpqSm2bt1CqiVGpVJmenqGdLqVxx/bwzXXXUOzaSGrKj3dPRx4+QDzc/PoAQ3XsVcVfTUEBGLxMKdOnqK9vYNEIoEg+Yq2mqby4osvYBgG2WyOWq3O2JkzyLJEd1cnmq6t3uNkBM8joGs4lkm1UsRzHVzHREBkbm6R1rZ2nnp6P+vWDa3amPj3RllSUBQBQfSIxaMIoogoycS7O3hi5iTVLe2syYCd1BFFEct0kBQR2Vjmmw+/Rj5fYqB/gEce+Q7btm8nl8v61HZVIZpsvWDMUq1WMAydpcU8a4fX0mhUCQR0BDwG+gfo6x9AVWVa00kE0UMSRcxGg6Zlc/TIcfIreaLRCIoKPX3dtLe3U280CYbCyIrCSm6FyYlJRkbWEQlHkEURSfKo1WoYRhBF1cjncqiKjOuJ2E0LQZlDwEKykmzcsp1tWzf7yuq6jqTIlAo1FheWaOtoR1EUXnzpJbq6uqjVynirzIpyubTaqiH6frOeS73eIByOc+7c2QtAxcPFdR1s22ZxbhZZkomGY1i2jaRIfi95sUQ0EsFxLMbOjtHV2YnZNEkkkpQrZQIBg4goIR4bp/5/vJ9CqYTruiRicZqOhQiIHjz71H6++pVvcPc970cJq76FjfCDqujF0+N/bfB6yTmH6yLteQGqDewbrsATFDr7RnDKBV47c5qu/hYSLe24gSFCLf0okXYqVoCabWDLcRId69CjQyjBBDXPwBI76Ru6GelkD7V6idRVY/SkPBDrqAHwXIml+QZHR8+w6aCGPFFHui6OLDexrSIHDxzAa4p0tGxl87Z+BNfgO/88QW5ZxMUEVELhCLF4jK6+XuaWFgkIBmVX4uY77ubAS/vRnSLhSMTvN63VkCSRZqNCOGjwyqsH2bjxGgolif7+taiKxMCaAUZHR7nhhhs5cmSUVCrOwVdGfaDuNDhz9jTryldSueUkmVcX2LZjA8GQTHd3kI42GQUbDxtJlhEEjWajjiy7KLJOo14nYKjIsosoWliOh+eB1ayjqgISMqYjYTtNFEVCFCQUWaHRaICgYlkiriMiSgqKquA6DSTpvH+rgCyrVCsNRFnE9RQkSSeXzaDrIgEjQm9vH5mVWYxgG9/d8xKuKBKJxmjr6GJk3Qb6+wfQDJ1cNsvWbduoVCt4novjOhw+9Bp9fX1EIhF0XaMxb5HK9HNm+7NMtpxgcnKC/p4uFhfm2bB5hIkzU8xNLVApZRnoj9HaYdDXmyag1klFHazaEkHVQXQdcE002Wc+SrKM6wmE4q0YsR705Ajxjq240R3EO0aIpntwZB0bdzUx6/5IRe7/1+D1Owresoh81Y8qLV+KwflmKL+XA5PnmaT/0nGp7Z1ntl7u+LxV8Cr8LPHKLcu6sLOXU7a6VFw8YG8E2F4qK/R6O5xLbePHHcuLFcMurpRezD+/+N385U8DoP3PPwbg/vvv5yMf+QimafqfaxqGYVAoFC5s48CBA2zbtg3wqdDlcpl77rmH/ft9Wqosy4TDYQqFwoV9/fjHP87nP//5H/qNnufxtre9jf379/OZz3yGz33ucz/0O14ft912G0895YO5cDhMIpHA8zw++psf4zc/9jEcPGQERl89yL0//74LfbiCIBAJRyiVSz+03muuuor7/uY+Ks08He19fO4P/5B/uO+/EQqFeGHf44hAMBKnaXskD/4Nx6sRbvv4n9FoWnzk3W/ns//+vUiShCoLLC8t8+5P/TmjE/N0tsR57cHP49g+BWrf977HLW+/BQ8XRZHRVI3l5RzBYAhVVTCbFQRkDp88x7t+7y8vO7YXxxd/51f5+duuvyA+Yjbq3P3bn+flY2fpbk3y/fv+GGU1c+v3l9gcPnScs4Uyn/qrB7FXpeIjQYNytX7hNv0bd9/Cp3/lbqLRCE37/APU4anv7ePGG2/giw8/xn/50rf947q6fHFVYVgSRe7ZuZa//oNPYjYb7N//DF093WzZsgXLbpLP5/nM332Nr+175cL3g4ZKqer3yQZ0lfs++xHetmszplkjqAfJ5VYIRcKrhux+35lqBJidniMWiWEEDRpWHVkQmZyYpFKqggPVcoUNWzeSSqUQBIGFhQWCwSCVSoV4Is4Tjz/Jju3bOX7iBF29PXR1deO4NrqmcODAK2zffgWuUyMajTI3N09Xdxe27VAoFFianmRk4yYcRATRtwsRPT/rbbm2r/7o+WIzkqpj2x5jp08z0N9HsZTnlQOHSacTDA33o2kGAhLNpsPBVw5w3bW7yOWyxJJJJEVDQKRcLGI2GsxOT9PZ0U5bVycNy/JpMIgUcis89/zzJBMJdl27i1qtxuLiEqKoMDjYu3pNKtTrDfL5PLFYGN3QV7P1/jkqSxK1Wp1SuUJLS5pvfOMb3HzrrQQ0lUbd4uDBV+kf6Ke7u5Ojx45x1VVXMj8/j23Z7HvqGW57++109rTyzW88QiAY4Lbb3n5BQXU5k6VerbF//3PceNPNdHZ1I8ou1XIJQw+Qy+V59JHvcN3u61izZgjHcsguLxOPx8gXcwy9UMC2HA5v1hlZN8S+fU+ydu16Orq68BB55Fvfpr+nnx07tyJgM37uLAMDQ7iCvNp3KSLJCkuLi1RrFfr7e8BzMU2TQDBEIV+gUqkSiUWJRiJUK1WOHD6M2WgQDoXQQ0E6O1qxLItmw2RsbJxASCeZbCGTydLV3U1XdxcnT57ENBuoqkJLqoVYLEGlUiMc1ljKZGhaFn19ff69XdHJL2fQVQ9FsDBrK4yNnaSzI0UgnEYxkqwULRYzKyQiBm0dnXiSjKrqzE3N8dKLz3PvvfdQrfkAyWraPPPMs8xOLXD97hsYSLYRfeAwhXcMYCzU8PBotkxSmzaYzsTp6W0lkYhh2Q0c18LzXDRNQzNimKssBc91yS5nee6ZlxFEj5tuvh5F8alglmURjiXxXBtJhHq9Rq1aQ9cNQOKxx54km1tBURXuuusdmKZFKtVKrV6nJZ2mWCxSzOd9CrXrEgkFqVXLRKIG2VyBWLIVUZDx7CZ4DtmVInOzc2y6wqVWqzI+qrBu6xWEDI1sdgkESLa0UK+YZDKZ1evV5fTYGYaGhikXV3j88Sd4//vfR71RJRoNI6sBDh9+jZ6eHgwjhOCpPPzwl/m5n7vTTz5JIrIiUa1WadTqxOMpLNujWqugaiKm5ZJIJHBtB0mUOHnyBD3d3SiauHpdi7iug3z0NJ7jYf/px7HNJqIgICFgCy6e4yLYLtlsnkyuzLbtO7HEygVfdXH13RXezATwzQuTXC5hfj5EPKT/63/gIWD9p19ffY7bGF4dNIvn9nyJ9rBGz/obsbU4gufSaDSolItEQkGisRiLcwXiqRimDfmSieeqJB9KUCxlWNz+x4TtJSpumY7ObpqmhNXQeOihh/mVxW0oikj1NzvxsGk0mgiejutoiEYNOQCFEowebrD3qRd59/tu52vfOsrcXI5f+tXfoLe/n47uTvZ9Zw93vf/DSKrLoeceYuLgN9i+MUE8GkBxa+A1qZs1VM3A9KK8dqpE+8CNrJRlEqkOphamuPXW2ykWaszMTJFKJRg/N82uq9fRkdrAQ19+iLed/EVmNx7AmZeJxsM8ve8FBnqD6GKZ4cE2FEOk3oRi3iMZNdD0Oo4t4nkukixiWRaBYADHk1BkDcuqgWfTNEWyRUinAyiyhd10kSQF17OQJAPbEtm37yVuuulKQmENs1FCVTVM00IUJWzLZzO4QhNPUAAR125iGDKW3aDZNDg3MYvpRDg3VWPj1n7Wr9+I58Kzzz7Hjh07OXHyJJ4tMLhmkHwhz9q1w4xPjNOSTFGrVimXyzQrFpua11C8YYqT4ijlWpWWZJiejiSeVSfeGqTZcPjKg//ELTdezdjpw+h6gcHeNsZPH2K4r4VyLoMsCVSqdQJhA1UPUTNddD2GLIVRIklsJUG0dZhEagDXaF8VgbPwcZILgovoaD9yHl+uGOReQhFNuMR15F1GvuenBa9vBh0J8EO0XP/Dn4w1zL/yj4f2m+bqIj+ZmXneMeX835erZL8e/MIP3FkuXtelCnb/0nG5e5nneeh64E1v8GcWvF6uSnqpeKPg9XKA+CeB158EiM/LVzdXvf4ulrN+Pff7/HvzVz598R4AHlOVIn8Xtdn3ystMTU3hWTZtqsH6eIq7uoe5u3cYTfKtV4TedqTPfATXdXnggQf4p8/8nxzLL1OxmyQ1g6taOvn14W3c0NaD/It3Id90le/f98wBnPu/xe1Pfo3nMzN8atM1/Ket117YE+2+P77wd/P3/wpvap5Cs8GfHHmBJ+bOMVMr03B8hZ/PfPo/8+nPfhZ3eh73D/4aQRCo203+bvQFnlia5lS1SKFpoqgqLS2tbFi3kVv1IPd4IaJqEAeLJxem+OCLPkX3b267lyt/99cZGBrGsj3UT/45/w97bx4l2XXXeX7u25fYIzIjcs+szMra95JkWZItG9vIGwYD7Ta08cCYHTNDT/8xQ8803fTQDafP4XBmevpMD+Aeg7GhbZCNrbYtWZa1lLYqqVT7mlWVlfsee8Rb7/zxsuRUUdpgYA703H8y48Vb7rvvvrj3e3/f3/cbv3sd8WjM565e5p+dP46C4M+PvJv3/NRDxPvLtOptfvRX/g0vzswxZDmces8PISQ0G0183yeTSTPzyZ1UKhU6nQ65v7yAutomisLNaLjOdLvJwae+r3D8RuU/HLiXnxwcJ/wn9xL3ZSGO+NhP/TrPzibXP/nuj6AKlSgKUVSFTsbi4UyDhz70Xq4vLfEff/PzHFtfYc33yGg6h1I5fnl8Nw/29uG/ZzvtyRzpTIHu81cR3z7L8nKS49tbLvLU6ir/1/RlXtxYpiYjChmX+w7s4aeiDDsa4Wb/lVR6e+l0u9i2zSW7y7Zf/hi2GvC5z3+DP//ac5xpVGmGAWXT5j2lMr86uosh08b8uQeR/VnCKEZ88yzi1EzSM+PNvAVNTZSEiy7mL7yXrt9BV03av/EVvG6XbCaLpmk0Wk2y2eR//8FJ4v2D2LZN85lzqN+5mOR3bVIbERDLGAE0fuUBbDuFZmiIzz2DutJI3ulNX1JV0TAsm3j/MOKDByAOYL6B+MKx749iMmZ1dY3enhKdThfx0+9BHSoRRgHh117CurSIpimJf64UVKs1SsUi094GxV/7ITq+j51Oof72I3TabVzXTZ5jp43jOKiqSvC+3WwMZnnsW4/xA6VxnGNXsW0L3dDw/U0RGynodj0u//Aklb4+XnzhOB9esZFLNcIwQjcM/K5PvV7Hsgzcd+5CPrQPVTMI59ZY+Z0/J4xCNFWjXO5NolRdH9exCT91Lw1H8Mg3vs0nC3tRzlwnDGMMXccPAjRNQQiFhiN4ctDjrruO0ttfJv6db6IKleXlJXK5HEEQImOJ5Tjw0H6erk+jCHiH1Y/23fOkhQsS6jLxL4ZEqXb9599JOpMn9EIW/u2fMpEu4fsecRzS6XikM1nqtRobwxm8BycZGhri6rHjHDrTolatk81mkTKh9adSqST3+1PvRB8o8dLx46SPXWd7x2JxeZVSscDyyhIp16XdbmEM9TLznlHGxyd56eTL3P/sOkIkdj4JXVbZFIRpU/yJ+9AOj4IiCE5cR3v8EghQFZVqtYZlGdiWie97tH52HFW3Mewc1pevIJeayChEIkEodNpdDMOkNpLl+VyHD3/kB/FnFtG+8GIy0RAK7VaLWr1GOVcmY6fxdhfQCmna6ipS3UA+3EXd9CMVyUwIAQQpm87dO8lkc2i6QfuPH0HVVAQKzWYjUeRVFMIwJDowibp9jHanTmalSnT8ArpuEG6mBQiRiNnpmk70ww8QBjGvnDrLkZpPKow38211Yrm50o+k05uhu3eYYk8fc2ev0XtmiuWlRfK5HLqRCOUpH7AQgNfdg16ukM+l6R57ETG9CLBFWTLxjzUrZf6PS6f45Cc+wfeeeJKPhTqe38V1HSS3IgOAVLhgm5yszfGpT32KtROvkL06i6KoeL6HoesgFPxuQLW6QfEXPoHhZgBJ/M2n8BZXNmmnUZJnp6hJxulYP6mNFt1f/xnW/C7pf/9niZd1HONHYZKpKGQC9D77SXrfcTeaIYg//5fIp176/s/J1sjrcB/av/jFVz8Hn/kXt88EXv1P/dRHUd6d+FvGT54g+uOv33E8EQj0P0yCElJKwt/8P5E3F16zh1VPBG+CDz2A+lMfQ6g63FzE/5f/G431BRbnbjA0NoqZ6sX3faSMyf/bX0EZqjAzM433+Yfpv9FBoiS/tUpMJD9OFHVYj/8D/OMBOmoHxe/Q97l1gsBHCF7NQ67+9wUsLU3gS86dPc34xDCxuob0CziOw+r6dTodlScev0hL30EqM8i1G2usbbT55c/+d/RUCjQbXYaHBzl35nn27xngzJO/h6VLRnpTmKpPrb6OUBRsu4+ZWpvRvQ/y5LOzVCqHuXD9DO9/34dw7CzNZpPBwX6OHz+Hbs/zhT94it/6rX/N2nPXKLzyDn722Yf4Nz/0u3zz68d49wNjFNMxmbRFIDxCafL1h19h144Cu3eViKMITTMSALVpOyVkgKrq+KGXvCexy+e/9CI/+ZPvwNTa6KpGFMUEUbIYQmwyP7dEua8IBJuUf7HpkyyIZZI3bWoOtfYGjmshQ4GINdpByPXrGywuBQxsG+PKjUU+9JHEEkpVNVqNFul0llqtRqNaJV8oYpg6uqHheV2ETAT49FinZ26Y2b4r/PHN32VixyRuJsWP/+hHsfSIpx7/Formks1G5LNw7cpV/u/f/zP+ycfvIZu3CLwqhhoS+RGhH2HmbDTTYaMZ0VueJIhNXHcALV2gZ2QnaBkMPY3c9KBHEUjl+/HSO4LP/x+8/oMHr6/3jP+64PX/e7m8v2bZCjTvpDx8+8N4o3zTW/veicpwJ8D7Rg/6Vl1uJVhvTZI2TfPVjrPVi+nWZ1VVX+Nfe3sZSWX5d7/+S6jbEsEK/3N/TvTk8Tu+H0KIV3NYf/qnf5qfeOrK6zVlAkC2Anch+NYHPnHrRG/6BucMk98++l5+++h7uJUSxANH0D79I0CMEkfEJG1hqoJf3nmUX9y2By/0SRV6iH7pJ9jImJTKBeZ+74/ITi2DVNCQfKA8Rv0T/zS50GCJk3HMeqNDsVDezFFLANnPjEzwmbHJ5BnEkjCKkLEGmsFXf/kz2E9eAQFR4CFEYm6fSqdQNIVcKY2q6kjZSfLCPA8hBPqmUuCwnWbl/T+GcniIxrv68esR6mqbwiOXEYrYtHBI6LTKJv1VEqLFgiD0+ctP/iPUM4uEYQixpO13YFPF2LZN3v/QIUzX5NDuXfz+oQeSJyIkMroFOBMKnaZqKMIEFHRdQ7MtBgcGqdUbyEjyrmIvDxR6UFSVxU/fQyFXQNMjwj98BpaqGLpKHMXESEzLIpYxQ0MDhL5P7Kj86P1H+dSCxSajGiljkDEIFVXVaDQapHFRpIFAQVGS/iqUpAP6XoCModvxWJ+dp3+wD80ysQp5ZCTpdDqsrq2STqdp1JMV6NbGBla3h267gwgiXMuiWquSSqVQtcRuwzAMhAC/0ybtWuixSqvbwa9WCYOQbCaDoZmouo4iBO1Oi7PHn2f/vn186+Gv8hE/m+Q1xzG1apVivoDnJYqkzz31BEN3H0QqKsOmiqIqRLGk0WjS7XToLZfp+h6qpnP5yjVGR8f4wuf+mJ8zysjYxDA0ul0f100jhEQiEoqxK/jQD38I5fjs5qq9RRxLFFXbfEEUqhtV/E4HXZd84EPvhi+8jKJotFtNrBjazRZhGJFKpRCqwsz8ArlUBscLyedyeJ5Hu9Om1WrTbndIZxyC0Gfh5k1W1Yi+Si8rs4vkPZ8wDDF0DU1VaTYaCBTqPhz9xA+SzibWUTYxCJ2e3gqKUNCNmFp1A9/30SUMj43S39dL69h5mnMLbO/fhqZqGJqeTKw31Wm/8pW/4L/59M/Q6jQZGhmkdn2JbDaD50sM00BRFBzXQeZSUE5haF1SKYcwaqFqGmEUUq83sG0bhKDbajJ1+hzjmbuZm7vJROgTRTp9fWXa7Taum0I3dPKWiXQchkcGUQzB8NgQPLdB4PkIFGwnRRxHWEKQTrt4cUQcd5FhjG1ZhIqa5NkJhVw2g+91ECJGEJFJ5Wl3BYmWio+QJPnwgmRS7TgIIUllTPbtH2Lmxg0qOJtULwXPa2M7NhKI9BhFCkQnptPtoutZfG2daHdAfFpg6El0VSiJ6q+h6xi5DLOLM/QPDqKbieicF7Sx7MSf1fd9qtUazbklRneP4Sg54tU6QlWQCCIZoaiJqFE67RDHklYQ8J1Hn6Ld7nJ3TwWCGE03iKIATTMIggApJR0/IOXkWF5Y5ub1a5SR5PO5ZMyQkpRrE2oqnu9z/coN9g70sbS0gNkN0MMkZ1Got4Q84k1F9yrvf98D1BvrfPCDDxF99THa7W4iLJNNb3rUJqB3eLifQs9e4lghmymwsXEex7GxTAshBFEcE8mIQrGAalgom5Y9vudjmeam4FOyKJAAeIXps5fY0z9AsH2MzOwSKIkQVShB0xyUyMf32gSRpKcyhKVKJBqgEP+dkBG3XuP7bZfMNbbMN7YMzlIBqUik9GlIiaPCxvo6qVSWwI9QZYQUEsOwiGODC2cvMjIyRD0CCIjRkvmIjND4Crqq0FM5yCsyTa/bJJ0KCMIlhJDoWopISlQ9wgkkHX+KsLODuRsW23el8DsmVy5e58D+Qzj6OGm3w8d+SON//J2nSRfu5ZVzS2TSGs89+w0++TO/wfzCLOmipH9wB16U4sA7Psn60otoygJB20M1bKQS0WaRsC6pXruMGUpSqRT/7ac+zfLKKidePMbpsxfYuXM3kwcmmZx8D1Hg8OT3Hmf2ylU+4z7I//ITPw8bdXbvSmOmQuy0ShgFxJHEMiI+8tA4mqbiexGO5RLJkHanjedFFPKlZDEVmXiox5IwrPMTP74b6a8So9HphigCdD2i64OixAwOFxFCEIYKoee/qquRzxfodD2iOCISq+RTJaI4xAsDFGlTbzRo+IL9974TTXfYd+AuGp1WsqAXx4RBl5XFJtlsnvl2nXTOZeHmDBMT27l+/QY7JyfodtoMtvbj7a9S/FiXn63/PM8/fYz3vvNu1hamUdQIXwb0aosUbYW4u0pOn+PXfuZe4ladtAENTVJvxoyOHKLTlKyuLpLPDDNUGQCrxMjQGMIZee18lngLutgU5M45FAAAIABJREFUKLuth78l4SJxB7aCvIN46Ou8RfHbYGj+TYvcvM4t9lyy8c3zWO/0/x3PfxsQ3So0+2bHbQW7t4vDvlYA9/Xr91bq9Ubl9nu9nYn6dsvf28jrrfJWwesblTtFXN+OnPRbAa9bzymE+CtqX1s719Y63ekeb+XHJhLsr+Wub6Uk3+lcr1f/29vwVofeqnL2emUrJfr2891efOnhP/9NLp19CXvnXQzuvgdL2KytLeFmbJZX1khlelBVmysXTrB7zyF8L6Lb7WAYEVJTSKfyKMJIPAu/9T8Rj96DaribuaQKYRC+CvjkZv1arRaZTIZ2bY1YCq5fu8H27ZN0/Ra+36GY76HdbuK6DmEYomoq9VoVKRXS6RzNdgs3ZSMJqa3U0U0bXTexXRtVV/BaHfwgIpPLJSBZhmhSJwgToOp7gi9+8U/4zGc+jVQMJHFyT5s5srGQgIpATUAjEr9Tp9ls0NPTg++HqKpGFMaoRuL7WK/XcZxkxXt54Qaj27Yxu7BAX/8gM9MzpN00haKLojpIfAK/iYaOZiaU5k67g2VZIKDTrif1iCVxLHHdFBsbGyjSQ9NdPC8mm8+yUV1heaXO+MQ4pmmwsrJMOu1iGAbXLl5nfW0dL/DZNj5GX38ZoSfCU0tziziOy7kLFzh65BCLi4u8+OKLvO9972d2dob19Q3S6Qx79+1j+uY0mWyGYrFEGAYsLi5SLOSI4gBVEaiqhaqqzMzOUqmUOXn8JcZGRqmMDOFv0nbPnD7NgYMHmZm6yXe+8xj79u2j2+2wbdsYtm3j+wGnXnmZMAy574EHsVw3sUlQEo89y9DZWFvHzRTQdZ3V5RVWV9eolCusra0R+G0mJyewnESdutP16XotMpkCK6tLZDIpWg2fl549QbNd5Qd+8F3k8sVEWVGJqNe6vHDsWYaHBtizbxeKrhCHKqurq2iqxuL8MmurqzQaTe67/yiGbXHipZfZt2sPYddnvd7kxIkXmJgYZ+euPZx65SzvuO8ga6ur9BbLPPP0Me6+914kUFtf4caNGxw4cIDV1VUGB4d5+YUTlCoVeoeGqNXW0fGI/DZWtsL5cxc4uP8QQeDRbNS5dPkq997/zs1JXki7XudPv/I1fjVzGNMwWPnIGLphoKkGQdBh+sY82ycmefSxb7Nv/x7mrs9w9O7DLC0vUujpQdMsnnnyaQ4e3E2306BUKhBLnVhYtBtV4jhmY2OD0dFRoijiy1/6IxA2H/7wR+l2a3idFqV8mVBRuHLlChMTEzQaVWzH5PzpczjpDHsPHEAoCpqisTQzw/zCIpN79mKYOjeuXWFifIzpmZtsGxtCAWJFQyjJwpDvdVAIiYIWxG2qGysUc3mksOmEbfK9FWScw2+t0g7apNI9hJGOlD6aIvE6Hs88dYze3l6279hBOpNifXUe182yvl5N1IYfPk0zDkgXMkmkn4CgZ47q/BC9pdHN392YOA7xPA9Td4iFxA8DdM3kka89wjvvP0qxWEoiQkJjauo649vGUYwkN1EoiaWNobk0m+t02h1yuTydThfLsmlUN5i6Oku+UKSnkieSISk3S7dTI5ct4fshKBBGAY5pMzc7T6vdYXTbGBsba9QbdbIphyiS5PoWaXc6iPYBVE0QhgGFQp71jXWkjCkUC0SRpN1ubUa1bYqFIteuX2N4aIzvPPYEcRxx/wP3kcmmAMHq6iqlUokoirh2bYq9e/fSbrc2x06FVqtJNpdM+KVMrG1UTcHzkgXKM6dPM9DfTyadTby9u1UMO03sx4jvPMPK/Uco/NzH0TRtE1yEm+d2qc9e4sLpExRGd3HgrnuIvQaKYd1x7Hvr5e3Qhl+r2vl6x0sp0X7rDwAI//lnXt3uayZu0Obii0/w8J9+nnvvv4vt73wXxdIg3cAg5WaJ/S4nXngGf+k8/ZMTTOx+kFgtIPGQIkBBw2s1CBvXWZ49jt1doNudJvTq2PogoZBYmZCwWiekwcZqD7/wS1/gP33xk3jtDl/506/y7nc/yPBQH/XmMpW+PK9c6jI1neaJp6/xu7/7L7l86Qlywx8ml+rnpTNf4p2HP8D0tWl2DDdQoussTj3BWF8fi8vLaKYCKtSWNaReJHTGeOFUi5/89D/myaee5tDhuzn+0ivs2rWHTG+RYtGmuVbnX/3z3+E999/N/dYHEZf6udj6BgMD2zl+/Dz3HMmRcnjVm/gW88AwDDrtdhIE0HXa7TbmpiCYH3hEm6wXIZIxE5HY4sg4ETCzbJVGvYnjushbPpZCQCxRVe1VkTfTsvF9D00RBKFCEHhoukAoOo8+fgr0DO963w9hmi5px6LthwS+TyaT4eKFC7huimK+QKvbJr3JUrEsi/X1DVKOibiaQmmYtH/xCtJs02gtc+3iZXKmRTHnMjBY5tTZVxgsSEwrhKhObXWJoNUh6nSRukqoGqRLg5QKo4SBQrXRxS2UMTO9ZMtj6E4GiftX5o5vVt4KeI3vEDkRdwCvr1f+LsHr22GDbj2m+78bAFif9d/2tba29RsB4TcSyLoVJf7bBq93OvetY03TftsP6O+VYNMtteGt5U5o/vUipre2vR7Nd6vg09Ztb/YAt3akW1HWO32/Ncy/tb63vttav1uKwrdf+07nuNM93H4/b3Tfd2rDt5NTfGu/t3KMNCyU84/Sk1J54uIMPcUyhlsiEpIoClldXqa/XMIQEdlCCVUo3JyeYW72JiOjI7Q6LTTVADZB9ZXv4Lu9aIaFjGI67XZiT4NM8isUaDSqRFFIFIWk3ByGblEsllCEgmXZpNMZPC/J74zjGNMyqFar5PJlTNvA81toikBXNIhUFFXjC1/4EoODw5w9e55ioQehSKI4xnVS+L6PaehEoSSKAhYWFlBVk9nZGXbtmiR8dSxTEsVMVYE4JA4CFCkSI3RiVFWh1eqg6yaGYdCoN3Fdl6XFeYSQrwolVTc2eOzRxykUe6j09dNoNrl88RIvv/wSBw7sQ6CCkrSF5yWDn6qqGLqBbuiJ8rBrE4QRumnhhxGmZeOm0qiKRFVNVlbWuXTpCrVag0ajhWVapNw033viSXzPJ5vJc+nSZa5P38S0HQ4eOYyiKvi+T7vVwjZtLl++zNWpKWZuTjM6OoYQiQDB/HziNVwsFsnnsgghWFpaJgwTILq+vk5vuScRZ1KSnDbTsskVC1iWTRxLbty4wcDQILqe0OZLxSKarqOR5CuZts345Di5UpFMIUcmlUFTFY4cPYph20Sx5OrFyxRLJTRdRygCRRF0On6i1BrFuI7LH33+j9A1nT17dmNYBjemr5NKZVheWmZpYYVcNkPKcVhfrfLtbz2Kqipsn5ygf6CCouiAIAw9HNshjkN27txJFEs2NuqIOGbq6hUGBwfIZtMUegrsP7iPWEZohs5A/wCGYXLq9Gkmd+5B1TRs1yFfyNNqN2i1G1y6eAnXSVGr1qjXGxQKRWzLII4jLl68SG9vL0tLSzSbNZ5/8Tj79+1HVRSuTV1DFSqlSi83rk/TUyrx/HPPY9s2e/buIIxDdMNARpKF+SWGR0YoDlYQwzmUnjRIgef5GLpOvlAANgdFAYZlkisWkCTviKJpLM+vomsq6UwaRRW02h1M08LrtMnnspiWiWUaNJsN1tfW8L1EkbPZqlLbqOF7AZl8jsWFRcZGx3j22WMMDg7QaXfpqZQRiuCl4y9hWxa2qfLMs88QxxEvvPACrusSR5LFxVVmbt4km82j68bmREfh8ccfp1bdQNUUNFVJBLWEwPcjIhkjhIplWKCZeEGAajisrVZ55C+/xuTkdizTwrZMJia2s75RxXXTIBPvUNd1sCyTUMaUzjWIK0kURVctvHaAU14FFomYIZSziKCKmVbxoipWKiSSNYJogyjuUMiXCXyf9Y0VTMNmcHAQSABio9HCMNTN3z1ARuRyuU12T0Kdr9XW6e2pIBQVx9FwXBsZAwQ0my2kBHUzJxspuHJlirGxCWZm5hgdG8OybSSCdDpHN55hZWWVRx85Tb1WZ2L7dtqdFtlMGtsxWVxapl6vY+gWuVyJWrXJ0tIqQ4N9BEFAEHj09BQZGOgjiAJ8r4tlm+iaiqqpFAoZarUNwtBnZXWZIPDIZFLcnFmg0+mQyaQTL1ZNA1QURWF2dpZSqUAqZaGokmatjabp2DMLGH6A9a9+HkvXiAIfv9tBFVDbWKenx6G+Mo3tGJTHdqAbFo6u8VflVN5uebskxNvH0jsfrzz9MgDxuw6/us2UHn6sUBrYxvad2zn+9OOY7ZtYho7bM4KvOqiqYGR0gNW1izRWruCtb1Ae2ocnTUJVIRImum5hmiq5bJql66eIQh9TAUszMHVQRIDULQIZkMlWuP9dk/RUDLKuwaFD+xgarmBaGoZj4weSiqOye5/L3n0u1aUZJnp3YpXy/Npnf41f/IWP87/+xr9j27ZtbKxPI2hiiiZBd5OS39rA0R0cPUPX94hVm3pbMr+0yjvvuw9NN7k6dY1yucJ/+eYxxrdtY+bGTU6dPMvhg7s5t/IUO2Yf4jef+6e4rUGGx4qYaoRtSzRdodNto+kqkog4CjAthSiIUIVA10DXA4IwQlMTVpaUEoGCqkiEiAEVL1DYqLaQioZtCOIoIo6TnqOqCThV1IQuLARJhFJKarU2piPwA5ennznP8MQg1Y2Yg4fvQVEt4jhmZuYGqWweoWjEUUwYxlhWoniuqAoSWFleptlqAhJ9OoOoaWifvUp97RpPfeNhSvkNNG+J4V6V6uIFXLPNhdPHcJ0NlDBkaWaJjZVVMhkLaaVwiuPYpcPYhQNYpXGy/WPofQfJDu7Cyo2AkUdqKQj9tx00ek1vf505452lmd46znmVqvx3CF7f7jHhi4mN5S3BpjfDKVuvtRXzvFFdFEV5jeDTVnz0RvP2v612uz1d8r8KtWH4PtC7VW4BxtujmFs/3ykye2u/2z1cbwdzbxSZvRPwe73Pr7fStLWuW+t3ewTzTisnW+916zluj+TeaqM7UQRur9fW679RvbfW/3bQf3u7fb9+GuHUcyiKQmrHXbRqLXoGhvE8j1w6w8hAPzPTUywvzFAaGuPqxcsc3LuHL3/lP1Msl+nrL2PoFr6XrJAqU49jlCeI44QOoWsaiiABra0GUkoMwyCVctF1nfX1VYQiaXfqRLGPjH0c26RWr2NZJkIkYjm2ZaNqFt1OE1WJ6Xa62HaKhbllAhly+fJV9u8/gGEY6LpGOuOga0lOo4wjWq0G3W6I45g4jk3azTE8MoxhaKCqXL58hd7eMnEc0+22EJsiLI89+hjpdBrXsbEdM8kRTOUI/QQIBEFAKuViGImdxC213sMH7+Lm7Azffuwx7r77LoYGBzh44ABet0O92iCOg0SVV0ty0yzLQt/MBavVq2hGAgzX1jfIZrIoikqn26XVahFGktXVDS5dvMyBAwfJ53KUSj0oCBzbplAooikqg4ODXJ26hqbrVPp6Me3ETkNTVKauXKXT6XL3PXezuLCErussLy/T09PL6OgYpVKJ8+fOo6oqa2urDA0NkU6nsUwTwzRxUy4xEkXRsCwHRdM2wYYg5SaRmnQmnVD/goB487mfPX2WHTt2MDw6QrwJpBRNY2lxiRs3rtFbKRPF0PY8vvutb3PoyBHa3TaGaWCaBopQOX36NCMjI3S7CYV5cHCQUk+RM+dOM7ljEoTAdlxeeuEku/aMI2PBmVcuMj8/x/DoMDt37uDLX/nP7Nt3gGq1RibjJsAtnUaKJA9wfnYeQ1U4f/4ce/ftxTANpIgJ4yTiziYtVwjBqdOnGRgepq+/Qj6fRwiJaWpkszn6Kv2cfPkk3Y5HvdFkZnaOTMrFdhwqlTIAtmPSWy5TrvRhWRZf/epXUVCYmNiBJCSOJN1OlzOnTvHAA/ej6hDFMZ22x83pGWZvzuPYFqUdw3TsBLS++OIJlpdWefHEC0yMbyOKIl588TiHDh2mUEqAayxJfBulpF1rc/LkSwRRiFCS34arV68SBQHPHjvG7t27X13M2rZtnL17DzJ9c4ZKXw/tZpPhwVFQoFqrUS6XmZubw3VdOt0uQRgyODRINpvlS1/8E/Yd2MPBQwfp7+9j186d9A0MkMnmKPf0kc3n0QwdVTfQNI1ms8Xw8Ah9/f0UCkXclIuiJZH3q1NT9PUNkc3mabfqoFhYrp1QXVNZmo0N+vuHaDQb5LJZkPDCiyfodn3yuRTNZhNFUeh2u9Rkl+KZGr6tECrQ6XRIGXnoWgjPIW7paLEJWgRRB0V28NsbaHhowqPUJzBSKwhzCTdXRzWWaDdcdN2gXq8nUXC/SxyFmIaNaSaLOsvLy+RyWRzHRVHh/PlLDPQP4gWdRFU5lpimwdr6Bvl8HkXRiCNJ4Pm0Wl3mZue4fuMGqqJQKBZot1p4vodlaUSBwaWLi/T29DC2bYxmow5I/MAjk8mgaRqKUDl//hIvvnCCmZuzVPpKZLMZsrk0hUIOP/CS+lomIJmaukqpp4DvwVcf/jrFfC/Dw2Ok0zmiAP7i4YcpFPOUSiXS6TQvn3yZYrEXy7So9PUSxwGWZdJs1mk0uuR0A+PkBWq/9knigSJBo8HG+hqaquB1kzYwNY+LZ1/i5swcuw/fh244iLBL/DdW5/x/H7wKIRCNNvSVkNuHX92uR10i1aKj2WSyGeamLtK48QJrazUyPaOk8r0ILYnuD/ZNcunkU1hESF3D7M0hf0+HF0A7uMGV08c59exTTM/fwPM0ZKRgmLBeXaXTCTA0DTWW2JpKxo6Q3WV8CbEMCGXA2kadq1NLXLw4T7mnn1oU8Z1jL9Fq53n66WvkKxZ7dhwmkuu8+4EP02o12X9wN1NTp2g35sg5DrZrIdQYSzgYmkWtVWf77kMsroXkSv3YtkOn67O8soaqarznvT+CosRsrK5y6uVT5DImN2bO0dfdz76DPWiazqXLV9ix3UZTkrZVFYGmJWk/uq7RbDUxDWuT6ivwQg9V1TYFnPxkPiVBRgEQEUYxUazx3AsXmZgcQRMBcRwRRRGGoScaBZpKEPqoaiIapmtJrreqxXSCJmurOufOrVIeGGR0bBf5Qhk3lSGTzSYiY7pBdb3K/Nw8jmMThh6VcpEw9LAti0a9RqVYwpkuondt/J99nq5/gYuvfI1KoUZ1dZZSRqWSV2hszOH7DXbvGEMxJbaWJpPqoVwZphGExOkh7OJOJg98FKdnD0a2B8XOoFlZdM1CU7REEDEIEOpfD7i9KVPyTilxbwJe7zSf/bsorxcQe7M6xNcVhCvR9r5WV+f2dtk6v79dM+dOx92al2+11nwjlurr1f9O370VNufW+3+972/9/QcPXt/I5/WNwuJvtO0W8HsrVIc7rW68nRdja4d5PcD5ZvV9szrd6bu3U+87vTRvBl63guw3Au8Ahozwr72IFGDvvIfqWoPAb6MpCrpqsLy0SLFYxE07SD1DxrHZWJonm8uxc/8BhIjotD1kvJnTe/U7hOkyup5MiuMopNNtoygQhAnAXVhYIJVKEccxjmsDMamURbvVQFdVNtbX6XQDwjDAcRyazQamadJutTB0nfnZBQzDout5DAz2YToWkzsmKeSzFIsZPK9JrVEnm81t5hPEWKaBouoYhoZhGEzfmCUIEy853TRZX62STmWAOFm1lQLDsJiauo5hmglVOOhiWy6KYnD8+Mv09JZot5v4XR/HcWnU65imSSqVodttg5AcOnIwyRdVlMS+Jo5o1pucP3+GkbHRhALcaWNZVjJobg6imiqoVavkshlMwyDw/MQTUzdeBf979+xBVVXOnz/D2bOn6evrI5VK0261ePLJJ7l44Rwf/ehHKJd7yGYzQMTC4iLZdAbXcVlYWKBaq7K6uoZpWqTTGeJYcuniRcq9ZZxNz8xmo7kZOZlDUQQg8YIA23EJ4xghNnNoRMLEigIfQ9OwXCcBy5qWiD1JSaXcByJRNQ58n3whl6gpuymGh4dRVBUpBEEUcejAXgzbIIxivK7P1UtT1BsNdu7ciaZqfPGLX2J4cJiFxQXGJ8ZYWJin3FdB03Qkgr7KEOvVOdx0im98/XFGx4e45x330Om2OXrXEWZnFnj22DF6e3NYpgMIYpksSPSWejBth0pfP6Zp8o1vfAMZRVR6y3i+T7Ne59qVqwgpWFpeZv/B3QjgxtQ1sukMaysrpDJppq5eY3hoBBnD3n37CaOIUydPMrZtGzdvTvPyy8c5cOAAuuHS6XRQFIViocjG+gbbto3jODZxJNlYW+O9730QVZUsra5gmBa6blDdqLJn124q/RUEkj/5ky8wPDxKNpNnZWWNI0cPEYY+lm2RyeSQMWzUVsmkM8RBTOj7RKFP5PnkCongT2WgH0O36bQ8hgYGmZ6+CVKQSWe5NnWdqWtXSWcLnDx5iqNHD7K6sozXDbg5dwPf91leWWFiYjvNVpP5hSUmd+7EcR2e/N73MDSNyV07CYOQdrNOoZhD1TVQwNB1FE3BdOzNRS4TVU0EgAQqpmkShNFmnrLKtolxjj1znJHhMcK4hYxioriLZdp0Ox6lYg7TTPHwXzzMQF+FMAzo6e1DEYl3cafTplDIo6oa0zOzFCIbzdAJVZieniaTTSMiBVOxUNHRpEXc0lA8CyW00XwbxbOImhq0XGTVxfQK+CsaigGKO48q+/G6Afl8CctK/FBdN0OjWUMIQRAEm4sgCqqmMjw0xvT0LBMTo6yvraMKjdNnLlLIF/B9H4SComi0mnWGBgf59qOPcv8D9zM6NryZ+tBGyph8ZohWQ2HHju0MDw0QhgH5fJ7l5RVu3pzBcR2azRbdTiLK1Nvbw7XrU9x/3/2sb6yRTidChqZh4fsRi4vLtFothoaHqNfrmHqKiYlJMplcQmeWifjSvv376OurEEUJSOh0OuTzWRRVgU1LnfXVddKZDNM3ZihPzRA/eBTtI+8mRoEgxE2lcdwUlu1gWja1hRmunD/PPfc/iJ7rBwGa7BKLv6lEyN9O5FVOjiAnR16zTUUhEiqxItE1hR2Tu/njP/wDdD1F0GyhCoV0qUxXWCiBjWMpTF2b5huPfZd7HjiKeDGNAPRDNf7nf/Y/cPnUaT786V/g4NGH+NMvfZ3yUJ5coYTl9OPm+qjWEjoscZdOt4tQLNKZFFEMUeRw4UKVkaGjlIYF//q3TvLoYxqXby7x8Z+6i77eCX71s7/BviM72bP3PlqdNrptoqsdto/k8Jo14tjHD7sYeopqvcFqtYriVrDT27FTGZ544nsMDg7T01vm9OkzHHv+BCdOHOP9P/AuirkSjiWADo88/igfzP8y3zv/DBBzcPcEqhomCyuKkqRjyZgwDLGtLMQhYRSAZtMJDEQU4XtewuYxDZAxcSRvpUwTR5KhgTyOpSTZ0ZvPL4oiNE1L5lIiGetB2fSGVZidCQlDA8dJs2PXEJmsZHq2hWk5nD17AduyMUyTTNpEVSCTTuF1mgwN9NBuVzG0GK/TImObiJMlRKqL92NPEIkZOo1rGGYLlDblym5kLJEyws0UqDUj0DKsVE0kFpabY26ti9Wzk9GdP0BlZD+BcAg35xOKVFFkhCYSLRMtDlBlRKSob6Nvv43y1wCvr9357wa4vnEV3hgnqHtj1L1vP/fzzaKtdwpi3ekcbzXy+teNLL+V8l8teL09IXnrd1vLG0UNX2+V442O/5uA19eLdr5ZfW+Vrasnr1fvO7XTm9V56zm3hvZvlTu9CFv330prvtN1tNjDv/4yUkjS+95F1BUsz1xmYW6OUrEX3UqBKjBdBy9UcXUFNY5oddvUWh7ZrEMcw/paFcuy0K4/QZQqE0uNOA5RVQEyRhIBGpqmk05niMKIIAixrQydjrfpO2ohIwVTd/ja179KT08PQkAqnSIMQmTYxesEZDNFVE3Hdi026iuEMaRchyjy2KgukcvZpNIF2u0ui3NzLC8v49pWIoChSHzf49ix5ymVipRKeVAUhND47nefYHLndgxTRSgGqmqwY+duVlfX6Sn3bqrqqbzw/AlOnz7D/v17cRyLM6fPsTC/QF+lgmlYiWBJ1KHSVyadSSd5UKqeqEcHPmur6/T1l3HTGdrdmL/48p9RqZTRdQ3P62DbFqHv4Xke6ZRLEPioipKoLeo2QeDjOMmgGYYelb4Ku3fv5tLFiywvrzA4OMjExDjlUoFcNsfVK5cxLR1kRL5QotvpMntzJlHaRjB1ZYpt49sYHR2lWCwyP7/AtevXGRroZ3VllU63w65du3nye9/jyJFDXLp0mZHRUaSiEIQRIgoQAjrdDq1Gg3q1itftYNoOvu/TaCSLDwiBIlSuTl2lv6+fTrtN2nGpb9SIBQix2UcVFSeVBukRyZhGo4UMYW56nsGRQdLpNK1Wi1arzcrKCocPHSaddSkUCqhaorgphSAIIoTewXXT7N17lInJETzfp9GoEoYB5d5+duzcgesaTF+fo1gqEcYRrWYT2zT53tPHGBgcwrJMctkcke9TzBcI4wgRSRrVGkNDQ/SWy7Ta66gInvre02iKytL8PKgqN27c4Ob0TWZn5zl/4SKpdJp9e/cQRSGjoyM4js3s3AyZTC/VapXp6RsUCnnOnT9PT28PZ06fRVEUyuUevvv4o4yNDZHJlhLKMODaDi+fOMHZM2fYoeQZtPO4Q2VcJ8342ASWo5PJJOJVmmbwzNPPMj4+jGU6yCBGU3XqtQ28TofeSg9SSHorfbQbHZ54/AnGx8dpNJqUSj3cuDFNp9Olp7eEppoEQcj8wiyVcpl2q8PVa1d43/s+QLPRotPtYBomMYKU65LKpBmoVNg+vg1Vt/jaVx+m3FtkYWGO3kovXuATRwGoAhA0m22iMEDTdK5cucrFi5cYGh5JwGUUUa+3+ea3/gujozsol/tZXZ/F1hTi2EMIFcdO0ek08LqSu+8+imlqXL06BWg0mx3GRkb49qPfYnR0hGajRX//IK/cvMK2820YyOGmXUzLRMYQ6MPlAAAgAElEQVQRQeBzS+QEIYnCEKHoCBRknChwapqBrid+xKqqoscu0ukQeStY1jAnjr+E41qYpoHnhVi2QaPZIJvNYds2nU6XSMZ02gG5XAFDT9SQz529iGGk2Ta+jbPnzjA8PEK366OpMDs3x6FDhygU8xiGxsrqMqqUmIbOmVOnKRZyaEKwsrZMKpWIQgmhIqVCX38frusCkt7eHlIph717dxEEoGkqFy9eJJ3OMDV1jbXVOmvrawwMDCBEwqgxTR1VTRgGqgaXLl9A1cC0XVZWljeB8jKVShlNFyR+khLXdnEcF1XRGWp66J7P3Kc/iKLoKIqTjHeqDopGjEKMQmd1BVUqTOw+iG+kkTLCoEssjNcdN99a+dsBr3cqIQ4oAZrsEMcR7VDnoz/ySaavXqM9f52JkQHc3lEiO40h2qQKKXI929m27QilbIXgpINUFKK7Yh75xre565772X7v+7HsYY4cuYeN2k3yxSKV/n1U9QEirUzDl+jZFFIroIURsZR0vZB2x2BxQXD9WhNHaJy99gqf+eyP8+yzzzHQe4hDh4/Satn8/K/8NO2OypkLZ0BG9BR1RLCE36ziuAaKGtHxYizLpdg/wMnzi/SP3U8sIyYmtrO2XqWnt8z99z/AvkP7+MGH3s3n/9Pv0213efyxR3joB9/LejzNPdE/4stz/579I0cYHbCRkf/qPFBRNWQs2dio0m5KVDXCSTs0PY2HHznHxFAW13HRN6OvbLKBZBwgiNEEmIZAFV263WScMo0kbQOZWNwpikoQxpuibCrdro8XeuRz/bTaDZAh1bWAfXfdR61WJ/BDsrk8pmXTbq5gmwYyjrCtRGQS6REGHWzLJLqcRQl1Vj72H1lbfplGdRakIF/ajhdWyBUHabY8ltertD2FxfUIJzeEVCeZmZnHzaUw84NkB++mWNqHjwKqhyI8NBmjS0GgCKSiEgGR0IkV7W327bdR/h6B19cDgW8VJ7zZPm+GD/42wetbSZ+8va5vBx/9gwevURT9S7jzQ7wdtL2VB32nCOOdGvx2MLcVFL5RBPP2ur5Z7unt299KaP72urxRR7ylPnw73/3WsbdTiree/045uLc+R1H0Gurznep3q0RCI7j+QmIBMP4ujFQKERdQHY1CXwnTziBlwM3pi2QzGaZuXEN1XEqVfgqFHBvLq9imyYnjzzN78yajeZNAmty8OcfJl1/BcVJkcwVUzQSRROA0TUXVdEzTIZYRqqYhUTAMnUZ9ja7XIN8zwECljyhMIo6hjPD8AEXR+ea3HuP8+fOMjY3S7XZI2yniKFElDTatRLqtLqAkA2i5TCwgnTXwPA/PCxkfn0DXdVqtNqqi0276nDx5nD17JjENl267howUuu2Qi+fPMzraDzLxKl1cXGTH5HZ6eio88/Rz1GttGo0GwyNJ9MNyTVp+F9N2CUMFIQWxDAjCNitziVWFrptIGeJ7G+zftw/TshLqj2oiYwXDTaHpiQhWo1ZDVzRM3UQqgnptA11Vqa5v4DopojDE0C3WVmrMzy2wurLCE9/9LkfvuZf5hQVUTaXZaqEIBUU3SLkO586eY31thUzahTgEETOxcztWyqZc6UNVVa5cvsqho0eSPE3HIZXJUG80uXLpCtvHt7O2tMz8zA3S+TwChZMvvcTc9DQjgwMUcnkwdHTdwLQtFC3pr2EQMHXtKsVSgb7+PtqdLjNzs/QUS6gqdDsBqlAhboPQaDZa9JZ6sEyTwO+S3RTUsV2bdMZlx+5JsoUMoecRRwoCg2a7QRS1sVyH6loLW7foeg0UQ6FRrSOEoFDIIVRAKHz3ieeYvzlHs9mkVCqSy2Vp1OtMjI8hZYyUAhlLrl+ZwlJ11qo1qtU6uWKJqWvXyOZynD15ltnZRe6++15sx2ZgsA/dUFhdXWX//gOMjIzSbje4667DOLbFc88/zeT2cdrtFj29ZXw/5Jmnn2bXrl2ous7hI0dotdr0Vfp4/vkX8P2Qw0fuZmFxjXzBpdvusL6yTiadZvvkNoYGR4i/fgprpYt17zhT16+QL2WJ45gwaOJaDgKNsfFh0raJiGOef+55xreNUq83yOWz1BsN5mbmeeXEK6ScNO12h3yuh5dfeYlqdYVsLs3y0iqHD9/DqTOneODB+0mn0zz7zLNYpomiCrZvH6feqDE2NsbVqSmGRwYolXpYXFhmbW0VRRfUmy127tpFtpCjWq2iCpXmRp1GdYObN+ZQhMGJ519iYmw7Tx97kpdffokf+7GP4wceIFhcWKJYdHEdl6GBXlTNJ5dNU2+FySKaoaP9P+y9Z5Bl6X3e9zs53pxv5zDdk8POhsEudpcwAJoJpEHKokTakkq2Si6rLLv0xVUuf6D8SfzmkuySrbItFwGmokyJRFjsAthdYNPk3cmpu6dzDjffe7I/nJ5lo9E9uwuCFIvSv+rWTJ/wnnDfc8/7vM//ef6agqhazE3NQBihGTZ2MoWsKAwM9oMYMjo+hmHbKJoCEthZG3uhQ7tkoEs6vttFN2wgZoAUJXbIDiNYXoozUsIwIvAD7t29RyadRZJkNN3A6XmsLzQw+no46w2OnnoZQRDxvWhXzyuh6yadbpvNzU003WRhfg5RhGwmfs6sRJJCsUB9Z4et7S3m5xdJpTOYhsn62ga3bz3kxIlTdLp1At/D0BJY2QyGZZPK6LheB0lQ6RsZpd3qUKvVSGXSJHJZ3G53l62KJxl3dnZIJBIszMxz+fIVDN1GkiRMQyedSTA6OoysSDhOXGLLD1xkWaLn9EAUyBULBFGEZSawbIsgDJmemSOVLPDW995gYnyCdquNbpjIioK0uYN0d4rF//E3ackhumFgaDpeZwNJMwkVBU0OqS/do7G2g2inscvDiJKIFgZIoUjwCQOxvZPTh2zxGT4HtS/+2HZRFMLKBjTbkLD2bOvvtiIjIKHIEoKskS6UcaKIuYV5otYmA7ZAT0qjySVkPYVoCagZgeh9I35HnxMpFgY4/cyLVK2AW7ceMzYxwtriZSTFpDT6Mnr6BGq2RLIwgYaB11lA9Dw8KcARRBY2Wnz3h3fIVSZIJRV+4Vd+lanHSwSBys/8zC9QKPYzOtnH8vIqPbdOX3+Rre0WKcvCa2wg+HUMy8QJNHRFRTOSbDdEJk58jum5KfpGK8zPT1PbqnHu3HPceThFu6vhtrcx6LIyM0Muk+Latct8/V9/i69+6RVeHXmVS9dvceL4IKIeIngSitCl6/l4vkF9Z5GVVYdiMY2IjxQFVIsWuiYhShBGfpxxE0lIQogoiAR+uKtvjWJ/A0EhknzcICQMBRQREAz8sI3n9Qj8CDESiMIebddifmmbq9dmabQ1AjHN2k6bo8ePk8qmCAXouQGRqNHqtHC6HYrZItubG4SRA56Pdz+F0DQw/+GfEkVNIk0gkRsgkR4mjBR21hdZnb6BWRjFrp4nU5wg0nPo/UfJ5CoMTJxFT48SiClKxRKoUpzdhIyAQoRE8KTrPQFFQlxHPQp/fKz6WfSv0Z5uLYi7KVWCgBAd8HSIsVmp9LF06McelI8/B53DT8Igfpo4DDt8lv0Pa3P/B54OKPebvz6NmPs0IPPTgu/PSug9ib/24PUgw6a9cRggPGj9QcufNltwGMj9Sb/0wwDyfuC4f7tPm8+/d/neMjx71x30EOwFwU9jcfef036wvhfw79/Hn7kEgDj8HJqmkRAFHty7jqUrRKGMruukcwlESaNcrsSGIQgYhoFtJNjaqpPLFUnYaUhUSDz+FpfvLbOyvs7ExBFM26LVbCLJCooiE4Q+gigSBiGiKBFGIKsKnu99XGaiUh34WEfadRw0Q0eVFTqdHsvLy+TzOYZHhshkU0iSR7fbRRI1dM1GU200TUIUJdLpNJquxXrGUIBIRFNNoiii22lTyGcJo4i333qXsfFRqpUqC/Mr2AkNVTF49PARN2/eYHCwj06nQzqdolgsUC6X8FwHyzY5fnySsbERLNsgJDaQMayY6RCF3UyCKMT3XUw7QTKdIZXKECFgGTaKoiNLMr1eB9PUEcRYO+p7LqosYVs2ruuxubGJplqYhoHv+2iGCYLMlSsXcRyfmZnH/OzP/ix2wmZ5aZkjkxNU+/pi9hfIF4pEETiuy0B/P0d2zWzSqRTpdIbpmcfIokyr0eT9d99DlmUs22Zne5uPbtxgcnKCfC5LuVzhO9/5Drdv3+LVV18mQkWVdarlPnodh17PJ58rEkrxJEun00FRFFrNFrquMzIyQq/XwzRNBEnEtm00VQMC3vz+26SSaRJJm1a7Sy6bZ2lpiVqtxs0bt8jksmiaTqPRJJXK4Dgeum7gOg7vvPMeCwsLWJYRpyoikkun2dzYRBQFTMPktW9/m76+PgrFQgzoRYmRkVFGRwbI5nOISpyOZWgqkqwQAZcvX6FRr1MsFlAUiXJfH0EYkkolCaOIaqXKRzc/4ujx48w8nmHy6CQ9t0e5VKKQL7C5uU2v1+PFF18kDH1EUWZgcICe20NWVW7evEMmk2V+fg5JlhgbG2N7Z5t0Js333niDsbFR+vv7eeONN0ink7sGZCb37z0knc5Qrze4f+cuE12TMAz5KNogYduk0+nY+KTdhEhElBRa7QaqLBAEEd2uw85OnUwmTafTwjAsPM/jhQsXmJ6ZplgsMj39kInJEQrFPK7jEoYC4xMjPHh4j5GxUSzTZGN9A01VY0OxXadYUQRNU8jlC2iaxvLyEpcvX+LFlz6HquqsrCyRTCQoliq89u3XQVA4+8wZTDuBqmuYpk7P6VAslRBEkaGhIWRZptNuM/P4MbMzC5w7e4FvfuN1VNng9s375LImte1NTMvE9SIU1SSTzfOtb7/G4OAgyaSNZeoosoTnObGGWgSBiHq9jiSqbAVt0pfWWBMcDFNHEEJEUUAUBMIoIgwCNE1H17RdbwYB13HJ5/PIivTxpKEkSfEEQC1AH2gRbjUxUlWCIOTRoym+9e3XGBgcIJfNYVkWd+/e5/atm7z00ks0m02uf/ghw8PDtFot3n33IvPzC4RRzEANDY2gqFAqlZmafkT/QJkwDGl3OpimTafdwZNuYdo9LG2Yzc0NEraJ53rYibiMUbvZIpVKsra+umvMlsF1PLa2NhgYHGJi4ggQkctnQRBQFIV6vY4oihi6ThSFCAi0Wi0EUURRVHRNQ0JEksBzHSrlCj94+23Gx0fQdR3TNJmZmUGIIhIXb9H+R7+OdnoC0zTibIlIxJBlBFEkCkNqawvU1uaZnV3l2KkziIaOJEuIUczihsLTNa9/UYPip7cfIf/z30f88MGPGDYdFI4XkslkdidTZG7eucedB9Mk7S65pE+3tUku24/nJAiuxPsoFwIq1Spvv/MDQqfDnQdznD1/ho3lh9y+M8Xx0y+DkkBSJSw1QX1jk8XZKQLFRZImee/dbd79wQqnz73AN7/zb7j+0QZ/4zf+G/qHT6OqGf7o9/6YL/zsf0Kz2UDTFXZ2tiiXStQbdYb60szPXCdlCzhuiyD00BSRdruHrCUxrCqV6iRtR0LEIApENrdrZPJ5jp/o4/d+71/SbbfZ3AzYaYr8ybff4m/9/VP0H99m6OE/YPvzv0uy1sc7b9/nyJE0IipuBILUJJscJpnSkWXwfBdBjNB0UBUVUYIoLv5HGMSMKvBx2jHEUhBBEmK05UuIYQRRD0ns4fUM/FBhY3uDRlvk6tUNPrq3zuZOl1/66q9hJC2OnZqkkLSoba3HLG/PoZDNogsqveYGlu7Qba+wvTOHIjpoq5OoTobOb3yNne4ymm4geQFryxvsbGwheB26tRVEdYRnX/kbVMeeI5sdoNp/lER2lFwug2mnMO0UmVwBWTUO51L3dMOPx3efAah+Ups/0s8PaPbJoX7a5lD/vsL53zSCy/LHhk2fJQ67lsNkfHv//9O+D3+e9v4jeD3g5u3Xlj5t+SeB1yfM5d7jPa3zHMTuHnau+wHjYSztk/P+JFr+xxjPXc3FE3Oq/cfafz/21186CLx+0gTAYekK4cYMgmahDp6JB15Og53tJe7duUk6WcQLAwLBx+n5+L6P63qoqoYgCKwsrSEgs7XZ5Ctf+Sq/8wf/jldfeo7nxzOMn3oW3bLRNBVN03br6voIxMXmNVWLZ68FgVjLJSErEoZhIAgihmHiB7HeJdjVy4LAqdOnyWRTmKZOq9lie7uOJGkkU2k8r4vjtGm12riOE7v3SjLNVgsxknAdn6/9ztfY2tgkkTBxnB7bOzvk8yXGxmImLApFNC1OBUwmUpiWwfDwIKqmYhgGkiTiOD1UXUEUQZYEDFOn1WoiKwpRFBtvSKJMFIIkCKxvxMYsoqah6TGw/Vf/5//F1madXL6AIETYtkGrXcdxu6iySRgECAI4jrOr44QoEHZTcEWiSMT3I2zbor+/j8Gh4djhcHOL06fPIigC3V4X3TBQNR0EEbfXI5lMouoazUYDWZbotHosLa3QbraoVqu4jkM6ncKyTB5NPWJ4JDbMefe9dxHCEMMwsS2bVDpFqVxGVVS8J+UKZJGNjTUy2TR+GD8viqwQhX9WvkmU4u+4t1u/9/r161TKRTzPYXh4jJmZWWRZZH19k1w2i67r6LrBxMQEhmWxvrbB9esfAqAoKr4X8OjhIwRBZHp6mpc+/xK1eh1NkthYX2dhYYEPr3/IkfEjDAwO7pb7CFnbdVwtl0u0WjUM0yAM4e033+L6tascPXoUTdMoV6skkwl0TWVu7jGFUpFabQdZVpibncUPQp698AKFQo5yqYQf+giyRLfd4fvff4tnn3uedrtNImnTdTo4Tkg2l4sdtNMZfD+kUqmQSNgsLi5y69ZNnn3uOebm5jh16hgXL36ArEgMjwyRzWfo7xukVmty9ep1zp07j6qplIpFGu/dJZlM0h5L09cXa3WjyGVuboZOx+PiB5eZmBgj8F02N7a5cuUaF174HEtLy0iSSCqVJpOJnX4XFxdZXlrm53/hSxSLBSRJolgoU6304QcdNF0lk82wtbnJ0sIylmmxvLJKLptlc2uDtfUVypUilp1kbm6OoaEBJo9OYOixVleWJZqNJtlsngcPZ3jhhRdBDtFNEyNhkU4nUFUJy0qgGwa6pjE9M8N7777Ll7/0pbjWriCysrzK7Owc586eJ5PWKORz1HfqPH48j6pZ2Kkso2OjpFNJFpfmWV9dppDL4vgukizheS6KEqf0zz1exbVEqg87rHfq5PoqeH4PQQDf93edcwW63R7CruZMlkVUVY31oZr6sUu66zpomo4YKhBClK6jylV2dpp4XoDnBfT1VVAUGUVRKJUqjAwPEte8bjM0OIRuGDg9h27X4fnnnwdBYHt7h8GhQWTJx7ZtioUC7U6NVCqJKCh4fkhtp4Zux0Cz104hRj6aqlJv1AnDAE3VkGUVQRTIpNO7xlUSiqKhKCJvvfl97ESCQqlAFIUYpoWqKFimiSzLbGxsxJKDKEKUJXTdQJQkXM9DJMT3XJaXl7Atm5GRETKZFIahI4oi2XyOxP3HYBnU/+aXsUydwPOQJZnadh2/62AYOqHXxdYELr3/A8aPP0//6AheGCDJAsTVm4l+CuzEnycOA68HuQ0fGKJMEIKiW3ihwND4EW7cvsfO4jS3r7+JqTrU6k3y+QG8K3FdXPWCw53btygVy/SXy5w+f4GV9RUKqQz54hBmtoKgmLE+VjAhkOh0u2Qrwyys1Pjn/+J/5/jpswyOHueVn/kKX/ylv02uMoSdSlHf3uT8M8dxIoEzZ0/z//y//zd379zm5778ZQxbY2lhmrGhIu3mGiE9MhkLz4/LN3m+wrXrM2SzoyystLly6TqTE8eoNeqopo7fCZl9PM3nX/0C/8e/+hqnnjnBo5nbLDwq887bF3l1+BdJmklytsXgyBCKHBJGHvW2Q+hrqIKJIDtcvjiFrqokUwlkKaDnOPG4IArjSY8oRBLiiWvP85AkGc/bLd2kPXkf64R+hCCFRIFBILSoNwUWFyU+vLmKZMiUigOMjIyQSiRYmF/Ac13yuSx2Is3Fy1c5efo0S4sLaN4OjdoMvfYCshSgKBqp7jGUZpWVX/0akS4hyknC0EI1iyhWkXSpSiSKFMoVCv0nSPVN4skpAj9A0HS6oYwkCfiRgCCrBIj4kYAofLKJ0p+B15+kRx/c5qcBr0/e7T/JM/dXDbwGl2Nc8dMErwetP2zs/tOK/whenxJRFP3WYfT5/nqke/Wah81CPNlvb03Tvfs+jYU8KE12b+xfvxfM7W8/DMOP674eFE9bvh947ge1T44liuKP1JbdD4ifxN6U4oNMpQ46r4Nq2h50nU8+cv8p5P5TH+8jyTJ9IwM4zQ6dhksqm6HtNBAFhZ2dHXwvIAhCer0eqYSNaVisr9c4c/oZfvlXfon/+X/915wb0MkVipjJdJx2IsY29REhvu/Fg0ZVRdm9prhYfQRRGBsf6RohIrIcu8xGYRAbPwmx8YcgEA/OichnBwCBIPCIwi69Xp1Muki73UQQgShC1w26nTaGoWPoBplMBssymZmeYmJigls379DfX+Hx4ykmJo7gunEdOdf1uHjxfU6fOU2328MwYqOTMAqo7exg2Vbstuy5NJoNREGi3ekhyxJhGNGo1TAMHVVV8TyPMBKQxLhm4vDQEH39Azhdnze++x3GxkewbRtV1Wi3eqiqyvr6GqqqousGOzs1rl67zuUrV7Btizfe+C4nTp7EtkwQBNqdFleuXOXKles8fPSIUrmAZdlEYcSlDy6TSqZQRJFrH35IqVJGM3ScnsP7713kxIkTH2tJv/36a+imycLcHK+++gq12g6VaoWRkRHa9RqFfBFNN2IDLlVBFANmZ6epVov4gUMun6HZqrO13aReb5BOp5mfXyCTycSMd7dLp9P52MipVCohibC4OE+p1Ee73SOdTjAyMszGxgazjx/TbrdotJvkcwVS6RSFYoFcLheXuNkdsJRKJR48fMDE5CTZXI5GbQtJkRmfmGBzc4vJI5O7mtiIMIBSubzLOjYRxQjHDVAVHV3VGRka4o3vvs74kSNIshy79V65yEsvv0QYBqTSSb73ve9jGCb1epPB0UEIfG5cv0axWKDrOCwvLbO0tEK5VObh1CNGRod5PDtDPl8EQizL5K233iSTyeL0eqyurnLy1Cl836dSrZLP55CkeOLj85//PNlcDssyiUJYXFxmY2OTWq1Gp91icWGBI10TTdO4Hm0wODQEAnRbO+TyeWw7Qzqdpba9Qbvd48aN2xw/fpIbH93gyMQYvh/w2mvf5siRIx+D2RdeeIFHjx4ShhGbGzvcv/+Q6elpgtDHMCxUVWfq0QzPPfssy0tLvPC5F9je3mZoaACn16Pb6VGrN8nlMiQSFggCsqzQ6XRx3HiyQ1Jk+gcGSWfS+EEPQZLo9eJ7l7Bsuj2HbDYbg0NV5cjEBJIkYdkaS4vzpFIJcrkUigKiHE/qSLJMpdLH1NQU8/OLVCslZDnW3hqGTrPVpNfr0en0dqWsIktLK9y6fZ9mu4GqaGS7EmopRRC4BH6cIeL7MasjSzKyIuN7HrVaHcdxWVpaJoxCdN1A0+JJOUmKB9AKJgEunjiLGJUwDJtMJksul6XndAEwDB1Zlmm329i2zc5ODVWNnYo9P0Q3dAzT4MKFC1gJm2Z9E0O36Dk9JAkePHiI5wY8uD/N9esfcvRkBtdz0cQhOq0mVsImWyggybFWV9N1fM9nc2uTZDKJ7wc0G03CyCcMBSw7gabrvP7Gd0klk0iyHAPX9XXyhUL8+xZFdDodRDEGrrquQxTheR6tVotkMo0iqwhChOM4/PCddygnk1h3Zuj8s39CN/CZm32MbVkICMiiSiiGsRzC0NnZ3GZ9fZPzL/8cSAKiLCCKMXAVEIg+i9bugPgkT41PWn9Iq58avIrEUpcACcNOkkwkef7C8ySNKgo+M1P32NhZ58iJMfzLSaIoxPpcj/u37tBruURhQDPoUKxUMKQEoaSiZ9MIkRy3jYpu2OTKOYRAY2HxKr/5d77A8TPDpPJHOX7q51D0LmZKp97c5syZo2xuLXDm2VfwfZfz58+xurhIOpVkcGQE33XpNOtksxay6NBubSOKOhHw8NFjTpz6HK+//h5T8xuUikVqO7U4+2dwANEpcuXqdUbHR7h67X067Wn+1t98mQ/vfp+v/uIF7i28x4vhP+bra7/BZP4EUphEkGFzx+HiD2c5erSA57pU+yoYho3veRAFKKpMFAlxdQMxNnmKgpDAD9A1PU51BYIgjCcKFBnXjXjtjQdUh/rZqrfYqRncvLtEx/V48eUv0mrLvPziCaqVAr12h/HRI1QKfTRdB8WwGB4dJQy6ZNMa60sfoRkepqljp6pozijS/Aj1X7lKR/cYGj6BINg0OxFyagCsDL5skir2sbzewo8c0tVhfElFFlxCHEIZxPDPxpNP+p8QHWJiekDmnij86Nj2x3f5hEzFz7JY+LMayD8JCPurCl6l5/3PvO/TAOlhJTv3xqeRJn5WvetnjZgY/GsOXg9jXp8A0IMYyqc9NE+A496/98fT0o6flkt+EGg+TDP7pAZT7FT76XL095sp7dfkHsbsPunQT/5+cv37r+Ww4+4/h0/Tqffei4Pui6MahGFANpGittlG1SUGhssIgko2myWdzmDbsRGRgEe36/CP/7t/wgcXP+C//x/+W164cA6lepZq+yZkBomigJ7rIBAhy3sAeCQgBB5TU4/iAZIAvW6HVqOBYRpEgkgQwPraGrIkYhg6nU4HOxHP+HbaHYIgwAtj/ZWiKDg9B9tMUK830XQN2zbpdDuYhkUUObTbLcqlUlxSR5apVKo4bo9bN27zzPlT6LpEFPm02m2I4rHt4OAgqqpgGjaSJOO4LkQRmqbR7XRYXdnmjde/SyaT5ff+4A945tx5FFlGkSQsy0ASRVZXVlAVjUcPplEViUTSwLRMVE1BluJU4b7+MjNUSEoAACAASURBVFEIsmQw9WiKTqdDtVpBUVVqtZihlRSZ02dOsrOzzcbaGpVSmVt37pDOpDFNnUuXr2AYFs89+xzDQ/18/WtfZ311HafncO7cM4gClKoVxF22SZMVbt6+h2laPHz4kEKhwNETx7GSNqHrYRjGLquksbq6iiqKmKbJtavXOHXmDEtLSxBJlEtVNta3SGeyCIKIadrYVoJcLke71ebf/vEfk0gkKJZLXL12jbEj40QRyEoMYJ1um3w+R6/ns7qyxqVLH7C+tsSJ48fI53Mk08ldR10Bx+mh6zqSJPKHf/gHCIJAr+uQzqQ5feY0diLB1uYWntelVK0QCgJDwyNsbGyxtLRAo9EkjCJM08IPXXpOB90wUGSDhw9nePN7b1EuFrjw4gsxANB1FFVloL8PQRSo13dQZIVGo4kkyQwPj2KaBu+/80OOTxyJGXrTolQqc+r0GRRVZXBwEEWT41TVUODWzevomkq71WR8dJRSucza2jqKInPy1AmuXrvKwOAg0zOPufC5F/cM1AWiKCC9y5IWCnkuXvyAta1NntcqRAJUv/ICCAKSqjA//SCu6RopEMH21jphKOM4HqMjo/T1V/B9hzAUqJQrOI5LOp2i1+tx//49wkACJDbWtzj/7Hls22ZgYJgbN27h+SEnT5xkaXGRne1tNrbWGBkZ2S035TAwMEg2l0dRJPzAJYrCOM1bs9jc3MQwNayEhaIpqLpMp91C101qO02mH86QSaRRDBVV0wAwLQvLNHedbCFhJ8jncoSRT7lcxEhXYyfiKMDQVUrFPO++9z7jYyNouhan2psGXhBw9/Zdjh89ju9HtNtdrly+xkuvvMKxo+MseA3Gp1xCWyWURVQlPn6r1QLYLYfVw7JsBARqO3USiSTpTJowiNjY3GR1dZXAD0mlUvR6DqaUJlR6SPIWolDCtCxEEVy3Sxj5CAKEQYAkyXS7XT766AanT59GVWJn8UpfJZ40MHU836FR3yaTzpNMphBFAVU1yGVLRCGMDI/Q7D2Kv0t7ElmWiMT4s7S8Qj5fwPcCXNfh0dQjKpUKkiQjSwqO02VgcBjDsJmbX2BqaprTp06QyWZpNZtxrdZcjo2NdVRFQZYVRCm2dpUkiU7XwbRMMtkcQRTxw3fep1TMUa83qPZVyT9coP7cSeRXnkWXldiNvtMmaSeJAkgU0uiWQbfV4b33LvPKqz+HZCdBBPCQiIgEiHiiN/3pxGdhTJ4enx68KpFHKAhEQiydUUUIPRcla7M8t0LGLqGZBaxUkUanQTO5wr97+2sEPY/f/l9+mxPPnGRochDZ0NhaadM3PECbNkpkIwgeIBMSUetucf/6N+jLF3h4a45Mdpzjz75MK3JYe3yfTsvhze//EFGQefXVL7K+0ySRtLl25RIXnn2WKPCpt7vkc3mCwKfb3GRjZYrQ7xJhIokhdjKFgM3N24/5z//Lv0cqmWBhYZ5kOoMoqyzMzXD0xCCJlAGezyvPnsaUfGrNBpP9Yyy0b/Kc+l8glLvktSEuXbxBNjPIdsPl6LEisuhg2QZB5CBIIaahxNUMCFEUDVFQkEQZz/MI/ABVjQ3lBEFE3J3QajY9ZDkEWefR43WQM1y9PcuDqS2yhT62anWeee4cExNHePBolmK1ytzSAoVikfmFOXyvRzJhIePR2npMa+MBimagWwkULUvUriJNDdL7O7fpFJr0Dw7ihx5+6LC2tUrSypBImvScFrWNTeRIRJJ18tUjBJjIUex0HAoqchQbTu39PKVzxj1vD8kR7Y6/95NIn7o/fyZM++d7Dv+qglf5+Z8u8/oE3+wd2z/Nc+ewNv6iwSv8B8a87lkG8COg7CDX4f3A8cmX+iT2147dG4cxj0/A4P403Cfr9jKrhwG3vQDyyXns19QeBMD3A/WDfjSeHGvvur3Xv3ffvcztYfdg7/U80Xbsb/NJG3uv8aD7szf0oEMoaIRmBjuf5PK736W3uYKGwOO5JXKVAXpeiKaqNLa2WZif5Vd/7Sv81//w7yFrKsl0hmw1gdp3FPHDPyJQkyiajShF+L4fz7LLKlEkQBRg2TE7qCgaoqxh2ikIJOamp8ilLLzAx05lEGURWRbxem3CwIco2C19Y6EaOpqh0el08BwP0TSwzBSz0w+RIhdNUXFD6HRdLDtFEEVohoqiySgKHJ2cpNNxsO0kAFYi1jP6nkM6aRH5LggBYejy4OFdVFXHdSN0PcnU9ANW11c5deYMjuNy7NgxNFlBlkASRQJfYXp6lvc/eI/p6fvYCYN8sYjniTQaPnfuXKRSLZFIJwnCAEmMKBTypDMpgjAgCgXm5pZJ2BkiXBJ2kmw2R7WvjJXUGR4eIwojdM2i23HwPY+JiSN873vf5fz5C0xMHCWVS4Do0mx3sG0LIYoQIrh67RovXHieUqVMLl8glU4jEFApFdBlg/fffZ8zp09x5dJFRob6ef/KNTodhzNnzvPe++8zcmSEUqHEhx9+yNraOrdu3mVwcARVNZBlgZ2dLZLJBOeeOUOzUcNO2YyNj+F0ekiCgBj5hH4PVVPpdoTYWVkDy04ycewY7JZFkSSR2cdT6KrC22+/ydjoGBtrm9y6cZcLz3+OvsEBgihmglVNo91ukytUcNwAERHf89lYX+f2rRtc+NwLPJq6z/TUAxRZZX1tm1IhjyxJFIs5Nnc2qbUaDA6Ooyka2+tr2IaOF/ggyahyXLZClkVy2SyWZSHK8P4HH/D8Sy8hyrEjbrfVRZZCet02hpqkVe/S63aRNZ3Z2WU8D6amZjl79hlcr4VhGCTsJKqi0V8ts7qySLPZpZTPsb66TBgF2AmLnuPS7TlkMlmECNrtFl/88pdIzjSRRInueJ4w9Jl9PMPw8CiBL/LDt9/F81yq/QOUh6sMjAyjKAqu63Hjo+sMDw+xs7NDNptBVTUuXrxEq9VGN3QWlxepVCsMDw+DIOD5HYaHBqhWKnz7W68xMz2Lqpuce+Y5lhcXUWQBVZUxExY766vIckAymaHdCTASFjIRO7UG6UwBTdWRBKhvbaCbFpou02zW8HyPRzMzjI+PsOu5QhB24t+3SEU1JWRRodlooRk6djZFz4l4951LJMwMEiHt5ioTJ8fQdAnDshBECT8MkBSJsbGjhAQIMsiqRi5fpFTJI4gizU6DzEAJ++4mc14DVdNZW9tiZXWDjc1tCsUSW1uxDEDTNeyEjW5oSIqGLEmosoyh66RzWUJRQJVjuYPkmfhmDSmsEYlpgiCi3XRJJlO4Xg9VNwijuHxYvpAjDHzC0Kfr99BNjSjw2dxYp5DLYphphCjk9e98iyNjR9CtBLVmg2w2zWvf+Q4DIwrVapnmjoTjBnG5LiSKhRy9XpOdWgNZUchksszNLWCaFrIioykyruPhuz5vfOc7WKbG+WfPgiigaDr5fIm52YV4Uk3R4nRjWUYEPNdFVjR6vTitOhIiRsaHMVQR07ZI9Xzkx0tc+cXPkUvZhJKGbiToOh6GZaGbKlMzsxRti4cfXSefL1EaHUdVnpThkgkjCaIYuD6VOTokfvR9GvKxi/THbtJ72JH4oB+zdz8eB+wPnxq8hrFjHAIhohDFEEVUECSd0vgkpfFjlPvGSJk5zBMqQtGhVCyxML/FN994n1/56i8wMXYeVbHoBjNsb9ymmrbwxQShIBGGHprk0lpZJsMOgpKgNHgC0SxjmCl21tboP3KUvrEiz77wEtXKGH/4+19HaLeoN3YYmRyj6bTYrq0zmjnGjrOM5yqsP7pIQp8la4/Rc2sUC4OsrLi03SSPFxr0jz7P9laNF154num5aQZHh/GlbUrlClOPVkkm+tDtfv6nf/ovcUP46J7DDy5fYrRygv6tl3DVDYaGB1nb3GRzY5XhkSKS5qLIIZIgo0gqQQS+KCBGIKJRr3fQNR1REtBUCT/04wmrICSIBERBQYg8JMEmiHpkinnee2eefLbAL//KLyPLMsdPniCby3P/wT18SSGbzZHPZPDdDr7XpunYLDy8RF/CwWnXCDQTyy4iyTahr6FMDeF/4QHyyQ0qg5Mszq/R7szT7WwgeRWWV+4hdbcIamvoRoLq8WfJl4/RanWxNIlQgFAQEIlryD/tI4gCERBGIQLSnzksRcJuGm/8jETxxiCIu135oGfmx43HRCF2UheIwT/R7rJPa2Z2yOfPG3vbEA59LuP4iUA7fz7w+rR4Ghn1aSbP/rKAK/wHAF6DIPitT5o5eBrI2//3QSmxh7GWh4UgCB+n4+5nY/e3/0ks8CcByL1xUEruYQ/PYWD+k17G+4H/3uWHneNhGuO9x+t9/1/gP76MPPpC3B5R/PITJFK2STqhs7a8SBBFpHN5dMvC811Cz0GTFUqlEp7no+kxgJQlhSD0kM0sgeegdjcRjOTHqT3xwENE2q39N/t4lmq1D8/zP3ZRlmQZXVOJiDCtBJpu4HpurDMTRVzXRRBlTNOO62NKIr7v0WnH6aiGYeJ2HQLfQZQFem6AtQv6PC9gbm6OQiFPt9MmCgPsRDI2hOl0SKWS+H7IgwcPWV1eYXBwCM8PkCWZRqNOX/8AlpWg3mjy4P5DiOCllz6PoiqMjg6jajKqrNLttfBcjyiSee211/jFX/w5SuUy5UqZRDJJGMCjRzNcvXyZu/ceMH5kElXRUOU43anT6aIqCpcuXWJnZ5ux0RFu375NMplG03QMw4hT3P0QRYlnnV3H4Znz5zBMg7v3brG8vMLJU6cwTB3LMtENk+WlJRQlZkwMXUfTDCRJ4vq1DymXimQzaRbm55mdXeDYieOsb6zT6rRiIE3MRDUaDSp9FdrdNsV8nunpKarVKgMD/ei6zu/+7teZmZ6h2tfH4uIS2WyOTqdLQIiuGRi6QeD79Lqd2EU2iidaDNNAViSKxSKiLCFJcV1e13UQRQHDMDly5AgQ95Gjk5PU63XC0CeZiEsmtJot1lbWYl1tt4Pvurz15pucO3eOY0cnkRUFyzbJ5fMUimUK+QK9Tpy+6YchtmVx+sxpVFnFdWMGMl/I4/oBoizzb/7o/6NaKbO8vESrGbvFmpbB8y+8EPdLiF0XQ4Fmq0G30+Wb33wt1sRW82iGTDJpc+XKJV566QKmqTI7O0t//8CuQ7eFKAkEgU++UESRJJYWFxFlGd8PkRWV99/7gOHhYTzPZWR0CE030e9vsLm5RWcih2kZJBI2WxsbLC2tMDo6RhSFZHNZrl+7Sn+lj163R21nGyIol8u4roPveySTKfqqfYyNjdPptjl75gx91T7efPNN1tZW6e+vxhNjokiv2+XIxBG6nQ6PH8+yMP+Y88+cxbRMTMvC6fXIF7J4foihJ0AMEaIQzdDRTRNREPAcB1M3kVWZntPDthIU8iXS6SxRFKJpZqynVuLalVEU39dGrcHv/M7XGBkeidNgfZ9ivsA3/uQbnDxxnHanjWVlUGWN7e1tdC2ui6upOrKssLK6jG3FrsqJRBJZjAFYOp2haYG12kW3TB7OTMMu4z95dIJGo0ahkI+zPjwPMXaMwfEDFEUiDAK2trdIZ9JIsohIzNRKkgJtgzBRR/TrCNIgb735Du+88x6nT50hxCeKwPc8wjDEc91YRqBrsWYc0DWNXrdHq91FIKLRqJNIJmMTKd3E9xxcx2VwVEXXdGqbKmEYYRomnU4X13Xpdtuk0xm63Q6+71GtVHCcHq1WM96u3eXypSuk02m+/OUvERFRrzeQFZWHDx7xzts/5OSpo3S7XQQBut1Yl6tpGqIo03McNF1DkkQkUcTtdhDCCOO9G/T+0W9CX5FcJo2gaPz2b/82n3vxAvl8jjAMiIKAVr3G9MNHHD95CiOV2TWwO/x9+JPHQc6oB/tCHHykQ965n1bzethZCQKREJc80iSZOzdvcPPqTU6Oj7A4ew/LjOgfyLK5tcjEkWN4PgSBgCbmSRjj+FKc7iiJIkLkUd/ZYn7mFoFk46EydvQcsm6RL5ZB0ggil/m5Zb73rdf4+S+9iKlpZPNJSuU8hi7hdlvMPnjM/dlrjI5OktKbOK37RIKJnTTw3JB7D+Zo92RmZtexsyX6+0rU69ukMjne++Aqz587y+//7h/yhZe/wH/1d/8uNz+6goDHr3311/nOt77L3/8HP8/gmSxDW+fRhu6Q0E1SSY3+ahFFhKDnstUU6fVcFFlAUeKxQxD4CKLE3buPyBXSBKEH0Z7sP1Ei8ON/u56MF5i4ocDqRpNydYJTZ8+wvrnF0MgIqVQGPwzI5nKsLywzMDiC40e0O12qlQq27qIrbeqNdRKpJIalIUoBrVoTa/oUzvEpjC+1aGz7JPIZ2o0I07ZxHZ+Tp56nb7Cf1ZVloghqjRb1VodcYQBZUdA0LX5nfMou/WT8FmcH/vj6A8e0hwphDz7ok7HYk2N9lpTgvyh4tR+8PnXbz4gdnsRfFHjdH5/l9+svm53+aw9eD2JeDwJjnwa87gd9+8HlYWZEB7Wzl/V9GmB92sO4f7unMaD7r/fJ8v2a3yfrDzJO2rv+0xxrb+xnUvembB/GLu9lyL1dt+G94DUSxDht13PRFJl2u8vG1iabO9vYtoWpqoShgyopCAKsrq2STqdRdR2I4hTSVJq2nEKffw9BiEDN4nkhnuezsrxCKpVAFARyuTye5+N47q4pSvwjLisKiqYRRoAo4DoekiDS6znYdgLH8bATKdqtOggRhq4jK7FrcafZxOv51Os7DA4P0uw6ZDL5uF5cu83A4ABE0W76Xjxj2e31cL0YfLzz1juIgkjPcSlVKkiKShQFBEGAoigEYcDWVo1CvsDk5DEEAVRVQdXkWJcViYSRh6pphAGcO3cGSYooV6oIQkSj2UKWFb75jW/wzLmzDAwMMj5xJDbakCVcN+TOnTu0Oy1OnzrJ+PgorufQaLT55je/zalTp3cHiwJ/+o0/pVQskkoliYjY2dmm3W5y7NgEKysrTExOsLGxQTqVRhFlTMPk0sVLjI+OISCwtb2NJElcvnQ5LhEzPo5uGPzwnXcJiTh+4jiCKHLi1Ekq5T7S6TSbm5tsbW9x9twZhChgeWWJM2fic1paWqJUKpLJFDAMk48+/IjBwSGKhSKyHA/0Pc9n6tEjfN+jUq2wsrRAJpMkiqDT7mKZOsJujT9Dj02yZElEEiVqtTqqqqKqKr1elze++wZrK8tMTh7B0DXcXo++apXvfe/7PPfss9y/d497d+5imxbZXJaFhXkQoFAosLNTQxIVvvEnf0oYhvT19WEnbYgCREHi+rVrnHvmLFtbW9QbTZKJJK7j0t/Xh6qqFAoFLl2KNcO+5/N4eiY2M0PgjdffplItk0gmOHvuPIapEYRdZEVFU3UePHhAuVJie2uTx4/nKRZLVPv60LS4RJJp2siqiOd4zD1eYHRsglu371ApVrlz+y6pZIpKpUgYeUiyQnMszTV/g4GBAZ7U1TR0g3qtTj5fIJvNsrqyjNfpsb6ySr1WxzItZEVic3ObSqVKoVDkwYMHtDsdKpUK7WaN+blZtjc3cHodzp87y8bWJt1ul1QqRblSYX19nWq1zPrGJtlsmsHBAXpOD8f3uXrlKoVyEVUz2N6uk0za+G6XdqeNqmksL6+QTqcIgoCu20EUJERBQkDh/v2H3Lt3l1KhTBj4BKET69f8iFarha7qVMtVFheXGBwYRteg0+ryeGaehcVlJo8dQ1NSNBtNGo0tLEvH1C1kUcEPfSzLJvCDXSO5AM/p0mw0UFSVRCqJU02Qfm+JnGKSPz1Kf7HIxuY6+XyGKBKRZeXjiRlBEAkFAaJoN607ievE5+u4LmEQoigqIjLbiz2UfBc53OHa9VWOHp2kUMgjyvFglCjCtiwURcHzfHTDwPcDDD02skskk2ysrnPv3n0Mw2R0fBx393ki8Dlx/BiSscP21ja6MES+mMVzfe7evYeqqdi2je85MTucSrC0uMD62hqVcolY1iugGwYTkxPYCRvPcePjmyZez6VYLJHJJtH0eBKg23UgEqjVG9gJm83NDXK5HKoSm8y53Tb2jWnCs8d4cHaMcrkEUYAfCXzxi19E01QkSSQMAxRBwG33qNebHD11CmSZw8Ztf13BK7uaXqfbRRYi/G6T8IaL2RDxjAWa9XUGB/uYPHYMtxfQbbtk0gkMI4kkWUSSEwPgKIIwpNNus7S2wsjR84wee4ZANkCQQRRB1Ok5LR7evktf1iboLNHttphfuE8urdFubkLg4rdbjJ3uo29wks2F20jCEoqYQJIhikR6rsjVDx/xlf/sNygO9LG8vICqqHx04x4vXPgZ/uj3fpdXXnyZxflZxscGeecHb/C3f/1X+f7332VkrI9zZ8/xW//0t1gPL/OfSv+MzZF/i7tpAR5JK4XniPzRN++RSikUixZR5CIRmz1GEfT3x+ZnohhPvEuStFu2RUTSLBothx9emub+wy1Uo8CJ0+fp9BwuX7/FS59/GUQRWVFYWlmh2+0yNjyKnU3jeF0SRsT26jRRd45I6GGlslh2Lq7F3gsxp58hOHWXrZM/xFAtVEVDSdrkc+PoWpFQkFhYnWV5s046V2Dy+Anu3rrF8uwMp5//GdgFoZ8FvD4ZQ4ZhiMCP99mfBniNolir/iQbMAxDDn0YP1WLf/74ScDrZ9Wu//sAr/szMZ+27V9G/LUHr3s1r09ScfebDT2Jw4DXXmC1nyXdm/Z6EOjcD06fZtp00PL9Oty9gG7/+R7GYO6/pv3a14OO/0l61v0P2/5U4/3XedA5HsQ67wW5e12S/X3gNf6FiFMyYuZDw0ymicKISqmIoSqIokCz2aJRb9BqtyiVS7Q7nd2fx4hCNo8IhGHEVttB27gLiTIPHzzivXffZ3lpkSDwSCRTCKKErMjoqorvuciSRBgGiLIUpxYT//DKqoYkxoytIEhEQLfn0GjWIYoI/RBFltENHYKA2Zl5Op0uqUwS3TCJfFhYmCefyyJJMWskiQrtTpudnR1EQYhrHS4scOfOHRKJBJ///Oe5/+AB9+8/oFouY1kWnW4HQYjdWX3f5/XX3mBxYZ67d29z/NgkogiSqCDJAtvbm5imTbvTwk7s1rpVFFRVoVHbwXV6HD9+hKGRfnRDIYo8VEWg0/YZHOjHsg0UVQZidlXXLFRVo1Qs4nkuuq7R3zdAp9NF13UURaFYKmAYBjdvfsSFCxcwLZNUOoUfBFz84BID/f2MjY0RRhGPHk3RaNaoVvvYWN/gpZde5s6d2wwODDIxOcHQ0BAbG5tUKlVcN64HefnSBwgCvPLqywiSxNrqKqVSCVEQuXPnDmNj40xPT7G+vsXgwCBbW1tEQDKZRFZktrd30FWdfLGIqilsbW+TTFiIos/WRoNspkyzWUMzjLg3hRFB4LOzswWRwOuvv04qleTOnTv0D/QzNjbKyvIKIyPDCAIossLrb3yXr3zlK3ieRxRGhKHPqZMnUVQdURR4//0PyOcL7NTqtDtdKuXi/8/eewdJkt13fp/0pnxVl+uu9t3T43dm1mOxwMITJxCEWRjeieSBDPFOFMm70Im8kw3qeAopQnEUTcTF8STqjoQhsCQAYmEWC7OLxcz6HW96Ztp7312+Kr3+yO5hb2/PzC4WZIiifhEZ3VWZ+d7LrJf53vf9vr/vj1KpC1kOc/lWKzVMTadWq5DNdaDpBh0dOQQEMh0ZvvD5L5BOpRkbG0MQwDRMLly4SHd3N7VqjenJKUDh0OERXnjxDJmOLIapYdkNNjcaCCi8+MLLHD50nEKhyGa5TEc2RzQawfM9RFFmbn6BdCaJKuuM3Zygr6+PZDrF6NVRurq6mJubo6e3m3qjiiRpfPGLX+TQwUN0dHTQaNZRVYWVpRUGBob43tPfZ219jWw2QyqR2vZe+0RjUW7eHKdQLNBo1LGsNpIUeryvjV6j3WqQSqUoFoskk0ksy6JcrdLf148ohqlhQmEphZ7eXjo7C0iyxPrGJumOLKlkGt1Qqdbq5HIFgsDDttrE4smQISMKmLrG5MR4qFytmrhO+I6qN2ocOniAwIcv//mXKJc3KHV1I4laqEa9tIwQeOSyWZLJJM1WFQhjdIeGD+C4DtFIgus3rtNV6sRz3VD1XFXxCZDFUNNAFER8z2F+dpbNrc2QBeL5rFS3eHLlGk3Ro3sjwLyxiVFMI9g+50ev0Ww2qdcbRKIxbty8ydLSMtFouBimaSq+76PICgsLi8zPz1Pe2iIWj5NMphBbJk5knaNDOYYPPoAo+dRqtZC+K0m3BP3COPQ8giDg+T6NeoN6o4EqK8zMzBKNJ8gXiqiqGubRFQRefuUVNlYthvoeJBbtwAschG3xu+npGQr5ArVaZbudesi+aVvk8wVaLYel5RU2N0ORNs93mJ6cIhaPbY8fPuM3r6NpIXCtVmv4vk80FsNqt3nqO9/h2LFjbG1toWoqAgLi+AzqWoWrv/wR+oeGwhRgisRWpR5mDBACZFnCti3alU3On7tIvrObrr5eXF4/gbzb4vN+85D9jgnHyzcurt9OBGr/ecX+YMAf7sY/efB1eV7fioUgI1zEkAILvCbGMwXqNwOsvutIapaRQ4+SKw1gGElWliZRtU0q9UnqrSXiyS78IGQ3BQGY0Qh9/SMYyTyepOMFAookge8S+AJRU2Kg1IMStJCEdRbmpqlszRE1Any7wfz8LFZlHSEmoEZKNDbnkZhHDHR830aSVFKZLtLZfhaWKkTSabKZDNFIjOnZBd77/g/T29VFLBpnamoc12mRTMS49957aTWrfPcHX6e2qfPowx9iZnWa4YN9BOcfpCLXkXURRVVYXNxgaa3NffceRBYtRAEkUQsXOAO24+BdAgS8AAICCAQ8X6HWhCvXpgmUNOmOXo4efwBRVmk0axw/eT8z2ynKPM+lVOpE1zVqdgtRbCE4q7S3JlHdLSTFQNGjiHISUYohtxMo44fxjk6hfOAGqi7i06JaW0CUE2i6gaLEMWJJkvkInq/QkS2iGkzEGgAAIABJREFU6lFajQabC9Pk+48hbgu7SYr8llFf2C/3Zw7u2F8/J28evO7ME0PFZulWmbvn5fvZrTnmW7mIPe2+I5Nzz7E/Sfk7djvAKJgBYp+PmAv377wv/rYB5JsF57sxwu5z7hYeuNv2vkv/XoHXvQPGXm/n7u93Ns/zqFarbG5uEo/HX1f23Trx7jp26t/7/1vtbJIk3fbBvFsc6n5e5t12N2/q7Wz3fbzb+buViW/Xrv3KeQN45a8BI0AgqgiyRjqe4eqlK/zo+z/AdV0GBw+SSsWBIKSu6RqiJIWKqK5FuVxGU1WaRNHXLmO1qtRsMIwIjz76KPl8B7Kmo6kajm0jCiFtT5JF6rUtVC0sTxRACnxcQUCWBBzbQtdDpeFAgGQmh6GbRA2d1dVlHKuNpIgYRhzLsvEDj1g8yczUHGNjNzlwYBhRDNNsqIpGo9kgm80QiRisra4hyzLHThyj2Fmk1Wxw9rWz6KpKR0cWM2LSarVotVpEozHarTbNehVd17j33pNEohEqlSqtZhtZEVEUGVnW8HwHUQoQRI0gCNAUBUkUthWBI6iaFqoyA1sbG3hegKyE6REkSdx+tkR0XSefz1Nv1IlEdJqtOtFomiCA733v+wwODqKqKqIo0F0q4bgumq5Qq1UAn8CFa9fClCovvfQS3aUSPb3djI9PEPgCzzzzDIIgMD+/wPTUJCMjIywvLXPu7DmGhoZRVJUjhw8Sj0UYvXGDZDrDpQuXcGwnTG3k+nR0ZCkWOpmdneXEiXvIZEL6Z7PZIJ1OcfnyFZqtFtlcDkRIZdLokkyjucn05DJWW+DKtYvkCwX8IFQXdV2HiGlgWw7JZJKuri7W1tYAn2KxwPCBQ6ysrhCJRKhUa3R394IIa+trFAo5xicmyGQ7UFUNURQ5evQIiqqiGyaZTJZ00qRSKTM1OU2j3iSbLeDZbc5fPM/Bw4fwAxACgfm5BV5+5SU+8P4P0tVZYnCwn3why7PP/IiB/n5WVlYYHBigXq9T7CphRDQ6S51EzDiO66DqMstLq5imiaEb9PSUUFWFQmcJWZZYWV0GAaKxOKYZ5dq1q3zryadoNVscPHwQVRexmk1M0ySXz6Prehhzqev09vaxtLRENptlbPwmuq5x+rkz5HIFxifGOXbsCM1Wg0w2z8LiPKqmoGs6SwtLTM9MUSgUWV5eYmhoCNOMsLK8wj0nT4Egoag6lVoNnzAWqtWyWFlZJRZLsLa2hqpqXLp6hUa9iigKlLp7UFUd3TCRFIlINIpr+9hOG9+Ftm2hajqGobK5uUo+n0EQNFw3oFyuoOsamUwCTQ3jAgcHBzly5CCBL/Lcsy/Q1Vmk1agSiahEIzqKKlNrtdD1COfOXWD02mV6+zrRoyrxeJwLF66SSmZwPQvXayNJKteujbK5sUU0EsH1HHLFLLF46P3fXN8i25Gl0FVi4JF7sI7nqYwkMMoOxlSFHqIYnRlSmslSeZ1SqUS7GcY0F4oFQMAPBOr1BvPzS0QiUSIRM3wfSCKO49OqeCjFKm55E1EpEIsn2NhYvzU2OraNaRrMzswTiUTCdFkCJJJJorpBT38/k9Mz9A0MhBRRAjpyRYaGB4nGkthOgKbrbG1toBsGohhO9NOZDKIokUim8IOQFqlpBpFoFEnSeOaZ5xgbH+P4PUdRVYVcJk08GUPXVXRNoauzyA9+eJqIGaNY7CQaDb3EzVaDQqGIGTExDB1FEhGvTaDOrdD63/85yd4eGo0WsiQhSQKaFqbe8YMwqLnRqLM8Oc7k1Cwf+tgnsRwbSRXYLbJ6t/EyCEJdhd0aEPuNl+H7dL8x+e2DV2KRnxi4AoQsaRFFEsFr8/JLPyQ+0Y0ZiXJJOs39j36YaLYfX1MgkOjKpxkbfYXAdVAFg0RHV/icChKCKCIIYY5nTwhT88iSSKtextQk3EaLpcU5VpaXuXLxVeZmL1LoiJNJyEQ0j0ajTCQWY7Crm8AU0aND5JMGi9PP41kKkuyhaxEWl8ogJfjR6bO850M/iyLLvPTiy6QyHSwur3Ht2ijZYpau7iJra2v8u3/3f6EbCaobZT7+qXfx2kvz5PMGolLjD77yh/zKif+WH41/h+G+ErLooqsmteomvd3p7RzuMh4hrdXdVuOWFRXbdpE0BQBNMWi3RSp1iXIdRER8fDpL3Siyhm1ZbJQr9A/0E49GmJ6eJJ1O0KhW8KwNVHeN9flRNFXBlSLEc8MEooqqRhHKCcQbJbQPrGE9NEHLsmlaDm3LI5nMMz0xz9raGIlMB7YrsVFZJRNP4gkKgqzTVSxy/eJZ8n1HaDTCxfNUOv0TuizfrDf0zYPXnXluyO4Sb+mqBNw9bO/tgNedMm67700e91bK3vudmAtuAdfdx/y/Ebze7v/dWOUnafffK/C6V4ToduB1t1iSoigoikIsFnvj6sfbAK87APTNDHQ7JkkSruvedsV2rydzr93JM7t3/w4N43ZKcLttP9B5NxrEnTryftf3RvC6fS4+CCKOD4EgYcgGnbksN65dZWR4hFiqA00P4zUcx0UQReqNJvV6nUZ9i2QiQb3e5F/9q/+RY/c+Qs6dJVYcZHDwQBi7qoj4gUBAgCxJQIDj2LiOg67JCIQeIKfdJvBdkBUEIRRRWllZRpYVzEiEtitgajqebdFq1HFdC48AWTLoLnWHeVNVHdOM0dlZRFUlPM+jUqnyzSe/zcmTJ7GsFq1Wk0KhQCyWAGm7f6oqhw8eYqCvD1GSkUQJ27G5PjpKV6mEqmkU8jmCwKOzqwtRlJBEmUQiwdraMrF4FFGQCQIfx2khq2FaCKvdRlFlohEDRY4iijLNlo1ju6STHeiGjus66LpCq9VEUXQ2NjZCSqllYxg6bAs7LC6skUqlMU2TYrGIZVlsbm5imhEkScRxrdDDFTF48cwr6JrOiy++xMkTJ5mamqKzu5P1tXWSiTTz8wvkslkee+w9BL7Hyy+9zEMPPIjnurRabfKFPO1WgyDwME0TTTe4MXqDRx99FxcvXmZ5aZUbN27S29PH6toKXV1diAKsb6zT1dXJ1OQkq2tr+D6k0ilkNbw3Vr1BNK6STHSSTBR47bUXOHz8CLKk8BdP/AW9vT1ETANDj5BOpxBFkUwmjazIiKJAICicv3COUnc3sXgCSZZRNRXLttF0jXyhQDqd4uWXXiEajRJPhGDyq1/9GgISHekI2VyWSDROMtnB9dGbdKTDBZmzF89T7Ozi/LkLTE5M8e7H3sXlS1cYGBhAkgTqtQrHj53k2tVrFAoFTp8+zQP3P0AynSYQXALfw/cEZmanMQydaMxAU2U6OtIsLc+TTscZG5thbX2VXK4Dq91G1w1UVefpp58GX+Qzn/ksogySHNCR6iCRSFLeKofPpxfmMUydniWz7qId76FQyEHgM9A7BAFMTU9z+PAhJBHWNrcwIzqVSpn19XVkUWVweAhBEGi1muRyeRYWFpmammJjc5Or165x6NAhRq9fRxRF+vuHGB29waGDh3juuecwjQiFQpGevh7W1leIRiLIqnpL3MMPXFaWV/B9AV1TuHzhKpKsEolFUFWZILDxPZuz565hWS7nzp2lf6AXBJ/Ll88TBAK9vb20201EQcFzRVqtJp5n0dfTRbVeQSBAiyZQZJ1SZwnHaXHo0AAoYJgx4rEM6XQWVRPwA4tKuUFXZzfZbB5VU1AUEZcASZJQVQ1N0bHbFvV2i5defolisYAcNbH7MzRO9dAqqCgVm8R8k9h9g0g+VMoVGvU6sXgcz/fDdFK2S2dnF/l8DsMw0DUVWZGYmZqnXrFIGUX89Dp+YxNFLxGJmFTKFeLxeOgR9gOikRjRaGw7lEIGQaC8vkG1XkeQZERJYmzsRph30ozi+i6ZjhSO66AZBqos4tgevh+QyXQgCAKnz5wmlUrTarVJpzO3UnHJkkoikaS/rw/bsUgkYiwvzIMQMDs3g+2EcdHDg8e5fv06uVwWM2LQtpqYpk46lcU0Da69+hrd8xv4mkrttz6DUMxRqzdDIOr76JqCIISpTer1GuXyFqqqcPrpp/nPf+lziIqOLwQ4bhtReKMY4Z0sZE/cGYSGf/+GwOvbNEEICFDwXBdJsOgrZamdjhKLJVnKX+fwqZOgaziCg4iEaLtkEymKmWHS6SO4soukaLjbNFRRYJvBJIULpJ6LZ9X56hN/zkvPnWZqeowjh45x6tRRNramGOgqEItKjF4+R1dXiWJXL2ogEkQ0zOQRFqdGMeUlrGaAJNkQSCwsbZHM9GJGcyyt13nogQcIfJ+z585z5Pg9LCwv43ouZ144zdmz53nwwXdx6PApnv/BC9z/jl66Oo/z1DN/zKc/ez+f+kQXftLnoco/wX/061jTGjEjSndvlqip4Hs+sqrjeKCIoZifY7sgiOE+XSFwfay2w+JimUpdIJYo0lfKY0RVUukMc7NLxGMxSt0lHMdCFAJURaJWLSMS0N6YJiY20SWI5QawtCKqmQTfRZnOI850sPGpHyPdM0fLrmGYMSKRHD3dp2jWVAzZodyYIp7IoJtZKrVN8uk0vqjQdgLKa6tYtXV6R04SiUbp6OgIf6ifEnjdN6TuLdKGw4UBF0EIac2e59Fut+/KcHw74PVurIm/DfC63/47Oa7+puytgNfdWGI3++T/B6+3sSAIfmf7L/B6WsGe4279v3vlczfI3G8V4U4PyH5gdz+l3r1Aem9bdrd5N5X2TrZT3m5X/d2oBbvB424Av1+dgQCCKISKjeHJ4d/gjflz30w7d3/eT8H5duB151UhCQESPsggqgJdPUVujl2hsj4Htsvy8hKCKtFot2jW6/iWTWdfH5IiY7csPvZzP8d6LSDbuIaRyGH7Pq7vAgI2DgQ+dquFEAjoegRR1ghEEUQxXEWXlVCZUQARCUlSMAyTiBmBAExNwbYsavUGsWgUVdNQ9QiGqVFrlsl2ZGhbDURVxIwYKIpKo96i3bYYOTCMJPp8/+nvMzQ0gu+HD3+lWgE/ANfn4qVLFEpdWK0ytuMQCArFzhIRQ2NpaZZkJkk8maBltVE0BZ8AIZCJxxKh+ErgIokyC/OrRMwodquOosgomo4nKhBYWJZNxFSQFQeEgACfgAAPAQQBkYBqeYNoNI4oywSCyJe//BX6evso1yoYpkappyuknEoisW0FU8vyqDcsYokEvh/Q193D7Ow8x47dQzKZ4troKINDg3i+R09viZGDBxgcHkKUJMxYhEgsSjyZIJPrIBqPocpaKCZi6BhGlNGrYzz6/vcQiAGl7iLZbIaDBw/RarZ59tlnOHbsCPVGja5SJ5PTsxw4MERPTzfpdBJdU6lXa6wsLhNJJtDNDhqNFl/68p/x0MOPYGgmtXKF2laZ7lIPjVYbLWJiuy7f+va3GewfYGF6msrWFulMBtPQuHzpMj2lHn7wvWfIZ5OoSoCu6hhaHD/wKZU6qTVCL7QkikiizOryGsOHDvLa2Qvk80Vee+UV7rvvXlzRQdE0cpk8YzfGiEejnDx5jFfPnufgSD+aGiBIAuK2wNbQgSEymTSHDx+iWt3i3GtniUfjXL92g5s3Rhno62d2ep5z5y5i6FHKlRqFYieapkEAvX29yLLKxOQkxa4izXaDzkKWkw+ewogZ2LbDpfOXWd3YoCObo1KrggCpZIqtSpXY5VU255cxHhoCUUBSVBRN5czpM7z3scdIpZPUWzXSyRiNWoN4LE0ykcF2HGanJjl05BCKprOytsq1q9dQZYXH3vMedE3j3Llz9Pf3c/78eVRFoG+gj3g6yeDwAL7fYmFhikAUyCQzYW5PEZ5/4TTpeBxDC1WUlxbnyeU6SKYKbG2VmZ+aRkIgFk+g6SaarJPLZil1l0IvIxLFXBfXR8eJxmIgenhBwMTUDKJvUezKE43HMCJJrl2f5rVXzzA8eABJgu6+ThotH03V8VyPeDyGKIHjOvi+QDwWQxB8avUyiiLjOqCoCoEfIIoCVruBpok4lsD5s69SyOX59pPfZWtjk3RaJ1kqUCsYLGcg/ewsgeuT6MqTL+RRFBXPc3EcO6SBOzYtu4mmGWxulGnW64hCQKGQR1ejSO0YfmoV312G5haCrjJ6/TyNxjq2W8OMQrUSqoi7tkO73iCZzlGtVGk3W6wsLrE4v8zc3CKW7dCRyeJ4U6i6RX0zIBJNsra+jmFGeP75F+jr6yfdESWT6UASFaamZohGoyiKAtjEYiYdmRSiILG4sMyZF1+h1NmLZ4Pj+OQ6iyiqTrm8SU93iSAIsG2HQAy9zXNXr3FwcRPnkRP4v/kLOPEImmYiiRK1cpmIHkGWDVrVdS5eH8WMJejMZTn/49MceuSdJPM5JFXC891tgb83b7efqP21MnB4SLAN6MJNEEIPJbe+ef3m7zcJFII3HCgA4ndOI4zNEgz33raNgiAQ7FeRELagUt1EEEHRYzQ9ndXvbKIZJof/8VECJYbtgOiHYDTQNIik8M0ongaCIEHgIwU+4g6QEAUEIdjOLSsgKyp9gyPETZ0HHniIXLGAK8gYiX7ixaOUa21kVUFPFVBjPVhqikrZR/XW8K0ZvOYWqlSlagUYZoobk8s889wlKk2B4cOH8QIfx4f3vPe9eL7LyFCejdVNdCnH9SsLrK1tceHCBX75Vz7HUP9JeksG6RgcOzzI5/9sjP/49X/PR9/5M8S3DiGZLl7gY1ltBAJEMcC2wzy35XIdAYkAB1FWuXZjBV3V8VzY2KyxXrZp2iYXLk3y0CP3E0sVMOIpCl0FBAkM02R1aYZWeQFTaiC0F3AbM2iGiBJJI0U7EfQ0UTOG0IojXcgiGB7Ln/o2flamWHgYNwiIxhLEU0doyTpezGN2eppiPE2lZhMvlkgkUti+iRiIyL7NlfPn6eweINlVQlRkAjEc529Z8EYFYOHWciAQBLcErgMhuNW3/3rbZz7NG/t7uAUEgb9No99pxm6Gwl/TiBVZRhQExJ227syxd9UoCHeGyW/o7nuejTdtb8E5dafy937nXREJVgWE7Ovn9D8pe/Kt2O2EW+/mjNsP17wVHLODn3bO+XsDXuGNnsE7eSDfbKd6K3a7/LB3Aq97xYze6o++u4y9de13zl7hJAhjNfZSlXeoGW8oK9gfgO+13de1d9vv/t8evL7ePB8CfKLRGPl8ls3NTWqrixw9PEKjEcZ+5bMh1bPRalIrl4lGdW6OXyUSkzF1A7GxjhzLs7ayTjyeDAWOAFEIYw1tx0ZRZAIfpO1VVde1kWUB3xcQRIFatUYiHqfZahH4Pmtr65hGlIhp0mjWsNpNZBGazQa+H2A5DoEoocgS9VoN3/OJRqIIgGEagEdPTze6ruG4Nq12WK4oCgReqNDaareIRQzq9Qa5fBFd0/F9F9PUKZfL6LqBoeu0rTae5yPg0GzVUDWFzc0y0UiUXC6P7bTCvJqBh6ZrBIGPbTXRtSiCKNJsNdD0CK4Vqia7nocsqzRbLWLxOPV6HUXTaLXaTE9N0l3qYmioHwIf3/dpNOo4joWqyJz58QscGB5B13QkScb3AzRVJBaPsba2hhmJMD83x8jBQZqNJqlEkh/+4IcEvk+mIw2+w+i1q/R291Ir1zj76jkKnVnAo96o4fk+pVI3shoqP169cgVRELl86RILiwv09HTR399HIhFHkTUMM4quKbRaYXzujuiSJEnopkGr1WZ1eRXDNFhcWOTw0cM8/d3v8o6HHqLVbuF6LolYika1TuCF4kqCpGBG4szPLRONxujv70dVFLK5HJomEYnouG6okixJYFverTg/TVeJRCIk4jEc36GrsxNJlOjIZNB1jUpti1w2h6JouLbDxsYGqVSS+YUl6rUKw4ODPPvcc9TqDWq1GjsCFxHTZHZmhu6eHtLpNJcuXeTd7343Gxsb5PN5zr76Kv29/bz2yquUNzcZ6O/lxs1xAgIMw8DzPXRdR5Zl0okknuejqmGu0W98/a/IF/J0dXWSSCQxzTAuuFJtkJgsYxgGGyUT3TC2KYOhQu2N0VG6e0rouoYsGXznO09z9Mg9uK7LysoStVqDjY0y589f4IEHHkCWJfK5LJtbW+RyOQYHB7h48SI9PT0MDY9gRqJIsoznucSjsVC8KpPDMEQMXWJ0dJSjR07y3ad+wNBQH5ISYDttYtEU1XoNVVG4eeMGa2vr9A8M4Qdh/uAvf+UJTp48hbzdXwVRAEFCVRUMQ6Za3qKn1E0mm0GUJVw/QJYNorEUHakYqmxC4GNZTSJmhFa9DIGPrmv4BIiKjBsErC6tEo8n2dqsIAgKphkDwYMgVO+WFYVqpc7XvvokiUSMkZERatUGS4srnDx5HMtqIssisVyG5X6DzLqHt1rl+sIM1VqNqekp8rl8qOotS4iSAIHPyvIyqWQMWZZJJJNhjJ4DQj2GIAa4cgNJrJJOCSTiPtGog6htoCWXkMxFJH0BObKMJ0wRjVRJpRt05GwGh1T6BmTyOYtodAvJ2ETwq0j0IYgi0WgMSZLo6Oig2WxhmjqVcpVmo8U3/upJSqUSiXiMlZVlEokkW+UtVE1ClAKmpmbIpNJcvHSRnt5edFPH92F5aRFJlKhUyuTyWWr1BlHXJ3nxBs8eKdHzG/+YSrWKEdVxbBerZdFqNIiaUV448wJDQwfId5ZQNQXRs/j6V7/M+/+zn0VVVVzXveNY9Nbtzl7Wu7K09jtG2GceA0hPfB9heeO2gk23Jo23q8v3UVUVXdfxPA9JkoiOZ1F0He+Uw4d+5mf5J7/6X0IQ6g7sNt/3Q0CzN3wonDyAIPCBD3yYX/2nv46sm3zyEx9HjyUIZAVEGdWMsrxaJZfPIcsGa1sOudJBFpYW8AObRFzGbizjWRu021WKhSL1Wp2tjQa6lsYwUxw98SBnz13i1KmHuHptgkxHJ5cvXOT5M6/Q09PP7/3ff8i56xdQ5QCnsk53qYtqrY4aS/GhX/jXnBubJZ3JMvAen4GJT1PrO43u5rCdBtFYDFFSQuAjwGalQjKZQZJVEA3GJ9ZZXV0k09FFNF4i33mAQ/ec4uT9J2k2NpEVGbvtYKg6EjJblRVkdxWdVVRqiEL4Pol0HMAXo5RrNqoYxb8eR7wRwX/XPP/ztV/nl/7Z73Dh/FX+i5//FFajwuZGGUVPIaoJfFHHWlzArU+TzqfRogV8yyQirdHYWua1V18mmk7SO3wAUVZv0wf3AVm36zH7dt39wCtv+G67x71hnijcRrhsv/P3nYPe7rw7lvrW7G/K8+o8oeJPS0gPuG+qnp8meN0pbz/w+tO2/XDS2wGvd+4xfwdsv5jL3Q/FXiXc/Y55M3XsB8r2riTs1LcDEPcKQO2m7+62nX1vxnbkxPe7pt1e1Z26RVF8nQT57vp3jtv9/15gvPf+7Hcvdtvu+7I3Jnnns3zwvcgH3/s6AH/bB0iQCBDQY2kGRo4QTUSZnZ1BlyXcZpNKdYtmu0lMN8ikk0gK3HPqCAMHehGGHyHYmMKqV4hEogS+T+Da+J6LqmtIioykSLiehSSGFN3lxQV8L0yp4jse+JBIJLDsUMlXVjXyhS5AoNW2abcdQKRardJqNujIdhCNxdF1E11T2MkN629T6zzPwTB04vE4qqpgWW3i8RjZTIZ0Kkk0HkFRJIr5DjzXRUSAIGBhYYFms8nmxgaxaIzA90NQpumIgki5vB4KN0kS0WiMVruFZbUJPC+kC8cjtNoNBHxUTcdxA0RJRZTUMDedY0PgoykqkiyhajqSomIYOvV6lUjE5GMf+xilUheuY2O124yPjbOyvEy9VqHZrKHIKtVqlfn5OSrlMqIg4TgWkYjJ0NAQq6vLPPLOh3Fdm1wugyKHwLKzs0ijXkWVJQ4MDfL1r/0loiiwurLK1PTEdkoeG1mSsawW9VoFSRQolboxzQg3x29y4uRxDh4aYau8gR94OK7NE195gnq9wSuvvEq1WuPy5SsEAQiCiKqqmIZBT08P7Xabrq4uWq3WtrAQlErdXL9+nbMvn+W1V87SkcngBwGXr1xjbGKKeDzBztD40ssvMTE+hqKoXL9+A9cNVaJr9SqCILGxscX09AxW22JycoKuUifxWBRN12i3WywtLzE2NkY0GsW2baqVCpZlMTAwgK7r9Pf3cf99D2DbDq1mmyNHDjE8PIwgCJw9e5aJiQnOn7/A+fOvYRg6p06d4vLly5w58zwTE5P87Ec+wtTkJB/8wAfo7+vj6e8+TTQa5Rvf+Aa6roegXBBot9u88OKL4IPdslhfXeO++x+g3bbChfcgXGGfnZ3FdRw8LwTmtXqdr33ta9seFpFCoYN8sYOVlWUURUOSFO45cYqx8XFcP6SCHT52gr7BIQ4dOowsyfT29GB7Dq7rEotFsKw2Dz/8MPfeewpV05mbm+PalcsIQcDU9BSqHi44TI6PUatt0dfbywvPv8Dxe+7Bsi1su42uaTQbTXRTJZVO8s53PcrJe0/RtmyWllYJRIFPf+YzQMDW5iaaoiDIIp1dXTz33I9D8bV4jETMQFQkovE4AmKoPKwrdKSzfP2rX2d2ZgZRIIwfRcA0DGy7je972LaDLGuUSr14boAoKnzjG9/i6197kvWVTURBwrIsBEHg/IXLxOJRfN9ndHSU2dlZ3v3ud9Nstmi26szNzdJo1HADj/GTMaSYxj0d3QwN9nHk8EEMU8W2WyAIKLKEKAr09nQhSQLxRAzX89jc3GR2ZpbAA2px9FoJrdKFWu3CW82gVjvRtnppXs9Qu5Jg6Sw48ymkco6gpUFbQ3UTKG6chJzHIIPqJsLwBU3Ati1832djYyNUdG61wjhTN2D85gSrK6soisL5c+col7fo7e2nXC4TiejIikAQuHzms5+mI5shmUiiaRqqquF6NsePHUOSRDRNY2urQkpQMF6+SPUXfo5jv/Y5bNtmaWmJRq2OY9voqkohl2d2aprJsXG8QADPRxHgu09/hw995MOhkvv2eP1m5wM/DbtbXXvnKHfgcjs7AAAgAElEQVQah38ade0Idt06R5TwAwFZM9gX2AjC6+Yce8fuQHj9sQCe5+MrBp6o4gYyHgqCoFHo7EMycmQ6j3H4nvegmXn6Bw8jSArjY1dRNQEzGqdYGmRjcw2wsZob9PV2UMwafOcbT/DoQ6e4ePYVvvzFLyGKMslEll/91X9KKh3BdW0ATt17HCW2TFe/wfeefZbZOedWGw8PdfE7/9Mf84WF3yJ76ReRjv8J0ahBIChUaxaipCLg05nNEtgtpMDCszc5NJLh1P2P8YMfnWNpzWVpvYnju8zMj9NsBgg+iF6V8toNvPYspjWHX58Bt4Lt2UjxTsT0MJKRx0z2UErcg3q5B0uvsfJLf4X48FXqjfXw/rlN5mafp1Gdo1FbRdfquMFm+NsFdVrtRW7eOIPvrDBx41W+91df4sUffw9Fg2MnTyBFYrftQ3fb9rIFd//e589f4D/8h/+TX/u1X+fhhx8hkUhhGBEOjBzaty4AZzs91908fDvm+z7/8T/9Ke97/wcpdpZIpTs4euwefvu3/yUrKyt3Pd+2bf7gD/+IR975LgqFTrLZPPff/wC/+7v/hlqtdts56I7VajV+93f/Dffddz8dHTny+SKPPPIov//7f4BlWbd9vvZzWO3dz852l/Nfd85PyW7nPNvb7r3f3e567mS7scXO57daxm77O+V53Yl53XmQ9gLX3Z/vtpqw90a+VXuD69/z3vBg7waAd1vZuJMH9q6rtPsMbPs+JLy+49z6vM9AA29v1epOK2ViPIcYz72Jex8SPQJBQJRCEZdYKsn1sSnKmxUMXSdbyFKtbuFYDp7vUKlWWVhaIZXO4skKamOTQNSYnpshl03gWGHqkAAJBBFRDPAcC9/3cF0HwzSR5TBXm65HEIRQdfOWEIUoAWEeN9dxmZyYpFTqRpQFDDNCpVoJUzDIMrXyBhEzElJehDBGTTf07VyPzVBcRlY4e+48+UyaRrOJpuuIIlitJiAQicSYW1jiW9/8NocPjZBOJbeTeIeLA7Iso6k6rVaTSCRGEIgIiBiGHnpbNQ3LtREVmXbLQhZlbCdgbGwWq+0Qixu02g2ikQiIMo7noSoqQuBTr5YxTB3DjOIHAZoi47ruNu3Rp1joJh6LY5oGV65copDrAsHn2Wd/yIkTJ2g2W/h+wJnTLzA8PMwLL7yAYWrk82nstk2j0eLggYP4vovvO7iBTzKdpr9/AFGSkBUJ3dDIZvNcvz7Gk09+E0mS6eosACKqYqDpBsMHDpDKpHnumecodXfx4x8/x+HDhxk+MMzlS5d5+OF3IEkSzWYTSZKZnJwk35kP8/Eh0tPTw/ee/h4HDo7QrNdJp1K02m2GDgyjyiaSLNFVKuAHLqWuEqPXrjM41IdhqIgiRCIR+vr6ERBYWVkmXyiyuLDK5auXKeYLZDIpOrJpBEEgnytw6dJVkqkwzdD01BQ3b95E1zRs1yKdzuA6HmfPnePIkSPIskQqnabVaFCt1jhy9AiyqvDqK6+F6T48j8OHD3NwZARJgna7RbGzSGexi/7+AQr5ItF4hMWlZfoHB0hl0gwODfDkk9/i0Xc9SjKZvNWPRFGk3WgReD7Pnz7DwMAgoijR3dN1K/zAtm3Gx8fo7e8lOBeCtuZwEi9wKRTyiKKPY7fJpFO0LZsgELBci0w6zVNPPcXY2E0eeeQRiqVOVlaW6ers4szp03T39KHqBqoqE41GWVldIZ1O4XkubddhZmaae+45wurqMv0D/UzNzLC1ucnBgweJRuMEgkShWKBYzBH4AapqIooSnu+gGga2baFrKmfOnGFgeJBEKo6AgCiI1CoVvvbVr2FbNvl8imq5xtjYOP393TiujaYbNBoNDN1ga3MTUQyIGCrVaplW2+Hw0cMgQiKR5sknv83wyAjNZhNZkZEkhWBbbVUQwDAMRg6MoKo6HZkcf/mXf0mlukX/QD+dXSWOHTvKyXuP09nZSUdHljPPP899959A1xR8P2B8fBLb8nj1tXN0f/g+zLk6UsVCTIYecU0LBdrarTqKLCPJCqIkY9sOjuMxNjaO7dgU8lkIRG7eHCOdzoDAtliKhO/66LqBpmpEI3EiegzPEnBqAu0q4Cj4bRmvLeG0oLxaJ5oTQPR5/tkZhoZH0HUDWZaZnp4J6dFeQC6XJ9eRY2pqip/50AfCRYq2Tdtqh8rHholpRtnaKqNIMi+++BIPPfwQwXbbXNdh9NoohUIBU9OJnr1C7efej/3ofYiigGkapFIpPNdmbmaOWqXG5Ng4sqzw4Q99mGqrQqvRZH1tgwvnz/HRj/4sniDfdox+e/bm41vfrO3XPAGQTp8H3kSqnNtVv09TvVdCb6P8oMPnP/8FZmdnede7Hn2D5/V2xfqEAlVCEPCjH/0I27Z4zzsf4MSDD+1D4/QAES+Q8H0RSZJpWB65TAKntYbf3qJc3gBBRQ6aWO0GfX0lXKfBzNwYsiSysjjN3NwE999/LxPjN+ns6mRmdoqXXnqea+MT1Op1HrrvXh558DNcuzpPJtvB+NQ5Xrt8E4APPnQAq26QGdQ5UTwEc0dAc9goW1y/MUN3qYvAt0J2liAjySLNdhNFMXj2zAQIJifue5hWq42ITzaVJBaN0aqt4DSXaDcWcKwVZKeBbkZx5ARqrItAz6NEMpi6gb+p4Z1XkT5bQ/9wmcuXvoem+oxNzrGwssVwf4F3PNyN4Cuoqs7ozbN093SjSDFmZq5SyMZpWC7rGw2wmvQdPMHRkw9S6B5AlPWQ7nxb4HN3z+utOeqejviex97PV77yBBcuXGBlZeXWIkgikeA3fuPX31BuEISeftjt4Lj9s2FZFh//xCf5wz/8I+bm5nBdF1VVWV5e5uVXXuHzn/8Cjz32GMVicd+r2tra4gMf+BBf+OIXWVpaunUti4uLnDlzhiee+As++tGPkkwm9q0/XER8D9/61rdYW1vbTinmMD8/zw9/+EOeeuq7fPKTn8DYzlZwO7vd+2UnVY60nSrnTmzKvym7U9m7nVF3wjRvx/4/73nd6xW8E0C7E3jdS739adhuj+ibKXMviHyztl8M6X6rM7vL3+1R3X3O7uPebrv2K3e/lZufqExEfGQERceLdHDo/keIdxQpb1VZ26bFJWIGmVQHuhbl2JH7EEWTSrWKf+D9SIuv0teZYn19keXFRWrVKu12m4AAx3FoNhuAhygKuI6DJMpoqsGLz7+A67h4rocgiHiBj+u52K6F5zmh5LwbMDkxRyBIIEpEIhEMTaNVr9BsNLY9pE0c28LZVqVstyxWVzao11vUaw2OHz9Bu9kiGolgOxZ+4IYveFmh3WpjtS1isSiiIBD4Ps1mk62tLba2tmg0Gji2jaqYuA7gS+i6SbVWQxQDWi0LRQlpd6IgQyDguQLffeqHTE5OI8sykYhJrdEmEERUTSPwXALPxncs6rUwvYS0nZeu3W5RrdZ46aXXaLVsdD2CZTkMDgzT3d2FLMJHPvJhHNvCNAwunLtCs2lx9ux57r33FEcOH8SxbVbXVmk2m4xPjFNv1EOQHIlTbzQRZBFFkxg+OMTQ4AF8H06euJdPfPxx+vsGwkHCFxi/OcHM9DyGEcF1PUZGDmIaER577DFW15YRRJ8HH3gQUZRwHDdMo7O+wb333ocgCCwtL1OpVHBsh0wmgyRJ9Pb1cfbcORqNOpqqEksmeOmVF1nfXKVWLTMzPUW72cL1WhiGAnh0dGS4fv06kxOzHDp4BAGZYrGL9733/ei6wrnzr1Epl3nxhRdp1JsszC+BEAp0lUolHnjgfvr7+8hkMrTbbQB6e3vZ2FhnbW0d27ZZXFyivFWm2Wziug6qojI0NMQ7Hn6Yq1evYlkWvX09qJqC5zp897tPkUqmaLaatG2bltXG9T0QBARJ5HO//DkGBgYQRRHLsgAQJZGh4WFujF7nvlP38urLr2I5NpcvX8FxXJ577jm2trY4cuQIqqaQzqSRZZlsLsP/8uc/oPD+z/G7f/wEjmNTqZTJZjvwPB9J8hEkj49//KMM9PezsLCA6zvEEzGCwGdocJhP/3f/lgOP/yb/wx/9KYosk81mAbhw4QLVWo2TJ4/TbFRJJCJYVovevm6OnThGre4wPbNKgEgkbjI1fQNBkMHXOH/uMnPzk/i+hyAEiJLAh37mfchygOO28IOA0eujNJtNFFlmYmKCp5/6JpLg8fjjn8Q0I6SzOVq2QzKRYmtzC1PXwLfwnAZ6ROeBh+4nAHwE3EBgaOQYi4sbqJpBs95CQqK+VWV9fY2xsRu0Wg0UVSESMXjmB6f5zGf+IT3d3TSaDfzAQ1Rhq7pJIAXkuwp85h99lkACUZRQFI0gEDh79hy+J/Anf/Illh/tQ1xpMH3uJqKg4rohDXQnRkySFDwfXNdF1w2OH7+H4aFhZEmkVitzYHgA37dB8BBEj2a7xvrGJtevX6dttQjw8HwXWZIJAoF6vY6qakxNTrG6ukYykUBVtVvv9uNHj2LbDvV6jYmJSS5fvkQ8FueZZ5/luR89xyuvvEq9VmdpaQnXddkqb3Ht2ihBIOL7Irblo6kqoijyvve9j0qlRrsVvm8tq82JE/egKAqNH79EU5GxH3uQcrnM+Pg4a2trtzw68WiMUqnEgQMH+G/+63/B+Pg4iXQUVZVRRIlHHnoXfvDW4lv/Plnkv2ph/noLaVuZ+a2aF2xPcAOH3/7NX+bL//5/45/9yuOIgY9AuEmBj+L7CIK1TaEXWVxcxLctNCON7QiIgYgkKsRjGWxPxbIsUgkDx9qgUFA5fixPZwYee+QgnR0yrz7/bU4e76VeL3PkyAif+vTHsKzQ89pu2fyDT7+Dj/7DD5IrdvD4J//RrfZWW9B5LMFkc4r//sVfRlt/J1ZiCkFQmZiosLFRxXN9Gr5HxQ6YXW7hBAVm5mU2t1y0SIqJ6SlOn3mOVDzO9M1JGo1pauUpfHuLiOIjOTaBEcfS8mT7HsZMjWCqUcRGhfaoj39eRvkXNtrDoKgaB4bvwTQL/IP3PcLTX/pf+df//BdRtBSIKUrFQxiKSXVlC6mlcPj+nyGWOEEqdoJMtIe4ppHsPoqrZUCJ4nsQvA1q/G524V5TVYXjx4/zi7/4i/ze7/1bfv7nf/6uZe324t7Nfuu3/yXf//4PUBSF3/8/fo/NjTXWVpd54fnTjIyMsLGxwSc/+TjVanXf8z/3uV/hwsWLxONxPv/5P2VjY4319VW++c0nKRQKzM7O8vjjj7+OebBjnufx+OOfYmZmhkKhwLe+9U3W11fZ2Fjjz/7sPxGLxbh48SKf+9yv3PU6/q7bW2F7/G3Y3ynwujtR8n4mSdLrwNrebTeI24/2u9d202r32m5a8M6xe8/Z7Rbf2b+XnrQfhXlv+/fSefdz3+8+d3d7bvdy2E0lFgJubYHngx9+91ZpSbcDqnvBszt/BXf+yr6/0W7bGeQEfEKeG0Rkn0w6y/CR+8h0DtCq1Lh59mVsfC5ePY/j1FhbGMXenMKQdPxInDm9G9mtEUsVGRgaIPAdTF1CEgIUNYIRzYY53JCRJZ3Al/E8kaPHR1DkgGp5DbtVwbcaiL6NIqmIkoikCpy4/zj9I/1okkzgebSaFpvlGslMgXS2C9sLEGUZVdNJpzqwWh5tq0w2G6NeXSce1XGaVfRIHNdxaTdqyEKAbTVxPAc/sNE1+OynP0EiEaajSMTirK2UkWWFWDKCIEeYmVhkdmqGSm0Flwae6OMKMpoZQRZFapubqJqIL4Wrlh98/zs5efwwgS/StNpIioLvBawvb9D6f9h77zA5qivv/1Oxc5ie0BM1QTknlBMSQiRjkjCs7bWxMRjb67SO60BYG9uLs7FxxN41IAEGZIwBCSQkEIooaySN4kiTY/d07srvHz0aCQUM9vq369/7nuepR/3o3lP31tStqnvO+Z7vyeqIkoLL50N1q+giSKKKlujFMU6hGWmWLlvE2rUvsv6Vl8GxEHAwDRtD0zna1IRlaPT2dTFx0ngCfj8njh8nFotj2xAKRmk+0caRwyfo7uqjo70L0wA9n8QyNNyKG8GWOHHkJG0tLRw6eIgVKx6nsqYaX8hHPJnFMDQ2bVqP36fQ2taKLcgMHzWS482n2Lp9J15vAEEQQTTRjRyiIGIaDtu3bWfXjh2Yuk1yIIkoShxuOszoUaOxrEJOsSxDNFqKphnEY90Eg35279yLqrgI+L1ceeWlFIUjaFqejvZeThxrQ8ChvDpETtPYtHkLuXya7q4uEGQmTZpGIBhi7ry5qG6VsvJiJNWDg0hvbx89XT20njyF1+ujPxan8cABxo4ZRzKRBgS62ztoGB7FH/DT0txNsj+OrPpobm7FwqYkGiEUCSArMmXlpYguiSvedQUWJuUVZXg8CosvXURnezcHGg/h2CLNx47T09lDPq9zsvkkjqkj6HkEyWTepfMpKS9l7rzpjKgrp6y4BK/Li6nZhIJBbFvHyJokE6nBCLl7EJEAqqLi8fooKo7Q3d1OIKDgcntRZC9FkQChIhWvx8WJI4fweVyUlJTQ29eHPmhAOwjoukHA72P1iy/S09PH/t27kCUFvz+C1xsm1tdPLjVAS3Mbfr+HkpIwqurCtmXWvbSJjRs3kjcSzJhzCcPqRiPaDm7VhWWaWJaDKrtRUdHzOQbiA1RU1XDNu9/FTbfcyISJc3EklUNNB5ElBSOn41FlbFEin3dY88J6Dh44VjBYHQ3TsDF1E5cMMhYjGxqI9fXiVt0kBhLYlkUkEqHlVCudHTEkSUHXM7z88ksgWqTTSerq6tm2aTsrf/8H0gMD+N1+JFvCLUtYepq+rm4SaQ2PL0R5ZQ1XvetabrrlZt7/z/9Ee2crm6e5GCmGaLVS5LJ5bMdBcfkRZRXTtlEUlYC/aJD4BAYGEli2TFEogmnaBdZ7QcAxHbyKB9uyGDZsGB6PF1Vxkc/mMQwNv99LNFpOYiCBx+uhsrICXdMJFxUNRmMEwpFiLFPHpaqEQ0Hmz5tPW1srpi3QGxvAsGzec+t7CBcF8XgUEgNpThw/SXm0nFwuh21bnDp5HLdHYlhtOalUH2tXv0hPTxeyLCEpEn7TpgqJzOfupDeh85uHH+Xzn/sSQY8PjySQH0jhlWU6WpoRsJm/cA7DR9bRH3M4tP01Nv35t9RVuTGk8zerb0c2vPoq73nPrdTVNxAMFTF8+Ehu+9CH2b1791m9xPMOQXCGjgKh0/lHT083d999DzNnzqKsrJySkjKmTZvO1772dXp6es+H7AmF0k5QIK/q6u7la1+/j0tmzKaktIJIcZQpUy/hK1/9Or3dvQVSwHOPs6Snp5e7776PqTPnECmtJFxcyY4duwDIpDOFtFv7nD2DcP6higKOJGCJKm53OWYuSePWZxAdBwQJy1GwBBHTscinM7R3dJO2HSrq67ElG9vJ4Mg+qkYuRA5MwFErUdxFGHYR2ZyEIrvIJgdwiTbRUhe5gROMqfExY3wlh3e9Rm/LcTpbWnC7irEGr1EVXZw8rLP62VeZM+sSQBu67taOJLt3d/L6yzobtjezb8QvCbzxEfyVbVyxeDR+r4xu5dASGfp6M+zZ34PhROlNZIiUFjFz5iw8Li/Lr7+WrvaDaNlmUu1NeMQUHreD4gsRiI7EFapBdpVi2W4k1Y+ui5hHiqFHxfPVFM4wA8cG2eVCUgP0ZAyGT5tDbzpPMBJB8ngRfTK2G0RF5eTxQ8hCP0YuhuATyVlxAtEIFdMvQxEFZGHwfp1FEHYhkSUJWZKGHF8F59fZa1fCcYTCv7aAYwsFkidHZPfuXWzduplf/OIh7rrro9TX15115vPXuCjKgIjjCBS2q+J59E+nj6NHj/Lww78F4O6vf4277vooqqoiCALTpk1j1aqn8Xg8dHd388Mf/ui863pl/XrWvPQSAA8++GNuuummITvissuWsHLlYwA0Nh7gkd8/UiCEGnqi4JFHHqWx8QAAK1c+xpIliwtPtyiyfPlyHnzwxwC89NJLbFi//i3JoS4Gx2bwuBA8950ExP4ecjGHxdnpiX+NvNW+/+3KP5Tx+pfknURT/9Zo4F8a/+y80ov1vdCNO3fB/k8t2r+nmE2vYDa98lfpyqq74LVTJMrKo/TG40SrarANk3GjxlEcLsV0VGRfGQF/EbLsomLezchaGhQPmmYjKx5S6Qy2Y2NZOrIiYpoWsqzw3HN/wjA0ZFnA4/GTy2sUl0QBGdsRECUFB2coTy2fz+NyuVC8fnyBMIrLTVVlJdlMCsMwUORCFCGZHMDBwO2RyGsGoqzgD4QKkQXNoKOzg/jAAH6/n0wmC4JEMtWHyyPgD8ik0r3oRoJ0prcQrRrZQChchJYzGYgNsHvPTmRFJhgIIzgSAV8IEQWQyWdNiouiqKIfwXZj2Tajx47AF1DQ81lcog9JKpTEyGs5ZFlCEESCgRCyrOKYNiImyUQ/ICHYNno+y8xZM5k5ew6BUAS3P4iFTaioCK8vAJJEeWVloX5ndzdXX3019fX1NDU1kc6kWLRoAdHyEiZMGMvUqVPweNxkswWSKF3XicViCILIhtdepba2lumXTONk8wlWrliB2+tB9Xp43/vfT3VVFTUVlbz68jqefvppRo8exdw5c/B6vchSIbLicrl57s/PkUolWLJkMaZhIIoiuqaTy2bI53Js3LgRr9eLIAjMnTuPRCKBIAjs3bOLhfPnc+miRfgDId7YuZvtO3YT648Rj8eJRCLs2bOb2rphuFUfrafa8Xn8nDjWDLbAnl27GYjFEByHvt5eVjz2CGUlxSiCiCwI9Pf3M27CeBpGjURRFPw+fwG66TgURcK43S4qK8vBEREEmwMH9hIOF9Hb3YHHJSM6DmF/CMcUsC2JXNZkIJ7G7fYgCA4HDzZi6DbpdAbL0onFepFlgVQqicfjRhIlNm/eTGdnZ4HAK53DpbppbDyALLt54YWXME2L9vZ2pk6bQiAQIBQOY+gajCjllCtfMDoGvda6riMKBbhsZWU1QKEOsiwiqyqTpk6lqLSMsWPGks/lOH78GNlchrqqcoZXRZk6aQJdPT0gilxx1VVMnDyZpUsXI0kChmkS64/h8wXxeUOUlBRjWQbpTJJMJomm57hp+fUsXLQAy7SxTRvHFpAlGV3X0XUDRVGwbQtZkZBlmUmTJmFZBqVlpYiCQLgogMsl4zgGggiyLGHbFrZjkkwOUD9yBNmcjuUoJAc0Wlva2b+/EcuCtrZWXG6Z6ppK8lqGispogRTJ1Jg4aTyVleXYtoGu57nhhncza/Z0Vq9+nkwmxZixo7nxpuvIZNMIgoCm5zFMk0OHDlNSEsUyDWLxGBUVUSRJ4MCBfTzz9LPs3r2fjbt3slrtYtjOflSpQEQnCgK2ZYPjYJkmpmlw9Ogxenp6CIWCpNNJWtvaUVQVrz8AooisKoiySKQojMulIkkyp061cnp/IooCsizR09szCN2T6ezsZO/evYNvZwdJkhFE8HjdtLW3UFFZRklphFv/aTlLl17KsNoqVJdMKBRgYGCA8ooybv2n9+ByK7jdKtu2byUQCKHlDU6ebMXQbaZNvYR0PI5paDgDSby7DtB24xX8eft2XLLE/PlzeeaZZ1i3/hVeXreW6oYRhEqjZHULTyDI1++9D9XjxkOOo0ePMG3OPMLl1ejOhWuzvpV845v3c+WVV/On556ju7sHj8dDe0cHjz/+BAsWXspvf/eff9V3DWDrtm1cMmMW3/3e92lsPIBlWciyTFPTYX7wgx8yfdoMdu3afVH9bdu2MWPGTL73ve9dQP9HTJv+1voXGz+XywHwq1//mh07d/Lb3/0nCxYsprSskpLSChYtWsLKFY+ff0LBxhbgzk9+khnXfJj/+PlzJLpO4ZEFRMFCEARGjZ9MUekw1q/+M0ZnEw/94AFmzFlEtLSSmmENXH7NzTy/dhOZvEMgUk5p3QSUQDk5XcDj8RAJufH40vz8ybXc+K8Pc+u/PcLtX/8F3/nFwzQe2s2WTas5XbjXEUye/MOvmDFrHMebG9m05cwe5EMfuo6enhbSQjPdps4VX/0iE56u4+4Ht5HsLcbKR2gxWzAy1TQd7WLm3AX8cctz3Pr4e7njuQ8QDgc40LKNzz76L1zxk/ew7De389Gn/wO3N4ziLSdhu/jd68/zwYc+y6X3LWPY7eVE3x9izhfm8K8bPsHL476PU5xGEkRMBzTTQDf7KC2J8tAvVjHvyk/wno9+E0OT8XnC9HZ1Y+ZSfOeHv0YoquLOOz7B3h2b2bhlH7f88ycZVjOcSHGUmbPm8rOHfv4XjQxN0xDFQj75O5WL1Tj+75AVKx/Hsiz8fj8f//jHzmtvqK9n+fKbAFi58vw1+NhjKwCor69n+fLl57XPmjWLhQsLUPjHVqy4gH7BuF20aCGzZp1PMHrzzTdTV1c3qL/ybV7VheV0QOn/yduT/2e8/p2M19Pnv9hL4/9m4/VvEcuyEWUJQQLRpbBg6VX0DeQ4fOAoh/Y3oogKxcVVGKIfw7DQNA3VF0ac80HU4xuw8rlCPpwgkUmncCwT28yTzWbRtDzz589jYCBGPN5PKplBVT2IoowoSng9fnLZPKZhFkhILJvAYD1EJBVBVhFlBcu2yedyIICm63g8PjweD7IiIqsQCpdg2QLBcBhJVVBcLmrrhlFWXlYghVIUwuEwlmnjOKBpOh6Ph1QqjdfrxbRNHMcgl8nS0tzB1s1byOZS+P1edM3AMhwcAwQbcHR8XnWQtMJB1zQEESQFHMEgmUzw8gvraDl1CgGHyspyVFXBshx0vQDlkkQJ0HC5BARBxef14nKplJYVo3pcoCiYjsCrr20AUWLs+In4AiE0w6Czs4MpU6aQSqfI5/N4vF5OnjyJrMhU11Tg9bsQBw2TUDCCli/kH+fyefJ5jeXLbyYYCjB+/Fhs22LZ5Zej6XrBQaRIrF23Dss0KQ6FufrqK8nlc+Q1jWwuz4GDh7BMAS2Ujk0AACAASURBVMtymD59GgcONlJaUkIkEgEcxo8fRzAYZNr0qcycNYP29nZisRixWD9btm7FsiwmThyDoedIp7M4jsS8+QuYMXMm8YEEiuoikUwwdtwY3G4XLc3tbN+6HSOv0dbSSndHF9gWiXiMXCaDkc9z7TVXo8oK8d5+0skUwUAQw7bwBvw4jkBnZxd+v5/Dh5sKEHSvG0SHVDqHIwhcdc0V9Mf6GTtmBKGgD0WRWbf2Fd7YtoNHH3mC5hNtBAIhDN0klUoxfEQ9W7dsY/v2bdTVD2PW7BnE4/1UlJeTy+ewHZubb76Z0pIyYrE4kuhC13Ty+TyHmg5zyYzZ7G88QGVlBTU1VRiWgQN4fR5iY0Ks6tqDohRqfwLIsoooyliWA4jkcwa2ZWGbBoIAoiQRjETQDAOX24PL7WLmrJl8/YPvZs2Pv8qty+ZSUlaKI4Lb52HtK+swTZ1kMlGo47hzD3v37MdxRFSXwtGjR7BtC5/fi6KIlJQVkc2lkSSZw03HUGWVTDaLoZt4PB4Mw8CxCxEuUZLYsnUTklTIw1IUhWDIj4PJ8BEN9PR0FSD/hoHtWDSMbGDcuHFMnjadeDJHwF/Cvn17mTJlCorspmbYMFpbT5FKJwgGA2QySSzLoKe3i2QyTlV1BYLgoLpkXC4Fr89Fw/B6AsEgFRXluL0KJSWliKKIYRhoWo6qqhqef341pWVllJWWFBiHA14mThxHLqcxadJkRo8ew7w73oM4qhyxJ4WpmZimTS6n0dnZiW075HI5IpEIbrcLSRYRJZHKqkoQBCzLQtcKZFnpTAbTMmltbSWfyxEpiuByuTFNc4iIaezYMdTVDUMUBdweN8OGDcPMO+CIZHM6bW1tOI5NfX0dbreLSCSMYeaIlpdQXz8MWRZxHAtNzxHw+3AGEUyalmPmzEuorKpBlFUaho/C7fFRWVVDKBCgNKMTPnSS2K3XIFw2nyXLlrFl80YmThhDIOBn/KSJTJg0kXg6R0a3KCotx+X2FkoxHTzI4b2bqa0fxuiJ00kbIvn8O/v2P/XU09x//7cA+MhHbqet9RTdXR0cO3qEd197LaZp8slPfoqtW7e94+9aV1c3y5ffQm9vH7W1tTz/fAGe2NXVwbZtW5k9ezZ9ff3ceMNy4vH4m3Sd8mI6vRLLl998Rv+FP9HX30VXdxvbtm9m9uxZ9PX1c8ON5+tfaPxnv/ginQ/F6epuY9q0qQBkszkuW7KMT3ziU+zeswdBKMDIt297gw9/+A6+8e/3D53vLHaRoT1MPJHlaOMuMLLIwiBZz2Cvgd4ubrjlA3zpq/dyuOnwoMM3xWuvb+HOT9/Lxp2toBQT00O4wsMRXMUIsoe2rj7e96UN/OjRAxxrTWBZNpZtsevgcT765W/x+rZXEcXCfa6ureF973sfY0ZPoLp6DOPGzhya5e69R0jbLuIZoxAZdKAnkeD3h/6LKx+/kZUb1iDtX0R5bC7vin4CV6wYxXAP6T+/cRWffuYz/GnvGjJaBlkUEWUJxRvBF6rl7qd+ypefuJ/V+9ZyvOcE2AKmbdKcPM7je1bwwc/dyx/+8DSYBtgGvb3tHDmxD90Cwyg4YQ3TwtBF8lmTXCpHtDiIYRQcC5g6Dz38LJ/+yg/YuGkrjlN45vft288XvvBl7rjzrguuu1OnTuH1BAkEw1zzrmsxDOOC/f6n5JV1BQfD/Pnz8Pl8F+xzxbJlQCE39ciRI29qWzeof/nlSy+6l142qL9585YhRw1ANptly5atb+pzrgiCwOWXLy2MtXbd27qmi4lpmv9rILn/CPIPZbyeC9U9Vy4Uyj5dquVcNt+z8e0XYvr9S8bj6bZzxzrbaD1X/1xI77nzPnsup6/1YsbvufM7O4n6bEKrc+WdhOr/Vnz738P4dgZpDG3RAVnCRmTC1DlU1dYT7+tnoL8bSQRVVRFFm2w2Q09vB0lHRR82C9VM4/F6Ud0e3G4vkiSh5TVCIT+SJFBaWkppaRlbtmyjp68XB8hreRRVxbJt3F4vsiIX1pRUuFf5XB5RlBAlGa/XTzKdpaikDNO2CEeKcJBwewKkM1mSqTSxWD+KLJNMJiiORAgEvIPGXY6mw4fJ5TU6OrqIFFViaCLl0VryOQu/L4RhOKguBQeDnp5OGvcdoLPjJO9619W4PS5ESSKTySCKNqlkDE3LkEjF6OvrpK+vnVi8m77uNhzLItafwOXyUFlZRjAYJJ1JAYWar4qi4nEHkCQVwRYwtASCqKNrNj5/GM0wyOVyiCIYuoaqKlx55TIs0+LY0RNYho1tObz66mtUVFZQUlKCoijU1daiGxYOAl6fl1w+z5at27BtgXzeGIQ0Gui6RnPzSURZ5lTLSSxbJzEQJ1pahltWEBBQVJVRY0bTdPgwM2fOxHYKtVR93gLccXjDCLq6esnnNaLRMqqrq5BkmYbhw8lkM6guhV27d9HY2Eg0WkYymSSRSFBaWsZVV16JrusEQiGiFVWUllbw3LPP8eyqP7J+7cscOXKMSCRCVXU1Pr8PQYS6ugYWLlrI5CkTuWTGNCZOmkg6nS2QEbk8KKqb1tZ2Tpxoxufz0tjYSGlpKRs3bsRxHFY9s4qammFMnjyZESNG8Mora0kmE/T29rJr5wGKiooRJYjFk5RXRAmFQ6SSCcory5k8ZRITJkwgGi3D7XaTyaYpioQxDIMFC+ZTUhrB5VLweN0kk2n2N+5DFAUSiYFBdIDM9m1v0NnewapVq8jmsowZM4bSaJTrrrsB23EwbQNJLsC9JAlKSiPcfvuH3uR5t22Hvt4Yhm7T0dGNppngCAhIJBNJPG4Xlp5nz579yIpMeUWU5pMnSKZSKIqLl9a8hGEY9PX0ks/mmDN7NoZh4XJ5EASJiRMnMm/eXGRZ5uWX1lFX1zA4fuE9ldM1dN2is6ub9vZ2EgMxVMVdKCclioV6jThEo6Ucbmpi7NjRINg4toXtOIgig8+PhG2Dy+UBRCRBIpvO4OAgywrBYBivN8ANN12DJDsYhkNPdw/V1dWUlJQMvqsKkduiQVKsQwcPks/nkUQRt9uNz++jYXgD6XQGTdfxej1IkhfddFBdKj6/j6JImGVXXEE8lsA0HXp6CiWnREli+fLr6O/vZuKk8axf/wrZJSMho+Pf3YXYl8FTHCJoKfjcbhRFobS0mEhxBK/Hjd/nJZ/PkkgMFJiCJQVNM/B5/SiKSmlJGalkClVVaWtvJ5lMYlk2fr8fy7JQFBnDNKiorCRSVETHkSSC6aK3r58JEybR0tJGKBhGEAQsy0SWJFxuFcsuMBBblk1RuJjunh76+vuwLRtVdeN2uxEGCcQSyQTP/fk5du7YQWL7fsyjLawZV8nabBxDy7DqmT/w8K9+RklREenkAIGAj5LyCgRpkE3cqxKLdZJNxkgNdHPq5BHmX3YZttuP6vLgc8tv2+FtWRZf+erXgMJG+KcP/oTi4mIAqqurePTR3zNhwvg39Tv/23Vxps4f/+RB+vsLzLGPr3yUxYsXD7VPnDiBp556kqKiMD09vXz3ge+/6VzGh2/g+z3HhvRXrlzB4sWXvln/6SeG9B/47vfPm9ePf/yTM/orHmFR6VLoK6Rheb3eob+Rpussu3wpPd3tdHe1cfTIIa655ioAvvOdBzh27FjhPWCBYBf2WNbgHmbk6InMX7oMRAnLebNj/5vff4ijJ1r46Xe+wkDfKXa98Tq739jCzBkzcByHL979XTJmgIaxC7HlShRfPaKrlPt+c4hDJ5Koish9H53OgWdu49F753HP7RNZMns0Dz/xEql0FoCMluPg/iYe+M7P2L7tKKVlY4bG//kjfyJaUsKDd3+WOq/A7Loa5k+ajN/rJpXP8OODD3Hq0h28MmMFz1T9jNJFbiJ1Z8rOfP6Zz7GoYilbbtxJ8z93ceprW3jg3d8gnwhitRUxQp/M5+Z9gdfve53GP67j5T/9gB0b/os/P/kLll93Nbph8rFPfZlYbw96Kkai6wR1w8YTDpchKYVxFJcHv9tFKjZAOp2lrasf3Sys33Ubd/PH1Zt54JtfZPfWlzne1Eh720luu+0DADz22ErWr9/wloGRmTNnvmmdvhO5EJ/Mf4ccPHQIgPHjxl20z/jxZ9oK+fOFOfT39w8xEY+7iL7jOEP6tm3T1HR4qK2p6fDQGr2Y/tltXd3dxGKxN7Wd3otfrJqIbduon8jj+hftgu0Xk4ulOr5T+VvP89fq/ncE6P5/x1hwIbjuaabMv7dcrPbrX3OOv3fE9e2M85egz/8j4oiFVAvBBkkkbzp4gsVUqCqNu7fxxtbXGT5mAmV1I/B6XYiSSVHQj8ftIyXMwtr0MFpRA45h4HF70XUNxxKxHR3HETFNB0N3qKwYRs2wGhxsXG4VTc8XWH4pbJNVVcV27MHyLRo4JplMHllS8AXCpHJZiiIhHNshlcoSCocRRQ9gUBTyoCoyqVQeQ8uQSSUpqahiIN5PeUU5HrcHWVQwDXPQ2BgYqj/r8brIZnN093RSV9fASy+uZ/Fls6iqriKbzZLLZHC5FVKJPlSXgm246eseoKamCtXt4kRzM23Nx3GrXja8to2rrrqCEaNrcQSRQNCPaeh0d3TT3ztAd3cvS5ctRdcNBCtHNpvA5a5GswRymkkoFARsZNHBsix2bN/JiLpRHNp/gKKiCKGiAPX1dUPsgI899hi3334biuohk8mjuCRC4TA+fxDdtHn8sZWMGz+SmbNmUFZWhq7vQ9N1KiorEEWBsrISOjs6UVQXFVXlyG6FkrIyfJ4A+w8eoLahikw2h6brFIWLyGQyvP76JnRdIxotZtLE8XR0tHHs2AkuXboIXdOZM2c2f1z1LA0N9YwaNYpcJs2aNWuoa2igqmYYssvPljd2EAkUU19Xz7CqKMGgF38kCoM1gAVJwLAMDM2m+VQz4ZIA5VUFwqEFly6hvb0Nw9AYVjsMXyCMqroBk0tmzKC7u5spkyaBbXP99Tei6wZrX15HtKyEZVcsY8/unUyfMZMTx3sZGEgTLvLhcvkQZQXdsvAE/CxcNB9dM0ln4mh6Fl33EA4FyaRTuAbr2s6ePYNsNosgSAQDYRYunM+p1nYad+xi8eLFbN60jSuvvHoQYWchqRIuj4ujx06wYf1GPnjb+8lpOXRDJxyKYJo6YkwjnUyhhc4Q9jQ3n8Tt8fLLp1bz8B/XEM8aOI5DWdDLFz90E0um1BItraK8ohLTtoknBhg5egQ3ff77bN7XxO3XLGS5KNPW00tJUTEhf4Bp7/8y8Uyej109j6UzxvHLP6/nhdd30dLdj/83zzNz/HDee/lMrrh0DoKo4HJ7WLN6Hddfdy3FET/BSz8IwH99/S6mTRjJd3/6GBt2NdHVP0DI72XB1DF84YPXU18RRVZkwuEIIgLrX3mVq668GlVVcQSLb/78UTY2HqMzniKX1wn53CycPppP/dM1ZLrjRMuLUV3eQt1Qw8TtLjgKQsEwJ9p7eOi519nX3EZHbxzHgcrSCBNHDOPaRTO5as5k2ju7OHG8gyVLFnGw+TgvvLaD9TsaaW7vprMvjiJJ1ERLuHrBJdx+/WVEy4sor5gDiFRURDnZ00Hd7fNouP4j9K3O8eDcJVwXquAbGzbxRO9JWjMpQi4Xi4cP56uLF1LhceP1+ulLpfn2urWsOX6cznQan6ywbPhwPjtjJsUlxZSWlZBKpNA0A1GU+Parr/IfG19jQV0dz9x6K7/fupUVhw9w7LEEOc1idLSSRZX1PPDhu8hlMwiCQC6fp/nESaoqq7n1Px9ky8lj/Mvcxbx72FimT59OXtMREJFElWQ6wc82rec7q59lVlUdn7VmYDSM5LUZo6mbPpGBWJwnVv6eFU88QUd3J2V15Xg8BabhsWPHsOTSJXz49ttIJ/oIuBR8ikPTyaMsuWIpqC5MQUECZMfAEd7eFui1jRtpaWkB4Itf/MJ57aqq8ulPf4o77vgomzdv5kRzMw319W/7s/bii6sBWLx4EVOmTD6PIikSiXDbbR/khz/8MStWrOQb37zvTU6jF198cVD/UqZMmUwhv/Di+t/8xhl9URR5cfWaofGnTZtKfvP5czz9jO/Zu3eILba6uorHVjzC2LET6ezo5OmnVvGlL38BcXAGjmgP5cPrOpiiB8OWcAQZ0TkzR0032P76y+jpODvXv8DcK2/CsSWe+cOTjBgzlnQ6wzPPb+Djd3ycosgo0n297Dh4krWbTwFwz8dmcv2iGsCgorKU94ycwNVLDe68N83ew+0AlJZXMnnqCEaPaeD1jW/w69+tHho/l8vzkRtuRUbliaef4ZHHnqK0opIPRP6Zuz73BXr6+1i98RWuWjSRectmc8rcgntix5B+XY2b79wTwRv6L2LmFIq0aYySJoDgkNKPc8ePJpHTe9H9fViOTH3pFERVYezMYqrGjaKru5XXt+7noV/8kttvWUay6zjVIxYhICOIBaIlVfWQTfSSz8uEw2VUFpcSjBSuIZXJ8u37vswt77mepqYmDCNP/ejp/OLnP2Pf3v3s2r2bJ598ikuXXHqRFQj6YMmX/y1ov1QqRSqVAqCysvKi/c5u6+zsHNq3dnV1XbDPX9KfOnXK0O+/Rr+A7CrI6cDZ/xf2x/9t8g8VeT07l/RCcnqBmKb5pgjkxaKRpz0iZxMj/TWegLebXH2x9gvVV327Y55rWEqS9Cbs/IWivG/X4/F2vGhv9VD+rUnnF7pGRyiQRMi2iOSAJAlYoomkmFz97uuoqByGlk3hstM0n4ghSyUIBDnV0o6GjTFtOfKxtchWHtMykRQZr99NJqeD6GA5OlktiWFrBWIXVQUsXKoMg1EXx7HQtBTpVD/5XBKXIpPJJBEEBwcTQbQJ+D0kExkMwyIQ9GEYOeLxPtxuD6hu0nkTtzdIMqNTVFaJZehIokjQH8DUdQw9hyOBIArIsohhanR1tmPkMpw4fJTq8mE4ps2Sy+ZQX1+PbqWw0QgVhchkNLz+CKoa4Nln/0jT4aPYiKTTKaoqSxk1fhxur8jym64BHJpP9uP1BRAcEVGQqIiWEwoEaRhWh2UnQO8mm9IxnBK8ReW4ZAnRcchlspiGQSKRwLZtZs6ajYHJgkvnE/B50DJ5ps6cgaDaIBvc9uH3YxgWDXVVyJKDY9pkUjnGjBxNvC/G2AnDmTRlAm6vh2BRiOuWX8+u7TuQBJXt23YTLauivLKKWDyOIrvoae/B1k18Pjc1wyoQLJmIvwSX6iZr5ZAEmXCoiJkzZtHUdBSX24vH52bilDFs2bwZ27Lp6elh9JjRpDMZREWmqLiE/liCfbv3o2XzbHxlPVPGT6CsrISunm5EVaV2xEhMzaBx7yEEbCoqogi4cKkiXZ1dBL0R+rqTZNM6zceOkujvZ3hdAycOH6Ons5td27djGjqZbJKyylLCkQgtzR0c2H+QfEZj3ty5VNfU0NXVQU7LcOjQUaoqwkiY7N69h8raKAM9cfJpE8uUyeVtDNNg9py5+H3+IeI1URRBBMsRsR2H/lgvkiLgDwcQZB/HjrcQCgVxu2QMPcexE0fI5lOcaG6mrKQC24Cjh45SX1lNT2cPv/3N7wkGwhh6llQui2/DSSp29eHxCBh6gdFTkuDOb/2cex9+is6BDIIAmbxGc0+cj/3Hb/jFn7dhq0oBnq64CPiKsEwRZ3C77nG5kUSbUNBFLpcg4PcMwcUi0RK++PCfePCJ1bT2xHApMvFUhjVb9/Gh+x/miTWbsbIWyfgAN9xwLd6AB1s6Y5y09vVx2cfu4/cvvE5PPIEqS/TGkzzzynYW33EPr+05ioQAlokiC7z3ve8hUhwmmdO47GP38JvVmznc1kM2r+NSZfqSGZ5Zv4sld32T14+0IkkuspkE6XSS3p5eVMWNiMD3fr+KBXfew9Ov7uBoSxemZSOKAsdaO1m1fhsfvvdBOjs6iRZFyOd6yaT7uOEz3+K+Xz3Ja7sO0tZTqEGbNwyOtHbyoxXPsfSue9jVdJyBVBITk7oRdYQiYUwBVE8Bztg5Msj8HS/wjaO7OJVMgO3QlU6zcu9elv7md7RndU4OJFn4q1/yi5076UqnsWyb/nyOlQca+ac/rSKWSaNIKpZpE+uL0dx84gw5oONwz9qX+dyGDezq6kUATMdmf2crP935Gtf86H72HTyEblrIuGiorSeTGUCUCt8Bt9fHyBEj2PjaBg427iebyeD1ePB6vEMEty5NZ1upl8QXP0KXncbrk/jJr3/KV+67h8amg8TicWRZxtB1WlpaWLPmJb70b1+mtaWb0rIqBFHl2LFjRMtKqBg1C1+onLvuvBPHcbB4+7l6p+GHgUCAuXPmXLDPFWdBC0/3f3O0VRo6zpDhFKSlpRWAMWMK0cBziV8EYPToQltPTy97du8v5MEPEhqe0R9d+L+zCJVOH2NGjz6jv2fv0NiO47xpfMdxhv7+jnUG6TZ8eMOQ/sGmvRhIaEYAU5ZZtuwyABr3N2IZCknBxJRULMvCtAsM6rpiIJsOpiCSkSRMtzr03N94w/WMGzOKaZMm86dnX+TQC0+h97bhjZQwY/ZsADpajyEJIBUXUTxqHms2F4zHimgRV155Ja6qSbjKa6gcUYOrzEVZlY9/u3Ph0HX6VZuwx4tEjuW3LMXQzkTJbrjqMq65+SqmXbqIY61tvPd9N3PLexcxf/F0Lh0sD7R2/Wai4SghoYvGV79NvnfjkP5dt04j6/bjq5xO1dQKMiO2kJtwCmPsSeQZFmnFwbEHGD51PsMmLyRUOwl/dDha3kJPDTB/Wg0A23fvQJNtPOHJCA3TscJVhUoGAI6E7AlioqG6HQL+cjze09H/av7lX/+NkqrxTJ9zFaPHFXgfHMcZiow3Nh44jyintraWbC5JNpfknvu+DqKDI9iF4MBZZEJnkyhdSM7dww6t4bPWfAE1d2FypgtJKpUe+u3xei/a9zQyACCTSRcgL44zZPgC+HzeC+5BBUF4U4mbVDpVGEMQSJ6l7/We6XPuc+k7a/xUOv0Xr+vc8eHC6YJvtV++GJHSO5X/rvPA+SS4p89/Wi6Gcvlrx/+Hirz+pYs8GyJ8ob5n1ym6kNF17kL6R5QL0X3/o8o7uQey6sExbXTTpKe9DdvWGTN5Dl6vQjyVIOgP4Q8GyCserPp5KLET6JIb1e0mlUoRDIaxbRO3W0YUVaZPj+I4NslECgcLj8eLLKuYhsWRQ8cpL48SjoRxqW503cSlukEAURCxTAvVpRbIkwZLkbhUNzXVtRiGgSgpuN0ipp4nEikir+WRBAeX6kbTdERBRDcMBNvBEkxsy8Lr8UBREaZpoRs50ukkoXAR9Q11NDU1UVVThd8fRMvr+Lw++nt7KCkpYfHiBYiCwvGjJ/B63Vi2QW1tFXlNK8BGB+Icbmqkrq6EUCiIIDjEYnFe3/Qa11x9LbmsTsDjLdSpzBqYpoHggN/vJ5lKDkaqwgAYmkG4KMSKx1Zy6y23crTpOBOmTqGkuAzbNnCcQs3clpY2wuEwxcXF9Pf1E4v1I8syY0dPQEAiMZDEdgQCgSBz581j9+7dmIbBnr17mTplCqNHjWLHjjcwDIOJEyeQTCbw+/1IokA61U8sFad2ZAPeEg+pdAK3R+Waa67G4/Fg2xYej4cpk4O4XC58Ph/RaDmnTrWg5TWS2TgzZswgER9g3759TJs2HdXloqu7l2i0lImTJpDJpCgtK+XVjesZM3YU8XicXE5joL+Pyy67jIFEnGQqyaFDh1BdMnV1daSzaXpjfYwdOxZRLnhi3e6CkbFlyxZKw1EikRD79+8hWl7ILzVNm7lzFyCg0NXZQVt7B9OmTkNwoKWlmeEjRyFKPjraOxiI9VPfUM+u3TuZM2c2+byOorgQRYHu3l4qK4qJFBcVIviWTTaXZc7cmcT6+xFFiTlz5qMoMiAwYsRIPB4PlmVhmHkWLVlCa0c7199wLT3dXXhUhVBREZbdim1biMIZI+ClXUdxHIeff/mjXD1vCkG/h1OdPXzuh79n3RuN/Hjl89yybC6j62uQZYnW1g4ikcgQqkFWFWSXSlFxGfmchm1JOIMRmh8/vhpJkvjV1z7OzFF1hEMeTnX285Wfr2TT3sN87vu/I6JILJ0/A4/HjWmb5PPZobk98MgLBH0e/vDA55k/aSSxWD8nuxN8/iePcai5jdvv/TEbfnEv1dHIEBFbf18/t3z5ezSd6sSjytx920186IZlCKLF/iMn+O6KF1izZR/ffuRZxjZUs2zOZNpaW6mqquKlNWto01S++dtnAFg2ayJfv+NmxtVXkU6nMWWVbXsP8fjqzRRFwmh6jnnzFuByuZk1cRSzJoxkySUT8CkSkeJSdNNg674m/v1XT3CguZ3PfP+/2ProD0CwkCUZU7WRJGcoovazp18i4HXzw4/fSqnHRXV1lMOHWvjqf/6RrnSae9et42R/PyG3m+ff/z6ml1fSP5BgU083n3nxBY7H4jz0xht8bfFl9Pf3ISsyo0ePRuwsGA37u7rYdOoU/zx+Av926wSiEZXHH+ulM+Tm/hf/yPqjB7BiA3znxvdSV9vA4cOHmThpLKZZ+EaJgsDAQJKxY8dTUhIhlU7SH+tDlWSUzl4A0uEAlZ/8EO2dffzohw8hqSpPPvU0oijy4Q9+iE/e/kkWLZrPw7/7FTX1VTS3nOKpVX/G7/HiUlQ0IJFMcdkN173Tz8+b5ODBgwCD9ZQvbPSWlZVRWlpCb28fhw4e+qvGeavv99ltBw4cYPr0Ql1X5VsPg2G+Q/2DQ/oX7CPA6Vrip6Wuvobjx08AsGPnG4wZOxpRcOGXoCRSqJEZi/WhCBouTcTKGsiCjKMXnl/V9rJ2zVoWXrYAyTFRZHUo53XazOnkRTcev59//dr9NG37LU6zw4Syq6mMFlAsA3ELW7IRtAHcVopDh5sBmDd9AgF/GYKZxe32ksuk0fNZkv1d1JVIBQe35ZBJHiWjT8eURCRvwymeywAAIABJREFUhC9+/X6eeL6Qp/ju627EW1RFtj9J3agoY0aOZN2aF4hnUiy5dCGvbHiN/ngcv9JGZ0ecMeOGsavpTGRv0oRR1I+eSCqjEmuJUVJaBoJJKOAHXzFpLceWbZt44D/v4I2de2jr6CKby5+3T2091UJ+oJfhtcOJHfkTOY8bJ9dTaBQdXKpMOBQopDbEE0PJxdOmTUWUJbAdAoEAtnGmLM7p+qexC+Q6/z3F4c0BJVUtODOEtwhA/TXyj7pXPy3GEwUUg3rr/65843cqF0tV/HvJP1Tk9S/la55exKdL5lyIDOnt6P+vgsm+Q/nvzjn4n5R3ErE1HRei28/0OXOZOnUqba0tvLFhFa+vXUXXqWNISCiyv0CcNG4pjmmQ1Uxy2WwhsmPLgIxh2ICAJItIMiQSA4P8/yICEl2dPezcvoNMOosoSGiGgSBLuNwF6KRhGkP1YxEkTNMp1GdEwrIFTMsZpJkX6O+PY5oGiiKRy2kkU2my2Txujw+/P4hpmhiGUfgYOQ5ut5t0OkVZWQmCaA3BRMvLowT8RYBMKplm1apVhEJBcvk0iiLgOBbrX9lAf1+SF/68ju7OTvLZLIlYnKryMhYtnIfPXzBsBQEixUXMmTebQMiLgExes0BUMUwLVVGQJYVUKjOY+1jIlTMMC0twUD1uLr9yGZIiUVNbg21aSKKCbYmk0znWvPQS4VARp061YhiFWp91dTWEw37SqTxPPv40LtVTIKYyDJqammg6dIiuri5isRjpTAaP18O4ceOoqqpkx443CIYCiJKAxyejyDmiJT5sQ8OyNG644V2UlkaorR2GLCl0dfbS2tJBc3MzAwMJmpoOI4qFvERVUUilUvR29zB67BgWLFyIy+Xm2NGj9PZ0U1VdhaZpPP/8CyiywoQJE5AkmUwmQzQaxecLsHbtWoLBIJ2dHZRFS5gxexYl0TIUt4vWjnaeX/0itgC7du8mm82TGEhhGia1dTUIgs2UqZM4cfwYqqJSXV2LJKok0jGKIkVU1dRw4kQzHW3t1NZW0dHRSiaV4o+rnkWWVQQsLrlkGr09vciSzPGjzezeuQ9VkRAAy7TI53IoikQg4CGTTWFZBq2tbezbe4BkIocsu3C53CSTCVpam5m/YDbuoIsx40dQXR2lMlqKKqvomokkyaiKC583OAQjTKSz3POBa8h3HicxEKO/v5+QR+Z3d99FeXEY23Z4+uVNmGYe2zGprq4gmUzS19c3+NADgojHG0CQ3Bw93jJUhzad0/jcTYu4/tLZNDefYOOGDbicPI9/6zPUV5ZiWja/Xf06qXSSfD5HKplEEs+8O/J5nZXf+hwLp03A7Q1w9NAxgqLNH7/7RYoCPlLZHA8+uZr9+xvJ5/NkMhle3nmAg6cK8LHHvvUZll92CS53waCeOKqWX3/lI0xsKERNvvm7pwEoikSwcbBFmX//zR8AuHHxTFbc/2mGlYZwnMIG06MoLJw6nl9+9SN4PTIut1xwhmkmv/rKx/jAVQspCboIBt3o+TwBr5tFl4znyf/4PCXhIE2nOnj1jf0YukU+n0OWBWxbG3r/a4bBqh98iWuXzKa6Ikq0tJQpUxpYPq+Qo/VMYyNtqRR/vu0DLBg+HI/HTU1lOZcPq+POadMBeGr/fgTBYVhtNWPHjkGSzkDgkprGLRMn8vObbyYaKkR53nXlMj48Yz6fvewaADbFO9nVuB/bcZg6bSqSrKLICgCdXZ309vSy441dtLS0oUgS/mSa0Jb9ZFyFPmokjMvloqy0hnvv/jabt74BwMIFC3jgOw8wkIyxZ99e5i9cwLjxE7niiiv45c9/Q2VlOal4H2tWv0Bt/XDMv4JZ+Gw5DSF8K/jg2e1nQw7fjtTWDgMKOXsXk9MG9IXOXxeO/EX9A2+hf+Hx3+zEL5TuGpxL42Fcgkim7zhPPPR9nHyB6Cbe38e+bet5edVX6Tz+FC3HnkHXBgCwzRjVVR6aXv8DXdue4MSmxzG0gnMp5IFMNo1hC4QjISJVEeL9J+hqeg3ZLPQxTBNEjWRHI0d2rKGru2DUlZeGCXhUVETifRlsK4ijaYR8PkqL3RQFC05C2emjr/01dmx8hnhnC3ouMXQ9Zq4TvyfPuFHl+GSNWE8z9RVBLhlVTKKtEKW2bBszfxyfO4fqC6EGqob0y+sn05uU8RaPYNzMy+nXAmRSMfbu240tiDz/0lZu/8KPePSJVRw+1kw2l8fvcxEJ+YmEg/i8hTlmMhn6++NkzAxOop09r77IQG8B9mwZedyqh+RACl3XSaVSQ/fH6/NiGhqGnh/MNT4TnJHlQcKn/wEyptP7N1mWL8g981YSCPiHfmez2Yv2y2QyZ3T8gbN+n62f42Jydpv/bP3A29U/Mzf/WWO+XXF6BZzef2wDHM4E/d7JPf5b5B/KeL2QMXOhUPXZ8N+zw+KyLL/pD3uhkPnpG3AeBOICBtS5EdpzIRnnHv9b5S8ZiRcrJv1OItRne2XcSz+Fe+mn3jT+6fOde/63+tud224LIqLXR8O4icyatQjVJRAKeAiHg4QCQQyt8MLv6u4hNerdhLq341ELJTMEsRA11XUTSSywYYJDWVmUQCCM4wgYhsHG119j1qwplJSGsGwd29ExrDT5nIYsKwVvsiAOlp4RESQJUVZIJJMgikiygihKdHV1s3PHTjKZDLbjEApHEESJ4pJSevv6cRyB4uJi/g977x1m11Xd/X9Ov/3euXd6lUajNuqWJdmSm6xiy7j3BsEY8iaAqcbAG0pIMBBICHnjHySGxDSDbWwDNq5yV7Ml2SpWbzOjGWn6zO339PP+ca5GI1tyAxLI+1vPc55HmnPWPve0vffa3+/6LlVTyeayeGWlz1gsRjQaJhjUCIX82pWyrJLLpSkW8uTzWRoa6igUsj7S6tgUi3muvPIKGhvqOfvss1AVjVAoiiTKOK6DqolkM2kK+QKu50/yW1onIigSoVAYUdLIFSxqahopFkxy+SKxWMJHlhEZHUkjif63Zeg6jQ0NFAoFKiuTPPXkE9iWhecKxOJxlpy1hEQijiJLGIZONBpBUWQ6uzqoq6vjiiuuwLFtTN1g/fr15PN5rr76as5ftoxzzzmHSDiMbVuEwyFqa2s4/fT5hMMhIpEwougheAXs0ghGocD+gweQZQlVVTBNg96+Pl548SU2btxMTU0tgUAQRVFJj6bZt/8AruOQy+ZoampCCwRAFOjvH2T79teJJ+J0dXbQe7SXSy6+FFHyvwlJkghHIiiKQktLC/PmzSWdThMOh0gk4giiwODQIJIscfkVl3PZ5ZfR0NhAY2MjwfIixYoVK5Ak2LRpE5FIhMWLF7N12zb+40c/oquri3g8gaQojIyMMnFCMw21VRw8sB+9VGLXzh3MnNHOlMltqIrKnl172LtnLwf2H2Drlm00NjYRDAQ5eqSPw53dBLQgAqAbJcAlmUwRDASprqlhaGiYjo4O8vk827ZtYcKEZpLJBIqmYZglTL2Ah42sSOzdu8f/BvGpUse+4YUz2rhi5TmEIxE8zyOWiNNzpJtiocD5C2YBcODIAOlMGsPQEQSoqKggFo8BoCgy+XyBkZEs0Wic3bt3Y5VRhIXtbfz1+68FYNq06Zy/dBmpVCUBVeHWS84D4IXXdvuq35JEMBgkoB2ney2Y0og+MggI6KZJW9tkmpobwdG5eZVPL/ztixsRBBFFUYlEwjyxfisAp01tYenp03HwGBgcxDRNJEklFAzx0St9tcl9h/vYc/gooUiYUDhMnymRL+oossTX/vJq8vk8kUjEr6sqioieh4CHqiooqkI6lwFcbMcil8tTKumEw1EUVSabSfPKKy9jmQaVyQSL5/gU0t89t57B/n4CmookwqEDB8eexaXnLqC5rhItFKS6ppJkKgWCyLyZx3Mx33/aXFKhcDndRKRQyDEw0M+MMhWuI50mXSiiaRq6oVMoFkinjyM4n168GEkWy/24iCxKxONxPrzoXIKKL3J3VPPp64IooZfMseeZTFQwd+4c4pE4VVmdqtc7ETr7yFyzHGd++9jY4H9nAouXnEFFogKA0dE0oVCUSZNbiVfEcAUwLBvwRbnyuQzFbJpELMLsufOwRIVSqUChkOOHP7z7xFSUdzCOHaMwBsfRB09mwaB/33L53Am//+1SiVZdeAEAL720ZkzhdLz19fXz05/+bNzvyZ2wf1Vb+5j/+lP6/3zs/9k3+F847vzrN7xc5jye+Ju3bBlHNbYkMr1Z9mx9lZktIXKjfiCpyBKumWH5RRcRiMbIlEpI5eDJ9jxSsT4EYzfZ/o0MHX4Ry/ADj9HD2xFyRxnq3M6rz9xHWGqkpmIifYe7GR7ygzfTGMItDXK0exeqYGBZfqpCoTDIrtefJxl3SKYkAjEZJeygRCRG88Ux/mZhWKdeHWJCdBgps4mu7Y+MXU9M2M/gvofJdD1C3HuN3eu/T9euu8h2P8DEKn3sOE2rRAu3IYZmkKg6jlzrlkZ1TQt19S3YBKlsmkIwnKS2sYkde/Zzxxe+hOt6XHLhSh6+9y7WPvNvrH78+2xc9xi9h/bxD9/6ut+QKFLbOg8zXEnj4g8zb9VtBGN+kGyUdLr7R0lWNyFKCng2RplZ4tom6DlCokN+pI9dWzeWmzv53O2N9naU1feaEjd+/7u1aDRKNOoHk0ePHj3lceP3HUOZ4cSFpnfjf+y31tc3nPSYd3r+Pwcb3/e9V/Dujc9+fJvj23qrVMb3Yn9WwevJ7N0EOCfLLX2nH/bvk7v5p25/yAD7v+seKZ4JuMjBMIan0dA2k6Kl4SpRFDVEsZRF8EwkSaK5uZlky3SE5gV4uQE8D0TJwbIMYtEoHv4qZT5XZHQ0i2HYGIZBSS9y8SWraJs6FVlWkSUFWRQxS7qfC+v6eWDHKrULooAoCTiuTb6Qx7YtRFnEMEqsWfMSgiASjSawTQ9RlAgGw2QzeVKVVbieh67rfo1Kw0QURerr6zFNi2JRx7SsMiIlkM0WKBbT2FaeikSEGe1TqEgkyGdzOKZLqVCkob6a4eGjtE+fQKwihWG5bHx1K6btUpGqoKIiiet6iIJKMBwDRD+/WPBwPA/bFSiWXH72k/vYv28/69aup7e3D8uyqamtw/MgoMhIooAIZNJperq7ufh9FyKJApIoEE/EmdjaQm9/D7PnzCAW82s9eh5Map3C4a6DpFJxdu3aQT6X46wlZyHLMh0dHcSiURzX5YUXXwQ8isUCWkAlEg0zODiI67pYtoleHEEWbKKhCNOmTsNxPDZu3ISmBdBUlUg4yGnz5yGKEuvWrmP69Ha/PIhls3fXbl7dvJlUZYqXN2ygUCrRUN9EoqKCiRNbOG3+PDo6OnAcj67OLlpbW7Ftm86OjrH3MBAIYpoGrudwqOMAgudh6jqjw8PIokA4GMRzHKqrq1EVFc8TKBSK2I7FmWeexfZtO9j++g4UWeKcc89iwoQmLMtBDYRIVqXo7umiu2s/ihzglZc3UldXy8KFp9NxaD9r12zAcwXOO3cp1VXVnHHGQtKjIwiIZEZyREIJeo/0UyrqqIqGgMjIyAiBgEZlKkV/fy+SJNDT08306dPp6Tniq+5aAnrBwLEtbMtEDihMnTp5LLfIdRxsxw9I5k2dQCyR4NLLLyNVWYll20xvn0llVS21ZSGL/qE0qWQVoVCYvv4BZEVCVXykTRREcCEaDvPqpo0sXDB3jF69YHornidgGCa//e0j5EsG4UgcQVS44KwFgN+XvX7wCKKoMjQ4yuDA8NizWTh9EslkBZZlIogC8VSc/sE+1IBKa005KMoViFXWoSgKIyMjbNnXCcDZc6bh2CKV1XUkk5XIkoLgBRgcHOCi8+YhlRdFN2zbQyAYxMNj866DAMye3Ew06AtnjYyMEAqFcF2XfD5DKKgh4GGaFtXVtSiqSKlUQFEUfvjAo3zk6//Oor/4Cgs/8lVWfeH7NL3vo9Qsv4VHXvQnp4eP9hEOhRERcW2PxoamsX58Zqs/yQ2EIiRrKnjuxeepbWhixbJlY/fkDCuMbbsM9g1SKgcara0TaK5MjR3TN5omHImM1YA8libQEIsxq6kBwzLGxsi1a19hqH+AuBZiRo0/+TuUS2M7Fq7nUSoaY0iJLElIoyNcEAgT80S+NdxD52034i6Zh12mr1qmhaZpDI10IqsGV15xEYFAgG3btzHntNn89Bc/4UDnQbRgAElR8AQJRVMZHujnd799iKuuvAJkFUE9eZmNPxW77baPk0z67+D1N9zE/Q88QCaToVQq8eyzz3HxJZeQy+XGULQ3ohufWnTumP8NN9zE/Q/86g3+l72l/20f/9gJ/g8P3kt+wjClUonREX+xwl90KbPbBAc9P4gkDCJYh0kl/ftrWhYBVebAHhNNbCUWaMW1fZ+wGuHwjnUEQhEaJs1BVoOIgv+u6qUcqeoqug93UBkRGO7ZjyhBuLaRQNhHs4qZPoa7dpPNFSAUoqbKfw8HhrKkEhGOdu9nZKgXUXUZ1asYKlaQtqsYzfnMDUnR0IsCLRNS5HJbiQYGx64/l8mjejlGB/aQTe+ldaLG5PY2EpUpSp6/YCFLIqmW00lMWEyqeRG6c7wmquRB5/49HOnchyzYJBIR6ibOpaFlGo8/9QyO4zBpQjN/95UvsnzlJbROOZeahvk0ts1CiITo6/WDfxFIahFqK6sQRZmqunrEstpwMByhfcFS2machm66lAoZsqP+NRQyoxzauYXnn/gNWze8yMEdr2Gapi/iqJ8aNTyZ/SnNcadPnw6cyDp4o+3ceXxfe/v0sX8nk0lqa2ve1v/YPlEUmTZt6tjfp02bOvadvBP/mpqaE8Sa/l+x3zd2eK++/+ODV1EUx7b3GrxKknRCvuyfyof9h7Lx9+j3tbcr8fPHMsnzqTI2Ao6o4Ygaq66+mdaps1j9/IscOHCA/ft2kMvlxgpyD9cuQRjtxMoOUNKzSLKAh4eiKCiKgiQpPP30M6xduw4Ax7ZwHBNJCVIsOViGgG2IxEIVIOALQEkSiqL4YmASmKYOuNTV16CqMpIkUCzmWb5iOcuWL0NAIhyOYtsOtm2TSCYxDJNCoUQ2mx0ryyOVS+Dkcjmi0RiWZZPL59ENg42vbCadGSQQUvA8m5qaakZGhtE0jWSyksbGJkqlAslUDEUDRQ0QjcR5fcdORkYzFPWSr2wcDIEn4LoetuuSy+cxDB3HdlEUjQceeAhZ1mhoaKS9fQaVlVW4jofneriuRyFfANcDzyUaCtHW2sr27VswDB1REnEcG0SPUCjAxo0voxslIhG/vmkslgDBZmion7lzZ/Pqq6+ybet2QsEgW7dtI53J8NSTTzI6OkpnZyeu67JmzRr6+/pJJZM+mlgy0BQJo1jAtR0EQQRP4LR581FVlXgizqWXXcrLL69H13XOXLwY0zQJhyPMmDmT6e3tzJk9m127dtHU3IymaZimyeDAAJqmIYoiS5YsYXh4hEOHDmHbNsVikent7Xiey0svvURrayt1dXWkUknmzJmNY9tUplIc6elBL+l4rsu+vXsJaBqC4NfY3LRpI8ViAUlUOHiwE1mS0HWd1tYJWLZOPl9k7979WJZFdVWK6uokA/2DnHvOudTV1eG6NpnsKHPnzGd4aBTX8di9ezd9fUdobKxn08ZNJCqSBLQge/ceYPeuvWiBELFYnJrqGo4cOUJlVZIjR7tJpSq44IIVJBJxmpqasUwLvWCye8duIuEIRb1IydRRVBkPX2U6HAkhlOGNUOD4hC4U8pV3i7qBJ4jI5QDV8Tz6+gYoFXWSFRV4rjMG8hTyBQKKRjGXp/fIYaLhAEp5wl2biqMoMqFgiAsvvJA1a9bRNzCIYdlUVVaMnbdvKM3DD/2aA/sPkksfR5hmT2ujpbmJp59+Ct0ooQVUJkyaQCwRY/aM42Uz9uzv8MskRaMMjWYBqEsm6enuZWhohL7+IRzH5e5/v4d4PIYs2VREfcStYFhj40zvkD/pr05Ex97XqqoqdF3HsixCQZV8IUupVEJVNXTDIpdPU1ER56P/cDffuv8ZHnlpM129Q1i2QzQUoCoRpTIRI6D699KwbRKJOJIkMzAwiGGYY7UKK+IxBEHGtEx0s8SiM89ADYR46aXjUrLCimkED2eRujMokkI4HEZVFRKx+NgxtuvhOB6SJBMsB+YA9bEoguiXA/JcD0GA4aFRhgcG2bplC3HFfxf6c2kqkkmGR0Z4/oUXsW1/oSNY0Inu7+YJDO6qSjDl2uu49da/4ujRo2MUR9dzyWQyqAGHfGGYeDzMP3/nO4RCYfbu38P//upXWbD4DCa2tXHLrbfy6GOPMzg4yLp16/j0HZ/DMQ1s28Z2f78x+xiFsPQW9EGAUslHwsbTF9+J1dfX8eCv7qeyMsXAwCAf/OCHqK1rIJmq4uJLLmXXrt3ceefX37SAMOYfjfOrE/xvpbauiWSqhosvubzs//en9q+vO8H/Q9/5II3X1pJM1bBj504AptTGUMsoeyKmkssfpn9wJ1rAwCzXG43H4jieR6m0i507fkNI7sTU/QUkPbeXVChOrKKVLXtGse0YxwSHtUic/oxJJFVLIBLDNQ7RN7iPoWIRQfEXrwKSRn7gKM2tbRzuH6Z9io9ybd3dy+FDveAoBLQwuuFRWX0ui879MKbciuP4J8nrwxwdkRBCMQxJRwwezwFes2WAjK4STbUgBitIF23QZqMkZvPsZh/5nTx1AhVNU7CUGMFECiV0nIquijBzygR6OvYzOtSLZ5ewnACDozl6un1kbmpbCwHZJBoMUxmrR3I0ejo7yOf6eWb10wDYpsGRXdsZ6tzHoQ0PsP3FX1LI+YGtJ4u4YhALjZlz55JLj6KUFxM828QzC7S11OMZeWoqIuVyUaGxxb93av8d87dT2bJl5wOwbt36U1KHn169GoDm5mamTJlywr7zz/f9V69+5pQxwuqy/+LFZ54g3hQKhTjzzDNOOOaN5nkeq8v1XZcvX3bSY/6n2/8fvL5HO/aRvTHwGk//dRwH13XHVHiP/X28Gu5b3UDHcU7g6x9TKT6VMNTb/dY/JoX4ZNfyRgr1W9FzT7YY8G4TscfTEMaj1sfMeOU+jFfuO+H84/3e7fUB2IKC4MmItosseTiijeWFqahs4MJl55Lu2Yo7tJFkQEVygli2QLIpAq1nopommpoAQcJ1HQxTx3FdFFXi2uuuY9bMOTz0q1/zk3t+xpHDR3Ech+HBPiTJQTd8tU9FEFAVDccTsRyXQi6D7liochjFlRnp6+TokYPgySQqk0STcQLRCEgiluVTe8Ejn88TjsTIFXSymSJ6ySYarUASFTzXQ1U1JEkin80RUIJEgiGMYo6qRDWCIxKPxsjnssTjYRBMiqU0hpUhEBQIBDRsC450H8T1Spxz7hnEYxqCZeFgU9LzeFjkssNYeh7Jc9BCYSzLQHBNrrzqIq68/mIqamqIxKNIgouAhSjY6HoWWRYQJLBch8effJL1a9czdXKZ/oeDaZpkRooIgoeqaT7NWtNQAgqeaDOxtZ39B7qwHZdVq1YRjUZpbm3h2uuvIxQJk80Xmb9gEYWSBaIMgkR1bR22C54okxkZJJhsIe+FQFKxDRfLMSgZOoMDI/z7D/4DRVKYMW06iiCxa8d2QiEZLSAhKRKiDPPmz8NxHJ54/ClkQeE3v76PC1etIFfI4YkQCCpUVcZYuuJcguEgsqKQSY9Q0vMsO/9cDFNnzbp1VFbX4SFiuyJqIERLazOWq3O45zAl3cZyQdd10oOD2IZFOJrgxZee4bLLLmDBgtnMnTeTUDCIImnUVFaQHR5m17bdJBK12ARZct65tLRNxJNcJEWitq6enr5OVl64gu6uLupr6mhobKZk6syZMw8QeG3rNhRVpW1SG5auoxeLKIpEIKjS2XWIG268jkIx4wfMhSxdXYcIBDUE1SNRVQNSlIqKWhzdwMgXkAQR8PBcC7EsYqPIIrg2IgZ4FsMDWV7d8AqeqWOW89sERAQnwEMP/AbHchBxfRQX0AIaruDiCQ6rLrqQCa0tuOUZ7tatWxgeHsR1DOpqUyxZvJC6mipyoyM8+eijY32BLImcsXARQ0NDxJLHc5BUTSaTTVMZr6ZjVzeeaWMUXboPD2AVjk+MRoZH0Esuwrh82ZKl8/wLq+nYe5ANL65DFlxufv+ViIKIa7ljwbdh2AjAUP+RMVTJF79yOe+85XiegqRoiIpMycgTDIZQtCi4EocPHCKTKfGT363h0bWvIYkin33/xTz7/c9z6LffY/u93+SHH7+Cp7/zSS5b6tdkrEhE0IsZCvkskXCMzkM9Y6I7ngeCZ6NKEA4ESMTCKKJH66Sm4/1pWCN9/WwSE+uRBosYhonnQfiE4MvDtS0sq4RlG35KRPkEhUyeUqFUvn6Ba66/krmnL2TazCnEE34bju3R3dFJLBzmqisvI5kqoxOOQ8+nP8g3975KutSHTZ5vfedbFPMSeHK5v4dwRKGmoRklGCWeqGbFshVcc/mV/M3n/4YLly2juqqKTDbDr3/9MB/4wM1cc9WlXPeB92OH4pSiFaCoqN6JZUDeuBj9dpP1Y3TAk9EHx49bx/a/c/qgOLYtXryEbVu38JWvfJnFixeXJ+OTuebqq3lm9VPccP21Y6j1lMmTwHPwxk3hzjxzMVu2vMaXv/wlFi8+87j/NVfxzDNPcf31N4z5t7VNxkP0N58oxBlnLmLb9tf4yle/xJLFZ9DU0szkKVNIlgPdufPb0U3/3UpEY7RMmMOSJR+hz55NtrxGlM+OMth/gPraGiY0NWLbJoFyQOABoyWT59c/T6H/dezSKIGI33aybh52egR9cC99owepbltIS8t06kP++ATQN5Ino0vEtGpmTZ3Kpcv8vOwj/aNsOaIgVbYjhCaSz7pYbhf9fQf51r8en2dU1C0iXt1MX+8omhNAcY/3DQ+t3kpffzelAqTTYZr6iANcAAAgAElEQVRaFyMKWfYd7OSZl3y69JXvuxjdVDF1i1IhSzJRPeYvp6bhRCZSnZDo2vIUHZvXsX/HGqqrWknGfcGpfYc6ce0e9uw5hJ45yqHtjzLcvY01a7bz8mY/PUGUJeacsxAbgcqWSdTXVmLk/OBf9kRUUcLzRCQtydkXXI6s+YtmWkCBQAhLidDc1o4kyGA7eLaD546jyLt+ze1jGh7HNr/+oHjC3xHcsc3DGdvelQlvVis+mZL2qezGG65HkiRyuRz/9oN/e9OxnV1d/OpXD/rH3njDmFLwse3mm24E4NChQzz80MMI+EJxx7ZNGzfx4osvlf1vfNP5b7rpJgBefPElNm708+3HX8tDDz9MR5l5deONN7zDW/IGevax7b/Qjs3xx8cw72YePt7GA3pvlfN6qvb/n6UNn8pOlc/6dijtsQdxMjTyVIHy/yT7Q6CwoiieUpER8Km65dXEP6YZGFiCR6puIi1TTqdnGA51bGSwfw+9nd0MdBdwmhfjjh7CzvfjmCUcy8SzHUQXTMvEcWwOH+6ioaEeQYDa2loQXBKJGJLkB4SmYaAbBoVCHsHzkEQRRdXAUhBFgXxxiJJRpL6uGQEFEYlgIISu60iKiOkYhGMVaKEIgWCQ9OgI0VAQ1wNFVRFEiUKxRCDoK+OKkkQyVQmCh6LKXHblRVRUJCkWi4yMDBMOh5BlmeGhERKJBKFgkP7+fsLhMJ7nUVtTTSGfo23SJGRJ8mt2IhLQgoyOjiIKItFIBE1TAYFoLE7JMNACPvUW12Ltmhfp7e9HNwwcx5+wq7KLruewbJ3Lr7qcfKnA1m3by79rBBFYt3YdL720jimTp+G6Ah0dXeglg0JBR1VFpk6d7Csr49Hc3Igil5X4VJVUKklTYyOdHfsZGR7mrCVngyeQz+XAdUimahkdLVBf18KRnj4efPBhisUSu3fvoudINxMmNnPo0CFGRkYpGTp19XXouomqqDi2xcGDB7Ftm1mzZnHLLX/Bzl07mTJ1MqnKCoKhALpeRDeKhCNB9KKJLCncf98D1NbUEwqEyeRGKRQyRCIaqiLiegIHD+4jl0uXlZwFmpobmH/6PHRdJ5/Pk8lkOO+88xBFiXg8RdfhI2SyBXL5PKOZNLKqkMvmAI/6hjqODf+lfJo1LzzPUN8AR7t7CaphVEVl9+6dDAwNsWPXLrZv386B/Qf4xS/uZcPLGzj7nLNoa2tDVTXWrFlHRUWKcDjKyEiaffsOIMsqgwMZ8FSKBZsnn3iOYsHmwft/yZRJk5BEAcd1iCeTqIpGYWkLxaUtGIbN2BRElJAUjUw+hyd6xCqinHnmmezfv3+Mfgjw6KMPs2LlMvr7+8jl8mNlBSRJYvfu3YRCIXL5vN+XlOtENrZOIRGvwHFdRkfTJCqrUFS/Vmlr2/Ei8poII6PDzJ49yy9NVbYX1m9hZChHerSX5iZfBE3TNFLJFBvHlQ6Z2NxI9+FuPA9ScX+COzCc5YxFc2loTnHx5RfhCBLxRBRBFHCRSOf84Le2MkmpaFBVVUttykeDO48OEo8nsCwLoVwT2c+tDyAIMrgehXwO27GIBDUeXO0jo5cunsNVi2YwZ/JkAMLhCPMXLCRWkeJInz+hlWQVy/Hvu2FbdPZ0EYn4FE5B8LAdG8dxKRSKvpAhDtPHUeMcx+alNWsoLmlBGypx6OBBRkfTmOXSRwB6mXaoyAryuNJDvbk8iqKiKBp4lBkiMiOjg1RVVdI16PfxQUEgMzJEPjPC0089iVkW4OpurmTYzbN82RI+/JEPMGFSExPbmlm9+imKZQRTlmVEQcaxIRyKYpo2FRUpLr/scj5/++f51t99mx2bt/Ha+g184q//CkEQeH3XTr74hS8wOjyCWH6xfk/glfZ2//3as3fvKRV9BwYGGBz0hcemj6MvvhtLpVL87y9+geeeXc2+vbvZvm0rP/vZT1iyZAlr1/kMIEEQWLRo0Sn9v/jFL/DsM0+xd88Otm19lZ/+5B4Wn3kG69atHee/8E2+siyTTCb5zGc+xWP3/I5ta3bw2sY1VCb89ymvO2P+py+YjROMEqhtZuklH6G2bgIAlpHnzPYqLMclkyvS2dOPWc5xTmeLWHaJ0UObIdND3/AwQplVcWjPLvIDW7BL+wmKJpaRQ/R0PDeD4/jvgqZCKSuyc1cX2ZLH9LnTWXqOn0f/je8/wg/vfYr+/kGCmkpmsJsPffTzbHhl01gplYq6ycw466PUTbmCUO1CvHDl2LXbDnzuH1/kcDrEnLMuJu1EeWmby4fv+E9M06aupopPfOTjRJP1RJO1aOEkRweO92fJ+hZEJYJu2mhqEMuyGO7tYN/2dSw7ax4ABw5187Vv/RxJzrBl+xN4pLn/4Se44cabx5Bw1xPIlWTqmqZSMeEcAlVnk6rzr9EWXSxMbNHFkSRsIUgs6QfQuuEREqF771YyhTShpklj89i3Cg66uroIBsMEg2G+/vU7T3ncW1mxWGRoaGhsO4aQuq57wt/HRPnGWWdXF4G3OP/kyZO59dYPAfC1v/t77r77h2N902uvbeGKK66iVCpRW1vDpz71yTf5L126dKyE1cc+fhsPPfTw2Dz+ueef5/ob/IB15swZvP/9N7/J/+abb2LmzBl4nseNN97E888/P3ZtDz/8MB/72G0ArFy5kqVLl767G/cnYMfuxR+CTToe3PuvsD+rKOxkaOcxNPWtkMFjH/D4vFXghDzYN7ZxMvrryZDJkyW6v3EVYvx5f1/U9VTB93hU9b0k6B+75rdL3D9ZG+PtGD37j1Wy540J5m8tMuDhCCKOEqJx8hxmLliJoRfoOrSVlsY4tRW1RBPVWJWTQPAnaaqq+INdGUmVJIEZM6cxadJEli9fTjyeQBQFamtrKBQLiKKMoqooWoBAIIDnWIgCqFoAWZAw9By6WaC5pRXXLSvuCQKu4xCJRDBNCy0QwHY9BMkvVaKqGq5jE08kGR4eJZPN4SFiGCa6YVEsFXE9D0XVKBTzyIqIIEhEwhFeeOF5crkMw8MjxOMVlPQSgnC8llk+7yvMxmIRHNuvVykIHqKg0N87wO5de9AUlf6+fkKBIJZlIikqoqIhSjKhUIhiLk3bpFbq6+oQRBFJFAgEVDKjBXoO9yEKAWLRKmbMPJ1QJEQsHqMiWUGpWGLZ0qWcNnceoyMjOJbNtq3bsG0HVdGQFQFZkdixYxemaeJ5LqZhIUkyv/jFL1h6/nkoqsQlF69iUmsLruOAB5IoMTo6QlG3sW0RWQ5hmg6O7ZBIVDBnzmwmT27lggtW8PKGDUya1EZ9Yz3d3UdIj6YZHhrisUcfIZmqpFAo8Nvf/Ibh4SGmTJmEoZsUC6VyfnKMQCCIbTlsfGUTeHDavLkc7jrMrx9+hHyhSCwWJRIKENBUItEIU6dNIRDQyGQyJBIVSKKMJIv09HQTDAbJ5/OsXbuG11/fzowZM+k63E0gEOTxx58iGo0hihIIIjU1NUydOplXX32V4eFRug8f5oIVyxno6yefzfLSCy9yuLMDyzTpOdrDlGlTmNE+nZamJq677loWLVpIX18vNTVV2LbJ/Pnz6enpGVvUWLFiBY7jMGduO5ZdpK6+kjMXn44ku3zgxhtRJJHRkWEKhSK6rvPyxo0MeQZqfSWJRArHPva9C3gCRGJRHM/BE3zl7VwuN7ag5XkeZ529mGAwQH19PY899sQYOuA4DnW1tT7bxXW55557xpDXtVt2k85kUDXVL1MVDCJIIvFEgg0795f7H4H5M6YwNDRILB4dW/wAeG1vF+l0jsVLFiGIFooWQNM0ZFFk095OABLRMDWJKIe7u7Fsl1mTWwB4Yu1mkskKUlUJ1KBCXi9S1Et4gsj61w9hl6mJp01r84WiAkEWzfApbFv3drBm/cayqJhPFVdkhVg8RTFfYmhwkLVr1lBVVYsoiPSN+CqoLdUVDPQP4jkgizKiJBGOxTjY1c1rew6Vr1cmkysQDEdIVqa49PJLx67XsixGR9M4joeqBsjl8wQCKoZxXIDGNE00TSOXzyFKElOmTiVZkRwrZwNQkYhjWg7ZbA7bshgoq7z2ZLN0ptOoisbI0RKuKQICoiiQLRXY1e8r2p47YxaRcIjKVIpcNkM84AcTeUMnEla47vqryRVyTJ0+haGRQa697irWbvADLdt2MAwLPBXXFQkGw+Ryvqiaael0Hx3EswVuuPwabrjoIhbNmQnAC2vWEA2GED1/nHBOUXXxnaINx+iLuVzuTYJKx9p4ehy18Njxv6+NH+9+/OOfArBy5Qqqq6vGxjxn1dk4q84+we+N46Lnefz4xz8BYMWKFdTW1r5pzDzGMFNVFe/XUYT7gjz/6C+RBT/43LnXrwU7a1oz7bMm48kKQihB0QqRLwtUyYLDwR1rOPr6C4wc3ETpyE4c0w9mEiEVVfaYXBMhmUyiVbZSKvkLGY7dg63vorE2THXlRBQ1RrKiEkmwUcrrJQFNIhjO0jyxBtNWqW04nU9/4jYmTajFMCy+edcjnHXV3zJ/1R0suvhveOLZTXzljg+RSpYDQ1FFiChUtrTSOHkB1c3HFwC++w930NuXYdU1H6ei6XTmnHEtt/z1Z+g52ksiHuMf7/wsjlfEcEUCkRThRDWpmuOCPqIa5cjAKIIaQVAjtE2fQ2NjI3pxhAWzWrjkAv/5PPDI80yZu4KLrvvfLL/2m3z3B79i8uSp/O3ffM5/bkB2sJdDe7Zx8MAarNIggXLOK67/bXmeiyMIOKJMudshmkiRzxdRZYFYIkHdxAljc1tJPg4k/CHmoG+07373n2lunjC2fe97/wJAT08PjY3NNDY209TUQlNTy3tq/zvf/gdWrFiOaZp84pOfIlVZTVV1LYuXnMXu3btJpVI89NBDxOPxN/kKgsCPf/yfzJ07h0wmw003v59kqopkqoqLLrqY3t5empubefDBX/nCnW/oBxRF4cEHf0VLSwtHjx7lfe+7hMrKaiorq7n55g+QzWaZM2cO99zzH6dkGr6dSe0OUvvx/nb8Mzr13Pad6/W8lf9biSi924D27eb8pzrXe7U/uzqvf4x802O0od+37VM9lD9Gh/GHtGPX/lZo6Z+jCYBYpsJooQQTp7TjFXvp7DrIru3rmTH7PHK5AkO1c6nf9xjBSC2OHfUZjAIgyD5a4XrU19chCOA4LqInc/RoL5WVVfT0HKG2oR5b8KmPlmX4eaoIyCKIqkQsHkMUgyAomGYRy9bH6miKslJeJHF8GqYoEgiG0DSNQlHn8cefY+WK5cRiMXK5rL8Ygj+pUzUNWXEpFHXsUpZEsoJ58+b6tVeDIQb6B4jG4oiSQDyRoL9vkHQ6i2UFqa6pIx6LouslNFWhVNIRJZl8zke7AoEAhqGj6w6SpBBPJP26bZaFbRSpra5CUmQCnl/ftlTMk0zVcvjIEJblUsileWXDRlZedB6maWGafumRIz29TJxQj+sJGIZOMZ9HL5WorEySSafRSwYTJ07i+edf4PTT5/Pqa9tZvnwZS5eej6776sTp7CiO4xIIRNi1cxfJVALbNmhsmkhPIYPnCRQLRVasXIbjOGhaANsyGR4eZPbs2dTU1OLhcqijg9NOm8999/2Shvo6QqEQz61+hvqGOjZv3syF71vFpElt2LaLZDls3LaJRCxOY309hUIRyzKob6glFk1QU1NHKBrEswwqUymy2QxaOIYoCASDoTHq6MDAEKlUivb2GRTzeYKBAG2TJ/PIY48yY/oMVFVBkmU8D4pFE8cR6D3aR0tLCzt27KCmpoa6ujqe37+PTC6HpqlMaJnI/r37SSbrmTVrFnv3H6CpuYkD+/Zg6CUSyWpSqSQ9PSMMDcVIpiqwbZvBwX5aWlpoa2tFkgQKhRLxeADb8TCNEg0NNciKUEYKTSKRMMVSgYCqUVmVIhgMYFmOX6d4bILkIXigqSqCALKg0dXTw+zZc3hq++Gxb3Pnzp0kEhW4LsydO4+fv3xwbN+xSUQul2PZsmX84+M+Kvrq3g62HujmvGQFjmtj2waqolAqlvj50z5aed78WVREw+h6kXgsxo4dO8fa3Xa4lw1btjN/wfWAQaGoo7oC/cNp1u72f9ul58ynpraGbD6PKMlcs2IJT23YRudQhld293D+wiSCJxKPR9C0INlclu/e+zgAbQ01TKxPoeslJFHj/PnTCAc0CrrBz1/YyjlnLSKbKzI4OExTUzOCKCFJMhtffoXq6kp6+wZoaKghEvTzEkd1h6nTpiFIArblINgOiirxmw2vUzR89KFUKhGNRjEtv66v54FbXggQRZlYNI5pmsTCISRZJJfLoajHA/re3l4ap7cRi8UAn0aWLxTKrAvfXM8jGAozOlogHoyVj/Xt2y+9xL9efCnxYDWSUMJxLEZGRvjF7i2ULBNZFLlg2kxiZeXhuvoGTguJPHtwN8+sXcuqtWtIJqtpnz0HQ7fQglE2bt5IZ3fX2DmKRZ1C3iSfz/t1VAeGCYWD9PX18Z8/voeK6Me44/bPsGf3bioqfLRbliSMkk4wHMIVfORV/D2G4HPOPpvm5mYOHz7MP/7TP3HWWUtO2G9ZFv/yL/8HgMWLF9M6ceLJmnnP9vN77+W5555HFEU+f8ftJ+xzTyujvKeYYziOwy/vu3/M/443+J/MBEHAMiymv/o+YtbPgX66evoQRZFPfOQqArKI9HKc0lYJCxd3u08RV/INVGz6FGJkgK3Kl4glkkjlsi3RowupfvmvSOkFdFukvW4SmvUEAPFEiGg0inpkFsqOJSgIZCwdTQKpZy2widBAK9GEh2mmaWqeCL9r4az0dJ665hy+v/77PLrnMQ6nu5FsjfPaZ3DTLfNYce4S/u0/fguA8YTHaK+OQBWOV4mbOZ4LuuiMBaxf81u+efuPeWHz8wyVBqmPN7Bi6oV8bNFHmTI4CWENqDcDiNi2g/Xw8fx+9//TqLWnIXmTsG0LL+DQ0KZw4NmnEToKfHfGPcx37+X+rfdzaOQgWBLtNTO5cvY1fPqBz/LrX9zt33ddIfxIO6ptYLsmohqg9Eo5kEnL+Ika4PYLWL/ScHaX62N3RWl+ZRVDgwNoW6KYlw0hzarG8zz0beV0tZyAedfx34wgYL4hBDDG73/Dgo90nok00w9QnB0Szgu+r7PxnYcRJ7YPdur4nNMrvHm/bxoPrHiCXyy7m3sfuZddu3ahF3UmVU7mgukX8amld1C9vgajnMovVLmo1x0vCxS8t5anr9vAvzfexUNb7+fg4D4cy6G9diaXXXwpn77zNqKxGM4OEfsF5U1nr2UKaz+8lR+Uvs1vf/tbOju7UFCY1jiDq+Zcx/9a8jHUe1WMcvwgzXDwzjGQJAmnH+wH1BMbHBdnKNeayOfb/KnZf2W88l7jrj/L4HU8+nos8Hq3+acna/fPwY5B8293reNpv+8lLxf+MFSC/06TxrEXRFnCQyKitGAVdxKqHaXz0DZa2xcgtM3A1kLI2+7HDleiBMN+vdayCEkgoJBJZ5BEiUOHOmibOgVZUhnoH2L16ue4+tpr0UIqkuDiuS5GqYgWiuHZBQaHj5KoqMS0FBRFRNHsMkLuIMkqniMiiqBITpkOIyFLMpbtK5C2tU1BkmSO9vaRiMexLBNdL1BTXUc6nScWSyCJBUJxjc7DHWiaimWZFIs68UQS1/Vre1qWRaFQYPfuXZxz9hkU8jl0yyKVrGB0eIhnnn2FVatWsWL5SoaGBggEZT8YN02O5gdIJlM+SisKxKNhTNskN6KTqqxgdGQA1zaxXIsZM6fjOB75TJqerv2MpudSXV3ll+HIldi6ZQsTJtRQLJaorW1g/umnEYuGGRjswzJNnnziGT58618xefI0AlqISZPa6O3ro6ammpdfXk8oPJ9kMs5A/wgdh16nvb2dXD5NTU01LuAJEps2b2bG9LmoQf+5JVMVHD7cgyqrzDttHo8/9iRLli5m0RlnYNsO+WyOJddciahqtLS0UFNVRU1tDUgiR3r6iRcMWiZOpJA3MEvDBJQQU6e2YRpF6mqrGB3NEtAiPPvMWhacNotIMEogFMSWBDwbSqaB6/qiW69v30lb2ySqq6uQZRnHccjnc1xxxZXImkT7jOkYpkllVQ2qGuLhh39DMhGhtraWrq5DzJjRjut6LFp0Fo7jUltfT9EoMve0WQwPDtLV1cHMWTOQFYlgMMDwQD9z5i0gk0kjywoDg/1UVaewLJt582ZztLeX+voaBgYGsCwLxymhBTTy+Ty1tXW+Aq0iowUUDF1neGCQ7s48E1tbiO9KI8sF5NPqjvcxrp/Dapk2nge/fuhRrrj8IkRRIp3x6z0KosDg4DCmYfHM6ke54cbrcVx/UiRJEh2dnUyc0EJtbW1ZHMjvh0Kaykfu/De+8fEbuGrZEkRcXn19F3/7w4fY392LJIl88dZrGR4Z4cILVwICs2fPHusDgprK959+mWnz5nBG+2R0s8j37v4pT+08wmiuQCQU4LZrV+G4Lq+9tgUtKLJq8XzmTpnI1n0dfPwff8Ztly/ng1esJJVS6ewd4Y7v/iebyqrCf//RG0BwUTWVkdEhKmIhvvZX13P7937Cr1/YSL5U4jM3XcSiOe14nkTv4CCbtu/jrsdf5q7bP0IsFiMSi7NweivbD3Rz71NrmNfeyrUrziAYiNA7MsJdv3qCux9cTUU0xGjOz1lWFRFNVrAsiw0bXkEv+chqIV9gz569zJzZTqFQRFZEAkENhONjQ0NDA5MmTUIw/M5yZGSEQj6PPo6UZegGI8NpBEEgm8mglKGweEDjF9u3Ew8EuWV+K1WCRygOP9+2mW8/+zsAbl28lMZkEtcVsFyY2DqJKnEC//TsY2RyOX7+4CP87Re+SDSa4ODhHja8spGvf+PviEVjZHNZVFUjGomzedM2enoO861/upM5c+ZwwcqVzGifzlf/7sskQ0GqkiG+8JUv8ew6HxW9YOVKirk8oVDIz+n0IBTyKeA333wTd9/97+9uLJEkvnHn17n5/R/gySef4hOf/BR/+9WvkEwmOXLkKJ/97O28/vqOseNOZoFgeOz8P/rh3W/a//U7v8Gc2bNZsmTxmGppV1cXP/zRf4yhWbff/hkWLz7zpGP6nXd+g9ll/8pjlPWuLn5494/43r/8KwCf/exnWLJkyZt8ff9vlv3PJC420jc0zKjRx9y6WWw6sgXHc/j4TR/g3IVz2bf9NaZbU8CTkESHj867lc8tvp6AFidfLFDU88TrogiCyz1fW0ri5c9R0g0cyySbLxGvmYgcTLD98/vIzeiiT9mA57mUrAimYXL0yBCqIlBTm+JfLv0n/vWyf8ZzQahaj2E5lPKDyKVRJN0iFIjwuaV38Pllt+M6Nng2wrQi+2OPYRlZXv3FXbjPLkCUZBy9iFDuVZoTDQx8bQTxfUcohAfRQin+z19/H7UjjGmX8BwHERkBh3yhSLQqgusYiKKHiMjZk84l/W0LyXOwPQ9RktGLJYLBEEJIQo4FWXrBVaRfKaAMV/PJ5V/gL8/8OMFIEMEVERHxRBBjWa675VZuvOVarPuTmEdBFcLgWAwP9fGJMz/GZ8+7ndgZFciOheeB5QGexw+u/xE/uP5HCB54gkC1EqBUyNCz+zXMuERtXR3vX/kBbmq61X/Ib3htWqomUCodr5Nq3HXy9/+t7Isrv8IXV37lhL9pt5lj80fzPgX3FHVMW2omoJcKfkA+IGA9cPJzCILALTfcwq2f/CAA1nMyzq53Draosspt536G2879zAl/V86zkGLuKXgZxy0aiPLl27/El7/8Jf+a7lfwBsVTLhj9V9nJ0hrH23udz7/X/Nf/ShP+lBHBN5ppmmM/dvxNfSu67Klu/jGlz/H2dgHfyc55soTntzrvyRDeN7Z7srZOJixxMiryySjAJ7uW8VTm8W0eu553G/Aeuxcny5Ud35bneejP+gNpaMUn37T/2DW8WyT87X7vsbZKYobsoTzDezcTiR+lbuJZZPJTiVflMDc/hGjruNFGPEHCNjIosoZje2RzGQTR47nnVnP+2SvQAkHWb3gZLRjk9AULQBBQFJdASKJU1DENEJAJhgIguIyODpFMJjAMnaG+Yeoba3w0QAph6PDCs8/T1FLD9PY2QCCTLqAFBERBA1fm/vt+yaJFc6hvrCISiiBJEpZlY9sOwVCQocEBAppGenSE+vo6jvT0EI1EMG0LTVOJRCJltNAiHE5RymdIJCI4nofpeNimw+bNm5k+fQbbXn+diy56H4Io8NqrW+no2M855yyhsrKa0ZEMqmZj277YUiikkkvn0ZQgYkCjmM/6tWttkWAgSiiuUSzmicdjGIaFYdjEIjFMy0AE9u3bA57LlCmTQVLYunUL806bhwBYtkUpX8AwDCoqkjz1xFMUCwUuufxqstksJUMnnoggKx5aUEWRYqTTQ8iSBI6HLGn0HD1Ky4QmPNdGlkT27z9Ic1Mz2fwIg/0jNDVN4GhPD8lUAk8QqK2tJ5fNEQpqPPfcahYvWU5HxyHWr1/HX/6vv2RwcIDnnn2WmbOnMLltJkeO9JBKVTI6XKK2Jsm99/6Yq6+5HCWoEYpV4JVcnnlmNYGQysJF80EQUVUNBImf//jnVMaTyIqIGtKYcdp0EvEkjgUDfYOEQkG2b93KksWLeOrJZ1i16n04jkkmO4IgKLy+YwdTpk6jstIXBClmM+Xc6wKSIpPP5/E8j+nTZvDrhx/mvKXnIcoCtXU1mEaO/oEBguEIiUQFwwPDdHV0cvrChYiSx8jIEMlkCtty0XUdx7GJxiLoeqlMRYuQfGQv4JK5chqXf+YfWLd1D5//i0v50MULqaudQKlos2nTembNmk4mo/Pxr9/FS/uOsHjONH7z3c+NfbeiKHLFZ7/D2i27+dxfXM2lC6czcUIjeDaSCAtv+Qr/l703D5Pzuut8P+e8+1JbV3X1qu5Wq9VabGuzLUu2JS/xkn2DkEAIxBfEOrgAACAASURBVJBcYB547mUC9+GSmSEsgWEGBi4DBBICYUJuFpgsZLUTJ/G+yJJtSbb2bqsX9VrdtS/vev+oltKWW5bsGBju5aenni7Ve9a3zlvn9z3f3zI5V+DD7/9RPvfthzkzPYuuqZi6RrnWuPB8/9GH3scdO7dgOc6F3LiPP/Ekb/jQHwHw337lg/zeJ7/AwnIJQ1NRVZXaCtAzNJW//a1f5u7dV1Op1VhYKJBKpfnuffdjJzP81ue/xcnJthmsrioYukal3q4rpeA3f+493PPW29BX/LV1VVItV3jm4DP86d/fy31HzrbTaAGmoaFISW3FZBLg9997F7ft28/I5kEWC0vc/Yu/zfjM4oX2HdOg2mgHHfrJ199MrVHnSw8c4t133MR//9DPcubMGKZpceTIEX79s99mar7AH//qB3jbzddx8MBBVF1nz54bQEQYpkZmXzsQyaf+wwe5Y8/1OIEk+TdP0draQRgJpitlNv95+3f6q3e+nu2DQ5imiW07fPThB/i9Rx/m5nUD7Orq5k+eehIpBClTp9z0CVfMvG8eGOEz7/kAhqLyzDOH6ch2rKS+EPz+p/6S3zl18ML8dU0jimOCIOCmvTfT17OOL3zxs+Q6Ojl17DiK1Pit3/5PPH7wCR5+5LEL9RzbQUp5Ia8qtKOGfuUrX8ZxXpweZzV4/cQKeF29B17JfvPbv/NRPvrR371QN5VKUSy2D2VUVeVP/uT/5mfueT/wUkXStBIX+v8BeP1Bud27b+TwkSPtea2M/XyAJUVR+NVf/RAf+Y3/+JJ2xaFjAFz/Cz/L4cMvV/9X+Mhv/KeX1FeDGE9rccPuWzhy+OhKfRuv1cIPzh8qSf7dh/49V6UXufGadSwnr0aTFlclQmaXF5DhAhOnHyGoziDjJuu6rqUeVjg7dQbT0cm4HSiR4Mxsnajret7yE/8er94iLC4wt3iau+/6KT75qb+it1vQmdQJAotGfRpV8XGtXkJpsVQp8I1vHuS6naNcvbWfWnkawioNtRfPr5HpSOB5LRSpowdZxsZPMLg+x/zCOVLJDM2mRz6fY3zsNKlkFi9USXf1oy/XWJQFBreOIEompnQZnxknkemlXG/ipnJ09q6n5YU4pkLNi4jQMRTQQg9fvlh/O+/KFkRrmFFG7VA/SrxCuhAh4ohQMdquQ0IQSx+Ejxb6zE9NMn7iFDfd9gai0MDTzfYBYewTBwGqqtL0fSzLpCElQdgiWJzm//mzP2RkZBv7f/Rn8BUNR7YIJcTxD5jFVwtMLqdrndctlVdJoLyoLbGGT+YrcGD/p0A3V6Lnv1y91xIQroUdVn8ex5fq6wfBY1+NifDlyl+s81+ujmFYr/imKB/5yEdeaZ1/MYmi6COXs9++2M/j5W7Y6gjCV/IFrr5+/v2lGN9LtbXWmC4Ful/O7/SV2Ltf6tqV9nUlEgTBhR/ty40pHHsCAWgb9lyyzGvBhq81p1iNcbUEE8efJQ5nkVKlr2cD4/NjvFAXZOcOEksQloOmqMRINE3Hsm00TWV00ybiOObEyROMjY+xefMmqtUKLa9JKp0migSqcj5VTlupmpmZIZNJE0UxpmnjuklaXjs3LFGMROG5Y8/R19dNIuGgKhqmaSOlQNMMWk2PnTu3k065CAGKqqKoKo1mEz/wUaSKoavEUYjrOMRRTDqVIpFwUVUNIST1egPLstB1g0ajjm0bxHHbH1GoOqlEkkQiQSqdYmRkpM0CC0FPVzdd3fmVtlQMw8SyTEAnCAIMXaW5kjd07IUJuru6kFJy3733MTU9xcjICHEUomsq5XKJZMLlycef5Lv3f5dstoPevl46shkUVQMp6evrQwhBtVZFVRVcNwFIPM9n27Zt1OpNKpUSo6OjPPLII7iuSz7fRalYwrXaqVQ8zyPhJvD9kG9845ts276N+blZHNehXqvTbLTzUrpuklQqxclTJ+hb14u7YmLZqDf46te+xk037cVNpAjCAMex6O3rwTB0Nm/eRL1e49z0HJOTZ9m6dQuVco0w9tm1azuJpI2iqUQIzpw8Q6FQYM/eG4jimKcOHSSKwXGT9Pf2UywWSaaS3LD3BlqtBrZps7xU4sknn2J042Y6cjlsU2NpaZm+3l6OnzjGYmGBzmye4vIy6wbW8eBDD3Ho0CGKywU2bRptr8stW3j66UNcd/31nD07zujoRorFAn19PQhFUCwsYZgW9WYLISSWaZNKpVlaWgYRY5omiqKhSBVVUwgCH8MwCcOYwuISqXQH4tkpfD/AObXM3z11iLOVMvvdTu54815UxeCF8Qn2nBI4pyt0TDQ4NjHL44uzDEmTn25lCQ0Fsz9LHMd85h/uZ2qpyO1ahrurFvbJAu7pMs6ZCn/61JOUvBav372Nj3zwPYjxBRYqVYqNBknd4Lb+AT5+6928w+zFlTr6cK5tkl9ssPGpEh890A5088u5Ue7pGiQUsNBsUvaaZJIJ7th9Db+56zre0Ehin1rGPr1MdqpBcrxEftbjuvwgd777Riy9DSDrlQZNL6DHcXnDumH+4pa7eKPsID1eJTJVyFpEUYh3eIqrxuGtufXc2dVPCDSikEqrhYxhoLeTW6+9il9571u5q5KgZ7yGe6ZIarzCT67fQisMmK1WqYUBtmXQnTC55+Zd/LfBPdx79DiHCwtsVxzeHWRInS3TPR8Q9Jh87rFnqNSbvH3dCFuPFBhYgi2ei31yEevEIsrhc3z0qbaN3fvedDsjg+uwv/IcStVDna2hLzYonVviT15oA5nf3rSXfmljVAP0QpOHx1/ggaUZ1qs2n9tyK6N2knmvwVyjHXX4qlSWX7tmL386upvUfBFrfol+P6K7GaBMzqBMnOPG/vXcr8UXnlc1jtmcyfHre1/H7159MydOHuOhqTF2dXTxjjvvxjcMXv/6u9jnq2wMVawVsNtstai3GmRNm5tGNvFrH/1Nfv+//D6GYaD/7idQHjp04fVbD94LwA5M3rbrBuKett+ofPo46l9/CfnQoTVf0f5rL+wft59aZF+mh7LXZLlRp1Kv0e0mefPGq/n4h36NN/zcPe2CM/Oof/LZF7Wzuv+3vPlNkHCAGPmNh1C+8G1SQTvYnxcEVBsNCCOGsjl+5L3v4c8/9qe8+8fehfrRv3rpGE9PIk9P4r7p1ra5tNc2sQYYHBzgne98B3/xsT/j3T/2Y2vuk6GAGJVEMokkJvB9KuUyAhjo6eCq4SQf/pVf4ud/+T+zf9sWjjz+Pbbv3kFcHeexr38cEU1QWjhG2hRELQ9DWAhX0giaaLbFhpFtqHGK4nLEXGGRn/qF3yBWc7iOyfipg+haihv33sX1112PY0vq5QpStTDMkMX5c5h2kjAG3VLQhM34+Ek6Mg6IGCeZRDcjEq5Os14j5eYIWzp+o0gyYaKbOqpuoxlJNCtNaXkWRQqslYOYUq2OGpRwOhLMLpRZOlfkzOnTuBkbxavi6JLps2ewNSCoUykVSSQcYiIUIREiftExxXlrGs/zUFT1JfqhFCsBlKQkQoCQREIhFoIobkfQJ1YAhTDM4SbzrNswiidjmmrcjgJMO7p5y2tRKpeJopDFxUXMRAKv1ULxW0ycOI5UYfO1NyE0AyUKViJTv1SH/acQIdrRfH/4htYAPpcEZP/88kru4Q+jX19J/2vr8Jfq76Xk2Kvt90rKXq68qmq/+YoGwL8y5jUIgguDXYuZvDjg0vlra8n564qiXJKZvFguXijnwe8PUhO8dszrWn2tZntXf/Zypy+XYl5X118rzdArZV5fDvxePCbv+XZeLH3r615y/XyZ14J5XYtJDzSJ0ZKcePJeHv3eJ9i6ZTPrB68ld9VtBAiak8/Bgc8S5jej2FmkVC6slXYgqgBFifFbHrVaHddqg8VQEWiqhaoYVCpFNCNaWVugKuoK098OAKabNnHsEYcBxO3Q9ZEEKdoRjk3ThlhDSJ84aoe3J46QMr5gBiylBLESjVNKFmen0XQVXdPxvRZhECCFQDMNLNumXq8TRxG249Bs1NA0jWKxjOumQKqUy0X6+/qZm58nmUoTRRGGaaIIjXKlhGkaRFE7d2q9Vuf++x/hzW97M6YJ5WKZ8TPjnB6f5u677iCZdDl16iSZTIbHHnkKqcCuXdeg6SqNRpOp8XP0resnlUnjRwG267ZTmGQ6qVbL7Ty5cUQchZiOi4gFR48cZdPoZgxDJ46aTExM0ds3QL1eJ5lKUVha5N6vf4v3/dT7CMIAoSg0mi0UoSAlLMzP0pXPQwyLi0scPHiQN7zxDQSBzwtnxxnZOIyq2kRhyAPfewDPa7Fx43ryXb04jsPTTx+iWq2QSLpcc/U1nDs3R63aIsajoyOFqjo88cQj7Nu3F+IAN5nEjyV4knPT05weO8ktt+6nXK3h2C6RgAOPH2BkeISeni78oEUceRi6xdz8MpmOTsbGxjh+/AR9PUm2b9vByZOnyOc7yeU6qNdaPPbY4+TyeYQQ7aBegY9t2ySTSYZHNnD//ffzujvu4OSp5zn89DO8+Y1vQNE1nHSaoNLk1JkzHD3+PD/yrh9DCMGTTzyBbdp0dmap1asMDQ2181oKH9t2KS6XyOXyfP3r3+SGvXuwPv8syWQCTdcQCHzfR+YcKrf14NgZSsUaiS8dbTPNrPwOxTFRFCClpLGzm3J3O3+uPVkl8dwSYRAyNzdHNpdFVTXiOGLLZz7B2UqZX3zrPq5b38OPWptQyy0EUVv5iyLiKKZWqxNvzBDuHqBcqdApHdRvniD5ybbJ5b1vfTc3dvUiV56b6V1ZrP4cvu9z8lPf4rrUIKZpIGjrRwJBcXkZrStF+ZZ+opU0E/rnDpFOpxFSsriwiBAS3/fozHfiXddHoVOhI5NCO7MMj57FNE08z8cPfFqtJrquk3Bdau/aRLPRIgwFpc88htsSdHbnUYRAIAiCgBhBuDFPa3uaVssnXqyTeGACwzAIghZSUS6kbguCkKf7Gly9/2ZavodzeAHzhVLbr30l12NM+3cpSBk07hhdiUKsk/vqcaRs51Vt53qOiMIQIQSta/to9Jtt09upOv/5Y1/gvzx7gJu6+/j2296D53loQQ0p4bn3v5tKuYauOchPf5VgepaRkWE8z0fVdcIw5Pnnj9F5563k3vcuFuenGTQcxN9+EU3TUFUV3bSoVmpMTE4iBAz85v/BN555hre85U0U/+4f6J5Zpl6vo2s61Vpt5ZDLRfR2En7wRwlW9mP9dz9xyf0ifP3NRLu2XACv8hsPcilFL/jwBy+8Vz75RcRKpOeLJdq5meiNK4GTZuZQ//orF5X4QfvBz7wdejqBCPmNh5BPn3hRqfO7WdydJfjAO9qfx6B+9K8uOafgwx+48H7tPX9tM0tPBiihhRFLlKjIz93zdnqNCr1dOluv6cHt3UT/lnuIk1vIGSWeuvd/kO3PUVk4zrnD38U0YyamJslle/B9kzBQSaxLk+3M4bouCTPBsWeOEzUCNEew7bZfZLHRQbU2TUeqRKNs8oXPfZ13vuvNbNqc4+z4OIlknnJpHIIipt5BK4jxowZ+3UJqCp2dGUI8arUqMirhOE47ym1soCoOwlvGTqaYmlnClzapXD9CGCjBFEGzwcz0FKl0Dt1JEVdOYeaGQckRlj18PGTCojx9jp7+dYyPT+MmM2iGSaNWp3/9KKlcL5qZQAiF8BJ6ShhHL9GtlDgmQlxIUQSSCIkqfKJQRaCu5MwOkJFBTABaSCtqESkCPRQgBEIoSBET+E0ir4Ff9zBSHWiaRlxd5LnHHqTRKrLnLe+nFqhYBIToxOIH/pX/xry+Onm1zOsP2NDXblRrEWqr+/hfgXm9knm/Gub1X5XP62o5D3BWBxl6JSGaV/uOrgX4LmUrfjFgDFc2+PPXVgPG1cDwYjC92jz3YlB6vq2L+1zr+mqWcjWgPl/mYhDYVnKCFzHOF5sYn29jrfu5Fmi+XFodZUXBOt/PxaB1rQdo9f15tf7Ma9bxBT4Bozt2USrfjvQK+N4MxalJ0j3rabmjNPtuITH1EI2ubZiWfQG0CSHQNJ1GswQIUqkkUigEnkcrCDD0ds7WT3/60/z0PT++wnq2WWmpKCDEyn0NkUIiFY04jAiDAGQ7YrBhtBlRKSKIJX7QotVs4Fg2y0sVGvUmESFdXV2oqqRUKuK4Dt29fTSbTVqtJoqq02z5VKtl1q8folarkUwkmZ+fR1FVoiggCASJVApNNajV6u0otKGHZRnYtkmxWEIJFCJiLNMijMJ2FOQoQAjJG974JqSi4vlNNE1n/fAGqs0APwgIw5h0OkMi4dLVlWd2bpogDLA1k2y2j9PHT2MYOkeOHGb33j0UyxUeeeRx3v6Wt6LrBt/+9n287o47qDfrmLZLHMc8+uij9HT30mo2yXU4qIpEVRQcy6G4tEwm3cGdd95Jq+VRq9eYX1zgzNgYumpyy/59bUa10cC2HJ599lluu+32ldNxycDQEE0vQAtbtFoejptg7zV7UDVJGMZMTk6ybds2xsfHWLeuHyEE3V09fOPgvfT2dTI41A+xRjKdREhIOAmangfSQFMVkqkExWIRRdFIuEnCMEZV2ukuvvilL/O6229laXEeyzJZP7SBVDLFc0eO8MIL4wghqJSrhGHIyMgwqqoTx5LTp05iGDq5jg5qjQZzc3PsvWE3x48fp6e3GyFg586dhGFAX38vfV05Zs5NMrRhBD8IaHk++e4e3rBhGCFgbOwMWzdvJpFI0Gg06OvrQ0qolEvYjtl+loQgCELuuONOpCr4SvcSb37TXhRVRdMUwjCitLxEQip4nocQUH/XZkqRiqaqhEGAIEJTJXHcPvQTnofrJgg32tQ29zAzPY1u9tFMJQniCMMwiL6kQwWG1w9yzbYN1AcGMWyLamkJVTUoLBY5cfwEO3bsJJE2URBkdYNGs0X99UPwyfajv7ArS23vVahS4elDh9jclUJTVVrNJsPvfR1+IoFPiNRUVE0jDHyMGBbm5sgkHIRQkULj7Bs3YA30A5ID33uAm27ax9T4GDORz4ahNFlNIQx86v0Ox64SbL1qI/Nz8/Sv6yWsVwlUg6pm0WqWCcOI4nKZ+7Qp9t9+K8ZwH61Gk0athqEbxLFCpd4iWW2QTqcoNJqYP76Tz3zhH9i3/0Y6850YhkmpWMa2HYZbLSrlIsl0iqkBFfo6SLoJNFPD8zyy2Q6antc+PKh6TJydYnx8jLvecSdx7CMVQRQq1MoVLN2g0WqCEIw9d5z+vj5Ef5qz6TY4bKY0vmCeZc9tN2AuHMaQMYlknu4ug6VCmfgX3senPvXXvPcn7yaf6+SpZ5/FtlwW925m87591Gtlmq0WxqZNLPy79xLHcTuwmZD81//6B3zg13+JjlwarcPh7RvezoPfexBz8xDctZ9sLsPU1Fm+ed+9/OwHf55AXwn0smrP8n79B6AT1oamcRwT7dxMvGvt1DYX7yHhz77z5Ted83315gn/w4v7v5QiGb1xH9Eb9724L7l22dUA9WX7v8SB9lqiEiK8IieePcTX/uGT/Mjr9/D41/+GXdvuYrY8geZVSBgBdXOKppSo/Vvo23gVs0of+a6bGTt2FGonWZTg9KTZt/82DJGgERRp1peZWzxJbiBLZWma8lKAQpONw50UKyGBH+I1l5mZfZYjh3UynbuptuqYwQCqkcSwJIQ6KiGKYpB0c4RxQBhDvRmhqC6a34EmBVLM0AqKSK2K53vQ0ujpXYfm5ql5EESSsAWu69KRTjAxcYq+wfVYagBBgK4KSq0Zsr3DeEYXud1XUas12PP6m6k1GkQhFCefo1UrUxYCxayR7e4nCOIX6V71ep0oilB1DU3T2gck5/UZ2g7YYeCtsLQ+uqYRE2KqGkQRQbNGFPvMT3+H06en6BvYRD4/RDrVyfGJEwyNbCKSgkajQdyqcObY8xiagp3ItcfRLDNxboIoaFCpVNATnYgwRKzA4lcrL+ee93Lr77WQ1Xrg5QiSf2p5LUD/lbrnXc5yci3C7ocZ4+VkLWLpSg4z/inkX53Z8Or/X8oE95WawJ4ve56FXQ0UL0XLrwW41vrsciawlzo5Wd3XeXB4KZC4VhuX6+9S/a7u6+UW3ZXM55XWe7VtvpK+RChQVAiERr5rmNm5WU6cPExKVKg36xhuGrt7E2LxNGptDk91KBYLCGKajSaKlERBsBLt12yDUqlg6Ba6riBlyO4brkVTdRRVR5HKyj2NUFWJH3iYmooQ4PkBiqKiGSZCinZZIYnCkDD0kFJdSUOjUSoVSSU6ePTRJ5GqRrYjh6rpmJaFH3ggNeK4nez++IlTdOQ6sWyXaqVMJp3B99sAWtd1osAjRq6MX1KtLCOkaDMomoqmr/jk1ao4ToKxM+N05jqJ4pBqtYyiKdhuknqrjuc1sEwLx0mS7861U97IdtRiy7LId+fYtHkjqUxqJYG4pKunG8MykFIhne5ob+a+T6Yjy3333ceOHTuwbAvHcZFEBJ7Pzu3bUaTg85/7LMXlJfr7BpiYmCSby/H0M0/T050nk+tASpXHHn+CTDLNtbt2kkp1UFgqsH5oCF1rm98+/9wxtmzZxNz8HMlMCieRpNUMkVJQqVQJgoh8VyfLy0tIqeG6bXOsTEcHjz/+BPl8Fwjo6e6lr7+HyYkJFKmzaetmDE1DAJVynXrN4/jxY+i6zqFDB9m161rCMOLhhx7jkYcepKurm1qtxpFnn2Xv7utJZDt54IEHWVwssFSYp7g0xy379tCZ7+PAgQN0draDQzUbHhMT42zZspmnn3kGyzS59tprOX3qJIqiMDs7g6brqJqKaZosl5bJppIszM8RRjG6k8AyLeyEg26oRIHPIw88wK4d2whin+WlZTRNJYwCLEtDUYy2KbtlcfToUTzPw3YtNmzYgFSUlQPEtlLmWDZSQhBE6LpBtVbige8/yPD6QTRDbec/liqGpvPcc89jWzaapnPo0NOoqka2M49uGOiGhtdqIkXEX37xfsq1Ordft5lbb9jRPgRSFASgSJ3vf//73HTzjbgJa4UFUajVGhQWl8hlO/mDv2szYD/1ttsZ6O6ksLhMLtPJfd+5l9HRlVRGxSKWZSGkAkIhjCJarRaaqiAQLBVLVKt1LMsimXSQSowgwnFsAt/n3NQ5Hn/8cebmZrhq6xYq5RJSCLLZHEJKPK9FOpMgikLCCHwvxrLb6avS6TTDw0N09+RYWJgl4Vgszs3Rle/k5IlTnDs3w7r+AYrFIulMmvm5WUAyMjp6wS2gVKqg6UY7KrEI0HUdwzQoLi/z/e99l42jmzh18hS6ZtBsegRBxHNHj3Hi+DF27txOR0cS4pBScRlNc/je/d9jfm6e+flFBofWk0lnL/gBHzwxxoFjYwx0Z/nIL30A09DQGwsoIqbRcwu/81sfYXi4nZv2mmu2Mn1ugvXrB6lWy+Q6cwwODVKr1Zibn2F6Zprpc+fo6u7mnns+wODQetLZFPv27ef555/DD1pkcykU1eDTf/tpbrx+L0nHZWpijL//3P/gVz78f7UP0aK2Kabg0sFXLrWL/NOY813pCC4x2rX2rh9mQIAQa+sPJgEvHHmAR+77FLffvJXJ8ROkbcF1e2/BdFOYpkF1aZHIm6dUrNCRH8GxcpRrgq71O+jo7ua6/XcyfM1utuy8DT05iOV2Yae6CYVJOpWhVioSeD4i9ok0yWxhFt0wWZwrkc067LhmB9m0QxhJnMQIbqKHRqMCkY+hWiiKRIgQT5ikMhlAYOt6+7BCKmiGQqVeIpPNIxWbWt0n2dFNy1colqsYmoqmBKhKRKW4RC6TwHENfK+BGoZYiW6CoIKuLCGMHB1dN6G5CdxUJzE6ppVEqhaaIZGait9sIBSFWCjoK6mf2tZV7XRDjuNcsIxarf/FsSAKA5q1Is3yMtKv8fyhJ+jszCOCFmGjxDMHvs9Tj93L1NQko5uv5tzUDEcPHmD88CH6BteRSqSJ0VCE4PCTj1E4d5Z6Y5GE47K0ME9peZYorrE4V+K6/W/EjyUaAbGI2uD5wnp47fSqtcq8Js+UeCmDJ37oJ+FfXl4JNnklbb70vr+2ZsOXwzOvVl6N2fC/evC6Wi4Grq8UvJ5nUS8F3FYHeDr/BV5smnop8LpWm6uB8Pn/rzWX83I5/9pLnU6tdeKzFnhdzdpeinm9nJnBy93z89ei8hxxq4YwnBdd++cAr6aq0Qo8glhF1ZOsH+gj4Upa809QDwOcbCdWIsFSnMQ4dwgpIvREBtuycGybKIqplitomo5pOYQx+GGIqhgsFxfxgiq6odJshqhKO0S6lGBaBrOz57Btk2ajhiIULNuh0fIRUln5QW7HQVRUSb1RQREGQsZ4XoNkIsGZM2fZsvlqzp49S7lSpqsrj++1aDVbqLpFs9VCN0y6e9ppX6SiYRkqlUqFZrNJOpPG931UKVfMliQtr4njGLRaPr7vY1k2tXoDRZUkUykWFwo88OBDbBzZSLPVwLINWl4dhIKma2iqgtf0AYmiCYjh43/5VwysGyCfz1H36pi2QQyomgYoSEUgpILrOngtD2JY17eOMIqYmZ2hWq3R19ePEKBrCqoU1Oo1CgsLLM7Ps2//PpLJNEePPsfQ0BCFwjz9/b34YUgUwZkzZ7h21y7i0Gd+YZlvfvMbjGwY5uGHHmbjxo0IKYmjiLMT4+TynQQhPP3METyvRU9PL4Zu8PnPf47t269henKG797/XQzDxNAN7r3vPoaHN9DRkWZxYYlTp06QzWbpyvdRqhSp1SoEQcjp02N0dvbw+OOPsnfvXg4fOcxVV1+N5wV0d/WiEDEwMMDUuXOoQnLq+DHWb9rCiRMnmTz7AvtvvpFUwmTq7BjjZ2e54YbdGKbF9PQ5+vvWsXXLKIuFArphUK/XOHHiJIHv0dXVRSKZQFVVenp7mZycZHBokO9865v0dPWwbnAIVANFkyBilpYKNBs1rt68GU0IhKbShoGxzQAAIABJREFUbLbQdA3Pa+IHTeJI5+DBg3R3d1OtVXFsi2Q6RavVpFwqo6pq2yKh3sAwdDy/iRAKmqpTq5fZtXMntXoN3/MRioJUdUQUsby8jGlZJJNJdF0nl83SCmNs2yIKAwQhRAEf/9L3KdfqvPN1exhdl0cIBUXVWFpcxLZdNm7cSBA0iQmRmkUUtXMgP/roYzi2y198+TsAvPv1tzDYk8fUTJ4++Cz7b72RVrNJq9nEtm3Onj1LKpNFSMnc3DwdmUw74rbvk0xl2iatuoaQMYoSMzk5Tk93L1JRadRb7Np1LfVaiYGBdZyPOtxmymMcx0bImHqjzoEnD5FIZJidncFxXWzbJIoDqtUiruugqwrPPv00pm7gOglS6QypZAcLCwtUykW6urvo7u4mwkfKtinw8nKBL3/5y+zYsQ1NlYiVfLKd2Rzrh4bQdBNd13nssSfo7e3HMi3KpTK9Pd2kMwl8r4ltm5iGQb0RMDQwyLp1/RimSaPZ4Lkjxzlx4iS9vT0cfeEcjx05yUB3jnfcurv9PFdmUIg5XO/BsQzOnp3g2muv5fbbb+Vd734HShzj+QG6prK8vMyff+xj3HnHHWzctInu7h7CoB248w//8I9494//CD09faTTacLQp6s7h6IaKEJlsH+QwGty6KknuON1+8lkO2jFgkjqICTykhld/w28Xgq8Lpw5weLUAdZ1RRQXplkuFDEsScu3QBoEfo2xY4ewWhGalmZ2psbS/DR9/Z1UvDoPPvwZUALCWCGV7CGKXITV4vTYGIWlIs1KAxmoyMhiXZ9J2avQ0Z1H1RMYShaBT7Ps05Xr5fjJaf77n32JQ888w+BQF5mUgYxVNFWnVF4i0dlP6PssLy0hggBFxAi7iqLHFEs1IEEUpNEdhcJSjY6OLurVOr5XpV4vEYcRkhDCJknXpt6qM9gzyHLZQ7dCpFykUk+R7b4eTfOJfB8RhRhCosQR0rFoVGsEXovA8yiWqtiJNJrWjvYdxzGa1mZcW55HoVDAcZwL6yuMBHEYYElYmpvGrxRo1ZZoBoLjRw/ztS99nkpxkmt3jnLTHR8k0zlIR2cXvX1plgqnaDYV0h2dSN1GUyTSb9AsFQipk0qmSSYcdF1w/e4djAxczUzZw0ml0fCJZbxywH1+PfwbeP2Xkh8WvF4pZvg38Pq/iKwGr5cLfLTaJHUtWevmX8psd63rq8ut/myt66vHJKV8kZ/t+b+r2365uay1aC+usxZIPh8JeC1AupZv6GqQutZcL27/Uqa/5wH/aqDeeuiThNNHUYdvWHOuqwH/xQD/UnKlTHEYh0gp2zlYlZhQsWjJTvTkMGePnySjRXg+5DfvQXSOEB35GmqmlwiNIAwpV8uYloXruiDacJM4Igib2JaLobsoQieOPEIkUpFIIQk8n0ceeoTObB7LSXPk6HNks1lMUycOfcLQa2tvMYRhQBQHmJqDqqooqs38zBKLM2P4jQkQBqdOHGfL5i1UKlVURUfVYkytHbQJYpqNBoIYXdExDWvl/rR9diNFUCqV0aRFeamOEAGtZoN8dh1+uIAkxlSzNL0Z4lBl0+gGUikX0zAgAstI8b37v0N3Z2ebndJUdF2l2Wqi6RpDQ/3ku3N4XhPbdmm1WivzAkVqoEikUKgUq3z1S1/FshJouoEQAVu2jLJcWCTlJlGFzhNPPopqmpiuy+J8gd6efjq7sqiaxoaRUTyvhetamKbKC2PnSCRsRjaOgBQ8d+wUzWqJkeFhEm4b5Dzw4HfZuesastkM/f39VEoVdEXlsYceYnBoiDhqB2eanJqir3eAY0efZcvmUQaHBjFMgz1791IslxBCI5dNMzszTVd3D3bS4av/+FWuu+4GTMOhuFym2Wyy5ZotOK7D+uENxHFEoVCg0awzsmUTumpy/Ejb1/D6G3eiqRrrBwYY3TiCZepARE9vL4MjI4yPT5JMO+SyKYqlEkeOHKReq1Ctltk4MkoUCOYXF8h39dC/bpBUOk1MQCrtMjM9x/FT46wbHiXdkSOKfFp+SGlhgacPHGRoZCuG6wIBUSyplpdJp1w8L6TRjDAk5LvyKIZGNpdF1w0UTcGxbBQhaNRqeF4L27GJoibEOl/58jcY3bQRN+ESSYlEYBoGYRCgqIJms0G+uwfLSRAJSbFUxE3YRF4TISSxVFF0AyEVPvYP91KuNRhKp3ndTbtQdEmMRhw30VSN5eUicQyu40IUUCwsENQrdKTTZLJZ/viz7bQtP/H6GxnozhBEHgND/WiWhVQlCJ1YKHTk0gihEEUhtqUjpaBeb2G7KeI4RIqYMAqJhUIodBJuGqFoLJdL5Ls7qVXLCBGSy2VX/NtjWl4T3dAIWnVaDR/HSpDv7sbzm1RrVTRdx49CDMvGtGy8Zki11mTr1dswHRvD1klnXBr1Aq7jcvjZY8zMzNHX24OUAtMwmZudo7+vn5GRjYRhSKXSpFatQxwjFSiWllHNJI5lsmV0hLm5c8wtzLNheJT7v/tdhoaGcZwEmm4SRm22yLZ0qrUKjmOScC068y7XXbeDWrXC06cmeezISfo7O7jrug2kUknCpUkUEeFsu5sb9+4gn09TKMxx7a5dXLV1G1/+6tdYv34jPT0D2JbLjXv30pFJo6kJoiBgamKC0ZFRvvn1b3PPz/00uqFiOUbbj9gPsYioV0oszExz/NhRNm7ZyOg1m/GkjRByxXNwjeiulxFxBXvHy9a/5EG5WON1qRG0X23XlJXXGv/WarM97B/UX6vM+Tbbfm7xS166rfHCzGkcq5+5ySXSyRoJ18JMVimVK4iwE0uPqLXGEHEL10lQa9YwtTJnT3ybXYNDTE208MOQVmWS1tIUpVoRNZihWZqm0+0hlbWZKh0nYSeJpU5hsYRtZTAMi3OzM3R0drJUavBHf/Cn7L72at54212Y9gRanEBVIkrV5ynNJ4niiP/59/cx0D9CR0oSNKYQdhe1cpGEJrA0DYQkbASYpmR2ZomYHKbbhZPJkDUhUgOs1BCIbhRRpq6WSdoJwrrPcjXASA+jm10Uls+QSuQAk1hCKBo0Fz0W5qcwHUikUsShgiFNhARpRERqRGFhEUM3OP749ynMTdCVz2IaNs2WwDBVarU5WrUqxaUK5UoROy0oT09w/NDD7LhmEzv3vA63/2rGTp8hjJZJJjpJpzeh2CqTk+MMbRhBMW0WC0uoMqJcKmHqLluvu5VU31YSnUMoagqZ7SaVSaIqMWF7pSN4qUXhK13rV1LuvJxfZUKI9oHMqtclD5lWlWn/uYgQuog9vhL98F9KLragfKXA7+X0/IuJurXvwUuf99XA9XJWnS9qaRVWuXg8lyOtLib6Lpb/X4HXtWS1/+j5m7kaAF2OkV1d/5XI5Rbjav/S8/2s1calwOvFbV2uvys1p75Shnp1Lt215FLg9bxP8sU+ucHYEwAXwOta7V3890p8A16pmbMQbXbCtm00aVJenufM8WcQXpnS3An6Nt7IYtXDmH2GKNGLoqjYloMQGs1mO2KtpqlICWLFz09VVOZmZ8mk0yiqShxFRGHbx7inp5dEIolUFLq6u9puTUIQxSGaphEEIaqm0Ww0aLVa2FYKL2gATQR1/OYMnR2CnsGdTEycZWBwgGQyQaVawU04RHGMqijUqjVOnDxJZ66TpcI86UybNapW60RR3E4jIhU+/ld/wzVXb0U3YlKJJFHkU6uXMI0E9XoL3VRJJjool8tYtoXveRw+8iyu65BMuiSSCRKJBJquEoYBQeijqxqqoqIoGl4rRIiIer2K77cQgGVZlEslLMvi0MFDDG8Y5oknnyTf1Uk+n0eRCgsLizz11CFKxTLbd+zAsmyiMKbVanLo0FMMb9yEYTn4vk+pXMFybBRNJ+Um+cd//AqFxQV6u3vIdmTRVEl//zoOHz6MYehcddVW5ufniKWCm0hiWg6VSo3O7i4ef+ABNm3cQKVc4vjxY1x3/fVsHF1PMp1CKpJmy0M3bU6ePEVhYZFE0kVRFc6dO0cqlebIkSMMDAwQ+AEHDx0kkXCJiUlnMui6jhCCiYkJuru6WZiZQ1Vg3WAvV11zFbqZxKu3lctGs4wXtchku7GcDkxd49TpM3R357ATFh0defp6O3Hdtk9xtVKlI5ul0WgwMDTImTNjdPd0U6tVaLaazM8uc/NN+6nVayRcFyFj5mYKtGp1dl9/A7phU5ifx1QFiqasBO0BXTdXWFWBHwaYlkWz0cLQDZaWCxi6zvz8PNlcFjeRIIojQr+Bouhs2LAR3TCJYtqBhaTSNotXFeI4Ig7aSdwFMeVShQe/9316unoJAx/LcQjjeMUSBn7+3XfzoZ94B6JZobevi/mFRdxkEgCp6tiOSxDG2I5LFLaft2wux3KphGna/G/vuJO7tq9n59Ub28GLdIN6rU61XELXFAzNollv0GzUsIwkB544QKPWpDPbxfjYBI8+/Bibt47SajaJ4nYqDISCAjS9Fo7jsLy0TMJ20C0D07JoNNrAWqHtm61Ige1Y+JGPbugkkgk6cxkatSpnTp2hM5dHkTqW5QCSsbGzqIpBKpVDkRaWbXLs+ClmZ+fYu3cPmi5pNCoIEZPOpIiikDiOkBKSySSqqvH888eRQqUr38uTTzxKVz6PZhgkkhmSHVlEHLNUWKLZatKRzVIoLKFqBuVSGdu2mZubJZVOYZgmuq5RXC6Ty/Uwc+IYv/yet3DPW+/GsBVUVYfSOYgiJrQRzs0s8Zef+GuS6Qz7btkPimDXjutIJBJMTZ/Fsg2+/rVvoGnt7+7goQPk851Yps2m0c1s3LqBaMVsWwiBqqpEms3y4gxPPvA1envT7LllH1VhoPyQLIy4xN5wxfVfYwbih5HLj2Xt/VEieeg736Ir7ZJ2FOKogaI00AwFoRo4bgI37TBz6hTDg73Uq2cpLZ0mbNXpz/eR7L+F9Vv2I/CpFKZwJSwuPs/S7HNoooZpODQbSTwvz/LsMToyHUQhiNjiN/7j75Hr0rnm6q3MzJ3j5lv3sXX7dtK5Ljq7O6lUQagOsUwwPl7kI7/7xzx16Dn233obiZRDJAWqnqGwUKQj20mtHhFFGnFYxHVNWq2I//0X/yNbNu6gI5lvA9CozHLpHIYlsV2XwrlxmpU6tVqDfP8w3euuwcck05mkUqtRrsxTLE5RWp6g0SjR39+PpiSZnSngug4Nv4xhOmgyhYFGyoTZs4eZP/osJhHjx09QXS7iVyqEjRamlSQSGURsszw7ib80zXMHv8fW6/ez5453MleoMnbsOMWpSaYmjnD0yJO4qSSDI9sozkxTqTbJ9/ajWyaJpMtCcYnCuWlS2Tx2MkNxuYAiJYquraHP/vOt1yvRZy9XbzXzeuGjVXN4Nfr6P6dcfA9eC/D6YjP0l2KeVzO+V8K8vtJ+rqSP/8+DV+Aj59+cB3Grgw3BS09iLgZT8AMGdC3AeCmge55FXGsBnn8frOTdWh3E6VJyqROT1aa7F8/14rmsjjr8cnO4mDG+mFVdzY5eaqznx3Y55nX1WC8Fds+DV23DnpfUWS1X8lBebCr9ct/hWnK+b1V1cGyL8tI8U2eeJanXKbYc0kPXEBYmCOolhJFifGyMVCrL4uIiyWQS32tSrdVASEzTBGJOnTxJPp+nWq2ga/qKwh6j6ToRIBUJcdts0rIMhBBtdlJIVEVb8SOUCGL8sIFUJJbu4NUapBMZFDtLX38fyVQSqci2X56iIITEDwLiKF7J/SlQFNB1g/n5RTRdxzBM6o0m1WqZHdu3kclkUNR4xRfYo1Krk0rlMWyTZrOdaNwwDAxdZ3Z2hkQygeM4LC0t4bjOhbELIdBUlSiMicIIEUkmzk7R3duFIiW+385p2fbrFTTrDVLpFF3deVzXZXBwHYqm4vseQkg6O/PMzy+AFORznYRhiGVZaIZOd+8AR48cpbBUINORQV0B/hqSVDpFb28Ppmmi6RqmYeJ5HocOPU0UReTzOdyEC6IdYCiOY3TD5NTJU9RKyySTCaQCu/fsBSHwQ58Y8P2Ab3/nfjKpDJqqMTExwejoRtyEQ73RJJ1KMbxhGNdJ8sX/+UV2X38dw8MDZLJZSuUy42PjeJ5Pb28vYRDynW99h6u3bQYZUGu2CAOFb3/z2yAiNm3ZQKPZwHLSTM8sUl0ucObMGIrWTo+gGw6HDh6gWqsyMDCA7bg88shj3LjvRmZmZhFC0JHNYtkWs3Nz3PvN77C4WGDTpk1IRaAokpnpKSQ+qiaIVXAdjZnJ0yQ7skxNTWPZDqZpUlxeRtc1LNsmWgGUmqphWQYQY5gGqqaiKBJiCAIPzwtwEwmEVIjiGK9VZ2m5iKab7UjSUUC9WsayLKSiAoKpySm2b9uO45icm5khlc4gJJSKy1hWAkXG5Ds70DUDJ5FamYdGEESEUbSSxgeq5RK261CtV0lnOnhhfJxHHn0MXdcY3bgBx7bxWh6pVArHboOywI84+8IEszPT9PbmaTaqHDnyLD3dXVSrRW7YvQuhqXheC8duH5ooikrgtZBSYJgGqUQSQ9NohQFhGFJaLjI3O0er2UKRbR9aqSo0mw38IETVdGbOTeI6Dkk3wQvjZ6nVGyA8Mh0pHnrwAaq1CrVajVQqSalcIpFItlNL5dJtE36rfSBSKpcxTAPTNCmXy4RByJe/8hWuv/56Dhx4ilQqw5ZNGxgfH8dJJIil5JFHH6E338ljjz3MXXfdydzsPKdOnaG/bx2KqqCsWOpYpsnszCzlygJSCsbHxvB8j2uv3Ynt6HheC9O0ePzA06zr62ZGHcZxU7zt7e9gaP0QB556gpgYQ7XQDYVGo8ry8hLbt2/n8OHnuP6Ga+nr62Z6epKxsTF2774BN9NOy9VoNHAcB8MwmC8sc+b4sziqxx13vw4Mm6bqoq6VS/MVyFrpPK5kv3t5tuM1NJu8jFzpAXRbLqHkx4KZ8dNEjTnGTh5C1zR61nVSrYW0WhGzizNI3WZdfphCYZoomMH3i0SxxaZN1+MnN1D3j1Mt1Jk/e45y7RHiZgcqIQnXJNVhIhQby8lTKrzA5MQLjKzfSMMT7L7hNo4de4H+/lEMu4NyXZBIdzGzMEOpIsjm+5iZLWKa3XT39zE8uoP3v/9n0HUVw3GYL5TwGoLBwRFOnpnkV//PD7O0VKW/bwNCCmzX4Md//EdZKp2l1ngBR40IGkvoFFGjKmE9IOWk8X2PUCo0PBPdzqFoksJCHV3RcUyT0G9RqVQwDAgDiW2mESiYpkK5uoDfikklu6mXKpw8foD56TPEUQufCCuZoO436R3oIm4WmJgZIyYi8pusy+t8/cufYHTjCKSG6Nywk2Ti/2XvzYIsue4zv1+ek3vefat7a997BxrdDYAUd4oSRUoaSTMxWmYkSyE/2KGxn2bsl4kJT4Qe7AhH+MHLix2emJAnbFGWKIokCBILSYAAiK3RC9D7Ukt37XX3PVc/3CqoUKzqboDgSBbnH1FRVXnPOXlu3nMzz/dfvi9FZ3sLv9/mqXOnCcMmN+7cYnjsBKP5LDdu3cFJpDAdG4Qklk7y3ptvcObJpxFSxbRshKoRHfB57xJP7t+fCSVC2RMYFWI3qv/BtXZY2dhB6/BB+7oH2UHg9QN7XD6Y+vwf24H0oH3mQddl//+H7dcfNv5BYx52jR80PvwkztjbZj843h982//3Xqy197542D3yoLn+gwevYRj+211AEwTBQCJh30LYtYMilA9jLDvM9oKoB9WM7gW4B83pMNsd97C5HeZd2V0YD1vA+/s/6IH8KHM96Nhh9b4H2V7w+ij2KI6An9aCKCSRzlEaHWdh6Q5xx6BS61EojbDgZclvvs6F1S6ZuIUds8kVsgShvyNZ4WFZMYLAB0JSyQTtVodmo04ykdhxNKgIKYkihX6/O6iL0bWdz27wwDB0A0VRIYKVlRVs08IwDXqujyodVu9tMTY5h8eA+EZBodNu0+t2CRUFXTdQhIKqatiWhRCSTqeNaQ0ILzLZzE6Nq00Q9NFUDQWB5/XQpU6zvYqpJwkjnVa3hmGk6LYb2LZFv99DEezIWehks1kURVKvNZFSRZUGhmFQq9Z5790rvPTSSwwPD1MoFGk0GoRhSL1WI53OcOv6DdbX1xgZH0PTNVLJBAO9vAhVk+iaiiolCwsL1OtVlpaWqNdqXL9xk7PnnkQqEs91WVq6y9zsDBvrm7zz9gXu3V/mqaefBCXCsMwB428Y8ed//jUUReFzn/scuqGh6xrVap2N9U0yqQxvv/k2I8MjbJc3OfPkWe6vrpLJZHFdj/X1TWJ2HEM3yGezZDMpYo7N+fPvoFs6mWyGdCq1o32awPMDTMPiO9/5NmfPPU4QQhSGJJNprlx5j7m5eTY3N5mbmcawTUzL5tnvfA+v52JbGmfPPs7W1iaJRJJmo8n66irbW9tMz0yTTNqsrq6iS4ex0WHWNzYpFku02x2KQ8PYMYtvfOMbPHHmDLF4nPPvnOfY8aMcOzLH0aNH6fV7XLx4kZnZWYLAI52KY8VthGlg6grtRhkhbXKFAgB9t0s2k6TXDwl3739KhCCkWR9EvDVdx3VdhCLottvY8QR+EKCrGvfvL9PvdNE0ga5bhAh0Q4fQH6SNKYJWu4NpWYyMjcBOcptp2YM68B09RkUxAA/w8foR59+5yOTUOBKFMAzwdzIeFhYWeeH55xmbmMCK22yXtykNlZifP0IY+ISBj2NbVCtVHMum3Wvhun2kahBFMFQsYJgS3TR54swZDNMgP5QljHwUVUeJIlQh2d4qU6838d0uTjyGlJJ2q8n95YGEjWWY5At5rl29RjqbJZFM0u359N0edsxB1wykNIgnHMqbW8SdOFevXafebjEzM06n0+LkyRPk81n6bod4wkaVGtvbWySSg3pmKTQajQaaZiKEitv3IRJcvPgu0zOTHDkyT6/fZ2x8jFw2i8BnqFQiCEKkAu9eOM/ISJ6VlfsMj5TIZnM4jsOrr7xKPJHg+eefp9vtMjk5Sa3WoNdrks3mKA0PMzkxTrmygRAhpuXQbneYHR8m6jX5Dy8v8j//L/8jX/3KL+/U6ieYnJjkD//gj5mYGCWVtnn88ZMEvsL3X3yZ4nCeIHSp16vkcwVefPH7qJZOKjWoI5RS0m63Mf0+F985z5d+7dcx0nm8SCMKFeQBkZkPY4c9zx719Q8z7t+9HXyt+l6f9tY6RrSG11tl7uhjuFqCdGqWhTuLWLagkJsiM/LYwDkmAlKpIvHCMSK7hOf3uHWhwksv/RknH3PIZx5HETaZ5AhC6jQ6G7iBhx+pFEvD3LzxLooAJzFEowfnPvkbbJY7WFaG8naNeCKJ0PuojGHZgiAIyaYm0OwqmfQwmvDIJB3aHZcXX3qD40cep9OLKJQm+fznfpnj88f53X/+L/hH//g36bhtpKbRaG2TzcURIsJQkkT9kF63gR+YJBOjNHp1rJiDbgyxdPceywuXWV9Ypl3dpFreopAbwjKTxOw0jUaTbq+OlAq2HcPzBrX/mVwaL3RZuLuAFCZGPsUnPv/LCM1A1SIazW16/Q4irFG5dxs17HB34Sp6QuMzv/T7ZMaOojtpiAJGx0oU5yeIx4pcunABofQYGZvBcJJkCgUWFhdJxOPYtoMfRJRXljEMi3Q2O9CNRYBygFrEPuC3a1KJPpBsvrhwl2Qq88G+yuGRw4/6PTnIDgKvHwByf8c1rx/mfX2YveujgN8Htf2w9qD73Ee5B/40+/SfK/AqpfyJiNtBdphH48PYbvtdkHnYBx0EwSDFaY8szqOca3/k9VG8WrvHHyVlYn//gyKih3lJDmp30LGfBrx+lHN+mNcfxYTi0490VDvN+OQkm9Uy26v3sBIphibnyZz4Atnl5xDDp7DNAdjUtIGOq6aqRJFA0yTdbptEIkG/55HNpAgZEL40Wy1W1tbodnvEYjbaTrSq2+3syR4Q+H5ItVrjlVde4+jMKXRdR2gqru/j+m2SaYuQAStqGIRYlo3j2AhdAxiADBTC3UhvEA3kQNw+7XYTiIiiEJSQKARVGjiOjdfrIfU2upbCdjJ0+1V0PY2UAZVK5X320k6ng66bEAnW1jf58Y/fIJsbIplIUdkuIxTJ+fNvc+7cWVLJOJaVoN/v8Tff+AYnTpxACIkuVNbW1xkdH0VqEtfto0kJyqAO2bIGEex8Ic/x40dZvHuXk8dPMj4xxdpmmUwiyYsvPMfZs6dJp5LEnBhCCJ58+in6Xh8hBSHQ7vR49+JFnn76aaamplAUiMKA7fI2I6VRpBD88Ps/xNBN6rU6n/zsp7AcB9u20XWT829dYGuzyttvvc3c3BzXr16ByMc2dYQ0mD86j6qrqELy7qXLZPNZvvPMdzl9+gk0TaLpgKIRi8W4fu0aUkqGh4cH8gkyYmFxmaHiKJWtMieOzDE6kccwDdqtHoQK9VqZ+blJSqOTaLpKqZTHsSxeeel1ZuZmqVardDpdtrcrKIpKMh3DicUYHhml0WhQKBTQDR3fbRGLxzF0k9LwMGtr6ywtrJHJ5NAth1AYSATPP/tdHjt9ju1yFcu2EEpAv9dE1xPInfWqSYHvddE0HUUIujt1zl6/j0ChHyqYlkmv06HXaTOUy9J1u8QTaaSqE4UhvW4bRUp0w0K3LDRdI4x87ty9hRKB7cRodTqYpkng+4SBSr/fwPd7mEZykKGgQeB6aJrE91yUSKHVbFPIFcgX84PooSoxd+pmDV1H1yS6rnH37l1yuRzSEJi2iVRNnFickABdt9F0C0UYBKFCGIGQ2kA31bbxXJdYPE6lXOX8+TcZHh5GSoHveXSaTTzPo91q4fZdjhw9ipACLwx48413mD8yy/b2NoZpIYROs90gEUuytLjIxPQks8eOQCBxnOQgpdZ2sG0H07RgJz04kUgOsggiha3NbYQYkEK5boBQBlFkIQe17alUgkQiRrfbol4tU68PIrRR4DFWymGYGmPjo8SPBFRtAAAgAElEQVRjcWzLQtdNbNvCicc5cfw48VgcUIjHY+QzJdZWt3H7AUJK/MDHNC00XWd56R5+r4X0O2gzX+BXv/xJNBGSS2X41jf+hrmpGT71mc9RLOZIJE3ePv8WmXSBp5/+FLfuXqdYzLO2tsqnfuHTJFMp5o4dZXt7m3g8ThiG3L9/nxe/9mf8Z3/yX+EbSfrCQlFUzMgj/Bg3cAcd+3kArxE+67eu021cIwq3iCWGkKlpZJBh+e4t7i9fI5+dQA6dwDAttjerpLITyNQUSmyIuxcuI9nmt379D3HsWe7cv8Vm4waOU6TT9um7HaLIJvASCBOk8FhbW0G1Uqh2Bi1WJJPPYpkqqbRJt13GdDTOv77C+Xd+wInjM3h9lbXt1xgpzdJpbJNJJljbqPDEuU+j+ALDSbC4vEIul6dVa/Df/ps/ZaOyztjYNJY5Ti59gjDIoOZ1Xn99jWxhlkSxgG9kCfsKm7U1IiVCkkbxPXTZxBYtTMsnnrJ47+oVVNOglDuO5Si0exv03BbVcgdL1ZA6VDubJNJxpmYfI54YQ9UE1y7dpN/ssnr7JprfwzcL+LU1EpFH1PPZavX56u/+IVF8HlU3EKGPqkoCqdLSQzp1nWI6x8bqdSqVTVqKRaE0yCxKJVKEfoCh2fi9Js8//wJPPf00EYJQUVGUn8xKOBS8EqAQoRAN7qdEGHbsg33/noBXDtUu/Y9jfx/A66OUD36YuX3c4PWgKO7PPXjdD7IeBhD3h7cPY+naBcR7U4v3tnsUILo3vL5Xa3X3tYelC+w93/7++1/f+3s/m/D+fnuLsg+6HvvTB3Zf2/v3YSnKe8fae669x/b38RfeBEVBnXqKB9lBgHj/+/q46h1cVSIUH6l4KEh+/OZ7nHz8Ce7eXGR+cgJXUblZ7jC08RoiViIIFFSp0uu6hGi4fm9QCh/ugMbQo9Pz8PwQKTSWlxaZnhjDNlV02xzU+ykKqpQoCoTKAHD2eh1MQ+Pk8aP0wyaIALkjtZHLDRFJC6/fx3V3QFoUIlSVYHe9RiFK5CMif5AWajhIBO1mm0w2jzBMdNVE1R003aTZquN7XXrdZYJAx3LSdHtdpJRI0cHQE5imQaPVxLYt/MCn70c4TowwjJiZnGZ5YZGV5XukC3EsW2eoVGCoNEQskaDfq2M5NkdOPoam2jz77ec4euoEoxOjtFp1bMvE8wIiVIKwh9froQqJHynYiTTdZpNEIs7axgbFYoF33n6T8dFxpqemsByL7XKFZrtLrlCkVd/AsKxBGvD1u3zv29/lc1/+PJZlYpsGrtsnkU5hxeNsl9vkswX6nQ6VWplkJo7txAYSR1LDNFQSKQuvFxAGHm6vy4njJ9DNGM//4EeEnsfs9BxELu12nZWVDY7OTjEzM0Wz02J0bATdMEglhxBC5fq1G9y4foOj83Os319Bakl++NLzzExN8O6ly0zPTBJzRrly8wLxjI0gxWuvvMHRI2NoqsrKyjLdbo90JkduKIOVsIknUvT7ESOjY4SRj9QdCsUS7XYTTUbYlo6qhPRDF6EYbKxVeO67z1HZ2kCVFtevX+fYkRlMGSCUgHQuh9A0TGuQCux5EbaTwvMjNM0gCiFEwQ8FQjEGkjmWie+5+H6AHXNQ5AAshiHEEgkidZA6rKqSamWLtbX7OLEYlmEjFPDcPqqUQIjruphGnIiAWMxEUUJ63T718hIxJ4Fhp0BAOmOh4GIaFr2ui2nGqJRrvPzSjzh97gmCIOD7z7/I7OQ4YdBH6ho9t08qlSaKBnI+uqGztrZNMpml1+ug6waaauFFAVIqNGvb1CtblMtbZDJpfDdA0yRS03Bdn2Qyw/pyhXfOv0M87lAqFoklMoRC8NqP32BychohBIauIpWQe/eWyGXTmIbB7Zu3SSaS/NVffQNV13js3GkM28YwTYJemV6vha6beH6A6/uEQiHoRbRaLYgChoeLqKqk3WuQTKZZWLjPxsYWw6MFkmmLRDyDaenU6zVUabJwd416rcXaxgqmpZLNpun2Q+KJIm+/fYXR0SmCqEerVR1EXV94mZW1NWbmZoglbUIlQGgm25UKt+/cZfHuEgSCpbvLpNID4pgJJyDqt0j9wq/RbbcZn5jB9UNQVLYrNYojebK5EkImSSRLKIaGagt++MLLfP7zv8T80ZO4CiTzOVa3FkgkkujSpFUt8/pLL/KF3/k9jFgMVRWohAgiokPYcx/m7N3/7H8UCbpHsY/iHP8wzMi7bRXlo+l1DvicBmk+e3ie8Ps9/o//9b/jV774FNur6+SyMUzVoXDiE8x/8rd46rO/jZmbR5iS8vJtyiurDE8/ju1kCJpb+Dic/PRvEMXzGIaK7PdYX14jm3LQVEF+aBI3sihOjpFOT5EtjrO61eGZb77GROk4o6M69dUazdp9FKOMLy20KEs2q1Or15memMG2FUSYpdNu4IUB1UaVREyj29oklioShSG2ZRFFColMjlrYJ5OfoFJTUO04aAHCENSWBVvlMqXxIgoendoy+VjEvXvrDI8/jh5L0/IiYulRgrBFq7KJ8CJULc/Jx34ZT3RRVG3g9FMUOl6FyOvTbtawVYHfaGNGgtXFRRauvkivsUomoZJNx6mVK9DdZnHhHrOPf4LM+Dx2cZZs8RiEPlLsEmsNPmw9NNAsiZVKkc2OUltb5fXnv0dMNSjmxxB6DF/T8DWFbCzDC8/+NU+cOoo0E4S6g6CHokQDmqYoQkYKfldB1XSQECkBRH1E5BMKg1CRhIocSJntA67vr6FHCAZ9mO/B3j3zgWOJg4I0h2cO/kT/A35+VvaoQPWwuT4sI/Sgfg8rW3jYve2g348CVh8Gug8iXj0oqLfb7ucCvO7+fVCk8MN4f/YvgP3j7QLZIAgeysR1ELDbf54HzfWgRfko895/fO972Pv/QZ6Pw/7e7xQ4DOwf1P8wb9D+eTyMsOmgvgeNddBm5KNapIQ7fHwgFMHc3DzlzTbdTkjoq6TTBRRriECzEEs/oqNaoIT4oY9haQih0e12MAx9EIkNB6mWqVSKWq3K+Pg43V4HTVPp90BVdCIf3K7Hxvo26WQSQrAtC6mqSE3D0HU0VScMwTQsPD+ASCCUiHJlm3Q6hapK6o06hmHj+z5hGOB5Hq7rIYVK33ORUtJoNkGR9HoerUZ9UH/n9mnU6/R6HdrNiGSmRLnapNlsE7OSmFqcSnULKRTK21s7ILpHwjZZunOLxbu3mJ4Yx+u22d5c5+TpJ9FUC1UYfO3P/4qZmXnWVldIZ3IEQUCv1+XihfM8/vgpDF3H9zzu3r1LIZdHUzWEgDAIcT2faq2B7Tg8/+yzHDt+HEPXAYVcLodl27zyyitMz0xjWzZ37tylkC+QiKeIEPi+T7PV4LFTx6jt6Nz6no9hmrQ6HQzT5P7yMpaps7m5ztlzZxkqlgBYX9sgFouhCIVev8vY2CTl7TKrK/cYGx/jjTff4tyTT7K4sMTVa9cYGx/UHhuGQ7fTIJXJsLm1zdBQEUKQUsPzXJaWFvjkJz/B17/+dc49+SSdVofbt69y9uwZlpdXOXvuLN/97neZmh7BcWwsI0G/30VIjyCAWr1OuVwhl88Ti8WxLINXf/QKjXqd2ekpkok4QTCQInH7Ln3PBwSdnkvcNlEiyeLiMsdPHOfMuTOkUwmkCrZj0Ot1CUNIJFJ4wQCoKopA0wYyLwKFRr2ClAqGPvichCKJogGhUr/fG8hBMIh4u70+QoGXX36J2dkZTMui3W4Ti8VIJpMDB5bXfT+Sr4gBC6Zp2vzZv/+/OXfuKYTQ2Nwo47kBQ4UcqmqgCA0/GEQVCSPKWxXCMMKybC5evMTKyioz01Ncv3aN69eucfKxx0AR6JqKpkpazSaarnP12g0M0wYUbNvC1A3W1zbwPI83XruAJCJfSGFaBvnCMOVKm/vLC2QyaTzXRQpJt9MlX8hy7MQcmqFixWIYhoXj2MzNz6NKwY0bNxgaymOaOjOzxwiCANO2yOaymKaJpdlMTU1jmw6LC8v4fYVY0kJIDT+IEFIS+B6h79Jq9kinkjQaNfr9HqlUgmxmCE1VGSpmKRaH8Fyf+8sbOI6DqgqSyQSe7xOPx1EIabVqnDh5nGazQ8xJ0u03efXV1zh16gS6LvnBD17iyPxJqvU629tb2I5FJpOh3+tjajqJeIzx8VEKhRztbodcPkc6k0SJQDbXMXXBzaDId775bU6efIznnnuel156mbNnz1AaKbGwsEQqlRl83hI6nRZnzj1FMpOm2W2DEEQKmNJCEyZRFHHr5g2+8Iufw3DiBz4PPqwdttH+OOzjGgd+NpvsQ6fn+7zy/LeorizQblSYmZnCyJ0mPXkaRY2jWQY91yOZLRH1exw9chwjPYqZKLC2vs2pU+eIdIdIkdTLm9y7e5vi7Ah+FGDFDWrNCoYp6XRq1Oo9CrlhCvkRarUK//3/8G+w6PCpz32ZQLeIEOQTeYQqUVWFTDaBbekDwj8REogIQx+Qirk9j1Qyg2YkUFUVxzHodBtYtkZcd7l28U3+5X/9X/KbX/4Cwm2hhX3+t//9fyKWsnjizBMErkLaGaJcWaHV8Rkdn6NRaSED6JRr+MEqMVviBx7VZoN+5BNPFXb00g0cJ0E+P0oymabV6RIFLoHbpd3YZH3lFlE/ZOHuXR47fYJmv4aTtYhEkqm5o0wde5xmxyVdGKUfSrQDtpgDF4NCpCjYTpzxqVlsDb7/g5e4cu06p888gVQFUeBh6ha9dp1rVy7z2KnHcbsenqUSCkEgFCIpCBTQmyGb65vE4ylAQ8FEwSJS/J/Bevs4MhQOAmcH7DEfbUo/U3tU8PpR23yY+8tecPgg7piDsMFBbR4EXh/U71EBuZTqzw943RWD3ms/DXg9DIB+mIfbYX33eiEOOv9+MPao8961vTWvu+nUB839UcDxXuC7Swq1P/S/f9zDznfQ+wOQuUnUkZMf0Hk9zB4EXvfO96e1SIkQEfhegG6YSCFxEnH6/S5X3n0HQwao0qU4d5yguoIReSxvNEimc4RBRKSApmr4nj/4DBRJsFPbZ+gG95fvUSmXyaTTmIZNrVZhfW2VxcVF5udmaTaaJBIJNtY3sBwHRREokUKv57G2soahW0ip43s+QoQk4nE6nQ6B76PrOppqIIUcpAVFYNsxUARCDogXYvEEvh/xvede4Oj8DBcuXqJYHCaRTJDNZFH1NHYsQbffplQa4u6tBWJWHEX4eO6gPhYGepWabtBotUCRCFUjnc1SHB5GaCr9Xg8/8BBikG5YqdQplkr8h//r33Pu3BmOHj2KEAqD9GWFQr5AGIa0280ddmqVxcVlJqemCHyf4tAQpmGQTmfZ3NyiVquRzeVYWl5ianIS1/WIopA7t2/zzLe+x/GTJ1AUMAxBLpvCdgYbm7W1dS6/e5n5+XkURZBMxahUyiSTCV7/8evksjk0VXLz1k3WVlcHhFiJOGEI+XwO27YYKhaZmJoilU4zMjJKvjBENp/GtEwsO0ncGYAr0xro1wpFYXXlPslkgtmZGVKpJKceO4Uf+Hz/hReYmhphcmqK2bljICWjwwV83yWZSvHj197A93qMj49hWDaXLr3HxPgkiWQKRUCv3WZ6aopr167i2Db9bpcb169QHBpibW2NXL6AkDq2E6ddq9Lt9rl48RKZXIYgCiFyGR0rUamUyWaz2FaMaqVByIB4S6oD3ULP8wh8l9df/zET42MDHVvPpdls4Tg2YRigqgPG2SAICKIQ3/fQdY3x8VGiMOL+yiqJRBxN099PB7UsbSCPE3N26sEHtdSnn3gcIRWEVLAtg++/+AJTUzMIqRMBnU4HUzMG7L6JOCurq5imSbPZZHHhLsePnGB6Zopjx4+jCMmLP3gZUwVd00imk5TLVdrdPucvvMuZ048jhMDzPc6//Q7PPvssn/rEF3n+ue8yMpojk8vQcyO+9cwL9Ftljh09RrVcJR6Lc+3qVeaPzWBYOqo6qM8NQghDD7ffIx6L0e60yOeylCvbSC2OYRoIqeAHASgKQ5kkqjqoL3vtlVcIg4h4KjX43GyLKPSJwoGD4K+//i2mpqdIpxMYhkYQBPR7Ea7Xx3Vb3Lu/zDe/+V1OnniCdDpOGPlomorn9XEcG9PUUDWJ7TjE4ylU1aTbrzE/f4R+36VS2SbmxMlmh5iZmWZycgIpJbbtcPnSu7zx6muUSkXW11foe32GR0YoFApcu/Yek1MTmP0qgd+nPfQEv/jFL5HPF7Asi3v3lvl3/+7/5Pf+2T+j0WjhOPHBGkjGKBYLeCgITSUEVE2l3+8TdSMII178wYv8yq99FamrBOHDyUkeeo8/gAzx/2/g1fO8HXky7cOPecigtmljBi4ZW+e9i+c5fvwEiYnPUu4a6IbD1soS8XQSN7SJWQ63bi+jJodJFybRVZ1YKk8gdVrtLtl8FrfXJjd+HN9XINJwbIcoEhi6SbfTpdMKiDkZ5o6OMX98hHgUYiRTqIk0yWSB2uoGHb+Lpkocx8L3eti2RqWyTTo/QhQp/OpXfp0vf+mXyaSyxFI5gsDD83voukQ3FKr1CoXiEJ94+klMy2RpcZmh4jD5YpEnnniCIPBo17cxNZ/bC28zMzdDo1bB1KC1fR/FaxL40O/6xFIFltcaPPmJzyKtOEKqaLpJhE6/p4AC8VQSXdNYX7mD169haC6OBaXRYepdHys5jJkcZWruNMWZI9RrLV5+5U3GpudRpIEmHxCDVwS+InHRGS9mWVq6x5Xr1/nKV7+K7/sIFPxIMDle4q3Xf8R7ly4yOVLCSeRQQwU9iBBhiOL5bC9c40//9F/zo9df5gtf+vygNhYFDkgx/mnt4wCvEeEB7f4TeH3UcR6F0OlRzvtxgNe9e/a944Zh+J8irwdd4AeF1Q/7e+9F3wtqHwSi9h97GFDc//phhEoPG3P/+9s/zkFg77B5HDbHXX3Y/ddm7zkPGm93o7BLYrVLsCXMONJK/ES//WnAj5LX/3FtGAQBSqQghEoYRoSooHu0W1XuXrtA4G6zvXGH9dUbDJ39HcTWLWwZ8dbFm5SGRhDq4LoMQB54rotp6Uip0uv2CcOIa9euceLEcSIRomkKmi6Znp6kWiujaxatVosogrffPo9j2+jagNBpbW2dVDpNGEY8/9xzzM3O4PZdNtY3cJwYbt9FVeUAPPseQqjUqjUUIfF8Dz8MUFSNfq/PjWvXmZuZREiVTDZHrVYjCAKWl+/h+i5DxQKddotSaYgo8qg1muTyeb797W9z4uTJAaO2GcOOJUmkc1jxOJHQMJ04vtfE9droumRsfBipRuQLo0gZMj01QTKZRNUMiIKdqB4oiuDNt94kk07R77s4sQSl4RHCKKDRqFPIF1haWqLdahNFEVevXiM/VKBer7O+vomUKooCrWaDifFpXM8lkYgTRSG9bhdV6ghFoBkGihCs3V9luDRMv98baJaaJsOlIrVqhRs3bzA6Osax48ewHQehSjzXZ3l5iYmJMYQUGJaF5/soUcRLL/2QeNwgDH1Mw6ZSKRNPphBCYpsm3/zG1zlyZI67d26RzqTRdB0pBUJVGRke5sjRGVRNI/AVWu0mhqpgWjZ+EDI1PcVwqcT/8+d/QbvdZnb2CNlsHqEKVF3F0E1ct8/szAydbo9cNk8iFaPX77G9tY3nuty+eYux0VEsSwdFwQ98pqamWL63TCYdx7JMUqkErVYbw7AIAnBiNkHgo4gdYjFdxdANJicnB6m1mopu6CTiiUF6sq4RhAEgUNWBNIOmqUShj0JEGPik0lmazRaGYeA4MaSQuP0eqtTQdJ0gCFEYsJ4r0kNVFRQiet02szMTWHaCSBH4gY/ve7QaTS6+c4GpmSkymQy6rlMoFDhz9gz37q0NpJySDlIKNjY2mZ6aJJFM4Pkutu2QzRZ448dv0mo2mJwcR0rBxMQER48cJV8YQpER87MzdDpdDNPm8dOnGR8rEgQhsUQSz/coDOXwXBdd01DEQMvZ9VzC0MMPAjrtDq7rEos53Lp1i7/++jNMTIwPWLA1HQVBp11GUQI0XSFfyDI0nOf6tbuUikXC0KdSrhBGAYoimBifIJ5wEBJ63R7NZgvfg2azjoKCpunUqjWWFheYmZvAMk02NzcJw0HKNoQkk4PvmB+EhGFAp9PCdUPeeP1tEsk44xNTrNzbYGV1kXw2h+PEqJZrjI9NMD9/hEq1TKs1kAq5fPk9FhfvcfbMaYSI8Mv3EFGIXzqLaSUolytUqmUymTS//dv/lJXVNaanZwmCiO1ymdJIESkVkOqgREERKGFE4HlIz+Mbf/MXfOmXPo8RM3H96P0yiw97z3/Yc/ogtuGPaoc9Ex80l0PHOuS4lPIjAdfB+Q97QfLiM99ma2WJZqtGbijP0PQZErkhgl6b25ffQKoqsewIjqlRGh0nlp8AIek0atjJLF4UYdkxoiAglUojRJbaVp0oUIhbcbodH6mYODGJHXOo1cpEhAwVCzS2W1Ra95kYLaCLGH7go2iSXDYHRMRjDgoRW1tbZEtHCPyI//yP/xjH1BFKQMf1+a3f+k1+4zf/EZpm0Gp2MeJZECpTM1OEAoZGRgiiiGIyR6O6jaV7iHCTpYU3OHVsmm6nyZ071xBRj059HV12ENooueI0242I+VOfIluYJZQRKAPN8ihSBk43XbCxWSaXG2J4dBwrZnP5yhWsuIaTKXHq7BfJDp8ilp5FNQSdRptnnvkOx4+folga3XkW+u+vkV3brVsVUQiKIFJUlCjkxOnTxLMpSiPDaKoJqEhdI4w8xsbH6HS63L55ix89/zKlVAo99Lj42qu88My3WN2+i5Oy+aP/4o9wkjGCsI+i+CiKumed/O0+71H0Pw9fbw/PEty1wwM7B43z9we8PgoOeFSS2IelUO+2OWiPfZg9qFRx71h7yw33z/VRyvP2llzutQcFs/aO/3MVed21/YvkMIB1UL894x7KILw3avrTAqXDvCAPA7oH2V5wfZB9VNC3/xrutt3//nf1Wx807t7Nxv73/qAo9aO+h4/TFEIGt0BJhAQEgTQpZYdQg5Dnvvk3zE9Ps7m6QnJ4lNTJX8RbugDdKsl8CaSKogy+5L7nIYXcAWANQj8klUwzNDSEpumEisQPQDcswggURSVSoFKpoKkao8PDXHvvKrfv3GR4ZBjTNNna3CIej7O+vk6pWEIKlXvL9ymVRiBSuHnzCrlcDs/ts7W9iWVb2I6NKjQUVSMII3zf486tm9SqVXquy9jEJFJKEskkccdiaGiYra0WlWqLVDpJz+0Qj6fZLpdJZ7IkEik0Tcfrt+m0mkShj65JbEsnDP0dPVtJGETomoYqNVTDhCig1axh2TYRErffQdN0nn/uRWKxGLlcBtM0sEwby45TqdfRVIll6qhCpdfvEwYhIyMjDA8Pk8wkKRSGaLe6VMoVisUCjm2ytr7G6NgotXqNhYVFsuk8Fy5cYHxyAtO2SSaTbG9uE4/FePHFlxgdG8cwDExDp16rMDkxSSKR5O3z5xkZGyciIvQD0ukk9UYN27Hpez6qrqH4PrPT08RjJmHoceH8RWZm57l8+Qq5XBahhEyMlShXKiQTCVLpFIqi0Hc9NF0fbPSUgGqliq4aLN69w/Wr75HPl1hYuk82lyEMI06eeILhkQJrq1uUKzVq9RqpdAK5R1Jpe7tMPJHGjpnohkEulyGTTpGMOzi2gaIOWFuHCgWIIr77zLOcOXuaKIqo1qoD6SAUXvnRjxgdHyOMAoLQo91qEIQ+na6HYZm7OwnqjQZRGGLZJv1+DyEk7Dh+Wu0mtmXSabfQdRUhBa4bcP36dQzDQFNVhBCD2mIxIDwTUjAg5ghQhApIlEgShQPd4lanh6arSFXZWRcmjVqd8Ynxwf0iUvB9D1WV1Bo9EAHNVhVNk7z5+uvMzB4jlogP9JiBerXOYydPsbi4yOjoCOw45sIwxIipFPI5el2PeCxBpbpNu13BciyEqoGQrK2vkUwnadW7+H0fIgVd01GUENftoRsDh0k8FkdKSbm8zdr9DY4eOULMtum0ety6fodMNoXvhyRSSexYDMeJ8c6b7zA7M41uqAP5GzsGQsNzW8QTMer1OoZuous2C3cXePY736PX9bl58yaf+ewnOHPmOL1+l2q1RjaTJebE6fV6+EGEZQ5KD6Qq6LtdkrE0Cjrl7SrFYp6LFy8RRYJCIU293uAv/uIvuXnjNqdOPUbX80ikEpimTq/T440fv4UIBXbMQIgQy63huz1uewUsJ0WjUSciZHR0hJGRErfv3CWZTFOtNfiX/+pf8ZVf/RUMQ0NRVHQpWbhxi7hpU93a5rlvf43f/f1/QnoohRtEIA2Uj/G58FGetx923I/y+gfa/rSTOfD8Bx8PpIZOxNKdGyj4nPuFc1y9dZP5Y/Nce/s1lq5eYGx8DCtTRMMHIjxp4LkdskkLFx1FUXc0nX2kqqKJiKhfx1A9rl55h0IxQyR8apUKKB16XgsvEFhmCc1Ks3n/Ddz6PSw9iUikkELDNA02Nzfx3YBet0elXOHy9SoTY+Nsb65QLCTotGusbpb5gz/4faJQYhkpFAyCTh0t7NOurVLbXiR0a/RaZe4vvI6h94iCJsu3rxJXVZbvbHL10g2mJ4/QarZJxZKDe4ITo9xp4+RKjM2cIJT23+4TlHDnx8cLPJxYAkWxiISFaicZmz7O+OQnSeXnCDQbVwkJhIupmYRBgKmpzMxMoSoqke8SyZ+UIwkUFRkFaJE3ALCAaifwhKA0OgqKBDQUxcAPeyiqihVPcOT4KWbnj3Pm7OOsba3wxtuvsbRyh6PHpjn+xOf58q//E4xYljDSMfU4SiAO5ED6afe8H7XvB/odyCb+9wu8PkqbR7mWjzoW/GwImx4FnxxkB6msfNh5/IMHr1EU/dud3z/h3TjIk7PfYzBIS5TAT3oh9nsg9p33gR6OB81jf7uD+uwPo4YcvyYAACAASURBVO/vvxv13C+Ls3fuj3L+vW0Pm//u//vThw8b/2GeFUX5Wx3Z3c/DvfoiwdYCMj8F/GRx96OM/fED2530GSIUQhRCRBjghxH54TFU3aLZ6nLu9JPUtrcYH5ull3uMZPUyUTKHKpQBc7DnY+gGURgR+gpKJAl9hVu3btPvd0mnU3zjr/6So/NTRD70Oz66KvA8wcKtW5iGiu2YNDsd5k+exIknCUKBHY/T6XUYHi1y4+p1bt64ycjoMPF4jK9//a/4zOc/NfDORgpSqjsarCERKoQh7ETEJqYmmZgcJZnMsHBnmY3VLSZGJ3jx5R9Tr9fxek3ee/cikzOz+Oicf/PHOE4KVbVpNftouk3fDbDsApGiEkV9yuv3SMcsdDuJH0QoikO/D41WjTAKUDUNzRikG0sp0S2dVrNGzJCoMiKVS2Mm4kRRhKqASkS/10NqGpES0Om2SaTiqLpKs9UYMNKaFj/4wQ/59Kc+RRiFFIaGWF9fo9vpkIjHWV9dZX5+nu888y2efvJp7txaJJ1KUxwZQupQb3aoV9tkUnlW11dBCegrEZommZ+ZZGNlGSlCbEMl9BVsw2F1dQHbUmnX65iWwXvvXcO205imQ2msCAqkEjlazQbpdIx2u0UhP0wikaLdaWPqBjdu3KTb6dF3fQw9jucLpKYyPjkKMqTerHP54iVOHjvB9StXGRst0uz4vPXGW3Q7XVrNDnPzJ4iiQWq2UBSS8RQvPv9DpmcmabXqXLhwgWJxhEj4IDvIaEfzT5UoAo4em6HdrFOvV0in43Q7bTR1EGHNZUsIRaAqEomGqdqkkg6qIgn8Lr1uFUM10E0D3/cJ/ABN1fF9H8PQEVpEv++jmzHcIKDdb2EZFhfPn6eYz5FOJyhXt5ChT6fTwjR0hCJBkXh+SKfRR9e0QTqyJrn83ntMTE0PorRCx3M9AjyS+SSdjouqKqzc38LQ4oShT6O2zv2lZaYnZtBUie91OHL0BJo0IdQpb9dJp1NYjs7UTAEpTQJf4nbavPzD55g7chQhVBQxYNT1+k0sU2IYcUI0rl6/zVBhCBmF1OpbXL1xnUJpGEWJCLwOnheQiKdQEPR6PTRNpdFsMjQ0zNTkFLVqnTfffIsnn3qSntvCMA1u3LpFPDn4fh85NrnD9GzQbLSJOTpR1ELVNKQwkMKg2WhgOyqJRIbNrXWefvoMrVaFubkZ+t0uiVQJcHjuhRcZnRwjinRE1Mdze0DI4uI9Cvlh1te2cBybVquJbdu8/sarfPbzT5OI50kmkqytr3Lk6CzZbIpGucriwl2GigV6bo9jJ0+SKxbo1isUSiXC+ipSibBOfJVL197lX/zJv+YTT36WTMrg1rUbPPnkU2xtrTM1M8M//b3fIZEtECk6mXicSANhKty4cJ6VS5c4/ZWvEs8WCSINoaiIfc/7w+yjvv4T+wBlUG0YDVJD/rbdvvY/zVz2jnnQz8MImQ4a/7AIz/ttlYOjMFEYkhkao9bu4rtdUrrESWaobt8kkUkzPvtJ/NAinykQen3u3LhEzpFYRgy3r6LaGmEUEvRa+M1twtYmKwsXuHPnCoapUxqdpI+k1fGxNEGn3cXtGKScNNXqNYZLJos3b+H3PPKZJGG3R182sWOSVr2GVDRkpLNw5z7/zZ/8EV/6ypMYaZWV7S2m5k6hyRiaqjE8XOT+vdv8v3/5Z0T+BcJwG13xiBs21Y06cStGu7VIo9nAR+JkJ7i21kXkjjM6cRRLk+RTGe6slpGJEXwtgZUsMjQ6jWY6GLpOGPns1x5VFRWBYFAKE0EkkaqFB7Cz3xSAiBhkQkURsXQW1XIIpSBSxfuOwb2LQBAMoryKJFQGDr4wcAekjDuNIiUkUrwdFmEBqPihIJIaGDrZ4jDzp07z+FOfZmTmOPF0jmBA4YRQBlJj+4HrfpLRjwpi9+/H9x7f3VM+rN/B346f3JNHUYQixA4RmfL+z09L5/lh9vQPG+ejtPmAFu++vfHeSOdB+/NHvcb7OX/29ntQ//3BqP3Y5EE4Zb/9g08b3gWvcPBF3VucvNvmIHbag6Kse/sdFoX9u7SDhIJ/Vrb/uu16ZQ5LHzjsC7Z/zF1zL32bqLmFNvOJDwDlw9o/yvGfhb3v0CAi6ZjEYzZut4O0oNnxcFI5NsMkycUX6CamiLwe711+l16vz51bd7hz5w7JZIqrV69x9NgRLl26SDqdpt1uoamSq1dv8MorrzI3P8MLL3yfM2dO86OXX2J4ZITR0VHOv/Em46URVpbv4ff6aIogZpqYpsXIyDCKorCxsclnPvMZQiKkHOg/RkCz1UTXNJq1FqZpcP/ePTKpNIQRUpV0Wl3eu3KF7a1N1tZWWFi6z6c/9QtsrK1Tb9SZmz+KpumMDBe5cPEyN2/eYni4yNLSXYSAr33tLzl75gk0LcLQdfp9D4RGu9Xkm3/zLVrNFsPDOSzH3lk30G61UVUdXdfx+i6aqrK+uUVpdHwQcYtCIn9AOGVYJhER/f6AJbbX66HrOq1mC11TMY0B2+3Q0BAQYpoGI6NjdLpdhoaGuHL1KtNTU8zMzOB6HptbW4yOjgzE4aOAyfEJvv+DH1CrVslmknhuj4mpGQxVIwoC/CAgFo/vpOBGdNodMtkkChBz4kSKwlChxJUr13j11ddIJOKk0hkUBtItbr/F4sIy91c2WFxcwg8GqdKmaZFMprjwziW+88wzLC0ssr25wdTUOKZhsrVZ5rOf/iyNRoNXX/0RR47MoRsGK/eW+eIXvsCtW7fIZDJYtv4+6PR9j7t375BKxXG9LnNzcxiGPXh+C+h1XYSqvv89llLB1E0MwxhIsRgW29tVxsYmaPfqeF6Hbq+BVEHTJRtbWwih4vnuQNYmVAmDcCCVoplUq3WkkIP0+CDENpOEAeiajqpqCDFIARwqDOEHPrFEgsDzSCSSlCtV7FiMbr+PYZisr61Tq1dIpZNIqZDJpAfvI4yoV+ssLNwllUwO9FQtC9/rk05lWbi7yNbWOhcunecLX/wCzVaTZCqBqknuryyRSiXo9TpUq9tkskmkhCgaEJjZjk0i4ZDL5tAtmygCr+/z6quvcPTYQCNWN2yE1PnOM99hceEOpx47gZQKs3NH8YOQSqVKKplE17VB3WY0WCfNZoN8ocDS4j1sxyKZSrK5tcnY2BjlrW0UJHfuLDA/d5SYHafd6gAgpYJuSDzfRUqVVrszcISFA+3bZrNOtdZgbHyMVCpFPD5wQrS7Ha5du4WC4Nat6wyXCuSyebqdgdayaVvcv7fCzZt3GBstcu/ePUZGhjFNi8ceP0UymeTihcs8++yznHniDLMzs9RqdV5++WVGRobpe30mJidoNlpcvnSZsZESpm0jW+voElrFxxkdmyAKVd564xUSKY35ubn/j733jLEsye78fnG9ed6/l95UZXnTftwOyaHdIfhhRQISJGCF1QpaAQusBJlP+kDokxZYCII+SVqJ0nK5JIfLpZnh7LiedtMz7aq6q7rLZ1Wl9+55c60+3MzurFcvs6oNscSQB7jIl/dGnIgbETfi/OOcOAfDtjDtyCQ0nc/y4YcfkstnMTWVteVlYqrOtfevMjI+zsjMSXRdf1T4+ozC3xPzcDzQfEQO+BTl/IeQGTzPIwzDx6yiPmnDI45QSZGPhvHxUcZHK3znu99F6nVpNrdZnJtneW6Vna1llnc2qAxlEGGbWm2HVrdNz+2iWVFIJdPQ0WV48/VXyOeLjI5PoSomrU6PZCqLaVp4noNhWRhmGscNkNQAz4VsLkMyHuPD6x/huB6mpbC1voauKPi+R62+S7fb4bf/we8wc+oye7s9psdPU99rsry0xOhwmZ2tZfBaTIzkOHfyMtWdNq7r0e02aDQ3qTXWSCQnmZh6hnxphtHJy1y49FVGx6cpFPK06w3eu/oB+co4X/rGb1Cv9Th99hKmnUDRdPwBZpHA0XFHPx66jwIFRVHQdf2JppifjgZtyjxduqPo88qcn3Vz57MCwr+Ob+5JPL/IMp/UXv3/P834+SLB9ZPSf562+lsPXo/SIPbxGAjCPgYqAz7YJ9msP8l89rh0/WmP8u77ec4efFrqb7dBtuzwSVsetpcfFKqnvy0OvA1rR4DXL2Ji+yJIiMjbHwgSySRriwvM3p9laDSPJ8lk8kWqTQ/yp7Fn/wo/O8OVt37KBx9co9Go47kee9U9Htx/wPj4OA8ezFLdd54ThB7vX73ON77xDdbWFtnc3qHTanHm7FnKlSGarRa729tks1ncnovvR15XV5aXMW2T96++T7k8xM0bt5l7uMjqyhLZTB7TtNnZ3iGZSPDBB9eYvX0PTVUpZHPUazUe3L/PlavvRwDI1Hnu+ctomszC/Aq2bQOCTDaHqhi0mi3seJy5uXlKpSKnZk6QSsZYW11kfmGJ06dnMCwdzTAJhYoM3LxxnZWlZXZ3tnn2mfP4YYCu6YgQbt26Q6PeJJFM02q2SabShELCtOIESHQ7Td762VtMTkygqCqSomCaJgCdThfTMInHEzQaVRzHYXR0jJCQnZ0tdFPb1zrLvPrqq1TKZcqVCpqu8+4773L69Ck0XcN1eoR+gCpLlItF5ucekk4lmBgbxfX8/TPLgmqtge/D7OxdRkbG+cmbP2NqegJJkQhDiaWlJZLJNJpqcO2Da2QzOUrlInu7DVzHodNuUKmUSaayIATTUyfY3Nwik8miyIJiscziwgLjo8M8mL3H5OQEhpFgc2ObGzduMjoyzN/7+pdZXJwjm03juw7dTptr1z7AMHVu3viIUrFAOp1ie2uTM2dPkUom6PaaxOMJVNkkDMD3A2zLwPX9/Q0OGdd1IJTQ9ShMUbXawDBshKSgaIIgdDEtA9/3aTTrpLJpEAqariPJCrKso2s67MdWXV/foFFvkcvlCbweiiShqSoQ4Lk9/FBgWTZhCJvbO8QSSWQhEJKE47romoEsKxBCLGaRSsUJAp+dnR3iiRjbmxtYhsnS/CIP7z+MLAvsGLqh4nsOO9t73J+9z4svPYcka2RzeRYWFwkCwdDQMKl9LTgipFgs4bk+vZ6LkHQ6ThtFBc/zWV5ZI5FMU682eHB/jkw6TblcjsyFA4Hv+ly6dIHpqQki3VgQeS0WEoEX8uYbP6VQzEbn0B0Pz/VxXQ8hBM1WnVQ6iWHoJFNxek6HK++8y+nTp2nUGowMj7C2usnLL7/OuXNn8fwOjWYNQ7cg1DBNE0XW+OM//hYPHzzg7NmzJNMpMtko/E86ncKyLF758Y+J23GmJqcZHRsmmbK5P3ufUimPoigISWDbcUIkstkYhmmQTqX3jTNCGvUGnudz4cJFVFVlb6/KBx9co1rdYWp6kjdef53h4REIodfrYJsW9UadlCkhhT7V3CkKxRynT57n3Stv8mvf/CV2dqqUR0bY3dslmUuzsDjPzOkT+L6HLzzqqxvcu3aD8sgwp198FlUzgL6jKX8HXh+hQXLCE83+jgCvYRhAKBEiaDkev/bbv4Pf8lhdX+XEyXN87Wu/yvDkMMJKkohHxy9mHzzEsGIMjU4QEJ13k8KA2u4WCUtHUuOEKLS7PoVCGQKJZquLpGmohobjKph2Et3WqDd8ZFUnHrfJZDPU61U6e5uETo/d7U0MSyWZjpPOx1ElcHsSXk9F1zXcXpVsJs3e7gZet0q7ugxujcCzkCSV6l6NZCqFlbBJZbIE6gRtR2Vrr4cez6PoKTxkZFkjXxpmZHyGbqiztLqDaebJZEsgqwQHp4oGmqweBV4HyzZhGEaOlr5Qme6LB68HmyFfNHh9GkvGz8L/5xG89mtFD+hJ51A/Dxj9tPPbk9I/zRj6uQevvu//7sHvpwGHR6mr+wfEYfvxA6DYvzgc9aH0O1l6Enjr53+4fv3m0If5DwLhB3kPx096Wupvg/5yDtfx8Ds9zaA9bAPfb04An4BXeeKF482c+u59ETuV/e17bNp9V/UIGYWAWr1BvVojljAJ0DBjSe7cuMuZC88jDV8k/OCP2FOHODU9QalUolKpoKkauVyOd955h3PnzzI+Pk51r8rzzz9DIpniypWrnDw5RSqbYWRkmNu3b/PW2+9w5twZRiankHUNIxan0WmRSKdYXFkhYcc+9hA7PDyCadpkcymEkPC9gKtXrqIoMidPnmCoVEGSJJrNJh9ev06xWGR4ZJwbH33EyZPTfP9732NxYYlsOkuj2WBjcwtVjbwav/Haa4yMjzE9NU25XOLBw/uoukIsZhKzEuQLOXpuByHJqLrJ+soilaEiU1MnuHD+Ig/nHlCqDNHrOgghMz+/wMrKCjHL4pUfv8ypmZMkkpHjrm6ni2Fo5DPZKNQQ4AcBkiSo1xvEYpGXR8f1ME0N07K5c+ce6VSabq9LLGazurJGJpPhw48+4qUXX+TWrVuMjI7QbDYYHhnC83qYhonneaxvrEIYEhIyNTm1b6cX7Yr7fgBC5s0332Jm5gSpVJ5sJodhqaiqRq/rks3nAXjtlVeRhMDpdrn38B4SMj/+8Y+4eOkMmqYiawaVcoWN9U1u3LjB1uYa+Vwa00ow//ABX/3ySzz73GX8MEDTLIIgYPbeLKqqYFsGqiqzvV2DMGR1ZZVLly7h+C5f/3tfQ1Ei52K6odHuNNE1HVWVCXwfIVQePJhDSBK2ZbBXrRNPpPD9IGoD1wUhkCWNl19+lbfffpvp6Wl03UKWNTrtHjE7hSx0HK+DoVu02200XQUkatUqyn7IiEQyST5fQFVVFMXDcbvU6zsIKaDbbWFacVRJxvc93vzJm5ycmaHVbCIrKooWxZSt1mqYpkkQeLz11ttkMmkymSyBH+J7Lo16g4cP5piZOUU6kyGdSdHtdZAE6JrF1OQ09+/fBSyWl9a4fv0ms/fmINTIZjIoik4YSrx/9Tq+J2jUOxAEvPLqy5ycOUm316NcrrCyts61qx+wtLDA8889x8rGOl4Y4jkevu8hS4JWq45pGYT7Vgyu5xOPx3n3nXcZGi4QjycQyLRaHf7yL7/NuXPnicUs4vEYsiwRhCHxWIxCPoGiSgwNl5m9f5dY3KJUGSORjLwF64aBqumEYRSWyHM9zp8/j21b7O7sIKkyiqygahqNRp1Go8lQZZhsLscbb7yJ63aZmBzDsmIYRuTMzTANVFUnlc7gOO1onkdCkmQURUVVdTQ1MoF8+GCWRCLB+PgoZ8+fwXN6fO1MGUNTcZo71LdWKGRsJK+DJYfUsVgiQ21vl3Q6T6mS59792zz/4texk0lypRKqpmPb1n54pJDa7g4//u73+dpXv8bU+bP0ZAlpf5rvX5ufZj4/zlRu8Bz/SVlP2kD9NOD1r5uOWsOOr9sxMgnRZpIZT+CECtmhs5w4d5GPbi9z4vxLyKk8upHBMtN4jkKlMk08VabrSkhSiBASu9tbLM0/wOu2SOZG6fQcHNdjcWERx+nRbXfQDBNJDjCNOJ22CyJElhQS6eh8s+MGVCoj7K4voyoq6UwOIQtq9RpB4BPQZGVpng8/eA8RNskVLfa2d9lYW4Kgy9X33iYWj9MJG6xvrXPq/GWS2QkMaxzdHCGez5DM5ygNV0CVEGoAoQ5S5OtCiyVIFcpkimWymTKBEAgEoeBIc27BETKYOFrJchR4e5LPj6PkFyEe/04GDQVJkp9aXjzq2ztKWXOczHy43p/q+/wUSozjnKR9EXRYHv4sfJ/WR8xx2OHAcV2/L57Dsvag/EdZTPZjjcP5BgHmg3RHKdyOMzM/rr1+7sFrv7fhJ9HTLHqDOvUoZ0JP4iOEwPO8I4Hu4c49jkf/s0GD8XC6g0F1ENrmaam/DfrB/sH9A4HgaUyC+3n0P4fj47weFzP38zoQ+LQkiLyogiDwA3LpDM1GE1m2sBJpdNOilCvjOR51J6SqjXCq8y5CSPzo9XfZ3d0hJGR5eQXTMhkdHcYwdAIPdEMjmUgxOjpGvb7D9RsfcfnSZWbvPeDXf+PXUXQVQonaXp1Ou0fghbz2yut0u11mTp5idWWNGzduouka+XyOWn2Hmzdu0Go26XTb6Hpk5vnOO1eIJ+Jc/eAqL770Ig8ezrGzU2V0dJhSqcTW5i4zJ8+STBikUimWlleZmJjgzu2bTE1M0O20abfatDptCuUidiJOMp3CNCwIPVKpGK7roao6sirwQodEMku11mZ9Y5tsNkd1r4qmaSSTcSCglMswPTmGkAJkRSLwXGQBoQBFimLSBmGIHbfxvQDLsnEdlyCEB/fv4wc+lhWjUChRrUXxYBVV5eUfvcyZs2c5feoU/+YP/5BsJkNpaJhcLkezWcVzXV5/9TUmx6dIZzOouk6lXGFpeYV79+6Ty8RxPZd4Khn1eyhYWV0iEc+gKCrtTjOKz2naIMuEQcDMyWkuXjiLbigUywU67R7nL5ylUsmxu7uNauiEgKbq+J7H6VMnkCQXSY+zubHK9uYao+OjGDEbAplOp0M2m2NlZZlEPEY8FscLTOKxJJlMlmwhSyqTYntjnZdf/jEzM1FIGDsWRxYKhqEhBDQabbrdHp7n0G13aLZ66IaFCGVc12NpeW5/Q0CmVqvzwgvPkcmmkWQNWRI4rotAoGk64BJ4kTY1DB2cbgfTtAhCn063i67ryLKE6zq0W010w4zidZo2lhWn3WwggoAwCBgZHmJ+fp5Gu00ynY60gUJCkRWECGk1O7z5059x/tx5wiDy5omAZCJNNlvg/sP7TE6PE0oBsqTQ6XTQVIvf+71/hRDwwnPPY9s6teoO9WqVdCpFKp0mmUxSq1UpFvPIiswbb7zB2VNjXLr8LGEgMHQNCEimMpyamUFXZba2t0jns9iJJJamE/oui/NzDA1XonPcssr2zjayImOakddqVZMwTZswFCwtrfDSS19CU1WsuE0I0dlVRSFE0Os2sWybZrtNOpuPNPmmiqKoBIFMu9NDIKFqEr7rI0TA0tIClXKJmG0TT0Wej4PAj8aXH5DL57FjCWq1FkMjQ9hxG8OK0ajt0mjUUTUNsR/vWQCWGafX86O4xbdu0+l2GB8bpdWqY1kahimzu7NBOp0i2VkkNNLMN+MsbNYpjp8iXhkjVZ7irVurvPg7/xQrU2Hh4Tzl4ggTk2OcPHsKRU7ii8ipjxdAu9NDlhWW5pd45Tvf5h/9k/8KK5+hF4SoUhSS67MIuvDp14jDKZ+U728SeP1MJAYLxSESchgghT6BiIKTyFoUXml1cY2J8XN0fA9N12i1OywtLJPJ5vEEqPqBp1yBbRoszT0gm4xhJHM0Wi2SyQSJZJxEPEaxEG2Q1uprJOJpbCtBt9tCC9t4gUfHCwkVm3R6iN3ddXq+wIylSCWzCBRM3SKZKJGwZKSgSTqTZHlpC1uHdDJJvdnl3KWXKA/P0PEF5aGTdDyNXHmaascnOzSJYRrohokfgqpKhGGALKK2CUW0US0pUhTOLTK62keBAimUCKXHgdiBx+p++SgcAHWfOMaeMO6PvM/jstmgpAdOJY/ldYTyoF+mG1TXw9/fF/GdPC2P/vr01+uo55/mOszns77LcSD+aQFfv8LsSe866P6TcMJR+QY971f+HTV2Bt07uH7uHTb9dYPXo3YOjrp3uFMODjqrqvrY7u/B76N2sgaB134t7FGD53DdDpxRPS09LXg9MN/6NDsqB+F1BgHq48Br/zv13/+8E+KTdjYPkxwGhCICrxIhIoRyucT7V26RymTY3trB0HWuX73O4toqK5s1Gr7JCWbphAb3Fpf40gtfolqtYlkWk5PjNBp1Ah+SyRitdodavUY8YfHM88+iayamYeG4LlvbGyzNLhG4AelEhtdefpVf/oVf5N7tu6yurZNMJikUCxiGzu3btzh95gRDlQqbm1ucO3eGcqVMq1lncXkNBDz/3HMISWAYBktLy3S7HYIgZH5ukV7H55nLp9mrVtnc2uLZZ59lZWkRTZGj8DaKwquvv8HY5AR2MjLpTCUzGJpMs7GHpho4vR4BHqZloGk2f/hv/hTbTpBOp3jzzZ8yNjZCuVyiVCqgSZBMxpEVQa26RyIeQ5UknH2t4O72NvMLCyRSSQzDjMbQviv2Gx/dwLYjUNRqdj4+41Wr1Xnw4EGkkbYs5ubmyGQyDA0Po6qR5+K9vV1EKBgZGSGQBKZhRk51NJ1bt+4wMVrGitkISaZaa7C6vMrm5jrnz13i+vUPWVtfYWiozObGNslMGs91EPhIEiiyoFAuUsyXSKZiKJIfabpicVRVxXU8up0Ohi4T+F3avsTJE1MU8hk0U8cXAs/x0PXIXHdxYYHR0RHCMOS733udq+9dZWV1GdVQMWMmxWyGRDJNr+djWjGQJGRkQjy63TYgs7GxxfSJSSQh+NHLr3Lm7AXCAH7w/R8yOlYkkUwS+CHDw8P73o09QhFSq++RSkXeeTvdNns7W9hmAtfp0es1kGWBadr740nH931qtRpCCGKxNIqiI8s6CJUQBUl4ON0Ovuui6wbJZJJkJossK/ScKMxT4PtASBAILl+6jBAyQkh02l2ELGEYFrIkUyqXEArIqsTm2jaFQo5Oy8Xp+ayurTA2WkCWAjLpODMzUxQLef7dn/07Llw8SyJh4fpdLEtjaKhMMR+n2eixtraN5/ZotWpYdoJGrcpIpUwmm0WoKv/mj/4QVZIZqVTI57MIEeKFPvgCx3UwbRMhBSiSQFYiTY0kVHa2d1lf36AyNES73ULVdLrdHnfu3CWVSgMSphnDspPs7jUIQpmt7RUS8RSS0Pc18R7V2japZBLH6bG6tkwYBpHWXYToukGr1cJ1IxM/TdX48KObOG5Aq9MiX8zTbHZJJSyazSZBENLrubz73lUy6Qw/+9k7ZDI5GvUmU1OTvP32W5w7ewZZluh2W2SzCQxDJtlZo6dleLM6xvSFL9MWBqef/TJKqYQSK6GqFrvVBu1A59p77/Dqaz/lxS+/yO7eDr5v8d/+9/8DvZ7HufPnIg/irQ5/8K//gP/mjRNTWQAAIABJREFUH/3nqLkkDXwkSUYLJELxeMi4TzO//x14PYKOAK8gkMMAEbpAQCgCpAAUt05a0+k1e9gxnYZXxTJV8rk0QeiC7OGGHWQUQCDCgKW5B+xuriGZSU7MTKNrCoamUKvuEI9b3Ll9m1TK4N6d++SzJVy3w/LcR4xMTqKaKWQljqInsIyA4dFxdvcayLJGq96iWW+h6UNsrj1kqJzj7s15XnzxN4hZPQIEhdIIzY6g7WicOf1VMrlRkrkywpRJFBKgOMi+TeDL6KqBQEaSFSTcqHMlonjvUoiQAoQEQhIQRhZYAgmkx+Uy6ZDcdJgkWf74WNVxPkMe6aK/QeC1X+t2HHg90AgeBXA+K/1NBK+f510+D3iV98fTQd/0h9aBwU5pB5X/tGbHn6auB/ePsiw9ri1+7sFrGIa/O+jDOqDjBkZ/mn1+A00ADp9xPRCOB3nBPQBZ/ea1hzv+sd24PmA2SP1/WJN6+P+jtLYHZR/1zv1A+3C+/jbpB7OPl3nglTe6hIhMzPp5HpR5OEbsAR/v4TsQhh+D10ETxKA+Pm7iGDQxPCl/f337Kfh4QQhBEvueAVXSKYt2dRtLFsTTScbPz1BKZhGhzw9+cpVrs2v89kWL/OgZ7t6/TzaX4PLl85hGZLJnGQqKbvHKq6/zpZdeorq9hwjhyrvvcPbsKWzLZGt9m2Q6BXJAtb7N5ecu0Oy02Njc5vkXLjM8Ms7s7D129zaZGJ/mnXfepFSqMDIyTjKZRkgK7W6XoVKWM6dPggyWZRJPJkjEs4yPDVHI2dimwc1bt+k5AROT49z46Bq+G1IoFgkln+GREYqlHKNjw9z88Cbz9xcxpJDZ2Qesru9gWUlE4BEzVTzXQw4F1a0tJidGGRodRpFcxicnyBaK1BsNfN8nkARIGrV6h3SmSM/18QnRNQWBzEc3bnPmzFl0TUMgaDYbaIrG3k6VrY1dCoUsiViCxYUFbt+8QaGQpVTMks/kKOSzbGyukkgkuHnrNidPniQMAyQhUGSNWCzFt/74zzh9doYwiECAJMmMjY+BquD7El4vYHtjg1w2iaJqZLNp4nGbRr3J229fYWN9g5NTU5ETJEXH8yUUzSLwQxzJQ0EHv4ekOshCZ3dnm1gszmuvvc6Jk6dQVJPAdTBtC6HqBKHE4sNFdFNFkjTeeOMnTE2PMDk5wUcf3iZpKfz6r/8iExOj3L51m3QyR8y2sOMmtfomyXQMIYUIKcTzA4Ss8/pP3uSZ555BSFGbzt6b48L5UzhOjdOnpwAVTdVw3B66puL7IZJQ8NwOvW4D20zQajrouoydyKDoKl0n0qoranSeNvoyfNrtBvFEDMftIUSIUBSErOB7DgKXwA+ZX1gkmy+g6jqypkTepGUZVZYJghBJCCRJRlU0QkKEFMWH/rd/8mecmZlGliX29vYwLRNdt/CcAEV2cR2PkJCRiSEmp8foOj6ZfJaQEEO3uX7tFt/85m8gSyqBLwhDiW63TTxu4foagQgoV3JYtkksluD9K+8zNjZG13HwAp9mvUbcNBkdrRAQoGg6jg+hD9/59y8zMTZKs9ZmZXGD4nARRWj7saJ98oUcxVKRSLfl4zkOV69e5datu1y6+AyGKbOzs4uuqqwsLULgkU3nkISEHzj4XofQ72IqICsJJCGwdQPX8cjkSwS9Gr12h7idoF5vERCimwa6pOJ0esRjOrahsbq4QjIdw3E9UqkcTi/gjdd/wtjoCO1Wk5XVVS5cOIdhmWQyOeLJGIqisL2zSyqVJahuoDoNOpf+IbIq2N1ZYXJyhGQyjmlm2d5YJbn6Omp1jreXJZJmFsVUmLl4Gj8UON02b/7wdf7ZP/unbO9toWgBP3n5+/zyV18iM30CzwtRwshcOODJZr/9QvVRXjefZq3g8HXw/PA1KO2jzD7zJcnyx/xCHgUIkhADyz8sIxwFJI66ZEnZBzmPvOF+WR6e2+anr/+Qk8NFsDyaNRPLTqLYHWqtHpoaRxIaIOMHAiVUUdEgMjpGSApDY9MMT58jFc8jBGxur9Hu1jDtGL6QqdU3iCspLD2k3dzDcW2sRJZmxydXKDB75yaZpIVpJHE8GUmx0K0kiUwRD5Vue5uOrzI8/Txnnvs6WirLdq3OxKkLtHsu8VScWFxnvVlHMVXMmBWZ9PgCEcggBSAHBPgERCESEQqSrETpQgHIBL6EIAoBJstReC8hCRCPg9cwFLC/yb2PeKNrn58kZMS+h19C8fHvQdcjstUTnkv7G3yRDDZo/EfyWRjwcd5BWrujzuUegKCnAd395R+3iXRYvjxOnu/n+0U+P8qPSz/1m8p+WvA6KN8gufQ4mf8g/0HUjsP3D/9/GNAelDEIRB7dL+Lj8RRlEwOmu0Njfn8cHqQ96hLiUdwzqPyfe/A6KM7rYXrSwDqI5zoIWB3Of7iBD85v9gOwg2dHDYhB9uFHgbvDAPGTnQj5kUHcX2b/ex/37kfZqj8p/UGeR2O/Dkp3lCOIR9/rgIKth6DZKMPnHnt2FD2NQAKP9vGg/jnqvMLB/YP+OKpvwzAk8F02lleoV6v4QYAZiyECjXbb4YMPrlOYeoZ3P3zA5VybwvgpRsanSSQShKFgbm6BWNxGkqINkWQyThAEZPMZKpUKnY5Do9Ekk01TKOTJ5bIkEgmCIOTHL7/CmTOncdwuD+4/JJVKcvfubSrlYe7eu82pmVN8dOMGruuytLzI2NgYiXikSdze3mFleYV6vUE2U+C9d98hnUkjyzpLS6v80i99IzITW12l1erieR5f+cpLPHgwx7tX3uOZZ54hlUpz9+49KpUK7U6Pa9euMzE+zub6Os1mm0Ixy+7OLoqqkMnnyGTSBCEkEilcz4XAwzI0CEJazSaEgiAMUXQNLwjQFA0hSXTaHSRJYFomQsg0G01s26bb6/HB+9doNpuMjo4Ri8VxHId8oYBpmmimhR+C43g0Gy3iVoKR0TK+6yDLEg/n5igPDzG/MMf46AiSEHTaXSQhsby4RC6fZmlhgWQyye7uHsNDI+RyBdbXN0in0qTSSVy3x+kzM9y+M0tlaIgwCLj50YfosowkhRi2gYRM4LSot7dQjCyqbiJQOXliBk3VCDyPmG1CGNKo1zB1A1mAYdtomsr09Ci5XJK337rC/XsrnDk7TalcQFUlhkaGyOdyOL0enuei6yqe62LqBl4o2NzaxrQsRkbHUNXIwdKND6/xS7/4y8hyiGnpyLKKqkYxSA1DptOto6gh27sb9Do+mUyGMBBsb20BHoYVQ5KkfRNfQbPZpNdtYVpGdA4tCOl2HAgVXM/DME0kAe1mEwlYXdmm2WgzPDKMEBCEPrISxagNwwBZluh0OwSBT7fTQTdUFFmh1/NQFJ311VU0VafVaqHpBsr+mWjLUAmRP44tqesaMTsBYUC32yGTzlAZqmBaGmtrK8QTcQxDxfddIETXLQzdiARMSaLVbDE6Ok6r1UIIgWmamKbJyMgIqipjGCaSJNPr9ZAVhdOnZ2g1a6RSGXZ2qti2gSRUPM8HApxeB1kOaDR2icdi3Lp9mwsXLpAv5BFSCKHgrbfeJpfPURmqEAY+vuOgaSqqpiKk6Cyqppt0ei1kSeU73/4+5y9cQMghqmxy89ZdqvU2d+/dp9NzGBkZ37d+0BE4SMLD7fUoVIZxXR/LirO0uMzw8Ci5Yo5Ot0sYhrTbbULPZ29nF91UUVWVbCaD26xiNeZoP/sPUTSbhw/n+Jf/8vfI5MrcvfMQRRK8f/UqQ0otAmSlZzl39gzPvfQsoQyJRAJN1vit//g3ids6fq3Orfc/4mu/8itomQyaohztHfcIOipc3OE5/Ki0T7XWPDHFF0PHbaYKjgcNn1aIPi6PECLaMBLgBz637txFd0z+6F/9jyzc+ykXn//7hKr1iFwSCvBlgR8pIx/jJ0uACNFUHafrE3oyvith6zaylESRbZBjGMYQ8VhIQEi316XVaNCq1QmEIJFKsb2zEwF8SWJsfJzi0Akqo5Ooto1iGkiqhK7raHacRrNNMp3FiiXwAlhcXCS/75vggA4rHA7a48Bq7sCJUj/4ekRJMagJBwVJPaLML5KeVm46Tu47Crw+Td7j6vI0+fqVJE/L/1F59Hgt8qD8/RaFT5vvs3xzB/mOytsvm/cDvP7nhzfrjsIcB78H4ZnjKAw/SftJ/qPa59H+OO5dwzB4Yl1+7sGr53m/C4O1hocb5TAgPe686EEHBUHwWJDd/jT9i+AgEHTUItm/yB6V5oDCMPy4Pv27ygfg7KgP+LiJ4LAJ79Ms5gMnbwa91yflHWfufPBbGT6POnL+2F2ho/gcNsE5nO/wxyrL8sfa8jAMPxa6j+rDw/181C7kAa8gCFBkGa/bwdQVDMsklc7Q6YSomkar1WFm5jTzewGl4UlGWUA24wjNplqtRSBA1dja2uTUqRls20IzdNqdJpYVAwStVgvLtpAE7O3ViMVibGxsounRuclUMsbtW3fZ293ht37rN8lmciQSSarVGoVigWKpSDabwTRNNjc2MHSdIIRiocTmxiadTpfx8XE+uHadhw/m+MqXv8L7H7zPyZlpKpUymxs7hGGApsmcOn2OQiHPXrVKoVgknckQjyVYXl5hc2ODE9PTxJMxCsUSzcYepmWTSqXo9nq0201iiTSKItNtN9le30CRZXa2N9E1nXuz95mcPomQor5wOj1kKfKGe+fuHaYmp9jdqbK6usrQ0BC+H7C+vsFzzz1Pq9UkmU6gapGgLUkyAfDqK69x5epVLMOmXC6TTlncm52lXK6QzeVxfZfR8VEsPTJHvnnzJqMjo3x4/TpjY8Moskyv22V8fILf+3//P565fDkKbWBoGIZGPB4jnUmRy5d486c/ZahSJpdJ02u3yBayBIQEDrzx6g8olJPE0iOoioYQErVqjVdfeYXpyQl297axbJt2q008Ecd1enQdh62tbba3N1hcmCOTLtLtBDzz7DmarRrdXpvvf+97zMyc5P7sQ65cfY8zp0+hqSrdTpeO65LPF1hcXCSZSqEoKmEII0NFHMdjY3Md348cIo1OlHF6DQxNprq7h6LG8AOVhblFMpkUnhdy8+YthkfKeH70naqqSqPRQFVVnF4XyzYBQa/romkmmmZgWCaSJPB9D0KfXrtDq+USi8WIxWw8z0XVVGq1Op1OB0VRPuapaRp+4LOxsYGiquiaiSTLbKytc/vWHebn5xkbH2N3b5dYzMb3PBACTTPodjuYlsnaynqksReCgBAkeP21Vzh79iwCUDUVx+kiK5GzqUajhSwr3Lp1m2QqiaIqNBsNkqkkqqrQbDWR5egM3NzcHLFYjL1qDduy+PZf/gWpTJJ8oUg2V8A0dG7cvMsrr77CuXNn6XbbmIbGxuY6pmFTqVRotlpkczk0XUPTDMYmxvFcB8M00HSVbqtLz3XYq1aRFAVJVtna3EHTJHqOz8rqFlPTU6gKdHuCfKGMbuicOHkSTdWicCSBS8yOEY+bGHokoBl2EsuKsbyyyiuvvMov/MIv0mi1mJycQlUUhioVMpk0lmGQzKTQdZ3Zu3exqrPspC4y1whpNptUKiO88MLXiCdzFMtjKJKLGUtg1h4QT6RIn/llVEXCDR1kXSIIfDzHY3H9AaHr8u0//lN+4eu/iJpMIMViqAfaryesQcdR/7r3aUwzB8oHTyzxE/o0oPtJeR/JPwBg0bcWDaLj6nBUniiuMQghk83lGJ2YgIbMuz/9P0loHdx2jNFzFyEM8QPvY3NaP/AJAh9VUh7XBMkBQsjUaw0W55Yo5Us0azVEmEDWLBypydzqNVq9DSw9QafXY2hslHarTRAELCyvsbm9w9DwKEMjo+iGRaPZRovlEZpGKCSC/bBnsmrgB2DacZBVQiFjmiaFQmFg+xwlnz0mhA9qwwHC/OFmfVoQ9UUcgRokAx5X5tM+HyQLHSXTHeZxeFPgad6vXxFzWHP4JPq8mwGH6zvo2eFyPg8dvE+/Qqh/Dur/e7iO/XU+zOOwmfAB7unHDYPepV9ZE+V9tI5RGZ9sDD7Kc7D1xyA6uD1Irj54j5978Or7/u8e9wF90hCDd1T6wevhv0dp2o7ukKefEAalPeoMwXH1PSrd4ftHTRqDeD2JDvP7GHgq6oDzG8fbtz+pjOPqe9T/MFiL2m9+cfgj+TRmyIfTHM4bhiGyarDw4D5up4VhaHgEdLsBvV6PEydPEAQB5XKJyYtfR4tnkR98H6d0Cclrk8mk0a0YxUKejfU1dMPAtC1kOSTwodNxuD87y9jYSAQ6g5BqtU6341CplJiff0jg+8iSwtbWBssri7iOx8LiMo1GnaHhCqalo6gqvZ6DZVnouoGqqNy9fZepySmWlxdY31hndHSCoeEhxkeG2Njc5p133sI0DTKZPMlkgmptl0y2QKfTZmNznUKxiG3byIrK+uoKhq5RKhUolcvs7O3SrO1hx5LY8SSKrOA5PYQs4btdep023/3u97j83AvE4yayqtFstlhYWCSZSNJpdZifWyBfyBGPx8jlcmiajqaZ1Ot1Eok4iqKQTCS4c/cu5y+cQ4iAeMLe91IbRvFbxye4fPlZhBDcnb2DaiioqkYuV2Rnd49kIoXT7dDr9tA0jZ+88RMuXrzE2NgY9VqNeDxGLG7T63UxLIt8PotpGbhuL9L4hVE83cX5edbX1hgZHeH6tQ/pdR2yuTRICusrW+QzSRIpHVlNQwhCSGiaRjabIpawSSaSkdmxLHPjxk2KhRKKpuC5IX/+p9+h2+3x0osvIssSP/3Zm1y8dJFup00qmcT3fGQtxvT0NLFEgo2NDVRFZX5hnmQ8xoPZ+1iGgSwJCHy2t1YRQqHVrDM0VGF4eIwbtz8km06ysbpMqVhBVeNIkkmpnEfVFRqNNp4bkM6m0A2DjY0NkskkzWYTSZJIxCPv1p7noWkqum7Q7rRRFIOe00ESIa+8/DLrK2tcuHSRdDqJJIPjOpHGVzf3tYMCXY9C5Wiajiyp3Lp1i0wmgxAhsViMoWKFTrvFr/zqr2BZBrquYhgaruNx/dpHFArFqL8MnY21VbLZDN/61p9w6dIzGIZJzDYxDAun5zI3N08ylaLb6aKoCkEgePMnPwMhSMTjaKpKIhlHUWQIo3jJihz1ezabo9frkdg/B3565jSZbIpw3yTP6TXJ5svMzt5ndHiEt95+i4nxcXRVJyQy2RSSQFFVHMdBViSEAMd1IQwJgpC93QZvv/Mu5y9ewLYtXvnRK6TjaTK5HKquMz41jus6hEHIKy+/TjabIZWM0eu1SCRsZAFChBi6SRC6NNtNJEnDsGxu3brFD37wPf6Lf/yPEZJAVzRkScZxHGzbwg88NENDViW2t7fJKx18SeNPrvssLi0yMjzO0MgEy6sb/Iv/9X/jzNnzlEopps6cQt+bxXVc/vCNO/yLf/7PmZ6ZZvLkRBSPVzfQQ1iam8dKJTl7+RJCkdEUCQYIWUet70fNz5+WjhJOPwt4/bx1eVL+R+49xRr+WeoQisivfigkAiERCBk9kaW1ucSFiQoLCw+YPvssvqpHJsYhdOsNTCFjSDL+IFlMitZMp9ujlMvh9urMz93m9oO/QjY1iiPjTJ94nqHiZTK5JIlCETeATK5IsTREvlimMjRCvlhie3cPw7IxTJtIpRsCwb5Z9aMb6l8kDeQ6KNxQ+Kh8dizPp5At/0PT5/2mngRejwc6fz3f/KehL5L/UXL34TYYpDB5EjY4DCaP0j4/aSPrMACO0g7erjmc5xPenybM05Mdl/2tB6/9wKWfDmvr+nc1j+L71wVe+9M+LXgdNFAP5z/Qrh4eaINMl59mx3gQeA2Cx81uDg/Oz+LtuL9Ox7XFUTthB3XqN6noN8sexPNJdTxssiGEgFBmdKjI5soSyVSKVreNEwjseAzXd7BjFoVSgVazg5wuoaXzyB/+WyTdwkjnEJKOIgl0XSUIQ5AkPK+LrluoisHY2Bh+4OK6Loqi8d57Vzhz9izNRoOd3R1sy0CRNSpDFba3N9jervLMM8+RSqfwfYdsNosQEr2ew+rqMslkirmHCzQaDdZX16gM5ZmaPgFCQoQhnVadVrvHV77y0r5DKYnp6Sl0XcaKpTAtg3gihqpHGs5qrY4kIG6btDst8sUCmqbhtNvkS2VqjRaO04PAQ5YFbrdLt9Pm1Olz6FaCnb114vEE+XwRXdPRFA1dVSkUS0gy+L6LZdkgBJ22w5UrVzhz5hSyrCArCvcf3mdiahzDVFldX8G0LCRJwu12onAtqoqQ4dTZGQqFAolkGlmo7G7vsbm2zu1bN9nY3KBSqVAul+l0OhiGweLCErdu3SKby9J1uoxNjKPK0ZkN13W5c+ceuWyeXs9heX6OdrfDhYsXiccTWHacenUHM57gZ2+8y+ULp9naXSGVquC7UZxeSRZopoaiSfgutHsOsqaTyWSxLBtFFYS+itONTKUTCZNYwmB0dBIBVKt7DA0Ns7y4xPzKNqfPnKZWrSLJMr2ew+T4CM1GnbHREQr5HFevXGGoUsaOG9TrbdLpVGTV4YWsrtUYrowg4bO9vUkym2J7b4t4KokfeiiaSSZbJJFMEASROZ2maViWheu6qLJBGIZsbW1iWSbb25sYho7jAvjoukq5WGRybAIUCEIPWZERkoTrekAUO/HP//wvKBbLSEImCMD3YHhkmEazTiIZp9ttc+uj2xRLBdqdNplMgvmFh2SyaTqtLuXKEJquYZgGjusQs3S2trdZX9+kPDSMppuYuorv+XS7Lltb25RKpf1xIqPIBoV8CVVTyWTSRLFpo/7qdbuRObqmcuPGDQqFAkEQYhgGrucR+pGDFyQJRZZxeg3a3SAKOaTpjI+O0W33MA0LsQ/Ki8UyCIFA4AYOYRAJ4ZKITIQtK8Xps2eQFAnCgFQigRQINN1GMxRC4aJpKoYaZ+7hHJIIMQyJWzc/ZGS4wurKCslkir3dGvFkHM/3Mcw4siqTSqc5feY0rXYTRVV4+8136HY6fHDtAxYW55maniKUBIHvYSsSys5dpPP/KUq8wF/++V/wjW/8Gr//+3/AuQsX+eZv/SbloRLJtI0jyUgrH6JoGl//z/47vvkrv8bJ09MEUojjONy5dYu3/upHnJg5xeWvfxlHBUWEyN0ewQAng58mFMXfgdfPX4fw4OyakAhEdEK7IXlcGH2et3/4HUbHNH742gdMX34RSYDwfR7evsvv/x//F6V0hkSp9Ni674sgOgkbhNimytrKLNtb8/zGr/6XVEYuoVgmgeggyyEeCoGkECgqSAqypGLH4wRhiOv7CFnGtGwCAClyKiUAORRIoQARIAgfub4IQPu3Fbw+Lt89mf4OvB7P6zhw+lnA68H9A0XdYWetT2NK3a/dPQq8huHgs8GSJD9VOftcBtb9MP3ch8oBfheOBzD95Ps+3W5333RUhkccDR38HlzY5xnEn5xnFgfFHDOdPu5EQYjHD2HD8eDwsHbwIF+/ar/fBLb/PR8BqpHKaN9RwcEVHqpmGF3hoxsHxw3qIAjovPy/4z585zFvw4M+0kHvf5xJxCBTlMO8D/Pqr+sg0N//LtHfAF8oWKk0t29+hB76WLEEhVIR1TZBCJrVPeK5LIgQEc9TDxSslXcJdZtQM3BdB8M00XU98sKqagShwCdEVSVkAZIU4PsuY2OjVKtVbty4yde++jUazRrXPvqQre098vkhNE1j/uF91jfXCYUgny/gdLpIQUC72yUWi9Fq1pk5OcPt23eRZBlFltja3KBYLPJwboFOq0E8kWB5bZ1QhFimxfrqJpl8HEnAB++/z9TYBPW9XdaXVwhCOHfxMtlcAUNTcDptEqksnW4LWQrQdY1218XQDBAqrbZHaXiYveoO6UwOzw+oVqskU3Hu379DqZSn1tpDlmXarR6+D81Gm5hhEUvGMGM2oYBbN+/wwgtnaTXr6JpJs95ha3MbWZL48Np10qkUigx379xkdGSIjuNFzsGkyMOzaqiMT08ROD6L88tMTkyjqSpbWxs0W212dnY5c+YMrWYDRQI/BN0wWVxcIZ8t4Dg93r96lRMnT7Kyvs7UiWl6roeu6bz93hWmJqa5dfs6Y1PjWHaSoCO4d/s2uWyKTreFYZj4voSiCoTkI0uRsyIhVNYWH9JoVJk5e5KJ6Um63Q5jo6PYiThIQaSZDUPWNrcZroxh2TKSBLKikcmnaO+tkctnaHc7OJ6HqmjIksrrr/+MCxcu0XF6xBMJvNCnUEjh9jp061UezH5ELp9DVywkOSTwfVqNBrat4Tku9UYL24pRrUVm76Zp4hF54ratNFtbNaxYCknV+Nf/zx9x6eIFfvSD7zM1OUWIhCpBo7WHUFQk2ULXDCQRIAtBu91id3eXkdFRfN/nW9/6I86cOU0qlSYMQ6rVKrnSMLphsrW+DiG89vrrnJg5iRWPo2kqnU6LVrtB3LYIhIplJTg5c4ZEIkGnW0dWoqMEu9u7rK9tMDo+huM5OE4PSVJZWFjkzu1bTE5NIBsaCD52hoIEtVaTfCaHaZpIQtBs1DENHaEqqJLA77Yg9EBS0chw5851/KBBNpeNNqfkkN///T9me2ObiZE8O5urfPsv/j2jQ6eJJ2Q0VUZVYjSbdeSghySH9Ho9Or0emm5Qre2hqDLNRpWYqeP1uiiKYHJ6GjthkkjHkRWZmBXje9/9PuXyMLOzd/HDIAppErgIWUFRonBHvXYXVdZIxJOsr29QyBeZmpwimYjRbjUwbZtw8w6N+DT/yf/0f3P+8gtkcuOMj8+Qyxdx3Q7nTp/ANiRkM4ZtqLgP347Wm4kv4as+G8tzpOSA2fev8sPvfIf/6L/+J5THxxBISME+WDokcB1ed0L4+BpEhzdUn/bMWv8G7uG172mB8lH8+wXRo9Zo8YTrMD1m0yTExw6cjuMFj/N6Ekn7gE8KQ6QwOsMqZA8tTFIqxXnn/T8n7NW5tdDlmcsPNOXUAAAgAElEQVRn2Zu/wR/8L/8zpuLyzd/5+wRa6rF115BtnHqT2Vs3EU6bvfU1Cokc8dEpJEOwV93D1uPIYaT5lQWoQkQhtcKAIOgiydBtN1lemCOTiKFrCn6oAPtOZYTY1xr//+y955NdeXrf9zk53xw6Z2AwCIPZyYFLiqSWQSJdLNuiQ7lkuYpVLocqy/4L+A/wpct+Z4mySxLFTdzA2d2Znd3lDDAJOYdGo9ENdO6bw8l+cboxFxe3Gw1glhSpfVCn0Pec8wvnF5/v70mJLw5BlEAQiWK+dHi1Txs/ieI4RhDFvnG4f66P8FIDrnjAe89DvTxd74H9fvQ0pmO95eyVT/97TwKvu7Sv2vxT0iDw9qy0Vz0ODtb2TtubvlcjcNChRu/9MAwRRfER57G9698gVeN+vr+3v/vbO0nz+LV3W0Q97/Dw/92rN49ezNEPynfVnv/BS153HTYddLLtvidJEoqisPeY/moN6ZMKHOjWY0++HFg8cu+Rtw84eXYHx37p+xegRwb0QcuLBwPgvTbyXW/DyuxbB/6OQZPzIKrXvbQbumc3bX+a/gm+f56J/7+F+VuMDw+z/GCJ0lCB9bV11lc3cd0Qx9YxNZlms0F6dA5fsWDpLKJTIBYV3G6Xzc0tWs0mge+hahqSnNjZEYVIssr1azdYW9ukWCixtr7O2toGKytraKrOieMnyKTTzM3NcezYUYaGh1i8t8jc7Cx37syTz+VQNCOR6ggily5dYXu7xq/92jssL91nbHyCn334c6anppmdnQZBYGV1lbffeot2q02z0WR4bBRigWqlRrvZZnFxiYnJCdbWNxgbHSWKQuIoxDBMJEnF0A2azRbdjke5PEyr4/OLX5xie7tKs9FiqFQkigW6XZd8LgfEqKpCGAVYpk2z0aLbdVm4s8Da6io3b9xkZGwU0zJot1os3VtibGwIRVEJ/IirV69z5coVjh8/TrftYtkOsqySzxe4fOUKw8MjKJJEbbuSeBxWVKQdhqTRbPLZ559THi5jOxaaqvG1r32N69euY1k2n5z+jEOHjxDH8IPv/ZCTL7+EpslMT48jySIvHj+azJE4RtNUTp8+xZEjL3L48KEdT7sRly5fJ5VOoxk6dspBkjViBK6cv4Wh2xi6Tr1RQRADAten2WiTyxX5+S9+zuyhWVRdAQTanTaOY2PoBqlUiuFyGj9oEEch21tbGIZEjELXDxEVDV0zcWwHRZaZO3SImAjdUJMDGyJkRcIy7ERCLgmMTUwhKwbNdgdJlJP+FJN4pLIIsiSytbGFbTkEfoSqSQR+wMKtee7dvcvUzASCEDMzM4UoRRw//iJbm9toqs65s+cpDZcJoghDtwhDl9D3kRWZbC7L9MwkkiwS7NjsttotbNtClmU81yOVzkEUEQQeExPjHDp8GF3Xk9Bksoy4YzMtSVJi+6rrvP/+TyiXS5hm4kRpfW2TM5+f5Y0330Q3VSRZBmIa9Ra3b88zOTVJOu1wb2kVy7BZvrdEvpBDlEQM00RCYHNzkygMMU2TOIrwfA9RhCBw6XSbCBIYmkWpnEOSVD7/9DypdIow7JDOFcjn8siqxMLiXb7+G7+Nosrcf3CXQqHI+toWqVSKuwvz1Gp1RDmRNlmmha7rfOc7f8Wx48d2mDSBSqWGEEVYlkVMhCiIaLrB0WPHAIVGs8ns7BySJKGqOuLOutntdLBtm1qtQRRGrK6uMjExieu6nDlzhlKphCpGSJu3CF75F/yLP/kTZmbHmZs9zPUbV1m8O8/v//7vcOaLT7h8+RKLdxa5c+c2k2pysMHEq8i+jyIJfPH551y5cYP/6V/+S1TLeezwsH+Nfxo6KLM7yJTooMz1s9KeUqXnzfc50z9NvrLsEgU6kiazsb5A1rAZZoNzv/gWlz/5gCtXrvHr//l/S/m1t5Aj5bFvloQ2bbeO5ahcvnaBYyePI2oqRqpIECfaYZIgQhQT9xx8P1onAUmUyOcK1OoNxFhAUNS9v6OXSX/+ZnmY57O+/8vqr/7y9gI/+6V5lnL6qdcz7iDbzKcp53nn4m6ZzwtcD1KXr6Kug+4NWtP6BVBf2qcKA9P1A9Xee7+Mb9mt40HLGAya/xOQvPaqDT+JdgeyJElJTLwoYu/l5D8e8PqlQ6a9F6OnOSkbFGe1f2DvlfezgNd+2+FBMW/9O58SwzOB196FchB43Yt2T656pc796XttCHpPMx9rIyJARNcNLFOn02lTLKVpNOrMzEziODnSmTKbq3fQVIWNrQ0006ZjlDEyBeJrP4KRl9HEGMdx0HUd0zTpdDoQR2iqgqKouG6EIitMz0yjKDKTk9MUi2WWlh7w4pEXyGUdVh7cp1ZvoCryjqOmPJKUeGC8fOkS585f5NDsHAsLdzFNh4mJaT759GMOzb3Ae+/9mLfffpd2u83K/WWGhoY4c/YsmqpRyBeQJYmLVy6TSWdJp9OkUmky2SyqplKvVSmVSwS+z6lTnyBKMs1mi6tXr/PBT3/G0WPHkRUFWTE4f+4SQ+Vh0o7N7Zs30AyTOIpxnBQbGxtksxnS6TSb61vcvjlPykkRhRGzM7NsVSuUykUc20QAJqdniMIAYhFBkPj441NMT08zNTXFqVOfsLm1zeXLlzl+/EQSmkWSqNfqSKLM6dOf4Lou6XQaJJGpmRkOvXAY3TSQFImzn3/B+PgY8/N3yGbzDA+PEcYxcQwnThzf8e4rsbm1Rr5YRJAERElA1zQC18V2UlSqFcrFIpIkYRgaIxNT5AoF/CBEVjUQBCRRZHioBESomoahG6w8WON73/kulp2i2/U5fvwEqYxDRECz3tqx+U3szTVVRRYjzp8/y83r83ztpddQZQVRs3BSOcIdZwqe51GrVvDDAE1TkRSBIPDodNqIInhehO2kSWezdP2ASEhC1WiqRhB86TBOESNq1RofffQRo8NjbK5vsr61girJ5LJpRkeGUBQZ13NJpZ1EYyAKSaey1OttxsYmCOMAJ5VO1mQxYnt7E8/zkJUkXEgYJXEVh4aGyWQyeJ7HvcV75PIFFFlBEAVsx+b8hQtM7EhpJUViY2MT27JoNltIkoRlGcRxxOzcDIoi0+l2URULXTfJZ7OEoUcQBomjGSWx1U2lM1Qq2+RyOR482CIOI6LQhzjCNA1qtTqaqpLNZOh2u3Q7HUzLwvNi1lbX0Q2TOE5iKHfdNlEUsrVV5+wXlykUsmSyFsVyiUIxUcMuDw+jqRa2pZBOp+l2XTRN5/Tpz3j55EmCIMIwTOrVGt1OhyiOGR4uYxgGzUYLy3LQdYOL5849dMxlOSmqtSqyqtCotXn//feZnJoi8AOajURNuNNpI0kSjWaLVCrxqP3xx6fodLt4vp/UrVxGqc4jTrwOIycIow6aJmA7WWYPTXHo8DTz8zf42isvUyqXcLtddMdk5MRbGBMnUA2TqNPlvR++x/DEOH/4x39M23PRdPOhE8K9mLenoYPyAbt7X69Dxl+B1yfnK0RNAskB1aTZbNDa2KS1WaFRrzF/+Rq1jTr/xX//P5IemUQIH4+A0KzXaTTaOE6WfHEEJIPtepf33vsxh144jChJKLKM2+kiKepjEihZkXcD8CFLMrZlJ2rDOxK2gere+xyYP3Pb/Aq87plm90BokC+Rv23wCs+m7vwsdfnbBK+761avfWpvHvuB115pZz8/u5fH4mehJ/mT6Rc+9YPX/yQkr3Ec/+lBB2cvUNltuF57zUeByaMN23968bSAWRCEpwav/Z276156PzvQgTkJj8bo6k836O891bCEx9MMKkvoy6tf3ba3PeM4JrjzKYIgoOyoDfd7zevdgPrVhPv76JF6DKhnb36DgHQvwO69el2UP05xErkxiLFsi9WVVdYe3EMUAjqtJoVSiUhSMU0F1dApFoeQZZVUKkNbySGOnUC48E2C1DhR4OJ5PoIsYhk6ntelUqnsOLWxMQyDWr1CGPlEEQiiiCxLXLp4lmLeYWx0hEJphNOnT3Fn4Q6WZaHpOrZlUioWGR8dR5AEGs0Go2NjqJrG4cPTfPTRx5RKw4RhQBh6TE5M8NMPP+R3fvd3EUSRq5evsLG+wYvHjxIFIa1mC1mWuLd4j+m5GRzbol6r8ODBCrOzczjpDOvr65TLQ4RRzIsvHmG7soVlGhw7ehRRgFIpiSFZKhaobG+haRqu59FstYhikCWVbtdjemYaVdOQFQk/DBkdGQJiWq0Wmm4gIOB5IefOXaBcKiOIAoahMzExxdraGoVCnuHRkSRIvCQhKyqGrjM6OsrP/+YjXjp5ElWTEcTEK7UfJBK0TrNLFMUsLt7l5MmTOI5NLMR88cXnOI5NKuXQajXI5/O4vk+z1UTXDeIgwu265AtFLMti4c4C7XYLSRIxLAPfcxEEgcAPkEUR122zvnYbyzKJQhBQSacKzB2ZJYoEhodG+Na3/pKTJ48hKyJEiY2J53nU6zVESWBrs8qVK9dZXFjllVffxvNdOp0OoihSrdXQDZ0oCKjVG8iSiqKKdDrtZN4pGooI95fXEAUNRVWQFRUECVWRiUlCzURRkISxaXeIYnjt9Td2Rr9AvphHUxUEATrdDqIooWh68p2hTxxFhGHMd7/7ffL5PKWhPBHguz6yLCAgYtsOXbeb2CxLyXzzvACAynaFUmmIK1euksmkESWBSIgZGhoiiuLE9EyKMfQk5qym6VQrNer1xOnW/eVlREHiX/0//4bXXnsdRZGQJAFBBD/wURQN3/cI/IDl5eUdCeQEhcIw3/vutzl8aBrbNtF1g2arQ6vRwO120TQNTddRFIV2y0WSVCRJI53KQiwwPz9PqVTEcWwOHz6CokpomowkyHTcEFmV0A0dWZIRxYAwkJJDHlmgVCwjiBKmYXJ/+T4pxyGdSeOFAWnHTJylSTKXL1+mWMgzPj5GEIaoukFMTByGRIGPk87y5puvo6oyghCTTjn4noemqYR+QBhFyIpGynG4cPEio6PjbG1t0+m4uI1NhuU6/tf+OY1uh62tddKZFF4Q0e42QAi5efM609OTpDMZJianKI+PIWgWpmWzubjAv/2Lf8dvfuN3mHnhKCEC0o7X6/546b1r8F40yLPuoDV8r3v96sH9eQwCQY+s9Huo++2VZr9veRo28aDq0HumeRrgMOCeKECMRCRIlEqjDI1OcL85RGSUuXTuMlv3NrBSJY69/ArI+mP1keU0AiqybCCJKqqo41gpXn/zNWJRSOJrI+C7LpKiPtxzd/fyMI6JSdaJGGHHNElKTJkYzLQ/0i5P6NcDtcsvGQTtCioGhWt8nnIOIn0cNG73m0f75fMY3zgg/yfV73nb+knz+FlpUHv0l9vbBk97cNILMgfluV8/7Sfp3E3X7+W4n9ft/8ZBeQ16pz99//N+/rl3fsOXY3/39z948PokteF+W85+qWMSgPdRkJQ0YPJ8P+D1hHo90hFPC17j+PFToygKH3fdfsBJ2T+JDgp6H3tvQLv0T+Z+8Pqk+uyCV/hS8trf7r117l0UeoFmvypFfz571nXAYjQI+O53iieKMQgyCMl4y+dzuLU6YhwiChGNTgs9lUbVHVTDYmurgqYoVNY3EOKA2EhD+SjyrZ8QeR10O0MsSghCTBwmYUV000ISVcI44N7SHQzTwEmlqFRqjIyUGBvOc+/uLfKFArJqoykSc4fmyOVz3Jmf5/z588g7Mfk+//wTZg/NYqccPN+nVlnHMC1u357n2LFjNJoVVldWE0ZY07h69Rqz0zPcW7zL8Ngw2WyGGzeu4XseR48dpe0mcVhbjQbvv/9T3nz7XSRZZWt7jeHhUQrFAp98coqRkSE8tw5xSLVaoTRURJDA7bQplQp8/wc/5NChF8jliiAkKqqpVApFU1FUBdfzGRoeQlUV7i8vk0qlieIYVdZYX99gbHSCVMohDAPS6RRhFFIqFZk9NEuj2UBVFUQlsWH0PB/TshifmkTVdcQoRJYVAi/Ad7uoisTC/CILCwt84xu/xebmGq7XwU5ZqJqKbVkYhoksibRabXTTRNUNJEHm3t17WIaJZuicOXOWpXtLKIrMxPg4ldomuqbidrukUw6NWgVVEXAch1q1QbVaJ52yaDQrWNkcqVSaB8sPGB8ZJZNJJcBHkncmo4hpmcRxQCqVJp1NMzwyQb5YQJADFKDdbpHPZfF8H0XVOPXxKY4dPYGqyUiyhCjIqIpB5Hf49je/T7vlUywV0XQVIRaBgDAKCEMfy9ZpNhtouoOq64RRiCiJWLaJqKh0u11EUcCyHARJAUFGFGQURcbzfKIQRERK5QKKJuJ6Hpbh0KjV8P0A0zSRJCWxjImFxCHXjuOijY1NLNPm88/PMDM7iayqxEJyeHPz+nVsy0bTVUQpcW4lCBJe1yMMfDRNw7EdiEUsK002Zz20L46iAMOwEUUZWZZIOQ7lcpmRkVF0TefixQvkC2nKpWzivVfWkniwqkylUtmJAbxNFIbIcoCTNpFVmTD0adQqjIzMEOERhG0URcQ0TcLA5+c//QUvvfQ1BAnCoMvW5gYCoKlpAIKoxc0btzDNFH/5zb9kbnY28ewsiaSyKaKwS7vVpt1qMzc3i6xIdLpdFFWj6/ookowsCsRhiKyqtDstGvUqmXSKbqeNpiWqzqquIUkysqKiKjKyrGDbKe7ff0AURfyjIxm6k++SOvQqjuPgui6CIIEUEwQuvufyyqsvI8kSnXabNj6ybiIJAp++/yM++OZf8pt/9AdMzB1CUBKJtBzFSd89xR7Wv27v93y/ewdhwPfL62nKemL+B35zsC5Yb/onlvuc9QqxkemgRiGRYBFmCxx64RhDE6N8/snfcHdxiXf/6I+ZePPXUaLw8TqJMbopIsQeK0s3EYIasV9DsbIoupbs4zGosvKINHW3vyMx8RvyMEch+f0sNqNfJZh5GnpSub3hSg6a5qugg86H3Zi+e83BQXzb89TpeehpnLw9DT0N7/wsUt+9QO9egPCgZfX3y37gvv8AZVBeg+q9V367afrHdu946e+vZwGvX51+xX9kNOiUd9fmcZDDn/3oWdJ8VfR3tfB+ldS7KSXAXniqzfVpyvmq8jnIwhyGSSw7RdEoFEo0m00a9SrV2jaKIoGs0PUDNEOn3W7jBy6mqlCr1Qi0DOHb/wuimSVaOoPYTWzGGvUakiTiui6u6yJJEqZpYJgaoiig6xpxHCKIMDoyxA9+8AMqlQpffPEFi4uLKLJCeWiITqdNs9nk+vVrNBp18oUcsiRx9epVvjjzGY5j8/rrrwMx3W4Xt+uSy+e5fu0ax48fZ2hoiEKhiGPb+L5Pp9OFOOby5csIokgYhgyVy3z9619neXmZWr3OysoqYRiSy+Y4ceIEkiwmkmW3g+2YtNotqrUqqiaztrbKiePHURSVMIy5v7zC+++/jx8EeJ6XnLJHIV+cPUO73ebB8jK3bt5AlHfiVhomW1ub3Lp1m0OHkvBEuVyOVMpOpGLtFoIIYSLaRFIUup6HpusIoogkCoR+QL1a5drVaxDDa6+9zptvvgnEnL9wHsPQ8DyXkZFhVFXl9u3byLKCqqiw4yRkY2OTc+fOc+3qNcIw4sUXX6RQLPDSSyeJEn9nyEoi4Y3DEF3X0FUNSdTJZgt8/PHHbFc2WFldoNFqEiOwvVUhncnw6SenicMQBAFRlGg2mzy4fx9VVXH9Lql0iompMX7y/o9AiHj/xz/G63aIohBNU/Fcl9/9vd9HlGR8PySOodFoEIYxURDwO//4G7z++huYhoUiKQgIuF4XiPE9j3a7jaJISbimWg2ExHnb+uZ64nXXMLFsOwmHFMcoqkYcJdFPwjBRuZ2Zm6VQzBPurJ9ra+vYpo2qqMiy+nB9c12XIAh3gGzMyMgIQRDwh//ZHyJKEgjxQ/OPmZkZPj39CZubmwRBgGGYGIZBLp/Hsh0kUaLdbiOKEsePvcTG5loS+oaIaGc8bKxvJv2ezHg0TcP3fWzb5PXXXtlR/43wvCQsjSiKZLNZAL71zW/Sbre5dPkLKpV1wtijVq8gyQKBHxMEAQgRsiKAkMiKlpeWuXPnLm6niyyL6Jr60H5VFERqtSqZbAo/8Dl86AU67Tbzt29j2zau56HrCmtrqzipFFvb20mdTYNIgFqtRmW7wub6BtXtLeIdO3JJkvB8lygK8T2PTqfz0EGGKIm0Wq2k3XI53nn7HV45PIYYtPGGjvPhhx8QxzGqquO6PooqkU47pLIpRFFkY2ODSr1Go9nk6vVrtC7+CG3tEr/59a8ze2iOju/thDVJHAD9iv5+URSLSHGEECeaEJGo0mzWyRXTNN0G/+F73+V3/9l/xUYQDkwvKhGCGLC1/YBS0ea9H/4l87cuouzMsyAI/jY/55nol6laDhAEwd8ZX3kQelZ++Vd0cHpW0Ps0/fIkPvZ5n/9d0d8ryWscx3/aL23blcbt3ttPlN2Lm56EofYTk/eWD496uH34P196u0tEq4/n/+UpROKgSZJEvvTi9bj076CDPHkn8WDc61WZR/zdDf7OXko89u1+R/Lvy3sCxDuKPQO8F/ef1vU+25W8anNvP9KuveoSvW20S/1t0Zt37wl7f1/tJ3Xtb4Neaf3ebZPEmhOECISISICUU6LR3GZ9dQld1PBbAVYqQ2VtHTEGVdTI58sgKKiGShhFGI5NNHQU0UwT3/45YbdNbBfRDCupXxwT+D5LSw/IZ0sosoIsS8iygm6maLQjDh89TqW6xTu/9u6OurGMKqvIsk46k+PYsZNcuXKTQrbMBz/5CS++MIduZKhsV9A1la3NDSrb2wyPjfLK115B03QuXLzI0PAIkqIgEHP2i3O89fY7rK1tUq3WyWTzpNPpxJtpNsPVy1foNBq89ea7rKzcJw5dbt64Rsq2yJfGuHT5JuXyGL/4+UfkMlnqDY/xySlMy+LatWtEkcDSvftEUYysKBSHhghCn9D36TabpJ0sG5s18oUSWxub6IbGzz78kBdeeIF2p41h6uiGiixqhKFHo1YhZZkIEdy7s0DacWjUqtxbXKBQyCHuhDvwuh4b6xu4nTbD5RLIEpZjI4gi6XSWdCqLKOj8/Kc/59rVawwPJ1Jo1/OQpJitjQ2KpTJzh17ATmfwOi1kFaZmZlEUHU2TUHUDYpE4DDl75iyZbB5J1RBlke3tJp12wKFDR9ja3EJXVbbWN7h+4yqvvvYKnW6bTDZLHIusr6ywvrLG++9/wMuvvI4ogNfxiMOQoWKRVq3NmYs3OXzkEJatEwUxoiTQ6dZwTJX1lSVsy0QURCRVRSRE1RUkOcKyTFrtOrIioCoGoiizsLBINltAQMJteXz3Oz8glyvhOClsQ8HvusRhyMb6JoZm4HddVEkkMdUPkFWRjttF0xUQEpXwyA/JZJLwN5rlIMoSnu8BEaqqsrLygJTt4HY7RHGIIMbUqlvYpp7MuCgmDmNuXL/FhQuXeOnoEVRZoVLbTuyPFRFZCjl16jSjo+Ncv3EdUQwYHh0ljiSqlTZ/8RffYag4RBxF3Loxz/TcDLVmDd1QCEKXcnGEtdU1apUaKw9WGR0dZfHePXKZFJKq4YZw4sQryJJBvdlkcnyObtPjxtXriILE0v0Fsuk0brtNq9FidWWDcnmMYy+fpN1pUC4VCf3EjjoIYjRdJgg9uh2fXC5PDIyNDSNLIjMz07TaTZyUjdsO+eKzL2hUawyPDBNJIkHXRVcUZDFCEqHRaJHOFFAVkep2DUlUaLe71Go1Mvk8hqYS+h5uN1EvlyOJLz4/QxzFNDsNXsy08Y78U6zySWZnD4EYE+IjKhGmmCEMIhRdxw8Dcuk8lmJimjopr8v9D/6ccsZg+J/+DwiyiSyrEAVARLhzhrx7MEHfPhoni+0ea+3gvXjQ//3v9O6xe63lg/aL/dTx+qnXq22/qmrvrrvX10U7399/7aYRB+xrT/Mtu98jiiLijiRk9+l+9QKfSJCJJAWEEDkMEIWYVsvlN//JP8McmgJEcuIA79CCgBDFRIKGZmaobGywcvMSdtQiPTyDZtqEyCCDIEbAlxK+hxKgKE4cOsU9Koh933pQeqJEnUfbe6fRHv79CPc0SDtsr+uAktfdvP62BBWDeeNHbST34n8PotVwEG2JfgniI1oFPD42B82B3To/qbz9qFfy+aR51os5dqlXOr1LuyaLe333XnXYzb9XS7F/Xepdz57UH8nfX0ZYgeQQXBBE4h01/N37CU6IH8tr73o/HiFl0JUs919ikd0rjqNHvuUfvNpwGIZ/Oki9tB+0PuuJ2ZNUD/a6v5ea6n7UPyjFHWnW7v09nQUd+Lv2eu/RSf6kjf1p7h3khEYQBATVRCpMIzilxySce7Xh7kK1V7nP0t+D0hwkr/5JLQgCoRjgOAU6jYhapYoqe2hOmnwhh2EahCJEokAgxNSq25imyb1791BVlbpgY86+Rbh2A62xjBsKoBh0uh00QyeVSqFpOr4XEIQhF89d5vKlK1y8eJlWs4PvBWiKQrFYQhQlfvrTDzl+7BiNRhNBiiiVijy4v8zQcImxsRGW76/QbrXIpNOUSiV8z2d5aZHlpSWmp6ewLYuUY7O0tMTI6DiFQoFqtcKhw7P4gUe1WuPKlctkMinanQ7b2xUazSZXLl9la2ODlQf3GR0eYntrg0q1gyCIuF2PO/MLrK2vs7q2zqG5Q/hewO3b82TSGY4fP0EUeczOzRBFAZ7n8sGPf8JLL51AFGVu3b7NjRs3sGwLJ22yubnJiRPHsa3EociFCxeYn59nZmYGRVFYWV2jWqmSyqTZDaj9ve9/n5MvvQwxNKobbG5uouk6paESHddFM23EHSmiZdl0Ol1Sto1h6Ny+fZs33nwDWU5UeOUddV5ZlFlZfsC9xXuMjw6j62oiqUMi8Lu4UfBQtbVeb6IaJulMlpWVZcqlEmOjI4gipDMOjuOgKCpjYxNYloNtO9y6eYuh8hCZTIZz58/x9jvvYDs2gu0awUIAACAASURBVCChqCqtThvbMbEcE1XVMG0VJ2UhCCqypKAoCmEsYqfSuK4HiGi6mtgXux6WadFqNdB1BdftoMgaMfFOXRREUWDh9hKG6XDu/EVePvkyECPJIrquJ5JPU8cPXHRdxXWrQMCD+8uUy0VEQcD3w4cMiigKGIZBvdFCkSVEUWB1dRVFVjENG0mSaTRbqIrK2uoapmXTbtVwUg5xDF3X59THp5AkmZMvv0QYRfz5v/5/GRseRRVlZFmmWBzCslIIgkQcQyZj0Wq2cJwUszNzdDtdnJTD9Mwk1VodwzTQVBVRFIgEyGRS5Is5coUCkqJz685dNjbWMQwDw9QRxRhDVxgZHUYQhMTpU8rBNA3slMWDlWXanRapVJbvff89xiemsNMGKdvGcz2uXb3OmS/OMTJSRhQFZEXGskxkWUpC8AggSxKdrkulUsVxMniey9zsHFevXUMzdCzTpF6vYloGrtel23WxbJt6o4GiKFS2a0SRwNkz59E1i9FyiW6rxdLdRQxNo91s0+y0mZqe5me/+DlDhkfREole/m8QdRVREXG7LT47fRoxjCkUy/zZn/0Z+WIRSRBxNIVGZYulC5/wb7/17/m1F4ewnTTa5NeJxf0lAgfdV570bi/T2n+Y3H/vqwAGz1vvQbTXbvkQYH5FgEYQhIfg+iCMfszjTKu0w5RbloXneUlsb89LwGo/nyJDEAsgSuSzOTotj2YroB3B2OQ0YRQgCeLO0fij+3q/f4pBpkAHBYYHab9+kDTo79522e85T/H874r2A5yDbMxhb9OxvfI/qKr/Q/DSpxK7X5pB9XpWeha8sBeg7L0H0K+K+7T8dP/fgwB2Lw2eJ4PVkQd/89Osl893eJQI7J5PbfjvFXjdlbz2Xo/bte7vvKf3vX46yKQcFB/uSSc2ey2ivSc0cRzT6XR2PG9Jj7130IX4y1OZvU5v9vZWtnv1nsD1v/O09ke7deiVZoqpMmKq/OWJcM81SBXiIAcKvYvuk9pqEBAeBJ77T7j68+3tl0AI0FQbXS8Q+i4bG/O4foQoxMiKjGaaIIrEsoQuSw83fyCRYgoq8uRrBMjI904jCAKyphOLCpqmEYURAiKrK2us3H9AykkzVC6zdO8emxsbbG4uMzxcQiDg2NEj2LbB0tJd5g7PYRgG4+Nj+EHA5uY6lpViZeUBE+PjmKaJpqmMjY4iSRKaplKpVFhcXMQwdM6du0gqnSKdSfHRR3/DxMQ4Fy5c4p/8/u8Rhj7ZbJbFpSVkReXtt95heXmJI0deIAh8Pvn0UxYXVzl29DiFYoFSqcS9e8tYlsno8CjVSqIqXSgUUBWZXM5hu7KNbVmsPljj2NHjiSOljsuDB6v8wR/8AaNjo0RxxOEXDiMIyULt2IlDmvsrDxgaGkZVNRbu3OXYsWPYKQcEEASJynaV2Zk5oiBCU2Vsx6Far5IrFLHTaYIg2GHyQJFlojBkY2MdQRB499fepdvt0mg08VwfZFBkFVlKANP62hp379yhWC6g6yZrq+tEgYvhWAgISIJEsVgklU4TC5DLZljfWCeTTSWxQ5tNZFnh6tWrTExM8hf//i8YHhqiPFSGONkIp6ansB0TRRKJYwFV3bUN9tAMjeGhUfL5FK7nEgYgi2pipyon9sSSpFBvJJ5zu90AVVXxAw/fc1EUCV0z6HRc6o1aMv5kGc/zGCoVMCyNN958Dc9rUa1sJo6qoghBFNja2iSTSdNut2k16xCLpNMFFNlkbXUT0zZ38pOIoohup4Nh2UBMs9XCth103SQIYqqVKlEUY9sO6XQGRVExDA3X9RAlGUVRcGyb0bFRCuUCjXqDxYW7zExPc/3KNYrDZTTNRFFUfC+g1WrS7TZpNVtcvHiZH//4J7zy6isoqsK3v/Uf+Pqv/waKqhEEAW63gxcG6HoCZIMwwvUCRFlmdHgIVVEQRZAEiIUQUUpOsW/dmufKlcscfuEwoqKgKBLZTAbDsJianqNUHkEQA1rNFhvrG5RLQ5RLQ+TzaRAEoihkc2MD4phGvc6OuIm7i4uknDS25WDbJqIkkclmKBYKaJoGQkyn20GWZVKpFNVanWKhyMb6Ovfvr3L27AVOvvQy5XIJUZOQFAk/DCiUSyimiSyK6IbOoelxJpVtuq/+c/RsCUGT6LQbVDa3KGSznDh2DEnTeOudd7GtFDIxtY1VTv3NByxdOcef/B//O6zfJkZEn/46kejvufb2r7F7MWFP2m8Ouh8NWrMPdMC6z579yDsHTLcX7VmT+KvzmvtwHx9wfy9eSRAf9yDMDmO8y3M9ZM6Fx6V2oRQTRYnjyDAQUHULQbEIQ59SuYyk7EiAwuihwLqf3+iv/6Bnz0ODbA17yxlkB3gQW+R+/mm/8nvT7f7/JH7yeakfwPTOo0EgrL9ee+XR+3wv3ql/zg4am4+8e8Bveda22ivNoLFx0H7tbaODlD+o7F3qxwK9afrH52Cc8Hhdevv6Uex0sHW1N99np0dB9j948LrrsAn2BqL7Lci9tNeg2e90qX+yPi/1TvRd8LZr19U/2A566rWbb++Jy6MDfH9p7l7Org5Ke52a7aVGMbjuB5c49/bJQcDr0/TbXhvoQApEECRkXSGdTdHtuITNOr/48KdMTSUqspEgoegafruN7/uoqoqqqoiiSOBHiafV9BjN4kn0qIN471PiKCQQDB7cX6Xd6nJ/+T61aoV0OsWdO/PU6zUsy8TzW9y/fx9d07m3uEhMhGmY6LZJrVrn9u15PM9FkhOVUFmUuHXrFhMTE1y+fJlCocCdu4uYhsW9pSXWNjZQNT3xGry9xfbWNqVSmQvnL5JOpXEcC8ux8IOAkdEx7i/fx0nbHD1+lEKxiKxoSJLKr//Gb3F38Q7lcpFarcbKyir/+Ld/g2aziWEY+J6HbRt4fpvK9japdBrPizh96lMyToabN6+SzRXoui7FYpGFuwuUh0eJwgDP6xBFPt1OC9s0OPnqq4iizOrqOtVKlXK5jOu7XLhwCV3XmZyc5uL5y3z6yWcce+kl4hhM2ySO44eOguIwotNqc/bzMzQbTQxT5+zZM8zMzLC9tc2Pf/QT5uYOYZo68k6ogFarxczsNGfPnOHI0SPopoWhWwRBF0WRUWUJovChVC0BlwJxFKIoEqIgsL1VZ2npHnNzh1AUhWPHX8RJJe1y7uwlFF1FUkRu3ryOY1tIgoyuqUCMrKh0O10kSSGMPYLAR5V1ojhmY30VVUocVkmyhGlaeK6LYRgggud1kWWJ73z7rzjywot4YUilUtkBlIljlWajTrFcICbA87tIgoBppomiGEVRkBXpoUTVdlKoqoUgKIiijKLrO55+JQLPx3U7RGGIblqEYYAkS2iqhigouG7A+bPn8D2fbDbHqdOn+dmHP2NmehrDsEicjkbYlsHQUBEv9BEEeOPNN2h32qxtrjMyNoLbdQGBTDoBh5mUjShITIxP8cqrX8NJW1i2zuTEOIbpECMkIWnCECeVZnVlBVVRkHbCleXy+cRTbxAQ+f5DwC1IIp7vk88VGB0dod6ooSoWiiJjmgau5xIjoGoaW5sbKLJKPpenUatz/sJ5PvzwZ8zNzvGdb3+Xd995h2aziYRILl9AVXWy2QyarqHKEoIk0Ww1yRXyNOoNxBicVBpFVgjCAFlO4h6DiGU5qKpGPp9jenqSIPSQDQ3X62LbNrEIfhihayqiJKJuXccrHEedeZvK1jqWZWIZBpquUiqX8cMQz/eRFQ1ZUpGJ+MkPv4Us+vzX//P/BqqDd/csCKDOvvbQI+xB1tX93nnWNfyrWPsPmvfzs3B73P8K+YxdehrwOhCk7cWUDwCXQhwjCSDEoMgiumFxf32DY7Oz3Lh1nUK5iBCLiLFCxN7eVXvzfJ5vHfjOHqC+/3kvHQS8HpQHfWJZT8n3PUs5T5pnewHOfpA6qO7P+/2wz+HOE9I9b7mDnj1Lvz5P+b3Pn70uA+am8KjD0y/paSTYz9vuX9YJfgVeH/79rOD1Sac3vyzw+qTyn/ZUaT/wOmiA7gUUn+Ub91I56W27YPkSUX0dKT10YJWPrwq87mVPsF+ZB3lXQ0WQYnyhDYKAoWRxNxfJZtKsb2wyOj6FIMv4QUSnUWdoaAhRFFleXsY0TYQ4sT+QJQVEhSAzQ0NKEy2fw62sky2OsLVV5+aNm1TrW9TqVRB2HLPIIr4bUS6N4LohnbaPZWa4dOkah148hGnYjAyPkk5nEEWRiYkJyqUSmUxmR2q7yeTMDKquMzU9QxgJLNxd5NjxEwRBl9HREcbGJ7h44TKFQom33nyTCxfPsbi4wOjYGIZpMj4xgawKVKoVFFWj3mjz4MEamq4yP3+Lo8eOEIYBUQSe12Zzc5OrV69y/PgxNjdXMUyVSqVGuTxCHAnM31qgVBhi7tAUmmYQhjsxUQ0dzbATMBR0CbwOxCGyJKKZNnEsYJsOn3/+BUdefAFFVSiXy2TTWT45/SmHZw9z69Y849NzXL9xjaGhcmKvKau0mh3e//FPyGdzzM3NMTYyhiQLHD36Ip7noagalWqV48dPQBQShRFdz8NJO3Q9n9mZGRRDBVHC90NUVUSRIPA81ldXiYIARZEIw4CtrRau36WyvUngh6RTeW7dvsWRI0eoVLZodxpUquuUSlmymSEQBOyUhaGpmLrO4sId6rXELrNULKEoGsvLK6TSNhsb63zv+z9kamqSYimP36zshLLREBFx3S5hHKGqEqII7VaHYr6EaTjIauLUK5/Poes6oiiiSiaCINJqdVFVk8sXr3H58lXKpTK1eh3btmi1miiKQr1ZQ1E1/DDA9TtEeERhchjmuR6GYSAIIEryznwU8PwAUVTY2kxi9J58+eUdx1IhDx48oNVoo6o6qbRDo1HFtnQ63SaaYaKoSqJ1KAkcPnIYz+0iSYkTtShODgfa9TaiIPNX3/srRkaHsGyderNG2kmxsbnN/furmKZBTIiqGJiGiSTEdNptul4XXVe5v7qKY1k0qg18P6DeaGOndqTqoowiy6iqSqXaolqpUirmSex6Eii3uLDERx99xOTkJPl8BuKQ8fFpmq0WR468iKqqfOub32a4NIJl2wlDL4p43Q61aoU7dxYoDQ0hKwoCsLK0jOlkOH36NJZlJQcxlsO//lf/hq2tTY4fP0467VBvVFheXiDnZDEVlVa9ThyEuB03UX1vbxNW76P/+v+KbmpsrK/idTukU2mQBII45u7yErIioyg6cQQXvvic2G/wR//df0ldyqDJNv6tTxCIEQ+9BPHj0oJB6+qT3jnIGv40+R9MorB/nR6798y5JbRXbaSBzOXz0VOB1wH8lbgHX9CvSpuAV5AEATEKEeKIkBDbMbn06RmQI4rDZQRBTsCr8KjPikEmWLsM94H5hYO88wRecVB5v2zwup+086ugQSFMDgJe99KI+xV4fZyexlzhadbC3r4YJAUeXO5g8DpI0/BX4PWXSFHEn9JjYJy0/+OTcPf/QQ6Edr0twuNi897fvSde/RN9dwD1Ogrqp920/TG8+gfQ7kDsH1R7qV30DtD91aUTFwrJz7jn98HULPo3j97v6i2/N49+dYTdCbZr1L5bX/ezf0e0sYAy+9Zj6fdaXPsn227/9KpV7AX8B/Vj/8Y0kDEZ0FZ7XbEUE8URYpwYpKuWxqmPLjM5NU29vkq3VSGdKgEaqKBoBmEUU8wWkNwITU/CCtQq69RrFSzdRpBKfP/sNrevnOVors2lW/e4v7aBaRqIgkijVieTTqOqGo1mg3anw8bGFi+/fJIg6PLSy8eoVhvk8llkRcYPYr77V++xtrLIiZdeolqvMTI2jmZYRFHI+MQ4gRBjpyy+9vJLhF6XK1du8vqrr3D+7BfUqlXeeOttNF2nUCxiOw4px0YQIra3N+i2AhwzRavR5PbNm8xOTSJIMWNjI9QbDX7xi7/h3Xe/jhxJXDh/gdfefANVU7hy8TKzU7PYThpF0nD9BoePzOCkc9y5c4PyUIlMJsvCwh26HZd8wUYgxu0E2FaWtbVNiqUhGvU6sigT+AGSKJHPZ1m8e5diocD3v/d9xsZG0XSdYqnA2MgQ1coWpWI+kUICtWqVtbVNspkC169fpzycRRITe5xPP/kMz+vyxhuv0HUbxIqGIsuIxIgCKEpio6jIErIYI0QBum7RdduJt1gjCbuysrpNFApcv3KFmakpfvSjH/HOu29Sra9TGMmjqWne++GHyGLAxOgwbjMCRSP0PVR5J1xLLo+h6Wxt1Lh+bZ6J8Qk0VeDShRuMjIygSArV7QY3btxA12RM06TV8XCcNGEYIokivtdGVRRajRaWZZLNpxHlmDAIGCqXE4/MsoQgSvihRyzE+IGPpmpohs7WZg1V0+l6XTLZLJZt0XVdiAMkCdxOB9t0kNAh7NBpt8hkMkQAokSrXkcSBVRZIfASj9SZtEkmW8C2DdIZh5STYnbmMDeu30IQYoaHiqiKTLvVxTLTtBp1JEGFyKfZqGAbaTRFod3qcmf+DpZpoigC8ws3yOWGyWVLKFqIaZhYWhHPg6tXrvPJx6cp5rPkMmkk1cT3fLodj3Q6S9f1qTUaGBKJTaqVxHhNZ1JIksL6xiKWZdPtQLW+idcOeO+v32N2bpZsLk8QBNy5Pc/k6CQjY5OY6TSIoCgiCwtLvHj0BXRTRTM0xqemSKUdms0mvhfQqDX48z////j6r/8Waysb2JaO77WRJUhlUmxtVLl25RoTYxNkMynW11Z4/dWXefHkSRRFYPHOPIIf0m10yBQzuN027VYTzTCIRBCCAGn9CkvFd4izI/hRDLLK0OQsPiJuECaOc/yAKJQxJYmzH32MQMRv/v4fEkoGUhQTRT7BQuKET556e0/nNYPW5941uXe/3m8t/qoB6JPef1jv3j2Jx9m3g6gj73lvd78fkO/zAph+nqLfJGhgmn3q3s8094Z8eXhfEIgRiAURzw+JwhjTsEhpCpd/8j0KQ4eQckMoYhWRHX4MgZgQiWjHU3ufxtZu+x/g2ov6x6QoCMRCBEIMQkziIyomJiKOe3iNnTZ50th+ZHwOatveMbLTjuLO1V/HJ9nX9vJCBx0f+/E8BwFa/WNxEG+7W06/oKB37O3Hg/a2d++9/dI9zZowsNy+9MLuvadoo71UqJ+W9lrrdvPrBa57YZjddJIkP8b/AkRRgCAkh8e7h6yD6tuLlx79rkHfFj2SZy/u6L/6x4osK//QwWv8p72/k0758vegBbb/3l5Of570e69Ju5/NxJM2iL3K7M/jICfMj4PXpyvradLsNzl322Mv+4A43onzKgjIM2/uWacnTf6DMjL9oLW/zfb7lqdtq11ADSDLMoePHqY0NML9uw9IWym21m5z9fzPOPzCUeIoJIzh7p17iKJMt+MhCokTnDAQOPPFBf7v//P/otls8cHZRVYrbX7vqImeGaLe6tBqNtF0HUmSKJfL1Gt1qrUasqzQ6bRZvr9EPp+jUqmScmyCwCeOQ4688AKlYoFarYZlJV6NP/vsM1qNBl23y/jYGIok4Xa6rK6skC+WcTttNFVlZW2NIAy5e3eBVrvF5uYmtm2jqgqWlcSznZ+/TbfT4fjRoyzeW6RWb3Ho8CEUVWF9bZ2ZmWks02BqZpqNzcR2cv7WPPl8gY7vkc3lqVY2SKdtOu0Oly5dYWRkHEkS2draYnR0GMXQ8bwAWZK5e+cOUeARBC7NZotLly4zMjzCjZvXcRyHbtdHECTuLtxlbHyMifExMtkMshxjWTqiJCDLKq1WB01VKZXKfPc732VqepLhkWGCKAnhMjI6Sjab55vf+hbHT7yEKCsQRVy5coVOp4Nu6FiWhqpKbGyuEvgertehUeuQzRZ4//0PsSybxcW7TExMEMchpqlz9OiLxDEoqo4QgYjMwsICJ04cwU47uK6Hbjlcv3qNruuzurbByOgYoggbW9tMTk2RyqRwvS4jo+O4Xpsg8BkZmSCdzjAyMsSd+duUh0eIY1haukccRVimiShK+H6Apum0Wm0sy8aPInTDIAgShyqanKjPbm9tks/mkr42DIqlErlceieUTkSn63Lp4mXKpWE0TduZCyEQE4YBluUQBP7OPAHTsgijCEXVEESRIAxpd1yGS8NEUUQYBDjpDI1WiysXz7O2tkKhkCOTzRAEAbIkoWkGcQRh6KFqMr4X0mg0cByHv/7rv2ZiYpxUKsXy0j2mJmcxDAPP7+K5ASChmjJXr13lG9/4bTK5NKomE0Uip06dYm11NfkOYorFEt1WB1XVWF/fRNVUTNOEONF8cLs+a6sbjIyUsMwMk5MT1GpVBCGxM/7gg59SLg3xg7/+IbZtkU6lsEyDixcvMTE5hm1bIMSIkoht2iwsLOzMK5W3336bZqNBZXubsfHRxD52cxPLssnlskxPT+0cgEpomsZnn51B1xXqtQrTU9P88Ec/4uixlxBkkf+fvfcMsiS77vx+edPny2fr1Xvlffvp7vEzIAYDYkAQAwLLWJrlamOlWIlkcD9IolYhE1oTCkasvigUEvVBuxsbG6S4JMUBhgCGBuMwMOMxPTPtva+25et5l1Yfsqrn9Zv3ynQ3QC6BE5FR9TJv3ntuXnf+95x7Tr3WwIrFseMJFE1DnTuGO/l5YnufwzRNdF0nk8nguE3UtbPvCSNBJtFH0pY4cfQwxVKBL/ziL9AIfdwAlLX53l++iqTHUIYf6jURb2meflBzcTdqjxV+P/nej1C63ecPot7teW35KFDbunjnnG8PvtZ9BXTKWu0KAEVReOGFF1i4/DKhcw1ZFwyM7kENk3hScCd3SRL44d2g8MdOUg8rvi6RJLtxc6/t1k2e7Hy+0TfY7P3tlr8Vear9vV4gCz4NqDvB673Qg+oP28pjG2nltWNE90u95O32MbWV9Osgs7s1ZHBXntDdoqV3nbp9l0+fm94q/VSCVyG67z6tA9V2dA+fBptbAa8bDZqtgNft0HYmlL8J8LrVCXXdoUOnhjMMQ7yrHwKgTD7ZlafOMtrr1S7gdHpo7sXP+gDt7A+d3ts2mhS2MiDby/F9H0d2UFSTfP8kt2evUJg/i8UKmtFPKp1GCJV4KkOr5fEv/ud/ztNP/xzxeApDt/nf/vX/ztLCPBcvXiSRSHBqdpWFYpNf2m+zXHaRNZNyqcTo2Bjzc3MIWTA4OMj09Az9/f2sLC+R6cswPjaObcd4+523GR0dJpmM4XsBrVaLpeVlBvJ5gjBkanKKuVu38D2fwx9/zPDQIPF4nIGhIRRZZn5hgZGxEZLpJDMzM/Rl0pw6fSo652jHcRyHWr3B7t27icfjXLt+nWx/FkmoZPv7CQKPvmwfR48dxbR0vv+D7yOEzIVzFxgYHKZcqTI6OY7v+ei6YHV5ib5UH5MzuzANA1mRyfb3oRsqQjWRhcLqygqWoWNZOvGYRTwZabpy+RwTkxNomkrgCxRZYWZmmoWFeXL5fiCgVF6NzhOqKmEouHr1OolE5O338OEjVGtVdu/ejWmrSEKAEAhZJZFMkc5EJqGKLPPD7/+AdDrD4NAIrutRq9VJp9J4XsDi/AqDg+MIoWLoOrl8nqmpSRRNxo6bCFlgWJFzISEU6pVIGzo2NkJIiFAEsiozP7/CpYtXOXbsBE888RTpTBpJhmx/P34YkM6kUTUZwhDDVNF1jRdf/BYDA4Ok00ksS0PVDFRVQZIkDE1BUdXIs7Lv02o5lMslbNvGC0FVFRRZ4Hs+1UoJISRisRhBEBCuxT41Yzqe72DHo/OVYQCDg8O8/NevMTw8hO+7WJa5tsMrr8Wa9VAUNTK3dn1M06bZdEAS+AFomsHN2esoikylWsOO24QEmLrK2Pgomb4MqqoQt+MUigUMI0aIQFEinoMAAj+MvEjrGnv37kGSJFKpNIEfCdg3btzi1q05DNPAiBvEYhZ2wkbVFFZXl4knMkxNjJNOp0kmk1y4cJFsfz9yKFOpVrHjcWIxi9vzt4lZFtVKDU2zSKbitFp1wkDGMCJnSkIIGo0mDx98BF3XuXzlEnbMYnRslEotCs9kxy1qtcpanauosopt2wTBJ/OTaVqMjo6ABIViibNnz2EYBoXVVbLZPgqF4h1P0ufPX2BoKEdISKVa5eDDj6IZMTRNxrLjSLKGommwcoXAaeA9/J+hatodXwuapqGpgiAM0TUdTSjUqw1uXz3B7PUrfPmrz+MrCrKu4wHK2hypDD/UG7hGk+mGc+dPArx2rgM/LhB6r+9ttBl8P0L/nby2AV4710UhxF3aqXZe/C4a88413Pd9JicnuXDoXSxTcObcSZ5+8jmQ4zgCBAEyPkEYIMkqhL2t2h4UfaIhvbved/6/B/B6l5Zxk/I7ZZFPPd9G9Iv7let8P4rXuxVfJ+189wJTP43gdTNZdOtF9paHO2XVbt/k7nR3W7es0zp4bd/IW5fV29tIluUeFjHdwWvn+72oU6P8UwVePzGFCe4AmfX7m2lY27WD3ahzkHUC4M48u8UZbTcJbk/f3tl6dbx22gpw7eS71/Ne9x/UblH7QGg3VersqN6VQ0iAthbndT1du5lx+0TQa5LuBLXdaKubFp2TwWaAuNemwl39QAE/EEhCJWlbXDh3nETSRihJzpw9i51MocoCz3N56wdv84Uv/DyNZoNm0+HVV79LqbDK7/7u7/L666+TSCQwspPMrTb4ykMxFsstyrUWO2ZmcByHIAyoVCpUqzXq9TorK8sMDw9F8VKDkP37D0ZxhAlRFAPDMNB0jWQqSbYvQzyRwHFaXLpwkac/8zS1eo1YIjJh/Pjjj+nL9KFqKgE++VweSYI9e/bc8QhbrzdI92UIw5ClpSV0XUfTdTJ9WRRFcOv2DfqyWQYHhyhXazQaTaanZlAUFSSJRx57lLnbtzl69Birq0v09WUoV1oIZS3+mBSyuLSIpunIQrCyvIIiy5w6dYp0JsWt27fI54fRdAXD/MQTq65ZxONxFqTpMQAAIABJREFUXnrp29TrNfL5PCdPnmJ4JALnjuPSarqRZtS2MC2TfQ/tBSCXz9NsVZHlCOBGZxtlZDkSTKQQLNNibGwCz/cRaOiaSbXSoNXyeeO7P2RgKI+maQRhgGHqLCzMo6hypLFrtdB1k1qjgWFamIbNN7/9Io89dhCn5aNrOuCjaXHee/t9fu1Xf53+fIZ6IzoP6rgOdszCXdNoCqHQchq4nsv+/Q9TrpTJ5tKEQRA5anKimKqqIuH6IS3HIRazqdXrJBJJVFUDRGQmFAY4TgtNU5AkgapG/DYaTQzdIJSisVcul4hZMWRZRVUV0skUruuQSiZxWi5BAEgyqhKZLxULBWw7hud9IuQpshw1sSRRLBXI5QdQNQ1JklhZXmAgnyOXG0DTDMrlKocOHWJ4eJh6vcUf/8c/YWbnJEKO6p9MptF1jWw2AxLcuHGLa7M3eO31l5nZMY2m2pw8eZpLl86zZ98uUolkZIJfKZPt60cSgnqtdsdmTdN1XC8gYZsggWHoyHJkIeG6LUw9yeXLl5i9doGhoWEURecH3/8uZ8+e5pFHHsb3fDzP4/b8PM989udoNht4nk86k0UgcfrUSUbHRgjCENO0qJSrFAoFms0mkhRtGrz5wzdJpuI0Gg103eDV117jwIH96JrG/Pwily9fRtM0stk+xsfGyWQzpFIpdMPA90NS6TTl4hKeH/La699jz9QI0sJpGk/+DvHsYNQuxSKrq6skEgnOnbkYbUqoKl6jRuC1eOlbL/Jf/NZvRybsIgpBJEsyUttu+0bzZq8Vptt6uNlxjvWyuoWi2Ezwa1+P2svd6sbvVoXTjQTOXuk3Kmsr5d61SdwlL9Elv1717uQ0DMO7tKHtZYkuERI66yLLMpqm8fDBr+GEJitztzj4+EFaso0sQuTAQQ5dyqvL1JstDMO8U+5mZ5y3Q121UG21vet52EXG2k452+gr3eSPIPw0GFjv8+1A40F4pe4ma231nW59qNc43kr+3WSw+wG83YB0p3ltr3jKW7Hsu18eN6JumGO9nChs36efrW9ERO92twBtZ/VOf+sSSaUz/0/+7xa2Z+v+gDrLuBfw+mB8sf+EaP2c6fpHbg8103l/ozzad5k6dx7W73crt5267Tp146/9XufznxZqD4XTjToHzb16Ov5J02b1Ek60o4zuYg1mefpLv45v7OTylWvE43Hmbswye/kcbmWZ3//9/xPPb3Hz5ixXZy+xsrrIb/zGb1Cr1TCM6JzduXPn+IPvHOEP3lrgmV1psuk4x44d4+atW7SaLSbGJ3Bdlxs3bpAfGGB+fp7B4QFS6TReCJJi4IeRFnGlUGC1UIhMNgOPUEjM7NzJzM4dJBIJYok4Vtwmm8/y3HNfZPb6dZaWlhgZG6FYXKXVahGGITeu36BRb6AqEXjRTZ2R0RFu3b6FbcewExalSpGxiQk03UASKufPX2HHjj2RSayhk84k8AKHwPOoV+ucPn0OVbdxXHDcBqqhUiyXyeWH0HQLv1knHbd484c/5KH9B0j359h74GEQAtMyQYQ0WvUofqeh8Cd/+kdouoZumJiGjR1LItAIA4GEgueHSJJg9549UficUpHHnnicl176KxrVFscPH6e8WqK4sozTrOO2GmuTf8jQ0DBLi0toqsHyygLffeNVGs0q8bjFgQP7qNZLqLpEqi+BF3gMjUQOeTRNx04kmL02i6oqeH6LQJL5hS9/kXqjTDyW4ND7H+K3WhFvu/dQqZYJAhdF9dEUlbgdhZ7QFEGpUKBWbxGEoKgKhqUzPjmC49bRjQhser5LGPjIkkTMjmNaMYqlMolkClXTozNnXkCr0cTzfRRDJRQSoZCpNx10yyaeSiNrOkEQ7crG4wkkCVy3QRB6zC3cIJfP4vkBhhHn8Een8YOQYrlKEIakUilq1SqGqlAuruK2GizNz7GyuAC+R99AnlBImIaFrirUSsXoTGnTwfckCqtlbt9epFioELcTyLKCkASF1QK+71Ot1lBUGVVVKBYKDA+PcPXqdQYH8yQSNqurRebnFnnuuS+gCoXQh+tXb/DGq29w6vhJ6vUahqFx48Z1SqUS/f05fM/HD5okUzZB6LOyuoLneRCGLC8VWFle4eDBh9BUBUWB3Xt38KUvPcfc3E1q9SqvvPIyJ04cZ2V5icuXLpFOpfH96DzSzp17cBwPIRSEFJ1Pfvvtt1EUhXw+j6IofPn559F0FU3X8byA3/iNf0QqlSGbHWRkZIyHHjpANpuhUinzx3/6/3Jl9iaNpkNIFI/WadWQAo96pcJnnnoKsXCSxeRBtMwwqqpSLBZZWlpienqaa9eu8dK3XqFWblIpFbhx6wp//uIf8V//s38BkoUTyoQIRAiq/zezjvXSnP40rq3boQcpf3Sufesy1WZUU5qMPfosVVdn9uxpFNNFhB6N4iKl21c5+fH7JG39vvn7u0q9ZNQHke9GsszP6G+e1vFGEAR3/b/RmP673K7/iWle/d+TJO4Iju37g700cus7VZ07wxtp2NrTtztU6nSutFEe7Rq/zl21TlPadS3j+k5K+45aN49366C4m736VrSGW534trqL0mvXvesurRB4lz8AQJ1++q607d+pl9lJ+7PNdsXuMuFp+04b8dr5fjvf3Xb725+357X235rScO0crGmSHRlhfNc+atUambjF8q1ZaoUFzHwKEU+QGJ7g5q1Fdo2Ms1Is8Ed//B+JxW1icZurs7OMjI3yzPO/yvXzx5keiLNaCxgYHKDRcNF1g2azjq6rZPv7sCwTTbfRYgayKqK4nIFEs1nGjtmcOX2GnTtm8D2XcqWJGYuRyqQ4euI4g4OjSGgc/egwQ0NDTE1PMDCYx9QNmvU6kgSyLEj2pUFIaIYOoYznBSyvLDGzYwojphKGkIjHkSWJwHMRAkbH8sRsgx+++SZXrlzBilmMjgzjBD5hAEsLRZ79/M9j2CqpeArfdZFCH8s0UBWFQrGIZdtM79iBaZnIcuRc6NW/eB1T1wg8Fynw0BSZGzfmWV5ewfcDBvIDTExM8M477zA1PYkQPvVGiSNHD/OFL3wR07YQQiIetxEIzpw6y2pplZmdu4nbaY4eOUE6lSXwBaauIssqhWKRY8dOMDI6gtOqc+PaLT7+4Ci2FUfIgkzWIG5H3qSdpofntFAV8P2AVrPBh4cOMTE+jqkbEHqYRuTYKRQSxUqdhiPjNspMTI+SH8qi6xKry4s4zQqy0FicK7BaLJAf7GPu+jVk5MgjbqtJcWWVbLofL/ApV+tYdhzDtJlfXERIyp0znZZl0mjUUVUV3/H4d//+37Nr5y4sw8RvNbF0DafloMgRaJWEjO87kYWE69FqNSF0qNdKDI+OU6s3sOMJgjCgWCrSn0ugGQZC0fnOy68yNbkDWVNRNRUrZhDiE0qQTGbwPRcpUPnzF79JImERj6d5+513yOX6uT13k7HxUdJr515ffeV1/sl/9Y/xApeYHSeUBCeOH2NkZBQhKVybvUnMitP0Kzzx1NMoqkrLqfHE4w+TSqUolldprFkp9OX6US0LVRWAwqEPj3Li5Gn2H9iLZkgI9DXzcdB0GyEsyksrqKpEtr8Pw7BAFhCCZRqsLi3x3Te+z/HT54ln+vnaV75IMpGgP9uPbcVQFMEH77/H8tIyO2d2cX32GqahEuoae/fuI27HKJdWsWyDSq2IFLp3vApfnb3OoY8+Zv/+fVRrVdKZPkDm9tw8w8PjjI3mKZUrKIqCogiKK0sYtk06kyZev05o5wge+gdI6EiS4Fvf/CbPPPMZZCWkL5vk8Z/7LAld0KiU+H/+zb/ln/3zfwmaiid94lQIIJA+0US1fvBv8K5+eOcoyIOmXut05+/N1r5emsa71poe11Z43KrGZjO6I9108LXV8u/UJwwjrRLdZZ7Odbe9rDv17mFh1PZjUzlhvYyWKpMQHsL1CYRC6NaYO3OI4vIZ6vVZVlfneOf773Lgqc/f9W7Y9r8kxKedGa1d6/d7cdPDjq3rtdU+0IuXe+1D6xSsWaGtm272ik3/IEzKN9Kyrf/uJTd1cyDULnttd5zea9qN8mjXUHfDAZuVvxVtZDda/w69PGVvZrHSS7PbfZ4RsObMdr3HhaHPukOmTodJW+G7Vz3b8/sEj/XOqzOPzv7xU+Bt+JNQOd2oWyfrdl6y1yTQSe2dff2353kbmsi087Ku5e2MqdRZ3vqh6PYzosqamV0vU+VeYG6zTrnVdNulbvmtA+xOb8rulcgzZTt43SqP2+V/KxsNW80Hei8UGw309XvrcXzDIKRcLlJcXUGRQJYlcvlBZKGAJMgmU6TiMa5du8GJEycoFApIkkSlUiGTyXD92lXeOrnEk1MJ+qyQW0urZDL9rK6uImSJhx95mMXFBZ588klu3p4jP5hDyAJFyChCoVavUqnUePzxxwkJkWXBd1/7Lrt37UBVZFrNBjeu3yCfy3Hogx+xe/cufN/n8OGPGRgYQNd0gjDq27quESJFTnRUhchBj4+mq7RaTRShICSJarUWnQX2PE6fOc3S0hJPPvEUwyMj7NixA13X0Q0TISA/kKVarZBKp6nXKuiGhq5r3Lo1B6FY03qBvhbKJQwjMNioN+nPZbl48Ty5gTyKquK6PvsP7GdiYpxrs7OMjAyzsDAPYYCqySQSSQbyQ7huACLythv4Hq1mi0KhxI5d04yMjNKoN6jWqtTrFc5fOMPY+ChBEHD16iyyUDh29BgPP3oQw7QYGh7BD30WFxeYnJrGNOIEgcwLf/YNHn/8MTwv0ji3Wi67d+/GMAzCIIy02YFPuVxCURSy/bnovK8kkenL3jHd03WdhJ2iUq7y6msv88znPku9Xse2kySSSVRNJZGMYydsAgKazSa2nVg38ESWJEwrRrlcRtNU6vX62tiAG7PX+KW/91VY65eu2+LW3DyabkbxWQ0NIQV4gROd1ZUkTMMkDIm077qBoqgIScIPArLZLNVKBV2PUS7XeeuH75CKJxkcGqRcLt0ZFzHLplqtY1oalUqDy5cu8uhjB7DMGK1Wk9HR0UiTb9uoqooQEtn+fvr7+9B0hWazies4pFMpVE3D9wMWFhYYGBxAyIJ4PMHS4hIjw6M0my0cxyOZiuP7Pvn8AIODw+RyOSxDRREy6WTkqbpaLdKf7aNWawIBumEgSTJLiyucOnmcUBIIRSaVyRCEIc1mi5s3b2HHLCQhUyoUeeKJJ1CUkMLKKouLC5SrVQrFIoNDg0xOTYIEsbiFLCtIQsY0dAgDBBKyLNB0HU2YrKyU+foLLzI1NcO+ffswTAVJAt/3sOM2pmkyMjIMcCcWbalYINefxXcaiJtHID1B8ORvYpoW8tpcMDMzTavVIJ6wWViYx/ME1UqR//v3/y/+l3/1L1F1E7nDRO3OvLb2944fg6mfHHi9lzy2tEbed0kPjjoB5f3m8SDSbTftXRT6qJLC8NgIt2+cZ6BPo15fZnAgz+1bywRBjF37HyMzMH5f5W4PvG4vjw3fuc/2ugu8BgGKomxpM+RBy3Nbyb8bkNuOLPqTpPVjGFuR3bdDm9Wx3TJhI4C6lW/V63t/8vsTXPMJ5ugOjrdyNvVBzRu96td+/2fgtQtAaW+gXs4Puk0M3YL4bud8wbpQ1u5mej2PzvLbz+Cud8heOzZdY4/9mMDrZudnO/Ptdb9T26lOP90TuPbicSOt7GZ8bQW4blbXBwFe18vQNY1EIkG+P8vRo0eQZJWjPzrE+NhodM4xDLh08RI/+N6buK7LyMgIIyMjuK5Lo9Fg184ZRkbGWQgHyUgrfGFPirnVOqHQ1mJ/3uLpp58iFouRHxpCVSNnPutcyapAUTUM04zOS4qQPTt30ajXkUVIMpnAti3OnzvD5579fAREfJ9UKk2z2cSKWfhBQK1WxVjThgoJEFEszw8+OMT09AymYeL6Hp7vc/bMGbJ9WW7eusXAUJ7BgUFkWUXXdVRN4/KVyxw+fJQD+3dC2GJ+foHBwQlKxSVMy6TVapFKpvnDP/gjBoeHiMVi6JqG23KQJEEAtJpN8vkc/fk8x44fZ3h0FNM0sCyTQmEFz3MZHBpkeGiIeDxBPJ6g0WhQrzX5+te/wYEDB3j33XdxnBYTExOkUin6c32oioLneThOg/5cmpHRQVRNo1KpkE6lGRsdY3l5mf58P/mBAXKDA3z00SH27d1Nf3aAZtNhYX6Rxx9/FMdrUK9XsO0kiqIghGB1tcCZM2exbQtNV0EK0XUVVdO4dm2WU8dPE08miVkxfM9DVRR8X0E3ZaZ3jAEBlpVAVg1CJBRVRlZlGs06pXKRwkoRVdXRNQPf97EMA89zqZTLeK6P53rE4zbVagVDV2g0G8TjNhBSKReZW1pmeGQE13VwnQZC8vCCAEWRCQNoNh1mZ6+Rzw9GIR7CaDdWkRUq5RKpdBKk6GzrYD7P+bOn2LV3D7KscO78eV7+zivs3LmbQqGIZWtIKGiaQn9/hmuzs5iWRV9fH+VKmXg8ThD6CFlmYDCHH3osLiySiNs0GnUcx+XWrVuk02kSiQTf+ta3OHb8JI8++jjvv/8BoyOjBH6AYRgYpgIBGLqObkQeklUZ6vU6ge9Tq1XZ/9B+XMfhG9/4JslUgmQqiWFYNBot3n33XT77zDMkUikUVSUEZEWlL5slRCLX38/BAw+RTiZQdYX+bB8gkUgmyOb7SaaSyErUXq7nYlgWfhh5afZcl8APCIKQWq2OYdq0Wi71ep2JyTH6+1Os73qHBLSaTVRVZnFxEbflc+XqLOlMBkmA5pZRls6jP/IrcPDXkISMoamEhMTjcXRdI5mMIySJXG6AwA14+eW/4H/4n/5HEskUQtbuOhd417y29vdn4PXHQ3/XwKvh+7g+OI0Kt2ePULhxhFhSobRUJ2VPMrfUYueBR9BiiZ7lbiS/3dnc71H+f0rgVcgyjUbjLjlwM/nkQdBWgCp0jxm7FVl0O3LlgyJVVe8oiX7c36qdeinMOvN40OD1k3vdtbRbKfNn4PUBUjt47QQkvQ5l9wIVnQNu3RR3nTq1rmvldx2wne+s3+80z13nt1tHbj+A33mvva6dZgZhGHbdTWovv1un34g6TSy2Qt2+fXs91rWwnfXYLL/1erTXd6vU2TbdQP9G73Sm7WZ63vms3dx8PU3n9wjCyBJLVmSSqQzzi0vYus7lK1cZHR3F0Ey+/sKf81/+k9+kr6+PiYkJzp49y9TUFI7jcOiD90mn+xifmOLfffNdVmoO//CpLPNOEl2XSSWT6IZONttP03Eg8O6Yj7legFAkDN0kCCItqZAlZEm644FYVVUSCZt0JommGRSKBVZWVkjEE9y6PUcimcA0Debm50kkbISI4ob5YYhpmExMTOJ5LkIGVdMRksTAwACe55PL9SNkgWnFUDUj0uhIEslkgqmJaWrVIo16jemZXZw5c4GBfD83blxHkiRc12NwcIhkKsnrr77MjukJHKeJpuvcvD1Hei20zPnzF9i7Zx+qqqHI6+eoQwxD5/r165H23wuoVWskEimKhRLXr1/nwMEDNOp1JibHCUOfRDIRgXJJolopk+3rIxYz8HwXRTcwTJNEPKr/1MQ4YRiirwHt0dEh0sk4i0uL1GoVUqk4ihoi5IAgcJGFTr1WR1U1fC/grbfeZnRkeM3TbKQtJQwxLYu3f/g2lh0nl89z+eJFVDXS0KuaQNME9XoDXYuAa60ebSis98FYzKZYKLG4uEwqlaZaKq+ZCCt89/U3EEJhYnwCRY685OqagmHFaLVaBH6ALGRyg4MosoJh6HhuE9dtIiuRh+RGvcWtm7e5ceMGfZkMsixTLBYxDYMw8DEMg1arTOC7qKqMqoTMTI+CrGLHYriOy969D6FpOomEjW4oLC6skk6nkGXQNYP+fB5FU4EQRVORFQVN00CKxtH33/g+w4NDmLqJrEgMDQ3iOA6KqpBKpshk8jiOw+lTpxkaHOSll77N0NAgkuQhpGheKJZKkRMmrxWB+UQCy4oBMDc3j+eHLC4tsGfvHiRJIITM9OQk6UxmLYayiywLWFsjjh0/wXvvvsfUxAR9fWmEquA6LvPz8+QGBpGEQEhRPMnllUUM3SDwwTA1Ws0mUihFmm7TImbZuH6DYnGV/Qf2kkgYrKzOUy7XMU0TRVZYLRRQVRVd01FllYnJSQxTR6/dRi7M4u/9ZdyhxxCqFlmAyCAhsbi4gGFqkbZcCG7evEXc0KnWK0zMTBOEEoQyIZ+caewmoP8kwetmm5Gd6+T61W093M4a0I26Aad2Hu+XtgOGugmn7WvPvfLT+R23s/Hd6eH/0Ntvce3iaXbuynPp+LsM9RmUagUydo5TJ67w8JPPEhscjs7gt/G9kdzQzfSyJ4fbqMP9tl43mWU731CSpDua125HvbaTV6/8tzqOOq3n1p+v02YOMbuVe6+0mantvZS1UZp2U+iNqJvCazsAcbvj7NP8dDu2cG9zQmff7ZRht0OdMny3cn8KvA3fDV47aasdpx18dHtnIwDT3hCfmjC7ALjtDLD2ztFZVicfvcrsVv69TBTbfWcz8Nq5EG1lIPSq/4Oizdpwo/e6pW3/5hu3vYQkBEEAiWSasYlJCpUq+cEhzp45g6HZfPPFv+bYsaN87Wtf4zvf+Q4A58+fJ5lMIgsol6t89NHHfPGLz3FhrsAPTtf4R4/pDMdDFso++YxNqi+HpESmus16DVXTELKC5zisLK3gux6GpuE6DrKi8aMPDrF//0EM0yDAx/MdYpYdmfTqOoZhsbqySv9ADklIBL6L77uYho7vuSiaBUi4roNpaggR4PuffGc/CFAVBUmOzvMIIeO4Looi4/keS4uLnDh2Es+F/v4B3n3vbZLJDKMjo+i6hiQgFrPQDIOdO6awdBlCH0XTSWezuI0GiXgSy4xx6eLlNUBmcOXKFV555VUee+xxLNPi7Nmz+F7AqVOnMXST0dEx4vEkzUaDXbt2RLzLMpKQqNUqaKqCYcS4euUqQshkszlk1USSIodcrluH0KNaqUfeaX2PeMxEkwK+9/23OXL4KLlcHiFkTDOGZSRoNJvE7cjbcb3e4MCBA3z7my/xxOOPUywVSSQSaJpO4Ifs3/8QJ0+dYmpqksXFRXL9WQxLpdloUa+3SCUSLK/MYxgmqizjOC1UWaNWbaCpBpqiECIRs2IcPXoE33Vx3BaTE1MsLaxgGAaJhE2rVadeqyMrKppmIMsKgefjui6GZrC4sIhlxxCyjKbZNOrNyPxUlkml4rRaDZLJFCvLK+iaihBQr9eoVKpomomum0jA1cuXQRYoqkI6kyFmxahUisiKhCwrOK2Q9959j/HxEeZuL5Dp78N1HVRdpVqtUCwUiMViuJ6P6/jUqw0Egrm5OQYGs0gCDMPE96MNiP7cEJ7roiiC3bt34rQa9Pf3kUlHba5pOpVqFSELrJhNy3GRZZXVQpFXXvkuD+0/yKmTp/i1X/9VQqL5yHU8CqsrJJMJwsCnXq3QrNcQoYtuGGiawfGTp9i3bx9BAEJROfzREYRQOHP2HDM7dlEtFZBFiCrLqIpKq+khFPAch0qxhCxkhJBZXFrCtC1UTcf3AjzPx9RNEvEUIK2Z00tcunSF8fEJCqvz2IZAzB1HUg3EM7+Nmd9LIMk4no+qyQReEyFL2HGbpaWlNU/UEs2Gy5//6R/zi7/0PGrMIERBChRCyes6R/5t1Lz2Wvu2CuLuBwxsle6Fl+1wtRX56H7yutd3z50+yR/+/r+icfME+3ZPUmoGqIrG5fMXWFy8zWeff56WaqNI8rYt3e71W/XM837ff4BtsNX8HyT1kmM2Alc/bp6gO0i8X9rKOLxX8PaTo27gd+sezjdKd79zwGZY6GfgtWOh6hZjtB08de5EdNuZaM9XluWuOyXdyu/WYJvt0nbjtVu9ugHBbrz8bQWvrUMv4N08iTZ2cMNJYV1j+yCCP282Cd+LifRm4LV3jL41MyAAIZAkQaIvSyIZp1VvsrRQZO+ehxkaHuDIkSMsLCxw+fJlwjDk0qVLPPH4o4SBxO7de7ly5TJT0+M4gc5HtzXKgcEj01nGjDKisYKczFNZuoWPwDQtVotFTF3DWDunaBgGiiIjyTKjYxOAQFFVJBGiajK+G1Kr1VBVDVVVse04qq4iSZBIxJGFRK1awbJM/FBGkgSKInDcBs1WjRAFWRafWDZIUgSuFBVJEriuRxAEnD9/Dl3VmJnaxfVrtymVisSTMUaHJ4jFLILAY3llkSDw8YMAQ1e4PnuZarUMsoJumrzyF39BrdJACmUuXrhAtq8Py7bI5fI8+eRTgMQ7777H5559lnQqw9LSErdvzzE5OYmu67z+2mt4vkupVCCdSROEIaoiuHDhEufOnGNiYgqn5ZJOZ2i5HqoiE/gO1UqBVrNOtdQglU6jGzqtRp1aqUQyPcSli1f47Gc/x4vf+DZzt1a4dPEae/bOgBSZ1nqejxAyn3nqM3i+x5/+yR/zyCOPsrC4RKUcfdtde/bguC66pqKpMpISQCiIWUkIAmTZo9loRU66FA2n5fHiN15kx/ROCsVV+vtz3L49x8T4OIMDOWRFMD+3hGFYDOQHiNkGtXqFdCpFpVpH1wwkohA5BAGEErG4jWaYOK6Dqpj8f3/2AgO5AbLZPoLAZWAgR7lUxfNdEokEhcIKmq6RSQ2gqRauExIGcP7sBbIDfSTiCQI/Mj9eWJzn8OEPGRkZR1VMpiYnkYVE3E5Sa1SxbRtJikzuNS068/rhR4dJp/qYHJ+iL9OH73ok0jGajSaapuE4Dr7no2gGH350CNdtMTCQY+fOGTRNRdPkSPvruoQBFEpFkuk0QQi+H5JIpskPDCGExvzcbXbt3oGmq5TKZRRFpVQsIKQQRZWpVsokbBtZCgi8AMOK8fCjj0EoceXqFVYLRWrVOrpusnvPPgIkAqeOZRqsLC+SiCdo1T3mFm9hx2wMzaDRaGD/wwIDAAAgAElEQVSYBjE7jqIaLC2u8uGhw8xM7yL0Jar1GpIkePvtd3jk4Ud48803GcznycsriJUrqAeexz3wK0hmgsVbc8RTaYSqMnvtKsl4DM/zUVUF07TQdR3X8fne977HP/2t36QVOii6DshIofy3Crz2Wkfb7/1tB69bFcD/roHX4eEh/KUzzORUMtl+alKcRqmMInkcOfohj3/u51nxdGJaFCpnKxqvruv4PXPclu/9vn+fbbCZxHO/AG4746idevXd7Sgm7oe2c271QY357dTrXtvlfq1Aumlee72+HVzwM/D6ACgMw9/rBS57mS2sT37dvLV1gr/NzG7ageNGtuztjdRpftu5a9WeX7d8Oifv9Xe7mS93A+Od/HT73Wnq2n6vG0+dnbnd5LndXKhb3YQQtM58n9CpI0888an826mbp+iN6rkRdXqa6/YN1p+3mwF3o862a7/XyW/3fEKi+MRr/xNNyJZh0aq1mLt+Dae2ylPPfobjJ45hGCb/6+/9a5555gucOHmO6wvXuHptlqWVZTKpDMsLq1SqJb78/JfJT+/j6b//W7x2vskjn/8q3uosZmUWy1lCsVPYWohsJTFMHc2QWV1ewTRieELgeQ6B30SJjsgSoNCsNyMtVhgS4GPakcdZx3EBCUXX0QwThIrrOyiyAoFPq9nA1DSEkHGdFp7roGkKtVqFUBKECJr1Fi9969ukE0mq5TL1psPo+Bj5oTy6ZXL27AVWistMTk3jtAJefeV1hgYGSacGCPwmtfIyIyMTaLpFKEJOnTjHSmGVp3/uSaZmJrBsE8dvYZgWrZaLqmrcnr/J6PgQTquBaca4ffs2+/fvwQ8bFFZW8L2AleUSruvR359mee4aumwxOzuHrEns3LsDLwQ/aCITIoUSi0urDI2ME0/EqTdqmJpGs9lCNywUVeGh/Q/x2mtvkMvl8Lw6X/zSZ9Esk1Klgm4aWLEIcMk6zC8WSaXzDA7lCQix4yl++P0fsnvPDnRDoVatYOrWmmQTIssh9WYNy0pSr7cwTJNao45QZY6fOMPyapFY3Cbbn+X8+XOsFlfQTYNUKkk218fASHRuVJIEi4vLmPEUiipYWp7Dsgxc18O0EyytLhPioxsavgeapJBOphkeGqbZcrBiNk3XRRYhVsyk6TRJpvuQZZ3V0gqmqVKrrIIUMj4zjR6zkNc07iKEmGFSKzcYGBig3qij6RpCU1ANGa/loms6ngeSJKOpKkEYosgajXoN2zaoNSr05bIIVUeWBL7rRRpiy6LlBtimRV86RcwyCQUEQmJlaRndNJibK7K4WKBULNGXz7Mwt0AqnkAKA+yEhWlr7Nm5kzNnzvDyd17miccex3McYjEL244jSTJCUrHsJLWGg6zLtBo1jn58nJhh8tabb/ClL32FkbERYraBooKuCxLJJI1mk1Q6Cp1TKheJGQlCH1pui6bTJCQglHykMCBhWwwO5EHy8YMWdiKBYerk8zlM02DvSJJU7RI1LYv28/8N5vgjCElGQsJOpFFVmSBoMZDLIGsqeCGaqqIATrPJwtwtfvH5X6QpBaiaiRSKKI6r5N8dBxE+5T11M/Aq9bi2mnYrYmOvjeT2e59aC7tdPeb97Wxwtvuv2Crdta71eP6pe+tyAB3fqB20t/3tdoku36Ubtb/Tnv+dtuwip3Ty76sGjzz+HB++8x3CYAHVjpPLmFw4d55SOWBm1xMMT+wiDDf27n93xpHn05CAkDUvqGGPvtDOY9vV/g026ptBGH7qG/Ts2+tyQtv7d33D9ipsXMOusk87bbVvbteEeaOx0N4+61enDNktn279pSfK6lH2doDkdoFXtw2v7Zoq3wtt1sZ3p5XXPp+EEDLtPejub9O9dwoRKRrWf4fhJ02wEXbopPa0Qih35dc+e/fqr+v0dx689nLYtFFDbzSoN3uvE8R0hslZT3cvg3+zhXYz/rotDNtJ2y1NGIZ3tMtbzavz3mYBxcMwxGvzNrwd02r4xINxe/5b0cy2t1e3q1tdNusbnZNc5/1tgWtFxnVc0uk0uqYhIfHtF17kl3/pa3z9z14gROL02TP86IP3qZRqEIak00kWlm5TLK7wa7/+K4QiQFEE8WSMmZ1T3CpWMaYexx3/HGL4IF6tRLB4ERbO4TguUrOEoqr8hz/8U0bGJ6O4oa5LGIQEa5OPoWm0Wi66ZlCtVTl//jya4qNrCmHgIUsCKYw8FktCwXdDBAIhyyiygiRHGtfIYYISaXCFgq5oEMD42Bi2ZREEAdM7p9A0lctXLnP0yDG+9KUvMTiYRZYES0tLzM7OkslkefOttxkdHUDTFIJQwownQAqZnpxhamoC0zJQZBE5wnF8TMNkcX6edDrF8PAwgR/Ql8li23FGR0doNGvousqunTMMDA9hmga2bWMYJs26wwcfHOULz/0CxeIytm2hyAqKrBP6EscOH+edd97j4MOPUm81se04ju9jWjFkVUOVIy+tN27c5POff5aRkSFq9SqxmEXMsCgVikhhyMrSMpopyKT7yPb14zjrJrk6u3dNI+RoESiXqhw+fJR8PoumG/hBEJ21BFpeiGGaaGum4I8/+gi6prBzZobLFy8SswxGh4exYzFK5SqqqiNkGT/wEVJAMmmDpCELsGMx6vUajtPEsuJrTr+CSC4MAoorc+iGgqZrqLpKsHZ+U4QhfuDjeR61egPTiqFpBqHvk0jEcT2XZquJZSWoVmu0Gi1kIVBVmZht0mrWUBUF13GQAFWWiaVs/CDA8zzKpRJOs4EiSeiWyflzZ5iZnsT3XWw7RhCErCwvYRrGHa/DqqKgrHn6DkKfeMKm2WwSj6UwNIOVlRJzc3McOXKIp57+DMlEAlmSKRVLqJpKo9EgDEL6+voYGhokmUwQj8cxTZs3vvsG3/veD5iamuYv//Iv2b1rFzFLp1ar8dZb7zE+OckTTz1BrVGHIMAyo42HZr2JKkKa9RqKouD7IclUH7IUUCwWqdWbnDp1Fk01sawErlMnDENisRiKLFGrV1gplCLgu3odo3ARJWwhPvNbyAe+ihaLcX32EralMn/zMla8H8fxOHrkKKZhceXiJaYHUhSW5jl67Chnz59nYHiYWDxOdNC7Y/7cbALTLUR2ApHIbTrXbUb3usd/r0LjdvN5UOV00l3r0SbrbPs77X/vhcd7qU8nGOmSoOt7LSfAjqX4o3/7f/DQvj3sefSL1KQkMUUnoxtosQyBPYy5dm5/S/xJXTb+2Xwdb3++kTfYdroLFrSB1x4Zb5rfnaSbPd9iXj/udm9/t11R0Xlvo7K201/+Jmg7su/9pLsfkqS7rRl7UbuSrXOT4dMybHAn7fZ4WR+nn/Z2HD3bfKPhpwq8dsaW6uYcaf1vLzAmyzK+72+oZdxOQ3Zq79rv9UrfubOz/nudt17lt5ulrpfZuVPZDUhuVaPYPpl3M1NeL3/9nu/7nzLnWG+jzoHjXTkEYYg6/fSnNgI6+Vm/up2bXf//fsxUeuW90YTQzfNfr/c60/T6/iFrcX0liVQmjaqq9NkpYrZFLpfjs898htHxEXK5DMePnGBocJByqcjf/5Vf5sTpo/z2b/8Ojz76MEMjQyBCqo0qK6urZFJx5m4uods5SE9RyezDmnoCWbdw60XkpXMcmB5Ez06gSiGqqiHLMo7jUK3WePvNN5GQef+9HzGzYxpZlhnI5SkWylhWgkatxepqGUJBvV4nZtu88MI32LlrF6quI0kS9VqdWMym0WgihEzguDTqDVoth76+Pl74+gvs3LkT3VAJw5B33nmPLz73C9h2AkGAEBKLi4s8++znUVSNhfkFBgb7aTRqhKgkkikUVaFZb5FMJqlWKiiKTKPeoK+vn2vXrvHXf/1XHDiwH9/3uXr1KpcvXWZoeBhZkRAy1OsVqvUIxCYScTKZDM16dKa02fRo1BvkBzOkMyk0VYPAxfccMn0pdu/ZiaLLOI6HrhtUq9Uo/E0Y0qzXkWUZQ9epVCvkcv1omoamqiwvL5OIJyAMOH36JCNjQwSBxNLSCsePH8HQDc6dvUC2P4OqyEiALBQGhoZQdQUJsOM2ANVaFTMWR5FVwiBESAJZgKoINE2jUonC78hC5vbcbRYWVrh48RJ79+/F910IfYLQo1F10XQdb23usewYTiNAFhLVagVJCgmDAMtU8FwfO56gUquh6XrUx4MA13NIrDk8CkMJRVZwWi2KhVU0XUPRVAQqqqJg2zGEJIEU0mo1UJTIUVGz3uDi+fNk0ilCRRAGIcVCkb/+y79i3549aJqKF/icPXuayclxmo0GQkhIQkHTVJaXFkkkkvhByJGPPyKXz3Hu7DnGxsbwfQ/T0Hn9te8xMzNNLJbg5s0b/L1f/iqe71Mpl1lZXmK1sEomk0HXNW7euIVpmgwNDVGplHnllVeYmJhmaHCIVDLJwEAex3WJmzEqlRKGYXLy1DlMO8bo+AiKIlBkGdMwaDYa3Lxxk8FcP6ZpUq1X0U0LRdUoFZdpNJqUSjU+/vgou3buJp8fwDRlVlcLFAtF0pl05JlagLJ4BtWvExz8Nayn/3PkRA40FUKfoYF+Th47zMzkGJUGpNNp8vkc6UQCEYYcP/wuruugGzo/98yzpLNZEHIPMPDpOe2ujd1E7oEA186y7un9exQe29e3zbyDdr7Ted3LmrSVtaeT7nXlu4vfLZa/nc1YenwjIanIocyt2UssLi7z9PP/mKLvYMk+laVbNNwm+556Gj/QPrU29y6ri8a3l+a1J7tb++Zb1Yj3Stvtva1YuW2nP22mQOgsv1faXs87+e42Hjqt5e6iLmX14nTL7bIF0Hwv1K0NNpL1ttJW9zs/RWV8WmHVja/2vtANn7Q/uxe27u4jvVJtjoV+qsBrt0WmW+NttVNvNHm057WRSen9dMqt8tTreTdeuw2kzfJcf689xE+vSaodxHYzy+5Mt57Wufg+kiShTD21IU/3O/FshTonnM3a+H5423Dxl6IrBDzfJ53vJwgD5pYXyQ3muHDpPCL0eeTgfg489BDDQwN85avP4/oev/vf/fcoiorjeOTyeWRdJZ5IYZgGlqGRTGT5p7/z3xKzYpw+fRJUg8zUQxgTjyB2/SK+PYheukR440PQTFaWFzHjSRr1OpVShbn5RSITVZnJiQnCUCCEgqYbGIaJ67qk0mlULXJkE4vZWLaFJIHrugAEfkC5XMEwDMrFEkvLK1y/eYuBwUGGR4bpz+cRQgJJsHfPXnRdo16r8u1vvcTu3bsZHhnCD3ze/+ADvvLlrxCELkPDw6QzefwgwHWbKLLBW2+9xfHjJ9m1azdvvfUWY6MTrKysMjU1TiaTxml5XL1ylYGBQWzbQpYldF3FMHWsWBxVkXHcJmHgYxoG5y9eYGp6hvd/9B4HDu5BFtBqeMhySKNeA0ISqTiypiACIAx59ZXvsHvXTiRChJDQNR3f94jFLKxYDFVRKdeq9PdnqVbL2HEbRRVYMQtVMXj5O68yOTXGxMQoExOTnDx1hoFcDrfVpNaoke7LIIsIlPq+T7PRJJFI4Dkuoe/zwgvf4OKFi6QzaRRNIZ5IYloxWi2HeqPJxUuXmV9Y4NlnP4dh6QSBjxASmqahKiqKohGEkWlRvdHAa/kEvocQYJoGLadFgIxuxFhaWsU0YkhhZIIa+B6u60bnfh0XWVaidg0DVFVBUVRcL8DUNcK1WMGKIuMFPppuoBs6zabLmTPnWF1ZZXAgj51IsTi/SCqZxrJi9Pf3o2k6mqEzNjqK7/mkUilaLQdFM5DCAHPNG/Tt+Xl2T0+iaRqjYxNcuHCJxflbpBJx9u3fRxC4NOotxsbGEFKIrCjIQtCsN5CA/lwWL/A5fuwEsVgM247heR7T09MIIaMoSuRETFcZHx8lnkjz8ZGPGBwaYv/+hxkZGkZVBKvFIoQhbqvF9954nYmxUUJZiWK4qlGsXQDXiWLy9mVyzM5ep1QuEbNNYpZBs+lw/MRJJicmaM6dR1s5TzDyKOYXfxcjN0FA5BStUa9haAbLy0sUVopk+nPUHRfTUMBvcfXSReZu3iA9kMdMZti9/2EQMqEQBEFIl4gLXcHrvc6Dm9HfJHjdSh4/iXWpa7kPMq/2um79pa7r13Y0abIICUKF8uoi/z97bxYk2XGl6X3ufvcbe0TumZVVlbVmLVgJEiAJsjmc6aZNm5o9LWnGTCPTYj0vkqlNepj3Nr3oUaYHvc60pCa7yW5wb+4EsVQBIBYCBaAKVUDtW+5b7HfXw82sioqKyKUWgE3iwKIycMP9+Ll+/br7f87xc1468TKHjn6RgV3DkChe+c2b5AollhdmGJw8un3g1kPZslPwul3aCXjdirYab/ejmHgQ5bazL+un7Ni2kmMLehDg80HXv9/96oMZj/fHo9Oo1HH1/kS6jwRVn4LXLcBr96DZqL+V5qsX/80G9U5f3H7gdSe5vbo1RJ3gtRfo7Mdnoz+73XN7adQ6r/cDr91nTZMkIbj4G5J1y2uv++4lF2ytSbwX2q5WrVuOnbpWbPDeFLyu/1V6mlfUKeYoDQ6QzecoFwvkXJvq8hKTuyfIF3J87unP8+RTT1EoVbh+ZYZv/cM/8PQXvoBpOCQCNNPC1hM0meHLz36Vqb17KRQzPPH4o8zNzVKrV9FMC6O0i2D4MMauR1i88iGl5mWSzADNZp39+6a5fu0Gy8urHDp0EMPQWVpbIlfIECcBQdQmJkBqCXEY0qg3KA8M4DgOhmkQhgFxHPOjf/onPvPkk6k1z3UYHh5laGiERApanodhmYhE4LXbXL9+Dcs2sSyDc6cvsHvPJI5rMzs/y0svvcQXPvsFgsjDtm38IAVAi0vzaNLm5ImTSKlx8+YMlmkxMbGLq1cvY9tpAJx8vkCr6fGTn/yUz372KdrtBp6f5tJDGqytraDpkurqKpomKQ8OYps27777No89dpQoijANh5XlNTJOng8++IhMtghCQyYhc7MzHD92jGajQZLEaLpOs9Ukn8sRhiEvvvgSoyNjmBmLOIlRukZCjOM6aEpHSoP9Bw4gZISmSwzDpFwaYmlxAUNXFEo5vMAjCGKEkggpSEgIowhLk0gklYEharU6xx57BKTA9wLeOfUe8/MLzM0v8JV/8S85eHAfuqHR8trYtkWz3iCJBcvLC0RhzPUbM+i6gZCSM+99wG/ffov9+/dSr9fQdB0nWyZJFN/77g955Ogj/OTH/8TQwABpjlqTZqtJsn62JiGi3Wrie21sJ4OUOs1mjSRJg7EtL69gGjaW5YBQJImgWCxy4OB+Qt9D0yxe+PWLXL18naee+hxK02gH/npO5IRavc6lCxcZqAwQI6hW11DrAdEMy0IjpNX28YMIAQwOlKlXV0FFWLaJUgYXzl+gUMwThgGXL15k18Q4pmngex6GoTM8NEqpXOKFF15g375960cV4IUXnse2Da5eu8zIyBBKtxkeGcIyTU68/Cq2aZLN2FhuZj0/b8hQpYxpari5AYLQp91uEAUefrtFQpo3V9NNjh47ytBQhdGxAW7emGHXrt0YgFu/iNRMjK/+r+h7PwfidiqyIAggCLEMkyiSDI9MoNt5LFsgRcLlS+eRSYghE0YPPcbA6BgJiiiJ1+e2ECF7pF7rmse6v4c33ieuzX+ibsPdMt1PvU/Ba89K9wRe71y3fRJpcfXSef7yL/9HrMI4luZiOWNMHfgcv/z5CwyaBqNHnvgUvG6yd90u3/sp9yl4/d0Cr3eOh7v3n/2s45vJcOc+9lPw+tAo6QjYtOEm3O162wncug+Td/vob1gM+z3oznq9Aif1KieEuAuwdbs4bwaWuvOibQe83rWYdIHLzmsb7sB3gv50I5a6IqSHuNO/t/urX1ud/dYJeKXsiDDbVS+4+Jv0PNs6eO0Eg0mSoGla3zbul/opOLYCrN087qf9znZvjZWuT5IkaR/pOqZt4+Tz2MUipz48h4pNJvbspTQyiGELXCdCoMiVM0zsn8TIGQgRo4iQGCysLjI4VgZLURysEIQhbrZIInSUJkhoYKkcq62A7L5HCCv7YOYMbmuORDPZe/gY+VKB0fERdFMj4+ZJz0fExHGEadpoKnWFNQ2dJI7QDINYCJSSvP/+aYYHhhgeHqLebOCFEaHf5tLFD5FJhBAyjagq4Bt/93dMTO4mCSFoRxw+cpD02GhItbrG0WPHWLx6AT9okitlSURE5MV41YCa1+Tajevk8jn+5Gt/jOXY+H6DvXv38tOf/ownnniSZrPFxUsXePYLnyeRIdmiS+D7eM0mgV+jkM+hKQMhdXTDwfd8XMcmm81QKQ+ipMbVa1c5dep9VpZXEQgufHSeidExvvudH3Pu3Fn2TR1iZblOuZKn0ZhFKYFhZTHNPK+cfIVSKQuxwDJ1lpfmcWybKEgQuoFuKJSCQq4AERhKwzAFmayLYdr4AVy4cAUNB01J2q0qtqlRX6uimzaWLVldmWP68DRCQBC1Me0s9WqL8x9eQgnJ0sIMpWIZ27YIoiC1eOoOSawRxW1Wl1d579QpDh3cR722xPD4FEeOT2M7eYR0EFIgVYIk5vDB/SREjI6P0w4CMrkskBAGAa5tE/shQmlouoFumsRJgu/7aS7ZtkccRdimSb1ex7RsfN9H1wVh2ESKBM/zEDi8+MKLLC7M8fTTnyGK2njtBrW1KiQJpWKJfL7AhYsXMXSJ62YwM1niBFr1GlKlgVykkoRxiG6aZAoFHNshiiOS2CSOdF575U1GRkuMjY/RbDXxAx+lZJr6KWOztlbl0MFDKCVYWVkgVyozPDJIoZBjbGwCqVtoIqBeq3Lu7DlOvXuKWqNKoVjCzZo0G0voUmdhscrorl3EkXcrVU8QxjhuBssyQUguXrqI0AQjY8MgIQwi9PYS+eYl9N2fhc/+Jbqb4fKlS1hmCuIX5ucZHBhAGKkVFSlBaAihwfIlzn/wHjOzsxw4epzK7j3Yprl+jjnumJ/Wj3j0mo96KPo2ZmX/jW8TL16+K2BTkiR3BfjZco7cdsl7o52sp91r/nbn/p4gZ6s63W3R9Qz68Oz1uRfq5611R3s95OrJqy8HBUnAxN4pIt1FagKEICbCzNg88vTnqew7lub/Xqc79io9Pz3+68xL2uMe73jG/Tuk713cQf3G0xafW2W6ZLzNdudu5KnY21fE75Rvr0jDvfao/Ywm/WTaahxvNd62utcHqcDYrI3O/W6/z87odlCldG5OP73dvFPX37SJNCzYBsjtZejb+JskyToO2qFod1HS53M3deMyXTd+v8FrFEV/Dbc7fDPazMrV/eA249HNZzuDsBNE91r0t6OV6gUyu9voBOhb0e0Berf8nVqcO3ltfg6ik3f3b9391dl+0q4jc4Oogb09yz8MC+vvKvUbn/2s41NTU5TKFSIhuH7zOpfOn+fGlcs0FhcYHqhQGRhECQuBiWMW0MyQUjnPam0FN2sRxh5KSHTNxDAMlCbSM4+xRiabQSpIDBe/cpylqkd24XVEfgzbcdAN/baCRqX5XC3LQUpFvV6HJM0/u7C4jGXZxHFMq7aILmFsZARNNxHK4D//p//Mk088QaFQQDd0avU6tm2xvLjM4088ied5fOe551heXuLY0aM4rkOcROQLefK5LDKpY1oW7SDBsnOEUchrr7/Cnr1THDiwn+npaXRDI5/L8JvXXmfXrl1MTu7BdbOcPXuOgwcPoSmNRCTYtr0eUdlBKoNm00MojVd/8xuGh4fIui5JEjO/ME8+nwcBpqGze89uPvjgDNPTh7l0+RJjY2MsLs5x9OghXn75BLbtUi4XCPyQTCZPrVEniDxuXr/Ogf0HyecdTFNDXw/t3G57RIkHScTq6jJJEqIbkpWVJWrVBUxDw/d9pBC8/+57vPbqG5QrBUrlPO1Wk3yuiNIyeF4bXRkIYWI7OXTDpLq2zOTkJHsmd3HgwBSGKRkcGAUp0mBLcYySkjhOLZOOk2dqah+apmGZJoYeo2QbXQNEgmVr6bsMXLpwGaVMTpx4FdvNMTo0QHVtDduxkUrSaLbIF/I0m00MQwfAskyEVAgS/LaXbl7jBN0wUVIjCHyUTBftoeExvve9HzA9fYivfOWPMAyD5eVl8vkilmVxc2YGTdep1WqMjY5iOxZRFIOQSEBJgaZLwiDGNB0sy8EwDJI4RqBYWFjAtlzq9To3Z65i26nVMZfLk83mUErHMm0SdM5/dIGhoSECv4VlmUhl4lgGayuruK6LUIrQ91FKURmocPTYNJO7J1CKNP+v12JpcYUTJ15hcLCMbdusrKzgOC66brAwv4AfgFIG2WyOYrGIpivW1lax2ktoa1eQX/gPqH1fBCmIwoDBwUGiKELX9fXATxFBGCDiVHkVNGusLswwc+Myr//2bb7w7JcpDw2BVAh6ry2bbc76/bZltOF/RuB1p/V60b2A13tp60H01R0g4QFu8jcjXddvtbURcLHzyFL3PmU7R3k6aTNA+iABHWwynh5YC/dGD+NZbqfveu297wCvD1yqrenjAq/dioN75X+7/g7mzZ5F796Td7d1mz6+fXe3LL/3ltcwDP+6Gwj2o4cBXvsB1+6D0J0aqo2yUspbAZjCMLwDlPaSoXtC76ZO0LrVS9IrkNKd93n/4LX7uWx837jfDSCeJAna4F60wamefDf66WEtov2s570A+MdB2wWvG89b0zSkIVG6QaPeQCQRQ4UiXuMSmhbhN2sUC1l0JYnikFozIEFH0yzaTQ+JhmkI4gjCMIIErl27RrlUZm1tjTgSuG6OIAwpTk4TjR1EnX8RzV9BuOV1V9DUPVHT9VtyKqUIgoiXXzrJ6dMf8Mgjj6ApQXXxMhknPb+qlIYQiiPT07RbbZaXl9G0NLrw7MxNJid2o3RFoVjg8cceJ+O6vP32O+zeuwfTMlFSogTMzHzIwPAYplUkRkPIhPHdoyih466fY03iiCiOGKgMMj8/j2laJAn8+hY1AYIAACAASURBVNcv0G61aTZb7Nm7B01pGIaJQPHNv/tHdu+ZQtdN9k7twbBM/FaLa9eusW/fFJqWpmlRSoKIOTx9GE3XybguSmkcOLAHpaX5dyfGdqEUeO2QTDaP5zfRdMHhQ4eIQwGqfUtL2m63yeeyJHF6ZrhRb2LbDmurNfL5PLpKiGMI2jGrK3WkMBgcGmBiYhSpEpSmIJHU6g0sS9JqVXHdDImAKA6RIg24tLyyRL7gEichp94+w6XLl9k1uQs/8NCUAGLCIOLMmXNUyoN85zvfIV/IUshY3LhxmTCIsMwMSEmttgoJfHD6LM//6gXGJ3Zz9uxH7BobWQ+cBIZlYrsZfC918W63PUAQBAGe76Ovg+Mkjmk2m5w4+SpZ1yaXzSKEhqZ0wiBkfHycmzdvMDw8zI9//GNOnDjJ2lqVPXt3UywVUzflRpM3f/sWruuQzxeQSqPeqKfRsxNYWamSyxW5eWOGarVKEPosL61SqZRRSiOXzTKxa5RCMUej0cAwLIRUrK6soesm7733Ia+//hsOHTqA125iGAam6RAEHqZpIGV6X2EYUq/X0nOwhoZhargZm9APU/dwJ0c2l8e0dPL5PLl8HqkUUirm5hZ47rkfcv36DXZNTqau97qievUDMt4CfOl/wR6ZIkkillYWmJ9dwDTNW8DVsiyklOhKEfttluZmkbHHxXOnMbNF/tXX/jX58gAtP0CqT8Hrdq9v9/dO+hS8bk5RFN1qL1lf2zb2PEopEu7cf93aV20XvPZzuf0UvN43z0/B68MFr3cavrZ/PG0n4LV7v5v+/WTAa7qv/T0Hr51uw3D3IOoEl91uuhvgaZ3PHZNid0f2ylHaff6zlztsN48u2e8AIFv5onfeT2fZDTm6U9p0l+seqJ33evc93dmfG/fXeWv97rczonBnuW4rcy/w3+tMb+f/PwwLbC/XiY3vm002G890O4qT7dJW7XV/brsYx5imRS5fwLVs5mZmWF67zLkPzxKFHn67wWtvnGRoOEvGnsDQdEypYWs6tZUV0GKSBKTQkFKRy2VZWlwkly1iGja+H2LoBhcufIiQCf7IkzhJm3juHMIpsLSyiOu4aV4vISABpSmUVBTLA7z66ms887mn0DVoVmdoNaoIQlrNGkkUIZRGsVjEzeZoez7lUpmTJ06ye89Uek7R0DF0nYzrMDAwRJQkoCTtZoN2o0o7DCmWh1HKIhEKqQRJEmObDqsra/i+h67rGKaJaegYhk61WuVb3/p72q0mf/wnf0yxVOTsB2cYGRrm+vUbnL94kdWVKgsLCwwODRCFIbqu88Mf/Ag3k+Wjj86vnwFVvPjiS2hKo1gs0W610HSdfD7HiROvYpo6pWKFq1euk8nY2HZqsZZamostikJs2yCMmrRbbRwrw9LiMs1GA0NlsK0Mv/z581y8cIVstsDQ4CgQEocKXXf4wQ9+xtJSlcefeATL0ogin+palbm5eWbnZiiVHUg8mq0mumHQ8ppp3tMoZn5+jlarRS6Xo1Ia4PU3XufQ9DS6kQZaWl1ZRgrJiy++zNTUFEHocezYNKZug0jI5goEgcQwHAxTo91q47U9xsbGGRwc4r3332d2Zob9B/fhuqlLrtdqI6WWWoT1VFEgpUBpOlKASNLcidlsnlq9wdjIAEpTmIZJEAaEUUir4fHLX/2KgUoF0zSZnZ0hjiP27Z9idnYOIQS5fJ79+/djWSZRktw6t3nl8iUKpTKuk2V5eZW33nyT2Zs3mT50iHyhyI0bV7FtFykV8wuzlMoV2i2PbC4HCMIwZGl5iWKpQsa1GRsfQtc0lNJAapx+7z0GK2U830vn5CQN0hVFIUtLi8RRhGVZ+K12mnfWdMlkcpRKWTTdwPM86vUGumGhGyaPP/Ek+w5MYVoaSeSjN+axm7OYX/2PiNwISlMEgU++UMCxXEzTRNO0W3NEu93m5z/6AaViidW1Fd5//zRPPfM5JvcdBqXjRzGaod96b3vNN5t50vSjDfCq9nxmR/Nqz7lvR6Xvk7YAM/0U1rer91lze/Haon53u9uh7ZTa6hnIDkXzTi2c90q9xtZm7qe3Plvw7eUy2xfIbkPGzZTL/faht8p1ybTT9h8G3euz7eyL3i6rvfu7s91Pkj6ufu8eM5sBxq14pB951769X9les85Gle3cvxA7n6/vtV+76/3eg9c4jv+68wXZ7BxqJ202oLr/vxdo2GijOwT5Votav3a6B2G3lXare9ksqu926nf/3q3duT05330/nUC4mzaCNvUDqxv1orVZ4nYdZWcfyqS2Ybntt/D0+v7PiQwJURgjNZ0EwejEKJEoMlDZy9n3LuBYLocPHGBhYR5dF9y4dpaBksHq0mXmbpwjNzCCaVhYpott2+i6juPYCKG4cP4KSuoEocfIyBCunaVQHCQoHiBYvY62egmVK6IbNiCJozTHa9troaREajpPP/MMugbt5hp+ew3b0ojCJoYGod8CZWKYJvVGi29/+zv47QDbtMnl8/iBj+M6NBtN2q0m2Wyek6+9xtTUFN/77j8StpscOPY5EjTCyIckQgpFEkmqqzXiOOa73/0+jz76GACe1yTjppGPDx8+xLPPfhHPa+O4Duc/PMfoyDDVWo0Dhw7jtRqsrSxj2zZjY6Ncv3aD6UNHGKgMcvHiZQ4dmqZRbyKFQtMsGvUGzWaDt956g9HRYWo1j1KphOtmOXPmLJmsRS5n4Qc+UlnEkSCOfYT0qa1VqVSGuHFtluGhEXRN53vf+y7DQ4McP36E4dEhRkeHEZogSXxqjTpOxmHP1F6mj04T+D62bbK6ukQ2k2WgPIRlZWnUq5SKOQzdIQgFum6hq9RFPJst4HkBum5j6IIjx47gZnJEcYyu6diWhWEoJsZ3pW6zOQdNE0QIaq0VXNem3Q5ot5pYjoVIJLqmMTY+jpuxaXstPvroIseOHaXVbJB1HJSQtLw2i4uLVCoV4jjC8zyUpiFIUFJx5fJlrl69yv4Dh2jUlrBMmyAM0Q2dIPLRlcOZM2eZ2jfFwYP7efTRYxx/5BgImaaysW2UpuEHAb7XRtMNao1G2o4QCKXTaLR4+623mZ2d5cC+fezZu5ubszexbQNNM4liKJXSwFuW7VKr1xAywXZMsnkX23IZHCzSaNTT98XOQCJwMw5h4OG6Nn7g02630PU0n7HvBTh2hjCIqa+tInWFHyS4jovn1YkBIRWum+Gj8xcZH5tAMySZnI1pKMzWIsniRXj6ryAzjm5YzM7NIaXCcV1mbs5gmia2bSOlpFarsbKywvnT71GuVNh78CAHjz+KMByEZhAlAiHUuope3BHnZqu5ciu6ZXnd89R9z6sf96x8LwC7H58N+jgsr3Ecb8sSuZ3Nci8l/sdFW7V0h1zbZnr/1tB+ZXcKXrvrfpLUqejayd5rK7m7DSSb8tp2qw+OPql+v995tRO8bs1/57POneA63vYzvF3n3pUhnfQHAV7hTqteJ3V3SBzHd1g5u62HnYtWd7TcTqDWqZHsbm+jfieQ7nR77fdgt7IAdoPnbtDaeS+d4LrbqtoNaJP1FBhxnLokSKlIkojOA9ZJEtP5ImylGe3u017tdt53++X/RHTzNNqe3i5m90u9ggp00ye9iGxGWy0qMWLdchKlAZcEuJUCpZEhjj/1GVp+zJUrs9h2kaLto4kWS3MXWV64hGWGjO19jEQzCaROqBQxGm5GI/ED/o+//t95+sknKJayNLwaumURixjwsCf205y/hF2dRzgVYiS+14YwhDBCmAWkFFg6KBGyOD9DEteJhSJfHsELQhQRzWaLfKFEopmMTU5SKRWYPryf0++9xckTJzl25BjXrt2g5Xl8cPoMTz56hKyjMz19CN3JkLWKvPj8i4yPjwMJShMIIp7/xa948423yDgZDh4+iDIFXtOn3U7P5mYyORqNJj/96c958snH2b37ID/44U955NFH8f06MgoJ44QPL1xi954pzp05x95dwzz33Hf5s3/z75hfWOCl53/GkQO7+eDcKR558lFMN8P+gwfw2j6Do6P89vU3qeRzDA+VqAxVSIRCN0xabQ9NN4iihJWlKqXyLuq1Ni+++DJey+PqlauMjBxibNc4QdIgSXyksAjakmZrgWy2mJ7HTSKuXjzLD3/4Cx5/7HEs08EwdBqtJidfeYkjR45SrTXJ5Yromk7kh2kk4QiiKMFxsly/MYdrWpimRUxAkni0m6uYShBjI0SCZWlkXAddM1CiTqvexNBttPUIxGFziThqo2sSXVMYmsausVEOHD6M7ZisLi/xq18+z+DACLpukc1m0JQgCkNCP0ZqJs1GQBhK/v6b/4hrmRyYGsew8+i6werqGqZhoCmDMA459f7bfPapxwmCNpVKiTgOgIh6vYYUAiUkly5dIl8uoymBIRMsy8DKZLE0hzOnT3Po8CGGhgYoVUq4GZdISUrFAerNJhcvXODs2XNUijkCr4Vjm1iGydzcEraVZXV5jiiKKRbLxFG6JtQaK6ytrlEsVFAIVpbn0dYtqEkCbiaHphvYtsurb7zD5OQUhmGSJJIwTJ9Nda2GaZhpBOR6FY2YKIhoz15Aq97gO8uT7H388yjHBCUQKgXXSJ2cLsjYFu1ajeWZOVprVbRI8Mizn6cyOopmmiA2PIk25vSkZxyNO0JsJMmtn28V3WK+7AavvQDRtilJg/ZtN57D5qy2OF7E1kroeyHR49O7oLj1Sbqvb9WG6G+J7NVuL5lu2Ws62xdpYEepFFHnM+jXF53K6XV+fftT3G5Xi9NP1MMzstObq/uee5XtJ9Ndl/tc69sv3PWq9JWjnww7fa6bs+y/F9uqnhDiriwSD4q6DRX9rkHvZ/Bx2mXvW7l2j8/gNt0OwtRrxN3J807vytvfU+NS57wuhOrBc+t7uY0ldq7Iu5cx2MvQ9gcDXndKURTdmgx7WQM3qJ/msZ+WqpPXxnnWDZfeTuqlzegFSPtRd73u9ju/95Pz9ve7UwslHdEmtyvHVr9tpsUNL/4GAH09z+undCfdkyVgvY5EMDQ4yOjICK1Wi+s3LlGpVPA8b/1MK7QDSblcSYPLiAQ9iWiFbdp+xNf+9OvkK4OEpkGgFLGnUMJgaXmNlZUalUNPkzTWiC+8QGKYaJk8SlcIJZFJA8IGy0szRGGLMPKwDY0ojkniCNcyWVtZxLKyqbXPtCjkC2hKpkFpTJMDBw7RbLa5fuM6uycnsW0by9QIQ4+r165hu1l8L2BxYR7DNEBIdN2g2Wxy5MhRZm7MMj09jWHoSE1iKJ12u81vf/s2g4NDxHHMroldVKtrvPvue3z00XmeeOIxWu3UUjg2MYEfhYyMDOPYFo3aCk9//gucevd9XnnlBP/1X/wZJBG5Ygkp9TTYjqbhtRvkiiVa9RqubdFsNsgWsmi6RhhF6HoKJF595TUs02ZwsEwQeAS+x/4D+8kXC+hmyMmTr7B392GWFut861t/y4HDEzTrTTKZAjdvzPL227+l0ajzuac/j+PaCAEnTp5kamqKI0eOEMcxpmkShiFKaVRrdVZXV3nuO88RRRGlUoFfP/9LSsUChVKBWm0NJaHZqKdzklRoSqHrqWV0ZXWZKPLI5wv4QUyr7VPIl2g0GsSJpNX2aXk+lmMTJTHZbB7L1HEch1w2x9joKLqh8P02zWaDtbUaszMLFEtZTNOAJOHdU+/wp//Fv2Z+YRY3kyMMI+bmZslmszQaaRTi6ekj1Go1XNcljmNWVlbJ5ys0Gx6gSGLBr375AoemD1NdW6PdauM6GfwgIgoirly5wsjoCFEUMTBQQQhJy/NxHRfLtHn15CssL6/QbjYRUqQpiJJkPWiTRj6bIQh8Wq0mjWbtVi5Uy7JwHZul5WUyGQfTdknimFarzfkL51lZWSUMQ9aqVQYGykgpWFhY4G/+n78hm3HRdY21tTUGBtJ31DRNkpl3MaMG2r/4jxz9/FdBCpRmkMQRjqFDHKOLBBE2efftd1hYmsewTDTLYPe+vSjLvC/g13PD+XGC122096BoK/D6SdF25XlYUm8E/+rey/QWYgfWpQ7wulEi7ld0J3y3IRM8vP7qLcL9Wd224rkTXlEU9U1n+LBoJxbpj5Me1Lt+73z61esNXnu33eva/aVv/KSmwCT5A4g2vBV47QRunelqNv72smj2A5E7Aa8bG4VWq4Wu63fU7zyz0Und52+3cy+9LJr3Al673Z63Aq/97qFXG73K9gWv66lyPqU7abNn2ZekSF0k1zV1QklK5TK5cpn5xVVaLZ9W3cd1ChAHLC0ssLa8jIojLBFQqy+mICWXIxKpStw0NVSsgBDb0rBtG03qiMpu4tIYycVXEXMfsiYNmquzBM1FvMYauZyL107BQ6vRwGu3sS2TKGhj6pI40QnDAIFI82xqGtlcllKxxM9+8StOnTrFl778ZYrFPJ7nY+garmuRICmWBjANndGxEdxMBsdxiBPW3zvBpUsXMQyNoaFBNNPA1FMgNTw8jGEYqSdGnHDq3Xd47LHHkVIyPDyI0hTZnIsXBAwNDZPJZFhcnKNYzBIl8M67p/iLf/PnRJGP124hhcni4jIzN29QKmTRdUmSQKVSYnVliUzWTt1efZ92u41UOmEQMz+7wIXzFzh8cA+GrjMyNopUEs00CROPo0eOE/gJN67fwLR19h+aImvmabYCbs7M8eijx5mePoSmadTrdV5//XV8PyCXyyGVSlMXWQZRHNFueRSLJZxchoGBMsePH8FvN3ni8eOYpollmyRJzOzMTRzHwnVdmu02GxadwPeQEkwjdfGOE4FluYRxzJXLNxkbnyRBkC+VSERCIsBrBWi6otWso2kaTsaluraIkhLLtGnUmpx46STjE4M0GzWiMOBLX34WqSASMY7tEkcRb7z5BqZpMDgwCEKxurrK97/3fUaGR8jl8limhdcOee3V13jt1dfYs2cvMzMz7N4ziaEb5HIF6vUGC4tL/OTHP+brX/86hqEThiEgyGaz6JpBEidoUtFstvjis19ibm6WI0eOoesac3Nz2LZNtVojDAIcx8a2DRAxuiHxvQjXcTj9wRmGhodotlooTbs1FhuNBoNDA0ghOXj4IJal43ktCvk8Tz75JKOjI1i2TS6XJQFs0Sa58jpqcD/xF/8K4RQAgWEZ6MrA0DR++N3nqK8sEtRrtOqrXLlyiQOHDjG8a5zC4AA+IUnMpnEVtjv/dF/bjNSez9zypLlf8Nrp8fSw6VPw2pv89ajZ2xNi+yCtE7SK9X+SPjfxKXjdnOe9Wr0+Lvp9Ba/b2Q9vIUE/zumvf2Dg9Q/C8pp0BWyCu1/KXgC1l6V1J4entwaEd7r2duY37SzbeSa083on/818zjvvK45jlFLb0qZ11tl4Ge68p9uyd4Pm7U562+nPjd+6wevHsVHZ7vO+F57dfHu19XEFbdhw+0MKEikwDJfywBCZbJ58aYgYnTj0WV5Zww9j/GaTX//iZzhihbi1xqWPTnPj4hmC6ixGsEaEjxRr1Bs3aNQWuH7lAq5oMjN3BXNyP1XdJttawVm9TpJIaqpIu9okjk2U5uC4LsvLqynw1U0a7QA/0mm1PVqtFgkJSjfQDJMkEYyNTnDs+CPk83nCwOeDDz7g6pXLqZUyjLHtHKnLjEApjTAM0fT0HE+UxIyPjjA2NoqmaTQbLZQUzM/P47oZdN0gCAJWV1fZPbWH5eUlDhw8iOOmZyalrtFutpFCommKj85/yPiucVZW1zh+9DhhEEICAwMD/PDHP8exbPbu2YPntSgW8yQyzWubzWdTt8ckoVZbo1Qq0Wy2qNXqTO6a5J23f8vErnEajQYoiWXbKKUw1ABnP3iPIFzkyPReSqUxLl5YxtITXnr5JEePHyeTcWl7TYSQOE6G13/zJl/72tfQdcV773/A4SPTRFGIaVkopeEFPkKmi10Y+GiaRNMVUQx+ENBqNhkeGiIGTNMmigOkUEihUa1WcVyHWq2OadrrAZsiPD/kG9/8e45MHyObz6OUJIxjlKZwTJs4CtGMVCEhpcJr15EyDQ4mhOLs2bMcPLSPfD6P41jpGFASqSSmZjI3O8PxY8col8sEvkeMIJt1MXWDffv2ceniJYrFMkqHgYESxx85ips12TU5jmM7xIBUGrphkMtkGB8fY35+Hs/zKJfLXLt2Hdt20KSiVqvx1ltvIaRgeHiYyV27SYAoCtBU2nGVchlN0/ADn5s3b2BZ5nr+1wRd04jiiHyhgOcH6JqBaZhEYUS5XMaxbXzfw7QtkiSds3XNAARxkqA0DdsQMPMu8co15BP/Hu3Rr6MbJtmMQ7NZw3EMomaTVqNKs1FlcHCAKPQRSvLZZ54hUyiQaDoREAuBTLan+Oql0N2x0qzfPHQfPLY69vEgXR57gdePM7jMVm31CmrYSdtZSbZa+zbb33SOh75t7QCkyTgh3oifIbZndb1j7exTdrMx/CCA273sT3rtSe+Vtjoitx1ZHuq+Yyv3/E8APG8myydZfyvw+iDK7lTGjaMlW803D2qv3v2+/t6D13t1G+6m7TzYnS5g6WZa3QKuG397naXtBLad4Lp7suv8vVuunWi2N2RJy949oSZJ3PF980hxW4Gw7cjTy/L6cU1qD6udnfTFQ5GhS1kXr2u0DRQxAt2yMDIupZERpNAZGNtNoTyCYZgcO3Kcj86fJogE+XIFopCLZ07RWJhBWRbN6iyJX6O6sMTFDy9y6eoVyoU8ly9cQtgVgtJhqvn9ZHIFcqsXcYNlciN7MRUY+SGGRsep1dogLYSWoTA0ydj4JIamuHD+PCOjEwil0Wz5fOObf8fBgwdpNZtcvXaFZ555hgP797G6usqePVNcuXYDQzN4683fMj4xjmGaCAlJEqE0nTgMiaIQJRXf/96PGB0dolwuMzc3TxiGPPfcc4yNjTMwPECpVEJpkmq1imEYhHGCpgx+9uOfUSmXGR4ZwbBtEIrAj/j//vYbJAlIpbN73x4mxid44de/ZmhokERCa93ts1ZLXV1JIJuxiaOEtudRKhVwHJNjxw5j2AX+9hvf5PD0EYgjkjhG6iZDg2UMPY0y6GZK/PQXz2PrHkiNPXv2kgC6rnHxwiV8P+TDjy4wNDSAkBEfnLvA6Ogomq5ISKg3GpimiUxiojDE9wNMy0LTDWJAkxpzN2eIwhiEQjctkiTEtnMEXozrONRqVcIgIUpAqTRAWJzAkUOHKRTyCJGwcUIySSAJI1peE7E+/oSU+H6LXL4AIk3ncvzRo6B0bCfD6toahq6IoxCimEa9Sa1Wo91uE0URjXqdbCGH57UZHxvF9zyuXb9GpVKm1WpjWhaI1DrcbDXXFQlFhFS0vRaaZD2gkSCXy+P7AXGcEEURliGxTJNCscDY+AimaTA3t0QUxfzDP3yb4eEhSoUCS4tLmLZJEAQUiyVsyyGKwLZdWu0m+UKepZVVisUKv/rlL9mzZ28aUVlKbt68QSbjohtpGptms4nnBbz37mlatSXK8SLMvo8YexTxxf8JWZ5E1yW6jCD2WZy7jk5E0Frj9ddfI1fKY7oZpg4foTg4SCwUsdQh0QANmSjg/o+BfJL0sVqH+GQtr1vtMrZa53cidd8NaZ+yd+1d+jPedlt/+zf/L4899hiJWFe0ivu/h17Xki1+3wlJKQmC4J4A44Om39V3thd1G3h+V+iTl+V3D7x2Wl63Y9B70PQHCV53Yv3qVa4fdVodtwJ0G9bWDa1EJ1jsdL3pTCezAXS7NRAb8m20263p6A7O1EvL2OteNtrcKHqv4LVXZORO+hS8bt3WQ1nUbv1ze+uaCNBiQUxMkEQIw8CXkMuUkLpDtlAgmy2mqT/cLHZphF1TBykPDLJvcjcZ18W0cgTtBvXVKtevzHNw91Ee+fJXGRgeY2xiL8IcINGHqew6TjQ0SvaJrxEPHiKuL8D8OaKZs1Dei6sr3OIQmXyZRDOJIzAUFPN5ggQMy0VTOrrSuXTpMtOHDzFQqRCGATdvXKNSqaAbNt/97g84euQYy8srVCoVlCaAmIQIIXWUEmgqtRwuLi4zOTmOYRi4bgbLsiiVSkzu2oVUEt/3kCp19zcMg5YXkLEz6xFwrzC5Z5IYgWlYrCyvoimdJ598Ctt2cYs2utI4sH8/bsZFaIqMm6HRaGKYqdVTCUUSR9Qb9RRAz8/h+03q1VUMp8TCwhIT42NkXJcwaCPMgHq1RsEZ4jv/8COGJ4aoDGc4tHeSPVP70E0LIQTPP/9LfC/i3Nnz/NEffYV2u8ngUJEDB48RRSGarlhbW8Fet+guzs1w8uRJNMMkm8sTJyINItVsMjYyhmGm6WUyuTyB3yKJJWEQc/nyZVrtJmOj40ip8IMQwzBRhoEhIQwDVlZW0JWO56XpiX7yox8TxxFDw4NEcUwQhCgpWFmpomk6QeBj2TpSc2g2W0glsE2DdquJJhXtto/rODiOTRzF5PI5DMukVqsihUDXNXK5HKsrK/zoh79g1649ZNwc5z78iF0Tk3heHaEUfhjSqNeIgjZSKqI4SoG8VHzjb79BFCeYOuQLeaSSBGGwnh7J5eWXXkQpwejoKAOVCpCASKMEh2FMda1OIV9kaXGBXD7HWnWNfKGIFDpTe/feeidt2yKTzWJaJlLq6RwsNQg9KskSw3KJsLSf+Mn/Dufg59ENA4lASSD0SUKfG9cuc+7Mu9y8dpHPPv1Zdu/fz+DoLnwkUZIQC4lAQ6AQiUQlkkRE25szHuA85L/xbaKbp1FjR+6b16fg9TZ9UuAVuBXHY8u2drD2HTt4GGXot4Drpnx7NvXxg9d7tTZ9Cl4/Ba99JOhz/ZMHr7dxQv+Z6XcFvIqP00XmfikMw6Qb0HUmu96OxqDz3OiGdrHTytkrsvBtN+B+E1h8R7lOfp2yJn0OdwhxZ5jxThDbL/DG1s+tdzTjXu40cRxuwWtz6ua5Mfj7uSM1f/F/AWB/9a825dvL9fpe5erFTnED9gAAIABJREFUp3M8dD6zB0X9+v1eeW3mUr4T6pRlw/V8Q8myEdys+xkqCZHvsbgwTyJNxsbGbmmjb5WTt8dtEARomiJeukpw+udE106B0lG7HgUUwslDEhF6Lc6eOc1ApcLA6ARRIgiDCBknnHn3XUYnJvC8FsMjg8QRXLl8nVAE7N+3HylAyTRYWqPRwMlmCPwQTdNJEqjX67iue6vPlFLrcmk0201sy0JJhaZpNGo1lOYQRh7NRg1Dt8i6Ob75rW/yF3/+Z6wuz6GUolQZ4a23T7FrYoThoWGWl5dJkoiBwQpSaayurKEpnXqtSj6fpdaqki8UIFEIFNVaFcexiDzBzMxNcrkMg0MDtFotEAmZTIaLFy/y0YfneeKJJ/F9nx99/5/47/+H/wYhE9otH113WJi7yrf/4Rf8+X/1X/L9H/wdX/r8l5mePkC1sUK2mCUKFKamUa8t42SKnD17loGBMvlCHk1TrCytoes6mYxLq93CsiyiKCCKkpT//BI//dlP+POv/xntdo1G3Wdtrc6Nmev8yde+ShwI5uZnGRgosrS0SGVgEIHi2tUrlAfKZLIZ1qprVCoDRFFMFHhoMkYojZbvEwfgZjKEcci1a1fZNT5CEgYEEYRhRKvl8cbrb/Hss1/C1G0uXvqQkbFK+hyliaFbrNXbXL1yiSOHDxOGAWHoo5QAkSAV2FYGUMzM32SgMsjK8hrZjAtEVKurzM8tcvjwYQzTYHl5mUwmw/LSDG4mS6sVEEWStbUGcQznz5/ma1/7Y6SSIAXtdogiIU5ibNshjCPE+vhPYoj8NGCW1BVREqOQ1FYW0Os3MIMq9cwukuk/pTgyRthao7q8yOLsPPmswaXLV1mrNikPDRFLnaef+SJGNgukZxE34ir0m1F6znublO1eO3vOVVvMP97z/zcA5lf+5x2BkXuJ5Ho/Z3nhznVFiruPyzzIebuTenLqw3/j6pZzfR+54y0U2lu54ibcvZGVHfuRO/qoF89+QLmHUaGzpGlZNBsNRIdBoBfffvW3WvPv93l29+t23Hn7tbkTubZ8hj32L2J9bHdmv+hH2+G13fobpPoA/ngn81NH+9vd/2x1L3e0+wD3Utvtt373omkGSZLcwjQ7pZ2MvW4PzhSjbM9j516pH74CsCxnxw/i4ws99gCou8M3OmO7A7CfNfZBaV47B2O3NXUncn0cmqGHAdY2qB9w3fjNfOrfYj71b7fks5M+/JTujTY2I77v35o0N0BeGIa3FsAwDDEMg3K5zMjICO12G13X7/AE2CAp5ToYFsjyJOaz/wH73/2fWP/yf0OYGaJLrxIvXYZWFaXpHDx0iDCOadXWSEIPkhCkxHKz5PJZbMchzU8pyeZz7N0zxfLyMnGS0Gq1icKIXDZLksQg0tQ5cRKi6xqaphEEwa0N68bG37ZtNKWBgGaziZSS19/4Db7vUyqXaTYbeH6bJE7P1jpuFk03ieOEoaERCvkSYRit8w9JYsHK8gr1WoMwjHjl1dc4c/oMhm6RhAKJWs+lahL43i2rpeM4NBttms0W1WqVpaUlxsfGeeqppwiCgGq1ytDoCFevXyUIW4RRg7XVGXTDwLI1sq6F7/kUywW8IEQ3TeJEEEQREeBkXBqtNvsPHgSZpu0RUvHr51+iWm2glI5pmIRhQKvVSp+rpjANjeGhIRqNBpWBIuMTw7zyygt85snjBF6NM2c+4OzZc+i6SSaT4+aNWUBg2RYZN4NAkM8XqdfqICSaYdDyQoIwwnEyeK0aod8iDn3Gx8YIgpjllQZJkqTnkzWNsfHRdK6P4eTLr2DqJqEfsLgwhxQxjm3zzjvvMDs3ix9461bnNEBXHJGeqY5jnv/lryCJsU0jVXaEAflshtL6WdYwjNbdgW3iWJDLFiiXBnDdDGNj47zxxuvUazWSJMHzPcIwwjAMlK5huy5hFKIrBVFCHEEURutWK5Gm8WmtElw4QWbhbVRuCPmZ/5bM0/+embkFqkszvPTi8yRSUBkeIUAHZfHMl7/CM8/+Ec9+5asI3bh1BGVj/D4o2myu7i4HD35t+l2c3zf65J+TYv9hULe1cWNe1zTtgbYTi9sgxW+2WF1YIggC4OM9f7xT6h4nv2vjGO7trO4GPcj916fv1G3qN17CMLxn4PqHSP+s3IajKPrrbvfWfvlSe1GnlrmXy20/HrfLba4f2rBY9Q+i1E8beVub2anp3MplaHPa3IWgM4Lx1s5LO2x5E7mTJEGYbvrZhqX8QW9u+rmy/K67+DwsWe/QrK9vTjo17rfHcYLXbrG4sECCwrKsW2VuvR/rYnV6Q9ySWabWVjU6jTr4FZLaPOGFVxFxgJ4to1sON69cYmVxHt9rkcnlyZcHMXWJaRoEQcTy8gojw8MgQNcNfM+75RoLqRua7/v4vg+kEVelVFSrVTRNu10uSS1mhmEQhiG1apVsNsvg0GAKRv0AyzLRlOLQwcNIqVBKA6FIEkm9VsdxHDyvTSbrpgF6Irhx4zquk+Gdd95FSUXg+0xM7EFKjUajQRgGmKZOHIdkXJdisUS1WsfzPOIk4uTJE0xOTqJpKeh2HIfBwUFmZleJ45DBgSJ+u02zXqdUGaJQyFOulJieniZOQpxMDsPU0w2mMomiGCFB00yq1SoDA4O0Wh5xDGsrdUZHxtANA6VJhEiBfZr3OaHZbHLy5Ekef+xxgiDknbffoV6rc3DfXkKvhTIyDAwMsrKyyrlzH7KwsMjQ0BClUoHZ2Tlef/0tPN9nZHiYKEnQdINmq41YD6SUMRVR5JPE0XoaB4XrFjEMSZIIVlZXmZqawjQNdGlx7sOz7N27h1wuS7GYx9B1hGZw8sTLDA5WKJeLWLaJaab33Wg02cinNzd7k4nxCXzPxzR0Mq6N77UplCsIKVmrVjF0k+XlFVw3i1IG9UaL5eVVCsUSe6em2De1m1a7RTaXxQ98dN0kEqnhSwpJs97k7Nmz5Aolkihmae4mpjePmH0XmkusFQ7jH/4z1PhxVloRQRRQdg2uXb3EvgP70S0X3ckxMrGbg0ePY7p5hG4jdQvDsonCNPrrvb77vWptvNvb2eD2stB2UnTpDWA9Vc4O5IqT2zldb8n6kEBAP8tId3s7sTg9bNpJ+72sodvh0evXDaVlZ19s5AjdjkzbWds3KJLp3C0TqC6v8urLJxjfM7nuDRL1XPv6WV7vRZadUPdOqXOvtlOgeK/Pdie/d7t+76St+91/yX6W5V577G3K1P19K7rXfrsX6ocduqn/XHp/e917qXvn+/TwFQv9ZPyDOvPa+WJt9oL1W4g2q9P98t7msTl47XcOtYNzn/ZuD+juYE47pduuy70nrLvvKW2/V39st487qfuM73YWu14TU7ei4WFSr3HxcW1aNvpru+0+LMvHncqMO38D0lysqytUKmU0w7oFbDvH68bw7qzX69lJTUeNHEZNPEq0cIF49hy6aVIZ28PayjzV1QXy2RyWbROEPkIqdN3AtCz8wEeuR4k1TBNd02jUGzSaDSzHhkQQhhG27a5HuJUsLi7yxhtvMDU1dcvKbJgGSRwTR+tn06UkTiAMY65cvkYhXySKQt5840327NlNIiWFUoFWs8nS4iIffXSRt995i7HRUc6cOcuJE6/ymac+QxJBLldgdWWVSrnE0PAIuqZRq1X58MOzKKU4/9FFNM3g9OmzrK1Vee+9U+zbt5uRkRHy+TxxFKPpGq1Wm0ajwW/ffB8hEiqlEnEsEOisVusUihl8L+CtN09h2AamaSFFjKnrXL96k3wuy6UrFzA0nR//048YGhwkjiKUVEzumvz/2Tvv8LiqM/9/br9T1SVLsmxJ7g3cTccBQigplJACu2zCBjYFEtgkm80mv01ZQkJCKqmkUUJzAAOm25DQwbhX3GXJtro00vRbf3+MRh6NZ1RtA4m/z3OfR7pz3tPPuW877+H+++9D1zWCBQEUJXUGXxIlDh06SFlZKVMmTyEeS+L3FxKNxFm69H2pu219QYKFBbS0NPP4isdpaWnllFOWUF5RSjweJZEwcV2R9o52KisrUsGoBBHd40VWZIxEnFg0dZVOe3sbiqTg8wV5++3dVFSUkkwkKS4uxrJMYtEojusya/ZMVF2jN9yLIAhEYlFESWHv3j3MmjWD0tJiEokYlu2gajoerx+Px4soCkyqn5SKIK1ovPnmm6mow6Ul0OcdYBgWtu1gWamremKxBOvXb6C5tZlp06aie3S8uoaqKanIyLKCZTnYppW6UkSUUNVUlGGPZKL0NBCI7Ufx+ImNPwtz0gdQK+poOnQQJAnN40PWU+eXJ02dSmFZGQXFpej+IgRRxnGFlLJHEPrdN0Vh8D1wSLfDUdAMzGDwfWe0witZ37yxoK2tjWAw2Jft8PbwzHT5/j6WyPWNTY97rrSD0WdiOGdp4ciAkJn0Q7ng9qfNSDeUoJQrzkdacBUAv9fHjOnTcaUjb2XI/Huwo0npOh2TGwyy+nuob11mmqMxn0aaR64+zJfuaM95MSuvQXnuYeY5kjWdj6872uMxkr0mE0euvfzCb7Yiaaj8R7K3H65/Dl4tg8cba38NNh7/VMJrGpnuCCNh/NNuWJnvhrp7dSjhdejBHSv90Ei7ljnO8H388xWbTpvWuI5E6zpYX5rbX8Dp2IdUVndEnXJN8GMlvB4vAXUwDGdTOpYY7poxjSQeXUMSRQQp5bp4RN2H2Z0pRlxA0AOItUsQvIXYDWuwbZuKynJCHa04lkEg4ANZRRKVFEMvCGhaylrq9/vBFXj1lVfAdRlXMQ4XERDRdS89PWE8Hh+2beL1epk8eXK/VVlRFOKJOKqcCqIjyzKyJGHZIEsaK1Y8jSqriAJUVY3D6/NgOQ5d3d1Ew2GqKit48cVXqaubyJQpkyktLWdCTR0er47rgKJoTJw4AVmUkGWR1rYWTCOBrCjompfu7jBer49DB1soKCjijDNPwR9QUZXUGVxRFDEMg7feWoMgCJSVFLBg/mxMK4HfHyQcieG6CqJocmD/ARob21hy2mI0VUFwTYx4FK/mpa21lfpJE4j2hmna30hxcVEqQJZhkDTjbNy8nrPOPB1NVejs7ELTUgGD1qxZjVf3oCgqf//7iyQSUTq72qirr8UX9NEbi6EqIuvWriPUHeKDH7yYoqIAlm3g9XgoLCwlHI7z0ssvM2FCDT5NQVV14okEgusQC/cgewIpF2GPDyMZp6OtnVg8RkFBAYqqIMsyggCiKGC5JrpHT92Hq6pIsoKmexBECY+uUls7kba2VnRdw+v3E48nEUWZbdu2U1RciKrpOAhIksLmLVuZN28usqwQN5KIkkh3qBfbdmhv7+SF55/n5JNPprq6ikmT6xElcLHp6Q7h4uI6LoIoIssKmqygygqJRJJoRxPBWCNipBWzYDzxutNp1crZ39aN3+cnYVkUl1dQVllNybhKAsWleIJF2JKIoGrYroBti/3neFI2YwcRB8l18t6FOVwc651u1MLrUYTf78c0zREJLdmCyPHG4BxBVtpc3+4R0OfLayTtHkpQHiqvTH4t/UgI/e0wbQtkESHPGOZi5vOV+G74vsOxt+4d7zoMF9nC62B4d4zUsUU+5VPGf3l/Hw4fPJa5kU94zSz3WM6hf3jh1XXdb0O2y+thYWkk7j5pmjRDm02TS4jq00cCLoJAxjPwA5hdl8P1PPxk5jWc+qaRbns+zakgpDXZh/N33YH/p9+JYqpNLiIuAm7/FeIDH0EQ+5/MCT6YpjHbCp0piJobV+CG21AmnXJEu/NpzUYj5I1Gw5ZPO3Ss8E4IrpkMwGEcniOZ8zRdPVGUQJRxBSmlfRYF+i9JSU+VPGUdqe3MTOwiFlYhTTodIdSCdXAbvSaEw50ENRPZW4SLjSiB5TjYrsCOLZuJhsP4PF4ONB2kbuIkFEUjVTUXUQBVlUgko6iyF0mScR0QEDEMM+Wj5gpYloMoKoR744iiRiLei67LTJ1aj6YpPLJ8OVOnzSYQKGTDhvWUlZYhSioPPfw4p5++gClT61PlCjKd7SEwJVaveY3qmmruvedBcB0s22HThi2cdNIiykrH8/hjj1FSVkDdxAl0dByitm4cPp9EW9tBPN4iBEnAlVwisTB1kybi8+rYTgJfwIcLHGxp5qFHHiYQLGfy5EmEenswjAQ1tdVoUspFrKu7G1FycEliGXHMhM3suXORNJWkmaSosIhk3OCUxQuJxHqwbQuvz4dH9xGJhigsLKa4uIxY3GDDxk2cfPJMZsychotFV1c3sqwgORYTamowkkk0TcHr0/B6dTo62vB5vRQVFzF79myKi0tQNYl4LIYkyPR0R9i+fS9lZYUYCZfXXnuLyVOnoPl0KqtrkWQFSVRwHQdJlokm4ni8CqGebhRFQxQUcBQEQcXFIBgMkjQNCgqLkBQVUVRAEIjHY+zZu5sJEycSTUTx6Brtrc3Mm3cykqoQikYI+EtRVC8ejxdd1Tl06CCzptdTUBgkEovi0XU62lrZt2sXxZW1SLJOT28vAZ8PRRaQRRcrHsY5sB6fE8EZfxp7i06mx1NJa2+SivH1TJ11EtW1tQTHjSdQVIKi6X3LLbXeREHqv9dKEFzoe1zBTU9THCH38hqwS2ftVdm7+EiQz2co15Pev+yGw8IrI1B05sJILCTZaVLfiaG/Xdn0xwM5+y9PWjFHH+QLDjPwy556cpU1oC6Z+Q67AX1lZpc1gu/kUGMriCJ2hlEh+3epz3Lrpnm2dB/k4INGg0xeJZN3Gawt+TCiuZVhKc631gTovyM3V1m5+uB4zu9cyJwjaaYi57i/I7UbO4YTnGkwI8xAmnwrOY8H2zCtsTn7O+ccPzKvoY6LDG+fFxlsVrsuyLL8jy28pi2vaQFtMA3rUB2aGa04n8A0XKTTDuX+dDQ2kaG1N7lp8k3gvr9y0+V8O7zFMlj9cl2VMxwcj034ndzojzeO3DhzphqC7ijVRZKRq+cgii6+tq10hWMkLUhaIgVFpSBqIIgokkBFWRn+QBDDMPH5fZRXVKCqKoaVpLenB4/XiyiIdHZ0kjQSyErqTF1XZxe67mHv3gY2bd5A7cRaotEY999/PyfNmYOiCIh9V1gFgkFqJkyguLgEWRYpKSlGEFLnaOfNm0dJcSGmZdLT00s8nuThhx/BMKKUjSsiGAygaV5mz5pBd6gbx7GpqakiGu2hYX8DEyfUY1kJpk6bhtfrQVE0LMtBU4tS51F7ovgDBYiujKp48HlTZ2B9fj8FwQJmTJ/B5Mn1mEYvRjLBtKnT8Pu92JaJLCu89dZbVFVVU1xUQltbJ2vXbKB+0iR8fh9erxczmUSRZXRdQ5JSl5N7vKmozMlknFAoFSV45cpVxGIxzjjjdGLRKIFgAbbtICsae/fsJhAMIAgSulenoqIcyzbx+fyAiGnaaLqOqqp0drbi9/uxLJs33nyTXbt3M2v2TDo7u+jq7KKoyE8g4EeU1FSEXgEMI4lhGvj8PlwXfD4/8Vgcy7LQPRqiKBCOhAkGCvo+fqnzuunz2rIsUz+pHkmS0DQN13bwer0pNyjXxefzIYgOppVAlECQXIpKCvF4A0QTBsHCYpKGiSyJTJw4EUUWURUoKghgGAlCXe3QvguxcyfUzMeZ/69I5VOpnFhDbf1kxk+YSHFpObKqY7uAKA21BAZfH0dllR398vt3DSOKGChDLK07TDMG4XVsafN9x99Z4XUkyFWjsZ5jHfD7UWzz0e6/wRjiXNa83MrY0SGbBxyrEuZop9/f2EhJSUlOXnMovut4YyT89LtvBY4co+XNh8h1UNqjZY3NJ7wOn3bQFEPm8U8lvKaRqYHMxFAdmt6Usi2ZI6HPlXawj+HR2kxGWtfjKbzm+oBkj9Fgwmu+fk2fYTme51//0fFuEl4BTMdCqqjHO3EOngNrcRU/tiuheoMYroQkSsRCXci6B1lRUHQVnz+AK7qYtoXbd+WTLMvYttsnQEkYRhJd01EVjZUrX2DmzNlMnlJPNBbD4/Gwe/cuysvLKCwKpiweYsqRTdc9gIvjmBhGHN2jI8spwSiZSKAoKqqq0dHRycKFC5g0uYrSskIQRcZVVPP4ikdYsGARE2snEE+GECWXysoaEnF45tlHmT17NpFIFI/Hh0f3k4yZNDe3smPnTmrG1/DG66/j0XSMZBhNVent6UVTNXrDYXp72wj4JCTBpSBYSFtbCy0t7fj9AaZNn0E0kkBApTccZ3zNRAqLihD6grMpikxTYwOOY1NQkBJIE4kkXo8XAQiHo/j9AcaNq2Lx4sUcPNiM3x+guztES3Mbr7/+FifPmUVTUxNFRcXoHh2fz4ume7AtG03zkIgbtLWnziBadhwEAY/XS1lZKQsWLEDVVZKJVDTlyZNrkVUJ1xVwnJT/x7q1aykuLkHTdVqaO1BULXVmVhYRRLAdE4/Hj+O4yLJCWoOrKgpdnV14PB5wQRIlIuFwKoiY65JMGnh9XmRZwrUtIpEwqqZCn2ICF7w+H5KYsqzKgkMiGgY7TiwcoqOjHSHRiz+0C0pqCZz/RYJzlqIHC5A9KqKiY9oujiDhpj0VJGWQ9TU8vNO70lDCq1RWN0BwhRPC61hwQngdnfA6Vv4gk1d5Nwqv/kAg53neXO/e6Xl9Qng9Ibz2pRgyj9EIr++5q3KyD+ln3zuWKZBmI1OIS1tvc7v35nZrybyWJ9vsni1c5dr0RhouPNfkdF13QL2HMzmz25NZ7+zf0/8PR4uZ78OfXe/M+ma6OWW2KTu/XOUfrcAeuZA9ltnP0cRQeeYaq1z0gwcHGxwjpcs13wcLljHcfsvMV5ZFHGRi/hq877+RIiFBoRAnHg6DEUdyLYJBf+quTSFVjqSIuK4NgoPrkIoKTMoCV1JSQjAYoLCwgKSRxDCTnHfeuTzyyMPYloPf70eWRT70oYuZMHE8oigiyinLqyhJqetodB1RFJBkCcexcV0Hw0j2X5HT3tbO3/72Arqu0B3qRpAkiopLESWJjs4O/EE/ukdFVmRMy0SUJPbua8AyTZqamvB6vBw62IIkKhhGCIE48+fOZM1brzKuogC/T6C8ohLLcgGRcCRGZVU1NeOriEZ66Ql149gOxUXFbNr8Ns+t/Bvt7Z0camnhUEsbGzduR/N4SCYMerp7iEdjRCNRSkqKkSQJy3Lx+wuQJZWkYRAOR2nY18Ch5maCQT9r165h7Zp1SJLMc8+tZMuWrRw4cJC29i72Nx7Ask0KCoIYpkkiYRAK9RKLJli5ahXr1q3DtAwKCovx+vxEohEESURWRERJZvz48cyfNw9R7DsH7VpIskAyGWPhwoXIskxvb4SioiKefuoZ3nj99b45lXK5tSwrFak5I36B4zoEg0FEITVHHNdBVzUCfj8er5eCokKS8QThUC9m0qXAV4RrQqwnguiAVzLQhQTRrkN0tTbSdnAfPR2HSCTjSJJIuRLH37sP/+n/iu/c63G8ZcQTBoZp4rhuX7AlGVFS+o5jiDijPLA61v1nJGs2V7mD5ZtOl2+vGskVdoMhc2yH2hcHa0u2UnQ4SuZ3MhZBGkONW75+GaqNo9mj85V7tJF5F2RmHbMjUmfzMUeDP8jkRXLxcLne55vrufp3MEPCcMYiHXE8V765eMVjwb8MhVz7wvGuy1iUDoPlOVj9x8rXjQSZ83CwZzi82ljrkS/f9JPew4823rOW17FaPjMHbWTaieGlyZw8o5mox+rDkLuwgXd0wmGlwJEY2vJq26n7L/P5+Nt730RgoOU1u73Hre3vQHlDje1Qdcm1QY22/ofpBre8jiT/0W7OIikBTRBlBE8QtXoWbvM2ekPtRLtaUXUVUfciS4fvvXQdG8dJ3el615/vY/KkKfj8PuLxCJZtoqoa0UgUURTZt28fFePKOXjwABs3bWLhwgUAaJqKIACigChKCJKI47iIooSIiO2kzpImE0lU1UNjYxOdHe0UFhSj6x5qaqoJBHz4/QVEonFk2YdtC8yfPwdXSF2fpel+enrivL19F5quEI10M3fuybS1tXHgQBPV1VWEutvYtWsXtbV1JBJxigr8FBT4iCYdNN3bLxSJskqoK4TH48GjBXj77T2YtoMg6EyqrydY6Gfd2jXMnDmLWbNno/s1FElm9RtvsGnjZmrr6tF1hbvvvpfJk2bg2AKKqiGKMj2hbqZNm4aRNOgNR6ipGY/H40EUIRAMMHnKFA41NzNh/ARmzZpFNBZGVhUUVcMwLFRFwePxUVNTw5SpU7AtE0lRMEwLr8eHrntT/SrLuK6Ax6OjyAKhUEdqBggiHt2Lbdspy7am0xPqprZ2IjU14/uuLZJoa2snGAxi2xaSJCLJIrZtISAgSiKmZaLIqXuIHdPERUBUZZKGgYjAju3bWb16LTOmTSIc6kAVbRLREF1drXR0dGLYNt5AAeOqxxMsKkYXQWzeiugpwPf+/0SqmIaDkqFUdkFwEBAQBFJPfySB1DMWjGZ95xM4hkK6pgP24yHyd3rbcJNRBM03orJyIZMukUig6/oImd6h7MQDU+bqp1x/H0+M1XJ6NGudq6x34vvsui7SsYggPAL0n9/MwHC+10PhWPfmOzFeI+IZjlEdjgVGyguNsbRjlO/AvFL5HT3FwkAecGh+8J/KbTgf4z4S4VWSpLz3YOUSjoeaMOk8M8/jpv8ermYtjaOluc5GzjwzhNd0f2be/zkQQ7dBlmUsy8r70bP2rQZBQKlfMuD9CeF1eHXJFg7/UYRX2RFwkXAdB1lyETQPsbJ5FPS8jdq7n3BnC15VRpB0ZEVDwMW1bXp7e/B6PFimRFl5KZIkoqoyXd0deD0BPF4f0UiU2tpaRElkfE01AX+AQMCfmuc42I6FaVhIspS6H1UQkCQZQRBpbj6EJIp4PB5M0yIQCPL3vz3PrFlzkGSZQMCP45iEe5MUl5YhCCq/+dVvcewkhUUBEkkDj1bA86teZPqM6bS2HuQD7z/pizaeAAAgAElEQVQHSZKorBzHtJnTiUXD+HQfZWWVaJqfgkAh4ODRdUxXRNV0ECT27NvPnr37SESTlJWVsnfvfnbt2s/CxUs4eLAdRZUQRIf5C+bT1taGZTt0htqxDZOa6hpKikp4/IknmT5tKqqi4/cXcOdd99De3kl1dRVFBQHWrVtPS3MzdfV17Nu7h5qaCezevYOGxn0sWrSYiRMnUl5WjiSLqLpCYWEBtgP33HMvJ82ahap5UFUNTVdRVYVk0uq/Kzcej6dceOWUYgDHwTQiGEacgD+Iouu4joNhmCiKSjyRwOvRU5GQpVTgJ1lRKAgWYJpJFEUmHYAuHOnFo3txHbfvKiUV13ExEwlcXCzHRlEUbNOkpzvE7JNmEu7tIBbuJBpuxUr0UFkzheLycZSMG48oSRDpwG7ZhdPbjnL6NSgLP4kj+RGElJuz0BcpVRAcBFwk1+mzt7qIfdGCRRzcMe4vYxVeR7ImhxJeMxWy6bTGK3fiHNqGVLdoQACp0SCTLn0X88jOM54QXk8Ir8cGmXzjcPnCE8LrQOTyGjwhvObN4RjlOzCv4yG8DoZ/CuE1k2HPdEWFgQJfLpfYfAJp9scq80OZmXd6w8q+mzONXPeapsvNFGKzBzKXdXasLhZDMSsDysyIRixkRCMW+iwIA6OfDY5cZ4iz2+2070XQfEjVs49IO5QgltmutAvNcJCvL9Lj/U67iI2EuRyp5jcbub0WhJxPrrUz2noPBUcABKf/Kh0EGa9fR6ldiDZ5Cb2xBC27NlGQOIAT6YBEGNMFf1Epqiaje1U8HgVNVxAkCa8n2B9RW9d1bNfGMJIoioLXK5NIxNE1D3t27ScYLEbTU94CgktfNEuH3p4IW7duYe/e3dTV1dHY2IRtOyxaMB9FVxDkVHTTgwc6cJwogiBhuy4dHS3s27ub+SefTEtzK4XBAuom1hCNdbJw0WxUTxBV92HZIobpYCMiiBpJ06KgMIjjWoiKgmmDkUgS6YmTjPdiJiJEu8PU1NbgDxQSjycoLi4kEYsSNQxmzp5BNNqL68DK516gurKGsuIALS3NVFaNQ5REqisrCQaDBIJ+PF4NUYLe3l5OOeU0REkkkTCYMLGWt1av5c3Va5AUmdLSEirLymhq2s+4ynHIEnSHOikuKcYwbExboLy8ipLiIgzTRJBAlFJ3OKqqiKKIJBMJPB4Pqqr0Rc10EMVUFOlIJE4g6E8JulKf9RsX17GRFQXXdVBVFVXTaG5uwetNKQxkUSYeS2IkLLyaD0QLHAW/z0c03IXoQjyZwLVFBBt6u1uIx3rwenw4ZhLbcSivrqGydiqF5TW4goTb24Z1cBu07kTQg8jTzkQ97d+QiqoRcBBEF1dwQHRIRQcmpQAUpJRDsyD2PUL/k9NyOdQz2rV1eOMeUNZI6ActM/2NzXiVvipHqls0qr007emTy/VxUIV0jgchswsG/3aJGfvbaPbV4UcKGBlr2L8rZ8yBAfMhk79Jp8/su8y655gPA8rK0b+55t6IFCCj9Dgbqvz0mdej4Uo/EvS7PbouZLprpvMlg6dk5MKY0DdGw21VZv1z3RV/xHw5BhiMJ8iuY/bvx1qYHg1PNJSCbKh1MvZ+zxWV98ibQui7ESJfZOJ0e7LrN3S7xsYDD1BqDpgbR9Y/uy2juSrnPXXmNROiKB7xpF0Jh+NfncsXPNtlNluQlWUZAMuyBuQ11ORID2pm/tltyfX+WCLbMpx+xopc/Zo9LtqST6It+eSg9cqHzLxs2x6W1fHuu+9G13WmTp2as6zj2e//CPB4PHg8Hl566aVjXlbcNrFEATFYwvgzPsJVv3uZks/8iZufb8LQC1G6duPseZ1E20H+9eu3UfWB67j1zuXYlt1/FVbKupq6o/NwNFqFgoJCXBcs28RIJonH4kiihGma2LaNYzuomsiiRfM599xzEUWZA02H2LRxM4LoYjsmguiQNOKsW7caWdcxbJOGvXupnTCByooK9u5rYPz48Rw8eIj1Gzbi9RbSuL8Vy3BIxCM4bgzLNJAFLw8+uIwtW7axbdvbmKZFR0cHqiYjiBLPPPsskUic/Y1N7Nq9B1GQEQWZktIypk6bhqIp7Hh7N6+/+gZ+fxBJEpEVgdKyAgTBQ139ND7/wz9Re9mXuPHnd5KMR/FqGhICE2tq6O3tpqeng56eHrq7u0kkEvj8fkRBpCBYSMAfxB8McODQIV599TVa27ooLR3HvE9+hcoPfIY/L3+WJ594kmg0wcsvv4JhWLiuAO7hS85d18VIJukJhbBNB9ty+tx7RVRVINTdhqIoxGJRXMfBsiw0TaO9rY1EIkkslsAyLVRVAWwEUeFQSxur31qb2g8cBzNpIbgOEgaqlKSjdQdtB3fTtG87oa5mTDOOx+uhpq6WmklTqKmtQ7PjJJu2k3j7FewdL4JtIs++AP2y76GdfyPy1LMQZO2Yz/V/ZoiiSDwe7//GnsB7G/9o39Y0/5aLLzyeSPM7tm33G1PeacX7CZzAO4H37JcikyHKpV3Id7g/8/f0JpTrntds61SmkJTfpfYw0gJcpjXYtu0jysksK5cFMntzyrzjNv1kayez6fMhV/5j1Yjl07oJgnDEOVpBELj77rtpaGjgrLPO4uyzzx6yLrn6Lt3W/Od0c9NnB2cYLnKN10iQOUaZ79JCeVqTOlS9R4s0fa5y0mVlz62h2pqZ9mh+TAVRxsZJabt1HxXjKtmxax8J20Wbfho799QzcXwtiUPbEPra44aaMSJd6FYU21eMq3ixbAdFUdA1HcuyUGQ15fApuEybNhXTtEgacQzDRBDEfqu+ooioqoZtCzgOnHHGmSSTBrFYBF/QTzweRRBFLrjwA8gelXgswfPPr+Ss007H7wswYWItquahN9xE/aRJHDrUArg0Nq5m/oJZCLhEoxESsSg9PSFamptRFJUpU6ZQVgqJRAzHlfj4xz9Jc/N+qqprKAiUs3XLNqrHV1FSWkJ3Tw+ypiGLIps2bkLTJOpqa7jowvcTDnfiC/jRFB+maQJg2yLRWIR16zdy7rnnI4gSH/nIh5FlgXA4xssvv8zVV1+NLElccOGFPPvMs1z1L5+kpLSQwK7ddHV2U1JWDoJEWtu7b88+Llt6KpqqcdaZZ/PYiscoLinm3HPPwXFs4vEEHt2DIIhouo6LjGUmEQQR10mdlcVNKQVFUUTTNEzLZs+ePciSRFlpGaZpIyIgCS6WmcAbKGLcuHGMGzeO9WvXsmDBAhJxA8s06Wg7RFfnfjy6RJfj5a6n3+Tl9dvpCPVSFPCycEo1154zgzOnlCLoQaQJc5FP/iBScQ2CJziseey6Kffk3/72t6xYsYJdu3ZhGAZVVVW8//3nceONX6K2tnbQPMLhML/57W95/LEV7MxBXzdG+lzlH4t1mlb6D8fikG8v0zTtiOMmo9ljR7qXD9dKkm/fzlXuMenjHHXJ9y5XqSMZl7Ei2/KT/X649PkwkjzH2q54PI6iKAM8vYayOmamGWqOjLSuaX41reg52nNsuHN3rDzJSMZlOGtuLHg3KAGOxZ4xnDHM5/k5Uoy2/qNt73vW8jpa14/M6IUwso5LC5/HQ5soCAKGYRxRVqZVM1sbmE+IfacxmOvCPffcw/e+9z1efvnlIyzp71aMZu4N5b6RtuafsDwMhIiAhISAjCipuH1blojAqhUP8diyPyF5dArmnE/NzEXU19VSPPNUPIVliKoHs2kDYtNbyNFW7NadCPEQopC+FzQ1zyzLZM+e3Sxf/iiGYaJpOrKs4DjpYwkirgORSJQ9e3YhSna/IEYqRBCqqvb9Beefdy7zF8zDX1CArvkRBZlYLEpvOMSsWdOZMXMac2bPRJE1YhGDdWvX4/frnHnWKVx08YVMnFDLU08+A8i4joQopoIblZZVUFE+jmBBEaaVpLe3B0VRWLXqbyAoRCI9KIpEMFBAaUkJruMgiQKG2UMsHqIo4KG8wEdlSTGFxWVUT6jlwKFWLEckHImSMJMUFhZy5ZVXIssyW7du5Y3XX+ejV1yBPxgkYVlMmzmD+fMXoKoqtmv3j9NJc2YRCnUSDvegqBL19XWcccbpSFJqvFRVQZZlBEEgEomQTCSwLRsjYSCJKpFwHFnS++5l1WnYvx9RFJk0aRIlJSV0dHSxauXzhEK9qJqKqslgWaiKiG3EmTd3Ngeb9tHV3UFndxdV4ycwa+YcXtrcxof/82c8+NyrHGrvQpdF2rp7efLN7Vzy/Uf48TYv+iXfRV1wOXL1nH7BdTjYtWsXp556Kt/+9rdZu3YtyWQSXdfZu3cvv/vdHSxcuJhnnnlmUPrFS07lf//326x5B+jfTRi9q90JnMCxhdfr7bt+zR468THGiXVyAieQwrtXQhgCQy3gXAJQLn/0kWppj5dQJUlSiiHOY2mE967wGl/1C+KrfnFEukxr8mi0N8drQz8WwmsuK/gJgIyA5AqISFjGYeYh1BNh395dVJX62L9jHaLVy59+/wc2rH2Lqz7zBeTZF2PO+zfu75qMc+q1UFKPUFiF3bodsWkNTst27NadGKEWVFVmxozpfPSjH8UwTBzHxTBMJEkiFk2AK2JbLsseXMbE2vEoqoDtQG9vBFGQURSVrs4Qvd09BL0+Zs2YgShJzFu0CEXVsF2X1954jUmT67BdA1EG00zQ1dlDIFBKIFCAKySpra3hUHMTW7duwTBsXnjhJVpa2tm5axd79u7DdSEWT1BQUMj555/DpMl1tLW1YZg2u3c3cOWVH+fSSy+hrLQYAQlRkHAdKC+qRnQkvv3vl/L8z77CLV/4KKKs4PH6efTxJzFtl6oJNXj9ASRJoqCgAEmSOOfcc7nyqquIhCNIsoyialRVj2fChAkIkogoi6RtPIoq4/NqqJqCokgsWDgPj1fFcVKuv7btEOrpIRqNoqoq4d5eJEFElhRi0QTdXWFsM71GoKamBss0EUSRkpJiSktKmHvyfLy6B01VsC2DSDjE1o1r6W0/QFfDVqq0OFVOC5ViO8buV3jtpVe46ZfLsWyHD55zOjtXv0brvq0079vHdddcB8Att/2MRx5+CMl1kNzhKyXj8TiXX345+/bto7i4mPvuu4+2tjYOHmxi69bNXHzxRUSjUa666l/ZvXt3TvpLLj1M/8D999HZ0UZL80G2bdvST3/lCOi7OttpPnRgAH2+8t9tOMGUn8C7FcM9nnQ8cGKdnMAJpPCeFV6BAS5G2W6LuSys+RZ++reh3EHTLsa5hOB0PtnCZXa5Q208aYE0X11yuQ3nOuubjz5bQEylExFFmXQEzcNPLiFSPOLJblu+O1qz88oW1gYTXkfSh/kwWqVFNjJdaocjkKbbmd2u7PYMJrTnOoA/WPmDCcJpxc5wyhouUmlTQY4Ewe1/xgrXdXFIPYIok/ZPrJs5jxt+cDcf+dSNbHjjWbydb9GdTODzaowvK2b/jrcJh8McPBDC9dURrjgF5lxB98IbSCz4N+Lj52P6ipFDe3H2vU7Hnk14Ys3oxIiFO9EUETNp8Pijj2IaUbq7m5m/cA624yLLPjz+QsrKxuHz+nBdgU1btrDmtZeJ9nYTjfYQ7ukiHu4mFuvAtiJ85prP0N7STXtrJ5osoXp0CkuCIFnMXzwP3edD1TSKiwo588xTqaoqZ+/uXcTCMUrLy9i8dT0PLnuI9eu2YDs2cRu8BUGqJlRSUlLInp27aDnUxsMPLydQVIyJQMJwCRaWEwonUAPlKJqX4uISRNWH4Njs2LaV2prxeHWNRDSCbSUxHRvVo3OguYVx1ZW4kk3t5KpUr9s2lhkhlgzj2BZixgUwpm1yypmLKSwKYlgGopj6zbRsBNsiEurFiBkE/YVEe2Msu+8vtHe0Iyg6qi/IlMmTSURCCI6La9mIrk0iFsYxYnQe3EF3yw4KPRFCTRsI7VyNtW8DSscuJishStwQpQEFsXoa8kkfQjnz02gXfY3vrjyA7bjMnj2Lvzz6FJVz5tPt+Fi/fi2/+9WPeP955wHwP9/4Jobj4mR9DgdTpN11113s2bMHgN/85td85CMfQpZFREFgUn09Dz5wP5MnTyYWi/Gt//12Dvq7++l/99vfcMklH+n3uqivq+OB++/rp//f//32EWEu7sxBn3ZrrKur4/4h6Ad7skOGDPbkWbSHA9vkSJerX0crHOSsf559Md9eOdyyU/f4uiAI/U++fsn5DRvBM9y2jmQM3ynk+nYNhby8Wo4nnX7AfMrzpMfQcd3h96UogpA/mFJeukHm4GiFz6H4uncKI+GF0hiJoWIAv8O7Z25nYji8fT7ebaR9kMbA+eCQzYMNt95pOeJozaGxHq0bDt7zPorpq27SV9QIgtAfynwwZHfuWDRraWEts8yxbk7pc7UjPcc5XGTS5Iv0eCxx78q3+MLFav//N998MzfffPOANDt27KC2tnbAuw0bNvDrX/+al156iZaWFkRRpL6+nosuuogbbriB0tLSvGUO1j7DMPjDH/7A8uXL2b59O729vRQXF7No0SKuvfZazj///Jx0uq4D8OyzzzJv3jx+/OMfs3z5chobG/F6vSxZsoSvf/3rLF68eND+WLVqFXfddRdvvvkm7e3teDweqqurOfPMM/n4xz/OkiVLjqCxbZt7772XZcuWsWnTJrq7uykoKGDu3LlcffXVXH755TnnxrRp02hsbOSOO+7g0ksv5dZbb+Wxxx6jqakJn8/Haaedxle/+tUh6wypM3e33XZbVpsX8/Wv/3de+p07d/LEE0+watUqGhoaaG5uRlEU6uvrueCCC7j++usHHUdIRSZ2JZWK8fX4S+v4y6Mv8JP7v8bmnfv58te/xZdu+i9qPCY33/xdkkacgBjg1lt/QDIZJ5aM8vIrr3LgQBMIAuPKSplTP56PLJ7EB6d6EUUBJ1qIhMjHz1uMlOimoriAooAXRVcQRfj5X5bz7Tvup7QwyNaHfsWpp52C7Bp0dHVRPb6aUKiHsvIybNtizsf+kwNtnVx66hxu+8p1WLaN1+vFME1kReWh517hoZWvsnVvE6FwlKDPy8zaaj546lxi8Rg1gRrOOuM07n/gfiTBRVVEXNPkTyue57GX1rBtbxPRhIH2l6cpKypgdftvOWPudGaWehhXXkY4nmTGSfO44bY/89fnX2d+bTkrfvNdZs6ZTXt7J5omoeleQj0dRAyNH/z+97y8YTs9cQPDtKgoLmBm3QQuPH0e7188lfKycaQUXofnlqykrhWSZYV4NIkky+AKKKrChh37+N7v7mPtjv1EkimLdm1VOV2+V/jMZRdQ6NfRZIFwtJeezavx+lLX3TQfPIAmOoyvKMZvxZFjLl6vD716PoKnEKnmZFxFxw6UIspSimF0U3vxvn37eO211wD40o03oCgKDvDAAw/w13vupL3lIF/+4vWsXLWKxsZGXnnlFZaedfaAOTbYvvr0008DMHnyZD70oQ8esbcoisIN13+BL914EyueeIKuri6Ki4v7f38qiz4bQ9Fnl5+L/vrrv8CNN97EEznojzaUhVf0/33CKnQCJ3B8cWLNncBYcTQMO6PJa7Rz9z0vvMqy3C/kpa1Jw7kXLvuQ8nCExMHyykYu7chI8kq7qqSF8sEwmrIyaSQpZVG2LOu4nbn0aAoVFRV0dXVhmiY+nw+/3z8gTXZAoe9+97vccsst/W30er2YpsnmzZvZvHkzd999N8uXL2fu3Lkjqsvu3bu55JJL+t3rBEEgGAzS2trKE088wRNPPMF1113Hz3/+87x5NDc38/nPf549e/ag6zqiKNLV1cXTTz/NqlWreOSRR3j/+99/BF0sFuPaa6/l4Ycf7n8XCASIxWJs2bKFLVu28Oqrr/Lmm28OoGttbeWKK65g9erV/e8KCgro6Ohg1apVrFq1igcffJD77rsPVVXJhe7ubk4//XR27tyJqqrouk5nZycrVqzgySef5Ne//jWf+tSn8ra5paWFU045JUebn2HVqud55JGHOO+8I4X+D33oQzQ2Nvb3dUFBAT09PWzcuJGNGzdyzz338PTTTx8RHToTrijgSjKW4+Pj136Zg3t28oM/PwaAZvVQKCcImyKyZNHQsIfKykpkTeInt/+6fz3puo4sSezd38je/Y089rfX2PX2TjxmN4l4Eq9jsPv155haZkHnfnRJwOlwsD1FnD65FEkU6Aj1svLVN7nwzMU4jkBVdRWSohAsLCAUCbNu2z4OtHUiCAJf/vQnCBYUEIn0ECwsJNTdw7/9562s3b6nv11+j0ZnT5iXN77Nyxvf5oJT5/Gr2dMpLy/hog+cT0+oh23bNvHDh//O69v29tP5dBXTcmhs7aSxtZPHXnyTg4//iva2FhLxJPsbGhHF1HqaMGEisu4lWCwQCAZxXJNkIszTr23mKz9/kISRCuykKjK6qtLY0kFjSwfPvL6OV/78PWon+kkmEwNU3qqioeteIpEwHo8P23YQJYEf/Omv/Pjux0hvSx5NxbJttu1tYtveJu598m/8+POXUCRGKfWplBb40BMRVNHlAz9bQVNnmDPmTWflI3/B1otQi6uwLRdBkDBwUlZaoe9ktChi20kAnn/+hf66Za67q666igfu/CP33nsvc+fOJRAIEA6HWbVq1aDCa/a22tTUBMD06dPzztFp06cBYJomf//7i1x22aX9vzU2puhnHEP66YPQH22IwfL+v0f77TuBEziB0eFoCh4n8M+JTO+/sSpDRpLXqI2Go6J6FyB9/jTdOZlukJmCa5pRTZvEs10+078P5yxrvoEYzI1zOIf8c51hTf+fXWb2/2l34cGi2GW3O23VzX6vKMqQrg35XL4y36Xrk72hZuZ12VlzaWxs5NRTTwXgpptuorGxkcbGRpqamti/fz8TJ07sp/vFL37B9773Pfx+P//3f/9HQ0MDXV1ddHd389prr7F06VKam5u5/PLLiUQiefs608Lsui6hUIiLL76Y3bt3s3TpUlatWkUoFKK1tZXW1lZ++MMf4vf7ueOOO/jlL395RDvSuOmmm1BVlWeeeYauri46Ozt55ZVXmDp1KqZp8oUvfCGnEuK6667j4YcfRhRFvvKVr7B7927a29sJhULs2bOHO++8kyVLlgyYF6Zpcvnll7N69WrmzZvHo48+SldXF62trXR2dvKHP/yB8vJynnzySb7xjW/k7YtbbrmF9vZ27r33Xrq6umhra2PDhg2ceeaZOI7D9ddfz/r16/PS33jjjf1t7uzspLOznVdeeSmjzTfkbPPixYv5yU9+wtatWwmFQjQ3NxMKhXjqqadYuHAhhw4dyik0D+hzF7AdEAUMV6Z04lRKqmsBeGvVozSvfw5HFnHcBIVFfn73+9/ygx/+AMdxWLhgIS89/yKH9rewe1sDO7bs4je3/5pLPnwJqiwiBErxVdSxL+bl0q/dxYr2SegX34zxvq8Tnn0V1vQPUV8/hbPmpgSHh1Y8id20hnioDSceJhGPIYgCmqbx4MqU9e+UOVOZNqkGURYpKi7BMC2u+sbPWLt9DydNmciDt36FA8/9gYYn72DLAz/l51/+d0oLAzzz+nq+96fldHV1MXXaFGbMmk5Dr8Hr2/aiqQo/venT/OZzl7Lhnh+xd/ntrPzp1/jVV6/l4jMWIusamtfDm6vf5Omnn8I0DAAOHDhAb08vmqYRLAwiyhJ/X7eTG267l4RhsmjWFJ76xbdoeOL37H/696z7y638+9knc/n7FmNZBm2tLTiOTTjc2z8mRtIgEo5i2w6W5dDS0s5P7nqE2+56DJ9H538+fRlblv2Urff/gO33fpcnv38di6dU0trVw3/96iFmlqhMqQhSNnkuxWdeiffD30TwFaXG3V+GWzkLsagK0xZwBBmb1F4pqUq/ksu1Dx/p2LZtOwDl5WWUl5f1Txu/38/8+fOxLItN69cwdcokALZv344r5P8G5HOLy4wgn+83gC1bt+bM13byfx8y6beOgt6yMsrfsmXIYwvZbRiti+NQRyQykX432lgHwy1/MGR+Z/P1Rb665uIpxuoamqvM97Jl7WgKVrl4sPT/+Xi4Y3kU6Z1EJl81mrWTzWtm90Hm78OpS/Y6yId3e7+Pdd8baVlpz9Fc5Q+1Fx2NtZU5ZtljPlzhM3NvzNeGwcofDd6zwutwkT7fl+9akKOB4Z6BHAuOdgTeXPfkDif/odIOpQxwHOfwmaghkLY+d3R08K1vfQtBEHjwwQf56le/yrhx44CUdXb+/Pk88cQTzJ8/n4MHD/LnP/95yLzTdbz11lvZv38/S5cuZcWKFZxxxhloWupOx4KCAr74xS/yxz/+EYBbb731iDt+05BlmWeffZalS5f2bwALFy7kvvvuA6CxsZE33nhjAM0LL7zAQw89BMDPfvYzbr75ZsaPHw+kFn91dTWf+MQnuP322weca/7jH//ImjVrmDlzJs899xwXXHABXq8XAJ/Px1VXXcXy5csRBIE77riDtra2nHXu6enh3nvv5fLLL++3uE+fPp3HH3+cyZMnY1kW3/nOd/L2nyzLPPPMM5x99tlZbf5L3jZDKsL05z73Oerr6/utwqqq8r73vY+nn36aiooK1q9fz6uvvpq3bMEVEF0HAQdXdnAVCUlJuXDPWHQ2f13+ME/88uts274ZBJcf/vg2AK64/AqW//VRikuCuK6DokoUFvlY+r5TueWb/4NfFcGIgxlnxuRa5i+YzbjKMpLJOLYDevl0fnLnM/z+7we47JOfB+DJjQdorliCV9NwmzchNa1B7NjLgR2befKVtQAsPXkKopTaGzo6u/jdX59i484GptdWs+Ln3+C8JSfj0TQM06KspJirLlrKA7d8GUEQ+MszL2MKCt3hMMGiQta8nbK4Xva+xXzywrOYUFONJInosotoxZCjHfz+/30RzeNH8fi45ppPcc45SxH7Iv+WlpUS6e5BFiUs08J2Bb75m4dwXZcls6dww8WLOXlqLZIkEhS8FHMAACAASURBVAqFKAp6ueyCs7npY+cxZ8oEFFUGwSWRiPcfOhNEEa/XhyxL7Hh7J7v27Oen9z+BIAj8+f99hk+dMRGlcyda2xb8HduYW2Ty2Dc/zrypEzjUHWVZTx3yx3+EduZ1UHsmWnFdxmi7iK6VerD6/1YdC7nvHVi4wuG12dzcDEBVVdWAeaNpGr/54x/x+/0kIj10tLUOSD9cTJgwAegTevPsZdu2bjuiPmlMnJii37btGNJvy6RvyZnmaMF6+29Yb//tmJZxAicwVrwXbjMYLsZ6l+6weLVBfj+BkSE7Lk3mu3fDfchHU4F4PPCempXZEn5m8KJM62O29jjT0pb5Lp1H5v+O4/QLTdl5Zd4Jmwtpuuy6ZOafzi8dXCOzHdlpMwXuw/WV+4MrpYIlSUdsYmkNSnb908i8IzdVV7v/yTz0nT2Z82nIB7PS5hpD0k8WMvPOjKJ83333EYvFWLBgAeeee+4R5QiCgCzLfOxjHwNg5cqVeccoM+CW67rcddddQMqKqChKTpoPf/jDBINBOjo6BlgiM9t3zTXXUF5efgTt7Nmzqe07t7t58+YBNOmyZ86cybXXXjvoxpHZv2nh/D/+4z8IBoM5x3j+/PnMnDkTwzB48cUXc+Z56qmncs455xzx3uPxcNNNNwHw3HPP0dPTk5P+mmuuoaKiImM8UgG8Zs8+qb/NW7ZsyUmbD36/nzPOOAOg/8xiGgPXNSAKIEi4TmotpAWpYGkV//39X+MWTWTl727mp9/6KpFIBEVR+PZ3bgPvOErH1wJxoh2NCLFeSvQA48fPxDQ1RNHPoQPdvP7qJj73hW8yd8Fp9ER6iEbacMxe/vOLn+UTV32MSz58OX6fH9M0eXLNAewF1xA7/Wt4Fl2JoRWxfvM2eiMxdFXh3y46HdOyMAyDgM/LQy+k3MA/c/kHKC4uRFYUzGgERZJAkLFdkfkz6pleW4VhWryxaSeK4CERcwgGAgB09cYQJZFwOEw8btDQ3EWwuIwlpy7GSEZwHIuS4hJcSWDatEmIfQoKr9dH9YQJSJKCpuq8vGYbDYdSCo7vfvZjRMNtuIQRJQtBBFXxsmDBfCorynBtl672ZrCSlBQW9QcxcVwX5NT+VFdZyI59u4gnDObWlrG0NIpfl4nLHrrGLUL4wNcouvp2Cq64mY99+rMArHp5NbIr4DgGiDamnWDHju3E41Gee+5ZXMS+B1zBwRUcLA4HXkkjvYYikTAAHo83FXkZFxkbSRJAlKieOpPHX1nHaWemXIXD4TCQWzGVifTefsEFFwDQ0NDAgw8uO1x+3xOLx/nF7b/sfx/uDQ/I58I89GnEc9BnBijJpH/ggQdz0t+eSR/uHbRdA6yIDD+4TRr2oW3Yh/qE5cw9vu/Jp5EfzGo5HCVwruAtoiD0P5nv04EIBwYcHNy6MKA+ufIfo8J6qH4dLUM5WJ5HG7msNkfb+gx94wS4jjNksJ7MMcp8+hXnrpsxL947THt2v2byeiOlH8pql81jDTaex8pwk2t9D5jTeXjJYeefo85DeVMM9eTKPz1Og92AksmHpx9BkPqfXMFSs/eysSBzTmW+yz0/jiw/29tSEIQjLMpHc429Z8+85uqIXIsxU9jM7tjsv7MHLTuv4dQpV73SZWS72maXmV12LkF5OPXJ/hjnKmOw8rPpRtoH+cpKQ5n+vry0ucpKCzFbt27tt3jkQjweB+g/TzkUtm/fTldXFwDXXnvtoB+BtCtyY2NjzkBEgwU3qqyspKGhge7u7gH9k7ZKXnTRRcOqL6SY7M2bNwPwne98h1tuuSVv2nTb8vXH0qVL89Kmf3Mch/Xr1+dMO9w258JTTz3Ffffdx9q1a2lrayMWix2R5uDBgwP+N00zb3kpHJ47liPwL1f/O1xxAWdc8EkAptRPJCB3UeHxYCqFmAmRoko/CDJJS8SWTGKRGMGATuWEEn7ysx/z0cs+xaxpk1m36RUKSsuJxkwQJIpKi/BoChd94CKWPbKMFSse5uqrr8TnV2hoVrl31V7e2pEShj6waDpl0V04XglB0QnbKtv2ps4sfu/3y/jhnx/BcWxEIR3RUuhnyrrDqXnXcKiVPUV7mD59KqfMrOe3gsCzr6/nE//9Iy45axGG47J79x4m1ExAlhW8Pi+maRCNRvD5/CQTsRTzBhhGkoMHD1JSUozP6+WNTW8DUF4UZEplDXUV5QiujuvIeD0BZEnGtAzEPoXb+JoaDhw8RGnJOBJ9a87tbcHe8TKKa6Jqft7clbIUbjvQxbT/eiTl/SIr/UOUHqlEIgFAU9Pw1uxY0dvbiyzL/WfnR+PmBXD11Vdz++23s2/fPm644YuEw2EuvfQSgsEgGzZs5Bvf+CZNTU0oioJpmgjiwH3x6qv/lZ//IkX/hetvGEC/fv0G/mcE9Nff8EUikUg//br1G44o/4T15ASONYbDU5zAscFoeLUTeHfhnV432UaqwTBUXY/HPHxPC6/Zwl0uC2cuLULasjfctMOdVJkalmxBNde77DIz/3ddtz+SciaGmhT5rM/Zv2dqlYajeRsuhiO8yuPn5KXNVVbaZS4ej/cLqIMhlyCUC4cOHer/u729fVg0+fLODjaVibRLbvpqp3QbW1tTLovps73DQWtra/+8TwunQyFfn2W7VGaiurq6/+98fTOcNmcLnI7j8OlPf5ply5YNSFtUVNTvQtzT00MikTiir4cOJtbnUSCAovpxbAfLV4W/uBLYRsCr8qvv/xczp03myv/4Dh5JImm7WKKKqKokrATe4mLi8RglFRX87De/gIjNSy89R1FREfsaG6mZOA1R1JFFmWQkwiev+AjLHlnGG6vfomn/dk6aNZOqCVVc+S9X86NTTwHg4/9+A8rFHyT25v0ooSbarTIcJzUHunvzn8/OxNs7drGkrgxZEbjw7EV8q62bW/7wEC+8tYUX3kpZtwt9OuefuoDLzllCZVUFrmsBDpoiI0GfZwWEursIh3spKytFFAXaQymrXEVxkDdeX83iUxZhWaDpUr8nioCLYRgcONDNhJrxFJWUoXs9eL0e6I2i+gsQpp9Dl+wlnBDY0foUAEnTItmd23KfiVhs6HU9EqTnZvYcEkVxgECX/j0QyD+XM5He33w+H4888hCXXno5DQ0NfOlLN/KlL904IO3nPvdZ/v73F9m+fTtFRUUDfvN6vTy6/GE+csllNDQ0cMMXv8QNX/zSQPrPfpa/vzh6+s9+9rO82EdfWFg4rPadwAmMFsPhKU7g2OCE8Prex7tBeB3u+s0lU2TndazxnhNeM4XWdCdnCqLp95np08ilWUj/nct1IJM+XUau6L+Zbq6ZUY+zLbyZrry53G5hoOtvfyCSAZMql3Do9AvNaXrbto9oe2YdstuZWZdcwvZwke2Wm84zV3m5LB+Z9cu+gujaa6/tD5qUq+4jRWZAlP3791NRUTEi+sFcaHL9n8vderC8MtOmg2xl1vmll17Kaf0cbr8cr80ys/133nkny5YtQ5Ikvva1r3HllVdSV1c3YNyvueYa7r///jGMr4DpAqKMSSmOm3IHr6ubyte+9j+sffN17vzF91FkkekzZzBt9lyCxRUklRJM00ISg3S1JvH6C5H9YeoDdTjYVI2rRhbAsGIkLIOuzlYWLjiJ6qpKDh5q5re/+z23/ehWWlu7eWrlSizLorSkmAvPPw9XVNBmX8j/b+/Lw+0oyrx/ffos9ya5SSCEBGRkB5OwPCK7omAIM+jH4IgGREYUcHwGAXGYeRhHUWeUcfDDBXAWkQH1cxxQB0RRGAVJcNjCgIIsJsoiBEgIZM/NvWfp/v7oW6ffrvNWV1V3n3vOuanf89wnJ91de9Vb71ZvBQ/ckAiys+y6z+GQ/fcEEGLzlm2YNjwd619dj+HhYQxNG0KIAGV/CPXt21CulOD7ZQReiI8ufQfes+QY3HznfXjgsVVY8cTv8erGLfjenffie3fei/9z3Jtw3WfOx8jILNTrDXjwUJoISLT77rtjr732hO+X8MSTT7THp1qt4k1HLMT0GWVUh2qoN0bh+x7CsIKx8THMmjUL83bdFWvXvIyRmbOwdfMmhGFEb1ZtKuP5sRpGt9dxxJHHYeasnQE8jb/48IfxpaujKN0lBPDCCVe/jHNPN2fF+912ixQzL7/8UuJ9pVJBq9VCtVqF53l48cWXJr7frSN/QXcjmtYZkf7AAw/EihUP4IYbvok77rgDzz77HHzfx4IFC3DuuR/CSSedhLlzI5qy/377tfMXdODAAw/E/z70IK6//gbcTtIvXLAA55zzIZx00hLM3XV+Ij2FKv2CifRLlpyIefOidu2///5WStiioWKuTcezV0y58uiL5ltOIa7Lt1cwUTirvuPed6NtKrdMGRyPpksj+CaOLxN55kFMQ9T1oHUQUPEKHLJYvdW0bupYznVjmGWem5aZBUJ+iPloPl/Ko1N+O80gJ9KlGeRMvZFkGSiqS/L/cpvo8yJoxMAJrwJ5rYKyEGUy4ehESXsvW0zzWi659zoiS5+pLMJcmZx1uGg0V0dur+U9DlYqDSiEUPnEE08o65oFVFh9/PHHrYXXvJg3bx6ee+45/OEPf2Dfc3OBnqt9/PHHje5iVUF2y1W9mzt3rvI7W3z/+98HAHzoQx/CZZddxn4jLNL28Nr/hl50NrLSamG3+dG4Prv6ZUzfcyGOe/2BONFv4bvfuAbrN7yMe+56Gih5CIPpePuSP8Xw8M6YPjITm7ZvRDBUwbp167DH/N1QrtexdcNajG7bgtnz98Xuf7Q36mNbcfrS0/Hlr34V9973v2iMl7Db6/bFTRPtXPpnp+K1117DzDlV+BMEf87MkXaNH/j1U9h/j7moVqsYnjYDXhhilzk7o9lsRhbCVgtAC34ZGB3dhtmz56DVjBRT83feGR/+syXYFdvwTx85Ay9v2owbfrwMN/7sXtz2y4dxw63L8Bfv/pOIynshWkIx5pcQhC34fg2eB+wyazoA4IU1r2LT5lcxZ25k5fP9Cny/BC/0UKmUUSmXUa/Xseuu8xA2x7Fx61Y0Jq7V2WmXOdj3gEWYNW8PjI8Du86LhK7fPP44fDTI2ERnV72unsIDFi1aCAB45ZV1WLduXXsOUyav1Wph1apVAIAFCxZkKmfGjBm48MILcOGFF7SfCXq7YsWKtmVXRFXn0l900YW48MILOujzihUPGae/6KIL289EDg8+qC/fYeqj1wqAIvdsHcrlstEND4OGbo+hqXLAoXuw8fIU6PXaFnVIq7vufVYM7EGYLAtNtUCFYKeDTrtFoxpnJQa6NK1Wq4M4mwi0afmq6prlTJgJGr+9G43f3p3od1EOjQYoyheM14MPPohnn322sOhsixYtwsyZMwHEQtVk4uijI7fSn/70p+x7blx22mmnNqOdt86qQE70XalUsr43Nw2rV68GABx66KHs+61bt+Khhx7KmHtSeAUC1LABbz46qv/DjzyM369bgw2+j43eLLzr3Atw8vvOwimnnYZ9998bc4Zew83f/Qq++fV/wv/ccyuefe5RjLZa2GXe7tg+Vker0cRra17EvJ1G0GiEePKp32H95u1YvOQUAMDvn3kWD674NX73+2fwyK8eAQC8f+lpqFar0dnOCSI+Z/ZMHLhnZBG7/b5fo1atYsumzRgbG8P6DRtw249/BIQBGvV6dPVMq45qtYxSqYRms4VSqYJyuYYtW7ahWqnhjNPPxPz5u+HIQw/E5//yvTjqoP0BAL9Y8RusXbsOjVaIYCJOCQAEQYhZs2ZhbGwMc3fZBcccGl3588qGzdgwDlQrQyiXhlBCDWV/CPCis6lBGGLD+g3YsmUL1q15CfXx0bar9+v32Q8zZu6M7eF2hNUWjj42UqqsWLECL/7hafhhA544sjAJ287ixXEgMhrAjdLD+++/fyJQE3DiiYsLr8MNN3wTQBTB+/DD32Sf/pv50n/zm9+aSH9gpvQOUwO9FkomM6LqmjVrunqzRK/Q7f5zwmvvMRWEV5V81Y36DZzwSt0bACRccXULkBJR+q3sjknLopF8RbkcEZHzpv+3JTzy3a00il+pFP2JiMCel+4u3eEm7EWWF5S89l8YxlGWRdqon6MoZ2HooR3tzPPglUraKIb0bC2NbhyGERctfo9MRE7duHFjwu2BTvb3v//9GB4eRqvVwsc//vHUvgyCABs3bmTfyXOkXC7j7LPPBgB85zvf6YhuK6cVAZd080xuB+cq53le+y7TJ598Etdee23He7ldIp9zzz0XAHD33Xcnzo5y7ZSDRFHcd999uOeeezrej42N4aqrIlfPJUuWdJy3s0MIOldnzYqUBb/5zWPwvPidOK/6hS98oS1QZCsr+tcLAS8sYaw0A6ee9j7MnDkTzWYTn/nrv8WssIShcAyl0hDGSruiudNB2PfYM/GWMz6Lsz72aRz/x8dh49qVWP3oA/jxN76AR+/6Hl55+mFUwzHss88+qNRmYJdpw5iOGk47+d340X/+Fw5eFAnjP/rxLfj6v3wZALDwDQuxx75vQHVkNoaGK2hs24hmo4Fnfv8s3nbQPgCA5Y88iZt/8RBqQ7Pw3KqnUR/djlNPPRVB2MLo1k1ojW3FttE6xpvj8KshWhjDli2bML51HWbPmoawVEIDAfwK4GMapg9XUfGj8RwdHcWGza9i26bXUN++DZVyxNSVSh6qXg3Th2agXKriqAUHYK/dIsvkZ6+9BS+/vAbbt21AxWtg3curseHF57Bx7QtY/ewqIBxHdcjH/P0WYPd9F7Tdfxuhh2ZtGKVwCF5YwvvPPLO9Zi/6+CfRCGqAV4Xn+Sh5yfWQtmbtEUU+3HvvfXHssccCAK666ur22Wu62V955ZcARNfeHHfccew6iRmKAKUS4Hlh+y/tHsRly5bjW9/6NgDgE5/42zatbAUBWkGAEJ30iNKJZcvj9H9H0uvoLhCpcJYvX45vf1uk/4S21zIrWyf+SiNzo79JYH4TfYbOfkn0kee1/+jYtf+iQVX2qzxGaXRZVy8OysjImvQ6xbI8r2TmMq+woktP3+vuC+X6wAY0Kvas2bNRbzQS466aG0EYRt+EYbtsv1Rq/9HxyFIvAROhROaRRJo0o4qOzzCBmB/yLRv0nfhN25LWniLqJSDGlY6nqh20bNEW03XSD6D9TW9BEe/od4KfCoIm4ltC0g1xKuObTvik39FbQMQfnbutVqtNE+M/ry1HxBHfk/lmwcAJrzKK0OqpQliL/G39wMUgi79yuWwQbKazTnRyyG1ULUxRJudnruqjIu/zonlwC6E0wSwIJmfRokUAgDvuuAMvvvgiW9f58+fj85//PIDISvmOd7wDDzzwQFvYDsMQK1euxFVXXYXDDjtMackU+dK+/MQnPoF99tkHzWYTp5xyCq666qpEgKJNmzbhZz/7Gc4991z2Wpk8OP7449vX+1x88cX41Kc+1bZMhmGIl156Cddffz0+8pGPJObThz/84ba78DnnnIPPfOYzeOGFF9r5jo6OYvny5bj44ouxcOFCZfmzZs3CGWecgZtvvrl9f+3KlSvxrne9CytXroTv+0rX3qxYsmQJAOD662/Addf9O+r1OoBIY/43f/M3+PKXv4w5c+YUWuasWbNw+eWXAwB+8IMfYOnSpXj00UcBRPNh3bp1uOOOO/CnS8/Cq6PD2O/QJXj3WZfgHe/9KE455a3YtuUFLPv5jfj2tZ/Dt/71Mlx/9aX43X3fxPaX78Ov7v8RLrjwg1j63vcCAG697Ue4c1lktT71z87EtJFd0QyHsL3uoTZtNirVGvbYc29c+qF344iF+wIAzv/C13HJFV/D7F3mYt6ucxG0WggCD48/+zL+/rqbcdiZlyBseqj5M1DzazjnH67GX119E37yy1/jxTWvodUK0ApDrNmwHtd8/07c+9jvAAAnvPENWHjAfpix0xwMTR9BOMF+hQGwfetGeME45u40HWhtxWVnnwzP83D/Yyux9G+vxG2/uBu//tUK1LdvQd2vYe14BV+4aTm2hDVMmxEF/0nbdObPn4/Pfe4fAAC333473vnOd+K+++5j1uzVeNObjsDtt9/ekceBBy7A8PB0nHTSn2Qa98svvxy+7+Oxx36DP//zs9vnW9evX4+Pfexi/Pd//wwA8I//eDlrrdGV/7Wv/TNuvPGmhJv7mjVrceWVX8K7330agiDA6acvxdKl722/p5v+NWz6NRPp38Om15dvnr5I1I48HbUjT+96OQ4RJvOu0m6U1a37ViuVSi5hpJ/u3ZxMmBh+ADMekY5tUWNsMy6+72fiuXsN3/c79qG8d/mqkGWMilBGFImBGl3RcaKjm81mO5CNqkNpACUgXqTU0kq1HFRbyd2VSq229Jn4Lu16Gy6Qk3hPy03TcgVB0F6U1NIrIFtcO7Q3XqeLgSxwirY3m52HsgNSf67PZcs4EAcbon0VTuT3gQ98AF/96lfx9NNPY7/99sPcuXMxNDQEILIs7rHHHgCA888/H+Pj47jsssuwbNkyHH/88ahWqxgZGcHmzZsTUW1p8Cy5bvLduXPmzMFPf/pTLF26FI899hguvfRSXHrppZg9ezaCIMDmzfH9iPvuu6+RFpXOHZ3W7+tf/zrq9Tp++MMf4sorr8SVV16JmTNnYnx8HOPj4wCAQw45JJFPrVbDLbfcgrPOOgt33303rrjiClxxxRWYOXMmSqUSNm3a1P5ezBWuzp/85Cdx3XXX4X3vex9qtRqGhobad7p6noerr74ahx9+uLYNdP7rcPHFH8Mtt/wQK1euxAUXXIiLLvoYZs6c2a7zeeedh7GxMXznO9/R5mWD8847Dxs2bMBnP/tZ3HbbbbjtttswPDyMcrmcsPQ2S99AUKmiDsCv1LDbzMXY7cAT4IdNBI0xbN64Ab9f9Vus3fA87v2fe/HLB+/HziM74dgDF6FSLmP9hg1Yv2EDSp6H6//5KvzleR/EyMgMjHtN/O6pJ7FP0ILvBdh5zi74j8svxrn/8C/45a+ewo3LHsaNyx7GyLRheB6wZXQsHkPfh18dQalcQTOoY7zRwnfvuAffveMeAMDI9GF4ADZviyP2nvrWw/CX7zkBr72yFjvvMhevvrwOYStaI0FjHKOjm/HCC89j2vRhbNz4Gt60/zxc/Vdn4K+v/j4efeZlnPd/b0StWsFwrYqNW7a1873orHcBXhkegsS8iBwqkmvjox+N1uynP/0ZLF++HIsXL1au2ex2DTWOPvpoXHPNNbjoootw66234tZbb8Xs2bMT6+OTn/w7vOc9p2XKf9my5bjtttsAAENDQ6hWqwl68cEPno1rrrm6I53oo+XLluPHmvRfY9ILLF9+T670/QR5P0x7b/I8La8iYcOYq/bLNKj6RXeEKS+4cqkVl0IVbEj2KKCBlBIWPqZc2QJoU2/T79v8luJ9N+aObAnn3st1yDr35W+5YEyUP+YsaeL7LOMi+CDbfqT1MG0jnaM0aKkqf5NnpnWVxzNLH/m+3zYgiHSiLeIbOX/KZwJ8ECX6iMofom/Fmozy5mmNXBf5vVwmzSPql9QuyLzOBkp4pRAdn5WI6zZLHWganaBSpHZRCOwC3XR74IR3ZOwrbtPb9rOvYr8lH8PPf/5zXHHFFVhx3z147dV1aLaiFbdl2TcwOm9nAEBlj4NwySWX4NRTT8W/XfMV/OK/f4IX1m7Axg0bMDKthn32mo/jDtkX7zxmEd7yjhPa9a8/eRcaT94Z1WNsC0Z/9tV2+d7IrqgddQb22msv3H///fh/nz4Xt9zzKB59ejVe27wFfsnDnvN2xsH77I53nvpunHLWXwCIAk41fnt3oi31h2/GWCOy5tUWx8FTxh+8EcGGKPhR89kVGLvrmvY7f/dFmLZwMW666Sb85AffxfVf+xIeXvU8Xtu0DTOm1bDf7rvhLQfvi6XHvxHhlldQmhkFHqo/eRemv/QEbr7kZNz+lj1x0y8ewcOrnse6jVsBL4ome9BBB+Hkk0/GSbPXYezOJAMbjkXC2sxwG+6991588YtfxC3fvwmrX3oJO41Mw1EL9sRfvfftOHLPbe20Qyde1DGu9YdvxvbmY/EaBOC/7iBUFsQW6uYzKzB2ZxwhegjAHX9/Br74n3fhp488h5fWrEW5XMZxbzoYHzjhIJz2tgNw/lduAgC0Xn4KY3ddg9LIXFSPPCNRdvOZBxN9CaDdzwKtFx9PjNOFhw1h8dUX49of/w9++djTeHnjKMIwxAEHHIBD/mgnnHrUARhecT3GE+vVR2n3Q+C/YQlKw0BlDNh//DkEww0cdfIRaDXqKIUBNq5/Cm9b9Drc+egfAAAL998H//Gps9G65yvYXCohCJrYd7gGbF0Lb2wTgkoNO0/fFbd86v34r+UP4yf3PYqHn3kFr26OBNDdZk/Dwj3mYMmhr8c73vxGhOt/h9D30RrdhH867WDcuf9s3LfyJTz7ymas3TSKsUYL82dPw0F77473vmURTjx0DzSe/xVGqhXUN6zEjKCFYGvkUeCNbUB50zNYsOd8lKtVBHNqCDatxZkHzcJb/vF0fP3nv8Hdj7+A1a9tQX18HHvP3xkL99oNf/rmg7Fv6RU0Vv4BwpExbET3tDafugv1h6oJ69vYXV/D+YdW8Cf/egn+/Sf3Y/mjv8fzr0RrdubIDOyz3yF429veincevQhvHF6Hsbu+BgoxTxNzbsVNCLbwVzf5uy9CZUF0djXY/ArqD92E970eWHjl+fjnW+7BvY8/i1c3bcHcWdNx1DHH4vyLLsYJJxyPxlO/QOvFJzvy48qndfzA4XMxY/QwPLJqNV5evwn18XHstddeePObj8XZp7wNR8zYiObyf0OzIxdgaPEFOO+8czBz1kw89Mu7sebVDaiPjWLPeTvjmEV74ew/PhLHLNob4e9+CSw4gbTpe4nyp48ehkdWvYA16zejXo/L/8DbD8VR89Aun1LeaD0lx0mFHtuBagAAIABJREFUyhuOh/+6gwCI9bQs8V7sDOW9j0R5n+zB4xzs0AtXRxtei2Pku4V+cfs0QbeVDmnlcjdl0Pf9hDQBv99hq1SQjXJcpGyVq68uX51SmPZzv80BHbxBqnCj0QjFINPQ5pwAJ2snZMsrbTdnTU2z5LKusOAnHc3L1PJKn8uaq1arhUqlYhUKnoK5aQfSETRSbrKOYRgmmKBYaInrQq2edAOj7aZCx/CJF7W/G3vgu0nGlLTbf91BqC4UjOlajK+4Sa70RGM81I48HaWZ8xCG4QRj+jhpLLFSz9ilLRSVSiVsv/NqpXBefsPbUd6DMnF3t8uVSURt8YXtOTH2wH8i2PIKO0b+7ouUbRLnnkQZw8ec2RZex5+4E80XH4/qKvIVYzEhkAvIgisAHHzOF/DCKxvwb1d8Bud8/JMAgPrzj6H521+wbQeSwuv4gzci3PLKREWJZR9J4TXYvBZ1eZwAiFlUPWIpSjOj6MmNp+5G66VOAQJAh/AqC60UlTecIDHbdyu+DDG0+IL2uIw/eBOweR1A4+B6gBcGKO++CP7CE1DyfYxtfAmNB7+Hcslv39XqTXgkbN+8Hi+MLMRBh78Vo9s2Y+3//hAj215BySthbGwUZd/D2NbN8Es+WuUytg3vjunTd8ITTz6FI15XQhi00Gy1UK1U0GxEv4eHhzE2tCta02pY/eKzmDs0DXO8JurNBqqVMupj29EKA8yYPgOB52HrnDdixrTpGG+9iulb1qDSAoKJq7T8cqTs80oeMHsPlF53EPxSGdi+FfVV90w0eMKKHra7AKUDjoU3bRYQlhCs/g2C9S8gQQn8CrzqMLyRuR3Ca5yLPE5vSxWKolRRutrij7af2QqvfOlA9cil8EbmthVcrPCK0EjQ8+AhRKgV9CiGFl/Qrtf4ipsQbnm1XWpnm06IzuhJwqvcrs719ARpS4xuCK+0XVk4CtXem5d5tbFstp/lKnGiXL4y1ulV/VLklRPGdVLwKZzlVbZIUb5NBtffgWIOsGOT0xBB88xkyLD5VtGH7bp02RAh841iXMTVinmNOly5nOEiDdR7z9TwY5N/kX3MWV5t+pCOAZVZ4rEoKd6HSkUEALLWOr0quTUZlcXnJ1vkJ0pgvku2NS6LC6CWLKtWG7YelIESXlutVigvBG5gZWFV1mzI4PpAForl+5d0eVLIk1kuz/M7r9WRBUpK8Ggdij4zwrkG0fpTQZ+/66lzPMS/YRi2Q9lT4q0iJjKhV5WnU2DIz1QENY2o6TYaWgedGy1VZqjaKpepcqOR56fJRnHAAQfg+eefx7XXXtsOWKVOw7h5scRID1UZctuK3ECz5pVlgxNu/NQzohxEAdZaQQPj9a2oVn1s2boJ0wOgVqtg+/ZRvLLuJXheiE0bxzBv3jy0Wi2MjIygXC7D9300MIxfPfoAjjzycISBj1ptFjY3ortKfd+P73T2fHaOqDal7sCU2YhduvIyE8lNOemVAiSVa4k6sHXNZ5nQMacqTKalSgcrCxs6rQA2LShSOM3ah1nGK638iRed33JlG9SNK4t8YFevLkDV73KwS45nUCFv/VUCKdufBn2YB5zSwSR/Xbuz9JGKj9CV2w90KQvM+1i1b9nvnSZ93Fl+zFdR2YLuk8l0foLPlA1FpnUQ1vgor6DtvkyPJvKwkTuCtoJE5UaeRXgdWLfhyYRsKQXUF1tnzd/kG85CbAJOO5QV3EYVhmHbhVt+L+pNA0mZ9pcNM5J3HGiQqyx9lZf5lImPDBowoch77EwZim4zQFMB4uwKHb8gLCEMQsCroFYbQYgmZs7cBUFpFuoIUJrewm5z90MYtjCnGaBSqbS9K4AJT4vGGI5564kAAnioIPTKqJXKjDa2F6122JFRxP7nMNjoJ8VLP8LtnQ4m4Axuad8KxXUeCMV3uVxGs1nvqEsR6NYeMfDRhicDaS4eRRAmMVF1kzWrAFrk5qISXmWrGX1PtTg20c2y1NukLzmIuuXR3mdJx6Xn+kdY84T2SvxlaWvW+hU136cqhGKGumCFXgkteAhQBkpD8ErTEHpDaAYhxuotNFs+4FXRCqpohR5QKqMVemgGQL0ZRP8v1xCUp2EsqKJRqmAcsRKoCIWUg4ODQ1Y0m81EsBmHJNze6WAC2ZtTJw8UZcTg8iqSr+yW8DpQlldZMyG7BwvI5y3l9/QblfsqZwlrNptsPtxvmWBR4ajDEkqyFO9ULqnUHUC+C0oFmzDnXF+orL5iDMrlstJVQRZq6VUZOvcUlYDM1ZU7H8G51cjjTS2PtueI5X5PIz40PzkStPydyvIqR1GmwjZXH9N2pIEXytXnsNKs16rxFvNLCOgmhE51forLn4Pp3LPpPzGuiXD3XoiSVwIQTHgSRudYahhDrQwAAdBswEcJVb8FNLZhyAMwERkYTaDuVVBvAp5fQyuM0pQnyqD0glMiTVQitS9sYXMWSYUiGTl5PRedrw0onbZVuvULbPqwn+pt69Ej0tgwjVx67rfHfMvmRX7TPZRbX1oXYhTHKHJ7F+VD6HsV3ZZ5I5XLLNeuvOtYlT9Fu12avLLusWk3TwDFBvI0heAbVTwQ0HlDhwxVH8h7vqpfbMY4y3ywWb/x3E6+j/kynofkvC5VsgQH3vAQpWk0Gh1jpOKraXs5mUFut+xqTOtAeQiO7+N4CvoNd/Y9ep+UV4q69meghFcOMjHgBD8BWYAQGgcdERHpZJdA1Xf0tzwxaL3aZn9u0vUPT9CezCrhMO9myQlxad/K5dM8egUaelxXD3kemFjPZAZCzkcH+u2qVasypUurF5fGZsMRChBTtM959jlCr07WNwlr7zWi/4chYuGSb08JTSCswkMJ8JoAmuiV04yz9DpMVZjSn27tM7LCO61cU8ErT12KAnfESidQ9gO4utjUT3ybdp1JHmTpK5WgQ8HeMlFgvfK+L7L8+HenbKDiScMwit0ij2WWeifHIX4WP9cLj1xdOMhXglKlnSyoTyayjvfAC68yYZC1qCrBVBBTyjSbWmlMvpMFMtlSFN2jGl17E/STpMqALiadNjHrArYV4rhybe4FKxqCAMhXGXHghFcdZGLjeR7rCWBSZhYtpg2zodLQp0G+5ywNnhfd06zr5zwoygIATyinPAABEEb0aNyvTPwuT/yr7qtqOBplNWF1hddCL4XXXlgMHBy6DdM13yvhlVt33axLkWXI7dIZGPrBoq+3PqHjfZb0eeuXVgcZnGWNE15teSnOkmjTLxQyn5z2bVr+Ju/jO207efxor+vs4+h8aLPj6qEsBhSd8CpbhMn/2s8ajQZ83zeiW7J8BBQfR8UWmZUk/UAkTNFoNNqVjRucHiVM555C80i+7xxMlRVVzj8Mw8SVNO18A3MXRjWhj7V5YiIGQZPd+KiGxbStQjAwiYonu54IATKpzdETnjTiLkehFdZqKsRRVwgb11+d+wvn/kr7U0Xks27Aov6UYNN+5dqlEn5lLbeNBVUmcKbt4Czo3DxWaQnldsvl0vboIjrT+nB1kSGXlU0Jw2lpeRccWga3TvTlc32YTaik5XJyKXccQpQlK5wELUkqk3onaIu66EDnpqnihXuvDuSnn69p+RdpjdCvZ/MozFyeRdRVprvynmKzluN8k5Goo72quKjXOiRYT9Eu+RuxBzA0I5S+k9/rxrgIJTGFPCYiHbd2bBl7m3ZlzUv1ra3ileuHXkE3xrR9OgVCWoBQ+k6USa/c4fiArHyF+JbrY1MFASewqtKL52nHYzghUPDmyfI7+WGZvnLjZToH0+YzPV6o4+HFbzqWUR7NRF3icUzv4yRPEUcdj+uSjEBerQ5ZE9+Bt7xSJJlie2aBah+4OUsXndb6wBRrEyadIrnY/MQzOR/K1GchpmKym2wY4hsxIXVCiQzxvQjoJJdFAzzFgnqQ0HjJBIb+ziK8UlCBlT6jxJ0jDKb52oyP7ryQijjT64vSkFVLyn2rUrzQOqWlV+VFhTxx5VJauzo3F3Ub0s5LZ0G8NuL1ans1kkCRrmYckm3vLEvum+j//cGsFQG6pqnLnG4MnAU6Rta9rdfodb05KxN93m2BOg2tVsvqOAflA1R0u5ftMYGqDVMFqvZxtE7F16k8ANKsd1SQ6gVUeyi3zjjh3iTfLFcIqowiRc1BwTer1p5Y33I/yP+nyojo3/R6qVzlZf49DwbK8tpsNpnKJhdDrPFPbxe1EOou0RUuiqqJxPUhd3xNUyUlBJMeMcBlRmBiLv5mNF1RXTmhIF37bCPYiEVisvDoYm23JMVyKi9AGipcZkI6LULJOqq0UbLmku9Dc4sMdw5b9E8QBKwQRoViqp3ihFA6BmmaUrkvRJ466L5TlZU2/ty4qrScqjGiv3Wa5jSo6qgLAEafxUJoch1Ff0llk2o8xW/Z8idvGnF97S2vZprcsF1fGohF7uNSKVY4cUpDm3rpYGM50c0HVRoB2ZtCtqKqg1IkvRw6y5/Mu3bzgluH5m5lunWYlyHLqpQslcrMOmym7geFgusDxXzRWV45FBl9PggCtFrRXdJx9fX7Ht1/5P/TPGifh2HYPjZCj3t125WRrtlu5D2Zwq+pklm8l2Nz6PbZtDJV73rpipoHcrvEHObak5zbHC+UdNWN5nXS+k09CaN8knwf/VYWaqkin0LkRe9s5Xhg0QbBj8jtonQ/OUf0AeVoG+T3snxWqdSc5VV0lu+nb6DUIqWj9TQYTy9QLpfJ5E3/ViZCnQxr/2kTbaP8Cogzn5wmR5WP2BRVRN5kQ6NuEBxUwpX8Ps3tmG5+9LdKAKGEiHuftY+FENct65/I3zTowGQhC+PBKTi4+ZSVuRR9FCk7MmVhDB0zNJlKz24zgfKmPggWokFDkf2ZVRCmCsleIE2oVylDegVBk03qwVmtVIKRoJGU2RY8m8oq162AR92AUPoVcQdnNyAEnaKsegLy/jaVvFKKXItyXjp+U/YkFEYPIYvICm85XzHeKtmF8ilFttNUmWL6DYcpJbxSDQUHbuJEA58ulJbLZaMost2CTCTS6iF/K1vO+pEnkzc/AROrmdAY6TZQ+V2apS8tvWm96O80N1muHvS5bPlNE07T6pV1o+o2s2dzPc5kQjcHOKgss0DyyAFHh0zGJ+ll0F0mjlOcUPRKeO1GuZzwmsZMO9ijyDHMI7z28myiygKZJvD1Uoki3IZ1AqON8Krak1VHcFRp+hWiDf0ouALxfCtCIZ22DqeK8q87gmsnHVDNffnInDjSR+kDt3boe2HcSdvHVcJr1mHkjDYqZO3jgXIbbrXiysb1jheg3vUhPbiTDiL4Ch2YaEOMy0rX3KtcT5PnXoIgADyf1ajAY1yESVammx7V2AQhLzyyZt4S84wEolKd4ZGFaPGtjkEU7kQqVyS5v1VMEnXB4NwuOEIuvqHXslCtl8pNVzcGMuGR5xS1JOuEKE7DZcokUYGXKn5MmA1VXQSRTVP26BQEptr+TsWMWSAnOR/uN1cXHdPM1cnkvW4MAc7ikNc9V+81wNGyuK6d91Gn5WsKL2QUSgzNo0haZjT5e3FACh3zxgVsA2i/mO+dlH7Ez8yjkrP1U5XPzCcbhRt/ZZPCc4OhdVk4iqyCpRwYUKYp3DoqkrFW5RRI1kY6j2gdixSo9fxHdsjn8FT0T0UzuH2auuTLe6CcbxpdZaHaexDdozk+Po6RkZHClbNZFStZwO3z9LiRbN2mv03arVM4ca7dlHcZJNlChSxzT6al1PiQjmS/idgSQGfg0pChLyItXWcmx93omuPok6qNMq+lm+9p86larU5tt+FeaWzlNKp6FHH3ZHsDzpjetPzkJlHgZl4wwZaJo4rRl4VSU9hY1IUWK+88VDHOQiOaBTbtNiU2tqDELE2Tnhe6dZgVk7nZcn0vNn6ZgZtMLbaNxUecp+m1lj05bpPHMNqIad2YWzqF1Y4AseeazMFuCHU7Kri5p6IdOpoiK6bl/IuE7/toNBp9axnNCyp4ZOEJgGx9L3iaHYn2dAuc8aJSqaBer7e/UY2x4CF3hHEYWOE1yyaUN7KgTrOZhWhweZicw02rI61LWjntbwrcz4tkDmLLdtKCy2mKsrr52QSGEGWZ3keqy0f1PMvcVFm8OciWCvosDyjhpCHzi4ZKQ58XNlbmvODGi54H63fhNQxDVKvVvtgkeyW82jS9G/2k2s+K2IcGBUKhWCqV0Gg0Ur8t0sq5o0MlvHJ7mM7TRqbn3RyfUqmE6dOno1arTcl5QM+z2vC7WWNiyGmmapTmyYTwcACATZs2Ytddd8XY2FhiPOkxJApTRd5UwEC5DTcarY7KUtetNG1g9CzppiW7f+k0g9QtL6nxDToWLUc4gkDl297JyAas6xa0bsM6cP0SotTxHojZwER9S539HbbS3UQBnqhxTBb3jen5DGp9FcRbDk6gcleS6yS+5ZQV4+PjqFQqHQTElDGihJ5zKeHGSD7/Kggcd2Y0TbEi/+ZgQxO4smStodzncvp8bjmdTJLNeR6dxll+L9c3DMNEMAR5vqhoSlqQBZGO5pVGM2Lkdxs2h+rqJrO5o5qvJm7D6UKIeR+o3LDM0XkMwoZx4N1zzaFyGxZPs+/t5ve8lrj1b6B4kemeTV25yPImtFf1Xt5jbKxQXPsBc5u87DFkOxd1gqHNt7r3VNHLjSsXo4HmTekz0BnJOw2in0wVM6q3XEl5FYWq+tsohlV7tu3Y6vLnxkY8p3wMV39RFxp7gVMi2+znqvkyKOBoRfKZfj7Fxpf4//F68a15JMqLi3TUE04+xlCUIUDkJfNfurkdBAFqtR0w2rCqk2zPvpmWkbdexuky3BlVNLg+5Nolh/jm8kljLsR72QoqnmURbIT1L42oUyGQI55Ug0nrLixOXJtsLMC6+67kKItyXUzKKXId2IDrN7UgZoe8WuJ+gAi8YCu4O6ijdGeFsxb0Dlnok7z+TeeDLkp8r0Etj4M4H+kepfMEynqsRGVxmoqQzxmngSrjTcGtI+59t+YiZyF2SEI2xnDvdemBzjXYT/Qla10GyvIq3/MaWZ4qCm2g+u5Tqm1QLRzxnlpWsmrYTDRwpho2U20eDXSk0+AprUOM1qiksHQL0LDcdDOmWh+hCaKWuXaZJKgSNzYmWnHOWgp0ughzIfhloVQlYIjvaL/SOSVHC6Z5qeqf9p7+li19aaBly1YKeQ2oNHByX6quLuDanbCqMf0oWxjzQGd5tbGy6jZuuV1y2zgtLDfP6XpOswAUIWCZ9DFrzCtlO08el9sZOMTO2lEcc0PL5YQZmSbp5ianaabv2nlN9EFiTTP5lRRz1AOz5j1eAGCtU9w6U9AXVlPO1BXghQkuL5vxpm/b9ElBJ+S2U0FW3u90isX2t6p9BebeNeDGQINEvZn3XE5KJSrTL6oxSKP5NspGLjAVR8eA+O76crmMZrPZcc+ryT6oQ16rHud5pluzifIN6tdRpob+mFi0uAA+dJ3SoE6qMeZ4E/rOZC8pUslst19MHujez48H76Eg5nyyXfGY0fRUeJX5LdXaoGOcxovJvGA3FOrcHin31Q5leZ0M7WQ/LRIBU+Jt45JTJCiRVRFX+p34Vs4jjVkson5pz2UtJlemjgkymTuqDZoTnEyE9smCirBRYgmYrR+bb01RxEZnmk41FjqGSaeYcegOuD7m1lmRcygMwz68XTuJ7IqJ7tIieQ/Ls0ZU7pJTEf2+X4g7ZIWCXVYsFCH4pPER/QqdgsGmPSbCpUrJkAaVuzAt13mzqKHyOuD2HmogyQKbeZPG7+aBLU9oioEWXrvtbiC0Hb0m/hSmk0D0z2RH1dO5EMuWQPFbQEdM8zIypsJrmjXS87zUS8hN56aKwdAx2L3WQqZpxdMsHxyyaPjT6qXTGNvkZZImbQNP+5ZjAPqJ4ZyqMBFe6bjkmZtJrXf2Ok8Gss69bjAlFNQKkJdOcBbyXtPSbqGfaElaXailR/Z4KqLcoq1I3YZqPuo8HDjo+lD2HKP5pq2zNMGVppefOUSQ+SQBlfeOQJY1YcNfyXtfUZDXYBrvbJXvIE2qZrMZdmot4kmQDBgQvaUDQgcSiDUgOk2RiumkRJcjwDKEuwC3sKmZX663+H+RllSThcC5DXsp7tgy0dK5XorvRfj6NMGHI97yeYAwDNtBHejFzHJADJqec6eiWmCuXWnnY7mNQIyvbiOVhV4bBsTUyknLoFc7FUUkbb7Pkkaun66PdEJ/3n6VNwf6m3MNFlCdL+LqSteFqUZbtSa16ZjuoGQgG3OZd1MuTknJzQeO/sp1tDlrx/Z72LlZ61xDE3UJGOsw+HscuTrSJ21amFJ/XV3TxiyLkijxjP/QuCybgE4szVDU1WbnzSt6mboNp6WXhTfVMZaswh3XrzRPqohOY4q5ucvxSJPNq4oaJPZz5jvZ1b/dB6QtnCecju7lFQC58ZXzlPlWYfBI48V0itms9eWQZb/h6qqjj7S9xc4zfu/i1x4fhJGuI7qWZbdfju6FYYhyudweUwCJ3xQ0TbfPlsty1A5xzyu3kKjwIp6FYfL8mTwIskALxIOaJmyp8jIBJ7jSNnB59pMG1QS2xFmMpy4Cmq7tNBIhkP3OXdUck78xzYtLz0FHPHs1D7IJK92B6aZpkj6NoU1LYwrKxHDCq5xX0f3bT+PW75CZbA5515ypsmQQUK/XUa1W0Ww2UalUel2dDkyFPi4CVIEm/p9FoZUXog4qi4tW8ZLg6/p7bItc5xyfORnjpguSOZl7S1Fl6MajF8qRIiBkFu78q+BxTA1zg4aBE165g/2UYMQais6BlC02YtAFxIKlAXEo6CSRg7OYLLIgCFAul9tpBERUXNE+uS2qNvQjbK0VslYyzZVFfK/KR/RfHpcEMUY0CJiqLjrIY6hDGgPthFeeMciqyTa1OGQ9e6XbOOQxlJVmeV3d6Nwb5A1qMmDST3nXwVQSXqvVamIv6zfY0ISpDJln6JXwKngmlfJeR+sGiZYlFO85+1iex5M1bpwCn6vXZAqvecfdxHLcT7yOKcrlcjsAqgwxjqbC6yC1GxhAt2FZo0DN6hQhie4YC7Tx+2Q0Lnthhy5ucRdTktHtZLBp5DDxPKpDJyOrikaqm2CcVVonDKnz4qzE6UKcbNGi2t8067LsZiRbTsXvKMJ0552y4v90XGVXS7kOnFsMnV+qtSELkpxiRM5f/laUwfWlbAmS20bryo0jl1Z+L79LrpNiI83J/W6iBVWNl6i/aV55oZsvQPJePI5hpHnRfqcWCdoeeW6Ib4tFen6JPlaUzdIX9p5W8lvMZYvLqenxhWwbrEoBwUfglOtK80h+2xkB2GovYRgHZa9wtJb81q0JXa9prV+a9FmhU+zE782PU4RhbI0QHjmyYjgtvQolDSOYqAPzjEtlssek5anKS7iy0uj/gSQEtucyR1cVdeLar9qDZIi6cAEadZDrmnjH1VWbo14wEk91c0QVbZi6DbP5Wyr6TWDj/krnApeO8qvJunbWn4LyJzqoeENVnqKN3HPT9LZ7iDzvdcoUVQTf+FvzYzAq/kn8n/7LKdp19IXyIln71bQ/VTJXGIao1YanttswB84SCsRKL/q+VIqbq2LsTdGtaGqyL7suvD+XXtSvFwjD6H5VehbYpi1icquER5OAUCqhmv4rQ3c+l/tWfJ9WVzo3xbdFzR3dOS7b+Z0W4EsVCbLb6KdgG3Q85U2DnrFWjQt9L/Ljwt8XrUDIgsQc72E9Jhs2lvYir4JwKA693gMHDXkFJ3oOT34mPzeFLGy0981MNeRhs+d3G7q6dGtOywKr6OeoHIVQHiQVeSKWi4BpfwqFku286zXd5fiAIr7VgTNa2OTLCadUsM7SrzYBbWXFvW1ZMgbO8kr/HzGNlbZ2NdkJ/OFnHvFi5KxPlHCI98J1OVrsye+ivJKaheh9WTHZ4rLkw/N0wmbZBGTYaLi4/uIsr1QzJfpQ3GNFv+UOmYv0nAWTg9wHsrAqa8nEePF3AUOZjntPx522X26DEGRUmixuLEXbqYCjqhO3gamE4jStr8na5wQp0RfyppUX8pwvKk+BNO1lVoGR0gxuvE02F1p+muBrWy+afyf0rnoCqrtH2fxDJiomU7x8X3SaJjsEv45kBQKnoY6gamucr6rf43rFCrl4TLl6dd71K+fXLpP8bjOEipqyVjvFt6bpbdBtLkFPf/mjPDzUczvtPJ/JeBmfH2MsHzZjUJTlVZU+4UHA5WVWTSUoL6Diq1LXfKgIcsgpZpm2mvS1bp8x7YMi7nk12SPkNFkgW925usRQBRtKWkEpj0r5vLQ6iO9lXtAEJhbltG+zCkum/ImKn43bbTbWtmi1WiiXy22+TPZClPlx+ltnoaXf2gS/UyM5P3YoyysVklQHloF05j0mnvqyZNAzapxWjBZrMxllhnqQlAtAvHBVgjZ9n1VYoHnZ1CstTZrgIMqV28URJvGtyo0D0Gui6bhTBsA0fbch+mIQLBuTxRQASFitbcZIuMirNt0sm1k/WBN6gSzjmLZ5F0V/ufHg1o+O8XLoHUyUqw6dyEJj087yOWSHji+eTFALbj/UZ7LQLRpP706mZQ2qLKHDQAuvpVIJvs+b5XWuMEUIrwK8YJRdyKL5ZRXyeok092DhUlypVDJtat0SXnWLO7ae83fRyQQpTXgx0UxSwm4y/pNJ/LNoS3uFNIEwq+bXpCwbCEUYp3zLmu+OKgRl6Tcx/iqPiIie5VtjHK3jxmhHHbdBQDc8Q3YEUEuUKYRCbxD5n34G5Xt7jX6px2SjWzQ+zXNI5i+mQr8PlNtwo9EKZaudHOwoDSqXCQET7bupFsPz/ITrgHA904GrF3WJE3Q8OfnSD2qbHoqX04n6mDBclAFMc1EQ/5eFfyrwchud/A1Xbh7GggqMXMApk8iasquILBzp3KTk9yauwNx5I2r55TTY4lvVPa+iDLlPuPzluhV9FpxbszoreVo76HMZtF3w9hNQAAAWZ0lEQVRZzibLY83VhcuTriOVMJ2nX7m7mem9oclGmCmUKNlN0ATPzB3Zri364x5xXczdS1XjYQPP81Cv18mVMbzbsGq+ye89xfuiXYRVnkoqKN8a0t3c9Tfcu6K6qBSUjMtp4r3GdZl5FijGWPzKuh+JVDZzU8ucqvZx8olNAB1zXqhzv5IVvzKNV+3npkoeVe3Z8VLxfYo80mDSb1nSqdKk7Tc26XUuxHQfpf/qeJqiYDPHbL6lz2z4inzo5KVsLKNhyAefY0tK4UnoWlIriPRnU2NeuTPQqNHeEIYYGhqa2m7DYtCSV+Uk39PfOjfQtGc6YiAENBrkRpUmXuj6ssRzGvAoWVd74kgFlG5rXDzPawtMcvnid2dUu+TZGC6dALeZmSx64Uphc72DyFsOKsBZ9bMx5dlgs1FkCUrBCbSDpOSyAbcOs7pli3nNRdRMg2oz5eroUBzy0kORtl+vjElDtwIO9hLxnjK12lUU+mG8VbROpURVwdHE/MjDs0w1DwTKg/YrsgTtUo3xVKD/vT08ZwlxELlcLie0PpymUOduQi12srbAZAKLxavyL6fwfb/j7lhVWdR6SV1HTeulslqKd91GGIao1+ttK5IQwGm/yH2k0niJPqDjSPvCpl+q1Sqq1Wqm9gjhlRsb+p1oW7fBtVvVF1R4NbW+q4RX074eJMjzaPv27cp7nnUQm4ttECtuXGzGyyEbilDmUS34IGEqumL2O/PZa/QDTeHKFwE3bTBV96PJRF7hdSph8qyu+ZHFG4PjLwZ9Dxg4t2H5mereUcqAq5gU8Ywy+EI4SXMrloUwudwofZmZIHFUZE7ApM/Vlpf4mo34fUvp/kGFc7lfOKj6kNt0aF25zUQuE0iGZleNCSc0mbrjpLk2mBBcUZYu8jDN02QTpX0oLPWyazV1zRGg0YdlbwLaV5T4jo+PY3h4mJ0TNN+0MZAttipPgSKJoChDN042NEteR3IfFgnOa4DSGFUf6vISNCkr08m5DdP7WBPrzbAIG7fhrOMVp+e9MbhjGLZuw2n141ztRTp5fyGpjMunaM99Bd0v2m24I43G0q8q37SsvPU3SR+3ITm341sBmu1nbB01e68ugq+UmUGN1eBSqzyY4iI17pIGZalcdW1pplW9UvgAef8y3WtM2ipQmtiTG41GQsHdDbfhRF0UvFZaXon5yPAeKs+1LPudbNiR85X5urS2ZIUJX2cL231Uxw/ao7hbQ0x4Chp1WIB6i6bzcDYeZD7bT3Qtc3UNwx3AbbhIULdcAd1C0QWBEq7EOqGnCA2xKrKx6ls57Hy3tK+q60IEdJpfKgR3Q7unYkhtkGXsBAGh52dpdFph3ZWJiIggJ/KQ33NEZ3h4uKOe3OayI1j1VO7rk1WuaiMXa1LlIdKreu9I0NFCjj7Qddxt+uTGPT+yuNo59Be6PXbNZhOVSsX6uEevQRXb3dhDKK2zSV+k8OpQHDjed5DHaMAsr42Qsy7aQCx2KjhwzAinVZK1WrIG3vM67zelMKlrmlVWRVhVAnheIVCncWrXs6TQVCNdSKdClHwOVkZaoBsuz466pAQ/khc1Z0nVWRtF3TnLqKz1Umn46TibXNtTqVQSruUC9Fw4lwcN2CQ/A2IroWqdaa00Co1tlrx839eeKc8CnaIqK+j40XK473T102tFZfDBgkpg6JGXZGzagThY02u+87uJnBS0NAZDqwLFOvDSy8xi8cmKeD7pPVpS66L4rqVRdiTy4so3/M7625zryLQs+TuZtqrmUHKeMYy4Bf+gstpx+wUnNOfltGgL23yH4lubuc/2N5e+i8oUeb8Q81ymg3kt/TS91ltq4l/B08mW2SzIag1NM4ioeDQbTx8byLyxvP44SxsHmT/jnuu8IbLAJK80/oUi2cf2x0c4rwYV3yjXz0SpQOUUmc+le3H020ZxYy5TmPDpzvKqgRBSdRFcxbcCHCNKBYwwDNtaO074sREexYTlFrBqMqtcNsRfVmtj2uJJlJWSXpe/aVl5NUUck9Mt4p4XOqLpeV5bQBX1loXPcrmcUKTYjEUR0BFfm3yA5L3Kg6AdL2qDHSTlogmmgsZXgHdn7E67pup8mKpw42QOrq+E8rUfziGKGCuDGJitm4iDpub3JOz1GE9V9CuPWwR2qNUorDg6wRUw11yKhUutVXn84zlNjE54VdU/r+WVqwtXbqhg2HTCi9zGtH7Lex8nHRsBtfWntzCxeAsXdWGV5PqSRn02sfQVBRrgKi/k8+iDgrwWKVPt9aBhKrWHYwy61TwnvA4W3DiZg1tH9BhNP+zN3TomMMjIEmhLhaksZPUSWY1og4CBchtuNpuhLJDJk97GzU64D3OuWPKgy4FzOHcJIHLFDIIA1Wq1Q3hME5xkRjXNXUCuHwdVXrLQLeeTcNExdZ0gVU20Mewsn3OHlN1QuAPmVIDPCk4pQAMhUQUEtYCr6tINt0Oar2oMueey0kT0MbXO0vkqKzc4ZclktIvOBzrGoj0cwS3C9arf6J6gRSpLuRkTpzhWEDK0ssSPd8i6A02mpZsZb8VQcW7DpkpH+m1WbwzuDj05iJS8H2nLUtTfarZy7WI+K8JtWAfdfpXVbTi9TF+xPzOKPBvvoHb+6S63cjo5fVbY9IvNmmADUXF0W1vDbOC8opTKakO6XaTb8KAiqysxx1NzfSVoGz3OIPMXeTFZ+7TJHqDbL9i9q0uCeF4eVPAZ7eNCktuwXs7I5zYsY8q7DdMBYzeHMGwzgKr3AqY+43J6IbhyEIw2dy2OKDMvTBdzWlndDNqU2IBShDBbotQNIkbrMgiuqGlQbRYi4FPaeWnbvi1SCFQJ6mlW+zzW90GBSnHikA+6fSFLXm581BikNefQe4j5Qj3kwjBEuVxGvV6HP8WsR4MMquAXHmD94ObtUBz6WuHf6wrYQBZe5c4UFhsaiIZCaJHo2bkswqsKwuqq+kYuPwtMNVqqsmiAn24JhGltzCq85u03XV2mivCq+lMhi/Bqkq8psgqvWcovst7dhnMT7Q64OZBnPgFOeE3DoKw3h/4At295npfwSnHoD1DhVRZiHfobIvaPDkXILN3CgLkNB6G8Gcr3vArX3maziXK53NbgpTHpnJuEfI1J2kDLA8udrRR3v3JlcvVSKRh1VlORF3W7kaPLym6koeJyR445U9UrjUmhygbZHYiLtCa3latTVqj6Tbi/ULdl1f1ytO4cbOoo+kK+81XU1dT6pqprmtstd/5bhtwfnevP/vqlImlOXqKqmntZvtW1S5d/wh1Rsw44lBR3XnOuwNwdqSqo7lnlYa8EsnHj1KXnoyV3B1xfeF7Ir1mNoMvNHZ3WO1Cl4azLKXU2gcrdUpdvm1aq3meqDV+XuA56nXy89yVvHQBS6sqMoRWtN/6SR1536kReGndIMP2qon9hO4mZUj3tmaB11MLKzbdEek2ZiXpZjJ2uv7uhvMrqbaRTdmrHkE3HryPBc5vsnVlilXD5yunF+s1rdLBREmfjbzj+y9wV14bnyD8PO/vS8+L4JSb8i9HtJEy6Wq02td2GOXCTWg5mkzUvAZ0QRYXBNI1G1gWse6/bEDgkF62d9dm2LBWR5xQKaRN8sq2juo0gL7L2W9q3efLgoLPMmhA1BzMMkiLRob8g9rxSqYSA2fcEE0mjuDok4ehYb8DRPUcLBx9C6OmXoFsO+SB4vSzeet3AlBNehdU1y2JJE17lzT7N6iZb7bj8baw8uvdcXsJ9Wbbq0TSxRiW1KG29TNrCuR5wmhrdGEymANsPwqspseim8KrTpk2l6096Cdd/DlkhhNNWq6W8t1NcN+XmGY82jXP9M6nQCa9O8BlM2FpcHfob/Sa8DpTbcL3eDGVmmrpp2UQmpQMhX8dBGX4Tix9HXPlIlJ3Cm5y/+DYImgl/88684rZwZckQ/cO3JemiI0/QZB+2Ei6klCGSyxfpTVwf5Haq8pJh6z4i95UubdoYyW3g0nLvbVxViganRJDvJ9b1exFCdR6YzovJhk1btW57GeApXHaF23Cyft25kDxvZOKSwdimgY+WPHlQuoR1YR2ochQ9qHW3tHCPVdbfcM6qvsrSK/o1r3J3TMa6EG7DHbTM0EUzrS5svY2/VJSbMc8s+w0tS5s+537G0kL1x52PLMriaqiqd4nhDeiX3dhjss6t7uSvoqVmNN7GQJPVXbrX0O/jnXyVjduwyNfWwy3TmmfrlW0/VckEKuxQbsPxOc4GPM9TWkJVQge98kaVf9p7HeSrddJQYs530Aug5Xy553kghFqVhS3Zh+l56YQ8Vfmir8Vkl/uNu24o7xjZgBujQYIcxl7AuQ86OBQH3Xlzh95h0IPyOTg4ODhEGDDLaz30fb99bgfolPCFlYy3xPJWN3Nrpt4CS63AaVY9WgfP6wzWQwNJyNa/IAhQqVTYgDum45mmgYs10bxbL2d14yyauqAwssVPuDi3Wi2Uy2U2SJKuDSJPeSyoVoy7A9DGHVqn1eIt1p3fynVNS58X27Ztw7Rp0zryNbUiq0Ct63LQKVPruYDOLVzX76q2qAJNZcmLq3O33aPEnKX0jFWSesm+E9HPy5Va57c2AZuI9pWuWVq/GOmeHTQNr5k1S28D+S7CbqCtdFTYgUp+d93odFZWCs49lo6BCASVUNip9jHmGWc9z2qxsqHLWfKk+5WAjfW/W5ayFrPOVIGkdGhbnAeI1xN15ngcylt5ngcP5jExQiR5AFvoPJFE3VX5m1gbBx2ijaprjZSB5gzytCmf5is/4/hC07I4fl0Nm/1M7xXZzSNadvMx3z4tj8eUt7xyTJw8+WzN61mRtkBsy7ediJ7ntc/1ZmXIdEx79J5x0WGIARU+s0AmHHmYTCH0djNIQFGEQwh7rVYrMae7QaBGRkaMogvbQoyTuE+WwrasfjjP3I/IStOc5S9CL930BxmT2V+9YupjBXJ/nOMSKLI+/dQuU1DFbr9jsnlPhx0T/UajikLWNg0UdyMGT+VnToVbWZtaNDiBLY/wair80XblEfJUZZpapIoWXikDkWeR0suyu4WiLChi7OS6dsNC0y3B0Pd9+L6fmANZ18FkC6+DshFkZYo8z3N3I6I/hNdBZGzz0vV+LYuC7j39hKKF10GhdQJtT4YBUMD1A31xmPqg3kpTCZnlhkHqiGaz2a6szCTLbqL0u/h3NnelmDilu9qZuj6Ie2NjdxPODUF/3Q4nvIq8OZdoem5Udh3l3TzT29N2R5q4poFuOFF+rQ7XJ3m+pQngdDw5d+AsLltFuHnl3azSFANFa9d0bjHU1UlXPzmNybdcXbJiqjEJtu5riTVr4DYswAYxkmiZ7EZFobs7Na/br5y+c31nu0+5GwKJdu4F9DhI7J4WhM3C66KuQnodRZ1UvRMwNAOKPNlpaPidCWzWfFb6IOZ9mxaSdzoXxKzQKfhC6Tsgu9uwnOcgQLXPs3ukzR6Us142Yz/Vo/B7ntfhNQaYuw2b0Od+7Dv5OF268st8PxTyRTKv7AGTojz1/SfLTGYo7nhPGIYYGhqa2m7DFPJkkQepyEkfB0nKl0+RmpOsVkqdBSCZl/k5hCAI2mdVuwG5nVkZ0yIZDwcHh/xIruseVsTBwaHv0CuX8rzYEfgETsEw1SGEVars3dH6oB/Q/z4ZCsgWI054LYp4FOVWVKTmVlgjs7go64RX076j34pzpt2CLPjnEV7zzo2p6Lrh4NAr9Mpl1MHBof8xqPRhEOtsi350ue82aJuL5OnL5XLXjD9TEQPnNiwTBBshTnclDAUVlmKXOlX02aT2JUrLfcsLd54Xu/rGmpxWO0ImRwS5K2NkF1zOxUbUi3P9FJF+7RG7+pXL5VR3SNFHNOKvCCTEWdPlNmR1U1WN92Qdgpfrwrlu69KkPVe5WXFpKDh3kX51G1bVpVvaX5MxmgxwbRPrIrHeFd3LzTeVJzCXB/02HkPVlVhMZGEuT/B0hnNxVt2Ll0bL+LrJ6KTHlG6bHgNJlIfOSOYA7wbardnE1SvhT2NBH9ppVGUZ1kmdPhrvcrmMVqs1UY/OuZV21KIT/LEhlu6C3vnKjKemr5T9qhmDuHwexu7YBbjMcu6tbL2IxanZ7K4bvHK/SllbqvS6/Uo3Bqp+0SrSLfYL3TiKI1OUPzPZj8x5Os6OpTJGmPEMOk9UG4v6IMgp3H7EQy0HRPlMPj/aXd4mfZ8FkMlteGAtr1mgCpCT91sB7i5SE4iJxEWcFWdjhXWTvhd/4v/cHYN5rKE0/zRk6Su5HG4BFdGGNAyqRtdh6kMo2dzdlNkxCMFeHBx6DVM602w2238O5vxREQiCAKtXr7ZKE4ZhV24YcOgO3H5vh4GyvDYajY7KctY58RxIalup5TXtuh3xu1Ow4QkVtbzGz7gon6p7S9O1XpyVJStKpXJH+2VrbUdNmDvnKGggK3FlCiWa6gBayXur6FjG54yLa3secNpbnebQZG1RzWiaBSAvdJZX3XlsGwtnEf1iim5ZXjmaIJiV2ELUPcjrRNAvCnrfc/TA3DoVKOww1MjZ9uZAJ13VaY9VebbzsbC82lgA+DqlB9PQ020e3H7jl6KI53KUZxurm66sLFaKvLPVxDqVasFUprcZb6ZeGstroiyNpVxnebXpV9OgVVmtfpxFWusRo5g3dK9NrZcifd6jPGl5yvC5e9EN0glwfWTlVcD0t5IvSikz7XlqXTV52dCJJLprebXZL+ntBVnSTyay7R359jMKzlsxKy9ksq9Qnt0c6cGdgiDA8PCws7ymgW6wJt8CgxUgAIjqm+Y3L/rAxupoI1AJobVSqWg1kyJfMSaca6Soc6/RDUtYmnv1ZEM3FwZ1PRSJVquFRqPRc0UKEI2H7/vYtGlTr6viMAlQ0UiH7mJH8M7JO6/cvHQoEjvCmnOIkdljs+B69DVsGHDOlXcQIKyeae9thdcswaFM8pcF134WXrvBPKZZsycbOmuiE15jZUs/0YSRkZFeV8FhEuCE195gR2CknfDq0E/YEdacQ4ystGOg3IYdHBwcHBwcHBwcHBwcdkz0jwnBwcHBwcHBwcHBwcHBwUEBJ7w6ODg4ODg4ODg4ODg49D2c8Org4ODg4ODg4ODg4ODQ93DCq4ODg4ODg4ODg4ODg0PfwwmvDg4ODg4ODg4ODg4ODn0PJ7w6ODg4ODg4ODg4ODg49D2c8Org4ODg4ODg4ODg4ODQ93DCq4ODg4ODg4ODg4ODg0PfwwmvDg4ODg4ODg4ODg4ODn0PJ7w6ODg4ODg4ODg4ODg49D2c8Org4ODg4ODg4ODg4ODQ93DCq4ODg4ODg4ODg4ODg0PfwwmvDg4ODg4ODg4ODg4ODn0PJ7w6ODg4ODg4ODg4ODg49D2c8Org4ODg4ODg4ODg4ODQ93DCq4ODg4ODg4ODg4ODg0PfwwmvDg4ODg4ODg4ODg4ODn0PJ7w6ODg4ODg4ODg4ODg49D2c8Org4ODg4ODg4ODg4ODQ93DCq4ODg4ODg4ODg4ODg0PfwwmvDg4ODg4ODg4ODg4ODn0PJ7w6ODg4ODg4ODg4ODg49D2c8Org4ODg4ODg4ODg4ODQ93DCq4ODg4ODg4ODg4ODg0PfwwmvDg4ODg4ODg4ODg4ODn0PJ7w6ODg4ODg4ODg4ODg49D2c8Org4ODg4ODg4ODg4ODQ9/j/ITYiiMRIXvwAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Run object detection\n", - "image = skimage.io.imread(image_list[1])\n", - "results = model.detect([image], verbose=1)\n", - "\n", - "# Display results\n", - "ax = get_ax(1)\n", - "r = results[0]\n", - "visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], \n", - " dataset.class_names, r['scores'], ax=ax,\n", - " title=\"Predictions\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing 1 images\n", - "image shape: (2192, 3616, 3) min: 0.00000 max: 255.00000\n", - "molded_images shape: (1, 384, 384, 3) min: -123.70000 max: 150.10000\n", - "image_metas shape: (1, 17) min: 0.00000 max: 3616.00000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA68AAAJOCAYAAABY9zF6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXeYLFd55/85VR2ne3K8WTdKuspCASQkEYQNFiLY2AILbPPY2Ng4/fh5ccI2WGDjgNe7TstidjGsbZIwQStACIxIykJZuko3p7l38nTuqrN/9FRPdXXFDhOuzlfPPLpddeqc9+Q3niOklCgoKCgoKCgoKCgoKCgorGVoq02AgoKCgoKCgoKCgoKCgkIQlPCqoKCgoKCgoKCgoKCgsOahhFcFBQUFBQUFBQUFBQWFNQ8lvCooKCgoKCgoKCgoKCiseSjhVUFBQUFBQUFBQUFBQWHNQwmvCgoKCgoKCgoKCgoKCmseSnhVUFBQUFBYAQghzhJCSCFEbOn314QQP99CPluFEItCCL3zVCooKCgoKKxdKOFVQUFBQUHBBiHEASFEYUlAPCmE+N9CiGyny5FSvk5K+S8h6bne9t0hKWVWSml0miYFBQUFBYW1DCW8KigoKCgoNONGKWUWuBS4HHi//aWoQe2hCgoKCgoKKwi18SooKCgoKHhASnkU+BpwvhDiO0KIDwshfgDkgR1CiH4hxCeEEMeFEEeFEB+y3HmFELoQ4q+FEKeFEC8AN9jzXsrvl2y/3yWEeEoIsSCEeFIIcakQ4tPAVuCrS5bg97m4H28UQnxFCDEthHhOCPEuW54fEEJ8TgjxqaV8nxBCXGZ7/7tLdC8IIfYJIV7dxeZUUFBQUFBoC0p4VVBQUFBQ8IAQYgvwE8CPlh69A/hloBc4CPwLUAV2AZcAPwZYAum7gNcvPb8MeItPOT8NfAD4OaAPeAMwJaV8B3CIJUuwlPIvXT7/d+AIsHGpjD9zCKFvAD4DDABfAf5+qcyzgV8HLpdS9gI/DhwIbhUFBQUFBYXVgRJeFRQUFBQUmvElIcQs8H3gLuDPlp5/Ukr5hJSyCgwBrwN+W0qZk1JOAv8VeOtS2p8B/lZKeVhKOQ38uU95vwT8pZTyflnDc1LKg0FELgnXLwd+V0pZlFI+DPwzNSHbwvellLcvxch+Grho6bkBJIG9Qoi4lPKAlPL5oDIVFBQUFBRWC7HVJkBBQUFBQWEN4k1SyjvtD4QQAIdtj7YBceD40juoKYWtNBsd6f2E0S1AK4LjRmBaSrngKOcy2+8Ttn/ngZQQIialfE4I8dvULL7nCSG+AbxXSnmsBToUFBQUFBS6DmV5VVBQUFBQCA9p+/dhoASMSCkHlv76pJTnLb0/Tk0otbDVJ9/DwM4QZTpxDBgSQvQ6yjnq881yxlL+m5Ty5dQEcQn8RZjvFBQUFBQUVgNKeFVQUFBQUGgBUsrjwB3AR4UQfUIITQixUwhx3VKSzwG/KYTYLIQYBH7PJ7t/Bn5HCPGSpZOMdwkhti29Owns8KDhMPBD4M+FECkhxIXALwL/GkS/EOJsIcSrhBBJoAgUqLkSKygoKCgorEko4VVBQUFBQaF1/ByQAJ4EZoAvABuW3n0c+AbwCPAQ8EWvTKSUnwc+DPwbsAB8iVpMLdRiZd8vhJgVQvyOy+dvA86iZoX9D+BPpJTfDEF7EvgIcJqaa/EY8AchvlNQUFBQUFgVCCn9vJEUFBQUFBQUFBQUFBQUFFYfyvKqoKCgoKCgoKCgoKCgsOahhFcFBQUFBQUFBQUFBQWFNQ8lvCooKCgoKCgoKCgoKCiseSjhVUFBQUFBQUFBQUFBQWHNQwmvCgoKCgoKCgoKCgoKCmseSnhVUFBQUFBQUFBQUFBQWPOIrTYBYVHI5aWmRZC1hen62LoaSAjh+7yVK4S88kZG0xFIx+dC+r8PokPI4PouF2Y2vkdv+N3UriHrFrbdm74LqKtXWZqmtdSHFkzTRBdaQz5BtDbR4RwGHbyWqlqtomk1+mrQGsoIptE5Pxr70TkPPPvHUSfrt67rnauv6Zibwr3stQIhBFJK17XEb30xTRNd1ztCQ73fIq4dQXn6jYOw88ILQWPMbw3RNK2jdXUr344oZUVpG68x3W7b+qGVvA3DCD1WnW1lsnbmrdd+5IQbfxCJH6mjcd2VSwNnOV/Dlb7urHXR6G/eExrnZXN+zrpKpJTEYjHfOdVKnZ17QtOYNr37VdM0pKitv9b3zr510tL2WudTNTf+z2o7tzkXlbdyzj9fWtpY16WUTXXRcNAYkLWTtqhjo6k/PeQCZ/ow60LYtWM9wjRr7eS1xkfmhQPaNZXORB5k60Z4VVBYbVgL4FpYpMIKh5qmYZpmfTFqjeFSUPBHN4UrC2tp/oWFNe9Won1WEmdafRTWDlZzzqj9cRmdMAIorE+sh35/0QmvnVgQvSZ1Oxoq+6Ip29RM27VTUkp0odWtQVFpbdI4t0lTlOemaWJ6aEKDymp34mma1lTZdvPspLVfCOHadtazWCzGwsICyWSyIW8vTWpQ/4Sl1f6+E/0QhjYLK73Y+pVvf2f/tx+NrTBOQRrQTlpunHWqVqsdsxSHwVrfTN0Qtk87bdlx5u1n1W6FUWmHye/2vPWrU5MVyjQb0nrNF/t3pml2rH/Czs/uWmDDoXmtcW8jv70hDP1u62WQJ1Cr7WLRJF3y9KIpLMJYLcO0id166JY+iK+weCn7b8cHDc/t37cz3oQQ4Kz+Cg/fqPRH4VO7NRejWjW7Vb5f/aLSFtXjMgyUmkkhEjolkIRFo2usQliYpkkymWywulrP16MQoLC2YLn/Kax9qPVTYS3AS+H6YoZ9b1boPNSYO3OxLrkPKSVC6wwDXmfk67Gb1kBfjj1x01z5WpZaiAO156M5NGBWXEC9fEf8hl8MoDV5G7TFolmAqb+zaPfSREuxlKYzC4KfJlUI0aSoayWurdU4CYG75tKr7Kb4DNtvIYRnrIlYTlQv36m1DVYaNG6CNXplPS7J3l9+lhav/vD67RXzGkRvkyeALWmrsYorbZ1oxVoWZOmKWodAi6tVbkD6VtqsXa12kPY1yBrW9LuLPEoTjU0Whc56ZbT7vb1t2rX2e8XEhV0XrXUvapxoFC8P5/OwY9OiJ4oF1P6HaThSOGIlm7rVcbaAXHKRXfodJMpYMYN23qDVuMTmmFXn+yCvCqvt/N9bkLKWp5QCITSXtmuEFLZ1q05Ta144muO9NSaDeKp24Nsn2lI/mjKQlbLmWVgPCS9eqg6P+N+g/FraV03vNV5KWeexvNB0bojVb0vtF1SXbgmu9jYNWp/s34RBt2gOpGeJ9xeA0GR9be+kp4mTlnZ4tXWnko26Aa5lrEerohBi3dG82rAWgHa+P9OspS9WC7AVg6zQPtbj+qmwPuH0YFFYGZzpc/xMrht499+Z3q8K3ce6s7zWGfmIioCwMXv156I5fs8zbUBZQTQFfh+yrp7WMbOZfk8tTEjLW1SEteiFgV2Yi6LBiRpfRL1J2jtJ1cuKbH+/VHC9fHsd24nnWdbWiqZ8vb4JgyBtY5DGzu95J2O+o6R3wm2MtXuQQdBY6mbe9vzDrgdB2lr7+6hzMojWKHUJO0dbUQS51REIFSsZlGc7c9v+vZ0OL3rdYD/hOuo6Fza9kzbngTzOuvitDZYFyvnc/r3zudu7qLAfFtYtywiEX3/deAOLtrDt6QWngaBTMXhOC6Ig/HrolaI+nhz7TlgE5d8qLO8pr7Hq9syPH7Tq1YlT/MN6sgQ990rrrKMbH9CqIshJu9NL0U6H23edgt8+EugNFcEDsJ09xqvcsGt2t6yudlragVJ9dAFrRau0lrTFa6VNXmyw2t3J1K5VrJXxut5g9bEX2rX+K6wtdGNt77ZXzYvR00JB4cWO1eA7FL/ZGei6vmb5RrFeNpRiviAhwkQIuo90Ke4zjMUhsqbDeTdqUPoAGrziLzw1P7LxfV3T2cogDLoXy/Sw9rapLarnv5R9kLuln2U8yLLmmafs7pHhkeNqGuI7GmO1TILuB3RfyFvV0ge1SdB9bl5xdK5zssW1s14nZ2iHk5aQVsfAciJardwQ9R48J7zq2inriZ/l1kv7HdayHbVsL+16WAt5p9okDMJaAjplVYmSryW0dkIYds5ft2tPvKxPUfsrqiUhbFp7er/37ncLN7ahkM4YWOd75/fu5YeyTgbOM93x3Gj4rrnOjXtMWCzn03yXuJSybj10xtz63TcaWKbHOhe6bQLKbmojrTk/wzCaLYMhLK9Rxr0Qoq12ClNeFE+koHKE7uA7IsbbOmny4iNC1ymAn20HfvuR32+v7535BJVn/ap7tLRAt917w83LpVtIpnoib8Lrzm1YITyU5klBQQHW5x2prSKsq9OLqU2CYGe824Gu601CsMUM+TFn3XJPU/CGGv+dhV1hpnivpfZYbSIUzli8qIRX5wYaOb5kCUGak07529fzCfChb0rv8nulGIOuWSk9LMdudXbGUgV944VW4uM6Bbf62ulp0uK5aILt6YL0cGuFcYxiRQn6xqmBjPpdWDq6FRPSyXzbHcf2tc2NMXPLP6rmOWwsVpi6lEql+h3HXlgJV+qoYyRM/JsFp3XZbb0PY5FwrpdhrRhu6bza0288hx3rXuMlCO3MUz8rvxACurQ/RKE1KG3YfbA5XXvrj1vbWXtY7f+dn3tRx0j9fcgxUq+Tx7tWxlrQvHN6lDjHXKtrjKZpVKtVT37JmsutCuJSyjrvWhfqA3jW1eRD/HjMMJ59UdZPN2Wdk98MaptutFXYPXktYN0Lr2FdxKBzl4srjaVCt9FNd2UFhTMZ8XiceDzeVcG0XcauVVjlOcuXUjasF27uup1CN/NWUFjPWE8WV8MwGg5sU1hZuO1PbtZ7xQe6Y13FvPoy9FF92Z2xKDjiP0zbATeOvAPjKEx3TVa3LDXO+0Od0HC4bdnr4xIL7Ia6tihkPG+rGhuveMSgeAsrZitK2wbWQa6sEBkmvtHb6u9vbXaLP/JDFAuQG5yxm/bypZSgNW6YDbErDityUIxP1LjQsPOwVXdGv7bzG8dWPJjXt6HK9oih6xS6sYaFneOtxmp1E1Fj7KLmG9YN0ckIhWV8GmMQrTr4310aBPtcdo176zDC7DX2WC7776D1zW8suvVJYHy9w9oYfX46y+ykgsY97+Wx7P5+uW3c+3m5rRt5LLc7a8Oiab45Yh+tvFqdh8H96P++nXXAbxwL0X7Ma7sIe36FV1r7nhq1fQL7IShutIsxr1Fgmmad967zGVq4O+A7jXp5dllA+CsonbGxkS22DrkjmU5Frty6t7wqKCgoKCisBrqtHQ9ryVmLFh91p7HCixXKauYN5bFx5mMlvHPW3o63SrBrZa3fTlcsLzjTOfNyS+/3fVSsxGLQqRg8r7axnjv/6tp7l/5xprNr88LGUK23hbTbNLu1s6uFwaO/wpbRyrtOISytUce81xgN+63fby9MT0+vqIDQzfEXlLfXmOs0TVJKcrlc6LR+a7/dghplje9UncKst17jx/ruwIEDoVwL3WK2Wq1DmLZy7hFOONctK53bXhE0d7s95tYCwvIxUfkdr325Hb7H69u10j9BdfOjz2/sWb9XktZOw61//KyNUebdepinFk9lp81+tU87fIQ9fdQ288vD7RtoXuO9+PVuQAmvqwCna4C6k0qhXXRrDPkxtwrR0el+GhwcPGNjllaL8dB1nd7e3o7kdSbEru/YsYNyubxi5Xm55DoR5a5btccGI2wbqbZcXaiTuRUUzqSY1yCspK+7M4406ueOeI2wd8F5QchGS7LQZF0osWJYlxMH34/r9j4wDtjjvRWvG9pC5dEWXpogP1qiltUu2ok/dFo1ghEtplU0VdY7fqn7iBafu1JwjquwcU1OK4XzmVsZnRqjnY55bQdR52XUMd/teN+GvB0HBdbX0y5apa1yW4F3rLx0vd7GH+7zs9tt4IUwbROWJrc8/O87DGo3xz2fTWM0aK2L+j4KgmJcg9I3IvjeWK/vwh+66YWVnPudKM+tjQzDqFvk2qGlXTjrohFtXtu/t8cit7QuaO6xzWHKdk0fQQ7olLdhnfYgXtuBoPXUS8kXlhf3pddpifX9IriMoLq3cs/r2uAKXySILoAodAJr0XUkKtS4OTNgmqbqywiIIlR1itlQUFBoRifdwjsFp2JhpV1gO4lEIqEs2gqu4Q2rjbU4r9bNgU3WwrmeD4EIOxhDWyEd2js/DWajNsY2MTqttfPQ+nR6EtbrTuOpnF4xOq7fhtBArTW3v3YVIO1acMLCefrzSrThalh+gsZH2Dl/JlxZEKaublYsPw1yFGZuJZWDQYx8p8e92zkJXnRFee6XVxCW59tyPqvFbLVzgqkdbv0WdQzav1/J9S8slmlyf+4FtzHuxtRGrWs787a+z9jygo6zNZHh1e9u48P6t2E4T/mOBqsv2hWA3cZuu/M6Kk9bpyViOWG9ocLm0wnUaQmZZZS2cvPqChp7rSCyN4Azvcda0047KzWPwprAmWAdVVibCHN4xmozl7quq/G/jmHXlndzLAVp5dU6qqCwftDpuRqPxzuan0Ln0a09IsoZAN3GSuxD6yfmtVhsINTyZffUMmjS3woT8n5TaFaYRO6SgBjYqHeSOf34Tbzv5XNjzIXsvJY8dPxfUExCQHovuGkJhaxpM+t3ZzqVQVE1xBGSCyEC799tJW7G6s/mfo14F2NTP4WLM23dotBeHGu3rTphBNig8oNilvxiX9eCAL1SaCf+cLVh3Ynqd0JvpDjdkN4zUS2tnYAXLUEeDpblZy0xUmERdX1rNa7MOz+nJ5Hu+O0es1ytVgNj44Kur2h/LAXd+xoc49f4fXhEPUtgpSzirVhCw3qKeT4P4CuC2sJtjNnhvJ83iB5fWgKavylPzX+MWum81iCvGNh6OaaTQPczXlzniiOtMy+hNc5ti5Rly2y4tcZeR3v9gsZaU9V95BLpkClanS/LdfOfA4lUMvLis27chhVsTEN08flFCSFEI/OlLBLrFt103+6Ue7h18E0rTOBadjNUWIZhGJTLZRKJxGqT0lFEUQ45LQfO7+xCUivzIUgRGpbptqdfa9boVoVjt+8Mwwjlsr5ad48u0xZNwGytDP/3a3GdjUr7aiGq++tqIqrirL5mOQ8WUlizWPeWVyeWYx4C4gd8LK9N8UzOMvxzDi7LVg60fuJuXYMTeGKh+/ergSbrotlY96YDGFrkOTRNq+ftzKtlrXiQldi5MQbQ3tkTEtuLAHCeNuzU+DsRvQ3XxgnC3WBkLetHUJs4YyTBm6EMy2StNFPuF0fTqXijqLCEJL/3dnQiFqhTCo8wsOrW4FXSgfhOO5xj008YCis0OtGqMBsWuq6Tz+dJJpOhv2mVFueYa1UYbR6Lzu/XbmRX8xxwWJ7k8hit8VQ1nsz/9OZwe0urYzAqoq673Vynw86dqHxF5LoEeD36wmk5NcPPF9M0EXpr86E+Tjwsr8sJw92u4aTNnrbeHo68nJZXnGPYrwJu5VkkObx2vN5Tn4dWW3ifEi+0DofAOCzWznnbiuV17a6MXcJ6jglqZzCtFyXFeka7998FjU0nQ7mWxrFFz1qjyw7rpN9O09jK3NJ1vR7nulbb60zGelsPW7lCo1MwDCPSYTJeCqKVsIBms9mu5r+SWG9j1Al1H+z6wnoIXVmLXhTrHeuVB1k3ltdysSRbvWsKmjUuQZo7v4nslfeyJdS/7Ka7qwJiVaD1i6ld3bsCtF0N34e0HnpZkZu0gEHWqZDxGV75tTMJvdzfgtJ3Wtta14Q5NZy27OxabTvcaPFiJINoiAKnhrQbaNV9aqU3PCklsViswWIG/m0aFOMYdqz5rWdBd8b50bgSlt+oVhT7idZuY87ZJqZp8tRTT3HRRRcBUK1WfdOvhQ3dWTc362c7AoKlEHWrq/WsUqk0HATTyTW3k/CbI17rZDe8MFpBFBdot+/c0kRdAzoFL68E67lleTXNqkcOy1huF3f+bLku/mttULu1HMvngFs5dq8yr/6yz+NOuzYHWWKdMaztjhO3e14b6AnBj4T1XmvK26OpWm5DP8ts0J2xAZbXqB6dgWPOxWpsv8NbOu+c9ohBb6mtQlqsvcZ0Mp1SlteoWgSv9EFuaGvBCuZFRxR6Vlt5sR60fQrrG5bVaqXmqRCCSqXS9XIUoiEej7N379563GoUrCUBbaVpWSt1V1gb8BqDXp5h69WysxIQQgSeNK8s2M1QfGMwNE1rUtCeSVg3ltdKqSz9tOvQqNlyi620awNb0cTW28rDb99pfazT6GNBs553SyNqn+Sefv8+8NJ8eVlxg6zOQbFigeV50Rmy/7zKdhsb1tHj3dp4/TRpUsq6RrT+vOFnuM2sHQ2+152cdQr8+jHkurKSsYMrhVbGizVPm+ZqyHUqrMUmrMUh6nxz9fBYITitk+1aLNzaqFVLTqesuWHr0mr+znUuKC7RXlZUS2y7VrBW51cn0en1Kqgt2ymvm1Zna+2O5BVXL98RA+iSbjnPoLHo77nSTfidDt4NzxS35357aODpwx1sKiEab1mIfJqw83mblte2x4GPBdF5rk5TPwRYI5so8+jHsHuLV3n1dEtzqG7hN5s9j6x5HNn6H1BX6yAsr3xbsbyu+9OGrcaOukh0yiWjHSht5NrEWrniQeHFhzNJiG8VK+XeeCagG0yysvIoKCgorE2spbCW1cS6sbyWy42W18jaJK2RIQo8rdgvbsbjVLGoTJenlSTg8yinyQkh6tbRMH0dJcZ1ReJnAiyxbpqcTtEUdW5oCH/rf0R4xYu4Wbma75R1v2PPrsm2W1fcFsR22tKv7YKsOmHHd9RFfCXiNu35OWOZ3GjxWm+iWtrCWmw6FkclRMM9c1Esr2HXjqi0RqlTS9plx/fWOLbmSZQ6tYog60sr+bW7ZjZbvVbWU2Wl87Cj3XkUtD440erd4DUs7wHu+XvvBVEQdj5Zpw+3i1ZcSNs5kbeBjwxZ13bGnT1WGFbWkhoGfuU73zmtk4F8eJAnX4CHpb3cUAiKY+0iWt2bPfd657U/HnWr71229IGnDQfc29pciP+pzirmdZ3Bd3C4QMWOdAbdbEc7I9INC65zzEQ9CdSej3W9i9sYjDo2o5a9Evl0sw4KzQceKbw40UmFocLqoxOn5qt1V0GhPSh+3x/rxm3Y2iBbXRTDbrB+VqHlsv1jNKLGRzWlC4pbc33rDimla/pOxGB1c2It++mH02iuhCtF2LhCC512v3MbX/bT5BppW47brT1vzs9NuA5rQfNqC2f8oRt0vTMXgYeNyWv1fasI04btWlyD0lvrmLOcTioO7HWzr81B612nlDpOa0gU2GkMssg701p1Xcm1x0mT17tOCg1O63JQucvt4H53sdt3UdK1AzePlbCWcrf+h9ZvAPDLvxX4rcVu8JorVnLnPI7qSRbEq4Wpb5h2sayRKyEoW2VEvbLK6aHizDNMXp0aI1E9lLqxnoWtSxAv3G7+awFOK3Sr883ruVE1iMViLC4u0tvbiym9TxcWQniJNWsW68ZtuFquSL+FKqqrbRQ0bbIBJnAnU+V0zXReleP2XQPMaIPazZVipeGcmPbnEK4uQgjPw6/8vqlDa+wH5/swh5KEuYLDTVmhaVpTuzsZJqufhKidThvXG3VJUdyBmse/95i00+6kLei4/lY3wEgeBpY3vkeZzuuYwiKqEqldt7koNFmbrts4bYRzPLZ2qE4UusLk71ZGp4W7oDHc+b0sikDc2QPUgtLbv3MeNufl1ujF2EVvN2/3sxqiCa9h6fASzoLnTHCeofdiJwIOLAyRgeN3wHxucps0MYwak9rcfu57QKtjLWp/uZXbqPRp3W24FffpKPk1vXcqAQPcYb2+D1OG15gKcrU9ExF5j/dJXqlUSMTijX0UwMuvphtxEPwU4Jqm1etSn3MR6ipNJ/PZZjt4uBlbtKd60meu2/BKadjWIpT7QGfg3OBjsXCOB1b7O/vBq1/8BGK3d4ZhkEgkQtHSLXTLkq5cd6Nhrcz1tUJHJ/FidHM+k+ffmVy3KFhP1qb1ipUYa2o8dxdWmNSZtq8F4Uzcy2EduQ1DuEU6rDtQmHzDuEBa6Sw4y27H+lh/34EFLUjr3u7gdubj16ZQW0j8YjVboce5MDktEIZhNLj8OfvWcme16Iri1mOlt8p1E1InJycZGhpqcpu13IoErTMiXlauIHdR+3O/q6SiuLLYD/GJaqmt/XAvc9nzofF3VGuW832rdfVD0GFYzrK6xbR0wt2srsn1yd+p1PEr2+m+GYWWdhBWWdVJNHlbRLTwedXZPracY83NGt4p18NaXsu0O11ql/4VKb+o5VtwWpejIGy7u1mw1xrChqe0uh6G/T4MOsVEd6s/NE2jUqmQTCYplUqhQ1zsfAW05w2w2uik23CQRbpVWlrxBBOi5hrbCi1+5XWyvVqhyYn6uuxYmzXdcaWcT95rnS+BdSa8hkFUzYoQgmq12lYcXqvM2GpitTfharW6am3lVW4YN+Kw+UvZHGs8MjLStWt4Vrs/28VaZg5f7AjD6L8YNdph0E2PBr/f3cByPV58c1StS2sL3eoP0zTr50i0enq3goKCPzrB762bmNdSqSTBR9vgFw+4xhkrJ23OmL52Yxz84p3aRcuxQh7wsiBaJyBWq9XA62iaYoxbRFPdAuJsNJu46mb9t2shXb0DNP+2ixbz6oTm+OXQwgXQ4mXRDauld9JuhQFYSiM7/V53N0eNJ2plrQAQeuP4iapZdbN6h9U+r4RrGkQTSLttLWnVy6LusdA1xYf9GiBn/KB/fGFYtBpHGDVfL9gt68tl+8e0BtPY2BbdtEw0XCHSwvhq1yIe9dqSqLGZ9rYL3sMb+01K4RsP3Sqifh/WC8g//rfxSi6vPb7VtSXy1Tkt9qsb3U1Wfo+8g/azdudZN+bpSlklO+YtEDIutGbZdH+37DG5+vGzbl44yw+0xjTtxLz6tRMu/SMb58EZHfOq8OKAaZoNQpXFXBmGQaFQaBB4vGB9s9IIW+5aVKasdJsJITz7cbXbxjkGo2K1xt9awUrUv1MnVivUsB7H64t9ngVz+8IeAAAgAElEQVRBCEG5XF5tMrqC9dr33aS7k4pGBYW1jnUjvLZjOYwaV7VWFkUnLWGFHjf6W4kvsv8F0Rb0PGw6IUQ9Ns3pthOLxZo25FatNm6az07Br58soWi1mQrv6xKWNfxu/d+Na07saGVM+Y2lqCEEXnGp9jaJ2gb2tasTlo924Kyjc6zaLa5Rr4VwluFmVXSz5ray5k5PT1MsFhvaNSxdXuX6WfuDxpK9zlbbhXE7DFpno8Jt7vrla9EaBu3S2Om9tVKpNHjmeMHy8oiytoSd415jKuraE7SGtbLuAMTj8YYy2ll7vOrU6vrcDux9ulb4tTDoNu/RKg1+v1uFmxFipdHp6wot+M2jbtW1FRko6hxxejq2i7D7Zis442Jez2R0y/V3tWGPL7Hf3ebpJmMb7KstDLQCIQSpVKpr8a/toN7m66tJFdYgvOZvJ9aw/v5+YrGY76FvUct1zkfTNOonVAZ9a723BIROxc8reCOdTtf7v91zKzqF9bYXrVes93Y+E/k4hfWPZQW9seb3r3UT81osFhsIbfuuq5A+2VHyCvttlPs77em94g3t30spPeMVneX5CcPOMrzaKUjAtGivx6d1eLj5xZp40d7Ufkvt0BRrYmNI7enDouk+Uo/724JiXdyhNTDIVgxenVafe7Wc1iY7/GKJ3dCxWBOX76LGMnYrfjCovFbGh1fdmmmOpuBwxrkF0hFhzLlZKcN4edS1uabR8NtoCrOuxRFJKZfWVBNkTb8qNIOy0NEQCFMgpIYuClTjCcyqJCklZU1DMwW6qaGbkI8ZJGNxpGkS03Rkddl6Va1WMXWJFk9RmZ8ibuYxzCFOnTrJ6NgIUhpk0r088tgj7Nq9m3gsRtUwiPekIKZTrEJcNzGreZKxJPlygWQyjZAxcjM5SEmSySS6rlOpVEj36JTLZXQtDmhIKmCmkVIQi1eYm88D0NPTg2HUGAdLGNN1nWqlUO9XKSWVeIJESVApFdF7JEIm6ofNCCEwpUSToFlrfUyntiIZgIkh4/W+klKiRVrb3GMTvdfZqPOwMRar+T7Q6HfqtrqGdz6eerntaut3zJU+733V+XztMJhR4qxriH6PcjweZ25ujnQ62RYNTd8FxI0GjZ9275n1y9tJQxPMcGcqOBVqnrxfSL6kHkMdYmpE5RNaVk5ojrUniDZh+huFlvgoXddrV63Z4lpNw53OuueF5l940z5Jbb1PJBL10KVKpdKklKvXzZl/FJkFmuQWaTYrXd3iYUPBEU8bdC5BKzGvyvJ6hkEIEeosyJVWWhiGgZQSXaydzfZMQhQBz2KO1xLadWlT6C7s7pCtwqgzPUt5OvWFaCBYWr80BEkQYMoqmkwRM6roCKRpUi0UKAuDRDaJZtYuZNeFidAEBiZVDeJCo5QvMD8zy+LCAo888DCapjE+Ps74+DhaTHDw8FHO2bmVo/ufpbd/E+973+/yB7//xwihk+0TZNIZjh05wWM/epCh0RE2b93C8MgI8Z4EekIjZgqmj81QjkmqlUWoSGIiRlZPkkhqyKrJ3Kkpnpk6ze7duyFWc8eSANJAoGFUTEaHhpg6eYqF09P09/cjDYPc3ALZbJZET4KqGcc0l66zMk2ShklhLs9ffOTP+cjffoRiqYqux2pMgqDWjqImHmgSDLmkDEACosmxwr56rJVZ2Kk9qhPrXeeF2O65NJ7JqFQqZLNZDKOy2qSsGYT1yIvFYmvS22s9wLodo2Gd7BK/UigU+M53vsO11167ote7Sel9JV6rsDxjurF+6h/4wAc6llk3YZrmBxo0/23mJ1nWBLhNfhFFo9mk3gk6qi5S6qYE1iCr02yzpIYt3k2z6BXv1xZs1k0hmpmmttFGhk1WR590LcX+ObShTTk0jYMoA6Nx3NYFgvqYWG53C9bGZcUy+tYpZH398mjnfje/b+uW8jUm7AZpl1uj17/9nG2haY1uroGbRsDaYfc+sP95MUz2uE9rnbLCAKqGSSwWR9NjSATVioGUENPjgKBUqFKuFInFNKQZR1Q10skYC3NznD45x8LxKfY/8xzfu+PbZJNJ8kWT/Nw8Jw+f4N3v+i2uufIKUskUhXKedCbJzJEpZk9N8eyT+3jPr/wa73zbzWzZsJGEprMwPcuJI4fYuWUL//bpf+XsPRfQl83wsiuu5r67HyIdz9A/mOTI4aP09GQZHhhmoHeA3HyOE0eOM3f6CLd+5jP0pnr5hXe8i/MvvIhMIkWlWCKh60yfOsX9d9+HZgo0KSguVqkUy1A1yM3NMzV5mv3PPUelWODAcy/wnnf+CpvGNmAUK+RmFzh28AjPPrmPwnyOhalZ5mcLlHIlTh8/zSc+9gkmBtKcPjFFJp2BShVpmuTnF6gUS8SFRrlaIRVLUC4UWZifp1IyKObyJGIxCrkCPfEMcREjJnSEAVoijmGYaJqOBpjG0r3TCMSSNcNyoYblE4qFEOh6bNna4Douoo5/p+XW/X1YBMVc+cE64X7Zw6Vx3Yy+N0TkFZyp22yLlYYbM7zcllGUlk4rerR9JagMYUvnZrEPykeGWKejIizDHzZnpydZUIZ1mp3eQY789KW92m0ueLWn3evN/hcVTXyso1xBEJ8TaJp1lBOs5nOmDe2hZePZtm/f3rDm2L+3feB47yzfkdpZvovcYk/TYIWN7D3TuEaC+zkC1rtYPP7BiAWsH+HVMIyOCq9BG+paFl6hkW7hfBateNc8/Z5FQkgBsfX82/i0y7RJ3PvJ60FU4bXhl0dezo0jdH92QHg1DKN1Ny4fbfJ6E17DvndHNOFVODwbPNc3i1mIqPhyywfsgo2NcgdDkySOUapglg3K+RL5mQWqhTIxU1DJFTELgru+9XVmJk9w+tgcH3r/n9CXgZnJ45QWStzwE2/mqpddxfe/dxcvvfIyUuksk4efZ25qii9+6XaueMklHN6/n9LcDKcPH6GUr/LRj/wV/T1Zfvs9v8F999/He9/7Xm644QaGhoYYHRnArJbYe+GliFQf84sF3vWr7+G7P/weh48dYe/us9m4aSO//wf/hTf99NuQmsbJ4ycZH59AMwR9fb188EMf5G/++39j04YNxDToSWk88qN72XnOeQwND4MQ/Nu//zvnnX0uuiZ55Stfzo03voZsepB0KkaxsEhPso8bfuIGMpkMpVKJsbExJiY2IITG0NAQCwsL/N3f/TeGhwbQNbjg/L2cOnqQsS1nkezJokuBaRrMTE1TKhSZn52juJDj8PP7ObDvOX74re8wMjBKeTHPA3ffQ18qw8EDh6mWKhzaf5D8Qo65qRlyM/PkZueR1FwBdU0jpulUjKqjT53rStDaIm1pw8zbRsa2XYHPt6QAWkzTpFgskkgkWvq+GS8u4dWtfSyXSE2Lso4703RHeG01n0ARqAOCmWe6yDlHyzBoyGnC+0BCv/2nE2jKxyF4B/PW4YTXZUTwURHuMoZ33SO2lTN/F4OFb34+MUN25bNr2kA00+A215XwGgFCLJ2uKAUCraatkGIpR9ufMGsbhZDBf82l+NPg+AsmuvGntuRb5/zeiwEVEpCypoXyKsJDYyalbGBMLY1M+IVVNNS1qanbjXlwqWu9XXze2VmiuubK0p8K0ZigRWiW5g8XwdSNPk3DlHK5fB9IWXMBrDGStjzqGkfruaWldgiDmmgeiC6DMnQ/O8ePtOrvkb2Uy6TJ5bZaItURX2lLaLk9htDmhqHZnXmy3Ctrf0K0duquV5nREDwIG/JcIn25rSUCuTT/7W0ul+aeSUwT6IaJtiSYaEjMaoWYJigbBbSYhqZrmEJSMsok4qBJHVlOIGMFhFazzlWNMhBndqaErutohkm8GkMvTDN1ZJb86Rn+9RO38s8f+x/c+4O7ueVP/p77vnk7m7afyz13fY9k0mR0dDtTJyZZOPoIl14yiqhk2Dixl8MnD/LKK17Fr73n1zjn3LO49Quf5Pprb2Qxf5zhkR6uu/pKZqdn2LNrD7d+8T84/4IL6e9J88y+x3nVq15OKq2zaftetm7Mcv/9dyOlxr9/+rNcefVLmc8tMjIyyqHnDvOql1/F5k1jfPtbd5AazLBt80beftNN5KrzJOIJHrjvfn7+7T/Lla+9hnO39fHjN76enoFx8vlperI9VM042b4JijnBwtRphnvTnHPRJcT7kmT6Elxx2aVs3LAVkUxRyM2xOH0arVwhnulFGnH+9E/+gutf8WqefPIBJnbtpEKFrFbm4iuvYvOWHWR7B0mnU6SyKTKZPjRdIFIms/N5xscnMA2TbLaXw0fmOX78JHfe8XVufuvP8NyBJxkbG6FarTIyAYdPTFPIz5GIpYjH0nzmEx/jZRefz3yhhFFdpLJQ5dnH7iEdqyJkDycOHuPAMy/w8H0P01OVxM0YCT0FehIpTCrVKhoCXS7NK3N5v6l5oLA0j7QlBYvf4tM4/2rxjpF2zJbhtHJomuYpuFrpGph1xx7TTK6b9aRxbQugkNr6p4VI22k4+yW4fLf1dZmnMCO0XWM7tWqpq5fl/NbpqVInZGmDdeHzG3iFkHCeOeFKS9BzZzu1CSdP1sQnBTGsjrMQwiC0VTlqP9v2N9c4fmE28u4yYC1ypm/MzD/vkFi2PNt4toZ8ZPMz4XY/t4MH05bS2cJFGttKNPzZef6m04abBF1Hu4Uw4PkZx1oRXtfNgU3lclnazc7tHPxjGEY9CNqz/qKNU2yjBk4HZecihLmhYeG1w2w9Xs3pIuhnEXOi+q4/smZjE7R3vAHtusvBlJh33Y/5f77SmMD2Xfzjtyznecs/Ig8dd81TXPsSYu94U43uA0epfvh/eNIW+8N3w/ZNAJif+jLmdx9wz3PrBmJ/9Gv135V3/ZFnnvrbl+oEmHfdj/HpLzfWxdZusY/fUu8n45Z/gkPHoC4x2zb0a1+C/nPLdTI+ZNWpecHS3/9uxFlLdfqXL2F+78FGAq1Ptm5A/+P31B8b73q/Z520d7wR7borlup0H6ZVJxfEP/Fn9X9XP/j3yEPH3PO85nK0d7xxuU4f/qflajjWWO0PfxVt+0aklJif+jLyew/gXBilBLFtA/ofhauTePsb0K67AiEExn/ei/xXx9izcSr6x2/BOizEuOUfl/rJJc9rLkOz9ZP54X/yLF9//69h9ZPxqS8hv3u/e8KtG9H/6N22OnmPPWGNPVNgfvd+ZH0+OayhgP4x23z6s39EHDpeF3ilvW1ffinira9H1+OYB45gfuR/UClX0AQ89+zzpNM9jI2NMTc3z3/Xy7ztt97J3Gye7/zG73Pj+CbmFue55KJLMKoFDFNinjzN4EKJol6749eUkmSxTNWoKQpj1sEUQlCtVoll0hRNg2QyRSVfRK9U0TWt3v32NamaTmIYBslkksrcPPEl5t5y56sLUTEdUkny+QIYBj0sKzwMwwAJekzHNE1ySDJ9vbX9olJFVKq1nKREaLXYW6FpSE2DTHrZ0ryQq9MnpbnMRAmBGdeoSEk8mURUqshCGWwMQ6VSIRaLoQkN2Zep9Xu1isgX0V2ULaZpImMxRE+qxshUqshcfpkRWaLRSlvSdcyffwOJX/xZnvzjP+fsqSJzcwsM9PcgpcncwiKDg0OYExs59Y7r6c0k+NBHPsYtixpC0ygViyTitb5bzOcZGBzi+CsuJvPj17Fp6xaqd90HTWu51VcC/eO31Ok3bvkH5MHjLluEXJpP1hpx3Hc+aX/4q9TXvU99aWmNcMHWjei2tdxaI/SPf2iZVAdTbVeINVBoc8G0M5DBB6C5xxwu76nRD6NqFdHDGdwP6gqCM3/LHdF5EFe0AwuX0rTIvzbV2XQRXl3eO2kLK4TVv3Np8yDhtUnYbZNlb/KQCeAvg/qhFXqiCK9h0rnB9XCqiIerNh1qZKfD+W3UQ42szzzWliA0hw86vK605TXK7b0XHa6yQlC7ebx388ZyK1Md2BQSbi5u3UB7sW7R812eoOG0Hn55WQJ+qxOrLrg60zvnhKVZcxHwzhiErpN0/N9v3DjfLSkogrKukxR+bFqW9jB9H+XgKBeyWspTLKnpo843KaV/E3cJbv0URSnkBdM00UVsyXa1PJbcrP51QUtSE3CoCW+1GCGoVKo8cvc93PT//Ta/8Z5foX92jisffpJsJsORo8fYtXMXxVKRuakTLC7m2LJnlBPT0+zYsYObf/5txB54gt27d5DPFTh96hjZ/iwjCEgnObllEDQY37iB0g8eo1SpAlUy6QS6HqdqSGLxBKUNY1SGU1QQaKcWmX/qWdLpOJl0DxXD5PTkJHpMJ51Oc2LTCBs3byKZjmHc/zil2QUQGnML84yMjCANg3gySa4nzuLoCM/sewGjlOMiLUY2k61ZinUdTdcolcuYhkl551ZmhGTDpg2U971AfGYBaUpOTZ1idHSMYiGPEBqJ4UGMvWezuDjPwEAf2r0PU1qcR2g6sWQGc6l/q9UypYletNEBClWT00/tZ5OWJJHsQWBSKBaRqQRaMkG+WEK77DwmJ08yNDhE5rlDVHMFhKbVxruEqmEyMzPLSaPEpiv2MjQ4yPShI/QePEEipiNlbRzUlL41D4JCPEb/k/t45snHiSGYnZlmfm6RdDpOuifF6PAg+UKRk0dPYlQSHH78ab506xf5xT2XsXnrJnp6UpjSoFIsMTw0SCFfIGHo5KYWOFg+SM/pGQYBiVxyJ7SWP9Ew9hrHojUHbL995oLPNhcaTuHBLR4wzHxs8t5oU5gK+/myABjd6tUp3seNEXW7IspNEdApGqJa8LziPoNazqucQF7MI58wabvFP3YLYfsiSt+3M066cY1iO8K0F9pRwPidO2HKqstXjens5butfd1qv47k9WK0vEKIAdMBy2unBoCXFtAzX8dVOU6tYUPeHjQ6J0bUcWJ86ksIIeoWtno+Do2l1/U0oTdiH61hWI2i3UWsAT7tFoq2oEU8SKMZYdw0MQhN7epYqBz9EESHl8bM63nY+emkW0oZwlrhfQ2QF23R5mBrFoYoCM/EhNPm1jdqs2mxcLTDsseJlJJn7n2ARx99lC985nPceOON9OgV+vv7icfjzM7O8uu/9yF+972/yezkMX7yzW8k05vinnsf44qrr+Q737uTcqnK5Zdfyd/993/kD//ggzz/wlM89KMH+LHr30gimePI/jkeefRefubnb6b44Y8xlodHzEUuv+Jyjh2eZrhPowjERIxEJsPd37uLyy69lHgyjohVSMb7ETJOsZjn377wRa6/5qVMTp7gsqtfwcypKY4cPcqzzzxHqVTkrW+9iZmZIxw/epgYCTZu28kXv3grb3jjjTz22GO87OWv4siBfQwNj3DbV7/OS6+6lqHBDNOnJznrrLPQkynmcnP0JdJ87Utf4RWvv5FsT5pSsUihkOezn7uVn/v5X+CJJ5/gkssu5/ZbP8+evRexfc8O4mjcfc/dnH/eXjLZHj7/2X/nzW+5iYphcvTgfs7acTb5/ByyWgQpWciV6MkkKVeqjE1spLQ4x+FDx8hm+yiXCuQKJTZuGCWZTPKFW7/Ez9z8ViqFKk89/gSTJ0/wsqsuoliEZ597gT179iApM9DfTzqV4qGHHmJmLseVV15GX2+G3OICFcPAqMLIYoX84hTFP3k3g3297HvieR579GlKepzXvPbHKM4e4/777+dDf/lJvvGdr8PiMWbmDfL5RYRWoVCcZ2h4grO2budvPvq3vO1n3sZn/+OrvPOd72RhYYHx8XFK8QqZTIbh4eHagV0h4y+W523jCZXO+RdmjwgSkIQQVH/pD5GSBmuw1/dB60f9vYeFbhn+81mGMTfiYnUJQaP9Wztatby60eqXV3O/NebXiuXVmbcXhBCUSiWSyaRrevv1gW5lO6/SaXrfopI/DJrG5hq1vIYR7CyX8ZU69TiyBbEpAx9PiQ5ZXjsG2/U0NcW8f13D9Fe9/TpkefVCK5bX9RPzWql+wB5H030I6v7gzsOdQvrJLxsUXSZQg097wMbo+Ks/ty+0Lgmsza0p96XyNb1WvyjaQCesk0SdeWgXnYO46BzPutTd+EO6zHjV1S/+Qzr6zYpptf7sZbnS4SzLhcYo7thBtDv//HpAQ7im9apr06yREl3TwYOGqJOsqQ0D2s6Kn7Jidxv+mtrTy1JTS2cJbss0OOOBm0v3PxLea8YtvXWOObehE0FYtiyguhTo1P6sOzrlkiNvKpmmUq5i6BVixBAI8tU8ibiOECbSqCKMKpVygd7sALn5CslEgrIhiJVNDuw7yPFDMxRLOfSyyW3/9lkOPvoUN938dn7rl36ZxbkpbvvGl/nxN7+ZzZv6eXrfC3zzW/fx0Y/+NbvO2sRZe3YxvGUrpyYXGdgwQm4hR7VQ5Za/+kdu/oWbueGNP8n+px7gd//L+7jula9h73kXcPeDd3Ptq1/JnnMvYvLoYXbNSR7//vdZTCfIJBOImKAqy2RTQ8xMTXH3Pfdy8aWXMDDYR0xIjh86zMDYVhYXZjA1yY6tW4hlB9m8YZyKCfm5aQZHRzj/4otJpdM8/tj9XHDhpfRm+xjoz2AAmzZuo79vmAfuf5BtO3YwMdrL1KlJhkdGKRQLbBgbArMMPf2UcnlS2SwxLcGjjz7B+MQmJidPMzg4xMLsJNe+4uWcnDrG5g1DHD18kL0XXMBiLs/42BjHJ4+zYcMGKhWTb3z9W/T2ZlmYnycZj7Fjxw7uv/8hnn3mCTLpQUqlIpu2bOHeHzzAuXt3k0z2cvrESbZs2YzUBKlslm98/U62bJ2gv6+PkcExBocyJGNxysUCQ4NZxieGmTo9xTNPP4WumYyOjJBJJTk9l2NipJ/tZ59HuqeX45OnSaTTCE0idEiXy+RzeQovfwknTx4i25PCLFfZsG0Lu7ZvYN++Z7hw9zivfd2rmRjfQKmYIx6fZ8P4MKMj4zz5xAF+cPeDXH7llfyvT/4L/YMTXHnd1QwPD3PowEH+9m/+hvHBGGMjGzh08BjVfJFMKkalKInrKapGFZmAqiaIEyNl6FQ1J9NXm1lecZ1OK1oUBZx9XzG/8p8IAdobXh16rlrwLDtwjW/8TzZ95E6vW33A/VT2MIJ2GLdVe11r66X/uujMz6n8tlteAYRsbIumHc+lCEvp5nIMQiCc92U2FKUtbRaOqtWFVYs6j6p7CQLWidydtDRH3JoD50lQr/rxKG7p7XyO8/3i4mJdgRCK9kA+IhyWhTDHXNGgFnu99M7jPBvX/nOmXZILap4joi3PkNbQxKE2/jXF+4ZbN2v/cM5N97o3lbUUqxt0bsiZfWBTtXZg06q4UDSdGhZAQ2Bgd8D7sGTVB5b3e3fh1e4m0F57egp+Eb4P89yrrn4lOwW6qDQ0pXP5LtKYjEB7UALnFhZUV7ctz1eAa0F49X3f9GR5TjUzgP7Cq5WbnWFozMN/frVzhU9zbm4P3GjyhrR8K6WkKioYGEhNYgoTU9bE13LZAKFDRSMt4lQKFRLxDEk9gTAE+x57mr50Hwf2PcNNb7qJ+akZvvutOxjrG+AfPvpXvP99v48mNcpzk+TmZ/jTP/0Ar7r+lbzj594BVDly/CDv+Y1f5dydO0jG4vQPb+Sj//A/ufH1r+PYkYPs3H02PZl+irk8Pb19LMzNkl+c53Wv+3GG+jN86pP/zN6XXMMX/uOr3PjGN/HAfffxiocOMPL4AUqfvY0NjzxHz0OPM5vQGNp9FtVKiXTvdj7zhc8zMDTE6MZBBrL9jE+MMTszQ6lUYnRsjIKhc+TQAQaHhujN9lCsVBjqS5FIJyjmivT3ZdCFwehgH9t37iFXKJBOpkCaHD8xz21fu43NW8cZGO6hf3AMKQ0GBgc5NTXF5OQMfX396EInlszyja/9X87Zey7SNKhWSsSSgnKlSNUsk8oOkOzJku3pRzMTDGQryEqB/kySSnEO06xiVIpkUnHyi/M8/tSTXH/99Tz00IP09maICcmmTaOcnprnyInjjI4NMjI0xNGj+8lke3n2mQMs5BfZtn0rPdledu/ajYgJSqUK2d4B9FicU1NTHDx8gJdedSUnTs8h9CTbduzkgosvZDE/TTIZI1+W6Eg0TOamZ5ifPk1fJk22d4x0updYrkzm6YPIgyf5xoLk81/4DEPjCeKJITZvHCeTEcxX41S0DONbd5Lqy1KYnOT05Gl++IN7+Ys//wuyIsm1V1/NS694Gb/7vg/wK7/0szz9xGOce/ZuLjpvL4f2P8PE+GYyPb3MnZ5i5tQULzyzn1s+8Kdc9/KX0ZdKY5oShEbVYhrd5plNORVGkAuaY03Wsa9awuurQs1Tt3Kjr3sOunzyDrOGuLlGRt2Pwwr/7ebXJLw2pQgWXmFp3+oMC9VEW6e/t4TtTqEV4dX+7YpAuP4TgGQyGW3/jcozeWXjJbxG5eH8S3Hk3YEs2yi/+XX0SeMpvAaV7WznAO81Jbx2CwF+FM3Mt/8gsd8x6/beiUD3U4/ndQ21KX1ODnPQJn2ECh/anGmN/UcQcwuIgb7APKx8Gq1njjp4BDq5av7qad3L8qqb3wZUy65Ruxp2PNbLcyyU7Qiv9k638nZqeBsOEmlaWN3d4rzauVWEZVTsfWLdj7vctv7zyckU+Qm7nVg/6rPWanOrVBcLiF959jqWikWy2SzlcplkIgkSKuUq2XSamVPT/Ms/f5q3vPkmRrMj/PSNr+cvP/xn7H/+KFvGxigt5Pn3T36alIjzC29/O4PZAd54ww1c9dJLeP6Jx/mZN72earnA333iH/iln72J88+/gHy5xNnnX8R999zN7Xd+nbe//WbS8QS6HuPzn/ki5154MT99880kEnrN9bRYpmQK9j3+ONt37mHf449y7cMvsOWJA4ze+xQv2T/F1h8+yq/EBzn7ew9z2WP7GTw9D4ePEZOSdDyBsXkc86wNlKoVNm/ZSkLLs2PbEOlYkmKuQjaTYGxiHD0Wo1yqUijmkXqKRx66j3PO3k08JjgxOcL+Y0YAACAASURBVElcM0j1ZJGJAb5913c497zzKFRMJk+cZGhoiPn5aWanTrFzzxa2bt3GxoktjI9uRI/HOHnyFKPDQyTigu/cdQ8vufxK8rkFJqenedlLr6BcKpJOJYjFdDZt2s7Y6CjSMLn9S7dx3p5tTJ94ivmZ5yjkywgEVaNKLA7zs7OMj42Szy8wMNDPxZdcSj6fY25+lt27dlJcnEWPC7Zu38XE5k2MjA7Sm+mjUJgnlUzz6MOPcfU1V2KYFWKxJJVykZHREQxDctvXbufSiy8mnU5w1o5tnJicZNOmHZjSZGLjBLlckZjQwTSJpwYxSib9o2Nk+4a449v/CbrOjrMmEKLEydwMyWKV3n2HuOjpA1yX6ONCM07qldcwdXqSZLLEQF8v+emTPPujH9KbqPDkU/s5PT3PwNAQX//GN3nday9jZCzNF279FL/1m+9mfHQjLzz7HJVqla/edhsp3SSdHaC3f5C+bJb8Qp73/tbv8L7f+x0SKcG+hx8nmcmQ7skghIbEbLBQuQljTYJnCGE2yKW2HeG1ec1pfl9THHu/1zStZjR02ff86A5K49U2butT3ZIZYB1sVwBz29ObGZdg4bWeT4eFV2f+nRA4O8WrOq3WK8UBBymNPOEjvELEtm1ReLXzpUH3ldrHvttcsp4HK5IcaUP6dwd5ToT3MOmc8NpUZovC6zL/7v+1El67hYBOjyq8Nrkht602dH9c35icNPoIr/WnbWpvjff9FfJ7D4RmDEJrwEIIr0Evg5ger0XbuW24HU7hW55wbESBH4Z7VVso3cv1El49aVx+EERdKITWsjd8FE14dZYVZKltF/VSLK26z3gKtMwsvU+nUuQWFpg5NkthvsgNP3YDA5kBEpUC+59+gbnJOd7wY28im05y+cXn0p9JcP0rX4tm5jGKeWZPTbJzy2ZOTk3xy+96N0eOHuLAwWc4d9cuHn7oPl77+tdx09tuZq5UgFiSr3zlG7zsZdfx4T/9M278qbdw/nkX8OSPHkXPDiAMOPDCPu754bd52aWX0/e/vsTIfU/Qf+fd7LznUcTHP8OF9z1N8sQ08blF5ucWyPT1Ikf7OZUQ5M/eRmXXNsqXncvseD9y0wjJs3eyP7/A0Ng4qUyWz3z+C2STfUiqpLNZBoaGOH3yGFJIqlVJKpVBVvMk071cduFepFHi0OH9bNq6nfmpaSQpFk5PYpRm2bZtM3osTjqmU8zn6M0kmT19nGRiGCEhEZcsLJwECQMDQ8hqgXRc8sAj+zhrx04G+tOMjY+zuJDj6ScfZ2LjOOlMGkOaxGSZH3z7q4hED8lU7ZTdjVvPIZ4eJF+CobHN9AwMkUmlmJ9fAGIMDo/S29fLwuICO3ZspyfTQzKRIJ7UqVQkwyODVEwDsyrpy/bw4IOP0NsTwzBypJJJ0sl+pk4doVwo0j/Qz9joCDFRJR6DhYUFenp6mTl9DKOco5TPU1wsMtCXJK6XqMoqcSoUCjkKuQUy6Rg7t2+hlJtj8sQh4rrGCWFyx/GDTGzfSDZfIvnUUeJf+DqZex4n89hBSk8cYugnXklMg4PHjnBqrsBnb/0iv/zr7+Ht73wnwxt2MDOX46d/6qd4+L77+ev/9jF27N7D1a94BUY8xu6dmzn3okspSzClyVNP7uM9v/4bpLJpEj0aqViKoydOoAudmeOnSGRT9UMUw+7xfutuWCGwXcurV771/OXydR1Syob9wjRNYrEYpvSOkwuzt7gdPuncl7z2M+tZu54oUdGO8OqVtFMSXZQx6AZ7W3dqv7H35UoKry3XIUB4bTWvVvKzeKCw95UG8Yb+3y7HnIYpq/M0dE54bSqzTctrkIvyGX1VTjFfkJ1YZIO0i02WPjc4gpMFtViKuiYTw/W9Fw1ObZ99g6s9aHzfbkC9X12cgdjOungFuDsPMjDe9ccAxP75loZ0QXPA7SAK3/QdXMmdZWsekztIE+ZFuxSN75z5h70SyZ7WS1MsHMH7JsuHoNTGlWOhtb5z5Of1OwhCNnoXNI959zlRo7dxzEnhPPLemXdAHTzmy3I6x3y1KTFq48GdGW6w7EiQmgBdg6qOoZnohknMBCNeQkgNYcQpiAIxoVEulkinUphlDUGMQ88f5vCh5+hNZqhWqyQSMU6dniQ/eYQ9uy/gL/76v/L0c08h9BRXXXsdl19yMQeeeZTrXvNqxkfHyC8u8tu/+VuI/iFufMWVXHT+BeyfNjhrc4btm85DlxVK5ePMlzSOHDtEYbbEa56Y5MSJSRYWjrOtfyN6JQcFg0S+iJnLkyqWoWpQScYRmTSLyTjJiTGOLy5yOJdj76WX0JNJkohrVCtlzGSKxZk5Hn/oIS695GJEIoUZT5ISFXKLs2QHhknEkjz8wMP0Z7NsOGs3Dz/4Q06fOsYNN/40xUqRcrFAOpnANKpMz0yhxyCZTCCIgQZTxwvMzD6JUe0hFS8yMj5GfyrG1FyJXNlkYsMG4pg88+RjbN1zKc/vf4GBvh76ehLkSibDg2mKuTy5+QIPPfEkV19zLam4TmFhlmIVnnzyaXafvZvxiVFOHT+AFhP0DU5QrKYZGexjcXGWoZFRkokUx49NMrFhExKDwuJJ9Hic+VyRwZFR8gsLZHt6+da3vssrXv1qirkFMj29fO4zn+XNb/oJEqkkJ07MoMeqSDMGeoy77/omV1x6PpoumJ2fIp1OA1CpVKiWTMYmBigVBEJI+kfGyecXMapVZmem6e8bpG9omKlTh+lNbuHwqaNs3X4Ws3OL3Hbb17npzT/G3MIi/QNDTJ6a4ft338873n4Thfwc2XSC53/wCD3zBTZqMRKz85jJOMXeJMnNmygP9FD85V/g8UNPMzc3x7Wv+AkERR577H5K+RLf//53Oe+c3Tx49w946aWXEosvcOWrfpZ47wS6vsDdP3iBa657CcdPHOTYsUlG+iYYnBgiHtf59Cf+N5dceQ2792xnanqSiYkxxjeOU5FAIkWhUqZX15ACjKVpqNsOA2nwLnFYWfzWLCkl8q77QVC/CiwIThddd4uw87ApJ5bX3Xw+TzqZaKBd6LEG2u30ul0v43+YnLdgrOs6lYrRYPGempqiv7+fWKwzl1DU6+ShTBAOwd1vL7fzMLX9bGX5VueBTU2HYlrphKhfd+X2vYWGuka4psfvpoywsc9NY8ujvFaFbzf6nLytE16GAK9rH4MUO1Z51jip35zhnD/Ow1Wd18u0g4gHOnmVGWSJ9ZRXnLy8rd1M06zX1S29xfeHUaB5ldVQh4Bre9RVOWcIVuoktrUIS0O9Khb2FUBYa+1KwzRN3wMt1gI0TVvSbNd+W/PEKQh3CsvMV3P+zjEql4zf1UKJdDxGGYmhSaRWE741NIQwiRs1K1M8keK+H95LXJqYpqA33U9hboFte/oxjRjIBB/823/kTTe8lLu+/y30mMn//Pjf89zTT3Ll1dfwyCOP8O53vR1DJln84N+xsVTly3uuRsRiGD86iXHnPiZOnmJ8fBQqFRILBQA2aRrnSIkwJdVUgk167eoVbe4ohUySWCJJedMYZWkiztrM/OIcFXS+evvXeeObf4oDR/az7bxdGFPTTM+e4ov/8V3e+ta3IKggRJxCvkjFENzx7e/zkgu3s+v8yyiVCvQMThBLxDhy+BgHjhziNddfh1Y6xZaJLCNDExw7/ij9AxvQYmBIgxMnj7Nzx9kYZpWFhQWKxTJaXLB52wZS2QL79k2yuCgY2TRGRZiMbRvjhz+4i01bd/OVr/wH55+zh77BAeQBnXMvuJjc3AyzB4/y7e/dy2uufzUT2/o4OrtI3+AQ0qiSyxfYtWsP+YrO/iOH2XvRpaTSA6R6UpTLgkd/+H02XnM1GXOAe+95mL3nnsMdd9zJwOAg173iKnr7NlKtVqmUJtGNJGZllmI+B0aFcrHA3NwCAh2JZGpmFk3T+eKtt/Ha172SeDzFHXfezjtufiuFYg49kSCVGSOVSjE3N8fAYIrekXGqRoHH736YZ555ipve8ha0WIx0TxyhZRkY7aNYTFAW/aSHe+mXQ5w6dYpUoodzdu6iSowNGzYjhOTsnVnGx4epFHP0ZXoplcsM7t3J4PAId9z5Ta55w1X0FkEePsn8gSP0liqkv/2bXKNpTFZKzPzp/2Z45zYuSCfQRod4zYbdPLjrHB6870GGJzYjhc7Dj9zLnXfewXt/4/9nduZ5Hrg3R7lc4fzzLuM9v/abfOivPsz4WB/v/IW3kKvGMKolzAqcPDbDwz96il27dpBOp0gkEpSGMqR6ekC6nUTejOV1IcDr4brLV22fMU2zppwwncJo91GpVJYYWb1Oi5SSwcHBNbk3rSdYFvUocCpbzkQ4x5U1R63nmqah63rtrm0fWO17JrdVVER1dc/n86RSqW6StCJYN27DlXLlA53YaJzaUufvUIu3hxptOV7Q3zQa2kXW+txZfBM9/t83uQ03vHTP3bMuYQqj5pIFzS5Z1td+WkGvPnBtsw7yHk0aLrOxvLCaTe8Clk8frGkBnXEFTcl98/J/3ZxZ47hrHpOWsBYm7iwoRsRyl/Nuowg+YU2LszMOxd3y6nRPW45FcWoqvRf92jfNJ+U515AqkrTQ+cwn/oVtZ20klkqCFkcjRrVo1K6C0TRu//Lt3PXNb5OfXeSBH97L4ECGTROb6Emk+MTH/4nXvOoqnn/2GWampujv7Wf77o1cfvlVXP+6H+eRxx+mMj/JuV+9n80/eAz9/3yNnk9+mfjMAslkgmKpSDGXwzQlxZEBtIkxFpNpklsmKJ63A3HRhSxs38znnnqE/pdfin7RLvJbRrhvbpreKy7A2LiRwlAWbXiA2HA/ZWlQKBdIxJPMzC6wc9duRof7KZfLzC3Msm3bFuLJHjZu3FBTOklIJ1No1ATQTbv2EOvJUs3NkjSLJIWkuDBHfmGKibE+jMo06Z4eBga2Mti3iVQ6TblUJdPTR//gCLlcjiNHjvPcc89z9tnnIAUs5qYZGR1n6/Zz2bx1A8dOnaCvN0nPwAALs/MMj46ze8+57D94AMMw2LpjB7FYktOnp9HjSV44cIhdZ5+DqUn6B4YZGOhHaIJ4qoeqIchk+zjv/As5evwY+WKOvoF+iuUihw4dZXx8DCnhjjv/k/P3nssDDz7IT/7kT5LJJClWS8RjgnK5iK6ZLM6X0HWdrVu2UK6YfOXLt7Fjxw4WcvOcd/6F3P61rxNPpDlrxxZGx8YYHR5mbjHH2KbNJFNpZqdPMzUzxeDwID2ZHiqlEseOHOGZp55DmkXO2bsHwyxTLhfIFRYpL06RSqZ49unnGOiP8ewLhxgfG6OYK3JqcoqxjRuIxRLcfff36ckmGBsdY3ZmlkQyTSKRRotr6LpgYGAAU5gU9DixDZvIjfVxeryHg31ZEhefA/29mP39ZIQgUSyROHwS86Gnmfi/d3PdlEHmu4+ycf8Umw5Occ68QfHCHSwWpzjv3HM59+zzmJ+dYeuWCUZGx8jl5jh8cB9bztpJtVIlm+mlpydNXNd55cuv5fJLLuHWz32egf4hBnoHSKczGCUDLd58/3jjfPV2d3SuDUHWWec8t8NtnxKCpnWyMZ1jHXGuZYEug1H2Y29LTq3uje3lrJ+flS8svPaMmvvrsjXGiv/1zMeRR9SQoHZh51tq/eSd1k248uXZwkWZLb8OMfa9xrP7h86fomF++OUVxMd6edK5feNqtHD81ERE5YqjPYRPSFGtXx1j1GctCVG442eze7+b1dSrbIs3s3hIC95z1J1nicfjDXV1ppdSLp3CHGzh9irLWRfEcthEjSdrTH9Gx7xWK50RXp1wY74DBcs2TxOOKrwGCjVdEF5Dv/egJUh49ZoYfpPF9V03FefSfzNsRXh15t+QT1eFV/9+tDYYr/Z3Y9z86m95VXVSePV87xZRa59fjnY2pXOT9GfQpPTfpIUQGEJy6tBR7rr9Dl594+swSVBdNDjxwnEeuPseZKnM4swMp46f4JILL2Agk+GSCy5gpjhL/8Dg/2PvPaPsurL7zt/N6eVcOQCFAkAkEiDA1OwmpZYVpluWtCxpZmmWZXk0assfZK+Zsew1H0ayPTNrvLyWNR5pLLnVrZY6SGpSzZya3STBBIIgCAYQIEDkUPFVeDndMB9evapXt96rAJD2SN0b667CffeEfc4995z93/vssylXKuw7sAeqdc58+BG7d47zg+8/y0/+zM9w6dINEjWR8T99gj1HzyJPzkEgQLUvydx4H7Udg9QyMSZoEBzfhtebpmGZhPp6mLdLfO+lo+zcdyfBeIiqXePGjQm2bR/Drld59ZXXuXp1ll17thMIRamUC6hqEwjX63WqlTrhcIT+wX4UTeKDdz8kGotSrpTp6e1ZOlTIpVqpo+kqnlMnEtQRvArluWuEAhbTkzfxBBlF06nZHucvXGHv/oMgqgSjPRSrDSrlLLPZGcCl4dSxLItKpYqiGphmkEgszHx2DkNzUVWThuOh6gq6rlCZnyEWjiGJHp7gUSzmObBvL9VygZs3Jzj+1tuEQ2F27B5nfGwnpq5QKiySyfRSr5bwPI9SuUKlVKJWqxGOBslmp9AkBVM1mJ/Jcur0GZKJBIGAwb0P3MN8dobt27dz8t1TaJpOIh6hWq0QiyY4/8klikWXCxcukOntIRRJkk6kePW1V/jcg59DVnVCwQBH7rkPQWowNz9HtVBgcHCA7OwM1EuYZpD5+UVi0Rh2w+bK5YsMDQ7Sm+lnfHyYUDCKqqi88fqbpFNpAsEAKA59A7vQTINkNEYkGsX1YHjbdgqLcxw79jb7Dx6gp7+HwmIJRJmFfJFT77/P2Ng4kiTg2C6hUIxypYCigxUIUSqUkRSDWCrOC2+9yv4vPEwtEULa1oc9OkB1xwhzfQnmgGypRDJgok0uELw+R+qptxh96xL1HxznzGPPMDMaZt9d49TqHv/L//Qv+cLn7mNyOk9PJs0Pf/A8IyO9fHjqVb7y219h5959DO/YRTwSYXZmltxiDkVRkXWl4zzVNWybb2vxcvqjb8OVCYThvg3B7uafrZ1LVqfrDl6X/tO1vs7lbx28tnbYtCyvnahlGfsszhnxg9fWb5sBr91/aNJndS7KVmSujidAr5N/w7LbOub2wFQXWkfu2Mi3fDO8dEojCJ19rTcCr1tuuU8O6QZeV24/TYvu+mV3Aq7QHYN0A7O3JmOt5ac9vSDcHnhdIx8Kvjb9KILXW56cluIOebTiSvoHlktL8dksXliT1x/7aeW5t/paEwe2Q5YuH3TntC4C3vIFK74kLctSe23+a03Zbe3x3KYWpHmUtYA/PtOGbV3uk+bfZuw2cJfAq/Slhzv2RMvK10l5sKWtS56HKIjNE5UFcVVf3A6wdV13WQPZzvMqjVez69dcrZhxXouHLsPAX37LOtretla9rfpaZW3og+p7P614gyz/FZAlqWldpunjIIoCrbirLWvjrS6W4lKMxlasRq/942pprlddK2Ny7WK+uofXxlntPIZWtPStslnqi5VvSVjukO4kCKC54LkOrgS6qDTrWfanETBUHSsY5fWTH5IKJ1i8fJFTb79CLDbAb/3Df8zPfPmnCQV7yfTFmLhyCdHxCEajRKwws5OTVCs5EvEIsiYxvHMPaiTG5x7ci/bJKXr+r0eIPP5DvEiY6h0jZIeHmJQlQqP9qKEodt0GxyWdSVCoFrl4/ipD/cPkq4sEE31sHx5GEW0URUDwZOKpNACnT58mEEzwkz/9MI7tUs4voCgaZiDI9Ss3UBWDZG8GR7CR5OZYmZud56MPTzI2GoW6S722gJ2bZT6b5Ymnn6FQzOF6NaJRi1Smn1yhSCAU59ixEwyMjFPIzbNr9zaK1Rr5XI1isUgwaCKKOnogg2lIRIJRpmYmqZaLqIZBPD7Atctn6O3vw3FFZEXjiceeYKi/h4AR5viJjwAZR5TIpDJI2EhCDTMQRdIC7Nm/n2gsiFOrUyrkePnoGwyM7OTc+U/I9PYyMzNHf98gViBCKGoxP5+lWq1x4cIE5arDiZOnECWRz33uc0xN3MBQRURVRZEFZqYmSKTi6JaCIEg06g6SJNHTl0Y3Td58/U3Gtg8xvzDFwEAfiiQRMExsu8Dbx04yPDyEbhhcuTjJ2fPniMVCWHqQfDmPYUSZmp7DduoMDvZRrdlopoLr2HzwwRlU1WR0+wi2UCMS7UHTApSL+WYMXruK49ZxbIEnnnyeu+7aw9jYNjRNAVunXC2iqzKCC4ZqEFAErl64RDQexRUkRFHCs10E16ZSqpFOxzAsg1giRSgYwnU8cEESReZzOcxggMd/+CJ7Pv85tNEenOEhnrxwjsEvfwG3Jw0LJYZvLjB4cZby7nGOvnect996lV/51V8lPZRhJisTciEUTxPrHyKd6EdRNKxIkCsXz9LT14MnOMxkp3n20R9w8K6DNJwaiioj4OB6AvlCGdUIIHir/bXahcHludTzcP/tH8OH57rGee22RrfK8jxvTbxtfxxXAXFpfV2KZdomTDcBW2teEpbm9dUxqtfu+tgKePVPsqv9zpanR0FYIzC37j/dbcS+trW47KK87dyUZmb/urSyJqx+H03NI2vWiM3Syhqy9H6WZv3We2+V77b1V8f1spNQtsGzVVbmpbpFqdtJHJtoQxfqxtp6hpxOwKub4mg9vjba3bBet22G2vM2ZRK/Ytwvx3561DxFfem72yAcWOv/nWSu9c4fWV8+8/2+Js7rWpyy4pPanLuWY20La9/1Kv474QFW7teOjdW8/UiAV0EQcBxn65Pq7VgYtzyob22i7HpQUQfe/IvxhhwJXdqzpAFZNQhvi5Y+gqdebk4YXU5y3IqVbyOSJGlTW062Qp7nrQWXfuqGGzf7Tjr8sJ7FsCMA3mRd3hotXfM7an/vqyfD2+g81m4b3nhUtWnh/Y/8P6z5HDovrv4My4vlmm9/fc4cofmZOHh4okDDreG6ICADMvm5RYozi0xduMDOgTSSZOJ5YDsNNCVO3440O/aNIcoiklPmgw9Ooxhh3nrvNK89+xdsG0yTiQdwajmunztObm6Gr/7bf8fnv/0mwWc+oJowqdy3i++89TbbD9yBJCu88fpRRod7QHSRBJdQMIgoK4hKCFFySGYiIMkEJJtaZQZJEvibR5/FrU3x+muvcfehI/RmBrhy7QKJVAzT0ikW85w5exYPyOcLXL92FUP0EJwGc1OTiK5NLJmkVC7TNzBMtQaBUIxazaFiO9y1/zChYJRG3SOdGcIMmBhWiFK5wY7xcUxdJhIJIssKs9lFnnricfbsuQNBgKnJaZ548jkMQ0HXLQrFAnOzFcJRgxvXrvPM889z96EjSJLEjRsTHLrrMM889yKZTB8n3j3Brjt2EE3EMa0AiqKCKFNYmKVabYZ+qZTyBCNxPMfBcz0atRrHj53gwL79mHqA42++jWFIVCsldFXH1IMELBPX9bg+cYNf+vu/yHunTlKpVHjj9Tc5dORuAlaAeCyOpuvgiuRzRURPxK5XuXDxAr2ZHt595wSyBLgG6XQaQbSp1OYIBCJcunSNdE+SRsNhsL+HsZ3bSSaT4Al865uPcceeHcRiEdLpfmrVBuc+uUBfXy/VaoVUKkmmJ4SiygTMBNNT51Akj3qtSioV4+yZy3iCQCbTQzQaIx61cBp15uanadQdXnjhRQ4evAtwkGWBr33rUSazC+zefxexgEqpmCdfKPLhmbP0DY1hWhaaruI6Lo888gj9/b1IokChkEcUTep1m53j4wRDFqZlMjExxXvvvUcqk+Kpo69RiARxx4eQ8gVij77E0M05Dv7zX2Vu6hKClKXWKDBx5RRyWGf+5hWunnuPvlSQxbmbBI0GtVodM9TPv/qX/zu//mu/zOUrF4nGYgiChCKKeB6ouo5AU9G7dg5gzXp5q6cNe57H/Pw8oVBoBQFultbMNZ15XRHs/WvkFndCbTKv53k4jrNmLf10rXw+odv/+Daq2jDrJtuxntvM6vp89xvsRPq0SBS3Dl5vq64ttmmjftsoz2fVhyvf/qcLUDdT76eVduu7Q7aAcTaqcxPge2v0Iwhe/bTpzvv/EXjtZkHu7pOwlrfNtNuvoelUXlO7svbZVi1uK1bgpTx7dyA9ePdynNdOJ6S1fm8/xOhWPoauBzzd4ne1rBjYiB//ENpqn/nr9QkyLfDcrv3tttWkW70rPqj+hWi1lk8Q/e+lc7ndtvn4+RL9/KwD9NsXldZOgvXyCj7e/bba9rHVHFdrhaZ2/xF/daLbtO6KTbsJ9XodT2hq11VBQpYVNEXDq9lcv3iZcq7EQ/c8wG/8t7/Im0efZ+eeO0FWsIIm//x3/gX7BgP0hENkL5xn7uq72OUCc5MTPPbtP+Hhn7iPb/zZ1+npSfPySy8znIkx9mdv8sVLBUgnmBjrQ92eptyocfnCVYZGhpFkgZ5UHEUWkFUNAY+JiQlOnTpNXNeoV7KUizPkZqZZnM8SCBl4yNy4Ns3u8d0MDg0yM3MdgQLJkEFufhpNcqkVFhBVi9GxbTz/7LMcOniI5354FCsUY3RsJ0YwTKNRZHTbGNWaSDyRRFNVBEVDliXMgE4kFsLDJRKPMjeTRRBlAqEw77//PpGQQblcpliukk5m2L5tlFq9SiIRIxaLc/36BIeOHKReh4sXPmFyYgFNdxgY6Gd0dIyAGUQQWD5sYvuOXWSzWZKpGIPDfWi6SaVaxnY8ZEXHqeVQZRlFUTAti1K1hlOrEYlEeeH7L/Kln/9pdENCEl2CIQPbrmMaBoV8mddefYMdu7YjiRJ3HtzH9OQN0pk0fX19JJIpNEOnVquhqiqKruE5ApIgc/niZeLxGK++9iqmYbFv3z76+3p55PG/5t77D1MolslkhhCwGRnejuPWMY0w169fxrACzM0t0qjXuevgPhCr1OpFcrlFjr35DouFErquo6kKeA43Jy4TCISoVcHUJKanFihXEi8cXQAAIABJREFUoFYTmJ3JMjw8wsWLF7h0+SL9/T3ouoGiyJSKNWLxJG+++TrxRJRiaZED+w5gGTLD/Wmy2WnC4TC6YfHee6cZG9uJokrYjRqKJNLf30c0Esa2beq1OlevTZBIxDBMjYWFOULh5vuMx2P09/dz6PARYvEw0WQMbbQfdziDemWG3pfOEsw7BB5+kPfPfEJfMomn9hJWBAS7iCA0WMgvkoiFcGyBcrHBrl3j1KtzzC8uomkBNNVEFiVUVUEUBWyn1gHwrZ4XWrQV8Nq+fnmeh2may1PTlg4YbOkll8vrPHevAIfOmruVuW3r4LVdgbnMliCsOjyndd8+r7fP9bcmtN46eN1ox53o46mdR0EQNt1Nayy6Xe4F//PPAHMtr2/t6+oWwGsnC916bVuv3vX4a79W+TV2ydPp/tbH1ObodsHrrfDXnr4lb/h/vx1eNt4ZsXXw2mmMdMrrHyObbZMfJ7TuZUX+uw9eu3buRvS3ALx2z3A72tb1wevG/bBFWhqUYjQM4WDXyaqdPo2tSZ8meG3PvlXwutXy26nV8yvg1Z9h6+B1pS7/89VgtfXYL9hsWO6nAF6btBXwupo6bDRu8rC8k8FX4BKfLaGzteWrxYvoNus489EZAlaAuZtTBMNhFEFk5uoN5maL3LhwiVeee4LBTIL8wjy//Ev/HbZXw4hoJJMJbEmmWsvzkw9/kUr5HHPzMzjVOdLjB1GCae6+7/MIdgnJirBwPcuvTSvEX3yfPa9dQxJkro9k+Kv3T3LonnsJRDMEAjG2jQ4jCwLRUAhXgEAwSqnUwGnUKRaLfHD6LOlUlL6hHYRjaebnZ4inB4kkhkBU6R9IIloamf5BFFnD0i0SfYMEY0nqjkimdxBd1zEti4N3HUQURD46c4ZMTw/pdBJJhvnZSW7cmMBxZIIRjZvXLhKOJ9BVCdEIgCQxO5slFokQUFUQRE6ceIdtI4NIggiiTDyVxHUaqIqC6znU6zU8F3bdsR8XUBSTF557mp/4qYcYHRqkVmkQiGjgyc0Dh0yNTDpNqZAjHo2QiMeoVUvIoo4oNi2JruNSqeQwDBNBUqm7gFtHVTW+85eP8vO/+CtYlkWtblOp1AmFEgRCFqVyCcd1OHj3IWTDIJudwdIlGvUK4XAAKxCgXKkSTyUREJAlGUVVqTWqlMoVgsEoxVKFuw4fYnJqhlA4guu5HD7yAKKoNH1TBY9qpYwsK9ycuM73vvcM89kFevuGcV2PcjlPIGhiGnEUycK26wSCFoIo8vHHH7N/3z48p46mhCiWqthOGcdpEImlQDJ47oWXuOfIPj788DS7d+9G1RXSPUNMzcyBKPNXjzzJ3Qf3c+b0GQ4dOoiuqwRCURLpOAvZLJFkqvk9ux4DfX1M3biC5zaQJcjniyhq87vyXJdwOMq5Cx8Ri4exTBPHcfj+iy9TrVbYuXNH06Ln1tE0iUqpjCKbzBbmuKlryIZG5OPrGEfPEP7J+3EtmYYT4PjJM/zsl36Wo28eZ8eeI7hOkC/93M/xc3/vbtJRj4GRHfQPDNOoQ7FY5bWjLzG+awfz87MYpk6nMGAdw3DcguW1fe0WBAFpyzvA/OV1r6djBp+f6K2A126H9vnrbll/u/2+dSH81sHrRjLCGkvoJtefW6Wt8H7bdfnAylar2iyQ3Oj3zdBG4+KzqHMzdLvg9XapHWjeLohtz9f6Fjv3+9bBa9e6bjE+btd0vh2fPxLg1U8bddryQGn5dC47DvoLWu/FCquvNacJr/j3eS7NmEar9n935nujQbxskRTEJQG9Vf9alvyPW+Wu0j52bM9qa9pyP7Uur3MlTUwgrEnfTWu3kaZms4PfXbJPtq72tq6h1tbfji1oy9ylDD94XekKYRlIrlKktLb5t5ZSb/1X5ac2zyiEDvV14nNZEPDV1fLFWS7L7/O1PD6bjAvNmC5LHdu0xPrbJqzi0ccrqxeu9m3DLUC6uv1L2/uapyG18d2pXzbqt5U2N8t0m5p4mgJ2+4CRJZmTJ082t3AujcfZa1cxdB1BlJa+NQ9PkBEkEcMymLo+Tb1Q5fTJD7hx9QaiI/E//KPfYOrSJxQnruHKaRYWpomkQ1iRcQTRo1CyuXjuIo3SAvGhewiaAcJahNhsmcg3nsF8+jXGT13ljtc/5ieyNs5cDrMnzUR/nMB9B6nrGocPHsJzHObnJpEFD1nWKVUbTM3O8eSTTzO2Y5xzZ88wtmsPwUiSgB5gYHSImalZCsUsgXAfDUCRNLIzswgCXDh3EVNXUOUAqq4gyCKOK6CICu+98w5GOIHTKLKYzxGOJxka7GV4eBBhac6LxVMoepBILMrHn1xk59g4i/PT6LqFXa5y5eJFkokEC7kcVlgHSSIaj5FfnCGcSGNaJq4LoqLSqMP0zCylYplgIIYR1FiYXcTSXe7YtxdFlNAMHVlTuXTpOtSqbNs2SjgWJTs/TzAUpFIrohthJFnkq//5a7ieCjgkowk8EWZnLhIKxphfKFMq1bGsENVahUw6jqYqTE9OUi6WUCQRJBnHlTCtALZTR/RsUskYuhUiELCQJBnHsYmEg8xNXUbXNC5fncAwgxi6RrlcwrIMTpw4zsBAD0MDgzj1OhfPn+XK1fMMDI0iSjLl4gLZ6QmsQIBgMMGNm5M06jX27t3DM08/SSaToq93mHyhwGOPPc7hw/dx9vx5Dh8+xOBQP7VGA0WV0YNhrGAQTZFBagr4UxOT7N93BxcuXef+B+5FlTQmr8+Rz2f5+MwZto8Os3v3MLF4nOHh7ZiWxekzHxIN92BZBh4egqDjIFKr1QhaKoLYwLAsyrU6miIiyAYBK45myJw8+R67du4llYyTz2cxdJVQIMy2bQNUKnlE0QNBwjQDNOymskhVLOqOS3CoD2HnAHLFJvCd54kePcvii6/wpgZ33/sAphXi+tXLBAImd915B54jYGhhFnIXOHHiPXYN7capvcfQwF5K+QZXr1+nf7AfHAdBkJBcBxUPp8Np4XB74HXZKumb2Dzf+uT3BWvf0dIsa3VYH7E1qy77ajYnxdYS0AzbtSRreP41y2XVZLeUr40bX1vEjmvJcv/4LDuCsFKmIHTfndONH0GQENrOQlhzeM46IoB/fWuTONYAV1hZytpFtg3EpnVlg/Y+WWr0+otSt3b4DQkd2tYqz++DDM1vXN5kSLuNrIWdZLDbAZGdQlS1ZJjmdyKsGYaeAKIkrj0fpMvVjbsW7y35sHXuSKu+5XF828aZNnm3gx9oN6tzuxzerZ/bnzVlJp8sLrJKDlxTntfyr/edX7OFs3ha7Wif55oVde63zY4ZAWkVb3488CO1bXir+/E3TLsVrcQ6R0y3b1PcVFnr8NayHHm0W5E2po4C/lY1IxvQRv3vfvMJvA/OIezf2bHcWwWv3Xr2ljR6vkcbgdeNFqmNeNkybaKYrlZaH7VipC4vhmvyr+mMLbHieqvj124cKuez1YD6F/0WiaJIOt08sEiSJERRpF6vE40nmvHLBQnFEZFwEVyP2ck5ZFHnzkMH+Z//2b9AVXQWc1n+8Vd+m0P33kck1csd+w9Smp9ErSyg/d9/QfCVN4m8egL3O08QeP51Rr//OpnnjhF/8R3M4x/h1eqURBB64iyO9FDfN443PkI1EaFvdJirN66RSiXA8/AkGdcTkVUdWdH44Usvoygqh+85DIj0pBNMTU6gawq9mTSu6BENxwkETQwrSDm3QKFQZG5+kdHt4wwODeAJHppmUbNrLExOUanUUTSLN948zhce+gJzc1mSyTSiIGIYOrV6DVlRqNcaXL1ymUufXCBgGowM9vPR+bMMDw9x89pN6naD0W2j5PJ53nzjDXaO7cL1ZBTVwLE9yoV5wsEgsiTgNOos5gpIokg4FKZYLCIpIn/zyGOMjPZjBoLg2MzNZ4lGY4RDMfLVGcJRi1K+SK0iYttlopEQ5WIVTZNQFI1Dd99DOGxSKVbJ5cvIgkshX6fhijz3wouMbt+OFQygajqmpdFo1LEskytXLtM/OMCzzzxLf38f5XKRWr1OQNeYuH4VwwpRrVSxbYdqtYaLQDSWpFapIQgStVqNRDyJ49iMbhtBEBw8z0XwRALBCO9/8BHjO/fwwnMvkE5nUHSTSCSO4zjsGh9j/749KLLIvr17CIUCPPLIk+wc38HVa5dRFAFRlInHEiwsLALNwwVdx6XRqDM1NU0i0cPlyzcYGdlOvd4gErLQdBlZ01ANjXQ6QV9/H/V6DVGUMEyDK1euYVkBLDPIzGwBTdd59tnvk0rEMQMBzGCEhusRj4bJF0pIooYimfzg5Vd44/W3SCUTDPYP43gukqLg2A6qphKNB8jlF7Cd5snQruNSLBR57dWjjIwMUS7kePR7j2IFg0iaSiEY4KnLnzC2exeZxTJfuDCB+PIx6m99gH5llum0wr4795LNlclXHM6dvsrnH/pZXvz+c9QqZSKpIKLoIUkK9YqNEYkDAg1BxpZ0ROzObjq3AV43e+bE2sf+edG3JXfDAtZbN9fOdevzJvru15a92v91TQkd83Xjp513YUm52OXxWl67P9pUhtvNv+bxLa7xHUFLlx+6RWOwG/ZnslvtduWWjt+D4Hu+JtPW6u060lq7BISVupoPfPef0s7CbmXdSh92laVbuxjbFWXrku97vI0dm5sFr5un9eeKHwnw2smqtx6tsY51uRcEvxZjpa61H2TnQbHVQbMZ3hqNBsIScN2spmx5Wezm89rhWSet6+2Q+4ffhmuTiF96aLkeP+/r3XejdtDVnAy7CxAbKyw2ftwJvHa1Hq9f3Cq+NtXe9RZz/1jxPfdrzf0+W50m+VXjfYtta1ps2rY3CRspWz478NrpmyqXyyiK0tE/zQU8B2RRRRJEZm7M8n/+H7/H8OAwsmAiiAJf+c2voMoKv/u7v8sv/OKXMQyToKki/7s/JvzUi6SefoX+759Cms6iSzJCpYrR10twaIjyQIK3CvMM/4MvUdvRQ72/By+TwgsaFBt1zn58huGRYRTN4LEnnuGuAweQ8HAcD9tx+d5jjxOLJ8jnczQaDsPDIxSLRQYHB5qnOHse4XCYy1cvo1sWIhqNRhVXELEbDc6c/YiDh+7ma1/7Brt270TVZARBRdVk5qZnOH/xKsFQhO1jY9j1OpF4HLvRIGCaLOZziKLL/PwCimJgBS0unL/Inj27qTdqhONhSoUyoVCYSCzKzYkJwuEw0XCYaq2Iosnohort2KiyRKNeJxSOMjk5Saa3l3qtTrlU5u23jzG+ayeSoBCJBvAQURUBUYRqtYZlBlHUOJVCAVUDURcQUdB0A1kykGSRSDiIblpUqyXePvY2wyPjVMpzRKIJ4qk0+/bvxzA0cvkc6XSKbDaLKEhEIlFCoTCyJLJzfCd4HpZpYJgWUxMTeB6EIjEsK9iMZWtaCLLB4twimqLw7PPPMzY2Ti6XY3FxgXA4hIBIoVhgfnGRwZFRwrEAQVOjVFokHAsSCcdZWFhkdjZLOBphYXGeYDBCo+EgSjLvv/cBBw/dyd69d2AFTBLxGMVCkWeefoqHHrofTTMJWDqyJFNr2MzPl3j55Ve4864DIIBpqUxPzzA/v0imJ9M81TlsIUoiphmgUq4yOztLItEMdfTyy68QDJqcPXsWURSJRuOUSmVq5TJTM1OkUmkE12NiMouqKQQCIZLJCCdPnuL1N48RicRIZzIUinmKpSLhcJRyuc63v/nXhAIWuqaSTiUJhywK+Tyf/8IXSCYTOHYNTdEYGBzmO88/x6Ff+wcUQgp2uUrsZpbYpRuk379K45X3KO+/g1//7d/hl3/+lxEVhWQiwPefPoao29SqFWRRo1Kskp2+ztBoGuwatiAieGv98ARBwHvqJeDWtw37FYLt883KXLjaGrXW2knHeXx5fu8g7a+U1fy7coDlWktQtzY08wq++85p20rs2JbuO8i6y0miKMJS3/ged+aj+6PO6UW/FWurBXT5ebNr90bFt5XTDby2qL1/RVFc65JzG3X7f18v/VZPn24CriYtx7fH91622Ba/b7OfR9qee0u7ulr1NxOuloM2LXcuf0vt397a3YWreLlN6nYezXo52vlY66e6fgQJP7Zale5TAK+dsFurjh+JbcNbHXQbUbeX47nrDPBPOzaqn5e2e1EUu55k13Wy6ZDulgHeLVIrVM5nCV5h64va6ko3ftwJvC7f3gZ43VzCTRbYIal/3LYLb53AqyhIKwcYed7yAU6bZaUFXlvlt8Br97Z++uDVf8DIck1twias7X8XgfmFHFMTk8xNZXGrLqMjGQJmkErBAaWBIot88P4pNE1m/67dRH7/D9D/5C+JzuYQgwbZkE7xjiGuhMLUh3tx+1NUQwGulEoYiSSubuDaDVwJbFfg5o0pwqEQpqkxONjP3MI8niCzZ8/dXL54AcvQeOXl1xjfuZ3BgUGi4TCffHKWfLHCiZMneeCB+6nW6wiyws2bk0iyTLqvF8PQ+eoff4PxXeNYwSBWIEymJ0lufh5NVhgcHKBRr7E4X2BxIUsi3cfrx47z0MMPUSwWqJUrmMEQqqqSW1igWCwhSh6aanDp0lU8UWJ4ZBuLiwskEnHAAVFGNwIomkytVgPPIxqJoioBND2A60ngKTz66F9xzz338Tffe5y9B+4EXN5/70NSyTTRaJhEOkU0HCOVimG7HsXcPNFolHK5Akg89vijBC2VeDyNGR1EVVVs1+Gb3/ounigQCRkoikGlWuLY62/R0z9EIqFjGAEcwaNermDoKqVCDlNX0c0Q5XKFQCBEpVLDdRvUajUa9RqGoVEqlkmm0yh6ADyBSrWKJCvMzGb5sz//Dkfuvpv8/DynPzrDfQ88gIBAKpmgVqugKwEc18F264TCEcKhBKVimVgkTjSeAruOJEnMzs0TT2cwLQvXE3n/wzM4CNy5fzfRaAQQUBSdQiFLKBRh//47qDeKSLJObmGO+fl5BoZGePON4/T399LX30uhlCMUDmNZYT58/zT1co2e/l4cp06lWkGSZF5/9S0CAZNkMkYgaJCMRqhVChzYt4dcscbg4CAB06CczxKMJhE8l1q1TDKTIhaP8Naxt9i2bZBto9uJxuOcfPcU75x4hyOHDyLJFrKiks8VOHLkXjLpJPV6jUgkhG3XSKR6KFbKWIZCtbRIJBplamqaffv3I6kComVixyN4u0b42KmiaBb25ets+/5xftVM4Jw+S+Gucd4+8RoP3ffLBOIG/f29KILML3z5lyhMfsz5t1+iUFhgYHgQWTXXnCIrCALilx/e8knD7TKBIAjLMVO7kx/YrQ/wNgIynWbiFR4+JYTWldZvy1bAaxNQfnbgdQ0o+qy7ZqvFr6N4Xq/uJuj/TFjaUEa8Fbl7Q3lti/3caYt4p/JW/IN9YO0Wwau/gk7gdTnFpyZTb4QrOqfvCl7ZaCdGZ3C5ubo3ovXH1t9p8NqwG78niK3YmWuHsN81s9vw6aQpBWjGf12tVVxJtMU4r2sTrNu21b6NdJjzfYvEso9EZ9/KVWV32d7k16bd8omC/r5ZutynXgEBpC8/vKa/17v305r36s+/Qfp1x8QmwKi/rvb+brnz+Pu9Xbu1vmZ6bf2d6ut0rdVQ+NoqCm1jSgBBxPW85f8LQlsML1a+q9Zff59s2M9t1Fw0PDyvGedMaO+spavb99q5j/y+GutPpJ7X9KlyXY9Wk1tjXFEUFFHDtT0kQSa/WOCv/vSv+f3/9X/j73/py0SjIQShhK6GmZnJkl24SiSaolGpsX1kgIPfeobIV7+LWyyw2Bvj5UaZbQ8/yMnL58kMDaFqMk89/TSHjxwmHk+zMH8DQ5VIZeKAwuVPLhIOBFAkj1g8Sq1WQNaDXLk2y+TNG2TSMY6++irbdowTCFskE0kURUI3VNLpNKahsXf3OIqi8PW/+Av2jW1jfnGG118/wejQIJqssnfvLmqNKrVahYWZG9ieiKKZ6IZKMByiWqtSLhXAVWg0yjz8+fvJLc5QKi4QiYTxXJdCvoyqm2Tn5jl9+hxjY6MoGvSnM5iGgqYraLqKoqjoqo7n2jz/3AvEolHCkQiTk7N899FHuWP3GIpkU8rPsXP/OJIQAqeK0KgCAtu2bQcRPLfBmQ/O0ahX0TQNRQI9FMRDRpBkTMtkqL+HUCiIKIiomkqhOE9A09g1vp1kMk4gGKFh19F1k70H9qIpEo7bQLLL2A0d5KavbTBocfPaFUzTwDACnPnoLPFIFM0ykVUF3dCRFYWZmQWmpmaIx2Icfek1hof60DTQVYNIwKK3pwdV15EkiUQsyqmT73H27CcEQmHiySQeDromY9dscOuYpoEgyrzy8lFGR3fy1NNPcuTIQSTP46XnX2BwoI/+vh5su0ogGMF1G3henXKpQCTegygqaLqGoijMZReJxzOUyxUMXWJocJCB4RFkUUGTFRq2SD4/w+5d47z/wYeYAQsBiZAVoF6vcP7cebaPDRIMhSgWawTDYTK9/YiyQiYVRxRcKuUSlWqFSCTG1PQssXiaer3O4kKZoeEh4rEYsuRiBaLsHB/j0MED2PUGlhXkuedfYGBgmL/53mNEQhYvv/wKQ0MjxONx8sUSwYCFKIhomkW5XOCNY8fZuXMnxcUFItEYuq5SKBQ5e/ES0dEhvG0DlIdSyCIMzZfpffkE/WWBh/7Dv+Y3/9Gvk0r3UbYd/snv/FP27dnD7v33sHN8L6+9+BLj42M4agBJEcHtHrey81zirfrrB6+4HnhLFiHWbIRdmn7b5lNvgxjTgrg8D3ttc50fMK6sFSvx6dfSRvOm57u6C5jNy99Pfiuw3+fWX/9KnFfXdVbkndYa4JdjhPaatkZ+0NTqJG+psK2sZ61yPgujybL1sY231phalu98SuitgtfNysYtfroCmHXa0a1v/GdjuHjNnYSw6p2LgrAUc15Y/Ro8X1+01duRL2HledttRxDWrV2dXPRWfwMreGE9ul0LrD9O7Fo5UEJYiokgICKISz7uXXBIC7yu+G37fWLbFPziim/7pxL/dqmOtuG+ildZVn5/q0X+7QGvPp/XNUNCWPd2mfwf2cr/19EqfkZaB//j5bo3Aq/LP2/uw9joI9oKwFqbuXPfuE+9AoD4pa1ptteWv8XH66TfKO0aIM8t9EeHPJudxLZU15bZurXFd6saU0FYOi5/o8W+y/faOf0aUaM7w4CwZPWVZZlyuUytXMXQDbKzWXRVJz+zwDf+9OvcuHINwfHYNrqDn//5L2OaBrqh8dH5C2SSfUzfmGJ+cpaebUN88vQb7Pg3/w/ezCzZsRTlvTup6AbDfT1UbJuxHdvJ5fNIksKRI4eRZRnbdunr78G0QiDA9cuXCEfC1Op1UukMtXoVywpSKpXQdI1sdgYZgVQyjqHJRMNhNFUlXyhgBAIIskIskUJVZFRF4v777qfuOIRjYSwrQDoRpFqr4boO0XgMBAFJlFBVle98+zvcf9/9aKaGrEhIsoxhGiwsFihXqphWgHgyRa3uosgS2ewMdqPCM08/z86dO+nt7cWyLETRw3ZtEJohhMpVG0VWKBdzfHT2DPfee5hcbp5INMz9Rw7jODaqZiAqBpVyFdMMkMxkUEwDRYLs3CzxZJpjbx7nnvsfIByLohkGlVoDSWoupHbDbk6BYvOwmmA4RG5hjlqjTqVUxDQNZFXCc0GWJQQBJEnm+rVpEokY169cJBxPo0pQKFUwrSCyquG5HoqicfLdk4xtH8V1PS5dvIxpWjQaDk88/iwXL11m3779BIM6Z89e4MKFqwyP9OO6Dg3b5pNPLrBjxy6QZN57/wMefvgLBC0NURHwcFBljenpeTRdQ5QUEEUisRg//OErHDx0iHgiysTkTXbvPYBhWZSqZcLhMJLo4Xg1JFFA0zQ8SaZULlOt1vjww7OUi2Xi8QjRuEmlmkNSQkxNZ9F1k7Mff8yrr7zGzvFxcgsFenv6CIYDyHJzG7nnili6weTEBIl4ise+9ziuK3P69BlGRrZRqRSo1RqcPXueoaHtNGyHWCxBNptlLjvH6TOn6c1kSGdS1Os1Jm9eJxqL8s67p3j/9BksHa5dmWTPHfvYs2cMw9A5eOgQNycmiEbDuI0auYUcimYgyCozk7MMDg4SDgfwPBvHhXK5jCCIDPQPYVkGb7/9NiNj21F6e2iMb6chuAQ/vspvJQcQrt7gd779NR564HOUF3PER3ZSsgUKdY/04Hb+5s/+gDuGe/DU8JIw2Hne2gz5weuy9LDsc7f+XLXxPNo5/3qW2+68b23e3HhRWZ3fdf3bSDfacbZWQb5u7bcBXtfIVBtwtqGc8RmB147k+dK0Jb0ly+smZePW2t1JfulE7WklSdqUq5nnK6993V+vfzfL04ZyxSZOzb1dl7n2sj7bMvyN3aBtfstrhx2iK25jt4gHbpF+DF673y6TX6viB68r+VfSeWwhjlsHWnsq4ErdLc3bKgDpz+9Pv8lvy29d7ZZmVdlbpW7g9cmXQRD+VoDX9XxYt9In/j5cTyFw25PCOuDRvwg0+dg8gPZvs+1Y3Ub10/nAieUxuYniWnxoms65c+eIxWJLv6891XB1vpVnmqbxyYcfIyEyPzvHzWs3yGdzDPUPEo/GMTQDT5B4443XGR4ewrYbXL16nempG4yMDPHM0y9wX6XMrj/9Lo3+JDPbowjRBIJs4tg28XgEWTPwPJfs3DzJZIpatYxmGGiaie3Vmbhxk3K5QiQcJJlOEYulWFjIYQUNFuZLSKJMMp5EUYKIgoAoeSRTMarVOjUbJEWmXC6Rz+WoVCrN7ceuQ7lapVG3MQMGyUQPdr2KokrMzMwQiUT5kz/5KocOHyEcCLBjbAe6biCg0ag1UGSNE2+9QzASYmBggHqjBgKIkoKhqxi6il2v4Tku83NzDA4NIkgCi4sL1BsOsqxhWgEURWPy5gSRcIi+3u1MTc2QSmWQRJXp6QlqdZs76+55AAAgAElEQVRyuc7Vq9e5cuUawaBGKBRFkiTseoNIPIYoiWiKjhU0kWWpGa/Ttrly8RKxSISjR1+hN9ODbmgEgiEq1SqyLBKJJZCWFuRcPo/ngWmaeB40GnVSmQgIdRrVHLKhY1lhXnvjLQb6B8BzefGFH5Lp6WH/gT1IgsPN6zeo1apkenoRBLG5LXbbENVakXSqh2KhwP4DB5ifnycWS1EqVVAUle8+8gjj49vZuWMHjmNz4eJ5gtEwjYaNrps4jotpBpiYmCSWSCDJEpIEoyOjCKJINBqh4YgUS0WCwSC23WBxYRFFVpBljVKxgqJq1CpFLMOgv6+f6ZnJpp+uGEQkCILLG6+9wZXLlxkeHea9U+8xPDRIIpng5s0bZHozqKpEPlfk0sWr3LFnF5FoDMO06Onp5eKlszz0Ew/guFV0PYAkK7zwwotUKlVEUURVFIrFPH39PYyObkPXNURJxHYdKuUyoXAEUZTYt/9OLENhZGSEUrmEososLObwPJF0KkOtVsUwdDTdxPXg6tXrHH3lNe6/9x4WF7Jk5+eZmZ4lnU6j682DvhzHodGoEwxZTWslDbT+FG8tzBCXFVIXbjIq6cyM9XHl0iXiYYPc7CQqNrM3rvATP/kQ/+Hf/3vuvPMIkqGjKAqe5+H8m/8X79UTiJ+/u/Nk1kbtLgmrdtasmdf8c/7WwKvnscq9oSkeCF0zeJ67Zg1fWYc+W/C6ViG6efDacW1Y54dbBa/Lt345ZzMLkD/JOjLcVhTU/nRrrHy+tbrlkrM89nz5Nqx3A9m4XU5cT1bxt7WTrLMhraOwWI+PTctLHdraflLzZoXnjfr2VowR3cbIRnV0H1vrg9du88HK/dqPwA/yPyvw6h8vsqJuGbze/pFlf4dJFMXl63bL+bS0OT+mH9OPCrW+u1qtxsjIyJbyeZ5HrVbjo48+4tqVa9SrdSKhCAEzQCgc5dr1m/zm//gVLl+5BsAf/dEfUSwW8TyPxalJUqkgU2ff519dniHyH/+SKyNBZoYiFF2LhYpEcX6eZCpORRSQZIVCqUg0GsN2XIqFHLnFRZ57/nmmp2ewDJXh4WFC0Si5/CLlSpknn3qayakpZK1GpTpFrTZLMKhy5twnhCJxyrU6zzz3Il//1l+iaCae69KTipGOh7EbVaxQiEceexxT08nOzvGd7zwCssXk5ATDw4O4nssv/OIvoOkWnuty/uOzPPvs85Ty00hChXpllp07+hgdHuL61UtYho4keKh6Ezw6toMsKnz+wXvZf2AP8XiExdwCmXQfN25MIkk6hXwV0bXRNJXsQo54Msi27QMs5qdBqNAzOES6Z4Djx99hbPs27tizh1QmCq5DtVik3mhu8a41qgQjAWqVArLk0ahV8RybM2c+RpJkvvjFLxIImpTzc0xPT+HJKo4n4DTgxe+/hOeKRCIxHMehXq/jug6qqgECc3MFIpEeNDVCteHx4Oe/QG5hjka1jG272I6D3agzv5AlnYoxPNRPpVpC1RR0PYzjyMQiafBk7tg7TqW6wPG3TnHx0g0eefRxEqkkP/ff/D2wqzz/3FOomsbBu49g6EGi0RS2bRMMGVTKNfr6B5ifm0NVVcbGh3BxqFRqTM/M4ToeH390DmlpM1g0kmFyYg67LvHM0z+kWqwgCS44FcrFOfbuuYuZmQk+OP0GueJVnEaVL37+QWKhAKlEjN/8zd+gr7+PublZ+vrTCALU6lVqtTqKrOMKHp4oIcgqjz39JD/1Uz9Lo+5Rq9moms7C4iL/5J/+Fvc9cJixsRFMSyeRjOLRQBZFSqVi81AcSWZw23Yc4ObNmxx96QdIcgDZ8DBCArJmIko6N25MMzmdpVCsIqkmqmZQLhY499EHHDx0kPziApFQjHdPnaZeb6CoKqc/PE25UuHpp57nnRMnkWUBT6iTnclRLrvcdeg+lMOHcH/qPvbNlTnw1Sc4/ubr/Kdv/DXx/jFydYnU0E4cK8U/+9d/wKlXj3Ls2DHq9Xpzorg20bxugTzPWw4N8l+T/ktZRjrRpyEb/ZhunX7c/xvTVg+ZatF/yb7tZO3+MW1Mf2ssr3a98XuisLIf3k+C71qPOmmOWvvGWw4Cgtjmu+E147eKgrRket8AiPriKQmiR9OFtrXv23fi4ErK5r/W3nVae9dXNCZL/1l9+dhZ6+OwnjnS78/bTLusefLzspF/71LbvQ/OIYSDiA9urNVej/zxRtcm8F3tj9r8KQQEWIr9texb0krnHwtt2tn1tIvtGr31tLK3rLjw8buqhnUsn500fuJyBMGlvvD1jd+67y9jzTbgDpptv3Z4vffWel3L9bfGqrgynts1hMu+HzTjBS5bHAQXR1GwixUunf2EQCTC1NQExYUid+26k3v33cvYjj4kTQdZ4uUXnuKVl19j//59qKZJuqePWNjgoQcfQmjUaFRm2f/4GyS/9yIDz7xFVZd53itz6uI19u2/m3A8RiIWQlJkVEWlmMsjYCO4Lol4jKBlIMoqphlkcmKSvXt2oKkGhUIBVVMxjDDvvP0BpdICfT0pBCVEKpXGXgrZ4oguvZle8ouznP34PDtGxxgc6EFRJBo2/Kf//E0OHjqMYzc4cvAArugQCceQRYHe3jRXLl4gGI4hyzLVYp7F+TlqjQqDI0OMbtuGbkiInoMjKKiiw4s/OMrNqUUqi/NkBgbITkxy4t2PcBrw5NNPMbZzD4lUjGIxT7FQxAoEuXLtBgP9/Wiyx9TMTXoyfZw4/h79Q30sLMxjGBoiCoIkockio0P9aLqEY9vkFgpYAQtVV5lbLBAJWTj1KroRwgyGAIGGbZMv5Nl38ACVSglJFJianiUQiuI6HvVKCVH0UHSLdDzI4nwWPRBGEWXMgIksiWSnptADIUwzxMLiAoW564SjGbJTMxw7/g57DhxEkaEnkyI7u0AgFEe3dARZQlNNKpUajWoFELGCFrIh0KjbyIJCpV5heGSY6zeuEotGiYWjxOJpRkZHsAIqtt3AdZphct46dpzh4QEESQRP4pFHHmV4KIMZTCB6LoLgoFoBNEFBkQWsgEGlUuXS+fNcvX6NVKIPXfNID/Tz7W9/h337DyKqAaYnLuPYLm+++TaWGaFWa9Col0gmk2iGhSiB4DlMTU6SiMepVSpMTy0QicYplHLEEwkEBETRo1GvEIsmUBQZRRXAc0gmM3iC1FQGOBUEPAzdBFdmYTHL8WPH2b1rN5VKAVXR+MM//I984cEvsHPXbhbz09RrIqKnU6sV8AQR07SauwVKeVRdw3ZkNFMgnUowP59nIZdDN3V6e9PEIhEUGWRZYHJignvvu4uDd9+J43qIksZ3H/0ed999CNttULGrTJcrvHTjCgeMMA98MstIw+Pm9gx9mQSmJnP1yjVkyWV4zw6mjn+PT86dZduuA7hPHQVh/dOGO1maVllE2tbm5kF1q338WLZ4tCa41ZfgCavn5aVYqs3dJSt+oyvnE6yNnbpS/tJOseX1xu/T6vdB3Uhq2siH1U+bt7z6+7JT6q1YXlfiifrydbNaCZ1lgY3oVi2tW9rZ1uW1LFustyhOdHvLkiThOM7G+TewFG+Ud9U73uAU6OZ7FPxDepmWTy3uZsX0X/5x9mn4b7bq6mCJ9suR7en8+fzpWrJzMway2GpAW9tW+7iu4UfsLr81E/jl9+Y30DoLRegg13eSJW9p+7wfEwmry74Vy+vfHvDq2zb8WdPqqjbaHrMm9zpl0XHgrU7QeRHo2v4N1ox1gcQGJyNvvcubGcQH775t4HqLDPg4aZ+4tlhAl+3eLdpqrOEtk3/i6HrTnqXzg24KjFZ6z3ffKf964HVt+vX7bt36/T4/a8hb8jETmlfDRRZk7LpNMVfg0rsnCaoy//C//xVS6RBqIIOiWOiewbb+Ma5e/pDd48Pc99opek99QPjFl+l56RiJZ46S/Osf4k5MsWjJ8MA+pB2jhOJx7rpzH7IsIioiCjA7O4eqGTRsD90wCIWjNGyXQqlMpVohFIwQCoVRVAFR1vA8B7fh4jQqfHL+AvnSIvd/7kHCoTjVaoVcboF8PkcsmkSVdIKBAK+98SYPPfg5stkpCvkFGrU6Zz4+y46x7SwuzKNpOookUcgXadTrCLikUglkWUFRVc58dJqB4XFKpQqhQIBqqURdVJBkBcmIYAWC9MTCRBMG42ODCHKQyak5hkdH6O3vaYbVUTzsRp1wMILdgFKpzvbt2ykVC5TKJfoH+rFtl23bt1G1i4TDSQRMvvmtPyedSeJ6Ho7bjMGp6yqLuRyKolKt1ogkm36/9UoJEQdJUJidncUKWISiYRRVRfA8JEFDEHWefOIp+vr6yPT0oCoGjlvHbTik0r08/sQzaHKzbeBgmQqe7ZHNLlCt1YnE4kiyxNe+/nW++MWfRtFM4rEIsqYTCJkUi4tLAMujUq7zF3/+LUQRXn/jdXp6erFMg3yuQLFYZGxsDE+Q2TE+ztNPPcXhw0eoVirU6zUCAQtJVMjNZZmenCASClAuFYgnkhQKBQ7ffReWpeHaLu+9+y5nTn9Mb6YHz3N58sknGB4awXNFAgGdHbvGEZDIpGMUi2WG+nqJhALN8GlAb18/Q8Oj9Pb2UynbPPPss9x198H/j733DtIsuw77fvfl976cOueZDpPT5kVYEIkmLQaIFC2Zkl226D9c1l920f+YJcnlKpdLtCWTqiIJEoBBQiDCJiwIbMJgIxYbZsPszk7OM527v5xe9h/fdE/313lmliIona5b/b337j03vPvuPeGec5BkaNo2ISE9PV0IWVAoFHEdj0Qyieva1KoFJASqLNHX24NpWXieSyQaYXHqOhBSKpX57ne+w8BAL6lUpmXjKLeY+KtXrpPLdYIkI6jz0MMPo2kW3//u95gYHyZixXjvvQ8ZHhnl+vWrGIbO/NwcHR0dyJLE49//AXv3jRM1o3R299I30I/jediuwwvP/5SR3aNY0SilSonuzgyyrLC4WGJhPs9DDz3I6Y/PIAQkEwnm5/PYgUffZx/h0s3rjMwU6HrvHLEb00wOxZldmCWZTKErMVKdaV5/6Xks4ZD5cKrFEGzD4/DK2K5La9OSkG7pev3IBFusf2tubLX3b7Zf3+2x4HbY6dnanTOvS+PqeR6yJG9YfMuW73A/vFPYKb57Xf+99jZ8J8df7wp/+/UWU0baIrzLjttxD5nXbde5/RKry63xFrw5vjsdnvbj6Ktx3iPmdQ1TcvfHhn/hmNedSLx2Amu9i626asO3dhFuq31dXLfzb962kOC2q28hQGzBJH0CzOtyW8Xqvm49/us/26lDqNv1t11vlG+Dlqx8tnWQ5/bybXafdyJFvQNoZ+hut6f1zPM8JHl7Nsy3JZzrL0JLELLF8Zp2Rn4TYkEIQbtflPYxW+McS1qhud2oCbfyBqGHQMLzQjwXVDfg93//f+XggYNUFgpM55v0Du1GVjViURP5//hD9B8/i/fdv8Z8/GmOfnSdzPeOo07NoTabBIqMrSvIY0P8PHB4P2iSPXCQZK6fC+ev0T/cTyFfQJYEiWScxYVFIlYUWVZ44vEneOChB/H9ACEkIpEomiLTaDRRFA1ZCVFUA3yPhu0SjRr09g1y5Oih1rHDZgVZCijmF9BliXrT4eNTZ+np6abpeYzu2tWK85nNoKoaE6O7yWTSKIrKtWvXsSwTVdM4+eGHHDqyv+WQR0iomkoyHuNr3/wmDz/0CGEQUC4X6c6m8Ro1FE2lnJ9Fi6VJdnQS+CE1WzA3O42ESyweodqokYjHUFSNSq3JwmIR23WIRUz+/Gt/wYMPP0KpVEQ3TFw3vOVd1+Ly5Ssc2L+XXC6HZuiEIUQjMZ5/4cf09PRw9uw5pmfm6O7sod6oI8sqH35wks6eXqxIBF3XqNVqeJ5H4PoYuk4+X2JycppEMoamKxhGlGqlhOf7mFaE3bt3c+H8WSLRGGHgI3DRNAPDilAsFkilYhSKJUYGh4lEY2imxvXLl0DINOt1FALqtToRy2Jmepo9E3sZHR1lYu8Ep8+cJhGJU6lU6ejqpFIqMTU1zcenTvGlL34R09R555236evrw/N8HMdHj0UxYxHSnRni6TR/8Wd/zpFDB9A0mWajhiQE2VwnsqKSSbWOPI+MDJFKJfno1Cmy2SSlchnH9vjxj55m1+g+5udmmZyeIp5M4fsBZ89f4OPTpxnZPUqlVETWNCxLx202iETi1GsVolET37UJhcLZM+dQFQnDUEkmE2iqyZtvvkVPby+moeIGHiEylqFSqzdJpzPcd+QQ8XicwG9pBj3fJhq1sKwIJ068R09fL4EtsKIpAmFz6MAw6WSaSqnCmTNnkBWd3v4eOjpyhGFA4IOEz9lzlxge7icWjREicGyHSCSKoZuMj41y4p136e7qJJfLEPgerusRhoL+gQEsQ6VRt+ns6ETXZGzX4/ChA1w8f4bxh++n2p1j5swFstdmyT7xCkPPnyD27WdRv/59jG8d5+jJRTLPnCC8PgWDfci//vk1a017DNel9WuJcFuP4Ftf27HBYrbRY9FOW+yced0uXbI1tNNEWzESd6Z5FaIVcmjtWOyg5W10wmb0wrpCiG2U22zPX3k8dT087fSP7/vbpifa89xrymOjdqyc8+vRQRuZw63EtbLfK+m55bysrnvNCbB70LfVETfWpwHvhJ7bipFrv78UrmuN3fxyXzeP67o0Ght5Qt7I5nU7/dhuHza6tzX8Z+Z12wN3t+fIVxfdeBHeoPQmuNbD1w7tjMQW+T9BzevOJVXr17NTLeVy3q02/80W/bbnd9KTT5JJ3bDeDfouVj7fwWIDrGFeoW0RFFuP5eY3dvS4lWfVQr1i09yyoI8QMoYe4czpi3z81gmOPfggiUQS/dw1ev/4a+SefA7rG0+gffMZ5Pk8ot6kKanI/SP4o/2Ej95PfWyMRv8QBS1E6+3m4twixZrLo59+lFKpwqXLFwkln/fe/4ijhw4jhMTU5CRvvfMeE+PjiMDn2OFDuJ5D4HsYukaz2UCWJa5du87kzSm6ujMQykzfvEamp49iuYii6BB4zEzdJFQ0jHiSRKaHv/zW49x3dB+93f3kCwvsO7gXWdZRNRUvCNANi2TUYmpyikQyheeHZDozIMmMT4yBFBB6AUHILYdINkcOHqBcqrBQaMW8lBWDpuPQDBXi8RiyFKBg4FeLeE6JgcEhorpMuVymo6OTIFRxfR9F0UikUsRiOlcunec3fuMrIFSsiEahUOPMxxc5/sILHDm8j0RMIz9fQNNMqrUGiXSCZqNKPr/A6OgoXV099A8M8dG773P6zDluTs2iaxa9g31IikS5WCIeiSCrBrqqMDM9SWd3J7t2j5FKR9B1FUXWefuNN+nq6cW0dIqlRXKZFLmOblRVQ9cUvLB1JCoes7AbZYJQRZZkMrkMTafOa8dfZM/eQ5z+8BRDvb1U7QqqJlOtVDl79iySrJBMxjBNi3K+xPGXfsqhI4do1qsMDAySy6QwdYWF2RnOX7zEnj0Tt4RLIU9970nuO3IUGQidkL7eXiQJ6rUydrPZOoqsm9TqNrMz01w4f4GJPWPU6mV6eztwmjbZzizVaoOOXIK5xTpnzp5h7/79ROIxfMejq7ObUrlKPJYgEVFxXZ/erm7sWpWXX3qV3cOD1KtlKsUiHT395PMFRkaG+PijkwyPjjG/UGTX7nEW8wXqtSKGZfLd7z+Fopt09vThOA6FhTls12UxX6RYKBOLm3i+jSLLXLl6laHhYcKgimpGQNJwag7TN6+DgPsfvB9FU9F1Hd93qdfqvP3WCfZODHH5ynXue+AI5VIRKZQol8qokkKlVKFUnOHAvoOEQYgkQJJkCsUijWYD02ydYvj5G+9gWSYzs1O89Vbr9+BAL41GjVLT4/Wr1+j68mewPnOEhb4c4r4DFHb3oT50H87RA7j7x1BPnqGQMDF/+79Ys/ZtRpgu0RbbIq7vkHltz7ET5vWOG7MG1jKvO8m/HeZ1s9z3QvO6JtsWDMdm5e4mTzv9I0nStj30ttfxt0WRtDOy6z3fiHnd8N4GNM0StJ8A+9tiXu+EX9gp87q+o9hVJdout6d5vT22a5nXu4V7R//ee+b1F8faWxIgtWzj2unw9TRGWxpbi2B1Wrq9NMlD6Xa6lUdIYev/CqlSS1Mkr0qb4grXtisUAaEIcH2HUAQgZEKk5SRCWhaL2zQ7XdPVW+1eN20wLiE+IevYQ7T3ZYO+eb/3B3i/9wfL7yto6ZO3buxSNUuhB9qbt4WUcNWzFfMlFCxbC2x33O4VbNTm5bl8a25vVGbd/BvUsSFIIUjh8lwLRYCQuZ1CCP1gY1NmsTq17KFup6X3tZxutbP9e135bgJCQlkQyqvn9tKGoCgKvu8TNh0kScIJPCRJwnNU/uj//LecPP4yCxdO80/++39GT6FO6r/5n8n9y/8bu1xmrsvkxtEuyv/wMexf+yWqn32I2v49zCQsRC5DpVxkYeY6rxz/EX4oMbe4SDab5FOPHqVUyFOt24yN76EzlyWTjVOqVggRDAwMML9Y5tLFKyiahmzqPP2DH1Mql/F9H0u38Hzo7h/C9RoUZ+cp5ufpGxyjlC+SjXZTLkyimwqReI5kNkMtP4/baDA81IfjCepOtaX5LCzi+VUUEVKYn2dhYQ5f05ibn0IxTS5cPItdq4NTpl6eQ5ZUarUmkuKgyAaJuIphGESiKt3dGexmjWq9wk+Ov4rkuCwuFJCESsNtoiSzRBM5avUSwowRS2aYn54mDBxUNcqf/enXcBp1LCvG6PheKtUaQoIwkCjn55ievojnVVu0gTAZ2r2HN998g9mpKcoLRSzT4L5HP4Mftog2oQQcffgIX/z8p1GEy0OffoDSwgzl/CK6riMpOrIQlCsluvu6yS8uIGkSsmri+1Cr5ekb2kU0ruE5MoqskMt1YTcbPPfCiwQihuOEBL6DKssgLEwjgpAVPNcjZkb5nX/2T7HrBY49cABHCYhFszjNEKfZxHNqjI+PoWotTWxXXwdDu4ZRVQ1ZFThumaZTQYsYdA8O8g9/+zfxAo9SqYTrNPnsLz1CvjRP07bJF0ukurI4gUw619dywBVqlBcX0GSfsT1jHDl2kMVCEcOKo5pxNMOiUiwRjaqM7NnP8EAn8ZiFpkhENAXTVJEkOH/2FAR1rLjF6Pgo5YZL18g4gazy6s/eQo9niHYN8OHJDzl8aD92s8mnPvMY5UKTmakp5mbmuHj+OroW42tf/QZffOwzSIHH97/zJAGCdGeWVDRG4Psk0mlsV1CvN9GNCLpmEotoxJNZDEWmVpjHjKpkevrp7B0kn69x6fxV/uJr3+LcqdOkYhZf/tUvoUTS5Dq7INSIJ1KcPnuRUKg0fXjxlddQjSwzs9MoeoiDi2El6Mh18fLLr5JMdbC4sMCXvvxZIhGNarXKb33lN4AQIxrDDSXeeetdqpUCjWqemRvzqLqKbddxbYdKJY8shQRhgAAahXmc4iKO0PHF7fVpI2JWiFtawvZ1bHmf81ets1tB+7q61ixttQarRbKtTCvX4bVtXd2H1Wv2hkzk8t4jr0rt4Lou+Xz+dl/WhCEMESJct771bC3bx2LVXr20R7al9v1lK8Z0u4zrRnv2Zvk3Y0Tb6RkhxJox2KrOZa3/mr343kI77bxR35bHsv29rEK2+j0tv88gbKV1YCVtvVVftztmS783olcVRdmxA7aVpzDa3+0qum0pakkgCANB4IPnBmvHtI02F7AqrXkuhato+/XqXU/Lu1xde1rxfKmtG/Es9wp2opBsh18czavn/atVnVxhF+e67s49g7VT6GG7hHNt3maziaIoax9vIAPY9ktZ0ZZWP1aXkzbZTNfH196O7RVbF9WawttDFvzwJWCtM4wdN+Ueaj7XYNoC9dIH/YnBksBsqY52W88dVH237ZTaj6ZviW719yNJ8qpNTgjWLJTtpVduYvItibIAAsml2aghey75yUlmp67T1dNNIBTCUGPu6kVKiyV6BkeIqjp/cGaR6NPP4XYnaT6yn3pXhL6DRzEyQ4SKiSaFXDh/EUmSSaVTXLl8lVQ6SywWob+/D12XsSydbDaLbXuEYcgrr77K7t0juE6Tffv2IZB4/IknsMzWEd4gDHAcm48++pAv//IXCAMfz/cpVcpYpoGiGly5dJWoFSeRzfH8Cz/h+s1rDI8OY1oRKkUbUwehRmlUyviBz+7dgyiKQiwWY2FhgWw2h1AEhXyRZtNF0y3MaISB/l58SWFwqJ/CYiumqlOvYSgysVgUx/GoVJtoRgI9GkMzIpz++Bw9nX1M3pymUq0xONyHZchUqw10zaRWtfnqV7/OQw9+iqefeoaIZdHZ2QlSK2bq3j0TpFIJbKdJo17BjJg4rkMYuiiyoKOji8994Qv4gU9+cR4ROOyaGCPX0UE0FsELPHTFZHZ2nnK5QiqZxnVtHNdlbGwcRVG4eW2a3r5+SqUimiEzOXmJZl1i+mYBz6+TTKS4fPliS2Osqvhha8IISSDJMogAP/CQgoDJG9fRI1FMK4IsqwhJxTItzp49y9zcHJqmoltRLNMCIVG3Hb7xtW+wf/8BXn31dXLZTnIdOZ548ikeffRRTMOkp7cHwzCQhMAykyiygZBacWVxBefOnad/sB8zYqBLFrPTs8Sicc6cOkNPdxeB52FFLPzQx23CD55+mgMHD6FoBpalEYmYqJIA16HqCBQhIcsCp9lEkU10TW1du01MVcHzQo7d/wDRRBLH8zENkw/efYdaaYEjh++nM5dhevImoeuxe2yEZqOBECG+79Co25TLeXbvGiCTiaJqMl2d3fR093HjxlVSqSzZTALLMpmdW+DpH/yAUqnIxMQ4lWqF+flFjh27D9dzEQKq1WorxJEfIMIQu9nk5vWrnHj7TQ4fO8DhwwdYmF+kXnfJpFpjWKtUuXr5MtMzc8SiUb7//e8Qj0bw3Ikf0BEAACAASURBVCYTE3twvRDPgVK5RBh47B4dQ0gKpi6jaSrxRJSurg4WCiVymRx2rYEqSezZu4+RkWHCMGRhvkQ2nSQWSXD54g3eP32ewe4cp99/k97FJtF/8gXeKU4xOj5OuJV5ThusJIpXakZX49jZurwmiNgW2q+7MYDcSJO63TGQJAnLsla1ZTNt3crx2g69tkrTdAfv5e8y3KkGeFshhu4Sdty2dnpzu89Y+67CW/c2dIK5vRatLbdRX9bQ3ncOm2lggyAg8MN114o7na/raXbvKszQCpCE3EYP3q22p30itGle7yDO6y+M5nWVNGalrV4YrstQboZHltdKEbcziQzD2FaZlVKO7UjjVsbV3FTCtQFspIVsz7MT2Go8tiuZ3GqMdorvXsB2xgs21v7e6/rbJWTb0Tpv1fad1t0O7RK79WBl2fX6sCRwsW17TRlZlhFhiCmrmLJG4Pk4TRtFkpmdncPzfE6d+ph0NsfYxD48DxShMHX5Bm6tRKVaIlmrM/w//kskXebN3gjnzQA1EiMRH8ILTQIBnluiWbc5c/oML7/0ElOTN4nEIkxO3eTa9UlMK4bd9Emnc7iuhyxLWJEIv/Krv0wkYnHu3Hl81+X9Dz5g376D7B7fQy6bYe/BvVy/eYOHH34E37VpNGwi0STJdBZFkdAUgWHodA8M8vHps9RqNWYmb+B6HgBvvfU2tt3EtX1mZ2dQVUE8EUNWBKqmEIvGbtn5qTRtn5mZOXTDIAwEjm3TaDQoFfP86MVXcZUY0xUfyUpTs5v4nkwyZSCrGo7ThDCkp7uH555/keMvHuezjz2Gpms0ajUC4SJLTVynyP7De6g1GrecClmEkgJBgF0r06yXCUWAqqrE44lb713geyHpVIZcLosASqUSuVyWeDJOs1HFtuv4vketWsVt2BTyeUJCmvUagR9gWRZBGLI4O0cymearf/bnZLPZW5rUTj768CM+/PAknttElmB8bJRoLI6QFDo7Ujz3Ny9C4KCrBk7TobC4yN69EwwM9GDoOovzBRbm8/zwmaeZm53n2LFjDA0PkMmmCIOAmZlZGvUmiVic3/sf/jmyIvPFL32ZVCqN4zb4x//4v0LTVN59931URePGjRu4dsi1azd588230DQN3/eZnpnC9zxkWUGSZPywiapDQIPOniSBHxBPRHDdOpqqIasehw7vYX7hJo1miXy+xOuv/+yWVlri29/6S/zAo1qtousGP372b5ianqJSqfLeux8AgnQ6Ra1ew3FsFF0lCAOOHT1MT0835eocqZzFyEgPo8M9OI7DyZOnAIHnuXR05Th4+DBmJEIsEcX3PHbv3oUQsO/QAR588D7iUYNarU6uu5f/6V/8Cz7z6UcIfJdIJIEVifDi8RdQNeOWDT7EE3F0zaRas7GsCLqh85Xf+nUefugonu/yzrsnyGSS5AsF4ok4L77wPKl0gvmFOeLxCP/8v/tveewzD7Fv7xiKqrGYL/LC88+zsLAIoeD4T35KoVCkXm+gaRqNRp1KuUStUoTQJxLRmZ65hh8EhGFLu6eqCt97/K8plOaw3QoPPfwQ3/vud+np7gEBjd/8FXQzitQoYmrqumvtZuvrWm3jXXiXX4GzHe5mT9zO+r2Ub6f1rFzzN4slv929fj2N1XptXo8OXCr/SezZ24X2vm2UYGtmqb3MRvThvQ7ZdGcOee4NrBRwbKY13Kz8ndBHd0PrbVVHuy30yns7rWf1EegWrPct3A09+4sg/IFfMM3ryuu7kcDUajVUtZ3h3QTjllKHjSUu21oIxObS2rvVVgpxLyfkzjSv/IPHVjtIWG7TNpnre/ghraf927TudidF9xjWWghtrjLfSAhwJ7DG5XzbmZwlCehGEIbBciy0JUamLcfyL1VV13Q2lASVYonrl67gN5rYjsPiwgLxWIxEPIOmW+R6epFNCzfQqNsO0zcnqc7OYtfL7LuSJ/W//3vsPX1Mxm26RsboHJigXKwShh4eDTynyUdvnOL8hbPs2buXVCpJd3cn3b2d+H5ANJrmh888y8zUHPFYDEmCWDyKEDK6qbGwMM+hg4fxXAdDt8hkO/jhj37E3rFdND2HkV27mJ6aRpEFN2/Okc11cXNyiqipIkugWRqRmIUiqezfN8H9xw6gKFGEaDI+vhtV0VF0k3TcIBRh65gOAa7jYlkWH314iqeeeY7pySn27d9Dd18nnu2jCVB1A12RGOzqQIiQmZkZyoUCqa4uLD3G4uJlNN2gND9HuVggk8syOzfLr/3qf4lkqMiShCIEhpmhWatj2y779h8mElOIWRrFcolUOotjN1icnyUWi6IaOvNzeVRZQTcs3nnnXdKpDmqVMq7noCkKkpCQFJVKtUE8oiECUGUF13ZxHYdcR5ZsRwYRBlTrNTTDQNM0VCHz5FNP8bv/9Hdp2jaKoiKHGlevXuLA/lHS6SiSpCFJMo1mA9cPwGnQnRtgZuYq2VQXnu1w8uRHRKJR4skksiRx4p0TpFNJHnzgKMVijZs3r5NIxDFNHVnI2PUq9VqVSMREUsC0TAzD4PKVK2RzacJQYBgGN69PcfXaFYSASxeu0tGVYmx8lPmFeeKJBJImMC0Dy7BYmF3gxeOvUqk1GBsfJ5HMYkQtHKdBfn6OWqmKEDrFYgVdj5DJdFIqlBkfnwBFwiXg/sMHEfiYkQiSYZBLJxkeHqazo5vz5y7RNzhAiMTUzRuk4hH8wEGVNfL5PFPTUwzt2gOyQqVY4+ql63T29FEpNTAMg1Q6DqpGiEK13gQh4bsumqbQsGtIioShGTTqJZAUGo7P4vwcXdkUTcfmO999nM989jMMDAxw9uw5urs60HWVMAgoFqtku3oIgoB0LoMVMXFth2q9zv3334+myah6FCEpHLv/GPVmjf6BQXq6O6mUCsRiEVRV5aVXX8W0DI4dOUgQCF766XGGR0Z46+0TDPb347oe3BKCyfhEozGKlTyDI72cPnWNy5cu0tGZZHBgiA8+uoAViXHg4CEkPI7e/wC6EUP7+AI3fud36OzI8ewzT3Dgvgda2vxtwvrr41Z2n1vgbPenseX6fjeM2t0JuNdqx7Zvc7fRs1WMx+oHW7bl7wK092vJSc9G/b0nMT7/IzKbwB1pXjf0gbKGBGq7scPpvh3a+5OG28eGV1QrBJK0scBnPdg2P0Hbd3RHc2NzTem9xncnmtdfOOb1NrF957hUVV2OiXT7CMtqY5NwB0alot1Qhe1NnGXm4VZ82aW/9vcsbSVNuhWrtcWkshyebTm+6U4mXls8pjVl2/q6kSBniXmVf+2Xlnq15lz9rc7d4q5vVdeOqG38tnvkaF0Qq9NKLSEr2rYs6WyvW6zFsQrfjptza2TCW2WlpXEQy/1ul7St8d53x9AWd4sV8XwJYc2RstakWtG0Ve1Z6v3t8Wub++1jHEpYkSiJTAYjEScasYgkYiimhUeI4zhUFgv88LtPYUVV5IrDh689y6iRJP37/47YybPYD+zG7oqgxXv59vee4fChI5imxl/95TfZv+cAxUKJZEcGzxf092bo783R1dVPw/XRFZmZ6RsomsTRB46R68yhqCpT09MUC2UWF+cYGxuj6XoIySWViaGpEU6f+ZCRXbtJZ3LYtkMY+OS6OykVS9RrTX783HM88vDDLCzOk+vIEQQhyVSCYmkRXTNoNvMoSpxqvQZ4SHhoWovZLRfLRCMRZFXDB3K5FKlkil/63GNcvXIJXVYIpRDdtHBsG8e2UY1W3Oi+nkFq1QbpVJpytUgq3U2jYWOYJoEkMEyTns5ONAPAQ1Xg3NmzZLIZivlFurq7WlZzkkJhIU/ENJGkADOaIp7MIskaBK04pJ7vo+kqkYiBLAlqzQbpbA7NShD48NU//RP27ttDJBIBSabphrz1zknGJ8YoV2rYTRc/9JCCEElSMQydUmmB3RN7EUJw5vTH9HZ3Mzk5y2J+kX0HDmBaCRRVJhAa7793isGeHnTLwowYvPjiG/QPdvL8j5+l0nA5fPQYCwszxCNR7EadeCqJHksQiah0d3RimhYfnz6DqplUywv0D/bRaLoYlkmjYSMk6O7r4Ccvvs6+/XuZnZtm394J+vp6iMdiZLJpcrkMnt+y+V2Yn6O4UOTSpavEU2kC3+Ho0f2kEkn+6q/+ml2ju1AVCSkMMQ2DQJJYzBewTI2+/l4kTaHZKCOJkNAPuHLxCrFkltff+DkTE/vxnIAP3v+Yc+dPMb5njIk9e7HdJjNT13jvxMe8deIDfCeguydNMpkmle5G+DUsQxCKkJ6hQRq1kEynzvSNCjduXuCZH/yQZs2hM9fF0088zb79+2g0bJ5/7jgn3/2AZCJKV3cHIpR55fhxRkaGicbjqLpKf08/miozNzODLDQkTSIST1Bt1JGFTTQaI7xlgxkK8H2FRDzLmTMXCHyPUiFPOpujWCrR1dFBPBajXm9g2z4/fvZFkFWy2RSD/QMsLpZ4+ZWX+cpv/QOCwOPggYPcnFqgUa2gmypdvd2omo6QAup1G9eVKSzO0dXVSSFfwDBVRscG6Mh28NOf/JTAD1vxmWsV4hdvEHz5izz+oyd59P4DXLt+ic6BXeuulhtpgJZiiS+l1uK46s6OYGmnXI7ruiWKlXVtvM+32rx6zW/3gLt2P2mP87p5Cts2yLvmp3YwjO3vIQh3xhTuhDHYLr6Vv6WVNBAsRz64Iw1cW1/vts3tdM2W4pItpvjKW5IQhEG4TAOujMe7nsh76cbydxaEq6fZNtu+TNtt1bc15oNb0L8r8K+EIAho+btZv6wQAkkWhATIsoS8QbSIVU1Zc2Mpvmtbp8L161vLJ8ggJMIVNN9G9a3lae4W2kd+dR8UVfnXO8X4C8m8AncncOQ2Ab7dBWtTr2LbuLMjEO2Xq2+sacdW9rs7mnxb4G6HDTwGbGjzuqbtm16y3g74SUkZ12iD12TYovzdN2CD25/EGLT3tU1qfkujerueNo3ABvja8y9Dmz2vENKq405eEFIr5Hn7lZ9QnKtx/cJlhG0z0JNFFgrRf/MN+v/mZ5hPvMAFv4l47CBeXCWa6KdRa3LkyFHCEOrVKo888ilc10fTLU6e/IimW2N8YpxSscRff+uv6O7rJWKaJJNJujo7MKMmjXoNIUIilsHC3Cyjo7up1RsEvo+kKMiyQIQCyxDIukWpVOH1115n7749BK5LOpHg+E+P85u/8RXm52fxPJdUKg0IHNcnmcygmxEUSebiuSvMz95A0ySMSAqEQrlcI5vrwLOrhCHous787CwDu4aQVZnOrm6sSJTQF4TYFPLzpFI9FCsVItEUcwuLdPZ1YVeKBIHPc8+/wNj4XsqVGol0BiEUCsUyTtPGikax3ZBUthf8AN3QkDUFhKBSrJFIxnF9lzAMCAJQhMypkx+hyBqKJDANhWajhqooWNEo8VgMP/CwHQfLNNi7Z5xozEKRdYRoee89c/o0I7uGMQwDWZYwDYvZuUVSySSOY2OZJqpqoOs6qWSSSrmMrlt8cPJNDhzay/TkAr7rEY3FqNZKdHdlIZTIF+aYmNiDJIeM7tpFT08PyWQSwzKBkFQyxcLCIql0CoSLXbdbdpNmDN+uk8m07Gi7O7uoNzxkoaKqKp7r8+6bbzPUnSCaiKEaBrIic/z4ywwO7qLcqBGJRtGNVps13cRxPOKxONlslgsXTjM8MoxpWQwO9iNLAl2VqTcaGFaUdDpLtVwiFo8hqxqh71Gt1AhDKBSKRKMJ4vEYlhXh5o1J9h/Yy8iuYUrFEq7n4jebJJNRdu0aY/LGZS5fvs6Bg3uR5aDlkCiAIPCoVGqoqgF+E9PQiEY1kskkExPjQEA0apHLpjEMGdM0SaVSnD79MT293RiGjq7pjO4aoFQoULddkFr3ADzPZXFhkZ7+LkQQIgKJasXGtDRc18b3AzwHmg2br3/9z/n0px7BihiomgaywDIsZidnmV9Y5I03fk4sFuPTn/40r7z2Ko899hkUWaFSqnL48GHi8RipVJqLFy9x4fxFzp8/z9jYLjy3gaZq1Ot10ukMmmagGzIdnZ3ouoEZManVamQzHaRTKWRFxTRNMpkM8smzaHMzzB4d5+FHH+YP//Df8vlf/wqhCBEiQMJnM8uqluB53WXwjmEl8b1zfDs7Idau/Vq7tu+UyGqnU3ZY/C6gvSpJ3rn98ifFvMJaGm7LU1+b4b7TRm0T4bbkJdt8vGZct6T3bpcDdjqlt/wet2Ret0n/tr+3Vh/b1oq2skEQrA4PuMN3v85qs2F96+PenObbOOe9gM0x/r1mXn3f/1erNTl3h2+na8amGtRt3NluHeKWamuVpLf9+QpofTTttW8eL2qLVrRd7ox5XWpj8MOXQIiW5nWzDXKTS7GkkW2/t16rN9FEbqWl3Oj53wXmdc0meNca12VMbVerNaNLx4ZvEzhrbbtWp/WPkC3bJwXtGuRWLlmWmZ+fp7xYwm/62OUm0UicPiOC9f98g8TfvEr8L55ATM7ASC/+w3v5KD9NNJki09FPs+mjK4JiuYgsw4svPE+tXuPs2TOomkLDbjLU300qnSEE9u2doOl4ROIpzpw5RzG/SK6rG90wuHHtOgsLC+zfP061UmN6ahrXa8WTDHyfWs2mp7eHSDyGKiTeeuNnHDt6iHrDJp6IMDY2QaXWIJfNYBg6xVIZIUlocsjC/CyyquAHAfl8nnIlz8iu3fz0+BsIofHaKz/DMi2S6SiVah1J1qhWqriej6FqyLKgUi7h2BWazSYdXd3UGjVkAbpp8uyPn6e/vw9VkYjFYkyMjXPzxjUef+JpHnjwIWzb4Tvf/g6ju/eC7xP4IX/y1a8hgpBcTwfFconQ96mWyiTTaVzPx9IjLBYWECLk7XfeIl9cYGh4iIZdR5YNbtxYIJ1NI4REpVhGNyPIUusIaqPZwHV9VEVBkgIyqTjRWEt7CiGO43P8+MuMDA+xsDCLphvohkW5XKZcLnHz5g0GBvs4dPAoAo1EIkElP48f+kRjLSdMruug6xqhrzA5OYNuSGiKQtNxaDgOlmny7ol3qdcb9PX10WjUee2V1ygUCwwND7I4N0fDdRga3oWQJF587mXeeftderv7eOmnL/GV3/4t9IhJJBqnWq3SqDfIZNM884Onuf/BBwkCF1n4XL10hb6BAZr1Om/+7A2GRgbp7u6iUbfJ5jqRJIkrl86hqQqO42HFkxCC4zQxjZZtsu808XwXTVPp7uoiErEoFReJxyI899yzHDy8nzAM0XUdXdeRZQU3dFlYKPHg/ceYmJhAiIBIxGBmZoofPfci/b29RKw4ly5cxYg4IAx0S/Daax/T1dFBZ2cGcMl1pAkDECJAlkMefeTTWGaESqWCpis4rsP84iKzs4u8/dZ7dHZkaNo1hAgYGhrAR0JGcObUaT786CyB7yNCn0w6zfe++ziZpMWDDx4hGrMoFItIkomqyczPTfP0E0/y2cc+x2J+gZFdw8zMTPLIo48yPTVJqVTi8uUr9PQM4Hvw7W9/l0MHD3HtxgV++3f+EY5rE/gui3NFFEXF0CNUSjUuXLpCPJYhnckwMzNLNpelkC/y0UcfMjg8zKVLl0gmU+inL8JgN5nf/Q38QOKhhz7FN7/+7/nUww8CggBl1d67XqiLT4J5Xb1376T05nv12jW6/fm9YV5vr/N3b/u73b3ublsOn5xQHNjwNPnfd+Z1+d49Yl7XahO3h2/j53fGvK5Bs3ziYuOyG53e2C5sxLy2n3bbSJu/tHwtM9C3zjEvX6+k73bcuq3gP3HmddWNe8i83q3E7V4yr+sV3wrbqm9ZiLXa0L9l5hVAJGJIB8cRQ73rPt+wuva82xzKnW3K28S55Y0dPd5GhZ/g5rm2srar9iMkS0xmuK6AZCt8Sx+obdvk83kS8XibfU/r/7Vr12g2m0SFxtPff5rPPvcOiW89hf6XTyLXm5yfn8f69H1czWVJTQwyNzfJyNgIHd1DBKGO49YwNRnD0onHo4wMDdPZ1cn777/P3v37+Pmbb/CFz36auYUC0UQcw1SJxjM4foDnB7z15pscve9+Aj8kGo0yNTlFPKbhOAE9vb1ELJPA82naNolkJ47nMTs7SUTV6e/tRlYEimlRrRbRDJNavcn7J95laHgQ07IQkoImO8TjMSAAVSadyhCLmsRTWbo7M9y8eZWB/h5q1QV6+vqpNRzqTZfnnn+RB449gN2oYzfrSCJs2Swm+/jgg3PEEzFcu0zgh0yM70VRVC5dvUJXZyci9NFUiQcffLgVT9D3yabTnHj/BA/dfwC7USK/MM/nP//LuIFLKt2yEbUMnXKthmFE+N5fP45qJugfGCab7UBRNTK5NIqiks/XeOaZF+jr7yIajeE0HY6//ApRK9KyYpBkUqkkzWYN01CxLA1ZsWg0axSLBXTN4ubkDM1GjdFdw0iqjt20KRQK9PR0EwYBgbDR1RR//Ed/xrFj+0knIqi6im6aCKGgyIKrV68Qj3Zw8cJVhoe7SMTjFApFZN1EU2S6u7pIJJJUa1WKpRLDg4P09vegaBJ20+HmzCyd3T24rkNnZ5LR0RGsiEpnV5pYKguaReh76JJMPBZDV5WWHaaQaNYr1CpFnKZNIpemsJjH1FSqzSod2U7qdZvZuQVKxSK93Vli0SiKpuOHAk1REWGAGTEpV2uYuoxlGdRqVaJRizAM8AMHWZHYv38/jWYdx3GJxeJMT03hugHRZJRoJMX58+fQdQUICIIA07To6h7k8sULdHZ0kV8s8vGZD9m/71EuXb3KG69d4fCRLoSQsMw0P3nhTfr6cwShh+3UmZqcR5Zl3jnxNmNju3FDMI0I83OLDA0M0dmdJZNJYloahmkgqSGK5KLIIXv2TVAp2wwO9ZHPL3D//Q8Qs2JIQsbzZPKLDd565z3GJ3ahazKjw8OY0QgdnVlcp0lPbyezs3lGRoZQZIXpqRmsiMqVq5f40pd+iVQ6RsSKU6+HvPXz9xgbHiMal4jENBRV4rXXXiae6OMHz/wI07JIpZK8/NJxurt7SKVSTM/McuH8Ba7fuM6eRoDfl8P90sNkcj24jsfR0W7+4k/+lEcefQxXMm5pX/92mdc7x7dDNVX703vIvN5J+XaN1N0wrxt1dSOt1061Ye2Ob7Ys147/bubJHWruNoRPkHld4wH3HjCvmyH422Re1wjwafMj0qYQuFvFw3Y1rxvVIcnKMmPbcpoprboWK05i3GtKtF1w1j4W/8kwr0IIAt8nDMNlb487nhTLgaNu2ZwiVqVVfyJc/TSUVj0PRVvZWzaoG6VwiSm7ldZ+UOt8ceuk8FZesfJgf7jewr8BAsTWH+9mZRErbFZbabn0YA9isGfZjjNkqa9brCYr+hbCGluR9dYWAesaUbR/IGvtk9gc2ru7ASxvfDv85INbli+SLC3bwCy1exXeHcztJZvgrfvaZrPUMgK//R5X2FBvVL0IQQbkEALRZv90a14rkkw8EoEwJPR8DFVncWaWw7uP8auf+xyTl98lTor4H/wb9v3oNdRKlfmODuwH9nImdJAHekilNBIRDdvOUyhVyPaMEQYqzUYeS5cpFOs0Gw4L83kkSSKeShKNxHj5py/zmc9+jobj0NXVia6pKIpGuTiHLguqpQIPPHA/jaaNpqkoskImm8NrlohFTRxhoGs69UaDEIEQPuVSEU1RsOIxEqkMfijhOA5PPfUs+/ZMUCvNcuHCBUZ2jSCJEEkGL5AQsopru1y7fJ0Tb3/AgYP7MHQZp9Gks2+Eq5cuMj42ihExEK6NWytz5NgxGg2HZDqOrMl4oUBRDLzApVYr06g16BwYRFENTNMk9APeef9DhgYGqFQrCEUnEjGp14q4rkMymeLIkQO4IQSywv79+3GcClYkQrXcpFF1eOmV15iYGEGRNfoHcwwMDeKHPtjVlpMozcRpOqSTMXq6U2TSGXRDo1avsLCQZ/LGFK//7A16e3pwg5B33z1Jd08/lWoVPRZHAiKmyX/4znf4zd/4ZRLJGKYZ4+yZS/QOdRJ4DpoiI8kKHR05Zmfm2bNvkHgiRsN2UfQ45Wqh5V3YCTh58hTdXSnSKRPHsanZHsm0RVSNIKkCRZVQFIXQh6effpqHHnoIx26iaxqSqpGMJdAVQaWcxzRVPC9ACJXHn3iK7s4MmWScgJBivoDQNHwh4zgOsgSBH6DpJmbEoloq89677zM6Mcxg/yAnP/yIgYE+ohGDjo4MQajihSGSqiKEgm1XMC0Lx/Z547Wf0TMwgCRZ2G4DxwmYm8tj6hFiiQRC1/jm//c9Du3fy9TUFJeuTTE80MXiXAFN0Wk2PN584x327R+nXq/j+xKpbI7Hn3yBqZlJPvvZo3R2DLM4f53uri6OPjCOZZh4vo2ua/T0dNNw6sSTSSrFMn39PaiaQl9vH6ZlMD83iaoIYokIfYO9CEXBcRx816HesKlW6miKzszcIhevTtHdmSJixbEsFYTE2bMfc+HKFM+9+DJHj+ynI5cklUjheyGJdALb8Xj66WcJQwXLihKPGQR+y3mWbqlYRoxrl68wMjKEFwa8/tpbjE0McezYId54+01mZktoeoR6o0lf3yCeU+HgoYNoSkg8ZrBnz36+/+QPGN29q+Ww6chRiosFhksN7K4c0q9+kXrNxvYb1JoW02dPcOiRR/FVDylcG7d91QkSfMIVf0tHB28zN7d9Baxn5de+Tq9nT7h9wnfzvXojT6Mb427H0V6+zW/CGjzra562gmUCWqxt84blt7lXb+cU1krYqP6NGJIN9+zlzXTz9m0L2nEt00zhMk243vVG9OaambIVs7WDaShoo8Ha0kZFl0iJtX5GxIr/7ae/VtOiiCVbY3Hbr0h7fVL7u9pidCSJJbvRZf56mf5r03guG/jeSkv5bz2WRNuR6rD9e1rNd2zkb2Z5LbrFh4S3EkJCrLBxbdkPh7fGYkW7uGVjL27/bo2ctN4LuKPUCydLuAAAIABJREFU/t0sj+6ta1lR/vU6r2dT+IVjXsMwxLbtlrdMRcF1XTRNu+fuwlfBltKZ9sudSUDXfFQ7ZMQ3yr2djWLJsUa7RuxOK9+qL1syr2vQbzXWG7dnTf+34tPvEG5L3nYGK+1e1pPqb3S9nfbsvK/tGbYmPFYuT8E6a76gFT/W830unzqPU21w6cx5TEnjd//rf8TMwgJDoU7H//J/ISp1GkcmUB/agxMxsaIq7574gPPnzjPQl8KKJhCqRibXR8MN+A/f+g4P3HeI/HzLy280GsU0TWKxGK7bJBptHb89sP8QQeAhJMGZM6fp6MghkMgXFlp2kICuwMcfnyLb0dIuKkprI5L0CK5dxzQsJKllo9toNJA0jXgshipL3Lx+lWQ6y4WLFzh86ACKLHPo8H48P0DTLBoNF+G5LBTyWLEoXd05BgZGEBL4gaBSXkQzo0ihRyaTpFAu4nkesUSSeCpJRBcsLC4Qi8Vp1pq88srrjI+PE4lYKKpAN2MIQCZAxufq5SvsGh7GdR0sU8dxfMJQIhaNY5oGIQFBKJAkuaXRbdgIScY0I0gCdo0O4QUOqm4RjccIhELg+8QiFnUPfvDkk+yZ2IOqqjQaNpOTN8lks1TKZcYn9vLGz37OFz7/eZLJOEKEjAwPk19YpJBfINfRAWHAzPQk+8Z3YyUyWFaEaqnK977/fY4cOYxpxvj61/6STCpNJhtH1y3icQvXtanXK0SicUxDo7BQ4b133+PAgT0kUwkUVaNaKJDKdqLoEkEY4tg+iiKzsDBPJGry4APHCAKPaDzGy6+8TC7bQzqToJCfI5NNo6k6r7/+JkNDIxw4cADXddF1nXq9QTweY3pymmQihe+5CElgGiZ+0Iqv2nRqHDh4hEw2jaqpRCMWhqGzsDhLEPit0ENLn5UQNJs1CAUz03MIVIZGegkDhVjMQoQhr7/6FidOvEcyESNiakxM7MNxGnT3dNDf34vT9GnaDYTkE4sZjI2NE4m16tQNkzDwefD+BxgausWALhZ45+232TW8CzmUkGSFIAhp1G3OnjvLyK5hhKQQT6Sp1Qq3bLZTNJt1YlaURt0mCAWe7+D7LdtwXVWYnZsjGmmFmAmFwgfvfcipjz5mbGwP1VoRXTMwjQT9g50YhsTMTJ5sNkWxWMQ0TZrNOqVSgUqlyMTEKNFoFFnVKZVKLC7MoUoSumGSTiVwPJtqrcK+8dHW3HUcItEEmXSa/v5eDN1ACMhmsrzyys/o6u4km06jqCqJWJSuri5818bzXALPpWu2hDwygPiVX+bK5ev8v//uj/nKb/0mhXqT0fHdBLJ2SzC8PrROkrQte2sc3bUzM1vt/WvrWUmcf1Kh27YH29tUNjo2vG0t6g6Yy3sNW+G/F334pGEr+mFL3nOrtu+ga3c9Cmu+r3tDG9/Gt8MSqxiv9pJbOGFaB7Usy2ucXt7Ov71TjxtqtdsZxc2xraadt8q7Q9jqvf29Zl5XhsqRZXmV1OITZVzhPxrzutURlw3Lr1Nmw5aI9rz3hnkNXz0B16ZYOja8IYO3QXXbzb/dzb/1qI0I2MZGtd7RpQ0JiK2OuGyQfSMPwusxjNuZE+Et6VpbYzbF0y7F2+rI11IdpWKReq2ObpnLz4IgQDg+jVKFc6dO49abnPrgYzKpDMlYAt/18SIq0UuTdPxvf0S1J4bz4AEW6gW8xhx+4FOuFjhy7FEymR6keIaareC6DhIely5fYqBvsOUNVZYIfHBdh5mZaVKpFLVKHT8M6R/qx9I1hCwxMzPD6OhuqtUKM1NzDAz2IgTYtks0Gsdu2sSiMRzbRvghly5eRFJ0khGDqZl5KpUq169fZ2RkFyE+iqJSa9RJpNIossLQ8CDVSoWpm5P09HZTrdaxrAivvfY6XR0dpLIZZFnh2rWLxKIJmnYdXdeQ8NCtGLoiYVk6iFaYGddrxal0G3Wafkg0kUaEAbt2DdNs1tF0DUM3qVaKKDI06hUUTeHE2++RyuRIpDOYlo4kJIIgxHYaGKZKrVZHSBqyJFMsLKAqGolUGs/z8T0Xu1khmUoihI4fBFTKJeIRjfnZaax4ip+//gaWZZFOpTl+/DgEIQODA8iyzLvvvk8hX2TP3r0884OneODBo5iGwfzcPK+8/DLj47uRJIl0JotpmggZHLeBbiocOXKYli1sQKXawHNsevt7kYROrV4iFoshCwlZ0anXy8hCpq+3n2jcoFavYjs+b7zxOj29Q4S4OHYDyzSo122SqQySLGjWqmi6jpAVch2dWFaEIHDIZrP4XogkZLp7BpBkCdM0iUYtKpU8zVoNPxS88tIrjO8aQ8gytt1E13VqtRqaqmFGdcqlOghQVEGxWMGKWNhNmyAMCAMPx3YRQkbTW86RdO3/Z++9YuS60gTN73ofPtL7JJNJMmlEI6kkle+urrYzmAEGi9nXAQa92Id9mHnbne0FGrODBfZlZ3e7MdVlVCWp5EpSSSWp5KpKEinKUYYypOiTJr0JH3H9PgSTzIz0JKunUbM/EMi8957zH3PPPef3v0oqmSCZtGi4NVTZYnpqAuKIZMqhq7ubrq4O6uVFsrk0C4VFbMehWipz5qsznD7zBfv3j6EbKmHs4fsucRxRdyuICES+h51wEGQFMY7Zu29/U/AexdTdOvVGnUTSwTBVTNvGCzzcRh3b1nEbPraVaAoFKg0KxRpEIr1dnbhhgKGrVMpF0pkMtXIRw3KQRIWe7g6OHL2HRx55lAMH9/L2W+8yNDSIEEcQRRw4dIDAD/B9H8dxSCRsojiir6+HtvY2zp69wK9ffoUwcNm7d4zrE9NcunQJ27Jp7+zAdhwuXbpMLp8jCGJ+/dKvufe+IxQKJWrVCqoqc+nSZeYWiozuGqVcLmBaBsQhsSCQz7dTbdTo6uxE/eIiflee8HvfRNMMevu66MyYSKkcX7z/O3bu3EnI6pzwy/fAzYnftWmHdc3z1jkyNsrRuN45tVa5zc6X1jaX93V5HIPm/c3ylK5mvJf869bq73pazPXGcjuw3vm5VeHAdtrdaiTh7WqDYW2T6q2+37vFUG5l3W2FUd5wTjegD7cCN1fuulkqtiflb3WuWlmz1eqite5qun1l2e0xr6tj29z4s8X3vur9/R6Z1+Vtwuo5+oM2G75beV63A7c23k0YvLvEvN7cWMWNJWet0JpKZzlseqhtaja8MQhiq91/82/4t39HfOorpH/23Y2lP9sV8t0R83oL7oR5Xbf8Ou2uB6v5y63P/aaEyuoKm+BpkeJtwV9JACRRJApDVEO/eX9mZoaZ8WtErs/4uQvkUmnMVKbJHHo+kqJgvfYKqf/jJ1T29OK1NYg9kb6BUaREO5aUIZ1rxwtjgqjM2ZMn+OzkR7S1Zejs6eLZp57mr/78n9HwGgiSwnsnTmCaFufOnaNSqfDrl17jyH33EoQu05PXsOxkk9nTNURRIJ3K0XAraFoz6my56pJOZWjU6vj1OmEQ8OpLL2E6KSK3Tr6zh5MnP2Lf2D5qtTqeW8G0LBAVBElBiJvmwbZlszi/iOu6dHR1Ua1W0E2dVCqFqMjEUYSlKRiayeTEOKIYYRoGbhBjaDKFxXlcN6ajsxdBUkkkbHRVQ3NSxJKIJAhAgGlZhEHM7Ow8uWSWH/3DTzh89AFExSSfzpLv7EZQZIhDGo0qkiQTxSFR7CJLGqKkEcURpqEiIOOHIbIsUy6VaFRKqJqKgIYf+BiajBgFOJZOLKkcGDvA5cuX+ezUKTzP5Xt//MfMzM2SSjiousn+fQdIpVIcPXKI6ZnrZLJZNFXna/ffhyiEzai8kUAYxkgoyJJChEgkKASNCkEs8tZbb/Odb30dURLRNBtNV5iZnsOtu+iGTbm6iNdo8OOf/JSjRw8SEeF6Afv2jyEIKr5fI+0007UUi1VmZudwkklkYmJBJIhiJEVDFGL8wCUKIlTV4uTHb9HT08liYRbDklEUhTjySCeT+KHAwX0HkQWJQqlAKp0kiiMs02KxsIhhKaiqTbVaQVZENMXCdZs+qj/+8U84dM8+fvSjn3D4yBEgplF3CYOAWAiaftuGSRQqPPH4YwwP96NqIk4yjWVoGIpEqbKIk0oiCAqffXyK/Qf20d3dhSiKLC4ukkq3IYoaimIShRD6DUrFRTTDwg1jkoZBuVbHsCwkSULVFUrFIoIYEccBhp3E9xuoEly9ep32tk4URSfwA0Q9plqtEoceRBVqPiiSRK1aIZXOYOsabhCh6Qa2qVKpFRkd3Y0kCewaGSMWGtRKPrlMHkENmZ8r0NXVxfXr13nppV9x4OA9+L5HuVxleGiE/Xt3o5saqUwO3UgwPTlNZ3t70yxXlIgkiV8+/0uOHD5COt2MFr2wsMhbb71JKpVAUVT27NmHZRk3hGsVZFlENy38EDRdIyZC+/wiYU8HlW8cwrZt0hmHtBGBk2fm/Cc89tijPPjt7627//1jMq8bwXbPqeX1tleuVZO6OfPaiudOoq2u3aeNYSNm9ffZ7nbK3q6297bHcFu1ViO4W8zr0t818dxF5nVt/Nukf1cQkSutFjfXvG6mdNoe87oeMbyuUGMN5cp/Lea1Ff6gmdfWaMPCDV/LJV/Krf6W6i1P3bHe7xbcqHzTPnztiGc37wu37OKb5cWb9xBuOXXfivK11ISwJpOx3mK81V5L/WU/QWyOdf1NZuUEbTfnV6vr5BKES3le//LbN/0NNm999W/NCsvmYNXYNmBel3xAbvqBrFFurbnesqlWS+dXtLXB4NbbuLcieV63TOt63xTWfpFL7SwPthRFEZfPncHJZkGQcIwE9UqdhalFqvMNilNlOrIwN3Od9mw3bn2K6uL7XLnwIdr0GXL/yw/Q3/6C+ncOUUskSLfvptioIZsJgiDEI0AQ4MLZ0+SSSVQzTU9/L11dXU0/TjOBYan4Xp3xS5cYGhwincmSSKQ489V5/vTP/pxEQufK+CT9QwNosoisyAiiSL3aoFIqosgaimFSqlUwLRs/jLBskyB2mVooMTExwZEjB0l1dNCo+Vy7OkFHe55MxsFzaxiWA1FEuTDH4sIsdiJBHMnksklS6TTVesBPf/ITvvvNh1gszGOqMl4Y8c677/PRyU956MH7qDUa1Os+ScdhZnaOjo52ZEWk3qjeEIBJSHFMqVRA13VkWaO4ONf04YwjFFmm5rvcf//9zQBHeGRSNkgy9cIMomaiRD6XLpwnZTuokkrEDdNPv8Hjjz7G177+IG/+7hivvPwa2WyeoZEBqqVa03+0WuWTkx8xMDzM+OVrXDpzjq/OneXs2bP8+Z//OfsPHOTjU6d45fU32De2n9AtYScsNEunuLBAqbCAImuEETz8yKOIKGSzNsXFBTRVZX5hHifp4DZ8zpz6HEGWyGezSEJMqVxB1w0MU+bS5cu0dXQjShGu1yCVymEnkjzw4AMsLC5QLFRxGwG6pqBrArKsIogqk5NTXLs6wTsn3uPIocNUGiVmJ2e5dvUy05PztLXl+C9/9wP6B/uo+SU++eg8wztGsS0LGShXG9iaBRgsLExg2xZXJ67R1p6lVllkbmYSw9CoVurUKgEv/PIFPvv0c/aM7kUWAq5cvUK90eDwwQOEiNxzz1F0zSAIfIRYQJA8FNlC0x2mrk1SrhZJZbqolAoM7hjlsUcfpb+/h3QuQa3mIykaxDJhWCDf1kYUi5iWRblQRNUUSouznDt/gXx7D8eOnSCRzFErlxBCD9W2EAUBTVXxA49fPvM8h+45SBxFZDMZwhgURSMWZBJOgkgQ8MIAQYjwqyUcJ43pZHn/5Od0drTxq1+9yIMPfoN6w8WtN9B0g1KpSKNWRdFsGo1mKqFz587x7rGPqNbL9A33I0smJ989TiKdJJ3Lc+DgYVQpIvB9NFnmyy9OYVgOqZRN1YvRiensytLwazQaDSauXyeVTHPo8L1cPH+BbMrhwuXrZNNJdu0a5ez5y0RRzInjv0EUBZLpHMmEw4l33yMKI5xEjuvXzvLVqTP0lzxe+d59/Kf/6//ke9//JppiUI4i9DAgqLtcPfMxh7/9p7f85lq20VvpMTY6sTY50VrPhlW5Vdfeu1s1Sc29eeO8rEvM5vrarmhV+eXn39JYhRu+dOvBrb610BZxtCYzuVagpq3Ccma4Fe9yWArJcHOaW9oSBKEloOD24G4xx1uB7WqHN/Or3mpPl8f2EAUB4njN72J5exv1cTndtq5VwVKfowjiuKmoudEHYanABn1d/n2t+TVtalW5Mn6NEC+LwSK0zPUGLgbNrrT4sK7Vl+W/1pyzq5iZtft2M4yJEN+gI259zyvm/MYgmkLBld/zzbg93MB/h+zsZhr2P3jmdfn1HW8yq8wkbwPHzRsb49ro/tJi2q7ZyLZgO2Nde2jbhqU8r1JLntc7hta5bh3bBszrpqh/TwfO7UpWl2DNKJf/yGNq1OrN/I4xEMe0d/SgyDFercbM1ByTlydIJzQCr8Abr/6KtDzHyQ/f5/XX30ZPyHSUHEb/4R1yL3yO2NVF8Edfw9cMNDNBEEEy4XDhwnlSjsPVqxO49QadXR1cvHCBbD6PpkpIski5WqGrsxNZbgZ3qVRqSFHI7Nw8L//6VWJR4uD+vUSxh20lkBQJwhAvCIiICf2QpGNjOSblchnbNIkJURWJUqmC46TJZTOYhsmx4++Qb28nnc7Q09ODrusgRNQbHqZuMXH9Kvl8BpEYXVWYn11gYXEaL/CwLId9Bw7iBRGariHJCgsLi3i1kIW5IiO7dqDqJgvzi01Nahw3fVF1G1U1EBAhCokB3bZAFJi4fp32ti4kSUEUBUQZLCtNvb6IJIcoqgWEIMnYuoQf+th2GstJ4YUxqm7i1SuomkqpUOTA2AHK1Rq7R/eQb2tj545hkGQqlQaGbSNrGsQhTjKBrplEAZiOw5/8yfewHR3Pr9PW2cfIyC6y2QyyFBMjoqoahq4jiCK1egPHTjDQP0xHV4aPPvqEietFrk1cZXhwkPmFec6dPUe5UGRhepKpqQn27d/HL579Bd/4xndZWFyko6uLSqXOpdNf0J7PE8chSFAuzJPJZPCCgFxbntBv4Ad+M5gfMdVKhXy+g47OTtKZFIsLE6SSGSZnZtmxcx+aKnLo8BFM0+KRRx7jj777R9i2iSJJlMtlLCdBvVrn5ZdeZe/YbnRNI5lKNolwItKZDAgSX529RFdnJwP9A9x7370oioAoCkiKQld3B7ohYagKxDG+62HqBj/9ySOk0w6m4QDgpB1kBUIvJJdNsbCwwKFDB1F1DSeZ4hdPP8fevXv5/LPTjO7ZSRQFqLqBgIRtWkiKgSIpNBoe6XSavv4Bctk2XnjpRe772v033r9OuVJGVVW6u3txGyJPPvUko3uGkCS5adaMxNzkNWzbIYgiJFlGlgViUUDWdYaGBtA1lWw2i25oNBp1PL+BZSX58Q9/ygMPfJNScRZFlshlcnx+6kvS2U7G9h9A0xQajSp9/b1IisaPfvQj9o3txg9CVE0nCEIkSSZh24SBj6xqjJ//iq8unkfXsly8dInde3cSRzGOk+CJx5+mo6uXHTuHiKOAdCbHb996i727dzEw0EtPTy+2k8BtVBgb24tlW6iGDUjs2rkT5fQFcv/x33H69Gn8MGbHyA4unP0Sy0mR6+xnfPwi++//JpGkEAHKDdPj5fvyne6vq+tvXRO0ed3W8puZsW7c9kZ0zHoC9rVyha/fv9ujxbbEvK6uuCaerZzVa5X5x2ReN4NVfVlVYMPLTTXj6ylv1m1vHRzb+X6iKEKSVgZPA25a/m3UzoZ923a0YWHVs1brtfU7s3WhzO3haxHItKadZSXz2qpAWVn2ziwyW6E1p3Qr/EEzr1EU/c16RPxtbXrL/t/MN2Ezn8R42fXy8q19XU/CuK6af72+b3e8t8G83m4E3aVN6ffFvK7arGJWbaQbHTDbuQ/ckTR2PdguvrWtAe6sra3OxdI6MFQNRZYJfB/PdTl18kssAl597nlefu5lZqcu0NtrcvLEm+zdPYrr+jzUNcY3jl9k6OWPSb92EjpzlB/YR62nA1UQ8L0ATdcII49TH5+kq6uLixcu8+47J9i7dy+pZApV12g0fM5fOEcymeSN3/yO0d078f2AyclZLNuhVnNpb+8gkXLo7elGFCJUVcQwE7hug9mZaZxEAkVVkUWZL0+/j6bpCLFCuVBHlmFmZopsNosgykxMzdDX28/O4UEyCYtQCpmemcZJmAShxxNPPkc6kSSbS+EFLp4fYmgmzz73PHv276Et3069XkfWFCRdw3dddNOmVimRyec4cugIceyBEDM3NU0um0KSRQzLRopiGrUatm0wMTHB/MwC6UyGKAwIXZdq3cM0LaamplA1jSgOERBp1F0QQBQkvCDGrxWb706REGURSZGIhRgCH1U3KFeryLKGoslcuXKF9vY89UaZxWKFbDqNKAqomkIulyWKIp566lm6OnsY3tGPJAvMz88jSxKaqqEpEtMzUwhCTCKR5L/8/Q/Ys2c3sSCjqiqWpfPyyy/S2dVF/2AP+fYO8m0dGLqKZdu0tbXRls3T1dtFrq0dRdEY6B9EVQXcRg3TsAj9mIX5ObK5PKqq0mjU0XULUVQQRPD9GpIo8fjPn+Keew7jeS4IMa+9/gYjIyM4js316xN0tnfR3d2OKEkoMkiKgqapHL7nHpLpBLVykSAI0S2bZ557jr7uHnp7B4gBP/C5ePECHe3dEAsUikWSqTS5tjZMU0NWREQhIghrSJLcDDApSriNOmEUUyyVefbZ58i1Zdk9egAvqKGqJojNfSb0anS0d+PHARcujJNvz0Ic4TVcdo6MIksx/X0DVOplFElmfr6IaRoIREzNLHDl8lUGB3tRVIFLF87h2FZTS1yvkkykqFdL6JpMtVJkamKCdCbJ/fcfQUDgicefZP++/QhxjKEbiKIMIjQqpeZYAEkWEQSoVsokEgkkSULTNEzb5MTxdzE0k3QuSyaTx7IdTp85w9F770UQAhq1MnHkYRoixXIN20mye3QUU5d48+0T5LJ5Ll8eJ4piEH0kWcCLQvz6AmNj9+K6DXq6u7Ath0ajSqNaIdvWRldfH7/8xdNcvXKFTC7P5PQsD95/hCj0OH/xAm1tHVimTqVSIZVOMzs3y/jFayRsBePcNU7du4O/+st/QSKVwbQNqtUS2Y5eBEHmrRcf4/77DiHIKpGkIsc+ESvP/zuFrTKvrbTC2prL1utW3Jv1d30T5+2MdX1tWvM6DMMV5W4+3Y6LzrI+tdJka7W9FTZ/qc5WfFXXogXXun834XaDda0X9PKmhnwNc9Jt0Um3qfDYzjyt9U5EcWWWhlbcrYINWCPC711gXlufrR9xemX5tfiBleO8Peb1Fr3Y8jhe32K0FcRVt+5sTa/ns7/U9h808xqG4ZrM6+3C8tpbxbWe9KCVeV3V1iZSudbrpXY2CtCwEaz6eLbBvDbD/S/blP+JMa+rvsg1vt/b0YCvB3dDur7V9u6GL9BW29pq+aWNUIoFJFEkDELOnD7D7LV5FK9CUjeoV3weePDrGH7A3sffpf2VT8g/dRxefQ9B1agPdhM9dD/TqkRbexfl+TKNyhy+67OwOIckRuAHREQ4yRy7du5ClmVESWBmdgZZUvnk4084cvgIQzt2ghAgyyqJZIannnqSVCZPOptGlkQ0RSTh2BSKC8zPFRBFEa9R57MvvqCjsxMhFshnuzENiyiqU63NUyrUyWRSKJpCpVrFTBkgePj1BeamzuNkBnGsNEQyAhL79h/A1gyqtRKaLpPKtCGJCh3d/STSDu8df59U0sFJJ4lEKMw3c8Camoxmabieiyh4TE9exzEspqauI4kClmWjRAHlUgFNUanWa3S19+D7LteuXEERBC5evUpXVzdh2MznKckhEgaqYhPiUq/6FMpVPnr3GOlUhoShU5qfp1JYRAxDYlGg4Xsk0hk0zaBRDcmk23n44Z9x8MA9ZLIpKqUSnlsnJkQURErlMocOHkEWVUQ5oLBYwLIcVFXnow/ew9J18m1ZVF0l8AJURSWZSmLZaTy/Tqk0x9BgP21tfchaSMOrYRpJEGOQRTw/wDB0Hn7sMT499RndXb14DZ8r46cZHhpAiCWKhQqpXBrTspEkkVKxiKRYPP3UM8xOT5K0dbLZTnYMj/LhBx+yc2Qnrltn585d6IaJJEsYZhK/UUeSfeIooOZWUQ2D377xOhNXr5Bry6OrEq7noag6AwMDBJ7LxYtX6e8fYmpqkldfe4UD+w4hySqlcolypYRuqJQLPj/8h4c5dOgIuqbh+Q0M06ZW89B1E1k28P2I/QcOkEo7WFYG3VKQVR1RlvDrHi+9+DwdHb2YSYcgEPnss4/Yt2eE6YkJnFQaXRXxXJ9CdREJlUwuRxj4NGplDCdJo1onl0syOzdBf08ncRyRy2VQVJFysYJjWxB5eF4dQ1MRBZfC4gKOlWLv2AEWFuaZm5/h1Vd/x8DgEIauQtAgCppJvYLIx603CPwAyzIJAh9FUQiiiJ7uXnp7e4mEkKee/BUju3bxzonjDA0PIQsyXj3g2pXrzM/M4hMiK82AWHOzE/T2DpNOp5BEiaGBIZxUmigWEVWLlGMiiRHlyjUWFmYwNANN1wj8Bh3dnaimgaXpPPjAA3xw8mMSqTT5TAJVFenp7aNYKpNKJIkR8LyAOPbw6zFd7Umkzy/h9HZworjI6J4xvKBGb183gmxRXphnb4fGC889wcF7HySSdG4Y2N21vXmt/fZ2tZ/NZ5vhvj3m9e5BE78sy7d1Fm+l3NY1r2v0bgtWcOu1819T07oeLNFi4qqFsbLMFsJbbNLQhpcr4G7SOMsVR1uuw++feV3ev41xrS63ss7tMa+3cK2qsOHltureJfhvknldAkFY21dhud29uMYiF5bVh9V+AGwg5VpLqifALVvzFlStK2HJlLxpvy8021p2Hd/Ix3TNThuJAAAgAElEQVTz+TLN22Ya2bU24HipDzc6tBzDWpKpZrGbXgXbgiV80fO/aeL7y2/f7FsrLH9v62qrV01mC6zxvFUKup7GvLWtKIpWbGybbbDbzhu7CYjLZn09fMvnaavRDJfDevPdKvVTRYniYgFFktEkmXJhkf/4v/8nEo0pFqcn+fv/++85tL+fL754lwNdeYb/n+ewHn4ZwfWIutsIDo/BfQdpdOaQsg6CJDE3O00yYVNvVLh0cZxEOk22rR1ZNZFEBSeZJZNvmis6SZtqrULCsVB0k7aODjKZDJIIMxMzKKpGJAgMD47w6mtvMDw8wCcff8L45ev09nWi6zZPPv0M9933EEEUsmPHCALQcCuodopGvQqRwIWL1zl+/B3GDhxEVnWCOCJlmlTKNRKJJLKkEsQ+mqoiaxJh7KPJCoql4CQSzM8UkBWR+fkZMkkLt1alt7ubdCaD7weoosTM5ARtmTQ1N+LRHz7C2N5REJr5RCMxwRdffMaePfv45NNTZDo6kWWNwI945733aG9vp1qr0t3TTSKdwtAs/KBOwskSCwGzMyU0Q0aQI8IAarUqiqwwsnsflqniBqCYClaiDWSZh3/8KPfe+zUmJyaxbJtnf/E0+w+MMjq6E0VWEYQIP3CxbQcRhfn5OfL5HBBgWQrTU/M06h6CGJNM2aRynZgJB1nVqJaK1BsNdozsRDdNiFwajSrJZIJEIoWgSAReSKVQJJvN8N6JdwkaHpfOniXyPa6MX+Of/9U/57NTnzA42Edbvg1ZNfjVS7/mvQ/eZ8dgD7omUa6UiWKZZMqiXHG5dPEyqgw9vX0omkRXbxfIEoamoOkqnl9H1WRCP8C0bWTFohmTAAoLRTo7e+jtG8KyLE5/8SWuF5Bu70CKPexEimTWod6o0d7eyc6du1AUkYYXMjs9Q3dnJ7V6nXQ2y9VrVxk7sJ9IgMXCIpZlIwgCogSSJDI/P41jmyiSTM0roWs6uipTmJ/DSWSxLRPTVDANB8tUGduzm7nFAlYmTb1SwEok+eD9T0kYBoZtIcQSx4+d4P0PTrJnzwid3e0gSOi6TRALqLpFU/kukUwl8ALwgwi34ZNKp6jWfLK5LJV6EVX28Rshbfludu7aix/UEKUIw0rRCHw0WcKrliktzpPO5m/kV48JghBDM5ifn0c3VCauX+H+h76GJEqkE2nOnznD0FAvkqoQIPDVVxeYnV0gm8qTyVhcvz7PmTNnGBjoI4w8qrUSpqnj1Ur49TKirFMt10inOnn6yecZ2bUbK+Gg6wkKiwV0RSKdTbO4OE8mk8VQdXLZDF6jwalTX1Aq1gn8Gm3tWRAE3IZENp9CECTkz89Tr3ksHNnNUH83i3OzvPveccJGnf/uX/1r/vt/+++59NlH7PvGYUQhBdwK3njrrL3lU7b2b30mq4kjpOmPBmtxEXF8K0+sINwiS1rPqObflb/N/XFX9Wqb5bcHS3O3dPZspozYjNZZcR2vpME2o9NX02ir6YLtQOu5ull++rXGsNU2NtOMrtJKtwz2Ft1yFxhXuEm/rkUxLqffBPHGnNwB47p8bGsF3VxNk21iqdf6vbT4ka7RgzXrNgfYrLv0ra7yYd1gLEvXK54vpV4lXo1rTZ/YVrwrfzfTzt7QV2+0RuM4avEnv/v7wXL4b5Z5XTNseGuZ1nrLnq2qAGt+1Lf90a3Tty1rZLfY7HpzsarcJjjuBixpXsUbmtc1NdYb9HW7Y1+z7jbLr7WZbBg0aVm525ECrodv/Ru32rodxnWp/laehQrIosHVMxeZuXyJjz49z7/6q7/g82Mvks3n2HfoCN2pHPc8/A75Z08Qp1NED93HeFrGHh4g1lSImj6xiigQxmCbFgszU0xPXuHU5+doeD4dHV2IgszPf/4E+XyWVNLiyvg4URiSzTZzZqqyimUoTcbK8/nFcy/Q3d3Dr196kd7udu49coRUyqaju42doztRFYM4Fhka2sGHH37IwEA/j/zsUcb2jeH7HrKsQARhENA30E+uPUMqnUESFVRVp+H6GLqKJEC1WsHzXZKJBL9747eUFkpkczkEISIKQpxEkkq5RBiGOI6DaVrEogJEiLHPlcsX+OTTM+QyORwnyeie/QiSTISAqlnYiSSWrSEh89bb77B3bBdzs/PYTopXXn6DsbE9VCoVnnvuWfL5POlMlsB3+cWTzzHU38/zL7zMrl07UWQJRZFpuEXSmQ4kSUVRfGRZRlElfC+iWJojnczw1JPPMDs7x/79Y3R1daMoMpKsNH1+kwae2+DVV3/DjuFRFFVCVmRq9RqSIDTzZ3Z00NnVwfiVSxiGia7pTE5co6OjA9d10XWZmZkJICCdyjNxfZ7FxVnqboNUwiYMPBRVpaujg/aOdvqHdmDYDu+9e5yxsd10drXT1pZDkmTK5QqWabFvbIxMOoUoCZSrZXRdp7wwS29vH6N7RjFtE9vJEEsyoizguxXqtSq1epVcPkehWOCVX79Ob3+WxcVFbCuNIoQce+tNRnYMIYkxiqaQSiVp62jHD1ws0yYMY3RdIyZAliXK5SKmqaJIKrVKEc+tk0ykmJic4OjRo83vkwhFEhHFpvXA3MwUumYzfnmcY8eOMTjYj25qaJpGHIPvhoxfGaevtxvbMpEUmSAIiaISiBG6nkYWRVTVQNcdrl25xOCOEUqlGvV6ne9//08oFBcolyuIooSu6czNT6NoGp7rIkkilWodRZYxDBNVN6hWaximRbVap+H6FBfmuXTpOp1dXSwszKGqMoZlUqnVqVQbWLaDadrYySySrCIgUS5Xse0EtYqLrhsUi0Xa2zuQJRlJlPC8BiOjO/DcGqIsAQKHDx2go7OTY8ePs3vPThw7yWuvvkZvbw+yLJJKJQl8n1q9TiLZ/P/MmXMgCOwd288rr7zKrr378FyXOAgQY4F6zWVufoFypcbv3nqbw4cOEEU+1VoN1w/J5VKkU2mqlRqnz17k6rWr9PZ2I392jkLC4NLOLn79ykvcd99R8h0dpDLt/Nlf/kucdIqZi+c5c+pjdh59kEgAcdkuv3a04VW76iZ77dY0Ubeer8W0blbnnwZs1J07ZV7XI/BunumbHc7Lyt+NyM3rmepuVOd229ouvt/XqlizfaHl+R0SSau1mevT1hvR/evj3uJCWfPRxnW3KxzZvOw218GqJbnRGo1b6N//n3m9bQiC4G9umkGsioy1xsa3xo0VYdpb6q6Vg+l2YZUEbPN9bEVfVl1vozPrLdwVGkXW1nTejcPu5rj/4luE33/oppP9Whq/jaSHt25srb31nm21z8theS66DettemN7sBV8t+v3smnbLcSQLIl8/tFp/vY//G88/cSj/A//4/9EVC8jui7Dh75Lbq5E9t/9ZyJZZnzPINahvUwsNol5EZkLZ8+yMDdPImEjCPDll2eQRI32zi7MhM2evWNMz0zjej4d7e309PQxONjL5Uvj9PX0kk6nOXPmLNeuTWKZNoalMzs3S7XscvToITrb25iZmmJoxxCREDI1fY0o8rFNA1Fp5ig1dA3LsvA9j56eXl544XmOHj1Mvd7gxz/8EfcevRdFl5EkDUVRWFiYR9c0fvqzn7JndARJUkDRcOwMnuvTnu+muFilq68LkagZvEUUsQyTQqGILCl8dPJjPv/iDI7loKgK2Wyevv5hZqYmOfb2Mbr7epmZniabzaBpCl4ImiZgaBqiINDelsdOJlBUjd7ebl577XUEQWBsbB+ZTIY4ijj95ZcUCjV27R1lx9AghqGhKgpzs/OoooCuq8wvTBMFMbVqmXq9QSbdRoxHNp0mmUize/cohimj6yZh5BMTIYoSQeDhOA5DQ8OoqgpCU04bBAESArOzcwiCxC+ff4H77r0f4oAnH3+S++87ShhF+J6HJIqYusbiYoUoivE8l/6Bfnw3IPB9UskkhXIVWZUolYroqkzguwwNDdPZ2UEimaBUKmJYNqIoMjlxnZGdwzz77AsM7RjGtC10w0QRwA99Gm6NzvY8MRACiiwiRR6LxRqpdAZRUtANi+GhAYgF8vkciiwRxSEdnR18eupTnISN5wd88MHHQEw6lcT1AkRBpFouISsqgR/y88d+Tnd3F3YyQS6XxrJNYiCZSQIwPzeLqghYuowX+nhBhBKLjF+dpLOzkz27d2HbJqKsoUgKnusxOTmB7SSJw5gXf/UyQ8PD6IZMo9bANBMIkows6iyWFlA1mVxOJ4wUXNelp7ebcqVAW1sewzAREBElETthU617JFOZZg5bSaRRr2E5CSJBQoxDZEnANC103SSOAmw7i27qiEKAqijEwlK+WwfCkIXFRcIYVE0lCAMkScZ1PTRVJI4j6vUGZ8+eo6OjjcJis09B6GIaJhFN/9go8Lk+McnOnSP4fg3DsGhra6ctn+eTjz/CNA3CwEPVLXTdwK1V6O7tIZlKousanZ0dhKFPwjFQVZ1SscxioczAwABOIonvB4zsHKJaLdHT248oqbTlM3hug/PnLrL/wH46O/MIBMifXUQe7OGvn/sZf/3X/5bu7i50OWJhfoGenl4kVWBhYZ76xDVGvv4N5Jat906Y11v77srzZzNXoaUIwCv7sJpu+MdgXNfS9K3V/i0tc7Sq3+vRc1tl5lvpuVsF1r5cr8+rmKwtwq2xxSuuiVuEEnfpdWw2z8thPWu29bpyu25qqzS9Kx5ueLllWHeNbYZ/u+1vNz3NMohZmTrn9w9bFXjdKr5CUdNSNl5xvb227hT+oJnXpYBNW/2Qmqayy360ME6t9ZoFbpo+bNjOKtOCdZjOZbib+Le2BFo/1JgYSZLW31zWMFVeMfQWS6a1Nu+lA2SrPgmbhbcXRRFZlleMaSuw3tzdHEvr97iOqXaz7O21uXRPRLixJtbB31pnk99afV9ad6vNWdZu5Oa7axlzeMPERJYkiGIkQLoxBlmUiJbGKSjEokIplkGQmv7VoQBCTBhJ1BcWCCbHKZQsTFVkT4/M9452U/ICym6Z/r370P/X/xf14efxDu8j2L+bDz/5jP6+XjJZC1UxmJ0psGu4lziOKFcbzMwW+d1bv+PA2ChRFKIZAudOf0Vv/xCd3d2EUYjnlpianuU3v3uHHTt2ghCTSiXo7upENRXcSpG2VIrHnnyaew4dpVAskkinsB0Ly85gWSZJJ4Uia0xMLbCwsMDPn3iMXSMjCLFAV28bp06dpqsjRzqbY2BoGNtOELkBp09f4NlnnuU73/kGjUaVI0fvpe56RIKAoqrMTF7CdjJU6nVOnznFrpFdxH5AFLsIok69Oo+syVy6eAVHT5Fp66JUqbFQrPDVhcucP3eeXbt2M7hrF8888jD3HNjP8ePvkM7kuH5hlmLxEqbh4NgJGp7H4vwiuqqi6ypDA/109fbR1tGOLIlEYkgqmSOdSvDar1+ib3gIVZR44vGn6BvcySeffE4mn8VxEiiShW4l0A0HRBAElavj40iyhOXo2I6BJoooqoYgyKiaThRHiELE/OwsiiADEaqqsTg3S71WYnh4N6lUikQySTqbw6+X6exKYxlp6tUSdspBkGW++vIyly5OE9Ngx85hohB+8/rbDA4N4Hl1EqaOpDW1vJ5bR9YsLMckDENiQaRWc1FNA80w6Orqol6vsX9sF9fGp7hyeYKurjzlapGzp6/xxuu/oas7jaUZIPgIcYDvetjpPIZu4NZqyDcInTgUkIUIt1FENR1iWaKnt4dKuYwgqCSSaTKZPPMz88Q00OQI14+wZInZ2XnufeDrpFIpIiFisVhEUmQEMUaWLSavX0NVBZxUhmq5gB+IGHaKulsj6ThMzsxS9yOSyTQREWEQMTe3yFdfnWOgr4dEMsHQziH80ENRZCrVOpaVQBIkPL+Oplqoikq5Wsc0FRTTQlVVapUKoqKApEIsoEgSITSFKR9+iqbZzM8W0Q0NVZGYnprANk0a9RpR6FGrlYixWFgskMunkTQLy05BLCCL4LkFBEnFcdK49TKaZQMCqixz+eJFHCdHpbZILtvF28dO0NvfB4Ch60xcm4DA5dlfvMTY7nv44tPPGB4dQjdEZFlDllSi2KNQWGRkZIR8Wxsv/uo1TNPCc10ESUZSmul96rUy7W1ZFFVHVg1m5hd57Ikn+d4ff5e5+Wlcr8aePbtRFZ3Hn3iKPXv20d2dwa27SKbKK795h4Njo0SICJKOcuoM9GS473/+N+iJBJ4oUqlKvPjy6+zbtx9DM0gkc7x3/A2++a0/RZCb+WFXMlybEbubmRE3d/BbJr7bI56Xm/61ol7vLF+LYdwOrKJPtihQXc6ob6ThXI+m2BB367W4Ev8dyhi23o+l8axS+d0a01bnvnWO4jgmiqJVtFor3FoTS25pLXRga1+XXW/EHG8GrQL/JQZpI5ppK7Bc6RQLK7+m5W2xVhs3TZqXvpEW2n0T097VsKyFVlw3zHib+V6F1fhazHzjuDmgdctvpy9rjk1cMfmr0kUtdevGe1vusrbUt3Xf3I224hvptTbNcbsJ/EEzr+uZDbfCnZpOrCtBWlFoY2OEO5W8rGUasRXz1dvGv8a922U2f1/4bhXY8LIV2Zq315NIrtXUXdV0btL3rTCv6z5aOjOjmDiKEAWhyQjEMdevX8dOODcKiIgImG4RI/IpTk7wwfG3cCfn+bv//ANUI8PEgkuvWeHqlfOAwoXxaZ556QP+4uh3CP/Nf0C5dB2+93Uu+S7pdJqJa1cpFBYhjmg0qrS3ZanX6ziJBG+8/hsUReOv/vLPcBI2MzPzKIqIk0jzxNPP0NXdg6ooWJZGMplm7959vPrKrxkcGkAUBTRVIwhjapUqUxNT3HPkPgxDxzRNTMPk3Pnz5Ns6mJ2bxU7YeF6AnUhQqZT5zre+zfj4JRRJQZBgeMco6ZSDrInYSRsEn2Jxmra2Hvr6ukmnE6iqjBcE6JqGpqpIkoKh25y/eJWXf/US+0ZH0W27+U0KMT995OccPHiA6dl5ensGmZtfpK0tRU9PD2fPnuWr02f4oz/+HoaqM3H9CpVqmYNHDtPdN4CmWyzOLZDOGCSTGSRJplKtks1maTQaTE5OoggCyXSGUrmCIInUyhUuXxpn9549KJrC8I5hqpUq1WqNnSM7SadSJNNJfN9j/PI47R3N1DK+71EsFvndb98kn2/HMCwkWSIOGhQLJZ568mmIoVwskMvmkBSViakpJEnk7WPH2b9/H416DTth4TgOtu2gyAqqrqCqNufOjxPHAaIsUq83eOYXz/Ktb32L3v52SqUy1UqF3t5+3nvvHQYH+1EUFVnV8NwGtm0zNT3L+KUrpNIpNE0linwsVaOwuECjUafhNnASaQzDpq0tj1svUS6HdPd0sHNkiEw6i2Hb+FGEIEooio4kSURhgCSJBEGAKEmYuk6pXEQQBcrFKkEUI4pNxizwQ95//0Pef+8DHnzgARqui+/7pNIZpmcW+PjTz9g1sotScQE/CMimM4gC1Gs1VM1gZmaqGX3XstBVFUFSkCQFVZFYmJshkUzQ1dGOGIcsFsrYlk2jUUeSBHp6epAUmYbbwLQsohBsO0G9XgMidMNEFCUkSbwRYVjFdX0MQ0fXVERJIooFKqUilmngRzGqqtLR0Y4kCbiNBqm0gygKWKaFJDUFopKkoKoaTz/9LF//+tdp1OvoikAYBnx08mPsZDOfsSxrCEj4vteM8BwDNLXqhpmkXFkkjgX279+Lrpu8/957ZNJpTrx7go6+Lu578CFiRSDXmaGwUECRZRYWC6SSKQI/xHESTE1NUy5VmmutUWNgoP8mAa8oKpcuXOHq1evouokkyTi2xeju3SiyQCLRDORlGga1apkDB/chSzIxLl7No1xpcPTIIaqVIggCqqwifXoGabCX9L/+l8xOz5FykiTsBEnHJgoDDF3DcCJmrn1O98gOJEMF5BVaw+3bQW52Xm6PeV2hP1nnvNjKeb8duN26W612O/hXn4f/NJnXFWW2gGutGBybKnC2OJitardvF+6WBnK5ZnuzNb75e76Lzl2rmNOW97NZMKilu+uW30Zf1qrfkitns7nZ1vtaliaoWe/O3vUfNPO6ZDZ8t2AtTFvGv8VFeafQanKyPJT7ehvzRqld1pKkrWv2st0+tkD4t39H9NYHSN+8d5WmdyP822VexQ3GtJ4ker02VwUxitYuf9sR834PzOuSJFcQmoG+RASuXR6nUq3gOA5BEJBIJBAEkdDzUAWFRqnClcuXeeO1E7R3DRNKEp39g+zdPUhvXmTh6keUr39F78AgEwWBKx9f5t9PVDB/+DhBJkX0ra/hGiYnP/yA9rY8vT2dnDtzjq7OTgRiNFXCstIIokBvT2+T2fBrFCt1urr6WFyYw7STDO8YQSAml01TLCySyeYIw4DRkV14Xh0BmJubwzAcjh97ByeR5s23j7Fv/xjz8/OYlsX8/AKZfJ5k0mlGoJUkZFkmnU6yuDBHe1uOTC5PImWjazaLi/PEEahqM6+kYRrIokoy5VCtVVAVBdfzUFWFOIwoLRbQLIV8Psf+vSNYJsi6iaI085w+cP9DuJ7H++99yNje/VQbdXy3RDqdoj3fxt69Y6i6zuOPP869h/dhJBwSqRSSoiHJKufOfcmePXsoFMqYloVpmrzzzjt0dXVi2xZEMR+e/IRYFMnlsly9eJX3P3yfPfv2kMnl8Bo1bDvJb998k+HhAWrVGrEgkE5ncCwDQYRCsYAsiaiawo6hEU5/dY7jx0/w4EMPMTs9gSBI7NyxE0PXsSyT6ZlZEqkUum2QSWXo6uoBQeTqlasIYki5UiGXyxFGEXNzs1SrIadOfU5HdxtJx8E0TQYHB8nl0zQaFQQkEskkYRwzunsEWRYJw1saLEGUgZi5mXnSqSTVahFZgumJSVKJJJqu4wchsSjj+T7PPP0URw8fxnVlXnz5GQ4cHMNxsrihjyqr1GoulpOkUSsDMa7rIcoSoRdw6tSn9A0Ooht2kwFXdeoNF1VWqdeqJJJpvnb/ffieh2lYNPymFjQSdcIgoL0tRxT62JbD/Pwcbt3F9zx006JWqXHx4iW6uruJhSYTb5kG1WpzXSVTKaLQR4gCNDOJIIChqxiGjqppTWGNpqOoKpKo4XpeU9MiNxlTWZWJ4ogwjCiXG/zwBz/gga/dTxhHTR/uMGZmepJMOokk6/ieSxh5qKqErhlomkwURkQxVGtNU2gEifn5AkePHubjjz7mypUJDDVmfm6e65OTjO7Zi6aoCKJEsVTC0DQe/tFPGR4eRlMVZmemSKVzyHKIbSfwvAb1moumaaRSKUZGRiAIUWQFUYgpzM9QrtR5661jHDx4AEWRmZyY5sknn+T73/9TLMvi+sRVFhYXqNfrqJqK23CZn1vAD2KOH3+Xq+PjxHHMZ59/xujoLlRVoVRaJAwjTp8+QyaT5MKFc3zwwfvs2z9KcbaIHwqoWjPd0UcnTzJ+6TJDRZcpXYHvf4eOtg6mrk8QizGyItLd08nbx96ks3uI99/8Lfd96y/wYg1RbJ6/UbRkArtd95vNzoyWM6hFU7dkNrzcPHU9OmG9vvzjmTW2wtZ8Am/nfG0tGbfUX/pv3fdzt6ek5b3d9Bzc5txvRQmwfD0srYnlZbdL023WhyW43VSP28G1/FmzwMZ4NmXc7xLzulxwdUtg8U+LeV0VGX0T9NvSurcyr/FKGnorgpHl71VWlD9c5jUMw7+5m/juaK/6r8S8Lk+hs97GvKLeevi20uZ2+9gC0SMvQLGy7VQ522VeNwysdaeS3nU+9ts+DH4PzCs08+bVqlU0VaNWqRB5PqZjY5omABMTE9iOg6FqHNl3iO9/+49IZFLsHt2HVy1iqVWmrn3Fxc8/IPIqfHXhKsMvniH5u9P0vnSMez7+ipIQEv7xA0RDffhBwNvH3qOvt4djb/+WfC5FKp1F0y0+//w0i4UiITK2baEoIpqqYlomb7x5jKGBQarlGeIIUskUQuwzO3mdRCpNGEXIikKlXEaWRdKZ1I0xCIzu3k0ml2V0dCeCKKKoKtMzs4RBTDbtoMpQLRfRFBlZVfBdF89r4NgWQRhSqhTRNJsPP3yPXMrCsiyiSKBerXP8+An8IKC7qwffj6i7HnEUYegKigyB74Mg0Wg0kCSBRq2KZTkEXh1TUbk8foW5yVmGhwdJZWzS6SyiJBHeiBKoCDF79u6nXF6gd2AIQRAoFOapVgp0dObR9ASPPPpz9h3Yj66ptLW1UalUsSyLhWKRxVKFTCZD2HDpGRhm994RXLcZgEcSY+YLJe6//wEMXaZYqvDqa6+zZ88eKuUFLCtJEAQ4TpI4jtENnd7ePvYf2E9ETDrThqrpOAmbc+e/oqd/gDAUeO3VV9k/tpdGw+NHD/+Mew7cw5UrVxkcGMQ0LWr1KvV6lRPHjzO8o48P3z/JN779DTRV5dGf/ox777+fUrGIrmuois0nn3xK30DfjYBZIpIoIwoR07NzpNNZojAglXJIpRLEcYwkyRiJBLKiEcUSx956B1mG9rY8mUyO2bkil8bP8t3vfgfLdvADF1GMifwA27JZWCxg6vKNwD8JBFFCRMRJWmiGiRfEIAiEcYAigiJGlKtlEskE1v/H3psHWXKcB36/zLqr3n306/ucezAH5sBBgKAokTooURIFkVxrJYa8a+/aYTvCu45w+B87HLEOhxXhsB22Y7UKHRR4k1pCJHERFwniIAgMhiAEAoPBDObumb673113+Y/XPdPz+hwMwNVa+jpeRFdlVuaXmVX5fV9+l2OjyIQw8jFsizgOcdsuY6MDNOpLmI6DomogJKl0mjCKUDWNRx95nHq9yeEjh4hEx8KBOELVVHTLIUrA0HV8t4ViaAgBruviWA6KJvE8D0XTSFgWUKTEdQNM06HRauB6LUzLJIoEXtDm/vvuhiSh7YW06i0syyKTtpmdvoaVTiNEJy1JrVYnk07TbreI4pg4iklns7iuh1Q6PqyGrr7DWJMAACAASURBVHLypz9l5459CCVG0wzuPHwnceQThAGqrhJFPiQx42PDSAGKqpHLlxAyJMFHV22eeeaH/N1P3+DkT0+SLxTIF4tYlo5UFZ56+hkatTZTUzN88pO/xtLSEpalkk6nOXLkMI1GDVWVTE3NYpkOs7OLDPYP47VdLl+5TL6Y59DhAxRzJcbGRhkYGOArX/kSxUIPxVKJdCqDbaeoLi50TLDHd+K6DZ5/7sfccXg/iqajGw5vv/UWu8bHKF6eIzy2B/fQOJqu0zc8gpnKESFxMjmGxyZQNYOzP3+d4b2HkWYKRcZEUXQLmtItiMAaWNvezUxll3lesjG9+w8npG4EWwuvm11v+uwWN7p5pK0buE3odgNaWaIPYU3WtJlscP+Dan+L8g9Vq//3RHhd3dbfV+G1u3yrVXm/mlfg+ti329Y/Cq+rYKu0JWvKbwOEkJvbg39AsCKkdqfU2UwIupUX8OYT3c39WG7F1EUI8YHkee32Dekk1E62vY5SLHt/LK/96tPPbQnyK0mwlzvb7swqirLm42Q1zivr2N1fNxHo+q32yQau+79EUQRSwZAqZ069w+jOMYSio+kGqmGQzRdQEoXz757it37lo1iKy7XTj9BePMc/+8M/YPryEpVSD0d+cI7sYz/j0A/fIVN1SRQFxoaIP3IUuWMHfgSBV4dQQ8Qu4xPjXLowQ29vhVI5S71dJQiVjgmnreKkUnheSMt1aTaavPLqCe64Yy+V3j5s20YqAtM0yeRyxFLFkPClh77IkbvvRdUUkiTg4oVzGNJFCDAMi3Nnz1LMF1isLlHqKWNoOm7o4bfbtJotsuUyl86/R7lcxPcjolDFSWVRDIUkhmuXzlHs7cXzfUzDQFU1SsUCqZSDqmlESYRpOzz00F8wOjiM34ppBx6EEVEQohkOim5jWCpRopJIi4SAfCmHkJIzpy+QzdiYpkLgtTA1nWa9gaZrPPfcK+QKBo5VwLJMcnkbR7Hwg4A7Dh7AazeIVYFtOrx76gy9g/3U6x4zVy8xNjTItx7+W3ZO7MTOGEjFRNNUzr5ziUQo5AtZGvUqgRtw5PAhICGMElRNQRIAIa4X8uKLr6JqgjBokXZsJq9cRtclz//oJ9x7393LOTWnOX7sbn7+xrv87Xce4dDBvUyMDTIzfZV6vUEuk0eVKinbIl3IUyz3YhgWE30Frlw6w8HDe/HDAMsp4IcNTMug2DuIpQn8dgOZxCiq5NK1a2QyWTzX5ZVXXsF2UmSyDkKCk0oRxQFSKog4plTI0lfJI0VMvlDgtddPcu+9x7EcG1UxqC65OHYekcS8e+YsvYNDCKFiWRpR4CLiGEXT0DWH6lK1Y8o7O4MCLMzPd0yKLQeiEN3UWKxXaTUb+O02+WwOVRd4voeTzSBUFUPGqFKgKSqKrqJqFvv27+T48XsIwhgpPRTVIMEkEUlHE6OIju+xpiOkieeFmJa1LJBIRByjCokiFRrzU9hOlnNnzpA1JXY+j2WlaTXb2I6GrkpUqdKOBVqs8b0nvsuhA/sxtBRf/vK3GRkqkk1nCb2YtJ1nYXGKVCpHlETopkoSJSiqianqqMR4cczePfu4cOE8/YODWJbV0ZCHHoah4blNatUlfvb6z1moVhkaHuMv//KvOXz4KK5bR5E6brvJjh1jlHt7ufe+e2g0avRWynh+kyiM6O8boNLbR7GUplpdorevgq5rvPHmKVrNNrOzc4RJQk9PD7qhMDExxuxcx8Li1ZOvMzE2iq2pPP7Us+zdtxdNlezevZPXfvoG+ZSFroLbrvP88y9x99HDmCpEQYw0DTTDQgidh7/+Ze776Me5eOUqo4st3vofHsTzE37rN/8p//yP/xsIWqQci0RLkJakVm3x0x++yOFf/yiOZiNlx8drrdfdRtCdzqL7+TVHmDf91pKpLhohO35nCQkiuUHrOjzQB82b3Iy7lBvH4Viv/gpsHZRKrEs/b6qbdM9q5zDqOq3uKr+RJmT9WV+T7uU2p65biFq1oje1f6uRjW9o/FfxMXGy7ivZbVG2RkO7DbhJe7yFRne9dm82sV8Lt6wd3iZfv6ECR2485zenhlkZwM3f7wq/1bHs21hYXLe8y79Wipv5xFv+XLdIndPNP3annVyz89zKYZGQCOQq39gbbWzXemL1OvzDFl63uPFBbuO/qBNNRVHW/6A+oLHd2su6feEV+ECE1+4+bz7xvnXYrunOioYbbia02+1ZVdUu07Ltwa1oxlfaVhSlk59WdvCsVCqdQENSJQ59Er9F2KzzrT/9Pyg5GoaIuXLxPUZ3f4xUbgef+e0/4uPP/B3Frz9JanaJpJgjPLKfCz0ZskcPEeYy1BpNVFXhm9/8JopMsK0smu4TxC4TOydQ9YB2M6BQLFAq9eH7TXJZB8syls1/Ywzd4q677+bMmbOkHJu5uTlsy2Jubo5cLoeidnJEHj50J1MzM+TzWUyzE613Yb6GbqaQmsaZM2fIZjLkigU8z2Pq6hStdhtd0zBti6VqncH+QQB83+PkyZPksxnSGRNF0bFsm0qlE8jnwoVL9PRU+OnJ1ykWizhOR6AOA49DB46zsFhD1TU0TUWVCjOzs/zw+ec4fuwoVy5fRFdVzp45Q39/H4VCnnqtiRASKRPeOXUKx3E6mjnfAyE4c+YslZ485VIfFy+8h+s2qddr2I5NnIDbdnFSNqEf8swzz5DKZBgeHqJULHD16iS1eoNKuYd8IYPvx1i6iqYq/OiFH7Fr906kjKguLmGaBlevTvHiiy+xY+cuQt/DtlK02wGvvfYad911jHq9hmlaPPH4UwwODqBpDkLEGIaJYRhoio5tO/QN9LJ/724uX54kmyuiGJKz584zOj5KTEImZSKkQiaTY3r2EoaZpVgapFqtUSxVaLc7669qOlGo8Rd//kVGx3ZiOTleO3mSifFxoiiiVCzQWxlGURXiOCQIQohj3nn7nY6AG/qkMllq9QaqqjI+OoJhWXhem3qjTjabZWHhErXaHPl8BqkIAtdlaWkeqai4fsDklSkuX75MLpdmcXGent4+VFXrWCU4Kf72O9/ljjsOIFUNVTfIZXM46TSJEOiaiqIoBGGMpppImTA7t4gXREhFIiVUq0tkMikQMdWFBVKWwxOPP8b4+CBSatf3n3q9zslXXmZ0ZBBD75gH+76LaWo0W42OibOikCgavf0DNNseodcg5TiYto3vB1y79HPOn/45hYKNGrqMT+wmIcH1A47ddRdJ6KNqMZ6/wOzCBSo9Q8SxYHp6Gtu2abeqREmA6zZoNqpYdhbXdRkZHuTatRnctkfKcQiDCMtKIaVK4AdYlk0uV6DcU6K/vxfL0rEtgzhOeO/sRRTF4IUXXsa2HE6cOMno6BiWpaIs74lJEpPOpEk5aXRDZ3Z2mkKxzOjwCK7rUiyVSDkOzWW3h1QqjWkZjI6NUSrkME2NdDZHT0+JMHDRDR1NV+irFEmICKKAO/YfxvVaqKaBapk4dsdfWNc1jh45TDZfoNJTQX/rXS5+7DfIpcp89vd/i3MXXiaTzWI7NlGSkCQqauhTW1pkz/GjEAmkvNU4CN17+q1abW2hTRGrS7oZgw+aT+k2ab61+lvBh2EmvNGNjXq6VautjeBW2r+Vca+bh34TC7HNrm+1v/fTzq1qbbducNPLLdsVYv0xbcyrra2n63qn/q0Kr92wRlu5efWtYYsGtpi7D1MeWA9W76Oa/o/C64Y3fjHiZlef79e8dBmuRwHrPs3qsrXfzonTanxuF6/twGbCaxAERFF0PY3OatxWX3fDbeO8zcdXR83blCBuAHEcr7sZrqfN3i5xWGMqLgRBEOC6Lqqqomp0tINeCKrG3OQkf/Hv/pTpKxeZPH+OnsoI0wtNRvbfyeCew0RaGu1//D9J/T8PQRigHzuM8isfYVaVuMSkMlkURYVEsji/SK06y9joBFEcEEXw1ttvUiiVefTRp7jrrqPMTC9g2gZxBEHQpNVsEUcRmiqZnLxMvd4mnUqRzaRxUmmKxQK+76MoCl//2tfYtWs3k1NXKRZ6ePbZZzhwx37abZdarY6qphGqhmJoDAz0U63WsEyzo1kXEqko9A/0Y+gmQTsgjgVS6SQc7+2tUMznSeJ2x881jmnUGywtVWk2W+RzBX7yk58wsWMCx7HxfQ+3USPtlCgUezjxsxOMj+/gsUcf59hdx+gbGEAu++kGvsdAX4X2MlO/tFRFVTuHCY6Tobevj2arhWmoREnC3n37MTSJrposLsxQ6enFtHXa7RbpVApF1TEMlTAMOXL0GLlsx28zX8ijaiajI8O4bpt0JkUYQBi0kSJm/8E7iJOYlGORy2epN5q89NKPmZ9b4PhdxzF0lXbb48rkFKVyiXK5iOM4zM8tcu+9H0HXVcqlHl498WPGRieo1Wq4noemKxSLWVrNBo6TRtMtSj15hoaGCUIfz3cRcYBQVJ555geM7holk+3l8oVZ5udnMVIm2VSBJPGo15aw0lmOHD1ENp8mjCPGx3cgkFiWhpQJQhiQQLvVJpNJ0arV8YOI3v5+EpFg2g6KVHn8ke8xeuQgihcSBB3NoKYqyDjCNNPYVoY4hKXmEuLQPuw9OzB2jqIPDlM8uBdrRx9hbwp6+xEDFdQDu1l87U3uvPNO2i0X3TRRVI3F+QWarTbpTJY4jpidnePZp59l3559JEmIk8mhGhaGBkITWHqKwK+iqgLbTBGFIf39ZdqtOoaVIYkTVE3FcRwylobbbqPqyxYSmmBlO/TCEE3EXLv0DsVCClXViP1WR0hG4aUfv8qOiTH6B0aJVZt2M+bHL77Arr170S0TkojAa2KaKQQ6hXwvUlFou21y+SJCqGiK3skFrJrYVpbFxRqW2dGeeq6gv7+PWn0R3w9otVyiqBM0qVgsksllO368uoJUEmqNBoZp86PnXmJ8YheHDu/GD1ocvvMOdENimTbT01NEYUgun8dzXeIY4ihGkRLLcRBJQi6XQ9M1Zmdn6SlXaLdbxEmIHwYEnsfZM6exbJ1CuYimKRiahhAJhp7ma1/5KmNjO2i1A4rFAkEUYqUyJIqOLllmOCPCIGRhYQHTMFHfPIP5X/0OhXyakydeY+/uvTh5m2a7TaPaJJsp8fZPfsBdn/w4uuGAVID1Y0psHNn35j09SeIui6LN9/qV9DI32t2+8BpvxD/cYkaB9fraCPeuFjZteyu6tykv042juEFPO5frM4DX+YytBL4PmdVYr/vtrMd6PJLg9qIEbwVbaUc3stLbfhTq7X9Pq9dxJULuaty21tpvHuF6HewArvOrKxGfO0XbP1haF5NundR/IOFVCLFGw367789GGtjuaNQr15qu37LwKj6svJEfNHiel8AmJifd2v7uhfqPY5jrwppTom7hdasDng2I2FbP3A6E/+J/AkD783+zpiyOY1RV7Zi7LsN6Ji4fNHS/E9t+bgWn23yH1tvk1wuwtdFmfuHCBUZHR4GO9iaTyVwvk1GLN179GV/90jf40Uuv8LUv/lv++qEv8TsPfo7e/kEENi23zszcNJl6nV3/2xeJWm2eDep87PO/R5QILp57j6HBIYJY8uyTj3LfAw/gtj1Ov32KI0fv4NVX3mTX3gnGx3cxN3ONXKnEu6cv8uorP+Jzn/0MVsrh3HvX6CnnmF+sMzTYDyKm0axz8ievsXf3TmrNFuM7dxOHbaI4xjAMrl29ytDIGC2vzUN/+SUe/MzvkogIISCVyaNEknbQJJ1LkSQCRVGpL1WZmZrhnTNnmJ6a5Y//+ReIgpAnH/k+PQMD7N6zg1dffYW7776HMPIp5hQsM0ut0UJVLZrNJidePcn999/P4tIsqVSadCaH6/n8+IUX+eVPPECSCGZnq3znu9/jn3z2QVRNohoqumGgiITa4jymofPehUmGh8eJ4xhN66R5eeihL/Pgg79Lb1+JxdkZMvkis7M1ND2iWOglTlwmJ6d5+smn+P0HP4MUCflyL0sLsziZHAkKjWqVbEpHaDYP/fVXcAyDT33q12i6LR7+28f51K9/FMdOk8kXUVSNRm2RXL5Au93iJy+/wr7de0kV8lybPE/KSaPqKVSt4ycbhTGPPvI4/+Tzn0coIUuLDTI5naWlFulUhr/+64f4g/13UioWCMMAVdORQuL7Hqqq4ZYyxAWHqal5cpEg33A7BF5ViMKI6elp0tkU2UyRyYLg4qVJJqcXeHDfIZJWCwBF6QQQEgLiMEQLYyJVRUpBFIaoXgBC3DD5j2KSOEYEIWEcI3KdCNoyiknCCLnqu4mTBElCEsaEgb/M3EoUVWWlxevmg1EECYQtlyTwO21qOoplgKosp127mR1u6hJLMwiFQA9DiDuMVJJ0AlGJFWZAU/EFSKmwMDtHTzrd+V6FILZNElXpuCckCZMpldJQPy3Xx5yaRczOYzkpElR830VKiaJoTNfqZA73E0cqgZkhe/oKSeQjVbUzP6sYtHYxR1LI0mjVyIYCfXqJmZk5Wo06QyNDgKDZaJLNZmjvGmZubppaPcIwBT3lHK+ffIODh/dTr7co5Ms0GnVSGQddM7h06RIjI6P4kY/nBiSxACFYWpzl+R/9iN/53d9mYWGBKEgYGuqkzorjGM9z+au/eojPf/5z5PIZpKbitdpoqsbswjwnT7zOpz71m9QbS0glIpUpc+KlV9i3fw8oCVEUUywWiYKAqWsdTfLczBSabvDCyy/z4O/9duddSVS+/+Sz/PonP4YfBjhOivmFuU4QOydD6m+eJrhnH83/9b/lC3/4X/Jf/Mv/ml/9jXs5ffo0e3fvIwxinvvGn/Hr//q/w4hMfAWUZWFyTXC/DYXXLi0Z3Yeaa1NM3KxdS7r6686JuuqgNbm5bIXefXDCazcB3Co9xvrarI34ke0IRtfrJl3l8mb+QXZx6mvmIt58/d4vr9CN30awXvu3vh4383+bpUa6HXi/eG2n3yiKbkqp2N3mmrGIG+VSyuvruO0xi1uzhmP5m1oRtG4OHhWvW/d6sdx8/Enc9f5vUX9LSDb/HjeSiboFze70TLcD3e2s965EUYSdcm75i/uPRvO6kuf1eoTKZVv36/6gXSC6fh8EXD952iLP6wcFG56gLY99dd7WzWANoViN/4eEe/y9HwDra15XhLbNYCNhdl0is+q3ejTdZWv66PaXWKfOTcLlJn1thMtm0Z9Xj2Pl/5W1ajabmFqMogqkAC9w6S0V0UyLwG2gZ3NEgYsMW9BeojZ5gUe//SgP/u4/xdJ0skWfT3ziU1hWEZQYXTW4fPk0d/zVd6l87QmiiRGqx/aRHujBsGxU0+bEK28QRS7PPf88SwuL9Pb0UMw67Nk1htRMRseGMAwDVRXLaTZgbmEW08zx1ptvsnvPGJMXL9KTz/DO2QuEYYTnNimX8lQGKmQzuY6pp++RTqURIiSKIoqFHgK/jaJbzMwuMDo2SiaTJZ/PYBqSIIwJ/BBdMWm3mwgzi2mnSafSTF2Z5Fc/+QBR4ON5HkMjQwyPj5PNZBgY6IMkhNjHsFJMz852UsQkGn7gMTw2ytlzFxkYHCLwI2ZnZjA0nfGJUSavXGJhdo5cJsehowcxHJPZ2VkKmTyXLk2SSmVwUinCBEgUsvkMiAApAohiRofHGRjoo9WuYTtFhKHjNWKefPw7HDt2jCCQSKlw+N57luckQNENqrNLWLZDrbaIoQvePHWRXDaPFAlHjhxCV0OuXZ5j564J+kd2Y2cKHVNTEhShMzc/jaqbaIaJpilkswVMw0CRKrZuIxNJ4LXIZW0cW6dYLhAHMVFYY2m2TqY0gJKE7Nk1RjmSCFVBSgW33UZRJG7bRdVUqiJEpG1UqSA8DycEQUQUJiiaxNA1hOiYaoq+AUaGhxke6If5JZQoXvaXiztCnlBQggjhBwSKXA6uJJaFyoQkisEPOteahkg5NCslyGWR5RxRFKMqSkcQNHTQNYSmEms6SjZNPNGHOlRGlkqIwCfSFIRhgakhTIPY0Eksk7i/wGxKJbVvJ2qpCAnEEqShIXQdNI1EkaAoJM0WyewiQleXU+pJIAEpl8fUyTUuFIVIShAJjm0h4873LZKEJIyINBUhBJ7bIj06QKIaWFYaag286iKGYZAkSsfsdnlfMdMO55YW0dIpLMtEnZ5DqiqChDCMYAUXIWgqArNoomom7vwSzckppBD0D/R01tXtBDVzPZeqZTM5OUWlWqNH0YiKKYqVCqqhY1tZzr93iXPvvcvoxD58rwlxG8POsjA1jRdEPPyd73Lgjv1EYRM7lSFfrJAtZGm5beIkIYoSfvb6Gzz15BN84QtfIF8qUG82SXwdKTSEEmFZCaPDw0RJgJVyCGLAj3niqR9w3z1H0a00umFA0OLc2bNcuniFHRPjCJlQLKbZtadIGFgoqsljjz/FfR/5KI1mC9vKcfnSVdKZNJqmknJsxBvvEvaVEb9+P7/ze5/GSGm0vCZf+/Yj3PuRj/Lmc9+nlunhwJ4DCCFQEkhEN1FZ359wtR+bWE2su3xg11rfxDfVT5JOPsgbeWCX8yout5sknRyxQsjrnSXXadnm/rUiibkRQyJZQfQmenQz7VrBeQWXZbq3oTC88VxtF9bjgcTqMa6MeU18iS5+YeXO8lR00+qV9q7P1BY4bhljpav+VrxI9/i2Kr9Ju7hGg7ex4LGuG9otwi0pQbbgmbrjmmx0oHFDwy5uur8GEymIr9MVsUYrvfad3OK3wisvB1+8SQLcwqd1o3m6/k7KVXvDOqcdG63jhu12f+/J2rla7xVcy0uLtWrh9wlrBP51QAjx/3+f15tOJJfvfxgauo3gRl+bmwt88P3dXr21wutq/D8c3JOlOmKkH3l4z/t6ftsmRZsRja2IxJY3Njeh2Op5scXzax5fJkjNZpN0Ok0sVIIwIYwlMQphotBqe2Qdk8nXXuOd115j5sJl/KrLuWuXuOf+B8gWy+zYvZve/jKKkgJpk86mOf+D59n5v/w51swiya/cRzA2SBJHnVyGtsPs9FVOvXkKEo87Dx+mv6+f3bt3srAwT73RwPN9stkcc3OzSCk4d/4yURxz+fJl7r//PkxFUG0sMTK6i5mZWcbGRygVi+SyGRqNBrNzSzRqDRRVoVAsEPohX/nytzh06BCu20DVDZIkYmx4kFTaQYgE3/OZnLxKJpPlhRde5Pnnn+f48SMoSogQIVLGjI6PoGkqtXoDwzAwLIswDNA1lTAMcGybMAywbJN0Kk275bNUrxNEAXEY8d3vfI+D+3eRSjs89vgT7N23H0RMOp1BCJ0wSAhiH9txKOTz+K5HNmtTqy7huR62ZeOkbdptF9t2aDfbIFXm5pcolEu0XRdFhkhVRyQ+R48fBSkxTIPIa6GbFgoJke9iWxaNWgPN0EmnM7x35jxLS3Xefvstjh8/RqvV5OTrbzA2vpNiKY1l6ihqSOg3ESIgDNrU6wG2kyGdztCsV8lmUghinnr6GYZGRrl05SJSS9BNDU3XWVpcRAgFRYnJ5Qqopg6RBws1lohJRgeZJsQcrlC3Bc++fRZR6UHYFrbZieTsKZBUKvz7H32fKSGoHN5NK2NgjY/RTJtMz1zFskxiQJTzyIEyCwbQV6CZNvHyNpCgRDF+ysCXCZEqCTNpgjMXCWbmCQ/sRPzqfSz1F3EO7yPpKaL2Fag7GvrOEZLxUcIdQ7iDFZZKWU4FbR5793UOffoThNkUUS5PWBmCPX0oe8cJxsaIxvuYSikwMYSxbwJlYhylr5drJJh7dqHu6uOHF04x/qlPUB3sQb1jF8HEIM3BIs7x/URjI3iXrxK9eYZQVeDOvUSaSpJJkaQdQseEtINwLBTHAtskTtvEKYtEU5G6hn9gJ3FvmahgEAnJwsIilmkROjb6UD9JpUxYLhGUs/ilNK2sg+wpUSyUaLkehmYSl0uElQLTiY862ItfLhKVM3iFDGauyPT0FE888RS9Y2PI3iLKQA/KYIVFU+fbL/4IY7CXoFTiSw99mUOHD+Is1jCkQiubwjBsZBJTrzU5c+Ysx+85xvzCJPlcHkUaJCJhYW6eYrnC7j270TRJPl9ACAVV0UAI0imbJIp57rnnOHbsGIeOHEXTNUg6mvRsPgYiBApT1+axbYMwilnRdqtC8OprJxkf6SeTzxNGMZqqkM3mOfHa65280ak0bdcjjkLslEPgu+zcOY6uCYSMefnlF7AdnRdeeJFDhw7SbjUxTl0gGaowd2wPhmWRzmRJO0V279qNrUvazXk+9hu/3dGMi1XM3c0UYss9fTMisVZ4XZ+36C6/cb2ZiegWZo3dbd0mv7E1nbt1hvj9ahHXBEzqxu12BcgtbmyHt3jffXfzQtt8/oPilW+pnVub9q218VuMfeXgYUPh9lZhM5POLdTrt7qO2y3f/vx37x1bVV9V7xdsqfoPQnhdgdt9KTfT6K0lKF3wC0qVswKrAwjBKpMJNjmF6VL9b1d43Sgy3eo+t4XzoT3IQ2sF1xvmUGv9NDYVFDd47sMUXrcSPLdDwNZbt9VzudKHEB0fVlVV0TStE4QpUdAUiUxCZByQilr8+OnHeeGxv6FUKeNHIaN79hKbKdKZDJlcATcOMFMOQSD40v/7l9zzxI8x/uzr9D75AnLXGNED9/B3Fy9gGjrfffhv2LVzByBQCOntGWDHzhEMTTI8MkqjUcewTBwnRblSYXFpkUpvL/V6nVNvn6PRaJDLZSiXcyRRyPDYKFKxSedSqPg89ujj7N27j3q9yVNP/5B2s0mpXGRxaZEL5y9SKQ9TLOZwUiqq4eC2GizOz5AvFlCk5JWfvIrbCujp7eHpp5/hj//Zf0qtXsUxLWpLVd45fZaeygCKSMhkMpi2het6nDvzDpWeUkdgimJUXUcSce3aVfLFMqbd8Q1VhGB0eBTTVFhYWOAj938EzTRoNhvYdprHHn2SXC5Lpa8HqUga9TrvvP025Z4ClmVj6CYgCKMAy3JoIJptxgAAIABJREFUt9o0ag1cP2BweASpSOIEFCCJbJ599inGd42jajqu28Zr1UmEjq4oNGtVPLeNahiEQUAcJhSLPbTbbY4ePYrjWJi2idTtTg7XtMK5c2fwWiGpVBZN0fG9gMcff5YjR48zPzdLLpciDj2uXrvGvffdh+1YeG5CNpfHslMYRgrbNGg0mixW59FNm7bbQgKF+RZOLPEyGTRV4rltarUaE7v2USilkYRcOP8etpMmlc7gBz4jY6OMDI+CCNE1A0VqaJpCu91A03U8N0BRVaIopNVqYTslLMMi8DxMP0Y02siBPjg3SXLyLfylGi+168hPfxxtpBfDSmFbFmHoMzc/jR/55Ap5Qj+g3ahjOXZH2FEUFhcX2Ld7GNvQmJmaolQsoWoWCi3mpy5gqxLNyWJoKgohC7PX0DSDOIZCLkt9aRaFBmMT+9D0DIlXZ252Gjvt4NgpRBLhqhrpAzuIju5GiwXBCycJz19B9BQImy1U2wTA97xlzWNIHMedQHxBRBRGBJUyIgqoLS1i2w66YaBbBgsLU6iqhVQlvl+l3mih6zqKoiGEQNNsmvUWtmUTRTGtVpOUY3PixAkGhoZotZrUaw0ee+RJxsfHiGMwLINKb4Vas0az7jEzO8vx48fJZbI88sgTfPazn6WnUibXDmg0GtSdFJZtI6MIVdVAkaRzGdrNeTKZAokwaDWXyKQyqLrOO6ffIZdLA5I3fvYGqVSKd995l77eMo7tsGPHDhYWF6m3mpAkpFMOxBFuO8K0HIIwxDRNGs06fuDj2A6q7Fh4HD12F6oMEKqKIhVmpqaYvHqNI8eO4VgGDz/8bQ4dPNqxCJE2r7zyGqqikc/ncd2I8fGd9JQrTOyYQNUU3HYL+/QlxGg/mc99iihJiOKEdKaCCNtE7hw9w4PoTu662fj69GR9Lm9zbWTXnZtoRLdFUjcN35r3uEEjtye8Xu/7Q+BjbuYZ1pol3iqs99y6Au0G2sgbN9aWd/Mj6/WxkVCUdHW4kc/tGjS3wfNshONGTXfzSms0tR8wbMq7dd2S73PdV2DtG30z/76eZva2xn4bwustd7XB+q5XD7Y+yFnJCb1VvevyxXLXK24tH8Rhx3bH9I/C6/uAjTaIv0/CK2y8yW1n43s/mtcPS6O9Gb63spHfKNjk8jaF161gO8KrqqprTKQ3WkdN6zCmK77AZtTAXbjKX/5ffwLNeeq1Jj1DO9ix9yDZniGKfUM898IruEFCX67E6z/7KQOxwPk3f4b91ce457V3kW4bMdRH+/79iMF+XM8nk3HQpAJRSKWnB13XmZ2dolb3OXP2Hfbu3sVStYbrehimSSIEnudhWRaariOEYGBohKmpGS6ev0BPuUSpt49YShShE0ctoiBi/4E7abptTMdk964JxsdGsR0bJ5XmySee4Dd/69eYn59FkQovvfAyEyPjFMtl4kRQrVYZHhrBNC2kIjl+191IKZidm+HLX/ka995zL0ODgyRxiOe1cX0fXTfQDQMReXieSxzHNNstYqBZW8Q2TcJEQ1UEteoCUlUxbZvnn3+Zvfv2EoYBvtfGdtLMzc5z5Ohh8gWHBEmcxLRbbaavTdM/PIqi6sRAo9Xk9Z/+jJ6eXjy/ja4pKErHbDYMAgzNQCQgRUg6laZcKpAkCdeuTpPPF7h0ZZYXn3+BOw8fAilJ53I8+8wzDA8NYDg6pmYhhcC0DVRNJZPNEfo+7XaNSu8Yqqrj+zEJCqZjsWf3Tt4+9TbjE2PMzkxRa7ikU3lMQ2du7hr5XBbLUqjXqoSBzysvvwpoDI0Momkp3nj9TfoqvWgLdS5cvASVImEcECMpFCt88+tfZ+/eHWiGzXe/932OHzuGbmgdAqiqBEFAPudw4fIVGksujWadSl8PmmrSrDe4dvUqvZVyh6mIQqLLVzCLGcSpS4hrswTnryD6K/DpXyY6sp/xe45TKhcQMkJRNVS1c/jjODZxEKAbKaSiIhTReTeloNVsMjgwQLk4hO81qdWnafvzZDL91Guz5DJ5iHUuXLmEIhSSMCCOfGqLC6RSed595y18t4oidLwgoF69zOnT72IlS1w7+1NCoaGrGrqdplWvous6YrCf6M7dkMsQnbsEb54lqNYR+RStag3DcdA0vZP6R0hiz0MRkqCnQH1xBhQDpIJmWCAFtmFSd+soisTUHRrNGqaZQlV0/MBDKBpf+/KXuXrlCiNjIximSXVpkR07dhAjMXSVbDbDwTsOomgR6UyGbDaHadmouk4chlT6ynieh4glO/fsApFgmArq/BKaquIVcjgpCyEVFhYXqfSUaTWbpO0iURKDDPDbLkJEaLpOq+2Ty+auB/paWlrgnbdOMTjYR+D7SFWhWCqSSZkYuoGQKo89/iQH9h8mwafZrIOIefnllxkdHSPlpHjx+Rep1uo88tgTHDl0AKkbyNijVa+jGxqnT59idmaajz7wEdKpFAtLs3zpi9/k47/0MUqlAnEU8u+//T2klJx77wylSg9+4JHP5RE/Ow0jfVTvPYBumAhFQdENrLjG6TdP0L//LqRUVzboDUjExozh+ozbrWonuwWq7QmvW7XVuVoj4W2B263DzeNPNrj/wcOW2siteIOtDtG77m8kVG2nv9vVsG051g8ZbkV4vW2N3pppXXMKcR0n6AjLt5r14eb2frHC6wdab0uf9JvhZqngF/sO/YMUXq9rs8TyzeXfRlN//dRiud563iBbBTRY4/dyva2VICCbL3w3UdsK925cV9e96VR45bcO/jdvLqsrb4zjynO3Atcdsy9OIqoNWA6qsh14X5tu0vWTYuOhdeVDS7rmr3vdFbE2r+xmM9ddHpMQxXEn6iPJcnTcVSehQiKFAlHC7PQsVxauUSjnsWWLb/7pn3D+9CWWWj73fOJBSqNHyOTKqLoN0iBpzvHGW+8xPHGAP/m93+dzb11l9MlXMb75FAEJjA7gHT/Ev/3h0/Ts34dfb9KquwRxRLaYZXZmhjBMUJQQx0yh6hrZfI5qvUXKyaJpBo2Wy9M/eJ47Dh4lm7Zo1JtYRgYhfaTUKJcKFLIZ3nrzLfbtGUcBUCL8MCLrpIm8OlJRUYw0tWqNk6/9nGwmQz7ncMf+nUhVYtgmhmVTKOdouS0WZueZmZzi5Zdfo394mHw+hWk5CCJUJSafy3H/A/fT9jwUoTJ1bZJ8sR9LV7h08T1iAY5tki2U0C0LO5XCazcwrDRSt1E0HRmtBLyyETKmmM6SyubQdB1T0bh07hw9fT2gSlRF4eJ7lynme5iZnmHvHbuQqo4iwXNbOLZJpX+QmAjbSaEbKb738OPs3DlKEAZIoYKExYVpUtkMjUar4+tCgmHavP7Sqxw5cidnzp9nenqKvv5+coUCmVwOKQWChL/9zqOUS2US6RK4PumM0fGDQ6CaWQxbp+030AyDyQsXGR0fRsiYlGly+fIUmUwnyvPS4hKmozF3bZp0Kk2QRJi6woWzFxnqH8JtLtA/vpOw3aJ6+hyVSi9x2aHR9siXyiwuLbJjbARFSnLZHLlshnJvgTAQNBpN0paGZpm0QoGKIEpUstkcJJLY9/GuVfnOj1/kcDaP9tPTyJfeIGl6+OkUWiVLnLERv3kvymiFRAlpNhbJpm3i0CMKWgSRgdecJg6boJcw9Qyx18IwVIRMEFFCvVpFUSTNZoNWYx4tlSPXM4rplImTAM10iIVOLCUpy8J2DFTdxLDyWKkcjVabGAUnXSKVLuP7IZlMASPlUKwM0nJ9immJYlgYIoemKLTbVaquRyqbwxgcpN5XJPfLx0g0Hf/UefTTF0iW6iT5HNHiIoFIUIWKWm8SDWZIkgQ7lVsWUA0816PVCsimCwihEScCw0ihyJjTb/+MSiFHtd7gI/fdy/jEOK1mHcc2cP0QVVUxFAGaShKFNOqzzExN0jc0QOS1mL16DUcPUc0cS0s1bDvD9x59lD27D3Btcop0voCxsISiKKgDPTTqi2iKThiEGKbFxUvn+ZtvfIePfvQ+3n33HTL5Arop8JoBQ/0jJCS02zV0TUdTNe64Yz+qbaFpNppm4rkNPL+J324SRR679kzQbi2SJDGGaSAUhcHRUaJ2m4xt0NNb5NkfvMQX/ujzSFUipcBrNbl47jxnzpznzkPHGR7qJ+3YXLpylnK5wN79u3G9AMs2uDp1ibuO34XvRRw8dBDPq1MpF/FcF/XvzhL05RCfvgfDdPjMb3+eP/j4XXzlm3/FZ/7wP8Eki68lJBISkZCI5VyqIiYhAhFez9W4Hi1bn57dTLC6yasQ6wl8yTJPvp7wtwkNT5Z9/pb/1pFybv6t8ZHd6tfd4NrnO5rklTHcqL/a93JDjeIqv9LNWKokSVjO6H6DBeoixjd4p/WZw+0GHbqO5xof2+Vmkw6dv8GzJev60K4e+5ZxPbr6ujHWDeK9dD13g89hU954Pdw2gvWUPuvW6/rdLmzV3hpuVQDiho+06I5X0/VLVvmUI9bJOrGZ8NqVZ3XrqF1d9W/yTRDLPrGbr8FGe08H71uc8eWPRIob3+Zqy8CbFWCbx/1ZY6nQZQXQDf8ghVexfLIiZNfHtEV729Gdblfbt7q+EO/jzEJserntd/DGB9Z13V1+K229T4j/+/+d+PnXkLeR5/V9wWZ4b7DoG5kkd6KH3sbpWvcH29VWLGLa9SqJ3yKXMpg+9S4Xfn6al77/LCPlYY780q92NBXpFLHnI2RHKxvHMad/8Cx3futHlP78G/yemSdJ2bijffDAXah7JgjzWRRdY2xohFKpyFJ9ifMXL/PumTPs3r2bwG1QqfQhVUEQSizLIREqQ8MjGLpG2w2ZnZ3h3ruP4LaW8H2fVqvBzMw8YeTi2Bm++tWvcufRIwyPjpDEAbNz8zipPFcnZ2i0lmi1GhhOCoSCY0F/f4Vc3mFhaRrTThN4IWEQc/rUu4wMjaBIlVyhQKUnT7VeZWLHBEIKhEhYXJwjjgMMXWd2rkrKyTA1dQ2IuHZtGk2V9PX3gRAoikRRVJqtFpqmoUgdQzfQJMR+k6Zbo1AuEQQKmpYhIkDVVC5fvEi70aCnf3A536qH327z6olXGBkdwQ88oijEth0gQdM03nvvPXKOga4kxL5P5LssVRep9JUwTRvfj3Acmyj00HSLxYU62UwWyzZQFIVMNo1mGgwM9pO2DWwnRRxGaJrKmTNnCAOParXG4TsPY1omutoZX7vtE8eSt18/wVBfiebSHG69ilQMNEPHtEwUITAsSUK0HAW5STqV56UXXmLP3j1EcUymUGBodIIvfulrPPDLv8LD3/oGBw/sR19qYNs282qMZaeRshNpuFTIoaiS+bk5BgcHIYl5++dvYxo6hq6j6gYAuUwGy3MJ8ynsn52GF05izcxz/K7jqEf3Ez/4G2j/+vOo/+LzhIf3k/rGU4R3TBDbKYIQrEwBK1Ok4YbYmTyxouKYElPTMTSbptcicC+hKjEgiYWBomp4foBhWthOCtu2UQ0TkoTpq5NYpk291sA0LQI/JI46h1mKVGk0WsQRPPH493nlJyd49/QZDh85jGkZBFGArqUxzDT5QgVFz9BqXGD66mU8b552awZT6KR0wYXTr5NVXbSUQ9PRsT9yN60Du7EqBZLL08RnL8HZy4RSYGgakaJilMokCDStY1JtWQ6apiEVweLSApZtkSBIkgjDsJm8Nksun0dKQb1eQ5GC2dlZyj291KpVvHabKOyMLwhjNN1GURSmp2fo7x2iVq9iOzmuXL5CuVxiz+7dfOPrX8dru6SzNtmWi6qonK3XyKQzaKrg1KlT9PYNYFk2hw4ewDA1hBQ4dgqJTRS1SWiAEuK2XeIkIZ3JITUDRYloNZuoKjSbnYBkhm4QhhGxAENTCKMIKRXCKMQ2dXzPJxEqmXyJkeFBkjjA0DVq1RqnTp0mn8ty+t0zHD5yJ0J6gML8bBMSi2wuz9JSHddt0ttXpt12uXZtGt9vUe4bRFU0Ws0mxlvnEONDRL/xSzSbLp/8tU/QXjrPoeP3Y+XHCKTEjECLxPWfRKAkAhmpKLFKLOLbMoNdS9y3R2+2JbxueaMbbpXW3Rru3Wa5WwlJYsOLrl6TGylTtqp/u9qtbh5rwzrd6GxDu7p9jdrm9bbSMm/3Tb0V4fXvDXTxdGuLb/X76rreVPPaPdFb9bXVOm7x9FZWjLeoed2sn7Xv1PasT7f7nvyDEF5vCAI3ytbdLLZob+Xx1dHoNoJbNjnZou+tHtiK6KxEsO32Q71hKiHXfWlWTjs/zI1nZX1W8rz+ooXXzbaL1QceN93ovr/SVnwbguuq9m+8Yx3o+LMmkESIwOcH33+c82dOU6vVOHjnESqjO+kZ30sgFC5cPIutaSzMTKP5Meb//H9j/unXGXj2p8SKhOMH8Y4egMEKdVXipDMEfkjo+zz9/cc5cHAfCaBbOrlCjuHhYaauTjM3c4WF+Toz83NM7NzDhfcu8tjjT3Bl8grT1yZ56613GRjspbo4TSZtYFppGs0araZHpbfM5YuXeeBjD6BbBnbaod1ukMkWkdLgW996mPsfuBvbcfB8H4h56vHvMzU1x8SOnZhWigSJrplcuXCFs++epZAvomgqKALXrTM6Ooy6HHl2bm6WcrlEknT8BTXN4dVXXuXkyRMcO3aYerVOpa8PqaqoUsFzA6SSEEcRIhEk6Jw7e4ZM2uLalfOoehHTtNF0BddvEiWgKGBoGnEkeOe981R6iqgSdEWlXCkhFUGxWMC2U4gkptlsohsm6UwWRdNBKghFB6mxY8cQSZLw6isnsWwHJ2USBj6NpsvD334EKQWptMP8/Bymo5IvF3HbHmnHpNX0MHSFK5cvMzI0iuXojIyOdHwOgbnpSYRQsOwMqmaQSjnops7iUpVUOo+qaoRxhO3YTE1epVjqQUqNOFJ56qkfoKsmA0MDGKaObZkszk4ShwE7d0ygKpJdE6NITSPd8gnjCGNkgDgRhEFIMV+g2ayxuLhAJpvF9Xzq1Sr9fYMoKkRRgrFYR0QR4eMvIP7uDH4SEN5/CPmv/gj/P/s87fuP8a+++Bd8+l/+5yw1riBUncy3foj0A4LxIXTDxLRTIFUir4GmCJIoQFdUmvU53FaMaaZpu3WkLwnChEgIpKKA1DqadVUjSiCKY+qNJqdPvc1wby+qbnHixGudPLV+SBgmtFses3NzZLNZ/vTf/Rn33Xc/V69e43Of+zyaZSClRNM0ojghjCOCWBCgYGi9WOkKqcwATmYAx9Gp1euEfpt6dYaLZ0+jxk1E2CJXKKOUHNS9u5keL5G++xhKHBNOTmPW24QxiPuOUjt3HsdxEEIhiUMW5udIpVNUq0vEcYxhmphmimymRBSF6JrG9NQ1CoUc5XKJOOmY99uWyQ+ffhrDdPD9hIe/8yiHDx1AkTrT0wuomkrgRzz26CNMjI8hiDl4xwGkopDPpcm2feIkQenv4+23T6GqMWOjY5w5c44TJ/4/9t47So7rPPD93cpVXZ2mZ6Z78iADRCBIMEGBFEmRIhUtR1lyjhvsDWff230Oa/vZ691jH6/2eHctJ8mWZIlBiWKmxAgwZyIQOQ0wOXesXPX+aISZwQxmQEryys/fOX26u+qG7966de+Xv1fZvGU99XodSUik7WbQLkHEA99+hJHhOv39RcIwIpEEkqpQm51EiBBFijE0Fcf1sQwT13Wx7BSzUxPIsozjNmgpFEhCD2SZg4eO0dpaJAyqSBI4joehWeQLRfL5LHbGJt+aZ8/rh5iZnWX37qfZ+d7rCCOJXC5LLp8likM8L6S3r5dCawtCtYiiiEcfeohNnsD5N7/ETCpFV2crpfY0jzz6NXbc8CFCkQMtJgLisxGjvTjGExGxIiE0DTeOkObkfVVV9bzLx8qZpPnWOJfLvDYjES/elzSn3TAMm7mvz54/53JWzofLtbKaj8vlMK8rEQqvhHkV4myOyotU2BeXW2yelorxcVm4Lag/t8D3ws/0Inwu0tZf2l93OfpyriABVqZ5/T8WlhFaLMe8LjaX8wUtc2jr7xHzqijK+fdx/nt5acuEpeBCKqrvHfN68cXFx75kaqslrAjOwTthXn9o8rz6vp/MtV1/t3ldF+ZKXZj3a15bC5ma5ZjXy5zS5XBfeP/C4hTzzG/OfZ/LcTZ3wZxjdJdL3fK9Wg/hr/5nAJRF8rx+P+FSz2ZuXqskSS6e94Xz8i6Z12TBAZZEF3IEPvXUU4wcPED/qg1s2X4N2VwLNb/CobdeY8OmrbihjKkrCClAPT5C8jv/A3VoFNoKhKt7cDpaMO001UoVXTcJAo+jx49T6ugkk86QBAFHDu+jWGpF1iwMEVB36vSvWY8bCKIkZHRoFsMQFFoKNOpV3CAiZWcwFJmJqUlyuTxClqjV67Tms4xPDNKS7+TosUNsuGILw0NDWJZFLpMlppn+JAoThodGyGYtLMsi9BxkIZAViYbr88JLr3D7HR8hDl0GBs7wwosvc/Mtt5DP59EUCVWVqFRDMrZBo17BTGdw3aDpSyolNOoOsq7y0AMPc/ttt1MuT6PJ0FrqplpvoCsCTU8xOTl0VoMTky0UGDwzSF9/H2EYETgTDA6Nsm7tVoIQZM1k6PRxrFSKb93/KB//yG3oakKMINNSYnRwiJZCBkmRMIwUY6PD2HYGy840LT4inyD00DUTx3GpVytkMjlUXcdxXCYnx+juLCLkFKcHztDb2021Vmb3rue59ZbrMK0C337wMe684wPEscAwFVy3wXO7X+OKDRvI5tNohoLruRhCxvMT3tq3n2tu2IFXr6CqMoqq4LkRqqRiplPUGzVMVWV2tsHw8CDpTJpUyqJWKWOkm5ovr+5w/NgxbrzpJtwwIE4EipSArGEePIksCUY6slRrHvd941v84s/9DHYug+PW0TUDWdYIwoCnHniUD3zsQ2iPv0TcaCDdei0D67qZaW+jd/1qfFw6u4vUZ32y2QKxAD8pE1SnSQ6N0PaXDxHccg3oKk6jhq4rxFEAko7jNkjbaaJIQlI1/LCpcS7PuDz53Ye5+fYP0F4skgQxiq7AWWI+iiPcRhVVTyESCRlwvCqSUGg4DgLB0aOn2bhxAylbo+GU8b2EVMom8EOmp2fo7O5ElWWeeuJJXtu7h7Rls27tOjpKJVw/YM36diwj1yRoFIGQJBRFYXpsmGyhSHX8KFpSBS2PlWlBSxWYmRzCsLL4LgShS8ue43gzZcKJWdAUwl/7cdTTEwgB/lk/biHAazjUG9WmGTYKM7NlVEVg2zpJHCLLKo4XUq1UMFQFCXA8n1TKxjJTuEGNMIJXX97DVTs2U52p0dbWgqYrzM7OcN/9j2HaeT72kduRh0YYGhyie+f16IZCvdYUWj348CN85mc+RRTEfP5vPo+sJHz6p3+ERuDg1yUKLUWCpE57IUcQBnieQxQGmGaaJAkIQ59GzSWXzzM2NMzYxATdfb20trUSnxU2KKpG5IZU6mVMTaI8MU5b71rq9Qa6lkaWDV546Vm2brkCSVEIwpjqdJnung5mZqZoa2vFj5opuFRVRVFUvvudp9m+fTu5XA5VBadRRyQS5j3fpfrUX6MrMlNjp9n7+st8+DP/EkWXCH2PqZNjFEoFDhw4QCqVIggCMlYRO63jeLNIckC2Z2MzANfZc/jyCf8FuVmTaIly8+HC2b40YXuODjgv7J6jlVqcDrg838Dlc9guLH95czOXDlrqXD/f5nL04BJ9LusithQxvggDuVj/5wQF78bv8iIt4BJ9L2VuvBLa+NyaWKy/HyZYap1cYF7f2XO4oICQL/xfJs/rsjll55Q/deoUxWIRy7LmBJ+a/zxWSptLkkQURedxfbewOPO6+NjfKfNqWObl6/x+WJhXz/MW2Fy+M7znvuDLMXLnYcGD+l4tioVw/lksNIFO5t9fbjN6N5vPZa8HMT9p+7m5+cdiXi8FK008vhKBxkpAiqPzfXphgF+tkEtnePapZxgeHOT9H/woihrjuRFpO4ebBEhxBFGIrqgM7j9E/3/7PGJwlHjjKuqrOpmOIvL5ArIEZ04OoCsahWI7Xhhy9133kEQJv/DzP41f96jUZmhpbWkyc+ODdHZ1MDvjkm2xqDciquUGTz3xXW677b3kc60cOnKYYrFEe7HExMQ0LS1pDh8+zLZtVxJ4PsMTo5w8cZIrN29BaAqaqmNZGYaGRknZKnaqhZGhAVryJn4o2L/nAJs2rUaSQ3K5NuqNOmY6TyxpqIRMjE/SqFUoFduoOS7pdJooivi7L94LUcAdd9xOd28vQ6dO8PwLr/GZn/spxoYHKZQ6iKIIXdcRQhAEIbKskMSgahpxnDA7M4WmKdSqddpKbcxMlWlrLeC5NXxnhiROaHgxIRppy0bWFJIkwq03aGkvEYUehmaw66ndHD12hDs/fBvFUpFG3ePQ4RNs29pPIlQ0LcvJo4fo7CkQRDG2nWdqfILXX3uTnddeRb0yTbF/LXXHZXZmkvb2dmTNBARutYzQVFJ6ilPHjpHJW0zPVujv78V1XXw/xhQCOZXGtCwip8wLL77J9is3I0mCSFY5eeQ4azesRtVipsaHSeWKREGASBKmp6bo6lnFgw88xB133EkUxciy1vRR9BqYZopqxSWbSyGEhhdVCTwP07AxDp5ClmVm+0rIimBycopisUQiCRo1h0zaZvr0ILmqQ7j7deL3X4f+0es4VMqx5crteKGDI6cIJk9it/WA0UosR+hJjFwfR/EGGTjps+az38DZ1IPc24UkG3h+gySJURQV33dB1tBNi8CpoRoaTq2BZdkEcUIURqiqQEInCBpIuo6EQJNkkigmiGIkKaRRr2GZGRJZIY4gCH2CwONv/+bzbNi4mdtuvxVEgiJpOLU6X/ziF+np7eGOD38YSYI4hse/+wQ37NyJqqq88sor9Hb30Nff1DgnJMShh6woxImEqprEUoKchMyMnoEkYWjwCKWOHrKFDiTFOBsx1sN5AAAgAElEQVRcSsYvO5hPvoT3u/+K2hvPo/79d8DOEm5ZjVbM06jXUCQVwzBxHB9d1wgCl/vue5ib3/dejJSGbMiIICIIYyamKjz99C4+9RM/gZBC/t22h/F8H1kWRFGMpqokSYznBPyq9wFurKzBqVV5wjjEt/oPI8tSM/gWCdVq9SwxBR//HybXX38dxVI7f9TzNM+OvUV3VxeKIiHJClHgIssq76v085OnVqGbWY4pZ/jTvhcJwghV1SFJ8PwGQqjUKmX+y9itrKOdII75Wu8JnsueJIw8dC1FGCVARBy49MVFfvv0TZBoxBH8xuZvI+b4ZQma7hSyrPDpyW3cWNmI57i82j7MXxaf47gxcW5nn3OYCn792xbf+rBOOm1yJpnCSwKiKGy+J4qKHwT4vo/uacSjAaWONobHh8gXcqxq7eXMmTOoWor2YguVWoWe7n5+f9OfUEyvIibhnoEv8PzMrma/53Q+Z8/LPrOP31v/e+fPil/e88tn8Zp/DiVJws92/yw3FW4CYPf0br585stLapi+cOUXzv/+wyN/xIAzsGi5G1tu5Od7fg6AU41T/NHRP+LiRpvI/O7a32VNeg1RFPHlwS+ze3r3om32Gn383vrfP39+/vJbv7g4kgJ+rvvnzo9p19Quvjz45SUZ0Plj+kMGnIGLy54bU3dzTCcaJ/njY388r8znr/z8+d8Sl2bwLkJ5OffFS9BkSZKcp+nOKxikSxP7c0Ga81wWM7dOWEbgsZCpWqrYMozHO4HLVSot1AKfbydJWCxH7UXPLb4wv/OUXctoL8/PqbRwYS14TmJ+m/M01gvHsty8L8fcLsQxXigs+v7BuXlYat6XWlPvlJ98J8zr90av/AOAOI7fXdSwf4Z/hh8weLJGJCQQEWld5qkHH+CBr3+Tzo4+PvYjP4WuXzBLLJfLHHhjD069QSIg/M0/ZNW/+i9gmgQ/+WG8qzajZDI0yhU0ITEyMMixI0fI52ySyEGTBB+8+SZ+7Vd+AUWSQFXp6lnN0WMDKJrBo488ztTUDA8++DCTk7OkDAVFgXyhhWxriTiRKJcb5FvamZwqN33dVA3Xc4miiCgO6ezoYPMVW5mZqRL6XjOSXxSgKglf+vu7SQjo7O1Gs9sxdI3jJ46j6xa5bCux0ElZOWrlKnLc9HVtbythGDaabtFaaKNSriJLCooss+Oaa2hrbWXXM8/Q2Vnipz/901RqVQptbShCQhESRDGh56NKOqdPDiCSiNCrE/geruvx1a/cRUsug+/5vP7664RhxNjYOC2tJRTNwnECJKEyPj6OZVk4jsMDDzxAbXYaEYfUKtMYhsydd36Mhx56rOkjSUxHZzuKnEGRNRxvij1730BVNRp1l/JMFd1Q6VnVjxuD3doOkoRhprj/Ww/g+T5xHKIqCppuIAmJY8eOMjE5QUtLgd6e1TiNZpCgfK4VPwq4+667qddqDA4NsenKbVjZDMgCXZN59bXXcFwXP4jI51sxNANVNbFSWaJYYnxsiltuvo2vfOVunnjiaR77znfxvRBdt/DckFxGYXZmhNBvEHoucRhRr5VxN/Yx2V1A01VAQtM0IEEkMgfePsDEq3tRH3+JQWKO/c//G+m//XsG1rSzet1axien0AwdochYhgZuFdWdIjzyFENvPcnJ00PUUmtZ/aUnSDpacVoLuB489/wLzMzMoqgqiqqh6xa6piNLAj8ISWINy8yTxCqKbKAoMlNT04RBRBD4yDEQxfhBQBBHhGFMw43QzAyRkPBdn8/9xV8hCRlZUvjwnXdy+20fRACu61CrzPLdxx7hhut28LGPfvgsIx0Shh4b160j8n3cep3rd+ygo73IE9/5LsODg+iqhqoYKLKOoihEkUfoVZDwaWlvIdveysatt1Ls3ohQJMbHT+B5PkEQEqiCaOs6tP/+eeI770B9+K8Qt1+Ntus1nNOj2KkMQsh4fgPHqdJwqviBw4//5MdoK7Wg6hq2lUHWTGIEx48e5id/9BPESchvbnkABKiKgqIYuI4HNAkMI2WBJHHm9GmkBDKZHJqmAglDQ8MEYYRpWciyxOTUJO+76f109/UwMjZG4Dv09XQhS5DEIb5XB0LC0CUMqnh+ncB38V2HMAxRVZUwdEkIUVUNRZUptBWICHBDh0Z1Cs+bIYoDJEnH8xwkWUKSNVQjAygITKI4Rjc1hJDO+/5Dk3iXZIiTEM9zSQhACgiiGqeNKRpyQCjFhFJEKCJCIoLEZ7gQkm2ETDRm8JOQWErwopBYhppbR9Zk0jmbdGuGtdvXk2rP0LK5g7CkIGkWDS9icnKSyfFx3MoMR/a9zt//6f9DPHyYdOIgkRCfDfSUiO9HIpp3CJdJYJ7T5PwzvHuQJOmyUg7CBdr3vLvRP8P/L2FhyszvJ/ww8Fs/NJpX13XnITrXBBTeOce/onoL1fcrlIAsZZKy3PVEzJccvVsT6fPllvH5WAyWnZ8Val6XlOB8j2Exn97z0k5lcfOdpSIKrmRewzA8bza2sO1EkmnUZhGux/O7dtHd3kFnVw8NP0DWDRzHI4odurv6eejBR/nX/+LXeOXLd1H6ky+QxDHjm9egdZSI4ohTJwcI6nUQCZaV4tndz3Lb7bfR2pYnnbbwfZoEvCxTqda4/6FHed/73s/ePXvZecP1TE+M0N3bzsR4lXQ2TbFYIIoEM5Uq3d09PPrAg1x3/Q2omsZdd9+Dpin8/C/+DKMjI3R2dnP40AE2rt/AV++6m0984pN4Xg3HCREC8i0ZapUAO6vjBSGGnsd3pqjXGiRxSD6XZbJS5dC+A9x+x+34kU+jVmdsbJo1a9ciRILggh/WbLnB2MgQLfksiRC0t+cQkoWQY+KgmSM0lUoxPDxMT08PY2PTpNMpgtDB81xSpo1QdJIkoTo9RixpnB4YZPvV2wlCl1TKwm00kIRKLFQi38XOppmamiBlmJi6ysTkGF3d3XheyPRUlYceepBPf+ZTzYiwpo1TDRkZP0NPfzuhn2AZJoZh4rk+sgaOB4apIRMjSRJ1J6BRrtLSXqBeq2KYzRyxSBIH9+2jo72NYkcHfugTxU2TS8/1yWeyPLPrJdLpLFu3rEfoGoEfYuoaSRQghImkCsrlKQgDMtkclUoVWVYZn5jitVdf42Mf+zgjw6Ps3r2bT3zyE5RKbTiOw5Ejx9iyqY/xyTFSVivIIZpqoWmCSqVGOp1jemYSXbPZtXsXH/nInXg1H6kyi/foczx78w5u+f3fYGR8kL7e9dSqE7QUOhgcHqG7txNP0tGqZzDsHPWax1h5Elko9Kby8HufIwwialetQ8gajXrI3Xd/hfe+byfbtm1BUTTiJEYS4DgOmmGgajKKkIiikJrTwDTTBH5AveKjaj5RCIZhgmgevt/42n2898Yb6e3rRigCr9rgsUe/yy23fgCI0XWdWs3BMHVUvekvPTU2jp1Oo+oaI2MT+IFDX98qdj35LLlsljffeosbbriBwA14+ZUX+KVf/QXiJCHwAxRVRTd1ECDHJkkU4gUuyAqmDdVymVw6SxzGNAIfwzAI/RBJCLSnXyVet4ryr/8Up06+zNp9DcRnv4D4yI0khQJJDEIovPjiC+x8z/UMj56go7MLSShUKzXsdIrKbBlD03HqdZ59/kW++a9nSEj40unP4AUqX/j837B6VScf/9gduOjEUUjouGiyxODoBG2FPFMTE8Sux/jYJL0bV2MYzZyyut4UsGm6ilur43sNdE1GkhLSdgvl6gT5XIlabYog8cnaJUZGT9PXv5qTx0/Q0VWgUqujqzn0dAERBc2cj5JM1HCJZRfLLjAzk5DNaARxgFCgWitz4tAZtmzZih80SGdMEjSiKKDRqGHbaeI4xq03sMwM9fokhmGDJBCJx7/o/jphEHC1vIZ6o4HvNpieLdNd7OE/fLbCyR2t3P3v+pmYqNNWbMP3XQYHz7Bx00ampqYIfJdCoQWEhCJrDCUjjNbHGPmNcX7kRz6EliqSTYGtOvzR7/xHbtl5DZu2bscuFLnzk58ku2oNiqwRxyCEzEpNa1cKS53pzbN2cXPSCxDPq9PEb/H7l4ILOEvzrolLHKCL4b0cnbNU2cX8NeeaSP/Knl8B5mteV+KaNRckLk3DLXQRuqj8EmbMK7L+m2MBtnjwnJWbp64U5uK1XLCpS63ZZV3iFtBrl2tavlJaeKHv6pKwjCnwpbTc71bzuuzYV/gcL8uq9BK4nTN5vxxczvUdRRGKoqx4P3snmtcfmoBNYRj+wdz/50b6A5FEiAWL6iJfj2WqL/PyX3xjgXnIIvcv8fey8Vju3qUbXcD4nT3AFgZsOjeeH4jJw1KMOIszt0vVXw5TIcR5hmuhOY/rusi1af7hC1+kp3M1/b3r0XKtnBkZwQ/rCHwkySAIXSrlGqszLfzbNwfJP7SLxpoeop3bQVd44bnn2LJ5C4auUyqV+M53v8P2q7axfftVtHUUUQyDM2dGcB2fRICVTmNYGUZHznDtjmuozJYZGTzNNdfsQFYjstk8M7OzKIZFvpAnY6eREEzPTFEsFqk16hQ7itx8y634vkc6k0YIGVnSmJmcoqOznZZiC0Qye/ccJJPOYKcMUmmdwIk5/PYhXn/lOfbtP8KGDWswTJVGo0Y+lyaTyaEYGrEMfqNKe7EIQjT9Mw3zrGRR4r777mfzpg1EYUBHZyfl6gyabuIHPrKkEIuEmfIshdZWJEXGtDQSKcYwLDTdoDI9hWZYVKs1crbB179xPx+4+WYURSVKIiRNRZEkZsuzhHHMvj176OruQggwNB3fD0AWSKpKImR8v8y2bVeeFVBEGIZFHPlksllSqRyKojI1OYll6lQr05h2BknI1MuzSJEPRBimSUiEZdjUq2XGxkbIt7YT+AGl9jYa9SqmYfPwI0+waeNmVFUjjgVmSqO/dzW7nt7N+o3ryRiCcqWKlcrgOg71hksYR2QyadK2TRy5aLqG43l09/bQ293N3Xd/lY2bNvLBD96KYaq4Xo2xsVH6+vtx3ZhCWztxIqNbzbyy09OjSBI06g5RHKHrNl2dXegNB/mFN4lFxEu/eCtX3Plh9FRMW7GAkNMoCqi6gazohEmIKsPwiYOgWGRKvYS1UdrOlJH/818TZtOwczt6ygIBqXSa669/D6WOEn4QNM2GwwhNkdAUhRiZOILyTBnfC7BSFr7n47khr736JmvW9oCs8N3HvkMchMxMTtJeKNDX04uQBLKcoMqC9evXosgSpqXiOR62nUGSBIauEQm5qRk0dBqex8TYJKWODlRFp6unm0wuS3upSG9/H6mUzfarr0TRFaIkQZETLMs8u2so+HGdKK4TRmVSGQW/EUOc4LkNRseHyOQLREGIEAmyJCGyNvIbBxjaVKR38zVoOzYjrSoSffF+1M5WtHwKx63T29dJpTpNa0s7iayAkIiDkDh0yKYzRLHEy6+8wZFDRxm9w8T1PD46tZVqpcwNN1zP2g3rODV0BlM2UIQgDAMabgNFEuTyWVTDpnN6hpKq46Q0MrYOxJRnp8ikTWanJ0jbBfa/vY+1a1cRxeA6Dul8hgSVOHJRNZVG2WdqahrTzmKYCoqWw850oFoWiVBJkgRFNTh45ASKaWPZecIwQdUkhCpB4iMLgW1myBVyuE6AburIiiAMQJJA01RkGZLAJ4kcYr/OifA4v7PhKb5UfJU/6XuWE5kKXYckxk6OMTYxCYlMOptHEgrvf9lnqtPi7Rs7yOdaOHZ0H62teUrFIoEf4Ls+adtCN3USJKJY5sjRfbxl7aF+XYWRVcMckF9DWi9xZ++P80v//j+R61zH3//l39LRkuLUoTeZmXLZuGEDsQSxLH2vU0NekraI42TeeXdx2flM38UBXhZH9pwG8GLC9EL7Te3iZTKvy15Y0a15BZIk4cHxBwH4eOnj76gvgOTsXM6NNwJzxnERTXZpIm0u47csTbTAlPxi5nW5RXX5NNel182FMsvivwytupQWesV04jLtn1urK9ZaLhtFd+Uv8LJ5R5Z4bkvjuXJ+413T2uJCnJzLweVcn4sHhFsa/klHG16Kef1BQNNlQW5a21xCHPhutcDn2znbqWDxcYoFn5XkuF2aUW7maxIC5ua5Ov9ZmAvr4lh1zU8yH1uxbT3ixmsQucw8HJaSLl1ORLVLlpuT53WugEMIcTbj2pz6Z/O+XjSfcYJ0iQ3g3BjUOMaTZWIhUJIISTOQHZczh/Zz/ze+iq4qrO6/HqHp+Oo4ujAxDB07laVQKBEnMmYjouW3/jv2F74OpTaSO9+Hk7fxgoixoRHaCwXsfIZG6JBJGbTkcpSKRQ4cOYKh65w8dpxCvoXTQ4O0t7dx11fv4rprrkVGkMQRAwMn2HHN1Vh2BsO00C2DIJRobS0xNT6IKsWUq1X6V62nUak1GdSubr78d18inTLIpFSmJs4wOVVDNQz6162lVq8xMTJEpiWPlbbRNIOZmSlMzUDTNF55Yw+GZXDd9TsxUjbDoxMUcgVmZyookoylqggpRLeyyJKKlAic8gz1ehlVNeno6UGSBbZtksigqxaBF1Kv1rEsAydwyWbyHD54FNs0SWSLOKyhKyZ1z8W2C7iey/TMBC2ldlb195NJq0xODBMjMTM5QSpl0qjVKORaKJXaqdYqpOwUQpXZ8/peNM3g+LETtLa2oilyUwPYqKNrKtXZCtlMmqHBAbJpC6GoHDp8iEJrO6aVJo4S5BgUVUZoEpJQSCQNWcjIqkJ5tsKBfQdYt349Io7QdA3LtonCiPHRabKZLLqho2gCgUIUhGzZuhlxNqWIrGhUKjUef+xRDh4a4MqtV6DKCa7TwLRaiKIEaJpzKgJ6e4vkczaBG9CoVVDNFOlsrunfKEKEpJ5NM+OjSgqyamEPT5MJZERbC0kUYE7OwPNvUf3R9xL/xk+i6Abf+MY97Lzl48Sywmx5knTGZu8bL9Pd2UooNMJEA2GStiwOHT5A974h1L97GG/7OvRtG4lDiKMYp+Giygp1v4EiK80UL56PZshU6zUkRSUMYl55/k2q5WHaurqIaxHjo6dQFUH/6m6EUPAdh1MnTrF103pa8xatrXlGRk4hiwivXmd6fBrXmUaSAuqVclPjqenMTI1gqhEJKigKkgy6KnHk6HGchkNHqYjrBeiGimEaGKaJroRUyhVkxUAzdDRZIowFUQy12WmsVA5ZMtCNLEEgkAwdVZIBiVShHaleBxlef/ZBuvo30tAMlCSm5bl9hB++GWd6AtG7jgldwrznUaIPbEduNJAVBRB4YYCmqohERtUsYj8hjEJ0TaOt0MbO9+3k4baDyLLCtQeLhEFAOmsjyQLTtEgkQb3hcO+995Ev5PjOI4+xecsVPPHkU/SoBpqmUk8nzcjggc++vfuxUml0QycIFdqLBQxTxTJsnMYESQieV8Yy80RopHJtlLr7UJQYWbVR9BSu55OEMZJIUBSdutOg1FGAJOaZXc+wZv0GEkVGCAkhSbiNOjIhJIIkrhI5k1QnhpGDKl5jlunGKL/d9TD3Wi/zuf43+bO1L3Pv6uNEfsiaYYVPnOzm5/evpX8oTcsZj6ulEtcbq9AOTLPVzdN3rMFUUePAewrs23eENav78WuTRGHMsSOnGBs5zer1GyGCL/zV57l2+9WUin14b7ls7OxjqjKNlw/ZK/bzVf8uHijfzwOTDyPdYLNqpJ2MJbjnK39POLqfR772NW7Y+WFCxUcxM8QhaFFAzIVsnaJ5OM07cxYSoiKRztdoZoG+1BklFtRfmId14Zm6ULs4X3sz119zIY7N/8m8z9zzXpKkOeft/DGvlM5Zmua5kMcTIUAIzs0Sc5jXTxQ/fqH+AsJ8/vkfn8dPEmfneU7biEXYknPk0pyxzJujhX0sUuaiJs/7YV4YnyTLi/BPl5qplVPKC+mzldJklwoYFS+4JuaUm1snjuMVmVRfROsuoN8Ws6KbN4Yl8rwK6ex6R57XQVPTuvg7c9E8LPgkQszHdWHfC/O8LvpOzr1woW6cRMx9tueYxXlCJbEgZ+1CfJaY24QEEkFTEXX2+6LAOsvwBSJu9nuWhxBLZEA5B//MvH6f4NyLtRz8o0VpW7huFiuyJG6XZ6ax0pkXuUzzM8c85lLSvBVJ8c61vUJJ30Uv58L6S+xFK40cGUtNP0BFkklCQX3sCP/rs59FoHPbnT9KKlukWp8kn8uh04ofNrBtmyNHjlD63D0Yf3svxt/eQ2QZvJk1yF23g5nyLNlMnvu+dT/Dg2dYtWYdu3c/T2dnP1NTUximxdj4BKv7ezlwYD/X3XAdmqHS1d1BQsL42BjrN6wDIZBVhSu2bKXhuAwPDdHeVqA8M8vbe/fT2pKhJZ+l2miQK5QYHx1EUQTZXAZNV+jo7qG3r4dsNoeup8m15Eln0vh+wMsvvUZPVwnTSpNK2dz3rW+y4+pr+cpXv8J73/9ebth5LVs3X8HRIwdpyWV5/tldbNl8BY88+h2SOKajo4NKpYasaBw/cRTT0EjZaax0mgjIpE1MXYMo4YnHn6Fv1WrGJ6dwXZ9MNsOBfW/TUexkz963aW1vwzRNpqdGAZVMxkYSMZZlIEkKhmEjA67rk8u1IskqTtkllTKRNYEXe7y95zDHT5ygVCoB0F5oQVUkstk0iixQdRMvCLAzGYIoJp3LEoQBhmGcXUYSzz/3Ir09vXiui+t5PPzQQ2zesgkv8IhCH1VVcZ06iiJhGCqHDh2gs7sDQ1M5c2aAtG2CSOjoaCeOfYQEmt7Md9mo1bDTNq4fQByRstMYpsHG9WvZvGUTkhSTxDGqojI8PIwQzTywlUqDlkI7hbZWBk6PEEYy+/bspb+/jyQJaFTLqKZ5dp0HEPlUqmVMy0QMjaMimNAgN14meeMQ9d/6VexPfQTVyhGpKa593y1oosb4+GlS2SwkGm2FPHLk8vbrL0AwxoG9r5FKZek5Nol27+OUd2xAKRaYnhgHBRy3gUDBc0M0XWFocIiWfA5ZFsRCQZUVksBHFSGWrdLRVuL4qREKWQUhC5I4IPYdnOo0dtomm0mRy6Wo1mZJRISiKbi+S5SEDJ4eoq2thTAKsFM2siyhaiq23dSYK6pNpVJF01TiMGT1qlW0FlqI4xgrZVGvVdE1DcfxOXbkMOl0tpnCSAgi1ycMYxRVxc5lOH1ygHvuvovt27dSq1TQNJMomMZvTJL4EULXCCOZ7p7VJLqGrQjk9hz+qWGMp17G+/j7GRqe4mTk03b1RrQ/v4dk53Yix0MzLVRZIvAjZEmhXquyb+8eLMs4u38pRIHHQy1voyoK29/M8NKLL5HLt2BZKd5++wB9pQ5sM017sRtZVti2dRuPf+dJPnDTNaQbMaos42dA02JqNYdiqR07ncJxa2iaiWEouG4dVdMRqo1uFdDtDEK20fUUs5VpVE1FFqmzxJNMguD5555j7eoenIZDHIEsK8iKTV9vH5qUIIcN3MnTJI0y/slTTFZG8V99m5nX9pKphJxpDPKItp//uXEP//X6/ehln/4RhVuPt/GZZ9v5l093ccerWdZWWyjZ3biBhJmyUA2VlrYCs9UahbYCsQKWC6emxzhzeweIgGNHjtFeLPLAQ49x0y0fpLWtjUDECEVm61VXMl2e5djRo7zxymts7lmLVU9xReYKbmq7ka56J8OHBmkrFRjWR9m78Qy39fwYn3rfTbzxwqO8Z0uRFx7+O6YndTZsWEcoB/iqj4q+gLhecJwtZF4vKnCpM7NJuF+gXS5PQ6ecdbNZTNA8Fy51ds877xcwRu8Klqk+9/a29DZuKtxETs2dv3YpF6a5YzlPByycg0v0rev6CsxTL317XtE5fTfTAq287uXAQrPad6pMmCfwYP7zXqrFcyamy/a5Alp3KRyFEBczYXPuJ8liuVHfzWQvXDOLa3Uv0MYX47QUzMX1vKl8ssA6QFrYzjJreJFtaLl5W7K1JSwyl4J/0syr7/t/MNdufeEmfmkV99IwV8K01IZ2rt3vyab7/YCLuLSL52KxAwdASEtL3BYf6zsb/zlp7cJ2vxc+PvMLLPqzeQgvNB1Zouu5OC22ps6NIYwSNOGjJwn3feN+KiMDfORjn6Stsx+BASLB8af5+Ec/yS//7L9FCitov/Vn9Nz3NNLRAZKuIrXtmzjgNSj19IAskcQRcRSxbes2ZElw8vRpenr6OXPyNDWnAQn09vXguQ6mZZJvaWFsYpyUZSKEoL2tFStlYdrNVDVRHHPw0BFefOlFNm3cRCplUWxtZe9bb9K/dg3VuoOiqNTLDbK5Inff/Q3aWttoL7ZTq1dJWTa1ioOsqcgSeK5H6EWsXdOHkFRMy6K3uxvLstm+YzuyCqHvkiQR2UwaWZLYsH4jiqaQyxc4ePAQL7/6Kqv6VxGHIalUipbWZqqM2XIV204xNTFB4LpUyhW6uvoZHRtlfHyC8fEJ4iRk4/qNOK7LU089zfarr8JSVTK5NEksE4UefuAyW66QSqVRFR1dgfGJWY4eH6Cjo51GfQTPbxCEKrUqrFmzmr6+PnRdQ9dVqpUq6XQaWZUxDQNJ1QmiqJnH1DAJQp9yuUw2m0fTTcrlKjNTZTqKRbKZFHY6w5pVfciqTBSDoRsEftNvkzhBUVU6u7uwUzYNx6FanqGtJc9sZRbP90jZJoZlkSQCz/EIA5dDhw6z69kX2bB+LQ8+9AhdXZ24jSqSKhCJwGm4yLKMrMqk7TSzsxV27XqOKzZvxg98VE3nzJkRNm/ZgiKFCMJmECZZwXPrpCydJI4wTZNqvU7OCYnjBCOXxn3yJfz/9Z+wbrya6ukDzIwPoSYh7S02U1M+3e0ldL3Ar//ar/PpT30aEQX0ljK8+MLT9PStoytMYX7uXsL370BqySGSpKnlVgSaplEt1zl+5DhGSqezo8TMzCSaphCGMQffPoChStQq40hKgltvcN8Dj1BqNWlrayUKArK2SeS7uL6HpknEUUAUxUSRxCG7F7AAACAASURBVL33fJuNG67ktVffYPMV68nlM6iqSr3uoCoS1dosYeAhkhhZUUhn0sRBgO84aFozb6ekysRRiKwIdE3HaXh865vfolF3GJ8Yp6+nnzdef4vHn3iCbdu2ESWgKTJbtmxpCgIEaKqBooQ06hWkRAHDJKUqeLGCrCn4ISRCQuouIR86hfz6AbwbtuM4NTZ+aCfSnR8g/rMvIeIYYVvUGg2OHx9gZGSEQiFDqVhCkgWu6zAxMcHU5DgvrB8jimI+Mr6RtevXceDAATKZDLt3PcuqvhZ0Q+HxJ55k89a1PLt7F8Qx/X1tpGoOcRzg2RKBp/PWvsOUSl1kM1lkVJBB1VQ03QJZRbXySIpFGIXIssHQ4BitxVbiJEYkKpKc4AUBqqLS3dlBpBnIqoGsaUiqhCY1CPwajdkxxo6+zcGRcdpeOI5VCzGv3swLH7D409tP8L9vGuQfbhhneEc7fpzmo113sLprO1O6gb9jDTO3b2DfrSVOfqiXU9e18XI+4NlUjeEtObybexnYYPFSzmXm+k4ejU6x7q0K+XwL+3aaCCmhMuvQ2tpKT18/mWyWfXv345VnqM3MMHDsBLqskMln2LZpC7kWm9a2IuXZWSamZ6mWG2ztXke7XOCq7LXEkeAevsWH1v8MYT3FK2+8jozP/r27mZ0c5+rr7qBaTyGSBqZpEkXRokzSQgHqYszrUiBJF7QxzTYWP8fmXFl4Ei5qLbWY+ezc830h7ufuea43z83mnQSgOU+ozxnDYjCX+M5rebJK9nx/S0WzZU6dub/FOY3VIu0vBuef5dzyc+ZusfYWHcMCXC+4kX3/aNDF6ODFLApXoplNkgRJlubXXwHNdWkEL/l3SZxWwoQ15/vC7+b3u1FKrYx5vfCeLJOvdwGu56xAz8VbmcsDnbOEmPcsF7gFfD+Z12Shv/wcV8vF3i9FVf7pMq9BEFySeV0oobxcmJmZQdf1S5b5P5JxhUVVjMtJSy9cX/h/uTGubA7if7ifZO9hxJUbV9juyuCdMq9NSdSCuivYLy+5gUQ+bz77HV586kl2Xvse9h8aJ9vZRTab49Txw6hShUYt4mduuJnM//snmP/7K0hhSLxhNcF126jlbCZrFVatWU21USPwHWzbZGRkCAGMjIxw7Q3X8cxTT7BudR8dnZ0oEnhOAyubp7WtCAlIyEiSQJFVUqk05dkyjdoMmXSK8dExim3t5NvbKHWUUGSZcnmaq66+luHxcfIteerlGRrOLH4Usf/tvRTbMyiSzje/8TWydgrTMJierWEYCookGB+dwPMaDI6M4joepWI74+OjZAu5Zn5FWUFWVQzLxg8iDDNF3anw2GOP86M/+uNceeV2Mhmb+7/9TVJ2luHRKQZOnuSN199i3dpVpLI5DMMkDCOOHDuOLsOhgwe55uqrUGWBUCUM0+Daa66BOMR3HaZmp5iYmEWKQwwzRTaXY2ZmFiuV4uSxtzlydIChkVE2b1pDsdTD8eMnKba3YqcMytUap0+fJGMbzExPUHcCUpkMummSSBJnTg+Qz2UJfA9d15gaHqGzswvH80FWqM1WCLyEOAo5PXCC8clpMmkTwzLRdZMkaRojyaqOU2swUy6DJKErGo4XcHDfflb39oEskW9pQ5IUhCQxOzNDPpcnbRuMT0wwMDDK1i1XUKlWWbtmFcQhhpnm1VfeRFU0VEWCs/6blmWydu0q4tDFc6tUy2UmxsYo9nZRyNvUajUiZHRFRkgQhgmSbOKfTWWiz9RI/JBocIz6n/8mTjpkz77n2br5GuxcG0NT09itRQzbwJk9xaljB/iVX/oNGp7P8VMDvPHqi7zvlh+n9KXd6Pc/zaMzQ7RuWI2hayQIEqHQdFgU6KrOmdMDdPd0o2kKvueiqRKzk5M8/cRTtLUVSKUVDD2FKkf0rlqFrel4fg3TMpmZreD4IblMBogIw4hMOoeuRERBTE93F7IUkm/JgogI/JB6vYEsydgZmzAIUGWVmelxoigiCDxSlk6j4SBkCUXVgQjHaWAYBlGQ4Dge267cSjaT5tTJAZ575VVsK0Xatmhr7SBMYjRdByGa9ZMQSU4hq1k0K4WmGQSzA6CqqJKGKku4ToVqYwZzXTfy4UHSu14l2LEWR3OQ8+2Ij7+fxpMvwJ7DmB1FEs2kr6+XMHKxUzblyixOo0FrazvFznZ+rH41Nw10015qR5ISNm7agJ22Wb16FUJSAJmNGzYjkpC+rja6+9rRTQu75hMGAbsPv0XfqvX0r+5F02B8YojQ90nncoCMrJggaSRxjASUZ8dIWzZ22kbIzVRAkuTgeQ1kVUEIkERTqyuFDRrTJ6mNH8WZnea1V95i+NQ46wcqTFyf489/3uezn5zhT3qf4dnsKVJWjnWpddxa+hAzb07w3iveiyY03MDj5IkzrOntRZEUfC9kemyMwPfZtesZ4sDj2h1X4TSmqJVnyeSLKIrMqlW9bNg9TqVaZt97W7CsAtlcC5XpCVzXYXZ2Bl1R2f/2Xq6/4XoiYgYGT9NeKDA7M8ueva+zafM2YsfDzhZAlkmndRQj1Yz8nWRQHJkvOF9CWt3CQ//1FX7qJ36ZY8eOMTUywnNPP85HPnInQtNwHAc4q31acChdZKJ7GczruXRCF9qYX/ZijelCmuHiNpcMbijERdZVc8vEcYwkBAcPHqRUKiHL8nlG6Ryzd1k0gpjf/xK3F8X1HdGJ71Djt7Dv8/0vpEUWgcUs/oQQ31fm9Vwfy2lgVzp/CfMFHctSl/9ImtfzMIchXEwbenmwMuZ1KdyWnYs5DOGiVoILrTJ+gMzrxcT1BVznXT37/5808xqG4R/MlSpc8HFofgQLNghx8f25sHATPmcCuBhcsAU/awbx7oayJJzP/bUA9+U+C+3+Fy6QhZtgQnRW40ozcvLcDhMxz9794olcYLe/8AU81+df3AWnR5A+dvOiY13uxVyplnvu4cmCqTk/3vPSzkszr3Ofc3PNKCAJEikhETFR1PSFSQKfxHN5+alnWNW/gXUbtvD2gbdp7exibGSUdCZDvr2deHiUzt/+C7L3P4koteHtvIpo00bIZRgbG+Gee+/lxKkBtmzZgmHoZDNZDh86QV9vH0HgsuGKbc00HZuu4NU399DZ08Oqvj5Gx8YptOZByEiqRhB46LpNrT5LGIKdymCnLMIgwLZNDN3i2WefZ/PmTRw5cpBsSwZZM4jjBEXRkGSd1pZWIGDHjm309KxCyDHbtl1JrqWAoqm8+spz5PI9fO3r97Ft6zqy+RZ2PbOL667bQYLPzOwouqJjqBYgIUQzkIssS0xOjmObFq2FNG/vexNdlbDTebZuu5p02qZUKlDs7GDr9q0oBDi1MpIsY6ZshBSzYf0VdHQVKXW0YaRMSBJCP8CyTIaHR1DlhJSd4d6v3cX7d74HRbMZOHWK1kIBRVYIfNi4YRMjg6fp7+3CcR26OzvRDRMnCDFMlfbWHJqqEsYJ9ZpHsb0FkpiJsQkGT4+TtdI8+MADrF6zGtWy2PX0M6xfdwVvH95L2tJp7ehmZPgMPR0tHDpykrUbNuE2GlRnpwh9l298/T62X3klsnBxG1Xq1VmiyMPOpVm1egsN1yUOXXTLolargxDIksLY6CiKkiGmwanjw7S1pSkWWnlu13Os3bCZuuPx1FPPctONNyJEQDqbJY4hJqFSm0G3mmabuZY8xZ4OsnaehBhVValVqui6iqIYJMiounF2TwgxJysk1ToD/9dtZNf1Y7f2MDub0NHXzYnjM3R3tTI+sZ/Ykzh8YC833Ho7n/3j/8j61atoOIKN/VeS/oPPIZUrVK9ay+rrrqNSrqPIKpqmUa9VMNQIz3FQNI3evj4IfRq1GZLIQU4SEDK6lNDdVUQxLEQYY5oGpiYRJwJD1/G8EFlVUVSBYSh4YUSh1At6GkWzSefSmKkWit3dhLGPZegkQUIUVJAS0GSZJG6m2jGzLeiqjO/5DA2Pnc3ZKpNKGVRmZ1GNFGEs06hVee6V58hkcpRn63QWS9gZE9dxuPqqq5mtzPAPX/wSV2/fQZIkyAp4XrVp2i032yRKSNQslmkTExAEEYZuY2gmdaeC39mO3nApPL8f+VM/RuL5yGaMevt7aOw/jfLcG0wJgZvEpPMpVFUhlbIJw4RDh4+QS6ep1aqkU2mOHN1DR1c3USTwGg0UQmRd4e/++i62bdtMIjdQEhkpaGDlCvx/5L13lB33def5qRxeTp2BbjTQCI2cSIAkGERZoqgsWbRESbYs73qsGXtnxrNpjtf2eNZnPZbHHo+94yRKpiwxiKSYgxhEAmACARIkASKnbjTQufvlV7lq/3gNEGh0EwAtnRl7b593+r1X9atfqle/+/3d+71XmqgiiiKLt65nulxDlCJUGXzHwY8UkAwU1UCRNWqVBpKmAyExI04URdRcB+QQURSQAoVQNJAFGTEoU5mcwJo6wcjwaYJQZtfhI4xet4C3kwd48GPj/NEvTfCTJRN4GZWUHUM/oBEfitOuLOTg6wdZ0bOIuuVh1cscOXqYQqEVEYk3du1CkyUCp0Frewu7dr7ENdds5fTZk7S3dqDpcRAVBo8eZ8GCdoaGh7j+vRBD0xm8pQshCHh5x3aW9q9mulQmnUhy8uQJNm+9iVOnjpLPJlmxfCWyKlIqVli5ahlWrcHed/aSSOR4eeeLdC9cjB+A53kUCgV2Pr2TWzbczPbaDhbc0cO2zjv4xE2f59jgKFlF5Lm7/wv7Xn+Gt597mNAL6Fi2mSCwiCIRhObmghw1vQIiMQQhJIqY4UCe45K9v6F/CdCdiZtBFDVflwA+EVG8kOM3e229eC0WkRBEkQgBBBEt9ADww5AIkUbdRYlCHn/gPsJaCSQPa7pI+cw45TOT1MaOkFFEHrz7e5TPDnH3n/8x5TMTlCfOcPzQboxEJwg6kiqC7OGGIpJi4EcBsqjieQG246EbMYRIIQoDJMFFjEJkLCSCmW68b0ETRZHvD32fd6v7WJtce4mR47zSL4kzY3pu7Z89GE3+YBQ1/8uRiAjnX4EUIhAhRRFyFBHMxN4QxKbeMRsMfKBKJ85tiHm/7GwENzePc/44JZeXuSyrs79733vvXD1z6IQX/V2+vsu2a9brSuX8b2OWPnsujs15fqd4DrDODVyvtJ0ARO9zTi8Frud6c+HHqwOv51XaGc6uIEAYBe9/h0ST/T3zEpr36LnX7PrfH5WL53zO4GuX8HXnatsFXpzM7/UA/8zdhi+0vM4lH7SLMOfxq5Gf5bU+QM6nWrnKCi53+qUu1Rc8GOcJQDXvD+ey0dhmLnsu2vCHBK9XyoE9d/yKQoNfBrxe0hXRnXnwCIhRk7OlyTKVqQkeuu8e+tdvQI/HkXWdTKFAuVRlfGKcjo4OtBOnif/m/0OUzzCxaSVS70JeeHkn+9/dhyzLvL7rdbZu3YZVr9O/cgWO49KoV0hnUtTrFdo72njt9TdYsqSPRsNice9ihNBmZOQMS/tXEYU+tuMgSwp+4DF8ephkIkalVOGxRx9j2ao1RKKEG/q4gc+a1cvxPY/W1jbCoNl1XdchEvjud++iv385pmHi+wFhEBJLZFBUGSEKUUSRvr4+giDkrb1vsmbNSnLZFMl4EkNXcV2HttYlfOc7d9Hd04pm+qhKHFVV0TQN13VJpHM0bJuVq9YQi6dwPXvmYRagahKl6Sk0tWmpcm0bTTeIEMlls4T4xGNNt2jPDZsuKYLQ5Bsi4EUqRiLF+o3XICsGge9gmCqariCIIu8dOMjIyDBbr7sWx7FJZJoujRECim4iiAKaKlNvNEikU6RTSVzPxvcDEok4hUKGSrlIa2s7ZjxBzNTI5wvs3Pkq77yzl+6ODnKtCTo624kns+QKeURZxrIt2tvakHWD7u5egjDEc+vE40niiQyeJ6AZKqVihbf37kZVFTQthm4YRGGIZTU4eOAIhmlgmDqTE1Os27AWq2HR0dGJEUtg18sMnxlm+YoVTBan8Z0GoiByYN8BWvNtxBJJnIZFIp7EslxkuRmYwnMD0qkMrtNgYGCA9tZWxkZHiaYniZ0cQ7Z9ghW9CJ/+DGqsBTHUacu0YbkiyZhIvVQkKeeJZZKYps7w2VFu+4Xb2f3wC7T83Y9pe+kN3itOodywCSkZxwsjnn/+eV586SU2XbMZBBFFTiNLCoFXoTQ9hBCGRJGDbVVRJAHHsSkUck2esKFRqZWJp+IgRgiSSCzdimokMeJpjHgKw8hg6AlAwndCkCJ818F1I8xEDElRCaMIUdIIhRA7kLAcB8M0qNVrqJKGKsr4AUxMFvE9m3w+Q6PewA99RFFsWtJD2LVrF+lUmiW9i9F0iX37D7B69RpMXUdSFHp7exAEeP6F51m+YhmiIKAoTX5jEPi4noUkyoiiRLlcQdVT+IGNogrIShJVjyO1ZhGOn8GXdaS+Tt5+502WLFmGdMN11IbPoO95j1FVwHbq+IGIImsIgsTRo0fZuXM7mzZuJvAlWlpa8VyH++67H00WyaRjhIpIa2sXuqkgKj6KYnD89BBt+QRyOSASBOxcElHWiekxXLcZkC6dbyPwRDRVw/M9KtUiCVPD9TxExSAUVWSvSuiBJGuEUoBfHaY0OcJJ+yRvt03wh0sO8NiGSe7qP8QzN06yTzmB3Vsg19vPwlIXsQGTTW3r8MY81ixfx6KlvSSSKTo72zFMnfb2FoaHz7B+wwaCMOC1ndtZt3YV5dI0yWQcM5akvaMTXY+TziR59tnnWbl6FcMjoygKvPDCDgR0Jj/Xx9Fb2ilXakyXy1RqdXL5HPl8DkkSCAKPcqUOUUgyHueVV1/j5MkBFvcuZ+eO7Yiiyvr1a3A9eO/gPk6eOEn/itVMTk6iaRrr169HsmRanRxFqcQP7e/zY+9pji4Y5fiKCqWtOfaaA5xZ6GAMK6xbuxFNjr2/MU+EL0pESE1FNJIuCdB0YaT7S8DOJevfxWsmfLAifsmhcxvEMxjPEyRARhFUNEEnrEzx2P33ITgOeA4/uf85Jk4f4Z1dj5NPlSjVNQwjRrFUoVyusXzdav7qb+7i1ptuQApcTr92H+WR08Q0ncmzI+B5ZJMpZM+iNj7GEw/9CCXw2Ld7F7lcKxAiKDqhFCNAIRAUIkQEIkRBOt+3vxj4SwatQT7b+pn5ubniLGvjJSc0g62de0UihMKFr+bxSBAJLlD2L9xUv2L5ACV/bvB6tVaxn61cOpwfDiz/POVyoPP8scuM5Ydp5/xl/nHgdS65yJVfkGa5DV+Z7j67DXN5bVy27FXW9WHA6z+ZPK+WZTWf6fOB17msaB9w/Px5V9D/D5tX9cPKB+U3m0uupG8X7ZgRXABexXnLzF3ZZfJgzZQPfv33AJD+7j9eXHzW/F1INr/w+DnA/UEP8XPnfVAgqIvqOtflc3XNc8+cb5PgN9NY+CGRGyJEPu+88w52vcGyvmWEehNQua5LEATogopu6EgPPoP4lz+gsXY5yupl53/3E6NnEUUVMxbnpz99ns2bt2BqEslUmoliGVn0yGTS2JaDbdvIqs7IyDjbX9rON7/5TXyvjCSL+JHB6JnTdPd2Mz4xSUyP89ijT/FLX/kcmmoyMTFJ3IhhWRZPPf0kH//4RymXp0llMrS0tON4AYau4nkeRCIDAwOkc0lUWUWRJI4cPszy1WuRxBDCkPHRKeIpk9APqVarPPvc89x401bSqQK5XI6Tp06QySSJx9K4rksylWBiYgLf94nH4xw8eJBV6zaQiBuEfojvh0iiz+RkkWQ6Qb1RI27EcRwbRdOpTE8SS6ZJprLUazUUXaZcLJFOJjl7eoRADMjnCxiGCQi8+fobbN68Dt/3UBQTj5AgcGk0GmQzeQSxyVksFYukUikiRUNmJg+hqIAQUilOUqlUGR4ZZc3q1VSrNQqFFgLfB8GnOFFCN+IIkkKEheuFPPLQU3zuc7dj12t0LmqhYXvUax7puIkbgKpqCEAoRPi2z/33/ZBf/caXCUIAhbu+eze//I1fQpFNpiZHaG9vY3qqQjKVJAgCatUa5ZJFW3sWTTNACAmjCNd2CfwINwiw69PkC+385V/9Nb/xL76FLgcUi2Wee/YFNm68lhOnT3DtpvWomkoqm6NaK2EacTzXhygkljCIgpD6VKkZhfbHLzD9kfV0pPIIksLBO7fS0dGG7PoMnTjBouWL8ZxJTh46xqoV69mzf4Bk3GDBYAnj0R3olstJIcRYvYJkIY2sqESihCALeL7H9OQUhVyBI4cOEU8oCAQkjBiKqGHZZeIJA4hw3CbnVhA13nl3H9dcuxEjnoeouWcsCuCLKoQCgwMDdPd0geDgWDVERBLxJD4y5ekxEvEWBAWiSMD3bRRFJYoaRMSIfAdZCilNTxF6DTKpOK4fzqTp0REkAUnU8BBQZBUBkccee4ZP3P4xisVKMzKyZ3P8+BB9S3qYnprktV17+MjNW1i2fCWDp8+QTMWIxWLU6xZB4JPLpfFDG1nS0VSdKAqJIhkvrBGEPoqUxvMr+F4Ds+qg7jnOyH/6DRL5DAIKsqzxwnNPsOWe1zheKxNbkEfRkjz11FP86q9+A1mWqVbL/JflrzFw6jT/x6kbWdDRhiDrhIGLKHhIhoyu5iiXJmg0Rujs6mN4ZIykEiD4GsXpMRK5OJblk8guRDN1IgGK0yViRgxVU5BlEde1ESKQNAM/CJEIiGQZr1HjsHCCb/e8ymjMYlJzceWIrGeiVwQW+Rm+/KxCwU/wD7/YgqcK5PMZpqYmOTNwlq1btyDJMuVylWQ2yeCp0wyfOU3P4m6OHniPG266hYOHDrNq1SpOHz+K67os7lvCM888g+MG3PaJ23nt1d1cd/16Rkam6OpayF3f+x7f/LWvIwQyRDIvvPQMumly40034bk+kiQjEjExMUGtUiafz3L6zASV4gSGprKsfzn7DhwkcBREySeTSnPmzAnODJfYct0mDuw/QFt7J4ODg9TrNZYsWcwN27ZRqZRoNBoYSRNXrVMS6wQCTIeTWFaNUWcUSZMJhJBup4N7Vn2HBV191F0XzWw+C3zfxzRNXK8x99p2wQb1fOsb4iyLmTB3QKb35eL89mEkIEbgNiwMVUNQZDzH56H7HuLhhx5k/S8u4Tn9ZXTdwMXBS0bNgGsROIKLEknIotyklqgqEVCv1jB0jZikklZz+K6NValyZ3kb3Suu4b7vPsA37/ganucxMTFBKpVi8eLFnDl6lCPHDuIJArd87FO09K1BkkUURSCMfAL//c7/2r6ZPK+rv3OJ1XD22v9+1y8+rikK9Xod0zQRRZGGUzsfZCgMQ2TFwPM8hHMcz3AWeI0unqdz3nBzcVovnSfhvGFDkiREZuXx/Dnkeb0qman/fPujS61s5z5fwuH+OYHWy0Udni8YZxj5c8Y5mUs/nU+u5ByY8Xq8sA2zxnG+Nl655XdWPy6ju5+r88K5Oz8WV1D2g+q6pK9cYKwDjJh51TfCPxnL67low/+cLa8ftoIrOf3iH+/8PJfLX+iDd1TOuWeEj7/Y/DzL8nqlltTLnXshaL0o5P0HXf9y83jJFxoSApoUokguD/7dXyID/as3I8XynDp2lHQyzfjoOJlUhuKhw6T/5X9E2PUu1q1bEDo7ODs4RKNaQwwjJDli9+436VqwkKXLlpFKaQwcP4wRS3DP/T+mt7ubZCqBrscoFquomsyRwyfI5wvIskg2m0GUwHZCnnjsUdauXYsgirzz1j4++ZnPIUghA4NDtHa0oughoRCxdt0GzHgMOYJkIsX41CSxuMn05BSaqlIuV9m+fTur168iZiaZHJtkYnyMfCZNqTyJEU/znbvvZXFPF+0tWWRZ5tqtNxBPJXH9CEFUefChh7lx2/XUaxbT05P4gUsmkyWVSqEoCqlUCsuyiSKfwHUZOj2EaRgkkmmiKCKZShFGIvXyNEQhtVqNfL4FP2jypPygGdjHatTJZdKEYjMYia4bhFFEW0cnrlNHURWOnTqN5/rkcjkcx0GWNRzXplZrWrVFQUaSZVyrTuDZWI06vusT13VMTaNSrpArFBgbnWZw4AymGWt63QUCTz75FEuXL0fXBCRFoVq2GB85S0tnF6pqIIkiQeAgeh6CoDA+PsGRg4dpbStgajp9vQuxXR9V1QiJWL9hHZoq49gu+UIa23EZGztLIZ+nUqlxzw/vZ3qqSqE1jiLH0A2RWsPG0AweePAh9ux9mxu23YBuaFy/dQuOZRGhEIQ+m7dcQzKVBgI621swDJ0gDFAUnTAEw1Dx/DpUfVzHQ398J5YqI3/73xHcfjPULKLWAq2bVjB4cpBCtkAu08Ib2x+nNbeM9q5unvnpY9y4aBOdf/oA+rEhWNSJu24Fsb5FqDGVAAdREhEFgTCwESIfIQqwalVCx+XIgQO0t+YRhYB33nmX1tZ2qvU6oSBhxjLEE0kkPUnv0pWoqo5PSCTICJJMgA8h7Ny+g77eXjRZxg984vEEthMgq3FsxyIRjyEICpEoELo+qnbO7dFHQgdBIhJknnnup6xdt5XJ8WmOHTlKV0cXkhgxNTmBIqvIWorAdfEci/5V/RRL4yiywu7db7J4yVJGRyd5e++bbNt2PSdODtLZnqNWq2EYzXzDMTPJ88//lAULF2AYKrKsIokyjmMT4UPUIPSbQaYkESTVQBEEhJiBP1rEaNgMZRNkszls2yLf0UF18yYWfOdBglyOZGc711yzmVJ5imTSJIpE7ml9i7rmcoezlobtEKAgqyYPP/w46YSEYSQxVQlDDQkDkbiho5sp5JiOL4TUbYdMoQskFVFW8NyAgaNHae0ozCjUEbKkgtwEtqE7xemDL7PPGOCrGx/n3oWHIYAOK8XmWg/XlReyzuti22CW37or4lS7wZNfXkBrV4HXX3uNQrZA4Eak0jFUTeXo0cNks81AO1MjYwS+R3fPAloLBRQ9QTbbyosvvEQqlSaeTNOwffxQYHx8eK6yLAAAIABJREFUDC+AG66/kddf3U53z2Je3L6DO+/8OmNjZXZsf4FGY5obtt1KvV4nm8lx8uQpmlG6HVLpDC+//ApL+5bR3bOI4bNn0TWdMApYunwpgqBx7PhR1qxdRToZx3EjpouTpFNpxsdG2LhxPdu2XUdLIctzz79EodBCR0cnuqpiRjp5uYUOvZ1etYcFYQut0zF6a3E6XJXTepHvTt1L6ZEzREWoTo6xoKsdFPAFf06ccnGQlvmXs/CSjV7xos+XyiyFfcbmF7k+O1/czvTAAP/+3/1bGusstt/6Kq9rb2PGY5wcG0BKaOTFDDkjT0bLELoRBS1HUklhRAZJJQVWRGu8FT2SqYY1KmGVoldmSqrzfPJdHm78hPf6T/Bo8Dw/Gn2SYrfNMns19VqAmWqnb+VaunoW8alPf5ba6BCLOttJZZK4YYh4Ab/v8bHHAfhM62c+wKNszq6fl/HRQQr5DLZVIwxcDFHBqTeQI/AsG8GziUIXUQhBCAC5eZmZMRfPWcNmgOtc8/V+Wy4FKxcFv2KWpf2/s+V1Lp1wLiPFOV3tSnW8n6XMZ3m9pJ18sAff1VDZLisXcFabbz6Y737V17+shX4eLDXX/Fyt1XYey9BcGwgAivrP2G14PvB67qa8hAM7iwc6W87tXM3n139RHXzwtX7m8jMCr/NFzb2we5dEV7vA539O/sRlfN3PSTjjNix86uaLd7KE2bnm5t5Vms9Ce+F5s0HrJWXmmbj3/fAvLiOdL9gMNOApBjG/xs5H7ufe7/+AO775W3ztf/pf+fqv/DqBM4lZKOALAqlMFvXpneR+7y/wO9uwb9xCFFMJbIftO3ZSKGRxrSqxeJLFi3tp1KpUSkXi6RzxZIaR04Nkci1ksxniiTiWU0fVBZK6RjyRQo/HSOdz2I0SiVgC1w5YvnI5QRg2Lb6GSj4bx2k0wVRC05AEmXrDbkYjHj2NkWxBNXVkVUWUVGRF5JUdO+jpWcj6zddQnphA1yTMhEFbRyfTk4Nk2zqRRYPuQiu59gKeL/HOu/tJJHRMPYFj1/A9m1UrVxHTVV568WWiSEBWBLLZptVU0kxQTEQpIB6LIUoQSxggiM10MKrC0OlBsrkMSDKyqqEbKqOjkzhORDqbolIsYhoaqqEhKgoCGrquEQYOVq1CLGFgGgk8V0A3EmzfuYMli5dQKlUwYwYnTp5i5/bt9C9bTkiIZVnIioosaUyOT2HGEkxOVUilkihyRBhCKmXS3t6G6/l8767vs3XrFhYv6UHXJTQtDqgIAqxetZpMymxaiDIpVE0jCEUiKUSWNKan6+SzGSy7TjxtYCgigqThRSGqooEg0ahXqJZL6GaMVNzAsV1OnBige1EfmzetpqOjHdurUWvYpJIpQs+id9FCNm++lnQsyeiZMzTqVUrlEoqZRFcNJsaHMPQcZkzANNLImowTSkCEYzu4Y+MoUyWk53ajLOjA+e1fYuzGblrWrOMXP/45PvKtrzOahWQsR8yIIzhVJKfMgt4VPPXcc6zetJXFRQX929/H7W7HWtOHmMsTzeTDlhWZiACr0SDwLEpTZ1HFkPJkhZHhCQptSfKFNjLZLKphUmhbwD33P8z1N95KKt3GK7veZGHPMiRJRJIEPD9EBmRZa7p0OhX8IKCQSWAYOq/v3kt3TweiKKKqMo16Bd2IASKCFBEGHrI8k8JCECHUQQyxKyUMTSedzJFKpVF1dcaiEmLbHp7toelxalYJzyrjNqoYiQy6bmIYMfbs2s3CrjZymQRvv/M2/f2r2Lv3bTZsuoGDh4+zdPlS4kkVVVVY2teHpuoIyKCKRKKIpCpEgkR58jTxdCuyFkMRQ+xGFT8IECUZqZBBfWkv0qblWCqopokkxaiWy/iZFMlnX0XtX4zjWaiKTL3WwA/gifQ+4ok4X7K2AAEvPvcKixYZmHqKZctWoogejjWJ59WaHgiyhG2XqJbK5FvaUc0simYgzgQy1OVmNPQoBElRmlGYpab7tepZ+KURTvRYfOvaPWwoF9g2shDp3QrrCiuQHIGYZrD2xSK/8IzFDz5psnObyVRpnHLFpjoxwpQVoEYWbV09NOpNK7htlXnrjd0okkHnok4kJYYsNUHcnl276V/ez85XXuHw4SMcPXKUviV9xE0TTTV5+okfc/O26zh09DiyrKGoKs8+9TjpdJKbb/4Im/7r22wcEvl/R16mq70LwoBFvUt44bmfcO3mjYxPTVOZrjAxfYZN19zKu/vfYemSpXhuQDafZmRkinSuQLk0SaVU5sZbPsLZM+Nce+21+L5PsVhifKLM5NgEVqNBIpVENXR8z2d8dIydO19m6aIlVKeHkRSZXGExGwrXYgUuOwp7WD+2id5Cmt/7nX+NFAX0LVyEj4IajxH4ATIu0cyqJQjCeZ3nHHXzErlkjbxgrT/Hzbvg8+w1WRQjZE/iqQce4p6/+XO6l3bw04/tZbe5l1VOD7fmPk6qGKNX6WJpvJeM1MUrj+/gpv5NtAsJOuOd5IQMeiNGi5IiR5qClKRFKbAotoQeqYtuqZOOsJNrC1tZWC+wJrGaXJgFSWBAHOAR+QnuO/4A9/3FY3z19l8hnkzziU99lv3732F8+DSv73iRBZ3dxHJ5ECIk/PPg9bPtnz6vx4iiMEM/aX4OMFEjGx+fumyAaxNEDpJXg3IJqzLEPX/2v3Hs9Wf549//Xe7+s9/h6Ns7Ofveyzz599/GGt7HCw/8HZWp91jYsgwt3Ylv2ZgSSIGDIspAhE8IEghiQCjQ3ETzNXxRxJdAJEIOZ1SWcxMSNrcNojBCEkXO59A8z2m9jHwQH/ZDcmIvlPO8UeEct/LKQJEgCITN6KKXKtnn9PirbssHuFvPpefP4gtf1rgykwe2yZH9x7pgzqSzmWceZ2OUy7k+X3L12blsr0B3v9BCfu79nJzXy87MxRM5J666QNf/Z815nQ+8zseNvNzQzi7zYcK2/9zkZwRezwP72ZzXC38ol9n9+bCNOw9eP33LxeN6mR2cK52DuR5GV9vU2YcDsTkc58bLtKf5sz/8PTo7u7n9S19namqKT3zys4iiyMToMPVqg9SpIRK//rsIr79FfcsaHj24j+6eHhJmjMBzWbK0j0Q8QTKZwPJckqkUluuQK+QRFJWTJ07S072QTEsH6ZRBuVwmHk8gCjITpRLZXIHnn3uBZDyBqSuMjg4jSiLxdIqxsTFa29swTBNB185zb9V4DKtexg8CqrUquUyO9w4cwXUdEvGmhVAUobdvKaKsEBCRjMXwQx8QsGyPbKKLqmXjhzVSKZnB05PYjkV7ewHDUGk4NtlcGlVTqVQqTE+PsfmaLeQLeRRNxTD1Zuj3mcAViUQCz3PwPX9mF1pGFEQGBgZZsGARoghTU1Mkk0kMXaNaszAMgyjyGRsdI5vLMDg42LTShh6mqREEAY88/AQrVq1CiODs0Gk0VeSVXXvo7u5GkUQyqQSuFVLI52lpa8eLhKZ7oCjRaNg89viTDA4OYJom2WwG04xh6Aae7yPJEkEQsWndWp568klaW9uQkKnMBJSSZRHDUJmcHMeMxQnCAFGEsbFxMqkkUQRPPvU0q1b1c88P7+WazZspTo0QhhKCLBMgEUUBmmaQb+lgaqqK57p4fkh7ZweZdIJqtYKqa3heSCKeRRIFxsfG6OjqoFIu0bDqDAycIB6PM3RmhEefeILWQguGIRFEEbnWFgIvYGxsiGQ8iRR4uLUq5nN7kDctY/J//yrJOz+HlUhR8yWyiXY2belmYU876VSBw8dOkCi0Ixtx5FgaXZZYvHQ5vLof5W8eYoddoWXzBmRVJYzsmXtoRufyIwwjhq7pBEFAPB6n0bA5cvgQXR0F4pqM6zTOc5fXbbwGwzCQZYWuBV00LRghYQRRKFGqTCOpOkEkoMgKsmagGTphFLFw0cIZl8RmQnRNMxBmFt0oaip7USjgeU1rcBTBG6+/Sj6fR1RUjGQCUWquCYqqoxtxdr+5l0wmSzaTwbXKSFocM9uG57rYlk0UCuzZ/SbJRIp0Lkf/qlUYsQQN22bHjudYtmwpYRCSSWdRVBlFVanVaximiet5aKpG4IcokkJ5apgQGd2IUSmVMONx/CBE1Qw8UUAMQX1tP0Nr+kjlMoS+g0iI3t+LOj7Nm488g9hSYOjMCIXWdu6+++8Z/4RBGIZ8ob4GAol4IiRwkhQKScrlMarlOpoSJ/BktHgSWRTxLJuMJeFN1RCyaQRBwHfKBJ5DJERohomWiCEpGkKoIgYGzz92DzF9imo4yZ03vcWyE3HWOh0EQTNVlGHoCMcm+cqzIpmKwH2/vZSza7JkshkWdnVx7MRJRkbGuPVjn0CWBKrlKkNDZ1i4qIfDxw9zw00fZXRkgmQ8hlVziCQJUVKJJeO0d3RgNRps3LiR/v5+ZFlm5cplTExOsXLlCiYnxth6w03s2rWLZcuWMzUxySc+cRsnTx7n1jcd0r6C/fWNiIJEZ2cnpVKN0eERfN9jwcJFhFFA35I+nnv2eRRFxIgZlIpVJCkimUxRKpVZ3LuITDrNSzteZsHCFlKpJI888hgTE1MsW9JK6FssW7EMSVF44423OD1wisETJ0jHTZJJFcupk21pRzIyhGFAb2oxJ91T7DP289m+b7B142amTwzw/L0PsuXWbdiOhyirhEgIF3hRXXblvNx6eBnQEQTw1COP0SiXuO7TN/J76b/EUyI+an6MzngP6USaKKzT0lZAluJUSuNs2LAGSZEIRQlJkrAtm7fe2osZU0lk0riOC4KMZQeoioBlW8RjCRzHJZlOIiJC1aE+GLCt8xra6aQq1PA/6vDDxg94fPwJ3vTeIlft4te+/Ot0dXVycP9+WjMpEqZBJEo8OvYkAJ9t+8xFfboI6EgVfHRigY46NsEDf/otvv9f/4h7/vrPeemR+3nsgR9jBg1KYyOsXLaaNRv76OntoV4t0b2glZGRIYZOHaUxNcZzDz+CYJ1g77tv0rN2Mw05RSgGRJGPSoAahhDpKKGIEMlIkYUgeAiEyOHMRAm8D+pmuRz/7HlrPxu994N0t/lSN0aXKfez0sjnBX5XOZYX5yv9x83D5VJ7Xi1YvZxcaZTq2Vjow4HXq5P/X3Je5+NGXmK1vgyHci757zU2V8t5vYQDceG1zoUovwhAvu97dM4Xfa5jczfu0ofQOTeYC8fX/7//CgDp//rWnNc///CaXf8F7b7ovFlckXMy2wXn3KIkCMLlx3EWryWkGcVWEUT+9D99m1/+0u3ohontiTihQuDYpFvy+F6I/9Y+4n98F1qpQrBmGc6ybk6dGKRSKZNKpWltaUeRfF7c8Qpt7e0s7lmIFjNJpVKMjY6Sz+eZrtXRZJWnHn2YT33hyxDYFItFWlpamvOpKBD5nDx2nPaWdkQpwtB0RFmm4VoIgjiTG0wkocU4dOgQnV1diJKEYsjUKiUCLyCZygAytt1MLVKt1NB0lcGhUXa+/Cqf//ynUUUJWRFRNBVJ0nj33T0UCi20tS7k0MFj9K9cjuNWCXyXZCJBKEg4TgNN1ZEVFc+pIwgqCDJhFOF7HoQuExPjtHctAEGmUi6SSsRRVAlBUClNjoGkIKkmp44fo69vMZ5vo2oGsiw3Q2+EPiAzOTlGJpdFECVUSaBhW+i6iW0FOJ7HW2+8wfp1qxEVCUnS8H0P09CxbQvDVKhVKxjxGKJqIIUClu3ieTBdLJFJxGjYdfwgIJlIEbg2ogzxRAJFUZmemuTkiQGWLV3Bvffdz9d/+askUinGRofRVXmGB6XgBy6e76HrJvXyJIqiImvmzM0l88qrr3DjTRspTdsIooAdRNz3g7v5rd/6XxAllR0v7WDo7BBf/OLnEYQQVRGYmq4gCJBOpnnogUe5884vYLkupmFgW1VkLYbvWDi2iyhrFMuTdLQsQFZ9QkHFCyJ0SaTeKBILTJwXdqIvXcjRT29gyUdvwQtgqlgikSjw0xdfY2ToOF/48m10SQqjQyMEus2uN9/l2ms2MHrmNGtu+jzS6QmM//A3ODdspCrIGKaGKItEkczwmWH2vLGHkeHTJGIKt3/y4yRTMcqlIqLQ5GzZjothxsi0dCJKCq4XEoQBstTkj6uyxlNPPsWadavo6GgjigRcO8RxahiJBLKsoMsyjmchKRqB7zfTBEXSjBdOhOd5qIrSBK7nHheRSBB6uI6HIEo4lkUikyUMPKKoma5DkRUc2yOKIvbu2cXK/hV4dp2jB/ezpH8VubYuxkfOkE6liSKJsdEpsvk8uiETRQITk1M88cRTfP2rdxBFIk8+8TQ333ITmWwSVVMRgOGRs3S0deF6Ljt27KBWq/HpX9iCmizgRjKarGHZVTRNw/cDJElEDiLkF3ZT/7UvcrZFo7VzAYZh4DgOIydP0fKbf4L7tU+hTBTxQ5BVgX+x+AFA4M/f+xz79x6lrUNBV2P40RQtuX5OnTrKot5WGlaJdL6D0tQw+WwLyuEioiRjr1zC22++yer+lfz0xe1cd/3NTBcrLOxuRxQCFMXn8Ht7sMpTxIxF/J+5p5m8ReWTxbU4p8doWb6R9EiF/HvjbH25zGtfXMi+Ly3mb+/6Hnd+42vUKyWSus7xo+8xXHJoFKfo7VtB5PscOHiI226/jWTaJBJU3JrF8aP7KZccNl+/lQce+BHXXLOZbDbD6PBIM19wtcrx48dpbcsxMjrGpz5xO4cPHETQNHLZLG+/tZebbrmR48dOsHnzZj76O6+TTCT5k18U+DfH/ohatUYUCQgCBIGHqhmEoc+j5o/ZGT5NpVTk39/yhyzdvZbJyXEy6QxBGJFIxKhVawiixE8+ew+eG7Jn914+d+ROVidW4zguYRgRCQKqIpPJpHnJ/Qnv9r9GNp8g12jj80e+CYIEUXN9cwOXMW+cmBRj/R1LcdscPNHF/lEF97DKwp5eglnqiVCIUO/wzq+L3l/PnUEhIkK6yUda1Vw7wwMiwQ5lXl1c+VdOs1ygc/dtd9F/w1pKVIhFOlk5w9TUFIZh8IbyMqO/cBRBkOgOl7Nl+y1ERMiKius2wVkQBOi6wQub7qXR6lGenmLdgW30FzfgB34zIreiIssKnu9RTEzz9Krv44cqyZTBdT/4FJqqoxsqoRQSKWCFFk7o8tDSexjtGaJFztK7dwkfH/0iqqYxHRSJSzHWJte+36d/aZ3XF7wHNKJxmemJUSZGTiK4AQvjG4gigcgIGK0PkM6kiOtx/FG1qfMEQTP9E+D7HpIo4ZgjjE8MkYwbaEELOlnCKCLwA0RZRTNMREkGRYQ2FyEKiHQJIVTOp5tqgtX3A3eKN7uIy2fiiBwQiV7WmG+itN90zr93f6QSTcytAEkrA+RbmpuM4Xiz//OJ8iUPsWVGp3tJIjgozXmekA9Rf8k//9n5b+q815Rv9pFWNvvoHxAJtsvznqv9K/f8e/cB5aI+XXjsnFyp5fX9A5fRdy+p4AJe+Txlr5Tz+vOWSyjvM14aV9qui4xeV8t5vUrRDP2q0fA/ecvrvN/NcY3/YSyrl5Ortrx+cI7bS8HrpZbXOY9dQeMu3MG8yBJ64ybEGzfPUXzWufMgzLks4RcC0wu/m8sCK5zbtfwgmdVVMYg4cfAwx/cf5BduuAnLSIMap1gsYxXHWdi9hHB8AvPf/iHmj5/jgGUxvWElmdUriARQZAUzrvPU00/Tt3Q5CUMhV2hF0w0KhRaGBgYo5HJYMzkmzbhBuTjNooWdeEGIocWIxUxkWcBxLexanWp5kt7eHlRdxWpYjJydxHECpiZHkUURIYLA8xgZH0VUJLKFHKEYMTVZIptJk0qYjE6M4Tl1xkaHSScziChIIjge7N9/gI3r1oAg4AUevh+gagYdHYtIJhLNFCSmTq1WJpNJUKvW0NQYCBKKqhAEISAhRNCwHI6fOEXMSDM2PkHcNJmenkZRVVRNxzRNJsbHmjxSIirT48TicRTDRIxEdF3DcWyMWAJJFKhWS3iugyQ1Iwc7XlMJlAWJ0dFRdENHURX2vPIGqqJiJpIksjmCWomJ8XEEWcFMpZFlk1rVQpdjBJ7EyJkTmKbJfffez8EDh1i9ejWxuMHE5BSFlnZS8Rie76LpKpOTU6SyeVLpDLFEnO7ebk6dOI0kKWSzWRyrgWroVMpVfN9DFkUUzcCulYiZBrbr4nl1YrEk2UwOKWagiCb3/vD7XL/1WrZsWEu90SAIPDpbs2zauhVBANMwiCJIpbOIIohCRE/3AqaLYxRaW/FDIIhw/ZCYrqNqCoIiIIkuIjK6oeFGIngutt1AGS8iPf8GfOMz7Ll1KStu3EakJKlVqrQVUjSK0/T3LqVjQYqW1vVof/MjjCMD8LGbWLZqHWIUkk8n0AZrGH/yD5R7F3DWc7n/3vtYt34tXuCgiCKDJ4+RS5tsWrcMz6qTz8bRFNA1hTAUiMVNEtkseqKFiIDID1GECPwaodyMxiuLMj0Lu0ln8oRhgOe75HJZjh46SiaTIghshNAjDD1EWUMUZAhCRPmcKyDIkoggiNi2PXOf+giIiBKoqkoUgRE3EUSJKAiIHIfQFyFqpp+VRIG4LpEttKBoEtlsCzI+VnGUVDaLZdcxTYNsLk8Qhux7ezcd7a0ossSqVSvxXZ8nHnuSWz5yM7lsErtex9A1SlOT5LJNrrckCrQU8mzauIFGZQrZMBBVnampEpLgY2gq09OTxAwd27EoVuuYL7+Fdd1SZDPP7/zu77Nt280MjI6R29yP8af/AG1pXCHADwNeaD8JiEz85/1svb6HhR0rGTh9gNXLb8H2xikUCqh6HNcTiGkJVEXFj0y0Yh0QCFsLFPJ5LLdC39LFSFJE4FuIThF3Qy/v7n6bnrYlZHN9DDYO891PDvK9P+/g48/a3PBmQPuhabQ3T6MubuXfLDxO9bPrmJ6eYnx8gtXr1yJJIrteeYWkHtG/fgspXSLf0sGed/by0Y9+nHfffocjBw+DIGBoMtlCCj2WhNCntaWFQj6Pphrs37+P/v5+du3axZYtW+hb2seqNWsZHR7H1BKsWLMS22qQz2ZpbS8QiyV55pnn+dxkBt91ObtyMatKm5FkmWKxiKLImIaBqmmIkoi12GFYPsqnPvkpOKvRNt6FLInIsgwI+J6Hruu4nst/G/gLohBOnRrguvBm2sx2DEPHcZueKo7jgABWq01tuUUm3UpKyrPoTF/Tyh0E561tMSlG0S/xB8bvc23qBhJRgur+MnJZxXVsYmaM6MK1L8Z5UBBFEeGbc4MCAQFxUYQwA0qiCYFocG5QAiBdE1DxKvzP+36NBUEvmm+iWzoJOcHE5CTZXB5JkhEW2NR6LVTdxB6rsGBw6Xm+ZxRF+J6LruvYlsWh7BvIWR23XkU5rLOQXmRFQRJFHNtBURRKpRITzhTfOfK3rFu3hlJ5gmsnbsGMmYRBiCop6JJOXDQxAp39lXfZz37KWhmporOkvBw7snFCl4ScoEVreb9Pm/3z41Tb4+AWy4wOHCaTTJFUFqP7iWbwJUkkljCQApVa0UKLYkiijCJrEIlIokIUgiiIeKJLOpnHd320KIkkmIQBKIqB63gEXoBn27h2HderEzYc5IEUJOo0ytPUShPUq1OIsg7iDD+0x0dqmYkjMg6cnh/oydcE598HByRozKNbtUSIi2buk7pAeGD+a0orQ4RY8304IBJNzA1axAvuPYBgz/z3k9gTngfE4YRANDA/EPqgPl147HLys7K8XqRUzlP2f1SccbHV+ArLzOuR+bO2vMr//C2vsyPqnZOrvQfni+Q157nM+pF8iCheV9MmLpPAWuTqdnaiKEKSpIuimM27OzSrL5ec9yH7Pl9y89kR9WYD0atNKB5e6EZ1meERIo9IUrHqDYpDp9j/2oss6V9Htq0HX4ohRhX2Hz5JZ2sn3VNFgt/9C6SRCfxFCxhb2IJZaMO1LGRZxIsCpkeHOXToCLfe+lGCIESUfGLxJIKsIMoyL7+0g+XLl5HJZHn88cf47Oc+w9T0KIlEhmNHTtPW0UEqZTB8ZoiFXd14od90K9VNbNtDkCLu+s4/sHHtOtavX8F0sUJnZxfj02PkUynK9RqZbI6RwTPEUzF8PyCVTDMyMkpbR44TJ4epVCzKxQk2rutHUg3uve9+fuVrX+HUwCmi0GDXnlf48le+ROgHxJOJ8xEUnWqVZDpBpeZhJlRKE2Uyba3NiMVhhCwKjI1N89CDD/HFL34e/AjbrTE6Nsa2G2/m+JFjLFqymGJpnFymlWPHjtLV2crU5DiLexcxcOYsmUQaUVWQ5Gb6H1WWKE6ViSeTaJpC2LQZ4NdqM3n0BCZGx2htbycK4e67v8/Xv/7LiEKIqunsf+8AqVQKz/fpXbQIx7YZGjxNb18PmmowPj7F2NgEghiRy2Z59LFHueOOLzE5fBrbCcm3tdHR1cHo2RHiySwPPPAAQhjwta9+lVdfe5nVq/tpWA3aOjsIXJe6VSPX2oI17fDG6zvYcsNmdDNHEDajR5u6TrVWZWSswq5de1m7Zhn9K5dCFCFLIoHv4TsBmiHjeTaK0nS9rtWK6LpGw/KJx/PYdgNNl6nXa/ieiCRHpDMJfC8k8H3MRI5SuYKMg2okEIaGiV57F/sPvkHsxluQVRfPkSjXhmhM2yzu66Pu+JhGgqNH3kBScmT/9iGScZPyN27ijbf2svnam0kfnUC/+wnctX1EbXnODg8jihrZQgti5BOFAYFj0ahME0QhcU2jVq+gmRqiYpAoFAj95neSBFEUkoiniRBoNCoYZgwiiSgSAB9RlJr805k0FqODQ+QLBQS5mdROIMKy6+iaASgIoY8kK4QRCKKI77tIojRjyQhBUIhEkWauKA8ECd/3UCWJeqOGH0iMjY3T09ODosgEgQ2ChBCFTI8PIYY+jm1jBxLZfKEZNEwzm2lkZpTNMPSp12skEinu+u7fk8+38fkvfJ7p6WEMI0Y8kUBSRKyag6IHpOLsAAAgAElEQVTNJOdDxm1UefXV17jt9k8yPjlFJplGEAOCwEESIiJBJvQEzBd3cfbXv4C5ehOTk9NousSZsyeICxHdr+xHePZVKmt6UFN5/vWqxykVi3x/8E4eefRxPnLzDaSTMp7XIBAkjFiBIAgIfBtFMVFkD9nIoh86jYBAY2k3hD5OOoP6xttIYUC4/wRU63idWWxD41AY0r1kCd/62NNk/RgLxtrIbFyO7Tk4QohrW6Rb8zRqTS+NN17fxdr16xkcGKCtrQ1d15EEi92v7aKjdxVS4JMtFDBNk0MHj3D8+AkW9y6gvasVPwzJZluYnJjg+PET5PMtHD92go/cej2aHuPAvv2EnsuaDdfy7rtvk8tn6V20mAcfegjDUMnn0izuWcLJwUHWrF3Ltt9+idZCAWHztzk7PM5/7v0DtlyzAkU1kGWDna/sQtUMNq5bzcjIaQrtBeyyg5mJMz5e4+ypI/Qs7mXnjh18/LbbqNVqqGqMHz/yABs3bGTNmvU89MAD3HzLNjTdQFUNgtDlgR/9mNtu/wS9i7txLQdFVZEVmWqtRjzZBGZnzw6Tz+fZf+A9jsePU0mW6Vf6+I3xr3Dj2k089NBD3PHVr6C1L0aRIgJBnH9Nn5FL9IbL6Bnw/5H33kF2neeZ5+/kdPO93Td17kY3cgaYKZISJdKiqSxZHs/Ya4/G9nrHZe9Y69FOecdTLu+E9YRyueS1ZixZwUNKlJhFkSDFBAYQJDKRQ6PROffN9+T94wIk0Iik5Nla7Vd1qvr0/eL5TnifNzwvDNeH+d2Dv8uJ2gm6jG6iszodfjuyqNNeyBG4PtV6nZ1vvcG9t91CgEc8kSJEY3b8NEYi3Xp3NyscPXmOlSsHiJgatVqZctkhkUrhOi0m5aWlSaKWTrMpEWJSbyzgBx7ZbAdy6OPiEIQa09PTdHR1omoKzUaNffsPk0i08cwzP+Ef/dqXWZqZZmJ2mnf27Oajd97B8fxZ/m3fv+bu7k8SigpSYIOqEi41URNNHvtvf8ej3/jP9AwO8vHP/ganH4IHBr9AKTPKyPACVrRlLQ99D8vUWt5VyTYadpMwBFVSmJmdpZDPcHjPT8mnNAgcBEGi4pjUPIPtt90NfoOluQnmZqZYnJ9GkTU2BF/g2cJXaPo2Y6OTrFk7yMTkcSKJPj77m1+jqUexYjqqZBF6IZLk4Ivn45zDK1vFflbL33Jm2IuzMIiieJnH2gfq+wPaSq5U/4JV90qW18vaXyRfvhfjes0G15FvL656Ha/F6/G2XG/scHl/y6svA6OX48vrzCd4/z65kox9wcvxhjxWPyTj9YV+ddP4/6flFT68HuDGgNF1tA4/b63EdYPGP3j/V4s5uLzzK4PMi0e/Vv0bXfuNWlWvOdcrlItjKK7XygtcpABmzg7z1ivPsu3eL6DH0vihRL1SYez0cTZt3Ez0D/8d0neeYBiP5p230CzksJIJ6pU5LF0lDHwiVpRUJoNh6iAEKLqM03Sp1et4noemqRCKtLfnaNQbrFmzgUazRjKRQBQlwjDg7Nlh8rkc8XiLeXZsahJRbmnjwxAqiws4rsNHbr+ZWrOCbujML8xjWSY2EDgutflFssUciq5TrVWJxCLEE0nwfOq1Jtn2dna+/BIbNm4kEo/R199PPBYjYqV5dedL3P9Ld5PJFLGbdXRDp9G00VQNWZVRNJW5mUUUScCKxRAJwXVxqzUqdZuD+w/wsbvupCObxiMkXyjQ1p5FEGD3rt3kCnl0Q8VuOLRls9TrNplMO6EgohgG5XKFeLKNZq2KIsnIqo7jhoS+S0hwnrBColRaQhRCHKdBxLIQVANd1Rgc6EMWQyRDQxRFmvUGuqLS2V1EkgTqtSqxWIRIJIrjOGiaxrFjxwgCj8HBFaxbvwZNVYgmMpw9O0ImnUKVAt5+Zy/d3T30dHczPztDV0+BdDrVAg+ajmVqNBs1CH2a9TqWZRGJmURjOqIkIQkyvt1kdmYSRVFpb8syPz9D4NTo6OpidHQUSRQpLS0RyBHMSBwQaNRqRGMmTcel2fQJPIEnn3qGoaGVGLqJ74eoioBp6NgNG0WWkSWRMAjA9zAMBW/4LMJbR7D/r99hoS+HocvML0xTLQd0dRXx/BqGYVCZW6C8MEN5dpxIJEbx7CyTE6OMFavs3TfLUHENma8/RG3TIHKhncnJSVKpFO+8vY+eriKy4CJLIXa9TKO6SFs6wdjYORKpJGYsgRuK+EGIIpvougoEWFb0vAVSQpYlwkBEFFukUqIktBRA54VyURRRZJmQlgAliRKO66CorfQ1YSjgOHVEUcAPPBBAElukUYQhjuOgyCJBGCCKAZIQvEdg4RMiazqKLJJKJpBkAdexEUIbWdHwgxBVkahVyySTMRTNQFYMDN1AkmSeeuppkskWE7cgCFhWK03V6VNn6O7uxfc95FAllTYIwjr1ahPXrhExDWzbQZFlrIjFxMQEhUIe09CRRBnP83BdB8dx8UMZQQ4JFhb5xvcep//+O/jSF7/Ib/z6P2ZpaZ7Ar1AbKpLadwbRF3l5/z60YhzpTJWPyIN0FLvI5jKUq7MkUhZiKCHLKoEfMD0xRbVWJ51KI0kG0tQ8nhTiTI8jPrET1Q8QHvgowa3rcD/az65NNvHf+DzW577ES/4U/+nju5jQlugJhjA7O3nz7Z2kc22YERMzGuXHT+ygWCjSqNVRFJknnnycj33sYzy34zkkScI0ZUqlErF0G0cO7SedybJ//156+jqIxnQazSadHd24TsipE8OkMzH6+nopFLIMrhhA1wwcx+OtXbtJJ1NohkZ3dw+JRIqRkXOMnD3DrbfdQl9/P+XSHBs3b2Z4eIRPnFWZmZ1C63kAVdXYk99FvtjB5NQMyUwKK6JTLKSJxSIkk0kQYPdbeyl2dvD9h3/A2nUrWFqsYpoWjUaTkZFz6KbBJ+67l2PHjrGwsMRH7rwDQWgRmM3OzRMENpIsc/z4CVatXkO9XiIIPBBCVE1BEiV8L8AyLQQEuotdrIgO0iUVOeMN85j+PC/N7uZ3bvotnvzho9z+kbtwaJEBXZ9spvX7Ba+mq4mjfujzB4f/gH9/6t/zV8N/RdEo8sn2T7I+soHS8CzxaIx4PMHjTzyFZVrYdpNDBw+TyxVJpbtYXCwTSjblpSWyhQKO46IoCp2dnTRsjzMjUyh6EgkHVdUpVVoM47qm4fo+eiSGFo2CEJBOt9i1Pc+nbtcQRIV8LsfY2BilUpkQkXx7nscee4p7PnoXrtskn8vS17+CVStXEYtYjCuTJA46rDKzJFSJ13/6LD/9/uNEl97lu1//NzSmD3Png7/LXZ/4NGY8Q7SUxZuR2HX8bc6dPcOpU4cZPnmEs5PT7N9/kPmJMXbv28PGoT727T9AtncNEgqZ9iyaGtJsVvCaZVRdQTFSFDoHmZpZxDCj7H/3OL1Da8n3rCGW7kCbjtH2az30b7qT/vV30da7Dr9eZmFpnGP7XuTYztfp6V2LpkiEqoytCAhCQCiAL4oEoogUXhukfOByGQ/Ksr5/FnvXcvHxQ9S/YNX9UJbXD8rpcq3610HiH3wfrtPfdepf9vv15nPRPl8JoF4x5PBq5WfkyvmFJmxyXfdPr0Wq9IFvkw8QDC0Iyzf+gwG4Gx3rvfVdwRX2kuNDreHyOV2xb+H9mxku11xdxiZ3lbV7X/kTgqdeQnzwniuOc7U5Xq3OlUDtVTq5yEp8KWi/+OEMgoDAVvjGX36T//pX3+KrX/0TbElmbHQSu+lw06038fv/9Pewfu2PkKsNmh+/DWtoBfsPHOKtXbsoFnJEYwb1ShXf9xkeOYMsS2SzWeKxKLIkYjshhmG28trJrRQte/fu44033mRmZpbu7k5UVWV0bJRcrp1irp0D+w4yPjGJbuj85CcvYeoWx48cZ+O6TThOldXr1hIKAaEQIkoyk+PTRCNRZFUjcD3yuRyBEFKvNZBlAU2VadSbNGpNIrEofuizcmiQVLqNxdIiiWSces1G1VW6untJJCw8J0BRJWRFQZZUPDdAkUQcxyYSSSDLIogqvuNy6vhxkskksUSS1197jW1bNzMzPYGgyJhWBEmWCIWQlYMrkRQFRRbQNZOR4TP88JHHWbVmNW7gYOoWrtNEljUatQaqqtB0mkQiEZyGgyhKNJo2lUod04ogyxKaqiBKKtOzM+i6iqnrGLqOJEuUy2Vy2SySJCFr0nsKBMe2ESWZ+YV54vE4HR0FopaJaeoEnsvE+DjJtiw7d+6kv78HTZNIxFtu0C+//CK/+uVf4YUXfko+X+SJJ55g06ZNSJKIbllEI1EmRscJAEnWqFTLWEYM23GoLFUwzAjxZJJ3jxxh29Yt9HQXqdWbiEILNFmWxY8ee5rOjk4URaFWryJKAmY0jqoZlOfnMKxWDt16vcGOHc+zZdsmGg2HI0dPEIlG8QIP09CRZZHm6VGUPacI/sP/ir96LX/1l9/kjju34flN4rEM84vjiKkirqcgywKW5XPq6F4Wqi49E1Vc1+OA1sd3/vtP+P3pEn57nFpbEk3TkBUFURR58/VdJCwVMXTw3DpC6AMCpWoT1dBJtedR1Ai247eAvKghSiGyIhD4ApIk0mzWkWX1vBLHQ5TElnHU8y96bkOCsBUbqypKi+JSCBFFFRAIAg9VlggF8PzgvCcHSFKI3WwQ+CJB4CKIIpIQ4jo2gS/iBwGSrCBLMmHoUW/U0XUdz3MRwhBZ1pEkmTAU0XWFammJU6dHGTk3TrHYwdzcHKdPn6KzK0ckqlOvV6jWSyRiCRr1JslkGkEA23ZQVYml8hLJVDuh12BpqYLddDFNi6Zr09/XT7VSwTL1VqygJLSULvU6mq4gCjLiUoWu1WvQtvWzds06/sW/+EO+9KXP09PbQ6Uyj/6pewmf2smgA5vMtdwT38j8/DRt2RbzsixHmZmpYlkaXhCy64232LxhM+HWLszZCuGbB1HmywiCwMLaLpyv/TbWb/0TwhUFqpbD8Owwm+77Es2wnSNL8/yXtq8z681yZ7CdsZPnmJyeJZWIkU5n+O8P/YBNm7dgqhqqorB//z56+/u47dZbW3scBKxbt45qpcLIyFlWr9tMLttGvd5k48aNmKZGOp1C0zVee+1Nerp6cJ0mbZk0c7PTCAQIQsjc/BzRWIyF+Tk6inmsWJQ9ew4wMTHG6tVDbNm6GUmW0A0dXVWYW1ji4MF3ufO4h66JULgP13OY3HoSw0jQ3tZGrVIhnYoT+A6CJNNwWmme+lYMUVpa4O677yWRilGrLrBm7RCFQjuFYjttbTk836VYLJJMJnjs0UdZMTiApEg8/vgTfOIT99Hd08mmTRvx/YB6rUx7tr2lqPBcNKXFRjxydgTH8VhYnCMSi5LQIwxInSyN1llMLPF/V77Lkfgwexbe4f6uz5y/Flf7pl8qNyz7VF9SXlt4jQd3P8hoY5QV1go+3v5xVlgrUEUVvABZCMlm22k6Dus3biIeNdB1lfXrNjAyMsrrr7/B6dMn6Ci0k86kUVW9RcgmyjSaNqKo8uhjT5BKZtA1mR0v/JSTJ0/R1VkknkwSBj66obNUWqRWmiMRT+K6DqfOjBCJR0gmMywtzBExdVRVx4pGqZRKpNLtdHXmUeSQeDKBJLW8KJ595hnkAYXNlXbsYyNMnztGezrO9k/dyjuvf4uJaYElL0dNTnLk2DArCl0UD2xkfOYcp6f2kow0WDfYwdqBTpr1OTRdJRAkihkLOXARQ0gm4iiahCT7iEIdu7lIaDcRZZFEez9GLE8QghcENB0PTbdoVsskYjHESR15NkFzZcA7+w9T7OwnU/gYqzfdhR5VGRk/gjv9Fu+88iiVqRHUesDC1BR6KKEEIpIn4eFeTsp5g3LVFetfJuO9389VbptLyjW9Gj8keH3/Hhbwdl8fvF4mt7639n948Lr8Ovu+f4Ny+rXHFpetJbwKeF2+1qvu+0Xzv5Jl9eJ2153/hwSvF8b4MG7D/58Cr9cEPv+Qg1/PuvhzZNC9YvfLgdwN9XadPq5jeb16/Rtb+wW24Qvg9WrlPS3wVV54V1JYXNOVeNk790r1tPOpH/7Dv/sjvvCZX8bzHEpBg4FijonRUYrFDj5/34Ok/+d/jZ7PcqwYR4/HWFyYp6uzkzVrV5NMtnKTKrKCFTFJpJN4zToEIZPjU0iCzMOP/Ij169Zi2zbxWMtdMJ6IkS8U2LZ9OwQhruuQziRpNuuEnkej4RKLJ8jlcmzbtgHPLrNhzRDTE+cQdQXViCLJKiEBdtNj356DnDk1TH9HJ2/teYf2zhw4LpYZYW52itB3sYwIr+x8ncFVQ5hRA8uyqNds0m0pAgJmpmZZLE+TbetGEiQkMQBROJ8XUOShh75PX2cRwzQoV5sslBdoNHxqpSr5Qh7Z1JEEgZFz57Bdh8E1K2k2G62coiEIQkjgBkiSxOz8DLpmkoiabNqwBU1XAB9VViB0OHTwMIKi0Z7NMDF+jmppnuFTE8RiCRr1BktLNVzPx2408F0XP5RoT8eQFQnbdQkQEAnwHBfDMhEVmTAAWVIQEGg2mgiChGVZhGFArV5FkUUkSeTEyeMMDPShKBr79+9ny9YtIImYRktQWrd2LZ5j8/bbhygWiwiCwODgCp57/gX6BgdpNGwkUSKdyVG3A9rb2liYLWPETVRR54WXX2d8apKNmzcjihB4LlYs0VI+KDLlUomhgX5UUeZHP3yMQrFIJpOi7ro0GlVU0aEt18HAQB+SJLF9+3acwOONN9/h5KmzbNq6FZ8AsW5TG5vEfOso8t98FTb0sDg3zkfv3M7X/tWfsXbdSjLpNqZmT9FcrKC7NcYOv8iJvY9jZYtkCitJHZlE1UxqN63mD27ZiLb3OOHNW0B8n8I/CAKGVgxQL82hyQph6FApVZBVC7QkqWwO1xP5/sM/YtPGjYiyRBC0AKrvO4SB/F5qrmbDwQvsVnyurLP7rf0twb6tjSAMcVyHIAyQFQW70cT3fWRVJvBFKpUqkgQEoCgaIFKt1lBVDfCQZQlRUFpkOJJCrVrD1HU8EXwvYP+efXTkOxBl8T3mY0mUQVBAkMALcH0JEZ96rcTMTIlYPEkymULXdbp7utjx7E42b76Judkl0sksIgHpTBs/fuYnGKaOHpHJF7r5zvd+yPabtrG4MINlJTh+YpiOri4u5DkxdBXPtRFlgcXFeURRQFFkVNnl4e89ybqhQSb274U71jO0YoiZ6Vk6CnkisTbakgZlp4H5qw/iTi8hff/HKH1FEANUIw6hhB96iDKcefc0xbtuotsWER59GfPYFG5XN3z6E0iEjDk2bf/yj2goLmI6j7c0wql3XqRn3R28WjvJ7w3/c75d/2/oJYWN/jakhs+WTRvId3QQCiLlco1croMXX3yVFX1FXnnlRXp6e4meZ+gNghABkXK5SrlU5uabbsYXVd7c+SqLiyUGB4colSpomoEZsejp7uXYsUOsXz/EwkKF0lKZvXv2MjQ0hHyepXbNmpXMz82QSmfp6OhiYXGGTHuUc6PjpFNpZEGk2Why4OBhPnHffUQbLtW8Stb4JI7j8mbqDQLf49iRw7x78ADdHZ1MTc/gBxL79+8nHjXRLJNqtcz3vvMDbKfJti3bGTk7SjZbwG66NG0HWRExDJMgCFm9ahUIIel0hkQyRdRK0mxWmZoeb1kWExkQRGzbabm8ewEjZ0d4fscLzMzMsHLlEJ7nYegqjVqFnkIfqyLrGVR78XSXNyrv8F/HvsHB8gEeyD5wTVnjeuD1ofGH+OqRr3J7+nY+mvkoeT3fAq0XvrleSKW8yFJpiWgsjqopLMxPIoQBruvjeT5bNg9RyGbItXWyVFlEFARcz0eSNWzHJwx8tm3eQOjZZLu6WTk4xEBvN6lElLpj06xV8Zp1dEWiUZ7FsX2seIx8oQvNUBCQ0DUFWQyYXVwgAAK3yZNPP0dvT5F8NkOpWsVx66ST7axbs4633X2U8iqf6f51Nt71caK9G9D1Fbz2xDe5+57fRMsOsH7zTTTfCdl+6DPU7CVOVHfR12eyasDACBWefecUt65tp79NJKHDriPzzFSaZIu9CF4TUdIol6qookBlcZGgWcWIRrCS3cwuBhiWQsQ0KC8tnE8B1QolIdZAGY9hvZ0kNhWlkR/ja//yV7lt+614DYuunhWkMkN4gcTpE3sYPrKTPS8/SmN+mOMHXuPU0Tcx2vtJpVIEQXDlzBs/swXwOvfRsnLNzB0/A3i9cBrWBMS2ALH3+ibg5Qqd/1Hg9eJyccjezzL2ZXLwNcDrhRpXavd+BzegyPgHBq8Xyi80ePV9/08vvgGul8d1eY7PD/r4hkKLlQ9BQLjQWXjpaJdYI88fYfABgOLVyvL2LcMDwnnHn/em05rhpRfiCmsNBVrpIc7XFa6Z8+t8m0tiXM+vPRR4L0/rdfK+3ih4fX/J57VJy9ZypXfNNa/neYIIAYFQVJFCFylw8QQZX9IQnDpv/OQJKuMT3HXbxzCsJAPrNpJvLyBIKslMnLBRJ/PbfwLJGI0tq1FUg5dfeZ2htWtpNhq4jUWcmkckFuG7330I04pQyOfwXJAME1mTicejdHT2ErU0FhfniaXS2KUysUQCTddp1OsgBhiGgee3rD+KrOALAhFLRxIDarUKkqIQT6WZW1oknckiywqhZyMAumnQN9DL0IoeFFNn9aqV7H7jTXp7ekAxCQNa7qSGwYr+HkrVBoYU0mi6qIqMKMn4no+lm+iygq6LNBo1BElCUGQEwce1JWIRk3ShHUEwEMWQpx5/gc5cnud2PMOWLVv40SOPsmpogI7ODrp7+0BUGD51juNHT9BRzLO0uIAViRGErTggTTOYnhxGlj1kVUHRLAQxpFYr0ds/iKqJCKJIMpFBFHW6envOAxUfTZOZnhqjt7cbBIHXXnud3t4uGraPYcWQRQkvlAhCUGSJ+ZkpbNvn+w8/wqpVazl5apjXX3uD9Rs2MjM3S6atDc9xcAnwvICx4VFUOWTLtluQVA1FEXEdF13VQariODJW3GJxaZ61a1cSi1oUCkV2vvwKPd09mFaEF158lVw6iuc6VOtVYvEkgiyTz2VQFJ+oaSCEArbrIMoypaU5ZFFE1jQ8x+PoiQN4ns/mTVuZmjhBJtWH41YxNRO/6SIaOtOTw8TiMbx6g2K+je7uAkbo44oC/P1P0Ae7mfjqF1DWDBC4Po1mSCTTza3bhhjs3cbi4jm6Cis4M3yMlFJiYNMAvf23IjhVTp+eonO0giiI6H0p0t94Bn/TShqGimno+I5DvVJCIkTy6ximzp69B6hVKwys3oCRzHLq+CkCt0kiHmfr1q24XoBr+5w9e4Z0Ko2AhCwLIAg4nosmC4iSjKKYlBaXSKci5IvtOH6IIEk0KvPIQojXcGnUbBRdwW7U8H2bV1/aRb3RIJdpp1GvI4sCjz7yAzw/IJNuw7EDxsam8BwRRfJRNZ1Q0pFEkJAYHT1HoaMdaN3z1Wq1lWrnPEAPBR/fs5GVFjPy2rUrMWSfp55+jr6Bfpx6Dc00yKTTHDtyhJ7+ASqNOrplsm7DOjq6OpCEEMvSWdHXjaGpIIo4TZvK0hIdnUUqc6PIsoqPiiDJjJw8TD6fR9EMvFCgUXdJt2fRaZKNZZhevxpVVNAUldPnRnEbDp/6zK/wmU89yMzkOaTtd/Pb+x9lre5RfOEkzU191I4eRZQVtP0jFE5M0JxdIFzZx8JXvkjiX30Fd8sq7PY41vQSZq4NZ/MKzHgCs1znjTe+zWImyW8v/gk/XniKbrGL1XMrKARFMvEEI6PDuJ6Mboi8+uobDK5cTTQao9ieYWR8kmbTJpFI8O6BAyTiUUxLZ3JqgsHBAeLJBPVyiemJUdZt2UpfTzczs9NIsoRhGrzzzjuMjIwyOLSKffsPMjY2xqbNG+jq7iQSjeD7DhErjh+ECLLE0cNHOX3yFMlkgogVpbOjB9upsri0xI4XnueTD9xPgM/smjamhtroP7oKRVF4Lb6DQkeOTKGDwdVrmTh3lPb2BGYiR61SprO7i2bdJhpJkM9nGBrqZXZygmxHB4EgMDFyluMnTqEbBlYkgqorSJKIaVkEfkBbJs3O118ikUgSTyaJRE1mJifwA59YMkmAAEIrks22XdqzRbq6exAlWsy2sobXaNCsN0mYcVJegsJikoHOQXYuvM4jk4/wQPYBTMm84jfzMlnhwrc6DPjk7k/y9PTTfL7weTqNzsusNYIg8P2HfkBfVydtbWlkueXq3Z7JoxtRzFiUdKYVa1/o7CQQQwgFbLtJPB5jZnqWHc+/wttvv85AXw/RSARRFHAaFWzXRrWiiKGPqsmYZgxR1PFDj1S2gKppzC+NIoQyjl1DRMDV4phCyOJSk1q9ySd/6S4SyQSlcoNXX91FT2cnmi7jhR6HnCNEfYM/vv3/QBTjhK7NmV0/QAsdpO51rO1bzbH/fJL71X/E7vIzzIsv097eeu+rmoAkqOiqTyJpIgZVQkWkvysD+Jw9O0H/QJG3du9n8+aNSKLIUqkGYY14xGB2sYEZb+P06bNk29sh8FFECUWVOHrqKM+9vIMTlb1MLMySDjP0nt7CHfFPkyp14PW6vLpvN53tfVg5mVDvZOWG+zh5tEomB6eOnOPQntd5+bGHmDx5lEP79tPTVUCJZt5LbxIIIsJVDANXNQZdlh9UuKasvTxX6iUWvQsy6XmOig8qt4vnpd6L60u9IVJveGV58b1DOH8sO78eeL2KPHzZPMNWjtb3hrnYaHIFY8v5H0B4313/YrD5vtfjxVOXLsEWl4PZKx8X56y9eC6tN8v7F0ngGpb483vaymbRmu2l1vjle74cByw/rl1+ocHr8pjXG9XYXOX0+uV8gyu62/D+b8vLz0XzdRVL69Uss5c1Xz4nLnWfvXq0yw30doMxrh8UvF51uA/WutVm2XUSEBAFAbM0ybf/+uv0D60i1/mhDWIAACAASURBVD+ELEkEyPgIaLLImQNvUZ0ao/CH/wkhlWSvIWAaJi+99BL9fb2kYlFiVoyJyVHqjoeiqAwODpBOp5AVhdGxczz1xPNs33YT9foiJ0+cZnZmhnyxA1mWqdeqyLreco8MAjTRgxD8EPxAQFcVNEPDNHQmJsZJpjIkEknqjQb5fAEkhTAIKS3OIUoSuqYT+AHzC3NEjBaLY2d3D4Ks4LigagpWNIasqNiNMvFUG6FngyjgOSFjE2MtxtxmHT0WR5QVFEXD93wkAWy7jihpNJwauqAwMT6Faai0ZbJ0drWxbt1KRAlWr16NF4JhaBA6nBs+ycJilY0bN6IbGpIkIIoystQi4wmCAFE1SaQyiALMz81Qb9ZJxHLMzE6RSrXjOB6BH/Ld736XNauGmJubI51pY252hr4V/eimgSCLFItdlBbmiMaTCIJEGPjYzQbNRoNyqUR7NottN5menmopFDqKDA0M4Do2P3zkEXq6e/B8F9MwaM+k0TSVxcUlIrEEiiziNGpIakC9aaMqCQ4fPkN3V54fP/Vj4rEk50bHKBZzVKsVih0FFhcX2PPOHg4fOsGWrZuJJnVUWWV2epyR4bMMrVxLGErUazajo6NETANDVWk2aiiKzNRUCxSrqsH+AwcoFnIYloWqymiqTLU0jaQmSZhxms0qgiigz5eJNj3EZ3ehmDrmX/wh4pc+hhqP4tpNmuUF2lItgdNXNQJvDHvpICff2s/C5Ai5jTczfvwgs7OzWPl1ZDv7SX7/ZaSpeSJvncDrKbDUnkQ3dRrVJZxmA0kUWFpcQtFaCo9EIk66vQvVsJBVmVy2Dd2MIasGPgIIMoHfJNOWwvcdRFEgpGUNl4RW7l3Pk/C8kIhpoGmtlEuKrFEtVQl8OHToKJIkgxBgRHVMI9pKpeQHREyRkdFx9uzbQ3d3F6tWr8LQNHRd4QcPP8yefXvItudoa4vjBS6qrkAoEHg+xWIBQRTPuy2HGLpBELZcvRzHQZbklruxKOF5Pp7r0Wg0KBS6QYK2dJp8oYAAxBMJ/NDnm9/+HqvXrEU3dCQZomYcURSRZZEw9ECUsEydQiGH7bq4jovrBei6Tgik0ha1Wo3QDdAlFYQmb7y+n/7uXsxjw7if+jj1UpV/9pV/Rr6jg66uLn73976CHwZ861vf45d/6SP8oPPH7N0e8pkH/gD/hy8TOTmF35ND/+J9lH7nfqZvHSDYsJI//vM/5+57P0aAgxERaawZQtm6FadSR5cWODN8iOHoIv9b7T+ywljBJ5L30i60cfjQEdatW48oChw7dpiJ8SlkWWDT+g0cOHAAzdAodORRFInBFSvI5woUCh1kc23ohs7c3BzZbBa76XJuZJTRsUm6u/taVnRCFhcWsCyLaCzGyNkRVgyuOJ+LdZHYeSI2XTc4fmKYU6fP0NndhRWxSKVS5HI5mraN5/v8/d8/xNDQCnK5HH0rhpiencUyTRRB4O0973BP7X5c12Nk7XHspo2uGJw8ephsOkaAgqrHSCeihGKAbTeIRiM0mw3i8QSJVIJ606VUqZNOt9E/0MPRY8eYnJzCNE1Gz43y05/+lOnpGVYMriBi6QiCjCwrqLKM3bQJEbAdG8MwqNdqWKbB/v0H8MOAbLYdVZEIg7ClRNNUvv/w90kmUqQyGVRZJqWn2ZjeypQ9yV+f/Wt+pfgraKJ25W/iFcq3Rr/FT2Z/wpcLXyauxK9ab6BnFRPjo2iagu25LMxX8BybpdICuqnjew6abjAzPY+marzyyutoukY6nUHTNOrlRe756N0omopqmZRnJojFYiAqCKKMIOrIksI7b79NJpVEVqWWl1EgYBkJdDXB4489RqHYgWnqeJ7HqdMnMXWNaMxCEERUTSMMQ+IxiyAIsCIR9tUOEPNUvpx5ENFMEAgBO3/4fzI2o7Dt5s8ivmQwUN/Ci6VnOXp2L1s29uH7HqGvEo/oxKMO4+MNbNsnFYsRCDKq36DpSZSqCtNzi2zZsp3jJ09TLHbSbLqEzVnwalTrPm35XqLxFLqmtpTVnscrr77C7EyZgbzOqt4oullDTI8w5e4FuYbWSJJ6t4+V81uwj4RkKqt57vg+iv0r2LnrTT77T36PVMcast2ruWf7bYjhBJpzjgMv7GB8+DBDG7bhyjHUwH0PS14JVN0YIeb1BM5ryITLx/6ghs/rjH2jkuyNW15vvFwr/O0qP1x6er36H8QKfEPlyuNfuepyhceHwwE3Wn6hwavrun8KF7kkXGEfL2Gr/TmA1+VA+WqxA5dYhJdpK690fr0YhHB5/cu0HleZ8nlLgbi8z8semtYIV8sNu6zxpWfipeu4muvBPwR4vZH5XtgLURTBtwlCAVFQCRoN/suff437Hvg0ud7VVD2QRZHxyRmcpk0yamKXK6T+969jGBZvRzRqlTJdXV3MzUxzy803MT83w8njp+ns7uCJp58hl83R0VFgcnKCaDROW3sGQzU4eGA/PX29dBRzeAFEo3G+9bd/y513tz7cogCEIXbTplZv0LRbQHhhcQnX99A0g2gkged5nBsbI5fLYzsuoechSjKRSATPdZmbmeW5Z3dw6x23Eng+rt+yKmmaztNPPM2efXtYs241QgiKFBKKBs1aFd00KZdqHDt+nO7uTuq1KpIi4/s+pmnQbDYQBaml8RcNdF2hWVvi3MgwRkQiX8wxOTlFw25QrzUwrRiNZvM8YZCALIpIkk4QhHi+i+87rRikqTlMw+Ibf/M3bN5+K6Ioo0gCS/Mz2K6HFU0RsQxcL0CSRAh92rMZVHwQRSamZzFNk1q9hixL1Gs1jh8/SXdnEdOKcvDgId54/TUC32XXrl2sWbsWVdORJJEVg4MYhsmpU6coFnMsLixw+513IogS8USCidEx4vEYpUqZJ594ivXr1+E6NpoiUa+GWPEIoiiSTAiMDI/w4IMP8sorO1E1k91vv8WWLVvRtJbwtWHDRg7sP4CkynR0d+DZbivOU1SoVG0URWdmdpaXX3mZzZu2EI1GqFWrRKIxmk0P3VCIRKL09PQgygaV2hyGZlGrVykvLvL9Hz3NxnVr8M6MYpyYRBydwd68htIffBn5y/chtCcZnxwnlogjCBK6InPm7FnS2XZqp3dx9Nhx0t1DdG/8JHt+/G9Z07OB557+Onfe8VuEkXYkRcLYsZvKpiGCLStxUhkMTSVwbTy7ht2oU6/XOHBwP6lElHgiwZnhUQZWbUAzLgjNIl7QwDnvAhsKAZqsIkkSruuiqCqIErIQQOARhgK27XL65CmWFhcxDRVJVQm9gN27dtHT00N7exFZEghCj0g8TqlcRVYk4vEWuU5Pbx+9fb2IkoAVsYhYEUJCjh87Tns6y+q1K3Ftl2gsTv08wZUkQhCEBKFwfm4+QeghigKB34r9JhQJQhBFifm5BV544UXas1nKlQaJRAQrYlGvVChVlpB1FV3T2PPOPhbm5hhcMYCmqjQbDWZmpvE8l3giRrXuoesKc3OzJJJpRFHnwP79xOIxBFEgDFqpazQNlkqT4AesW7eBE8MT5JdKLN57O6+99ApbNm9BUlU++7lPMzl9lkKhg61bb2dh8Qyveu/QqDt0NbpRP3Urwj++F3/rSiZkB08S6elfiRnN8ODnvoBhWpiRCOMTE6RT3YR+FcGZ4vTB3fzxK3/FQ5nn2WRvYkt6A8cPHSGVTpFIJpkcn2TPnne47/57OHjgXe76yD28+eZONm7eQjwZZ3ZmsgU+LIszp8+QSiRZKi3yk2ef5Z577mFsfJxYNIYoKdi2y+jYOQqFLPNzc7x7+F3effcQm7dsIZdvJxFPUK3W6Oru5MfP/IT+vgEsK0I6mcJxm+x6cxcdhS6isShNu04iEceKxNiyeRuRiMnC4iyGEWVqepq2dIrEVJ3eWIbuya2Mjo7xI/t7rF2/Gseu0lnMUK3NkEgVOTc+zYvPPcuaDRtQlRY5UhgKBL7EmeEzPPqjx7nz9juYmBglYpmk0mny+SKH3j1CKplg+7btZLNZCGF+bhpV07HMCK7rUqnVyBfyWKaBIISIokyjVmVocIhkKsWhgwfo6Cjg2C6mEaFcKdORy3H23DnackXKCwuMjp6j2NlJj9HDhD3Bw+MP88XCF5HFy1OgLM808Pfjf89fnP4LPpf/3FWB6wW5olYrIUk+c3MzGJZJR7GH0XOn6ejooFa3ScQsEFUEUcR3Gjh+wOo1q1lcKCNJBhFLRZRkook4jWaNeqVEpe7guj71ap29e/chijL5QoFkOkmlXMN2bTzXx3HK1KoVhlb2oukShqwg6DpdhSyqIhGxTBbm59F1nVgsiq4r+L6P5wccdA4TDww+Gf0lYukkQWWMPU/9Da8cbrJp/mOkx7txVi5ScytkUwIxpYGpW1jxErIc4rsiibSIFYtiqB6B1ECSTSquyPh0hUazyuBAP4VikZdefIlcPk+jPIWGTYBKKEc5dvwk+Xyeo0ePEYsn6OzOceTou6wfiBDTfBJRAVODWFREViYIrDGWtBM40hwx1YTZKLe49xA7lObW2EfQh/P87e5vcudH7uDJ599AjifYc+QM+49N4i6O8cKOF7j5lluIJjL45xVxV48DfX+fl98foiheVca71GJ4cWz1RW7Dy8DrBVn2qrLw8v9dYdxgRiCsCQjWBwOvrfF/PuD1mu7517FwX0/+v6jlstMbm/vy+Of3r+2l7tzLcc2Vxvqw4PX6a7u0/EKD18vYhpddO0EQLtmwn5fl9UO1vWhOH67hpe0v6+Ua4PWKD7zAspu2dfE+jNbtsur/g8DrZft7teYXrpkgIIshHhK1aoNnH/8Rv/S5X0ZL5rAxEX2BRr2OphtomoYi+MRePIC17yhzW1bS3dtLWzrD5OQkt952M8J5aw+hQjRisqJ/kEQyhapJ6LpGuVzFdhyy7RF6e7txfZVadYFiVw+EArGIRaqtjfnFRUzTwGk20CJJnn1uB2vXrOHokSOMjIwzMDjIxPgUP/rBE0TjEWRFIZlMs7i4hKUJCIqOHwqEgUtbKkM8GseImIiKAUIrdvP4scOsX72OLVs2EoQuvuNiN5tU6wHHDr1LsbMTSVToH+jHdR2qlRK6LCPLIvVGDc3QULQo09PTzM+UyKSSjAxPsGnzLcQSMUJRp1KuMDo6zqpV63nqyWcp5NrPs61KNJoOTz75Y2KxGMViHsPUkAQBIZR5a9dbpFJJ8EOSyQSO3UCTRRLpLIIUgC8iKyJNu47rNsnl2gicBo4f8thTz3DTtq20pdMIQLlc4tlnnqOvp5Njx0+SSmVYmJ9n+7YtRCJRMm1tSIqC03CwrChBELJz5+u059KkMikCUaRar/PM0zsQ/IB8PoduGHR1dDE6NkK9VkYM4eCB3cSSEUw1zeLMGLouk05nqNUblMtl7r/vfp588mk6O7sJAhgfHefWWzfRls0hiCa200BRJZqOz5NPPkM0GuPU6ZN86Vc+z/TMEtFoFNMy8YKAiBnDD2zefnsP/QN9+IGCKDYwtBih4GHICdb19cLJU5jjC/i//sv8x0SNtf/Tp1lsLnD42CmadpPBoUHKlTKalcL3Arp6e1msNUlnC7zxxjjpdIZkTMdTMzC7h86bv4SXXYe/NIdhKmjPvY3b14WsaIShxNF3D2EqEpLooSgy0ViMbHs7Ej4hEr0r1lG1m+iaius4qIqJgIKumgSBTOAJfPc732bduvUIQssdyg99Aq+BELrIqoosCy0vBlkmlUwyt7BEPGJSyLdTqZVwXXj6x09w8y03I0gahqah6RqiYiHpKookte5fTaPZrOMHApIss2nLVgZWrERVBVTF5OGHHmXF0BpURaTZqGKYJr7fUsxpmo4oiTTtGpqmU62WURSNIATfD6hW6xzaf5BkqkVGk87E0TSN8dFzRKJRrFiU+dk51q1Zi2UYhF7IyJlzhIJLsZDHtCwc2+fsuWkkCTKZNAEKgiDz/I5nue3Wm5FUFUUBLwwoVx3iiSK6GHJu4jR79hxjvaIhfPp+DMPin/8vv8+f/tmfMTxymlVrehEEDcvM0PBLPF99nVMnz7HZWcutN21kcanC5MQkK/r7SOY6CCQTFx1XlJEFmJ8vk04Vqdc1FGWGQ3sf5+ujT7Jv1RhbnO2sKvYwOTlGV66L08NneP6nP2V2eob777+Pg4f2cM/d99JoOGTyaQzLJPB8zp46RS7fxcsvv0Imk2L//j3Mzs3x6U9/mqXSEolEAlFsKQ96errp6epgemaKYkeRYrHA5s2bAQHLMvB8H0VWEUSB/v4Bxicm2bVrN12FNgLPYXZ6gXNnx+kb6EEQW2R5sqzwxONP0dXVgWGqBK7IjueeY83aNdz3l8fo2jvPS59xea76DLd/8mZC0WTnq2/Q1dkiTQtFCUnSSMcTRFMZvvN332bzlq3Mzi7wyCNPcs/dH6GvuxfTUGg2yyyVlvC8gNGxcRBEenu6eeKJJ4nF4qTTGVQFPA8kScaxHXL5PK7Xej+7ro3vgySCoiooisKOZ58lYlmYRqTlRihA6LWs9FYsjqmqTE9N0NnbC4JAr9HLifoJ/vrsX/NA9gGicvS9b6MoiriBy4w9w4w9w5f3fpnnZp/js/nPklSSV/2myrJMGIYszdcwVIvSUpPHH99BT0+OTDqOphmE6IS+Q6XpYpoavlMl39GBpunoepSnn95BPt9OIpmmWim3PHhyRUbGpnn33XeJmq3n/MjR4wyuWYmLj98ERRPxnCapZIxTJ88CEqYVRw5dFusOgVPB1HQUVaVULqEoCp7roKoK5XKVpu1wPDxBm5LhCx2/RsyU2P3MN9GWlvi1zd8iPdaNt7rGUr3MwYN76EhBUqkhKwK2rTI/K2DGwlY6nDkfIVBQVQspaCAKUGxPk08EdPQMISsKA/19LC7Msjg/iSn7zC01yHatpKu7Fz8ImZycor09x0svvcFiaZGOlEUybuAFNqpq4gc+jVBlbrGBqsmo5gIzQYkX9u8gtWoULTrP/FIFd0bjl7UvEp2OEw5MYFg5br/r83z8s1/k9tu289azP+KFpx/l3s/9Jn7oXSLrXctieMWMD9cAr60/btzyel2J+AbkdvtbCv5hEXl78P8aeL2Rsa5b74PW+ACW18v28Ar9LR//Ev6ZnwN4/SDlFxq8+r7/p5eg+eu5ri873vv/DWoELm57vfjZC6QjF473neGvXP+GBufqD/z7Uzkf23nl5peeXxwzG7YWJSC+F8sqLPOHv7Doy7VEreO9Ps6v/b042POjf1jwerV9W64RfO/v5XsjSjiC30pP0mxw5O29fPpjH+erX/tXSHqck8dP09HeztLMDNFojjtuvYPf++1/Su3dd4n++d/QuG07z732JoRNkskYuq4wMztzni1YJ9MWx/c9FEkmGolz6sRpdu9+i0I+g2WqKIaF68Gu114l054lErGQxZBaeR4kBUUM0DSVQNYYO3uOW27ahCYJZFNpOroKuLZD4LiMjp7llptv5eiRg0giRC0LQdFQ8CnNT+IFIoqukcwkCH2fcyOjmIZBGIZkc1kULWR8YgLLiFCtlvG9BlY6gSlq+IKPYcoEgUsQ+JimiWaoqKqGJCsIggo0iZhxTp44QiJhUOztpdFcYmpijJihs7BURwhsTFOlo7NIMh1D0zRGRs6RSCYY6O9hYHAFnucxfPoMuhEjCAN0wyCfz5PORHE8t3WPIOIR8sxTL9CWSTE/P0cinkA1TEI/5O++9TCBH6IIsGH9OuzQp1qromsaGzasR1FlFEWmt6+r5WanyjQaNrIkU6+UCHy3lStVFeko5DE1FdsJePjhR7j9/2HvvaPtuu77zs/p5fb+7qt4BQ+9F1IAQYKkRIm2TMuRVeJkrLE8sT0ucWZlxjNrxjPJLK+VzMRxnBVbkZu6LInqJEWRFDtIohAgQQJEL+/h9XZ7O/3MHxekKBAgQDmaLHtmY711ce/Ze599ztn77F/9fnffjqYErNmwCUVTKZXmKBTzpLN54okMWiTO1PQMvT39RCMqth+QLRQpVysMDRdJxFLUq8vs2LUN3TB5/ImnGB3tR5F1Go0anVaVVCKOoRnIAuy6fRdXpi4zefkCO3dsR9MNnnrqSQr5Aqqs0LQahD7osoKkiESNJM12CU1O0azPI0/MYB49De+/k9Yf/T7LUZsP3vcBpqemyeR7GRweoJAfRZAtDD2F0J5msTRBNrKKcye+RbVS487795GIjjE/d5R8SkMwM7iuTjJaYLHaYGXJonjkdVq5GIpu4gU+pqmjGTp+6BONmNRrdWw3QNEMovEMsqKjaBoEQCgSiiGSLBMKXUOLKARs2LQaQegK7rIiIRIgigqqHsXzQ3xBQhJCojEDF7rhu/gEoY+hm8RjJiOjQ8SiWWqVOcIwQFEVwsDBbVuEgohumoiigBSKKIqGLCv4nge4/OjxxxkY6CH0PQZ7+xEVActqMDu9SLPpEktECUOXer1KPJ5ACCRCP0CRJVrNCqqiEASwfec2BgeKGBEdIxLD8SER0WhaDmYsTtxUkDQdTYV8Ls33H/khciiT7ckjKhIrSys899RT7N33PhzfQxFFRElkcNUQZiSK1ekgiSKddgfTNBElAUeQSSfTJGMC8brFdEqGlMQf/I+/w/nTJ9mypYjoKBx64XP0pgapNkq84B4gn8/wWzv/Z+amz6EoKoV8L/FYhrnlZVLJDIqiYFsOhtzm3PGLZLO9uP/bH9J89EX+sPIiR7dM80vpBxjMDOLYMDO9yNBgkUQqwapVq+gr9nHo8GH27buXi5cuU6vVyKWzPPXkk2RzBRaXaoyOjjAxPcXuPXtIpjKMjQ3TaJSZvXIFXZRRDZ3Tpy9yeWKSQm8OWfCImOkuVVbYwe54rCwusDizzPPP/4gNGzZSml/AjEqsX78NMxYhGo0wsGqItRvW8YW//hzlpRKyKmNGdfp6i7z6ystE4ynMSIS169ZimAa9P7iIqhmc/YUEhdVpKrUmMi3WrN3I3MoK6VwfAgovvvA823duJ/Bs1m7aiKoYV9M3llBkj+dfPMTpMxe4ffduYvEEsVicw4cOdTEIDh2kb2iQNevW0GrUEdQIimrw3W99C0MXicQzaKpKGHpoWjeUuF5eJpZM0XYDerMZbDvEMKN85WtfZWZqlh07d9Hb24OmCEzNzKLLXVqyQBARBZHxyDh2YPNvL/5bHlt6jM9Pf54/vfynfHbys/zZ5J/x5Zkv8+DcgyTlJB/p+QgROXJduUK8ur8GAQg+zExd4RsPfgvN0JFln77eXmLJJMtLC0R1kfmFOUJXIghsorEEYeAxOzNLJp3A89oMjwyhyAZvnDpJT0+OEMhn0wwNDpLN5picusLOndsgCFmcnec7Dz3Cxg0bSKWTXDp7nvmFZTQ93gXkC2w0KSQaTVBtOvhum3QmjyApSIh4nkA8HsM0IhypHiMlZdnv3clrLz6M6U7SubiXocW7sNaXsb0GHh6njh/nto1ZbMlAViU6vsuBQ7OsH00iaxpPvDhFqIb05wxEAWRVoV6t8sLxMnMLizgOtJoNxseGiSQyCL5FIRNDVCVUPcPSwiLr1o9gOT79RZVVhQIvHnyDwR4JxTAQBasL4uhLaIpIJhEFUcTQbMZGioSBgyDXCI06YuoCp5ffQKr0MF66k4v+BF5kHoKQXP8Y69cNYlUmefq7X2Zsw91EoiaBFCIIGoRdlN7rycG3ovS8s81Pfg/fyoXs7u3X5qy+a19cX/77cYUA76gMAsi3eV0v79v+cU1OrSBe4/V8h8B4Y0XipnpCeG0OqfiTcvR1qG5+8k/qYuRcK3vf6Oqv6e9Gcv+bTp53eHwJr2oLb35eq5BexbPhOhQ57zBg3PRJ3VJ5U1n+B02VczPP662Wn8obejNr0M2sED/l+W7VWnWr0efvJdThVtp0j7/jl+5HIoaweQ3Cqr53bf9eynVfrNe+OMMAMVAwkfmLP/5fqZUW+L/+/b9DMg1EUSaTzjA9PcnK8jypdA+/9mufolGrkPqjv4ChXpzeHLbdYmioSCqdxYxESSZT6LrB8eOvoagKmqrhuD5GXOPkqdM0Wh127L4dQVTQdAPX9ZmeWegqkbpJvdHohoAKIpIkI8oKzUaD5589wNp166k0GrgAsko0FkVVNA689ALve99e+vqLxBMJkqkUC7PTyJqGGU0hil3ezJWVKqYe5eCLr2CYJplMEs9z8QOfWDyBJMtEolFM02ByYqoLLvTC86xbtw7btlEVFd/zCQIBRenS3yhC2M35Q0TTNFRVZWl2gVg8QjKTxnJ9NFWhUSuRy6VIJlNYnoeiasRiSU6dOk82nUCSFWZnZ3EdCxBIp9PE43Hi8TixaAzlKnWOKAnUy8ucO3OOHbt2Y+omruvRanU4euQod92zn1Ujw4ysHsXxbKqlEo98/yE2bdiEaRgIYtcT2um0CQIHwzBptTpEIlEkWSCVyaFqGpcnJjl08CiyLPPGqbPcddc9IMDhI0d47bXjbFg/DqGLpumEIVgdG4CIrpPN5XDDgEg8DkGAEHaRN1PJDIQO6XSKJ594iq1btpJKpxFElR888ih9fb0kk2mCwEMQoNm2KeTzbNq0EU1V6Vg2uq6Sz2VZWlogGc+jqgIBnW5Op+dRKi2SyWQI3ziPMr1C809+h9a+rRR603huA01XmFucY/WaMS5dvogqSShhiVdffIaJiZfZvObTTC59iy3jv0Z6TT+ClWB++imK8U0Y2QyikSTdM4JspAjaNZKpFNHHXyAUZZ56/QT5XA6n3cRUJTwB2s0moQ8PP/QIe/d/gI7jomgalmUjCt1N0vN8REl8c1HSarbwPVBkHdty8Dwbz/NwHAdJEvE8F1kOgIB6vdbldA0EJFFEFGRCBERBxjQ1Hn/8KUZGh4mYCUJBwPcCNFXt5pW3W/iugyrLIAq4jkWIj+t5DI+OEo3FSWUySIpMQIAo+F1uyN4CIGJ1XHTN8pvZwQAAIABJREFUwPN8wtCjY7URRZFINIrn+ciSiiSqCGKAqmlXOSxlGrUlQgEUWUFCwAtCEskklmWzY8cuBAFyhQye5wIiu3fuotluoKgqnU4bwfc5+vIh+vuKqErX26eqGrIkMzl5hUwmRaVcor+vD3diDrXfJHPXPqaWlykkZQRVRdMVcvkskbjJV770fc6kLyKKEh/JfYDeQorZ+UX+/DN/yYZN28j1DGF7Dq1mDUXy8QOZ3rFxZG8e49hJlqsV/u9ffIW94l6KRg4CB7vdZGhwAMfy8QORaDTJkcMH2bv3Dl5//TiJRIIjRw4Ri6XYtXs3x44eZfOWrcSiJuNrxvECj0QsyrHDL3Ph/Dn233M3oSQxNTXF0vIK73//vVy6dIFcrogXdqhVK8xOLtM/0IsZM9DNGLt2b2NxeZ6evh5KlRLZXBqumnDrjQaaoTPYP8Dq1aPkCnkUVWd+apax0RHmZucp9uXwPQ9FVhl7Zg4/CLhwVxHL8jjx+htUyhUymSKaoWBqMh2rm/KQTCYIg4B4LMqTTz7F8NAIxd4i8WSSzZu3ksvlmZ2bxzR1nnjiCcIgZN26dYytXoWm65gRk/MXziCEKk89+SSf+NjHux7LwO1GCtgOkqpTq9fQNBUJiUMvHaJYHODIkcNUayWGVw0wMzPL+vVrCAKfpaUF+gaG6ClkuHjxEul84a29sc/oY9AYRBZk0kqabYltrI+tZ3NsM3tSe9iR3MFYZAxJkK7duX9yUxUgDGB+ZpZMJsWOHTtxXZfe3n56egrImkoskcD3A7K5Al/68le5467bu2H3QUAsFkeSJFLJFLIeY2V5hUa1jCpL6KYJdPmtRSGkp3+ApeVFAhwSqRiGqtE30I8gyETNBLliPwPDq7CdDpFoBsOMUq5WSGTTqKLK8koFVTexOh0UVcT3fSqVMpeVSRqzDf5R6ucY79UoHz/H5oV/hbOmwuTyJIZukombNOqL5JMB5y7M0+mIDKRV1q/rJaBMaNtk0zkKGY2EFuIKEn5gk4hpJLMpVD1DNj9AKlXAdkMq1QqdVg3fLuN6HQQlSTSZRdV1ZEHlwIGn0dUYk7OzDPVpxE2FtuWgR5I898oM07M1KqUVBvtz+H4DVZaRBA9ZVjBEj0ZHYna5TnykwemLE+wLf54jS0cY2DJCZ36JaGGYHz33FEOxOk8//CBb9t6DGOvBCG38m3hgryN5vfvRdzl8s5zV91yEEO/lbjh8lyrnJv1fG8J7nf5u3PRmY7/Zud9dSenyk99K9OOt9nf186d9rm/r/519/Bd+jm87z/9nlNc3i3itVeE9xli/p/IzVl5vFPd/q+3frP9WTsMNWrxb2MjN4vTfLNfmTdzo2oVVfd2/6zynd1uwNzrv28f+E+2vqSqKMqoHP/ja3zA+Ps6d77+Pli9QKTfRtQSllTKTE5Ns3bIZP4TOyiL5P/hj5EaLxpY16LqGoatXeSRlDhx4gZHRURYXl5mcnGJwcBAjYuJ4AfNXJjn1+in23LYHwQ9QdJNGrXxVOTrDpvXrePb5AwQhRKIRAs9HVjWmp2cpFvKMjY2iajpe4JNIJQibbTqNOg9/7yHuvH0/iUyScmWliyodQiqdQFYMjr1ygomJi6xdt56IGcF3PRLJLCdPHGd8fBjX9ZBkrcuxGgTIskooCqSMGIIm0dfbS73eRNcNbMchHk8Qig7V6jKiFOI4HSRRwXVdEsk07Y6N71j4oY+mGdSbLcRQp7+3iKbolMp1EKRuO1miUOhFV7pKeiIRpVDIoRsGfuDx4osvYBg6sqziOha1ag0zGsPQNdatX89Xv/K3rFmzmvmFBfr7+0jG4wii2AUJsTuYpkEsorNzx24azQ6i3A31BK6CMiVoNJuUSmX6+/txPYd2x0aSBKKRCMlkknQmy9rxdRi6iqLLrB4dIZdNk0jE0UwTfA9N0zB0HQSBZqONGYtiOx6youB22l0UUUOl0WiTyeWoNxusXbeuK3hKMn/1+S+xe9dOnE6TbC5Pu92g3bSJxvK8cuw1ZmcWyWd7MKMGhq4TBH6XFqfZQDdUNNPAsR10VSFXKNA8+jrabAn5i/8L0sgqMqkMjWYVXc2iaSly+VVISpx8ziR0BErLk2zZtI3i4CCmMsIzz/wJG4ffh+MrqO1ZpqYPEC8UqNkR1FgWx5foNDoIBBimgvHw8wjA0xfOcPTlI2xYP04yFqXZbiOGXdvtpi3bkDQdXdcpV8vEY8kuz2vodw0AQojt2CiSgqKoHDp4kPHxcT7/+c8xvnqMiBlFVdUuR6sqEnoCthsSiaRx7YCTJ16lp6eI74cIkoCqqDhOi9GRMRBCVEUhBCzLJvRDwEdWFQRCnHYbWTVA8K/SzXS5W0VRRlUVPM9+C0BJkmQMo+tN+9IXv0I0GiWdStBo1IhGojiOiyirhGHI1NQEP3r8cQp9vcSiMUQBbNsimUximlFq1RqKqhIEdOdOp40owFe++lVSyTjRaIxILMHK4hypTAZFU9E1hdD3ScRj2FYH09BpdSwEAVaWlmnUaiiqhGmadCbnMSstzqYCYuMD9BTzWL5LKj1AINg4tkmjM8va0Y0c4BWazTr7hU3Iikgoqtx73wNE4mkCSULXVdrNGvVKGdPMoygNjh98mvCl81hFeHkjbI9u4uDhY2TTCSYunSWVKfDDRx+l0Wpz8uRp7rn7Tg4ePMiWLVvI5/OoqooZiTN55TL79t3O1JXLWG0bIxohJOSVY8dYt24d42tW0253EJBIZ1IMrRrE9z2Ov/Yax46+ysBAHz2FIrJkUlqaxYibRMw4M1OXiUSSyKqB58gYmkK70+py/AJ/+7dfY/3atXTaDWKJFM8+9xKrhguoikBPb6ELSOf7TE1Ns/e0T61Wo+HvQTsX40ezj7B9xxYU1UDXJSYuniVX6OX5556jXC6hyDJe4LJ27Xoee/xH9A8OosgKjzz0HdasHiWdyROJGPT29rF6fJxUMkXbanHy9TcYHh5Gi+hYnQbRiEIunyKWiPHykZfp6+1DkmR81ycWj0IocmVyugtYFY2za9d20ukUiViCc+fPs2HDehyn+y4UZZUw8Dl39gxDY6t/Yu+MylHyWp6clsOUTHRJR5O0G++91+71Vz9lJDzLwXVDLKtNX3+Rer1OsZCl0Wpc5TFXcX2P9+3dS6m8iBmJd9eh46Kq6lWkbpcwdBkZHgJCPD9EVnUIAyTB57N/9UU+dN/9JBIpJEEhnUljOw4PP/wD5ufmWbNuLa5no6kas/NlTDOC57oYpgm+SMf5MSaE47RptTpkMhnO25f4lcF/yv7iXTz56Dfom74TX4wRGY0gSiI9xX6ef/YpFpeXGR2KksvlicVAFbrRHLIcA0XBDxVWSvPd9btcIxqNgxdy+Ng0l6eWEBWZVSMDCIJDPFFAlBUqi5dJRqRuzm+6yOsnTqCEML52hMMHXyEWyxCLWmQjGm1fY2G5ybahJJvG8uQyEWptF7cTIIsqugntThsXiYCAYj5N6C2SyMtcWJzmXvHj/MX3PstM8wDZobWcvbDEJz/2KU4e+jqXJ2fYd8+HcbyQLujGzctbslh4Y5ns+jLg2+fUz1Z5DUOum9/547FdO5539vdmuRF2zbsM5qZjfde+bnBf31HtrRzW96a8Xks/+U66nusrr9fVq26BVuenLYLwD5zn9Vrl9dpF8TNTXLsne7evPzPP6y23f5untjvRblDtp/C83rT+e4x9vxXl9WbnfTflVQgl/vzf/xtGijKrd3yYVqCyWG6QiiZpNUOOvnyMh77/EHfu24c8MU389/+ImYV5qjs3cPrsBS5dukhvsZdoJIIbBPT1dT3HoigSjUS7YCCugxmNkUinGRodI1fME0oBh148zNjwAJ7nkExlUUWYm59n3dq1RKMmUTPCseOvs2HjRoTQQ1UlVpZXSMRi1MorROMakiHTMzRC1XLp7+2hUl0hm8thWRbNdhtV1Xn11eOMDI+QSCYIApdKeRk/CKlUFhlfM4yAjKLphN2YFFwvoFqrI9guUkxHQkBRNXRdp1qrIogCsqSg63EULYqiJ3GtBkEY4PldYvVmo0qxr4ggSgjIfOHzf8WaNUMEgc38wizf++4P2bfvdsLAhsDnqR89zeDQEKIErWaVVsvCNE36+/rRdZ2ZmWniEZOHHn6MjuWTKxYRRJHSconx1SOk00lEqYvA3Gq2iEYieK5Dd3IHXbofw0TWZRyrSRgE+F6IgITrOpTLFTRNI5mI49oWhqZQrZRZmJ0nnc9yZWKSZCqOqEJ5YY6+Yg9txyVUdHAsLMuim2MmEEklWFpc4sGvf52tm7fQbtWJRkxc1yKZyCCqMaZmpkimE7hXlaLx9RsZ6C8S0WWi8SjtdgtJMHjq2cc4c+Ykd+3fgyB6iJLU9cB2WjQaNSKmQLPtoqoxBGya1TpiqYV8+jLWX/whK2pIJJJiabGE22mjaCGaKVKrl2h1avitNo4tURjspdISmJxp0Nevk1YEnv/hn9BunGP+0vfYsfU3WfQ1MvECniDhtG0Shoqgx6jWFkj+6CjoKsmNY4yOj9FTLNC22kiByIUL53jh8BE2b9+OpsldQ2IAkqzguh3qtTKqaoAk4HsemtL1ZEbMLnXGtq3bef655xgcGMC2LUQxJMSH0EKUux7RiQtnGVs9hCR3w/YTqThhENDqVFAVFUEIqNaWkRUZMxLliceeJJ/P4PsemqowcekSr752mtWrR/A8H0nUUGUJUZAJfA/wUTQVx3IxjTiuG2DbDXKZAiMjqxDFAMOIICASBCKSpiOKIelkhHwuTTbfC0AQ+MiCQNsBUZIxIxEERcZqtZF1HcM00RSZ1eOriUeimIbJwuIKldICgqQgiAL1WhlJUonFEiiq2jU6Cd3ohlg0gml0EYhpWiRev8TEL92Ft3MrlK9QXp5F71mNFMYQJBspKJDMe8xNXuZ5/zUM02Cvvw7P9RkYHCMUVRodF9tro8oyYiAihBKeA0ee/ApTUyXGkJlz5+jsWo1bbZDqGSIe0wl8mx889iw/d/9ddGwHw4hx5tQbJFJxeoo9nL9wnoGBfmqNJps2rcFx2miqSCya5MrUFfL5PIoskcpmcVwH17Y588YZhoYHabQaJJNJ+voHiOoaPfkBglBkfnkWwbZBAk0xCD0by6oTiZnYLYfArRKJpwh8DzMSYdPmzRw5dJB1a8exbJ+R0TW89vpJqtUmQ8Pj4AWceuMNNm3cwOrnFrr0TsO/R4/bj/qLLsmMTrPVwYyomKpCgEp/fx+FQoFSaYUw8Hj11de5994PcODAC4yPDrN+fJiDLz3P4OAIFy9foLe3j8uXLjE7O0cmmyObylKt1sj19JBJZEmns8iyhm3D6NgolmVD6FNeXkSRVbwgJBqPceLkCTZs2EgiEUWRNJ556jluu30XghCSzaZxXJt4MkMQeMiCQDKf/zvJQTdqabct5qdnePiRJ9ixczPgIQghVqNGoVCg0WhgtdtIsoAgiLieja4l6LSbxOMJXNdFlmWa9TKxmEkoCrheQCqZxA9FAt+mvDhHPp8km4kzO32FaMTA9iEWjbJuzTjZVBxR6gIAzs7MYRhxTp08SSGbpd2yqJTrPPTQD3jh0EF0VSGTSdNpO1iWw1Q4zbnPXOa//8Q/Z3Col/rLLr2966n6NQxdod2xaVptzl2YZcNoEkXt4HdsvFBAjGrIgY8QepiKSiZpQBgQiyh4voUsysws1ygWIwiiRm9hhJnpFbI9RcxYEr82D3aTerNFqCboLRZJmiah7DHYP8Khl18lHvXIGDJNV+fc5RmKvXEEOcQPbBRZJZAtFKWL1N9xYjx9aJKxvgSG5KNH0ijhMk3f5+TMJX5t+PfYbNxPc7DJPT93F2WxTW8y5PgLB8hlB4mv2tDlcb+V+fBWlOO7OxT+ayqvN1UA37PsfvXn/zeU1/dwb7p9/HSe11s+/3XuxdvnwM+y/DTKq3Br5Ln/9YtlWSG880HcaPzXPodbbXcr5drnaD/9Z9fWeOt/8tr9yL2bAfBm38A79+wNp6B+7+91xxqCc/RBgsbSdetJvRtQ1nZzSYP6Es6xB284VnXnJyCeQxRFnNNP48+dQuBq3isgvLnAYjnUXR9HoBtGZD3z5jW9M85eWbMfqW8DAP7Madxzz711/K25vlLtXtMn/vfu9zDEOfogYX35J+rd6Jrso+92TR9HjOcBcM49QzB3ChGoNxo0qzXS6RSyJDFf65De8yvYTki52qRn9jlOnz7BhtXDaBdnoN3BVmWEeATTG2LiTIUjR17igU/ei5yuM3nlCiPDq7AtC0VRQJQg8Dn+WBlVi9LXnyE55iIqLq1mA90wESUJ6NIahJ0Y1kqUVDLB3NIEyWGLUqlEX1/vW/cyCEJmZ2aIeZsQfYhFU5Td89jiIvlCD4oiEwQ+ktjNo/ZtBbncS71R61LbDMwhywoEAeHVXAXf95ElmYWLHn2p9bx2/AQdZYXb7h4kCHwEUaJWbRCLR94K79Jr47Q7Fo1Gk9RIGxSbwJOwrPpblnPP9dDCHMuXQzL5HLZXQespEYZQrdYx9KveXtdBUg0683EMOU2p1CA3GoBWxXYcHNslGjPxHIfA97E7Gseemmfrhi6vpNo7jSRJvPlydWwbWZa7odK1FHZFQdZ0VpqTFEa6SoPjWOi61g1FtR00XcOdH0SSVJqVeZKrA2y/gaoodKxON79XlAiCkFZFIM46jh17hj137qWpnEFR5LdyUYIQwsAHAtyVAqGrIQOzjZP0j6e7zzIImZmdpb+vF1mWuXhmis58hrGxMSKmRJCbAQRCJAg9CAM8r8tzKzSzlGcckpkcyIsEsRqiCGLbImzZENGwBvPEUjla2++hEBunUe0QXvgWQXUeSZbwPAlJ1cG38FwXcmOIm++jcuEoMjLxhVdorUyiqTp6soDldnNeZNlA2vxRAi1BvVohVjsNC2+Q/OsruBmR9u0GQRgQ+D6Bq1GbT/PCiy9x3wc/RKw4dZUL++raR+h+D0ERRwmCFLIArjtHy7kIocjC4hyjo6PdMEmpi/Bryrfj+z5CGOKEp/DDBlanjRGNE3ghoiQhCCFykEJTxrH9sAsUFYiEYUBIF01TlRVarRbmVUOHbTmYEaNLexEGSJJBIIm0a8sIfgc1koNQ4dFHf8j+/XcSieucPXmKhbkap86c4IGPfIQwgJHhPgJRAnzqjTqmHkeVDURWKC3NkM4P4fhB14skiODZuH6A6/qIgoxhmFidBu1mg0w2T6XR4YWnn+X9992NooogiLiug2YYCKFIo1zD9X3iyTitVpNqqUyhp5/EyQs429ci/7cPcOHseXpHV+HVp1g8+xL9Gz7I0dOH2bxuE4IjMnH2JfSxHnwlTdTvZTgbo+WGWL6AounUFy4TLwwQ+CJiKPLbn/wwH/mln2fk/tuo/sfPUtR6+A97O4yPj9L2BE6+coSErhBPZXn+wEvsvG0P9ZUz5Ptvp1Vf5uy5c+y+/Tai8Rhf+twX+MQnP0oQ+Pge+H7I0tIC1WqJnbu2E41GOXDgBe7efw+O69Jq1zDjKSRR5sKZ0wwOjVIurZDLZ1EUmWbT5eKFS2zZNtzNLBOFLrCRFKNWrxCPx+lYTTStm/u+vFRC1yKAiONVuHh+hmajxcaNm+jJ5+k4FrIm88D/+RqLi3NkP/BlVlbKPPOxb1Ov14jE4kh2lWqnRaMpML5mBNvu4Dg+Vsfn5IlTrFk7Tk8xzTNPH2R+YYL73v8AL710kPfdtol87yABIiIhfhBg2zazszMMDw+jaCovvvACe/bcTrPRQJUVDFPD6tjMzCwwNTvDvn17mZ2aQdcinDx1gv3778DzfCqlGrlchpXSEtGoga5rmLE0F86eJ5OKkhkYQBS6HhqBbvr528vbo7NuVgRBuLpXiKzMLaIGAg89+ggf+cgDtFs1dF2j2ewgyiF+IFEqtVg90o+sykzPzGKYMaTQIpUrECJ2QQNdB0ly6VghTz59kHqlxD/91V/Bsxo06iX6BlcjBAGhIPHwIz9k757dCKKEqnYjBMxoDMOI0KiUqda66Oz1egPDjBKEAhFT4vTJ4+x63z48D9544wRrVo/xTPA8/0L8dbbkb6dy+kVWPftBEqP9nFp+FcsOGRwaJ5LQeOGxBxnI6sQzMlFNRFNlrJaDLDsEggJXqWU0TcexXYLAw/N8XCfk4hwsVZu8b8c9NESP6uIiGzeto7N8Ab95Ed83cfReisOrccptHEVHVAxWZs5Rq84QtFZYVYwhaQpiCIg2rtsFyxJ1BcGXwHdBMrg806anEGCqaSzbw3NcgmCZ2YU4pXaEe/t/Dq1j4vTXeSr5JRr1Mqef+xviqTS//n98ib41axEEn+CqQ00If5wj2d3L3qOicq0nN7ix0nat7HwjvffG3kKw/lwBQP9d96fu/0YlxH/HGH6ywttBYYO36v00+kR3jQVIkkQQXMeg8PZzXW+sbzs/XEcVvqb9m/Xf+n7NzXr7vXrHfbz2bXLTsV3T/ia3RzP096wd3xy+9f8v71qcl7/xX7zP4Koi8ve5hLMLhLMLP/PzCEAggGs7rEzP0pPPIggS1aZFLt+DH4j4ocDw8CjKpYtsDyT01y8Q+gGdeIzFTptOx6JSLRP4Pvfd93MEIbRaTYaHhgj84K0Xi+fatFoteot9rF0zQr6nyJuCQiQa402rgICALMsoikIqlcLqWPT19qKpMpl0kpCQgJDA92m3mvQVizitOpFIjCtTl8kV0vT0FJBkEde1kSS5i3YahtiOx7ce+gGJVB9nz050USsdG1GSEEUJSewqXZ4XUik3eejhR9mybTM7d2zDtm0ajSae55FIRPFcj8CHqSszLK808X2RXDbf5bFsd5iZvYKsaCiq1vXOqgqIAplcD7ZtXc0JFQkRUSUZ27K6YDyqQaVSJmJkabdd4gkdu9MiCH1kRSIaixAiIqsqiqpyefIy+/bc1eV3tTpIooTvBTi2Q73WQNFV3lwRIRLRSApRUMgXcggiLC+v0Gy2usqCKKNpGq7rYrfqSKFPtqdIp2NhWQ6VSh1VNbAtC9/3EEQw9AgPfe+77Ny+l0sXLyAIXSt3iEjHclhZKRGEAY7jEo9GSCRjCIJPsbeIJIkoiowkiRQLBUqlEoIIq0ZWsX3HFgQpQJCjV2eqANj4voMgSKiqTuB7SJJIT28fsiQhKhEWOxZCrQ0dl3DVAI3BIqoRQSBAtvtYWjzH9NwhOh2vy90ayMi6huu7dNwAWY9RqrYIrCZq4zUqR/6U5vIFAnwkI4bjhiiKgSwbhPiEgoXj1RBlm1AQqFVr3cUVBHi+iyDQVWAJsdyA+z/88/T0FwhD/60579gWrutcDbfv/qYKEqdOnsayXEorZVRVoq+3hyDwUWQJwu4aCF0XPA8vBEQZBAXdiBH4IEohYegQBj4d26fd6iD4Dr5n4botwsAjDCDwBFrtJu1WDd+1kJRuGGkYguv56IZJILiIvkMkksRMDiJLMqomsP/u20ilDfAdNm5Ywx137uJ3f/+f0VfM0j/QQygpiIGF1+lgNzp84a//hpXyPLYfkO8bJ5SiyGoUxwlwLRffF3HaHeKmQczUWFmcRTe6FCqW1SZiaGzdtpFWq44gSPgeSCFMT0wCIkYixdcf/A4ICpl0hkI2gbFSInAd7A/vYWrqMqIQIAsiFjFW7fwwJ157gnt37yMuKyTiDsOb97EquQG9GeNf/sv/iVrHRZQUDh48SOC5ZHtXMT9fpVZaYW7qDJ/+1S38u89/mU9e+h3SchLckL7ePg4fPoZjeWzYuBUlEiOWStBb7KVer2IYaWSxxWsnj/P+++7h/PkzVCsldu99HzOz86wsl8gkYkxPT6FpGnv27KW0UqHdgf33fJBStY4XBAiCxJ//x8/w3W8+RLsd8M2vP8ihgwd56YXnCX2bi+dOMDjQQ6tt07ZEzp6+jCCofOfb3+exx37EgWefZfbKDGdOnsVqWhiaxskTxxFCaNYsNm7cyNZtW/nmN7/J5PRlVlYWeezRH3TB7Qrd+ZhKJbq2ySDG+YuXMRMqw6PrGB1bRRB014uhR7CdNh2rgSCEHDv6Gvv23clHP/bLrJQXeeAj9+O4HlPTM/znz3yG82fPEoQekiQwPDwMCExcnqLZaOO7IaYe5eSpNxAlBU2PkMvn6HTaPPiNb5LL5VlcmmfXzi202y3mF+ZRDIVvPPh1FFUhlc5g2S6yEjI6Vujmm/NjAfbWfGvvXkRBAi/E1HUa7QYf/vn7MAwdxxPQo2miiTiSrJJKJlk9OoQbQiAIFPsHQJTotFo4nSaCENDxPIyIhu/IRPQID3z4Hj7+yx8mYmik0hk0LUpleZGJS2fptGpsWLca04zg2jaXL5zH1COcOPEGCCBrEoViinjcoFQqUSpV+PZ3v81Kucr22/ciKgqqBiMj/URiKlZgMR2dp2e4j4HRERQpQjusM7xqBFmWUVWREyfPMzO9RCYtoAgiqqYS4qBoKqESuaq0Gld5yn0URcJHpNzwWG4EjA25qCgYWegrjLNm3Xo0I0k8v57zcwKq6mC35mi3TVpyiCxr1MpVBofHWaonWGxIOAjgO1geXfo8ScJ1XETfwndtAjwEGqweEFGCAMf2OXtxhccPnKfWkcn36EzPnObhcw9SH1hCWjD54ORvsXHzz/OP/tm/RsTjC//qE0iBRSB0923h74nz6h9ycRznZxs5+g+0/L3xvNq2fd2BXm/8Qlfa+pmN5e1WBevpP0MA9Ht+720DeHcrxc088G9aKcIwRJIk/PAnLSzv9dre1Qpydaw/zpeVrqn87tvgtVa6N8fo/nd/CID0N39043NzA+vW28dzE4+577oYgshXv/gF7r//Q0w3fMYLad54+TB968a6gD9PnkR+7SyCZeONrcId6mW+2URVFcQwIJmIsVKukEgkqdebfPt73+GXP/ZLeJZPX38Pju+S98CnAAAgAElEQVQCMlanwYPfephPfOyTKJKDEY+C71EuV8gV+ggJcToWhmFgey7TU9MUewpETIOLFy8wOjzCN7/5Te6+516S+SyVhUWCUCCkCyQlqwK200ES1S5IjQBXLl1kbO0aPATmL10ik8ows7CApKm8cfIkGzauZWRkFYokIogSvhfiOj6OG/L5z/8Nv/iRX6CnmMdxHXzb5/KlCbbu3EqzUcVz4aHvP8xHf/mjiAREohGmZ2co9vUiI+J6bQ4ePMXi8gwf/egv4bo2nuciiCKKoqLLMo7jIik63//e97lt+2Z6RoZoVNpomsri4iInXj/J7t23UygkkSRod2xs2+PIsde5447baJXmuDg5w9Yde5Blses9pkm5VCWfL2JZFqoeo9Vo4lgdDh98iTvuuIO//caD3LFvXxdkSRC5PHGBTDZDOpNnYXqaWDyCIinoagRJFrl07hwgkc338Zdf/Byf/OgDRCIaohbB1HRc12J5vkYqq6IaMQxDw7Y8nn/+IJoisW//XlyngyqJdNwAq9kgFk8wNTPHuYuTiCgMDPQRBj4b1o8gKzKO69GxOrRbNo1KFcdzGR3cxg+f+Dp37b8NUQ6wLJ98zwB2qYEV2sReOonn+DTfv50fppPs2HM7dbvO6vFV9GbTTF+6SLEY5/jrr7Fh+72cePELDK39OLkxjcpcHct3SafyLM1dYigbMPvKY3QaM8RWf5BIZBwtm6FW62AmciCqqLKI7zmsLC6SzaSYmWvwB7/1P/BQZojlwCXYs4FYIoEgqdi2j64pzMzMMrRqCD/o8u8qkoRrWwiCwMFDh9i4cRORaAwx9FhaXCGdzvGNb3yNX/v0pwhwIFTxPJCVblBZp9MhEonQanXQolHsjsU3vvQFPvXpT6GqEq1WA8/3ERUDTRJYWZonEo8hhCphCF/96lf5jd/8TZBkFNzuDLJ9ZFG6ikgsE/g+nuvSXJ4nUxzCl0xCr02I141W8AIqpVnSyQwIUdpOi3g83vU+SQpWo0qz2WF5uQQEDA+tolxfpLd3FYgKgizTadQQwi7fcjLR5Wn2/S6itxsImJpKo1Yllkjx8uGX2b59C37oo2oGYQgnXzuB67rsvG03R148wLbdt1MuL1FMmigvncf5nU+wXEhhmlEunjvBtm3bOH32FBs2bGBx9hK10hSyolBvW2wYHqLT9hDMHJKZJpJMU6/XUa/m9zYay3zmP32O3/70J2hXJ1mePMRv6o+zvFzja8/djiIrfP/Xi8zNzXJlcoa1a9egGwblchlTlsn09SA5Lm27RDw7QLVSIRaN8cqxY6halPPnLvCPP/nLVMqLnD03webNm/nKV77Chz70IR565BE+/elPE4QBtmWhairNapNIJMKFy+fZtn0TnudRr9dJJhPghxw48BKqLnHbzv08d+DRrpc3muWzf/Gf+N3f/hcICJTLZV57/TXWrRlhemaave+7l8sTFzh7/hxr16zj9Okz3Hn3HbQadWQRshWXRDTL1uf/Me1Ohx/+wleJRHJUayu0KxOMrV1PgMqJ10+jaSbj4+OEYcj8/AypdJIggOcPHOau/bdRq1rIsows2WhmFN/zCB0LOxBIp7NIokK5XGFpaQnf9xgbGaFSLpHtyeN7IY888gPe/4F7+eIXv0Q0EuO/+Se/QqfTwu40CZD5ytf/lt/4jd9EV7teGk3rRpn4gcfUxAQDfQP4okQqk36TQOCm6UM3k/0USeHcqTMMD/Rhuza2YxMEIfF4EklWWFlZwDRMXNvGdVxkVcGI6IRh1zP+wvMvcv+H7qbRqBNKCqqiU16aJZfPdqNlOh6W56DpAu1mDcNMIgkCqmoQCBKNZg3P6iAKAZFoAsWIsLRUIpGI0W7UEUWZSqXBocNH2b17O/0D/ViuTczsUs7U6zXiMZMvrDzIWn01X9v+HRaOv4DxpfVYxQ6RYpR6o0U6m2F2ZoHJN15k+xaNy5cdRsaHMaQqru0iKBKq1A2tlyQRx2shSSJBqOI6BqVSh96Cw6nLHV6/XOGePfsZHBkiQGZxYYl83qB08VkIXE5MWNz7wV/gyNGzrF+/AUEMiRomJ149RH3xEqsGMrxyYop79vWjAoEgIuk2nbaOpJiIeASBhSzoiKqD5QrovsnJ6RqNTod1PTonLlVQzBE279pEbKYHua1i/cYsMxNP8KOvfwZHz/Bv/vrb2GqcEBfxGpnvHTLg2+ZNEASIokgQBD+eR7fgZXsvda87FxUFQRBwHIdgqduJmH9n4/fa/zvWwtvk3Z/AkbmOV1oQ373za9fXjWTZN+/rO2ThW/S8vtX/NcevfY7X1r/Wd3k9z+ubYxSvRTq+iXf+2ucg3iREWtW196y9/73JefV9/1/fSr2/KxrxLZW33WZv4mUEQB6+7W3Hb5YY/e7dvx2MKnzTk8Hf4dre7fTvgPO+ZsHcbPVfG3pwdYzBw88A76TKeccCu4Uc13crE2fOM/nya2zesZWgECcV+ohKjFIzRG2U2fTHX0c6fwVr7TDunm24uQyCrBCLGAhiAGFAp9Pm8cefZteunYiizPDIMIlUjFgkyvLyIplsFtcPkVWZw4dfZ3DVKIYuI0gCywtz9Pf34/gBqqpSr9YwTANJUUjE4/i+hySKOLbN/GKZSqnM6rExrHYbWRQ4deYCE1PzHDj0Mps3rbuKmOrxoyeeA1Giv6eIHjHwBRAFn2g8SjSdpNiTY2R0mGQy3vVeCS6SJCKJEp1OB8SQzVs2kbqaO6oqMieOv0EmnSGZiUPoI8sqA4P9JJMmnXoFQRKIpZKImoocCLStCq++cp5SZZmtG7agyBKGriCKAZKiEXoOeB4TFy6wbfftNCvLxDNxTM3g7NkL9PVnee7ZF9l3xwdx/TYTE5cpZAtMXLjM2XPn2bR5PemYRhj6SIKLEHjMTU1iJjKkUgVCVGbnFpienOOh732fvp4C6WScRDLGnjv2kkplupZpQQFBIpHK4HsijueQSqcJQ2g02jgCCFJIcaCPlmuxffsOIppMxIygGHFajSqmoVKvdchkdQRBJgwCJEFi1dAqDEPr5mL6LrIA9aZFIZuj0WyRzRYYGSjQk81QKy0RM1Wi8SSSomDZNqYRQVMEktEIiVgEy26ydkMPiWQUVSqg1hq0TlzAfPYYYW8K/1OfJPjnv4pxey9Dq/OcOHqcD/3C/ThiiOO2WZk/xMVTK6xfdydi1CPqLVKpJ0nkfdx6m3hkmErZIhONcurws8TiNdxUhvj4B9HkPlYaLRRdQdVFQsnDbsH83Dz5bA7XcXE7C+zcupX+V86hJKMIA70gCCiqiShpuE6LXL6AH4Agygh+gCCIICnIBCRTSaKRKIuLS6wszTI8PML8/AJ33b2PxeVlNFPDDxRC4apnFBEEif/82b/ktp3bCARQFIGN4yOsVOcxzRSSaNBsVdEjOrLgU1pqkEoVUVWNSMRk567tXY7MQMa12qwsl4gms8iyhCiKiOJVo0hQR/ZrrFSXEHUFRdQQRJDELj2UpviISJy/MENv3yCBDIos4Lselu2RyebJZDMU+7IooYggBOhmDM+zu9ysskjg2ciKgiAotDudrmdHV1GNLrez57qIokSx0E+5XCKbT9PptDFiGXpyeQq5LJomc/7UeWwbpmcX6Wv5eOuGmVk/zP/D3nsG3XGld36/czqH2ze/Ob8ILzIIEkxDTtrRjLSjscqSR2FlueRdr6xa15Zkl13+IK9Xdnk/2Fuy7NK6SpZ2R6sRZ7iTNJpEDofkMJMgmJABIoc3h5tD347+cAESeAEwSLI+yD6orhfdfU6f0+d23/v8z/M8/3+r2UNVTPI5h06jihIH/MH/9r/y+S/8OmF0lUSB/MAc7foG30kOc7h7GaM+QSnvokhJHEXESUjGUtm1dQdHDz3DWEnlZTXP94MfUr6YZ3BmltbOMutZ6IVddm7ZQhhG1CpNVpZWmZwY5fS5M5Tzg9hmSCT75GY932dqchJDs9i9azfVWhXFgKmJWY4fP87P/MznuXz5Kj/7hc+QxDGvvvwqfsen0+2Sy2Rpt+sMjBTRjAytVoBl5Thy9CyOozE9PcXk2AiGYpHN5zl1+l1KxREe/sRDRHHMmXffZXJqCi+bJZMx0VSVw4ePsH37NuZ2zFGr13nrrbdYXu6wulzh+NHjLEYtBnZsZ+ele+h2urwzeojFa5d48smn2DIxRip7GJaH42R59tnnKZWKvPTSa0xOjaGqYBgGg0OjOK7JlctLPP30c+zZvYcXnn+VyxcuMzQwjB/2taD9bg9NM5ACzr57mlwug6FrxGnfq2sYBrm8x9Gjxziw/140TcWyDFqNJn/1vSf4tV/7T2m0miRJSC6XZ2OjgmnZ2FYGXXVZW19gfnGZ8fGx98DrXTPdPqqXJ5bIJEGQ9qM2DKtPzqT0vaqZnEcUhqytrpLLe+SzGZYW53Ecm1qtRoxNxtZRSOj5Ad/6zg84cGALSRTQbodEURUhVUhNMk6JtcoapOAHEdV6A8tSsU2VtZUFOt0uSInr5fqs/qpGEITkCwVy+RxRt02hWABSTF2l64cEQYCh67zTPUFJyfIPc5/CaNTIvH2QNfcyTibDwuISmqEwNTxAs7KIl49YXdV458RZtkyXUYgRMiWNU+q1dv/+NUkQCnQtRYgWthWgpFlUR3DhMnhGg6GRcaI4ZmFxiZHxAZordaTfJFuw8Bs2o7OTCCBfKhCLHtnsMM2OyfFzV9i3q4yhxYTdLlJRidMMh16/yJlz68zMZAnSBF3xSMM2GjqB7pMFZgYtUishnzM5faZB029S3Oqio2G8WuYr736V3/zPfpXDP/4616oddh78BAiVzWKLQtwZNN3MN/KBvCN3eMY+qO5HKX/8x3/MgQMH+v06IJy7VLzJVv4g/pfN43qf5OnWYzdKej1k/IZ9/GFEVR+lr9vIT2+rLz8kn3ez7b7p9Ifa8reO58ZcCXEH+c3NF/9QD9zm3Q+ur6h/jwmbPip4vVH+Np3wCSlCyv4HuunC0aXDAKgzD7wXGbhZS2qztNRtY00/8PTtWlXcun/b9T+sv5v+/55eq5C3P+zv1b59e7/drduNF/KGzqvypc8iuA7I7zCY9MY7c4MZbtMLfdvKl4BUqBD6fPurX2EoZzO6czdCd7h25hKFvEetUqHU8cn+1u9DIY//yEF+9MYhxkeHCYOAU6dO4XoOcRiiajZLa1U8zyCXG+DPvvqnPPrIwxiWS7fdxnRtdMPgxz96kqGBEg8/cD+5rEO9WSebLWBoNt1ejGaaKEmMpmu0Om1Ute/1MQ0TISSZTIZarUaj1WR22wy1xhrFgVFGhoYZKGZ55IEDqJpB4PeIQp8jRw5jmQZbts3SatbRFYEmfRZX1oh7PRzb7s9V2g+bzeaLpEhWV9cwTJ2TJy+wOH+VbbOTzM8v4Th5crkc3/zmN5gYHcXLlVBVnTiOUDUDO+cRhzGdVpdrV64xUMqwsV5l/z37GBwYI45aeNkMcZyQIFhaWMByPQzbQ+gmbx16i5SEYqGEUDWGhwYxDZf77tuHVOArX/kTHn3kMwhVEKcBu3fPoQmJH8Wolo7n5qjWKszMbCVNE6obq1i6JGPZOJZk29Zp6o0WidB5/DvfZ/eu3bz64k8ZGR0EoZKmKV4mw9tvvsmOuS202i1UXUVXBYZqYBgGAoHf7nLx3HlKJRdVcxBKSBpDlETEaQ/HzeP7Pmma0G436PValAYGEcRoqolueFiGoBcmqJpGkoR0el1WKhWEqrB12xaanQ5RFGGZFpVqlSgKSdMEy83R6XbwwwCTAZqXTmO+dJz4Cw9x+Xe/RO9T+7G3zdFsn0GkDiurbdI0QFcErmkyv7jC1LZHGZga5dryOpMTA8h2lShcorqyQqmUZ2PpCHmnQmP9DLbuYWS2Y+S3U8pO0WxepDgwSRyp6JpBo7qOaWbJZGwUBVrNBmHDp1B2yPz0KJHnIEaHUHUdVVVAJCiqQnJdXiONQhKRkqQJcRSCkHCdGfGxr/0H9u7djara2E4/jP3HT77Erp3baFQ3cEwFISXNegXHkMxtmSRKYxzTQaSCRrdBuTROtbKBYwl6nQ1S/RyhWKGc30OUxAgRsrxcRyr9nNd+KHKEl/Podlrouk4QBSjEbCwvkc3msMpTmJkRZGqhaylxlKDpBgiJ1B1azTZDw3miqE2rUUNXDVaW1lANF9WIUTWNOFFJFFB0l3qtSS7rEoV9eSDDttB0gyjoYRhaX3NWKgiho+mCJI2wbRfFUNFNq5+7qUl63TaaIUhSDWRCeWCAhcUV5hSDopBU/umv0ItCBoZKaKagG/p0ky7tXpb/7vf+J37hH36Gya07SENJbXGJXhjxNZ5nKVrit7f/MtVai09/8os88/SP+dVf/xJnTx3H1FJm5vYw3035x6v/nAe9B7lw+DJbfvYgq17MM08/zekTp8nnDZYXa+SLRUrDRTKWDqS4eZe19RaKVHFsi5dffoUgSBiZGKFar9ALeuQLZRQVBoeGUXWNbMHj7JlzFIqDTM9MMzo+TLlQ4syZ82zdPkXgR7SaTRxTpdWo0m7WqdVWGRkcQjM1YkVDEFAuZul165w5cYKh0WHOnT13XSasRxKnnD51nkc/+RArq9e4fPE809NbGRocYmaqiGVnkGrKvr3bMV2PmZPbkQI2Hl5BqjqPfPJR8oPDKLpLGPVJgu49eA+qZjA6NobtWmiayvmzF/BcnWZ9iUIuj+8HjIyWmJvbSddvU8hbDAyMkHEd4jhEpJDJuoyOjOPlsqCkGLaNqkiEiJEiYOfcHnRDpVguECQR+UKZI0ePsnV2ivOnTjC9ZRZVAUVR0FSdrt8iShOS0MdxXXKFPKkU122Qj1Y2G88S0efd6AX0eh0c1yEWClHQRQoVTdXY2Fil02yyslzh+z98goceeYjLl88yPDaDopiEQcTQgEcQdshkPXq9mO1btnD23DxxqqMaNmnQwsvm6YaCx77yp4SRYNv2rWQ9D9IUy8oghEbGK+J4ZZr1BqHfxVBUTNeg0w3493/2Vea2zzI8PgppiKEImq0OQlVwHAshJUc6JyhpQ/zq5D8iWl5CPTZOt7jC4OAYzY5Pz+/y0guHOHHhAntnBikO5JieMHBtQRrbJImCH7T4yQuLxCiMlBx0UyWMAtJExfcV3jm9zOTQEL12yEIlZu/+vZw8dYHR4QG67SbdKMU2YnIZjXa3TiY3imV5QMyrL77ExNgEhVKBVKhcOHOJkZKLk5UEQUqsNCmXZiiUTCw9xDRdoihA1S26QRtCgeWoBJFOp9HDUAWLqz1UO0+j1WF8xxBpU2VP7yG6+9qgKpw6/G1K9hAjO7aTJgJdkf0EKNHnF+CmLeW6/qdI6WOcGwbr9Trcuokbx0TKZgP0Zs3Xj2Oj7927t/+M9rXYEFLADZB10wU3P8u3nf+QfvoKqNdtXMR7tvx7Gq4ieX8ericNb9ZpvWEbb7aZNwNAgUJfLufO9TcXIdPr1+jPrbzevj+Gm2z49H3ccYtt/d445J0XKK53e0dILjbd44fM6213s9nrvKmC+v+D1/fL3yZ4Tbl98m+UW8Dr3fr+eIsUd+z/Fjrwj3uBj1D9rxtzf7d2N8DrDc/rXa9/00oZcMvqz537STDigG985Y85uHcHQ2M7CBODP/t3f8ED9x1E0TS0o+/i/rN/SXpwP+mBvfTCHjt3zL4XUnvs2HF832egXGZjrcKW2Wn8boeBwTKN6gaKpuB4Hp6XQVVU6vU2iwurTIwP0Wy2yHgeGc8ljHqoUuX4iZMMj44jk5iV5RUGSiXq1SrN9TUq6xs4jkOz2cbL5Wi22mzdOouX80hjqDca5AtFLly8RLFYQkpBt9NhZGSYUqGIaShIEWNbOlLT8bw8qqajWXafCCOOsS0LVTNQhIqqqJi6hWpqbNu+lVQq6GaGN994lcHBEvv370dKk8sXLnHo1VeZ27ad1197jbGRQTRN49LFC8xOz1BZW6ZUHkDqNn/+2H/gk5+4nygK0TSNRrPJ8PAgvV6EoqjomkatssA9+x/i649/i/GxQYRQiKKYXtBFVTUOHtjP4ddeIU1jxsfHsGyHjbVVvEwG0zRZX6/geR5xAlEUkct6AKiKimpYnL9wieHhIXI5l7xjo8mUwcEBSoPDfXkEWyXotZmanqHdbLCxvk4243Lm5CmuXlsjDEOKhTyqpuJl8mRcnSTpa+W6tkOv57OxXuPYsdOUBwrkci6GqeH7AbphoSgaSdonYAkiSRAEdNttdE3DMDXy+QLFfI44CjFNiyjqYRgqYdQlm82iGwZJHKEZCZl2SvTEcwTFHC/+yifxPn+Q8lgJIVKcbBnfj4GU0elJZoeynD5/kbWNFrPTsxiqhyqvUTTbHHv5KZZWlilmTJrra0S+j+3A0nKNVBbZcvDzxN0qrXaLOLQYHBum3vAxDBtSME2Tnt/rS98kKcePHme4XCIIu+QOvUt37yxmrkCr2cAyNZQ0otUL+8Z2EtCsrZHx8tSqVSzTxDDk9bzwJvfedx+5bBZFSa/nBGvs2DEH9Mi4NmEQEEQ+pqHT6XTJZgtopomUKlHcZ/qNoxjXzRClAkXPkKoVhEiJoxKKapIkkka9RcZzQPYlpxCSNFWQmkUct1CESatRQ4gmSiJJhewbH2mMomq0OzFCkyT4KCgYutIPhTYsNE1B1VQsy8QwLaLYx+8EmIZBHCb8yZ/8KY984mGE7PerapJms4mUCkkcAAJVNYijhFqjgq5r/XzqROL3uv1ICUXS6bQRSUy326TXizAtiyjqUAgShtbrLPznv4BWypD1HKRMqFTWKWTzJEmHLTPbeOTRe9i6bZxO2+Xi+XOMj7tM7nyI764+iZCCe3oHGByZ4De+/Fv8x1/6FMePPcU7r7/OH/4ff4YyOcjv+L+HbAh+ZuQfsGfPLr7+2Le4cvEKn/7Up7hn/z5qrTojY1OUhwbQDIWfPPEMW2Zn0XWNRqPF8eOnGRsfZ2BgEFUxUFWJ67pomsrbb71FmvSwLBtNN+m0uxTzJaIo4PDhw0xMTuC3Kkip4GRdVpbrvPDT59i5awdSEYxNjPHdb/0VIo3xcjr1aoOTJ95lYmKKJ5/4Md1uj21bp1laWGTh6jW8jMuLzz/Hz/3cF1mvVrly9Ro75nagagrZvMfRd94mTiSr64v84hmNqWsJqTdHYPnMz7yLplm8+cbrTIyP0AtDLMvpR8O0WihC0mhukPU8oiDts0NrKhvra2TcHCOTg6iKpH1dD3d5cZF8Ps/JEydYWV7D1F0uX7mAoigcP36EoaESmqojFIluuyTS4JUXXmDv3t19re4oYmV5nU9/5lHCoMPslmlsN0MUJWiaRpomNJptlpeWKeZyLK+uMDo+fj3f9eOB180/yWma0mtU0a6HRiZCwdT73xdh6JPNOcSpYHxqmrkdO1B1HUczEIp23SkT0+3WyLhl4jhFN2I002FsbByEpJAvYrk2QRSjqCa757ZzZX4RTZcoquTxr3+dmZktxFHE4sISGS9PSsLAQIGu3yZKwXVdpqdmcDMOlq5RrVZRFLWfhuDl0fU+gdux3ilWz67x3xz471k+/RrOmd00Mus4Xo7V9TUGSiUGSh57txcZLFrEYYxIBb22T0QHw41QNYtdu/fiZRQ0mRIl1/kGwhRFUfHyNrrWIlsw6XYbXLi8yvTMFnRNZWVliS3b9tGorVHduIqtgevm6EmL5cWrbGxUKZTKzM8vUqlWCM0y3WadcjZDksaYxBh6iuNEaIpKGEe4rku308Yw9T7AEgkba03y+QIhTVZWWywtt3j40U9w6NXX8CZNBtpjNJMVpr74KGrtKoee+TatWpO53fuI6X/vKWl8Hah8eNjrXZ+nD9r7a9qZlmX1vZ9A9FOF5LJAmb5LyuBHHtsd0tNuA5ibL3BT/esLRB/9njanwok7j+Eu5Xbwuyns9/YKdzz+1/kMPu68fmj7Tbv/nwCvH5kt78POb/IYftD52x7om9r8XYBXIe/8dfD++G73gEopb5mrW8I8/hbynG+A6c0v3o3+kx88B0Kg/EefvcWDunlcH/plsamoScT3vvEYuWyB7bv2U2tHJKg8/vhjzG2ZYWhsDPO3fo94zza6W6dYXV7myDtvUy5k6XQ6vPnm23zxi1/EMnUa7S75XI5ut01pYABFt8l5WcrlIooU1JpNbMvEdWxmtmxFpCHFYoleEGDZJnEc4Hc7lAeL6IZCLwi4evUqA4ODWKbFD558moMPPMhGdYNCMYdle5TLQ/2U5VRQq26QKxQJo5hsLo8UfSkR27IYGCijGSpuJvOeEVVpduh1A/xejG5qKIqgsrZKqZAjjGMC32d1dYWw16OQzyKkoNsL0KTgyR/9iC1bpikNFGm1fXRDZc/e3diuxdDIIBcvXGJ+aZltO3bxysuvIBW1PyeqTqFQwnMMgiBAqgq6plNbX6RZb3H0nbcZHx+k3e5gOC6HDr/Ogw8+1M+FVRRMU0VVNaSiUMzncDIeupPhwrlLjA2P0Gq26LR7lAfL1Gp1rl6dJ5cf4NixY6RphJdxSBWV+YUFTp48wczMFIViCU1XyeY8grifG6eKgEZjA6HqdGpN8rksIk2xVI1sscjQUJk4iUkT+OqfP87s7Cim5eL3QqSIsCyjLwBv2ly7Ns/Q8ADdbo+sV6TdqpDECW++8QalYo6l+XkMXdBuN8hmPcIgRlF0Go0WZ0+/y+BICU1T2Fhfw3Ec6rUaumWytrZEevECxpuX6Pz2/Qz+t78Jesrc9ilW11cZHJ7GchJcLcvi8iksJ0W1BsiOTDK3cw7RWSGcv8TRNx7j5NG3efi+n6dr5mk2A7ziNCK/jdzoXoan7scdnKYV+6xffZOcl6FY2MlqNaLjb6BrfTDe6bQhjkjjGJEqDBQHOX3iCFJJGXzjAursOImiEoQ9FHmDxdror0gLsEyTFNHXqY1iqtV1PNfFdfIE1rwAACAASURBVJz+6nUqULWYMOhrseq6iVQiqpUahmGhaxrQz/fpdDoYpk673USRkq/8u3/Pgfv2kaQRCNBUi5CFPg9APEGSdFAUg0LGQooARXMQIkSS8tqhQzSaTWzTwrJMdE3QaTSwByZotZqooc/br75IeWQC21EJwx4kAkWR+H4bqWqouo2UgmarjW3bqIpCGPg4toeUEIU+D9x/H/VmDU036PV8FFVgWSZS9r1iKyureJ5HL+jhuh6KVAjDCCkFtmWSJCG6qqAqBpqAlBDPKxDWWiiVOt75BcL/4hepjZWpVS7jOgo9v07W0zl95CyK7ECcsmVmgIXlRQrlAcbHR7AMhUDN8p35v0SVkl8e+QWStEdW7xJUz6MFdQ5+4kuoj47we/6/YCQZ4TPeo7RabWzb4f4Nk89O7uZEZ4nFxQWGRkd4+61jFAqZvnSPW2JlbQXD1BgcG2dkcJjnnnuWubltmJaB32njdzuQply+eImlpQUmxicJggAvm6FZ3yCbdTF0nfX1KsePv8PQyACOI2k1m1i6Rb6QQygKV67OU620uffefQyPDODYBWa3znHi2Gn233OAoeEhTEvH90OOHD3B2XfP8Yv/yS+haipLS4vsmJtDUWSfN0JISFKmpuYoFsp87okN8stdXvqtgMuTZxEkCKkzWC6QBD2EahAlKVcuX6JWqXDl0mVcx+b73/0BhWKJKImwbYtux6da61IazPHOW0coFIsYholredRqNWZnZ1EUBYlEURSuXFpgYmyaE8fPUB7oS90Yhk7QixgYKPLsM8+wa24OQYqXy9JuVJGqxLD6i2xBL0bT+54/XdfJZzNUKxVUTSNfLF5nf/344PX98MGUIAiorG3Q9buEYUjG86g3qti2jSIF9XqVjOuysb5CLp+l5/tI4XDl6lW6nTqOKchksgRBgKYqRHGIpqtUq2uYOgRBkzCKqa6vougWipRsm9uG67oIIdm6ZY5cPodtG/zwh08hVY3xiTGEEIRBjO16tFvtflqMVBCkSMXgzx97nPsP3k8YBRCH6JrCEf8UJa3EL5d+DfXyItqFrawYy9QaDYZHh9EUla8//ji7Jm0SJSGNA4TSxDAdpJrlB98/x/iEg0wCdL2LqumIVEMKBUWDJPXJanYfWMkMb7y9hFQVDtx7gKXFBcbHxjHsLEJRaNeXEUGX9VqV8alJNDfPrp17mZ9fYHZ2CzNbphkdy7Gy2ODFQ+cxzIScZaPIPlgJQwHXyQN13ewvqEYBSdLDNE0UNUJTTFxH4Dh5FN1mbGoay1JpywpDl/eRTgfU6VCtnOOtp5/n8rtvs2vfAQwnh+/7KKr2YQ/MB5/+oL2/Jni9QZqZAuGPVNI1gfpAclc7/q4qJJv3N9v/HwO8CuQdowPvWjaH7aab3rtNZbOk5Hv4+r36d57bzbjgb1I2R0Detd4d2t1JEvNuiwR/r8FrkiS//1Em8Ub52CsBNx2/LRT2phWTze3+LsDr5i+LjwJe7xS3v9m7+TcpSZIQx/F7IHbzvLwXNrw553XzZ/gxweu1ixcRUcTcvoNUe6BKEKrK5Pgo05NjdE5dxPnhs0SffYCEmIybIQp61CsbjIwOs2NuO5cuXqRa3WBmbicbG+v85Xe/zcDwEKqR5/HHv8bs5DjNepXy8ChBp42qSvzQJ+h1rhvgKkma8MLzb7BlZhuKqiNVjX6IDXieR7VaZef+B7BdB89z2dhYxcvZCCUFIlIRcuHsBX74oyfYu/8AiqohBXzta4/xyisvs3fvPqQqEFLpe+KEhqVEOIrAVBQSRaBJiWsbhL0Oi8ur2LaFqvbJcxQhMUyLNI1Jk5CD9z6IlCkJCVJquJ4NJIRRiG5q5HIlbC+LadtMTkwzONz3aPb8Ho5tkUS9vue42cR2HDTbwXKLlIbGUC2LwfIQiRpz/4MPoKs2lfV18vk8Xb8JQrCwsEIpn6fd7aE7LqaREIUtet0WLzz/HGOT06SkTExM8ed/9jgPP/wQuZyLlBEh/dC9hx56GFM3qXc6jIwO0+k0sR0L03YwtYSo1zc4MXQ0x0SaGhEJ+VyGxcV5crkcvh+yY243vl+jPDCCppsEvQaKKuj5Ad2uj6IYDA2VqdfqOHae6sY8uqLRqNUYHChgKAJdl8RJhG6YIHpIVRBHXbyMiekY/bZOpi9jlKZIRcXMGJgvnMb5oz+gu8tHdDIYboRmKFy9tsz45A7WF1cJWzbvnnqb4eExzh7rhwy+/eJ3eenbf4hRXGF09EvsOvC7vLn4BiV9nbi7wtr6MqPbdhFTxdBsZKBhCYuNpSpp5ONmc+B0yThZBBpRFKNpGpoCgR/y/LPPUy6WGSjnQMbkXjpJPD5Eu+dj2xZSURFS5Zkf/4TJqRmWV9ZwPa8vVZMmSEVBUzUU2f9RD6IUTdOp1Vew7Ryq0geqfq9Fxs2iKTqK0gdzhmVg2xYkESJNEMCD9z9AmAQkSYAiBa1Gi1gsoEgVJZykWr2Ely0Qdhp0/Qaq7uB3QkQiMXWXsbFZmvUm3V4NRSQ4ZhZNS0HRSBWb0YntaIqg6y8ThRG6kkEooGsCqeik9EmeDMMEIfoswY5JmkiESAmDLkKk2E4GRdFRVYGqXF8JTxWk1PG8LH6v039OdIckTojCgCTpL+y0283+Z6CZKKSkaQ95dQP79RPEs1Mc+/mDFB/Yg2EaDJXGuXJ5iVq1TbE4xB/+6/+d/Qe2YRkWL73yFNt23cPl+dO4toWKTSA0vrf0PRQpeCjYQ6dTZ/nqKwTVeSorK/zS8v/ME+GPKV4oMtYrcurkSQbKQ5w9e4F/cspmekNy4T6PZ55+lnK5yM4duyEJeO7Zn3L21Enu3budOKihaxLNcJifv0KxmKNa7UdQ2LbFlStXiOOIg/ce5OLFS9RrNSxbRxKysrLI+PgkrWaPJDV47qfPMThQwHNyDA8PIpV+LnQ2V2JiapZGYwPHsVlabuDlVEoDRXQtBdkjFRpjo1Ns3TrHxOQ0hmWyurxEs1ZjcnyMZ5//KVu2bgFUXn3lJ2zdvoOllUUeORXR7XZ5ejpA0XSOvnOUE6dPU8hm+NY3HuehRz6NZdlYpk6axFy+eJHhoWFmZ7czPjHBO0ffZHx8nPlri4SBwtBomfGRcVJS/E5IvdIgXyjw9ttvYRg6w8NDXFs4z/TMFPV6g+npabxshij2qVU2yDoZkjQl63kkcYhj2UREaIpEVXWkYnDp0gWeeuoZdu3eRRD6BGHAuTOnmJmeplKrUx4Y+GuD1xsljmIuXbyI1ExKpRLtdgvHdZFKSqvZwrH73mhDk0DCysoyg4MDbDTXWFldI2NmKbkDJDJF1VKCwMe2siSRgqn1vyNMXesv3mZcLLdAkqToukIQBCiKjmm49MIu9XqFXTv398OsRcrS0gqukyeI+2AtjiOazSamYXH2wmXevXiJPbv3kMuYrCwtEPR8TicXmciO82tDv0r9+ElYGGLs4ATZXBYpBIsLi6BojOUiFFuHNEAhR8uvECotdGuQgXyJjGMTBm2iWAcaJAnYZo6gJ4iVgDhqoikJYTslNzRBsVRCAJXKBp1uF8tx0aVPGvh4VkxtbQFpZHn++T7JnZCSOI1IawGRiJm9ZzfH3zrG6JCBZkpEItE0gaYZCKEiFQ0pVTTZ14GOQoiiABmb6HqbNNV56bWjaE6GK5cvMDg+gFY0sV4q4T0wRYWzfPkzP8ObL3yXf/OVr/Pl3/xtpG58BBD2dw9e30sbA+LD/bQV9YGPz6n94bb2h9S/Rbv1Y97bh3Hh3KnJHcDr3dp/mHfz/82yGZN8EL66pcH18vcavEZR9Ps3798JrN22gvIB240IfW54Vu+wKJLefhi4nhMCCARpr43IlFHK0++f3zSWzd3fyP+88Q8pSNL0vbHcaJlezx+7e0C5QCryjhpRNwPEzWkJHytf9q6bQMjbOcRuXFt+6TPIL33mluObV6n6CwN3u7fr23XaRBEnXD57lr/4o3/DZ77wRcJIcvLNY5TLQ/zOP/9n/MZv/CNqzRrZt09jLK7QHiojU0m1uky5PMKJM2cZHBxho7LO1flVRiemWFtdIlcocWV+me1bt1Iqutx7z3006m3effcU09MzaEaf9dA2M7i2SyxSpCLottqMDJZYWa9QLuVJwxaabpBEYOkmUqSYlk6cxDSbVYo5j3bbx9QMWo0W9UqT8Ykpdu7Yg6ZK0jQkiWMGB4eI4oSJiWnSuEeCpN1uc/Xy1X7opi7x4wTDdKk3awjZJ49QFSCVmEaGM2fO00tSHNcl8Ds0G02EImi1WrhOlmNHTtJu1RkoD/a9RkFIr9sim8uDEMRJG4Gg02nTaTfIZmxMxwIp6LZj/HaNVGi8+OxP2btnK2srdS6ePYOpwvLiPIPDQ9RrFTIZl7XVviahpmikSkqtsoIa9QGikAZnL1xlabVC1ssyNjHBxQtnmZ6Y4qUXXmD73C7iRBD1uqS9oJ+XIyGfy9Ju+wipYKop9bVFwjjGyRTwewmmaaAgsDUDmUCqCBzHJUnAtEyEFtMNQuI0JklDhNQhAcvK4Hh5UpliWSa9XhcvY2A5NgioVusEvf6CiG7amM51r7hh4vtddE27DsZckiiCJCLw24TL19AvrKKeXcH8v/4VS/lVuoFObmKM8+fPk83kWV9fojy0G0uPWKleZMe+fTSaMXNbH+HCyf+TbuUtMpnPM/fwF1DsPFcuvkxR1vB7CqmxhS17P0unucqls1fQTA+7kAe6xEGV3MQ+hF3Ab/Uw9RxCxvQCn42NBrbjkcaSyYlBatUrJBLWV2tMHj6LrLdZdy2eeeo5tm7bjlBUZrdtQ1EVfL9HEPTD2W8wJfq9CKnodHs9TEMnVUBXs0ihoKuCNGzRqDWwbQs/9BEITNMlwSAWCikqimYhpEKSJqRRD6GqpKjoqkOqrgApSTiA65VIogjF6IPqJOxx5eIV7GKRUt5GSInrOKiqgeV4pKqKwCSJe6RRjyjsEsQ9HLOApupIEbC8eIWe3yWbyRD5fl96Se+DblUDhMrTTz3Dli0zpFKiaCopST+kPAqQQqKqBn4vgLgDUpAmEpIQRdMJwi6qItE1i0TRMCwDVTp0/Xqf1+DUFbRqhyOfmKPzuf3sPnAvx4+eYHhwlC4d7PwocQq6DHn4Uw/i+ym5QplieYpz5y6xfftnuHTpHK49RWXxNE81nib0G3w2zNJc3+CpHzxHJRfyLwaeoFKro78qGDZHyeVyzF9bYuuWYU6cOMHPN4aRQvDamM/45DRhFLO4tIBuWpQGh3n4oU/w4quvsX3nHqRqgwwZKI/QqHWwrb4mp3Vdk1MkCa8feo1qpcb+/fsgjTEsk2JxkBdffJWMa9PtLHH/wwcZGRslCFvYbpY4ivnWN7/JtSuXmJkd72vrUidVdFTVplqtYxoGjusSBimRiHCzNodeeYu9e3eyuLgIUuBlc4yMjBOE/VD88ZFR4qTL4OAoQ98/h6KpvDzVZXhslLPnLtKsNykUB/j0Zz6H360hlARVsVHUhG3bd2A6HmEc0Wq32LFjJ43VBdqdHsdOH2fH9q2ECSRJF5GqGHZEKhNmZ3fS6dUJQ5i/usrk9u3YqsGZC8eZGJ8i7PrkcgVa3S4//sGP2H/vfViWRRIHGLaDohmohkm1XqNczHP/gw/TqlfQRITrDfDjJ5+m1+syPTaB4blIIZHp+7bEe3bGpt/i24pMEKmg02jiGCq6ohOHPoapoho63XaPnOfhd9u0Gg2EZqNrCm4mQ4pOJpNnbGgI0zaRts7KtUWEoqJIHS3VaLSXIQ2x7AwtPySbK9DxAxRVRTEt0qjDtSsLpEIlbK/z8utvUy4WEGkXJ2MQdn1ef/UQQyODtKrLhGGIphlEYUgS94jDmOmJGRzHBE0lDBMybo7j4WlKWp7Pu/+AxhuH8Rr3kY6kNBtNWo0mcRxx+tS7DJVNXFsl8SMiOli2gRkaGG6Abar4EQglRSchSvuL91Hko2oJhuGQpCqqoqAKydHji0zMjLKx1sQxBV4+T6XShNSl1mrjmoI4ilhYa/HIJz9HJHVeeeF5FKlSHCyzvlGhmM0yOjbNCy8eYWooC2pMkmqoYZNekiDCNgKdQNEIVi/zzKkOjpXBsiNEoiHUmHonYaPms3fPXkzD4Ny1M+gFncLhYYabD3KqPM+zhw7jBGu8/cx30DSY2rGbFEmSXs+nvN3I+0CT7XaD7ubdfv5sH/vdnhN7W+vNdiMQHVYQArT7E6QQpEn63hO+WWLyNj6Z6zmr7+frbgaAfYKyG9vt43/ffr05F/gWI1vcZbvt5j6grnifHOq9coOJ7fq22dN6s80vpexjCu4OquWNWUtvzM3t83aDV+XD4MBmp+KdQs5vGeMmTKJqf4/B6+ac17+pO/y269y2KHL369/8Q6CUp5E3AdfN5z+wz/cb3OJiF5vr3uVyQvRD+e7kmr/lWHp7u5v7/puUu4HX2+ptOi6lvMWrfbeSkhJoEZbv88o3/5IvfPnLCCMDqcmv/9o/YWp2hF/+5V/B93uAwun/8V+TsU2iYhbHzaJqIITkp8++gJfJUSjm8Lw8P37qaVQSZme3cM89+wl9H90xWV1ZQddUJsZGyORN4kjBdXKEcYNuOyCIQnTDIOgFmJZDxvNod5rINKWysU6xVCRJBVEsqNXWcV2XRqNBEkc4psnK6gqlgWFefPk1RsfGESTYBgTdGoruYJg6W7ZMY1oa89cWyXhZbMvmzImTrFUq2I6D3+4Qpwn5XI40Sel2O5iGiW27XLs2z/z8Nfbs3Y3f7WDbNplMHsfN4LgOaQqum+G1Q6+xe8+evqc27NFuxST4GAboukeCQEhQVYmqq6wsb2C5NlevLjM6OoJlmgwNj/HYY1/loYc/iZCSNw6/zn33HQCZ0Gw3MUyLfKFA1/cJgy6KYvD8cy+xY24XEQIhVN58+whf/OKX6DSrRGHCytIqw8NDXLx4ge1z2zBMDVVNSFJotXssLa2SzWawLAvd0Ll6+QqDI5PEiUAzLEAh7tSwDIP5hXncbBYhUzStHyar6xqqomKZ/VA107B48bnnqG5UKJfK2KaO47qkaYLf7WCaBq1O+3pot4fnubi5Iksry33Du93CcWzqzTaoOm42Ty+IyLgu4eVF7HaA8co5gs/tofG7P4ufKTA+4RJ0QxZWe+TNDTxXQWgxujHOm09/ndzQDB1hMWxHVNYf4/JpnYce+q8wRzQWTh5nbf0chaEC1671yA1vZ2hslpVr51CCNdJ4g4w5hG6UaYsGcbeCY1m0mhUgxHWL+L1OX+rIdEjpoaCwtLDIyNAwKQmD5SHsn7xOalsYc1vZPreVOA0QmiBNAsIwwvOyaKqGpkmSRJCkCZZq82//9N8yNTODk/GQkQKECDUmFgooOoVSmVa7TcZ2kKq87rkFRaqomgKkSAGaqhArOlEcYxg6aZoQstgnvjJniOIupuMSxxFS6sSxRDcsDMeh06ohdBVLVxCyL6+gqhqJgCTR6Pk9LMek2ewSRX1imEuX5pmYnsHQLEhi/E4b03KRCn0DXEAUJpTLg5imhZApUvbzulVVgSSi2emgmU4/NSKMUVQdhCSJI6Sqk6YxmqoCgjgJ6QVtNM3uazOfvUpSbxH+y/+a0n37AI04huHhUVqtNp5rk6QRGc9DGg6aUcBwhjhy7AKGsMkMjWI7kpLpU1t8m2vn3uKQe4mAhLWfVpg8cB//ywt/zI/vP8VAb5BPuo8yMz6Nqig02+tMTmxFyojxiVEeumKiSMkr410sy2V4fBxV0yiXChQ8l1dff4WHHn4AzTB44oln2L1rB1IoXL50mVqtwvT0DKTw7W99i/sfeIBCtsCBe+9B0xTa3SYoOgjB/NUF8vkByqUZrl1ZZnJ8mjNnLnDm5BFGhseY3TrHeqVKq9nEzXioIubV1w8xu3Ua0zA5dfIEhw69zp69uwiDAE1TOXP6IpqAqelpHM9FqgqqqlGr1snlCnTaVby8x+JihbkXV3Aci4edP2Db2T00PrnIrl07aNRrFApZOt06uunidwIsW6dRb5LEMT/4wfeYm9uOrqp8/Zt/yba57Ry4Zy9pHLG8skwYdCmXcwgkbibL0tICQ0MjOI6NH/QYGBpBVxMmZ+fodjYw9L6MjlQUJqamcbwsr7z6KlNT03S7XQxLhzQlTWBjdZmM61BdX8WxTCKpMzEyQxw2uXjhElPbtvR/W29eBf+IHqJUCEScsDQ/j6ap2LaN322RzWbpBRG5XIZavf/MWq7HufNXWVpeZmR0lERAvVEljvvvBSJF1VS6fgdV1wmTBDXpUdmosbRSIZMro6oqxDG9no/r2ugS3nnnOGEsuXTuHEI12bVrB7qpkyoKumExNjzCd7/7PRwrw+yW7QRBjKIIiAMyrkehXMLOuCRxl4xTIApTFuJ5/qn568zlt9A6soDX3suFzrtoqkqr2ebE8dPsmB1iKA+pApcuL1Au5glSSRQntHsuupqiaiZSRAhUmp2YQt4jjENSoSIRJHGELlUEMZHIIE2XyekdGJ7EMkwcNwdSRTF1ZGcZ05AEiaAwPEOqmmQyGQbKRRSp0my1KA2UaTdbnL+2jm2qDGQkqUzpRRaxsNDSGCljhJlBqiorlZBGdY2xoSyGoqCrEeWCx9kzVxkaHCBfHKBQzPPm8cMMHsjDis7QxV3s+cf7aXerKHGFd176FhoK47s/QSgtrLTzHkHfTQ/QrbsfaMHdHfx9pNZ3eFZvgFf1/uS28NQP9W1+qBLIRzv/t4U/Prh8/Lm5+dzNEaN3vvrtOOSj9Xx7uWHPf9B4Pqj8vQavSZL8PtyK4G8mMfq4ZfNKwA1v6eZQ4c1t0jRF3nhR3tOG2lTxI4blvv/CbYptv/73vfv7APB6cy7pXfvh1hzYvw3w+n5+zK37d801uMMq0c0yQHftJwU3CPhXv/8/sO/gHsa334PQNHq9Lp/8xIPsu2cvjp0hly3SrHeY/PYTOPfsZqXVIp8vc+ToG4yMjDAxMY3f7WHbKl42x+zsFooFjyCMCKKAOIpwHZtSqUBKTCJSSDVIFRRV0m43cSyXGx5nQ9VQdAtkH7TahkmuUGajsoFlGHznm99h355dKJqO52WwLQs/CIiimJSU2elpDEPl3dNnSKIYy7BQVJ04jGk123ztLx7ns5/7HLqh43e6GKpGGKVMb5nDsT1sVyMKIwI/QNMUun6IYdjk8jkmJidYWlhhaWmJ0dERLl29wuuHX2N6epJqdQPTNpie2UoURdRqFVzb4vs/fBLHtigUiiiajqr0Ofc21jZIohSSmHqzwtTUDEJAtbKM7Xrs278bVUh6Ucjw4CCtVhNFFWSzedZW18hkHNI0Yv7KAkEoGBwcIp/PE6cx3/ur7zE8OMzpU6fxPI9XXjvMz/3c51nfWKJYyOJlbaSS0mm2MawMX//Gt9m9ZxcZx6bVadNpt3HcTJ/dWVNAxGQciySRdHsBqZComkbot4mCHrVKFceyqNfq5LwsnXYbkaR0uyH58hC26xD4Hc6dP4+mqihK3wNouwPouoVjuyiaTi8KKQ+UQSrohkmnF+DlcjiOi9YL6Xk26pOHSM5cRf+Zh1n6L3+R4V/6LLnBPMde/yue/ss/4p5tWxkY2kb96musXDvNRuUSs1vvZXJiG41mk4kBEzW9wk+eXKAwOEEo2qyuX8Hv2niDs4zM7GN8dh/ZoTF022VlZYU0TpCkmLpBSoyRKVCrLCHiiKsXL5Mr5ElSHSnTvodYt2m3WhiqTj6Xod2qsL6xQRpD4YWjJJaOmByGNCRNUhRFQ1yfU9L+91YSRyjSACCMI3bu2oFp6n19U9EPmRVSQSqCIEpIkhTT6BO1+L0ucRoSR93reXExaZIgJSRJhEASdBrIqEu7tYFq1BEkRC0DRfTodrsIkYAQOG4GQxMouopIgv7n0qkhFImm6qRIJBLSLiD4oz/6v/nUpz+HogqiMGBtbR1NV9E1E0VTUA2FdqdKr1NDExLok0lZtkEnaGDoBiAIgghFgW5znYyXJU4h7LbRNYNmp4lpGdSrNSzHQVEEPd9nfa1C1sv1DU+pIXshypEz9H7ny8iRMVQ9xXU9mq0GqYhQdcnihQs0ls6gJw2Sno/qN/jej55mdmYHx954i/b8EcLWea69e4SlxeexR+7jm/JlzoSXeXvgKj8If4qy2+Le6CDnnz/H/j17uXz5Mq++eohPfephLl++xujoIItLS/xsfZA4jvmG/v+w995Bl1znmd+vT+dwc/hynvkmB2AGGBAgQYIUtZJIMSiuKJIqa21L3tXaW+ValW1pbbnWJduyd/9RWAWupCUBkSAUKIrIIEiQg4yZQRhMzl+ON9/b+fiPOwMSgwGGSfJKq7fqVn3fPX37nO7bffs8533e57nI5JYZVAXK5SK+3+O5559n965pisUMK8sLzExPsbyyiW1ZgGR0dJz5xUVCv1+6sFlr8uqrLzExOcap06fYNrsLXQjSNORrTz1FNl/ildef4573HmBx8SyFkseu3fuQUqdeqzE7O8XWLdOgKZiKwvadE8RRP2MwNjrC0GAVUBEyodWus33XLr7wZ19geHiYWq2GZZpcvnwF2zEJ/DZeJkMURzTqXfa/0OzTxEc/hCIT5na/ilRMSsUSKyvLlEt9r94LZy/i2IJcxiVJY6anJxBCohsqmp6lVMhSyGcIEzjy4svs33eAVmMVU8+jCEkQtTAND0VJsW0VQzPR6FJrJCRJF9t0WV1do1QpkM1miZOYsZERTFNHMwwa9Q1sw0QoKpv1OplchsD3cZ0Mqm7w2OMPMzg8zJlTp7jl0O1Xn8FvD17fLlIJmkyJej0yuTxCkQR+D9My0Q2LpblLqMLigQceYGbLNNmMS7vZoJDP4Yc9XNNAMyxkChfPnmFguIKhgWno6LaBaVjYjkez06XZ6qKKFEPTefyxx6lWhui0a0xMTDEwPMzAQJ7tc+SU2wAAIABJREFUO3aiCIXjx08yNDBEs1YjTRKOvPwqpm5imBaFUgHDFLSbPQqlErXaBo5jsbKwRq22xpNPPo6cEPxI8aOMWpKVp8+RD26jurdMmkKxUCAMfBavnGTLRA5hqAxUBun0Uh585ARbpkc4cfICExPDpKkkTQNq9TZ/+dAFxoZzeLZJEoNCRCpVzl3YQOgWG+tNFtYWmNmyi16ngaYZdNt1Xn/9KPXGAoWshWenJGlAr5eQKZTQNB1D04jilEarhWXZlIslCqUyTz33AmODHqoSgDHEV79xnMnxPKkSoCQ+RmWMKbvD6IDdV2JHoIp+ZnBsIMvcwgpPP/8qe/buZWJikrm5K+S2OsxfXGTy8i3UZwNOXzjB3XfdwmvfeBTf99m991YSYSNJ3zR/uxbfmaDTO4PDGztcvHPE12jDtydv9PvG3FPhTe+9Fc3+YMDr32Z8a+zfO0CWUr7FpeStG13f8Q3//DuJf9DgNYqi34A33yDfz+rHW7KV131dN7pErwevAGlzFRl2UMxvGU99p6O62WrR2/HDrx/Pm7a9QQhFIY7jG/4AfT/gFXhbdeDk//gPyG+8hLj7tnce303614XC537r31HvbPC+n/kQceQQpAGd5jrt1iq/+3t/xN3vuYfXj5/i9//Xf8tPdWLmBvO88OJRRsemWFi80FeqS/v1NNVqHkVANptHM1Rcz8NxXf74jz/D7m07WF9fxbR1LNdFSJfXjh+j2awxMjxBEscEcYhpmly6eAk3m0PTBYVcDg1BLDSEkNiGznPPPMv42CgJEk0zMAyNTi/Atm0sXWNtZZl2u8nY6AR/8ed/TbU6zMUL52k22jz5xFPcded7+v6uScLclStkXJft2yepd1vc9/n72L93V/9hp5usr6+SL5SQsk8/b7UauGaecrnE0ZePUB2osHPHQYTQcd0cumbzV3/1lyzMz7Nv/x7SJGb7rp0MlofQNJNUTYiCDrpQWVupYRsuWc/GdlXCIMXUVVxXx3IyBGGb0ydOMDoxgaUbKIDnuShSZWN9Hcc2uHz5HK6d58GHHuPQHYfQNImMI3Zs38G2rbMsLy2hWzbvvvt9+GGToJMyMTHFyuo65VKVVqOJ7WS59bbbcB0DQ2johoFQVRRF4/VXzzIyNEK70QIp8AplrszNMzA4QJLEhO0Woe9TKZXxe1103eLkiRNsbtZwXZe1jTpTM7N87t57uXzpPIcO3Y5QVSzbwjBNklQShF00Q5LICJlIUAR+FBMnYOkGxlCF5Innib/2Er31ddRPfZjuv/6vUN5zB8WpHaRhhGEaTEzu5OKzD2MrNaTdYenkSRwrZsvsICdOL0Mx4rUXv0pRxHQ6UJreSzusMzkygt6zGN5zF8WRvehullSDKIpIhGBgYJRCfpAojMl6cOLUUaa33objqGhRykBlAMN28UOwbIP+c15DFSZJFLG2Og90CYKEjJsl8+RLpJYJ4xVIkqvUWMHlKwuYhoVQFVAkcRiytLSOl3FIRT8Lef/9n+fA/v3UOpsU8iMkkXVVWVcSBEEfsAkdQ/WwLQcFCHrhVYquJIkiarUaaRzi6Qqt2grIkLij4bdiZCiJgwa0N3GNFNKA5uYa3W6HWErSoIeqWqhq2ldmNSx8P0RTdDqdBWzdZXp8N7bnomkSoUqq1QpCxqiaQbPTRNU1LG0Qz1ARssflxbNksg4oOqpwiCIfVdXRdQMhUiwlYnF5hUKxgowDhKpjmDppGuO5HnECuq4SRxGKouLa/XtHqBocPYG8ZSfBB3YDOrHskUqJ0CS9sEUm57B44Rni5us0117DoMHKpeepjFZY21hkdMiltXaW0antDI3+DPc+8A3ee+dP8Lw4yoHcPu7xDnHpscv87K0foeKNsHffLJZpUi4NIFOFIOyCojBQLTM2PsmuV3p0Wi1ObNeYvzTPk08+yq3794NQ2Ww0mRoep77R4NixVzB0i3qjw/TUFOVKmT/5j3/C5MwMxVyO0ZERqkOjCAJy+Qzbdu6mWe+yeP4subzH7v37yBWqGFqWocoItpknkxkilhGG7vDVJx5j146t1Bp1FF3BVlVS0UXTc9x//xfY3Fxn69YpLl1aJJ/1kIRsNhr82I/+OEmcsHB5ji3T06CpZDIWhYJLfbOH7doMDIyw4/AKQaeFPvkxkjjk5YEncTKVqwsSKpDid7tUShWk7CHjGNMs0OuGZLNFZKJQrQ4R+i0sx8K085SLGZaX5vGyknYjxLQtUtlDEx4bmysUM6O0m02Wl44yMDqEZWTRFIMg9NFNhV6njeO4+L0OnVYTw+pn+9ZW1wi6IQ8++igzW2YoFkvIFExdZ3LLGI5XYWSgQnGw2qfxfw/gVUqFdm2TqNfFcl0UJUUoEkURRImknMvSbHTYv38f/+mzf8Q999xF1nVJkphsxiPotlCFRRiEdOo1pKKTc3OEQYKq2oRJ34v8s5+9lzvv7Kt0t+oNnnn2eQ7dfheuo9FstXALGRqbS6AqaLrJF7/4l9x+yy14rkucptx2x114lkVloIqmC2r1FS5eWuHc+fO88soRxseGOfn6JXbtmWFkbIB5ZY27zQ9x7sUvs0OfxG7dyqpYJZPxCIMe8wtXKOQsyjlBSoIuNAIZY9gDVEoqk1NVhGYShRGqKnHcPKvNmG0zZZS0ha6Jq7oYgnbXRbMdwo7P1OwIxfwQIlWwPRNbd6gWxhkfnSElprmxhGPabG42KA2N9p+9iSSKElzPxXYc0jRhsDTI+YUNTCVluOChiHWmp4awkShSRWKhddfxnTESJcXSkv4Cj6aiCANb83Hzg7x2eoFWq83Q6Ejfb1oKBqYKKJHK5Not7PylPZw8+Rrp6mk2Fi4xPL0dtbIFXUm4PvlwPZX37ed4f5vg9c2g+nrw2r+orx/O3w/wCnxf4BXol/W9I4P07d/4R/D6A4w0TX/jZrzqG8Xb1Xd8e92qgkJ6Ndd67XU9V16Bq9zvN+8rePqPSRZff5Ng0/W8+pvRiN/wQL3a57Ua1puB13c6vm8PmV5XZ/pOgklvqRG4cfvbFgRfjfRzX4ZG6w2rnLcd/01er7zwIk889GX+x1//TTpxHi1J6DbWyLglHn7wGX76p38SJWzh9+q8Fx1rbpncLdsZHBvFyzjUak1mpmdwPYPBoWHiJMX1bOIkQiQRa6srJFHC2PgkhUIWx/NwswVSVMJui5HxUUoDg6SJBAFCKGysrfHsMy8yMz1Gr9Pr0600DUFCGCsYtsuOXbvYrNWplCvUajWOHX2ZsYlJkAm6aWC4WfLZPIoQlMtlzp0/z/LaBvfc816mpieI0gaW6ZDJeURhj1zGRWoqmtQolSpYukK72cAydTbW18nnynzloQeZ2TrLSy+8xJYtY2zWN6lUBvjyl75CuZwhiQM818bvdZBJys4ds3ieSxAkyDAikQGmo9Gq1Vhbr6GrGgNDwyRC47Of+yzT09O06200PUUIh431VTwnh2VnsOy+aFWt0cSyTT77uS+wdecestkCGS/PxUuXede77mBtdYmBat8L1vdbpGnI9PQEuVwev1fDVPuWFkkSEQY9kriDly0itBjHUjENk17gYxg6Mo1wHINixkQ1BKploF4VBHFdjzBoowoTy9RYr7ewM1kMw6QTBFSqg+TyOeyMha5Ar9viPXfdhapZZDwTU9fRjBRUG9KATqOJbWeQQkVJBZqmoUuwMx7y3q+QbNY5M1vG/fWPUPjvP4XcMsHFiysMjYCnB6zOLXL4iT9nYtTiyuIFUmIKhUEiO2brrl9kqW1hugbRYhtT66Fbo3TTLFa4ih9s4MQqDatIpTKOakMcdTGSGDOq0VpbRlNShC7QnTLri3NUSmX0coUUj3Z9gW67geWW6TZXiVWXIAjQ4yZJEqPrLo36PK6SIZABrp0j88SL4NowMUqSCqI4RQhBvpABxNXsaISUClnPRjd0dKNPjS0XswR+nWJ2lHNnTlIquyiKgpBX64iUuP+7hI8kRabQ8zvIOEBGXQwCRNwiCuqoakwUByikBEGKYzkoSoQmBHESI5UUv9ch8DuYOmj4KMQE3Q0s00CRkjjyUUUIsodlFUg1A6/oIQgJ/R4KMUIJia5+r0gFU7eRSkit2US3XIr5YdK0y/riAkrcw7JsojhAihTSBFXzyOeKJHFE1/f76seir0egCB0Z+6CooOmYloqqqpi2RrzcwLywwNovfAgtW0HHpLUZ0KgvY8cZmrWjuMo4SpqQL1aJ9THUzK2YIsEWbQIsBrNlbnvfx/jKw1/F8nR+67d+m3/1v/xL/mrjIVzh8syjT/Pee+6m3myTxBHzVxYol4u88OzT1Opr3H7oEK7n8NKRF7BtlzsuGei6YPm9wwyNDrNv1wHa9FhZWKVVazI0PQW6ysyWaQr5IoV8lleOv0K1WmFxYY7bD95KEPTwMhmOPP8iO3ftpdvt8cRjj7FlywzdMESzLHrdDrW1efJZj5QUJ2PRbG/QbLbJ5jxmd2yj1e5SKVcxdR1UiGOVVqvLzh27qVQrxEmKJMXziqiqTj7rItMERcZkcnn8pEUShyjS4utPPUel5KHpKn7QoXy8RsuCTPGDqKrOydnX6XYb5HMelmXS7YbYponl2vixRBE6c1cWGBkbwA/aLK8sUh4oYZkW58+cIQzr5EolSGBhfoNtu7YRpQLT8ojTCMcp8Aef+QMEKfliHsfIodkerfoKAkk2P4ASB/hRTKfdIQl8hGKhJJJmq0YYK1y8MM/o6CS2pbK6eoV8IU8UBX3mQq+GbpiohtOfg/Bti9XKTeZCEtqNDkJIOp2Y5aUreLaBZWcJwpg4aBKGAVbGo9MLGKiO4Ho2QpM0mg10zUQIjcX58wwMlnHzRe699wGqg0UMUyWNQ1aWV9CNDAcO3E4URRQyNpZhMbVlBttzSBWJoar9FLBqYGg6YRhy++13INSInt/D9VxajU1K1Spnzp0m6HVxbAdDM3CdDPv33YrjmoyOlNF1kyCEl6PXaIglfs4fJrmyFVds4UrrPJajYpsZnnzscUxdZXwiB1EIaoRCTCEnsUwTmUq67QZcVYtOwg7bJ4sIIkzLJUr6pQ9JFJHNSFSlSyBNTpxeZ2J0FD+RrK3W8LIeEQGWa9NpbaKE6zhZD1sJaDVX6PkqjpMnCBNOnzrF2MgIkoRar04UJn0RubSDZ4OKRizaCN0giXoEUsdxdDRF0O0KhEgIox5Nv4shMuhKnbGRQS7PrfPSS0fYtmMXStxmYXMFr6rjrBXRpww+//iXGJjZzsVLZzh79Ou850d+GlXV0FRBKkEiuKZUcr3ezI0SKYrgKsv4beo+rwNo30lCKr0oUFxQd39L6+V6FuS3QO2bvVGRb/YrfUsN7PXt18c7gNcbqet+f/Gd7euN+/rbjkWoyltMRRRuXM/77Vnqa0d9TQtHXh2Gcn1fV+MHdcz/oMFrkiRvAa/fSXynfO+bcuXfJm6kNnz93r7bGthrx6mqKjcUNfpu422yo1cH907/3rz9beJ6n9fvNVavXOITP/8L9GKFOIno1BYplIs0WgFbd+6C1Ofw15+i2fDZ89JppKHiTg2DkqCKlPHxkf5igKYhEPzZn93H1q2zXLp0kaHRLTgZh3p9jbHhUa7Mz+G6Lu12C9e2qG3UUbW+j2m31abVbqHQ98ec3TqLquq4nksqU1RVJfRDjKv0OWSEUC1WV9bwXAcVBalomLpGt9PGdi1kKllYnKdcLTE6PsL2bbOcPXuGIEiYnZ0hjkKSJMazLdbXVilUB+l2upSqFTxbwzANFBS+8Pn72bplO/v378WyDMYmJvDbNXRVZW5xiXe9+24unD/Ltm2zBGGP9fUlqtUy+XyeNJakieQvHvgbduzZRi/qkslUyDlZ/CAgTmMMQ3DwwO2cOnWGtdUaL7z4LDtvuaUvFpYoPPzg44yNlPtgQZG4rsvg4Dh+t4XnmayvLbNlZgtra+vMzy8wUB1GypBuu81rx4/T6wUMDJd57vlnmJmeRldNPvOZP6LTbjE6Okov9sl4BdZWV6jX1jEtG13XANjY2EBRZV8lUTVYW1vFNEFT1T4tEx1dV/Cy+b5XZxQiFOXqgzil22piOTbdrs/C4iKT02PkS0VUTSeMAsIINNHPAICCTIE0IbmyhHL4GGm3h/a//SLLH76VwfffRmU4S6hlSFKD0Ykx4kRgpjGL54+Sd2usriwyOzWE4zooZgmldIjK9O2omSqFgVki1WJk9BbW51cIW6fQozqqZREHDsIbwqtWEbLD2uWTrF4+i19fxtIiNpcuIKIam+uXMGWAqttkCpOoAtSojRAqwsrh2gXCOEXXJX6niWboKIrBpYuvo0SS9bUmrm2Sf+oYqWWQjFb6asIKaLrKyuo8pmWgqn3v1jDw6XbaKAKEjFCQ5AtFFNXEsFyKpRJC14mTqw9NRZAkKUIoqIaFlAqaECBj4qBGo7aKZQmSuEcYByRRSBQGJEmIbRikSYBQYrq9fv2yH3SRMkU3DNSrD+det4WUCUKmbG6skcu5yCSg02kSxUk/c4yCoioYlkuaqmiGA0JFqDqK0EkB3++iKZI46CI1F5SEXLZAEsU8/Dd/w+yWaVShIqWG1G1iqSCEQpokCGFczX6loCTIOEbT+r7MUoGo0yQIm9ivXiL68HtJdm3BVFUUGfMTH/0I/tpJ9u/OE4c1DH2EQHUIU5uWr9HzBZXRvZSGZvBGd5NIQbY0zuDoFt7z7g/ye7//GX7+k5+g+JEStmqxc3wHptm3DQpDn2q1gqIaJGHE3t17eOLxxxkfG2PLzBTPPfMsH9zIY+gGpw9k+ebhw0xMT2Dq4LkuI2Mj1Gt1NFUjjRO6vRaXL15mfHwMw9QZHqiysbpEKmNSJJMzM9Rqmxw+/DQf/vBHMAyTB/7ir9i6dSu5XJZEJrz2ylkarSWK5QIZr0oqQ4QCURyR8VxeffV1ctkC3V6AZXnomsGJ109TKVcwDB03k6Hn+yAU2u1Wv44yTMgVKliuyRfv/2t2bN+BTHzGxkYJgg6eY/HypKD3Y3vIHx7CsR0u7z6DH3YJAh/bsrnv3gfYtWs7qqHjZbIoUsFxsszPz1MsFsjmPJIoYmN9k5HRMbxMBsN0CaOAYjlLkvYAnV63S7vVYnNzg0pliJePHWP3zn3olo3QVfwgwMvliNI+WNIMC6GYXLgwz2CpQLtdJ1USBoZGGR8fYXCoymOPPMSVS5cYHh7Gsk1QBHHQ5PTpM4yNT6Ao4o15w80ml9fmJ36jTafTxLEznDpxnOGRIVIp0A0dVUiUOMD1CvR6AcViFs/UUVUdJ5NBMwxa7QalcpE47pfi7Nu/h1ymhG0ZGFaApXkEfotcxsK0FFTTRGgatm2i6wq9XhfHcUGhLwQXpcSRT7O+gVAtLMtCyhjTEGzWNynk8sxdWWJxcYX9t+ylUMgjZUK326+rFsLA0i2Odo9hKTo/6rvkTv8cLb2LVVCwHRPfB9MyOHXmDNOTI6gixg/6mWtDkxiqJI5DUqmgW33vZ0VJSZKAOAmRMul78qaQJDa1Zp1SJcv8Qo1GQ8FxPEamxgl8H1XTaDaaZLJZ1lcXSaM2qiExDZNaq4NqFOkGKZlM32M+DAOSJMF1c3T8GkdfvMDa6hJTYwVUkaKrKmmqYFo2KBAEAZpmoLkxBhHdnskjh1cYGTBJsYnjkF6zjdQ0Li+sEMcxw2OTIAXNTofMuTL2ByKefOZlfvFTn+LCC19l+fxr7Lnn46SqRZqmqDLmmg/s215P3xU78rsHr+ru9E3A9Ua7+5Z+zPeZaX3L/t95Nv7/F3jth3zTe/L6c/s25+J7wgU37P97j38Er99F/OcEXm8Ub6ph/X6vjb+H4FVRFIIg4NjhJ7Hyw7Q6XQxV4mXzdFoRjz/+BFnP5ad+8uf4tV/911w4f5Y9jz2DdmAniWWiGTp+GLKxWUNRBH6vn63bsmUrUsLo2DDtbgOZKhTyFY4ceYGBgSEsy8TQNWQaY9s2V+auYFsmjz70IPsP3IbjWP0HkRB85jN/ym233c7a2gpCEziWSZQkqJpGu9XEsU3W1laREoZHxghCH01Ao17H83KEYUqhUMQwDAxDRzdhYX6R4cEJ2u0OqAI34xEEAZVKFYkgCgI0TSMWAtVw8GNBsTLCxfOncG0N4h5xEJLLF0gllEolbMemkM9iWTYryyu0W10GByroqsE3nvomrmOy/8AtOK6HJgzajRrHjh5hcGQU1/XotlsEkY/juBw+/Bx33nWQbMYliRMM3WBmZhu1jT5tszpQpetH5PM5Mo5B0OvhuVmEUMjmXMbGRnnkkYcR9C1WZma20mr3yGazVColMp5HvdVj3/69eFmXfL5IEm3y+c/9NXv378HNZXFtGz/w0XUDVdXJZEziRGFxbgmSiF7PJ+PmaTQ2aDRaeJ5LlMi+L16SoEiJZps4rk1zc5NMrsBXn/wmwyMj2I7ety8RgmZjg2ymgG6oSAFpkvDYQw+xExOOnOTCR++g8G//BS+cOcyRY2cYHr+VolYgSk0WLi9i6B3Wlpq4Rsrxl/8T+fIghfwIum7S6EhGd3+AwsBOAiVANftK1ZoIOPXqCUxziWzeQOiDUJ5AkmN06x6E2mbu7DEaK5dZWlhk6+6L6NYV3OwiQr+A65zCyS5gOvMIvQpKhqUrZ7GdVRzzKZLweSz1FXRewdTPkIRHsbTXOX/B49zr57n/gS/z0Y+nOI9uoAzHiI/V0SfXiQfn0CbX8Aom1HP4vo/iBmTuvoCztY4xvYE2tYE+vYkyuoq9tQGbOUTSpwJrW+bRdl9CHV9Fn1hHjC8jRhZgZJ7QWaRxoocmQ3RNwfknK+gzXZxtPsZMF2d7gLszRsk1SJIO8SYEfow94ZN7f4KzPcHc6mNs7WFs9XF2RLg7ItqvR5iGThIFqAeXcfd0cGZbMLKINrEMI0uIsWWEFRGu28gkAbeDeegU2vgK5vQG5nQNY6aBMbFMOjBPuJFDVQfYsWM76tYl9N1zaBPriJEFtLFFxOgyxtQGarlBulxC0zTa7Sb23adgeAF1dAExvIg+XUdNVtCO9gj+u1uJU5dLF04xWFnlk59wuO2QScxpKoMpunMazz1DNnuRf/Khf8P/8C9+kd/8rd/j3XeuY/A8qjyKpr2Ka53gFz45y7aZdX72Zz/Kby0/wEq0xvsru7lDnmFvLuCWUsqBMuzNBdw1ZrDD7eCObmO900Y3NAqlPC9v6fBooUOUJkxMjWA4Lk8+/CDVoVFsx6FVr3P+3AWeefoFNM0gn81gWgbtVpNc1iWTKRHGIWHg9z1tPQfLcjh54gzV6iC3HrwFBQXTtMjki5w/d4Hb77gNx3FRFA1IiZME1+1nrwuFImvr63S7PXK5PC8fO8bBgwfZ2FijXC6BIpBIvvCFL3DHHXdRr61huxks08TvrrNv7+1omsLQSBmpWNTrm2SyLmEs+ebh5/hx5adod9qc3HqMXKZAo15HqIJeN2J8cgzNNImiGF3T8YM2leoApmmTSknQaeJmsiA0NtY3UDUdL5tDN3QsXSPuddhcXcc2NEwdJqZmEErK+Ph2hAFRr42X8Ujps3qQEARdFJnS7XUpVcrUNjc49srLJLHKwIAHSsz01Dj5TJZCaYCHH36MPXv2kqaSTDaPk8mQfhvAeKM86W1KjJK4Xzt4/733ceuhA0hFY3VliaHhAUzL4d777mPnzu30wpC5+XWeOXyY2a3jrG+ssVlr0NhsogmBJEFJUrrtFo5toOqCOA5oNOrouoGChuVYpBJ8P0QQUW+0CYIA29QwLbvP8ggDZBIhlf4+m40WpWqV9fU18vksF86fY3BoAJnSXzTIuYSBj2GoKErS99QVIZZpkkjJse4rlJUcHzv3Puzld6PvTVEVhbnFJQaqIzz37FO869AsF8+cplTK89ijJ6gODeJaar8GX3OIkxhVN1GUlCgKUNX+HC2KYnTdQMYC1/GwTAspYXCgjJSCyakpFNNFVSSGYZLP5anX6hQHBkijAFNN0C0XxbCJyWBmqmhKimHoFAoFFEUlbNSIw5SDt+6j01ymMjAEsoNMFaRQiJMEZJ/aq2g6lrOFXi9EM6FQ1sgXJM8+t8TkzDBZN2F0bJgTZy7Rqfvs23eIy1fOEhsR1foYxR+1aIQxV+ZXKRoxC/OnePc9PwKGQ6pob4C3G80l34kFeL2w0re13PSz32kfwBt1nt/CCt8ar5Q3UPD9AYPXa339YOK73M+3ja1PoX7zsb4TeL0pI/PtuvwBHev3Al6/d8Wjf4y/tbiZctd/znEj257vJeI45ld+5Vd491138uUHH0NoBhnHIFEc/vRPv8Af/s7v46qCX/+1/50vfvEBVr/8CLZlsdBrsbpeQzccECbVgRFcx+WJRx8jigOSOO3bpiQphhGiSIlQHOqtFqZlEscxMk1YW12h22tTHShhmRo//MH3U6vVuGYh4/s9PvaxnyRJUsrlKrqus7q2hK5rRGFMHEO7sUY26/DikSN8/ZuH+xL+UrK6ukESKxiGRRTFdHs9wiimVZds2TJLZcABtUYmn0c1LZxMjs16gySK6TRb/Iff/R1EEhL1WnimzpaJcfbe+V7s0gBOvkyEwe/8/h/SDUKklHzuT/+ERqNOrVanXBrgyuUlDn/zaRr1Fnfd9S4q1SJ2RkFKlS/e9+doSY+ZmXEKhTwoKqVyBcc1eemlF/joRz/C2NgIvUadXqvB7/7ebxPGAS8fO46XzRKlEqGZLK3MkUQhlm5i6DaWbaNqYJiC99x9B6QpU5OTRFFEu91BUy2KhXJfXdNxyBRyjE9NIlWNZn2ZwUqVOE4QusH6xjpJktBsNtnY2OCVl4/RqDUYHxkj67q4To4oSlldXcOy+lZAihB0/R66aZDEMd1ulzAM0FQVy3T4xM99iumZLRSLJXRdJYlC0jgk9n3OnT+LrqsYAn7MKpOevYJ2/28y9ks/w5kzp3j/e362FsmNAAAgAElEQVSW9777gwxOVPnSVx/AUHo0Ns7Sar7M/OXnePmp/5mCn8EJTdBdXj8zjzQrxGoFNXXRsVATCzV0sROXoltE1SWdqIBW2klmdDcTuw8SiYROYxnPiLF0ye137MD2CphuATtTwHKzWEYVVc0RxikxHTRdJwgChCqI4hjd0BGKQhKnnD9/CU3VkRL27T3Ih37s4/zwj38E07bAEKS39TM6UtL3O5X9a0QIlUwmg65r/ZrsuXmEEHR7Ha7Rs9I0pt2qg0zwu22QCTKVyFSSprI/YZYSmSYImWCoEVHQQ5EJiuSN+xBSZJogk4So3lcmPX9mgZeeO4XfbaIKQCYgU6TsC0jJNO3X+MsYGQd0Ow0EEpmmfeVfRZJEAcQ+adgl9WsEtYt0201EmiKTpN+3lH01d6GSoGHYLkiJEncJlAhFk0gSJAniKhUrjiJAQcoERfRZDbblomgGQjdAUdF0A6Fp6F+NSX+8gKpDGDRwHMHS4kWEkEipYpoFEFlQ+xP/KFL44z/8IhsLm/zyL38aXVVQhUCRKWkaceXSRc6eOYUqUlJ5DbCkNNttBgYGyWQzuK5NmiYkSUKn3cHQNXy/w9j4LIaZw/WKjI+Ns212NwPDgwhNEsmUuw7dSTabQ0qFbqfF7p27+cmf+Fk67RjTNPCDHp7nEIUB5y8vUC4PMTw0gqVroMDE5BS33/EuXM/Dj3w0VSOOQGLw/g/cjWV6JKlCu7PJ04efRddMFFTW1zbRdJVSucjE5DiqpnLw4K1cvHiewcFB1tdXieIYx3X4uU98AlDI5LM4Xt+TM+zW8LtthAZhGiJVg4GhUZrtNoVKlff/0AdQVZVGvU4UBbRbIdXqIEkcMThYpdls0u12SaVkbX0N01ZRBERRSqcTUMjliKKYr37tazRbXUzT5JHHH0fTLL7+tcNcXl6nPDKF7hUJFI0kjRgYrGDZLqqhEHRbkCaQxsRBF6Qk6DbQ1JiZ6WFiBcYnpwn8iK0z21AVk2ajh6lnGRnaQq3W4oM/9COcOHGSONUwLBeJQvpdTB+klKysrHDg4AEiGWO6DofuuINms4VQNT71qU/T6XQoDY0zMj5Ns90iDrt4uQzlUpkoCLFUjYzrUt/YJA5DkqBHEutYlselC0tcPNMiCGO6XZ/VtRqOU2RtcZ5sNksul+fUqdM88tCjCGFgGDa6ZtANe3iZPEPDowRhF9My6HQ6bJmZJfR7NBp1VE3Q7TVAkfhBjzAKsGwLv+3T60ScPHEBUNB9g+yr/w317CKvnTiB6WYQqkar2YQkhLDN2FAZywm48317sDMeQgfNgFhGCE3Ftm2iOCGV/ftaUVQcJwNSoIoAqWwQxTXSKIKkx+RYhpWli5iqhVAEpmkQBCGO42G4eWrNAL/jo8sQ6Tdw1RhbxPiBj2EaxHFMs9lCc33Gp2Y5O3eO1Ybgm88eJ0wlimogNYGma6wsL+N5NhKJH69SnRzEdDwOzG7FCAXvf+8eFJZQA4WVS8vcduttDAxkuHjxKKNjA2TyFpHXY/GxBgduvYXp7Qf56Cf+a4ST4//+tX+FmobfEtn8O4wfPBX3v8x4p3OYpukPbN7+dxl/bzKvcRz/xpvoCDepzbw+3rL99e28c/vbjuviCyiAPnXo2z5/nY/rTeJ65eRrHrNcq1W5Qf3tO73e0uU7/N7c7Lhv2n7dis2147iWedU+9kNvXdW5QVxrlyJGSRU6y8vsrBTJjGzFMlXyOY+VtU38IGLv3v187OMfZ72+zvhgiQ/96AfY8eWnUEaqeFNTVMtFFE0jjBJUTSUMQvKFPi0rm/F44P7PMz2zBcss0Gpv0KhvMjE2Qb6UJYojLNvBdjySIEHV+qu/QRBQLZV56cirVAdHKJXzREkf/OgCSEJst0DQ7eJ325i6it/rZwrGJyf61gqqQpyk1OpNyuVy3ycsDknjCEWBXqeLl3HodLtYRp4kCkijPsB2PRcJeJ7HbQcPUm/6bKxv0uu00E2Dh770JbZOTyKlxHFtbNVFFRJVVTh48BCNeofhkQEMU8OxM+zYtg3DNkAFXVWRcUp9o8aOXbt46ulnmN2+A1UoSBmzsrJMY6OJoVtUq0Ucx6bTaZMrlLnj0O3I1Gfbzp1oAuYuXcbvdthcb3P0yKtsmZ3miSceZGRshsCPsEwPhZBU0bl44RJeNkt5oMzG+gqZXPaq3UDcF5QQOmG3h+0OsHv/bmzbQpEpqtCZn7tMtVxCaDZjEzPMLyzy0tGjzG7fzde/cZijR1/lXXfewaWL87z0wotMjo9j6Crz83PkS2W6nQ6WZZPJF+j2WghVIQq7SJng9xSee+EIM1t3ESUJ2VwOMd+Ab7yEtn0Lr/7SPeiVEnESM1gtI8wKihZSsHqsnHuNBz/7f1IIX8btLaJ0L3H69DLT++5k/uJFZPMUoxOzDGx9D8IpkYiUVErarTq2I5ifO4FQA6TMM77j3Ug7g6PbKKoCUmIYHpdOHsU2TXLl1zBNg0bySXDeRaIcRDiHSKw7EM6dqMYoSahiGja54m4kd5Eou2l1dxHLQxy8/V/i2Xcxu/snqTc2WF1ZZNf2CRrNCvlnTxMN3o5cGiG6MkBypUo8N4BoFtBUgzBMiLuCr3/uDLvyP4x/roy6NE7rdQdtcRCxNIyS2Ki6hqZq9BZU4oVReheKGCsjMFeleVyldizEaxS4cnmFOG6j0kCeUTn1lS7HvryMvaKyeTRh9aiD6+roqkOajtJBx4nyBGczLD0X8upXlrCXC3SOx2weabPyTJMwStG1mDhsEs1DeELQPQGd1wXKJY/WqwrJxQzBokocRrhWSmejgX9WJz5v0TwhqJ8URBc8gtMZlMVBlEQjDFqAgdEukVwq0zmbIz6r0DmZZeOVFH0uh96YZGNplTTZ7N+H6yMwVyQ+XyK9Mkb3mIJ5fI3Du4bJuHnaXQXPGqIwtIt6fA9BuBPTuZtPfur/4eAt/4yVlSH+za89yr//f/8dnbBDt63yyV/4v/jwR/8ndPsATzwRUxn6eX71V/8MVWxnevaHuLfxeVRFY0Lfx5nQ4njH4lS3wlOX29z/wkW61d2c6ma5/68f4advqTDppnzt1Uu4mTKNVgPd0JGoxJ06Dz72TWzbIfLbjExtJU0DGvUFNFXhySde5OSJk8Sxz9TMJJZp0GjW6PZ6qLqOZuU5feo0gwNF/G4TyzJYW9vkqaeeZXSkiJSSubklctksUkZMzUxjGBZCKHR6TVyngBQJutDptdfRTJdiqYhEYpgWSRxw4vWT5HI5bMdAF30LElW3iFMNJ5PF0C3iICUKO1imztzFOT792/PMfn2Rox9wuJy9gByP0S2Yn1/j7Nmz7Ni3F9exiMMY0zCwLJu5y0sUinmWVxf6ImS2i6YaDA4M0ml3aLXWOXjgEFHURTMyDA1V+9lnx8UyXJaWlhkfGyWMWiBVdMdFESaqZoGiItOIjFfEdLPEisAUktWVBfLFPLmihyr6E4LVtXX+5L57mdmylcuX5/GDgMnpaTTDRL0qnHezuLaNpqmsLCxy9txpSvkicdDF81ws1yaMYkxDJ419VNVGSX327NmO63kIbNAVTDOLbmg88+wRnFyWsckpNDPHf/yDP2BosEilMszozCCuaXHh/DmSOCSfdciXSqiqSrtZw7EMhOGS9VTW1xYpFvL4YUqrXsd2LWzXQ9M0giBBNx0CP2FwcAgpI2SakMQ+pmmjCgMhFGJp8Pn77mPfbXdwRp7k0699mtnGVnLvylMtl0lSSa9d58FHvkbBSdk2nSNfsFAkGEqIqUYoCHrdEAHoRgDSwC1Ukd0QofaVfOMoYXVlg1TNoKugCa1P11QCJAbHTy5QHSxy6dIiuVwJoQkQKVfOnieTyZEmNTTTII4DdFVQ70bYTo52u4UiJG4mSxzZ/M1f/xXvftcdnDlzipVGjX2TZfxQ4evfOMdAuUyh6BET8TdfOsNIRcfJVdCdATY2FnFzJqnfI5V5HvzmJfbv3UbB2WR9tcPR18+wuriI6fTnHWNr21kbP06QRKimw4vPPI9Wu8L506fZdff7MEWGlPiG87+b0tO/A0Gnt8voXgupgP87OvGLKuqh9K3X+VUtlmvzVan0/+p/J+IG98VNZrhv8YV9h7haL9vP7ipv3f4t9bY32d9NfGDf8rp+/98u4vNG1vlqLaxUQChv2uxNXtDXzoa84Vn5vuN6PKDp+j9c2rCU8k204ZvRW7/L5u853qANTx26yZZvH2+5YZU3v//djl1ynY3Qt9GGv9Mfmu8mbrQveRW8Kj9+zzsC1+vbTEtHaXf4px//Kf7pp38BP5EMDw9z5swZhoeHyTgemtAwNMHm5iqmZcLxMww8/jzyPQeI0wQhFBIElusRhRGmruFYBlYmj6ZqjI2Msb62Si5bIE58XDfDufOXyeU9crk8i8vL5PJ5njv8CuVqAcc1Cf2EMJQkScpgtUqtUSdfyDM/v4DnekRRiKYZWKaBoWq0Wy1yuQqr6zUefugRdmzfia6rbGxsMjExQRQGdLsBumniug7zVy4zWB1kY2MFRabEUYTleXS6PSzL4uixl8l5OYTar0HyPItyuYzjZYjCiIvnzrJnzy667RbZTIZz5y+wvLLM7Ows8/MLKELgODZra+s8+uijDA5VEbqK4zqEQUQvCHn++ZfIZHIMD46Qy3v0el1UIchmssxdvsT2HbM4rs1mrY4MY9rtJmkaY1gmcdBBMywy+TILi6vMX77M9h3bKZUKFIoFvGwWFAXHdlhZm6NaGeb5Z59j586d2I6DqRuomsC2TNbWNzEsh2azQaVU6FtJAUEQ4vcCvKxDLpcjjhNM20ZKyOeLbG72RTX2HtjL3n23IokZGR1heGSYMEqQKVQqJRAqtuUQhCG6ZmBoKnEcYFsmvW4P21YYGRnCNEz0iTGSr3wNcfwswa/8BOo//2cMzQyiUCBsrzB//lnKQ2P0Wi/zyhP30rxyguEhB92SOOUKtW5EGDq0anUaa+coDgxRmtiDPbgLqZjfuoeAeq2GZbkoqsPSSpPK4CS6qb1xLyuKgpJKDNNEomGZ50AINOcuUHQMTUXRLVRVRcoUlbRvmaOHnDlznHwxR73VRV6to//lf/7fsnfXJB2/g6GrJEEXiYKTKeJ97QjhUAmpaKRxRJL061mFopPKlDRNsCyL6akJpJQ0mw2CKMZ1bGzLJkokmqrS6/YwTAupKGiGja6pqEpK5HfotNewTZUo6NDpdHj40WPctmuKONwkNVOWaxG33vajzK1EfPXpIxy8YwJNNylk91LKD9Ps+QyO7qE8tA0rW+XBR5+m29MQapZ6I+DIK5fIF6qoCmQdkyhoQhqRJD6almLqEIR1dD0liboo+KgiRkkjZByQhj45RyUNQgyRsrF6BV1LMEwLoWUI44REKriuSxo30E2PbL7A5csLaJZOqTqMZlpomkfy/7H33kF2XPed76dP5+7bN86dOxGDwSBngKQYxCTRosIq69mWZVGSZa1WsmQ5yN6y93n97JV3n99z2WXvWmtbsiVblJUlSoxiEAkGM4AAAZIAiDTA5Bxu7tz9/rggBYEUQUq2q+x6p2pqqqdPn3O6e87p3/f8fr/vN0jxl2c53D5BrhmSOTaLd/1Out/0BhqhxeLsCna3wAsL+FKbyRNjWKbD61/3JmynRBDF3HX3D9i0ZQvf/s5t/MZv/gZ/8dd/wSc+9qucOTOFqWc4+uxhPvGJj7N2w2YarSrfdG9BlmRqh2oMDQ0Q+BH1epV8vkhvby9p0tHQtTMWb+xPKekwbw3yuu8ts3404NR6hVwuy+riMqaZZWFxlr7eXr705a8zvHYN3V1d7HvgYXbu3cKNb/wZKpU+Dh44RneljCKbnDx1hpGR9awsV6l0dxMGMaurNZxsHkVR0FULO2PgOBau62HoFq4bYFv6OV1oCU1RkWQJRUmZm19F1nRkIZ8jwhI0mk0c2yGbc8hkM7iuR5qm6LpJHEWYhknb7bxvTTUQqkzodxifdzxRo16v8k9vBnkY7IxFKgT5QjembZLNOB0wksYEQUej1JAt2t4y2bxJNtdNFIXoqowiIIoTevu6EUJlaWWOKIYocpGFQhxFNFtVdE2n5bZJEfiej51xSGKI4wiIqa0sM3Z2CgkZyzARIiVOO6QzjpNB1XUsXSNrZdi7Yxe5Qo6HHnyIPbt34mSzLC4ukck68HKhlecxsUqiI99UXVll3bphurq6ME2TRqNBvdEimy+AUAj8EMMpEcUxipDQVY2//+JXGdk4gJPJcdutt7N7zy56eyusrCwjhMRll1+Dput865u3sHXTOmrtFpXuMvmc09E7lg0SBG3Xx3GyRJGPpspknSxhlGDaDp7XJpMrQByzMD+H41hEYUS13uDOO+9i29bN+G4b3SogCRnL1JmemsbzQ5559lmuff0NnFw9xv/z6OdZ6RpDKZQIW3UQKaVCHjNT4ugzT7FpbaYjm0Qn8kLVz6U7KB1N0dWqhWlaLK3UcJvLKEJB1zWiOMSyTHJ5G6/lIasCRIyqGLTbglQqc/DwCXbt3MFzzx1n9OxpRjaMUOrqQULGry2A4qPLOkHYwg0SdKuLTMZClgWu5+G5Ia1Wiyj0uew1e3BX2+QKJoaR4hTKhO4SmUyeIPTZvH0YXQbXa2BZBZxiH8sLK9imRBT59A2WcQwPQ0uw7YRSPs/M/AqX7r0EPa9iN4q00jqlTQ4IjeOjM2wa6eLMoScZXDNC2F0ho2oXBZmv3L58Zc6d8xomPp9t+FU2/3Lhry+dVndxT/MPx/fDMNyXvvbCwfxze7FfnU1/fk68JP2om+1f2sN+IdnXv+uc1wvZhv89gdcXlZ8avF6weFwAXv9VwjCqDaShPsSuzS9b7cJFQ4tjDu/bx8T0DJe8+T/Qlc0RxzGlUid/LE1SfNcjiULy+QxTo2Osv/l2VkwNec0AYQqN2iqWoTM7O0NXqQhpiuf7zEwvcur4SR64/wdcduVr0FWLtlvFdnIUSz1MjI1imRaGphN4Po1GE9vJY1kOszNTVPoGUQSsVpcpdnWxPD9HpacPWdXQLLNzL7Kg2WpyduwsQQSDAwMcOXKE3Tt3ISkyYRSSRBGyJGE5Fp4fcNutd9JfGQRVRjUUZFUlV+jkrGrnJGFM02JicqoDIESHQbXV9tB0i396+BGuueZabr/jdrZu394hnEkTdu/ezdkz4/RWujtEVK0Wp06d5sY3vAFdl8k4DpIkEQYBumlSLBUplYodtuIN60iSBIGE67r0VsqEkY8b+CiazlOHj1AqFugud8hfiALqzTaKIshndDIZm8cee4L1GzajGxa12gK3fe8OKuUKszNnmZ5Z4PrrruNb3/42m7duIWPbrFRXkYVEY7V6jtm2RJx28rFarSayonYWVZEQhRGNRpsoTWnVXSbGx1m7dgBNlfDdJkE7QEp8dEUQSzHFQsdTIysJgR+iyBKKLBPHEZpuEacxLddDUXTS+VlqqysYtzxMOjFJ/P53ov3hJxiVqwwOb2T07CiFgR5sO8PatZtoRjF5O4ffnCeflzhx7CjFSg+1ehvLzLBj86XMTEyg6gFeqDCxmjK49XoklM7OLkCaYlsWVjaHamcRuk0qgWUZL8wTgNjzyRR6WF5ZJWMcBRIEu0jDhNRvcOLIAZbmpqlUKqSAECpJ2CJJIyRZQVIMFpcWyeYdJBHz3LOHGF63mYW5ZYo5B9f1qboBPQ8/DbZG6mSRZZUoTCCRiZIYVVUQUic0Ng4hSVJMw0IoKYauESUBXhCg6xrNVgtZVZEkhVajgakr+K0qsd8g9OoQ+biNZUw9ZduWIrJuE4peegdew/ptm3jssVEeevSfePtb30nCZEcKqpbl1lvvZHpiii1bN5KQ8sT+w/hRRC7XRaWnn3qrxdD6bQyt34znx1hWDkkrMza5iCTpTIzPdwxNAuLARSQxkR+QxG2i0EVTZZKkjZR6eO2I79zyAy67ZBMyIVGY4rXb5LLOCwHDYZwg6wVioVGqDJDGLrqZRUpShKGhfncf2vgKZQqo+SzivW8lfv1rWKwHmN1DrO/tJ1Bm8Gu9fO3v/4TpyRl27tqDrBq86c1vJUlD/uNHP8zrb7iBKI4ZGerhd37rtzl14jRLC0uYloOuxPzV5z9P1Uv5+H/6OMZ7OmzL1w1chSwr1FYbzMyMs+/+f2Ld+nWEUYiqCDzPZUc2IIwiDtcEVxzwKcsWxy+xmZqeIvQjjh0/xeVXvYZGvYnrx2xYv46777qLnbv2srJaZc3QIM1mC8/zGRzq56GHH+WqK6+h1lgl61gIAWPj4+QKRdqtFpouUygUabfrJIng8ccfZ926EdptFyefpeU2kYREEKVoskp9dZFy9wDIAinuhJ1bpoXvdUhtWu0Glm3RbLVxnDxS2mH5d10XTddRhEoYtlA1izAIELLEtkdXsC2bs28Y5stf/ipr167FtjRcNyCXszn4+BMEfsLY2CiFfJbHHn2Sbbu2k83mIBXUVutolkHUbjI5NsbYxBTlcheGkWF6eoru7j50VWH01Dh33H4nXV25zqZbIvjyP36FPbt2oakyaRIRxwHNxiqhGzE1u8C6kbUoUkyr3SJKZB5++DEyloOi6dRqNR7fv5/e3n7cMKRQLJEvFJCEwDAMVF17ZeD1+e8vHTva93wcx+lowicpZ0+PUyzmkUQH0MmS4B9v/hLbtm9DCIU1g70kicQ/3vwt3njj6xByShz5CAGKoqKqMmESsWfvZcRxm+PHTpFxnI6erKbSdlskqcTY6AT3/2Afl7/mclJSwijqfJuSGIjRDZskjAhDF9vW8d2AB+5/gB3bd+B5EdlcicDz0HWVKE1xskVkFa6+5mpQZHbuvwwrMhgY7mby1GnGpiYol/txW3Xuvederr9yExkrRJIlhCRoNV0UTUdVdNJUIoxibrn1CENDBYrlXqKwgaF3tOZVVYO0QzalqTJIBlFkdYjkIonp6Vm2bB5CN016+/vZuGULURIzNXGWru5eJk4dJ5uT0CSbMKjSaIbky+t58skDZOwM2VyRpcV5htasoZAvYJoqDz/yBM+emmDLUBeFbIJpqkjICFmwuFwjQcXSJaIA3ERDN0sEwQI6KbrmIRGjaRnMrMyZ0SqFYpFnDj3NiZOn2bJ7G+WJddQ2j/N///F/Y8PGjex57XWMj+3nxOGjvOFd7yVFflU23cuXV2mL/guC15c+8WpA3L8t8PpyOOPVvcOfvvy7Bq9RFP3B+ccXA68XCxN+JeUVaaiWhpH7tv+IzutPW8532ZO+RP9CgudZiF8ibliciwX4YegE5+qnIL18ILMknu+08/OTbsCI3Zt/BLj+uGeZSgnSuZcVy9Cqu9x9/z5+5Vc+hZbItFwXkJCEzMnRUbrzRW679U7Gzpzg0JOPckVskN/3JNObBsmYGrqu0mpUKZeyGJpBq90mESpCUsgWHO657x4+cNP7Cbw6TsFCTSwUUlp+gxCVZrNFxjZJopD+njK3ff9uKr39DHRX+JvPfYEtO7aTK+XRNQXDNPmbz/0dl195RSe0uO0RRRFOPkup3EXGskjSiO07t7K6uoQsqUSuz7e/eQuDQ5soFPNUl+bo66vQNzQAJBx/bpQDBw6SzTooqoKuykRemzT20XSN1ZVlBgbW0g4CNF0jJaG70ouIIkrdPaxWW3SXCszOTtBoNKn0DnD67AS12gpCQFc5RzZnoWkmzx48iNdskC13UV1ZpFwuMr+wSD5fRngudtYkIsFQdVQtpVFvYqoxuhAMDm5kcvwU2axD2w3wQw9VlTB1FUmSkWSNXL7InXfdjeeF9PVX2DSyFlmT6Rlax1DPIF/6yjd5//t+ntryDHEUk3GKCCE4dPgEg4NDKIpASDJtr0qhkGN2dpbv3nIHlVKFcncZ3TIwjAxCTqn09CKrOqqpY2byLC4ucvfd9zEw0IcmKwihYtgqqWSgGTKSUFAUDSFkwljgL1SxZFDu3Y90apKwUsT541/H/bX3IjZuoa1CFPo0p59j9Oi9DFS2YqYK8spfIttvwQ19Th74EtrKcexsN1GaoqYG5bzE40fGCYMGUhzSt+ZStm2/DMspkAj9hcVJyAKERJImSBJkMha6cc4IPZc+gASS7dBorjI7cZpSbhJFkjj59Aru4hmMuEZPdg1S0mJ6vEqlr4SXSsR+neXpSVI/xsiYFDLdSLJBMw7JKSaf+W9/yiU7tlBbPkuhOEAmY5O7+3HkKCEa7CcOEr7+tW8QpwnV1RpZx8Jtt1BVlaXFFfx2m0zGQigSLbcNCEzDoN2ud7ythoXvN7FUByX1aNbmEIqG12rhNRcx1JBaK+TkeEQrKDCzsEqz7rH/8HFOPneSd73ndZiWgeG00XUFR93AyHCZ7du3o6QFNAOGRjbS19PF5q3ryRUyrF03QmWgD1mY9JR7mRw7y72PPI1qDTA5XWfX3teSSCmycEglFdf3QJSQ5BBZ9kjCBFlJEUmIwGPLJgchNKJUIOkqvqvSbHhomoYuRbSqNTyvSZLGZHQbQwpoHDmJcnySZH6ZM++8nOrb3kjjku0cz4bk9l7OkUPHGOlfi64rNP0F5LiHhx68l8H+NTRcj117LiURKv/nH/4RH/zwTQyVM4yfPoWiZPmVj3+S3/j0b/DGt7yZX/rIx7jp/e+nt9jHb/3eR9lz2aV88mP/kb+Z/ltIoNIq4DU9JiYmGZsY4x3v+g+sVhsU8iZJFJAECbtLoKoaT1UNrjjVyW17dDjAyXfRnc3gZHNUeoaYn5si52QpFUps3LiJKGmzNL/E4PAwiqHRVSqwsryAoukUi2WyRobV+jyGrVPsKmKoKs3aIvlCHklV0MwcmqqxecsGUnwyGY0gAkM3aNQXEKkgkSRMXWdueppcpsDpMyeRFQkhIAg8XDeiu9LN3Nw8pWIXvhdQrdaZnJhDN2RMXe143KMISbJQNYl2u87uJ5qsrGI/5DAAACAASURBVK4Sj1zNtsxWxEaVoBXSai1iGyZ+EDAwPERv7wAnTpzh0ksvZ2WpSRiGjI2fZmCwm9RrE0cq5d5hetf00ao18P023eVuFDklVSwWlxf5mRuup5DLY9gWlqmzY+sWNEVmpe0Sum10VScIZZxshrvuvJ2tWzYjZJkgjPE8lz17dpPL51AVmVRS6envR2gyhmqiqzEZx0SWTdIkQVdVYn4o0Xfe8tGxB87ZFG4s0KM6p04cR6Qptp0jiUHVTfYffIqJyXHWrxvC1FTcIEAmYduOLWRsnYXZcXoqA0hxzJ49uwhRuP8H+6h0D9DTW6JebaJpGq12DSmN0RQf0y6dy+XWUVSBIlI0XaPSlWWov8jNX76XS6/dgyrnaNUn0M0sqTCII0h0Fdf10IQGQqO3t4v+vjXsu/9R1gwOopkySAmaqvHUgWOohoXtZLEkj7fd90EeHfgea/x15IoV1q9fR+TVWFxosjS3wOCwTcEyiCWQRYgu+SQCpudz6LaNiBcYXlvEygiSWEczdAKvha1DK6xxelZQyjokaYQbJNTnG+QKMpphcnZ2jliUKBX6mJyZIZ8tYGkWqpA4fnKUQilHVFtAV8H1Q1Rb5dkjZ7j2uhsQikCTNc6OHu2kAmUyuG7CULmf42eOsGGtRbXVi6osoQmVVlpjdqJKqbuAlITEaYyR7SaOImJ3GQkNV3gYso0gIWiHkGh0FXXGF1foqWyjb1BB90rk5nrY+8vrkMKUoKawbl0P9z/wNd646w3I3X34SQ0hG0hpBqTgRfbfK3aSXCwU9sKwYqQf6rxeFr8Q+vrC9/H5es+Dr1eLAy4mnfOygPPCsV5ElufCcpG+XuR8upjsz4tA0QUSnql0Tqbz+XXhnz8q88eVC/v6dw1e4zj+g/OPLwpe/xn6fCXESZJu/7MC15fs40LAd7H6Fxy/Gj61F93uTyiU/HKsc+eXJI1fIAJIwoib/+pz3PimN2PYGVRTw227ZDIZgiAg6zicPDaKlAruuP1W+i2bG775IN6Ve8CxsW2bldUVSt0VWq5Po95C001OnTpNX1+FIPC58oorUDUN28kwv7SMIgyePnyQ/oFeuso9fPOb36BcKlLuKhFLMtu3bCAOfJ548hne8c63IqsylmnitVySJOaKy68kJSUlIYkCTMtESAqLi8uostxhWtRUFLXDQrm8vMjV11zL3OICURhQzBeYnV+gq6vCzMwMQ0Nr2blzJ4apoyoaURiSpAmGaZLPFzAMA88LCMOYhfl5JFLq9TpnRk+zfuOGTpgTKd3dXei6ThD4FIsFHnzgUfr7Byl3dSMklfnlRQLPZdPmTUhCxtQNVldWefyx/Zw4fgpFESiGhm3ZxEHMPXc/zMaN2/jebfcwvH4rTzz+OFu3biJJodX2qfRWSJHO5VyZLM7Pccftt/G+976PcrlELpejUeuEDK6s1rnn+3fw9ne8Hd1Q0VQZ28nScgNURTAwUCFJfer1VY4ePYqqmmRsB8fJ0lUqI2s6pm0jJEjiiMh3CcMQRRYdiYXIp1QqsmvXTlRd46677mbt8AhR1KbVaFKrNlAVFUig3mR19BTZfQepl3TSX347M5/8EMbrL0Uv6fjLk2R0h3xGwdEkuvv6aawmzJ7Yx8kT/4A7ZSHlZqme3Mfc6BGarQz9AxUmZxukFMmXyuQK3YS+R+i3qfvLaBkTycphZvOA8qrmURpGiBRMw6SUn8DzPVJ5D0EMy9UGjcZZGu4UGTtD213A1LPEfp2251EZXE+cmszPnWBxbpL5iRU+/enf5sTJUXq6Swz1VUCV8LyQwr6nSE2DeLBCFIYUinmGh9fS39dPkkbkcnlq1Rq5fIE7br+dDRs3oOk6URghAYqs4IcBCRJCAl2kVFfP0qotkrVUQneZldUVZmenyReHmFsUXHXdNfT2DzM4NEgum+PQ4aMEbsCZ06e55JLXohgLpKQsTqvMzc+RLWTI5TWQ28hCIZPJkCQxnXA/BVPXufnmr+A4Nl3dRRynwP4Dh3jDjW/EMC0KxRJ2Loei53j8yZMs1FUkJUdXdwWhWYhEJo07u/tC0ZHlPG4gkOUs9z34CFu2bceyLLyGixkmWFdcimFmOfz9OyhPNjDcmIPDXWQ/8Ysk2RxhojC9sEiulENoJpokMz83z8zsDGEAzz7zHH29FbZv38CuPZfysY9/nCuvupp3vO3tTI6N81u/8eu8650/x7PPjjI1fYprr7+Kj//Kx8nni3zoAzfxhb/7Att2r8eyCliGzhcX/wFd1dmgrGV+cZ6e3n527tpNvdGkr7eHNBasLC0ShC2GWMHJZhgXJbY/7YEkcWCDRMayUBSZbKFIFCc4WQvilDNnx1AVhUIxR7FYBCGh6ybtpkuj3iAMIird3YyNnaZQ7MLzQ+I4RRYS2UKJpaVl9j/xJBvXb+S55451WIOhoyVq2gghMEwZUgXdsnE9H8OwQci0WlVkSaFULNFuemTzWdI0IZPJ8uT+p9A1BdMwyDp5jjx7qKMrLXf0VhvNOroukyQRWx5ZJokj1pj/if7lIb4ff4V8sRvfb6HrFtlsjgRQFIVnn3mWer0OooVuKIys28L8TAvD0jl9Zhy37VLIZpCFStt1IYXHn3iC3p5+1gwMEAdBRytTUlhZWiXwI06cOMXatf3ksw777t/Hfffex/DwCK973fVIUoLnu5imQS6fQ5KgWqsipLSja6opCClGljUEMUJRSdNzhqgkIavqeWvIS68riqJw5OCj9A+uoaurQpIm/N0X/44dO3fQ39/Ljh3baDZr2JZxzoYQKJpG4PuQCPywRRi5pCIiV8gwvG4EO5MhCD2y2RKaLlBUFV1zkEkIohTD0EmSkGarjiylNJptklRCEhrbt+3CyqhEgY9lqkSJ0pHlEilhKPHIQw+zbniEKI6x7CyLS1UOHjrEa6+5iiAI8H0PO2NhWRaL82cp5DP4RxpcO/pOpp1/YnfvddTqLeyMhSzy5EsSSdTg2QNPM7Amh6UJfB9ipQKJx9jkHEJ2yVomGcchJUFVbaI4wdRBihXSpMBd3z/Krm19xKmHagqKeQmJPCLVmZ1ZZXaqQalSYGTDCKrWSSmybYuucjckPsszZ8nlTUhThKZg59aRcUqs1qskSULeMikUSyArTExO0mg2mZ6ZYLCnzMT4KAN9FVQhGJ9KUXWHStlCioMOR4Jlk8n10ahNI6cRiqIQhh6LNRnF0NGVAE1PKOZtDj1zgu61Qyy2JihX1yGqGZ5oPM6+h++ntryCJrf4zje+yOvf9V50sxtJUhCi41x4NTbgqysXAELpPPD6mvhF/9zng9efrLufxlv64rG+8msv3teLIycv1v7Fz78oCuNfmRzr/wevL/GHf0lv6ystr/af4WJ9v0B5f6EUz4+ZwOdV+GFowLndqJcZxQWHP7wuSZKL3s/z5FPp2HQndDiffeH6l86TSEmFhEDCW6lxyz/8PW9+x3sIFRU39F4AcDISsiR473s/yNNP7qe2WuUzMz5hV4Fk0zCrq1Xuuec+Nm/dQqsdYGZyHNh/ECdXwLZtJsbP0tvbS61WI0k7WZRONocQKvm8TS6XIUWwbngt2ZyDqqrIpo0hYgLPpW9oI5Yh0Ww20XUdTdbwfQ9VVXBdF9/3sS2Ds2fGuf32O9m5cw+mpWOYBrrRyUOUVY1c1qHWqPLkwQPs2bGTufl5mu02hWKBO++8kwNPHmDHjh08/cxhhKSQLxRpu62ORmkQoqgK+x54kGK+RKmYJ5fLkM9lWbtuHUkSk8tlmZ9fwMk6+IFLJqPjuS327N1NqZTj/n330tdXwcxk6a50EZ7L+3TbPr5xJ1v26GzcKcj2ruCUl4jkU6TGWWy7RJpY7L7kClrpMYa2zpAaYwhrkuXmk9ilBVJtjFA+TW25B1tTueSSveA8gZo7TSSfRLYnaSfHsPJz9K8PsDKgUgFZxY9WWPC/g2JPIBkThPIpjPwCsj2FkZtDkweQZYtGo0Gudw7MwwTSCVL1NKl+hkQ9TaScIhHzLM8IHMdhenoGvfwII1sFwhwjVUeRrUlq3mFUe4Iok0P90qM4l2zD//TPkPQ8Sxw8R3bpMeTph5g5cAv66nN4oz/A3nQDbS+gGenoR/8Kfe4BypGL6o6jzy/hnTlAtx7StWaAE1MxrajCX//ll3jjhpRiNE/Gn6ckWuTCVfLeIvLcs0hdlyHbOQC8w1/BfeJvCE7cecHPXURzz6KtvRoAPU2o3vYpkrF9+KOHiCcnEQujmNWjmPXnUKw8jcRgoHcDjRMPER78O5KxB1HnDxKOPUh0+l7E1A9gfB93PBnTOzjIb/32b7MpuJd8fT/KwhOkEw9SGrWJjBqNridotRaoVHYSxR3jkw4kZX5+kVtvvZV3vefdaLpGkqZomoYsZMbGxnn8iSfZuGkjpqaSBC5J2GJqYoEzJyfQlZSz4yGjZ5aIpQxWoQdZk0AYpFKMLKsM9FdYM9DFyPAwuq6RiFWqK22K+Y2sWbsWVbNYXp5ERkYWBvVGFU3VEZKg3W7gNZps3baLXLEEikBF4dCzR5mdX2R5pYqqZQjTmDAWrBneSt5RUUixLZ8kriNJEIRNFCUlUjSQLWIUMk6e9aUBDNNEe/QZ9LOzSG6AWHWJx2bQejNEV+xG/MovYuzeQyoUFMVipdZg/eaNoCjkMjnyxU6kQT6b44//x//mgfvv4/7772LjhmHmF+v86Z/8KZ/4+Mf5g//6X3jX295JECVs3rqTI888xyc+8Ut8+Stf4q1vfQuSEBx9+jD7HnmUn3vvu9DkLIFX5wH/QSpKGSdw2LR1Exknz3dv+S5dpTKe2+ChfY+zfcdW4tTj+rVZFEXmwbM1XnO6k6v8hfazTIyNYTkOYRigaTKqqqFpCvv37+f4iRNs374dJIjCCCFkDNNkcnycwcF+FhbmqPR2E4UJYZiSy+WAmDgR5HJZBgcHaTUa9Pb38b//8q/ZtHETXeUSrusSRSFR5KGoVsdATWUkISMbKsQ+GdshjiUOPPkUuYKD42RYXFyhkC8RhT6apuO2fdatW4OqyvhhiKJaGD8MdmD9D+YwLZuk50barsst0bdYv3ETzXaVyakZevv6QRKossLg4ACZjEVf75pOaK0sceDAfrr7+3HsLIamEvk+//Clm3Fdj5nZaa679noevH8ffX29rK4sE4UhX7r5q2zctJmDTz1FqdxFIdshhFq3boRDhw6xe+9lSEJCURUWl5aIoxjTNEmBdquFZeioiooiUnyvhSQ0hEhQ9c53MgwCkCSELCOdx3vxUp9tkUSMHjvEmrUjTE7NgBBcecXlzMxMYhoqhmGiKp25ZFgWimJSXVnEMkw8LyJOOzrJQRBj6BpCV1BkFT90URSDemOVlutjmwXqtRqaqSORkM05GIZJEkUIoaIaDsgGgb+KougkcZOF2SrZfBctt4GUBnitmA3rNzI9M8Pc7BwPP/IYhw8/zUc+8mGi2MfQ7XMh0Cn1RhW/GeC2PG5w38KCt4o6EFJJN1LMF5AVQUQLrx0zP7XM9m092I6MiF3abZlv3HaYXVt7qPQVyDgCVbKpN1fRVA3PD8g4FWSREkQrJFKdHbsrKGlKGGu0WjqJ30bS2kjUGBgsEYUuqpkjWyigqipB0MbzfSbGJ3AyNo2VZWSljWlYRGmEF9qYZo5UAtuxCFptVmt1NN2gq9xFvlzi6YNP4rYldu7s6bCq06bWyLBan6W/y0JK4w47vwKyVqLdqmMbKYkPYZjy8P5pTNtioNvsRIsoMmvWruXOB55CStssRksMu1tpTUVsfu9atm27jKKtQHgWJ9tF35pLQRWQVEHSX5Gn9UeIly4gKX2Zq37EfkzTlPjJH4LXTmqMuKD2i8srtut/DAC8UHrn5cb6wtFFwOuLx3RxsPujbf704PVlx/svUM6/5/M5eP5dEzb9a3teX+mLDI/fT7J0Frlr+Kfs8eJ9/xC8vnz9F3teLwSkL9f5S4PXNO14M15JIrckScS//SekDx+4qM6rSFNCAVoqsf++B7nqqj2U1mzAD1OsNCWRBW6rTbNaQ5YkbnzTm+jJGvzu6SUylg1X7+XosSNs3ryNx544AECxkMexTbzAY2llhYnxKVSh0Gg1KHcVUUSElHTkUjKZHCvVZXTLIvA8FEVmeWUFPwiQE4laq0Wxq4yhSSwvrJDL55EVweryAqqi0WhUSUmxrAynjp+kVOoiDKNO7pNlsLS0hGmZBIGP57oszs0ihMTOXTuZnRqnq6eX7kqZlaUFKpVe4kRiw/oRTp48yTNPH2XXrl0omkrTbaPKgqWlJTZs2ITlGIRR0JF+SSUUXcX324R+QL5U5s//7H8yONhPELZRhMzcwjxtt83aoSGEEHjtAMu2kFWVxeUV8l0awpxFEhJCCBYXFgl8n4zjgBD4DZusU2J2apnTZx+hd1BHUVUWFhY73jYJdENHkiSy5l5Mw6ThttEyiyAFhGGAkAXzc3Osrq5SLncjkgzNqoaiG5w+e5xyfwhpAue8AnEcoes6uqEhxf2kiUJXV5kwniQVdYQQBEHYycEUHQmXFI1Sbi9xLJGxM3gc7ciJSBJRHCJJAl1VSZttjKfqyH/255xer2LnTFh5Dk3TiMOAyYlRSsU8QpJQVYVnTo9R0l0UTebkPV+gv2+AODFpt+rUWvMkQuHM5DJHJzSGrvwgf/K/vsP2TZvZORjQbqyiqhpRHCMrGrphoeoW+rrrEGYHvEZzz5LUJl9qNiEZuRfAawyEp79PFIXIcvOcodphbNUUjbCwC62ynvEz80itCURzBlnuTPooioiiAE0zUDWLd/zO3/LZ//nnDAz3oC4+Sdyu4noeqpDJn7SIzYigz0NViiwuqCSJQJYlhNyR2nEyWc6cPcPIpg2ddyDLJEmKpmpYls3IyHqCKERSZBRFQ5Utyr1DqE6erp5hetcOsm3PTtasX0OxnMExszQaHqapMzczS97JQdrk6UNHOfT0ATZtvAKv0UUY1cjaGnEYoqkqhlkmVSM8z8X3IlzXJwxdnjt2jAceeowtW7ZTXa3SaLpcdsXlZDMOmzZsRFVT3Poq5YKE2ziDEi2hUkWL20jtGK8cEioxmmsTexpqYuOkOurBcfRWQDrYTfSWy1l+389wZtsmxBXbmBk0KV5/JXFvH26QgKKSxiHT4zNIRJw4eYzdu3eThDGoMmmactett9NupySJy8c+9hGGh9ZTKvdw003v5/ZbbmF4zSC7tm3m//rvf8TRE8e55/u387WvfoMPfuhDtFoe119/I//1d38Lzc4gyTFvueEdbN48xDHnOP1OH0W9iyROufO2O3nLG29kfGyUbdu2Ue4uYGVsZMVgh+MhFMHJMMu2w21A4rmdOYZH1vO9W77L5o3rkJKO93N5dZHt23fQ3z+IZWX43N9+gb279zI/P0OumOW5547QVczR19dLIhQkfIIoJmNnmJ2ZQFVAUUVHMimFyclJtm3ZzcGDB1k3PIREgqrppFKMJOkQhbQaLUyzs7FhWhmsTIYwilg7shZVVtF0jVarSZomFLtKCFlGNyxkTSAJGUkWaIpKvbrM0uIy2VyRjQ8uQJoSdL0eVdP57ORfsPeSS8nlOl6xlZVVoihBNzSWFueRZQnLdJienkBWUoaHB1EVhSgOOHXqFJblsHPndiqVMiMjw5imTnd3DxnHwXZsvMDjqquuRtM0Nm3ZTKWvl8RvU2162E5nk7W7p0ySpgihEoYJxUIXnhvQqLfo7RtAkgVJCkHoEyURluWwsjyPoitoqoosBKur1Q7R0nmGwPkmghASSZISNKu0VuYo9/ZTa7iUu3tZXl7B91zKXSVSZELfQxYKSHJHakx0OAgkWSObz9NyQ3JOkXa9habrEKd4bg3btDAsB1XVue3Wu+ku57EzWVRVplZvIAsNVdOwDItvfP07aIaNqfsUnD4Wl89w23cf4dLLX0MQekhJyurCLCdOHufg4We4ZO8lOI7JNVdfiap0OBvSVOHmm79Md3cPtm3zzNFRDMvmiuXXMiqfoZmtsce8ioWpKYIgoFlfZHR0kqPPHMPJhhRMQUKKostsGC4jywGKoiCLiMCLUFQJVaggEiS5hOsuIqUKjzxwBkMpY1ouq9WEBx44whWXDhPHBmksUW8JHn38DDt27eTZIycoFkpknY6cUTFfxPM8Bnp6iNNFdEUnCFxabkJv7xomJqYolUocfvoZ1o2sZ3llheZqlVy5yLaRHh5+/BQD/SaGFqMJlWK3RsHWQQoRQsd1ExRVxw9d4sgijlsQde6lUipimxGKkFA1DV2ziOM6vcUSc6stUkOhsrHMiLuFdL3P01OHUVIbr13j0fvu4qo3vwXVzkKsgnjlGq0vd/xjrnpR3fPBK9KPnvtxLb5iR9KPAXjPR2GmvJykzE/meX014PXl+vu3AF5/XF8/CXiV/rV1m37SEgRRer4WkZS+Ol2iC6Nfn3+PF97/CwDxFcbse/f/LwCM1//qxcfwvFfyeVmYfyYv7/MT8/nn81LtxXH8wg5VSnzeoC4Ubb7guZ47/3Jtv1SJP/r7ACif/8xFBh8SpCrxSoPP//c/5pd/93dIopjq8gqFfJ5akOI1fW666ef5zd/8GCuzy7z9az8gKwnGd28lW7BRJIU49rAMhdmlGkNDQ5w+M8r6jVsIgghFlkkDj6cOH2ZgzRr61/SxuriEnc+hxwGaJOFKJomiIqcuCgapSPHaLkKWAUEqQZT4HDpwlEv37mVleRo51fFjF0lRKZUrnDx2lLsf2MenPvWrTI6dZmRoHYmSEEcyUtKmVltCVi3yuSL11VWePnSMnTt2kytliNFICIiDkLHTowytWcPs6jKB67F58yZiEjRk4igmJGF2aop1I2sQAuanV8jk89i2QRB6CElnaW4RWZbJZDJ88Ytf5H0f+CB33XUHP/tz70ZRJR68+xFGx05z2ZWvYfvOHQSteYTogNF6rcnA0CBBEGMaGTTN4MD+g4xNnGXjlo1s3LyRwAvJ2BbTk+P09/UyPjFB/0A/cZogSTJZJ8PZ0VP0lNeiaypVv4ltaOiyypnTZxlY24+iCJpNl8CPyJUcUqFDFCGUgKWlKrl8GVkR6InH9NQU5Z5eImFgyh5RnJJgIMkmCQm15aVzod6dnO9mq4mqqIRhiEyAlbFYWFrCkQ3kkzPQ10PyOx/ByIHX0Jkbu4+tw1dx/NRDVLZeQSKV8cOQez//KXZt3MXh40/z/Xu/wQ3X7eaJIzF+lOP3/uD/5bN/8zmmZ5fZumkbl1++jePHJvnSV75OvujwqV//VTRNoz5xJ1nDI6wvs1K1eePb3oha7KM0dAWJZvzodDtvTUiS5EW708+vW3Ec06yfIZfLgygjSRKe5yE0hdhPObb/ETZXFNS+DSSqiR1XGV2osWbtbiKvweLsHJEvkSnb1Jfnyds689MTjJ6q8onf/E0mr30XaalAcNVukjBheuII++5/gPf90icZO30Kzw3Zvn0nsYhA4oVnLYSM74fcffc93HDDtRw+fJirrroKRVWI0hhBh1xEkmLiOAUp6czPRKXVamBqEIchtZrL8SNP0d23jvvuu4833Xgla4bX44cxmqIyPXGWgZEt+M0ZZGEiLJMkTgirHscDj0s2FxibncE2+lhdBC07zxf/8qvsLmT5mb1XwOwK7WYTy1LJ52ySJERIEnJbgCYRkxB06ySahNKV5XQ1RnFyDG7aSjxUpFZS6evO01yWkBybvCYRA6cnp+jv6mdhKeaKK67gyJHDCFlCy8DU6DhhGNOzZg1FJ8eZsycxDJ1K9wC7t+3h6DMP0WzUcQOdT//uH/KHf/QZPvgLN/F7v/tz7Nt3kmtf9xZ+8QO/yGc/92d88mO/TzuY4LbvfIvtG3dz+NgZ3v+LH+T46UcJXB2rO8OHDr+fbGrTnXRx6ze/wQc+/Evc99BjvPn117BQrVEpdzE7uUilUuBqewFSwUOtCv/HzfPIssL/uLxGoZhlYvw060f6UGSbr3z1Vj78kQ8wO7tId7kHSYS4zRYHnniSa657HamukqYJ7VYTVZbw2i1U1UTVOt7EJBWErSrNVpOBgbUkicrU5BiaoTM7v8i2bduIkjZekOLYecZGR+mq9DJxdoKRkT7CsIVQDGQ5hlTBNPJ4QQtVVQhCj3arRS5fQNM0fD9C1yz8YBWQ0NUc9baLrgtWlhe4dELm9PHneLv5WeI45b8UP8nPXLONyekFUlkiWxjEMtWO4Ypgfn4J32+QsQtIyCwszLNp6wYWF1a55Zbv8gu/8LNYlkaa6ASBh1Bimo0A12tTKhXQdRVJttAUj0athqEXqLeXEbJKxnaIwoQ4TvniF2/Gc31kRfDLH7yJO+/dx/zMGL/2iQ9T8xIOHzzM3j3bURVoupDL5fGDBprkMjm9xGNPPMNNH7qJ+AJDOz23fqRJhJA1lqfO4q9M0FCKDA+tY3FujK987VY+9alPkyoBMjKtxiqmrqLKKpGQaDVbZHMdFuBW1aVUyHB2fIJCuRfbhCBMsEybZr2OrOpIIsEys0xMnaJ/eCOxW0cRElEYsbTUoLunGy9IMG0NYgVd8jl1eoLFVY+egRJD/f3Uq/NoaoJuFpicXuI73/g67/65d9HfNwAIkiSk1Yy5/c47ePd73kMcxyzML6LrOh995KP8xZrPMt59mv/8wH9mcGCYQjaHMGUeve8AZ6ePc9muCnlHpeDUCMM+DHURRTXwWz6qlhKhEUagygJhWEjqAEFrCTluIiPhxnUUoeF7bWRJQsiCVCgYikboBSRGkTvuOcPbf/7nQYqoLbXo6sry4L5HuPrqq1mYO4kRz5J1IIhAYDFRk1i/aRemptHyAoyMSRIbzIyNY2kRvi9x2+2344Yu77lxB5a+gJp2kegyaSyQ5ICJsUXyuSKF7hySPUKrtoQVjpFICnEiUDRBENRRMYkIEbLBwnyDux6doLfH7cQLuwAAIABJREFUYdOGPWywd6MuWRy85m58uU25J8e9f/4pXv+ej3LJz/4akCLLEa+0XNR+vJg9CsRHOuBV3h6/qH6Hs+Vl2nvRgC6CIy64/mVt5x/XxXmY4vzjC/tOE+llz79Q78dglhfVu1h76fmRGRIJP4pPfmTML8K9r+65XViSCzxopmm+ahD0b8jzeiHb8KsE3a/QM/tq6b5fLdvwxSjGf5JyoQv+JaVrfgSMn//sXvnuzKsKgT4nlXMxzytSxy9syjA5eoyBLTtI05TZ+TmSNCWTs5ibmaeQzbN2YB1X/9XXkZOE77VX0DI2hqbxzDNHEIpKNl+k3qhTLpexbBuJFFlVCIMARUB/fy+rtVVy2RyGbiCSGC+ImZxbwsk5pKFPo7rMt7/5XYbXD0Mak6QJQkjIiowspZx47gStVpvBoSHSKKZc6SKTdVAUjWIuj6qq9PX1Uu4qkiYJzVYN07BIk4BioRvLzhEEIXEUsmv3btx2k+XqEplMjjj0OXzoEDt27UTTdRwnSymfp1GvIyRBEqd861vfwsk6zM4uoJ3T0Hzu6Eka7TqKImNnMqyu1kgliVu+dwvlSgVZ7eR4BYHHuuF1jI+PMzUzz9vf9jaKhSxSGoFkoesOcSLT1z+IqunYlt3x7qqC3oFBNm/ZjAQUcjmiuMOYHHg+kpDI5RwyThZJklFklTDwWF1pcfz4CXp685imRRIFNBsNyuUyi9UqtuOgKDpC1qhWl7HMDM1GkzSOkBAYmkkchTQSDdN20KQYd2WOatMnTWU0wyAhQVNVhMQL3t0o8EniDiturbaKquVRVR391AziwUNw7Q4WPnAjpi3jt+o8ce+f0Bi/k9XGEs1CgZLZQ84pkSYxwfxx2tE8W/Zex57L3s22ne/m+z84zLXXvYuvfvs2fv8PPkOp0I2USlxz3SX4fshn/uj3qPT0sH3bdp49cpTrr34tPT39NFtt7JyMYaUITSZXWUcqjJeeFi/Kb7lwNoJhlkgxX6inKErnt6ywND+BSJap+wpOvsji1Bm6B9aiCJNWu0Y+myeTySEkB8cq/H/kvXeYXNd55vm7OVbdil3VudHdyJFIzKQkUlSyIuWRk57x2pI14yxrd8fj8axly6vxzng88moseySPZckUKVkyJdFmEiNIAiASAZAACCI10OicKoeb548CSRCBQdL42dWc57lP9711zrmnbt0T3vN93/uiyiaT47O0W4vs37uHT3WNgqnT7EoT+iGN1ndYu95CkdbRrNcQZZlsIU9MhCRJnUnvQrtVVWV0dDmiGNPf34+sdNqF0JkYG/U6iiQhywFREOO2AwTBR9VUKqV54ihEUXWymQxOKoMki+SyKSxFwyi38YYGqfgxkRGy1Jin3mohjS+QPjqOMTVHe/w8WrtNjyCjLMww89wu8l6LjbkUq64doGJWOeosEN+oU1oW0FqtUVshI27OUNpk0ry9SOOGPOUVCcLtI8z0dqGvXUdy+3bEtatpCyI5x2BqvoydGiZsljl96gh+FDE1u0i7FZFMafzWb/8qf/qnf8qNN9yMrMk4doodTz7D4PAoM9PnSGds7IROvV7nZ37m5zl/7gyf+JVP0NU7yKc/81uousp//Px/4t/877/GsuEtfPXrf8Xn/8PneOnYOLIo89u/+a/JpbIkkzkmJqdJ2Dai2GZ0eBWhEHDX3N8hKSKZKMXbb70FBIFcvohMSCJpE0cxppli7Nw5zjQlHj48hWFpZNEoZ1Vqq7KIkkhXvgsIsMwEa9ZtxPNdkskkDz74IMMjy1A1nfHzE1QbDcxEAssw0LWOnIZpWcgd0z+KqtJotnjuwCFWrl5NLMqcGz/PiROn6O3tw05YHZIyhI6lXpEwTa0TGpF2qFbKxHFMqVQl35WnWqmjKjrVao2F+QUMwySZTFGvVdA0nbHTZ7AsA0VVCcOQOBLY8+xOenuKCAjMpGQWs7B55hZarRbhexu4QUCuqxvdSLK4UGPvs3sxTRvbTqCqKpaZJPBj7r77Ht797jtYXJqnXCrz3ve+G0Xt9IPdu56lr7+PSnmJfFceXdcxTZNyqYKqyHjtBpKkEEs6qiYTRxGB53bk3xYrLC4s8DM/+9OsXDnM4sICu/bs4VO/8stUyouYps6yoUFkCWZnp7GTJo1GhRifdivg7LlJRFljYHgASZIuHzuEzlogjiJ2PfEgy5cPoyXTKIpKu+Fy69tuIopdwjCiUamiKCKGpRMJQif0RYRSqYQQw+JSCUkW6OouopsJxs+OocgqjUaLbDaPrMhUKkuEQYyTsvFbIlEAUaxSrnpkMmmCwMeyHFqtBpXKEm67QiaXJteVIeM4xDFYSZsoDFgs1QCZ7mIRTTcBifPj02iaztz8PFu3bcU0TVRdJWFbpByDbbvewfcG/4HICviNzG9i2wlazQaCYJBNNzh5fIyCI1HMJ1A8G188jxrpeKHM7JJGJKroogCiTxwFRHGM60roeowg1PD9NpIYIcsaityRzyGOUXWdIAg679yBI9SaTdas38LefbuwLYU4grXr1jI5eY5cLosutYnjFjECUSBQD2S6ioMosszUxCyJhIkASISUKnVsO8GxI4e46YZNZE0PVXWQ1JDQa3Hs6HmyORvHMYmFOoqeIFsYplqtYRkCAhFxHOK2G6iajCCIRLGPdIE5Oe0kCIOY48cn0AsK+biHsTNjbHrfCr74hS+QkZocefEId/z0xwni4E26/746r71BjktOL1/ni10xYld8xfyXV/9W3YTfqPzrrJ2vVsPVLM5X8XK8Olvxm6v/zdf32rX9ZSolV8z58oW3+twuadol58pPttvwa8Er8eVWiddNFz3LOH6Vie+q2d8kULsYvF6VUfdNxrJemt6q+PPVXCMus65f9OIJwmt3Xy59rV4uKori68a8XhrD8Ebg9eU2SUgIUcwzTz5K30AeuzBADB33XEkicJvUqxXu/+4/8ctPPIcSxyxsGGXlhnWk0mlCP2B+cZEXjh5nw8atGLoEgoCm64yPjZFMdOJXK5VFHCdJGEV4vocqK5QX55FUEydXoNEokdB1KtUy27bdiOc2qTdrZHNZXNftTMSLC6xduxbLTvDX//1vuPGGG6jWK4yPn8c0LDRVIQw8IMQwrY4mqywSeiGqKlEtuzTbPoqs0KhV0U0NYp901uGeu7+Dk0yyatVqEESWSmUee/RRdjz+BNds2ogfBLTcgIG+XpYtG6Cr2IOuG+iaTldXgYHBHmrVGtBhkHvq6af52M98DAQ4dPgw69evYtXKldSqVWrVOttvuJ4oDlAVkXazhmCfpuGfxdT6qVRLRIGA53WAa7m8iO04CHGMbVmEvt+xlsURd931Da69/npMQ2fszHlMM0mlWkEWY+79zgPcdvvtKIZP6IOuadTrVXRDxUqkiYHvfe8+zo1PsmH9WrwLpCyLs7N0F7qZnZmi1WpiaBJCEPDA/Q+xau16nEwRQZJpNBvEcQBRQByDpumIQkgU+LSaHTfDhKoRpROI33mEoNXiqdtXc7dX5rb3vAdRN0C3EQKDk08/i9CM2bVzBknRaZQrfOBDH6U7aeAU1vLoMy9x07s/RqQmef8HPszTz+6i7VW54ZYtyILJf/1/v8gHPngH99z9Lfr6c/zZf/4vvPs97+PQoRe4ZvMtfOs7D7Bh83VYlk0QBKScPKmuDQSv07ev1J+FK3x28f8dBnKBhC1TWhgjFJNYTprawhSiYaMIGqIME1OTpLNZypVZZCUEIaTRrjE6kOOjd36U1I7DhIqE352n2WxgJSbwPJfHH5ni5ptvIJVLE0udWPUwDDukZVHHHVEURYLAx3VbJBIJoigiDELarksUhHT0YkXK5RmSiRSKpNJ2K8QxREGbpJMgEkS8UgOx0aCrp0Dh3Dzai2OEbglRstn7wENsLPaSjXScOGbOMJjaIHNyQ8SL9iL+2hbTiQqVvlmktU2q3W30rQ5hf0jdrtG7vIBkWYiOjV7IkhrspyKEuKqOlPDI9c9gOD7np/tZufG92PkM1WbMxNgMX/yzP2fVUJHe4RFavsbsuRNkijlKSzXWr92K64skHAFJErj++hs5fPgFvNClXqmxbet2vDAkn7Op1paYnJygp6eXIBJJJBPceuttBAiYpsbE9Fnu//7D3HbrjXz9nvu4/oYNrFm9hvGxBZ58/D4a9So/97Mf5xt3fZP3/dS7+dSv/Cs++KHbWTG6hnplib9a/ApLboltuc2Evk8YRRx78QSFXJrx8XPk8l2cHZ8mmXbIODayIpF0khxSy9TXZDEMnXvvvZfR0VVkcg7lUgnDspFEkUqlRF9/H27bJ5VJk3ASjK4YvWB96ngGSLLEvn37KRZyuJ7PyZOnsGyboaHlGGaCMI7RTZ2hwWH2P7efwYE+RDGm1Whh2TbtZoM49BCEmHJ5iaSTQjdsbMshDAPGxs6SdJKcOTOGk0qjKBqTE9MIcYRpJHDbLRzHIqYjL2NaBt25NKqm4boBe3btoaenyOozmzEtk5MrD+NGOkEcEocage+zatVKDh06gqZpLCzM8uKxM4wsH2Hr9q2cPn2STDZL0kkQhP4r39lJZVA1FdM2URWJarWKqmooioYkhJRKSyScDG0/JI5DBCAMPIQ4wnXbbL5mE9XKArXaEoViNzfddBOCECFLIqoiUqt1pMQMw0SWNXRdx9AtYiQe/cFjbN2yhVQ2dQXwGgEd5n4pDgkb01iZAoZh47kumXSOVrtCpbqAqSeRRag1ajRaLRRNJ/R8BBHarTYJO4Vhmp15rVZDkGQW5ksUC100G0327nuOhx56gFtvvQXLTFCtldBVkXJpiceefIodz+zm+uu2U6tVMTSTZrNCLl3A90DRTPwgYmF6GsNO4gURcRyh6xbTU7OomsEjjzyKk8ywb+8BPD+gu6dAMuUQxREIUIur1GozvGvfL/D5a34fy7f4UPNOwihGVRT8YIGwpWE5C2TNHLsPHKZ3wGJsIiKRyCGITR55+jiIEXlHIIhj3GYDy7YQBItGMyAURPw22LqOF3pEUXjBqBITxRDHEXEsk8oPk8um8fwEw8OjeK6Hk0xSqZZJJAzm5stoQhtR8l/ZfM31rmBhsYVtWSQSGdqtGqHnEcchqVwPiwvzFIoZ4rBN2hI5cPAMXb0GmqCSzuVQVIFa1WdutoqTMpG0FJGos7Awj6ZEEPtIIsSRxCvSHFGMbZrYekBpqU65ErH1ui1EBqwqX8MheWdnE1FqUV8aIz+6mlzv4OUg6S2ky8v8iK6zvEEc6WXF/+eD16unSy2o4muMUK8X33ex9vsrtV2CFwTeoL7LwO3V9V2vBl6vtsl+tWfzSv2XfPy/GHh9i3qll1lef/zg9Y3KvtXrP67PLy9wsQX7VbfgToe48gv+pqq9uCO9WctrHCMGMn/0B3/MBz98J4qkU1pcIpNwWJifx9BN5qfP8/GH9hG1Pb489hLLRodRVBlZUXjksScIQ487P/JhpiYnSKU6OnWSJJN1Mvh+RBhFiIJAo9ZCFEUsS8f3W6TzeRQhYml2klQ6gyAbNFyPv/nrr9NTSNHXPwSI+EGErKiUyzUajSa+7zLY20fLcykWuwiCgAfuf5Du7iIDfUXK5TKWkwRRZnZyisgXiOIAXdP4269/nUqlSqGrgGFbnDl1Ak1RWbd2K8/u282uXbso5LswNI11G9ezbNkyPN9H1TXuvvtb3HrLTczPz5JwHKKo4woehC4IIa7nk05l0XQFIRboyueZOH+ea7dvI/BDEraNJIucPPkSxe48ge/hey6SJOMqe5HUBqI3gu8HSKLE3NwM6XQKy7IpLZWIohBF0zl1eoze7i5KpTIbNl6DphmEQZsXXzzDqdNnMU2TjGOzes0qgiCi7XrIioYfxrQ9l1iIkSWZaqXExvUbGR0ZIQgDDu7fT63R4tTJk3QV8nihS75YIPRdZEVn45brWay1kCUJWZEBAUPXiYM2ESKaplKrLmKIGvpsBXGpRviPTyOGHv4v3kHij3+d/IZruPbaW3ASKof2PE5QK1Et7WTZmg1M1Kd5/PEDfO2eh7jj9tv5vc/+Cbt27OToqSX6R9fyjW/ezdEjz/HgAw8wNTHFJ3/5X/KDB/6R2995B3Ozc2QzWRbn2+x8aif/9nd/n7179rCwsMiG9Wv5zO/8Prt3H0Q3LLoySTIpCyvTRyhf2fJ6pT71cn95ebIQgx2I0TlicfCifBHEMqZuQhBiJlIkUhmkoEkiW2BhZhHDVGh5bWJJwtIlxicmKHQX8cIQMZKxEzbakweZGy2QzHZYq/3wCKqmsWrVhxCJO9ZUYsKo81tGUUS93uJLX/pLtm/fRhD4qFpHl/dly6ym6ghEtFp1NFXj5PFxMukUjfoSsqihTM4TLJVRj57FODuLMbPA/NmzON153PfcTG35EktDMos3vp0tH38nv/W1v+V3/+5LbPnFbqbbswTqGXLmIt0ZA03zIBJJOcOItkDXaJHudRGpAYnMQJJEt0W5MYonONjZPsrNFn0jC+T75kmmXPwgiSS1KRZP0m4cZ3oph4zJ2Olxhkb62bRxHe3KGcZPvEBxeB25rgGqlRbnz44zMDrImZNjxLHM9PQ0q1atpNEuM9jfgyyL6JaO2/LQdR1VUVHkjtuzJEikMznKzTqFbC+pjMGHfuqDtBrz/NSdd+K1NP7NZ36Pz/7Bp/noR25D1zQGhoa4ZutmqqUSzx96nt/+9CcZH5umXS1xb3Q/Yiyw1loFdLRR813dVBfm8YhJOkkcO029WsbQFRIJi0ajjq5b1GoVNE2lt7cfVVVA8KjVm9jJNIosIssiiYTNd++9j5UrhhAVkTj28Vt14khANzSWSiVGRlegyCETk9Nk0vlX4kdFUUZVNJ577jlabpONG9YjSSKypELs43kBiqygK2rHMtvXQxhBpVInCDwURSaZtBDEiEKhm0w6w+TkFP19/ZQqNY4fP83ylStAiGk1PRYXSoiixN13fZ1Nm7fhBgG3Vx3y8zH27HpUVeX46CFqFY/nn3+W4cGVHDq8BzuhkUnneOQHj/L2t99C30AfUexRq1UoFLv5yn/7KtffcD3NRgtRVDvxf6KAH/jISoeZ99ChQ3R3F4BOzPv83DzZTAZJFCjPzzI9NUWxtw8kBVHueChopo5hmh3yKUUhCHwQRRRZB1Hk4OFjdPcMIcsxrWaDUqmKIAQM9vegShLpXO4yM5RITIyIKEpIQsjEiQMURq4h9iNARBShVmuSdrJIYoRi2JhWh0H5xWOn6O3O02iUCfyIxx55CidhIgsxxUKBKBLY8fRO5DggjAKu2b6dXDaDaerIkoYoRjTqFbKZDCPDI2zdto0oDtA0EeKIKGrhtto8/sQzjE/MsGL5Ks6ePY1lJxFFAUHqhBMQxTjpDFu2bEAQYXZuhk2b1pFMpZAUmdPeGZ6rH2R39Vmys0U2zVzLN5b/NT1RHx9wP4KmG4ShR7Mu0WpP8OgTYyRSImtGB7HMkGpDwHfbGHrEutXLKBY0FElDkFPoqoYfeviRTCrfz45dL/H8odOsWdFFLIS0mo0O278AqqoThD6+J3Hfg4dYt3qIdK4bSVUpLzYwTBlN04mjmHyhj6i9iNsuIcsikd/ASHWTSPV0vKZQiWOParnM7Pwihq5RKOSRJYXHHnuG87N1tm9ZhiEZPLnrCCtW9AAeIGGaJrYh0GyHiIpNOp2l2W7iNuvEkUgkWpi2ApEIsUAUd/R8C73dHHjhLJKkYqZU5LLBidkTXP/T1/G1v/wceaNO/7obyfet52WbxT8XeA2PSMRz4gXr65Xz//8CvF7KJsylLtNXb9vrPes3H0N7OXi9ap2XXfjhwOvVPv6JBq9BEH72zQRmXy0JrzmEy3YY4tdmeFli9RVLxsWfiRdZOt6K2/CV3AdeuzPy2vRGjGxXjVe+RPsKQbiwI9m5Lrzmy17atgtPSOgMZq9oQ72s/XoF9reLy78Sz/tPT3aa8oF3cHGs8sX3i+OYQDRpt+f46uc+z3t+5ZNIBGiyyvxUiU//6u/wF1/6r3xKzZM4foZvVSZphwGrVq3G0HSmzk9S7Olly+b1LC3O09/TRxQLKKpMGAVUG2181+P+++5DklW6hnuw5SRuuUysCTSCiKmJOWanFpAlGSthYukJUk6CdCZNqEBpsUzCTIAQcuLEKZ5/4QWWDQ9T6C6SzaYIfJAkhZUrR5AlFVUzECUR01SRBIFKtcbjTz5BJtOFaSZYt3KEFcuHkTSNyHNJOjmefnofwyMjLF+xjFw2z7nx8yxfsYparYxt69x37/dJ22lWrV+JZSexLItIDNF1k3qtRaPZwDBMNN1AkCVcP8TQVaYmxzl7boy+4WWcO32Gcq2KnUyybHQ5pUqDdNLG0nVOnBojWVii3Wzzwq4mfQMDlJbq9A32ML84R7XWQBRiEmkHRTCxVZlYltB1h0qlwa5du1E1jXVrVvL8wefYtvVa5hcmSDoOhm0ShgJOohOb5mRyyKpNu1XDsW1EGSIhQEbGbTfI5tKMbroGRZNJJRMd+QdNJYgklirzpNMOiuBf2KBQqNbqiHaS9sIUcncPyu4XER7bi6cqaG+/luZn/iXOp95Ps38DgVjFMVMEQRl/6Szm8FaspRMsNLv5u7uf5sM//1luu/MTbNu4BVVP8sUv/Dn/x7/7I5xMkp2PP8GH3/9+rr/pFvKFbn7lU5+gmLVIyXX82gLe3AnWirtYfccHSKd7UVUZTVMY6O9BU2zWb1jFkzt2k1HnWXnNRqK4gidJ2NmuC3EmElfaab20X73cnxEEZP9hhHiBWN76Sn41DAlEkVhVmTw1RqYrRa1aYbYkkCsaRJFHLGeQZRu8OiEC3cVewkBElizGJ8YJYsjvPoK+apjFyiK+5xJEx5FkGVlej6bKTJw7SdIUERCIwjaB20aQTFYsH8U2dARJRjdi8E0EIaTVqqJoKu12iK5aNNs1njt8hKFlQ1SmF6nvOYrptqhvXsH85hVEP3Ur87eup35zjsw7PsqMLKKUjxEHTYJ4kdmxB1nT5/IL/2IDlhmRLcQ4CR/ZSpHqXk66sJLiigbZoRb5wQjFiAnDFGHkEMUgq20KfZPke6okU4t0FSeRVJuAQQJhBFnrIhaHOXu2TC5Tp8s5iCqdJTO4kpGhPsLaMWZqS/SNrgcvAtXGsFLc9o5383Mf+zA9PSOYjk3asUmbGoqVpu038aMQ3xWp1+ZwW1Ds6kMSXJ7bd4ZsWsNOiDiZAg8//Cgb165lYu485UDgK1/+Bgd37uHnfu5OXLFFtthDz8Ao+BFH9+xk1aZruOWWd1GuzbFn1zhrt6zmrvI3UGSJFUovpq4Ryibf/4fvsfHa7RiqgqaKNOoVZidn+dUNCiu0KvumQ/pbKaRam5qmYhoGO57cwdCyFciqRixEKIpGu+0S+CEbNqwm9Dw0TaC82CKdyROEZVSzQ0ojB00WF+d5ZtcerrlmOy8+f4wN61YQBi28VsiZUyfYdt0WFCXBmbFzeEEbw0whiwqnz5xlcm6RlctXdDScFRlVlpBNm2bbJYgErESaZrWOpqskExaSBNlcmiD00EwTQVBQFYWYkHbbY+2G7Zh2Ajthc9OXj2MdnOIHv9VgbP0JYkHg2acfZdOmbYiqiiQpZLOpDpO8pdPdk0MxNYK2gCT4LC7Nc9N1NyAgcO93vsv05BTrNq3j4L599PX2dXSEY4+e3mXUajUsXSJA6HjiKDoIAuVylYFlK2i1W8zPjCMIMaZlYhgWtXqThJUkDGMO7H8Ow9B5+OHH6O3tY8eOp2g2WuTzaWTdIJ2yWapU6O8fRNUMYkFAkuXXLAMkQSYSBAjbTB1/jqqnYsgaguAiRDLNVpsYkdNj53CyGVRZQkCg1WzS15fHx0SSRRQxZtlQL2EMlm1RbzRQRJnV6zaSLXShGSph0EYRXBKJJH4QMjNXJooVSqUWiWSCdquCIoioioFqqYQKCEHAiuE+ctkc/3DvfWzadC07nniSvv4eAtdHECNEJWbnrr3kcgVsK0kimaCnp4cpf45nm88y3Zzi1/s+xZ8N/ztuODlAenyAQ4N70WWb93nvwnWbREHIc8/toCtXZOL8aU6PLzA63AOeRiYTk9ZVZC3GdcsErkDbrfHN751ksD+LJnnI2B13/IxGMdlGVeWOy22koag6YeiDKEGkIogxa9caHD26RLOt8eJLRygUesjlM2iaQqlUpro4y1K1QlL1UKWAMGgiygk0p492EKKKAoqsEIQB+XwaXbNotFzqjTalpQV8r8niXIlk0iLpgKVLhH6MrmnYSYtIkJFlAcUpQBSj6jb10gSa6FBplNHkCAEBCYl6tYGh25TrHpWyyPmpMdavWY0i2dhekiPxI6xbYeLE85waq3Pd+/4FYRAhSSIQAfEr3npXC5G7UmjeK+vISwBcFMUIgtipMxYgFvC/rRKdlZC2hpfV8+oCvnNcXL8oirxlHddLdGcFpE4bL14bX01X9bIvf2Wd11eeycv3EF6773QlD6wrAsaXv8uF736FBrzmuKzeOH4F9AgIr8l91bpigcv0bN8EOrs0908423D02YvP33LM6xul19t1uOwlefXfHwW8vqlmvYkyl7OaXV7m4pf9zbQifsXCc9nd3kTpV8Gr8P63X3UQi+MYIQpwl6aZPjPG6MYNtMpVhFjEjyJuvf0d/Py26+j98j1MrB8l29d7QYOuh9mZaQYGeolFif37DpLLZbCTKpquXWgAGKaBJAqMjoygmRqh20ZTDTRbRdd0FNXAsR3y+Tz1ehlNV9F1naWlxc5EkEwxMznDubNj5PM5LMPk/Pg4q1auolGv8/zzhwmCkN3P7iKVSvL0jp1ohk6xu4jn+wQX5CFGRpbRVcgyNztLImnSajVJOsnOQkyWaTRbJJMJfK+FIsuIgoAsidiJBJKs0Dc4RKG3FyeVZHFhiYmJ8zQaDUy9E/N78MABiAVF+WBWAAAgAElEQVQ0VUXXFKLIR1FNBASGBgZQZZ2lpSVGR0bxPA/T1EmYKhPnz6FoKqadQDLOoMgKhrSOZNrBMCTaboNUKkUymUJTVebnZ5k4P82jjz5Md28BXTcolZZYsWIUx7HRFInR5cPUmjUUUUfTdKIo5oUXnqe7pw9VlfE9l9npKXK5LoRIoNFssrCwhG0nSDlJGq02jpNCFgXiKKbVdtEUFVXWkKQQRRYRJYVarU7gB9iqjLDvRbTdx5BdD/XDbyP895+g/cGb0bav5ZlDe3GXZE5N3Muy3vcxdu4F6uVp5mcXSGSX8cC3v839j+xj+ehaSpU6IytGefzhh6hWK8RhC3VhJ5mxL7E5O0GhvgNn4u8pVh4lOPI1whfvQZ7bi76wi7T7IqbQRH7p7ym4h4lndoHdj+b08szTuxk/f5aPf/wX2bp5I139A9TmzkEskeweRkACXh+8Xum6FBwAILoIvIoxhKKIoohMj43hzx+luTiFI+vErQWMRJZWy0cTIW0rIKsIiARBhCCIdOcSNGpl0s+8QDOXQDMNojAgEk4iiSKytIooikk4KSJBolxtIskKnh9RqZVJWBql0hyaoVEuVTGNBPVaGUUWkASNMGjRbCxiKBrDIwMo5QrpM5OEG0ZofurDLKZMGrpAbqBIOtVEy5j4QkAxdQKmDqApDXKbFiiORAys1SmMyGS6VbI9Cukei0y3gpmuYSQXQVSJQpvZWRvfz6Fqg7TaEpJcQBD68KNeBNFGFHO4fg9IQzSaArpmEUUCgReSSncRxT34gYgilXHU42jiXnTzHIX8HIZyGFPfQytYheeLfObTv4miirRbdaCzseW3I8JIIgoCfK9NMmli6DZR1CCMW3z3uw9wy9tu5MRLz6NqCtNzJbZds5n7vnsv27fdiG5lufWm7WzZuJlf+qVP8Gu/8ZvomollJdFViV/91C9xdmqe/+1Tn+CPPvvv+dKXvsz26zdxd+UeJFFmWOgnFmRcN2JZXy++38a0LKIoQJFlcvk8y7UKkiRxTirynr+fYd0E7OhtYhgGuq6TchxEWUSURJoNF13TCcOQRr1BEHr4gYumW0iyhK7JhLHY0caVFWRZZtnwcmRJIptNc+LkKfJdee75++/y7ve8C9M0iSMwLYNEwkRRdWRRwkkmyeQyqLJAFMe0Wy5/+zdfY9OmTdz7nX9g25atjJ89x+zMDIVigZ07d5LJZPj7b3+ba6+9vsOOD8iCiCyJKLLC0uI8qaRFo15h/e4lFEXm3B19REHQAbmRR1exgG6aTE1MIMQqL710hrGxcdav30AYR0iCTmlpgd6+Pvbs3Y9lJzh1+gy3v/MOwjCmVquTyXTYfkVRpt50cZw0QehjaQoCsG//AQZHRvjmN+6hVm8yOjpCs1GjK99DqVS+0PYIQ9NxXY9nnn6atevWsnbtGuI4YGRkGCfl0N2dZ7G0hGlqQAdsEkPb89AN47VjxgWJOFlRWZyfY2B4BDuRoe25+AF85atf5frrbiQIXPLZNJ4bEMcRmqbRarawDA1RjJFkGd2wSCYt2u0WU5PTzEzPkytmEMWIKPLwvCa24SCIEogiTipJtVzl/gfuZ3BggHQmg6RGKJJG4AsYqoMfuLi+R9LJknCyiEKVZYPLmZ3pkDDKkoaqmTzyyFOsXbuS06dPsWPfU9QzDQ5Fh/kF42P855Wfh3MyUjSPvnMYIa7yj8WHQVTYcGojvhfguz7Dy1dg6jaEEdVyiUKxwKnjh8h26wg0QdA6XgCRjmkmGFzWRdIIkWWPeqtOgEw6P4SpiMRiG0VRqdebCEJMHAUdG7cYEoYBRBLHj52n4QZsvm4rXcVujh15ge5iET8ISSZMTFsDt4xARISIqGWJJYfA85mZnerExeo6L774EpqmESPQaNRYtXI58wslhoe66Mob2IZCHAfISodoLCImDoMOeDNyHD96EsdJYKoBohChWwpiHEEMYdj5rcPQZ2pmHlXPIik658+dIVPooae+jNRHdA49s4OkUKd/5Qa6l1+DcOFeL0ORl5l5rzZvve75JeD1ZeLCi/OF+zra6NK2K4HXq6crhcW9sXXyslpeJ+8PZ+X9YT0rL8clbw1fvDnr7T9P+okGr1EU/2iETW+UXue3uiz29KLzcGEMQbOQe9f96E24yq7UWykPr3bPy6w2L19/nTou1WF6w85+tbZsXIlwy9ZXdF6vdJ84jjGkmK/9+X9h+803MjiyEjnquPwaCYtE2qbrM/+Bcj6NvWblBZ2zDM8d2MeyZUPMzE4zODTE8NBqZE3GjzqLrUqpQhxBKMQYho4oCBiWSW1pAUU38AWPqfEpFhcW6erqQhA7Lm+KrOAHHTIS3bAAiVqlgiKJBEHA97/7fT76kTvZv28fRDFDw8vo7e1hxYrlSJLECy8c4dZbbsYPAqIoRlE0ojhE1RQazSrJRIKZ2Xm6e3uII59SaRFBlKhUqjz2+OPYhkbKcXj+8EFGR4eJkJicnCaZToEs0ajVOHvmLD09PfhuwDfvuYetmzeTSWd4dtdOMuk0CdsEAkrVOqXSIhknxfzMHA899AM0XSeTdggCD7dZxrQsFM1AlGTc6HkkSSKfvo6lcgm3XersmvsRUQSB52LoMk4yy8jy5WTSSWq1Mt3dBdqtJpXKElHk4wUeSJBM2nh+C12XyGYTiKrB4uI8qWQC2zI4deochw4eRlZUMpkMkiAiawqGriMBURgSRRGS1LEY1Kt1bKsTU1xttCAWsSfmiR/chTA4gPKH/5rqL/40le4Erchlauo8i/MzXLttA27rPEVnA4Y5g9uWKTgCPYNbOPH8Sf7pBzv5nU//Pv/2//w97rjjDnq6s4yYU2z0v8dmdQ9G6xTZwc1UXJWlloLYvR2SK3lpVuLYjMy8X0DtWsG8m+ax/ROMbH4PTddHieo4C4+RXHiUvo0/xfOnJtm9ey+qZlHsLlKZOkLGNliME2QyeeLoCi77vNqHr7T7KoUdaahQ2nJRvxIRpIjAaxN6Ie3mEh4RSA7F/n5ENDRdw/ebzM9Mo9s5oCMH1G43WZqfxLEtzAeeJWy2aCQ1TE3Bj46DAM16AcfJEAsKkSCjqzog0m77NGptHnvkMdatWY8iaZi6iSzB1OQErWYdy3AQaGGaIvVqE7niYR0/R+VD61E+PETGeZKu/BH6uo9iajtR5CMYyhiGdIA4OIM73iImJkxLtFsSrapGq27huw5u28FzDeoNCz/qQ5CW0/YdVKMHK5EnFlQU3UaUFCStI+/ghRGKliSKTZAgDAVUVSeORARBJg4DRBkajTqi1IdAmnYtprokI6lr8KIcpUoaQweF3bhsZXpyksXFRY4fOcoTTz1Jf/8w9377+/zR5z6HoRtsWL+WUmkGIdA49tJB7KTFmjXXsVgaJ5mwKC3VGB5dw8LsBKuWL0fXk/ihhO/NoqgG/3DvP3Lu9FnefuutnD13nlTK4aknH2fP/hfYu3sPU1PT3HjzBoZGBvjq/DdoN5pszWwlFCQCP6A6P8/9D95PvekyOrqMZqvN7PQcA/EMqXSaAyWVtYcbiAL88amH2bBxA7t37SKKQwQBbMtElgwEIebIkedJJlM4jkPLbWJZKaI4wG230TSLGJEYkf17n6OvtwfPa9P22qQzOTRTZ82ajahGZ9Hr+z6qJBIGHqpmMDc7g2l2pHFEIhBFNNXEMmw0VSOfy7F/337WrFqNIEIymaRWq1EsFlhYLOM4KeyETeD73PW3dzE8PMThQ4dYtWoF9XoZSYJ1u0p4nsfe9SpTkxPYpkWukEFRNVptl6RlI6sKI8sHWbt2JY1WHVFSeeC+H7Bi+TCablLo7cZO2BR7uklnMhBBGIUkEgnGzpzCTqb55j3fYtXq1YRRTNxusrBUYvnqVQiihCKp9A8OdVyzo4BzZ2c4Nz7O4FB/R5JtaQnTNNmwYT2e5xJGLqapYRgGqqrS9l1kSUQQRVzXI5lIEAYhLdfDsKwLY8eFsSSOiQUBL4jId3UTRTFnx6boKnbhegHbtm7D93wMQ2NpaQHHSaMonU21arVFrTSP67VJplK0gxjpgkdWd7GHQlc3oqhw6OBheoq9OHaaSq1xwQIsUatXSaUc1qxZc4EN2mR+bon9e5/FTuhoqkCz5ZPJdSFKKpqm4zYb7N61m5vfdiO1egnPbyGIAtu2b+7Mpdock0PTvC15K/+x+w/ZltqCqiR46qln6EnpOE/cQDn1GI/kn6NSbXBH7V0Uij08/dRTjK5aQ73ewknYuPUlDh49zi03rKVeD7ATXYhCTBjCM88co7e3C12qEPsiiCBKMopho1l9tBtVEJuEfoggCGia0uHq8CPCOCaOPRTBpq8vSzqbodYMMZNJbMO8EBMLC/MzZLIZJs+8SDqTIBJkzp2fw7BylJZKdHV34fk+xKDIKkknyeTkFKqqkHISPPrYDhBaWHqMYxvEcYQki3i+i+9HuG5MHPjEskMx38vMzDRus0oqLeN5bSRJRlM7BGu+7yJIMU7CwfU8zpydZcvWLaS681hTaXZqT1BfbCK1p/DFKus23oKvGB0CskiAWOINmWgvWQe+9sKrc9zFcZ0vW04FQbhIKie64rx4pXrf9Hr2EoD5MnC+omX4xwRef9h0+fr+6muFH8d9fpT0Rqo2P9Hg9UdmG36j9Ebv3cUvxEVuEXLvuh8LcH25vh9TRa9b35u5y6tlf0jwmkpeFbhenERB4J/+7husu+02DCWDG7Q4efoU3YU8+mO7EJ8+wEPtMppuIsoyiqJRKpXp7+9HFEQESWaxNI+TSqHqFnOzs5iGhiZJtIKYI4ePkkg66IaFnU4T+RGNygI9/X2kkzYREaVqlWQiidf0WFhYQjcsXDfmr778FbZs3kgYehR7eigUezhzdoyN12wi15XHtm2iyKPZbBL4EZalYtlmZ7AjRtHUCy4gItVaHUu3cbJ5wjCiWa9RqzVQVRNdMxgeHsVKJEhnsmRyWdquiyAIHH/xJfbteZasY5NIODxw/0OMnzvL6IrV5Lpy5PI5vvWtb/Oud78T13ORVQ1VNxEiH0UUsC2DVC7L6jUbOXXqBJPnx1l+gSFUN5OAwLHDh8gN1BElGY1VtBsNZEVGlg00zQIiDE0j8BsoiolmmZw9NYZlGXhuG8tKoKsi1WqFXL6IZiQol0pEQYwYK7SbAeXqAtl0DklVCOOIlJOm3WoyMDRAo9kgnU7TaDeRRIkYiOIY8JmbOEk7EDh5aoxMNo2mW2gyqLteIBqbhC9+hmdWpujbMEylFdDtGKhWCieRoJjLcPbkCQrFG3jh6Jeh0sPs1FHKcxX+6E/vYvHYTn79k++j9vT/xb+6I01/7X7kE19Hq73ERCkgvea9eMmVyGYXipGlGUjYThpds/Ej2HrdtSyVlzh3+gw333QTntsmFkTQszy5/zTHpiMGl41gTXyTvDTLpg/8LqeOPMey4SLz5/aTy6YQ8itI2A4C8hX62mv7cBC8ltlRCi9YXqVXLa+xICOELnMzk+QLPQihiKSLLJQaKLaCbhapuk1ESSLtpIkwiOIIQYgoVxYpdvcSxDHmP+0kliW8vjzlUhlFO3dB+3gFvushyxCHbXzfQ5IEDEPjwN4D1CqlzsJeUyktLVKpznLs9BEq7XMM9Ylo6gzy2BT20Xn02QWkTwfoNyyiyecAqePWKwzgxctpekXw8syOj7M0U2bhZANJVPEzGYIggaikiCUbUU+j2lmiWEHQEiRSRUJBR9FUmi0XVVERBJEQH1UzAIFmq4ltKtRrdQzNot1uoGpWJ1/cYRYl9tF1FUlWiTyPk0d3I9AkkR9C1RNMTk2SyxaJhByqNI3vNdD01WRS3XzkfXfyhS/8BZKhMjQ0yMd/4aNkUjne9c738Ou//mucPXmUP/yDL/DROz9Jw29iqBb3f/8H3PaOdxGKIZoU06yXSGVsJE1ACEIUI8HPfuxjDBTzJFM6v/Ybv80tt9zO//25P+GBh37An/w/f8yffP7P+eSvvR9R0vnq7F0Ymok5Y5NOp2g3m8xOznDzbbczumIZ7XYLWTJIJHJcV+zEap70k2w44iOJIj9IL7F85SiqrDA4MMD+A/tIpzvM3aXyPD09eWamZzh5apzh4WEUxSKIQgzDolGvo0oClfISQyPL8d0mpaVF8sUedLWjjep7PpIS4wcCshjTbjWRhBjfB6/dRtdVmq06nhug6Qb1WpWEZSIpGt/93vd5z3vfy1//97/h+uuuRRDoWDuJSTk5ZufmyBfyBGHA4kKJUnmRG266AT8Q+Lu7vsE1m7ewbtcSE5PTJL2f423yuzjTdwxBkoiRiEOB40eO0dPfR6NZRVFFdMMgjCMK2QLnx89QKHQxNXWeTNrB1HVkScRzq0iajGGY5NM5gjBg88YNhH5AMuUQoxBJMqqusTg/h2U6LJWqmKaJoSscPHgE13UZHh6l2WiRzaaQRAkQOs+jWe9YxwIB0+hsxsRhhGkn0XWVWqWGbSWo1urYycSFMeTC2IAIQoyqSPieh9dqcvDAC+RyKUxTx281yaRTmEkHzTJRZYWFxTlKpRIpp8AzO3eydt1aPLfDBk8k4Pse8/OzBIHHUqlMb0+R/fv3MTgwiGbr+H6A2/Y6nAuWjqIp7N13kAcfeoxbrt9MoZDBtC2CGJJ2kpbrQRzzl3/xRVat2cSW7VuJ5RhdVVBU9QIJVcix+nGOuS/xle6/oHesn3q5ycoV61lYWKK7N0vXxFqkeQ0/eYoN7nLeIb2PnNTFUqnM4EAfktgZW3ftfIrRkT7OT5RYOWQiihqSRMft3FAYGOghEpoIIUiKShD5aEqiw2At67iNJfA9JIkLLMYdwOOHFk/tPE7/QAZd1RBkH0mSmZxscvz4KYZHhjsa1VonJnhudh7RryLJHpoqY5g2Xd2DKKaDoprs3bsPy7KwExYT58cZHh3Fc1127XyaD77vnTz99AF0TSGXMxCROnremo7nCjz45DFWrliGmUxz5uRp6vUWacdB1zxUxSTwfWRZIooiojhEUVQUUUK3ZE6NzXFqfIbe/gGcapaXov0kuh2onyQWZijNqfRt3IIsa0QXwKsgXiQn8ybSa9epVzbeXOw5+DJ4lbYFb3rN/MOC10vdc/+/BF6vcIP/ObX+M1hhf6LBaxCEn32t6+uP9iJcZuW85Lj4PRBf8f++8PcqsapXspwKgvBKPK0gXnBmf4tNvzQe942Ol0NURaHT3rhDffdK+y/zvb/oEIXOwPDa3Zyr+7JfPWD71Z2zi90+XrMBIQj4jRoL06fZcO0diLrJszt28eX/9jU+/KGPoP3JX+IOdDO8bQuqrBIHMa7voYgSsSSiJi0qC2WymSTNep3YCzHtJGEcI2kajcUKBw++QKHQy4E9O1EkEddrkMt34XshQRjheT6WbiFJKlHgY9kWtXqDaq1Cd3GEY8deZGR0FEmUsRMGhZ4Chmlw9PkjnBo7g6EqOE4a3XLId3WhmBqiIqIpCr7fQr5ANCHGMqIs0qyVMTUZMQowM1lUzeAHDz/CC88fYaC/FydpknQSKJqCalgdYo8wJtvdDTGsXD6KpqkML19GVz7P+XPnmZ6cYXr6HIKkkUzmefThh1m9ejl+JCBqJgIhqmlQyKcYGuojiAJU06Zeb6AoEqlUikgdA+DscZF0OoOqJCgtLKGIESIB1dICup4iJCYIXVLJJJKi4Zdnic0Uoe+iWTaaYiBHMrqmc+7seYIgotjdg5PLEAcurUYdQRSRJImuQg+y9j/Ye+8gS67rzPOXN717tt575V1XV7W3aAAkSFAERZAUqZEoaWc1FMWRISXNSKPdGA1ntBuSdmY1f8xsxM7uSgyKkuhJ0IgkaABQEEAA3XDdaJj2Ft3VpqrL1/Mu/f7xGh4NEBxNaFcxJyKj3su6efNmxruZ95zzne9TQSQIWaBrOoqqIis6mhKiCRXd6SOTypDJWBi2SRxJVE6dwVB0ki/9IcbmGcZKuzm/+CRjhZ10O3PEoUbeSpg98hDNuSNUmut8/Sv7+cEDd/ORj/wvlNcW+YB1L/ty51GrZxCqyXojYCUexJl8D9+871n23f5+YhQWFlZJYp9Dhw7j+SGqrnL8yDNUKqts2DBNNleiUMyxvl4mny+wurxGcXiYwcFRnnn2OWS3gJzexIg+j73+OHPmPvzKVVLCA12hPz9KJjtIN9GQRPDCDH1pDr2s9kQW4no9Sm9ui+hZkCQCZQ9J0iNPiryA8sIFaFylcuUQod8k1TeK5WaxDYswgisXLzFYGiCOYW39FFJkI0khtlUCAYEfY933KJgm9ZSMlddIbwJnq0vqpgbm5lWUoWVwllH6VhBymcReZPN7Nba+O4OzpYy2dR539zq591SYfpfOhqdclMUOmDLRDpv6HTrSr0xRN/NUqw7tToZIGiX0QEImUiwevedeUsoqitRCmFncjkyz2cLeOE2sqbiZEQyniKQpICwMPYVhWsRxgixUwiDCMHr1f0JWEJLM7IXLxEGCqbsIVQUiICLwI6qriwhF6WUpwi6am6axegWveQUj9riyUGZq908j6RZEHpbl8oN77mF8fAOymsXWniURGwhDlw9++L3IUoAuC7S0SW11jWzG4RMf/xhR5KFnJvjAu95GbXWJYv8MUmeOzTMbUHSNIEoor61hxxrPH/sOWt8+uo11Dhy4l82bJzBdh2IhzXvu/CCHDh7m/MnTfPrTf8kf/en/wS27p7j/wFnGhvr5Wu0bpPQ0nftlfumd/4SNYobuQIRu6KwuXMY0bCR0Tp48x3s3uUDM0yshm450etmjj+whjMBNpbl48QqjYxMkhEShiuNkME0XRVMY3ziBJEkIEmbPXSBT7EeTVXwvQDYsdFnDNC0kIWFZKn67jqpmQAR06h3SaYsoSqjWmjxy4Ek2To2gmL1aPdfNcG1ukUw6xerKKgvzi2TzOdbK69RaDX7+F38BTRWsrC6iqDo/enA/Mxs2UCq41CurEAXk+waYnNyAoqhICezcuRXHMZn80QKGYZAf+WXMwOLy7itIUkLsC779ze8yNTWM66YxdZvyWoUw8EhilcuXzzO9cZI4CsiW+pGjNl67ShzHaIaDpuqosgJC0Gm3OXDgCWY2TdNolLn//gdpN9uUV8rUyhXuve9ebrv9Vs6ePcMDDzzMhz78YYqlDJqi8uXPf43tO/cQRwFhHJEImVQqi6xYCFlGqNCtrWOYCqEfkMQSCRGLS/PIkortuvTK0qReed/1ujwpkViY68nalIYHyGTSrC5dpVJpYDppvI5HeXkRKZGot1oUS4M89MCPmNi4EctyWLy2yvfv/iEzG4ZJ5Yq46Sym2Xt2W7bJ0PAQjXadtbUFbDeDYenUqteQI1CFQRJH7Nw+Taddx3YyJInGF7/wVbZt30Z1dRFVGNxy8z6++s1vs2fXVpbnFrAcnWq1TKtep5rU2N9+krumv4BZsXnuuaOMDtqU1+p86v/5DLfu3UHq7mnEVItEi4nnVxlwd9D0A/r6h0i5WU6fPUM+18eWmU2sri+jy3D0yCVmZnrB0QQfXXFJkjbEIbKmISsQxTFxHBLFKpptk8mV6LaaSHGAadtoikCREiQRMjqUQVcNkiSGxKfa7vL44Ut86M6fY622hqZrNGtV3LSJrri0vTKq1EZxM4igS6cbYbpFolAm5zokgYfnB/QPDnHy+FFc22bLjj3Mzc0xvzDPzbuG8boSB5++xNiYhSFU4gSytoxuC2y3iJ3O0F8qYNopkk6LjteAOEFCRdVUYjz8ICJRZaJugGlniWIFVdbISAVG3z5MJ93h1MknGHFVwqDC+PY7EbKNknh0FBU5ea3u642yga8teXtpLZoQvwZGDK8PG35hDfpa5OBL688X60pvcL6X18C+UGP72iG/xP8iIUPysraitz9OIl6oXX3F9bwJh81/rSWS9MZ+wZvU6L7Cz3id+/iG9iZ9v1k//6id1xcyr39fzuubmvTaj28Vm34jGO9bHvpbDHy8mDO9Ds19zfjeIALU43V6ayd8Pec1/soPSI6fQ+za9Ib9+a0GKiFuaZzQD0jbLp/97Od5//vvJPvlu4l3b8cn4etfv4t3vvNtnDxxilJ/iU6nTT6Xx7JtFpYXSKXTCEVlfu4arptC1w0sU2J4dISrc3MUiwVmZragqRpxHLO+XsPK5RCqxmp5HdVQaNSqSJLAshzWy1U2bZ5kemYMx9VYWLhKsVgCSUIWCrIEh54+ykCpxOrKMv3FPI3GOpIkYWkG6yurKEJwbW4eKRGcO/M8pcF+FFmh2WhQLldwTBNZCFZXl0mlHDZt2cJapUI6k6XVaiFEgq6qmKpKKpuiL5fj0uxFnnj8UQb7B8ikM2RzeQZHhkg5LotLy1y8PMutt96Ek7JpNBuYpoHXbYOkEIc+JDGWbVNvNEmnUgR+TOBHqFaFRt1juHQLURzz4IP7KVfWmZwcZXFxnv7hKSq1Bq7jYOgKoaSgGQ4XZueYvbKCY8iks31Iqk6j06JSrmM5NulcCkn0BN5XV9ZJhIKiaWiqQhTHyELCNDRkCVrNBiQxmlBZW13AtNIIxWBl6Sq2ZSJ1POTZeYxugP5//TuePrwfJWwTqSUGR/OIyOLiuSPkR3OcPnuCiekpUsUSY1u28q6f+ij3fPf7vMu8j9zy9wjUAgtMY4/sxipO0U4ccoUhvK5PpVbh2IkTZPM5pmem0V2D8ckNWKbJ2PAwUXw9CCMS0mmX5DqUrFKtce7556mWV4mCgMH+Pvbt3Uk3DpCy2+ksn2JGP0ffjg9y9sSTWI5Gvd3GdNPIZh6RyEivYSC8AXriuvMqSRKS2EsS+CR+m/rVw3itOkEskLQMkWZTHBjBa7dwDB0vicnmMwil97LVVRnLyiDJXu83EnskcYhxz2NImZDUr7Wx37mMhIZcz+JfVJDKNkQSYRJiFGSUoQC1FBF2I2R0CBSYdwnmFbpP2IjvSJQZXb0AACAASURBVARTGaLf30Jtgw1jeZJMCt3I0e4GOKkchuUQBy1UO0UsaZiShMYyKUdF0W0kvYDpZlD78liFIqadJqFH2iUrIKTenOx6HnEMqqoiyzFRHCKR0G630DQNx3GQJYkjR48wNjqKkBWQVGTN5ImnzrBxagOqHOB1qki1FTr1NcKgTrmlksgWqXQOkcR0u20sy2ZwcBDbshGSjtet4HXg8oU2n/j9P+Q9d9xJs1rBdXTOn55DkU0uXpwlk86RL+lcnj3BwuIsJ84eY8fOPVy6cpX+UpELZ08zOJJmeXGW6vpVCpNbSVtpduzYRhB2UVVB4AWsrNZYnF/iX/6L32H3vpvoKxa4/3vfoH90gj27t/Pkw/txRzNoW2Weqh/kM/W/YigcJG2nsdwUiiqjKoJiMcdWp4UQglMNh73ne++NE9tlhIjRNBlFlUi5DtlcjijuYtsaQvTWOKdPnyOfy0MS0yMcUpFJePKJJ5kYn+hlCw0VWZYQAi5fvMJjTzzFyOggrpsmjiUkSeGRh/fzMx/4EJIikNXeM+Hub36DvTfvRZZ7OqP5fB7F0Bga7GfD+DgqPSb3HvxynVKpxOmzZzly/Bij4xM4bgbDMDBMndnZ5/m7+x9gauMUa2tltjxRxjRNlNGfQVZkTo0dRtM0wjCgXFknl89i2ypdr0MUx6iKgm07FIt9vXun6USx1IPjxqBbbo9BV1O5fGWWVNpB01QOHnySXbt2oWsGg/0FNm+aIdeXx0llmJmeon9gEMdx2LJ5C5ZlIMsQRwm33Po2gthnbXWBdMoiCj0Wl+cwDQMhS7SaDXTdIYzAD2JkSUFWJKIwxHHTKLKC6KUYe+/pFxYeCdQr63S7gq/d9U1uumkfjmnjpNN0/ZCvfu1rvOMdb0dIKvm+HK1Wg9GRYTIZuwcflxW27djZ0wgV4HcbLMxf4uizpxkZGUFVFRRZ4DpFZNmARMLQTdR0H7FQyfXlUQ0dy9DRDYNyucKGyQ24aYdWo8Hy8jrpXIbADxkbG+bBhx5i+85dhGFMOpfjkfYTfML+dd6Rvo1//a//gE9+8pOkBkb5zF99nl/4pV9gk9iOdN7AH1sgiOuYroqkyLQ6MbJiEEZ1isUiuqZx6tRptm3dTibfoVrpIKGQcmza7YD5q8u4rtmD66rqdX32CFVTefrwFYYnhghaAhGskEgRCSHQkw2TZQ3TNGk1W0CCkBSiJMv5S+vs2T2NkHUcx8G2bSJZpVwpk02rBJ01JEVDCn26gcx6vQfjjqKAA/sPsHXbTiQZCvk+VEXhyNFj5NMatXqN8SGDtCszvmGEOPARqMSSRyE/jFBlTHuYVitmae4iK8uLpC3wY59apUoqo9NqtZClFK2uDlGAo4QoqsJyOeHatRVmhrfQCXzsrSpHD97N1KDKSmUVp7QbJzeAIieEkoLMazOvb5TkeCP7cZ3XF87xgr3E2fLSeV/XeX2dM77y643bv7Y+95Xj+LGc9b9XexP/5E2zzi/7/DJ06Y/nvP5kCM0X7B+18/patuGfzHn9cbVTX895fT3rPvwpwkuHUSZuftO+Xg92/HoT+uX7kyR5aVb8mCZep99XnOMtTMgb2etFuF5u8ae/RnJ1AfGz737D9u3KGosL18gNzyBCn+NHT/Cd73yXX/vQh8jc8zDNzZOU18vMzEwThiHjk5OYlkWcgKEbtDptdKMX2U+ShCgIqNeamKZGnIR0vA7XFq6xbetWllfWyGSzhFHE3z3wIK5hYao6cbdL1OmQ7y+haRqSJLO0sIiqaGiahixkDM1GNzU8LyAIQlQ5Yd/em1A1lWwmxfzVK2SzadrtLpqqQhzQrLcYGBpCljUOPfU0wyMjnD5zlueeO0q12iSfcZEElPqL9PXlMC0DN50jikI0WUIzDCRgdWmJVC5Ho95gYLCf3bt2ous6ktQTGNcMmUa9Tv/gAHv37aXdbKAZBp12i7Rr0+p00XQdxzLRVIV6o92LyicJ3a4HScLaokoptxtJklBVlfHRcSamJkikhHajxeGnjzM4WKLbbdButfDbNRxNxrBcMoYg31dANR3CJEZVJZ547ElMy8B2THRDpdNsYdspTMsgCj1kQGga3W4LVYJ2p4NhGPieR7vZpq+QJ7rOwOs6FtLcKsnjx2kPZln7499hsRGyc89uNDeHpsO1q1chquFV5kjlJukvbiaIcxipYa4uXYUn/jPvHzyHrFmca41SnNjL4vIKo+NjhFFAGIbXWUVNBoaH2b17D6lUiiQO8KMAXdF57plnGRrs55H9j7Fv7020W3XclImqm0hAFMaUSiVmpjZQr1fZumUj3XYDIQvW1tpUQxvRvIK5/jRBdivltXmyeYdQ0ujrn4JEJiZ85Xx9daD4+vyJ4xiZq0iJydXLCnQrXD53hPbyGSTDZWrnO3Byw+QLfVy68DzZTB7PjzDTKTzfZ219nWwuhxRW0aVPo0sPoEkPoUuPYKqPIn0/IekPiScNoicLeOdV5JpF1FSI6zKiZsGqRrxg0zotEV+yiJZ0xLpNsmYiOgb+eoDZEKAJ/I/PUC2v46Z7JC6VSp16vUu93uRvvv1tbr71Fq5dqfC9e37ATXunWLh4kHTWQFZMQsnFyo7gyRrnrl2jNDBCHCvopgbIBEGbOEp6ZF5CQVYU4iQkjv3rEoYSQpKJ4l7dphCQz/d0KjvtDqoi43kttmzop1O9RH3lAolfpt5us1SHetNkZHKKYnEQCcHc5Uuk0g7tVgvTMFiYn+MrX/4a77htEkUe5cypJrGeYenaIuvLy+zdu4dbbv0pDM1i06ZNnDp5hjhSyecHGR+f4bOf+yJR0mXvvpuQEgmv4+FaOR7Zf5C0NkiutBFVCWg2WgRBSJwEZHJ94As+9tFf48tf+yq/9du/Qa3ZpFte4vLVBXbu2sk/v/1jfLjv59hZ3cEvZD7Iir9KU21SUPNIQsbzOoRhF1lIbDbbRFHE06syO0/7CCE4v9clTiK8bhdFEURJhKFb+H6DIPCIwgDP88nl+lBkGVmWaHdb6JqM54WMDI1SXl3CsEyiKMIPfDqdLs89d5xbbn4bhqWiaCZR1EZRJMYmhpCVBFloPT3RdousmyaVyxFFwfWARI/BVRYSfqfL+toK6UwOVdE5fvwEm7dspuN57N13M6l0GkVVMA2DcnmNfD7H+PgkcZRw4cJF3nfVYG5+DmPynyALweOZB7Fth06nRf9AkWL/MKYqCKIYJ5WmsrpGNpe7/ttKEIpKcp3o7EcPH2BmZivraytEcUgumyYIPGQh2LBhHF3XieME27XwOw1838NJpfE6TcrVJl/6ylc5dfIEM9OTuK6LLMt4XhfHMVEViSiO8YKQTKofTXWIQglVNeh6bR577EnGRkd55JEDbNgw2WMEVjQqlSq2Y7+0/njhDS9JGJqCbpr05R0Cv4GsSphm71m2fecO2u06tuNAEqJrMqZtogjRC0RqGoZpcejgQcZGh1BlgW3bzM5eY2x8gsWlxR4hGBJR2GG9vIibTkEc0a6tYsgxnVoZWbeIAdsy0XUVz+/SaXusrNfIFDIMDQygqjJTU9PMX1smk8lxcPUpgiTkP039J77ylbv4j//xT6nXa/QP9fHed+6mz2qS3D2AlGsQGWVU1eBv+p7g4eqjvDf7QbxugiRk1tfXyGYzPXIrL+TEscvIcpa5K4sMjzhoWkKxkCOmCcTEiUTg99ZHqipz5NQapckJbGeIRnMFRY6QRUwQBHS6AQKIorAnh6VpJLHE395/jE0791AsOtTrIa7jsLSyTJLIpNMGSdAhZSrExChSSIRGYXAjV69epq9QYMu27QAEQcDiwjz5fA+5FbZanDx9FdeElCXQjZDYV1ivrGPZBnHkE0keCAvLsZElhVw+hYgaCAU0VSMhIAoSGvWA7z54ksnJQUzDYKUJhYFhLNsiI2fRFRltFyxfeZy0WiOVz7HeNdmw4zYgIpJEr0b9TezVa8YbZiVfpkX6Emy457wqN8c3PO7l7V/4/PftvL5W3/aN18R/X47rjfu/MVEWvDXn9eVB8x8rW3wD5/VG/tarr+EncV7/2+Ww/7v9g9lLmq3/7a3b7RKGr4WJ/Lj26IFH2LJtJ2ECXqfBvn37eOaZZ8g1O8SmjqKruCmHUydPE4WwVllDmBpuNsvBQ4f5zje/RRyEEEVcmb2EJGIG+ksEQRtZWCSJyjtvvx3DNNB0hTiJ6HhtfvGXfpGBsX5kXeBm0vzgnh8SJQpdP+LcuTPs2rONbM6kXl+hUV/HdXQgQVFUdF3DcU0qy+dQ1Zi2F7BWbvClL3+TJNERskKzXUM3LbqeR9v3yZVKfOUrX2N4eIxS/zDvfs+dONkclu3SaXVoN9tEXhMpCaisr6BKEUECkqoRSQoHHn8SoRnc9fW/IRYKhmPx2BOP82ef+jN0RWZgqEA6a6NoAkloCNmkUm4QhQmuk2N9fZVWq0Gz2URIvcUNErhpgyhuMjo6jBASa2trJEmEkH2E2ovot5shfa5Np1Eh8LoUi/2ouokXeBi5HIoasLq+QqfVpLK8RHV5gff+9DsYHiwgkpgkjDAtiyAO0OSQ4888iiILhAyqIkMSoxo2fpSgWy66bdKJfILIg2tztI+fJ3nqFNonf5Poj36dVnWWzSNpmpVreEEdkVxjoj9HWD/D3LknOXdoP//h3/4bDj76CHH9LPaD/5aofJJqaifnGkU27diOpsvU6w1OHD9DubxOXyHP6dOnOHv2LKvLKzx96BnOnTzN/OVLWLKKiGP6S0Wq9SrDo0Moikqt1iCOYhRJcPniLLVyhTMnT4GQcVNpoiQmiCNSdo5HH32IyfGN+IXbUFWNae8gtbU6ahTjN2vEUZeYzluaO6H6i1yZ30Kreo3LF57GFFUkNY1w+qlGKpJh0KpVyaVchGZhFiZJEh3H6WNgYAKvW8eUP0eCRbW9Ay+5g1DcScu/vQeDKptwpoiIZEJmabROoqoarVaHTqdDGAb4Xhd3KUZ4EqILQhI06jW8bgtrKUK61MD7+AaiUCJTHEGSzR6D66nnOXf2FMNDJT7+Gx8jCtr0j5f457/8PpbOPY2lyaDmEeYAdm4cFA2hm2zetg1ZU9ENmxhBnCTEUYQiCzz/pWeR73eRJYUoTFhfrSGhvVifq+sqtmNQrqyhiZiwvUbSWmbu0mlEImHYQyysq9x/4AzPnLhGvjBCq9NAVhKWl66xurZOIkk4rsuB/Y9w+uQJfuMTH6fVWmK1kmFmy2184qO/wpXnn2dicobj567y0IMP8vAjD5BKuSDF2KbOn/z7/x3ddvjEb36MrVPD1MrLnDl3gXIz5NEDf8fUpmE8T8ZxBJX6HGEYsmXzbrLpfurNBp//68/ymb/4C/besg9ExJlTxyjm0/zev/gtHNvFi3qLhMmxEq1mnU8O/T6HOk+xFq7it2qoEixcWyFJVJ5cERxa10inHVrNVi8QGCasrzSYu7qMaTo4tkMQhliGg5TI1Gu9QJamyaiqTKfjkc+VEMLESuV56JFHSKdthFDRdQvbTGNbGdxUHk3V8boe7a6HqjjEkUIUypw9c5F2rca93/8eiqJR6B9hZaVMHMt0uxF/+7cPEnkhcQTnL1ykrzTAowceJUkEqVSahYVrDPYXaDearC4tkUQh5XINRTH47F9/AUkSzM7Osmv3Lu75k+0c/6sPoCkKSQKtjo9Aw7IcMrksc/MrPP3UUbLZIl3fBxKWFhd6GSpNASHjdxuomsp77rwTL/RRZA1DMyGGwAt44olDeH4XpIBmq0YoFBRVZmHuIitLV8jlMjz44I+wdJuP/+Zv0mpU6bR7NemKKiDyezBkI4XhFFBkjU996s9ZWr5KlLRJpXSS0EMkPnfccSef/vRnaDSayLJMq9nslQzxSiLSJElYWl7m3PlZ1lcr9GULeF5M6Lfx2nUsQyHjmnT8BkkSUC1XSBKBUCwsyyXl2KhSxNtveRvf/fbdKIqJ0NPc8b47uHB5lsGRCVqdhD//88+iqwaGbtNpJxD3mIrDWCIRBopmEoQRYRQgREImnWJkZIy333ZbjylZkQjDgHqlyomjx1iuL/E8F/ij9L/ia3d9k107dzM7O0sqbXH5yH3MH/kbrn79SVjRaMqPErVmadeWOGQ+y+WpZTTNo1GfQ9dMxkanSBIYGh0iBm655Xbe8dO3EiCIYx1JEj2ZFlQ0JY1p9hjI41jC9wM+dOc2TBEShTWSSEPIGmEQI0kqqmaj6ypJEhPHEd1uB0nEbN3Rz+XLl3j6qWNcfP4Cvu9TLJVIqxor8xcQsaDRDInjmDDwkOWEE8ePMjE+AZIAWUbRYGFhgUKhyNLSErKiEERtUFTaXoRQFLqtFkiCXCGN35VJIhkZlTiK8L0OfcNTVFtdJBmSOETVBFGgkMQyTkrwkZ/dji23iUJ44tA5FhfrbJreQWxH2Ct9zC+cY9fu7WiaQavpY6gxQeRDIpB/QkDkq1GCr7Y4jl+UXNT+pYf+u/5PdqJ/BPbyewG9Z7wsy6/Z/5Pam5Er/X/F/n+TeQ0C/9/DC9ItyU9cmnyjetXXtHvZ9kb2klTOS5nXV9eoStfr1F4Sjn3leG40zhf/vl5ZAG+wvU5U67VF8S8b3CvavtHV8iK2XQiJhBhFVl/hKCdEQEJy7/7eGT7Uy7z2tCxfWww///xpSuObUCRBkghanRbnz58hdeEK0blZ1kyZXM6h3WlTKJYIvBbdRgNDM3AzKbrtFhOTG5Btl1zGREgycRzRbtYxU1kcx+7JrkQBYZzg+yGtho9pGly7epG06+J1u+zavZvEjwg6XRzbZH11BSvbh2sahN0Ox44fo1AcAilhbW0F004Rhz7Naounnn4Ww02zd+8uUmmbarVKOpPHsjM888xz5HNpxkYHufmm3RiWw5EjRxjI56iuLWFqFt+6+x6uXFthz65dtFuLGKaJ0LKUV9aR5YRcIcv46Aid6ho33fp2IEGRFKZmJti5ZxuKrCMhWF1ZoVNvEfpdpDBicGiE9XoDx+nR/cuyDsREUQshySRxTKfV7tW8xj1t32w6TbNRRzVdWo1KL1qnWoyNDHPlyhzZTI+AwtBlJKHSbjTQrRy+L3Ng/2Ns3rIF07apN+pYtotimCiaSYKMognarTXyGZM48Ok0m2iGTSw0ZFlQrZQREhiKRkMTmAeOkpy8TPz2m+FTn6Q9OYZupVHrK6jFMU4ffJCLZ44zPXMH3/v+XzN/7RK1msXN7/1NUvkC4wt/SXLsi0jZabzsHlbKbZq1NsX+QZ544klM06C8tkbg+xT7+iiVCshyQteLqFSqNBs1oiigr9BPnEBfscTaeoUN09MkScT5s2dYX14lirr0FfoYGhmjXG1y7twptmzejG6kufdvD5DJmLRaLWIkwsAnP7qTpHKG4sQWaqgMFjNUV+fRlRSylXpl1Ph15l+CDElC3KpSW3qGMFJIu2lMUUNKUnQDGB7bQCRp4Ic9/dI4RJYDLFmwtnKFfFpCi/5v/CCHom1CQkZRBM12HU2zUX5wCUyZZMxGklRa3WMktFiYl1hfW6Xd7lAoDaCueCinasSOjH6yQXBLH0YoI2KQn1mn9mtjhFmd555+jr5Cj3wmDBP6B0YZG5oEIRElXZI4QKFDp3oJXTYQZh9mbgKhGCRRiNdpYbYSgvoqWiZNx2uhSgIUCWSFMAxRJBlZMelGLYSsE6saQpFRVQlFThCKIGys0G3VqFTLeO0QQxUEfsjaehNJMdHdIqrTx4P7D1KutNgwuYFHHvkhW7ftxLEdHMdCkWOEZLC+tsSmTRNs3bEHogTLXOepgy6f+ovPcOjpA/z+//wHfO5z3+C9d7yXj378V/n8lz5LPu/QX8zwiU/8Fn/2F3+KYWTJF/vphAnpbD99hSGqlSbT0+OMjmwkVciRci3m51co5EeZnNzI2Ngwht1H/3Af2XSGH37vRwwOFHn/+9/HXd/9Pre/53Z+7md/nrX3L/J4/XH2KnsRlk6fY1KOa5xqn2Xc3EC9uobtpvjqV3/A4MxWPD1NEnssj6e4vNnEs2Hu6mX6SzkkAUJRkGSZZnWVIAg5f/4CUxsnURQdP+gyP3+VlJvimSefJJXKUuwfwA88TENFEhJREkEUMzE5jmbo2K5Ls1XFMgyq5VVSmTRWOk+7VWVgYBDbtrnrrq/QrjeY2TSNYVkcfOowjmOhyTKaYWI6KeIgIpMxGBoaYmlhjf6BQSRFMHv+LH2lEc6cPk4YRbzvAx8AKSZfLLCwtESpv5/66jKbL+1FKDKV29dIoogoBFWEiMgnlXJotRoosiCTzaFqGmdPn2Gk1E9tfR3HzhEmHWTJJQmbXL62eD1AIhOGHSanN9OsN8i6Dn67QRR4dLw2uUI/jpNHkiLGh0YIfEBt09c3yAMPHCCTTmPZBoHn0+z6mLrMZ/7L55icHuHmfbeiaSq6phP4XUxbwnFy6CJmx44t6KZKZb2CUDTSmQwJvSyFlEgkkkSMQI5iivk0hWIew7YIwxih9Ormfa/L+vIyudwgrVYDJ+UQRzFh2MRvNVmYW8T3I8ysRTadRtc1VE3Fa3UZGOwn9DtYqkIxlwXZ48G/O8iGsUE0M4tARtESJEXB83ziMKDb7eI6DmEo0fE6tDs1VGGzunCF5ZUW99x3H+//4O08tLKfO9U72VKf4b/85/+Tz3/1c7T9hIFMgWe/82/oT5cYPfW/0S4dIzY8vE4DTUm4zz5IHIe8/fQgijOE7rqsL87iOimajQ6pTJrV1SUOHz7C2FCavKvgeyqyoRLFAiHXCcMYXdPRNEESd1FkGRKB5vbhmibt1gpIXk9DWjbohAmynCALQZzIBHFMys6Rt2wqjYi33347q6vLZDNpFpYXsFI51tcbRK1FNFOg6i5RFKDrKVJ9E1y9Oo8iCxRFJZt1KJfXGBoa5rmnj2JYaa5dvsTokEs2pYDa0+LtBnDgyBL1esJAX0i9a9PXP8Xs80dImRpx3EKKIQoDFJke7DkBkXQIZIXnnpnFcbLY2SLpXArb0VDnUtQn1rl8+TFcI0SlhWu5rK61GJjYjBd1rxOMvbVM4wvvvNckXV6lfZokr58JvFEG9rVlc71NksR1lOHr18C+cL43hM2+XP9Vghc1YG+wtr6RvTjG5Lp+7Ku2F/t8dUnRq2DSL46ZpLclr9ZqfbWn8KrLeWFv8srrfl193Ncc/8q+b+Rf3eh+/iOHDYf/Hrjxou4fyF7PeX0jKPlPZH8P/b3hBHy5vZlW1PX2LzrEr2l//f/3Huj9jK/Dhm8UMDi8/3Emp7fR7oQsXVuiUOyjv9SPuO9hbC+gnUkhSTAxMU6jUcVJuT1iH03Dth0K+SyGqdPxPAwZOt2IynoN27YJ/A5xFFKp1rBTaRQho6oq3/jGN8jlsoyOjDE/t4DrZnn+/EUUw+SZZ59lcmqKXL5As1JDkZUepNVxce00Dz/0CNu370SWFQzbJgwiHNtm8+ZpJAl0TSObTfPogQNcvnSNffv2MX/tGqMjYzSbTRRVZvPmKfygTd/gMNVqjckNk9x229tASBhaiiCWkBRoVWcJQh/TSOF54DpqT4bBcahXF6hV6+SzRcKgiVBNVFUnm8/zzLPPkSvlcVwXXdOIAh/dMJAkQavZwe+GuCkdSUAYReiaSV36Hl5yhlaliJtyEcJEAIosk8lmiZM2TspAM2SCqIPQesysXrfneIBEoZChUl6jUOgjDENUVUXTjV7doQL1WoeUM4hp9INpoVppEklFCAVdgcrCAvlMmvDL9yGvV7F+5afw/vgjtDbkWV46yVhpiKcPHmJo97tIIg+Wj9I49xCzNY2P/vof8KEP/h6PPnWW1tXD7Kn9JUrYpObs5ejFCoMDAxx88iBRFDE6PkJfXx7bMpidvUipfxAhC1RFIQxCkjBkx/ZtjI0O0fU6DI8Moagy+/c/zODgACnHolFvMDY2wfOzl9mxbTuHnz5Mt9ul2+1wbX6BlaVF8vkcuXyOhfllNkxuZGFxkZHBYeYXlpDCGvV6C3NwO9VKGd0QVFtNsgPTb+K8Xl+KJgnXLs9Sqywj1Ayb99xOFxNh9zGyaSeJrCMij/mr52l3OhT7RwkDQafdoOs1sZUvICspgmCCOO5JxARhTKPZYyuV77lEMmITZnRIwPMvkiQJucw2hoYGyeVzEEZoh9ZofXySxp0llE05tK9fQigS8uUWyXiK8GdGEIrC8RMn2bBhI5quImsSqg2SVgMhoQiDJGjhVSsQtYkkDTmdxbL6kITo6X6qGuGJM8iNFmE2hanrtJpNdF1FIHq3RZVQJI1OvQrdEMOv49dXib0q5ZXLBF2PJPBIkNAMC0U1aLW7oFrc9+DDbNu8DTeVpdsNWF8t9zIvUsJNe3YwOj6BaRpEYU+yIp3Jk0rbdDttVlbLPHLgAFs2wYWrk/zSL/8qN9+8h2wmy9TUJB/84PvZMDTJ8NAosqqSK5b42TvfSxLXOHP6eaanJogTCcdOc+zocX7+536e3/7d38O2DRQ5ZmnuCivlCul0mueff55SqUQY+QwODPGtb91NGEScPXOOhx7ez/y1JQ7sf5Lf/q2P84i2n2pQ493aO7Ftl0alzOKlZfbLT1Jq50lnelnRXbt3Mjv7PEkSEwY+cT5FmOqRGxX6CoCGqhmEYYhED+ZZrzcYHhklTmK+/70fsHnzDMVigSAIGR0bp9HqYDsuqUyaxaVlLDeFkBXm5q7R8bocOvQUw4ODPWkvAaZlMD83h2vbuOkUkpBJJIm+QpHzZ88zPTONIisMD48yMtKPrivIqgAh4ToGQhh8+tOf4n0feDdhmFBZX2V0pB9hGAwPDmK7Dvfecx9bt23F0DXyuQxJHBNGEoNHJtB1g8et+3js8YMcfPIwe/fuIox8/vaBh3tMq9kckpDRdRMnnUI3dbpBB1PvwUjPnXueoYF+7v72Pdz29neiKCaJZKBJMo7j0Gh36PoBDknGBwAAIABJREFUmVT2ekBaEEUhkmSgmYL9jz7O2257N46l47gO+b4Utq0gFBMv8DFNnT033UScdAjCLpatYZoazWYHyypgOy7V6mWEomHZeSzLQMgqpm0RXw/2S7xA3iThtVs0W+sEUQBSjCTHSImMppt4nkc2m0U3FJrN+ouENPH1Z5KbTuFmsugKpF2XVrNBo1FDVlpohkq13OB7372Xn7rjNtqdiE6ny/BICiFrdNsthCwIQhndtlA1HVlV6XY9ZM1EVVW63S779x8kQcFQdSY3DXOUs0hHZI798Rn+1z/8E+780Ef4nd/+GB94501k5LOMb8gxcOLfIQyN1PYiUbeDYeg06us8XDxCkiTcsTJFo9tiablBNtdHGMVkMmlWlq5RLS+xceMUzz77DJVKjUIBWq02sqQjEaIoGn7QJIo8FNnAC5ogZHQ3TbNexjUNvFYXTRa0mhXW1xJ0VRAEbTRdxgt1nj16Cjdf4PCJs2ya2YIs9wL62VyeVC6DZZlIcR1F9kmCAGIPWbXQ7T4c22R1ZY1crg9ZqNiWRbPZoNtpU8gbpFxBvk9gaCphnGAIGUPEqInC8HgOXY5Jl6aoNKooqkXkt4n9dTQZkGQUVSaOYoSQ8SKXQ4fXMc2EXG4CSVEZGh7i7PnTBF5A/vwYfXcscPjx+xgaKhFIKoozTGlssocWSF4i/XyrDmwURS9+fl1LbuxMviFk9lVO00s1sT/28H4MewuQ4x/n+Bf23oCr5s3v7U9+cS+vGe4FBf7ralpfPOoGY/7vzutbsJfj4N9oMryCJOp12v5DOK+vV9P6RvaGLGcvc0YBJEm8+P11+5dehWF/lfP6QrQquWd/b6zXnddXHEMPbqxpGraUoOgOilA5+tyzDI0MIQHO/Y/iywKyPZmbhYV5+voKJEmCblk0Wg0s08TvtnEcBySJe7/7LbZu382DDzzExPgEtm0gXyfWUFWNY88dpVQssXP3dtxUimajzWOPPcGWrVsJ45BcLsvGjdP4fsAXv/Rlbr1pL88ePcrI+CSpTJqrl2Y5feYUg4ND+H6IZlkkUcKRI88yPDyIZZkIAUHgYZo6ftBieGQA329jmirNVhfHNFAUge04CM3AMk3q9SqZbArfD3ji8Wc4fvIkmqkyd3GVzZu3ECURzWaVVMpFERJBGNFuVsnl+4liiUZ9jSiWuHz5EulMmokNk9gpm2azgWMZ1Co1AL70ha8gIXP02AmK/Tm6XhvbdvH9hFCcJ0kSDLHpuryIShKGyLJEubJOkqik0jlARtdtJFm7DtGM6LTbuK6NooJh6Fy6eJVCsYDneYRxiKoqveNU6ARVQtrYmkEceGgiImjXkY5fxDp8lsRQqf7Bb+H+T78CG4dp+TLF4QkqzTqJYjO9eRuLV85QvnScgekdFHb8NKPjef6HX/gNJjZsw63v56f0h4nSM5wupznwxNPsvWkXR48e4x3vuI2Fa/NcvTbH5OQk1UqFdDrFzMxmJEmiVqvhui71WpVU2uLxJx6nUqtjmxpRFFHqL1EsFEmISeKEixcvkgD79x9g27ZtjE+Mc+LYcT70wQ8yMT6G7/t4gcfc5Ws4KZfBwUHu/cEPqDUaFAsFClzjSrSJytoCthbSCUL6xva8UuT9Zfp2vX095zUKQ/qsb5HNLGDqe4gSBUnP4xYHQTEQdJBaf0U2fYVMeg6C52h5Bl57gaG+uxFCx482E8UxQpGJYhCyjG1bdDod9AcXiHbmEaqCkMDzZ5EkgWNvJJEg8H2051skWY3Oh8dwnAyrscfJfJ3hiol8qkL397YgZQ2ELDM4PAiJh2U7SELH9xQMLYWQHDSR0KjMgr9ELIXY6XH01DgiCZCATreNEDLhwhIJCdqGaRJZQaVD5LdRZfCDkKC1Tm11HilYwG/O0QybaJaBrKVwMoO4mSKak0d1+9DsDLqq8IUv3MXmrTuZ2rSFKPBQVJ3Z2csoqsItt+xl996dVCtlJEmlXq+xuLhIPlvi5KkT9OXzRGGEk8qgaSq5bBNFuxnd6CeTzlGtVjBNjV/+Zx/hgR/ez759e7lp3y10/ICfe9/7uPP972J6eivHTxzhO9+5j3/1u7/PR3/lIwS+z76bbsEwoVpeJQwSBoZH0Q2FUqmEhMIXv/iX3HrzO9g4vYn+oRK//E//GbKqsXv3zXzhC19l25YZvrXwbSYnJ/jVyf+RlcV1smmXDX1TfLd1LxnTQQtVDCNNu7XK7n6L6YEc1VCh3e2iqDJJFHH27HlM20ESEpqqIAvB0uIyiqripBxUxWBqwxRICWEYoCgqQpaI4wRN1VA1nZTjguhpkWYzaSzH4eSJk8xMT7O8uIB13YkRkoQqIEykXj9CJuWm0XSFYqmPixdmOXzoKWY2zZDEIYqmgASddoNUKs/s7EV2791JFAuePnSIUimH7tq0ak0M02Rq40ZUTcHvtLB0lZv+7AQzZzo8QoN4sIs3XWN4ZJhScRAn5bCytsrbb3sXcZLwwx/ed13PW8H3PWS1J52DFBF4Caap4IcwMdGPokpEROiGyl1fuouNM9OYlo1u2SzMXcP3IxwnRbnaq8kMozaHnnqOHbv3YBkKpmHR6bYJI58klrFMA8+LEFqMoTpYlk0YJghJo9Wq4NpF9u9/iFRKxzSzfPkr36RUKqCoWk+uTYgXEVlSQq9c4sQxBgdGyGRLSKKn1azrJnEYIssKimZQq60jJJl0KguAZqZR1R7xUyIpSEGH5ZUyDzzwI3bt3IFrFkkw0A2DjTNjtFpNgkBjaLhIs9kkDiPiKECSJQwzSxQH+L6Pqihouk5Cj7Du6uXLBN2EXF+B3GCKE9IJyg+t8r1/+lU++pEPc3VxlpXGMbb138nKlS9x9epD9F/6Q+SFAZKdLdBiLpy9wsp6hVIhxw+dR1FklffV96FJEgkZ+ool6o0GFy9cIAo9FFlneHgIx7U4d+EiowODpNIxhiG/OC5Zlq4zvksoioljZ/ETEymRaTXmUSUPiAkQFAs2JB1UzSSOVQzRYXSwhBwrOG6BTL6IEIIojogiCdVQerwJXo3Iq6IpCp7fJpFMYjlFvV4nCHoSVraVxvc9qtV1GvU6Q4N5rl4uc/XSJYoFh/sfPo+uO6QyEm5aJo47uGaW/5e9N4+S67rvOz/37UvVq7Wru6v3bnSj0VhJAly0kJQsS7Is2bKtWEriGY+liZ2Ml3OcWHFmbCeazHhL4jn2OPFxLMeSLFliRO2UuJMixZ0EQBILsaMBNHrvqura3/7mjwJJEAA3WefMOZ6559TBqVfv3Xv7Vd2H+/39vr/vNzYy6LpNveUyVHTw3TXiKIJLdbxJnBCGMafOLTN/ocNNN23h3MIy/QMj5Ap5JCGIbJ+Mn8c6sw157hlct4mWypHp38Yz+48wu3WaMJYvWRq99fZGe+zXnIdE8FWV6KiEtP1VwaY30o25loDSKwzMS/W512IrXmteL4O5a2cW3xp4fb2+r6zvvZIleuVtuRxgXrv9/QDmazKvP2LweuX9+//B64+4XQu8XjWv/1cyrz968Ppq36+e90bg9dXOr71grwSv13q41Ot1Gktnabk96s7WLeP4UUIURpif/xqdoRKJLtBUk4MHXmR8YqJHAzR14ihCFhCEHkuLFykUi8xtGWdpbYPp6RniKOSLd9zBDXv3Yeo6q8uLFLJ9yCpYtgGSRCqVZnp6C4oqky9kWV26iCDGSTvMbp2h0aoyNjnZE06KQ5r1DXbt3kUmk+Gzn/0sc9u3U92o9Kxg8jncdpMkifC8LpmMw9DQOHfccScDA8NknDyyKuO2W+i6iR9KeN0WChLfueu77Nq9h7u/82127thKoVBkessOxrYM4/kumqqRttPIqorX6RJFEvfd+ziuHxBLIaW+MqamkHXSkER0Oi0s08J3O3huFzuTQ9dMduzYgWmZDAz2kcn04QcemqGjKAartSexUxYaWzAsh+WVs+iqjCzJqLpGKpWhullF0zRiEhQh0+60sdMOumWhSjLdbhvTsPn2N+9l1+6d2CkbVVOJogDCGF3uUXUMyyHwA1Rdw/d9lJOLBBubqH/xv2F+6qfRh/Ns1ha5eOEsfiiQpAy6FlAwFLqVk+RzFhcPPEAgFfjy155g29ab+ZM/+D3eq3yNAf8ltJkPUYtStNodPvATP0E2l2JwYIggCNE0mdltO1EUjRdfOMTgYJkDBw4yPT3NsWPHcZw0TiaDZurMzm2nPDJBbWOd8+fOUyyWWFxcIpMv4LkuffkcjmXgBiFCglwmT2OzjWUqLF68QLfj02p2WVldYOfOnXzr23cxNTHKB37i/aQLg5iNIzSyt4DXJvaa9A1tJTOy47X/gSdXrp0eeFVkCbyn8N02lSWFVmWJbrtLoVgEXHTvjyCpIssSgi4kbVL686TNk3TcPLG0FVnWaXcamJaJkCQkSVCtVsk4DtL9F5HOtWChifAjYs0jEi6mMQlCoB5vILyI6NPXo1gWXa9Lxkmj2irarSMkPz9NZMlIkoyiyJim0aMrShKKFEFQp7W5ie/VaLcuEnotwKTZ6SIUC1kVBO067XYdy9SRZAgvXCSJQqRSDq9TRRIeIuniuV2SRKDqMk5uiERN4fRvRdbKyFoOWU0RI6MqCl3PR5EkQt9DVjV279jDsaNH6Stm6Sv1oesa+XyOgf4Sug6u16VcHqbd9kjZFvl8lpXlCg88eC87d+wkZaeoNxoMDZYRNHnpyBFkZvnj//DnDAz0k8vn2LvvZv7k//5Ddu7agaErRF2Pr3/zu/zqb/4KrW6ElUnxzA8O8qlPfopSXxHb0nn0/vsoFG1Gt2whUjK4nQampeJ6Hs89e5D3/9i7CCOZ5dU1ZrZP8Sf/4Y944IEH+Zu/+TyGYfFHf/h/8Jx+ANu2+ED6PXjtiAsXzjK9bY7z3UXOz88zMTTBsSNnGR3N88GST7/qcTbK847nA4YXA9bGTWRJxcroxEmILMn4ns/jjz/JzOwMuq4RhGDoOrLSK1vIZnO4bhMRhfzd3/4t23fu5Lvf6WVmfa+XmfLjmLm57fiui6YqdJptkDQ0Q2NldQlDtYjCCCJ44fnn2X3DHkhidFWnPDDIl770FaYmJrBsC0XVSNkOiQjZNruDZ585gqroOJaFIoOVK+B3uvzN5z7Hvn03ImSBlPSsv/Y9VMPsRDz6sYCF7BliSSAJj/7+YR559FF27d6L53ZQBExPTWBqMsQhpmlessZQcYMAQ3XwwgbzC8uMjo+h6zqtRh1FCHbs2kGtXsMweuDc7TQpFPu5994H2b1rN91Ole99525+4Z/8T9RbS5DAZ//qc9x+24/RbLRJOyaJH/J3X/o623dOoyoyYeQSBB6SkFFlnyT2yToZ+vKTbDZaTM2Mk8vmaLc7ZHJZEvFa6qAiZKa2TNBqVUmns4RhSDpj0GkHfP/hh9i+Y3svsKqbyJLJf/4vf8GOHduoVjpEYQvT0JEktafOr9pMTW+l1WrhuVVW1ipkcjlqtSq5XJ71jRrtTp0Th9cpD+bJZixa3RaKamPqCprSU002dY0wjJBJIAq4cPYizqTBPc0HyB8t8NWf/RpREPLbn/40B188zrt3fIQjL36GqFNlbPX3SF2Yojq2hGoYdJsNcv1lnGyeRr3GQ9nHSeKAD7beQeI2GBgZYX5+maGhYQzTpr9cplgaYn7+JJm0xYljpxgaSJO2NAIP1qubmIbg9IklSn1DBGEDVddoNDYx0gXW1tZImzISHmtVwQOPnmXreAlFEoRxhOt5aEYeP3DptBugqOh2P5lsBtMwaVQaPP3MU2zbOkPQriFoIwuFrhegmQO4gUbgB4yMDOE4Ni+8cJhMJoWuGWQzeR577Dnmz55h29YS+bTK8GCOQk4nSboINAQxgRejZHNISY9xtL54BlnuEiGhyjKyLBEEAZIkYWhZaq0qjllicGwMJ52n0W7hOFkymSyutYLdzJNb+gm8oSfoSjJhUqLYP4mhGqh2+ofKur7FM4keVaEjrlIbvrK/NxQtfaW9sYDrlcffuKb07WVerxrzKgGoK89/7fvXBLnfynx+yPajAK9vpsPzDxq8BkHwGbg8hf7a15vdypcB3JvVul4rKvJyDesrJauXnXMt8HrF1K7q81r+sPBqXWj8sqh9j8B+VY3ra+7DG8z98vev97cnySXAmlzeO6/M56pxrsjUvu6CffEEIpNG3LrvqjFjCTRFZfHsOdIaDIxtpdWscubwk2T7Jrnt3bfxy5lB1k2VRJVoeT7jkyM4aQ3fC/C6HqaZIkEmChIGi3nOHttPu7lKu9NmdGwcNeVw843XIykKkVCwUilMTbC0dJFcLkcYhYReQLWySj6f7mUn4xbZYj8dP+aB+x9i1+45lEt8f1lRsC0TSVLQDIvp2VmcVJqnnt7P8PhED+DZOkkcYRsO9cYyhmkzOjaGZVnYaYM49qltbPL0k88xNj6B79ZIYti5aw+SUMgXsrRaHvfedx/TW0YRASi6iZBVhJCQRNwDMwoMlEuUy4PkswUazU1MXSKKYmQZVDlEVnQkVByngBcFhJ0Wpp5QXasiqYJMMYduaLRaDXRNQ0lfRJYVEm8rnXYD23DQjTSS0ovKd5pVZMVAFipJEIMhIFJ6Ag1hl3anSS6Xp9P12LNnN7qps7G6RC6bA3rKpqphAQI5DvE8l3ZtE/PYAnEph/Tn/ytq0SZOFLyogZYqkR3cjpnOIHQFLdzg5HPfYHXhFH/8n77IbR/+FIXyHP1DQzgbz/FO8S0kPYU2+wEiLBwnx8DAALISIWLwwwjfD5g/Pc/xUyeZmpjmwP79DA0OYJsyZ8/Os7q6SqmQxw8i0uksnhvw0tGjlAYHmNoyi+8GyJJMJusgaxpBGCNkjULfACMjw5x86RAFx6ITJZSHpwjimM1GlcnREfbvf5oPfuiDnDl5gsXFRS4uLFJKhRxZsvASiUzaJTYN/CBDoS9DLPUi4kJIrzx3epUmCQiZVmsTKXgWTYrptAeJkGjWqxRGRtDD7yCSdUJpD1AkiIoEcQGhjJEkY8RBiB8kKLaNpsgQJTQb6xiGg6brnD99nPSNI0TXFeADEyRhhPpUndTJAiKlEq13Udoha/+8HzWfQdYNhJygJB6WpSGJmDgIkGKvF9AJfOqVClLiEnhtup1WTzlWS6MZKqZdximMUm93SeVGyOSHkSSDMPIRQiZJBEKSiBfXSUhQhvMouoPvayyuNMj1jaBZKWTVpttuIlBQDQtJ6WVMFFnC91wkWaBEXVzXw48EcpJw8eICp8+cYc+e6/C8DrEkI4SPKilUKlVy2Syu52EbGlHk02y1SDsZzl84xa7dO4hjgzgKe+IlnQ7lwVVueefvs23nMB/+yZ/m3/z273DHHV9gsDzA4FAfbbeOG3T5wPtvYaPSplwep1ZrMF4y+MLnvsiHf+rnyBbz3HHHl7jxHTeTzmZISMgXcsiSTpIIduzehakbyKrKf/2vf8XNN76L3/30f+LjH/9Z3v2ufRCF/Ol/+c90rmvhuV32dvaQdnQmtsywcPYcqQ2FL+nfYFQfopBKo2gWezIhsqRw3LN550N1cpWIB4u1Hk0Rn+pai4cffIKBwTwjo6MYlzbvtmkTRAHdjsfGxia5fBFNUfG762ybHcdK9zMzO4vv94S0JFkQByHHjr7A0sUq5fIommWg6RogEEIlnU6hGhpdt0WpmKfTDjAMi2arTiaX5vjxM9x0802osqCytsLqxQUydgohybihT8bQyeRzyKaFoWkkhGydmcE2UzTrHSRJxwsTrtvfABKWPjxLOptGkhV0IREEXSYmJ1lYXkKELrqdQhDRriyAFBJFMVEMsqIixRJCBKiKRsoyMXSDOA6QFRVZtkhUmTDwUSUJTRLEieD5IwfZvn0P2awNwmBoeALNUHDsFLKsMTDYj+sGtFs+mg6h77L7+t2Agee10A2LIAjwuk1MK4WimxipLN2ORzqdQpbA9wM21lcZLA+8nFsCesrIUZzQcV1MO8XK0jlUKSGMFEK/S7FUwHV9PvuXX2BmcpQocrnhhp2oqkxlfRPTCAiDEFPvIxIJTtpElSUyTgHVNMhlM3TaTVK2Tbfl0my36Bsoc/il8yxcPMHAUJm+4gCSgCSJeP75lxgdHaPe2CSTKhL7jZ5i/ViKp7zn+L3+f8PY6Qmmdw6STXKkt5X5jX/5Sewzf0oqV6Iv+afkX9jDucIxQimkkMtz5tQpBvryuEGIaWa5S/82kiLxwcpOEDIrKwtYVh8nTy8yPjlEZXWejZV5LpxfQpE0hgZzPPb0eQb7BWlDwjJVFEWnXq2jOTEWacLYv2SzZZApThF2l1B8GdWIULQiuXSAqmYJ4lV0hnnh+DmcTB/ddoskKbJS3cRJmQRdn1Q+x/TMBCKB9fVVdKmDJCeousXiYg3VyNBXGuDi6gXSqSylYoYojDh65CjloTJjE+NcXD7JQNHG1lyctEWSBL0aTJEgSwoiAT8poAoQ+LQqy8SxS70DupT01mwYoJo6kpAY7M9Sb3Yw9SK6adNotMjnHDbWG2xsnEfJnEXxbEoXPomYrJMZT5POWkiJg7BMDNsAPyKR3hrIeX2a8Ku+q5KQQcSvqg3fFL5htvJamdZrDHDNebxpBvharM3L/Gl7+jyvD4iv9VmPtXh1P6/W1YpXQOA1gwPJZfW2l+3L324g4Zr2mlcBritqYK94CaTXZI3fLBP//y3wekV7K+D1rXyBQggURXkt0Lsy4iEkoijqgTvNQi6OIzmlt9T3Gx1/2Uw5ueL4242fXGuc1wOvbxQNeXmxXLVAX3vWFW8vAeZb9yJu3Xv15/SeNxKC5maderNNpFoYZprR0TE6bsg/+pmfofD1+6gVM6xWNzl9ap5atYqhG6imgZVKIysKjWaThx55jKHxKYrlUdqRYCCXpbGxjiZFdOtd4iBC01REHNEJfYr9A7RbHmsrG+TyWbzAo93qUOjrw7ZSaJqFEIJabYPxiXGErIBQiBF02i0kqWe5YZkmncYGPRsOCaIYkQR0Oi6tTk/1b2O1gqHZHDt2nHQqzdr6Ok4qxbZtM8QiJJPJc25hgWJfkXa3xVe+/BUGy4PcfvutZDIOURKzUV0j9Dromsy5cxd59uln2TI9g0SC2+0gC0HKNoiBGIGqmqiaTSdw2axtct8991Kv1SgOlbl4cYFz80v09fWRRJCybHRFp7HZRrLPkcQJarwVt9slbTscP3GcbD6LLMuYuo7vB6ytLZPPpYkTmc1qnS984fNMT09x7PgpRkbGkGUJy9ZBCBRZ0Om0kS8pNCN6Ng1xHOGHCfr3D6DOTXDqYzdSnpjm6OEX6LRbFHIjeO1VvM45dFQkWSVtppCkHOWpd7O82ea6vTfTWDpF4YXfIVl8hKY1w4FzPv3lMUzLQpIFjWYT0zZp1lsYho0kKaytrHD9nr08++yzvO+9t6GqPaW+jdomU1u28NKRw3h+iKwoWLZFoa+Iruncc/fdpB2TIOyQzRWI4oQ4ilm6uMjxo0cYHhmmNDDI/PwClWqFsZFRzp2dJ/A8hsplTp2+dH+EoNPtsmPHTpLWRZ44vI6WH6dbX2H+5CliVVAsjGAYQyCujiwrikoSByyeOERKP0YMuOEsmp7GsBxU9SkM5ThBMkfsC2RVQwiFKO5ZXIgkRugWhp6iXVlAN7NEQYCd0mm1u+iKStrJoH5+HulMGz5YJJxM0VD244576PlxOqJD5afz+LJAwWWzso6aJHT9FrXNGnGSoBkmQorRTZ0wjsjkcsSJhW3nUTQbVU2hKDLdbgtdt4miEN2wkBUVTVMJoxDNKaDoFqpuICSJaGEZIQTy8AB+EPVqpY2eCrgkvSzun/SEhSQJkUiEgY8sJWiqRIxAxDGaaaFqBpqikHYcLNvuPR8RaKqOLEtIkoasCCzTRJIVwihGyDKZXB5JURkf2YqqgRAxn/ubLzG3fQumlcOxV/jH//Q/snvX+/ib//YFfvff/jb9A1lCr87pE2co942yuriOH3SYnt7O6to65eF+dFnhuuv38tef+xy33n47/X0DbN023auDE4J61aXrdkkIUJSEWm2Rs/Nn+Lmf+3lOnz7Lhz78HjI5i9ltc2i6yb/8rX/F15fvpL+/xPut91IaLHLh/GmmZiYZ7R9FklQerz+F3TTI5Ytst7tcuLDA0bbJjkNdJEni4KyE53kkkcojj3yfgcE8S0trTGwZQdM1dN0kiWWWL66Qth28rouTylDbXCaK2sTEmKkMKysr6LpGGIQ06m10Q0dWBZWNOqOjw8gKBL5HtbKBZRoYhomiKqiKQr1Wo9Vpk3EcHn7oEQr5EjvmtvRskFSZGBgZG8d1XYSqUegr0ayvU+jLouoSzdYmjpPFNCy++73vkc/lcZw0d3zly3yiOUgcRaxfvxvTNYjTwSsKuIZhoAhI57K9QKCs4HshimqiGzaqqtL12oSBh+t1UVUdQ08RRTFxEhGFIZquEHTapC2btbUK7U5AbbPJ+MQ4hpZmZfEi33/0EQ4ePEin1WZqchwkgSQlFAoFSv19+EEX0zCJoqRn9USMYdo9L1fbRlM1GpsN2s0O3/jGN9m373p0Q6XT7lKpVBgZHSVKLoW9etxhQt9FIaRa2SCfcVAkwfLiMq1uh9GREUzTwkk7ZDIZojhCUTWiWKLjbhJ5ab7+9bvZc8MM3cYGjeYmG5UK5y8sUCwWkWQZTdORJBndsnnisedImSqHDx/gH33sZ+l023iui2maSIrGXd+9h927d6OoKpXaWWQJQlnn3tpDfGj5ffzi9k8SxzHHT/vs2p0mrHq4y4c5cvQCurybwUc+RHe6Rt945pWa7VJ/kUYrwrAcdD3NcfMQVgdu3pzGsm0UzaLVDZjbsZfzFy/ipBzSTpFMvkQQBKRSFvMXjjMxPM1jT7xAedxAihJK/cM88fQCpUEDWUiEUYxh50G26bYvkAiFOK7Sn0mB6KAoFm4T9IEWAAAgAElEQVTgcfD5ixhOkYLtIxSLh/cvMTQ8zNjYGGfPz1PsG6BWr7KxUcc0TBJvtcesAWTZohMEgInjFAjDbs9HV5HJFwqsra3itVpcPLOJqar0lQRRBEIkxHGEJEv4XoBpmOiZfmq1CkJVqW6s4foa33vwJNdtH2VtdQXT0PG9kPpmB1kr0l+eZq1WpVDIo6gajVqVpx5/iH27hoj9Gkl6nVj3yB77IOvGSyy3zlLf9HCDgEJpgDCJ3zJoeivU15fLZl61yoneNFt5+bVvB7z+8PN9KxnRH65dDgavvW9/fXzxVhJ3r3ftW2Jgvs5c3iwI8HL7Bw1ewzD8zBvWp77J9W81ogLXkIq+MsARX5bRdEqvAa5Xgb3LxnwjBa7L/+Wy8+M47oGjt9iuNc4PZQ59eeb5Nf29+rdfztN/9cI3pxckl7LJtmEiKzaKahCFIQkKtm0h1eqYdz9KsnsbrVabUl+R0dERsoUiqq72bByiCF3V2T4zxle/8hWmJqdQJBkz08/K2jrFgX6ScIWOW+f8hXPYpoGWsohC0FSLKIyJE598voAsq4RhgKrZVDbWkaWEYjGPovR8VJuNFoqiYVk2mq4jywLP6+J1WoyOTrD/uQPsP7CfoXI/g0PDLC1Vue+B+wk8n+npWRRNJ+NkyBcKaIrK+voqKcfi3PllRkZGaDQbaIbGrh27GCyXiOOIzVoN3dTJptNUqz1/WtUwyaYdLMvi7JmzpFI2mUyKMAiIAT/wUVWdJJFRNIUkChktDzG9ZQYjnSaKPNZXqwwM9qNILsvLF8hm0qiaSqyc6V2fTGOnHC6cW+bbd32LfXtvIAwTotBHVnUMXaNa2SCTzqEqCuXBfvKFApOTU7jdAM93UZQERTNQld7vNggjTNNgfb3SE6kIfMQDz6LaFskf/yrDoyNsVKuMjo+S0gGRpVM/z/njT9KXK3H6whHW19YY2bKTlUbAdTfsQ9t4EfnJf0Ni5umW9pItjdFotHjh+cOMjQ2hKjKChCiIsQyTw0de4ty5c9RrFZx0msWFi2zfsQ1EzNLSEjfs24eTdjh16gQ//uPv58yZ06ytrTE6OsqRo0fYuXMnhUKWUilPu9XbfGmKhmmYzJ86Qb5U4oVDh+l0XBSRcPToYXzP5Z3veBcHXnieG/beyEtHX8IyDYSQaTQbDJUySKqKOXYrZ86cZnp8GFPrkLKK5IoTJMpr5fCFEITIuLVVNpfnyWYXkDSLSLqFSr3L8FCXtPkD6p1JgiDE1FN0XReBjKKquG4XWYrpeBGqpNNprGGm8wSej6rJqKpNt91CNVPIT68ihCC6qUy7XqWzfA4lbyLevRvt+hxuGNBfGiKWFVB17EwR29Touj7FYgnPD5CVFKAjyWbvXyVCVgSSLIgIkZDwgy6aaoFIUDQdkKhUq6RsE6IAr90g9trEbotktVe7HZf6SGUyKJqOputIsqDT7mCZ+iVRHZ0o8EmSGFlKCHwXr9vBsh0kuRcMCcOwxzrQdXLZXG9DKJt859vfYnp6EiFp6LqC53kIVSGOEuIYmq0Ouq7zzFPPMVjOI8kyYQDTM5P4voemdlharvOJT/w+27fPcss7buDQ4UOcnz/JcHmST3z8f0TTVUZGetnl/oEBqrU1BBp9AyVue++tnDl9hn/92/+Wn/7oh/G6bZI4odMKMLMWURxgygJVhYHyELKiYpgGkuKh6TqHDh3l5z/xMX7zN3+Lvo8WCQOffzzyMR78/kNIicvQyDCxpjCwWeS/t75BKpOmXy8xq7cwDIOHTjd494KJoiic2peh025x17fv4cM/9QEKRYckkdB0BctO47oBYRjR7dawLJV0xsTzmxw/dp6tW3cgKTa+L9A0jbNnT5PJOmQyBSDGD10GB0eQ5Jgkjmi3WiiXaq7DMMYPApI4RhYSiQDbTjExPsmzzz5Hzslz4ODzTE7OEEUKURzgeh6qqiLJClknT4KMJBQM3QYhiOOeVsTE5ASbm5vs3XsDs4+tIUkSucovUDw2yJltR5B1C4SMIstIIgFFJ04EDz/4MK1WlxMnTjO1ZYaV1WV0VSZJJHRdJwwjvvKVrzIyOogsyVi2RbvdRE4Snnjiadptj8mpGdJOFkmW+NpXv4GUBExOTXL7re9BlmTW1tbQDZWEGN0wiKIIz/XRDQvPc0lbZi8oqKp4nocsBK1Wl26nS6vR5sLF88zOTveCQh2XTrtDaaAfJKVHc5YFcRjRbjaprK+gSAInk6FSqZDPZsn1lVAUrRdIUgX1eotsLo0kC5JEJZ8bwEq3GJsYYGGhSTGbxe3GuC74fsLAYD9d16NSrfG9793D1m1zHHh6P+977zsZHi2TzTo9EGXouF6HWr3B9rk5hBA89thj6GofuUIfdzXv5SO5D/E7e36LRtPn9JlTfOCj2/DrQ2jtRzn07J3c/rP/jvxz70DSZZTxmJXFBfqKJdbXK+imiZm2UJSYIAzYtjzGLRszBEHPrzhOEpodj+HxbZw5e4EECVXT8aOEgcEyJKCGPrlMyNRECiUykZSYTsfn5OkNts4UkBCouoZiOCBbSFEXRbIJgxZybJEoHkkoY1g2hw5foNXdZGLYRtWzHD6zwvtufy9ICpZlsrFepVwuoSoaMhJqvEkUuqiyACETKxammSOVzqLIMX4YEgQRlm1jmBZnT7/ExLhFJtPk6cfmGRsvXArAyQjR26/KkkyopEjZNlIYo0od+vIJo/0OppWgKgGmqdPuepw8W2P+QpUtszspDpaob1Z69OpcBlWso4Q1ZFkCSSaxXGIjoe/YrWg7DxBHLosLp5mY3kYkq0hvsjO/uq7zyr2z9JqyNyEgevZV8Hplhu+qvWby2v3q1VnZK/azb6O93X3+221Xzuma2d7XXvG6fb3VOV1ZJwyvA5Tfhl/utTDRle0fPHiFHz7z+vdq18i8XmsuL39Jf99FcPl4kvTq8o/j+E2B6Ot9/sP6vl7V35sINr0d8Lq2tMzZM/P0ZR1OnziBk8kQRQFy10X67vd5wW0yP3+G7du2ki/mEapMrVohbaVYW17h/nvuY27nDrbP7SIIQjKZLI8//hRzc9sIiQhCG6cwSL6Yx3drECXYRoqLF5b41re/iarLDAyUkWSVldUVzFQKTRb4bhfTSuF3G1iGwROPP87d37uHoZFRnHSaOPYxNJnNzTZOpsD9Dz7Ip/7ZJ3GyGeqNBqEfUx4scN2+G4gRZPJZkBOefOIp3I7L4EAZ14t4/sB+Duw/wO5de1AVnQvnL5DPO0gS6LpBt93AMmxaboDp5DEtlWwqzenTJzn44kvM7ZgjET2g2G01CPwuggBDU/HaHu1Gg1w+i1AUFAF+t8nMzCxGSqe12ULTTeotl2YrQDbPoqkq+OPIisGjDz/Bxz/+MTpuG9tyUGQIo54v5OM/eIpSX55MNoVp6URxQLPV4pmn92OaFqm0RRhFdJoNms0WuXweAMtKEbkuyqHTeFKC/NnfQc4UqLdDGrU1NNNg/tSLWH0l0rrG9772LUYnypT6t+FkRvjyl+9ms1plgpdwH/8/SQZuJD22mzCWefH5F9m5Yyezc9s4e/IE7VadbNrhkYceRVIEU9NbmJmeojxYQFEVjp88wfDoOLqVYmhooFc/nCRsmZri3LlzDJYHGRoZZn5+noHBAYrFEhvrFc6cnqdcLlOt1YiCkOpGT5W23e1w+NAhtk5vYff1u5EV2Kw3yOULDI+OYFm9euSVpRU0TWN6eiublWUmSjKngkne/b73k7JUCkZIx2viyyGqXUCWlSvWW4LfqhF0W6ScJax0Dj33AUp9/ejS5+l2igjyqFqaUESIJEY3TFy/i2GoVCobFDMpOi0fI1dAlmJkoeC5HrKSRigxfhShP72K53WRbu2nur5C+bp3EPZP4QcelpknSRI6bp1UukgQ+aiqQhKpPdsmSUbV1F7wIApQJIEgodNpIi4FniQhCIMI09IAhVqtim4ZJIChG3Q7Hp7vYlp2LxBi2EQXV3qCHcU8hm3BpVotWZIQAnRVwY8uPZ/ikGZzgygMkISEIpSeWqrUY9VICFRDpet2CaOoV6iRSAyUcvhhByuVQYiY2maNMIpp1hp8+e/uYNfO3Tz77FPcdtuNyLKgvulSLGbZ3Kyjar2scT6zwNZtv8GTTz3K1NQEbhc22xW2ze3lxz/4E+y9eQe/8qlf41/8L7/OPffezc7dc3zr2/cxOzfN0aMvMjQ01lsTmxvMTk9y/Mgx7rzzvzN73U7y2TzVhXX+6rOfJwxhYnIcRC8bl7L72NzcZGJqkLu/+yBWv8G7pm5GOpswPrMDU44oj46y0fJp1zbYm9nBX1e/zBZzCzc4Mb7vcY4S1x+PQMDBWYmMk6a/P0uxr4Cq6ti2jpPrA3oiX1ZKIZftJ0FCN01kRWV0ZISu56IZBpqusnhhnVJ/Ac/vkE5nCOMYO2VgWimElOC7XSzLRNdUut0Od999H9Mz0+iahqFpaJpNo9Gg0agxPTOFrCrs3D1Fp7XJ4sJ5Mk4eS9d59PuPUswViaSYKA5IkhBJgiiRexl7WcY2jVdKf+ae2KBarZKa/jl0XWV++1GEpBBHIQhQNR1ilXajjm2ZjI+PsnXrLBsbFRYWFhgfH6NSaZLP59F1lbm5OYQckk5laLW6mJaJrOgMlofpK/XzZ3/+Z8xt38GX/u4LFPNFbrnpevKFAk88/iS+50GSMDI2ju/7tFttDh58nnPnzjM2OYWhq8SRTxwn6IZJkiQoioyk9QSSzp9fYGhogEwmjaL0VN5/8NhjPYaH6AE2RcSICIIgxjAsspksQlUxbZtWvUEsKfiejyRAkkI0SSWVUqhubHD/PQ8xMT2KpvYygOmMg27rBEFMEPps1tcZHh0jCEIkIbPvxhsRiYxCBy9sEeFg6ALX9VBVhTD2sXQTTe19J1nHwQ1DngqfZcQc5t+VPk231eVXfuU3+Vef/g3sWEcxN3n2vv+LUvlmpMZOnP0jdCc3SKd1LCtFp+OxuLhCeWgEVVF56ciLDPWPoCg669U2iibQ1BiRJBipAn5o0D88QsbJ4LlNVFXl6SefIefkWatvsLzUQkgBtqkgZIEiFKa25dEiQRCGSIpMEMtYToGws4oaePhRwJ13Hae/bGHrBmHYZmxikKmxDAkxSwur7NozwTe+cS9R2AtO5u0MftBEUwWqAudOvYCuSQgR0mp2cArTVGubtLpVMk4OVTNJENRqDe66625S6RQbS2sM9gnGRwdRVUEQBPQYKRJJHEEsSBUnaWy2UWyHnFOgublIyvSJvBBNVXF9jbWNhIXViA9/9CMcOnyIbtun222jGSZnXnqB4X6XKEhA1lA1C0VR8dhA6pg0z1epqg+zsXKGlbU2W+ZuuKpS8sp2LQD4mr1ifAWIE8lrwOvL+8uXs51vZtHyRuD17bY3m/uPur15/z+a8a8c5+8DXt8qJvoHDl7jz0DPnwkEInlV/l1wWcnm67yuunXSJYL5y683+C6u7O5l+g0CoqUjJI01JKf0utGj1+33db7Ul8ch4RVxJnhzOsIb/Uhe8wO8nK9+Fe33Ci77VdLkvdm96j115fm949GvfIbkrkdfozb8Sg9JDxRrpsHyheMMlSf59V/913z0pz6GljKQXR/troeJtk4yODhE/8AgYehRq6zRly+wsLhB/8Ag27ZN4/seKytLDAz2s7h4ke07tyErMr4f4oUuvh+QThVQtAyKpPZ8RNWIgWKKfKmEoacIfcEXv/i33HTjPuprixhOFlmRCGNBlEgMj46wd98eFF1C00ySSKJaq9FfLuOHbeZmZ4jChCjo4PtQGsqRyvajyzLddhOZhGOHDzM2Mt3zPUxbpB2btJPippv2IBLBHV+6k507tyKikLu/dz87d81iO31UKyv0Dw4gSxpxEBKELtlcBiebYrCUJ/BdgijGSGXQzRRBEOG5Li23ialniaOIrttFEQnr6xUyeYd2t4NlJISRTK3W5eEHH2SgUEaVhyDMYGgak1tnUBOXwG1hOw6NZpfn9z+DY+vcsPd6MvkcCb26L0XRME2TQjFHLpfG0GViSaW9uUn/YJ6un/RUHis1xLOHEVNjKH/5v7PZahN0N7HVADM/gaI1qJ07TLZQpuv53Hzr+1lZabBRaXLk0FHK/YO0jn6Dkcq3iIbew/k1l2L/MH67w9T0NPfc9yAzs7N0Wm1yuQEWFlaZ274dJ53jkR/8gImJSXRNR1VAkPDEY0+QhDF9w2WSUGJjbYOF8xeYmZkhjCM0XaU00IeiqsQxPPHYDyg4NqqhYzoOgdvl+acepzQ0yvGTJ3nPre/EsTUGh4oUSiOUR6bQDRu/42JZGmfnz2JnHfwg5OyZeeLAY0hfw5z9J/zGr/0aszt2sF5Zo5C1UZMOiTBIO4PEiUEiNxCxQhy7bK5VaDQWyec20HUTV9mHFD+ECE4SMIGiaWiqhoRCq9FE1xLajQ7tdoW+viE6XQ/L0iGOIRFIsoxuWHQ7LRQhoao64rFFJAHrEyEj41N4QUxjs042W+jVeBoqulUiin1UpVevSByiqBDHIX6Y9JSxA7/nwapIqKbOxvoaEhDFAjkJIZbxfI9U2sIPWiiyThQJNF0jDlz8MMa0UhAHxMUi+pZxFMOAJCSOQ7yWi+95uN02UegiCwVZ6tF8U9k+dMMiSiJCIkLPIw4EjUad2mYFWQhsM0UcgiJpdFp1TMdCNw3cbh1VNjEMG92wMY0UJ04e5frr9zI8PIykaMSyTKXWIpPKoGsai4uL5AuD6Oo8Kf0DmIZOJqNy5NjT/OG//0v+2Sf/B+67+xvsmN3Gu256B7/4C7/IL/3Sp5Bkmdltk73gTiTxB3/wR/zPv/QR9uzaTbVaYWS8j9t/8ueIO12OHzzI7MwM19/2btK5Akg6smLx+b/6HOWJMXZu34aJSl9fmdtG3sdtkz/GwMQQhZRBob+fZjPArfuMjQwzqG7ndOslNlnnHbZKGEbMS4PsONxBIDh2g4MbeJiGQRhHGIaJYdoQdgiCLqquEQuFJInQZJUkTuh6HrHfQJFl/BC+9vW7yGZSlIcG0HUDkSS4fgvPj1BlieZmjXTKodFs03VjnHSRVrvJwEAZIUGtVUMWUK00GCyXkNUITdNotUM6rRbZlEYUw/7nD3Lzu96JpCqYioSiKMSXAHUS+b1a8QQeeOARBgcGsSybuSc2ECKBwfcjSRJfc7/EQHmMxQsXyKYsIgIOPHeIgVI/F86fI51Lo6kynU6TwYE+VEXmzjvv5LrrdhGGPrImiJMYVeiE/gY6DsKQ6bZq1CvrjA6OUK/X6O/rY27bDHY6hR902Dozh24K+voHkRWN7z/8JI7j8MTjD/OTH/kouqZCEgIhhpGh2ajScdvIhk6cQOTHhF7A9OxWDh86hKaqWIbNkaNH2Tq3DSH3BFcSAcQxF86cIg49Eikm8H2a9UYvW2nrfPWr32IonyFKQFYlVEVDN23m9uwhcmtIio6gV98ehCp/9df/jR9774+RzWfodFqcP3uCyYkRwjigsnGRqbEyZ06e5amnn2X3dbsAgetHpNI5hG4hZJkgDPBCjwvmRVpShz/N/xlFK8up+RV+7dd/ESkTI4TDyhN/wXMHl3nnT/4WuTu20i3XkfIy7XaDIweexO0kPPLoo5iGxtLiMlu3zYGcUK1sUBoYZWXxAinTw9YNKpub9OXHWFo6Ry6Tw3Iy1DY32bFzO2baorK6wfx8jVbLw3Bi0qk+zp6q0d8XEQYxiq4SBwm6aSLpRVrtCp5XQREKW7cMoksRqpZAEqGr9J4XQUwh50DYRU2V2HXdO0B0KRQdzp4926Oqqxr+ZhvdbqJreRLJo+PLFEpjpDNFlpcW6QQxaVPhxJFT3HzLXk6fWWCxdgFTpOl0XLJpFUPvCYQlcYKiWPixTxznEJqEne2nWZ1HhB3iMO5Z2akKLxzd4OBLq2ybm+K5Zw5wy803c/rkS5iWTX1xgVIuxA9qqKqNqudIooDK+nkMRaKbBBQb72XF+Bxdb52wuURm9DoyxUGiRKIXLryaSXT5/vSaGbrkCu/X1wGvV+0xr5EFFaK3XxWCV/arL1Nq32p72ctVIL2iVPx6Y/+o2lvtL7mESV4P87yVfl7+/PL79pbA6+vU274uxrni+D9w8Bp9Bl69uT3seXlG8I2vv+rjKw+8nUz/ZdcG+79KvHEOZeLGt/2jfbv05b/PgrjyAXDZmysm9dox4+jaSsVXRq6u7C/57iO9ca8BXl++XpZlOvUuqmLx0Y9+BNOSCeIIqdNF+ub9BFOjkCQsLy/RP9CjNHW7HYr9Azz11JPkshkMQyebzRJFEblcjjhJkC71rWg2KTvLgw8+xGCpRCIr3H3PvWydncV1PbKmQaO2zMljz/KJj/0MfizhtZts1Dp88W+/wo033YCuGbSaTYQEhm6i6zqrq8sMDQ/1sjxCABJJIjh37iK6ZiJEhKmZfPXOr2HoFqZpcuTIUY6dPsm+fTegqworFxcpjwz3QLyqsXffPiRNYnV9nRv2vhNkGUlOaDQ2kRQZ13NRZIGmqaytVsg5DstLSyiKQiaTo9tu4rldJEXFtNNUKxs06m2efPIxZrZuRdM1DNNC1bQe7azTZaPSIl/o58CB59kytpP+0gyaYbC2skwukyJRLVTdZnNjlSBK2Do9hZ1OISkqnuf2rHUMnUplg5STR9N06vU6yD2FaMdOUW/UMRQbDp8geWQ/0i//LJsffw8xglwhg246hELn1MHHmSyNc+i5B6k2uyxeWGRicgdOYYxCLsv3H36cPcMKE9UvczGZplL3kYTEwMAApqnRbraY3TbXo8gqgnvvvZeJiUmeeOIHjI6NMFgeQNc1Li4soCoazz17kCiCwA8YGCyRtlNsVqsMl4c4+OLzVDZqvVrofImF86fRdIMt0zOcOHWGidFx7r//Ia6/4QakS162S4uL5HNZNE0hlnT8IOTQ8/vJpg2eeXY/kkiY3jJD5HeZ3rKFF158Hj2TZTzV4OuPr/Brv/nvOXDwACPDfSSBhyontDoeXhhipUsIJUZOZDpeE0frQ4QNFLlJsyXhpGLU4E4azTEUzUESMp2ORxTFpLJpmu0OupnFTqUJvS6KqiJkGUnRCHyPIAg4evQoQ0NDuIGPKgOPL0ISk7x7pCcYJqsYlo0sqYSBRxR7yIpO7Pe8bTXDJEp6Nk5RGGBqOkEQoCgKhmH01nrXJWWnkJBQVB1Zjml1OqRTOTbrDZxMjnari+OkabebmIaJoqjEcYSiqHTdNoqqkyAQMVQ31rGtnrhPIhIM3SROZMI4RjMM4jjsKdLFEkncE7+SZB9ds7GMAogIVVVJiHC9NmtrK8iqCggcO0MShwShj6LKiMhnYnwCP/SxUmmSOKHd9vn+ww8Thz7loSEC38fJ5JHEGtWWjGaNYdgZ3nHr+/gX//yXOXz0KDe/650898JzDA1PsPfmW0jnMjhFm3ajSSaTRZYV3ve+HyeV15E1ldJgP/V2k43FBcoDQxhmlkY3YHN9hbyTJfJ8vv31b/Lk009xfuE8N990Ey++eJS+UpHf/d3fY9vsFkbK/VxYXulZQBkp/uPv/xG33HoTjeYKt+dv50uLX+NdfTppLcWJjsHci20Aju02kRBEUYym9nxeG40GCJ3/h733jrLjuu88P/dWrnr5db/O3WiEBkBkAgTBYJLKVrBkSaZHliUr2NY4n/WsvbbHx95j65zx7Bnba8/O2CNZcpAleSVatKjMnCkGEASIHBpoAJ3Ty69y1f7xQBICCYqi7D3e9fzOeee8UHXrVvd7Vb/f/X1DkkjSMCVod1B0hTDwCEIf07bQDYdqvYkiFK7dsYNKX9+LKuzPH3qekdE1mJZNGPi4nTrT0/P0Dwx27VLShFI5g6Eb/I//8Wmu37uPJI45/PwRRkaHurDBUJDN5FAUhWKpRIJkZGQMVVERAny/jWEYKFInCBI0la6irZVBShBS4GQsotllovV92OFeFEVhce80B59/jk0bN+F7Eaqi4wc+1dUVJjZuIJvPkqSCQqGIVBSkorD72l2EUYSqaSiKQkrYtT7L56hV61i5LKqi0GoHlCrDDA/1UCzlu9ZooUeSdH227YyOlApup8WjjzxMIWdx8037yGQyXSE9Iem4HiKNCQIf28nheTHNapVWu82dX/0nctkiGzasp1DMceed/0gcpWzdvg1F69qwJDGoQsW0LIq9PSiiC4c3TQtFUaktrXDtnhsIPZf+0RE0q8vh9XwPVdXQVJu252GaJkHoE0URb7jtVlZWFiiVciiKQaWnBwRIqaJqFlEUMTw6yq7r9tCs18kVCt3fXJoiIo84jolFwiOd79IKXHbdv5f//p/+K7e98RbMbMDMkqRfU1g99X9zcf4EW99wOz1P7iZtSSY5SqW3H1XAgYOHmZu7QN+AwaaJdWzcuIXZuTmcjMNv9v8G38l8m49lP07kN3G9Gqaj4UeCZsdHCOXSApUFQLvVplQyUMx5+nodzh5bJd+bpd2J6O2ziSIJIkUiiYVEGr3IOMVUI6TouuoKEVz63WSIIgXSgCTVOT1VZWY5QNWGMS0TTTU4O3WOiYnNIBVAYaCUod66gEw1pJpy+MQsll2iUCpDEpPLFIkil5HREUxLob+QJ5tTaVdrrNSqDPdliZOYNE0IwwBVpCTSoFDZiDRyNOo1DOESe3UUKQiiAEWVmGapa5ckdLZu28nc/AJONoOupOQdlySokndyqLpJnLRoN+sYigNajnakUO5s5h9n7+x6/kYRejRHzTXo6+8nEerLitfL46qCPlc2T0QKbYGspMjxhKsl/i/YyFx+vG7x+vJE/wfLqy/f9tVpgP/vh3iVV69/Xq+t8/rDnfO/qeKVK+EBP2TxmiZX+im+ykrFZW/Fr2SV833itRa5l0MdXuv2V4NNXFm8vrjt94H9SvHKF5UftngFuvDBSCGOARFj2SANDfUAACAASURBVBIpJO35RTL3PEG8fpRTp04Thi66ZlKrNukf6AcpyWWzZLNZpIC5uTksyyKOY1qtFqZl0qg30DW7a2w/NEwchcRC5bmDBxkcHKanXEG38xR7y+RKRZZrHXTdpLeYR7OyzM7MMTzUT71WJ5vJYJo6aQxRGJDNZfD9rqiPFAqqIlFVweOPf5fdu/cQ+G0EClGccOz4MTRNY8+ePWzftR1NlWQsC9u2SKWk03FBQLPVwM7YlEsl7n/wURrtJsODfRRLJYQQWLrG0tIqge/RanaYvjiFphv0VgbQNA1BlxdWbzTx/S5/pdJbIZs1uXBhmrn5eXTDIHMp8Y5jKJZ6ePTx72KZFhs3bSCTzdJqN7FMg1a7TqPjYegWJ48eJZPLdDmEmo6qmxhGt6iQssv5Quq4Xptc1sF1PYRQgRjlwjzKoTOgwOJvvBfnvT/O7PQJhgeGaDSWsSwbz42ImpMcO/lZrrv2x/ibv/0qH/ypj3FqcoZDh84wNNBPxYwoHP8k2siPEIoMUiiMjI7iBwGu5zM7O89DDz1Ib7mM45jYdgZNValUKpw7d4bx9WvxPI/+SoUgSNi+Yyfj42s5deY012zeSJJE3HfvveiGyfbt2ygWCihScOLYcSYmukX7ykoVy3Bo1GqcOXWSbDbP0PgaHrj3HoYHhqnXquzes4d77n6A8bVrmb4wRX11iYGhUdaMj/HIw49SyGc4fPgImzZv4do9u0gDl60bBllSt1BvtpnYtJ6Z82cwRIdCVsV12wyM7iCRAj2N0bSQlQsLtOpTjK75LobeROUkflBGN0ZRdRPPDTAMAykFKApBGGAaeZI0RlcV6o1Gt5CTgmazQbFQoFKpEMcxpm0Thy7qk0sIqaC8cZxmq03w4JcJzx6mkR8i45jUG1UU1URXJZZldYEoitL16lQ1FJHS7nQwTRMQdDodLCeDpMs9RKoouoIQKoqqI0jRNBspBWkaI6RAUXRURSGOYsIowbJN/CBC0zRUITBUhVRRkYok9D1U1UDRDNqdDrqhkoQhcRSjqWr32i4Vmu0qcZBy390PsW5iDCFSOp02TsYhk83ieh6FbA631aHVqaPrOkEYoakABoYtWF5eQtF1Hn3wSforeQYH+5FCvcR9jFDVFMc6S8T1FHsqCKkRdKrccuub+MVf+TVG145g2nkmz0yybv0YtdU5HDvLwYOHGB0Zw7Js4tBClTZpovOB23+On/+ZdzN5Zoa3vvXd/PKv/QrFjIllGBx5/jBvuPU2FlfrDA2UuWbzVg4fPcGmzevRhiR3fOOLvPNH3kyIQaVc4szJU9z+vvezVFugt1IkDRX+8hc/w9d3LXLRKyM7grFFgWvAqXUKum4iUNE0nThOME0T12viZEzarSqaEqPoNopMabebGKZDHHcT+/vuu4/xtWNIVSUVCYauMjQ8glQ0UgSkEZIUx3FQVZOvfOUfWTM+jGVqtFou1+7aTRTG2JbBwvwCa9euI46h0Whx1113sWPXDjpBdxHr3nsfYO34Whr1Ktl8twM1eWaSr3/tLrbv2IqhKSA0Dh58lomJDaiqpL69wt+c+S4/Jt5PksRM7zxDX1+JKE5ZXaljGgalngK6pqDrGqquEcUvWT509ShSwjBlaXkV27GRqYbb8Tl+7AKWZWPYGq1mg0KxxJfu+CqVnjyqIklJsUyTJE4II4gTH1XV8bwWt95yMwMDFbJZByEkrufzuc99ni3bttFq1KhXa+RzJQzDJgxcyuUedu7axZHDx+jvrwAxg4P9nD83Ta1RZ2x8HNFd1uPIoUP0VSqs1lY5deIsJ0+cYv2G9UgpsVTJnV//DqomKFUqRAl8+lN/SV+lQr5QQCoGcRDQajVwsllMXQO6CveKTFEVg3azjqJ0u1mLS1XOTJ65xDNeoVgss7y8QhiGXcGmJObM0jkebz9DcjHhj/J/zM1br+P229/P7/7e/86HP/BLjI3ZLJ+5g8MPPcrN7/n3XLi7QuXEOiazzzI4PMDMxQtMT52iXu8w2FdmZKDAcwcO02g26a30o2kW3zS+hqKqXDd1HaFfRVUj0kTHDwW9lY3YmSKKIoiiiPPnz3c1JMI8QTvDqaMn2bFtiLxdp5BRSOMOaZogpYqmKiiGje4MosomrdoiXiflwQdOsGHDGKoKyAA/bCATjQSFg0emKBSHaLkRmu4ztmaM/oFhqtUq2VyeKE7w68skrKIpFu12lXWbr0e38lycnqa6usTI4CiaDrV6C8symDs3yZHjTzDUV2ZlKWCg0qUvGIaOpmnEcQR6Bas4AMJBxaO+fAFNCUGA6+oIaXP+QhshHbbs3EUmkyNO0m6+5S2RuBexTQXT6nbYg6BNs5Uyt+iz3ISmrzKorOUbcw8h+sfYuu8tHHj6WyStFplcgWxlGIS8BHR8Ocf1ajotL1g3Xg4bluPJpcL1pXzzlfLTK3PnqxWvrxYvR1O+vHi98lhX8myvNrcr33tB4+YFju8P3sF9bcXra6krLv/s1YrXF2HYvD5a4gvxb6p4FVcWTT905/XlXNGrfnFeZ/H6L6VC9kK8ruL1+3ReX+3i0I3XV7xK2VVsbterLC9V6Sn3EoYxmiYJFpcw77yPs45Kb28P42vH0DSDJJZYjk2URjhOVxU4TWKy2WxXwELpcptq1Vo3eY89jh15nlyhgJ3PomkK1+7aSeD6PH/oEOWePI16wFfvvJutWzZRLPfiNqt4YciWbZvIOVnCIGRycpKecpETR07iOCZSlaSpxG01eOyRx2hWVygVbExdMtg/QNtrkcmW6K2U2bR5I5VKD/V6FUPrek3WW02sjIOQKs1mE8PQME2VOEzx3CYbN07Q119ApBpeGJHEKaHns7RUZ2iwn2KpQG9fD/3DI9TabpfPpNu02y6FfB5d6SY8lmmRpj4DQ8OMrlmLkN3CQiLRdJ0gCtgwsZ5NmzZzauoB+ocdkiiDQgK6hhJ2aFarnDm/wMaNa9FUBamoqKaNkkoUVSdJBPVaE9NQIfG7iZ5UMAZ7ie+4B3WlTvKhH8P9uRtZCpfoKU2wNH2AgcH1zE49z8kDT7G2t5f5WsRI7+184n/9JPtufA/fufdRaqur1Fdn+Pqdd3Jj9PecWpRQWEdvXy+ZXA6pqjzx1Hdx2wmbNm7kwP6n2LJlPZNnzzE7M8fo6BgDA/2kRCiqZHlpmVazg2boPPvsfg4feZ6+gQrDI8MsLM2z76YbQdHwXJe52Yv09xeZvniGVM2Qy2eor67gaCa9wxV2bJ7gxInjrFm3Dq/TRiQgFYmTyzJUKfHdp57m1tvezCOPPcltt93CkSNHsK0sTx88wFvf9g5WllZ56vEnkU6O3s4zfOdsketvupHhkVHOnzmCFi1xfvIQ2azDwPhNzK/UmDx+mGR1Ab99Fs3uUCxOk4qbaLYsdLtCqigQy0veqt0ulCJ0vE4b27QIgxapana5hJqktrxAJpcnvXTDTNOU5fl5ZAr6gQapUFjdpFIs5OicfA4pBMXt13eVVHUdwyywWl3FMnQ6jSpJ3IXtJigkUmDoGmEYXkpEJHESEEcBqhQkaQqKRYrCytI8ipp0OzvtBpqmIoTeTXbSBE1RurzuA8dgqYo60EMctIiRoKmkcUJ9cQnbtojDkGzGxvda+F6IZekIIqLIxbBzaMLBsXUGBrJEaYzjZAAFRWqouonjWKRxiKaCaWVwnCyeHxCKBMssoyht2vUVvnjHHUyMb2Xf9ZsJI5fzU/P09lYuQdJUbHOGs5PDKGlEHHVYPD/FB37iw/z6r/8Wb/vR25CJCklCf7mA21jkzNQ0hmFSyBc5ceIkzfoUTsan2ZjlQx+8nYWlJfLZQVaXl9m8cZipuQtkCwVUQ0PqKjfc9AYmxgc5PXmWiW27sc2U3734+9g3WIydK/Cxj/wa73nPO+npLyNNnepqldUlaHdW+LmPvoui6/CVzj1ck72Wi1vyTE5YCKnQaNY5cXQSXTfIODa6oV1ShxZksiU0I4ui6CRxQCaTIY4VgvYq7U6T3ddfh1BVEAKpQBj6cOmarag6bsfj7OmzlHqKzM8vc8stP0LHq0MsyOUKPProo2zYsJY0Faxdu5aVlSqTk1OMjg2xeeMGpK6AqpAmCZOnz7P/mWfYumUTYSzJZTPohsK+fXuI4pgk9PEi0BSd+bl5+vsHaLXabN+xjXXHNyMlPL/mu2iKQookVyhw4dxJevsr6LqGrmmEcYQmBNXlJTTZhUGuVpfJZkvMzsxTLhdpN5dotlcplQaIRZNcsUTsd0gCH0NRWL9hCyeOn6FRb1Ms9XDfvQ8yNLQGx+nyvA3bQDc1VqpVdN3EsB08L+CmG65HESmmbmLqOtOzsziOg9Akh59/Hk0ojK8bodWq09vbw+zMAvv23sCBAwfYtmM7QgjiJGB6aoq+UonluTmsTI5NmyY4fOQQPb1Fwshl6+49jI0MoAhJ0K7xIzfspVQuE6WCNAnwmqsUCyWCIKXTaqJrRhcoeGkRqFTK0GjUyOazZBwLQze6CI4wRFH1rm2ck8HzPBqRz0Mrj3Idu3nrmTey+7otdGpLnDh9jg99/BdYmT7C3PG/xfWWGJt4JxcfL7Px+PUEm5cpD+Y5ePA5Dj33JOOjJbZszGDKGF2kLK0us237TlTN5syZ89yd+TYZx+GNS3sx1SaR75PLFVBNlZVaRKZg0mp0sC0LRVEYGhzk+aPPMj5eoresEAd1cjkDze7lmcMr7D+6wuZ1RXy3TYTEyAyTBBGRv4SmhQyO5ND0hCiOkdKmuuKTSjC1hLUjfbSq85ydcVk7toGFpa5AZLFQQJBg6BpLsxdR9CaW5pCKEC0zQNtNGBkbwzINYs+n6bXRjBxHj5yk3myRENGXtVg3amM5BopUiOOuJV2jI/jqtw6x+8Zd+O2AZn2BnJUQ+k0838N1E4JYcOLcCre+/Z2cPnaYnmKJ+bkZvE4LWhew1RSpGXTiFMIOQpZw0x5GNuxlZO1GOh2fHAX2vH0DLXUOzR5itDfPxUMP0wlT+jfuRtPNF7uvryUX7n5+WeH5A+SnVx3vByxev3cuVx7v1WmCV3v/hXvt5cVkHMcvFYLiJUucH3CWr/LqX6bz+j+L19cQLxSvL37pr4TUXvaQQlzii16JwH5pJUUKSZqkCMT3fP49qzRXizTtijaldH1eBShr9754sB+2PH3JV/Z7/V5fy/gvqbK9fEXr8h9gmsArjnTlj/tFbuzVOLJX2f7rD3Xnc5Xi9YXVpXbNJZvLUq2vYFoWs7OLTN95H6Xz07RHeqn0lZGaimnqWIYkiiMa1ZVLEDCdOI5ZXFqkp1wmcD1MJ4OTyyPSmBiF4ZFR3E6TNAporFZJ44RsPsfA6AgpEtu22b17B6sry6iaZHm1hm04rKy0QKaYlsXwyAiqplPqKSBkRL3ukS9mcXIZspZFT08FFJNy3wCu67KyXCWTywCgoiBMHU2oHHp2P0Mj43TcAEUo3RVowyCJE1RF63L4whTDdogiSbPRZGlxjp5yD3EC+VKBNI5IFZ0kTqnXGmQzXWiXEqXce8/9FAp5chkLhIZqWNi58iXvQYiTCM3QkKqO77aZOjcHaYiTyZLrf55ULpEztlGtuRRtk0bHQ8oshw4+xu7rb0DRdVRdh6Tb0UNIpAyxrCyJFGiKhmi1SR57jvT506S/9bOYv/8xkvF16Nk86GXSUp6C7oE5QKFnkLu++AU27bwJLdPPUweeYWbmAl++4wvYtsOHPvRRTh17hveVvo1eGOHYgsq6DRuYmbpAqVzGCwJGRkfoHxqi3W6w97rdKIbC6PAQTTfGrc4RBnV6B9Zw5vRpeopd0RnbMBgc6MXQVZq1Fu12h+cOHGTDxGasfIajzz3L+Ph6nnzyGUZG1zC+fj2dZhPbzoCu4bZaxAn4fsBAT4V20KaYswj9mDDq4GQdyuVBDFPHdgpEQYMjR06SSsF11+6h2aiRLTjs2rObw0dOMVRSOXrkGN/57gzffe4U122/npX5Q5iKTzPIMDS2npX5aUR7Ej9sU+3UyBV2UcgfwPUhk62QpjpJqnWVoZMAoUCKCmmIZdmEoY+m6uiKQhRGXVVey6HlRuiaQui5eL7L8ePnqHdcnG0V9GvLqMUMaSIIzx3p3lT713bhoYZOp7WKY0oMXUVRshiWBqJr6eH7EbqmEwQhmqYSBB6qlkHVtEucjy7KIo08bFMHxSD0W4S+jyLAa9VQNZWUqOsj2nZJz11EJiHqyABSKZDiEQcBhq4hVBXDtJCGTioEcZii6haoGlI1SeOufY6iacSkaJaNrtuomoGqaaSkCKEQhm2iOMGwciA0YkCTktB1ESKgWfcoFCvs3rWP/sESQlGx7AzFUh7TtKjXmyiqha4tkitvoO2VyGcyVFeXyVYGecd73o3XrrK6uEgUQxBB79AaHCvLf/j130HTLD7ykQ/xW3/wSZ544jBbNm/h/NRR1qy9lo7X5q1vfxPTs3Ns2rSBKIpRcPjt3/wke67bTqmnwrPP7md8ZBBhGTzkP0gYxrzJ/gmazQaf/+u/ZM91u3CyGf70P/85t/+725lbXaBWy/Dube/lwdX7uRCcpcezieM2UajyxBP7SeMO23ZsJ05S4iiExMP1AzTDgsQlDANSRcEPQvxOE9XMkM0Vu5QTIVEVlVarRiaTQUoLz21CkiCFoFAoYds5vnLHHezYtQPDyaAqGpoBvX3DmBmTOGoTBD6O41Aql0jw0Q2TJJHc/a17mDl/gdGxAa7bu5tCsYdOu4Yi6XbIlK5uge4U0BUNw1aQUsdthzgXqmiNKmvmb0BVVQ6OPYVj5Xh2/wHKpSL9/UPEocD3O3hemyiKII1oNDoUi30888xBxtdO4Aceld4y9WoTp1ikkO/HtC2y+RILFy9gZwvEQE9vHhSFvkoB1+vgZIt03BbFfBfJots2aZpAAlNnz1EqlIhCH8eyu9oGgcvi4jyp0PnHf7yLtWsHKRbKCGLKPXkyGQ0pu0JopIKG22JmaootO7aRSIEpDQbHRzl37iwDw4P0Vsq02nVs00ZXTEzToLo0i6JKgrCrLu+6DdqtRhf233Bx8jqmkafemCGTLxMjkLqN1B1SoaCoKg8/vJ9KpYJIQwzLwbIcHNuh7QWoQtBsrqJpcNg7xvp0A//pmt/jD3/7j/ipn/swKzMzvPVN7yLkAsni3dTPTjK08+PI85sZfHobz4QPMLxxiLu++TBhe4633DhGzgyRClhGiuUozCx4HDp2gS3X7CSb17jbuQfd0Nm7cDOqooC/Sho2adc97PIYjlNkaWGRTDaLrptcnJ5l/fpNzE8v8NjjTzOz2mSsv4eoPcv4UIXRoQKK9Lo5iABpDeB5q2hKRBol5OwCfuQjRYDvx1ycXqJYKCNxabYj8lkHNzUYHB0njFIKhRyKotGoN1laWSCXzaElVTTdohPWWamtcH6ySqGkY5llNN1EEuM2OsRRnaxlcfTEWXZvziFJmF9tYakxkZAoSYoXaJyZXmHHlp3EaYNCuY/QdQn9eVTFQlUE33ngBDfceguOXaSvr4Lvepw9PcnFC8cYHy2R0IE0IfJiVmshnTSH1HNEcQyiS+uIVlNcN2DLe9aTcQzue/xpzp09ydzpk8jGMgNr1pPmit2F7wRiIV7ehLoyV32Rm/pSrpksCtK2QDgvff4yT1TZTZuv9IG9PF99LS4cL+tOXq7v8hrjal3gyzu1l3drXwnu3K15ruCVXjEHkYrv1ef5AZGbl+sGycu2l1JyNW0b0pe64z9MvJ7i9Yc/6r+yeGHV4n9GN14o9l+v2vC/dJw4dQikT7GYpdFY5Q/+4JN4zQbVwKfTdgGJJrUuj8/1CAKPYqmH++97kM9++jOgSAZH1hDECXbG4cyZM/zlf/tvdNodLE1hZWmBTDZPvtQHIsF2DBbmZ4hDD0NTkDLF810Gh4cRhkX/yAhGLsuJc2f5wuf+jgvnzlFbWcZtNTHsLEGc0FMq0KqtsLK0iqrrqJpK1rFIE8ni4gpnz56nVmt2IYdBQJIk6LrOjp1bmV+YJePkmJ9b4v77HqLTcTl69DCtVr3btVQFi3MzfO6v/4o7vvxP9JT7aTQaSCnQ1ATXa6GrKZlMBtftsLK6gqZrNJorvOWtb6DS10+90UFTVQTdi/7i0iIJAhSVOBVESUoYhWyc2EBvbxn1hQs94HY8TN1hfrFBT28fmhnxvve/idmL05iaJAldVCVAECII8YMOSRKhhC7Ua0T3P4N81y2En/ptgh3jLNdmkWZIXFtgfvopbDym5nTOHHmC2ZmLFPrW8N//+kvcf8+9PPLII2imwR/9lz/kQx/9d+j+JO/P3Ul5dCtp715uvvkWHnvoUTKFEn/7uS8SJwLLzKJoCbaj4wY+ipZhfmWZ9Zs28uyhIxR7Rmg122xYt44L584Qe00SKTly7BS+F5HGKUNDI4wMDHP+zCkai/Nsv3YPTz71NIsLcxAHrKys4HY6XLxwAU3VWK0uUyjluXjxPKouGR4eJFfKs35iHVJAsdjPyZMnOXniCCdPHMa0i7RaHbZMbOTZZ/dT7ilRLpeJo5harcbZhYAfu2mUfD7PmrLNf/zkn/Cf//puMoUBai2LxeWTLCwdRc0MQZyhr6ePnKMDYOotAl8jigQKkiRuIYkhStAVyepqFd/3ul1YRSGOgy61ihiIyViCdn2FwPOwzAxjw2V279qBNd4PgyWazSa61j1WmibYjnWJWyhx7CytdsDSao1UgU47otnwUJTu9mHooWkKtVod08yQJj5xFBAFMTIVXc9ZIUmFxDR0LMukWCqClGiGjap0O/uGbuHYOYTgEqQvYGZ6smvdZGcIE7AyOSAiicPuzTQRzExfJI4SojAEYqIoIoljarUqaZIQeB3ioEO7UUUhBRI01cC8xH1TLnULG60WhqVjmDqZrE0YhzSbS7heHSFiSOHv/vaL/N3ffY6+/l4cx8QPe8joj9BcnUdRVMa27KXlBnzpi3/PhbOn+T//7I/54Ac/gGU5nJ2cotVa5LZbb2Sgb5C/+L8+jaFpbFy/jqlzM0xs2EMSGfwvv/a7hJ7Fs0+fRlfz1Kp1cnmTtrtEGDVw24Kf/fgvsLh8juaKj6DrWf6Nb93FRz/6cX7pF/8DH/3IvydNVH7hV36TD334/QxX+vnyZ79GlP4D/3XiJia9CxiFIlKz+NY3v0m54HDDjftoNFaII5dOp4FQVXRdgzTuQsvVLqw2jhI0LftiJ+EFv3Q/qGLpOY4dPksYtgj87v9C143uYoeI+dlP/BxxFKEmgsDzmZuZJfIDCGM01SFJBVIFqUREQYjbcXE7HW697Rbe8ua3EfgxAg3fT8jmyyRCw3LyhInochOjkDjx0WVCX2+BgcEe3ndXlR/94ipPvfkx7tryBcr5Im7HY2JiAtM0eOK7j/HYY4+xML9MHEtMw8bzfIaHh2k06pw9e4avfOVOFCnZv/8ZvvrVf6JdbZAmIaQ+QXuVgcERdMPGsjLEEbQ7deIkYmRkhM9+9rPs27eXME4udaVAVXTSpLtoGkRhV2Wb9NIijMHI2BimZfCmt7yZSl8/S8urZLNlokhFNwpI2aVMZHM5Ws2Agf5R0ku8wWa9ThwlNBpN0gROnjxDqVjEslWQAY1Wh3K5Dyl0LpybR1MNNNUklyvQaLT5/D/cwcxsk8NHT+FkBokj0bV3ERD6LpaukArYsnUrmq6SSp2OHyEUHS+M0XQN13dJ05Tz4Ryz7jw/lfw8bidm0/Yx/uOv/ir9m7bhKVXmJvdz/OgB9A1vIzwwjHPPMPH2i2zeuY3pc1NY0RRb1xcQuOimShRUUWQChOzcOsQ733kDrlfFztpkshlAsGZsPa6bIFWHmBjTUPDcJqvLVcqlElEYEoQBxWIB8Fi3bh07tu0l9gxiuoJzUdTA1NrIRJCEIZHfxu1UsawcJBLPDTl15ixfv/sMQVzE0A22bBpDyIRWx8J2ciw1XVbrDeIIhvqGmZo6R6NRI44TBBJNjWnWlyGOiPwATVHZtmUr9VqNVqNGmCQ89cwzRGlC3+AAQbvBNWM9RLGHaiQMD+ZJE79rCaboOJmE971zL4al4jUaKKlDEnVIopQ0EhiaSv+AyaH9U5w7e5z9zx0iESmlUp7dO65BFx5SKLRcyWpDMDKxl1LPMJ12QLlYZmlphcHBATL9FoXlAR545BmWqh4/8/Ff5i0/8+dsv/HNPPjtv+LQEw9ixBGCiFi+/hw9/LJO+GX9de/fvZe9spbLv4aQUv6rndu/pvj/XOf1hbjaig28etf0ZRj417DvlSsXlz9/ofOqju99afXkh+29vrDodDXM/PfZ/fKVm6v7Z73y2CnfC1d4OQz5+8GMu5F8n87rC9FbzHHu3BSZTB7TyPCOt78H7cJ5SnFKfnwNqqLidVx03cCwbJIUpGqgSoUfueF6dLsr4KIpgk6nQbncx9bNGyiVyrQ6dSzHIiWl1WmQy+bwPZ9yuYeZ6RlUVdBuN3E9r2teHkuW5+bImCZ+x+X6fdcxODSIUCSe7+P7IVJJmJ1ZpKe3zP5nnmPTNdfQbjfRFMlKrc4/3XknP/mTt2NnHE6cOEFPqYTQVWQCSeSToKJqOvffey/FYpmBgX4gpb+/n2a7QyaTxTYtrt21i/7BIe644w4mNk7guS4yEUjFREEQxhGmaeFkMggkuiaZnp2lVO5BvQSlk4oEAZau0W53sEydNIkJgxBIqNeaKEpC0HHBnkYIid/oJYpaFHszrNSW6S0NY6o6umWjapJOpwMpfOsbX2ft+DqETJidXaankCN45hj6W28k/MRPkMQzKGaBc5OLlDMbaNsmlhZy79/8KUGtwXKzQ2/fBvy2x2rL500338yu3Xv4wE9/AMuyWaudRTz1ezBwI9984hwDA/0cPXKEvr4+XNfllltuYXp6GlM3UNUu//HE8RP09Y+QpiG6mWHLhnXcddc32bxxEw88f+EVjgAAIABJREFUcB/X7t7DqdOnGFuzBtMwQQjG1o7yyMMPs2HdWnK5LIalI6XG8NAQvucxPDxENl8ijSJs28YwLcrlMmEY0em45HMF6q0G2XwOVTEwdZVHHt+P49j09ZWZWL+Jw0eP0mk3WbNmDb7vYlsWlm3x1FP7ueaazQwPDWHUnuNrx7KMjAyytNhk3doKpVzKjpvfh9epMzw0ysjmGxGpDnpEx08p5g4ipEOUlICIanUB23YI/BjDMFldXaFULiGlQrvdJgwDPN/ripldEshw222K+QIxAkXVaTZraIZJGPmoCti2QxwnBOcOg4CwMoZt2yiqSoogChMsy6Ltdm2dms0mpml2hcEUBRDYdoY04ZKAksAwTJKkWzxLRSVB0Gk1EcDFmRkK+SJCqqiq8uJ4Qii4Z8+iKCp+OUehkEdRVYIgIL2km+Z1Opim1e2GCMjnc4AkCkN0VaDpXaEYVVNQNYHbdkFESEVB00ySNCIMI+r1ZldxOY3QTfNFCLbrepesiwQZ28bzXFrNJlKq7Nq5h+07tjE1NUlvbw+pzKDLU5Bey9PPnMIXOn/9qU+xdmyEt73rXbzh1hv40Ic/yrZtu9i4aTNvvOU6SvkeHrj3fp4/dIAbbtpHpdJDNltm//7jWI5HX3+BUjnL7//+7/IXf/EprrvuWoRIuX7fPoZHBrEdh5/+4E/z95/7Er/+a7/K6E8No+k6v7zrl/mTP/4/cAyHt7/r7fQPVVCkwSd+/udBhOy74UYymaewRMJdq7P86udVdjwf8WeLT3D7T7yXWqvZ/XvLlIQURdU5cfwE2YxDnKZECeiKRJGi63tq6i+K8kgpWV6eJ/RTenp6yTgGpuF0aQ2WiW2bQAoKTE5OcvzIMXKFPPlChv1PH6S/r5coBdvu0kSiOEQCSSQ5euwovT0lDj//PNlchlKph7/728+RzWUpl3pwXRdFUdE1nTQRLMzN4tgZ6vU6UpFsfmyJNE048vZe7n7yG5RKJWwnRxSFCAFrxkcxTZNcNsfjjz3O+g3rSZIYRVGZOj/Fvhv2Uiz14WRsxkZH2LRxI6HXwcllSdMYr9XEjyRxAqqmoSoqlm3TarQBwY5dO5mdnSabK3Dh4iyCFCliDMMmRWFhYQUhBZap43baOLZNGAV0vA5rxzcQxhHZrN2lnVgaYah04dmRTxTGuG7A/Mwsxd4yqq6hCw1UBcc0yTg2i0sr9FbKxFGIbZuYGYuW28APXHK5DIZhYWhdpWIhdTZtWsf5czP09ZVQhEEqkktaEAGh34EkIUKystJiZXmOSu8Aht619WlUV1F0B0mMk8nxSOMpRk8O8LaRt2M6Gre84e3c9u7bqeQ6nH/iL2kcfpyeDe/i2ms+gvqFHuJr6pxdPI5jmFycfIqd15Tp7bERIiGMIkwtQxjbeIGgtrzA6dMznL9QZ3TNRu52voXnubyP23Esg6nJIxQLGQRwYbZKqTxIx20hFQXf85k8d5ahygBe0KLcYzIzc5w1A/1YlkocpyhSECcJURSTCsj2rkeTGm5tHttScbI5kjQh58SoSkAQtvHjHPVmjK277D88g+s5LK4ss23nOlZWl9E1g0aziWGYGEpMEixCqpLKECvbT6dj0dNfJpMrU6s1WLduDE01sR0dw25isYrpKBB3qRoZq8D0Qoepc7MMD/dhqqCV1xO1OnQiH5UageuSpD5xnGIV+hkd38K6DcNk7Rxu4JLLOJw+dpBM1iYhgzT7mV0OKPUNEQYxQyMjHDl2jG1bt6GqgjRJcFbLDHygh9/5j7+HH3hMbN7Hn/7ZH/EzP/2TfPZTf8Wtb3kHTsYmkQKQr5rHwyvnqd+rNvzq+16t8/rPQd+7srN5tcfV9ruyw3plrn2liNULnrYvvpZXnscV5/oDn9Blz9OX5tV98s8r0PTiKJfmqmrq//9hw1flvP4zxQ/6T7+8eH3xC/tDT+KH+viV93nN5/X9oBSvXLxe6UEr8hnE9gnE2NCrHq2Qy6OrDlKYTJ65wBNPPMGOLRtQv/RNFvI5AO7+5ncwbZuVapVSoRc/Snjo/nsY6itdEhISuO0GSdSh3vRp1laxbQc/Nmk0PPK5EhIF3/cI/JAwiHjw/gcZHumnp1xGSgUpFVIJcRrSctuMr1+LnbFRVIWUFNdz6e8pY+iSQrFCrdFgdHCUpdUleitl5mem6R8aZO/ePczOTONkbRRFJYliFFNHxAmGptFodVBUlTBw2XzNNQRBQKvZZmWlRv/wMGEYMTU1hWHo9A/2cM0129BUrat4iothGnTaVQzLQVG6UMhWu83SwiIjY2tQdY3F+TnCwMe0LNrtdpcnE/i47QaWaZBEEe1Om2wmR+C3usIh5lmSNMVINnHfdx5m09adZLN5GtUa7fY82VKli1SROkLqrBkeRlV0FFUhl+slfXQ/sr+X4Lc/jmrqxFGResdjbE0OkbaYvnCC9Wt3Mj42hjmxk+f3T9JXWcczj95Ps9Pk3KmzDAwPE4iYzPIzRPv/C2LtW/HVAts3byYMfSbPneG66/dw4uhxHn3kYa7duZNjhw8zc3EaVYGJDetZWqqSy2aQUiV2mwwPDXHq1BlufcOtNF2fjduv5eF7vkUcJRR6SxQqBarzC+RyOabn5xhdt4H68gJCdBVxm+0Wy0srKCJF1TQmz5xlZbXK0vIKExs2EoZxV0AsnycJQVdV8uVe+iq96JrKk48/y9atEximyuDwCEkc0WjW0TSdQrGHRx5+iHaQMp6psus9v8tX7n2SN+y+lkIyR7k/y/Vvey/eakShME6SL9LT28fFhbP0DUxgygcJQh3NHL/UAVFRdLML40ZgZTR8LySKQhwng6apGLqJlApJAkEQEUYpURK/2N3JOnmiJMR5eJ701CLeSNfLLzx3uJu4j02gaTpRmLCyskIpn0PTFKQMiSIf2+5yJdNUkESgKFqXb7y8QDZTRAgF0oR6YxnHtKjW62RyeRQBmiqxbBtFM4hi0DW6fp1Jlw8Uz84jpIK1fi1BHCDirm1K6HuoUkKigEiRIsFzm7TbLo89/iT5fA7b0ggvwVilIojjkEy2QEKCbtikQiWKA3TdxLKcLgcpjUDKbidY0VA1kzQVpCiIWKJIhVKxSBxHfPvb97Bu3RhCgG1liVMDTU7TaTp8+StPs+/Gfdx2883s2buXdioRYYM4URkZWcdnPvNZbtp3PefOXeC2227hTW++CT+M+drXvkqh0Meb3vzj/G+/8UuMDK3j+YMnGR5ay7ve/WZuvvkGjh8/zaaN27g4PU/bu0innfDnf/JFHnrw83y9ejdCSG5SbqPdWuLwc8/zD1/6Ah/88O3UFxY5cXKO/vEsZ+efp5JZIPQ7LER9DD+3TFZzUH76BlRd4/TkFJbRFckyLYe259FbLne5yIaBUA0kIYvz0+SKRRBd8Rvf99E0DVMzESKl1aqjSI1z5y7QP9BPu93qJm2hj1RVeisVRkZGcQo5hEwY6B8hTiIMyyROEpI0pd32sA0NVbWoVPoII4+hgX5mZqapVPo48NxBbENjcKCPs5NnqK2uks8VUKTOwecO09s/jG50uXfj955HVSSnbu1j7fq1OLkcCkq3UHQsPK9NLp8hk8nS39+PYakoQhAEIb29vdTrVb58xz9xw77rgYTHHnuUteOjKLZNkgq+edc3sDN5yr39l/KCFN+DydNnGR4exjA1bNMgVXS+/vVvcMPevahKjO/HfP4Ld3Dy5Dk2bhgj42iIJOp6sGoahqlTq3X41re+iWGUmJ2dp1Kp8OUvf5Wt2zbT8RooiiSXzxIHPoqhUyiVcOsdOqGPoXb9XFVNg7RLofK9GM0oYegWSRyTdbK03TaCiHq9SiabRZEea0bXYdkxWaeAuLRgrCgRvttEpDoLqw2arZC56fMoCDRNI/A9FCI+/dkvsm3rNXhKxJPNp/nWO79BwZH81u/8Dm9+08cYySxw6N5P4/qzjG97L2l+E/qnhkgHfcJCxNxsHcEsw6UIwxQkpISXvFKlIlmpB8wtLTMykGN+scFqPcLOZXii7xHCwOcd3rs4c+oESVTFMjRMXSHEJIgVhFTJZBxWVleZmJjg/OQU1XqTIAhZmV9mpC8hlV6XkpAEaLqOZWe66J/SBCQejaXzKEpMmMRUshKFGMvKk6QGTx44jx96jPaCNAboH+zjplvfQIqBZUoKhSIXL06jqho9pRJ+exYhNAJcvDgLogc9o+F2EsqFPOenJvE6AW6nwX0PHaLHUHEKDpoUpFpEGkWgmBQLDqqRx9IkcX4dahghLAPClIfue5qRNb3MzwUcPdFhx/XbicIsp48foKevt2vD1q6xsOqhZ3roHZxgYHSC2G/RrFeZmZ9leGwNaZwyOXmKQk8OZTrLQe8J3viOW7lm03pWLzxLrJTYcdN7UNpneebgKbbv2oVqOwi+V4H4FbPNV8hFX2vxejkX85Vgw//a4vsXvlc2oF42wovjvL4JvPKRXvnv9s9TvL4Qr6d4/Tfbm75SSvvK9y9/vBCv9IUy3/grWG/8VSTiB4XCXzVeHCdJv+dxmfUqqYCke+d51XO62hc5jrs/fCFThEwvYdoThOwamqeJIE0UEH537EQjISaMAxRNJxWSKPVJYx2RCNRU8NwTB7k4dREFgbhlD+KWay8bN0UqLz9eqEimzp9H1yXZssXS/HnoKWNoOgN9JQqlPO95/4/TUy6hAX6nhq3B9dftpn9oED8MSCIPx8kg1Sx3feNe7FwJP44RqeBLX/oCs3MX8cOEz3zmb5iemSaKfd7xrh8lk3WIk4g4CtEViVR03E6EiAWe6+K2OoR+iNfx0FUdP47oeCBVSbHUw0MPP0zgeoRBRGV4mNnz56mtzFIsZUkTSeQ2yWVtko6L67d49tBRFGHy+EOPs3PbFgo5i2ajyvr169E0ndriDCQJ+VIZp1DkwrmLqErM9MUpDjzzLPXVFh3XJZfvJYxDUroCIoYQmJkiaRKzPHuBYr7Iffc9QhQGBF6dwPcxMwVypUFUzSKMfbLZCo3OKplcL0EMURB1IeaKxrvf9w6EVCFVMG0LyxlEoiJSlTTwqC1cwM7kEUpXHMg7c5R0ZoHwN95Palg051eoN2dROvPIwCa1JSNrdtOOLR7df5i//8M/YPvWLUyePsBctY4iJB/6xCf40IdvJzl5N+K5P8bvuZFaE3J2jvsfeAJF0xgb2wCpwfnpeT7ysY8RJj7bd26n2azR+/+w995hctznnefn96tc1XFmenoyBjMAZpABJoCiSGWJlChZlkQlKznIcl7f2euzz7t+fPbdPj7v+u722X0k2ZZkW7IsUYliFHMSSQggCYDIGTMAJsdO1ZXr/igQIilRwfLu3bO7v+fp55npqa6q7umuft/3mwbXEAqTF547yMnjJwl9n4OnJnDKRQxLcurUOc6dOU8SNdi8fSv9/RWefPgZEi/hhje8nkNHThC4AccPHCCKYKWxSk9vL0pq093ZQc/wGjp7ezL0xrJJPI/Z6UkmJk/jterIVCUm4Zl9mUbQcnROnDjL7hu2YeVylIpVpi9eIgwE8/NzuO02tm3z/ve9j3ptiZonefDrn+aN1/ex/+wRhKPT01mkVReItMa5009x6sBztMM2emLjiOxLX1EkUZIQC4FlG0BMkkYZRTYBRRVYtoUiDRAR9UYDqWoomoof+OSLRSyngG0X0BUNzcyuF/JIE+V4gBe0CCKPJCEz/DIdFF0nEZJKNaPa110fzSihqiaaltEf3eYytdoSzdYyC0uzlDsrxEmblJCV1WVKpW6iNKVQ7CAIY6I4YaWZxXAoMkUzVBquj50roZk2Lyb6pUmMKgSxFyMUE89LMu2lEqPpCoqUpKmGla+gWyZve9ubcWwDqSgoqYBEoigGQtHx/QCJShpFLM1dRJUaXqvN4twFVFoohknguoTtNi23QUpM6Pu06ssoloZVKBAJFcMpcus73kISRZRLnfhByNLcBdy2iTBdPvnrv0E514luCVZWp0lbyywte6hWnsmLE3zzy59naqFGsdLPV++4CzeGpZWIL/39t/nFX/goD939T9z2/o/Rcn2eevpJPvbx27h+9w285vp3svWqcTSrg9GhKn0dW8gXAm7/+t/yCx/5XXL5AgjJPXc/xIc+8tvsff45HnzsTuKoj/7xDThdKWG9ybr11xElPqaV572FD9JO2yRJJqeIIo+OYg7dEkjLxG83CdwmjuMgNQ3PbeA3VwjilGJ3H3EcoogMSVelIPDamWu0plHqKGKYBs3GMjPTF2m1mkxeuMiJMxcIvAz1ToUkaLapLTUwDIlhqIg4IPJaNOurFHM2SZyiqhKpwNTMDG47ZMuWHYRhwCd/+eNct+tqFN3g+QNHWV50eeLp7/HYY4+ysrTIV7/8ZY4fO0IUB5e/MzTGn9vGVYd3IUhIUw/TNohQiAJQFZu264HiE/jwuc99BYRCSkx3pYud29fTbCxDmvD619+Emc+TBDEKgvd+6H08/MB3cFeXSXyXZmORuZkZBgc34PltvLaLYRkYGtz2vndjWDZxKpmdmcexNX7zNz6G23KZnJjHbSdMTWW033Y7JV+wGB9bh6Ul2IZKs9bk5je9Bq+xgqlmTBuv5XHw6JGMIRML7v7Og9iazokTRymVCnzvmb2kiWS11iRfLCLwWVqaplh0cNtNHLtAIjScQhnXbaMYRWKRUG+ELC5P47UbFPNFolChUOxB6AJNSC6eP0OrnaBoBvl8HlUzWKgHDA72oBoOF/wZrnI2YyUK3qrLH/3Rv8KpqMxdepi2e4kHHtO4qHWTO95NGqWccvfhJw2WZs4i/TqqafPsiVlCN0ZNQhqNNrEwyDkRI/0lJDC+roCuSDoqBT7kfZiPxh9HlxKrUGWlmZAGKVIXdJRKlEslvKBJHLSpdpQQaULfUB8bt2wklSqzS02+d7hJ3LZ59NGzqGmeRKgkoY9QFPzGAkmc0jvQTxzH2IaJtCwUM0dKjBRtto11s21sCM/X6SwoGEaB0EuIgjanT5xjeW6KLds344UhbuiS+AHCAjMUyNgiV0jJ5zqJgyZB2EYzHaycSc7OU8gLHn9+Ar9dI/E81EQnEQJDgbyTIL1FPEXFCCLmlmexzS5cv8HUYha7pBgasW6zOD3L0ux5enoGyFl5Dh44iKp1MTq6mSRWabsejz/2KMWufjr7Rti6/RqKxQJR5FIpdnDXnXcyJy+x6+JbKeVsUrfB6MjVvP+2d/PgfY/x2jd+GH/mSR74yn9CbbsIJXpZnSqEeInHi3hZd/ZDdZ+p/IG/v/QmpXxZTfyzUHF/EjTz1XqK728gX377Mce67DRz5fbSWlrI9Mp+suxZ5WWIbtZwJi+//bjn+FJJ66v0GN/f+Kfb93+J9d8t8vrTOP/+ZK5o/+XX9yH8V9z3E7wUr0YbTtL45YgpGqSSRKbEMiaUJqAiUzASgSlTDu17gScffpzzJ09y55e/waG9e3n6oUd579vfzWpjkWK+gCIVUpQr3fyrhVCHbszk6dOUCyUMI8fYhs1ocYh610OkYwOIy1E0fuCjKgqGnqKbJlYuRyKg6QYYpkW73UZIydljJxjbsBZVVzFNg97eCsNrh2jU6kxPnWHz+HY0xaFYtFF0DYREUTQazRZuo4VtW+RLRVIpEEk2Zf/qV2+nv38Au5DHNAw8t8ns9AXWrBmhWummtjyP31qlozKAquqsLNdQVAPd1EFRMCwDJNx9170oisbGTWPk8w5hGHL6zGnsvIOTdxBJhgJ97nNfwDRMenqqQEq1pwfHyaGaBo5TydAiRUeIjNKlGypCtZGKQMrsorN1y1babpNyZxlSSBJI4hiv7ZLP2dxz9/1s3TqGREFTFSLlFEmaorMJqWa5gGmaoGsaumEQpim+56KqGqphoukQ+i6qlOjPnyb85C201xZo+iEFLaRgq4hCHyVLcvjhL7Bu/Rbaoc4Dj+7lfe//VwwP9zI0tIZyuYN3vvNdHDt2ktdsG2T9yt+zZGzEKPRhWhb79j2HSBLabo1SoUS9tspAT4V9+/ZSqfSg6CaOU8Kx87SaWfbc3MICo6Oj9Pf1oioKPUP9hEnKxo3jhEGAoasEQYvtO65CKBHtVpNiPsuvGx3fyPmJCUZGRnBsk5NHjxCEIblCAV3T6enu4ezZUxSKJSo9PfSvGcIyVBDg2AbFvE1XVweqaVDtG0C3NV549gAJCe0gIO+UUBQYHBjh5MnTnD5zhI3j23EUn1TNUd10M+s23cA1Wwc4efAh8oM7sKSPohiM7bgRRIO5C2dBROSd/QiRI4i7UNXseub5AUEQZJmTSYKhWrjtBmmaUqsvIgFdlTRqdRyngO81iCOfem0ZQ1cQwkBVdeQzs9n14TU9mQunlSMpdmF19kCaZBEMUQQi+2y3Wi101UQKgyQWGLqNlS+g6RqCFFWApms0m60sJkMqJEmWs6ookjAIrmRlLi7MI4XAcfLEcfbeVaQkvjiVUXyH+kmSBE2RqEomGfA9Dz/wsCyTKI6QikA3NJqNBoVCDs9rYZp5UpFmCLIUl2muWTxBLp8nCDw0TcW0ciiKAULgtd1M32uqRGGIYVgohkkc+EiR4nsepDGmmSeIYlRVZ2pqltWVFXL5Ih3F0zy5x8R2oKurk8mJGR55+ClAo7vSxcjafkwTxtaP8I3bv8LNb30D83MT/N7v/Wv+8R+/yMaNm0hQeOf73kpnYQ1f/uIX2LKpzMylaX7xEx/O6MvtNhMX5/kP//d/5vVvvgXNzPHtO/4B7Q0mumZx+LPnuHbnKB/7xIcodHWQagmOmafaVWHy1AlyxSqO/gIiFXz6/3mBbWkbPw2YuLoL3dBJEwXPb2GZVqaD1K3Mbb3tkaQhjl0iBVRFJYkzeriuG0xPz1AqlTg7MU1XdwWpZAVpX28vtXqd7u4eDhx8gWuvueayDjvLyw6CDAHXVI09e/ayZngYVTN4bt+z9PcPEAGqZpAkgny+iKZIgsC/rMm2qTVccvkcY6MjJHHA3NQEN7z2BvKFMjfeeD1JGtNdqTL2xDxJCh35X8BazHN+61FqrQaarhN5bQw1ptVuYlk2uq5AqrFpfD133fUt1o6sJUoFYxs20my6rK7WKRbLBGHA6uoK+bzNam2Fa3deB7RxW3VkqvP1b36NnTt30HKXsW0LmSqoUiHw2og0Qbd0hCK56uqrEFKh0tlNZ1cnipKSyxVwm0t0dnRx97fvYfe11+PkTbqrHahajOPk8YMI3XCII8kX/v6LJAkYtk3vQC9JkjIw0IemZRFcfYPdLK8uMjw8wupqE13JfDDDSPDAg4+zYWwdqqYTxaCZDpKEwA9RFAVNU3nq6f2sHVlLHEcsLS+Tt3NEgc/QYB+jo4MUOjqJ4pTPfObTvHb3tdSW2zz28CPU16/wSz2/xrAo4tsBw6X1LJ74JhePPY1f2Mgt7/kt7FCjeOcYi91TDK0f4uH77qSjEDM8ZBGHEQvnUwbWGlxcDlBlEVtrQAyWpZMS4cc2x07Osv2qqyks5DBmbTpKJQrlEuW8il+7iK4rNNsJi/WEkXUbQKrYpTJeCqkfkULmoB2G6MoqPd0aI2t7MW0TkSbEQYBUTAyrH0UXrMxPoCkpYRgRRQFJkqKrOmEYkM+ZxMkqUtGZnEl5eu8RetdUqVS6qVZ7CQOfYkc3jmUxff4FzGQVdJM0iAnVQSy7hBckIAWFQhGparhuG1WR7NlzkrfftIlyvsGSH6CneepJzLfvOsWObRXixMcs9JKKPLXVZTQ1YvniUTaMdlEwUh7/7jl2v+Fm+vu7aHkrxHHK3Nwsu3Zfx6kzpwiTkP7+fnKFEus3jNF2XYQSMHnhEgeeP87hwwfQNJeJC9PMthbYol9DuNHl6/ffxTW7bqLhNXjokSdwcg5bh1XOnjpBHMUMrtt5pUG9YjD6ilr1xZ+u3JcK4mczOq16Xfxj0SIh5Muaun8uuvRKh+AffcxX2+aV9/90ObE/jYAw28fPgJa+ZNOs6f9xr9vP1gP9N00bjuPkT1/8p75YmMHPwO9+xfrncNZ/3L7+ueuVOtUf2N9LNLEv+fVHrlc7H3l5qvLiMeMgUyKoaYohwZtfpjF3kSfuv4Mv/+1ncGfOcGL/s5w+uJ/dWzfxv/7Z/0K1msf3Vjh65AAHDxykkC/Qe34eObVAMlS9sv+XfvhfnIrZUqW+MsOlyfPEkeD2r3+TXTu3YN7zGJOmxG21AGh7bfr7+1lZquPkO9E0C10zMC2LpaUFTFMnjiO6u7ooFBxy+RxCCmw7K4Isy6JSqaAZNl/72jfYsm1jVmwqKmmaFcqLs/M8/Nij+GHAQF8fU5cu0tNTZfPmTRQKeaSEVquBaeiZQUmcMHVxhv7+foIoQLeL3P+dB8jl8qiahpMroGsKc7OzdJY62LZ9B5XLsTltr83C0hK9/b04jo2TsykUipw7O8n1u27g4qVLHD58hLGNYximkWlbpcKdd9zJutF1hL6HEIIwCmm1XQzLxnfbmJqJomokcYjj2Ph+yNLS0pU4IVM3CMOADWObUJUEiUrge4TqaRRVRUk2kCYRWURoNuVstppoqoKhiivZdnHkoykpHJkgURTO/PxVdJW6KVYGmbt4lo5KB24Ic+dO8PRDX+bkwdMcfOE4544dxUkNhjas5Z/+6Sts3bqNQ4cO8+RD9/LeyqMkhbXE1iCarnHhwkUWFhZ48xvfRJIG6FqWo7lmzSB+EDIyup6W2+Tue+5l29YtTF2cpK+3SmelShT6hF6biYlJevt6MfQsS1RVVUSaIpWEJBHkig5RlFKtVuiuVllaXuHIwecYXb+eI4cPs1pbZmzzelQVNE0yNXOB5fkVSh1d2JZOsWCBkkUITZw9TV9PN8sri1g5B68dsbQ4x4WJC+iGxsaNm1ldXuH85FkmL0xhWiYLCwts2bKd+cmjTC6FHJtocfZSne6KzczEEYzOTVhKABLKvSPMHWXQAAAgAElEQVQocZuguZrRnouHSHCQSu9laq0EoWKYOkKkCKEiEChqiqbqqKqCZTu0m3VyuQxVSZPM4EhIia7rRHFKFMVo+xYQAtLru4m9FoltsBRmNMc4DrPGNs40X4qUmKaN6y6g6ZIg8PBDF02zQCSXG0UVPwywLZsoiqjXGzhOjuXlRXKWSavdJufYxGmKY1msLM5i5xykUAg8HykTCAKwTCjm0TQNz2sTRj6e52Nb+SyaJ4pQFJUoSTJafSoIw5A4jlB1hzgJCEMPkvSKJhIkcZo1XWma4rZ9nHyJlBhD17I8Z5mSJhLX8zEMI9MnXh7I6bpOlIKiaihSwTQNzk9cpL9/DN87zeZtu/GDApZZJp/rYt269fQM9FHKGzy39ynGt2yhkLMZGOhnZmaKLVvH+cBt7yFfyNHXP4hmOFQrBVzX441vegOqaaAbgkpPkWJxiPseuIN/9+d/yZvfegN/+Id/zi989Of4pU98mB63ypuq7+DI947x15/99/zO7/8+qswReDMEkcQxDB6++5t84MOf4Nc/dTXtVpsXjpe5ReSZ9C+wb0eMk+YR6DhOpmNNRCajEFKiqjpxkmlgdU1cdpQ2aTbqWJbF/PwiaSIYGBpASoiiECk0VpaXcdseTz+zh7e+7WZEEuJ5XubeH8acPHmMgYEBHnzoYV73uteh6BpSQM62sugjVQWR0lhtsLK0ip0zsW2bZrOJpmssLCyhpBnL59iJ49z6jlv4/Of/nl3Xv4YvfOFv2LZtK47j0HffWTRdJ6m+GUVKjq07gGkVSEK476772LJ5K1KVqNIkjELq9RZJHHHVNTuJopB8vkAYxJTKHZljdQqqYoBIMEwNXdc5fuwA3dUKQeiTL9hs3rodx7FR9ez9pFsqQehiGpkh3/JqiGU6fP7zX2J8w1ZUPcyQNiNz8TY0FakprF+/gTBKOHf2EoZuo+kaURqjaia+H+M2XV57w2s4ePAA+ZzDuvVZxFgYZHpey9RQRI5vfP0bDK3poVJ1aDSWkUKSpAmbNo0RBR6K1FhdbTI3v4gmBMePn0TTDaQiOXbsDKPrhknSmHK5iwsTE/T2V4njCM/3EUJkcTxjG8mZBqqms/b6NUwGF/hk+1N0VDVK1naS5eN876Hf5a0/9yecr+V4as+zlJ8ZwFHzOOOS55/9HknjEtu29qDIEFWoVPtCSCOWl4uINKJUBJHmQUTEScCzz51m+85reeLJfezafR0dHd3MTE8hVIXJ00eodCgkYUKYhHRW19GutWgs1Sg4BRYXFtFUjQuXLtKo1zO6dqKimSElK6adBNmwTpPEIiXV8miajohWSWOP+YUFVNEFqSBJ2uimIAxVNFVSqwU8f3iOG193E6fOnmJkZC2KbtCorXDu/CQyCWiuTlLJQyQ0RBSiF9cwNTWbDdlbNfI5B103UAQ8eN89eKJBKR9gaZ18675zjA7mSEXIYG8fphEgVYGZG858KwTESRsraWM7ASLW6Owq0LN2PZNnZikWOgiSmGKhSL1ezwa0A0MEYUiKQtP1aDdrdJYcJs4cwdJ8BjsFY0M5xkaqNBqzaFqR4skq/8eT/xtf+uI/ccvbb2R8/RhBJDl5/Ag5U+Pwgb1c//qbEYb98vr2FXWqfEXtK5BE+7LmVdt12WH4ZfWsvBI787JimR/dhP1L1PQ/fpsfpP3+JP3GD3/0D7/nxfMArmhiv49av/r2rzy+kC9HcX88WPg/mtdXXS9FXtM0vRKV818L9Xy1FTx7O/H0UZT+LVfu+1nPKQiCl1EffmC9Unb6E+zz1c4pTV+OhnoB1JaWufv2r3Fm/wH23XUnOemRtGfJWyqbbriZwXU7qAcazx4+yV/81Wf443/7Z8zMrvJv/u1fsGXDML/127/D7r1nyF+YR77rdZeP83J3txf/j0899jB5M2bDulFOn5lk+zXbcVSJdc/jKJvHWV5apFguYVgWQhEUywVW68soMkaVIUkiMA0NTckQpUJnBZFmlu2tVhOv7aMIjSRJsHKd6KbKzmu2kgoFx7Gz4kuqLK+skKQJ115/Hf19fWipwLT1zCCj1URIaNWW0TSVWqOJaTsYisKdd99Pd+8AhY4yCbBh/QZMQ+PIscOsLjfp6e5EV1VCLyAWClEcUOnqpFzuoFTtwjJ0RByzODuL5RQQqNx//4OQpKzbsJ7evh5q9drlXE2LtYOd3HvvQ4yPr8UwDVquh+MU0NSUxbl5/FbAgedfoLu7jFTUyw6zEYZhYhoWjUYjy91LBYYBcZQiSFCTzazMdZJzbIh8pKJknzNFIY4TNJngNVZw3RZSNfCDCBEEiEeeJ/iDX6Ky6ypyViczyyGjw70cOnWStLnC8EA/TmeOLTf9KoFS5obX7OLRBx7hP33205w8cZK3vvVtHDt6lA9tnMJrLtMubsa2LI4cOcLatSMZ6mXnmJ65RGelJ8vHVVUuXpph6tIU+5/by+iGYVqNGkHbpdpbxbRyPPLg/fT29lAod7Ayu8iTTzzGwOAASQqq0Dhz+jjVngGmZ2fIlTpYXJhFkYKOUhmNzHlzbPMWhkeGOXnsPAcPHCGfL5OkCgvTC/T19bOyOEPSXsUuV0lTcEwTQ9MIYg9F0dCETtRuMb5tKz3VLuam5wgin93XX0er5TE7O01Pzxqe2fMkOzf1YuoKa8Z2cftdj2cRMe0Gh0/Xed3u7dSbS6iFIqZQ0FNQ9Ry2tZcUB0QPK8uLoKioioaUEEYBitSAmCBooUoLRVGJhUESZnrouudjGQ6qbqDpJkkqUTWFJInQvjdPmib4Owq4tXmCqIHjdKGpKrZt4LotWs0WhmVlRmZSIY592m5AzimhqjoiCfHbbXTTIBEKkmyAZRgmhmGQkBn9eG6TfLGMAMIohiRGlQkxMbpmoOs6ceIROw56pQtFUbIcPE1HSIllO6RCo+26ICRnzpyjs6uCEApSKGhq5vqt6CaqmhKFAfV6HZFmUWS6aaAbBpqio+oKhmmhqBqCzKm4VqujmxZC0RApGUIldRRNQzetLIaKhDiOSNOYKPIvu7ymmHYnhnyC2fkNWGaF/+uv/iPbto/T3d/JqSP7+c1PfYqPfuLXuDB9gdH1m+jt76fWqpG3VFKh0mwF3Pb+X+AX3/dBWt4cRqGD3/ztv+RTv/E+VEvQbhfZetUGxof6ufmW6/nkL/8uQXiBMFBYW1mLtxLw9rffzDt//lb+/N/9FTde/UZe2Hs/Q+s3sLI4Q0mHDZu3sHG8jd/22Hsoz5ulhiNs/mzgQQpKiRPPnWXdusHse0kzUJQE121z6tQ5ensHEAq03RqGrpIKiWFkjZzrBrTbPkGwyuLCLKVCielLc3R1dfLAgw/x7nf/PKkQRL7L6uoKcZyw55m9XH/D1QgB69aNAoJGq4Hvu+iqoNWo4eRy1FaWMVSNvJ3DzJm0vTaljhJCCrrKJeIwxC4U6V+zhjhO2bJ1O62Wy+5d19DTWyUIPLbsWUYIQVx9I4qUnNt8kqWlCyShT29PN5pjkCYacawAMXEU0/JCnJxFmoS4jRqqbhBGAVIKFFVy792PsGnTGEtLS5iGTbWnly9/6T52X/96pJZiGhYgiOMAQ8+BaiOFiq4ZpGmKY+vMzl5AipShwT4Mo4imW9TrDaSwMC2d1dYqiqKgGzoHDjzLCwcPsWnzempNl3yuyCOPPsbGjeuYunCGVqPG+g0b6OqsEJO5e8/OztJoriASl+uuvYrOUhfNmodT7CCONT732S9w9c6r0NSQ2kqdXK7EF7/4RcqFPJ2d3VS6KxQ7ioyOrsW0snicNNEodxZYWlmmUCpj2SXatUV0K88dd96LbdmYBcG+aD//88AfMqw5dFevhsbTPPDtP0W2t2ONvYN8vkxvWmD40LWkm1d4bv/THD5wgHe9ZRuK6tNupaiKJFIt1EhgmssUiiapZnL/dw4xvLaCrkJPdYiLU9Ns3LqLPYV9XFQusUnfgGFZmEpEGC2jSQ1VjZmb9+kdHQUB8wuLSEXitwOqPT20XZc1g0M8vucpimWTbttias5HNwrIVAHNwiwM4HtNEn+FNPbI5QsIrUWh4FyhdIZJgCIgjn06+/oY6B9idGQzSezjpQlpFFLprlLK67S9Bcy0hTQcvPoy9Vhj7fAaSKGjo0zoucRhwNEjL9BVyrN4cZGNG8qUCjGjgxbFjgJW0iavJyRSohk6qjFIrbVC4vvkKxWWL11AaC2adR0VBcXJU8p1cOnScUY37sTUDC5emspSGKTK8aMncNsBl6Zm6a4Uufdb32L7xm76qiH5oo1ME6QUdHV3YJbq6LVBrjZfy0f/8jbiaJEX9j9Pd/cgq1GOroLBuaN7SGyH0c3X/sim7YfpPl9sXtXrfrB5/UF09OXU458W7fyXXa8s3H86FPinQV7hB+YAr9q8/qgHf/9/8z+a13/2iqLwT7kc/cGV/NPv88H/v2hhhRBEJx+DwEUb2fV9esKLlPzL5yh/yGTjh60X0U9VVX8krVm84vZq+3opcgvfp0pfmaYIQZzGKIpC24sAjYXTZ7j3jq8QtpbZtG4rhi24OD3J5PQCU3ULsHlmz15ueuPruG73Loq5MrX6ImfPnuBTv/6r7Dt8hH1PPc2NLZibmSL/82/FSxMMy0ZJlBdjna/kQ20YGabe9rE6uilXejmy7wm2j2wk/sb9KDs38OCDj1JfadBT7eErX7mdbVu2k6YRlmXRbHnYhkGcCuIkpdV2mZua4447HkC3LCxTxbB0dEtH0U3mL81z8vhxVEWQsy1EmtCo11hZWqLglDh19BjFooWqpkycm6C7p4rnxRTLXRimQdsPKJW7yDlF3FYWP7JlyzBzs6sMrO3Bra0QxwG+H7BxfCt9/V0kSYCm6UhhEAvJZz7zWa675hparRq1lSaK1Gi1faq9A/hBG1UVbNu2ieG1A1Q6SiyuLNLR0Umr3kKVKfMLLps2j2M4Noqq02q2EEmEpmaah7bX5uCBg4yPb8d0bFJFYOgG9VodmQRYlo7UrWxKr5u4XoRhFnDdGuWOIpZlg7QIIh9Jgu+5mJZNmgSYuUKGukRtgjBGuTCHFqdYf3AbfpoiUZg5cwhNeHQUB8jlSjjFTpziEB987y+yc+M4hw7sZWhoHKmkKEJFxkvcWrgH6S+iDNxIo+WjKJKJ85MMDQ6RL5fRTJXJC9NUe3pIEpi5cI5iwSEKQ9YMj7B+3TjVniqmY1HuqKApKb0DvSAVvHbA4UMHuPltt/LUU3vorVYRcYphOaRxwvljZzly7CSKolHt6UUoggiFro4SrVaDKIaB/h42bt1GsVSGKOLAgWcplbrwwojB0XUYlolUBFEQYhtW9n4Msy/WKElot9qsLrlMT1+g3N1JR7kTopCNWzbz2KMP09PVxeiaIdSkTvGq36d3Ldx7+2Guu95n+40fZCAX0ibPyMgO5qZP4EaSYtcgmniYpreNREicXB6RRCAUhIB2u42m6SATdLOM57n4Xp3QbWNYJoqqIpIAzwtQFZ0w9PH8BrpukwYu2rPLBEGC9uZBhCaxXQ/ptVE6qjQbDUKvTWdnCaQOaUwUuFhmEcOwSNMYKQWu56LrWaxO4AVYhkGcSqJUMDszhWnmQIJm6YRRiFRsFEUipSBJFJKgjWpYRDG4jQZBFGRutrpBrb6YXS/jIHMTtmwCv4UQUKl0UV+toWsai0uLOLaNaVoIJQYUhNSwnTxxFOE4uYzaFwQgBWkiiKOYJI7xvRaq4WCaDiqSMPDQTJVIKEiUyyZ1Wf5d0HLRdQ2pasRRShSscu7UGcrlNaC0KOWO0mxvZMP4WoqlLp596iAdlQ5+5bc+idAkvV39NJvLLC8t4rUSkBqqquA3A776xa/xkV/9ELad4/jB57lm6yB9a0ZJhUl9eZ6Hv/0gX7z9dt7zvg9w/txh5meWyZXKTE8vUC50Yjo1/KjA+rVj/OanPsjHfudPcFfPYWg53vOe32dyYpEPfvRmml6eG256P9oz+7Fljv/8lb1MXXuRDUNrqdhVVptNNAECBVPTMTRBHDRxvQalfAeeG5MQI1IFKRNMU6O72oel2Tz/3HNUujqygUAKGzduzCjbUYxbW6ZncBjdsOgq5ckXOkjTiDSJcJtN8qUugrbP6mqNzp4edMWg5TaZmprl3vseYOfOrei6itduYRoarushVZnJK1SFFIEqJaYOpiZZXp7FyZWZG+/i5AbJ+uXXkiA4vfEYtlVENUxSkfLEo3vYND5Os7WMadroVo4v/cPnGR/bThwrOMUcUrXw2ot899HvMTy8lvnlOdYMDJHGDdIQXNclJaba0w2XUes4bTN5foaurlJmZqRCHCcgDUKvRrmjm6E166m7U0xfnMlQUmnwtdu/ztZtO1BFRKu2jGNorN+4iZ3bxzl7fpqpyTnKnR2sWTuIIKaru4/evj7yxTymk0MkBt+6/auo+PT39/PdZ55ly9YdxEmCqmmEXg1I2HXDDfzd332ZLVu2ItUEy85zw2uvo6evj3zBwTB00liQEuC3PUQSEwdtFpdncew8AgVVlbTdGrZVYHpqhcWli6z2BdSXa/xZxy9hj16F1drHw1/9M258wx/RrPRSyhcw7Tz6V/pZFjO4xjRdTsyGtQUs2ydMVMJUxdAMNDUGRaKqVmY4GArGx3tRREyaCFqNFc7PeFQHx/nbwU9zVDvMu9KfI40EjUaN5tIcphGAVMmV+1DMMnmnRGdXDtMuIVVBnECpWGTfnqfZta1KzmhjWDksQ+E7jx6j0Yro6EwpdY9DquO3ZqivSgIRYCoCkSSZO7+iQBihGjrTixHnzkScnpiiu7cLKQSqkyPvOCwuLKGmLl3qCr7QIHZBsegc3Eit3qazqx8/iskV86SRZHCgm+eeP0JfVWeomhJEBnZORxIRoyA0gzQRNOsupf61GIqC6zeQ0uZr33qc4aFOCoaKNEAkKpFZorevn9PHjpPPFeiudhPHbUCj3lhF1w32PH2IkYGAct7EzkfokUIqYqSqgExJYo8wUXjo4CPsHngLrecDHpj7Nu95/8fQHYXRDWuodF/F2OYR7vrSp7npdbeg5LsRhMgki976UbVySoIcjlG3JIhc+rJtf2i9/BIhp/hnSl5/HF341RI9ftS5/CSN6w/U+a/Mef2BB/yQLNYrOazicr66IEkz5syr9aMZ0vr9o0ghL+fovvRJ//Bz+UlR5Feu/8ab1+hP4afhg//XWdH5fQCoa3e96sn8pP7DL20u4WefBr3y8S8VlF/5ORIYSBYvTPDEPXfzzHe/za//yu/Q1bWe3/6932Lndbv5m7/+AqvLLeZmGzz6yIP86id/he5qD+3Q58TRF3jPu97OiaMvMDs5wZ6H7+E//sX/jvLdA6RxxF8ffpxNY+OUuqqEioryik+Mpmg8cN8DrBlYh5AmoyMDhA0X7c5HiMdH6SiUGV0zxOLiLGNjIxQK5SturYV8gfOTpzFMK4vnUFRy+QKWZdPbVyVONUqlDgLfRySQpClDw4PU6itYjo1t5jBNiyiK0XUb29YIwhhDt5AySzK1LIv52VmKlxu3OIqZnplGALmcjePkKJZKGX1Qs7Esi3q9RpIkKIoGSA4fPkaj2aSnr8J111xLJoOPaTZcOjrLqKrCysoytmURxT6qkjA3P8Xk+fPkCz0YtkmKT7vlEycplWoXnuejaUoWIK9p6GZmimLbNmvXDqNaMUEQE3qQJDG5chGp6YRhwsWLU5AKVlZW6OwsE6cJaRQDKZ7vcdedd7N5yzhCCBRFQZECqRgEiUQqBnGcYpom6t5jNN73OiYtjVKxBymgXl9iaLgf4dd5/OEHefg732F+aoqPf/I3ePa5vczNX2B8bDNnJyaoL5znN7cd59J8C33w9aQILpyf5NL0FI3VOt1dFc6fO0upVKRSqfDUU09x4cIF+oaHKXdWqPb0cN+999DV1U25XAQBly5NEQGlUpFzZ87QXG2wY8cOzp47y1U7d/D8/meZPHeWYjGHaRuEacL27dsplUqcPHmCqUvTDA4MoOs6up65nF6amOLUyROcPnGMocFe1o1tpLOjzJFDBxns60PVrQxpVRSajRaKklCr1XFyBebmFzhx/ATd1R7iOKKzUsUyTYRMaTRWkIpOznYo2pJ2c5XCztsYGu5mZmKVPc99mds+8ceEjYu4vks5l2Udx6mCZRcxlEdpuRVMI9NgrSwuINWsAVQUFSk00tTL3LLdOpoKtpMnSaHd9hFSRUoVVdUQQiKlhkwTFFVBfm8BRdFoX1XGdgosP34XydI05tpNGLqCaWg0GzWkZuB5HoV8Ec/3URSFMAzwfR/HyWd2/yLTHrXqWb5qnEKps8Lf/PXfMTi4hkKhhBQ6EBHHPmHgo6gqup0jRUVRVDzPQ/E9LEUlFFAolEjSFMfOZZ81KZGAVBR0TSeOY6Sw0DU9cxdOItq1BqqikZAiFQUpwG17KKpK2/MuSwGyDFJVVTNTDCDwmyAUgjBESIkiBPFl0yBVVRCkpEmKqhlZ1M7yCvl8J4qaYtkqqewnCY8RBgbvetfv8su/+Bv8yic/TN9AD1u2biFOE2ory0glQYiU3t4+arVVlpeWiCMPQ1fYtu1a3LbPvQ8/ws3vfQ+R7xKioUidbdu38pobd9HVsZ633HIr73rvLTz+wCNcHJ/lX3/6D/ilG29DkSaf+uVf5nOf/itGxsYy3Xdb4/HH97BudJSb3vLzeF4f81ML9Iz18ezKPOPbXstHd9/G3y38IwWZo8vpJPFDoihC0zPNsm6YWHaBNIL773+AsfGNqJqOEAnNZh1VNYip01Up0dVVoe1l7wtIsCwdVU1YWp1HNwxMVSf2AjB1orBN4LkoIotGM3WDUyfPMjw0ShSHpGlMX38PW7ZuRlVVmnUX08xDotKo19F1A9MyiZMYkaR4bguv3cQsd2PaNi03pKZEzAY1rpp5LUIITo4dYKU2g0RDFQ7f+95TbL36anI5B5FGrC7N8Ya33MITTz7F0cNHcEyTRt3FMm0GBjJn5OE1w2i6hutmvgdS0xhdN4Kmqxl7x3VBpFSq/URJiK5qtN0WpmWSxAkXL14k5xRQFBVFqsg0Jk7axFGL619zFUkCvtci8Dzuv/9+tmy9Ft8PKZVK9PX3cer0Kbo7qxw+dAxFFZeziR1UzQCvxcrSDP29PZQ7qpw9N0lnRwlVVZBS0HYjnHyB5eUl0sSnWukkjl2kSPG8OoY08IMFpEiJQwWpmZhGjiAE3XAo5roQSkRKgqrksG2ddhDjuQFRuck5a4K/7f80pqLTUdb47jf+PZcuCrbf9H6eP3WYTqcD+0QH5uky7ZEpLp4+Tinn49gxsdJgbl7w7PPLPHfoHOMj2fBJSplp79Mk07r6LqqqEiQGe/ZN0z/YxSPFx4jjmFvDW0kTSeA36ChoREE9G1opJi0X0jglSTwkKrWVJXKFAiDIl4qE7iqa0kKICKFEjAx2MNhXoujkQVuDbevUGxM8vW+CybmALeu78YMmQahw5swClV4bz1N57tkLFLtSBoc3MjQ8xMT5CQxNI29aWLkiZ04dwUhXSaWEJKHRhuqaa3DbMQJQZUwYRxCnrK7Mc/78JI1Wk5E1RdpujHb5GhJHMVKRxHGElApavofQF9hWnlZtkTSoM9CTI0liwjDk5KkZ+oZ3cubEOQqlAg13CVVXEcJGM6CrqPHgvffgWAqb+h06OhPOnG3SVdGupB6QpplXBg0Gh6o8cuBpxvPX0Le6nvb4PHv37qNU6ubEiSM8+cR32DJe4ezpU2zbfRMpCoqA9Md0mFJKZE4gnJ9eu/qz1NM/m9b1X2r9BM3xD9n+lV45V5rxn/AlFEL8YPP6YyjLP+3676J5fXG9srP//2PzeoX6+xK0M7p8wf1R6wee24/5/ZX3/yRTjxebWIeEP/q9/4nD+5+nPj/HO9/zXqamF/g3f/wntNur3H3vV3nLW96AbZscP3ecTSPr2X9gP2+79R0gFNaPDeN7EffdfQ9XbdtE3U04cXGG8v7TSNXgdK/C6aMn+Q9/8X/yc7e+A9WyrpwrgBe1mbtwkYJTQLPyRElI3WuR++r9xMPDPH/oAHueeZqt27dhWRaFYhHPa2PoBkKolDrKIBTarRaqECBVurs7qK0ssX//IYLAp9rdzdEjxzh56gSPPf4Ib3rTG5Ayu+CeOXOGvr5e3LaLYUhK5SoPPPgYuq4S+BanTp5kzXAvUg2xrDx+4FMul7Btk1arge2UabnLLEwvcedd97Bjxw4WF5cgldg5h+eeO8A111xNELi0XTdraIVAMzSK+QIkCX67TXelQpzG5HI2mqrgOA6Dg2uwc3lIQqLQRdMcCsUcSZrg+T615QXKxWxaHcUJURiTJAn5XB4/CnFsh6WFRR599DHWrh0CqaIbFrWVFe6641u84fU3kWR+ckTaU6BdIvV72Lx5E26rjqrrqKoGSYxfX0ZXFbxWk/nZKcodXcSHT7Py5l0M7L4OQ9WRBLTbHrW6h97RyeimrWy9dhflvkEee+RpPvKRD2PZGhNnZ5h4/uv8yZtXWImL2EOvw87nEKTMzy5w7e7dmKbB/v3PMza2HieX4/ChFxheM0xvT5VqTzfzc3M88vBD3HTTjRlyGIf4QcDS0jJOLodjW5w9c4YgCLCdPKZpoKpkdOz169F1FWSmdQy8Nq1mk55qD6MjI8xMzRKnEtOyWV5YJE0FPd1dBEHmulsqdeC6q6yurgCS/sEBUlKCwCcKQ44deYE1a9bScn2qPf34ns/+A8+zecsWSFJm5ubo6++nWa+zYeMGBgb6OfjsU/R0l6l1XcPEydP8w2c/zSd//SZ2Xv1u3KVJjHyBdn2JRGggdZZWGlTKzyHV9aRI4iRFCoFm2EgpiJOYOEoIvAhV1dAUndiPQWamTppuomo6SRyzsrqEbduoqkHoNUDRkOfqJJYG2ztA6EQTRyBNiXtGCIMQVdMQUkG5bKxDmhZ7DgMAACAASURBVDmYJ0mCqiqXDZ3EZX+CLBszFVmB49g2KZIdOzeRyxsEQQvTMpCAqirZ16RQkZoBUUIaRVme5KHjhDNzhJUSupFFRUVxShxFKMREccYi8dqZHvxzf/MFxsY3YFgGUpXEQYhhWcSXr32apl6JyYKUeqOGZVv4ftbItlsNdN1E11SWV2vk80V0TQcRQ0ImJxAQR9lrHEXZtFshoum2SdOIIPCx7TxxmNJRPkG+cCttN+Xjv/hBRkbGUVWbxeUlKh3dlx3gJYGfUCyUcawihbzNjTdew8c+/mtcmprmEx//GN2VbsqOQBFGNoAJanz4ve/m7W9/OyPrx9j77AFed8NuvhreQdfmCrcUbyTF5v0f+ADHDu+nb+0oh1+Y5PSJKXIFyR13fY2tV23iIx/4ILfecgtd29bRdEyuf80NdBuDfLjyDr688E2m/BmGrbVMnJukXC5h2iZzcyuEUYIiYXx8PUmaEiMhjTNWTJwSJwmlYpVmIyAK4W/++u+orTTo7xvA0B3iSKGQc1hZmWV6ZhLHqqKpBg985xG6uvpJ0pgoTRhZu5aF2VmEqmSsAuTlYUOCIlUee+xxhoeHCQIP07RIEQihEPgeuVweM2ehaiZB6FNbbnLk0EF27NjEyPEtCEVyeM1eHCeHaTokcWZulC+VSZOUxfkFCjmLVBhoqsL27Vs5duwotqFQKvVg5bSMSt9qYegGdt4kSVQUzSBJk+zaEMTkbJMUgaJYqJrMkOHLpolJnOA4OVpuC9Lo/2XvvYMkue47z8/LfOnLm+5q76anu8cbmMGAAEgQhECRErmiVv6kW5mQdiXqTrrY29VKG6Hb2z3tScuLlVYUKVKG4oFGBEFC8CAIAiSAgRmDAcZPj21vq7rLp78/agDBkQBFxd2F7l5ERnRXVr581R318n3f72v42j0P4voxk5Pb0U0bw3CobMwQx5L1NY8DB+6g5a1iWBbN5gaREjDQV2JpcZZsNkVPzyjHjh6np3cAVVoIzWB2YYFiqY+v3f8od7zv/RiGiqrGWJbNn//559i7fx+tVse8KZPJkUjquG7Yid/yWh2TNd2hWm2g6wrPPPMciiLxgjazV2fJZJNYpoOiaFQ2KuiGw5fu/zLyepX/fejf0usNIaTP4Qf+mMmJbfjGNvrGJimvLaJ5BoUHd+CPrfPIdx7h4L4SCVNFQZKQOXQ9ZGTMZOtIEsc0sEzz2tzSYWsQh4RRRBhBu6mwdWobk1O7eMh+DE3TuK38XgIvJJ3UuXLhOI4pcGyLRjsi1zVGEMU023VMzSGMInTTpFIpc+LlY5w9eZ5sQpBNJEFROXxkkWJvFt0xIJWGUCeuTzPV30NfNkLqGpoUBEFMsatE4PnMzqxTKIySSGXo6h0hDAX1ahVViSiXyyTTGbrSKvXNeXTDgDAmmR+h5VvUqlWKxWJHiygVRAjra4ssLa2SsFS6sxGOk8Y0FRShAgqKqiAA07KIjTyECn4Q4iQV0mYLSYNYCfC9gAibh75xiKTtsHV8AlVIDC3BY488SW3hFEllmcnRLKOjAk1NU3M9njw0w86dW1FxXzMJBIjDPEdfPMGeA/1cai2zVd/D888/zU0/dgMvHD7OXR9+P3t2X4e3Ocfs2afpGdtNOj+EECHx9xmA8k6FnjfoOP+BwOoH17r+Y7V3GMc7aVzfNEblXY757Y2u3vlv8v20/8+B1zf8/n/nYF7X3m3l9e1ovO+2veWz/iN9UVRV5bOf+I/8yIc+yL79+zl+8gx/9ukHuHjpDEsLp3BUnfe/50fQlTQH3nMnn//6ffzo7bcxMzfH4WPHueX222n6HvXFWZZOfIcPTyq8b1Sll0VysU1/qpeXR5LsHZ9i20A/f/2n/5UP/dx//4bxB6LF2sxV+ko9mKk0saJiJnXkg08juooMTI2za9cennzqabZO7aDRqFLI53Bdn2q1TrnSwLQcvvq3X2JosI90Lk+lvEY+m6Gv1E0mnUDTNQwrybbtE+zZuxvTMhFCRUoVKQW6KfEDF99rE2Pw3KHDtNt1BgfzDA33kXCyLC23MAwFz3WRUiGOQxzHwg9VypV5iukSk1OTtN0293zla/T0DFHozpBOZ5CawurqIr2lAT75qU9RqzXYsnUCKWB1dZVavfZaAH3gBcSxwG2HKLpFeXMRXQE1VPjqffezdXIcVUoM3SCXSVFeX8NJ5YjDjmtyu+V2AKeSgNijkLMYGtlK2KoBCpEQ5LJJpsZHqWyUEULFMB1C5WUi0Ua4IyiKSsKxrsWJuOhSpdF2UQwb1TApdJWYn50h+fIF1N/+RUQygynaLK8uUOwa4EtffIjygs/spVUeffCb3LD3JhKpHGfPnGf6/BluLV7hzoHLhF3XoZemyOaz+FHEufNnyGZyOLkMbrtNV3eRRDLB6dOn2bVzN612i6PHjmHLkN6ebnbs2E42kycMY06fPgkiZmxsnM31CgnHZnTLKIWuIppuo+sKrWYN4phsqRcFcCyHhx9+jH37dnPmzFmSiRTlcoV6o44qTY4ePcrQYB/dfd0cf+kIwyOjHD52gomxMTara/T09zE0uoX1tRUMSyfwPdbXV+kq5Gg0XaRuUKs1mJubY3FxkUQiweULF9i9dy9tN2CjXEMaEaHv4dbX6C0VOFEuEtaa/PyP38XcwqNs2/pBVmenKQ6PU61W6eruIde1SKHgoqgKqhQo0kA3VAxL63ynAh/D1K5Z6rvoOsTCRzclKDG2bSA1aDQDwrBFMmWh66KjI5cgdRVlXwGxL4/UYqI4xp1+BQhJbrsRw1ZRpYJmakhVIEQIIsAwO26zHfZIhFBBM0BRY6LYR+oauilRZSeLtdHwsEwLPwgxDAVFifH9NoahdaJQRIBUIzRFsL66hlytoHVlcAa7kRIUNULKGCkFUldQNUHoQxRH1Ot1bji4m1w+gRAhUhcYtgYiQtMEigDX9TBMkzgOsSwF29KQUmCYEkWNMUwNqSkEnkA1NHTNQOATxR5SU9B0gaYrSF0Qx0Fn/G2YPnuCQl+eru4ciaSNqgUo0kYaGcbGbWx7k/v/7jHu/7vncNuC5eXj7N+nYBrrZNJ1bLvM0tIRSiWf2bnnWF6K+Omf+xfsnNpK0j6HIS8Ds8AsIr6KZa7wS7/4w/jBHCNDu7G1XrbuKLCr6HEw10dfQsF2Nmk0zrB9V5aYWf7Hj/83jh27xI0HRzh77hi/829/g5/9qQ8jwphGM2RgYIS1So1/8Uu/yS03XsfB4Vv49NxnGVJHkYGk2Wrg+QH33fcYNx28AU0F12ui6TquF6GrCq7b5KVjx+kb6CGOO5mfES6OozM1NY7j2Hiuy+rKFVy3TYxJqXeSB75+N5NTWwgBaVr0lLoxHAPPbWCbEiENVGly6eJVisUSD9x/P1vGxxgZGaTZqpLPZRBCEseS0yfP0dPfSxhDSIwa+dQ3N1iYW+GXV7rInlpGze/GM13mR6+gKCn8wGV9fR7HTiKlJPRDPv83d7Nv/37WV1bJFzJIXcFJJTBVn7mFMqm8RdLJYJodHXYYeUjNod5wMS2DxYUF0qkszVqFWrVBux2iypjaRgVFAUPTiWMwTANFxkRhi1JhhG17t+GFbXTTZLPWIJ3uwrSS1Nt1pCXIptMEgc7RI8cYHZ0i9GKef/YFdu3eQ625ThS7bNbWKXTnCV3YWF8haSjs2THJF770NXp6CmSySZqNFuPjkzgJm0TCJp1MYDsp1irLJFPdXLmyzNrqJYTI8PKJc4yOD+K11hgbHcNJWmRzDsmkRRxr1BstwtglkUgz5y8yNzzDrcs7+eWRnyFV7MU2fZRLjzD2nl9EK20hDDdJBQrGoSFMLD776CeZmNxJPumhaW3qzTqhqBEJiWFkMBRJGLZfSy8IfB8FlTAMO6aD0oRAYmcaHDq0wKkdp2i32/xz+c+JIyBqkzBbxEGTOISmKzCS/SiaSSqbREQaQtc7edZug0LGodmusn08S+DVCQgxLA3T8LDUAqY1gioCvPYyTa+FSDQRnkIcdOYnobYwUEimLYQRceVqwOr6Jjt27MaxDWzHJJlKEcYhcxeOkkyo2I5Dq95kuRygGwlUqbCytg7CQCidOL9jR5+nWq2zpS9Fxm4QoRIELRRhdnwBwo7GOQwiIj2L225jWjrSzNPeWCD2QjTDQqoCaaQ4c2mBjY1VVpcvcuL4aS5Mn2dp+QoHD/Zhqk00LUOkxYhwCUMkmJiQZFSTWquGpmmUKxVsy8KNXIYG+zh6dI65pRUi3eP27Md40n2Q99/5QyBdvvaVJzDDJu31I+y4+UewcyMohMTvYm3rf0sSXVZQR/6+GvhuNLP/T/vj/ODtB9S4vgUzfT8a2P8fvP6DWxBEvw+CjvX1W13DXv1TvVl3+urx5vM/SHt938HlFzt0jteB17fTpL4dcH23FdTvld36buy71TgiEApSasReSCsSxNVlvvSnf8bu7SM8/o3H+f3/8IfMzVdYr1ZYXy9z5wfuYqOyhjR1pudmqIcRp48fZ37+Mj/3wQP8+DZBYuEZnCtPYK29xN7xIqGicWWlRrHQTa43RBkM0UtbOHTyAvuv34WtucTSoqt/CCE1orCNqWQYHejjyOHn6erpQld0FM0kPnISf20NZ6iPWm2TkZEhfLfN5kaFSqWBaVqsl1c5dvQwW0YHGR/fQiabZe7qLKX+AaI4Zn6xTCaXRRExp0+9gqHr5AoFYkVBFUrH6h6obm7gWGnuuecetk9tY2rbBE99+ykOHjyA7zUwdBtdhgipsrI0j2MZSM0gQEeIFpZm4XkBiUwSTdfYuX0bliVp1euoqsqnP/OX3PreOyGss3XLON3dJRQhaFTL5ApZ0pk8QSRYmJslm82jSh2hagRhRKtVI5vrYqPaYmhkkEI+z2ZljTj0CMOYtfUqi/OL2JkCUoXAazI7u0hPXzeqlPh+RKPW5NChFzB0DdPQCHwfr16lZ2gMN2pjSQdfTrOxsUnW3k+judkxqAlDwjAi1gxM3aJRrZCwDGKgubpE4sIyyr/571DtiHPn50joGkmZ4C8/9QUSGb2TE2vafOrPPk2z1eK2229lZPM+gqtPcrY1xvC261lYmCeT6WFudgZNmBimwUuHn2fP7t00mi3OTV/ixpveR7myzMbaBl2FbmLVQDcdpKohgEPPPkOlUqHY1U0ylSTwXNLpFK1mi5gOvcq2baRq8Z2nD7FlfBw7YbC4tMjU5A4W5hZYXFzGTiS4cnWG4aExbMdgfHyE9dVlNsqrFPLdzF6eQYlckhmH0GuyOL9Aq+mSTCWQmkANQ5597hX27L2BUKgIJIuzi2QzFnv3bcd1XQ7ceJDZuRmEGtPfN8D8lRUKxTwpy0SJQ/7wC6/w1KFnuf1Gi+pKQGSlQIOkKUgnUqAlEbJMhEBT1js71XHnfxKGAXEUEvoRgdcBj4ahQxzjeS103b5WZRQEfod6ZloOzXod0zTg1Uy3WKAItROjFUWEQUTz3HGCMMAe34bU5Wt6fuiAZfVa5i+xRErZMWgTncia8FpFVFzr/5pwAUXpgG1N01HVmJgYTWodXTUxvtdClTpBLDAMk2BuAcUykF15/MCDOHrNTyBGXMui1fH9gHQ6g6Zfq8i8OhNHHc+EDlXOQ9NM8ALazU10QyUMrrkoRx1DQEWVEEMcdZyby2szmEbHNTWOwo6p2WuzfNxZKMbQ09+HhoJQoV6rU6t24lZ8P8S22rS9FLfd8mHGRqfYt2eKv/3iZzh4y1Z0XcMPfHzf7+RjqgrJZIJMdh+CBmHoYjsBYVRHSIllJfADF0UxEGrMlekK6YxkoG83v/6bv8aBuwYAKFmDtJoNVEUQxjG61HjlxBIf/41f49iR59hYFXz0R8pI5SwXL2X569/9U+7asxPXaPDpT/wf/Py//CWickhdazC9eI5Dj73AxOQU9977Va6/bhc9pX68oEZEgFQdIECoOmEQ013IoplJypU6CoJGvcbYNZCkKIJP/dlnuP2ODyIUhXq9im1oFEv9ZLMFoiiit9RFGHicOzXN5kaDXL6jj2vU6nR35fH9FkOjY50sY6l1qPDSIBIgFahtrJNM2miqwSsvvURPbz+qFGSzFjd8+Qq5NcGDP7vCwugylXINobfRFA3HymAlbcrrqyScIn5Yo6urn69+5ctMbduGpulYms5Lr0wThT6lrj7arTb3/O397Ni5BUHM6vIyjzz4BFsnx0kmdXQlIOEk8HyPcqVCLl9Ct3V0rZND7Mc+m6vLGKaFkBb3PfANdk5NEUcxX/rivdhWnkLGZmNznVQ6RSKRZH11DV3TQIRYuorUNbr6+9A0FV3qFIoFTMvB0FNEnsfpMyeZ2DZJeaPC1vFBpNqJzclmHcKwhm5YNBpt6vUaodvk20+/wup6HUsXDA4MkS/1MDA8QKNWRSDRdA3Xq6KrdscNWdU4feoUtm2xqqzzzOYh/qDw7/jEx77Gz//qz1CwPA595RM4XQXs3huQsWRufp1MNEr66SEag7MYepu+goupRhD6KKqFdo1p5bZbhGELw5AgVKIIdFPHjSTEGqoIicKIMxfbHHlphdvv/CEecR5BVSU3zV6HnrTArbK+cBk7IVEjCFSLVHaYc6fPkU3ZtFo+dsrBDwKOHTmCYxh85/kTdBcd0ikNzTCxjAiTLGQsdKObZv0KjfIMOjF6bBAELqoKQqj4boSqa7SaIfNLsFRpMrZllK5SiVMnT6KFIXpSx5AWFg1iE9TYwfMDMJN0lyapNZv0DfShS8Hl81dpui6T49sxWKG/V0HKBGHcRLcSNJsBShAR6QGqohEqBs2WxNRMhOUQeW0Uf6Wj7fZqKAKkZlLK6tywe4BCTiNpKOTTghv39aHHAabh4AXr6CRQzTSKFMRBQIyCZRkEfohtGXheizCUGKpGVyHDlsESQt8g62/jL+7/E2JrjtGJbSRzIzimyoWTT1BeXmXi4EfwUZFvAklvx2z1H9KIVxXUG8JrhlhKx781FsRvBlmvUWbF23rjfN82RK/Xer55rJF4o8b0nQ5Fed3zQyDeBFo6QP51598y9vDa8+2apvd1GKODgUTn81873pJBG78RP7wZM73+UIVKHHfkP+JdVMffruD2vVih/8TB6xtzXr8XeH3r2bee/4Ha67p4O/D6rrt5F7tF7+b8O1KEhYqMPVpra/zln3ySVmWWb917N5WlOe575DmW12v80q/8ClfmLuG2XEaHBhgZ7md1eZEPf+AWBu0Gd/bX+fgPT/BL7xthIBUSIFh3Y16aq7Psmmz4EtXKUhocZ2a1SvbBVby2R/9Ik31DSTbSE2imzdzpszQbTfqHhwiQnQlQhBw58gJ9hSxeHBIpCswso5+5TDjQSxyHQEgU+SwtLTM1NYmiCJLpFNu3T3R0marGlSszDA0P4Xsenh/wwuFrlOOd2xgeGiCVTnZ2caOOGYgiAWFgmlnmFmY5cON1pFJprl69yt69e7hw4SJ9/b1EoUKz1WBlZZ3jLx2np9SL7aRpVpbx2k0gxkmkqJRXsU2bWJGYdgJNNzl8+Ai9Pd2kEhYoEiEkjz36MHt2b8MPfNKZjsbIti0efPBR9l23jyszl1FV+Nxffo4dO3agm0kMM4lb38TzQ9LZLgLfJY5j8vk87XYLtxHx4vPPMzw0SKvZxEnYrK0t47abZLMZBvoHaDcbFHMpDDViZuYYUiZwkmnCyCWSFzAMA0vZjq5bSKmhKAa6btH5NvmcOnGCZCKNptvISgOp69TffwNJ3aS3J8/q/Cznzp5leXWNyak9TO0o8e9/7/f517/9nzhwwy6Wv/E75P1pvPytpHM5bEsSBm1OvnyKufk50okEiWQC0zJZXFwil88zNjrKyWMvszh/qZMrqaps27aD+x+8n/GJMUxLZ2R4iGwuy5bRcWq1JmdOnWFpcYUgjOjq6iGZzWDZDrMzs/htj0whi2HopFMZjr/0MsVijjAK6Sn10lUqkcs5uH4bXTO4cP4iW7ftIIgiegd6KPZ04zhpKptVVM0gjBQ0GZJIdKEIwVq1gqFKpEzwhbv/honJIaIo5sSJk+i6CZ7PN775GLv37yFWFBTVZmFhlumTR6gsz/LRX/s91peaHH36Ga6/9WZ6ukosriyT7hpAWAV0o0xEgnZ7DFv9KlHo0fa6URSDRqNFu9nGtpMIRSKESr2+gdduI4D19SaGYRN4EcQdrZiiSoLAQ1Ukm+U6pqHjtkPi2KTtNlCFxcryAnLpKgKJW+hHlzZuO+hkQroxmio72ka/sxPu+z6aZuB7IXHU2WyMQwgiDSFMarUWShgTiRhF6cgqwhA838fzQog1QMdte6gkaLXqaFISza8QttqInqHXYjxazYA4MogiHREJFBFjaILNjTV0PcHS/BKOkyaMNQh94kihXmujSQtVgY3NJaxEBlVmUCKP1bVNdM1BUy3arsfqyjq2ZSCQOAmL1ZVNHDtLs9FEUTTiWBJFCgKddjsAYlRVUt2osjS/woXzV1hbqSCEzt2f/yp7dsT8L//hHmK20NNbIpm2KfWMUOzaS6PezbPPLNDTcwNrKxYPPfwy/f0HqFY3yGZTaJrOpz/5GM2WwZV5h//1P32Bbbveg2FPUC6rNFomkaITAv3FYf4seIDnq0u8v+vX8Tay/NVfPM7E+B1EQR9bJnbzzz76IT796U+QzeZIWGfwvYjugR9m53On0C/PUt4+xq/9D79NIZvClDrll8vck7qPD267nUI2w46d28jli3hhC8NIoutJgtClvDxPOpPG9T0sJ0EUeWyWXRo1F9vuLKoUReH5Qy9wy623cvToUfL5PJl0miDwO98TAYsL85RK3VQqG/SUetisbnD+/Dn6+ob57Gf/ghtvvB6hCBqNFgoKntfquBIbJp7fZrO6TirlYNsOQlHo7esBpY0qdIg0tn57ASkVTt+U4+L5aZ54/BF27NqFpupMn7+IbaVRos7m2NTEFkxDsro4S29/H5aT5PFvPsXZ09P82Mf+GceOvEChmOb6G268xh4wcZwEV69ME7ohpWKBRn0F1cxhmwUMzUCXAWHcySsOfR9N10imuvA9HyWO6CsNYFsqRD71Wo29u3YiZIhjJ1hdKRP4oJsqm9UaXcUSodtGM0w++anPsHPXHnyvget62E6KKILl+cuMjgxCHOG5IXHoYdsJuroHiYVBdX2Dv/qrv+HgwQNk0wnabpvtO3dy4sQr5PNJ+kdGcN0WUonQ1RjddGi7HqZlEIUaShyztnqZnp4CG3qLp6uH+OTWT/LQf3mc3/udf09Bb/LS43+E71+kZdxJ3+A2rlxeoaD1kvryIMHgCvc8dA/X7U2StGKi2MWyHMK4hYgVNClQ4hDDsgmDAN8PeHUxNrMYMnNlgUKhE5czu1AhncuT7+nhicy3iKKIn9Z+grVyGS1uodHs6HP9iHZk0fI7eeZh1EKTJhubNZaWltm5fTuXpi+yujDHzokicewTYOK1DcyEi5Oa7DyLadGo1pBSIaBKjIkfCSIEhmnih1WqDY3DR6r0DGTYvWc/9z/wAI5ts23bTq5eXWBzc5U4WMM2HFqNCiEh6dwWVtY26evv71Cig5DTJ07RP9jL8eOnWFiYp5iXmEaMqVsEfojUQhQR4gkDr+1h2kmkmWGjsoGdzqIbOuWlaVRFxTIiItGh3ydTOpoeIkVIKhnRVbSxDB1VQixCVKnQchuIoAOEFEOl7cXEIZi2QhQKGnVBvR5i2QpCddENgZQWc1ea3Hr97Yx+aJB7H/g7zpy+wPTpY+jNi3iuy/ab7kBYeTQRfu9FMxC+KIFOzutbIJ347oUe4C0A8J3a25SWvuu9FKF+X/gienMCxzvc/K09v7Fw9Rr2edXP5h30wwLeKGH8HkOPo+g1Wvi7ae+EUV7193n1UKX6Txe8vj7ntdP+YeD1H6W9rrPYbaAku1ALIz94t/8ALevbOrJd22F5NfOqtlrn0Xv/TxS3hWObnD52jPnpc6hOkt/6d/+ZO++8k3w2wW3FCjf2q9w0EHFwWONDOzOMaEv0pwSxbjO/3qJlDxPYPdRCEze22TZ1HRsbdYaGtmCaSUw7QavdYm7AIBgfpamkSKgu+eZlatmd9I+NUS2v8PKLz2GrKl19/QSayq5tWznx7ccZnNoLqopY3WDjaw+j757ENA1WV1fp6u4ml8mwvLJILpcDoRBFgjAGRdFIZ7JsbpaJAx/LSbE4e5X3vvc9JFMJGs02mq6h6QaarqOpEiLJF7/4RdLpBP39PVTK61iWRTLZyXRVVZNSTxdhJHCSFrlclq3jW3jyW09hmg7Fni5MJ4VmpWgHMUocIaXG3NwcDz/0EGsra9z8npsZGR3GMA3mZuYYHdvC0MgwilSII0EQ+LSbTRzLZve+vTQaDYrFIlLX2b93B0HgoesCKUMMaWDbOn/x2b8mk8pRKvXjewGzs/MMDKToH+xGd3RMS0dBp9lsYFoW0jBotkPu/uKXmdqxC9NJki8M8uSTR+jp6UXTLUL1TCd7tz2CYVhsVpcxLLuTQajHxGh0dxWxHQeEoHLqHHY6ifaR92FbOV45/AxPPvYk3aUBdu3fTSpjU95Y4rf+p1/nv/3pH7L04t3c1r/C42dCtoxu59S5kwwODhDH0Nc7QiabZmS4n5WVVUo9vWxubmIbJmsry2wZGyEMmvT3DZBMZWjUK9xy803MzM5y9tw5BoeGCcPO5Hr/fV/npptuoN7YpFDMki9kX4uyiAkxLZ2+gUFazTaHDj3P7t27OXb0RbaOTyKlztWr8yQSDlEsOHnyNN2FblKpNBubZfKFLnTDIfDa5Lu6MU2TyxemGd+2FcMykXHA2uommxvrmLaKZZgk7RTz8/Ps33cjs3PzJBwbN/Do7e9H1wye/OaTLMxfRiNmX79HMPzj9PQPM9Cjki12omm2TGzpaOfQyKbX0TUfzytiad/G8zVi0YNhWOiGhtuqY1kWURwiNYUoMCStUAAAIABJREFUkNSqZXQ1x6c/+xluvnE/YRQiVQ3DNK9pPmNURcG2HRbmF0km06j/5TjaC2u09mZJpTJceeaxTh7x+G7WVtdJpRLUNis4yTSNepUoivD84DWzqCDwiYmuZXuqnXsSEUUhpm0TBCGG2cntRQg818UwOgZZ7XaLMPSxzBQiBtdtIPU0tfPnkbrEGBlk7tIZXC8ilU535kFFoCgxiM78p+smlY1NUsmObCBCEAY+lcoGyWQKKWVnLKaNUDVCBL7nknRsogg8PyImIpGwCPwAqQhcv42dyCCIEVJ2zBvjqANiow7tWUpBrdbg8UefYP91+xkYKNFdKpHJJdm/70bqNZ+PfTTHt74dc9PB97K6tsLwyBCVtQVmLi/y0z/xM/zUT30EJ+GwffskmWzqGnU5wPVaDPSP0DeYZmLLBB+66y6GBvNcOn+VYnaEbKGbtQWb8to0e/bu5uHa48QR3CoO8pM/8RN8/Dc/zu/+3u/y/jvuYHAgYtfOXhoN6O8bYXnpYUo9JS5dSbJ9vUW93uQnP/kpPvTDP4xlS1zP4+tfvI/h/aMs6cuYkUHayaDpGrZpoggIA5/a5galriIIDSE0mvUWlmnyF5/9DAP9JfK5DIZtIFAZ6B/AsnQGhwZx7ASHDj1LJpMiX+hibXUFqalYlslX/vZewtBF0yR79+7F9z127d7O5sYGmmpiWxZPPfkU27dPEsUt4lBB6hqOk0KqBlIqqKrA9z2kphMGIWHks+NQGT8IOH/rMEeOPs8P3XU7qm7ge22kEpBI2fhtD6G26O0ZRCghpe7O3Hzy1Glu2H8DXd3dOI4JkUcukyJWOjWSjY0ayWSawfGtpNJJIkBaGc6dPcfc/CUGB7u5dHEaQ9chCAgDn+XlJVTNQWoK9UaVVDKLqnW0i4OD/QR+G6Fp6JqG7wW4bQ/bSaCq4DgOQRjScn2mJifJpmx0XWCaNg8/+jiTk5M4ThInlSIWgnQ2R7ZQJIxVZmZmeOnIYSantrFlYiuq1lmk+kFMvd4gm02zZWILYSQg8BBAIFQ810XTDFRV5d6vPohQDAYHRjgTX+Fw4zh/PPoHDITD3HbdezDcQ5w89RDJQpFc8UOkpnrZWF3m+P0vsefIBzg2/wwn157i1gPjbKyuks6oEFkIqeG3Q+59aJqeUo5MSuK7PlKaHf+QjssPht1ksL+AokRUqx5Hj8PUruspdBV52HiAKI64cfYGNCkRXhm8DZyETujF5Hq3kisOIoQkigMCHzY31hgYGOCrX/kKlqFx8MYhHLNFFMBzh6bp7+sCqRAbvfiBS9yscv7cWWwrg2U61GtNjh5Zpq+vh3ZrjtWlIiem69x61xa2DNwO0mPrxDilUolmu0zQcrG1BrbRQo8jgrDNWkUhEBkM0+jQiqMIt+0SRB7plAJBjVRCsL7QIFsw8XyDVhChhjEtFx545AKTW0ewbB0/kiSTSYRuY2qCqFXl0uUF0ukEfhghlQgRh3h+gIKCIpQOFTuIgYAoVlhYqJMr5jE1BS+IaNYVjrwww8BgBj8MUKXekWgZGs8+c4mBwSxEIfVmk3LTZTJ4D7Pjc+zat529u/dwx/vex9rcORrlRXbt349d6IcofkOF8NWfXr/OfTvw+traWPBd18rwVhzwTkzMN+fM8ob7vflebxzLd1u3v36s32tsb37hLZm332XYbx7Pm19/7bh2XlGUTgVW+R5jfpP08ftt3+26V/v8Jw9e3/jK/zvAq1oc+UcBrvCPVBV+U/vyl7/MN+/7Bh/6wM2YwRpdlRexa5d57/YCt25JYi89jbH0PIn1l3B0iSUj/FDghlDHZnYzYqGpIhNdzC6voxuCru4CuXweRWrMXbnA8MgQLbdBritL5HdceLPZDC+/fJJUwkZm+nCUFkVvhsTNH6M3n8TbrGAqoKeLRLZBa3OV+sxF1NQIQkoCQ5B54NvIfROEYUQmk+X0qbPoUsWyDYIgYnFxhc/9zZcYH9/K2toqq6urdHcXqZTX0M0EvYUMQkTYySS6nWBteRXdtFBUSbvpUi032L9vO6mUhqboaIZEk0Yn11STNJo+pimvPaBhs1pBkwq9PX3ki0WqlTkMKTFUhekzp3jy6UOUekoUc1m2jA4ze2UW0zQxHYcghozTycRMpNMIKSEETapk0mk2N6ooeodm6/kRXDNM0DWT8toa9c0qYRwjlIgb9l+H5UikjFlbXwLhUcgXcVIZQqFjGin8lsvDjzzKnr17aTRd2utL3HrzjVTWVzANnYvzVcYntpBIRhBHhOp0ZzZsjyA1ia47CNVGKhr1ShlFmh26sdcmFjGJ5Qq1sS6i67bhuiqFlMUv/8Kv8hsf/y0uzVxlfSUkn5ngj/7wv/KvfvEjHFQe5umLChM79nJx+go33XorQRTz4guHGRqcpNXepLZZpru7h2q1jmWaZDMZvHaLk6dOsnViBMt0uHJ1jhPHDzM6MkwumyeVzBAjeOXlE/SWSmwdH+Pl42cZG51AN2xWVtYJXZULF67Q3d1HOltgs9rJlOzv7WN1ZZl9e3dzfnqaUqmP2Zk5FheX6O0bYHlphcG+foSIabdbfPOJp0gkcmysL5LJZdlYX2fvrp2EUkdKn+lTp6hvBqiaoG8wTyaV48K5WRQ1ptnyUFSB1HSW1taYnJikWWsz1N/H4GAP6+UGg4lNfuvT59l/YB9KcIZSdx8rq5vEkU82k8Rvu2j6Js1mE8PagiaeQFGTxKLn2g5qhOfWr2nuQmIiNCmR0iXwBTffsh9D6gBITafRaiGlpNmoYxgGcQTJVKLzMHlhlSgKiG4qEUca2vJ5VAnZHQfQpIYgptnomDsZukQ3DDw3uEYZDvH9NhCiKAqtdhvHTqLGLcqVcie2Q0qIFaIoRlU1VLUTMeN5HY2gpqlEkaBeq3Hu7ClWVup0R9fyNHu7ySUkATpS15BaJ64BVSWKYqJYIUbFsS3cdqtDJ1UlSgzpdJogcPH8VsfcKjaBCEXrGJeIOKLeaJFIphFChTjqZEWrMeWNNexEGqIQRUoCzyMIPBRVRxES120QhB66brG5XsVJWNh2x4FYaII4Uvjc5+5lfLyXG64r0/SuJ0ZDM1TWV2cYHBjj2NHj/PTPfpRCoYSiCJaXl6hWN7FNiytXLxNHKrYDxazDzKWrKLTp7RrCMnw2WwsUkkN0lyrUXY3ff/w/0lvq5f28h5/+xV+gq6fEzbfewvpGhZQzx/r6Zf7gf/s8H7jjw+zY0SbhGKwtdVO8sEAilWbiV36FrGUhEoJkOs2Bm2/mju4PcLp+mnsr99Nn9NH2XKQvUZWAQ89+m6mJHaiaxXPPHyadzuG7bSzD5sYDe9C0qBOpE7QxDRvP9QgjH9tOEIYxY2NjJJM2lY0qDz74AO9733tRVYWxkXEymSSmZZJKpnG9BqapkUnnEHTyqEvdJaQmaLer/N3XH2Tbjl1ouoPnRlQ31zEMjXq9hiaThGGLWn2NHc9WkVJlvPav+bD4GGfHj6GpBb7wN3dz0003sVltkEhaFEtJfE9iWjpBFGE5CfK5PIaqks5lCAOPbDqNKmBpbRnHSVGt1nDbHoVskvWl8zimRuRJhgbGKRTThFHM0mILw4h4+MEHGBkepthVwDAdpK4gFFAUg1hArd5gdXWF+x/4O0ZHJ6g36ogYjr90jGy+i1whhR94GHYCVddJOCbrS3MEYUCj6TK1bSe6rtNqR/hBiOu7SF2jHYCuG1i6ytbxQaYvXWFkfBQhVRRFo1Fv8eUvfpkP3PEBhKIwe3WWYj6HH8ZII0EUepiWje+7jI1OoaR8ZsQCFzYucff1f8yYvhc7YZESsHDu89x2x8+RG/sIy/UZil13kq0k2X70Ll5YeoqFeJpt4/1Y9kWyyTFUcwPHytDyKzhWklrUQ7GQQomqSFVBVc2OQQ2dzHItNvGbnXgyoRpcWrvCxI7OpvFH/R/nR6Mfpby6RqlU4vnvPEypkCCKPbxWgJboZmaugmUmEEpELlPCdjr56Dt27uDI4RdImDa5VEgU1xndMoptCpxEPzKVRZMW7Y1purosGvUmm+VNenvylIZ0NDVChgnMrODMxTIXzwt27U1z6tRFunu68N2AOKoQewEiWEOhgRIHoAiSmQlUM006naTWqNNstXn5+Cvs2XWQtZU5mhtlFq5eYPeuUWKlxtlzNZ59cZb9O7owbYtkfgjTcLFNC6F3TMgU3aFeXqVVK7Ox6ZLNpbEtg9D30DQDKR1C0UTKDg1cNyPaLQ/DTPP449MMj5YIvBa6FSOUFl3FNKYlEegIERPFLZ765jTX37Qd0wgxpI3lGCxU1ilEW0nsTPGlR/+KyA9JOg7Tp48ioxaXFubZft1tCFV/27XwW8BrHKMdiN5G1/m9icBvBYjfH8vx9QD1+9WBvrnPd7z6LeD23X3Wvx/zO3y2172/U6n97u//QZmr3+06RVE6Jo//lGnDr4LXv3cXe9Mbrm00vJb7+uadg2sZR69qtd7pX/B6/vd3udVrx/e69u0OwXevsL7t9d9D8/rme4ZRSCwksmXxn//Nx4nKR7j9xr1k5p7AXDvF3Fqdth8zu7zJamCR6t9JzeyF/BhLNYUnnjnJ1P7rkHaeq7NlGo0N0qkUpe4uypUN9l13PWEscNsuK8vL6JpGsburE8ytKCBA0SW27dBdzCO0jnbTzA6gVGeJ507TLN6CSGjk+rbyW7/5L2mvVxgZHmbrwQM018qYpkUjjrC/+g387iJKIkmtuoEUIblsgUplEz/w6OntJpvN0F3I4jhJ7v3a/ezatpXpCzNohsmlC2cYHh2ldS0q59LFC/T19OC7LoYuMRM6UQyrazXqTY/LFy+Tydg4SYtazec7Tz7Bzl3babbr1Fsutm3jt9s4lkTTQlKpNC+9fBY/apFOpdm7ZydS1TnxymnyxSLjU1vIZHNsVipkUjae52FaKpoUREHIoWeeJ5VO4fkeiZTDscMnWVhYodjVcTX1fJeXjh1nYWmZgbFRlDCi2fTQLZMICcIileoCP8IwJCvLS6QSFkJRMS2dfCFHNp1BRCFCszATDplcBt2waNfazM5epbdvCKmqbLaOY+o6ttxGFPm02210XaVcXiaTTiAJiUWE77s0NjbQZ9Ywd44idpr4bp0Hv/41/uiTn+EPP/ElLl48y549U3zmk3/Ev/rVX0F/8X9Gywyx6qYYHBlleOswjdoGTz3xDa677gZQIk4eP06huw+pKxx/6ShBEJBIJFA0he27djAzv4xuJ6jV6+zYsZtkJo9qaLSaGywuLDA8OoLreSTSGUa29JPK2Phei1ajTqGYptSV5cqVaZ579hC7d+9BVeHwiy8iVZNssYt8ocDa2gpSVZmY3MrxI89TWVshFrC0skRfTz/9pS7SCYVLVxc4dvglSn19pApZauUNLCuNkUyxsLxOf98gc5cXuHz5EkZCZWhwlL7eHhbmLjE1tZsgrFCr1llYWqPthVy9epGE49Ctr3PCv559U0UcI2J4fBIrNUCsNtio2xSG92AaKwih4baHMLXHiWOLlVUFTVNYXJin2FXCD0OiCCzTZvnqJfLFITTT7FRA4wBVsWi5G6jXvAM0qbO6voGTTKMIwezcDJmTbRRU4puKCBGTmNqLOjRBre7i+Q2cdBrFSKCKgDBUUBUNJW4TBD5hBKadQSid3XtD02i2GsRaAs2wkYqgvlkmiEN0NUZEAZGio6kGQm2hChugY3qjmlhWEseO0csbxLGA/iKqlUFRYnTN6jj8KkpHA6soCEKq60vEcYzUdKTWAejKtUgHRZXouo3XaiH1jruxiDsAWpGdaB6pShrNGprUMU2dMBKkU3m8VsfJttWsdja2dEl1cxOp6ahqSOjFSBQSNuQKBb50z9fJJGwcJ00chezetRPPTeLYAlt/gq/dd45tOw+QdBJcnZnnJ37ypxCKSqSFBI02TjFJwRKoZjdhKLj77r/ig3f+KMJwcMOQM2dn6e4dIERHswqUK4s4Rh+rGxXqXW3WLq9wZ+lW0ukE5c0Gzz/zDAf272Vm7hDNlktGG+b0xVe4Yb/CC88dZmjiF0i9Mk0YeuQ+uBcjkWK1WqW6sUF3LoVbWeX25C18pOejHGm+zIPlh3hv9jY8ETE0NApCUKu3GBwaIAhc0ukkbd/lb79yL1snd3QojFIiFYVvPfEESSdBrApWlhZJJBxQVUzD4vrrDxDFEMQByYTF7JUFsvkchmMgFZUTx0/i+T7JjMPx4ycxdQXLtjHNFFvHt2Ho8hprReuAzjAgIkKRBorUcew0xa+fwfc8jOEPERNzZfs0X7/3q/zYx+6i1mziBwGGpmLZSWI0nn3maUa3jHdMbqTFRrWJrqsYmsnTTx9CKAb5XBeuWyNhZ/B9F1WT6GYS3UrxyqkzXJm9TFdvL+trswyUSqTzeaa278FJpkFV8N06brtJu9VEVUMM00bXDaqbda677gCZtN2JRHNS9A8NY+kKly7MYJkd93S31cSQKomkRbvlks5kOmsDqbG+vEKtvEbSMtjcqBB7LUxdIKUgiiREKlHgI6IQXeqgwC233A7Co1qusrC8Ri6XwHOr6HEbodp4Xot20+Xzj32emb45ptSt/PnWP2HAGkFRBJqMufztz3D24mlGtv84z33nW9x8248SLAUonynSGJjj1OyzHLyxRDYRkE51o8g2xDq+2yL0OpurxXQbQ3Y2ohRNJQpaREh0U+K5dQyrjYeDqhg0Gganz1S46eB78T2fbz/xFCLwGJ8ap7y8wPhQmihsIU0L/Baq1YOaSBP6LradRhgS14uIY5W15RU21teZGDEg9jG1NKrqgSppkUBVLUTUImyuowqXi3N1Tl72GOlLEwcuUhX4IuDc+Sb1psJ7bttCy8swONSLlJJTp0/QM7KNbCpDbf0SttWJLWt6PtWmIFINEskMK8urmKbF6OgY7dZlnnnyKBcWqmyd6MJSW6iKSf9AlvHRAnHUhiggm+zIOPR0kXo9wErnsI3Oc1OJNynlBFEQoChRx3k/CgmjNn47RlVUlpdWSCVzaIaG57aZnCxiagqqjAkjFUXoaGrHu8BtxoDKyRPnGBwbprfHRKCxuNzm2Ol5EokcXYn/i7z3DrLrvq88P/f+br4vx865GzkSzKQsyaYS7ZVlWxIt2bLHWs+Uy/ZObdme8a53pjS7NVOzMzWjscc5K1ISqUCRNoOYAwCCIACCIGIDjdSNTq+7X7757h+3QYFgkqzZrS37V/UK3X3fDe/hht/5nvM9Z5hY8SnvNNkyNc7n/v1/5DO/+XtcPnWEI88/wk/8zC+Aln5D7+b1Q5YkggMKSBLKTQHXZ6denTJ/3wvhzXP3txpvN11/63denYevz72vxSTXHEsSLxO//krcgK95Tyy9477edDzX9bReZX6vjni91zZef8lSfM1vMXHM28qU34oJfutPfc3732G8GcO8cb2ryxM8JqEo/wTA69XxbgWAd5PXvmv9QHrLH980osYisdtG0u0feONvewFdPcb1f6IoSmj1t6D/33AMxICMhEIUyzz89W/ynS/8OnfdeQu3FwVV9yyebBOWdqJn+ygNjDN9fo5iqcKRVw5z4thRzp+bwXPCRKplKcSxjKLqtP2QTVu3gyxQhCBfLLK0tEyhUEykhoaOF/g4fohupZk+foxisYT4yovIr11B3j2CnUoTRDFypg+5dgZt6QgM7WFmZoGf/dSn2NJrc3jfU1T6J/g//t3/zY9/6COouoZ68FVwPKRigcuX5qj2DLCyuEQmlyObL9LuOAwODuI6DlYqze6bbsRzOkxOTZHLZ9GUmGa7RSaXpd1pU+4bQKgKuqERRj5RKOO6PjHQbLbYsmUEpxvjODKLSwvcsGcbnu9jGjYpKwNCxTAMhJAJAo9YEhTKvThOG8tME0gypmXQ21chCj2+8uWvMTY2SrFQYObcDLlChXp9DZmYwHEZn9iIogrCMGbm3GUmN0zR21tFNwSuE+I4DXr7BxiZmEAzdVzHI18oMz09w333foOtW7dBHPOVr3yRPTffjp3OEEQhiQNjSDaTMACWaaHpSWUUJIRQiUKfcrmAZao43VbC5Ep5Qq+QOIYGLm63SzqVRlVNms1Vwgg0Vcc0dMShM7y2IcffH/g7nnjkGWbnPU7OzPDeH/9JPvih93Lfdx7m4z/zHq489wdMlSNevmIw0D9IJpMhiuHEiRNs2riFc2fPEgUBh468yqbNWzE0nVwux8DAMA8//CjT02epVKvU63Wq1R76+npwuy0Ov/wy5XIPqUyWTMrE9z2K1RKoMr7vce7cOYaGx1hYrpErF5AUhenpGfbs3sOVK5c5/NLLVAoV5udmSeezFIt5aktLTE1McuzoESql9T7Y3l4un59BCBnT0vFDj3bHZ3xsHF3XqDfXyOWzCCHj+R36+ga4fPEStqHQ31umtrTE7NwCuq5x8fJlzkzPUCxW2bhxip6eEvlMBV1XOXP6HJPFDg8fV0mlVLqtOcrVXlbnLqOaEaWhrWiZInhnEjbTzWFpz+AHOqn0JIHvr8fdaDidLnEY4rRbFEtlhKLgeR6SLNPpdHAcn1a7QeDHRIEPcUQul0UC/KBLNlNA3rtIp9sluq1KHEOz2UDTdVw3IJ/NJhIjWUIVKo7jo6oKnW4LWVZottpJlm2UmJZ4vodm6AihJg9cYlzXIW1nIQbXcxCqwPc6SAiiMEQRAlnScb06li2j6SZ6TwlR7UM2FKJQQshi/X4InU7idIusrhdvTDqdNul0lpWVJrl8mSh0kSSor9VRFBnf81CUROLcbDZoN+uYpglCBaGgiMRMSlqvcPu+j2WZBEGAUBRa7S6y0NDNFEGnjSyHCEVnZa2OoZsYZoq9e/dzx+13opsaURSxsLjEvn372bD5Vlodh9tvWkTmIq67lWymxN69+7FtA6e7xurCIkuNBgeeewkvCrEtg3wui6rKNJdmCdyAXLFIo7VGRlmj3VjFcyMuzS2AHLNH2Unj6Rq333YnxAFf/eJjfPFv/4KpsSx7bh5nbnaePTs+RK2xyuR4m5nzlxgc+RjSCy+iKIKLAwUqvb1kVJV8JpuweymL5eUGea1I+WKeCXeQv2x+CVkW5LUCvusxP3eZbrtFLpMijgM0TWNwcAjbyjA/v0S9tkg6k2JoZBgrnUbVTOqrDRzHw0qliUOPKA5BDnHcDk47pN1qUSwV6XouBD691WEyhRSx6jM8OAqxT7vTxk6l0HU1MTKRFAI/QhYCRdESQzE5YWoD12XDM/PYdoq47wOAzJlNp9i8cTOHDr1Eb+8w9977dcZGRmi2W6TTRdIpG91ME0Utmo0auXyVF188wOjoGH4QMDkxiawkBQ3LymJYKkQ+lmnSajRJpywGhiYxNZ10Rkc3TPz1czKOIQiS+6vne0kRRkgEoYTT7ZLNZIjjiCSFSCXGZXnlArl8hUw2h6ppyJGOLLk4zgqNepdYVpLnrlDRNA1LUfEDB1lIZFKZhGkTKhIJw3/p0jyPP/4EfX09GKaCqgpWaitYtkpMxPDIOLIco6oatdoanutiGAaHW8doDXf4o6H/xC9X7mF1cZmX9r/I1Pgo5x77E+YXHuLDn7qfdmxw5NgJBtLDaH/eg1deYbp2iJ6STjbbQo4FYehDnLQxKEJZbwFQk88nZHzfR8gKQegiFA3P9wkDkziocuTYCQzD4sTZFbZu20i5UkBWVKx0gWyhRL1ZR8HDb51HkcL1rGSTbmCQK/aystJgfmEZyzR5+eWXmZrcgNNtM33qGHt2jCDh4vkufuShmwVShXEsK48SuTidRWLPp5gzGB9NYQgJXTNwA43aaoCiF7iy3KZUKDM2sRFFiTly+DDj42MoqkTQXaCxdI502sbtNHA9nVgtMjC6gTAKsNN2kqlsm8ixSS5vsLQySzWfoq9kIJSYIGiTslXiCBQhiGKQZA1J0YhCDc0wURSNdquJqsh4ThtFcvGDZJ4ZRRGalqhIVE19PfdakmICPwHishwRx0nkjipkojAAofPYY6/R25ejbyhPMWcQRj6xbLCwsMaVZYfFxTkmxyZR2hbSjhYvHjjM7be+l1SmzH/+/T9m03AB3+kwsuOO18HZVTnr9XPf4BrZ8NvOsf8HKzBfJ8OuYXqvxyA/rFfNm1jjH+AY3viHd/50b9od10uB33H1d1z0rgzsm1jj69aTvv+7JEkI8U9ANvx9B96kqvROuvJ3Gtd+mW+pT79OG/6WmnXAfeGvCedee8eonDddgG9zllxttI55o+7/3SytZVVBCQOkdoO/+YPPE8zt4xf3bKTcnUGkM0Sl7XRIKuCGbSITse+FFwAYGx3DczqkUiZ3/Nj7mZyYIIxc9u7dTxjE7Ny5HU3TWVurkyuUkVWNTCaL77ukLJOW51MslVmprWAaBq+9cpRqby/6M2fQvIiVzaX1TFaJQ4dfoRMalAwf6dJL5Ld/GNcNOHvxAoVcluMv7mNqagNLyzX6h0aIFpeRD7yKMjVEsZjH9T0WFxfxPIe11UX6eyvUlpbIpC1W66vYqRSKIhHHMDNzDk1TKJQrgIxtZxCajFBk4ihmaX6JhYU5ensreE6H3t4KUQyKljCelWoVx+lg22l0zaDTbdCs1dBNjU63S6vZwjItfF8mlTKJfNANg263QxxG6LrFtq3b8H2XpcVFnnv2BXK5PNl1l8i//cKXyWVLfPmrX8TUMzz7zH5Onz3Dxk1T7H3+eXoqQ2QyJkgSqgxS4JHKZLl44QKVUoU9N2wlnTFB9picGMZM55MInyDk4rnz5Isl4jjG0A0ajQZCFcRxlFTfJBXd1jB0Nfn+8nkU+gic/Hp1TqCZJoamIoSUyD7TaSTVot5soy+sEF9cIP+5f8n45E1879GLKFqLX/9fPks+nyWViai3Y3YPmwzUvkVN38H4xi0Ucnn+8q/+ikq1l7HRMV48cBDbNHBaDd7z/rtYWVnF6bQpVYpFhum9AAAgAElEQVQIRWHTps1MTE1w771f40Mf+jBRFCah60KmWW+jKzoLCwtIQKfroKsG+17YT9q2KRQKaLqCnTLQFZk4gtOnTrNj5zaajTW2b9uFZdnkchn6ens5M32KQqlIEMcsXJmn22nTPzhAtlRmbHyCRrvN9JkzjE+MUSj1kLJsnnr6SfbcuBuhqNTrdVK2ge8ENOs1XNdheGwT/UMbaTSWQYJbbnkPBw8fYNuWXTz55KOMjQ3ywLceIsLn4uV5BnIR8+EwP3vPPdQWzpAtlJAjldgyUfReRAyqsoAsy2j6CCJ+HD/sJ4rTqKq6fu+QE2BoWrjdNkY2R7OxBkQoqo6u2uhaGts2Sdm5RBKvwOW5WexUnij0IRIoBxaTbd7eQxRLWLaFoigYukqzkbiSxrJMHMRJ36gMfuBj2ylM08RzPTrNNVRNw49BN0xkSSSMvqrSbifxCo7jIMkylm0R+C00kUYoEbIk6HabmJaJJCn4QYzQDSKhIkkhmmIjS7xeSJIkmW6rDpJEt9tFlkDXDDw/IJvPEscxgphut0sum2VlZQVjfUKsaTqapmLbKVzPQVEEMtL6+RYB0fq1E9HpdDEMg6XFJYrFKkuLq2TSWRRFUG+soas2X/rCV9i6fRtIrEthMyytLJFOp0ml0oyOjXLs2FEGBrYiS2WEdAqiI9x86+/wa7/2a0SRS3+1n55KD2ahj0P7TvLZX/0sn/2VX0WWBL/9W7/D3R/9KIMjmzn22qts2T7O2ZkzFHN5Pv/7/5Wf/rm7KRZ7+dM//e9Mjk/x7W89yPt+7AZcx+HnP/k/kU9bZAohnu/z+//5K3z21/45lnGaUqmH2Ss9lE+dp7Zc457/9nl27LqRwf4S7VYLgQyxTLpgsbSwwPFjp/j4R+7hQ/YHeLL+NMvRMqnQ5rsPPEwYgW5Y5HMFwjABcJcuXWR+bjbp2QwdFEXm6NHjCEVjoH8AXdeIkVitLSNLAlVT6XRbNNZW6e+rouoGQugoskS9voQsoNt1iWOZXDaDlUqz1mxjqCqNRh3DSvoir+aARnGIHIW0GnUMXWfogoubEgjjTqI44lvBvawurbL7ht24rsSOndupVPIYdmLYFQYOZsrk+NFXaDWalHoqlCoFGo1V+voreH6HTsvj6NGjfOfbD3H77XsIwpiTJ86ysrpGKp3mtddOMTo8RL1RQ1IM9j7/AsViHtMyiKKY8zOX6an2oSgGsqwSRmGSixwFPPbYI2zYuJkoCui0mlhmGqEk12Or1eHwkVfW48UyhJEgVygSRiAUNclddrqEcQKE5ucXOHrkGI88/Ci7du3CtBQKhTLFUol8PoeqKRBF6JpFECcAZ+7yFS5evkCpVCaVyRMj+MZT32a5Z4W/HvpDJpXRhN1WBX0DfcTtk7ROPkR+/L08sf8sxWKeUqmK/VdjrMRzPHjoWwTtBXrLEdXCEFHcRYhEQRH4Pq8zVpK87luQMEtBENBsdtEUgyCIWK5F1BqX6BnMoMsGp06tUBka5OjRo4wMj/DHA3/C4dzL3CV/gEKxQGNhBgghiJhvGViZPnzfoadvkHyhiOe22LJ5A+1Wl6WFy6RsCUtpEtMhnSnQaHeRlSx6dgjPc2nWphGxlxhKST6qEuH7PlGkMD29wMmTczgEuKHEtk134HKFbCpLtVJB0wxkVFYXT5FSAzRVJZJgaU1g5fpYXFii1UkK0IuLi8RRTLM1yyMPPE0mVWDTuIosJ33RilDx3KQPOPCDpO1BVoglm5Rd5tLcDLISQeQTCwuhGsSRRxz666aXAs/zkGUwDBU/cFG1hCKTZYGiqgRBhCwLJCEIQw9VSSTuoyN5dCNGUWJkJGJJsLqyRjrlYphF+nvzWIpMbnkTTwQPoFsZioUMWUXwgXt+iWN7v4PXXGB4zwcxDONNwPX7c3GIZmQkO0Zsjfhhxz8UvL7VFn70Lr8fbQPSdQAwvkbSnHxX1zsvv9HA6a3A6/V9ra/3w/7QB/fGY7seQ8XXHds/Keb1ak3l7UDqDwNe3/ENvPk/+dp1fpCc1zdv+oetWrwLRS8UHvvO/bz8yNf5SF+dbfmQThyzGOW4Muszt7zMwtxlZEWi0WmysjhPbXmFWE7sr1dWlkinU5iZDLZhcfjwS+y54UbCCFK6wrFXjzI0NEK2UCKWQEgyly5cQJKg0DNAEAQoQobQJ53Jk8qmiZ8/RRD4WO/bRugHHD3yChunpmg2V7Aq46hhA/XyC+hDO6Fngm6zxcEHv45haqRyeSqDo1DIIb76INGGAYLIQzM1cvkyTz7+KJOjAwjCRNqSsYniCN3Q6TgOhmmQy2WJgghJKAhVw+16NJpL+J6LLnR0xWT61FlWltfI5wrUV+ukswVkESIrIbWVNXqrPfh+jO97GIZACVxUTcXxPPK5Ai/u3YdpZjh/bhpD0fnO/d9ioL+Pp55+lsmprTzz9JNs3DRFHEVk0nnKhQJB6KObNmPjG+nrz7B9+wZGRgbZc+MNbNq8A11X8T0PGQPHa5KyU2hSkk+4tFanUijRWKujyhovvXSASk8v2XQeSQXPdWiurZLSbVAUNFWj23WQkYlFhKIq+EGAquoEcYAiC+xUilCSUFUF1/XQtKTnV5I1VpeXMHSR5CMGbTqNFhmAR/Yj/8G/oVGwOHP+EP/tT/6Qsl7lZz/5cZ5/9mWypknfQD/q87+Fbw1zYm6V/oEhLMNk67btSQA7Erl8kaOHD5NJWbhRxMDgAIHXxfG75HI5XDcJPjcNk2azSbVawXUdrHSOdrPN4YMvU1teYnJqI1Is8cC3vsuG8UlSKZt02qbVWcPz2mQtG7frsHnrFlrdBtlsjv37D5DN5lhbW+HlAwep9lYo9/YgNA1NTiIm2h0HoRlotkU+X6Svt49LFy9gprJIccziwgKbNm9MZPpCodtpsVJrQGhQqhZQLIU/+os/5fabbkKSJRTdZnVtjkK+nyjq0mzUmZzYwNnzZ9i0eTtlpUb1hk/xpXu/xnB/mu07d3Pq9Dy+gNGJXTSWl0llm8TAmTNdKoVD+NEuJCQc18EwDOqNKxi6xNLiRXJZndV2kMQbxTGOHxD4HRQhWGssEschMSp+6FEslfADiHwPXTcR++aBiODWXnTdoLX3IVaOHyK/aRtO10XTU0hCZXV1FdfzXq/Ud7sdXMfFMg2aq6ukMhlU0yKOQFqP6+p2Wq/3M9upxDBEU1Qcdw1VZFldWySKJBrNBTQ1haqkkn5hRaBrJn7gIKHjey6e1wEpYawMVUpaFAwD4kQ6rRoafuARSyG+47K8vEQ+l6PVapHLZlhcXMI0LVRVxYtilpYWyKZTqLJEu+sk/b1STBAG6IaOqqwXgaIOtmWgqgph1MWPZTRNQZENdmzZSdtrIYRELpcliGLa7RaykDENE2IYHR6EKOab3/guUxN30mge51P3TKKbP8H4+BBhuMizTz9Cz/ggvcVezp69yMd/9hP4XkAhX2LHHe/BcSR6qkU00UVPbWf31tv5vd/9Paq9g3hBxO233cTI0DC6ZtPXmyaVg1I+z5nXztMOz9PtOly54HPLnbfRdnowsz9OqVAlfu4lDh8+whfPnOHun/ooK405BgYHCbyAf/uvf4/+yTLjI6NsntiGg4IhC+7UbuXh1mPMtC9w+ZUlfuKuD3Jm+mwSpaEryLJEKm0RxT6TGzag6QrtVpuUlaVYKSNLMe1Om5OnTyKQyWbz6IaOaZpoekwYuKiqSUzCAh448CTlYolsqgJCJCyGrLC0tELKMjEMjeXaEt1uG8uycD0XIWRUAubnrpAvlDh/Q5U/urCXnxIfJwrhP776H1hcPsfoaD+ZbBY/bKIIwaXLF8hk8qRsnSBWqOQG6auM4BOgqyliEuAghMrZk9Poqsp73/M+hBIgVINyuZdUOks2l+Hs9DSXL1yk0lPCtAsMDw4Shi6O26HT7tDTV0RRJFzfBSm5ZnzPodmss+fGG4hRULWItJ1DE1kef/xheqpVyqUqg0P9nL9wiXyxBz8KWVhcpFAoEMckDti1ZUIiwigicHympjaxZes2MhmbdqeOYRgUC2V0zUBRBK1mkwce+Hsq1RLZfAHbstF0jXy+wL79L5Hrq3A4fZifePm9/Op7fo4HH0vc8q2URdft8tITf0RKXiI/+pucnnmYar5K4fAmokWFvzv9ZaY2VNmxLUfWKOBHl4hjkSgMo+iqnhBZllEUQRiHBH6AYZgEQYhMCc/1EEqbdNHiqcdn6R8YImuqaKmIYt8Ocuks+WyGPwv/go7WIf14mvHBYWrzMyAn30GcGkEoWeK4g6qZCEUQeF2Ov3aO6dMXWVlaxuk0KGc1dE2hXo+YX+gwOjGFbFaQYhe/dZHG6hpB0EIzLcJQEEUCIXyKZYuBoSwnzrTYvvtm0qmY2kqI061j2zb1tTqqSON1LtNanUdRBE4UUe3bjqzZVEpFdFUl9AMKuRyddptOXWJ4JKbSG5NXTdA8wsgjJkDXdFzXTe5bskDRDGQ9RJItstkqmpKl21kgVxqm0/UxdEHkNpO5rB+gqAphoOB0/US1IKtEcoTj+uh6YmQYhyERMYoQSFIEsYokeWiqhsCk6zpJdrzr4gYpDh5dYeOmSZZWzlP1d5J5r0H/5CDFrMHpg3v5g6/cz69+4j089fgD3P1L/+p1J9o3zIGvSmYBsTX6BwHXt5ha/0hb+P8LeL06rgWvydbfmZl9kxnVNYDz+/uQfijwGq87KF9vtHX9+tcv/0cOXoPPvUE//joD+84g9m3HNZrrGF7/Nq+ltV+v/Fwfj/S6Vvuto3KurypI8Rvl34lN5fe3ce2xvAE0X/2M62Hc399/RChLhI7LwvlL7Lvv97mR02y0GwTCJipvQsmPM332AmOTI/QNDVPsqbJ/7wtkDJO+vgFOnjlNqdJLLpdnYmKSgf4B7v/GfaTTFidPnGJqwwYkBbLlPnoHBrFSFp1uHUvXUSSJlw8eZPP27cjEtJtJVpjr+qAIbNNC2X+WOIrx94xw8eIFarUahUIOWYp45dXjxHaFYs5Gmv4eRq6fUt8kgZQFTeKO995J1+nSVnSsh55CslN0NB1F1vA6Xfa+8DLbd91ELHQK5SpfvfdbTIyNQeygqDZRENJpt8gV8okMhpja8irTZ86RsdNkUimW19aYmNhANp9D0VUy+TyLS4voioYUyGQyCVvjBg5ClfFcDytlML84T6VUSCrDaoq+3gqaYVDsrZCv9tDb10+hVMLKGoyPTjJ9+iSyUHH8mHajSaPjoqgK2bSBUAx0OwNIRFGAiB0MQyWdzeKHXSzbRNU0hKYTyAq2YdHuNPD9mJkLc2zZto10JkWz3UJTVFZXVimXq5gpi47TxtAtlhYWifHQdB2n3cYyTYIoydMkjpGkGFXIzM+/gpDBMlM0mg10VRD6iQOsLGu4ThdDNomfO4Jz904e7Bzia3/5VxBp3PPx3+Zjn/ppvnrv/dx//zc4f2GWj+yyCS89jTn2fs5Nz7Bp81ZCKcBxHexMmv0vPE1vuczyyho33fFj1GoLFPJZiuUyhCGqrmGYOq1GHTtlEwU+c/Pz9PT2oRCRyqbpGxpiZaXGxOQkFy9dYvuOHZw5e4aV2grtThchDMrlfrrdAMs28UMPVbWpLa4yODhIOptF001OnzxFLpPle488zA07tmGaBq1uh9gJOHDwAG6zyfjIAO3QZaAyyIv791NvNrj9jjs4eXqaciWPqgpqi2uMjfdipG2OvXKUcqHKjTfetC63ktn3wn7K2cQte8vWXeQzRc6dnWFqcgNjI4N4K9N886Fn+dlf+Re4l56gtPOjmFIbVVEQmkS62EsQLqOqNlZ6Al16gieevMTo5DiKriJk0I0crWYLCQkhLGwrTb3RxkolLKuh66ysLpLJ5tE0A0lV8LpO0pfaqKFbVjJZfPYyQijId/QRhR6toy8gIh9tdCeyEASBR+A5ZNJphAxRGBAFMYpQ6XQ6mJZJEMe46zI/oQjq9VWEIqFoKhEgC43lWi05h+ttrGyRGInAl5BlyBXKSIpM12kjyxKd46eIVmuIXH5dvubhh6AqyTUeqwkwdBwXoZvEUoQsKRDGaIqCH8bk8gWCKMZOZ4gJURSBqgpc10FVBJlMAUlWCOMYp9vFtuwkUxYNpIi1tWVMw0JPFfCDCNfp4DldTNWn3eqiWSZB3EVVdSzTYmVlGUFEu9Hm4vlZXj54kMnJEWJZ0Ol2GBweIQjBzo5TKc7S8bYRyBaKUGl0Ogz29tPtdrjrA3ezsDhHIZdiZGSAL33hC4yO9K3L+mxStkzG6OHWD4xzaS7kX3z2Mzy95wW+Pvttfq7ndv76C4/xvtvu4rt//zib99zChg0GuqbzX/74fj55zy9jWzkunJlGF3Bpoo/ej/8Md931EUaHC3z6n/2vfPqen6fZWGbHLTcwMbGdMFKQNIHb7eDV21iZLDk9z9OtZ3jf2J1cmJlhaKCP2uIiAyPDCKGwtLTM8NAwrU6HdssnlyuhGQpCTiTcadsmZ6coFAvUaosIWcZzPIRioWqJE7UiBHHoMzi0kVgYSCJG0zQcp4MqgyJHyIqCE4Wk7SwP3v8gY+MjKEqMqmmEkoEkCUI/oNv12DI5ztDxzQhZIvUJmS1bt3P65CzLy1foqfbw1GNPsXvnbmIp5sp8jXa9yfeefITJTSPUagsceHEfmzaOs7Qwi64qPPr482zZMoFhyRipHGEUIkkhS0tXyKQtBvv7UBSZaqXCpYsnWKu3KZULENrcd9/9bNuyi8XFK7hdhyuzCzz5xJPs3L6HKIpZW1vDME00oeL6HivNFbZs3s7s7CxCwOWLS2zaMMH83HlymRyhHyTtA04Xochk8wXm5hbJZorki1XC0KHZWmV+fo5cNofQNPzAR1UhDDrEQmX3rhswdBWhmPzZH/4RN+y5leeeeZ5SPs0ja4/x0/LHOPO35zAzOW7etYVCtkgjlgjOP8rJ/c8wfsfvcGJhhQ/e/XHqj6UpnR7nYPdx1JTOpmGNrBWzuNKm3fIoVsqsriXPKCIfpIirTCuAZRh4bqKM0LQAIftJBJcfMbW5n7Qp03KaHDupUh3ooZDPMr8wz76+F+l02nxS/Dz1+jymHtCoe4j0INW+MTRFQ1INpFhhZakGgGGlmJwc4KnHnuCGHRWQImxT0HJCpmfbbNp6G5HwkYOY7toFvv3AKcYmhtANl9BXUURAGJEw9l7MworM4MAEl+bm2Dg1jKxa1GtrSfuVEHRbl0gbEUgxmtVLEKdQjAyaodJYq4EsOHj4FeIoJCPg759+joywcJwlKoUyEBJHGkHkEsegyCodt4OdH8QNcmh6MteIVQvbztFeW6W5ViNbqNDtNFE1C2QZL/DRNY1ASPiBhev6aIoEaHQ8mdDtYNomTrdLt+MTRjGqpqCoCq7jE4ZJ9raiKAhVIq3ZbJ3S8Z2IJ54/ya6R23jq7INsuGUEDIvRvj7S1X40obC6VOOG229GMioYkU8oKUhX+1ilt6Fwrs1dfYuXdE0f7A+0/ptyZt+4XJIiXu9Z/VHHdf267/p6k6RTui5XNkIifr01J2nBSZQLyWe7bnWuwyBcAzbXMUsc/XCs67Vgdf0be8v1patL4hjif+Q5r8Dn3koDf3X8qE69b2Ji34F5vfYPbw1e3/btV3fygx3TNSfCtY3WcaygRgGzLz6F/soXGVNWkVNl/MJmAmuAs2dPc+zwSSKvi6VH2NkSyIKh4TGqvQMYKYvjx48hE1JbXmZ8bITnnnuWD3zww7huyMaNm8nmMmRyaZ5/5nk2b9zIwvx84vKnmziOy9DIKEEUo8gSM+fOoSoq2UwG0zBYWpgn8+oCQRCwPJ7h5PETON0uayur1FttNm3eRqlSJjQyCD2FOPck3SvHOdkwOHhgL889+zi33HoHX/nGd9m+YQr1xSNomyfx/QAhy2zZuolGY41ypUQchmzeso1YUTDTOUzdpN1O4kIkSebcuXM4jks+V2BsfAohK6iKgq5b/O1f/g2HXj7E6ekz7Ni9E6fTwPNiDh85muQFKhqeH2AaFkcPH+XC+XlGR6fwvIh6o0m1p0J9tUYhl113HfUwNCjmM3iuh6zqlMolLly4xK49e7BsnWK5gm6atJpN5hfmaDQbFPN54jDACyMUVUPTdWw76XFZXVtFVRWkOAJkfC9xdB0dG0WW4/VIHxlF0bBtG1kk7m1Oaw2n5fH8s/vIFyzsVIp0JousJPKgtZUVNM1gbm4ey7aQMvtAneO1Qy0GBgYQsoJhGDiun7CKi7OI/ScJP/Ie9H/+Sar9k/z4Bz7NqydPsXnLVoIgon9gkLHxCYaGR3Bf+D/JDmwHM0/f4CDLtRp2ykTRdIQs6O2tEsQRp6fPsHXbVqqVMjHQ7XRRVYNux6Gxtko6ZXJlboFKuUKlWmXf3r3kikUkIVBkmYFqL9++75t4nsPgYD/V3l7sTJ5KpUraNrl88TzCtIm8Bm6niWLlCKMujUaLOIzxuh0Gh4d57dhRxkYHcbtNsvkyl2bnsHWDVC7H+OgY585O09M/wJXLVxgdH+P8+Qucm5lh1+7dhFKIJMu02x1MS8d1I1ynztzcIjPn5ujrK+K6Dhs2bGBwuJ9sLotpmDz+xDNIcUg2m2Hvvn30Fi36J8Y4cr5Lv6Wj9I/jXjqKnckhrDxhqKLbYywsSSwuLlLJHaTZyWGYGVShEgYhASoZNSByW+iFXhprDTKZNHEUEoUhkqph2Day0AiiGOIk6FxRNFTNRCJCCIXYVglGbPySTLvdhcunEUJFn9jOVSMMWQiIwfc9IEZRI6RYh8jk1Olj9A8NIxSFZqOBkCR0y1xnRZP7mBz6xHGAqhmomoUmdGRZoBoGumUl+a6qhq7rRFFMfPYCsuNijQ1xaeYc+VIfhmWCDLIikFCQJYFuaLheC89zCX2fMHATqbFuv34fXVtbRVeTXro4hnq9gSTraKrA6bbQZAnFSMzPPN9FQsaw9CRD2vWRhIxQFDTNxDDT+AEIzYQoJnA7hBIEUYilG4R+QBC7SBjsvuFmvn7fl9i+fTsA56Zn6O3pww0iNLGKaZb57d/9Y+78sfcyNjLB9MmT5Cwd3bYgjrDtDOdmLnDX3R9GUhROnD5NJp9H2BL9vQMcPfA8reUFfuEzn+axzlOcOX2WXxj/BPfe9zhqWufTv/QZrEwa37uClUrx/g99lk/f83t87O7bCeMVFCWFYRm4jkcchVR6inzmF38ZQzNIZ7NU+7IE60BxeWGRlGFxZb7Gf/+D/8qvfOQX+fPZv+HCqVmm+jbw/AvPcdcHfwJJTvrwOp0usiRorK6RTacxdB2n4yBJEvV6Hcd1SeeyaJpKJpNF0zSEInjskSeYnBhHCEEYBCgimWTato3v+Uihm0RlaQatjksqY6NIGt1WjXJRw04VITZYWVlCKHrikBtGPPn0U+QyKW5eeR+SBGemXuFLX/oaxWKFXD5FNptmYsMmEBJeELJWb9FYWyObSXq+U6k0E+MbIIrYt3cvPdUett9wI5KUuIN3Wm0koQAxqVSKRr1OEEhIQsY0LRTFoFws4Xku333wYT76sY+gmiaaqqArKpEfcMttt3H/fQ/w3LN7yedKZHJpZNZbOVJppDimWq3SbLboqVZYXJonny8ShTKzc7NJhm8qTQyomo5pmDTqddZWV2jVVylXKqQyOVTdpN2oJW7eioIfyYRhgCRpxES4js/k5AYM00I1LPZHB5HmQv7Txv/AJ3/+E1R7erjxlvfymV//DdbOPsXykfuZbfVjZkdptiOqp6fIHR5gtvg8vf06Gh4l2ycKA6xsHl0RaFqIZkIc6ESxi6oZyOtSR8tK0el0kSSBqmp02h2ELGHqRvJMi7voisRyrUu+MkwkJ89MXdd4NPM9PNfjJ92fxNBNTDNDbJUYHNnIlYUlgijm8uUFenqqZNNZHn74UTJpi/m58/QWs/RUBKYpJ9JgzWD77huJRAohDJzmFRrLF9i6pYqqhcgCNN2m0+4kpm/diIXlFnZhmImNG+mplpBlOPLKMSYmJ4ijiMhtMTdznHw6uY/Nrfj0D05y/uIshUKZKAqx7MT9fHFhjtnZeYZGRxkfyFLOW3TDCFn20ISaABoJQj+mUKogaQXMTD/IIa4XIJQsntcljBwsO0UUanSdJobVi6ZnqXc65IujdF2ZJ55+BS+2Sdsay6s+Tz5/gsmJDShynU7H5dSxRQZGMkR+TBBGhJHgtaOnyOZLKMIljiVct4PjC2Qjz/nLy2QpcOuP38J/ue/zbJocZ9+LB9i8eQtDI6NMn3iFY68dZtftH0LEIdG1EaRvO2d+NxXju4HM62WO79JH+qbZ/f+X491Upm8k8uKIdff/q8zcD7CHt2FK/6HjB8Vl/6jBaxAEn3tD/tNbgNikCi29MXj3BxxvR2u/1bIfFrxeT8+/3el/vd789Z/jZJkQIjFxajt870/+Nya6h5FTFfzcBuqRhiRFqMLFNmwmN0xgZzKcOHGWtXqdUqnE/OxlvvvN++jpqbC8sMjIUB++51Eq5Gg0GwyNjpPLZzFMgzCK0Y1EAlIql7AsC8OyQQIhS4kES1fptjqUSyXCIGD6zDRxGCST5P3ThFHEw/XTeL5Hu9Om1W7RbLcZHxvj2NFXSNkG6VIfoVVAbc0ybqxytm1x6407qK3WmdpxK/SVSN37d/j9Zb7z8PeY3LBeRVeg2Vij1eqQy2XQNJU4inE7Dl3HIZvLIiNIp1LYdmJYFCPz5S99kcnJcYIoYNu2bey+YRc7d+9E0xIJjKKmeO75fbhunc2bNqHrKt2OQ0+liiRprNTqhBG8uP9lxjdMEAURURixsrKK3/GZv3yJdrNNudQDUoTTalMuFWi1m/zFn/8Vr712nGq5jN9tMzw8hBAyYRAgxzFz88vksjmOHDrM8VdfZWR8PJnIqCrzV2YxDJvvfPshpjZOIAuZdqdFp9PC9yK+/pcA9C8AACAASURBVLX72LFjB7IMQeBhGga6qbFp6wZU3UBXFSShECEh5CSiZ/rMeR597HG27dyGG7+GomiY8mZkQJYikAWykKm9dgL78AzKJz7A/N03ofg+yEN896EXWVy6RG/RxItlCqUCW7Zt4dkH/4JbizO8smhTW1lDiqCxWsPQNeZm58im0iiKwLRtxsfGWFla5PiJ41imRRSG2GkLt9tFlQXHj58gnclw+fJlqtUqw8PDnDtzjkIxj2nqdDtd+gcGGRjq4/zFGY6+coypyUks2ySMYtKZHEoMqmGhmSmIYoTwKeTLPPvMc4xPjnJ+ZoahkWE2bd6MaadRFJVGs8n0ydPsvulGfM+ntbaGmUphGha12gqr9TXe9/73sbZWJ5WyUGSB23EwTRVFMTCMNJqm09NbQkKmVCpx/PgJiuUeABbnr7CytkY2bbG6Wmf7jt2Y0QpKph/PHqSg1AnyI0Rr89R8hZ6RTRhCo97uEMcxo6OjyMEjVCoWDz98mHw+RyqbRYk9VpYXcP2ITLqE53sYho7rdIgDH1lVEVJinBRHPq7rJ1EyskzXdVEUmTAIWZLbFDYNrLs+Z3DOHkWSZcToliTTVlXpOg4SEpZlIUnQ7XYwTYsoCug6XXK5DLqmgiRjrAPBOI7xPJ9Op4umaZimwfLSEooQCFUQBg71tSXEuhRa1TSiKEZRVPwLF5P7e39PooyQJQK3S+gHSLKgtjiPlcriej5x6KNrJqZhIksSUegSSwqSJBGGYQK446QCHEcx2WyOwA+J44TlcVyfKPTxnCTyR5LlpMIdgWmYKIog8AMC30OWJGRJx/N8VE3QbrZRhYyQZKI4Rqga+XyRUrmILMPI6Djnzs4gywp9fX1EkY9l5zl4YB99vTVQ7mZ0cAjflclmyjh+SMqSyGRzuH7Iz33i0/zPv/zznDh2lF3bt2KoAj/wiFAZqA5RLsiohsHfN54iRvDR6kd5z/tvZNOOSaLAI6VZOEGOMCqgSBJpK8/2zRdRlRq7b/oU/+wXP8WlizNU+6s4nk+5oPK//9t/x/vu+ilmpk/QbKwhZIVSsZfxsc38+m/8Bio+OTvNN+99kHhXzM2DN7Jz1w6CwEc3DJ579hl0XUOWoVyp8tLLL1KpVjn22gmGR0fQjYQJFrKg7XSJpRhZyEiyxNBgL7qu8OADD3HwpUNMTY6i6yqu6yIkhVOnTlDt6UWSZQzDoFNfxtRknHaDfD5Ls+lQr7c4cuRVSvkstp1CKIJ//Y0Ouw+1efmuDMs9F6nZV7j1tpsol8v091eZnZ0ll8+zulbDNA1URWNwqIeengqqqqyzSypBFDA0PEKz6ZLK6qhyBJKMUExkkThhP/fss0xOTnLgpYNs376F1dVVLCtNFPgcOnSIu+76MIoRI69L66MoxkoleaFTUxu44YY9VMoVFFXh1MnjFEtJQfqh7z5AsVjiqaeeZmpyA5pqUG80uDx7iU2bNrO6upZIbcMQoWo4bhen22X/3hfo7R/ise89zuDAAJqmYlkZZCHhuV06rTaZdJpYUum6XY68fAjVSNHXU+FkfILL9VnCf9/lhu07CGOfL37xq/z+H/4xlbTD8cf+jGzvGJ69mVQmy+7oTtTnKzgTMxx97SW0uElvQUKSbI68coJSbw4l9jl3sYOi2KiqS+jKKJpGECY+BxJJ24CiKDhOFzOdQpYFjusTSwZSnLTzzM63COUmQ2O7kUkizvb27kfXND4WfZSu08WPBa4vkUnbnJ85R6VSRdNNHvvewzQbdUrFCoHb4ejhQ2zarJMxJQxdS9j5fA/CLuH6HkKyWV25QKfVImWGJGllMq7bwU7laKx1cf0UR45dYWzjtuR5Ksl4jkul2svclSs0VtdQ5A5Oq4GqOjiRhJoaptUOmZqaTPLpVZMYjZMnp7nlxt3oWpy0RykrxFHI9545weRoD5HvJfdHAbpmEysawqjghSGN1Sb5fAkIWV6co1is0G42qS1eJJXPIisKUazz8sGzPPrkYUZGh5iYnKJ3sIIikmfa8OggUuRgGhFRFNPbWwUCokjl9LlVgkhieHQAWZEwVZkwDIkNl4cfOceV2izLNYfNw0NYcRplj4qua+y6+XZM2ePhZ1/k7GvHiL1Fbv3gJ9aZv4j4Kpi6CsjiGPcPdYKXlHXDpjfOzq9igO+TUP/vg9erWOTtVKCvS29/ZJ3xDwbUvw9AryP7fojd/48Gr29HOl4d/6jBaxRFn7tWJnz9EEJQq9VoNpvYtv2W73mn8U4A9e2WxXFM+AMxr9dfIG9zDG9nOrW+wSiK6HbaPP353+T2/hivMI5W7Ge1XqPV7DBz+izTx05w8OBLBLJL78AY2dwAJ08c5cjhl7hw5hS333Qj09PTVEplhCIYHx8jjiLy+SKhlJgPNVpJwLoiNPLFHIap4wcBsqwQR8mErr6yQhgFnD19llKhSLfbZaC/n0MHD3L69Cn6L7k4rsPq1hJDI0PIiszUxg2UCwWef+45iAIa9Rq5UpVAEjSkNGbQZEOqxb6zS/zW7/4b/uW/+r8IRYxdWyY4eYGRO25PjCyEjCI0UmaGVMpmevoU+UwyEfjKl79OqVJC1/WEZVUTWaDv+SzXVrjt1pshDhOpi6ahagqO08LQVCAilkwGhkZYXrxMb7WEbuo888wzeK7L2GQf+WKGrtNiauMkK802pm7w13/9N2zbsYP7H3qMD3zkg9i5HJGqsbowR+wHiexTwM7tN9HT04ehCg69uBc7ncZO2xi6xunTpwgDGV0oNNfqTPw/7L1ntCTned/5q7dy6Nx9c753csJgBjMDECBIEJEkQIgSKVnJkmhqrWNbWq3Xyz3eYMuW91iU9ujQNq1A0dSKSQxgQiASQSIMgJkBMJicw82pb/ft3JX3Qw1IIhFciz4+x973nv5wu6qrqruqut//8/zD+ASabeH7iSlCHIW4XsT+fe9C0yViBIaRaEcdJ8P27TsSerkApBhZaJSrSxi2iiyniPwOXkjSCYgCZCGRyRRoNNr09vegWDNEYURv/gCaogAhXruNqNZxnj3G18aybPnDf0ohrbF89RwXFp7nxptup12v8+BXvsOHful+iqU8iirYxkG8SDC2bT8Hf/Ac/T39dDtt+nt7kIB6rc7S4gKpdAqv62LrOrIkOPryK+RzORaW5hIL/whU3eTq1atct+s6ymtrPPrYY4ReyPDwIJevXCKOBU3XY2Coh2p1jb2799Fp11leWmZ5tczA0DCHn/4e/RNbCIRO1K7RaqyhazZ9A0OYTkKl7e0fIIglXjl+igtnz7DvwI2sl6tMz81SKBQpZrMYKZvKWhVN1xgdG8O2bXRdR1UkZElQq6yjyDEIGVXJ8PBD3+aGG7bx6tGzpNMpLMvG9WMe/Pa3kQVcd/31XDh3hkKhxOLiMiMlFVXP8MiRy/SYZYyhPWhyTBubic3bWZqZxc7mcRyHdruNpXyfMDKYmLwR3/MwbYu1uXPY2QJWukDY7rLebODYNroiU62u4WTSROG1ghohqmIRxRGSECiqTL22jud69Pf343kesqzihz7+5ZMgxfh9k+i6TqPRSIw1JEEQ+HQ6HVJOlvXaKrohkc0U0JWYTquNaTt0gxC320GSRMIkkKSEvq6pmLqGoSpEckSjXsbSFGLfx0ylE2dYPzEU8a5OIyRBJ5sGOTHQ8dtNVFVFEhqZrEUsVIQk0DWFOBIQJ4UaRRbEkkoYBsRxjGVZP3RLLZfLRFHEoYMH6evvxXHSxMhEXhtVlpGIUHULSRK4nS6QFMkUWQEpwvdcNNlANzSEkDhz5iyj/f1IEiiaQaVRx9TSRHSI8RHYIImEqilHVNfLqLqKZabJZ5eRjP20qvN8+UtfZMvOraSLNu1amWqtjiRM7rz7A0TtVYq5DJHvUquUadRdSj0jLC2U+d3f+1X277uJry09jK7bfPbjf8V3v/MQH/nFX2F9xed3fuP32b13ipRZ4LFHH+DDH76Hy+f/jHxe4f0f/FcMPv4cg+UG2v6dfP7zX+amAxu55da76AYaubSJosuYVppazeXXfu0f4Lldus01RocG+chNv85XG1+l4dXo03p55tlnGZ8YpbenRD6fwbYtAgSj4yPExAwNjxFcm9h1Wx0WZucp9ZeS6yNIcoKF5BIEHps2bmPD1CaEiDAtnXq9ReCHlHpL6LpO4CfdYtVIgxxR74bU2jJ9xTSWZTB9dZGRgSKmZeH6LtueWwFJ8PJHUtTTSxi6DiIgjiAIXPL5EkKAriko1+QwSAF+4BGGAZZl4hEREfPEkz/gySef5sAN27AsHc8HSbUgDqisrTE5MUEURQyPDBMRIAmJIIiIPJ/nX3yRjRu3oBhASKLV1nX8OCT0Q469eoxyeYXnn3+WTDbD5MQ4rXYHVdUYHuzH83x2bN/Jd771EJZp8/DDD7F37250w+RLX/oSN+zfl9wjskDXNBRZYueObUiqxe7d1xNHAV63g2Jk0FSB123SrFcQssL3v/8CvRt7UPIK7gqca59gkUW+MPFZfvPDv4VQAo6fOMEdd9zD9h0bOf3sVyjGixxrFVlbj7hz751Enx+gNbnI3z76bbquyvh4P5LcxHQgXywhFJA8iQszoGtpUukqcpBlubKEpquJpCoKiIlxux0URablusRIhKHg8vQy+ZJJJEIse4hcIYtm9VOvVYmikMdSTyArCnc1bqfRapAtFNFkmZRtEPkukiyTLxRxHIPNmzYyNz+P16mxfXs/zz1+lm2be5GV5HwFsoNkFVGFB4FFu7NCysoShw2iMIQQdE3CDdtYusn5K8vsuO4mhsY2JW7BuoHneswtzDO5YYqZq9MEXpnm+jrFokWs2KSLG2g1XDy/i6obSCLA830GB3oJvHXOnX6VtXKFkUGVCAXV6KenoCMinyAOCaOQKBLoVopIyRDRRZNsvK5Po7XK2uoyKacHr9skDsvY9hStdplKZRlNNemfGGdirI+0nSVlp6hU1wiCLtmshfDXkYVA01TcoIwiHMJYYXreZXh0mN4+i67bQokEYeSjyWlGR/sYHx5hvFdHkiKc8ha+FzzE+NQE0/MrLF49QxuHj953N/OXD7P3fb9IFMXX5mOvB69wLedVkt4SvL5JL/tfELy+FRZ54xz+tef+q4BXSbx+v/8VwesbxxuB/n/T4DUMw38Jb4/gpUBQr9YhkrANG0l+6+28Jih+ow71jblEP778Tfv64UMivGbYJI/t++Fy8Zq71rW/6DUV7Fts+3V8/Gv87x/9nzwkERMjM3vmOHMP/Ft2DFn4hY1Iep5z56eZuTKPZWc5+MJhJqY24sUh/X1DyMgUCxmePfgCjq1T6i2gGDmGB3soFnuQhcBJOzjZPJFiMDgwQL3doa+nh7OnTpHJpmi3u0nlTVUJwwi3200s1IkxjTTddpfV8iqGofPgg9+mur6OpKgYgURpyxi53ZPksjl01eDCuQtMjI3T7bZQVY1Uqki3WafTbDIyPEI10FHrc8TEhHJIn+6x9cB+uj1DGF9+EHlqCMnQqFaqfPELX2D39dczc/UStpPh6LFTDA6PYTkOI8P9qHKcfPJxmBhKqSqWoeB2XSRJQ1U0wjBA11WWl5cSN2KhELgubrvFiy8cYsvWbXhuwLat23HsNELR8H0PS8/QbK5z9MWjHDp0iI989KOks2k2bth8LXQ5RMSCWEiYdgbpGgBYXy8zPDTE8soKQ+PDDA2NYOoWDzzwLWw7S09vkYcffgQ36LJ33/V0u62k2x7HCEVFN0063QZxlGQWVipVZEXFMBQkCTzPTbpoksZTjz9JqdRHNltEJkZWFKIgZubKNIVCjuVyGdM0GR8fxTI0QuU8ntfBkTbR8Xyii4toR04h0lkW/vdfZtsv30M6neXU4cOcfvEZ/vQ/fAWvE/LswR9w/f47+bd/+C/Yv/861srzOGf/CnX4JoTmsGHLZoyUxamTJ9i0Ywe1Wh1dKFydnWN4eACEhGE7yLrEjl2b8UIJW7N4+ulnOXvxIhOTkxRLPYS+z4ljx7j11vfSadWRJBgeHiabL7AyP00mkyOdzhH4Pql8EUXVKJWKNGpV8n29LM/PErQbrDdaZDMFXnzxBTZunKDbaTM/v0LfQD+vvPwKKwsLbNm0mXypRL3dppDP44eJu+cz33+Kbbt2cOb0efLpFKHfpd5YQzdt4hgMy0IIHd/3uHjhJBumxjn84kvsun4vjp3h4DPP0e00yWZyWLZDrVYl5WQYGMpjWhbNWg2vW+X4hRSjO3sY7dtK12vRN9DH8gL0TYyTdY4jpEVmzi7TUzpNGBoIbQDbdigvXkwKd4qJrOp4bgPTcAhCD9cLSGXyeJ0uihIS+h6VtSqWk7gAE4EQyQ+vKoBX14iXu3g5CQgJrp4hjmOKOw+wtrqGFMcJWwGZOA4TSr+sESOjqiaKmjgL26kMrWYbQh93fR7LtkFJdPNJRzSm2eyg6iaRL9B1C0loCMUkDiEKPOLYp76+jrxSRQgZe2oyYUkoJpKkousq5eVZvFBCU3XCKKDdahLHHmHgE4QhrheiqQZCSjIMiQWNegVZxLhtF03WWa0mJm1IEoquI6sJldr3AlRVUK+VsVMmrVYHw4jxA/8aDdXGxyeOfMorS4yNTxIrAtdLHFOVmCRP1g+QYoFuGtTrFQxTwe12kSWdOIbz56+STYf0FeZwej7E2VePMT46RqykCeU0xw+/RM6RGB5JIWkOeq5A04257b0f4Pf/x/8Bw1botir88i/+Gr1jW3i89QNSaYdv/t5X+dXf+E0kt4Wqq0zt3Mav/+JH+PXf+k1+7gN/n7HBFLfcWkDRVMzcuzF/cIio3sLft4vhgRGEluLS9CLZfAZN+KzXO5iWQ6tbw0pBNu0wOjmBautEUZsb7T18vv41bum5hWzJRpZtNM1HCB1J0YljD1VWCDwPQYQsPISk8Jef+Qv2XL8d1/ewTYvAD2k326wuLZHJFhGqhtAUDE2h2ewQS5DJp1lfX8fzPC5duUJvbz9h5CIArx1i6RKGleH8xWkuXTxPuVxlbGyCz372c/xSYxAhy1y6tY8oCBGKjuv6SQdYVqnV11DNFEgagR8R+l0QCp4XkEplaLXaRG4bAUyMj7Nz525MO43nJbqzVn0NXbdJpbLEMYShz1e++Ld0uxGjw+N854EHaHUCbrvtVrrtdWYuXqVQ7CMIOsxcnaa2XqduN3jhmUMM3TpEw2hzefUKmmPw5MEnOLBpD7EkSDtp2s0mW7ZuJl8osnf3Htr1OoZh4ZhpLDOFhIRhaijIDGtDvLp+nGElhaor6IaJZZhEQciZ+ikW4zVWpDYPrzxJfaTGtDtDLMn43QB1Gb78nr8kp2X42Md/j7/5wpf47F9/hnSPSbcyy/FH/m/sfX8P3S/w7tvuRvztCL7ZomPNMXtlidtuzbA4W2F2LqK3pCCkAE2RkWQY6lexrSaBp6KYAaZpJ91pYmQpJAxkdMPC87sokYKmqMRRSCFvo0QaktJBjwTHTp0hnZsgl8/jeSFPF39Aq9XmF6SfJwh8zp85S//IKM1mh3SuiGGniMOAMJZZXlgkdpeZ6Pdx9JBNm7NIcoxQ9CQKL7WNbuChqVl8vwaNWbzuMvOzNexUFttOg6hAZLNU9jh7sYWHYGhoCIi5ePkSdipFrbKMImuoisxAsQcRL2LqMi0vi+300NNfQtUzKIpEuw2GFbO2VuaRB5/m6swKd7xnBDWOsU2TbDZCkhLQKiQJw9KR1BQoFlFsJY7bRhpFETQq89ipPIocYJpSog8PmhiajW06GJpELpci5Wg0m8t0mmsosk+pmEeR/MQXTYoIvABNmHRaTVQ5ZGIkg1BdwkYdr+sRBC6maSNLAiloomkS08stzk8vscW+mf57DTpum8XlMgOlHianJqnU55k5fQIr30+qbwRV+Nc0pz8OyCSCI0oSp7QvSBR4P57z+ibA9kbDmjdoWEVMHEc/2s6b5vqvz0p93bLXnHTfpun048fxVuu9k972zQfz1lrY1/Jj3wiS4x+CiWvrvSFX9ic93vgef9bjjdv97xq8KqqK5ViYtklMjJDf/gNP8pp+9H8cx7xRh/rTni5RGEcZ3A7aj7q9bzzZ76iBfYcRCoG0eB6e/hSWAurIHoRiEIURAhgYHSGdK7B1+y5efvkolqkyMzvNDXv38vjjj1PI5yhmbaYmR/G7IVfnrjC1cRNr6zUUTSebzWEZBmEQIkuJi1xPb08SceCkEtG2BO1GHd3Q8dwuqiwTBxFRHLK8tEijXkuq1LrGTe+6hWCsSGb3OMurq6yslBkdHeXUyZNs3rWHbtdn7969nDp1gh27dhAEEYZhks2mOH9xmu2FGCU3wde+/RR333sX7uAmuDKLevIc59pdRkeGGB8bo9GoU+otoagaK8vLjI+Po6mC+bl5cvkC81cXkmiHTBbX94kCmbVKjSiGCB/btqlWKvSUegjDJMMMScK0DMYnhkk5Dr4fYpo2DzzwACNjQ+i64KmnnsW2HLZs28jNN78LyzSZm1sgl8+hazKyENdcShUa6+ukUhZ+4JMv9uD7HktLC/T19VKpllHVJKJjYmICSZYYGxujUMhhmDqh1yUOQ2QBgefS6rRxbIsgCFFlg2w6jSIiyiuLWE4mmXTLgvr6OoaVodlu09vXy8LSHKae4T/+2Z/x3tveg6aqhL6Hrht0vQ7IEYG4hKaqNFZzmK9eQJ5ZZvFXbyX9P/1jSuP9yGaOru+gyBn+l9//P9h+3QHuvvt+CiWLfLGHA9ftZ+bKHEbtJKXoCpV4AD/wcX0fO+UwPjbMy88dorreZHjjJoJuF9O0SKczhFGIZprEUUw6nUUKAyzL4vY77uTKzCxDw0M0Gw0GBvpZWV3DCzw6HZfV8lpiejM8RCQLDMvCTqWSTloY0KjXCAOfYqmfC+fPs23bVnRL49VXTrBz927MVApZtchk7OT+FzK79+6jmHc4ffokGzds5LmDhyAO6LSbFEs9VCo1LMvCsUwe+e7DbNu+A1XTkITKN7/5LbxOB0VWAcHAwBDDw6N4bpNqtUKr28WyDGq1GoODQ1imgaMHRGGXSqXBUG+BubnL/Nrvf4pa6xzrDRXfLTMzvcDsTIdCsQfHWUXICoszLv1955BECuIsqiQQioJpOXAta1XXDYQko+lJtnEcg++7CJFQXm3bJoiT6CHX6yBEhNdOgKT65StIVxqEN/WhaTrepePJD87QVjzXI5tLIUkRtVoV28phWnqS/SqB67oISdDtNlA1HSFrxBE4uSJtL0mlVmUJ4pgoCtF1Lfn4RWIcK0mC+blF/KCN5/sQS+TyecL5JUAi7i2wVl4mncnh+x6aqmDoGoZhEcVAHKFrCq12G9tJIYRCFMWomowkQa1eQ1UkTCuVZFaWq7z44hFufvdNEAdopk6r00bXVJaWr2AaJrqZQTdNwjjGMC0kWSGOZQSC1ZUFslmH9WoFiLEMHVnRUBUFt+uhaxpRFKIIiIlYXllGjj2KhRxBHKOZKVaX13j++YMMDe8kCufIWj9g48YAyx6kWNxAvVVjYsNWHKfIA994GH99nf6BYVTF5GO/9TucP3eKwYERCmmJhauvcO7MUY6lLhGELr80cgd+FHLhzAoijhjqt/hnn7iNdvs0v/WxT1Do6aWQmyGOIzrdrSjPH+PkydPk7r2DQiFLJ0i0fjIxKi06fqI3TcyuFOIgol6v43sB6XSWvDbOnvRe/p/lv+Zg8xC3Ft7DenuNVsNDVhXiEMIgwnMDnnjie5SKWQzTYNuWTeiqTDqVwfc8Dr14hIe/8yh33H0PMQmtXJJAlRN6cBD6xFGAqmnoqs3Xv/ZNbti7D1kKaTUaHDl0lCtXrjA4MESr2eTK5cvcf/9H+exf/Sc+dP99XHekihCC1vA+ejo9VDOr1OtNNN1AFgqtThNDNxBIHD70AsVSDsu2El+BMELXdRTNRJIFsQSapiILAYRJ7rPrc+j5IxiGzVe/9jV27t7FYO8wI+OjGIZKPpthYmoSJ23S7bTJFLOcXT9HPpXjJe8YR9SXadVbfOjmD/L+4l1cp16Hu9TBMRx2Tu7E10JkVeH8pfP09vdy7txpsvk0F6YvUBrs5/L0JSIJmt0WVtoCJcKLfZ6pPsv0+lWqjSVyVh43ivEJiaWYYXmQO/N3Mtye4Ob2Xj7R94/4JyP/kKn56xlY2sjyk5cYKJWot+sErskDD3+ehx75Nnpkc+HQfySdzVDzdqJZDoVLw8jn0rTHypw+c47VhUuM9vUxMmjT3xtj2gZxFCdF4yCE2MeNdB58/Dx9o5vJOgqu28b3YvxQJYqTe1LIOqqi4Pkenu+iGSoiaOH6EggdKz1FsW+C8moZy9IphyuMRmNcL/ZQXiszNj4BJHTudquNF/h0uiGy0uHs0Rk2bJTQ8IhCHyHFKIpMLOnIehbFyNFyXSxdsLR4FUfzkXWFnkIJjzKB34JuHk/SeOyJM2zdvgPDtMnmCgghqNXquJ5HHAbMzc2xffs2OuVpOu1VYjTQ+0hncjTbLXTd4dLFS2SLKaanZ8nYJRqVBTaM92AZIYYmQPJRJAg9lzgMUBWZbigjKxmQTexUEU3VQShIQBiF5IpDdLtrdNs1vJaPky5gGAqGJpDlkLizTHN9lrBbJfabKHGDyG1Sq1SIIglDlxFCQlUFSBFBJBF3WsSEYKQRBEhEhMhU2jq+H6AqMZap0tvXg7+a4ZN//X/h55rsv+kW2vVVXj5+ktgPWLh0mkhz2LR9J7L0Zgdd4HU5r2/qcvIO4PWNnVTpzXK9v+t4K7feNz7/Vsfyn2sC9TpJ4k94L++YcvIW453ovj+r8d81eI3i8FoVQvqJwFVRlEQrI37Umk1yXV+/3k97miXdRtLtH3V03+rCeWNl5g2Lf/zifuPFF8cR4eGv0z30BdZ8nTg9yGqtTTqdZ3VlGcvUicIupqlTW19h25ZJTp44UbhiXgAAIABJREFURbGY43vfe4Jt27YyODiCbWq02k3CQHD9nl0cP3GcTZt3oFwzUFEEzM7O0up0iQQYjo2sKMQoxFGEKkv4bjtpBkchJ149zvkz5zhx8lXK5VWyaYdcNk0+X2R0bBzLdrh6dZqpjZuxLBPiGE1VsB2bvt4+Dj7/PJNTE4RhyLPPvciWLZu4ePEMW/fvo7qywrjt8v7f/SznzrxCJuNgHtgNX3yIbCbFKjG2k+YLX/gSQ0ODCCHI55IM1ZWVBcIwpljsx3VdUukUipJQIqMw4tSpk0xNTSJkCIMQ0zJxux6eG3LkyGHy+SILC/NYloEsC1aWKzQabTZtniKbLdH1mmzftpN0OnWtUBKxXlmjsrZCLpcninxq6zWajRapTAop9Hn4wYeY3LgZWdFQVAnbNmg1W2SzRQzDxHFsdF2l3e2STif63U63hWU5BGGEaVnIikomlWjeWu0upmXR7XZQVBnDdPCjCFM3EkAQeGTyWdYra6RtC9sxEbLGnhuuo9Npo+smtpPm61//Brt3X0e73UDSpwFIia3ETxxB+c6f0xzN0Kk1kKIa/lqZQ4eP8Ok//zT33ncXN964nyiWeOoH32Xfvnfh++scPXaSWwfmiIVKmwyvHj2Gqmj0lHqo1+usr9dodzusVsoYms5LL73C5i2bqVbXsOwcly9M45gOCIGi6Rw/fpzRkcHEGVdXSacc7FQazTBw/YDDh19i3749NGs1nFSKWAhUVUUTCl/+8pfIZTMo18xR5DhGUzUC36dZazA3N03/0BCSrBET882vPcDwwADpVIoL58/R11NgeXmJkbEJZCmm3W4xObmBVrNFvVnn7JkzfOD9H0A3TKI4Blln+vJlrtuxFeKY4yeP02w3Wa+vI4uYiIAgDLh+9x5KxVIS+WOZrCyv0Wi1GByaIOquU+rN0tQ34kYzbN7ybmThk8r3MjC6A0mXcOxy0n3UhzGMFwkjndCXWVteJpAMXM8nCiMy6SySUIgCn3ariaIqyLJCGCSuuKqaaOR1wyGOJIRIKr+u62M6WcTzi8RRRHxTESKZ2OsiZ/JEmSK241yzw4+x7aTzZRgGrtcgCFxUTUmqwcjIqgYicaWtNVtk0ilkWaLZqGPoSYSPpqlATLeb0DH9wKdYKCHLIZbpoGmJbtWdniMMQ6KeAoVcGjd0gZhyeYVUysJzfTRNQ1EEUeBjOQ7hNZARx1CvV1FVA1VRabXq6KZFGIbk8wUUVSOdSaEqCl3XTTKfZRXLtFFkBQlBq9Wk22kRhcm5NA2Tbsclm83QbjUxLQfTzhBFEZIk6Ha6rFfXaTSaaLqCIkmEgU86naFea9D1fEzT4eirJzn+6gnuve9udN1gZcUmm9uILAeo8hFE9DC6dBRTvcDR4wq3vftmVsoNnEIBIQt+7r4Pcve9H8D1oF6Z58qlV/HbEUesc8jEDJ0JsYw0I5NT6JaJ63Wprp+mWMhhpobR9GHk+EXiMODTnz7EjnpS2DBvvwXdEKzNznDvB+7naw98m9tvv43e/n4UJYm/8X0PEUtks1l8P4RYIaKN5krcm/oQY50JvtH+Js82nufs985THCmik8SBpVMpxsfH+cxnvsieGw5Qr7ewrQzPHnwRpIgojrj9jrtA8hEiptNqomsqbuATxwkNXUgx7VaXuZkFisUcw8O9rK1ViVHYtGkX5y9cIuVYZDMp9h3YjywUKpUyu3ZsZeyJaVRNp0f8JtmZEpe2nkI3TGRZJQhDUmmHVr3O9NUrPPnk47z71ncBKrIs4/sekhTT7UpomkK33cAyVFrNDoYpE4UhP3jqWaY2bODsmTPcffddeN0Wjz3+ODPVaaS8xMXOVYayA7xUfZl5lnm0+X1kSSHlpplamOSmk/v4g33/nA+N3k73QpcH/+JR8tUC//SDv8/to+9lf3of+fk890/cxz5jD8HRmDuH38ff3/8r3ODs55b0jTzwL7/Bn/2Tv+A9ve/h3X03cUvpPdxXup+P5N/P7lqWyw8usU3aS27G5Pbem7hr0z20Lvscf/gY79t3K8OlErqukS/2MLl1kp+77w7y+TRTm7dy8y37WarU2HP9Loy4ytnDD7Lxxt/AsAfJSYM43xnhivkKkdzlqWee5sP33IAk1bHsAEVK5ArRNcZH4HdAkxGqjedJ2KkMltrF90JWKzLf+u4pdu0aRgp9fC8ijNpIImEUgcALYmaWIiqNGi+8OMP263ayurpCqVRim7udG5QbUVUFy7YwLZsgjDh/5iy6qqIoKlcuXkGOupw78SxbtxZQhYaQVXw/IkbGcmy6kYVi2ZiWRX29xuBAgcriBXRNpdlp8MQTS4yMpSCu0/VNzPQg+b5e0pki3a6LaVrk8nkK+QK6rtPbU8ANPJZmLyIUQcfXGBjbjue6XJ29Sj7fx9zcPIWUQinby8EfHCKXcRnsq3LpTJP+wRwxbYhldMNAyAp+EKGYGWynl0q9iWWniPwua6uLmIaGosisrCyQy+Qg1OjtG0EOGqyvXqXbXsBrLxN5LVQ5REgRURTieaDJIaapoxkGntdECAnXC5CEwqHjC8RKhnxaxg8DFCnGNA1arsRXHj3B6toaQ31pTAVUTVCrCe7q+yjR/goBKs3qIrv27uPqxVkWrpzg/R/6BTTDRFGNHzaV3g68vm4OTwJefzJt+E2z758ZcH27Duzbdy9/NuD1jfv/oQaX1xu9vh14/c9ObPkZjv+uwetPyyuPoghFUd4cf/MGp67/L6fxHff9UwLjN25n/dJROt/9I/zlS0w3FMx8H8KwqNXb2JbDweeexbZ0lmaXse00B59+GsvQcFJpshkHCdiyeSv9gyOcOnmcYqmErJjUq2UGh4Zx3RDdcQg9F7fTxjBM+gaHUXSDWJISF871elJRBi6cP4skKyhCot1sEXR9FlYWMQ0dy7LYvfu6xPpd1QgW1imYKZ45eoSenh5OHHuVamWNudkrREHM8soqmzZvwrYt6ustnvzeE1Qqy+zYtodTp88wkJZZK5+lMH4jKb2DZ5o0330r9he+gTnQSxOZG/bdhOMkWYC2ZdFqNimVcmSyRVbLFb7z0HfYuWsnuqFSKS9Tq66xacMGFCEgCml3OqiagmFYBD64bpc4SpxHR0aG6HTbrFcT/W86baMoJuDjez6rq8s8/MhjTEyMoWky6bRFrd7iyEuH2bRpE6Zp44YuupAYGRmn0Uo0iZIUUF0rc/LESZ55+jA7duzg6tVLaLqa/EB2XWzHwrINfD8im8tTqzdRVI3lhSUWFlfo6xtEqIJWu4GQZcJQRtVV6vUaIo4xNBVJjhnoKxG4XTzfx7A1Wq06uXyWMJTwYxgbHcfQdULfRzKvEgYBamcSzlyBf/Y7ZDMqBcOmsz7LhaP/iW3X3cBaVeHmG+/n+Mnvcedd93DPB9/H3NwamR6Ze+65G+3kv0MfvRmhpgj9iMG+Ac6fOY+qqQyOjzI0OMjMxYucv3CRgf4hwiigf6AP5Jh8NoWiRDx36ChOKoWmyBD6CE2n3WpSq69jOSly+Sw9vf1cd91ugsClsrzCI49+l/6BQRzHQZEkNm/ehGNb2JbFKy8d4cK58wz0DtDpeCwtzDE41IOdSqEqJkJR2DA2wblTp1hZmmduYZGRgV7anRbnL12mmMuzZdtW5hcW2DS1hSuzl7njtvdx5uxZ5hcXGRgcAKHRqK6TcSymZ64iKzLDI8OMjI3gthWWFpOICl1TqVbXqdfrXLh4HsMuMTw6zhOPP0UhLShIFT75+Vl27JpgePAWZhbPotsZegc3YeY1NGkJRVGpLEM6/QphrLGyWCHjZNGsHiSZpCsVRESxBJGPkCEIIjw/wLFM4lgk3VE5puOGqKqOH3gEgYedyuH6EdqLS0RhADcVkBWDtl3AGJxAV0GWNcIgwvcDfD9C1yGKBLLQWCvXSKcKKLKBqmoJyyGOUVVByrIIvC6B56JoSbe12WygqApCCGRZT75rFEG9UUOSQoRQ8f0g+YauN1FMA1HKo6sSkWShCAPbTOO6AZ7XIZYkojCi02rihzERiRojuU8CLDON5yVFrSBMAFC73aGvpw8hFGQhoeoGnh+iKiqqnEJIMeE17bmiQBQEZNJpoihC03QazWYyIY4VhHoth1KKr4FYiYsXL+J2YHlhlaeefIa+vlEWl5Z46KGHmZzcSCFXZPfu6zAtgW6oxJGKJHQ63RSxNIIs93LxwkUyGZ/e4hFOHi+zcc+H8OMATYF7776d/NAgllPk2MsvcNutByhtvZus0cO+wvXcsvE96CG4SpeWH9JqyWQza8RRyPIq/MG//mvuuFXC0DS++Y1Zei4tUK1UUN97AMtWePIb3+AffPx3+MJXvs3//In/jXJ5ITHpEiTGVV7A/PwC/+oP/g033ngLv/0bn+D06ZPc/t4DLL10gX98wye4NX8Dtb4uj7UepUIFoUnkRZ5up8PuvftodZucv3CW/v5+VisNtu/cTKm3B0VVWZxbJAolOk2PtJ1D1hPzHiHFtJoNctkCuVyBTMbCC5qkMjaSApKs4IXXzi0RX/zy31JdL/Oumw8gyxLpr7yK7aSQB+9CURTOTB0nikESMpIQtNstlNjmu488yX0f+jDLKxUymXxyLUoBXbeF25EwDRUpDui0muTyPczPXUEgs2PbblI5h/GJcRbDeS51L3FlbBa/N8CRbMZSE6xcWOfu8Xu4J/1+7mv/HA/99nf55C//CVuzm7j3/XdjWTK1epnz52bYf8Nt7DlwPT2lAs1GjUI2y//5L/41Z8+c5V03votC71jy3mWPy5cu8rHf/DgPfP2bRDH8h0//e26+eT+SqiFkhWalzOjwIPsO3M1XvvgtBoppJjYO0Oh0kWSNP/3kH3PqxBlGhvsoFtOkcjlW1+dZXZpmaGiEbjfAC1fQ7EFkyeel57/KhqFxKL2XIKrifjaF1SMx2zzFM888ze1330Y+NY0u7WB2YRo7I4hCCVXR8LwWihqjYaDEHYZ6DfJOk8jXiUWbVE+JpWWdsbEUfruGqelIsoahp+h2Yh579Aw9gz28dHSRyU0jLC5CN2iQzqQYGh6l1WwjFA2hSFSqFVRVhwhStoMkCbK5LBfPXeDK+XPcdecgbrONpEV4QRdFV0BEKEqOdG4KWXcIQxkhy0hxF7+2iCxBK4B6W6OnX2ArfYTAc4fOc9N73s303BIDvb0YZuK2fvHiRSzTpLZeJl8oknIMao0aqp4jkiwWF2dw0ilsO8nWdTsyWiqk0ljk1OkyUz2D9I920ZQMYSCICel2PQzbIZIkNNOm0QwplIq4ns/izCUcS6NRXycGHNNESCq6GbFaPUfcmSMKamhI4AskRSKMQiw7haIaPPz4GTZt6CWMXTpeBwkf07Tx/ZA4Ehy91ObqUp0t42k0JSKOJaI4IMJgqq/IxqE0GVslUgxazQovnbvIlswBRvf38Eef+xPuet+7QDF55DuPsm/XBMgaI5MbUXSdiDcDq3cCr6+fVL8DeP1ZRN68w3j7zujPHrz+pOfeqfP6/4PX/0LjNfAKb98af92JegtdaaJF5S3tfn+kUP3pgWscx/hnnyIqX0EpTbwJWL9V5tFb7fuHKU1xDAjC6gLdx/8YLj5NuRngpwcoDQ7TaLVJOSlsJ8X87Dy12jrtTptKrcoLh49g6DJ7dm1jdmmF2auX2LplK08/8yyKHNNq1VldXsE0FLbv3sPC0hKplI1jWxiGgeGk0EwLSYqJw4BOs4WhaTimRBhFxAhswyKXSdPpugRewNLKMqamsmvbJixLI5srMbswx6kTZxh+8BzyiRnkm8ZQJRlNU+jvLeI4DqsrFQaGhrh0+TL5XAbdSjG1YROyLJPP6QSxoB1pDMarNPUS5coqqeHtpNIa4Uc+gPytJ7GuzNC0wUynqawtIlQNK50jDAL8SOLQi4dZW5xj566dGJaVANQwoSg22m2sVBpd1/E9n3q9hqLItLst+vvHcN0mhXyS91ipNNBNk3w+DSLE0nXiMCSWZMbHpjBtQbeTxI088djTXL97D47l8MILBynmi0TIaLrFM888w+TYIKqqoBs245Ob2bx1EwoRuWwqiXfQDIRIJvJrlQrFjEOn3SIKQ4LAp9lo09c7wOOPPUIxlyKbybG2VsUyFGavzpKyHQzDRCgqjVYLzTBptLtYlkMUy2iqQRSBpivEXgdNjvCEQBcehjKCKqaQ5up4UYD1a/ewsFRmvd3BLAwR+hEXZ7qcPnmR40cPsmF8K1Obx/FilYHJCQqpPhYO/hVmdxq9bwuqZdHTV6JRW2ZkwxRREDI3cxVVVRgdH2X7zuvI5bK88sorbJrchCR5NJpNdCvDxHA/rWadaqVKX98gPj6mYbJerVLqKaGoEp12E01TOHH8ZELlVRU2T01y9OhRkGUc20HXdZaWVhgeG2dwcJBMLkcAHHnlGDu27eDlFw8TBj6FQhrXCzBth3Qmy/jYBHPL6wyPTjA80I8kqTRaXfKlEqEU88LBZxmfnKC3dxDwkm6iKrG4vEQ2X6C3t5/LVy6xefNmdM3ACzz6+koUixleefkEE5NjhJHHyZOnufldN3HuzFlGRoeZnNqCXD3K1O33oSgyjdoMquwhESIrPmknh66v02m3UbLbMXgK343wg0HSpTE810fVdCQkvG4bS5fxAhfNzqDrJjIxzVaXIAwTF1RFRdM0kqxfFVmoVCoViDzk55cRQhC8KzFbUzWBkBLtfavVSrqrEsiKgq7oyIqKH4Rk83mEIiWmNJKCJFxiP8DrukSyQFEEECEJBaEaCauAmMDrJC7BSMiKgaYneZaeH6BoCpIUIuVzBPk8TjpD4CcGLtE1cC4EyKpKt9PBNA0MK+mYRmGIpsosLy8mESJxTBB6RJGPpjm4HZ9MOoUkfDTdSOJ/kNAVFaFAGLn4UUDot2i1WlhWCs2w6foRXS/JRPR9D0U3aLdbmJpK4Hm8+tILjE9OIGsGgR8zMjqEomqMjI1SKGUpFNJMTkygqRLQwnJSVKorBK7AMgSdbgNNs/jsZz/H3n03YWeGaTQcVler7Nq5SugpuM0MczNXyeQd8rk0jeoi+66/lfPT58mk0rDg8/EP/C4f+52PUXMNqosNvvqFr3Hs2FE2Tmloqs6J4z67dowzNVlFVmUy+dvZ65MAlBs28yef/Pf8ym/9NvlSD/d/6C5eOfIC48MTqJpK1++iI+HFEcVikbvvvAuv3ebhhx/jT//0k5w4cZyRiY3kS1nScZbbC+/hF6wP0S/382jjUeamrzKYHUGIiNDzyaWzPP/cQW655Ua67RaaohFfc921NB0v9EjlUogYGq0Gmm5i2BliSaDqUuI8n+nB7yYUylatQdrM0PUamE6ardt2osgSpZ4eJFll37Eu83NzpDb+AlEUcXnrySSyp93CNFU0VSZWJLZs244fBBw+8jxbt25AKBBHEppqI5QI3w+5Mj1PrlCk2WqQyRawnBQdr009rHDVn+FI6xXutW/nj0b+kE8MfZwPpu/gzp672GPu5J//vf+VveM3MNY3xj/63X/IiRMn+NbXv871u3bxl5/+HJ/61N8wMbWRYyePsGFikHxPBkkK+fNPfYqPfuSXOHDru/nMZ/4dE5umcNvrnD56jFLPIO+//+e5cvEyX/nCF/nwz/88zU6LQjZHFLhk8llq9YCO51LsK/KXn/sbbtizk/6+CSwny8/98ke5Yc+NCDmg2N+DiwyhS0/vBM26RxC62MUSjmbQaE9jzTzLSidL3+A4lx6osqm9g87EZRZmz6NnJukRi8zOlklldTTFR1eDJJ5LERBGCGSErhNHICk6gWTQcZvMLTbRJYkd2wcI3FVM3cQNfDTRxusGtL0WhZ4xstmITZMWIpQw7AzVapO9N+xnbn6BBWOOI+dfZGNxivLyMvlslkpllXQmzfTsFZ555vvkMj5pU5BJgW1lUYUEUYgsGxhmgS42QRQjCwkp7KDIEs21JSKqGLpNFHQZ6lMwVRlN0zl7eYErCw0cPc2WzdvxvA5CQK1aoa+vB1nELMzPkM0WuXThApMbd9HqRrRdl82bN+Ok83i+y8L8VebmF0inHc4cPcX+HSXyKZmnDs2zurzGYF8RVfJ49tV5WuuQ7zEJwixGKotu9FOrrVMs9WDaWXTDory0jCKHKDRprJ1FC5K5SxzFSEK75hHiIgsQJEW78bECsQgglrBtE0WYtNotVEXF9z2Geyx2bSwiSR1k2UYiIPAj0o6JJDXpdCIUPaH5O6bD8atVKq06k0vXs+tj48SKBqFEea2CrEtMjRZw7RypdIE4Dt80Xw4PyyBJqPvfDF5/ZBQTvzUYfFN26jtN8n96XeqPz/8TaeK118Y/eu3rcctb0Yh/un39NCMOX8M1AiGJHx5G/FqrLk46sz/eef2RXvbadcG1XNsfo2+/Hfb6u4Df/6bB62tuw69Vs99p/F1rCK/tJwzDt43ekSQJ/8TDRPVVlPF9b7nOTxo/vNjjkEhWobFA97E/JjjxMJVqiwvlDj2btyPLGXQzw9p6i1SmxMrcLJZjc/2+AxT7higVcghFxXEcXnn1OIWMyq7t17NWWcO0VVZW1piammJq4yZUzeTUqdPYto3nejhpk2azRW29TrPZwUklcSWv0fmCALyuiyxFNJrrnDp1kqHBQQ69+CKqkBkaGWVsaiOBZCApNu1Gh+r6IoMzHTptj5fUNRYXZmk1avi+T63WoLK+hm0a5LJZBvpKHD5ymEzWYWxkmMDzKRV7EbKGLAu05VeZ6ZhMbthAOdBQNIF0zwG8K1cRh09wsbZOubLO4OAYT37vB/SUSkiyRH9fkV3X7SZfLLC6toapGxi6Sbm8Rtd1yWSztBouURzTbneRUFhemaWQK2DbGgvzS5w98ypbNm1ECMHKaplUKkMcxQRhzOf++vPceNMBFBmqlQaO41AopnFSCRWxt7eXfC5Lq1kjjly2bZ2i23bRNA1V00AkWayu57NarnDw2UPIskyhkEtyaBUd1+1g2SnKaxXyhQJh5GNZDqdPX2Dz1BROykHTZDqtJgND49QbDRRN4Pkd3EigqDqaYvDc0wc5c/o4I8NDyCKhfScThYD/l7v3jrbsuus8PyeHe87N9737ck6Vq1RVKuVgyRJW2zhBY2Nk42bAGJsx0DCsBbTNNO2e7mFo6MFAk4wGyyZZVnIo5axSSaocVOlV1cv55ntPPvPHLcu2bNlWA2tmea/1/rjrpH3Pu2ef/d2/bwgF9cogl+L4kTOo9SZmIcvTcoVNE2Mk02k0w0TLTCHJCtu2TeI4NUobDaYvnkGWAgaKnZw5fY6Os/8HJ1YNZCNFJAjIskgceLhBTDJhkkqnOX7sGN1d3cShy8b6Ok6jRbVcoeW0sJMZEMS2k3LCoKevh/WNMqW1NeqVKsVCJ4sLi+imQb1RxbYNMuk0Rw++ws7du1ETCQaHB8lms0iqjijLpO12dmk6k6VWb5DLpBmdGKbVbKKrGrlkikQq1140kGTOnDvNysIqmWySQmcOUZMJopBs2sJxGhgJi21bNjMzM0s2lyaIaxh6+1myzQSNSg1V19i0aZJWyyUKBebmZpAkkdMnTtLVM8RTTz/L/PwC4xNjXLp4gZ7eLpqtBhsbq+SlNZ45U6a3y0BLJMgm+6g1ZojcZVZmpskUImQh5PgLh+jtX8SNthNhEEcRsizi+X5b9+TUCSMPTU/iuy5xHLG2USKbKaBpCqomEwQeCrQ1SVq7SmpeyWJVDq62mSDXddJo1JFbDWrrayiKRCJh4Hk+sqIShiGNeoNWK+TPPvcnFDtyeG4TCYGW4+K0akhiG9gapkmjXsO27Hb1p16jVW8gSRpxrKAbbbfeMAzwPI/AbcCVl6vvOOh2FlWT8X2XWFDbMSyqShSGSKJIFAUYuk6r1cJ1HDTNaEf/hAGJhEno+ai6SoSAIGm0mk0SVhIECT8McVpNBBF8v0mMTxjRZi1obaMh1UggKRpNx0WWJcIwRBZFDMMgol3xjsMQRVHo6e1BEEViQaSzo0C5vESx2Inneiiqwpf//j627dhBJldAVAweeuDrbNmyGUHQOXPuHJ0dRQ4efIWhoSG6u7sQZYGElcKyepGUIrr8JD/107/Lbbe/h1w+jXvF1fy//N6fkTCzPPfiUwwODvGzH/l5KrUVgqCdFbl922aG+jvp6Ze5fGmGnVvuQpUD7HSNWtXnttt/lZ+b2koYRJzKWlx7zdVcmHmNlfVlCh0d9PYP8mO3vIvrb7yJVC7VjgRSVRzX5+zFi3T09HLDtXtR9Yienk4y6TRR6PPMU88wPDDK+dOXuWPr7fxk4X08Gx3gnH8BvxzS1zXI1/bv5653/Bvi2MEw1LYWXtEIAxfD0jFMjdD3EGIPWZIQJJUgbMtZZEHGabo0ag2WFld57NHHGRocIZ8vUG/UySSTiEKIZZs4zSa6rlLTIdg3TEdtL4IIZ8ePIwrtcSASJERZx/WaqJqMIETs3LmVKLD4wz/6ffZevQNB0Dly8CDlcpVisUgyaQMRuqYyvXyBklTmobX9XJ/cx19O/neu67iWbLKTc2cukkrluDhzme7+XgYH+xjs7WKkv5tYDNC1BAcOHuSa66/nljtuRDUNrr3lOq6+fg+93T0EgkCt0mDntl0k8h1krQSmqrM4v8qvfOp/4/TZS5Q36iArTI1PEbghv/ypX+WTv/opNL1NxYwFkCMFx3GZmppkYnIcO2UiK+0oGtfx+di/+xgf+NDP4PkiX/vq42waG+fSxWmGRkdIJLOgBFTnZ5h+8a/ZqM6iJ3dw+cwqu46/g3jK5eDRl0goNpXV19i2qYNk0sBKxshqmtkZn2zWJAw9VFUjDGNaroOiicSxSBxwxRwrJpXNY5kCTisiCCKStkkQKTQ9UJQkuUyAJppIokos+Cwtl8gX8vzDlx8kimX+asefcmHgAj/mvg/bTvHsk49w/NQCczNHGOqSGMw7H5zLAAAgAElEQVSbdBUkMnaEaZoEhBAJyIqMF4kIchIzXWSt1CDfUSSivXAVe6vgNdsMEUlps0YkEc+NSKWL5Iv99HQX8eIAy0y0HdN9n5mZGRqOQ19vP36o8NIrL2Ml00RhzOjIMLNzF9E0HU03sewkxZxIpR7z6qHDbB5LYhgb9A90M9BjE1LF9zXyaYNMoZd0vhfNHKDplFlf36Cjc5BQllGJqKyv0jkwQG1jlZNHD1PM2URugBdXiVydllPi3PkS3V0FBEm8Ig0RECKfCBUrpdOsu4iSQBQFbUaLKGKYEmEQIssGYRS0DaIkiTb+d9FUDUVVCAMo1RtUNlzm6iWmejeTPtXDYv8ZWk6L2952G//0j18mbq3RPTKKarczjb9L12qCOBghdETfMRf/12lvXh19I932u02ZvvPYNg+IN93+3Zf+51Ziv4Vb4jj+rrqZwLcKgd9kfX7r8zfPceU7vYGO/WZmVf+z7UcavIZh+Jm3Ih7+l/gpv/LKK/T19X3ffYIrbsP/M+D1m01Yv0Dr6/8V/8R+1ssNylKOSLcY37yLWEyytrqMoetkc1ka9TqHXz3G9p3baLSarK2uszAzTT6boVavs1Eus3XTJPPzl8kXO4lihb27dyPKIouLK9TqLQZHhsjm8iytrNBT7EYURBRFJQgCDFNv06qJkWSJOJZQJNqaiYRJ2HQ4efw4lWqZdC7Ljr3XoNsp0uk002fPsrR4kWajzmRJpdlqcjrlcNWurfiey84duzh2/CSSBKWNdVRZ4dKlGVRNxTQTZFI5zl+8zIsHXqGrp5eS65MWW8zMLmLlu5F7RpEDF9FzUa69Cq3UJH9xge59u2m06mTSCdLpNJrZNrPSdB1BEkmYCaIgZGO9wlNPPoWdtLGTNoZhcfbsWVzXpV5vMjI5hqYZlKobLC+XGR8dxkxYiIpCoVi8MvhEBEHA1ddcgyiILCzM8OD9X6ejo0B3dx+yrJBIGEiSQBS4aJpCpVxGFAW8sJ2PtrK4wNryPHYqh2GnWFkrMTo6DnGAbZk06w1UxUBRReqNJul0hnqjQavpIMkSzaaDKIFutifNJ46dpd6q0FnsQFFVJElCkVUkUWJlZZXxyQlKlQpDw8NU63Vc30eWNXRZxPF9JDFCMzSIfXKChChKTPfrjIwO4wURbhCS0FP49VUW5ucpdI1x0x230NVdpLLR5OknXmRIOYPavMRMK02xK08610kcxsxeukRHdx+V0jonTpwkly+wtLSCH0Zcnp0hn89z9NgRlhZXkGUFRdVRNZkodFEUgWa9CaKMbdsYukGj1eT++7/Gvn1XUyqtszi/xA033sDRE6cpdndTLZW4fPYoyUyaGAFRgGajxspamSiOKW+s0qiXSaYyXLx8GU1TsBIGD97/AMvLy1y6fJnrbriJenWDdMpC1TQkTaFVKzE3O0MyncNxGmiazXPPvcjkpjEU1URRdRbnl7lwbhrDNCltlEmYKc68dp7uYoowiFhaLhHHDq1mk7HRMRIJg3Q6S61Wp7u7h2qlQkFapev6u4lESPVcjWWr6GqWXKYD15nBsEWcZhM5KpLJnyNmFF2WiMOQphPiek2CICCRsCGSkTUTiQjimEQyhe85V15QIr4XUG+0K5XEAaHvEsYisiQiPLeEIICzN0sUxngvPISwchm30I+qqjTqVUQiBElGvaIp37fvOjK5FEHk4bge2XQax6kjSApmwkaUJCShbZQShBGKJLd/q1c03qIIURTTaDbbQDCO0BNJJEVHktoROPXqCrIYIkltYOp7Lr7nI0oCkqKBKBJEMZphEvgtBFEi8CNEUUHTE/ihQ71SIfAChChAUzXCMECSRXzXQVN1NjZK2FaamBjdMNoveYT2hCxuGwYhCKiqiigIOI4DYpuKrWkarutQrVSQFBlEkXK5gqboBEHMzMwMhUKOYlc/qq7heR4HD7zKDTfcgKSArluksikSeoJEwmR+YY4oirFNA1WScJ06kiDielWuvvo2nnt+mUajydj4JPML0yzOrrNz5xa27tjMpdQsv/jpT/AL7/kIlqUSCjL/48/+iJGBAt19EkEQksptw0rrBOIEmcy1XHP1jXSmDD735QeZUSQmJ0bZuXc3ZiLJCy++ysMPP85ffuHzWFmbOGqR0dvMoaWFWZJJm1TGYnVplWajjmlanD1zid/99Gf5lU/9ex5+6EH6ensIwohMRze3p97OqXPH2R8/ws7ENqa2TSGFoOoKi4tLiKKKIhuUSmsYltVmLoURgnTFGTsWiIMQWRbw3YjHH32C0ZFhlpaWqNaq7Ni5DVECx2/nrj744Fd59umn2b1rN9VaA2lzP2sFheFTk3i+x+Wt51leWeP++x9gfHSUhKGhqwpx5GOqClEY4Pke/f392JZNubzB8NgouUIHlmUTxB4rwTJr/gaPt57lKmMrjf/s85c/+4dokowfC8zMLfIT7/sgP3P3R0nlU3z6N/939uy+mv6hIQIh5Lmnnmd0bJzb7rgF05J56IH7ufba6+kqFhDEkFq5DUobNYfXzpzj3nvuZfPkKD1DI1Q31tm0bTt//ld/w90f+gB7rrkWt+HgNFtcnJnhp+7+QFtDKAogCLg1j3/8x39kfHyMSnWd/v5JZEXhN3/jt1hdrPArn/x3JNJJQlHk3GtnGBvqRlRDkpkkyAqS59BcOUS89jJVZR8jm29DebgbQYZvnHiQXKqLE8df5rZbx9n/xCk2bx4icFsEPpw4cZbBwR6iyMX1PFTFoFatI4oZiCN0rW3mlkrZxBJ4voTrJQgFAd+vIyExt7TG8ppPOhPiui6HD1+kWMxSzGu0nICz04uUyutc2HYaSYTKX63guk3OnDpBwnAZ7LUpZhUszUWULSTZJ/RVZBUaLRlkBc0q4JPEbbmk0jl8z0WIQwQhQo7W8ZoeXhQgS+3nyXVbeG7E/d84yvziBpunJolFibXVVfK5HPV6jY7ODhRJobSxRuAHbN+x9QozLMJOpjAliXPnpvG8iLWVDV48eJhTh4+wY9KmkJfRxAxBECKFcH7aY2GlztiAhminkY0eNCtFs16l2NlLSEDQqtJsuiRtmfXlUxA0uDS9yPBwP0g+f/+VS2zbnkcSdWTFIpk0CQOfMGobWDaaKucvr5NIgKkaRAQoioyiKIiSTBwG1GouM5dLpLJJtCusnDD0kSWVKBRw/RaiKLOwvM7EYDeXF+fJTXRhVTJkl3pZ7DpHwpY5d/oQxYRDsX+Yjs4hou+hSRU7YsSO781y/JdvP5ja++bXfgPoFt64778ueP1BesXXIfT30ub+QK3wv2z7EQev8WfaNthwZc3g++7/w9zq77CV/h6U356enva2N1TzxW/Tpn4/8PpmqxKxFEMEOE3cx/4A78R+6qHK2aWAlUaNoYktrCwvoiY7qKyXEeMmgqixsrpCGDS5fHmeplOlr2+Qet0lk07SVezg7Llz3PGOH2NtaQ5BlMlkOuntHmS1tEK2s5NkMkV3ZyeO55CwLcI4wrAMgjBA1dqVjPnZFdJpG1mG+fl5GpUygd/A81qYSpLFuQ1SGQ0rbRBGGgP93Rx46SAJXae6voxtmQwMjBE+d5ZcJoV07Qjzi/OsrrZQdZ16bZlsJoPjOPT199FRyOM5PuVqDck0eOXAAe54+62EkYPnttCtPMN6leN+H0NdaXTFwAsCUHWi63YhPfYioWWAqkIsYJoaRH57YJX1K6YCEvVyjWTKYseurRQKaRS5HYCuagqdnQUKhQyyIiPEApl0lnQ6QblRI5vOUK/VUFSFk4cPYBoGiYTVNnyKfWwryVW7dzIzM8P9D32DyU0TqIaO47WzIUUpxrBtZCNNStWRJZFytcLA8Ai1SoVE0iKXz6FrOoIUsjw3TeR5nDh2iq7+gbZ5U6tG0jZRZY2EqdHZWcDUNQxDJfA9enp7yXd2IIQOmhgSRgpew0EzBWTNQJNl0naMrCiouoWp2wRxAISoYoQsKTgcQjUbKEsaoiox9rGfRTdFIt/k3JlDdPb0cOHiZTJ2iomhHnTF5dSpA0yM7eOLf3cfNxmPsiH2MDy2gwPPPMfQyBhR5LO2vEJSlrGyGU4cP82ePVcxM3uB0dEpRkZGef6Z57j26mtAiKm3mhR7ipSWZ9F0jViQOHf6AmMTE+iqzunTp+ju7WH7nh1ouo6qmBw9chwzaTM61M/5M69x5MhJenp6Ka9XKGQzxBFUmy26+4q8+srLbJrYxNPPv0AURGzdvB1NS3Dp/FkWF+aZmhhn09QkdtImmUries4VUyMDRTZZWymRSiax7CTVUom5uRky6QKWZSNKbeZDq9VkeHiYV199hXJp40o+oYTntWnf80sX2Lp1EzOXZ9m6ZRf5YoHjx46TS2UYGh1A3DiJsfnfUKvAcN9WWvWzNBsBjVZAK4yRYwFf7iG2J0gbL+CHAzRdD0XTMQyNKIix7SRhGCPLKqFbI4oEWk6IZug06010w8DzXURJxLaztJo1YiIUTUNCAyEkemYBUZRRbulGUVTcc0cIAxd5eAeabiCIMkEYI0sqYQiSJFNancNxXVQziW2nCfyAKGo7/wrExLFMTEQsxoiSjEINURBAkBFkESESUVUZXdUQIgXJMBCBOGogyDrecy/hX57FGh3Ej0WEKMQwE/hhjKwaBJGLpshoik4YSwheC8etk0ylkCQV12vgBT52KosbRCiKiCRJSKJEFMSAjyyZWHaKIPYRhAjP83CdBrIkIgkQBAHVagVN0Wg1miiK2tbUSR6yKCFJGoIsUVmaxVBVqqUKhWweRW7rezOZJJKsUK3VSCck3EaFuaVVZBEee+RxOjvyVEslggiq5TX6B/pZK5VImiaaElAqldCtHGdeewlFFJkYexvdQx14pTpWQmNxocp//I+/w0c/9E4+ffEPOc95fv3aT+ErSTRVIJ9O09PdQ6lyGjtp4rZGQW7hlNbw4pjl6gb2jqsZePv1CCJ89j/9X7zj9tu456/u5cL5eV499CrvuHMfmhyTthJcnplFtxJohohhqBw//BoD/QPs27ubn//FjyPYNh94/09y5OgRfvmXf42PfeyTCHKTF55+gqmRcR747P3895/9P/nb5S/xTOkZXvr8i2zft4szJy5imjY1t0qu0Ikkani+h6YrlDeqCIJKqbSOrovEsQAEBIGPIqs8d+AQN950KzIBldV5ZmZmEAi59vq99I9MYdsGIh6iHBH4DhPndhJH8HXxYU6fOMVtt9zOa6dO0d9fIKpvIOg2PlBdnsbOZsllCoSxg2IqTNdn8ZsRT60/wTON56l4NYrlTn6n8+fZUt7Ez33kF0EIqFfWcWtlOvpG+ckPvpvHH32MzSM72XHNXh55ZD/5TI4Dz79IAOzatZcwDKnVSoyNTmGaMV99+H6eefJJ0nYvr529jN9q8Hv/4TdwI41jJy6wtrbBju176OnpYdvmKb761YdZmr/MJ37pEzz9zHP80sc/Ru9QEdPUEdslFyxNplZZpVDMgQj3/Nk9CJHI6dPnefKJ57nqbdsZHxpGIWDr9jEatTrdY1uIQouwdYHZV/cTRLM4q+sMXPUhnNMqqUO9iDtaVKsrzF68xMhIi0I2yehIHkK/baCny/QN5Gm4DRRZQ9MC3JaGZooELZEgauHho4gyURQghB5+4PPw11/FzhRJmj6yFpG202TSIrKoIIUhHd0qSGr7GdZVcFa49ZrN7E8/j6KE/C/atRTSsHVrlsmBLF1deZrNCGgRSQECAuWSz+VLDk+/eIbJLTtR1TRJq4BoyASBROC3cGpLyEqTsNFgYyFG031CIiRZRhAl/MBFT/ZT8yIyhSReqJBNWoiixNe+sZ+du3Yze/EiiCKpTJJTJ0+SzxfI5wrIsspa5Swr6wbNeIXRge2cPDHDvmsc8nkLp5nAUAMaUcSx16r0D2jk0xJa2kLTRxA0kdArkbS7WS2dIw5U8Kqouk2rdhqlVsLQFfp7bIhdwiDitddKjA33oJoRyystItHH1EGIPQRRRDeKnDj+Gl1dNoautMf1UCcKwytSOAdLy7G0XkNNdqCKDSRJJopFPD9GFgUIAyIhIq2pxGoeK2EwMjGI2JVAmTWonXQR9tS5at8ezj3xBfq2X49VHGobCb7J3P07zIj+tcDrm9CMf5hCmiDwPY/9tj2+41NMSNtAirdEaY5jIP5WtfTN+v7GqJzv7u8bgfW3U5ij7zjXFTeJb/3Fb+3+v/H+yYryowxeo8/At3/pfz54hTf/0X+nY9kbz/3Dg9fv1UREgtoK7kOfJhZF5sMsM4vzJNM5unqGkESZ0HMQFItquYLTavH8gVc4fvwk83NzbQe+1RU2bd5MGETUqxssLS6zZ8/VPPnUs3TkU4yOjyMrOgdeeol0Jkmt3mBjYwPDMMhks4hXXPrqtQaJhEXgebiuQy6XIQh8HMfhvi8/wLX7rmVxaZFqpcrxY6eYnb9As+UwODRJT28vViJJFMakkjayIFBaX8T1XKzjq6iaykvCOn19XRQKRaLYQdcUJianGBsbZ32jRLVaZXBwmGbLQ1YM9u3dRRRFWFaSru5eQkRUKSKxfoqOyb2suDLqFeqTIgq424bR/uhLiLrBsdk5stkksqwiiXo7x1XXaDYbrK+tEUZBm4prmrQch5npGdKpFIauI8oiQRgjChILC4skbRtdN5DFtoOkKCsUu7owEilK5TKmriPJCmEUoSoq62tr7Nl+FUIY4tTq1EtVNFOj1ay1B3JEypUNFF0llUy2reZVnQsXLmKbSWamLyMrEoVCB5Eo0z88iqJKeJ6LqmqUShXmZhaJiUnaGdY31hAEAVXTkBUVUVQhDoijANcPSVo2rtdAV3XmLs+hqXbbtEKKQWgRuAJus4kkS4TENMIXEZUG8mmV6kQv+s5xlldm0YwiuWKBpYUSfV39PPbIY/z2b32a7Tt2oScU0qkebpiUiOee5JJTJJvN02w2OX/uAnYySRQFLC0vk0ilSafSpOwkIlBvNDj40ksomoYoS2iKgqZp5PJ5Dh08ThAKEEu0mh6FYpZXX3mZVqvO0MggInE7kiKOGRgeJJ3O4LotisUil2dn2bl1HMuy+MIXv8TY+GZUVcAPAjLpHKX1Env27COTzvDqKy+zuLTAxObNJKwkcSxQr9ZRdI3wSoRLFMXtKjYCjWYTxTSZm5nl6w8/zJ133olmaIhXRJdRGPHSiweI45i9e/YwOzvLyMgI9XqLiYlxFhcX2XPVTaytlsjlM1RqqwiCTNJOcvDgQbwgIKc0eOzlNcqtBpuvGmN1dY2u3gkiMUEoymRyo5j5cVQjgR4/DoKGLOcIgpBms4VlGbRajdcdUaMoQNFNFE0DCQxNQxBomymFIY1Gg3TKxg8CHDdAEF0CP0K4sYhwYx7HjRFEBefcYWRZQh3ZzjflG5bVplILAkiSiG5aKKqK6zqItOnEURxiGAaCICHLEoIQUa1U0VSNCIFqtYWsaAjESJJApVpG1VRcx0XRVELPx/NbSLKGf2kOWZFR+vvgipPyNw34BAFkRCobGyiKTLPZhCjAcV3iuG1YpUg6mqoTBQK6aiIK33qXbJTWcJwWCStFtVZFlkQUxUKWFSRBwfNdgiBq64ADH9tOIIoivu8iySKGoVGvNRAlGUkSSefThIKIkUwSCAJL84uk0llefuUw/f2D3PvFL7WjYTSN4bEpfM+lu7uLvr5e/u7v/p7tO7fheS2SSZvh4WFkqd3PZCqNIMg0G03m589TrW5lYGiKW266lvf9xLu5776v8V/+4D9j6gJfrT2DrmvcmbwNw5AIgwgrkUE3s4ixyB/931/gL/78PiYmx8jmCyRTKXLpFK+++BWSms3s5TV+6z/8BvNzl9l39XXcePPNvPjS8/z4u+9ElCTW19ap1yrYqbbUoVQqMzIyjkTMji2TDA0NYCQsnn/qAC+88AKf/OVfRJIjvPoc1193LTNz89x+xx2YocFHhz9Cr9/Lq9mjvOoeYiIcJlZDkokcUeggiSKV0hqqImFZFvPzC2QzORS57WaN0NayvvzyK6wsL7Pv6j3Mzc9z8tRpbr7tdhK21R4DsjmEOEJVZAYPlUkvOHQ1r0OSJP5k5r8xPjXG4MggkiyBKNByQ06eOE5PZwe6lWK2voitpDlePcaDG99AEWQyQZq7+36aX+/9OX6p+AtUn21y057rOHn8EmMTU+1YKiOBIEpMz8yTsizSqSy33nobv/BLH2VkaISf/chHMY0kn/vcn3DXO97N/Pw89977JSbHp0gkLPr7h+nrGaFSrrJnz27y+Sw/8f738K53v5+tW7azvr5MoVDgne+8i7vv/hC9fd28/e238/GPf5Kbb76Zxx9/hDvfdSeSJL0+L9lYnOcrDzzIDTfcSsJK83f3/jXvff+7eM/73sm73nM73Z1DmKrKpUvTVOo1+kamiARQQoeZ00/QXeyktjHNyWOnMAq7yD2whXDIwZHrHHrpIIWONP3FMRpVh2whQhY1wsBv07JjgW88/BpdxSKIDSRRQo5NXjl5mIG+AgnBwo88ougKNVSMGBvfQqHYRbVWwVQ6uO/LB9i8ua8doaMYIKhcvrSOqmgomsfgUA+e3+Dp4jHiWOAdlVvR1BBCUJUE5cY6guShiGp7FIgiVE1HNw06urvo6i3gBx6qpkEcIYgSxBGGqRM0PaKoAjJEeoQmtd8VmqYTx7AwN8vuXdeRkExiz0DR23PXbdu3X6FhBgRBRGdnkd6eflzPQ1M1pqfPowk6fT0D9HRlmTl/mgvnjlBMFpGjHKLgYxsGjYaHbmikkqCnOkjYQ7iB3zaVjGzK1QtoUjeaJqLqAprg0qzMEcUaoqIiSCJBHCLKMhMTWWTRwQ8qpFNpNElAjCEMFBQ5Q626TEchi2kKxMSoqkFIE0EKQIio1QSWKxVkWcNWE9h2jOu6yJKMLIuIooBl2Xh+jCQrPPLUSaxUP909g8QSYEcUVnrxr64RxB7zRx5DLgzTMTCFJH6rKvjNFp6QiFYFpM4fPNf+/7L94D69cftbdf397sruW7veG7Z+vxP8QDD9z7v/P9LgNQi+ZdjUbv988PrGDKbv4ta/XkJ/w4Hxt7b9MLThbxdFA+C7OA/9LmJ+AKFzgsUL06yX55navJtWoFBeX8NtNlhcLZPNZNkoVak1Wrz3ve8hZacxTQtZljj40kFmLl9EkgVOHD+BIKq8duY8ExPDVBv1toFKJkc2lyGXzbUpsJIMAkQxqKrKI488xvjYBKoqkUjo1GuV9kpOJLBz5672SuDaBgcOHCCKYnbu3cTeq2/GMDIsLM6hqAZzM5c5feIYFy9Os7w6w+TkFMLBGQzTJHX7dk6cOEJPdw/Tl17DTlgEQYjvB4xPTHLq1EkWF+exkxk6O3tYWZ5jbGycKIJmo0U6k6YeiCT8DVozx1Anb0ExbCQk/FaD5dUF0rt2IHzhIbyhAQqdGaJQ4E//5C/o6+lE19sOpqZhkM1mUVQVWVKQJRlDUrnnnr+hp68XRVPRNB0QmD4/jaoq2LaF50UcO36KjkIOJWHj+2FbBy3ElMpVdF1DUdogU0+YfH3/N5jcvJlCsRNRjAm8AEXViBGxUxZRFNFoNqlVKwQRPHj/10hbKS6eP8f45OSVnLokbhgQBQ6iKOG0XKyEjaoYxLHE/v2PsHPnTmJAVmTW1zdQZJ211VVUXUOQRMrrJXStHSyfzWQRJQ/VMIgikVbTI2i6+GGIrGltHZRyoU31OaOibBkjefV2vMAhYXfTCprEnoiIRH//CD92549z113v5M67buXpZw6yNXEeAYFM7yaiMKRSr5NN5zh65Chj4+P0Dw8hqSr1eo2N9XU6O7o5fOgVRodHSCSThKJA2rLo7e3D8zwGBvrRNYlsLkW9VSPfkaejo0BnZwcRsL68hAC4vgsCGJpOFMfISltnc+rEYfKFDrq6e2m0XBQ5IJPp4OKlWdZW1ygUOvnSF7/Int07UVWJSrPFRqlMtVIh8ENGxkf46sMPgyAyODDIyvIKsiySzmXwI0hZSZIJE9u2kGURw2zHSlUrVaxEAt/3aDQbzM/NYxgGqXSOo0ePEEUhpfIKjUYdzwtYX6vQVSxw5MgRtu/ciZUwUZozhLkRcl2DCEqeRr2MqKWoOxF6spONqoBuJqlWNkjrLyAgUq1baJqO7/tounyFnwSqpuJ47utGRIIQIwki9Xr9CuhTUDSZerVKKplGljUQIgw93zaFUuI2nU4Q8C8eb9/jwc0IQtvtFWJqtSqSLNJqNZE0E1VT0FQRMebKM2TTarkIQjtbWRQEEqbV1ouqBrKioSkqxBCEPr4fIIkiCcugVq+RMCzi2KNWbyCvloAYoa8f32sBMZIoUSmXMTQNUVSRRbENTnQV3TApV2rEEaiqzPr6Ko5TRZUFRDEkisS243GjRjJpIcpyW2+uKhDHxAQ4zXUUWUQUFURRvALGNRzHQVUVPN9HliR8P0CWFWRZxPVcoiCCCI4dPoqlG7huyLPPP891192A6/oMDQ5z4fw5VF2n0WzR09vH5//mHjLZHJNTm+ju6SCVziDJIvVKCcepkUgkiRHxfY9cPsXYSJMv3rdE4Df57d/+DC8ffIKPf/LXuTA3jaFrPNp6FtNM8OGRn2ZpYRpTt1AVi8NHT/E//vhvedutP8kHP/RTfPADH+GXfkFCjo8Qs4W5Zx/C9GVeu7TCqfNHufmmW/jUp36V2++4nTvvehuSLLG4tEylWmHTpi2srKzhOD6mYaMb7dijD/zUT3D33R8iiuH5Zw/y0x/6ADEO23dOktZizpw9R+/gEJplkjASiILEWGqCh37tAX586/s52X2Ew9Ex5DMihaEckee3o9qiCFXXsW0bp+Vz6NVjqIaBrim4rkelUmFibBjL0snmOplf3uC106cZnRhDVlSII+IYPD/g1r++SOfZGp97+8ssXnWJ7Tu2kevMtiUouQyKalJVffq1PCBn/QkAACAASURBVBeEyzy88QSz/jy2aHN9cg+/N/ppfjL1Ln58+J0Mp4aQ0Qg9l9JGSEzExMRWqqUS73zH+/j85/8f3vXed/Ob//43kQSVY0dPcMcddzI83IWhJzCtFB/44Id5dP/jfOCD/5bPfe5P0DWbv/jzv+S6626gUm7RakRkchaB7xBHEY898QxJy+bDH/4wN990A4lEgqmpCYaGB+jt7eHBB++np6ePe++9l9W1Jd753ndhmm1PBoBarczuvXuoVpuYeoK0lSYIFB54YD9Dw8PELYfDB1+gd7CHvrEJAtFEFB2k1iqtpYNIRpbyzBFCvUjevQ5zugN5k49IxNlTJyiXSoxMpDENH13I4wZVQt9HVQ2iWGBicwFFddpmcYLGsdPzvHa5yaYtowjxBoZhX1ksaueGgguiRKE4TBjVGRvvRdPbFSA/bCGIIraZRtNjRBGIYgI/4LHcEYIwYurIIJm0gGUkKTfXePyxiziOSFdX2+dDljUUI0m6s0hn1wjNpkcsKISRSOA7CHG7Kub6IapYwXGqXLxU58mn5pgYsVBkpT2O+T6VpsbJMwvkC1m8MCaXTRFeib1bXl4mkdBRNI3ZuWWshMX62jqiCJquUnMcjp08wuryKgeePcDbbx0kl4zId4XElJENlzgS6OpOI8tpRLsTwxgE0WF9tUw6m0TEQtMiPNdFFFwaq2fA91ipNvFaDqquEAR+O/PbC5AlHVlM0Wq0EAUX1bAoVwMOHDxGX6+FrgnoukEYB1eqcDIHD8yQTA0Shg6PPXmZnk6TrsIqsprCcVx0w6DWqEDcdrqXZB0vaNCMsxw/fZmhkQHMhIkvuoRLIhWphp92KZ97mq7NV1Ec3IrwPQCd/w8q8SUJaW/w3XP1H7K9Va1m2w1f+tZiyg95jR+wB/Bt2lnxOzHJ9+rDdzoXv/F6P7BHb9rPH9jXN4DXH5hZ+ybtezFcBUH40aYNR1H8me/8x/7LVF5f3//7uRd/H+r4D6t5/WalNg48nId/F0FPIORGmDtzhnNnjjAxtZUg0lA0kf1ffxTbTrBr33UYZoJG0+GqvbtYXl5CiCPGJyaZnZmlsrFOOmWjqibbtm5lZWWFfKFAb18Xvb19bdAkCGiKwsJs2w0xQmD28gyZTBbHcdm2bQsIEVEU4bvtGBgRCc8LkCTY/+ijXLhwnnwuh50ymZjagW5axMQ8/cyzTG2aYmb6DJoKkgyKkaS7qwf90CKJRIJj+hqdXbkrmaYKcRSztraOIAjUag2GhoapVdap1SrUajUURWH//m+wdesmSqVVTNOiXKsiJnKI1UXUpSNEPbuIBAX8kFxngdeadcr7n0HZKKH2d6FqClftvopc2sbzXZqtBtPTFyh2FnHdgHvv/Ts2bZ5CtxJMbdlCKpNClCVkRSQKQxynQUdHDoGARsvj2WefY8e2zTj1Co/uf5RzZ88xNj6GZSWRROmKBlLBMA22bt2Ophs0mnXi2ENXDS5dmkWSJOrlMslkEk1RiOIISzcIQ4ETJ49z8y3X4Tguf/03X6CvpwffqWFZKVRVaVd1GhUa9RZf/9o3eO97381X7n+Qbdu3I0kiRsJElSWCKCCZTuE6AXY6i65rNOouswtLGIaIJKvtnEtJQZAi0rksiiwRuE1c4SwA6gGfxlUTKFt3YaYMpEjGb66TzRb47H/6LHv3Xcv0pUtcc81uMnmbvXtvwT/0OcRUP34o4jTrDA4O89jjT5HPZpmfm6OjoxNZUkmlbNLZHKKqs7K2wKaxSc6fv0D/wCDFni42ymWmL16ipzuPrikcPnQIzbTQ9ASaomEnkyiKgpmwCMIYIgExlhDEGMdvU98b9RKSZNLd00sQOBRyNrqpsLpWZnBwjK6uTiqVdXRdR4ihu6eHVCrFytIisiQxNz+LYRjccOONLC4uYugmqVyWWrVEHMXoWoL7/unLFAsd1Gpl+vv7iK68YqMwopDLk05ncFotSqUSyWSS2blZ0pkk+Xwn5coG4xMTnDhxkoH+QZ577kn6BwbpLHbz0oEDDKY9zpagb3w7A+M7Ef1lWs06oazQ1TdE2JomaYYk9CyK8BRBqCKr3Uhym3IbRiDLSruyGYKm69QqdVRFxnebCIKApum0Wg66bhKF4LSaOG6zzUKKRGr1chuYSxpR4FErlwgun0YQJfTRrShKWxMfRdHrk2FFUZEVGWIf322hGYm2EV3Upi8LAvh+Hdf1CYMYRW5TiV2ngR+FIKlEvkcqlUMSZSqVDcyEgRjLRLFPGIUIC20TKX1wGDFsICl6ezyOI1RZwo9DWs3GlWxZGc/3sKzklRzZEFkzsGyTRrP5upmFpmntexWBpKgIxDTrderVKrLg4zVWiMMAWUtfmcAIeL6HouiEYZt1Ua83EGIBWRJRNZl6o44st7eXN0r09fVhWiaFjgLJpI0oiTz95HPMLcxz1Z7dRGHIPfd8gV/42Mc4fPgwk5OTqJpC0/H4p3/4Mts2bUaSfbREGtf1EQnx/BhNnWd48i4mR3cj6ham4qCYGZSURTKR5IG1r7K6sso+bzeJZJGXXnwBMXbpKphcs+9mfvt3PsO//eBdvPvHP4BtHCcIQ1rRTka+fprOdYeZoRS33HAHC0vzXHfdDVy8NE13Xx5FSZDOZtB1nVq1Si6XI2Gm2hm8kUuk6dz94bvRDZty3eOqnZNEsUdfXy8zM3MoZp50vhdFMQjCiFazQhyHnDlzko9//GNsLkyxz7+KPZktPFd/hseD51AVheu7r2Omvsg/fekrdHUVieII20px9rVzJHSdUyePc+2+a3nsiceYmhjB8yKmp+dIWiqJhHYlsxdajoumm2RfushiwuHUzQlS1QQb0TozrXmaUoNnK8/zUu0glxoXsFMZdhm7+WTv/8qvd3+cW807GRQLFKxOzp08xYmjx5mbWaLYMci9X/w8n/vjv+XDH30/dsrg0Esv8OX7vsrn77mHwZFu9m7dzSc+8Wv81m9/hmJ3gT/8gz/ittvvYNPmTQgq/NRPvA9Nh8GhQWq1Oh/96M/wyCP7efTRJ/HcEM2M6cja3HDT2/iv/+2Pue/vv8ji/CKf+MTH2uOjKrG0tMjQ0ABDwwM8+ODDPPTQQ+zcuZ3+0UEymczr8xotYeIFLlZC4vTpQ+RyMqlkjmKxn45iHiVcodVaYdPO7URyCpmIMKwxf+4oXuUUktmFs3CUKDdF7uXriM2YurxO6FXp7UrRP5TkyceOMTXRTxwutqUCskyMxOraBvd/5QKbJgdQFRE/qGKn00iRRCGvISkxbssjjMK2B0dkomkubquOJCcQJINGw0EUPOIwRNUzuG4NVYpfB+dR1M54/lryIJIk8v5gH6IY4XoOSAqy1IudUkjaMqIsEQkmZmaYWC0QeB6IMgmrzVrTDQNFjKmWN8jn80RhElUUUJQKW7Z2YSgCmqbg+y6arvDykTlWSh4dxRQ9QwNcvniJp59+hmJXF5IkUSlXcByPYneROPSJ4ghRkqhWarh+jVY1pDPr4pRL6GoHrr9GzbFYXYFERmJ9PiYS6kjqAKqRpdmqsLxQoqu7QKPVQJUSlEvzFApZwtoSgbeGLOmoWoQqi22Hbz9q0001mWYQs7reRDM9mm6Wrz1xnL7hUSIU0ukkdkLDbQVtp3+nBUKaesPAp0HWVpmaMsmmdaI4Qxi5SJKE63okEjay1M7OjgVw6hJHzsxz49tuRpNl9n/jcRRZodPuRpM0fv+h3ycdTLPr9rtQ7Z42w+oN8/Pw+0Tl/LDtre4fRRFhGL6l495q5fUtF4/jt3r8//8qr9+85o80eH0jbViI4zeysr8vn/vN2huDfb/Z2jrXdgXjjbE7r+8Tx0RrFxG0BFLPlje9RiC2dbIS4L3yj0TVBYS+q3n60SdYX5hmYHSMIJJIJDPoRpK+7h4KnT206nWWFufoHepDBNyWg51Moasmx48e4W233IihyRQymfbEuaeL8S1TCCHIkkG92cS0EuiGjWFZbJRLpJI2mqaxvrKMlUyiSzKiIBIEMV4I9Y0N1lZXWF9bRpFFTp84AXGEIgjs3b2ddGc3iqKzML/AprFRkAQ8z6WzkKdW2sCydRDA3NzLWWkDVxfp7RlkYXGOKPLJ2GmIwbJtHKdFGDaY2rSTWq3J1q2TrG1USSQsXn3lEMODo8wtr9Dd1YFhasyslUmKPsLZxxCLu9CTMp4okMgmaRHTf2ERe8dWWk4LSZKJYwlZkTB0hUJHAS+K0XSTnp4ebNsiEtoTfiF2WVm4jGVbeL6HYap4Th1EjZWlDUZHx6jUNugs5MikM2zftoUwbGEaSWJiBBnKjXXcJrQcB0FoO4+CwPT0DNVKnYvnLtE3WKReq5FI2MzPLxDEMeOjQwwND2KlkixcnqFWrrBz51ZURQJBhlgkEhRE3cRUZDq7i5jJJDu3TuK0mlciTmS+uR6oSTJCGBDrAeWqQxBKtNw6ha7eNl0rCpEkkGSRSqmBLPmsry+j2SsItSZKvR/9s7+OGon4QplSM8/06jypVIJd11/P/q89wu3X3sLn//RPmb/8/5L33nF21mXe//vu5fQ2fSbTJ5MekkACBBAIYkFcLCyuK7IW7Lq4q25z11XXVde1LJa18wiKXUApgRAgpBfSQ5KZZPpkypnTy33u9vxxIquAoOv+ntfv9TzXvO7XzDlzl3Ofc8893+t7fa7PO81gTzv68HcxOi5kIVvCCMSYmU0Tiej09HQyOTEGjo1sahhBEwEPRXTJpNNUyvl6Ul8sk0hF0RSN+Zk0TS2tnDxzlhWrVhExDTwXFFlh6PQpEokEo2fH2L1rN+n5WapWiZnZMeKxCL7r4TgC89NzRCIxduzYRV/fYsrZcRKpJiZn5gmEQ5iBAI1NSUzTwLV9tu/ezvq1aykVixghk8ZkgqHTp0gl44yMnqWtuQHDMMjmSmzZvJXrXnEtoWgISdVwXZFyNY+uyMiSSqVqk1mYp1Qu09bRgRkM4Ng2XV39DA2dpFgs0tzWRmdPD+Vynq7uHiLROMNnz3DNpquozR7jkQOjNLVvINHSwPjJHaiBTvKVIiEzSrIxg1WbI1+IETK24/saAk3kMhlyuQVkWUYUPRy7gus6eE6BgB6lUMpQrlhIkoAs1+95oqAgCwKW4GEEg1j5PKFQGEFwEO88iXAojbAmSSFXQJwersvwe5YiSyr5XB5REKhYJQwjjOMLiKKEKAjksnlqjotl1VAVk4pVQNcDKFoUWdEpVopIsobjCsiSiya6eK6Mj4CsiPjU6hWIXAbbKdfNmARgOl2fBGxrJFu0MFUZ3/dwPQ/H8/A8CAQDyLJMqVhE13SqVhlV1ZDEenXedXxCgTA+kMtksB0HSdXxxbp6QlEUCoUcDc1JVCXAuelTxONJar6F5EfxhRLz6WlMM44g+oiSgCJr9R5IOYDn+aiKhu+AIFm0tXXAeffGRFhDEmwETUHWNMrlKoaqoSuwdt0qFFWmd2CAYrVKQPaQDZ1ly1fwi5/8lL7eXjzfQFF1crkZZtJVouEEscCT+MIEfiVCRZIQlTZkT+XG17yR4DUGwWCAf73+U3zgvbfS3BbH8W2McIhIrMbw8CHa29fiKgILU/fT2taM5QyQ+fk2FEWmsKaLpo4u4iGDaCTG4088SSQcJtkQBF9i+MQYslSfkP3+D37AS17xcj79uS/y4ff8FaYeplL2mBgZJ9XYixFUcYUqwXAYX0qiywqioFC0PAKqx/b9B7jimmv51L/9G//84XdhBmO4MxaD8zHMXS1899Y72fbETkYuHyOxJEFp3mFd6zp+uPUOahVYvHQFT27bRTKWYs369Qiiyt69exkfO8srr78OLyhwKnua2VPT5KJVfjT0Q365ZpZjbRWEcBiAkBbkIn01iWIS/UmN3DcnePC2zbwsch0f+ZOP8KG3vJf56bOkWmJEUo0UikWUiI4eUFi+dAUt3V3c/8gWPvx3H2BJz3qmpvdzaNdh/uXzX6ChrQmrUqJWy7Ntx06MUJDB5Ut56Usv573vfT9XvmQT+XSZbY9toaWlzjEeGznD+9/3N1x99Sa+/JUv8unPfIKe5UvRNZH3vv0tnDl0hH/+7MfJLOT55jf+k+tvuJl3v+8d7Duwk2pV4q47voblVPn+T+/m4quvIGIaqKqCIAn4go8k6yzMzWOqKoYsIsc7iYVbaUsYnDz8U8Kp5XiSwfjY04wefoj2vg3ogsDU2YOk4ibBpg0Mn3iIdb0vhy3LkFZ5VK0MwUCEfftHeHz7Sa69sp2AqOEoFroWRDaiFHIVmhIBlixJoulQrZbRZAPfr5CKBRE9Bc/P4zgGsmbiOQVUVaJcdpAEGdGrIghBpgslwoEwSGDXPAQbZEFCUDTGMzZBMwBuhs3xw7guXLOwilAwhCIpiI7M2MhpBla0ghrFM1IEoovIZj3CgSilchFZEnBsG1GQqVVmqdkWRsCgWCogyC6V4hyiV61Pctm1Ov7r/P+ArtYgA+3N7NhxjINHztDd0czAkh5c22NybIauzjYCZoi9uw8yPT5GYyKCHgpRzMxi1AoU5k8w0BWno8UkEM6gamHmZrLE4yqKtUAovhotnsA0E7iVNK6o0tDWjV0TCBoaxUoOz7Hwqwvks0NoukGtUsGUdRxFxnUdFC1AsSrw4JYRAuEmdu46SXtnL/c/cYyWlh72HziB5QhIvo7llGlKpcjPVTAMDUlw8MkRCZsIvo2Lj++L6IqOXNVx/SKCrlCxcniugCaFcDyRE9Mqs/MZgmYAQw/Q091Pa0sbAiLOcZHoK5NErBNEOvqIN/XXy5HPzgX21pNXaZ3zu9WSzwzSXxh182zH4N8Vz+fI+8eGIIDn15E0glDHbz3HYOe3lhcxUfLr2/te3YPCx/stOot/Pp95BpXzrMeiJNZxneef/22sjvDc5Q/IuLxnjllfnr3F/9Wy4eckry9Sef1943c2Xgv/dUG/0EcjtS57wcQVQPJ88Hysp36Oc3Y3ftta0lPjFOan8AWf7u4ezECojqoIBMjnssiKzNDQEIcPHyERS6KpKqlEHM91ODc9RaVcQFUgGgkiKhqnh08zMNCPIEAmnSGeSCCf5zPmi0WCoRCBQBDX8zE0jVAwgCDJTE+dpWZXsWolfN8mGIhg2w4NDY08tPlhdFUklUjS1dtHOptDRGT63AybN2+mra2ZkZFRZmemmZ+dQhRcOhZ1MTM7x9DUKA2LGqk5Npqq1RERisxCJk+xWGBubgbPtWlqaqVQKKLpCgvZefbv2YsoSXT39KLqJqoqg+chSXUL/SIKkWQD/vFfQutyEA1EX6JgGETv+hXTMgQSCQRBoZArMDExTiAQQNONutzF88llMhRyGUKRIPguoiASCoZRlBCKYiCKdXxMLlfioc2PsH7DOhoaYuQLBSKxOJpeHwj7bo2HH9oKnk5zQzei5HH2zBkaGxtRZAVJVqjVHB555FHsmsPA4gEcx0VRZVLJJLqhY2gmw8NniCUSyJJGU2szqaYkxXKBUCiGKIChK/iOhawY+J5LMGgg4DM5McWhw8c4fuIkuiYTi4ap1Syq1Qqlso0kgKYKxCJRHt68lf7eXgr5LIamUCwXCQVjuDhEYgms2jFYyCF98JPknDKKoVLOjTC84yFS7jCf/Mx3uObqqxno62NsbJSa7/Ga1/0JT/7gH2kJVpksabS3dqJqOr7v0tLSyv4DB1i7Zi2zc/MEAwZmMEC5YlGt1ohFo8zOztHd00soHMWqWkyMj1Ms5jFUjXR6nvaOdsrlEseOPU0oFCKTWSCVSjI6NsKVV76E9o42Uqkk0XCEXDbP1OQ0iXiCVEMTZihI2bJobm0lky2AoBMIBjF1Gdu2UZW6K3OlUmPlqhWcGR4mGAwyuGSQe++5j8HBJdi2y6LOLkbHRmhoaKBmO6QaGhkfH6Gjo41sNkckHEE36pJz1/U5dOgw5VIRQRAIBAN1ib7jMTU1RaFQIJWMk0o2cP/9D6CIEpqm09LaRjyeRBQFvPwEi7qaiXa2UvZUBNHGJk7n4gHS6TKBQKYuT1U6UcVH8TER5HZkVUNWFXxPQJHleoVOVOqGJyiIko+umyiy+gxKxvd9LKuKGQoiiyK2VUNRVCqVItpj81By4NI2rEoFcXoYSZIJD67BsixAQBQFDCNILlvEMPT67LRjEzBNaraDqggoqoamSXVPB88H3wHfrbsEu1U0WcWqOmi6Uq9YSjL++ZYB0wgjiioCCpoWoDY6DoDY3EDQrEuhMwtZopEohWIRSYRyqYimqsiyiCBI5yu+Doqi4gs+vu9Rq1kUCgUisQSqquLUaiiSiE9duvxr6bcsqURDEaZn5omnEri2hKKK9T5YxaRWq1Iu5VEEyJcKBMzIeT6eiKJo2HYVgbqcFanel1suV5A0g1goSNeiTnwffvmr+xkePsPA4kGyCws8+vDDNDU3UHM89u3bx5KBASLxBF//5h04nkt3dxenTw+RTLUjijEkcQZN20YkMIKuJ8jnbZauWMcuaSeyrPCft3yXl23axBve+AYMI4RV9QiHh7ni8qWEI70YAQmvuoN8vsjMzHKChw8TDgdpeu01SEjomoRjOyxdsZxiOYOiasycS3PJhou58fWvJ5qKk84t8OOf/RyAD932PlRVIZ/P8fVvfJ2zZ8/S1NiA7/jg6ohijszcGXzKCHKNY4eOUyhV+eGPfwzA6657DaNj86SSjSTiCfYfOMHuvXtIKUnuvul7JBaC/GrrQ9S6qlQ6LGZb5jjtPI3X4/K0/zSHK4c4Zh0n15BHGBDZl9vPcHWYmBFjUUMrfdZidvzNVg6mX8+bTvTz6tBXuHr+Wi5euwZtocJlvZfS39DHzX/2JoZPDjN0api/vO02ZtLT2LUiaiDA2ZFxmpIt3H/vHtZfuJb59CQ//OnPKRSLvPKl1xCJpBhYMsDtt3+Vl736BgKRMJIsY2oKC5kSW7Zs5ZprNpGIRViyeCmHnjpCOr2AKIBpBvibv/l7fv6z+7h601VEImFe//qbkGWN//zK7XR1tvPN79zBop4e3vqOt7FscDmvfMUrWLy0k2VLV/HE1r1cfvkGXve663ndn/4poixTqVrs2rmDn91zD/9x++383d/9Ax/60F/zpdtvB0Q2XHQhoq+CkCOdHWNR52JCyVYaOtpIRkPMT45hi3LdSV/0ObBvL519vUyffoKJHw3S0NzHnDjF+LlxPvHjj/Ht/V/ngfF7+N6++3ng+E4E2WBZqgFRgFq1hqT4iJKILwgIPvi+h6xKnJ2f5l8fuYt//NWdfOaR7/Pt7ffx5JnjKKLPkrY2XNfGx6XsVGlrG0RxWzD0OKhlLMvi6PRpPvHgHXzyV9/kc4/cyR17tmIeNXglqxmMteALAi4inurS0dOLi4zvhQkEWhAEBV0XsN0smmrUFR+uW58Qk2RUI4CiBhBEGd+rc2/xquA7daST6yGIIqqq4vk+mmETCkcoFqoEgzqpxk5KFbdObfAsbLtGd3cXpZpNKtXKfNZmy6MP079IoaU1Qs3KIYoeuqKhyCbVqkM4ZNLYOoirFwkGe5hPjxKNNiNpATzfRfAtKtUymga6XKGcm8C3Ad/HEwSKloXgeqhykMmZGo8+cZKm9kW0d3RSKddobm1j/UUb6ersprurh76ebiwEHn3iNLPZCkpYJZZopeZU0Q0ZUXSQEDHNMKoiUS6lIVjF9Q0KhSiHd5+kqSmOJxbQjBSP7zhGwAxw9aZNiKKEJLsIooegORhTCY5FtuKmdzFZVVi86srnrfg9k7xe+Hskr7+HW/Dzb/fC8T+TvAq/nQi/mOnR7+kALEkSMzMzhMLBF3Q3fr737ncl5n/s2b7YK//vJK/yf//l/J+NP/Zi+TWz9de69We7DD9fBfa/EuU/7tiy41M+8gvsoe0YfZcwMjbD5KljmIrH4hVr8R3/vDy4Qi47j6KIPPTQA2QyOVRVQ1c0jhw8RCgcRNVkZqamCUdMHLdKqexy6OQIvYu6yGezCKLIkcOHicTjhMIG5ybHaGjpoFgsEAgE8X2PhYUc6bkZegYW09HWj+PaDA0NkUwmyZUKjE9M1c2NajaN8Rg+Hj19fbhAtVAEQ+S6616OiF93kXNsrEqRi6/ayNRMlv7+Afbu3kWxmCcUNJieHsexXRoak6QzGZYMDrAwf46mhhSzs/PYTo2uri7KVZErL7+Upw4fZXR0hD37DtDf200yESOZjNPc1EwmPw+hRnAl7C1fwlnzdkKtfci6yVBDhN6aC7JMLltk//4DzMxMsaizA88Dz7WZGB2ht7efhfQsTq1KsVCiIZmiULYQ7AyaYeK6NpomEnAC3PzmP0eUIZtJE0skyJ3vi0wmGyhkc5w5M4Si+ERjApYlMLh4kMxChmw2T3N7Kz/7xT1IkoQvgigouG4VSZRxXAdBFDh96hQLC1nU8Snuu/c+bnnLzTi+RyyZwrMFrFIZp1YBwadQtUglkiykZ1BklVgyiagYNDW1IcsVLKveaxkKhYhoUdLpCTLzUzQ3LKJcKIMHpq4ze26KVEszVtVFkBRsV0ZYyOG1NzFGBTNXZGz2GAODK1h95WWMjE/hFrcxNzpGorGJeEOIV930OlTf4dLBALV8lLa2bmzbZcuWh2hta6Kru49qpUo2X0CQFE4cPY6qGwQjdVbuk49vZdmyZRQrFWZnpunpHuTYsaOsXbOSoKnT39dLJpMhGo1y4YYLEUWRcDREJp9lzZrVHDz4FAMDA1iWxb7d+4nF4rS1tuG5Hnv2P8XGyzbS2z/A2bFxBvpXkp6dI3NuBieiE4zGQQBF1QmEPRYWFuju60PXNH7y4x/T1zfAgYOHuP76V1MoFujv76dm1wgEDTTdoKkpTrlcolatkF1YIN4Yp+bazMzMkozHCIZMDNNEkmVOnDhBa3Mr56am6O3r5dzkKK7n8NJNL2XP7p00NMDI2VEsq8aSwQFcX8YqQ0CCaLgRLywTjC3D96fXsQAAIABJREFUERwiMQNJngbAdqrn794C6XQGUZKIRIKUixaCIOM6PrqmISoShXwVQbTQVAkEHcfzUXUN13XRNAnPtnA9n2AwhFWrEA6H8QBJlLAdj1gshrfhFVRrDrNzM0QicXzbQ1E1ZEkjGpWpuRaSKKMoGoLvEzBNFNWlWCihqBKi6FHO59F0BVNXqZSreKJLreZimhHGx0/S3tGN4wC+iGkEyeTSGIZRZ7dWS/g+eJ6LKQsUsguY4ShGwMR2HYKhELoi4nk65XIJACOg4/siqqHW+4XOV4fLxRKRSARECUkUEDyPTHqOaLKBSslCUhUkUWUhkyURTRJvlOuGcqKN7YCsBLDsGpqqo0qwMDuJGUs+c78vl8sEAhFc30Py/bpZliDV5XyaWZdDVkrE4kkmJibIl2v1VoNCiZnpaTa95ApkReHpE6dRJYVipUS2WEPTNC66cB0/+vHdvOFPX4frulSqIiNnDdpb12AE51H9H9OarBAK/QnSaRnfh7b2Fh599FFsz2J87ByNTW3gK1SrJY4fOcHiJSvo7OyhUCziqz6ppjhWpcod3/oBr7n+Vfzt33+Ir3zlPzlxaohUUxxR0HnPe27hl7+8j5079tHe100wEqSrsxtREhAlH8sqg+Dwjne+lVAwQjqd43U33MSunfu44bUv4xtf+QJnT42zePlKVq1Zy5ZHnnjm/fvnf/kiJ449zbYntzIxVeGB+x8AIBQM0d3Wi2+V2PqeB4hEQmTzGTJuiZZkE//rjjtZu3YdhiKSaGlADmpUrApxPYKqGKQnZmhKyTz8wFP82fob0AsCxXIBYcrGMEMU3Qwd3SuwbI/+pRfw9PERbrrhz9h/eB/FaobG9kYkO4ZsBmlvDVLKF7h0Qy+HD+7lM5/+PJKg0NvdyTe+9lWM9wdAWs/t3/4Oju0xe+4csqqTCkW5YPU6Dj51hHOTk2gi7Ni2g4WFDJ/93Of49Gf/nX/8+Ce4/oYb+crXXsn27ZtpbGzhDTe9iW9841u87eabCccTvP3dHyAcDWFXyji+zYZ16zlz9iBdiwaZHJtj3dqV6AEJTdcZn5pm6MxZbrjxxucdnyiaRrKlHb8iMDF3gGDcQAq2YUl1Q7eAEiZflhhI6szPz9PY0M7KdVeRnhnGLAzSKb6CvekdBMMSN9z+J+Squfrfn6JTsqocnDrFwZ+e4lcHl3HnLX9NIBjA9S3cmosvyAg+yJLI5uP7ecf3v0TFtuqft2aQKRd4/PQRHj99hMeGjvPp69+KKKjYlsHc1CFUI0pYb8PxYvzkyGb+9sefwvHqctKQHmC+lOPxowd4/OgBTr0kzYdeeSuyEkYLJhEFF9FyyGbyyE69pSIUDON5KufOTRCNRjFNHc+zkRQTRAlZUfEEjWqpTLyhnfxcjWpxBsevc6xrtkOlUkUQDbY9dpi161awZoVEJp/l+3fcgWYapFJB5maLDA72c+rpE1x77Up2PnoX+RIs7Q2g6/VWCFFUcDyQnCqiKtLRGccXBMqigCL3YntV4vF2RD2KX6vgWSWschY90ICp2kyMjRJUfTTTx6q5HDo6hWI0sbzfpFjxGJnM0dm3mhUXDJKIJwmGU6iyyvGjRygVq/QP9FEslomGElx+5QXs23OMyYkMW92zdLWG6F2UJBoNkc3OErUNBNEmFI5jVwU0UaCmzHPRpf1YNYl0WmPX3p0sWjRALpenWqkyMjZK16IuhodGUVWVfiVBQ1WmoIqkWrpwXR/pfIbyu6ggv6ty+sx6z+mx5FmP//Ck9YX6Uv+QeKaV8Jl9PX9y+exzfLFje55HKpV6Rj7/zPF44ffu1/28/xPn9uz4757LC8X/M5XXX18kvzZPejZw9ze/nz/Ab/z4309efd/HOvgL7DM7UHo3kJ3LceLgXjzfZWD5Soplm3A4QrFUQlVlHMeiVqsxNDREf/9iCvkig0v66Orpprmtg1g8RbFU4dChQ+TzBZYsWcb+/ccYHFyCGQzg4rNoUSuRVBLHdokEw5RKFrFICLtWxnMtBGQaUknyhQLFQgVZVhgbHScRjbJr5w5KxTxTkxN0dnbQ1rWIgcGl6HqAqlUlYBqomo6mqhiKzJ7d22hoSODYFn29fZw6fZZyuULTkSwdjom+tJFQMExrayvlUpmmhgbyuSyRaIThkRFymSyC6HP27FnKpRqjExOsXr0aTVO5YuNGXNuhoTFJNGZSsYqoqkaxUESLtVOuWShnt+J0XYoZjRMRZfzjpynH6qzQZDzF2nWr8XCwalXK1QrNLa24no8oSfiuz2OPPcZA/wC265yHjNcNR2rnXYmRAVFEl+o8SE1VEBD52U/vpXegj/7+fpavGkQUHaKRJDWrxuGDRzh86AgXXbSOVSuWs3zZIL3dnYTCJoGAiY9HLpenUqlgWzbhSAwzEOKSS9bh+x4CIum5HLZd48477yIUjROKJTh25DBt7a1kczlU1eCb3/wWl1+xEQQXVVawajXMQBBJ0nDcGqpqomsBdEOjb3AQURZQFBnX9yhmc6iSjuvVkI6cwjMzcPE6Wla+HGo+7e1NWLUEk9k5AtFlbLpmE7e86S8wDYPm9naisQTzs/O4T93OyRmBbMmnUqrQ2dmKpkAkFMA0DGZnZhkeGmL9hkuJxKKMjZyhKZWgq6cfIxhG1xSqlTK+67N0cDHxeAxJVahYVVRVZcvmLfQPDtRxTqqMIAoU8/nzHFuF3bv3EQiFWb5yFdt37iCWSJBKJohFw0iKSHNTA4Vyhce3biESDBIIBpE1GUnSQJQQFRFTM9ADBjMzMwz2D9CxqAMEyOVzzM7NMDN7jqaWRmRZxsdnfHwcSRAQBYGFuTRGIIBiakTCYfbu3ENn9yLwfU6dPs3iwQGGT58hm55n+cpVxJLhet+voiJJMocP7mP9+vXE4jFOnTxOIuBy/2MnSQ1soLWzhUq1jKwmqFTyJCNRHG+ifjcSWlDFxwEDVe9A1zRmZ6eJRmPkcgsEQ8E6LF7WURWVUmkB0ZfQAgFEUUBWVHQ9QDG/gKaoddMkBObn5wAP80ARfHAvTuG5NZRQGEEPUSnnMQwDSZIol0uUygU0VcXHP4+NyaPIMrKiUKkWCJpxQKw7+YaiFEtFJEWi5ji4VZ9AKIiPS35hAd3QcW0Px7FAsAgEQqiqSq1Ww3Nd1HAEMR5DME3smoUZilC1LDTNwPd9SqUStushq9ozvbblchHPq8uF6yoQFdM06koO18X3fARJqm/jepimju+5lIpFgqEInuAjKRJWFRBcFEXDcR00VUWgngwLklA3xKJ+75BlCUFUUTQRz5dwXQ9F5pmqsl0pk8uXKJaLnJuZ4YJVaxgbPc3A4GJaWtvQAgHyuQIP3P8g69atpbu3E1U3WNTWAJ7F+vXrKeQzzMzV5fGnjj+NZgSoWjqaPkChYBML7mHxwqu5TH4Jb3/bjdz8528C0SMSjaLrIWRpiiOHDrBsYCOlUpGxsftIJlOowTXUHt7J2TNjfGLLdhYvHeSWm9/MwQPHGRoeo7evD99XqNUsrrzicu79xYNsvPhiIiGF733zJ/R3dbNp09X1qrmgsunql3HLLTehKQZXXnkl09Mj3PyWd6IqCl/9+rdZdeHFeNhMjExy98/qldfHHnuUN//Z61A0MKIBvnz71yiUCzSkGnn/u97Pvv0HWdK3mMef2EnvwAqS0Ril2QLNqVYmx89x910/4eWbXklDuIH92/bS29WFbhiYmoZiyKh6nA2XbsDcdgBJVtE6r2d0ZJy/+LfXc9ONf46uyZQKC8TCUd745jeTaAhTKWcwVJ377tuGIMsEgxpWIU0xO8/k+DlWrFzH+959G2+95QZuvundxGLw2uvfwFtuvZXJ4SGO7D9EoWhz9uwZcrkiDYkElVKepoZWnnxyG5mFBb777W+zdPUSFg/2s2TJMlwX3v2ud/Lzn/+M3bt3kExGMU2N2277WxRJpruzE1/0aW9v5p577mf45AitLc1ce+0VpOfTzORmaWpuIRyOMDUxxS8f+BXrL7yQG15zA+98563s2rmLYqnExo2XsfGyK0H2CEfjyHII35eQBAFJNfFEhZ7FSxDUAKYZZM/2LbQkNETLI37fW7CaxnESDq/6zHVkyhn6mnr5l2v+kgvUTXzshjfRFDbZOXqMkYUZMqUSVy9eg+d75PMOhhlBUSTOzI5y47c+RcW2WNfZz6evvJW/2nQzf/2yVyEJMrvOnuDo1AimqrGiqY977jtEKhTi/of3sWrtVRwaO8BffP19uJ7LK1Zdzc8/9HPee+lbufUlN5KvWByeOMrukaOs7F9PT9MyPMfg3NwkiVQbsq4gS2AYGqIgk8/VK6WmEaZmOxSLBQxNx7KqyOfdmmVZZHZ+Fl0Fwa/hOe75XtDzxjo+NDU2IYkWwYCAoZm0N0e5YHkHxfkzqIpEX1eclqRMIirSmlDoWhQhHgZFUjGMupmd53tIqoYn64h6FDXQhOR3UOMMprwEQfVxXQe7VsZ1aximiYJHdu4MulSjUqrg+BquI6CZLRw4MsH+Y5NsuOQqBpetOj/pOkNzYzOa5pNJ50mkUiBKWI5NZ28XuuyRjPdhahItLTLRaCOO7XHi1BinRzI8PZylr7+Pp09PMnmuSiLuY1Vr/GrzCOFkiIPHpjjy9Dxl2+WClau5dONGqpZFQ1MTpm5SKpWIxeJoFZO0PUzOOciF170NM5wCnmuQ9JuV12eP4Z8bf2Rf6f/ReLHK6Auv/9zd/X6V2hevXv/xldfnI7b8ZvxfLRv2PPeffP+/2ELPEQe8QMn7179/9rovFC+k5vYFntFvW1tvxzm753kNmzzbwrr3o7jpM8g9F5PPltjz2IM0Nhh09g6gmlEkVWZ6ZJxwoqk+wCrmqZbKjIxOcf2f3MDi5YvZs3svnu2i4nHkqd1ksrNcffU1dPf2cnroNNde9zLMaAhN0QhoAaq+RcgM4rsenidiBsPUbA9BqiMFlPOYg1AgwPz8PJVyifa2VrZseQTXl0kvpNE1Cc/1WbHuIjQjhFW1CGgK1VKBhflZspk045NjxCMBpicnUVSNfL4EooIi+jTtmiPh6VTXtBAMRpifm2dycoRkYyMNjc1UqhalchEjKNDYmGDZkiXMzc5TKhdZvWwpTx3YixnROHH8KJ4vIQgqNdvn0OFjZGbH6O5pRDS7kGppxKkDeN1r+favtnPRtn1oa1aQK5QJRHQq1QqmaSDioxshNEkkn02TLRQxowl6Fy/GRySbKXPH975NMmySbGpGFOqyJsHzkHyBPXv2cuzYEL29fdQsi1MnT7Bm/XqCwQACIrPnFqiWKhSLFaKJOKmmBOFggBo2giRilSw836dUrKDIGj/9yS+4aN1aJs9N8tSBfXQvaj/vxChTLtrcc89mVl+whmUrl9PQ1ICkKCxqbUQAgsEAIibLVvehyCaq6DM7OsT2x5+grbWNUMjAq9VwPIGHH32SxoZGTh44gmEIOJ5NONTIfCaLqPpkZmcI7z6B/bb3oa6/nvTCHLncGF6oDVcG3TEY2b8fvcHk+pvexl/e9hFuvvFVbH/oQXo6Ishnfkrz2texd+cO5vNpItEwHa3tHD06THNTK45dl2HOzk3S0dHJ8OlTTI+PoUg61XKJQKDOHDUVlbm5BXbtPoRdqdDZ1c3sXBrRF8nms5iGSSAQILOwwGOPP8GatWuplMu4jo2hiqiKxsTkNMtXrGB8dJhUMs7s9BSFbJbp8UkMTWdgYIDtO7YRbWwkEgliV/KIno1leWQX0qSamnAVjZMnjrKos4tkKkZra4r29nY8HyRJQZQkDF3j1KmnkRSF4dExQqZONBYFAVINSQqZLDXbJZlKIog+DS2tnHx6mEWtLYiKQbVi4VSrTI6NkitU6hw8RSceMQmygBzrItjaj2Q4qLE1qHoMSQngCC6GuoDjuuQrMULqdlw/gmUHKVcqCIICokg4FMaxLcrFHCAiKS7phTTJVCuuXUPXVWynRqGYJRxOULPt832jLqFwFM8TUPemAcgNinX0lFzHHtSTYQ18EUXWkfBQFYlKqYiiGYiyTK5YwKpV0YwweBauXcEFdC2EpkjosoKk6gTCEabPzWGaAXzfIxhNIkgi3nljrFo1R6XkgOQTCMVA1dBiYUrlIuF4hPmZWVRFRFN0RMHGcX0UVcfxBFQjgO/ZKLKILEtIgoSom3V0lSjV77Wuiyh44FexayVQtLoBW6WKphr4kohDXTHhuTUEQaRSKqKrKgIO5XIeVZXrvbZ6BMep4PsO5ZKF6NdQJBUBcOwapXwOw6i7rFo1l0QyhSRL9Rlyx6OhoYlUKoWsCNSsEvFEA4OL+zly+CAN8SSGESAWi5MvllAUFdf3STW2ge+jSB6Pb3uStRdcxPe/fxd9vatxXJfW5hKiup7XvuYWan6O8elZUk3LscQZJG+K7q5FHD+RIxxvIhU/SyGfBXeQwOExotEYL/vEP3Do6BGGzwzhuD6XXno59//qIZrbU/Qv7sC1VC65dBmOVUEhxltuuZlLLlmKqsT51Kf+nUsuvowrr7qMjs5m0gtzdCxqwXEtJNXkQ7f9JR/84HsIR1VEMcBtf/kBRicnAPjQBz/IyHiarY/vJhQMUXUq7Nm3l4HePl5/zWX0LFmG70W4+4ff5YJly6k5Nn/74Y+wdGUfF192DddccwWWYHN66AAbLhyk5hmcOnUYwSngCSmiiQBlq4y59RBOrcqB6UYS8Sgr3jjA57/wL6xbeyGFfIF86QyNrW1IyMiCQUgzaF28jMmRp1jatYKhM8O8/8Of5H/d/TM+/rF/YnbkBIqS4FP/8TVa2gcoZM5xxRVXoGgum+//KTe88hre9773sXvb03z2M59ndOIwkXgjS1a20tIaYaB/MZlaFVHU+MTHP8PI8BgXXLCWT3z0rzl5+gjdS3rY9ugTdDQt4p5f3M2Nf/YKKtk5ZMEkkQozPbvA9p37uO5VN3Di1NPs37OPy6+4hJpTpq29m7+67VbefPMtXHXVtSxZupSvfu1r5HI5Ltu4kcsu23i+v1BBFLU6lcAP4os1XMHFcQP1e4ng0NAzyOnDewndux6HBbLqGF9+4rs8ObQdXdG5769+xqq+Czh64AwrlydZ1dbF2TMLnMqf5ejUCNf2X0xbFFAiSIqE59h89N7vcHjqLA2hKD97y2dpjIkogoJpKlzWs5TZYoHDk8McHB/mzy+6mrXLkjQ0mSiyQyKV4u3f/AATC1MMtg5w17u/SUJREQwJPRBm/sI5RodHSc9m2D98iDde8ioMTSQejVEp5LCKJRzRw3UUXDePqok4tsTcuWlisSiirlOxSyhSAkmtMHR6hIbmNor5AoYuYTtFJM/H0FTcmofgK/iyhKm5iKKD4AeJBhNYVgmPKsmGMMFQGVGXSSZD1CoVkP3z/YouilykUqlSsMrIgTh6ahGCGkc1mnD9ELqSZn56nmBIpFL1CZgyxaqDphvIvs3s9DxT88OEZA1ZKfPAw2eIJFt4+tQoqhTkjTe/BcdT+cW9D7J2XX0MMzUxSigYxnYcZNWgpbWFSDSKLJ032cxkaGpr48zYNGvXriYcC9DR0cz89DiOp5BsDLDv0FkyBYiHA7giLBQDTM1aRKJJVq0aJBAM0dW/hJplkcuk0XUNwXKwvDy5soeTcWirtrC7eifLNt2IEYrhe8+qHvo+3l4F+O3k9XeO95/FOn22Y+9zxvYvVsn9I+LZbNrnvGbxfLvp+eUZlurv4sQ+m0H7a57r+f08u9/3d3XS/hrV+uzH9efOp5nP4rw+l3/77Oz0t9f/L8Zs/ev/Kc6r53n/9Jsn/HyX3wtdlC+W3P5B8Ru7cE49jp8exZ04jDO0/bcW+9A9dTOn7gvrMrSZGXILc+ihEMFIClUzSc/OYJpBzECIM2eGWUjPoehBZufS9A/0kZ6bYcmy5QSCQbY98RiXXLK+bjzi+uzYuZOly5bi2h6SrKAZOq7nYxp1NIusaiAJODULQRDrWAdFZeTMMM1NTezcuZOhoWHC4TChYL3XtlYrUa0U2HDJxUiySmdnB7VqFc/1OXT4EIIos6izk3KpyNzMNJ5XBUFg9dp1NDS30NLaRsDQCR6ZJ5PJwoYOREHEsmq0trZSqlQ59NQh+nu76OnqYMnAGsqlEr5vIcsOAiLlcpHVa9eQLRS5+MKLOTM8guP5aLqOrsZYNriM8YlzJBIteGYUzh2HaAcNfRfhPLSZgGFiNKfI59IEg4F6snC+EuP5HqqqEY0ncKoWmiLhezbVSoV1ay8hEY0iyiYiEpIokc8XqNkWuewC6zZcjCSBLAm0t7Zybnqm3l+nSJhBE103MM0AO7Zv56ILL8R2XFRNRRJl7vzeDxgfGycYDOK6Nhs3XoKPRDSRZPny5Wiajq6pZPMZisUipXKJ3s5mFNnHtWvYtVod0WG5FIplBF9A1xXy+QIBQ8NyaixbuQrLdlhYmGduLsMjj2xlfn6O7p52Bpb04UkymhHEqpYIBMIEAwFCx8cQl/YRevtr8QSBYNAkHAqgK2F0XWdo+Cwz83N87Qtf56orL+Wd73gb//ovX+ThzZspn/4lYdXC1trp7lpET28vhmayb+8BVF17Zibadmz6ervZsvUxIpEobe0dLGRynHj6OIGgSbKhgd279uJ6HouXDHBm+CzFUhnHcbCdGo7jEw6HURUZRZZoaGjEdVx+9MMfsnLFSlra2pmenqGvtw/XtThy9DiBUBhJUYnGE7iOdf66qtDX18vZ4VEmxydJplLIqoqoqKiKTKVcJGDqNDc3nmeDOhQLJVRNZ2x0HN+tJ7CPbdlGejbN6tUXIooavmMRT6WQRInTp09z/MRJFhYW8FyPXTt2Mbh4kJamZvYd2I9lVwmHghw/fhTTNNA0k3DI4OTQSbo7W7By00RDJpbZiItMqqmP3MICEj6nTx6ltUVClgREN4kmP0mltgLpPOcyFApQLlex7RqSLKGqKgIirusQCkVQVZOZmXPYtoNl1fuxapUKsizh+y6SJOK69XukujddZ7m+tId8oYBz6iDlyTOozR0UC3k0TWFyaoJoPIZl2wRCIfLZLK5jo8oKpmEyOzePpmr4Hvi+iCzL1KwqtuOAIOLVypgBg0q1QjQaxcPFsWuo2nmMg6xgmGHS6Zk6i1lVKZfLqIqC7ziYgSCu6yAIKtlsGlmS6xVaRQbfp1goomsqju2QTqcxTANNk3BqNRy3zvG1rBqGFsB1BWSlXnUtl4vIsoSmm+cVGh6yIlGpVMjncoTCIWo1B8MwKRXL6JpBsVBA1eo4HVEUsamfb7VaQZFFFFVDlFR8BFRVx/NdPNcFBDzXZ/euncTicUKhILOzsxhGkLvvvptLL7mEcDjC+MQE9/3yPtatW0Mms4BuGFSqVUrFIqlEnMbmRkwzwKJFHYQjAUwzishxipVLOXLkGG99z7v4h499kppV4uorL+Gr//kN3vn+L/K5L3+Lz33pSzx1tMqSZVfS0LSEwFOnqdg13vztL3H/lgf40S9+wuatD3P86aM8tmUr1133GlpbG3GqIsGgydvfdisucPUN1/C1b9/BB979Lm6//cv8+ZvegO0Usao1PM/n4OHDfOHLX+EfPvYPPHXsMD+55x7GJ6ZYu2YdLU0N/PSeewD46N9/hLm5NPfffx/Lli9h/94n2X/oCKIo8uabb+Z7P/gR7/rgrTy2cxuf/+rtPLD5QS666CJe/eqXY7sSsu+wb89e+ru6sCsVbvvIR3nfbR9i+MwUa1Yv5ft3/4BPfOozfPjJB/jU8d2sW3whG/o30H5diL37jrL/0GE+/+Xb+cZ3v88/ffyTfOE/bucHP/4hh48cYcMl1xALaRSzNQ4ePsp73vZ23vSmm9EMjatueCWf/uK/ocky737Hu3jppk2849b384Y33Mgr3vAGPvvl2/nnj/4jWx97gFPjx/nUv/87X/3O17nz7p8wNjGD53hEtBBvueWtHDt6jMtf8hJe/eqXEouGaGxpx3YlJEHk4g3LueG1r2V+3mLX9l0MLl2B67v09HRgGAZPPvkEGy5ew7Uvfzk79+wglWpAAGp25TxuSQLB5/bbb/+N5PWy5wxzJKGC5PvInoAsVHEEHcl3qQwrJO5aiVDVqbXuxJdl/u7ef6NQLfDSpS+lW+llUVcPS5d1YOVljhw9wbqli7j32JPUPAdNjnBh74VIns3E2Cy5Qp6/f+g7OJ7LX2x4GVctWYrnCIRCQSRZRFNUuhLNfGvHA9Rch95UK8tau3Ach0g0yXhmno/f8wUAPvaaj7C6eyXTk6MEQ3F0zeAb4e8gJgVGHhsnX8lzxbKNdDV0UalWKVfKqJqGEUxgalFEUaBYtDCDCopioGgRFCWMphrIoonrVGluaqdULKEpOsFwFFkxKBbnAQfHrSIIDvt3naSpMYmogOuLlKuzDJ2aIJWMYBo1QmITmXkLvyIQCWnYtQqiqKOqAWzCGKEOIslFGIFmnGoUXQtTLCygGzXyOZVYPEHNruBSRTWCmHoQwamSnT3Jnl3bGRhoQ3JsEHXmijpHj5/lko1Xc/HGi3l066O4vsfatRegaCqmaRIKGBSLRURJ5tChQ+B7eI7N8NBpao5NNFo3L7zggtVUyiVOnRpm7659rL/oUpat7CGZaOXcuQw3vOYmBMmlkK/hCwEu3bgBTRVpamyko6ObqlWhkMvW0USaTtmyCUfjxEIxcvNniTsdlPv30XXB9SiGgu96zxnbS+uc33Iaft4h+v9Am+H/F/FiOcr/6DFerIf2D9nXH+o2/HtWfX8d/53k9XdPA/z/LP4QvhL8to7bcZzn1XP/j8ymlDLg2nVOzLMWqaEfsW0VkqCBXWPi7BCNLS0sXrYWQTKYn1sgEY3heC4PP/IQIyOjjE/O8tCWx5AUmanJCXRVZT6dxjB0Llizmnwhw4njx4nGQqzfsIG5+Sx7du/F1Aw8z0cxNaoli0K+gCB5GJjYAAAgAElEQVQKCJKILPqUS0UW0ml8D4JmgHwuzwWr6pzLPbu289CD9zM6eoZ4WOfl125i0aJOoqkGntq7h1IhT6lYoKu7G0UxePChzfieh4hPNBqhvaOdnbt3o5smZ8+cYWR0FFlRaGpuQRJkXNfFCARxfQVZUVm2fDmTk1OUSiV+cd9PKJbKuK6MJAYRBYdwLMyDDz/IovZ2zp2bYsWKJVRKRYr5Iq5d4Xt3fY9ioYhrzzM9k4WGxYgHfkhXS5zon16PPzxaN58yDVzbxgwGufe+X/HDH9yF6/q4iPg+zE9PU8ouIAsewZBGOKLhuhXs/03ee4fbddZ3vp/V19q9nt6koyPJ6pYsWe6W3MGFkECAQJJJAgn3SQESCJMLM5BJ4CaQkMCQBBhCCKGYYozBBle54CJLspolq5zez9m9rr7W/WPLgmHgYjKZey+Z3/Psf/Ze77vXu/Za+/217/frt1lZncPxQrRIBN0w2HbpNiQFJDkkEtFQFJlcKkmpsIogdFiGZVWi3mygKCr33fMtDCNCs9qgXW+xedMmrr3mOsrlEr293fi+zfjkJMdOnAJRQZREREkgn8+zZu0g+/Zfiec0EUIbTRGJ6Rpe4GIYEdKpDJbdxLECunIZJFUhmunCExQSyTSpVIqBobW8+tWv4s2/8gZyuQyW10bVI0iShuualEtlglqT8NQ4zm++DkE1kEWJwAuRtDSlxWXazRajmzZw1c37+fVf+U0K8+OUVufZuftqfvF1b+Kuq9eS7N3E+bNnOX7iOLVKlXQqw9Zt27l01w7OnD/L4vISGy65hJMnT9Ku1/G8gHSum1Q6xQ033kjbdCgUyoiSSjKVQhQDdl++l1KxiKaodHd1IQoChqbz9a9+Dduy6MrmEAWB17zmNai6xtzCEkMjazh54jj1SpntO3aiajrpbA5BUTDNJhs2ruf55w+hqREGu3oZW7OORDKD5YYIsowkybSbDRrlFVzfQVZkjGiMZDrDgcefpCvfg67qfPub3+JVt+xnz54dRGMqLbNKEIRIkozremzatJkbb7mF/fv3YTZb9HX1MzMxydFjR9i55zKmJ8+TTETZtetSxjaMMbxmmKWFWW695XpqtRK+ksBpFohoFqlUlvnpCfLpJIFjsXFsLWEYEAQ+9UoB4IL+qIKmadRqVSKG3sFlhQJeIEBg4dkunifguC7pdApd18lksh0pHUVGlWUC16PVaKDrOpqmISAgywqrxTJ+KOAtTcHqLOCTSEYRhIDu7hyiJKNpOo1Gk4iuY7bamM0WsiiTTaZRFA3NiHUYsX0TSRZw/U7GXAgdBPwLGLgQUeyQQEmiQOD7BKJMqVyjt7eXerWKs7SMVKkSBP7FAFRSFDw/IJ5IokgCmirTqNUQgWQyjiBIiJJMLpeFwKHVqCErErIiI4siuhohCBWMSApZFJEliUw2i2poeL5LpbiMSNCpcKoqXV1dnQBaNQCJZDqL4wUYERXLNDHbFq1WCyMaw0NANzTqtQqyouG4HvPzi3zhX76EIITU601URScej/LqO25nYHCApZVV8t29vHTqFL/65jdjWS5t26G3r5dkMoEoivT09AACqiozMzONbbt0d3cjSSLj42dpNKucO7cCostfzH2E+oXnDkDEYv++23nPn3yas+cX8IMAx7W5/8Hvc9tr38n3HnqCqX07uf67/8yjTx9gbmGOIAgoV8rc98C3mS3OEgQSYSjxy294HSvLZZ45+AKVRv3inpjJpvjUp/8OSQoZHOojYqQ4fWacX3jjm/j6vfeyWlhFUWRWVlb4zD9+jqv3XUOlVr443nEchtd08xd/+Wds2LCBRrXTBdDb18feG2/gnX/ybs6cPwuA7Viceuk0H/7YR3j9m3+dN7/lTZw8ehgxEJmfXiGwZF52nJ76/kHe98EP8P4//TOOHj9+0U8oFUt4rofnWfz1P3ycj37irzly7AUWFpdQZIVGs8H45CSf+/KXuG7fZVx95T7+/u8+yyMHnmJ+/DS333ozlUYbWe5UhK68fBf3fOUr1GttCGQeuP+hi2urNapUvQb/8LnPYLkOoihQbzR55PEn+b33voev3v01ktEY73zXH/CqO25lfOoUohHlv/zlR+hf28/u/VfxmX/6JFdeczXnJ4q8+48+SK3RJJnK0NefZd/+K/nF191Od28KyzfZe8VV5DM5FNGnXq//TD6PqUZxBQPHlzGDENX1cL8mIvy1gtAbMp87iqioPH3qeRYriwBcO3YNV119HSEajz76NL7qsH7rVob7rmAsvR6AB08+w8yKzkotzqlzFk9NF7BcBwB5KYtpC8Qj3YiKgGX5WLbLcC7DWH4AgCfHT3T0zAWJdCLJky89ffGc9226mnq9gS8IeI6DKol4vkduYzdRLQLAoyee60jtSSpty8F0bATRJ8TDcduIUoDvKMQSWVzfptlahiDA88p4jkOrWUASTXRDYGFxiWLFJpoeI5B6EJQctq9x5bXb8Ahwgwj3fvskE1Mua8e6kRSwrTRBJKR3NE+iP44YHUKKD2Hk16N3bSHVv41ofoxyS8CX4wRShenZl9DVCE5TRY1JqIaBbYcoUgzXdfDsOoFVQKHGVXvGwGkT4nJ+xmWx3ObOX/oNYukeGnabbdu3kErFKFeKuK5Fo96BME1OToIgsO/aa0lEo2TSKUqFAoODwwShSzIRx7FsVgslLr/yGrbvvIJMfohEohtJTvOq229lYfE41ZbA6IYrSaeT+L5DMpmg3W5j2y6NWhVdU+jqypNOJYllU6wuV1iZfglJXUAJkyQT/SjISD/ENPwyy+9Ps5eP+3Gvn1ZxffmYnySb+W8REP8/reFHz/eVzPfjzumVjn8l9m85z781lvbnJnj9Wc3zPBqNBpIkXZAt+V9osobUNfY/vMR0P4IgEATwwL3foLQyQyh4zM9NE4noJNMZVssVkEQkUUQSJZptB0GA2++6nYWlZRLJLvACJs6cY2ZinJnJCfp7eyH0iUSjpDJ5br711Tx+4HEC17vAHpokHk9AEOKaFrKmI0sSuiQSmE0ihsHszAznzp6jK5clmYhjGCqDA/3oRoRcrpfnnj3C+tF17N57NfV6i7NnTuNaDZYWJrl0+2aqtTKW57Bu/RYGB0e4ZGyUwsIspeU5RL9TKfQ8F9tymZ2bQ9MNpmaXsG2bkdExNu+8HIwU195wPb4ooRpxirUashZF1nSuvuJKjj9/iFq1yPHjB0mno0SjGrmuGDt3Xcro2g0sLUxw5uQRnGgXoWchWfOo+69GKFaxPBNFj+Ij4tg2t958I6+6eR+S4KOpMssLM/QND6NGohTLZRzLZHV1hdMvvUgYBhgRnVq9hKxICKKIbXsYkozVtmmZFooRIZZMkEonCVyX0HVpNxukU0ly+S6KtRr1ZoVkzEDA4+prryKTTTAyMnTh/gxZu2aIndu2IYQeltXA81wIRVw3ZHZmnmeffxFZTyJqEeZXChQWl5mbniDwTCJRjc986rNMTpyn0WoROgLlQpVKuYIRMQgEH1kRaNYr+AHoYoTQNQn8JolkGsNQCM5M4N9wGfEtI8ze/TZW7/19HNOh2vCI5zIcfOEwfhgSuB6ju0aZminTagR8+C/fz6Ztm5BKR5mvuFy2azuFYpWnn/o+hw8/SzITYWpynJ07tjMyNMzdX76b4dGNdOXzqBLc9817eOTRRwgQ6OsbJJXKsri6RP/gAGEoIGlhR5dwYJDvP32QNWsGOHbsMLfdehuVUp1nvv80B599Ds/3SSSTjI0Oc+j550gkU7Rsl9WlJSqlEuVyienpaRp1k7nZebLZDAsLMywuzXP8+As88tBD6IqKEPoQiHznvu9Rr7dxvfACQ6eJIAXcdNN+JAlcx2R4cIAvf/ELHHvhBSyrjRe4DI+swbE7XQ1LSyvEIzrgEEtFMeIRxiem2L5jG2dfOovZajMzNcNjjz2BrBg8e/BpBgd7KSwuEYumsO2QdDqDLNSJGDKSHscJJXxJxvJDTh2T8ZwtpHqHLvz5XGDiDiAWSxOGAbqudyp9ioqAReC7GHoESYYgdBClsKNHqKnIWoS25eKFIplcN81mEwB7YxxrfZREOoMoSnTogkGWVcJQQBRkPC/AtR1EOtURVY/T1TNAKpeh1qrQbJaRZAFRkZEVEatVQxBA1Q0USQIpgihq+F5Au9nAtl1c16fVMhFFGUUSyGUzVOoN4ukswcQM/sQsvh8gaioIUmedskS90URSDQRRIRJPgihTrVUAEcd2cBwbz7Ix9AggoSo6YRDSaNYIhQAfD8dpd/SuvRDLDpAEgVSswzzc0bJVkCSJaDRKKISYjolpt3E9B9e1UFSFWq1OOpMkDFxkCYIQUrku/MBDlgV6+nq4867bKZdLZDIZ/uZv/xbXdZFVBT8MyeXyyLLG2Ogo3/rWfQQh3HPPvSiKxGtecyerhRVK5SLlcoWVlWV27tyBY3ucOnUOx/bYsmUr6VQGw4hiBwHPHf8ejUYDVVEB+NRnP8fk9Axf+tx/pLxwD8XZOd73e++gp6uLVqvF+z74Pt75Vx+ibrb48qf/nre94a08+/Cz/MtnP0s2k6FYKvK773wbxdIiV119Gf0DvXz0rz7OwsLCxe2wWKhy8LnDTE3OY1sBv//7f8ib/sOv4XkeG8bGeOzhR3jkW/dTW1zlnq98DUmSeO9//sDF8a4tcerFl5ibW+C2W15DLJYF4MVTLzI9O89vvvkt3H/3vZw+8QJHnj3Bu37v3QAcePIphtYMsm3XNrZddhl/9uGPcvc3HsA2LQAst83Djz3BH/3uO3jTHW/kMx/7JN/58j3cdekvUS5XKay0iahR9l1xLQ9+4zt89mP/yIfe/QHGjx7m4x/9MOtG1zE3N42eiPC7f/B/8ME/+wCoAYePHmZlaRXrwvc0KkX2X3sN937rAf7w3W/l2n2XX1zb+z/052iawX1f+RKHDnybwtkXuPuzn2Ld2lFcz+Pjn/8UH/zwn/Or/+FXIXTZvu1S1FiCRCp5cY5bbns9H/ubv2Pt+m6efOZRFD2g0bKZnZ2n1WqRy3XIw7SYjqJruI6PJPrE4/GfyYEMLYhIRe7+zHtRXwppvkek9n0T6RoHYdRj/fZd+GGKs0sTF8dsXbMFx24zOz3BjbdcT75nK16YZ3J2lpHsWgBKTomzZyaZnK+yY9dmTs2/eHH8Nbs34vshobiEbcGhw+dAEJFEnQ3d/QCcW53DtSx8L6BlepxcOA9ALp7FEBVyuRyj63cSMaC4Oo4gSiCKrO/rBM/jqxO4voznK/QNjpLvHkQQBFzXRRAEDCNC4NWRRI9Wo4KCC6FP21whYqTQVB1BULAdl2w2QywaQ1ZT6IlBYtn1ZAe2oWfXI0QGEI0+bnrVnWzfvZ9U93piXZvIje7FkdYj6RvRktuJZAaRIhlsX6JtgSeouIFEMp3udNmIPawd3Ynju7TtFQSvSeDaGHoUWdE6bc/WIvXyOQLHRwp9EtEMLvD8yRLpZI5USiebiRJRo+i6juN4pNNZJEnGiETI5XIMDw8TBAEPHziAFolQazTZtWcPtuujKBKaKlMrVxgcGqFab7B521YUQ0GRoxSqJeYXF+ju6iNygfl4dn6GVDJHMpHCMHTK5SLZ7n6qtSYEPidfeB4Fj/nx08xMPIcS9wiFANk3KJdP41juK75X/3e0/xUB4c+T/bsNXkVZIpaIExBezPS/bK9U2+kn2cU27+DH3zhiB77Q0TYKQ0qrKyTiAsl4AgQDzVCxHZ9qpYJnlVBVlXqjzfTUBLt3rGNkcAAChaGhUb55zzc58Oj9zC3NkO3KIwoixcJyp3VUhKHBLmr1MtffeBOipDBzbpIw8FhZXib0PQxNwTR9nnzi+xw5cojAtymsrKCoEn1DPZx/6QztVp21oyOMbryEsU2baZgm+XyeRx58kIkzZ6mWVunryTM5OcPS7DzPPvUEleIq2zZt5eiRF2k26kzPTDC/tIyHTaa7m2g0RrvZpGXDxg2XMD8zxe5Lt6GpCk8ceJD5qTPEVZFjR06T611HqEbZtOkSNm7eyuDIehKZLvzQR1VDdl62i3Ub1jE9O8H45DTzC6s8f+ggvm+we9claJIN0R4OP/oF6rkUfi5NdLKAJsnYrRqy4KFqUQ489RiVcgWnXSPf042uWjhmHVXUUBWDfCZH/9AoiiBhqHmy6S58z0ZVNYLAwjKrzE6OYzZbqLKEJwloqsozT36fxx48gCYlEAWB7Zdu4rd++62EgY8TuqQySVRFxPNtUqk40zNTlEolGrUS9993H6ViE9fRsdsBTc+hWG+Szw+wvLyEaboEiHQP9BNPZshkssiSDKLPH7zrd+jvG0QjxLF88rkuEuksddOlWFgg9G0OPX+QMAip1Et4vkeraeL7IalsFlbKWNv6qFllYrEIkajO04eeIpHWKVeWGFuT58yxZ/AdG6/lMTA0SLVe4/Zb7uDTf/8xxNBDMlLoUZXL9uwmlc+xc88eavUmThCQjEY4efQFtm7eii7JbN66jeG1Y7z6ztdy12vuolhY5eSxo8R1nXQqT6ncIJpIEFM7nQEtq8WWbZdgJBPsveYanCAk29XNls1b2bVzF8lEgngixsrqMrt37WL9mrXoYUgmE2doYABNkunvzrFcKFNvFdl75eWoqs6O3du5et8+VgrL2K0ic+enOXbsKJu3bqWrZxAFDc/x0fQIARqm5SOpBtFMmpbvkMsPUqtZnDt5huZygWOnToIs4DptBN9iYX4Wx3FYt3aERr3ElXsu5bvfuYetW3dgWU2i8SgbN23i4Yce5BduehXFcpHxM4c59MwJQk9gYnyCpq2wUq3RbsxjhCZGKJCM5cn29zE9X8dsagBIwosEgO3YuK5JKIq4novnukhhSLXaRosbOKGD5wlIkoyuRnEsG89pIQgi0UgMURSxLJtQEmi1Wwi3DCC/apjQc4gmEgRBSBiC74cgRLBDCS0WRfJFzHYLUdUIvQp+0MYXJSKxDIl0+gLEwUdWI0haFEHQEEOPRrMGgoisdjoO9FgOSTZQFA1JVmg5Hrbj4IUWqmIgSSoEHpIElt1ElEXKlWXMWhEJi3iqG7PdAAJ0vQObSCazeEGAj4AeSxKIAY4tIYQqghASyBrpbI4wsBFDm7brIEigiDbt6jzlUhknlFBUCVnxEUIT12njBDIBIooWI0AhkUwRhgGiGBJPRqnU6wSuS6veRAglFFnHDwMEWbqgsQkRI4FpWuy57HJWlssszy/jmjaqLODYDZZWS1y6aydHjhzBsVyCUKLeWiWeUEnGsuQzWQYG+nC8gOVilWKxzvLKCoYeo7haR1NlJk2bu667gnf88fsvbvT1Rosvf/6LXHPlr1GqZlhZneXd7/0vfOIjfwjAzPwcjz3xBH/2Jx/CbKb5nbe/jZdOT3Lr/l/iHW9/BwBHjh0kG0vzxIGnePHEeRpL49x44/4f7I+Bxvot2+ge6qFRXiaeUzEtk0wmw0f+9CNsWr+bkY2jFOp1rth7C/d89Yu02+bF8fd9/evEtCQxPc4nPvG3tOzO/t1oNHjjL72eD/9ff8HOvbuRhDiDA728/Td+h5uvvxmAL3zxn1labfC622/iX/7lS3z1wW8gq53A3XZs/uO7/pg/ee9/5qP/9WPseeYEe56d4KGzD/Mvz3+BB7/3GEeffJavfP7zDA73smXXFnI9UfqHx3jTL/8a937pH1FVlcnZWZaKk+ihRCTdix82ec8f/jqG0UmSLy5VyHcNcOP117JpbQ95Xbq4NkkU+O7d/8ye7ZfQm8/xjXvu4+b9N5PUOlqznu9RKs5x8ugTZNOQSGdoWxUC9wfXx7Qtkskkuqjy3HMnsdo26YRO/9AYeiyBL4CsxYgoGp7VRhQd6pUqyewAviATCv99F1sYdnwiKdSRQwUVD98s4K+e4NTDh7mu8Daa/zWKky5g3BTDjShIQpMgBCXZi5r4gRsZFQ0ss0UqFSGeyDO7MEm+q4sNG65g5+bdALScNtftv4z+7iixeBe+1mkBTepR1uaHmDobML3oMD01xVV71oPgEno++WgngF+uV1DkKIIUEBChYnWSBn3pHmLJfCdZZdexBIl41wYCP0CSJPrSXQCsVFfQDIVkRCAwFxFCF01WEYM2gpzAl3J4votpmiiqgiDK+FYZNdRYXjjPzPQ4up4idB1Cz0HRdBq1aeQwgudKqBEQ5QSxzCCykSHXm0XQWwj6Bqr1MoXpCTLpNLF4gK56tBtLxBSF0DaJJyO4fgiIaFKWUDDQo1FarTnS8SR6Yh2SmMb1ApBDgjCk3qzTXD2KaeUpmwZm4FFeWWF5MeSOX7yVW2+/hXa7zupKlVqrRCCq9A4NMr84B76LLoRMnh+HICR0HW7efwOB5bK6tEi9XmF6aoZYNEk+30Uqk0CRQ3LpJKJmAAFGQqa/t5fRkXWEgYgeTXDq1Bn23XAbhaUlPE/G8w2W5lc5+swBevqHkVN9bNi6lVNP3kt3vMKmjX1kcj0EMQexfS2VYgPX9xBx0XwXLQgIxQ5Zlvc1Dfdu9ScGbi/jWn+4+/Kncty8wsrqjzvuJwaRofjfv37anBeOCwOh8/ppwemPzv8Kv+8nWUAIYmd/evm7f2LH60/7rh/5/Eev2w/DOP+1AfjPTfAaBMHP3Dr8/5W93GouCgKyJDF/fhxdM9i4bQfD69aSSPQiST62VcHQsxx85hluvfUWfvOtb6PWchhdO8zCwgyOa7Jr96UM9K0hFkvTNzSKEs+xactWjEiMWDRO4Pk0a7XOAyuLDK9biyCI9PX3EgQhhUIRWfLZv/86rrn6es6fn+Xo8aO8dPolvvfdh9AMlRtvuolkKksinkRQY7iBSLlSJpWIEEgKthcyMT6JKvp096ZJJCPk8hmOHj0MfouVpVk2jI4ROC6WGdLfN4Af+B3N2eUJAkWne3AIu1XAsS1y2RyDQ8O8cPQY27ds4tSxw7x49DALs9NY9RKHn32SM6dPs2PnHrLpIZ589DnqFYcb9t/Bhg2XIAghiqLQbrc4cOAJpibOI0aSbIvbKIZF/H1vpX34RaxGG1GSkRUJy6py+x2vJZnMUqu3aDVNHEdFUePEMxkUXaVaKxGNRigVizz8yAO4noUsi7QaLaKRNF4gsWHTNgJU/uEz/8Ti1AKGZrB952XsvOKKC2B5gTAIsc0miXiW0JeoVOq4bkA0GkUQO1i4oaEBFCXCnXfeyYnjRzh58jCnx88Qj6TJp+KkkyG/+pbX4zsm58+cobCwTKPRpNVqY1kWmiBTKRaJRA0CUUTWQk6dPo7r2KQTGfp6cziOyf4b91FvVInFUjTqbZKJNEEAzWYdoVChOTiA4BkQiHi2z81X3YpbC8kNbCbfO0ZXups/f//7OXjwIGfOnOGtb30rx44d4y1v+TUEAbq6u7j77q9RWF1g8yUbCdyATCrH8NBaXjp3noHhAbp6kkQTMRKZBJmuLChg2Ta2bbPzsl2cGz/Pjm3rSSd1ZqcmOPD445imydLiErFIBMu0sU0Lx7FpNhtMzs2SymUxLYtKsYRlB0zNzlFuNJCNKJVqjbbZwVa22m327t3L1m3bOnjjwMd1A5YWl7lx3008+cRzZLN5crkuRkfXs7K8Sts0WZpf5OCTT/P1f/4iitRpYRKCkGuvvobRS0Z57Rt+ERsXPRVn797LEQmYn52jq6uXfL6LZqPFxMQU8/MLmJ5PX98Yjz78HW666Vay2TyqqrLz0m3MzJ9j49bt6NFu8j19FIvLDKZC0rEIA+leegY2MrW0imQY1E2PWFQmm1XQjAbQcYYdq43vWNhmCyEIUCURTREQ8YnFMxDKqIqE53Ra2qu1CpquYts2tt1meWWxo4MaCsgExGJRWraLE4BpWjiWiSTLHfiFYyOGLoLvIAngywGhGCLh4/gdtm45DBFcC0lQKBdL1MoFWvUiuq7Sar3ccguELs1qFSEMwLVQpRDXbuFabZJRg8AXMdsOogiO2wJBxHE8spluRGRymT4sO0QQZWRZIJbMIIoKhZVl7FYFkQ45XcQwcB2HaDSCbsh4vkmjWUMKHCQRJEXD9iCq6QihRCgYJHP9ZLMZfN+nXK5gNkIkIYIsG2gyhJ6NKgb4rkmzWkLTolQrTaLRBJlUDlnuYNJdz8b3HSRZRhAERCARi3LPPd+g1WoRT8RIpmJkMmlMy6TRaNNuWXR1JxhZ08vAUJ6rrtmNrAgQxBHCCEFos7hUYGlhiaXFebr789y4fweplEitVSKWjpPNpSm7HmOGyNHnD3D4hU6b7K7tW9m+sZdEMoom9SCg4IWrbN80i6Z1WDzX6yluCWV+6VeuZnR9P9ft3865icO8+rZOgGhZFuPTZ7j/wa/QNSBy5+vuIhpTL+5/H/zzD7JmeAgpEJmemeMb934bgIhsUCxUEQSLiKGSzcaIREC0fTZv2HRx/B1veC2KJvPG1/8yGwaHSKfTFz9733v/TworC2iygNWuIYQe4xOn+MdP/wOGruN5Hh/76J/y4AP3srq6yuf/6QssLM4AkIjH+dU3vJbFpSkmzo+TqFoUnn+WO//Tbt7+2TeycdMGPvwXf0ogePT3DZJJdPHYo0/wiY//PYEv8ch3n2PTxo2EYcin/tvn2LD9UmRJZWmxyC+85g0X6UBfOH6Ej/z1R0ASaYYSx8+OXzz/3/6t3yDdPYiWyBNJ99I3MMzE1CT33ft1splOhfnc+DSVks8LhyY5eew4qiDxul94DcXJCU4ffp7t2zewZes6HLfB1ddtA3xmZ2cJfQfftfAck9B3cJ2OckG5WkPSjJ/qtwSYOF6dicmXiER0lp836b33NlLhMPJ1bfy+ZYL6DBEE/DCHH8jEUl2Y7g+KA325AZaWi4yPz+K5IaEfoqgC3V1JfOcHlTRf0FgtORw6epJqs/O+IumcWywR61M5dRoG127HDhwEdNqWS9yIAtCyTTzfR4aDw7IAACAASURBVJCiBIJIy+50i2iyRiQaRTMMVDmHTAxZjCLJKuChip2EX61dQxBUPEEhUPPYYoyGKxIoIs3yFH7jHNFknkBUSKSytNtt3ECh7Qhk8v2sGd2A2S4iiCGO50EooiXzmEERSXWoFFs0mi2isSSxeBJZllHELiTdIt+9g1hPAkkWkcUk9UYD2UgjGhmMVC+CHEOVDCyziu8XEJwGhdlTxGNpHEGhXVvB8VrYQgxB1GkuH0czZzh/toJpL4PVol6LsNJOM7j1GtKpOIokMT01iaFrEAokpIATB59juLePwtIKs/MzuL5Do11HM1SqjQIzCxPku7vQIzHWDg/xzPef5vmDh5iemqNWLFBYWmDy3BkMVcR1PGamp6iUS9RrdeIxkbF1fbSaq4iahItLqVVhcGyIy2++A8+p0px+mtLZx+hfk6JvOIekqDSqLcxwlg1ylvLU8+iBjyMYWJKBJyqIYec+CwsiYfHHhy6dTsfg/9V44WWeg3+t/TzFNv9/sp+b4PVHI/dXSr70o1mXn5Zh+VlK8T9pnpAQwhDf8/Bsh1pxmcHhNQhqhGqtTtt08T2PRq3O088eYWV5BddzCUWB7TsuI2Z0SGN6envId+eo1ussLcxz+sXT9A2uQVZ1orE4jUYL2/ZQJAnfd5FlCUWT0TSNMPTxPAfPDbFaDWQpZHJikpGRdfT19WHZNvFolC1bNxECp06fpdZooekx/ADi8SR7Lt9DJpNC1w0uuWQLqWSc7u40o6OjgEAunyWZjJLN5IjHE2zYsB5Z0Tn0whEqikPQFSUSUREFAU0zODd+HhGBWCyOadokUlnm5mYZHR4kl0kxNDREpVKhr6eLS7dv4/zUNILsc+21u5ibO8vXv/FFTNMin8+ybmwtIyNr2LfvRiKaiq/IBGaNankFrtmBvnML0ktTRGNJCqsd8XfLCymUq8zNL1CvN/i7T36Gr9/zTaqVMggQj0cIA5Fstoubb7mecrnG9MQEiiCyslxEuYBpUlWVnp4eoobOpz/1KbzQY3B4CD90QBKQVZmHv3s/9933ALoeIZPOdv5UfZBlmf6+Ptpmiy995atYlkW71WDTxvXs3rMHz7Jx2m0atSq249JutxgdGUaVBLLZHE888SRt06JSLtOVz2GaLaqVBooqsfGSMSYnz1NYXkIIfZKpFIqmoygSAhIRI0aj0SAMAxKaiuC4dO3dTcQwCEMHz7OYmT9JvTWP64WEgcTaNWNosk4qlWJ4eJj777+fd7/73Zw5+BAeHSzhbbe+imqpiOdYEAZ89jP/jWa9wYZNm9m8bQu9fd2cGz/H8RPHsd02qiqSzWXpG+gnBLq6u4kYKo5tosgyN95yM/VWk76+PhKJBHbbYnlple58F0898STZrjylahnTtohEo1iWQ/9gP30DvRSqVRKJFKVyGVlV6e3rZ2VlhanJSc6fP9+RZDItVEni8UcPsHvPFUxPT6EoMs8+9wyxWJTA8xgcHGB0zVqu2HM5oefTbjQoFYo0a3UGh/oRZIHNO3Zw9b7refzRRymurLB2zShPPfM837n/u7RMG1FSePXtr6HVMkEQ0XSFZDqHqhksLS2RTMSIxEJWCzX6BjaS60qyXHNRBYdSocTy/DKRaB5ZlqnUS+jRCLqySCZZplHxLv7biBfYCTPpFIEfYls2lXIZAf8CS7CK57hIYoAoShckuVyikTiSJF7ASwpomoIsdrCIes2HlTZGNILv2YRBgKwoFEtFoEPuRAiipmIYUVqtJn4gEvhQLqwgCCF+AOl0hkwm05EfaTWIRWM0Gi0MXcNybERZod1q06iXcV0Xz/OIRgxM08QwjA5TuCThOk6nUisrhIBj24iCQCqdJQjBsVr4fqcdP5lMEo0q1OtVHMdCIETXFMrlGo5rIUpCx5ELfEqlYqdKLUu4jke1WicMBVwvpNVqoqoqyWSKZsPG80QEUaJUWMQx2zTqNXRFJhoxaLfapDNpgqDDvOg4NhBiWm2q1SqO49JsNJFFsFp13vQrbyKby9Df30MyFeOJJx9HEiWmJqc4e+Y8y0tVPv+5r7B3z7VMjM9x7uxZdDWGJGo0W3W6unuolMoMDPQTS8QYPzvLylKVVKKLL/zz3SyvLPNsucLepEhPNsba0U7L5rYtm9B1lXPnzhGNJGm328iKwNq1I+QyHUzgL2/eSXJ6kUa7QtvqSHCMjAySzSYu7nHNloTrxOjuWk88n8V1flAZ/OCHPogkhNTKFaLpLNVaR/fzj975R1x33TXoWkDo+TSqVQhMZFHmtbe/9uJ4VZPJ5DN85C8+xCc/8XFkuRMYD/QNMH5ugsALcSyXF0+colGrs2//NTSbFS7dsR2AxeUltGiEF188TWhZpNOpzvjeASbHz9GVzZFNpQmDgP6+HoqFBXp6MxRLK/QODnHvA/fzxl9/Cxt3jvLFb9/Lez7wXrpGunnHB97DsRMnAND0GN996NuMrOljYGCIb993/0W/4Y/e8y7ufM2ryXfnSGa7yPQPXVzbrl2XIetxbF+kVG1x+VXXMjIyQkSXGFu7pnP+S0u8653vIRrJMDQwiN1qMzq2Dilm0NWdo91us7CwwJkzZ3C9NqVSmbVrh6nXSjTqZSrlVSyzQei7nWcoliDd1fcD/+Qn+Dh+YBEELmvWrME9odHz0OWI6xyELQG+LJPKbGT63DjV1fO0W3MQuPiihqjEL85hmi3Wrt3Ajm07efHkKfr7+iiXCrhuG1n6gbu5vFJkzdgabrh1H6LceV9RZMZGNvHcgdPs3ZvlzJnzRGIJvEDF8QK8H+p08/ExYt3kevux7Y4urChKeAE0m01cr0ngN3HsCi9Tp3bgDyCKAoJZo1VZICpphO0KtZkJ2qUKqdwIUnJNB5ogyTSbbRKpLIoeIZntQtEMVpeWMJt1QkHAsn1UVUdT+pEVHV1LEosMISsqth1gWi6mZSJKBoosIikRFCOK47o0mibRaArHCUBQ8UKZMAhR8LCtJqbdolIpETFEmk2HltkmGTdIZrMghEhCgNWqoVJm/SWjdGVEfAIOn1gi2XsJcjTL+LnzuI7H0GA/uiZjWzar1To7dl+BpGmUagUKi7NIgUN1dYnZibOcP3WGkf4+MrEYoi/w9JOPsmZkkK2bNzO2boxGvYljOwwO9DE/O8PS4jLFwgrVapn+vn6mx+fIpbtJxTIkYmnOvXSOjaNrUQSHwumHMBePYFUniaYTdMeSmLU2rmXTrq/gyyUa5yVKMwcZP/I9pMDq8NaEEkL40yuowI+NE14plvVf04r7w3jZf00V8V+Ls/1x+Nj/GVzuK1Jh+Z+olP6o/TjZ0p9p/L/JWfxvbFJ6ECGa+bGfyZLM+NlzxOIGyApGNEHoeCB6LMyucPL4OaKxKDsvv6rT4uy7SAK0WyaSKGNEooSIFMpLGBpoUsCj332ARCrNxNQ0c3MLBH5I90AfxVIB33WRXmZJbdaRZJmFhSWmJ2coFlbp7s1hWW2GhtdC4JNOxTCiGr19fVx77T6yuS4W52fJ57Js3roVN4CF2QlCzyEMYWm1RL1Rx7JsVMUg8MF0QpB0nnnuEMuFZbZt38rWbZtp3DXG2Z0J+tZs5PyJYyxOT7Nlz/VUKmUM3bhQlVpCi8Q4dfo0q6sFCpU6RqoLPxQ4ePAgu3buolpv0G432bhhjHQ6gyKr7L3icp577llWV1dBkEjFo1QbFURRJhFCrW7iveNX4KVJqDQpFmpEjQRGNEJPby/ZXAZdk/iNX38Ll126laihYLdNyuUKihxhYX6FmZlZSsUmIhLNepV4IoZt16mUlohFZW64/kriySi33nYzkhAQBjaOYyJIHXbXG66/hrvuvIO22cL1LIrFZdQLzKu2YwMBv/P2t/HMc88RNWLEownu/fq9hH4TRdF54egsD3zvAC3LIRRBj+rc84172Lv3CpqNFs8fPYLt29RqFWYmpznw2OM4rsfI8BCxqEKj3iAIBERJJxZNYNsWsVgEhADXa+OvlAhGh2hhU2/MIYid+3NodBtuaOA0Vigsz9CyLd7zn/4zjz76KCMjI/z2b/82xWKRKy/fQdtTEIDV1SLr123k6aeeZmlhjm1bNnDkyEEisTiCrDE+MUWrVmfXpTuw200cs8nM3CyyLGM7NssrK6h6BkmJ0T80gmXb7Ny1C9d1sdsmd9/9NRLxBNNTU+zYsZXubA5NVjtOVugz2NeHZ7c5cuQ5RtesYXhkhOGRNUQiUT75d3/P2Poxenp76e3pZcuWLegRlfPnTnHZru2MT0ySySbI5zPceuuN6IaC57h87Wtf49vfewAtGePwocN4rkdEN1hcWKDdNCmsllEVA8cOuXTHdprVCpVKhauuvZ5t2y+lu6cXzw+JxuIUV1fZfflWbrj5NhTV4Gtfv4dsNoMkgioHDPQME4YSS0vnGdt4KaIoEUt1k0inOfXCcax6mXxKx21VEIQqtr2CInUytUEIoSATjScxbQ9VjxIKErFkCtNx0CIqQRCgKjqe69FoNKnVKkQiBvV6E1FQsSwLUQwplhYRFINkMoX6xfNE7p7EcRzkC5sMgkiuuxc3CBBkFT+UCT0BzxdRjQhG1ECWRfLdeUTDAEUiuIAXb5kurtchZVFkFcd1CUQZRY8SjaVIZ7PYTkA8mUGQNfRoDD9wEMTO8bFYkhDww4C22URWBBqNIoHg0zZNAs/Dd0w810eSFEr1OslEp43fsS1KpSLpVB6zbREGIMs6hVKFRDyOZ7cJrBZIEulMCrNZpVZcwnFt6vUatu1y//33UqtVCMIAWQwxYnFkTQdJptFq4wcuQeDSatUJQg9dj9Fu2yiyRiqZQRA7WNlqtYIsdZwSURTI5TMsLy9w2623ce78OQ4dOsLevVciKwKve/0v4HoW23dsYWBwuFMZc5tk0nlsr81AXx9228bz4NiJc7SaJiI2b/rlO+ju6uNk26ZHUfCsJSJGJ/GWzHQR6r1s36oQhM+STEXBS+M4bichAehiiOcHjJ9rIYgxuvNryGUH6e7uvbi3tcwKzx76Pm3LQVCzF4L2jqmGzKmTLzJ+9jwLi8sX3z958iiuX6debSAECiePvUS5VCKSSpHK5H+wb7oeuVSSnqE+fusP3k612gl+e7p7+OhH/op4JMPk+XmOHTnNn/zxB/Bc8D2BfK4zR9sLqLsi68bGSBgKkUjy4n03O7HCwswyuUyWWrVMKCtsWns1zUWXm268licPPc/b/+AdPPDQg7iei+8HxGIxuvJ5Muk0itK5jtFIlKGeGJXaAm2zxj3f/CpB0Eko+YHLY48/hqKqFJZmyOR+sDaRkMrqKp/+5CfxLJPllSJIIpbZwPc7FUjLavPXf/Pn7Nm7hVazyeL0LKurqyxViniuQLXSYqB/Le/94/fz6MPPsH5sC7ICuWwKQg/fs1HkC05m4BGEEIjKT/VlZEnDMOK4hyM0PhVDuMxkWZpFFgJqpRV8QWZww3YMI4pfW0ARTPwQctnhi3P4mJ1nxrIZHR3G9xwyqTTtloUbOBePy2bS2O0A35HpSncwurVmnYnZcTZuX4/j5di5bQir5fPlrx4mEk9iX7g+Uc3Asm0EMcbi8irpeOf3NV0LEDoM84ENuBDCsLCWPqcf27MujI+BoiNHdOpNG9uqk+3JIKkC9WqRwGxi1Qq0a5ULslQishTg+Q7NRhnBb5OMZ1GUGPFkGtu2cFpNzJZJsVygUi8higoISkerWtMIpSatSoBjLdAs+fg++NgEgYRvVbHbNWanzuO2ysxOnSCXySNKWYxkFqN7AEmOoAQWpusQhBFSmo1ZW+Sb3x2n5aZxaOHUVR5+ZpYbXn0XvfkUZnmFwb41BH6IKEK9XsOxbJrVAmdPPEu7eJbhnEk+UUNnnrX9AYNdNkF7Aa81Ra14kuLCEXLZCIm4xvLKAoIIkViS2bkFtEiURDpNLpNnbGyUaCTC8uIia9cOcPrUUVZWFoioDhtHs5w+9B3aS4dIqG2y+RjpvkFcy2NmdQEt3Us97KUlrcc2omjtYex2gW9+/gNMHvwuut9CICD4GdRGX2k19N9L1fPltf57WMsrtZ+b4DUMBcJQoHPK4k/NAPywBJHIT868/A/jLhz3SjMpQiyHoEU71daL5hEidrLagYloiGh6jPNnT+M5FoLn8tLZUzRsEyORIhpVCVwBSdJAgUrL5JGH76e8NMcLzxxk+8aNjAyPcObMS+zYvhmr3WLjhjEctw2Ch6KomG0TQZLxkKjXamh6Alk1WHfJGGMbRjn54ikcy8e0LE6/eLpTvVy3jtATmZtbYH5+BsesMT9+jskzpxk/e5rp6Rku2XoZmWyO8uoCdruJrhjUW3Vi6RhB6NPX20e1NsdAf55yoYAkKAhyhPEzE0TjEcQQKrUyLculWnGRZB3PNRECk75skolzp7jjtXeRzaYpzU8zdfYkgiyhGQaVlUUkLU3NDLCcJru2b0JTRArFCpddtpfRoVGWFueZnFqlWmggxpJodgXRSOMO9zBx/aX4J8Y5dPAYK8UiTqNN4DXp6enCd+GZp79Pb/8goqwjSyKGJjO3OM30zAqPP/IU68cG6OrpI5pOEtEN4skcoaBQLVVJRGL4Tpve3iEq5SaeZRGGCuXlMtVCmbZtcvj55/jWPd8mcAM0JWR5ZYZHHzmAIsYxDIGlhXl279nByNgIlWad/fv3/9/svXeUZGd19vs7OVSu6urc0z3dEzU5SRplEAgBQoAlog02GK5tlhNgglnY9wOEAWMb2/A5ACbY2AYLI4KEEAooh9FoNHnUM9PTOVcOJ4f7R41GsjA238d3r6+9vNd6V69ep8576rx1qt6997P381CpOoRIXH71fi7ffwkDfQNUKnWiEF5z883kChmMhMq+fbsRBZlUqoCZzLJj9yVokkzkWnhhjJnuZ3JqieWlFWRVxVA1At8ljkE38tjzJcSRXrymh9PyEYgJEbBFFc+tI0Yt1g2N8vST93Dy8FHWjwwzO3WKd7/nXezct4cnH7oTwzBwfYeNWzeTLaTYuGGE2ZlJhsfWsWZwCFGMUTUNRTEpdHURBx4njhxHRKWnt4dYhHQ6RT6TZmZ6ktXlJSIvRJVkpqYmkVSRI0cOcd01eykvzTA3PUtPTx+O7yHEMUEcIcRwdnacYm8fMSoPPPQgipZkevYstcYKN7ziNYwfeYqjh44TRhFTU3Pcc/s95PPddPf2093dRa6Qwg9aaIpB4DnopsB1113FhvVjqJKJGNs8cfAJ9GSKsQ0baTcaZBJpWvUWQhxyenyCmdkVzk5MIkohfQNFVkvLDK0ZplKp0V3Mo0gGumqwMD/L7h3bkQUJSU2ipdbg2U0M3WPt2HYCH+I4QslkOfDUIXp6+hhbt5Vmy8XybXwvQNOMjnMECMRIYoBlN4mFDrN4EFg0W4skzCJB0CktFgSQlASakaBQ7MfxYhRdp91Yxmp1WMhTyW5Ct4N4iqIIcYwmawiCipTOI6UyqLKH3WwReQ4ELSQxQhBcZFGGMKReb+B5IZHnoRDiO20kWSIIYlLpYSIhIoptVN3E1A0810UQBURZRtdTnYAh8pAikAUJu10nDCxazRpE4XkQRSR0XJLZXuJYQhVFItfGCzy8oEXbapHP9hBHEr7nIgoRSd3A80J0I4Wg6LiRgGHo2G4T2wuQ1FxHGkcMEUVIJTJoukYqmcFIJLnx1a8mmeyULaYKvXhuk9Br0apXOg6qmQZJR9VNECTqpWVkIerI/ggxchwQ+gHZbDeKkaRaWQEJbN+nUOyh2WqRzWZpNqq0GzXSyQR3/uBHyHKCoYFBIu88chX7CGGbXCqBlkgiiyaLE8e5+qqd7Ni1i7btkMuaTE+fI4gjHms0idRn0MwOaqpIKkLcJAqrKJKIKg/iUObA4wcuCMebukZpeYnf/a0PMnXqNFZY4/5H7iV+HnL27W/cyjUXX0FPRsZz6kjac6SI1vwU3bkUuy7Zh5F8jmjo2pe+FDOTwLVFJEnC90O6u9Zy1+2PIj2vD9N1FX7lbe+ivFpC0kUy+Q6yNz09zStf8XIKxS7SWYWbbnoRr7rhYtp+AzORp7TaYSyWVQOZBLd+429xQ5vwvKqG1W4RKCLpQpZXv/q1WLZH6Mec+tQM1jcl/vBzn+ORxx5GVVQ+/Dsf4Ad//0/8/Vdu5ZkD43zzb77O+LHTbNnSQXfHTxzGE3SIkkzOllHSxQtsw6ae5xfe+jZKrUl6UjLtsnPh3uxmjUJO442vey1f+uuvkkjofPITnyaVLiBJHWQwnc/ysutfTGl+gqHhftasG2F0eCNFdQC3LZDLFWi5TT7w4Q9w/fVX4bpVlhaWmRh/BtVIkOvuJ2FonDn1BK12FdVM/FSIku/ZrN5dxv6yAduqiDmR7q4uosBDUWVsu07gCUQIKEYOu11HVmS6CgMX5jg3ewjXKmEkzA4LeaPT0pTIZVioLXa+P3qKoe41dHUXEISAwWIHmbYCm9HRTSTkmIzqEIYhUOPNb9jJ7T8YZ6FWBaA7mcMKu/nKrT8gkRqkLzcEwEJlEd8PsB2xw+4dKOh6ht+338fveR9kvtJhRO7LdhP6NorUhW4aJFNdBGELSVRAMJhfKiGafRi6ht1aRRQCfF9AjGParSbpQhHHa9KsTOHUlwmDAD2TIF1YS644gqjKGOk8fiRQKS0hhRbVqotqagRRkkQ6iyyppFNFgkgkWRgBKcHG9ZsQRZni4HZc30GTQzQ1CVESkRDkFOncIF7o06iV8Fsltm3KgBCihiF3PX6GoZFtpFMmzZZFvqubWAhZnp9hYnKRqZkp0okk3b1FujMWOBOEfp1cQiJliChiiKIEjA1p6GIdXSgzWHBY2wfLc8dp1paZOneG6Ykj9BSTLE6PI6kKc3Nz5LMpDA2Gh3o5+MjdyP4qbuU4q1MP0Zp/gm7DIaWrHDkyycJchdJyhVNnpml6gwjaWtL5NeS7ukmuyaIIBkOjN3DlZfv47md/n4XJU1ixiPiC3spnS4T/NYvPcy28sI/0hfZ8f//fYht+/rw/8Xv0wj5QIQIhQhBjEP591Dgm7HhhYowg/vsMyc+/hyiKOr3sYkwsRD9h8C/Gj83zb3H5PG8dBaQfP/4fYP9pgtf/CPtpGr2fbxdgfEQgJgo8YiIG+oexLI+BwREU1cSyHPZfchmGLKPGPuOnzlAplXBtl8NPHWFxYRHX8bjtttuo1FY4c3aCGJFNW7YyODxCMpvHC0J279yBIglEgsDIyFpEQURAREuYnDp1CiGKaVbrWFYHkZibn+Pxxx5jw/oxgiBgaXmFbFc3oqKRyuaRZIWBtUMsrMzT29dNMZdlcuIsU5NnsewG17xoP4uLS7i2x9S5acbWb+TokRP4bszwmvUkEhkWF5ZYWlxE02SKxRyN2iq79uxk977dZHJJBgcHsRyXYrGXSrVKb+8A09OzrN2wES2TZ36+xOHHHiGbTHB8coXawhk2rN+AmuzGyA1jWR05DyOZoeZ61GoOmUyBWqNB2w0RymcQCNFUg/AtN2L09/DzN95AIZ/HNAzqjTqyLJFMmezddymtZpvV1WUkSSQKdHJZg23bhrjpda9BEGNK5RUkKSaKfWZn50gmEpw8dYoTp04SiwqLKyusWbuWIBY7At+KRHdvD54fcvGle0mnEzQaLRLJAv29a3jxtZdhJhTarZjbbvseppkkmTTp6S0yPz+PaRo0mw1EEdLpLHfccQeO5XLbt76L63g0mk0SiST5XA+rK2XaVgvwUBWI8Gm02pw8MY5jW0RR2CnfDELcoE2luoqiQBhZmG0badNabMejODRK4HuEnosau6zp7aFtezhugKIl+I3f/G0EUcQLI+6++15WFxcYyomcmlxFVwymJ6cwMlk279hFT/8gumrS1ZPBduosL83QbJVZt34txLBv7yXEkYAYxviej+v7ZLsKDA71Uyjk0HWVQ4eOMDiwBlFUGRwawUx3MTAyytimdWimQuA71GsVwrCjeTvYuwZCWDPQzxX7L2Z1dQrPCWg3PSanTqCaJlt27GB2fp5sLst1L38Z84sLhEKMqhscPHiEudlFxsfPEkUiYdAha9J1g2PHj9IzMMI117wE4pizz5yip7eXIAhQZJGjRw9T7Ommu7ub7du3E3g+xAJrhtbgex5HjhxmbN16Tp06Sb2+iu87HHzqAL7v43sRR48eB0Gk2WyTTGZAkgjDkPrCNGMbLqJvMEfTqpBMpsmmutB1gyB4DiUTBLGT1IsFXNelVJkmjiRCXyUMPTzfOc+WG6MqBqIgdAhMRBFdVZHNNMlsF47noSgCEFGpVAnDTkbacdt4vo2w/XK0vS8iDFXCCILAJwYCQJAUIkFEEEI0TTmvLysRBAG6puM6DplMCkmK8Rwb8TzxhiKqaKqGEMcQiYReGyGOCMIIN4xoW3WSZgHPFVHkzoYpSSKGaSDIMkLo4VgWQQx6KoOiJzDNBNl0inp5hXKzjJ5QaTZKtFqruKGNrITYrVV8u0wY+ph6nlQqjSi7EHgEQYiRTGNmsh1h9TgiCgO6ujJEkYcgiAjIqJqBbiRIJlNIkoymmkiSimEYtNo10oVuEpkskgSt2gqtdhuIKVdKyLKMrkhEgYfv2eiqTDJl0F3s4nWvfz3npiYxjATXXXctYWRxavxwR7BegEwmT6Xaxo9iIkTue/BBBteMoCZSSJqC60fMLVUYGR7k2q4ttIIsuvAYCzOzADzyyMPIegJZMajWqjSr8wTtJS69/LIL6ddYEPCjkE//+af57l23c/bUDLt37GVm6tyFve61r389tXadJ48dQdc0iJ/TXRxYt5FsV5EH7rsPleecy1QqzYc/dAuy0UHG//jP/5Rqs8bmizawUipdeF0oOLzvg+/jM3/851jN4AIRkiAJ3HPPDwljj4GhfgRZ4OJLL0EU0miJJMH599CV7yKZCfjdD72X/p7N3Pn97wOwc9cufumXfonu7jwfS1YsUQAAIABJREFU/NBvMTyyhqOHnyaVMNFVlW/ddhsA7333u3nHO3+NdP8gv/y2t+OHHt/+3ncRoph6vRNAHXzqEKqik06kOXr0CEIc8OwChnGLYkHjzJEZQjFPpus5N8vzA85NTNFsNvn5n38DgRDzsY9/hEZ1Ecdud55xUWBufoGphRV8T+owprfK3HPv93jLW9/M9PQ0hpHgpdddi227yLLK9PQso6NbWZ4roSsGopRg60WXokgpQP6p/Jco0tG+M0i0uY1clPG9mDAUOomnVI7AsUmYOs22TTLbgyhlEJo1thTXXphjYukExbTHsWMHmZudIJlKopkmCwtLzFRnAOhP9XPi5HFmZ+exLJvh3MiF8792x9/TdCyePjkBQoAm90CsctmlQ5xZ6Zy/rjjAkadn2bf3agxdZvNQpyS+1CwxtTCBJHidZFwqTRhGtFpt2i2LM0sdVuSNAxs6VSBiRCQEnf1W7cVyfVy7xey5eTyngihEEIkIgYQQOCzPn+v8VokaXgiSlkFL5BAkDc9uEwUuvmuTz6Spri5Rr4+j6iZhvAZDN/B9H1XTaLbbuJ5HtVpFkiRESUHRdGzfx/IC7HaTKIoQRZlGo4FvNWg3K9heC6Q2sr+M15wh8pdYP5pGEl1cR2X37v1cfMkulpaW6O7pIfB9jh8/DpKIoqhctOkiJifO0Fg8gYJL6IcokkYgCYSyiJo0kDQZNZUkVjXcWMAOY8SwSVZrMZhtkZNmWN8b0KOXSIXT+CuHKBoLLJy9C692mJWZB9m3LUtvIaCnoBDGLk4YsNKwqFgRfevX4wg6rSBFoXcnQ8MjPPHkARbm58nncxhKAUupcVHXLzK279UEZoIvfOq9yEtP/1TVA/+R1vnM/juk+v/K/suv9P9qTfsLsy/Pz3688Nw4jolaq8TnCQOeq62XIfARowDb7uhrJlPpjhaooqLrKsWuIrqiUauUKK2s8MO7vs+D99+Ha3dEnBeXV9i6fTupbJo1I2MUir109/RTrTYxDANV1UCUkFWdMIyIEYjDGFVWgJgdO3YwMzONrmmoqobrOh3NrWyaJx5/FNNMUKk0aDse3X39HS1WXae7WCSTybAwP0+tXsNu1envLWLoMtMzk4yODuO5NuvGxmhZDjv37CGRyjE9u4immwwN9jM01M+Vh6Drb0+RL3ThBRHtVoPS0hRz8/P4XsTySolsLkM+XyCfzTA7M08yW+TmN7yJQj6P59hcdvl+xrbs4a/++kvosc/Bu79LpVxClQXqjTJGUsVMpKhUa+iGQayZhIsn8Ow6oqyQ7+5B+NT7cR8+gD61TBCJRLFA27aJgEQqRxRG9HTlcT2XVDZPJmMShm0kRaRer9Lf348syziOQyaVQhAELr38MjZuuQjTNMl3ZYniAEXVyBfyWE6b2++4nYHBYSRFYstFG1EUhablEcYifuyxUl5GVgze/OY3IwoSXV3d2JbLhg3rSCYTZHMZVFUBSWTvvl0Uu7p47Y2vQdN18rkCURgRBhHdPT1oqsKGjeswdZV6vU4qk2bN0DD33nsv/X3d5PMZfM9HEJMQJwh8jdAViWtNSl0JNm/ejB9EyJtei7Lhldj1KrEoYiYyIKoYZoorr34JdmDxz9/8DutG19OuVzGMBNlsgfFnxinmsphGEjOVotjXT7PVptA1yNzkMmKss3XLHjRN4ezEJM1mi3PnJtAVnXazTbVcI4o6DptuaJw5c5qE2cnaZ7JZtu3aRd/gCEYyiaYr+L5LKpnGOE9Aks6myWXzzM/N06jXmZmeolRaQhJlKqUal16yj4E1w6iqxqbNGzk3cZZv3fZNhtYM8ehjj5PLF9i2ZRfFYh/zc4vn+x7rPPCjhwmDiDgO6e3r48SJY0xNTqJrKkEUo6oKp0+fYveObbRaLc5NTPDP/3QrQhRz6uQ4iqIiiiIvfelLmJmfZ9u27dx373309w3wspddz9DQEOPjne/Hk08eJJXJMjk1zRNPPo6oJUlrKpqRZakyT0iEY7XxLBvfD5BkiSjulOB1AlMwzRSpVApdV0gkMnQXBxCEGN8PCcOIMAwQBPBcB0mEKAzwPIcIEUnSzmdvPRA62s2SJJ3XepUxTRPP885LxWikM2k0XUeSFbzzTJ9xFBFGIbIsEccxQRDiOi7lUhlFkXAdm3ariqLIOJaDLIhYlo3vOYSRh2W1EYUQx+m0TEiygCCIeJ5HwkygGybi7s1I+7YTBCFRJGDbNolEAk1TsexO31sQhjTqdSRRJJPuAkzyhSFkNYUYK0iCjqGkIFBIJhPEkYDvhwShj++7eK5Pp7gTAj9AFAUC36VtNVFU+fzvvgSCRIyAIErU6jWIBRzHOU8I5hEKIo4XEEcRpqGTzeQJw4BkwiCOO8F/vVollUjQajWJ44CYgEw2w+at2yiVVkmmdPzQYdu2rRiJBLLcYaVXFJ0wDNB0lWtf8hIEUaDetIijADOZ5mv/+G2azQavMXdwbf4aVMWlt7tTurpnzx5WVps4rkNPTxc9vTmk8/q2z26TiqLSXexmeKSXX/21t3Ps6FHmZqZZPzZ2Ye/zgoAHHvgRQ2ObOHPqOHa7deHY8vIS+a4CmUyGi3ftJZXsIKcPPHw/f/DxT2MYOoae5NZ/+ha1xirr1o3yowfvfW4TVgTG1q3ll3/pbaiCQr1RA2BldYVPffqTeGHAseMn6SoOcvPr3sLK/DJ/9Ed/wJGjHVKqo0eO02rXWS0t4Xke11//EgDmF+aZm12l1WpxzYsuR5IEenqKrFmzhnbbYu683M/uXbsw9CTdvT1891u3slpe4f0feh+TU2eYnOwEQNe+7DrkWGbizBT7du1EEiOi876BJImcHj9JPpPt9GoGzyGvoiDw9X/8Zwr5IqLskzA0zk1MEBJjmJ2e4yj06R8YYvP2vXzta1/rVEjFMZlsir/+/GcZGR7l4YcfJo59KuUmcSSzbetuHn3kKTTZ4NjTR/i7f/g6Z05PIgrqeaTk3y4njOMY4UGdOBGiDEK5XMYPWyA4KGp8/q9CeL4M2bJDWnYdWWySjiMGz6OvTy6cZnHuNMN9GprkoCgx09OTyAo8Ov4oADdc/EpymQxBEGKaCQbNYVSp09fcTllMTlfp6t5DHMGxY+PYtoUVz3F2da6z9lsu4coX72FsfT/1aoVX7L7hwn08ce4AAhGCJHX0rhEwkymeOvcULaeTHLhy01XoRrLTAqBISIqKKKfI5ovMzEyTSaWplHzCWMcLHeYXnyEIQwb6ukmmEghyElnViaUEs0tVmq02uqYhKyKaqtJstBAFl3xiGEnSEYx2R6pQ14niiEQqiRt453kwQhr1Jq7T6cVPprN0d3Xh+T5eEJ7nGrAQxQhD7yKwdcJmFTGMkEWVpJFiYqaOE3SxbvMWkqZCFEWMj48jiiKja9eSzaboLRaYPncMpzGDKtQh8pAVFcMw0c0impqHWIdQQVEVFFVFUVSKxV7UZAbV1DBMAUmyiAWXMGojyw6K7CA4VXKmgi5GyFHAytIKcwt1XM+gXJOQzbW0gm6MzCZS+R30rrmEkQ27aQUOyXSanTt3EoQ+jtXCbluI2RDrXJJ7HpnjZa97F5tHx/jk+95JefbUvwCU4jj+V4PFZ/31/5VA8mdhG37+sX8ttvhp1U1+EiPvz/qefxb7f/saP8v8/+WD15/FfpqFjapzxO1ONvbZ4DYMYwLP49jRpykU8mi6QrVeId+Vp9Gs0ayvMjk5wbZdu9ixdy+vfMV1vPhFl6GpcPL4UTZuXMvNr70Jy/K4/PJr2Ll7L+VKHVUzWVhaZmFmiiiOQNFBTSBIciegCSOOHDpM4Hp4roukKoQC3P3De7niiivwA59cPsP6daMkk0mS6QyeY6NIAp7T5qknHuXk0VMEbki93uKRxw+QTmo0ahVcx6dascgXUgwN9KBrMsW+IlHsU6vXaLXbLC7NMzd3llptlSjqBFiSnqXRckkYGnJgcell+xlbt4GBwTWkM2ncwGV+Zoq0oVGaX6Jer7Hz0itQdJUn7v4mTz9+gMsuu4KpuQU2bdvO3n17OH3iKEk1wm4soekis3MzjI2tR890EwceatBEQCJf7CJMa5Q+9MtI45NM3/8EspxAUUyCIKJaa3LnnT/Asdod5zVqE0cSPcU1xEJMMpnBajtYbRdNNZAkidVyiTAMEWSRwHNxrTr16ioHn3ichx5+iJiIV95wA82mTRALDA8Po2oKjz7xGILYKQMqdvUTix6l0hLNZpM//cz/xPMEJqcm+cY3vo4sS1hWG0EMGRjspVEvcfTw0ywuLCKKEl/60pdx3BbNZp1ypdwheZBUEokEru+jaQrr142hqiKqIpFKpJibn+HQ4ac5euQIkhQRr1TJXrqHWrVM7DQJh64h6N5HLEiIeppMtoDrhawd28jScom777ub//GRW9ixdTuGLlMur5DL5chnM/zgB99h4sQJ4ihEUiTyxQJB7LJ9+2aeeOwhVkqLzM4sYLddSuUVunuynDw9Ti6b5+H7H2RldhHL8hCQOXjwacafOcX46VMgRghSzOrqCvVaBV1VKGS7sBoujz9ygDiOEKQQRRcZGB5gdP16coVuNq7bjq5rmIZK4IqcOHqCWrXKzLkpNq4b5dU3vJL+nh6uuPRy7rrjLp4ZH+fIkSNs2boZVZNpNtrs338FGzZsZGTtGp468BAbN44xtn6UnsEBSuUSExNnKXYVCEOPdevXI0oSmqZx5PARdu7cw+nTE5ybnGRqaoqenl4qlQaECqurdU6eGOdbt32LRFKjf2ANC0srnDw5zszsPENDfbiOg1Wvk8rkyXUNYNsOpfIyTrtEHIPrdohVABR1baeMNgTP8wh8lSgMqNZWkCSFdCp/XurJx/GaaKrSKdUlRhQEpNBBOl9+jRBTq1VpNpuEQUgYxeh6As8NURQd34sIYw/LaVJv1hFFhYSuUCut4LQaBD4IgtzRSvVtkmaCVDIJUUTC1DAMhXarQeCHtNttmo0qllVHEHwURSQQwDBTEEdYzQqKnMALGjh+GQGpU9oedkioVF1HMRKEUUylXCJlKBB6iAiohkkkKkRugzgKaLsuRiaNKnm0WlViUUCQZURBptlexTA1FDGFpOoIokJ5dYl2fRUBCIOgQ37nd8iuRFGgWi0hSh2dWcf1SKQSIAREkY8kSsiy3kkkKjqIKrKaQBAkTNPo1GXFAn4Iua4iyB1G03qtQiqdIpVJU65WWDu6ljAMEAWZu+68H0ky8IIYx3VQNIk4cLFbTSYnxlmYm6anu4tGrYTbtujvH0LTTDQ9QbVWIYrA9TuOe8I0KWS7EIVOkF2qOSSzYzTqDZ71k4QYDj11EIWA6vISN930MkZGevG95wVhscDS1BRxAEcPHejId5230C5hNcsMDA7z+NOnuHj3HgC+/Ldf4X/+5Z9x6umneevNv0B9qcz82Qkuu/JyHj/4xIXzXVegUm1yz913ImGTSj1HCPQrv/EuEFQ+dsuf4Lkqt9zy56hRg8WFSRzHQZIkPvXJTxA4KVZWSrScqQ4yDFiWzZ13PMBXv/J1atUG1o5N9PzcK/CCEN1MkU53SqtPHH+G6nKVV7/4Cj7z6U8Tix3N1Jvf9IYL76NY7OZLX/wyH3jvBzFNHavZeM7RDHXWbdjGwMYsC9MHEaPkc+smytx448/x0Y9+lP6BIoLdplGu0dW9FknpIMxh6DE7O4sbybzjnW+l0WigyAl27biMwaEeyuUqe/bso9mq89GP/AEPPvAot3zskxSLRcTYY2SomytedAUbNvXRtldA8ADxJ1aSCQLEKyL+tyXagyWqpRUMTUVTkgS+ROCLKHISPZlFUhVM00CTZFRZp2mF9K9Zx+v3vx6A2088RikQwJqjvHiWhemz2M06f/X9z2F5FpIosTO/g1aryZYtW5FllbSZ5lV7Xg3Atw7fTstrsFSehFhnx661qLrHXz3QQc+TmsH+0ctIpnKkEkkMTaGYzHPp+o6W7l/c9Xl8xA4zue/jeR7vNH6VX73vtwAYzA9w9daXEoYiMRJty0GWdETBwvciLr7kCrbt3kQoOEiGQTLTRz4/gpTIEUsSUdzpl5cEAcf2OXvmHKHv4voRQRwTAGYyRzLZRaMxjyz62C0PTVHwfR9RkpAVmXQ6QzKZRIhivHaLKHBwrQa1SoV2s47neaiGSSqVxLJB0TNoukTkL2Fbq4gKhKKCG0gcOxtz5HQNJ/KYmphAkiR6e3uxbBvdMFiYm0KVQpz6DLlEC8VMome60FNZLLeN26piN0u4jRXcVgm7XqVZXsVu1KksLdEo13BaNu26Rbvp4ocCjuPTalhYLZuaFVKquZQaMTNLTWK9n2ZcwOjezODoHrI961m3dS/ZQhHba1KrV5ifX2LfnktoWxZmMsmGDesRBVhcOYWY0jFOJ9m8di/zlRzJ/ktwI4UHvvUXBEGAvDVGvCj4sef4gk/+X7zv879Kn+7Pav9pgldBiInjkE4GMQJRICK+MH7yec/Vs/+0TGXPf92zjFjPHvu36uyfm8RmeamK69ooRgLHjckks9QqVQwzRaY4gJnLcezkMaqrJRbmzlGt1FBlk5dedz12u029usqm9WP86J578fyIRrOJpmv09feRyhfwXIt6ZRkBl9D38B0HWZHYtGMrWiKJY7fJp3Pc/cP72L1nN24Qs3H9Bk4fP8rSSolisQvX9RkaHaJt1entLTA4PISakhha00tgW+iyRk//CN39Q9iejakoVKsOteoyC1PTnHrqaVbnzpJOpVl/0UYuu/JFpLJ56ktl4ihCFCI0WSOOfE6eeBrXbbMwO8fK8gqu77B20170ZJLllQVsy2WptMDExAQzswtkMzmKhQK16gKFvE4qlabtWpQaNqNbt+N7DnK6B1VPsGXLFp555hxuYIBqEi2cpm2rWOUSseszcu211D/1QcbKVYyGTWm2hCHLiHKVN/38G5A0HdNIcPbEKYJAoOVaJM0MxC5RENNslPnyl77AuXMzqFKMJmlIKLSaqzhuTKHYz76Ld3HF5ZeSTnX64lQjAYGNbKo4vsu1V1yGbQdoapK23cBqe4wNr2F2ZpqR4WGShsm6kRFe/pKXY9VruO0ShAGqKJHPprl433bu/9G92I7P29/5K2SSBpqsceDAEXzAj2zCKKar0IuqGRw5cRxBNkDUufuuu0iaGuvHhtmzdxfC4TPEa/rQBnpRVZlY0zHNPC3fwUybuI2Q0PXR0hCQYGh4jBuuvpYH7vk+jt+mbtuYwTylhkU+n2Xf3svxw5iZqTP4js3M9Apuy8WPQ15+46vo7h3k6Mnj5Pt6GFm3EVFNoikSt37jVm549Y2EUoTTarK8sszNb7qZV9z8GjZsuYgwFogEib6BHvJdXZjpHIdPHOfs6dNECBw7eAw5kgg8DyEKkWWBkQ3rkE2VtevWUmvUaLctNmzdSRSJHHzySfw4YHp2mdOnJlhZXOaqF12FY1XZvm0TXtDEclyG145QqZQ4e3YcXZXYuedSTpwYJ4xCPN+ir7cXWdPo6unju7c/xA+/fxettsUrbnwVqVyaxYVpWo0WkiBz8MBTPPrQQzRqFa5+0X4KhT5Onz7N+nUjqJLOY489QSZt0qzVGRzspVqxUcw0ydjhsYefZGV+lUSmn8LAJszcAIoko8gi7dZ5lIZuEECSBGRJRvJc6p5L2tRwg5AACUlVEWUZQVKwvDae61GvlZEVE9sOCInQjTRxGFHs6SOKfAQhRlZEWraDZiYIHvk2zXv+saMLm8ii6wmCKKRptSh09ZDJFHFcu1NqbNtIIh2N1Tg+P2BleRXTTJBKJ/Fdm0QiQzbbS+BLSJKEpqiEoU8cCyhKgjB0UJUkkpDEslrIWhJJlBGiGAERRfARQxddEgnPlxtrmowkgChJHRIhUcAwkgixTBCppNMZFEXpMDDHEYl0LwQhi7PHIIyQRMjmCuhmDj2RIvA9BCR0w0SWVXzPp6fYBVGIZ0doukIQRuiqgtVqEoUhotghbeskMiGKBUIivCBCNxK4XoclW0RCRCZGxHUcoiCgsrKIZ5WxPBtZVVE1kxe/7DpKyyvETpVCziCSVQRB4ulDxygtLaLLGq5dIZNPo2ki11+zH9fzWYjqlCSfMEyinpfBsawyqj2PqijIskyzVeXLX/5nXnnjnQRBJ8gLk0mSY+uZW6zRt2YdVatCw23hxc/vdfK44fU3oSgi6Vwa4Xk9r3PzE7hYCJrP+3/z7XzyE58mmUxSrlT53g++ix15/NYH3s4ffuYP+PXf/j1qbg3TeE7KpTQzx/79V/PWd/4qkirhWg2gI3Vz8Mhh3v/+97C4fI7v3vYVzhx+kC98/e/4xre/A8Bb3vhGtoxu5/TxZ9i4ZR+h0ket0TlfIObDH383w8NDGGrM6kt3sf2W9xNHMbNTM7z4ymsA+MQffYI77/kOjzz2GPmMhuNUeevbf5GZhXmymfN6rEHI9Te+mLf+8s186StfRZAMKpUyAPOLc8SSTHffNtZv2w+yduHe0pkkm7fv4GN/+HHqzQVaiAxtGcIJVy+g17KWobtrgDOHDzI7tUQu3csHPvwh+tb3keodZG7+LH/x55/BNLt416++g6suv5JCtotcQSbZkyPQUmwYHaNmqTRmZygfvh85cFlZWqZSKlNeLVFeLV3wY+ymzeLHmqx0z+EkXNR0CjOdR8En9CNiQeNjt95C5s0G2V/IMb86S7NdRpIVjJRJvdHkva96D93pHmzP5ndu/xMmnDYbh9KkUw1ufeprfOnA3wHwC1e8ha3rdlOq1pElmUNPPklvb5H33PBuElqC1VaJb8zdSsVZQiDE8gP+9L5v87UD9wPwG1fdzGj/ZuwYhMjCAzQ9wUfeeAuSKHFi7iS//Lm3M1k6gSanqbeXeOrzh1h8ehmAj7zhFkRFwBc0xFjCVBREKcZp1VEVBS8M8AKPNWsGcZpNlmcXSBhpGotTHQRdjAgDG1lV0CSR/RdfQrbQi9v2iW0bq9akVbeIIpVc1zCWFSEJMvVGE0XV8aw2QbNO4EeUSqtERBR6urFch3Suj1SugJ7QUWQVu1nGcyxMPUWAS+y2Ebw2oVXHDgIUWeHcxBIvumYfIxsHaTRshjdtxrJq6KqMiEDgefT0DLG6eI7+7iTdPb1EMfhtm2Z5nsB1CZ0mUdCk3W4S+DKODZ4j4LkiomAwO1emVg8o1Xy0RA+ttghKnkDOISX7ERJr6Fu/BzW7loqdQc2sYcfuK5HkFJWGzczMIrqaIBQUkpkuCsUCQWCxurqCISWo1soEdoBtRYhCjgPnHkBxdAIxwBQlEr1rePUb38uPbvs23/jkO+BSC+8aUH+CP/8vAKfn9Z0K4r/v/1/QWP0ptFZ/DNw6f60L43/T/r1Y5QIZ1QuuJ8TivxjEnQS1AOdH9C/Gj1332V5YUfixuOmFia9ne3N/1nv9Weyna4b4b/upTBAEojhCkVPksjGJzduxWk1yPblOv4OigiIgiQKPHXyC4cFhNEWjVK0yNjZMEC5w9NhxLr9kH488+ihXXHklL3/FS/mHf/gmo+vGMBMJFE0l8jvlNhExgiASCS6qruN5HkYiQbWySsJMEscCmzasB+CZUydp1auouokgRBi6xvDwAIqooegaiihyrjbJhnWbqNcaSIrCjp1bePLAoyQMlZ7ebmLfo1Qtg5SmaUHPYBeOZYMgMX7sMJois/Gii1iyWkSAbiRouEtsXLeZpflZrNYScwsLzEzNMDo2RC7fj91ycN2Avv5+2l6NbVt2MDk1Tatt44URyUwS6ATBJ8af4SLRYH5hgVa9zCWFtXT1FGnWawRxmVJ5lZH0AI3xu0kPbeVFN7+Jxx57FLfdwu1P8RZthj9b6Kbn9DwH946wY2QARdEQhBDHcVg7OoqiaYiSeL53EVZWVti4aYx3vuP/wnVbCNi0WiVUQydpFohFg9JSla5CFsdtIUkSUeyjaQL1Up18scixw4fZOLaeBx87wE033YQqa7T8Fm4EG7dcxOGjh3nwwbvZtH0zfX3dWG0Xu60jtF0kRUFJphAQySZTKGJEubyKo8ooisnFF1+MGIOuJRFQQIAo8rnmqssJQpc7bv8eL776SgpdBWzHpXroCIWZVfjm5/DDCFES8T2fYPIbdIlJhO5rkUybemmF2nKL/t4xrn/FlRx78lFks42oNrjs8is5fVQk09VPSITtWciqSC43cL78uSMlAzGP/OgB8rkCu3fswEwksFtNDE2nEvq8/nWvQRRF5mam2bp1C0/dfz87xc30rNmIKHT0X4Q4pt20SKVTKLLExg0bUTZEHD+hoao6J4+fZPO2TbSsBpVyFdU0Seo6QRRxxVWXUS5X8Jwah548iO+6mEYC14uoBhW8wCNpJugpjjA9tcJFW7Zw+PBxuoopQCKVTFOr1SkUurjkkosJQo90Jkscq0iCTGV1hRdfeQVnp85SLa+iCDFDvd2cnZxEklSGhoaIogBF1KlUmpimyQMP3cbVV1/F+PhxWg2Lqy6/glMnT3LkyBEEVeY1P3cD7bO3I9iLbNq+BV1O0K53WGYHBvsI4yKrpUWMZMchflYmwvd9FEVBSyTRdB0xFgkdm5gYyTDxvQCIMLUskibQbC8R0iSdToAUU69WSKVEEAQ0TUeSZKIwRFNVdE2hEcWdZzuQiGMREY3A9UkmMtTrdRRJRT7fl2qYCXzfIgwjVFWlVquRSJr09nbjOg6SKJNJ5wiJEISwgwyHMUHgAgKO62EaBoIoEfgRmqYTxyHukZMAxFs2ABBFLoaRJFZDIklDk+IL64EgEMYgCBJWq07K1IhVibbV7OhjRz6qbBJFLp4f0dOzmVjsaFN39Jo705imSSx0HIWl5QWy2SyeZxP6HgkjSYyHrModhDZ6brPvqHIEBKGDEIk4rXanF1jXUUQIZBlZlnB9D1EU6e4bRBRl8kWdTKHDP+C6HlEUYpoGC8srpNLzmObcAAAgAElEQVQjWHUXSYZEymTL9m3EQYChQipZwHJ8Dh18mn2797JcWeSjS3cA8HvDfUy2JgG4o3Y/sydW+fz2nydjZBhdO8QPhR8ytG+YI284BsAXR49QvLKI5n+M3JEcHx77LXLZArblXtjr/nTpr+jt74EJEXE9LBxcvnCsf3ALR8KzfGH1q4x8fgd/6H6CLe/bxIFbnuL4ieO8/LU3kkwmCYIAx3FIFBLoL9Wpf70TZN504I0E7/H5cP33uVq+EkntJGo2bNlAa7TNV/7+bxFE+M2PfRi/3Vl3gEsu28fH/8f/zQff//s8M3SCAXUIWVM5See5KfVWuOaPruKJxJPsb21icHCIxx97ikN/dQizK0HpkjLivSJuy+XdH/od3vN778M0Db7yvU5g/Nb3/AJ33HMnHIW7mncx35pD3AX+toDfnPx1ctks9tISiaTCpxf+kKn2DHHk02o/JyP0Z0tf4NDx07xr3Ts4/cwMuW15bpn6OKIoMEOHmfkHtR/w1b/7Ktde+xIefcv9vP7q11Ov1S7M8cnKn5G9Icuvjf8Krmnx29/5XW589Y0EnsIHP/ghPveXf8HrH/tFHNcnnYDq8jxyI8+P3n6A9lL7x/yWP/nsZ/gTPnPh/5FrRrjkNy8lDAO+KPwNzUazo8V83n4v81FSPSliYkRBItZj9rZ28vYNb+MvT/wFp+ae4VWf/XVkXeoEv2Hn88lvzlF+2yqrKwt0FbqYm5/i1BXH+XLii9h5h93v2c2jf/Iox5fG+Y3vvY/33qMQuiHh+SB78PJuTr5lid9O3kIYR0SBj2gqiILA60bfwB//4qf4nb/9IN958na+8+TtKAkF3/Iv9CK/95Xv5qb9N+H5LpIYsrA4Qy6dJZnOEsc+bcujXm9R7C7iOi0M3SCbT+MFLfRshggNw5CJ4jaqqqMatc7vq5RCS0h4XhstoQIyltME4vPkejKVch0/iMlns8zPzdDdP0ChUMD3fCRBQBUhsOrEUUgzijGNfCfArczTu2Y9aV2mXZrDay4iySJC7BN5AmcWPfo2ZBkbKCIqMrIsMji4htOnzzA6uo44DkllNNyWgkiIELuEoYsXmTihQbMR0bJlRkbHSCc7/bszzzzD4NAQuqYTRTH9+hiqppLN5zFNE2d8gnOzM4yOjRKGAWuGRpmemcLzE+y5+MVEgkcQizz+5KNcfdUVROcl1KIwIPRcuvsGKK9UURApV5dp2Q6PPX0QgP0X7+Wyyy4mfMqjWO3h6Nw4u/dv4vOf/Uuuv+ltPH7fPzJ3/G7W7r4ON1AQ1f9GIH+SPQu0/Z8q+w3DEFn+/0/I+J8GeX0h89YL9Zv+d/SZ/q1rvbC39fnjX62lf7bk6rzG37nJQ5TLSzRbFaqVCqsrqwiiQKVS4Y7bv8/uXbvZvnMnlUaDpaUyjz7+OAgx1WqN+fl5enp7aDRqlEolrn/ZSxhdO8zxEydYXFoG0eP4yUM4boModrAtmyAKEQQB17JJJxPYjsOBJ57goo1jmKaJa7VoNBuEMSjy+Ux/5DMzNcPxI8cpV6qYySSu62FZNpu3b6fZqnPpvr0MDfVjGjq1eoOBwX7S2S5sL2JpeZFCby/FYjdSHJPLplgplckWCsiqRoxEqtDFzHKNmiuydstehkZG2Lp1C4FncebUERRRZN26jZTKNUzdYOLsBLVaHUFWSKQy7Nq9h+mJCRzbot22mF+ZY2zzei5/+Q3IhoxpJuju7eeirVux7RbHploYbovJh/+JO+68g1q9gplQUST43N98gdrvvIHT73w528+soj/yDNbkPO22harqxAJ4fqeXMHA9BElmYnIa23VAFNENDUVTUVQF13VZWJ4nEhzuufd7HHrqESYnJpAVlVarhWu3Ka2W8RyP3bt3kc1leOMbbmZpcY4v/c0XUWUV3UwQhD5vetMb2L9/L17Torq8wsTJ05w9cZZkMoPnd5irl0olFhZnsezOpijKBpKi0lXIQdwpiRPFDsP1/MIcxUIXURDwyhteQSLRSXQoy2W6JpfRP/s+7ESCRx99HFlSSSbT+Ce+RXDqVtrf/wj+xMPoYZOBgSE832b33k3svvRSqs0WU1MzfPHzX6Svt4f5hQVkVWV4dBREAUU2iMIQq11DFBRCH6688ko2bBjDdRzKpTKVShVZkjBM8/9h772jJDvrO+/Pc3Oq3N3VOYfJmhnNjFCWEEGAwNhknLCNE8Zr4/UutvHrF0deH9trG3sBr9evMRgEmGgLJBGEQEJZM5qcemY6566uXDff949qCSEjG2zweffsPufUOd1Vde+teurWref7C58vkgyXZy5z+JpriYXg5ltuQQJWlha5dOECgesyPzuDZdrEUcjlSxdRFZVYThgYGmRoeIRyuZ0tTZDo7+tDVWRsy0JTFMIwJJPLUihkuOmmG3jxS15MJldgaGyY/YcPohgaX7//qwyO9jIxOYCmxywtTtNR6GRhfpHOzi7OnT1P4PkkkU+r2aS0XkZCYnFhgcceeYjNjRW6e4qYpsHRo0+ysrLC5OROdkztQNVUkiTm1JknsRxY31xgZHSAhx76Brt37aW0tcXJ4yfYvXs3d7zqlRy6+hDVWhPZLqA2FvjC3feyub7Bpelp0k6OlcV1ZucSLPUqzp1p949JokSz2UTXdSqVCkESQ+DiRTKBW0URHrIko6k6XqtBtXwZIUXIigOBQ6NZR9o+t0ubpbaNjKwQvGkY8eNTbX9kt06SxMRRhOuVkSQPhIsk+8SxhGGYyEqCbplIigxCQlUNBBKe55PL5WjUm/he3O6/d1vMz89Tb9S+2Ysb+MRhQBglGJaNokjt6g1JolQqoWkaNFskjSaqqqCqCppuECHjpLMIEuLta7Prum1/S9Mk8D1s22R1ZRlIUBSFcqWCqipIkkcQlBCyTyTFBEEbsOe2mvi+1/YXDEPq9TpJkuA4DpqqPpOx8n2PtbU1Go06cRxT6CiQJAkpp50hDqMQSQJN1cjls6iqgqxIIBLqjQZh6BMFHknoUa03qDWa+FG8De0KSWIZEokwDBmfHAPJwDAz/N3/+0GiBBRFRkgJp06eodmsEcZNDr9gL5oRIkkyzUYDkgQBGNuZTVVRUDWdjYZGecti5vIVKlvrtFyXZ5pehSCVcp7pO045ecJAoGnfzK5KQkKWFSQSwjAhib8JbCr0TNGo+Rw/fhzX9anVGhSPdPGS//FC+m/tR8tqBEFAynH46bf8FB1v6GT86olntj9w4ABx6Lf9i2UJVTa3f2ITDv7Cfl7wW0fI78qTJCCpEtmJLAd/6SB/9td/yuWZK/yn//xL9Pf3oSoKZ0+feqYXtdlsomoqn/rkZzC0DM1zV/joe/7yme9px0iBF73vZkZePoTZsT1fusZN19/A+//0vbzp7W+k2WhuT5EgAYIoRNNUhOCZhZ1tWxBHNOrtUuxU+ptlz1GU0PJcJKFx4/UvZ33jIhCxtDRPvA2cCqOIm2+5hYSEz3z20/zXd/4qQ8Pf9Ir1fY/AD9BUlUw2w8GDB9ksbbJRqvP2X/hldEVGVSQEgtALsQyHtJ19jiPC84/2dLXTMGEUYpraNxc4z4z2uREn7ayOoii88+d+lgd/8zO8/pYfxOlxiKMERZfJT6Q58FM7ueVd1yBLIVsbS6Qdi6HBXubmrlCpVDAMk859RW79/Zvpu7EHq8MgCiLShs2N4/v5qzf9Cte8bR+WkyFBEPgeJDFJHLcTBqrKD9/wBu777a9w47U3Y+YNIi/CyOj0Hu7j1nffwjte/g5kKUGVdVQFbMsknckSRhKmncK20zzy8OP87f/8IIEX4HkeqXQK1/cwbYs4lvH9GD9oEYcacaSgyCaSMPB9gWkWiGMN142wTB1ZFsiKRBgG5HJ50rZJy21R6Co+c64IIfCFjp3vQbXzCC1FKp1FVnSiRKbQ2dHuo/cCIm8TKa4hqxqgUa6GbNYTNN3m4vQVJCGzurREEAR0dhVZWlokX8gjYWA6Pcwv+XhBhiDIcvxMCT29AzO9k6sO3ITnm8RJCiFsevrGcZwu/EDFC1R8X6K3d5SZK8usrVYws50cueFmrGyB1VKVaqNOJp8n25Ehk7fxgxDHcejvH8APY86eu8DGxgaGpjG7vM7XHjnGEyfP87kvfJ5jj32Nr37xPiobG5Q3S3z96w/QarUI803S8z1cffgQ6+vr/Pbv/RFKboy+gcN88YMfwT2zhKR95wCn59MHz3f/s7XF84m/76Xm+HbH/l7t698ynqu3JEn6FuH6vfJ7/ffMofh+TP73Y7RarfYl9fk+jPhfbor+bt7ncz+Y5277bIBT67PvgsBFnbp1mzSc0Cq1WFg8gaXlyeRytLw2YdM0LS5enGZsbJxEVkgAVYILp8/w+JOPMjw8wvpGmb6uDKpmoKo6+UIn1comlpOhZ3AIP4jwW1WKxSKPPPYYhw4dIo4TEklCFjKLs/P0DXRRq7usLS1hGxqalWJjZYFz585z5NrreewbX+PAVQdJF3LUanU6u7qIkwjD1FhdXsJJF3BSGVYWZrh0/hwJETumxlhdWSeKWvQODvCNB5/ijpfdRqlR4eTRk6TsNPsPXUWp3KK/rwv3D+4BoTB7RwErnca2U5RLJboGh1memSHytwAdRdOw0gUUJcP5s09QLHayXiqTy+VYXpjnhptuZP7KRbqKfaxv1licvciBI9ei53qQ3C2+/tAxDh25BomQsNWg4oYUhIvuLhDc8k5S6TRhLEgkmV95+6/x+3/wbjRDprblIn3yTvIfuZ+twzvIDPeTqAqSLFMplymtrdM33E+14tPZlaZe80ilM7SaJSwzh59E+K5Ly2+Rz2Twmi6fvPOjvPqNb8YyTdaXFolFu6QuCgMKuSyl0iZxnOA4bQri1kaJXGcHd33+Ll7xspfxoQ99hNe/7o3EScDK6gKq5jAyMoCUCIQktYmjkiCOFP7ive/lFa94BYoMXV1deEGjbaFQa/LxT/wDP/WWH8MPY1TDhCQiOT2NfPYy/v/zdjaLDnp2hP/2h7/LO3/tP2Nl8wRf+lW8tctY9jiSkSJ2KwgzC/t+iDVfI1voJ2Nn+KFXvpqXv/Tl3JH6GFrfIeRsP2Es4dXq1GtlVpYWqdfq5Dv6uHjpEq953Q9QrmzgmGnipL14C6OQVquOrAiy2Q5mZxcZGuzD93zSjsmD33iQw4cPUyqVkCSJp546w60vvL4t3GMVM+VALDhz6izZTIqa32Ln2BizM1douQ0mpnagqirVco1yuUw6m0EWEoqmImkaSRyCJNCETNTyCJOIpeV53GaDZr1J3+AY585e5LrrruXeL97NoYP7SaVtllZWaTZC9uzeyef+8bNMTA4zNroLy1RZWl6mr78NfolDweUrl7Fti6WlJYYGBrg4fZYdUzsQioxpmJw8foqxsVEW5xaQdJVde/ewtrxKvakxNZgQXbmHxm0fwU6lWFxY5+8//HEmJ3dx+4vHyZgjqNoyuc4P43ppwmQfSZK0wWCNKloUIme6CSvztJplhNGNblhYWsT66hyaWSRXyBB4EaqqUKpskUkX8L0ysmqhyAqtRh1FkbFTaTy/xtYX7kRVdTIv/WHCYLukuFFD09IIAtbW5ij2DSGQSbYBXGEQtRe2qoznuciSRZw0adQ3yWU78IIETdNoNOuYhk55c51sVz9RIlAijzCO0DSTMIzacKknTpAkMfq1B0mAGIEk65iqRHl9gXRXP4QBlUqFTL6AX68gaQZCSLjNBoaZRlYEvh+gKjobm4vk0jkUw6DaauDoBq1mAyEJDF0nigW1chnTdrZhVTJBEGz7E7skiYJhyURRTK1cprOjiyCKCKIIVbYRUtBudUk0EBHVahXHafc/CmLCMEBTpG0+gYkkFCCh5dZx/ZBGLWRtbY0dO8eYPneaqd2H2Noq4VgKtmUSxgGtWg3CiHS+iFCldt9tklCvB5w+8RSHr7kaIT9FEL2F2256Ex/5h78knevDtHNEnkFvf56FK+dYWf04qZRFov8AGbuLjfIyHcUsfphgyCaa1vYLnptdIBEx+VwGhYRqaYNf/80/4r//jz/m4rnjzJ66RHZ0H4uXz7F//37MbBfT587T05fm6w/cx++++884+sR92FaOu/7pbl71qlezVV3Fshz+5m/+hp9+688iyTH3fupO7njVKwktm7/84/fxi7/4i7znPX/Ia17zGvbs39XOyKkqoaJgxhJ33fUFrr/hCLqZ4LoCJYyo1Ssomswf/tH7+e3/6zd4w+tfx8f/8WNktB7OnnqCsb+6E2KNn5md57+99/e5/o7r+ce7vsSxY09w7TVXYZmCdH6I9/3Ze3nzj/wITkeO6voqQdyiq9iDJKeIExe3sk4ukyaUDeI4wlAdps+fxvPKjE3sJ9YEQlGRYwVNiQmEhtf0iF0frzlPoneQzuRYW5lGFam2n6Wiomg6lghJp9PU63WEEKwtr6HKTRJJx7DzbFXXee+fv5/3vOcPSSIQMiwsnCNv+th2BXe1zMy5dUZu+EFSPW2o0tOWPP6sQvzHKhxyCbQWXuiRTqdJEok4iiFISKQASRbIskq5XCGXTtP0PSKRYKsOUdwg9FvIkkp5c5587yCBKyPCMrGkYToZqhuXiarTJDEIyWatFGJnezCsLKHfZHWtzOjYTs6eO8Pg8AgPPXgPmysr/NDLJmh5Onfdc4Ife8M+MPPUgg4K+Q5ULUb4HjVPYNk2zZaPkFziUPDU0VPs2bETp2AiKZ2EQQORKJw6c5Sr9u7j0UeOcfXhffiuh6xoCNUkiupoksF9X76fF956C2HYRNdtzl08z9jECEpcR0ga5Wqdru4irUaNarlKKpMjiGPq5Qa2bRFFIYVCntWNDQxdQ5bbN1WFSmkD00nR8iJURUMQEQYRlmET0SIIBHHSviYmSUichCiKQpwECD8gKJ8mCbdQRIb7nzjDvt0HKNV1hscn0S2bIAgJ3QZLS0sUCp1sbG5QKKQ5e+o0I+PjtBplFHxarsfo5AGW1+ZJ2WlQNC6ev8T46AiaKpBVgzAMiaKYlJOmWqvz+ONPcN3112FYJsuLs3R3deM2Xba2yoyMDLG8vIphasiqgiBia7NGKpVGtdvXtXq5gkzI6VPHOH1uGkTM3ok8eybznDhfRZFBUnWePFmis5jHFmle3vFaHn3h5xgczlLeSqi2qgx3DOPfWcM0C/T/cTci+ZcF7LPX7k+f99/u8WfW9Nt2Os/oiOcpif3/pW56jpXQv1rO+5znf4t9TvxNKNa3m7d/tu/nHvs7HE/Po2GZ37XKlt/97nf/mw76Hz3CMHw3fPOkEgnPquX+Vr+mZ4/vRQTjX4rChOfugzhE6hhGUWTiCGauzBMlCV3FPnRDJpEMVFlhfW0VJ5siQWBoJkJIoAiE0NnaWEVOQjJph4X1Mv3FLgxNIduZZ2V5lZ7eLnRVYebyZXr7e3C9Fj3d/aiKSam0iqnrRFGE5VgkiYIkKzx17CiT42N87WsPMDQyxOnTF4hjmSTyKZVLuH7A+M69yJpgYXGdx584SSGrkSQRtmlw7sxpZB0GB8fR9XZG0UynmbuyyuTYOKurC1RLTSRZACqmpZPJdrKxtoZ2dBFZSORffytBdR1JJBRHplhZXCSdyhNGMrV6jShsIUcaq6uLZDvS1Jshu3fvZHl5nTA2uHLhDIqqIYREZ0eBiakduM0ai0sLOMVexoaHiAKPOAmI5ZiOQoHLS2t0aD5r88s4o1M0jQgpULnpxTcSxhFHHzvFz/7ML/D633knzduvxXzoON7nHyDWBHJnikRAsXcAITuk0jKry4t85Z77cdI2itoOQnz0Q59mfKAHp7OIrCiUVxYZ3zGJqqr4noRsCDoKRba21nEcmyAEwzSoV0rousrl2Tl6+weQFIm045C2HUZGhlndKHHv3V9hz85xUo6D5zVQFZuPfvhTTO4cQVYUfN/l2iN7qZUr3P35ezlw+BCZTJY4ipCBqR07US2DjfUKaiKhf+NxorV1Un/5q5Q6Nfp6s8zOLVLoyHPg4CGEJOMe+xCyV0fa9TLkwiCS2UWr1UCeexh74xSKk6FlOtz4ohexvDrPzuBr6IM34McyrdIaqq4g6wqbpRI3XH8DK4vzFHIFKqUSi/PnuHhxHoRMtVzi/i/fy8Ej16AaOnHgEbbqbGxutjPbpkFnsZtKtU69XieTzUCi4bpNkqQNDrp0fhpNFShqOzOWhC5PHT3Dnqt20dXVw+b6MtWtDRRF4OTyzF68wIVzZxns70eRBbEk8JsNDF1DKArVhovkJ8hCxsykMO0Uhm7w6KMP8tKX3MKFy7OEccTY2ATFYg/1Wo1CZyfdPb3YWYelhQW6Orv43Gc+R+D5bJZK7N2/j0vTl0jbDmZaZe++fdTqIUHsMTe7Rnexm0JHHjOdZWBwEEXIaIrC0ePHsCwLK1gi6thPx8AubEejp7eDgwcP0pHXUZJZ7r3rs+w50O47kWiiq3mWFmYodgwwv3yJznw3oRTSqDXRFRXLEoSJipnpxLJMGrUqupoQo6LI7XPKcbLEYUgQ+liOjaRIbQJvs0E8f5EojpDGDiDJYjvTJMN2BkpICo5h0qhXUSSB57WQVBUhSwjakVs3aBEnkEpliaIEQbuMVzc0atUmhu2gqQqh30JIoCg6jUYDzTQRqkq8sNwmp/b2IIkAWajIekwQOiiWQhLJIKnE20FERUsRhwFxFCJr7T5X160jxHb/Uxhh2BYtP8A0bKIoxnZSsG0/JIk2HCqOYjTDACEIwgghCRRNI04iFEUlCiNsyyLe9sDzPZcgclFUlTiGMApJhMA2jLb1DskzcCRJUpAkmXq5RKNVRTMNwkjFtmwUSaKzM0ejVmFrq0Euk+HC+bMMDvYTxQGy0IgTQdNzMS0bSUAUhTSaDaLIZ3JqgjgRhP4GczPTvOlN76Gnd5DZhQtk0zmmz5zk53/ubejZAtX1z1HstJDUI2Te9/fYx6YRt13PytIltNjmzPlTZLMpurJdrJdbZAo9SIaBRh1dWmfn2F5+5Zd/i59421sZHR0jlTKYuTLD/fd8jdmZWQ4dPMLJp85gajYve/m1nDl9hl9752/yy//pV9F0Ay+u0jc4yKc++xWuv+Zqdu3fg2YVuDj9GK+443UkePQVu9g9sYNzV2Z58IHHKeaKfPXuzzO0Y5i//PMPICcSmlDJp3P86I+8hTe+6bUMDfUyPrqLj33sE/zO7/8XPv3RL/LhD32QxeU5bm4mhJHH8Dt+mPMzs7z5zW9iYnwPf/5nf06j2eAF112LUC0OHX4ho5Pj/N/vfDt6poAXevhRgKppVDeWULU2lIsYzp48jZlzKHR0oAidOKxz/PFHUZIYVZFxg4gkaDF3aY6Pfuiz3HDjzSzMzZKyDAI3QFFtPvC+v+HI1VdjqO1qhzOnp7EtB9sxuXB5juHRHRQ7u/ir972PfftewA03HCJJYro7eilVrxAFKpZR5fhXP0d3Z4oWywg9TaZr7Jn1S7wiiP5ER94R0NJLCF0lbWh4rSalUgnbyvPRj3yIvXv2YBg6tUqFenkNy04RJgmWbRNLEqpioigSLbdEttBPIhmEXhUprJBEPpaVo1LeINc9THWzgqn4KKoLxPgtn1ShG8UwSOcsMpkcqgJyIkMkkcsKMqbM3j2DeFGMkRnE7hhGUVRcT0E10uiqBrJBGLlt27eODjJpEzPTieu20JSAZr1KpbLJ6OgEYSzo6ukiiXx03aLllYnCgDs/8il279rF4PAAQoZKrY6qOhx96hhDI90kQm0TweOIOBKoqkalXCOby9JoNZClCCFLSKpKrd7CMdP4UbsnUCag5YfoTg4QhL6HY6ogdDRNxg8C4qgN6tI1maa/TtbqwW00MB0Ngohm9QKxt4VIZFw34OjxVebXQq46cj2XLpzh0sws6UyOVDpHoZhlY6PM0PAI84uzHLnuZnzfRZY14sTESmXZ3CzRWehG0wyy2SL1+haOo6MbBq1mk0ymA0UTNFsRmZTF1MQUC3MLeG4JzXAwLRNJbvf2G5aNZeexbR2RNIkTnY2NTTTToOX6+NUyn7/7S8zMzmMkJXZMTtKZlxnvTyFI6OqwyWYc0o7G0LDCmWMBe4/0kg27MZQMra4yX/rqPbz4Va+iUrmIcb6fJNik9zYDV7JAaJDICBFsq4FvzV4+nUV8PjLxs3WDkHimdaRNMfzW8d0mwf4jaMDf/Cf51lsi8RyVxNMVE+LbFN0++1nP3v+3pzY/Z78i/tZj852976fnSFGV3/6ONnjW+F9XvH6H232/T55ni9cEIImYn75AEreIggjPa2LaKRq1Ovl8nlw+z/T5S9iWAwnUazVMXWNjbZV6o87E5CQtt8nslWkOHz7E6vo6O3bto1QpYzlpKrUGPd29KIpMGPlEcbBd4qWgKGrbqkISxGGEiGMiz2NscpJWq0W9Xm97GgqX7u4ehKSQchyS2CNlp3n0oYcZGRmmXK5y7vwFOvJpVpaWMHWHo8eOcvHSLLomcc2Ra2g2m9TqVRQpwjIVil3dhFGTcm2NbMakHrVIRnMcm7/IwNgOWr7Hyvwldu3azfzcLPl8hsGhPnQrTa2xhSTL5AqDbJVLZHM54sAnnzLJd/cxMDzK3MISDdfF1iMcxyAIIlJOGsNwqNbqBG6Lznyectnn9KmzDE/tIl0/x+JWk/G+66jhk00VkJCYmhznmhdcjapqYGrYr7yVpZRN9MkvYQiDpVKNizNL3HvvP9Ld0UMmlWHP7jEMswPL1oljl9W1OR578jzXHNxD5PuEWGiKBpLLB//mwwwNjrG0tMrg4ACqquH7LpoqoyoKsiyTzmT58IfuZN++faRSJhvrq5w4eZIDB69iZHgQIQWUKzUG+se4cOE8hw7vRZJBlnW+et+DjI4Nkc/mmdqxs90XqynUq1XiOMa0bGSh4s/OkH7yJEwNs/brP44xMYSTyTG3uMbkjglSKUsBCo0AACAASURBVBOhSGw88TnUhQfAzCJ37EIkErLhINt5kvQgQZAgzz4I809hjb6Qzs5u9CufoGmMYKWznDj6BLlUBk03kBWF8xcuMj45Qj7fgapZmLbBQP8wM7OzTE2OMzY6wuzMPF3FTjRdxXYcch0dxHGMImRq5RopxyaXTaPKCnNX5smkbIgjHnrwYZxUmmKxSBhEnDhxin0H9iIJmUZtlfOnTjAwOYll2UhCRpYVij09dPf0UKnXMGybWmkZVUpouS6JLLFVKlPI51heXSFXKOA4OSpbFXbt3MHDD32Da468gKNPPEl/Xz+tRgvdkJmZnWV8YoooTshks0iySv/AEK7nMTI4QBSFlEubCBJyuR6IfeZnTzMyOoG9nQF0HItzZ07SUSiwurqKaacZHOxHUUBqrbLZVPGsUYQUk893sLS4Rldxmlhy+bu/fYrbbp9ACBs3egle6zFsuwlygUy+QJRISLJEkkA600mj1cAwM8iKIA5jBKINWEoSGs0aSRy3IQzESLKGdO8C4lKDcMjBMnWa0yfaHquThwC2ybvt0mxIkLZFqhACdbu0VlLUZ67BSRLTcj0kSZBsl+Oquk6z2UDTdEzTQkiCRr2O77XLfoVQUFUZkUSI2CecX2mL5e5OFEXBDwW6rNGoz6BJDpIS02o20HUNVVaJ4gRFEtvlwNtZSUVG00w8LwJJsFXaQtdUVBncepU4igCBH0a0mo3t1yUjK21aaJIkaFq7L15R2n3BjUYDy9IobW1hmiZB6BElyfYcySiKiiwDCXhe2yLD8zxURUEgaLlNFFXBMC1U1SBO2vOrKipxHCFJgu6eDhwnxcULF+jt60ZSJOI4wbYtmq06tpVhbW2NMAgwDRMnk6PlBQhZRZYTzp1/lMGpV+MnCvmOKVx/nVwhh1AdhKzQ2zlLFMeEyX60R57i1Kmz2C97EUkIP/LGn+Tnf+FtxEkAsccHP/DXHNg1wZ//0W/RV1CZOngDUWJw75e/zotfdjuyEpPJWCRJzB13vILDR65hdm6aW265ibW1dW54wSt57etew6c/+yEee/IefuWX3sXrXvcaLDvNX73/f3L1gV1IUsInPnY3N934Qj75ic+wb/9+Uh1dBJKCbVvtXtL6Ki+5/QaqjRoHD+7n5MljTE6Okc2maDTq7No9xfLKArmCA7HJ1MQBdCvmR3/8zQwMDmDc/wSKorJ1zX66ugvs3D2CU3B45Q++nJHxcVTD5sN//bfs2rmT21/6EgLJxzazpNMOpqGjqjKqIvCDENt22CyVUFWDdCHPxkaJ7q5uvvTFz3P7HT/A8uoG3d3dCNlgcX6Zs6cv0qg1eetP/yS//Evv4MknjyLJMm99688gSzJLS4t84AMfIJXOg4CpnSMsrcwyOb6XxcVZtirr3HzLtcwvrNDb141hmLTCOhemz+A3GhhygGXEnDt7hZHJmxk5/FKCNqCc5LhC8BcGyQ6foFBHCAnTdChtVTEti3TKRhAwPj4KAhr1Bq4b8PixE4yOjmOaCmHQQJVlWi0XPwjRzTaVXFE0ZCWmVS+j2TqrG6fp676Oza01ct2juPUthF9Ciz1cN2R5eQPfk+jpHsb1aohEp6srw9mzjzG/UGewX0bVBI0wR2fPKJKkEXpNXL+KaclsldfRDBlDT6HIKp7royg6JDKqqgISzaZLOpvHb/mU1jcpbBO9FUVDkhJSTpb+3l5C3yfl2CwvLSCkmEZzk97eDkzdwjAdIr+FaRoYpkmpUsZJpSlttUFyqiy3Cd+aRRwlmKZGrd4k8CM01UDTTVwvYHNjk7ST2q6iUpFkBXW7HFOWlfaaBJUw8FCUCN8PaW7OYSkt3EYZzTCRRcTQcIFz52aZ2rWL4ydPsHffPgr5DEGrwtbqHCIBy0mh2w5SDKVSiTAM6ezsIpNJc/LkSfr7+9nY2GRucY4dU5PUKjV0zQQSXDdAkttkZUUVtFou+UKeMPYwjAy2nUaS2wFBz6vz8CNfoX9gBOQMjcYWJ06c49LFK5x58gTD/T4by6sc2DfKxKhGuVQhDAKKXWkUOcH3XCzLxLAciEI2ywtkc91cKl1kV+MQfstDCy3yYS+pRg5tOUOztcVi51N09k0gIW+LpgjBt9paPi1Mn1+Esf17Jn3PtcL3W3vAPy/vfc4r+Pb3fpev6zuyHPpnQv+7O8b/FuL1mZF8Kwn46fF8WdLvRxRECEHSKLUDD3YBSZa5dPYkPfk0MzMX2Ll7P/VmE1lINN0WQRhy5dIV4iDinrvvIp12KHZ1sTg3Q7VWo96oMzkxgSwSbMvEdhwymRzrGyWq1TKSrLC5WUYgYVrtqF2SxKiKiizJCEkiiqJ2D08Mlq5RrVRIiKmWa/T29DIzc4n+/l50VUHTVLq7+3jyyUcY6B9GCJnFxQXSmRyjY2OEYUA2neLY0ZMcvuYQxZ4e0raOkAQXLlzAsh32HLwaO5tjfqlEulDAMRwunrvA4KHdBHkH29Cp+xH5XAZdCthY36Jc2UTXFZqtdsmQJAcUi0VqVY/5hSscOHAIQYRb2yYwRhFJ4JK2VcLIAxGhGyZxEHHlyiy5QgGApcVFegd7yWV0zp4/Rc/o1aQ3jnF+7Um6B46g6SZxFHLu4hkmpkYx9RS2Y+H6LRaIMN98O970LMUHjpHtKXDVzdfyxXvvY8fUFA23RKO1RRh4CDT6ekf4+iOPsmO0n7vu+gLTc8vs2TmJbiT0dQ/wT/94F9ffcB2qoqLIEooq0Ww2MEyL+YVFMo7Nrp17UVQdSQY/cNmzey8L85dIp3NYjs3qyipPHT1JV7GDYjGH64YIJC5cuMjYxES7NyQM+cidH2Xvnj2oahsc4wUh2twK1skLxL/4apZuv5Z3/s4f8IOveTVb5SpdXcPMXTlLb08P3ukvY80/SkSLKJGw+g7iuj5C1jANHd91WVyt4tnd6GEdzv8TjdjE3Pw65zYUOrv7IPSJwpBSpUL/wDAnTpwiinwazXY5WbNZZ2VllZHRUU6cPI5l6gRhRC6Twfc93MDD8zzSKYdqucwTjx/FbdVZX11iaXEJWSicOHGCvt5eerq7GRgc4vOf/zyKorFv3z6CuN1bGIZ1RodHiWWdpYUV7r/vfqYmJlAMna2tLQqFDpAlDFUmiSJsxyZGkEtneOqpY+zeu5cojrn3nq/Q2Zmj2NVBsavIY48/ytDgCLbt8KUv3svkjnH6BwZIEkiEIEoS6vUaqXSKy1emkQR0FjvJZtI4js3xk0+Qy2ZxzAIzM9P0FgcII5+v3v8VJsbGqFQrpNKZZ2BJSRKiSgHTZ48zesNbyOfznDhxkmqlRVexhqY57Nn/k5j2aRShc+nSMHMLWSxrC9u8hCwXKZerKLJOEMaomoGhq7itEImESqWK5/momoa+bSOSyWaQJZmG28S0HOTPzSGtuXiHcrSaTVicJkrAmjiABDSaLVRNxXVddF0jCHx8z8cwTBAQRjGKqtFoNDC0tuetqmnIsoz8NC1RFui61bZLsCxkRSbwfQxdJ45jGo32vmUBrXqNeHmzDfLq7UTVDCQhcLdWCLxlZCXPZmmddCpFvd5Elttl4vJ2YFjTDKrVMo5t4/vhNpRKIp3O4fktktgn42SeybpqhonrtrBsu72Ab7YwDB1JaoPIni4fTpIETdfxvRaGYZDECVEUYNlOOxijqCRJwub6MqaVQpI1ZKntnyuAZqOBYzu0PBdNMxGSQhwGNFsuAomPf+xO9u7djaIqbJW2mJqaorS1gRASiqLhBwHpdIoL56bp7i6STqdptppIqo6iaiAkglBmcrREYtxCy1P4w/f8NS++TULXtxDKEJokoYijbYqlcoja3fdx+fIcvW98FZ/+xCf4jV//NZDAMHVWl+f4mXf8Njfd9iJue+lLKQyNoaoOQjZ49at/EFXR0A2BrprUaw1MUyKMYvr6OzEMma6uLk6efoBKpYpMiicfvUT/QBFN0xkaHOG6665noL+Ty1fOcsN1t7OxXqazq4POYoGPf/pT/MV//wA/cMfL6ezMUyikQAR4bkAqY/OCa1+AahgYqsL5c5fYt/cq0uk0r7rjxzhyzX6Q65i23vb3ReB99stIkkzPrh8n28iwIE8jlARZFti2gxAqb3nzG/j5n/95+ga6SWUzNKs+kkhotSokUYyi6mxtlQGZSrWBLCkkatsbmQgsQ8YpdJPOFlicu4xpZ6hXmtz3la/w4295M6997esoFPJ0dBR417t+gz/5kz/l9W94DesbG/zcz76N8xcucONNNxHGLguLM/zDxz7DTTddTzafolTeolgsIoRMuVxG2DK2lsKUXYgaFLp30d2TIWWPEFl9JElM8g2V4E4N+eoIUYwJAx/DMGg1W23/UbdF4PsoMsRJjGmatFousqwwMDKMIIE4QkpCvKBN/dY0HVlRUeR2sMr3XGzHIW4EmKpBo36RxFUJfLcdZLcMWrGKLtdZXFhgfX2dTC5FvdZAUS0Wl2bxgzrrGy127+lG1rPke/a1X4dISOIYU3eQJA1dTxEFbasvt+Vy//1fZ3RskiQOCfwQTdUxt68ti4vLdOTz7dYAVcGxUiwuzmJoNqEfsry0TGobJFavuQwMDJHEErpmgEhwWzU0VSUME6xUmtWVFbK5ArqRRpYFvh/heT6maVGpbJHPd9JsuIR+iG4ZqLpOynYgiVEUBUlVSWKB12ozBcKwDa/TFAPXq6CqMrZpIvw1vOYGmiQIova2inAZHpnAjS0OHTxMpVrF95ooIsLQNFbW1khlsmi6jqlqrKyuUiz2EIQ+CMH4+CSqpuOkUnR05Xnq2HFGhkep1SpIksQDDzxEV7GTu+/+IuNjQ2xurpNyMhiGwtfu+wYdhQKf+uQnqdXrrC0tsHtsnDvv/BhzS4tcOnOG8tYKV+/vYbDPxyZFb69MRyHAkFVSKZVcXiYKZZqBTpKAachEUYSt5xgdLXLfl55AaBL2oEZ3dYx+f5zWyQBjPofdyLLizfNI+eNcc+OLtiGZEolInpFMz86oPv33txNh32km9bngo+/UE/bfMp5Pq3y7+//lY/zz536nmujZj/0f8frvHE+L12ciJM+Kqjx7/EdEO549oqUz4FbBLrTT8X6Dp558nLGJMXQrj59IJKGPk0mTIDHYP8hDX/86k1NjRJHHl7/0ZbLpFCvrGwwMDnLy+DG8hksqncKyM3zjwUe47rprkKSESqXC1QcOEsVhO+qrajQaLqahE0ZtKt/xE8fpyKbx/QBNN0nnMgSuy5NPHGNtZYVGo8aOnVcxfeEcIyMDrJXqjE+OUS436e7pJ5+3GRga4vTpM8QR5PJ58h1dbG2uIImQlGOxublBR1cX09OXMVS4PH2eybEdLMzPtOnFimBtbYl01qZaq9PTkWF9ZQlZ0ShtlBkc6qPRaLRJoQjGh0bZWF9B12O8RrPd/yVJrK7M0D8wxoMPPkqukCeVcUhnOolFQhBGaKrGytwV8j3dCFWju6eHarWJIiVkHIdYs/F9l0Jjk4vzF4nsTkxLI1foIEgkVNlA1mSEiMhkMnT292PeeCP+7glaH/k0OcthfP9OIl0gJB0iCctMc/78eQQRU1PDOJk85WodQxX0D3RQLVfp6e5j965BzJROGMY0Gg1UVSYJQ9wgwrYtLEOhUW+gGRaqqmFZJp7Xgjhga8sjl+8lnbaYmBqiUMhTq3msLK1w9twpDhzcRypbABIsU6fQ0Ukul0ORJOZm58iuVtAfPs7m770N6aabQMT8xI+9hZmZs6Qcmz/74/dzw6EdhPe/j7g0T9K7j6R+GSEk/NQoummxvryCoSuUK1vtDKlpsV5NuDS3wrh0htDboHv3bXz4ox+nuyNPxa0zuXsPYZgQhwnNWoOt0ibjo+O4bo2pHTtZ39hgq7RBIZ9Fsxzq5TKFXA5VVWk1G0RhiJNJMzQ4Sk9vkVTapFKpUa03uPnWm2m6Lqtrq9QbFa45cgTfD+jozHHPvV/iqv0HSGUdFC3L8swCCzMLdOQ7CGKfdDpL5Ie0ZQcI1UGRNTZLm9iWg5RE9A0O4voB5UqVC+cvsGfPJHHksby8xNjkJIpqUq1V2b1nJ3GcYJgGTbeObmqEvteGpDWrTIyPkErluTI3z/LqKtlcnsiLmb4yQ2dfL0oc0mwGbJVLWI7JxI5d1BtNquUyqyvLpFPtbLRhyPSKBTYLL+GTn/wkv/u7v8dtt93O1C6LSrXKr/7G+9k1UccydWz7JpxMkeuu/xXe+hMvRFUu4vkGqmQhawrNeovq1gZpJw0ibvdbCQkEWKaNoqiAII5B100SIZAeXm73q97U1y4PU02MnjF8SWzblLVBKZIkt8EkkoRl2fi+j6JqyNvCDiAKAnzfI4rbQCVFlnE9FwQostYmfkttGqUAhCTwXBfLstvERCGj2w7h7AJCgDE2SIxCY2sZ/CvoWheSncLSU9ulwS0MQyOMIxRJouW6yLKKaVpUa1VUVcFtNUlCD1kxEIqCF/lIik0i2rRjXVUxTJuEhChq955FUYSqqkiStP2dVqnVau0MT5wQhQnQFuZCktBUrR3gSEBVE2TFIEEm8Nz2eUiCIsvb2VUZRdGpbFVJpS3qdRdV0Xji8cfZv/8qPvmJzzExPoWmy6iqwHbyhCH83d99mP0HDrK2skYURThO+zOwLAt5m9bteRGasoXbsjhxokqrUWHvLh0hCzbXJYLqFvnCMjEJXrCT8L5H2b17L8mN+xgd7SCKffIdBUCmWiphORIvOLiTvK2DcEhEQhS66LJE7PsousVvvev3OHL4BXz5y/fQdOv09HYgyQmGYTA+NsHE+E7On7vEww89wt49Y+zbd4AnnzzKhz/8Qa7atxfdCinkizz8yIOMT40SRy3+y9t/id9656/TO9zDP3z80+zbfRVJIpHN5lheXsTJ5CmVXVbmFxganOLuL3yJgwcOMzzSz/r6OqriML5jiktXZih0dmB97QlUTcbjFuSyRvZWh5X5RQxVp+0CEfDaH34z+XyaVrNO4sF1197KT/3Uj2LbKhBj2CkM0yRBpqOzSMpJIRt6O7DQ8rh88TSprkHCGFI6rJY2yKSzWJbG5FS7B7XZqpDJ2nzs43/PbS98OYYlUyh00dXVR+9QB7ph4XoBncUiYwNd5DoKxImMZqYhaWGbeSzLQM3nSGudBLULlDZm6R7+IaqVh/nUR/+OI4dfiff3JtGDCvKhEJGFyANd12i16kSBx1ZpiXyhgCzpJJKMKqvU63U0TSEIXKLYI+1kSGJBudpgeb0OtD97OQmRVIVWo4Vtp/AC8IIAZBlZLiBrIZKeQtV0Aq9JPpvH9xLy2U4ajSbplEO+o5dybYvZmQVuvfll7JzIIstZtOwozWYDYo/11UUy+R4URbC4tNzORMqCrc0NLMtqB92jGEWEXJy+RHdvL5IiIBRYtoOVchAa7QCdrJJyTNZWNnjy2CnsVIqLly4zNj5ONmtxeXqJTMZEUiv4YdRuQQjh9JlLKLJKZyEDxGiqTiK1QZ1i+ze51fLQDYswDJm+cJ58Rw7dMBDE1GsVQi8AIny3RiplUG/UsGwTz/NIYg9ZFchSmunzJzDMCBIXCYGkyGhGjjiosbbu8pl7jjLY3UkmnWWrXCFfyCOnCuQLnchSwjfu/yrlShXTsCl0dFKulMjm8oRRRKPRRFIUVlfWmJyYolYrk86YeG7Anr1XgUgYHByjtLqMrkpsbZapbG2yNDdLFHqsrS1T3tqgWlpipOgxOpAlZVtctTNLb3eavpxMSJPQrZHKtIMCQoqRJQ1dUQhcl3seWaNar9Lb5SAR4sUuUqIwPl5ESHBlYYWzW2cZONyL2uMjFwTKmkWcCbms3I+aKtDd3U8sJBIh2sGVbzP+tczrv6Ybnpvh/H6L1+/N/r4bofv84/+I13/neG7m9enygOfLtD63EfuZ7Z71vH8zRnq7vjshJl46Tew2Uew0cSyYvXCGtKNQHNlJo+LiNquYqRxhEKJJEtPnz3PVwavp6Rmkq9jHvgN7eeCBh1FkcGwL00xT7MwxOjFKrpCnr38ASW73sBYKBbzAIwpDhNT2NwtjCbdWRVJV3FaLkYFBGk0Py7BptRogIlotH9tOMTY+jOvWOXH8KXp6i9SrLaq1Co3qOhtra+QKBa7MzJDJZBkcGsEPIxbn5jA0lQsXLgISxWIPpmkQRT4jw4Nkcx046QJz87N0dxVY2qgzNjlB9NQ82ZaCNdRJKwyp1F1y2QKN6iZ1t0JX9yjNIAA/wg+hWltnoLuX7v4BNlc3aDaWCX2DptcglbKZvnKF7v5h3FYVWTbwmy5uoiAhkYQxkqwiNL29aJQk4thDpg5mlkjoFJsLaKVLnNmK6ektIqsm9Y2EX37Hf8VO5ZidvkL/yABePaGWDojecAfZhXWUzz+AsWMIWh6Zrk7ml5dQkpCvPXiUsaE+KjWP/fuvore3A7flks9mEJLg4uVl8h39eK0t4jDg7i/cT/9wH46TQtNNllfblNjT/x957xllWXaWaT577+PP9S58ZERmpKl0VVlepZJUJZUcQiXTQkLCIwmYoaGBoZlh1jQLaLrVPT09A4MZZjDTQAsxsr2QEFLJlVQqX5VZ6X1GZGZ4d/29x5/5cUJFtZBv+k+z14q14seJc66Lc7/v2+/7vGfPc+78eaZ3zWBoGna+Ri6fo7m1QqlUQlMG7XYHRIphmUyMjKMMDX84pNNpoes646MNPN/HslyqvsA4dYnod38Zbj+EwmBra51isUauUoUk4h5Ooi88RpofJanv59yFy1TUJikJsnoLQkhKuRxoJpZh8fwTX2VidhrHLdLuBRh6ghltsbCeohspdxy7i2EQU8xX+NhHP8rE1Cj79+9icmqC1bVtxiYr6KZDe7vJ4SNHiKSkXi6zvLJCuVwhiRKsfBHdMul323RaXZTSMAybWr1OrVpieWkd29E4c+YEt97+MlqdJhNToyhdZ2piktAbsHJzEUvBjRs3uOu+uzBzNqtLK2yurlCqlFhYWODkM8eRaUCtUUc3XTSh4wUDNN1AM0zyxRKHjxwkFZArlhmdmMUwNPJ5l06rzZnTp2ltd9hutmg0Rmg3m2i6iT8cINIEU5P0Ao96tYBKEp594kmCJODuu+/K6JhItra3UMrE90Na26vUR0ao1Ebo97qMjBYolxzmry2QD27gHHobd7/ylbz5n/wAjfooiOuUCgX+3b/6IO/6wTmuXr5Ks38HmqFTcOHw0YeBZQoFRX8QkUQxhWIu2+HXFWkU4gcB+WIe3bLxutvEUkNoBmIHzILUUE+sEEUh4T0lhFSY1RH0Ug3TtPF7XUzTQjdshAYyTQm9LiLNpLmd9jZ510WkOpoSBIGHaThICWkc0dzeIOeaJGQROFKl+J5HGqcopWGaFlGUYBoWcRrRH/TQdQO/30UrFEgKLromIQXdbmDmqgipg8zyXi3bxg9CNM0iigPCwMMxTWIhs6JVM7AdF83Mnqum6Qih0HQdqRmkSUASDhGapLXdQ6Bhu2Z2nFQIpWFZDlJpWLaded2EgeXYiDTFNM3sPCiU1IiTIJMDxxFKpgRRwKDbRghBHMXk8yWC0MO0cqQChr02jz36GLNzu7nzrruQQmf/wUMYeozSQOku2+urOLbJxMQ4YRCya/csxVIBgSSMYlaW19El6IaG0nWSuMmZE1eZm3kT//Gv/oiX3zdBLudiOfvY7kcU3UuZ95k7KJ2+CiIluPcotlPG0GwEEeDjhxH79owzOlrj2s1FXKfGg/few6vuf00G/pMew26bQt5hZeUmr3noVezaNcW1+SW2t7tcPXeWiendWGbEvr0zvP2d72R23ySlgs7YaJ1KvcHP/+T/wDt/9L1ors7M7DTtrQ0cx2R5ZQXTctm3bxbl91m+uUpjdDePP/EIbs6iWBjjX/xPH2BrfYvf/8M/4KMf/TDvfse7+PP/+Ge8/W1v4+zZM0zvu5XnnznOM489xq2r26RpjBh9PZpm0tuzQqVcxTAthK6hDJecpZMKk1jqCFvyMz/6TgaBzyCMcR2La+fOU6ln9yER9vFpo5OnP1gm5+b4/CNPsbywzL7ZWbaaGzz8hh/iR971TspuiM4mRqFOvjpCp+dxcP9+iGO2NleRqSD0A6JBwNbqMpWCg5aC7rjohSpxEtPZ3gIMvLCFVBKz22Wz3+fkl/+GA694O5e++m84fkZwqPQm7A/OISKFuitBuDuqsdhj0GujhECSUMjXEVrK6tpNirZLz/Nx3WwghFDkiyXiNEXpJppu4eYdVOJj6QrTzJHIFN1wQEKUBlhOGSkd0jSmP+hj5xx0O08SGQz6LdxCDYwcpUaNze2Iq9cu4OomBw7uI8BHahIvAhGH5HIVTNPCdl18zyMWKdGwQ2djEU3p5MqTCE1DM7JaKYpj6vU6Ugr6/T5RqpA7kEwpDcIwYbu5hu/7jIyMc/36dQxD59gdt2GYBkPPx3Zsqo08hlXA0PMoy4U4oO8nlEs2ftjGMnIkkZ81ZqQ71+uRK1aQpMRBn0rFQdMVxBEaApGCaTv4fqZMksokZYBlaNk9TygsIfCCfjYk8TeJwxA/GJDGIYKYVKksbSBf4MaVk9Qmq4xNHCSOAp5+4lkqY6O0t65Tb9QZG9/FhQvzVCoVHEchNJM48VBopFFEpexy5fI6UzMj3FxY5bOffYxLV87z3LOnuHz5HJcuX+HqxQu4epuKm3Bgt0PODtg/W+HOw5McP7nEhettDu8rUs8pDDMmZ2kZOV4ILFMhZcrQl3z8bxY4MFcGFOghU6MV9s+OksQRummgQviTT5zill0FBkHCM6eucPjg7TTqFc6fv4zjutibRVajFVa0z3D8mS9w20Nvz+xYiSL9OpDQt9tB/E4VmS/aFb8LBef38jff7DzfyU7sN+CBf1fXT19qYX3JNYAsJ1fsXOUbeFpf9NG+eJLvbv2jaF7/oTyvL/1gfdfrJVOG8Ph/Iu1voyqTnoeG0gAAIABJREFUCKlBMKC5uU1ldILmZpPxyQZnT5+mXC6xtdXky1/5KqiIaqOGbpoozWBycobzF05TL5cgChgEfdZWV3Acm+sL19jYbFKrN9B0HcNwiKOEMAixbIMkDthutSiWSpiWSZQm6JbF6uoqxZxLOPQRUmCYOpomcV2HQi5HHEVsbmxw3ysfYuj1OXzkNpxCiZmxMmsry2xvbfGZz3yWY7ceZru5zejIKKZhceP6ApOT48xfu4ZA4QcxSSo4deoshw8dRCPCtXXyn7yCvN7hSi2TuhYKJc6cPUveNVhZXcNxCuRyNv1ul37PQ4iUNJVcvnKFtdVlKuUitWqVer3CyvIqM7tmSKKIWq3G1avX2FxbQegGvf6QUy+cwnZMapUSupZJFE1TR9hFLLdMouchVyNprVHvXub0wiYTu3YRk/Dmt72Rctnlf/vAr/Hmt7+Dx7/8NHHap9IYRX/wAbRX3UHw9Cn0zzxFq9eh9PBDFAZDjt19NwXH5uSp01TrVfKlHKaVx/d7tFvrFAs2H//wXzM3O0POzVOv1ak16kgp6XU75As2WirJuXluu+22HRqqQRQFSBI0TaIZBpubG5kcOEn4/Oe+wtTUFNVqEZBUKhV0XScMAjrdPtZmB+9LT3Di3a/DvWMOlaScPXue977/Z/nJd72W6PH/B3nxcwjDoOdMYFYnSEhpjI1ijR3DmbiTMEgwdIe+n2XMekMP182xOH+djdV1hv4Q21bY8SIjhVEmds9x6co85VqJM6dPs2fPLvbsmWG71cZx8xSKRZSmcXP+JgtXrlKpVKlV6/R6XeYXFqg3GqyurWU7RmGIbVqkqeQLn/8cMzMZBM33Bhi6TZqmHDhwmCRNMW0LL/CxDJNms8vp06dJ4yxXz3YcXDfHYDBk7779jI6PYlo2I2OjjI2NYdomStexLJs4STBNkyRJEWST235nm1IxT+gNUQKiFOI4JFfMMbVrkvPnLtDutJBCMhz61KpVhBAYukG31yf0h5iGiVQmwyBhbm4vG5ubTE6PE/o+3tBnbu8cx48/xz33vpxnnnmenFuAVNLvtyiVK9hOHtoLbOfuYnTuKDKJOf/C82xun2LPXIW779nNoUMVUjRqjTeg6wYH9u1mu9/m1NmAXRNLmPYYnXaHMIrI5wskSQppBGmIN+gQDDso3SafL9DvD4jjGJFkHk79qXV0TSHun6TVblMo5ukPMn+cmy/gBUEW4eBlni4EhGGW21mpVvD9iDCKiOMYy8pyY3udNoZpYNgOynDRSDMJcreHqeukmoZumoRxjGFZ9HpNdF0jAUzDxaiXGZgatm1nMK9yhaHnkwqNVBkE3nDHK5tN2XXdRogYpXhRuWLtSIm7nRZRGBKHIZoSpEmcEYzjCClEJvcFwiji+ePPZz50sSN3RpAFvWffA1EQk5JkRGWV+XuTNCWOYyCDQ4kU2Al7V1JiGDphFCKkRCnBdnOTBJBCoETCocOHaXfbOK7NoN8llzfo99sYhkUUg5Urcfr0WSYnJojjkH57E5mERH4P25SoHVl1kqbYtoVI2zx/4ib7Dz/EnffOMj7m0O31GAQTvPe97+WHf2COOI750z85wV2BIkkSrNfdjx8MCLod4rCPIqG9vc1IYxrDsLFshx98z3v4o9//Yz7ykf/EXXfdg6YrlIwZG52kWqmTJBFBEJIvVJifX+DRL3yOO1/xAKYpyZULDBOBFA7VchXDMljeWOfeV72akXGHfncNS4N8tYBmarz6NQ9Tq09jGCGOa2HYOs8+8wR79+1nZvc0vX7Er/7q/8IHPvBrvOUdD1MqWExMNHjLO9/JX//Np3jzWx9G00zOnzlNr9Pizu0hShnEI69FaRr+IY9eZxNdN9lqdjBMg1QY/Pt/+++pOS41R5GKGCdfQjNMbNPALRj4vo9MNdJEQ3cLyMRBo0/QH3L77fcyPllHaQH5gs4PvevHWFhcZGJmjiE67e0WUSIouHlKeYd8wWFifJqtzQ43biwyPjvDxSvzjIxPgTJRlo1m6Jw78RwH56bY2O6SBl1GGg18AmLhsnX+FImusXb+PC+/+T8ycu0Q28UruHcUkZpAisxupZHS7bbpdTsYuoaec4giSbnUIIw94jhBaYI4iVGaRAoNJRVKCpSKSdMUx8mhWw4hQGyitBiISSODNOyTpjG264DSsawcYSyw7Ry265DqLvlSCc8bUi65jIxPkaQdymUH27JRVgU3V0BJ6PsxYZyQpBLDtNE1g5zroGs6nh9gaAZSJPQ6HeIwwDTyKGmSxCDQMJSk3dwmCgZEwYD2VptCLkfezbFwbYGb86vM7Z1jbWMFzZBcPH2ORsMhDDoYsoDvdYmiiLwhKVcqyDTEcV2CUEczXbabWztxWnkMw0QkkEY+MCBNh5huGU3Xs3uszDIzh94A18khpAAUmszR622hmTa+N8R2Xbz+JlrahjRGqey+E+58V+UcSSHfZ2K0zCc/cZYz5y9x/vxFBn2fdrvLscN3sLYe095aZXpyFlNXgM+jn/8Sve2QXL7L04+d5PGnHufS5fNsbVzmypnLCNHmwNwe0rDP7bePc++tYxw92GBiPIdlxUgRouGjqQQlBeNTJSbGc7h2ijRNAq+DkDFC+BiahdIVlmOjaTpH9o+i65JNX/L5z13n6C1lZOpDGiKVTpgaVGs1clZAPm/RHSguXZhn9549KKmxvd2m4Y/T1tu0JxdolE3ufM3biaIkU7N8i3L+O9pB/Adc/7Xjbr7d+V/avH5nF/qGv+40v9/i4O/mGt9k/aNqXuVL9OzfaH0n04bv2RMr/m5XNzz7CEQ+srqLFMnSwhXSyEfPlXDtHCsri0xMTmFaWYG8tLTE1uY6+/ftRdd14ihlOOjTaW0xHPQpl8ucPXeF2Zl9kErWVlY5ettRNF3j8uUrFApF5hfmGWmMcn1hnkqxQLVeJwkjhJQkADHkcjZpnOB5QQavkXD+3HmmJqfRDYMLFy5z+MghBsOE/qBNrzsgVyiiaTHdXpckjrnt1ttotjqMjoxRqVY4e+Y0Y6MN6o0arVYHgYZuJhRKOUxL0WlvEAUJK2vL1C57GKbJfCPKZFhSkMvn2d5aZaTR4Mb1ZWxbMPQ8zp6+wOjYGN1hzGijRhIPWV5awzBiqtUaqxtNVlfWKRUKrG9s4Q0GFPPWDgBGY3ZmhhdOnKDZbHH+/AXm9u7DjyKU4QIi2/HSDHKNvVy+dJ4Dxgb+0jkubW5QrlRoNnu89/3vQyid6fHdlCs2+VIFIXXSepHebQcIXv8ABZFifOizxFduEN65n7jbZ2Z6OgOIiJQojLGNTBaZppKJsTr5UpEw9kmSIVGUEAY+Odeh3+3iuA5pCtutLeqNOimSyBsggeEwg9vUalX6gz6+79Pp9Dh45BDesI+TKxCGISLNMvbsRJB+6Rl++uZZ3vN//jv++S/+M976trdSitb5qTtMkiuPopwyA3eSyClTrEzQ7gzI58uYpksYeaQJ6LpJEHgZSbO9Rc6xabfb2IZFkqaMjY9TrE8hVh9l08tRFAnOxF5uzN9kemKGmV17eO6Z55ib28uNG0vEsc+n/voRdE1RKuVod3vMz99kdGyEZ559DiUV09O7GPT73Li5iG3ZXDh/ATeXY3p6itXVFTbWN1HK4uy5M+iaxkijhmGa6JZNHPpU63Xq1RqLS0tIqSE0RSFfYG11nVRIdEPn/NmzeIMhI2MNLNvm4x/5GPv27UdqGlIovMEQbzjEMk0sQ8P3B4RhkAGG0ijL/UxTLNvmlkOHmZoaQ9MMivkqmi7YWF8nXyhgWg6B56FpOiur6zRbbUxd5+bNG4xPTBCFHpVKhThOKFeKpFJnemqS4aDP5naLK5fP4gcxI+NTBM3rWJU5np/vopRiYrTB2HiffD6lWquRpnlqjVFcdwHL2uKznz5JuTbGrbfeza23v59f+rkxEIIgsLAsizAKQbeQpoVuOkjdQskMChQGAYZp0eu0yRdK6E9vkKYJ/h0VNE0jWp5HDrqkdh6kIk5iVpeXKBXLRFGWdanpOp1Oh3whz3Dogxii6Vlz1myvZ1AVLZuOizQDCYVBlqvsOA7KMF9sPJVSKNIMsGRaSJkVfpZpsb3VpFwuk6Yplpn5OoXSsM3Mg6vrmc80jhOUSun3OvR7PUzTIU1TwijMaL6agVTgDQcopaGExB8O0DSDMJW0mltIBbO7Z5AIwjBE7nAFIMvk9D0fXTNebF5dx9n5zIAmM/KwoWtZHuUOfEkKAWgkKbiui1CCnJMjTSGKQ/yhh2EYDH0f27YxdRNkjKGZDAc+juvSbXXY3tpE0xSB72eFs+siRcqVq5cZm5hi4fpNypUy/nCIZjTZe/CVvPUtv8W73/njWPYG167NUy4d4id+9N2kaY84KTMxeR/yyZMopbF5cBdSgYhT8oUcaZog0NjcamE7FoZp8ba3/SCPfPrT/O7v/T4/9/M/n2VgJgOGg5Df/d3f52X33cfb3vY2Pv6JT/K+9/4Ud9x6G6lm4Q9bOK6Fblj81E+8n9e/5lVsbKwzNjHFeHWKqZE8ptLp9xVO3iKOEy5dnOfxx59ietcIpfootWqZpZtXcXIlTMvIsm+VxR13HqFcL3HbsVuplApEJOzeM0On0+KxRx/jvrvv5L7770PdfpClqTHym9OkaUzuZRLdiEkSjWplnCgdEMeCIwcP8+4feAfnTp7gTW99A36UkAqFQhILsHSNm9evU62No9KQ3/udP2TP3nG2m10qlSr9wTYLC9eYnJjhya9+mc8+8kUmZ3dTrjbobq4RhTB/bX7H7hPzF3/xIR548FUMvTZhAlNT0/zKP/9Vdu+eY2SiSpLCrqlxNtfXKDcmOPf8ozS3mhRrBt5whRF/m+Ijb2J6/i0kMiba1+TSxjPs2nPoRatVkiQkcYrr5sjl8yAEG9stbENHkOzk2asdj3cGPYsiH10zWd9YwzAyMBvSQNM10nhIEPYRIkSQZEMLb4DjGPQGA3L5Mr1uG13TCPyEIApQpoMfhJQKdRICLNtFNwS5QpkwSFDKzOIENQ3P9zFNC8OwkFIQRRG+FxBGMZZtYpg6vW6Pq1euUiwWkBrcvDlPsZRDqpRBr8vx48cBwUhjhFMvvIBtWQipMkBk2ieMPPbs3k8hV2FivMbQ6xOFHrZVJEl9HCeH12+jmQbd1mbG3cAECYamUygU6ff7SCmJRIzSXZReJkpcdN0ijgQSDZBEUUC5XEA3DAZ9H8c2WV9bw3F0onCIoRQJGo4R0W/eIEliILPMmaYDCLxBgCZs4qjH7r0jFKsJNxaWiaIOUbiFI1p85SufQ6ghTz/1OM8+9xzDwSqO6LG6OE+lGGHIhFsPVEgHPscO1rn1lhozEzmmGhaTdYei00cmEZrMWqHAD4ljE1NLSaIEP0iRscdYxcZGgkxR0iJNALJBSUJKnCQZ2FRF+F6Ptc0BEp1GI4MXShETx4DSEXGAkCGObaF0k8npGSq1Eu3mJvv2HkKuGAze1eHJJz6LlW5z8L43oFQmG5bfxsf5D7m+XvX5rdSe3+j4b6Ya/XaP+zs5XgiB4LuEUL300J3M9CRJUEplgLFvevB3/ti+2fpH1bwKvnXz+t2u7+5NfsnO6/mMNqzVZkiRbK8usr2xSG1iGl1aGbhB1/H9gObWBhOjDSzd5eQLJ9A1hS51XjjxLFHk88bv+z4uXLhCrVFgbs9uNjaWGZ+oEaUJhqkzPj5BEIaMj9cRqSTwQk4cP0EUhqzcXGR0bDSjh7Z7KJmSCMjlC3Rbfc6cPsnRI8fo93xa/T4rK2tMz+yivd1le2uFYqEAApRjYVg2hqZz+eJF2m2fxsgIp06dYGKqwezMrgzW5Lj4fkbDS1KZYe6VjukWcHN5yhc6BEGId6yCYxrEcUi+lGd1eZFSuULox+TzBk4uT96tcO78Ocr1cTaWb1KuusShQjM8hr5ganY/cQKmYbC4tMzu2V2oNCSI4xd3sta3Wtx73/30e32mZ3ajWxZpECCTJMtsFBIU2JU6vVhghR0a/et4y5dw9z2IcIooEk6fOI9mROSKZdr9DqQeuqbxpcef5j88+yTmj/8Y+4/uIfnY57HPXiM5spvtxaXMRxJ6hL7Hyso2llPFGwQ89sRxUmmwe/dulEwykEWcMhwESF1iOy6laiXzn6232FhZ4cP/30e4/dhdbDY3cV0Xx7ExTRNDV+RLBfI5hyBIMr/SYIjuhySPPsupw7PM/bOf5eKl8/zTX/pF5OO/jVw7g1aeZEuUiawG+WINXRN0vB6mpWPqio3VZdxCnjQVrK0t4+YNNKGjyZhBt40SinylSqlSZuH6AkMvIO+dQbjjCEDXdEamxykU8wgREac+F85e4cihw4RBjzQ0KFZLHL31ME8+/SyT07NImXL33fcwMjLK+vo64yOjjIxl6P5cLsfcnt1cunyJRmOEz3328xw9eoxev8mJE8+yb89elGUjlEIDBl4fyzJot1rs27uXMI5ZvrlEc7tJY2yUwPO4dukytx46xAsnT1IsFCjni5w7fZY4Sbhw8RKzu2cxNY2Fq1cZBD7VepWt5jaW4+D1mjv5vEUkGjExvV4HKXRWljbQ9JRarU6z2ca2HVbWNhgO+jiWxfjYGPMLV5me3kWr1SOXM6hUqly8eJHr1xfYs3c/g16Xfq9NnMLWxgqvevVriBJJ2FpE1yxe+Y5f4p/+wi+gGQ6uuYRpge9PIxKbdkvnS19+ipmZMrffpTNS97kx3+V9P/nztDpFRqov0B+69Hp+ltXZ72AqRRAEWTNo59FEim1Z9IcBhWKJKBVoT64SJwn6A5MIqeg+8Wmi9SXSsT3oho2t65hKoHQ9AxeRIJWGm3PxPR/DtNA1C5EakJq4Th6lGQThAEVCMPToDLvkiwV00ySKUySKKIxQZDmTmtRZ31hHadmXZ9IdkHgeTqmEUpLQ94jDICu0lUbg+y+ClDJHaUwU+Ri6gaYMlG4ipEI3zB2okUWcxmiGgVQ6w362A5wkIDQT1zYJIw/Hdl7crVJSkaTge/2dL/hs+IFIdorqgMGgz3AwQNM0DMNAkEAKnU6HKIqySCvdxTAyVoHn+WjSQGoZHds2bNbXNqg2RpBS49Of+jR75uY4c+octWqNOI0Jex2q5TK1ep0UgZOvcer0OSamJskVy+i6olSpEwUhUeDhuCF9v8Drvu+nifxVTKtNqVSCoIaIu2wN69j5Q6B0cqOjOEdvQUxUCAKPv/zLj3L41qNIXSdKFDlX48aNBZJU43/9t/8X73nX97N7bg8zu6cZ+m0cW8cbhhw4cIR6vc6Dr36Qn/6Zn+X69ev0Wk1e+cqH+IX//qe4evkinu/zhle/nH/96/+CN77uDTS3ujQKXZ78yoepj5TIVeuceu487eY29UqZD/zWb/KeH/lJYgwMTREPe/z5Bz/M9K4Jzpy7yBte/yZW11ep1Gs4loXrOPyr3/gtXv2qB+h3uvzGb/wmS4uLTE5OkJud5jOf/xxzw0NIkeLeFXPizLNUK2OcPnOJcjWHkhEKjff88I/wzvf8EGur1yhWGghp0ut00M08waBPqeCw3WvRX7vKsVvvoVC3SQybsN/n5Mnnedm9D9DrSCanqliGRb1cwVKCyckxlG6zcG2Bj37ogzz02reyeHOZQklnYqrEwvwixXyBVz/wIJPjk9y8fpZqfYwQiWk7pGjMjVgs3Fxi/+y9rD0/T+FjP0BkxPTqzxONxwy8HtW6S640/mLtFEURiVAgNVIBUtPJOWU0MaDdXEVgY9sunU4Px3YxdBM/aGPoNr4XYBgaCJDSRMYBg/Yyhu1g6mVILDSlkJqk2+tQyOcY9j10FaMkaJqO1FM0KbEMmyDQiAnRZYJhVkmxEFKj21rGsLIIqiTxM8hZmqkoOq0ubq6AaZqsrizhxxGV6gjlSvb/YBg2xWKFJAYpdQxLMT0zQ7XaIIwEpVKeK/PzVBt17JxDqTSJ7VgkUZNhbwXTcbHMMkPPI593CeIQP0hQxHhRhBApCSmG7mAYKWmqGA6HOI6DlIphy6e5sYHrSHy/hWXpdNtb6FoCaYCbyxPHEWmSYlkFmq2bWLZge6uNIT0MzSRINUQ6wO+uYuoOUZRFgC3OD8gVFF7UQug6JIIEna9+4Tr33jfH4tIGD73yGBWrw949I4xXQw7ubnB4T41doyajNZOpcRtTWtTqCVIkuHmbXCkhikHIkEQMQEgsyyWVKalI8bwhG+vrRKmFpfukBCQSnj11ncmJMkHgEVsJqe8jZYqmJIEfogw9G+4HA3zNxkj6FPU8E7sibq4qlJapNSSAisjpCt3NyOvX59e5fHWdkbEpBp0BI7U6cs3iE8MPsnjpHOlgkTtf93Z00yLN9im+aV/wX5uH863kvf+l5/1ejhffpMH85n/4kt9TXmzIsx3r78zT+r0+139UzevXXtyXru9FCvz1U5NvdczfnffvxOHhhS9AEiFqs0RRxPWr13BzNqVi5qkDWF66sQNL0XBzeXKlCkurq5w9d56FhWscPLCXYqXOxuYWvu/R7ffQNJNcvkin3UZKgUIwHHjUR0Zp7chfDMtg7sAtuHmXxvgYiVRIzdgppHQMZfDC8Re4ubjA3NweJDHt1gatVouJsTGWF6+TaAl33Xk3Tzz+JGmaUKuMIRCsb65z9Njt7JqewMnl8cOIasnm8oXL6IaGYdksLq1QKdo0Wy1MK4ddrNPr9Wm3m4xczXYL03vH8LwBq+tbjE/NkS8XSNKY2T2zeMOYaj3P+OQ+Ot0Ww06TW++6g7XNDSxbo1Ie59nj52g1m4zURxn4HY4cuY2V5SWsnIvvDzl45BD18ZkMsmJoHLr11mxanCQMAw/dMnduajECHYQgV6mhqtOkKofRWyK99iWiG8cJR48wtmsK3SmSCMWPvfVHedtbHiZXsCiUc7z+LW+nMVHCvusY3YcepDXqUHrsNNbjp1h3dGzLIYhC+v0hxVKdMOrh2hbnz51h9+5Ztrd7WaGqUkpFB90s0m1u0dxqYho5lAalYiOjrFoG07tn8aOI4dBn2Pf4+Ec/xp7ZOQxLZ9hr02m1sIRCPvocf7R8mQf/5PfYWF3F1QIm5/8KZReJR44xiAWFconBYEir1aRYKqIlKaZm0OkNKNUa+FcfIW5eoTR9O57nkzMN2r0OxXKFnF3gyaefRyWwf+4WHnnki+yf1BgMfWy3BFGIWa2x2Rzg+V1K+SI3bizy/PPPMTMzy+r6TTqtFtPTu5i/dhVNppw+cRJbt1hZXmTQa5GkAqUJgqjPjYVlhr7P1Mw0xDGObeG4WZzKy+59OSfPnmF8dIRPf/KvGR8fx87lQQrGxseygYDpMjI6gqErQq+PYdrUR+qkUnHj+jKmaVOv11m+uYCtBO1WG4TAdVzOnj6D0AyqjVGGA5+t9W1q46PkXJck9Gg31zFMA6UElm3vgNVcTp04yf79+/HjiF6nQyGf5+TJMxi6zfTEGHEccuL4C0xON3j22RfYNbOfw0ePEscBnu8zGHgoKdh7+G6iyMe1BDfnr1JIltj9ml9hdXmTzzzyKGNjRRojGu2Ox9BLQUocu8hffehvuWX/fQRhn+ldPSyrxfJijkLJwTI2CQKHvOuSSo1UZv4vTdcQMpOIAigJCYLm+jLiSgur6uAfqRMnMcG100CKu/8YvV4XoRSmk2cwGGY5l0oj8kL8wTZJnCJ1E5KYKArQtJQkDfD8Ib7vZ5EIUmDbNmkiQRqkIiUNfaRICUOPMBziDwc4Tg5NsxBpSnT8FGxsoU9NkEQpUlf4YYTSdJQUO5muMbqmoSkNITIyqq6bYGSyte2tDXKOg2loREmMoRmkSTaltu2smdR1jbXlmxkER2UAqzTUCKMhSil8r59JcYUgJcULA3QS/OEA23bRLQdTN1Gawg8DpLRIpY5uOWiGiW6aBIM+QsZEgYcmNYIwAzT1Oj2UrpGv1FBSEvgeszPTNJsDnnv2eY4ePYKpaWi6wHBc4pSdxxIxPjmOpetsra8yv7BBpVrFsm1ioVi8fhJNjaCsvWxu+xTz61iGiydq/NmHznP7kTFE6HPvva/hB/+7N5OOjxDGJsWcg0aPkVoVUo3hcICVuAy9Ia1ul5e94o04hTwTMwVeeHaB8bESzc4mup5jcnIKoWI63Ra//HO/SNFyuf/V91MvVpk5MMG+A1Os3bhCd3ubN77jh3Bq40ip8RPvfR8T43exsZUwt38/bs5hbHoPlmHy7rc/THfQ5eblywz8AFmo0Nla5e57Xs4zTzzP9YtXuOvYMbzuJmbeZtsPqbp5rp69yvt/5pdZWdnkfe9/H//yX/4a9955Nw+8/vWc/ItLjI5NMDg0pFLbw6sfeCMyTRDBkEppHDevEzAkVTqmNUIYhwyHrexzl0bEcYJp5ynmyuTKNSzXptcOyVsFPvjBv+L2O16JlS/x1AtPcuXSDV77hgdY39ikXplk/uYlkoFHuVRhdNcsN24s8drXv4al1SXCSFAoVSiWbIp5jesLZ9m77zBIhaNLVhbnsS0HXyszMlameflJ8h96iGSmRTqxTixiIi8mSkMa43uQusPXiicpBOFwiGVkhGA/8CGJ6XS7GLrCdTT6QZypTnwPUzfRDZ0kkZiWSavdynznStHqNLF1A5GEtPoDNFMgEwvNUOiGQqCjGx5xpDLCLimt7Q6DTodmawvXzawvhpb5xz1/SBiHDLotLDNHf9DDzeVJiTAtnShUnDt7mmLewVA6n/jE33D//a+g2+lgWVnj6wetTJlh28SxT7/TzwaKOXunngLLydFoNIiCIRCxvLTE2MT4To5zjubGGsVikVa/S84pYWgmfpxmpGChI9IAUgM/HNDrdpBk1pFOdwVNd3BKOUxbz2TPvSH5YgGEIIpjNN0illm2t+93siECGuurK4yPHCbSfWy7QOLHBPEm6WDI3z52iVQZzOzKY9smaaJIE4WKdZ6H0FjPAAAgAElEQVQ9t8iB/Q1qhYSxkRF0OUCoBMfUSdIETTO5tnCdfKGAZamdCJw0Yw7oAkcXqEQhd/yOUinMVOInfWIvgjTG1CSFvItjCJTSSGJI45CZyTpR5INQ6NikaZTZ2ixrRwEToAkJaOgqJvEVWl4ABqauYSqBbSrQQKaCFEEagTcMuLE+ZGmtjeVa1KplhDCxtvIceP8Ir3v4YRYXXmA0nyM3cQSNIanQ/sF2Xr+dsvPbcXW+213IrMqXf/cjvrPH/OJ1vu5632nz+uLfpy/pbP5eLyX+85//wlzXr1//qJrXr3/6QgiSJHnJpOAfbn3tml+T27z0xf9a8yprMyAka4s3mZyew8lX0UwLJKwsrlKu2li2ZHx0hjAOef65Z5gYreEYEiTs23+QarXB6vIaM5OTFIsV/DBiz75b2FzfYHysgdI1TMvK8gs1jUK5SgiYUmYI9DREyYR+z8PzBuiGRDMko6PjxFFIrVZDSkEcpxi6zsb6Gkmq4ZgOizdv8urXvoZmt4vt2oyOjzMchgSRT5Qk1BsjXLpwhWI+x9LyEjMzu5BSYRoWw6FHQkq7tUWz3WViaoriuW3CMGJzT4nde/YRJymXL10gb1fptDpsbTSZn7+BaehsbDSZmZlA1wxW1zdYW1lnrDGO5wXs378bTUkcO8fU5DjPPPs8t91+K3GSZp7K8hhSM6mPNijXSvj+kCjy0TSBrtkkcUoUhhi6SRxlhW0cZZIp8jZaaQ6RaKjeTbj8KPHycVR9HN3ezZve8WpM16LV8qgUxzn+9PPMTO3iqcee5m8/9Qj3vvNhePNrEK+7nwt/+OdMnZlHzU7yxGOPs7a5xczuSaRuUquPols2f/XBj1CpVBgZHWGruZ3tXns9TMuiPxji9bqcv3Ce64uL7Nm7D5km2LaLaZhoUqArg3K5iOsYDIcDcq6FurqIX85T/d9/hXw5z2SjwPiNj4GVR47dSqfnce7cOeqlBh/64Ae549hthOGQCIWuW5w8cZpaqUK6dZzNtRuI8i0U8iXSRKBpiq3NDaQSbKxvc/rkSZI04fbbb0f2L9Hr9YiFSU6TLHYDSsUqzeYmju3S7Q554IFX0uu32btvD3v3HeDatWtIIZjZPUux7LJ33wGuXL3GwUOHuHjxIo6bx9AdZqemuHjhAhMTE3z+C1/gvpffz9rqKsvLKziOQ71RBwT5fIFms4nj5rJMzCji7JkzNOoNnn7yKcYnJqhUqiiluHz5EkmasrS0wm3HDvOXf/kXfP/Db2LhxnWUZnLm3FniKGJ9dY2Dh45gWRZf/MIXuPv2u1hdWyJfKJJKA83K0e0PAMHF8+czGFS1SrfToVavsb62Rs7QiaKAxkgD23EIYsHW9havfMUruH5ziT279/HpT36KPTOT3FhcoVIpEwYBpVKJrc0Fim6BQT+mWC6j2ud5cnUS3+vxjrc8TJz41OsemlYnZ50kCuY5fbZDFMZsbm4xNXOYlAKG0WN8so3UCmiySc4VhKGdSV81BbADfVnDsCykphGnCYNeH8e10e+oo+6oM/QzSfDw8gsopTB3H8FxHcROTFmcxihNEacJSkiC0EMpc0cZk0lrpZT4XkAul5G100QhhYnSUpIdL2gUBohUImSWGWvoJv1el1yhSJLCoN8jXV4lTcGancT3PUJ/iOvYdNotdC2T6uu6Tq/XIk1DpFL4wyGB10ffka65jgspDIcevUEXyzQJwwClBCQSpelIoSgWy3hxmMWQiYQ4CQmjPoZhYxiZlN40LMIg2smTjEiFRDMsklRClMU3DfpZVizpkDjw0JVCpgpNVwz6vYzorBtImb0nmq6ynd84IY4jkKBZOpqQtLtNGo0qg2F/J+opAzRtbmwSxxG2neMjH/4EB285wle+/CV2zY5imC5f/OIz3HHbGH/8J59i7/63YpsFvvLl45x7fkCjVuDf/Prv8wM/fD/KCJmaO8SBvZMoLZP0hnHA7slZuv0hfhDiuGUSzeO3/48/orky4Mblp/BCn8MHjvK3n/4cu6anmJk+iFIGQiQ0WxtsriV8//e/jEbDxvNznL10iXte9SqiyCTvTlCvN/jUJz9HPlfEth0GvYQvffFLXL+xwJE7bstsJjeWWVtZIU0TytUSX/3KY9x17z3EpNxz5y0ozSCXczh4YA+J0HBtB6FrJGnCpz75WR56wxt5yz/5fl5+94P87M/+DH/wf/82s8+c5gu/86c4I3dgli3mHp7j1/7nX0DXJLOz0zz40CuolBpABg8TWCgUzz79NFMT06SR4vr8CmNj40gV4wctfE8hRIpt61ybv8AHfvNf8x/+3z/jx3/kRwiHfUZGxvid3/5dHnzwAZ595in27j/Cn/7xn3Hw0FGErlOp5rh27Qqm7mBoDkkS0W23KFdLGaxRxBTKVdIgRgG6A7qWJ/UT0j/Yi69aeGMt0GMGoaRYqjP0+uSKRZRuv1g79bpdbDtrbAIvQAqJIiWfz2HZOYJIQipxbBvLMmi2WuiagVI6URRTyBcgVfT7Q0rFImHo0+8sU6lM44UeSkuJopj+oEuvO8AyNTrdXhYXtfP+mJZNuVIhCHxMwyBOBIauMxj0cR2L4SAgiPqUS3V8b8iTXz2Oa1XpdlvM7Z1GypTBoMOBgweQpoNuGMRRTOT7OG6mJNKUytQXjoVhlBCxotlcxrUF+bzL2uoGujQgzu5PjpvZF6IwpVgq0hv0sWybx778DOVyFUhQmsygXsSQeAz6zczi0xhh6INuWuhSYZouSSgJvJSN9WWWbi4yUm+gK40oSen3WkS+h0Ubb9DHsHM0RqcYDlrkSzaBH+AP+xD3MaRk1+wklYIJiUcUZsPOKIjRLMVYw6TswnrXpJiLsW3QtJg4DlCaixCSSiWPECFJEiPETlyXkIRxjJRZkxknETJNSFAkoYfQLBzLgh27BWmKVFkcmG3bIAS6oSFlVi9EUYCu6RimAUAURmi6IgxChMh4AVEY0h3GkOhYekQQtDPZfxSBIDtPHGHbBo4l6PVDwljQ7XhMT+7CXHdpeltsO6ucePzToBR7jr0cSSbn/3Z1/Ne+k6Io+ra9wvfSvH7v6+vO8/cIvt/t2b77x/WNILbf8Pl9j3Thb/Za/TfdvMZx/Ov/+VTh76+vJ4v5vo9S3/zD/L2sr3/xX9q8Cinpbm+hpAVSEsQRQghmp6dpNjexLYdud8jHP/ZhHNvkFa94eVZE9fo8+dSzRFHCxfMX6XeaoASHDh9BKYsbVy+RJFn8wdr6Nt5gmBVBponSDcLAI/AyWY1tWYhUYjs2mq5RLJZ2YnP0bDqoJI9++SukccrRo4fZ2FjD0BT5fJ4wjlF65t2Io5iFhRu4tollW5w/d5ZD+/azvb3FxMQ4URShhGR9fZ3JyUnW19e449gxVq5dRIiU+pUBmpSIl+/lxuIyxVIB1zYwNBAyZru5ycTkJEtLqyRhRKu1QWNkjEG/z+zsHCsrqwyGQ6QUdLs9kjjl8pXz3P+qB9jabuLmi1QbY6QokiRC0yR+4GPqBUzDQaAxGHQxTQMhBK1Wk3zewfcCHv/qk8ztmcMPE3QjwP//yXvvKMmyu87zc9+9z4fNjDSRPisry5uurrbVLdeyLYuQAYlBCCNgGNgR7Gpndjg7y2j5A8SABnOwQggYoEEj38ghtfe+uruqy1elq/SZ4Z9/b/942VrUI4EGMcsOc8+pc+pkRkVFREa8vN/7+34/X2LM2mG8sIUedZAXHkAs3ItTncIsjaBbAqMQEPktev4Gh4/sYXCoD9sqcs899zJ1/Bj1H/l+/Fcfx37uHLNnrlLdO0qjucnY5BROocSf/flf8NrbbsupsOUyhVIl3zSLFNsu8OWvfI1rj12LUhozu6fx/B5ht4PjFIgiD8PQGBwZx3FtEIrGxhbizBxWXxnzP/4bTLdEydFJ7/91lFulKWuYpsvq2iYPPPgAN1x3mP0HZzFtMEwdoXL4l4bG5sYyxWwpz9cNHcWy8h7WtdUVhoaGkIZJrX+Y/ftm6bRbJGmKpXkk3VUSWaRoWix3YlynyNbmGkP1CTY2Vnn08UcYHR0FBKZpI5Wi53lEUcTAUA3PC5jeNc3JZ5/hxI03c/dd93Du3AUqlSJbmxt0Wm2uOXYt5y5dwDZs4iBkbHIS0zAJw4jBgQGE0FhdXafW38/pU6fYu3uWOIg4dfo0tdogX7/rbtIspT48RLVaZc+efXzyk5/hne/8fnTdodMN6XXbHD16lCeffJJyqUQQBJw6/TzXH7+W9eVlhkdGuHjpCqVSP8qwMXWNjdUtBvprDA0NEicplf4qUmr0VSosLiywvLKCbhi0211qAzWKBYdms0kUZXmXYBIyPDyEabsUC0VOnjzJ6EidoXpeHfH0kyd56LEnOFKPKR3/MQzT4bmTTzO7d4Zqf4Pnnl2mv7KEUinnLkharSZCwNfvupcDB44gtD6aTQ1dZWjKQRk2UutAZqNpEl3XEZpAamA4RTRNksUhnudTqVTQTQMhFe1OD9u2iS89RxRFBAMTJEmKZVu0221cxyZN8iy31+shdUGSSgxdJ/C9nQmohlI6aaIDGSkeyC6BT963qmm0mls4dok4DghCHyUN0iTGtPLJp2vbJIvLaFJDjAzmE11dR8m8kkdKhSZMBBLHKZKmgiTx8Xwfxy5g6jpxHGBZL9ZY2BimQkqZU3bDkCTx6HRbWJYizSLiOEMTGkmcC9R2dxvTcEiSJO9ElZIkjjB1RaZBGEZkaYquaWhkxHGMbuiITNBsblBwCzsdtIpMZHSaTQylSIW2k+XLCMKAdquHa1t4Xg8B2KZBGATs2jWdX8taLXQpieKMbrfHHX9xBwf37ePqyhrX33ADUmocOnKIxcUFhofq+dQ6nueWl7+FtYaF7Zg88MBf8/3veB+a1SRJXV5+ywvo8gKTM29Ff+4S3sVFmoYEqUgTHaVLlpavUq6MILSEm266lV/8vz/Mof0z3HzTtVyd7+IWdf7Dh3+J17/urfzlX/4FExMjDAwMcP3xl/HBf/0jVMpFrq50uPVlL8MuOqSZ4GO/+wkKxTLXHz/Chz/877n9jW/kwQcf5l/91I+z1d7m+ptO4AUhNx67kS/+9V/zMx/8XxBaymi9jl1weeH8OR6861EMNcgf/N4nuPNzdzKzbw8f/Omfo1gsMLN7iomJCX78J3+ai+fO8CM/+D4ee+J+fvhH34f7519ij2Nh/fwJlorn+PCH/x2x3+P662/g4OFDoKDduMzFK89SqlisrS0T9GI+97lPc8uJE3z0136Lj3zkV3jXu95Bt9sgExGlYhUhMrq9Ftvbm3zw5/433vveH+T0qVPsmhxjeHSCcqlCu9Xi+PGDnD2/wK6pKQaGBzELDoP1GsNDg3nUJvJpNVtMz0yRkFAbqrG53SJNM+YunaO1tYK0dKJQYtwxgBZnnI2+xvDIHsJIUBuukYQRndYG/cMjCGkCeU/q8vIyhUKRbqeL69h5D3QYIZVGmmX4foQUOWwMoWGYDmmSEAQ95I7oCYIAyzLQhIZuWmiY6Holb0fQLNIswrZMioUKjcYmhVIVqSwaW1voWkaq6aRJSuB7hL5P1wtQSmKaOo3tLfoH8ino5cuXcYpWfh0tFxFaShwqDD2PJhimQ5zkPalxFCKVzDtZlb7j5PBygFqc8ZlPf4axsREkJkGYopsa3d4mDz34KFNT47Ta2yiVd7larkOUxBQLBaamRrAdA01mdLtNUiK2N5tYlo1lDZNmPmmWohsOUtdIopB2d4s42ULT2pQrdYbrdTrdbj6EMExIfCzLJPA9rELlG4wOKVOiKGV7cz2v/StVd7LnbaIwzPP9jk2axkghSJIEpQsSL+bhRy8xPuJi6BYCiaYpYtEjy0IE4NoFIM5BXEmeM+32JLaZD0V03aUb6ESxpGCnRLHA93o7e1+QmgZCkKYZWZqRZRDFEVmWD4/yrvkkv+84h/UlaZxDqTLBpaU5HHeUL31tnlLVYaCoUGZGHDu0mj1MXdthBqSEgQ9CsrGd4oUZpmUxWh/HXHXZ3NpEHPW54+O/yYmXnWD0wHGUpsiE9k3Dpm9Ua75k7/6dDLleysT5VnU5/7hW5H9a8foib+KlU+O/7U79xvP9DsXrdzqF/mctXv/rqpy/e+Ubmn9c4fqt1t8Wr2mW0dnaQgpBJlL6a/2kseDxxx9gbHQXYQDr6yvUh/o5eOgQyrQZmdzF2tIKcZrRardoNDbYf2Av6+ur1OsjPPLQYxQcxdBQP5o0EMLl/ru+Tq2/n3K1H4RCNxW6YXH27EWKhQqOZeagGNMlTgSOY5FlKUXXxTAMKpUqUxNTPPDAfYyP13Bsk/WNDQ4ePkqxUODC+XNUy1U+9cnPUnQcBgZqiCxm8cpl4jQhDHw21lexTIs4CVhZXWFsZIxHH32MmdlZ+urjuM+uE0UxixMa1VqNjfV1dJGxtLhEqVRGKZexsRmWlpaYHB1hYnKYdickSQIM3eTK3Bz7D+7BLZSxHJtOz+Pa646wtLRCoVSh3enR80OklmEqDd/zQGgkaZJbAuMQQxe0202EyJBKA5FfUHfvnoUsJQ4DJAZkOsKUiMIwV1ZTRncfprU5R3L5QcSV+9CsfgJrD4VimdpQnThVlMp1VOwThz79/VVSErxMQ77qEI/bawxeWWX4qauI0T4aWw3Gd+3CMDKmpqf5m6/dxdT0LGkSk0YRQRAzXB/njr/6Lxw6tIehgSqubUIcgSYRMkPXUyJhECcZX/vyPexNNAqD/aT/4Ud56uRFnrn3YWY2v0IUx2iT15B0O3ziE3/M3v0HiKOQ4foYpUoF3XBIUxMpYuavzDM1NUmU9DD9BYQQGAMHubq0iG6ZlItFfC8kFTrPPP0Mi/NzTE9PcunyZRobS0z2RWj2IFoKpcERvn73gziuSRQLpmdGmJiYpFzuw7Tyvs6z586yd+9eBgcGsQwT0zA4e+Z5vF6L5589zYlbTpBmCZO7J7l44SKz0zMkUULb95iZ3sWZ0y8wNjXJc88+SxhFlCsVthsNJiYmkJrEdV0WFxeJw5Dp6Wls12Xf/oOYps6FC+eJ44TFxau87BU3EoQ9DEunNlhjvD7K1+++m927d1MfGqbR2OCGG67jhdPP0eu0mF9c4/ix67j37nuJ/ADbyash2h2Pcl8fmxtr9A/WuHTxIkG3x/D4xA4dUWd5aZXEb7OxsUaz1aWxvc3IaJ2Z2Rkuzs2ztLjCQw8+yM0338jS1QWGJ3ejG5Ll1Xle+9q3EW+f4f7zCZX6Pr5+9904hUUOHqyRJoMY+iU2NrZ48ukuu2amWVtZZnRkkmqlitft4dglPvGJz5Bl/QwN9KMbPkoXxBH4frgjYHUSoZMlCQYJQhkoXafd7SKlQjdMlJR0zzyJlBJ3z1GkkkRxjO3YRD2fwOsReD6ua6NbBkq38TodkiwhS9NcoMq8MibLIEkEUuQ5Mk3TiIIAy1CAga6LPE+HIgo8lG7Q6fTQlSReWCJNEszpUTQBfpjlkA6piOIEIXuEYRcp2YGteNjFav78hCQJO2w3mhimjVImURyhZH7/juNCquE4BdJUQCaJwh5CKJRh5jlVCWmSd5UmJCip0ek0SeMAU3cQQBx6BF6LLJMYRi6O250ulWo/QlMkOyAcpEDECbZloywLkSmCqIcmoFTsA0kOdwI6jQYIyfLyKn21AWzXJQkD4jSjVCrzwunTXHfsOO1ul0LRxrIlYZwyXJvg6vxlhgcdymWFJhy63mF+5Zd+h//jQ/8S0x7D1xISuYtdI6cI4wiRHcX55NdQV5YpvO4EidDotSIykbDdbnDzzbdx++veTLmq8573vY1GW/L8k/fxmU/dz+/+wUf5/d//Y97whts5fHgvt7/xdu76+sMcODjFvtm9PP3E83zvu97BW970FkoVE6+zmVsONR1Hzzh0cDeVWoWbT1yPVBF79u6lUBnGLVr8y/d/gO1mg1e89jYsUxD5IUJpVAf6OXpoikKxzG/8xi/z6U9/gmYv5sSNL2dm1xRB3MUU8O7vez/3fOVveP1rbuZNb3kdxXKF+K8fQCCw3v4WqpVB5q5cZWyoRhik6IabE7U9j5npWTThIkURTYTcdtutdDstds/s4Sd/6sdRinxipUkcR9JsbjNQG6ZQqNIlpFisMDJSp9Nr0ukEpIlGrVZBqoB3vef9/NwHP8jm9hpO2aDR8LANReC1UCLi3Lk5xifHMF2TxeUlxsb2EMchkyMVNtcuM7H7CN3fNpFLBuHBVSpVyXZjG8eq4PvbRN0upqlhVWogcouwEOxQwAtkSYIgxvfb6E6ZjJRep03JdfG89k69l0STNqHfwi1ZxEmEbpi0Whs7lnWJH6VoZoFMBKRZFw2LKPKJ4whDd4gjD9MqIoTE1MHzGhh2H7pSmIZCSo1ytT8HqoUBjm0jdJssUQwMlJF6Fd0yCOOQT37yy9T6ikSRT5qG9HodFuauEoUBwyN1oiTCsTPSLKHVaubkcU2j09nk+puux7QqaLIDmsJx+1hf77C6tsqRowcJvHbe210ZIEoTLNsmjWPiOCYM4Ld/+w941Stfz9WFBo89fpLDx2cJMigWyvS8NlmcEEddTEsjyzSKTj8iNTFclxQwbJOulwOZAq+JbhroxTEyaQMCRYqmTDRMyAJ0Q0NoFnEWE3XW0HB54uQpKtUyebQ/RZcJiXRxLMX4mIVpakCCEKBJeOapBuViH7aVZ4chtwunSUaaarS6HqaRkKQeSPjsly9QKlUpuwGa0JFKQ+n5dDVNU5S0dypRQOQmE3RlIrU8qhEGIRm5OzAn3Gcomf99sDCBlGtMzfZTK1iIVCOTKZfnumQYFF0FGSRZhlI6p86s4UcFrq6t8eY3vxYtM9FXXewxHfP6lPW50xQrLruPvxwt08leokdfKjb/oetbidd//PVPP3n9lvfzXYrX72T98xavYfQLuSf7H+tHkq/vVuQmC88g0gxRHSWOYtbn5+g05ugbGGFzq8HFU48hki6WVUJoEVHQpbPdoNuLqNcnuO+uuzlyzSGmp0Y5f/YURbeEaUrmF1aIooijh3ZTsAosLi2CJhgaGmDXzDRm0cnJl75Pc2uTguPQbDZwC26eJ3Ns8vdNiibA6/WwHQfP69HzAjQNTp16nnJpgMuXcxFDEvHCCxc4cGA/ypQcPXKEUNMougUsqaNJiIMY3+8xMjrK5uYWxYIDmWBouE65UsV0ChQdh8beAtmNE4RRl9rAOI5rMDAwils0OfXcC9SHB+n4W8zO7mJpdYVCqUYqNMrFMt1OF93QCYOIzvYm7a6PoRx6nTXGxifziYwyEGmCqSesrG9S7RskCjoopbAMizD00GS+EQ+jACk0lG6g6w6ZkKRaimXk5eCmpaO0/CT2zs99nsPHDkJhFHtois31FeTSE2hX7sKaOo5yykgSpAyQVoliv02SRNx8w8v51z/1kyTtM+gDZQZ/+ANEr7mNL/zCR7l2cYvO0XG+cuffcN11N3LyqWdZW15ndLTGdmMbXZdYluTmm24gimKEJllcXMQt10BIyuUyTzzxJJ/91Bc4cd0x2o89TXV4mCs//CYW15dRicex+GF0y2LbGuTK5avURqaZnJjEIGHP/v24pQK6TNhaW6FUKBEEKZ/97OfZM7sbTWZo7cv5L7vaQWzbRekOIk0hi5GaYGx8jFPPnATg8LVH6XRCisFZEnN4ZwoETz3/PDfefIJM03Ftm27ko6Fxz9fuZWJqgsGhIQR5zU2UJihTpzY8zOjULmZ27eb0qdNMjE2QxgnNVpvde2a5sjDH7NQutCyh22kxVB9hY+ky07umidEwTRPSjF7o4zg2l89fwNBt7IKJbZvMX5pne2uNTNOZ3b+fwcEK0rJx3AJxmFfzrK0vc+0117G5scXm5jq7DxxEU4pWs8Who0eJw5DtrU32zM5w+vnnWLyyRKlc4t777mNtbY3DR46yvdFgZHCASskiFSbtrs9zTz9NyTapT08xPDaF5/UgiZmfn2NkrE5rY53RoTrjoyMEkc/M7C4yEnqdHgf2HODShXN0NuapThzj3/7SH/C7v/URbri5gGHECFEh6J0ijiKuLBjMzc3jBxFveMPreOSRR7hw8SK6YfGqV93C+NQ4UnNorvvYbgvdAMhItMJOPjwiiXykbhAnKZkmcX/zNNpDK3jHSiil03r+EZQG5uw1eD2fdqtJueQiDQvTsdEtiyAO0YSZ5+1tG6EJCqUScZLbwXQJGRE9v4UyDEgKZGmbOI5QpkOaBnmGSzN3rG2g6waalKQI0qureUXN0CBCl5AmGLqOAKSWoglF4EU7U1solvpRSKQQhFlIlgksp4i509FKlncz5hMa0GRIHEckcYLve7iFIgBh0EXp+jfs+91eFyHyia3veTiOTZZBmmYow8JySmi6iRIZSeyTSIUQkjCMcEwDr9PGtstIXc+nNHFAEPg7tsx8kyi0jIQsn9K4BS6cv8R99z3MsWuO0mqtUumrg9T40z+5g7d/zxuJoojPf+6LDNdrKOVgWwZSKR599Elq9RqGYdBsLlAdfj3FskHRWqNQCSGpUrbaFNxzaNLAy45gPvwscRxz9cAEhmViFiSt7Q0mBkZ41a2vphtoCKFTtCtcOHOJT33mk/ze7/8O73j791MqGpy9cJ7/6xf+VxbmLzEzMcvWZpOJ6VEOHj3AsWPHueaG63j7m9/L1nqDd777zbgVF91STE/t49/87P/Jbbe/mmKlRKlcRUMjigLiZI3XvfGVeElKmkh+6SO/xeEjxygVXEJP0Or1kIbL1Owhfus//S7HD42x98AhMAbYWp+nubXOH338Y5w+dZHb3/oWMlIe/4VfZXhkBOvNt/MD3/N2fuIn3kuUxqAX8BPFD73nnbzxe9+KH0cIpVEolVlbWaTRaFAb6MMPGvTXB7hy8SxjY2MI3SXJDILIIxMCyy6TeRkSWFu7Srlc4mO//dExVHEAACAASURBVBu87jUvw7F0Oq0eP/ehnyYgwy0U+LPf/xgP3Hc/N914HafOnGJq9yz9Q0UMs0DHi4ijDMsy6HY6CN1C2n1Ed9qYl8qIExFOsYwyyvQN9GObGpoSlGvDWOURhLIRO3ZRTQhkppERkUY+fhBQrNZI45Ruu52/j3WJaRcIghApNeKgh5CSONUAmX8OhYauXFrNDUpOAaGl+H6AaRR3tE2MbUpCD9yKQbfTIwx9DNPGcav0/A5xEqMMm0xTeX7dMPNpYhQgSOn2umjSRMtCSBOUJlEyZWKijmnqFMsFPL9HfXAEwy3itzbZXF3FcWrEUUapXCEKA6xCBZVp9KKQs6fOYJpV1lY3GB4c5L5770IZNmNjY+jS4Ozpc2i6xHGA1EHIDER+HTp2/Bhe0KNUstl/YA++J+i1u8xfWsFUPSxLIDIbpMJSkk5znSTqEHQaaFlMr9Wk6Ng0t9bQdQ3dqRDGHiLNM7RCeMT+GokvKFUUrWaC6Zh0Wj6l8gApHWoVF9tWxFFMGgsyJEQeURSgmxYJEUlkkOGTpYr7nrxKpWTSXzZISHCcIn6YIJWO0DIsM0OSoXQTpSyOzI7gFDvMX4lwyz5KGMRJQJpBkgqSOMwruAoWSWoQhxBGCQgfmToYjiSN0rxuTAhMK4d8KaVIpQ8YGDInLhuGDmlEqaQjRIA0tPz9iUBInbDnMb/WoD44wsT0DAKJvuJwqXmedH+Xognrm6c4cMPrc3jVznrppO/FqeJ3I0D/ewOfvilD+g8Qri8mUr9BXH7xgOHFyedOV+uLf178/t97vyLPuArB3/HY/m7x+qLF+tu9/v+8xWv0EmDTS9Z3k3V98QV98c3937LS7SXSNIZCH4qEtcVLSE2jb3AMTXeoj46SRC2E0ImyCKkbdHo+Dz/yCJcunmN2Zppdu/fSaDZJkxTXdlhammd6eoazZ87QVyngh00qfSVK5TJB6PHYY48yODRKmuTo9VJJY2tjjcGBGp12g2pfH+1OG8PMazDSNMNxXdIkYWurgaE0ri6vUO0bYO+eKeIk5NKli0xMjGOZNo1mg82tbaqVPkq2w1OPPkK1WqQXBExOzxLECXGc0my1uOmm61i8ukixVKLZalIt9bG6epXAb9JurbGx3WJ4aAzf79FpBgRRm9ALKVWqhHHKsyfPcN31NyKVThhFuK7J+uYimxtrHD92K5fnzhEnMYcO7Wdtc52uLxBKxy0W0ZTEi0L6BuuQKdqdBvfccx+1Wt6nKpWDoRS9bodCsUomLPywjedtkcUpaZZ8o8QcAbopOXTgIEqB0AzCTOIUXbwkIPY6aBfuIlo6STh4kMzqJ+qFJKFHX8HiR/7FO9hqrSNlPwPTh+loUBka4MrUELM/+V6Kd3yF4z0Qvsf41ATTlk233eGZ8+cYGZ+gVKmSRRHNxiaObXH27FlmZmeJkwghoFQqMjM9Q+XpM/RNT/Bh2SKSgje+9W24c/eStFawp65DCMWjDz+BMhyeeeopbrzpOhIR4XUaOFaeWRLKQKAolUvU63WCIEC1L+aCoboPw8gBOWEQsLCwwn/+009y9JpjrCyvUCyWuXJlnoNHrydbuY/FjQDLcjCUSSuBbqvDhbPn2bt3mtDzaGxtc2D/fhaW5qj1V9ne3kTXJaQBUpNsrm2iNImjm7iFAutbGwyP1an2VVGahm2YhGmMbhlouk6hWGJ4eIL1jS3Wrq7gd9p0ej2UlOhKMTJSh0wQhCG2Y7O4MMdQfZRHH32MiYlJCsUSrcYmjmWgiYgw7KCbDgsL8/S8LpoQ7Nm3h8sXL+FaNuVymeHRCaI44YUz5zh2/DgzM1NcvHiea689yoH9e3n22dMM97nYjsNGJ+T+r9/F6MgIPd9jbHoSgeK+++5joFZjaKjOgw89TBTGbG9us76xQn9/lYGhAaSuI0SGkjKn6UYRUfMqYZLy8nd9CKVL6iM+muYzP9+kXNog8EOcwjFc1827OQsufX1VlhbnOPPCSfbvP4ihdNIkzq9BySCG7qGbOmnYJAkStCzBtkzCwENLQzRNIh9ey7sgXz1DnGQkl59HKklh7/Gd6q08mtDr+YRhkHcbArquECIljnoYhoXX83ao2PkUM44zbLtAlgoM0yZLPRzLRek6msYOml/koloIep6HaZloQhAvXAUBxvgkWZbk9t4EpNRz21oiULpCKo0wClDSIAoD0jRDNx0MqXbyVBFxGiLSPMMVBQFZmuRkVaeAkjq6biBlbmHrdDoYhkMUhaRJhOVYdHsBhqFjOzZxHJEpi0wIgsAnSSOSOKLZ3MY0LXTTQmXQbjbxul2UUkgz7y/u9Txs20FqEiHyTs3NzXVMx0EKgdQ0fK9H0TGZnJjAdV2kkCjDoNVs0uv02Ld3GmUYXHPNDbiFIn/4h/+Z3dNDWLbNnv0HMV2LNGrh2JJQHKS/v5/lq3czMlJkfQ1GagWE9gJpmqEZx1EPn0LpBuXbb0MkMZpdJUkS4jji8aef4kP/+7/lq1/9Cu/7gR/g05/+JEeOH+cPP/HH3HTrCT77hS/wsz/7Ib7whS8wWh/nnW9/Dz/6gfezubHJ+fPn2L17loSEX//ob/LzP//vKJVKzM/NA/k08KlnTnLTiZs5e+4MA7VhSBXbjSUq1RJRqKGrIiJus725ysbaCoYUrC83ubq4wO6Zcc6cfobN9VXe+IZXkmQJH/21/8Qtt57g0sUlvvLle/m93/sIftQjzRKGnz6PaRn05l7B7RPfi35DyvrWMmEcMjJS501vejWOW2R+4QqlUgVd2bSba/T19ZEmgoFanSTsMlgpQhKBEN8AaKXpTnWaCWvrywwMVrl85RJLi0u87OUvZ7uxTafb4erSBq1GPrm/8eZb2L9vF6Zl5CTqOEKY/Xz1S3ezb2aGoq0zN7/MSH0IQYr2tTLi0QLajRHSgAydVDNIMImVg5AOmnLJUGQpeH6PJM0Ps7M04Y/+6OMcOXw4fz/qBoHXQ2QJjm1CGtPxupRKRQR5/jVLU3TTRiCIggDHcUkTDV3XUMokQ6Pb62FaOuvrK/lnxbCJkhQ0SbfnUyqXaXc6KD23tJqGSaPRIEljXMsgR6AJeNHxkMYokZJlYBgGGxub1Ot1LJlfS0yrwuNPnKZaLvFXn/4sN91wDMe18PwQ1zaIQo/TL5ymVp9g7eoyhm1QKVjc8Vd/zq23nkAqwb79ezClpFKpcO8DD3PzLa8iI8K23bzz2tDxvR6e10EpLWdn6HLnMSl836daGaDVXcZxKnRbivb2KkkcYbsuYZwgbZcYKFYqpAhM00IoHaks0hAsQyOK1ogDj1avSaE4hB/1sO1BhK6TZnkePxM6TsEgjjPSKMa1bcKwQysc4f5HrjA+WkVqCsOwEeQOlqmJArvGR8nSBLSEKMzdMGmSAnkVnCYEQhM7LAMPqVk8/vAcu3b1oxsWmtRBKDSlc/XqNm6xiBCQpQKzoDBsHcsxCaMA0yqjdB2pWwRxQppButNTGwQ59d7Qjfz/RoKWIdCxLB3D2rmWZxlJFuHYBTKjn3MXF9l76FoiL8BeL9I2GvyXs3/G6uUrGEbKda96BykhQqhvu1f/hwBd/0dc/y/U9iXP96Wi879JvP59uug7n7z+Tydek/ibM68vXd/Nacq38rF/y1H5t/g3ydXTpEEbrApXLlzANhSFYhUvTLHdAoZlYOgFqpVRfM+jr2+YUrnI7O4ZLNNk7/6DJKmgUCpTLpV48N672TUzxYWLVxio9VMuuoyOTPPVr9xDudRHFIZMTU2idBvDMPJKHKUw3QrKdDGc3AqkGzqa0IijGIRGFEf5RtctsrG+zO7ds2RZxpVL5/G8HpqmOHXqBYquSavT5vDRY1y5MofvheyamcppmHYhP0ULQi6cPYvvtZGGwfzCEpVyBTI4d+k5+vurJLHAsfqI0pBuq83oSI1Ll+bxPJ+ZmV10ez1a7S5XriwwOjaGpim6nkcYegSBj2M5WKbOzO5ZtrY2kIZgdGyWgfoIhmkBAtNySNIE3bAwdBPH1pid3U8cJ/T39RGmArII184v/q3GFuWii9IVpuXs5NscHMdFV4qe70GSIWWCpil0pZCmSWr34Y4coOv3EJ110gv34RkORm0cTXNZXG2iF6oM9JcxCxVidBA6MksZHRshrRTZuu04ztteg7pmP1Gzid3sYF9aYs9KCyeMIUmQq1sIL6DR7bD30BFOnz7NzMw0m5ub9BXKlB87hagWefbdt/CWd7+H8fEZ5PkvI7fOI8euQRk2yyurSKlT7euj53WwXZNOp0OtVqPdaBP4uVVzfn4Zt+BiWgbdboDePZf3OFb3YVoOXqeNHwYMDtWZndlDu92iVCrTabfxuj3qIyN0rp5kZGySpeV1qrbB5a0eN1x/PcMDA6xurNJptYmiiJ4fMD4xQbvdIktTKpUKaRwTBhGFQomFxUU21tdYXl3mwIEDBKFPqVDgzOnTaJqg53fQTZNz585jGzqPPvE0moDI79Jut/D8IAdkGHndiG3r2AWXKEnpq1bIUGxurjMxPoZbLGEomec3oxCp69hWAccxmZoep9pXJds5LChXqgRBwH333k+WZkxOTrK0uECn06FarVCtlJmfm2NsfALHsZlbWOT++x5kfGSEYsHmiSefwCmUSOOE8ZEhiqUCTqlCqVRi3569DA4NcebM81x/ww0gBN2eh+u6RFGC74Uo3WC4r8jW4mk+fyrj9a97A4gLWFaGEv1IcRkhJJ+/8yztdhvf91lYWKDX7TIxMcH2doNjx6/FVGaebSsV6XW6hL6NrrYxbAupCbqdHkEYEgQRlmmQCh312AZZmiFv7idob+Ps2oc2vhtlOLlIVJKMPGua97wa6FIRBAEQoxsmmxubVCsV2u02SiqkodNstJFC5VUKhkEYdBAoNrcaOLZNc8fmF8cp6Y7LJoljtrc2kWsbCCFIB4cgCXYo4jl4pNNpYzt5HlUqHaV0thtr6ColExnNdgeRJPiBn3erAt12C8vMqcGGkVPJLdMmSeMdiJPMbc1RgmUbtFqNHRKnjtJtNE2j08lfdyklUoChKzSRITUoFot4fphb59IunW6TYqVAkkXououuK5RSNBsNHKdAq90kigKq1TIZeSbNkBq+18UtlXdIqhLLdvD9HqVygXazw5VLZzFtly9+8W84dvwIhmGza3qMVruF0m263Q6OmX+GhHkduirgWhuEUYxbOITUNDTteYTI8IJ9GI+cIstSetfu49zZs/QNDmFKjVMnTzI2PsUHfuIDfN/3fR9LC0u8851v4Ytf/Do/8zM/jes6XLq4QKFocu2xY8zNzUOW8prXvpo77vgr3vD6N9Ffq7K61uL5559he3uNwcF+Nla3uebYYfzQ5xW3vQolcxo4aKytbhOFLUp9Nba3O5Qsh42NZY4cPcj01C4efPBRnn3mJO/+/nfhFi327d/PiVtuotlpIXWLgweP8IUvfplDBw+xtbnNsyfv55aXvYI4SXDufoI0SZHjtyN1iXlCUayWsHWTxsYGlltga6vBcH0Yy7LotAJq1RpKGSgliaKQdq/D6vJyvvmXJhfnLmJbRZQy6HktVlcWqFRLWJZNt+Nx4pYTnD7zAoPDQzRbLSzT4c7P3Mkv/8qv8p4ffR9a0qFYLFIoFFFK58zZS3z8Yx+nv1rlhTNneOrJk9RqVfRHyuj31NiemcOpOmhCsHn1CuVKCZFmSCnIBKTEO5v6lO2t1k4/coLf67Jn716klh+Y5D3JFqZlsb21lQs0M4ccaprEUPoOgE0jb87IP0tKGjTbW0hNghDYlglCYJom7cY2z558gaH6ABtbPmGvh2PbJHGUdxJrRp4T1RW2bRH4Po2tdWzLQjdM4jj/Xk6sTRCahmnk1Pk46SEkfPmrX+bGEzdQKhSZ2bePJM4dDLpVwLFN0iSiPj6ZO5jcAoZt0mltc8NNN1IqVNE0xdz8ZUwzRlMph44cIgG21tdptwPcooHUdOIwwDQ0HNvB92IQMaZlEAQ+Sik+/vE7eOVrX47nRXSaPYaG+tixc1Cu9uE1eznhWOr4rTaG66Jpkm6zQZZGNLY3CYMWlmGgTIWhV0iyECmLpLEPJHi+T5opgsAAYeGWXJrdTYqWix96FIqKsmOimylx0kYpnST1KLoGoR8TJznULlEmmTTINIVdqJBSwClWkXqBTHfQjCqWbTK9ewBhhgjlYBUq9MIEw3XpH9iF6RRJhcC0q2RCEacmGiUQGmZ5BGU6hOikqcByCkRRhG4o4ijENEySNCFJUhQRSgrarQgl8y7cxrZPlEgEUJAJ2+2YaqnK4sI8m+tNpuRutFrGde8/xJ2f+mMmpwY5fPObESoG/n7x+k+1/vEBT9+8/qtcafZS3fLNj+NFwfl3Df6+vU34pbf7zjpl/+cENr0k8/r/1fp24vXFFV95AvwmqjCISPIfoiZ1TNMmiUO6rS0Sw8A2TRqNZbrdFl4voK9cZmFxma/e/RD79u1BGAZPP/44JdtkcnqM6ekZzp87x/BQjY3tBiMjI8Rxj/pIhe3tNuVKP0kSoOsxSRihhODkM08zPTGen9JpijhO6HS6WK7FsyefY3x8kjhOMC2TjdVVHDM/6XSdApMT0zSbHeKwjedH6KbL+OQE5y8vMDg0QH9/P2fPXabgWqytrEASUSla7D14DWEQEwYhpWIJ3einXh/H+fTzyDOraNdOogQ0mivM7JmlXBzi7JnTuAWHwfoQ1b4yW1tbjI5N5BMKmVEuDNNtd2i35lm62mbvnlm8oIvlDiFlhJISMkGv0yPZAREYmmJjdQHdLOS2wSxBmRZJ2GFleZ5CuYJMOni9CE0rIAwDxzRIU7FjU0zRDQvLMFlcvEClr4Kf6rQ7XQwhkQlkpUGM2gSa38RceorzF57jS5/7Er/+H3+d9/3AD4KyWVo/R5Z4lGSNTNdod3vYdolicQDfsfAqFSqvOsFPf+EOXvE7H8F4/9vo7qrz1bu+RjnSKIQR5VPzaM9doL+/j9X2FuXVJvLpcwR7J4h+6QOMz86iK4eth/8EtXWWlrsLs1BCkzqaVFT6SoyNjjI+MUK5WiYKY+xCBZEpTj71DN1um61Gl7PnXmBmZhdPPfkM48NFMCsUh/eQpPDkw48wMl5HSI2i66ArnQsXzrKwOE99eJCFxQXGzQU6kYHULcqWi+ofAU3j4UceYmxiinKxjNQtDMfFtWzmrszT19eP1+1xdXWdME4oVcpUqhUGhwapVqs89vAjOJZFEPisrKwQpwkzU+N0uj127Zrl/OnTHDl+DbX+MuMTdfqGh+kr9/H0k08yNz9HpdaHkiGm5XDu7EVeOPUCh48eoVS02VhfxXRcoigEIWk0u7jF6g7lMCbLchpt0+vgFgokWcbW1jZZHGHqkj2zM8RxxPOnz7Fv716iIGRxYQHXsVHlfnzP58D0GPWxCdZWrqKUYnrX7p0ahQjTMbGLJVauLnHl0kVqQzUO7N9PFMVIZaIbNnGYYJk2c/MLDAzVifwulfAc96xNceLWl9Hft43UAtauhgzUmgRRwqkXInRdZ3Jykje94Q08+eRTzM0v8bbveRcPPXAvI0Oj/Mmf/inX3ng9kd+j1WqAHMTSzyP1MlkmyVBYjoNm2BhWAe2Bq2hCEJwYRUkFmo60HdrNnI6tpCJJEsIoyrtMRT6NCQIPwzDQMDEMhef52LZFp9PBciyKxRJJEqNknlftdhsU3CqGZSI1A9PMp06aMMi0DNM0SeIIKQSF+iBhxcEuVWhuLaMMByEkmgZSCaIkQWiCJBEoZWIZLrblEieSu+9+nNndw9i2QxQlpJkgimOknrsRMgRh6CGloN1uEUUBUhpACpkkyTwKroPSFFEsUJaZT6aVROkKPYnotJq4tgtIhIjZ2NqiXOnH0E0Qkm43RJMWjlsliXeyr8ToukaagGWZSCly0JxdxNQVYeDR67SwSwN0eh5usUAYx9iGotPtMDI8yvBwH26hwqHDR0kzn6H6ECvLa5QrZRpbLUKvR7Wyjh8fousPEXiC5cUH6Hk+Zy/pDNQn0bJHUJqGpl+LeugZsjQmftkRjGIBS2VsLl9l4dIcX/7CPVxzwyGKxRJplKFpEb/47z/Cg/fdzcd+7w+Yu7DET/7MD/HYY49ClnLwwCya1HnyiWc5cOAQa+tLvPa17+aXf/kXeeWrbmR4uI8P/ezP86a33o5u63Q9jzMvXKBcKbK12eSH3vej/MSP/RiaaZPEPbY3linVBuh4PYJYUCoPcfPLrgFdIyGvdwnTGLtcZXO7S1//EA8+9BC/8Zsf5Wd/7id4w2tfw+Z2l8GBMZI7v07gxehTb0FIDeNGQS+McQ2LOIzQDBfHcUjTiDCI6XR8slDnnnvuYXpmjM2tJaqD45RKRbwgoVSrU6k6KJlD0RxXMVgbZHOjgWm6uE4Fz+8gNA3bcRiu19lYXeFXf+XX2Ghs8t4P/AtW5s5TqVRx3SKakAxUHa6/4SamZvcQJAmvvOXlDG2PIu/sxz+yjl7UMCwTDYFdyAUymkJTAj3Nvw6CLNVxXTd3NJDQ7TRxnAKuY6FpOSXbD2PCOKZcKSM0gWm4RFFM4HsILSVLI4TUcttoFOCUHFqtDkrPYWWWY5GkKXGcIqWBLjO+9uV7OXxsP05hiMbKVUxdp7m9xYVzZ6gNjQKgyYwoDNENC8eQxFFAGPooTHpegG5YxFGQw4qEhpSSTJho0mB6ehqlpdiWgbJza/S5s5f4k7/8FNdec4RgxzKchF1EkpFoAss2KBernH7+AuvrDe6//35uvuUEQurEUb4fME0Nx6qgjAghFLrUybI0Bxy1IxA+ALquo0kN1x2iXBnAcQ2ytAN6fj2Nopg4SZG2iV1waLQaGLaJkiaQ4jXXcaoK30up1yfZ3FhDStBliSBsYegOWtYljT2UlmIqgyjzUIZLJopYbp1EObgFl1K5iFboQxX2ork1nMpBNLuOcIew+kcxy3Xc6i4Mu4ZhDyLNGsqqUajU6XoZulOhE0p0p0ZKjFAulrMbwy6hzAFsN6/PMtwiSaqRIRFakTTrYTkF5ufXGRmrEXYDeu1NIt8n1ewcBKUUpq4jsvwQQiAQQsPPIMLk+fMNvvbQHHsnTYI4plTJY05RZnC1kfHcqQt8z/e+i/7qEOaqQ1KJaIytoiVXmJisMXHo5aAl/P9ZvL64/nuK129a30a8/q2vfOeP6e8Tr3x3DS//rMVrnMS/8E01Q3/P7bO/ddvv6Pbf4vTh201l//YKn/gr6DWRtRk6zQ6GntJpN1F6SpIldHsxSAPd0FHKYmlxkd17phFSp1gsc+q5p3n25NM89eSjHJ6d4unnLzI1NcnpM6e5+dZbKJT7OHvuIvsO7KfZaiKkyWD/AAkhpmFx/swVlGFgu2Xq48P0goROc8cynCUgMmzLYqB/AClS1teXqNWGKRSLOIUizUaTIMqIkoyx0RFINKp9DpZpoXQbx1HYtk0Up1w5f5FStcDoyAhC01hdWyWJAgYHBjAtm1a7ixARveY6lSfXKUmH7MQ0A0NDuG6F5cUlVje2MZXGyvIqllVga3MD4ohWc5uVtasU3QrPnXwcy3FwqqMoYq5cOUf/YI00E5imotXscefnv8SumTq1vhqtZoskzTeklmWRJAm+3+D/Ye9NgyU76zPP37ucNfft7mutt0qlkqpAG5IQZhcSQhhsLDCrF7z2GI/bY0fH2O4OOnrc7pjuGZtuu2d63I0dNuOhjQ3IgCywhDYKraVS7XvVvXX3m3vm2c98OAWWhATCPZ88/UZkxL2ZJ/OcPDfvyfd5///n9yjtIIgRaZpRDf0BxeIoUdKhuX4F2zDxgwipBJsbS2gpUMokV8iTpCaKLPvSsk1SoZCJh1IOFMchGlAdLLH3bXfyox96H5deeJBDj3yRvQuvp1CcZLO1gpVzyTlFojiAtI+IfVzHgFSwf/9+qmMj+Inm+PoaN/3UfYRvuon0x97O5p0HWLtmhNLUOEM/4cShZzHe+y7+63ieifm9LJ4+TvHo/0XZDLDmXofjFghisG2N73XRaIRpY2iBTEMspZBS0e30ePibjzA+1mB6dhbXySbg585eYNu+AxRGdjMYePR7HUbGxzN/kTaIhOJv/vrL3HHHj9Dt9FDaZGxinFz3SdaDIrXaCAZQGJ/m4Yee4J53/QgXLywyOTlKr9Xk8YcfxrRd6qPVDAojDSr5PFeWFhkbHbv6z5VgGBZjk2MoYXHu7EVmpmdxXAvLKVAoFHjy0CHcfIEnDz1BtVZDa4vVKyucPn+RkZE6t912C4OBh+nmMU2DcinP/PwkyslRrBRo1GtcOneO6kiDYBgz0qgTJQOSCAbtJq7rMowFUb/13cWMK4vLnDt/iQMHr+fLX/4rdu3eDkKxeH6Rc2fP0et3qY2McuXCRaYnp+n0PM6dPkGKZHR8klazjSAmX21w4sQJKuUqie8xMzlGmEQoo8by0gWkpbAME8tWbG6tc/rEeRq1Gq1+RN47xxV/Bw8/epwfedskUngUCnNEqc+zz5xlc8uEVLK8fIXnjp1ifnqCybE6Zy9fZm15mV27djI2PsL4yCiW6xCn2TWqVt0HyVMYToNOs0shV2BzcxNJivnkBkma0NqTtahq0yIMIwzTBMMgiAK0hP6gj2U7CKkwtKLValMolGm1WiRxSLFYIAgCpBJXc+wyEFEUJRgq83imaUyv2ycMsiqGlAppSPx+E8MwUEoRRz6mW2W9c55KYRI7Z6B1BqCLopAgCLPoCK9Nzsrh+d2rNMyUlStLXLdvB6ad0X4d18TzO9imQxSHdLo93FwREfssLy9TKpcz24H4DpjKhtTKcmKbmzi2gRIQBR6GVkgEURySL+QJQj+jgNoFhDSwjOx65EcepVIFx84TJxntE5Vl7PabW2hLYZgGzVaHUmWUrZVFJB62YxMLF20a2JaBJAESmlvr342kSBKVxeqkKQ//UFjAtAAAIABJREFU3TeZm5mhWqvT7bbRRky11sCQxxkO3kR/EKMtxXh9yMqVJTqbPrvn96D0syRxilCvRzzyPAjJ4PrdBMM26SClUC4zs32e192wjw/c+0Hefddd3Hffj/Pe972PG2/cwx/90R/xwAMPcuvtB2k2++zZu4v57TMo7fDVv/k7Rscd9izs5wt/9Tm8zgY/eu+PMjo6yZWVFe79wPvZbG7R70d8+p//r3zlL/+GreYm1+zdR60xzjUL12BrhUgjcvkCd9/9IT7wEz9OuZJHG4JcoY6Tc+i0Bxy87iZ+81P/I4bj0O926bc3+ae/+ht8/YEvIqOQwvgkwsg8XPr4JSjnMSq3IhJJtHuTrdYV8vkyysjzkQ9/mJ0Tk4yP7ySOTG667jpu2L+N2249QKpAWRX8QQe/3yYMfLRpUMmX+YWf/Q3uevc9+FGL4TDBMIuESUIih8SbSwi7wGbHQyjN2uolfu4Xfo53vfMuJspjFGsNUiJOHj9JrTqKtAxif4Drmth5E3EKzM+P4y1s4o7YaNtBiBSEQb/XI18oZERuFAkxSZoipMQPPESaIrQmTsCxHGIySnYqBCIVSCXQ2iRNJUkqGAZDLEMRBT6G6eAHAqUVhmmhTJdux8PvtQm8gGK9ThoLlADP6yJTn2Zzkx95621oUSaK11CGoFCpks9XcV2DyAv51qEnmZ6cwTIthv0BjlskxUBqiyAcYDlZcoOyzMyCoE2EVHQ6m5imJk0TEIIkhcgf4HsDxscbHNi7h/5gDa1NguGANAJpaaQAZVh864kXOHTo21y8dJYPfvB99LsdHMfBtCyUIlvU0oLhIMyyapWZeetVBacksKSB1CbJVZL6SK3E2voy5UoJIcD3PAr5KkoaKO1hCJtBr4Xt5EmljWUKVq5cZNCD5YtLIFIKhVLmg9UFuv0tisUyQ8+n325TrFZRto0f+uTtPJ1egOO6rK0s4g0CTLuEma8z8CWdbg8l8/ieT6GQQwkDkaQMuk167TUMBb32JmbUBinotRbxwyVCb4CMljGlJA0GpOEQkXr4gyZJ2GXYv0IcrBH2m8SDDbSISJM+0aBNEgwo5gRx4ONHA0zLwDBtvvjVU5w9dYqFHWMEUZdUGAipAIEQ4GjwhxFRlLB/zyw5N8HUEtvQ+H6I0AmnTq3Q823GJ0Yp5cqIZYveeJMz5gnmJyY4e/Zp9t/6DoSwv2eunr7o95enkb6i/zKVLxUO3+8mXrmS+nLr4StRe198/6tWZF9+LN/T9vuyx9OX3r5XA8m/3w5BSgykSJW9dpJCyktvmUEWxNXnCPGiHFrki4TWDx4vpz+/ePzjFq8/JG34e8Bdr2Efr/Qh/EG0sow2HGKN7iDyfZrrq+RcCaSkZP4XE5fA60MyoFQ00Mrl8qVFPG/I3r27KDiam2++g3Mnj7Nw7U4Gg5CTx47SqBZo1Gr0231GGyM8+ujjjIxM8MILRxifnKTf7+F5fWZ37KbTbtPZ2uDy+SXCaEi1WqXZbFMuVRFSkCTgeUMgxbYstjbXaW5tMBh4dLo9rj9wgCOHn8ELhkxMjXH2/BWeeup5zp46zfUHDjL0Bwz6HYS0WVxczlroVMqw06LTaRPHEZsbG2ysbrHnmn3op5cwLZP29VNcWrzC5NQsYQqjjQZ+EOL5HvlcjunZeXZs382ly5dZXVmm291kYnKc3bt3c+nSJRzTpFqpUihVCQOL/qCDUrDvmt0gfLqtHkkSY2gIgh4pglKxjFaKtfUVyuU8WgukUhikDP0hpqExtcK0XYQQNJtNlBLki3kQEj8cYNs2SZL55waDHkpLwiBCKoVMI1LDJEjBvPQMhjNCfsedTE2M8hu/+VvccsN+Th15GNOpYFkWWkrQYGpNq9XmgQce5MCBA2x2zuFaRX78fR/ml37x13j/vW/k3e95L1GsWGz3SHeOUbz9Zs7tmMY5sJ9/+69/j4++/83UTvwZOt9ATuxnMPRZvLzMQw9/k6nJCYqFHIPBgJWVJQxDM/ACTLdAMox48qlHufued1GpTlMqlqnWKjiuye6FHYRBNgkQMiWMh1h2BdPQNFubuDkbmUi0VhRLJUhTisUiuvUknmjgug4Ggsi0GZvfCUbKoOtnPlXL4rrXvY5yKWudq9fqHDt+jG67zfjoGL1ul0IuR5gKkjQTy4RDnj98mO27dlGt1fja/ffTara46ZZbcNwce/buIk3hiccPccMNN5Pik3ctVpZXMAwbmUC326dUqiAMkziOIU0Io5BatUHgCdKoy/FjR5ma2IlhawRp1p5drWLZFhgWUmpGR8bYtbCHI88fYffOXXRbHaZmZkF43HTzzYShZHZ+lGqtjDaz/M5yo8H07AwgOH3qJH4SMz83T8FxOHvuIiMjDZaWlhgZG6fVXWV2epLeMAbCzOMlbUxTYZsGll1k4+KzzOy9hT/+qwf58EdvRquAJK0TRBXaGzGz09NcWV5lemaaVnsLxzaZnpplbHyaS+fPsWPnTpI0QSiFk3eQWlHIV2g2PRA5DHmafHmSKIzRhpO1wD6xmn1v3Z6RffuPfxn/wjHk+DymzoSqEAKlFEmaZt4wbWAYGsPUQIh2XFJgOBjiWDZBGF4Vp5owjImjKBNySmFZDqap6A/6DL0BUgpMrej2BmitIU0ROkepUiFOTMI4RSvBYNAniiIcx2E48K/6Yx20qUhTQRhmEWMI0E4OJQUijTBlShBlk3HXdbP2SCWp1OqkyAxANfAwTQutNakyrlJWzcz/pRRJCtIwiOIYw7SQ2qA/9DAsG4SBbZsEQY8w9HDdElEEcRKCiPEHfYb9PorM4xtLgzhJqJRLRL5HEg3Y3FqjVK2TSgORZu3KIoWN1VVGRyeyVjxDIyUYpsaybEZHRzBNlVFeTQPTMDny3EOMj48QJbdQKFUIYoFlrjI9O4Nd2sVzR07x+//7X3LzHZ9gmBjoJ55DKsHg4HbWrlxhcnKc9a1N4jhBpAnves97qY+UuffeO/EGG+zcvYtb3nAr/eGACxfPsn33Af7TH/9nbrn1dgbDBN/boFA0eebpE5w8cZYf/dG7GGnMcPLkBT78kz/FJz/xczRqZb70V5/n5z/5M9z1rrczMTbCVnODQ489SqlUxHVzrKysUCoVePe991AoZv5wAH+Qcvddd3PXne/ha195kA+8/z2sb27Q7/ZZX17jAx+8m6989UvMze/kynKfsdFR+t0WX+uucO0nPoT/ZEoQJqSvh2qpSBQkkKa84x1v5Otff4ytrQ1+/Mfu4elnH2N2fpK1zQ0SkRHu87kycRDR7/Wp1Bs89/Rx7vvI27h06Ri18iRBPMg85MJhealFY3IcpKSYc/D6bebndmI7FoWiyYVLx6mNjGatrqMN1tZX8IOQkdFxIMVdL2L/6QzimiHGqLr694jpdjqYWmNZFimZXxAhMttQHAFgaINOp0e/18X3BqRJjHHVu2pZNkEISdzn6JHDVMoFfL9LuVi9mo2uCOMQy8qirpQ2ieMsJq9Ra+Dk8ijTwPMyT2gm8gzKtQpRLIgRKEPj2g5RHCOFxjQkSMHctjmSOKTXbRJGIZapGA572SKNIIuQQhH7fYb9Ab3egCgKcd1sgf07rf1pKjBNk1wuT5Kk+GGI1C7+UFEoO7iOi+95+IFPp9VmamKCarXIjTccIJ/LMmYLhRJhlBCFCaYhiZMs2CuJfAwjj6Ejzp0/SxQZnDl5jkKpjGFI0jjkT/7Ln3H7HW+CNMUyLOxckfWtZXL5AnGSEoQppqkwbRuEIk0SbKuIm1PUR23GJvYQiQEJDQa9FWzXYHNzjWLRQsgCyjDY3NjANU2iyMuyuaVA65RSrUG+mFH9lVSYVoIkpGhLwkGLfucs3eYFVNxERG2IuhjKQ4RN2t0tjj93gZOH++zY4SK8Ilr1SIIeUZxlgidBjzjw0EKipUamMTL1UElI5A1QpiJJQpI0RCnQQhD5WRKD58PcVJ1S3kZLmzSNM7Emksxrq0BpSaGgydkhKdniSJJkMWogqTQmuHBphX43Ym52EnMjT/N956mUGzz+9W+gpcf+W+8CFfEd3PB3BePLxNJ3fnr1VtkfoioqXhlC9EpxMy8eLxdwrybovlfE/JDZqt+jgcTLjo+X6ZuXHvcrnbf/r+yZLz9HSqv/Ll5fbYMftP33Mxa/nEb84pWVTLzGiNIk586cxLUscvkK+cIIYWjghyl+1MIb9rCUwdbqFhutTebm5vA8j36vi21aHD1+gu3bZtixZx8TEzOIZEihVEE5BWbmJ9lqbjE7M0lzY40bbrqRGMXy8gr791/LQw89zsRYA0iIA5ibnyYKI0qlAmkSIbSBkBKlJW7OIYxiDMskl88xMjbF5NQUgpRatcQLR57HGw64dGGJRq3M3t27KBbzBEFAtVqlXMjx5LcPceniJd729rfhWgYrq+vcdPMt1BsjpPQpV2v4D58hCiK8fQXytuLpbz2KSkKanQHTs3PU6g28fpdqvU7f8+m0W1gqZmFhJ0tX1nDcAltr6+RzRRaXLlOuVnnk0UPs338NSRISBQlhFGBaWfRPKlK0oRkOIxzHwvc9RqsVLi0uYueK2Up0FCFUgpAOaRITX52A5GyHfLHEVnMrw8CLrO1pc3OLUjGPVBIpJLaZPeYHHnGc4JR3kebrxBcfRy4+QtLb4Nb3/xJWdZSpbTsg6HH58hJjE2OgBevLq+TzeRZ278W2bUyzjiDifT9+B+vN5/nUp36drbU2ly4sc/2Bg4yN1QjCCOm3me4c4r5bp5Fnv0FQmMQY24VSkiSOUFKza9c8hVwOqQwcJ0fOycjNlmUzGPRJkohyucLjjx3CNEw+97k/Z9+1C/jBAK0lmiZRMMQtTqB1gfWNNk8/+RQLuxdIEkG5VGJlZZnLly8xMzPN0uVFqslJEnuCTqeDbVko08Qo1hEpPPbYIUbHxqhV6yQxnDt7gqWlZU6fOgmkHDh4kHY7W+1ubm1x+uxZysUyG2urVGoVZubm2Fxf58jzz7J7YQ/X7d/P8WPH2NzcJBWaYqHM2PgYG+vrjE1m7WfjE+PYuRyXLpxnY3OTQrmM7bjEvk+/38Nxcpimy6C/SZIMGZ8aI1EK3/NJ05Rup4UhUwyrkEW7+BGR5xOEPo1GjeXVFSr1GqeOH2Pf9dfT6fe4vHiRRrVGLl9AGxadfh+v5/Hc4eeZn5vHzeWYmprB0pJ2r09zo8X09BTrG+tEQcTI6BitrTUa4+MY2qDVXOPBBx5jerrGV79yP9p0kf4Grutwzyc/jWGs4bopfljEtc3sc2S7PPXU0zRbW9z1rruwbIeZmVkuXDjHWGOURx97nNWNDfbuv5Zeu8Ow38NxbHKOS0Iha7MVp9BWHcNQtNs97Ke2iMMIefsUvh8QnX4WlcSkk9tJQ584CjEth9D3kUKSCjBUlh8bBiGmaRHHKadPn2ZsdAxtmvh+Fs+Tpgme16VQKKMNhWlm8I4kSbEsG9OyEBK8gUeuUEIrTafdRq9eob+0QpjPFjm0FsRxFlGSfQmmoDRCGTS3VtGmcxXcprEdi36/h5QKrTVhGGI5BbSSWVyIEAS+hxCZEDQNjZJJRv1NQpI4QZCSJBECSZom2LYNaUqr2URKlWXklsoIJBLNcNhh2O9SKdWJ0hhvmIGtkiTBcrIFCtMwMd2sRdjzhqQJGKaJk69gGO7V7NuEfmeToRdgWwYmIUKbL5r0iOy8hzGrq6vUazXOnTmHbZmQxoyO9PDDPTRbLtq0iBOLvLNBEsdEyRgkDve+9wOYdjnzAb/xRlZ2TlIsVShXG9ja4IWj53nve36Sj3/soxx77ih5p0hjdJpUF9GywC/+wv/Eg3/7LR588BGOHT7CRz50HwXX5Z/8wv/Az/zsx5jfNs3dd3+A3/vXv8vehV38zM/+HHfe9S7+6a//CnfeeQ9vfssd3HTz6wnCALOYozYyycMPfZOPf/xDVOsl7r7r/Xzs4x+jUsnT7vawbYtuZ0in5dOolXjvvXdRyOV53cGDVIoW589f5Hf/l99j2+wujhw+TWNslmpjlo3VC6yvX8RQAW++4w0Mhi7yBU0Ux/zKf/pF3vn227BNm1MnT2EoxZvecgemDPjVT/0ChpsjiBPiyOKf/ea/YHJiip/6xD9h8eJFrt2/j2MnTnHttfvwhm3q5So6VSgnAxwdef4Ef/5nX+C2H7mV5voK9XodYebod7rZAmqrSaPRIEoMLJ355KvV7PqdKBexIYg/U0HtSghqgwyQJjK8kesWERJW11YplcoIKZFCgbg6SSSr9jhOnpxjYIgE08xsTIgAKSNMnWKaFc6fW2R0bBLDMEn9AVJrlDZJoojh0M8EppW1wReKRS5cWOQvv/BXXHPNXizTZtAf4jiZz9of+hiqgNYpjz/yDJVKCcPUPP7Yt1hbXWZ6dg6pFKQxkT+kWKkg0gSSCENJhHYZ9Dq4jsmg0+e//uUXefrZo+QLBWq1yndndu1WG9NxCMMQpQz+4v/+PLlckVLRpVarEgx7+GGEY9uQZFDMKIUvfel+9l97HadOnWJ22yxBHKENTUyCQYIfgVICx4Q4lUR+wnDYYmJijvGJMUzHyKBUhmb77jlMy6Db3mLY72SLWgEEXkIu50Iak8ZDosCHJCaIE5I4wTQlySBlfeVZhGfheecpV6dQwsTULkkY4zgWnj/EcmzSNKtsG6ZDkkDgecRCQJzS2VrDMX1U4BMM1hj2FkmDDRSSJIhQqSDxI0I/QAiFPxiQK9WpVQ3GZyAJJEoto40MFhcnEUKkyDQmSWKUVKytrvMXXz7HNft2Ig1ACuKrfABxdc6cxkkmYpVitO6Qc2NMOyZJPTQGYRhhWg6DQYCpHNJUopRBGFz1WccJlu0QxQlSmXz5q8/gFEd54x1vpNtsUeyNsL5wkrlt03zp839MrWJz3a33gPIRGC+Zy7+a3Ht1EfbDi9eXV1ZfSSf8w8bfV2azaz0vFZd8f5+pkOJl27/y8b98fy+552qlWL7M0/pa39urCfiXD6X/e+X1VTf4b+kyj69Obl5pfCfn1RzZRhz4rK+sEIsQZZoMPJ/6SBXDbmDbNhfOHMWQQ+Z27iIMQjqdHsOhR702zoWlc0yMNyhUpolCn+bWGvsP3gBWkeFQMDY6xUh1hLOnz+EUsraaarXBoD9gpDbGuXOnmZ2bolQawfczmmgmwiBBkSZZu97FSxepj4yjtEYbJlJqVlbXMLRCpzFhEBLHAcVciYnxOisrK9iug53Lgq+TqMvs9DSDwZCJiUk6nRalcoUz5y6y1eow6Eb0hgGNMy0EIentuzEtm9m5eS5cXmR2fhutTo9KpcTG6jKlWgU/iOh1tqhXcxx+7ggTU3OcO3+RvO1gmCb1WgltSWbnd9Dv9el224yOTGUxGkZGrNOGhe3kMQyboddDa4HfH+LkCphOjjTJVp7avS0su0wcx1i5TMR22x1sN4/juAR+glSCFE0+n2XaeZ6PabooQRaloDSG4YARZ5+s/BiBF2AM13GWHkedeoD0zKNYGyep9M8TXHqe5MoxqjMLSMNiY6OVAW5cj83NDUbrE9hCQ9Qnd/YbVPpnsBYfJzrxIObFx6j2zpBGAanSmBML9FOLlBQpU5I44tjRo8zNTeK4Dk89+SyVagPTSIjCmE6rhW0IDNfCMAo8/si3eMPNBzh44+uz6p6dxQkl579O78oxPHseaYa4eZO5uTFMUzAY9DCURRAEXLx4EdM0GR8bw2w/hVvfTRRFCAGWYfL4s8dpVGtcvLSEbRosX17CUiZj4zWWl9fYvbDA9PQErU6XIAxJkoRjR4+xa+dOvn3oEHMz0wjLot8fMNqoM1IvI0wrW6QolVm6tMjYxDxf+9oDXHvtNRimwLCLHD58mJHRzAuXJiGmZSIErK+tU69VCQL/6ufd4PTpU4yPzSN1gfVmi3qlgmEauI6J1+/R7gb4XkAw9NhYWePkyRdACnbv3U0iIWdZWG4ZxzaZmRlh2I05c/YChulw+sw5ls5d4I43vpFUCk6cPElrs8W5c2eo1BusXllhZWWZbdvnGRsdp9nyqJYdTNeg3wnRKsI2K5QqFhPjoyxeWWNh1w5s/zLOnp8gZ9cwrHWipEi/e5FcMY+QeXq9PpOT4xSLVVqtNtu2b+OJJx6h0+piWBZRGrN//3XkHRfLUvS7LY4cfpZStYHjTpKiUfFToCbJ5U1SV5LMFegXBfliGe/MYaIkpbH/RiQxQRAx9AJ8f0g+n0MrTbvdQimFadpEUYoSgpFGg4HnoS0D23CI44ggHGCYXPUGZsCYXq9PHKYMPQ/XdQnDkDgMcXJ5kjTrWghPnEMHMdbMFIocSeplgCaVidkkCTFdG6VM8q5CGw6GoVBS0ul0SJOQwA+R2qDV7WVUbVKaW1soKRFphBRgmQadTps0shCYCAykjOh125haE3g+lqHpdttYhoHjWAyuwmiCIIvbsSybVmuTaqlMGEAioowwikIKRSJFRoCWiiCVbK1cplwuI5VBEKW0eltomeD7Pfq9TSTgFoosLV7CNQTattGGQRoLpNQIJHGUUi5VGQ6HPPbIEzx3+Bl27d5GubTIr/36c9x559txckW6/ZhizieJNf/qX/5H7n33B4iMmNjzGLQ7nDt6hn//mf/Irj37CaQGL6BUnuDee3+CcimPEV+m1V6hMlrBU3D5wnFuvOlGPvKxD/HJn/84e+Z2YKiUxQvnEXHKDTffgh/0+PxffIn7Pvhj9DptPvvZP+Ht73wLlbrDhz7+cZyCTb5URBk5Ii058vxJojhlbHKE5uYqf/D7/wfVSpmdu+Z4+JuH2L59O8VCjWKhRhi0yOUzOu+Hf/LDTI03eMvb38l73/M+7v/rL/MzP/9hRiaL1MfLbJ/Yz+//b3/In//pX3LXOz7AILVY/soiOcdh+7vHWFo9xvjYJCMjk9x//1fQboptpMRhSJRYLK2sYZglts3v4vbbbue++z6KY2nq9SoL1+zFD9rYZhW/O+R3fvvXeONb7kVrgW077Lvmeiw7prW5RoKml2jKjkm/72FZObqdIcVyg14nYH1tjcGgmwEJhxWif+MST3VJpiIc18X3PdI0JQGkMukN+pQKBZT+Tkvm31eV2u32d6uyKo3pdVskqaBUapAmYCqDzlYbTM3s/AyomN6wRer1cXJF2t0BEkkuV8RxLZI0ySCPaAqlCq+/4fWYhiIKJPfffz8TE2Norcg5Ll/+4t+y1VzmdQduQ8gE01JMTswwNTlOFGegNEMKlBQEYYogZXlpkW8+9BCXr2wxNzuFSENWVzZw8xXufu/7qDXq5F2bKMqgP6VSmShJMnhcmLB37z5G6qOkaTvLem91KFQqJHFMr9PlW48/wc69+7HtHLaTY25+Hj/o4Qce/lWgUGtjDWU62SJJcw1pagyKDLw2D379G2zfPotQMOx1kQiU6WAaOVaurFEpVEjwMUSBxx45RL3mkMQhSkRZJI1WGLbL0GtDrJC5iGJ+B/3gAqXidvr+Jp43xLVtVpYvY2iRAdrKFaIowTYVfpBimTam1rS7bWSaEg5bxMEmfv8ChgpJohSR5ohFiO955K8C7QzbIBGgtSBSJiIGqQWkCY5RxxeCwMsI7FJKklQSxv7VlmqT+d0TmLKPTlJcnSchRkDGQbjKEYjiKGs9DYdIAVEMEiubZ2pNu9UnTjSG8klEQioFppUnCD2GgyEgiKKYMEm5uNhnYmYvU7N1elt9Cr0Gh0tf56tf/SL1csrYaJ5dB98OKgSMV5il/zA64IcXr98Z/9C0k9dyLK9M/P1BldeXPv5i4Z7pmdf2epl4/YdXXF/L+EcuXpPf+Z7+71doQ4+TmBSQV4vkr70j+9XHq9GGhRCEx7+OSCJWBxZb66tMz84yHHokwqBSH8EwDOJ4SOAHTM/MoyyXS5evYNh5xibHqVUaLF1Z4tzZ04yMTVEtlfD9mMuLS1SqNWzXRMQB2jYI0oRiucyRZw8zOzuOKT2Wzh+nVC8xOTtDvz9Eq4iHHnucHfOzDL2AKFFIwLI0SRxTyOdJU5BAFAa0m2uUS0VWl1fJ5Qu0mi22bdvF8RPHaHd6TIzXmZmZw3bzdHsd7Fwe0y7w1NOHGR0dxbEkrebm1XbVLnPzMzQadYxvL+J7Puq2XZg6x9CLeOjhRzlw3XWcOPYCI/Ua/eEQkUrOnztLv9/DkCbT01McO3oKw3RoTI4z7DWRSmM7RSqVEnk3j+sWSNKUVGiGwwHN5iZJkmbV1TSCJCKMMs+xMrNWp0G3jXSLFHMFRBqQCEXOLaOkQZpKUikwbAelBUkUkcQBpp0jijOSqpApvt8njiIswyQOY7QyGA6HmI5N6hQQ5RGM+m7i3BhpoUKqXMI4QCUedFYJTz9CdPwB7CuHSC49iXf8UZylpwmPfhVx5lHii8+RRh6G1mAX0fUZfKdOlJvmc198mO37b0Q7ZSzHQYoI3w8pFWuMTUxkAfGx4uiRY+xc2IlpKYIwZmurh5srYRk5pEi49tqdaFMiVObvTZEIJYnWj2CaBvb49Whl4khI0Xhhgqk1bq5AmgpyOYfZuQnkcIu0fZwrrYT+wKNRr6LjiMlrDvD0k99m+/wc3tWYk/GpcdCSkUaNzeYWjbExwiimVCrhD32qlRqrq6vs27+XlZUVTh09jmkZCCUolspcOr/EhfPnqI/UKJZLFPMW27bPo0wNSUS302RqYoqcnefShfOsrqywvrrF/PwOPN+jVK2xcuECuVKBpSvLXD5/Htsyeeapp9i9cycXzp6lPtJAKo2SJtVKiWazTa1eZxh51KujlMpl+r0ujWqFXLmaLWiREMRZq+/G+ha5nEk+p+n3h3h+n4sXzvP6g6/nqWef4pY33ERzYwmpXBZ2z9PcWqGQL3H+wgkq9TpSGSjDZHmpSblkUy4VEdpmZnqCJ598mjl3Db3vJwjjDvnCJmmawzWeg2SRxcWIa/buJopGv8kqAAAgAElEQVRjnj/8AtVKBcex0drk2Inj7Nm7hze98Q6UkHhen5xjs7nZ4m8e+AY33XIj2lAgqyDryOhxkjhETo+jZwrYjsHa6gZcPoFWEmb3onQWg9Ab+pQLVaSSdDpNKpUacZzFT/X6TbqdAaapUFKghEEQDlBK4vshbq5Id9AjDqMsg9nOqhhuvkgqFUKkDDpdLDeLoJFSES0uQgrm7CzdQQfLcDJ/n1AINEorAi+g024iZBb3EQSDq16oGEmI60oco4ASEVz1AHm+n0WIqIh8LkeSFPCTHnnbxPMH2K5JMAzIF0ogNZZl0GkPsSzBcOghSLFzDkkU4g365Ao5kjTBMrOOF2EaBAMv85RqTSolgpDIz957MGyTKxZJU4HvB/S6HeqlEsnVbFrXKWO7OQDSVFCsjmZwon4f01R02puYVo5IpAgRY8iE8ckp9u+/HscN0arPG9/xb1hZ26SYK+KaJt2OSa60j2v3vw7LkOj0YZRYxMjvolSrc/DG11NvVCk4NpdXLpMKn6npOp1em2KhgJGv4ObL+OtdPv3PP82HPvRRvn3o25w/dpT2YIMHvvEwb7/zvZgFm8KIiZJVjh09xj33vI1P/4vf5TOf+UM+9Suf4qc/8QlMSxOHQ+Ig5l99+ne59eABxqsTnDx6gi994UvcfvubGUaST/zUx4ijIb/887/Mx376o/j9FgQdwhjCKItE+uhHPs6uvdfyd3/3d7TaW7zr3Xdy+eI5XDePZVog4c1vezMf/9jHOHX3fZz7zB+w/Vc/SjIy4NDFJ3jrW96JaTisbW4wPT/P1OQ2SqU6ptKoeIDfbzM9P0W+msOyEoQjmJqdxB/6/NZv/DP27LuG1ZVVTMfh2mtvREsTQyVsrW9w1zvu4U1vuJVSrUgYeNx7x1v52Cd+mj/7k/+H5545wtLiRbYv7KRUcXCKBvlSkWApQn+mgd6ZYs5m1X9TCZrtPgVtILRCS8Xaygb9bptKpYLUOgMnXc3pzuccElK00qRCYrl5wigiDDyUsjCtPNq2SLwOUdQhChWVSh3LLSGUxjQNlJb0h31MO/Ogm4aFaQiurKxy4vgJLC348pe/yhtuvo2vfeUBNte2+Po3HmU47PLuu9/D33ztS4yMlikUHAxTgpBoLehsraINm0TF2d8nkeTyBQzT4tSpi1yzdzeWm8uuh4SQelimpN3r4tg2Mk2I4gipLEytWV9ZROoEw7IwjBztdhfbNpCGptveIp+32bZ7F16/zfjoCEqkXL58jrXVVT73519AC4NGtY4QEaaTI4xTbNNBSEmnu0KlPMnOhQVib8jQy+B0fuBndHgtKBbLPPf8cVzbJiXi8HPPcNMt12OaeaQwQNskyiCNfILhkAcfeID58Rl8v02lNsFWs0+hNIHn9bDMIvXaOELbmKZLu9VEpBERAkM72KZFnHoUc2XStIelBqSDNkL79IIAM4VUpKRJivmdvHtDEcQJpjLpD0K6TcmR42cJYxtLSbxUsHHlApVqmTBKIAHLTYiCIQiDrtehYBlYpiQhIYg8hMgWij1viG1dtcilCSQJ0srizGxTZfY1UqI4QKqUXM5AGgZpHCITyZGTazz79CVOn+6wbbeNo2uk+ECJYRAyOjrJoD+k1ptArOTYfdcYjn8aWZ5lbt8BUukgvkeQcfW6+RqjNL8na/XlVbDkRY997z5+mPEDpePV/WTy4++3/ns98srK5sWV1hffXnx8WdfGy7d46Xt5cUVZildOXnn5Pl9t/CAR+49cvMa/89J7XvmDorXOTtRr/Bx9PyjTy/u/X6kfPDyetQ1/7osPMTdWojQ5S7M5ZHp6lnanjTY04dDH9wO0aWM6RYJ+mzjukyYmAy/CcQS2ZXDl4gU6zXVW19cIvCE7d+4iTRRBMEBL0BK++dDD3Hb7bbTbHdqb6+QciwhNMV/EtixAsrCwhyhOcd0caZpgmgaBn0U2KK1JkpgoDEnjGNt12VjfoFQuYRgGxUqd4dBjdXmZvGtTLNo0RhtsbG3iDSNyhTyWZTM3N8v999/Pgev3AVk218b6OlEU0Wp1KLywjlKS09UAZZoorZmbmWb1yiUsy0AaCqElra1NQDA6Noo3HHDi5GkOvu51uLaJIxKqo5NZFhgCx3bAMEgFaEMjJKQIavUM5mQ7OYJhnzgKaDa3qFbqxDEIqTPvjm0TBlmOpWXnskUOJTENkyCKMO2sFUtKmX3Rp5pOu0POzaAYWppIoQHJZz/7p1xz7d4sUFtlkJk0kQipSUSKti1Urk5k5ummNtbITozGFEl+FF0eI5UG0s4jc2XkyAJHVkJGdr8OWZ0m0EUMt0qQpmy1OjzyyGO859734hZdWq1N8q6LlhD6EUgDlGbl/HkK1RJTO+cJ+l3W1jYzwmWuSKFQZBj4rG2sEacJpUqZNEnodnucOX2aRqOGv/I8Smn06D7iOGFtdYlSuXJV3Gu++IUvUC4WKBeKHHvhGKuLJ2m4fdzqXEaHVQoVp1zY7OLYBmNjk5w+fYaDBw/S7mxx4dwpfM9ndmaCfn8L2ylgqIwMuLyywtzMJO2NTZaXV1nYs59nnnmWhYW99Lp9qrUqreYW9WqF1tY6i4uXKVcrtJotwsBnZGyEMMxWiTe3NrhmzzUcOvRtHNfh+IkTjNTrtDa3qE+OUSoVmd+5A8e2efLQt9k2N8/IRAPDNDl69AS5XIFw6LG51aRcK1OulljZ2GB9eYVuq8WRw4chSamUi2gr8zvGccrkxBTN9Q3KxRJTU/M8/PA3GB8fx7IMJqfGOHH0CHnbRpgmhYJDEAxpd/ps27kTyFpF4zChWh3l5MnjjNYb+H5MHMds276Av36MX/rt/5PrbrmTsbEUpYYoZYAs4AceSdplZsZiz94R+n3BoJ+16F537T5GRxrEUUjOcXAsi7W1Ddx8gYV9e3FMi263i2mapBQIxQJxeBmDI8RxniTVlMo5BidfyEAb07tIkvRqLqvIvKgC1tY2KJeLVwFM2f2VSokoirFtB0jptreIogApQJCitIMSgigMsC03iyBRijiKkEojdUKSRgz7AwxtE11aJEkS9MxElqm7sU4+76KUoj8YIGSClBrbcoAElIFhyEx4uhqExvdjBoMuSkuU0gghsW0Hx87hh34GrpGadqeNa2WwKi+IMLSk1x9g2w5RGOLmcvQHbSzDQmlFv98nn8t992dDG8RRklX7lUTJFCEzfx6pIPD72LZDp9MBAYYy8LwBkFAslkjTFM/zyRdKCCGJoqw92nWdLNJKZlFoSZriunlWljaIQx8tEsLAw805V9ufV/CjOTqDKRK/xPlzZ6iPSbSyCRMIw4hCzkKlD6DkFg9+vcPo/Y9Su7iKecN1+J6PpQvkcyWkjMjlNUiLWq3KZz/7JyzsOcDCrr184a+/zLFjx7l49hTPvXCeZw8f5m3veAs7du/gkx/7OB+874Ps3rOb+vgI+/dcTyI2+MRP/yQXz69TyClMpfB6IaePX+Q//OG/p1ptsLq6wqd+9ZdZvHKBd979Tmq1PBvrV8jnRti9exvLKxcRRsqF80uUSlWEkBimYmuzyfzsNjqdNh/5yH389M98kmPHTvPbv/U/874fezeIiM2NZXLffJpdu7bTu3cPpe0lJifH8YPM57y2vpEtCpo2Fy9eotPvY7o56uUqUSIxbRuRxqRJCnGMNhRvfdtbyY+NMzJaZ6RWwlAxbj4HIuH4sTO84Q1v5ObbbqBYKtJcX+Ged76V0dk5xiemuOnmGxmfHKFWayCFJPRj7H4B+QcNmPURs2SRJMGAKIpJpUUcRiRpgpQZsMvQkjCO0KZJHCdIpTGUwvO8zJ99tfWQNCWOM/+5e/W7LfAD8oUc7WaL//Kf/5x91+xB4NPptLP3qgwsJRGkdNsttFJIpbCtHMV8iTQR3PSGmyiWFDPTk7hWmRPnrzA902ByeobDz13iumt3YBqabrtLGASYlo1pasIwwTAVSQRSaQbDIfligYMHX0+cRASBTyoVtlvAzZeQhgaRsTu67S6GsolSSKKAWiXLm++1eigNxXKRgReipMLNFTDtrDvCcWok+KBi8vk6E+Oj7N+/n5mZaUxLYxg2KdnCvxKCIIzQWmKaOcIk5Pzx09TqdXJunm6rR66QZ3Vlg1ary/z8PF/4/BdoVMvs27dAq93BsFyOvHCckXqNJAoxDBvfS7ju+usYegPK1RpbzQ612ij/7vf/A7sXrsF2FEIkSCkyCJwSWQa0YdLtdEiSiCRJ8AZ9LB0y7K5A5PO3Dzc5f95g144CUgQZhIsYZRggTbyhQX8wxMrXeeyJS7QHJuNTI1w6d5aV1QQrX6Zgu5BqVtsphGCqAkdeWCeIy4w1soi1MIyQQkIS40c+huUAmZ0jK9okxKHCcQSe1ydNJKmIEUKitUkYBUiZYYQSNIGfcPC6eXYuTDIcpAyGAVFi8sSTp5nfucD07CyOMjHXCtjTNo+tf57+2lEO3PEu8qPbeKm573vn+d9PfH2fZ77s1//WVuDXvKdX3+41iNcf9PwXw6xey2t8x3rw/cQrvDp86v/X4jWOk9956Ql49RUWeG0e15eTvzLj/6tnMb3SykomXiNGdt5Mc6tJY2QMw7QRaYQ36BLHWWun4xh4/gDLMCnm66R0cc0SUeJhmYoXjp7kypU1Or0+3rCPqSWnTp8hny9w5sw5VpfOs3rlIstXFtm5bQehD4OhT4rMTPVRiGFYRGl2bpRhcfrMaYo5F8/3r4JHDJQy8IcDDK1YXVmhUKxkiHUBURxDCmfPnmFhYQEhFcP+gP5giB/FzM5uvwo5Sun22lx33fVoQ7F8ZQvLzLG2usaObXMkQuCkBstJl241ZWb7PMdPvIBMQqq1KidPnGDbtu14/SGtzSZbrQ61aoOTJ0/jWCa1sXGiOOb8mTOMTU4glaTw/7L33tGVned572/vb/dyKnDQywwwmM4hOYUcFlHFEiXLki0rcXxdcq04cZN7JMW+jh35Zjl2Yscrjm1dl1i6lizJsrooURRVKFKsIjkcTsU0DIDBDDpO32f3ff/YoEJTlkzb12vdm+RbC2thLQDfwTlnY+N73/d5fk+xRMfrYdo6vt/F77aJox5uoUgYBmiqyvJyLnGuN+pM7pxCVnRU3UTRzG2AiY6m6ghFR1FVOr0WaRKxsnIDp2gjCw1Zkmm329vXRx7YHm/fpNP0he5dxqFDNyErEkHgI2SFZ585wfjkZC4KkAVIuQ8viVNMK890DIKATFKIUpmPf/ZB9h46juaW6cUxQ0PD9DyPjc1NTN1gcWGRQqFMpVKkVqsSJyFBEGNZBnNXFzD0Ah/60Me45ZajSEg4jkUYpyhCRRESpmWi6yZRHGOYOltbDRYXFpicHOfa4iJZJqOqBqpQaTeaGME8Qshkhd0Yuo6qGQjyvxFZ0yi5LorID/ZxmCIlbfr0JolaJQxDFFWgS4I1L6FYKHLp8hxTU7up19fp7y9x9co1hkYniJOIOPTxvJAoygusQrHE7IULXF9cohdl7Nozw4H9++m0mjzw4Bc4fPgmCsUSp0+fZ2ZmD0tLV3HdAmEYcfbMGSzToNPqYBkmPa9NGCYcOXortVoNTTPpG+gjyyRU0yDyOqSSzNyVOXbP7EaoKs88c4KyWyBNEorlIkLNwVSKkGlsrTE0OsbY4BBCkqkND5OleZ7hiWdPMDwwwpkz5+mv9mFaFs88exJNVzlwYB8DAwMIoeI4JUbHdvLlhx5DVmDvnr0UCyV0y8awHCQ5h2EJIQjjlHNnTzGzayfPPvMsmmbyuc98jv6iytSuvdz8umlUzcIL7kbEX+PsmRN8//d9hu/5rndx8nSKlE4wuXONK1dWsJ0S5UqFD3zwg5imSf/AALIi89nPfA7HdiiVi9iGga5pqIqC3+uhaiaSGCE7aSBWbyBqF0myfqK5WUDCmrmZTFYIAh9DVb4BeVBVFaQ8/iWJc+9qkvp0Oh103SRNEyyrhKZZqJqJEDpZmkAWYRgqzVZ7uwmU0Wk1UXUNWdHw2i0s00CSNZKlG6RpSjpUQVEMLNMgTWOiKM7zF4Muvp8TkRUF0iQBKcXQLbq9NqpioSo2yAmGXgLkfFpgqHS6TRynSBYntDsNyqUcLOd5+VTW1BU0Xc/tB5IEkophqui6RRwnKJJEp+cRJRHFgkur2cRyXIIo9+9l21LOKApQFIkw6KFpBkKoGJaFFMPGxiqlkkPgBRhmAU0zAYHXzSnMQoi8OO60c7+cqiDJEnGaEIQJy0sL1Ab60Qz7G41KwQXC7E6EOs7WRpNqxSUjJkpa2EUHTc+4fPEMkf80pm7wwz/8X/nJyb14axuIu47w+7/3X/HaPZqNTT7w5+/F1HTMYo0w6FGrlHn1vW/hVXffyate8ypecc9xhgcLlPr7+Q+/9W6qtTKdbsg997yCUrnE+uoKru1iGQZve9uPcvvtd1Ao2Lz63nt5y1u/l77+GjfdfAu/9K5f5ud+7hf54z9+D69/w6sZGZkgSkOyLKVgF7jp1sMULINCuQC6xsTwOOtrDTa31rFtgwc++zm+8Pkv86p77uK2YwepDk7wvj/5AP/mnb+ApOS5wDIShceeJww8Kj/4Fs6cnaO+ucX0rkmWri0xtWsXnu8j5IhyuUC5XCKMImZPnWNwZAyhCRr1VQzV4NriAqVKCUlIpElAa3MTWZa4eOEi1f4ijeYGU9OjTOyocmPuMobtUCiVSSWwXBfTdEjSiGLZQVUgDgOkNCP4Y5PMjej1b2LoBkgy3dYmlmOh6DmxNghigiDAskx0TcV2XRAi973KAikDVVVydYKckaYpYRCgqioS5PJjUlRtW4Uja5TLQ9RqfaRZkkv2VYM4SkkSCVXT0HWHDJVMStlcW8Wxzfy9kKDValMq5SCjY7cdZXrHAFIWcOjgXjTDIMtkNN3l5MlZ+vpLeWYsAqQERWh51rRloJlanq1q5tL/NApRhUavGxAGHpZuEvk9PvbRj9HoRHz2M/exd/cuVpavUS6WcYs1FFUiSUJ0Vecv/uJjHLrlGGGcoSkKntchTkIM0yDLMjrtJpZlIYREnARohptn2fbaNJqbFIsVOu0mJ547xdDIIK36Fp2eh2aYqIqKLMuUSlU+//kHcF2b3Xtn0NQM09UoVke4777PceTIbchk9LoNFFXF0DTS2ENWdVTdII5jFBX27dtHtVxFln0Cv0sYZujbjXUh5zYpt1hAKBqKbhDHEVLaRZMjAr/H9F6HckXgNdYxLRcyOX+PdYdr1zZ48OF5NLPK+UtXGJ/ay9pWk1e+6k7azTYnZm9wZX6TXXsO84WvPInjDmDaAZYZ4hQsyrUCCnHOGpAkFKESprDRiEEGXYuJkxxWKpTczpCJmJ5vkaWCTIpIExkJBcexCf0QSRZIIsEtgEKIF63zhc9u0jcg8Hyd/sFdrG1tUa1W6Wy1cFt9rKcbfOzk73Jgh8Mtr34LqdWPmkZk0reerr7U9/nyitn/7xWv31jZ3614/abp6N/lATP+Wr30rda3msD+T128xnHybiHEi168vy136NuvbyUFfnHx+nLMxunWEnEYIjljNDs9Tj75OLsP7KG+vkLJcUmiXCYhREoS90jDCEXrBxqYqkuaeMiyQq+Xcsddr+KWI7fR3FznyuVLTE6MM3thlm43JgnaqCJBFkDao9FukcoZuqWRJhmh77O2sYXtlOj1uiiaSbvVouTmkiAhC9KU7UNNfvh2HYcklVA1hbX1VdI4hSRmZHiYIIp45tnnGKmNcOXqPFMz0yiKhqyoeL02m5vrFIsl/LCJZVp02y18v0Gn3STKJMS+CfSDOzEzmUwYFAoVCqbL0uoSe/fsY2Nlk1MnT5NlGZZdxLJdKuUq15cWOHDLrXS8AAlBknQplCv4UYJuW4hUwzVdPvXxT3Fg38Ecay9nkGZEgY9mupTKJTJJIAmFZsdDM02EoiBvo8AlOY/AEMKg1fQwDQfTKuAHIUIRed6iLLO5dR1dz+M8hKyQJDGSJLG6toJu5AHrtu0AEuPjE4RxuH3tCOJY4vr1Rcqlcl6URCGkGYZhIssqk5M7ELKRd0QVQMrwuwEDg4MoQqHoFkgSiY2NFQquiWlqFJx+hCYolKoIRWZ4ZAhVBVkOCTKBnAmuXrxCuVIhTkIeffRRJibHSdIIOVNYX1sjS2MKjoNuONsSnzCfQFYDICPQJ7EMCz/MUBWZZrNBJgTFgsvS9Wv4foCqWgxWdOhcZr0t4Th2XgQoOs+cvUylMsDw6CjXr99g18wOPvqxDzO5Yy/nZi8zPb0D17G2D1MyrXaLcrnM8MgovU6PIAbL0bh86RLlUoGbD9/CuXPP43V9xnfMcGNtHduQWd/YZGZmN9M7drK4cJWRoVGyJOH60jWEqmPZJmfPncUtlEjklMHaEJqpE3damLZL5AdsbNVRTZ31lQ2uzy9QKRWwbANhGghkkijImz9RwiNffojZCxe5+egRKqV+4jCk2+yyNL/E5uYGiqri+QHTMzNkSUgQBNTrLTY36jz11GNMTu1g1/79hEFAsVCk2WyxudWgb2AAIYPneQhZpt5qsW/PLvxui8GBIR57/Cne+J1v5PTpsxwbqSPNHMN2XRKGEOkz1PqH+IPff5pz587x2tffS+hDvdGgWvV54IEnEJrOXXe/gqHhkXz6osD42CRf+PwD7Ns7w9zcHO1OByHLyLKMLMPqjSUqn7lKfCElvvteiE8Rzl8nSxOUyQMomo4iS0hpkh9QvnFgyBBCIc0khCzoeFukCdi2g+d5RFmIpOQSzygJ6XU9NFVCIkFVDeIkIQ68nGoqy2SSgaVrJHFuA8hurCLJoE+OIMsqUegTRiG6pgISQoCuO8iyTBwHZElElsaEsYxu6bTa67nvVERkmYIQOooqE8U+lqURhGDqek4nlzQySUGW5fw+Gfvb0xcNv9cjDHOQkxAa3a6X52UqAlXXEZKEoelEaYZm5LAWWdbyQ3In997apkW93sSyXdIsRRMqSDG9XhdV1QkijygOEApIIqHT7iFJEpoqqNe3KLgFGu0GhpWDagqFIqWiTb3eJJNVDM0g8NcxtBVi5ftIEw3HEVQrZRTZplC4SJaucu2aRcEuM1RbJIoifvwn3kv4lcdwHAfuPEyaprz/A/83QeDzQz/0Q+ycmkKxS+hKxuryDf7Fj/88CgG/+R9/C0mOqJZ0hifHGRwqc/rcGT5735c4csdtpGnCr//qv6W1WufU2WcZGdzPxPgUoxMu//Lt70S3NAxbp+N3SXy4555Xcuy2Wzl37nkuX1qiNlTD0C0c06Ubtjhz8nmGhkZZ22qyfmOZsdGdfOhDH+Smm/cRhxGvf933UCzZqFqMqleY3rmHh7/yRfYdOoCiqFi6RXL/V5HI8Abv4epz6/zsr/0Uf/HB9/LDP/zPSbIMy3Fob64gpTGqouB1PfbN7GNhaYlSpUTotzE0Ez/w0Q2dzUadrF2n4DgIWed3/8sfcPzYGzD1EoZh0G43GSxqIJtEkobQNdrtBsViGd0wCCOPLO1x/foS7lIN6RkX5TYQ5BJMIQSKsBCKhhdmeYSNqqEoCooqkMiYX1igVC4jyTIgyNLcj5iy3WgVMkGQRzxJyAiREccRINPobmI6JuVKlSBqoJnFXGUhFK5cvETfUIUki2i06uimTrPRpL9aRqgSSRYjyQqqcPjYRz/GxI5+VDlDFyl+Z4vAXyNRBEHYQ5IURkZG8YMujmVuW3ximvU2xVIJSeR0YyGBHyVkSUjS6/HMk09z+eJlhgb6yOIEQ9Oo9teo1sa46eABav1l+ipF4iTlY596gOee+zq7picxVJVdu3chKRJJFiLkCEMX6KpJHMaEYRfLdNA0DSFk6vV1FMXEMBQUOUNWJKRMRdME07v2EqUhpaKLUyzguA5RFEGW4fciagMDjI0N85GPfpo7brsdu1Qipcy+PdM89PDXWLmxSH+liOe1kMlot9ewVEHst5ETj7i3iWq6aIpOp72KJgRxqmKa+XnOtm0kWSFOUgzHpRcmOdCqvUHkNzF0g6xpUCjolO0RYqmDjIqiKKRoNBsBS42Y/tokXS9B1UogpwwPjHH50jX2H30l9772VTz46JOESYyjw+lTi9RKLkI2OXnqHIO1vOkgAZ7XQxgD3Pe55+krFykXc/jSC8OgMPZJJHjwgQuoqkypZBCF2TeaF5IUEEYxPS+GVEFKM3TLYO9N02Syz6OPXkQ1ytx+53FsxybpBNiNCuqQxvnwfoLmFe584w8Q6hWMbTvYy6kLJEkiTdP/fxevf8/J69/lAf/7MPAfZr78n7p4zbL03ZDluV5/Q+H6rdDOL3e9MHV98T5Zlv2tnYZk9SJy4uOlCqZuMDo2yMbaMoIE27aJ0gRkBU23kWUDWdFBZCjC4MrcRWQhaHUDRseGabfrGIaGadnMXrrCXfe8httuuwtNlfE6XQplBz9Q6XR9du7cgUAgpIArly9TLPdjmEW2tq4zODiSS3IUga4pIBREJnFl7jJOweHpJ55AEjqWW0SSEtZW1+iv1DBsB1PX6Pa6BL2AyfFxdNtga3MNU1N55tkzTE1P4Bg27UYHt+SyvrqCikxzc41iyUYRBgNDNQxdkIU+Fy6ew9AEmm5glcoUKn3ohp4DUdKUVq/DgQP7WVycByDOJOobKxRsnTgOqZZKRCnIkkoatTEsmzAK6YUhbrFISkKvFxCngCTTazeQsoRGq0XBKaJIElIS0+00cUolojiBBNLYp77Z5sEHH+Cmmw8ghCD2WpBlNBtNFBmcQgUpdZBFRBJnyEJH0dRt6bVEHMTbHemUNEvzwPLtyWwU+ZRL1ZzCJ8t5d1RWCKIeSZZiGDatdhNNV8nSjCRJMDSTNEvxvA62ZRFEPpKqYdsFNjcaSHJMo97h/X/+fvrKfVy5dJlarQZIGJrGwvwCg0OD9Lw2rmEwO3uBmV17SYCt9Q2mZnZR7etDyBKaoekrvrsAACAASURBVJNmCYWSQ6FcRDQvkGYpzvhhoiTFNDU8z8NQBZYquHhpjuGhSUrVGo1Og5UbS/RLV0mNQSqVai4tS1Jqw2M8ffIEU7t2EgRdVm4sc+zI7Zw/d5bDhw5wdf4qYQqXz12i3ekxf/Uy1UI/X33oi9xy+CjN9habqzfYf+gwZtGguXkDIdn4fsDG+jITY0MsXF9meuc0Z0+dotFucuDAXnpxhO669A/WcF0T3TDp76tx8cJF+ktV/DhAUWU00yJDot1s0ao3uDh7gTSNOXLbMRTdIIxSnnvyGcYmRgmTDFSTLPQZnZjiwE37mT39FL0w3qbppkzvmuLK5SuoikK1UuXawsJ2pxsGB/vxfZiamuT6tSWkJGZi5yTPnz5LqVTloYe+yJ49B1FUiYwYSdI4/cTzmEZGvdHFtIq0/BDwuXqtznAxplww0MZmaLcHsJQTBL0e80vDTO3aw93Hj5AKKJd3oygXiKKM4doE9336E9x0YC+lgkW2LSe8Or/A1PQ0Dz/0CEePHScIPAQRimrkh+8nF5GEoHvzOELbB+EyWrmIUu2n0+phGAZ+EKEZuURXEYJup4uma7TaDRRNRZF1NM1A07ScJCxl+J6Prhk0t9ZzYIykkKEBIif/ShClKZKkkCUZQgCZRqe7ibLeQJIVtMkpoqBLFuUEzq7XIUsDZDml2WwgyTmARKgmqqqgCIMkTUn8HppeREgaUuKzvrmJLKtoqk6j0UCVJTIpQygGGTnQJEtjfN8jFRaqptHzOxi6gaZlSJmGrGRkJKQij3VI4givG5CpJrqq0qxvIlQdoeTNL0M30DWTTCjYjk2aRkgIkBS6vS0Kdo2e18G1LFTNzqfYiiAjIfZ7ObHYcGnWt0iCLnHQpVQqQRKTSgoXZi+xev0GAyND+N6TbG3tRbePIckRGT5xEPLeP30fEztkHNfhl9/1Xn73t9/Nj/7LYwhZJUqnib/6LKqucqqo8R9+8/d416/8JjP7DtDfXyLNethulV6njmsKDFVHtxXazYDv/6c/glsqUCkXuTh7kemJGQYqo5x89kmU1GCof4L3/MF7+P63/TSPPfUVHNfiz/70w4wO2gyPj7K6sg5hyh13HsV1La5cmeM//87v8Qvv+EksA7Y21rZ9m4LLs5fp7+tjc22DNNFptwJe8x2vxXRsFq8+y46pEYbG9vCOX/xtZBHwb971Ln7mZ34EWZf5qZ94B29+6+uRPv81FFki8u9ljHE+eeW/8Zu/9Xv4vs/E1CR+DKbj0un6JFEuUw0yFaGl2IbCB9//EcamZxgeGSGNYjRZ45d++Tc4evwYdtFl9tIix+48jJ/U0c0Kmi1z7fomleooiqYSxgGNlRXm5+ewTBtNM2k0ewwMDiN9vkxsBiiVjEQSqKpMEno8/vWnqQ0MIKQMTcsbO4qiEYQ+WSZwnUJecMr5NDNOMrIM0iRA3v4bUzWZbtdH0Q2SKCQKAnw/xHVLkEg0G1s4poP0gofbdlm6vg5pQqVQRRMKm+s3qFZrBEGKLOdy/yyOyKQMTVMZH50EodLsREiqg24WKboFOltrRFHE+97/AY7cejOKotLrtRBygm7aua8zjUnDEN0wkDKJMI5Jhcno+AS1/ipOwcUslJBUFduxcSwVWQ5JURCGhqJq7N41RalYolYbJkWgqTJSup1jiwSJhLxNJpckHb/XIY4hjEKKrk0mqwReK5fgOyV8v4HtFPF9jyT08f0YXRM065sUCg6KopEkPqqS4XVbXLu2zMGb9+YMgCwk9NrsGC0xONpHyamSpD4PPfwII1WDXtCCpEMWdliYW6TXnkeT62RRA4kAt2wgJxZJIhFLGRESlqbhd+poSkImG/idJpoAr9tD0jwyKSHGJ5MUUrLcorXe5fOPLvCG197ByMQkBw8dZnikn5npnaSpRP/gEOMjVR768hfZtXOGu+98BWfOXmB0Yoyzs3UaXkCSBVyZ9ynaBrEcMntZp1xtUa6UGRhMUbOYKJHwwzaSBJow8IOQ5y/WOXTTLjQREmNxZXGVybF+otBHUwwM3USSIJEk0kTG6yU8/uQipf5xbr/jCHEUoMgKkqSir7uISsSJjT9CcUscev3bUGWFWM6+qch6qVxYesnX/tb1TR7Yb72+nWrzb9z6JR8v3ufb+XO/UaO8dPL6gh93O6U1F2S/aN+XPOBLsUEv/iUk0m3/cA5Re+lj/U3P9eU875d+zwv7/A+f8/rtCslv1mj/nff/pkicv21lWUZy4yxpr00vM7BMC6/TQBEmQjUwrHwKoGkmPa9HvV7HdVwUXUGRcwiJbhVo19cZHBzMZYqbq/SCJjcfOsbmZoNyv4MsCcqlEnESMDq6k1a7y+K1BUZHJ0nSGEVRmNkzQRDG7NgxTRzFLC8vUXBt4iRCKCorN5YZGR1BEhID1Soraxv0DwwQhT6u6xL4Poqq0Wy00XUTt+gQBD3mrs4ThiGlYpEdO3ZQLNmcfP4U9UaLsZExdE0hiVOWV9dwCwW2trboegHalk9vfYvSYBGsCqOTk2RhB0U3MA2Da4s3MM0Ccpqxsb7G8NAAO3eO43U7VKsFkiRk9vxZ9u3fjaxoqLqFqsr4QYTX6zI+MYHrlhCqThzHVEsuQa+L5/sMDo7glvqIwhjP62GYJpqu4fdCsiTl0a89xtjoBJoq0Ipl/vyzX+HJ589x160HCKKIQsEmCrrImkGaBWysrtBrd4lTiTAMcGyTMIy4enkR13XynEkjz5LseR6qqqIqCqomkCVoturouobvBzSbbYqFIlmW4BZcVFWl3emyuLDIwvwCo+NjeYRFFHJlbo6hwXFazQ2KBRndcEkSOHt2loM370E3NMbGJ/ijP/pv3HrkAKWSi23b+H7I9es32LlzJ7phcPLMLOeurfLBzz/Mf/6LT/Hv/uSj/Pqf/BW//f5Pc2jnEDOTI6jdOdIsQ67swzBMUmlbdiYrdH2fgYGh/J9LHLK5tkGj1WZYXWRxI6ZcquL3PC4ud/iNT5zgfY/M8Z8+/FU+89QVzlzbYnxsEDns0mw0qfb3k6Qpvtdj1+49TEyOcunSZXRN8MmvPMFfPnaV933lAr/z4S/zZ59+jKtrPYhC6uvL3PWKuzEtk8gPUIXCUG2A/v4+Op0WTqHAx79ygv/zvQ/y7j97kP/4wS/zl18+yXLDY9d4jR0jQ5BBlkG362OZFm7J5cAtBxjqH+Ly5ctMTU9R39rEMm1sxyIIglyObOsomkBTBAoSSALXcdmqb2EYJvPzV9GMnAB9Zf4qR48dplHf5NLFcxzcf4jZCxcIAp+u10ZRNMaGhllbucHE5CSFYoHkBapjmlFyCpAJ1tfXmT13Gs0wmZneycpKnc0ejIQX0HYcQtEOIEvPomgaQ2Nv5ed/9ud4x0//GD/+0z/Pd73xzVxbXOOuu4a4vtTBMAzGx8fIgM2tLQzdYGb3DPff/wCtTpv9+/fSbDaoVPtYXrqG5RbRn75GlkF8fDKPxqjsxRwpoMgLCGGBcJFVDSGltNtNICWKg/w97quRpiCRYBgarXYT09RJUhmhmxiWhWlaefdeyuh221iWQafbQtNza4Ms66iqTL2+gW0VcRyLaGMLYWhIfXnW8Ob6Io5TxjDs/JCSCFy3iBAKnY6PouvEoY+iWCRk6LpLig+STIpBoVzeVlDkUsUsEaSZRBjlBX4YBui6jqqq6JqC1+3S7XZwbIfNVgNdtxByQqe1hdi2EDh2EV23QJZRhJxTzQ2TLEtI0hhVlYnjkDTO4ydkVSPJZIKghyzUHPyEgue1cn9tEhGEAapqYls2aSZzfvYStb5BPv7JT3P8+HG2ttZJQw9ZUnDdPh584EscPVpDyBFp9r8h2yWyMGB9bROhyNxy5BB9fQFJknDXnT/CnXffRa16FVVRidKbUZ48zfzVBcrf9QbuufPVPPK1LzLQX6ZS7UNXbU4++3VkUjpej0ceeZL9h27m4E2H+bV3/xq3HD7MfZ/+HOXSAL/x73+Hu+56BU88/ijHjt6OaRm845f/NdVBm9e8+i4GB4ZZnF/G6zbZf+hWisUSmqKSSTHHj9/B29/+s/zz//1tPPnUo0xOTrF37z7e8c5/jeeHfOgDH2ZjrcU73vlvedObXsv4SAkta7N5fQ7Hcbg2v8y7fuEXKdo6l65c4Yd+4J/y/KnHmZya4A2vezOy7CN9/jHWVtdxpt9CGPY4/hOTzOy6g8cff5xdu6bwWh6mXUBTNRqNNfr7SySGi6ZrJH7AxOhO0qSJrhg0tzxOPX+GW44cpdzfj2oYvOLV9xAFIULJ0FSbDJ+B6iCyvJ0dKsuUymUGh4f5y7/6KLv27KbSP0TayZA+XkA5ErO4cB3bKSABYRBSrvaj6UbOf0DC0HXOnDm3PcnsYdk2aZoAGWmSImSZLI0RkkQUeURhQBwlmHp+TbbbHbqeR7VayXOKOx0cx0EIGUU16HY7KKpMqeRQ6usnzSSQJHTDwOt2t2NzMsIwpF3fwC0Ucrq73yMTGaqiUiyU6Hoent9G0zUsu4imWQwPjyFJeWPbD9JtOWqCbjrEmYTX7RBHUS7ljUIc28F0CmRkJHGAKiukUUyrsQVIOG4ZpJQoCEiSmIwUyzTINY/5MVxRBJ1umyyLCQIfKZNoNJp8/sFHeOjLX+DI4ZtJzSJaHJKmEaqqEvg+tl3m2rUlisUc8mhZJu12i0KhQJZBq91E17QcKKcZTE9PIcsZuqaRJgkPf/VhKiWbVquDkoV4foClp5iigyo30GSN+z/7DPsOTnHqEqxdW2Wo6GA7Rdqrc7Qa1zFtHdMuo+kqYRgRRTFJFKGpBoVimfpWk83VNUplG0VVieMYQ9cwNJWOl/Dc6SVEYSdHD9/M4uISi4vzWLZOipS/PlJGmmU4dplOd500Tdi9+xCXL16m2i+o9VWREptWN2FgsEa92eP5U3Ps2jHAWF8ZXZXJ5P48skjW86gd4aOmLnt2VzC0HjfWU/xWg4O7R0CJMVSDJE1ASvL0hCii0YXZqy0uLra497XfgabnKjfLcomjDG3FIjA3aBUe4NZXfhfjB+4kSxISGeRvoiB96+L1H2v9fbNQX+4e3/jaNxWvL3nymfTXi+CXfvs3bfziT18eifgfWry+sP6HLl6T5KXApm+//r6T12/8/Mu8AKMzD5B5dbpyAUM3abe20HWdZsdDUrQcopQlpFmMrqkIIRGFIa36JpZp0Gi1GBmsESZgGCY3Fq/y8Fcf5fgddzI6PkYYJ9S3NimXq7hufjO7eP4c7fYmBdslDDyWl1dQNYP+2hCqBu1WgG3oRGFOyFxZfeFA7qKoGpIkb2cSukhyfs132h3SLMuL1jBEVTTCKGJp6QZrK2sc2LuP504+QxiG7D94EwNDg6RJyNLCAigqO3ZOIwsF2zQI/Ij+T13CulLn2piB6zhIaZ6LeHH2cu5ZMQyuXLnE5I4pZEXBME28ns/Vqwv0D9Ro1JtUKn08f/o0w2M7KBQrbDXWqdUGiWMfWVIwjBzWoqoK7U4b3bQgE5i2TavjoRsmtuOQZElOI04khCwzMjaAoihoqs5H7v8S//59n2L+xjpv//7vRFE0SCXiXojXTUnTDsVCH7Zlcf/9DzIzs4soCtE1g/m5RcYmBhAiL4oURSHNsvzAkOUa5SRNUBSRQyIMA9cp0W63kUWG5/nEUcylS5epVPqYntqJJORtSRcUiy6mZeRZd4bFxmYbVVOYmJjELTiMjI6wvLzC0aPHUFU1L44bDcIw4bHHn2Tnzp00G3U+8pVn+JX/68M8c/4K11Y38cPoG9fv97/2OOMDVZTSDqTCJJpVIE3SHACi5iAqVdVZu77MubOncRyXgdog/dUqonkSYVZA1vngIxf4sT99jHPXNun6Ebah0+j0WFht8tEvn8S0bW6a6GNza4tSsYRtOVT7+1hdu8Hw0DDv+czX+cMHzrGw1sQLIkxNoemFnJtf5Usn5zm0b4rbD+5ieWUFP+gR9Hx6QY++Wo2e1+aX/uSL/NYHvsL8Sp0gTjB1lfVGhwtLm3z84dO4UsBzjz2CWyxxY+kazcZWnkfY87l0/gIHDu7n1PPPMTE5TrPRplbry4uU9U3On55ldHyMTsfna48+zb4De+n6Hn21GrptsXt6F6Njo5QrZcrlMs1WC7/n5RTvG5sgpxw6dIitrTpey6O+ukqv2SBOEwZHh7ebZrlv1HIU5uaW2bd/L5KUUa97uI7J1NRuRqdmcAZM/DMP0yp/B5Z5jiwNCeKbuPnmI/zqr/4qTz3xLN/9pjexcqPL6ESDC7PLLC0tMz4+SRynFItFojhgcyOfOnqhz87JcWr9/cSZRLXskskC5fG5fIL5qn2QQavZxPclTNtBMEenq+WB8BlYpommqDRbLfprte18Phmv20E3DBRFIUkSPM/Lo20UhWwbNpKm+aQmTVNMM49yACmX9gdtZJGgqRZJliD1VaFcQBWCKMmIvTpCOHi9FF23SWNI0hRJEgihoYgslxzG0Ou1EUJFV1XCOEKoMkGvQ6Oxjm3n8nlVVen1AsxtyE6r2cp9pkLQbdexLQtZyqnGUeDjWAV6XgfLdiBL8b0QTTNQNIUozhtQlmXlEx5JzpsBUUy304UshwvFoZ/Lr+UMWdJIUh9zu0DqtNrYjouk6qytr1Eo5M0ry3aRMonDR25DkgW25WBaNo22z6c/fR+3HxtndDSg7f8gzc0WRq0fW47RtQLCMDFtB0VcJ0siTHM37bBLX/ESkiQRpMeQH3uGvr4q6zNj/OA/+2FM1WSgv8bQyBC6qTNccnn/hz7I4WN3csstx/j4Jz5CX1+Rvr4isgy7Z3YhhMHu3ft496//Cjt2TPKZ++7jzW95M1uddcJtAJZlOvzpn7yXTtvj1a+7lyRN0BSFt7/9F7n7nlfwhje+niDscmDvLfS8lJ/8iZ/BMCwQEgtXrvDm734TyAnf+933sLx6mYtzs+zdvxfT3IUsVD756b9gdMymlzoUSg7lSj8Fx0HGYHXlOu5jp3ALfTD8esIgZOItkySJzO59UyRRl/5KkViSUBWZhfmrFAslSFPaW2usryxRcBx67TZnnr/EyuoGe/bvYO/eMQzNRCg6aRyQpqAbAk116AVNpFRmc+sGm2vLaLKg1fUQqsKRY7ejmwZS0kF62iJbFzAUUK30gQSKnPukVUND1zUkGdI0yXPK7SJf+uIXibKIcqWMKgRzV65QqfYhSSlpEuXXHCkSMrqqAylxHGNZDoViESlNiFPQdQ3IWF9fx3GLuV+WLOdyC2l7spURhQGOUyCP4xNICDRdYXVjE03V2NraoFip4PsRSRqh6wqkKrZbJIoShCyj6SqaJtNstrbVB9DpBphWAU03UC0HWxXEXh1JKFy+cpUP/9XHqVbLrC5f47FHH6dQLFEsOjz7zHOsrm2h6wqdViOPvdtmKuQsAQ+hyNTrm7iOATJEUUCShNimih+kvPWt34Oqq/S6HieeeorRiUkM28Xr9njyyacZnxghSfL71pe++Ai12gCNegtVMbh+fZlabYAnHn88j82yDVzHxfd7CFmi7ErIUoIfqczNnWd+bpb9e4ZJwi5BKGPYVQqVKrqhsby5RZq1GZ1waXtLGHKZRG6y1dxESgRJGKFpNpqZNwE6zRvIqoFu6Vh6iCJkgjBC13RC3yeNTE6cuowkG+w9dJhOu83OyUkMw0DRcluUqso5RXxbJVIuFikWSgRxQialVIozlCtFJqaKNDe32D0zRhYrjO8UFEohXi9Ekn28XgdVcTl9coX+WpFziyGObmAa/nbaRYks9XEcjSxJt61sOaE+ywSScLlyrc3FuXUmJie56aabSNKYFNB0g7UbNyi1BkjdLS6kf8XR1/0ASmEEhYhYFoiXDLiyl5zl/zGK15daDf+h68V7vFB8/s3+3G9fvL5g53lhkvu3041f/Ol/f05Z9s1T3G/1+/591/8qXl+0/q4v50svjm/3hry4yA1PfRaiHoXJQ9Q3tzB0wdbWKqMTkyiagYTE6uoSpVIB2zYJoxBTNTE0QbfXZnRsmLNnzzEyMU2z1cI2NG49dCcPf+1LTO3eRRjL2KbK+TMXaLXqbNabLM5d5Oixg/Q6XVzXwHZKrK+1MS0HSXg89fhZpDSm2tdH1w+oVmp8/GOfYMeOKVRVxwt8+qtVkqCLF+S+mSSO0XQ9lxR1OqiajiJ0er0ekxOTXL1yBUlO6XZDasPDIGVIWUSr3qIXxvhRTJqkrC4vsbXVpDbXwTR0St99F+eefYI4CHD7hmhvbCGkjNOnTrBnzy62Wl10w2RoeJQkkygWKxiGSaFY5MyZ89xy6FbqrS7FcpVC0aLRaNHptnAclzQV9DotVF0jiHKzvm0VEELCj0N0Lc+VbLVayEJGyTQgIUkD6o0tSk6F2WvLfP7xExQdm7e9+R4URcfr+Dz2yOOU3D7SrI2qOGRyfviUJAgDH98PGR8dxzAl2t0Gju2SIiGEoN1uk2UZiqJvQwIkZCFoNht5DI1pIQuwTBtV1XAcF9vKJ92SkPG6HlEQMHflIropYWkWC3MrzF64xO69u0jSlHPnL+RyXV3Hti3iIMtfkyyl4Ja2J9MO7U6bh546xcLKOnffcoB/8pq7eP3Rm3joxFkAvu81tzM1OsSFhRWcUpU0yammaRyyub6+PSGTWVlYYnxyDM0wWFnb4NriPP1mG8sp8KXnrvHOD50kSTPecHSaT/2nn+In3nSc77xlnHqrw6XlBs/PrXH8ln284vBBhBA4ToEwSTAtlfufuMBvfeRRAN502wx/9HPfwxsPDvPzP/RqFtaaXF7a5LEzCxwcL1EruAwMDzJ7YRbLsqj09/GeTzzKez75JAA/89bj/O6PvZ5f/7G3cNeeEc4vrrG00eKJC8v89D/7TqanJhmoFmjWm4yOjKEbFmHPJ44i1jfWUFSZkZEJms0GSZRw8eIl9u+eIiHELtqMT+wgigN0ywQh0wt8LM3g4uVcwq0bOpVyHwXXhTRh9twVjh2/lfPnZwnCiJGdkzz97Nc5dvwopcGB3E8tBLIsCAKfTlDH78ls1Tc4d/48SaywtbnKhQuXsYsmlUP7iWef5NGnL7L77p+jtyX4P37lt3nLP/lB/uy9f84nPvpJ3vWud/JTP/WTOMUlej2DleV1qtU+VlZWqTfrfOELDzA2PsbTT5/gjrvvJA58nnv2BEOj42zV19EtE+lrFxEy+McmydIUM27n0QtGEaEYqNIKSWIhCx3fD1CECsioikrX65KkCY7tEoYRSm7qRlcVdE3PJymhT6fjk6YplmUDEnGUEcc5/MvzuohMYJkFhDBJMwVZlmg3GliGQZTKNDcv0FcbQagaWRYgREbH2yKMu9t0cIko8JAzQc/vYjsWWSghkaLoCSLLCIMuEjKq0MjkDEXNJ0lxGiKjYG4DXQQxSZLlDTNFYKgKQtK2CZ4CRcqwnSKNRitv/0syUpbmXS1Z4PshcZT79HRdJ4piTF3F77aQs5gg7GGZZWQlBDSELJAziW63R4qgXHLY2tjAtCwSwOusUewrEcUBcdgllmzCOGV6h8numZRm9DZk+rDMlEBTsQhR1QJxIhCqiqYsIksZQTiIU3VRs3kyLCIOYT77HJDxGG1OP/c8u3ce5KsPPcTv/+F/4Uf/1duYP3eKW44e4wMf+QTv+Pl38tbvfj1DA32MDPYxf3mOiR2TjIxMUK6UePVr7uRVd7+Gg4duRrcNLEdBSi28bp6L+/GPfoLXvuZeJqd3oiiCVqPB93zvD3D8jtvp9DbRLYmet5HnhjoKvXCDesPn8sVzzOyZ5MChGVobPYbHdzA4uhdEH6htZNnl+G2vY2F+A61U5Pf/8D3s3nOISsHilfe8kb17Z5g4uJf40B66C5U8Eu0VEmQynfYWm5tLrFxboH9sCIk8LuVf/Mi/4t47j9PYXEaIjOGRIVIffvonf4EDhw5y7I79LMydQJUdLN0lDAISIEkDJHRMS+bq5XmqVZfV6/MM14YxiiWiNEHRdJBlZk8+Qt/T+7i0Okth0M5l9HGErgl8v4NbLNBs1ZHy+SPtVodiscLePfso9RXyYjPL8kmqnMMZO50m5XI1pw0jcgl9GuT/l1SNZqu17e3MMzJlScayTNJMRtOUPGpFGISJjyoLsjRFylKSlO3ppEaz2aZQKmI7RZIso1qtkiS5rzCOAzRNYuVGG1kIZFmiUi0T9jqkSYCuali6AZrJn3/ggzzx5FO0O22e+NJnGRweRy9WKFo6pWqNW48co69aoVJ12bFzmkq5D0WVqFT6GRudQDe3rVIoWJaNrhuoSu5fl1DRFBPfC1iYX6Hglim6Bbyux65dUwRIeJ7HxuIc/bVBDMcFSWBZNpVyhW63SalcJPADHLvK/fffz+6ZPaytbTI9vYcTz56gWHTZNTOF49hEcYQiBGma0Fy/hNfrsnijQ39/CU3q4doQRgllxyYMPTQ9xFIjRvuKVMtFSDTszCUzfcLY4XOfOoOmdNH1FM20iCWZWEqwhUYqG2RZite4jqYpkGXIEqiKIE4iFLOEqVW4vtxlz4EZIj9g9vwsU7t2IwOnTz+Pogh0zURSM579+kkmJndQb28wPj6NW5LxvABNG2K9vokfSly4fJEzp5rYah8PP3KDMOwyOVwjkyT6B3RU1eS+r60xNqRRsARkOlLcxi44RICGTJLktPr8zKGwtN7lwqU1ZmYOcNuRA6iGzdL1JYaGhzl79jz1lWWGsinub/87KtMpoTZC3+huVDklFCpKln7bc/4/5uT1/40i7lvt+fcqXl9UcP5NdOGXO3n9X8XrP3C9tHj9FjGv36Qf/2s/83JG8S9j/bWonNmcNiz6JllfW2Xu3Fks28A0tDyHTNbIMglNM5i/Oo+QJDQ7J+JaTh7KLpOgCOg0GyDJFKoVgm6DguOiGw6apmM7Goam88SjT2A6NkPDY6xvtTl/4RpR0qWvLQ0JswAAIABJREFUbLO5tsbWxga3Hj5KsVxFlqHXyWVLxXKVan+JJO7g2AXiDLpeD0MT6IaBYdlIQoUkwzIdpCxFkTN6zRa79+4mlVIUZCxL48a16yRRim5aZKTU+muceOZp+vsraKZBu9ViX9Og2+uxskMjjRKarXZ+QxUaQpPorw0SxTKGoRN0c0l1bWgIx7ZZWb6GpiqMDo9y9uJlhoYHqZRLbKw3QcoYGhwjCAOa7Q0MQyPNQAiNKM6IfA/VctF1g+z/Ye89o+y663vvz+719DO9ajQqo5EsyZIsyZZxL8EdGwMGDBhSIaRjyL0kebj35kJCcklCbsDYjrGNMcW9G/cmS26qltWmavrM6W3358URxIEUkpC1nmfd+19rv5hz9v6fffbZZX7l+/kGPpKssLhU5NWXdtLV18fk+PhJMqxFhMreo4d47JW9JGyT37jmQiRJYHp6iqG1a0i22GiqiarIREKEZRqUy1WCICKZiqObKsVSBcOwqVarTXhN6BMGPrYdY2lpAVVRKBXLyIKCKmvkFqYxdRFFkXC8AM/zmZmaImZZCAIoQogqNnAqNWbmFujuXYYfhCQzCZat6GVuZobWtnbSiSSSJGBaNrW6x03f/Ds6uzpIZ1I0XBdNlcgtFcgtlTh9wxAdUsANV13AhdvX0ZqJc/MDzwBw/aXn0JJIUM4X6OzsJiJCUwR0w0aUVbwwQtF0Jmdn6ezqxbJsDEOnWqmT4ASKovKZv3+L2WKDoa4kP/yvHyRfKpJKGmgSXHPBVl4/coKJuTz7jk/za1ds5cT4CLPzc+QWF8ktlvj8rc9SqjV4z4YBPn3RalKWwqF3DtLV0cVHL3sPj+86xHy+wnS+xqcu24EaheiaRiaboVh3+eWv/BDXD/j4L23hix8/l0y2jSD0aUlaXHr6MD94bg/FaoOZxSW2rmjhtd272LBxAw3PY+T4CIePH2V4zSBTJ6bo6V6Bbuq8/vqbrBoaorW1jUgSObi/WXW2EnEMXUMMfCRRxKk5uL6L73i4nkMkBJiWytLCFG2tXfQNruCtvXtZMTjIwYP7kCWZM99zFrrdDOxMS6VaqyErCpKooGoGyYSFqWv0Lhtg9VA/iXiceMwiDCA72IoYS9G+8CIs+wCR3c/Q4HI6s3Huvecerr3uGgYG+2hpyyIrx0ilBtmzZx9tbe10dHTw+huvce21H2Tnzl2Uy0U2bdzE5MQJRkePk4yZPPTQj9i+dRviK8chEqhvakESBSrP3URj/C2M1ecTRSGyAlIY4vmgGwbVahlFEqjUaiTTWRRRJIoEqpWmvUwUgU+ELEn4joMgaRimiaJq1KqVJhkYAUkWcRsNVEVBM0wEERpOBVWWcMoLuCEohomKgxC6KGYbgiohiSrFfJ5UMvMTEIvjhRhWAj8Kse04ESK+V0dRVcJQIQwidMPEcULCCGrVCralUcovQuBjx+IIAlRrZXQjQRA1uxBc18WpO81KoaYjCE3tXLGQJ24bzcSf2GzdVJQmLM/zqgih33w6STKqYRAiEiChWXFkxWRu9gS6bCDLMuVKCc/3MHQZv16mWqsTTyZZWlzAlCW+c9c9bFw/TLVcJfA0DEtGl3Okk6PMLF2BZq0gAEQtjhwIHHxnjExLpmnvYyiI0TSuF+D7LcyNOVjJU0Bcw7FjI1h+HaWnk2t+//f53I2f58WdL/ONm77BCy+8wBOPPcGmzafjeh6GqvD4k8/y6KPPce55lxBEKn/21a9x7bVXMbc4S7Y1i5VIEUoe2bYMpmXiNkIsXeX1197g+PEx9u7bz0UXnEtuaZ6+vnYmp0ZJpNMIQRVDNZCUGLW6g9uAyfEJkvEUhpVi4ugxXtv5MuedexbJljaeefYpOtraMFQdUVCRTI0333qdr/75X3DeWTtYt3odi3PTZFqzfPBD1/HG7r2U4tB1+haU/TEs20I+1efmv/s7tm3bSiKRor2nm2K+hKaY1J2Q//nlv+BjH/8U2fYkumkgyTZL1TzXf+Jj9Pb2UC5VaW0ZQNBjVCp5KksnkGSJKGgwPnaMmJHlrDMu5Zzt59DV186V1/waN3zyk2gaBH4N2zBJ6n2E98VI7zCQFBlVlRCFpnO9psVoOA1idox8LocsSui6RSRBpZJDE0WcRg3Pd5FkjUq9gqFpmKaNHzbp+aVyCU3VKBbyxGIZatUiktisakmiROUkaV9RFQIfBCEkQiMSoO40UBQLSVFBEghDkBWFaq2BYdo4jVrzGaZoTQZF5EPgYBs2kmxjGCquW0VVFYr5AuVqDcuMU3UcZFNFikQ2nXoqmzdtJpvJsHbtaiQpIpZIkC9UCL0q9dIihqEjiTqOW0GWVcKw2W0lyhB6Aflcie/c8T12vvIymUy8yf6QFITIIZ+bx6n7ZFsyWMkk+XKVW26+jVg8TtwySFgGuqmTSCeRRQnPcfA8B1UTm0kzpwGhRyiKbNx8ColUnHg6BaHH0uIcyUySRCaN70fENJg5MUK1VKC1vRdUm/7uFo7u309nWyv1SpFMJkG5KhIKAqIqEaEznavy2FMH0eIZ8pUlkkoPslRjYG0bLRkLVRAoVeaJ253oagyBZjJdkmVMO0W9kscP6siygee6GKZKrVZnPu+zcmg5mm7jezV0XUEQImr1Ou0tWXRdR5AlJken6O7tpFavYtt2s4NGsSmWSiwszdLT3c3s7CKZbCcdPZ04QcD0/Bw+SebmT9DZkcH3HAK/Qk97hrTughCAKIDYoF5tJjNVSSEUZSTRxvcFGoHGq3tn6O4dZMWq1Tz5zHN4TkBnZztTExN0dXWRbR1AW1BZHPomlpki034Kyd7lSPjIvgriPw5ef5644D8aE/xTsNdf1PiX5/yngtl/WN5t+fnud8WTBZXoXZ61zSKt8DNzRU3C6c9+0s8JtP3Xxo+Pm6wo/wcFr/+OOf4zMiM/Dl7FbA8tLa34PrS3dvDEYw8jEqBpTQS977vE4zFitg1ImJrO1OQJkskUlVoVx3FpbW2lVq2gGyaT48cpLi3Q3pLmzm9/m8WlJWLJFFt3nMHg8kEybR309w+Sz+XJ53OsWr2Gqek5htatJr9UoVotMzJyhPa2TuJxm3gqyW233crwmmEO7NtPW2sWRVMwTRPHcRElEc91qDU8VE3DcT0EScKwm3Yrh98+ROD65JcK9Pf1kk7GmBg/Tr1a55FHHue8Cy4mmWlBEmVaWzJ4Lx5GVRQqq+Ks2rCNYrXB6NgYj+4b46vfe4qvP/AStz25iwd37uPYfBMdLztlDux5C1mWMEydqlNhYPkqnnzzHf7wf9/NV+9+jK9970lueeBp9h6doKejlc5snNhJ2m1uaR7dMFB0g8s+8yU+/ZVvEYUh520/lUd2HeCL3/gOf/2DJ/jSLT9kuL+DbTfcyGOv7AWgVK3xZ7c/yJdvu49v3P8sf/GdhxAEgdPXrcAPfARZxDI0Gm7ArQ8/z1fueIA/+ubdfO27j/Lth5/jnYkZulqyJPSmF55pmqiyTBAJXPSZL/G5r9/BM6/v51evPo+pqRPEE6mTibKA1rYMH7jxy/zmX9zGtx99kffu2IysxOjt6z4J5fDwnQa6qTO/uEAmk8H1Agy9SSuuVWsIUcTAQD9R1KxkiUjkcjlSyRSZTJr+vg7aO9pQFJlSo8637nsagPeffxqrlvWS8EegPkvetTETKWqVkxWwRhVVVUknUuzZ8xaZTBNKtHLFMoLaAodHxvizR8cA+MJla2lPqnQNDnBw32G6u1M889zzrOpfxqO7j1CuOaztS7N1wymEgkQqnWTekfjWgzsB+O3LN9EaM0il4gwND1OvOywuLtDZmuGJ3YeZWiiyqTeG73h4fhNYcu8Le3l81xEAvv7bV1Ip5FAEgXq1xuz0HJIgImgaOw+MMVuo8bGLNhH6EYlEAkWTSaUT9PcvJ2bF8L2QRCrFrpdfZNOpGxk9dgxFlvB8h0Qyiet6pJMppqYnMQyLWqXOxNgYlm3S2dWFIIQkUzGWFpYIQ5HxiUliMZvDhw7T19+L0/AZWD6ApihMjI9zYmqKltYWFEVFFCVEQURCZOdLrxC4HqNjo6QzKUqFEq7j0bdsGSNHR0m19BIuTSNUTxB0n0VXW4ZDe9+gp62VTWecy7HjoySSabq6SoShSX//IAvz8+zdu4cojBheO8TOnTvJpLMUcgvMz89RKFc47fQdnL5jG+VaFfvNKSRRgNMHyS0tIk3vxfNc4mvOBiGOH3gouo/vV0HUEAQJkQjTtggjIAxx3eY9rynJCIkiqdle26iCCEuLJWzbQpFFRCmi7paQRANDj1FrFNEVk0a9SuA7iGKE98bbSPMFGokEgTNBpm05ricjySLiSZc/RdUoFMsnZQg1TLPpMdvUwEHtZFeJ6/kICJTKJVRNJgyCJknY84mnsgiKjlOrASCJMkg6iqqDJBLgNduDFRnPcSD0m8TWKELTdcqVCoYiEAYBpUoNSTWYnhyho7MHUVKo1SrNhFgYoMkS1VIZUTFOtlJqBIKIKKmoiti0Q2mUiSfaCSKaLalILF++AqfhIooKL77wBGvWWCjSJLXgY0TySlSx6cdpGTpOvYalZZidmuC//8mNXHrh2ch6AUEQqNSzbD/tAn7lM7/C0lIBJQh4ZSFPvSvDFz7/O2QyFptO3cHX//ZrfOzjH+Lsc7dTLLlkMlk2blyP7wZ87et/Q2dXKydGj7F6sIf2zgwzs9PMzc2STieIfBW34fOXf/7X6KrdtCBpNBgfH+MP/uAPOHBwP7/x6U9z2tbT6e5djqqHRL6Podvkiw66LjN9YpbQD+jt7cETob2rh9N3nMvkiUV+9OQTXHD+xUiSgu97FPJFVE0nFUuwcvlKuns6GB+fxHHrrBkeQlM1dENh82mnIqki0n676SW6scrQqhXYtt30B48UpFiTVeDWGlx4znnYqTTpdAbX9Tl+ZAIhMtDsDFrMxoxpSHLEkXcO0N/bDQIkDQNZ1hF1GyOR5IaPfRDb0qg5OT7zW7+HJPoEXsDc3BxO3cE40kowDUJPhCirBEQUC0vUKkVsQ8UXRKIgRFMkIEQzY0iigKwoCCg/oXZrqoJmGNSr1ZOthyKSLGHoFgIQi1sIso6sKChaU4/uhwGGYSHKMqIoI4gK4CJGApVSDkW1UFXlJMhSRJUinEYVw9CQJRlFbUqSIiLKpSKWaeK7Abt2vU5LSyuSqrBr515eeu5ptmxZQ6HkEkvE0TQVURAQBYm52Rne3L2LV158nngyw1Iuj27ESMZiGIaJHwRUylVkyUaWJaKwWd2tVwIkKcS0FR556GmSsRhXXnU5XT3dyLrOC8+9SE9PD6qqkkjGiQSDRqNKzDbYuHE92dYODMOk3nAplmsk43HqjSKxWAzXkZAlgUqtgRVP4kYSsiD8xOu6UijgeALJZJzWlgQIHrXcFKJQI5POEvoyZbdOFEa8vf8ArS1tlEtLJOMabhiAnWdhtoPRiRIHD87SsWwVYxN5FpYq5PIemfQEui6zf980LekMsh4gNCqIQYNAVghEC4kAXdMIlDiWruH7ZYTAJfRd/MDCifI89/wUXcuyGLqGrmnE4wmmTkxhGAatbW00alU8L0A5SVgvFotYloVlJZpa/cBhcXGejo5uOjpbaWlLo6oCmVQX9YbH6nVD6LLESzuPoSgp4mkfXfaI6QIhCpGgghDj/vvfZs2aFjzyOMQ4Mb3IbK7Aq28cY2jtOto72mnr6CSTaaW7uxvNtKg2XFTVQBMU5DmF2dQLiNkBEjGbbN8QYhQRChLCL4gGHEXRz0kj/tnxnxFn/DOf9O/aj5+AaIV/+Ptfm+8/6xv93+AVqNfrTe3Ff/DE+bdmT7x3nkYIfaSWZYSEZLIt7Nr9Btu3bkKRBcxYCk03mZycxPc9RIGTFEyl2S6hqKi6wfzcHLquErMtQKS1LQtE7HnzLVRVQRQVTtm4EUkRmZ+ZwbTjCAh49RqZpEml1mByYgpVEQl82L37FTZuXMeRw8cplUr4vseZZ+5AVVREAeqVShPugMD84iIxy4YoQlG1ptZNAN93ESUQERBCCASRWrXOzMwU+XwOTdGRNJtqzUXXDDRd4+7v30tPdwfSq2P4vk9jczehDK8cOcHvfuMBdh0aJVeuIQCKLJKvNBiZXuSZPUe47IwNDK8aJJXOkojHqTsen/zK7dz++E6mFwu4XoBlaORKVQ6PT3P3kztx/JBTl3chCQIxy0I1TBAk7n78RSbnFtk0NMCf3XYvdz/5EkuFMqoi43g+1118Js++foAoCpsaPVEgaRnELBPb0LAMnfXLu9i+ZpB777mHtWvX8tIbe7nyc3/JM28cZGYx38TVayq5UpW3R6e487EXiNs2m1f1EoQBxVyeSr3BJWedxp2PPs/E7CKVWp2rLziLKJJxqmVEUeTrdz3E3z/6MqIgcPuffJYDr+8k9EXCwCWRTvC+z/0Fv/vXd3HX4y9z4w0fYWF+iUcefZTe3h4kwPdc0ukMmUwKSRbxPI+77vw+a9etxTA07r33Hvr7OjF0C1UzqDQcvnnPkwBcfe5WbEVBzu2GRp7n3phh9aqV7N+zD1mOsG0DSRCZn1+gq7OL+bk52lpbeeSR+1C8As8cmOC5I2UA/uSKYRpuQLyti56uDkZHRvEDGF45wF1P78X1AzQh4oJt6zh4YD893V189+m32H1oEttQuf6Mftaeso79B/awctVqWlvaiKKQ3Nw49+8aA+D0U4fYsLqX7t5u9u3fz307Rzh6YpGBjiS//9Hz0XWDmBVnemaGoeE1xOIxNE3mridfxw9CLj59Pds2rkGSJSzbQtM1ZFnHd30ef/wJenp7ScQTHD58hFgszltv7SGTiWNYcVoyreTmF0in00iyxqG3D7E4P8vA4CDVeqOphZaVpu2MbJLKZKmUC7S2ZBmbOMamLVt5+JGHGRxYTtBwSWezIAonNUcKYRjgOR6pZJoXn3+Fo8fG2XjqOkrFEosLiyRSaWYnZmlNZRHj7TD6KFa7gGSs4dc/+SkSyRYGh4a56aZvMjc7Q0+3wvHj79DRsYxHHn2E5cuXs379RsbGjpNIxFnWP8jatWtYzC0xP7/AjjN3sLgwSTyZxN/SjrMhjW63YMdS1I+8jCTJyMtPB1HEdyVEFDQ9QJYqRMSQxWbFRxAlapUypmlSr9cRxaa3ZiRAqVggEWtWQTVdRZQEQt9DkiQq1SqJRIJqrYJtx5FEGUlp+siKkoo3PoUoSaj9HfiNEqrVjiiqNGqlk5YhEq7rYFpNeJptWzgnZRFRFCKIElHgo2pqs9IkQBA0aa2GbhKGTY2U73soskQUhCcTCzJh5CFLIr7nNq1viAh8D1lRcD0fQ/2xvY+EJILnhoiyimXGiEKQcPGDpkejril4rtO0SKpWCHwXVTfQFInA95qJjKjpud1oeKi6hR8EKKqMKAhICMRigDBLMumyZk1APj9A1bsGyewlElXq1RKJZLJpPxQE3P/QI5x/7g62nXYqs9MniKf6CAKTuZkZvvAHn6dcWcJOZ3jxqR9x6y338uEPX0uptECj7nHixAzXXfchbr75ZrZs2cLOXfsI8Xng/nvIZrIsG4jxwx/ewfDwSk7dvJHcYolcrsCKFas5emSE2//+dradtpWbb/oWn7rhk/zdN25i/fr1rF07zF3fvZNGw+NPv/w/6FnWSd0po6k21VIBRVFQDR1RFPnYRz/BuuG1TE1Nkkok0GIGoihQr5TZtGkzM9MLvPbabvzAob0tjaQKPPOjJ8jEY7R2tPHR66/ngx+8Fts2mJqaoH+wH+f53SjTi9RPtKNpOsWBORJ2loceepgVK1by9qEDtLam0TUdERHPD9CTNrre9JVOJmzuu/Mu9r7zNhs2byJquDihS0LXWJxdwoy3US5VcH2JRMJGoMGJ+WPEYwmSWZ2K4+BWChCKJGJJ7rv3eyxnGKmisWfyTdraOvGDMqLoY+jqTzxRRVFCkhUU3SSKmi34oiQiyQIhEaZuUCwsIWs6iizRqNVRNANJalqsiALUahVkSWmeg5UqqmIgiiFEIULUvAZ8pwF4yJJGqVTAtGzq9TJh6NPszgyRZQnfC4jCiFAUKZVKzepk1LTNqpUdZufm6e7tQRQiOtq7GF6zhjfefIuhNetxfZfA9yjnc4iySCzWlIVs2XIaLW195BZzPPv8C9QbDVItbWh2nDASuflbtyIIIY888gSv7X6ThfkJYraJJCmsGlpDtrUFw2qSzqvVOh0daeLJGLVajXKlxH33Pcpbb7zKurVDVGsOt958C0NDQxw+epS+vn4a9RrySUmHqolUyiUSyRSVaoOXXtzFst52kCR2v7qbuclJ+pd1kDQEiouTONUlapUlihWHhhcgSgFTo2P093fz8suvIMgKlt6Ug+mxFo4diZhfyrNmwyA93Ssol8tsO20bba0penq7icdOY2x8EsUQSCQ0BCFiaaaEojqEURnLaiESIhq+TxQKzWpqbY7A9fHRsO04hq4zvHo1ubkTGEacEAlBVDh+9Dgt2QwLs9PkcjkMy8T3auzbtwfD0DE0DVGWQfBRVRVF1kim4kSEqJpCqVwgncrQ3t2OH7nk50sEgsXR42OEmIxPzdLSupzxmQbVmkcy67FyVSshKV5+dYk9+0aQpBSqlmTVmlNZzJXJZLNN9wJRplau4vkurekYQXmOyT07yYrrWH7hAG6rRXnuGF2rNiNEEqEIP3Yi+Y/GAbIsU61W0XWdMPyHau4/Ne9Pg2R/ETHIv0Qbftcn/atr/FPz/KRiKvz0sfrZ+X6yffRT2/4ChyAI/4e1Df/U+z8mBf+iDuy/LXgNEDMDIDWJbcsGBjh2+BC+7xNPt/Pa7t2cdtpm4vHmzTOWbEFR5Cb1ThJRTurAZEkkn8tRq9WJhIhSucrAwCCIEdu272B0bAxFVQjdBpppUS4WKCzMYxkC1ZpDIV8hlbBIpjKsGOwnk0nSqAe0trWQyqRwHZdCPo9t2c1KRhCiWRa2ZXPk8GGy6RTValOrGvoepq4TBj6VYhFdNchVKiwuLGLHLQYGljM3l2PF8HqKxTJrhoaZHB9h5ZpT0DWR2L5ZdF1nttdi596D/N7f3oMfhpyyrJP/8YnLue6MNfw/v3odl2xezgXb12ObFhlNoLUljYjCkUOH+e/ffYpdhydQZIkbr7uYO/7bZ/n8xy/nIxdvY6lQ5uDIFK8dPE57JkV7TMNzPNJtrYDI3Y+/wMTsIgeOT7CQL/GlX76aP/7ktfz2B97Lp99/Ma2ZBJ+6Yit9HX08vvMtuloyHLvnb3jfjvV84Zc/yG9edzlnDA/SqNaQJYlSw+eqL/wV+XKNi05bx7VblvPNL/46H71gI+8/eyv1isPhqXmeff0gG1b2MTTYQ9yyiSXTJCwV0a3w/L7jvPHOGOuX99HT3sHs1BgHRyb5zP+6kzCK+Mz7L+bSrWvZunkTEjKaIrP/7QO8dGicybklYqbOZ667hHqtxOYt24jFLEZGjjIxOs6qlauYmZ3G8xxK5Qrbtp5JqVig7lQZGlpDT1cbiqKj6hYLhSI33dsMXq89/wyWdXYhlN+GCIa2XEGtWqKvuwvbVnE9BwIJTdN45eWXWTs8TDFfIBHX8Vyf5w6MsmeySjau8/nLN5Jq6wctQak0R0/XIIViiVQ6zo9eO8p8oUp3Rytnre0hm04wOTHOD148zPh8kZXdaT5x4SZa2lqIxWMcPXqMxaUcItDRkeGHLxyi7nh0pG264j6trVna29v5y+8+S65cY/vaZVx59mmoctP3UtE0NF3FxydmaPzND14AICF7nL99HbKi0HAcjh493mz7RGTjxlPZuetVCoUinV3dLB9cwejYGGecsZmG0/yH7Zknn6RULTE9M4cYwY7Tt4OoUnMcVEnmwN69mKaJrFo89dRTrB1ehWVotLW3MDY6yeYtWxg5eoy2libsybDMn8DiCoU8dTdHOhMnFo/R1t6BooqkU2kq5SrpTJZlAwPIisT0/AItKxSct56HzvPp7hvg0R89z8svPs9ff+0v8Ro1Bgc7UfUqpt6C53oMr11DzE7ywIM/pFAosv6UTSiaygsvvMD113+URr1G6EUUSw1mJ6eIqTqCrTQTIsdeRZQEpOU7cB0HXREQI5m6n0WWHRSpish+Ar9Bo7GEricIgqgJShMEJEnEjwKi0CfwA1TNpO6UaTRqyJJC4EeYVhwEF0UVEQQDP/RouA6qZiJKBu7oGGHoo/a3IqESSBqSICGKHp4XEAkBjuNgmDqVSvnkc0Gk0ag3H8KCQOj7KKpGvlhEliEKA4IAwqBZebIMDSH08Rq1kx0zAUEQoSghURggIpxM/hUIw5BiuYJuxdBkgWq9gaSoyAIgBwSRh+fW0HURXVEQZI0gEhCipm+o5zlUymWy6TS5XAFFBKfR9HNdmJkiHk/iBRKCbDI3O0k8HhF6x9DUOURxhGJJJmKYSy67m+mpNBs2rUe3LEJkzFicUrWOqOh4ocCOs7cjRCHvHDzE8PA6JDIEvoepeVRLJWLmDzCUA3T2Xkqv1EJ30kaMa0SBxoMP3c/69Rt47rkXaNQDzjr3fD70oQ9w0QXncu57zuK2m7/JNVd9EMNs4zOf/a+898Jz2Lf3IOvWbeC22+7kNz79KwRBwC233sI117yPO+/8HhtPXc/ywWUsX76Mufk8K4cHKVUXyHYkeP3VQwz093DkyCHsZAxCCVmU2bh+PX/0xS9y1WWXoBgy4yNHWb28j4Ybcu+9D7Np00ayLQnGR96h7tQ5fetWpk6MMbBiBZddeiW2bRCPmRRLBUIhxP7bH1LfvZ/4Vy5G2hyg6xa1koeAQCabIpEyEAKfd95+Bz1uY6eSWHENz/NQRQFdATPyuejyS4lkBadYIZbJ8MozzxCLpbjzu/fz0U98gk9/+rdo1IvoqodudpKb8zDMGKrWhlObwWmEeF4TatR+YhleOaB1ZRpVUdEUFVXtYxyqAAAgAElEQVTRUBQTUAncKq4fIMgqkag0ddWBhygreEEVURSoVqrEbRM3iJBFEUmSCYKQe+67n56enmYCSBUhCKlWSqiygq7plEt5XKcB0Ulf2SigVMqDqJJIpxAQaDjlk4T9EFlRqTfqeF6AqhmEkYCmqqiyjCBECKIMoYiq6lgxk0a1AmJEre5SrniYloFhG1i6hiZJNPx6U0qgmQSiSLG4QH9/B8sGekioMoHvIoQBgudwxpln09Xdzp49B3n/NR9i+fIMyWQG1xOxYwa6ZWHHLIjAUA00XSEKZURBx7JSDA2vYc3qQQLfpVxpsG7NGlLJJNlsFlXV0FQZWTJxnDq1xgIgsbiwxMP3P8yVl11JLj+LZlr0dfeQSdjomsvMxFFUXLxGGVVJ8caeKdq7ehCViKNji3RkLNoTEtXFcZxIxFAkpuYqHDgwynvOOZ3Xd00QS5eJxBQgEwgOy1YOQqyMGMV549UcjXqRjk4H17dRNRVb0VlayqPGUviCQkKTqNUFLF1iaaHC/Q/upb2tjioahMEkpiwTiCnKVRdBUMmms8wtTBOPWSwtLtHd3YOhgq43ZTkL8/PYiQRB4KLIOmEgYMYUZOVkotC0qJZdvEAkkcrSkuihpUsh3RLjzbcm0BMd7Np9iNmch6QI7HmpzIqV/Tzw0MtUQonzz76AIJDo6+sl09JOW1tfE7onClhWjGJuFs8vMzWxF5Ml0pkkWnEV1XIZOXsfh49N4RmddLS2E4jRT+KC/2gc4HneSd9f6d/cEvyfTRt+11o/1zz/7L7/TJX6Z+f7B7Lxv2W/fnb8a8fv3xO8/jzh/f9Hh/iPFlEUf85sRXP8tIfrz3Ny/tOiaYhO+iHhAwG4nkehUqerexmFhUVUQWZyYgJZ00h1dOG5VaZmpsi2d5DJtmLFYqSSKUwrhhnPkG3vIAigv28Ax3EQFBtfaNo/fP8738dtVJidniSRSuGKMtVaRKPm0N4ep2+gB00LqFSLTIzPY9gKvltj9xtvohk246OTSIaJmcxixWJUikWIIvqX9RMAhq3jRz6SolCtOSDopLJNXZml6Fi2QTye5NA7R5FUiVolh2HpLObmKBbn6OtM8ORjjxNGTSF+w6nz5/e+TAQM97Zx82+/n7O3nsKqNcPEEknWn7KeTkvi9685i6ytc2jvWyiSx2ShyAsHxwD4k09czmc/fAWSolOrOaRjCf70167l0h0bAfjKHQ9zZGScg4dHmpAIwpO/CVTrDl//3A185L3vYcWyHvbu20PCNmiJWyStNJIYnPzdoVgtk82kCZwGoe9QrldZKtfoW7GaP73zQUrVOteet5Vv3fhJNg8PEU920N3eQ2khx1//8W/whx+/DIA//85jNCoOARJBFCDKKuu72nnfOduIoojf+l+3sZSfZzZf5le/fCteELJhRT//5VPXoGoSoiKTaU1gJ+IcPHAY3/WbZ7woMXtilkq5ge+5VKt1Vq1ex6mnbcfzA555+jkadY+YHUNSI7JtGbq7O1HUiJobUHfr5AtzKO+6THRdw4jpJ2l0Ea7gYcZjVN0aPiDJcRRTwPN81q0/lbfffof80iLt7csRxID5kgtAW0LH9Vyq1QKyDA0nxAkdWtqzLC0t0Zq0AZjNFTly9BCFfJ7egQGmF4sAZGIGPf19HD52HFGMyC3Og+fR09NJLJ6gPRMHYCFfoSPb0bRY0DUWihUAEobI3Ikx7rn3bgICkskk+/YeYG56AUMSsPUmjKQRSiArVOo1bMtk9aqVtGST1Gt5jh1/h9Wrh9iw7hRidowgCMhkMux88RWisMHY+HHau/pYMbgGr9qgWq3z9rExHnjwfkI34PDbh+jr7aFSdRg9coBL33sx03M5jh4fJbdUQtcUxo9PYloWs7lZ5udnmveNwCd0GsQtnUysnzDU6BvoZ3JiFFXUCEOBbFs7sqIipUTkhEJHawclWwdZ4s3nfsApm3fw9rETfO1vv8mPnn2e++5/kPvv2YfnugTRPBMnTnDs2HFkreml3NLawWJ+Hk1TUSQRXZFJphK0dbYwPnKUtq5utEwbiqi/C9YgIBGiKxJeCA1BRtMMvGCAgG5QtiAoQ5gaqOKraHIeWYxQFAXfj5AiAVU10awESBGmYWJq9knNKMhigBAquHUQ8ZEkFU2zEAQRP6gDIYKkUpk+jBpLoQgSjuMgiiYIESIGhplsEkX1JLKi4vkBqqqjKCqqrGDGLBqNBslYjDCS0M04hm0RSQGB54AoIUgKmqY3bTs0DU2jKR0QBBqNOrVq+aTHZIZkMo5bL+H6CoahQhgRoiCFIqpsEUYqtYpLJGhEQdAM+kUFUVKp1V3S2VZCsVnNkDUTK57GcRoks+34ocjE+CihO0lHq4PMfiSpn6X8+Tz1ylVs3nI7x0aWc/FV14OpQxARVEXmZ48ihgE4HrXFOYywTL1Sp1iosmZ4JY6Xx5F9RCuFbPVht7Zh2DaS0GxL7n/5WZxv3sp5F15DIGmsGNjE62++SBDW2LhhC329Ca6+8sNs234Oh8aO82u/8yd4sokeU7nz7m8Qyya5+vqP4Csin/7MJ/FDkUsufx/3PfAosi7xoQ9dQU9vkvGJw7S3t3P5FWfh1BYY6FqG4iRQBY/f+fQfYOhJEukEtUqJrVu3cvlVV/LdH3wPDBNZSzK0biOzuRz5hQk++NFrWSiUULQM+w5O0du9groDwxvOoN5wGZ84ytPPPE6pXKe9vR1VFBCJ0FWJejWPpIjkFydJZQMGh3twJbDMOF/8/B/R09FF0jSRcJE8kdGDB5AFyNUC1mzbTijI6IqMldQozeU465cuJpE2uHDbOn7vdz7XfBqpMRypFVHSiMQqxUKdUqWOqreQyLTwx1/6MqtWb8MvyfiWiyCCJEeEQkgYCQgoBFEFQTOb11y9guiVEEQBSWkGp6JoI6BiWxa1Wh38BpIokMvlEAWfSy++iJipI4kRvh8iqSaJdAYv9CmVCyiK3PRAFWUiUSIUdLKZbnRFIvB8/CDEtDLUagGSrOD7DVTNJJZM0GhUEYWIWrGA7ziomornOrhBg0j0KRYWefSxJ4lChTde283K5XGefeJBnFKOer3MYimPGW8njJpAKCmAVLyF3PwShm5iJ9PYdoqnn3qJ197cT+DXcD2fG375BgTRJbcEP3r8eTTR5wd3303g1Viam6ZeKeJHHosLBXbufh0kEc+v0mgUQZKp1AIOv3Oclo4Wqo0yqipQKS8RCRI1t4iqyjSqInYiS0tbF1d/4BpCoU46nUL05qmVppmeL1CulIgEj0iSiKVj1NwG27cPkIj7mFqMlX0Z8vMnWCzk6VqxkdZ0CkGReOPQJCvXDuOHMmecvZHBFTvo6GhFFFxMxWRhZgHNT9PeNcCWM1cxtP5UnnhsDkGWePCJQxRqJUylRCM3giX5VBo+ktJA1nto6xtgy/ZlxMw2gtBBlhMEiHiNOVpb2omn4xgJk2SqhdGJGdYMr2N+dpq9+49QXppg/J3ncavHWJodR1Oalf9Y3ARBw/UCdN1EQMKIqaRSNoYig+ExMjJPf98pXH31FWxYv5Fzzjmf7aduIG5nOO/q8yi4Cc4495d478UXkOnsJNvVTb4aIEgSsaRMIhmjkMtTyS8SMw3mj7xJSqig2zHiLYMQRVQWiuw7OEJcqSMvPUO1kEOQfzEtw9CsvIpi0+rs3ZXXH8cN715+evxzr/+8490B57+8YvgvL/CP9v1nNo9EhEiEUIBQ+BlLWyGCKAhp6oD+Y9/tP6Ni+//j4PXfNv61A/5uqte/tM7PtAgoJoKk/qPXJEngzLPP5q7vfZ9HHnmYtw/tA+DIkeOEQdTUFcgK4yOjBE4dt96gXq1SKZfJZDJIskAynSYUBZKtrXR19yCKAitX9NPTlUHRE/T0Lufw4SO8/tpudFMg05KmvWOAuZlmwKmbSbr7+rETJlashXVrN1Cv1xhaP4Suqviu22xhBpx6DU3TEGQZVTERRQWiEFEKEESB0bFJZFln5apBhoeHOeWUUygUCsxMz1BcmsXUJdo7O8mXPB5+7Cmu//gNCB85jWNbTF7ad4ipxQIAn//AhcwvzBO4daYmjnPbbTdTq1Xo6Ohmfn6RDRvWEfgRhUKZB15qalHbUjFuuOJcFElCESPqtSqqIuN7Lr/zgYsAyJerFCONc887D69RbZIYT15wq/u7OPvUlU1XjzBi9PhRvHoVRZSo1ur4vv8PP1wgQSRx9NhxRFlCV+OEQcTMwgIPv/QmAL/74UvxI48LLjoXQQpxo4jN27ai6wq/tHkVAPuPTVB2PALPxa3VCL2A95xzLl/97Ifpacswny/xm1+9lXt3HmK2VMM2dG76w19GFEJMy2B8fIIoFJEUgYGBlXxk6xpmHryZXbd+mWefeQFFabaL6bpBGAY4bhVVE7nmmquwLBPTtBg5/g5C5KJIAplkilqtgWna2FacfL7wk6/ccBqomgJRhCAKeIGPIIlYpkUUehi6ytLiEqlsmvbODqZmplk2uJwocrEtg1K9efxkAURZIggjpsYn2PniKzTKNUpLBUaPjqDJzeurUK6xactpmMkMmXQLodDsmFAlkRCRSqnE7HyZ7WeeQ7q1lXLdYWlxEUVqbl/zAnRD59CBg5TzRar1ZvDc0pKlvaeHq953NZV8gdkTJ5ABwQ9QZBXT0ACoNhzceo35mWmCMMALPSIFZE1icHkfoyNHGB07ihXT8COH5Sv7iWQVw0qQbW3l1E2nYGgyZ7xnO0NDg7j1Mle+73JERWapUCSeTGNYFoNDq3EDn5mZGbxGA1NXMTUV05Lp6u4k8CNSqTSh2/SsHR2dRJRtJFlgdnaOKBLo7+9DUwVOTIwQszU8p4LdFcfsssnnC7Rks0jpJMXRPVxz+bV87ndvZM/e/Zxz3pl86teu5+xzz2f/gQSQp68njqbrZHrO5ot/+j12vbaf0eMj3HLrt2jJtrBv30E8N8J1fDZu3Ih0xysEtzyH4/nNB5nQrAq61QK1UoHAD5GkZodGpVQm8OPUqgkkySNS1nLg0CWEooiqF1hYmMd365x/xX/D7vgoX/ry9wjDkNzcPLZtIisisto8pz3PR9NUHLdBFPjNKmbo00ytCIiCgJVdBoEMUgCiTygESLKG4+TxvTrxmI0sAb6AppoUy1XcUCCKQgI/xLLiyJKBrjdtNAI/wtBs0tk2/JCm32XDaYJufJ8wFBElnUgQm9pCUUHRTEIkNN3CshNEogKCjCarSFFIFKpUyjV0Q6Ph1AkimoCmSCAUREq1RWKJLBEmihTi1uoErofvuJiajhDC4uwELWkZ2xghn8/y+JOnc/f365SqcVozSd46cBDVMLnhIx/hs7/+m2Q7OtEMle7WLKHjEfkCk1NLyHqKwPPRDZmGHyFIcfKLB/HrE/hODcKAwIdXXnqdifFpOjo6MAyDW265henpaRYWZ+jr6+PGz32RVCqFJ4V84Ys3Mjc/w+uvvMKRwyM8/NAjmJbKgYOvUWvk8YMqjltifnGSkaNHuOv2O5mfmeeK917D4T1vc+Ul15FMD1ALFEqlMkePTPD2228zPTPC0HA737j1r1i+YoDCQpFqocG+N/fx6ssvUiktMDqyhzCsIYQylbzD6PgCYSChSCq1UpmzL7qYiu/gCD6e5BOpMn29y7jswsuZm5sjDENs2276USoqiiQzPTqBKMT59re/jaZpqKpKGIb8l//5ZYxEDL9RY2H0KILoki/OUq4uohsCkVCl7uRoOBUqlQqB53Pozb3c9He3ku3o4/SzthFLmagKyIHD9NgIiVSSp599EkupY9s2YSDyhS/ciGq4yKGOaVkokkCjWmV8bBSnXsXzfUJJRYxCGvUGhm0TSSpR4CDKCuVCEQmxaXtXqSArMpGoEQkqmZY2/ChC1nUiUcR1HGQBPN+lXmtgGE0/eKcRkkgk0VQVTTW56eY7mTgxR7FSIxBAkSSqpRKWYSBLzSsSAQIffA9c1yMIIiRZhkhAklS+85276e7uRVV1LrnkUhA8BCFiYmKa8y66AlWLMzk6jRzJ1POTzI6P8f07vs/tN9/BD7//HRKJDLVKA8NM8YMf3seatWs5dHiEm2+6jfHRab7+V3/Lbd++jXxhkYsuuZhyw6Wrp5elxRqJeAuNelP61NqWprdnBTd943byhRzHjh3HtuKkM2nOOmcrpdwixXyeEJFYMtO08goCREXBTCaol5cIvTyKWIWgRKU4Q+QZ5OfytMRcIidHOi4hiw4iHmnTQxcdhNChXMzT3d2FnbBp1D12vfQmQtDAdyI2nbKJjadtpdrwkCSVWrWMasj09XeTjFsszEwRiiDKAn0D/Qiqydb3XM1Lrxzi7HM2oxEghB6hO4tTOY6tg6qkiWQfz7fYvGkdouyiyhICEUYMYlqNSu4ooVdAVVTau7rJtrZybHSUyakp5ufGMNQGLQlosUFxR6gujDA7PYmgSZRKRURRo9EIKVccfC8k8CNuv+MOJElk+47TMGwNWVdpb+8g29aKYmj4NOFavX3LEESBmZl5PDcgnU6SSFoIosDs+AKO6yOJDaaPvkxpbjfLlrdTcnVmFlSO/L/svXe0ZXV5///avZyzzzm392n3TmVmGIZhhmEEEQSUABFEFBVUNKiRqCSWfKN+jTUmXzVWRIM1igFsIChFemcaM0xh5k65vZzed9/798e5jiUxGjW/FX+/77PWXvfctXY9n733+TzP8y7Hi8QxJDKL8fVtCHofh3Y9yf3f/zuEmngCgfnHij8kEf1Dtvvv4M3+R4n3z4/1X2n8/U+JP70z/gPiD6mG/KaQelcipHt/9ThRQBTDspEViKLAuvWriWNYvnxFixenGaSsFD3dXRw+eBAhionDCFmWmZ2dxa3XCT0Px3aoVeoEQUghn+Pggb0MDfTQP7QYURJZsXwpAwPdWKkMk1MTTM/M8MCDD0HsMXF8jPvuvg/f9amUctRLBVzHplwuQxyh6xpOs4mqWyiqydzsLLVyAT9oeZ8FYUAikUDWBEaWLyOVTjIzP0F/Xz9RGHHJJZew/uT17Hv2OQb6+5BkESOR5MKLLiEWBKpGjLW8h6PZVqLUbhmM9LUhyjIH9+9loK+LbVtPX+DzyqxZcxJHjhxm3br1TE9NM19vJUUnDXXiuC5hGKIIMcQt+F5bJs26kSH6OjMAHJktAOA0G6iyfELoe8u6FaRTFulECiVhculll6JqEgEhVirV+qGlVaEyMxbTs1O0t6WpFQsg+ixa0svBiWmihWT4ouv/kdP/4iMM//lfsuFV13PKVX/Hpte/l+WXvI1L/tcNJ+6BfQcPMjU1gYTAY48+huP5jD5/iBv/9q3IksiDu57npttbokkfvfYyRoZ6iWMRWVLQVIUjRw8hyRJnvGAbXuAQCS6GobD1jM3EUYSmibheg9m5GVJWmjCMFqwBVArFLMtXrEA1TNwgxPFCOjq6CIIIUZSxbffEeRqGQbVaJkYgimLS6Q5Axm7YOHYTgYhMuo1GrUQcuZx77lmMHztMR3dPK7FZ2E8UhmiGQUc6gawqbNlyOlEMYRSTSqUJ419UAo1Eko7ODo4cOkC8UBms1+tMTs8wPDLC0iVLyWezyDLMzU4z0D9wYj272WR8cpLOzk4OHzhItPBMS4KI3bTZtX0nu5/dTXdPN4IoYKUs5udzC/6ErYqq06izeNEi4oXnIPADurq60cwEZ57zIjZu3Uwqk+bo4VEMVeOUTZtJpNro6Ohgdm4CPZlAUBU6e3pZveYkVFkmnUySTlrs2bmnpfpdLLL/uefwGjZr12+i1vDRjBQIIfv2PcfQ0BIefPBhFEPHC3wWL14EUUAUB7S1tVEqVRkYHESRJdra0oweep4w9InjmCAISSQSIArIHSnOWFQj1W3ypa9+jt37dqMaEmtPXkMq086mLecz9vwQp58xzMZT+37xjgojctkssmRQKJTo6uqiaddpNh0kWaEn1rEaEYoQUatUiGMwjARqwsL2Q3TdWLDHiTEMjTiKmJ3OEUb9iJLHmvUiLldDXKOr00E1Eoi/pH4YRRFdfYtwXA+BCEVs2cJomk61WkWRJSrlEq7r4LkuAvGCn2SMbLXjNBvIKMhiTCE7i0iApqroms7MzCRT00dRDA1Jlujq6ECOoV5vEEUBrtvED5qEITiOiySB6zXw3WaLB+t7GJoCccv3MgxiREHDcTwUTW0pm/sekixSq1eJiPGaFQKvQamcww8DZEUhigNkWaYt00OlVERTJBq1CjIxgisQE+LHDuVyDVlLUGt47D84SiQE1Btz9PcfwbSS7HjuQs4774v81dvezyUXvYrQ1xFFDzcKOOe883n4/vsRRYeZ/Az1ms/cRBnXreAHTU46eTXfvPlfefs738Fp285kyer1LFlzClde9Ra+e+vXiQKPhKEhySKbTjuZ7u5u9u3bRyqV4rHHHuOyyy7j4kteQiqV5vbb7+Rtb3sr+ekpDu7bRxSFvPv97+Xo5AFuv/d2lp20ljPOvYjNL7yAa659K8/te57BgSX09SUxDQFJ8LESGpe99uW84KyzueLSyxndu5+f3P0gH/rE/2HruS9m/elbOXnLebzq9dfw47vvxlQVpiaP8o//8DEOHxxl/OgMG08+ndCGwPV5dtcunn72GV5zzSu56OUXsGLjCtZtWMk5L3oxf/+/P8j4kUPU8kUUReMtf3U96XQay7I4fvx4y54jisl93aP7mcUkUxLnnnsuc3NzhGHI1NQU6aREqTiPpCr09C/Cc0O2nn4msqRiWSnOPutCapWAOJJIJBKYHRZLh0fYdva5iB0drF67At+3KRezxJHP8JJBoiji8le8jFppmiDwkWWV9o4MTacA0xKRHrQ4iZLG0iWLadarRHGMHwkIskLSSkIY4jsNHKdJGEYkEwmcZpW52SmMRAJBVNEVgSiwses14qCV5PiOjWlaCJJBi7OqEkctfniL3+fhuA2CwOeaN15FW1sKTVUQohb8vq0t0+Lmex5xKCKKrQ5VK2cIkOQY120giBFz89OceuoG4jgknbFQtZh0RuOss85kxfI1ZNosNE0l3d5OEEEykaSvr4+XXHgeV13zKl526UXsP3AYIomJiUkuuvhC+gd6ueKVr+B1V7+an937E970F6/jxeecCYLPsbGjpDvbsdIWghBh2w2sVJJmw8Zu+iQthTdd+1oy6TZOOWU9QRBy370PEAYhejJDd28/pUKB/PwckiS3rKzqBeSgQeQ1EaI6YtTAt8vEgc+RQ6MIcYP2dA1FaBL7NeLQwbWrIEEUB9j1OkIQMjszh2H0YCaTLFvWiSDKHDoyzuiRIziVedqSOpHvoykKpqwzdnSMcqlC/+AQmqISeG7L4zTTyeDibtrbFzM3X0HVTdwwQggFRKdBfmoXsZcnCmXQPGoNHZdOQkFujVGkIasqRw/tRY1tjh1+jnqlROi7dGQsBvp66Ey3YWomU1N56g0JXROJ3EnkIE9Ur2LpEscPH0aWJMrlEpKkMjMzw6uvvBLXczn6/PNMjB1HEkSiKEZWZJYuG2bjptPJ5co4rsfipUs5ae3JC3oEIZmMhWEYqHqMxTxCfZTOrgRGsh9f7mHlKefTNbQW1/YQRBHVTOLFGfLqYlLp06BZ4vDue//TTuP/jf9vxZ9Q8ir+2hL92vKfxy/LWf86XPg/ggD8+uffpRLyc6iqIIrERKxYuRI/ljlybAIrmWR+agopFogWJqHVUoWhwUGqpXm8wKNpu2Ta2picOIqmaiQMlYwlYBkKcuCxeng5mY4uHn7obrL5aRqOwAvOPoe5XBEQ6enO0NMHufkC/f2drFi5GKcZsn33DppumaSpYWgRDbtB4PsUsnkk0UZWArp7u+hs62wJSSGgqxqF+TyO7eHH4IsK3X2LcYMGAT6jx47SNzSIKMccePZZdj31NC848wyarsejTz5FNl8kne5hrtyCdWZ0hYnjxwgDGdsXCBDp7Otk6thBEkmLXKGKjIrtg6SlKDUcAHraM8iKiSwrNJsNOjIZREmj3nCJo5ieNguA6fl5orCBnkhi13ykhUpSVyZJ4Ie4noMQhkRhiCTLxMiImv4rd44Q2HR0ZogEUDQDP/AQRIGq7Z9YJ1+pky1VyZWqv/S3Qr5cJ1eu/WJnahLd0Nm5czcrRlZSLZXQNZVdj9/PtZedf2K1l71wC5e+cBthECDEPhE+XuixZt06EkaS8YljXPnaV6MlLGzXxkyYmEkdJBVdT6NIBtVyBVEzqToODadJT1cnjhuSK2QRJA1VUfE8j127tjN27Aie/YtusyCAuuDDKUktQRghEkh0diKgEzg2mqRjVxsc2PMc9WqDnsEllBsNhleswTJacFxkhRjwHIdKJUemo5Mjx44SxSEbN20gXnh+TE1FxMFvFOnq7l5QzYR0Rxd7d++mkC/wyIMP0tPTg5VqY/HQCNVqnWrDbq1nJVm/djmVUpZipYCV0AHI5Yscfv4QGzaewqYtW1EUA1UVMJMZsvOz2G6rQ2uoMs1Gg+1PPsXk0TEqhTIaSqvIU84jxQ5+4KNoJp3dveiaihjUCf0akgJe4CPKMbEYEQkCjz++HT+QmJuaYtWqEbp6h0ilkoSeTxTBps1bKRRz9PUM4jQaEJkEvogkirzohWdCCKIgYbsOszMzPPTAA+iSSFsqQabNIpuv03R9Tjr5ZDq7BhGEmCgK0HQZSRSRO9sIGzk8WWDngR3863duxvcEsvMF7v7pgzz59DN85eZ7OD61ES/sPjHufb391Ot1Np96CrIu8bMHHiKwJe6/5wGShkYUBfieS6VURFF0tNOuQDv9CkCgq7u79TzWWvZXoQBIEpmOHhoNF8/vBZqo0n0Um+chC2MQN/GD1nMU+B4SApEgIYky1Vqdul0nYSYRBNB0HT/8hRS/qra8KMMoIgacWg1JtYmiFjc2ZXUCMrGYQJA0+vtX0dk3TDGbp1zK4cvyWasAACAASURBVEcOyK3ChSBIBKELsYxEjCYrhF5I0jBQZA3XrqHICnGsUy1P4PsOogy+76BrGnEEiqYQoVBv1lsiaKKC59ex7YBkMo2iaURxRDqVoV6p4vp12ju6aNoNDF3BsWt4oY8qgVuvo5spqsUyP7v3DkZGukhoz2KYJoXqNgL6GRlp8sO73sljz3wMyXiCz3zxI3R1tqGLOfY9+wDveveH+cd/+ByD7Uso5ed47rlJ5udrdPUNsu/ZXXzoox/j5ltv4fCRI8iyRK1e5YmnD/Dmt3+Wy69+K636Ystj90Pvew/r162iYTd4+aUX4vkOCcPkure+j6Ujq/jWLd/EUlXWnbKYNRtXcMnlL+Mt73gbT21/puVTbprMZ3P88Ee389KLL+azN3yNvqEVaKlOepYu4+Y7b8WNTKbzJd73oY9w+esu57p3vZ2ndzyF53kkTJNCscQdd97Jq69+DR/9P59k4+YtvPW667nqDdewfuMpFHM1XnDamcxOT/Hpr3yeD3zkwzz08IPU6jUM3cB1XA4eep4bvvwVtr7wRXz/B3eSSvbw+S98jlx1EjvwWDK8BlEWgZhU0ImXlXA9mYH+tXRYXeixx1B/B0GjzNLBJRwePYaUTODbOfDLeNUsYaXAD+64C7dZA6+O79Tx6nUURaE4X6JdtKDhYkgKi4cWUa5WKeVyeM0CTl2mvX+Ymh0yMTlJoVCgVnLxXB9BDFAUEVlrCSBZHd0IsoQs6AhEVMs5wihE0kx03aJSmkdQBETNpH9gEBkBVWuJMYYxyLqCEwSIYkTgh4R+TL1WQBBMYsmhZldAUgiokSvk8b0Iv14ndCskTBlVFXDtYovbb7uUymVkWaJZt4lcBykOMTQD3UwSRS5WysKPdToyFptOW4/nNagVSyhKTLnsYiRMFFUCUaDpVIijBsmExMFDE4SCRrq7HU/0qDV81m7aSEdPO6mkyS03f5fpiTHaLB1JDHnrW69BVWXWbdrChlNPZcWKZehKxMnrV9HZoSNIIYKsE8Yq2fkayYSMrLggGGRLTZBlLrrkQlTVIKGl0OU0HV0WghRRmBsnCgUUWce1y6hSmaCRo1Yeb9nmJGosX96Brke4oQ+6hS8liPFwogg7KOP5RQRE0hkdIa7TsOcZ6OulPZPE80OWLe3hrDPXEaORsFKk29J4YUzTswERK6nih0327DxIGMWYmSRIMpGgkK0UKGXreH6MrppIqohtOyTkgEZxD0F9DpU0ZtqgbfFWRGMxHjI3/3AvT+0tMzycolnag+DMYJrg2E0MCzLtfXR291GwBdr7e6lUiq0uvhxBOEV9/mGc8lEkqpTzOXo7epC1kP7BXogVkkYXi5etpr2zH1U12LtrO/Vqidn5acbHxli5stXAGRsfpemVkeOYCBlR1bjvp98hN3ofhbkJNCvD2HyTozmXydmY7Tt34PsuQdwSA2vWa6zesoqNp2ymxDJsoZcDd38DLbQRSBDJZZQo/K1z9t8Wv24J81/tiP4undv/KAeJoui3wpP//Y7EX13+q+cpcGL59fh9Yb8/v45/d7yF40TERP/OgfZ3iz+h5PVPKBYGeumypfzFtW/izLNexONPPEmmLY3v21TrrR8JN/CJEGm6AWayZaMThz59/YuIBYmJqRnm8yUiAQRZRtFN2jr6WDy4lIyVxjI0AqdOYHsIsczRo3P0D6xm775DBAGMHT3G7OQ4Hek2utp7kUQLRelY6GDA3r17cT2BSqVJ03aZnpvFtn1sx8cLIgwrie+5qHJLGr5ZrxNFEqaRJJVOtXwRrTSSLJFMmgS+T+TUOGPzRlZPxpS/v52+3h4ArJTF4uEljCzpxbdrmIpMdmqGfL6CrqmMjh6irT3DyPJB2tI6utaCYvf1dCMQUqyUcYKIYqlIFLcm77Iin+iIBn7QghVKEnPZuRMPTBzFJ9RcBSHESplIkoggRCiINGqt5FqSWoIukiTR0d6OrqkkEyZ2s4nrtjqVhqaSu+8mcvd+k7n7vkrlgZuY+fFnGP23f6B031cpPfh1cvfexP5v/xN+IYeqGKxbt56e3k7aOyyS6TSvfM1r+NGDT5+4VXYeHMUPfWJCPM/HdVwWL14CQoztOaxctZKkaXLX7XegqQadnR1YVoIo9PB8m/aONlKZFJFvoysSyYRFrWmjSBLtbe0QtzjYgginbd7E4NAA7R3pE8ePwrA1EdIzoCZbcDzJo1acI459kCSarst8Nk9Xdy+pVAbdSKAAx48epSfdSl6n8jVqtTpa7DI1PcXU9CQjI8MsWbIEx3GYL7VsRxb1d9FoOkRAIpmgb4HLOlessm7dOvp6+7jgJRfwzNPP8NzevUxPT9GW6aSykHB3WDqVSp3Ozh5WrVhDX3vrWspNH10Vuf+eu0imFGqNPAlLRlICkukM1WZrDHs7UoxPTJBMWKiqhqJo3HfvvQgIRGGM5/noikahUGBmbpb5bBZJMRa6dB7DI6uII4HA9RFiOOvMs6gUS4yOjvLc/v1opoHvhGx/+hnWr11DuZRlZnqOiYkxmnaDdDrJ2rWrKZZyuK7TkuQnbqls9vWSy+Vp2A7BAtdGkkR6urvZtXM3+/bvI45bPopx1PJgU5IWgqTgNFoIhyDwufFLX8G2XY4cOcwXPv1p1q5YRWG2iFMfPDHuVtrihS88i6VLhymXqqxes4p6vcTG007jiaefwbYdwjCms6sTUQS1YwAp3YtARBh4lIo5BMLWe0mRqddKWMk0ICJLKl7YjyRqdLVNEEnriaNJ5AWUgyxLC3D9gDAKCIMIXU/ieR7ZbBZd15FlmXQ6jR+E1BsNNF3DWLkMbWQpupZAUSyCsNU1VTWZIPCJwoAw8FtdWlEglbEwF+w6onDhfbCg5PhzPtPPn33P8whCH9NseTbLikRb52KINQhbRR3PcU9wgTRZbEHho4D5uVmSySSaphFGEdVqy4/a91tFSlEQFwR5NMIwbKFIZI3AD9F1lTiaJ50pcuWr15Bu04nVM/AijWwuh66LyFLE0GAHs7NjiILLP3z8Qnp6D5Jp20d3z06OT36A173+HEZHD+F5Hm1tadKmwpOPP8rlV11FoVhi5YoVPHL//eRnp5keO8pnP/lWFEXmgYcf4O8++F5ERAzd5KKXX9ryM05YDA4Ocu9P7+K2O27lth/dyorlw5TyRSamcmTS3bz/gx/h8ad3IIoi73rn29m/4wke+smdzB4d4/rr3kYcx3z0nz7Op//5k8Sew4XnXcDHPvAx+nsUPvVP7+Wb3/4MM3MTiKLIe65/F1NHxti3Yw8H9+zhr9/xTuI45pP//Clu++H3+JebbuThhx/m7rvv5j3veQ+33PodPvDRD7Lz2WcB+Ku3XMcLTzmDmz51A5tP3sa3/uXrrFqxAtfzeM//fjc/e/Berr/+epaPnASxguN4uI6LJEtIsgTEWCmDGAdZESmXajh2xJGj45RrdcIwbnUv1TSCbCHKCcYms6TSGoapYhoJCvkmQSBTb7is37iW7//oZt773nezd+9ejh0bo1SsULPraKaGYcoIeBiGRmdnJ9n5PP2JxSio1Jt1PC/EdUPspk8URK2Cj9BCXaTTGfL5PIIgEkUBgiAiLojOhWFELAg4ToM4FhElGUNPIIkSRApJywTBxTQtZCIC1yFjpXHtJpEX0t3Z3eqAmTqptg4qtSZ+KKAZFrqhIkkCqVSKIAjQNJkwDHAdmyBYeDYQYQHnEscQRTGGYaDpOkQalqXjeQ5Hj0wzNTFDIpHCstrI58t0d/UQhTXE0MMQddKWQeA02bV9Bw889DCCrDC8fCVuEFJ3fIqVGrbdRIxaYiMxMZVyjTCIiWMJUVJx3CamIdMz0IEfCAS+gqIJdLcnUaQQp1nBblZouBPUmzPUKhVUycRIp9ETJrV6g7nZAs/smGXXs/M4rsWP73iEqTGf/c/v4ej4KIFttTrxyQyKrLUS+VgDT0ERAyrVw8iSjOf51OotJJ3jOiRMg8ipI6s6YSwwPjaGGLcoBCNLulHIIjqzLB5s45knHyVhJpBlmSgIePF5L2Xb2ecym/cJg5jQDxBEgVK1gRCLNOpzaEaEF2qIUQ4jlQLZ4OLzT2LNSAZdkhDCmHRa4d++fgurR9ZgOyKRrKEaFr29K+jrXsSigW4EQUNTk7SluxAiiUZtmoTSRBXKHB/dji4k2LNrF6XKLEj1Fv3JUHn66SdYs3oNzbpNR6advu4uRo8dQVV17GaIX5fY/fxudKXBvsdv5+RlXfQtW0qoJKk5CdZteAkb1p6OLMUMjyzBdTx6ewYXptgSiqRDKCCpEgOL15Ct2NSLUwiCD5FBhPJfmLT/9vh9obz/71nn/M8LSZL+2yDJ/79PXv8zcvQvY8J/0zrB5G6i4sQCI2uhOhO3PkVEqKbKkuFhzrvgAgrFHBBiJS26utrp6OlEUFS6+wbQdRPHcSgVCgShgOO1uBu9PYMIiowX+ii6gR+IPPH4U+x9dg9HDh3AVEXSaZlms4xhqhw4uI9ytYrvRxRyWTraUyxb3MXc7BiF/DyIoGsasqJw2ubTUGQdK9WOYSTo6+tDjGOshEkkgKhpEIYcHR2FKEJXVWQ1iR9EWFaSmakZRpafhK6bpFJJSsU8hiRSzucR983QNRcS2q2kZSpXxgtcOgYGCSSNTM8ilq7aiB9AIZ/lBdu2UKnV2bd3F4oSoUmt73v/6FFMXUKUBDJd3S0PRCFGkgQEUSBfaQDQ392JrieQZInBoYET4xNFEb7nE/o+vtskkUjg+D5R6OPU6pQKxYWxBj+MSVopms0WbzbwPWRJpG2hu2e7HnsPjfHM0zuxa3VcF5Ipk4SlEyHQbNSoVurYDRcRiWQyiWHoRFFAELoMDA3yzk9+lZl8ie42i4xlMpkt8r6v3ILj+ViWha61lBwd24aFSXWpUOSkVWsAiSD0WtdOTOh7VGtlbLdJ4Daol8sYmoFhJFodzTDAdRxs2yWIfIIwRJQlEpbxK/f/3Ow8O8ZSaEMvJXBjwkAkoUQYhoqoKpRrNVatPom5uSyirFAsVQg9j8EOjZW9JgClhk/JCSCKWbx0mOXLh6lWKyiKwuzcPMdmWrDuvoyBrOrEgkylUmO4vx2A0ckcsdSa5D/80COsXLmS3r4eJAm279xLsdq6j1YMthMh8+RT24mimJTaSkAOTczT1ZHh5LUrCfwYx/bpaO9manKWiXzjxPUu62vHSqXxfJ9sPo9umgyPjFAqVzl+bILsfJFKuYYsS2w45RTaO3txAxFigWbdptlwGT82xb133U2jVuX42BG2P/0MQ0OLOP2MrczlsqTTGbZufQE7tj/D4sUDLBsZBkkg3ZZhbn6KRrOKKAoUiwW8IKBYKjExNY2qaVz0spdRt5toqs7E+ASJpIYoimzZcjrLly/D90OKpRJf+tKXCWyZ0FVxxDRS2EIqDA8v4+qrX8f/+tsP8JOf3sG5Z27jwXvuZX5iFktNnvgekkmZ/fv3cttttxHH0NfXi+PWuefeeykWy5TLFTRdp9FoomoyoiAS+C31UrtRR1cVDE2j4bhEcdSy5HDdBa9EB1lWmJlsYDcTCFIbit7HL37D44Vk0SOMWjY5xAKqqtDR0U4UhSDERIjohknSSqHrJmJXJ1JPB7V6kyjSkeUYhBBRhJgIUYixm3WEhfdDSIAoKeiagSQI6LqOJMmYhoEoSiDExHHLJkvVZBzHIQwjJEkGIhzfQ1ZBEBf0ASQR3/cIAp9qKU8UuKiyTHdPN2EY4jouxC2YfBy3Cg+GYVKrNZBkmTAI8H0PWZI5eOAQuexzGNohVLWGkV6GE67i+FjEV7/2CI88Msvg0OmMjjb5l5t+QhC0sWL5WRTyBnG0jGKhjS98/qfs3xdy6FCFVWtqdPZ2MLhkkK996+tUS1keeOQB5rNZDMPgR9/7HqeeuoFcLktbW5o3XnUe73/vlQB869vfZseuo+zcuZtNW07Hbto888x29u07yMpVS3nVay/BD6u87NKLuPGLN/DBj/4zDz3yGLd+7zYA3nD1VbztzdfS3t5Gd08GWTT4X+96F1e+4uUAfOoLX+CW736Hd//NO/jziy/j3/71Vh5/5Gl+cMcdAJy19Syuu/bNyGLMfffcS3d3L++47h288vJXAvD3H/8Qn/3cJ0mlE2zefDrv/dt3k0zp/Oiu1vY9HT1ccPZL+PKX/oUVK1Zz510/4sILLuKmz38ZAMdxePv11/GZz3ySBx94gmbTQZbllihXEJwoYtTrVeZzE3iew/FjsyQTadZtOB3HDunrHmTsyHG8UOHw0Qm8UGDFmtXoZgwECIJCPlvjile+gWK5wuKlg5xy2kn84z99nPb2DCkrw/DwSsxMG3W7SSxE7Nz+FL7vc9llL2fF8pPYvXM/yDHJVBJJkjly9Dg333wrd935E5xmHTFuKZ6XyxU6OjoREPF9B8uyEAQJiaiFQxMEojgkjkXiSEBEQBFFokggjsMW7xQR4oBquYoQQ61SwnPCFu88ihAUiQgRSdOZzeYRZB1JasH99+3bh+v65AtZVFVvuSMQtjQe/IA4BokIQRBRVY0wiJiZnmFyYo4odHBsm2LZYaBvgHKpQtP2yRcrSJKM79VpVCvEXoyhqXiNBksWL+KcF5/D8MgKbrzxJlRdJ93VQaotQyaTgtBrFQIjSKc7iEKBYqlJwrRQFRnfryNroKgmqmoALrLgIcYeshRD7JOyBkmnetA1BSIb2wsQJEiYCTQzw1zRY8/zU3T0LKF/YBFGIsVTT83Q27WGVBp81+endz1IHLYmE3bg4MQW377tCRSzG8tKYBp6az6RSdHb30uzXsdrVBkfn0DXdYLAp9FoICDQqOXJzz6PaM9QnH2OF2w9mWTCwmnaZHMz9PQu5qkdu3jw8YPU6hGypC54+yZQJBVFalCrjLVUo6OAYjXEtFaQMCVSpocoCGiajqGHnHf2ELXyc3SkM+zZ/Szp/kH0zCKyVYXpok+p3sALQxp2AyNhkjRFlLhE2Jwgk2gyM7adlUs70aWYHU8+TSk7z+zkJKuWr0I2UiwZWU2p2sT2XLrbMpQL09SKx8jN7WCkOyB39AlWL+sh2TVIpCxlal6krWsp8/kCjz70FD3dacaOjdPZ1dXyHhYEKuUqX73xJqJAxbRU1m18CbaU5q7bvk5oz0KQJPg9O3q/HL+LQNNvit+E9vz1ff/6+v/V/fyu5/7b1vt9ruG3xW+Ccf+holbwf5PXP05EAXGjQLSwnPgce8RShKgKhLFPMplEEmUiz2d6YhwJ0BSDOAyYnJxEM5Ok2ruJ/ABCn1Ihi+95iEjouoKmCQhCyCWXXcIpp27ANE2OjB6lXKnT19vFYH87F73khVxw3tksW7aUF19wPlpCY3p6jlIhh90oUi1M8+yu3ZSKRWRVpVSYo1yYQ5UEHn3oYXZvfxhF8BHiEEGUsTJpli0fJohDZuZnkRUVhJjQDxk7OkVXdz8Hnj/IxPgxBvp7uednD1Gt2yhqK0FeMdTiAxeqDXYfGGdyYhIhjpmcmMCxG/T399OslygVCxTLNql0D0krw/L+DgB2HpllenIG33YJ/IAgEigVyzi2y/7js8zkSwBsXDVMLl+iUq21JqULQ6NoOpqmt6Bc+SJhBIgtnu3M3ByW1ZrQR/HPpf9d0qkUvue0ChBhwLZTVp14qfzggScxTINyKYcoQRioJBLtRLGHqqi4jsfPfnYP5567DVEOifGpVMrYtsNN37+bnzy+GwH4wl9fw6fffjUAt9z3JD94cBeNRpOnntoOMeiGjrRQDLnte98j3dGOIEQt711RoVKsIksapmkhyRqO55PKtPPoI49j16tUCoWWuqmms2PHTmIEJEnH82Iq1covbt1IwDRSpDo7qNnNloCJrJDNFomRadQdVEkiX5jnlE0b2LV7B3193ZQbDoHX4MzVv+B7bz9eaiEOFi9BECN0Q+fRxx7laLZJfUFY6cIzNhAHAlYqjZFIcsnZmwBoOB7TtZAnn3wSVdXIF/IMDg7Q1p5m++jUiWOcfcoK8sU8p2/dgqrKXHZOa/sjMwWago7Z3omua3R2dhBFEUNDQ2wfnQNAV2W2rR9hfHKKTFs7Q4sWU63VSZgJsvM5RFFBkXVUacG6SpbZf+Ag83NZHn3gAR669140WcHUNc7YfBrzs+MsWdrHSevXtbqJrsfyZcPM5mdp7+5m7ckbCQFRhvnsDI2GR6lUpr29g3K5ytDQUiRZob29k+6eHgrFEpph0NXTSxhFVCpVHKfB4cOj+EGAbqjk8zky6TSvec2VFI5YfPkrxxh+1xM8sfcIAHfdcztL1izlJw/fx+4je/noDf9E91Afk7OzXHnV6098j4XiDH928UXs3DfOF792Dxu2vYZz/vzt3PmzZ/HDlvCF7/uYpkmpVMA98DOae+/lmd0HuPHrd3LhK97NylNfSf/i8+kbuoCzzr+OT3z668zMzhIEAUEAVqYTSWkjjhcRhJ0nklfPszHNBJKoEYWtTs58rsg3bn6Qy6/6JBu2vYvuJdfQNvRa1mx6O9e+/cvs2nOMwAsIQx/TVBFkgTCKCMOIN133Faz+N/DG676Irit87Vv3se38v6Nv5C30r3gzL7nso9z3wNNEUUQYBlSrNT7/5R+z5Zz30TX8JrqG38RLX/4P7DswSRy1klzbaWA3GoSxz7/e9gRm71WctOVvEMWW8JOiqsSChB/GeAEcPT5H9/K/xBq4muNjc4iSgKy0bBZSVobDR2b5q/d8k9Ne9Pd0r3gr517+ObZecANnvOQHvP/jO9j3fEyzOYRlLaeQrbBy1Sqe27+PsYlx3vq2v8T3WlSI2Zkp4sjBNE0uufhl5PN5enpGEEXwwzHKtQpXvf4qFo+s5OZbbwHg/BedxdBQP1EUYlkJ5rOzqKrBX77pYpLJBGEY8r6PPMqy4WuZGZtA0yW2bNnM5S9/NcVCHa88hxg2uP3HP+SK17+Oa/7yzfzozh+cuJfe8Vdvo7OjD5EElXKNo8cPgBDy5jddA0DTtukc6GfLto2csmUdV159DcdnZ09sX887WEmdRr3CJRddzBe/+CX++dOf5do3vhmAbC5HsZojigJy2SKLFg1SKs/hea13yrVvfDO7d++hUq6hayZ+4CAKKsePjpOyWrSSV1xxOWPjxzj77LOJcVG1EPGGD+D/898t0CVkZClBwsygyBYpq42JyaPk8w2++MWvsnHjJjrb27E0GFnSiyrb3Hv3LVQrTQwjQbNZZ8XKYb5805ewMhaHj4yyavU6JifHUVWVer3JE48/hW510927GN+DkZFVKIrEt7/9bT784Y/Tu7IfQQBJUomFmFWrR3jTta/n4otfSiphItISQ2rUmyiygu8HhAHkCwUQQjyvQr1RIlootEmKSBT5uG4TRYIwbixso7RUVBGx0h34oUh3Xz9tXV1EgohhGNiNBsQhmqww0NvH5NgUYQD1usvdd9/P92/7Mb09AzTqLpOTcxh6gtD3aG/vJJfLUy2V0TSd2dk5bMdlcHCIUjWH2/RRZI2TN67FtmvIkkRbRxsjK1aQTJqUKwFmqhs3jrjzrvuQJZVMWwa3WWPLaZtYPjKC06zj2DUUWaDRqCOIMtn5Ej/8wV2MHZ8kCF26e7q45dZbmZicaPnUxxCFDZxmnkYpT7NhUyqV0XSThNVGHAm4rk+jVkWMQwxJwi7nqNVL9C1awpbN61i6fCmyYbBh42kICqTaepnNlqhWcsgSbDvjNMLAIwwd0uk0TafIpg1LKc/mSCZVJCkkihwcp0q1XsX2Q4rVOv3d7Wgi9Pb20dHTjxtF1G0ZSekm0dZO2mjiNgpMTc0wNztHR1cGSZJYuqyPs7adw4EjWRw3Igo8Qt8lCH18u0bUyOHXx5HkNjraLfREF+1LNyCoHaDqxJIACFhmRORO4BYPMdLXQHMmMKQcUzPj9A2djGL2ky2G6MkBSpWIpq2TMNPomkgiKaGQo158nqh+lFVDCmOHnySlN7HrE4wfeorq/GHc8jjV2edQg3Ekb5zhIY3F/RquC229qzH61lN2DUwrQzKZJo4iapUsvpsll51k394j3PS1L/HUM9sJCcidd4izz95KGMis23gSDz05iq+3M3V4lFppCmKFWPpF0fp/QvwxErY/tRBF8b+Nh/wnk7wKcfQry+8bv85f/UOVvQQ1AYJIXMsR17LEtSxRLUtUnCSa2AN+iBBBpr2D0SPHadTsVqdC0XBsG89rsH/ffgYWLUJS1ZZan6bQtJt0d/eBYqEpUQueNj+HqctImk6x2OTZvc/y+NM7ieQMy9dvZdGKtchaN2Ojoy1Fxc4B9PYlbNx6DnGkkc60MTtXobc7gyILyFKrm5o0dOxGlW1nnsHWF2xjPp9DVVSkSCCIWhzjOPQZGVlG3S4Ruh6K4HD6CzYxPTdOd3c3EjJ7du3mRS/cxtCiReTzBer1BuuWLGJgAab6xZ8+Q+S7tCUT6ELIzscepJDPErghGauNkeXD5CoV/CDkxRuWAZCvNvjBE8+h6hqKEKMoEu2d7URRxCe+8UMAOtJJzt60gYSZolmt43neiTGNwpC9e57j8UeeJtPVz+TkHLqi4wYBfQNdLBpsJV+1hoMqCvieSyyKuBE0bAczmWagt48Lz9gIwLfufgItY2GaFl/8/I2MHR/HD0KCEMJY5Md3/ZjN287ACwME3yVGQFZNDh6d5WPf+BEAF21exSmrhjl/8zrecPE5AHzgy7fws0efZn62SK3cIPJ8XNshiuDq17+OQilHhI+qp2h4LpqVYjY7z3e/8x2kICJtdVEuV4kF0M0MaiLRgjw3s5z9wjOQhBZnuFKtks50/tINHKLJIWtPOpl0yqJWy1EuTZHpXsSe3ftJqgZd6S7SPf14rk9vVxdxFGCaGpVymV5LZPPyFpfyC3ftxY9i3GYFKZIwdR1Nkfn0zfcB0J02GUxFHDl0sOW/ZybYuKKPjRwFlAAAIABJREFUwe6W6Nbnb32Y888/n6XLltLZ208jgAOHjvG9p1qJ2ebVixjszNCZsdj33D5SmTb+/OyTMTWZOIbPfu9xFF0HRUSSTArFcZp2nW/d/QwALz51GF1VWXvyBmJVwQ8d0kmVJx9/AiuRYH52lonjY8imRD5bppifgygkaSZYNLSUkzecymwui6QkmC/V6eobQtENuno6mMvPU62V0JQmuqYhSjJxGHP3HXeRMC0GehcxMTPNupNPYnZ+jmKxgiyLzOXzNN2A2Zkipp4gcGtICDhuyElrV9PR2UkYRUxMTJPPV+jt7iSfL2CYFkocYiV1ujLmCTVm0zDQVA0raSEKIpqiccVrXs13v38bV7ziNSeGvX8gxbYXv5FvfPdusrkSEFOu1HjwkR1c/eYP8ejcDKqiUirXUNUk7sRzhLP7efUbPsj7P3wjjz7+LGPjs+iaQr1hs3ffKJ/41L+y7cVv5tCRKSJiTNUgcCPCUKJYNIlaLvKYZozIPuLYRVPyiILP+z70b7zl+pu4857dHBptJTZBEHJsbJ5vfudBzn7p33P7bY8Q54tIgo7XrOMJJkEcEy/41UmizFXXfo63/PVX2bVnjDiGcqXBg4/u57KrvsBP7n6aut3gijfcwN+8/xs8f3iWKIqo1mzuuX8v51/6cXbtG8fzYhQpSTKRQBEMwhOK5AKVWgNF0zATLX5uENiIgoP0S4rzUdBCctRtn0iUuf+R3Zx29nv4+rcf5thYjiAI0VSVqZka23eO8olP3c6ttz1Eo9Hg6Wee5Jo3vZ5Vyxfzla//mEtf/X6SXVt49NHH8f0ii4baESWVMAoZGBqgr38IVcngOil6OuZZ1JNmcW+Ko5MTTExOtp6bzS+iMD2GIjQhdKgVy0SRT7o9wxmnbwWg0pB4yaV/gZEx8K88j+IlZ/P9H95Kz2Abdt1HiGPSaY077riVK84/k3qjVQBLWUmiUGZq8hjF/BiWppAw05hGksG+gRNQ8Xvu+TEpNaJaKuIpEVOzxwFIJkze8/Zref6x2/jWDZ9BTOusWjTAqy67HFO3Tmx/6/d+yPNj0/QsG2Fyao51J23FNFoIkoOHdvOSl27B6jDoHuhjbM9T6FKDUPSp1lo6BKdv2kxnR4ZUwkGKbI4cOEB+7hhi1CrURqGHFMf82fmXMTk+wc7dj9He1U4hN80733s9uw8fIJlpw57bzpOPfJ/A9znv7CuQU/0k2/vZ/ew+/uIN17CoN0WbZTKybC3lqkTPwEp0Q6OaPcYd376RT3zww9iVgGolj6akKGUdrrziajZvXE+zMkOk+TjFEBBQxAjDTCFrOlHs49oVPNelb2AAz3HQxJhkMkUymSR0IxSxDUtvRyYikzYQfJAFGVGImc9O4zfrLbstw6RaLRJFDpqioStgV2rEkoTn1gndKoYiUSnm8bw6rltj6bIhglBCEAIuveg8rrz8IsIgJDefZfnwcuZmc2TnpskX6sSCRjJh4DZtMkkVXU/gRBGrV64mjjWarg9ijCCEqHqCMNYIhZDDR4+xY/tuxo5NMD0+Q4hEpMXMzOcRFBM9oXHWi7agKCopM0mtXEVWVZwgRpckTj99M/2LB1A0lZ3P7mbbOS9i6YqVaJqO62bxmg0IPGQ0lGQfkiJi13PY9Rr5yR1Iso2e6iPT24sQ1PHCiFRnP5NTWQaGBtm6ZTO1io+k6VjpRVx00XlYaYGZOQOJEMNsYKYSGFIGNwrpyoiMLNJImz7lbJ7Aq2O2C8iSRn/axLI6CUWTx5/4HtX6PLGkMDs1iaUriKqGllxEKVdC0Qzy+TFMNWSwv4cwCHGDBjNzJWy3xtJla6g1IaRFKYlin1hIEAtNtLBM0BinWS1SqeWoVJso1ipis52aXaKeLaPoCRRFRogqaNSYndnFPXc9REJV8KrzhJFHun01irmIu548wJGpUUS5naYfIhsJNF2kp0tHFW2SqsDylUlkqUJXe8zivgZ+4xBifISENYmv1pDSPpKVoh53oHWsYmzGozjfQI0aHNi/h31P3knhyAEO7D+MpSvUm8fpb2+wYdUictkKQRjw2AP3MjjcA4LHl2/4Fo8/ej+vvfw6JCSa2TFEJUIT/njpze/D+fxDO66/dT+R8CvLzy1yYkJiwhP/C2KMIP4HSsO/tt5vUiP+DxPu38Gm5+fn/uv5VhzH/86S5/eJP5nk9Y8VkiT9UasfgpFG6h5Bv+A9v7r82fsRFIO4OE4YRQRBwMZT/x/23jPOkqs6330qV53c53TOYXLSzGiSNElZGmWBUABMkgAJGywQGQwWGRuMTZIsBAgByjmBIijNSBM0Gk0OPdM9nePJp3LV/XBGI/5g/Qy2r+/19V0fuvt07b2rToVde631rvc9kUg0iuu6yLKMEYlQqVRIxSPIYohnVzA0mXS6FlVVEQSJ0HMxyxa6UYUSBaFHuVQiXZOira2Vd7/r3cyZO598sYgoyrzw0ksUKybPPfccUuBhiD5CCF093by8aSNzZs+sQpwmsyiKgaIq7Nq9h+npPI7tUK5YSKJMuVTC81zGx0YJAh9ZkhFECUEUjhGq+BiGQUdHBz3dPQwODdPf308oCoyMj5HOpEln0qxbt5a/uXAdggAHRnJ84B9vZ+/gOEcGBpg1fyEj0zn6cibv++oPyVUqSBjIokFHTQ3nrToBgK//4lFuffQ5iuUKAgLTBZMv3Hw/j71UldP5xLvOoVIZR9Fdmpub0VT1+DUWRZHGpiZqMmkKuapjMDYyhGebhIJIW30Vtloom9x418OYponv+5imiW272LaN45h87n3nk07EKFZMLvzEt3hi614ufNsliJJAuVSib3CEpzbv5ImDU3zll49VIeD5IgQhkizxuZvvxbRdTpzTxVevuQICG93Q+OIHLmFuZwvFisU/3f97+voPYzs2sqIgizKvv7adiz7+NVZ9+OssufLTPPXbJ5BDgUMHewl9OO+8C8gXyuzavZd77r6fZcuXYzsWSAqBoOCHIoEgkC2WGRgZIxBlcsU3I5KjkzkcOcLQtpvp2/gTvAASiTQiKieuPImhqTHOuf4G6k95J4uuvI5UqobDR/owji0cBUHgY2fNRBIF9g0XuPrm59m/r5ejA/0cHR7j7q2j7BqqLiCvv2wdk5OTdHV1MdQ/gGs7SIrMxy9fDcDvX+vlw9/6BSXLIQx8soUKP/zNLvb2jyMKAu9Y2YFpmgwPj3HisuXk80WG+4/ywXOrgYVf/uYVfnzvRvr6hyhXykwURd7++Z8zni0R0RS+8P4zSaVTHD1wiJ7mNg7u2sfG373IkqVLMKLVOq8TT1qOIAQ0NzcgSTJz5y6kkJ9mfHyMzu5u4tEkpdI0tlVhamKK/FSe6YlJQh9q0vUEqKRStTz91NMcHeznrHPOYteO14lHo0yOjjA1NgkBlM0KgSDQVFtL6Nk01NYQBh5WxeLee+5FkqsEHFu3bmPbtld57rnfE4tFOfj0LnI7pxAkGUFWuWjdYvbc+QVObK9C2z/0/g/y7ouv4MXf/p7hA0c5cfZS2lpbWLd+Lfl89vh1v+Zvb0UQA775xb/i8K6H2Pj0z3jy4ZuY0d2G63pc9+JTbLKGicci1WwjIaIosGr5Av7x6x/l94//gOmBZ+l9/V6G9j/MY/f/M8tPnMfwyATXfvQblAs5JFlENxQKxSypmgRhWCXnCsIkojYXwQ/w3Wlk4QV6Onw+/tfn8PLTf8/IwRsZ7/05E7038tITX+IdF6/Etl0+9LnbOPLyzmp9OgERLLxSluAYEdSjT2zjsSdf50ffvYqpw78ge/TnvPLsDSxd3IXnBVz/pTu54ZsPsX3HEX71r3/N+OFbGNj7AzY++WW6OxqomDaf+sKtKGqIJPsIQhW2ryjV2qmQ8Ni+QURHFiOIooEQ6thO6fi5DbCq5EO6iyQEXPeZn2DbHqetm8uLT/6S/t272f3yL6hM3MrWF2/i85++mrraJIlEgvXr14MAU/lJwj8I0q4/9VR0PYMeqUWLGExN5bjj9tsJA49XNm9kOuegKDBZyNHU0cau3XuO9935+mt85cv/QjEnoWsN9HQvw/cDZEli5oweAA4c7OX5514iHkui9XRgzOhgxtyZBKJAc4fBdO5oFdpNGhuIxqoZTT8IiahR4rFaBDFGKtNMqVSosvhOTB+Pur+2azc/++Xd6JEkEQSGBt7IvApEMo08v2UXZ597KYErs2z1auqa6ti2+RUCv9p/aGSIGW3NmPlxPN8iCF0uOv88AO596BHueehRZE1BViUOHj7Co08+yVe//Q0ANpx5NnNmzqSurg6z4mFbATNnzCOTbqRsVkCociVUTJOvf/WfOW/DO9hw9qU4lk5XTweC6BM1FEqlPGU3wpnnXEY03cjeIwcg8Al8l66Obj784Q+TzxXZtnUHP/jBD7n66vcRjekoqsbsRcv41g9v4bpPfQIUAdOz0GI6mgHf+5dvcfrZ60nWJhCaPXQxiu95iALHFpghXhAQhCFBEGDZNuVKGUEUsKwKsqTw8MOP8uhjj1AqFREFgVKpXJWSEqrw3dpMI6lUDY5jE3guyVQN5cIUpWKWgKqMjhSKRIwIkqKBrFCbqUOWZFRVxfc8chPjVMoVOrp7kA0DL4TGlhZ+8OMfse21HUiCRDQS5bbbbuPBRx9BVlUUI4LrecQSUUqlErbrkEwkefbpp3E9t1qO4Lg8+/TTZFK1nHvueUgStLQ2MLOnh/GRInffdRe33fZTpibGCTwPQ1dwfKiprUcWFVRZYHhkBCOiIwkhsiSxesk80rpAYXyI6YkRNL2dRKqFUAop2aOEXpF4JIkoRaswbS2J4waEnotdKJAvFrHMEnZhjLqYTzFfLcUSRAnLcQjFENcLicfTiKKN7ZQRBQPTdCibWQKrQuA4VUSXrOD5JVxP5cD+Eqg+U7kcff2DHOrtozAZxTHVYzrTIEkRRDHKwHCeVGYGVrmIKvr4TgnbdsjnShhahPlz52HbHr/buIlsUSIgDoJL4DvomoQsSriuSTE3iK64aKqELBn4gkVNzSK06CySLXV4jousVOG4iq4xOKRiWhVca5pEfBI1LHF4/+8Z6dvKhvXLyaTnM5EdQxIV8AMOD/qUPANfVXBVHzFMEIukCTwR102QrGmmJt1KOrECg05qowvIRGaS0GLI7gD1qTLFwj4q5TEqxTE2nL+CWKpC4E8SM/LMaG9h3cpFzO0yOHNtC6IAdz3wAOaERCyqc/XV7+eit13InffdSUNrM5s3voAYgh/819a8/v/2/y4T/qeksR3LDuGt5W7ekF94qwjGG/3+HD3Xt7I/HjsMQ6xnfwiAftrf/El7f3gP9ks/RehejYCIY1lYFQurYhKN6ciKjCipeOU8WixGvlAAP8RDIJ5MEPoB48PDNNVncAMwbZN0TZyhoQlq02n27N5J1DCYvXAxxbLF3XfdCaHHyuXLsCybyZFBWpsbODwwhufanHzyKnbvep3OnrnE4ilUTUWUPGLRJK7rk81NoUUiZNLpKkTXD9B1Hdd1UTUNy7JwPBtVUFEkly2bX6Ojs409e/bjOR6VUp4TV64kVVtP/McvYNsWWlsdr85TeOC5zdz0xFa8YwRLmiCiSxJ5700m33vffQkr33EGO7dvoaek4DzXywf2vMqWY2Q0siAQkxTynnMcFvyhi07jW4luhIkCgihSKZvohsH5rzzDxuwEn159Mtd98QOoikpx/zDez58mkYhVCZzEaiDjki2/57mpMQBiEZ1ULIJoe3y4qZuPdM7B81wQYJ9Z5l3bXuCoWT5+PyRjEbyKTcl/k8H3lEwDD644jZAA77RZfGHjRm5+4BlimsoLq86i04hACKIsQxiyO5/l9E1PYQY+115yJl+79t04tzyDnncQJJENLz3BpvwUbXqEV1aeib+wlU0JC9/zmJ9poe43+6hUTCIRA1mR3xSbD0OGz+zCbsqw9MpP/Fn3+A8/fRXvOW895pduR1YNJFnnvJef5qXsBK2aweunXox72myUE7swjzyFuW8PyVdquG14kM8cPoB37LlKyjIF782qkwuWtvCz2eso9o6QSqbIZrNYtk1jYyNBGPD16cP886u7jp1XSEgyee8NDVmBb/TM5T0tnciywuM1w5x+5fk8+NBDXGDMI9pb5GN7tvPr4aMASIJARBApHmMb1FWZ73/0Yja8kiMWS+I4Dqqi4Hou8jF4rHD2DFjSRAgEW/vQnx8DQrLZIqIQHNN+1CkWSxQ+OJNENIltu/i3vUbCFglDcFyPdLqGcrlSleFZ3oZ3ejsvv/AKypTF0v1Kte5YkrAsk0xtHaFfJe8oXtjFrvF+Vixfhvz8IPrBfLUeUxBwnGqwKwxDhMY4xUtnI4kStfNGEQ9nKX+3zLk7n2DTUImPtM7l6yvPwDRN5HddwPSsGXz/xpv4ytkXEd7+IHUPVeerlKSw5+VvE/vNAMHrOba9exGuF4KocM7bPlp9Hpet54zO7urCvquqVR1rfgfOJSdgRKJ4hycI/vFhREmCEIqOzeLH72HcMnnitPNY/70PEbQkmZyYoO53fZzxpe/w0uQYn5m3mC9fdwH622fg75mm9HKR6HuX4wV70JUDBCMB3j6ZYF+RMAAmBN72wDM8MTjM5y4+kb//yaeoVLLo2/N4d+zkw69s4va+wwDcsnI1l3V0EgYB1jdWoUdiDA7nWbDiE8fvxSdOO5OT0hlCqB77qiaea1Y4//JvArD73AtoiRhIkkIYwq+P9HLtlpdpj0TZ89w/InQkEIIQ7t6D8/xhJEniaLnC/EeryIqDv3onPafEQFcYHG2hfcHnATj0xY/TsrwebU0zQX8R+45enCN5uHwVr0UK1GYaaBuw4O6NiKLCNa/8jtv7DgKwb915uLbHY2c2cPGlF5BOZuA7D6FNlBBFAXFuDerlMyn+3U4kSeLH1hife/AOAHbc+yA99z5HEFbvPd8PcW0bRVW48eAOPrv9OQAmjzxD4ZbtZA4NAAJBCIJIlRE0DPAaawmufw99A0d57Mln+fJXbgDghZPeRg0yzc1NiCIEgY905YVsVkPOvLCqxd0VTbLtnPciSjK7dmznKdnmht0bq8f36kFaalyufv+nuCHTTbssIQrw2sQI65+563j/pz/2eWqvvYwtr+1iUaqB8F9u5W+3PsOd/fuPz19xWcX0XbwwpLOjg/e9+z18JN6Cvn0Ptm2jaTr5fAHDiEDoE3Y0weqPIMkK5uIyO7a+QiZTQ0dHG4lknIP9vTTVtSLLKoISMDYwRGtbOxXPQ1QVBNOikK9gVVx6Dxxm7oI5IIhoRoRPfPLT3PDl62loqgNRYXKqRCqTRFEk/MBFFKEwNkE8UYNuKGTzo+i/7SAc0tDmBUiCT75UQVF1CrkpkvEoaiSOazt4nkOlXCZdW4vvhxBW3yWqpjI1NY4R0VE1BcdxkQSJcqmMgIceiaJqOp5jo8ke2XyRQFCIJdMEto+sVIMzfgBi4FOxyiBANJpicmSExx7/De+/+iq8wKdULJNIJPE8nzCA/oN7SdRkyNTX4wQOMnCkr5eGhg40Q8CzPGQtQilfIJWII8oBRw4PUC7ZdHY38OLzW1mxcinp2hpcz+Zw7wCBr5PNDhKL6MycMYN4Ik4uO028vgnXdhHDAF0TcNwQWQHHruC5HoEbEIkbaJEIvi/ghh66HCcMSuSmpzDLeTK17QQheH4RWTRwPRfPNpEJ8MUQTRUw86P4VhZbaMJ0NTp7ZlCqZNF0jYN7jxBYWVobJGSphCxq+L4JgoPki9iuB4jIskKAjePVcft9L/G2C3vQRJ2B0QqFYkgqYeC4JvNOWMrQqA3YzJi5gPHxcaKyhZs7iGbAvt5JmntOZngsT0tzI1FDp1wps+/wQQ7u3Mus9iQnLo6jiAJIKpbtEfoOekTHRyeRmUEgRglFA9t1EIUKnhkSFSfJ5kYQULDsIg88fID6Wom1qxYQN8qYjoggS4iehxOq3PfQbk4/vYP6TOYYAiNKuZyjvq4OgoBXtmxn1aplBGGAI+QI3TRhICEqBZRjknaBF0HTJeTAJJZMM5krEYvUsHnbdpYtbcd2THbtmaS5qZ7N2w9zzvoViGIJyYTY6CX8rnQHrxiPcuGlf4UjhHT1dJMbn+S+2/6BrmaDq798J2XPRRR8RFH8k/X/n2v/FX7Dv2f/ll/xZ9kfMQoL4ltz9/xb7UUJPM87ro0b/AHNsMi/c56Efwf9+hZsx2/13fSI8RfDX//XZV7/O01qnocYr4PcEJIsIysKiqqgaRrDw8NUKhXCMOTQ4T6GR8eIx5NUTJtkKomo6kiyhFUuUi6Oo0dVNEOndCzrWshP0d3RTuD6DB3t44nHHiKdjHDmKWuZPX8hS1at4ezzL67qxYVVsiFFFli1fAm6YfDCiy8SiRokalKUyhWCQMBQdZKJDEFYXYwrkohtVrAss1q0LYgQBlUZmSCku7ubukyaBQsWkqqpIRaNMDU2gVksMTkxQblcJgxDGhrr+btr/4rffvtjfLhtBrMiMSRRwAl8Oo0o59Y1c+OCFZjjUxw8sI9lJy7Fsi1Sms6Dy9bxnZkLWZOuIyYrlH2XBs3gwnXLuO9rH+Hv3n8+gijgeVWoVSQaRRTFN6nNAcuxq1qMvo/neSiKiiDIjI+OISDw80Wr+HBbDz2NdXiez+D4NEfzBQqui+/71ZePH7IgluTlNRv49orVrF08h0wyRqliEYQhPZE4lza185OFq/jX2SfiBz6iJPPM/l5ufqCq5/qdt19Aux5BECVcv0ps4bou3arBDbOqWeabHniK+556kZHRCfwwrGa8jk0uIWBEIuiGQVdnK2vXrmbnztdxPRfD0NCNakAkpDohjoyMkE5l+HOkpN4w13EpFnNVD/JYQOgNewPe4hzLSIuiSCQSwbZt3tvSytMnruTtc9tojGiYfkCdqrFh1Vxu+9wVfOmqDZRKxep9BCQSiSrsLwyZmpjkusUL+Ne/vYQNJ82jNh7F9H0aVY1Lm9p4csV6ru6aRbFUJAgDZs7oQZIFFi6aQxAGiIrMDxeeyM8WnMiaRA0pWcEhpC0a46KT5/DIP1zFqvntRCNRhDCkUqlmW2RFAVFE1aqZ+kqhyMTgEKIg43keZqVMpVwmlUxVr4EQEo/HqGtqwfZ8Nm/eQqlUIhKJEgQhmqZgmWUikTcYrSU2b93J8lWrmDl3FkEYEI3FiEajpDOZKrGHaVEoFEml0yxbcRJ333EPwTECmTcCcrbtVJmH5SolS0SXqRSnCQP/2LUOEawqbDWakSiXK2iawUD/MNdc82Euv+Id2LbJ5OTk8Wv5rta5JHZYKCc1YZom7S3NRCNRElGD9mN1gn2eQz5f5M33TZXh2HHc48ymbzAJhmGIGsKauqqW7KapcfwgRJY1dD1SZeo99kxKooj/u1HK17+EP1gi+YEORC2HbMygInyeyt0yCCCviaCcamB8RuPCj3QCsLlvFM8tYeg+gSD+Hy/+tkiEd7S1V0XXJYFIPIFhxOhsq6UrVWW1PrmuntX1DceeqSrJXhCGnLb+BDStGqnfUywgy8eyrUHAH77HbduikK9CZn3fQ54to1wRQ/+4fryNd0TAfHEWvnwG6bo2RLE6wFSPhGD6jH7+ObJfeRmvv8T4+AS+57Fs2TLq6urIZrMIgkgYBPzryvUULruK3KVXUVdbS0NDhve+53Je3fIavb370HWNXDaH7wUIdRrBkTIEVQ1f030zKFhfG8cPfBAFPN8HQaBUqlAsFIgqb2YnzPJzpNMJpIqNUK5QKuYRQnB9r5qdFEWyk1PMn93OuWedcbzfzSP7yGan2bFjJ4gisiwxNjrBJZe9/XibrFmhVCiSm56kta2dZVri+LZvf/OLDA728snP/i219QlERILA57v7tv5B/zKKFsHyTVqau3jfez9EYHv8eOVZfHXRWpRj92HRc44H0MrlCtPT0+RLeSzLRNM0LKtCMplAliVESUIYHCNcW0Y5zUUzdBYumsGChTMZGOxjbGyElvaZDB2dYMvL2/EDiVRCp79/AFkwCH0o5aZxKmUqxTK/vuMezj//Ar71ze8xPjbNP33v22Rqa5HEANkv4xVGiSkKdqGAEgTIfkCmtgZF0bD9kHi6CTviUCmaOI6NY1nEYxFkWSKTqUc34lXdTFVBVhTSmQyeR7VsSfAQFZFSpUQylaoShAUgSjKyqhCJRvBDUBUF26xUtePzFfRIkng8iRSCpGlUxUBFnvvdixzq7SUajSFQrd1OpeO8813vZmhwlNAHz7UIfBPLzCMQkKtYjI2M4pomP7/5Z+x8bSc9nTPIjk3hmxWisRiIAhs3bmRiZJQgDDly+AhRI8Lr219j7eqVmKaJ63lIikZ7WyNz57exbu0amlvb6O0bZHh0monpHL9/6glu+tGPCUKBsmWDLGJbJqX8NPFohGRdI6ZpUpieoJDPUp7uJz89CkhEk01oeg0lq4SsQuC4BL6PiIsk+ZiOhaJEMCs2tllGDE2SegFVrmCZBQTPwbdDZs3pYMHiVfhSBrMiUqoU8AMf1xWwfAlNjyGIIoIQEvoijjPFu65YSUpPIYohiaiCVR6hud6jtV5j6NAeWhtieHaBfH6MmkwaJZJmsmJQtAI62utpb2tg/oJ55LOTxGI66boMJ69cCaJENFGDZSpYrkjF9tm2rRdB1AhChdAzyY7toZLrZbR/D4FroqgxIokmTLEBJdaKZqQx9BiXv30hp65dihETMP0IgRjjUO80fiij6CKXX7qE+kwdAh4RQyWimzTVxxEDC1n0Wbt2KUFYRlYE5DBN36FxBo6MI/hxspMBkqQSj0tkJ6YIBJtC2WX7a0eYmppkxQkLUaUapDDJwlndJCMalXKIRwUjEkc0EgihwImtC7jt9rvR1Diz5ywiW7BIN7Qye+GpHNq7h9LkIIH05hz4v8H+0praIAiOO/b/U5KYf2jy/9OtsZ3+AAAgAElEQVQH8OdaeAy/flxL9Y/qXv+ztat/sr9jkgpv/P2Hv/+SMeQ5Z+Buv58g2QCSjGyoDPfuIVOTQBN8PMelqb2DVE09fmASSaQIRBFZFBCIUddokM8WkAwPSdUpmFNkamLIepLcVD/xqEosVcMFF13Eg/fdx8aXt3BJcweyahDKEnMWnUTv4P0sWjCP117dTSodpaWlhfPOPg2rUCTwRZ587AUuOP8KbDuLYttVQhQBJFEnUG3ihoFtVijlciRr63BcE0kycIICE/kCpm3R0NJIdnqa3r4jdM+ayfBVq+js7OKp51/A6B/BtT0m+nt52/tW8P50La3tnezcs5difgLLDVi54mSssoke0fnNb55gxsyZbHGzLJo/iw3GXK5IZxB0A8eySCSSVXF0QWTg6BHs82YRS9QymR8jGoljRBLc452F5wdIkocqCQROwKbePZzxlcvxFQHTCbj3p7dw6eVn4IvwtaZL+YpZIRLVME0TVTHwAo/sdBZNVrnvnvvYcOFlHDy4m3cvOYUPqDJeKOL7VckAURQQRRXPDfjJTT9j9cmLmb94BmcGFkc3LCYSTeCECrIRwbVtNEnGdMr4YcBPb7kNo6me1z7zbRKJJE89/STRa87Ez8QRZJ27zbO46857uPiSDRREhVhCp8OXCfGYc9pyBiyHeXPmYVkmiqaiqDK2WebhW3/OBzpqyFgWE7/7OYIgYZkOxUKFg/v3M3fuDOLxCJquU9l9BxCizl6HbdpEv/ZeQlEmsMvcOjyHSLwJQTI4MjxIQybO5i2bWNJoItTIHD3TQ5J9RE/h+y1ryFUCwtpmbMtBNwxiqSRDhw8ivWcRk5Nj7BwaYsH8RSiKzPb9e4nHe6iIcRoHh7n5k29DjSXYv3M7ji/R2dXDww8/QOykmZgFnaCxlcFdu5h85QVmzpiDucZATmgU8gVOi8xng2awZdMLdM2cQUNjE0ODQ0xPTVDfM4uxyydxgiiO14CfjqNpGgIqtldl7NSDADViENaLHIlWKBRLLFpyOnfd9RjRiI4eD1m+dhmaJBONRunu6sTvCJlqaSAWizI1OUE6naYka9hli7LnofdOcmD/fgZHhlnw3jlMT5To7zvCqWecQjRu4Jshzz72COslmxpNZ84JK9hUzjHn8k7qW5uRzSIH9vTRWFODGknRuLweAYlKxSXEwmuPIXxqAf7fbIGpaby6cR5ZluT8d32cuGdy4NvfYN+uXUymM3x9+M0M1dy//QiX3XEHD957FVNfPJ+Xfv885WKRS694B/UzWjm6fS/bGiXa37mA1SetQnklh+u6mKcuZuPmXdxxxyO8vPl1pqaLVEz7T+a+ocWNSO11lEslEok40gfWI9x3H0yMopy/mOJVF1BTm8R2PCxXxBBDdu7awS2/+AEvbdpP3/cmKZWsP5lzh6ZtXC+PoR3AWTmH8OSLkP5mAPoOs3D1LOQfnEmlbBKNpPC8PLbvoMgGDTMbOLylwIlvW0LhupOIxRVs0yIWTxCEEAgutekYQyNZiu+cR3jJSsRAwXNshAc3weaXCWo09J5aEqqG53vIV0aQhDSBtIypHT5wJwDKRSvRO2oJfIlCFk5deyLPPLeV8z55C++87Exce4ob/vkTFGyPJx94hFO7k/SIKkYEopechH/JKkLbQzc0pqYnsCyTmppadE1HFGQuuuh8EEBcvARvuB87phHNSNz8k2d4x3c/CVSQb7kLHrsXAGH2TPjR34EgMDo8TGNjIzHLxojqBLf9AjY/fezs+piXrMU4MsrA4AA1P/wiYkTHk1Q0SePg6zv53W9/w9rTLqa5voMT5i5gx95d/LJvD7Gr1nDlpe9ksDbBRC7HT265hZJVQpIkfN/H01WOXn8lihrjg++/jh/f8vdc/AORBx9+nNvvuYtkKsE7L78S4TPX0ts/xPd/eiMPD/WiKEoV+ZOpIXr1+fgerF6zjPe842J+3tLMLx+4i73793LhuRfS3t7DZz77eQ7v2cXOfa/ytW//A9+/8Uc8t3ARD95/F1q6DtEsI+oGuVyJWLwGXROZmswihFWCtrHiCGosRnf3AirFKaIYPPTwr3h9+1H+Ze53iMbb0cUjPH7Pr9hw8aUYag1f+sLfcf2nPs81136E3z9zAoXyJG3tDYSSRyDL5Ioj9O7qpaVRI1vYT9xoI/R0PD8kV+glk2nDsRwGDh2mp66LMGgBqYJjmwS2hqrKBHiUKwUkBGzLQ5RAiqgIqBCKiKIMjoAc+oR+Ec8OCUIBwzCwyuUqy37Jg8BDlCUEWSWpG9iOgyFJOOU8QjyDiIjvuZx66loq5SwVK4+iG4SCgGjEKIwPMzLYTzydqWr6jk5Tl04h+0Xq6+LUN7YwNDTOlZe/m6iucf+Dj+D5HldceinZqTF0Q+Psc05jaHCc5373MqecchYhJjV1KrlSBVWP8JObf8Y111yDF/jYlsXIRB7HcqgUy0Q6FBoau2hqaObk1adz48038dEPvZPQdDFNi7qGJir5cXKlISK6j+uaSEKUSLydwthBZG8aKdNGJGIQyj7lsknUkLE8n1CQQNEJA9A0DzUMkIIYlq8TVnIEVgFZXYgkxbDLZQ4c7KM2nea1bXuJ6iLLF0URhBIVU+XB+/Zz3sVNaIoIgUCIQERTwC9juSGBWyYVU1l6QgehJxM3wPfKPPvsk6w+4zx8RwZPoWLlaWidR3GqF02ZZvjwayRaFtHQ1Mju3QdobW/H8Sa4+MINjI8eYTTn0NHkYpk6R6d9Tk40gJkn8CIk0yKl0hSG5zHeN0bX/FUUrByiICJFGlAIsd0ort9PRA+RBJFAdHnhhV5kMU5DXUCDkcESJhGkAM+xiRs6JU9CCG0IkwSBjypLBIGCY5dRRZc5PY1U3ByxWISHHt3JBecvQ1CmSdfpCHKIKussOaEdzZAIyOOHKqJkY0RlCgWPyy6eSxh6lMvVDDlAgEtrdydu4DJwuI/9hw7x0saXWTm7mVislvzobpLpsxEE+7hz9p+RbPnvdO7eMhP7x9nMP85+hm/4K8c+Hh9G+IOff9r+/2x1bNMfMDX/m37Vn6kj+x/NeP859v/ZzOufWyz9HxnjD02ZfQrK7FPecrvUcSLSjLUEgztRhQBFVpjOVejrH2J8YhzwqKurY3x0BFWWqkRJCOAFVMp59u87THNLNwEWohSQTDVWU/2yQtn2qWvtxvM8yuUyCxedgKYbuI5FqZDD812QBE5euZy+viOEkkpb18wqSYxV4UDvQWzXYc2py5guHkbRRSKqjFUpk83ncAIHSRQxLRMEgWgshu16KJpOpVwiU5MiHk1RU1OLpuoIhLiuhevadHW2EuIzd3Y3CxbOY+Mrm5g5dw6xRIKp6WkeeeQRKpUK6089k1UnryWVTmM6Ffbv34+AQLFQqOo8uh6qquEFIcViGVnWcWyPXK6q95pMpZAVCVWRaaivrTI6SwKu67Bj66tMj2cJAhHL9ejtPcDrr+8gXyggyyJXX3stmYYmBERkAjRdw/N8bNuhVKrWEhlGBEXVWXnSSQwNDbJ06RKODhxlYmICxzQpF4sokoLv+pimxfT0FGedcxqC5FEqZCkVSmhGFEHVCP0irltg555XKZhZZFkiCAI2bNhwXIagv/8w5517DkY0gqoq2LYJ+ERjOlNTOYaGRvC9EMeuSm50dnQye9YshoeHcRwH3/dxXRfHdbniiiuRJYlkIolneZTzRWIRjdpMjPa2NuLxYw6cIOA5Lr7nISsKRjyO4wcUSznyuQk0RcK2bQr5HIODA2RzWdasWYeDhhhapNJp2tra6eroQJVlCpaF71gkIzpjI8OUC3lm9Mxh18795LIOc2ctpa+vn6GhEVwXWlq6KJXLeL7DoUMHCX2Hmd2dzJnVgxj6XHjeudTV1GA7JkZcZ/6ixTS1dCDLKqV8nsGjg+SyeaYmpygVinR1drJn125sy2awf4D+I4c5sH8XQghRQ6ezo4t8tkjUiOO5LjE9gmc5CEGIa9l4nkNTcyMtrY1MTIyx9owlLFgyixOXLkEKZELfZ/+BA/T39zM+Wa1N9H2fhsYmBgaHUDWJeDzK+MQoCxfOZ+7sGaxbs5p4NMK8uXNJphJYlsXg4BCaJjFv7mxEQWJoYIS58zuYObsDkAg9CQSFnpmzcHyXex+4B0VTEGSBAzt3Y1dMBEFkejp/HPoTGvWcrT8GVpEjh/qIx1N0tHfz01tu45KLLzs+L+3dvYcf/fgWXt50hKaWKBdcfBGhAE/+9gksqyq7Uz9UYdXyFQwPDmFaFoIo8ZHrvsXbLvs49zzwLANDkziuRyoZo76uhvr6NLquAWBaNq7rEI1GGRsbI5d/k+G6XDFJp9O4boiq6qiqwo9veZwV66/nplueZufuAUoli2TSoKE+SX1dhvixbHDF8lAiHyDnfRZZHgGOYjkmAOn0Gxk1UFQRSY2iaHEsx0c6RvyTiBtkMhlc1yWeqEFRdAw9giypx/Q+wXV9fL9KdGFEVN5ALoiCUNWEtcdRxW0EQgf7hi7Dk8/C8d7MvPpBgkKlAcurJ1nXw7LFHczobmFyKsf3b7yHG299ltZZl3Dpu75AyTFIpVMEYhVZ4bs+mqgQBO6xMhiZTKaRIBAp5IuEYYDjVhBlcAOfZCpDsqYO8DjnnIvYs3cvkWiSaFQ7fjyWbaJKMla5QkdrG8VcnkjkAKqyn3LZPN4uFo2RrOlEVVR6enqIxRIMDowghDL333Mvvu+zfMVKPvnRa5gYOcqnP/YxVp+8BoAbf3oz6zacwoLlSzn1zNO4/a7bmT1jNmeeWs3Q1tfX09ndRWNTE/0De/j09V/jr6++jlPWrav2/8lPWHvGaTR3trJ0/Upuve1Wli9fwSUXXQKAqqoocoTduw6ybu1pTOfK3Pzrn7N3/15mds3iZzf9lI9c9QE+e91fs3HjS1z13vfymwceQFM1dux8ne//8Mc4jkM8pmJbZVRVZ3oqj+cKpLxa9JJOqTzF7J4TUOQIsiwSTUQIcZg9eyaxWIIXX9hEwZqmoa2J9WeejagaZHMTJJIxrrzycj74watZvHQ2n/zUJ5AkBUNPECNCMWuTSLWSrO1EDGPkckUmp0aQFIdi2aVcsXBDUIw4QbOG4IqIiOiaTqGQxQ88LMtGUQxKpoOoqmiRGBXLo1gsIh7TUgyFMhWzTOCpKIqGplWlruRjzMSiGsVyA0RRRgohDCpIks9kdoKSVSH0QsqlCiEhY2PD6EYUXYsiSyphECIHDp5Z5qQVS0kaMo5tI4gyW1/bSSAbFPJlYrE4bW2txOIGg8ODnLx6NSefvJYdr+/hscefIJ8v41gu8WiMQ70HKZUnGB+b4LGHn2VyfIIDe/excP58du/ciWYkEUSRyewkDW2NLF2xBE1TGR0eJllj4IcVrr32/UxOjyDgEY0oTE+O4tomCcNAV2tRjTYiNc0UKgeQkyoly6c4MooYhHiWiywq+KGKUy5iSCGCXSAhuYyNZQnVDE6gEpXFY46ATyE/heNaxBIGjQ11SJLESSetpVDyMS0F3xUxFI1Zs+uQJAVFrMW1otVguyji+y5GREFSNBRVQZVENF3ED1yMSIRF8+dy9x33kkjo2N402WwWFJF0XQeSnMZzipSLeVRZZvac2ei6QirRTLHgI4kGL7/8GlMTJTRJorU+iW+VOXJ0iFd3vE4xXyDwHATJpyapUpruJyaXiChRFCkBioESV8jULSCanIXp15Cv6KxZt5Q1p8whmRZx/TySoKAqETSthl17jpKfCpHlKJJmg1zA86qINU3T8JFBhkQySqU8xZITZrJrx07kIIauRquyf4JNNKJC4KMpEUQJkFWKlSiypCFLGhCiaRJCWEUlhT4Upsb4zW8f4cDBPZx++il86tOf4LIrrqC2vpGhoSGEMPgfm1WE/53sxH+J/Y9xXv/cC/nH7f5SZq832rzR998zqWUBUsuCtxxHEATUhRuQOpfhjuxnYmKM7pnzyDQ0USiVmM5N44cCnmNTKedRZAnP8dix7VXGRvs5efXpVGyBaFSH0EeWIpQq1QVHfVMrciSFACSTNcxdsJAzzzkX3/dRRREBj0Jhir5D+1iyZAmnnnUOyYZWOntmIMsCTc0NpJLNxBMxQsFC1+NUynnsSgXHtkGsUvNHIhEUWWZychJdNwiCgEQiQbFYQEQmGokT+B6zZ89AFCCVjDM0NEQuO4WITz43xfLly/FDyBbKRKIx1q5dy8IFCxgZGSWRSCNJEu3tzbS0thKGIVNTUyxbtoxUJk2IhO9DOt2AEUkiqRrxZArX9/CDgEQiDqHH+NgIogCe5yJJInNnzSadTDM0NEauUOCqD7yXxUtOQIsYqIqMEong+gEN9Y0IgY9llSEU8D2wbQfbcvA9GBuboKN7Bt3dXSiKQmdHFzWpDPFYnFQixdjIOLKk0n90EE3XqW+spb6xBkkUyefLjE3mECSV0IPRkQkWLlpCNFaD49oIiDQ01JNKx8nnszTWZxDFECMWxXacqlMihMyZM5O21nY2bdpIEFRRveNjY1imiSgI1NTUcPfddxOGAbZtE4vG0VQNBBHX9Xjt1R1seeUVCtlpJMHn0KFD9Pb2EgKO7eAHHq7rVgcWRSqmgyKGTI4PMzQ0TDQeY6D/MKIQ4IchruvjSUnCwGN4dBTX9eg9dIBKpUzPjE7KhSKSGDA9MYYsyhRLE9TVJ0mnExTLOZKpNIYRY8GCExBFlWQqwZKlJ9DV002lVMAqFzFLRfbu2kno+ti2hSSJROMGNakUDU1NjE9miUUiEEq0t3Xgex6VSokwgObmFl7fsZNFixZz8slrmDO3i3gsTblU5sUXX6C1pZ3t23ewdctWXn7pJQxVJTs+iVks4TgWr766BduxKZYKSGqEhuYGNN3Dt0YZHRymVCxy0prVzF24AF1XUVSFfQcP0t7ZfYxoJaCjq4Ot27dy+NBBHNtkenKcqekJ5syZTTweJxaNsXv3LmoztWx+ZTN9h49SKfg88dvnUFQZUagwlS0yMDSMF7o0ttSBWF1I9cyZjeO6lIolVD3CG1P5VEVguKThPvVeHn/gTq758N9QLtkMD43xwAMPHZ+bTj1lHds2b+HBB18lGgvIFfMEQljVJtarjpgkSdx71910dHSg17Vx++Yp7n3wGSRJ4rOfvIrNL/yK3OBT9O15kL59j9B/4EkuufDU6txJWK2Td2yi8QSJ5DH9VkCSZQJAU3VEQeLAoQE++dl/IggCLrnwFDY+ewvFsec5sudu+vfdzujhH/Hdb7zz2JwMtudTqXgUrPWo4gS6fiwaHwZYjosRiTKdm0YUdVwP9Ggc4Rh0VxBEECRkVUWWNYJQwLEcCILjEHlRFNE0HQgpFAvYtn1835I4hq7spWCfTiAtY27PFLr4e5qax46fW1FIIIUuqugzfLSXy992Hnff+jXu/dW3+di1V7BgXjdBEPDK1t187ks/ZMGyy3n2uc1VWO5UFsesBqay2RyPPvJbHNtH0wz27NmLIIJh6Di+g6yoRGIpKhUfQhPEOAtOWIQbSGQy8ePH03dkALNSQtcUfM/B0FWCoIAoVDh6tCpDlYhrxJIygVJGVRVEUUSSFC6/7F0M9A6x5ISlLFw0n/aOLh5+8Hbuv+dOOjvbuPOuX/Odr95AV1sH7a3taIrGqhXL+MKnPsPG323i1e3bAejp6iYSjaJFDB7/7b1877s38ZUvf48bv/+vfOOGb3D6+tOY2TODluZmTlq5gm989Svcc/tdjI9Vz+ucWXMIfBnPFfj4dZ9ky85d9A30A/C1r/4DnufRWJvks9d/lLe//SK2bt1Ke2snp647BYBHH3scRZJ54fnniUdjyKHA0b4B7r/zAbK3Wph3QkQTsQsivhVQKGfJlQpMTU1x3nnncdVVV7FmzTp+9aufkqtYJOoa8HyHnTtf4+jRI/zDP36Tz3z2elpa6/F9m1KpRHfXLLZveoVf33oHV3/wOqbKAiJJDvcOki9MUSyN093dQywZI5GM0dU5m3zCJKjzCPtlxsemUVQZz6vW6paKNsmaDKph4COgRxKkUinCIGA6O40gexjRGDt3HUAQZRBFYokEsqqiahrxZBpVjyIKEpIo4pgBsmQQj9ehGjXIgoCuKoS+T31jHaqioUgRAlcgP53FDUXSzR0U7JDHn3wG3/OIxmIsXLwUO4BFi5ZiWQ6bN2/mppt+TENLM7WZOsrFElu2bqNYsrj/3kd47NHfoMgSf/Wed+EHJg2N9Zy74RIiuk7fkSOMj46x6/WdlIomRiTC7NkzkHUJWZfQDI26TAbTDogYCVRJJ5NpoWSWKRZzKGKI47iUSuPYvk80VYsv+OhSJ3psJmoshSZNUC5PEHo5Aq/AdG6MWE2GQsXEsmxc16Whrh4lmiaRbiT0fARJIZmIYVUKFArT9PbuJ1ObJplMMT01TSwZYXy6gBcK+IHFuvXzMXSRAJNYTUAYVkscVE3Bsiuouo6mKviejSh5SKqELIsookNrUxvPPvNbHCdHV1cXhVKBUE4iaY3U1MQQ3ep37RvoR5QFdrz+OjWZBLZn0dzSiBarJfCynLysDbcySmt7GwsXLYIwRBFFJAVUycErDVEY3olnHaZcHEeRYjh+BEFJMFmBeF0XTZ3ziMQyBEIIQgRBVhHlANct4YcO7T2dxOMRLFfG8UEUYxBW5w5RkAklDVGuFs+LYkBHm8zypTMQxQDXd/B9lUolj6GrKKIMgUAQ+NhOwL33v4xl28iSgiQqCKKPZ3vH5mKZT3zsr9m0aRM1NTU8+eSTbNu2jV/cdju7du1ifHQE5d9g2H0r+884im/VNwiCv8hn+Y/qyf7fYW+l7/rG//7Scf7483+EvfmP7X+M8/rfZWEY4vv+f3maW1l0HmIkRZ3mEwgh0USC+sYWWlo6qFg2XR1t5KcnsS3r/2LvvaMkuct770/l7q7qONM9OezMxtkctNpd7UorJKSVEEIgkDAgMsICAwZsE/zCFcYGYwwIYySQQSYoIYSEQBmttMphtdqcZ3Ynx57OoXK9f/QidN9rG/uYe66vz/ucM2fO6ZqqqdDnqd/zPN9AtV5jYGCA9q40gaQjqgqeK1Ov2ghSQKq5BTHwyM1NIwl+Y4FlO9iujxKKYCTaeObJZzn8yh5efPpxdMNoeCL6PgE+iWiCg3v2kJ2e4viRfWiyRFyP89TjTyAqMkY8SXNTK6qkYlkWrutiWRadnZ34VhVJCHD9gGgqw9TUMHMz46iqTG5+nsAHs2aTjCcJaRHCRpKWlg5mp2eYmZhA0UJEjBjNmTQnTxwHv87e3S9x8uhxho4fQ1UUlixdAsDu3buxHRdRkonHU9TrDp7vYVkOtZpNEChIioznuVQrZfSwSkCDGxgOh3CwCBtherp7SMQMpiZHECUBNaRRqRap1wpoqowoylQqNWbnZjBNC03TCYciEIhMTU7z7PMvUCxV0DQZ06xRrVYJhSK4go+mh0k0pxFkjaXLBjDO8OySqTSRaIK2jh5CaphquUA4mqS9vR3fsRFpGKurqoYf+FxxxeWsXLUCRQ4IhVQsx0FTdMqlGoV8iUcf20m5UuJtV11BEPjcd+8vOX70GJIoMjszQ71e533ve19DWEjT8M9MqkVBRBBENp2zhVVr1iGpYXxB5rzt218VOJMVmVA4TETXCTwfu9qANU+OjJBpaaNcF3A9Hz0SQsAnrBu89NwzGJFGkbNyxQpKxQJ6WEMPh7EdByMaZ2xikoHlqwh8CdO06Ohop6U1xYkTR+js7AFRYGpmnBNDh2ltayMaN1BDKqoaolKrMT45wdKBAaazeXQjwdKlAxw/cpyZiRNMTw3T3JKmUquRz+Z5YucuErEE01OTlKo1LNdlxZo1TM3OMJ+vMDY9Rq0eYHsCa1av4JU9eygXi6xcuYwFCxZw5PARPN9DkiR0PcratRs4fOgInR3dyIKE70O5YlIumQSux7p165jLzVOqV7Edm1w+z/KVqzAdB9/28T3I5YqsWbuOzu5ekqk0PQv6icej5PM5xsbGUNUQHW3d7H5xD/FYnJaWNCFN5pJLdjCfKzA1Pk52egpVkhg9NcLmjVsoFUsIiDiOQyweIxaLneE5NwqvVCpF94a3Mle0+Pjyffz91/+aTZvXseOSC2hrT7+aj1Q5zK0/vpvzt11KEEDCMFjc38/Fl12Kf+bl5DgOq9auQZBE7jkZcN/eEgDvveaNfOZT17B8oL8haoQAiASCx8zsPAC+1xCYU1SFaCyOHwiIZ6gfihpClmU836FaK/OLe3fieT5LF/fyk3+6nhUDfaiqQjiSwHajVOvtTEw1RNJEVSSs5YiEFBRxAM9xwG8o/UqSRCgUQ5LDhCM6+A6OVcG1KghnYFCW4zR4wqJEtV7F9x0C36FcnEc6AyvzfR8CME2LWDRO9IyyrmVbQI5APYd4LE9YPUqAgmWlKOQTr95bn+BMoR7Q1tpCc1OSBx5+gIsv3Mxf/vm7efaxW3j+N7fwD1//JF2dLRSKFd5/7fXcfNPNNDenue32n1GrOUSjSS666CJUVSXAYdu2rRAICMgoooZVszl68DC7dj6OIAhE9TA+ATPzJTrb2189n+HTjaaepiocOXwIPRJGlhR83+f48WMALFmUxjEt5sbHX3332ZbLZ/7i/+Gtb7qKro5OTp4aBFnD9G2efOZ5HvjVY4QCkZ7WRXzjyzfwvqs/wD133MWvbr+Tt11xFbZtUrNqAGw6+2xERaZUKaNIBi3tGlu2rsB1Aq548zv47J9/nm/81d9y41f/ju9+64dceeU1SKLISy83bK7O3nAW9XoVQfS57LKLeOObL3v1+l554RlkCUampugfWEmqKcGKFSt45ZV99HT1AjA6NoYsyPz4B3cxMjSJpsos7G/jssteRxB4jak6CkcOHGD3S88hyzK63srtt95LuVxn+fIlDJ46yMfe/wnGhiZwbJvZiZO8/uD8gzIAACAASURBVKLz+ea3/paVq5ZywYXn8ugjO3nppZcQJY8Xd+9i2ZpuLnrDNm688ZtMjJziyJFjzEzP0t7WzcTEFGODJylnxwnsEnaxQFw0mR04jDci0pRqIxTSgQBJAl2PNGDsgYtrmeCDaZr4vk9TqgnfiwACAysXEhA0vuO1Op4fUCiVmZ8ZRxF9cvks5VqVuuvhCwJ+4DWKPrNMtVxAEEUc22fo1BC2bTOfzSIELoLnIIoSu554gtXLB7BsB9exufPWH6PLsHPnbygWi6xbt4H3v+/D2JbNA/feS2tTnKuvuoyPfvSjXPOed7NoYR+nTh1DkVVi0WY816FmzhJNJnj7O9/BZW+6nHPP306pkCU3N0O9UkYSJPDAD+CVA4epmTa+6zF44iSioFCzBRxPRBBDyFoMSWxCCXRqp6rYR1ys7Bz+AZdouR15bj1SoQm3FCD7HjE9RL0yh1XNE4oo+LiUSmPMje2nXp4n0OKIio5Vt0g3NVEoFOnvX0yxWETVJOJJnXqtgGmrvLx3BMQUuewIvidSKjR0A/ygsXaRJRVDj4PvUK1VERUVUZJxfTBtG6uWpV7J45g2iWgGx/FoaWpmPl/Ak1QKxTq1whiWWaSnt5cDB4+Qac2ghhSa0xkUJcqdv9qDK4Sx7TqyqkNQRVMDPN/B9nxAwnFcAs8lpIiYhTEkd4Ra4RgJFaBOc6YZSQ2BoFB3Fe6+93lOj3rUHJGqpSAJCkLgIIs+Aj6HjwyDICMEGp7vIwpSg7uMhChCsegiSglUJYTr2ziBjagmMO04cjhKzfSxHTDtGo7tEjfCXLZjKZrWUHwPApFSqQJCA0Fz5PgEDz72GAcPHGdg2WoK+SrtbT109y1k23nbmc/OIgve71+Y///xL8Z/hQL698V/u+L191X2/56H8lsI3m/3D4VC/ype3ps4hDdx6N88XhAEIEio534YAp8m3cN1HPRQiOnxUUKix9Cp44T0FFosSqq5Bd8z0VQD07dAEtCiOmokjO+7yJKIK0v0LFnJXCGP4DiMDx5HFRxUxcWxXJau2kD/4g2sXLWOE6cmiDZ3UDNrCB7k81n6+ntQFJ90LGDk5H4cu8a2889FJiBwTUaGB5memgW/4beohkL4AUiIzE+O4VYLqHKAbiRxHQfLrBOIIoEP4xOTWJYNnouqRTBrdURJYtGSZVSqFQaPH+L0iaMs6utFkwRMp8Z8scDsTIHR0VOcHDzJ7Mwsq5YtpV41KRbLPLbzcTRNYX56GAUL06oTyAqGYeB4Pk7goMeaKJZr5OayiPjouoLr1XGcGvfddy/dixYiCQ6SJKCEQiiKTK1eww1A05uIGG34gcwrew5x8y0/ZGyy4VeZzxd4ctdTPPzAo7hOQESPImsqs1ND+I6LY9uASaE4gyh6DWVHX8HzJSRFwjBChGUNx3HwJYVipUK5mCUcjhIEAjt/swvfkbAtk2gyhWmZqKLPnXfcRb1eJx43uO7DHwLBR9Ui5PMFNpx1FuvP2oAoKQSBhGO7HD50lF/fdz+VQom6XSPVnCAgwHNdfM9Dj0SZnc4xdGIYQXAZWLYM34OpiWmk1o0ETWuQJRXHctn1yP2YVp2I3o4eTzA1PU0+X0SPJkCUOWvTBqqlEkHgMT4+CgQYsRie63FqeILRiWF6+jp59pmniUZEZqezHDx0iFKlxKIlCxkcOkEm3UZrayddnd0Uc1lKhSqCoBBSJfRomq72VibHBsnPDDM1PYYniqRbW+jqX05XTy9hTSDZ3EQkqnLRxRchiBI9vd3MzM2wbGAliqrS29OOoYpE1RiptlaScYPnnn4a27NQNI2QHOaV/cdItLWiGDrzhTIHX36ZcnGeLeechxiSOLx/N6/sfpHjx4eoORL7Dh7Gs0DwBdpa00SiaZKZVjzbQ7TB9QOq5RJRLUpgWoiqhu95TI9PMzc/Q3dfL919vUxMjpFIRuhb2E0uN0ckolAszhGPKizobuPQwRMIasBLzx8klAiz67GdRPSGdc3czCyWbYMQIHgu4plcJSsiL+5+lva1VyAKcMM1PVjFMj0LljI8XXo1J93605/w8U99mrvv3oUsWUQiMc573evBB9tuTBpFUWLdWRs4fuwYOy6+iInJxhRszYqFeK4FQsD0zBS/FT6qzJu89PLhxr6ShKioBH6IwPMxrQqCIL2aD3OFIr4PoVCEsTO2KQOLO1EFD1GU8JCplMqEFR1ZCPP4rjM5VlRQ5VeIRZ5FUCfw1a0gNIQ5PM9DFAPK5QqyrOG6jWvwfLchvATIkkwg2A3bF1Vu2InIApIWepUr5NoOnuMQMaL4okNTomExNJet4rIIx0mQnZLAyZCb80CI8tye3/GJBVFA1kJUrDooBs3pJj7x8Y+jyS5l00TWNAYG+vjjD1zNDV/70zPHLrBh41aGT49i2RaVUgnP9YknEihhmdmZcSy7iu3aeKKAa9WpFOdZ0NfD5nO3gaAgyy52WSSlZVi9ajNtLQ0P66//zVeomya1ep1Fixc3FK9llUrFYvfLuwG4+IJlKGoISY7hBAGSKKA4FbZt38zjjz/At775j1SKIpecfyGTYyf48a3f5b1/fHXDek6P8ZW//QbXfvg61m5ew9hkjn/49k3c8K1vUalUkGWZTedspW6ZyH6NZDpMNBbmEx//CFatyJsveT2ZZJoLLryEJ5/dx/e+ewO33PgdPvXJP6VWryPLMle/+SqOHBxkYMkK3nPNu1DOQLwBzjprE3/y0U+yaPEa8gUbUwwQlAhnb9zK3b/4BQCGEUVSo9zwzS9x8/dv4rkn9/Lwr5+k5pnEYglGRyZ57MFnCDdF6e3qJj82hSL4vOmqy5FVnSuvvIbFiwawrAK14gjZsROEpTh7942Sz9b55x/8EMVQuOqdb2Z+Jouh6Nh1E9PUWLl2K8vW9LJm1TJefPpZzt1+Hlo0wcLFZ5FZ0IYQ0ajaJmUrT37yCInVLnS7zDxfxHcF8HxyuTlkFVzfRZbChDQNxy4hoDB2apxjh44jIqOpZ7a5NcxKFVl0kUQBPaKTamrB9QKSiSRGJEQ8GcM1TSRquAJokQjRWIqTJ4aIRMJ09y7Gc6pEwwETE6PkZgbJzg6zZt1KyvUyIFKYL1Or1hmdGGPL+du5+2e/4uC+V7jzrtt5/NFHWLVmGbLmYEQ9qtUqL7z4EqvWr2VgzUoKxWkK+UnUkEambQFPPLGLcimH5zq0t7bT3dWO6/gcPjKIWynjuzbgctaG5eiyhFOs0pvpYXzvPKlaB82Ffo4/M0XoeA/xo4sRj0WhKuLHbOLLO7DXjTKtvUA9PIHmhtBPLYO9PQhHOpGmFTTHxx/R0OaaCCYSxKudSIUkmElCUiuqk8Aq2KTCCrblkUpEEQQfPZZk9drtHDg2wsCSbihPIqsCET1GSAsIEUFARJUVKqUyMxNlnEBGT7WiRiJU6vOIioQSCkg0xVm6KEp7OsNtt96KIgVMTszQ3ZshEMPkKyrNcYNERAHTYfWSLjKJDDFDIXBNurqaaE60Mld1MX0PSTZwLRs1ZKMqUVRVIQg0nt8zDmoaxzeRRcCsoLhzlOf34JSGcYujSL6F40sYsRQf+PDHWLRsKVG9jZpjY3oudV/EUQI8Gc7auJSwEgbfxLZBUkJYjokqi1TrLvlKgkeemOSFPRPkCg4CPsWSycMPPo9nKegRES0sYXslXMenXrfRowJSSEPUGs18VYmghBvChO3NCjs2LePTn7wO37Y58PJuvvLFzyEICpPTAQdf2kO++rv3HfzbvMt/rV74z0wKXysc+geJf8NLNQiCBtz6Ndv/o16qgfCan39lAvyH1hb6z8R/u+L1f0dYlvWvFrzO8V04x3f9u44TCCLqtmsRCuO0dvUxnyuiyCF8UaWzZwGRSITC7BTVYr4BgcVHcB0kQaaULyMEIo7lIgUumiygigGGJtPa3cf49DQzkxOMDw1y8tQ+7rn3dg4c3MOx44cJfPj1vfcR2DZzk2Mc3H+YuWyJ3p6FyFqSto5+jg+eImzonDo9zsTEDL29va9CzzRVw7ZsbMcmEGVQQih6DF+QaGtvJRSOkM60sHDhYnr6F3HoyFGe2PUkTzz9HC+99CK2bWPo0Qbc1XOIGgbTs3OcGhtn38EjLB9YwebNm4jGYmzevIWuri6SqQSua1MolSlXa9hWDatSQA7p2K5PWJUJ7DqeI6PKBqlEG/ghUoaG4DmAQCyeYH4+R6Va5V3XvJOwliLwwshinCef2E1hfh4x8JAFk+zsSSJhGdet0t/fzTv+6G1EjSiqqtLR3sE5W7Zw3vaziMVCFEvzlCpZ0pl2XN8nGo2SyxdJJdIQyCQScWbnJrj7zp9RrVQolMt4ooTtmEhCQFOqmSDQEGUBz7e59LId+IFNoZAjn59HliUE4G1vexuJRAJBEHAcl0jEwDRNMpk0+eJvF9Rz7D+wj4geJtOSZsclO/B8H1XRkUQVgoAgcBsqqeUSuqHT2tbKSy+9hG3bmPU6RjSKnFqMnFqE67rMzs1y1pYttLV3cuLoMRIRHRFobW8o0x45fITpqWkmJqcRBIGOtnYSqSQRPYYkSvQtWcnypUs5vP8ka1YNkMsN0tXVxYKeheBrBL5GdmYKs1bkoV/fx5OP72QmO8fMzAyeaXPy+DEkUWZ6Zo5TwyMsX7Oets4ecvN57FqV4aFTjJw6hWPZjJ0eJp/P8+ijjxCOaESjMfq7OxgdOk5udoYAEcsDPRpreFJGE2w7/0I2bdrC0mXLkDSNTEImqnpEZBfJr7Bg4QIcz0JTZfBdVq/eQNRIsHxgJZVynUsuuQg/sGltSzM7O8PY6CkkwadaLTMxNY4mebiuSb5SYqZQ4OSxQ0yMj/HS3n1kZ+f51X33Iwkqne1dWLbN0mUDbDx7Ez4CyWSaPXv3oxsG51+4nY7ObjKZBGtWrcEPGuqhrufR2tLE0J4yuWEZhICY3piCl6o2AytWkS9VGPX6OLtznq9/7mqK85N8+D1vfTUX7TtwgPGRUa551/txHJticY477riDXbueIBZrKMHqeoRKMU88keBnP/tFg0oA7Dt4AgERs26RTMSpV4pkZ4f5H3/9dSqVxqRNECUcs4QQWFSKOYyw/iosV0BAkTRcp2FVFI0ZABwbnKBQtUCUIWjYE5lOlod2PsLTz+07c+YCtpXGtpvRlByKUkUUG3lKpIbnNQRTLauKKHooqoRje68WzqIgYtVcFCmCICgQNPhblUodzkxnZVlGlmXsehZN2M+qlYsb+TsIuPWOgwS+QjjVhStFkNQQjuvwjzfd+ZpML+DWy0QjKtVaBdv3cTyPUrGEHtHB93BdB9uxiMd+B+998YUXiCdTJNMZHMfhl7/8JRMTE/iuy8MPvMwN3/4BAgJmNYdtuzQ1NfHCCy9gGEZDUVQwOX7iEFu3nc3MzAyX7Wj4oJ6aGOaV/QdAFEEUcX2fyYkJrv+bf6JSrSFJEldfuQbO0A8EfPwAPEHEcSwct8rHPv4ROjrauOWWH9GaWUS1HBAJNXHutgs5b8tq7r7zFmYnTmPmavQuWMBVb38rP/75TwG4+sqr2LRpE7KsEo+laGtZSK3q8553fxAChb6+Pvbu3UM2O8uWLRtZ2LecN73pLTz9YsNK582XvZHDB48xPDzM6y+6gM9e/wU62jtfvW+/fPAekqkYY2MjvO51r8PAwKw4XLDjYupug2KzbvVqstOHOHBglGuv/TinR4e48qo3kmluIfAD2jva6ejpJpGK09bTQ3v/EjxZoLm5memZMW6/85/5+d23IUeSdPatIJJop2T53H7nHdStGjsuuYjx0SlOnTpFR0cHg4ODJBIJXL+MrECpWOd7N/6YLdsvxPJdqsV5xk8eoZITqRcVYqF2muPdtC3Zihbv5LrH3kPGaWX00Dg4IpoaJggCFFmlXq9gmiaTk9M88MD9KCosXNxJtV7AtCp4XoAshQlHIrhuo3FTq9dxXAdBEKjVqr9dkCDLIbRQFFUOYVkWt956K+l0Gt/zcO1Kg0YiqSxZspKmlmXEoh0koxlOHh5CUTW6epu47qMfoL19Ab5lYYRVlizq45p3vZM3XHEJCxYuRVE7uPEfH+bO2+9g+7ZtvPT8i0yOTnH61ByPP3aQn/zo5zhOHYGGOrmqqliOhSQrKJrK1i3bGM3N4s+GsAZlghdTCM8l8Y9FkE5HaTW6EGMBTmuN9Had6uV7kT7+NPaHd3Ng/f20fEhmOPkCTedpFBdPI761wMjr7id3zV1k33Q3yhuPI66HcKoPtTON12QQRKoIholU1pFGUviDGbTcYiKn2knOLKXuVsnO5jlw4CCaptKWiZBp7uCV/XnklIwmR6nXTTQjjImLFgoTCAFG1CCVVsHO45TmcEpFklofI6Nz3HvfDJZdprctyeLFAr3dHTz44KNk0mnGx8YQBIGBFasZnxhmPjvM4OBBkHXyhRym5dDa1U//wDqaW0T2v5zjyd8UmM7WcQMD1/1twSEgCjYb1y9pCHvZFoLoI8lgO3UCPJzaFHZlhOzEbtzyEcSgDnKAp8URUwtId55FPH0ujz9RBH8dRqwDQY4yna3gyxFkRcO2XSKROKYto4XDxGI2m85u5uzNPbR3NOMHGslkhDdcup5QyKdStbHdCPsOVJDDCUIRkZCiIQngWFVUWSCkaShSGASfWvoYTe0ZfvnLX/LCCy9wxRVX8MUvfpE7f/4jOroSrFu7Cj2s//5F+R8gRFH8T4lB/aHC8/7wk+b/Ktf2L4V0/fXX/58+h39XOI57Pfyue/JbGNhv4w/px/QvdRcaXf3/9SG6pxuwJnnBxlc/ey1e/LUhCAKCKCF1r8fbezderAddk9F0HUlRsUwLWRIw6xa6oTM7l0UQBWLRKLZtUS4WUGSZaqWArMhIkkytUkHVDWRV5pmndnHe1q2o4QTr12/iN48+xnnnnsfAilXU6jWsaomjB/ehKBqFQom6WWdicgotpLNk6QCmZdPW1oVuGOTzOSqVErbr4Qc+qqaiqioEEI0l8Whc49zsDHWzju/5RI0ExXKZ/PwcmeYm0q1t9Pb2UCmX6Ghv5+iRowj4rF61gqpZZ8PGs0kkm5manqFWrWBEI8zNZRk6OXjGtsKnvaOL2bk5Fvb3oeshIkYUUVKYnJxoqPcJHpom4vsW8/PTVCslwmEdNRRGECR0I0o4HGlwO5069UoOSZHo6m5HDydxbB+rbhJWNZSQTEiTmZ6cpb2zjWq5RCbTTCIRJ5NJo8gaJ0+MYOhJotE49bqJoqrYbsNKQhZkKqUq5WIZzzFZu34DoiRixOL4iLi2jSKJOLaD44GsNp6h67qMj4/T0pJBURRqVRPHCThw4CCJeAJFVc4USeOEwyHqZp2WlhbCeohYzKCruwdVVdBCIcbGRslkmhv2CUGAIDZsQzzHpV6rk0omCfBpa2tDURQ83yccbqhJBvgIoojvw8TERMOHsFClrTXNsaPH8QOfFStW0NHWhhEJ09JkUJs+SNUNIUgiesRAcD1uf2gXibhBT3c/CAG5wgSZzAJyuSLz8wXa2jvQdY1UUxJJltm0aQvVuklPdw979+7BcSrEY80Mj46xas1qHMclHIo07B8cGwKJREJnbHgU2/FZNjBANKYjSSJDQ6epVIuY9Tq93b3c/+DDxJNJEokosiwRCBICItPT42QyTYiSQvuCbgI5jCBrjI1P0dHdRRC4gMz09DR23Wfvvn3YjsPSgWWYlsnM1ATZ+TlC4QjNqWZy2TkMI0rY0JmdHMPzYXRsivliljWrV+F6Pn39i9AjEXwvoKmpmWeeegojZnDs6HEiEZ2ZmWm6u3vx8QiHtcZ3oeYQjYZQZYXZbIFlm5ejSCLFkVlETyekJRFFkcOnJnnx8Cj5Uo23XXg2+B4tXZ2osTa2Ng2x+NLPkEgk+eHtPwLgK1/6W5576lnGR8dZvExj+PQEE5NZ3vLmN/EPN95KNldiS1snF733jZw+NUz/3GNUqjavnC5x8PAgHW0ZVq9eRkhTmZic4uv/cCff/+cHaErFqdctVq1czFVveR3VUhXXM1HVMLfd+RAjY9Ns27KGc7euR5EFzLpJOBLhtjsfZC5boFSus/GslYTDGpWSzW0/e4SPfOLrxGIG9bpFLBrmo9ddgSKlsF0Z143wwMMvsP/gKdau7uPKN61H1SRUtQGNC4dDVCs17rr3RUbHs2za0M+OC9cjAK7vIQoKgtAQBLrpB49QLNW49PVrWLWiB00p4ZMg0dzP47sOMzqe5eW9J1i+rJeF3R24do09L+/lXe//ApNT89TNRnH/kQ9dhYyNooZ5/uVj/NG7P4/r+rRmUmRa0miyxBNPPMXkdJE//ey3mMvmaW9L89UvfYLbfvYzKpUyx44d4ZEnj/Cnn72Br3z9n/nhzZ+ju6udZDxBKV9BlFT2vrKXrdu24QsBqlyiVtdpa13Ke979XtKZGM3NLfz8nl9Qq9d46eU9rFq5CkXVUFSNO++6na998248z+f973k3b3/HlyjXlyKKEvLQKF5Y47of/xMf/Mh1fPumGxk+eQLfh/b2dk4NjvL5z32RZCZDa0crggA/v/NWOtrbaOno4oHfPMSnPvcpJqcmaUo2ceO3/5FoIo5Zs5kZn+Gmm35If/9iWjtaeXHPi5y1YSP33Xcvb37Lmzg5dIRTw6N85n98htnsHP19ffz9X32dqJFAlmWuvfaD/OTOO7BrJtNzk8xlsxw8cohlA0vZuPFsLr7oYi7afjFtXa08+uTDzM7NIggC3/raN+jOLOe5517G9hz+7htf4Y/eeTUKIUpPm6iaynTLBEJgEUukOTE0RiQsc+45O7jyrZcS1eP09HQQ0eO8/oI3cPDAcSqVGh/5+EdJpXRuvvEmXEfmwou288B9DwIBmbY05VKOsBHFdXxc02HlulUY0QgyAjsuuICzz9nA6jVLOHFiLz5V0DLkcgV+9NMfcM03ryQ+k0Y8oVNom0H1w2cakBE0VaW5OU1Tc4qYoROIPrVatWGv5fkNzqHY4Bl6voCqaohCozFTrVYIhUJ4rouihMnOz6CqKoIg0tPdSzQaA3wC324ocSPx3e9+n83nnYNrlXHdGgsX9+H54Lh1IpEIrishCxD4AemWFEOnRnnhxT3MZadY0NfOgv4Oejp7CIXDKLJKPJ5iaOgIoUiES9/weur1HEsWLcV2PJ574QX6FvZjWzbRShLniMT0yDz1niLJVSqhS3ycc7KYZ2Ux1xT58Pc+QN+OGN0XdRNbaiDrOebzE3iCSmfnQm77yW2Mnx6lubWTrr6FOI6HqkrgeSTSYapKFisxjbbMxV9YZj41SL3tAMYak2zbHhIXZMn3H2C65cdMpB/Aa+4mNtKBMdJCalGU3Hyeg4deolp1mZ6ap7Vbb7hhBBKKlODEiWlSTQ0VY8sKUDQHUdXxAgFNT+JaFp5co5APsXCRQEzpoVAZYXK6xMipEsVynogRoqkpw1w2S2s6Sjjsk2rKUHdUKpUKuXyeWCJJsVyntSlDa0eME0OHyWQW8eyzu+npSSMJQaOzF3goCgg07AUbXp8Klm2haSqSL+G5DoLvIONSzY5iludQZQfJB0kRQRZZ0N+BqJbIZaskm9LIarTBxdZiICiIsoGsKNRNh/l5C9eUCEWqaFoISQrh46LIwplc7VM3YWqyTKZFRxQdPCfAtjx03cB2fBxHRAgklGIXLzR9CU9r5VcPP81nP/dFnn72WUJ6iKv/6GqOHXwOszTDqq1vAul3jiGvXb//71TB/c/E/9eaEP59tc1vp7y/pYKdOcJ/7J+f+fMgCP6XPf+z9+n3XYOsKF/6jx7z/xqrnP/T8R/pPrz2C/gvhaRHEC/4BKnHvsXQ2AwLzroQZI2QEUPwPULhAFmRUUMGlUqJ3Pw0AhDWJGZnxsm0tuG4PoomEkumCESBrp4eYpe+keGRKVq6ehBFme3nb6YpbeCgsmXbOcxPj+LZZZoz7Tz62E4WLV5AkxSnXitRr5SZz5XwWwOyc3Mk4wniqSbmSyVCWoOjduDAAXo7OzHiKQLfw7ZqJJJJdCOCIskcPHCE48cOsmLJQuLxOFYggeCTSqUYGjqFImtYgc/p4VGaEjGOHd5H7+I1dCkaJ08cY3JyAj0cY/mKlZj1CrMzk2hamJbWVjp6+sjNzyFJNRxBoaO7F9e2qFbq1GsmiqKSiKcQFRWrVm/YMzgeiqKcEXCSCIcjqDj4gkA4rFMs54lGDXLZPJosgi2Rzc3z+M7Hae98J7V6Hl1X6ehoZnx8DFlWeGXvbnp6+1hnrCQSiaNqCnXLRDeiFOfnmJsuMXhykAsuOBfZiDTIf77Ag79+iL6FfbSm4yiKTCzZBGd8Kqs1i6HTp0k3pzlx4gTpdCvp5jjDp4dZsKCX+fE5jh07Rnt7N3okghGNgCjjejau72PZJrIsoygK7Z3tqCEVx2nwkyRJwvdFIrqI5wWIooCiNJQiJVFEFAQC3yeoDuNYJnJmOc3NacZOnmYkP8z6DefgBXW6Ojppbs3w0EMPsbB3AZnWJDG5oeIaCoWZmpxGbBPRJZUr33IpatigXCpgxJtAEpidnePk4ImG+E9YRA21giyiRgxqlkfcMBgfHyds6CRjBmNjYyxcuIRkcwrRsTgxdILO7n5kzUCLKESjAp09AlokSbVUobW1hVKpREtLK5FUCk0Es1LFCBscP3qYsOrT1dXB4PAkqXgzLz77JPnFCxlYuRbHtglF4riuS0d7G5YXYNoe8ajB00/+kkV9i1i4sJ/+RX1ks9MMDY6SaUqwcMlSDh46SirWxOH9h4k3NbP+7E0MHj+GZVoNWHTbYgRJIZFK4toWlXyVeNzglltu5gPvfx+irNDa2sH8fJ50JoMX1FnQ14UoSpSKNU4ODbOov5Vyqczg0BDVmRLhkEI0EQUhjJasEG7Jcu21C7j5vuc4PTXPuvd+heZUiJAq4TkSv/xIL53OKAsWYwAAIABJREFUaY7M3/tqDhKCe/jYde3UahO0t/YQj4Y5ekzBrNcQxUb+UmQbz/wVC3trKDmdj1+e5smRGicG5/nYn32dT/zFN4hFQxRLNYIAPnjNWmwn4Cd37kMIxgmcl9GjW6nWfAJRQBByjfwnDKErOyEIkCSXi7apvO0t5/Dze57l5lvu4eZb7iERD1GuWHhewPrV7bzr6hV88vOPIrgmAWF8wcdzLTTpFXx39kziLYA/hogKYhjd0EBwSbdGEaXGyzIc8ZGUOQRAec0rWpYbAk0AoYhE2AiANOAQeFPc8NXtnH/ZKaam57n8qs8TCqlIkkS1Wqclo3PLd97IFe86Y5UjPIMiB4jCZggEDh0Z4rNf+Daf/QIoikTUUCmVLVy3cZ9jUY0ffu/L3HPfAyxfuozXnQuWleXAkYO/e2lYv6EjE8KszBOPrubXDz5OKhEg+Q+hailEkujyM/jeU+zft5stW89ixYo38Iu77uYd734ng0NDXHL55UQNDdNycZxGl/7C7Uv42pc2/E/vJ+uqCzA9AX/P469+9tWvfpkXX9jPd77zHf78U5/mpz/9Kf/wgxv5uxv+vvFMJYl/+tkdFEvFVxcm69as5dtfu4mF/QuwAE0LoUcS+L7Pww/fT92tcf1Xv3zm/sssWbucUrn86v6peIpv/fV3+Pld9/DrXz2MHzgsX7EYI5rgPe95DxddfC5Xv/udnB4e5Sd33MZP7rgNXTeo1ap88GMffPW8Pv0nH+OcLZup2xb9ixfyg3++kUcfewjHk3BqLpIkUS6XaO/qZO8zj5CMtVEp1ihKLnfcdj8HDzxG50XLSMQzzE+P8/3vfJf773+IqdHTDf/wepk1a1fxl5//Mpe/+aJXJ+Jnn7sRWdKRRIVafZ71Z61g8PBuepYuRdMS3PPATtLNKaxagFX3KQUVWls9QmmD22//IfP+OCcXjLDv2UN8KPRpxJCA0Sri+y627SKJCqlUgsBtwA2amnSCwEdRNPK5HOGwjiAKKJJMzTSJhBoNcsMwCIIA26qiaAbxZALXNFG1CM3NzY2mrKJgVsqgqMiqyp/9+afwgJCm4qsKDgqJlMzMVB5J9ECw+MVd92LoBsvXLKWjt4+jh4+ybcs5uLaLJhnc88gdXHvth0g0NZOdy6MoChu3bGDnzid4/fYd/Pgn36OnbzFnb96EUg9R2+1B1Cb2FhcjLNMUl/irr/4JV77jvUxN5unsbKdulvna33+BvvZWvvHtm+hd1M+6JRoDZ1+A7QQU5+a4+OItJNP9oGgcO36ImOqQbu9mem6G+dlJ4vE4smHw4AM76eru4+wtK8kVYtQsn7budsbGjmI095NRFEafvwtr6QvsiRzBbpLYYl9K81AvxoDB8NhJLnjdWp547AlaMynamkEyqiwb6EQQLIRA4eSJYZYMJJFFGRyTimmiRjTSWpJtG21ET6Xo7CesdaAwysDSGN0LlzGXnaRWrRFLpfHtEHglsjPDZLpbiC3oYz47jSIKxMIq+RqcGBzirW9/Bzsfe44VqzcjyS4+dSRBRAnHqFbyyIpKKJTAqRdwXR9RUDBNB0EIUDUVwXUQhQBFA4QcimdTLkwTjTUhhTvQNYOaaZJobqZQNpElHVnR8IMQxeocg4PDjJ44yiWX72BkYh+O5dLRsRLb9pAkD1nUqHguT+96hu3bNuP5FqtWpIiGZYJAwMMnIEyhZFEs13hy1yBvv+JsBEGgpaWHG+/4DTf/4Ad893s3cfXVb2dycgzPjbN02SoOPD9Kw2Dqd/SC/64hiuKrNYckSf/luap/qPi/ZvLqOd71Ag3I2Zna/X/a/vsw66+Nfwu3/S9NTf8t3PtrJ6//bgseJCQ1gphZRGziOWxJZ3J6Hl3XsQOBWqmIGtJAEHAsh3KuQLKlo2FErYVAFFFklbm5aaLxCLNTc+ihEFatTrlaZmp0nLbODubms8TjMVTVIEBAEVx8s4Jl1nFQsBybWNQg8KBeqxPSw4yNTrCwfxG5fBE5pBCWwUMEOURLcwL/jNG97/uE9Siu4yIgIgoi09NTnLN1E2Mj01iWR1jXyLR0YTk1Duw7gqQEBI7NwKo1DI+MoYiQnZpkbm6WSFjFrOTZuu1CcvNzjA4Ps3jJUipmnWgyiWnVScRiSH5AgIUoq0SMDEHgEY+FGvAmRaM4nyMUVimV88T0FJZZR5EFatUC8pnFpizKIAgETo1yuUBzcxrXF9CjTYQjBt29nWiqRNxIImsa2VyOmGGgygJLl62gr78PUXAJfIt6rQK+R71cRYsmSaTi1C2TZCKNJEt4doDnOsRjIZKpNBMTU3T3LkAQwHZtJEFg6ORpSrkqnd1tpNNNzMzOMj4+xvkXbue5p59ixfLVpFs6SSYMQmGNulnDcV0UOYRVdTh5/BhtHZ2MDQ9hRBpG8yFNaxS1okCtXEJWNe689We0t8aIRELUzDqxWBLLdDCiOtXjv0K2Z6mHejCrFqoqYjtV1JDOyNgwff1LefrpZ7jgwgsQFYWWtnaK2RHk+iiTeY9wOIweClO3fLxwGFWNoOsGVr3O4MkhDh46QnNzGytWDTAzN0400sSp0RH6eruplgrkc9NUKiWWLRsAfGRFRQkFaOEwQaBiWjaObRE1IrjWHC8+vxtJ1JBlkZf37iFwPCKhCJ7g47sOjumwb+9B1q9dzcC6dRiGgG26JBPN1Mwand29pNNtPPHELuKRMJ5XRTciuIGCW6+Qampl3/79JKMGA6tWIckquVyeI4cPs3XbNgJJIxyKkIxGyGbnGDw5zMWvv5AnHnsYx4PFC/sol3K0pFtwPQ/bqWHWPQ6fOMLGjWfR29vH3Ow8gRtw8sQJnn5qFxs3bKQ4X8SIR6jbPrIoMj4yQ3OmhWg8glkqoYkGIUHlyaeeorOrk0AoI4RrZJoNzt/SzVy2SqFokSuY5Es25ZrFB17Xi9G2AkfNc8vtjXx13Qe2s2ZtP4Viic6uHizTo1zU8H2R+x95mpm5Iudc0suyFVF03cAdGUOWAt77F2+kZqXIzleoVutEwgob17XzN1+4kM98Yhu/eug4+w9Ns2qghTe/cS3I3YiCjFmrcecv7mdkrMC55yzg3HN6GmJioggEvHHHBcSTXczM5igWy4iCwNLFzXzsw5v4/g2Xc3Ioz68eOkZcV/nkJ96N7dkoYR3JG+XXDx9i/6Fp1qxIccWOFAR58GYI/DnwiuDN8+M7XmFkrMh557SwfUsKgQoEZQhKZ36bfPumZymWTC7fkWHtgAXeBJ5bAKCtJcoVly4lm7OZm7eomzYtmRTvfOsAt37/LUSjMt/9wcuNe/v+9egRCVXtIpnoZOXybhJRkCQHz/PJF0xCmszCvgTvfvtabv7WGzhyaJ5LL93Bgr4+dD2PaxfZ+dQYBw43eMYf//BaqpUqRrwTlwSe7bJydTfReByEENXiNPv37iOVTNHT24UsqQjCCu6752G+++1/xKyfpFAsUCg0ntn6Nd18+mPn8+cfPYt4LIPLSkzLJBozGB8dpSmV4K5f3M2xEycB+OMPfYRlS5YQUaIcOLaXp55+ju3nvp5IRKVUKhIQUKmUaU43s2nTJv7ys3/BV7/8BaxalvGJadLxJsq5Iu+95v18/vq/ZMu2cwiFw8iyxPFjJzCMCOVqlXS6GT2s85k/+yzfv+kmjp7czTUfeC+vu/B8PvCBaxlYvoaWTDNLliyiOdXKR657B1ooiue6lEolavUaIU2js6OTyy97PV/7u69w1ZVXETFi5HNFWtJNbNm8GU3ROHn8CJmOPo7fdZJoVGd3bRc3fPdH9CxI0t/bx1//1d+wZX0PX/zL67n0sjdQt6qooQRNLU2s27iOzu4+hg+fpKWjn3y9yBVXbCLZFOP48TGamjvZsG4T8XSSAEgmEoT0EIYaJxxWiURaKJlzGHENF5dUOs3+Q4dpam5HDMJUyjVOnTrBSy/so2ttkrYdAmIV1JczFORpPMHlwP7DxJIpIuEweCayFMEPTBy3ih5pRpIlypUCQSDhOh5WvYxh6CBIDeSPJFOtlAiFIgiiguvaCKLYoEnhIHgWkqxhWhahkEw9N4eoCtRrPk65iBaOk8vOMHjsCOX5LMtXDLBmw0ZEUcG3SyxfsQoUmJnNIfkq52w7G02TKOSLJFMRYnqYiJ5kYGApc7kJNm3dTjwcITKTRBnW8S6axDx3kAkhx3NPPs7a9Ss5/+Id2L5GRzqDpkrEkgbZ3DyhcJ22dDfDxyc5e+ta9u3dSUQRGDk1TjTegai2UK2a/Gbn41z3iT/jPe/9NKmmTpJtPcQ7F6GGMrR3LeOee3/NxrM3c+DAaTr7FzNfLhDSZGQvwHVsfCWHO3OI5au2UUUlWGMSrBBhKKA9txi7vUBHywJ6Fraz7+AwjhMmbFTwzQDHyRNPaRjxFlzHBhG0kMqp4SJRPYIqO41GspZCcAJ6+1Mkk80cOXqCkG7Q3tXVWMvYFrPjYyRiIp6g44si8ViC/HwBIxbj/yXvvaMkOQtz71/l0DlMT+jJaXdnZrO00q4SEpJAWSCwLYHAGAMGA8bX1xhsuNg+Nk4Y+zPJmWDAmCSEckY5bM67s7OzOznPdK6ufP9oSciyLInv2p+Pv/ueM+fMTNdUV9WpqX6f90mVmk9rWx6rauG7HuMTSyi6QGsuilWw8HwbQZLZu3sWURPQFIGJGYd77z/B5m29BH4dzwmQlUZKsqbpBAE4to0s+eDXqJZnsKuLFJbmiCdSCPjIoopVg+XCCslknKZMlnUbu8CVyOcyDKzvQxAsHF9E0WIUCkuYqkxLS5YgsJHEAAENWQLXdfDDkL//4TG6u3J055IM9qcIgwC9MMAh+26+t3cUr1rh1z/2MQIPDuw7zl/+xWcZaI+xNHeK86++nvD5XtiXz99fPpf/z2BiX44HRFF8VezxwmuvhmVe7X3+7euvcS5C8DJT7EtSgV/2voL4MgPtvzHUvnI37etpdnk+NPRnZl6F/y4ovV6zQ3jpxXh1dvPVaOrXYzp+OXh9pX0C1B/+IgD6ZR9+8fevxby+dHhzJ3Cf+Du8SJ6lukAkYhKNZZBUhWKxiIRAzSoTS6ZRBAE1DFkprza6CWUIAo9S1aNYKOC5HuOnxxkZ6SWRaEZVTFRZo2xX0Q2dlfkpjux7jvb2HpxQo7Mrj6Z4TE9M0pTLYcTiiLKEY/ssrxTIt7djVdZQjBiybhB6dWRVBQQkUWqkGK4uoGsakigiSzInj4+yOLvI0tIiqWyKoU3bqVXXmJ9ZwfNrpGMRQgHm52cY6O9lbm4Rxw/p7MizvDBLxXYRRQG7btGRb6FU8Uhmc+Tz7UQjUSRFREBheXWRWFxHQqFWKaBoOoYZo16rEIYCmmEQhAKqquI4DrKsUC2XkCSJQrFIrqkJz3dw7Dq6rlMul0mksgS+TxD4SIKAEIrUPRdZkamVK4S+QyLTjO04CHjYVo1EIkUQBIiCiC/KHD16nN7uXgSg7tXxXR/PdejsbMOyXMIwoG5byJKMIIrMzk6TzbSQiKXwRZ+6XcM0oo0U19BjcW6OeCzJoUOH2bJtC5qmEAQ+vufg2B6OFyKIIoaqI8sisgyhJLIwt4JlVcm3taLrKqVKGTnUWFudJvN8kEsQCOi6iWXVCE5/DwSBBWMnq4vLNDc3Y0YUZCVOqbzC6mIBVVWpVEt0dXUhCCJuYYxY+VmC+HoKxSLpWBzbFVgVNTq6enn0Jz/BtR0uv+JyPDdkamqWk2PH6R/oxq566KZGUzbNiePHyLW10NPTRxiKnDx0GKvusXnbEAEhyGrjwR94PPaTn7BpaBBVaXi1ZubmaGlt4anHn0BVFfoGBhAFmZmZOQ4e2Mfb3nYD5YpNKi2hqjFm5pYoF0ts2bKFs2fO0JrPU1pewoxq2K7Ls88d4LwdO0CU0TSFWqVIYW2Nvt51HDt2nMOHD3H9W9/K0WNH0DSZkeH1uK7Agw88xK5dOylXiuRybSzOTeG6HsVShVQqQ645QaVSY2lujr7+AUbHTtM7sA5N0xBFibvvvoeenm7W9w9TtlaQJQ3X8bn/rntI5pK84bJLKKys8d3v3c5HPvohCoU1otE4Ei5T83O0tXcgiyKe5+M7Hs88+QzbztnBgw/ew84+BbNzJ/q2X2OluELoySwuLKCr8Jnf/RR/+4+/STpVAaGTv//bvyeTzXDdtdfx9a9/nZ27zqOvv5+1u/4Y0zQxLv8Yhh5DVsCqF1AVA0mUKJVLaKqCpKiECARunbVyldaWVlRZwnNdRMkkCAKC5/v3RMHFD0FSZGqVEqqsIKsyjusiyRpiEFAqFkmmktTrNcLdjwIh2q434QYBoiShiOC5PpKs4nsOkiygyDGC0EYUGvd4sVREN3WEQEDRJGp1G103cGwbXdNxHBdZlilXKkQikUZgXxgS4iMEPn7wfCSVKAKNKirftYlEk/hhiFevYpgGM9OL2HWPplwaMxbHdXwqhVWs2gotbe0EoYjvN5KZV5eWsV0X33cwNYHmtj48z+XA/n10drTzzLN7uOrqKxEEkWKxzO7duxkYGODY8aO86U07iURkFKXM6GiUVGory0sFck15HnnkYbZuG8Z1XbJNGU6ePM4jjzzCW95+Fa2dAxzZf4zjh05w09uup7q2xp6De8l3djC0cROua7OyskQ6kiUWi3P2zCRXXXUdjz75CAvzU2QzMT758U/ykY/9Fr29/UQiBqXKArMz0wwMrsP1AmRNR1a0hiRVFAgDD6dq4fgBJ0dHGVy/gTAQG2uNqoTvu+x99gAbhwepuVXSLS34Ljzy0BNce91VrK7Nk4zFQVIJPInf//0/4Mbr3kxfXxd/8fkv8/4P/gK+IBLVU7zrlnfxD//wd+w7cJyZySl2XTLMwPrNlJaXsW0L3dCo2hJf/OIX+F+f+RSSJGAaCaYOTpGOR5GyAdWajGG63HPHI1z2hosolxeRpCjf/+HtfOHL/w8H9p3guuuu5V3vvoV33vrzHDlwkJt+/he44847UaSQ7t52ZmdWyGQyIHiIskDgg6ZFqFsO09OHicQ1sukBRM2GwKBerxOJRCgWi9TWahzcd4ir3nwFn/707/Dp3/8souhg6AHjp0epTnr03nM50kCdSmIKU0/z0P0P0N/bRUt3J4EvoJuN/u563SYMHXQtwaGDR+kf6KBaq7Fv334uvfQyZF0j9F1kUWR1aZFoIoEkKUiiREiA4/jIiozvuawtNz4TBDlEwOSeO3/E0OZt7N29m53nnUeuqQnH90CQefThh4iZMooZY+PG7UxNTnL40F7mFxe5+qqrsGo+M7MT7DzvXL7zvR9xw/XXcuTwftqVfjrEHoKczcoF04jJIgf37uH4ydN8+CMfY25+hnS2hV27LuefvvYVZmZmuOCSi3F8i958jne961187nOf57ln93HRhZehaRof//gn6O3tZWLqLL/03nfR29vF/MI0qaZevvD5P+FDH/oQohZlbfkUoa9y4w1vZ/O2rXzly5/nE7/9WT76qx/n2jdeyV9/9XNs3ryJ4spzmIHLyWMPsrLSzK43vw9bq5Ewc9SOV9Aea0VZjnFK38Pi9DJipERfn/q8rSggdGXMSAqEZYLAR5YawXKeayHLIbKq4WvtOJVxKpbJ+NkqkiCzccs2IvEka2trpJoylGaOENUqLBUEArWFWLxhH4nFDO666wGGh9eRiMWYnJiiYlU4un+My98wQDa3Qr2os7g0Ta0qMbSxG13S8XwLq1InFhEQzDiLC0vEojKKZIIYIAiNqjDPc1EUGVnVCEIFBAXPqVOt28STbZw6NcXyco3t52ygbq8hBg6i2kLVdYkbPposEgSNeVm9ViAWiVIoLBOGLqYRwfYtdFnA9wRsR2FteYXmrInt1wjkCFGpGfnoThaNPez62/P51rd/RCKRAOD222/nkosuoSNR4blHf8Stn/4ynmy8ONd+tQCl1wu2fha89Erg9V/Lel/fMbxeS+S/2W/4GmpR4V/jlJCfSqxfGvD0Inh9tfGy93qtY35B4vyColUz9J951eC/DfPqOg3PK7wg4X1lz+sL49XSwV7P6soLGvlX6ih66Xg58/p6bu6XMrtiNIuUG4AzT3Lw8FGaMikkLYJVt6hUypiGQTqXQUSkuFZA11V8wDAizM3MoOs6tbpDPJGkta2dzp4eotEsP3nofux6gWptBc8NKawV2LNnH1e++Vrm584yMzvN6NgxysUKS4uLdHV1UqnZiLJAGArEYgls2yEajeD5PqqmoijyiwZuq14nDEJi0TR1y2VpYQ3H9lldXaFYWEXTNFKZLO2dXYCPgEI+34znuiwuzNHd3YFuGJRKJVra2shksszPzXHFFdcRiWUZOzXB8sIykYhJOpnAtm2CECKxCIU1C11XCAMLXdWxXYdkIoFVqTVS1gQJ3YhQq1cbfZmSSq1W58DuvXR0dZFIJfA8hzCUCQIBURBQJAE/aDDKjutSsyw0VUWWZTwv4Pvf/QFt+Q4M00QzdFZXllFVHcd1EUSRSrWCoRvEognqlkWAh6kb6KqObuqsra3i2DaKKuM6HoZhQihgmI3e3AcefAg/hJbWHGEYNOqa8InGYui6SlM2ifP8hF0UFfA9iuUSuq5xz73341pVJFFifnERz3VwbY8H7r+fdRs2YDt1JFHCcwLOTIzT0t5JYXWNRDJBtVpFllVmDj9AJBoh1X0hdq3KxMQ0llUmk2nl6PEjdLS1s7KyzKnRUU6PjTXCeiICVE4zuWARiUYRCNFFWHFlioUS2WwTfYODFEtlDh48wIkTJxgaHqKvf4A7fnwbsUik0f8YjZLKNiGIMoW1ApGIRCqdRNECisUVjGiSMPCRRIHu7m4MzUSUZR56+CE2DA0RicTo7e+nq6ubetXi7OkzdHZ3sfPCnSgSaJJMzSqhGgmsukPMNCgWi+Q7OiiUivh+yMTEBL7rMTy0nmNHjtHSlkc3dBzXIRGLMX76DBOTE1x26SVEYjFC36GtrQVFVXDdgHXrB3jiyccZGdnI0uISzbkc42enaGppo1Yuc+DgXrZu3do4dkmiuaWVA4cOMzE5TldnN/19A5w6fZKunkG++g9/zWBPPz+47XZuesv1iLJEOptFURU2nbMBL7AwdbmxUOELRONpBEmG0EVWFHzXw7Vd6o7DeeedT720wOmzs3iZ7Xzru/9MzIzzo+//gMd+8jC/89u/Q+9AE1ABMcqRw4f5ube/ndHRUcIw5Nwd5xIEAebycQRRYN+iQEtzG6dPnyKRiFFYKyKIQmN13mt08nlBgOd5pFIZBEGgsFZAVRUWl6bRDQlR9AkCm0BQUGQJx7HQDBNZUgjDAKtaRRElgiDEDzxURQHAnxqHMMTLdaAbUcqF1UY9gyRSKZcwTZNSqYgoqPi+gyhIOK5HJGJQrZXwXR9V1bHqNRRFbnQVuy6qpoAQomsqBD7O853CYeDjuzblcplINIbnedTrdaLRCIam471QuIyI7/mkMxli8WgjYM0Pnv8/tIhHoyCqWJbL3/7dV0llcti1ColUklJxjWwmwezCCmfOjLN18yaipsHM3DxjY2dYmF/EjOiMbNxILB5Blpfo7o5jO23MzvWQb9vIo4/8hA0bhpmenuV3PvVJrr326kaFkizR1tbKBRdcgG6oVCyb9tZ2RoY2MDp6nCOH9tDa1smv//pvc/31VxOLRIhFIyS/8k3CJ54mvGgEw1ARQxnLqtDR1coFF1+IYzeSLR96+D42b95MJpMAQaRSraMbEQxFxrHriIpKqVJDVSRct046E0E3YPdzh+jt7ea+e+9h/fpBvvnNbxBNpVg3PEwQOIiCwj1338/QhmFqtTqENRbm50hls5x/4U6yyRhWvcRll15JMpkglUnz5GN7uPH6m6hbNocOHeS973s/Tc1JHn3wKX7xF9/Frbe+A9dzac13c955O9B0ldtu+yGDg+t5bPdjrFZXqNctWlpbqNVK5LKdXHnlxXzoYx9lbGyCv/rCl/n+977L8WNHueXmW9n93DMMrm+nq7eLj3z4Q/zyL70f15M4//wdhDjopohVqyEgUCqV2bXzQt733vdTs0DX4ux5+hTf/Pq3+MCHPsBHPvJRQEAQRL719W9SrRYplyo4lousqXi+RyQWwxMgnomxIC+S2t+FkRWxdQVFT9DU1oFpKEiigR+I+GEdWdKQJDiw7zADA4MIokCt5rB+3QYkKQRJQQgh8BwkSUCWDTRNIySEUOTwkRON3nEhQBIVVCOKZdUJfJnegT50TSWdSgMip8cn+OZ3/plULEZ3R55EMk7/4AaKayWy2TTHTh7Fd30u2HUhZ85MguCQyTSRSjYxcXiS5kSWnNWJfeUimz/Ww7YdW+jq76S3t5cd24eo++DUXb7z7e/y1b/7CkeOHSCTaeGJJ3ez64KdnB4f5/q3XEsgOvT1DfNXX/wSzW1NDA51s/OiLVz+xktx3RqGqSHLEn/655/jnTf/PBdccBE3ve0drM5PULOq/MbHP8GVV12HjMx5u87FZ4GPfORGHnj4KOtHzmdhpYBh9pDP5pHUH+KVDBS9ibVCETfioV/gEfRXMWtZBsOtdDgbqQUOJw9aDI4M4fhr2M4qIhCEIYEvUFhdJpnONGpgBAFVNAntJSQhQbkUULLq7N9/gI0jGzHjCQRBZml2gqgZEgYe6XQ7NctBVFR0VaKzswNRlGlqbkFWFZaXlzBMkZMnzzI4cBmeVyWXSZDLJgCfH9xxkHVDOYyIhqQouK6PgIisCMiiRkhjXiTLUsOG5TdsByEBvm+hYENgI+IRNQR6upPg22iySsI02H/gFE89fYD1vTk0TUISPGrlFYSQBtsvhBi6hm3ZHDlSJJlIQOjguQ5HZyp4foRoREYTZaxaHb00SEma5ooPrefXP/6H/PIvv48777yDa669Csep8cxjdzI7McoF19yMoKgvzrtfzfr30rn9SwHm/wkj+0qKzX+vAeW1AM7aAAAgAElEQVSl279eLPPaScjCK27/01+8HKu8CvP675z+T0MY//W1ffm5vNa1+H/DvP63Aa/eSwKbGif96iDx/5T+f71//0qBTa9n3y+9QeVoDLovoUMpEyyeYKVQJt3WSaFQoCmTQUDAdTw0XcMTAnQzjh9ArqmZ5eUVDEMnnkgRhiKuH1C3HabOjNPS1MLczDKiBD3dPXT29CNrUVQJyqUql1/xJsZOjpGIR4lETSRFp1atk0lnqdYszIiG6wXEolFs20JS1EZ/YRgiiRJ128GpWwhALpdlYWGOhfkFmnNZZmenOe/8XYiSguPWUWWNqamzlIoVAs8h15TDiMZxPZv+wQ0cOXIU3/OYmDxLpe5Qr1us7+9BVkJWl+dRNY1kJk2tXESSAmo1C9OMUy4uE0oSqqRw+tQpEqlUQ27tuZiRBC8EaiuqSnOqCUGWCKUQPI/l1Rr33nsf3V0dlIqrmKZJpVJGlCSS6TQri3NUalVUTaW7s4uZmQVyrc0EuESjkQZDKssNf7KqEHg+hw8eo6u7C82Quev2ewlp7CsajyOLIrKsEYnE2L17HytLa8QTCUCiXK2xaWgjgeciCiCEIYVCodFj69msLM4ST6URBJFqtQaCRBD6BL5Lf18fbS1xVF0h19xKNBKhVFpmeGQDuqGj6RECz0EWVZpasgiyRtSMULMqGIaOKCpIlRNIsoIbW8/y0jIDAwOIEmhalJa2Zu6+8z5c1+XyK65gy9ZtPLf7OQYHepAqxwn1Fux6nUjUxJRkanKCiKHz+BNP0NnVCOmoVdbYvGUT6UwGwzDZfu5WHNvm5NgofesGWFpcJmoaaIrEqfFxWlo7mZtbJJVsQRSAMKBaKYPfqFKp1SskknFM0yQIBARJYm5ujuWFRVqbUnhCI2H4uaeeoVwpEk1G0fUk01PTtDQ1sby0TDKdRjd14pksoiRTq5XRVIl0OkUilWJltUg8nmR2ZolYIkk6k6Kto4ViqUw6mUQQlUbvXrmErim059tRJLVRBbO8QnNbOwcOH6WzLUdPdxeL8ytYQYCiGVRqdQwzSlM6BoHAgf2H2LZlI44gkU3oTJ89w2VvehOxZIRscwuEIs8++QTDV24n2Z7l8OMHacq2cnrsNHv3H6K3rx/fsxrhG4LAwQMH2bh5M67rcubUEYa7IjTtuIXf++3PcN11N3L5lVdy87tv5g8/+yUkSWR4OODuOx7nppveju97JJ+ZRJlc5bbDz7J163aCyecQBZHHz9oMDfeQTCTRlCRB6KAZBgIhgVsnREA3I2iahiCKhIQosoSqqNTrNaIRE2gE4IWhSLVUIGZq1Kw6rtfY1rHrhEGAokfw/ACfEEVV8SdPISAQW7cZzwdNDHH9AFlRCHwHXTcwTYMwkJAkKJYKGIbJymojMVkSA0RRQdNNBAF0rVE7VK9bWFat4Q2sVtF1nVKpRDSeaPR/KiqSrCAIAooiNdhjP0BW5EYnrihh2w1ffalcJQxFVDHEc21czyOZbqJetXHdBhDft3cPa4VVNm/dRjyZQpZUDh85wP4D+9m0dQtGLE5rcxP79x8iGo3jOC5PPf0k27d3kculGR3t5e03fIAb3noToqrQMdALnsVll13KF774edo7m3nqyeeYm5+jqSmLIAioapSFlQUymSiuU6FUnMPQAhLJdn7xF3+lYb0Ig4Zn8plDOI7Hb/zge9x918N88H3vZXh4AzvO30VzSw87d23C9Sps3ryRd9/6Ydav20BzSyteYBNPRpgcP8Hy8jKpbJJAEPFlCUUV0SSPpakxNm25gKmps2QyjWTjiy66gHS+A0GS0cSQEIGR4a1ccsllHDt6lF07huns7sbyPUIJoqrMWmEeAp1oNIooRtm/9xB79zxLiMfNt7yNQBZYWpzkT//gc9z10P3IapS773mEoG5z9NBhYoZJ1DQwzCS/9J4P8Inf/DSzs9Pcc/9d7Nx5Hvt2H+fjH/8wajyGbYe875fez198/vOcd94Q6/qHufPHd3PN1VeAalBaWSQVT9Ddt46enk5UTWR5qUAmleezf/AnvOGSS7nllrezujpPz/oB5ucmiUfSXPaG87n51neh6waapuN5Pj+6404++usfpFiqoqgRvva1f6RvsJ/O3m7iqTQIIq2bU5S0NdTdzRTdJSRDRNdNRo+d5ejRY7S25VA1nVq5jih4dHTkkaQASTWJxZJ4rg/Y6KqC6zgoqoooKYiCShB6eK5LsVghoiqsLU9Tt6o8/uReWlpbwHUYPTHObbf/gAvO28bu3bvpbO9ieWmFa665lnvu/DE7zjsHNWpw910/4cjhZ9i0aZjT44sM9Hby8MMPc/ElOxlo7aZmObQu9NCp9fDQkbsY+cwAwqDHm6+6mo62TjLNWdZKq/S0ZphbrvK1r36dD33wvfjeAmcnp9i29Xx+439+io2bRli/oQNNi1OteKSyJiPD5xECP3n0UTq7etCjGtW6Td11SWaaOOec7di1Mh//rd9AMzUWxhfp7evGTEaoWHUKK1MomoKAiC41uuI/+anfI5WNc3ZimZGL34g4L1Mt3sbxg8cZGN7Ogb1HyWVbKXgrJLZqyG+A6rrT/PhfHuDSocsxz/ZSWTDZd+wUPS1d+FIFTdeQFRPLDnHcEDwLRwhxahqWD88dOMLlV76Z0Hep21V0M4LgB7i1ErJsoaoyNcslksgQi2dZnl8gkYywsLBMLJZAlCX6+/vo7OphdPQMq8UayYyKjIck+ShalJpVpLuzGdd2cXFRZLkR3CY1ntGCGCLLzz/3ggDVjCAiAz6aKuKjEY3GqFVLEDgIBKiKjOtVsdwiugznbOxAEl2CEFy7jCYF+H6I53uIIvieQ+AGzC+XSSZkZClAlgwOHT3N8aPz9PcnUUQRGRN5rZdDM8d5bPUpfu8PP0M6naars4d4LIcfrjI1thdD9dh88TVI2k8Th19vbs0rKTP/vwh2+lnJttc+ptc4h/8A8CoIQuO6hq8tD3618X8NeAUIw+cR/yvcZK+0evGfNeSeHUjd5/7Mf/fSVYggFBFkCbFzC0qqFf/UY5ydKzDQPwiSSqVcaoTsOA6KpFCzqsgSOK6DKEokkhnmZmeZmBhnoK+HUrmKLAu0dHTQ3tfH+OhpOjvyyJqJE9Yol0osLSxw+vQkvT295FqaeeLpp5mYnGXj5u2IUiPRuFarMjE5SyqdYG5ujlQii4jUqFyQRDRZRRRlbKeGVS0xPTlNvrOLqZkZlleWMU2NXLYZ1xeYmp5k3cAApq6SiEeZnp5BVnSWlwvMTp4mHtWJpzMEgUg2nUJVZI6dHEUKRS68+Ap8fCJRFTPShBuAIITomoyix3DsKuVKge7eLiqlAqZuEiASOlVESSUQ1QZ4UyVWV1cRfJGZmSlUWaK1JUs0GiEajyMBRiRGxExQKVTRIxFi8UQj/EgSWVuZIx5L49gV8Fwcx8FzHGRJwnM8/NAnmUqjqgprq8sMDw1zeuIM0ViEqKmj6BqrawU0Q6e5LduQapsmnu9hmgbRVARZEsEDzy1jRNONFS1BRNFMRFkh8ENUSQYBQnwiUQNJVpC0OD4illVlYXaKfM86FFlEFEK8IECQIxw5dIj29nZcr87qSpnl+TlkSUQ3IgSrRxDCECK9qJqCF4SESIShz8L8IrXqGm+87I0cPXqExcVZNm3eyOx8gWw4CmYeWZbQNAMlhKcOHKZQKNPT04UoCSSTcUprq5iGgSwKVIpFwhByLS3k29sRRYmp8ZMoikKpVmV4wxDlcolcrpndz+1m9MQYhm4S+C5C6KHpCSYmpmhtaW2cX73OgT17OXLgMLFYgsXCMr09/Rzcf5Bzzt0GqKRTTezft4dqpUZTPo9ft5ABSdWZnZxhYvIsW7cMszJ/lmgqj1V1mJ2aZmVpjvaeLk4cH6MtnycIXFaXVkinM+zdv4/e3m6U50MSFpfmkGU4fPAwuq7hOnW2bd2EG/qk4mmW19bIpHPYdZvx02N05DspWwWaclnqtsX4mbO05ZvJpLNUqjXaO9vxxYDAl6mUlwgCgWR3Dl1TeOyOJ+nq7eXE4WMMDvQhyQKaYVKvl/FdmXLJ5u47fszKwjIXvOEigrlnETa+k1tuvomPfex/IAoyHfkOvv7tr/LEo89wy83nMj29wKGDp+jq7iP98BjCfJGR99/IXXfezVC8xtTUFB273kIynUOQVb7411/ivHPOfZ4JV3H9KpKoEbghBLUGqymrOG6IIEioukYQQrlSRdU0EHwEUURRNGRJQlFVXM9HUVXqjo0kKpiGguNUEBFwx0/iBx5iVw+CJOEHPpLsQaCgGwYBAkEogygQ0GAlFFXG9z0kUURSdFzXQ1aAUMW1bRS5UQdTt2pouo5Vsxre7WoVUVGx6jZBEBJ4NpIgIAsSYQAEAfWaRaXcUFzIEri2zJ7dz6GbIpqqICgS8XQGrx7y7e98l3PP3YFAyOryIuVqiS2bNnNg3wEmJ+YYHT/J1q3baW/vwvdCyuUaC4sL7Dx/B/Mz0wyt66OpBTyvn0Bs4ppr34QkRfjkp/4XF192IYak09KW5OKLLkGRI7T1ttLdPcipU6fI51up2TaZZBbbgr/5228wsr7M0EgTtXKMVDxG1S+Sy6bZv/s5jAOn8DyfS/7Xb/KOW9/J8toSdTvgf/7GJ1ldnaG3O8P02VkkFG684U00dXSAKCIrKmEIsXQOwbdRFRlRjRFTMwTuCmNHTuPZFmYCJhcq9PQNUSkuE820srJwFqdcIbRV9HiMur3Gu299B309G4ikTaLRFkwtSq1UJGJk2b93EiPqc8s73sGN195Avb7GZW+8iM7ODpREFEVspL9fdPEuZFlF1iXacilkQeScnTtQE3FyuRbOTB3mF1rey4/+6jY+/Y+/xQXnXsHS4gLn7BikUisjehpYawTeGpvOHaalZZCPfujXGBoeZuO556IoCmpEpimXYcP6IY6eGiUZU5idneOO+x6gv7ubRCLFt771HdKpZpqau7HrazQ3x4mZOTLNOSrVMpZVpimX4tKLdjE7e4Z1g8MsLJS45Zafo7U1RyQexbEdZDFACAKEDpFQVIjuyyInQ4S4wMLsNBdeciGyrqKICqqigiSDLKHIIqEP9997N8XiKt3d/SBJCARY1RoLs0tENBlXcKk7BnFTAm+FVK4LxcjQ29mKqkk89fQzbNu+leGhERBlctkObv/h9xkZ7kCUQjLZFMlkCk2J0tmeZHD9Zv7p698hFTPYuGEjO1ovxD4r4I6rLPpz/M2xv+BB7Yfc/Ltv58t//QfYZfiXb3+X3Xue5YorLycUHRYXJmkx4+y6+EoGhrbx9CN3MtLTSqI5w1e+ejt/+iefpjA/Rd2qMjY+TmtLF6MnniST1pEEgYfue5xvf+sH3Hj9jdx/331s3bwJ8MnGY3zuj/6EjuYO5hZPo0TaiacVFM8n3d6GV3e443u3YyhxvvA3X+ejH/lVNgxuRhBk7r3zHjZd9CZCVyMjnuHM+EHkaAsbh7dSnJ1iebVALGOgx0KeHn2C7b/czzfP/hX7Z58mH++nx9uFXTBRvBhCbIqx0xKnJhZpadNwaxJ7D5+lXI+gShLxZJyWfBfReJZ4Is7a6iiZln4q9hyGpFEtLFIoS8SbdLyajRcoJKIGvu8RihqqCs8+vYfenj7OnBlF07M8+ewxFlZqlKoWGwbShF5DwhwIFXBBVlQEPEQ/QBJV6naVwJdYWgaJOoLgICDiuhZi2CALEBU0M4Ln2PhBiCQJiMjEYiaiGCIQoqgN6WwoCPiBiyKLeK6DKAqIUkhzLoYkgqJqeJ5Nf3sbw0Mx3LqOpBkoUoiy0o+jT9N1QxePP/ow28/ZyZe/+CWeeeQ+dpy/HmvxEGqkifMveyee8NP6mFdKG37pfPzf+/611Jf/UeP17vf1H8PLwWoAvMSnGorPb9P4CnkJy/xy2fBrvt2rZwi91vi/Bry+lHn9r1gh+c8akiQhxFtIrL8UfXE/FCaRImnMaPxFs7eqqhixCJIkU65WGkwoPoYRoaO9i0rFYmFuknx7G6mmHJKi4ToeE2cnWZ5foqu9jbvu+DHrBvqYnZkgGtc4dOgYTU15tm/fiKyrnDxxnOZcM5qqk+/oJghDsk1NuK6PLILreQgIDZZQltE1lbpdJ51KYRgRpiYnEYBKqUxTvo3HHn0MXVHAdZiamWB+fpZ4IsbcwiIb1g9iWRU2DI0wOTGLiE8qEUdTZErFNcLAZW2tSDrbRKFQxjR0fN8nEY/gWDVULYKqygiCQKlYplB2EAHfs6nXHfwQVF1DJEQRJarlKrqq8cxTT9DRmSefz+O4LrFoglp1Fc0wqdVsxsbGiUZlDE2F0EeW4MH7H0MSdbp72zE0lSAMn5fOeECDMfjGN/6JkY0jpFIpRAm6e3qJmDFc20VRJFRFQ5IkZFnEtSwIA+ZmZ2hra6Veq6JpGoEg4gYOx4+NksvlqNuNSh6r0nhdkEV8z32+vknC8wIUSQZCDF1HFmVCQUCWJHw/AAQkSWTP7ufo7e1FllXqto1hqkiyhKgoBCuHKJVLHJ12SCST5JramJ+fR5Zl2tryJJMpJidnyDQ10ZrPEwSN6qiIdYTVuolAiBmJgOvhCCoVp05bvpW2fCuzczMsLCzR09vP/gOHiCfSrK4uE08kX3xgxqMRNN1AkTXWVldQZIXFxSV6e3pIZXPE4jGmpmeoVKs0NeUgDJCeXw2WVJVkOk1Xdw8dXV10dOQbICRiIssSqqqzd+9uRFGksFZkaGiI/Xv3ICsK6WwTui7Sns+zvLRIMpFCMxNMTk0xcfYsPb092K5LT08vYeBRLheAEEkWMQyjwVzLKqEgkUimEUSZnr4ebLvO0vw8rbkcpWqFmelpEskUppFgdm6GqalJNgwNEY3ECcOGdH1gsJ+aVUFVFGzHbagpAp/ZqTn2732OsZMnWXf+JgQBZo7N0NHZQd9APw8/8jAjI8PUKhV03eTY0ZPUalXe/nM30j/Yx7/88McMNTmoI++lbnk8/uhudu26iD/7s8/x7e/8E6ah0daWoqu7FdsOiSeTKM+MY1kW0mXDbBga4oFHnyI/soveLedhaBqB63LOlq2IkogkN7pnNSVKuVJGN2Q0zcCXQmpWlYip4DkVRFnB9310PYIoqBC4VCslTF3izPgoihbFNAxESUCWZQK7hue7GGaEQJQJJseQFRkh342iaIhi4/5FUEAMqFYraGrj/0sUeV7y76OpGqIkNZ5booTnOUiShm1XUZTGtqqmIogKkVgUUZKwXQfdMDF0vaGuUJVGyoIoUrMs1EgUL4SIGSP0wXMcjh46xpkzp9h1/g5KlSrxRALbspmbWeDcHduAkD2799DV1cMbLn8joiTT3NzK/oOHWF1e4uo3X8OBvQc4dvQ4K6srXHnFFRimTtWqYWgRmppd6vYGJidnybbmmZ6Z5G03vpny2iy6rgMB7R35xmcFgKfwq7/yMTZv2s7Y2HE++IFf4fI3Xk42nSXfbmPbdbwgS7Y5jZHIsLJWpLmtHfmJA+i6QbBzK5IYYpoxvvylr7Bjx7kMDPRhWRVa2zp53/t+lfe89914uFj1CmakIcmWQwHP86ladap1F1yH+cUz/NEffoHbfng3V151FT09A8iqQCxuYleXMLU8ZycWOT0zSldXNxNnJ1AklU98/BO85z0f4JZbbuatN13D8sose546xJ0/voNdu7Zw4a5LeOrpxxgZWY8k+7Tm0ziOQOB61Cp1PvO7v8/4mTO0d7YTj0QIAxszblKsltAUmcWlVXIHexlqGeHnP/sW1q1fR1dXB2cnJjlxfIqfe9f76enuIm4adLZ3MD6zl107R7juhsu5+8Ef09sziCpJzM8vYFs2//zt+2lJNfPd796J70X5sz/+A2699d187WvfoD3fQWtzjN/+xB9y41vfjieXWZpe5vprrueGa27ie/98O+fs2MLS8gLZbI50OosZAUXRECSFMBSQcFAkgbMTU8S2xghzNeTdSYJVUPMKqqmiKiLFlQUczyUkxPFcKqUqkYhJU1OWnu4ufM9FanTbUCiukk6nCYGaVWN1cQFD8RFUibHxs6iqSOjXiMSayGaaEUWZxx59HEOXWJhbYN3QIH2DPYiihK5m2LvnIKmMCTiYRo6lqRWuPu9K9JM5FrwZYlcaPNr0CN9+9iu853+8A8uyWFxcZHCwEz8QecNlV/LVr/0Tff091G2Lgd51VINlBFXjK3/zTdb1b+Pd7/kwRkrjtz75axx69jkqtQoQsmXLCJXqKi3N6yiWqiSSKS6/4k1cd/2VIARomklnRw+u71AsFtlx4S6iLc30DXYSj6UwFYeFszO4SoREIsb2HVsJBYdNW7aSb29lbn4GXVfYcc46FM3EcnwkNYnhnkasLrP/2CFIRMg1daPr7ew/vJdr3noNf/65r/Jbv/MpOre10X5ZE+Ox77Pn0F6ywnpSS29gITyBJmeQlRjptMlaqUYy28LghvW0trRh22WiCZW52WXiTT0YgY9TmUXVmxDCFXQhgHqSYn2JaDqJrEjYtkUsbnLm9BmqtSqbNm0inUqjqwIbR7Zy5uwSi8sOa4U6mVYNURKQxDieV29IymUJ5Ah2vYggywiiz9kzZ2hryyFJYsO+JPiIooLr2ChiiOA7hFKDXGpEq4YEgY/rOQShjxgGzzcweAhhiKbrL9qkGo/XhrrFsmqNBeCwyEo1xW33HiCTEojrSdRCL1qzTeJ8i+7ejdx1972MnRrjg+//JcKwxtzESfqHN9M8sJFQ+ClgfS3Z8H/1+FnA6+vc48t+/PeZVvgpXv2PBK+vd/z/Grz6nv+7L9D5L3heX2lF5OUa6//K8cLxvBrt/9KEsRePXTY5tiaSb8vjn36cQtVGNpINwFquoKkNFtY0TYyIiYRALJHE9wK+8Y1v0JSO0pRrxfNDhFDgscceo1KpMDF+lkphgaWlFQb6B5menEA1VbZt3YFVsSkWF1F0g86uTmRJYnlphXgqxb59+zB0EzOi4dRrPPX0s3R3d1MqrqEZBqIgYFl11lZXCAOYnDhLJGLQ3dlBe3cX6zdsIGJoWJUykirR2pIjmUpTd1wKq4tsGB5meXkNVVER8fE9F1WRKZeKCILA/MIC/YPryGRynDh1jJa2NiRRpFaroag65XKRbKaJublFrLrL5NkzrF8/gGpECQFZFFhdWkTTDVzXo1qp0tPbRSqdZHZ2FmgAX00VsBwXVdXIt+apVtYIwwBJEqnXLQzdZHDdEJIcQuAThI0VPNu2CcMQw4jQ092FJElIokxhdYU77ryH9nw7R48cRTcMysVGFYSuqXiugyRLaLrG8vIysiyiKCqhqFCzq7S15JmeniKXa+app55Gk5XGhNh28AOPSCSKKMqEYYhnO8iyhKwoDcmPLBGEICkqru3gey7DI8Momkbg+cRiUVRDww8bqbbB8jEsq86Knact38PCwhw9PT1UKhWWlpZoyuVoaWljcmqS0dETCKJEMhlDKx0g3jpEEPjYto0iiqiRGH0jG0llUpw9cwZD19kwPELdtpEkmUxTFsIAMxJpSKNliVqtiueF1Gp1xk+fol63ses2Y2NjNOVyFNbWkASRiGHiug6JRAI/CBgbG0dVG2mIL3hUdVVjenqK1rYWZmbmGtdDkcjn82zYMMShgwdZWl6ks6cbSVYJ/DqSCBEjwtj4BKEgEwQefX19EIqE+GiawsmTx1EVmWgswezMLJIo4rse5arF1NQ0sWicaDTO1NQEbR3tFNeKCF6I7ToEfkBHbzciEoXCKt3d3RSLZQ4fOsGZ8dN0dLbjOT4C4fMSQu9FRs+xfYTQxtQ12jf1E4tFOfrkUXr7uwhDGr74VBoBmJuZJZ9vY/TUSfoG+igUVlhZXKE3aXPbMyVOTy0zO7NIV1cX5+88h9GTxxgdPcmFF11Nc/M0zbleZMVEeGKUumXBheuIRDW6hrYzOlvknnvvZqC/H892+PrXvsr8/CLd3d088OCDDAxuQFEkBCEgDEAQI+iaSeAFlAoVjKiBqqoEPhCKWLUS6XSK1ZUl0qkkmpEgCEMc54WqjgKJRArHC/H8ENGtExgmaq4VIRRBCChXymiqiR/UCbwAWVZQZJl6vYqsqFSrNXSjcT2DIGh4vwOHWtUmYmr4QYhl1SEEz2+kJoaCgKJqL/p5bNtGkhQ8z8fzPMxIBN8PUZRG73VhdY377rmXkZHNFIvLmKZBa1sntmWz+9nnmJ2bp729FddxsKw6u3fvQVJlmrJNfOdf/oV4PM51V1/HzPQsq6sr5PNtnDh5nGeefZqNGzeSzWWZmjhFWz7OQw9MocgSniexbrCb+++7i77OboxIhEwmR6VSBXzCQGB6chZD1zmwZzf3PnAPf/xHf4yhm2iqRlOuQjqdYv/BRSrVAmYkg6bqIMvU73kMVVGY7WllcnKcubkCb3vbWxrPPaBWc0DQGBnZhB+6qIaMJCmMnz5LS0sH02dPE4kl0cwksiiQ0EVKlSVuvfVXufiyN9PW3ozv1pBkkZmFFZTQoVpVufkdv8h7fvmdxAyVZCSNZ/scPLiPDUPbOTV2jO3nbiSTTfLog8+wafNGdEMkGsliVWUy6Q7S6TRrhWU0Sefzf/6XRKIJbrjhJs45Zyu51mZKa2v8zV//JRdfdinlWh3fDWlr62D8e9PMzU7ReX0LP3n0YcbGTzI5OcNb33ILgqbzF5/7Uw4f3M/I8Cb6BkbIt+TR9RjdvZvw7Aqry0Wee+pZ1q/ro1gukcuqPPTQffzwth/whb/6Env37ubiSy5gbOwE552zjbHTM6wfGSIULfy6wK5dF3DkyHEG+teD4NLfP4Dve6wVljAMGUHQkDUVP7AoLM2hKjKIUkOJk7XRtlYJj5vEVtNIqoicEPA9C0XRUXUNRVWJmBGq1TLxeIxypYyqKkiSCCLo/5u89w6y7arvfD87x5NT5xxuzlGJCwJOWygAACAASURBVIoISYhoCZBEECCM8TjMPPuVYWyDE2MbzzyeA2ZMEAwWkkhCIAmhLF1J90q6OafO+XSfHHZ8f5xrGWNhgsdT88arqqv6dJ+99trd1avX9/f7Bt3AsOxWMdKMIAtNSsUV4qkBcrkuPNdHU0we/eGTDA4OcujQYTq7Omlvy3Li5CkQpIvO0SKyaHHu3DlULSD0fc4+Pcvu2OU0uxc5sXU/6vYq173naq6+9npufffbMGwF1dC5/IqreOyxH/DK4YNcdc01fPjDH+GBB+9j64Y1LMwX+f0/+CJr12/jU5/8LTZuGaKzYxWl2hRC4JJOZGnraseO2TQbVQh97r77QTZu3gBCiB2JsFKYQ5IkOjo6qdfrIImEoY/jB8hGhHx+lnQkxelj+zC1JB/+6Me4/o1vpFRaptasMjy8irm5WZ595lk2b9nIQ9+9hxMnz2NEcnQPb+W7T+5ldVcGsXwWoXAa5Cj7nt3PqvWDGNEoqXSEhrfMxMxJRKVBd886nJzIY4vf52jxO3T4u9mk7GGlVsRUE+gpg9E165BVndMnThGNGUSjFoEvslJcRKhPI9NEMBJYRhLPP43bzGOYCTxPYGZmCdOMI0syiViMZDLO0tISbe3tHDt6goXFRUZW9zE02slKwWf//hkWFzxMG9KRCF6zAWEDPFCNFFPTFWZnZlm3ejUBTYKAljZW8JEkhcD3CIMWw8VFavmFCCJNt/lqPJ+iKgSeS3CRCeO5DoIkXizCt6L8gsDH931UVW193RHwQof+vgRt0TaWCi6J+jAr4hzPrnyXTHaYyekZLr/8Mk4ePcALz3yfMPAZ3LiDVN8ooiC9ev5+LfD6i+KEf1lr+ovN9dPW9PPf76eD1x/FJz8KXgUuskIvmir9W4HXf8A8v0jO6/9vwKvn/iN4/V+hef1Zh7P/6/gzR5E61v3c6/hxYPuqQZQo0d3Rhpgdwo/34p18lGqpRCTTjef5LM/PU1hZIRaJUq/WUFWDE8eP4/se27Zvpdl0KJbqCH5AcWmJyclxgjBkdKSfnu4UC/kikzPzpJNpenqHefmV/VimSCwSQTFiF41TfAyzRa0b7O/Hd13CoIYkinR39xMGELF13DCgUq4SsSNEIibFwjLgUS6t0NnVhqoZCKJAIhFnYXGOvr4hjhw6QqXWIJNtZ2FmhkK5wuzcDEP9PUiyytj4OLF4AsO0qFcbhEKIHbVpOg6dfb3Iqtk6zIoSheISuqGSzy9h2zbZdJRYNIYZjRMIra7w8uIC8XgMJwyxIjayqqIbGoEnEI8nKJdLGIaKbUZamj1do1RaIZnKESKhaCaaYWGbIqqmI0gB8zNzJJNZBEHCMu0WNU1RURQJTdMRBYXicoG+/gEkWSQa0TEtG103W87EvoeoKLzw4j4Gh0aIRGN4fotuI4QSpqm2usmlMqZp09nRTTIZ54nHn+D5555jYKgfw7CoVuooqoIqSQiCiB+0fh+nTh4nm2tHkGRkSUKVNQIBAnxKhTyaIuP7Iaqm4dRrTNdSrPg5crksBw69TGdXG9PTk6TTKURRYGZyAt/1WJifZWion56+ATy/ibJygKkVgWwug6QoCEFINJ4EO8HE+AS93T1YpsVjjz5CNpMhHo0SeC6WbaPpGseOHcOy7ZbZ1OwcZ06f45LdO5AECdd1MQ2T8+fO0NPVyfzMDNGIxZFjx0hnMmiqhqrpzEzNoKkqvutSrVZwHJ/u7g7Gx8fo7x9kOZ9vgUPP44nHn6KjrY11G9aRzKZbbsvVCk69RtN16OjuwTAjIAQtF21JxY6aaJqCoavkclmef+FlhodG0DWDibEJBga6kSUZWZR5/LHH2Lp1O6EsY5kRyqUK/QN9rCyvEInHqdcrWJaBrhvEoimee+ZpdF2hq7OdRt0nDMAPQkRFxNBlglBoZYm2Jenp7Sbak6VarWK6NoIcUFkutjr5ioxiaNi6imUapDNZ7rv/O2zdupnxc2OYFPGj/Xz3yQNMT09x3Ruv4r77/wfvu+12fvXXfpUrr7kWy5aRRIcQg+UHXiCTyXDv1EHacgkS8QQv7H2RWrVMo1Gnb6CfYyeO09HeyeHDR0gkU8iaQzqdw/dEXL+KrsqIgk+htEw0Fm91P92We7ckh5QqFXTDQtMsZNm8qJEFTWsZNHmhh6zoSEgQeGhtnYSxBIRQKdeoVhawdANZ0GnWK2i6iqpq1Os1VFUBQUJRVERJQpJkFEUGBILAxbZiVCsVqpUa8VgS3wupFcuMj0+Qy+ZwXBdRFPFcF0VRCF1o1ptoikyzXkPyfRZmW7T7Wr3O3MIiiVSKzdvWI8oSkqjz7NNPMzI0xOzcPCsrJU6fPsPExDiXXbabVaOjaKrMpo3rOfDKfgaGR/j+Qw+yY9d2RlYNMjI0zNz8HOs3tubLZSWaDR3PSTDcv4qnH3uaxfwc3T2DvPktt3PnBz6A76qUimUSiTjNhouhqWzdOsKO3WtZNbqRtrY29r+4nyOHj7BpaxzX8Whr341myJiySqGwhGmqJA6fpVQqkh/pRRENnnr6eZKpGMl0hLGxKdKZNg4dOk48niQaMxAlFVk2KBWaxKJZVNFB1qM0vRBbU5k4c4qO7iSeoGBn4oyfP43nFJFlk9/4T3/ATW9+O5XKMt+8/2t0pLsZHu1habHE3NQcmUyMjVu3c9XVl1EsriCJJhu27GRwVR/xbATHV/jIh+6gUimwYXMfS4UzfPveh9m56zJ27rqcT/zupxgZ6UPRVRRR5I3XXIsbQCSWJT9foVLP05sfwbI05O1NvvGtB7jrlz/Exs3r+MAHP4CuBPy3z/wJb3/nO7CSGT7z6c8jCz6B0CCWylAvl1Blkztuu4OrrrqCRx99jvLKAjfccBM3v+UWdu/eQlt7mlhc55rr9mDFu7ni9ZsIvBopuxMzHiMQQnZdvg1J8wncEEVW0XQZw1Qx9QjlsoNqhiwXJvHrLo1qhUgsjmaYBKGAojvMdJwmkbMJn4xBGmRUqs06umGCCKHvvqpdhBBBBAGZcrmMaUfxQwERH68psrA8SUfPAEIoQdik3qhixVLsf3EfoiiQSiW4cOEc/UOjLC4ugw/fe+D7DA0PIikhvX0dWFqU5NQAki8TvGsZVnn0bmyjVprnisuv4C8+81luve0WrIiEaUa4+eZf4nc/8Une/LbrcfwKhqkwONSBiksy04Ud09m8YQBZcNm8fjv/8T++j0Ov7COTGsIVQ6Jxk1qtxszkAvf//bd43dV7aO/KkEonOHrsBG3ZdirlCo1mlUhUw0HGUjUEN+QrX/gKY6cvkItmePiR77Bm82W846br+LM//iM2rtuMJhp87+FH2bnzEh5+6IdIksKu7Zv57f/0f/Oxj/0Kum1x4MAcpxZg+2Wvx3MbrFx4gZ42mYbjUinagEtXRxfZVDtTY7MMd/fT2d3PUn6WzbvW0HZNyKnoJKv6N2KMtxMr9oAjIusidj2GGGgUKxU0Q4TKJJLkEE314BEBzSQUcvhBEb+8QKNeJRKJoVsxEDwmxybJZFNMTk+SyrShmTrDo6tIROPois7iwjxbdmxA0yMsLZV56eAYlhXDjmjIqsVCvkSpHNLZkcLUWvEqtVpL1qHpLdCJIIGkUG16qGocz20Q+i4hIorcKvy13Ipb7BdFVRFEsSUDEUUEQbq4N0PLp0SEEEJVIGmlEcMa88Uizz4/wab0Lo7MHcEZdPny3f+Dq665lmNHj3Dm5CGuunyYpidw1U23ERgZxND7J+frn+d8/r/b+PnX+rN1Xl8bvP7j56Iovsa1P+VeP+f4Px68/tNqx0+2i/6f0YH9Wa9xTz0JTu3nMmz66fcICESxRf2MpnHTo2jT+ylXKjihSCyebOW2qhqlUpn5mTn2PruX0HVoS8aJpHMYkQiGaaMbNplMDCHw8F2XHz75DLJmsmXHFnLZNM/vfRHLNOjq7CDTlkMzrJZjJiFhCMeOnKKjuwtZbWXFKZqNLMsIAq1oBEFkcWGeiG0wPT1FZ3sXR44eQ5FVJFFG1iI4rsMPHnqYod5Bjp08SSQWYWVlCV1VqNZqJFNpNm7cSsOBM2fHcZ0GCDCXX2ZuZoLRkWG6unqYX1gknW0HARREBC2ObZlUahXiiTS6EcVxakSSaRbmZjAsG89pEIY+ihnBdZqv0lL8IEDWZELAsiyq1QaCKCCJIgIh5XIRQzdwvRqOU8f3QlQzRrVWJGqnEWRwmw6NeoNYMo3jBThO/aLuq5VfKckyJ0+dJJPNIQgSjlOlWq5y7z3fYPXIeiSpZbrlOjWCoI6m2SiKSb1Ra9GjA4F4PH7RMTlAlFQ0U2Hr9p2YmkEQhGi6RggEAi2KcNDSnt339fvYuHEDggh+KFNvlNE1jXqtjmFaNIMAVVXxmg6+23I/zrW1EQoB0XiUnu4+HKfO/hf309c9wgsvPIGma2zdvhNBUjl2+CW6ejpgYT9mbphmvYmqKmiKgiBIXJiYoH+gn4bjkM/nGRoYZv++F0mlkhw+dBT9Iuhsz7WRiifQFI166BP6DS6cG6Ojo5N8Po9h6lwYm2T9hk109fRy6sw5LNWAEPa99ArrNm0kl2pjcnIKSRKZmZ6mva2NhuuSa+ugUatjmRr7XtyH6/gsL6/geB5TUzNkUmlq1TJzU9P09neSX1om9BUmJ6doy+ZYnJ8jEY9Qr7uIqoDkiniyR34+f1GXWiKTTaLpERr1OpZl0KjXSWYSyKqO03A4eODlFvXeD3GqdTQzhh0zcV2fifPn6O/rZd2mUVTNYmJsksXCLL09XeQXFonHkhw+corunhyNpoOmJ7C7bCRR5LFvfZ+hVauYnp6irT2JZcRpOk18r4ZhGCiKyumTp1i/ZTNHjx0hF1VZGD/Pr3z6fk4ePUgmnUJSbXbt3olDyBuvv5GD+08xNOzjNk3iRxdYWFxk9M7rOX36LD1ag4whsmbn5axbMwpCwMjoKl7c+zzbd2zjpZf2ccnOqynkp4hYKmEoQOAj0qJtN+oNVEXEc/xWzJbnYRlRREHmon0BrlulmJ9DCHwkRUVTDHxBRlRUZEmk6dRQZONVurCh26i6jSCKCIKMKArU6kuYRgoEh0bTQVVNmo530UG1VRiwDB38BpJmEPoeqqYjqirlcpVytUamLYcb+Mh4qIqK02hQazT5whe/yKbNW1A1GT9UMe0oTcfH8wOml5ZZNTKKpQk8+MB3UVSL/oF+IvEYTzz5FELos3v3Ls6dO0cYwvDwAC1GW0BvbzfRWJzRVaPE41FkRUHXZUxDxzR0At/DNKs0nC50c4CTp88yuG6AkdHN/NVff567PnonQ4MjfPuBhyg2mmQ6OtENEBUd1bBRTZt7vv411q8eZXB4Db/9iT/grg++nmNHT5JKrUUWDIq1BslUlkbDRX/xJUxTg0tX87GP/jq/8uH38KUvfJW5uQaxTA5LXOYdb/8lfvlXfgMjqeFVHSRB4vvfe5DB/l7u+g8f4803vxGnWUZVbb7x919n67ZLOHPmNFHTImanUOw4kmJz99/+d2669lpcX6RSLnPtlZejaDaHD53gyLHjXLHnCpIdcWRVJhKPoZkqv/aRD7Jz83qSyRyKYfGu97yN7Vs3k1+p0tG/ifn5EsNDo8xMneNv/t8vcs11V9LRlSaV6WZpaRFPt7n6ktfzgffcSiSZRjlqoqoazcFFXv/6N9CsF5Eln7fd/HYu2XMVX/nivVyxZxuSGkUQDGYXJhkeGubYSycpVitYVoQ7P3QXn/mvf8mVV17Hm958I9/49je54YY3cc2eN7CYL5BMd1OqhMQTEQzVJxACAsOC0MFQRBoVDTtlYlpRXtn3PMvFFdR4FKdW4ty50yRjKeJ2G0okQqlUoqu9h6mpWSTJZWF2nkg8R9guE64pEUwECIei6LUo4aKEoPo0Jx1URcENfFTDwmk2UDUZSVZaDt71EkEoIskS333gEdauXYPj+fheA0VqUfNHVw2SzbShqhqaqpLOJnnkoUcY6h9icWGegeERqitlktUOiocc5o1ZpPdXWAkKrJRcTM0lkFLEkwnuvOMtlMt13nrjLawdHiGdMHjowUf5wt99mdnZPNu27qBRq9LePYAfeLy8/wzrVnXz7GPP8ud//heEokFH5wATE+NkkkmaXgNDMtj/9H4eefgp3n/HG4mYOq4XEEtlEIKAycnDpOIifs2jXKvQqDTJz8xBo8Rbb72dRuk8m7dtwlUtFuem+erX7mHdmvWMDo9i2ArVcoWX9+8nm8nwmT//DH/3hc+yMH0GoVZm9/VvYuPG1cyXAtKr9mDYMQJlhvnxJxDzJeK9a1j2BRRZIWXpfOuRJ+kbGWFwpA/bqFCqKLR3djPl7GO26yz+mjxmp0EQmOiICFM2kfl25IKM2jBI9g9RaTYRVHDqgBJFVJNopo7XuIBbdSiXXCaXC6xeO0wYCriOjxs2qRSK9HT24PkhZ8+fZ8PGTcgKmJZMOplBlkRWqg2e33uB7p4InttkaWaa/p40iiJRqzeZmK9xbqxEKuq0dNVC0DJSrDaoNwRUqYogtGJ2FEXGcR0EARQliqj4iKKB54St/B18ZFmm3tT41iNnWL+hE9EDzw3wvDqyGiOUfDTZpNYI6dfW49x8lmcPPMc73/Uusm0Z+joGkMIzpLQy7es3kxu6GsQlhLBVCP2H9JAfPXv/IrjgZ00T+UU6s6+1xn94/bPM85puwj/68WMa11Yyx4+8L7wIWl/jEX/uzuu/kCH7Wmv+P5o27Ln+78E/17z+tPGLVlb+Ld2Gf96h23H00dehzh1CFgJOnp9CQERTNc6dO09HZwfrNmyk0WwwPTuNZUWIRSLMTE0iCyGaYVJaKWFZNm1tbbhewKrVW0hlUgz0tHH0+FHGJyYZHV3F0uICgefhOA6WbWNZNoZpML8wTywSQdV06vV6S3QfhsiKiqoo6LreMjByfUzT5Pz5c1TKFVavHaXebDA40KKiKoqF5wYMDQxTKVdYnJ/Cc13a23IcPXIE362hKRJdXZ3MzsyhyCLZbBbH9clkcxgRk2azSqW8hGZZFPP5lmmGotBs1FHkFnA0jVYEjes4mJbV6orKGmHQ6tguLy+j6zayJAEBkgS+7+K6TYLAJxKxmJ/LE41FCQIPWRHRNR1FlTl44CSyrKKbrWiB5fwijz/2KOvWrGU5n6dUzLdiCxSVZDKBpsmYlo5pRVB1heHRQQ4fO0Q6nSESsVEUmWq1hmVGWhuWAH4YIEkCkijgOB6ypBOEAcXiCqlUGiFw8RwHTVMolYrIsookyfzt336eVatXsXbteo4cOUJXRwf3fe1rVGsVurq6EQUIgwBJ8JEl8SKt0qK4vILbbLKSzyOEIclUFsNQSKXjnDt3lu3bdtDZ2cNLL72CZVikkjEMwyBc2IcS70FAoFFvEPg+su8hxrMgtihB+17YR35xmd6eHhRFY2lphYGBfgRBwPd9jh07xsTEBLlcG0P9/aRS7ciKytzCHKtWjTI8PMKJEyfI5dp49NFHef3VV5Jtb0dTlRYlulnBc5uUSkU2bNqEqAbEkzECwUeWQsqVGv2DgyRTKbq6u6lVKmiqQngxRzSRiF/czyVczyeTTlOtVmhry3Hy9BmCICQZj6AIHsdPn2Z4cJRSsYiqyCwv54lGYxeNt3ziiQQiIbVKDUWU6OrowBcEZudmMW2LWrmEZaoIgoIdiWMZMuVaCdOI89K+V9iwaS2aqnLmzDls02J5uUBPbxeyorAwv0i8N4ksyQRFn1g8Tkd7O2fPnCIaTSIpUkvDLKs88eQz6KbFwGA/6VQKWbUYMi4wE7mS66+7li996UskUhnWr1vDx3/3P3Pbbbfx2A8eZdfuCGfPFvGfPkUsHmNmwGb9+rWUn/0yjdmTNDJrUVUFOxLBD0NOnTiFaVn09/Xj1JuMXThBZ3sbnu8jKxKFUhHLtpBV+dUKu+O0jJQqlVLrAC0JrQ5QNIUdjaPIKo260zLzcFxkWaRZqyI2agTNBoJqICutrmi9XkESBTzfQxBFXM/B92nptySJIODV3EoxBEEU8H0Hz2tSrTUxjBblfH5pkXg0Ri6XIyTEc1081yOfX2nttZrGju07AIFioYCumzQaDe6//342b95MNp2CIKRQzLNj127iiXRrH4nabNq0meHBVUxPz7Bnzx6mZ6ZezSYMggBFUQARRZHRNQ1RCHEdl0w2g+u42JaEJJZpeOuRJZn77r2P4eFBkokk11x9JU6zyeLMFA984zs4jTorS/OMrl5FvdaKAWo6VTZt3EQiGqNSq9E/NEx/r0cikeC//T/3s2P7ZVhRi2eeeYa+vj7u/urdtF22nVoszte/8RDvfe+tZNvakFWJb377fi6/fCvvvu0OIrEYiD6qYLL3uRcxdJvn9+7nU3/0KSDgwCsH6eru5mtfu4f+gUEazSa5tjSmYVAs11AUlUt37aTplGkGPldccQm5bIyTJ6coFIq87/3v4bsPfoMNmza18rhVlcD3eMdb34rvNkGUUE2z1ZVXNGLxBGEI69auw7IMwqDJ3V++l6tevwPV0ijVHN5+/Zt43113sWvTVu6/76vs2H0Z4mEd33fRdolYlo1u6DSbLg888CAbtw7hVU1+8PAjrNkwQm9XL9NTY4wMDzE/t0R3XweHjxzmk5/8Y9721lv53d/7be54761ccslu6vUGb9jzep56+hkM02DLlk2US0WW8nNk2trxfQFb1gj9Mt+4917WrOtCVUxymU58TySX6yJmW+SynciywelT52jLpknFYyyVStipDIInoSsqv3TLe/nc3/wVu6/ZQuYKG+VyiQuRo2Q2R5mbnsUIIgjjBuIFG8oiiiUSLqiIvowoyPj1AFVS8esBWzZswa25SIGMGIgoaBSXKpTyJaJGnC9+8YsMDvWSSqfZvGkzp04eJ6fnGFHXE5tro2ZXuG/xHu766u1898Fv85u/+Rv8+Z/9Kddceyn5fIl4PEK1WuQzf/EZ/vKzf0l+aQ5JhmvfdB0f/sj7uWLPJZSry+SyWQAKhQJDw6toNhf53U98givesAfTVphfmKGnt5Pp6QkSmShHDr1Ed1eaa2/cw4EDB+npG8DxfBzXZXLqOD2dI6hKjJA6jeoi7W0pVAMG13Zz7vxRxLCJKGYwjH5KpTJ9AwPsuHQ3LiGqbqDqOm+46kr6BgcYXTPE2nXrSKa7mJgqYisC5aUCqVwPX/3at7jhje/n5rf8Fu/6wO2oKZ/Zow/QE0nyg8f20blmG22Sj26YrVSEZBYr2s6Z8fOk26PoiSh63GJZGOdM4yEWwwL2niO8JP8hi7FXyG4agnwXyqEsYlTEDxz0uIlhJLCMNLqeQzdKeLUzREMB1/dBsjG0OG6pRCwVJ5Sa+HhkMh0sLi2RbW9D1008N6CraxjV0Egme3jqqf2EUi/dAwkUPWBxsYlhicxOBKysVBkZiKBqNsLFc4rnBSQTMRTFoNR0sAwV13FRZAUBAVEKOH54jlhcRVE8mo6Pqso4TQdQmJwq0dNuo8gesiG2Coe1gIWFBgFJjh2ZY3ViA/fkP8f7Png7+DqKKvDUY0/QnZOZmDrHlTe/H9QEhB4CEvDPgeG/5fjXdHN//Np/SXb489/3p3Rif4Jj8C+kef0p+tofH/9uwGtrtH44P60S8qOZQq/FK/+X+OU/07ou7ANC1MFdP7Hb++NZUT/6/Xq9jqqqr3ndq9eLLSqx0rMF78LzdOYynDwzTjKRIgxCUuk0rhcQjcXw/IC5mVkWZ+eJRCyi8RiKoqPrGhMTk6zfuJHDhw4x0DeErCk41RU6uro5ffY8q0dGCAOHsQvnGRoaYmlpCTsSISQkEokS+AGnz5yhra0NWW5RjmRFaVFPHbflhLe0wvPPP08qmaKnp5t4MkIimUGWFC5cOEu9UWJubgZVFYjGNGrl8kXAJtLR3ka5tIJpW0xOTNHd2c7C4jzDQ0OUylUczyeeaKdYrhCPxkEysXSJsbExMpk0nudQKZdarqCyiiyL1OtN7Gjsot5NxGk28X2PWDQKISwv53GaDVaWF1FkDYB4PI7resTiCQK/RbWSZYFiPo8sy7y0/wh2JEJHZzvL+UVSqSR9vS0Ap6ky0ahNuVREMyIt0wS7RacuV+uYpkEkYtHd04mhWbiuAwiIgkK5VKZaKmDbZquT6rmtiJhqnfu+/k3WrFtFGAZomo4qCpTLJYIwJBK18TwQBJGNmzbgOA57n9uL57oMDgzQ3p6ju6cL09QRBaEFKpaWkCWFs2fOIYsylTMPkDHKLDejdHZ0UKrVqFTKpNPpi/OLLC4sMNDfx+OPPcrGTRtZWi6ilw/gKhl0w0AUW7oWmi4nZpbp7OmhWCzS09XF4OAQ8/OzeJ5PLBqj0qhRLpfJ5rIcO36cdDJBIpFibHwMVVVYXJgnk0nx7LNP09beQcS2sW2LWDxGoVwh8H0MXWVleQlVlZidm2NlZYVoJApIqFqEetWlUW8Si0VRVZWZuTnS6QzRSIzevi4y2TQnT5wmCH2Wlkr4PiwXlimtLBNPxpmcmmJgcIDZuXka5WXC5hJ1R8YyoxiGRrFY5MyZs+SyaYIgZN/+l/HDENswOHn0CE2nTrPp4Hg+qVQKwzKYPD+OoilUKw32v/gKL+1/lq07thEEMiNDQywuL5BKpjl29DirV63mlZdfYmT1aoIw5MnHHqe2WCamxEgkkpQKRRyniW0bzM0tkcqkCPwWTaotl6Ojo4MTx07Q09PNmbEZMnIBLT1EOYhy9dVX86k/+hNcp8Ft772Der3OSy++woaNFrFYD4t7j5Pp7yZ95RbqjTrSzEEWFhdZiQ7R29OL47nIqsaJoyeoVKqcO3+eRCJBZ1cWXdPwfQHd1Gk0G0iSgqQoeF7rcKNoGpIkUq0WME2DcrlMPJ4gCIKWnjsEWRIQJQmBkFqljKbruPufJJyfQulfRRC4eH5As1ZB0xVERUGWZVTNuGgiokHoAclEbwAAIABJREFU4ToesizRbNRb7sJKS3dVr5QxIwkIA2q1Bk898wzZTAZNbUklLMMgDECWFGw7QqG4gihI6LqJqqgUCkWeeOIJ9lzxOizLJPSb3HPPfVxyxaUEvs+RI8eJJ6IoiowsKTz0vYc5fvwYjWaNQmGFNWvW8srLL5OIx4nFYqiqfPEffkCtVkM3jNZ+omsIwiJ1N8nYRIPiSpn1azcQi9o0nQoCAj/8wWOMnz3BNddch2Xq3HDDG3nokceZmpqhWFzGsGRkUSG/OEt+pcDQ6AjJ+Ar1Wp2xsYCNGy5Ft2Wy2Sye57EYCoy87gqaTsh///zdvOOd7ySTzTA5Mcatt96Coul4HvzO73yCrZu2YZkRkskkt/zSuwGBdLaNWCxKIhFF0wxyHS3w1d3dSyTS0pMrWoRarUbg1bBsEzsWR9U0CstL+L7E9m07OHjoIE88+RhXXn0VhCHFwkor59xtOT0bVhw/lPCbVYr1GvMLi4SOj2lbLC0ukE5FMY0YL7/8LG95y80gwB3vuAnNtsjE02zfsRMCgcJTVaKxCLXhMg9859uUy3VSiTbe9vZ3cPv73kHcbOejH/kAd7z3fXzlS3/HlW/YgyBK9A8OcvDAUdavX9fyJsj08hu/+VFSqTgTE1PoWpTlwgqLS/O0t2XJpBP82Z/+OTe97S3ohsmTjz1Of28fRw7t5ZJLL6faLBO3Y9TqHi++8DxDfR2IkkClUmNmep6XXz5Ad1c7iixSbjSZXVyiWXaolso0XZ87bruNHTu34DRriLLCxNIZtHYJoTdg1we2cvOf7KK+sUzZKoMfoMkS/oREuCAiLssIeQ1/QUBclpEKOkJewV8QEVc01JJJ1E3hzPrsSl1B1EkSTIp44yH90ihtkU6eWvwBXb8Rwbxc5XP3fY57v/4VZqan+chHPsgDD/w9ghAg+D6lUoH+oWG2b9/A9PQkhC79A53EshlEBaanx0mnE5w7N8bdd9/Nrl27UK0Ipglvf8vb+dJXvsrWbWsJQ59nn3uWSrlKT/cqjh46xdGjp7nyjddjR6Momo4kq/hBgKn6pJM9lCoOuq0TtdqYm61gR7KUqz7P//A4Tden7ixTdeaplXwOHX2Z3ZdeytjEAhFbp9FoEI1GkCSRzq4cBw4dJBR0JmeWKc1P0dHRxYMPPsr1N76V5/bfw+//8e8Tia8nUDowYgMUpp6iPv8iIzmBYgCBZhMQ5ezpccbOnKEnlySViPDyD/+awTabsweeQ26ME+sYw7LjfPd7Y9zygd/hto9/iJG39BK5ool3DozT3YieRlDxqXpFxFQUWU1hmgkQy/j5cxSKeZKdXTR8H8EFJ/DRzSiT4wuk0zEkWaVeaxC1bXzR5dSpY4yMrmbNxh3se/4pbC2LqcgUlheoNiN0dYcMDmcRAgkuaiMlSUbXDXy3jBfE+P4jB+nrjiIILS8PVdWo1WsszNZp74wSBE1ESSX0A1S55dUxMBRHCj1Mw2C5IPHgQyfo7OojCDXa+7oZHunDKuRY+9EunnjiJfY+8TQHDzzH2998PRNnXqBv7UZ6V70OTwhRBOWftLj+Z4DXX6Sj+rO+/1+DQ37GlfzYyx9zXEZ8TVz0rwGvr87zE4DxvxvNK/xz8PrTxr9klvSLXPfP1nWx86oM7PyJgcavall/bO4wDC9ScIXXvO4fRij+wzwS+uBO3LH9qKUxFpYLnDh1jmQ8jucHFAtlotEoqmYydv48I6tXoVkmhcIKTrNFa9y/fx9D/f1MXDhOqVgk9FzGJ2dZLpWI2hqJiE02m6FQKKCbFpZl03CbLTfLQCCdSXP48GEymQzLy8tYkQiu68FF4yJTN8kv5Zmfn6fRaKAbKqaZ5OWXD7B71w7isTgT4zP09/VTKi9TrzXIZHPMzC6Qyebo6e2jb3CY6dlpnGaFYqGEqqoIoowkq0SSETRNQULAR8GplbAtG0kSqFSKJJNpJAEQJdxGHd2y8QKoVsu4ToPZ2WkymRQQUG9UsS0DQ9PRFJ3FxWWSyTQgUK3UaDRKaJqOomitbrPj0HQadHX1kcrGwHdIJBNU63UMy6bpNtAMk6Xlwqs6WdM0L2a3CriOi2VYlAolyoUKqqYjSQLz84tUKw2qlQq1UoFILIKkaaiihuPWUGSVNWvWo+oK9XoN247ieT6KZrScWEMBWdK4+yt3s3r1KkzLoLe7g8GhIQRRQbdMJifOo2tay1RJUcjnK8QicY4cOMzJo8dY3xvgNstEenYS0rKyX1jIc/LEWWrVJpFohHK5yOLCDH19nSTb2jEiCcLZZ6hLGZrNlkGI6zhoksRkqdUZFBFoNlomTO3tWSYnJ1i7djUv7nuJSy+7jMXFRUZXr8YydPY++zyXXX4Zk2PHaculiJgm1XKVRCqFaZosLC4yMz3F8NAoge8xOzvNyOgwk4vLrNuwkd7uLvKLC3S0pxkfm6RYKHDh7Any+WUilo3ruAhhyKNPPM7qtSME+HR29aDIErador2ji2wuyfzMNFPT04yuXoOi6Wiawcz4OUy1RiTWS7Ppsm//XrK5HLFYgpf378OwbLZs3UaurZ39+/eRSkaxYxGWCgXys0scOXyYRCJBtebR1pHl+LGTVFYKvPOX3sG58+ep11z27n2S7Tt24Lk+ETvC0lKetatXgyzhA4aiUis1CLwQwzKIWDaqprGwMMPkxCy9/b0oYojntujKbbkMbe2dFItFHn/8CbZu2czyxAE++fknueSSS9i+6xK++pUv86GP3EUymWR5cYmduxKIYoJgwwCPLV9gZmaaF154nmG9iKzIJDddh2UZlCtVGo7D6ROnGRoe5sLYGIgK3T1tpNJZApRWkSieAEHEDwSazQaabgICiFAqLhONxvB9CAOBxspkSwslSwSECLKOLIut4p6s4Zw/3tojOwdRFBFFsbA0iXq9gWJYrXmRCKgjYFKttLqmiqIgSgKm3jqAOs06sgjKxeKRIEisWrOGqB1hfm4e12m2GBoSGIbOZz/7WbZv24okynzzG9+mt6eXF194kf6+Pp584gmikSiRhMkll++h2WwgBWDaEZ559mlGRocJghDPbbB+w1pWrRohnU5jGCalUolUKo2u6zQbdQxDp1QsXHQl13E9F1H0kaU8heoq6jWBv/nLLxCx07z73W/jYx/7CH/wqU/x3ts/yNYd65hbXEJSJRLpGJIcYfXqNfT1d6NqIpKgYuoKgRAiKhJuw2RmJmTXrisoFwNCqYHruti2TaqrHdXQ+PX/8KusH17NN77zCDfe9GZuv+09vOuW2/jrv/kiqmpy/73f4qYb344gNnC9Jh/72Ee5/vrr+PBdv8oH7rwDTVNoNOq0dfZw3XVv5qMfuYuVwjSKItF0JVRVRRKa2JEMyAZhGBJ4AZ2dGebmFrnxhrdy/33fZik/SyqRaGVfryxz+MBZolac8clFBMmiVlkk29nJhz/4IW5+001EE3GuesMbWL9ulG9+83t8+jOf5vEfPowS1CgsXSCWSTE/ucxTT+3j/q/fg5o36F/XDaMimirx1a/cQyya4ZZb3057rgtVcrjzQ+9kcrzJw9//e664/ApqDZea0+SBbzzNtdft4QN33oFpWniez7lz53nH297Db/1fv4uotZzUd23fwhc+/zkmp+bYc+21RGIx+jo7mM0vMDDUjmHmENQIzcoyVizO6EgHhaUzBIJMtVqlvb2djRvXU6rXOHPqJJNjUyzOLmGaFh/76J384Z/8IWtHNuI0y+SXJ1lYmGKgfz2FlTLnzp3lv/zpf0GRYN/hQ7zlg2/lrj96D9YOhfBSB/VKF/3yCvLrPIrrzlPbMkOws4q4c4n5VeN4uyv8yQ9/m62/tpbrfm8Pd/zNzUxnjtJxY5TvTN1L9Fod43qP6KYUE3NT3HjT9ai6zxtet4f1azdw7XWvR9N9JE1BDjwM22ZxpUCtssjo6AjZTIJcWxIpkkSWJEI/IB6JYVo2l19+Oa7rspCvIwoO1XKT1195La5bJpNpI5Vso693GDPq0d/XTiKZwEzEiMYzeL7fyu+ulLG1FIHYpOlV0YwczdChUKhw4ewYUhBQLCwgKgKmFae/Z4SnHn2QW2+9mUg0zf33PsTXv/RF4rZFKh7nv/7Zpzmw7yVufstNOI0mDaeJL2oUVpbYvn07N950A7e+9TpkyeDC+QKyUefTn/4cr5wucOeHP8jc9DEWJ5+ntjyFVJwlHi1RW3iFC4e+y/zkIRShjGK65AaGWLPr3YjqOlzaed11N1DwlnjvO+/Eqc+Q6UjDmiLhjgaqAf4MKGeSSAUZqia+YqOkc6BFCZpFyvNnkIQasiRi2kmqtTqG5lIqFLCsCJqi8vD3H2RoZIBEtB1RlNEsnVqtwfpNa9j3yiucPrvE5GyRod4uVsplfF9BlbnoJ3CRSSKKiErLVLW9Ld7af0UJx3EJA52u7hie6yNLCrIi4Xs+kiBQr9fQFJFmJUCQYKngcGS8yPTMJKIQB0VGwcZcSdGgSWStRaO4RD5/jtGhdgoLx+lcs5NEbjOBXEUOLIKfEJXzv3L876Or/cW6o/9a8Ar81BzYf5fg9ccrBT9LR/VHNbE/afysFZYWeBWQ+3f849yv0soF+DHx82sB23/6XP/8mcSW91dL24iANnQJZixFZOkAA90ZXjy1SHdnhmg8jhu0aBuiIBPgk84mkTWTeq1GJhVjdmqBjs42MukMPd0dXJiYYm5mjN3bNjE+Nc/0zByBIGJYESqVJpGYiSRIiIJEuVxEMyOk0mkEUSIStSnll6jXCkRjFqKkIUsyRw8doreni/auNnLtbciiygvPv4Dr+gSej+dWkaSQWCSJH4KmCcSiSfIr87j1Oum2LhpNH6/p0Gi4FFaWUHWFCxfmGR0ZQZYFmp6PIkuIWqurnF9aIJ1I0ahVEPVIK9oicFBEBc8LcBwHO5kilkgiCBK1SgVFNqnVW26ksqwQTSfxawEv7n2a3oFBrEgMIfQRQp96MyCSiCOrBqIsous6+cVlZFmkUi5hGhaKqtGsliEMMSMRqsUCuqqwsLBMswEnT56mf2AIpICFhSq1yjLpTAZVV7n3/nvYtG4ToaBw5ux5ejq7mJufRdEMZEXFDz2W5heIJ1Ms5/OostoqHpgG+DA5McboyCC6KqOpMqqq4LkOhZUCzYbD0UMH6e/rp1ZvoqoGiaRNrebxwr7nGF2zGr15ATsSRevaQb3aQAxgeWmBDRvXEovHkYUQ13FIJJLUak3Onb9Ae0wkXD5ELUwST8QprCxjGwZOw0OPxykuLyEiE9Kkt7ef51/YTy7bydzcItt2bmNmeobOzi4mJ6YQBcjmkqwsr7CwVGNk1VpOnD6DYUURRQHP9S7+OYU4zTpdHe2Mn7tANptFFhSa9RqnTp5gYHAAUWh16Cu1VjFjYKCXhuOSyqSJJmy6cykmxsbJpLN4nks0mUAgZHL8LIoIQbOEHTEIQgFVsYhEbPAc0m2dxJLtBHisXrWe06dOEYvbbN+5GzsSQZRFSqUVzpw6w6o165BkhY72DmJRk7VrRnlh7wsg+ExNTLJ+3RpGV49w8PBBurt7OXfuLFu2bGN5fhnXC5mZn6ent4MHvvswfT1tKKHKsaNHuOSKHcRss+VILMLS/DjJZJbpuVm6erppJbmJtLd3cvrUGQ6+cpBYtGVONDiyDjv/DFPKHr75wCOcOXuSpblZbrr5OnRTZ3TtOkxtjHze5dmn92LqGo1mjTe/9a2E4/vxXJclvZvHf/g0ubYctqnQ39dLqVRkeHCQbds3Y1stpkYouEiiDKGEgIjTrFzsqIoIQtgy49INHMdtOW97Dog6khDiew66ZlOtrbRibyQZ3/PxJ89CGKL2jFCuNgmcBpIkIKs6fiBBGCBKAvVaA1UTEWUF3TARhFasgx8EyKqCoqkoutnaV4UWnVkWoVKtvRq1o+o6QSDheg7btm9neaWAHTHZuXsH09PzXBi7QDqTZmCwn77+HgxDZW5miq/e/VUEQeYHP/ghl15yKZl0Ct93yKSzRCI2hw4doLOrnb1797FpyxaWllb4uy98ie3btyGIIqquIygKsigiKyJBmCcIk6wUbdqznXR1pFm9poP33fWraFGdTVs2kbQTnD4/wYZNm8l2dlJtesgSpDIWhCKKFOelF58nFAS6O9awOD9DsVDhr/7yS4zPzCDpLslIjIgl8/7bP8yta7YSjI+z+crteG6Tj//BxxEEuOWd72Jh/gK2LLB61WriqRQbd65HNgyiCRNBcJgcP8+Hf/1OKit5Qt9BUAR8V6KzQ0Ohhk6MaLyb/NI4mtjAdx0WZmtIYYDveTTdkBuvu4V33nIDlq3x8d/5JGnLxI45JDKDmHacpZU8t9/2fg7ue46rL91MrjNNw5d41223o2oixcU8d975UToGhrjxnW/CrTQYHFzFQw8/Tc+aNaQSCU6fOcjwQCc3v+tWErsj/PH9n8Z3dW57z7vZuX0nf/bHf8jHf/8/IxPhwsQFItFMqyu91ORP//SveMM12wj8kLjhkoxHiUUjfOSXP8TQUB97n9vLl7/8Be6+++/Yun0DqY4W+wlHo1Iu0pFrI5XKoJg2EdOg2RRw/TqGLqOaUSQJpianyXX0cfLQSW5407u55d3volhfIpPNkUzG/z/23jvKkqs89/5VrlNVJ8cOp3OcPJo8I80o5wQCESRAhAvGBucAxja2P1/je+1rcPhsvIgiOABCIIIllNOMwuTcMz2hczjdfXKucP84EpZ1ESKt9a11/b29aq3uqtqndlXvc85+9/M+z0MyEWbVSA+F3DLveM87mZ+tsf/gkwwND4OgMjk1TTSY5Hd/+3e59ebb+Ojv/T5XXn0p6XQXV+7exsTYUxiJJJFIHLspIigShUoWO7eMFRvgxOFjiDIYukVXeze5XIV4KEl7sp2z54+zbc9q8pUcH/yVDzM4GqW0XOArX/oyvX1xPv4HnyCZipPuivPgD57hX+//Mm+/65c5c2aMN93xXp556mnufssbqNZtJMmg2izhSRUWpjKEQn5qdQ9VD6NIVWrVBfY/8yKPPLKXS3dspVyao96sYFhhECT2H9yPYeksL+WpVBt0dXdj1+tIuDTqDRzXQzf9eE6ZWrVKuVgiuzSLP9yGKrqEgxayz6J7sJtAOEY80cEX7v0Sd77lbvz+OJ/7zOdYu2qAVHcbN9x6C6ovwLU33EZfXzuHDh0n1dFOOBrg8h17uOLGG4jEI+SX5hlZPUpPXz+yV6CRXeK2O97I5Vddj2JYLBVtNm+7iVTvKPc/8H06Btaw6bLLaRvdQlns4eobPoQavgQ9vIrvffff0cISlmVgGBaqHkKURQxNo1opICkGTfLIXXVKA9MsrxrDn5ZxKyCdCOLlZJQ1fvxGL4quIQhVFGeB4vJFsAVsV6RcaCDLHrPzc2zYvJPM4jJBv4lHq1LGZ6pcuDjJps1Xs3HLdkZXDfH1bz/C4uwSI0NhanURT7OQkfGqNWxJRREcgpaCLJk0mhVq1Rq6TwengSR6raRSkKlWPBTJwbY9BNlC9Czuf+Qw3R0porEUuqRz1dW3kujooFrOE4t1oS20bBKb/Yukoh4DkQpH930Hf892hrbfhG7IiJ6G+zLv8jXm3vB/VkW6rvsLSzZ/UhXh14pXZyji67V/NadVFGkps7W2lxWEf7ghIiDyHwnLj7kPXvXar95ezXF9uS/ej0ZdX87B/stxXlvxkyGvP2v8XJzXVy9CvEbbVyOyP2l4goBjpfCtuh5bUElLixiFs9iCArUi8ysF6vUmJ04eZ3BwADwJTVGZmZni4oVp+gb6yebzTExcxLZtNqzfiOH3oygayUQcURIIBCz8fj+SrOG5Io1mE9drUK81kGWRleUMPl3DHwjiM3w0mk1wBexmk462FAf2v0ij2SQSbueZZ/cxMNjP4NAA2ZVlTFOnUi4hCiIzs7N4js3o6DqGRkfIFcoUSkUunB1juDfN+s3bOXTwCEOjI3T3DlOp5rCsAKpqgCAhCSKe6yEIIrbtohkGjt2glMuiKDL1Rp1KrUIoFMLzxJZEe6NOsVCmUqkSCQfJ5bIthBQHz4bOdBLdMFhcXEHARpJEJiamCQRNqpUqfsuiVq2hKAKG4cOnm5wdO0+lUuLwoSP0Dwxi2y6WaeK6DvPz8xw5cpS5zCIjw6NMXBhn3zPPEQj7CYVCiKLAurVrcew6/mCIxx57nMHBIUyzVaIoihLVap1yqUgkHqVZr/Ps088jigKBoIntNAlGQgSCQRRVp95sIomtUh2/349tN+lKd2NaLdT6xMmjSJLE8WNjuG6d3ZftRiiO0ajVWS4F0Ewdy7B44YXnSXd1oWo6C4sZ0t097HvuebZu30GtUseSywiVKfINFb+/VZqbXVpGN4JUNZNcIY+u+ZiZuYiEj2AozOp161B9PqYnLmL6DC6cv0CtUkWUoLu7hwcfeoiduy6lWi2RSCQ4cuQooyOrkCSJI0ePMTI8ihnwI4oSgWAQVxBwXI+Hf/AD1m3YiBUIcPLIi0SjKQTBRZUlljMrNGoNSoUKwWCQerNJqr2DfKGEYViMnz1DKtVBKBBBQOLchRlWrd2AaQXxEJifnycSjWJ7Dk1b5cUXXqS7q5OenjTPP78X0ZMYHz9LZ0cn58fPsXXrNk4cP061WqFYLJFKpSiXy6TTvSwtZZienkYQBDRNY3Z+noWFRVJtKRLxBM8/t49ao06pUiYRj5FZXEbTZSwjyNnxMwztHEEL+6hlyzge+C0LzxPp7e2nWimjKVrLpimbIxgMkVlZZN2GtQwMDZDJ5TDsFSZWyhw8t8Rf/I8/RxAlfvCDh9i79zm2btqOrKywvHwOyzRYv24rIyODHDt2HGX+KJVKlTMVnUKhws5LL8OwApiGwcrKCo7jYdstu6hqpYLhM3Ecm3q9iq4rOG4Dw/RTKpV+aIMgSR6KIrcUKAUPWVYQXzJSl1UdwXWxm00a9Tqea+NMn209t75RVEVrlU8W8niISKpGIZej3qhjmmbrs9l28TyHSqWIrIDd8Focd0/AsR3KhRLVcpGpyQmCoQii2BJl0RSN559/ganJWULBED6fyVe/8i9s376DpeVl7r//Prq7u1i9ehWptgSiCLVGA03zsXPXLrLZLJftvgzD8KHrWgsPFlVKpQrxRAqfbrAwt4hlGhQLy9TrJYaGB0EQ8NyWr6fTbOB5oMrLFMq9eIIPTffR3pbEcV2mLi4QjkdQZZFCYQlFaE0ivv2NB3BqHldeeR233HQzftOgVssTjam0t7fzzNP7icb8WKrHzh3bGR7qZ+3qIbLFDJnMEnff/R60f70f3/QC1s2XEW/vRNeCrCxnicUiXDg/Tv/AKH/7d//AnW99E9GYD9d10HWFC+OTtHf0I8kKmbkMSws5BFEj4A/S19uNaVocO3aScCJApVJClFRMM9bSIMjmCYXDuNgcObSfy3bvYNeuy7j5plsJhSQcwaZaAYcStZU8d931Nu56z1uIdUao1D0MXUVxm+SWFxDcKhOTkxx68SDtiQ4WMxcwDZP2jk4iwSiO7dLe1onryWBLWD6VgCWzarSXu+5+J5/+h3/gy/d+kXAizB/90cfYunk3V115HX/8p79B1/Aa7v3SF3Aai1yzZxcbtl6O7NNYv2UD56fPMdyb4sTxg1iGDl6dw8dOsnXHDhRJ4fyZM7ztrrdSs+tYAYtPf/ofGB1J47dMysUqQX+UQrGM6AoIHjhNh1Akwm233snJE2dwGh7hkMKxY4eIRaMcPX6Ezo4UZsBHuVLhU3/9KW677TY0VSUYDBINh7jyqj2cHjvBHXfczoF9R3jL2+/hz/7yk/SOjGKZPlzbRsAmn1tCEiOEdB++UJyTxw+wes0wkXAUSZLx+Qzm5i5SKC7zxjtu4tHHHkYSZX71tz6GHjIYXLcZXTcJJ4IEQm10D3SjaX7u+8YDfPxjv0qzUqJ7ZIDf+K3f4sbbrsOTPDpSHZSqkyiyQtDqo1pbQVIgGAwhiCJzF89hGL2IhsJley7FdUrohkookkTTWhSfeDxOIpEgEGj5vWcyi3iei09vKdtePD+D6QtSbdZp2B6qzyISS1JYXEHxXDxRwIrFkAWRUChAo1lgdHUfDz/0OLV6jXwhx2W7L0V2IGhYHHj+BTJzs/StHm2N24UsufkSA8PdXH3NdaiywZp1m1A9B8UyUAyZ+aUZOrqGKNccFhdWGOgd4djhpzj8zPd5w3t+B10bolgSCce6EQUf1aaAqls4NOjsjhOLr6dSavKVz3+WHdsuodQUQYBqvY4ZjrGyWCYYSFCtuERj7fjSCvWeFcTLiih+hcYLCsKYhbxWByGIqQdQJJdqbgbRnqTh1dFUC8sfx/L70Xwax44eIhppLfQHg63v23AoSrmURfcpjIysYnhokKWlPA89cYJjJ8rMzs+R6LRYXHDxGSCIGsW6yaNPHaS9PY3d9FA0i2KpAeg0bYm9e8+h6CGOHJ9nuaCymHPo6FqD6Y/ij3TT1j6AqLQWQ/3+BNnFOQKFJIvuPA+d+Z9Y4kXGz50i3rOWN9zzm6C0hCxFUX5p8v0fecKPmmu/eg7+03BMXy9+0YjrT89pFX7c0Z/quq977Z+S4/rK5BX+C3Fef5Rg02uV7L7W/lcef3kA/7gS49dsXy8h+uNIsd7/2Md/vubPOmheiyvreCBKIrVGk2DnCG7HFvZeqKMJLn4nQ8KZIxiJ8cLpGYKKQ6niMjY2xspyhs2bd7CUW2Z0bYs3ZdcbKJqJIKnMzE7RnmxHlEQ0TaVWq/Pi/oPEY3E0VWclu4xlBTBNE5/ho1arIckqS0vLqIqKqshUKmXOjo1RKpVYWl5hZmaRjo4EoZCfYrGI3WywspIhEY9x8eKFl3xSq8RTaZquy8mTp7B8GqooUC4VsR2B7EoOBIFm08N2aoTCMRzXoVav0WwWyOaXEEWPYMSiUXeolvJoqoKmWzhaFS04AAAgAElEQVSOjSB6FEsl/GaQaqWIJAmIokxmMUOzWcfyWwCUq1V03QLBYWUlj+uILe8yScTyB9A1GbvRoFatoqktC45sdgWfz2D87Hk62tsZGF4FiOA6OI6HILT4wslEklKlTEd7Gk2X2LJlM+0d7diOjee2OB+mv2UXsmbNagRZRJVbgkdf/MIX2bTpEhzHQTd8+HQfqUSKYMiPritomorQuiTVahNd11FVGcd1cVwbBCiWiuRyK5SKhRavxYOTJ84QDltUqxXi6jKyJHN2QaCvv5+5mTli8SiCKHL4yFEG+vtpNhqMnT7NzPQ0XelOyitTaM1Zgol+lleyuI5Lo1rFQ2JyuYiq6nR0dNFoVIjEErh4zM1OYxga9VqDeqOBYZkMDQ1hBUzKpTojI6NkMostVL+QZXhomGKxxGJmkXRnJ6Zp8JnPfo6lpSXsepNkKoUui/T19CCKAqbfwtBEDDNCrVZleWkZVVPILC6RL+TRdRV/yN9aYUXk7JkzJJMJJi9OcvTYMXSfRnu6h7m5WURJolQoEIsEuXD+IsFwiEOHTjAzM8lAfy/5fJ7BwSFWVnL09vViGAbRWIylxQyWadLZ0UEiFqdWr7O0tMT42QtousrS0hJr1qwhn88TCITp7+9HVRWee24fG9evIxQJ4QF9PT20tafp6EhSrzt0daWJj7RTtRtcODjBqbFxkm0pFMVHrVqn2WgwefEiwWCQ+755H9u2b6ctleahBx+hv3+I06fOItDgkuEES751bN64nZ7BAa6+5koe/P5DvLB3P1u23UbAH6bzK8+jHzzPwoBEW3sP4vRBarUql9z+AUZXreKxRx/jkR88wtDwINFIlEcee4yJi5McPXqE0dERLMtkKVPm4Ycfo7MzjWWGcHHQNe2Hn2OFQh5N9yG8tELcbNjU6zV0wwRBeYmDI9JoNFBVBW96EhDxOrvJ56dwbBG/6UeSZQRJwqfrGD5fC/n1vJfeowK6ruN5HoV8DlmWEBCoVCpUyjVK+RynT4+jmwFEASYvXKBWq7J3314ymSUqlSrxRJx8vkC1WiccCrN9x3Ys06RUKr1ks+WjWmvgD/ixHZt4IoHh0ymXS/h8Op4HoiwjywqnT4+xd+8+Vq9axcrKCr29PXS0dyDKMnbD5YFvP8C6NaNIErhuHUmqUK70ISg+NE2kYTcQPJl4NIQniEiSiih6hMNtSLJCKh6nO93O9h07+Nq/fZ177/0sb3vbHRRLWQRBw3FEAiGZXP4gnekAs7NlHGyiiTbCkSSCqKDsPYTTdLiYTOMzY5w4cYZ4PMbjjz/Mrh2XsbAyz0M/eJjrr7+OhcUZGtWWf26l3mBuYRnDkHjoew+x9+m97N59NV/7xtdJd3YxN7+E4Q+QyWdYtWYUXTOZm1nGpytcd92t3P2Od1Bt5Lnm6t34fDqWGWR2doaLU2dZu/oS9r94gnRngP3PHSASi9LWkaRYySM6oOKSLxSoNW1q9Rp4HufPT/HBD3yY//b+97QWrepVfLKPN735DezYtZM/+7NPcNutt1Mq5YgnwgQCAWRFxzINDh98kU/+3af45F//DQg2H/7VXyazuIzt+PnO/Q/yqU/9FTRNjp7aT6ItRWZ5mXR3P55bZe269STb2unu7WH1mg3UGi6KJBIK6Mg+lba2JEtLi0TDQfp6O8hkMrSl2mg2G4gCuE6DZqPG9OQk/lCEaCzC6VMn2LZpE7Lgoz3Zx/j4HB/72J9zzzvejevqNJsCV+zZQyKRolgsYFkWzzy9lxdeeJGJiUnGx8/R3dHB+3/5g/gCJisrBeyajc+nMnHxHD3dPXz09/+U7ZeMUmw2GBnqYmVlmYOHDmDbLe/prq4kA4PdTExMsmH9Dv7x0/fxG7/+J0xNTzM6uom73nILH/+Tj5BZzNLT1841l19PKVdi776HuOWmW2i6DcBG02U8SWR2chJFs/FbMQTPQJQbWP4AmUwOx4F8Ps/mzZdz8y23oZsBxsfPku7sZD6TxzJb72lN06hUKhSLZTTNRyrVhqrqnB8/jSzL+P1Bzp4dZ3B4ANM0URSFRqPBow89wszkRXq6ujl3YQJB8KjXa5iWSS5bYP2GTQwNDxEIBQmGQ9TKGR5//N/5l3/5HO+85800XQnXrWHqfj70od+lu6eDwb5B/MEAx0+dotqYIBzvxG92Eg31IHhlavUiXrOMjAsvLabZcpLtu3Zwx5tupV4toOs2BXuKRq2IIUWolDWOHj7On/7RR3jfu++mWK4RSSQpriwSDgfJFYvoqo2qwUp2Hsuv4rkeDTtLubaIl6gR2raEly7jPBlCyfixdR3H8Igm+3EkC6u+Qi47SyweZ2Ymw9FDB1m/ei2yrKOqFpMT51BlDVVRWcxMYfji1KoOms/EtLqQBIlLNg9RK1fRpCTPPn8OnxlkcbnCo08cYdv2bZw6PcHEVIbZgsdzB85y5sIKpbrKhg2XcXZyjr6hS0gke4h3tRM2fVjxGKIokC2UWV6aQ1cV6nWHgBpAW/JTEBa578DHkcUiAxuvpPeS67FSfUiSiChKrTkYvG7y+ur4WRLOH1ft+cpS5dfSxHm9KtH/QEpfY/8rkdRX9uMnBNF+knt7/RN/uuT15dd+Of5LJ68vx8/Ccf15+K9SrPc/Ja68omc/b/L6Wtd3XhrIuqZhuw6KrpNo72a5GeDPvvA4+ybqPPb0Pq5Zl2TAqqA4JWYWCxhCle7+1ci6RiQeQfAclhcWmZyeQ1R0hgZ7OTd2gXA4jK7rGIZFIhXHth3C4Sh+fxDVMFhaziLJSktExXZo1Bs/5Gs1nSbJeJxsNkt7RyfBkMXqNYMsLS/R3tZJJrNAOBzAdR2CgZZxNni0dfSgGT4WZ6bRFYlCvkBXTw+1ap25mRlCAYt4IgkvTdhMy0BSXERPJhSMoOt+SuUant2gXqsQDMdo1j18Ph1RljAMC9duAE0ct45tewQDIcLhIKZlgiCgaiaNhovPp1EslLn//gfYuXMbqqpQazRxnQamaWJZFqVSiVyuTCIRo16v0dWVRpYU9j3/Ioqicf83vs7U9Cyjo8PU6tWWx1nDZv/+Q6xeNwQiLc9LScZzHGRJwvE8ZEWh1qxiGAp2vaV8nO7uRFVldM1HtVZDFECRBQIBk6WlJXw+C89poEg6zz37At+6/5usWrsaVVNxXBtFVVEUAb9lEYvEWJhfRNV9nBk7zw03Xk0qlSRz9lkMy+T0isq5U2PMLyyybt0a/IEAXd09+H0qy0sZkok40XCIZFscwS6g1mc4eX6JWDxJuVQiGY2ysJwn1p6mO93D2bMX6OzuwghaKLKAZWhkM4u09/SQam+n6TjkCwUQXMLhOKVyq7yr3qjS2dmJ3bRRNYWxsVN0drZTKOZYPbqWZCyO4MKxY8dIp6JMT0/Q399PNrvCxORFZDVIsVyip6cXn6HS2dVFsVQk1ZGkUm6JejVrNXyqyokTJ9mypeWvefjofvx+i0o5Tywc4tzYWSSxSSAQpNGo0dczhO5TyGaX6WhPszC/zODoUIunKYAoSxw5dJi5uVmajQa1Wo1iuUJHZydDw6sI+C1c1+XcuXNs376dlZUcqVSKxx97jE2bL2Hi4jkUVaeruxtB8Hj44cdp60hx7uwFYvEIQlCiVqsil22GRvvI5crkcnmeeuJJNqxfS3YlQywepX+gD0mROHHkMDu2b2H87Gk625PE08OIEw/yqQfz1Ioum3dtAcfh8sv28Ju/9tvcfc87+JtPfZndQozsSg7rhnYUVYDJEy2O4uBuTF3n3JkxAobB6vXr0TSdyckpOtpSDPT3YZk+6vUaiqoRjfmp1UtEIyEQWiJMHrTElRQd2/EQEJFkFc8RMEyD1sRDwXFBkhUMs6XkbE+ebvH++zaiiiq202j5uMoyDg64rQmCh4vjtMzuRUHGdQVAxtAFioUCjuPw2c98hlAkRW93Nw89/Bjp3iFEt0o8FiGVSpDu6qDebLJr56UEAgbBoJ9MZplHHn6M4eEhZFklGAyRzeYwTQvT7wdBwPVcJEXCbtYxDYN6vYEkySB5nDx9ijVr17D/wAF8Ph/xZJIjR4/T2zfISjbHk088w+rRURqNIrV6Hcuycd0Yjh3FU3RWcguE/EEaTZidPIniC5JZLmAZQb778JPMzs6Q7k5QqedpS0W4+qpreO9730WzWUXXwuRWKiwuLhFLqnR1OSiqTSi+GUXXkQQ/jiNQLBcIHDyE5zoErt3C4vIU937xm5imxsaN6zjw4kG27lrD5i2baEt2cuTAYQ68eJKBgX7SPR0YAYPlhSm2XXIJiqRw8vQY+/bu41N/9/ds2bqd9q422tu68Fwb264jSjK57DL79h7mzrfciRVQMA0RUVBYWFgimUoQT8TI5xwe/cHTrF/XSzDcRkd7F7qqoSsaXq3IP/6/f8vmnZdhxboIheKEImH6Bob456/+K48/+gyDQwMkkhF+8P3v89GP/jYdXSnWrl9P03MJfKsLbSzGWf84sUiEjevXs/+FF/jtj/w2hVyDp569j9FVfTzx8BmmJp9j69YN/PvD93HlNTcQCoLgCRRzNZ7bewgr7EczgniCTq3p8YZbb+fOt769pZRslyjVq0iyQFsqgenT0VWLaqVCIb9MvpAhFA6hSGA3ypiGSjDSRqm8hCLVmZ4e57sPfBMkh/mlWX791z/E2Nh+VJ+MP6Qgej4EAf78E3/OyMgIx4+OccXlV/H7H/0D3v3u9/EHf/jr3P7Gm1AUj4gZIBhIsbgwh99vUq86bL9sE+XcLL5QDMmzqVbLjI6uJruSoy3VhtNski9k6e0ZYX62wKV7dvGlez+P6Svwhhuu4Fd+6f28+MJjrB5dy+lTB7n9ult55OHH+erXPo9mhHAqBeq1MpquUilVkUQbEYNyqUI05qdcquIz/OTzNa699mY+8OFf4dP/+Ddce/lt3Hjr2+jv6WXDxnWEwhGajSrlcpnz58/T3t7O9GSGUDCGKKjYTY+//9Rfc/U119Ns1Okb6KZeLvOFz34Gn6qwODfL2YuT3HrzjdjVOo1KA3/YQlV1FhcKaGqAVEecsTNjJJIJavUqs1MlPvKRj/OtB/4dRfGzOHuRZDIIqsa/fO07LMzNc+HMGJt3XELXUJquzo1cnJrE76sycf553IbNzPRJ1q/qwlRtBF8cq22EgGQSDkd4+oln6O3o4auf+xJDq7fSk+jnnz//RayQQFvMz5veeB2JRJRHHj9EVzqGJtjIokOxVMSnhbGbIIkariNhamkcxyPgj6ApMeqiCHGX0uo5BAPk56IoQRVPtpCDYZRYD1PTObJz4wSVDH6/hedUW44HmoJj2wSDYY4ePUZ3T5Jq3SabW0QxBBQtTKIzwuHDZ+kdGKUj3UW0rZPh4TUEYxaL81VGR1dRqnpk83Wuu+56PE/m0h1XUK/UCcaTBGNh2to7uDg+Rt2FpN/CFwwzfuoUsiaQX87TrDSQZJdz58/T6fXj+CYZuj1LR+82rr7z1/AlV6HqMp5jvzTj/tmS11/E/Pz1jr1632u2/6mR0x+frf48yOvrn/TTJ6+vjP+rk9em7fzxyzzSlmvQq5SyXmf14rXi1STuH3X+q5HP1+XV/vDnJ/sXvgyh53I5tJeQCcdxXrOs+OV1Jc9r+TS5ro2qK7R1pbj25mv4X3/1GS4uVclpXRzOBfnOk4dZO9TNaDqMWTzJwuw0ixfGuTi9gOuptHW2k0pFqZZKaL4gouQgShqBYEsBNBDwU64UcV2bhdkZwkETAYdquYqu6Cg+BUH0UCQFWYRavQmCQKlSYPriRdat30yt1sSxG6RSKRoNj/PnL9K0G+iqRCqVxmnYPPPE4/QPDSErAoVCgUg4xrnxMwRDQeKpKPMLF5AlpVUK64BuBFvqti1XWhqNBo5dw7ACiKLE/MI0PsNAkhQcx0PWfNQbDk1HwLIsKpUcsiy3uBf1OrmVFb51/31YhkUiEWbnzi1Uy0Wq9TqiqqBpOsVSCQ8Jwwiz77mDtHe0MTs/SzAcZmF2kn379tHb28ueyy4lFo+imxaipKDIArGgn3Asim3D0UMHSKXSfPUr/8bateuYnJ5EUw1sp04gEMRDRvAcDMvA8ofIZLJ899sPMtjXh2FIlCsVmrZDJBJtjQFBAEGkrb2DbTu2tqw+GlVcu4rnCvh8JggOHh6BQARLN1ANlY6ONE898SQRaZHsygpW8hLWrV/P+KnjiFrLziWfbakaz87N07Rtjh47Bo0aslDDdBdI9a7BbjZbCLBtM5stk+ru5dDhg4QjAVRF4dyZM1hGmKYjEk22cfzYYfyqTrVSRlFlpiZnSSVTVMsFCitzyKKIqmqMX7iALHqMjgwjyxrHjp1CEut09w0RTkbpTLdz6OhJRlet46GHH8FzIBHv5MTxY+C5pBIJVvIFRNEjkYiQzaxgGDFkQ8etVClUq6S708wvzFEsVEglu8lklqiWipiWxcCqtUzPTKEbJvOLK+QKOU4eP4PjunR2dqOoOrVaCRpNHnzoUTrjMXoGhtE0H9nsEtmlMq7nEIsnECSBqZmLyLLK6tXrmXuJpwpQq1YZHBgkGktSrdQJBDUOHjzC1u2bUASNE8eO0T/Yh9Fm4g8E+Nrnvsaa9Zfg1mt842vf5PY7bgRJINGWapXjz0wTDPhZnF+mVq8xMjqKbviQFZ3S9GHe9av/ndMzOXRFx5Ntvvvtb7Jl7TokSSIeSWIcPokk+Tiq9dOR9uFfs5pybBMBv5/5+RnK5RK7LtuNrMgIuMSiER559FGy2SxWwI9t21imSSTSWvQSXrKkcl2hpTxcr7VSVFmmVi1TKuSxwgFc0aBZWqRRr+O6Nh5VFMkAXGrnTiGKElL3AMWVOYKRJC5QqVRRFZVapYCuqzSbNh4CdqXl2yqJOnglEFQ0w6JZdzFVg6HhIUrVIj29PZi6xnImy8OPPkUwHMEKBhkdGqZQyNGs17H8IaamJkmn20kk4jz48GP0DQwQjUWpVSs06x7NRo1iMYskKFTLNXLZPPVGE8fzQBCRJYWFuQXSnd20JZOEw0E0RSafXUKWZUZHB5icPE8smiCWakNVslSrndiyD6oe4UCIufllDhw4wdiJaSQk/uj3f49rrrqCno5uBgdjrKxkSCbSLTsiXUHyaWRLFfY++TSJzn5uufGNvOuuNyNIGTSfSrnZEtdSJTh65AiCJxE/eRFJFsivHsX1Qtxy8yb+8W+/iqT6+OJXv8DNt72ZYMACr4EimMS7E6QH+shlC4ztP0qiLcX03Bwbt2wi3ZWmO93JhvWr+Zd/vpdbbryelVyJ40fOYZkBDJ9IvSExP32CUEAh3d3HUq5OvtDgg+9/P+1hg0u2bufI4SPc/sbrcTyHA4fHQNDxhwIggWbFWCnVWnxPt4pju8iyhCS5vPcDd9OT7EFyl0h0d9PZM4gZiPBvX72f7s4+gik/0mE/eAJfOfJPbNq4ClUT2bRlE3geM9M5dNVPMtlGT2+C7qE+RtaMsHPLFVx26VX4g22sGlzDiePHuOKaPQT8YaZmJrH8Op5ks3vrRnTNR6lSIJiKYmo6C3OtCiYPG1eSqDVrJNo68Ac6cTyBBiLVSpPF+SXMcBi7lOf0iUmadpDdl69ldHU/sVgMQVAxVTCDYS6cneLjf/jfufHma1m3fpi29jZCkTCxRJSnnnmSN7/lDt79vl8in6+QauvEkUQujp+id6ifzMoS9VIJIxDB5/MT8usUqjaaFWRhOkMyGEXxtbya88VFJEmgVmuQjKc4deoIf/E//wTT6kSzgtz7tYfoHx4m3ZZCM0x+6cP3kC/Ms2vrbbztrtuZW1nE1AQCskcgsIYnnvkazz+9SPdIhXC4hwvj44gu7Nq2FUWQuPOtb2XTmn7GTz3DPe99C7qps7SQYXa6xK4d1/GR3/sjao1lgpYPQ9fJF86iyAJrBzYyMzPFci5PINTB2TNzfPwP/wfvftd76O1t4zd+7RNcd8M1FCtZTp4coyMdI7/c4Ov/+i3e+553cd/93ySfW2bL+m0sLZ/GUAw++GsfplotITolKp5ByB9BkjXe9/738uRjj/LN730PSfYIaxKBkEEls0hndx9mpA270WDV6Cgry3Uq9Qrlgk5hpc5jzzxJd0LhHfe8g6Yks2HTZkTbZDZzjOFV60ml2hH9EAwOoxshkikZSTUpVWqY/gDlXA7NCuCJNoriIctNHE1Cl5pk5qZYWF5AaBYxzCC5bBajs4Kwq0pzTEc46scNVDl19DS9I6uIJtNISh2VMiuLMwieTb1WIWDFUDWVcqVMR3svU9NT9PT0Uq80EdwGqmpi+nRSyQiFwjJtiRjlah5JMknGg+RLZVav30hnuhtZt5i4eJ50Rxtdff04dpNwIMT0xEVGR4aZm57E5w9QzOWRZYXpyYtsWD9IpVRg7NQhhtoiWJV+6laO+nCVTbd9iCYtjQDPeRnUElo0z/+jivYXX8b7eojpa7X7Ue1/FNL6yu3V4bnCS96sL/FLX8U7FWhtovDSs/ixVjivas+r+iV6Lz3PV3nHvpaH7Os8o1fH/9XJq23/Z87rq5PXnzV+3lICt7CIVy8jaObP1QfP81qKvi/9/dMoo71ygDiOw1vfdScf/s0PsfaSNezccymnx6dRU0M8c6FKxjfE3MwcgymVvrBLV3c7py5MEwgEwRM4f2Ecn08hk1lh/NwFotEwPsOg2WwiSRKSrCBJLS9VkJAMGc9RqBZqrCxNUa6WiURiyJLGkSPHwHXxB0MIgkCjXsNxoNFwyGZz9Pb2kl1eRlZkcrlltm7bhChqLM4v4vcHWJhboD3diySJSAJ0p9PEEilEVcNnmoCH67rYjoPrOCiqiuULIEkSjm3j0w10n0GlUsVv+XFcB0kU0FSNpu2iqzozs7OEIyFkWUFwamzZvIVAMIRLq4zIcR0EAUzDj0+3kGSJUqmIJApMTkwzumoEVVVpNhtYgSAjo6uwLD+KphMI+Ln/29+ht7cPp9lANgwCwQCe5xAKhJBVDU3TKBQKeB6EwwEMw2B+dgHX9WjYDVRF4/TxMfxGkI7ODgxTxXFsLF0Dz6NSrYKoILotb0pVAduuIrotoSkrEAJJo+F4gIzriczOzDE7O8vc7DSyJFCv1Rno7kA0othyjEKhwNqNG8gsLSF4ArMzM/QNdJDNLTO6apiOzja6uroYP3WYiJIDPY7nwsLCPEHDINnVzwuHT2CaFj09vczPL7aUCzWVmZkJBBwKK3l00yBfKtHe0UEms8T83BzpdDtLC1Ok0x34DJ1oJEQ0Guf0qdOMj59j69atPP3UPoLBCLomMjczyeTEHNnsMj5DJRoLMD5+kWqtwsYNG8gsLXLkyHFsu1XuHY3FOH3iKIm2GIIHwXicgBHm0KFDDA0OUigU6O3rolopkS8UiEaiBAJWq38Li+i6j3R7kqHBXk4eP0ZfTzeOvYLjOLiyQaPuUCuXOHXqJLsv38OZcxNcunMHzz33Ao7tcvLEaUKhME899QSr14wSiyZ55JGHkSWZzOIi0Xg75UqdSCTImVOnWFzJUCmVWc4sMzU1Q+/GIeymw9EnDtPd3Y2ua8zOztPV1U4wFML2BFwgFk9QrlRIJRPE4gkc1yGfL6LKMnMTZwlGk/zOX3yVF158lvb2DjZs2MBjjz3O+3/5g3zx3nvpn1+mXq/xe9+5j6uveSeRaAm8GghB8oUCI6Or+dznv8Spk2Oomsbzz79IMtFGtVpjfn6B0ZFVLC0vcubMGL39vQiSQKFSQtU0XAdEQcETHIrlErrREjvzyhU8TUYWZAylhCSbCCIgaDRsByWaRO7oxZEg4FfwPBXXcV7i0NoYho9Gw6ZQKOK3/KiygqIqTE3OUquXqNcb6D4du9nkqSefZHGpwMZ166kW88RCAR56+Ana2to5eOgQ0WgcWVA4deoUQ8NDfPUr/8zk1ARr1qzGMHzkc8s8/tjDbFy/nsmJSQKBIF/+0r3s2rULVdVwmvDd73yP4ZFRTNPPiRPH+f73v8eO7Tu47777GBkZxjANYrEQ4YifQDBGJrPEhvUbUTUJSa4jCALj4zqRUBTF72d5ZZ7Cyhx9Xe28/W3v4SMf+R1Wrx6mq6sTzSdhu3WCgRj5fA3Lb6CbBo7tgOsRDgXwB2Ncf831WKaLri9jmgZOI4pdr1AuN9m/fz8dHe0EDp/CcWwm2to4deYC99z937j9DbeTShuEgm2MrF6L7XpIqoovqBPwB3n88cdId3SSSCbw+3WC/jAiMqIokE63k0q1cd21N9FsSGQWZmiLx/m3r36FgGHRP9JPb28P3f39CKJEs17HZ1hs37YFS9f41N/9E9deeyMf/KUPcdONb2TNqjSqbOPTQVNcDCtCKBREUeSWBVNlmVKphGUFKJdr3HzjXVy6cyvf/MbXeXHfM1y6awdPP7uPS6+4EhEH8agBgseGd/cj6yZ120HWFOp2k+f3vsADD3yLrVu3YdsOkuSjUmpQKZe44ortbNu5nQe//x1sp0q6rw1FNQgHA0iiALZNKBKiaTsEQnFEVOxGlaef3kc63YWiStSqdeq1Co7toIg6gtzEQ6RWarJt605uu+NudF2js7eXofWr0FSTRs1FE1XcWg1HkClVa/R2d7Pnim1omsTxY6eIRjoJ+iVEHHZu34KuSWiGiYDLH3/sd3njTddiGD7KlRrRaBzDNFENnYXZWfL5IpFYCmpZTEND1DTQVBoNh//1l//MnituQDU9StUaH/39P+WOO+/kE5/4NAIQjyV51133MDy0Gt2vsLJSIJpIsG7t5Zw5fYg9l1+F6YvQdHyoQRsr5GfPlZeDWqJW1MguF5FFhUgkQiAQpbu/i2ytwj3vuAczEkHSTUx/EEksYpgKO3Zsx7R0UGSOn7xAor2NXKGJqPsw/H4++ZefQgWaQoWbbrqOb3zj37h895V867vfYPPGSxnqX822XaOcOXmc4YFRtm3ZzM2X7Z0AACAASURBVPvf/3bufMMdPP3U06zZsJuzF89jmSbnLl7gjje8gRtvvhVFUMnMXCRgyThelZ2XbuLtd72P7Vuu5u1veg+3v/EGUm3tZLN5VFVjcXGSw0depLOjB486spHk3s9/gXOnj3H5NZdihWJoephmFT7+Z/8PJ06d4bY3vJmm6yArAiImt952A7fcfB2SKKKqCpVyiVAkSq5QIRwJUS2X8QcsFNXH3PQ0sqoSjUaQlSoecWTZwGdUcF2XTPgs+toGymyA2MQgtr+E4gbQggn0cIJQVKOUnUCoZbE9ATwfC0sFPEWivaOTzNIklqkzPTmNpgsteo4iU6lWmZqZRxQlLMtkdm6eeLKN8fMXKORzZJcW2bJ5E2fOnmVhKUO6s516vYYgQqVaJp5qY3FhBll2icVM0lGTs6f306yViYY1XFsl1BjE7A8SvnsLquDiOB6i9J+1cH4SxPP/q/iF9cP7jyS49cvrVKO+juLvf65mfXUC+nqd+ekrXl8Z/3/y+lPEK1c4fhRJ+9UrIq8V9Wc/jzt3AqVv2y+kP67rUqvVfoi6vl4S+8q+/5C/q7VU0ywzgG6YXH/9Vaxat4pde3bx/KEDvOX9v0N02w0IyRHcuWO0KxWqDQdJCxIKhalWiwwOjhAKhpAUEdu2UVUVWZZfQvBa19J9JrZnk5lbYuzUabp70piGQS5XZGUlh6ooJOIR6k0Hn8/H3Nwspj/I6bEz9PX1ksut0NGWZmpyAvMlBdXM8jKxaJxisUh7e5J4PE6xlENAYGZmHivgJxhJIsoSdq2KoqrgtTithmGQXVnAceuIkoPdcLEbdRrNGpIMstK6B88DAZHvf/cHbNiwDlGCarVGIGDgOh6lShnD0JEUBVGAaqmMpukIkoTnuUiSRKlc5fTJk7Ql26hXa2iais8wwXWQFRHbdXEdF5BIpztZWVrCsEJ4Tg1Vknj6medo2g6rRoeJRCIEg2GadoPM4jKe62BoKpIiIkkS+WyBfL7AwkKOzs5O6jWHB779dTZt2sLc3Dy6buDTdQQRqrUyjUYTyQNF05lbWMSy/AiCzMzULGOnzjA6OtxCsAQHXVPo7x/k2YPnQUvh9/s5e/Ys3X19rf4LMDA8SGZhhVKxjt+K8Owz+9E0sHQPy12gIQQRhBaPMBYMcXpmGcMfpK2tDVVVOXDgABsvuYTJqfO0JROosky9YZNsb6e9vR1REInHY4gC+P0msUSU/fsP0tPbj+t67Nv7An19/Zw+M0YsFmXbpVsJWAaFwiyVco7t2y+naTdYu3YN1WqVxcUldu++jLn5WVRVYfXoWjzXIZFKYhgW+WyeeFuSpbkMms/Hg9/9PqtXDSMKcGD/QWKxCIFwqCW0VCpx4cJ56vUGGzZc8kNxkGPHjzIwOECj2aCenSEcMPDpfg48/zzr1q0jm8sRSyQ4fPgk/T0dFAoF5uYXGewfIJ/Pohs63X19CIh0dqbRdZ2Jixfx6SoHDh5hZPUQnW0p2jp6OHXyODt3bCebL5AcTFCtlhlIdGAFdL51/wPs2LGLeDyM44KHgCy3lHdxXYqFPEvLLaTn9NgZurq6OH3oaWbzULdGqRSW+Mgf/BGWFUKWJU6cPM2Ro4f4wOqNhCMhzqc72LPnSj75V5/lsj3tfPubTzM1OYHnCViWn1tuvRZdl+jpSWOZQWRZZnl5CUkSmJi4yOWX70FRZTzPRdV8OM0mkudRKVdQNA1N1VAUGdd1ceo1JEVGwWYln0VWA8iKhOdKuE6DmlvCDIcQPI1GQ6NWK1IsFMDz8Ok65XIZWZLRdYNiqYwkyZw+eZKpqTk2XLKeUCBMrd7E0E1CgRAja4ZRNZlI2M98ZgbbFhk/N0a9WWfNmrVUykUqlQrd3d1Mz0zT091NKpWkvT1FT28fmzdv5vy5c4gILGaWcByHrq5uDh08xPzCItddex1T09McP3GcLZs3cfllu7HtBmtXr+KpZ59mYKCfZrNBuVRGMyyKhTl0n4euLzC/UKRU78cfsFAlaLotDmxbW5Jioczb3/ZOfud3f5Orrrocw1SRNBVF00AQ0XwqPr+JYzuIHkxPTBKJBhAknfe953184ANvx/SXcByXajWKiItuhAgEAvgMjdjJC7iuw9V/8HH+9evf4PI928lkVnhh/3McPXaCq/ZcxumTY/h8FpIiEggYfOmzn2Xnzm1YsSCV4gQry1nm52eIJw0cR8Tn8/FP//Rpvvzle7nrnW9Dkj12796NrvnxBxUCsSSeIHJhfBy/v1VOvpLNkozHuO6GW5BlgU/+9d9z/XW3E44oaLpMrVbDMkM07JYXt/i/2XvvMEmu+vz3Uzl0ztM9eWZ3ZrM2r6TVrlZhVzkHJIRASESBiQYbsLENFxtjDAZEEiJIPwQSSkuSUERhlbWrzXnSzsxO7O6Zzt2V7h8jCVkm2vg+vr73fZ76o+upOqe66nT1ec/3+31fUaBQnCUWizE7WyQUDNNo1Glp6mLw2DA3vvedPPrrJzn77HM4Y8sZXH/D27n84otgp47j2MS2RKiWHCqVGsGgH9On0Tt/PmeesZkrr7yKRYsWsHbNWu6762eYmkbv/Bb0oEZrpomlS5ejGQEq9TqKJNCoVBg4fJhIpgNRFua0F1yRWrU6R+z0ORso27YR8Aj4A/zbl25i9dpVuEAkGGTrXffy0MMPEQ1FKFRL+CMBdFXl0IF+RFGhr7+P+Uu70fwijj1LwB/Etly+/70fc/rpZ6AaIpbjEIpEMHw+CqUcuq5w9tln4/P52Lf7JaKJDKLqR5I8HM/DqtXI5wqEo2lG+44QT6cZn56iKRHn5R2H+Pw/fZGHH/4V+ZkJTt14Ol//2vfQdYVdu3azdu18utvjfPrTf8WLO3awZvVK7v7JTznhhIU89sjjnHXOChy7xKHBQcLJFiyrgCp0YDkFRC/M7l27eezhJ9i3dxet7XE03cSxZ5BkhW2PP0FTJkO10SBo+tENi2VLV+AzQxw7NkSiKYIs+dF1E131M1suYqhBTj7pZJozTfQu6SUS8XPK+hMRkInEkrz7Xe/hW9/6OldcfiHxVAJZ8fHSyy/R1tVENpvjkssuJZnoQNVcOrrmoYgCH//4X6P7ouiSwP0/vw9REkilMxzYkyfdnOGe+77Pu991Ge0dPZRqNcYnJgnoPsyQTm/PAmxLo1Ip0z80zNZ7t/LNb36DVHMrw8dz3HX3LzA1k2CszrtueB+yWmNmdhQzoCGJEm9+y7moqoPgzhFDSdGwnbkFWDwBRI9sLkutWCQQiREKh5mZnqBueSCZGKZJpVxEFDVUzaAmV6h1ZmFFEaWowo4wYwez2K117r9zL0uXr8EVcohiEQSbcCiI5DrIioprCbgOxONxBo+Os3jhEo4cOcj83i6OHRunOZ1h766XaW9dQHZ6hoULFzMy0E9HWzsDA4NMTkzQ0hSnMDOMIlmoks1g337c8gSG1CCguVSLUwyN9hMIB2ntXEpb9wkEWhYhDEiIi8G/uIKH+hviKjgIwn+0pXx9cEcUxT+rKNN/Bn+uvl+tcf3Njv8aeRWE1wXCvDfynz/Et/5r3+n/J6//Cfwu8vrGY37ndb2mNvxfI6+v78swjD8oNPW7rk8URfA8RE9GFlQkT8VRQDFMbAQWn7AcXyRAuVpC86dpdK7F08IIQ89RcwVkNYTp05mZKSBKAsePjxKPxajXahSKxbkUWHXOXsJxQZFV6pVZCoUZ2joWgOtgNRxqtRrT2XGOHjnCilWrsWyH1pZmmjJpJicniUSD1GtlXMsjP5MlEo6TnS5Qqs4SDIQYGOhDEG1KhTzVWhnDFyAYjhOJhpB0H7blzPkWviL/bRgGruehKzr1uoXPDFEpz2KYOrZTRxQ9XO/VH/ucYNO8rgXMFvJUakUCgRB1q0GxVMJv6tiNCqKqz6VSqxrFUhlNn7Og2b//ICPD46SSMTKZVqamJmnUq4iigCK5uHYDSZaxLZdILEYum2PH9u2MDI2SSUbQNAVEg/aOdnRdoVSq8MQT2+ju7ubxxx6nu6sNUbDRNI1qtUKyqYnpfI6urlbqjTlboubWzjkV4PExYpEQVdtGUkRUTUPTAxw5cphIPEkgFEaVBCRRYv/e/SiyiM9UcGyQJQ9FFlFUg0a9wcDAAPN75lOYLZBKNeFYNv5QAD3kw6lVSSYTHDlylEymmUxLAn8winP8GarMeXn6fT5UQSDXgGq9Rl/fURpWnbVr1zCdnyYUNAkFwuzcsYdVJ52IpCqMjR5n/Ngomqni8/kplWZB1ujs7qFatZiYyJJJN5FMJjl69CjNLRkUPcRg3xCi63BgXz+Hjh7FsR3a2joRBQWf38AwdBqNOqZpYDVcBBFmZvNouoFliUzlc5RzOfIzeVTVY37PPLLTOWRZZc+evSw9YQUDg0NMjU2QzjTR2dnFzEyBcCRKvVEn05JBEEV8vgCBcILsbIFCDZYtXUG5UqCpKc3ExASOLVKrZlFUjXK5THdnB7F4hJ7eHsYnpvGcuXTNJ554gq6OTmqlSXoWLsAX8jEyPMzYWIHVK5fzwvPPYPoM0gtaEAURsSzhijLYDtVaA3/QnPPTw6NSLmJoCocPHSQej9HUlOH73/8BZ599LuNjo4SVGh2LT+a5IzXO3bKRmiUwfHyMeCzMfVt/yr995UtIz76E4zr8vFBl63338r5TZPzl/ajp1UxPzqX1ds/rJhyM8aPb72DNmpO5/4FfcNZZm9m162U6Ozs45ZT1gMfE5BjBcAi74aHJIpVCnonJMZKxFh64/1e0NjdhW1U8TcaQNcq5Y/hiPSCruJ6N53iIbh3TSOE6ApVqEdmQ0WT5NREW8F6xuZl7N2m6geu4eI7NiuVraDgWuBJ3/uQejh7uIxlvYmR0nES8mXLdRVJMXKdBoZRn44aNtLS2EAppNDU1ce89Wzn7nLNobm5GVRVUVWH7roM0LIf7f/UAGzaegm25rFq1mv9z2w857/xz6Whvo1gq0NrWQiweJegPUq/XefSRR5g3r4vehT0EgiEUUaPeKGJbwyRTBo7dxNGjCTynE9VIoqlx7r7953R1JKnV6xiBCKoZI5NoYs+eXWzYeBLNzRksV8F1BTyhhm4KlCs2ItCo1IiEwxRLs0iqwaUXXYYiV1GMOZVm22sjl59GVYLMzORobc3gPfHCnM/tyafypa98hZNP6eKn9/6aUtnjn//lszTH/Fx9xTU89shTXHTRRRg+lXQiSTKRxNUkvKLHnbc/SFOiG1018Ad9GKbKqtVLOWPzyfiicVRDZDqX5/bb72F+bwY9GEeWNXRJxGlU6B8epbm5hVQqweDQAKoGP/rRTziw/yiXvulKdL+OovmQZD+yIiHLEoODA8TjMb77nR+zZs066vUqU9MTtKWa+Ow/fYELLjmPiy57C6IsMz05yhkb1wAi7ss6kqxQXQBf+5cvsWv7Dhb29OBadQRJwLY8LrnkCto7WshmR2lKtWI3YP++l4k0maTiae696wGeeGInK9Ysxq5WGR8e4VhfP+29a1B1CYE601MT6JqBLGtMTk6h6xqqIuP3m9SrdU5Zv4lK3UKUBQSvwYlrV3DultPQJYVde/Zy4oknIjolorEMNc9htl7mmacO0du7GMkSqFs17IZEa2sn6UwMdBVJ1ag2LFTTJGRKc4ttjogrB+ho8uEKJrWGh2pI5HJZMqkU4XCcWh02bDiT93zgQ8iSQCOfZaivgD9Q5qav/SPbfv08giOy44U9XHXV2dz4nnfw7e/8kF/c/XPOPetiLrviBs469WQ+++nPcOUVZ9Ld0Uw02kKjYhGMzmfdhou4+LwONq69mFNP76Ap1s49997Fu97xHpav6CUUkQhF4yj2DAoi2A6qpmAYGoVsFsP0MTI8hamH8LBR1TpBX5ypyUn+6XP/yHvffSMf+MBHMXw+pmaOYxohbr31Fs48YyMz+TzvfOenuPue73Hd2y/nxz+8lxNOWkO1IeKKIg1qJJvSTEyM0SjXGerfQQ0FvyozPZ3Hk02icR/t7a1kc0XuuPuXDA4c4r3v+wBnbb6Q+R2L+IsPvY+LL7+MgOlH8QTKjQaSpFIqeHztpq9z/lkbuOYtN7B910G+8tXvsvnsi7jp698gGtA5b8tmLtxyPR2tTYyPTNCz4ETKBZFioUQ0nMaqFZmZnUWSVUbGJtANP6quIngunuChSiIz5RqiIFLMTZJKLcEMSUxnJ4gG2pEMBcMfRFJ1zEAIW6kjdRUoLxuhfUmA8UcqnOg/HadqMtYQaJK6cIQxqoUBqOcRFYtqCapWGd3vUClOoCgqsmximhEkXGZyWeZ3tFBvlCmX8/hNkbBfRFJcWtqShIMiVnkEU7Gw67M49Vl8qofjVBFlgarlIIpBerQLiIg9SKU4dlZBHBVAFlA+KGKJMtJrAjPO3Ib0B+fK/1vI638sav0vRl5ff/4byevvaPt3XsufiP/V5NVx3L9/deC9StD+XHj9YHrN//XVRHFhrp5SEMU5uvyGRHR74AUE5sjra6sWrzv3t22v+i291ue/a1OYSyt/3WqRIAjYto0kSf9hJemNq0yu6yIK4txKrwSe6OC53pxPJnMkxrMdHv7FA4yMTGDIAkakmZJ/HvbQi5hujmLFoVRqoPr8xOJRNN1AkhV8ZoDDBw8Ri8XnnondwGlUCIXD+IMhFF1lamIcz3M4cGAflXKVaDyGJit0dnYwODyCIsm0NrcyMTaB69hIioqLRTAUwLY94vE4k8dHqVsuJ595Dg1HxKf7GByeoNSYu7VOw6JULqAZKrnsDD7TpFat4dg2M7M5qpUZJNUgFAhjOzYgUq+76L7AXM2dKON6FgJ1XE/gpRd209zcgigrBEMRbMelbnkUZmaIRBOoug/D9OOJc/XMmiIT8usEAkEct4pmaKian2AoTLlqYfoi1Gs2hZlZvn/b7aSbmlm3Zg0eNpnWFhxXwGcYiLKAqqg0alUG+4/QlMqwaMk8DJ+fY8OTSJKCIAj4DJOmVBOl0gyGYWCYQQzDYHp6gs7uDlwPDL+PSiHP9NhxVN1A10xct4EkAeKckIFuagTDQZJNaQyfzuTUDKFwkq333csJi1qQRJeR0SzVcoGJXIGmVBzHqhPwBxkZmSCXzRKLBmluSfLC0zvI5aZJSscwEz14ooiuySguPLFnABGReCJJe0cXE1PT+AwZwzRxXIXWeQkevP9BenoW8PD997Nm5TLqjsDhw/1oQplKzSYaCWNZDUxTIxjyMzY+RjyVIpZqYiY7TVtbCkVT0P0hVq9dw68fewSfqTE5PUE4Eue5555jXlc3Rw8fQdc00i1NROIRZnIFBgf7WbZoEf39g8zk8ixfuYpqAwzTh6YKLFy6jKnJSfx+H8l0CkXTGR48zrGBPjy7gD8Q4ZEHf01nezd79+ymJZ0gn80xOjbNtsefoLOrGcVQeOaZl1jQmyIYiDE6PErPol6Oj+dIJIIofh/1msWzj7/MqtULGBw8yIlrz+LQ/u0MT+To6erm4J49zJvXjSg5GD6TAwf7WLpqAUF/iEq2girLxKJxEqkotm0hKyKSIqOpJpMTWZpSSQLBMI7jsHTpEur1Kju272JexkA0E4xVQlx02Zs4uH8f61Yv43u33Mz7P/YBXnz8OcoPbaNaraOdvoJVK0+g3dmJU82RPvEsdu05yKWXXcqdd97BkqVLSDfHiUQiNBoNmppa2L59J319fSxdeiJH+w7Q0dGBLCnMFnOouoKHgc/0U6kVCIZ8qKqKrhtUZmY5fPgQHfOX4QkSoughuA6i6CFqJo2+3VTHhvC3dOEAlXIFy4bJqTyGEcBxqlRrc0IjoihSr1mE4wk8bGrFEhOTWTRZZNWqZezdt5PtO3cwOzvLk08+zt69u5EVk9NOP5toLIYsg4jIHT++h3XrTuSFl7Zz7NgY3fPbESWZ559+iu7OdlasWEa9USUc9mHqGm2t7SDJHDl8mB07tjO/d/6cIBwgihI9vQsRZY1aocjkxBiFwjiRcJWtW/v42F/ew4YNlzI5lWVsYopa2WZyfJyB4T5OPPFkwuEYrguu1yA3O8bGTaehGToOFq6ggKtRzE6BXeXjH/w0Z21ejwAcPTJMa2srimQjiHVEyUBVx8ETKBVbCcdUvvXVmxkZnGT1qhP44ZFD3Dncz5XXXIYg2vhCES68+CyGh45w3iUXY8keb3vHDVx22UXkp47x0gsH+Ju//RwrVp9EKhFHNlWWrljMU08/zle/9k02nHEmoWgUy7PR/QaOM1djOzowwKb161F0Hc8qIjoifYenGZua5JMf+wfe8fa3snPHNub3LMW24M477+KWW75NKGzS8ESqlTy6XMPxRIaGjtHc3IbnyMSCJql4HKtWoymewh/xs37NUkKhMJpfpVazCAbi/F+f+wIXXHgOzk4fjgu17klkq0q1XKS1swP9FSXroaHjFGaLaLpMIOqnXoKbvvxvpJMysaYUoUAUUVC44frruPLSq2lY45hmhG/f8jVWr95IozCD3x9C8keQZZBVDd2nYFMlO32MSrmB5woUSzk004eIR7XWwAwGSbSk6ejuoDmdIBkOIokirl1nQe88tmw4g82nr0HWJerWDNFkMy+88DwrVy7FVBQaU/vZvXMHshHEQwS7iqn7cD0Rn+GjikzDKrJ/9xHaW6OoeoJsdoLx0T5SYZ2r33wxtWIen25y+4/uYtOW01mxajXjE0UWLFzO1rvvJl8p8K53vpPpsT66e5Zz19Z7eOu7z+O6t/4FiDN84h/+GpswJ268hOvedBpyPMTo0DTXX34Woq3xkQ9cS7IpiCgnWb9xDbP5YWzACDXj2Q1qNZX3feSznHne2fhDUXIzM4SiYRBVHnnkYVrSKdKxBCOTWeoNi3y2yMaTz2Dt6lUk4iYBv8GVF7+bN735ahJNKooQ4tbv/4SPffwtNGdS4KgMDQ0TTzZRz5exKiUEScRvxmnKpPBkB0/00ZaKMjNb4K3X3kBXaxcdLVGms2VMX4B43OTyq6/l8qsvx7WrFPLTfPAjf8H46HE++KEPs3LtOnS9Rr1QpNYos+G0MwmEM4wMHae1Kcxzzz5Eo1rlp/dsxZMlLrzorVz79qvxBVR6FnRwfLJIIT/N5PgY6bYUY7lJUk1pchMTBFSNc867hmuuugZTlXGqZaZy07Q1t1Er10m3NDNbyVMuljAUFceuIBs65UoRwwjyvhv/kk0nryUcSqJoMFjfTXJLE9baadSMS1SK44ybGKNL0EN+dDtOw5sEYQqvXsRrFAjoEtVSgXjUZCY3jKlZVIrjePYUslAiaDpUi2PIYp3cTI56eQZNkfGF4qhmGF8wjif7MIMpYun5xDM9RKvL8I92Ifa4yBdbSCsc5BNcpFUu8mYbUbeQcH5TpzlnSPZ75/i/bc78/wR+l8rwfx2/n7x6r9XCvlqPOnevXqsHfgOZ9YTXEZHXuA+vcJY3tO2+0fv1T8O/5zwgy/+LyeurkVd4ZfD9Gcnrb8XvSSN+PV5PXn9z8B9o+g/sEN6wQ5Ikpqam8Pl8SJL0G4L9W+B53msk9z9082p6sWuzoL2Lr37hy5x35aXEUykiqTRZpYWj+16mx8xTr1cpNCQkSXklIlZEEFwSiRS5XBZBmFPLNUzzNWkq13EwjTmfrXRTmuNjx5ktzKKpOvFEknRzM4XZWcbHJ8Dz5mxq/AFmZ/Mk4nEsy+bY8XECwRDrN26k4Xhs+/WjTEyMMzMzSy6fY83KdeiaQSDgZ3JynHg8ieM4mKaJIAiYgSCaKmPVKtiOhWXXcRyXWCwFOEiSjOeC49pUK2X8AZNkMoFuKAiCjGVbyLIAnkOlPCe243kWfX1HCfuCCIKHrCoEw1ECvrlaPctqUK6UGT8+94x+ef8v6emZT6NRRxJFFvT2IAoQT8TnfCerVXz+IIoMdctGM/zMX7AQw5Cp1+vcc9dPmdfdS0tLmnw+S//AAOmmDEYgiCjJKLKE64qEQiFm8rNIkoqp+6iVixRn88RiUXyBAIIoIokKuCKWXcPzPIKh8Jyyq2XjOA7FwizLTliEf/ZZ4nqJgtBMurUFz7XmpOrzc5HwqakJ+vv7WLVyOcMjw/j9Ju1t8xByL1AVQuSys5g+E8F26exdzGx5ro43ny/Q1TWPg/t3k8vlCIfCPPboY3S0dpJIJFi4YAFDQ8fwBQL4QyEi8QTxRJhqtQwIGKaPp7c9jeu6tLe34dg2kUgU22ogIOIJAq5jkZ3Os3jJchLNzTRqVZpSKUqV0lx0Q1WRlDmvXEPViEbC1Kt1XNdl/vxeGg2LXz/26Cvet/uQJJV8boZ583rZsX0nomMzenwUWVPp6umm/+gAy5YuI5/PYfpMHn7oEVpaMuzce4BLLjoPnz/M3r0HWb16LelMM67nMTo+zqLFi+nv7yfolwgEg6iqxqKFPRw+coCTTj6RRDJJIpmkqa0LQ1NJZ1oIhkwUVeWll14mNz3N4IFB2uPteK7LbHaSof5BJiYmMAMBdL8f0ZGwbRufX8fDYvuLz5JIJGjYNopmMDpynIgBol3iPZ+9i+NTOf7P7bdzxuYtbHv2WRKBBOlkEs/UuWfXC1z9oXfQ3rqU4We/i2F6RJadhKZGqVarVCpV2tpamBzPkkwk0Awd0zTZv28PXV2d7Hp5N0uWLcAXCOJaDpoSQZZdXNfmnrt/zuJlC/EFgmiaj7vue5iNZ9/Id257gE9+4h04rodj2YiijCDMPTvn4EtQKiC2zEOQRDTZJp+bYffOPRRmC8TiUXTdQBLnvFxlSaRet/DsOUGJWq1EIORDViUyLc2sWbWCjvY20k1JLnzzp7njnkfIJAK8/NKLnLB8FZIiEYsneGrbNi65eDPJRJxI2EexUKC3ZzFPPbmNngUL8PsDOLbIvr37eOSRB2nvaMNvRgmHozSqJfy6AILK3r17ScQT3Pztm6mUi0xMjLFmbSu7d6nc9LWHuOmmbzA+VfKvZgAAIABJREFUNkm5XGVeVw8H9u9n6bL5bDx1FQf2H0CUZAyfST5fIBiJoqg+dMPH+OQk06NFgqE6AV+A8VGLTFMbA4NHCYeDpNNNWLaLJEEul0MUFARxBkQZpAh1Z4K1K06no7MTw9TpbGunvasTQRJJNqUY6D+ArIicvOEkkKH/4DHKBYufbf0VkmKwbt0aLrzoYhLJOIY5938hyzLzurq5/PJLqFp5ctlp8GTGRrNEwkGwHXBF7rzjHpYsW06tNmd18q53vperr3obDWeC5uYEq07YwIvbX+aJJx7nIx99H7o5521dKpcJBsLUaw6KphAOR3BdD9f1aG6O8dL2F2lpbUGUJMqOR6a1FVkPUK02wFE4sPcg555zLlvvepzWXCfVaoVcex+di+fxw7vuZvHCNbzp0vdw5uaTSCYTNLekmS3O4jNVFEXm/PM30zm/mXi88xXhQoX9e3bx+BM7OeusLRzYO8ziRb0owRC6rlEtVfDJKvf95KckYxlmpvMokkQsnkTTfUiyyMTUMZoyLXiei+eBLCsc2HlkbqbnOai6hqiHmJ4a5i1XnkMqJZJq68Bq1KHhUK7LtLS1o5sKx7OjSEqItu4lKLLBSP8AkVQLu/fu5+EHHyDs0whH5yNLLul0gr37n6OcLVIu5kGWeeLp7SxZvBDDNMnl8pyyYT2maTI9PUYw4Of46HGue/uVPPbYY3z1a9/imre8k+x0lr/77DuRnW6+9JW/4oKLz2V6KseLL+zk4V89xqf+4UOMT4pccP6lXHLlemRBpl6fxRfykytmMfQQniMgiBICoOgRZrJTPP7Ig7iCS2trC6lkAqtRR/YCJOIJMukkRwcOkgxF2HrvVqayM1z2pmu46ZZvMZ0fR1fhq//6T7z5qvNwnBJj4w3edePHefv1NzI8mqWto4tMawsjQ5MEfDG+8IV/ZeWK1RRzE2BbDA+M8Jm/+Ryd3S20tbXztuuuItFk4DbqIEq0tHehmmFGjo2RyjSTiqX413/+Imectglf0OTKN1+KL2pgVeo4zjSupxIKtlMpVjlh9alcdfV5nHba2SxdtoKO9i7S6Rbe+45reOc73s6eA/tZcsJKNCXKWWecxrvfcy2S4qGKAo5lE02kOT6V493vvIjbf/gtggGDdCaDg8DU9AwNy6FQmsX06wT8PgqzeSqVEogyjXodUVDQVJO2tiSVagVVM4hEUhwfH0NQwI1YSL022ql1xJUCsipTnZTwD6/A1GL4FR+60aDhlnDtElZ1Cuw8EiUU+RVSKatIigqiSqXm0LDLpNIpZMXEEXwE4u2oZhQzkEL3JxDrMdyDPjxDRHu3jbypgRD2EEKv2/TfP7/+bfifUO/657+GPxR5fSNZf0M25xsjsb/j8oTfQl5F4fdHuP8g3tDXf4a8/vGqQP9D8Gr09b+z/d9W//rf0ecfq15sWRbx+CvRTsd5bf9vu6Y35vS/2ubrvWzz+SzXvu0ahkaGeMvVb2E2X6BcrqIHQ3SdcR17gxvJNDexwJelcGwX1dIsPtNHYbYAQCwWw3EcQqEQDcvBcT1URUaRBARRxvQHsF2X1rZ2LMsmHI6Qy81QKBRpvGIfMjk5SVNTE4IIK1as5sCBQ5QrJTZuPJVAKMj09CSH9+3Frlfp6emhu7OD9WtXsW3bE7y8Y/tcZC+apNFooGkapVJp7jkB1bqDKHhIkoyqaAQCAUrFIlatQqNawXUsZFkmEo5TKVfxBwxkScS2ahRnc8iCiGe7NKVaX/Gl9Ojt6UWUJKrVCo5lk5suUKyUKRZKhEIR4tEgyXgIw1A4/fRNOK5LKhVn7eoTsOpl6ladeqMOooCqaZTKJcYnJ8nPzKCoMrbj0GjUEQWZpcuW8cwz2xAEgVA4TEdHB1NTk+DYTExmcewGsizN1TX7fWiaStkq4AtpGKZEsZglm5/FdSVqFYuHH36YRt0iFIq8Mp5qFGamqFdLZDJpxsbHsW2HXDaL3+cjmWmms62N2dki7e0dWLUKCxcueqUGtIah+2jv7JibU3kePl+Aqclxjo8dxxOgPDNJKpXCH/CRSMTo7z9KqWChiH5mZwqcf85VzM7OkpuaYHh0hGRzC8l4nHg0iKb6qFVtDh/up1gsMT09zYpVK+nt7WVoYADXbrBr90527txNo25TqzXQNZXmdDNjI8c5fGA/e14+wAP3P4rfF6NYsigUZ3nxxR0YmskDv/gF2alJPHeuFqxcqSHLKmeefgbxSJSly5YTDimsWb0Ez61iaBLJZJKlSxbT0zsfkFmyZDEIDvVGDVlSME0/meZWLr/iCnTToGF7TE9MY7s1SmWbqakpTt20Cc/1mCnm5shzucKdd/yEaiOPzx9mJl9jfHKQQqnCIw89jOC63H33PVQqZWoNl3UnncwVl59HvVrj+OjYXKSyUmNsfITOrk7GxsYRUalV6jz37DOIksBMoczSJScgIHLHnT8BQeCMLZuoCzr18gzzF/Uyr6ubL37hX4hGIuzeuYvmdIa2nnm8QJ33fucb/PzeO3jzVecRDgdR1TC53Di6YXD0aB+LFy+hUa+xqKebSrlIMBDl1ltv47LLLmP9KRs595zNFIsFPvvPt/C3n/0mfX2DzM4WKBTK2I7DAw88hCjIVMpVgv7ga+8w1/HwHAdcFw8By/HQNQ08GB8fRxQkBE8Ax08smuTMzRtobgsgKzKSKGDVq4ieRaNRo1ScQRQ97r37Tp54/GlSqTZC4TSGL4Yi+ZnNVxEF47W+M6kwS5bMR1IEbr75ZnRD5pQNJ1Eq2Li2SqMu8MhDT1KrlQlHgjz//POIosSvHnyUngULuPrqK5nJ5xFEi2PDg+zcuQdEiXqtRt/Ro4yOjLBo4UJ6FvRw/oWrKZWCFKspjh8f4eWXd/DeG9/NmjWreOmlp7nt1u/y8EP3s/Pl7Sw7YQmKIqHIGqYRwKpW8KwGguMQDQZ4zw03kJucpFyp0dc/RDzpp7e3l1qtwdNPP0W1WkcQJKLROJVKjWuuuZmhY024toEiJti1eyd+v06tVuPHd/+Izu42uud3oPkUujo7yRZmCaaS+P1Bli9byPTUKLd87zvc9qMfU29UWLNmFbbdoForUyiUqFQqqJpIuZJHk2UUUSIWjvD1r96E5M2RaEU1efK5F3jTW9/C+jO3kJnXwaHRvXzoE++lvbMLWZaZnBpjavo4V7/5cjq7Wkkm48iazt6XX0BwHWr23H9gtTpnnfLRj36UQqnI6jXryM1U+PRn/pHzzj+Hlq52WjozdPd28uGPvZ+PfOTD1KsVLrqiHTaMIp9aIRpIkwjO5xN/+fd0dKZZsbaZG971Ti644kLaF3Sw4uQ1rD1lEx/7m48zON5P1QarblMr1xjsH+DfvvRFGlaVLZvPYXx8kvu23sWpJ53EhlM38f6//CAr1q/k/Z94P8vWL+KSay/mw5/4MA899mtcT6BYqhFPprGdKrIyNy17/vkXmTg+RK1U5Jpr3oYsmxyfPEQuXySTWU1zehONWpDiDMhegrde+S4KUxauFSSZ6KHWsKnVLSzLQRbBaTgsW7qc66+/nq55ndTsY2Rn+igW6jz31CC10iw+n0E8nmRe7yLu3foL7rrnPp58+kkUQyJgKrQ1x4mGdPqP7KNWL/HZz3yKO+/6CRdffT3fv+WbbHvsOT72kb/gHde9DUnVqdVdVq1cxt9+6kaGhoeZmRojHFDxsOmc18bzL23HZ7YRTSYQPBl/OE0wmOCOH97Osb5REi0pvnfrdzjnrC00JRPs27sL12lwcO8eVp2wnLGxMZLpND4zwMnr1nL2llPZet8PsOwqtYbNTLHIczuewRMFJidydHX2cPZZp/Pyjh3c+J73YjUqfPWrX2TBvA4uueJCTjl1Pf/wt58gP1VgZGiE5UuXcPO3v8bKE05jasyhq3M50UgaMxqnVC8xONTHbT/4P8wWsmSzE3hYSLJHrjzK1Vdfza7tg3jlKKMjY8hiAE1TGJvoI587zCc/dj3JdBDF5+PowGF8fpndO7bz+c//I9ffcB1LFi6iVKqgyPCLX9xDtZhHcEUkNYAvFGMqO01XVyeH9/SRDLeRTvXykzseJRgKc8edd9GUzpBINlEul3nqqadQVZVYLEZuOks0EkFTVbo6Orn1truIJVIYfh+Oq9KUakaWVAxTQ5QcKtU8hAtUV+dQPziL8fkctWVF7EYM6fAm/KXT6FiymUxiC01dp2M2rSTYsprMgs1kFm0m3n0qqfmn0b70bJasuQpR6UbW00QSaQRVwpNEXEHEPizhbBcQT6+hfrSE2Fb5d3PdV+e79Zs06jdpf9Ic23XdP+r4/w78+SOufxpevXev1/j5Y/nM71JG/u/kYH8s/l8ZeYU/X83r78QfOdb+eyKvb/j8ewZ/vV6fs3v5Hfht+f1+v84VV1zBghUn8PEPfIzs5DQ/u++nrFy+Ek324WhB6i1LsZUwITtLoNSPpKhUC7P4wnFq9TrZ7DSmaSIrCrIsMT01Tb1aRdVNcrkctWqNQ4cOY1kNZFGhZ0Evhs/HTD6HIIgsXbqUXHaawcEBEokEnutQKMyg6z4mJ48jCzAxOsLiJYs4NjRMKBjEb+p0drcyMTGFppuEQiFsx0YQBFRVpV6vo2kykqTjWDXK5QaGYaKqMuVKGVFwqdcaaLqJLMtUy3P2LtNTkyiKhmWXkaQ5BUhZ1Hjs0SfI56bJZDIISEiaioeDAPxy66+IJiPEonEkAaanJ1AVMAwD0+9HklSsRg2nUcXn89E/eIymzBxZn5qaJhgM40kyqVRyrk6xVECSFBoNi1gsysjoMC0tLUQjIQzDwLYdZqdGyLR0ks9NUK3V0A2Vaq1Eo9FANoK4todPDzE4lEWUVZ5++nli0RgtmQTBYBxRklBUkVq9TDE7QTLZxMEDh4lEE+iNQQTPo6a0EU9leOmZ56lZNn6/gSa7bN+5l+Fjo8zkZ7EtF1XT0XQPpl4k1wgRiwSJxeNIooTpC/D4s9tJJlOUK0UUVSQ3PUYqHadWn2F0eIJ0U5LxsePopokrSRw9fIi+Iwc4NjBEOtNFdnqGXDZHUzpBIDCnVh0M+Hj8148SCEVZtHAR+/buoymTRpIEhgdGyI6PU63kWLx0IbF4kFQ6RiodQxSgpbWDwwcPoUoihcIMsUQCUVLYs3cfAb+fIwcPUKvVmJjM0tnRRbFY49FHniQSSZJMxUDw8Pv89B8dZGpqgpGRIXymH9f1iMcjJFMJJrIFdry4nfGJKbq7OmjraKJ/aBxTFolEo/QdOYorQMTUUTUTy5GZLU4gS0FMI4gvIPLYw49z4YUX8rO775yrYRVF6pZAKhlHk2oUZ8sMHhsmlc6QSKXp6GpBEEVGjo2hKwa6KrJ7z056envQ9SCCINPXP4hpGLSmM9hUCagiMhaXffjf2PXcS9x+2/dYt2o552w+nTvu+wmrT93I0Ogk6aZ20iGF9ZuWESgcpF6TMBd0EgoF6O+boFKpMtDfh2PlaG5p59lndzF//nwAfrb1fjKpCE1tGS6+8iM8/9IeTl43n862ND5/gkQqytJFyxg9NsLePbt4/ImneH7HEQBufPvF1Ks1VE1EUhQsx8ZzGtjHjmIaJkK6i3qjgStWkWQNQVQxzQie28B1LGq1Mroqo2omjmvhMxWaUlGWr1iOpAg0vAaqpmDbDQRJJBgO8IUv/wCAM05ZRTQUxhM1psYGiUYCNKWS3HXPVpavXMnwaD+1Rpl4LMKSJUuQZAlFVZmczrJ713Ycu86+vYdYsqwLn8/PSzv2sGT5SnRVxbZtNFUnGAwSiSiYvirvftd9/PyX92NoEpLk8a9f+gKl8izN6TCVcoVVK1exc8dOWjtaCIdjDAwO85GPfpwzT1lNtVBienwUTfI4/dSNTE8VaOuYx6+feoQNG+bEy5KJFIlEisGBYSRJIB5LIAgyt97+TS5/09nouoGi2sQjGWRZYGRklDOO5QgOjFJbMg9EAVM1iTc1U3dgajKH2xhnYLCPT3zqE2w6cyOqpHDtW99KLBHFsqv4/SEUWaLv6CEymRRDA8dJJZuwGg3OO/dsPNdBVVS+d9tt3HL7LRwbGaJULs8J7s3M0D/Qx8/uvx/HEdh4ymIWL1uCIHgIKJSKNR555ClOWrccy2kgaDISAoIgIssK55xzLpphcPDIACtPXM1Tzz7F2Pg4IKBrOuVKmX0H9pItTLFv904uPOdNhDpSBNqjDA32s/mCE/nMFz5HqZjn0aee4mDfIcYnJ/AAXdcZn5hgz7593Hb7j1m1+iRiAZNUIs7TTz7Lc0+/yPMHnuPQ4CF6F3Rz9VVnc8fdP2V6doojR48wMzuLaZg0LIuJyUn2HThEoTTLJRdfxrann6e1rQtPqCIgIQgyixYupT3t49CRo3z67z/HzEyRL//zd9m69Veccc5ZnLp5ExdcdD7NrQEmho9y2qmr2HzJuXzq7z9JW3OSREDC8PnQfH7K1Qrdixfx+X/9Iudu2UIy3YyptSGKFoGATjJl0NaxgFA4SKNeo5ifYcWqVaxdt46mdBLNUBnsP4plVZmammLLli14gkL/kSMcGx3j1rvv5Z4ffpNnnjrKjR86l/bm1biKguBK6IpHutkkEU/Sf+QFPnjjB8kkU2QLk9h1EIQWDvcfxq5ZfOxv/o43X3cdfQNDvOOaaxFMEct2iIUC4LkkYjEc28LUdC646HwiiSSKalCsVOnsbqM4O0ZLxkQUAwT9QWLxDLYo8e2bb+P0zWcQ1MJccM56XnjuMT71iQ9z2w++w6f++mOUSlk+/FcfZs26paxbtZh3v+eTbNi0Hssr4wvqFEpjvPjiC1x77dW0tEaoCiaZdJygoTNxbJSTN51MKBIE1+bSiy7glNPfxgc/8AFOWdtDbvwgvkiI6oxMuVakqzdMUE2z9uTlPPjgy/zs/ntZvWYZSxb30NHayTe+fxuJVIqWTJqnHnuI7p5udMXm8OF9zJ+3nD39I6Sa0tiNMp5Vov/gfk477VRu+vpXSLcmSLe20tzSTjKZRlYlXMejZ/4CPvFXn6StpYO2tjaKhVny2Vm+8fVvc931N2KYCp5gUSoVwTUwTI26VcDxKhSmRGanjqAIEhJhCuMH0btgpO0Jms9fSEkcozwiII8l8A4FkaUwatSPO63j4YEl4FkenuVQEyy0sIGi6giiDq4A4xLuYRnBEDD/oo6yWMBDxkNDYC5Y83rbSOeFufmuvNbhD+H1Yqb/E6Kvf178cZHX1z79qcTjTzn3T8X/FyOvvxmE4hu2P7Ed4fdv/87G6A+snHivtIf4Sr3rG/AfLJHe0NefjrnvLAgSjjM3YH+bKvGrEdc39ue4MqWGy/zeXm58741M5nLI5hxBmpg8ht/wodlhvNhyWPs+dkcuYMKNElGqNPqfRMgP0JFJUS6WkFyRRsOeUwGOBPFsm+nJSQI+H6lEgmAoTCgUYnhoiHKxgCB6xBNRxicnUA0/PT2L2bVrF+Pj4yxbupLCzDQLenoplytouo5leWQyzTS3t9E3PEwuX6RctWg4HhbgeiKyBLOFHI7g4CJQLsyl74YiIWzbolIq02g4eA0IRyI03Aa4LrIp4uG9opqpoCl+DD2EpHqICvQuaGflqpXIqkbdrlGrFMAV6B8YZd2Gk5AlsB0HyxOIJDMEIylU3WBqfIzsxAiq7sf0BSiWiixctADXcbEtAdMXRNYkJEGgXmuQz81Sr1mIkkciGSMYCnDFlZdjBHzUHZeG5xCIBNH9QTyvgS8UJxAOUmtY6GaIQDACtosgqljIFMoF3FqFiy7cTChmovtCiKqMqCvYgoiqGsSbu/EEhYWLF9JwGgiAbhosXLKIseFBTli9ijWrljGTy/P8zkMsWjCPTCbFSevXsmjJPHLTE1Qbc+NMFlxEWWFwcAhBEHFKec654Fz6B/tpaelEliU2n3MW5WqNRLKFkbEjeIKAz+dj7+49+A2TeCTCyOgEp5y2CaeWR3RLdLY38dCDD2N7LrV6nZd37WPLeRcyv6sdQRTomN/N/r17EJFJZBK0dLewet3JROMJZmZKHDrYz9hIjki8iYnJCTzRY/HKlbTOm0++WKRQnGXDKSchqQK25zK/pxcXj8MH9xMIBgiEDEzDJRBQ8Rkh+o8OIAh1otEACxcuAEGiWG7QNzTG0b5j2PUqp2zaxLoTVzFTyWJZIololNau+ezavZ+Dh/ezbvUiinU/xVoR0amzbPHJ7Nz1FKFgCE/wCIWCeJ7F2ZdcwsWXXc7I8DTPbNtGo2FRaUisfdMmNr7lNAS3zvPPPo4naTy97Vk8t0E06sMTBdasPYlKuY6IwzPbthEJm6xcuQjdkJFEDUGU8DyLnTsGWLBqMbfecTcv7z5Ew3Z421vfzuf/+jMc++FPmPjpfcSaF7J46SlUqxWy2ePIwnr8fpsFC+OcuH418VSSQChGpVpj6cJ5PPP0Nvr6+1EUC08XMXT/a++jRKKFPXuP8OgjD1ApVqnX51L6NdUkGIi+dpyk6ciywi9/8bM5FWJbQBTNOYsuwUNRRez6LG7VBlfk+PgUIjKqKCALJvFYiL27XqZeq+EzfFiOSLy5g0bDpV6tUcpmqc3mkQUPRXSwqtXX+k61tOAKFi898wjnnXc+flPDNDUW9i5h/749HD7YR6lQQzV0iuUq8Via0eFxVi3oQUFk4cLlGIaJrsyp995ww7U8cP8DHD1ynH37DrFrzy7S6RSxuMv0dJILL7yQ9WtP5Fvf+GdO27SJf/rcl/nMZ75AqSbzjvfewAfe/1dcdfWVRJNNVPLTlLPH+N7NX0TxpTjj7AtJZpqJJqK0dHXR3duDYzd465uvJmC24A+E8RQNzR+md2EvrmNxbOAghlbntu9+B1XQsG2XejVMcabM7KxFJJFAmSnhHp/kgZ//DLsOJWuWYqGBSp3dz9+PGe7gjM0X4jnw3Zu+y8+2PsIzT7/ATL5AMBBHdupIXoFELMihfcc55czz2Le/D6sBjixQdRye2PYMf/ePf4/j2HR3drNnxw6O9fVxYPc+3vaW6wC4+Qff5acPPoMta9Q9UGQ/DWuaSn6CfG4GQ1dRvTqiI4BtoYoOiljnaP8urrj6Umr1KqFgkB9971a+/Nmv8MzDz3Hrt7/L4t6F1Oo1ntz+/P9N3nuHx1Gdff+fmdnZ2V4krbpkSbZsucm929gGbDrYQAyhBUINLfROKAktQCAQCGAg2HRjwBDTjI0N7kUusmXLtizJ6m212l5md+b3xxpBHFqe33tdz/u8z31d559zzswpc2bmfM9939+bR555hi5fkGuvv5ELL7uIzOx03OX3li2jqeUwsmxkyuhKDu/eQt3uvZw4bTbHz5pFJBrlkssvY/fe/YQSMY49bQ6X3XJNmmMAiEb6eOCRZ/BHg1jMZv50zz18smQ5+7ZV0dvo45W/vsBLzz7JzFnHImkxpo0uJ9rbjiJYMUkmtEScWNiHalIYMmo0d9z1EJLJgGwM8cqrz5PryWDe3OOx2x3oqSS2TA8lIyuRjWmNlK6lGDJ0JGaLG7c9F6P03QG3O9uDLklEdS+SbKN6114Ks8sQzEaWfrSWzLwCho4YQyLSSyzsRxJNtLSFCWoiAX+cweVDae1uR5STDK+cwLCBpTTu+ASr1c65F89lT20vZcPH0tGyH39vlHvueQKnuwhVs7LoteWsWLWGqG6h9VAnZ551FYot/S+oKC+GRBwA2WQmN99OIhDnUEMPdft3oUsGEoIFr8+PYLVQMbyYtsNtNDZ6cTry6e2L4MnLJ6Ha8XmbScb9xMM9BLs7mDFtMlnufHRZRTBbWXDBJch2J9fddhdR0U53QASSCIkIQV+KzVVrmDJxNHnZBRjNLhzOAqbOmMaU6dMIhuDBux/gpFMWUD52GpfdcTsTZszmhpvvoLm1i6Uf/BOZGDffegMff/IVnR0qf3v2HTZuWofDkcP6ta3UtbSyq6aB0SPLufrCC3FKZlIxDVEROHveidQ11nHpDdfz+/sfZPDYUcxdcAFrdzaw6J0l1GzdjpAIQiqCIAgkjHkYncWcde4lTJwwlZ6OLi78zWUMHzMWT0EpQ0ZPZNLsubhyiygoKyaphqiq2oYzw8m9D97Fq88/R8PBOgyCEastg/17t3Lb3X9g1okLGDRiFhPnHMuCK2/nb/9YjI5ISkyiuLIpH3QcSUsDtmPdiCc1Il65CcNjYaTjEqDoCEkBfZ+MVmNAr5HRa4xIK02kVsuoa40k1gok18ik6iUMc1SMN0XRPBopUggkEUn0r9nvaw/7uWOOWNr9UPq+z6YO/Zw1mq6j6fp39f4PytGsxj+PG0R0RDRdQNOFdKzU76fv3VfX9X8vFzQQNARRRyf1b+X/ZtH5c+VHjeP70U50TTji5yoh/IBv8c9hmv78Ixjp56xNf4n8j9S8CkdIjf5V/sOl+J9oR39icsWsUqSCEQiK9V9fsJ9q6j/VzP5IDUEQUBQFTfuZE6ijb6iDoigkk0nOXDAfTU8wftJYTIoBNZpgxedfsmvHdl5d+DIxNcas409EcxTBgOl89NU2hhdnIHbtxqJIeEMxrA4HwWAIg6jQ1tZGSUkJba2t7N69m0QySUtzM0ZFweFyEYtG8fn6CAZDtLe1k1RVcnKyaW1pIRDwgyDQ1tZGIBjCbrfT2tZNV1cPPT1ekmoKAzqioGN3WLCaFRKqisVixSgr6JqASApBUwmHAhhMMqlUnEQ8hjsrA4PFSDQYIh4Mg1FCECT0VApZltEFUMw2dF3CZJKRFRuKyZTWswoSJqsNTVUxyDKNDQ0MGjQQq9WM3eEgEo1gtVrp6ejE5+sjOz8PTRBIJlUEQcJmt9HW3kLDwUaqd+5mxPDhHNi/n2Agmg4RI4HDaSORSqGYLWg6xBMJRCEdXysRT/tnKooZAZ14LILFakYUBSRJwO/3Y1ZMmM1mJIOBwsICzFYzgiGtLbbZbSx7bynFhUWQSrMfaB0iAAAgAElEQVSQigYj0WgU2SiTkekm1b0HHdjbIaHGQxxqaCUQCKFrGpPGTQBRQBRlsrI8RKNRGg43UFhYBF2bCONCFASyXDYEScCgSxxo66aooAiDaKSzowW3K5MMdxappMqwYRXoGmRkZFBSUsqOHdsZOHgIFUOHEY5G2bxxA93eHhSTwtTJU4mrSfRUitwcDyCixsNs3rKZUDjExAljkZD5evUaXA4X7a1taDr0eHvQNI2amt3EYnFKy8rIyswiFo2RX5CHyaTQ3dmLUU6zABfkFWCQDTQ1NxAOxthXW0tOTi4d7V3k5hYSjnhpbKxHlmzkFw1g29btZLkzaGtuQhdg3LhxNDU14fF4UCwSGc4MUqrIe+9+gJaMMLCsjKaWFgpKxyHpXjau2sDk2WPQNQNFBbnYzFlIxigBX5wNmzYxZHA5r7y8kGNmTmX02DGYzRYMogFncSYIAk17DjN8+CgEUaIgrxCjbMRmd6TBllnB29OJ0+5AsVrJ8GQiyjLxRBxRNCAmwqCGWF1nxaTY+cfLrzCgLJ+i4jwuu/xmnn72BU7q8VGU0nmzpY6K4cNQOtfj6+tjY5MFi2UoNkc7WkqiuLiA1Su3sX7DFgaUFJGRkUEoFGDu3Dk43G6MRoWHHlsIwOknH0Om28a48WORJIn169fh9fYwadJ4ag8cZOWa7QCUD7AzfPgoBg0ZRioFrU3NfLViJZlqH4piIpFTTjiRwmyxc7CujuaGQ+yt3kHp4HKSKQEdhezcMkRJP0KNkCbJMxhEEmoKp8uN3x+iubmNzMwMRIPIn596HYAzT53B8IqBHDNjBkazkezsbPr6wmzduo3Ro0dRUjIAtysDp8PBgdoDdHV24evtpcfbzuzjZiObjHR0tJOXX0JNTQ2FRfkU5ufjzrCzq7qKM8+cjyiGiMd9SOJMzjvvAsLhCH0Rlepde1j+8Yf0dLRwyWUXYrWbOev8y7BlpcPBWBwZZOcX0tXTjdVm5vJLr0hHREppWG02XnrpRUaNqiQej6FpUXQ0jIqdvz2zkLycbMqGVCBarfSEwuRl1uOwhwmH3ZgUiVA8xq/O+w25BQMY7Q+g6xqV11yAmkphkWQee/gvTBo/lHiojdzi4SRTSX5/3e+54467qKgYjMUqY3OasdiMeHsOEItHsVlyOXHOAjZtX8mAQg92u5F4Mo6WULn+1htpbmlh6JAhvLtoGbJkwNvdC0mZO2+/j4lTxnK46TB7amq4+twzSSWiSLKDcNLPmNGVJDWdzk4/OmbefPMNpkyZcmRzqvHmO0t5/8NlADz/1GN8vWo9drubSZMmUDYon6suu5SlH35EV3cXhw7Wc+dpNzO6aDADRw9h8duvE4vHiMViALz56ivc/Psb0FForO9gxpTRnL/g1/zz8y/o7ummta2dmVOP4+23PsQoK+zctYtYPI7JaufzlV9iNBq57857ueKSa3A6cgiGe/ly5UpGjR6FzWritNPOIhn1Y7ZYCMc0DEaIRuKYFBuiaCTk99LR1sQ5v5rPgQMbOOWU05CNFh7648Ns3rCJCy49BxGBWFgnEOjkH4vfIhgKcdLcEyjOyyGR0jnvvAtR1QQrVn8FwK3XXEFLwy5ctgxCgSCHm5sZUDaIVDLAwOIydu/YQMPBAwwcNAY1Cd7ebhw2M5meLGxWBz6fF4tVJuTto6H+MENHDyNBnLPmX0hh3kj+/OcneOudZ/hm9Q7efutDigbkcNycKbS2NXDG6afgcJowyklyiktYcPZ8MpwGinLsROM6B+sOs27jJmbOnM3caWO45qrrWHDOuZQV5HD/XQ8QCWrYbJnk5aTJpVwZ2bizbKTitRzc30hDfZzcgnKMcpJEIolRNpOVlUNOaQGalqTpUD1WWaatsQWb2URPVycFOXlUbdmFGo/ywccfM3HaDBx2O0YJurq7MdvsiGKaMDMcSnDTHXfz+pJ3aGppJRaLYTGb6fF6qd69m9fffouLzj2De++8jTPP+A07qjaxZfMn3PnQ40ycMJb2pkMoYpLCAUPJzs4j05kFBhkkI7EUfLFqDVfceAN1jfX4+nyYTCZ0Xae1tY31mzawu6aaK6+4iFg0iJbUyM7KobC4CC2VIDc7i9XfrGXeeRfS0d1FIBhAURR0XaetvZ0NmzfzwUfLOeGE4ymvqMDicBJR40ybPAG7Q0aQdD5e/gnnX34Nm6u209vrw6QY0TSdtvYO1m+q4v2PlnHWr36NQYZooIXuln14O30U2GDdx6+T5VGwDs9HGAqGiRrG45PIx32XxNkJDFOSyMekMMxIIs1UMZykIpXoP7XN/m4rKwgkv6d5FY6AxG/NWL+vof25+/zQ1vj/jxwNAH/BFcD3+vxvitN0xncktT+sae1nUD5aifczOOToPuo/kP/dvX/4mh+7+Y9hnh+7/r+ieRX+b7Bd/iUSj6s6pOOXCoLwA8zN/5lN+3+RNfq/JEf39T9p+4flyGlIP1j+bpHDDyzKo9vTvmtA1pOoYtp6Q0rpmBQHuppg5RcrCHrDDBs1AofDQSKRoK2tDU92DrF4lH1bV3NscRI6a0hZcxGyygn6QxiNRmRZZv++Wqqrq3G6XfR291BSUkJ2fh5ul4v29g48nmx27apGS8YQEOjp7qCoKJ9hIypZt24dA8vKUBQFr9+Lv8+H0+HkcONhsjI8ZHoyESQDY8aOw6hY0UWRULAPs0nB19eLpCfRUiqZ2YXEYxHUhIrDnYmaCtPV1oknK4eklNZAxiNRREHAbLXQG+glEYpjdxiwOLKIh2LIRiM6Oho6yWgUHdi5Ywfl5eUYZRmD0YDJbAEMaIk4kWgUi91KMBgkEoqiI5OVlUEyGUJLSrS0dDB0WAXReISVK1YxafJETGYjNruVhJoiEonicqUZYnu6uhFFAavVjNFoRABaW1spKixEUgxIkgx6OrZnR2srGZkZCFI6HIIsySQ1HQQBRUr7QcdjUSwmE6qmYTRZ0HWNSDiI3WKmY8PfsLszEAedSWfjfgpLK9i9Zx/lZYM4ULuXpCaSlZlNzd4a5p5wHPF4DLPZSrTqUbSM8YRDQUR0zBYrFl1ia4sPVYOszFyyc52sX7+NYcOGY7EacTittDZ1YHe6OFR3AEmAoZWjMSkK7a1tBAN+PNkZyLLIvppaVEFmyKBSsjJcJHWRZDTJ/rp6WlpaGTO6kkgsmo7j6vFQf6iOIUMrMBgMNLc0UVRUSDAUw+l0snv3boYOG4Yo6dQdrKNi8BAaGhrpaGvF4cqiq6uTrEwHnmwPaiLKgOIS9tYeYPDA4WytWo8oCowYNpakkGL3zmqGDB6MQRKoa6invqGJBb/6FX29XqyuXGr2bMNsEhk8eCBr12xh+jHTSOkCdY2dDCvPY391DXaPhVUrNzJ92gRkMYeuQA1uZyEWkwXFaERDIDPDzpaqnYwZM4633ljMebdfTEaGm2BtL6fc+BxVB1r5/dnHkKd30ZJy82VVHc1dfcgGifL8DC6fN5V5x05AkoQj7NMKh/fvISe8mYH3NhJLxPjTXQ/S0dbGP7/4hGgiTq/fRzKpUnvFnfw1mkDXBW45swBJlvjHN208//JC1FSScCREhtvKsCHFnHv28TgtLjLcLrI9mezYWc0Xa3fx7vsrfvQr5sl0sHHla3zxxQoKBpQx79e3AbD96xeJJhTuf/g5tm7fSzgSx2oxcfK4Uq6cO5LOnKG0dbRTVFzM2MqhaGqMaCTMl9/sY0/tfrZsq8Hr89Pd04fFYmLIoGLmnzabBWcej9vtAmD16tUMGzaS4uI8uro6KR1xFgDL3niUmdMn0hcM4Q/2Ul42kNq6Zt5Z8ikbNlfT1NJJd48PURIpKc5n5vRxjBqay1lnnYrVbicWT7B14xYmTJqG2WRk8KhTaW7t5IVn7mL+qbN48tnXWfbPL2lq9uF0usjPLuBPf3iE7i4/wYCXzq4mOr2drFq3hrb2VqxWOyedcCJ3330POTkDEEgS8rWimF1cfcU1qILKR598zFnz5rHopYVomoau60TCATq7uhg4ZCQvv7KIG2+7Ho8nm+qq3ezZs4fpk1S2V23H11tJXf1+lq/8jF3V1fT5fZgEkUyThYJhgznu2OO59IILaWryk5klYDVE0OwlOKw2YpE4t918O7NnHktfwMfFl11IIOTDYy1C06OEo10EQ71YXTlk2BWaGhrJLx7C/n11TJg1FYDHHnqMvq52rrn2Cqqrd6JrEss/3cgJJ89g3q/Sz+SGi87nsssupaB0DP54C4poxOXKZsu23QweMhRJ1DFbFPx+Hy6Xg9lz5rC1qgqXw8WKj96jvHwMGzdsYVB5KYpJR9Xh3ffe5+777kU2yGy8Ygc22YbnRgun/Op0Nm3dBMCgsoFsXrWSTz//Bps9E6tZIjdLIjunlGcWvsbDTz6EKIq8++I7VI6agNUhE411cd8Df+KrDevo6Ozi4osu4M8PPcDmjduZPu04YvEgVouTcDjC5MmTWbx4MWUDHLjdmfQFRex2CVlOAw5VVQmHfCiKjEmxc+jwdoryhyIrDrzdPdgUA4JNQREV4pEku/d8zflX3EhrWzsLTp/Pwr/9GVtGFrEYvPj3l7np3lsB2Fe1ibwcG86MgXR2tGGxWYhGo0QjXZikDFS1F39viMJBlaiJGKKQJCPDgT8QQxAVRKKk1F4U2c2+/QcYPnIk7Z1tdHXFcDtyCIe8dHfXMWDAGCLhGEUDsglHO7GaLLy08HWu/d1l7Kvexogpx7B96yYqSkvo83Vz/0Mvc/MNN2L3mHFlDWLLikUcM/NUkkaFVCzARb++iB3ba3j8qb9y9plz+PCzD7nllofZumUDcb+P3PwSIrEoS5a9xkW/vgSfz8d1197AU0/9FVuOGy2uosdVfnvRbwgHQzz2xB8RDAIpTSQnfyBmi8zjTzzMPffchc3sYl/11vSu0mhi+LDBxKJJFpz/Gz5btQqASy+8kHvvvBmdMN3dSc48ZwEtHZ1YzGZeeuJhJk45haptW1i75lP++OfHMUgSPS3NZNrNdEU0nC4XQa+PrzetZfPGLcyedSznX/lbNF1j2JAKrCT5+98eonjYZNav28hNt95GQ1MTg8pK2b7+G7zdnWR7XCQR6e7opr29k+Pnn008niA/J5f7br+NM884lUhC49XXFvP6u29R39hI+cAyPvlgCdm5OSAaeOnZv3P1tb9l9eqvOPuiq4jHE1SOGM6Dd9/EtEmViCYPKz5dzr2PPEHdoUbKBw1k0/oVCJFukpEAsmcYZiHKjq+XUzxsLHnFQwnrZiRBRBB/em/6S+VbAKfretrfVRAwXRv/j7WnR/fjx3rzS/r7fZPko+t+i1N+si9Hgc1/t/o9CtPoR4PTny7XjwaM2o/ggyNzq/3AbPYfCvCvY/23ej9iwdz/3H7msSuK8h8vjP9xZsO/9GTlf6OIoviD5sM/JRpGdIygG0E04U/EiYpJZsw5hkHDKujo6OD111/HZDLhcrmIxmPkFxSQPWgk3UVzUcfchGhyITRvwiVHUBMJgsEgsiwzZPBgEokEQyuGMqi8nMLCwvR9nE50PU1EFQwGcLncVFaOYvDgcoKhECeceCJ2h4O8ggImTjqGzMxCtKRMpjuflCYiSBKVo0eT0gWWLl1GPJHCZrMQDvWiWO1Y7E7iqoYmROn2tmAyQyDUhb/Fiycnn6RRxmK0oukaFouFeDxOIpHAYfWwdf1ODCkzwd4YWjKBt6sDtCS6mki/4JrG5CmTkY0GjEYFSRJREwlUNQmKAZPVTDwSw26xsnbtRuobO4nGwCDK1NTWsqVqG0lAMhqZOmUCeXm5yEYTKU2ClIbL7uSfy/5Je3MbbpcL9LSvZU93DwZSlJSWkBIMCMh0dvQQjahEwwnMZjOhYIh4LIbRqBAJhTErJoyCgY7WZlJiCqvVgppMookQTyTRBAGb04GgaVjNJtCguz2AvyNEy6EG7BYXsYQBQXRQVJSPzW5hwoSx7NhRhWJW6Gw+iK6lMMgSDocD0ewkqkJK18jLyaJy7GjyigoRZRlPXj55hUW4srKQzSYS8RiujAwmTZ5C0O9ny4Z1rF29isYDtdgcDvYfOEhjQyPoGgV5BeTl5rBjZxXr1n5DJNKLzSYxZdoY9u/fRU5BIWVDKvh6/QY8+fns2lWN3+8nI8ONpiWJxxPIspFkKoXdZsfXG6GsrByjYmDgwEImTRqLJyebGcfMZlDpYFyuPApzS1n15VoKCsuJREOMGzOFCeOnkkgG6W4/zIiRw7E4bKhCikkTxnPGvHlEI1E629oIRTsZOXIkmc581IiMyWpHEHQi/l4MWgu9PQKCQ8IiZ6MYJUpLSjhQewAtlWL9pq/J8rhpbmyizxdif+1Bhg8fgdmicPbZ87HbHfj6ehFFDcmQNt/p7fOxdE+Ivy3byKE2L7JBwh+Ose1gG1c+vpS7n11KNBSls72daDROQUkF6BqimL5++fKPWf7V5xxub8bn78Uop0+2dR1+/atZPPanW7j4gdc45qpHefDxR+nxefEH/IBAV3eANev2cNUNT/Pxiq/JL3BQXb2ekaMG4XI5yfZ8Zw7sctnJynTiyXLjyXJjNhv5cuWXjBk9gS++WNVfb0vVHuacfhVfrt6KmtTSRFf+EG99tZuzHv6Q3Oxczj71ZHo6OkhEIqz9Zi0fLl/JjXc9ziuLP2b33kN0dacPs/z+EFuq9nLn/c9x4vxrUVUNxSQzfcbktP+6KJGXX9Tfdre3l3Ubt2C2Z1JWOpjnnnuJeefeyOPPvMH6zdW0tHWhKEai0Rh7a+v5+8vv8eAT73C41Us4lsBktjJ69DgkWeBwcyPJZBKA5uYOjjv1Sv781OscbvKiqkk6uzrZsWc7888/nRefeZqamh0sfv9NFr7+Ku0d7aRSGl5vD2+89QannnYSoaAfkkkcioQsOXjpxVeRpPS/UBIFWlqaMJmMHDhQSygYJyfXg6ZH6Qt0AWCUZRLdXgZ78tG0FCNHjuKtJUu44a6bWfnVSrp7upANBnQdGgM+1m/azIMPP8TO2j3kl5biCyVxZQ/CYJQZNX40BWUFNLQ3MHXybDas34qgm+j1hnn8L3fjD3RjlO1kuAqRdJm1a77m9UWL8fdGefSxJ/rnu6O1j99f/QdMkocJY45l/OjZ3P/g7WRm2rHb7AAkZDu60YGsGNFTCcxmN5F4gjHjRoFBx2Sx4O3twyAraAgEgmliwXhEpWprLbFonOeeew6bzcK2rXvQMZKdkw+AmlTZ5d1NZlYBmMQ00/wRKSooZsLY6TQ29hCJpQj424lHo3i7uln4wvPp/6emceOtv+eF5//GnDkzMBpdrPhsDR2d6TmfMXwm29bs5/ZbHiMcsdDj68NgMmB12Fn6wXJKBwzCaJBp7WhFNJrRU2kq1Wisj7aOOgSzEZPLTSCu0+WL89ijTxMIBDjtjOP5eu0nGGUzwUAYk1lk4IDC/nf6wIFDGAwG4vEo8USYA7V1/eOKpARCZNAdSGK0ukjGYyh6mAxPLqJiwZmZRemgCrp8jQhyjHgixDerv6KjpZUkEnE1SSLqpyvgp7i0iMZDB3DKFgYOHogzK0JFRS4jKqZiNCVxZxpp72hk7NhxHNrfzqLXPuLu2x6moqyS5e8vo6K8AntmHudf8nsy3KUMLK9AMkdQtTBDKsdQWjEaVZBJuDws/mgZTz37OH/9y0OUlRYhiUY+X7GRyROPx55vIW5oQTb38cUHa3n00ccQMFBZOZprr72etZ+tZ+ig0fzx4ae456En+Mcbi8ktKqCkvARPfhYZJZkYrDL33nMHhlSa/Cs/P5/29nby8/PxeSMEgmHWbd4MwKSxY3nkgT/idjsQxCQ5bo0lLzxHbk4OkWiUf65aiy3HiKe4jJvvepHH7r+PRMLAvAW/5dmX3qGoOJedu7byyKMPkuVyIAsprrzud2i6hiLLTB4yEpe5gBVf1nLb1VdQWV7K9ZdfhizL1NU38NKrr6PrOk0t+4mEfJhNEg//5Sni8QRmk5kvP/6IE46fTVtbBzlOB4uef47Fzz+NLBs4eKieRYveYtv6LSQjEa6+7gZ6vX5eWbyEeDyB1WLh/TfeZOSQYVhNVnRN5NQTT2PZm4uQZZmDdYf4x2tvI1uLcGSOwhDrpaa6mrz8QkKhCC2Nh0CQ4L+RJOm/QzRN+28lhvrfJv/jwOu3crQNNaIEooQuiEfS0XbY6fxv6x1tay0i/Ev67r4/zAj8bUrWriZZuwZBkDjaD1cQ0qapR/ft6PL+ekfyvxvDt31O9+Pf7MpFAUH69/Jv2/s2iaQTmpBO3xubJqYt76W00RWKICBqBpKagfJRFYyZMoIUsHz5ahwOBy6nAwEoyCvEk5mLnJOLMP4SqhlJsGU/VrULg56kL+Cn8XA9LlcWJoeDnMJCTFYLisWM2WbHYrFQVJTP6NETcGdk4PX62bmzFkkS2bVzJ4FAiNaWdrZv3UJfbzepVAyHw4wowIF9B9m/dx9+bzennDKHaNhHKqljMbmR1BiJaIhMdwYkZQrySkkkBFJxHbPLTiwcxioaSCZixMIqO3buxmA0oWmwe9deOno7MFgsWOxmDh5qJK6m+OyTFcQjKqoaRSCJmohiMSsYLQoGowWjbCQVCyCkkghAMBTitUVvcNzcE5g4voJIsJNUQqdy+EjOPfsMoqHeNGmJYiYei+LzdqHGQlitNkRR5Lhjj0XXoaWllV6vH1XVycvLR5PNoEukEhHqavdgEASMBgOyrKEoCvUNh0ETEJMqikkiFPSxbu3XIEgkY0mCkSiSomAQDchiAlFPkVI1kE1E848j4TmGSMDPyKnTsWd6sDnt6CQYNnwgNTUHqa2rRdOSOM1OPl++Fo/LjiA7CPj9BIIRjKKOSRYRZZlUXEUSZfp8XWxYt5GAt5dAn48N69ahJ01IskD1zm1oCMw47gQkg5XikiGMmzqF7AwHgwcOIBDoY9iIEWhahN4+H2UDh6IoVgL+EOVlgxEwMH3mHCw2mX3Vm5g4bhglpaUMHTmCjEwPfb1+tISKBPT1epk4cTx9AS85ORkIAnR19SIarBjMNjx5Beyrq0Oxu2g8tJfGpgamzZyOxSzjynDSE+im09tFa0snjYfbMBhE0FX0pAKCgT6fl01bN5FdVERuZjHRUBTBmEK2mnA4XYgGM/sPteDOLMGTa2Lbhr1s2/I1UyYOJR7TmXbcOPLzKrAITqq2b6J0SCWFA5zkl6bD5nS2tdLr86d96nSBdas34+3xAvDB2lp213dwy1mTafjwAXYvuoW/XDCBWZWlALz86Vbe/nwdWZlFaGqMDevXAZCZlWafrtq7C1+fj9uuv5W5U07kpituYMmEk/A1t/L6a4vYsHULhzq7aG5toyA3n/cXL8UtZVFX1cjOqoM8eM+fMCkm3l66mrfe+5Q5c0/n69VrmVSZw1cf/7X/G3vJObN45elb2bvtXTatfpUP336aiiHDCfh7ycsv6K932/2vUjrAw9JFj3JoxzLWffYcj913NRaziZ5AlIeeXIjd4yY3x4Pd7WbEqHEU5A9gxpRRXHbe8fz14avobPqalR89wsN3ns+j9/8OT6aLg4da+c3ldxCNqRgUE5mZmWjo9PV197ed0gR2796DRTaQ1FWuvvZ35GU7efKRG/nTnefTVPMpzbWf8+m7f2Hp4seoKC+irb2biy+/FyGpoUajWKxGBEHDk5HZDy6fe+kdAsEQby98hjtvfpT9VXuZOnoyNquNhBrHMcDF2u3rMZtMDC0exvxj5vPy0y/w1ONPYbFYOFTfwIMP3o0syxhsBaSIolgNGAxGACTZTCQWpbfHS15OIVl5hSR1I92dIZKJNKARBAF3YRaCKxtB1GlsauWdD9Pm0hef/xtqNq3ljNnHU3/JnbRfex+fLP2QX599Lt42Lwd2baHYU8z+va2cMON4kmoalOt6igOHq7n37lvw97QxoDiHUaNmc9rp5xGKqOzcvReDAOf95jauvO4R3nxjEeoREpaszCzOP/dM/NFW6hqriUV89Ha34W+pY0T5UEpLigGord/PgMEDUYUouflD8EUi+AMhujo78TgctLQ24HSYMAgqghpDS6U3kNOmT+KMeb+ivbMLXU8hSQKDywaQl5WNJzO7/5mvqf4SLRXBIOno39PF6CT53S3X8dGX73DxVWdzzuVXMGv+RSz/+jOee+75/nrzzz2Hu//0MH97fiHlIwbTE+sFwOV0Egh3sqNuJ+ZMjaLBZkaOG0XZkIHcfe/tLHzlaU7+1QmUjprIhGNO4MSTjuGdJS8TDHYSjiQoKhyGx5FFKpLEZTExdexMrrn+dzz9t78QR+HXV95CSXk5F115GSvXbyYrI6c/hGD5wCJCkRBtHZ1oosQ1v7+0v78mUaWnuY5rr7uY4aOGkztwCEMnH8/NtzxAJNpLUhfQFAV/Z5RFC9/GIFlp6/ZTMXESmbkZmE0S2/a0ct31N1E5aRbDpxzLzDPmE+7rwmpycqixjaWfLOPy63/PzBNOYvKxc+mNiZxy3tlkFeSyr7GKHp+Gy2oiHo0QDMV55u+vcve9V/DIUw9QOnAyZ80/GWd2MXWHdxHyHcIV7uGKKy7lnCuvIGyQMTmKWLFyE5OmV9ATa6ewdBQTppzB4395lSeffZjfXnAWdYcOkJGVy9WXXsXokXls2b6Ze/54L2KyBdluwuH2oGsGmuob6DjYSPvB/UT8YRa9uxyjRUG2O5k24xhMImipMB9+9CHBUAiARS+/gMViQlcl1IhMRs5Qnnzhec5fMB+Ajz/7DD0YJRVpway0cNNtN3PFlRfy2Wfvc8qpx9La3kLl2PGkNJmFC99jwIARRJIqAAPyBzB48DCee+ZpmurrSSZtWIx2Plv2HnNmTgfgzSVLyXF5cGeUkVTjZGTmsnbjFgDOW3AmFjNkZ2czaOBwIprO6g2bKMgvYs6sGQB8tupL3C4HZoOZjz9citVs5lfYEz0AACAASURBVMvVX6e/E6qOpLXgdOpIliJE4nR42ykcUMTxs49Jj3/xm4R7g/QFD9MTFBg2cjxRSSDTNYCO/evY9cnzJPpaMGk+Wqs/pGnzcuRoiPraLYioaMIvgx7f32unzVcl4IiJ7dGayF8goiCk3bH4V63r0Qy8P+Ynyi+45peTQ2n/moSj0tFyVPnP+Yt+i2W+5dr5yZ5o2r/w8nwrkvSv/q0/1+bR+KhfmabpoOn/xv/zS/r24+P7Xyo/5qT8S+p+X1Kte0i17fnF9/o/KT8Fqn/IGToQCPwkM/H35dtFZ7M7uP2uO5g6fSJLP3j/CMlKis8//5xUKkVzczMdHR0MnTGP0OhrUa2FOII1uDwFRGIqe/fuJT8/n46ODtrb2hFFkXXr1tHU1EQgECASiWCz2UgkIxgMGtFIAlk2Ybc7KCkZQFZWNpMnT8VisROLxQmFfIiigCJbqNq2C8VkwmQ2o6OnGSvtmZjtHsyOLCQJkkkNkLBZ3ShWG053JkkNdFHCYrGSSumYFDOCIFJcUsC8eachSQKiKDB4SAVNh9sYPXoc4UgYkzlt2isZjCBIR5ztoburCxGdpKrS5/ORk53NuQvOwWo2oBgl8nLz+WbtRkRJpKuri2AwiKIoSIoBb2832VluIsFeVDVBPB7DaJQpLCqkrLSU1atX4+vtxWAwIKKTSqUwGhWcthw2rFtLigiqJiCKCuPGT8RsteL1eQkHwxhEI7W1B8jy5GK2WHA6HKSSSVRVxSibiYSjCOh4ezrIzB1MQ2sAi81KZ1sLXR3dhAMRDh04RCgYIRgIkJ9bzPbte9BFicpRIyHWjiYYEEWRRCxKoK8PVVUJhUIU5bjZtrUKdInx4yehSwYkWWLsmEoMok62J58+Xx/vv/sWBiHF+HFjCIf8rP7qK5rau+jxBYlFVZoaGygZUIauCQSDIUyKQjQeoru7hWQsQGPDAdasXINsMGEymuhsb8GV6cCgGGnr6iEQVXG6XUiygVQySSIWZ+WKFfi8Xvy+Plqbm2lvbMAkxBk+ZBDbd+4iv7iEQCTK5i1bMMgS7e0dlA8ajGJUKCgqwmp1sm7dBkRJorWtjQ2btlJ3qJ7Zs2dit1tIpZJUV1cfiXcpU15RimSUGDNhFGbZyCcff8yggQOZOecERFkgEPKhawbq6w4xbuxkygcNQdeTSJKAw2kmEPARC0ao2rCdjo4uQqEIkyZPxWFPh5cJx1UevOxkrvv1iUiShFFRmDt7KovuvYQJQ9MA4PmPtrBh7VoMBoXx48eBrqMfOSVWkyqFzgKqq3ZyzjnnsHVLFceOm4RRFxg+ZhYff/EF7R3tjB9dybiKSYi6yOo1n+MPtlPgtnPOaWcwtnw4AAsXf0EkGqeoqIRJE2ewvaq6/5syesw4Zh97Ah8v+5SNGzbgyXIzevQo9u3fT2XlyP56YyqH8umHL+HJsrN1WxWenBzOO/dkbrz2XABWr91OIh5DkgwsfW8pGzau4+STZ3LJhSczffoEjjt2Jt1tTbjdeZx08hymTRrB43+6DoCv1u7AF4hgNtuwWq2osQhG2djftiTB7665EkEBWQQ1HuGDN5/g2OmVGA0ijY2H8Xp9jB4zkuNnTeJPd15EVoaTPXsPsWVbDYsWLSYY9GMy9uHOaO936QiF4lQOGk+2p4IF806j7mA9OVnZXHnx5QB88eWntHe0s+iFxTx4/6PsqtnHvHkLOH/BOfzuiivSfV+zmnA4zOeff44uiCQB2ZTW1HV2dZKTW0o8ISJKCslUhJ6eXswmBwcPpLVuaiJOj9/H1TfcTyKusuqr7Wi6TlFBLiuWf01PZ4ypM07E6/WSZbUxYdxE5p+0gJNOmEflmAoW/uMv3Hb7H3jsr88jH5kzXUsxctQgRlSWYLIImM1WBg3K5cUX/8q6b9ay/put1O5r4PPPP8Wo6Mw/8xTa21sByM/NZfvmjSRjCpdefDWZ2TkUlZagWE2YrWYK8tPaUa/XSyKRoL6+nq6uLhx2N3//+0vYbS4C/jC5ubnY7XYkKR3juKioBIBtO6ow21MUlgxk0viZiEk/khWiapD169d897OzaOzasZNXnn0+rd0+Ipu3bePWu+9gZ/UOzGYTqVSScNTP7ff+kQceua+/XmPjftwOnbKBAygtK+vPH1haxl9eepG7H7iLqh3b+/M7Ojt59oXneem1V6ndvx9RFAkEg1Tv28vvbr6dJR98RmZGNgbJhD8aBqOBlEGgK+DjlPnzefzpZzlQV4eWSpFMJfly1UrmnXUGz7++FOEIKDjm2OMwOyy4XA7MsgHZ+N0+YNv2aqYffxJL3nufYDCIJIm0d3Sy8LV/MGbyMRw82ExXVxcF+QOwWTPQUgIZGZ7+6197fQlnLLiIjz9fSTAUwiBJ2CwWVn75NYcOtnDnfQ9w3a038OWqr2hsaerXRnV7vazbspKVG7az6ptPmXjMLBJoCEaBQeVlaOjE4mmSnqrtOxBUnXBvO2q4jdpDBzGb0muutKyY6bMnsvCNV4km4kgGiWgsxoG6eh788xPc8eADSE47w0cP56KLz2fGicdz/nnnEQn2klOYzcS5Z3HnPfdxYH8DInauuPRWXnrxdZ77+5sYRDunHncKajxFw6FGdFGnw9sBorEfHA4eNIhvvviMZDiKpooU5g3C5/Ox8IWFzJo2BUiHbnrtzdeZO2sGLgWCfd2sXvE5L7/4N2667iocDgcGg4Fdu3Zht9vJzs0hmUofCI0cWsGSJUt48OGH6OvrxVE4lGmTpvHEH25lxIgKAHbs2s5b776BYrSRmzOI88+/mFA4DECOx0NubgGqmiIeD1N3cA/Nh+t4463XKSsdAMD2XbtxuyxIYpxpE2exbftmwpE0cd0N117Hju2NeH0pAr4eookUBflFtB6qp7JiCAC7a/bR3d1JPBIlwy0QTomYM0cSEyWcGU5Sgoa3s47erhbiagIw4uv04skpJZUEURPR9e++u/+JyLNSyLN+nmn4h+Q/CRPz/5r8GC757w7l81+V/zHg9T8Bmz9Vrqpq/wL+PsHSTy3qn13w+ncsyL+0Tz9l3vtLWMD+K4vN7Xb/m1nDjwHeb82zk5pIUlAZWFFMUfEA7HY769at47TTTiMej+N2u3E6nezfvx93RibCgDl8ExqFqWcHM4dlUZbnoKnpMJA+xYnFYsyYMYORI0ditVqJxWJ8/fXX6JpIZmYO8ZhKwB9EUYx4vV5i0Sidne1k52TR3d2F3eHEYDDQeLiBWTNnoekaNocDWVFIplJopBAlA6FwgERCJRAIIMsGgqE+kAT6wn50A6REHUmCCRPGgqCjKAacTitWq4lAsC9t7idC5ahReLI9WGwK0ViCLE8Ooiij6QK6GiMaDpLpySae1IlGomS43Rw8cBBZlvlm9WoS8RhdXR1UDB0CenoOcnNz0wDSIOLxZLN23SbszmxSqSSiKKDpGpqWIpVKccIJJ2Cz2aitrSURi9LW1oYoG9l3YD9zTjyRSFTFbDJRvXsXyVQKg2zE4XBjM5tJxKJcetmlKBYFURBQVRVRFJFEkcb6OqwWC0k1hRpPEQ8EkA0SVrsdk9mC2+lAEHSGDx/Kum++ZtyYUaDD7OOO51BDPTnZeUT9HchmJ4FAEFEScbldyEY5vcZkE0ajidzcPFpaDjNm5HBioRCdHR1s3bKVWDzK5EmTmTtnDitXrKC55SAGg86g0mH0dLXjyfRQNrACuzMTb08fgUAIX28fgwYNwpPtpvnwfjTVT1amjYnjJ1BYPBAkCw31LbS3tBOPxZgwYSIZmVnU7NtHRkYGvt5ePFlZHD93LvmFhZRXDMGTm4OaiNPZVkdH8z5GDR+Iw53JkKHDmDNnDtuqtmG2WNm2eSs93T1k5eRQWFTE0OFDsdotDB8xlCnTp1I5ahS7d+8lGIjg7e1mxIgRiILE++8vY8PaDXy14ivWrFpNV2+AceMmULOnGqvNRlbGMLp6ujlwYB9Bfwhd1zEqBixWM6FQBAGBjMwMzDYbp8w7nYLCArKzPRxubiJ1hKitwOMkI9WOSBJRkgGR5Z8sJ5GMc92v0ifljZ1+2oJxdEFK+2/Ljv4wBJPGTeaP9z3Iy39/kYwMF+eeex6RSIxhw0dSUlrMW++9CcD1s7P461+fxGI1kZnpprAon7279+D19uGyZ2OUjfR4g1TXbMPucFBXd4iy723mzRYDKU3FaFSYd/oZdLW3Eo6ESGoa0VCwv95Zp83AbrVQWJiPUTGxfftOcnJzmDAmHYYnoSaprW1ATcZR1RTjxk1k4asvU1ZcwICiYmw2G97Odj5a9gWHmxrZt+8A06eOxWG3kEgkOdzYgqYmENAxCPDJx8v7287Lz0WSNAQ9HY9akGR27q4hPz+XK6+6HFEScDod2BxG+vzdTJk8nnGjBwPw9pJlXHrpKeRk96EmDQSDk1HV9GGhVXHw0sKXEY0C7721iLvufIDjZp+MIpr6277gnPNxuZ2MGj+KD5cv4XBTC++8uYQZk6cBUN9QjyiKPPXUUyQjIRSDQDKZ3uxnZ2ejo1B/uIMbb7oVo9FEYX4pogiTp44DwOfrw2KyM3PqeBIxlZSaJiVKJDRMZheSbOKii8+j4OS5+EpyOO/XF/LnPz8JYgpQuOaaW1n0+ivMmjqJNV98w+5tu/l02T9xO/Opq6snkYigaRrbNm0kJzOD0qIibv79tWRmZlBSWoBoSCEKJnxH4oXX7N3Hjup9dLYd5pNP/kkkGmfT1io0k4eY7MLiSJucRyIRJEmivLwcRVFQkwnuv/8+amr2oChGRFGks7OTVCqFoiiccvJpAPT5/Sx++236upu57bar6OjqQg2GOFCzj7fefad/3gOxAKFIjIKCgYTD3zFPR6NRclweplWO5LMPX2PPtlWcOPeEdN/3H/juJ6prNB2qZdrUWThd7v7sHdW7aO5o5rRTT2XXthqKCtLm6SbTd88825NN7e7drFuzktGjKtF1nTvvu4/GxnqCgV6ElEYqliDiD3L99deze+8+FEXhknMv5oSpp3O4did7dm3klJNP4Y57/0CPtwcAg1FAMtlQDFZkTeHAgcb+Nq+6/iYGFA9g9WfLqFr/FfX7qlny1mKKCvLx9fVx9nkXYDZbCEeC7Ni5lfr6OgzydxqYW+7+A8dMm8b6VZ9RvW4FPfX7eObJvzD/zNPZtm0nHW2d3HHTTVxz6W/ZvGo7HU3VdNWF+OjDRbjt+ejADQ/cS4/Xh4hELBDAiIbZYun3uhtcPoTu7k5qag4TjVgpKh2ads0B1m/cxNsffsQjD95LS10N3rZ66nbv4uILLgBgyQfL2FK1k1CwF1GP4e3t5clnX+Q3v/lt/xiczgyGDaskkUiQX5DNPffexkW/vYhIPEBfVz1VW9YyeHAZCDJGk5twRGVn9W4AhlYM5rhjT6Kto4doMkFt40EcMjz31GP0NB7sb6O+sZHDhxuJx1V6fTEO1rczatQUPvrnV+nDaFGkpKSEVCrFP159tf+6ttbDnHfeuazbtJkhFQPxt9WT0mQeeuINYhG1v15WnoOe3ib27mvm7rv+0J9vUpwkYulQYFG1jUyng8MNjVz4m0tRzNb+enc/8BS+ENTWVLGr6lB/fiLVQUXFcWzb2orNFiHTkWa/ttoz+HLlmv56tQ2HMbvy6OttxGAUsCoKsqEeS94IRs06E0deKZJ1LKplOLnDJmPPdxEL97F350aMqo94uIefkx/ae0sjNKT/j733Do+ruvr9P6dOn9HMSBp1S+7dxt0025iO6QYChNAhhJYQCBAgISEJCQkJBELyJtTQewcXDC5gMDbutmzZlmRbvUyvp94/RpaBNLhv7v3d/J53Pc95LM/sffZps8/+rrW+6zv+66fnfn7t+2UM8M/G+3fZvxsg/t8A4qZpfmGsrzrmP4xk/4t2X8f+Y8Drv8sMw/jCRZQk6b//APybnRb/pzwhX04B+CpW0DVsTDSjwIJTT8E0TbxeL01NTWzevJm+vj4aGxvZuHEjy5Yt49JLL2Ff1KBzyEX0OUcxbaifSREodxnsbW1m69atdHV2sXnzZtra2vB4XFRVVoMt09nRTyBQgq7ryLJSjOy2tVIeKSOVSlAeKSWfKyAIIqNHj8LpUpAVBd3QSaVShEvDZDMJsAx0LUuhYODxuHE4ZHw+J1KhgJDNk+nuJd3VQyaTBMFCUaGg5RBEG1WVcbvdKIqMIov4Aj5cbie6kcfj8WLbIEoSoijhkGxURUFSnfjDESRJRCtobN26lb6+Pk46YQGx/ig+v4e333mTfD5PdXU1u3cVX3B9Xd1oBZORoybgcJegKDKSJKFpGooio+s6ZeXliJJEJBIhl81SU1NDNptj5IRhiIqK21mCYNnUN9SRyabI5vJkswV6ejrxel2oqoSNiSiKmKaJbhgYhkF5eZhMOomhGyiyg1jTEurdvagOJ9t37qY/2ks02osg2GhanrLyEFWVlVi2xbDhw3A6XYhaL6Lqp7q6Fr/fhyAKWLaNP+DHsGwKeY18IYfP56J5x3bWrF6NoZnU1TWwYuVy0uk0TTt24VDchPzVFPIF9jRvYtL4seze1UR5pILSimryeY2KikrKysowTINYf45QoJLergQeZ4h4qh3dzhAqDzBh0lhad+9l9849SIKAaWpMmz6NbD5HIp4glUgiqQqmYIMs4vH5qB17CJH64QwZORKHL4DidCKIEhs3bWLq1Km43B68Hg9jRo0hm80xbMQwqqoraGndg6IK6GaBQKCEqVNmEA6V43Q60TQNBIGGhgamTJzMpHGTCAeClFXWsnrNWmZOn86OHdsxtQCffPIpoZCX4447niFDatH0PLIk0ba/g1wmj6abtHW1owsGZp+GHTUZMWI4brcLgNnjhjJq+HiWv/8hmUyWgqYzc9Ys0ukUcyePQZaK07zhLmHdZ+tRHSqyrAymV558wgLC4TCXX3opvb29FAo62UyWZDLF22+9RCIRB+DaP61kypFTOP/KbzF2xiRGT53MvNOO5egzj2fxmqWDkYNUtp9Dpowhl8uye/dBrp2vxM3b77xBIODn2Weewed1ky8UKCsvx+1xD7Y7eu4sZNEmXBpmxsyZjBs/nvc/WMZsJTnY5vXX32HnzkbOPvtc9uzey8UXXIGt5fhg1WcsOOtaTjr3dn74i8c57fw7ueKG+xk+6XSSqaLo/ZqP17Lk3XcQBDANHUVWBve7edNO9JyIVZBxu70gSIyfdAirPtnEeZfcyjcu+RGVI47GF5lD/YSzqB57OovfX1s8P7+ILPt48cU0z7/ag647icdjANx84y0UDJ3q6kpSsRh3/+K31NYMY84R8wfHDniChEJBSsIeSisCRCIRTjl5IcPqhw+2WblqJY8//jg+VaB11zbEgUKFNja6afGjO37C/GOOI5XMY1kiNgYudxFAl5aW09HSzvlnnwhmgVEjgoRDYbp7e9DEGMs/XkFT8yZSh80gdfgkOjo6iPYnSeZ6cXlC2HYAW9bo2d/CGaeeSE1NDXlLRss5qK0ZiqZp9PZ2c8opZxAOl9HWvo9cPknD0GpEySCZTLLwzHOpGgBxLreHPz/5JB6PgCSb6KbBd665jqBo0rR2NdKAc8YaKPqRTCYpFAooqo2i2tTWRVBUG03T8HiKi3LLsjjxpBPxuosSTTfd8kOu/95VtLZtZnvTXp5/+iVuuOUW2jvbD2Yh2QIzZh7KpENm0t7Z84X3X0rLMHT0OCpKxtK3y8Epx88dfF4OOKAFBHbt2MmcI45F+lxmk2VZjBg2gj/8/ndU1LqLchYDn995S7E4WUdnB0888TjVFeW8+uITOJ1O0uk0i99bjCga6Jkcii2wetWHvPnO2wDccev3Wb36A6bOHE9zczORSIhH/vxnpk2dSnZA9kkSbeLJHIYu0tsV4+23DhZOczicPP/4k0weP4whddX4vAFOOvEMnnr0flRVZX9bGw8/8hhen4O7f/lTxo4bQV9f12D/saNGc/+vfsXY4UOoKA1S0A2GjJpAf7SD0087kzdfeotvX/xtrv7OJYydOJbeeDeGleLI2RNo2dnO1CmTyWSz/PG/Hibe3cusyZOxcznau9txuopzWiBYQlllGYLkp1AIYpoqqlKUAYrF49xzz8+5/MpLkVWBRKyLispK7r7rTg6ZPBGAN99eTOvOnWz4dA3hUIi27hh3f45rvXlTMVtO07P84u4fI4h5xkwYTnVtiEnTRjJ8eBWpdIJcXgfRhWEKdPUUn41AwM/V191ERc0QXAEPQ0YNoScrsaW5hwXnXkbA7x+4zybIKouWrWDUpGGcd9EZHH70TO7/46/I54sVrTs6Oli7di0P/P4BnI7i+bV1tjPv6Pm4PD7WfvoJ7Y1ruOqaG1DDo3nl1TcHz6GjI0EmZWMJUQS5H4+neO22NK5h/cZVbNnUTIlnFKItM3v24Xi9IbZu3znY/8hjjsThVwkGnUwePweno+hU2b27A8nXyrTZw8j1V7Fm5Qf8/r77uO1Hd7GzuXWwfzSVwRSdiGYQCh6CzjLad2ymOhgil0jgtnUK6R001DrRsym6mjpRJQ2PovHBoudpbvyM/7H/sf9d+48Cr1+u7vV5+3wUtdju7+vAOgYmiM/3EwThb3mmn+eu/k1+9ue/FwZ4Jha2bWLbJn+Ty/53zuMLXomB/Q7ybb+UH/43XNp/ejziP/SSHIg6C7Y4uH257Zf7uBxuLFMEUQYFSirLOfyYozjs6Hkcc8pJTDzkEA498kiuueF7LLzgfH7+u/t54oXnmXnEoYw49lLKL/gTVv2RCPk4s8oyzBxTR31IIdXfw9Ah9VRU1zJ11nTGHzKeUxeewZ7WPZx42ilU19cTiVRxzAmnFItlJPM4HF7SGR1RVPH4/JiiQDadwcgVwLQwTRNBkDAsC9Ey8Zf46Y/GKRRMVMVBMq9hChaWUMAWdZwOlUwqhZ7XifVHEQURW5SxLEhE+9HyOggWJhay5MOwdDo7u8hl02iFJDldJJ1OI1o6yVgvbl8AzTCZM2cubpeL3bs2EA75ERE547Qz8Hj8xBIpNm3aRiGt4/X6iUXjRCrLsNHQDZtErJ+dO3dgCQL5vMbbb72JKNgoslIEbrE+sEzCJWUIlsX2zRvo6uqixB/AqSooikhbewcedxDNMJBdCiBjmaBrOj63B8swyOZNAoESTMvAHy7BKycwknvYtH4jU6dMRVF8VFVUs2rFSkaNnkBndy8trS2AzdARw8jrcch1ks5paJqGZUEykcLvdWFoBRSHiq/ER6GgEQpWILs9HHrkHPwlYRKpKCeesID16zcyauw4ook4Dq+Dmrp6HM4AW5v2UVldR293O617mqiqK0cSLRRZQpIkUukMKd1gwqzDcPh91DWMpyQYQRAkXG4nsw+fyfhJY+js7iTgDw2kj+sMHzOaYHkF2DaGUQAsDKuoUysILgQcCLaOZek4VYnKsgh93TFaW/ZQWVPL/s52PB4neiFPX2+Cvc29PPLIE+TzeRSHDIqF5BLwBb3UDKvB5fWjOBXaO7uQXRKTZkxHNEUCAQ+6LfDxR+uIJRs59oRz2LOnBVm12bFnGw45hK5lWbd2K/l0DFuT2LpxE5+sWE5fSxtGPMebb7yGNpBiV1Hmp3ZYLYdMm4YqmGTTKSorq4mURRAdIiXe4qKmL5rg0JlTyGY7MS1j0Ofm9koMG1mLJPvp7epFkTWSV57NczV+gsHKwbkgkTOIJeL09feRSqfp7evFsi2yuQymZQx6ttev76MkGGXocD/zjzkIzox8Ecx39/Rx+pln0bRnL7FoP/PnHV5MxT9gko3D4wLVgcMlo8oSh86ah2kcjDocevgcps88kp7u/Rw1bzbtnR1ccdPv+ek9D7O1sZV4sghUvR4n5WVBysIlg2AjFC5j8iHTsUwwTZg3/6jB/U6cNAaHR+Ivj/0JwZbYtnkjN916LwvPv4W3F3/E/vZuTNOiJOCmrDRAeVkQh6N47PFEgG1b/KQSIpMnjCaRKRAKF9Mt83oel8tFT2+KTc3ttDRvRZZ0/vyng9zJ5154HsO2SGZSpFMFFCGLZaXJmQfn4/qaMiKVZWQsldLaejR94JrYGn6fzIsvPcXC00/E5/OiW30UtBS5gWiNrmt8/8YbcToN0lotM2aez/2/vJtgSQltHXu5/a7bmX7YXEZPH86V132fSHUNileiJFSDZmaQ1AzLFi0hXB7mnLPOZdv6Hbz78iv88cF76erup7Z2VFGrUlWwZJEjjzsKOeAhnkzQ1rIfj+rmsScexeMqgr8hdXU8+uB/cdW1t9DXn0DXC3y06gNyosyY8WPI5Ir8Qr/Xx7tvLaWnsx+fx42o68T60oRCpaAIeHwBHC43pi0gqyoV4TLeW/Qe9UPq0TSNd5evZMy0OZxzySX84r/+yJr16/jGGWcPRkLD3jBOhwwqKAM67RPGjae8tJxsNstjzzzFsGljmHvu4XznhlvRB55Dt6vocPl4zTr6Uzp33flj9AGd0gM2YcQYFBPsjHmAjkptZQ3fu+4HDBtaD8CyD1bgdfkJV0SYNmUyAM0t+3D4wuT0AnnD5OmXipHimuoqzjr9LN5+6y0uv+xCRg4fhZ5xUOpTufn6GwbHtU0RJybZfC/+iMz3vn/l4HeXXnQRI8fWI8puov0p+nu6sbUe6itDnHbyiQC8+vrrNG5pQteSFLIGXvdB59IVl1xBIp3DNB1kNJu8nkPSEgyprcblV1C8WUKBEIqi0LhlNWGlhoA7icfZQG/XGk4+bgEAS5evoKoywp7mZp558RVqyytJJYp8YcvUyOfijB5dR3lEoLysqLUOUFtdzRlzZ/LgPfci46O/L4GOSeO2DTRUhAHYsrWRoaMnMmr8HDo6mjh63lw2rF/Db+78GbH9nfzgmisw8v2UhZ2MHz8UvWCgArt276M/LWJafvI5mWQsx+a1G3EpebLZ7OD4f3jiIQwzHHtbmgAAIABJREFUz69/8lMev/cBzEyGqy+/imyiQDpVfG5zhTzlZSEmjh6LInp46N7HyScFbrjxhzTv2EFncyPvvPMGDzz0B8IRi+PmHQ1ARzTB1dd9F5cq0NOTYuFFF/OLX/+Y5p2f0NbbffAeOzzUjRxFOFxDVdV4Dp9VrOD90muLSSckJh0yjQf+9BCK10s608v2rWt57/0PBvvva2nCzJtsbtzP3b+5cZDP+vaylWQzDgJ+N4K7F8VVxrz5J3PVNdeTyWcH+/f3tiHLGp5QFbLST3vfdoZPPpuEaZLP5kinLdLtHVhJhUQuh1DqQTfdRCrGcujsBYS8JWxd+yFCIY1oW4PVd/8eb3RwXS9YmNvA3Mbf5YUKX9r+pv+X2/+rjM4BfqmNOeh8+t+1L+OWwWO07UGu+t87ti/jhf9T9s90Wv+VfRm7fFX77wTq/mPA69cNL/+j9v8nwtf/bvt/6VgMw0AUxaIWqm0jiiAINooiARaGoiF6wFA0bKfJpEMPYX3jOlL5JNddexUup832pIv85GvYW3sJn+2O07pnJ4fWW0SkXrr37qSveSOFdC+pdC9up0q0r4/ly5ahKjIfrVpO6549ZLNZotEYQ4fVk82mkSSJQkFDlmUEQcDpdKIoCpphokhFLqptAjbkc1n6+7vxeJzIclEbt6qqBi2fx+txY9kWoXBZUaNUURFkB/6SMnxeP8lECgELj0dFRsDtUDF1A6dalK8JBoPEEwm8Ph+yIOD3ednTvJtEKkmoohbF5SGeSqK6VCy7gKLIHH300Xg8Tp555kXeeOMt0sksEiKxaBTDtpg5cyaSIKBrGgsWnDQ4t6XSOUKhMLJa1KW1bJsx48YRLisln8/h8XqwsRg1aiTBqkri2QyFfL64oJIlkCRsUUB1OfH7vBimjiDYWJaJJElYlonT5UDXNXY2NfHxmk8YN2E8pmWyds1GLMNEz2URTZNYdzuCbeD2l2ILNv3RfgqFPJlMHhGJaH+UEcPqcPtcFCwdy7Lo7eulra2dcGkpjds24/N72bh5MzX1QykYGrZgUFcToawqQu3QegqGRWVNHbZtkStk0PU0hp5hyNDh1A8bAQPl3UVBRFVVctmiaLvqcpHOZaiorsCWLATFgbckiCDLGFiYhobH7UHTDGzbJJ9LoeWztLTsRs9nifb109vTiy8QYMeuXYwYMQJN0+ju6sbQDXbtbuWtt95l+IiRnP/NC/B5fdgDx2HbNoZhkMtlkWWRcLiEocOG4ff7wQaXR2beUYcTDgcZPWo0qUw/NbUVOB0uNM1g965mUqkMgiRz3oUXUFpaSiwW4+hjjmHuvHls374LXbM49thjcDoHHHECON0eFFVBUd0Ew6Xs2LmTvJ5DtMViFBiQJBUkCUF0ovrKsa3i5w5FRDeSfPuac1n2wWokxcGocSP49LOPGT3sYLXgt246gt49PWxevZmVSz6ipXEfR06ex82X3cyqdz7m7lvv4f3XVnD5t+5i185aGhoqCJTEBvurqsCoUQ2cdfZpuNwuxowZwYgRw1m18kOy2YNpwx63i3wuhyqBJIoEwwHSmT4cjoPpluvWfkRPdwerVq3kzTff5We/fpxde/YTLPFx0TnH8MdfX8Uvb7uAR+77Psvf+gPP/OU2SkMDERHbYtHiRezb18YTTzxJZoArBmDbFrsad3Lc/OPI5LM8+uRrvPjKUiRJ5PYfnMGnHzzNe68sYcXbq/jGgvPYvGYbJ51QXIw37WimrCLCGecvpLKykkgkMjiP+7wuvv+9axg1so7/+tN9TJk2gz8//BjnffPiwbHvvvsX9HR2Qd5i6aKlHL/gZEpCYV569oXBNum0RiaRREJCMFWUAwWbrAIoAtdddx0uSyfeHyOXziCLNtG+YsRIUWReevl5bFsglwvS3+dk/KiJfLZ8FUfOmM+8I49iaMNQUqkU733wHh98/B6CI0+sey9uxeb0BaficYZ5+60V1NQ2MKShiqnTJ/HsM6+iaxCNRumPdhNP9WIKBRBtNMPAthRee+0tcrkcpWVhqquLDpHOrg4mTh7BU889S2VVA1s2bcelqhiSgiEI7Nu7D4Dy8jKOOmoeDUOHYNkGy5e+RbBExV3ix5ZdKIpCb28vbrcby7JQHCYjRtay+O3XufOO25hz+BwqIzXU1QzhuPnHcdn5lzFx5CTaB7i3I06qRbk8S3mklPETipG7mqoaPl35IbfffheHzpxNebiUmqpqRjaM4qQB8JXNFRfyl158EdXVVZy58BRE4Ys1Ja695ioC/jL6elMcWE5fdcXl9PZ1MnzoMAD2t7dh2xaWJVJWWnR2ZLI5DFMjFArj9qh0dBdBy5GHHkZlpIJwZRmyX0UzTLwBL7FEklHDRwxGk9vb21BkL6riIRbrx7IOgurZM2bQ19NNNNqHx+ugvLwCLDd5uZRgsJj2vGXbNs4//3y8Xi9Op3NQ9xbg17/6OdOmTStWHS7kKHFJFKJtSKITbBFJstm49VN+fs+vOe/Sy6keNw539QjUkiAjpszizrt/BoBpmSRyGXpjXdx3/12gunEPgGQRG5e/AtklUVFXTte+1oGiknDIxHHEY1nOWngOgiDwwfurkaUYU6fMZP5RxZTxaDSKpqc45xtnUlc7jEcffZRRo0bx4IMPYts22xu3EI320dLcyurVn5JL50hEE0RKIySiCUKhEHXVIUJ+hcOOnIGglAyef+O2HTglmZdffpEZM6Zz3AnHoLoFgmVeHB6R8kixGJjqcLK7tYX6UQ1YlkZXzx4Uh4amp9m4vZlx46fi98gcfdzRaIbBCceMR1VVTMukuWcvx510Evm8TvO+Dn7563tY37z5C2tX29SRtBSSbSMrKnfecRuqqmLbNtfe/l3eWfoiZs7CVBxsaNzDuZd/5wt0tZJQCASF6YfN5K9PP8Gl55+FqioUChpnnncxr77xFkuWLCGdN3nyuWc587yzkD+XvedS3ST7MkiiRi5dlOHD0kFT2bq5BdPy8/bbi1m54mOOn3sCYZeToN+FVoiRyfVSWh5kZG2E5x/7I6qVRrb1YjR84H31j0xfrqAvV/5pm/+x/7v2dQHovwOQ/8eA1696cb4cgf1729cBtZ/f59/dGCh89hU4r191zP9u2vC/8iYdkG/4qvv64v8PRpnBGozgYgmISGh6lmwhS8WQCM+89iy2qjJ7zhH4Qx5Gz5jOQ+838n5mLHNu/4DV3S72tbdTyOaoEmMobWsYGyyQbN1ALtbD2vdfx4XO0IYhVFZWkEql2bmzkbFjxwxEeYQB0FXUNjRNE5/XSzadKEZhZYmauiH4g2FcngCiIKPrJoIgsH//PvK5DPlsls7OTlSHk3QsiZbLoSoSJjpdne24XSqWaRGPxtAKOYKhIKrTiSAX03oFwOlwIIoiqVSCeCLGsOHDKKsoRXb5MSWF8uoKvCVubDScTider5dsLk24tIwFC07GMnR0rYDX6yUQDFLQNHo6u/AMRMzSqQyiKOP3l2ABsizT3dODoqqs/HAVTpeLkmCAXK5YWCmVSiAigm6DbiILYJoGHq+HglbAtiwMUycej+Pxekhn0oiSgCTL1NRUs2LFCg4/8ghGjByBbhi4PG6OmDeH2iF17GzaRSqZwymmQPYCAnpBw+FwUllV5DOJoojLG8Q0TbZs3opgy/j9fiKRCGPGjKGnu5sZs2ZRV1vL5EnjyWWTOBQFp8NJKpOlIhJGFiW6u/rwen3YdrE6uK7lSCeS2LKCx1+CJRQdEYIoYBgmtm2Tz+fJ5fL4fD6cTgXLNkgnE4jYxKN9iBgoqowgiKiKA0GwcXl8aIbB0KHD8QVKKI+UUhYJo7oU5s6fgyhLKKrK2LFjWbpkCePGj+essxdSV1+D11+8R9hgmMViWJIoFznLlk5VVQWPP/EEsXgM27RYsngZr736JrFYnFGjRjFmzGhyuTzbtm2no3M/kiyRSiUxtTxoOXK5HJIk0dvbiwBMnzcLwSchCCKaVowAdfWlyCaTJGLdGEaGVCrKrFnTcDoU0ukEmULx9x4MeCjkUqhiBEHycuCn7XAI9PV3EY6UMPuwGZy44CQQFH72818iyge9211pky1bN1JRWcb4CWNAMAmHgxx+xKH09fdwwbcWsm//LvKFJLuaojzwm8/YveNzFd2lLvz+KB5PP598vIhPPlnN1q3rsG0BTTs4J+kFndY9e9nX3Egul0SSBRq3bRlMcwbIpHO07Wtl4cIzOP3M01i0dBUAF55zFL+5+3YmThiHaZqEw6VYpkAmo5FIHYgaSHzzmxdSXz+EULCUstKqwf2ahkZVTQCv38LjydC8v1iJ+FvfOInDppxNXd3hNIwYgd8X5K033+XRR58YBFkNw4YRCAXp7elCVVWSyeRgNNrlcHLP3b8k0Z9g+iHTueCic/j9H37LYUccOjh2Ppch1hdl9QerueXGH/L8y6+S03VWf7h6sM2Tz7yIYNps3bKO9v1dyGIRvHZ29rJ73VJ+++vbycsukvFeVFHG5yoh2l9Mt5YVmUQihijKtO3r5Y3XlrF5QyuP/uVFvnfDTbzw5LMsf2cpOy//AT897DicDic7du7ghptvoZDXuf+B3zN2ygTmHjWP4044Godb4d7f/oFLLrmYhx56iI0btxKLZgg4ffS196GYTlI9ORyql+OOPZH7fldMSx0xtMgRjsaiuL0OIlVBBMFmWEM9bXt3gJkBy6R1X/G6RsrLUB3ygAPSzbEnnIZp6di6hqUV9VAjkQj5fB7DMIjHklgm1FTXcc1VV/P6iy+zbV0jH7+/hs7m/axfs4FAKDy4SB49fDialse0NAyzCNLGjBmO1+/gpDmzePe1V1n70UdsW7+RTz5cQWV5EeAduLeffryGmuoGTjnlNLq7D6bXAnT3tKLpWfr7Y4gDPziXS6FQyGEO9BdFoVhQyVZwOIrzSSIRRxSLY3R2tdE9AF4DgSKIEi2LdLQPBJmsnuOttxcRCoUIDYDPSCRCLN5DJptEVVVSyYMRsx/edAuiKeP3VpDN5IlGe+jp6cHrHclxRx0PFNcI6zesp6+vD1mWiUajg/1XrlyCpuWRBGhr7ySr2yTyNslkjHQmye8ffJi5Cxbw+FMvsbul6Hj2+Xx4PV5Kw0H8vqIEUjqTprSyDs1U+WDphwimNhiByhc0kv0JDK1Ax/4u2vq2oDqKwDZQ4kcUFSoqqojH42zbspt1q7ay7P1ViAMp3ZZlU1pWwpNPPUo01stll1/A9BkTWbvuQ0RJ55xzzsTlcvDCCy9QP6SBgC9Iy569RPvitDbvw7CztO7+jGS8Bc2Koco2blfReVYS8NDW0sHo4eO58tvXUhqpQZJlnn/hBRxOJ6lU0RHn8wb44MO1pAsmHncJkw+ZhCiCrpmcvfAsEJys+vRT8kacEv9wLjjvcn5+xw9wu1z09PVy94P3sLWrid/++SG+c9P1aIbON049c/A+7NjehI0br1MB2UFVbQ33//IOXC4nrXv3cv5lV3Lbb+5gyNChXPztq+jt6+POOw5yY0XLwC1ZVFcFSCa6mT9/Dr/6ya24XS5aWvdy1Xdv5pzLruHY00/loccfJRZPMGn0+MH+n63bQNAfQUTiqsu/x0033EYqnsPpsJk2fTLNrXs4+lvf4b4nXmbRkuX0NW/hoxXLsIwUza3biGeSZAQ3I8eM46P3FtG44VNs20ZRlC9EX/8dFLp/JWHzdcf5Z9mfX9f+vwqo/Tv3/3X2c2C9/q9qDf0r+48Br/+vmugrQ/SV/euGf8e+ri7U52/2v7rh/6xy8pdTp7/O2F82yZK/sMnYiIJNwdIwnSKm6EAXbASPhOC2eerFJ7jp9pt4b/Wn3P3EEqrnf5s12Qks+Omn3PpqjCc+1VjdnCcYqcHrdjMiqFOWb6JMzdEwpJrp4+qxTY14PD4AQvcPAlfbttF0HVkUEUSBRDqJZppohoXLE0QUFXw+P6IIXp+bgM+Hy+Wkvr4Bw7QI+kuQsDG0HIVcklDIh20ZaFoBp9NDwdAo6BqSqpLVigLZ8UQCTdcxdB2v24MkiIiSiCRJeCQLsnESnS0kupoRpSKI3L9/P6oqM/+Y+VRWRbBsk2i0B4fDgeJQicfjlIbC+Hw+ZFkmEChBlhQCgSCKquJyO6mrq0VRFU44/nhMy8IwdHRNI1IRQZJkcskMVkGjpWk36VQSyzBJxROokoJDUVEUpcghy+cJhULkc0WeZSqVIp1OoagqNbW1IEBNbS2yU6Z5bzNjxo7HshXiySQIEvta99Hb3YPPFyCZKkYXBNsmncmxY8dOhg0ZRqIvgSAIZNIZtm3bxvDhwzFtkWgsyobP1qEINk5VwbJsxk+cigjE+qOMHzcBh6zS1xfH7y+hqrIKVZYJhktxOJ3IioJlHxADt/H5/bhcLtwOJ5g2+WwOLAuv24WIRXlZCAGT7p4uDKMYbZZkEcsWcHl8CLJCrqBjmhqZbIpUOoGJSU9fH5Ik0t3VxeGHHkY2lyZSGUHT80iygG7oxdRhWRksxOFyuRAEm/1te7niiivYsWMny5cv59BZcznpxFMpL4vw/vvvs3nzVrq7ehgyZAiBEg/zj51PMOhny8b1bPh4NYVCAVVVKS8r4/EnniAppTEDNi+88BKFQjGa8vHmZlyqytD6aiwjiyxaWIZGx/42Pli7FXMgjWfyyBqcipOCsZd0tp8D038hI9K+V8cslHL9DVfxyGMPIz35Gi0/vpcj5pyLIhUXhC+s2IHX62Xp0qUsWrQIp9PJbbfdyuzZM3nkkb8gyjovv/I0ll3g0MNmUllRhiw2DM4VicQkurqHkctNZGjDXObOncOs2fWcedZodD0+2E4UbaqrK2moHcYjf3mK9rYEXnc5icRBzuukiVOpranh3UVv886id9CNYkrXiKF19PfHSMSThMOl1NXVsWjRElpauykMpFmbdgEkjb5oC2efeywO98HCIV5fhmBYJFRWjmm5aGktgtdd23uZMmUm2Vyap59+miWLP+Dxx57muOMWsHHLJqCoQtbW1kZpIEBPT8+AQ6u4kG3auYu7fno3mzZtZf78Y/hg5VIUh8Da9R9/fpbllRdfojQQ4oEHHkCQRPI5jYnjJg62KC2NkElmUFWL/a172bxxGwDZgsWUYWVYRpwew6as3E82l6Gzo4/unr6BORwUVUJAJFwWZewEhXcXv8jV117IxIkTB+Ynk4ZQNZeNnsJ3rrgMgJUffYQtqdSPHk7FkAo8AQd5I4eJza0//CmnnX4i3/3udaz9dB2GJvHysy+z7O1lbN+wg2cffwGX00NDwzCWLFlCLNbPyKFjBs/n1dffoDfWgeQQCfhcVFUGcYgGr732yqAsyQnHH4vb7USSJHK5DCh+MjkN0bRxWAflGARBQFEUgsEyZNmJrtvkcjqyQyRrdLB15wYWL34XWZZZunwpAE5VZfrUqdx+++3ouk57exF8KoqPZe9tRtQSaNkk3mCQrG2hGyqfrTtYQXv4sKHcctMPEVC54vKrqK096AgB2N/RgqZnKC8PYQ9EDgXRIhwO0dJSLGRYV1ONIAhIooI88FuLJ4oO2GJ1f33wfS6pKvva9nPbTTfx0x/eRltnB5IkFjmSA3xRKN5Hf8CBYeZwOt0IwsG0/EcefoTZM+fhdoUJBMKEwgGqqiM88ugdtLftGGyXy+fxer24PR4ikcjg56qjWHjR43ExcswYMoZIZOhY4slumnY1cefPfoNlWSw49lh++7Ob2L9rI3u3ddO8s4lt6xfzs5/8sHiMhkHBkIj25Wnd3Y2tZQdzPW1BJNrbQ9gXINmTZHdjANM2Bs5NYviw0SxbtoznnnsORXEyccwcHnv0SRLpgbRjy8bnCxAK+4jFu8kXUqgOAVEy2bFzC4oq8+abb/Ld796A319CPB6noqKCkpISpk6dSjopEXBGcKlBDE2lRK2kuqJ4b3t6YkwYewhrPlnPvb97kGC4Aq+vhEsuvYKp02YOVv2tiNRw/vmX4Q+Ws6OxeZDOtnbtBkRTA1EiFKmmq28vet7H7JmncvJJJ/D0Xx6jprSaitIKwiVBhjUM5/yzz+cv9z/EmaeeMXgf3n37PdJ5ic2bNhEdyNo65/QTWPzCH7hg4VlMmTSVyopKRo0cyXkLz+CFx/7MzGmHDPYfVlvJ268/R3/Hbvw+F9ubdnHyKafy2ouPcN3VlzHlkAlUVpQzZsRwzlu4kPfffZ+bb7tzsP+l37qYbDZP4/YmsB2c942L8fvC2HaG/lgbk6eNo1KJ8ch9P8dfVkG77WPyuKOYNf14xoycjShESNkuho2dXKwzIlp89NFHg0WC/sf+/2eWZf3TYrVfx/5jwOuByXvw3wN8z3+UY33g84HtbwHf3+fE/l37nC5qUffVHoxAqjPOQZ1RlHAY9BR9jlMq2CJ/y4Etbgf28zf6rf/ABnkAX9Z1/Sdti+1tLEwQbWzB+tLk8NWuw5c5CAeupyUYWIKBiY6JjkVRD8spqDgMEcUuRv5UWQFbRJGcyA4Jd6mHXz5wL7fdejuJZA9/+K97adq3j909GZ5ZupVNsSC3PruNVdpkrnr8M7b1C3R3dxB2wcRQhlznTjZ/vJKqyip03SSdySEIMjIChmUSLI3gdXnp7+lBz6WJ9e4jHuugUMiRzmhYlkjr3j3Ygk0mn8W2dQq2Sc4wMW0Rt7sEFIVcPo9DdQ5IzYTRChqFTAaP4kKRZYIlgaLmqyITSyUIhcM4ZIVUrJd4IgOOAP6yBmzJh6y6ESQY0lCH7HEjSRaKS6J6SDXV9Q043W5kUaGyrgpcIqpTxh/0kdOzJLMJTEMnGUvy+MN/pXH7VjQ9jyEU76ugOPCVBDFNi/KKCKpLobqhgdqRo/CHy4uLukCQtn37EWQZ0eGmdshQcnmdXEHD4XRS0HT8Xh+HHXboQOEPEZfTTfv+fexq3EkhlaFx63Za9u6lxO3FNHREEUrLy0kmovgDfhRVAUEgXFXFhElTcLqdVFaXk9PytO5rJhQOsnXLVtLpDL6SMKPHT0ZHIV/QUVUvmq7RvKsFh0Mhme6nP9aLLEtsWL8V1VmCMxAgl42j63mwQdM0TEPHtHTyhSyCJGOLRa1Zr9c/kMZnkEjG0Q0b05aJlNcO8GdMLMNAlcSiDJFloTgdKKqH0nA5fl+AtZ+sIRQIICtQ21CHwxtA1zV0rYAiKYgW+HxeZEXCGshTN00TBAlZkigLBemNdjN7+myOOOIwPH4D07L4bMM6Dpk2Ba+zjHDAzdz5R7Nyxaeoso7PF2DG7MPY09FNe3s7qkvE4wtx7PELiFRE0DSN004/A6+3GMFo74vzzLLPeGfR+2iaA1nx0t3TT0monIde+QSAETVljKotQUfA5arB7S4ZjLwqXidjpg1l1PRhqA6JC795MVJXP0pvP+vWfcKIhmKV3/d3xHjhpdfoau/h2SeeItkX5YXnnqGls41IWQXtrf1cfd311A6diM9XxnmXXI23PIJvQNKnr78fQ/ejFUpwOMZy/FE3s2Sxg1RqDrH+z9UlcPVQEk6guPdz9dXHI9BKbYMDh+eg061lbxOTJk+iunYY9fVDB8+lZV8327ZvpLZuCDV1daguF2ecdSbPvX6Q69XT2c/ePS1Eyn043Sl0yz/4XTQxnv74TN56p59PVxkk4sWIVcPIUbz08mIuOPdKnn/6eSaOLmVf82fce/8vMAY4kJZuUFpaioFEeTBCV1sbgUBx35+uXc/pp5+LZUv85re/pr8nRiqRYvLnJIKWv7+Sb37rIhSfi1QhR3dHH3fddRdnfWvhYJvKyjKefeEFwsEaJk8eyaWXXQjAuvXraew0cPlrqPCX4PVUU1beQGtHK28ufr14fKaFy+dFcNhMGBdg1sxyautrUV0qoqyjqirzjzqedDpFOFyK0118vkRRwuWBjZ9uRktmMAwdv8fJ9s3ruOPWawmHApiyxTU33sKQoVXMO/Fk7v7tg+RMnUu/cx5pPUpfrINXXnmFp//6PIcdOY/pU6cD8Ndnn8bM23R1dSC4XcR1BYcjyHMvvQJAXV0dx8w9Gl3XCZVXIqlB4ql+QuEImmlgkMa2TQxbQtMMVEkik4uza1cjTU3b8bqcpKNRAp5yclkNp9vFZd+5kNfeeRmAu37yE8TF5dwy7lcItkpNbVFKREBj7FgnoyfOQPF4wRL42c0/xtQSjBw3avB+fP/aa5g+fTpZfQ890Z0DDjyoqylKVD361Buk02n8fpUDyEwQHbzy1jvsaWkGYP68uSiyC3Iaull0sFiGzfVX3cTY0VM54dhzEQckcJ598q9U14/h9jt/xkO/v59ISRjFNgiF3WTyvURjxTT99o4eCqkcohkAQaZgHcxsuP3OO/jTX/5MLN+PpIgkEwVa23txCnU8//JiAGRJRlRENm1qQStkSacPRl6j0Q58bg+iS6V9337sXJpsupMhVbUsWbIU0zQZNXIEzz71LN/85o3MOeI09nVsJNO3H6capKWls3iONvS1t+PzGPzpkV9y9dV3DWppOlUPFaVhWnv6KB05lBtvupxUYuB3Zhl8uGYFVZVDOPG40/jFr35ET3IX48YNIeD3DlxjgUxW4vYf/YSa2jG4SwI4fF4002bc+EPo7Ojh+BOPx5JsvCWVeL1e7vjxj7jljjvRRRVByLH84094/KlXiPVl6Unto6GhHoAdzbvRZZ1ps8dw3FHTWLHkdSRRJBAI8v3vXj94nfY1bULP9BJP9HP/73+HbZuk0lnGjpvIjsZ16Ho/H7yxCCHrJJ5s4lsXnoNi+Zh5yFRWLV/B+Wd9kx3rt7LwpGORc7D5kw/Z2DhQHM7r5ezTT0ex40yedRQVYR9VAQeZrMWE8VP5y4MP8NyjT/DWi8+xeskbPHTf7xk1ZhIrP/posP+EMdOYe9RJ1NSPxxZsHISYOelw6iomM6J6PA/8/D62rFrLq0/9lTtuvJbhtSXccct3AfB6PNQOrcHjc1NKNEtGAAAgAElEQVTVMJy7fvZjLrjwW+QMm45ei6qh42lp7qIzLrBhyxasfB8BxUl3f5zln2zFcATZuHEd5xw1j1wGKkfMRHG4GBn2sn/bRlS7uE61bKmo7DCwrhxcwds21gE+1ee3L9kBXukBfdcv21eN/H0+OvrliPDXrVj8dSv2fmXd2H+hE2sL1he2L4/z9/RXB7msX/FY/+E5DHCGBXHg739D1Pc/BrzaAxUHvypy/0/VLoK/BYr/yefyj8zhcHDKKaewZPmHbGzcwb3334fX6+aGG7/Pr359DwtOOZn5xxzNKQsv4vDjv0Vk+jlMOu9evvfkPq58pJG0WMK0OgWizShWDkUUKOSzOFQZty9IrmAgyUU+TzqTIRAsQXb6UZw+crk8DkkkmUiwf98+FEkugmvA7/fT29s7WN0yXFZKoZAFwcTQdaQB/q9pWZiSjG6aJBNxTD2HZkImn6dgGrg8RZBTyKZQFQGXy41gihh5EyyBVDyNx+clm06zY9t2tGyOWF83eiFLJhZDxiKd00kms1i6xacffQKChNfr59RTT6euoprezh4EW8AemGBswLTtomNDlUERiMf7MQ0dQ9OJ9vXjdrmRRRHTBlGSCYVL8Xi9iKKEqig4nC5KgiE++2wtgiDidvlY/9lWRFtg4uRp+AMByktDNLbGkOwsgUCAdCqF3+cnGU+QiBUjaKKoI9g6PT3dNO3axZjRY6murkESZWpr6xBlgerqKvwBP7Nmz2bXriaSyQROlxPTMElnspSWlqEoKuESH/v37SGe6CUYDuL3+wd/Ew6HA1UqFvVxKBK5TJJMJo1lmVi2hWkaFDR9IP24mLJlCCaiLIFFsVhXIo6m64iCQCaVxjQ0ent6EIDqymp2bN/B3ta9qLJM2/695LMavV095DIpUskY+Xx+MJtBlmUUVcVEwEDC7Q8SCgXQrTxOp0pBL2BYJrZgEy4LU1vfQGtLC1gmJy04iYLu4N3FK9jZtIeZs2ZQUzOSxsadWLZOpDI8oOOq0rRn12Akx+9xctuf32HJxg46u3pwO130JfNc87uX2NRS5Dve/M1jUWU3uq6BUNR4PfDy0Asafo8X27JIxLvZsP4zEARUpwuv18+hU4/A43BgWDb3/fm3rNu8gda9HbS2dNLUtJtf3f1zDj/yUO558D6u/8FNWLbOCSecSEdHF16vj9Gji9qEb77zDulUjldffZ0f/OAHXHjZJSxdsoQN63fT3XMQmH5j4Wvs2jGJXbtGkMlOR9dGEA6ruGsO8m+nzphOXf0Q5sybQ1dXLw11RR7l0y8tQ3GGqKqqYcqMybT39HDZtT9l4+YdeAaqM7vcTqprJCzLy9btQ9jXWj6433Q8zl8ffoxNn26iZvhILrn0UgCefflp3lz8Om1tHTz8l8do3h/jT089yzMvPUvJQCqn7FDIJFPkEmneff1VrrjwUlLJIphZeNbJjBrdwITxk2jc1owgSORyBQqFg0Wo3nz7LcoqgowaO4QjjzwSp9PJ9ddfzx133DHYZtasWRx33NH4KyroS/QzfeJo3C4XpmVxyXdvZV9nAlvIks1nuOLbl3DxlZficQ9U4rVturu7ByL2Fr/53VOsWruSx194mYsvugxd11m0+E1kp8pLOzfxhz/+AYBjjj4KTc8ybtw4BBwUbIuJM2Yw/+RT6Uj04fDpmLkcWmYfP7ntdtKpPD+968eMnzAa07DYsWM7sWgSl8vDCScejWGluPX7tyAIAtt37OAHt/0Qw7CIRuO89977nHfR5SxeWoyM/uhHd2BZFvl8fjDTwOt2U9cwBH9pKdMPm40kmMiKiC1ANpfHaeq8+sorPPzoX+mNprGwEUSNhvoafvvA77j+5u8DcOapp3PZxd+mp7Gf/qYEzc37kAZes2vXf8a6jY30ZVOkclkECS769iU8+tRjvPJ6EViXhkuZf+RcBCQcqoslS5awp3k/AGNHjEFVFRp37ODciy+npbV90MHy/PMvcfuddwJFLdgFJx6PbdvFzBul+B4qKQlxysmnsWnTNlauWsa8uUcA4PR60QsxnC6Jrv4eSgIqDsUJhsryVR8OUoLqamv4aMUnPPn4kyRiMVTpIF98ypSJHHv0HKaOn06yN872Leuoqwkw75hD2N5YrEY7ZvQIKqrKmTxlEp093QRDpYP9C5qCrQoIeoJQsJw331qBR63AsLzs2l0E5EPra8jn+2hv38PMGdMIlYSxbIWO9n4+Wl3MNhBsC68qsnHTFu761a/53f130dtXzBKQJIFEJsnrry8h2p9k7bo1pAci8YJgMXbyFIYMr6esppyCbVJXV83td9xMvnAwPdrQdH54660Ymk6iZTfdu5rwOt20tXeSSsfxeLys/2wzLreCbmW44sqLeeD397Fh3Vp2Ne1m3rx5XHf91YTCXlwekXlHHg7AnpZWmlubMGyNRDbNzj17ePnRx/EoCnvb24rHL4rc+eNfsXTJSm68/gZ+ctc9xKJpdm7cittWcAYr6e2PsvAb5/DEUw9TEvZw8mknU1pexiUXX8m551zEm28soqc7waJ3VjJ2zCROXnAaTz9XdLoMrx/Cddd9hz17drPps/XouSxbNqwj1tdJXzzBS6+8wh8f/CMTx45HcvrY2bIXSfHw9HNF/vzUCWNRFJP9+xtJ5tK8s3g5eU1m3YatlIQcNAwZ/7/Ye88wOapr+/tXqXOY7p6ePKMJmlGWRhkkkBAIIRBBRBNsjMFEE0S6YILJ2IABG2SwiSbYl2wyEkKACBLKOWtyztO5u+L/QwsBAoHx9XOf1/d597fqPnXOrlNV3WeftfbabFi3k08+f5tQfiWh/Eoef/olUnuBopPnH4fXIWMnSwkPh8MsX74c0zTJ8QaYM+M0Flx+Ibk5AgdPHk6OW6Bp91byCj1kzASCTeawI2aw+MOPqNuzCyOdJJCTi9OuIFgmba3NOBQZhKwWhiGa6P9CtPKfVPrm323/dND7H2r/McErZCHnbyn1fkdgJ4ritx7a/dv9UJ2nH7sb8+Xxv+NF2b+fA+Xx/pD9mNpM/+482wPN/9dzGUzTBJfAQCLG6jWbGT9+OouXvM+vb7yB5//+N9o7O1i/dg1Tp0zC43KQTiYIhvz4c4t4Y32E7urzWbmjHbFrI16i9Pb20dPbj46A02knpSawRIvccB6aZmFZBolEDKfTgWnqjBw+ghy/f5/i25elhAoKChBFEZfLSyaVwevz0d7enhVT2Itap1IpZFEgGo1iWJBIq/i9HmQJtEwK+958yuhgL1o6STyZwDRUFElgw7q1pBNxert7sMkKBQUFmKaJw+1B10wkUSaTUlm1tyi6YRoce8KxePxuWjtacPtc+ANBcnPDWKaFZAmIhoWgm1i6QTKe2IcoFucFsdllFIcDj99HKJwLkkgs0o+hprIU6WQCQ/GDPUAmo9LY1MTRc4/GZlOor99DTU0F5UPK6B8YoKSsGFnSmTxtBhagZtLIkrCvFqPb6cQUJFYtX8W6desoLCygoDCf/v4BCguL6O7uxulw0d7aQSadQsRAEnRqa8eRk5PDa6+9ysiRo9i2dRvBYC6xaIxUPJkVmNJUJFH5xjOtaRqGKZBKqWRUDVXTsjt8QjY/WxDB5XRnKcKSjN3hQMLCNHQswOF04/X5sNlsZNIZXHYHoghdnZ28/trrqBkdm+Ig4M/BsgyKiwrxB/3kFxfg9vkJhLOotmEY+9IADDUNpg5k/TMNcHhcbNq0mUj/ACuXL2fOEYcTj0ZoammlqbGR9WtWIctZsYxEIoHL6WBkzTBeffUNRo8ZjcvjIJVOIwoiToeTsaNHwd7g9dzjpjO+ppTnP2/g8Gufovzk33DkNU+xaFV2IXre0ZM5/tBaMmoGm83JM399jlTqKwEWSZLo6+4BzSAZjePzeTBMnbHjRlNUWErtuFreePFdSgpL0A2d//7H39jcsIGTz5nPB6s/5JVF/+AXl53Ly2+8REZVkRVYuHAh9977e9IplTPPyNZffGfxu9QeMoFrb72aZWuX8tI7r3Ldddex4pPPmDx1yj5/SkrzCQTdhEIldHUl2LkryeJFm3GVVO1ro6dTRGNRktEBjpt3FPfceTUul4OOrj6O+8nlFNXMpnzY0UyfdQ6ffLaW391+CTk5WVQmnBvC5XSybl03fm8eq76WU2oaJpMmTmHE8NG0tDZw7s9Op2ZoFbqus+jj92gebGDWCYfy00t/wedrVlA7qhavK4uuZtIp0prGZVdcTe3kcbz+zlvY9m5qvPbaa8TiUb5YuZw9dTt45q9/44rLr2bnjq/qK952500EQj4cLifHHnssr7zyChUVFdx444372uzctYPccA7ptMpf/vwkFhJ37w1u16xdw8QpYykpKaKkppTX3n2L3GCYGYfOAbIbK4WFhaRSKXp6+jCAFWvWcfW1C/h4+RKKqsqYcth0/Pdfx1lvPEskGmVYzTDuuv1uWprbOPjgg/nkkw+RvqZJJIgCHT1tVJRU0Nawglt/cxXvvruYiRPH09ffTX//IH19fZxx+s9IpTIUFoXAEllw+RVcfelVyJLMO+++Q+2UCRw8czrnXXw+7yzOlgP59fXXUF2drdsL7AvuWprr9/3XeNxeTC0JmARzc0mqGg5/gA1btvDYU49RM7qKytFjKBhSybipE7njnt+SSqX4yckn8/Rf/syOnVsoKCzA43Vz2223kE5nqenNLa384oLLqRo2iuoRoymvqmTytCncdNvt++qNFhYU8sabr2Ga4LTnccG5NzK0KkuT37xpKw/cexd2u52Va9ZwyJwjaW3NBjYff/4p/f39VJSX8+Kzz2LsFUVcsWLFvr7r6ut45533CAQ9OF0is2fNBKCto4PnnnkWh82JbPehZbJK+cl4nAceenTffUmmkmzeuIlrr7oUUUwjiV8hLc+9/Cq333EbazduxBsIUFk1FAsJQVBIZLIB4kknHENfpAdJkbDZnSRTX4nolJfWoKZ72LNlPX6/n6UffoyuJUjsTXEAqG9oIhHrprjQw2WXnonHncYSDXbs3sOqtVn00MJk684dXHLJb1DEStweOy++8Er2PTRNHDYbQwoLqSr2o9hTBIPZTSLDsHBKbrSMimTpRPsiSJKNTEYnGtkr/GaZGGqMtubdrFrxMQ5nkA8/XM6uXfWUlJRy0EGTMAwLl9NLb28PhiUxbNgw0rFuZh0ynmg0SndPJ59/vgzFBlu3bOfk4+dj2ytc+efHn2R87SQ8/lzO/MUFnHDq6Rw2+2ieeeFFAGYfNpNoIs1bb7/NA/f+Do8zjZruwx/ycdvdt1O3eSP9bY2E8gu44qorSaV1Fi3+iJ/+7HyuvvpqxtWO4dlnn+WqqxZw15338Nlnn/LY3/5KQ3MzTocDSRNxuVyMHjOc4rJiegYGCQSLCOSU4A/lcsSRRzN//on0dPVSt2cH5SXF/O63d1BXV4fT4eCeu24jkFfAynVb0FWd2bPmEI/3oem92J0Gw0cHmD13LMOGl2O3S/T1d9HQ1kBzazM2m40FFy+gub2DvkQfqqqSTCZ59dVXicVijBk1mqeefIxnnvpvDAFU06Kzt5/yquHs3LmMRLSZlvptbNu0gpSusmnzekQrQySSQPbn0dU3gFOGtp3rMWIRzFQSybAQzL3r4h+BWn59zfmvCLh+1xr6y/6+TFX7Z33Zf8zvG+P7fPsx9mV+6feNcyA/v97HgexAukL/G/YfFbz+M/a/JSv9paU/eIj00of/18b7v2YZK8lnKz7lllvvZtUXW3n66ac5++yzWbNmDXl5edx/3x0s/OO9nPPzM3nk4d9z4UW/oKSkhLLSKjz+IsaceiPKIQuwkv0U2BIE3Fl6lqFmEEWTdDqJKEnYHd6siIksoOkZEukUsXiMTDqDpmo0NTZhWRapVIpYLIaqqogoGDpk0hpFhcV0dnbicrmyIkYOB/09neSGQwRyc/HkBLEMnchgH6amosgib735EZZu543XFuP3FqJm0vR0d6KpaWx2CaesgAWiIpM2NERZwe31Y1oComjD53FjV2QC4QC6aCCIJqJoodhETAFSmQzJRJJEJMa2TZvpau9AME3SySR2JDavXsNgby+6rqFbJoIiYYoCBhaCqTPY30tLYz0iJo7q4xCKj8IERowcSSqdQRRFtu/YTCjsAwzWb1jLnrrdaFoqq1QMuJwy4XCIUG6Iru5umlpawNAoK62kqKCEhoYGGpsaiMViDPQPMGTIELq6u8kP5uO02ent7qS7s5W6uj1s3bqF448/lt2791BVNZTm5mY8Hm9W2VlSaGtrZ8uW7SQSiX0/qJqmYYkyisOFICv4ggHcbjeGqZNMJonFYiQScXQ9297QdVLxBLHBCCZgCIAgZCnDsoxpmmRSKcLhMCDQUN9ANBKlsaGRaDSG1+vGkkzWb9qIgYCmZ4O/aDSKKGZznePRQZKxKJZhIIkC69dtRDdMhtWMBMNgsK+f/p5ektEYxSWlVFZWMqSsFMuy6Oxsxa5IrF+3hk8++oix48YCFjt27mT9+o1YlkUiEccz3Ie5dyNFFE3e/tuV3HbtiVSUhTAAr8fO9EmVvPTYxVx50RFk1DSqmkKwSZx+9Vl4Cn0Ie6lDstRIX9/bOO2riA727s1/FBClBN6c1cw/yYcoLmPbukd48pGrOXTaCPLDAZKpJLpuUBDO5/BDx/LHe37FB2/fgkNeTlp9hz/88QQsfSlnnzmHo2YdxdhR47ApCtFYhJbWFto76rGEZZz5syLc7q/qD06ZWktGjSPL20inP2DW4QIHTxuCI/zVn6g/ECPH343N0Ybd3sgJx+ax/IPfcNpJU8kNeTEtE5/PzmknTeWTxbdy4bkT9i3gJaUHuyNDRUWSwoI6Ro/7Kt9Wx2D4qNFU1Qxj5iE6Qyu6WPr2TVx+8QmUl+UjyxJ2u8i0gyby2J8eY/FbHxAKZZFNnydF5ZBmXnntUqqH9RPI3cJejRdOOeU0QqEQx8zLZdbhOnfefTh/eew0DpnxVVBQUKDR3NaKYYmsXrWUqxaMpX7PE5QWte5rM3mCTih3J1ZmgOWfrqCgoJzzz5vDq8/fwmEzxuH1utB1leqqIm69/kyWvPU7SsuyAZVhGLhs63Db19HS2saFF5zCg7/7I4dPn8nwYcOwKTZi8Rg5Dge1OWHuvuu3fPzRp+TnllFZMYz331/E+ImjifR3oO0t0aOpGXICISTThsuWoaw0wGuvvs727VtZuPAhFiy4iqlTp3LooYdhmQIOp53BgRgvvPAiRx95JA/dcx/HHnMceXl5pFIpwrlhjp17NI8/9GduXHArk0bMpKWlZR+zQZIknDYbwl4arWUKWXV5U0c3DRS7g5hhcd7553HGT06jproaRVHQdJ3iwkJOP+UU/vbkEzz6xz/Q0dFGRWUpiiyRl5fLiy89j9uVFTwaO2YkJ580j8qKCmQpm+NZkJ/HGaeezinzs6I5pmExdfIRnHHGGXyx5k2au5Zgt2X9OvKouRx3wul8snQp55z1c0qLS7I0R6CoMJ9bb7yezz9cTFVlJWVlZZimidvtJpPOPg/1dXW89957qFocWYF5c+dxxGHZkk433nYHD/zxEfr6EkQiCfr7ezn3oovYsGnLvrzX/r4+rrr6ctKZGKlkP7HoV3ndqqbxyqL32LFnFylVwxPI579ffZcTTz2NTCZDcVEB55x1Jm63E800cHs9uNyefeenonH62vdQXTmEzq52Hn/iT/T3tdLT38XcI48EYOfueq667l4G+y0mjj8ENQPvLl3Cmef+kkCOPzt/lkh71yC1E2tYvvIttu78mKuvuRSAaKwfh2Rn9sxDyMQ72bT1cxD21sk1YPWKVfjsTk4+7ji6OzrZtbOeG2+4jfy8or3/CyqyYpGXH6BqaBmuYBmVI8YzccZheMP5LLjuJtSMzsiRo9m4cSN+Xy47d+wmk47x0dK3GDFiFOl0mpph1YRCfmqqR+H3B7j+qmsB+MuTT/GHR/6CJbro6U2yYsNmDJuQFVKUZa677CICoRz+8tifePfd19i28SMQUkw/5jge/e/nWbl2NRNGVrNm3VqcLh8mMuFwMQXlJTz1/JNcdvnFPP74n1G1FGk1yaA+wItvZTd1igIlXHvlzdx334OsWrUCxaOQX1SMN1jAf91+L6++8Q6GZXHh+Rcx0DtAJp3g/Isv5Km/PwfAb266mhFjRmNJHn56zq/wyG7siLQ37uLue3/Lu+9+QTTWjygKtDWnmTt3Fj879xyeei57/rzD5uL3hsjNL0RyO3jggQdobm7mlFNO4aGHHmLWzBnsrtvAZRdfRWdPFMXhJSdUREqV+PC9ZXjlMMWhGgba06QyacaOHU1TQwOCKBPTJWpGjKG5fidd9dvoaWlm/YoVyLqF8CNKsPz/9n/fhP/NQO9/YqqqW/BtVav9j/eP+g90fdmc1e/px/paXC/u3+dXOaPppQ8jIOCYfcWBfTGtbx7vZ9/KW92/vbh/fdtv7oR8w9fv6O/r/n7Z/kB9fdv239/4YYGp76N2f333KnssZXNnTZOWlhYK/bmsX7+ehx56iA0bNnDc3DnU7drNkLIy1q5ew91334nd6yWvqBiP38/gQD9vv/0m0w6ahLtnLUP0JnAHSdgCDCY0SopLEESRVCqNoas4nQ5sikxTYwOFhQXomk4sFiMYDJJImyg2Bacrqz4rCiBLImomjSBkZyKZSPPxxx8xZ84RyHYJUxdByLBpw3bKq4YQDoWI9A+gazrJjEEo4EGWFSSbh0wmhcsOfX19mJZCKpnGNHVyCwtAsiFY2XIWgiAiCAK6qtFUv4ea4SNJJNPIMmTSadx+HyAgWgZqOkVv/yDhvAIUmw3d0JEUGbtdJhFP0NvVg4BIMOBFR8TldmfzU905SLIIWPT29qClNdpa2xk9ejSJZAK318FAf4I333ybs846lXg8RSKRRrAsNm1ez9SpU6HuedyBMtp7YtgdDpS95WrKgrm0Wm4SyQwWAqVlZezauQdBUAmG8rDZPTTU7UDTNaZNm8auXbuorKxmMBElnBtCUDV6+/poamnGl5NDUV4h/X3dNDU3cdChM5AUCVGUsCyTSCRCTjCAaahIkpgFPNkr4rJ3d1QSZSwsBDlbbEHTdNx2md7ePvyhMLqeRLIEJMmGaYmYpOhp7cHULbp7u0nG0/T1dmN3u5kx+yhk2SI60E8oFETVdRxOJ5lMBkmS9u72giKJWEgk0xqmpiJJNvr6ezAMgfaWRmrHjsYUBJBNHKKPZCJCUo2Tm1/CmhWryM/NI1xQgGFoaLqKy+Vi1846qmfVEIvHKS0tZeYxd7B6RwuXnjSdyy45jJKKMtKZNIZh4nY56ersIpyfT299F7a4iKiIRJJRSiaVk9n8GaKvAMe4Wdn5EmQs0yKWGc5Lf32dn3UlcDgN+s4fimHoSI3rkGUF77jD6OuLsGzZWiZPvBC7Q2HHrnqKinZQWVmJrqk0NNRTVTWU3bv3kBsK0tKq8Oqry7jh17diWZ3Itiaam1pIJJJUVJTT0FjHyBGjUNNpPl9hZ3TtOOp27mHyJBWPR+HDj5cxeXItDoeN/p5uTEPF5a3lzX+s5qjZh+LyOXB6Whjo78PtdiHLMlu2bKG0pAQL2LnTwZ8fe557f3s/Hl8zLlecTCaDw+XF0HXisRjBQADNciNI4xBMgXgshd+3FksQEASRVCqO0+7ENLPJQMlMCfGol4UPP8pVC87AH+zOov0ImJaFYIKm60SjURzuYxEEC9PS8bl2kkhk1c0t08JuzyI59fV1hIJjUTNDaO9oorDYQzi3m3Q6hcOhYCEiCCKmYbJl8xZcrql43CUsX/45M2flkxPQQbAQBQkQiEWiRAcjFBVX0dzpRcSJIkoUFTWgqSqibEOSJW65/QviMZVrrr0AjDhrV2ym7OXFlJaUYNxwER6vg3QmTrKrGVdeJYmkSshno6d3gNvu/C233fZb8nLDJNMRurs7aahvpSS/lOuvvx6X00t19TBmz5vKqFFjkEQ7iUQSmwEff7aY2vGTufuuP3HKqUdzxx138P7iJYiiiOgS6Gpt59OlSxk9fAQ4REbWjkM0ZYyURkLtQhFt2N0enH4/Ajb6u9txefyYso14tJWgP59IXxJZsmFz2zHSBj8762zOv2wBD95zBy8+/xT9sQgFpXmkH/FhUxw8rj/Ic39/iq07d3Ly8fP57V33ZlMTZAc/O+tM3nzzJTTd5LqbbuLJ555m8vgJ/OPl/0ZWwO0oJqP1M//U0/hsxRdcf+01jKmoZtSocQTCHjxeL+OnHUJzSwtP/GkhVWVDqJ06CTUZx+n3k4gn6evo4Xf338fzL77EzOkzeOwPj6ErCRTZTiDoob5xF+edfxVbtm4BQFEUXE4nkWgUQRC4/7e/44GHH6K1rY0/PXA/ZfnDmDRlGHanQWNjFxMOyaK3Tz36MFdc+2ti8ThutxvLsvbVMHW7XSx5812OmjObbZtXUVJczp49e/hizUp+duFlAKQH2xDSGh0D/QQLSmjZvJKKUZPB0hAsB2dfeCEvv/bavv/8HL+fWDyOYRiMHjGcn/7kNK6/9XZKikuYf+R8Vq1ZxjNP/YPyMj/nXHgxL77xCiWFeaxfvhmXPIjpyEHSU5z5y4t5/Z33OGX+CfzutruZPGkamzZtYdXqFRx11HRMQ+DRxx/nultuoaS4mG0bVvHBovc5aPIUQvk51Ne3M2JvrvUl55/NHbfehdsV4NknFhLyeyisqGDEqJFEegfpG8xQWl2ETQggkwAzRjw6iJZJc93t9/L3V7OBpCRmEdAvxcVcThcP3nMfZ518HJqpYHMoaFqaPds30dkf59hTTwPguqsWcOmF59DZ2kd+URkIMZJxmHzYjH19uV0ukqk0lpVdc9kUhasvv5rTTz8Zjy0HMxVh1ar3mH/Gz+ntjvH8cy9xz58e2Jd37fN60XSdVCoFZJkLv7rgHK689Bh3rbYAACAASURBVGpMa4DYYIw3X1vC6T85HkOW+Otjr/KHpxeSSKb2na+qKum9dH2bzcYNl1/DvCOns/SjTykqLmf8xKmUlxVx1hln8+D9N9PRuYvm1jRjx47l1Vfe5uxf/hJZjNPX3cLocUew7OPF1NRUYfe4UFWRV154hRnTDubB++6lvq2RpxYuJIVEb2QAlyJQUJpPyOWlu7uLYHEenkA+CA4MQcQSdMS9y9gfQvt+KE74ITsQanug7/4dPlnmN3V+vqwze6AY51vjWf8aNrk/gzL7ofndYxzAvvT9nzW70/Gj4Vrp1r25F/9fN9O0bv2SNvx99s9O7g81E76epPytxl89dHrDKgQE5MqDDuzLD71gB+h+X/vvGf9bvn5Xf9/b/oc2L75/7P3tx+QkA3vbZmuN5uaGMCSBovJSTj3zdH527jmMHTUOA4FEMsWNN/+G/OJCBgaj1NU3MHXKwTj8HiYfdBBuvx9X2VgSvhocVhJb5yY8DjvoKsguHHYHkk0mFo2i6zrhcJhEPAKWicPpJp5I4Q/kYBgmqWSKRDxKRkthUxQ0PYNpGJiaicvlyarlmjqJVASn08vgQB822U1hUSGCmCKViiNLHkzLwDQMUqkUumFgsyvE4wlEUcI0LHw5AURJJJFM4/Z4iMdieD0edE3bR6vu6uzG5XETjcfQVRUJcDgc9A8OMDgQwePz4/R6UCSReDyGy+XK0uYRkCQFj9uLZUIsFsfn8SEg0tvbj9PtwjDNbLBjmdgV2LZ1D6JgQ5QzDAxECAVzKSstweVysfLzT5BEgfLKCkrLypEFA6N/K5Zkxx/Kp7m5hdxwCFECl2JD8uXT2t7ByBEjaGtto2hICZZl4XC66O7ro7K8jMHBQSzLIh6Ls2X7NkaPG42hqfT0DdDV08vYMePQMio2u52+vl5KS4sxLYt4MolhGCiKwsBAPxICsijQ39uPqVvYZIXBgQF6e3oIBoIYUlbES9xLC5dFkXg8gcftQZYlBvsHGOhrxFTj7NyynWBuCEVW2Lp5Mw11uykrzKewuJDaSRPRDJVMOo1NzpbDsTtsJJIpFEXJLrxFEUmUSCeTfPrJZ1TXDENRZCRRxOv1IknZOdQNE8mmYBoGLY3txOODSIqCmogTCgbQTROHy4loU8DMoKZS9PcO0rqpFSsSx5Y2eebtVXRHkgzN83D8lInEWmNEmvto2LAHe0qmfUcL5gCog3E8XhuIFi6bB2NAQ+9qIiVXIJUcS2MLpNRCZHs1guykuqoK57otyLKL9oqJ6GoJ9oaP2LZyPa6aX3H+efcyYvhRlJSUccklFzO2dgJ2WyUbN6S4+eanOeboy7hywcM89+zHzD3yPNqbOulorqd26mg6OgbZvdPgw6XN9PT5+Pk5t/Dzc24hJzCWTGYouaFc/nj/A8ybOxubq4x0uoSzf3ors+ecCwNJEp02rr75aerqZHweBzn+Go6ddwrHnnAWCx/6gPY2J2++sY2T5v8XJ86/hqrKObhd+XR1DdLc3EXNsEk4XdWkM3nE0rl8+GEDNqkGh2MUWzf3IJIm2t9NjtdOa5tEJO6jb9CFJObRuFvnxmsep7vXS7rX4sk/P4bX72HYyPEYVgWJZJhILIimF3PUzPN5+/VNzJt3Kbt27sTjtPHh0g8oGzqNrbszvPz3DbjdY4gMBhDFSjzeUSQSdlxuFw0NTdgkme4uCY+7BjUT5oiZv2TqQafj9o3D4R+HQ3QSi0VZtmwZdlsxFuVk1FwEoYyWFpmVKzpYurSR0aNnoSgy3kAOXrefVKKAlV/0ktFycDiHMmrsGLZu2Up1RRV5xcUYNhuFs6bgOWwypk3AJoLNbGPpP56lZuRoHDlF6OkUPl8Oc/YqnT//3N8YPqIaRXYQChbh99k4au4cZs2awRGzZ5GT40dXdQQsNqxfy9o1a7GASZMPpnbiJP7x6uvc/8Dv6ehqQ5QNGnbvpqSglCt+dRVHzDqGMePHYgkSmzdtYkhJCTu2LMcydcJF5aiWgp6JIlgqNruEbLchmBKmpuNx2BFMFckmY1gGp55yKuHCPE447mi0TILn/vY3ZhwyG2GDg4GBAaoKy1i0awmtba3MmnI4c7tPwr0rgLFW5OxxvyT6iQEb3by3eBGb+taTFwpx1GGzcK7PwfrAg7FG4cXlL9Iy2MxBtpmcW3QFVouIb6KNe+79PRu3bSUWizHdnMNc28kIG12ImzxYax1IGz348jy8sPRZdtU1MLp4NGcJF+DYkYNndy7GGjv2rQF+Xns+iijTI3cSjURwOBxMrzyEB457mKNdx/LEZ48TSUeY4ziRo20n4DIddMl1KDIsfPyvANw49HecNe5s4lqCjoEOEuk4+d4C5s05mrvv/C+GFA3jzIrzCG4qRlvrRNkeomNTHy9tzFJir6y8DXm0it3pxpQcOF8oR13rgo1e+j9UKeqoJN+fT9QYJKpGEUSBmqqh/Hzuedw+/D4+X7KaFZ2fY9ecPDfnVX4x/iLkbS6k8QlWrf+clWs2EBaKmNo4G3d9PqnlIGzysHjlUrZ2bWFc0WROOnk2v7roYrZ8vJXJzbNIr4bECosd6+t5f9d7+MQcLrRfRcF4D4ECF/FEiujHFo++82cADs+Zx4z4MSSWG4wxppKvDyFe0k8oWIZN9BB6t4z4JzrmWhlzvczgJwLOPcXYd+Vz6GETyBtWCIJBZDBOKpmmyFfMiWNO5sF5C5lhm42+xsGmZ3ezIrKUeCxC+ZAqFl2/ig/bPgDgIGUmh6snEeqsQPtCJNYdJ39SCEWUsYl24j0p0loaRbBRlTuUU8acwYXVCxg+MJ7SgwK88NbLFFcOZap0HMYiG+pqiYnydHrbBgjnhsloGeKpOJIiUTGklHBOkNd/8j7H552KbbsfZUuYzc+1MTQ5gcL+GiS3RlO0iZkzpmPGRbSkQTwVR0amIljFSaNO4ZZpdzEn50QCM22UlZczacpBuD8pRP1U4rgh87Ft9xBsLSXcNRplp5/i3GKingSWrpFsSmF/txh/UxG2nQHin1s4dvgZyxRce0JUHlrImRecgWzpmCv9VDVPQF/vxFtfjLg9iGNPHukVIp0ruimY7sQQBHRRRrJ+XFC1//rzf2LfV1rzX6HPfjv4FPb7/PuD3W+P969d43f6LXw/APct+z7l2e8wWZFv+1En8B+EvGqasQ95/WeC2C/twNf3A3Wfvgd5/fJcy7L2UoYFHEdc/tW5++fg8v07NPvf5y9B4X3tDzD+d/q6t/3X52h/5JVv7Ir8e5DXf3Zn64eeN5OvSh+YpokiyWjpDIosI1rw6bLPaG1po7e7j8HBKMccO49AwI/b4yA3N5eEmkSR7ZjxbvSe3VD3CUKkFT1YhVwyhkjbbnyBPAQBzHSEtKqh6eAP5hKJxmlv7WHjhk0U5AWZceThyJKIKICuaSiCRW9vP4oig2Ai2RWcdi/dPS3IghPT0pEkgXg8jsfrIx6PkxcMIykymqlj6AaaaZGMJ4n1DVI9ajSqmsIwLFTdwCaJ2O32vfmIFg63m57OHvIKwihOBUzYtW07bo8Hu6LgcfsQBAm714FdkUll0vvUfhHYW4BYQCArZqWmUoiSQltnH++/+xannXYqOTk+ItEIQtM/UGSFNnkKRUUFqBkNWc6ik16vH0PXSKfjeLxeErEkexoaGJ+zC1Fx0RvTKSmpZHBwALfbhUuQSDlzyQgSPd1dDBtWQ0bX2bF1F4YJI8eMYd3qlZSVleFwOnC73aRVFVXLsH3zZqZOPZhYIk48maC0rIxIf4JtWzZy0NQJtHV0UDRkCJKULUljGDqGKSDLAqZhEIvEcbsdyLJMIpHA6XQiKTYkUaRu925cThfB3CCi4kAURbR0ApfLh6Wn6R/oxO13IYkeJMXOYF8foqGzc/smxk06mK6ePvLCYRAUNqxZgyTL1E6sxea07/tdsiyLdCKBy2GnsakNX04QVcsQCPjAkujv6SAUzietmrQ1N1IypAwtbeJ2iuiWxct/f4kj5swmrzAPGYstOxoYVV1GR0c7npxC3C4Zw9KQZYXjrnmMVdtbuPqMw7nup7PRNIMX//4CJ8yfz5tvv8XsI49k+7adzDhkcpYGrzhBzKLCmd3vogw/Cb38ePx7S7uEcgPU7Wni0Qf+yH1zjgdJpH5YGTn+fLY8OY9JEycSHX01Pk8+xx9/PFdccRnTp8/k4kt/xRNPPITbH0DXRNat3UhbeyMzpkzh8ssvZ2ztBCRJ4YMP/8GsWUfw6+tv5oUXXiScm8+oUeNYt24d0VgPxx03j8Y9dWRUnVFTJqCZBooo8dqLr/HM08/yxi1zaWxo4/dLOjnx2HnMnHMsu+rq+cP9v+fBu+7gmpvvYuOmdQQCfubPP55zfnkug/0D3Hbzb1j40MO4Am50PU0irtLXF6G4tABRkZAkiTvvvJNfXXQJLc11mLqFltaprq7m/aVLmH/ScQh2O6Imcd01N3LDb36NP+Slv6efwYEoN93wGx5e+AemT5/OmjVrGDF6BIcedAhOt4um5mZefOVlZJuGzebAyJjEYgk2r9nMM39/lvzCPBY+upBEXKN/oINA0E8iphMIerCEFKYBNsWLaMETTzzFtIOmc/llC/jNzTfi89upqRmOaSj4/X6uve4S7rzzVlpbOxElBcXlw+dyIhoa9kCATCqFnlHZuGEDkyZNIK2mkGxeHvvLM5w473DKykuxBJ1MJqs8HEsmyMsroLtjF/GmLZQNr8XwD0FKm9Q17KFiaBWariMJCmAx96h52BQ/r7z0JG2t7YTD+Zx33vncdutNlJaWoGkZ7A4Jl9uPJNtIZjKIskRPT7ZUVDqdIR6Pc8mFl/Hggw+Sk+PjiisXcNct15JBJzfowyGKZAQJlx1szhCG4MFOArQ0Ta2dFJYOIRJNEvDC+lWLKSkKIbtG4M7xk0qr6Cb4nTaivX04PQF6utvJebMaUZLIlA2QqW0nGk9S6h6K8aafVDJFOp0kFAwgSQpIMslEmoFp7ei+KEOHjiX1cYSdb7VTU12DbJf4aMlSZs06HN0yUZ39WPNSrFy1juphleQtGoZdUVi5chWTpkwBK5t7L8sKwkEJLrrnbB55+gnS60yszx20t3fg9fkoKMgnnUmyetUahgwZQmgB1NbWsm37ThxLAxg98l4VTwHTtJAkAcs0kUfqMC2VTafqc5B4Aex2G4IgIWHSPxAhlc7g8bpxnwmuYpP/uuxWLqq9iIJEFaqewm5X0HUTyebCyiQxwpA6bAPBnDz6k+B/sRRTsmEaBoIFsixhaBk0XUeZCanSBB2N9Wh7JPTP3dQMrcrWNtcF3B4XgqCDIGOd2UgqlcLp8JP5h4f+uihFRUVkMhqSlF0XyIqCOTSNNKOL3Tsb8Wm55H5RA5aEIJBNkdFMnG4nyWSSgYMb+Gj9IubMPpKi1ioGVqu4XV5kWUEzNNLpFPFIBHepk+AvJHr7+hno6aVw6WjSqg6WiCio2J1eWltaCfiD9JQ3M2xuJU1d69F22ChtnUAimUQgq2jrsNtJpZMIgoR2Zj/BoI/ujmbs7xcjJ5zIioTd5kDVMkiiQt3OXUijEwRP8mLLGKR7Bgksn0ZGjbJu9VaGDy8nremE8wswdQPbiTESzjgupwdWeBAabMgWNDU24QuE8HrsNDc3U1ZbSOKwRrSMzhuvf8TPlQUIosXAYC+y5GT1qtVMnTIJxWEjPnIb+dOLuezaG7j5hBvx7ihGzajs2LYNxe7EMFRqx9VS39DIx0Vvcva5ZyHbBMT3chjcE8Pl8GBZGqahYXP60XWVLl8TseE99LQ3MaVqKn0vKgSCucRjUZweJ16vD3NvibPGoV9QMrkQVXDyyW1fMKfiGFLpBB5vDrqlI0kShqaTckRoGvMF4cICKqtGYsqOf2m9uT9q+mNR0h9jXwrN/rOs0K8afHPtLYjfbP+Dvv9I5HV/NeVvjCEeIHY5gA//G8jrf0zwuj9tWGS/AO2HAsD97NsbA98hLb1vB0U6oF/pD/6YFX75WvAKX4lGfbd9Ffxmff2qTt13+/bd9vW5+MbnB5iLrxKvzR98eQ/s+4GD2a/fj38eARf2e7G/P1i2rGxw6HK5ME2THVt24xRsFIWcWHqMuDuMosiYls5gdzfBYC52M43VsQmpewdG725EWUEPDkWNDpLARn5xIZLsQpZtRCMRkikVj9dPbKCbnNw8TEHANFQwMqRVDTWTIej3IgiQ1m0IloAsGAg2CUHPUl59oWB2oZVREWWFrq5uCksKEU2T3oEIrmAYj9P+DRR8+8YNVFUNRbFnaxqagsD27TsYPnw4FjqikKUUZzIq6ViMHTt24PX5GDuhFt3Qvzlt+6P+QHt9E5IkkVOUR1dzJ06HHUNL09fTTam8BcvQadTGEsovYjDSTU1NDVs2b2H4iOHs2tZE9ahKLMNg49qNFA3Jw2j+kJAH+jJeQkE/omAhyQqSDknRTVN3jPKaCkRDZzCukpMjoqYMJDygZOjpGSA/XMzu+k2UlVSi6gY+vx9ZEeju6qKzvZ3xteNIxjKsW7+OCVMmouoqDXt2Mn7CVCTZgWEZDMYHcDv8mEYMp+JAsNlJpZIYuond5sbmkNE0jUQigcPhQJRkBEFAlrOfm+zdJTV1ZMHCsLL0TEVRUDUVGxbxeAqnS2bZRysIhEKMGDaceCpJTm4QUweXU8ESBOKpDA4x+/5k0mneW7SIefOOJhIZwO0PkUrGCfiDLP9sBa3NjZx6+s9oaWqmbvcuZh05kx3bGygfkks0kiSUX8AHHyxmzuw5vP/+EiZOnYLHKWFTnEiSxCHn383uzjjzxhfz2O2XIAsi27dupby8ikgsysbNGzjyyLmk02l6enp49913ufiSi8FS0Xe/hW3aLUgFwzFNnRtvuJ0rLrsezTJobtzOhDHj+cP9D7F92x7uvu9O8poewsLCmHE/j97/CKWVQ5gxZyY5bosP39lEPNHHg3+4jfcXL+PJJ57hl+f/nHAwly07NoIEvkARt1z1S+oaunhr0cd0DnTyxbIPOenEUzjjjJ/y6COPs2fzGoZOHoekgC2T4It1bUweVYnkiKC5KnGufBzD1OkunsNFF16JL5RHrKuT8ZNrue33dzMwkEBCwyY46etKEizz4ZGi7Nic5NlX/sL1116AXSohGo1y4UXn8tt7H6R6WClut51EIkVbYx02XMw98XSuvPEmXn7qEUqG1PDI4wtxiJ2k0jqS7EXVJLApxKIDLHrrHcaPmkp+SS7LP1/LpIkHEUv0sn1XHY/++RFefvlFBMHC7rWTHhjkL488TRovx8wcgylJVI0YgTvHjazrGLKL6GCSuYfO5NmXn6WmqgxTTyBYGexOP5Lg5aYbb+WcX5xFXUM9E6dOpX5nHYv+8Ta/vuvXnHvaOTzxzJMMZAbRIxk8oVy8HjtbNqxg9JSZNO7p4LJfXcLll13I8T+ZQ2xQw1LtXH7ZVdx+ywJ2N3RSMaKSUG4hoqQhiGpWXXiwm/feXUJeXgGlZXkkUypja6eQVFX6ot2UBnLIpEX+tPDPTJ5Siy9QwBlnnMGSJUuYM2cOCx+5h4MPnk5N9Si2btmJlukjnVJJp3UcDgfh3Cw93ul0kkplaOnqYmh1KclkEl236G3djk0UKKmsxpQVFGT6ByLk5IaRJIX6XdsJBhQkhw+3v4hIpBWXXaC9qY2aoSPoGkhnF/qCgSipWJZFX18fHo8HhyTQ1xPniSf+ykUXn4NDyWHT5q2MHjsGf8hDd0c7Nl8OAjqpgWZycoaxs+4zaobW0t3VS7SrlcqKXLZt20Y87aGwahiFuWEcioyWyTB68jS2bFhPW/sahpYNx+YOkBjsZeeuPRSUVuAPOHDbQNcsEhmZlGbh9bpQbAKpVAJBspNORpEEG011LbhzPBTkukmpAh399fiEQsLhfDZsWsH4aZOwUjEivb04cwKYmpAtMRTKYc+eHVSMOghzoJM0dtwuE5usoKbtJOJJFi15hflnnI2ZSaAmE9hdfnz+PFLJGNH+TnIDXgShgPbuL2jYqDPlUBeSs4KUKqIovThMGzjCdHW3EgwG6ekeRMGgsy3B3/7+DHOPPpjq0hzCuT76cbD6k63c8Jt7WLL0JXbv/pTC0FQMdTfdfSbFpVNwBGIU5PhoaUlQEPYQE0QUQcDnlOhqqSeUW4ZiE1m16gvczjC7G1s4ZGYtNruFqXkJhwJsWbWeZ55+kpPPPBld9JJOpZh20HgaGjfjdDqIDBjccP1tHDNvDuHCEo4/di49A/3Ud3ZRIEvYnLnkFxeR1AYR7SoOyc6t1/yOeL/Ilp1LqBpRzUOPPk5KlWhrWIGIk3jMwOcNUlSeRzRmsm33TkaMHYaQyHDzzTdy5RU38NhfnuN3v12AJaos/ehTJhwyHb9dwe92EVNlDFXD4XCxauUaXn75FdYtX8uTTz+E0y5yy6/vYdTUMdSOm0RZWRlPPf0Ip510JN5gMU5ngC8++YziYV5ynKUU5g9FkA3at3+CIHsZPnYGf3z4CY46YQrlReNJplswNR130M9PTjmXB+64CDFnFI27duP2SPT3akyYVM3m9XsoDOdi99vZ07iLEVUl9PVGcSh5VA8r5It1a5EtjerKUvxeD1HBiWWZDHTsJuwrZ+qMObi9AZ5+4j62bezk+JOm09S6HkwnpUPGsnt7Aw11LSx86AF+/5c7sMt+vK4cNq5fi98tUlY0gbTVQ/Xwcvq7+vCHnXQ0DbBmxWLmX3othgE2QUK2TEzxm2v1f5bS++10tu8GY34McPbvth8bcP9PaMMHuv4DzdO3glvrKwDqSxT6++bu/zRt2DDMW79+LCB8Y4fgB5mz+9sPUGv3Ndub83Qg0+tXAiBXTv3WeQe276bxHuhafsh+iDa8j3Sw74H8toT2P/9CHphG/PX78WNe8G+2/QGKtJBFJ7PqsRK5oVzq9+wmFY/gcDkZ6Ook2tNJUciLYnOSyqRx+oJYoUqUknF0eWpwlo3CjkGmp4mcTDt90SRaog9BcSDb7TicDnTDQFHspFQVWZFwKBKmYWJ3uLDbHWhqhs7uThwOD50d7RimhsfloKurm2AoF7vLQzw6iNPlQtU0TMvC0DJIWKTSKrl5YYQvgyYhe9mhghKQZHQDMqpOOhHH6/EhWBYul5O2to59ypvt7e2MHjOGUDh3X67lfhP1jakzsQgGgjTU15EbDmNaBoPRQUL5efhDYczeTcSiUSomzENSFBx2G5qmUVlZSTQaBVOno6udaCzGyJGjaWpqpMTeRlK1KCipzAaCqordbkewwK7YCRaVo5kq3R3tFBYVoMg2GuobkBULhy1bK87l8uBwSMRjSTo7OyksLMzm+dkdKLKNTFrF5nJSXlmOlsmgqSrhvDwkSUJWbICJyyEimDIZLYkgKsSjSXL8XkRBwDB0FJsN0zTR9exi2TCyP6KalkWYJAQcsoSaTpOMJ7A7XSBAPB7HYXcQSaQRJBeCIjN02Gg8LgdrVq+iZlgN6UwG0WbS3dmCx2Wns6MVNW3w8UfLqKysoqiwGLDw+/zEEkncbj+LFi1h8uQpOBx2bHaJnBwPDY07qagqY93arbS21FNRUUk0lmDkuFHoqkZjfSPl5RWoapJEIoXL7eblj9bT2R/n6EMnMGvScCL9A/h8Pt559z0mTJjI0KHZ+xKJDlJYWIDL7SQvnIdp6lj9u+mQqsktG05XVxdejx+/L5dln37C8Sccw5ZNWzj+hBNBTPPRssUM83TicNrwDJ2Nx+nmsFmHYwkGqCKvvf4S1UMraW5uYPq0QyksLOSpp5+kdsIESktL8QdyUGQnHofImWeejWoYFBQWUl5SSiQSYc6cowgEAqxZvYLxB03B7c5h2ZLP2bB5B7H+CL19HVTVjGf1a3/C6XSwvCHN8cfNJ6+wgK6uDn7605+SX1CA3e5koK+P1157nRtuuIlLLruIo448nMXvfcTRx85hw9qt5AQlFi1+j6mTpzNr9iwGBntYuXINhi7w2ONP8Pxzz/Pwow8zYdIYzjn7DGLxGP6gJ6u0rIlINhc7du7m8FlzueSSi5hQOy4rDpaOc99993DOL87Gn+OibyDCBRf8kpdffpHphxxMUtVJxGIsWbyIa668Ck2LES4IEwwHcHqc9Hd3YXc4OOMnP+HlF5/D6XYSyPGRSETZum0HnZ2d+LxBdmzfQUXFECKRJAVFRUQj/fz09FNRhTSxWIyJU8YTCPt55+23GDNxIrphUV4+lOaWViKRQS64+FxqaoZg4aJ+TwvbNm8jGAhQWVGM3ekmnUnT/9cXKYmn6A+40TMqu3fs4br/upFbb7mDcDiX8P9j772jNKvKtO/fyefJOVTOVd1dnXMEOidSN00TWwkqIoKogIqKjCKOzuiMozPqB6goqAQFQXIQaEITmw50rtBVXTk+OZ3w/lEEaUDQcd5vfe/37rX2qlXn7Pycc9a+9n3d1x0JIyHT39NLKOQnk0xSKto8/dRT9A/0sfTEZQwM9FFTU8X111+Hw6GgaU4uvugTdLQf5dmnn6W2toGtW8/jT/c/SOuU6axauZZ777mf++9/gPM/vo2u7g4i0RCFfJGx8VFq6uoo2hKS7qWUTeMPBBkdH0cQQBYnDhcD4SiGJZBOjCNLEsFAFBEVZAvDzCPJ0NfXj6KoOJ0uVFVDkzRsS2bfGweZNm0ahRw88KcHaGqpR9VFFFkAW5ywFik6Ds2HaaXBUsnnM7jcUUZGUtx19+Pc9+CLnPexzWiqwre//W0SiQSvvfwKl1/2BVw+Hcv2YAsFUskxyivi+IJBiqUc/cd6UBQNh8uLQAJJyFMsjDLYf5T0WAmHqjB/9nyWLl5G46Rqjra1UV3diMPj5Pe/u4crr7ySL151JalMms62I0RCIZweH4oq4g94KZUs4rFqfnrzr3nsT/eydsNpvPbqK3h9OrYpsW3bBVzxucvR3F40ERRJQtM0isU8DNRpFQAAIABJREFUuirS09OJJAsIoozXJ1FZ0ULBGsQp64iSjqiJWLYOmKTTY2iqk3VrT2XOrHJaJrcwY04rc5bMRJdDIMlo/ggVkRo2bNxKZWUF5bEyOttGmDqnlVC0Cp83iCDlUEpufvyT25k6cza6QyYxMoYsqgwNJAjGavjtnXcyf9FikGTmzW6lkLH4wx0PM2fmLH70nz/DMkyWLFvGXffdz9SpM2hpaWHvnl2USlmOdQ0jSzrz5s1h9ZqTqK0r4/VXX6Smso7EWA5fMMivb7uNirIwDk3gkx+7jpXLV9IypQZJz7L7tTauu/56gpEIg/3DBD1BHnnkCRYsWEgikcDjC/D7u/7AScsWcdG5Z3H66WcjSgLNzY38+te3Mj7WT0VlOXPnLaRUEvE4XfR0HcPj86IrHvLZAqZhs+OFlwh4fSxePJ+6SY3kLbjwgnOxLHj22ef47Gc/g2QrxMub2L+/g1goRnNLMz/+0c/x+4MkEoP84fc3c+rmUxhJDrHkxNnEy6pByDE82knIW8/waBfnnXMupfRRQvFayiu8ON3QOrUVUU4zNpagmEsxadIkrrr6GgRTZsH8RYRDcV565RkcqoMZM2fQNzSAy++hvW0EjzvCPb/5PWUVfs469xxOP30T0XCAoD9C97F2vF4P0XA9//Stb7PztddYt24Vp522mrqaOna/9jrTJjdRUxViLJWid2CMnXtfZPLUVpKjYyi6iFGS8Xt1skWBeDg8ESZQlD6yAu0H7U8/7PpbBqD/NwDs375n/8fRhj+s7/dWeQcHfBSw/ffQhv8/C16xj1uM92CedxbsfSWcPwJ4fQeIfTTwenw/H0ylPW5siO92kv4Qbvt7xvkRwes7bX1w/Ke//YWYGOsHxZR6v4f+rzu/H1/v+LLvbk9SFMorYoyMjhKKleEKVOLw+kB2okgWIqA7HWTSaUq2ScDnoWiJpJzlPNNm8ZM/vsC6lUtg/BjKaBumrJEv5DAEGYfTgarpyKJAMZ9FUjRMS8CyQJYkPD4vqjRB2RsZG0GTZfYfaCMUiWHbNqoiMTI6RjAYxuVy09XZTu+xHrLZLBU1te+cRNkTlvpUchS7VEAyS4z0H8PrCyIKIpZpMj46jNPpRVMVFEUiEAqCKCLI0kQcw/f5nWzsieUTJqzxpmEQDoUZ6O9j6Fg3ZskkEo7S2XEUn92D7tAZKEbo6jpKXV0dnZ2dlEoGHo+X4YFjTJk6lWi8jHQ6RVVZBKvncdRQCyBQKpkYhomqqSTHxzAKJq8dbKe8qpyA20X3sU5eenEXDY11OF3SRFzcooGuOdh/cA+tk1txu1309vTQ0d5GeVk5E+4sAkc62t4U4hExikV2vPQyVVXVyLKAbZn0dB4mEAgjawq2qOJQdYqFPKIIlmkgiDLSm4qhhUIBXXcgim9RtHOMDQwwNjxh6Y3Eyibed8sin83h8XiwS3ly6TSZ5AilfJF9+/ZRWVHJ4NAgTpcLSVIxcgWsks3+vQfZu28/J510Eg899PBETFtJoqO9jZ7uXqqraqmqrKa3t4e6hjo0xY2maQQDQR56+AnmzJ7HlCmNFPIlCoaBpMpoqkYuk+HA/gNUVVcRjcQxDJOzV81mqt9ky7qlYNtkUikeffwx8rkC8+fP52hnB4Is0tvbSyAQIBqNICICJowdwT1pDW29OSRRpLl5Mn5/gBnTZ/LSKy9QoTrQDJtxS+Lsc7Yh9DyFbYuMSjX4A0H27t3DV798NbNnLGDvkdc57/xtnHrK6ai6SiQWZtWa1bg9boZHx8CSue/e+1h2wkIEWeJIWxuZZI6G+gacTic9PT34/F4efeJxJk+bhCyr/Me/38SceTNYu+oUBob7CAYiuFMHcbrcxGafwsjYMEuXLGLVutXEysvYu3sfzz/7AlWVNYTCET5xyQW8vvNV9uw5zB13387Hzj2Pc7d9ihlzq2loaiASqeWqqz/H448/ythoivnzlrBoyRLOv/B8fAEnTk1kcHiImbOnsX/vHh544Alap80kkUpTVlnBS8+9xBmbzmBwaJD6ploCfi8rV55EOjOOaZYor6ghEPDR3NKIbVsT4mi2zeZNmyYOOnw+yiujGFYBRXKgagpDfUMY+TzV1XGqKio4sH8/LneAcLiM2ppyuru7qK+vIxAI8b3v/pAtW7fw7DNPIphFSlaJBYuXUDRz6KpETV0tpmVh2BK5IpSFfLjcKoJiI8oSl37ySzzzxFO8tGMHu3e/zqYtJxMKh3j88adY0j2ENpagp6ocTZYJh8t4+aXXaZ0ybUKkrJTDtkS++53vsuqkE/B6A9i2iaoqbN50Jnv272bLls1IsojH45pQBLdEBGTWrz+Z737nn/nsZVdyy82/YMWKNRw6dIDPXvZFRFHmC1+8EkWXicYCdHV14vcFCIaiuN0aI4k02YKI3yVNUGNVmVKpiCpLdB09SiAUJZ3P4ZRknG4XlqVgmjLFwiguh4RgCXhdfo4d7Sbg9VPMFcimLVRFYd68uXz1q19n7879/P73v+Gcczfh83spGhaqJFLM5BnsHycSDjMy0odD9xIMOcjZaeLxSvyhONs+dSFRv8bY6DCz586msbmJlSecSDZnUDALJDICNhkG+o/hdLkxBRG3S8WluyZodrJILpHDqXnIp03C/jI+d+UXOe+cs/nMJy+lurIagwyZxBiBQAWiaDFz2gw2n3E6TocLl+ZClCV8oSCFbIminUdVnZRKIorq5uJPXcZPf/g9RNXBF668mlWrTsTt9nHRRRehKip9g6NEgz4G+rpxedzkshNxrEORIB6/l8ToEOl0DluCgZF+xgd6cfoiZApZJNmDUUhOKBQXTc47ZxtVlRXozgCpbBFV87Jv31FE3UneEol6AsiuAvn8GC6HTmf3LlRPGS63D1UtcvFFF7Lp5PXMWbwAyS0y2j+KKmlc/cWvMDKUYtGyE2lsnERv7wDJZAJFNHhjdzuH9veiaSL/+bOb2bBhDYJos+zEVSBY9PX243V7aG5uJBpppryiHMPKUzLyRKJeNEngyMEOPnfF1Ww57zxWrFhKR/s+HrzvXk479RS8Xi8dR3sZHktz2ae/QNHIE46EOHToML/51T1cdPEn+fSll3DOuWdh2go/+fG/c+Ki+RzZf4Bf3f4HDhw4yNx5Mzl/21Z0VaGqqoojbd0M9AxSXVlDW2cHuqrgdYd4/LHH+PYNN3L9N65nUnML99z/R2bMm82UOTOQ7QLDw6MYJZOmpgbCQQcFM88TTz5MLOrmhadeZfHSFUydPgW3w2LjxgvoG0jxiUsuZcvWrdiWRKE0TDo9yo3X38zSpa0cPtBOwJUnVtmIIDhQFAXBdqPpMrHyAGG/G93hxKl7ee2VvcyZM5etZ57NH+//HRvXbqRkmBRME9XhRJJMvG6duTNaGMsnmNzcTDGff1NE0UJWRHy+ID/5z19x0Sc/zvp16yiVMqiqSdfRQRyqTjY7SjjswB2K4HR7mTy9Hqc7SDGVoH+ol4qqFsbHhxFLNrnEMJFYlLQhohy3Vf9bfU8/iqbOPwq4/r1je6veh1OiP1p7HzSuv22ex1te36n7fgJQx7f9/yvw+gFA/530t4ok/RUhor8GXlFdSOFaRG/sIz3479fX8eDzPXDtHwhe3+rhHwVe31LC+8DSfyN4/csTm7fG+tf6t7BANEkkM4ynCjgcKqomYWOQTSUo5gvouo4kSxjFJD1HDmCl08iKhFUcYuXa9ZRPWkop2koq3IJcyqD370aVJPr6+vCHotiI5PNFksk06VweUZBIp1KIospQ/wCyLBOOxhgcGmP3ngNgmbg0AVsQcThdFEsG4+PjBAJBdM2B1x/E6QuCPQFeLdsim8silgQkQSSdTqIoCorDhWXb5Ap5VF0lncrhdDpIZ5KIojQR0P5NcPp+4PWtPwICog2WbSNKIj6/j2hZBeFIhP0HDmCaRRylThRNw1UxH6tQQFQUAsEQ44kE7R3txMrKUTUXPd3H8Ogq7Tvvw6ebSO5KSqUiIKLqGt1d3YjYOBWNfT0DhCJBuo4cIZXMMHVqK8FgGFHS6B0YplAw8bi9pNOjyJJCR0c7wVCISc31pJIJdF3DHwzicbvo6+3Bskyi8Rj1DS3k8lmGBvtIJhLEYmEEQcXGIJPO4tRVMukkRqmE0+nGetPFQNO0Cbr5m+qaiqJQKBRIJ0ZxaBJlFRWImgOrZFIoTIQKGhsZRcQg4AsyOtKPy+EBUWRkeIjGpiYEScIuGOzdtQuv10e8vILGpgaeeeZpFi5YQCQa5rbbfocmyzh0nXjMR3J8dELZN5UkHC6js7ON0dFhFi85keHhEXbufJG62np6+voJR8JgWgSDIRpamnl2+zO43V62b99Oy6QW9u87wOTWKaiqgtftpr6hgfr6RgzDwOtxIUgKB/YfpLa2joGBIV575VVC4QBKaZSS4uamu17kjDM2v3mQIjEyMkbj5Hridz2B60gXkTPXkUlnEI49iVEs4Z+zFc3lITHcz/L5s2maXM3iFRswTIHR4TG8fjdIJjtf34Mv6OWyz3yOJQtPRBIFHn7sIeob6mg7cohbbrqVX/7yViLhKI8+9giDQ718/pqv4naJpFIjnHL6JppbKvnJT39FVXUZilgiYvZjmjadpTh33Hk7W7eeSaKQ48tf+SoP3v8g0XCE/v4hTj5lI5nSOFd8+nImty5i2owKmqqbOWHlSn5+y+0sXHgiyfQ4O1/bzXXXfY2FC+eTzaYIloVwBTykx8e5+vLPc/rWc1BkkW3nXsC6jctpamnGFiUkWWf2tAbyhQK/u+MeGpob2LtrP+UVZQSCXmTJwWWXX86s2TOIxaIoqoSdHkB3ezAkBbfXzbVf+TbhWIDE6Dg+V4xkJkt32zFqyquoa6jlwIG9VFfX8txzL/K5L36JC7adiabL7N9/gCs/dw0//+VNmLbFV675MitPWIHmduCNluHQXaTHxhFtHTObwe12kcrl2f3qi1RUVaI6QgwO5nnuqce58orL+ffvf59TTj6F5WtO4Plnt/Pc9h2sdfsoFIr8cXSYeQtnY5s2L764g2eeeYYVK5dhagKSrLFy1SrSqQTDw+NoukQsHqFUhGu+dC3NTZMIBSOIgkw6nUHXHYwMJ+nsOMqG9atZs2YNDoeTm266iTO2nEJ3Vx/tHUdYesIsnF43+UIap1PH5XIjmTZ7dz9HeXk1pqkxNDDxnbCwSSYTeN0eYpE4usuJLZkM93WRzabQnC6QFEYH+tA0mWIBZEnjpBOXs3jRYsKhMN1d3YTCXgwzw+rVa6ipKONzV34Kw8yRy0g8/NgzfO2aL7H51A24vX4OHzjEsWOdvLxjFy73RGxntxrAtsEfFeg+cohYWQxNd1ACYrEof3rgQZqbygl6Asi6A0WUcbg9qJqXUinJQM8IgUAIUyhx+EgvCBq2oGPZOmeeewbHeroYHB4lEo0DFj73BDNI1kqIyFhWib17D7Ji2Qo+ccmnkDSV2375O5onT0OWnBP6AJLEudvOI+KTGBofZs2qtbidIXxeL/0D3RNuKaKbL191JWdtOY2iUUCyZExbwOsNkMmVGB7soaJ8Cqg2/mAV+cwYTk8USSzxyvMvc/NPb6G8PILf52JoqBd3pAbLLKGrIrJtYgtFgrEIvT19aLkSGXEITdXRZS+5Ujeq5cLr8ZDO9XHmmRdStArkSkUUSeaH//Kf/PhH/8nVV1/FomXzGB/r45yzz2bz6VvY9fpOZN1Nw6R6Jk+vp66phZPXbGDfnpfo6jzEwoXLCEVDuBw+yuJxZEkmV4Bbf30zU6ZOJpUqoHp8jAyP49BdzJw9lymtTciKyVgqycKlK/AFXTidLl7e8Tyf/uQ2FJfG0c7DOHUn37nhe7xx4A3cHjeiJFFTW088HsawC5y4ci1zFp7Ipk0ns2b1RkRR5P77/8i2886hUCxx6FAXP/vxv3DSqlUYpkQhneXHP/o3Bgf6ufHGG7ju61/jyi9+EUlRGRsZIRryIggFotEyamrq2L//AP/yne9wwvI1VFRW0jq5BadsU93cAJLNI/fezWv7enF7w3zm0iswSgJFK4kqhrBNmTt+ew8jySSZrIVHNxjOyASDAVRN4uD+Tnx+HVvSSSUGKKSzpNJ5Tjl1DX6/h0cf+TM33/JfvHHwAJl0BpfuIuQLUSzZFIsZMMfwBBs5cvAI/d09hGJRsuk03/zmP7Fu7Xouv/xyzjx7M07dyaWXXMYFH78Alz/InXfdzeQprfj8XvKZLEcOHeHQwV3MnbkEq5jB6Xeh6SEESSA53oNkpnhj107qJ8/Att5fkfejpv+dFtX/KZGpt8t9iP/h348B3q/SX9+nf1gf/0eDV8Mwr3+XH6lwXD4+CcKbeeK+/aY9UxCF97Nxv0+D72TBtsC23/zPfld90RtD8ET/prkItvCmkI44EVrhzbG9lT+0/vF8/ePye8q9vQa8DXQ++NRG4t3zP96yOtHLBGi13+ckRXxX/QngL7zn2lv5ePD7VpiYd9o9vr71rtkK2AiIhCIhRBkGB/qxLINSqYBHL0dS3JiWhiA4SRWzlNfUkc4myYwPUrBkho61Ux504a9oRHKHMUM1aFNOopgZxzt2AFsQMXUPiqaSS6WwjAnV4d/efhf79h/E7fXi9XsZGh6gsrKSQMBLZVUF+ZKJPxBhdGSIfDbHSP8YPX39KA6V8qpKRGQEcWL0Rs6klDWRFZNCMcPo2DjxeAWGKGEYJRz6hODQjh0vEY1FkESNgd5+/N4AIGDaRVRZxbbfWpEJmrCIgGTZlIoFstkiEiKKJGOKEy4JgiwRLYsTqyhHGDswscKhVryRIO2HjxCLRRkbGyWbzdLc1MCuN/YRiYbp6myjRtpPUQ7TO5hA11R0fcJCbRolJFXBq2pUTZmGLEuIiozu9pFMJBgbH8MXDCBjE40EGR7uIjmeI1ZZgcfjQxQEZM2JIIkgTbxr+UKWSDRKPl/EMAw0WSKbTpNOZoiEIwwOjhEIBDh88DBetxskBWwJs1BEFooItkQ+X0B3uijaNpJl4tAVVFVj/959NE5qRnX6KRhMKAhrLp5/fgeDA0ME/CFyeYN8KcPBQ0eoa2ikaBrIqobX60bEpO3gETzeIG6PG92h4PGodB7tJRKK0tPRRV19FUeP9tLb24fT5USUHbS3HyM5nsIqFQkEPJSVReho66Cn7yj1DU3YokA6k6Y8FmH7k0/TUN9A0cxTWV2JKMl4fX50XaO8Mo7L6QZRxMTE6XDz4ksvUNdUh6BoWJg01NdjmQayKCLrKl6/n1KyF1e8heknbsQwTAolkT0H22mePAmP04H83CvYZonU9FoqIiHMsQMI7iDHCg4CwTDBeAuxxho6e3oJ+8JIpsirr++itr4aSRaIRGLIZp5oJIru9jCUGiUe8pPP9DO1cRr/8aP/h9RYms9dfTmnbD6J6soAojIRU7lgiuTyRQSzwKqTVgEJvF4/8vBh3tizk19u72D9yo0c3r+HzraDXHPV1axevYGnHn+BKU0NlIU0cmNHmbdgPauXzsTvCHLzbXdyxrmnM2vmZB68/2EoySxeOIeR8V7cQRdlVRVYJuQyE1bMM7dtQhcdGCWDk09dh6xY+LwB1q85mXPPPpNAdZSiYbDjuaeZ1lzLnv2v0TKpCctU6O8bYsXGU4iXh/G5YKCrG5cnwO7dL1NdUYZpSBx6cTfrNqzCFfYzlkrw0P0PUjAKDI2PUFVTx3XXfovTT19HIZ/kC1dcQb6YAWQCgTjzF8xHkyR8fhfnX3ABWiBKIW8S8Dgo5XMc6xrghht+wOIFU3E6VY719tDS2oisOrFtnfXrN7NiwXRmz26gsnoKw+NJVp+0iHO2buOGf/oOPXfcTTQaY+qnLkJz6Fg4sWyB8z9+NoMj/ZTHK/H53KRS4xi2xd13P8is6ZMoFFIoTp2ZU6fxg3/9V0KBCG6Hl0g8iGUbFAp5pkyZSvuhQxMAIpdAENOE4hVEIl7mzpuGKNikikU8Xg+9/T0oukAqa+IPxVBVHZdTweHVSeQtSkUTn9uDaYsIEowMDeBWdRy+IPmCOfFNkmxcugtd9aKpTgqU2Hj6WWDpPPXwQ5RXiYRCNWSLBkPjWW684SuEozFqaprIZjJcf/0/s3vPbi697FIKxQT9oz3MnbaEX918G+dc8AlyKQ3dpRAIaowMDBCpqKOQEygVs/i9NpZh4QvU8tlLr+GEJTNYvHwdF1xwKZKkIFGie7AXl0NDV2VEQcSQbKJxP5puoqpFhkf6iQXr2PXyXv507z3MXjKfvGlhi1AoWPh9fjRFIBDx8enLz6MiUk4pJzFpxnScso0qG4yMDeJw+LDTnRSKBQRJIBiLMDbYRiqZJxKtRnIo2JJKfbWfoaEufKEoXm+EPz3wB6a2tiDaMgXJQXZkBL/bjdPnAtNB/8B+Qt46yuIVrD99CV5fFIfLQ9HMo6teiqkUYDNWKOB2KMiChFN18sJrr9FYFUYyRBLpNBXV0zBNA1uTkRAgPwZCANkqodpFUIpc9ZVrcXr8eDWLoaEMn7nsUva+8TrLli3m1z+5mbBf55mnH6W2ppk/P/0sjZOmMHPWdMaTA/T1JxjsPoBdHGHXnteZMWMOU2bMRFZ06mpi6KqKw+klGq+ipqYOExtbEonEqlAdITSXk1defY2NG07mrK3nsXTpfCqbm9F9Pmqqyxnv6aMsHGb1ySsoKVmyORMrn8cf8iO6JXRvEKtY4MZvfIllc2bgj5aTyoxy4MAuZi1eTz47SNQX4hs33MhXb/ga0WiU2tpaShgcaW9n6bKldLR38saeXTTOmM2x9kOUh/ycuGINN91yO3v27GdwYJCCkcZfEWN06Cj3/+Fxzv3Ex/nsZ67i4QcfpKejg6p4HC1QyUB7J21vtHHrr27l+//1PWZMq+bOOx5hSoMPwxZwyAI1dZUUDRXRyBIM1SKoDrLFNIWcm1t/fSfjySTLV6wnHFL52c9uJp8z+fKXv0Zj9VSu/fIVTJ7ayHgiy/f/9TpOP3kz9z1wLwuXzWTpkiWMDI9jGhnq6mdwxx334PYEONLZTjRYxoIFs6mqjZDOj+ELTaK8spKXd7xK0OPmB9//Lovnr0NSPEgOHZc3QNCpcvTATpy6jNvtxZJsJEA1bAzx3fTVD7M2vh9b8n8XoP1H9yWIb0GVifBu78nHgdv36/stsSlRendbb+3T/6L2cfkDxnTcHN9ab1lR/s8Fr6ZpXf/XTOUfNf09D4fAcQDtv/mAvW1jfMu8/7fW/29SG4S/0uN7rcz2X9x7f1rwX/NZ/fCxvrvM8f2/t/4Hj93lcpHL5ug92oVqg8Mj8PrOZ6mr9HJo7wtUhGN0HX4D0cpTFvUw1HsUXbRIJBOUJAfjiXFCgTD5vIAcnowRakU8uh1JcVA0bPoHBmhobKKzs5NAMMjadWtobKqnWCqiKAq9fb243R4UVcXt8ZDLZBFFAa8/wLHeXiZPnUKsLI6kKNhvHltgmTz2yGM0NTVTyOcxSiVisTIsS+Cxhx9l8qQWZElCEEXK4nES46MkxhNEwmH6+wdxud2IsgDWhGX17cMJS8A2LLqPdnP4cBvBQJDntm/njTfeQHfoBIPBt59jQRAwB3eRz+XwVc1FkkViZeXIqkokGqGispJivkg6nSUUDCEnD6IUj2G76tA0lWI+T9GYUFOWRBFV1VAFie7xDE6nB0lUcXs9CLZNbV0dJaNEIZen7UgbI6NDFPM2RdMiEg6TSo5jWqAqMsVC8c1Dngn6c9AfpL+/l0KuyPj4RJiIZDKFw+lkYGCAeDzOQw89xKRJUzh06BCZVJJMJsW+PdsxizncDg8yOkcOHyGdSpNOpWmobwbbxDLfDIJu2WRzeZLJBD6fjzf27iWZTJNMpVi0cDGDg8OUl5XxwnPP09TQQCGfwx8KT4yhf4BYNELJtIlXVNDe1obP76GsspKZs2cRioRQRJFUJoPPH8A0TXoH+jCsErIqE4mWYVsCPq+PWDyGL+BDRKC7u5ddu3YTj8fxeNwM9A1gGibBkI/f/vY3pNMZKioqkGWJocFe/vzks5gG1NaVoSk6uVyOZCLBgQMHmD5zxsSmPj+I6K9mlEoi0TIkRcLl0ShmUhzY/wZlbT2AyPjUen5z22/RG5bjbV1HNFo+cbggTwCGSCiCqkik0yNUVTeRzaZwODVEUSSfSzNl8jQCoTCSBKFYHXX1VZRFq5g1ax5fufbzeAMTsQhtw8JU/IyNpfE4nPQf60HXND5zyReYM286Q4Mp2nfcR0NdLc0nnc+9v/k1kWg5kqIQCIT5/vd/xPTpzezc+Srz583l6i9dw8x5J+B2u9lyznmsXLuBUMiDaZR48YWXefW113G5XTS3tBArq6C/dwjBMAl6faSTCTzOiXixT/75MUKhAM1NLZiGxMyZ83lxx8s0TmpAFGSWLlqCaeSZPnsWsqxx7x/vY+rUGUTL4oiizWWf/iSnn3Y6lgUut4f29m4CgRhup5+cmaOyOo5QLDF95iwmTWph2vSpdB7t4Fc/v51169dRX9/MoYPt+P0RMukCicQ4kya1EAxo2KKJhczPf3E7377+G6xcuQJJULAsiX/7wb9zxRWfRlRkvP4I4yPDaLqT4ZEkv739Ti759DYkTWbKtHl8+dqr+fiF57LtgouQFJWGviFGRkY5GAtQKOb49o3fpbauivKKOPF4jMRImnQyy/hoAr/PS3V1EwJFOjvbsQUdr8vLbbf9hsOHj7Bhw0b6h3pJJtLEomVkMhm++uVruevOP/DMM9tZu3YtLVOmIMsCsWiYQ4cO0NhQhSKCU9MJ+0Nouo4sK28zR8x8HtsScTk0Rvr68AR8mIaBZRqoioIlyICApunYNpilDGBjmgbHeo5xcP8RkokUT//5UZZvXInTGcHhUNAlkXVrVlFWVk6xWMLr8bFsxWK2nHEaplnC5w0Q8Or0dB9g/akree2Ng7xmU9XkAAAgAElEQVT4/PNMn97Kq6++RmKsRDhagcvpYGS0j+HhPob6O6itq6G1tRaPs8jXr/08ZimNx6diiUVkS2O4fwSHy4Og6bhc3gkWhC0y2D+MPxQGoKqmnFnzpiHLCpqqoMoybpeDsZExhsfG8Xv9GLk8Rw6+Rnv7K0RjZXj95aSzWTweD1/83Bc55fTNpLMlHKqT9HgSt9uH1xfAsg3GxgdxunxEgh40VUZRXSiKxvj4CPH4xHcpEI5w+aWXIkoiZWVxdE2gVBTR1SCZ/DEkWaJYnBC6U1WFVGYMTVG5/bbfccIJJ9F+pA1FUSkUszS3NJAvWRSK1gQjQbQRDAFF1rAtCwGBp5/bQU19NV09XcydM5+rrrqW5SeuRJFFikYeVZWpqq7gaNdR5s5t5a47H+DuOx9l/qJ5FLNJ5s2bSbZYJBQrIxyrorammtFEkvKaBk5cdhKSqlFeXkbboYOYpsr27c9SXV3Fw4/8iWgkjmWV0DSNzo4u7rvrLlYtXwGSyMZTT0FXJGxJoJgrUl1Rxarly3j0sQfYcNoGfMEgXoefeCSK2+dBUWRsE353+284Zf06Xn71JVpap+Dz+hkaTLNkyYkc627H4wgSicVwe31sPnUzC+bOZ96Cxdx5xx3YhsWMqZOprYkxlkzi0nWefPwpPvPZK7j4oou5774/cemll/CnB+5lxozFPPPnp9l0+jmkcmMcOXSYX/7iJjLpcTxeN4GQi2uv+hzTpzfw3e99HdNwsWL5Kn70w1vxBSN88tLLmD1tFhdf9GlWrzkZj8OiZIzT2d7HNZ+/gbPO28jSE+YwfWYTVdVRXA4XS5YsZOq0Fs46exOTW2M0NjYxe/pa1q47izM2ncGS+auJxurRnCbRSBlO3U1L8yTi8SiV5eV43C6mT2vhkUcfIRT2EwyEeO3V3TicOj6fC0USCAS9tEyZRsfRPnr7epHFAr5gnEImSX1TEwNjOQ7ua6Oyvh5TkDAEiXe27B8OXv+W6/8T6R/d19/rE/se45htczwsED6yd/FHS/8XvL5P+qjl/1p80veAvTd/Sdu2MXv2YKcG36YNf5QH8EMpz39nsm37o8VY5Z04VMeP+YPA61/y7f/6mv5t4PV4/9/36g69CfDftsS+9/5fzsHj9+OSFf54513UNExifHiUfbtfJzk0yO23/JxJDXXs27OTysoIMgapZIqCKdA0eTpOtwvB1tBkH319/fzrf/yIhWd8ltTBZ3Cm2vFHYpQkjarqaqpqqtCdOgigqDIer5dINIrH60F3OpAVhYG+PkqmSSAUoqq+Ft2hI4gShWIJRVXo6zpKJjVOd3cP5ZVVlAwDBIH77n+QxqYWipkMw8PDBIJBbvnFL6ipLMPn8+ByOrjzrrs5cPAgpWIRyzTx+kMYRhFRtBFtiVK+SGosga5qyIpCMZ+jrKKc6TOmEwoGscV3K1yLksbBzjEKtobP7wNpwjIsShKGZdLR1kkkFCaTTOAcfQw1UE+6APlsDlWWCYTCDAwMIEkiDlVBllRGDBlNc6KoDiQZFElm/8EDxOJxnLoHj9tDPB6jtrYZTXdhGEVUVaa7qxeXy4lhGIiCRKGQQ5YUXn31VQyzRENDM75AAFGcoMP19PQwZUorzz77HGvWrKHtSAelYpGm5ib27tnHgiXLsVAIx+Jk8mnKouWoqkJPTy+HDrbh9TjZs2sPkXAEXVOxBYFQKIjb7UZVFcLhMKZhk83m3xTHsjCKBgP9fUQiIQq2jUPXOXzoIIqs4vYH2fnqq8yaPYNQLIKsaAyPDhOKhPF7PBRKRSoqyijk8kybPo2q6iocDidjo+PEo+Wk0hlcbieGWcQsGOzbd4C6hgYqyuN0dRwllUxR39CAJAlUVVaSSCZxOp04nBqWWaSQs5kxYxap9DCSoKBqKj6fj/LKirffJSt1DMlfQ2jyWo4e68LpVlBVEbuQw8QmfLAbQRJJtjYwZ+FC/KEwsiCjaEFsoKPzNfzuOMWCgWXnKZXS/PHuh1g4fy6lQpZivkC+UMDtDoBp0n5kP6hBLvvsxSxeuJSf3/pL/H6BwZFhyuL1yIJESXSRHEvSd7SLx/50P41NjZy/7VO4vA4MW6XmpE8yZHq4+dZfs/7EZTzwyONUVVfR0NDCAw8+xqWXnIUkyTi9Ac45/0IGh0Z59sWX+fRnLmP+3NkUcgkcuoubbrmF7//b92lsasHldtJ/bJDerkF8Lp3nn3uGyvI4vd29uH1uGhrqUBSZYtHk0IEOrv3KN+js6GTzltP45299h8WLFnPnXXcydeYsVF2nsakZt8eDaeSQgOUnLseyLUrFPINDI9TVNvPSKy/z4x//iK3nbkVTFZIjAzi9AS688EI2b96M2+1i1fLVKJKDr3z569TXNVJT08Do6CjPPPM0lZVl9PYeIBwNUzKhsqqebWdtJhQOIGle1qw5jVtu+SlDYyOMJZJIiIiijSSK2KbAkcNtPP7EH/nk5VdytKuP6667kpxhIqoKoiLhemUPPT297PY5mT1rBmVVMaKxMBUV5ThdDtav2sSG9RsJhQJYVgmXO0Axn6arq5tv3fADtm45ky1bzmTt2tXouoo34EUSNUolg7vu/g3//sMfcuppm3hm+7M88tijnLF1EyI2icQYlRXlDA0fwzQmwl65nX4S40OUSqA53ZSsAkY6TzqXx+PQSI0O4wkFKZUKhIPBCbqw4qSYy6NKMpZhksmMkc/nKRYKCLaNYcLZZ5/LJy7+GFXNDbjdUbKpQdKJYQzAtGwcThcvvfIKU6bWE49F+dj5F3Dd17/FGevPZXh8mGCkjLrqmQSDCsnkGB5PAJcjRNEsIks2Pce68XsDuFUfbm+EYrGErigkBsdob+8lGKkkkyvyra/dyP33PMCsuQvwxcrQJBWH7qT3WC9l8TiWZaFqNopukciNIloyRqlENjsRo9zv9+LwBpEQcDg8wCjV1U6MPGjeMKWiiSbrtLa24vJHcTq9nHf2uZy0bCmxilpeemUH4ZAHj0tHURyMj48QDEYQbJl0NomqOPD7gxzt6kAUFBRFZvKUSbidTgqlUYL+Km789vdZd/IcTGNCxT2fL1Aq2ry+8zlcnjBt7d1MnzqFe++9n+HhQR577GHmz5+D2xtD0xyYEuSMIrIJWDKyJKM6XJRVV6NIMmOjSYYGh1m0YDGXXnIZFVW1PP/CE5SVlyFJMl6Pj0h5AJ+/mrmzl+N2w7TWOrK5PKGyCgbG0zz80MM0TGrl4KEO3C4vZ245jVlz5qIoGhXxGJLkwu8P0dFxhEWLFxAJh7AxGBkZweXycWT3Hu666y7WbliPJcDNP/kZrS2NbwooaqQzI8TjQQ61dVJd28DenXvY/vwO+nq6mTalmaGBfqrKq6ltrGfJ0hNweFwMDSfYsWM/V3/+cq79yjUoso9vXPdVNp+xlT/+4V4cqs6M2TNYtnQRB/btQ5UV/F4X4+Pj1Nc18vBjf2b58uWcefZWTMtmwaIFzJ47i2JepLaqijf2tlNVW8aWTasYHOjhnnvu5YytZzPQc5DG5gYWLp7FwcOvUFlVx/JVSxgYGqeqIcaaNady6oZNPPvMc+TzGcxSlu3PPcjc2ct57JGdbH/uSdat3UggEGLF8pW0Tp5KU3M9TpdE0chgWRM+/K/vfp2vXPsNKipc7Nm9E384SEfXYWxD4o09B3nk4Ueoqy5HU2WS4wlefOE51m3YwO9+exfbt7/IicvW8ucn7yXgc9PYWAdY1DRO4vLPfp5zztpCLjuEP1DBoUNH6B0co7KuCU2UyaTSeINBTFVGMIx37V3/kel4QPyRVYD/h9Jf7oMlSfqL6CIfWOND23w34/Ivb7yzph/FR/bD1Jz/L3j9byRVVTFN833vfRB4BSi+fAfWcOfbgk0fJf1PgVf4aC/O32t5fav9vwW8fnA/b5X761z59/rMflA7b7Um4Pa6WbRsCS5vkMraOiZPnUPrnIVUNUxmcHycWLyMfK5A1nIiOYI4fXEOH2wjGPJjGQq9PT1Eog62nHMOnT09NJ60CcEXh47nkGUJWwBRd2ILFggCgiiCKPAmG/ztGQUiIfz+EJKsYNvGBOMCCUWQ6O/tZqi/D69LY8aMWSDraKqE2+OkorIKp8OJL+gjGo+TyeRYungJ6WyG8eQYXm+AysoKli1bhkN3MDY6NgFMBAvRtjENi727dtHT1YVtmVRWVzE6PkpVfS3IIEnieySeBEcYU/IiSTKhaBTTmPjwiaKIaZiMjYwg2SZK9iC60YfprEFzOFA1FafLQT6fIxqNoSoSZi5PHhU9EMPhcKI7dV5//TVqqqpJpdPY2HR2dFFVXcnoyCAHDhyhqqaK3bt2EQqEqayoYnRkhIGBASorKtE0FVEUSSZSOJ06iurgiSee5PCRNnTdic/rxe12U1NTw+HDh+nrHSadTnLkyGHKyquwbZXnX3iRgYEh3G43lmGgqDJmqcS0qdMQVZH6hkb6+vsxbBPDNNE1nWQyQV1tLZou4/cHyOfzeH1uiqUSiqrSMrkFh0OnmC9hG0VKJYNYrIzOzk7Gh4eora3n+edewu10k06NkUmn6T56lPLyMmx7wt9XkWWOHG7j/vv+xMjwCKIgsGfPbppbJiFJCopg0dPfSzQaofdYN5n0GK1TpjI8Moauu8AuUVdbTzaXw+1yoooudKeCx+Ng9679hENBHLoDC5tCqUgqmcLpcmIljyH6qzGirfh9HnLZHEbBwOMPIasi2o7d2KbBp2/7OWtOPhmn7oKSNeFLPj5CWUzmjZd7CMZDGCWTbDrNtNZZSJKNLEMykQBBolQyKeRyxKM+Qk4fs6bWUFddz+Llqwn7HVRUNWFaIu1tb1Aei6ArE4C882gXlpXE7Q0yOD5ApKKK1cuWM6u1nnhNI6FAkA0b19LeeYTJUyZz5tYz6e/twLRF6hoa6O7t5oVnnmDrWecQDnoxcwlcHp1opJq1G9Yj6wKCZGGZRa754jUsXbiUstoKghEv6VyOiqo6Pr7tYhYtWkZFeRWFYppQKMS6dev5xS9v4aEHHuC0UzdRXVvLyNgIk6dOR3xT9Tuby6DJJoqkIEgahl2io303ra0zECWJWFmYbVtPQ1RUZM2Bx+vFwiYcDhGOhBAEWL9mNZNapnLbbb8hX0gzaUotLpeD2bNncejQYVqamhlPJvEHI7i9AfKJLgaHB5A0N3MXLGHrGaey+pRT6D56jLGhYUTBIhaPgg0zZ81i9UkL6B/KsXXTFs47YxUeXxzLMOjq7KS6qx+ny017VYyGulpUp4LT5cDh0CkUCrz47MvMnz8HWTZ5+JF7OXPrx/nERR/nR//xX7R3DLJx/TrO2LKZVatWks9nkRSZ8865gPKyCs44cz0WRRAFBocGueHGb+JwqDg0lUwmRT6fpayqBUHU8Pr9ZPI5NLmEwxmhZFlIqoAiqygOBzYlRNnC6fFSLBYoFnP0HOvG53NSKKRxOhWSyRF83hCJRApJUilk0rhcfp7avp1PXLSNeNRHPlXglltvYsXqVaiahsPpwuFyUVZegW1JPP7IU3zhyqt4+MFHOf/C85g0dR4utwel1E8wGsfnd2IYBYaGB6mprySVGuXJx7eze2cHJ6xcjSHJeHw+Cvki6aLM1V++jo9/7OMUinnWrNvAwf0HeHHHDlatXIUtlDDNApom8sQTj+FRYGT0GKJgoylOxkeTBPxeHA4VURTIZFOg+DELeYqoWJZKwBsjmy+RT/cTDgfIG+CNhBnrPYrP4+CMLVvwB0OUhCJVlRFGR4cQbY1iIYfL50eUFGRLoGQW8HoCJBKpCb9zQaeqoRZVkbHzRWRVRdVMhofG8fm9+LwRLLvI2FgCjzuELjuIxBr42Mcu5OKPnUXLlGaaGpuYNm0GTqeHY51HKItG6e8fwucLUSyMc8app3P2uWdTsIuogoJoC9x6yy9ZseYEairL2bB2NfGaGqa3TsEy4dGHn+Kfv/MDps2eRyDgJRZ3U1kRxxMJkc7mUTSVgM9Ha1M9IyNJtj/7PJPr6lAdIMoqxaJBPp1jaHiYJ598gm9+80a6jvZhlDK4XDpl8XJkSWX23Dkc7eykp6ubkf5Bbr75Flpb6pFlhbPP/wSzZs+gdcokCkURTQkzOnSMf/uPn3H1VZ+nq20/FeVRLvrEJZy++SxG0ym6uzuJxiPMmbOQh+/7DXWNNazdeBqXX3YxFVXVeF0OZKFIfXMlOCRapkxFUX3MW7CcC8/ZxHAiT/OUafi8bgyhyPwFi3jllZ00NjXgdstYRo4Xnnud+qZG2g+9QjxexvSZi/jmt77HKaes4l9/dCtTZy6msX4SRVkmEPRQXlZJx+FdeMJxLrnoEr5wxeWUV/jZc6CHOfOX89ifn2bpSYtZOH8+kiTi83vZuHEDjz70OOl0hqqqGjTVxc9/fgdNLXUsWDgHQdDx+kyqK+PkiiVq6xrJZUr87Kc3c/6556N5VLL5EuPJPD+76Rds3nw2q1atwzJh3779LJg9mXAwzOhYktHRNIKRwu8LMXvePNx+Nw/efQ/Tpv8v9t47TI7qTPv+Va7q7uocJueoPMoBgQQCkTMiZ0dMdiJ4114TjFlnG6+xDcYLThgbi8xickYgCQlJozx5pid3zlXfH0OSyDb7vvvt9T7XVdd0zzl1zqnT1dXnPs9z388cHKYHp9NFKjHCcF8fsZERaqsrKFr/fWDyg7y5/7fA61v2VqjvR9snWKt/AKf10+Lt/q8Hr/8IcP24OwP7f9j7puGx9wvnfpNvKbylNiy8J1XOh5mNjSCKb3NQP+6OzUeGA+9XJor7x6W/We8DlJXfzWn9MAbuvm3uz0ndv+4UP1Z417ztw1l9H3D67vpvgel9x7fPVcK7uLVvauxiCQIoIqIqgSJiiQK+shB1rW2UNbQQqmujoqGV8oYWIjX11LW1Y5UkcsU8e3v3EEumKaupwB8KgCQh+iqQmw/ATo9T2vX81AaGZSEoxnuvgbcebCJWscTE5CSypqOqCoIlkE9nmRwdo7K2hqItg6iQSsQZnYyjG04kRUJUJBRLIJGIMzDYQzDix6m5cJpuTKeDwb5ByiIRotEhKiormRyfJNo3QH9PL9gyA309KKpOZXUNPX1dtM2cjiCA9Daneer+fevWBgGf34+qqVOhd1mLNzZtRpNUtm/tpL2tlXQmhnPkQZJSBdmcheF0MjE5AQgosoQoSeSyKRyShuqvoCTrZNMpdBHCFRX09PVTW1cLCOzd/gZDA11UVzchqCKb1m/CH/KTiE2wYd2TIFjs3NtDpmhTXe0nMREjWFGJrBh0de3CYwbJF3N0dMxl2xubKJUsspkchVyBxpYm6urraW5uxmk6eWPLegRZYdmy5ezdsRsUmYlYAkkQGYv24wsGsawSu3fvJByJTN1LssTLz79GY3WY4ZEenn32WabNmDUF2BWVxx99GJ/fz6OPP0Uw4Mft9+P1muzdtZ3G1kY8/iDPPvsCixYtIlfMsOG1DYyPjjF38SJUzYEgyiCK3HHbrVRX1lNeHmDxktloDoPpM6cxMjxCIV/E5TGpqq6ayvkoi5gOHZ/fy9PPPsvTTz/LsmUr2Nu1l8rKSkZHYmx4/TXa2tqQZZme7i6q62pR5SnVZYfhwhJKUyArMQBmLUbVXDKpJFhFPKaLTDqHoTlwru8km8uz+ttfI+gzSTx0MfldDyI0HAKiwJ/veYQDVx1AYnAEl1tDV02+ef21HHvkEdg5G8XhR/c5MBSZbes3s2XrTmrmduDxBnjq8Yeob6jCHwmRylh84+p/4/STjmOgf5R///bNBNwhbrvjdi699DJGY6NUV9bxn7+4nc98/mwevv95mquauOX2W9AUiYpINdNaZ3P1167h708/z1FHH4cgigT8Id7Y+gYHLF3CqpWHEAiGqSozUR0SCIU3NyTCpGJ5GuoaqSgP4vLIeBwOAoaPYqLE9j0bOP7Eo4llkmgI7OnpJ5bOcOXllzB79iLaZzSiqR7CoQoCDg/ZdApFtVB0leRwjlQqyY9+/H1WH3Es23d1QbFANp4g6K/glXXrkSWb0WgvAjl0b4DkeB/VlQEsycWiebNZddhKzjz/LHZ3d5FNxDnwoGX09Q9y6mnnc/JJR+FymsTGxzBkm5Kt0tDQSi6VJux3MW/uIv7lqn9l984dHH/isUgOEa+7jPjEJHu7n6KueT7FYoYzzz2HTMnkT7/9HTPmtOILh5B3dyF53ARWH4io2QQDflRVYXJyAq/XwyknHYVFAcPjpnHabM456zQUzcGzz6+jc9tOvB43bofKYYesJJ3LMTmW5YClS1iyZBaFXBLBKjE02MuCBR0k00kGegfw+QKYbh+ZbBHV6SCXGEdTNQSXj/FCCdXrwJCdFGMGojpBNpaimI9TyquMTY4iGja66MCnRxgfGsITCNLdvYuqQDvDI3vp2tPNjf/2I04+9WTGx/s44biDiQ4NE6qpQTNkFs2dj1i0kIQYWZz0de5EKlp4w26Cbplf/PxHXPH1rxEJeEkn9tC5fSNGoI3x+Ju/AxRpbW3DKcvIviDTZrXT3hBGcbtx6QUSYwM4JA3dW0ljXTUOr4zsEvDqfuYsnU9jSxVVPo1UMkWpAOOxSWbMno7mqMAXqCdXsElns6QSacorKunu7gdkRifjeEydWDJGOpXGHwwTz9g4PSFUycPQUJSN65+jua4Cw11JPDGJqlkM9PfiVIIMR4fw+fxkMkVsI8SOzRupDHkplERiRYGBaD+//cVaFs1ZSKI4SCyWxOsPkyzlcKpOSiWRYMhHOFxBOl9EjJcYim7F6Z3JgYtXkEwP8B+/+Amb3ujju9/5MYuXLqCyupyt27YSCkW4596/sHjxfPKZJMP9nXz+wgtRnS6GJibxuNwM9e7E7/FQU13L4OgkA9ER7NQYbn8d+WKRyYkSy1cuorVdoJQOsmjREnbt3U5DRYRIJEAh60LVNMYnY1x28aWcftJpnHj8Ghx6OZIscfJJJ3LeaZ+hqlbH4ZCprm/h1DM/Q0N9Gf6ghliqpLNzAw/87VFWHbaUO++6g1PXnMcJJx9PU1sLsqJzyomn4POGiMWLyLKD8845jzNOOJ0TTjyGs04/mnPPPpms7eTYY47jr3ffzYGLl/DTH/+cgw86mlR2An/YzYqDV7JmzfEsXrKc7h1beX3zOs797AUYTh++gJNMJsdAT5SjjzwGv18iXF6HZhiMjvThdopYySRBtxsUEdnOMhYbZ+VhB5AvZtACleSzAgoyseQky5auYH5HB5lkkvvue5hw0EvAG6BQyFNb246dMzjwoFXc/p93EEvFufBzX+G8cy9k9qxWvD6Z3du72LZtAwG/m/GxYbxujRuv+yF//uPfOOO0M5m/dAkICoIkc/JxR7Fg4XIc3iCqQ2fX5q3s3TvE+te3MH9eKy0tc+np3U1jUw1nnnEua044jbLKELPmTWf+0qWIYpqeriIeswLTm6RYkvB4nAR8XlRRx1JVaso9LF+8msOPPYKqmgYqKkO8tu5ZRvv6aG5pxNYkShbIloj9HhD2z9knWY9/mn1+HC/nVK7V/bmoH81Lfb+23tPdW7zZt9by+4tDCRbv5te+lVHlgzDc/3rw+n+6zw/2Dr5T/o+A1/eLKf844b6fln2Y5/Ufae1DS4UPTqMzVf7e/++bL/bDPcHv3QF6V/nH2Ax4tzl0A4fDQXV1NdXV1SDtu7MmSApSWRty60HYqXFKXa9ij/dAMQeKhiCr7xrRVPvjI6MokoQkCOTSWSYnYvQP9FNRWcGOnbsolUqEwyHGxkZ57NG/0zF7NrIokk1lGB4exO3xEA5PhWfmczkMl4PY5CT+YJCiVcJwOjGcDiRRQhQFIuEwXd29tLW1UlFdTSqbprG5aUqojCl4/9Zf27bfJOOLWBM7sNKjKM4yCvkie/fsYe/evbjdbgYG+ikvLyO24wEMFQRnFbZlUSwV8Pt8lIolDMNAEKcEocSCxa6JOLIqoagCTzz5GENDo4RCIZwOJ4l4nOqaKsrKI+zu6sMf9COL4Pf7qa+rp7qmBlHW6OiYS1VlJbt27WD9KxtpnT6dVDpBTW0dPX09zJ45i9c3bEQxdOobGrER2Nvdg6Fr9Pb2UMjlEQWBhqZWWlva6e7uIhIKEpscRdN0BgcHqa+vJ5MposgaZZEqhgZG6O/rorwsTLRviJHhPpqa26mpaZgKKxfgjt/cwTFHH43H66OpsRlFkVFVhUI+TzadZTKWoFQs0dbagtfjRpBkGpuaaWlpJZWI49AN4pNxunbvpaa6mtqaRmRFRFUVnE4Xiqzw3HPP43S4cDoMerq6qaqsxOEwME0XkqyQyeSpra1HkqG2thpBAMu2qK2tQ5YVnnjiCQ488CBsAYqFHJqmMTo2wYP3P8i0tmmQ7EdyV5LztOI2XZSKBRRZZmIyTjwRx7F+G06nk/zi2YiSQnHv49g2eGafSLFYpKOjg3w+T7Fk4fB6KBVE5i9owyoW6O7tI1xRRtFWEGyZ8YkYze2tZFJxfOaUFzhUUctYdJCungGmz5hNdLCX73z3Js4563QMh8JEfIL6umaS6RwINgctX4Y/+gLJnucJTV/Ak0+9RFN9E7fddjvNLQ2sOfUkOjoW8dBDD/DVr17Byy8/x7XXfIOnnn6aa79xLYqq4fY6CARDjIyOMzo8TteuLooFi2w+jyALuF0OJFVmV1cP8WyGo447lq3bNlMeCiGLIt5AEK8/wJZNm2lrr0HTLT5zwReZO3cu/rAfSZNJ5/JYtoZYEvD6PNTUVaKoKt+6+ioOWraMSHkZRVmmujJIPBGjVLRwOd0gqLQ2NRCPp5BkJx6PSXd3H6bDw7Vf/xfOO+9s/AEvg0PDXHr5lTgNEcMwGB4eRtd1LFvBsuDmm39Aa2s7rW0trFq1mt6+Xk448TjsYgZVLyFrAdy+SgqZDC7TxPT4OfvM87jq6q+STidxqTojdQFijQLlYG4AACAASURBVHUEAkHy+Ty2baGqKpqmEYvFQNRwe32MDkepKgszPjrB5ESM6spqrvr612lta2bxgnk88MBD/P6Pa/ntHbdzyaVfwHQ7MRwasYkpr3xtXQOCJBMMhygUiyiaiqbriLKM6dSRVQ1RkgnbAqS6ePjum7FiGxAkN15fCMWQ8XorUQwNXXFRTI2x7Y2nMDw6qlMGKYPbdKGbXjx+L8eeeDyvvrKBZ555lly2xOJFy9FkGVVSQBBJZ3PExgdweSvwu0wy2TzxeI7hwSgnnHgikiYDMooqIAoy9/z1Yc484zSuuupKbrjh28ztmMf44AjJbA6hUODH372ZjkWLcLtcFAtF/nLPvVx0ySXceP23icdTmN4A0b4hvH6TgMfN8OAwDqcPy5Lw+Pxv/pZJiIKIYai4TAeFXAFBECgrKyORSKBoGm63Z4pe4g2QSqVwuVxIkkQmNYnH46S8vIxUsoBtWbgMld27tuH3mOzcs4tQKEg+X6Rz217q62oo5hL8/fHHaJkxh1x8hIBbJxSMsLVzHc11ASRRQ1Z0NIcDybaRJAmPx0MsFmNsIslvb7udqppqhseL3Hv33dx+x62Ybhdl5RGWLJlPIGhiUyI6NIIiq8yYPhNZ1tA0B0gifT29+AM+PKaLkYEBIpEQ4fJq+ge68PoCNNQ18bOf3EJlVT1ut8GJJ5zKmWeeRk1tBaLt4corL+eUNceSKeZRNJV7/vQgu3Z0Mn3GNJqbGmlpqefIIw/lrrvuYsbsNs497wy+ee3VnHjGqUxMpsCCUi6L12syPDLIPX++nyVLFrN7dyeHHHIQLc3T+fznrmDJAQuIxSdwuVxs3rwFf8DHDTdcz/XXX8ett/6cdL6PiWSaqqo2Fs4/BEsusmPHTm79j1txezyceupprFi5ghUHH0RDfRUbNrxOQ30j+Xye8toqjjruaHbv3EVPVy89/YOUl9WSTWXo6dlJS2Mt0bEkX/7K1zlg2SLKQ+VoWhHdqXLjTT9DtCR6+6Js3baNhsZGNMPk/r/+jVKpyLIDlyGQJxjy4fO5pyJpUmkqKqrYs3sq/+oVV1zJFy/6PK1tjYTDPs4751w0RePHP/4pixcvIToYZfVhR/CdG79Hc1M78xYtZOnyg2hqa+T6m65jYjjO3NkLeOSBp1h6wFKefvp55s1fTP9AlEymyM3f+yGNDQ34XBIur49DDlvF5ZdexuREkoqKMq6+5nIu+uK5mBqMjqZ46eVncLgEVE0hnRknX8hQKKYplbJU1zTQ3dVJbW0Li5bNYcNrGykVs7Q2NWOXYGR4BIfpRpRlSoL4KTM1P9z+O8Hrx6z5qfX30V3uD14/mfrw/wOv77KPirH+KNv3Bvngc4t7X2F/8LqPKvIn7uuft/frex8Q9imC1ynF4A+L+/9g4LpvO8I+r9/ZXdr/3I8KM37n/LdCYz9IQW7/cU0JHglIivymZ9x6f8+1pCCVtSK3r0L0V2PHhyjtfRXyaexCBkE3EQQRy7YRLIvR6DClQoFiPks0Okx1bS0Fu0RVeRWGoSMrItlsmubGJhyGTjKeQJFlBElAEmXy2QLZTJ6HHn6Y6TOmY5UskCQkRUbVtSkBKLvE+Og4umoQDIdYt/41IuURQpEwSMLbz5J3rkd4E7hKSKJEZuf9lBL9vN5dZGxkAp/Pw8yZM+nv62NwaIi2ae3Iie0U8gV0ZwjDaaBIIslkEkM3QIBEIokiiBRLAlqwlnQ6i+ny4vGFaW9rweNxs72zk1wuN+XRtkHRHBRLOUJBP8l4YipU1jDJZjNkUwmSiRgVlTX4PX5efPVVaqorUWQHxWKCvp4BFElm+qwZZHM5QMDhdNK1ezdNjU2oqkIymUA33GSzWQJeD4899hhet4um5hbC4QjrX1tHY1M1xUIObIvnnn2GUMBDLpOkprqOTD5DoSCzbdsOZEXCdBvU1zeiGhojw6Ns374Tw9BQJQHTZaIoGmXl5YyOjKCqCqIokC9YvPzKi9Q1NCIBiXgcl9NBMBiY8sAKCt29XdTV1bNn9268Xi8N9Y0MDUXxejyk0ik0VcMwDDTDwfhEDE3TaGpsQjNkUskkqdQUT/a+tffT2NiAoqgUCgUyuSwuh8HkZBx/MIjH9OJyOdj84kN4q6aTNptRFZnxsVE8bjfjsQTVNTXQXIs1pw3B5SSZyUHvkxQtC7nhUAByuRyGYeDwesjkiuSzWRKxHky3F0FSkRQRh+ZjdGKchtYmdKdBaqQPzdCJVNRRsATGhoYwvX6qG2p58snHueKKyzAMmD13BjWNDYyPTHLz937E0FCUO26/hWPmlFNX5cfZMpuDVpxIWSjA3LlzmJgcoaaunF/+4k5y2RS//e3tHHroSl5+aT0bX9+IPxKkua0Zj9dNrlDihedeYtbMDn76/R8yd+4C7vzdXaxYtYJ8JofD1FGdOqGqSkBEVwV2btuMYRgousGvbvsN9TXVlJUbdHV3cvKJp5NJZ3j8hefwh/wIooBpeDh89WrmLeigqiqE09CoCIWpra5EcehoHg9DvXsoKysDZEyXH6ehs2nzJioqa5BtiUR8gm//2/U8+fdn+c51N6E7VNxeE8NpUCxZlOwsbq8Hl9sknkzwzHMv09Tciqrp1Dc0YVOiUIQbbryR+x94gLnTW9BdEuMxhTPPvBjTsJg3dy7FvM309lnUNFagSzKvr9/Ahg3rWTB3IZlUFqtQRNHktyk1lmVREkUEG1LxOGNDUTzeAE6HE7fbTSadpruvj107duD2eDn6+JO58oqL8PpMBgZ6yWbTRMrKicWTyLqBrjuYjE1SUVGBZdsoqspEbBLVcKLKIpn4OHf++ptYpQSz2htx6xKC7Gbnjt2UVYexBYViNoeYt9i761XqG01EsQrTU44oSaQTFoIuIakSFhZVlQ1Mn95BdU0Thx52JE5FormpGVFRsGUJvy4zOJrmq5dfyUmnnsZ5Z11I67TplFdWYDp1bEWnq2sPfn+QxUsP5PIvnIcli6w6/HB2b9/JTTd+hzPPOAcrX6SxoZZgZRmxyTggYXq8fOWrl7Nz23aOP/4UTj/rPDRNQlds3C6T3t5hrrn6X5g1ay6yppDJZBDEErYtIAg2uqFTzBUolUrYto3H46Grpw+/P4BpuikUikiSRPxNDrxIkURyEkXWMF1Bnn/2GWqrI7idKj63C9PnIRQsQ5GdhIIRWhvqOPfsU1i+fBklSUPJx0kkR2hqbCZS7cLndDAxnsZGplgqUsrncTgclEolRFHkqqu/yTnnnsW0GYv49vX/RiQQIBj2EY4EEUSLQj6Dy9QRRYmAP4zLaXLbr+/A5fJiunw4fG7CZWXs3N6JnUsTDIeYnBxl3frXqa2p5itXfplIKMLBhx6N6TSRpBKbN23juGOOwy5pnHHmaaxadSix2CQ5e0o4arg3xi0//T67du/ghz/8Aeeeezb3P3wfRx5xCHPmzaZQzFIZ8ZMpSphOP9f967f4ymWfRdadDAxEmT1nGqtXH81Xr76ce9fex3/9/Wm2btvFeeefQXl5EMPQ8HhMSnaJ+ro6zjr7LIaGhqhrmE51UyMzZtczMNKJZniIhCIsP/AgrrjySi69+GLOu+AcTLdJPpdm9qwOVNWBJNvIbieZbBqXw8lQ7xAdC5YwOBDl93fdhSjlOGTlUhTd5D9u/TVf+uLnKaRSxLPDyIbE3FkHMRIdY8nS5VRV15LN5RFQaG9upaGxlv6RAVTJRpJFdEMjFA5SWVHD3X9ay/Tp0+nq3o6uG/zh939g1apDePDBtaiSwNhYjKuvuZYjjjyan/zsR4QjdXz/Bz/lsssv55Q1p3DJZV/iiScf47Of+yyiFaOpoYbKijJeem0jNbX1/OWevzJj2kx+8MOfcNttt3HDDd/iO9/6BrrbxRWXXclZZ55LOp3mzLPWcMSRB5GajGLnslTVzsThsqmsDqApPkxXJQP9kwT81Wx6vROf141mQLi8Bl21aGloQ5IsBgaHqK1vItrdzaOPPszMjnnYioBkfzh8/bi6NR927jv6Lf8YB/bT486+//mftP1PE7x+UCTs/wOv72OfDjD8ZOD10+v3n7P9AeHbr/8bwet7+/t4fX3wfH1y8Grbb6bw+bD8vO/T51th3AhvJwjat/zNdt8tACCaIeS6+cjTDkWQVKzh3ZQGtk7lcNXdaJqG1+/D4TFx6Bq64URVNRRFxioVkGUZ2xLQdQeariJKEpZlE08keO6FF2lqbMIqFdm5Y/uUwISuocgKiXgcXdPRNA1BEOjt7UJEQlF0du7eydw589i9exfhSBBRkt+OD37L82q9Ge0xNjaOqqlYo1vIZjL46pZRKhaIxcYBGB0doaNjDolMGsXOouajWKoPpCklP1EQGYwO43A4MQwdIV+gZHgwfGV07dnN1q3bmTZjNhOjQ6SSSWRZoqaqGgSBvbv2oogaui4zOTGJpii4PSYT8TThgA/BLiJrBplMCqto0zZjJrlMnmcfe4Y5cxoZHYlTXlXNnt2dKLKEpiokEwm279xJc0sz/QP9dPf24DRd7N21jVQ8hqYbtE+bjuFwYZdy5DNxCsUcsiyzd/eeqRQe2TR+nweH6SdQXs5g/wCDgwOUlU2lPgqFwsiaioDIzs5dTJ/Rzu6dnUiShCRr5Eo5qqqr0Q0n2Vye8WiU6TOakQQJzVBRNZVYIk4mmyUYCpHNZhHEEi7TZGQ4ypYtWxgajLJx/UYM00VzSwuqMSW8lc0XiCUSPPH4E9TX19O5vROvx49pehElgdqaWizLJhodoqGhEZfbRBRgYmIC0+3BZToRRIiIw2jTTsCsbEcSRQJ+H8VCAW8whKqp5HWF4WwKMnFM00Vhz9/JZDL0Sy243W6cTieWZbHljW34vC4iHhGhUEJ3BlAdQYq5HGuOPZgDly/GGwyQiWXwB9wUhSmep1BIMTI0gTfgQ9YVPH4/NZW1bHr9NXSHiuku578eWcueriE2btjC1V//Cp7sXgzDSSG4AF/Ij8/UKRRyxONJ2ttnsGjhPP7w+7vYsnkbr7y0gYnxSc77zHnUNtSCamMLMrKkURYqI5POMX/hfKyCzZ6du/j1L/6Dhx95hJNPPI4Xn32O7u07pzZKFJHKmjqchjrF2WpoorWpEUoWtlXivnsf4eCVByFKTlrqa/GZCv17t/PZL32ZmtpKJDFHb08XMzs6EEQLRZagJOA0nIiCxOTkBFu3baKmIoDb72NoaABDEVj7p7tYsmQJ02fN5qLLL+PI1auJDg9QW1eD7nCQziaIJxKYbjeCKNIxbw62UJoKyxdKpLMpDMPFX+9dS19/P1d++WJ8nmpu+Nb3yGVGWHnQMmpqanhj0zaOOf4EvnDh2SCq1DbU0FBbx2uvbuQb13yL4487BkWXsW2bRCKBy+Xi+ScepaayDI8Z4MijT+LUU9YwNjqGpklccslFDI8lOevsNfT07mDmvFZUSWJoqB+v14soiUSHR6msqcVhutE0A8NpULKtKe+rquIyPViCiCII7Nz8Kg0NJv5ghGwyg4RAZVMH27ZupbLMxcTwEMP9ewh6bRTdidPbRC5vkbc1RMkmny3gMkR69nahyybD42P09PZzwQWf42c//zFz5s1B0XWWLFrCxV/8El2dmynJJg+tvZ/6tlZWr1xIQ2szDqcTijmykkpZOIJTd2FZNt07NuAM+CmiUltRxcyODtymh69fcw0nnXYS6XQcUXbgcHmmvsPIDPYOct4FFyAqEv6Aj0x8lGu+fg2rjzyJU04+ikAwhKyJ2OTJZFKoyhTlpKtrL5QsUqkUuq6TSCSIlFdSKBTJ5wtYloUkSVPAVRTRZRemy6S3r5fRkREiFTUEIyFEWWR4dBzDMEnEcui6we49W/ja168nnRjDLiWxrAK6N4zm0NFVN7lMjKzoRpJdxCZi+NxObrnlFurq6nA4psT1jjvuGBw+Bdtyc9RRS1i5YgkerxdNcwISY8NJ/H4vCDbR6DDZbIJ0Okk8NiX2VVVZTkkSKVlQUVmDoDtRhQJ//O1vmNVxMC88/QyHH3Youmni0tx0bt/Ar269jc9c8AVu+u6/c92NV3LGaRcwEk1y8gkncPcf/8jG13dw483XcdjKAwgGgsydtwy/v4qZ0+uJJdJEImUEfS4S45Ok40UWLFiMO+BCN1zc9qs7mdVRw/KlR1JeVUZTcxszZs5i2owWaqpqKJYyDEX78Ho9qKp7CoA73Nx55+9Y/+om5s2fQy43CsU0DncETdPx+fw89dRTHHv0USgaSLKC06Fy443fJxyqIF+I49Cd6KqCJQhU1NSRSscwTZPpbe0sX76EYnEI1eHm3PPPR5EssukBkF2YnjJkIc/YeJTtOztpa5/BsmUraahp5N57/sy8RR14w37CvgADA4M8+eRTzJo1m9HhGBec/wVWrToYf9Bg0cIDufPOP9BQ38T8+Qt46N6/MnPWHC778mUEIl6OP/Z4Xn31dW686ZuoRo6zTj2DZHyC+R2LMY0g02a3s7urm63bt7Fw8TIamxqZGBvjxuuu56sXf4mamnJ+9NMfccnlX+HEk45h4YLFxCYzfO1rX8EqZUmnE9Q1tTM0lub6677F6EiSWTMWcs2117Lu1Z0MRcdRFI2KymquvPhKDjhkOVVVTTgUm2effobpM9txOF1MxDPISpGgJ0A4FEHV9PdZT374mvDTsH8GDP+TPX9gu5+k7f+pntf/k170f8reAg5vA4j9UhbtX29/+6D675i1z/Huvqam6d3Hxxvr/xR7T3qnDxnb26JDwlth7O9/7e/MTwlBsHlr3v6ZnSsARAlEiZI99doWrP2O945xn8MW3h7rR30O+99TH/V/XTWwS4AlgCXsM6eipCI3L0M/8iq0gz4HxTyl3c9TTI1iSyKCKCJpGhPxUUSxRCGXZ3RimJJdwkLgzrv+gCwKxGKTGKYD2VBpbWhAtAUSyQQOU8Xv9yDaJWzBooiF5tDf/EhsyiKVuH1enB4HTS1NFIUinoAfSdZ4J6fwOxwIQbCnALYlkE8XyGVzxBNxNm7cQDqVIVJZw0svvIQiiXj9bkynh/G8RqmQYmx0DMG26e3pp1i0qCiPkE4kKObyyLYAmot8IU3LtGksXDKf8dFeLEGmJMlU1FSRyMZ55L4HCIYjbN+1ia7dfZTX1IGs0LllO4otsHv3TiwRYrEYToePdK7AeHQYVZaY1l5PLl1ixsxGyspCBAPlYMv0dPfh8Xg4+cSTkQSRtrZ2GhubqAj5WbRoAf3RQeYvWMjWrXt56rHHMTSN0ViKgWgSWXVTVVWP1+tn7uJl+AJVvPjSiwiSRKSsjKXLl7F71x76dnbz4EMPI1glZEli1erD2LW7i1gqj+Y0MZwOXB4v+VIGq1TkpefW8fzLLzIxnuKRBx8llkiRzuVwOJz4fQFik3309mylrrqarZs309DYzPwFC3G6XIQiIerryhkdHmb9KxuwiiUUQSYSCk+lopgYo7a6Ht0wWLv2Xl565kVcps6OHdt4/fVNZDL5qVQhgogvWMboeC+KZGOXLLDyoJvIxQLZRIzX17+K6dLJ5G1efuFxpHQJvyygKgYDXd3YxQwKUFtbSy6Xo1CKY5VE2prqKXMUiA710R8vgKzQt3cn6Ykkf3jwCULVjZTSaVx6iWLBQigm6duzHkkQKa+vweV2Yygaoi1gaxKLVhzKREYiV7I5/rSzuPSyL3DffXcjKyayojAyMsrll1zBg3+8h8HoBA8+tpaB/hF+8p3vMjI6wE0//z4nnX8GrTNaOf+SNRguA6sgogs6bs0Aq8hTzzzFqsMO5o9/uocHH32MU886g9qmem774130RkdIT8RYtXAeiiqQTqcp5kskE1mciobfEBFJEM+k0B0hjjr2JGzBzejIBOkkHH7oCezZvR1IUrJy5EsqkaomxkaTWIJKwZKIT6awCwqaItK9eyMHLGgng8LEeJLqigZcZphTzzyVGbOmMadjOo8+ch8/+/FPaGmdQTIRQ7NjVATCRAI+ZEEglSyQzVuoio5VKjAWHcIfcKM6JO77y5944bFHcQYrySTiHH1UBz/68TeZPf8AclYRXzDE9Ja5pJMgZgu8vq4T/6/+zIpXNvOL3/wAV0DFzscRrfzU81DUWH7w4QiqSTaXZ2iwi7t/fy9XXPI1CpkSmfQoq1ctQlVg6dKldO3YQaaYpSQVGYkN4w+HCAdDKIaKIFmoiv1mahUVwzAAyJYEEuNDCGSxDReOQBuIoMkF4rFxnnz8fg479jNMTBSZ7HuaYDDMxje2kFcyZKLjiHYaWSpSyOVwO/Nk0iWcDg9vbNnEhg0bmTO3lZt/cDUt7ZX4fSa6afD3Z54iHY+xces2pMIov//TrUxrqSJgjOMQhhkd72ckLzK7tg5dKjEWHyJv5yhrX8Bf7rkXj2qTjA0RrnDz9+ee4PLLL8VAw+OpwtCCWHaWP/zuPtY9+xJ1DQEGhrajI5GeGCObS/Pkk6+hyVCQ8uwd2IIoZ3E4FQJBH7JuUMxZVPpDeL0enL4ALlcIjxHBoekoVhrsDG6Pg0RyAsvOMzwyQNHOkMxMUt9YR21dC5FKL7mCTSZn4PCEECQvhtuFJdmsfeBxAl6bWDpOXnQhamEmRvtJxtJMxMeQlCBSvkRv9w7CZR627+rkyovPp7GxipIkIrrcFHJpVHRUNU2uAN5wAFmXcTh1HKKCrlsIokXesglXVOMPB1lx6AJWHbacZ598gWg0QTGTojwQIBbrRrIyjAwO8cDfX2agp5fTzzqT6268gd/f8Z/8/EfX4DU8fP/mn3D7b+9g86svIJVUBCnF2NBuenon2fTaNhbMrkeUJWTNYvnSeRy1egWClGf73g0YukQhZ2G4I0yb285td95K28x2JmJJRuJxLrzoS9iKky17tiAhkIyNU1nuZ15HG+FwOYmYRXXFNB568EkSI3sYGx1hzZo1HHnk4UgUsfMpIoE6gqEOHJqP4ZEhouN7+cFPfk4y52bdi5vo3PokednPuV/8HBUNAcKRSiQpi0ABVZQQChqx7m4yoz1U17iwdQuXmMZA4o93riWVFZD0CgLhVmIxi+hwHNtwctChh6IZMvff/ydWLj+AN7auQxYyTPbtpSgohCJV3HHH7+nvG2bZgQfzjWu+SiaVwuevJp4ZQ5AEgoEygp5KOpaswhvyIEsWCiKloszs2c1Ee/vR7QBXX/UvbNu2g5tuupmDDz6Y393+V85dcyG3/vq31Jf7EEqjHLhyBv/19H1UNRo4XDbr1q1jMpniu9+9jvr6ci6//Ause+k1zjz/PCx8XHrRt3BqIb50wVkceOiRfP6c87nqkqv5y91/4HPnr6GmzIXfELj48s9SU92EZAiMJooMT1qMR/MUbZW0ksMVqMQXKaNz0wZie/eQ00R00YFaFCnIhQ9cE34Se/d69/3WjR/n/H2wzbs8t5+kHUmSPjXw/U9jGFvc9/hvsP/feF6LxdK33v1eeA/Sf//z3v4wP3Ij4IMrvPeGeKfuB3le/yfYO2HC+9uHhPK+Z1o/+Nrfv42P8pR+QLdvhR2z74Pgk+74CB9c9A/YvuEVhfyUp/Tt5vdv/833ohlCbj4AwRmguOW/sAs5BFcQbBtd07Atm2LRxh/wT12vDY2N9di2gKxIxCYmyOcy1Nc3MTI2TnllBYFAiEwmg9N0oagKbo/nzdBoG6tkven1k0AAj8eDqqr4/b53eVz3tRIWoighACNDUeRkJw7DgR6ZTV/vAG6Pl1AwRCgY5IknnsTr89HTP0y5sAdXsJZkKks4EqFQKJBKJad4VjZIikFaMpgYH0E3VEyHxp5d26mqqiARm+Dpp56ioa6JVDJOY0sz2VyKcCjCnj178Pt8eLxewMI0HVi2TThcSSFfoLOzk+bmZvp6+wiGy9i1exeiKDAcHUYUVbZs2Ux5RTnpdIpt23cgiiJOw8GuHTtIJDMEggFCoSCpZApFl5nbMZMXXniBuvoG6usbEUWBwf5BqqurGR6OsnvnLhYvWczYyCidW7dTW1/Ppk2b8Pr9rDzkYGzL4rXXNpBOp1FlmYnxEaoqI/T07CGTShPw+ZBlmbq6elyGTll5GWOT45RXVFDI5/H5vGzv3IksibS2Tqenp4/hkSiNjVO8p6qqaurrG8jm0gQDIerraxkaGuCVV1+jua2FtvY2fD4fsqKgaRqKouBxm+TyJaqqapg1aza//OWviIRDlAp5/L4AplOjWJy6V+yBlxAXXg6ygWo4CEXKyBYKqAh4fSbakxux9/YyFvRRVlVJfMtaFNVAbzsaRZEpFNPI0lSO4WhfL/FkiZqGOkAgNj5BX18fd9x+K8cdfTSSqpDK5hgfH8XhcjAyOsatt97OoiVLAJuhoUEqKyuwsBkfHSfoD6DJEg6Xk3AoTLFQYs0pp3L6QU1kslnWXHEzDo+bkegERx93BLJoMhId4pe//A9OPfU03E4XDs1BMOhHFhUUWUCSioyNTJJJFVj7twdYueIQ5s2by69/dTsHLF/G3HlzcCoGggytbS2MxyYxTBfd3d0kEin8oTJkTSWeTpErWoyPTRAKRZAljXyuyA++/0M65szhnLPPJhT24XB7yOWmuMa6riNLICugagqbNm2isqYJWyoRKS+ju3+Ikq2TiMfQNIHXXnsRbyCALUh4g1Nh/22NDYiKhKoLTE4MYRgesvkMoiTjcHpIx8fIphOkY5NUV5YjKBKybHDfvWv5ze2/YsUB8wgHfehOk4raWjRNZeeurVRWVrJ69RFc9MXPsmhhBz+55cccrJroukFmfgeWZZNOJhgaHkaSVUzTw/bO7ZSVlTHY38/hq4+gpqGNTVu2cOgRh3HmOadTW1PHyMgwPp+XZCqB2+tB1w18Pj/ZbJbxkTE0lwPD4SCfzSIr6ttUG1EU6d22gYCpsHH9q5RXVhIKtyMIJrq7ioztZ/2rr9C+aCEIMjW10xFVDVuwcYfKGeoZJFwRLwxwDAAAIABJREFUIZe3kGRxSpE3lScYDJFIJKmqqcHn86KqBlZR443Xt7Bh4ybCoQj5bIHv3HgDJ520hqIlgKDy6rqdRMra8JjlSJbK5z9/IblCDklW0DQnGgLtre3kCzaFkoBg21TV1uP3eeju6kRzOQDIFyeZOaODxrpyEukYkUgNpaKOooLhkDh4xVEYTgXTGcHtDJLPlpDQkRWdkg2iVeCJxx6hbdosBFmmr6eHVCyO0+2klM8ST6XRDQO3202xWMTr9ZKMJ1BViWIph6IIZHJFxkbHcDidSDKk41lURUIS4d6/rCUQ8FJeWYbDORXOHQl5URQNw3BQKBT53X/+meXLD8bl8uHxBLFFe4oqIktQyjMxNoKqq3T3dBMI+UnnCgQCQYajwxgug0I+j8NlYAGCIDM62E82lcDKwQN/u5/DjzuYUMhNKp7lllt+xLT2hWiKzIsvb0BWvKw85FAWLlnE9374Q778tS9TVlHF2rV/4+AVSzjp+FPwhYIsXbYMUVA5YOVcli9bRDhURrGo88wzj9NQ28La+x7iC1+6BJfDRNfcZDN5fv/7u4iEyznh+FM59tjjuOyyy8lmJrELIAkWZcF6Xnn5FTo65rF16zaKRYs1p5xDKhXnb2v/zDnnnsFoLIGuO7ns0i8yPj7IjdffxJcu+SJ79nQhSiK6auAxnVNiiHkDUbS57pvXcv4F54MgYRoKTmOKvpHPCXg8PnK5HLt27sIMBLAECafpI5sBMTfBXXc/zHd/8FNOXnMCE6NRDNPkxhu/wxGrVxH0e3E5DJ54/DFqKirIpAscethKAgEPgUCQnsEB3KaTo446nEwmyZFHnsQrLz7P8SccRTqfwunSWbZkOb/85S8JBt20TmtB1WTOPeczNNRN44ILz+fzn78Ql+Hkqquu4aKLpvjsC+YvZN26V3E6df71X6/hs1+8EIE8gihQVVlDOmMRmxyhry9KdWUjm7ds4bs33MSSJQcwNjZOKpXgmBOO4Y3N25g+bTqWVeDB+/9E29xlnL7mBDZ1dnLwoYfys5//lEAoyKbXd1BfV42kG+RzJeyCQPOMCNHBKE4tgCb4cLkU8tkcuqLSuW0rLfUtpApFbEVEtG0+jXylH0do9aPK3w0U/1H14veqDP9f5Lx+QvtfHTb8ccHrB8Wdv5VA9B0F4f17eDNQ9O2b6OOBV7lhEXLD4vcds2W9P2fy49rHjU3fv957vJ/vKf+Qxvabx/1VxGx7X1Xmt+ZYfDtvqLjfF/Gjx7qP1/N9woA/zGybfcSu/jvBqyhIb79/t/Lx2+Pf/6HjKUduPmBKnTiXAIcPVdOYnIzjcJqUSjYCApOTE0SjUcYnE5RFwgjYZDNpDIcLSZEYHhnFcJgIIhgOY0p8SRDeDgMWRRFREpFkiUQigW7ovKME99ZUvBkubFnY2KiqSi6TxWFoeL1uxnY+jaZpFI0W2tqnoSgKvX299Pb2oykatbUVKLKGlItSyCYZmUhTKlns2LGdsrIIiqIgIzAUz5HIw8jwAKFwmEI+i+lykE7F0USBYt6isqqO6ppKEqkU/qCPLZu3MWPGdERRJJVJY5oG+UIB0/SSy5VIp1IIokAqmcLn89EfjWLb4PP4GBsdpWgLJFJJ5syZQygUoqmlGafToL+/l5HoEHMXLUPRFDZu2EBNdQ3J1AQOl5tQuIJ0Ms0zTz9NQ30D0ZFh/MEAO7d1MnP2bP785z/jMU16+4eY1t7CzFkzMH0BKFlMTMRobmmikM9SU12Nabpxu504nCr93YP4fH5sW6Cnt4etm7fQNq2d6vpqFFXFdDsZHR6mqrIK3XBgWfDAgw/TMbcDt2lSKBa5996/oSgKti0gSSKKKiIIEAyEUXWNRDLBM88+S0V5BbYIHq+XUqHI39Y+wOxZc4jHExxwwDJM04nP7+I3t/+WmTNnIEhTatN29HW0pZdSsmUEWSGdz2ELMtl4jFy2gP/xdeT7+3AfdzglW0DsexJJUrGrDyGXLbBz13acRhBNF3G6/LjMIHYpiypLBMNhwmURZk5vxeVyMhFL4PIGkBUbWTHw+8s5aMVK+nu6qKooR8SeWkIoCqpkkI2n+MJnz2T2vLmkU0l+97u7uOWWnxLb9iRlZWU88PowM+bN5dovf40TTjmWoaFJvvv9m/je926gMhRmyxtbeGndS3R39dDW1gjkGB0ZxuPy093Vx1NPPM+ak8+gY+5MVqw4hEgkxPkXnEttqJLWadNQnQamz006lSISCeP3B0HUSOfi+Pw+SiWFwb5BctkiptvNFVdcwff+/QZOOflkLrzwQlweL9HRKACpVApZlinm8+zc2YnL5SKXK2IGI0zGJsgVigT85RgOF6bTwO1xkMnECFc1IUoSCEVi41Fq6qrIU0IQbZyGRiqZo2gVcDhdjIxOokrgdrlIxeOk4nFkVSGVzdPa3sIJJxxPdrIfW9Vw+PwkElk8Hp1AIEDJsjDdBmefcy6mx8Xhqw/Efn4j615Zh3nk4Wzv3EOoLMzEZIJgIMIjDzzIz356G8cceyRvbNrIxvWdfP0bXyNSFmHNaadguHSsQglZlujv7yMSCeMwVRTZSaFQwiZPyB/GcLvIF/IokoSNQC6Xw7ZtRkZGeO6RvzI60IM/6KeuoZm8KKK7fdhON4rXS3WwHM3nQHWEsaQwk8NbUDQJzVFGtHcLwYomkvEUbp+P4YlJvKYHUdCRJBu310+xWMDhcKEpbpKJDL1de1g4v4OXXt5AKOhn3sLFuEwfk7Ekf3vkUVLpBK+texKfo0hFQx3J5P/H3ntHyVWd6d6/k1Pl1NU5S62IUEBCIAmJjEUWySYZBwwe22Cb6zAzvk4zY4/HOYzH4wTGxmmMsTG2BxBRILIkgnLonKurK1ed9P3REiAhENi+a33rzt1rnV5VdXZ49zn7nN7PG563ygfe/yEuvvB8clPDFPI2mh7EDJkIdglZ10DyCFg6NbeGpukIUgUBmUpxGkk2ufraG/jFL/6Lyy+7hO07tvHZz36B089cjevnMCwoFCeQlBq+FwLJo5TLseXpLZTKLuF4GKdWpL21gUKphKYoIGqMTYwSjUaRJIlSqUS5lMc0LarVCsXyFMFgPZZl4vk18EUkBETR4Z4/3M1NH/owoUiIcNRCEnx0VSOTmWKGBsJHEH26u+uIJgwq9hQTmQGi0Tqy09NoioymiFSqJaLRCNnpaUzLoOZpUHXwXYcntz5D2AqiqDJDIyNYVohkLIom65TLJS668Fwk02dosB9FNGhvb+OrX/4ua08/nZNWnMiPb/sVX/jiv3DpZZdy3vkX4qGSyWZw3SKLjp/H977/A5L1ddQ3NbJk8Xyc6iCirPCVr3yb73z9G9zzx/vBE+npmc+Tzz7D0kUn8g//8A/86U9/5BMf/0dWrlzDu951LYuXHEdzcwuCUOOEZSdx4w3vJRxI89Of3UZvby9Lly4lkUzw4IMPcu21V3H55Rtw3BobLr+OKy5aTzgsowVkPvbRj3PThz/CkqVLaWxK4zouxWIO13E55eT1rFq9EFOXmHfcCh6892462hrJF3IEg1FCwTTVapXJyRGamprQAwESiTh7dvdy6/d/juu4nH3+ZVz9zquJhDTyuRzReIKVK1dQKeXITGQwNZ26RAqnUiOSSpFKx6nUyqh6AM3QqFbKmIZOZnKSSCxGfV2CUqmIFQ7ys9t/zb69fbznPddiGhJ79u8lHkvy+c9+hZs+9Akuuex8zj33bHpm9bBwwSI6ZnUjyD7RZIhzL1jPd/79O5iaQldXJ77sMzaew3dU/vSHP9Pe1UkoXMcpq05l7ZpTePtV1/L7u+/hjLPPIJIIUKt5LFl8AvV1KWynyNLjegjWNfPA/X/i4ccfo66ukTnzelh+wlLa2jsQ/TK6aVJX18BtP/wJc2afSCwe5/HH/sTdd36fSCBFMlkHokBLewe//P5/suL0dVQcF9X38f8KT8Gj7e/fTF+HrKtHAtbXYJZj9HlsXp+/Hnu80v+xSGX/ctdoQRCQFfn/gdfXK6JwRNqYv5Hl9Y0GfyOW3bdS3kpg9dEFOfL8G1hDXzPVN577qx+cmYX4xuD1yPQ9hx7WV5QKbw28zrjAvqq/N5rLWy5HAO1jWZWPIqwga0jdq/BGd+ONbAfFxArFqVZsEFzw4cUXdtDU2Eq5MM1zz21lzvwFhMIxMuNDiILLgf191Nc1EAwHXs4n+9r1P2Ol1g39tXK9SlzHcajZNUQH9u3fRywZw5dAzO5mOpsjNetUHth4L4MDvcRTSWbPnkWlUGBiYhhTDxALaUiVAdRQA57n0dXdjW3XMC0Dr+YQjCZRgnGaWtqQVRPbcdFUnXAkSjYzQUt7JzVfmGECllQKpQKJWB2xVJzeAwdoqq9nz979NDU2IwgSExNjOLbD5s2bWbVqFRsf2EhHazMBy0LVTWwP5syZSzabRVVVbMcmn80SDFhse34bPXPnEIrH8PEYGhgCT6K1pZV9vQMErBDZzATRSJTde3YzOTmJ7c6wL7Z2djB/0UIef+wxzr/oAiZG+hge6J9xGRdEbNshGg1TrRawwmF+e9cfaGxuJZZIkEjXMzGRZWBgiEQsgREwiEZCCMy4iNt2FU1VEQQRz3MQBJHGphZyuQJPPfUEoyMjrF9/LsFgiI33b6KnpxtFVZicyFKcytE/0EdTUxNdHR3Iqoxm6Pi+h2UYLFmyiNt+cisnLDuBfL6IosmUqwXmzjsOSVGRFRm3MA5uBWXB25F9n1Ihh2koCL6LpIWQRQn9yW2US1NIq5fjuRUyxSJ+ZC6hxvnIskIsHiJoxVE0hcHRQSxLolooUCwVEGWZwZFhmtt7KFaqBAyDsaF+wokIvj/D2Or5LrVSkcmJcTKTE6iKgqBrVAoOt9x0M1//0ueob2vFdz3m9MzBNEzM4m6KxSI9a9/O2OAI+alJVp95Ism6Bq68agOKobBz506658yhtaeLjuY0o6N9DPQP0t46l/Gx/Qz0DXLP3X8kEYuzZ/8ufv/7e1i8eBEXXXwBX/rXr7L+gnPp27+f3GQG13eJRCJks9PEw0EEv8z4SD+KoBGJpkin69mxYweXbNjATR98J7d89Gaa29vI5qZQNIVIJEI4HKZYLBK24kTCUXZs300uW6GlLU1uaoxyMY8sSDi+j6mbZDN5LDPKti0vETRNKrkskl9DVIPogTCeC57jUavWCISsmXUYS+GJIrl8iVg8haqZ1CpFwtE44VgMWREp2TXMZAoEieJ0gZptEwrGZ5jF9+/nfdd/iIce2URdMkTPZJHGpkYm5rRz9dVXc+6F51NXlyZkWnS0t3PmmRehaiJ9vXtYfdIZvO99l7Fy+Qkk4xGmp0aZzOSIx2MoioxpGmzf9QLJeDOKrJHLjzPYN0wwFqFcKbN3924aGpuQZXnGW8KymLv4JObOX8jkdI5d+/bT0NiKJCpIboXBvh10ts9B8CxE30Pyy3jlXnRFQCJGQB5HCbcSCgTwRYkaIrIHsmhimAqCqFMuF3G9CggOmYkc+ewI4ZDCrAULWbxoLhOZcWpOjXhdgmWLTyAej7FowXw838ZWXMbGxjll9SoSUYO8UyGVbADfQSRLLjOIHopQKNoYehBRllBki2JpCt/Tuft397Bk6Upmze1BM2SWHX8Cd/72F/zrF79KqZwlXddEf98A1UqNgBVEVi1sr8L40BT/9oVv8bFPfBLHd9iz+wUS0SAeMsVcjlLZZ9+BXQQCAXR9Jh+vKFRQFANNiVAq1pBkC48qguBh2x6drW3ceON7mTdvLuVSBUf0qVSLSCKInouqBRkeGiYaC1MoTiO4OuWKhyQaRCIphg/sIhyJ4YkKvmqiiTK2DeFQHElW+c/v/Jgfff3bNKZSLFu5jMH+AZKpBKquo8gaDi6KYRCKBkDxkKUAjm1TytuEIwZz5nZi+wKCC9dcfQkbLj6Hvbt2Irgat/3oNqKxMGetPwvdirF69WKsUJBYKsr4+D68vIesW3TP7qSlMcQn/+GfwPP45y98ni9/48tIos0pa1fywAMbWbRwBbNmdTJnXjs333wjq1afjGyEuO491+NLVWzP49GH7+dtbzsTK6AxOjbEJZeeh2WZSJLGrp0HePcVV/D8k48gaQrhdD3YNmecsZ5oLE65WuClF58jGg1QLOS4+UMfJxaVWHT8HGwJ5s2Zh6goCKqGJ5toMgiCR19/H3WpRp594B402aVWKXHeBRcQjTaRKRSw3TIBQ2YqM4VmmJimgaUrxNMtfPgj/4u2jm5+8tOfs/a0NZRrBQLBIKOjGULhOHbFQVMNouE4RtAjHo7x6CNPk67vZGR4ivlzj2Pbtq3MndtFU3M3W7Zs4aGHHuHCCy8kXZ/g8ss3sGv7TtaeciqbnnycdGOcYqlAKByiob6TzOgkyWQdX/3mdzl17Tn8/q67mTe7jb6RCSwjwh9+90fOOfMMEg1R5szrYWx8HCsQQEBmbHSc97znOq666hKeuPfP1Lf2kBkdYs2606Aqo8oe7S0xhoZ2MzExSEd3J719/ex4YQe/uv0/WHbSMrpnL6CnazF3/PSnLF58PIm6FI7vE0uH2bF5G92tHdRUAcH/y8HrX7O/fz0+mmPVfWvn/4bgVTjWXP9ay+v/xeDVtp1Pw6usXjOhe68cR5TXaCEOtjlEyvOa1K3CK0DlEAh7penhmo1DOUWPHPxYltIj+zkSyB0y+7/spmrbKIpyzLm9nsbm5foHc5/OWOw4KmHTobae68HBa/MKg9GrLaQzc54BqS9XOgwYC4cMgwK8Ng/sUeKRDwOf/mGHf0SdmZjWVw5JEBEOyq3IMh4urwQ2/+UvliPnOnPhDs9d9YoYwgxT8ZH9HKoiCEhNC0EQcXZsREq0HGRf9JBlmYaGNLIsomsizc31KJJErZpF8hzGh3rpmTcXLRREkA7NR3jV/XllLLyDLsSihP9yPtdX/voHb2xuOsfEyCTtre1kJjNMT2Yx7QNYlokf6sJ3HVq6Oujo7EBWFdLNjZjBCD4ygWgj3vBGpEAzgiBg2zayrODZDgIuOC6Pbn2OtrZOxoZGCAZMZH0GsMiywvj4OMGAga7IiEKZYjFPoi6F6woM9PZR19ZEY0MTI0NDDPf3ky/kiEaSPLN1C43NTUyOjrJj1w4kXSEaj2AqOs88+xT16TSRUJjMRIZUUyN/+P3drFp1MsVaBd/2KBYK9MyZgxEwcEtjKKqOrBiEIxGi8RjJuiiuaxMNxWlurUcURERfQFU0KsU8kqoRjSWIRSI8tPHPlKtFVNMgEI7yh7v+wGWXXoquqfzxD3/iqc3PMtQ/wOrVKyhVpiiVPP77j/fR1dVGrVYlGAjgeQKT4wXwHUzDYNOjj7Jg/gI0VaGzswtEqNhVurvaME2LWrXGXXf9BlnR6R0Y4Ljjj0MWBGRZJTedn7kHgoiqqbTWJ4mETP784MPMn78ASVIwAwYIIp7r4VemefHF7SRPeDf56QmCwSCeB6Igo/k2lXIR87kdZDI5JnvqGR3L0jLrRKZKAuGoheM4eGj4iGRG9xMOWJiGST6XwXE9EBSC4SSOLaCoCq7voZtR7v3ve+ns7ETTRCTRw3UddE0kmYwRiCURKjX29e3luve+C0UJ4ZYzaEaCr3/zByxfvJDRgf1EGpqZ8j06O9pYdepaRvqncSsVRgZ7aahvw7SShMIR4vEAoqJQLgpIooGuq1iJFPX19czuaqdWnKahvp6VJyxAMkyyjsjtP/oh//XrX3P/fffzzne9h6nSFKmGWeQnhlH1MFVPQrdCbN+6BSMcwQoFiKcSiIpIx6z5zD9+IbnCNLIU5Av/8hVOPmk1U9lxwhGL/oHdMwRFqkFdIsH0VIFIxERWfKLRBNXcFJXyNLlCgWC0jkQsSaE4SCplIYgaY+PjhPQkkuBwYPAZmlrn45Uz1CplVDNCdmIK16/ioVKpymiyT9X3cR0fu2RTq04w0jdIIhInFI5SrVVxnBqjQ4Okk0nu/K8/MTUxyjXXXE1l42bC4QjVpXM59ZTlpJIt6IbAyNgg//7vP2PFSYsIhcMk4nVEo0EEwSccDrFr907C4SihoMXYcB/NjRF2b3+a1q7lFKb7wc5Rq8lEkwlGh0eolsr0zJ5NsVoGAURJQBBBEkVcUUUSJRSvihGwkEwDpyaQG5gm0tBEuZJl9+bfIJEjm8njVkr09m5GC7ZghWPk8wXsik1Q05nMTaIYApVaBU32ZvLxijqabPHoY4/yj3//ad7/dzejGTq57DjxaJzRgQHEmkvJ8xnsG5whr7rgUsKRDsIRk3C4hZJtI7smoiDguFWqVY/c5DSf+8xXWb/+ImzZR7QdpibHyE9VSCVSRBMyuqYRj8bY/NhjWEYTa09dhS9UuO++TegKpJNt+I5GNFSH55ZQBA3bhyXLl3HW6WfzzvdeSXtzN5/71Jc4ZeVKPnzzjZx9+lqCiTimaeDVKiiCf5D92cYTPMyQQblSQJENitMFQgGRq646Dd8TAA1ZlRBV8F0RQ9WZnBhCtlSCWhJBrFCs1Rg4sJfGliZQFCq2TVCtQ9ZsNCmEUynieD6yX8IpjVPIj7F65aksPXEZ8XSUUEAn0diBj04wGKRYymKXpwlqMoIrMZUpItk5tHAdihlAUXQCiShWUGfbth1E69Ic2N9Lz6weBkbGOf38VXR1t6OIEg/d999MTU+STAY5sGc7bU1zUPQk01WfVDpBV0cjOwf6+MVvf8OtP/sJ9Y0J/uXT/8zc+V2cc+5p2K7D7HltPPzQo1x00cXY1Rz3PfQkzak0yViSquBw2hlriNe1UMwV0QUXNRzi4Ufu5/HHnmDt6rfx7e/dBobG4hNWMDIwQUgR+fPGJ7FMEV0pEgyHEQWFb3/rP/nAB27kyssuwYjGsVSdalXixhs+yGnrTqVSmEa0NBAFwpEYkiARCeuoeoCGlk4KpRK267P1mR3M7upG1kvomkY2M0bAMMlksvT3bSdfLHLqqWdTLRTontPC5FiZqek+0qlmfNHHdjwEGSazkwhKBMdzaW5s5l1vfyf3PfQgLz67hQP7+zn/squwqwXGxzIMDAzx2c98hva2ZrrnzGPunNlccuFZfPD9t6DLCpFAjCc2Pc1dv/sj0ajBqnVncO+f7mfu3LksPWEZn/rMP9E9rx3HrnLLLR/l7z/5KZ7Z/AK3/uBnCL7GvHlLkDSBr3/5y3zqU58iXt9E+5yTyZX3EYqmaGhow3Nr7D2wjXA0QV1qEb7kIxBAFixeeOEFFi6fzcJFJ5DNFPjkxz7BzbfchBVL4/geg3t3UJkq0tSaZmBimGhdA5Ljo/gzO2JPOHzHeCxw+kb7/KMx6h7q762mxTzaOJ7nITCzxzvEZXJkDlvhNUQ/Rxo8vKOef3Xc7aFDlF45d1T5jzXWMcr/1eD1kOX1LyUEeo15/zUV3rzl9dXfa0/egTv4AlLjgtet/3q/H8le63neYQtDURRc1/2rNTNH1nsjtuHXLszDF/Sr+/pLYlLfbAzskc1fGfuI/g5eQ9M0qNVqR5z+a8HrkWO/MfnTG60xQRCQEm1Irctwdj+CP7AFI9GEJIkgyQfH8wiFw3iewMTkCKFwnLqGJoxQFE+UD79vvn+Y9dUTAFFElCU830dEfPnevBrCioKIbuiUC2WKxQKqqhKJRVAbj8cJdLNjxw4s06Slox1BFKnVahiGgWHqhCJhBEmhNPQsoqKhmhEqlRnyIdebWQuK5xGsb0azggiuR+/+fUyOjZPPTjM+OoKmaOzcuZsDe7ezZ9dOGtKNTE5kSKZTuLZLKBpj+649pFJ1TGUmqVXKtLR3sWDBfEZHhpk7dw7RaIpINEYqlaB3/35EWWL27NlYlkWhUMR3q7S1zFh6DM1C103y+TzZqQyVcgFTD6BoFp7vsumxB2loaEIUfNo7OpFljUq5imkGAJFoNEa5XGRweIjx8XFkSSIUCtLc2kooEqFcKuO7Ak8/8xTp+hRz5swm1ZCiq7MLXJ9kNM7GBzehayrphhTPPrONxx5/nFQyie97lEp54okYTU1NyJJILlvC0E0GBwaRBJFoNMKjjz5OOBzmhOXL2L17L6efcRrVapXf3vVbOtpa6T3QSzgUYjqbRRIlHnn4YbLZHGe97Vx810GSZxQ8dtXhicceJ21WOTCYoW3lNai6RKVSeTn9xmTmAMOjfTTsGyMQtNBPPYVoMsHevS/R0pIEQUOUwPVrVO0clUIJ0zSRJAlVUxElhVAogiqruLhMZUcQJAdJEmlsTJLLTSEgUS65DA32k04lsV0XWZuJ3RvPTBKLxRjs7eO5554iEkmSrqtjYPAA7cevw6ifhWmFyGbzKMEAphVg+67ttHe2YwUC5MtFPNFHVBVEPL7/vR9y1plnkZ3KUC0W+PSnPsemzc9w9nkXMjI5RCQc45vf+Baf+9Snufvuu7j22qvZcMnFiCKEwgnKhSqKJCMrIoqmoMgzOZvjqTS2beP7Pnv27GHBguMoloqkUkme2Pw0t33/+1z59suZmhxHl2VqvkDQ1LBrBUTRJhS2ECWwzDACKqMjAzS2NHGg9wC1qkOhUqOlrRlBMPBcA0GEQs5j1cmn8cmP/2+KjkuxUiYUS2J7MlYojltzuemGGxjt72XRkuMJhSNkJjPguQiiRzKVxvEgl88RiUQwDIOAZTE+Ns6vf/M7vv+D7xCLh9n5/Z/S2tJC7cQltHR2EAlHkBWoVKr8/Sf/N3/3wffNPDsPP4yqyAyP9hJPxKhvqKNaK2OG4iAIDAwNE0+lCIUTBA2Naq3G4Ogkza0thCNhorEYoiQiHuQRONzDRcDSVZ587GFMxSMQS+C5ItFICFkosPvFpyhP9ZKqb0RNzScYiqMZJslUNwgG09PTyIoPgosoa5imhShKjAyPIMkKoXCUUqlCX18vn//cp5nKjuMJDoFwAscXGB+f4gv/+m/8/p6N3Hv//Vx/w3vZuWc3DY0JarVCvNz4AAAgAElEQVQcmhzm3770b9xxx0+49NJLZ5S+gG6IPP/SiyxfuRwBl2eeeG4mX3KthmkapNMNVCplNE1m+YplLFu+mPPOP4OWlhbS6Ra++K9f5Mc/+jk//NGPefuV76BmF5BkmR/++Cfc88d76JndxlnrzySfneKcs86krKhMVWzefu3fcfNNNxIMBbErNcbHxpgYnyCZrKNcrqHqKpouYts1FFGakddTsIJRAqEwLlUc18aruciSMrOxlR1MNcDI6ADJVBtVz0NVFXynhiJ6eHKWbK4fVdHYsesZTD3C3j27cSWdRMssykUbM6hhBA2yhRymHuCG62/g3PVnYVkqhh7FERRsXByvguC7mMEAuWyGUMTCq3o4jk3P3PmUcsPUitMM9w0w2D9GU2sLumIiiyqNjS0MDWTo7urBssKcddY5nHP+eiQJfv2rO6hVi3z3G3cw2p/hvLMvZHRglOeff4Gz15+BoqiYZgxRUPnlHXcy0DfIouMW8fGPfprRoQFOXbuK/PQkuDrPbnmeKy57O9PZPKecdiZjI1PcfuvPOeP0c/jRj7/DRz/6QR7f9CT33/swy05cyvXX38Al55+BW80RiXWhq2G+9tXv8sDGR8kXD1Cq5UgkQgiCRHNzPS2tjciKhOP6VEplBM9DlSVcz8EIBJnOFajWbHy/yrnnncf7338jsqSg6RqhcISJyUni8QSW4DBrzlxETWL+oh7sqk/QSqJqUC76uK6NLAkzeX/NAJpmIuNTrVSoVG0+cNMNrFt7Ct/+7n9QKdtMTAyyevXJZLMZ/umfPoekOGx84BF++bNf0tnSSb46zdz5s8gVpmlpbSGZjLNyxTJ0Q+G0005lOjdFMGQxmRln5coVNNQ3IIsKba0dRGMB2tqbuOzyDZz9tjO45rorWLd6La0tHVRqHvfefTdLl8zmC5//MkHDZOmKDubOXkrATHLvxjsxTZP9eweoVqskUzFOPXkdP/zBbQR1lUsveBv/9Ztfkq6L039gF/PmdGGkYwwMjdHRdjyCEMJTavjizM5K8g93NHyrIPPNlL8Evxytvv+qeN1XvBaPAK+v7emIr2/Og1QQhJcTd7x5a/P/A68vl9cDr69n7TzWIjkWeD2aEfNofdo7HsCvFZHaX0vY9HoyvNHvh8tw9IXyepqd1ytH1j0aeD3s/GF9Hv7bkfUOxcAeTfajtT9a+pmjtT9i+FdZXg//fqjVyyD/sPv4l4HXV8v06vkeOdc3CrJ/9eiCILycC082g0jty5GaFuKO78Xd+yhypH7GxS4UwhdA1UzCsRCqEUDWNBwfEATE10QEvyruwvcpF0soijzDK+yBLEt4h2KUfeFlsOvj8/y2bSSTSQRZIBgK4AsgyTL1DfXEU8mXR5IVBR/I5qY4sO8AfX19NMRURCdH0VEwdQNJEpFkGUEWEW0PNV6PpGk4lTJ2pUJLcwsiAmMjI9Q3NDIyNoGiiOiqhmM7tLW1MjI6hKGrmJZBNJFCFiV8ZyYFhBWJMtDfz/TUFI0NDVQPMhyPjAzT3N5KU2Mjtm0zMjxMPB6j78A+SuUKuXyeaDhCb28vtWqFZDKJpqrYrsC+PfuIxcLEEzHwBLZs3UZjQyOlaoXB/mGi0Si33norxx9/HMFQkJbWVpLJFFu3bKG9s4u77r6b4xYuxLQs0nV1PPnkkyxffgKlUolIPIIsSgz297Nr527mzl3A/v17WHrCYhobWink8yxcOJ++/l7S6XpqNZtt27bS3NxINFLHnXf+lrq6JIausfmJJ1m1ajUvvvgSqiKzaPEiZEliKjOFJMk8ufkxWltaCIVCbNy4ka7uTurq0vTMm4fr+oBLtVwGX+RPf/pvli1egmEPE+9ZC/F5yJrMxMQEodBMWqeQlSIRb0J94nkc22NnOgyyQNLZw9j+LYQbFsy4BisChqETMAIIgsDExASKrjM6Njbjnm5XcXwXK6BRLOYxdB0BD0EQcWwPXTMRFRlNVRgcGsYIxyjnp0g3NaBpGvFIlLr6ehzbpa93L4uXHUcwFOXhhzdhmiFiiQjFmosguhSLRZ59diul/BShsIlhWaiySak0zVlnnMMDGzfys5/ezoknrOCzn/8s3/zWt4knYjQ2plFUg5UnnkxHUyNbX9jK0mVL0DQFQfDZ/tJORocG8XyXSDxAPjvF9FSWdEMjVdtBURREUSQSiVAs2MiyhOvZpFJ1LF2yAFWTqa+vo1QqI1lBsuNDFKcnMcNhbLtMteIyPV0gEo4SiUcYGR0iGg7j1Go0NDdQmM5Sq1SRBBE9UEFVZRynygnLF6PpAYxACFE2UCWZml3FUjXOO/t0TjpxCSXPQ/Q8dFXCDBoISKiGQb5YxAiYCL5AsVBg965dtLW2cdU7r6ZQzGEYOt0j0/j4WOvXIigyuiLz79/9d+LxBB/72C1ouka1WuGWD3+EK664nFAkyMTEJJ4Poigxmc0SiQYpl0uEw2Ecu4QiiOw/0M/cRUtQVGXmfSGKHHLROez96c9wH1TLBaIhk8LkAIn6dnRNZnhwNyOD+0mEDQpT44TrOykTRPR8hoaHiMU7mM5NEwwFsO0qiirjeOJMqqhgCEFUCARDeD5IioxlGjz04Ea6ujoIRAL4no5pmNSn61l36hpWLj+RNauXMauni61bXyIc1qlWcjy+6Tnu+NlP+cpX/wVFVrBtm3y+RKo+zqJFCyiVStTKLuetv4jLr7iCeDxKIGjieyKVWoH+/j5SqQaue9eV1OwKtZpDwApx1tlnc8GFF9HR1U57RzN79+4gFotz/NIlrFixknVrT0LWdPbv3c/4yDAP3f87li6cw+aHHuTciy4CH4KWhSiIjI+P09jQyo9v/Qktbc2oikKlUkbAQ1dNDCNGuVrF8W3yxRKS71Cr2qiaPkOsNjlGOBBB00GSI0iKiKbI1ColauUylZpCJJymMi3T2lSPYugkk0kisRTTBZfJkTEkxUXTFbKZIgHLZPHxi5Ekj2JhGkvVmcjaWAEdTXa4777HyE9NEokFmcpmCVphFFlnaKCXdDqJ5Ps8cN/9nH7mOVhWiFPXncaaNaewZ/9+OtpbyU2XMPQgV111DWXPQ5VEVixdRiAQQRFtLrzgbfzoh9/Frk1Ts2fSFLmex9NPPU9dXSNPbn6WyYlJNly8gc2bNvOhmz7Ihz9yE6etXcdZZ17E+268gTWnnMLw4DiqrPDQxk0sX7KcWz5yE7/69Y/JTk3i1DwefXgza049idNPOZF0ekZJsq9/L7/6r9v55re+xESmj6Z0N6poUXNl9u3fQWNjPddccy2XX/Z2PF9AFgV0TealF7dQ19JBsVhBUVVcx0WUXG6++UOIokipVAJBpFSuEAyFQfQoZiao+h41z0ZSoFZ2Of20c7jiHRdhGhFq1QqS5DKVyeC7MqLgkZka5+Mf/wT/+KnPYGgKqfo6isU83/rG1/iHf/w45UqB5cuXYloKwWCIH916O1dcehl18STHLVtAb/9+mpraUBSTkcFeVMNg545t1Dc0EgxaqKpMPB6lmC8QDIQYHhrlyquv5V3XvgNB8OnoamfdaWsJBINcfMFFxONJGpobuetXv2Dp0nnM6lzA0GAvNS+LRJznt+1mdOwA69aeSUNDM5/73OfYcMn5DA+M09beyY9++J8koxZnn3sBg/29NDc2sP/AIC3xDj75wevpata58xff5OR15yHoCr7jInvgia+/n3ur5UhPyEOelq/nIflWgO1MP698nvnwtwGvh+95/cP21W/+ury5eoeuxf8IwqY3C/yOVd6K5fWNxnD2PwGA/Drg9ahjv8Xf/1blzVhej9LqGH0eS+43Bq9HyvZ6w78CmI+ImT2y/d8AvB4p05Gyv+kXzKs+j4yMEI1GX7G2GyGkluOQ2pfjjezA3b8ZX5QQzCiCIM1ovl+Gqx6i4B3W4yEZJPEgOUe+QMC0cGo2drUK7sxmLhgM4gmvstIevF+dXR3Yto1lmYjyjNuJcFADeegZk6QZK64PVItVUvEU1VIFsToGtSlkI0q5lMexqzMvZklCdjyqeojhwSH6evehaRqyqjM6PkIgFKDiuKSbmgiHojQ3tTKZGadQmqZ/337q61NMjA4QjSfBc3Ftj/qmVvKlIrFolEggiGZoqIbKpkcfpi6VwgxFkIQZ5UW1WiUancm1197dRTgWplTMMTTUTyqVREDkhW070AyNYiFHc0MjviCyZ+duenrmouo6sipRmM4TDAUY6O+lo7N9ZtNw8L41NzURDEc4btFx+L5HvpBDU2XmL1jA4MAwDzzwMJ1trTz33BaOX3I8sWSEp5/chmmqdPXMQpVlIpEgtlNDllWCVoTJiQyxaAzP8/ElmYnJMZYsWUQ4atHd3cPkxBQtLc2EQgEkVSIzMcnjmx5n9SnraGisIxyNIGsqs+f0gGejGTqIIuCx5ZlniETDKLLG81tfpLW9FWXiCbz5VxNo7ETwIRQKMTU1hSRJjIz2k8lOkNi+H1ESMc9cQSASo/rY17Bqo0yHFhGJpBAli2oFAqYKgKZp9A6N0NzcjKYoFHLT6FYEWZYo5AtYVphqxcE0AlSrVSYmx0ikG8hmp4jG4viiyr6dz5OqT1OulCnlC1RdGDywh0UL5+AIHlItQyRgEEykkTUH0dXJZcaIhcLs29lLZ1s9Awf2Eosk+NTHP8vyk5ZQLdv0zO6huakRKxblnde+A0vz+Nq/fYbZ7XO5f9NmTlp9Mm0dzfz2rt9y2mnrkCSBSrVEwDJpbUoSiYVQdRkViXgkTqZYnvF8EAQGBwdRFIWTTlzHNddeyfDwAA0NDSTSUZBBkGVUQ0fSdAxsGpJpUBP09x4gYEWJRmLs2rMVzQri+zUkEbyag++WCegKlcIokZDDREYgGqlj+fITZ7wdVJmq7SCLApWpDFOZfViGyfjkOKopI+oWk0NDGKaK49eo1gSqdo1oPI4veAdzQiv4rkc4FEIyFRRVRFEVnLCO192M35AAz6ZcLtPdNZu6dIp8fgrf91FVhYsvuhBZEjECUVTNJBJNomoWo0O70WWJSMDAVDXuu/ePyKLCwkUnIJk6nu/yRiE/HAwNGRseJBoyyeYmUbQIxalBMoMvUN+2gB0vvsSc2QuoqHXUJvYQsSRct4ppxvHFGqIoYhphqhUXKxgmGp1xJTatMJ4vMDk1iWFqmFoEQzOZGM/QPzRMYzLNeW87m5UrFmFXcxhihdHR3djVGnWJLrLZLO3tzcRjdVx51QbiiRh9/X20tXYefF+DYZqErBjt7XPYs2s/Y2NjtLe34rg1du56ibaOBqYm8yw5/hTOO289zU2dhIJhBgb3I8oChmnQ2JygWJ6kqaERx/UYn5wkXV+P6IMkh3jfe2/g/e97P90LFhNNxTnnvPOoq2ugWp3xFKiWKzS3tJDPlZg1ew6SLBGwUiiqSO+BnUxlMmh6mP6hAyRSdRhGArs4hiwbmIEgZbtK0IqTz+aw3WkKJQfFr84w3ociZPIlUul2slOTxIJR+geeRdRCTA4PEdQ0psZG+ehNn6C7s5G25iYMJYSqioTDEUqlPJLkUckM0jF3Gf/rpg8zPdZLc9sSejrbMXWTcCxB7+goV19+JUvnz+bZF/tpbGwmmUowkhknGrB4//vfx6ObH+G0M9bh+1N84xvf4FP/+M/Uqg5dcxaiILLhgovYcPl1qKpKe8ccNj/xNGe/7W2oSohlKxZjWhYN9R3k8lPceuttPPLIg2y4+Fwu2HAeQ9lxVq5aRyxUx2lr19LUWc+f7/0z777uehKxMNtf2MGGiy8kElZobGygra2Jxx/bhKGrnLBkPnZ1GluQsZUAqXgdJ61cjSzL6LrBnt27yY6PE4pHSCRSZKdytLZ2kq5rQRR8ysUidrVEXTKKoEXQDRNRlPAcF1U1EUUBQfTI56cRZB3dMJAUiUq1MpM3XDFJxJJ45RLlWoUF8xcTS2iUShV+/IPbSddH2LplK9e/50Ncfc0VM54AJ56I54k8+8Rz1LU0sPKkJZx3zqm0dnbg+w6C6KEbCoYWY9WaNTQ1JEnETELxJKYVQNfDbN2yE0P0eeDRJylkJjECM/ObnJxCkhSuvfIdvPPa6yiUK7z/Ax/iS1/4IosXL+WOO35Ja1sHyWQLt996G+e87QyS9WFOPGkF+wf2E4ml8UQbHIu2tk6ufec1bH1uJ01NTTzyyCN89rOf4fkXnyGWSlPzPFLpeubM7uHBx19ksHeAju55JJtmceU1G/jILR9j3uJVNHUt559uvoUzLliP5/tI/ivg9W/FV/Pq8rfyoDxUROGI1Dj/Jy2vb/lSvFXL6/9A8Hro+7GYt460Vr4czvnyP1DhsONols0jF5fnebgH3jp4fb3y1z4sx7LIHh28Hism1T/GcUypDhvbPyLYWEDi8BjiI+6bOHPef1X87eHSHR7P+8a7ojdXXllTLodieA+lFzqa5ux1NWavEiUYCuL5h8KIZ6wN4CNoJlLLIqSGebi7HkHUg/iShCDIB+fHy250Lj4aCr7ATDLvXJFH73+Q/PgQpmYgiyLjoxN43kz8Q6lcnmG99TzsanVmY6OoB9u7aLo2k14Hgdqee3Azu1FiszmIcPEdj4H+gZnUCp7A+Ogow4MDNIfK+HaRYk2iUqmiqAqFQglLN/FdD0ULUPMhkaonWd+AopvEkgkkQaQ0PUU5myEYi+J7HooaJJKM0tzazfjEOKNDA3jVGtFYDE+cIXGJhCx27djJ4Mgw4WgcXZfo6GijUMgTDlns2bGLZCLGZGYMUfB48unHD7rRFghHkki+zODAMDu370BTRRYsXEiyoQFRVVAEiWS6YSapeSbHC89vp5zP09ySwgqYpJJNTGeneGTTJrq7ZzMyOIKsSSiqArKEIMns23uAiGkQi8Woa2rGskK0tLfgIfPQw09yxtlraG5polzwuOuuX7N02Qo0PczEWIbe3j20trWimzqyprLt2adZs3Y1rudSLlWolMts3baF+oY6TNPEdV10U6d7djeC4FEpuoTDIWRRJJfNoRoanucjSwqO62IYBj/76S9wXY+TTj6RsD8EosgOYT3xhgjF6WlURWFiYoJUKoXkK6TrmxD29OEaJsWediQBnH33IiAgd56OIcHE+AiReIxqzaFSyiNKBt/72peZM2sWViiMZAWQJA9PVIglG/FtB13y8ByR++7bxPFLVzI52EckZKHKAkFNJxRvRRF1aoUqp65Zyymr19DS1oAoS+Bq+M/dgVk8gNa+gMxAL7FQA9VaDRed8ckqzS1xfBSmpwusXbuWYDJCcWycSCSInooQjsTQLYloUKEualIqV/nVT3/OqpUr8L0K2/cMsXHjvZy4YjGSBIGgxdDICI7jYQbDjIzsZ+vWp6hv7EbBo7mlgXNOPxNT03j7hg1Mjo/i+D7Jhiac6Szbd2wnWZdERaFWypCdLlCqwiUXX8KlG66jLh1HUgvUnAnCkUYqxSJOaZpyIQOCjiCBV8sytPc5VEFksmDzvf/4MXMamyk5Gr+9804WLFpA0a8QiTQwMjhKY0sbkhXCqdokUsmZ51czGMvOMCUbhoXvSajKjCt0qVokHAvi1Dw46P1h1EcYFkUU1WSsv5fR8XE0TSGZTDA+Pk6sIYbrmMi6iORLjE4PUMwOkUhEyVZcbEEiEdIpTQyw9YmHSTS2sWDxYlxFxfUFBLzXviuPeG8Kgk8gHEYygihilGc2P4IoZ5ndcxLBSJSxyT2kO44HQ8HUVAb7dpBqmo9jpFG8Mq7jMDo8SWPzjGJGVMDzwXaKCAKYioHoO3i1AH/3gQ9yyaWX0NneiqSHuPDSC4mlU+hWPV/8ynfZuX0HZ529jnRbFNOIUp9OMz01QCKiIQfixBJJHL9CIKyzb892DD1AqVRj1Ukn89s7f8HqVaegKhKiVMWKh5EUA800edf176SxtRtJKFEtTVMsVzF1Gd002bNrN7ogIsoaumYgSyKC76OEg1xw+nre/e730t7TxabHHiASiROLJfFqZVRZwKeKYQaYGMlgmCqDw/00tXRS8UrU3DKBQJDHHn6WtrZOIqF6NEXHro2BY6PIMr4PumKBIqDpKSRNQVUD1KQautrA+NggDclWlixczHXXbUDSqhRLKtF4FMcziCTrKVbynH3uxQwNDNPW3s6BsQOEozEcX0S3TJBkrHCKs08/FVm0+bsPvI/FS1cTiOm4nszYaJFEIgV+hYGBPi6+6BKKpWmSjQnqm5ow5BgFZxfNrZ0gBXBkjRUr17Dh4ovRZIF/+ecvEgqHueZd1yEINolkku99/9t85JaP8sgjT9F9fCPlcgmn5HD3r3/NmnPOoq2jhU9+/GZGR4ewcalPtqBrJi4OP/iP77Ng0QJam9q453f30Nqms3r1GmpanrbjlhKKBBBUDUlRWLFyOVYsRDARIxgNMDy8n433PURE1/BwQIWAqWCGdFzbYXRoP1FLomXWArz8KM/vfZDrr/x7rr36IqaKu4iHWpiaHMbQRXbs2MVpZ97IhevPQCLPVGacL37hq6w/6zLwS1h6hIBVh2lAuTyJJAVRzTD1jQdTFWkRuub10Fw/m3Sijnddt4GqV2Hv7gHsqkgsmWS0bzejEyO0tbXh+wI1u0KpVKU+3cJXvvwtGuvifO/r/4rrOixcdjI/+M+f8/VvfpdYopGqKxLQHTo6W1l5ylrClkrfYB+PbHqc9voOFixYSD4/Q3K2cuXJ/PD2b9M9ew7jk9MkEhGaWhWufvcH+f1dd2N5k4RjEeqSzRhWkO65c8lNDbLt6X08vOkP3H7Hn/nz7+5k2fLFtHe34aLzvndfz/KlS4nHIyTqUmx5+hnMgIUkSTyx6XHE3B4uu/bDTJWzLDl+Ke9+7/WUy1XSTY1UDu71Dinw/9ryGszxF+SPfUPPzSPiTA9HMEfr8Mi41NdUeAM5jiGsfwSOeJ142pf7FA/uqw8Sjcry/0DwemT5P2nVPJprrHvgSeD/H+D1zfZ/OHg9csy3GJP6OuUVF4nDx36tdugY4wtvHHdwJOnV37a8OUvrX+5K8Sq3YzOC3LoUZ+9j+Jk+xHD9a1qJiFTsKiP79vDSi7twah719Y3UNzZghEK8uH0nzW1tPPvcFmLRKKqq8cKLL2CYBqqmzeSClaSDSoPDO7cHN+M7ZZTUcQC4AviOiyLOWPoqxSLZbJZEMokzupmSDZoZBR881yeaiOE4Dk61hijKaJE4iqK8rHjo3d9HS0sL0WScmucRi8cpFosIgkS1ViSeSBIORclNFxE1EzMYplYus2vHS2jBII3NTaRTSZxakWKpghUIYVpBpqamkRSZcCSCXfOIxpI0NbWx/aUdtLS0IgjgVkpUqmXmH7eQ+qZmKtUK+/ftQ9cNRFE6GA8HjlclENRpa21nfGKU/oFBNj/xFIFQgKXLljE1meG5556js6sDURB5/vnnSSWT1KXSbHnuOUwrwHRuml0vvUhDQ4rnt25lwfwFSKKErhmMjIzhVR1st4YRUAgGo8TCQTzX5Z577uHpp55m/bnnsmPXLiRVJWAFMMNBWlpbUCSJfbv3MDo2RsAKkpvOgy/wm9/cyZw5s8nnC4yOjpGqS4EP1UqVaqWKoZtkMpOsWbMGSfTx+jfiLXgvHQvXYPs2sUgY3/eRZXmGHE6qIfg24pIe7PntlMpVarUq9G3Edmz0WWdRmM7SNzCIrBmAjSSC47jM71lAc0sbpXINRdFxa1m8mo0k+Azv30M0EUaUZFrb27EsDd+WeOihh+lo72LTo0/x9BOPsXnTw/R0d3DKmpPpWTCL0bEhgqEgoUgQt/9pREnkxWmJWDDI9TfexClrVxEKmzQ0pvAdG0XRePDBh9i06RHWrlrH1774JTyvRrohgSAqeL7D9m0vUCvX6B8v0D1vLp09HTjUWLvuVJYsXsJvfn0Xi45bxvadL9La2oamaRTz04SCASKxKLoZplIq8YmPf5JUKoWiqoStOnbu2kcoEsHQZbxKlbbOWTiORP+BfmRZJRJO4HsK73jHNeztexxVk8lnfZobFpMvVzDNGOFwmv+PvfcMk6u60n9/J6fKVV2do7pbOSCQBJIQAkQ00TYmGJMNBmzAAWz/B48DY+P/zDBjGxtnG3sw0TY5g0hCQgKBcuxWS51z5XzC/dCAAYPBYXyv78zbz/lQT9XZe9ep0+ustd/1rmX5QpS8CuHqGjZt2QlYmMEwNc0dxGpqueeeuzhkyQK2bd/CkiVLkQWFTDaDzzBRNY2SXUHXNDRVwXm9D3NtbQOyoJDLZshnM3julOUtl4qYhgWqyvZNW4gEgjiiij8YpViq0LWnm2g0TDgcpru7m5aWFlQ7SSlbov9AN6Y/jK4q2MUKhVSKkKFRGdhMcaKf2379S876xEU0ts/FEUQQZTxBfP/g9R1QFRVLFZiYHKBtxiJGBgfRVQ1VjWBXKmgydHftpKapjmQuieA4WD4/PivKa5s3EI/XkMll8TwRvz+MgI5bEUhMJghEBY469lBCUZWe3h1UVdXiOmVUVaBSKaOrIpdddil2GQTBxNJKZLMJovE4Y6k0oqRjmiae51AoFCjmKoTDERRVIhiyWLL4MDwxge3Y/PiWe1h2xGIc20GWVPBEPFdg8EAvoiQRjEwx8b29AzQ21E9V/zZDfOmL13LYIQsZ7t+HatSwcP7BLF22iGBwKqjFhaeefIqZcxdg42F7HoKsYfrDZAopomETVbKRZA1FFJEQmT9vAT6/xv7+lwmGJcZGciiyyNhEElUzkRSJciWPXRZQVAfBk5Bcj+eeWkMyuZ9I0MdFl1+OTYVcwSMSbUSVBFzbRVVkFFlkdDzB3FkzSaWSNLY2UywUAQlVlXFcm8effo5Dly5HUiRuv/MeLjjnfEJ+A7tcQRElMqlxZk9vYfeOLcycMx9FESmWSximn1IxyQ9u/gVduxIsXXowuqGA5/CD732fmngDl11xIc+/8Bzf+97N3PZfd3DJpYZMOGMAACAASURBVOex7PBDyeSSLFq0iFhVHZZhIctQXR1lYmwYy9SJVlUTjFVTypW55+7fkkpNEI2a/ObXt3HuBefwT/90PR8/6xNUxWMYmp+KXcDnj5NP59AVg6poNRs2bCQea0AWDTTFz+RYjpfWrSdeVU1tXQPhSJRi0aNckTCMEOPDOxnq7aIiKgQjYWqamvj4WZdOpedT5Ec/+DWLFi0hlcrS2NDJ3h27mNnRSGtbG1aklhOOX8l5513AqmOXMpkYR/BkRMmlWCzxxGOrmTV3LuVSHllUqJSniquVS0Uu+eRFHHXkkRSKHoJgUSrY7N29iyNXHQGaQtlzCPkDRKKBqRZulRLt7dNI5bKcdOrJtEzr4JkXnuXB++4jl59k7rzZ3HDDN/j8NZfjD1qvX5sQqmHQ3jmDu2+/i9NOP5W9+7oIxyw+8rGTaK6bxvPPvcAZZ3yEw1cs5fRTL8RxcyxdehCRYC3+cBDblZiYmGQyMUZHy2zuvuNuTL9CW2c7xx+/nKaWGsbGRpEEA7tc5J577mLXzu089dQTfOELn+OWW77PsceuYmS0j/M+fg7/ddsDbNryCpdc9Cku+NSlXHrxhXilDCFDQpD1KbfoHbK0/zfw98/Q/GuY1z+P1fU8923s9v+Y4PWNhuZvfe04zpRj/h54L0b2g+C9dk5EUcTu2QAIKG2Hvi9T+5cG3n8t/kjP6r1/8Prn5N+/9fNvHK7rvqVi739f8PpB1vi+O1jved67f+bPvTZvOfMdr99xLWQNqX4u9t7noVxAsCJv46IlYSotaMv69cyYtYB4TQ2ZbI5AOAKCQLSqCl03iEYj+ANBBgYGmTVrFoI4ZXw0TYM3DNE7iG57dAsAavWCKS7bg/RkEhkRPI9IOIAgCoyMjFKj9IPqRzOD5PNTO/mSIqNpGq5dIZ8voUWrKRWL7N3bheCBZfro7ulBM3TKto1pGiBOdfjMpBP0HOhHFBWCwSiuKCEKIpLg0dLchKiZSKLI+NgooWCAXDZHMBxDkFUMTaViO3gI7Ni+g6A/gChK2LbNps2b8fl8VFfHKJSKVNVUky8W8ft9VMViuLaDz+9j86bNBIJ+AgEfqqowNjpBTW09mm6wdOkyDMNgcnycPXv2MGPWLIJBP6IgUFUVQ3A8BGmK2RVFkb7eA+RzGcKRAM0tLeAJeA489shjpFMTtLVNo7mtEcezEQWRF55/nmg0SktrK4uXLMZzPbK5HNW1NZTyBbKFHOVSmXQiyUvrXmJ6Zyee4xKNxHj26WdZeeRRCAKMj4/T0tLKPXffTWdnJ54HoyOjSJLE5OQkwyNDNGhjZPFTfeT/oWInURQLz3PI5/MYhkFXVxfBkIVbKaDIHqVcGkn1IUkiQu8zqKoKTSuxdA3dNDH9AYaHBjC1qeJWmpFmdOwAhVKCTGYUt1QmFI7g2S7DAweI1NaTyebIZYsM9vUgegZ33nkHq45ehV0REN0Kc+fPwR/0UddUR8UpE4tV43kCmWwKdXw3CALhuccgegrLVx6Frpv09+2jqspEkXwUi8WpAEuV8JsW02dOZ/eeXcyfPx9JknERqYnVI6EzMpnmuBNWkcimiNdMpVzqqoXgKXz9q9/kQyediKbqlMoFQj4fuUKRcLwaXZtitz08JFnGMA1SySwXXfxJrrjsCvL5BNGwH0HSOO20Mzl82RKmz5hBz75evvCFLzJr5lzCwWb8vhCNTXHWvvQ40zrrsMslJiZHGRnvRVQMssUirW0z8PnqkHUd3fTj9/uZs2AO6cwER648Ak2WsUtFrEAAWRD51o03svyIFSiSjGNXCAeDhIIBtm7aznOrX6CzvR3BKyJLBiICruNSLpZIZbJYhkF6IoHRNYDXP4RcW0U8Xo1paoiiSG1tLZ7nsf3VddRWN6GbU4x9UJMJ+IOUyxVyqQlG03n0SA1Hf+Q8KoGGqayYNwPXD5qx85ZniqiQGe0lGPGj+1ro7dpMXdM0fGaMUnGCxPgE0zpmUrYrmKZCLptHUQwEQScYCpDLZzB9FqKooCoW2UyRW3/+K7KZDNlCmYaGNmxHpLq6hcTEEH4rwOjwGK5Tpr2tEQ+Bp55+gVu+/0OWL59PIpPB8AcwfCEM3UIQBArFHKIoUB2tZdeunVRVRdm3rxsBgWiVgV1xOfigleimRyFX5LlnnqetdRoDvUOcfsoZXHDRRag+jfUvvszM2XMpl/P87Ce3sGjZkZx60ons2bmNpvo65s5ZzDVfuIbtO7cQChrs3rWHutp6JsYnaJnWjqyISJJEMpFB1XSgwuTEMJFAkAfuuw+77BKLVGM7DuMjOWQZ7IrAYK9D67QaPCR8AT+eKJJJjeE3Q1TsFJIoIVbgnrsf5JxzT8Py+3ERME0ftj1Vz2Htcy8xPj5CTU0U0zSxAkGyqSSyrCAqCrZdQdenbI7jVGhoaEXXJPBczvzYxykVMoyMDFGplAkEDAQXDF2itbUFJBnHqZBIJbGsMD6fQDTYSSxaQ1NDkG1buwiH/CxcOJevff2bHLHyUFYccThnnXk2Rx15NKFImGR6glhVhGwuh+MK2OUy9z14L02tjTTW1qKoCuPJNI7r8eDv7yMWjXHssSuxLAVdVWifOY3Dlx/BFz77RR579Cnmz51NuTKJoYb5/Gc/z4knnMjO7Tupi9fy2FN3oSgOPp9KNjfJmmfXc8iSxUQjIba8upmtO7ZzzdXXct/9v+OSy85Dl6Btxjyy+RKipJHLpZEEC38kyLxZh6HrKpIkUiqV+dBJR+G3dAYGhohU1+LaWTxXIRCSqaut59JPfpKPnnEG5ZJDdXUDsi5h6Dq6ZmLqJq5bQZY9lh2+nHhNA9dcfg3fvfnnXHvd59m8YTWtnZ3E6mrw+/2MjoziuRV8lp9kMk2lUqEqHscVZSrlMtNam1iyeDGfOO8sWlub+dTllyOKDvl8jmAgxGQigwPEa2qIBMOIssB3bv4PsvkMx3/oOLKjg/zrt7/OyaeewMWXfhJBrOKpJ++lo7MJUY1QLBfZubObtpY2QiGLM06/iJNPXsEhi5bS0FKPT9d45tnVvPzSegZ7Bzn33DN48IHf86UvfYGzz/oo5UqZ5cuP4tZbb+W8887GEVW+8dUbOO/c0/jsNdfyk5/+jJmdzQwd6CIxMki4qgFNVXE8F08A8W8Yvr7TR36/TMl3q/r7t2SE3+Wdt8399jW/76jvePmng9c3fOs38JcEr3/7clr/zRAEYYrhse03A9eurq7/ZgbuHxuu6+K6f95u918LURTfdvwvPhgEzUI75nO44z14ucm3vVexKwzs66Nz7gL8kSCO4BCpClEulbn11v+iVCjz/DPPMTE6RjqVpq6unoptMzo6jm3bFItFEHjXtj5voFwu47keqbFJdFlhZGwUJJEXX3weu1KmpaUFimPIRpTR0XFy+Rw9+/eRTefo6xtA1XSCukRXdxe245DLZtmxbTuaplDMZfHrGhNDQwiCSMmuYNsO8aoq5s1bSL5YwBYcWpuaGB3op1IukS/bKIJIpVQmHIljeyqi6JLOpik7Nq5nE4tWYxkW6cQ4o0MHUDQXRYMjj1yBbuhs3rGThpZWCoUc1fEIoiwxNjKKJIpUHIcZMzrZunUbkqihKhajY2P09OwnGoszNjGG5bNQZYVlS5cRi1cxODhE19697Nq+g1QiiW3bzJg5m9a2aSxcsIBZc+bhD4VRNANJVUmlEhiGxqpVK6hri+EIAr+960Gwi8yaN4doTTXR6jiiqlDKZ2htqge7RCGbImhYFDJZQpEwK45ayehoP45TwrHLlMtF1q5dh6bptLS0Iooyp55yKg/c/yCaqrN71x4O7O9jYGCQ2ngYb3I31Sf+Cx4K+w9swSlO2VDDMCgUCjQ3N6MbARRJp5wrkE1Mkk6npx5eTBUdm5ycZHBwkFQqNeW0511+fevv+MH3f4aqhYjXNBP21ZCfrBCrqaNvaATF8DFr3kEUygKWL4qhmuQyeQJBi0+cdw6yIjB9xjR0f5iG1g58VTW4moUnKMhKEEEMEIrUUCiUcRwBVY2RzUmEYnUcf9ypzJ+zkPHhfvK5Ij/4wS2Uy0VOOvlEQnGDps5mFF8QUQyQz2ZwHI+u7n52dw3w2EMP4JRLTA4n6e+e4LNXX8d1136JdDrJhRedR3W8gfHxSTzPI5tIkUgkqdgOk+MjSKqCJwogiVP3oTTBrb/+Pt++8ZsU02kGh7tx3TJ33nUbHdObGBruQ9Nlbr31Z9Q31PD06oeo2Hl27NhGfX09O1/ZSmasiF+poi7eStQXIeAz0XWVrVu34tkal114MbnkBPl8lvq6Zvbu3U0hO0Fi/ACFQoGRkREuu+wy0ukpJ3PPnj3s2LGDZDKJqSocfugKNr60gQPde6mUbDKpDM88/SzpZIbE4AiWZVHb3Ii1ei3W0y+SGuzByaXfLAyTy+V4+eWXaZ19KPmKiuNCQ12UfVs28PgTD1PX3k7N9E5mrfgQ9Z3zMUwfquDgCjLu6zKIvwQOkM2kiETiHBiYwO9jqq1NZhJVLBIKhRCkEMW8Rnq8SDgWBUnCdkV00080GkWSpvRhtlNkYnKUb9zwz/zilz9lxuwOJBUUVZ0KqV2BfKbMs0+/RPfe/RiKyPjEBK7k8I2vX4caqqO2sZOJ0RQaGrlcDs/zSCQSWJaFKFeor68lncrT0T6XZHIct+JD1/yMJbfQu78Py/CRTmawyw4//fHPuOATFxMKViGoMrf/5m401SCbzXLOx88mOTJALpNl+pwF5FyZl9Y9TLTah2VpSKKI4EGlXGbhgoNIjAySGBmkkJ5E9sp0NDahCzJ1dW0k8gINtXFaG5sY7BthX08Xpr9MfV0LomDwxOrf8O83fQ9fIIAnijieg2koSKJLJp2kUspTsit86sqrQA1TJoSdLzDa34+puHj2CA/d/yhtLU1Mjg8zPDCILP/BQbUroKrq1P9SNosoigQshYmR/Qwe6GbwwH5Uv0a8sY5IbYSJ3DiCbKIGwvirahBFqIpHaW9vR5IUXt6whXyhzO69z5JODHPOxy5j08YduILNbXf8giefeI4rLr8KTZeoqQsyMZknHKkjkyvjD4bBLaBZCscefyJVdS0cGBnHE0ViIR9BQ+CyS8/lmKOPIJPMkZrIc+rpx2PbRQIBH7/85c9JZbIE/RqTY73omsO//du/oGsCg/37KBRTnPKhU6mLN/NP132D7l39XHvdNcyY28H+/i6aG+I4hVFWP3ovC2Y2IQdbqWuZxYGeXgRHwJR17OI4A/v2Mdw7gKYEyaQLHOjdi+EvgVkmVhuisbEKwU6gqiannfoR6mob8VyJ737vP8AT+Nxnv8gjDz+GosioioFd8RBEsIsF0pkJGprrKdoel118ERPJCUrlLHPnNPKVL34ZO1tAKNn079tPNl3h2GNOBk/Fb8WYGB4ik8jxn/9+E7/99a+RkBjsH+anP/4ZifFJBob7Wbv2VV57qYut23YRjsQZm5ggmZkgGPbxjRtu4JOXXcn4eB5FnuDfb7oWSc5imiavbV3LqpWncMhBq1B8EjYKCw9ejCAI7N/bzeOPP0pNvY91a1/F7w/i2AHKRQW7bDOwfy83fusGbv7ed/HcMutfWks+V2ZoYJKqWAPZbI7B8VHuuudXaEqZhx+8g6qATCmbIhKJ4rgSTqFEpVT+i23V/+Lvh3845hX+OFU0HA4Df1pk/Vbm8YMGue/H2HmeB6Ucoj+OGGt99/c/wJx/7preD+8279vmeJvu9I/z5t821jsS6f/c7QHPc3Fd5/Wdm6ny3sJb/rz37J36+vFHOzZ//i7UX5p+IXhvrHJqze+uE/jj3+897xvv7T1s/1ij8HrhJMUExcAZ2IIUqJlahycydGAfseoovmAA7/XUO1mSkRWJmZ2dbNm8lYMWLkLVFLKZPNu3bWd0eJTuPd10TO+k/8AB0okJZFlB0/Q/aDsEgcroJgRBQK05iEKuQGp8FMO00C0/IyNj+A1zSgtZSUFyC6MZmXKpgKZpVFfXkUgmEAQwVBVJtdDiDWiyTixWzfTZs9F0harqavLFErF4DalUErssEa+OMzQ6QiaVprmxiVw2hyy4lAoFJicnqa2vxbYrDA+PsHXLFtrbmylkC2SSaSRPYCIxiaZIrF79NIcdthTT9E8xKtkkuUKecLiOlpY6BGRM049tl+jdewB/IEgilSQaCiErMj09+/Fcge7uHpobmplMJOjq3ktrWwuaapDLlRgdHWXjK+vp7JjBI488zqpjj+elDa8wNjTG3u4eXnjhGZYsXkh3Ty/hYAwBAU2TeGX9yxy56nBKOIho2OUKMzo7sHx+AoEAIlCplHFsG1k3yGUqJMZHsPyBqarLFRdRkFn/8mYWHLIYwxdE0lXidTX4NJM1L65hfHyMeHUc1TCpa6gjmU7S3t5GLp1h9py5xN1u3KpZ0PYxPKFAKFiNJELBLqALFvu7ewjGfOQSyaniG9+9C//2fryjlvHhj36Yq7/3MJ7ncsJHP4luBTCDUSouREIh2tvnMa1jGsGqJhBk8sUcdQ0NTKRKWFaAUz5yOp+66ioEQeOwJYcgeDkMWeHqKy7l8OWHYVgWjmdjlysEAj4cr0K2kCGgqCQSg1gBg0y+gjq0iZdefJFH1+5lwZx2tm96iU+c+1FCYT+9/cNc8ekvcMMNX8cyDQTXJZOx2b17D7PnLeCTl13BRz9+Dq+9vIUXX1jNcSeu5MhTTkXE4aF77ueJ+x9l5pwO1q99leeef4Grrv4Mmk/hllu+zzFHHUnFU7D8ATzPpeI6jIwM8tBDDxAKRlAUBckI4A9HWXXiMfijMQwzSDKdxuc3mUymqYpUUam4XH/91zlixSoWrTwEX0BhqK+X+qoGrGCYH/3456iaSmtbM5qm4FN19m7eyLRqC19dkHVPvUxrTYCAZvGVr97E8ccdTyoziSB7WP4ImhVAVXxookImNUZVQ5hoNEZ2skA4Euek007jokuuYsXK00mP7GTp8qOpbmxlYGKMGTM6pvrl9vcT23UA13Oxly8gmcgi+/xTmsdSAZEkqlqFqQt4xQwbX3iKmStPZu7Cxa+3y5IRBQ9BFHHfyLrBeT1V+IOzrm+FJiusfek5ZnceQjFTwF9fSy6doJwfI2D6KBRtRkYHEEUPn8+P4BgUskVcp4iuaHiORCIxSCwSoJBTiVdVc9HFl/CTn/2Cw1ceRCRSjegpKKKAiEImk2XGjE4eeugx6tsCBH3V1Ne0Egj7SKXG0P1hUtkySxYezJWfuYZypUwwECCRmEBWNSqVAmBTyKfx1CqMoEkwVo2q13DVpZdy8KJDOXT5csaSI3zpqs8z++BFaKaJm8zwkfM/zJ7uTbS2TGN0vEAsZuEqImVBQzZiDOzvI58r0NLejuUP4fP5MPI5Lv3kJRy0eAXtnZ0IgsiBXf2sOmI+9Y3N5J0p/XZdzWwsvw9Nd7n4vAv5xPkXoygq4+MjHLb0YDo7ZlEuVdAVDVVUcCtTzzFV9SNLJmP5EWoitVRyFVwhQzYxiqJrOIKBqlexauWhaMEwiuIjOTqJrAn4/BF0w8R18qRzY2iyQj49gakLCB6oksfddz5EW+ciIhEdSXKZGMuQTbn8+pe30tzajG6YJNIlDC2GUxQo50aprakiFg2QzJRpmz6TY44+jlde3sCK5YczOTHEEYfNo7OtnfVr1jE21M8d997B8Ueuwi45SKqOpUnYpQq33forDlmwECsSY2S8h1KlRMjfiO24KAEdV7LxWQqObVP25KlK76MD9Ozt5fAjjuDnP7+NcNCPZqgUy2k6OuaQy0j0Dx+gp3svRxy1isefWcMxq45BdHUqlRK+sMX0zoPJlWQ8LUjUsFEDYdAtdFlnoK+HL3/xXzlk8XKqa6L86kc/pLmlgXhNLZKrUvBsStki997/EDPnLyTRP0ym4hLwxRDSY7hKEEHyWHnk4Sw4aCG2q1N2xwj76vjiFz7HMcedgUseXVewSzbFdJbzLr4YXzTEgZfv48Irr6dvsJuSY9PaMYcf/8d/0tHazOzp03jg3nuYNXcFO7d3cfY5HydSHWfPli10TpvNzOnTefXlF2iqa2TO/OlUN9ZSW+unUi5j6Ba/v/9Bps9qx/Qr9O7vJqBHkfwmPt88Hn9yPa+9tpXWxlZ+9P2b+MpXvki0ug5JDHHj164jbIToH91HrCkOUoRPf+bTfPrTlzA4NI5CnmOOWcXTL2zmqqs/jRarI5kT+cmP7qC/q5v2GRaHLzuKUtnjN7/8FRVRpHPBYfir6xBzk6i+IBVRJxSvp3vXblqb23AFF1QRnD/dUeJviXf6jX9r0sdzBURBmkq89N7Nn313X3sqrnqnpvWdGZKvxw+vF5B/J95ZaPWd5/+PYF7fgKIof1EK8N8a8oyjkGcc9Xeb7+/NoP61eIMd/1/8eZA6ViCIMs7wbmRJZl93N4KgYhoBRFFGEiVy2TyCIJBKpQGB+voG7rjjN2RzOeLVEWbMbCcaC7Jo8UFvGiHL50PXdTze3idWeEsusSjJWMEou/d2oUki0aCfhtZ2Nr66iZHudeTKMoHAVAVPUZTYv78HAQ/XLmMXiiBrPHTf/biVCn0HDjA2OMzWrdvo7x8gk84w0D8Ajkv37t1seW0TtfEaItEorusyNDhId28vzdOmoSgahUweTZYImDrLDl3E8EA/+XKZYCjEvu592IUyZdvmsKVLESWJ++6/j6qaGqZNmwe2juAVSUwmEUWBXD5DLpsnFPJRKOZpbGph3UsbGRkeZdnSZcTjcbq6ujD9OgsWzGHFimXIkkQ2myGbS6OoCsceexyKoqBqCv39/XR2tLNk+RIOPmQBF57/Cfbv6yIS9INrUykWKGTSLDtiMYV8keRIiT279/Lii2tJJBIUCyVefnkdnuCi6waeI5CYHCWRGCOdyfD7399H2fXo3r+PifERqmN+unbtYtumTdiFEr3dPaxZs46VK4/ioIMOolTKsX3rVhRJpr62DlVTmX3QbGqDFSQ7jbL0OlTNI5GYYM2alxAFi3y+SLGUY978ufh8AWRZRpblN+8XsZx/8x5xXI/unp6pbArBw2eqpNJjRKtMAkGDcjGLIosEg0EEUSYa8+Pzqzh2ZWoAO8uWjesolIoYoRD/+oOf8fQLL7Nvbz//9i//zuVXXsHqp59kpK8bpZjmd79/gEKxMmU/XBdRkli+YgWpQoWxZJ7+0RTTZsxn07Yu1r+6nbvuvo2vfe1rjI6k2Lm9FzwXVdEYGxnh5z//Mfv3drN0yaFcffXV9PX3o1Y8TN3PaWedwY0338ThK47ghz+6hS9/6VoefeQBCoUC1177efZ27WJocJj77n2QcgksM0xVqJmzP3oBdfFmVCHI6cecjY7N5Mg2fLKLoiiEw2FUVSUYDDIyMoKmaSxadDCZTJLRvcOM9k8yfeY81FCUV7dv4drrryUYD1ERPPrHx5hIT1Lf2sxYyUZUq/jat77NtDkz0SIB/vV73yQYD1JBxheqIznRj+QkMbUi+fwodqmMV5Ep2yqiEWL1Uw+zauUS7r33Dg5euIDfPbyaCy+8kGWHLKAtXsWzq9cxNjaBqoqk0xkKhQI7duygr68P2S6SS+2jXBglFphDuZTgOzffhOQPcPTHzsXn8/232sJ8pkB1rJ6yU0QxHHQpjM+owfOC9PZn0MwwVXUt+CM1uJKBaSlIsgtCBYQKoqARCVfhOhKWXsEpT2DpFX5/zy9oq5+D5Cjc9qtfMzjYz+/uu4dPffZTLDz8YG74j29w9PHncNHlV7J+4/OMJ3cTr6lD9EScUok9e3fRvWszkltEE100wWN0JMn4aA6/GUaWFGrDQfr29PCrH/2U66/9HEYkwBnnnUltSy0LFy3C1xBiaKwbnAL7D/Qh2x518Wau+/IN9I9lGRrOc/mVn6W+vpb6+iBLj1vJ/KWHUFVfjRG0qG9vpWrhAh7asI6lxy7FiPjZvWcP1//zVwhG/fT0dnP2uR8nFKvCX2OiRXxEGlt59tVXCdRUo4VDdC5YSH37XKYftIDW2bM45ZRTGB8fR7AsXtu2BUX2SI334iOOW+qlVOwlnyoiaxqqquO3DGTJY9vO7ciiQ7GQYduO7QhlSI2N0b1rC4KTQlOD9PeNYJkRkokSrqxRdCSS+SKeKpFMJpElDU3TaGys5847b8cwdCRJIjWZ4KQPHY9uyCiqTjabxbJM9u3bh+2UaW6pYfqMNp588nF8VpBkOUtjZyvLjj6azrkH88///M9s2LCBE044gddee43JRIpkKsWJJ52MIMoYokxQD7L91a307evCKWZRBYd8OkHP3i6GRiYQPAddVYlX1/Gt//wXHAW+/LVv4MomuhakXIIvffF6zjrrHGqqGll08GFUV9dy0fkX4joijz/+BIKnI4s+HlmziVQ6yfje9ViBKvAUNFHnycef57WNXdzyo5uob1YpFHKcee5ZqIZOd08P2WyagBQloMdZvuhobv6/P8Yf19B9FVS/jVFlsH7d/QjuOF27X8bSXLAzpMdHeeKRB7ni8ou48cYbMY0Qji0yMZ5i2rwZdE5vJBIQqBTGEWSJhoYmaqurkOUKn7/+C1zymcswIgFESyNX7MfxEuQKo9Q1hFm88gh8VWEUS6OmqZF4dR27d++lUi6yr7sfz3Ep5rLc8v0f4to6kmvS1jwNx03jOAkMs8IxxxzK927+Jh0dHVx77bVMnz6dsbExrvrkJ/jYx05hZGKCpSuOw3Ml4tEYO3bsIJsqETI8Hrr/flTNR9/YJImRCRbObOfGr36BJx//LWvWraYq1sk1n70e3Vfmys9dQ21tLbFACKFQ5kD/GGOjSZ56/Bm69+6nqamJja+sQ8BFsP9bzdr/KHie9zePXf5hmFfHcb/2RuQuiuKb/S3fi918L4burwl432+OD8zA/RU57G/V7v4pRvHdNLp/mO+9r8EfjfjO7/Rnrfbt804d774DO8FoDgAAIABJREFU895aAPGvzvd/L9b9fZnXd37unXrdP3Gd/9R47z8jUz0QYzOobH2ARLaC4Y+yYcMr1NbWYOg6FdtBVVVs2yGZTLGvez+J5CSHHnYozz/3AtFokEgkQjQaoVDIY1o+wsEAqqq83jLCelM7LggCzuhWPNdjrBxHVw0EAUzTxHVdJifG2dO1n1w+R4Mxgq5p5B2ZdDoz1dxbljA0DdMwCOgm+ybyRCJRJpNJpk1rI5tJo+sG+3t68Pv9VMoVNqx7iaamRqKRCP19A8Rrqslls4QjEeqbmujvH6SxvoFsLk9fXz/BoJ9SqUAkHCVXyKAqCpau0921B91noes6giBQUzMVCEuSQTqVJhAwcD0RWZEol4sEg2EUVSQUjZLLF4mEIuzauZP+/n5URaG5uYnq2ioEUaDvQB+GrmP5fQSDfvp6+3j0kSeYN382ixYdwtDQAJFoFNNvcs+dd1NdHSUaC+G6IpVKhURyAtPSkaUg/QN91NVGicVr8Pl8BAMh7r/vfirlEu0dndiOSzqZRVU8olVxwtEQlunH8vvJJJMM9Pczb9486mprSCYmGRzoJzGZoFIpYzsemzdvZsGCuUQCERzHRjd0JEVGqCSx9z+DccxNuL46ZEVCEkVEQcJnBTF8Jjhlenp6CMfiZNMJNE1DWruJXC6HccwKbrvzDnr7+1hx8kV86MQTQBAw9dfb4ZgG5XIJ0zJRRAFTV3EFDwQVhCl5xyOPPgoIdLS18KETTkTXA3ieQN9wiiVLDiMcCtLYVM9FF1/EjOntWLpK0DLpmLMYy2+hiBK6olPY9yLJRIIBrwbXdrn/oQc5/IgjCIRDzFswH00RuOuuO1m69DDisTh1dVGu+/w/Ics6C+bP5JH7H+bhhx9lxZHL+czVV3LqCSfzpS9fz1HHHcfg+ADnn3seixcv4dGH7ufwZYvxR6LgVaiOhymXXabP6EQzNERJQRQyFIpjlMpTAd8Pv/dTPvPpi8hlJ+navZ/65hZyudybz6pwIIxh6Fg+C9spceNXv82s2TMIxmOUPYGm+jpS6UkCQQu/L4Dht7DzWRwgUFWPiDoVwOsVZCPI5OQooVCISsXF0P3omshIXxeBgJ+S5xINxfEUnWw6QywYIGg6jPbvQVZUkBSS6Twf+cgpbHplA08+8igVdG7+7nfYt6+Lw0Uffp+f1NxptLW18e1v/IYFC+YhyDkUQ6C+roGly1cg6AYlZHCmbNEbzskb1vAPdvCv22Q2RJHqeIzRyXGsYABZzNO9bzutbQ2UnCyiYCFKKhMTSRTdBCdPIjmJpqlTfa8FE5ciuWwBj6m04XwhQ6GYJT2RIxC0aO9o4Qc//Qn/9PWv0rN/P4ViEcs0GZ+cYG/3Hu598AE6Wg+iub0NVdQxVQ3VEIiEfbiuy+DgILKsIbgKTz66mkMWLkBVKnz3O9+nUrTxB/zccNM3eXXza4yNjyNJU62KBoeH2LR1M3ffezcXnns+li6CYPDwo0+xZ89eli1ZysZNGxgYHMA0DAzDRFM1/H4/lmnhsyws00exVMTzPGqqq7ngvIv48Ic/giC6VFXX8/jqZ0in05iWgc+yME0Tn2Whqhp+n4VpmOQLBQAWLljAGad/mMWLF1N0mSriNDSIaWgEjCq2bX+alvY2DF8T2XyKUDiEU3HIZzM0NtVTKWfxXIdZcxYwMTZOJBJD0yR0Q2LL1kHOOftMLjz/AjxPxAz4MVSdQ5cdhuk30GSXXLaEqmpUKkWOWL6CxpZ6HK9CPl3g+ONX4fNraKZFwK/S3dVD67Q2JFni9t/cyplnfRTPE6ivb0LSNERZQlJlDDPM2nXPc/hhyzn11NNoaG7GsnR8viChUISXX9lI0B/A0FQa6mqpqYmSy+co2GVkUcNn+NCsAIYmYegmP/rJr2ifNQ3bdREkhVg8TmYyQ21tFT/96c9Zvmwl1/+fL1JfE+WVVzYQrYpRyOe58MILuOSSS9F1P7OqNUyfjwUrj8XQLARcXLtMR+dc1jz/PJZPRjc8Av4YwxPDhOPVDA1PEAv5SSZ6yReTPLn6Ic45+3RUNYZna5RKAq5rEgvVYlkRUokyDz/0LDNntGL4VFpaZ2OGRGqqGxkbHyUcihCPx3FEm2xqDEWBwng3RbWWWFWcfd1dhEMGE6k0tuuSTGUpVVxyKY/nn1vPaad9lErZRdBlhkcHiIYiyKI21Z9enqrRUR2tRZJEsrkMTzz2LLu372FkaAxDV2iojzA6mqZSsPBbYaKRGo459nia6ms4bOkSFMPkS1dfwVe+/mVa2udw2WWXcuJxx6EoMDrYz7q1a/EZEscdezyrn1vH0SecxJMP3M/5557B8ceu4qprPsvpp5/GHXfey4wZC5h3yDT8vgATYyPc97vf0jGtjY2vbOKpp59m3rx5NDXUE4wE8Fsyzz+3hra2TjzB+8C+5zs7nvyl+FtpW985nvB6/Zi36ljfPs8f+8Zv+IdvZLt+kBjiPVbxv8zr/9fgpkdw0yN/93n/l838y/GPosO96/ePscu/EjPfh1xO0TG9A9M0KOQzU9pUDx579HGCwRCKopLP5QiHgwyNDCJJColEkq1bt00xpIJIoVDAtm0snw9Jkt40TJ7nkXKiyMEOhnoHGNjfx1D/AfZ17UVWNNK5EoVClpp4HLUyTAkdv8+HpulEI1E0TaVQKpHN5BBECStcy7SOacycOwtZU7Fdlx3bd9JQ34iqqGiqzqkf+TCdMzvpGxzAFwyxdetWRkZHGRkZoZAtkEtn6TnQR7S6hsamdsYm0ph+PwPDY5iKgKXJBEMmcxbMIByJ4Lguls/CHwiwY8sO0qkhWttrcQWZvXu7SSYSqKpCuVxmeGQSEDEsndXPPkkwEGR8bJyB/j7qamuoOC6TE0k2b9pGejJHNpvBdcvE41UcfdQqiqU8tl2mvaMdQfQoFytTlSTrGwjG44yOT+KJMq3TOjB9QV556Tl8pkbF9SiVyoBAT89+ampqiYXieI6I7XoYps7Q4AgCEmW7jKqJVIoFBvsGkBWD9a9sRjUU2qe3s/CQgzniyCM58cSjObB/H7FoNaWSw+onn2LTq6/R19uL55Swe9ehLPgUrr+NYmIYuyyhKBozZ3YwmRhCkmQqdonGxnomJ1IYhvE688pUIOTKFIolACSvgqSZmKbJ8OAg+UwKQw9SKJS44vLPILgOmze9iiAIlBwXz5UZHprg9l/fzstrX+KfvnojVrCexHiB3q59VAfC3HPHHax9eQ3x1hokycbFQ/VXMV5UyRZtbMeju7sbu1TGXHgq2txT0ESbuniMm779Lcq5DOnxMe6/524EwePf/v2bNLdGCcVc7rv3d5x88mn0HejDtSsM9w+Qy2bJ5XL88Cc/JlPIc8XlV6HLCj5F4YrPfJpQKMCnLruE2//rF2QyGQTRQ9UkJKVIMKxiWjKp9BiWHqZcsKmUyvitIA+v/gXZYoliIc7jT66jUChQLpdxHAdBEHBd2Lx5M83Njdx6689wRIdIVRinXED2HCRHIGyZUC7gFEqogkLUsvCpJqoRYnyoB12tkElPoogmOiaUXYrpNIbsURGCVNe1UvJEHNWPq+nIskw5O4aT6yXgUzh25SI+fPIxXHDhuSw5+GCaGhu494FHqWueSUtLE7lsCVyDTDpLsVgmXlVDLpfj2NPm0j67g+b2QwnWNOIKJo4rI9giiicgyzL9/f1v2q2/df2JV155FkPVSGccHDSKuTJtzTMYG89gV3Qq+SyD+/dREw1hSgKyZCBLBtlMCQEVjzIHerswTAlR8xOvb0XU/DS3z2JmZxWjwzt58plHuek7/wnAxeddRNeWrQz17GHnxm0ct+oYbNvm6us+y+atO0iMT5DPZig7FVB1Co5LpLoRSQ+gKh6nn3oylXKeoaG9XHPt1dxz3++57HNXks1laWps4vZbf8GV55/P1he28OILr7LkkEUUSyXOuuRcBFVBwOWW73yLT553Ej//wU185brPs3HtGlY//iRPP/Agr61dy4YX17Bn+zYO7NjFEw/e9+b1PuO0U6iKVXPY0qVksxKmGePu3/yGrRtW0719O9s2bKZnaxfPPfQgXVt28+xjD3H7L3/+5rX+2Ic/whVXXIGiKOiOx4O/fZCmlpn4ws3k7X4i8TZsQmQrNr5QGNeB3gM9BC2TyeQEnp0jFvWTyCapaWrgOz/4Ia7owyFMLpdj/YYXCAQNGhrqGDzQzWMP3o/slZDcFLquI0kqiqJQKueYPWcmkiSQTE4SCfhpaa5lMjlGxXEYGBigo3MaLS3NWD6Diy85l8Gh/YTDQXr2HeDOXz2IIVukJsbYveNV5s+fTy6XY9OmTQwMDOB4Ap4oYXuw8JDFoMoMTSQQDRU0DzMaRQvEKAkqkZpWXE9i4/oN5DNZlh5+FM88/gJbX92CW8khC2Xuvud2MtlJ/vO736ZUSbFs6WKWLj2Ej51xEqGwTHtnI08/8xCS7PFfv/4NY+kc5XKJif49CKrIk089gibbeJQ5/8IziITqqQrPYceOXbRMb6FoOyxedCj1DQ04rkQgXsuZF16C4QvjlXI88/j9lFLjHLZ0CWs27KDoqbyyYxNnXXQmtihgBGJkKlBAJBxVaWltZGx8mFI5TTYxglvMUiy5NE8/hIbWJjLpHM2NDQwP7MNSLcYGEvz+zoe4+vJrue2229i9dwvbd71I//AmPFdAFeH6L17H1lc2s+TQZRimn5GBQc746Dm4tk2xkOenP/4ZL659lj27dxKwQmzfto1YxGLzaxu44/ZbmTu7ky996UuceeaZPPfccziOw469+0BXEEQXsZRD0wTGxvZTVWNw0EEz0YIRzv74hdz8H99B8fK0zpjGD265mf6BUe5/ZA23/up3HHPCUn740++RnBRY88RThHw+PnP1ZxhJjFOhwjnnnElray2G6pHNZTB0EUVwKWeK70pOvBf+UfzK/7/gH4Z5favm9YOwm2/Fu7Kl75BX/qVFxUprfoEzuA25bTF/0PT8fQpHvdt3f7d/tD9iHN/Ucr5b7rr4Rimw15PX386MvrM/7vtpZP9ovDc1rq+fL7xPn1dP+It/pz/+3q+f/kF/pjcnFt4y+R+OKQ0rb9PwCghT1ZzfTb77gXrqCti2S7lk89j9DzJt7mJ+dOfDHNXkkMxV8EVq2bRpK00tTciSRGN9PXgusiyya9duwuEYM2fMIBINEo5Ep5hOp4Cu+yjbFTRVp1IuMzo6jqJIKLJEcjJFsKqVlBPA9PlZv34Ns2fNpra+ib7ePjaseYFwKEhLUx2Gl0ByM4hmDO91xzyTySKIAlWBAIIeoGtohHi8holUGsP0ky8kaJ/WhmqYhCIh/D4fGze+SjgWZdfefYSjcUYH+vBbQaKRMH5TJzGZwvE8VMlmYHgQn6nRt/8AjS31TIxPUlNXh6IblGwXSVIxdRXPA1nXEQQZ0zdVhCiXK2IqCs+ueYHOWTORpKnWPZqqkU1nmD1rNnWN1UzrbKd5WhtIIq7n8fK6DRy0YCFr1r7EwP4+aqsb6D3Qz66dO+ns6MBxRTRdRVRAlqUpDW+lgqEaqKrF008+Rawmhi9sEYkECYQjFMo2uqZRLhdpaKynuaWF/oE+amur0V6vxhkJ+9j46kaaG9tRBJFA2CIUrGLXrk3MnN6JHvSjiCp4Ms89+yL1ddXk8kVaW5swLZFgOEw0FiUWiyGMbsExYqhLPs+LL7zEptd2Eq+K4auK4YoClqbjlV1279rPQP8AtTVBJH+AYimL/tIWCoU8pSUHcfdv72JgcICDDz6EJfPnIIsimqZhWX5c0UMQbGa0z2J0uIvW9k4QdTQcJkYTxMJR9nf3sPHljeSSozz+8BN861/+LyuPPArZV2LOvNns39OHLspUN9Rj2/DAAw8yY/pM1j+5Htfup7aqhjXPPc/MllZG0imGJ2SGJ8Y4+2MfpexUOPn0k5k1bxaSXMSpGAQC1fQN9jP/0EU0dnRw0IJpJEZ3MjQ8yuWXXs74yCABU+HC8z/BzFkH0dzaQLjKwidDQ1WQoZEhPnHpFYT9Ftl0hmw2SzRaDa6AhIAsSJx39gUce9wx1DY24okyghZFcCpMju5j4eKFqKJJwBegUikwNNSLZppUNTRx74OPceWVV3L00Udy8smnMnvWPKpj1Yz29eJ4RVzRwcEjNdRDX///w95bh9lR5H3fn+4+7jLumYm7GzGIQLDg7rbI4ix7I4vbLgRbglvwICFs0ASSECXuPpNxOTLnzHFref8YNkDw3ft9nnvf9/5eV/1xuqurq6rr/Kp+3kQ6FSMWaCaRiOHO89DhC1NaXIBisCDoRCSdAloGSadD1JsxmmzU7dmLgRwOq4jJqlHXXIdv305KK8tZt30XdjnI0JEDWfXNTgYNGUYqFWLU2NGcNOtsRo8ZQe/2dpKJKNvsUFxRzKDho7vzaWsKgiagCmkUnUhG0tBpAnpBwmqxoQkCmiDAD/xbf8HK52ctkL6jk5oGm5cvxWWIUVjdDzkWxWAXSUU6kSQToiWDItgxW9zEE2FsVpGm9g4KigvRRBB1IqLeTF5BBeFIhli4FbPBTiLuQyeBaM5Db7Fz2tnnE4vFOXzSZJ58/FEMVj2kUohWM8cefQKLFn+O3+/nwP5aLjj7VDLZGHqTGTWRJKtpmBwuUHRouSBKykxO1iHZ7Rh0EivXruGb9WsRRZGrLrqUF+a8yQvPv4ImRdi5aQc3X38rL73+EqFwiJwqMX7cCEKBZvKdboaPnUTdrt3kchnKepRQVOgil5URVIlcWiaWSfD6O+/w9fLlCILA44/OprK0kEw8zoQpR3D88Sdy3jkXoDfqUUWBVDZJV5cfl8eJXmfEaJJ4Ys4zbN66DYvFzHNznuSdN1+lf99qckSpLDAgKUmMLi8mScTpKSSRzmHQixgx09S8D6M1g91WhUnQk1RUVJ2NPEcZ6XSKRx98kAnjx2H35HH4lLGcc9IpxGMKbZ111FT1oqSyilQqjt2oRxAtPPXUK5DL4CzthUnSkNNxLBY7gbYQJrsbk82NHrHbj1aVaGnrwGDRkdF0WO35mMxu9uzdzfgxh9HV5QOylJWWsfGLRZRWlWOxW7CIAha7ldamBhxWA13BFp5/5g2Omn4sL77wEpUVlaSTXRhFI+1Ntd3CIosOb2FPLrvieiZPGEWvigLsVhv5hUWEYxGG9u9HZzhJr35DGH3YeI4+ZirOvDxyqkBlVRVpzYynsBCD1cyQUUOwOO1EMyEsDjs2vYWykgpSSR133f4QjXUd7N/TSGF+IcGAH4MRlKgNIZslofgRjUXYrDYMooqvrQFvUTUt7a1UVlcwfMRAWur3MmL4IPr36wOCgsFsRidAJtpKvt1CJh3n+ec+5NjjT6Mz1oLNXIyjrIpMMkhL7S5M+TWIohFfh5/KimqUnMriRYvZt6eevr0HcdIpx3DkkdNxuz1UlPVGluM07NrDgL5Defzp5/nrI/+F02kmJSe47PLzkRUZk9HK5EmTeOqRW7j82mvIiCYkRaSjs5G21igBn8yUqRPoM7SMRCTCxjXr+ePlV3LB5Rdi0ovEOqMMH1mDrMgUFFUhmbw4vIXs3byNkpJiHnn0YWxmI6HoAa648jYqK3uxbOlHHH30THJJH2NHj+fxpx/jyImjyO9RQ0IW8HoKOHzCdBLJBAajgbaODvI8DhTVSEZRqG/aTe9eg8goCqJoQlIkNFH5Af3678C/Y1H4Wywwv7vwnV+qpqkISIDwvUP7L7Qh/DRN/1n+61fyvn4/Ywz8a5pX4X+C3+hvQTqdPdjRQwf+a/hJ6Yn6w9/av7gO0189CWiYpl79vav/Z6Qv31ft/xM/x7z+4Pf3qmjCoXboh/b9h/d/ZCJ7yOt+PI+/3N6v3Re0H97/Pd/pl8b9/bZ+bS39LHHQftqG/+fb+7W56K6jqtDY0IQhJ9ARCON0WGnbtoQh6nrI74vOakfGyqpVqxg6eAgBv5/SinI6fAG++HwRZ551BggqVqsVAQGdXiKdyqJqCiaDka1bNtG7Tz80JUcmm0YQDcTjcQoKisjlFPR6HQ0NjUSjUTZtWsfECWPo2bsfBr1INt2FtudVcPakK67hdrtJJpMY9AbMqkrC7EXnzCPs96M3mHE43CRTISKRGHanG4fDQWPDAULBIBUVZUQicVKpLHabFYfDiT/Qgt1mozMUpWfvvoSCPowWC3I2i9PuZP3GDQwd0pf6+kbKyquQJAORWISK0iICnUEKikro6ori9bpJpVJYrHYSsTg5WUEQdWgqOOxmEokkiUSchQs/5syzziTYGaKgsJB4IoUkKrjsLsLhSLeZpZoARERRYu/efQwcNJi33nqb4084DrfbRU5WyaYVDuyvJZvLIMsKI0eOQNZkdCY9Wi5DIpll7+5G9LocmzdtZdasE9iyZRPTpk9F0zQCgUB34DlVI6cqfPzpJxx3zEwUBTZt2Imkk4lE4vQb2B+TXqIr7KegKI+6fQ1UVvaivd2PN99LZzBIRWU5FhNIDZ9w7YcG7v77PC46/wLmz5+P3iQhqxrt7e3oNAmzWSDgDzFk6EAy2QioEg31LfRdsIz169ej3n4lt99zO6vXrObG0ydwxe3P8+E/PuKtd+exv64WTdXo06cPl15wCReccQLBSAKrMw85GUcwWjAajRx9/FGsXLWSv/z5Ns4/83xmz36Crq4urv/TTZx4xnG0trXw90ceprpnNUuWreCjhQtpbmnBarEycuQQLr/kaqZMnEoiFgODjCC7ePOVJ5hx1DEMmzQSgGcfe5KxY0dz2lnn09jaCIKGyWiksqyKvz/5LH1rqtGZNFpaOr5dd2EuOOscGg74+OyLT3lszmy++vprgp0BUuk0HreHwQMGcMctNyNoGj37j8Bg0NPa2kp+vheryYlOL5BVUuzZs5vnnn6Gr1evosPnQ9U0CguKsZjNXHflH5h11OHs2LmXwSPGsW7DFjav/wZF0PPlskU0NDXi9/vQ6fX0qKxg/Jgx3HbLn7FaLAf9j2tra3HazFjtDoaNm0RLaysP3X0np5x4Ei+89jrzFyygpbUVm9XK2DGjuO+uv1BV1h+LxUZDQzPPvDiHDz58m45AAKfTxXFHzaB/oYHxE6ah5GQ+/3gBOgSGjJrKsi1beOKF55lcUcNnuzcxf8ECnn3mBXbu3Ekmk6FP7z6ce86FXHrZpRgNInU79mNz2ykuKSGnKsw4ajorVqzg1ltv5fbbb/9JKnjffffxwAMPMHHiRBYtWvQjuvnBB/N57bXX2LJlM+FwGINej8floN+gYRw5dRpnnXQ0aDqs1nxESwJVtZBKJDHoIJdNYTK50Ov1JJNJJEkiHO/A6/WSTqdxWs0oOSNd0TbknMb69a1oYopTzz4ZgHdfe49x4w7DYjKwaf16qnv2ICerLFqymGtuuhaAjSuW06OqHE1vIBcLIVmdJJMwqPdgavdt4Marb+HPt95BNJekb68qxkw5jP11tUw6bAJzn3uKREzF43WRzcVAkOjo6OCxOU8x74MFeL1e6nZu48DeVh6452GeePFvGHV6HB4H7R0dtDf46IoEOWzCaDRNYUD/CUg2gYbGRvr36c/H8xeQy0Uw6E14vA5279pPVVUPXC4XaUVEQ0Gnaci5THfeaTXH+KnTiUSjnHn6aTz52GwMkoTD46W5YQ9kkiiKhre8F5l4FDQ9Or2Z5qY28gpVHOY+aEJ3dOtEJotChpI8D6u+WorFVUpJUSl6vR6rw0Qw3IbXmQ85E+F4Kw57Pjt376e42IPdpKO+JUzvPg469u2nsGoi0VQjJslMOmfA316P0+umsCifcMiPw1bIju17+HLpCm6+5U/IQgAUE5vX7aIwv5Brrr6SK668mCmHT6S1tZXiimosViPJeBQlmSM/v4YpkyZw3733cON11/LRFwv4cvFynnvuOe5/4E6GDh9GNB5jxdcbmHH0dBa+9wb9+w4kGAwxfeYMWlvDlJYV0drcwsIFCzn34rMI+DuxOZyYTCYsFhU5JyDnRCTRwN79eyktLcViNbBt+yaGDx5OIpEgm5bwlhsJBiIs+mIZxx4zi88WvonZbGfgwIGUleejN3j5/JOPGT6sjLKq/nSGo1gtdnSiDllWMRh0yHIOnU4HgkoqFuZAQzMDBg5D1STSUT86vRFVMiMZjN3fX+sCQQeKg779B7Nt61oSwe0I8VocPWZx+1/u5ro/XUt+qZeXn3yR0aPH0tRch9NpZcyYqSDIdHS04XK5MNk96EWZ9+Z/wAmzToNEjpycwGaXCEVj2O1O6g80UVxczlmnzuTJ516huLwHk8eP5stFW9i9dz0Wm0ZVZR9UwcSMSRN54/VXqKiuJBZLsGv3ZmoqBmO0ZDE5i1GzKiaDSC4dJqfZMBqNzJs3D1EUOfqIE7j5lou5/MoLKciroKSshH379lFYOATJrKDlunj00Se5987b+fD9Nxk97mhq63Zjd5gpLi7CZIJc1oDOYGPTls3ke4wMP2w8Or0BTRNQv88L/g6t7C/hX22n26JH/UXm9Refozu16G86//6IT/jhO37UxiHndvHbLKbf93vVNO3gc2aL7XdzYP9xOu7vD/j3PHMofqt/6vfv/V6fyV/DT/nj/p42f20uvu+T+f16/50mXf838Ws+x/8ufu9a+2f9n/ff/e39zOVyaMiUlBQydepk+o2dQUe/K0mremjZAuE6RgwfyrJly/D5fAiiQFFRIeeeey4Ggw6L1dqd31USQJDYvXs3DQfqaWtpIZftDoKzeeNGktE4LpeTkjwrnW37WLtmJW1t7fQZ0IeqqgrOO+88+g8aiNVqJp1KYrS4IW84aqwFr9eLLMvEol2gasiyyta9dXR0dODzt9EVCuHz+Wj3+8hlu31zFVWmvLyUEaNGY7aYicW6cDltrPlmJbt27aBnTS9ESc+gwYPIyhlCoTDbt+4gkUyjChojhg0mFk8bf4WsAAAgAElEQVTSu3dvvlz0BV8v+RKTTgeqSjIaJRaJ4MnzIOr06AwmEsk4FocDm9XG7h07aKivIx6LEwj4qaut47TTTiXo97Nx/XqikQhvv/kG4WAAn7+DZcuXkUokEDDS2uJn54597N1dR1ckyoUXnU+os5PXXn0dnU5HJpNG0kkEAn4EUUUnaegkEYNkQNIbsFntbN+2hbLSEi655BLsdieVlZWoqnowDYmmaXSFwmQzGc4880wE0UCg5QAOs8S4UUMYNqgvNpuRvbv3kuesYNEnGxg9ehTr1q2msamedDpNj5pq9AY9UmQ/smcAcz9czsKPPuDJOY+jM0sgKHz03nucedLpzDhqJgaDjsbGenQ6Eb/fR23tN1T38qAzCBw2cRzePCfit0tVTnVx5fXX8qfbbmH7zh0IgkAimWDT5k1cce2V3PyXu/B48shksrz66hu0tDSjqgqK0i2tjsWSWGx2Tjz5BP76t9n8/e9z6OjoAKCtrZVrb7yZ2Y8/TlNzM6IoEgqHWLR4KaeceQqvv/0qJv9ajK1rCQXbqakqJKt8txH6/QFmHH88++r3kstlEEWRSDTKtl3bmD5zCpddfgWg4x8L30dRFBz2PG648U/Mee7vHDZtAs+/+jJ19XUkUyn0Oj0dvg4WLfmKSUfOZPnqb1AV0OsNFBcXojcIZLJJAoEAjzz8MGMnTOClN16n9sCB7pyXgkB9Qx07d+/g0quvpj0YYfS48ZisFsaMGcOzr73MHff/heWrVtDc0ozB0J1yZfvOXTz38iuMOmwSq1avoa2tja+++oqamhocLjdGk+Ug3RAFiWNPOZW/PvIIzS0t3QKQYJCFn3zGjGNOYMuuVezct4Hpx0/h0b8/gi8Q7M796/fz0mtv8PQHy6gZezgVg0cz8Zgz+K/HXuL4y67A7C0AQK0s4fa/3M05Z5/PqlWrAEin02zespkbbrqGk086nn0b11C3czPJZPJ7h6gfxhf4SaunQ/a879PNK664gnPPPYfFixcRCAS6g8tpKi3tPhYv+pyb/nwTS5e8hyxEyKghgoG9ABRVlOEpKePiy68hk47T0lxPNpMgmYhQ4K5EVKwYRReyLFNbW4vNasdqcTFt2hF8tXQxADabjVHjxzNh/Hh2bt3Nww//nfPPOp2yIhdHzph8sM/LV63qZorDYcJdWeScgMUgsWHN14iCjodn30kw1MiRR84klxVp/takemD/vuRy3Qf7+vp6rrriJswWN9U9ezJl8hQAOjs7Wfb1akRjhBffugeLyYBo1BOLprj28muRcxrlZZX4fUEEQeCGm/5IQ2MjANdeeRXRSCcutxdZgaAvSp/evVGVLJFwFxk5SCoToM23j6wSoqy8kHMuuIhINArABeechclkQm+2EkukyfOW4sirwFtWgyYKWBx2DCY9e3fv4v577sFpzyMWiwAaiiyg5NJ43PnEEzkGDBqEx2Ojpb0DQRJRs0m87jzMdjOpXByjkGPlypWsWr2CoqICPv74H1gdDqKxFIWlZWiSisVpJ5HO8OY772F39mHi2BMhbcfrqcHXuYt+gwo585yZJNIdWPQWWpuaGTVyKEVFLt774A3S6SyJeBan043O6CIS6qK1uYmMprK/YRP/+OJtBg6t4IHZt7F+7RImjh/Bk48+xicLPiUd9rH664WMHT6Vrs4g048+iqJ8F9VV5Xy1bAWffLyYRLwLh9NESXkJgmgAUcBi1iNnkmQzKgaDiWxWZuzYsdxz513kUir+Nj8jhw0hlvBR17CZ8io7XZEAHo+b0047DUWLc+qpF3LM0WdQUT4IVXEiiDIzjpxKLBZDkXXEu7rQ60SSqQyiwUgqHWXf/l2IEuSyCpIkMXDgQBSlm/aaLEZMVgvhzi4evPchklkFnz9AuDOIqCm8/eZcNq/fzAP3P4liLOD5Z57lvnvuxSDp6GhsZuzY8dRU9+WIw6dSWlZAKOxHVWW8Xg9ms4lMLEE8neHY404k0B4EQ5K0GgU9uN35hENR5s6di04Hd973KE67Gx0an332GbKaRZBUBgzqTzKV4vRTTufyP1xFXmE5OUFPPJzg/XnziURziKITLaNx5WVXIWdkotEo77z9Olu3bOCkE49Dr4OWjs3ceNO1lBUPZMt6H6uWLcZuy+O8cy5g/44NmCxWLjv/Ql5+9jkGDhyAw+GgtraWqqoqrFYrjzz8BO1tnQQDYUaNHE02m+WBv9yNXmcip/5Q6/rPs6Gqqr9bmXYoDfxXcCi/8FPt/pQZ88/xGb9Li/u9Z34Lf3Xo2fi3ZmL5JfzHMa//i//F/yn83/Jh+Oc7RUnGYNL4Zt3X7Nm7FbvHQ67XSSSHXIuGhqlrD3kuM6PHj0MUBXK5LEuXfoVep0NvMKLT6wh2BslkcjQcqMfpdJJKpThs3HisLieDhw6lrLwcGQ21bRGOxDpmzDgci83I1u0bUVSZlctXYjRZaaw7QC6dIZNIgHswgpxCSYXoDARRcznS0ShxRWTksOHkuT306FVNoDNAfVMTDq8Hj8dDXp4XnSSxZ88u9uyvw2xzYLU78HjzOPyIiVRWVrB/fz2JhEx9QzM2m4XKHuXk5xeRl5+PzWFGFHLs2LGbXE5m9KgRDB3Sj3A4RFcohNvlJBaNEIl1oSEg6fQYTQaS6RytrS3YrAZ69ipj08aNNByop7ioiGQ8gaxkmXn0DFxOGxdceB5mvQFvvpfpR07HaDKAkGXAwF6UVxRyyqnH0+H3kc1lqKqopDC/kFgsgsvloLW1iekzprJl02ZyuQxvvvkmqVQGRRWIx6NMnz4JT4GXdC7HF4u/wmy3IIoi8Xgcvz+ApkH9vj2YdCLLlnxFfW0zFX0G0qP/YLpyKu7yStzOfHLZDBYb9OzTrU3q178PM4+eSmVVCRabEbtRQQ3tI1B8CrFYgKNmHk7v/lXoTBo5JcbAftV8tehT3v/wfTo62phy+GQ6OwPY7BYGDJqEoHeTmn4YqekT8Hq9B/MCv/rVPtauW8dzTz9HY20TO7fsYtPa7UydMh2AOS++yM5de+ho93P++efTq6oYNRMlEes+HGdzChMnT+aGP91AoDNMQaGLoqJCAJ5+8WU6O0O8/PzL7N6yh+suv5GVi1YyYdw4VFXlxj/fyMblH6O178Bu7Wa48wqKDv5nHnnqCbKZDK898xzrlyxhwdw3uPzMM+nbuxfZXJYlqxbz9JNPc+WllyGnU8RCEUaOHsXt991BKBLGbrNz15/u5JP3P+Drjxfy5F33MXPGdFRV5Za77uKx2X8lHuokFe0kHvbR1ryf++67k3sefABVVTly2hSWf7WIjWs3sW7JGr54ex5P/+0Rjj36GGz5pcQzCrKgJ6OKDBsynOuvuoz1y79m5/otLPpwEY2NzTz61yfo16cfPr+fv9xzLya9yLTDJxEJBegMdRFPpQ5u9PfPnk0imeDFJx9h16rFLP5wIX+7+z68Hg8+v59HH3+Biy67CrvDydLFy9i7YT27Nn7D3LlvYTGbqTtwgDv+8hcaa/cw46jp6OwOFC2DJHaH2Ny2bRuPPvooV15+OY31TbS1tNPe2sGdd9yJIAgs+nIxV99wPb16lmI0Gg8KKP4drFq1irlz5yKKIvfddz8dHX6amlrYtWIxaz9/hycfuptZR4xj7IhJ5Lmr6fRnEFUbXeHowTaMBiOqmsRkgng8iM2mIxxuJJfrJBCoQ1VlevbsiSBIaKoEUpT6ploAevXsidVhZNmyrwi0t/Hw7Ed4+MF7aWurw2wEr9cLwM49e2hoaCCZTFJa0o+G2mZSySg2i0wkGkJWu+jZu4Q5Tz9BU2PrwW+WyaYJdcbI5TTOPOM8BM1Kba2fltYwnZ3xg2PYvXs3lRVDgRJ8zd3RWnWKyNA+g6mu6UF1dU9KSsrJZgSWr1kCgNvlZtyIgegkGU3TcOWV8MBdT7Fl/R5y6RzLly3DIBZh0hdTVjQYp7UHzc2NCDp999hrahg/diyxWIysrKKoIqJgAMmCprN8q3XKIogyRUUeXnphDnLGQaCzgViyA1Ewo1NyqBmBVFZCb81HLwp8vngxza0tNNXvY9OGnbQH/Oj0ClabwrjxIznjzJNoa2+kX/+eFBQVYHX1RTa5SVqymIwOHE4XgqgyZdph2OwSdfu3ojNkKCvphZw14nVXYLeUsHnjHmqq+pBJJ8llu4gnQpx97rnYbW4kSeL+W+5HjaVwW614CwuwuMpo9SXJYGP0+BkMHNQLSafgdNpxOt0EWrYxcVRvTp55EqRzmN15KIKIzeXimVde4+P330cSsxhsMPXYaWQUFa/Xy9lnnkHA10YyoZBMZMnlUjz2xEM88tCDzHvjHc4540yUTJJQRKLfwMNo9XdR4HLga24l1RXjmOlHIBMnEvexc89mFC3N/gOb0FQdLnsNn336FWaDjWxKRkNB1GmYzHp69aohHu9eQwfq2ggGu/D521C0JKrRQEtHG3luC+moH1GvYDEV4nYUUle3kYoKL+PGTuDJ597FUTqa0889m5NPPQUhp5BvcVCQX8RfH3wck9FNdY8B5OXlYTIZ0elFWlqbqNu5HZ0oEfbFaKn1kcgZMVgq6Yq5yWYUHA4Hd9xxB/tr9zF82BRuvulO4uEEOp0FjAEGDOlPNCZgc7p48YWnefDBBwkEI4wYNYXigmLuvft+zjrrPIaOGEOko53HH3mYh/42G4PVjZKK0dnejJBL0buqDIPk4c25XzJv3jwWLnocMSPT2tBCc91u9GonRlHlr/fey8gRY2hs87N06VKGDx9Ofn4+fr+fKZNm8vnni9m6bTOff7GQzkCEP113MxtWb0Sv/++Jqq6q6n9c1pD/ifiPY17/VU79UNW8JhxSfoeW7VDpQbe0Wfxe+en6h5af0tQdqiH9vRq8n7t+qBTmuzriD8ohaV9/fF+QflAOnccfjf1H7f0+aILabdosaiBqCMJ3BdQfSO4PleYc+k1/ra+Hzs2P14R6SDm0r+IPys+O6WfW2j/7pOZkcqk0+QVFaIINJAvVfWqYNGkabpcNyWZlzlonW7vyGN/DTNa3n1AgiiprjBs3mvb2NnKKjIqAx+NFIEd1jxr8vk70JgvxXI5kMsOBAw20tbXR0dFOKpFAbzCxY08DTfWtFNiL6eqMMGLkcMKBAK48L858F0abCbu3kKS1L1q8EYvVgs3hwWWzsWFfHWs3rEUSBHQ6Gx1tbcTCfvytPixWM53BAKtXr6H/gKH06dOLcGeYsvIKMIgYTVYsJit9+/elorqCUKePeDhEOBjCIErU7t5GU+12wp0dVFeV0RnupLiyioKichRFoaGlEYvTRkVlBTaLF0VWu9MB6fRk42HyvPlUVfdBVSQKCwuJxxOkUgkKCl0ouRxGsxHJIBEJBckrK6ejtR2r0YTd7uTjjz8jFI7gzctHRqXpQB2xSAS9ycCg4UPQS3rSqSyTp0wlkchw0SUXgainf9/+2MwmRA3cLheFhR7SsTQGnY4jpk0mnUySzGbIy/diNukwGPUMGT0MnVFgzOjhWO0GBE1h946N2A0Wdm3aiiqkKS0v54P5Cxk8ZBRZQY/R5GLdmo0YDQaUrEy6djHPfRUjGBOJJGQqqnqhyRLZhIyc0JHKaohG6FGWR6fPz9ZN22lq9CGJTnIYkJU0ct9K5N5V2E2Wg0s9ksjy+itzmXXSieRyGXytLbz98ptcdu4lFBQUoKoqn3z+MRZTjt17t9HUWEsqGcNitQIgGo289Nyz/OWaK/h60T8YPXTctwGsIBKN8sTsORxz5OEkIykuOPt09jd2oKk2qiqrkGWZh99bgU4y4fS4Oe3ymzDrv8tlkM6kmfvcXI6ccRIffbKMip69efiJp5kxfhwup5NYPM7b777FNVfdjJyDnJrhheefYfPWLQBccOo57Nm2h1tvvJPy0t5MPvxInpj9NAP79QPgvY/eIxXvRCON3enAaHXw5vvvAnDirBN47sm5lBWW0qPU2a0tMzs57/yLeXnOs+RZTezatB4xFUFJhnj15Ve4/fZ7cTgdGPQ6Vixbg07Wc/LxJ7Lg7Xnk53nZun0Hq7/Zyq5dTbg9xXi85ZiMjoOHnmw2y2vPP8OsWSfjrR7CgIED+cNll3DTtdcA8NHCBbS0NPPJh+/Qs7ISb1EFRtHI6afM4OzzLgFg8ZdLGD1+Kmmt2w9bUTQQuu27IpEIZ511Fo88+jhFBXlICLjcXm7+r9u57eabAFi+YRtSXg8Ky4tB/23O7u/5Qx26v/0Uvr9fffPNNwBMPfwIrrvpBtwFLowGkAWJIeMO59yL/8AzL8+jtbmeLv8+PG4dkpSP3WY62J7BoENAwqA3YTAYiEQimG35GMweCktqSKVzBIM+NFkiGQsSDjbj6/ADUFpahpCFtJzksCPHUVJeRF55NUZrGbGkFa8nH4Ddu/dTkF9OJiVQt28DlT2rsVidpBMhujpbKCwbzlXX3MOnCz7khuuup7KiHICdu/dQWVNJVc9y/nzbTbzwyvO4dCHUpI/nn/8uaFI0EUMQNPSiSEcwxBUXXsc999zDyeccg04vE42F0EkG3p03ny++/BqAWccejdFoYf26bUiiiUw6whPP3sWQkb0wmHWMGjcUf9t+kl2d5LJpMtkosbTIpm/X/xknH08g3IbDLCJlU5BVSGkiqXgIIRtFEEU0wYUkGimurEC121B1aSwOJ2ZLCZo+g6vAQ6arnfpdKwiH4uhtBdxy603YXCZkk4XFn3yGRZOora1F05dhNBrRSznMRgs9e4/gzTdeRcvKbNrYRKo1TTgURW+2MWbsKAb1HswHH76Gu8iDmoM1nzxDvtOCYDaTVWL0GjSMDl8nsWiG2X9/nU5fhPaWWgx6BY+jkA8+fB1PSQWF5f1IRGUWfTQfm07PN1+v5PNPPiVnrMLh6UFpeQmXXH0R73+2nkTGxINPXs62vQfIdUV55LEnMVptnH3iLMIxP5rRSEOjD6towyIJCBh48eUX+fC9z5n9+Bxq6xq46467MUlGFE3l5Vdf4oMP30UTNAo9FjQ5gd1uJ5HUI+h0mKwSq1ZtRhFaWL0ywLkXnsalZ11Kkd1FWkiTVaJMnjACryef9954hx0bt5HM5kBvJBZRiUU7EfRWelT2w2IVMBqdCJKTXDpDLpsgEPJx7XU3IKBHE8P42xt44q9zySRCJBKtjB4zjNbmTswmJ6JOQudwIjjyaPcH+XTRJ4QiUfbua0FRcigK6CQzclbCnlfGqiVr2LZxFT37unHYraxbvYKQbz/ZZAJfewt7dm9l965adJLAOeeeTpuviUkTDsdmKcDfEePOW+8j4o+y4PV3qayuItTlpyrPSTLnQ6dXWLVyPrMfuBuLOYbJpef8Sy7l8w8+4qTTjmPazKk8OPsx+gwaw6QjZ3HVDefRf8AAJoyfjtNbw5lnn4crz4rL3RNfawt/uOFieg+poNBtZdKUkfTq2Y+mxhasVjMTJo7i0kuPQcsEkLuSDB85ie276oiGfCjhVgB0RsMPzm+/N0Ddv8PD/JJFy0/V/0UmWVBBUBFEDUH8af7g1/r5s3UOafuf+C17wm/Ffxzz+t+N/40Q9v9d/Kd+W51OhyRJBNtbiMTq+OyzT7HberJk1aekiaG3SZx3wSnUHHE20d6nYFSjZDr3YjWKWMw2yssrqK9tQM1pxGNJJMlATa9eaGgUFhbS3NSEmsnQ3NhIMBCktKCYbCaLpqp0BYJk4lFikQAetx2dwYjR4sRqcSDnJHIZiEUThJQKyEXJZbvNowRBoD0YYeyY8STTKbZv3YbH42Hq1CmUlhaycuVKWltbGTduHACCKOLNz6Ourg6Xw4ndbqGto41wKEo8Hqe27gAms4UOv5/9DbtweT3oTXl48vpg1Fso9BZjs9ox2R1UV/di+IixgJFUOkco2ISSS6DlspDTCIeTLPz4M7IZhUxaoaQ0nyOmTsFisZHLqljMRgRVJZtK4nY7keUMhYVeRFHji0WfMXHyNKx2F5LRQEaWmTFzGnaXA0XRKCwoIRqJIedkPv74H6xYsaw7DYZBj8PpJJNKI0h6VFVDL0msXbsaSQdGk0RFRQmaJiNJ0K9fb7LZFO3+VvRGG7GYSn5+Prt27sXt9iAIMHz4YCRJj9ls4qyzzqS5uRklm8Fms5CVFWKxOMH9K0nKIn94bAkjJ0zGahHJplLIaZVnn3qJdErhtbnvIIkmRKHbnKx33z4s+MdHtPt9qIIeQWcio4Aq6sgJEoLUzdCM6pXPmNFjkCQJl8tFWVkZs06YyfjDxjDt8GkAbN+xnYK8fAb0GwiqAzlrwqDvZi5aGutZuWIFx59wGkOGjeLBBx8kGokAMGLoCEb0q8FiEnC6XMg6HVMmjKWmpIArLuxmtpZuqyOaSJGMBxGUOOnUd8xr35q+jB81gqef+DvrV3yDXpaI+Lu4+87zmTllEADtnT7+dPP1rF+/HqfTycr1mwAYPHAwN950O9dcfw3vvPcOyUyKO+6+g6lTp3L9H68HoL6xkdVrV2Gx2BA0C599vph4PI5ep+Peu+7FajWRzchs2byX2n2t9KguZsPG1aSzEWLxIHa3m1Qmi8NhQ1BkRBFSyQwmk4nZjz1AVk5gs5kxGAxMGDcWgNr6A/Tv35eWliaEXJBsKoT47bc4ZuZMBg0eSjAUQlQV0pk4TU1NnHLSyQfn5MLzL0bUG/AUFBIOB9i/bydGvcqZZ3TXqTtwgJicQ9NLP0mHbrnlNgBUxG5fr1wag5xm3IDBmEwmFEVh/sfz/1Uy9yO4XC4AAsEgmqKgpLO0NTXT3LCdaDCAkNNIR+P0HjgNs7McWdDj8OQjZOMEm2tpqa/lqTlPozdJCBJYbS6MRgeoMiIqmpLDZPbicOaRycnkF3sxGCzEYjGgW2vb4etk7tx5RKJpZC3HG6/P484772HpoiXYrN2al7Xr1iLLWXr36YnBYsYoCeSyaRBNNLUb6Uy08cBD1/HwA3fy5rwXmTJpIgDfrNvAtm3bMRmMHDHlcDqDQQprBpDVRMKx4MF5CAYC1O1rZOGCL8krrCCVifO3B++mwOUg0pUgHkvzwQcfoYoiyWR3ipuLLryI4rIq1m1Yj6plsZktqJIRs8ODwebEXVBKRUUFRqORjRs3Eo/HmTfvLQD0ej3nn3seJpOV7du3Eom1EU+1kIx2YbHbiHTF0AkqqpwjGgmTisdRclnq9+3C67CQjHRiM0p0dPqxeosoruzPhx8uIZ3I8P4787GbnVRX1nD1bbejd9gpKMpHVTJk0llsVi91tQ1kMhmee+xZTpgxi8vOuZhwWwizJCEqGZwWHW+/+wzFxeUs+nQL0WiS0t4jaQvESUS6kESBXVu3oKoqBYVF/PlPN1DZpy+C2YysB8w61m5fRTKX4B8ffUA2FmTylPEUlTiZfPhIpk6bxKblq2hqqEfVg85m5Lo77qZn3yPweCro1y8fh7OQzZv3ohPMTDjsMN764A002U1JcR9agnUsWPA+CAr1DfuZNPkwbrv1Ovr268FpZ57I6MNGUVRaxMLPPmLD5i0YTHYCIR+iYGDLxm1cftl5lJcUcKChnlZ/GwbRS6HXwuZ1a4jGsrS0hwl0phk3YSqCQSQWj3DEkVNZs24NqWiE/XsPoJfMqBkDq5ZuJaPFiMZjdIUTLJz/ETqdgbLScjyePNrb29m8dhd5rnI83kL+cNUleAvKsbu9/O3hhyivKMZkUpkz5wn0kgEUA16viZEjB3PirOPp3asXsqyiKAqJRAxJp1Hdu5BxE4cwfMwATGaBtroD9OnVF3dRKXqziabWNgYOGEpVeRlX33ASo8cMp6J0MC+//ArhsEKBp5jTTz2BlrZ9XHbD9Zxw4im8/9Z7TJs4lS8Xb0bOWfAFfIweP5BgaxJSMiRCiGoCp70Ao8HGAw/cRzTu45OFb9Pa1kRdbRPvvbuAN955i398+glz5szh0osvIRyK0NER4uNPFjFsxHByOZkVK5ei1+uZMGEyDY0d+HxJHI4iRo8ZT0d7HWvWrCSdhU+/WI6kiqSTmR/5dP5Pwn/quff34j9uhP+Kc/M/n/klm+3f65/zT02mcEhbP4Xfahf+a9d/aXy/VP/7msRDF/W/8q6f0g7/q+39Wp9/a73fKt3/pfn+eY3rv9fnn/I5/qX+aJrGm2++ydp1G/A4Pcw4fAKiEsOgc2LU5RFsz6KRpaWlBWNBX9ZKoyis7InOv5Fo235URaWsuIRPF36MQacjlU4h6XV48/IQBIE8t5dkIsb0I6czaOhQWpvbEL9NnVNeVkJpUR4aKmaLCavFTENjPRk5RzKRZveuvaQTSVx5+eQUiVw6QF3dXjRVZdZxs8jmFLKyTFV5KW3trYg6Hf52P7169sKg1yPLMslUklwmi6KpDBw4kHfffgc5Y6T/4MF0+OuIJRKMHDUanz/AsOEjOHLaCbicJSxZupzOmJ82X5D9B+pZ9PkiRJ2I0WQkFIqw7OuVGAwmdJJIQ0M9oiggCgKxZJjjT5hOMu2jsMCKXq9n547tVFSUEU9EKSorQ1VUBEHEbLdhNnWbyUUiMWpqavj0k4WsX/cNQX8Qm8VOMBDFIFloa/bzyUef43Z7aGtv47jjjqWwsICW5mYQRSorK1n21RJUWWbp0mWksypGg510SmP71n3s2d1AS3MrwWCQeDxBTpaprOlJKpNF0glYrWZMJhM1NdVks1mam1uIRGKUlJZQX1+H0WAmk4jz9fKvmThlCtmcjFcIYh95GTt376S5vpWuUBhfRwcH6uq48PwLWLLkKyRd97o755yz8AcClJaX8cdrrqGyRxUGSSMa6iS3eh2m7XvI5pL8U5s2vGcBmqYRCoWA7kNvTc8ynC4zRUXdvpI+v49dO3ey7puNvP/++wDEE93mbKIqYzGa2LGvAZvdw8SJEw+u/9EjRuFw5dHWHiCVyvDc08/jzc9j5JAReMzdTIOqamzY00gqkaCptpa2tp0G+gwAACAASURBVPaD/5lzzzqbx+c8w9HHHYvH4+LO228hlqijvs7KsUeeAUC4q4twOM3NN93D/j0+du3ZBUDdvgZA5Zt1azCYDCTTMd5463XuuO02hg8fe7CPLW0B2lr91NfXs3b9egAGDRqEzWKnpaWFzZu3c+89D+J0mRE1N9u21OO0laMTPOQXl2Eym4lFozTV1zJ/wXyuu/lmxh0xmYgap6p3Nd7yfHoM7MuHCz8BoK2jAw0Fh9OKxW7DaP5Owzh4QH9SOZXKHr3wtTbhzXPRs2c1evG7OgP69kbSsuRSUfydXXicHkLtPory8g7WCYcjaNqP6VC5w/Wtea1ATu2mWQa9wPy3XsLucTNi2DAAtm7a+CP6dSid+5EFzM/EXzjiiCMwmUxs2bqFaVOnMveVV6ndvY+yshLM1u6ARal0FKNdRTSksNhVdu9Zg6jTkYhnEUWRcMiHQVeCXleAryOBTufAbDSycf16VFlG0cBgtmC1OWht68Dp6E6z9U+01tfhtTvp8nWSTXQy68ST+NONN7F313a2faulnDRpIlarmUwmRVVNNaFOH6uXf83mzTu59JLLqTvQgc1ZQEcwiNlh4pgZR+FxuwE468KLeO3Nt5jz1FPc+l+3sGLNOi684ipi8Ri6bwUTipzj1Vde4fFHHyPf5WHeO2/S1NaKzVOA22OnuCSfIUMG8OLcFwEYNmQIw4aPAJ2Re++/h3QqykUXXIyqynR2dmKz2Uin0+j1eh555BH69OlDIBDgzXfeAeDoI6dTUl6Dy1bF4IETkHDjdlbgsRvpCkfx5OcT6wwgomI1m7CYjUiCRklJGbKsIoo6BEHCIEqogpGS4jKOmjqJ446dSVGhF70OYtEw7743j5WrVuPNK0bRTEiSkfVrd2C3eXG5XCz+8l2OmzWB4hILg4eUY7E4kGWZ6uoKZDlNVyTA1u3r0DSNyoETyWkWvB4X2WSMXRs3oRN1XPqHyzHqVUwmG5KkRxAE4okuBE1FyWrEohmcHheVFdW0tDaQziQwmyz0792LfoP6kVVymAQBLQtznnySkuJCHHYX4ViUhx9+jLGjRtPWvI+ucIhHH7gHJR2noKiQgf3HkE3rGNh/DPfePRtNzRHpCjH+sIlkVQ1JLyLqVCZNPpxLL72WwsJyGpt8zH//PZ596XWSaYkD+1txO8z425LI2VbSsXbeeXcevWvKyGbSjB45Dl9rG2aziaKyEs4+/xxK8vKprnLj79iN0Rxj6owBpBWZnCzQFYpw2LjhJBMZUqnucv/9fyUWDfP10uVkZIUBQ/tjsHhBZ2TCpMPQSSpqNoOay9La2MCWTevIZTT69u7LZZdegiSqrF7V/Q0cDjvVNZUodFtsVFTWYHV6ef7FuWzfvpPrrrkGVYQe1b3QVJGq8iIeevAR9HoJlRSnnnoSeqOFKy67lH3bNyBqKmklw6Z1axk5dAiXX3sli75cwt333Ud1z37YHQXMX7YRxeRm1ZbdTDj2VIYOG0x7exvBYBAQKSsvoKiwmBNPPJlbb7uZG2/9L+574H4cLicvv/gidfVdPProO8w88gIiYRGT0ca48SNJJpOsXPENFVVVtLT6OWLaDPbX7aVvryrOOvsMho0YzojRo1jy2ZdYTFYE4acFfv8Kfon3+K0a0O/j9543/52+/lycl5/r0787tu/jP455/Vfw/5Z9uaqqGEafgWHU6cCPoyD//0UC8r/474UkSTz00EP0Gz6CaKfIN8uW8vn8x4iGD9DRugujPkU8nuCPf7yOtd9sYtTo8eygkmjNKQjxVhL1a1n22fsMHtgfg0HCZNKjAV8sXkQ6ncZoMCCIAqlcho6gn6yifCvBF0imE9idNqp796G5tRU5l6FnZQUaKjlZBk2jdv8eJMmCZutFgcuISW9E1BvIZLJ8/sUiorEoVrOOk085iQ0bNmOzurFYLHR2drJh/XpSqVR3kBcgJ+cYNXIk9Y27Wb16NTU9BmI2WzGbLWzfvp2GxiYyWT9LlvyDE088Ab1kpv/wwfTt35cxY0bS0daCikxXJML06dNBVPDmFVNRWYOsauQUhf79h2I0mnE5XAT8QdAkevbsTTTWhdliQGey4g92oTdZkQUdmiawZ/c+Guqb2Lx5GzaLyLgxI/G63Bh1RkqKPMQjPjatW0os1MTmzVvxeDw0NDQwbPhQPG43sqqQzWYYOGAgrY31BANBBJ0Jk1nEYISKqiLMFpGaml64XF68nnysFgeZrICkB0GXJp1KUl5RzOYtm8hksvh9nTjsDkRRIJlMoKoq8WiU6dOnoQkgZcIAbAnkU1pcRkdjM0pWojCvmIsvOg+jUWXuay/w17/dh8Eo8LeH76e8soJ2n4/3539AOpcl7G/BbgDXqi2Yl63BKKgocneeV5tRh9FoJC8vD0VRyGQyJJJddHWFSCaTACiywuYNGxk7agxXXHUu0Zjv4Oa0ZPEiFi/+irzCYvbs3c+KFSuQ5W7t6epVq7n86tvQGTxk0zK7Nm3hqRdfobktwKzjTjn432jqCNJyoB2b0YrF7Dh43et1sauulS+/XsFjT83m6hsvRZNLKe5TRCT3vYOBPsajT9yOwy0TCAYAmHX0sezaupFRY0aholBcWkIyneDTzz7G4vB0p78C6hta8Hg8lJQW0OHrDjRVXFSAyWRi/fpNLPjwI+a+9hIFxSZEfYJzzpvF/v+HvbeO86M63/7fox+3dd+sxIUYERKSNAYkQIDgEhogSIuUFmlp0UKhQFssWLGGBAsFYkgIEHd32ewm6777cRl7/tgkQAr1Ps/3+/v1fr3mj5k5c+bMmZkzc5/7uq778DaQItjsThKajqrK3H3ffVx7w00sX7WSmrpaNE3D5/WSmZFBdlYWNlUFIBaLUVtbiyBYNHcmSKbErjRcQHoggMvjI5nSMY0UR49Woes6Ho/vxLU6FYu2hqPIZoLy0r50L+3N3h37UC35RBkzpSF/x+cxz+P/ekWUEQSBt954BY9NYNCY08jOywegtbnl7xjR/j4rKSnh+eefx+12s2H9Bm768c2cNX06w8+8iguuuJYN27dTWJ6PnrQQDQdywkn33AEkkdANAdk0SHeLmGKcUKIWV3qMsHaQeCxCdlYGpqGRMqPEkxF0C7KyuqFr4PN2PUfJZJKi7ABnjB0NySjtDZX40t0kUxHuv+8uunUrAsDjdpHSkuzcuZ0jNdX4vC56du+OxxvgnKnDCLdJzJ+/jrJ+gzFMkf79BzH35dn4vG7a2tu5+Wd38Nwbr7Bw+QLOv/hcDlZU8PB9v0a1dd33bsVFTDlzAq++8hwNlQcwzCSK209jSKOuvhKEJI0tdV9D3q+8mnA0SjSWxJcWwDA0Lr3wIlLRIF6HghYNIVspQqEQ9913HxkZGew7eJCm5i649Myrr8AwJarrt6MZbchqCk2P0NJYi8vlIhaPI2NimTrr1qyiubGBluZGnL50VJcPpy+dcEJHSpmE2joxtBh5GXZWrVyK263idIr4fXamjBnJ8EFDiMXhsSeeZ9DAIYRDCQRBprGxkYTuYMq5l/Hunz9l4ccrSOgSgurEUmyoipdwtJ5fP3oziiLRHhM5fdwZWLpBxaEDXHjeNKqqqvj9U09RW13JV0u/xC6pxEJBRMNE0QU+/3g5RUU9CCVTtDQHyc8rxO32cGB/FYYCcT1BMh6lufIIl511Pn16BNCMIG5PEZF4B4IES5Z8QDzSQuOReq6+bAJapJZYe5KiUheqM0xLxwHmvvM0sVAEl9NHXUMbFjZkVeJozRFMLH5y+10kdYUli5dyz90/wZAziRsu7vjpLzmwbSuZGTmUlnhIxBuRZIPGml0EHCKP3nc/ic4wsiTQGmwjkBGgvvooLY1J+vQegsNmI5kI4/Pl4vFlUFZWRka6/RgfXUSWFObOnctpI3oTSHMjShK6afDqn+YRT+hEo1GwNCSxS2jK7VEZMKCMO259gIN7qwj4PIhonH32uTidThBMdD2FILhAcPHmnI9IRGXGTpzG2+/M56zxo0jqKTxeP4riQJFFqg51jWnhWDWvvf4y0XiY4cMGUpSXQ9++AzhyaA+PP3I/Awf1BqfFrT+9hl/88k46OpKcNvIcLphyKnrHIXauWUKuT+Xd9+YQSPPw7LOzcdoDeD1+VNWOx+MipYdYtXYNTz71B2688UZUVaW1o4JNO5dTWb2Lpo5DRKNxKisrCEeCtDR3oFtxTh83lpQeJxzv4JWXX6OhoYEvl3/G4k8/ZMEHCwi2B/mfQFn9/7t/8b/yyv8RD/8fjaL9IxE8QRAQvdmI3uwT5/7mvuPE7H8ZP/5P2vG6BEE48ZBblnUS19fAsgyO8zj/Fi/UsgyO803BPMFlFREQ/4L7K2IJIEjiifpO5sx+k78K5ontX3NsT+4T8aTln+uXvydS/bfO/Tf76jj3VZS+1gr/1v5vL4IggSigoZMSNMp79sGX7aJXeS5WsJOGLR+w+dO3qDq0A6dL4cMF8xl86lA0VPKLTuG2R16lve8tuLqPYcrQAgq8JmK4Hi3YjhVr5fqrLyeZSiDa7SQiUdK8aWhJHbfHRUZGBslknNzcPLbsOMTqVetoaelgycdLicU1OlvaaW5soE+fvmTlFFJdfYSw7iDS0YiqKrSG4qxcuYIJ48dh6BYOvx9LlOnRqzfRRBwTi+49SlFVBUuHVcuWs37lKmx2B/ndSinr3ouxY05H01MokkFlZQVl3XuSmZmF05PGJZdfRTQWIys7nZ2bthCPx1DtLtJ92aTiGrIigQSGcCxtgCQiSRKiLLN583qkY/3rz8pDcaikZ/sRZQub6sBMJMnI8HH44AHaG1pJRDs5ZWA/XG4b0y84m6GnjkA3LFSHg/qmRvSURDjWwJRzpnPZNVeiKCKRSBib6iAcSuLyupFNC4fbTmZpNgWF2bjsdoxEiH4DB1B5uAq36qG5oQXMFIrNTlKQsEQBSbARD2ukIhpNDfUkIjF69ejDzh27yM/NZtO67bz97kJ6DRiMYhdJy8xDlCUSiQippp0ciJfy8stv8NvHnmLj1m289c48EC1WrlqFKMksXrKAaCRB1aEKCnLT8DpUPC6BiRPH4LTZERwuZGc2DpcbEx1RtSNLx6J5/lzCzU0YoQQtLS1ILpnMrHyyMguwK46ud0eUufLqG5l+ycUkTZG07CIUpeun3OXz8bunfsfsZ35P757dePXV58nJ7RJdOm1IH847YzxvvTKPPXu38uwLzyM113H7LTOoa6s58c5IkszmXYdIpmR8/q+jjKYmISY66VlWzmcfL8Xv9rBy03raGsJ0tjWfKHd4734mjB9LICvrxLaEFqe2sZnePXqiyE7u+vm96KbM7Odfg1QXlBwgIzuLI1WHSHOppIwuh95uc1J35DC/uOcB7vzFfdQ2BvFnlePKLMBUfHyyZAVWwk4q3IGgw9vzF/DpF18gSRJ33nIbsx9/isaGNqr2HODgjp18uWQR086eCkAsESVpJrG7PThkFafNeaLNkWiQnZs/xkq1YRkuSOmoioigfe1Myqob5EwEuxO7G2wBJ82hKJr4tTiQJVmYkvWNce34NwMsM4WIhWQZLJz3R8L1h5kw7TJkxYV4bFzsyusq/sXx8M1v8clj+vFxW8CyhG9sl7j00svZf/AATz87mwsvmE5WRgYdnUE+/+JzfnjNTCafeQGtLR2YpknKCpGw6nFIMt70AG5fgFRCIhxqJiOjGzm+XghhDzZ3BllFfUkaGh1NdTgdKpKsgs1BKB4mJ6frGTxw4BCymsnh6grWbtlBYfehuNzFzH1tDnu2b6a9sxOAHdt3o6dU+vcfztvvrsZUMsksKSWne3d+9cCD7Nm+imceu5uWo3sRMHn/vUWMHj2JdSsWUJCZwfChIyksKKS8tISxI4ax4J35FORnnIAA9+3bh/wsPzddNY07f/Ubli1dAwmDtqN12G0+TNHPex9+1PX82e1MnXomiiqgOE0SSY24JnDKqX1xedxEYwl0Q0QQXFx9+QySWoJgIsgrb7wJQH5eLqf0O4V4PEZhZje0lIgs2ZBNnWQiDIk4TtmO7PRgxnXqGxMgusjNS+u6v4pEfWMNLslEtHtI6AJnTb2GjngK3ZDIyy8C7Kg2L4EMP6pqUl25g+effoYlny9j7OQxlPUpxZuRwcF9O/hy6SfUVR9i9YpPEU2LpBnn9NFnU99USe/yPlTs34fkcOFJNrH6s3dw2Ex69zuF7bu20dJ6BKdHJzs3n4bqQzTXVXHRtFtob+/AEg3SszxcOH0azdUNxDrq0A0RS3KTV5hJXkE6ZjyCw+bHVzyAxcvn89DjL+Bw5ZCMtxNpiXFg32YyctMYOGwyg8eO5fcvvo3qzkJyCBimC9k0cTvyUDJchHSN3fsrGDpoCLWVVQQ72xgwYCCJpMDM626i+tBBoo1tGJZM++E9NFau4pe/uIXV63eRlE18hT3I6jYR0ZEkp9dE0nMyKBxQRPfBgxFUO4pl0XSkhq2b96GlUgRjbcQ1J4f2N5EM17Nq5Trmvv0aqWiIgX1GYVe8eLxOkHRMyaC4pABZljENkU8XvkNzYwWqqvD5F2vRLBFfbh7e9BwE00YodoTfPv4gH/75Uz54bwWJSAOGadKZVAmTxq6tG1DEJC6nwsaNm9Ham5k2dSznXzyN9ppmLDNFR7yZ9PxcJFsr+YUZFOSXUd/QxLaNWxg6fCBZuaXs33MIn9/N4foaisvKuWHGtbjtdjICHlqbjqDKcVav3ognt4yrb7uH1nCSN95Yhqk7uPbKKzm0cwuqXWHpoiUc2r+DisOdSFjU76tkzisPc+WMG0nEJH798wdRkfnqy7UcPlpNtCNMhtfH0qWLCLaGaG3rwBJsrPpqI21tEdpqmynNLqGhqp3Nq75i0bvvkCLFv2r/6v/+3/JtrJOWvywgfms58R8rCic4qyeWf7RNJ9V98mJaAqYlYCFi/ZP/8f8rnVf4fsWu47MR33QcJenfF+L/V+yv5WT6d9jJMzH/ExTNjt+L/9o/bqoskJ6bzZBJ03D3GM7+7TW49HZiNZ9TX7ETv03A53GQSpqYsTCXTp/G0dqjdOQMITjoduLOIpKahS1WhyNRj1W9hszYftT2vbhUAzPaTMDnpaG+nlAohN1uR7XZ6D+gH2lpfgTLorAgnxXLv8IyLRwOBwsXLSQvLw+vx08iWI9hCmRnZ5LSUsiyhGWZZGZmEI3EUFUFLZmkpLgIr8dFSUkJA/r3Q7VJDB02mO7du7N54xY620OsX7+aYDBIW2snn3y2jJGjTycnrwCvP41kUkfXTOx2B7quM3L0aQQyMonEY9Q3VaPHOqk6sJfWphZEQQFRRZRtiFhEO5oZeepgFnz4Edu3b0OLhxEFlXg0hcPuJRbTulIKCRI9evQkJzcLBAFN1wkE0lizZi25Obls2biJ6spKXKpKJJoiK6sYSXSwadMWBg8+hYrD+8nNz8IwklhYWFJXRCEVU0npIlPOnYrL58HUbWzZsgmkOCXdyvn80y+IRWKYuo6WimNYcKiiipzcEuoaQtgdDhYsXEB2bg7NLc047SKKZGFoCTICPiKhMHbVRizUgU/swDPgIiZOOp0Lpk9l0OA+3HzLTdjsMslUjJQWJ5HUqa2tRrW7OFrdSlZxd0Sbh5z8IixBRhGg6sgh4ok4piUQDnYgHFOgldIG4M/KQrXZKMjOwG6maGlporqmAk1PABCLR9GMBDfdfAM/+ckdCKjHg4VcftUV+LPSmXnjtQTjYZyBdIRj45XqDZCe7eWSKy7giy+X8uzsp5l8/hnY/C4M+evxO6kbTLvwB+w+WM1LL75xYvvRmmp69xrBV++/zlO/vofX3/mEsaPH4Hb6OHz44Ilyad5cQg1tiO0tZKQfg89KMuecdxERLYLDZnLDjJkk2pMg6MyZ8zadwS4125bWID36DCesKxTk5AFwuLICrwvWrfqc1oYqnIpFqK2JT96aS82+XZxz9lm0hdpwBrIRFScvv/oyAFddcSWzrpvFVVdeimrEMEwNw9AIBNKoa+iCQ8uyQnFxNzo6grg86URS9Wha10+TTXUzfOgEIiGD/LxCfE6ZVCoFNs+Ja9UNjeK8LHZv2UDt4SMIhkhWIB373/ENqgt1YtEVod354WtU7D/EFXc8hmHvcqDr6+sByMzM+tZx8rF7lUgkvrfu4DGe83E7PtGraRqCIJAeSGPWddczb9485r36R1769W3ceuO1CILA+o2beOqFp4nHo4iCA0XyEwqFUFWVcDiMaZo4HV4SiQQpLYFhpqiuPgKmhmkIpOV2I6GBoScINh/B57TTvbRb1zXX1xCPx1i3fg0//OE1xKJJGmoraGlrJj03l/aOLrj8iKGDCceiNLZ2cub4gahWlHhnG91y0hFFGDFyEO/Nf5Pm5kY8isQll0wjZRmkZZXx7p/eJdams3bZZj740zxCDU307T6S42LNgiDQo88AHGm53Hnvo8x+4TGGjxzIkSNHmDPnTSoP1xMOd/L2e11iYWNGjSYQCOBUbSiWHVISJYVl5OUWY1kWjY2NOJ1dquYvv/YmoWCCRx96nOUrVwJw3tnTUGQ3a5avQZdAdniIaiYpIDe/Fw6Pj2CwHV1P0NbeyLRpU/F6MjFTaSiKDTORIMMfIBTRqDm8H6/ToK56F6oQRze6eNyyIhCNRunoDCMIdkrLyzhSVYnbJmATNRR0bKLOmHHjmHTWeJDAFESSsRoUzc4vf3oTWrCVSGsz+el+Hrrzx+geN4H8PBJajNb6CubPe4ey4nK0lEhVTTtTz7sKZ5qDiZNKaDpaTTJpo7y0O88/8zSJhEl2QWkXhcIysNvtfLpwBTbRRqijk6mTz+bjxV/x+989x68fehRRFMnO9XDutLOQZIvWtjrCwRSHD9Vy+FAjqYSMlYrTGYxT3xxGVtz47S6Ks3JY+9WXFGT4ccpuRMskHKxj/dpP6NOvmLgV4oorrsIyJXr16sXFF1/KsqXrEJNZCLqJpjficjnQLT8pw06oPY4iSiSTSTzeNLKzc/nBhDG4Xbm43OmIskRBcRYuj5fThg+jb9++6JKDozW7Ma04CDpvvfM6Hp9MMNyErGqktDCzn3uaboUlJGMW40ZP4ZS+fbBbMKBnTwwtybKvPqe6vpLaxirGTBiOJip0dAR57L77aauqom/fviQSGo2Nzfj8bs69+HTOOmci89/9lF/84i4cDjt2m5NIJEZp31OxZCeGoXHRuZMZO3oo2bl+moONZGZn4E8v5977HsIwokyZPIq2jmraOxpYv2E1r776KpmZmVxz5QwckoLT7eLTT+bjdoskjBCBDBetLU1MmjKZ9nADPbqnEfAV8/Irf6ChKc47C95g0sTJTJt2Dk1NDfTp3Y/iwgLmz58Pgsis62/ESISoO3KQg7u3cedPfkQoGmHuvNc4dHAvRjLBTTOuYe/WHQRbQ/zX/t/a/xrn9ZuzFMe5m9+Xw+hkDuu/I5Hw95m27wv0/V9+Z6Tuu9b/nrZ887iT6/1rUAHLsr7lKP41R/mf5XX+LfuuyPffE3n+V2ehvqvP/t5j/tNt+z77W8prFga6liSmweipF1A4sCebtuymf+kQhPgRvvz4TSQzgtOlYvcIDBjYk8KiXBx2FafXz4ZmPy+sFaguvpz6njPRJz7ETv9k9G7j8GYVkmypxNW6FZ/Zwd72bDpsQ1m1cjXbt2+hsqKCwvw8+vXuTZrfh67r5ObkcuaZZyLLMrJsUuBsoiWmYrfbERDo27cPqWSSnbt24nJ56GjvwGFT2L9nFzW1dSQTBrJi43DFIeKpJDabjVBnJ36fj3HjxtPc1EJJSRm9uvdi0/pN+DweTCPFxg1bCIdj2G12JEnCFCCRSpGRkUZpSQGBgIeSkmK8XhdYBgImJhaaptPW3EAiEWPa+ecz8rTTaW1pAUSCoTB1tfV8+cVX1NbWIAoypgmRSAiX24Pd4cTj9TJ8xEhESWHYyJEUFhawds1qEimNo0caqaltwBfwEgx1MnnyJLAsKqsqMQ0T05KwgA/en8/KFasxTB0smVRS45xzzqGluZnqmmomTRjH3l27aGlsorGuCVXVKC7OIhhuRjOjtLe343A6KSsvR9N1yspLuOSSi7DZbEQiMYqLi2htaUENVbK32YXq70cqIfPRB0vJyymntraWxsZGHA5HV95Mt48efXuT0mH27DcQJJlEIoFgGNgVcMgqdlXA5XIhCDKhjhbi8S5HxNKjSLIJgk4sFsNCZvOm7eTnF6IcE/1xuz0Iko3RY37Ak08+SSQSoqKiKxVJPGpg6k6qKlp59+0lzH9v3gkY7NqNG5kweRyiKvPwY49x74OPsHffYdat28CqVV2KqqIokj3kfARsnHHGWEaOGH3iXdmyYxMzZkzk5/fdyFt/fo2LLruApsYaOto6SSQ1AJwOB6X9ivnDcw+R1OooKykDYMnHi0DXUSQLM95ONBLG688nFAry54/eP5EGZtSwUVimSiicYNiQoQDs3rsPm9tLXn4GQ08diNvjxG5z8oOxo+heXorH5yctMw9DT2FoSRLJrr4c3L8fBYU56JJJJBTGsnTcbhearrN95y4ABEFEQMLn89MW6gTTcWKcCEfaSGlRovEWOsKHaWrtwEI8Ia4FoBtJOjs7ycwqIBTuJGXJHDxcAerXZb7vO1AT6uTIoQPs37aZiGZx930PgWIHQSEcDrNtW5fY1eDBg791nN/fxe3sgjt/Nz9q0zG+8De3i6KILHc5y9Kx5phYdOteRveSHjz5yENMO/ccAFatWUdnZyeWZZGIayiKcqJut9tNW1s7qqoiihY2m4TTLtNaX4vN4cGp2EhGI2DoYGlgCYwaMRyAWDzG7gPbufXWW9i6dSubN28lJ9PN/Q/dz9t//vBEey+5+EICGWlcfN40MjNdWKaJ351JKg6WHuDQgUYe+fWz1FXHaWoOo9osErEgehJ69cnnixXvAlbcqgAAIABJREFUcfjIZuLJNvr2H86D997Dm2/PBWDi+PH4vQFO/8EE2sJxXC4fqaROZmYma9euZc2aVbwz/y06O7smAG6//XYkBCQEFr77Pls3beR3TzxJNBZDURTy8vKIRqOkUincAQ9ejwuXx4lhGoiiyM03/RhFtFGQm80ffv80DfXt2BQ/0WgcS3YQ1xNkZmfR0RrFSGSxYsUqmlr3Ycn1JBMa1YcP4bN70DSFjMxCBElk587tNDcd59omiUZSqLKHrOx8FNWD3elAtpldqC9M6utr0fUUql2lpDyf4tICnnjy9xytOYqATklxJj+572nCagFqQT/ue+JZkCRE1YaFRE5OMXf98iEWf7wUw7BY/dUyrrn6Ro4ciHHRxZdz5RW3krLi5ObIvPTSfZT3zkUT7UTCYUwtyratW1j84WJWL/8Sv1PmkunnUdKtF5dccil33nUblhBDlDTi8SSK7CCVSuHyGpw9bRz9BpRgmDFkmwt3IBeX6kEPRggE0pk4aTx6KobdIaE4vBytbSBpmOzav5cjR2u5/7cP8ZtHf0sqKbJjxy4SyRB/mvNH7rjlepKxKImoTkqzWPPVcgb07kdGdha6KSDaFFKaiaDY2Lx9A0s//4rOYBTTEnB7PciKjbSAjzGnj8KTkUs03s7BgwepPlrL5ZdfRjToID97AKKZSVN9ivLyUjo7Wti7ZwfRaDvbdm/HSCZY8eUXNHW0EIkm6FZShsNlx+Fy0NocZcSwUfzsJ7fSs7SIHTu2UX20nquvvppevcqJpBK4PG5ef2Uejz/xG+KJKAB2m4v6mnoEuhzwfQf38dG7b5Oemc74KVPIKihCBRLRDto72zjrnIvp33s8Lzz3LhdPn8UdP72PYSNHcNF5FyAZFjabjUUfvUs01kl+fi7+zHRaG2MgZBIOyvQuHUhpt1yCoRjlPfuxev1uPvnkczqDbQw9dTCzZt1IwOtkwoQJWJLMY0/+gaSWorikG6IId959N/f/+mHuf/AeGuqPctVll+LPTuPiSy/jhzOuw7Ksfykw9l2ZMv7a9n+Xfde4fPL/579b9+X7yv2X8/r/0Iy63Rh1u/9j9f8jUUtBENA07T/Wlv/a/10zBRPZSqGKKQIeJxOvuJdzZtzInI/eoqV2O33KM1i88G3q6g7jyXLTHm3nlAH9sZlCl1iSKPO7555CkhQURFKRJNVV9bQmnZg9zyA04EZe3mQRcCkMH9ALb3ohgwcPYcLEcRQVFlJdXU1lVSUDBw7E5/fR2dmJIissXryYHGEfKcFDUbceGLqBosg4HHbcHhenjRxJIpmktbmFjrY2yktK6OwIc+jQEVavXNel2CooRCIR/AEvn3y8kPq6FgoKCmlubsBls9GtIJ9gewsrvliK1+PD5XKze88eGhoasKsqne0dtLe0UVNVQVTXSFkGLrcDUTBobaxBsCw0w6R79x5IssqBw1UYokwgPZM/v/8+Bfn5iBKMGDGcwsKCLg6uaeFw2OkMBtENA1m1oagqdo8bA5OOUJDxkyZgmQZp6VkIgkBObhZ+fxrt7Z0cOHCIYacOxzIFLJwoisKUKadz5hmTwNQJd0aZM/ePHD58mIL8Mvr370tl5X4GDOiNTbWjJQyMuMDenQfQEjqpeIrs3FymTJ3KZ0uXMuCUU3B6PFRVV9MRjiDKKm/OeZNFCxfgMerZ0ppHVfUOJkw+FYMO1m9aSl5uMXabh989+QySaOfIkWqam5uZNesGDhyowUgmsUkWWqyDVGcrkihSUJiHYVoYpoXPq2K3d0XzzEQjWrSNcKgTDYWQJjL3zfm0NAeRJfXYUyuSSMKMGdcjSjo2h0hhYQEAspTkjy8+wuqVH3D5JZMYPrTfiQ/Qpi1bWLV2A6tXrWPD+m3cftvP0ZMyIwaP4vmXXgRg2KmDGTRkDLOfmkNN5QYCaV9zXj9fvozd27dTF3OzbEMDV0+/iawsN7OffZrPvvoKgAumTceZVsxFM26mM2Ej95ijldQT3HrLdRjROPt2bWbbru2s3bEHp8uO3IWGpqy4hJeffobZv3+Ghupapp55Jh6PB13Xufbmn9ISDBI3LFqDUQzRToeuk5IVHn70SbZv20dHQzX1NUdxu7v68otln7F+3UqQFey+dBB0KioqePix33ZxzwBREBFFGV0zcXlUfO5SRKHLwctMLyIZc+BQs/G4ssgp6YlmSbQ3fi1ilUxGUV0+Ajkl5JcUIzjtDBg6FIxvR0W/bzJ05syr2bdpDUMunEVSUnGaERTT5OmnnyIejyPLMtOmnfetYwYMGADAsmXLTlzHN2358q/YsGH9d54vmeyCYp9IrSaJdCstIZx0EApb+Nxdwl2CICJJCqlUDIvECUTTcZX29LRMWltbae9oJRaP4vG4SQt4SCY1VC1OwGHHpsqg2BFUD5PPnHriGb3ux7NIpRKUlZUx67qb2LB+JQgCHyxeCEC/Xr0ZM3YcyXiYNUsXoTjcrFq9nZdefo/xE8/nyd89Qkpv4Y05zzH2B8PYvrcKUbHoaKtHSMZJxBSScZG+vYfyzluLueLKWXTvm8PyVWsQRZFrLr8Ir0uhb8/ujBg2lCGDxjDnT2+zY8cORo0awabNa/ho4QIAepSXM3zEiK6cs5EoF0w7C1UyuOyy6bS01aPrXTzGpqYmAAwxRSIZ4t0PuqK248aOxuZQUFQRr0dm1tUz2b/jIH3K+uGzu4loIRSb1DU26jbKetkZObo3OTkFiGZXxH3vzh18suhjrp/1Y1at3cuOPZXc+YuHUJzpRCMpwqEkc+fMJ5WUsESJlCYQicf49POPSSEiqHZ8mVmobh+WAJFYENWukEhq9O4/El3spK6xmu0bNxJsa0UwdFqqD2OkUli6RSxusXVnJXM/XMTuigqcdpErL5rCG6/fSd+ePSgqLWDKhePZuasJtyODl198jXAYpk67gEmTJuG2q/Tu3Zu8rEwO7ttOMtnBedOm8MEHf2b16hX4/Hai8TYcDgdaCgxdJhZLIYte0nzdaKiN89zTc/nd7Fc4UFHN1EmTkSJBGluaWb56FXmlBSSMOEkBlq/fRH5Jby64+FqqDjeTNCx8Pg8XX3g1+XmFqDaTjmANL7x4N+tWr0AhC0m0c2qfEir3bevK5a7KJBJxkFQU2Ubf/r0YNWYkkirhcLtJ6QJtnZ1EwiHa2tpY+tVqkskET/3hWUpLemMaApVV+xElg7r6I6xZu5K6o7XYFJHevQpRlCiGKuDL8JNdlEtuWSE1Na14vOnkFxQzfsJEdm3exfBTh9MZ6iBFigEDBtCrZ1+am1vZuWs7m7ZUEovpHDlS0ZW6SrCIRCLU1TUgJeOkomEsS6D/4OH88IqZyJKNzkiS2ro2xEQT+Tle0jJzqaiJsmjRQi6Yfg5NrQdZuOR1dNNg9jPPsnvbDgRBINQZREukQJCRVBflPTyEYg28++e5JJNhvlzxFm/OeZ877vkp8+auYtDAIfz+D49TWVnBksWfcedPb2fQoEFceOHF3Hr7HfjSM1FdHvoOHsrlP7yGbdt3kErFCAfbOFJ5mNFTJ5PTrRvTz5vOunXrutAu/x+0fzef9j/Bz/1f6bz+M1zW4/a3Irb/E+ybEbnjOaSOr39zH3z7x8OyLFRV/b5qv2Vfz3p8m4/0t+1k3ue3l7+cSfnruVH/ksN6cvl/neP6fXDtvzXD9c3I/Xc/G3+9bSfnuP0ujus3+/4votaI6IKMISroCKgKjDj7EoaOmkpnp50P3nmf6h0rUKM16AmVU/qegqZHMW0iedluKg5uoPbQTvKy0+jobMWd5mfKxZcSFhzEkmYXJExMZ2lzD8IJAZvWhMfnpPZoDQOGDCEzJ5fNm7eSSmnUHK0jv7CQaCzMuOEDMFq2kVJz6ehoRxREPG43iiwRDEfojEU5uOcA2Xm5ONxePvnkC7KysrEwycnPJTe/GMHUEI/x34qKi9i3eztrVq/B7rCjY5KVl4MgS5SUljJg0AA006Rfv1Noa2qlqbGdPdt3IRjg8GTh9OfRo88g2jujGAb40rJpa2wAQyecglgkRo/yXmBZ2OwiEyaMIRaLkptXSGZ2NpqpUFvXxsKFiwl2dLBsyZdgGjQ3tvPeO/NBF5nzyhyqKqrRdJG8/AAyIimtA0OTUew2JEFk797dhCOdfPbpJ8SDTZjJCHbVTmNLKwYCCS1FwCnTq1cPDEnEsDQKi/qQ1CS2bduO260QDjVy6vCBeNP8jB47GiOVIJVMcNbUM9DNBOHOEC5VpbWuHlWy4XKpjBmQh+XI4sr7X2T18g3IkoP29ggzfjiL+rpdJOMJLrrwMpJ6lMaaQ3QryOOVV55h9gsPIogWSz5bhOp2I7rSiBsS4WgCLZXC1DXSs0sxja4PtNVymGDEQLdUXnl1HjbVzbx3XkdUtBOKraapo5lxfnX3zzDiJrLsPQGJTKQErpp5MzfefCe9+g+hb+9hcIz/6PV4ufKaGTxw/730LC3guaceIa8og0FjhnPo8GEkSeKeex5jxhWXMnncUFyODLp3LzvxrqmKynV33EV1dTXlJQX86Cc3c6SunRVbl9Pa1obT6WLapLP48M15pAeKWLB4Ew8/9gf69ekLwGfrlvPR58vpO/psLrriCm647mxOHzee3Xu7oqC33HgbP73nbm687QZ69u1HTpaPn918GwCfL/ucm2+9hU8Xf8ptN95CItKE5FJZsOAjVqxaSkG+m8ycbPLK8jl9zFgAFi/7ilUbdnC08jCyJFBdV88Lf3yRP77xBoFAl1iSCbS1tdFSs5/OujpSsXqOD/cG0BlpxRRDhKK1GEkDUdfJyMo/0ScuTwbxVJJQuIXWplq0eBQzlSQR/przKggCSVPk6NGjJA0T4ZiAlkOS2bhtB2sPHiXS2YQlQGskwSNPPM6jj/4GgBtuuJH8/PxvjaEXXDAdURRpa2tjxoyrqanpyo0Yj8eZN28ul156CWlpad8aJ48fe/vtP+GKKy5n/oIFNLc0gimQMmTye5cy580XeXt+l3r1GZMmoOlxYpEgNtkiEWnBl55GRkERV1x/LaKhkeF2IYl2sgt6EQuHCIU7UBSBmJJByJQJhkOYiQTVtQeRFZFHHvx1Vzv1JI/8/g8gJ3nosSeZedNtTDz7fPYd2A9ApjuX3dv30tnRguBy4rBMyov93P3Irew8upXa1gomT5iMy+ll2RdfMPuZJzhn2o954+1PWLlhPSu/XEFdVTXt7UFaYxrPv/kiD/zuSQB+fP0sfjB2Igd317Hgw4XY3Ba333ktM66/lqnTzuJHt1zFw4/8jpUrVwNw+TmnY0bbKcjNI5mIE8XBkboQsujlyYeeIRxMEdc1MnIzCDZX01pfzdpN66iorATg2quuwanKKKqF25eJ0+9n2JhTOFS7nSQ6hDtIBmN8uvgzVJtAIpHC5csnoUEwWEs03oZuqQwbPY7ufUqYM/dP5Lj9fLV6K3fccQO79xyg+uhhxo0azuFdO4l31pPU2xHxkJ/djXBbkprKWhQEOlvr0RMaDlVFS0RQZRNRkXEqPvr0OIVDFbspzg+g6GHy8vJItlmomHgdHrqXlTPrhvN4/rnZCJICngzs6WV0mh2YlosHHrwXO0F27t/N7kM1DOp7KmIqgcNlp6K2DpvNxwOP388FV83CUv0E0u3cce/tJLQwiA7c/lIsw0Y8kSIa1/lgwZe01R3hxdkvMnrUqUybMowP//QWihFGcdi55NqHcagSHk+Xgv/adbvYu207i96dh8OKsWnlJ/z8rl9iC3eSDDcw7+2XePnFeSQ0hYKSnoRML5OnTuPD9+fSUF+NL68YXREQLCdtdfW0N3fgUDX27ttILBgnPceObsTRYnEkLYHP7aazvZlIuJPTh48kK6uEV15/EZ0wkVicrJxsNMlJVk420885HW+6C4fHh6R6CGTkIls24gmdZDyBw4CSklJMojz88MO4ndmkZaczadx4fv3gb/j006VgKGzevJaiwmxefvEFXOgkYmEWfbIIlycfSZBJxDrpVtwDSQogik4kxY6BAykthmipvPvHP/GrO27EtMm8+PKrbNu4ASHZwAXnn09LSwuLFy6htbGJtICXefNfYtIZE2mrraKkaAgvvLKAliD86dXXOFobJtrURKSlAYfXx4UXziCpmjz19Cv84YkZlHTP5je/vRebU6KtvZPR4yZhd0l8NP91Dm36kpeee56dO3diYDB6zCi++OwjVFeA23/+EFGzjY6mRgQpQo4ngdzUQKim7lje3H9/xo2Tx8fv2/59iE7BEhG7MPhgfs0v/SbP9Jt6OMd1a0SErrzOXQWOCSB8N3dVOI77+Ds1hk5oBR0/z7F/43/G/tc5r/+qk/l9XNn/2n/tZPtPc5T/GUtgZ+JlN3H9XQ9w9c0/p6z3QOLhDlY8fwcbFr3Blg1rCNcfBtng9jt/gmaaVFbV0a1bty54qCCQm5sLgkluQS4zZ13Dlv27iEsmNK2j4ch+EimN2ppqECymXzgdQRSIhNp57523UFQ7sfo1pAQPbm86mqaRiMUIJzUC6WlkZmUS8Pnp3asXe3ftoKOjid79ymmqryfD76fm6FFcDjsFJd3ILyjE5/bisjlxOl0UFuYjiiIeu0CkvZnWhgbSM7JYs3wFbc3NiLJIv0EDcLok3B6FHdvX0VR7lObGOnZu34LP48TQEthsdhTVgcPpRJQsUrpOKhlHTyYBEY/Xg4VF5eFKQGDpZ58iiQJTzjwLyzTJy88jHk8QCgU5c/J4Eokwo8eM5sjRSlauXIZu6HgCfgqLi9CSKQ7sq+DjJZ+QkZGNINo5c8rZ1DW0IilORNnGksVLsEzIyPBz+tgRiKQwkjHcLg9ur5s9e3ZRXl4CooTLm4nD7UeUupR9VZsTSRIRDBNVtnHw0FHsDi+BtHQWLlrIuB+MptgTRe17EYpo8pOf34VsU5k373Va6yspKu5Oc2sLH3+6hJKy7kyYNJF4MkH3nj3oVlqCLMucccYZJ6I0H74xj1BTK6IgYLfb0VMmptnlfQqChcebQyKS4rShgxC1KAf27yUzPaNLiRrQ9RSrvvicH//oNn71q/swU3Gam7uUeUVBYtDAoZiGQF1tI+Fw8AQk98Jzp+N2eTjSUsuAUYMpHVDOpGlnUlNfgyAIXHL+JQyKfsXSR8/FGQCXR8Tp/hqy9YORkxBEkYuvvpzzrjyPW++5jinnT+ZQ5WFsqo3rZ85i+JjTOXfaNFyKDVEzkFQfTzz6LD3KexIKBbn1Z7eSU5hPz/49aeyo52htJQICt99wKzZToFdpKaKhYyWTCKbIZRdO50fX3YAoiiz57FNm3XYDG/ZtpM+wofTt3Y+ZN1xHZe0RLOLYHG4MzeSOW39KUWERhmFw/0MPMmT4aRSWlXDqqB8w+49vcM0PZzLlzCnH+lsATGSHC0Xtglmax799WgSHTSQtIxtvWj6JZJh4ItQF6z5mzQ11mMk4WixCwJdHNJJCkdzYnV/zVC3DQBKg/cguqpa/x76dXQq2p44cwU9vu41nZj9PcXEh+fm55OXl8MAD92OaJuPHT+Dhhx/puq/HJoRFUaRnz57cfffPAfj44yX06FFOTk4WWVkZzJp1HePG/YDrr7/h2PV9+1hd1/jggz9z+eWXUlxcSEZGGvn5uQw9bRw/vfdhUqkUI4cPYdaVl1BUXIIvu4CgJiHL7hPXo6Ugphmg2vGkZRJMpHC73aSlpXWhkgydRDSCzWYjOzcPp8ONKMicP+087r7jLgBenTOXkt69uPuXN9IRbuNIzUFEUeTeu+9h5qwbsbs8FBUUU7FnO48++QrPvDD3xPkdDgdun5fOcIgzp04hI91LY8NhFi35kMt+OJPLbr6GsedOpNegnrz5zmssWvJnAG7/0Y+59tIrGX3aGSQSKRKJBHa7ncmTxiMISaoqD4Bh8tKrz2FZFoqicPbUM5CdHpyBTGxuP2+8+ic+//xLrrxqJk8/9wKdLc3IhoiKk3MvnElmWg6vvzEPAEmUmDxhLE6nE0V28cB9jxOLxUgmkyiKQiqVIrswF9UuMe2Cs8jLS6OtM4iJCKaAz+XD6c1iyNBhrFm1nJ/ddiOPP/44R6srycjwc8H5F9KjRzGjxo4iraCQXz72JI8+9nscTjeWbpCZlgZilEMV+3A6fMSjIhs2bOGXdz9DMiEiygkEU2De3PeIJJIIokU8kcDuCHDwQD1PPPlbND0JgklKS+B1eZEFuSuXryohSxJ+n5dgqA2nU2TQiCGU9+nDyLFjmPPO68yd9zqqYicrs4A5c+agut34MjOJGzqGJKFHdWZcMoPm2nocsorsClDUrYTXXnmB/j26YYkCb8x9hS+WLyMa77pXhYWFrFrzKYOGltDZEaO1Jcibc94hMyMPjyvAh4sXEk10UH10N88//wz1LUEamtpJL4Fb77yVprooodZ6HPYuysnwMeNIz87BgYqNGJ2tu8j1p+NSBELtbRR3K8WTmUO0I4lNcrNu7VZCUZ3OhIYuihTkZeGxWZhWHE1PYOgiiuTmZ7ffRzIS74J1WxaJVJhYLEJraxuhYIx4RzWCFcPj8xDVUliKgY6FKZkUluXj83kYOKg/r7z6IitWrOL99z5GFn10tmtMPetiPlu2CrfLR8+eBUw5axqC5SQ/t5z9+w8QDQeZMH4cqVQERYlw6GAVgginDhvMY489hiUm8XpKuOuOx+nVp5z1Wzdz2umncdMtt5IUXJx11jTcaTlMv/QaJp59MXVNO7hu5tmke+CsM6eS63eQTIZ57rlneeLR39LUXIcqasQibbR1tNLa2szuXYe44Lyr0FIS69dsRFHSsNkD2D3p7NpzmILMIjat2cRzz8zmhlt+jCEJtEciDB89Bn+aj107tjFh8kQGDh3BM089haSnumgI/5ftP6k2/I/6SH/Lrzq+/9/pf0kPPPDAv6Wi/7TpuvHA8Sjkf8Kh+GfqFQQBvaoLAiWXjviPten4zf4uDu93OVj/CJ78+yYCjs+ifFOl+OT939z+/fzik9f/sq3froeT1r/9cp58vpPrORnLD38Ji/tmHX+L6/rX7Pva8o0C394vnLz7r0/CdE16fWNWTRCxJBlDUkkpaSiZJQwYcwaB/DIkyyAmOBkyaiL2jHxcdoWmpjbCkRh2h4IkSfgDadTU1qKqNiRJwOV2EchIY8q5Z+M48j6WHiXgz8OZUUQqkcDr8bB561aKS4pJTwtQUtwNyzRwtH+F6C0hpYNpWaT5/DR3RPBkZ9Pc1MKGdeuRgbaWRsrLy3C63TQ3t+IPBPD5fbR3tHP0aDWpVIp9+/bh9wdQFZmevXty4MAhkE1kUaW5sQVLkOjfvz/rN66nuLgIARPLNHHYZDweF3kFRQTSM1FVG06nC0VRESwdSbFhISIKEIpEcNrtSJKApunYbV3cQUVRURSV8vJS3p//PsOHD2fVqhUMGToMQRaoq66jpFsOgihis7vo1asXpd0KkRQVSxSQZQVFllm4YAlnTz2Tnr368PIrrzPs1CHEokm2b9tJQ30DI0aeSnpaOlWVRzGtFP5AOoZpEoslSCSTFBcX4PW68QfS0DSR7du3kpXpp6O1jS1bd1LWrRu11dXs2b2H8rJyYvEYy774HJvdTrHPQsCkJecGVq3YTElpHr974kmKi0qQJRtIKnkF+ZSUl+D2epFkEU3X0XQdp8tFPB4nGGwnEU8iSSotTS2MGDWUvel2XGeORTAN3p39EtUd7Yy35zG5XcC/cx+ltY24Nu9A7wjSlu5i2869rN+4nlLRxm+yunPTgMGcE8jDvnEHH2xfT0M8Qrf0LF567TVcbidZW3ZivPMRb+7ZRDCZ4LqsEp4Zfx6RcIRWLUFHLIrb7aVPj168N2k612SX4q/oxF6ZQN9QRf27n2Gs2sjz+7ryjJbklzJMcjK8oIjajjbiuka6w8XZ5X14oNdpXBbIIzygJ36fn4umX8Svewyg+bXXKaqsYWZpH3yyQsyyCMbjJHWNjIxMyorKGZ7XnadL+iOs20rekTrsW3bj3LobZf1uAnsrGTfzCgzVSbfiEiLNLUSiESQgR3VyRnkffjVyEoOr21GONiMO7Ivf4+G8886DjTtpioSIplI4BIFTc4t4eOzZ/LxsIH8+uJM9VYfpVV7KhYVlZCzZgLJuN7ZN+3h+3XKCyQRn6XZG1ARp65lPKBjCMgUyFq2Bz9bym/VfAnCrr5h+Va3YN+0l2lKHb3gPGhsq2bL4Ez5asQrg/7D33mFyFNf6/6fT9OS4szloV6tVzjkLhBBRyWATBAJjMMHYRAuMMRmMydEEcw0iGkwGgwCBQAIklOMq7a42aHOaHDr9/ljEBVmke33v1/d5fud5+nmmp6tO1XTXVNep8573cJkYJGftVuxfVOPc3kR9azufNNRSWtaPp556noGDBtDW1k57ex/0dOjQofz2t0u5++57UBTlG/Pbwfl05sxZVFRU0Nra+lVs6tChQ/nd737PbbfdxurVq1i16hPKyso488wlX813Q4cOo7KyEru9j0U6lUoRj8cJBPyMHVHFVUv/wF03X4HDHSCd1XC5PTicTkzd4M77HwBg/PgJnHryIuKpOLIiIUsi6UQUwzBwuDyoNhuKItHQ2EgoGMTjDaHrJt3dXZxw3DFMmjKBWDROd1cXyVSK3HAus2cezbW/vZTZMybSv3IgOcEQoiDzyKMPMnLkdH75y3O5877bARg5fDgnLVqE3WHn9MWLMTM+OrsjnPeLX2AZOgjQ1d0HQy0tKWX6xAmcvnARv196NXa3h3RKo3JAP3JyAlgW5IZCZLJZgv4g6USG3996K7FYjCNnzuDSS39DIp6hsa2dgMvNsCEjuOZ3V3Pa4lMZNHwwwXAOGAK7dlQzf+FCLCPL0j9ch67rXHzRrzn+mCNRVRudnZ0sW/Yci5ecisfjYe/e3ZSUFKMLEpYAbc3NpFIxwoUlGKaIy2Yn1tWJw+Vmy/oxjFEbAAAgAElEQVSNyIpCv4ED2LBuMwMHFHPkccdTnJuDy+ums6MDEYVUMsuUaZMpK++PYJg4FRu+kJu8vDyyWpZgIERxYQnFxWWUlBTS3NKATXFjGhJVg8uRVAey3IdOKi4uA0GnsrI/3d1deDxuMukMWgai0Q4ikXY++WgDqXiMdDJBjt+H7HBgGCbd3d2Ulhbh9/WlbjNNgdGjx2MKfampVFWloaGetgM9YAlMnjwBZBDkJE0H9jFt+gRKy/KZdcTRLD7jdAoK8ykuLWHO7FkUFOYiiBZVgyp4+823mTZtMmPGjCPgD5K1mvCF87AyLo6ZeTLzFsxBs1QmTJqEaaUIhwoxNIErr7iUiSMHcMcd9zDzqOPw+TyseGcFdoeG3xvi6qU38eLf3mPk6AncdNOfwLLx6EMPM2fO0ZSUliEoCk63QtDjIptOIcoqAA6niqEbuN0+Fi5YgCobWBjY3D4csg8BB4Yuodpc1NVuIycnRCwax+mwI1gmWiaLqevMn3c8hQWF5Oa4cbrdzJ59DJUVVTzyyMPMnTuHu+6+g3BuLs88+zwTx41g3vyTePrpZyiv6IfLZcftVDhi1izy8wvYX19DwB/GptjoX9GP5559HqfHi8eTx5KzzqS9q5HyijL0RC82RWHrvkZef/4ZSoqLmTHjeI4/8UQ+eOsdyouL6Grv5cCBBJIUZ+jocRxo7ebddz/mhBOPQdR1tGyGxuYWKvoNoF9ZP8455xzyC3KYO3c2yZSGjoA/x88Rs+bQVFdDXk6AcH6IbKSReHcHqinx9+efQPWEmTphCrFEkt6ojp5Ns3rVR4yfNAlE6Qfz2vxX5MevVQ/h2+Gb61Hh0AXpN6r+59rZNE2E7/NzHuI+PbT899kkkizf8N0NHK7JfxOo7PdJOp21DoXI/r8Wy7JIr7gfAbAf9Zt/uf5D/wiHMxAPF2z9Y+S7jNevG82HC+g+XJ/+uS+H7rJ8tzHal7bn6+ffbewe+v2PKXvw+0OvHxxn37dD9H2EYCKHtHNIF7/fOD7kXiAjfEnRLusaWVFFt0RcMsR7enjzmT8z7+jZKGWjQBfp7Y1gGDoen0wqbuBye2lsbiYvvxC339E3dqQ+Yyb5xkVYehZZd2PqOlnRjejJRXF6sVQXO3fuZtjAgXQ3bsTZvYKkOgjVYSeraXgVlazqw15QjJbRScVS1Ozdjc/t5P0VK1nwk58QT6cQRRHFpuB0uXAodixBoLOrE7fHQ011NQ6XSm1tIxNmTSXW2U3dzj3kFBYwctxoNF1HtCDa1U4qqZPVEvgCHkL5pYiiSCabQZbkPg9ibxO+UAkZTcDS0liShUu109HejupyoyoyoiiybesOhg8fjmnqNB/oYMX7H3DSyfPYtnM34yeOp6G2EUVKYQl2JJubcE6IjtZ69tbtZ+rM6aiKDUszWLtmHcOHD8Th9pFIG9isLKs+WUNlZSWKTaSoJBfTlIlFUzS17mfY0KE0NjUSzsvHbXdh6Gm0bIZYRsfvDLNz50YGD+6HaAms+HQjE0eNYP3nHzOpNAN6DNlXgpnqAXcJ9OxCnPR7/vL2HlRZQRQEXnv9Le6852GuWPoHrr7qIsZNGoMoS5iIOO0S2WwWSeqDtLW2tFBeUYRpQCyaIWNBPNKMmdUoK+lHR2stpR9uJ7v1U0RJgtBgJMEi1tuJoohoQwcRnzUO1R2mZc1O0n9+hPJ+xfgDIeLJDJgmDqcDRBF9yQLSAS+CICC9+wnqjhoG/+WPNER7eeyYn7J42ATaWlsJDa7kDT/MPP50mnZ9wZj314Jiw2ivRZJlTF8xpqYjCBLOe5YC8PLTL3KkJxdlZV8/E4kkumHhtCvs3LGXqsFVtJxyHL5QCEuU2H7FdYzKLaY30ktBfg6JRJRgTh6SBL3lJVjHzCYWS7D8P57mXMVJMpnA4XCAAKIoIRgmGzauJ7JgBj+/5gYefugJpieTOPfWYrOppOJxYsk0gVAI09ARivOJLTia+rpaKocPxHnnU5imgSh+GT5g6ZiCiGla6LNHkx40gM1r3meapxTzvY0oNhlN15FlCU1LIUkKpmHQe97x5Ph9NLalyP3HamzdEeLxBG6vFwEBCxBFAUYOIX7keNw2O3JXFJ56EevLEo31dQS8Aew+Hzd+8g43ffIu06fP4IPlH4GYwuLwoSg//B3wbfPbDyuf7Wpk+RuPMnvhZTilGGk5iJFJkU3GsCkSiWQaRbWRzpq4nF60eAeWKOJye4lEYthkBV3X8Yby6O7oxOFwoDod6EYWhxrEMHQMM4NNFbG0FCIutm2r4ScnzWfZssfYu6uVolKZ/uWlmJpId3cWzVQYOW4E0Y5e/nj7LSy96nJ6ezupGjyE5cuXc/zxx/Paa6+xcvmnXHrVJXg9DlyKghLwIVgimzZt4dqrr+XFp5+lobkRl8+BPxQkm4jhdLjYsrkaUVTobG1l+uyZbN2whfvvvpeJM6dz4UUXINk0epNddDU003/kWHav30RuXjnbdmzF7nEwZuJYDMGOkEjgEkwsSaepYT/9Bw6iMxLHFQgjaWmaDtTidDpxOQMoDg+apmGhYberpE0ZWQArk0TUNQynC00TqdlezfP/8RhXXnUFWAre/ELipsUJM2bz0vMP4ymqQoxHEFUX48YM59UXXqBhbxMzF51AMp2io7GJRE83w8aPwjA0EAyi0Shuew6tHXvIzyshEROYMmUyn3+2HrffYn9TO6EcN6GAC0yLbAZ6enrIz88nEomQjCd56q9/BynK6YtPYu1nTQSCbqZNG0PD/r2UlFXw+uuvc8opp9DZ1YYoWzjsPkxDQddNPv5oJeFwiJ+dcjKffbYaT6gEuwjxVC+yW0ZO6Sh2L4m0AaKCRIxMtu+d5rC7aG+uobi0klg8gaLa6G7vJBjyYLM56ezowePxYHlsJHu6+fSd5Zx8yhJGTT6a9955lWw0SSoboaahFo+7iPbqjzh24Rm88u4nrPn8E+65/3biiV5kIZcPP3yPsRMnIctJ2ttqkCyT4sKRxJIJguEcLFlEMCIoAuxvbKWwfDCdjc34AnYefexBjjxiDgMHVdLb3kpRv0HEDJXOhp14fS7CuT7a2lpZ+9kehgwaSH44SGfrASzJhk1x0NTUxC9+8Qtefet9dmxZzZxjTkQ3VTKpKD09XZimTjAUwLBsvPbyG5xx6gKiyQwej4cdO7axddsGjjniCBAdzJt3Mk89+wSDhlQRjUSIdPdQvWM3puhhR/Uazv75YgRsJCJtPHTnbVx99Q18su0AnmQ3L732Iot+9hsuuuQCbrzmAhYeN5NnX1jGnPlnoqUzFA8aQSxm8fPTzuWMxcfx0F13894H73Pjn/7ErBkz+PnPz+SL9asQxCybv9jJvtp2ps6aQmFJLqctWsJZP/sJFf1LKB9UTnskRWlJJe+9+xmjxlSSE8zlsQceZP5J81BUNw/dczvnnHMqK79Yx4WXXfmj5r8fKz9ar3WIvSR+08HzXXBd68v0OKIoYhhGH/z469cPXfMekk5H4McRWdns6o++af9njFdNM77q6OGMiu8zJA4noij+t4zgPuP1PgAcR13ynfjzH9L2142pHwIHONxgPnhvJEn6xn36vj59nwf13wU+e9Co/jH9OZyX9uvw82/T9UPHxn91DP1XveKHE9luQ+zo4pW/3kxacXHSWb/C7soh0h0h1dOIhZN41iJUWIDTIYGsfKN+7PULAfAu+DNGVz3p7SvRepqRe2tIOwpRA3nUNHZSZG4im+pBDQ2gt7NvIehRVLK+QkS3l507djKgvBxRFEinM6RSadpa29ANk+LSQjq7uxk0cDBZTaeluQNVtdHc3ETT/npy88KMGTMSh9PDzp3VxOIxBg8ZwsrVKzn22OMQxS/jKrI6SCLvf7iCI2fOorW5hfLK/iRTSWI9EYJ5OYjI1OytobxfCagC2UQKh81ORtdQZIWHHvoLeXkFnDBvLma6C7snyLInX+Pkny7A7hIRBBlFVslmdT56fzkzZ81g08atVPYfxPMvPM0ZZ5yCaZl0d3VTUlKCw2nno49WE4ulyMkLM2LESETJwqaKrP10A2PHjSPS3URObn/SegxFsZOKxZEVlWeeWcaZZy5GVR18/ulaPB4/Q4aUcqCpkeKyAX3xpy1riWkqNbZZTJ4win8sfwefx0F+UQHhwbPp6UrgUxUu+s0l/PXZp1BsIp3NrXgD+TjlBIlUCneoEFPMYMYSaJk03rCfdFwknU7z7LPPcvbZZ+N0O5Aki0y2L+dkKpvB5XISeeNSRFHGc8IDGIZBNqvjcDjoPNDIXXc8wooP3+HR228iYsqMmDSFRE8Lis1Jd08P5ZX9ESSpLwuoIKDanGiaQSobY8KU8TQ2NfLnB/7M2UvOYMeOavpXVFFbs5+VK1axaNGxuJwyGCJ1r1xPODcH56wLMVHJWgpl5SEAnn18GcueeIKHHrqP445dwFtvvk9PNEJLex39+5fz8IOPMWZIGdW1nVRUVLH87beYMH0q8xYu4MJzl3D7jb8nUFRBMBikpqaG1tZWJk+agEfNEIklkbHYvqOa8oFD8fjDSJbESy/9nfXrtjJl8kyGDu+H3SFhkcXvC7Hqo2oGDi6mo6uBR/+8jCt+ezGDhwwhlojj8fuwO1x0dbb3GcSGjk1RUBxOTEtCUmy0NWwhmcjQ2dnNqFFjIBMhlTXwhvJpbGnDqThwe5xoWoZMJoNuSFTv2EVejgu3WyaYU4IoS2i62ZcqRXYSaa2nuKqIrBDA0rNk49189NbfKMvzM3T6iSB7uP6WG7nllpuZPn0G77//wTfmoe/bwPyfkoYdX9BRu568IdMpzi+mraUBzbQhqCpun4tIV5L8/ACZVJRYpBcJB3a7HVXt8zrJNpVEIobH4yaVElBsEvv2bCMU8GDZfdgEDVWClC7gcAjIgp+zl1zMU8v+wq7d6/B6SnB6ZK666lZuuPKXRCUP+U6Nhob9fLhiFVlBJZ7OMP+EYxlSVcDzL7/DKaecwu7tG3nutY+49vdX4HGKaHqSbRs2MXzYGOKxNAIKx807BlUO8eSz9/HEX55l6dKlbN++lQvOv4Q/3noPRSVBjjj2BGr37cYmWnR1NNFQ18DQkZNQQxa9bT1YlkUgEGDPjt0MGtwfQTTYt7eesn5VpHWNtJbGb7eTTqdJJuMEfH40PYvTm4cgWnR3t5NfkMuB/U0E8sIkM2l8NgeCmEbL+JEdGqYo0bjrc8J55QiCC7vDC7L25VrFRk93FLQYouTA63WTzkZ479117K3ezEknLUB2OrEhEjeTqJKKoAkgp0ATsBQZTyjEkp+eTU4onyuWnkdeuJSBg0fz0P338tgjj3DJby9k/LiJKLKTM8/8OS+98QKQobm+gYaaZqbOmsSvL/oDDz9yNxZJ6uvrae9oZty4CWzbsg+3y0FzczPrvtjArFmzWP7BP7juuuuIx6N9xq9lEvbYsFOEJiURLJNorBeXy0401gumgT8YwkIilkoT8rjJZgQUNY2qBGnraiSTzGITZXKCYRLJNJaUpac3ij+QQyzaSm5BIcl4CqdkR5Bd7Nq9vS9XtRnG5oGu9hQnn3gCl195Pueddx5jJkzkszWfY5M1RNFGVrf4ZPUXDBhcQk4gH0UwSaV6cPv8JBMaNpuNeKIHCR2b3YEo2cloBrIINitLOimwrz7CoBGFSJKMaZrIsoxhgoCGoWlYukTtvhpsDhGPN0AgWESkvQFDU1HtMu0d9cybdyYrP16BzSbj9jgZPmwMa79YiWq3kUqmUV32rwjURCNFXV0D4VAxkd40Tz/9OEMHj6Gysoqs0cnwQRV8/OlGKoaO5aSf/JRP3nuPZCpCQUEeW7bsIBB24pGddPc2oDjLmDxhIn9/+UXuv/9+7rnnLp5/bhmnnXUmt1z/IH+88Vcks0nWb9zIsCFHMWJ8BdU7qvl4dTUbNqwjHJToX1qJLIscNWcW1dU72Lq+mlEjx/OTk+bzwYp36OppZ9/+Azz28H2ce86ZTDtiLi2dPVQNKKepfh/lpWU4nXZWr17NyLETaWtrRhAEjj1mHh9v+oK8vLx/OZT3x86v/4nU+2Y98VA91iGOpO9yxB7ihLLMwxf+T5ThITbaIW0det2mOn70S+T/XMzrQfmfgg8fTr4rzlb05CK4w/8r/TicfB88+N99c+LHPsd/xXPXdf1bPbX/Lkb6jxUt1o7lCzH5JxegSiKttS3Ub93BhpUr2LVtE/FEgqyh4/K4Ub5c1B1OTNPE8hXhmrkEpp5PdcFiNCVA6sBOCoz9iMkGVG8e3d3dtHV0YHc6EESRzs4OTMOktKwMRbUjCDJvv/UeDQ3N+ANBcsIBAn4PeTlB2lsPICLQ1nqAdCpJMpFkxswjQZDIZA3effdd3G4Xo0aNIplMMO/E+fT09KLINuLxJLppIYoyleWVCEiUVVSgmyamCd5AAFMUMCyT6p07EQyT5vpWRFFBkCUMQyOb1ZgwcRzzFpyIrCgcaO4A4JRTf4bb5aKzowNZFNCyabAM5hw9B0GQGDx0MA6XjdFjxrFz1148niDh3CJWr1pD/f5mJk2exLHHz6G1tRWbKqEoEpIoM2r8WERBpLcrwu7dO9mxYyuWZWEYBqriYM5Rc2htaeOD9z6iuDiPgQMHgKBQ2q+CVCZOx4G9CPEGrMHn4c8r5c6/vsH0RRcxed6F6N5RBD05FOYGePq5J3n0z4/QsP8At950J7fefBObNnzO7ppaHE4vWjKNpJnEkwkC4RwymQzpdJx4vJclS07H6bRhZRPU7q6mYd9eZEvD4/bx4YcfIckyWKClLdKpFLJkkEp14/Z5uWLpb/nrky9y/e3/wWtvv87uPWv49cWXI1o29u2pJZtKY+gpsuk4PV0dpJNJrvv9dbz88stfQZksIJFIUVhYSFZL4fW5WLL451xw3sXIgswtN19LWVkJoijS2x3B47Lh+TLnKIDdKZJOy0iKm+df/Bv76vZht9t4+Zl3WPX+BkaNHsvg0VMxTSjIKeC+ux7kjDN+RsDjpLunk36DqwiHwgiWwGWXXIYkSOjJJJYpE+/tQbU76V81sC9tlJZA0w1S6TRX/PZy+lUUs3t3I++9t5qiogE0NLSz4CeziUQ7mTXzKG644SacDjeq6iA3N59kMk3Dji3U79qNmTGIxLJ0dXcjCBatLfWkE90UFJQTzi1kzNgJRGNxWrsiRJMZLMvC73XTGz1AJpOk+UA7wUAh4VAQ1Sbi8njxBvJJxw8gGimsjIbb7sXhcLC1uob6plYQobduJ1tXvMLI8WMZdtzpZE0npvDvuRzILy2noLCcYDCHaG8nfl+YYCCXvNwiJNFOMOhCAhTJRk4wjCiLJDNRUtkEDpcTXdcJhULouo7LJdDWWk9ZWRk2uxMhm0AURYK5Bbi8XrSsiWVZ1DfU8tFHHyPodj7/fAWZTBfnn3M5omKSzmiMHDWFygHDOee8n3PivBO45OJLGDJgCFt3dLPw5BPYXb2egf2q+PUvz8BmaaQiUXpaOhk7bhp2pxdJcaBbFrvr2nj3g+WEQi7mHzeHCy+4mFQqxYoP36JyUJDiolzuvft2TCPNF2tXs2tPNSPGjqS+oY5UTw8+j5OujjYcNpXyihISiSQtzR19xI2yjQsv/BXSl+QqzlA+gdwSbHaV/ft2k8kmsCwDp9NNZ0cvefl9KZ1cqvJlyIUDVXVg6HFiPQ2UlY/E7fZjt0NW62LzxvVoaQ1Ty4KV4JjZP+H9f6xg9/Zt2EwNFZGFJxxFUVEA3UgRyvExoKIQr9eO5FCxyTL5JXl4vE662g9w2y338uhjD6KqEpYlcvIJR3P0cTNY9soy5s49Ct1I4/LIPP/Ck6j0kop2kpufx9Q5R2IYBr/61a+wLI2Gpr2E87wMHz6STAqeXvYiluHEMuyMHz+RgsI8rv39DTTUNzNm9BQUyYuCTDQe48RFJ7Bx3Wck0z0kUxF0I4vNJuP1+0ink8iKQNDn/DIVUx/RmWVZiIKOaaZAsqhvrqO7M8VPTzqbUDAfp9OJz59DNJ7G7nBjWiJbN29myMBByKJITpEbu1ekfHA/3lj+Bvv2tPPA/X/hrLPOoq2tjZNOOgVdM7Asi5mzpiJqcQ7s30Xj/r1gajQfaMAmy/R0Rol0p1DtEqlUAlkGm00GyU4KFUN1kDYyGDrE43EkSaSzs41IJMKePfuQRBtYNgYMHoA/J5e8omLimQSGBU8/9wy+QIB+FQMZN340U6dOZceOanp74jhdPiTZybhx06itbcVKp/l85UqiHR18+tk2fL5iqnfXEY0nKS0rp76xgfMv/CUVFYPYvmMPRxx9FB1dDdx841U43QLhPDc9ve2UlhayaOESbvvTI2SzMg/fcQ+XXnYxw0cM5JW3n6OlfTcdzUnEjMnVl/6arVvWsmX7VsZPmE4g7Obeex7C7XcxfcY4OlvqWXTcMTz++KMUFedhWRZPL/sbC0/7GX9743WeePZvKO4gw0YMoLOtgWuuuZYhw8YiKG5uuvlWRFMn0tbMrr07aW5rZ+euGsjq5AVCkNU54ehjkEyQTBD/vZfcP0j+nQhsv03+Pd9Wh5FDvZqHMrMelG87P5xhYprmNx7St+Vc+vrnQ2G86sTTUCee9qOw7oeWPRT6+107N4e2//Ug6K//zoNe14O6fgyU639z0H5Xe9/lWf4ufV+vf1h8/ZeQyUOvH9qXgwHxhxsT38VS/G1y6Fj8Pha5w9X7NpEVBU0Hb04+/QaNQ3Q4cAd8HGhpwRUqRbGrDBhYhSWAbhrfqk8QhD6vvWURyAkx5cijSPVfiDDlRtb0FiAIEpKuk5+bh2ladHV1Y5kmOcEQpmkQDIYQJIU9e/cyZNhwFJuCP+AjN5xLOpUG0+SzVatpb2+juDifluYmxo4ei4lBv/IyslqaAQMqWbPmcwTBIpQTwgL8fj+6bqAoCrplIoki4WAQSZYw0ZEwcTtUJFlAFkQMXWfSpEns2FVNwOvFpqpopoWi2FFUlYGDByJIFiYC/StHISo2FJvFhg2fEgrk0dbaCaaAqRsIkkBnVzf+gB/NSDFq9AiGDhtKV3cXpgkVFQPYsnk7up7FsrLk5IQwDA1JErEsUGQ7b735Jv0HDsDQIRzKRREFvB4nzU2NWKZGQX4Ow4cOp6Wtvg8uLohs2b4TWbaTp0ZpUwajO3MpHTSQX13yG4IBDwdq9/D0889jmVlMLc1RR89lz+5N3PHH2zj7zDM484yT6VdaQCivEEGxg2Gybf1OPP58UppAMqoTCHoIBD3YVJHeSCexZJac/ELK+leSyppEIjGmTJ5G84EWOjo6ScR6sSs2MkkNIyMgWCItLXWUlubyxAtPcv0NN1O/9wD33nM/Y0YPY2D/CrweD0bG4uQFp3HReb9mf80+LrvkQs4444yvxd9A/f5GvF4vTqedYMiNJiX5bP0XaMhcf+stWKZBZ0cHkZ4oW7esZ/2Gj/5z/NtVXnrlWSzBoCfSS9WggWhGmisuO51suo0nnniWdMZk9PAhXP2Hpdz7xKNcf80fePuVd7j33kfQBAdLL/8t8d4YFaXlDBs0lMf/41maO7PE0xqaBT6/H03LgJ4lmc4weeo0YoleSvrlU9avH6eceipZTcPl8dLT083QocOJx+MUFPkJBnN45pnnONDUQsAfoqhyAKMmTMDuVMkJB3CpEO86gFfK4CaOhYogqmi6SU5uGF8wjwFVg1EUG7IoUlpWgiQL9K8sp62tBadNRbFBcWkZkuLG5nTR0tGJ6naS0jJEo1EqKirI99lp2voFn69cTtWYKRT2H0UqA5KqYAnfTPvwbfPet81XP3Q++6HyVT3Fj0UQwXKSk5OLKJk4XXYsNOr278Uysuyvq6GzpQ0JCU0X8AcDSJIDw+gLj4jH4xiGQU9XI26HSDwZI5ZME/ba8HncRJJZdMPC7fITifbw4YfvYVPsFBYGmDV9FqGgn2COQeOBdhzuMKrqQzc1HO4wp5y6mCuuvIzXXn2B2j3b2LZxL1VVo3B4HRQV5+FwObnh+luxLAfxuM7nn28glc4wafJkjpt7HGktiSGYDBg6iscef4hJkyYhSiaFRSFsislRR0wh6HcyevRgZsyagWiXkUUBj2Jjd/UWKsvL0TNZEAxcLhd5ucX0719BIpPlL4/9hQ2frUOQZJKJODfccB2SbGfIyLGo9r4NNpvNjsvpQ0fCqdiwtDQ6Aimtk95IAzYliypmkaQwsXiKnt5WtEwr40dNZte2el5/+S2MbJb5PzuFSy6/io72CH9/6XVmzJiC02PD5fOzbVcTtfubyMbj+LwB0pqI3RYgmbZwe3x8vOJjZFkmk43hcvlYt2Y3V19zGbqRYN++rSCmCObYQYyT1lpRbU6uWvoHNm+qRtcy2BxZPD4JBB2P20smrSOJdtau2ci5551Fv/ICpkwdz5Qpk0gm0hhmikDAx9y5c7n99juYf+zJNLf28PhfnkSyRCRJIjecj01x0NuTorMnjSy7ScUzPHDPA2QyfRtJ/fv3p7u7m572HgoLSonGEuTkFaA6TE4/fTFHzzmeRCKFxxPC4w8jSA7WbdjC6k9WMWniRHJzwryw7BWMlMUjDzxESVEuCxfOI6vFOPuc08jLK+CB+x9m//4GIpEIgmDh9wRYtPBnRJMWkjNE9ZbdfLJiNYIBommQiGvYFBeS2JfeRzJ0HC4nHp+bMcMHYJoismTDsgz8AS8+n4eqqiruvut+6mqbyGaS7Nm+l89Wr8UuC3h9IR59/BEESeaSS67iwgvP5+OPP6a6ehexaJJPVn+EP+jjk1WfsuSsXxCJZJg27Sjmzp3Pnj37CeXkMXb8GGLJLo49fj79+pfz/Isv4HAFOOvsy2lv72XsqFHMmjGT7u4OGhsb0XWTutoDfPrhu/zywovYumsf51/wK37xi/M4/rj5tDV0UZBXwTU33YQsi+zesxNfXgGTJh1BOu1gT2yT0vYAACAASURBVO0mFi46ie2bviAZb+WCi84inU0zd+5cbKrA6tWfUFZahWZ2Isop+g/I58OVb7O7uoFN6zawadMmFLuX+ccfz60334puiDz/9zco61eFYnMwb8F8oskEXdFeRFXhvIsuYPX7H5KKxcH81+RpPXSNZprmNzhoDMPAMIyv7Jhvq/dfccocbm387+bY+T9jvP4Qcp3/1zfXsqx/CZPW4WJdD/62p59ehqoqDBhQ+aN1/v/yTbEsC1VVUFWFlStX/q+3f/TRc3A4VG666cZvvXbzzTf9IF1ZUUHAwKOIVI6cjCvXTyQT55Qlv2DklNmU9isDScTku+EhX4mlYCGhmRr+gJO1a1ext0cgkzMJ0h3EOrrweX14PV5EBCxJIhqNYpoW69avZ9SYEVRUVNDe0U7jgXrSWQ2n08W2LdsJ+IL4/T4MQ2PM2DF0dnWRyiTZun0Lsk1GEAVmzJxBQ0MDWBbJRArVZsey+ogADEvjorteYMDi2/nNvS+iaxleffklsqkEkmiBbqDKCsX9ihk8bCh6Nk0ymcA0QRAU2trb8HiciJKIoihEkm1ksgkm/OJOjr3uda65exkup5f16zfyzjvL+0hCSkpIpzO4PS7e+2A5Ho+L3LxcMtkMBflF9PT0IkkyogjTpk0jm01RU7sPXddpaWynt6cXUzIZXDWMVR9/imEaZNIxyvqV0N3dwabN61DtCpHeLvbu3UM2qzNw4CAkDMzuvQSnnIvLq6B4AkiqSltLEy7Z4txfnsvyd99m8WmnEwgUMGJEFX/6083k5gWx2UyKivJwulxEozFq9uylrbGLnu4kmqkQi2bJZNKYpoHb7SKVSqKLMorTQ0NrB7LThcvlIZvNUnDcLQSOvB6/30EqkcRhcxHtSbL4p6dx47VXsWb1+7T01vH52g1YhgvVrvDp6hUcc+xsVn28ildffpPiogHcecd9ZDIZREkjnU4jfuntk2SJIUOGoOs6qVSC7p4OVJ9MXXM9No+PlGGh6zp21c6gqioCfi/jxw35arh2dydI6z24vAqjx46ipbWdcG4Ol112Cr6AzlNPPkdJXh5TJo/lHyv+wTmXnM+ihaew8MSTcLtCmIKdvXtq8Hr6mFJlycbDjz5BQrdR2n8gu/buweawo9gktGySZDpNOC+P/KJC0lqG8spy0l/GVze3NfPM089jGgIffvQBH3/yHuvXb2DSxMmYptUHp5dUkpZJa1cbIhmUcD9EfzFSqIiIqYKo4HD56OzppaO7i65IlGgsQV1dXZ/HPKURi8VobNxPXr6fzvYOxowZhabr2Owumtt6ySsswRsM0BXtxuv1YVMEVi1/jRUvP8m8hSfgLh2GaXPjsMAS0yAY/BOr3L+B2N067T0NWEKU1rZqeno72bJ1Pd09HeTmhWhraSInGCAvL4+G+nrcnjCGJeH0+NENhT179qDrOtlsFq/HwfoNX6BpfaiCdDxKMh7HEiTsdjv19U0kk0nq9tfS3t6BZcbwuUNccO5F7Nz9IcOGjeMfb6+gavAg3nn/La677jYWLPopp55yMq++8hyjR5Rw9hkX0dKeIGZEiKXSpNI6ks3D+g3V3PbHOxk9ZgL7auvYvHUL5529BIeq4A4GkVx+JFnH6XSSzep9sNZYL/6Am0Q8gqGlyBpZYsk4+/buYf++vYwdOwZVVdF1k2QyTjweR5ZtJJNJHE4nNsXOtMlTueqqq1DRueWGP9Abi9MZSSPLEi+//DKyLJPNZrEEkd5INw67DbvdiSR7CfiKMVIOnFIeHfFNuNwiQU8/MtF8Nm3czs033sGllyylZl8t5118Aa+/8za/vfr3NB3o4pIrL2F3zT4SmsmsOYvYumUnTz7xFO1tPURiabIZgVTGAkuhvKSCcG4QWRFw2N041FzsjiK2bzrAirfXY+keMN24HHmEAiXEUnD9DXdSUVZFR0szyXQHuXk+0ukUToefYCAPu+rl008/pbAoh1SmE5tqctzxx3D++RdSt38PNbW7uPnmG6msrMDISowcOYF1GzZz03W34HS4+etfl2FXvXjcIXy+PCxTQRJsnHlaH8lYIpGgubmZrq4uigvK0DWBgsIyEG2E85x0dXWyYMEi4rE0z7/4EqlUBkGUWfnJKiZOnMjYsWNJp9PMnHQMq1as5dwl5zBy6BDKynP5zaXnEYt3Y1kWTz65jLq6ejRNQzeymIKTF158k2RGJpqQGD1qCms+X084HKKmdhe6JuBy9kGJ5887mR2b1xGL9JJKRnj0oTt57dU3UBSFdDpNbe0+ADRNY/LkqVx+2ZVs+Hwtk8dPYtbkabhUG8l0hrXr1pDJZnngoYe5/U+3oaoqY8eM58QT52NzSiCb+EI+wvlh/KFCautbWXTyYj74cAVtHW3INoFho6rYX9/ADTfdyPqNG2hp7eD0089FVtw8/9yLpOIpQqEwoWCY+fMW8frrb7Hx0xVsWPsZ02bOYvPOnaxft4kPV6zi/PMuJ+ir4N4/388VV1/B0OHDCBf0Y/PGXcydM4+sEeXzNasoyc2jsCCXyqoKbB4H06ZNo6eni7vuuovp02YR704zeuhELj7vSkYOnkh7e4aCcDEnHHci3kCAwZXlpNNZLNnOjbfdTWdXgrXrNtAb68EQQFJtIEvIdpV4LMbVXzKW/0+5fzRN+8pwPei0Mgzj395L+j8h/2eMVzi81+3g7sa30TB/2+7HQQNREIRvxJ8eutvwXXKo7meeeYabb76Jjz/++Ef9rq/35eufv+s3CMJ/xsYeLH8owdLXdRxMSfFj+vRDPH7f1scfu2v/bTp/rPxXjfTDeUIPThL/42IBpvXVcWgg/Q/ZxZNMG5ZokBZtOHw+XO4ghRVVGE4FU8iSlRVMDERL78v5daiX2VeC6Cv56lwQNCyyoAr4i3M4+pQFXHTZ7+jwzyajJbDbVApzc4nG+3JG7t5Xj6WbdLW3MHzYQLqjMRxOkUhbB42NHXRHepBUO1Nnzmb6UdMwTY2ccJB4vJdUOoKRzVJeMQBJkNCSKULhXPp9GRvrcjlIphIIoolupPF6fV89F8OwcNg8TJ82G9XhIZU1SSRiCKJJKhFD0zL4cnOxO52IYh8Rwb7dtRimgCRa9HQcwOPLxaH6yWTSABQWFZLOJBgxcgQnzptPNqtjGBqiKCBLDubMPpZoJEk6lWT5O5/Q3dtJKpPilVf/jix7SMZ72VNdS7/S/hiGwTvvvs6Sc5YgWE4syeSYucfz1htv4PD60Y0kY8eNZ8zYadhdLir7D2LoiCFYgoiWyWA0rqJVHsq++gxeXwGb13zBmYtPYdLMqQw7chbHHT+TZS+/wC8vv5zS/mX4csqQJQXLSFNeXs7D99yBR3XQ0dFBUXkpTzz3OJlEL5+v/BB/OIAsuVB9QXRRIhZPcP99dzNg0AAmT5tKXlExo8aP5g/XXkNNczvbGw6gZS2am1tpaGhg8eLFjJk6i6XX3UFx5SiMaIIbb/o9f37qfkbPGMfY2Ucg+Fz8/Z1XmDBtPPc/8SBZSccfCvLRytWIgsGGNWvpbm3nxOOOpb2rkzvuvotjTpzH2EnTCAdz6F9ZzJy50/jzww+ilU4if9JP2d/YSjIpsmXdHroaWtm7tZon/vI4RlqhurqNvXU7KSvJ42/PPM/jT6/n+JMuZlfd5/TEojz1/EukIlEG5Pi576G72F6zla6uRt5+8RkefORRGtvqmDh9LCs//YizlixmQGkQyxRwOFQ6OtpIZ03cvlzybd3E26rpaqtDspJ47Sa5YR+NTc2MHDKCERNHkLEMjjzqeAYMGE5XVydlZeVYpsTSq64g1dWDlbWYPetYZFQy7dXYs9DVdACbYkfLtNLRvZdMx2ZcNij2e2k/0IjT7sBud6C4CvogspbG3n3VSC4bliSAqCEJWQrCuXS11GBpGZyuADXVa4m27mbvzn2ce/6FpHxFfYRymokuWGAqYKlce+21pFIZ3nvv/W+frr7jnfpj3hVfoaesL8lDDs6BX+b4FkVIJGJs/XwDNoeAlYnS2JElEMwnNzeXoD+I2+alvN8genoT6Iig2JClGE3762hp2ks8vo9+ZcVEeuK0tXSgm3YmTDyCgDdEOtWFu2QAMU3DrghEenopyMslLy8HX9DOrCNn0NSeZdKMadz/4LMkY27eXP4qpy+YxNbtWxgxYgqLTz+OX19wDpMmTuWuh/5KYWEln69bgWmlkE03rXtr2FO9j6uu+i0drXX8dNHxZFJRfnPxrzAMg8f/eh+GkUBIyTjFJLJN4Ygjp+JQ7TTUteNwB0glOrAMi5Ej5qLFREhpHHXMLERvET8/40JSaZGUlcXt9WEKOgktguJwEelqJpXtxOGHB+69i6amZmKJbuK9CWyCzOYv9rF/1y7ivY0odtATXfgDOWRMGYQ0qs1PV7wRye3EcLjweAaS7o2gGV04i1QMo4tfnHc6Y8eNY+iI0bjEDPuqt/CPd9/m8t9dyb333o9glYDeTbYlxqOPLyOetrPus/U8/9ijtEV66I23Yoo2ph59JFdeegnxCMQTKcoqvYRy3AwdMYBf/eY8EukoyWyGlGGgy04UxYGoJCkuLqS4qB9utQjRZseUHCBkiaU6aWnfz/SZ03E6A/R2Z2hr62DxGWdgU52s+nArIW+YtuY65p8wl5vuu572+n0cO3MUf33xDR65/68UhouI9rRhar1IlsGsmXMQZQehgjwSqRQ33XQLfm+Au2+/B4fHRzwRwa7IyIbIvEVLmDF1Ov1KciktCXHSyQsIuBRstixLr/0N4QI7Dzz8GIbkoHJIiDlHzeSOO25g3abNBPNzQVaI9HRjZTs59dRTGTd8OE179yDoBjbTIOBN4Pd2YaVbKSxSOfvnS2jpqmfKrBn4cxQ623cQ69zHSfMW4nYamPEWug+0M37sMQyrGIpoZLDLEuedfTF1NQ30tjYxcdRQnn3uaUqKK3D4bKSsBK29SRTRwO9z0ZtoJ6l3s31nDU63it8P999zL3osTTraA0aW+++5n0S0jdw8HwtPPAGPkkMq2sV9tz9CJmJSNaCC2265lSkTxlNZ7uf6W3/NT+Ydw2MPPobX58CQLQRB5pFH/sJlV13Bo0+/SV3DXmRkTElAlnXmHHUEv79mKQOrKlj9/luc+tNzkBXobWmk/6AqXnz5GT54u5qzzjiPPbXNoBt0HGhn/ae7ueH6W7l86Z2ccPJiKgaGWPfFJgZVBJkwvpLzL/o5sWg7gl0BKcuOzZ9w2dJrCPhdKLJFWk+iSBavvvQmTpsPp8eLQ3Gz8dN1ZGI9qK5cXnnlDZrr6xAFE1PoW9odPH7oPHpQDrVlDmerHPz8XQbsV+0cmqf1EPlG7lXMQw4JyxS+OhDMbxz/NPd/2cZX5Q+d+7+m69viZ79P/s+kyjEM8/ofSrD0XcyzXz8/nPF60CD8ofrTH9yHXrsWpf9kLr/8Mp555mnKysqYOXPmj+rf97V3sK9btmzhzTffwO/38+tf/+afDN+v6//6vToIlf0xbR7U8d8lR/qu8++r/6+Sb9N70LN5xhlnUlZW9k9lD/WA/yv78PTTy2hoqGfG9BnMnPHN8bLy45VkMhlmzJjB+PHj/1vt/hCx9ZuOrd/0f/r+4PhSnAKIEl094Gl+ld2dBiUBP4lEAqfbh+kKYnfYSWXSeH0+0pkMiiiSzWj0q6oiHHCxacNGckI57N+/D683iKzISJLCqlWf9aWgyAmCpfdRuIsgiCBLIqtWr6GivIJkItmXCkeC7ftaaO+OMqqqmCMnVpFOJdEzGh63G1lViUWjCALYFIVoPIFdtX/p8RMJ+PzoWpae7gihUBhBFBEEiyfeWEM0mWb8gAKOnjYWVbVRU1NDd0cXHW0dfLHmC2yKDX/AjyQJ2O0OfD4PDoeDsrIKxo0fR1dXhIDfQ05OLnaHEwQBQzNwOOy0trZTW7eXVDLK9OlTQVS+JAVxIUoSXZ2d5IRCWAiIsoAZb0Pq2sGTOyuobe5k2+5tnHfxL9lXV0MqncbhcNDb28vefXv5+6svoWXTDBs0CKfdRzYjYBg2yipKWLd5ex+rspZhwfwF2B12ikuKCYVz+OLzjQR8bupqa1l0yin84713SaZSfSERNhtt7e1s2rqNF195jSNmTmfY4OG88MLfmDJlKieccCJTZ0wiPz+Hmro9nPXLc9i3v4bWttYv66v09Pawectmnn3hWQb0L2HM6BHU1O5n3JjJGGQRRZE1a9bQG+nlqLlzWP7+clpaWshms7hcLqLRKAeam/l49WpeWv4Jc+efjmp3kBMOEQ7nkEql6I1EOHPxGbz+yluMHD2O8v6FmBmRB+75M+2tzXicCls3baC+vpt333mfQYMG897yFVx++aWcdtqZ+H0hUskUBaE8frd0KVX9K5gxdQqxZIohQwcRT/RSkJ+Hpuk4nS4ymTR5+WEaW7qwu3yEw33PzDJNLN3gQGMT5QMH4vG7EUUTmyKTmxPmww9XsXnTDsaMmcjIQWUkRDeLzz6Xxl3rEUWLcDCfVLIDGRELA5cvh6LcMGnBQfWejThdTlwuF00NB0ikIuzbXc2IkWOwu3Pw2GQMPcaO7esI+u2ojnwCOblEowkcioOuht3s3LCak879FdmcChRRQpJlLNOibw/7+0nwfgj66fvqH/b7Q729X56aponNZqOwoIB4ewOmKFNWNZJd2zdQUlpOMmXhsHvp7WknlOOntraOkuIKVFUBS0CWFHTdQJYkbIqNvPwc4vE4HR2tOJ0qLreDPbtrMQ0Tn9cLloGWjKCqCpLq4s33VnHB2ZeQ1lpY+JOj8bmLWXLW6VxxxZWMGjmCxP/H3XnHWVEt+/7bvbt3TpNzgiHnJDlKECUoAiYUs6Ics14VzBgwIOYjBpKoSJJgICgKkpEchwEmpz0759T7/THCUQT1nHPve/e8+nz6w4fprtWrqrtrr1pVvyqfn9atCnj+hedBgA6d2lBf10B+fj6HDx3GaLJy8Mhh+vbtw3vvvMuc9+cQj8r06duX+x64i0DYxfBhw/B6PaSmpuB2u4hLGq69bjJGczLPPvs8zQpa0rJVc0LhIBMnjueDjz5h5KjRoFaBKs47r3/IsOEjMRiNqHRqAoEoRtmApERBSKDXSzTa6pFkiayUHGx1NRzad5zqiiradyykQ5f2GIxJSCojLrsDg8GEIEo4XW60KpHy0ydIS7FSW12DISkJvcFANA5IWnIz0yksKqRt+/YMHXYZk66dSPv2bTh1upTk5BRkvZHMnEwEWWTbjn002CsZM2osX3zxJY12JwOHXkzz5jl4nS6UmIMv5n3JKy+9zIMP3U5tTQVqnQGIoOBHUDS4XG5ktRqIo03EcbtqCUZiqE0SDacPYJBlykqr2H+glHZt26LTaikqyiUW92NJySKRiNG1YztGDh9KikWHIAncNuUuLr1iHN06t8BWV0Z+biaRiIe0zHwktRqj2Yw1JYWxo8cz4/mnKSzIoba2EkmW8LgD5OdnMOrScVTXluNyO0gkFBYt+pRRl44jMzWdpLRUahsaSbcYkDRaEokopSVHsCSlI6pUqGSFUNBLMORl4MD+mExGYkKEsooqmhW1JSEaSDYZOXLsOMdPnCQ51YrBmE5ySjqSSodG1hGMBLBY0lDwkEiApLIS9EXQ64106tYZtWwhM7OIcDxBSmYqXq8Hk0VPApFb77iTtORUjCYLFeXlpKYYqbM1IorgdDhRYiLWJC0qSUStbrJMZkM2nTp2xOmw0VgfpKhFDjXVNWg0eiZNuo5J119HIOQn1WRl1NjLSCgq+vTuy9ChF9Oh20Xcdtut3HTLZGJKFBQd199wA3dNvYOEEEcQJfweH3q9AUFWMejiQXTq3h5zipW0rCzat+mA393AoEE96dWvG7fcORWz1YJapyEjM4ttm7azcN5cThw7yifzP8FsteBxRxAFPY8+Oo1FH7xIp45FDBzYm+dnvkaHNu2xpmbQu08/2rRuTcvWRQwdPgyt1sQ99z7EkCEDadWqRVOve58fnd5KSWkZldXVFDVvxsH9P2Orq6Fvv/4cO3KUyy4ZQiDgJi8/D0mlbooO/goa88/azT+qZXNuC80zrUQvONafxCp/6z+c6yuca6PPCab9xbEvRJL8z7fK+Y+JvP4RRvBC152LLTxfdPNMdO3M+Qv1Nf01nW8e/0y68L+SC38+h/rXzveZ///633Pl/Gfo13P8Z/L3/908//PRP5uK/Wv5f73g+ldkOLc90x/x/9ni7s+wYb+mjz/8mP37DzJlyl0XnNv/DTr7zYTiiLJEq26tUef1oiA3BX9cJN1qxeZ0EwpHOHLsOLl5+UiSGrVaTSwWA1HEkpJEMBwmryAfQVJTWduAWqNDEGXsdhdXjp9AVk4m4aCP0yfLECQN9bX1bNuyhbgC/Qf0RVZLmMyGpiJIKpH7r+rH2tdu5Zk7RiMmYsiSQCweIRwJg6jCmpyCVqtFicfO9o00GAxo1BoCIT8mvZGfd/zM3LmfkFAUlKaSi00yK03vnNfrweNxkZaRRmGzQrp060p+YT7LVyzF6Wpk8eIlZOcmk5RixeV2EAgHsSYnoSgCfn+QcDiCEldo364t8VgMlaBix47tFBYVkkgoiKKAwWTGFwggJCDJakFSyagkFaIgIjfuI5R+Mb0GXkbvwYN46rknicfjXDpiJEf3HKbiWBmnDpdwxejLAXh19qs88+yzPPvss+zYuQtfKEBGdiGtWrdDJUuUlZ1iyJBBlJWdQknEqG+o5ee9u4mHvVx59UTKKsqxWiwsmPMRlcdLsFWUs271SoYPH4E/EODOu+9mx66d9OjRA5VKhclkQlar8AU8TLl3CpXVVVjMZua8N4fjR8rZ8+PPtC1oQc/uPQgEAtw59W7sjQ10696ZDxd8gMlkQqvV0qdPH2654w7sDjtWq4UP3n2bo7uPs3n1GupOl/HOG29jMBioqa3h5rtuITM3B5VWjaCWMJiMWM0WKk+XM2nSDRw+fJSAP8Tx4yd5csYzZOVnsOvn3bRp2Yn58+cyd97HdOvWjW7duiDLMo88/F+IgsyG9T9SVV9Nz76D6NazF+U1p+jevSuRSACHo5F4DJKsqQSDfsxmPYGokcJWXSkq7oQsW7A7G2moqUYIh8nPz8FndxNyu5GUCEo0htlsJiMjg9FjLmXo8P6E0WJUvGTqg7Rq35LClp0IxGJodGokUcasT8HrUpEgBbU+nU7dBpCZXYjRbKK4RQE56ZkU5uWDIKAz6fEGQ/hDcXr3HUp9YxBvKIQnGsWabMGgSVBffYzxt9+PZM1FQEJAi6LEfvnK/3jR86/YjH8F+3rub/XZxZggs3fXTtLTMwgrMu3bd6KsrIxQyEc0FsDnC1BXV0Vubi4ul49gAHTaZCSVibTUfCRJQqfT4PM7SEnKJTUlC5/PRzQC7Vq3oSA3D5/bgayKozEmEU4kQEwwoH8f0tNTePutv5OTk4fJIrFgwafIssDgIQP4+OMF1NbWM+qyy9m+bReBQISlX67gwN4dbN+6jR69BzJo5CUEgh5uv/VmEoLE5s2buf+Be6mpqSESibDyy29IT8tFiUskJ2US8rsx6zWISpTNP3xPl67tkSSR+oZq2rVvxh13XkNdTRWOBjsWg54HHn6E52c8i16tIup10Fhdh1plpN7mIuAJoFHpEFQSKo0ORZAwJyeTnpXHgk8/Q69W4/EGiCZEyk+XUlVVx+hRV+By+jAZk0BQ0by4JQkkEGQSIQfBkB+93kDI6cJuEwiEwrRp34alS9dw8uRJjCYNX65cSiIhoJKD+MKnEcQ4Ay9uzbMznqZNx7a89MqTzJn7CplZSUhI7Ny2HYMs897Hr/L1hlV4Q06atcwhIycZvUFDZmoakVAcjazFYjShEsDh85CSkUk0GkerUtO8XTfqbA6aFWTj9TjQCFYWfDyXhrpSGupOIAlhvv56OcGIH73ZRHpBDunZOSxbvpzsLAvxWILsghYE4zHKykpo06aAXj07kZpiYdHCBQgxkemPPoyKKBJw8OBBrr32WtRqNXv27CG/IA+LxYTZbGTgwP5kp6dhMErojRqatWwFgplwRIJAEG3AxZdrfiCaENGpDZjMOrRaNQkFunXrSfnxoxjVWvRaA4KQIBIN0rp9JwYMvoTTJScZf+01KGhxe4IkUFDrdEhqFbYGJ22adcdm96LTpzJ0xOWE4wpqvQ5fOE4MFQkpRk5+OnqDmVAkjs6gx+2uxukNkJyeSWVZCR06d0Kt1aCWZKxGE+G4AoIKYqBEFH766UcCQS/5+Tn0H9AHWavBbEkhLS0dr7ORHZvXoxLB7g+wePnr3Hjj9UQVO49Nv4tF8xbTumUbAn43thobdmcDWoMKr99NJCJSUnICSZLwB9xodSJqVRyNJKIWwaCRuX3K3Uy+4XoeffgBuvXow82TpvLU40+xe/sWQj4fQ4YP48kZ07ntrttAktmzbx9qrZFv1m5g7oJ5eH1VKL5K1KEgb73wHp07d2bO3IUYLFa2/rSJ0tJqdu48wPoNP/LiS69TU1VGTXUl0VAYr9vHT5s30b5tO1KSk4lGFNLS0hg/YSyBQIDiwgISsThlJacYe+k4Thw+SiwYRlD+tUyVX6/rzxdE+XXU9XwBq392PfpX1qZ/dcy/yv/vwD3/o5zXf+cH9s+UeqY4zx/d+/8VbvTfdVj+N+CB/x2SJOmC586fUv3fI+t/ut7+O0mONbXWSahB07wXRpUfVXohKlFFcmYu+fn5FBUW4fH4cLpcGPR6jGYTLVq2QKPVkpmZRV5+M4zmJDp26YZKkpHVajIyswhHIsQTMWprqmloaOTgoWO0aNGaqooqvB4/Xq8bt9uJosSJRkMEg0G0Wg0mk+kXTGk59oYGdDotoiyhJBIkfsnV0eu0hENhBFFAVDV94zm5OUQiIUaMuISu3XqgEkQOHTz4SxQK0tJS+eabb1BrZDp06EByejIq9eNFZQAAIABJREFUjYrUzBTq7fVEwiH8fh/jx09Eq5OIxsO0bd8Go1FPIBikvq4Ova6pEm7T+6mwb+9eUlPTMJus/PzzHhKJBD6/G7WsQ5LUxGIKkigRjUaJx2KE6o9S39DA5nIL999/P8+98BTxeJzi5sUsnPsJ36xdS0IUUKv0PHLPYySZkgFYt+k7ivIL6N3nIkR1nGOlp0jLzCISidCyRQt+/PFHiouLMRgMmEwmbrvtZma9MYvT5eUAvPfmq1wxdjQnT57E4/HQrk173n1nDs0yzQTDUZ5/+UU6d+5MIpFg0aJFhIIRPl/8BWVlZQC89vLLTBg/jkabg5tvvp0br7+VoN1Pfm4B4XCY6U81yTFl6u0kEgkaGxvZ9NNmysqb+Gc+9xxjL72U2uoG3n/3A9SShssvH8NzTz4NwKHDhygrL0OWm/oFA4SDIRrq6li9+it69+4LiOj1eoraNefSKy4loiT4dv1PLF+xhNtvv5m6+ioCQS+iKNCuXQfGjRvPwoWLQCVy19/+RiQe42T5KbKyM/H7/WRkZKDV6hHFpnEPHDhAhe04aIIEYzbiOEhOTUIty+g0Wp5+8klmPvc8R/bto/r0SfSCRCQSp6iogKPH9lFSug+/IvPT10v4ZuFbONwe6p0B9hw8iiklhbggc/zELlLStNQ2nMIbrMPrgWhcpKGhAae9AY1kJCcnjyPHD+MNuNAYLZhTsghGteQWdMSUbERr0COICu+9/Somk0zMnI0i6jAKMc7u1AjK/xxA67+JFCREAWx19YQjcepqHTRv1gJrkgmnqwFBEIgrsaaqwsmp6I1R1NogTncZMcVOJBJBEKG09Dg+bxRZMhAIRFDiMiXHTyAIAmq1Gp1OS1yjQ220kkgksOhllq34hOHDRoOiI68glUEDB/+CO4tz44030qZ1R7p17cXixcuIx+CKK8cx5+/vcc/Uu/hm7QZQq9HrtdTX1vD3OR+wctUSrr32WvR6M6Ggwt133QcJmbFjxhMMxEgyGdi9cxtH9u9h7+6txBQ3obCfVq1aUltXTWaqlrdnvcraVV9RdbqSocOGcPMtkykrP8Ghn7eQl5nG5Mm34AtE+XbNBma99gYatRFbo4uIoKAxGXD4PaRkZXFg734MpiSi8ThJVj0tW7Ti5ZdfQafTEw5HSMg6ErKOqKgiNScPe005EqBCwapX0+2iToQTNnQWP7nN9QwaNAiVJDBt2uP4/X6ifoE0SxpS3IpRYyQ7JxNbYx0GiwpR42PL1o3cPWUqKeZUairrsKZk8+BDM3A6VShCMrX1pwiHgzgbPaSnpJGIw7VXX4NGVhFCRKXVs/SLFbgb3DQEBBRZj81Wy5XjLqHatoUBQ9pitaThdyahFSKMHTUCh8uJPxrHFQ4TTTQV9vM5a1GQiSa0xEUtRcWtUMIetm/6npDHxbXjx/HAAw+ycOF8BDGOw+Hg888/x+12s2LFCpYvX86pU6fQG7QcO3aM1q1b8v6cd8nMTiK/KBtFULA5a/j8iw/xOo+Tpncwd+5SomEQBTWxqMLgwcMwGq3ce89DZKemkWwwYa+vw2mvwmQyIclq9AYLy75YwuJlSwmEQ4waNYqUFAt1tnrCkQjZWUVccvEEklOTiMbA7QoRDiUwWtUIcoJZr7+O0WLCbDWSEAWSU9NosDdid1RgspipKK8DRSAYCSOKImazmXAwhEZrIqFILP58OWF/jFtunYysTmB31KPWiMyaNYtwOIrbbicaCdGyMJvkFAv65HT69xvE00++yuLPVvHRB5/SpX1XXnp2BgGnm8ZaG4oYos5WQYO9Hp8/xqRJkzCbzRgMemS1SCwUQiKB1+ngofvvYe3671j15Uruv+dBVCoT0x9+gVEjRpNqNbNxwzfsO3iAZV8uY/vu7SREgfad2mA0m7h83BUEwz4sza+m+9BJxPQ6HnjuYfx+PxU19YRCETweF5279GP/gRL8wSjNiosJ+D1kZWWwdetWDDodIY+TBR++T68unXnl5dfJyMhg/Ya1iIIKWdTSsW1nTpWU8+Hf53Fo734a6uuboqT/jUb2zLpUkiTOFNiUZfl31/06a/L/9Tr2Xwmg/Rn9xzivCUX4w3ztc+l8EdgLRW//DF96bkTzXFq0YRdarZrNmzcB8PzzM9Bq1b85ysvLf/cA9+7dw2233UqbNq2wWs0kJ1vp3r0rTz31JI2Njb+LBp9v1+J8ONdwOMxbb73JxRcPJicnC71eS25uNhMmXMm6dWt/J9sZPp1Og06nYdOmH/F4PDz99FN06tSBpCQLOTlZjBt3BTt37vxTvW/YsIEbbphEy5YtsFrNZGVl0KNHNx544H62b9/+Gz2fubeiKCxcuJBRoy4jPz8Xk8lAbm42o0Zdxueff3ZB3bdq1RKdTsOCBQvwer1Mnz6NDh3aYbWayc7OZPz4K9m5c8cF9fdrPXi9Xp566kk6duyA1WomMzOdsWPH/KHMJSXHmTXrNS699JKzzzE9PZVevS7i6aeewm5r/Aem64JK+30RpWEjzl+w6dcyHDt2lPvuu4cuXTqRlpZCamoynTp24IbrJ7FixYq/bCzeeGM2Op2GvEwLsVjsFzOr/OYIyXFIxGnXoiXWnrcw66sS9ClWwil5qDOycXvdyDota7YdY+LjH9H2mhlkj3mSnne/zeQnP2LRtz/jDwSJJbxkpucgytBQfYqD+7bjD/mZOWcF0z/bzZSPtjL57XW0uPppZq2vZPrHa5m/cjNJRivVp2upq2xAIxqY+toyMkc9wfj7X0ejs5BX3BrZaIGEQjwWI6bEqXUFeXzOtwyb+hbNr3iS7JH/RZdJM7juybms3HGCkBikQ8fWfL7oU8JBpSlSDJSUHOayy0axedN2VGoZUZCQZQmv083aDTvZ0aDlqudW0GzCE+SPncGwe99h5sK1VFY0sHfXdtatXY/X24AkCwhqLSqNTP+BQwiFwlw18VoqymspKSknEoiTiAapq6kiHIuyceNmDh89iM/tQ9Wwl9Qhz7N25ynad+7K7p+b3uFLhgxn3gfzaJlXxMavV+H3eVi+dAUFWUUAVNVUYwt5EPQylUeOsPuHXWiVGPFgAEGlxR+NoTEYiZMgGg0TjLn4cdvPADRv3pzBg0fi98cI+RUeuW86PleYVYs+5vZLmooj/bR9K42OKrw+DynJ2fy0/kdef72p17VRb6A4vw1PTHuJ7GQrk2+6gROlZcx+410mX3stAGu+/ZpIzIFalEkoKlxOH39/74Oz72JxizZo9Cm06diOFavWEonE6N/jUpYsXHz2mqDfiV6vRVEUtAY9eQX5mJKsDLj4YjSqEM9Nf46QEkEIO2isqWP0ZaPpP6AX6zZ8Q2ZGEelp2dTXlvPzzt0s+mQOH37wOvv2bmH7pq3EUYhFVfTsOBhJlLio2wA+fH8hAZ+TaDiEs9FJWkoSqSk5hOxOSnf9RGNFFZIokp6XRlphJvc9+Dj7Sk5Q3K4HojadgvZticWiaNU6tm3eiUWTil4KUNymL1lFAyk7VY4q5qFDmzzs9T5kjYQ+uQhVPI4iGtGrdGg0CWoqK0iyppKd2xzwEhUS5ObmErbVEgs5Cfk8IMTw+htQRUGOxnjh8QdICp6m52U3IgCSoKAk4iDEOPvzL0b/kp34s03Uc8//1V34xC/2LyGAoBJ/mZdIIiH8csSRdQZS0vTICQ0Gg4FoQoXLXoUUkrBYTHjcXvQmHSpNFI9fwe72kZ1fjCAlEYpGqa2qJC+nFWqNE7NZITsziZQUFdk5RYTDCULhOOFIHMXnRx2PEw8FSEs2YM1KxeGqpvT4AVA0uEJ2/MEGIiEHObm5fPn116g0IgcO7UWj0ZCSbGbzjoPU1wcpzheI2euQdXr2HT3O16tWsu/Ibrr37Eg8HibZasHjPo2si/LZko/wucvYtvMg7Tp0xpRsweGUqa5qRNSYSShWIkEnsqTniZdfZdyEa1jxySoctnreeH02Jn0ahw64ee7ZNxgybAiWlHQmTr6NqVMfwudwYtCokOQ44WCM1158jlYFhWTmp2OUEujiUdx2B6FEmDbtCtFrFGQ1RCMNSEIcIaYg40VrtCLLFgKhBLVuF2u+WUPYESfhU2PUWrG5GolEIJEQsTXUcGDvVpRIhETcTtDrJezxk2TSohIkvHYNKxd/y8ihF3PDzTcRIotIPMhlo4fQrLAYnd6OWW/GYDARFcDmdDF8xCU8+uh0iMsY5QRKMEF2djZdL+rN3q0bKSwsIKe4Dcg6EpF0hg+7FZ0+nS2bVxCP+njiiZnkF3ZErxXRRcHndNK750WEvUESwUbmvzeHZ554hW079lHncFPYphhNshGMVrr1a0VqZg62Rh/ZOemMuex6lixZwqXDr2T8uPEYdVpEDPj8ETz+AG+88yYlp6pRq/QYVRIZGRl0bdmdw0erkdLy6NmlA1aTgsfnZcrtU/nhx00cPLqfMaOG0eiPcLriNDt++oEkcxJ1jQ7CIS/xuJtHn34WIeCgrHQvd9z6EC5PU+RZ0kQIRfU8//YzuBrraKwvY+niueRkW/EFgrgbnIwdMZp4SEAtB4lHHfjdduKhGNl5HYnEoHnrQlR6kca6UmKhBLXVDTQ0niQSdOEPuBgwqD/W1BR69uuJ3pzC/sMV+CNexo++DHtjHfsPH+PwiXLsfpG6hgAnj/1MUes+5LdPYeT4ESxf+S3OxnKKW7fCmlXA4mVfIkYFxIiOue9+iqO+HKsmCVGjx5yagsfmQhCNyLKFUFTNlCnT0MlGLup7MW179CQYtNG1XyGz3nkLSZuOrLFy75R7+Pvbn6CKwvR7J9OxeQEaUwKdFdKTNYhKCc89+zx+T4SH75qM0aJt6vFt0TH1/qmsXb2I/gN60bN3e06e2s6QEaPZs/cgWTkFSLKJIRf3R6vVsnDhQv521zXY7Q1c1Gcwj0x7hLR8PemFGUy67WZicReD+/bn3dlv8tZrryPGlLN1OsSmxI6/1DnjQhksZ4JtkiQhSdJvuo2cta9AQlGatikTid/hVM+1w+fa5t/+4Rzec/Czf2b7E8QRxAQJ4iSIX/C6f4b+Y5zXc8tBX4j+1WjZv6NErVomIyPj7O6HwWAgIyPjN4dKpfoNz7PPPkPv3r1YsGA+p06dQhAEotEoBw8e5KWXXqR7967s37/vLFb1j+b363MnTpyga9cuPPjgA2zevBmHw4Fer6e+vp7Vq1czZsxo7rnnb3+op9raOvr06cXMmS9RUVGBKIo4HA6++eZrLr54MOvXrzsvXyAQ4LrrrmH06MtYsmQJlZUVyLJMIBDg0KFDvPfeu9xzz9Tf8dXX1zN48EBuv/1WNmxYT0NDA3q9nsbGRjZsWM8NN1zPhAlXEolEznPXJnK5nPTt25tXX32F8vJy1Go1drud1atXMXDgAObNm3teff1jDnX06tXzF5nLfyPz0KFDLijz6NGjmTbtcTZu3EhZWRlarRafz8f+/fuZ+fJL9Ox1ESUlxy8473+VXn31Vbp168r777/PsWPHiMViiKJIyYkSlixdwrXXXo3H4/lLY1199TWoRIFGd4gN69YhKXBmAXnmEBLw0+bNVFZWIAgC49ooKPEo2qRUVGoNCY2eSc99yr2zl3Kg3I7dHUArq3D6gvyw9yT3vLGcW178hNraKpRYCEklIMtRNBLc/dpy3lj1M9sOleEJRtBr1YRjcWqcfr7cfIDnP9uCz++lwVaPKAoISrgptxcw6E1NkVUEYpEojkY7kphg8dpd9Jj8Iu8s3cTpBg/BcBS1LFFe52TdjuP87dXPOV1lIxaJ0Kt3H/ILcpHVTd9vcYsWyGoVnTq3Jx5T+H79D2jUOuatP8B/LdrOko37qLS5EQWIxRWOV9h444sfuPSRD1BbckhNy0Ala4jFwihRP3Pe/4jet79Mm8kvMP6JvzNqzEiSU62YzAbiMQG1qMVls9OsqABbg4fakp04Qmr8pla89MrTDB7+DyzyHVPvZe6iz2jfvRfd+wzEYDLQpVtnVn25EqPRCMCpslOEIwmmPjyNRauW4fB5+a9Hp7Fz214MRjWRqI/yihNUVZchJsDrbyq6VZiXT9AbwWi0sGr1N7Ro3RGT1cKUO6fSPNMENFU7/G7jD8yePYthwwfQt98QJHWTbbuoWw/0ej3Tpj+M3VnB4CH9eODBeygubkaPbj3O8q9du5ldu3aRSEBRUTMee/Sxs/IdKz2BpNUiqGHTT9tJSApbd/yE3eMCQK+RycpIg3gAjcFIo8uOoFVR3Lot27b+TCSs8OKLL5GdnQmKnt279nH6dCnDhg+g/7CRPP/iM0y55Xo6tC6mXbsOTJ58E99//wMbN/5Iz549uP9vd7Lki095efZsnnhiOi+++Dw5OVn4fGpsDhvuQA2Z2YWUVdZjTkqjWZsumLOKiEYV7I1Otm7dSvPmBaxcupztW7ai0WhY9/V6zGYjO3Zs46mnniAlJYmG8hIOHTrAym/Xk57dAkmlxuVyE48nUIkyKkEkGHCTbDUhiSriChQ2L6aqupYGWyNuXxi704PJZCKhxNBq9LhcburrbSQlpVDh8PHFey/RyRrmymcXEVYMqBICkgLiv18Q//8qiaKIEI8S8NShFvy4PXXEow58Hj9JmRpsbi9p6bmEvW6qTh0mEoxgMVpx2txUnq5Er1PjdrvR6A1U2xzUNDqbCvtIZjRqPSdPnsZiseBwNGLQJ1Ff30hqSjo2mw0RP4IoklfYhorTDYRsHjSESYgK6bkduW/qo2jUElptHFEMIkV8PP7QnZgtOrz+AH9/4w0qTp7g+7Vr6N6lLUnmfHbvPMz+/YdRqVTs3XMIvy+M2+1GllWYjBa83iDJyVYWLPyAXt160qdLN56Z/jDXXX0XNrsDoz6GP1TJHQ9cQ0q6mc3bd/LAI0/TvktrrpgwikFDepOaaiShNJIQAowcPZZIOEFDTTU+t4v5C+Zx0y03YramUllTSyAUpqCoCI1axG6rQlH8RMJ+3HV1RP0efH4PkbiExZyCkggTDPpJS82kMD+H5q1a09Bow+OsR2/Q4PW58HpdqCSIJFTUO/yEFQlBrWXHzp/QSBkM6jcOX7CK2W88w5hxY9mxYydWowmX28bV147F7mjA7fYSjCdwOu1kJKWxdetWVq1ahSRJzJw5k7pqH+FIgCsnXkx1bR2zZyygqrSMoLcCZ101siyzZOlyEDUYrVlU1zqYes9UHM46hESCEZeMw+bw8/P+Uj5f9iO+YIybbrmNa6+6gXffXEBqRhaSxooomwlGY2RntuCnzbvQqA38sPEnevRoR3HzHLwBJ206tgFEnPYYoWAEa4pERUUFjz/+JOFwGEmGw0dPsWf/EVq07omkzefxxx9AiYQRhDAVx0+jFmSycnOQjWqy8vNo3bErQ8deiaxPRlZZueKKCWh1EiazDkmlITnFxFXXjEKrT5CalIvHGWDuhx+h1ajQ6fQUNG9Oem4OkUhTVfekZD39B3ZDVEU5evQ4JDS8//4cklNMxIJhiMapq6ujeYsW6A3JVFVXk5mdQX5hEfWVLkL+GNakJOKqGEo8jBINcVGPLphNOqwZWcgaE4UtCvBH7BS07sD3azfQoVURfr8DWRLJz8klEnHx4MOTcdpKWPzpIh6ZPoPrJ90ECZnmzVvyX488wX0P34/b6aKu2kajw4sp1YDb7+PgocMUFOZy8x23MWjYCPweL8s+mU84FKS2qpofNm4iKTWbOW8+x1erFzH51juZcN39fPjRfPSCGm1CRIjGeOz+hykrOcW+nT+zeNFnxCIx9u3dgcftxKAz4Y35iUSDZKek0Cw9k2DQz4KPl6IVE2RlRPH6/bzx9my69+xO82ZtycwoIKGo6XnRAGRZh9vtZsuWTRj0JgSDxP0P3svNk65j74+bzq474wLE/mM8r/+99B+jwjPRxz8rpvRX0oPPx/NXxryQw3flgM6Ul1fSq1dvAO67737KyyvPHhUVVeTl5Z0d46233uSFF57HaDTy3HMzKCurwOFw4XJ52LZtO4MGDaa2tpYrrxyH1+s9O+9z730uLtXhcHDZZSMpLT3BoEGD+e67jbjdXhobHdTX23j55VcwGo3MmfM+b7315gXxsPfffy9qtZpvv12Hw+HCbneyefMWWrZsSTQa5e677z7vrtHtt9/GsmXLEEWRhx56iNLSU9hsdlwuDydPnmbevPn07NnrNzyRSIQrr2yK6Hbp0oUVK77EbndSX2/Dbnfy4YcfkZ6ezpo1a5g27fELPqPnn5+BzWZj0aJPsdudNDQ0sm/fAQYMGICiKNx9913s3bvnd/o7Q/feew9qtZq1a9fjdLpxOFxs2bKVli1bEY1GmTp16nllvuiii5g163UOHz6Cy+WhtrYel8vD119/Q4/uPaiuqWbyjZMvOO9/hebMeZ8nnpiGoiiMGjWK7dt34nK4sdU3UllexepVaxg/fsJf3sTJyMhgUMccAD777FMkBY7sPoC33knI4cNR1YDP7WHe3KYNgL59+lLYsgOKvw5EgXAkynVPfsSe45W0L8rkzSkjWfroaL6cNoYtsyYz7eo+JBm1bNhdyltLdyEK4HTYSU7JY+sJL5sOnEYjS7wyZTRbXr+JH1+7jfKlT7NrzlTmPn4to/q0obKygtatWxEKBXF5PGdls6YkYdDpCfj8VFZWkp6ezsoNe7l31lJCkRidi7NZ+uLNnFw8nc2z7+CzR0bxybSJjO7ZEiEeQ6tWsXv3HtLSU87q42RpKW63A4vVjCRJ2BttvLX4e15Z9B16jcy0ycM5uPBRKlfNoHTxNNa9OZV+HZvh9Ie5a/ZSevbpjaTWEvCHCHp85OXlEYk2RbcEoakHpU5vIByLEwwrHCs5yXcbviO3IJfmzVuQZw7yU7WFQDBMAhV7D+wFICU5hbRkK9988xVGvRpJBr1Rx9fffoXH56aooBCAXTu3oviDbNiwgXfefRVzkpYXX59J+55dkCUdRqMVAZmM9Cz8Hu/ZhCZJkrj1psmcKj2BSiMx8boJ2F0Ovv52w9mUaoBjx09z370PM3v2bBZ+Oh+f7xcbpVIRDAaJRhLodckYjDIzX34Bg0GH7xcHGWDP3v20a9sBrU7G43VSVFRA546dAHj88cdYvOgTAu5Gvvv+R6LxCAs/n0uNvQ6Ap24YiclgxtHgJBoMo1YlIBrFrLfStkMeZeXHmTnzJQKBCN9t2EiHDh3p338QH300l8/mf4xGK/D622+ya89h7I1uwqE4eblFbPpxK/sO7mPeh+8QjYZ5+LFpXHHFWC4ZOYzRYy4jPctKRmYOaWlFqDUatEKCmooqYjGF2rpGVKIGrdZAhw4d8Ad8mPQG+vXuw/MvvkDrDu1wumwMHTaYsvJT3H7HreQWNmPgJSP4+9yPsRrMyLIaUZRIT8vk+PETJFuslJYcpuzUMcSESEJUoSQEFEEkNS0DY1I6OpOVYDDIqVOlRKMxMjOyyc7KRUBFkUWFyaCnoO+4pnohgoASjxMnTkSQL5hh9M9gpv5d+qt4KzEBZr3M8YM70CQ8ZOdlEHDbMBvTaXTZSLWa0GmNCLIWncVEeoqVaMhHstWASASv24VGr8Pu8mKxmPD7/ahUEqFgjFDEiVoD0WiM5KRMvv9uM25XkEQiQTDox+d0Y7Km0G/gUJ56Yhp11XVs/+kIHnsEvc7P09OnUVd9GhVhZr38CpeOmUyt3cuwoZdgNqZx34OPY03OoGffflx+5eXs27+TYcMuplevXowbN5FePfuxYsVKkpKSkNUSe/fuQ6sxoCgKy1Z8QqPLy/ffreeSMUN5dfZC6mrclJecRlZpCYSg4uRxTpce5eVXnqd9p85k5uTy9Zpv8Dm9eBvdxONq1m/cztdr1pKdkUGK1YJGJ7H+hw1oNCY6d74IUVJxquwUsqBDiUax22rRSnrS0guQJAmzXo3XbuftN+ciijKiqObJ6TPRqQVCsTjmlCRSrEZ0Oj2JBKhUEsuWLqdP357k5hSiUeuQNdC5aysi8Qa2btmKyWQCIYLD4yQp1UCyWfqll3eElOR0rKYc/v7Wu6hUAt5AhC1btrBs2TIyMjIoLCxEb1IIBAKEAgkaG2pp3T4Pk8WM3e7H63ej0Qi0blOMJ+hj+KhLmXrPE2RlF1FxuoK5c+Zz+chhaFQxbPU1fPH5SkSVhb3795FXkM4zTz6Kx+VCpYhUV9agk0VCYSft2rVi5co15OY0x9VYj8vtJL+wiFdmzWboxZfRvEU6bdu1JuAVycvPYd7chahUMuFIgNJTpYwYMxJjUgaCJo3NP25CFrQICfhk8Wqqqp1oNWbUogZVPEY4EiCsxDhVeprHHnuM/PxsLFYj9kY3a1b9iMWShMWqJxIJEPM2YhDj2CrKcFRVo9PoiatUWNKaUq31uiRUKhUVFafQ6fQUFbZAI5u5528P4HI3IOEn4HMxbsxEPK4YSUlZ6AxaJLUKh9MNiSBJySYUVdPzlsQEsiQQCfgI+j18ueIrqirq8NptGOUoZWVlrFiyBAQVGpUGVULDqBGXY7fZCKkSGMwmbrj6SiaOH82bb83C53dTWnqc12e/Qp/+fYgGQ6RZ05k1+x2mPfo0LzzzMosXLESOO7nh6tG8+eZsjpaU4XD6OHH8Z7Zt+45rrp+I3qohIapIz0jB7bKxYcMGRo2/imuuvp6F8xdQXV/NuAk30LvfMAymdHr1GoLHEWbk8MtYtnglKsWI1ZLOY48+ic3mxOsLk5qZxBNPTGXr5h9Y8dkafIEAdmcDW7ZtZfXqlYCCwaBj7NjRNNrcxJUoKakWnn32WcpLjnHkwF6uvepKoiE/n304D1UkjqgkkETV7zD+/y488K9mxlwoSvrr9e2v/Yrz8fw60/OvwCr/J2q1/Mc4r/+/UGNjI0899SSCILB48RIefvgRMjMzgaaKwF27duOrr76ma9euVFVV8fHHH599Mf7McZ858yXKysoYNGgwa9Z8Rb9+/X5epChEAAAgAElEQVTpARcjOTmZv/3tHj788GMAXnrpxbNpkueSJEmsXbueQYMGnXWau3fvzqJFnwFQUVF+Nv33DG3c+D3Lli0F4PXXZzNjxgvk5uYCTS96Tk4OV199DW+99fZv+D7++CN2795N27ZtWbduA5dcMhK9vgkvaDAYmDTper78chWCIPD++3+noaHhvHN2u90sWvQZV145/ixGtk2bNqxatYbi4mJisRh/VFlbkiTWrfutzN26deezzz6/oMwACxd+wpQpd9GsWXPUajUAarWawYOH8M3X35KRnsHefXvZsnXLBe/9z5DT6WT69GkATJgwkS++WEqnTp3Ons/JyeGSEZewcOEnmM3mvzzuhAFNfYNXrVnN+m+/ZeemrTzz2BNs27iZ3T9tx+f1svqr1QBMHD+BeFIxMVcVCRLM+2obe45V0rowk6/euocB3Yrp2rULSclWBEHh+lG9eePO4QgCfLJuP9V1TvxeLzHFQKmtyam7cmBHxg9si1ajNDWrDwWJBT20ydDwyh3DKCwswOFwoNPrQJCIxZsMrYKCyWRErVaTZLHidnt4dsF6EsBFbQv4avbdDL+oPT63h4yMDAYM7M+Azi35ePqtNMuyEAz4mDBxIqL0j8yIjh07cfDgAUQBIpEovfr254V53yIIAi/cNIIR7ZMxyHFkFRzYuws56uLzGTfSsTibWruHT7/bDaKIWlJzurSM/v37o5Y1Z8cXRBGDwYRa1qG3WLAmJTFhwlXU2Rpo1qwQrSwwbtJd5GTnY03OZMeuXQBkZWYSCnrRq0XUMvg9Tjx+D7Pfmk1yaioZGU12RBShV5cOhAN+Hp98I0e//5G3n3kOyefn6JFSfJ4wZlMyWo2Z1NRUopGmZ3Dk6BEWLZxLWrqVaU88QnpWKlk52QwYMIifS2rOzv/I0eN43EG+/24TN9x4HW3btgagpLSE9957j4A/SqeOvRk//gouvXQ4sViMKXf/o/DYiRMnmtodKQHq6suxWLXM++h9OrZrh9vj5uYpt9CsbUsenfEA+c1a8PBj99OyuBXzHrmWawZ1RFFEnnjsGYQY6CQZMaGw86ftlJTuITc/hXvumYpBb0StUbFu3Tq8niCXj72KRx+8l4cevA9/KMrQyy4nFos1FVEaPZoZM2Ywbdo0ErEovfv0IhSNYGusZ/ny5WzZspl1G5cRi6vQabKxuxrJSU+lMC+b+uoqOrZtg9Foxmg0/pLSBUo0hlqtZsaMGWj1OjIzMwmHw5hMRt555y1Ky2sor6lj8eefUVdZTiQSw2gwo1ZradWqDUo8jk6rpqioEKfTjaiSCIQjWCxJePwBIkoCp8uDTmugW5cuaLV61Got8XicUCjC6V3ryS9uTVrfCaj99QhCCEEIERMhfE4W0P92UhSFvPxc4mE/8Yif6upqdGoNmRlFqDRqQl4nAV8QY1IKcVlLJOpHkhOoNZCaZsGg02G1WilqVkySWd/UOzkaRVASBMNO9Aa5CW4TgoEDhjBv7nwikaZ+igadicZGD90v6onJqOOOu6eSkdaW6tN2Vq+cw/ARg1FrEowafSmHDx2j1isyeNgYXn3tLYYOHM5df3sATyDMo08+zdHS01w+bgT+QFMWwezX32LVyq+5fOw4jh49Snl5Oc888wxeT5BYLMKJE0dZtnoV5RUVFBbnUdy+C/v2HiXFkklaSiGhkIZDe/agRP1cfdVoFFTMmvUGl4y4DFGQWfzpSgYNvARZY2bsmMuxN9SzY8cOfD4fi5cspk/fgRw/UYokayhu2QJQYbUmEQ5GCPjCBGMq4gmIBv1kWMz06jkQtWxEpzWTmVGArJZwedyIosjJE8cIhxIY9En4fVGCgTjhoJtIMIC9oR6/x4HJrEVr9OLzhTGb0giFQgSiQeyOOiorjjB82EhCwRh1tXYSipYbrp6EShaJCgJPP/00d999N6IoMnz4cFzeMgx6E5JoxWLVcfNdlxOOR8kr6ETz1i3RaEGSEwhyHE/AhVaXQk21jcKCFkyedBv3T72VZrmp3DT5KhYvWsTO3Qdp0bIlm378hp4922PSqtBKKiRFweuy4fHX0bJVEWPGjCEjPZud23fRuVM39uw5TEVVAzNfnE3Jyd1kZqahU2cBsHTpcmKxGKdOlXL5FaMwmHTEhATBqMLyJStQy0bMBjPWTA0PTp+Cy1WGWvbiqKsiGPCg1agozM1h4KA+zJ03B5/PQ15uMX5vHL3OhCAIxGIKgjWNj5asYc2mA1S51ERCYULRCHGhae2llsyAhFqt/SXK7yEcjhIMBtHrddTVlFJ2+gQqUcuDDz5FKKJgTrLi8rpJy8wkOVnL8ZJDGI1GAsEwPq8bjVpqgkilpTCo3yCKcgsRolGUsJ+e3Tox/6OPUUQJWaVHrzEzdsxEVKKMPjkHldaIpBL54N2ZJCWZmXLXLdx40yTS0q24/F4mTpxIVWUll1xyKS88/TK33nA7Xdq14/C+n/jonddo2aIYQaXF4YlQ3DyLzOwkklP0KMQoataetRvWk5OdxPRH78WQnMrLs2Zxy223ktu8iBYdc7j9nkl06dWSnoM6MWv20+w/tJFuF7Vg46aVrF6ymunTnuHI8VOYk9PxB1ys3fAFG9aupUOL/rTv2JGEmOCRxx6lc5cOLF+xhL37dvPCi8/hsLs4evQoffv1IjMzk4DTQYrZyCcL52FKMjJy0MVUlpzE0+ggEY39ZYfuf8Lx+/+B/mOc1zM50+fma/+z9OvKXH+V/shxlFoPQWo95A/5f/3yff75ZwQCAbp168aQIUPOe51KpWLixKsAWLdu7QV72J7LO3/+PKAp8nsGzH1m7mdy4seOHYvZbKaxsZE9e/acd6ybb76FtLS032F927dvT2FhIQCHDh38zZznz58PQNu2bbnjjjv/MF//13+fO7fJmb7jjjsxmUzn3cHp2rUrbdu2JRKJ8OOPP5x3zr179zmrz1/z63Q6HnjgQaBJl263+7z8t9xy629kPkPt2rWjsLDoNzKfoT/bbTKYjPTr35TyuWXr1gtexy+Y2F9jv85HQgJWLF+O1+tFlmVmznz5d/ePRCJ/qTftGRzumWNk93xMuqbG5fc9OI2Vq75GEAys+PJrFnyygBefeQGv14tGo2HE4KFom19OtO4wIY+H+aubZLvl8r7IYoKs7EwMJgMRQaagoIjTx46SZZIpzkomEouzq7QGjVqH09GA2diUqtvo9uPy+LCmZJGRbmHv7l04bS4Ki4rRaa14/W6SUpNIT83E7/MiiU0LcBEBbyjG2nXrMegNzF+xkSpb0zN+9vbRSCoVkUicb9d/RzyRIBYKMu+Tz/CF/UQUGZ3FTEKME4tHz7bsOF5SSmFBMbFoHEml8NXuEwTDUToVZzN6UGeaFbdF0hvxhxXatu9B6xZtqa6oIVfXtBn07U8H+WzeQnbt2M2Ro6UYtCZ+nv8wtV89weLnJpOIxUnEFUIBL+FAgMMHS4hEgiRbDcTiQWLqFE5sX4XOaoCQF5OxqTCRqFIRjwn4/X40Gh0pyVmE/T4iwRDRaBSr1QqAkkhw25S7UBssPPnGO+S060P3ASNRtBpSrBpKjh4iPTkJh62CvYdPMumaGwCorK5m9fffUW2rBCGCEo9SV1dPl579mP/DqX+812YDCjEen/Yo363fwLBBTd9dRVUlPfv3RKf9P+y9d5QU5db2/euqznmmJ+cZhiGDkoNkI2YUUQTFgDlgOGYUczjmcAzHnAUxCwgiSZAoOTM5d0/nHKrq+6NhRAXknOe83/uctd5rrVrdq+rOddddte+997VF3v3wXXp0HUxleU/CoQhGq7kzv9lsxB9wok4ZybLmkUqKVFYN5J1/vMPYUemyFEXBH/B1Po+RaIS6xnaSiQT79rawfet2PnzlUea+9Rbbtmymx+BBnHnKubi9MbRWE3qbCp02gRotD9w3m9tvvYFzzj6PqRdeiSCJvP7Si8TkFFodnH/ReRx/wlC+mv8dAVmk/5AB5OfqGXfiqZx+5kQ2b95Nvz6DcXtaEdVRmutdxOIi1Q37Kevajfr6WtasXUpKENBn5CLqBVK6MBqLTDDqw+1y0dLayMOPPoKoMbJlRw0vP/0G1Vs3M6h3F1Ra0GqMaFSwZfM6JK2I2+WhrEt/UNvJzM7EotdiM+mJx6PodBpMYpzSvAxa2rxo7F2IKRqQ4yQEkdadK1i05Af6jR5PpjZJTJOLghYFLaICWvnfi13ducP+h7Xj38WxMk+mUikKepxAbkFfgi1bsRsdGOxdSKlCmNU6MnIyyCzIoKlhFwWmPHz+GIJgweUOglpAb87G55dIRgPE4npU6FApSSS1RE5meXrtFSOoDSJhuZ3ZD91BLBQiJ78CX8BDhtnIrDvvxJaVg92k5cLLzuftzz5gcL+xPPHki0QCAYqyu3L1tTez6Nv3qSjLot9xJXTvMYD7759NttXMgnlzyLLaiUVDOJ0edu7aiz03k+FjBiGlPJjUKu68dRaz7pjFKSePQ9A6KOvWBynkJi/LQYY5D+RmJk49Fwxa6lvqcGQbOX/6lVx6+SX88O33vPvmC1x/3cVkZYuo1Qmee/FVju/bl7aavcyd8xmiqCEnK4vhg0/grdfeYvCwoXg9AURBQJEiBN3bUIkaMrJL0YspwhEvsaSASu8gpjZy3LC+BEJe2tr2MXnicCLBMHnZRgxqOxVdcrjvjtms/WUNuXkOHnnsYVIYCEd82OxW9NZ8OtoTJKM2JKEFSZKwZhaTm1GMSZdNTZ2Hc86cxE033IrFoiYUdKNoZSyZBcTDIUKhNmQpgSQraIxafK0Cep2OqOwhLKkwG0u46qqZzPviS3xehYCkIhGXUCdlcuw23v3wZRQ86PQR9HYV5vJKYrKaL+Z+QX5VNlWlDtzhBEaNjqCkA4Od2ff/HZ1exurIpaPVTyjsQ2MQSGpkNm3fjFarJSfLyj9ffYrTLziZ4rIBRBIpYjSiaEQuvPQsTNb0O1CUYyQjftxtTlzNbl57/QXaQx6W/LiMcELhiYefQojpmHXf60yb/jfCkSR+bxs+r4tzzzsLRQXNrW0EIy58SSdN7X4iiRQbNuwjGPJzyaRL+eitZ8nPFZDVAkZFxCiDSqvC2b6DWCLM998vwd8RoLnJjyQlUauMNNTupqRyGN26Hce6jet45uXnUMkx5EQch82Ks6UBc1Yp5aU9UaVAkWSyM/NpanaiNttwhqOUdMklp9xGZm4GLY1OEokAKqOESiXjCzRSV1/Nml/WE0vGUMWNnHXuRehyMqnodxz27GI++vQL3nnvA+bO+QYlquaTOV/S87jenHLqGLyBDs6dchbTb7iOGpeG196di8/vxJ6hZvYjj9Cv73hqaprw+QJ0reiDyx1g49pfsdjzmHnPw0TdTgLBRiQxjtnqQKXItLe60aot7Ny+i5A/hSqVRVFBIeNHncNNN1/P00/OZtjwwZizMsmy5XD+pMu5Y9ZT7Gjajsfj4dctO2moqSYaFOjXexB6rZ4pF06lvE8lg4acSMAT5eefV6GoM9E78mn2ePnu64Xs2LubaNjD8oVfsWrpT8gH3m0HfWCPdZ38K/yrwm6nfCOokFHS36Ac4PFTqTpD/fw+k3z040+N+oOPrOqvv3f/Ckemcf1fhkMFsP9NUBf1+ZfSrz6ggduxYwelpcVHTBeNRgFoaGhAluW/1Lru2rUTj8cDwIwZVxw1fSgUOlB2PYMHD/7T9aPFFc3PL6Curq6zroNYs+YXACZMOP2o7TwUwWCQbdvSAuGDD87msccePWLag/U1NDQc9vqYMWP+dO7gAzxmzFggvYO/adOmw8bgPXqf86mrq8Xr9R72+vz53/Pxxx+zceMGnE4nkUjkT2mam5uOWP6/goPa3+OP709+fv5/pEwAk1bLuN45fL2+mRhRpk+fzrKlq3A6nYwdN5J/vPNGut5effnywzlMumwGelsJ7qa97G5Ia8Mfe3sBT733AwejhKlI+ziqAEEQ8YdjAOytbeH0Eb1wdbg5bXg//vHlKhat30M0HmfqKYPok2dEK0JGpo1gOIjdaCUc8VDfXEeXilIybfpOn1cAg9XC6WeehSAr7GlwA5CTYaZ/9yJkCWJKjMlTLgBZJhIMMWrUaObO/Zxpl1xMNBJBqzUgqH7TRnncXnbv3sPwEYOJxcOs3Z4W3HbXtzPk6ueIx+Po9L9pUg/a3cbiaQ1mk8vH6X+7gP37qznplJNZtmw1kuJl0OAe5OeUARAMBTGbDCgahSkXT6Kudi+BYJD1635h3MCu6FUdhLx+gtEYOp0BSPvW19XVM3jAYNpa3dxz172UlZfz2dw5TDhzApJ0kLwNrrvhCkwZBtra2pg69UqKS0sYd9LX2C0lrPllEwUFeegNWiq6lHDt1dfw+luv4nQ5mXn7rdx39x0YjCY0opG333mbrHwrm7dWoxEFklI6xI8gyhSX5FFaNhRJPpmP5s6htq6We+6/m7W/rGP86JNxd3ipb2rkur9dR2t7G6IoIkkSkiRjt9tJKDKiwYDfHeCz197mvofvQa0WGTFoKBPGn8amzZtJRoOUdO3CK2+9wey9u9jT2sH9T11DUVkXelZaKCzLZ8myekblZKAXSklKkEpI6AQtQ4afxMef3s6sWXfjyDbT0tiBIzObDRs2cOHFF5NXUEYo1EbQ46aiS1fOPP1UGhoaEEl/LLz95mtcf8NMrr5uBjG/m4L8QmIyFFd0x6DRorNVEEuoySqoILuohGQySTzgw2AwkGHV4XK5sJnsOJ1OXC4X06dPJxZLYDRaueeeW0kmE9S2tBGPxwlG42RadPTo0YNoOEBObj6LlyzhlAmnISsK4YgHrcaAw5ENio6WliYc2dkUFOQhyRLulgYimbkoni34a35l4vRr0RkziEmA6tgImf63QqUX0egKwVRGU0cr3YvNRKIBEtEwflcr1txM0Cj4fSEkhwq1UY/H58Fu0rN3+xYMhgzKysqQ41EkBbIc2VgzbERTSVJSFI1GQyIuodUrqDASi6X99QOhNsxmC1qtgNfn5IYbbmCe3cCwUSdQ1bs723Zso1ePKnweH2+9/g4uv5doxEMyEkPQmXnp9VdISHEiqShbd++mS1UfkikD115zNa3tLXz51afYM+x4vO00tLTzyFPP0dDYxurVq4lFY0RCAW6YeRu1+/byyktvM3Hyxfhc+/jmm2+YOnUqxhw97e1u3n3nI84+awIvvvI8BQUFBINh2lrr+OHHeRgNZkpLK2hrc5JIauha1Y/1G9eRVCK88I/nEdHg87qQVTJZOUUkFZGUJGGzmtm3s5bCory06W7IQyqqZfGP33H6hJMwGEXUopFgIIFaiPHNt1u47vrLmHjONFavWUJj62byCnrgDcWQFQGNxo7Z5EAhjtfnJCPTSiLuRau2YMvMYsyJJzNw1GA+eP8T4iSxO6yogxr8vjAL5i9iyODBPPvM41x3401s3laNSlJRXVOPIy8LvSFFUW4Oo4YNxdvuZPfWrfQe0Au3J8CuHXsZNOh4onKAsqruaXJISUEVV2PPMFFT04oxkodGlyIjP4OehYORVDH83g4uu/pSghE/OpOJispuKIIKFUnKq8p45LFHiUajaZZqo5GUHEYU9WTYc4nF4iTiKcKhOIloDEEls33jVv75xrtcdtllbNq8kR27munVp4pLLjmfuBilS2UJ+3dUc9XVV3LqhLGo1Wo0OgvVrXtxbdrA0KFDqN9bjZhSuPKKixFEiXg8wYhhQ5DkCGJK4tNP3uP6mbfSvetQFs2fR1FxNqJBRzKuQZG1fPnlt9RUN3Pb7Tfx5VfzWL92JzffNgWVKGCwiEhEQYRAJIIsCMRlAYM1CyUlEQi2YJANGAwaZBQyMzPR6fQYdXp8ER979u5mWL8++Jub2L9zK9379icp6EgpCaT2Rp5+9lEyzDJtHS3MuOJStKKIiIpoMogjy8w9991GPBIlIhtwdnjpP2AY69euJxzys3vPduKJBF0qS9m2ZxdBnw85HqN+/24WfrcYJZrAJIKsRBl7yils2bYar78DnV5AVsl079EXry+A1mDEoLeTk59LY+1+UuE46CyozRb2N/jIztbx0ksvcccdd+D1tROMqiAlMX/+QqZccCOSFGfPzj2cfcZpmPQGZt54B1ddfRmvvvYG06ZdgtVqxdMSRBRFBg8eTDAiYfCGcDhMLF22inff+oYPP32ewuIsLp92Ixt3rEE0G5AFAeEYSGj/H36P/5oRO+ifeSTt47HaXv87lM1/tE0/lLn4SHUd6XxLSyuQFk7b29uPeBwk24lEIr8TRGX58NrM5ubfzPpcLtdRyz44hpFI9LBttFh+Mzf941gdNMlNhwv47Vp7ezsAJSUlx+xz3N7e1tkWj8dz1DYnD/gMRiKRw5ZfUFB4xDoLCgo6/zud7YdNYzZbjqhhP7TPh0KSJC65ZBrnnTeRefM+p66ujkQiQUZGRidR18EYowfb/T81/2hvT/v+lZSUHDXd0eYm/NmHOh6Nc/GYHgDUNdbQ4elg48aNxGIx3nz7LfY3pgW4aRdM4/zzJ/HdF19A9iB8zsbOOekNRHB5Qzi9oc5fbyiOJxSnIxAheUC4SiQSeF1O8vJzGdgjj7unjkGrFlm5tY6r/z6X4be9x+Wvrea577axZN12YskEjqxsAn4fyUgAv9fTOd9ARTIeQVESxOJhRGNaw5fvsKAoKdxuL8lYHFGlIhqNs2zFKgwGIxdfPBVBJaDXG2hvbWHRD4tRDkihPXp2p2vXrrg7PBj0JlrdaU1uLJHC5QsRiCZxHeijyxvC5UsfwWgcAAmB/IIC+g8YwPz58xk0aDDdu3UnFYsRDIeJxmMYLRb8oSD+QBspOUJlZSUFBWVMvuhCcgrLsadqENQiJoPC1i1bDtSfoP+AXkRjAT7/fA433ngjo0edzNdff8ms++9Kx7gF9Ho9D85+mFAoQlVVFQMGDOCdd94hmUzy5RffsXTp8gM+fVEMBg2CoOKDN9+ntLiEcDjM3fc9QK9+/anq3Z1nX3yazVs3MeWCKZ0WCHqdDo0WMh1mIsk4NU0tvPvaO5QWlxCNRvn0i4+ZcfN05v04h3OnnsOa9Wu5+IIpWM3pdSUz00GH20kiEsbV4mL02FN48MkHkGSJO2bewnuv/4MZ11zHyp/XcvLJp+NudpKfmX6GP1m2hVtvvZ7nX36GXkNP5eO5G/FG2rHZczl/8iXk5ZagVmnQqAR8kTAv//NlCsqLEfUm8guKCMe8DBk+iOKSMl5/7WWyi/LJLyhh+aKVRIIByktKUcmwc+suLp16KV5PAG8wRHZBMYFIFFFUMOiSiKSIBLwoiRQa1CQiEtU79qJJpli28CdcrS6iwSgfvfcRDls2TQ1u4jGZhx9+mOOP70NKCmPOtNOn/2AEQcBsd9DS2k4o4CcZDeHq8DBm3IkEQxEaW1oxm2wEg2GsVjNeXweZmdlEwjGCQT9NzXXkl3RBjof58NVn6XvSZHK79yeWFEFRUDg24fVI786jMfUfDf8xdmJZIYGWiu59iSUk6vZuQquJ4fY6Ke/WC4M2F702k+LicmLRxAF21CAur48efQZSVFbGtt3bSSGgU6swmIz4InFUskww6EVRVCTi6fXcaNQhiiqaW+oRBFCrtSSSYUrL8ikuLuaJl16lrLwcIRHHZjAx+ZLJVPXqy6btOzHazYgGA1u27aK9rQlZcpOIhIiFwqz4aQWb12/BbLczbPgJ7N9bTTIqIaoFLDY7RrONuuZ2ho8ZiDVTSyTcTlamgbrWOjQ6NdOmXUqOI4/m5lZmzXqAH35YTDgcJSs7k3Vrt/DKy2+wbUsNOnUufrea/NwqFFUIURPD628mO1ePIzuLpJQit6gAjVZP0OtJm4AKatb+so6a+hZSCDS1trBt5za6VJah02lIJFJs3LCZ+tqdnDh+LEaTFUFrpt3rQUoIJJJO/vHG++QXZLFs5deohASF+V3xeJ1otSKynMTtcbJmzWoaG5txZOZiNjqIhj0YTQrhZBsaSwxFkbj6mhk4HDYEQUUw6MNg1DF4yCDqahu49tqrsNo0DB06hF59B1Be2RO7LRNkhWA0zNnnn8UFF0+mZ79eyMkUlRXdmDPnKx546ElMOh1+V5Dtv+5ESaao2b8SX8BLIBjj5ecfRRRFTCYT0WiYZDIOKYX8olJyC4shqcLV3sFjDz2MlEqgJOOoBAGb3Y7JbCYWTwurkhwjnojicnqJxSI8+cQzPPP3f/DJh9+SU1BA3/6DySnM54KLJ3L9zVexZtUKENW4XC6CgTCyLFNQZKeqspicnGxEnYGe/fox94vv2Lh5D7v2NmKwWAkFm3B31KBSwnz4/j8RVAqJRIjTTj2R5555ni1bNlFWXkh1zV5+3bidrKwcPG4fjzzyELMfnIWiKAwePJDHHnuMkqIq6qvrIBlGTobQCxKZNj12ix4lGcek0+JytiHFo+zYuguTLhtZUBEKh2mqbyASDJEKxujRvQ9NrR5M2fkUlJTR1taG3+0kFQ9RXOSguaWOXftqMRnUnDR+FEgposEwX3/9NYlEIh1aKZlEpxXJcZh59aWnWLX0W/ILHDhdzTS31NOnT0+WLV7C6aedydDhoyipLCKj0I7T3UYqlaLB2c76dStxtdWSm6Hj0Vm3kIq6aaqpZekPi4kFvYRdLsJ+D3ff+wCoM+jduzcLFnzHwgXL2bPvV/7x6rN8/c0X+H1hGupbsVmzGDVyDAajGl+gncaGBnzONlJKiumXXUpVtwqeePIxMjLsLF++HI1Gw5tvvskZZ5xBj379KC0rpLFuDwsXzmfVhsVkFhRhz6ng6WcfYeOSH4n4PKRkCeUP6sf/hJnw4dbXw63vB/1d/7jOH80/9lj5Cg7i/4TS8b9G89oZHufg+PxBNf1HE9e/Gqwjpfvj+cMJu4emSTZuBf6sgT3SjZQPmGzNmHHVn/w//wp/FNwPreCGEQMAACAASURBVEOSfvNfbWxsJjc390+ETAc1uH+5EcAh5mDCsU26Y40ndWibDjVvXb58JYMHD0bg6A/xwWf8j+f/asPiWHBwPP5Ky30Q7777DnPmfIYoitx5511cfNEUyssrOvPLKFxxxeV88snHv1s40n5xAgcns8KBOGDKsbdXBSAfUuYfsgiKCmQlTZF+yPXO+6RTI0TjNFbXUlxZharrRAYWByj6eBdNzc3ccO+NjB42CqNOT2lFJdsb9iAKIvfcdR8dt8ykqkcfHvrnV0zu1dZZ54JnruG47qUoggqDLFNdtw+LLROLJQONWsW+fdsRBYVwKIyUkvC7Xei0Alec0oeLTh3Gl8u3sXp7DRt2NtDuCzHnp83M+Wkzp63awwOXjmbYCaNwtzejN4rk5ObAjjZQQUtTKza7DbPVjHiAMVit1qBSadBoNHz75QLyCnLo1r07o8aMw9PSRiIRR1GraW73MWTGKwBkWdIaThEZrVpFMBRnyaJVnfN02imDOX9gIUOGDqKmpgarxYrNZkNCIRSIIKgUFv+4kLPPOZ9YPIbRpGbqJVNZ88sqKsvLCfpaCWt95OWX0eHykZFpRxZFNAosWbyIQUMGodELKEImaq2CrJbJsNk57/yJvPvBe7S2tiIqEJFg4gWT2bNlE4YMB0XFeQQDXlqaGwHIdmRz6+23kGG2ImcoDBl6PCopxOdvfcJJZ5/Dxo3ryc/vgsfnx5+MYzdZMegU5r3/Cl98t4wfly+l3dmBIIoUFxYx4/IrGTd2HJU9qwDo26sbP69azrW33AqAp9WDosBbz7zD0jU/Mu+7eezeuxeAEUNGcuuNf8NisPHxnLTPfEVJOQa1ntamMFdddynnXHAmL73yHCaTmdvunIXf7ycpyOzYt4VkKs7EaZORUlp69qsgEAxgzjbi7mjDUpzDiLOm0NrYghCMcf5pg2iv38+2PbsZPGooJtFAMJQk0wFSQGLFmrWMGDyUNatWk5+TyzVXzyDuTbJgwQ888cRTfDT3I2pbGpl0/oUMHDCUocMGctmMK9HIOtpaWxEFPSrZAEKSeFymo0PBYokz6bwTeeedt3jjtTeIJ+Occ/45mGy5+MJNnHzGBCR1il79epHlyOHkU8bg83iwF5aiV2sI+j30HzCAQDSIPbuQQMjFls0rGDn0TJDChIJBcvNKSCYU9Bot61avICfbQdKjpqS8iJicIq+wAE8sjGvrYnoMGkHEXoIFTdrNBhUq/hwDsHMdOfAe+CuyjaPhryyDjvWdfGQIqBUJlcFKXu9htP36EnpNHpXHF+HdK2EqVmjZs5nuvQfS2OxCUGkpLS4gFksgCAJaXYrysi4YDAYa9+5DEVSUdu2KNxgg6PeQlVmOTg9+vxd3bBd5WcWUdz+OWDiCrAKtXkdKJZESItTXriEQ1tLiCvLTkuVcUVFIMCnTtW8XlDhkOmz4fQKDhhXQ4mzh44/m88lHH/LR+2+Rl21h6fJlXHDxSC65YCovvTibvn36M2RsJYNG9CAayUPl3kyzv56Ckgp2baulS1UuaDNZ/sNKFnwxn6effYZ9e/fjdHVQ39BIIBRk+vU3s3fbavK6diXgc1JXt44R5aeRkdefl156mSkXXUI0aSSgaHF3tLH6k0+44Lwz0DmsRCMJYhERR3ZPtm3diiMrh9IiB6JgwKiOEZNTRCIJMvQmCisqyHbk43G7yMuzk5tVQjjiJ55UWLDoHdR6PclACq+/jdycTHJtZuKCAVFtJBLwM2LsMGRJQ1NTA/v272Lc2LNIJRN42htQpDgGUy7nTJjIa6+/QnaOhUyTlmQ0QNfuJRiNoBZVuNra+fXXH5g06Vxi4QCPP/kssx96glgqRE5BPqoUbN20ndJSG/5AGw89NhNBbaeuegOFhb3Iysxlz656ikt6YLMa6ValpdvNN2DI0hD0e9E58olEAxhMZhQ5TtQjs37Nej7+6D2eefFZdLooLS1+ysrLCQdcaAQIut3U1DiprMpj/756lv20nhtuupg7br0WoymbC6ZMZcrlFzFoaD+qm6oZVDyExk0rePTv95JKCpgtucjJBFqrgXA4jCPTSjwYRtSbSZHi6WdfJ+FrRBN1IieSZGTnYTCacbndXDjtUpRYjG++/p6RJ4xlxvQili3+jB27nUy//Hx8u/aRCstEgyF69iyh1bkLJaDF7WwiEkzy4IOvceopgzlv0hlYLZksWbyO/oPKMFnMqAQVap0WsyFKRyLIwMGjcTo7KLSr2bPjV6wZOQgaNbGoiuIMCxqHDq1OjSwHyLIa2b6/hkIxA38kRlZhISatiKulFbPdhKDXgwiTp0xGENSYFSsdTjc/L5nHueeexcjR/QiG3CRENbX1TVSWFhPxtdO/RxHvvfkERnsmdU1uelRlI2rKUBv1fPbSe5gMWq654SZ+3byDomwb3mAAj7uRE4b0QpcIYCovx+MO8djTz1JfX8vJI/qTSiWJRlLs39PI9W/cwqsfvYscjrH6h58YfOloTj31dE46uYnjB3Tnjnsepv+QoezZv4OKyq7s29/Azp07Of3003G3BzBqkowePYKsjCxe/PvjXHLpNMrKB/Dxp59jzTEx+PgByIkkfQYfx5affuapB55g9lN/RzGokZV0NA2VoqTNiMX/jMDXuX4rAmnx4+DHYPq7pnNdlg+E5ARUgupPeQ+FSvi9vNV5vvMb9/Bt+K28f7Mzh+C/SvN6LLsRx2offizpjqXO1O6fSO3+6S/rO4jc3FwAtm/ffsx5DiId2+nwbT5I+gSwbdu2/7iD91+NxcF+1dfXH3OZOTm5nf937PjXx+NQHM0st6npt2vZ2Tn/o3oOxdy5cwC47LLLmDXrfrp0qfzdR5xKperUlP6nkJeXNhWuP4L59JHwx/kuSWlSmUcfnMWWnxehyhlE/nHncsHESZ1pjh8wiAcffZzt+3cA0KOiBwoKW7ZsISc7m2GnTMWg/e3DeFdDO6lUAhXgDQTpUtUdR1Y2Gq0WKZWiIL+IosIulJZ0o6CoBJPFhlZnRK0zYTOIXHPOCbx19xS2vX833z4+jfNGpjXBC9bt46dtbchSCqPZiKKo6VyAFTDodRiNBqKRKHmZae1eXUsHyXgck9FISWkJI0eOwm63oygyv6xdR4erg0goipT6bU6rNeoDRQosX76SSDTM6LEjyTlQ5p6Gdnr2rCKVSlFcVExTUxN19XXoDXoikTA2m41zzj4HKSnz2SefgSKzbctmiooKSSkK+aWVZGTnIckKLS3N7Nq5HUWSCIZD9O13HFq9gUg0jqAzkZAE8FQT9MXo3aMvAK6ODnbt2Y5Wn8KaIeMP15Dh0JJMhWhqamB/dTUAvXv2Ir8gl+rqaqZfMZ2BgwdhMJkQNVpqa+s444wzaG9v5YorL0cfl/nx24XEYyoquw7glhtvY9miRaxctpyVP62ibnctY0eOZu+eXZ2uDBaTnaLC8s5xS0Rj6NQaNm/ZzMKvF3Dbjbd1XtMrJkoKC2l313dqtocMGkIqCXk5GTz9+KPs3bMzPbdz8qjesR+zRotVr8ZoTBNxqdVqtFo1+Xlp7esvv6xBlgXcHhd9+nRj5MhhrN2wlnFjzuSKy6/hpJNOQa9VU1tdg0DaKuSrr75i/LiRqDUKY8aOIBQP8MzLTzH+7PHMuPVKWkPNTL18Cit/Xsm8OXN58rHHOeO0CUQiEV595R9s27qLutoG/va322hrdeJ2t2MwaGhoqOHTTz/EbDZz//338+gjjzB+1BgWLvqa+x78G8PHDqZLzy5MmHgWV143A6/fx0OzH8bT7sbV7qS1pZ1ff92MFAuwatlPZFmymDDuLBYtWsikqdMYPno0uXl2copzGHjCcF596x12791HVmEutU2thOMySlKF2LaXTfv3ctZlM8mxmjEYdH+KNf7HY8aMK/+lNeRI+GMYuP9TkCSJwsJCwmEDBfk2WppaMVklgr4gOQX5eL2tZGVb0KgNqNV6rJZMTCYrsYgGvc5GKilT0q0KQa8lFg1g1itYrVZUKhWxWAyTyYTdWIRWncHihUuQpSRqtZqtW3eg1Vi45qrbWL/qFwRFprS8nI1btpJKpTr5JRLJGPt2bOXj9/7Jzu2byM2wc+klk1m3dildq4oRNCpGjRxKMi4jaFJk5WTxwdx52KyV6AUjzQ3L0RgkrLZi/L4IGQ4tfm+M/Xt3Mv7EE1i7cTkzb72apuYGvL4Qao2BNatWE3F7mfvpXFSSmpzsAsaOO4lIJIBGVLjmqivItJvo2b2CNcvn89G7rzF06GDq2trxt4eIeGOkIhFsRjWDhvSlrb0Fo9FKKBQlGFFIyhp0Fhs9j++NLctOXIqi0ym42mqJxvzo9AI6vYbm5iYigTgajZ5MRx6SpKO13UUymSQlJTAb9UQiEaLRKBaLhREjRpBKRUgm42RkOMhwZGO26Pnm23kUl+RithiIyGAyWfC7veTnlVCQX4bVksXDDz2B19dBLB7kkksvQiGGIKiZNGkyTqeTffv3oNZaENUGDHoLNoudrIwK1KIJi9lKYWEhWr2C29tEbcM22lx7aKxtgZRIIiJhM2ViMdoJh0Ls3rOTcSeP4r777yXLkcfu7TUUZHch2BFm1j0PEU2AwZbLoh+WYzY5GDRoCHfceTtJ2cKH788lHg3y+kt/R0qmqCgr5/i+/RAEgeHDh2O1ZvLYY48jKjKLFyxEp9HS1NiMLyLw4adfc989D5AIhbBlW7j48umkRC3t7gherxeXy4Uoiuh0OgS9ltEnjceSZaOqdxWjRo2itraGnJwscnOzSQhxsgqzaHN5yMkpIb8in249B7B7507mfvY8V1x9DgZTkv21Gxg1rhd2ux1BEAiHw8RiMdS6DEyWPNqdIU477WwkWUtFeRVdKkoRhBSfffw+ciqKlAySiAaQJIkNv25FhR6TyURJSRE5OTmIoorsgmyMRi0aktjVIu+/9xmKnI5X6siycsF5V1Bb7UKvzcJiKsTb3o7f40et11NYXoI5u4DKnn2prKigvCCTUChMdlY+wWCUaZdczHvvv4PRqCcajTJ16jQqqqrIKShEpTXj9Co01btYv24NUirCiOEDqW5pptfA4+k9qD8DRw7l+eefRyOI/Pjjj2RmOVi4cCG33HIzer0RjzvApx+9SYbVyP5d+xDEOI4sM/v27WLDhnXcds89RFIgGixozTZ8Ph87duxIk2ZptYw8YTQ2WwZarR6j0YwzFKSguIgBx/VDL4hpoZEDyhPxv0Y0+7+G/5oROtRc91hwrGn/FZrqP5olK4ryuw2Eg4LLkcpRFKUznM66dWuPWdA7lMr6oInmH6vo1at3J7vs3LmfdeY7VLuqVqt/twNypPE5nJnAX2kjD/Zr/vzvD9v2P0IQBDIyMujRo8eBNs/5Xfoj5TvSfV2+fPkR23bwmiAIHHfccb8r69D/BwM/H9rGo5nRHRSK+/U77k9pIO3Tu/4AU+yhfYODWt6jjf/hd7SGDk2HGvr11420trYeNu+xzGcpEQdRzd+ffJJFX8+BqI9IOMjIE8Z0pmltb8UT9FHfVAfAPbffy/vvvE9+fj5ffT4XhyMDY15vuuSkCYW+Wr4VnVaDlEhisluRZRWoBFQqhYSUYuOmbaxfv5XGpg4QBVLJBLt270NntKHX6dmyeQN6jQaVItGrrIAbT+9H34r0BseS9btpbm5ArzeQkZlPc/OBvivw3XffIarUGHRGBvVIC1XuQIQFKzYgpSQKCnPx+Xw4nS7MZiMWuwV3RwebN2zq3G1MD3L6x2i0MGbsOHr27I6sxBnYrRSADbsbaHR52LptG+s2rKdn7150qaxEFEQKi/JZtmwpoqjF7/EzfMgwPB0ejHojAb+fnLxcBIMFUWMiJUO37t3Izc1GUKlQazQYLBZUiGg0RhRFhSGjkGTtCr78/FuGD/otzuvy5Rtpqg8Qj6o5+8wLKCjMpqW1iZb2NkLhMADjx47j559XoNNp+PizD8nOy+GW227nxyXLqOrak48++gQFiRdffJZ3XnyDW66/EVHQk8KChA5/MIrVYEEniCxa+CNqQeSfj10LQF5OLqNHjE3f24NzKSnRUNfMx3M+IyMrj6effA6DzkBpSRnvvf8mefkOFi6ZD0BpcQn9+vTFbLIhyBKvv/IimgNm+W6PG6vZRm1NDTXVe/C5fJBUMGjUaAWlM9xOUVExJcXlJFIpTDo18ViYQUNP4J9vf8y8r74kGg6RCCV5cPZsUokkOo2W5597jlQ8yDffzGXLzl+59LrLeO6VV9i9dw8qQUUymWBf9V7uf3g2N/7tRlQoXDT5QoxaHTddfwMzrrwORVG4/4H7sFrtrPx5GVabid59emAwakmkkjz99NPMm/s5Z048m8uumc7CxQsJRyKYjCa8Pi8/rVjKTXfcxP6GfVw+dTqLvv+Bjz74iMqu3VBJcbpXduH6q65n/KlncsmMS/lx6VLanU60Wi3JZJKa2ho+njOHc6dM45W330Rnz0Cr1SIFPPzy7af0HnoCObm55Obk/inO+MHDZrN13reBAwf+yTrncGvJX+FwlkmHe1//K+/aI0GlUmG09yYcbaIop4IW5xa0gkA0KeGPBPH52lCr1ahFLc3NzUQiEdpdNTjd+9lXu559DfvJK8zB7Wkn7Pdit9tRq9UIgoDBYMBmykdMGXA7vUQjaSbdutoGUDRMv+Ra3n93HhaLjXgyxCuvvozL5SYcDiMrSYwmNaJKxVUzLqZHVSlqARxWHYocIBJxo1KpkJJRbJZ8vKFWTp4wgetvmom7Q8bZ5iURb8IbCqPIZtwdQQoLs8l05FFRnI8sR/hqwRfcN/tORoweyrKVy8jKzaOkoIDHHpjFyKGjIJHg5pm30e4JYrVYqNmf9lNfv241yUSYQb27MnXyeURiUcwZObTWu9EJOoYMPB69RkatSVJVVUUsKmGzZmCw2NOxTkUDkiAhqCGRDGOzaHFkGmlrbyaZjKc384rLiAZixONxIlEJRWUhr7AQq8VGNBRESsTQ6XRYLBYMBgOBQABBjoEioQgCTa0ukskESSlAKOQnHIpiycxBVgQcdgf9+g7A5wuQTKY44/Sz0Ok0+HweKruWEk/6ee3VN3nttTfIy8tj6tQp5BWU8uOSFbjaXYR8fpDsDB08mg0bNtCnTx/amiPYLIUYtNkImHHYc7numpu57uqbqK9p4d6770ybDwsSkUQYo83CNddcR0VZN76c8x2iLDJ+3ATCEdi4bR9ffbuAPfsbkQU1La5mFvzwM0uXraSxdj9WvRqzwUgqnkCn0ZKMxpAFEZfLz67tO9ALKiaccgo2i5WKikoWLVtNRnYhHrefmr37kFURvls8n8Gjx5GZk0c4HGXXrt1YzDZCoQganQ6dQU9eQS4d3jY63G14PB1IcpLKygos2XYMFjNZOYU01LcjGDRoNDZkOUUq2UIqKSKqLFhMuSQTMg0NDaRSKUwmE/F4HKMtm+YGL411TSxeMJ/X3/4Ytd6I3x+kraWVK6ZPoaOtCZ1ahVqVIhaJUtylnNbmNuLxKIGgj2gsjCgKdLjbMJn11O3fz6a1a0BRk0wquN0deLxOJLyUljtQiTFEdYrinCxWLltJJJyguqEGrT0DnTktXGtUMYwGK+vXbmPzph1cdNGFLF26BFmWWbx4CU8+8QyhYAK11sjufQ1cdd3dJKJJzjrjVFzOBgQkTjptAoJOQ2NbA9fedC3fLZjP1l838+LzL/Dqm2/w3HPPUV9fx3ffLsCRUczHH7yLVhAYN2osHq+TLVs3MvOWGykoyGPhoh/QaI1Udu2DVm/grrvuor29nW3btjF27Fi0Wh0rV/6MQW/E5/XTpVdvLpw6jXvuvpvVPyzCoFKTCEfhgHvVf2K9/J/iaDLC0db4o5X3nzIh/q8RXv9V/P9xw1Uq1e/ED6vVAnBERluAKVMuxmAwIEkSM2fefFRmWFmW8fl8x9QWtVrNpZdOB+CDDz5g1aqf/5Rm3759JBJp04Q/Ei79Ff7Kh3L69HTdO3fu5I03Xj/mci+//AoAli5dypw5c46a9mhtXr161WEF2FgsxgsvPAfASSed3MnICv9zvwKrNf0huG3b1sNef+KJxzvj9P5H7CSA8yaeh9VqJZVKccddd/zbfVArCSREDFmFdDt+ECs+fYhU43KGjxqO2Zz2G92+fQuvvv48AN0qu/H8M88zd+5cVqxYwdaNG7nxxuv5ZnUdU0ekBcwVm6v5ZuVWBFRoNQLuDhchvweVHMdgMDJ02FCqevemsmsFSiqOUaMiLzcXWVLQaNXk52bT0drKxo3rUVIS0VgS+4FnShBEPG4fsqJGJapRDhA2ybLMRRdeSCqVRC1oGNmvGw5zOmTRK1+vR5YVcnOzsFotfPPNt0RjIU45/US6d+tCXk4WkpToHJODQxkMBZEVBY1Oh6jWcvbIXhh0GmRF4aH3fmLg4MGMGTcWtVaDWqshFovT3NzIqaeeypq16zE7MskvLiIpCSxdthq73YZaraARFTasXkMqHkOj12DLzkdQgU6vR6PXs2DhIhRZQJIkEtoc1A0LCfo9ZFitHNfneADe++RdZEXGkZlHNAKphJ7S4u689OqrAFjMFgYc14+hQ4dQWlZMIhUlv7CAS6dfxiuvvs7Klas45ZRTEEURn99NTauLn9evorJnGSkpgtlqIhoLEo142bz5F2bedAsXXjSFT1emfZ4fnf0Ie/ftISX95kd58omncPaZ55Cbn0dhcTG9uvXlsvMv4tVnXkAhxcZNm/nkwObUNZdfy9tvv82evTtB1DL70Sfo2zu9+ePze5m/5HtCsRiWjBz27NxPS1MrXreHRT/+QHNLerPozAlnEE+EEDVWXC0dOKwO2l0hLrtqGnaHHq1GQCsYOHHsOOpraiEpcevNM4mEopxz9kSuu2UmzS0t5OXk8txjT/Pms28xpv+J3HfbvRgNRrZu38bl113GsqVL+XX9Bn5esZLKLr3Izs4FFERBywkjxtLc5CQcSuD3RYglEiz4YSHLVi1n1fo0qdqFEyexaeUGdq3bzZ3X3I5VbUGj1rBq/c94/W7WrVrLRRddjEajZcfeGrQmC3kVRazZuBaALkXl/Pj1D7Q3N1G9s5ofv1/I4IEDkWWZWbNns/nXDYgpH5+//Rj2br3p02881fXN1DbUUFfX8LvjYMzxKVMuBtIs7JMnX/hvrR3/t5GV34Om1u0kQ1qysy0k4x5kUYWoNpCIS5gtOjy+VoIhN6I6hT/gobiohPzcEroU5RH0ejGbMhG0mUSjUWKxGPX19TQ2NqIigt/fznHH9cRmsbBlyw7KyipIpmIsXT4fa3YVS1asRiPEMakjVHXtjsFgQCVI7Ny1hb01DYwYcwKhWBSd0YZaUrBZjHi9XhyOQi6YeCH+DgGD0cipEy7gs/ff4ZNP3iQai1PZfRwpycH8hd/xxBNP4HdJaLQgJcIkEgnsjnxs9gwUQWHdryuwZIgMGjGEbt0ref3td5l1701MumAijpxi7r/vcVJxNXM//Zq2FheKBNV17dTUtOF2+olHElT2qiSuJHn2pZfRmq2YzXZCwTg6rQFnRyOpmBOfqxVRBp/TiTYZxWowEU2JRAUzBfnFJBOgUozIKR1qUSEZD6AzapBUIpIikpBktBoNRq2IXq9HpVKh0WjIz89HrU6hN2iIxBJMmXYFUkpASiloNHpCQYmbr70Ntz+ENxZl85Z1BENeysqKuf6GazAaMijIL0aWFeLxOOefNxmNWofH46GltRF3wMcFk89DrVHIsOuR5CSDhvSlpDSf1157nby8dGSBzIxCfvxhHS3NDbz91uu0tjRjsxqZde/NWM06evU+DoM5G6stgzvvvh2fpxWfp5EHHpvNiJHDMetMXHHRZaz79Se0eg3+QIjikjImTRzPt9/OpbiiK05/HCmZIhGPEwoEUVIS8WSCVFIgHomjUVK421sw6HQsX7GaCeOHMHp4f559/mnKqiohFk0LviYdcsqLRq2nvLwLLpcXWYawP4xGJVK7fy85DjvZ2Q4++vgDfD4v7c5Wbrv1XkSVnpCrA5teTSwgEww5mXjh+ciaPOIxGVFl5a1/fkrAH8NsNqPRaDo3zfwdLZQX5SEmAqglN+ddeD6RaJL9e5u5bsZtGGw2cooKCcbidAQCVFfXYrBpsdhkorEgoiggiio0WhGD1kJtTRPFFZX0GjSEcyeejlojU1BQiMXsAFWctvZGXK40p4Uz6OX+hx7mrjvupSQvD1RxwuEwy39eiy8Swu8LYbfl0eEM8vU38xDVCpKcYvz4E/nhh8WMGzqe9oY6unYp4dXXXiaZCNPaUku/Pn3ZuG4HerWRrZs2YzWbmHHFpZx77rlEAmnSpbMnnccTTzzBL2tWUVXVnZdffIv1m/cSlzUkACVl5fZbH+CrL7/F6WqlpXEvjbX7ue/Ou2lpqCYWi1FZWUl7ezurV6f9vUcMH8knn3yGIKjJzcxj/95q1q79BXfAzR0zbyUSSH8v/r/AOH+N/zrh9d8hXPpjfq32yD5AB3GohvJw/w+Hnj17AbBw4UKam5t/V9ZB4S8/P59HHkmz6i5YMJ8JE05j9erVnUKsoijs2bObF154nv79j/uTJvOPfTlUoLznnnupqOhCKpXizDPP4IUXnsftdnemczgcLFu2lCuvuJzx48ceOcyBStVJm/3HPvx24vdhEkaPHsOkSRcAcMstM5k1675OzaSiKLS0tPD2229z9dVXdZ5TqVTMmHEVgwalGY+vuOIyHnjwARqaGjsptEORMMtWLOPmW26mZ+8eR7wHNpuNiy6azLx58zrj1+7evYtzzjmLPXv2IIois2bdf1St+B/7KsvyUTUSJ590MgBvv/02b735JvFk4gClfTO333E7zz77DA6H4+CgHmbX6RjmsaKkx1lOU5hb7TYeffQxAD7/fC6TJk9i89YtnW3y+XwsXLiASZMn4Qv4oiY+kAAAIABJREFU0z7Lwp/DW8iCDkQZWQOnXnQ5Q8oFwpveI1X/E9lZ2QBU11azen06DM7Zp53DtKnTKSwoo6iwDK1Fz/iTTiSzfBiXDDLQqzSd55on5/Do+wvZsHk7mTYTqYSCP6zix9XbuHz2Wwy96lkgTP2u7UQCbmY8NZdbXprLwtXbCcYUvP4gFV1KaPN5WbLHw8rN+wEotwn06F6BTiPS0d5KcXGasCqRjKHR6Jn//Xwi0SDbtq7nqRvPQaWCTftbmXjPGzz+0gfEQnFybAZiwWZ+2bKb2179jpQug4XzF3cOdTyeJjzKyrLg72hHSkrIokBxjoU7p5wEwLJN1Zz7t1dYumYTaiT87g6SMYn35yzgsXe+54bXFrN4405iyRCplIxer0OvN3P8tCfIP+0uHpqzARQVdfvriAaCJGIKzlYnKinF+PFj0WjUfP31Vwj2Eog6mXzJhTz/0ovcd8d9CILIjl07uf+Ru1i7/meiKWh1uZh5520sXbkMgKcffRyVmEDU6/DHBHSWDKRUhOtvv57CPqVcd/s1vPDiKyiiljPOOZ9P5n1ICnj8yaeY99U8auv3oxGyiERAbzAwYEQ/1mxZh6wonDO0jP07qjn+uO6oxd/m7rvvfUxKTDDutDGcPGE8E848meuuvZmsglJefvMNLrzsImRZ5rTTTqewrJRuPSpJJkIouhQ5BUVMPO8MDIa0v/E9s+/i008/RZDUdO9biS8c5NKrruKK62cAYDcbGDZoOLKkwqb5/9h7zzCriqzv+7dPjn1Sn86ZbprQTZaMCAbAhBlHBLOYZRSMKCCoMGBAUTGgqKgYUAREMZEVmpxzd9M5n5zP3vv5cLRRFB1n5rnue573Xdd1PpxdcVXtql2rqtb/n7hSHI8JzJo+B6vTzluLFvPq62/g8bZwyXXXkpadiVptZ9HihXgC8OZ7H3Lg4EEArrnsKgrz8nGmJPHUrClcf80tjL86QRu0bdc27nvwQb5f9gE9O+cx8+lJuN1uPl6ymt27DrHsk48J+0J89N4nBL0+1JKON19fxNfrvwPgrCFDeGbWM5SXn6Ci6ihffreRZZ99yVUXJ+bImrYa6hsbMWtttNa10qG4AJVOyacrlgLQp1dPtmxeR06HbCJhEYUUY9DAM7jv3rswGY3IsszmTRv47P2n8XgV9Dt/HKjUCd9Q+bdQFrKcAOhasiThd3zppZf+6hT2lzv8v6GwOWXuOJXm4HTUOf+3NpALivNRmrpSXrmZSNQAshatJCDHIRSV8HibcbdCTnYx4UiAPj0HolEZSTI5EGMqdHoNak2c2poKggE/0VgLhR1yE/OiBvQOPZbUZBpbohR1LaZbtx60tbVw/5Q7ePLJu/nm6y3cfMcj7DvYSiSuBKWBaESmpKiEnn2Ho9XHMOqMIKhpDDfji4LJmoWs1PDotJmMvvACbAY7Bw4cYu68Z7h/0r3YrEYUYoTyE8cY2L8PWzbuoLExRjgACE7EOBzfX4VeZ0EtK9GJAsd370atgkDUz9ixl/PUCwvo0a0n+7ds4exzz6Fs72b0ViPrN2zEYdeRk55HTGXilkmP8sb8V/D7E6CQTzwxg+3bdhHXpaC2ahFVAsnpDnwxDXarCYUcxpFRwP5De2jzNKLSqlEqjVTXHiZZKaJW6XG3nABNHLPFiRQjcX00GCfiD6LRKAnH/LibWpBjQdraWhJX7xsChIJx1Go1q7/+gurKw7S5mhB0CtQWJfdMvIVg2wmUiigBbzNWs4nmNjdKox5RVhOWJBQaNXqTlRRbkJbao6jVFgyWXMy6NMLhMEcPNDHhhr+zfec6uvQ5gyynmZy0dGqay9ElmTDak7n46r9xx6330tLYxGsL5uOwOjhyPECqLZs5M2fiaW6k8UQNBr0ag9XBqKvO5v6JD6NV69ixo4yln70PqMjMTcfqtBGIx1FrY8x7Zi6P/P1h8jLMtLU28+HHq6mvCfHUtBeI+kCtMDF37jQ0MRt333o3x480MXvOa4y7bjwqZISwn6bmWir3l7N7RxlNDV5cLT6sDj9/u+JWzCYrxiSBp598AK3ehmCI8NnHq0CvwxdqIRhRorJkEItKxOMKFHoHF1xyHRPvmMzD990BYRkhFkMWYsTFCBPvu4U1a3eye99hDEKMQFzD9rJDOIwGQkE/baEW9NYULAYVeqNEemYKa77bwJbvf6DuRC0IOiz2fBw2E2oZuvXoT1TS4mptQ/S30lJ7FGdqGrl5RciSEkmOkKQzEPUHOLB/D2aTFUmyoVAmYXOkojfa0BvMhEM+Hn7gHuorygl4dhFtCrFl3SdYLQV4XHFGX3wF8+cvYGC/89ixYwcqZNLTjHy3djtL3n+Foi6ZKGQDS99dQnpGFjU1Xo4cqSEcDXDLzTcz4fZJBAMxMtMczH32GQYPG8T8N57j3IvORMZHrz79eHPhInp368JLz7+AViUhRkMEQ16+/OpzOhbnY7U4aKuq4oe1X9OjZxeMlgy+Wb0aV2s9Jd3y+WHLBnQaC60tLeTmZeH2hrE7zdTWNZGVVURjcxPXjr6GQ3u3I8t+hLiCmCJBoaMWQRL+A/PpKXQ2MgpkFEiykPj9hL0iISNLQvsPWXHaE9P2Ov1EgSOgTKT5k7L/E/LfA9j0k5w8AfzXOlGSJMLhyD8NyvNX5Nprr2XevOc5fvwYRUUdcDqdaLUJtNnvvvue7OwENc6dd95FJBLhscemsG7dWoYPPwuNRoPZbMbr9f4K1favAGnYbDa++GIVY8ZcyZ49e3jwwQd48MEHsFqtSJLUjmAM0KFD4X9O8Z9kwYJXiUajfP75MubOncPcuXNISkoiEom0GwbdunX7VRqtVsunn37GuHFjWbt2LbNnz2L27FkkJSWhUCjweDztev6M+vt78sgjj7Jw4RuMHfs3tFotOp2u/QRcEAReeGE+vXv3/o/qO/HeiXy27FMOHz7MXXffyT333k1SUlJ7nW++6WbCkQiLF7/7Hy335ptvweVyMW3aVFauXMHKlSvQ6/WoVKpfnPT+NYAUrUlPMBbg0882YLeYqSBxal1dU40gCLz3yWJaXa2olWrEqExJUSd++GEzO3ZoGXyDnsX39Ofut/ezcU85Ly3dyEtLN6JUCMgy7XxmkLiZu3nHMSzqCBnZ6YTDUT78ZicffrMTALNBSywuEo6eBCBTKgS+3FPP4Zkf0aMghXEj+rSPfqVCRTgSIaCyMO7Rl3DHNNS3elEIAqIss+NoDTuOwpubnkKjVuJfcqg937uvOodLLrmIJ1cmfC51Oi0EorS0uDngb8Bsc+BIcRKLidx5xVBkBcx86ys27a1k095KNColRr0GbyCMKMlAwg/50Vc+Z0T/zvz9qnOJCCq6XD+7vUyFUuDd999m+Fnn8c13a0nv0JVvtx9mw86j1Lf5aPUEMBm0vLfdxcWFIW64PMpDD07GaDRy+SVX8tnyT/hi1Sq+WLXqN31YWtKVJ+fO5p7J95FksTCg30AenPwgRR3y2pHFOxYX8d77b6LXCWwr28CmjT/w+BOPsXTZ0vYxqlAo0Gq0hMIn0cgv7pvLszf2Y3mjE7PZ8iu3hUWLFmGympj8cALASa1W/waZu1/vfiyc/woKhYJNZZtZvHQZWx95lKqqKtxuFxqN9ic/Kz8L3nqFBW+9gslkaqf1ArCZ9Cy8bwwlXUtYtOgdhp3Zm3qXj/4DzuLhqQ/jdbm55JJLqCgvJyMrkyZPE8mp+Wwv28nbb3+INxjiw48WA9CpqAilrGXI4OF8+eWXBJNiPDz5Vp6ZN5vXF72OKIuICpH+g4fQ0NiE3xtHkSRy9jlDGDHyHHbu2EhLs4ft27ej1+swWUxs3b25vQ0vueBCdDodqampPPjgJD549w12bN/F8k9XISAQiUQw281cPPpCcnOzmPr0FDLSzTQ0JHzkS7t0QRRF3G43zpQ0lAYt3mCECy+8nLy8Oezbv59De7ZikazcO23Rr5AiTyfLli1rp/u64YabThvvf7t4fSECAZkB/QdQfvQYYtiNzmRGEBTYLcYECqxegySHaWhsJT1VS3l5OdnZ2UTCEhqtElGSSE5ORqVSoFZpOXr0OCkpaSgELcGwH6slGQwSoWgMlV6B1+VFpdPjNAtMeXQy+w9tpaS0I3IsglKMIaiM9Og3iJVfrSQUjlJReZzOpQ6y0/ORJImsDDORcJDS7oVMn/EQcTHEffc9xh13XE+v3t0IhsLUVDYiSQpsVgfp6alUVB4jt4Mdi8VIeWUlVlsyUUIolWo2/ljGhx98xCWXjmTgwIEoFAr83jZ0ggadQcf4Ky7l0LGDCKgYOmgQbp+fQ4f3MGDAYBYseJ5npj2BXqPC5wux8LUFGAwGtJISOSojijIul4eUzAxCnjaSTAYEhUCP7r1wuROnwAgqcjI60OoqJynTAmEHKoMOUZQQFBJatZKg24PeYqe5uQ2bXoMkSTQ3N6M3mqiursZuSkKtVqNUCGgBa0oqDocdQY4jCHGysrKIRwJoNBq0dj3vvvMR0x57iscffxyLRcmIkecQ9LTiSE6nzmNEVBhY9cUX+P1errzqapypBoqKiph4373sP7CL2ybciSJYi84gk2JxUlNeyVNPzeSee+5hwZtvcuNtt/HRRx+x68AByraXcejAZsS4zNEjlfQo7ciLL7/IhNsnUHGsgm+/eo+HH/k7vft0B1mFFBfxe7wolFoE1MhaHcNHXMiE20tpcR3FnpzK88/P5frrx6PX6+lUXMryZStw2CWaA15ef/dNJt03na+WL0Op91B1rI4pD0/jiX88hVIZoWfPnix8+1PWfPMtry18nPsm3QeCiBQXeOyx2QiCgLvVxehLRlK2+xjRcIC333ydV156gfvvvZuXX3ienMwsenQrZt4Lz+D1N7Dq6w20tNVyzfhLCAYCGHQSa1Yv5dV3Xmf92pV06D2MZZ9+zJl9+5Ka0Zmz0ztSX1+Pu62JHn1KsZrjfL1iBZKoTMw/Ugx/axNlW3ZyUXoeam0MUSFhtTkQJAktSlpaGrHb7SgUSiRRJhKOIijAbDazc+d2SkpKyMh0JDjlNQaSjEkMHnQWa9Z9i1IdRavtzONPzyEz10L1iQ0Ykzrz4UfvYLHYcDiSaW6qpLy8HLVGyZQpUzh8/ASm9GLKy48xctQQfD4/zz07j8ysdB577FEem/44TW4PR8qP88TUR/n0g6Xs2radDoWFNFW52L1zF9169WXhmwv42xWXsmnEdkIhPxs3/kBuXkdkWSQrKwetxkB2hgO1xUp1VRNzn36KQ0cP8fEn76NVyow628+sp5/irMEDsDuSsNktPDHtH9TXN3D/pIlk59oxGtOo/f4wKxZ/xIXjbubn/WFJ+Pf4tP9fFeW0adP+p+vwz4msmPYrhNx/sTd/6bf6V3cxfpdAvTxxxUtV0B+Hw8GwYcNpOroLt9dHm9uDy+3G4/Fwcw8jxqY9yGE/SmcBAwYM5MoLzkFoPkYwEiMYiuDzBzDpNXTJTeeqYb2YNfd5Rl50aQLV+OB3xHavYNeWDazavJ8krYJbSzXEy7cgNpejyipFlmWsVivX5AYoyEgmJooEQlE8Pj+yGCcz2cqZg/oz6YFHeWrmU2hcx4luXUK8fAvx8i3Mej9xCjWmi5GMwBHUBf3b9YyWfUDs0BreW/k91U0uBmZpGWBuIV6xBTmS0EmtVnPZeWfSzeghHI3hC4Z/0klNQXoylw3pwYOPPkZWXiGyLCd02rMSTeNexgwoolthJqIo4Q9H8AUCxOMiqalpDBw4kAnnlvDsHZehb9xNvGILYsUW4hWbeWXpd3gDYa666ipmz56D7GumrvoELq8Ps0HHWT0KeXniVYwqNBCv2IKqoN+vdJq1aFm7zumBI8QrNhOv2ALRIIrkhP/ku4veoKq6JqGzKaFzvGIL6vrdXDmoE3F7Bxpb2ggEAug1Knp3zOLx8eczcWQJK75Zw76Kero61YwsNKDMKGkv/50XZ/2qLcWf9BIrynj/+x1U1dZz5pChDCqwE9m6pL3ceMUW+qWruGhASaK90OHz+RAEgdw0O8N6FPLI2PPoRA1iZVkiTfkW5EigXSfR20h000LEijLEijLi9VvREKNPl54sXrWW2raTRjBAKBRAr1HiDQSJSVFqm+u4emhHrjgjmxUHVAxNPc6F555Nn2wb28ub8IaiyPJJvtdfjpzPNx+ltCCNTmY4oyAVp1GFTqtFEARc/hCR2Mmr9BqVEo1SQas3yIkGF1sO1jCqSyr7yxvYX91KjkWF0ajljudXcKIlSKPLhxgX0aiU7dQ87eMXgcwUCwO6FjBx9Bn0TVXib23kje8SxqtZp8YfjjGqWxajLxzJjh3bsVmSMIddiJ5m8nQRrh1eilqlIhiJEYjE8QYi/JK9SqtSAjI7j9Sy5JstXDGwmOXbytvDM1MszH3oJhxCDINazfCHFlF24AQNbT4ikViCXzIYpabJzXeH/Gz8sYwr8wN4D37LFf3yGVCYQUyCFk+AYCRx5blPr154fT5qamqJRkLIsozX5+fwkcN8/NFiznYGWLV5H95AiKKOhVx22UUY9r7HzrXLGf/AE2zftQtRFFEqEj0lyzLxeByb1Uo4nODmXXRjMVZFkC5ZaYi1O6k/vpsla3YAMO6q69i6tYwzu+UR8PsIhiM/GfNwfq8OzLrpIu4dNwZDSh7rN27kirFj2LZjG/X19UQjYfRaFf5g6OQmlVKJUqkiFoth0uvonJ3C2LP78Mq9V/H+t1sYc9dEvln3NXfedielfXoSjkVQKhRs3rieriVdcaakoNCo8buaaG5wcfddExl1/gUY9CoenT4FAIdWTb++57D885VcdOFo1q3bSG52Jk2NdfiDQSprTtDc2syjD0xhyZKPWfLhCg4e3E+PniXcOuFGJEEiGpdoc/lobG6itLSY8hPH2LpjOwCvzn8JhaCmpqaOCRNuob7yOP5AgDvvnsjyr5YTDAYor6xgYL8hdCntSFurjydnzEKhBZfbhdFgYmC/gWTlZCMhodLpUSo1tDS1Musfs4jGovTItzFvwWKChnSUiL9y7fg9hN/Jk++nsrKSwsJCZs06uaHyc7zTUuX8yYPfhv81v6a/6gOl15nIzMwnFo2j1ugJh/0kGQ0IsoQSCVFQEA6HCAaDmM1mJEFGqVbhC/ixJCUhCCr0OhM+n5+YJKE3mGlze8jIzCGOCp3OgEIQECQZAYiHg+zbtYtrr7mZHt278sP6LRTkOzEYdCiIcqKyGpPZyg233obBoKC1qZH8vHxcXjeyqCTg9xPw+9FoFWj1WvKyMmhqqub+hx/nnjvvRlBIHDhwEJslnfNHjWbAgIHs3LWT5GQb3XuUotYI1DdWkpWVCyqJIweP0aljV0pKe1LUMRuT0UQw6MOg06BSqzDbkigsKKCkSylJJgPbd24lIzOTeDSAUiOQmZnOyBEXIEZ8qFUK6mqr6V7alZamYwT9VSiRicddGPQWiEdoampEFhTEohJGkxmNVkcgEECnNNHYeACdPRVtTE1IlBEEiMVCRKJBkkwGZEGLXpeEWlZSXnmcjMxM6hoayc/Px2g0JnjAEzuc1Lc0keZMp6muGr+nBVtKNqFoFFGSUOn15OQU8OrLr9One09GX3QuSoWIQiWgUqkRFTa++OJLdu/YxidLPkCv11BUlMu4a2/llttvYszlYzE5bFj0YTKy09m8YS8lXTrRrbQjWZkOlDo7NoeDjp06kZufT69encnNzqS4UxfSMvNpdTfSrbQ7jQ1N9CjtyZAzhxCLhQlHgsRiUWprqklKMuP3hqiuqic5NZUHHphCn159yS/MRJJinHve2bjdHp54YibIMg88cD8qvYzKbMHqNDJk4FAGnNGH4cP689JLr/H0nBd57tmXeW7uDEZccB7PPf86QwYOYcCQvqSk5PDKK89jT0rhkUef4ow+nbGabSTZLCBbyM9JpX/vTmjlOM++sIBJ908kKyOZoUP6E4oFUOqNqNQ2enYvRBT9aLU2aquPcVa/gXiDUYxakYyCQs4ZNoSYQkImjESINetWMajfMDxeDwsWvMyggb2Z8dRzDBx4BvFoFI1KTSwmE40HaXN5yMnL4fCho+iMZoxmBwpZpLm5JcFdLisxGiz4fF4yM1MwJ1mwWI34Ax4qyitJSclGJSu5cszVVNfVYk2x0tJcxwUXjaJP3zNQCyb8oQA5uVlotUrc7lYOHD5IIBSlT7+ePPfc6yx49WVumjCBZFs6zY1HWLt+G1deeSVbNm+huroaFDJ9+g1AlmD82GsoP3KYqY9N55zhI7nttrsY0H8QXUq6UVl5iOoTRzmj7xBi8TBvvP4WI0acT5urlfz8XKqrG0jJTCY1JYu2Fh9qhcDkaQ9TVVmFHJN4ff7LjBlzJS2traRkZJLqdJLiyGLcuGtIsmhRqVRENAoU/ghCVERtMhL2+tEbDAhKBYqfAJx+SWVz6rz5e/Sdv7RzfjvP/gHTyp+ZRr+xv35d5p/GP4UeQ6VWT/+TEn8ny/8hR+C/KrFooqInjdd/7+j5j6hi/ijNqRL+dh4yMtrh97Sf5ka2vI/sa26P88sWVmZ0RdPlHABETwPRrR+eBrYHNH2vRpGU8CeMHfwOsXbfr/L7OZ1gdqLtd037yxf57oX2CLKcuAX8c0JVp+GoMxO0PvHavcROg5QsA7qz72n/Hy37AMnX/Ju6yj/ppO58NgCSt5Ho1g9PoxFof9LpZ+NVrNv/u/EUZieavn9r/x/+Wadf6C4j0+3Gp6lucvHaa68zbtx4xNq9xA6tOW35p+ok+5p/1T8/t5Uyo+TXOpUt+ZXOP9cBQNNnTEIngV/p9Jt+NTvRnHHSzyzy/QunxmjPWd1pGKqMn/qpZi+xw9+fBt9JQHf2Pe19H9u6BOnnd0+WT6aRf9Kp03AARF8jsW0fttcyUvklMqDPG8UFD73Mpn0VmE1GotEYUyaMpbfJR7fSzjS6g0x+5TO+35swyF6482/MeXsT/7itOwMz3UTlZF5bV4U/EODyAUXkOU0kmYxIksAhH7zweRmfrt2NQatmy1OXk6QBtVpDTIzT5IvT7+GPkWSZW0cP4PoRfbAbtVgI4XK5OVzrZtnWcq49qwul2XbisSgqk43N1R7eWL6ZK4d2J1twUZDhRKvX0eYPs6ysglmfleELxRg3uICuqWrycvMZ1rcUgl6qW3z0eeB9ALbPuYYch5EWtw9Fai4Wq5WgP4D/+F7S0tMQgFhMRK1RceJENcGoxJUvrafRHSDNauTuEZ0Z3TOH1LQUdpY38/c311DbFsAdTJzGfTf3BgwqyM3LpmbPboJRkadX7uGKAUX07ZCGEA0RjYYob/Rw3B/n+eV7aPSEGd0rn1cmjScQDNLW0oLFasEbg753J/yRrVYrxYUdeeq2y+nmkEAW+HLTTia/+QWNLj/9O+dxx3m9GD3tHQQ5RjgYwrfmJQbePY9Gt5+8VDsv3H05g0oKQBbYFbZyz4x51NbW4f7p9sLX93ama34KcuqZ6LQGVmzYxg3PJa64rv/iR8xJBvyb36Jzfirr9x7jsukLAahfMp14PI5LlYK28yjWrV/He++/wdh+2fTumEF2ajJiPHHCtarsIDMWf0Wjy8+A3gP55OOPUVX/iNB8OEEFJsvM/fg7nlm6AYDN36whIycXncFEyOcn7PXj9vvYuX8vl151BWKbh+/XbcZoNtG5a0cOH9nD6KvHANAlt5ClH60kHo8zefJkpk6dijPdic1qZP7LLzN11hMAfL5kOccOHmHJko9Y/N5bNDc3UtihM8/Oe4ExY67hyJHDFBZlU3uiibU/fsPzryTG9NefL6d3z/7EohKtbU3YbDY++3QZQ4ecxfCLz6appQm7zcHsqc/Qo1cx+dn5vPXmYt5Zspi9R3cBcOP4G7j37rvIzc/B1Rak+kQ5kx6aRNn27eRnOtmzbx2isjM6TQhJOrm4SQz9Xy9YKirK6dq1C7IsM2PGk0yaNOm3M8npaOP+eN1x2vB/dm3xrwB4CJISBSIoIuzdvZcUu5UkkxG1UqCuqZnk5JSEP5zVjj8SaPe39LU2IYlKkpPTcHua0SclMBDicQlBUKLSqRPuF21NmPQaYmGZ8sO7sVuSsTkLaWlrpupoLZ06O0nNzUNUSAzu3ZevVq3GkZaOKMfRKVRIcpyoEEMpCzQ1teCwpxCJxFBqkwi5G2hoPMyC1z7nnOEjuPDioaxf/wObNx1g3/7dzJo1k4bGWtLTU4nGwGBUo9aFUAlWYtEw675fxxcrVtG7R09uvfdGFIKacCRELBxCVqtx+XykWJM5su843Xt3xRPwYDQ7ICKzd98OQpEgpT36cfTgQaxWK21tbRQWFhL0NZCeYyUeMyKrYygUJqRIAJ1GTVyhRohLqLUaQtEIoiyiEwUUyjgtEQFjtAnBnI7X60Oj0WAymYgHwkgqHc3NjZjVICLgSHbS7HJjsVgSKM2STHNDI8k2OzVN5WhUDnQGNUazChkDslpNLOjGpFPicYdRKk2EQiEy0pJpdTWhM2pQa0yEfTFOVB1FrVWSkZ5L9bFjzHnmaZav/JHDx7YTD0gorWZ2bVhK9179+Wjp91x3/TgQotTW1mDQGbjgggsoKytj2rRpTJz0MBZD4iaT1ZkOUpRQIMzab9bRt08/zrvgAtauX82hQwco6dqLkL+Nrt26MXfufN5++0PeeWcBB/YdYvGi95n0wHXkdyxEQEk8pua1Be9y38Q7qaiqICUjDYMpCZe3Ep0iiXAwRDzgQqG3MGXabI4dOsoN11zMqEtHUba9EiEu0LVPLnZTGoLCT9+e51K2fQdlW5Zy/FAbl4+9DLvFilId4fjRgyTb8/hg6Vdcf8M4FHKEaCRIh9x8jtbVo5AMtNZsQgqJ9B1+DXsP7GTUkFGE4gHWfv0eQY2NsM+FNdlO2B/mwN596DRaBg0dikJtoK6mmvLD+9HrTXQtKeHg0UpDMP7KAAAgAElEQVRSnTnYrQoC0TYiESMN1SdweV0MPnMACq2KqqPNDB9+Ftk5acx/6TksxgyemPkoz897OoHcrbAhSiFMZj1ajYnWxlpWrvySvn164kg2YDFb0diMyIIVIQ6trdUsW7ac2ybcTlVVDamZqSBrCEXa2L+riYxMI4cOl1NX3kzPEiuTH53He++/i16v5dChg+RlJdPqj6NTqnng/oncd/9kYlKM3A4FrFu3DoNGT5LdTm52BlqFyHtLlnHzzdcTCET49LNlXP23K6mvr+bY0SrcrcdZvXoTHm+cqU8+TIojmT27D/LivPncftt40lOcdO7Ri/c+Wsqoc4aSkZHDkaP7sNvtfP3Vevr2L8XmSMbT1MLB7bs4c+QIOvXqTlCOoxYUSL+YV38PRPX3aM9+aef8Zn4/xWv0l9+MU+f038zRp9pf8p/cZD2V2vSUq8U6g/4vfwT+a4zXaET6dUWFk4hc8NuP9qnyz8b7Pfmj3ey/Ir9M/8uX7J/N7z9xUvzPyl8t699tm39Vios7UlV1gtdee4Px48f/Wz4BP08Ip3tXTre4O61Ip+RzStP8GSrbn4X/npxuwXm6dD/H9624EwDTxS8xYsS5bNiQMBDmzfkHo6+7g0BNFfFQDJPWyNrv13Hv4xPxh32oFVo+eP11np7zLG8/NhK7q4zaiJ22thaSk514PS4ioQCFXbphsjiRUDD+ySV8u/UIt1/YkxvO747JYiPsj/Dp9zuZ+eGP5Kfb+f65Wzh4YC/pGTmkZaYnuCQFNRs2bGLw8KFolApi4TCHDh8lNTMdhy0NhBBiTGLJ+x9xzTV/IxaL8s23X7NhXwNvrS8n2aRh21uPIKBEo9FQV1fHtn2HmPDSagDWzLuV3DQneoOOcCiKVmMkGo2jUIqg1hCNRHh74evcfvsdvPvu+1SLFuZ/9gNajYpPpl2NSo6hEFQU5+Wj1kapanJxwYPv0eYNAvDts1cjxQRKu3Zj/95D2JOS0enD2J0pREQRARVVxyvJyMjg2M6vEc1ZjHrsUzRqNdvWHuabrxZxyZXXUFVVg8FgpN/wBMJ3h4IOfLxoKc4sJ3ExQDgcJdmRwoovvuDGW24AYPP3m6g94eeskf1xtdQz78VnefG119Bqtfy4fg1pqRmYjA7Ugkyrq4UYcXr0OaP96v2amaPomJMG/Z7gwMH9rP52NXPnJ4DQmiuauWT0ldxx+80oFAravC3cOTmxSVR59AQ6wYGrrYG4ApKTrNxzxx1Me/oxgh43tlQnoy+7lM3rNlLf2MA7L7/GzNfnodPp2LN5BzarnabGZq68cgwbd+zkkUfuY8FrCV7e28bdxh13TOD55+cyY+ZU3L4Y7731NhMnTqSqoY6aQwfRO1PpUtoHZUzBt2uXM/7WhE/r50tWUNSpmJRU209XfZVoCFFWtov61jZuvj1BI7PqsxUU5RTjD3lJSUkmFAqx+N2Puf768ezcuZOBA/sjSnEUCokFr7/FtFnTAMixpLBu7UYCkSjWJAtNNdU8++yznHnWUCY8fHKzyVPr4dDBY6xfvYblXyznuZde4PwrRtHiamxfdJhMJqLRKNFolNSUNIb2yePKy0dx2Q0PEgxr0Ypx4srfB/77ebxPmzaV2bNnoVKpOHLkGOnp6b8/QfxO2lPnoT8zZtuf/4vG61/9lkT8LtoaDtPW7Ka0tB81VQdoczVT1KEb0bACwaQjIgYJR/34qhvIzsnDH46i1pkIhaKkpNpQKgWqKptRy0ZSsjKICRF8rSdwOjsw+pLLyc7NZePm7/nko6XMnDaTByffS3aGDXtqR1Z9v46STsXs3PQt3/1YxuS7bsHldtOhay+8rS50RgWyoOK++6Zw8flD6du3L4Ig4PH4eH/hO1x2+Tgenf4od9xzIzeNu4s5c2fz5JNPUrZlB7t37WPTpk1cd+NoLr9sLLfeeiuFXTLJycrk6L6jdBvYE6fJRFjWoZSiNDTWIKBEq05m9uynGTJkKHExTLLTyKBBoykqyuaLlZ/isKQTCmnRmyJEY0GWfvwVo84bhi3VgTnZQhwRpSyh1+kIB4KIsTiBQBManQ2t0QxKmajXjdlkQ5YVBPwh2vwt2CwZGEwC4YCOVvdxUpyZaDUmPO4AZisEgz5CoQgKQYsQ8bdTYYXDYYx6GQkDemMa3tgeknR5IGgS7kMhFUqVhCiFUChUyFIck0GN39WMGiXBcByDyUg4LqLQGhH8LUiiGpPRSnNLPQZbGm8vep+LR59PeqaFQDCG3qCipT5GW2sFFruTFGc6CDEqThwgGhBQKQUKC/KJR6OUnzjKV6t+YOXyb1j66UcEA42kd8jG63Jh0ekQpFQOHfsQrbIHS76YxW03PI4YV7J/3xHmz1/AJ5+/y4IFC5gwYQLRaJTy2lo65WQiKCRC0UZcLTHqal10LM7GYNHS3ORFpdAzbdo05r08F1+rhNngoK7xMIcqa+hUUEJr/UHefPldnpo3G1lSMXDgYJavWEp6hoN4PI5Op0OWZVpdbcQiKlJSUtAZZCKBeuIqI3JcxtvUiBxX0v+skcx8Yiajhg+mwe0mKdmM02on1BbAlp3DbTfdhsfj4Z3Fb7Np45cU52ZhsjswWh00tblJdzpQyBDyB9m5dSsdCzugNNnwB6LcdP14br3xBi4bM5a4OkgspCQQqMNstoDgoLWtAbvDhEqlQQppiMVbOXx4J727n0FFVTXO5BQkCSQJtDY7wdYajFoNKoMVPTHqmutQ6XSIghZPSy3JGR2IhiP4W+tRSVBZWcf7n6xk6NDzcNVXcMFF5zHuptuYPHka0dZjVFR56NKjFyarhb59OhGN+RAEJRdeMJrp057G1dxCn16diYTdhFV2jBqBoMeHxydwouo4XUsL6NQ5H1ddMyu+Xo/LF+DvE2/hyalPMHjQcBrr29j0w3ouvPhsFn/4GaXde5Gblkp1zQlunXAdMRmGn30RM2b8nVdefotnn3kBpUri6J7jSFKUq2+4BtGsJxaO/elc+CcT7a///pnByS9YXhR/cV19at7/F4zX/zrApn9H/m/4uf4r8mfIvf+//M+00b8LBvZ7+f0393Oyzca4Sy9BbGtCpzJgtdrZvfcASrWaPl0TIFsxKcLkhx7GkmRHUXwtLfozEFp2o5AiNDfWEouEUCgEGptdnKisJeCP0rcowde5v8pNXm4xOq2ZbVt3oFMl2ioQjiIJKgYMGIRGp0WpVBIMhlCp1HTp0gU5JlJfW0c0FqVLt1LMJiMetxsxFkOMi1x99ZUoFAKRSIzBg85i0s0J7toWf5SKmno++ugjjh0/Rlpa2q/oqnQ6PSCgUmp5881FSLLIwUP7WLbsM7RqNW6Xm0svvYxwOMhFF13IV1sS/rMXDerKGd2K6d2rF927d2fZis+IxURyMtIZN6Jve/6yJFDStQtqjZLi4g4crzyKzx/EHwggSTJatYbi4kJUKgUdcxx0K+mONclKNBZjx55tfPPdtwRDcToWdyISi7TnO+G66wm4W4gHokhBAYfJQSwQ4vyzE770AGvXr+HeiRPQqJWkpqby1fcJYKHLLhlNZlYKKrXAgYN7CYUC+P1+kpNTuOWmk36Rxi6XEMkeQVyQcPm89OzTpz2ssrKShQsXMnXqdGIxsR2QDsBo0hIItjFj5jTsDjPHyw+Rl5/VTj3T1NTEjz/+yJw5c6itaeK6G67AoNMRDoe5+56/gyzgTElm7brVSBE/T02diruunoYjB5k5Yya5ubnMnz+fWCxGUlISY8eORaFQkJWVhSMzk/79+6GSQjw5/QGCoUB7vdQ/cSTGxWj7qdwXK7+iX78B2O2O9nihUAi9Xk9Ls4tAIERdXQMrVqzA5wugUKjYv38/siwjynDJxZe2j3dnXiY7dm7FaTcTDnlISnYy+dEprFr37a/mGJe7lauuGsOc+c9hsJrZvq2MM7r05PlnnsNkTKB++/3+dpT4cDhAQ72bs869ilDwpw3cP3GhEUWRd99N+N2PHDnqV5zg/y+I1mQmHE7CmV5Eg6sFR3ou+qRURKUWa2oqkpRA504yZWCxOzFb7DiciedGo56qqirKyyvJzEpHqQkgEUChlEhKsuJurubxhx5Ep9AwesRl1JyoZMKtt1JQUMjW7TvYv3cnT0+dglmnwmI28chD95GRlU5efg6CHMFsUBIOeEky6Fjw4jOcc/ZIsrKyUCoVWG16pkybTFpmEgsXvkK/M/qza/dWzjxzEIWF+URjPqZPn86nn37Kjz/+yMKFCznvvBH07N4XhaBl6NDh6JQ2Wlv8tLU0IcYVOB05JNtzueXmu7j9zuvJL8hEq9FTWtKHptojvPbKPKbPmIlCp+fyKy/k8JH9SHKM2++4ma3bywgGg0hSvH2xGo1GEUWRQCCAWqvDbE5CrVQRCYXQaHREo1Ha2trQaFUolUqUKgGPtwmvvxaz3gqiRCTkxWSUE241ej1JSUlotVrsaenoLVbiCiVRBE40NhOMi4TjMgZjDuGQSCwq0tToZvf2jSikIHoViKEQx/cex9XgRqU24I9IaExmZKWaWDiKGPBSUVuN3mLGHw1jcTqIRUJ0Lu5AisOBGI1j0GnxeloxGZR0KMoiI82ORiWgUWrIcObStaSYoqIOCdollZKc7GLS0zKZ98JcRl9yPrl52Xhafezbe5QfNu3FK5ZhM/bBktrGpDvfprauij17t9GhKItwxEN9bSWlXTsixUOolRIbv/keMRZFEpQIsgG7LZWyLTtRCHqCvjB2iwOL2UqS2UxDSyvekI+1677lyL4DtFTX0FxfR3ZeJndNnsgPP5Rx4423sn79Rmqq6wkEQuh0Cco1hUKFErjrjlvwuJoI+f3U1rThd0VQoKW5xcuBA1V0L+3NoIEDUahVpKVlIYtaamtaefihR1n28XKWLl/OM888h8/rwZmcRWZWPm6Xn3hUwmy0Eo8JrF2zCY8vROeSYnbv24FWp0Sr1fD58qWUlHaibOsmIuEou3fsJMVhY1/ZD6jkGFajBjkaxNfaTF19Fc3NzeTlFuJ2exEEAaVSSUNDA1OnTkWMBNFq9YRicaJiHEltRm+2YEkyk2I1k52dg9lkwGq1YrbYyC7oQO+BA5k1ZzYL33qDc84fiTsUYtXXXzHsnCF06lLEhaNH8u7ihZSUFBIMhjl8+Cgul5vVq1eTmZfFgWPlVDd6GDbicmY89hg//rCF4pI+GEwC3Xt0IclsZf++YxhNGjoW5zFmzBh27dzP7ffcjycYZupT0xl/y7WkpaVxyy238Oqrr5KZmYlKpeDAgUNs3LiJwYMHkuzI4vbb7sblaqWgQw4Wqw5Hsg2fN4zXE/5fQZ3zv0n+d1hzf0FO14H/DL/QL8P/imFxurJ+eff8j4yt06I4/pN1+Fd0/eXd+D966f9TA+F0Zf47+f219L/2Azi1r39+9leMyX9Wh3+1H/8s7u+Vc2pep+b5R6hwCoWi/TTnj+ry8+NRI0Zx5223o/C00tLYxLChw2lsbKRbr94oZaF9MyjJaiPNmYVGjDHukU85Uh/B527gpdXHuPX1HVz63FYGT/6IfhPfoujaWTz1/loA6lp9eN1BNAodxcWdGTmkD/YkA00uP0PveJ4ZC1dS747Q2upGkhLG6IYNP3DowAEUCBgMBmJiHI1aybuL32fBZz9y6YOvU3Lt02SOnkLh356k49in6Dr+pH9fIAYarZr8/Dy++XY1gwcPag8TRdBqNGzc+ONP4F4yxcWF2Ox2Qr4Aq1asxGK1gCChNxgpr09QN/UsTEOtVhOPx1EqlVx25eUgqGlqdCF7m9rztyen4PO4iYSC+IM+9uzbQXpWFp+sP8T46e9TdPkUMi99jJwrnyDvri/JvHQqbm+CKsvlbuKx6dPYuGkrrS4PZpu5PV+zTkYpRDiy/zB33/Z3/n7n/dRUnsBqMmKz2gDQ6vRs+vFrBDFGZUU55RWVAPTv1xdZlmlsbCQ/PxeFUsLhcBCPSQwaeGZ7GYdbFFgKB6IzG+ndrx9Kjf5k+SYbVVVVWK12nnnmOR568NH2sJbWekxmNb17d0cmTkqqjQm338jgYYMZefnFjB5zGc7MVJ54bhbDLhpG0cAhBH/ysy0oKEIUZfx+L3ExjDIWJOx1s/7774jERRoaGli/fj0ejwe73Y7NmoxBb2bS/Q+iVGjIyMvD73XjcTXStaSwHawIwGazoEJGDIepr65CLcicOWQ4oVCEYDDYHm/Xrl3MmDGD5iY3rjYvJqOZ+fPnE43E6dG9F/n5RQgokGQ1jhQHl42+DIDtu3ey6OP3ePbZJ9mwcS11rc089fxsPv9qOWrVSbT7SCTCc8++iNKkY/CwIbS4mmn0NXLP3++lb9++rPn6Oxqr6zl0qIKP31qCLIZYv/MQfc88n8aGNhTEkYST4Ga/Hcsyq1evpq4ugX5//fU3/Cb8V9fFfmeO+Z+S05V/6vOYDPmFpdjsaSi1GmSVgfScIuIKJRV1lQSDATzuABqVBWdGLp5ghN179mHQ61FrEvQsqSkZtLW1EQw3o9LEqKlJcLu62up4e9EbNNY18smHy8nLziDVmYwkSaRn5WHSqXn1xbnMnPoIOQUFOKxJtHl9SAolTfW1eNrqMWo1KIkDYRRKCAYDJDutqNVKGltqQREkyaxEEGPYk40MGjyAxx5/ELU2Sm5uLl9++SXnnHMOK1as4NFHH0EQ1GjUBvLz87ni4mt54aU3UQkCW7Z/RTDSQKurivkvP4lOr6SoYwE5OfkMHTISMeqmpFNH5r+4AJVOz+IPF9KppBhnuhOtCUZeOApBKRGPRVD/9P0Nh8PtYJJRUYHHFyIUChHyeVGrdNTXN+DzeTAadTgcySiVAkkWHckpZhy2FAQktFoRGS9er5doNIpGo0lwiIoQEUFrTCIlI5ucgi4YLVYkQsgRK5JCzYH9+wl6Q6RYk4gF/Pjb2miqqeGq0WMwaSzoNGbUenPixFXQYNQlQSxMx66d8YWC6JNMoFKCJNK9W2caG2qQYgKVR/dj0grY7GZc3jZqqstpaqhn9apv0KoNxOMxKisrOXDgEEMGD+easbcwZNgQiksKWPHlZ/hCQZw2J2p0+EMSem0uKqMLW1I3dh1aQ2ZWKv0H9Eatkfjgwzexmox0LMhn7bffEA+HSNIZ2LZ1C7KgZcuPexl98RjWrlmPTmuhurKRkF/k+vE30dLUitXmID3DyZAz+7Jly4+MueJisrNSMZh1fLv2a7p27cqdd95JW6ubzp0789CDjyCJEIuKhENRIpEIK1Z+it1hRhRFsnI6saNsL9GgxIovV1Nf72Pe3Gcx6nQEIlEsFgtJZgevLniT6dOn88SUKfzjyXncfMttjL92LDqVGV9ExGZNhpiMu6mJaEBm2adfkuLMQGXQ0bW0FEkSCYVCNDQ0UNSxgLR0BzqtFoUgEAsFCQf89O3VHbUg421rJcmgw2Y3cfDAUc45+wI0aj0ajQaPx4PT6WTGjBmcOLyPcCSCxZZCRUUF1fXN6A0WGmrrqTxyGIVagyDGiIUCWOzJxNUqlHotKrWC9z94h6yiPJIzMlCrlWi0IpkFuai0Kl548RlOVB3lzjvuprCwiNSUdCIRkUg0wPKVX5Ca1YFxN93N9deOpaWljXNHXIAj2UR+QSZms5mAL07Z1o1kZ2dx/qgLWf3Vd7z6+pvoTUa++GolOpOa48eP06NHD7Zv305BQQFjrr6CZIeTXj378sKLzxOPahk27GxycjPZtWsXXUsLcLlcfPbpCgwGA6Io/mbN97sYBX9i6/zZ2vrPbIb/hPwnDnb+a4zX/+kP6f8mEQThD0+R/0pb/befDp4qp1vs/H9dlEplO4XQ74np4pcwXZy4jvnz6+BMT+P1xR8yfeZMNm74huUrPmbQmf1YsWop90+6F40qcarn9fvJy8nk3tuv4/xzB/H6XjNXLKhgxc4mKltCBCMxjFo1yRYjZp0Kkz6RLhCKEI6GiIS9dCjMJ9Vh5ZUHrsJm0lHTGuDZT37knIkL6HfbfG79x0c8MPs1LBY7xV06k56ZkfCRERQcrqxn4ZZmnnhzNduO1NLmC6FUCDgsRpxWE3bzSUMrEIzi8bioqqpEo9G0czMDrF2znoMHD9KzZykajRpRlCkvr+KMM86g5kQVSkEgHo+j15k4UVvfDtTUUldFLBYjFo8TiUTQGc3E4pDscDLq7JMGoCjBkYPHUKDCkmTlir+N49x7X+Ghl5ezYfdxvOE4AgIWgxanWYUtydw+ztU6NZ26dKbfoJ7YnTYE4STydnZ+B4pLiknOTOEf82Zz7wN/Z/uefezeX45anTCUmpvaSE5OoepEBW63u52aKyM9C63GRH5eRwK+OA0N9Zw4cYJQKEJK8skTup7d+2BQmwm0utEJavZs3dUeNmLESK699lrmznmGcdeOZ82ate1h27buxuPxkpmRT9Av8cKL8xlx+UX84/mnafO6aW5pQQAcdjs2qw1nsrNd55y8DI4cOUQsJhIJyxyrqEStN1B6xgBM9jT27t1LSUkJoigSDofZuPEH3G4vY8eOQxRlzHodu8t2snXLPoaOvBSV8uSc2eZuRafVcOzoYdJSHcQiYSbd/zA11fV88snH7fGGDx/OhAkTyM8rRqnQkZaWRlVVJXPmzOXNN9+itqYeWRZ47Y238Pp93HzjTVx2yeUArPhyFbMXvMYN997FmecO5MOlH5CVkcXwMxOYB2qVmvraVjp16sSMKVNwtTbz3abv2LZrO4MGDmLe3Ofo3rUUu9mCKepiw8ezeGnqFBzJyVRUVjDlsQcQiCELf/wZX7TorURfZ2QyYsSIP4z73ygqCQThBK2tB7Ho9ahkEMNxdCrQKKOYzDokOYpCFcMVCKM3Wygt7Ybb3YbBoMFisSCJCnw+D6nOPNxtIXJzijAajXj+D3vvHWZFkbd/f7r75BwmB2aGgRlyzkEwoeiirmnNoBIUJLiYdkUQxBxYI2bFHFAUQSXnnHOGyfnMyfmc7vePkQF5QF03PI/X772vq/84p6ordFdX1bfubwgGKe7QjhlPPE6PPj2or67mwL49/LhoCfktW6Iz20hLS2POBx8h6J14GzygmPjmm8WUHi1BrdcRkyW8oRiCWkAmQFKOUlvjwmR0kp3bBiQRORkh6GsgHksw7PJradu2I5FIhAMHDnDixAl0Oh333HMPs16cSXl5KVqdxOzX/8HMxx7h8y++xKDVkZ/fArPJSkZ6LqIoIqAhFlXQ64w8On0qGS1yOVJajoiERS+Qm5+L3ZmBrKjxh0JojFpyC3IJBwLoVFLzgVw8Hsfj8WBLycBstlJdUYlaEknEIT8/n9TUFCLREGq1ilAoQiIuoSQN1NaUgBLj8KED1NU0eZlVqVRUV1eTTCZRyXFqyk7QUFVOMhxAVAz4XQ0kohUI0SiSGgpbZXHJxRfwp2G3kpQNmKwOsvOz+PirTyitKUWR4yjRKDoljKeuhidmPk0krqAX1agVgT5de9BYUwdKEp+vjvvvn8jO7XtIs2sx/mTTnEyYMOrsxKMJevboikCMcChBaUktI++YyLVXD2fyA/djT7URl5NodFa0OgNjx9xJ3z5duPCSfsTjaurcdTR63HTuXoTNmoZOZ8Jmc+D1ukkIElEZuvXui6DRsXDRj7TMz+Hxh2dy76T7efXVl3n+hWfo3bs32zfv5fbbRnLVsD9z1bArsEl6NIBaJzDxwfsIKVF0BjV6nYp+3buRkemgZ68u5LRIxWRRM3v2Gxw5cox16zYAIimZeYSTCSS9DtRGjh4r5bGpj6JVS9xw0/WkZlvZu3sjO3dsoUevfhw8tBOj0cjOnVvR6mH1irnYnBZGjRyDz+Xj2LFjxJU4ta4qjh3eQ3aGnfMHDWL0XaMIRjzE0TBi5N3IcRVPPvECUx6ewY7tu8nOziHi81JY0JI4Glp17k91gwdFpcNgdSBodZgtWjp27MyFF1zKvn0HSCaTqNVqVCoVsVgMtRDD6XQSRaRNm3aEPG5ERcGemkF2y3YkFYlEJIicjCOLaipLq4iHYuzeupXqkhMIchKT1oiYSOCqLmXnvqPo9Gbi8SSj7xzJnXeOJBZNkEjILFu6ApOk4t03X2PB/C+ZOHEM1lQ7vft0Yc67L1NZWUNlZTXDhg3j7XfeICerkFAoyvoNa7lt+A1cMKgXRw7sYf/uPVj0FgYNGsT8+fN54YUX+OCDD/B4GhBFDdOmTaeqqoJNmzYgCElkWeGJmS9iszoxGR0MGDAQf7DuZ/v6k2Ecz+a35/8Vzc4/jPAqiuIvCmynnyb8t9WDT2ezTse5GNNfY0Z/y6nH7xHIfk3oPVnuL3me/KX7zsYu/6dx6NBhwuFok7OmZPIX7Yh/r1rwuScDGZBRlCSKkkREQET4H/EQZZSmWKtnnoApnDU+4i+145fSfnadFodRESCpyAiS2By/98z0s0GSJDDoGTflERyxAMF4GYGEi1uvuR1PoBajyQhAi5at+PazjxEFDVv3rGXl9v3ICgxtb2TqFS058eWjvDlqEF88eCV7P3iIh24+v6l8lYTFZCQcCCKJEIz5GdyjmE1v/5W/39CPv1zYjfxMB75ghFW7TvDJxjLuf38FJdWuphAWWj2KLDNx1rdUNXjJTbPx2PALeer6rnx+/xXMe+R61r48lg/uvay5T6vXruW2224kP68AnyeA1+1pTuvZqzutilqhkgy0b9+B776bR2VlBWa9Ab1Bw8g7b29SWa6oRpJOCY89e/dBFLXoNRpEJUrJoRN4fT5cnlripx0YRMMJuvcazOJlKxCEJFPfWMCh8gYsBi2P3zmE+87PZM87k9j21kR2TOvA9h++Iz3VAcCRQ3sRhAzS9an4gl6E8CkWsaamEbfPzdOPP4k9xU7btsXcfONNHDt8GPknIVWv03DscCl//tPVyLFTffa4Kon4vPjqfVx56dVoVA4ynUZQ4kSSp8Zb6PgGSrfMJfQtOpIAACAASURBVBYPoBf1fPbJKQHvs7lfMmXKVA4f38P1N16F1W5qTuvbfSDRaITLh10GoQgbt23l2IkT2Kw2nnnyWVb9sIxV8xby8avvMe+Tr9m4elOzPabBqKJVYTtee+Vd9uzZhcORQSgUw6jRoRUEBp4/mJLSCnw+Hz5vA927dycqBMjId5JMxolHY7Qsakff/gOQIyESgra5XUcOH8Drq6V9+47EIhLffbuKUXeM4dixE3Ts1Lk5X2ZqFmkZqWzcsYxPv/qAOEl2H9jN9nUb6dyuCIfDgFavo1eXfkR8CdoXdeS5x15g+gMzufTCy8lIzcRhd2DQGkm3ZvLZ23PZvq3JS3NWRjZ3jRnPuHHj+GLxN1x5y3UsX9XkQO/uuyYR8TVycO9+qmojHNm6hXbnX8afx47l5pt/stv99huUc328P6Guro4ff/wBaArlJkkS8PO16cx1RhTFX5zDf8vcAf/6weivMcHNa04sRvWRRaxb/AYmvZ3a8kr0goxK0WDUpyMHfJhkPxFXJal2NclIglDYiyPFTnl5OSqtxJGSo7QobE8ooqCWQK0ECQaD+KrLaZvbGYNFZO4Pq6j0uAgmgvj8DUjAzj3bOHKihF379qMzqamrLWPcfWO59MobyO9QgKhWYzAa0WqMRCJaVIKBRExp8q6OgquxjqysQmTBgT9i5KknHuOhB8ejlfQcP9RAbst08ltl8vTMV/jsw/kk42EKslOJehtpV9wSZ6bE5k2LuWP0RA7uOMqBfVvweOs5cOggGWkpKIk4n378IRddMJCa2nIkFYy48062790PiSi+xnoMGhV1VRX4Ax6CwQCyAAkZpFA1GaZU1KSRklFM5dG9xIL1ZKSmYNI7iEk+ahsqiYajlB2tIBKO464rIeILoNYkiEsx4oqf/NxU0mxmJFGNuzGA1eIgGPQTj0WIRRpw2CLs2jYfjQii2orWYERl8JOQVWjUJl588TFWLF2Cr9FPXaWXkDdO23ZZtGiR8pPav4ZgncSmNbtYtuQHFCWM3xNnw7rNDLnoEtau2kK9O4HGoOGp56bSt193BLWWuqDCZVcP5cVp01m6ZDUXXTQEq9XO9m37Oa/XxWzdsJXbbvkLDY3ldO3YEikZJeR1YdTGcbsSTJkyBUklE02ECUa9FLYeQENDGQmPh3gswaED5cyc8TwoEiqDDmeaFatJi1qBv/5tChpzDvdMuJ2la5YTTUZRaxQ+ef91uvY9j4wWmQy+uBdFhS1oCAeJizKBiA+9QYVNn41OLyGKOvJaF9LgPcbRYyXY7alI2hjlpWW0yMll0HkDeOft19m4aCmJgEDQL3P5kCFotLB8/Wo8wRAZ6dlcfF4PlixfTedeXTlatoNoLMT61SuY980XCEaZmop9DO7fhr792lFa5uLNV2cRC/ix6nQ4bXZMoo5ZzzxHZpYBjU6F1aLni68Ws/vQXq69/HoefnAqua2KiCRVKIqTsXeNRosanVrFj4vWsPiH5cjJONWuMqJhAVOKlsl/u5vc7BZYjTbUai0vv/oSMnHUditKQkuF6zBatYfColSC8TDeQJSgL8bOTaUEIzIarYg6lqBFTjqecICizh0wWCAR1lJZW4csyOzZvA2zxkRjQxnxoMKdNz3MmpWL2Lp9H5989Dl7d2xFFrU8/8KzNNY34msIM/iCvrRs2wpjupm27XOxptp464OP6dF7ACeqfHz15QI2rl2LJEJWXhE3334723bt5thhN4cOldK2VREZqWkUtu2I2pBKrdvPrBdfRqVS0aZta0LhAEajkc8//5zNW45wuKacNbs2oEPzPxjXk9p0p8+XPxNmf4q9eipeq9J8ib8yL5++jz6XFuAvzu3niOv672R0/zDC60mm4Nfw/zO0/+/i93iQ/m/g321L+99CZWUlkiRRXFxM7yuuYM2i1bRrUYDaDN17DcDtaRKggi4XFw8ZwCWXXkiNtynkid1kYPyQYm4c0IL169aT4nRy7NgJVCoNVXVN98nJJEePH8PnD6AgYLXYiISjREMhJt06jKm3DWblS+PY/O5k7r9hMBqVSKU7xMz3FiFKEvFYnLKqBnYcrgDgubF/YsQVgxk29GL0eh1paWmUlJbizMxq7lPXrp1RqbRUV1ejN+hwOB3NaVqtDjmpsHv3LlwuF1dffS0d2nfA4w9gdTjw+H2odVqOlx5n784NP4WWgep6D8ePncDlasTV6EZWEqSmppKRkc3eQyXN5StykqQcpH37Dvi8cb7f2OSVekixhVFXnken4gISsoyciEE8hGxIxe1pClm0cMFCfF4XK1asxmFPZdmSFaf1qTsGg4HevXsjK1GCIR8HDx5k5mNPIv4krNjsNhQSLFm2GKtZ3yzERKMKJSVl7N69E7/fi8lkQq0xoFWpaWw4pfKsVCxDXbWEhspGtm39kTtvv645bdLYe6ivLqdLp974/WH69+/XnFZdUYLdasRVX4U36GX7nqZQMjOmzeD2O8bRtkMnPp83H2dmLjfddAt+v5+GhgYABETqG6rp06c3HTp04Iu5X+Lz+4kl4pwoLUGrU1NUVITJZMHlcqMSIc2ZhkFrQBKa7L1mzJhBRUUFqWkp3HjNlc2LfZ3HR2ZmNlVVVaxcuZJg0I/erCYvP4ua2iYV29TUFBoaqtFoNAwfPpxHH320Kd7uNdcw7cnHGH3PWCLxJN8tWMr0aVO57pprOLBvL5FwGJWgIj+tEIcmndefnU3Hgi7kpLZg185dxJUm+9We3Xry94fv5823XuWd2W9QfuxUSKV2bVpR2Lkrah0c2fQdOw/sYOTo+xFFEy1b5gAQCoWoqzv1js6Gjz/+qCkciSAwfPjwX8z7R4XObKO23kBqZjuW/PgNxhQRT8yNoooTTwQQ9BZCCRGzM5WDBw+STCaJxWKUl5eTlppLKBilTZs2xOJBJEnC4/EQiUSoqqoio6ANGpOJb+Z9ziUD+3FgTzVLftzCiqXbmT9vJX169yMZi2PQGdFr9BhtBeRlteOhidOw67IwGByoVGpUagWjoelgwGg0YrFYkGUZg8HAypUrGT9+HEXFhdx11zj0eiMzZswgMzOd12a/RDjiZszdIyhsnUUomMDdGECnNWMyOcjJzCIpx3jnnZcZfMGF5GTnI6Ehr0UxZSW1lJZWkp2TgdtTh92RQ3VVA+/PeYfWrVoQU5KY7FYiyQRmuxO1ZEFQDKSl5JGIqTlyYhf1nqMkqSMhV2MxpyJJWswWA0k5glZlJpkQ0Ju05LfKJRT2YrGaiMcE4jEVGfY0VIKWQATCSWOzxofP58PtdiOqJFq2aksoINGqVQ9CkTCehhqqKiuJJQUEJYler6dTl664GqvIyk5l/ndziUQCiIKWZEJEEgx43CEMFi1PP/MEy1asIT09H41WYujQi3l4yoNcceVlZOUacdqzyM4oRiGC3+VGh5ofvl/KBUOvwmw2M3nyZHbu3EmnTp2Y+9XHXHnVZQwa3J+//e1+XC43lZW1fPftYspLG5g67e+4PR5KSkpwu+oxm+yEA2EyM1oQior4/X7y8/OYPn0aOTn5lB45RjgQo6rOj8svs2LZcj759CMWLVmGEE/SIjsHQRJp2b4N+dmpvPbKC5gtVoo6dseoNZOMqzCorXgbg7Rv354jh0uQk2rWrtlEhrM1hw/vpL6hlIYaP48//hS7d+9j1MixzPv6eyQ1PDLtYdQSoMSZ9+UCxt89gYDXg1qSCUQDPP/is6SnZRPxKxQXtePaG6+luroWuy2F9MLOaE12gsEgg84byKixEzBYnaTl5BNJCpRX19K7X2/8fj+xWJzGejfPPfMMXTt1pbCdnnC8DFfdEWyaOA3uBm4dfjvbtm1HVEko0Sg7tmzHpktFL6QzYfw4nHYnCRnqGmpxe8PEojJj7xpPiiMVkyGFeDhEXmYhXneERlcQvd6IM8VOINiIEmvEYJBAEIgqCvX1LjLT0zCZDCRkmDZlMiVHDxGKRDlvyOXkFWdjzdCT1Pq46ubBJGSRDz74gG7du3Ps2BESiQQV5VUcPLgfn9/F0SOl1Ne4UStaYhGJmmoXX375BT16dcRut6PT6fhgzoegqFi1YiO3D7+Tndu3snffFiZNmoQoitTW1mI0Gkl1GJn98os8cO8DbFm/HbVKy+Mzn+TIkSMsW7aMbxd8x/Dhw7n++uvR6fXN+8hEItFM1Jy+3/0j7jH/FfxhhFegWef7XDZ9J1/uLwm6v9VG8Pfgt54q/LcE7F+ylf0lger0D+K3Pp8z2eRzteGX7v+9rOjpjPtJb8FnY4HP9X7O9fvkdSZb/VttsX5rX/+bBy7neiahVU8RWvXUz/KuWbsGRVFQq9Xk9ehFn16DmP3CiwTDDezctaN5nFzSryd1dSXUVJWT/MmLnNWgY1d5FINOg06jpaS0hO7de7Bhwya2Ha0Fmuz9CvJb0rptW9RaDY2NfpBlqqqqCQSDqNVqwuEQQjTIuGsHMmJok/OjNTuPIioQi0Ro8IWb2xtpqKa8ohS9Ucf2ndsxW620adue9XtPOWXS6/UsX7aKRYt+JJGI0dh4isE8duw4oihRVl6K0WikqqqK9IxMrFYber2RlatWoyCg1dm4+KLLyE9vCrOxYc9x9u3dRyQaxWQ2k56VgQJs3riFNTuOnPasQVIlMRqNHDpW2RyH9trLLmTbjh106twJvV5PIiETjiXZfuAAkWiTY6ZRY+7ixpuu5dChQ4TDYQYOvLC53GAojlqvZeiwoXh9LgwGHeFIiK+//ppAIPBT3Ql0epH0rHRiYR+tCvIAWLR0Jbl5LcnOy+WhR+7n4OEDxBQ169ZsZNHC75rrCASDqDU65n7xDevW/kgkfIq9vXf8BHIy0hEEFX5fiPLyylPvJBoiFPJhsZia1CZ/GjNtC9uxYd0mXA1errvhJkzOFJ5+9nl27d79k/dfUKvVZGWnk5uXht1u59YRw7GnONHodYSiEVyNdWg0Kmpr62lT3B5FDqNV6xh+y+0EfH7GjB7L88/NIhIJsXfvTrZvWUuPbt0BWLVuNdu27iI1NZVLh17CjTddT9uORbTr0JolyxYDcMGgQRQUFKDX6wkGg2zcuJFAIIDFYmHAReezZdcOcvIL6Nu3P7FomK+/+hKL2cT1117DjTdeR05OFjfffCsnTpQzb948pkyZwqatG/H4msbcRedfTKfOHVi9ZiWJUATfaWPx6OF91DXUkpeTgrtyJxdccQUJxYIia6ivr27OZzKdYrnPhjlz3gdg0KBBFBS0PGueM+eEkyppvxf/7Hz2W+flcyESTdCr/8207TyEi6+4AruzJVpzLm53HJPaRKM/jMGZRY3LS25uLiqVCqfTSV5eHsmEgMXsQK/XAwlMJlPz2pGVlUVO60606dqJG2+6mo/ffwtXYwMXDxnM409OYcOmpTTUNjB1ynQ2b9iMVq3Fnp3C5UP70q93G0QxSF2jH7fXg7uxhvraEjyeBsJhP5FIgGg0iEajobi4iOeef4pZ/3gavcmG1mhi3KQJKJKIw2lGbxB5860X2bh5Gc60bJav2sDI0WMZNeYedmzZRCyZpK62ElkwUFZew1dzv2PUiFFs3rSL4uJiLrl0MIFgIwlZy+Jly/F56xHlJG6/F5fXQxIVjtRsfIFqErKXpOJDrY3RsctFpGYUoAgCoqDBZEklEkuSFBRicgwNBpz2VFQaNYFIgEg0hEFvwulIIxxM4HP7iERlKmu8oLVjs9lwOp1N9rOxGPFkAr8/jt2ZjyLbiEbDZGdaSUvNoK4hRlVFOV6vD2dqJimpFrQ6gfbt21JaWsqiH1fg9YQJh+MMHDCYmrpKrr3hLxw/UcHy5ZspqTjO9j3bSAoJNAYVgVAdgqDm9uH3oNZIyDJ4XT4iwThPPf8iAwcOZP/+/dx1113U1NSQlGKk56Sx+8AegrEIaalZOOzpDBxwAcmEihmP/o2ColaYbDbMBgOuOhdyJEZdvRtJ7yShQFKIs//wQSIxGZ1KjcVixebMoqymkeuvuYqRd9zJwMHnEwuGicfjOJxOZJVIXfVxAkE3CTmJotLxxWdzcdf6ObSvkoZaP1u2bqSwsBh3Y5iDB48ydvQDdOpYhNdbxeg7JzBp0iSSySRlpVV8/dUCsvJymPnEY7zz1ptUlJRw0XmXMmrEaKrKyokE/GjMBiSNxO49+5h4z9+oKG/A2+AlJ6cFHneYhCYdGQmrxURWVhYtizsQlkV8kQQuX5iB5w8hEotQVV2BJKiwmKyUlR5FEmXiySRdOvfEUxulU1FPZCHOpZcNpVuvvugMOjp3c3LpJV04cmgLOo3AiFtuJBZNYDbZ6NC1I2WV1ShC04FPOOhn9usfcHD/RlQJPYm4xIH9h/F4vJSVlZKaZmNg/46oBAFBrSOUjFNeVQWJGPFwiMKiNjwy5a9Y9BqsFjvLN2whHtcj4mTLln2UlVcwavTd/HXyg2gNep58+gnsdjtFRcXcPXY05ZUHsdvSaV3QlhOHS5ny8GPk57XmkUceoV371vTs3QO708GEiZNpdPuZPu1xPnzvY+7767106tia0aNHY7PZCIfDVFdXU1tVxr3j7+Gqy4ehklXMmfMB99//INlZeaSnZXLzLbdgtFqavrdkonl/K4oiKtUpza8z98Bnm19/UZPmHOrHv3bP79X+PNv1e/CHEl5/C35Nvfj/Rciy/H+SkfxP4HS7zj9Kv/+bY/bMZ3Kybtlbjuwt/1ne8vJyPvqoyUtpMuyj85CLmTB9BhuXreP+B8YDkJ+bx8qlC+jQpj0VpSVkZ6QB4PIFKGhdjMvt5tiRY/To0QOVSs3CtbvZtL9JmNTr9WzespU4Art27cZotlFbXUurVkVYzFYcDgcIMnarDUmtxm63AE0TYCwaRaPWIMmn3veJWh/Z2dmoNSr6DehHUpapc3mZ9fnK5jx+f5ijR0u4+eabueiiC7CYLc1pWVnZKLLAsGGXo9fr0Gp0bNywmQ/nfMCSHxfjsNg5tO8gSiLAvn27GNqnLQDfrtlDmy69QBBJKAoqrZG6ehfWlFTWHq5qLl+vs5CIS1gsBgoL0ppti7/6fhnZOS0IJ5scK6k0WhAknpv17KmXIcL3C+bTq08HLDYt0mmhUUrLq1Br9aRmpJHqyAdFhcmsIi678Hl9QFOIikjUTyDiQ5BDDBnc5Kjq+8U/UlpRS3pWOn0G9KRz586IOhNut4/P5n7aXEd1VQWN9Q2MHDuaweffTHn1KeG1sH0bJk+Zyj9eeoLDR/aQndXi1DupqsWalkUUiS/nzW1eqNau28D6pT9ybO8unBYdJqNEvwEDeXbWM6e9qyDRmJ/8gizC4TBGswmDyYjb46FVUWtSU+0IgkDrVkX4/WFWrVrC0sVLuWv0eLRqDddc/ZcmxzqZ6XTp2oEBF17CJRcPAWD9+rVEYnFcLhfJZJSkHKG0vJq33/uAktIyAAb0vAid1s6mTZuQZZnOnTtTW1uLXq+norQKJZ7AW1+KEqnCabcycfw43K56Xn7xBVRqgeEjbmP79u2sWb2e+fPnU1ZWyg8rFwJQVNiGvz8wjffe/Yjiog7Uuxvp2PmUuvI7cz4iUbKb3WsX0/Py2yho15+4Okgo6uGTj5vi63bs2BGj0ci5sH79Og4fPgz8T0dNfyT86mGwIBLWxMkoKCISNrNm+WrMRj27ti2m4tBS7GYjsYSM02LAYDCg0+lIJBJNh3YRF5JKxuPxoNVYcblc2Gw26urqqK2tJRYOYLfpSEpxXIEQI267i5Lj1fTs0Y977plAMpZk7udzCfqDXHf1dXz0xqdoEjIXnj8Qjc1KSqYNUS2gyDIZKenoDVoCQR/79u8BQaa+zoXZbMZqMzF8xE107tKTIZdcxvtz5vDN/G/w+yJoNDoenvI3xo69mzpXNSaLnmf/8QzTpj9Ct24dsNpy2LxmH4GgRGpGHtdedwVzv3iDPn270qp1NrISobioI4Gol6eeewyb3cyGtdtJBoNYNXqSgSgrFi4nJ7sQg95OMqEiHhPxhbW4fWEUUUBJyChSDJPVQjQmkpQNHD20h6qqKuIJFSqNA5slG1ARCgVIKhFUthT0ZgvZWSkQ9ZJING3A1Wo1DocDncGMzWEjFAkgapJYrVbUYhSVSkVqeiFOqxm90UBCUbDbnXi9QeZ9vZCH/z6Ti4ecT3qGE41G5LsF39DgCtO1a1+mTptBWkYG2TmtyG3RCq3ehscXwWnLIyG7efGV6Tzz5BuYsrKxOews+/5r5s19k9WrVzN+/Hh++OEHtFotmVk56PU2Fi1ahd2WS98+gxEEgfRMC7FkHSopSlIQiSdkktEIKSkG4uEG8gpyUFvNqLQadCY1+YX5SGodqS2ySRInGWmgseoQZaXH0Gq1pGXkkN2uNeZUB75gABJJ0lq1RtQb2H/oIEGvm6qKY0x95BGmTpnK+HF3owgeNNqmdXDipLt5881nqa/2kO4o4MV/PIEvUEOr1rnMfHwakyZN4IKLr2Dzln1UV7hZvGAljz79KH/9+4O079aTBYvX0uBJkhAU2rZrTV1dDdu37uP552dx7Ohxjh2pwqhSUXpgHx06daDW6ycZC+N11ZGMhjh6cB/eYAJ3wEPLli1JxkCtUnjn3RcAP5Ji4IH7ZnDbqPG88+UHZGSnctPNt1Bd7aK2oR5vUKZzz/7ktGpDJCmQ6jATDoSRVDoaGuvo0bcHJ0oPc+zobmqrDzNh4r04bFGUaJzy8nJaF+dgsRjJSM8mFpFoCMaoqPTgbwhxfO8+unTrgUpIYjRoEdQ6dA477doUI4cCdG5XyLZNyzm6/zB/n/wwb7z8Bhs376R123YkFRmVXktZWRkTJ0wmLy+bbj3asGX7JhLxMPt37WDMXXfiD3jYvn07sWiSQ8cPc+TEcSKJJLePupvLLz2fw4f3kpOVQWFeIbIss23bNi677DKee+45Kmq83D3hXvYfO0jXvp0YN248Bw8e5rrr/sLUqdP5YfGiJo/KNJlnnNyrndSa+nfitxI0/5fwh5Py/lXbytPvOxtT+L+Jf/XE+1w4G9t2LqHuP22zeq7T9TO94J7879dY0ZNthlMf97nYxd9qQ3WuNv/PdPFn12+1BWt+9qLQbIMq8xsY23/CPvacZZyFZTl94jq9f1arlQmTJvDOe+8QT4AoK5TXVjN/wwrKaptUO68c3Icxo65Fq9HRqkUWXdsUAOCPxHj16w1U1LhQhARbd+zg3QWr+WxbDVaDrrmuDu2K0IoCbdsUcffUl7j/raV88v1GFi1bTjKugKJFq9PzycK1zJ67CoALexQhK/DF3K9pX5BFirnJlvGd5Qf4bulGIgE/OknDlwtXMuLJjwlGTwm4tfWVjBx5O7F4FEnSEIud6m84EOSrL+axZfMmEvEkq1etprGxgeuuv4pevbtz4OABqqpq6NW7N127dmTksL44THriSZkbp71NSV0Ataji7dff4J2PvmTcP+YjnLbQlFaUUlftYtniFfz4w3d0L24S8laXhNlysAy72cmKFYvZd7yMOz6sZMfOHRgMBgA8DXV8+fnXdOjcingoQVQ45YSqsCCX+qp61MSpqzqC11WBRgSTTk9G1imnSxq9gWQijGBuyZ0jbyc1JY1kMsHNI27i67lfkeFwkExE2bxuJc+9+iziaQ6OrDYHoiDyw/dLee6lV0g/LdzKLTdfz0cfzeG+idNRi2aOHzvanLZlzTaIqXDXN3DviNF06dAJgNnvvUyHbu3Ze6gMlU7L8h9X0m9gD/bt34vmJydTer0RrdpByfFaRClJXIGnX3ic4g5tcKansf/AEVCpkdUiklFHvwsvpa6hhguH9EfRyrRtm8f5FwxCqzORRE8iHmXshAm0KixEURRuHXUbmzfvIxRMEooE2bNrB9OffAyAVnmtaZWbzt6dW5kwYQImnRYlHuOZ554iu2U2/S/qyoZVq9i//zg6ZzpzPnyVj774BH8CXn17Nhs2baektJQOndpQW1/NniN7eeiJB6lz1eJ0pPDJh3OZOGEc/Xv3ZNrMabTLyKKoU2cuvfxPACxa8iPjHnkaW0FP0vLaIksCmzdu5ZKLL+HEiSb14gkTJv6P7/t0nHTU5HA4uPLKq86a55fWgl/Dudaqc2nh/McgRBEUSCRFFE2YTj3a4Ism6dCtD3WBIIHqHbgqavGH4nj9PuIhP77aKoSESEpKGolYvImJrKvElp2KyZmGzmDHaFKR8B6koW4PFl0WsWAt19x0KV07d6OgRTplZTX0GnApa9at57z+fchJy2DIkM68/8k3eKNJXPVR5LiAQYqTCPnwBuL4/X4sFjMd2ndBr01BJUkk4nHcLg8GnZHFC+Zy5bCLGDXmVu4afweo4vj9Ctddey8ag4AmHqJVfgEOewZt23fB5Y1TW3WE8y8fSDhaQiyaQNRoMTht2Cx2nnnqBdKc2VRXlYE3RtLvQ6tR6D+wHz53CFFKotIl+GHpj5SWniAQ8BGJhAiFAgiyC0UOoFarkLQGopEqKsoOQCKKzWglqzCf1MwsNBoVkpRAUmKoNVoQBTRiEiEcwNfowmyykkDCbDHi8TaCIKOQJBby0dBwlHCgEaPaTighImtzmzQvggEiCRlFkAhH4xzfV0bIF+HRGdP45MM3WLtuHW/M/oJEUiQzO42WxbnMmDmdvz30MEaDCrXKiFojotEmUasFjh0+QjioIhrRMuHeSQiiBlEts3HTHgKBAKXHqoiE67n1pltAjnBk3z4qThzHVV3LJRecz5wPX+H++x4EMUxqajrhiIzH6yc9J4uEHGXyX2dw66gHAZFAzVH0WjUkBAQljs9XgSouEwt4MeolzhvQkxHDR9LoCtJQXUGsMcbmVRtorK0mGY0TT8bQSGbKD5QQrNnJ6Nsn8vjjf+OBB+/FbDMTS8a4fcR4nn3mdaKxGFFZYMDg89m+azvxeASrWU/Q70UtKTzx+MNs3bKOusoyFi1eiCXDwssvPsHs37kc2AAAIABJREFU155CJcYpLmzNbX+5GTmqUFfbyCuvzmbD8rVkplhwOEzcftsY4kqMwg6t2LljD1lpRrIKc8hoWYDJbGb35i28/c4LpKXaSXHkotOrkAQTbncEUWdEaxaYMGECUlxHhw5dUILwxuzXEUR4ddZbaPR61FoToUASdUzmphEjUeQEagEUWcP8jxbw47eLMZrtZBd0QEMIe3YPjh3ZRqrFgjO3DTE3+GqOEEz6kOIxvPW1vDv7VYwqDYGK/dRUVRKOinh9CUSVFmtOGu5IA2F3BQPP60GXLl14bfbLDLlkIHv3bSERCZKVk4k3FmLfgUN8Pf9LJLWR9LT25OVm8+P3czl/yEDSMlIYOeJ2hLiMWtDjjSeYOeMhtq6Yx1efvM19D9+LSqdm8/Zd3D5mDAOHXskll/+J55+cxqznnsQXlHl+1ivk5eVx2aXD+OCD9/ju28XM+3oB4yaO5q777kZSKahREPm5wPqbopb8ZG8qiAoKZ9FGPS39zDisZ9qsCkgISM12tL8G5YzrXHWfaRP7z0D4vyK4/Roi4YQCp0J+nHwZ/4qg9X+t77IsI0nSv61dZ5Zz+qbi9P9+T1n/bL4zQ9icLaTN2co60wHTuYzHZVkmkUigVqvPmfe31PlLbf934Z95Bj9rx2nZfsVPy2+GLMsIgkBg/j3N//15xkLWH6jhvvvuZ/36daxfvx61JGLUqfAEY835/vrnzowclMNXOyV27K+kRU46AwqivLZwG8sPnmLmLHqJYDRJUoY8p47rz+vEs/M2k23XsPrBTgiShEoUeXrBcV5dUdt8n1Ytodeo8IainHxEhala3h2eR6vcVIKhEHqdnhU1Gdzx3DckflLD1asFFAUiCQWdWuD9Ue254bW9AEy4MJerL+iLp76Mbi1Edh2tYthrJQCsf6Qbdk2ySXXQ0QlFbeLI4SO0SpdRx9zE4jF8Xh/OFCfJZBJRFFlxwM3dc44Q/CmAuF4tIooQjMpY9BLP/KU1d73fFA928wvXYHNkodfpiHsrOHTkAFe/uItwvKlzWpWAWhIJRJOoRHj5hdeY+ezjVFZW8vwdfcjTuOnXpze79+zBnJZL/wfnA7B78w6cdjOGhJfI5ucRxSa1uEgkxsCHF1DREOS5Eb0YdsdT2Fu1RiUZiO37iE0rFnPTM4uahXu9RkIUBYKRBFarlcenz+SeSU0M+8anryDFpOXaWcd47LHHKK8qZezksQCUHyiltLSSGdOeYMiQi2j01fHEi08AcOxAKRpBIR4O8f57b/HVt99xoq6KULgpHI1arUGr1RAIBJAkiVG33snXC+ZR11DPS0+/Ql2Vi7LyE0y+7x5yWxTy2NNTmPVyk1fsnVt2kJnRgrLyEqw2A0lFItjgJi8vjwQKWkGi0R3AarcgaSESjiHqNJSXHOea66+lrLyJYRUFEY1GQyTaFKKnbZu2fPPFQjy+OlrmFxIJhik5Xk5ZWRkLFn/Hp199AsDsp1+ha/ceRJMJenbvzmNPPoPRpGfK9AeAn75vBQTxlLp0i9w8LjpvKJ3adsPraeTqv1yNPTMFlU1FiiKybv433HrvJMrqGpq/A4PBQCwW+5lWyaRJ9/LEE0+e87v2+/0UFOQRCoUYO3Yczz33/FnznRQwJUn6p+ej36KO9t/Bzzc/c159lauHDiEtP5/9B48SaNhFblFbkFLQGQTCniQ2u0hSkImF1AhInDhRQsuWrYh4q7DYUjlytJS2ndpScWQrqVmtEdR2Ar4gtV4fn7z9KfdNvo1Dx47z7XdbObhnO8ePHWbpshV4vBUEAjKHDh9lzpw5zH7jBXIzLU3xgg0pBIIuzBYdVZW16HUWbHYrgUAAURTxeDzEo0E0Oh0qjZrjJSfo0K47VRXVmAxm1HovZYfqyMzIwpFmpaK2jOz0lmzZsZ1efXrjbqxBrTJit2Wwa9cuigqyeeXVl7j++qspaNmCmroTGHROZFkPUpJjJbtoVzyYvXtLKGqfRzjsx2Kx4PF4EEURnbpps6/S6NHqTCSiHqLROPF4HLvNSVIR8XgbUUkawuEwaqFpzOt0uqZ1WAG3z4XBaKaqxo3dYUSSJHQ6HVqtlmgwjsUq0Njgwmp0UBeIoFVr0KjjaAQnCTHS7G1WDiZwB/1EklHkSIT581Zyy603gqqeBybP4L1336S0pJqcnDw83mrUeg1qtZpgIILVksbePbsRBIHx90zg9dffpq6ymnad7Tw182UaqoO88PqbHC/dzuoVu7j1tutZt2YJgwYNwmAwEQ5HkZMija4gaVng94WprvSRmpHBBx++xwOTJ6DRmgmFIhgMGsIRP2qNCMg0NDSSlpZGPC4QSzTFmdbrTLjrgoRCIfQGCY3ahM/fQGqaDXejj/TMDDyuICqVBrUqgj8Yod5VTmF+V2655Rbee/c1une5iLVrNqMIPg6XHqF/3z7M/fJTzhswAElnxut1k5GZgk6no9ETwGZN4dtvv+XKqy6nvqYUpyODgC9OeXk1d40Zy003X8+HH37I8NtG4q6tY/rjD1JVW8O8eYu4+pYr0Qgx7EYjDdX1hBNqsorziYWC1JdXkJWVQzAYxOPxkJWVxe492xBENR27doOYCkEJoshhZJWJVUsWkp2di05r5PGZz/LSmy+j1WoJ+L3s37ebvPyOfPjhB0yYMIZEIkpjbSOiRsGZmkIiISInYyhJCb87SCQU4bqRw/nirY8QhTpaduhFPO6nqrIGSVJRUFBIVekhrLYUtHoTHp+ftEwHoUgEDSImSUNVXT2CFOKlf7zPVcNG8MiUiYwcfTeti1szdcYUclIyueKKK3A4HHz44Yfcc+94TFoVC39cyiWXXYjZlMKfLr+St956E0uGA1UsSv9u3bhr0mT6nXcZc957n9rqasLBEBX15Vxz5TD69+qKJxBm1PiJvPbiK3Tp0J7tW7dgsVhQaw1s272d8ZPGYHDakCTpnIeLJ0mHf9t+VjmtvJ8EypPkhiSqf17XrwicZ7bo17arWp3hn97R/mGY13+VcT1beafjl8r9bzncOWmv+VtxNkH0zPt/S/rZWcXfh3Ppsp/r/f3ac/8tOFnuybAgv9aXf4e+/b+C31Lvf9oO+3R73qb2wJlTjlqtZuHCH5j20F8pzLISTchYDBoGdsji4wcv5oHre5KWkUVpRSP1jQ14w0lKymt4cGgW4y/KoU2WCa1KQJYVitO13H9xKl+OykMfPdHUR0VBTHjRyAGUmJsRfS08c00mV3QyU5yhQ69SCISjWHUSvQsMPPqnNBaOy6bAKaJE3BjEGELMS39HOe+NaMEFbW1YdCJJGRxGiWu7mlk4Lp9emdHmPnXJUVForKalxYMSbSTFfMp2hKgPkyZOMtRAoGQNQu16nIlDSMFylEgjqqQfp0mEqBtVwg9RN+cXqlh0X2f+1NFEmllFUpax6ESu72Hlh/EF5JlP1e2Il6Ju2IxYtwnRe5g2thAL7mnJ5R1MOAwSsqJg1AoM62Thk8kXkJuV0zwOEokkXbt1QRFEioqKCQdPxSIFmXg8TjSaIBAIEYsnkBUBrz/QnKO0pIy/TvwrKpUGUdAiCAJ92mawaMZQ/jKgJRk2PUlZwWrQcOOFnVmzYjVFRUXN91uNGgIBPzNnzqBFixxSUlKb07Zs3UxqaiqZWWls2ryRjMzs5jS3201tTR1atY4LL7+Y5StWY9c56d29Fw67A1mW0Wk1/HnYlfwwbwmumvrm7zgWjzN23BiefmYmWVlZ6FQaAqf1KZ6II0kSWVlZpKSkYDKaObD/IB99+DGyrFBWWsnllw1jyZJFKEock9GOyWSmuKiYTavXMG7UGNq1bYtWp0WtUdOhXXumPzKdTz/8CLtDQ35hSyKxKOXl5WzauJWnnnwWk8lyWv0yx44cZ/ojj7Js5Tr69+3HxtVruO2GEXTu0JkURwqSSsJmtdGvT3/+dt8UPpszl6mPPEKrgnxGjr6DtEw7Rq1M+fI13HP1lRw6sI35P37Aa6+8yEUXXfjTxjeOSqWioKCAG2+8kaVLl/2i4ArwxRefN8ervf32O86ZTxCE5nXn1+accx0G/lLZ/xvz7JDLBvL9gtfZsf4bRMVDy+xMjh9Yg02XRIjpsFryCcfMiFjQaJqEnNzcXAKBAIocQ0SmsLAldXV1mM1OZFGDLxxEo9OSnpFCr1492bp1KwaDEY1a4KEp09DozOzft4dgMMn5Fw6gouwo0x9+mL07NrNxyw6CkSTBYBBZhoqKSjKz0pFUIo2NjUQiEYLBJmdRWqOBuro63nnrbYoLWyMAxUUticYqqausJa+gFds3r8brKic3x0E4FCMYiJGU4xgMTUKy1+figzkfE07EuHPMaDJys4gpcTw+Ga0ui2uuHMW0vz9Lfn5LZs9+i+8XLsHtdmOxND2P9PR0nE4nGrWJ5E/nJSdOHENSmdDqTai1WkKxANXV9VgsRowmHTZbChqNhmQySTweb+6PRqNBo9GQlZWF1WrFZDKh0+mQZRmj2U44DJJKTxKFFLsGnV4AwUxSFSKRSBAIBAgGg6CKY7brSUtLIy0tl5f+8TLRSID77x/PSy/OYtasWRw/cZiy8iP4Ax4UOYHPEwBZzaQJ93Li2AksZj2zZj3N2tXr2LxuK3azhT179nDJ0GE8/fQT6A0aBg0ajE5n5Oprr6OuoR5fwEu9qxqDsalvwUCc2hoPVouDoRddQL8ePTh46ATRqBsI8fjMmcx+5V0kQcW+vbswG03UVDbQ2NhI6Yk6vO4IkXCCsopSHr5/ErFEFKNJjVYn4vN5yMzMREjKRKIhbA4rMUVNbossOnXqgEql4tNPP0Wjj7B+87dEk2WYrAmeevIZ4okwN9xwA057DnJCi91uJ6NFLgF/BDkpIogKl/9pKB53AKs1la7detHQ6GLcPffQtUsXWrdqSdviNqxcsZwJ947D4wsQCIcYOeY2nHYzRoOFhvpGGr0NJGIRGsorkESF1JwMFBJotBJzv/ochCQFLXNp3boVoqBDozFQXVNGeeUhJJXAeQN7YrNoyUiz88xTM9CotAiAyWKi18A+ONLSWbR0CYFAAKvRQG5BFjktMkkqMmabE0SBP19zA9u2HyIag25dujBj2lQkUURApqSinKy8XJwZaYTjMRC0WK12fB4Xkpiksa4BjaRBVkS++vY7wqEEkkrglltuQpIk3nrzNTp3akMsFuP1V96hS+eODDpvAC0L8vj8i0/44ou5GPQmBg0axJIlS6ioqCA7OxubzcamFevZtX0Xcz79hFtuG47BnMDlOcHURycx56OXGTdmFIcPH6ZVm/aQiPL41GnMevYZDu7fw6Dz+rFv9w5e+scLZGdnYbA2mYOczX/Pyfn0XGZxJ/f5Z5MPznZA+UsywNm80/9fwR+GeQ2HmuiJk4vtScn/97b/n2HlTg6U/w1B55dwZrvO/H26wAi/LBz/2inOv/s5/7Pl/17W9N9Z938K51JVPrPe38O8/to4P1OF+Fxj6fTyRFFETArERAEhFmLRZ5+wZ9dmOnQfwKLvF9GjYzsuvfpmJJ0Jn9eF02LizjtvJy2lgMmTJzPt0Ycpr6nAU1dFp649ufRPV7Bl02YenTmND998nfMGDGXtpkUMHnwZ2XktSEbD3P/AZF599WVWrV3FgAH9iMRlykqryEl3cH7fS+nao4C+/buhUdn44vtVXHLRpXTp2J7iVrmsXb0ca1oLsrJyqK84itmZRsAfZ8Xy1UyYeDfu+gZUegmjxczTz77ItvVbeebZJ4lEAqRnpKKRJIwmPXq9ljvuuINAMMkF5w/lHy8+y1dff8akSQ9zz5jh9B88EGdaGgcPHKcgvw0h9xG+/Pp9Hv3Hm7TIbcFFA/7EA5PvAUVDeXkVzhQL69euoXv33uzetYcevTqQnptDOBzCaGxiKTTqBJvX7eK7hYt4cPpDbFq3gUcffIT58+ZS4y7HmZaHoMTRa3UE/VE2rNrMirUreWjqFEKJGFkOK2o5wddzv6BH356Y7CbsljzcvhNYzA40BgskZbRqDaFgkOqaOlJSUkgkEnz65Wc8NG0KOdk5/DjvB+orq+nQpTPjxo1n7N0TqK9voGPnAtRqLSUn/j/23jvMqiJr+/7tfHLs0znSNDkHSYIoShIwoIKAoo4BFeOI46hjznkUxzBjGhUxDYoJlaQgooAikkMDTXfTufvkuPd+/2hxFEVRx3m+53vfdV3nus45u3ZV7VCratV9r7X2s2XTZsaMGYPFYuOZZ57hzTffY9r0qUybcTqXXXYp5148jS4dBxALZnjg/tu46darsVn9bNryKSVF3Xnwobmcc9bpOF1WohmD2eddwiNz78HhUhAFBbs9h9bgPpoaEpR2CKBYXGTSAvUN+8nJ9SGINhKt7XkIO3XrSktdC599/jknnDyeyn1baNyfZvDIQSSjQZrq9tO9e1dq6qsRJQsOm5/6qt3k5RWyddtX2J0iuf5yXl/wJrl5+ZSVVVBVVUVOTg6GYfD3J5/iggsuQJFlgsEgt991J7ffcC1rVn2M25vLynWrmTJlCna7nRUrVjB2wkRaWlqQJInS0lKef+Zpzjz3TDLxVlItTaxbtZKUCief8QdQs0imk8iSAIaOiIHxzc73L5VfojcPsH5+ij3zW/TvwUFF/nPxCL5fT0YXEPQQH/3rWezJKEUVuZimgWDNQrK7cGd1J0OGZLiNlCHi9fhRVQ1BkGgKNiOJCj6nl6qqrSimjmh14/TlIokQz8SQ4g5GHzuUp599BbsqMe3sc3ny8cexkMCbX4BpRrGpGs/8/XnGjB9CdmkpFpsLMWOQiKcxiBKJhBGQURQrNpsNVVXRNI26xkb0dIZkNIbP4yWhx8j259LUsg2XVkJLsJVrLz2Hq6+bw5a9exg7+ixq6hopLPOyffMeOnQsQNMkWpojXDL7Sv722Fz8WS5isRCKZiMRb0NGYPVHX1JQ2p1/vfkKw486krKOFZhmGqfTiaZphMNhbIoVSZFJ6SkyRhqH005LcyterxdRlImGUjQ07yLLn00iJmNRMjidTgRBoKqqipKiYlJ6AhMRWXVikkQURTKZTHuObsWKYIqgG4iY1DdvwW73Y7GWoMsNxNsMHA4HgiBQt2sznuw80mmF++54iAtnz+Dxvz3PlVddgMWisWz1lwwefAQOZzuq21BVw2er1zNs6HBSmTBfrv2SkrIscnNzmXrq+Tzz9N+57oY5PPjQ8wiWFEomjaRGCbdaeOPN1xkzYRIjRgxn9WcrWbp0Mf37deHvjy1g6umTWfv5Vk46dTSrlr3HqFFHs+DdxYwbOxhMEVX28dabi7E5JMaMO5JUQuCaq2/lksvO4fSp51BeXs5jjz+My+dGSkYQHA5SyRiqJiIgkUlLZESRZDxMVsBLa3MTWe5y6hsrcbtyiURbcfmtJOMGzc2t5Ofn0tIcJRCwUVtdy6knnsMLLz6LzWFit9s55qiTuOzKSzjm2GG0tbVx790Pc8NttxGNBSkuKcDjcdGwpw5ZMWhsbOahBx9FUmWOGzOaUWOPRZJMksEWBNmNarMhSCYyOuG2ViKhVjweDzang1AohKqq3/qTq5qNYDTWnpYq3EokFKZD164IZgpZljFNk2AwCKZEWjfwBrLJIKBoMslwFKdm5Zkn/8GZ554Lok6GDIJgI5OOEg5CPBTF65ORbSpXnHMh5/5hElklncnKzsGi2dB1A1GUqa/cSms0Ts8BA0lkdN59eSETTplIQ1MNuT4fgimy4astdOnShRdf/CfTZ8ykrrGOBx54nKuvvoloaC9ut5v33nuP6dOnY6KTDIcwJZnG5iYk0UZNdR2lpSW8+vxL9O7fi7zi3HaacV42qUSSxvp69lTuxtTTLPvkM84880xaa3eTV1yBTbMw78XnuGjWBQwaOJAjho3kzofupagin4zx42kff2oNd+D3AcT04DXdgfMOsDy/W8/36MDf2FcHdL74nbzy3z1+KPlvIK/STTfd9EvP+R+RTNq46cD39ofw24zug3eF/6cNmEO1+WPt/hTt98dQzW9fwG8WDQdf+4/5J/0U9fb3vBeHQma/a4j/FErwY9f2a/v8U8rhcOr7pe2KCAh8QzVE+OGIF/79Eczv/UQATMPgAID6TU3ffOfbur6ryA51Xd999ge/B98uPAUTERNEiY69+9BaX0VOIJ8xk08nv89gPln0Pj37l6MrEpori+OPH09px2JsDo38onx2fL2N3PwCkskYu3ZuYfXKT3l34dvs2bMPQTLp06c3iixwy413sGP7Drp17cG7b79PfW0Te3ZXsWPrDrL9WdjtLjqXZCOqNir31jLnqksYNW4iy5evYvSYMVg0+HrjV7z/3oecNvV07H4PtVX7sVpcBAI52O1WMrrJWTPPZeaMs7n3rnsozs9nz77dbN71KdPPPI80Bq1JEU0GvXUbF136F8o7dmP7zh2MGj2KnTv289HKleRl+3HaLbwyfwEfLVtCoMDKA0+8QHNLE8eOHMUl51/JRRfPIDsrl+efeY5ePYro0bsHoqBx/31zef+Ddxg0YDCGKpNjg8svvI6RY0aTX1TIkGGD+XTlKrr27MqMmdNpDgbp2rkfC9/4F30GDkRzOvF5PBQWF3DCSRMw9ARCJgFGCkWTKKsox+vzoVhdWB0aCCoWm4OmphaiLUFsThNBDWCKOg63Cx2TK67+I83NzUw++RRGHn0MpRUd2Lu7ikljx3DzbTcxefp0GvfXYbO5OOfs82hsqWLY8CGsXLmCpcuWM2HCKbz82lOccto0uvXsSXGHIjIJkYF9B/Pi6y+w5vNVJPUIBcUVaBY3Lpcbf3Yu23bspHv3rkw+7TS8Pj+ppE4sFiXUFiOQX4jD60AxNd54+1UScZ2y8gLScTu7d+xCEAwUWWXecy/TqUshKz/5hCFDh2AK8Obr8/F7nHj8HvILCwhH4kiyHVOwkNJNQpEGLBaVgC8HWbSxr6aSgoJSysrKuOaavzBxwgm8+OLLLHj9LaadM4OOFRWYusmm9ZtY+OY7DBk+kLZYKw/89TFmz76QgoICfHnZDBw2hJQYorioIwF/NolYPbleSOsmomEw/2930eekMxk6ajxIGoaZ+TYPnyCKmMKvD9BxuPrnp8sZfN+D6efq/PHyh9LtB+uy9oXRwV5TP9X+9zWhJIkgqlT0GYaS15mn5z5GQW4hkXAjrkAejbVfY1VSiLZsNM2BQ1Wo3rWDSCJKwFNAIhoDM43VZmXTuqV079EfQVTQU3GEcIhMKszAISNYv3kHG77+hDWffUqP7r1Y+el6+g4fiiSLJBJBDDNEl/JemBYNq6qx/K1F/O2fL9Cn32BSSYHsQCG79nxFIK8CUdbYu+0LfM4CbrnlDsZMmEhrJEEqtJ/p087j1GmnI2pW5s2fx7Tpk+jYuROq1YUsCkTj1eh6kqKCUiLhKDX7G7C5nEw+bQYpowF0ARU3LYkI77+3Cp/PTiwcw5mdw/kXXsqfr70Zv89LKpZCFnVsFo1kPIlhmIRDIfS0icPiRtYT2NxeMmaGdKwVm1NBkgRsVjcWzUEmHUOz6tQ17MXv89HS2ITD6UNHQTcMUrEYmplEFnRCwRYyCZHWlgZMI4mqCaiyk5p9Dfi9VrZ+vRG/x4cpCTTtb8Dly8Zmc/LoX+fS2tLMkKOOY8SR/dlVuY3CThWUVXRClBTi4QTLPviQbH+Azz79HFEAh91Clx49qNlfgz87wNhx44nG02RMiU2bNvPM06/z/qIPmTDxeGrqKtm3r4mcHDcdSnvQu09fCkr8BPzFDBjUn89Xf05bsJHhI4eSTBvk5uVQXuInUNwTxSaRSkNF516ce86FbN+xA4/Py/MvPM+cG27gqKMHc/kVs4lGYlgdFvbW7sHvC1Bf14TD7kEU21kAyXgQSZQR0AiFw2QyMjoGkpohkUyjh2vp22sE8156l9PPPBOvTcUwMyTTKU6cfAqay0nAV0xNZRVffb6MKadMIiu/gCf/8TID+gyjd6+OpJNBigvyMNMSoltFtoo4HE487mzWf7aOjZu+YsqUk4jFg1hdbjRNIh4KoqfSqFaBaDyCw+kEQLHbMU2wqBbS6QyipNPcUk08EiYcbuXOOx7ntVeXEAhYUK0ipqATCobwOnPYu6uZxUvfpXvPMgRBxkgnEEydRCJGWccy0kKCZDqFRXOgyDKSbGC3WnjwwfvoWF6E02tnzPHHo0sWDDNBQ00zfp9EW10UwUiSScQoK+vA9l2V+H0+uvToRDSaxO8LEElEWLvmKwYPHcKESRO54aabcXkdyDY3w4cexaXnnUuvAUPYvnUbfQcOxubOZv26xRSXFVJXX4PDl4WiaKz6eBVGIs4D997DuBOOp6Asn2DjXuqqtnPCxLHk5ObTEkwQSyaZetIYVDPK519uoTmUYOXyJWBm6D1gAEs/W0N1fQOXXzkHUWpf//2YXv7uf4cK9CkIAgISpgkCInCAXfcdAPAgPXwAEfn3d6H9XFP4xi/28IOuHLw2/YGY7X0yTcAUkBXl5p+t9CD532u8/paoNf9L5FALip9LIv9jcrDx+mvb/r2N+J8yxr/7+7/Zv5/r06HkYOT7Z9s5eJj/xGkHHzo48NIP2hQO8f9PyMGo/aEUqSiKdOvdj9aWFoRkGJsQp9PwIci6CyMYhWgrSUHE900etCWLF6NZZQYNGkx+XiGCqdDa2sIRRxzB7t276de/Nxu+/pKBAwdwxhlnUlFRwbJlSzn77LOort7HmTPPZMOGDaTTaebPn4/f52LEyOEEvDYWvzWfeCzMzGmn8ehjj9F30FEM6D0Ef6CA++59hAfuf4SjRgyjbn8DqVSce+69g9dfW4DP5/uWCnTfX+dy5JHD6VxRhmI4eGfhYl5+4RVGDB5A/b4dzH1yHm++uZCHH3mYY0aPonOPUtZ/uZ6RRx5Nfl4hAwYO4alnn+ahx+fS0NSApmk8et+TVFXt5oILZrHxwUnvAAAgAElEQVRw4SJ2ba+kd6/eZGUHqKmpY+bMmaxa/RGTThhHbX2cUH0bd917M6F4nN69e7N27Vp0Xadn937IooLdolFds4PcQC7ZeTkYeoY1n37Ke+8uolPnToRCQSwWDUHUMQFFcZBKmcha+663pmm8MO9FVqxcgc3qRNbAYfcjiCafff4ZF15yEV9v/BpN07j5+lt46sl/MnzY0STiQULhJiZOmoSqqKQScfz+LGRZ5cyZZ5CfV0ggkMOJJ55EeUmAUcccgc3q4Ia/3MSkcSexZ9dGTp08imBbmN79h2CkMqQjQcRkitx8F5KQ4cu1aykv7YApZ5Blge3bNlNYkEd9XTV2lwsRlXgwTsfOFRTmlSNJBjVVLdxy67Ucd+zRWK0qd991F3849ywqOnVBs6jYnVaGDx1GTm4OaT1DW1sbMgaaRUWWBUTZoLGuheKiAurr9lHfWEPHjj2pqqqhoDCHvv16ceyxR7Pis4+47JLZPPjgw4wfM5bTp05lwKABXHvdn9m1exu9endnwIDBHDNxDE6fB6vdBpKAxeZEE2Vu/PMfibZUketuJNOyjddf/Sfn/ulmCjt0O2h8/bSeO1z5Jcbrocv+0n30X1j+B8V/bm7/ebryAd3ldDo5buwEREViwRtvUJJtJRlpoa2lHr/bgeopQpJUFNlKW6gNh9uDatFIpdOoFguSmUKz+ciYMhZNIi1o7K5pRLM6CHi99OnVk1GjjmPWrAuxWjUeePCvHHPUSCyKlYsumI1uwrCRI9m+dTvF+UVs3rSdl557muOOGUJb0z6ikSBFxWWkMiZ2rxdZlenRszMBrw2rqmNa/JR16IzToZJJGezYvoO8nDwc9gBrPt9Mj55dycnNIRpNksmkkWUJi9WG15eNqctoikEsmiSejON1qKRjBi63i117a+lQ3IFLLz6XD955lW5dO3LnnfcRi4fwej24XG4U1QqCjm4mUC0GmVSEeMZAkjXIQHVNLaqqYRgmhi6RTmeor28kL68Ei+ZCsTlJp1KkEmHsFgWdNM1NtSQSUZweL+Fkhuy8HDSbBUMQsdhd+AP5pPQM2Xl5iJIFxWIHU0bQNf7x1LOc8YdzGHHcMShSBofDRlYgB1NQwExRU1VDjj+PvNwcEmmDl15egDcrm159exOPx3ng/gcYO2YCF198GVOnncKRRw6gZ+cyTplwHKWdurJ56wb69OlDUVEZBUV5NDS3sn7jeoYMH4yhm6SSKfburaJ3r9543SblHTtiSCKKzcba1Rtw2Jw0NYb583W3cPbMqYiSSI/uvfl6w1aG9u+B3+sglojgz/ajyjLRaARBlPDlZLdHJ7bbiMRjKIqNTFokHklj0Sw0NFaRm+MjGGzFoml4An5GHDWKYFsTI0f0I5WpRSdNKqkwYMCxXHz+qfTv24+16zdwz18fJpEOkVdYwBOPP87rr82nV69+dKwoo7WtCcNMIikCmqrS0hSmpLgTI44bzqChQ5FUKx5fDs3N9VhVG9FwDLvNiSCYqLKKxWZDVlT211fjsFuJhIJYLCqSbMVEID+vBEPXmDDpOMZPHEmWv5CvPvuU7Owccgvy0SWV0pJiyjsVY5DCqllQBLl9410ScbndiLKCpmlIokQ0GiWjp1BlhaFDBuOwWzFEE6tmw2azUlu7l3QwSXnnDgSjOq5sNxnDoL6pHlNPoko6Hm82mmpF19NYLAqFZR344qv1XHblFUTiMSQxhSAIrP9iCys//pwlH7zNeWfPZN68eTz04MOcd9aVOGxZBNsS2J12MukMvXt1JZlq5chR48kuLCCQnU0snqRbj+H06D6YHdv2EGoOsfCtBUw7/TQWvr2Q06edzR133s0xRw3H43GRV1LK6tWfse6LLzl92jTcXscP1NyPrcF+Ur+bwveCmP4s4Gf+cM75dr39H3cw/X6/f43x+r+GNnxwwCZBNH8TlffXBs35b8sB6P/XyoFzD7zAhxtk48foor9FDkXHPlz69uFSfn/LYu/ngk39XvItqnnQgP6pCMQH1nepVAqLxfID34iDKeKHQzM+QCVJJpOoqvq9vv3cPciYIjJJgjV7+Xz5UkrLupOT1wHTb6M5E8ar2xARUCWZPXv24M9yEwslqN5dTSwc4/obr2XixIlkZ2czZMQQOnbsxPbt27n1thu57877eeKJJ+jVqxdlZWVIsoxhGJSVlfHqq69Ss3cPsiYzfcokdm1azcJ3FnHipInkd+jK+NNm8dADt9G1a2fmvfASJ55wGksWr+SYo0cx/+UXuWDWWVx+6bWMGTOGDRs2UFdXxynTpnHrjTfx5z/NYuvX9eQV5LJ8+cf06t4Bj8Ng5gVXUd/UyNhxx3PqjNN46vnHv71HIiKCJHwbXEeRZR64Yy6vvPgvhgzrxTl/uICHH57L0sXLsVst3H3vzXTq1BlJVEim4ggCbNsTpNRrY2/tRsq69cXr9dLY2IjL5aJyVzVfrv2CLL+Dik7ZxEI6vQb04+vNm7BKCnl5JfizfOh6mng8SjgaIplMk5ubj0WzEU2Gqa+vx+/3M/exv3H7XXd+23e3y00sHiOVag/KpaoqV19+JdOnnEnv/gN5/ql5+Pwa/Qf2Yc/uajIpgyeffJyuXbvzxoK3ufPOO+narTPz5s2jrKyEYFMtw4/uTyJhxe7womo2Nq5fSYcOuTjdRYTiEtV7t+N3y3yx+nOGjBrK/toGcnIKEAUZXW1PkyQLMoqkoqfCVNWGqG8IcftfruXlN+aDaeGzNUtYvnQtsy+7kKq9Oygv68jObXsoKMzCMGX2VO2me+8uZOI6VpsNUVPa/ddamzHQ8Wb52w3a5hipRJjyskLS6STbdzRQXFTKxs3ryAlkI0kSTqebrVt28OwzLzF79kU8+tgjXPPnqygoLUZRZHQ9jSyrmEr7eJG+GYdiJsPaVavQY210rSjgpafuwWV3MHzMVPL6T0Ag/e14M00T8Ruw9XDH36+VH9vU/KEePHj++bmVzPfLm6bwky4rB3TZgePmz0af/On+Gka7D7imtUch15FQhASakWT1onls276FPj260Fi7nbL+48nJKycYMamq2kNRWRHpdBpVtZBJG9jkFDZPAdG4DukoFrudlnCGyy6dw3V/vIxUMolpmmRleZEVkRtuuIO5Dz/C9u3b2bJpE7379WbWxRfxxBNPMH3q6az59BN27viaLL+DcKSZwpIu1OyvxpWdj9Wdg2qECLW14rLZEDCoC0ooCLhdIrf85V6uvm4O73/wDn269+atBQuZMn0SimojGAmSm5tPJmOQSKfx+gPoiQzJTDOy5EYQTSq3fU0m4yKVjnL6tGm8+uoCZL0RSTbo0GUAmYwFh1NGkkTa2sLY3T4EQaexqRa3x0ZTdRWB4s6EIylyPB7CsTgIaRTZgihYEESdeCz9rU9rOBpCJIaZSRJsjmHNspPjcdLSFkRRrVjsHgzjgF+dSCqVIpU0CYfbKCktIJXQSUQSPPjww1wx+3Kqa2tQrBa27dxBp5IAoqRQXFyKJEImEwLTxYLXF3HsmBEceeRw7rj9Pu6//wHiiRAvvfQUmDIdOnQADAzJRJUyNFVXs3vHXh7752s8/cwTpFLtQdtSyTiRaJpIIkV+fh6CqCMKMm2Nrcyd+ygzZoyhtLQ7ouIERWD3hs3UN7cQS8JZM8/jg3df4Zabb6euro5Bgwbxx0vPI6lHKCwto3J3FQGvm7ZQFJfXh83poLm5Gb/fjyRJxNNNCKaEJlrYu2cHubl5hENxHHY3pikQirRhsVhxOR3Eo628/eYqxowfze6qrXTqVoJDstDYGCVlavhzssmkWrDIKvFolCf/8Q+ScZW//+NvrPviE3QzxtcbtpCf34H8/GJaWtuwuFRuuP5GHp37GBZFJRxvJRVP0VzfTGNjMz17VYAo4PC6MUwTWTYItbaRjMaxWq2kdZmsgJdYNIks2dHNMKaQoKXB5I4br+f2u27Gk+MjhUyooRmny4bbZWPjxo2kYzolZWUk9TSqzYrN4iSVSnwT3EprDy4HyKKEYAqgCUTa4thtFhYufJlupT0QNZHsgs4ojhSpcApR0NHTCfbX1ZCdU4bPm4OiSLS2NZAWBDweD+l0u/5NxYIkInGGDRvPRx+txePMsP7zzzFQqW0KMWBgH95btJATTzqehtpGyssrePedtxgyrDc2dxE7t++gpKiY7NwAra2tdO7Wia/XrKWuuormtjQDjujPqlUrGXzEMKZNm8YJx4+lW4/uNIXjvPbqK5iGyJp1a3n5tecZcOSgb/Xm4cTD+YE+NA8Cq35Or5o/dB38lrUpHaKNXysHtWWxWf9/TBvOfB95FYSfj3Z4OPI/QQf+JfJb/IwOoHEHB0r6Lcjrf1J+1K/zNyKq/w3k9feSg5HXn3rq3y2ZTCa/l7QafuTeHsYlHHjPNE37gTH8c/dANDOkJQnF6ae0ohd1VRup2rmSwtwCbEo+Oulvu+Bxu9FRcNitWFSJ+fOf46KLL2X37t2sXr2adV99zXvvLaVHj76cP+s8XHYbjY0N5ObmEA6HWLxkKY888ghDhw6lY8eOjB01jieeeZ69NU2cOuUM1n62nto9G/B6FK6/+Sb6Dx6Fw24nPzefgCePgqIi/vGPp9i06Su69+gIhsayZcsYN24cc+bMoTDXw6L3F3H1dZfjzy7htnuuYc6cKzl2zBiWrlzNNX+6hs/Xfcrjj/8dUHG7XYTDIWxWC4lUEkVR0BQVBSsP3XsD48cej6bZKCnNpkOnCnLzsxk4sB+ffLKaL75YQ25uDk3N9cTjCbJ8pUycPIFxx/bjnHMuZsJJJ+JwOEin07S1taGn4yz+YBk9e/SkV48KcrJz+Xjlx3Tp3JmWhgbKyjsRi8fIZNKEQkG2bNtHeceOqBaB1lADmXT7BkVzczMVFRVImBhI6HqacCSCIiuUlpYyfux4/nr/Q/TrMRCb1cqlF19MUVEuTzz+LEUdOuCwetjy1TZOnDyRiopOrFyxioaGZvJy83jn7Xeob9jP+OMnk1+SRwaZ5Ss+xuoRKCnqRDQikTASNNc38dDc+xk2cjhZBYV4vHn4A7lYnVbCsRDZ2QVIgkY4GGfp4pU01tWxfPka5r34Eo/NvZOG5gacDgeCGOXYUaORZQcWTeOkE05h4vEnMmHiGC655HIKCgvIGClUUSORTCJIEqlUGklXyA7k0tTUhM/nw0QnnUxhUa1s/HoL2fn5jBt/AlOmTMPv8dLWGuTuu++jY3kXzp5xFrMvmc2d99xGbmE2FoeGIInIikY7y9dANE0kwyAZjrB++fuosoHf5+SjTz7Fn1XM5Auvx1JQjqKkMA2FdhqViWnCARLFr2HZ/FL5+XnhtyGvovjTEfR/UNthIq8/NVd8N3qyiI6p2DCxklXak/7DxnPXHXdS4tWJ1H/N3t07yCvtSG5hHrV7tpKKRzAzCbI8btJIpHQZi2ZHMBO07duM3eVj5LHjyPF72bd3PwMG9ENRTWpq9zL5hIm8/dY7bNq4ibl/e5LX/rWA/v0GMKD/EUybcSbJdIit27aiGwIeXzaqKw+nTaS5aT9Op49wUzUOh4fWcIK0rvCPRx5k3drV2OxWRoyYgGZR0ZxWKsoLGdi3G76An7VrNvLZmjWosofFi5cw4Ih+pI0o6XgLwVAzbnchuqngyQ6wdWstWT4PxQVejh4/hkyijngsjj+vN2s+X02XLh3R9QzJZIqknkaUZOwON4JgwSrLBKNxXB4nmVQYUbAjCCZ1dXW43G4MIYksW5EVBVE2sIlgECMcjVFQ3B2Lw0pLQzNZvjw0q49gUz2xcBSXzYVoishiBk1SaKyvRiSDmUyyed0XHDGwP7ocJuD3sPmrzcyYNoO/XH8jVpeXhqZGAh6F2ppd6CmZSSdM4bLLZ/PcPx5n3OjRFOXncc9dt5KVa8fvz0LVFDJGhNamIMlECrs7m+agwZQZp2CYIMkygmyyb/suHrzvPm675U6Wf7iS08+aSjqZRtUsjDruOESLHbczl6mnTuOpx57grOmTqejcjZWrVrPs42V8vPQjDF1kw7Z1LFjwAqbmJLcgl3RCp7kxiMcpM/+VhQwYPJjF775H544V7NlVScDnx1A1FNGFbFrZvH4zDodCc2OIbH8xgwYOYfTIEeTk5oAkIVpc+JweVq1aQ48efQkEsqmt34/LnYXL7cY0ElTXtxEPRQn4PJR0KOWoo4ZzwfkXocgqW7du4rG/PkVxYRlFpflk5VjJ8uYQbG3AbZOxaTqyxcWGr76mtbmNXbsqycnykZWTgy4IpE2TZDRNJBTn7YXvccTAIYiayP76alxuN/FEDIvVgSRZqNy7lekzz8PqtJFMp9BTOorFiixr6Elw2p288PSzdOzSGX9uNoYokE4aqKpKPBFBlttTtagq7N+/D5vViSEYaIqV+vo6+vXriSGpZOfmcczI8Uw+6Thq9lSRFcjD4vCiOv3Ihk4mpdNQX4fdppFJpVi/bh35OTkooojF4kQizcWXzkYXBWQtQzDYSkNbkHsf+isXXzSLdFqnoaEVmwxvv/0uvXsPQJQ0/AEXLfX7qd61E0QTMQnTT53GhRddxuln/oGl739I7wEDefqfLyAYBmNGHUN11R6OGDqUCy69AiGT4fbb7uDdRYu47NKLsbkdv3HNftC5v4LRcjDy+p+bi/4vQl4PBGwCvhew6ZfKgV2Mn8pz+t2yB597cJn/hPxalPPndkF+T3/V3/reHExz/bH6v4sKHG4/Duf6Dhd1P9jP8z8vP41o/BCR+OGxA/JbU+d891pjsRjRaBSfz/ctLfjnnvcPjmeSRFvq+fLTZfjsFsp7jCKueJDNJMmWGgSXA03W2LpxOx06dKCurp5/vfYOU08/ldnnX8mNt1xGh7LOZDIp3l70GkcMPJIFr7/LzLPOIBiO8tlnn7K/roY5c65i8VvvUlNbz8N/e4J5r7zC6y88Q++uHjasXUJxSXdOnXUby5Z/wJChgzh+/Al8tHw1Y8eO5Y477mDRokX07N2DkSNH8swzzzB9+nS2bd/AoCNGYOgCiWSULZs2MmhIDz784CM+WLSaW2+/kaamZmpr63jnnXc445zTcTgc2Gw2dF1n6glTePrxx3D4bJiaSMawYqYiGPFWijt3JBY1iEUMjj32WD5atpx0Os369etJJnU2rf+Y8y/9MzfOuYTzZp1Dl+5dqGtqJpZMkZ2bjyRJKIpCS2sTbrcTq8WFLJrsqdyN2+3F4XORTutomoXWliB9undl1849JBIxIrFmnL72SKIHIhUmEgnsdvu3mxUt1XtR7BKhqIHLlY1NVXh/yVK6lXchEYrgKcnHarUSi8WYMmUK9916JzW1lYw8+ijSpkmotY0VH61kwviJaDYJMBBFkGWZDDKCIHDqqacya9Ysxo89iViyiWQqjMOah8Uq09Lchp4w2LlzN5qYYcOmLxh21JHk5hWTigb5+KPPuP66m1j0/kLqGkPkFwRIJVR0M8yefQ3s2/4VJaXFaE4vFZ3KsPvdaLJCpDnImefOYt68F7j/gbu56qqruHbO1Rx91CiOP3k8ajRCA2lsih1VMMDMkMgoJBJJ7DYnm77aSCAQoLGhmdmzL8GXZ2f8+PFceeWVpFIprrrich59/AnMA6igmCaJioU4Lz94A50GjaIwO4vN23ZS1KUfBWVlP5psvh31U3/1HHC4DJUfq+f/OyykH9eLh3uN3y33Y2hERpRQhTQLnriNtuqNjBg+gUi6gUBeFmZ2L9z2AlRsZNL11NVVUlTenZa2NB7NS1QPIaASjcZpaKxGM1zMe+kFrrzyCpqamrj22nvp1jmf7ZtbOPvSUezfF2TyyadRW9PAXXfdzd1334TLo5DJpJAkhXg0iNObi5lJE66rwl/amVCoDU1TMQwDxSIjpiOkUionnDSD8y88lxNOPoH5zz5NPBjGEDROnDyWeCpJQb6HaEhix64NdOpUwZb16+nUuSuRRAJPVoAVy1dw9dXX8Mknq6is3EVRjwrsssE1l1/HH6+8izl/uZJ//uNeIEHCsCLJDmQBNFUmk06RFhMoYgBZAd0MIpo+TNP8lv0TS7RgEQUS8TQOby6hWN03CLaJIlupr6vF6XRiszkIh6Ik00FcziwEQUdRRfZV7sXh9OLyBTAQwNBRVRlBNEnqERJN4HNqvLv0Q/oOHILP5yWTSaFZFFIpC4YeobW1Bp/Lj6mD1WLh2aeexuNyM2HKScSizaiiTKgpwdSZ5/DHK66nsnIPf334Pp576g46VPQiKyeflNEeKdlIiMSj9TTXpfjT9dfyzPxnkEWFcH2ImeecyTsfLEbXBc478xyen3cnLc0waODxePNifPD620gWBzafRnOoHpvior4mzfLly5ky9UR0PYaqqmzcuJFnn3ySW267CVERSWckbBYvjS07cDqKuOTKm8mxRrjznnvZvKMSl89PTpaLZLoVdA9Wq8K6T9fw5ttLuOKqP+L221j69nscdexonG4H2zevY+Kkc7jzjpsxU610qiil75ARhMOtbPhqK4OPOIZdO9dS2rkCUxYxUxnSqTiNjU2Ul1dgGgKGrLJh3QbKy/KxaDrRjMyUKVN45ZVXsFqt2DWZaCRNQ0MDNruKJ+BFFEWqq6vJ9zgQLR7SooyYbkXHjiBmEAQTXQdNgKamBmr3V9OtW1cMQUHSLCTSBlabi5aqaj54fxmDBh9BcakfRW2fe+z29mi8SUFBQYFEgkyiHl22s+SDtSxZsoTb77qGcEsIr89J5a4qamsaaW6oYePuILf85Wp2rHuHDgNGoFpM9LRIPGYQT9ShCVFOmDCTWeffyOiJw0CMs7eqmoL8UmafP5s/nD+DkUePpWbfbmxWD7FYHJ/fzZr1VQw8ogOSHGHdJ7tY+uHHnHjSOC674nxefOFlli1+j2HDhnHrrbcyd+5cdE1h88YtdO3UlZamVkwxyPr1Wykt686+fY2ceNoEVKeFeDyKpmdIy9L39N9vZh2ah9ar3/3PNE0k+feZG75FXq32X7yC/X/G60HyU8br7zW5/99ovP4covz/jNfDM14FQUDXdQTpt/Xxu/fkAB3/AHr7a4xX0WhP7yFgsGdXJbs3r8amKnToMYiMxUOiLYomq+zdtZeGhiZWffoxF114OVu3bmb+8y+hWBKkEgoVHbvgzbJRuWsfHy1fRTwR4ZhjRjJ8xDBycgJUVu6iZ58+1NXUMf/5F6nf38D0M6dCuo7aqi2EI2nyuxxLNNbK2LFjWfjmIvLycigvL2fFihU888wzdO3Wm+7du7N9+3YSiQRDhgzi9KlnMHbcsaz8ZAktTa0k0yGWLV3BwP5H8dgTj/L552t4/fUFzJkzhyuvvIabbrqJM844A7/fzwfv/4tJ449n6fIljDjmKJ6f9yYP3nsnn3z0AZpT49hR43ju2flkMmlqaysZPXoMK1esZvTo0Tw2936uveV+hEgzVpcFf3E+VqudeCKFIMm0NNahquq3tOSv120BDCo6lyOIOsVlpQiCRDQSR9MsRNraSCV1vF43yXQIQ1SQZZnKykrKy8tJJNNYrVacTicbN26kY1EBu/dWUlTcge07dxNsaaXPgIFU7dzDF5+uZcRxI7nqqqu45ZZbWLVqFbU1dcw44zT27dtHnyFHYOrt6KXTZmf71m106tSpPd9iNM723Tvo378/bW1ttLW1kYlL+AM2DDONwxZg6vSp6Kk0r7z8IpFwiBtvvAdvlp1ZF19AXm4hwYZq/vncyxw5bCSvvvYix405lT+cN5U5f7yBHr2LKS/rgWgmycnPQ9YshMP1tEUT5OcU01LXgM3jQ1VlUukYgiDgd9kIh6KEMxHeePZZBnVw8tqH6+k9YiKjTzwFPdIIiLS2BLn80msZdexIjp8wBtAp7VSIw+UknUy1b/ikk9+mChFMkCSB0P49vP2vefQdeCQej4+dO7fTpUdv/PklGKL0o7rql0bi/X/G67/lwPFMJoNhGGia9r0gfwCSaZASFERZQk61ERGsGOEUqca17N+8ko0b9tB/yCACHTohODtj0RUaQvUE8nykk1E0q5ulS1ZwzDHHohtxgo0xTNNEVVVisRiZtBVV2c+RQyZxzJjjeeThe0km01x00Wy2b9vJkmXvEo40kpeXR21NA5pm4vH6kSWTqp1b8eUXYbU4CbbF8Hh8NLRUIusGDnsOY48/jTcWPo9sVRHSaRr27eOL9VsYN2EU4VgbTq+XlsYMTS376NKlE6lIjEQqhWqxEg7FsDt8hMNBAgE/iUSKSCKJ2yYTDYbwZBXhcFpoadqHy2ElFEuh2uzEwhEMPYnTYcNUFFTZSyjUhtUOmiaTSqWor6+ntLSU/fsbCDY2kJ9XBIqdZDKNx+NDEpV2GnE4jNWmEE+EEAQTh8ONqjjaIyGrIpmMTCoZ/yZXtoiiKFTvayAvt5i9dVvxWAswjAiqVSUaN5g16wIuvWw2gwYN5MZr7+C8884gmWylY4ciwhkVt9NFc0MjAX8WdQ31ZAe8aKpCVeU+6hojxGNp/vKXv/DS/OdxZok4HT7SGdCFNGYiTiYp09ZWzd23PcLUGdMpKMsDHS445yLuve8uQskIffv2pqG6msodleTml3DuuZfSqVsOjz7+d2xWB3X11SiSgUWwEovqHDGoL5s2f4Hd7aW1tRWn04nD4SCejBJNRLHavLTWthLLNJCT04kb/3InJx3dn979B7Jm4w5uvushRhzRg+uvv46a2r1kZWVhxHT21zawc3clbq+TP1xwIW++s4i2UJBtG7/g1tsfQkRn5crFtLU2Issi8XicrVsq8Xqy6dIlm+ySEvSMQGtDC6FIPUWFJRiGCYioFoVM2sDQU0iigdWVzdatW8nKysLlciELCdIpiEajeH0ugtE4FouFUCiEmYrgdGcjyhbMTJim1gT+LBepVAKbzUk8mEHTNDRNobm5Eaffjp5OIpgGVkWmOdRKKmni8wYAE8nvQpoAACAASURBVEO1IkkSiUQ7vdulSuzZs4+CwmIk2WD711+hpy1cc801LHzrVYLRJKJosH79Rnr17E9GhNeee4LJk08imEySn1eCbiQQRQlNtaNLGeKhehJxE1nx4vVaMPQMkXCSluYQ2bkBFEVh08btfPLx+zz04N947rl/4s/yMH3mDF55eQHxaAqrJvLB++9z2pQTMc0MLS2tONztrgiBrHxefXUBA4b0pbZ6P1bVit+bReWuGoKhCM1trQSyc0jGWujctzsDhw0CM40oyt/Tf/8p4/XH6vvfYLz+r6EN6xnzpu8GjzlATfqlD/Bg+uzBn4N3bb/7ObiO/6Qx+N2+H6reX9ruoa7pcOT39rU6HPkxZOJQ8kuu7VDP81Dlfr978ON0vG/v/UFROs0flPx3Pw+HFny48lve7++eoyOSRsXhDVBe2IGW2gZiSRlvoANWTcJmsfPIX+cybdoM+vXrzcKFCzjyyJGMGnk0GT1BXW0LZ8w4m5bWZnQdVq74hC5dKygpLkaRZe65+y7GjRvLXx96hIVvLKBn927YNJk33nsPp93G3upa+gwewZJlqxg0eCA52XmkU3DTTdexdesWWlqamT//JU4++RReeeVlbrnlZjRNZfDgwXzwwQcMGzaE1mA9BflFfPzRJ3Tr2pN4LM5ll1/G8OHDSSSSPPLII9TWbeOee29h/VerefRv9zNt+lQGDB6EzeZhyKARNDbU8+or85l51lnEEnHcbh8ffriUuvoajhzel9HHjcMwBPr268n48WPZ3xTEbpH4aMVyeg4cSCyRJNgaJBaJE4u14vP5SCYyeNw+CgIBvN5sCovKsHk09GSCvbv3gGli1Sy8v2gRX3yxnng8RluwiWQiSXFhIV6Pm1g0gt3pIpFIYBgGX3zxBR3LOyHLVl584XmOGj6UpqYWArnZRNpCLHr3bUxDZ9G771C5cyebN25k8mmT2bZ9Cz179kNWFURRYH9tDaFQM83NLTQ2NTJp4olMnTKDnPxAexoFVWX79u08+sgjvPbqy6z9fB1jx45h0MCBDBzQl9yAj3gsSGFxV3r07ML7775Fl84diUXCZGfnc/XV13DHHbcy66KL6NWnKys+/pRnnn2Cz1auYNiIEcy6eDannXYKLc21uNzZoOu8/+4b2GweWluaEYX2e1NVWYnFake0Kwzq15eEtwv/fOkdCvPy6FSUSzqjY+gm1VU1NLUGee1fr9AabCIYaeaIoYPI6O3BsAzTRFJUwESWTIx0nM3rN7B25XIGDhhI50HHsHXDBrr3HoA3Jx9BFjiU3+jBUd9/zbg7lBxOlPaD/ztw3uFs4B2qD790LjHNg1k5h+9acoAyfCAdx8HHREMHQcAAdFHDLoSxKE7sWbnkdhtG137jiRsm69cuI7RnO43BSgJ+DbczQFrPQpLTFBQUI8sKLa2NuFxWLFYrCKAoFiLRIKtWLqNL1zL+/OcHuPue2/nTn65h2LAh3HX3HQRystENnSuumMNZM2eR0DNIgkEo2EpuYQF2h531678mNycfWdaIJ9vwu/2YpsTEEyeyfMn7FJUUYrdb2b+/hgF9j6RqXxVunxWrzYGIFVkxcTjsxGN2RowYz8Txp/HBeyv48qsvGTCgD+lMgnTapG/fgYw/bhw+vw+7x07j/j24PQHagnEUWUa1WrFZrVg0DVVREWUrqVS7T6uqqgjYEQUrblc24VAKt8eGKon4/T5kzYJVdmLqZnvKJ9NAVlQsVpmMnqQt2ITd7qa+vglBMFFVmVgyhcNmwdTTxKIhdu/eS05OIXv3VJFJxZk06TTGTTgOj9tO5c4qzpgxA5vVQiQUYtLE8WRlZeHzelAUkG1+UskMbW1hvB4fjfsb+fsTz9C5SzfcPgcjh49h4Vuv06NHJ0qKC8ktKSFtpJEEmUwKVEHgyKFH0bd/L8aOm8z5s86je5dOlJV2wOsPMGTwQBSLQiIZIdTWRN9eQ7jplpuY86dLOGXy2bSGQjQ01pKTk4tgqCRjSbbv2MIVV15MKNyC1e5C13VCoRDRWALD1Glpa8Pvy8UmqdhcGropoZhpyooLkFUNze5lwYJ3GHVUbzQpl4JCGw11TZimhMWu8PGyJUiCxGdr1zDl9BlcNOtiWptbGNC3H2vXreG40aPo1rsnboeVxoY2Lr30cq697hpkK5iCQCwcwmN3kJOfRWtbKzabnWCwjVQqgiSZaFYLkqxhCgYWq4rdYSWRjNHW0oDb5cNqtYBgEom1G681NTUUFOQhCgJGJoOkqGgWG8lkDLvdRjyeRBATJNNBUnoYu0smEkqiyhKhpkZS8QiCoqAoIqJo0tIcRLVYiMeiuF1O9EwaVRRwum0kknEEScVuVfD5vZx08gnsq96H2+tHNzPk5ORz8smnMu3smZTm2kllojgCBbQ1tWCzOpBEgUwmhiJb8XoCyJoKFkjE4qQSBk31dZQU5ZIyMyQTGRYvWsS2bZs58cTJXH311cyZ80eGDenLKy++wc033sXMs6cgSSkaGxvp3r0nTU3NKBYLDY3NhKNx+vUbgNfnokNZOVu3bKWhvoGt29Yz+bTjKS3Po7xTHrlZhaQSCVLpJFl5AUzj+3r053T+T1GOBUE4JF3vYDdDAFH8fdbAB+wTRVF/MW34f43xesDn9d+I0I+XO1zk7XCM3P+2/F59OthgPxz5b/ha/Zz8kvZ/z77+t43Xf/86tA/sD/3E/lN9+qa63/CuAZi0p8CQ0JEx0C0quR17EGyoYeOKt+nSbwCKLLJ1y2Zee/0V+vcbSDgcRNPsLHr7IwwzwcKF71JSWsS7i95iyeLF5OQGEKQU2zfvID83lz27K/n0k08YNfQoCgvyGT32WJatWIpqcyOLEnv21XDkqNFceNG55OT4ME2BVFLnxJMnMGXKaaz+7FOOGjmCWDzMcaOP4dXX5lNRUYZmzXD8+PF069aVDh3KcDncXHvtDcy++FJWrFjBPffew+TJpyAIIpMmTeL8c89DRGbZ0o+4+aZbGXnMUAxFIz+7hDNPn8mHSxZyw43XktEz9OzZC12HEcP/D3lnHW5XeSX83/Z99nG751zXeEKUJIQkJCEJEiS4Vz4qUAWm0DIthQotBdop0yntAF+pQCmdFpdSmgLBXRKIy3W/97ht+/64hIYQw2a+mVnPs/84++x3vbL3u97lazEXX/wlLrvsYkQ8XP6N77Bw4QJEyUU2gtTGwiTrqkGUEWz4xiVf5/QTTgHNREAgEo7T1zvMyMB2vn/1j+nsGWb8pMmU8kNomsb1113PooULOffc8zjl5FOZO/dQxo1vRtdURkdHMAwPjmMjSCqhUAjXdWloaKB3YABDDWCbZSShwuRph1CxLAb7+jlm5dH4wn6mTJvCl7/6FU49/VTq6moZN66Nn1z/r+RTGarjMQxFpFLIMuvQ6bS2NrNkyRIuvvgSjl51DGvWrCGfzzN79mwWHjaD1atPIBoNUSymaWxM0tGxg9defZVHH1lDoVABO8+i+dPp69zJE08+w+9+dwdXX/1DLr3sEn5yw48499yzeOWlTRx11NF8/4p/4tIrvsOtv7uNcjHPGy+/Tnt7H6JQIZNux3F8dHa201BfB67Lty//DkcsXQG6gmC5+INB/v0XN/PAffdx2hmn4lguf33kUbyGj2XHzuWb376UZUcuYd78ubji2wqjXZcFMi52Iccj995F585tnHDWpwnUTkCxTcr5ItHaJixJRhQtcD94+Zv97bsP+tz+hNeDxf9RnV+CsOcZfXDC68H0PaY2sJGxEHBwRAsHD7Zo4rguriLijzXQNnkxrbOm8dT9f2TTG8/jmFl0rwfV8OE4AqZpYRga2Vx6rJSHx0e5YqLIFm+9Msgpp63kkJmzWLJ4GevWv8FPfnIdwZCfodFRdEMnEIhx3HGnMJIuMtTTzaGzZ7OzZwCvx8eLL77ExInj6R/opqqqjlKuyM7OLXiDMm0Nk6nYDi4CxWKF559cRyQaIxgxGOjdSVUkwUD/TqqiQTTdpbEpSktDnMPnTuOVl9cxe+YkzHKaTW9uplDIE49E2bhxG82TJmHl+vAGkni8MWQqZPIOPm+AoYERCvkSHl+I4eGhsRAA6x91gUVRxOPxjMXK5ktks0VE2QDbZmCgl3w+hdcrUzILdHZ1EInECIVi5HI5Av4w4NA/0EfUb2CaFVxZpWdgkLbxU7Bcm0hVBJ/s4cyzP0m8NkS5mGXDm9swDA8N9XX4vF5czUTRDYZH8oiCglNx+fsjf+PaH17DvNmHctW3rmLKpOn0Dw7SMrGJl59Zx91338HChXOoisfRvUFkwaWUyrNswZEcvfJIlh15NAsWz8XjjRGKBFhxxGK2bNnK3596mnEtdVRVVyOgYZdFMpkBTj7teFra6vjyF77Pv13/XT73uU+OZX/2+/D6VATFxePzIisGmUyGaDSKoiis+csaJraNQ1dVtm1pp7+7ByPsQdF91IY8mIqMI4n4DA/Z9BCLl7TywN3P4vFnePONdqbMnY3ulfEHDZYcsZwzTj6W5599jvvuvY+zTl7NOWeu5pGH72fV8UcjSQJmpUQ4lOC1V99g2ZFL8AWC9A8NEPArZIa6cd4WVERJRJYVAn4/LhayGiCVqTA01EMg4Mc0TSRJZHhgBFwNVdXJ53N4vAaVylg910w+Q9Dno1Ioki+aaLoHXVcwzQoejxdZNvD5g4iSimW5hA0vluVgBMPI3jBYOoZXp1wpkEhUs3Xjm1RFQrRv24Lk2ojeGC4VMqkBSqk0WijCaDaDPxxB0ryoqkKxXMCyXc4995MM9fUQqKlHNfzke7t55pmXmTrpENLpQSSpwujAMJnBEo4rI2sy6VSZoD+IzxDYuvllItE6vvvPl3PFZV9k3ORpTJs6g7POOhvD0Ona0otjm5x06rGULZspk1uRRQ8L5i/jsksv528PrWV0aJTNG9Yxc/pkiqbJ4MAg/b39jGsbx7RpU9A0g2KpQihYRffwIGeddhrHH3U0yZoEgiR/IJ7YcRxs236XN+P+hNe90diPS3gFsG0bVdX+5wuv72iBhb1bSA8G9qcdPtBzB2qzr/72Z+nbm4V09/sHo2HZl3Zldybgo3R/fb/W3w+Cf2/tP4w1+YPCQX9X7rv52QMLlMK7rvdk/hT2eGTfTT9y+CBW7Pe0EQBBxBUEBEfAdWzCiWpe3bKTyuAQicbxTD5kGketXIKgSzTU1zHU302pZPLoX9ewcvmRPHjfPZxy+snU1zUiSjBn7lTmzlvA0mVLscwKq1evpqdnJw8/8iAOFrImURWL8bWvX8aqE1fT2NSEVcrxm1v/yJw5C2ibUE+iKkZ2aJT5Cw9H8BrEYnFM22b+ggVU19ZhlV0U1cV28vj9fjq7ell25HyiYT911XX85ve/oa6+jqHhIWbMnM6tv/8PJLHMQHcnxy5bSUfvIKtXncLKlYtYeewCvnHZFQyNmvzoBz+ho38LDZEQ+EW++o1v8M1LfsARSxaxcPF07rvvPjQdJoxvZCiXxaP52L59B7W1tSw8YhE9g73IcoBQIMq2zZtprK/hlRc2MXXGXBYdsZA3X36RTKqHCW2TOWzBEXR0d/DZCy5gzvxDEGQBQfQgSBKBUBhF8zA0MopHlOlPDSGqEsFQEF03WLbsCM48/UwuuODLnHL6OVTKFWwc4jVV+KIBmlsaueO2OxnXOomrvncVTTW1TB1fy9at2xGASFWCeLKOYsWhWLYIR2OcdsbZ9HZtY86cmcQSVQynU4RDBh0d7eiql9Rwhqq68VTXhqiK1zMy3M2EmRM4ZPp0rvzOdzn9jBM5ZOZipk2fRk1tjMWL5xOO6mQLIjg2nVte54of/Dt33HELPsNEFmxEEb7wuQtpbmxB1wPcccefOfao+QRDjYzm8pxwyikIHhfZLLB14zqqq1tIpYY57fRT+OW//zvLVxxNfWMD1/34es7/4mdwBRFJkXFFAckB8W3yL0oippUlPzLMuhdeZsPmLZz8qc+iejzIsgCyzGixQCgSQhRccKWDtkZ+UNq/v+cPhOfDnkcfdowgIAhjdQB3J2678OxyqT7YtXvXOf123dyx2rkirqMiCC4C0tuXiCC4ONhYtkzTvMOYcejxbNvQScf6pxk3YQ4jIxsJBePki2XUQIiu9g78qoJQKfPb23/LNdf+lLPP+QwXXfx5tm7bgelINNbVEPY4VIoKq48/g4u+8lV+/ZtfctqJq/jKxRfxifM+w71/eoBYRGDyIRMopgYISA6iWCZTEEjUNyHoCobi4NhQKhVJ1FTx2tNr+MlNv+H4o5YSjdeTyWWoq28kXyyhClkcs4A/EKDi2EydN5kH7n2ZF57fwNHHrKCnp8ARi+YydXoUr5agt/0t1FAzciHHpk3bqG5pRnYFKqUyit9AkXSC/iiSbJPKdiDkh8jl0ygeP5agIlBB9/hxhByp9CYCkTiqbuD1BylWiiiqRijsoZDLoisqpiOhezRAIhSKYZfzyKLB8MgwsViIwZ5txCJRLNMhl85w+OFz+T+fPh9Z89JaXYVZLjMwOEImVyYadsiNFDjlxLNZumQJb73xCi3NTZx95tlUVVVxzfXX0tXdQyad5agjl3P0CSvp6h4mk3OIJ2rJpddheKpQPQIzps4k2tBIXXUVb61fRyiiMm/mIVz6tW9y0skrUVyN087+PNs3b2PFkkMRxGFefW0706bOolzOcPV3fsqr658jFAqTSo2QGR3BtUwGBnJcfc0NxKpraa1J0t29mWAoQPPECbiihzfXdfLkE89SXxvDkL1UsllSqRzD/TsJVk9m++atLF95BLo3QEtLhIAnye1/eIipzXEu+cpFnHL6qXSnOpCVBOMmtPKJT55COOoj0dDMjk0biAVCzJt3GK+89hzJqijzDp2F5DjkimmqEk2Ijk4xnRsrP4SILKs4uCheAwQFLBcRm3gkwl8efJTa6hoMj0Jv9xAN9TWk0t30dWexK4OIoow/mKBUziJiUyrk0Qwvqi4y1L2dsEfBNG36BgfRZR3XcXBVEWwHWRGoVHIUi0OUJYmAIeOWiziiQDRQxfatW6mvS+K6BaxSBdeW0L0h8CpokoPuyJimixoIcuVV19LfP8ykSZN56aXnmTxpIuV8Dr9hEIrFqW2qQdY8IKkompeRvm5EyQXbIj+SYfOm15k2exaWIxGIN1EqZjj65OMxzQzPvrids87+JGeedgavv/oUbZPGYTplRgaGeX7ts3jCccZPnMwtN93IyauPYrDjFXZu28zZn/gcis+L6oh07tjAlHENdG3fCXKZeCTBfXc9RFUkxktrn+fM008hWZ9kdCSH7tPf8SyBt7Oy7850Io5p/t6+xLdpn23be6/risu7a7fu28D1sQuvmv4/X3iFXYz9xx+X81EJRfvTaB/M7w/T7y5ty8G6fn3U8GHnsq+1+c8QWvc1hn0+d8AbH11fHzccrNVl17e1P6YY/rEUoijS2trKwFAnj93zKya2NuPKfvRgAFFR8YfDtLWNp3lcK6IqYTompUyRca3jOPaoo5kyaRJrnniKI1esYNPWbcxbuJD7/3wPP/vZz0kmawkEYpz5yXMQFJmSbRJNVNGbHmbRkUuJJgLohsijjz/GxEmTGO4fwq5UGM2mSCYTCCIIIuzY0kEunyUYiGKZAqpHpCoRpVQu4jouxx9/PE+tfZKnnnyS+fPmc8Xll3PiScez8tijMUWXrq4BVq0aywy6cdMmtu/o4vvXfovf33EtExrn0rX1DUpuinikBY+m0tvfTVNzI80trWRz0L5zB62N1ZimSUNLC6qm4vV5SSQTVMqQzxVQZZX2ne0MjXYy49BDqK6LUC4P8/zaF+npHqG7s5+vfOVLnHn2J3ExKZaypFIpPB4Dy7IYHh7G6/Wyc/sOxk2aiKqpaKJM585OvnjBhSQTSRYuWsQTT66ls6udQMCPrIg8+djzjGuegM/nIRr3MzAwyCOPPMwxxx7Nsy88yaHzZ5OojqEoAn6PSn9PN0Gfl9t/+2vmH34YmVSaeChKdmCEO/5wH8uWHM2tv7qN6dNm89xzT9PWVo9VEdm48S1qE3Hqals45tjVaN4Qmuzlwgu+yDHHHIeseojFk/iMEGv+9iCHL5rF7LnzqKutZqB/EKviIkkCW7d00tU5wPx5izjl1DNIjY5w7nkXcMLJJ+L3yxQrJSrFMhPaJlOwTOYdNo+W1haWLFtCw7gGNm/fxJcu/iKSLL6LfjqigyMImKaDJGi8seZuOrduxZZETvnEp5BVFUUZK8kzVmLH/y4m4mA9Wz5qb5z3Y3n9sH19XLA3t7b9we4l9fbpQreXe4IgIAkOsuShbfxkJs6ay/2/+CGvvvQYsXgjgXCE3EAnuuohFK1G8viplHOcd875BIMB+vq7mDZhHJd/89t8+8qr0LwaU2aM4/rrruOBh+5h1XFHEQ3H+cmPryMa8xGOGkRDDUTCVWx8axtmWUT3q3h9UYrFAuVSgcxwFo8nRCxehSRLTJ82jeYJk6lJRAEfn//cFznl1JNJZ0aQKlkkSSccq0VUg6QG0jz/9JMsX34IW97ayOVXXcJRy06moaEB3aew8ZVXeH1LF5gZGpqqEWQdWRJIpUYQZQGPITEyOsroaJpoOIHu8yPKCju2bMFQwBU0FElHk/34jQRlq4iqeEil0oQjQSxTRFcUFElDEBQqpoVlmnh0hUqlhK5IWBb4Aj40TWHr5g2IWoiioxD0+zhi+XLCsTiyrGKJGrLHS6FcwK4UicfDGJ4gs2fNpW1cK66kEIkn2dHexde+/s9IossFF3yBG2+8ka997SIsK0e5WCIU9KMqMDoyxP0PrGXKtGamTp6CYmh07tjJxg1baWoaR6Fk0T+Y4bDFh1KVaObOP9zOddddR7I6ga6rNDVNoVIp4VJm6rQpJJIx8vk8sqyQzxdIJuK0b+3gwbvu5sW1azn73NMJBEN4/D6QbAqZHJoqc+W3L+fQOYcwefJE7rnnXnRdJx5pYP2Wbn70vSvp7tzGEctWIDgWhWKFH17zM1Yffwq6EaB13ATq69ro6dqGzNsCWGYEwxdh29bNzJo9hWhcp7ntEPL5PKGQH1UTqbh5srlhhoc6icV9SJKHTC6LKIrkCwU8mge7XEZ0bF547lmaWpppampCVWVKpRxXffu7HHfccWSywxTyFuFYjEgkiihZqLoHCTDLZTy+AK6o4POF8Pj8ZEsVNqx7g5qqCLoCouAwOjL6dpIvAU0N4DEMRgYHMbxeCoUisqwhyiKIY55oHi2P1/DQubOXmlgdQ0N9IEp4fT5cweXwuTOZMW0yzz71OA21Ce665z5mzZqJ6zrkcllkKljlCqV8lr7uDlraJrCjvZ0//unPLFm2BMm16O/pxO/10NvTiS7J5HNlvP4o6YEO7r37z6x/cwNnf/Jz+AMOmipy5523cdrpq3n2qb9SnQxy/InHEAhHqG+aSH3LeLZu2UJtIsrGHVvx+j24EmQLGZJVzXR29PLQQw9x3/1/wjTh+Zee44xzzySWrEb1qHsk89u/BWMX/79nSdFdtG338pn/wLd3+DiFV0EQPpDb8H+bhE171nn9oAmb9gX7TeV/kIfk3nDsL9nNRxVXejDJdFzXfU8c0H/mGD4svOOOehD97PpG3u+Y9vX8wa7Nrjqte0uw9FHB+61tvK9n95zr7vWAPwp4T7Ir59392U4RLwXWv7yel9bv4Nhjj8Xr91G2TG78xS2cdsqpxCMRvIbOxRd9m6efWcuDD93LL39xC9/6+gXYDvzqt7dzxjnnkS2PYniDCKJCJlciKDiouoZmeEAQGO0dJhwNMzg0hK75MYICkqKy/tV1tNW3MFLM4ff7URSFdDo95kIaMKiUbf7pksu5/t9+iGsL2BWT7ds2U1NTQ3//IFXxanbs2EFTUwN9Q8PUNtURT0b58mcv4oZ/vR7btvF4DGQDKmWdTE+GP999E80xH395fi2zDz2OP95xC7///R/p7xti69YtHHncash08sRDf2DBsWch+gLvvENVVXnq7y/g0XQS8TC6pvLSS28y+7CFOK6FmR/l1ltuZu68w5kydSqhuAcBlUx2GE3TGBpM0dzSyOjoKF1dXUyZMgVJlpF0FbtU4f4/301LUxv+QIDB4SFKpRKJmmoGBweYOWsa6XSavvYeBNFDU2sSRbNIZxx8Ph+O41DIDeMzvHR3dRELRxgcGWTSpCm07+xA1w3iyWoKuTy26dDb1csxJy3nh1f/gKNWLqeYz/Lys68yf9EMYtFWOnp2UCkPIspeMtkik6aM59VnX6C+sQF/OIKsexgZdKjkM1QnQoiqi+2qeDQflVKZwf5uHMdh9Qlncf31PyEWD9HQ1MZ3v30F537qC/zmzpv5zjcvRw15ERwbq1TGFkTC4fA7mu2iU6RUKhEMBsH5x94WRRFZlrFNi3wqx8vPv0B9WKBxwkTkYBRb1HA/YG3uj1tA3B+N25PG7u52tj9l1v5w/v/AX+wZ+7rr3kGdEY6NK4i4iDgIOI6IavXjDAzzoysvZMLUhby2c5iW6fMZ19LKnBkTePihNaxccRSVSoX1r77M/Y+s5bLLLuXPf/o1c2Ycxk9vuBmvL8hXLvoSopAnHo/w9DOPMXXaFHSfTk2VQTo9im4EcWyJjvYeWtvGEp/Z5QpvvrWdVccfy7q3XkPVDbLpUfp7B2htbqNQyAEOiioy3LuJSLSKUllA0nyYZpnaRAP9A5vx6WE2dG7h5p/ezVcv/izjpraw45U19JSDeCWHBUcsYniwgCXYiLJA547ttI4fRyqVIhSsQhY9jGYG8eoipXwawyOhBH2MjgxhV2wkNHzhIKWCi+sKyIqLa8qIQoWtm7cyecJkRnI5qhIRCsUstm0SMALYtkLFNRElF7tY5KxzPoNmBLn1V7dgmiYnnXAi117zI778T1/nZz+7gb6ebqZPmUww4MUwfPz9739n2bJl/HXNDZkfMQAAIABJREFUGm699TcsWngEv/zlTdx79508/thTWJZFU3M18w6fTsAXJ58vIkoOmiSy9uk3WbJ8KqV0GUcLIFsul19+Oa+te4ObbrqFSy6+jN/9/mdoSgifJvPIX9fy+Non+cKXPs9b69bx3PNr+ad/uhTbHUVRQmQzRURRRVN1cukBetp7aW5qoL1jKxNmTCOTKeEKDv6AiGUKBI0grlPGwmVwcJhkohaPx89wb5ot/UOcvGIBh82ZyYWX/YDmBi9rHn2UDRszfOvbF9DVs4lwJEA0UkM6lcVrxPCqHnZ2vEV9bT07Ovqoqwnx2kuPc8jhx1Iu5tEVZSyMonkG5fwIVrlER3cXkZCfkXSK2ro6guEQrgujQwPEIgFEUSBTKBHwR3Fck1wuhc8TYWR0mEBQwbX9yJqMi8XwUA/RZBOjAz3Ew346+weorqrHESUyuTRVUR+4Gj3tmynlhokl6vCGYuRyBcyKTV1dPencKIpmYJXLiHYJJA+aPpYArFAo4FHCDAz2EAy6rH/rcSa0LkcP+ihVKlRKJSyrQjgYYXQ4hd/wks6Vqa5JkM9nUVUF1ypgVsbowNBQP9FkE4VCjnR6lLZxLciiRLGQZ7Cvl0DQhyJ6WbZ0ObFkHT/+4ffweL1s2rKVJ556kVKhzMKFC2ltaqRcKlATCRII+zhh9Yms39JNQ2MzRx+9lAvPP4/XX36dC7/yLW666RZ+/btfc/JpJ7B00QJ6ejvH3PJNF8dy0XwKk6ZNAFnDEa13aKooigi29A5tFkWRciWPoijAGN9l8w/D1e4JACVJeheft3sm9l2/d6fxuydsgoPjQQ+W79x17390wqb/Csvru/r7GNv+Z2i0D6Tp//9Fq74v+KgsDB9n33vGqH4c7rwHE6/9riF8APffjxLewbnHdpXRKYtBqmpqSEYNOt98k/vv/g82vfk6Cw5fRl11gu3bNvPqSy+w4ck7aK0W2fTqI0RUk3Xr1tO+cxvBYBDbcXAG+igNjWCmCihlm0w6xUMPPEhrcwvp0RRr/+NfWPfaGrK5AULRMFvWvUUgEqZp4lix9YHBfrxeAwQXF4dNG98gGgvy5psb+PSnP4MrSjzz5Mu89OIrzJ4zk3BNnKa2NgZGhplx6CzypTT5vMm0qZMRsVl1/FEYvrFEEpZtYyHiCkXymY3UtPlZMGcJi1acTnVTDeeddxKRSBWybNA2vhVHd+jY8BSl0Q4idRPR/cF3lE6iKOL3eonHQ1TFI1hWkbKZpXViE6rHJRhUmbd4MfWtzURrIqBbeBSJdHoUyxR5a/1OLKdAMBhEVdWxxCtvC/ilfIH0wBDlfJmBoUFS6TSzDp1DJBImFA6gqgqC4FKf9HHDDTfS2FyPL6RjOyKKoiIqKh5dQxJlivkiPo+PmpYW8qUykXgCzfAhI1AoFVG8Bt5omC9+9hKaGseBIyG4Esm4h2JpkHy+TDjmJxSdQiTUSNfOXvyql4kt09G0MJonjouPciXLeaefxuoTV1OxweMJMDqc5a677kT32OAYHLZgHoGgyqNr7iIQiLBz+zbyRZOZ8ybQtW2QWYfOQFQdfD4FRfei6RouLoigiDqG5kVwxDEXrd2+abtg8ac/3IFo5VEpMGHBcoqyhiMrqI6wS9b94PvlPxn2tv93F/QO1hNjd/iv8vbZE3YXUt/vPFxXRsBGECxk18ajCriSguWpY/7qc5jdWMvnLrqcH/74Bia31dPfN0BdfRJBEMhl82za2o4ryKSGepk9tRXFW+bRvz3Md79/Bf6QgqF7GRgYwu8Lc8HnvsppZ3yavo6dgEa+KBIOB7CsEpZpIboC2dwwLa2tfPbz55PJpdACYXweEVX1YVoDhMJeVFWlVLSwZBtZ18ikhmhMRrENi1xWYXCowH0P/4nlR57Aww88wKIjZvLss29SFy9TP2EmjbV1WK7Mxrc2EE3G0L06KgKqGkb3SFTMEqKoINhlspkUsUQUUVEQxTiWaWHoAeyKhOmWMDwBLMtGkkAWQFFsDF1DFFy8vgg9PZ2oqogkQS5TAGQGhgfHSuS4IvNmTufsE48jlctzzhln8OlzzmHHpk18/tOf4o+3386K5UexZNlK5sw6lNHUCAMD/cRiMcqFDIfOmsmtt9zMlInjWbJ0KS0tbXznO9/hy1++EH8igiNqOKLCd66+mubaOOPGz8DrU/j8+V/issu/z9HLV7By5ZFMmTaBaROmsOavf2XC+CTJqipSo0Ns2ryTa370U+78j7s544yjWL16NYIboGwNIoo6iqKDK3HZZd9AtMssXbkS2ScTqYkgSyoDgxnqmhrBKoMr4dF0stkUFbeM47hUKjbFokWxOIQn5KUpGaRrRyePP7eBk09ZSUdHBzf87Dec/5kvkEwmkCSF4YEynqjBww8/ydBIjklTJ1LKjvD5L1zCUStWYRUKGHE/kiCzZfN2QoEYhUoWszCI5aRJ1iewKxCvqhpTvhoGyDKG3yBXTFGsFAgHYxTyRSRZRNNlzIqDqsq4QgVdDWBJNpqiQsXFFmU0WcZnaCCJuPkijuvi8elkhrqw5BCiaOPRJSTJg+YZs7rLiku+OAyWhKB4KJRKOKU8jiySzeZRVA0EiaLcT8Ws4Pcm8GjVlAp5SpgoqoJf13A0BVnRkWSdXL7MpV+7lMWLF+G6Dul0GmQV05aQVQ+btm4lEIqhaCoNTfU4OIieEJpHp1wpI8sq6XyFM1avIhzw09B2GH959BEOmTqOKeOamTxjCtOmT+I3v7uJpUvmM5juQVTyTJpcy9Xf+iZr1rzAKy8/z7wF8+ntz9BY4+fuu/9Ec2sdi5bMQhBlDJ+GzxfkpRc3oGoiTz71BHMOO5SK7SBJY/RKlmVGR0cxVB8d7R1kMzm2btlGJBKko72dgN+PgIAr/MN4sHu4x74ToQrv0Mv30tB3C7MflZfOrr5kWflfZHndEz5iS+zu8H4Fhj1hV5zOR82Y7Il3X+/Ssf8hvAqCgIt9QNyO47yTkGF3OJDG+mDL0OxtLvtr/37xvR84UB/7dLXbYyi7LK2CILwnzmBveN47F+ed+2NrLOxVC7Y3nB+mZND+4P1o0PYEy7Le0QS+Z3x7NBcEAcFxyaczVEppRkdH8fl81DU2YuGC62CbRTRVIZ830TSNQqGAKIp4Zejt7SWRSFCpVHj+bw/j8+v4/Bq9fe2EfD60QCOeUA0VMwumyMjICIODg9x3333Mnj4F085QU5MkGqlBUjw4rkC+UKausQm/P86GDRtoaGigtbUVy6Oh6hqWbeMIIFREdF1jeHiEUCgEgo1rmSiyyEvPv8CT91yDR6/FCLosOOLzlMtF2ju24vNrDIwWaWlrJZ0vMX7CFMpOCPqfpKvjDQbSAjOXnEVjjZ9KxYsplhArFUqOSCgSRMKkZAvIooiExY5tW2mdMPmdBA2yLGOVbR66+48UMlniyQamz51J0KPx1FPPMO/wZcg+F9t2ce2xmq/RYIByuYxlWQwNDRGJxBBQEUSHdGaQsD/MU0+vZcKE8URjYYZHMyRicVJDI9ieMD6PzkhfF6pg44gyxWIRv99PVVUV2ZLJ4OAgVVVVFItFKDk89NCDHHfcsXR1d1AuDGNZFrW1tWzaspl4vAVBEJg+Yxqu61LMZXnhtTeYN3cW5eF23tg2xNxDD6dYKjA41E045GfLlnYa6lvxaAZ3/flBNm3cxjnnnUoq083aNS8Rq20mEPTy21/dRBGHvzz6AIZPxcZGRd7jG7exKhUKuTyBcBWC6zI8PIxj2Wx/4xXSuSwLly3BHw1junvf6wdTouajhIPtd2/04mD3+sHS6n21PxAIwp5nzsfrsvbuvv5RxWB3y/E+51bJ8MgdN1NTlWD8/GORJYGhwRQXXfQ1Viw/mpKZ4ntX/ZwHHriPQNihvydNU3M9qiqP1Wk2NEpFizv/cBeSpDA0MMgFF57Pjp2bmDp1Mjt6OqmvqWHTxvWEQwF0XcexFPKFHIGAD90IY9s2ufwo0WiM4aEs4VCUnr5t1LSMwy4XqBRGUDAplkq4sg9BDeOTVDKpLryhGAMDA9Qlogxsf4XA+GUIpSyl/BDhYB196SE8PgXVtRgdclH8AiG9nuzo80hGPaFgFYLgUipnQdbJ5/MEAgEKhQKFbB9VsVb6+rsIRWSQ/DimhVWqEI1G6ejvJhmvorO9g1KxSMO4ibgVB0kokUn3ks/7kRWBWDzE1q1bCfqTxKp0QCA9UmDdujdJJJKk02lM06S7ZyeC4LJxw1aGhjN8/ZIvMdDXxezDljCYG6AwkkaVdPRglEQ0wrp1b/LNb17BtT+6nvvvvx9dk5g2dTzJqjj1zS0guoiyQL6cR5UDrHtjM42N9UTjPvKpHl55aSvnnftpnn9hLV6vl2eff43vXv1dHn/yMQTKZFLD2GUQ8VC2TUJeCVcGze9n42uvM278ZDz+EEJ5GASJbLGM7vEjSg79fd1UxeK8+doO6uujiJqPK6/6HvPmzGLJ3EPxRyWQFTIZEVE2yYymUJAYGRolWZ9k5rwlnP+pC7no6xdiGAZf/eIlXPuDb+IxKowOZqlKNFKRsuD60b0GWKDIAiMjPZhFAU2oYLsWtqyTz6ZIJpPveCYFQlFUxY9lF8kXUgQ8Dg4KiuIjny8gGwaC65BLpejqHWXK1PH09nWRTNRjlgPoviGG+goEvAb5yghmBSLhJIomYtllMpkM/kCYsuli5VKYdhqvXsvAYBc1rS3YlkulYuHz+alUyri2iWuVKWRSBBKNFItFfD4flUqFSmYUb7AKQZAo59JMaZvE3599BsOnkYj5cVyNjh2b8aoG/3bDL7nyp9diuw65YgG/3/+OoCcIwhg/Y0OhUKCvr4+G8a1jUfKWw0jfAK6V4dlnX+Dxx55mxfJVBBtDjI9F+MNdf+eeu+/n17dcjepLcvLp53PzjT9F88j4fAGGh4fJ57PoukO5bGJbMsWcjKK6/OQnP2Hp0iNZv349/3bbv+PaJpIk0NXVgVURGG3vYXhgkNt+fzsnrT6W3r4RGtqSTJqwiOdefopPfOIcHF2k4JjIb9dy3+eZs0fd13fRyA8pXx3oXNJ043+R5XVP+JgtsR9WeP2wAvCHweu679a8vDfL7d5xHyiO8UDt3w/sS+v/QfF9EHi/891fjOvBxla9G/Z0b9t3nNYBx3aAvg7WIvJB132Xm/o+8e7x23EcREFA0VSMUARvMEKspoZcsULZ1XFcFUEyECWDvGkiKDqKx4egaORkD1okQVkxMFUvDROnEG9sI18SqdgatquhGRH6u/vo2LgBvbqJeYuX0jxhMiuOO5HDlq4kVN3AjPlLaJ40ndbx42msq8NnqCQiflxJQBAsgkGD9etf5eaf30gxk8ZQZVTBpXtnD9nRFKokkR4eprenh5eef56f3/CvLF+2DLXkki+MsnzZaeg19YyfNpnmieNpGj+e8eMnU9vYiGXZJJJJslmTVN82Fq1aTltrDaYToHPLS9x+47+x841nGdz8FjXVCYZzKQKxIEgquDaKrhMIh95VXimXy3HT9T/mpKOWMq6ljng8iGsVkSWBQLiKYFUSx5YxVBkqeV594WnC0Sp6e3sxDANVVTFLJSyzQjGfJRjwMzLQTmtTE9FQlG2bt1EppujvH6K6oZGAJqLLIprXi+oNoioKfn+ASsUkny+gG14CgQCu65LJZIjX1jJnwTwUQyNZX0PLpKljiZ4KJs8+/iy+iEtdQxUdndsYHR1mYLjAxMlT0A2Dbe2dzJgxC8cR2LZ9G/UNNfzl4b9x5BFL2LRpC9F4kr8+eh8LFy0gEolyxbeu4uwzz+DF115jy5YNNDZUc/yxq0gmYoSDAQTXZSxJ0G7fpOjiApquI5Zs3npjHTgOuqoSqo7TNmUSWsBP2XWRhP0rqnbBnnFGH5fw+kHavR8vjffz+/2P5T13PhS+/fd1cLR1X55LZVRmzp7FYw/eQ2GkF483RjSeYOlRRzGUy7J65XICQYtDpkzAKuo8+ugLHLH4SDZu2IQsq/gDHjKZHKbpcOWVVzE0kKZSsfjXG27k5JPOIBxVcSwbQwsSMGJ0drWj6wFs2yEUCtLbM8yOjpeJRerI5fsol7IEAgZWxcIwwqRTKTRZo7unj1AogdcIkB4dQlNFcG0kVScWi5FNjVDMj2DEWhBtG8uWaO/sJJGIkEmPoGsedI9GpVymt3sHwZBOxVQQJegfbKdij+Iylm1WliUkSUQRA0iigs/vQdUgXzAZHR5BRMA0TbzeELKqIxteAvE4brFIKjXCunWvMWv+fMpFB01TcWyIxmIYRghFFTAtAY+u0tPbhaaqhEMJYvEgLS31mFaZJUuWsGLVCdx9972cdPJZHHPCqXzuvDO54DNf4IjFS/jjHbdxyMwZrF69mttuuw3HdXj0bw8yf/4sFi2ay7nnnkG4poFxbW2khkcY6OohEk3w5NonOP20U/EZPqZOmoUoF/jSl77IHbc9RKy2gQfuuZcfX3MlmlukZzCHbVUIBQLs2LmNFStOYMWyI+nqHiAar6W7o5e77rqX5qbWscz8ogqOxPbtO/D4NbyGD8t0EEWZvr5OHFfid7ffyeKFi7BtF58/QLls4/WEMLxBersGUD06NXU12FKZmmQNcw6dTSIe4usXX8MvfnkttlsmFGxFdVOMDI1QLI3i1YOYkoAgaFiOiyTJeDQXzfAgSjpeXwRJFfAHAriCgMfrpVgokctn8fkMDMPD8NAgLjJDoylkRUNVA4iCjCzK+EN+wMWsWLguaBr09PfgCQaRvV6wLSRJxbZsRNFmIFfA8IVxHQGPpiCJEh6filmRqUrEyY0O4lSKeBSFcj6DKApIojCWpVoQscplDE1h66YN1CSqcGybkXR6zI3WLHP++WcjKArRqjBdXTvwqD4KpRw+f4DVp56GpKs4roPHMN5lodzleitLMqqmkayupuLauKKAqMjohoGgealrGsfM6fNIDafwRuJEDS/RqhoWLj6U3lQ/hs/Pi08/w8TWRp5/9kkmjm/ALGf58bXXcfQxp4zRBF+YP955N82t1UyYMJFvfvMKPvmJz1CXiOL1eFB0Fcmj8veH/4Jjm1TFo6xafRxVVXG2bN3CvAUzWPf6RuZMn8Gtv/6/zF44n3S5gFdRD0Cb98NLfkj56kBnwgexvP63E153+Xe/B4S9a0g/CsHxo2Aw3g+O3eMFdxc63y2Avpfh2BcDsospe8diKhx8AqcDMSYHYsL2Pab919fdhftg57ivPvfmNnHw67b/vsQ957DfUR0M7LmWe3fl298cDpYJPVC25vfDzO4NDviO9vK8K4AjCriOgChKWJaDKEogF0AyEQQbxzGR5DHtu/t2ogLdKaI4JioWGjZl2UCQNELhBLX14wiPa8VXW0dNWwuTZ80ikqjHRsARRARFxXQFguEkkqrjSi4FwY8p+9GjSaRAHCkYJ1zbjBGrpnbcZI5fuYKWtjYkWQFJIpGsJVmdRNVUAsEAwViEyZMncdxxqzC8XuqmTWP6EYvx1k7E8PuxHBdXEHGQQFZxEamqipHJjlLVEqG6pZ6iXI3jVuNsfYH2N/7I1FYJq7IeT9jD0y++yIxZyxGsKIZuIQoStmMjCsqYJnq3uMzXH7+ZYmYbkpBC99r0d7XTtf1NenvbKRWzKJTIpwbp7e6hraWN0WyeTCZDOBxG13XSo0P093cwblwrjuUSCvpQFJXu7l7i8Ti64aEqUUXfYC8hX4DBwUEyuTzIKh6PB0lRUFSNzq5uLNsmm83i8XgolUqEY7GxsUoCgggmIqKoEK9KMmvOXIK+JKFAgmRVI5YJ4yZMID3cR7GQw5E0BMehs7MH0zKJRkNMmTKXvo4d/PrWWxlI5zl8wSxUTaSmpppYrJqqeAhBkdm8eQOHzZ/D8Sesorq+9m2Fs/AOfZSksVgi6W1vgGIuz+b167FdC49XJ9lQg+b3I2sajigiCOJ7qrbui0a/331yINgXHX2/7eC9+Rn2RXsO9vcHh/2XEHu/8EHo5J7vb096ueuSBRXHFZk1/zDMcp6/PPwXwuEgyWScZDyGjMbcedMZGRnmpz/9OQ888h8cdcxiLvvGlznu+BWIokQhX+K88z6FbTt8+v+cxvzDZjN5yngGBntIJpKMDA9QKVp89v98kTPOPoObb/o1Tzz+FOVyhf7ePjweiZamCVhWiVRqlGg0RDqVQZFVFFlmdHSYcDiKIAmYpTxupUjZtFFkkXyxjCAI6KrM3x57CtlTRSzoxRMMYtomPkOit7sTVQsgKBLDvWkam4KMpkwCgSCqquHzezHNMoFQFFESkGSRcqWEhIJpFWnv2I6qqiiah1AgiKaotLe3U66UUZUxmqXIEpnBQXRVorm1jVymxPDQEPF4Fb29/YxmU5iWxB1/uINTTz2PT537ae6443bqG6q54opvM2nSFAzDQ2trGwIK+aLJFz/3FWRFpbu/k/lzWzjz3LNI1kapVPqprmkD4I933sk111zDosULOOmk1WTSo7S1NjFxymxkUeKxxx4jkUxw489vpr6+mnVvvMHiRcuYMH4Shx++gBOOX42qeKhraOSKf76UU1cfSTrVzZIVp/DJT5yDYzt4dD/PPPsCF3z2fH76rzfyjX/+Nq+/vJVjjz2JCz/3ZRYsnkMwEKKnpwvXqlBVn6RYqOA6Il6fTlUiijcU5YQTT+PH1/0LK49eQSgaAwQEbNKpIQIBP8naGryBEJYj0tLcSmtLHboismrVErp6N2H4JSy3zFBPO7GqWsKxENk8lColvJqBYxbBLVIuF1A8PpBkHLOE5jGwHRdZVsjl8m+fwQ5er8HQ4Aj9fcPU1DXiAK4oUCwPo3tgdKSXUDiKbYOmGui6AmIZn5HEFcp0du0kWV2HphikRkYwVBEo4JG9qLLBSGYIXfNg2kUcW6NYKqAINulUmmgkyujwKD6vh3QmjeMKqLqBJAiUSiUA8vk84ZAfwxckm82QGh7E49OJJWsolMvoqoYsKETiEURVIZsvUjZNNF0HUXjPfn9HmBXAfrtetMDbvJQooGh+NMOLZZrcfd+9PPiXvxDzavz5ngeoqooQiibwKDptTY38/fHHueCCr9DT24nlWJx88tk89thztLY2MzwyQCwe4Yc/uI6zzz6H++67n46OHdQmqtiydTMej46mKtRU1SO5EkXTZGt7B5OmHELbuPEMDXbTUDce1aOTTacIxyLE43E4YB6GvdNJYCyZ5QHo5cHQ/n09979CeIWDs7zufvj8d4ODyUT5/mKJ9lgL4eC1/h9UG/9R3f8g729PZuWDwoEFsD0E+Q/c074w/Nd9ux/3vtkTu+iCI47lxZFcG2EsPcrbl4LoKMi2iuRoCJKJKLgI7tj/NhoOCq6g4qCgOSaSCy4uriCg2wKC6yIKMoKp4UjmmBvM25fsmIiuiCTYiJRQXRMJ620TkIDmOii4CJaJKkDRAUdR8YQjSB4DSYSKVUGURVzBRdBUJEXGdC3KpomuBRDFAC4Sgmu/LXKPxXnaY6cCrmNj6ApyWUQRNUBEKXXwh199jw3bXmfCzJNZds7VVNdNZv4RqxgdHaRr64s8+djTWKUyPt1Pb18f2VwGUfxHZtzcjmeoiUbp70tTLsskkjqRgIxXKtLTvoG6pAfHcUhlTBK141F1mdraWlKpFD6fDwkTVRXo6+1FkXTKtkzFchkYGcQf9qP7I5RKefLpQbyhamRVxzAMAj4DWdEZHh5BUdSxMhmhIJqmEQgEiMViuK6AIOxSQ7iIgosrOpScCpbk4hV8PP7E3wiGFTxeG6tosf7V54iG/ISTdbiWhc8XpGJWCAS8dHSO8vzaNXz2s+czbvpsauIxBNGkXCnS1NTM5k1vceIpp3Ha6Scxe+Z0lICOKwpYApiOi/K28FapVNi8eTOiafHKCy/Ru7OD6bNmEk8mCCerMEWQRAUQEF0ByX2vZvrjpG8fZfs9cR1IeP3PgY9XeP2ocAHoToWyqFFRdbyhGAsXTGPTuld5Ye2TGILL9r4s9Q0TqTgmJ552JCccdwrRSBUrl5+Irka4+JILWX7kSh5+6BEefPAhNqzfzo9++C+88tJbTD9kPrqusm3rGxi6lzNPO4uKY/L6a28RDAY4+qij2PjWG8w/dBnPPfcENVXj+e1vfs3sWdNxbHvMKiUJ+EM+UpkUFSuHIjiYhTLgQRBtfIEQpmnS39vNpMkL+NLF/8zJq5bgaAK6bmCV0iiiRCheh+1YXHnpD1i2fCaR6DhGRvopFmxSozn8/jCCLOC6DplMZqx2tFPEcUvEYlEcW6RiW3S0t1PI5ZEkiYaGavKpEdL9/fgkGa/HS3dfJ8WyRaUsYHhVbMvlR9dcR6w6xo0//7/cdvvv8PsjzJuxhHnz55CsCbF06RH87IZbOOP0M/ntb3/HxAmH8MSatVRHqli+dCGf+fypuK4fUU+QLblMmTgJSVKYM2cOS5cu5bhVq7j9tt+z/MgVjAwNMnvWbH510+9IJJPMXXAYkq5y5OIVtLY2sGDBAn7x85vp6t7K1y/9AZpq/D/2zjvezqrK+9+nl9PL7SWVm4QQAqQgCNKkSa8qFgR0VGw4OoM4yqAI44gKzoBgHXVGRcQOKFakBkMPKaQnN7ffc09vT33/OLk3N4dbE+B1HFc+53NzzrOfvddua6/fWnuvzZEr53HnHbdz5x1fIp40Qajy9iuuZv7cuZz8hjM479xLOe/CN3HpxRfw0Y/9I54osf6lNbz5zWcyNLCFQrXKG44/lmg0QDioUgGCgQiiqCFKDo5r43oCFQueeOxJLnnrOQSDAbZt3UwkrBGJCdi+QySWZO0z63j04fWsPnol1WoOQ/NxbBtFTKJoCVyhjOA5aIEGLN+jWJURbBdDEenesY5iYTehUBtVX6RsFZG8ImY4SWokjabrVC0LXZXJZIcAgUS8iUAwguXY+IKAoshEws307RmmOdmG7dUiTgsoZDLhKmUVAAAgAElEQVTDDI8MEjHnkOrfRmdzlOGCi6HrqJJEbmSA4R1P0phoQ5AMPAmsio2qiehaDFmR2NO3h9b2TkpVm1iykUI2haEbqLqBqGhoZhBBVghFYyi6ychgH2YohKZqGJqMYZgoZhjfV3Ash4CmsWnbJiKxGOVqLSCSpmtj4LWefGrHw3wBVJf9Yv36jofv2agBnWNOOpaLL7yAB3/+Y0457Wzmzp1DxGxk26YttLW1c9Txr2fL5iH0gEk6V+L++x/li1/4PBddci69fTs4fPlSHvrDsyxc2EU0FuCEE1dxxIpVzJs3l51bt6K4Pr5o0t87wMJDFhNrbmb9ui189Jp/4orLL2OoL8dvHv0jXfPm8bv7H2DlEUciapPvhNsr3SaVc9OJzYPFCX/T4NX13Btq9fapORLr7yiq0Stn/d1Hs/FozYYm836OWsBH/463jM/Euv5yLyNjH9/3JqzLgdZtOg/gbM5W1fMxG0vPflaiGRouZuJ1nLLva5r3vk/d+6Ofmfbb/pm9tsB1tp7b6dJPm9+4avr4Y1ZM0Qd//IAdZ3DxRQ9PdPdCnX3PBcFHGCcLPKHmxfX3vueK7MtHhr1HaMEHUdh776NYK9dHxRNk/L27FQT8scUKScQTasELRAF810XwPXxAEPd63gUQfB/PdQEBWVHwBR9fcPeC5RrP/l75Je6tDYKAJ0h4koDj1353pQArDz+cN5z3QeILV+GgIBsJPDxSI8McsngZVEYIBlR27NrB3DlzMIM6gZCOKob5/S+/TWmkm2hYR9U9glGFgd3b0ENRyuUyEd0nV85TzIeItiRRg2HSg/1I+LhWmb+seRzZLxIy24iEo5Qrgwz2DaGIVVQK5IZ3M7RnE1ZZwHdBsjyeff45mjo6wQPXtwkbAdK9Q8TjcQpOhVgijiCJeOPkty96+IKH6NZAvSyqSEjkilmOXLWCcCKJIOuYYZOOJcvRIw2M9OyiacEhqBGDptZmdDXIu694D9ff+GnMaIiH/vgQhxy2lEAsQNu8OYTiCZYddjiYIqIqISoqAjKC4CL6EpKvUkoP8bNv3Em2fxcBQyKXLrB8xZE0L+hEDYYQVRVBFGtbhH1vb7/VPuPl3WTy9ZXwUs503h1MvhPFOZgo31fqjGs9D/VysL7s+nVzJnU+2PV7Ih4EQcAVRUQ8RM9FkhR8wjTPX8SyI7pYu+Z+tm9ah2X7dMxZgK5pnHfR20iGopx36UV86OP/QltDK5deeinvfveVLD2siwVz59DTu51sOktrczt3//gXHHvsGwkYYb56150sOXQFd9z1H3zm5n/l4Sf+xF13/BfnnHsBjU1tbNr6LEcs7kTQIoiCSzo7yPDQMLKo4rkVMj2DNDe2o2hh3vf+D5Avafz6vgdIJhIsWr6SXT1bOevMU4nEmxDx8R2V9NAeGhuiWK7Ljh27GOjL8NOf/4JTzzgfQxcwTQ3brhAMBhgczhEMhFDU2ln3UtmlkHOIhOOUilkET8WquphmiCfWrKWpeS5mOIisB/FEg4pokR4qc8P1n2f1647h0osu5/3XXMFxpxxHYzjMNR/6ICuPPBpV9jj8yMP43n//iPMvPJNYPMYppxyLYcocedQyJNmloz3OomULmbf4EMxIA5mhXqqFAqnu7VilEbKVNEqgk+FMijntrZx48hFYvkYy0czgnk0ogSBPPLaWFcuP4mf33o3kVvm3m29j3iFLuPWrt/Ivn/gcu/fs5Kr3XMGixYdx4gnHYAbCFIoeO3enWDC/i5c2bsYul7nggrMJhwO8/eLzGezbwUUXncb2l4b4/E238LWv/ReJpiiPPPQ0X/7C1zB0aExoyIqEqhnIyEiCxEsbNjCvo4nlyw7BUFzwLExDwcdHFDUyIxlK6RSD3dtY0LUQAZfGxmZ8UWX9lj3IqkdIrbBr0wsEQ414Pti+hBE0yQ/3IQZNgskGkk1tWCWXgf4+5s+dix6MYlXA9hw0U8UIm3i2jaYFse3aupWv2ggyhCMJfDQqVg7TVCiXCyDKKJJOpVQhZGqIroNheGiBEMgBQrKAVc4RDhkMDg/RGAoiaCJ7ul8iroIig2KXKBcGKFoVTDOJpgdQFB3HAcOIo5sS6fQAmhihnEnj2Sl8uwiWQyTRgu9VEQUPQdQQAiapvi24lREs32KwbyftHR0IoojjVZF8HTkYRKRmlPT3YgvP81AUZSyehCRJuMI+IOsLsPfqaERRQJYkZElm0fIVxGJRQsEQu3Z3s37TC0TCEbau28m3v3M78zvbOerwpRy1fAEXv/XNdHR2kM2WefA3j/L61YdTKqQQfQfB8xgYGqGxoRFZK+F7ITRNQhQE1v7lSTpb2kkN7+HBB+/jve/7AKnMEK9fsYgFnV388v77Oeu8cxAUBcdx2f8O7X0ff+y/+/RaQRTwfJ+9WlpNBs5EjvoTl7GvsfZfI/6mAzZVq/Z+AZteS77rF61XiiariyiKtTOAe/+OB6/AfmGvZ8OTIEweOGpm4Gr2NNNAQgd6BmyioCEHmsdENFXfv9rK3P8mmmnbTPbu6DVD8MpdMTRRmePn0KsVDXUm42+6a5nGgqX5IhUHJElEdiqk+/t5eu2jNCSj9Hb307Wki0SykcGRDIcuXQZCgGyxD89WcIsvsfu5h3ny6efoOmo1c7sOx07nUWQHtzLCc2sfYv7CQxkpJVj2+tejBdvxq2lEUSYWj9cCNykiVjWL4Cnga5TLfex48XGKfRuR3CKr33A+23f2Mbh7B+nsCF3LV6Il5hFKdhFJJPEqFj3dO5i7eAGKao7JIABX8AAR0ZfArxl4PNfCsasgybjFKuFwiJ27ttPZ2Y4lWPiijl2p4uTT6CEVtAiiauJbDn6uRLqQo6mpkZ6du2me24HjVFDUWv6OKCOICqLjINsuhUKBrZuepXfXdrZu3sYxRy8mGgzgyBrLjz0BVwhg+x6uAKK3v0FssvE+Kl9fLS/lTPOdfZCkyeX/awVex783UYTg8cGTpno+Eb3S7TbZWir44PoejlNBlkB0bB7982OsfeRBjl+xhFvu/Dk33votNKFK0BviK9/6BVdffTWqpmCaJpZtky9k0VSTU089nW/851fJlyu87Z2X873v/w+HzI+xp6ef1rYOZFnFt31uvukWHMfhM7fdjJcfJphsI93bQz5b5k1nns3dP/o+rzt2OUODGQzT5OlnXmDOvIVsWvcSJxy3iqpbxJNlwokQ1UrtahtBtFFFk2JxmJAZwMUgl8nw/W//gH94/6UoehOyWAuYNzIygu/7uJ5IMhnHdio4joOLTylnkxnJkoiHCUVMCoUCwWAQQRB48cUNLF68GFHQ6dnTjxpQCesBHvrTo/zoxz/nsssu45gTluE4DmGzdtVXqVShs7OdTH8/IxmPSJPJ9370I9575XswTZN0Ok08HqeSLxKOhHC8MplsCs00SMYSCL6IY9kMp/v5xU+f4F8/dy0/+/G9zO04jHt+9g3OOft03LLELx64j5UrjqapqYH5C+ZRKo/wq18+yOqVq/i3mz5D25yF9PYM8K/X38gLL6xj9fHLCEdM8EV6ewdRBJVYNIAsOHieA3oIP9/H4M4XsYtpNqWivPe9V7Np41bsSpVMvptcboCF85dSdkogqVQ9h+ZECFmsHcdobm6mVCqhBvZFn0+lUmiaia6oiAjoqkbFqtLdvZvmlkZ83yVfqNCYbMCplCmXCkh6kHw+h+85RENhHE9CD0fxPAvZr5LJ7KFiuTQ3z8X1RLzqMIYRxUOie08/ra2tSLKP61mIIoi+iu2UKBYr2JZPIhmmr6cbU1UIJNtwqi7FQo54NIDteWMBlVwPZFWhXC6j6ybVahVZthAlFxmXYjqLKkK1UkKSZQoVi0hyBZou0Nu3i8amBJoUJpMbwDQNJCHAcLaPlsbF+NiMZLdjKAkUtbabxvcUJF3DLteulKlaDrJoAwK6YeA4Hm7Jw9M19GgITwDZ2ycXCoUCsVgMx3EmlBWjMnS8fMpnskgeSAjs2LidRYcu4vG1T9LeOZ+Gxhg//+nPOOP0U4kEQ/z4nl+iGxIrVqygXKoZxB599BEWLTqEnt5unl9XCxp51rmvZ9P6fg49ahm5bAFRlLjjjju5/LILWbt2LW95y1tqV7wFgrz00hM4TpgbbvwaP37wOxiGMbmcn9A/Myrn6mT9dHLSn0avqgsA9TcesMm9AfYNkFdLOTgQms4SPFOre73Hb6LFeXwUxIkswRPR+IV2JluSZ0Mz8aTOxKNXb/WfKY8Tte0o1bfJbOs9VXtO1X8HojhOB+qn4udgaNRIcqA02dnZ2bSdINS8rmPK4EFWc3w/1J95noqPAy2n/jOTMTzVGIJ9c13yLGTRQ3VL3PfDb9G3cyvnnHkyxZF+Un09VKsFYiGdYm6ItY//ESuTZWRwI9bIED//n7t44ukXOf+dH+J1p15MtGE+8YZOtu/qplBxWHzkcUhmgpb2RQyODFCtgOiWaGppIVsoUnU8KuUAQT0MNiiCSu+6R1h5zGk0LnkjNKzEVgNEOxZw5AlnEguqDAz2oisSLW0dFIoF0sNDLFrUhaCqeF6tTqORkPfeSIOCB9UyXrVKoW87u156hnIpT7avh91bN9DWGGH7pnWk+/OInkxYC7HjxQ2YskTYaEC2JXq2bmHr5jXkSjZ2pcJg93oUIcKNn76JxliS/u7d9G7cQPfmXQzt2Mav7/0BumqjeXl2bHqByy+9kDmrT6LxkKWE2hZR9QN7o7ILtX+TjJ9XY1zNhGbqaZwpP7Opy/g1aio5ONu2qH9nMnk6Gjxl/Nyuz2d07h8oDzNN+7I1WhD3enkUbNFEEkTmLujkxNNOxi6WCFd6MMNhIi3tDBaKnPOmMymXS/zmNw+y9NDDePvb3sfrVp/EH//wZxKJOI0NSRYsXICsSsyfN4eR3gypwQKf/OSN/Pq+h9i0+Wne994P8u1vf4doopEjlyzGFjRURaVSsPj97//Eo488xpJDF9HXlyYWayCTzXHWueewecNGjl51JCPD/XTMmUMqNUzACKFKKtVyEa9iE47HESSZT3/iOs44+1jmzW3AckbwMGrbRzOZ2tl3XccwNDKZEQxDxbErKGqY/t5BWlubkSSHSsUmk8kyNDRMMtlAIhalkKuSSY9w1bvfyUUXX0ZjQ5iHH36EdS9u4Pt3/5SPXfMBVFljoC9bCwKliOzcuZtMeogPXP1xLrj4Inr7uhHR+NGPfsy3v/Udrr32Oj744Q8xONiPJPkETY1ooo3h1DC5XJpNG7eRL5S46TOfp6MlwuVXXcm1/3w9u3Zu5p2Xv4vuoRKHLTmUb3776/z54T+zauWx+Fgs6TqUWDzC2eedzsIFh2AaOoGAgW1Vuejid3DhhRchEuDLt3wdSZC54PxLOOzQ5by4bhOLDp2HoksMDvVz6KFLWbB0Fdde+wl27drBVVdewVXvfjtzF3bi+DLkB4mFTES3QjHdgydFEIRatFsEAUGqnbPPZnMEgyFUTcd2bDzXZf369ZimQTweR5KgXC4SjSSoVqtk83kUzcAwdAKmiWXZuJ5LMBTCFaBSzCF6DpLk47hQLFVqTjK7xJat25BEhXA4iihK+L6H53oUC0UKhTyyAq7jYRpBBASqlSqSrCArUfb07CAYVHDdMoISwHM9IuEQhWyGQqVYu2Ndrm0t9kgw1DeEoURQjVb68jkCTfOxBINQOM5A/wCKIhKNBsnn0wwOpIjFYtiWg6LIyKpEqVhFURRkWUKWVMqVAq7rUqnYiJ5NIBSjVHUIGgYuYFs2tlVFk2WGhvqQJBHNNHF8H1kQ9wVrkuUx4DrRul8vizzBQ9c1TNPg2WeexnJt9GCQppZmmtsTCKJCW1sb3/ve92lsbCOXqTB37hw2bNjAFVdcyeN/eYbN27Zx3kUXgiSza/tOMukMff27OO2N55PKpggFw1QqVd74xlMRPI9Vq46mWrXZsGETiqaz8cWnuO/++/j617+GaNQMZJM5sHz8l9Vtn+Fyen2m7pcp5etofqMyWpLkv13Pq2XVrsoZXbT+mviezhI83fdRGv/7qNd1/O/j09VfkTMdeB29umWysg+UXumoma9kfvWKz2TAcjov2Gx5OxDwOtl7rzZ4Hc33YL0lk43x6dKNksi+MX2wntfJPDivNE1ncJhJf03nsXYFERcJERfRKVLyggQMEd9zcC0P01Apl4s1z7XnkB8poIctiiMeUU1EMQUItmL5CjICrldAFVxsx8dRwghOBU1U8ex+fNvkpRf/QrpYZeGSZax/aStHLZnPnq297Nz2JKFoiRUnXw6CghmK1xR1x8NRJcolG9X3qaZ30rftedKZPPMOXUExV6axcS5mYzueYOE4DrIs1/qlKjA01EP/ro2sf+4vtCbbKfS9RFtbHM+MMNg/xIIF8yiWCpTLRULBKLYvs2XTFqKaQLStEdvW2LF5E7nh7SxZfSxmw1IMWaU0tJndg4M0NrSh6TLJxgDJlkUEEnMxAxKSVMbx49iuRcWqBVVRXBvbLyMLKri1LdxQ28ruiq/eVWwHQrOVBTM5alKfdrp16pUqezqeJnp/QuA47vsrZZSbabpRHixRwnDL+L6PI+iovo8t1mKl6LJKpbiLZx68j56tO3j9G88k2LGIXLZEMBjlyTV/oVIcYdGipWx66VnmL2zjggs/zK9+eS/rnlvLiqOOoHt3D2YwwHB6BF1X6erq4vpP/Tsf+uA17N66mUqunx7L581vv4TeLZt54vGn0LUgR79uBXaliuu6/OGhP3LGm84koAZoaYxQquYp2hai54OvcsnFb+aHd3+XK9/xHu69/+eohkBmYA9GoolEMEF39y4uu+x6Hnr4G2M6Rblcrl23VS1TKuWIRCKYobnce8/dnHnm8ZgBl6EBME2TwcFB2tra8Kwyzzz9Akcfczj5wjBmdC7poe18579+yDe+eTfvvOojfOQDb+eDV78fu2rw71/4LE0tEf7981/k6ONXUUxLnHjiahINCrd98RucfvrpY1s7zYSJpqrcfuutvPtdl/PDHz/I5ZdfjKK4xCMxCrbEm896M1e9+3xOPfciTj3zJKJaE33DBULNcXTX5+P//EE2btzEA/f9gTcesxLbh6uuvpJQwuDn//0rXnfMKpqbk/i4FMtlEEv4nso9d9/Pu/7hIpobW/Atj507d9LR2ogcjzM8kiWgBtm+cSv5QpqOzlYisSDDwwWC0QZ82UEXVSqOj26G8K0SqrJvV4dt2+iyhOM4tft8KxUE2SWXyYLnk4jFyBd9NF1BkmpnkPE1NE3BEyxcwabYP4AZjiLrEQoVG4QCwVAMrApuMYcvBlB0BQ+fcrWEYFs4vk8omqBSqaApMlbVAyQ8FxTDR5ZBECQU2aRiOUiCTz6XRlMTDKd2Eo1JFHN5gvG5eI6FoUrk0ykcr4qmGRh6FMcGI6iRHdqBJ0qYiXm4mQF8xUCRBHZueIYlK1eTyxUImCE8z6NQqqIoGoZh4HkOjuPheFmsKgSNDip2GtcrUyqVaEi2Ucr04OoxzEAQt1JA1oO41TKpgV4MXcNXffJDBbRgjMY5c5AkaUyeTHSUbyIafeZgIwkivu0guj4VwadSdBE9F6c6wkiqTDLewB9/+xA/+J+7ufPO/+LD17yXm26+gWrFoVQFTVMZTg3yjne8jWefXMsDDzzAM8//kc995nYGhnvYuOElFi9ewpe+dCs33XQT5XIZz/P45S9/yZLDFxHwJRx/mGOOX4YfWrTfDRCjfI7t5BwXpGr8Lpfab3XycAL5uJ/MncTzOtZudZ5XVTNmrfX9rwGv1Yo7xqggzOyu0pnSwSjvB1reVDR+m9b4LcL1VuHxPM9mu9NrWdeD2eZ9sB72yd6vb4PZKHYzLXcm+dXzcCB1fa37c7Y0U0X4YI1SMwH5B6uE19NMjRizAbGzNYxMZiSYjKYzpPlOHs9x8W0Hx7IR5RC2U0SUXGLxMI4YxXXdiQ0tkojsSyhemT07niO1fh3pQoaRSoWm9iX4NgwP5ZnTOY+hkW1ketN4+CTaWwjForTMm097e/teS6yEbdsoqopVre6LADzu3r3KXk/u6F3Cni/XjSNxPyPgTI1UL6vXFHNzNM/Rbd71i379UY/pjDyz5a0+XX35M00/m7LqaTIZP1ND1kzyH08zMf7Wg9vp5s1MjbpT5Vmj+n6uM0b5FioipZEsA7v38MyTf+akU88g1tjK9Z+7mX+69pM4ZZvB/iHuuuOr7O7eyS233kxzWyuO43H8Mcdz9ZXv5Lbb7wQ1yC1f+AInn/wGhlMDVEbS/PHxNVQdh5WHL6ZjwRxMI8wPf3Avt3zhK6xeeSKHLY9z5Ts+gqHpFPwBdC2CphpIig2ejhEQGOzrYe1fnuHJJzZx4duOpqvrRAxDp7d3G80Njeze0cfCeYexfdeLmGGZSCzB8HCBeCDGvffey1ve8hY2bNjA3IVNJBJJCvkK0WiUcrmK69ps27YFWRFpSXaQL1UIBQ0E16K3bxd/eXoTqVSJp558luuu+wgIHsFggKvf/yFWrFjBoYcexhlnnEEu28OaNX/h2muvIxyK8uN7f01zSwOF4hCOV8RMJlkyfzk3fvpGOlqaQZA4/pQT+MpXvsLpJ59EKBDkwosv4tE1T/LAbx9k/TMbmLdgLql0isfWPMZdd3wVz/M47rjjuOmmmzj5pOPJ5VO0tSxieGQnASPIp6+/kX/74r8RDKkovk/VzhIwEpSLMrafxvNt4rEGrCrYbg7DMLAsq+ZMEGXwfTzLQ1I1PNvCrpRxSgUCYQNBEpE0nXQ2R7Y8RFvsSCQlB5SoCgGqmSFEz0WUVARJwdDDNe9iNY+maSBKuB6IioIuaWQGB+gbHmTuoi5kyyJfKoIgEYlFKZVzaIqKXa4QDUfIlYr4goiqGdiehyLU5nc6nUYQBFRZwnGrSKKKrgdRNBnbzpIaTNHbM8TSI49ElFxGUnlak0lKlQqeCMgSxWyOkKmTT48QiDYiiiJBXWb7tpdonbe4FnOiMojrWIhaA5nUNlwf4okWZEXH9fN4du0ankIuhSFJyOEYqhGmlC4iSAK+UMH3IBRMsmXTkyxZciSpTBnDjCKQw3EcPM8jnU4TCASIRqOkUimSySQVV0QUFKpVl1KxQltrjIrgIboCoivgyDPXT+qNaZIHrlhbK0qpDOtefIZqyaeYLRMJmyzsWkSpVGJgYIDh4WFMQ2LTS+u56MJLWPfCVlYcsRzbc/nybbdyxVVX8Yuf/YwzzziLeDzB88+vQxYs4vEwTc1Jtmx5iWikiRs/cxvXfuIann3+cT5w7bX77UbzRGnMqeX7fs1KOybb9geyAhMbb8fWG29/x9soEB5bB6e5auf/BHgd8zqKrxzff23gdb+tB3UW5PHf/zeA13ov8WzoYMHrZHX9WwOvtTMj+qzffS3olQCvk531Hv98Jv1ZDygOdh7MdB7PpJyZpp0OrM4WUL8MTIkijm0jCAKyKOEj4boOouQBHp431VbM2r2E1YqNKHkovo9iqGRHUriWQ7VsYVtCLRpxREGUVCzXwQgHcVwX35fGgmGMAljYNzZs2x7z3I5fhF3XfZmcGc/jdGBpMqA5vk1n4mUfD16n2gUzEU/1Zc52jE7Wn5PRROW/0uB1JiBzJjRT8DseuE8GXidr19nOv/HemP1pavAqCrWxO3rub6R3N0MDI/Tt7iWXKXDi6auoOi6+JJHO5YnIcRRd4PiTTuaxR9dw3unnsuqoI3n3e9/Hr+67n5/89B5uu+3L/OEPv+OcN51CsrGVQtEiGo5w5MrlfPc730PXg7Q0t7Fu4xY+cPW7uOC8C7nu2k8QivqYRgBJUhgY7EVVYlxzzfv4zL9+ioZEE1o4TC5dIj1SoqFDR/Qj4BfBd3EtEdV08JGo2gKqGsRQHB5++GFOPPFEdu3ahRYKkYg3kM8XufbaT/DlG2+mXCkSDJp4nsOuwSGammNIVobf/OJHfPoL97L2kYf45je+xo9/ci/DqSJXXHE555x7Fp+94Ut89av/wW8e/BVnnX0adsVGUVROOeVUTjn5VNasfYpbb/0SH/7I1Vz9gfdwzsUXY1ddIgEDRayCr9EzNESxWMTKV4jEY9x///0cfsQyVq5ciSvJeI6DLoqkU0Pk8inSIzmeefpFjj76WNKlPZx88sk8+tBL5PJDnPSGYxgYzHD7XV/liCOWcc7ZZ3DFVW/h+9//Ptu3dRMKm4TCOgEziCAojIwMYpomiqIwPDxMX98ALW3NSJqI4qpUqzatbZ3s7u6juUViZDhPS/N8LEumP7WRtral/Pd/f5fOlgRtc7tobYghI+CJBoJksXXLDrq6FpMvjCBrQVRZxK6UED2bgpUhGmxANaIMZUZoSrTh+A6ZXBrVUNmzYRtlq0prRzvxpgZ0SUPCxa4UkfDZvKubZDKJoigUCgU00yA1MsD8+QuplFwy2RSNDTGKhRxBI4gsqWTz/WQyI0TDMumRPIlkO4Wig6xHCJoKmuyys7eX1vYY6f4Sgmegx1QqpSLRqEm5ZCMIQVxBRFdF8Eroio/jVAkEE+zuGSYYC2Fns4RiUXxRxLUkJBlSqSFaW1tRVZ1dO3ZiBgNIkoQRMMmmR3AcB1EUUVWVoBlgz549hMNhqtUqjS0dpNNpwqFo7XyxojCcyQIiLc1tiPqBgVff9xHdvcEjAa9YYWRkiGLO5tyzzuOaj3yQpngjDz30ENdffz0f//jHiTV28PAjv+OII5exauXR9O7YxmnnnsWy1StQAgZYDsFoFLtkc//9D3D44iX4vo9p6jXDb1AhNVwgFDZJJIOIkoqmafvkpCCNGaJlWcbb6xCcDXh13b3vII3V+bUCr/97zrzadVfl1DXGVFuIpko30e8T5TE+/WTKzEzTjVdyJuJlIgvy6P/HKwkT8Tf+73hANFEZM/UITVaHifKtf+dgwedEv83GYj/R1rHp8hi/vRd/y10AACAASURBVPpgvGb1ivRE42Oi57P5AKiqOqb8TnU38GTvz4Rmms9Ev0/3fLq2GKX6uk3H13T5HUy7T9V2o8/Hj7/R9KNewonapX7cTfSZzsgxXZ9O2++eiCBK+IKER+1sSs1qKAESojBFGR54vl+7MkjU8WQFy5NQlCCqaaCHwgSiUbRgABQVR1ZB0XA8Aa8W3xFBrIVs9BFwXR/PrwEAzwMEEVGSQRARBGnvGVqQZAUfAUmUwRcQBQkBkfFXgo223fg2msoTO1k/17870TifrI2nAkYzGb9T9f1kcwkmBqYTjc2Z0mQGkInSTfRsuujr9e1XD0YnI0EQ9vPM1/fRTOo53Rwf5X0yQ5og1BtH6/Lwvdp1WqqE67toepCGlmZamltQDZXuDS/y7JNPYxdKLGhtx/EtNE3kzZdcSjFXJJPO86sHf4emqpx/3tlcedUV3HffAxTyFf7nnp9w5PLlfOqTn0IQNf7lU9cSjUVpbWlmw4Z1WNYIL23YSS47wOoVSzGSc5AMg+FsDj2UYOeGdZx8wjHgVrjynZdz0lvOxlBMorEqebtEQIugKB6VSh5FERAECcOIgiBTtav4ThlRFAgGA1QqZVJDI5i6SblQ4qjlR3LqyW/knnt+zLuueBeu65JsSRIwg3Tv3M6m9Zu48eavsubPf+CzN38OxQxj6kEef/xxPvzhD3PDDTdy7LHHcPUH3se11/4z+VwO8DnppFM45phj6Voyn4bGBE8/9Sx3//CnnH7aqVx84UWc9abTUQ3AA9XQ+OEPf8SSQ5bw2JqnuOeeexjo62HVUUdQdW26d20nkYxiO1U6OprxPJ9EIoEoiNx5xz2EIgoLDmkh2lggEW6kXK5y3Otfz9GvW4WiRDnttHMwzRh33fUtjjlmNZFIkB07t6OqGpWKjWEEsCyHYrFMY7QFWTKJJzsIhnRG0llkRSESieA5jezpHiQa1Xnh+T8R1uZSdT16ehyeXfM8559/Gn17uqlaLooZIZtN0dzcgapqaLqK7zgYmkZwb3AeAYtf/Or3LOxagiS4BEwDfFA1DVU1aEw20trRgR4IUCyVkWSZLVu28MgjjzJ/wUJa583HDIYwAkGiiSSaGaRUKaMbYfKFCoZpgKeQGk6Rzo4QDUfJZIfo7JxDZsSgs2MhvlfAdQdQjEZMQ6W3ZzdtnZ2UijYhM4Bp6ujBEIlwCNv1kTUVWQRd17GtMoau4rkOgqBiOyK6YVIq5zCNOFY1Tzo9RCTZQmZkCHwZz/fI59PEGtpxPA/TMOnv66WxuRnLtjEDQQzTJDWUoq2tndEIvIqi4dgWvm9j2xV0TSMzOEgiESeSiGK79tguoNE1eyK5VC9zfd/fe5NC7ftTa55k+/YdzJ2zkFKxwpzOThYsWEhHZydPrFmDKEm844p/YPXrjua2r9zG+g1buOSt53PqWWcgmSqeXLuWyHVcPAEWdB2Cqiu0drZjhMJogQBG2CDeECcYCdSi60sS3t7rA30B8PdfW/YXVS+XW6PycbQ+47+PTy8IwthlZ2Ny1J/4COQoSX/L0YatqufDOAVAeLl1fPzzyRSU+t8nssSODsiJfpuojFGa7PlkPEz2fDLloH7RnKjO4+s1us1udGvAqJVkqrLraTIFZKr364NXjbdQT+dFm45myvdoGeN5qe/rmXpkZsvTZONmsnfrn8+2jQ7GQ32g3o/Jnk82ll8Jmmy+HWz/vdI0vi3G979lWTz99NMcd9xx+yyWE6SdzXiZred1OlJdcIXa9iYfkASX2n3sAiBOeR7Z90QQbGRcBM8AuYjrqfho+IK91/o6KgtkRs/FCOy9Ikl8eV2m8gg6ordfOtlX908v7H+0ZKZyeSqaaq7XP58IUB7MfJuqLerLGh1HUylX48HrbOTxdPNufLoDOQowURvPNJ+pti/PpuyZvvvy/q8fF3XGU8FC8GvjXQBcUatFo6UWEMb1RAb7BlEFmeeefo6erWtZtnwZg8NZVq06njdfdgU9qQy9u3dy93e/Qee8LkZSOd761rfz0U9cz3e/fjsf/fB7eOPZ5yL6JSzLQlZEIpEQdnmIdL/K42t+xYL5Hfzkp7/i/VdfSaVS4lvf/AGJZJJzzz0NVZEYGcxghuME7CqPP/YNLr7sBtJ6kFBQplq2kAWdeLydGz5zM++9+r1E4hqmZJLP5xFFkVKpRDIS4E9/eogtW7Zx4gkno0eShMNBHnroT8iKyClveB2//t0TnHnaOZRyeW6/40tccu6ZlAjy3LY+jlu2kNu+cis33vgZsrkUczrn4XlQKBQYHtrB7bffzrvf/T6+esddXPmeK1my5DDe+Y4rOeXkMzjrnBNobevE9T0sO48hS1RckT8/9DgdjR1c+s4reHrtEwz17+GO//gSN37uZobTI7TNb8PxbHwLdF2lWMwTCATI5Yax7CLR0FxyhR4Gu7cwZ+5hIKkUinnKfg7fk+nsmMtTTz3FskWrGBrejaqJhMNRDC1KLpcjnU6j6zq5kfUsXHIU6YJLMNGAIon4VoVdW7bQ0NZC0AhSzpeIBmKUq8MMVYdIxFfy3CO/4/AVh1DK5YjHmymjIUkOjg2SpGDZBezUIJbn44kKhhlC9y2MWAeWbyNYKSqVLLIcxPMNVDVMVS5RzOURXA9VlEk2N+CJIg4KCBKS7O4vHzypFtTJ8fA9GdG3EH2VfHaQTKafhqZmBgZ6SMRbcP0cmqJjlyvkR3K4mkJAV9FlDVfQ0ZQEw8Mv0D+whWVHvAnNEdk5tIdEU4TsYDfhkIYkmxTKHoJsEAxG8B0XRfQo5vsxg/MQ/QyZ7DCB5DwK6QEi4UbAR5AsHMkA10dwABc8xSWXyxGPxykWi4Q0A9u20TSNHTt20NkxB8suo+sqhWIORRTJDI8QjCfIuTbxWNPe87Uew8PDNDU1jQVxGk/1t4T4vo/geLV11fcJKDp7du3iA+/7KLff9lUe/vMf+O73f8B1111Hc3MzH/vYx/jEJ6/lo//4YY46chVXv/9jBJIuXV1dVGwLqEUwBhHfFxAFGUes4DogiioCEqJos2+9FRHq9F/Br8M++62/dXLLf7m+Ml4Gei5jz0Vxn54wJk/r3q+nv+ltwy8Dr7OkA9lmPJH1t35r2kQ8zUSpHu3kqZSGehAz/vt4UDaVBXu8MlyvsEynKE9Fk9Vxsm1Z0wH+mVL99UH1+dQrjfu18d7JOnYVkbS/kJkpj5Mp1TP1/k9GkwmGAwEks1EwJyt79PdR48Pods2peB+f74GMrZl4l2bqQXulaTIj0svS7d1Cs++HfWlHDUrTteNkwdpmO48OFszOhiYzuo32qSAIY1t8R59PJU9nWvfx701k3Jvs/QNps3qeZwqAZ+I5nIqX0fk0kbGj3rA60Tb60fIn4nu6dejVotnKx9nSaykfJi+jvl1nF0RKstyxvuvv7+epJx6msaGdvr5ufCzkapFE4xw8X6bjkMU89+yL/MM/vI+P/uPVnH3iESCrNHfOZdkRq/in697NR6/5OJ6jsKd7iF/c812U6ggNiTixzi5WnnIG8XgSzxWQJA28HBtfeIElS5eyedMm5i1cye8fupeVK46mlJcY6t1CS2s7oViMTDZPoinB1hcepnPZ6/ALFWTJIJXaQjSwACWQwvY7KJYHMEwNVZiD56RxBAmnWiAz1ENLRxeVcp61ax7F81zu+cl93PiZLxKKyNxyy5c4++yzOeyww7Btm8ceW8ufH/4DP/vZLxB8k3+/5dMc+/rVVCoVQsE4kZDObx/8PV/72je46KKLeeCB+1lx1LEMDg7yqU//Ez3du5i7cAGSImP7Hp7v4DgOpipRLhaRfA/HExBEHcf1kUiTyxVJJhrp7e1HkUVC8QCW62IG46iI+B4MDaUIBAIEQwY9e3rJ5nM0NjYSjYUYyRdpjDWhyQqSWKSnp5d4PEm1LLN552ZaOhqhUqJcVZgzrxNRFRFlyGc9ZFmkVMxTzudoSkTI5MrEkg0U7Ty6Z/H0Mxs5fPkqBNkhly6SSCRw3AqiKFAqF1AUBUVRyOVyyLKI4zj099euvdGVIDhpRFUj1DAXxz8wWeD7tfgD1WwB3/fJZDKYoTCua2NqIoV8GkOUkAMmBcvCLllowTCeIBLUVbL9u3AQSCba8H0fyy6QTm2lufNYinYWQwS3IlMsjWBZFk2NnUAOV9SRJY1SNoWsa2QzRRoaI2TzgxhaHEUJ4YsSllMmKLn0DaWIJduwnRoucH0JXbSp5tIIho6mKeQyWUQRBNHAqlTYsWUzhy07lM3d/SxZshRRkHlhzVpWHHM0rirg+y7e3iMvvu+POYxG2wVevh66VYHTTziFL33+i7z1He/k+s/ewo++eyeXXnAW3/nB3ZgNTTREInz46vdjRkMsOWoxjuMcsDFwuutrxhumpzvj+vIH9Ua6mcV4GP39QK7K+Tt4nQGNRUHdq8BPFnxjNpb8UU+oLMv7eUSnovEDoP4c7ETlvZrgdaYK4GRtdaDnDqcDr/VK4kTgdQyI4c5IeZ7oDNyEd/xNMh5mqpxN5HH9awGvwH5jv54mMmJYljXriJ9/y+B1dL5NBV6nkyH/G8Hr+Dn7SoDXqXZQ/LWC14P1QtafCT8Q8DpeNo7+laRa5NLXcpyM5wv+usDrge4MeqXB69hYl/adS/N9H1FiTK7KsoxviYiUGOjZwdYXXqSlpZUX123m0EOX0tjeQiafI9nQTKK1nXyxjCjV5Hi1WiYQDOOUC4iCT9VV0LV9irckSTi+WPNOhUK1OeyC7RaRJRUBBU2F9OAQ2dQAhiJjKB5P/Om3vP6Cy5Hxcaw8rmSAb4BjUSxbWHaRUjlLQ6wLu5ph3foXWLp0CaoiIYgqsigx1NfP2972NvJFkUvefDpfv+tuNr70JIIgkE6niUQi7Nrci2HKjKT7WdS1lJwrEArrVK0suq6THywTjUbw/ArrN7xAONxIc3MrqVQKUQRJdGhubgZR4IUXXiAZb+LJx5/g9NNOZvOmjbTNSWKYISKxBj7z2Zt4/3vfTjLRgucobNu2CySHBQs7yeVy9PYNs2D+PLp376GjYw6apuFaebRAGBuZ7j29BBSfxvZWNq/fyLy2DtZt2cSyZYdjVT3KlTyJWLzm8ZMlZFGiVCqRKxWRFJGB/gxfufU2PvXJ62hpbmTPYD9Nje0IokxqpB9DUrBdj1KlTEtbK5lUnng8jiC6+L4Hoki5XB4bMwFTQxAEqtUqvu9TqAiEYgaWYxMIJPHd8qzG/thI32vk1mQFx3EoFosoxRRV26Jku8QaGpGsMoKmUHY8JF9CE20sZCqeTLVSJhmVKJdcSqUyobBO2QFDakTXC/hOmWJZRpZrc0jXTSqVQTJFm7bWTqxiluGRCvF4Q03WYWGXMkhSANXQKVXyOCWHUMhgcKgPSRHBlUm2zaF75zYCioAn6wTDEWzHIxSNUimW0FWV1EA/Q8MDzFtyGFbVIRgMo8kSFddGlFWsbAklWDsSlEqlaGhowBvFjJPokzIqmf4UD/3uj3zpK//BjZ/9JLt27Oa5Z9fxxBNrUUNhPv7Rj3LrrV/iz089huMVxuT4bOjv4PX/M9lWjdHRCTJrJUGYmdL9StJMPAUwveW7HqhOV/fxYb1Hfx+vdE2lcB3seHitAMVk4Hh8XV7Gy7gJVhNuLzcajLbTRNvE69Mc7NipH6uTKcazKWc2nqDpxtJM8pkJLwfqdXq16NVSmiddJCaRPVPRdDxO1j8H22/TlTuTK0imknsTjYMD7YeZjqnZenIPJo/peDpQxWOyfCcDxBO9NxF4nQ290vPmQA1sB5sOXn40aKZ5T0RTrwUH53mtL1/zBMDB9yXwJSylhCIHsSsChuzgOCU836GYtwjEk/t0DL927Rawz5iGOI4/ERER8KntsfRQ63QSS1TrqubS3d3NnI4O0ukU655aS6OhMSIE2bbpOS448w2IoXnYYg7NClD1YPOWTZhBga/f+SOqRYdrPvAeEk3NuJKIa2dwLJdqocz99/+aN1/2Th787a/5yb0/4xPX/SM33HADd9xxB5dccgn3/epXiKLPwGAf5ZLD4UccjiS7KIrIunUb6OvpZ/XqlSiKwnPPPcOSw46koTGC49jgK3iOiyxJrF3zJCPDKdrnzQEgbGo88dijHHf8ChAVvvmt/+b8Cy+ivbUFTdOIRKI88sgjHLFqNaoKdtVC8lVS2WHa2zro7x+szTMBgqbB4NAAiiihaRolu0y5WKCjqRE5EEWSZERRxhYtqHqk+gZo6Wwnn0+jKArpbI7GplYsB3Adtm55iabGBlBFwmYMq2JTreYxlDC2X0LVFfKFEvFILYpvpVqgt7eHtnnzawGLDIPu7m5ak0lGRkZIJBI1UKvryKYOkojsCwd7zfoYiaKIPZJiy/ZtdHUtpFQuMLhzO/HmRsLxBHbFxqkWUYNRHFGnUi5hKi6FfBUQkWSPQDhKbrCMImeINDbS1ztENNKA53louki1nEcxw4iiil3MkynmiEdbkGUF17PIZoYJhRpwfQ9ZkyjnSgh4CL5NMhFn+/atxFrnIUkS/Xt2Mb9zDtlCBT0co2q7FNODhINBZHx8XFK5IpFIlKHBFHPbWvAliZLjMdA9hKz7JJNJbNsmEAiAIk3YLmNGXE/ALVhUixWyxSJRzWdgpIAgG2xa/wKLDl3G5k2baOlsYenqI5ClA5O/Bwtex+OtmYLXUWfhTI3xfwevTA9ep/Pe1Lv2JyvjYBSe8duAR3mdagEcD0JHtx1OF4RjfP3Ht9nfGnidqi4vO0M4CXgdvYB61AM+tq14EqPC/2XwOhsP0v9v8DpZHf8OXg+83L+D15mB15kYLmcyj2YCXid6PhGff63gdbpdOP+Xwas0umlob/mWLIFYwfcU8DQMB3zdpernkf0otusiylU8V0QWaneeSoJQU0YFq1a+LwIyIpW9gFZEwAGCNX4FF3BwBGM/XjSvPI5/DwGPsuUhqQYOIkLVIigK2LKG7Ob4+FWXcfUn/xMpOISU1zEb5qLrOj19m9m0oYfVK5ex4bk1vO2Kd/Hbhx+ns6mF9es28M07v8kV77qK/7zrP7jh+i/T3hmmWvExTZPe3l6am5sxQgLFYp7v/Nf/oCkx3vHWU9m6bTMd7XNQ5CA7ejYyf34X5ZKFgELJtbDsLI1NSQo5l1u/cBu5TJa1T6zhF/f+FKMxhOu67Ny2ma6FCyhlh4nGGhgYyiBKCrFoA5u3vEgiGcYwFaropIf76GzpwCp7xJoiOLaLKMoUi0WEQBjRKiBYBXZv3ULXslUM54fRZZFoMECp4vL88+tYMP8QuvMDdCRbUF2RkUKBslOic+58BFEhX6xiGiEEESqFPIaq1M42WgIKMq5VRBbDDKZ3E0sEyWTLtLfM5cUXXyQQ1Fi0qIt81cKyLEzTxHEc0gMD+L5Pc3MzPT09dC3uwlFlHMdBwcP15QPaJVJPNX1TR3Adcul+7GqeqAxF2yZXqdLW1EoqmyUUTbBjdw9zWhsZGuynrWU+rusykh4gEQmj+UHSpV0QjBJQRUaGy4RCERDKlAtlihYkE02ogstwfg+CrxOJJKhWiwTDMWxHxvVAUFxKpSKGoqJLKtVyhUxugGjLXIqlEkFdo3fLS7TOWYDly6hmELswjK6q4NgUS3kCkSi5bIGRkTRyqYwtSRgNjTQ2tLF10wvIskwkEiGZTOJr8qTtYlkWg339DO7uoyneyIbNW7CG+3n/xz/JrXf8J5GAyNw5XQz09bJwaReN89sRvJc7aGbaD8CswCu+u9/a83fwehA0um14VCGdnurboq4RxYmVjIkU7pm6vifk4kAW+kmU39FIitP1WT1wHR/GGmp1f637fabK+FTtNRk4r6fJFLeJ8pmKl8m+v1Lg9UBotp6dA+V1OqEz2dbN2fJ7IPSy+7Jn2Q3TjbUDNcBMZhwapYmMIRP1z0QybjpwOltgMdt8JqvTROWNTzsbJWiq/hifRz2P49t1JmvDgczbUR5muhi/kmXPJr+xtprGgPJayv+DNai8GjSVnJxN2xy0gj+NLBt9PnaG7mXHn8b3c53MOEg5OZbPFEb1qeabV5Hp79uNrvg8/9zTHHXUsQiCwNatW9m+fTu7d+7i1ltu58k1a0ilhug8pANRlnDxsSyLUrFCJl0kngiTCAUZHh4mkYwxNJjCUH1c3yMSi1OxbEaGNtM57yge+tMzBEyH1SuXs27DRg7pWkQuX6atMc5Q1iUUF9ny/DbeeOZb+fD73sUn/umDSLpKqeKAIuDbFTY9/zxHHn00zz+3jmXLj8DzPJ59+nFMI8LixV24XgWrVGZwsB9VlVFUmVhDB67r1gDwzp3M72zHQ0I1TCoVC122a9f0WBbVapWmtnasioCmK7gVC9/3CQQNnn/+eQ5Z0EUonsB2HXZu38i8Q5dTKuTwHBfPqhJXPNZt7mbuwgXs2b2exmQSz40jqTaWB0HdIJPJ0NLSjK7rPPH4w8z/f+y9eZRj2X3f97lvwXvYgQJqr96mu6eHM+RwOEOKFE1K5ISyJCf08dHmOPaJTVtbQh0lkhnZlE0lCnkk2XJkiXJOdCjLcWLLVMTQx5IYSpTJ4TJDjkhxG87ePV3d1V1dewGF/e0vf6BRjXqFBzygUL3M4HtOnW4A9937e3f53fv7fe/93ftfRzqpsbu2wqVLl3j2uZf5K+98BzFNkFt4HfF4nLW1NZaWlvAkmVQqgaJ2mPnRdgsIIRC+Bb6KLGk0mmVo1dlev8GJE4ts7NWYSsepN1qkclP4QkJCo9ncQdclzIaNT5JU1gMviRpzWFm+xvTCKer1OsmYIBbTkRQFSZExrBayUDBNE11PAFCpVEin02xublIsFqnVKqRSRZAVPGxk19+/vmhqagpVl7n88iXSyThC+PhCI5fLceXKFc6cOYNpuei6TqvVAqEiyQ6uZ1CttMjkczhNn1QijZRW8WUX4UvcJEwRPvsBm7ZWVjFrDfJTRTa3y/zB//OHvPsdj3N1ZZnf/M3f4Nd+7Vd56ktP8ehb38w73vV25k/OYTr9gx71a4dI6JozugMuteeTg7sUD61HIm4b7lUWgBbXh9ZO98xVOa7r/y8wPhYn2J5hHvJBvw0uJ3xxF55P7xlslEnf9/32tRFdkKTh63BcXvdBzx/197A0/dqwmwGI0r86aW7XIqxjFEVNG/wcRdZBBv1RxsC4cajkMS/KRn23Qe0Utush2D5h6aLIehTZR8lnHOM1Strg2djuOuveWRJFr41qvI4jr9thvN78XyDhnXNSB+eOu9V4vZ06fb/ckC/264xbdSZJEj7BdjxAl0TKe2gZBzicw6AnVXKFPMlsnqXT59HSCZSEzsLpkxTmZvjO88uk01nymTgf+Ln389STT/FX3/MeyjslctkssoDHv/cHWZg5xW999J9zZXmVX/rQR3jf+/4ehYzMH/z+73Ph/HkkYG5ukabhMTM7zdmzC7z04ssoSoxkKkk6k2R7exNF6GxtrjA/N8/7/t6P85Y3PYTjN1F1hb3SLpZjYtoWD97/AC8885ecvf9+DM9HaAkKGQ0tpuM4FkLy2GtBKldgamYePZ1hZ3OLnZ0dyuUy586dw/Wh3mggZIEkw9bWFpoeJ5XO8MUvPckb3vBGNjbWmJ+fQ8hN9ESMG2trLCye4OVLf0l+OocnBMl4Asus0KhVKUwVuPjSMgk1wV9881kuPPA6povTVFoWQuRRNMGXnvwKJxbPkslmMe0WO6V17r//DKZpUS+XuPjMM9z/xrfxnv/qhyicOsXM+fvIJLIISbC4tEiz1WK3VGZ2dgbf9272qdHnFP9mhHoPl5iuY9oy6VwO23HIFKYR+NSbTVLJBL7vU61UKU4VMVoOmp7A9z22d66TTk5z5epllhYWMWyXWCxGdW8X3Ba+56JrGs8//zxzsydQYyq2bVKplMjnCzQaDbLZLNvb28TjOrqewnZdhOQjA41Gg+npIltbWyhamnQyQam8yYmTi5imj+O6zMzMsrO7i65rCAGyLLG9s4KqyjgWFAszrKxcYXq6yBOf/wJL87NoWgIQeMJH9T182tvJXdclJmS+8Nkv4fnwugdfRzqb4uTJAo5j84XPP8W//3d/yPLlNVRN50f+1g9DDFyn/3Uz/dohYspD/7317KD1yLA2y8HvFVX55YhCdhVxjzCvnW3DHQ/pQLmDW/WG9Qz0yjLQEIMYrZFZsM4VEp10XQFfOghuN+3+vbscIQSuE7i0fQzM66jsVBDHtYUzmGe3YWbbduh9gN0yBWUMwyisV69rUaKwaMMwYKPIdtTng+8QxREQNibCtlYOyygM6qvBcqJu6Qwrpzvfzhb/YfMZ9MwgJjYMo7Jg/djk7siKRykjzBCLup10UJ8bxJKG/d5LR0SRoduZEYXtH2aHRC85DvTZwDUInZ1GUfpWGLrbehhZj4t57a7bYQ3PUQ2yMIQ9N2ibfVTm9dbv/bYhHw/zup/fAAdOsA5kH5AUXN/DR9o/R9dpL9twwYV4TOB7LT75h3/C3/rb/w0f/Ve/ze/87sf4P//Vx/jAz/8T/sGPvw85YfDlJ7/J4+/+Qb777Y+wt30Nx/dIJNPIqk4xr7PXsPCRyaYTbK/v8L//zv/BP/2lX+T62jXmZqb53rf+AJ//4h+zsVvh1KlZXn7+GR559DG++sxzZJUEb3rb22i0LMy6ga5DtdZAS6bR4gka5RvYliCbzWI7DXw3hhpTEMJHlgWG6RGPx/fHRtNxsC0Ds96gUMxjGg6WZeF5Hul0mmq1jmHWOHP6LGtra8RisZv1AlNTcUxPwpfieK0WMeG27wdXVBzPxd4zIa6wcv0qJxYWELKDa6bwvB3Wb6xhIXHhwnlkBer1KtXNEqniLD4yi7MzuKqG66u4uHiSheIe3N7q+wIh/JvrztGZVwAfBYTVJot8Gd9T2dtYRZFshCyRymQp7+6QSsbZ293FMOucOHk/1VqLFiuINwAAIABJREFURFrDbpnIMRNVFCmVN2nUKpx94A2USiWyCZV6rQSSTL1hUyjOUavVSWcSvPLKS5w9dxpJxHEcp31frG1Tr1fJZGZwfLBdg92NNRKJRPve4WIRX9GxzBZJTaXZrBOLZWg2m9RqNfL5PIrc7r+2bWM0Smys73LhwoM4jomkKtge+J6MikMyNYOl+viyi1Mpc31tm1Pn7sOyLPbWt/jqF79OrVHjvX/jvTieTb2yQ73W4onPPcWbHvku/v5P/QQvX3oBERegePvbhgeNxyAirw17MK+3vujN+g5iXkMxBub1njNeB5153ccRjdfuMsLKOqrx2lkMHMqj60oXYP9sZresktQOd959fUmY8Yp/61wtvPaM132v9c2yDMNAUZRDTOvEeD2YX7/Irf2e6y73bjBeB9XBvWi8hkVFfTUZr1HarSNDMEL3MPlHKX9cxmtYWfeC8dpdzt1mvEY5ix1FhkF9Z5AjpddzQoj9MTKsLruXjVfNVkEWWMLCFx7Cv2Uk+b6PKjnYngKSi+OaJOUM1VoVNa7jOA57y2tsbGzSbFVY31vhpReu876/+9NMFTWuXr1Ks2mQTGUozM2xee2bPPkX3+DDH/4XfOLjn2Rhdg4Xl9xUBl9y8BwXqRXn+uqzPPjY27DMOlazRTI5jSWliXtbVG2LrXKNpdlFLNfCsQxymQybG2vYTgtZipNMxllbX8Grt/A8h7m5GTzfgXg7SFI2m0WSJBquj2e38G2TuBYjFk9jmibyzejRkq+iag5XrqwwM32WTCZNo1khmYqBBy1H4EsyKV3G3atjuRZNu0kyG8fctUnNpHGEi900WN94hZMzD7KzfZFGrYpbNajXG6iqxtn7zhPLTZGaXcSLp5BkD8tqIqEhfA8JB4+DxqvjtK/mGYfx6nkqSAbgIok4iqRi10p846tfIJVKUTxxjmRcY2dzjfnpApvby8T1WXLFOfYaJWQXDGuPTOIEPg56TKLacqhUKtx3Yo6W06LeMEikChiGTzahIYRHo1VCkj2S8Taj2glOJYSPZUlIagwlJtAkD9M0b+mOmM7KlRVyqRypVAZVV/e3esuyjCq1I3+7rksmEadRb58lrtTWadQtivMn8IXMxiuvUCpZLD5wH45sUIhpfOu5l/gr7/oeGo0G5l6NVtnhyS9/kcJsnsUTCyxMz/OJT3yC++9/gO2tXd76zjezcPIEviKBLCG88cyrHdzrxmvvE8V3MboXEsM92D/0cxTDoXvi7xg+wbz6MaLBMsMWAEJqT8aud3BR2Ek/KKDQ4W10Loi2Edz+rmdV9MW+nJ0B1Mmk0++HqMee+YZ83113kZwW/q126VwY383UCyHQNG2/3ob12A/zDv3SBw1XuLXY6GwVu5NupUP1MuCwf6/dAcOU02tXo0C0+9sxLbq6fw86EQ68x4gBmAYZCmFGUcfoFUL0vAC9kyaYV/f3g4ymXg6vUdDv2pio6PV8L0MkKGv3c/3kD3vXUQzIQfUZ9n0U42eYNuhV3oHvhLf/Lu0F8+ArhKKgU85RdGZUp8QwGPZKrmHLjNqOh59z8X0Qov3/4Y3Vg+VLgQcOG7PdvwXrZJDe6p9+kAMnCFPtnJNrB4U6ILoQWP5NA8kXyJKO6VloSb1t2Koy+fMLzN1/Atn1efLLX8A2U/zAD/51/tMf/wfmTp7mo//yN/m/fvf3+Dcf+10qTcHelsKn/+izKGo7Em25XKG8beE4Dq5jce78edjU8T27XYYWQ1VN7PoOdiqPcD0SMYWLl57nwplFdFVibe0KmXSOeLzIdnmbZDbNrHuSwgPF9jnK6Xbk22argRCCrY1NWq0WMzM6qYTOpSvXeP1Dj2LhkEprGC0X/Bi12hbObhNh+biqj0cT120gqUlqNYd8Wsds7fHKd65y6v6HiMkq22u7pEUeT6qi2IJauULTlZlKnuFTn/5jHn7j67nw+ncipdL77SKEwJdu0h9uC9cFGRlwQIB3IOJ0G7LSjqzbXoccbVxJkg3I7T/fxbRd5ESC6aUzTGVTbG+vM3X6JNl0Atu1gATxfJFqyySlprm2tcwD959n+ZWLzEwXMJ04xak0cU1gOjbllkEqJpOUXZLZDNdXX2J2ZgkfE009geFYZAvT1FotFKV9FVN5+xrZfAHHSRDXNGTPxmq1SCQS1KsNXn/faZavXSc5O0u9tsn169fIZDJ4jkVh9jQ3rlzk5H3n8TybcnkH00yRzuRIxGQEAsMxmTt5krklm+eee5Zz585jWDZ+08auGShqjNziEtftFd71fd/LXzz9NI29Ot68wvzSIl964jOcv+8+pvNZNC2O4XkIz7xZj8PP1ZHn+D66ZOC6foSglEfFPce8dryswzREFIO3X5ruxU7HEOrFqASN116XFEdhszr5wOFtR53IuP0WxZ066twn2SmnJ8sbEYeM105ZRzReB5V3JONVOugkUFUF1/UO9aF+bErUADDjCIokEVyYDH6mW4Z+ZRyZ7RhgvHYcLqMujPsdyYu6wDs2RDReexlD0L/NwozXQWzSIOMoqlEVJnsQ49Cf/fIO6tNeLNWgvhx233XUdw2O417Ma69nepUxKN24FyDB/tPt5Aw6ZoLP9XKkjROj6qxBGIfTMer7h83pwd8PYzg2dKDxGmGOuIXxGq8dRK/3QVHJA0Fg9v3i7f9YeGiqCo6HkEGRdQzDJaYJ6vUqAImYxtXlK+zt1CgUpshkU2QyKXxZQZblfSdgOwBUg899+jMUc3my+RwXL77Ao48+iCK5xJNT+zpndXWVfCGNqqUQIs4LL17ijY+8Aaf0IuXKHoVzb0YWCqqq7u9+c2wZxzVxHINMNoXbMvA8i0xminKpzubaJc6dP8X6+japZJ5symZ9p0ymcIZKvcJcIYfwBEosR8tv0mo0+eaXv8IvfuAf87bvfhM//w//R1LpHJcubeB6BsIzmF9YYnrxDMmpWSTZRQgf31NxfAuAWCzWHv+B++wHYVxrhl56s1PHqvBZuXIZ3TeQlBhaKoMrYlR2N8jk8qTTWRrVJkpMpVGv4rsOcU0lkcohhKDRaFAul5mayWGbFrs7O5w+cZqWlMT392hWN8jpD+EpdcrlMpqm4fs+6Vwa22xRr1aYmZ7GdhWE54HrYNkGlivANlDjCWQ1getUUbQElguepCJbNtmEjuE4eF6TRt2m1bQoTmf3GVklplKv1qhUKszPL9JstPA8+PYzz3Ly9Cnuf90DSIoMtssrFy8xPzfHz77/Z/jfPvob7bjfpsUXPvs5fAX++o/9GEKLt8eGcI7ULv3WuUEEtVknxahOvMMFvIa2DTs2fmcARtr2NEZPQHfjdi8ooy5YOujl+Y+SX3c+nf93M8BBZqGzaAleqeM4zpFDoA+aXPvJflvQfR1OV2TGKFcShRmh4xojg/IJW5hEWUR3MKjPDcOIH6iLgLI5lM+AnQ2D0N2vDskcssDbz1s65j42hPEapY16FuEfjKQ9rj43rHHVLc8w+Qwy8Po5iwbJFLUPR3USRjX4h5mgR2Fgx3EdBfSeA4Llhu3WOfIipEeZvb7vpVfH4TAJpg+7n3uYPjcsE91/PXI049UjsGYYynE3HuN1dMfLaMbr/u99nLedtB1nvmVZCNHeZSBJEq4fYBO9m0exbhqymqbRajVQJI8vfeELLOWm2d3dJZVKkcvleO7Fb2NaDvedu8CJk6excdhYu8TC/BK2p5LMFpAkiWq1iq7rlEp75PNZSqUSm5ubXLjvHJZTQ9M04noKo16l0SqxvbWLLCuYlTVOnjtHtnAfruvzhc9+ht3NDX7ob/4dZNUinZpi+dI1crksV19+hs2dTR557M3MLpzFjk+BZ+MDjogREw7ta5CgvZky0OcGtntvjM3xHQJJkvBbdVZXV8lkMjSaBlpKx6iUyWQyuJKOYTRIJXQUSWCZBqqic/nyZc6fP8/Ozg759AJSTEaJmeyuPc/M4mNIJKnXb6ApRbbKKxSLRarVKvl8HtOHre1dZvJprr/yHIVTZ8imU1jN9v3I6dQ8wjExHBdfxJB88Py2I9C2bRQNXKOB6QDCQ6Dg2OC4LVKZNK16A9ewKMzP4no2AhnfB89r37PsWw7NZpNkMY9kuzzx2c/x1JNP8r7/9u/iSTanTp5mbW0Dw7B439/5aT7/tSeI5zSEpxxadwzbLlHm8A66U/i+j9SnrF5O9oE6dGK89sFdYLwGnw9bwAQZg16Lr+6zZd2/ByfrzgK623jt/N6R/U4ar8etECfG68R4HTuOwXgN0wWd/x+38Rpc6N8J4zX4TC/nXr8yO+hlkL1WjdfueaG73G5H5p0yXnvtRIqSbxgmxms04/VWG7v9EnO3Ga+yz81ItTfzEk77GV9BuTlXevggSfiSA76E53UW2wfzVl0FT4Ajge06COEiIeM5PopQ8KW27l5bW6PVarHz3HeoN2s89PBDbO1s8frHHqYm5/AtD2tzleLiKWzb5uLFiywtLVFr7LC4cBLPlRBCpd4sIyk2yWSc7e0yuXQRIbVjbVQqNS4+8zVOnDjB5cvrIKd44+sv8PSXn2BmaYHta5c5f+ERivOnKMzPoKRyWC7UHAMlrpO1W+BauI6HryVwHR+EfbNS1cN96i4yXiXfwxPtNazrQUzR2CvtYDWrCM9GzebwGnvU9irMnXoA261i2xalnS1mpgvoahwhBLZt02w2sc1dhDqFpubxqnUa5rdJ6I/QcktkigkaVZlEIoGmae3rdfKLWI6PLkxEq4yhziB8B991kCUJDwurUQVFxbShOK1h1CvUy9skEzpyZgnZs1jf2iU3NY3Z8shkcgjJpVRtUExlqWztkCpO4YoWAhnbdtBicVqOQ1xScR2H1FyRz/ynP+H82XPMz81x8cWXuPDQfXz5qb9gcek0v/zhj/CGs2/HUPb4pV/5xzfHhnygLu8m43XYOfs1ZbzatutDn4XdiOfSbgfCvN1RcahDDAg+1UFY2/aa1Act2KIucsNkHwUdY7xfvsMsLKMimD5qgJNDBkGIkTVqnXXXR9giOUyWqAjrY4f6yaH7BgfkF5LPUXDsjpAR0U8e3zsYPCyq0R827joOj/0F+4hV0Uvmfm3US55hDdww3bP/fSC6YhTP81ECCY2CqGxwMP2dRrcckR3CARy1/qIar1EdoP2+H7ZPRNWnh9q3M6xDDMbhg8v1dpTf+n20dhuH4+Sojulg+RL9g/cdBd3v3Ama5DhOO4rvTXQ79z3fQbJtLl+8SD6dYm1thxOnT4EssbW7w8JMkcuXlzl14jSGYbB8dY0HH3yQUqnE4uIiDatJQvVZXblEsZDjyovfIKakMVo+ApXVG5fR4joipvA9f+3H0HV9Xz/avre/zRV6EAReoD8fca0b1eF2HHAVB68m06rcQI75WIZCciqDLMCtt5BiGkJIlPYuksssYTYq1GyLfK6IsH3i8Tg7pWvkM6fx/CaOJ0gkVZaXr3L61AW2d5fJZWdxbQVJ6Kyuvcz07ByG46HpCaxalUwmgeOatFotEvEslt1AoBCPp7lx4wYzM0vICRvLUFF8e78PqZ6Dqmu0XBfT9VG5dVSjXC7jOg7Xr1/nvvvuA+Ab3/wWjz/+ONdWr3Pq1Ck2r26hqjKS7HLt+jIPPPQICV3la1/7Bg+97s189atf5dLVy/z0z/732DjtIFrd7RRorw5Gbjdxyzg+dIwrENNk3ASPpicmxus+7iLjtZs57XzuhTADMkjJey4H0vV61wNelD4TblhZYVFMB03e/eQYFsMYr91115kEogziXr+9GoxXGHyJfFgZ7f+89ozXceXXbzK5243XA7Le5cYrHD4b+1o1Xoftu+NYfIzL+BnVYToxXmFivEZD552hfRbUsqxDabqDOLquiyK1Wcsvf+lLZPQEyWSSubk5tku7eI0d5pdO03JkUuk8nudhWda+nEarheTUee6bXyGpqRiNMqcefCtT8xeIZ2bQU1675SSBaVv7ssmyjHAPXv10Nxivw+5IiApZ9fGdOKtXvsPa9Su88eG3Ybkumq4g2U2Wl7/FubOPU2ntksylqO2UQfbIZDJoSpyWCYa9A26OeBL2dvaYmsqwvrFKLpdB19IIIahW6+0bJvQ4wvMol3bIZdIIycMwDBzHwfd9spkZPN8gpibwPQWEy9r6BkoC8pnT2K0SmqZx5coVzpw80TY03/gIyXQcWUjcuHGDfD6PpmmUdncpFArcuHED13WZW1wEz+dz//mzfM873sHV5RUeeeRhlq9cYmamiEBFT6qUKw2adZ8f+qEf5mP/+mPMzE2zeHIREZPwafcHT4DiHWyvYHuOYrx22nlivI4RHeMV6M1iBq4GOA7jNWqDRV2gD9vp9hVw4F19bkUl7lYyHY960JgbRdYwDKqDuwmDDL9OfQWvghh5jIQEtxokY79+ELW+o/a9UGXkid7fhxivkRd3R6jTMOfO3dbX+sozRieb53mossIHP/hBPvKRj7SzH6Px2o3jMPTCfr9V6HB11a3vussZRc8Og37tPap+PK6+HXSkBo+WDINxrx2iOttG1XW90o7bADsceC4Q1HHI5vRDHjiK8TpuRNXHYeNz//cI3WncBndYvu1IzR5C+AjJR/EFjXqd57/9HVRZ4cbqMt/1tncgSwpIMq5VoVKp4Ps+jUYDPZ5nZ3eTQj7LyZNLpKZPYrgtfMVHyCDbOr4At8sI2ZfRD/TZgPEaZlgMi3HruX7tH/asKnvYjo4iN9heXaG212RqegnTbCK5O8SzeWoVSOdlPDtOPJFn9eqzLCxOY6PTalqomk02dYpGawezWcM0XAqFPAgb4eUx7SqaDo7XIBGfbTsZkCiX98hnEjz33AssLp4glUwTj8cp7+3guj7p1BSOY6BoEpZvINwiu1uXmZ+fp9FokMokeeLPv0KxOMtUUWd2bm7/uF6r1cIyTRzHIZ/PUyqVSOSySK7PE3/258wVp3nzdz/K009/lVwux6VLl3j3O9+BL7cDQyEluXFtndm5GRbmZtFyaSy3heT6rF9fZfmVy1Qcg+///u8f3xq8D/Paua4zmHfU9V1nt8N+foG+MjFeeXUbr/vKP7D3vZ/x2p13r4XBqMbEuBjXcTJxUcsKltctQxjzPBImxuvEeA1izMar73oHru0at/Ha+Xcc42FY4zUqS939/L1uvHbGUVjk5EEY1oAIfh6lrHFhYrz2yj+8Hdvs3J1fv70qjVcUfOEhyeD4DvgKwvWICRmj1UJLJpC8dmRZmg1Ao9lo7Ec4doSBns1g3gzUI7wGMV9DWDKSJ2NrDTza/UH21ANlewE5x2289opCHgWD9Fw//R72rORZuCSR1SY7166STxWoNn0SCYXttWdITj+MrtnUq1dQvZM4aoJC2qXZ2ENNTiM8l2p9nWzqFCvXXyKVVilOnUISKq5nsLn7ApoyTTZ1Cllk+frXPsEbHnsrTVdCqDrl1auoik6jbnL+/AWqtR2uXb/MQw8+jBAqigLl6jYtp8VU5gJWa6PtNFZVqo06kp/gn/3Kr/NLv/SzfPu553nsscf2DdiYqmIYBr7vo2katoCEplNe36K0sYXhNwC4evUa73rX4yy/9BLxtM7sqdNIaobLL17h/LmzXLlymX/ywX/EJz7zx6iOzz/4sb/NP/9fP0LhTRdQFAXbtodur94PHJ/x6rousnwr/9eW8dp1VY7v+4TR2GNjDLoXmSFnSkcuY8ACtt9k0Mu46VYcveTqXoCGpR0WUd/5TjEMvWToZVgJISLLOCx6DexhForHwX7t5x3MSuq/APF9n/Y1RO2gGEIKhG33bzlPPK896Q9ylnT35SgYtPC8a9FVNx2ETvQDtufsZ9nZdRHiNDgqxqbrxlDmoHSDZIrq9Oiu00FOpHHJ1o1h2nHUsXBcOqWbzR0Vx6nvusuIErQv6r2xgwyww7Zn7+v1hnUO3ZK/W84B97IGt+H3cEAezPtoEEIOfBN4R2/AuO0WI5A26GQe5BQIM4yH0XP92mnQYv5Qvv2CDHoH1yXHzrxGvMM9ONcPKn8YI1aItqPy63/2ceRUgYcfeZTSzhaZZI69ZpNicQqzUUJSU6ysLHPy5GnqNZtULgG+2r42p5Cm1TDQNVi++DKzs4sgJ8hkdTY2NpidOcHu7iaNWoWlxQU826LlCvL5aS4vv4hlNzh/9mFs294/C+15HqZVJ66nsEwfs1lBiamsb25z6sxpNjdK5LJTyIpPTJMpl6okEilims/WxiamaRKPJ7FMl6WTS1SrVRKJBI7jUC/vsFepMbe4RCqdwao0ubF5DVVTmJ5ZQlHTPP3009x3332srKzw9a9/nfe853EeffMb29ud/Whzxr5thDxw/bnvFBugG4Ym7gaQi3o8+eo1Xi3zlvbqNl47CFuY9DMg+nmLBPKt3+h9VnXUiae7ISVJagcH6HE/bNi500PZdT0XFg25896D0JGjV78Iu+4iikE2SPZh2eoo7OSoMo2TbRpHfsMwsEHnhO/7KIpyaGE50l2pvkS7WAlJdg/9drCAg0ZYEFEM+aDswzpMjsLyjhVdxmtQpqDxGaZrDmU5pJEzKlt9J+pwGCYniH59apgJt1un9nouzGnab1yGydxLljCZR3234OdD/a5P+0aVfVx9ZNx9bhwO26jvHjy32dGrt96pt4E/qP3CbgroNhA7eYfKGjBe/YBRMn5HcjBuQuAdhzBew4zP/f47ovF6XBg0jg+8W7C+A2dafRG4VcIN6LiIxmvoeIpovIal7xg6w67lDuRxcz1Q3bxGPKZRqezhuh6epDIzO4/ZqlDdXCE3d55Esm2s5nNFypUqntdeP2ezeVyzCcJGllVqdQvP82gZVaanZzEND9f3yKSSbG2sMZXP4QqBrutUKhUEMqura8zPz5NKpahUKmiaiqpq7O7uousxEmqSptFgq7TB+QvnqddMFFnDxyIeT+I6oGlxXK+J8NvjtlqtkkzFicXSuK7LxsYG09PTqAo0Wgam5bC2uUnlRhVJcXn0LY9iWpBI6HziE5/g4YcfZmlpia8//RTf/9734qoajiSh+IfPbfdFSDv3Gu+D2nRoR+OA9eEoxms09+KrCMN6VYMLmrGyXyHM07DldBbF/d5tVI9+NxRFiSzTvYxRz4CFwfd7b9k+DvRarDqOM/ZyOn103GMiiKOwOcct2ygYJNOgnQB34ztNcPR2vV24F/rPvSBjVAgh2N3dHfmdXk11McEEYeg407TsPM88+zz5XI58YRrNt1CEh+P6zJ8+iyzFMAwTz3NYuXaFbDqDbbUwjRq1SpWttbW2wVhvkkrnSWeSzM5Ns729iaappNJZHM8nN1VkfWMT13VpNKqkkhlMA86dO0csFkOWZXK5HM1mE0XW0HWdWn0PSXZotuosLpzBtjwUOYamxbl+bR3LslBVldXVVarVKitXN9jcKFGtNvFc+Na3voXjOKRSKTzPw6jU8E0b2fWZyU7xhjc+yKmzJ5EUCSGDYdb5m//1D/O6B88jJJfv+S/+KpbnAx4S41/TBdvjbtc79wzz2r1tGDi0B3tURHn/cS86BCqe5yIEbQ/EAE9Wr9/73cHZix3tZq9kZfjIcUfxqo0TURn27t8GoeOZP+6tkneSvToygts+AuUMe11T8PkozE9UjGu8HpW17CXXsEzaqNt0Bu20OD625fgRxiZCb+Z1kLd4lD543PU19DbEiOjeldO9w6cfO9nPyTouRHEq99utEZVdjbLjIwrC56GD6xLPA8uy0HW9880huYcqd4QdM6Fj3RvQtwbl7QXePWKVhpUfBVGZ1g4DfuuL4do7GMU9KgaN2/3vu47pDGSFpcB6LlhvQzKvw64Ngoz/oHyCO7+GgWOD1ayxs3mNeEyQnTqFZZcpb11D8lyKi/ejKhqbm9ssLZ3EcMu4lgyejOc0qVXLTBXzaPE0tZqDUdulblVZWDpDec8hE29Q2q6T1BPMTOdomQa+SLO7t4uPQSJeQMtkefKJT/OOt7yRWkMgSyB8l1wmw0YD4irkUlA2NWTPQxYOcVWiJYHjOCi+QBYS65tXmZ9bxHRdTNthLpelXq/SbFjkc3NcXX2ZuKqTzRXw9DilG8vslUwuXHiA7Z3r+FKBmZyOK3m48Tyb168TFwrzpxdxNIF2c9dF5LXBIIY9pA3bX4y2vgsirO9MmNdXCcbt9ZAksR/UJWwhMsEEExwvJuNugjuN7rnlbuqPUXdD3WsQN7clTjDBUXGn2LDuK4COG5qmYZomlmVRq9WIKyC5PnPzp8nN3odh1tjYvE5xOku1toPnqniuRLVawvWaZHNJ6vUqlukiSxq+AKNlIXzQVIHtKCiqjlDg0vKL3FjfxHEsZmZmmCrM4PsuMUnwtre9HSWWIKZJ6HEVWYaWVaeYSRBTVHZrDarba8jCQdcTVJo2pd0qApXKXoPV1Q20WArPlUmnppCETrUh0bRliKls7ZU4ffJhFmYfoLzjEFenSMTTFAoFarUqU1MFitNTqPE416/fwLVMlhbnyebSrC5fpb62e9t2892tuGdmjO6Be683mu8fzXM/zNbCtqf51rbVYcvt5NVt+N7JRc8wW7mDW1vDnu32AnVv8T3qu0bZWntcW2+Pe0uv53k9tyOH1V1Yn/U879B4PuqW5EF9ZNR8j2PrZ78+2T3eOp+DMgR/7/6+V/qwcqOgl4FxJ7bDDts/wuos7PMweR0Vw7bPuMZGR891xl6vth2kswa9Q5jMR5G9HzscBa7rjqX9guMr7J0GlXUnx0/U76PmF3W+Der8fu06KgbpvyjPH2XuHOfxj6OOmzCZotZN57jYuObRfrK5rkuhUABgaWmJZ77+VUzDwHFl6g2B69rocYVWq4HnueyV6/h+2+itVEvIskQ8Hmd7extFiaHGdebnTlLZ20NTPYSkUZxZwHJstITGwuJJWlYLxwfbkQGPtetXiGsJWo5EPJ2i0qhjuRaW41De2URRFDbeMtxbAAAgAElEQVQ2d0hrMssXX6ZULpPI5JguzqFrSaampkkls+SyM9gWlHfr2BbIWhoXFS2ZIj2VwREtvvXsl5FjTSxjk0S6QH66SN1ooSfzvHLpRUzHxfUlNN9FxaFWK7O5ts7ujQ2EEBiGMZb6D2JQnxt2DgimG0ffuWeM1wluIarxfqcNzQlevZBlGU3TjpzP3XIW8E5jXI6S48RxnJ0eByZ67ujotVAJG5eSJN2zTOm44jZ0jLBJ35tggvFBkqT9u6dLpRKPfPdb8GSXcmmDYk5DiyVRlSS27dGoG2i6QI1JaFqcYmGR0k6Ter1JfipF09jG9UGPp0nFU1x66RlUTeL66irpTJHZ2TNo8SypTJJ6q4mkJPCFRzYVx/M8YvEcm1t7WDbo8RyvXL5Gcf4EQgjiMYlEfpbT5x+gXCrR2NvB9QyarQrrG9dIpTUcx8KyW2SyKbLZNFs3XiGfUlhfWSEh69i+w9n7zyJwWV9bQVbiSKpgp7zN+sY2p0+fQMRizC6c4NKz32Ht6iVyswXSi0UWL5yn2Wz2XYO92nXTPXPmtRNtOFTeMd3rGsV72kkztkX3oNDjQ/4elC/s2pJRcNz95TjOTI76rBBipGjSo9bRoH4VxUM9UvTrEbC21o7KF4Yj7SwIVJ/H0c689mvfKBhmvI/KIgwqI/T7znEWP9pZsKjjKQhFUbAsK5Shu5scEINkCavrfnUT/C1qGTDcFThRMa6zm8E8o2DYdxmG1T4Koo7TUY7OhOoQPxAJthMCIHAG9tbnoGzRrxkBUCQZy7L275oc9V7nKDjK3BoFEv2PMfW6KmdYmcLaZdjow8F6HnT2eNjfhym7cx73VmbDX7PUb40wrK4bJ3xA9kHx4MVnnkXV6ySzeVLJDMJ3sSyL3VqDwlSRTFxla28D2S9Qq1pkcu2+JMsauUya7a1VhKySy+UxDRdJqDSaVRRFwfO8tuEX07Dr6yTSRTwpS72xQSYV5+rFNc6cfpCGUyediGM06li2SSahgpzhhZcvMpXTmJmdYqe8Ryo9j29V2dzcZGp6Bsf3SUgpYpqE4RgIKUm9uYmuZYnraar1LXJTGZr1BomYxubqBjNnFqntNmhUG8wvTuPKCpLnUNtaw2vV+Rs/9T/w+c9/nlgsBrCvA6IGtfSD0b8j9kHf95GCt14FEHVchv3+qj7z+mr3IhwnJnU3Gjre9QkOY2lpadKnjgG9tlHfSXTksSzrrjJQ7xV4nnfk+0/D8u2+9H2C6Lgd4+u4tli6rsuzzz77mon8P8FrE4ZpEkvEEZJKq96gvLvN7u4ujbrJ0uIZ4nqWcqmOIqXJZLLML0xju00y6RSykNje3kZPJIjFNFzHJx6PU6u371hNJBLEYjESiQSSJFGt1nFdn1q9Qi47xdUrKyydWCSZiqGoPi2zSqm8SSwmcWXlGo5j8ed/9qfIsorr+EiSgqIoyMkE86dOoSognAZyUqduN4mp4Bi7zMzMkUjo7JY2SSQSVMtNYrKG67pMzxVwbQdVVUlnMnz7W98iIeLUyk0ULc1GpckTTzxxgGmVZRnbtu9gK91Z3DPMq9FyfDjoBep47YQQDLpXMgxR0vdjwgaliSbEeJjXQaz0UWQcxF4Ffx87Oz0A3XJ0GNOjLhqjePA7ZfbCqH0x7Azc3WQ8DMumDOMxlzjojR+WeQ2WfRTWrF++wfTDtM9R2eD99AM8/FHLHbX84LNR2MCo9RW13cLSDdtOozCvYePyuJjXcevV7vxG3YkwrLc9+FzY5yCCd52OY9dNmIxRIXFwd87h8Rc0lIN8wXDrlpHu575L0c28djOw3WxpGFMatc/t95EjMJ9Rnr9dzKvnechCOth/R9x1eDeu/fdlcj0kBM1aiY3rlzlzahEDiWbFIJWfptlsUsgkaBgOy8tXOHPfSVpmiWQsQbPlY9oWxZk8shTnypUrzM3NIUkSjmkQj8ep1+skk0mIxYgLl91KFS2dpVGrk89kadUbJBI6huegSCA8l52dbUAH3+fG6gbnzp8hEU9iez56MkWpvocWU1CcFssvP8/5xx7Hsevs3LhMMZNBJIp4nkc8rrO3V8Gqu2RzSfaqJQrFLJcvLTO9cBJN1RFmk+aeQ7XZIDuTZ2q2gFAOdqJh59lhmNeg401WjkfRdMp5VTOvvVCv1++0CK953C2sbrcc45JpUD53y7u/2jCp0wkmePUiTG/ei+ffJ7tzJphgfJA6x2AkgScLtkstCrkCqytXsF2PVFrDMGskUzpXrrzCbmmTc+dPIcsCVc6wt7NJPpsmly/gCgXXVzhx+jSSqtCyWui6jud5TE1NUavVWLl2Gc+ViMeT2HaLRCKJQKFc3sUwK4CM78nUqi2m8tMUirMYVoOTS/PIkkK51ODpr3yTer2K5gkky0egM3/idViVPTQBupZETxeoVRvEYjL1RglVVZnKxrhy5TJT+VmElEFyfVLZDPF0iue+8yzffulbfPyT/554XEMWg02115oeuoeYV99veyl9EOM969ONXvURlfWKcoay+/fQ9AOY1kNeYy96XXSz1FEwqpd7VIag48Ue9vnjZHp93x8pQMmgsyW9ygk+P+qzw+YRlZUath/sn7sOsKn9GINB423Ysm+XjhuGSdyXLTh2Q3ZJjOtdRjl/2N0eg1i0sDyiyDRYf3ZWNgog8AMXtXfG6SDGdVyOre48w34PIirLGLWco2IY5nWYtu/3XBAdnR+e3yD2sje6GXhJkjBNM3S77bB9olu3d88NQvgDdh8Mx7wKv78+7Mu8egefi8oOBsf+uNHJU5HkvnNCt3yHdnaNmekMq8fQXR0h5XWPp/7xJ7q/78+IBfPuMNahGLC+uxNr/jA91ut7WZb3d801m01UFHY3bzA7HadUsSgWi+zt7aFpGl6rTCI/S8u0UJ0GGyWT9FSeluWBUDk5J/DsFNWKQSKhIySXVqu1f/eyqmoYRoOWUaNWqzCV00hnZjFaClosRaW1wlRmjo0bKywuFLC9LFs715mdnaVZM/job/9L3v/f/Tiy7PCVr77Io48+hqbF8X0fNRnHNE10XadSqaDHVQzDuMm+xlE9ge9Do9FC1xKIpIqu6/v6xPFsvBY0Kg1Sswliijaw7o7WSLf6YTcRJIQYeOa1X15AaJ98zTKvdytGCQgxQRvdhusEdwfG5dGLms+9xr5MMMEEo8N13WNhDToMr+u6OE77PNkEg9GpN9/3J3U2Iu622AX3ErrrLZlMYpomqVSKnZ0dFMVgdfUlPK+KLLdQk1m2ShWEorFRqmJbTdJxjdl8mlxKobzbpFaroageQrbY3lkjkVQRkoMku9RqFVRVpVicYWZmDrMlqOzVcHwDVzSwLQfDMEgkEly6vMz/9Av/kFwuR7VaBUnwEz/xUzQaTZYvX+Ptb38n8XgSaBvgKg7JmESrWmKukMWqNSmkskwlMyhue5wZhoGmafi+j23b+8GYOnlsbm5iGMZkTdQD9wzzahr4nucAgyNfDYPj8MoHEfXs3f7vEZnX0PSDZDlCZOZhmVc4nmibQXS83eMc5MF3CPt9EJsySp31yifKM0FEYcy6PcTD1l9UVkWR5IN3+w1gXvvJcrt1Vj95honu3NOpFTLWb+fOkl6Iqg97pRvU/ztj6RCb0vXZdd39dLcYtJveYE8GBIjeZ9qD+Q+tf0dAr3cZp97ryBqLxbAsa2xe924P+6AAUOPWbx0Mzm945jW4WyCsngaVHWUcHGznQbqgN/MaWn7IWc+ws5wHs+7NVu6/cyCCbye2wHEvlDtnl2VxcHwcDsR8uN32++sxMa9RdUQnv7C66xj/4Tu2hmNeu7faSwhkWQ7vk0Ou78alo6Lsvok6n3R/Fg40Krt4zh6KnMR13fZdqxsb5OaXSCbaZ1gRElg1HLPNquq6juunQNi0jBq6HkPTY2xubpLL5Wg2m6SSeWRJpVqttplYWWVta51MPoOsCBqlGslknJZpUSgUcB24unKZM6fPUalVMU2ThKYRj6l4IsXVq8vMz89i2QYJDVKpFLVara0jPHm/3er1Oul8DhCsrW2wML+EnNZQFOXWfCfD2pUNpjJTKFkJWfQP0jbq2m3/uR52RKffKerhObVvW06Y1wnudXQr3ePEvXrv4J3GvXxn4+1CmFMkFotNdgmMANd1Izk97sUzkEFIksTGxsbY8jNNc2x5TTDBBMeHceuuV4M+HBWO47C3t4fA5vq1yzTqZZYWZ4ipCttrK8SFA75HLD2FlEwSSyRwfA/Pd1hbv0YymcSxJcqlOnOzJ1DkOMXCPM1mHUmGbDZHLBZH1WJk8nmSqSyyHMdqWVi2QTafw3EkPM8lnU7SbBrIqkZuqojnS7RMePorX+e3P/o7CCHjOBaSlqDl+MSSGWLJDHomhZLQEZpKaipHvV6n0WiwuLiIoig912Ge59FqtY6l3e/1/nTPrFp932G/nodgGsPzCw9lP+4FaZgB1709Z9/DoShIMvi4bW9FD4/FofxuphOSj5DCy+mFoKew+/uw+hkGURaqR8m/+7kjD0RfOvg3AJ3BP6h9o6KTX5hS6e4nUdFJH9aenufhOM7QiiyqHJ2yXd9re5DFALaAw0pV+De90Z5/iE04CoJjb1h0M2AHM+6cu/SAgzsCgm28P2ZvjuHu9ur1NwhhHtFh8x2mfXuxjv3qNawvhtXTLUjtP+GBcA/93o9h61f+OBCUpbMQ8TyPubm5kfPpIDg/9UsXdcdGP7a8X1rfdw/8RUUUvdYuxwv8SYG/3nmHfR7m3Xr1qX595VYddGQdDh3dtq/jBqXvkm+gbB1dKwmQDo8nDx8kEUknd8oL1usoc25n/Hm0/zrlB+uiX96dNBLi8L2njFCvgfz287055wR/757LOlGRD4z/m+nCy7/Vn6PIeqAuOuvCsL8ABvWTQ/PtEdq1ez3US4eH5d1PN3iyT7JYxNEKXFu9TiaXJZPLsletUN3dYGpqCjkWA7uJ8GTspkVMhtL2KjEtzuLCaZr1Fo5ZYzqfQ3gykiSxXVrH92wcy0Tg47sOzYZFPjmF1/LQ0CjMFUkk8uyVq0gxiZiaJJnI8W9+7/9GbhrEJIGDTzqd5MbKMh/8wM+zduMKdbOO5MlIqkrTdYjJCk996TOYLQNJTSEn4swWT6CqKrIqMFyber1+wID1XVg8vUBuPotE+K6YQe0VeX3T1Yc6/bqjI3rlGTWvfjsBjmJA3zPG62sFjuO8qs5KqKp6T3t3JphgFNypMRwWLGbCsE8wwQQTTHDc6J5rxnX213VdTp8+TSqTR4unkBQNJRYnkUhgmia+3z4zatd3mMqn2dypMH/qAXZ3twGfZDJOqbSLZRk0Ww2MloXreCQTU9i2i4/J+uZVhGwhZItqfRtJsUGNo8V1nFYVzTOoN6rEYio/+ZM/Tiwl4bgm2xvbfOiffoSP/dvfIzGV5tnnX+DUzCLf/PpXqZcr6IrK1vYOb33r47RaFvVaGd9psXLtMql0nL3KDnuVHTKZzGRnzRC4Z868du553T9HcIRzm518IPrZrjuBQUZfqMwB1rD7/IUQvc+8RmUvh62nQWdIwsofxBQfC3rs0++czxnm/NpxniEZN8ZVn2GyBiOJjoSQs1tHZdy7nz8KG3eoz/pt/bQfHbePj7DX+Oj0uZ55HxNup/7rZld79Y0wXTDo/NQBHRchv6A8o9RB5x2GRUfWqGUel97rZnOjnnkdNfpveH5BjCf/XhhUj0LcuiO8u23D+ojvu0M6hYLnGwNnXnuc++yHYe959Txv/9zdsPpz0PgJlbHHzh84HAtjP5j4EHId1zouqJsO5duDjTrwfI9zq1HTBuFxMC6FJMZ7nj6I48h3XLvjYp7N5cuXaTabnD9/nt2dDdLpNLFYrB3YyDWJJdJcWr7GwtIpFCGxuXGDudkCjdoe6XQaNZZjr1KlMJPHatjENJkXX3qW2dkZJFlhZ2eHpaUlZFlmbbfFQjHH3vYaOBZ+LEvLqOO5MrNzOTxHUC21ePHiChcunCA1laHValFZ36BWL7G4eILi9Bx100FVNXzfptncQxYSnivjYpJMpzAtyBan9teavdo3rE+O2ynt+377wC1dZ17l6DpimPVeJ/3kzOsEE0zwmsG42MRms7kfmn+CCW4HbkcQu3sFUbc63w74fjs68fLy8qR9JpjgLkPLsJkqzHD23AUaTZNcLoeqqjSbTRKJBFXTobxX4XXnz1Pf2SSRiHPq1Akcx8b3XRqNGrIsyGbzNBsmsuoghM/C/GmymRlUNc6pU2fRtCR7e3Xmp1Isv3KZTGGORGGBfD7HwsIcs7PTCCWN78b48z/7z+xVtmlublLb3SWWjCPrScDDbNSp7JTYKe8hFB9fWJS3dqjuGHztq8/QqDk0ag6Z9DSWZe0HKgw7+tO93rkbd1MdmagYAq865jWKh6fbC3gUz93tmnQFt7wgwKFzrYdk9qUDsvm0F+aj7C+PynoMqr9BbMqgdhvW2zsOdMvUS6FErZso6OWZjpJP1LJHrfdh0M1ABc8ujlPPHDWvo77zoLoMposiSzc67Egnj9upo8dZ1rC7KEZtl25d3o95jSpXLzkHpY2q3wYh+NxxM67d8oUthI67/w0T6dxxnP2InMfFWveKXN+vrO654TCT2j+68CB08u3sxvBdL/KCdRArO+p4G3ZHxC0EI5YGztAO0c060X2Dz46DgfU8DyEH6jjIgI+ReY36rO+3Y1Qo8u0JtDOOHSrjnr8c18W2DBq1KoV8jtpuBdd3SGWSVOoVMukp6qU9hNpEUmdJqi47lSbpeAzJrKLnTmD6PjFh4tQ2ID5Hea/N3qaSWWqGQUJXMaoe+Dpq3KbZrGMYTTKZDDJxtrbXyWbTSK0yBiquryN8n1haw9gzee4bL+Kogme/+Sxvf/s7ePHF5zlxaoqH3/RufGGQTMn85dee4V/8+m/xr3/3V7HNGKnpHGpCJ51O96zDO4UOMxrclTPuOUHTExPm9W70RkwwwZ3G5N65CSa4+/FanL+ivrMQAkXpf13EuOS5WxE5+EoEvBb72r2MjhP9tQxVUcim0mhqjNVr19B1hYSucePGOqlkjhvXV/Adl71yGVWRqNYa5LNpYqpMpWFQrl5HlQ32KmVWbuwQU5NMFxewTB/HllAVjZWrq7SMJjENWk0TTYtTLM7g+z4r15a5trLO8iubPPmFZ7h8cRPXkbl65Rovv3AJy/L4+Cf+X97ylrfw7nd/LysrK3zoQx/i5In7qJd3ePqLT7K7vs1D5y/wH37/33Fj9Tr5fJ5icYZ0Oj3Z7TEEXnUjIYpy73X2ohd6efG7cdwekWD0tkHpwmQbhnENltXLA91hdXt9H1XGftHlhn3X48aoC4Zh6z3s+V5/g2Tr1R96PT/u+gz22VHPBI6CqDshRn3nsPEYHBNHqdPgOwzb747anmH9IyzfMN0T7AP9+vC4ZI/6TsPqmChpB8k+qA7GPS57Pd9Pr/fTxVFlG5fM/eaGXv8flM+oujsKBvWlcRqb3Wfhx4FRZQvrF1ExDj0ZNp7GUd+96ngcMvdCmC4YlP44MWgNOGxeR82jG8LzwfeJyQpLC4s0qmVk4TOdL1Ar1VhamEfXZJK6SkyWiSdTNGt7bK2vgxJD1xR8s4EqK5x76FF8T9BoNFBVDcdx8X3ByRNnSSbjrG9cJZFIcmV5hVbL5OLFZU6cnMc0Tc6cvp+fef/PIUkxPvzhXyGVylDZqvEHH/8kc0sn+NNP/X/EknEcfD7zuS9gOJDQVf7Zr/wq9b0mllGnVikxPZXnjz/5R3z6j/4U13WRZTlyn/Y870h9PUqb9NoNGLbePIouGQWvOuN1nJgwVbcPEy/weDHpuxNMMMEEdxaTeW2CCcYIz+f57zzLi8+/QHWvAq6DbVrYho0ei7O9tYmmKmgxBc+1kVWNlB5jdqZIJpvHtTQkV8Y0TZqOi+008XwTw6whyS6tloFlety4cYPZ+Ry27XLmzH0ocoyzZ89iWRazc1NIism3nnmKmdk0P/qjP0Kj0eJ//uAvI6tx3vmu7+U93/c4kiJxY32NH/jBv8affOrPcBSXj//HT2IiUJIasuTxl1/7Gp/61Kd573/5XlRV7WnIhemQ203i3G24d868GtbBM6/HgKjMzdjrLBDlttddrQfKDUk/SK5u70jnPTufh40Ke6/0m270YyJ6YT+635DRhoP5B+t6WPQ6WzTovFFYmbfDa9v9/05kyw46uxmOI0DSuOp7EMLqsKObopQbNpY7Z/k7Oi7KmO6b/23EsGfojnr2+PA7Hqw7OKjTwtjCMEdPFPa1u6+N6n0+DvQaA0E2JfjdqPPq3fLOUTBqn4t65nXYM62Dznl28g3bLeaL0XZn9MpzWAzL2gQR1JUSgyOVDhpjUee7QxHrh6yKgXeVRzzz2s1+7cs+ILp+8DjuIdmCZfRPPjTu9Hj3PG8/uJFfrVOpbjG/tEizIeF6e7iORDabpby3RbpQRPIl6tUaslDITxUo7+2gqgIhgYilkFxYufISi/NFhKyjKAqKorC2tkZpe5vzDzyAJEk0WybpRIHV69vkpjI0WtdwbCjkF8GPc3VlBS2mkknppJIaX/vGC3z4136dX/hHv8gHfu5n+O3f+Kfcf+4xfuu3/y0f+uUP8MI3niKdzZHJFynMzrFtlpgpzqDKMSSh7MeqGTf2x4QfWGN0xRHyuXXbQeec9YG0A/Lupa/6ESqTM68TDI2JZzgcd0vdDCPH3SIzhG+/2t3dvQPSTDBBb9xNY2aCCXqh+wqN13JffTXuKJrEoxgOsiyTSCRIp9NoyQTFuUWuXL2GZTbwfItUWse0GmSyCRzHwbZNZFmQSulcvXoFXdeRJIVEPAlmnUatxunzDyLiGRzXxzBtTMvBcX1mTp5F0lKYjk8ml8dWaqCWMJqXScZnWJg/w/b2Nlvb11E1h/mFAs888wyuI1NMZ3j7m7+LpBpj+8Y6juPxqU99imwuxYX7H2CrtMfM9Dyry9f41B/8R7SmAw0TyR8uwNdrFfcc8wq355qBKCzsIG98MF0oGxYSTTjUSxxyH2lUb/K42bdOeO+7DcH6HpZ57cY4+1zHm9X9b/D3YeULwzBs4DgxiOE4KuvWK68OotbfoP5xnBjEvAbZwlEZ2A4652nuRn0/tj7qB+7GDXiux8fw3rlxNQij6rhx7mi62+pkHBjEvN5KNxxbEpV5PfRcp4/36NJR6/+o8+O4mdd+ddF99+4oZR16t2A2A+7TPVSe6J3v/rnkEPa0X52FscCHWGK8A7r80PoykK804npi1J00w2DQDrFBMqiSoNlosLuxie8bJBIa9ZpJPKGh6RJqfArPsdBiMnulXRLJHEIImk2DdDqN0SihxQs4Aja31ylkc7iuSyqVwvM8bKGyeeM6C3MzyAJKNZu4DJJr4JLENFukUgkMs4GmJzBbJq+8vIxrg64qzC2dZH27xNe+/EXe9t2P8ODrHman3OSHf/RHeP9P/SSPPfomfurv/zjf9+538TO/8H58WaYwP48jSYghd3GE1W0oAmuP7vlyEPM6aF0S1n5h6UdhXo8/dN8Er3rcjYbrBBNMcIupUFX1/2/vzGMkyfK7/o0jM+uu6q6u7p6enp7tOXdsI5DAxvau8ArG+JD8B1is18g2IDAgJIRkIYQE8h/4f0DmkAGBLJCFvbZsQFzCEofAsteCNXjB3p2Z3e2Znb7r6K4rz4jgj+qX9fKX746IzMiq30dqdWVmxHu/ePHO3/HeJTjLNiL/MwzDXAzGruLESusaYnKREONaDwWKuI0r29sY9Z4gy5dwbfsahsM+Vpba6OfAs2f7WFqKsbG1jMPDIyx1VtFuLSGOWkBnHTmANB/ixtYq0FpCnOdAnKLbPcHx8QFeeek6Rt0jRFGO7bVt7O0/QJIuIx8d4+T0BINBD6ur6xgOUgwHA7z22mt4/OgBXr59B1/+6j189k/+CH7l8z+P/aePsbu7i+cnfXzmM38YETr4ygcf4of/7J/Bd3zqO7Dxyk3EcYKseKHA4GHMyMItXkN2p6o7Fsmm4dBZ1gSFp9ZvfJ/Q/oNoMRXWnNDdAXXWQVkGo2wVxdW4aFapnCH3qCizI5oK0fHqrPtV5uVb9+UYaNPvtvtpvlMx1qJnFlU2oKO2aWVtHhB1o8xftE1FnInp/lArsbgudOHq2kbKQOtKcN8RZSLBs/8wWWZVWhJs9Tt0zKna+jULaLna+mxq5Z3HpLuMF458v/zsLq6f9D5r7KTDDFZXr337iCmLH/k9tO/RWgg94sRtfVCSJJO7r5JzWH1rmHNMK8lPjkUGzp91vI2JYryLyG/j7xX9oun78X1m0Svz5qnyPtcxHDiTW1i488HZNY/3dnG9s45+GyhGPZweH+D4uIed7Wu4srGBx7v7aC9dxcZyGycnx+gstXD/G/ewurKE5a03ELVb6PZ6WEGMrADiLMZqax3FKoB0CVhOcdzvI867eLy7i0cfDvATf+0n8O//7b/DF379NxEVBe7cfhV3PvEysrTA1vU7yIoEcd5BJ1vHr//3L2JUPMOXP/g6vv/7fgB/6sd+CL2jHq6/fBMfPrqGd37/NyOK4nF1cp0XlCI6n4cC59ZWAGOrb4Toxd/n584bk7T0QWX7XRk2mZXgMsSfVL09/zwo+56i6PKcr3YZ6jTDuMBtoR5cF3pMsyjbHupsT1UrmJsAtxE7aRwjSmJ84u5dPNp9ijTrIR+NsHFlB1dvvYr9/R5QtHDj2i0gixB31rB65Rp6WYRrL72CKG5jf38Xo8EAS+024riF3d1d5EUf/eEhVldXAQDPnz/H0tISikGET37yW5Chi1/9z7+IUbSHT33mW3D77gZ+5md/Bvd3P8L6egsHTz7G0fEBfvzP/xje+uQreP+D38FP/dTfQfckwftfeYBv//S7+Pv/6B/i2s1r+LZv/1a0WsmcS3LxuDQxr65awzpi8Xx9z9fleaIAACAASURBVE1aF931E1YAEkMr72AaakWRLXJyGqFxhSZfeVMcqE0++p3LYOlSl+qwFITGJpXNU2ipTXnJ15u+t+Uldheeuj4/TzeKImRFfQO1Lp6mLkxlWOQkb0Vbly3yodZj1/bmi4tVNKTN0zxMeYu6ayoD2ZXOp09XeUOYLKy2733x9XCpMh7NlJZJielbFr71Q4erxVfljRMaO6mSuUzMqw1rTGykLocgq78m1rIqVGUvy+q7468xL0/ZfZ+9quujKJqOj6V1TBHz2sR4+1kg+v8sy87mMnmMUQwgGuEb732ApXSI1Y0dxO0lFFGGeBgBKNDrdrG+voqkvYQnTx7j+o2riOMYw/4IJ0en2NhYAaIc+wdHuHHjBrrdLp4/f47N7R2kaYput4s0TVEMcuT5EM+PjnB15xXkowyDbg8ry8s47D4H8j46aYLHHz9Gb1QgyzJ87nOfw+d+6Edx59Ub+Jt/42/hrbfexutv3MFf/8mfxBtvvY44BvIoB7UlztqrRmV5pbK49p+uv4vPvNuwgVlq0YuiGG9idFE094v0LELWJEkuQZyfH76D3izeO2uYmToQ7mU+LEofxyzWmFQntBy4P2UuKsKwIeq8ONYmbbXw2jtvY/nqSyiQYCWNMDx8il7WQ7d3hHaaYe/Jhzjaf4RbO5sYnh7i/r33ELU6uHptE0U2RJwVyHGEw8N9pMkytq/cQRRFGAwGSJIEe3t7yIfHyLIcN2/dwdODh+gODpEuAe998P9wpb2Bh/ce4d6HH+P262/j9q03sXPtJXz+F34Jr955HX/3b/8T/Muf+9f4nu/+47iyeRuvv/Mm8rhAHuWIvR3bmcWxvHZHk5bXwDOQ6ozhslmpysaO2NytXKygoVpZV1y17brfbelW8d60MSOWnV9nDbU06a4B3GNG+v0+iqLA0tJSadlcsFn7q7AQzjqWVYdL/qLumdqBytIXiq3vqaovmEXZT8lK2mtejMYTG1GOpnNeg2NrHWQs29+F5udyrQ5fmeq2BodaoctYXn1lLIrJnfaFhU0X0ypb4KIoQg5zffGx8FVtObXNY3RzKZ/2ZJqP1GWVBQIssyXnjVPyx9N10pWYJNa0OXwd/SpF117SKMazh/dwcnKCnVuv4vlJF8tLW8gGDzB81kV7cxmHhyfYvnYTo9EIh8fPce3qNgYnfezt7eHlN97Ak0f30YpzbG1tYFisI466QDZCngFZ3kKn00K3e4qo08YH77+Pd958HafHR3jw6DFevXMXw1GBk5M+VtsRfvd3fwc3rt/Cr/2PL+LDj+9ha3kNv/qf/gP+6k/+FXzqu79PWZ+0/R69zvH3cVlNJah/P9PV1dzGy44dbHl1YB6xEVQzepk1xqHPfpnLzIRvuSRJwuVYESF1cjQaNW6ycVEYjUbjheu8rE+z7qe4X/SjKeW1iHG/TSk7htHRzVNs3XwFe3t76O4/RDvJcXx8BMQR2p1l9A6f4/atG+gN+og769jZ2cb/+uJvYmW1hSvbK9g/eIxOp4W11StotzbRP3yIOB5gGEXI0g76wwMcPHuCTqeD/ukB3nrjVRwfnWJz6wbeePOTQBxjdWUFDx98hCKP8M477yCKc/ziL/48vvNT34Y/9rk/gZ/+Z/8Yn373u8fGJCaMhbG89ntZAUhanQDLq83qOBqNkKb1b8DsExNENVgiJstXu1n3jqGCqrX7tnRcYu9cYuTOEiNbzkvxiLM6WxjQxwTZrvX53QX5mV2fvWy+PrF5db8PF0uO6V7XuGDVZzpJdPXqcKXq2My6PTpkfD0lXLwTbP2jq4eD3NfIcaK+8Z8mOeR26WKdNMXxhrRTWQYXLwHXMaGqOhnybKGxsBE1qWnO9xTEdAfsCmMr67K8+rbtEMurqo5OXDcny2vZ8WxchrSaYDpd53Ir9OfdXhR84+YFOdpAkWF4tI/f+C//EZ96949gmK3gy+//Ju7e+ATWNjYwyk8QxW2MBm10ltso8j6e7z3FxuYaouU15MMResc9rKysYP/gIYbZCMtr29hY38bx80dYXV1HhBbyrI/+cID1jasAIvRGBYosx4df/QCv3XkF/V6Gjc0VHB8/x5PHBygGfXQ2tnHjtU8gSfXvUDW2AkBO5yHTN06Uie73MQGWV9tcKNSziy2vJTg9PZ27VtGm2RSTBuEad5nJ89xZc80aY2aWRFGEJAnbPZDrajihZV4FPv0R0zy43emZleKbYcqS5l1EcYrO5jX8we96F7uP7gPI8c47b6M7HKEfryJDgdPnu+iMeoixila6hpXlTXRPR+ie5IiiBGmrwNO9j7B1/VXcuPkK1juruP/B17GytIMkXsHTp0+x2tkCshS9/il62SkGWYT9g+d444038P5XvoJWq4UPP/wQ/UEXw1EP2eEJjvZ2kSBCRDduNMBji5rFsbz2hxOCVqWt1fnn2zSBQgZZa6iLpaTad5XsKhcC+f4sy7S7xOaZxTJo2724QqqMP3R9B3K+AtWupKIcqaXFplmeRQyHK7OycIVaUeT7TfFQPukLC9asLK4CW2xXFUyVh+/O4575UGzxaoswaQ3xQnDpW+pAV76h5e5iqXX9vYo4UFM/qXtP1IXWtZ2XeX9FMbnruq2N68ZuYXnVy2pbELu17yrHVRu+9UDXT/qMFT7XK9PwvFVnea2qr5+q48JZRDxjPJ1+6PNPPTsdM2oaU3RMiGOzqFu8JfTtzlxn4jjGaDTCqD/AcNDDUjvB/u5TIE6wvrWNBBm6z54iSgDEVxC1Y6SdHEv9IR7t7uP6rVcQtTro9k+Qxgny0QitJMX+/i5WV1exvLyM+48OsLW1hXa7jX6/j95xhmdH9/Dyrdcw6CV4+vBLiON17D+P8C8+/wv40z/yOXz7p/4AusMjIGpNxS7TMgnl3FI7Ob8NiZUetwei2LNJSK3EuphZIWu7s3x5LK91T+J9tLDCEko7PVdtrrAYsIblHLFgtMFlVg/ziA3XwRYRhmGqZNFiTptoGW6iTAwDSArvVhvP9/fx1d/5Eq60Y0S95zg82EWOGMnKJjbXdpBnD9AuTpGctnASLWHz2kvonvZxuL+LdrKBuEhwenyEPOthe3sHWVbg2bNDbG2soXd6jKPnB4iRY6PTxktXN3G89wS95/sYZG28dPNl/Jtf+uf48H//Bh49eoThcDgXpelFbKcLY3kdDEbjmFfArrGu47lMWllROVQDoi7uydViYLXcFur4uHPB7VrtujW7s9Ac0515qRVAtpTT310srzSuTcZFmRJqXami7Gwa5VBZQtuZTzo262DVhFqLbRpmU/mL38QZzec3ultm5DroG4viq9k2aczLKhZteZvOHDUxS+uVCdMOyK6IMla9ZxerchVl4WrNt+Vtq7M6fNupCTp+q8YIdV4F+UzrrvrsxvPf1ecp6qyY9L1TJSP1LlDlSeue77ik82SgaajGXpd85L7MJqN4X7HVFkTyEI4uHjKpftfN0ShUPhHzajtNQIXVqkti/8XZ4uP7yJgi5jeiXy07vuZSWQlJ6TzL98xoim2MEN/nEdAqCrz3pd9GMhrhtTdexoO9IyytrKKdAIN+jjx/htOjAW69dBeH/T5WV1fR7/aQpBGGwwhLSzHarQj3vvpVXN25jfX1dURRhOFwiDiO0ev1sLy8jIP7z/Dffu1X8Ic+/T3Y2z1Ga3UN165u4fjZHn758/8K7/7gZ/H2N72OqJWhQDp1lqrtGb37Vdr3KPoaUxubSJvKZpRksg64XB9iea1/d6ILjOtGQM4bBpXM1yUf3TW2zrfpqCyFdLFQFGdHZwhLt/jsOhHWDTJVuRotElXX6UWmCW0nZBJUhnm+/yRJMBqN5hrjWjfUrZViKv+mhDjoaEJ7oVBZ5MVsHeVpUnabrldZjOXxS5aTlrN1geX4XlTXJUkysUARn+miW6aKMhWyzGrxqqsnvozlLqGEayqmejQrC+B5PhkypLj7zd+KQS/D/vOvotPpIB718eije9h585uxXLyFtbVjHJ7exxLaONx9jriziiHa6LR76HUzHDzt4vbLLyOPl/HkyVOsrq7i6PAAOzs7ODp8BhQZ1rau4dPf9S6yrIUoXcb9jx6gncZ47+sf4r9+4bfx7g9+9qxPDzzmsw6aPlaYWBjLq9htWBDF6o6QupvaLDquft+2tFSIzlteLMnp2WTRuc7mL+q+mLAWUMfDDodDtFotrWyu5bRI0HIUca7ib5l5PLPOWgL4Wb/obp+hFjsdOgsAldnViuKKi9WIymC9jmiexU7lVGZVW5Mniz7PNI4zkRaV9NlUE9Ey1l1XuVTp2Swb4+8N9cz27spad+lu4GIMkOuqSoklp+ejZKKKryiKxmmovGF0libV9WUtOVRGuaxkjbqqjonrRB8SukCz1ckoioz1X5eObpET6h3igq283a3DtD0npM7Rd1FNTKwqLfvuw+5tdyKdQr3jdVFMvu+pnZhJGjQd1TWUYE8FkpRqt98QaB8v2lyREeunJhs6zppkGvcpubmd6hbm43Sg3hFdR+j8N4QQL4CJfpr8Ln6Jogjvvfcebm0soYgj9Ho9bF25gq988X9ibfs6rt64jUdPn+LOzR0MBjlaHSCKcyTJBvb27wGDCNtbt7B79BQ7125hlPXx9OEDvHTzZfSzHMULGdI4weNH97G+2sHJaAlPP36IpSjBex9+Hd//2R9Aq9VyL0fiUUnXPAAm+nDTHCyKovE8aPxdct4Oi6JAKq0hbJZW6xN49sEhlldevNa4eKXy6AZA26Rq6nupUovFq25BrEtX1eleBFSLV5/BsU50g7VtUm9zrwIw1THNavHquyCx4TOJcp5s5UTG2LyAoPL4WorEpD3Lsqm+SF4UmibyqjR9ZKDYFk90saqtc4Z6ZutP6TPoyl/bX2oWr3KetvxDF6/ygrCKxatNaeDyPKrr5e9E/65rv7o64YpL+1Epa1z7Ep98VHmGtBVf5dFFWbz6eG7w4vUc1XzTd/EqK5pEGqZrZ714rUpx6oLv4pX2KbpFV1EUGI1GOD04wMHePm7fvo1hf4B2OsSTvWfY2NxGnCY4fH6Aa1d3cPDsEQr0sb72MtJ0hDhOcPisj5W1VQwGZ+eJd9IMjx4+wY2Xb+Pp3h42N64gjgo8vP8AJ0eHiIs2njx5gtffeRt3v+ltjLKBX58UuHhV1aOiKKYVz/Gk4jKRFY2achynZ5W9/sXrwrgN08mBboFimkDJv6kWkKrr5ftUky/qHiPLN9bCWfK0aaRVk2dxTxzHyAvSUUr5UXceWhbBg4FDpyJP9lzzGcewOJxzqXrP9Bnl/+WBRrgP0zJVbbxFOweTTDQ/GfpMqvvk+kJdy1TPfp6H/X2osE0caBkKeVTp0d07Ten7yqm6RlX+8nulZXN+nV0poKoHpokr7XfkXa3lejaObdUsJlwnci4KL/l3Fwuvqn/1WbibJh6q+0NcyCYnW9P9oS5/3TUmVGPKeHJK2p9pwaXbzd6Wp+4ZdNcLucR3og7K5eyyczf16qC4jh2qPFTjs63ulx2jTOOELW3V+/BR+OoWhOcyVb8wGI9zljYrl7vLbs90/Jzuh2On8hT1L8syq7LJ1G5cvAW080bH4rbVSZWMeZ5P7a5qGztMedE+JiLf69Jxma+49MG2PshVEaeC9iO+7cC1T4+iCK1WC1s3bgBxiihKUBQR7t1/jFu3bmE0GqEYFkiXljHKMiAfIcYIg+4R3v/GN/D6m28hXWqdzanTHEUO9Pt9DIdDDIdDLC0t4fj4GEvtZayvbePnf+6X8KM//Fm8/snvRGt9BcNR3+u5XDHNDenzq1ac1DNGtW5RYWt39FzYOhQfC7MF1Tx3ywoJqJflDd2VT9xHJxJU20fTp/fVsSugrdMIjQGtUlbXnYjpda7562QtswOyfN8sdlKuo27MG9PE2wV54RcaDy3HNMltYVZl7bupEZ3Ayt+XKUshiwk6ULrWe7kPEhNiVZ9zGXYklxdVJlwsbBe9rARl2uJF6zNdkOuO66JHpcCdZXu8bHtRLBqzbkdZNMCVa+sYZV1kw1OkSytI0jaOjo6wvNLB6to6er0e1ldXcHp0gK3NNdy9+zoGwwxIYjzdfQBEfUTxAFEU4cqVK8iyDN1uF1tbW8iyDL/1W/8Hf++nfwa/9eUvIV5poUiBVoP71EWdAy6M2/BwUBQTljyN27BK+5Tn+ZTJPH7x0UWL6qpZMmnFdWnK18qTZqph1D2jGAymYiAVeQpNfBmEjLoNJGxlQq+TtT0u9+vKkspAZZTzoGVE6wDNQzfQ+m66oZJbQN+lKk1q8fGJU9NpOFXlK65VxvJoLE6qZwFmMxH2tfLatIq2fAQudRvAxHul99H3KGSblTu/i0WdYlNciWdQWWnE/TTvMtBnMOFjfZXfo87SUnb8lPsq6vol5yWPDap+QPwtXNVVstNrVXLQ53ahqvdZV73wtda5yCSXq8krZ1om+v3kOGpytdWla8v7/J3Tci23y63rPSbrqQoXqySVZcpFmuYZkfs0rrfjd6pxjHQtA129sVlHxXfCYyfP8+l5H3VJphsAObibqmStA1d3dBcrcSXy5CP042XkJ/voPXofyfINnB4fYH17B1FnGUeHp9hYuYq9/a+j3enj8f1d3Lh+G9d2ruAr7/1fbK5dwenRM+RRiut338TayhZO9p/jcO8+ltZfwvLSKv7cj/8l/IW/+Jfx1u97BTdv3gyW1Xfdofre6M1FronIbxN5amS0zYFcudBuw0C1O2P5TKptE0nfiabKdUt+NmpZFciTQV1ZiO9VnYbKFXLexPHZYdKzkEk1qJvy1r0HQVULM594o7J50M3DKHIdpFZgUWdVVurQRfU8CN2gxgYtC1XdEQokU51rUvsMQfQxTbPgVVk361YuyItVl+/Fd0mSaPsTGiah46Lsg6B6Dt/xT7fYb+JYquO8HGa/O/eilJFg3G7icjL77pNglIWpjAIR4iJH0u6g2LiG3YMT3L75EnqjAv3+AMP+KTpXrmJzfQOnJ3t4+53fg9Eow8PHu/jE3XcwGCS4fuMORohw2D3CSfYMW1c2gOIaknYLh4d7+Kc/+w/QWVlHnjRnV2EdNovrLOamoSyM5XXQP1OVjSdFZEMaq7aYaKMQTVq4qHXOpDHUac/oZyGryroi/67q3FUuOvKk2MeKKu6reiBRlZHtPYRYyapCVe7yQoZaQeRyn/cgHGotVKUjo9La+VjJZLl8LBBloO/NVda6oVYxCu1vVHXPt30IXBdm8ygj37x0z6HymKBlKl8Xisk6EvJeaBq+6PYtEJ9V5SXXp6I425thOBwiTdOpeGwqa8gz+bqp69Ipg2o8ltuXfA0w6RFhKj9d2j4ynUMX1NSryqxULMP04rWaTf1sZSPmK7p9LHSfTWmGWl7HMsH8HqcstRp86zCdg/jkMU6DPiuxvAovw7Fsio3tVPna5nK+Yzv1HHHJQ5WGCV+F5FT+eYGP3/sy1ja38PjpM9y+vYWDvWe4df0GBoMB2qsbSNIMh4eniKMW0iTGw4/fx+07ryDL23j0+GMURYHlpU0sr61hfWsTURwjjwpEkZttULUuUH3v+37odTS/gv4upSOf01oUxcRvKllM3oKqvCmdpRXvQWBhHJ11k8KiKB+TpUIsOk1p+/qK02fwcdOjrjQ6dxP53zzRlV3o+/J5Jp+OTJVmyEQshCrqbtX1n1pcbYhjiELzukzM8nl17aXJ8S2iLst9r659ygvXJElqOfO1zrJytbBHUYTRaOQVB0z/jqJoStkZxzHa7XaA5M3F5tFAy0b12bU/bXI7qhvXuivKKM9zpOlCOfkxDYO27TLznvjFBqc5UiBN8PKdV/DwwSO8+fobaLdStNMI7733ZSy1lnB4fIysyLGyug5EHRzs3gdGR3j84H0cHjxDp9MGUGDrylWsbVxFhBbOllWL421ACdnEK8sy7bGcdbGwltcCWSkXMKpBkK1spolTSB4CqiGxWfaEVom64KnkmpC3OI+jGY1GSNLzZ63LKuFjSfWxYprSV51tK5OmKfr9/sTE1lVZQPOeh+XVV6so4/peXLR3Qg76nel+U+zurHGxokyUs8JLQ3mdIh8bsruh3PfQcqKWNlctq3z/LNy3XeoZtdBNWU00n3UaaVpW9PomjGmu2nBfWVXPKrdNXRnRDfzEeKFa7IZi69ttZWKz8FTZ/+q8JOQ2GW5d9bEwWY6msvQ1E+M+ieOUrY1n19BJafm9GlS4vi9q9Y4Ksoux4vZxX2CxtE71+RZLqs666WwVdXQzVvVtIq9xm47047Asm14W8iz0d4tMroRYTV3nIzrku/M8R+65aKL5Jy+aQLfbxenpKVY7S2gVBRBHOOqeYjg8Qry0gZWlVTx5cB+9Xhc3r20jTk5xdNwDigRZkeDazi1k7QTLy8vOsrjiXM7kKDlaD+gOwAXpD2JSsUxjROi8f0JeiRDLK6vDXiC76IpYSBt1DKou+Exg0zSdmHzPizrLSmeV7/f7SNNUO0FRTZqbsNgKIXQAcknXx+Izb4v/rNHVPR2j0ejSWmx8oRNQXT1chDZbV/sUyIpOVR5ZliFN0wnFiazMvGzt1hXbxnNCsclt2g7XNTVTSrcKjCbzDnOqG7GwarfbpZ5VKDWWVpYRpwmODvbx8dd+DRi28Ort34ur2ysYph2cdI9x7fo1IBvg8PAUV7c3sRZfQVFE2N65gYdPnmLn6mal+7fMq734zml8sBmcfFgYy+toiEKOU4xiN2uYbtLgrFEzXCuu0e0Kp5JFXiS7xjyoFlmqRYWsgZmw1EoxD1VbXqtGZTGSP09paxWaTNGx6TT4YlEv4nDoe1DFQdksCvPepEjWkskTqTJWW/q3Kj1T+6qivlWJq+W0yMl7doyv11kQVXXWphTQWV6bgGztkeWSZTbJq7LEqtq0/LstHfl6G6rJnc+APYvFiq/nhOp72VVYtcGQbvxyRWUZN+3FYLKou8SXVm15FWnL9c9WBq6WB9f3VhTZxGfXdFTvcSqOc8oaSL1nJvN2LWfa9sUCXnWfaaye6uOoNTUy9LXkWuv7kERTjQGullddn587nh1OyyLP8/F7o7LqFCeWDamRg9SpBo3BAlFfvNs0HWPJz7b5j61dZoNnePzRe9jZuYHj7ghR3sH61hX0j/exnBb46Mk+rl+/g6OTY2xsbaPVaSNupSgkWerst1S4Wl6nyor0B5HkBSLKke4JZJv/ha4P2PI6Y8SLotYUl4GNNjKTOx3dsEm1+YGLrCbzvw3b9U2cZFNEmcVxjOFwCGCys6MLYFfoYqQJZRC6aBQTOVftWGhnFXJf2TrW5B1CVRN6+fumononoj2UqYNy2qY8m+KaTtEt4Jug6KoLMS7V/Wx1jDVi8d7EvqEqqio36gnhmp6qXddp5VkE0jRFPlLvG9HEfi0U1fjWxH4wwTbu3v0MegVwdHoP6XCIB7/7ZbSzZ/jk3RvY2tpCbzDA2tZVtDop0k6KrMhQRDmifLYxn5edhbG8DofZWNB5NOqQTpZqR8su/Gy/J0midFuYckshaVYxoddZSn3zkd3fTLuvusgrrsmybGpXTXnSO9ZcKxQCZeqazzPL8s4DqkwR0O9cyoNaynX5AeWeOaROVJK3JiZ2vGhTWG5p+5f7E/lveXEjazqrmHCarFvzRKW0kz1UVGUjXzeLXcFD69osUHmmCHwWZKFzAbs3Bu0D4onrXNMLxVQGsqy0rrnK4NKu9GURRohyy26ZxcTvvvMRFyuxy/VjpBhe3+el8bLUkkrPcVVZfWVsuxNPyTk2eprrkUr5RmUtosk6pov31ZYzPQc2kJA651pHqkrPda5lQ+yQneBs35hut3v2/WCIpNPC8toqssi8D8jMMcxLVL9TbwHZ8prTcrL2a5j4nS2vDug02VVNjl3ud7VK6qDuIaoOTv5dnqzJ5vzRaIQ0TcfxuqqKRi07rs9QFb5uBlOuRR7yiXuSJJlYINABo0kT0aZAF/gXgXkq6uZdx0T9r1OO0D6EupAJrbz8m+4+eaGm8qCYxfFgi0bTLIzUkjcLqvY8YpiyNK1d6nBdoCzCs+gYDocoigKtpSUkcYTVVoooijAcDtHudDAcjRbnqJYLClteHdAtkG2N2NVqWBTFRCAznXSZOgGXDk9YJKo4OFugsmbaZJ0F1Lol/y/XG1W5mZQPs3A3nYd1h+ZBFwTeGm9Sl33rGnUp0/2mYmYWbo2Gk/4+zkfaMM2lvGWLa5UIbbKKqlwJfbXypvctoF4dOiWfbz+sg1rETQtWX4WlyQJYZg8HXfo+dd61fHTlob/fz/JK05v3mCLjqmzVy1zN5omyHM6LCY11sawF1YY8Dqvmbroyk+X1Hkc0ltcx1Ops2KlZeb9v/h4eL6r3lCTJuO+muxPb+iB6zmuoUo/OrXReCnXi2/9RvOsR+ZwjQpyf9WA5Hfc9Zakcy7xEnP8r0FleAUycAVsUxdjyCul7oygzsLwunPKgrondPJE7E5WFRBU0rSoDk6Ws6nPW6jhXsWrE2Yj0jESxozQtx4tkZQxFrl/yP1eLU5Ik43jiy4quDFXQdhlFUdDZuS7vZ17129ZnN9WaOQuZmjCeNWlxGEJIGcqW/lnlyTAhyN50zHwRC9fkgk4VF6lPY8urB74aK1ctuIsGbSKOKZ++fyI2kWhcxPXjd63QGLXbLQyHZx2kzzM2UTsumHK/jtLJuhNN7vxMNYtjTWegH7+rpTDE4qpyuy7zDqwaTUlrJ3b7dtlwQV78+hIyIfVJV9cORXuhltMq6riqnFXpylrtKja28LGqme6XFWxVY7MAFXk0ee51lBvjFF2x1QcXWeXvVbuVl5XFhk32qjXlVdxb1mpt84Sa5Zik6o/VMlR7bJ2cvo9ngapsXC2zvug8LKben0J8XblOXWcR0WZ5tZWdLebVlv+UPB5lOlWnSB3S1TnXsguVWU6vbJgODAAAGBtJREFU7Pyj7P2COvs5VTohXjllCbWcy/cD0/XDlG7IGOnDhba8VlW5Z0nVu6mZtL1lF/T9/gBf+9rXSqVRJaZnDS1TnfZSfE8ttEmSLISFuUksYjtVMetzG9mSo8e1TgmPiibQlPdZ1sI4S1w8FWbNIpXfZWTR341LPW9Se2Cqo6keR4vCwmzYpHvRVWmVXPCdmAvLXRUaMBdNi+78QTnfs2eYvrfVauHevXu4e/dupVaystqhMmmqNEty3I1IRpRZFJ0fvWHa6dj3GXTvn1rVdDElprR1n32xWmqkOJuz39TxMyq5mzbBMGkeX/yhLPuyVjGTtTVN0ynlibhuVlYxlzNwfdP0wZT3Wb2LJ44Jo2VTtQXQB9W7DUk3VBadFcTFq6cqfPtLXT9htbJZxlOVdSC0XMWY6vtseu+qyd+FbFW0cVcZQz3HyiCPvbb3qoprr1qR7duX19Xnye9eN6b7zq1s8w16nSu68bIKhXVVdW3Wcw9TGbr0vT5WTt19VdVl03u0zZlc+pyq941phpraAdZSqJErg+j0qQbbJYZuNBrhe7/3j9YpahB1a751CpFZWXA4lsXOvBe/ddZBkfZgMGhUzHUTLU5xHAd5QohnmaUFo2nlx9abZnJRPFVmTdn2dRnbQ9V90jzKsIneGU0gZO5gKsumjV8qFibmtdcdFWLiIuKdVFRliVUNKiZtgyrOiR5x4yqjXmur8Tcv4vEOr3meI0mnNWJRFCnPgHWFWglphbdZG2yDtKv2qFINjmJXWPGMVVhetdkGau9VabhaH2z3l0WVjmzlLkNV1kNtuqQe0HPxXNujW6bnO36naYq8mFReiHYm79ZcJvzA9z7XegO8UJZlhvssuzFOJ+62i/P4I7IpJZOqbzC1EdWRWSLNLMucyz9U6+1qIa0KeSGvkscE7cOpQrlMrK9Ij+Ynf+/7DsQYJU/EXNOUfzc/k3on5XMZ1PsmuD7TLOqFb/lWMX4pryfJyvXN91xWXTmP5ymW+313F7ZhSt+0M7Gq7tI6J263PbNrXQO9n8jVBGzzQO1cuSJ80puV9dc6dpPPuqujKJq6FhWVn67clpZXvQtpYRavoyEKUVmzLBtv/23Dt8PVWeJC0gydeI47bNfJAJl8x4lZKxb6zk1HbdiwleGsJm8TSAuJKIrGi1fVURxVLJjLtjV5INMtCl077arLWTfZK/PMVZSXnI623dq2mK9SEUDqXJxgSlFS5fm6VZfh1PfS5nFTz29QMCrbk+fiNUnP0xF9parcbBMd30meCdfFaKiyKVQeVXqinYbWt6raelUKyTqUjTql7Pn7pceo0bOG/cbgqpQkPtSlpJXTV53bLNebOI6njquRkRd4eZ5PbaBk3bCJzj8asHgVY4BOdv27dlu8gnzvSk4X+l53zwZb/1n3fHIWY4RA9M2qc8x9cH2vURSNrxX5Fp7H07ki7g9ZvC5MzKtK6yu+byqqXWxnQV1lUqVbYxWLm7pokoaR0sTyYsJpkqvwoiFbp+fVZueZ97yhltdQqirDOvvGi9zvzuLZRKz6RS5HhqmDi7J+qJqFsbwOB+eCmtyGTZgGSVM5UI0H5fT0FJ1Oxzkeq/TCm1ooSNrUKp3nOdI0HbvBlcGmMQ5taGWtW6rfQ2QSCgeqKW6C5RXwdxMOdfGypk/qoKhzOou6D96aYqKZnBVBWkhSbnLfIrdd10Wti9tjHbik7+tKa9NIT31vcfeeksfR1ZCSJInV44T2EVaLta83jkV2X+RNiIDJ+ubqMRTqzXQRFvu6OUFUkKNw4rD3bbu+CsW4Ko9ZLjCTyDyvovVwwmpreWzXPiWUqtqj/Ow22cZ1Lh8Zry/rSeJr/fdp32X7gqo9UHypo23oZJP75DJzG1/vu6Ioxm7DY29Oy1hctlxCjspZGMtrXbgUuu2a5eVlr8ZRu4aYVKwq3RAvMkVRTLgfNuXYjRBmrZSahxKM7gS6iNByWxRl4mWizF4BTeWy1bOqrMSCy1Z+dcBl6AeXF8OcszCL1yo0Z9Tt2Ne6odPiNW1iUxTFeRyJRNkNNUxUXQbelgmDBshHkygWsAKVhruKOGrTdT6ay6rwtrJY2sQsBlr5yJQy+MpMr6ftTKVddjn8+6zd+ilNypZ3VR4TKgtC2bRtzzQV5xpV/yzie9vih3r1lLVeuFLWuqJ6by7P6iufy32u9SXkmYXlPIqisRdSSN70eiqT7TpfdM9apbu6zzuqEluZ0zma6/PKimedcjDUg8lVBtqG4jjGaDSa6ttNY4IqnRcXKI+8McX803RVlLXQ2p5FJYtvPxlK1Zb3KjF5DYrvXd5NHfPS8XsqkUaV98kszOKV8WceDbbJnYQvrOn05zKW2WV85iZQtTVtEfFRwlKaVnZ1jhmyF1LopoMM44owIIh6F+LJdRHmUAxTFwsT89rvZUSFox6wXeN15Ot9cYlnkmUwaU/P/pg+skV8Vlls5B0+J+7TPJOIo5M1dHVrTPI8H8cA++Zl2sFSF+vjlIcmVlj7Pkm5+WhdQ47aKRtbW849/EWdQwtAhALq82dDnkleZMjPKH9Py9ilHGweEab7XNqnL0HvT7PDbt0xOvNQMpn6zSo3thtbEIvJ9EX8oQ5dXTTlUaWHCL1u1pv9zSr+jN5f1jI/D+XsOepFia6OA+bxNyomLYaFZW8PlbXGZMlUyaa7z/d7ikv/LMYB1bgVQxofSFa23YCnnlFMrTw9hbR9VuF2Hc2fXm9CX0cm6xCdp4Tiqgizzjdn6H1lhbSn2P+Y8MnkiKdUnbh6BWjvJ5/p3UVOvFCkviZCMrmHg+PpLqGExLwublCfhiZq44UWLuS+qgfmWcVxiveQZdnCaxCbWKcuE1VsNMY0lzr6uTKICbWJ0D79IuFSTswZTajjTamzTZHjojDr8uR3NxtE/1pnPzsaqY0Ui8DCuA2HahVt6ZXBZEmQv3PdDfX8Gc8/q7S0VkuuNt3z+0ya/TIWPJpXkiROFgSqQdY9i3w8hpBV/lxGZtP3Pp2H70TFFt/gE+ujSjvIE0GTpUlDrbOIy+VB/1a1a1p+1KOBPmeI9Uu+J7TuqCzsodYr2VNBfG96b1V5TszSelXXpMf2DOK92HI3WZh82o+pLKtKx5a+7720/qnSFKji1lQxeLrPoYR6Eaj6cZPlTXfWty5tn+erUxHq6o0UOn+wQcvUZU4mykNVzkUufS/NiarAtX2EzidF322731Q3bfeMr3eS0I7PHjCm/ukiLW5D6rSOuo0gvmPGyckJNjc3lWEUdI1QdnZQxzxjYRavi0zoC5uHxa9qLV7dGueL1FEuMnW+53lbLGaB6zFbDMMwTLO5yKc71D0eN+l0jCqMI4K656ppmiLPc+d8VlZWFjr+f2FiXnvd0VjQOI6nzvSjlgofbax8nUt5BMdJhGptNHFxIdfXFUtn02RTLX0j652h3Hzq1lSyHtrXiexV2mhDOavunZlljZSdaJ+i3FSxWTq5QrXdixQ7d545GRwjXy+N5mi/dTLRujjevMS3XzMge7f4xmS5WqzqxNauQzX/LhZ88Zur5TUUn37OdH1IexVnndM+XIeqjqg9S7KJtmryaHKBxlLmDna1umIMRb9t22fCxTqtIiqIx02J7nfq3NWSZeEdY6uQvdVqYTgcKu9XXW/rh8blXZy11fHvdG8Os6hWGjk3K4G8EC6rJA6xlDcVKnWEc4NZTto2PefVFdf+8FLEvLpaBuM4nts5nVVbLxcBHyvxImt7GD84Lo6h/SFbmZkyhPQpy8vLU8eucL9kprFK5gVhMBjMWwSG8WKR2vuFcRuWYydcYv/KaNtdrV+6+0IJjXHQWUFD09AhKwuyLEOSJOP3IpeZ66TBZ0Es72BrSm80Glknz6Ku5FLeNmuhLh2dHBM7uVksD6r4Tx0uMV3yZ9eYZFfOLYh2GcviU26m63SfaT40XaH9ls+QDJHDRcZZaXnLWlNc0zxr2wECatJXxR3bnqXK9xJ6n6u1WmcxtHm6uPShch9tivcs61Fkut90PqWgTN3v9/tGmWzYwiJU9a8KXMqgrj7BNJ9SyabD9N7rCo2isrnGMNcpg/xdoZjFOfdXjuMWc0aVShi5Li96uZv6bZ9+0ebZU1ebWzjL62VgXhbjKhEL11kRxzHa7bb1OherzzxijWeNmDhchN2g58VgMGAvggAuwsDPMMziwJZ2hrlYLI7ldRwPVRitOrqVPl2QuGjOXbQKZdBpPqY0neLZx5q3yTRkrfyZvOp8xDWmxVlVFh7fmEuVVpZabE1yRVE0ji8R5NnkoFUgPKZOVWZlrC8u94S8C19LneyxMAt8495C0rZZn32t11Pv/cU5yxESRIinYzVfxHLGY6uFlB+9Vu7XHGSp6z3ZrNAu7Y+Wl7XNI0xx4hpHoyo7Fw+KMhrpUC8cn37O9n1I362ygtHxTyfjdH62s0nP2oeIfaZWMdd65NM/hlpY7ZbP+MU/4UWTa65Ty+zbx8/KA0OVZ93EIO/f5L1jefype0ta8X1jYKfeUzzpNWfav9VXtqrfTpUeD7PG1j5sc3rffEx5zQvnuZ/henreNDQ2n3ka2hZn8ToHkiSp1TLVtEoPzMe9hmGYywfH1F1uXJUQF2lMos9ykZ6NYZjLxTz7r4VZvMraWDk2x6XQVJYlWzyP68A6S2zxLueac2ppnYV0anTlZ4v1op9DrGhVaYV8Y+ZssoVaZ3zcmX01+VVxbuU+l8PFslvFIsZWl1xxjd1zeSbfuDCbDL7WKVd0+bvGqYXE4nlbGKRnV1nHbGUmZLcdw6AqU1McqMma62rBLustUCVy3rr9I6rKR1WXXJ+9jj6u7nJ27aPG9bSEd4CtfGznz5etg6GeLheBOttt3XWUyr5I78d17K4iH9s8ILS86BgV2u5U6cq/+3ms1OcxF8rCLF6Z6mjaopxhmDNsE8pZazpV59wtav9R5uzAut2j2ALHzBr2fGCY5lLlGbMXkYVZvFJNexmrRlXX0nuq1Eib0Gn1xvlPnOtqTj8kts30exlkLbyqDEyxSOoEPSerU7GLL/4r1BvMuFqPy2jgxP06q6uvhre2ybGm7Ghdq6L++Fig6X0+eevLqmS9khDxs3KedbUtoHxdpH+bLOtV1zVvrTo9R1ZxNrjqPpXcphgqL5ks11XlPTBLputWrPnefL/r77OyrrjkWVVfP77/RXIFinGcpIlYEfFY5KLztefn0m5Dy9M6j4kwKaM03iZJgqyQzlknD0N36/U9IzZSjE8ib+DsfN2JXbuLyd8LzbsJm7tNjg8iJpzeo/tcNaoykZV3s1xMTUWYe3oeje83zHlDUM2hbZ4Kpj5EVgib5ntV4GIpLsicJY6at5BemMVrk2mc1pxO2nwXcTNA1iplWcZaYIZhGIZhGouYt+TeBxYydXARrJOL6sk0bxZu8Vpas+kYRyPicVzyDLWUhspqj0WJJrQ3UXSuzbFpdFwtrmUtOap0TK55Lu+raqhGzCaTzortm64tHxmx6PeVVYd4D1UNBpP10P3MSVuaVTDrAcMlvk98Z6tbsuZZbje6ehAaX6pDzreqciwrs60vKCOnTrbQfrDK2CtVe3XtY1zk9+2nfGKqXNIT6N6vbrfiKtu3qZxUXglNmEzPY8wsg+x9IGQUdbvIzbtAC8NsVXHQtK/WxYH64nOfq7XfNc8yXjd0fFKlZ5JL9EdVYZsTzxLfdYLPPFHGp7xN9/n+Ll9TVTn7zoFVLNziVTz0Ip2FOnurYowzh4noxf/Ns7wKiqJAq9XSuubauAiatzLkeT61QCxD3XV1rLmucCC7zMjKC4a5jFz2MYCpn0WabzKMD/OYk1VhbV64xSvg15GI+AmXF6PStAHhFgFXTYvNZ94nNuvsh+HYxf/8f7MsvnmWLQOZMscRmco2VBMmIy8ObHFvPhafkEWiSgZxnFOe50jTtLRW3VkmjWu66n2YNNimeB5VXazCmlT7Qi+iMUx6eUx1ylTndFYIqgSiloIqrdZVLxZs1g3X9jx+1pJKO/ksx3Es4pwWSLq6r7OKAOUVUU1TiIRagOUyCu07XDwmVJ9F/O857n2DnKbWiqr4WqSke9K63qutTHR118eCpL32RZyv+NU3BnZ8vehD6O9+yU2dAyvcjNXyq2NctXUjyoHofG6nqzp1t19b3dXNBVRyadtnyflM2RJwbZ8mdOOa7/wk1NIa4jV03hxejDsWBaHsKWGSRSdTCAu5eC3DZdTS2nYwnSdxHGM0GjVuouTDPOvUaDRClmVzy59pFhw/wzBnyP3yZRz3GYZhKHX0hfNYWyzs4tXHZ1pnUVWl6ZqOD1EUjS1kLvk6W1g98ve9xlVDLQi1cqqsrmWsOraYpFDKaN6qRFVWaZpOWVyAehYy5+/x/PNZPmr5KGXKqir3WFdLuU1raNNgutRro/ZTcb1t4KnybGPfuGxfLWuoJ4ONUCsWRS6DJD9rT2K3y0GRodPpWPv0qvoGm9xl86uyn6jDO8cnHYHO48PkVeWaNs3HZlU5v9/PG8snb3mRrrvWxxrv+l7KeLrEcXweBmbw2qm6PfniW3YU01jjMm4IGUxp270A3O4LxeY5o/tOJYsujbIy0zbiajU14dt32t53Waqcg4n+xTaGz6NdNs8UdwHJskw7ybnsxHE8t23YLwK0/Bg7i1xmeZ5f+HjhJr6f6MU/FAU+/sY38IUvfAHD4XDOUjG+XPS2UyWXoa9xRSiyGOYy0sS+IFqUxcLJSbdI03SspfPRwPjGVQhk7Y9PvJqKKjfCsVlFbHF08n2+FhYdrlpXX60vvc/V6mVKizK+13DEUFCMKrmcxs1VofmsM6bAlI5VY5mfbRqWpGrNsviObr5WZX9kq3s2K4nOAjglY0F23TWd66q5d/zxxVmkutiRqtupqgyENUT3u+3+UMu0r+w6XGOLXPOj/aWLF0ZVltCQMpT7c9f+PY5j9Ho9rKysWBWtvmOGfxnQ9jOtyFCN6T5lXtY6QdvLOSSmVTMGaOUSQ5GwaMwwAoCWn67PcR2bffOcyseQzFS55IX5d0O+TnJ6vkddfiqm2jTJa+pYniJDkiTj++iGO7q+o8ojHeV+kJagKnXf8ct2vWt6OS1bYObGElnW4XCIVqtlvc4pXfJZd1eo55OMTpnsOqbb+ojO0op3pVwYt+E0TScmVYuEbeEzK5eYKIoW7jzVxp2hyzCXiMvc/lQu2hc1plgokRZ9/wGmOjhOeDFwnRPP83365u0aHrNodVO3cGX8WZjFa1EU4/hIoaVzOdfSx+pK75PzdrnWpHUwHe/jG5tALai+Puz0c1WaODl9WwyDq7ZWvG8aq2CS2VQnmjD5rFJZ4fssZeKTxO8+CiTdmaPy+5froHytq9XJ13Kqeib5ett9tvRF25TLSSjedDKPP2tErbLO6s4FnZIF0+1WdY1OPpvFRne97j3Y+o6yVk/5PrmMZCuDT5/vIovO8u1aB1XQccZFYZnnufPEKnRMle/3uU91ucv4J1um6pjkijYt6osc+09lcB0fBePfNfvcmjweaN6me1T36fKy/e5qrbb1FeProN8lWtVGJ3637A/sWja+hNR1/zHZre3VaRTxTTN03qkbAyiudTv26LeqwrWv9PWWsaVT1uvHhK3P9R37Q1iYxSvFVvmbZDGoaoF4mc/IXDQNG3PxGWt/Fc2RttEyx0FVSVMUOC6EauurpknlVZfFoWkxxlVQ5zMtmgfTLLjM8xMdi2ohbAqXsfyaNN40mYWJeWUYhmEYhmEYhmEuLxdP3cowDMMwDMMwDMNcOHjxyjAMwzAMwzAMwzQeXrwyDMMwDMMwDMMwjYcXrwzDMAzDMAzDMEzj4cUrwzAMwzAMwzAM03h48cowDMMwDMMwDMM0Hl68MgzDMAzDMAzDMI2HF68MwzAMwzAMwzBM4+HFK8MwDMMwDMMwDNN4ePHKMAzDMAzDMAzDNB5evDIMwzAMwzAMwzCNhxevDMMwDMMwDMMwTOPhxSvDMAzDMAzDMAzTeHjxyjAMwzAMwzAMwzQeXrwyDMMwDMMwDMMwjYcXrwzDMAzDMAzDMEzj4cUrwzAMwzAMwzAM03h48cowDMMwDMMwDMM0Hl68MgzDMAzDMAzDMI2HF68MwzAMwzAMwzBM4+HFK8MwDMMwDMMwDNN4ePHKMAzDMAzDMAzDNB5evDIMwzAMwzAMwzCNhxevDMMwDMMwDMMwTOPhxSvDMAzDMAzDMAzTeHjxyjAMwzAMwzAMwzSe/w9K7CUXiOVocQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Run object detection\n", - "image = skimage.io.imread(image_list[2])\n", - "results = model.detect([image], verbose=1)\n", - "\n", - "# Display results\n", - "ax = get_ax(1)\n", - "r = results[0]\n", - "visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], \n", - " dataset.class_names, r['scores'], ax=ax,\n", - " title=\"Predictions\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing 1 images\n", - "image shape: (2128, 3248, 3) min: 0.00000 max: 255.00000\n", - "molded_images shape: (1, 384, 384, 3) min: -123.70000 max: 148.10000\n", - "image_metas shape: (1, 17) min: 0.00000 max: 3248.00000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA68AAAJ6CAYAAADHHHTBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXm0JUd5J/iLzLu89+rVvkhVkkpSCRASEkIIGjCLEHjw2GDw6THYBox7DMZL+8zx6e4Zt5dpQ3tstz0zZ/xH+ww2trsBjxfgGBuMWYyxWQQIhAwIgTa0V5WkWl/VW++9mTF/3BuZX3z5RWTkvfe9ek+K3zl16t3MWL6I+OKLb4mIVFprRERERERERERERERERERsZiQXmoCIiIiIiIiIiIiIiIiIiDpE4zUiIiIiIiIiIiIiIiJi0yMarxERERERERERERERERGbHtF4jYiIiIiIiIiIiIiIiNj0iMZrRERERERERERERERExKZHNF4jIiIiIiIiIiIiIiIiNj2i8RoREREREbEBUEpdoZTSSqnW6PcnlFI/NUY5h5VSi0qpdPpURkREREREbF5E4zUiIiIiIoJAKfWQUmplZCA+oZT6b0qp+WnXo7X+Qa31+wLp+X6S7xGt9bzWOps2TREREREREZsZ0XiNiIiIiIio4oe11vMAng/ghQB+nb5UQ8Q1NCIiIiIiYgMRF96IiIiIiAgHtNZHAXwCwHVKqX9WSv2WUupWAMsAjiildiql/kQpdVwpdVQp9X+Y7bxKqVQp9X8ppU4qpR4A8Fpa9qi8d5DfP6OU+q5S6rxS6jtKqecrpT4A4DCAj40iwf+bsP34kFLqo0qp00qp+5VSP0PKfJdS6oNKqfePyr1LKfUC8v6XR3SfV0rdo5R69Tp2Z0RERERExESIxmtERERERIQDSqnLAPwQgH8ZPfpJAO8EsB3AwwDeB2AA4BkAbgTwGgDGIP0ZAK8bPX8BgB/11PNGAO8C8DYAOwC8HsAprfVPAngEo0iw1vr3hOx/AeAxAIdGdfw2M0JfD+AvAewC8FEA/3VU59UAfhHAC7XW2wH8AICH6nslIiIiIiLiwiAarxEREREREVX8jVLqLIAvAvgcgN8ePf/vWuu7tNYDAHsA/CCAX9JaL2mtnwTw/wD48VHaNwH4fa31o1rr0wB+x1PfOwD8ntb6a3qI+7XWD9cROTKuXwbgl7XWq1rrbwD4YwyNbIMvaq3/fnRG9gMAbhg9zwB0AVyrlGprrR/SWn+vrs6IiIiIiIgLhdaFJiAiIiIiImIT4ke01p+hD5RSAPAoeXQ5gDaA46N3wNApbNIcYul9xuhlAMYxHA8BOK21Ps/qeQH5/Tj5exnAjFKqpbW+Xyn1SxhGfJ+jlPoUgH+ntT42Bh0RERERERHrjhh5jYiIiIiICIcmfz8KYA3APq31rtG/HVrr54zeH8fQKDU47Cn3UQBXBdTJcQzAHqXUdlbPUU+esmCt/1xr/TIMDXEN4HdD8kVERERERFwIROM1IiIiIiJiDGitjwP4NID/Wym1QymVKKWuUkrdPEryQQD/i1LqUqXUbgD/0VPcHwP4D0qpm0Y3GT9DKXX56N0TAI44aHgUwJcA/I5SakYp9VwAbwfw/9XRr5S6Win1KqVUF8AqgBUMtxJHRERERERsSkTjNSIiIiIiYny8DUAHwHcAnAHwYQAHR+/eC+BTAL4J4A4Af+0qRGv9IQC/BeDPAZwH8DcYnqkFhmdlf10pdVYp9R+E7D8B4AoMo7AfAfAbWut/CKC9C+C/ADiJ4dbiAwB+NSBfRERERETEBYHS2rcbKSIiIiIiIiIiIiIiIiLiwiNGXiMiIiIiIiIiIiIiIiI2PaLxGhEREREREREREREREbHpEY3XiIiIiIiIiIiIiIiIiE2PaLxGREREREREREREREREbHpE4zUiIiIiIiIiIiIiIiJi0yMarxERERERERERERERERGbHtF4jYiIiIiIiIiIiIiIiNj0aF1oAkIxyFaLD9JqraGUmqi8Zt+3tdPyrJQWU66LPul9SQunaZw2lmVwGsq6NYZ+CwVoh/9C5Yw2IYlS0FoXaXxt52k4jcVzRo9SCnmeW+UopZAkCbIsQ5qmVpkuWrTWSJKkKIvmMWnM/yZNkpS0SOW52lo39qYN5h+tk/N2CK/7xkjrYf+ZMpIExW/TJ65yeBtN/9HxMPkVL0PqF04br4v1i6FRysP5gtKSZVmRJkkSKKFtlTaO8ha/R3/T/qd1W20lz02ehJVHkee5t99N2wq+FCln7WDlp0l1XhdSZlRfIo3RaIwL+hgP5AFy05Ra9AeSSl/m+cDqgwr/sDYBQJK0rH4BctTB13cuWUTnJJ2jEj8W9Ag8y+etGqUv+j+x+0VrDZUkxfgnwhhS2p0yVeoHpYp5Mcxk81+SokJ/hXcFvq/M6Zr1j7/zzXHzno6B1hqtVstqi+krTfrMmj8kb57naLVaxd+0j6k8kea4UxZ71jtOYx0suTaSI2bsxLUmZf2JtJoGZV/0+31oJFafyjGMvKBHapdZf42MNTxk1oc0TQGdWHxqyuMy0qrVsfbScirjilIP4O9ovQAKmikdrnFN09SeM0LdHPLzcn4P+y0vxpXXz/Ob/gjRd328Oo4O4epvQ1cIP4fUVZYrrS18HHPU6q6VcpvR5hqPUJtBGldffU5dZ8QvPt3FNY/GgTS+rvnvygcAmjc5l+hPrDa3Wq3Gg7VljNetAp/S+lQAXeDTtLpQrgdck9sH3zhwgcDTTEsYuGjiipcPkzppTL3UaKhbeKmCQn9PW1j6wA2H0DwAMagbLCK2UTQ5migdHHWL1qTghum0y9U1PL3ZYcauMIqIEsfHM03ToXHRoM1SOdNwyPrA54bOVWHApWmKJCmNu/Wkoyl4X2VZZskgM0Z5nlsOEK6I8TJM2ZKxNC4k43ecMuj85MbfOLSkRXEjB65uJlcpaL+b36WiP2x3mqbD9zq8H+rWQVq3tF4bPpbe+ZR/Vz6pXqnuUNB6mvDaOPqkqcPwd+FMaAiX3mUcFpPiqa4rT4qmOu96gM/LTbU2XOjOCYWJvLqiHk3RLD+Puq1XvZNHXrWuKv1V4TN+5FWKWFJIUVLjOW6321bkQSpfokeKehYKi2eChyqE1FirU0C01uXiDHlxdNErKSJ1/BwiwLihZI9RymgKj5I3mmue6IlBYqJLhcfcRjYYRuMkZaFY6NhzCpeXUJF3dG5YvArbOFdCOTzyKtLniYi5aOX9XVGoA8rJWZ2ppHCx8eQjP1RsbcPZRKCLeexQMq32j+ZlEblQpeJURjsyqx7DG5ZsYG00EaIyimFHZcz8teZkAz7noE4mw5fcsVAaBLZclKKn3KinymXRpjStGMwucD5zjaspx+JHPYycFY6epCqTDX1GWZWi7nokz7kyS+trrPCQvjMKf8HXIyXcrCmWXBXopvLGZ6hwZ5lPHlODmfYLN5DFSGmAE43Pe7rWGRTzhgcsdFIZ6zQpy82yDDkJjQzpH1iRwTzPkSg7rkHlnBSRHDaO6Qwsus/njimHrrtUTlPHo/lfjI4jK+bnYDBAq9WqpDF9K+kePMpGo06udUbaPSNFTYe0yHqdbw1oqifQOk16i0eFXUouR9XY83Zi1EdegQzDqF3ijby6aHfphFRm1FK5iW0mF9/UpfH1S0h5ll7Hkiihu/QokeHDdrsdI6/riXLQN4/3YTOBLjRAVeAOBoPKRPEJ5TpBQgX0NOmvq9NrfHvo8hm6k2AzecMmgXFumO3gQNPtWXIaY7wapwPlz5D+p3XRPLQcl+HMnRbjLhAu+Bw3obDmoq5Ge6ji6aJTmjtlOfW0NJ0Hw3HIyd9uY2MjQA380C11nH84nzVFkSewL6cRPXHRWXEiTAhTlpEN9JhFoTyN0oY6LXn5IeDOWddaUOdAdiGUB/i6WTqPZIez1jpolw/9Z4xdAx51nQR1slcLckgqAwDSdHicYDAYWOsGNUamaXBIY04jnZQ+Kv94BLQJTVLaSYzMceZIxNYDl0kSmuy2GWceyUGVyXlvy0VeDbhHLWShlDovzMPKzz3whS7EY+SmxZPK+aakP6AYR15vzYJg9HkhKYzh5vLwmL/p4hhqvA63I/EzO+4JyA1qqY2++nz0S/VQj7FrW4yrT+ni5vKY0jyS0eNTqOraGmKYO2mpTSn0WaUsOyLQ7/fRbpXRtroyKb1WdGz0jCoOZvuhFGXioBGJdrtdUejqeCt0O6GrL6VRSMkck3YM0DxVBXdUj672LTXMpQh4jqxSn4nymnKygXYqaYXRocpIUDIMoVYbSfiR1rm4uIjZ2VlxK5zLKVZEe4TobM75RjCMktH2YFd9fP4DqBhTNEJHjS3zTIzoQJ7nVl/qcruv6cu6qAptL+cjvsvB1CWdo87Z/OHnqCWvvm+rrssh1Gq1LPlo2ky3EfMx5+3vj4wbWq9JQaPQlE7eJ7TNhOiqMSD0g8voo23l8teKAFJDnfC5xS9q2CfmXK/WGjpXaLVaGAwGVptpe4xzj5df8rIdtc516aCV+FOKfNNotLR+mvLMOJv05rfTKTSK+Lbb7cp8L8odiWwTnaVrtGR40nJ924Yr/e8YI56HOmh5P0h5eBrJmViMTcA2YV5PiJNgHFBZ5eKXSYzwkDzSOfBx4NLjQvQkV9ppG3RAvTEaUo/ZvcD1c1/eYl2tCpiKPDcw5bZanRh5fbqgZPqN9Z75Jp8Rmr1ez1ImJBgBbjCOV9cnNKhi55o46w1XX4UILF9E2SX8pTrHwXo5tJosUlprtNttQAvb0xpi0kWRjlvTqMN6ebiNwcFpKpTUAMOl7nkdfIt3XdSDKrbckKvDvn37AAArKysVWgxcbTLKsZRHcnIZ5XSSGTHt+eRToF19WXcGm0bcpLzjRmmn1XZ6Dpn+3+/3MTs7a80Bl9MwdTggzDvKs03WjNDdPy7+MrS66iucbIGGDd0+m6YpsoFfboW21S7D79Sm7aHbcMeB5CCkPGm257raOHxu8wQ3pAaDgZPHJT2Flm1tv3cYrBSS4cnLb+J0pu+aRNE2AuulS1xIjNO/G9UP09I31ktvmSbip3K2KHiEbaPrpYqz+WcWmU6nU6vs8DNBVKkchxYO41HlZyg3Epw27u2V6OL9KYErG3xMpk33tNCkXK31WJdMSBjHeSEp8+12G2fOnGlUDnWeTHMxoFEnCrM130WLS9EcZ8xppJFHHKhxLZXPjdcmWFhYwPLyMtI0Lf6FtrWpTJjGuE17Pkl9af531VPXZh+PTnI0Yz2MV8pb3W43eC3xGVBc3jQd96AIkJAmJHrD50+IYWQir8Yom4bx6pIT0jyXHKrjrsN1x22oHJHoo22nThzzLyRS5Zsb9H2TMZJQpwf5aAkxnDcaF0pPXU+MsyZsVD9My+iUdk5uNmzZbcMh4IJEWvB9QpE8Zb+5kJDyuBfJcIRs2wSjRaDEIaDN9iK53JB+kfPQekyEdVpbRYaRhbTSHpdHldLhU955Wv68qSJDhYikqFNFPwQ+WiRFwQd+IUzdtvs6xQoQtroKeSpGd5WySv5ElVuhaITJR09lcREWdcngstoj8Bbdvkbr4GNNPfFN5o1BmiTWnBFLIDTxbWuuy3X4fDfbhl38T2GUqlYnrTyvfHKHlUvnXtEv7HIXaRbU9RxV5LjR7jQK2G/eV3meo5Xal5xRWhrJAVIHMNyeaW3vhjAnSB8ppcTLgCSe4uW60lVo9LSHXgKWJIlzjCzZVFtjs90wfEzpXARsg8hVHp9HZh5rrZGQtZEbwOZ/Y/gXW+hIuZT/abv4BWqTrH++OVJpeyKMuU6cY0T5n85TStdwKzrbAaOqW4wr9ArOlLp+0KzfaD6TphLpVNUtqWasCnkN+ywsP9okbQ1O0nJMqZz1tUuapy5dxOLDwPVC4heax8hppVTQtmTXOr1VECRDxtg27NMDeN0+ft9ocF2OyiQ+X8cZ5yB5pey05sImn5NonG3DT8nI62ZgovXCOF6fdqttbbErnrfbjY0nn+evCcbxRIWMq89A3WgvoKnPLJJNt0RvpUVkveGKsIVAigKOw8PdbhcrKyuVxWDafNXv9xu3NaQ93FHlSi+1pdVqodPpNKKJlyneUEreT7M/z549C6AqM3gdfLvpenz+q67tEibZZknrHbcvaZ4LtXOFgs9hKZI8TlsHg4H1vVLe72bOmPOi641x+Z72DT3P36RPQtJTxZfKHJdR5TPyfPVJegaV3S4aab5QXWUSfUZyevDdAZOUNw4u5G6ziKcHpLlV95se25jGGv+UjrxyNImC2ALE7Q0c/RVMAxXak2Asz22NZ5qmpe/qzl7WnaeSym7kBdK2x1Oix+dJrEvL+8dXFl88fXSbvnNFD3i5vuineReqXPiUAl6nL/LKz4GZfC6YdxJP8AtffCNV1ME9xXAr0yVd9vkjrcsoJr0AhfIS31pnIjL84qdQLzkfhyZbL5uoLgUNnA8DaDOwLtMgEQrRgaLcbSjmBPF0S5feKKWgUV4EobUG/exBEb2C9m6fp7HAgt+Sck7XXVzCnRi+qASPvPrGqE6eFFGfvFpKQsh1XRRDZZBS1Sifb+w56Lxy0V/QzQwPeulMndxVwnxyOk+EZwkfEyGva0yKekiegieVtoxXpexP8wClQeK6TE9qR87mvG/tdZXHI+jcSOJlaq0BYd7SnRFa68olYJVIbJ5DEd5LksSa91pr5Jmty5hxpeubxtCINtFFpRSgE6svTRSV60UhsrV84I6cF/zGdAjaRyVPybu5FOMbipDz4JxeHy800Qvr9BQKfqeIL28TpyZ15IZi3DP0kr4YqofZBdlrTeglUtOwlaS1ocKPjFyzzvnGmeolUhppLa+0WehC6TM3PG8dv5i66YVsfBzjhU0RIppsYZxm+VRZN7c8mggENcbq4BIw48JlsPD3Un1NaBGV/zFBPbnTKjMUps1NHCb8AotxMW3etbZXquYfWw9RSJ8KmDbvcgOWYrgtsXphW934+JwBrVarcbQzBKZO6ebdpmU0SSs5HJQaHcmYAi1NyqDKiIGhZb0iPus150w7uNONKlr0NwWXTdZ74iyjaSZBHd8Yo9PliDQKrutbzVJdPqXYwLynnzAyv7mDNM/ct0yP20emvSFrFD1+Ulefb9vtVgn6GLh4hxu1PjRJO23UOfe3KkL4cRLZ14Tfx4V0hIOCzk/zu0mwyYWnbeS1SeeZ7wnyvOSJs65JBol66s3FC9x4krwpTYycppdxSOeDOL2cFuOhlzx0rmifNRGI17TuIHmo19DVP5J3j+aXeMhHS6hC54rO8Qge/VZpUw+peddECFJem1RWmFoLx4VAoxn7wiPP3vGIi8Rz1dMQtkHk8xTTerl3nkZ9+Rys65sm8mAakVclpHF5q62oB5trfC6opIyGuuYyj7xy8EjOMALWstsDQKWyslTwby7wuXTmD/W86/JMm35xRV5D5pLTuy9EXnn0h9LBz/WVES5WBKmTtm8wGAxv8IZtlPBIGy2bIvUory6jwbdOuNJK57UrpQjl0ugsXTuLekk9NPLKSrHK8O3y4aDrrpEVsnxyr5XWOJNy6yK3UhuLNOSZUsr7eSMpzfCP3OJjhbR0nqgy2mvJQnauHSh5nkZqaRpTJqXF1YfFbzLni/4n5SmlkGfVfqTrbZIk0MiK9KZdXNeRHPRSOlM3HVPKk5ROOhensdaasiWnoUt/43oN1Vs4H9c5COp0DNf6QfkotC5fPS7HiyR3m9kD4U58F3zRZx4BdUU/JZpCwNta8IZ4C0l9RNo857oCTVtHX4y8PkUhXXjkwkZ4WqaBjYpeNamHK5g8CkQR0r957r/CvwmMQTdpWaF0m7RbDb5FgS6aLn4wDiKq8IX013rz8UZhPXZp0PFw8a80T9fDw29tDd+k/E15mEf1fI7Log9Hv7miTiNhvvF1OT/XO+JSlF+j+KZpKm4tXu81pW5uhDiz6rZtunYmTGM+jrNds3QY56xd1TsEuJ5itsDbDgSbJ6V20X5uKlslg3fY56UhFoLQPuc7yLj8cjlvaL+thxxyzVXJcK0DdwisF7bKOjqNNTL0uMVGoOCVpNr3obrghbA3nlKR1xCP0HQg+brlOtweHYkWTrc7TbkQ8eiHkMPh4Z6WlymknMKrntve2JByacRh6JEmZ2hMWrAtguTGUy54C28sUSQkwck9gNyT5xK20jPq5a3zYoYIcK2r33OknktXxEgqp+KBZgrzON5gqTZz26r5jAPvX0lZpuehaLmUlrW1NSRJgk6nM3wujCP3pjeBq90J5xtVPdfnKsvnzUfA3HDlLcZKqhNuQ5LTXCituWLKZ2aloWPDI6++tvIIaVi/2Asoj7iMCrDTwDb8VvotKJ1hx7YukK1C6QyDpP4iKuOtL/s3s35L/VrxTlfKrDrHgmRRhTiZ18y3PulxDVKg/VMsoR4abIcCM5AkGeoyvhtBkrusTn5bMjUW+BogzSOzw4XKIR6pNGkrETnym86tYk0jMqmQv4Lh5e+CUi77tjWbdnClm/IujyBSOqTtuAlZYyQkiX2Lt2RUAiiinYB9i7DZYUTHp6y7ZTtxEvsir1DQNlFdqpyD7rIq7SC8Rfmcr2vDvrZlB0X5LGy9Nnn4ePnkhwR7LVDI8/KMMpfVLhnVBKGOlNAop/c9WzfEext4GqFcX9TRBd9OxWmA0+T6TZ9NUn6TMly6CVCNLrfTeNuwBSr8Ii4s+FgkSf2NeK40rmfjejDrtrmsJyS6J+VZaohO0i+T5JWgVHl9/7TKXV5envgm3KcbzFw04zuOcyIE0+afSZCmKWZnZ/GWH3kTnnf19Th58iz6aKGXNuMb3nf8eZO5GzI/J+lD871t8xmhC+movpC7ObhjJmSsqANCOq4TUqdvnarbgVAHbmhK5dCdOpQWF21aD4/49Pv9on9c58apYV8HakRLdZpyzL0Y3Jlq1g1XlHLcdW495BPv71BdZVxapnULNu1DehHbhcZmWkPGwVanfzNjy0Re+4MVDYR7FKTtVU3aKqUt63FHXl3lVGkIj7wWHt8kQZ5z74/t0ZVomcQwo/QbI49Hl2jbaL+bKJtRoEKiej5vZLktrvqdV3q+JkmSIlIijSP1grva0RR1UUSp/iblivwolEujCaMCKuXwcWi1WoWC64oQmzK4x9TVFiXkkb5Z6StDAr91tN1uY2lpCfPz8+j1ekjTFP3BoHIzKO8XyZNoeIpGW6T+oNEHi34lf9PYpAnZrknLpbTyqBWlWSxX8BhXvscagGxgRxRcZ0rthri/h1jSVz3HWhut5hHdwMgrxdnj5/Cnf/qnePErX4YXvviFUK0Uad6XSST9TuVJklSjEVK+usiruDsht8+zSxErldhnX13leGUQoXXUMGdaH/KRwWM+KeOqcdw1yLkuCPOX78qoRLp1eS6TGn00AmpAo5XGkCtuza2hFQBSdmFYRY7r8hbe4h9K/qL0unQR+k5Kk6Yp1tbW0Gq1aqJ8Vfql9cKSpcyoNf1k79Io39E6KN10Hvm2utL39Hy81hqtdhntNH0KoGJ4c0OfR2rLqWDrUpRvXLsHzDPDR2bXA4cU4eXye1iW/+iLKx9tP+Vf1/wr1gYrYly2Hbq8n2CciKuLf9czYFApNyDy2uRbsFQmuaLcrvXaR+s0bLEQXTa038U1zKx/AXTT5xVenULkNZ55jfBinG0CfOtPv98v3jfZarve4IJ1qzhy6mApYTVtci2EwPScHuuJXq+HbreLfr9fRA74NrhxYM4qG6cLUG3LekUsm2C9I2p0y2loX057zAvlNZvs1sUkSbDr4Dx+6Vd+cbgA5zlUXjlwUKDJXQMSvePAxbMXamdICDqdzgXb4STJ77q+4vOFRv94fjP/zVGHUJiIWFNFn97Y64vQ1sG0Z3l5GTt27HCmqZMf3PhxpfVtA5X6m/8d0k88DTW4+HtXv0m01LXN9546gamzk25TnwQbtY6OK+vGxWaWZ5Nio8ZsUoxD53rrG00Q49kRXjQxAKiHlG7L4ouMz5O8kZCM180yMSdBky2MksfcQIpShGIj+5IqC3me4+zZswUN4/KUUT6p95z3Q5Zl6/I5libYiMXE7J4IxbTnsilvki1YxvjQnRx9vQqNARKVI9Xu8RuXhydpv2vOjTsP1xsXWpmhkctQ/rCindr+xIp5b2Dmf9PtmUopMfJWl0faHTIO2u028jzHzp07nWmyLLP6QYK004anbbfbxZZfCbyOcddczv9mjXMZr64dME1pqTNeeaSTRjwnxUatoxut+2w2OTZNbCXjtemYW7uRLrC+vOW2DYeACxsu1PhWUbOA0S0dFKaLxolCNkN9Hl6sIanc9uSmsW7rCE3DvdAh2xAoQ7u22Uh5XRec8DTFgkAuY/LR4gMd95B6XZ+8EaMk7De/uAJwb/8JoT/EKDP9zr9HWcdh48qDSj6pHGHb1vCxe+si396YKIWVlRV0u13rPS0zUQq9Xq8486fJO4PKll9Sj9bVz/j4UPA7eybRR7dTm6hORrbj0TTjIGROSFuBAGBlZQVzc3PeMkNkYMj22KA0fE5U3ksRSi1GPoqy/KSL9fLno5dO+qUIfe02XkedJp+0VZ+X22Tu8jGV5qWPd110850e0lb1JrLOvHetQ74odR3/0DaRzHZeL2Uemh3Ppb6rLWuUzlySRB0GlRIYb1D5V9DgqIduY67w96g88/1kS5Y6IqBJWq5DBY8J33M2bUyS4RbV6lri/3yXyWNtmc2ZU0X4BFW5JVZjOL3sraMSj7nOg1IDluo+NL8kF0gJrDw7jcQrrt1FkkMpRPfj8OlF62E3UCeUD3X1j2U0BlzYVCRt0na+RVnLu7hMucVcrzli5KJlHBtF4rG6cpr0Sw5d4VP++Z9xPpXztI+8Go/q8vLyBfUiNAUX/q5zLcB4HpZpHzQPjRo08VpJ3h/uGZoWXP0hGe5SGsnD68sTQj93FkwKrXWhmLiUwknqmcaY5HmOmZkZb5r5+fnie5ZNaaHnW9fTs6i1LqKB05xr44yPUQpnZmYqbTYOnib8GALDa3V0hbaHKtAhZTeFKyI6LdT1m4nyT7tdW+1CER+P8XfrdWHjNOTCuGUFgpx+AAAgAElEQVSEjn+dQ9i8C+Vl6myV8kiXmBk0kaVSOmoYSuuolH/SOcovl/RtizbpJUOCOyvG5RtqAJt/df292TGO/iL1c8TWxKTjuGUjr+N4MCVUPWZSqnpvr6vchtQEpBnWvbS0hNnZWSTs20yWs7FhFNLneaERQ+5Z5MIntD4XXOdsSm94Ki5aoQihz5WOewalvgPjkyac4GpzyCVJIjS7sr+mbZQG31lYvuhUypPKH/3PF9yCH3Q1Ys/p5RFTlSQVWnjdmtRp0qYOz6YpI8urFwq50pZ8WUXGlUgtnDPzRPE46ryl5rIQPkfNe6qENZ0zkrJrLrKhRwR4m+mYcT4sL2Gp71/OCzTyWsolextpNdpS77GXFHQ+7yuXj3l4KaSfXTJRmn/SOkRlEB0PVx5nFAvu/g5SL5U9Jr5Lwmj/WDLKQTen14xJ3dol0UYqsGnh9TqpJ/xNjizwulw8MA5PGFqsi5NYOYmqRvzgKIfzu+UAInSausz48PlBZYOlH4w+gzMYXaCn1DDyKuUv6mAn0OlOK2ckMCnrLy6GzO2xcX4eReVQCkgSQDsivPTSLvPeZcjzPjK/+Tw2z8rPt8Gq24ySaz6I/eDRq6TxqgMvq+7yp/UAH4smOngjOj2RV6oHUV4PWj/5xYSjy0ZdTgf6/zj9TMuQeI6m8T3nsjkErjVF2CA1lcjrlr2waVpnQwz4gm973jbHteEU8/PztV7lEO/rNMCV4pC0GykAOQyd63XJyDjGQV1ZWw2icB6jDKOcFeWxPuWKl0SDr15KJ41qcPrH5VnOC9RzXpTdgE94eS46JQXLNUdDeMx1q6Lp9zRNi/6T+J+mpd5z17j6UJZvG0qmTl97fO8oTbwc0zZOtzQOXK6EzmHfVjG6VZHLdZeyIzm8zP/U2UCf02cVw2j03BgIYrsIr7VaLe+48jnhc9S52iptq6b9YHZWpWkqO8+mYLwaSM4NMzfGNV4tZRA2f+d5joRtYW2laeG8MvOsNTr/SsuhNJi5a8nSURo6pyW+NnlpX1C5o5SyPmNmvhvNZVIpF+2xT5KkMCy4k6CU77bcVkpBJaUhOnSWCR2sE0ABWofpUSGXMKVpin6/X3Fs8H7j7XDRwNsqgTos67abNlnDQo9JbSQmMeymTcM4kBzAmx2huv1GYwtFXpfHiLxyJnFHmyo5vQw2TuS1XqBMMhQubzxVCnzedgOXV9VAUtK48UqVEHpmlNJCPZI0j9QuKpBd59mMp7WghfsbtL2tkLanaQTK1CNBKo8v+lJeWm4RHSQGgSm7LnLmWlxdkQ1pHpmF0CjMksLI81NaOI2cbp9ThSuynB9p1IBGCCT42uqiweeFpLfuSouQNB7mrDRXQE160wbabpOG0sIVQhoZFpV9QgOf8zyiLi1OEo9xg44bROZdxsbMRLlpm3jkUppNdZ9Wom2hCpyVdtRPhpeVqn7OiEdKoOw5kaZp8WkQbuQU/UXmLZVZdXPdB99ctqIRrudUznn60PzP6+M8JvG3gs0/Yt2C4SNBMqgluiw+yuXv7nIaqGJvtYOUb/5ZMkfbUUVpNwqPUpp+4WuvSaO1RkIM2qJM4oABAJXYn/iiNPK1jDurpHnrmsu8n2h6U3eLfYKFzpGSD21Dl0ZsXWOic3sOU0OUjr+hycxdbvTy8jkf0jGmkJ4bGWHa4tIXXA69Mppazi26hpjjIuZzOnS9dzk5+FpgyuI8y/UzzjMSmhon0hxvArNbZ1IjsI4G11jTKGvB6/zOeV3lXR5F5TWL0twT0dVaI4c9H4BqVHIc+PievnPK9QYGNo+scvrNe99a2Gl1Y+R1K6JcnCb3bvB+8UWMQr163DCpq9vUNxgMrEXGvJO8udIEokLaCHdTbtXwtdtY8RJP2LeuRYUvxtKZDNoOk46DRjUkRSvE8OIGgu+dVIb5u9jixRCigEoKC8/PlSZJmHJjntMYwtf8Yg17N4VsSEv8SHmX0sTbKI1RhSbS9mJMjOLWYDGv2z0Q8tzQKymBrjpd+SkM/xh+N3mM0hIKl5OGG0pJkuCuu+7Cs571rEobXOMsGVS++VPnZJNQpzT6wOmQnAaTQJqDLmfEeu1QqaPJxY90rhhZKfWV4T/+mRtXhLROgadzhNNgyijSMKXRpDWf4NKsTKVUYRAW36jW9Q5ezhcu/qVpudLKy5D6gRpCAIrIJqWLll9nnJiyzGV1Eoy84P0LlGPqmu8AKpcsutIbI53yO00rGYScRs5fvF7ef0B1fQoBXxvNP25Uu9rGoZSa2JBsinHavVEoeW1j6pu2XG+CcdemzYItG3mVlMsqwiOvkiHgLt9ekHwehfJd1dipp7ceXMnnHhb6jHpxpcW3nr4huDB0eda5sUDrN/B50DjdhbdKUILN7YLFQpqyxWrkSXN9OJ4uvNyY8kU7pbGXvL7meUj/urxkVBmmNFPFnPMA9czSss0CzdtXRxdfiHlbzXZBnxEoOQIkus3/UiSEJCzGlfaNS+kzC7XLWOX0mnSGbyjf0TzmUxEmOsP7i0ZkTL0mPVVkaRoIaWl0E7ANOdMurbW1+vI2mDySB9+0x2fIUl6kfFTQq8tLqPI8FzUBl9faUgwZn/ucMgYVAxv2vONl0L4t+AfVW0UrkUtSv3lf12+UZl97zDsuu3mbi/k/ymN2akgyA546AVhRLamNUuROKVXpXwi/QyHRzfvBt2uD1m/KoTKOvjfyYTAaZ5eBnpB6XbI+Y/Nda432SAaaOVKRryOZRR1H+WjsCnqZ84PKNS6vuCyXLnaSItOcr7jDhUaFLdlJ6C90ihRWe2n7qFy25iPs3T1Z3i8+80P7mLaJzgkq+yUdTtJ9JFAe52Pmmnu0PGl9Nn0urcu0zSYdl0VcbkmyTqLL/E1vjw6RSyF9U5eOr/GT1DttUF2w+lK+FdiXxrWGWbyQy+0vxlNVnzWJvPrGxDXu1hqb+3di8nEUbYaayCuS6nrAaXtaRV4jxgdXLiSh7hI6RhhyhaLOAOKLv2TYSXmAqsGgta5sEdR59Ruc1oLlMPbM//RMG114eDnrbbxaCids44ovjrzvuMeY0iO1mUOKRPFyuBIipe33+2LbfMYrVy64IVvQz+rTKMePRmCkCLj0jNPPBTun23XbJ/0OJFc2ab1GGTZGhlFSAXKmSijf8GFRP+MPiuGiWb9DQjIEqHOCl0nfU8eAUuVFKQAK468whsY0XjWqjhlTJ31G5wKXRRX3pWBkUaWROhOsvmXzJme0QDBSXE493g6Tlj+jzynfaa0tBT8nbXe1T+pfiS7LQCV5ON8XO2pQlWvjKsuiYsRoovW7wPNz2WD6JMsyaMjjQOupNQAEmWrycAOvcDCM0tDL1RShVzK2zDPpbD5N65JR0vyhc13SCYo0rAxTt7mMaZinNC7NGVpuUHGjLE1Sq74kSawzo5QeXjeVr9J6xOeCC4Ye1+fwpHXRjJHZ+usql/exCxXHUY2eYOgy89C342kj0O/3a2/4j9g4uD7p1BRm/hqMswNpvbCFIq/8O68S3XKktYkXSPKGTbKd192/fvqNsDZKSrkAcCOq/P4afe+H3Q9GaHPvmhRxlDy1vK1UaNN31MMd6s2z2zpESi6lKGgtdPrqogf4t2e4+EPiFudoCsYlN4S4wu9aoLkRJtEmtUNCnSfU1Ef7qc6I9ZVPn5t2mv5wRa+89LPfvjzcw91EtvmUe6f8YIqJZPg2qTukXioL6DuzWNHn9EwVpcnnZGoyLylNtNw6A0kCHzsfqHOJ01BnFEsKrYt3+TOJBmrMcrnH65ZuhuWRMp9zicPlYKBOLKXsqFVIWdQgp7/p2eVJ4RvrXJdRo2KMmcEl0eAqr3guGDeVHGxOJ0K/+OopZB3flu1JS0H7xSfHXHKd8lzh2OH9MAI3qqR28XqKPMrefZNlGfitwKYtUoQQCFuTaXnFGqqqx08qay75nix3XLigEtmor1sT+E4k2sbhs2qfVmWMPJelvjBt6vf7hV7FZbZU7zBfuEHj1IumZCTz8kP4YhL41gAXTdY4OKKorry87jzPoRVbv7XQVvYFESkS69PneL2TQCv7uI+hZeJxSeyxiJHXpxjMomB7BuUxLpWf5vWYbZ7UixqqSEqQPI3S9sJx0e/3K+X4FIpQQyLUSwq4FXZpUvOITKvVwmAwsDy9ksd/K8AlxCYVbqUS0qycSYV1E7icNxsJuohprS1nB92CZp6tBzayzynWe440caxJ0Z8mmGYfUllkeGIa5U+rnDr4+nGcOVcYNoHOlbo2hjjDx5UF4/avZAgURhQx/pryKG9HsU4xA3VYpnvMKKjx4+onnwETuvZLaaV8deMpGTvUUeXKV0ZDw+WUy9kujauJ+FKZ79J31nveTivSB2yu+2x8DoZpoxjjda1lPBT9MCXipqErPWUir8MJzs90yJ8UoM9ofgr7fTNhH2b42dushnXKIXnjXVtdXUWnU27NGHpwOP3+KNlQMFS9oVI7TB7+XPIwii30RDm4Yi31mSvqKG7vcdzqJpXri/5Yyr6Qht+A6vKK+3igiSe9SYSB9i3nQ1pOcdaSRAnqtn27UCc/rGgEH4fR/4YWuvi5jNdJpJVv/vMepR5uZzlKPotF0wR5/GvoleaFtH3HOLr4uSkpIuR67/O2O/uhBmZ7IT0L3VSBrosG8wiXaw5LipE0RqZO13a+Sl6BJl63j7Y6J5DEuy5lsc4wqEMR6eJrInsv1cnLCDUurXlGyi/KEXYc8PWnNhohRUQ4LTXvgeraVakHdvuTJKn2pWf9NLKn3I4r3x8gRcAkekO5wDeulXeqej4z9wf3C0hndn3rVMX5xr+dqarRTv49WUo/jeDSPqxEywVeo2n4OVXp7PSwXr/carfbyLLq+WhaFl3TaV4lzJWyf+16m0Zem0Lix7r0Lgeki7/XG951yfEd4EZIGG8RvdWUlzG7ZRq3D1O4+F2CoaWQz7ksr+hYhfQPPyf7tI68XmgPzSSoo90wxqSeLSPsDK/6FEkXY3Nj02Ugucp1QUrrym88jrYgDy83FC6P63pgmkI6JDJA2zONaPg0aBHzTZEWqZ48z4db82u2VVIU5xA9Z2gngeS8MigMizGMQF99TRxRTUEVvHEwTSXGxQOud+tJSxNISmrI3Hqq4EL1uwS+dV+CZFSHgq6tFOu59nBDosmaUCqq9Xlcsmbq6592R+hLx66ZP8PnTWUqNWB9hhgHn8urq6tI05Zf2Rf6TDIaaPqKv2Ed+Icb9U8H+AITWwmh/F73XprLG9E/TxmO28rMZISQ773x0E2CJkxlLgOQaKFlma0xLuOzrm00rbQdyGXY8MiRr9xxkaZp8a+OpklRZzw0LQuoNxjNgusa642mheebtrIq8UvIeUAO01/rQSNQbXuIcTmN+uqUcf4vFJvNeJ1kDq+3s8dXr+vf0wGbyXgN4WUzR1znc+vySpHZ9RpzGokx/9YLLhky7fWP6zqy/MoB5FCqNGRDYcaVnqltYrwaOZJlGdrtdm2/+4xX/rvpmfBJoLX7EsOnKp4qxmsI6HlxF+p2BKwXttC24eUAQnkEMKRtdRuHhmnswajfXDRJv5YKv8QI7q1KdeUVJQRsyRjHq0+jQtK2GppGMlYkWk37rYiTY4twHf0uj7kUOXYpKHRLBB0bSdkIVXIkWir1kvc0z9LSEubm5qzbFy1B4ikHGEYPQ/jBR/N6Yr2iS7WlKVUfYeEKkqc4Hkm2+JK1MWheknKkKI+43Zn9lvqAb2+k5aqhQKqUTxW3UC+uq41cGZPmj1GYlOA4UySNuF0TtnLrco7xd9OR5+55JinbJo/02/qbtcH8ClGm+dZKSt80ZrlPkXHNbWqkUX43v82xkYpx57hcMFTGal29wMnFH2aLKOUxqx5GA6elSd/WyUAqp1xOZH5Eh7/nz53rkOe56zI5pey7O2i7XPR66+SfNYHNu1pr63Id3zrskmOmHhd9oTzle0f7DLANYcD+woFpn3TTdAn7ZuckSevXMA9csoeuMcaR29ThYeSz9JyO41hHmdjvSTQH37jyC5xo/xT8CNuw17A/bUf1ZJdOLNKl7Tpzh0SxyszZOKqynhADFQCSio3lqIvmFR5T+vM8R6cz03iYnjLbhsdFVQjVp/WlCVXiQhaKcSCVW1k4a5TjcemRbql1eVR5P9XRNO7NxCHtobRQw1SiQarPWjSF+jj9kqHL6XcpTVzZ3LZt21hOCImWOiUzBF6B22BOjFNfE76tU3DNM8kwJA/s86fkFS/Xt8DXGSp0MXQZc9OCy+lDEoh1NlnMpHOnrjb4DD3RaA/gYTquvPxp3nTJ66DnGH300d/coKV8RB160jnCceSlld+RJ8Sob+KICaWPtktaWypuaNYPLplK//YqqyQtPQst9neNwemjSbq0p1L+CHQt2KgLtSS49I6mc8jF9xR1Otrwn02LC7zP6mimYy2t6b4844yN9CkepZToJBhnvo8zT81vMwfoLfeTtLVOD9lIjNOOJrRL+l+IHmCg1vnyqK2Ap2TktYRbwSoZgpchVeMvt4lvp8mk4BdODZ9BzE+Fh8/Dz/OEGCz8khdXGdwQmobyZ/5Zxqsj8uo7syMJ7XGEPy0/5EKFuvLr+KFOKZdgGR5scfVxskTvJNs96zCOUSx55SmPmGd1ipxL0S1+szqkNHRM8rz8XivNUzE4ydwo+rZmbGkZBS1MwQ0xjnk95pflfHHQUPS/l9IyrVGwrPrBeLPGY+8y1ov8wpxW7LdJQeeRMQIlJSHU0x8ix13KCb3RPbR8Sa4U5bC8iqWrq4uCznf6/VizrXEacp3TxPlDGgOpTYa2Io3j5nffWFV4wPFcylO0Q6DNpHDdHSFqGWxucPnLv3cuwTc+XC5KPMbzS/JWgqRLcAOUtsfVv9yQpLfYFvQmNn18HZY+28N3Jvl0n+K5Er6xnjPnkxpYeSS9idMqGfecFFOMHY3163emjLKvq44ySSaFGlyGflek0KSR6nGlWw/wmpNAmoCweV+nh1ptY7sEaOSV1+ObC/x9ZZd7Iqe15pO23/E8IRjn8igp8prA5t92+2l8YVNTlB23tT0YXKk1QnqjvLDjbklxQYrKNKElBBVjuEHZLmXa9Pd6GnuhsLc+ldGZzeDRfLpjnPlCz9fyyN04vMZv0aW8mwm7J6Y9xy8kqOJoEHLr4jTQZAscp6lJRHicy7x8l85Qw3WacqTOORECq19q0kj95uqraV2I1qQcV8S1Cd9MwsN0/RrHobte8PWhFDlN07TY0knn+zQ/5+ICHSvXePL0Q0PUvlGa766g6UP1O9+dJby8iI3FNC9cfLpiC0Ve3Z/KKb0M3NOFDRLEEgP6t5BIeUK2CwDca1iN9vAIoKtcF7jHV9qiYtLxbWxNlRGTJ8sytFqt4jwTrZ8uRL5JL3kRfWPODU2+cEh9SBV+qS2+Outop3XTvs/zHKlwfrguYsdpo/l523w0NUET7+ZY9TmiBZYnWlBEpTZaZ7EZDbkQJZDmkeVpl/qwSdsqTS0jX61WqzKvrbY05AVa/jgRcFOOkx7hnLvJzw3HkPqpnGlyjkvzOgIiaVK7+Llk6OoxAld0yVUPzeOKptD3rj7l5dMzmIXTw6EM03qk8iT+t+hy7HBx9Slva57n1txzRV4r1LE5qLWuKPw8Mq/z8nMmhgZ6rtC1ztE2KKUq5UoOyzrDJSF00/KtMhgtVIZPpMuwttJ6eL8UdfL+GP1O07RwhPnutaBtpTKAtklqIx9XcV4l7PiG1hVD1fDVYDCw2kgdgnnGnFqCnVsXHaPzlEd4qe5A28SN12Hby/KG6aU7NUoCTRpKIyV1I4wk33pAQcdVlCmq/LqGq7xJnKq8TjEN6qPW45QfMg5Omkhec8a1eMbOs7rOwNI0k0RR6W4cU7e0dnG6eTkGT+tP5URU4fLeT9OIH+dAvQRzrsMILP59RcA2QtbDERHSFpdxbgTvYDBw3grt63+Xt11SjAolvqHRQevgF1VMIwqy1SDxmA9cOWuiSE4StQq5GCPEy29gLv2gPMbLCQF3ckl0m3S+MiSn06Sg55CNkQSEGfnSODWRnS7Fip+nDxkrut2RGnYXwulML0oytIxLhauPm/KBbwujlDY0jdcBKaxL49S1WUANKTpXALJuCEq4UgqDwaBSTh1v0rlh8RLJR3eDcFpCeJ/yqclL5TVtYynXU2tu5nlWkW8hjn9quEqyjcrdwoGjyvKHv+2jWlJ/cGyVaB4dm7qjI3VljINJdvdFDGE5kh27V9d7rdpykddSGEh0806UPQFWjppoWRimG3l15wHyPGNCzD35fF6rujol2rgg9i3w3FgKXXhMHUbBpluAeMRLosUVGeVp+QJK04zDC/zcjY82yUPFx6EyRsKYNTFeOSSvmI++puX63ocsVk7ebXC2U/KKc6++4SVj1BQGbd14wO5DPkYksbM9dU4Dl0Eq7SZJEzlKLMHnEeVpKK20/nwUxaobb4mvi/4S6qNRZlqGb4eEeWZHJexLtIr3jnGo40kp8kqjLCFysYnRKtHIy6HRI5pGrN0hg6RokHlP5yptEx3DOhkket3JvDO0cWOD05NrJrPz6jlQDmnMJEh843M2hUpDn1NGoT5SHyKDJAevS8a6+oHOESqTrCikQBs3zqgRSiPaRk74ZAWvk/YL33FRzVxd65WyI5WmXCPfxfmE1OLLXA8q/OUcT1aeFOHn53fttdcuJ8/LyOSQ5vJ92e/8DDpva/VzglTOcqdluYVZ1otoW/lYurabu2Q1Ldenb9B+XE9UyhfOs07DVpL6kpcf5CDl01G731M5Y81pNHeo+24OduYh8r6YD0yKPi0ir093T0mIohVSRlNslJMjTVP0+3224NUb9b5nUpppt8dnfBpsds/oRo2xyzAKqZ8qJtOiRWsNKOX9Xp3ZHifRWSo/Np1AVdFtQrerX3wGQQhvNUnjMrrp1n7fWT3JqJTGjyrA4yorvjyTOilDFLimZYwLnwI0KagSC9iKT4iTL7Sfx+m7cZyuTcrfLHDJDolG3t++nRDB9dYYmYDgGIDsQJrGbp6mvEL7gsv0uq2o5v8kSZCocD3LZehxA5rSFqqrDMsMd7SHpJHyuI7XhED6FJJEUwg201xcb2yUzkXre6r075aLvE4Cua0hCjP3PleWlcblNun2Rp6RBgUbASp5I5tebmAiMVIkwNDlE9i+RU/nyvK+hiiOoYYQTcu9/qKnG7bXUoo8NFWUxQgH81jSi3SmabxRzioWb1KPRZOQxwVfRKYwalg/u4wyPy32t+yGhqh89koyOn0GYui2YKr0pGnpvfdFpixjk9PFyxYUUxfvUn5ptVrFGa9hX4Uj1IikkR4e8eGRHKpMUn7n28h45MQVlaHRGUq3C6Y8rmTzyBEg3arODUbtjASVZVfPmdqGvluxp211GatlhMg2/M15yiagfUnzmr/TNK1c5kVpKfhP8W9lCuPh4XdTxjigvAYAivOGI4/5P9RpUqFXcNJU6iH11a1hTkdoAweKFNHhawx3uvnkL18TaF+ZeS1FKWld0nyR5rar/ZIs1lojSe1op4GhyyfDzXtgeObVik6NvvOapikGg4F3J1lJf7m9t5ifua3bmPOtJt+wn+w2VdeuvNDVkiQZ9XUzp68px/w225OlXRc06k3HMMsydDqdypEbF48ZmLIkA9k8c93CbvEEj4gK3/x1pWninJHALwGjt1G7M/nvGhCzOMob53iPa52rg5Qmz3PxhmJf1Fd6D6Aox9D3tIi8RtjwKf4heY2g4gv/OKiLLIZ6AKnSasrbbB4jX1smjSqYZ+OUtVXQ7/fRYsqOr62TRK1DF/dJ+V+pYfS23W5v2Li5FD2llGW4josQ+eLaCeKLFLkg8f1Gz32jiPvqHPesVh14nXw7bUieadFAjdnQMeCRro2W2dwJyo2O9UBTmSFtoQTWv6+mKZPoBXLcaSXJUWNcTpOG0nFVlllcvsScMBKMwcQNL2D4fdW0ZTuzfc4Ny8mTZZZR7FpbbFkXpjPVySUXyvWzPq3LybeysoIdO3aI/N5EXzH6JnXk0Tsdnqo6z6QYRzfZTDrztLF1bhWIEFHn8Q3JawTHpFt8qIHh8+KG0MQX9c0m0Hz93nRMaJSJPpOeP1UgXWrFF02uiI6rhIb04bSE/DS2yTUBn2uuaOW4COm7psZriCF2IY3X0Davx1hLUQn6fJw+HZeGLMsq56j5PylvyBnH9QKtM8SAmQaa1ONbI6c9jhzTHJMsyzAYDNDr9UTj1dRH616Pz9RIzjsjL0JkPqWb/k2Nc3ppkqsPzXMTkeQ3Hftor3OE83VwHB5psn661mCzk0dCE32F65q8H1z1P91hxrCJHuST1VsdT5ttw9LWCKDqiZL6w7VtuJx0Uo3+7bH8sz4+THuMfELTLERUkNA8VECFeRTD4TQG2adyaPkuj2jI1hDetqAIHfud6+rWyCaRCledlQ9rBzoDXIu2q610i16xWNRFx7xvR2V5aCyUHfZOikLwqHulPG3PaaVUZStRCJ/7+MenfLi2yReLuYeGIi37nfO6HREOXqcVnWbjClS3Y9I57OJZV/9Y9DrOSoUY0HVzRDLEQx1j/Bltn4nK0XSlYmB/tmJYN48a1W95r/cNVxU4SZGT+tVS7JRtFPR7PXzta1/Di1/8Ymt8JZiyJUO8shaQZxK01tUL1YR+ycllfHmeQ/Ftp4FzzxgWQPX29DzPK3OgIlM95fvej7Mam1J4n1rlkmcnT57Evn37LBo0S9tEIaXjVlnTa/LSvuT8ybfqUkgyW9rmz9d0afuv7yiPRmalNWVKsoc7+izwLZ4qF9ceSdaVBnMuGOlcfknyyr9Lxfxp5/PvSKPyqxx7PlZ2dJmOD5frVE5OopNS+VVXFuXbLMsAndj9q4QdWZrp68KFXi74dtS4tg1TWutomUQn9PIuS+PSDSdF0IVNic3v5mIoSzPlESoAACAASURBVDdO7T5up53GxMXIa4QFoxBsBa+XdL5iM9Dt8nSF0OZSNJt40KbttZz2Vh6qsNS1y/BiSNtNtGi9wWkxi36TMaKLDP9X1x9NI36cF0KiEi566+qQDPhpIYRfOD287Yaf+v2+VW5dVKjJfApN62sLH6Mmc7rT6eDmm28OojWEn3wKsonO0rPPoWPe9FNVHHSdMnVLiqdS1QjbJDs51ht5nmP37t2NZfhG7Pow49Xv99HpdCaOpnLeksaFjl9T+UKdn6G8ZvLQLbouGUHLpnT6xsLl6OPGCY1yjiP3ffKF97v5VCGtM01Tayx4+5vIpBC5zcvj/ZEkSUHnhcS017X1wIXWgYH176ctE3kdZKva9qRJdPu9tDRP2W4uRPh7sUT2e3360Bym93tcdCUPV4K5MKC/gy+p8HiOaJSg7lImn5eQprGUNxJdqzt3InlEDd1cwTb1SJfIcHAvNY1GVNKSPDwCwMunkQ/qNfZdWlJ6eW2PtrlQReIXycNNabVocfALb59FE/vN+4mXxy8fomeEeFvpuSQToQnpf04bv7yF8gH18LroNnBdmiSl52lCpRZV7H28G0Kvb/5zNPEQU9p43YbWIV8HFVWlRWmY6AJ0ApWMaNOAUsOzZSodXk6lEwWtNLp9oJ9mABK0sjZa3RbWlpeQZRnmt83h3PIqZmZmkOc5Wq0E58+fR7vdQjtpIU0SrK6uorNtB5IE6A/WRp/PSNFKFfLBGnSWY0a1cX5psdg2uX//fuTIkUFj266dOLtwduhZzjOkaRvttAsAWOuvIlUJ+qtrmOl20WsBrSRBqoD+WoZEJ8jT4TqVQCHXA7R0q5gDBn2dQSsFQEMhR5Jzpboqg7NRdKoYn9HX+SRZx2UslVH0N0h+KSrmkvfUIcXTmKhb3RlDU+dtt92GF73oRVhdXUW327VoooZWk3PoG6mYUlmoHBc/lXJ5YBlJSinozE5nouPW2lAjg6S1xiXbzDvXRYXcKcfbmJI1VmtdXKpl8iX8vUeWct1GorV4ptw36fJ8fC2QIK0VLno51o+/bP1WdooJO5XgXqfNbzt6W30urRt8izxN6xo7/oyud85Wk3SuS73sPpD1I+s36p0yvnLHwTRtsbr5O63ygTIaW6wFqPJPhRZ28dM4kdcL78aIWFdM49wbML0PDhtFzOVFNMKH0i1tDXPlc9FnyuPCTarH118haabVV3UI8fIa1DkWNhIuRcOVlis347bB4h+tLWfBOOVQxd3QGuqJrgOdI5R3uXJwIaNHdXNNzNPrA1I+53TSZmMbMnSRAFDQyHqryNMO0iRHmvfRQgalc6ypGSDpQ2kg130MljP842f+Aa9+9ffj5LHH8Zm//0ecPXsK/f4q/tWLb8TFBy/CqTM5rrj8EuzevQ23fvrjyM4vQyVt/MDr34i8lUBjgC9+9qPYv3s7er0cC4sDzM7vxu/97u/h3e9+N04dPYWst4jP/vM/48orr8TDjz6Cd7zjHXj07n/B7//BH+ANb3wjDh+5Ag9+53485/rn4YkTp3HlVc/G8ccexFp/gMNHrsSOvTuBtgL6gFYK+cgw6ekeVJJg0CNnzRIFpXNoBWi0iv4045FjFYptyy+V+GFv9lIg0UCSaaQ5oOkxFupw63bKcgV+45EZ4wjM8xztdtu7E4Ir2E3WKuPEeuELXwittTci08RwpU7EjUad7KC7OziogcDLmOSyuybQEr/BXtON8eo6M05p5WPB20HPovLtsRyTRIF8MpaO2SRrk8/YWA+Ms3Y00Y/M3/yb3RK445qOZ8iOGLqLa1r67mbAU609FCE6fR22TOS1euY1PPIq5SnbzT079f1R7TLbazU9hqt6nUzZJf3VyCtNG+JFdEVwzG8jlPtv/w25AK2RvO2Hkdz8gmG9n7sd+fs/NlSAtC7/H6H1J+8u/s7+83ugHz4u0/WKm5C87YcBnUA/dAz5b/2hSCMAJL/2s1BXHBouJh/4GPQXvi7Tevgg0v/954py8ne+S04HQL31dVCvGLZJf/526D/7O7i4JH1v2ab8N98D/YijTS+/Cfotrx326cPHoH/rj5z1J7/2TiRXXDKkk7bJeC4xjEypwweR/PrPFt5w/bPvZiUN0wEA3vJaqFe8YNiHn/868Od/B3vekJa9h4z3b/0R8KjcJv3SG6F+8vXDHw8fA37nvc424Vd+BuryQ8N8f/Yx4It3yOkuOwj1a+8s6/g51iY6fd/8OuAVNw35/fNfR/oXf28noc0btUkBw77nbTKZXv58qLf+8PDRQ0eB3/njKo1qlP5X3gF1xSXDMfnAx6C/eAcqHKIBHD6I/FfeUTxKfuE3relhSYy3vBb5S28c/v2FO6BGbZJIwHv+U+nl/J0/Bh45Lkuxl90I/ebXDuf7w8eg/sufiGUCQP7Lb0dy5SXDH3/2d8Ctd5TtoDhcjlOe58DP/2ZljhT9f/UVwHs+BKRDw0rnuujCCgemSVlOnhfnajRscaKUMidUAd6HHElS1qa1bEQXaVUxNsg96ZQqvcj58MynU/aP6i92VjiKVaMyNYZR5mGZsHne/J0kRaN1rqG0rvTn8IeCTlT5PMvtcgh0ogCloLIceNvrgZEss1fMEd7zn8q/f/u9ltyz0r38+cBbXjeUzw8dg/pdm/es83X/8e1IrrwUeZ4je//fIvvc7eh2OnahhhhSP+33lZUVzMzMVBsHe1fAuXPn0G63MT8/X1GoXAq+tJvFKNGtVstyNrnu2pBo5p8i4rsYaPSwiEyxc5om8sp3mZhykiSpDrkQNeNRLx4JpWVwx7EUhStoHukkxa3AuvyEji9yzx0dtA6JPqD8fN8wwmtH9ExaKS/lRZf+JDk9XQYydzJb0XZV3U7r29njjxra0VFZr7PpkxzgtM2SQ8I4qer4mtPN9VHeh3y8TdppRbMlvnQn9s/7jcAkkd2NpFUre7xdkVeKnEmh+KmcBign7eY33ptEhsY598IvUJDgNFynBVPvhM4UpRQGeeY9zD2JJ5ovAeNQW3rQE9Sd0BQdIUphkA1G31zrjkHBNKGg/CbDhiIRvkO2XqAGZzFOxiiaAhmFcsDaNMkMmWr0XSnLM5AkyWgL0Ujp5ZSePQ9c/0zg5puAh49D3Xnf8LnWUCrBuYUFLC0tYc+ePVA/9HKceuIEnnzycVzy2CnsVCla7Q6Q51hYODtUeNMUe264FncNFvGMZz4b2ZlzmPnGPeivrSLPMiRpMmqvQtJKsXrTdWjv3T5caL91P45+5Q5cdtllUCqDGm1PTtIUy2mOHa95OY4fO4Fdu+eQf/LLaLVaOL+wAJWk2LVnP/K8jyzL0HvmYXSfeQUGGkgefRzq28M2ZYMMUMDMTBfZIEPaaqH/mhcjGwywcHYB++5+FPnCWWSDHN3uDAaDHrK8D4UEp2YSXPmGH8DK6hpO3/cAZr5xP5RS6Pf72L17N1bW1jDorUElCbb/0C04tbqItbVV6G9/D3uXB+h0u8W4FGdS5+dw8lmX4sCBAzhz5gx233YXOp0ONDQ0n8HXPRO4/BBw27eAhfPlcAeyRIFQNiOGBJf/aZqi3e3KPHv4oKO4sLsF0jS1zpbS6E2TiIDJb6K/JtLb6/VqI0dN1mtD07TmcGGse9bBcZTgkJ1HRbuZwcjLkcow/R3y6Z3QQEKxDVswoCkGg4F1FjZk95M5Ryqd26V08jSS0dZk3EP0Oh/dvO/4nPCVP0kAJ0kS9Pv9dbmdOuKpgy0ceV1f2P0yedWuG4tZqiJN3Y2Epde3vm6t7YWAbnORPMPcaweUxmubRE05TeZv7i2liwD3toUIZeqty/McOnff9se9m1K5oUJV9KIq+ewoy2j/JDS64HpTKFMej6v5m3vuxfKE8g3MFj/qcQcgnm/i+SteQg8NlA9d52Xq8kr0u8qV0taV7yrXVY5Ul6T8hJThioDwNHZ0xKaRlxvK82luy6k8tfOl0si2UvTXgLS9iERtw8pahk63BWCAXn8F2zvDraeLf/hBdD79VaSvfB7Wlnv48hduxcUXX4xWdwa7du1Gu9XF+fNL2LV7J1ppiiwBtG6hnQBPHH0Ae/Zsx8nTZ3DRwcugWh3kyyvo9zNoleDx4ydw4OKDUEkOrTMAGrOzs1CtBCkSLC8u4eziOey/5BAGa330llawuLiEiw9ejH7Ww6OPHsPn/vlz+Om3/xQUgDzT6HZnsLKyiqNHj2Lbtlns37+/+G5ophSgcywuLGDfvr14/PgJ7N27ZxRdAFqtFIMc6LTaWFpawKDfRzYA7rvvXtx00/ORZQNgpoNEKSit0U5TrK6tIkm7OHPqONothRYSLJw4jv2XXIrW3DxOPfE4MBhAJwl27T2A5XNncPrYAzh77gzmduzGlc96HpLudiS9Af7l9i8B+RouPnQAaLWQqRkc2H8YSims9c5j8eQTmN85g1ZrOx565ChufMFLsNZfwey2DlZWVtBqdaG//A3ol9yA5Bd/YmgoLK+h3ZlBT2tkCgASpK0BsgHQaifI9RoytJFCQQ8ypBoYJCUPFtEm7b8XIVRppZGxkDXFveLa9VuRTcc8pXPb/G+2SJ4/fx5zc3PetkgyqrIWs/bQyGvRXhIhonnpdm3qrE2SpFjDJHqcYFHYfBR5s84xcn1idCDX7tOqI9aksR9X1/cqSVUZW/yt3IZXcZ8Auwk2bZURdHNxFK/X2iGAKq9pXX1fleuSLJbXhTJiKfeL3Tf8SxHVPipjBLYbnkageX/59FAOyhN5nhfRbyniTXmUOg/oGPC+oLTRs/O+9W3doo9CdLaShLN7A1NC0h2kuwBcW/A5XDrJpODjmWUZut1uo8sz2+3mkdfNed3e0xy+72mNA8mjuB4TOqTcJoo0LdcItRCPuuRFDa1nmv0SQu844HROUg/t13Hav15tnCamdS6UCn9fRCCkP0xZoQY1L9coBjzNpMiS4b88VRXDFQByJJV/a6tLePC+u4GVRaydegJdvYLtbWBbopCu5vg/f/VdeOcb34K7bv8Gls8t4oHv3IcHHngEl19xFfbvP4iLLjqIdidFd6aN1dUVrK4uY3HpHDppCzPtFDpfw54985id24n9+y/B0lIPH/7g36A3yHFueRl/+N4/wez8PL5+xx24//4H0O9nmJnZhvPnF4FRNHh+5w7s278fKhsghca2uW247au3Y6WXIVUpDl9yGG9769uQIEFvtYderzdU6zQw053FqVOnoJTCysoK+uZdDmzfvgMnT5xEf9BDlg3QH/SxcO4sTpx4Er3+GhbOncbS0iJOnjqB+Z078IIX/Ss8cfIE0k4brZFSp5IEa70+oBWywQAz3Tl0Otvwlx/8G5w8M0A/m0WazuOiiw5jz75DuPjgYczMbseBiy/F7v2X4qqrb8QVR67B7OwcVNZHmijsv+hivOQVt+Dg4Wfg8JFn44EHHsOXvnQbZmZn0Ol2cPgZ12BtoJC0u7jm2dfgW9/4Em7950/h2//yNTx0/33I1laHn73RwOrCecyoFCsYYEmvIm9n0K0MebuPZKCBXo7BUg9Yy9EeaOi14U3OWQ1rr9c6NClC1hhJWez3+8jzHHNzc9Z24jrHLJW/oXO4Sd/Vpa01XD1lUoPCtbYbAz5EmZVodUVYtdZOPckYQPQ3HYs6Y+dC8aUk5+vQhF7f2mXKonX7nAbSP06vy3mTZVmF7ygNrn8RmxdmjNrttnWb/7rVt9kVTwMeeZWiEXVweS4k2AvPNPqo4uMNSGOfcaUffy+FhH0uQO6L8La6+qVJxMg1HnRxNmcmqMBzeVv58zxzLz4hUTJXHn4DrsRjvi1WhceRe5FH//u2GNVxWMo8mhL9Li+2REvx22MEm3e+yKtJV/Gce3NsTfiiRUB5QYWJztHIi1IKg8FAXIT5om8uo3FFFqR5qphLV+J76WwZUH7ztNvtojfoF17UJEmgdPkZoH6/j3R0C2O73cZgMBhGmbaleOKh4/jkR/8Ud371LvzUL7wTV1z+DHzog3+N17/+X2MNAxw6dAiDP/s4Ov9wGxauvxJJOoe/+vM/x4/+6P8E1UowM5vg1Kmz2LtnP9Z6q9i+fRv0QOGxY49gZWkBeW8Rh488H3/1wQ/hJ978Fqys9rBtrgMohdW1NaStNrIsx8Kpk7j7u3fjVa++BVk2QKYAnfXQabeRtLvAYBVKK3z969/CmfPLeMlLXwYMlvH48RO46hlX4fHHj2Lnzp143/veh7e+5SextLSMffv249vf/gaufc610Frj6GNHsbLax6FDB7F9+zygNB568AHs3bsXO3fuxNLyMtrtNr5w65fwqlfeDK0HWF5eQmd2F1qtFFrnSFsJ9GCARKU4d+48HnrkESycPYeXvOTFaKUJVpZXsbLUxwc//CG88EU34fkvfC6y3irOnjmNhx58Att3bcczjhzBIw8+hNm57Thw0T6srS5h4ewZJCrB7j17gVZ7eM41SbC21EeSJHjyxDF0uykuuvgKLC2dQqJbmOl0kegVPPjAQ9i792Kk6Qy+dvvX8bK5bTh/7RXA2/81sizDn73//VhaWkKWr+ENb/hhnD59GkurKe7+7v04duwxpC2NN7/5x/GyV7wcfeTQ6ZCvzLwwfAbIzkUezTK8mZEoH11jpHlEUYma6eHWXsuIGpUjbYms2/1Ef9fRI70zeWiEyiqX1Zek5adkTPTQfHtSWoMlupJkeCItZEupKYevaUopwLNOFOVpeyfPsLxSl8nzvBJdprLHgOsHdFsyjWBbaxc548r1vSKfatljlJRynNNkYPrdbBGvRn2rTuAqDVIEzB3lN3nMb2oo2nk4r7ojvP40dt1SXS5nhzQ3zPzK89xa27iRLm2rdskIn35nxsgVuZ0aWOSV8mLxbILIKy0XkPulTmd2OR+mQUNdeVSvrtOdxom8RuPVgc1gvBpP/7lz53DgwAGLptJT678QQq57ugg1Xl2giwUVzk6Gz+sF7jjwGdIGkxivvv6po9ooHL4LRMYxXrmx2tR4lZQNqZ6tjCbRkMFgUCjIPGJAx48+9ynm4xqvLkjOD3rGqJ1rfOc738F1112HztwcFhaXkCTDD8Ovrq6iv3AKKysrmJ+fx/LyMu644w7c8qofhO7lePzxb+CSiy+D7u5DnmdYXV3Fk08+iQOXHMDc944h/4MPYfnYE9Avuwl//7FP4tW3vBIzsx2knRTtdhu9tQH6/Rwf+MD78D//9L/B8vIi5rfPIVtbw45ts1jJWlhaXMK2bfNIlEKapMjzDGu9HrozXWQ6R5Kbvs3RaqU4u7ACpdcw0+1gradx9PFjuGj/fnz323djMMjwopd8H5588hg++YlP4/LLL8cNz7se37nrLiwtLSFJUlx7zXNw9OhRvPglLxiece31cNttt+HVt7wGX/ryl3DdDdej3Wmh25lFt9vBwsICOp0ukiTBytoq5rfNIs/6OHPmFHbtuRha5+h02lhcPI+830On00Wr3YVK2hgMsqHCn2qcPn0G2+d3I22nyLI1dNsKRx97DIcPX47z51Ywt60N6AT/9Q/ei3f+3DuQpilmO1088L0H8I+f+RR+7M1vQXfbPBKl0W0l6A00oACdZ8NLcvoaaSvDIw8/jkcfO479e2dx9bOuxcf//h/wnOc8F48/+Ti+r9UBHjwK9UtvxSMX78Th570Ii0vnsHj2BLpdhfMLZ7EwmEWepXjms65CuwM89OA9yPoDXHrppbj33nux86J9uPrqq9Hv90veT4a8xC9UkowFGp2x1u2f+8/D/x0XNpm8rILqcy3vOJEUUVe5Zp7zyGKI8WrKk6KfTYxXicZJjNdC9gtrWp3xaurR+UAo3749WDJeuX7mMyZpv1lOQCUfH6KGrs7trw8Y49VlMNH+MM/MOBQXQ6lqvur4hhuvZTvL9m6U8UrbwXU8XrdLt+F5adACgOWYmpbx6tKTovEKMc+kqDNe65xjwHjGa/qud72raZ4LgjwfvIv+HncAqIFUl266CCnPTpMkCZaXl3Hu3Dns2bNHNCyUCtkW6a+bCkRnCTXvKU119Zi/uXebjo3vcgMVsNs9hF4pLaeFpnHRY1A4FCr0Tg76iQGnMRXQXp6ivDzKrcDUyVtxoailZOugTgib/jOGq4m88m1rgHyZiRlTfrNiXZ32b5lmCpdj5tFHH8WuXbuwtraGVp7h05/6JNJE4dbPfw6Laz3Mz8+j1+vh2LFjOLCti6VzCzh76iQOXXQAV1x2KZYXhxcuPXr8Pnz5q7fjosuuxf1f+zr2fvch7PvIP6H9G38E9bHPI9fA7ItvBFodXHnVM5BnfShopO0UCgnStINW2sH1z30uZrozmJnrQkNjZmYW2SBHpjRmZmfQ660iG/SBXI+MboVefw1ajz4tpDN0zGdasgTzsx3c9pUv4Quf/zIWlpbwla98FTu3bcee3buxsrKMb915J17/+jfgiiuvxOzsLO699x7c/IpXYu++fThz9ixm5+aQJMPjHJ1OB0888QQeP/Y4vvmtb+H6516H+++/H620g8/+0z/hnnvuxc6dO/HgAw/h9tu/jiNHjuDcuQWsrqzhiSdPYH5+G9IkGe6kGPTx+S98Ht/81p24/IorkUNheWkR7XaKv/nbj+CGG56HNJ1BooFWmmB+2y5kA4VefxknThzFwUMHcdmlV6I724IC0Eo7yHLgppueh16m0e50MFhdQd5bQdptI8v6IyUbOHfqJHLdR7szh2/f9V3c8PyrcersaVxz7bXYtmsO+y/ajdbunRj0+lCfux17/uoz0B/5JPKz57Hz8EEM9u1A1u3g6PHT+Lmf/7e45NJLcNnll2B+fhb79u3Dk8eP4/KDl2BmxzxOnjiBO77+dVx15AharRb6WW7JeM7TnD+tc5Xm3cc/N/z/dTfXzhWDZHRL6rhzzIXFxUXrEh8pv+sdlS2162tSpiv6Qqva/JwOBYhrGwU9esPXNGdbRr8LQ01X5Y1S8i4xX1+55C/lF9r+4f/2bipuSGqtay0LSYbS3WJUZpvyzYWBXMeUjFcO17PhOEjP6vTY5jqnVDf/2zhP6mgHiE7EdExOP3fY+mgKqTe0fydDQB3+n81qa9CmJn0YWvckcrIuTZq23t2Ypq0aeZXg8zaEoz6vz7vhpoEPXliEVGuNpaUl7Ny5c6hcku/Z1d2K2CRixPNQz1iaphi8+/8FALR+4+etvNLlRRKjclp827KocOZRJycch+fr+sDUVXsJkwMhNzUKldYXrKsLqWRk19Xr4kJXOfx36GUAFRqEZ+MI7hDDkafl70LGM8Rj6TJIJSWCvqN5qfFa8t6AzWNu4Fa3i2vmwFFpgjTvoQWNlZ7Gtm07sba2gq99+UtIkWNx4RyuetbVOHPyBO655x7cf9892JlmeNX/8BqsDICZ7btw7Ikn8dIX34hHvnc3Lj3ybPRn92P5zClsn5nDyvmT+Ow/fBSdue1445t+DGcWltDqbMPS0gqWTp3HgbNPYOG2L2Pm4SXM3PottFbWkO/dAVx5KbJL9yE5sA+tpIvlpfN4/PFjuOzSy/HII4/g0KFDQ2UIGbqdDvqrAywtLqHTbkOlKZTO8O0778Izr74G3VaKk2fO4IEHHsAtr3gplnuruP++BzEzsw2XXnIJ2p0Wzp09jcceO4a9e3djdq6Le+99AAtnTuLaa6/Fk6cWcOXhQ1heXgV0ApVozM3N4GN/9wm86U0/hs9+9rM4ePAgVpaW0Ov18MIXvQjnR7L31BNHccnhK3Hrrbfixhuuwz997lZcf9110Fkf37nr23jmNc/Bnj178NWvfhWXXXYZTp8+jSNHjmB2dhZ33303nv3sZ+PDH/4IXvbyl6HTaeOee+7Ggb17sLa2hk6ni/0HDmBpaQmz27bjyiuvwL333oMjR67E0vIKdu3cjSzr49z5U9i1awdydACVY221h5mZOSitRoaNxsrqMlrJDE6dOY29e/dA6xw6z9AfaJw9exaHDl2MQdbHyvkF7N17Ee789newd/9+7Ny9Ay2V4PSJE9i1d89wi23Sxl//9V/j5S9/BW7/ypfxmhtuRPvRx5EcOwEsLSM7sAfqbT+CxWddjrUDu9HZuwtri4votFN0Oym+dtuX0Tt3FHv3X4SVXh/7L74Yjz32GJ515Ah2HjiEdMd+7Nx3EQbnFoa8nSbD6PloOyddAypyVoi81sE3t+sMqmLekbnOL/aRznRyp5T5nTP5AFTXErMu0S3FlTUgYfIa5W4PaqhzZywHNfKktDxCKkLJx1ksw1Szb2uHrIUqt/OgPOpg+l+CdQQI5ZErXm6lOmZQcZ4oxpDoDOX/nmYUL+svzpHoqt155QGPCoasjT4ngqQnGBqlMkLqMQENun2eHpsbRvPtecR5bviSHUtQAV+X4PqjVG4gqNxSYEcBiBOjbtx8Y2U+T1PUqeW8nC5fvU0MXn5x2aRotTqNC3rafipnK0BrbX2DbtKrw8cxzoqzKY5vsfrgi+i6tm/7aKSLBk07LmxvaDMUi+kYNJiF13wTcFoIcRpsNYRsPQkpY5L8dTziK58bq2M5ArSwBZBsiwOARPeQryzirjvvxFduvR3X3PASpGmKq599Lc6vLuOqa7chG6SYmduNnTsO4Ff+3a/ij//b72NheQ3X33gjWjPbcPW11+Do8ZO4+nkvw8LSCpIkxbZU4X/99/8e737Xu/BDr/txtL51L8599IuY+ctPQfUG2PnESWxfWETa7WD7zlm0L7oIiy+8Hqs7t2H/gT04e/okujt2YkYlWF1dglIKlx++Av3eAJcfPoyHHnoYl156Ce69+z4897nPxfnzC1haXMY3v/FNtFKNG55zDZYWziDVGRbOnMO9370bjz72GC7aswtnTg/wzTu/gle+6iX47GfuxKtveS0WFs7j0ksPY2VlGe3WDL5xx+1QSmH/gYPodDrodOewcG4Jg8Eaut0uHn3sGG655VVYWVnFnj17cezYcRw81fJS5wAAIABJREFUeBA33nQTBoMBPvHxj+Gtb/1JrKyu4TOf/iRuvPEm3Hvv9zA300GnneL4yRO4/obnYe++fThx4iS2zc2i31tDNuhj5/x23HrrrWi1WlhcOIef+jc/hU99+lO4+eZX4OKDF+H0iZPYt3cPHn7wAdx/913Yv28v5vfux7nTp/H4Y49BZQP0en3ctXAn7rr7HgzyAX70TT+K++6+A9/30hchgULWGwAp0EpbWFxcQqfTQZYP8JEPfxivuuUWPPuaa9Ab9LF8/jxSpXDm1BnMb9uOXCms9vs48oxnANBYW+2hD4Ud2/fg/f/9L/GmH/9xLA/O4Q0/8gYopfD9P/g/Ai1g7dIDWFvpAUur2HHyHPAXH8f2k2ewozeAPrAHet9OPHrzDdj10hvxnOuei4Xzz8La2jJufM4RfOKTf4sfeu0PYOXxE3jw/rtx9InbcPrcEt70xp9AqzPcNp0AQVqJRlWJDo3YTQtpmmIwGBRzk595p6BGjm/dqDNqDEz0i66JQ+V+OvLeF+10r83137g3/VQ3JpYBoMpnlLZut1u5uI6XWxzdELrFZaj73ud5jna7XZHj5neahm1XNZ/cMTB1mGeSI1YyIAy8O7Lg1rfGAXXecLr4GEl8JDnM6VcipHfSfOK8UayTU9CVJ4HVx44hqaznTwGst7zl2DKR10G2qoGwPdyTRGDGibzyuqStSeNGXl11uzAu49RFcXs/PfRwS5/KkTyV0hjwfpOinVKEkXsNxT5oEHnlRiulh/72oRCe8C/oPA9gj7wreqfYe98CIZVVGPksrS9S7KJbes8X9so4CvkUy29ADTw+d3j5TfjbKIq+qO0k8s/yhDIFh267k+qkc6U67fiD6q2ZKVnwB4MB9hzYg9s+9Ql84u8+hn/7C7+Evp7Dtu07sNxbQ9qdQW90WVRLA9/6lzuwY24WFz37uWgnGdT/z96bBkl2Xfedv7dkvny575mVtVd1bd3Ve6MXEAsBrtq4aCTTlmLG+jQzipBHHk+MHZ4PM9TIobA1DvuDJmxr5JkgRRIkSIokGhRAYgd6QWNpoPe9u6q69j2rKvd8y3yozqqXr15mVQOgbFE6HRldme++u5x37znnf8695xWWmDt7it5YgqIQQLx8C3QDFrO4Tn8Aa3nEXAEAPeRHDAYwIwHwejGiIcoeCSnoQ5KrVEoGosu/Pu0MA62UZ2J2gV29PehalUK+iEdVwYSzZ8/S1taGaZp0dXQzPT3NxNQUkixz9849fuPXn6ZSWGN+YZ5INI7bFQRRolgsMjk+Skfnbt4+9xoHDw3zystv0dHeh+oViUZjuFwygmgycuc2S9lVDh5+hP6+Xdy4cZP9+/cyvzCL6vFx7dp14rEEd+/e5fChdcD67nvv8cgjR6hUShTyOQqFHLphsHd4mKtXrlGtGuzbt4elpSU03eDeyChatYTP5yMcjgBw/vx5+nb1k0gkyLS2Mjc7S7FaJZtdZu/eYYrFAnMz87S3ZXjxhRf47GeeZnJiAt0UCQT8vPrqK3z2s58hkUyjaQavv3GK9s52rl69zNHDB+nsbOfMmbPsHhomXy4QDodRvV5kycW90Xv4FA9n3jrNwSNHaO/u4vWX38Awyxw9epRKRccfUvGqATRNJ59bRfao6BWNaqmKKMsUy2XOnnqV/fv3k8lkuHDhAice+xSYAvNz88zNzuGW3UzOjvP5z36OpYlJ/GtFiuOThDQTcWYRXVWYXMsh/cbnibUlKHXE8O1qpdIzhFit4KoUuH/nJu179/Hcc89x/NETpFrSTE7PkslkNl43o+s6ksddl/1U+P0/Xl8QDSKvTqC2mXPv40SitmsftjrAdqL97Xqp9psgrJ+x1HUd0xYhEkznqI6Toewkh6361io/7TrL0TEtGFvq3qLXbHpaEMUt49vi4BO27tKy2wjW352evaFv9msDyIlbn4K13ma7w5zuW/+/8bVN/dx4DPYdOtZrDzP/ttOTdt3lZF80ar9m41rni32N1e5pFnRp1P9m9oX19UamaW7MjfoKnKOof5ORV3u9D2Nn7Ai/2N79/lHO0n4U2okMtZd1sqvt6/TvI6+/pLTTzID/pcgpAUwzYAX/dYzj40RwNxTMfwHnT6N+W0GgPdHGhoD/BfX3YYG/k6PEeq7tk4xI/6LJ6tW2OkacgLPVW725i8D5mTRKrrS0tMTM7TuYpsm3vvUtTpw4QalQYd+efv77/+EPKFZ0xMIK2cVlsrfHSGRLrC6v4JNNfK+8zSOYFAsF1JU8VDUEUaSjUsWIRnCbOmY0hK640LQqrv27yVerFAMqXp+Cy+tHQKBcLOKSRErFEuWyxslvPsvv/M5XGLs3gT+kkki1gSAxMnKfgYE9VIslJAlmJidIJ1uJpxN4FIVQMMibb75JLptlaPduKtUyu/oHyGaXKZVhbi6LVjWp6AIXL5/nsSee5JU3XuMzn34CxSvyxFNPIggSsltl994hwkE3zz//Ak8//WkE0aS/bxfpti40wySXy1EslRmfmKRSLYIg0tPbx9lTZzh69CgLC4u89957fPYLXyCbXWZxfpZQwMtAfz+4ZFaXl0nEYqzmS7z7zjkGBod4/4MP2TO8F71aolgsUCjkSSTi7NkzRP/QMJVKhVK1gkv1EIvFuHPjOpeqFXb19eJxy5w8+Txf/spXeOFnPyeVbmFXdyfXr19laHg36dYWSmWdkZERWtIJOjJJzGoPwYCXSxc/IBoJUK0U8bhkLrx/nsOHH+HG3eukOlJohTLlfJGA189f/D//mb2DuznxqeNcu3qNmzfv8dTnnsKowNLCAm+fPcVv/s4/5vqta9y9fZNPP/1pBFEjEYogaAYv/OQkg4ODvPHSm3g8CpmWNGalQjwRZ2j4s0xPTfH6W2/y5d/8Ktezizxy9CgvvfY6q3fG6IzHOTg2jnvsPvIPZnGVKrh0A9wutGSM9mAQ6dezDPvCnPrx8/zTP/lj7l2/RXZ6jsl8nps3b7K6usqnv/QrRCIRXC7XtuvR7pxsBiQf5l2Ef9NUW/tOWzI3MprbykqCs1ytJWSzk9WIrMkmu2N3HehtfbdmM7K+GeGjUF0fRKEumm0HzXZdUgP2uq7jqp193+GhFavM/iSjldZ+1lhidxZs15+HJXtk1vpbszrt866RzWadL42ec7OASG0ufdQoqSRJGKbpqCf/nj5Z2ulWZ9iUGdvtBLBG3D8K/a0Frw+zoD+KAG0e4a15QjZK76Atuzdlq9fKXsawbAGqCexGwqeRF3KntN3kbFaT3cO6uQXEnpFuvSZreftEF5DA3OStaYIg2rZdOkRZTWxp+c3NBEdO43JSwFu+i1vfv7fhYVwfKfDAgLBGCx/0pcY0q7e5keJ/2IiifUx2T5ZdaWwoGgdP70bmygYeP+v9jdqvKRCn+WONAjt5m63frf3YCZDdiRFVM1Drttdt491svv7ryb7lqX491EcjXLqILupoImAYSIYIbhNTM1EUBUyBglZBliQqpRKiCSFvkJxWRjernP7pT8hPjdO/dx/ZXJl//rXfw3XhNtJfv0P53/8IXzCIUCpj6gYVw0AxdLRYhKTPR7FUZDHgI5BMUszlkPcPkXdLmIZB1TARZIkbt+9x+MhBZJeAqVepSgpu4MN33mF4eBixWsEtyty9foOe3l6eeeYZ/KqXx04cZ3FugdXVFdLxFl756Yv4gl5CoQivvfICjz3xJJopMjUzx/j9KR5/4jEmJ6aoVnUSyTT7H3mE7OIS2cUlctksiWiEoDeC0logV5ZRPS4eOXwITTOYm10kn80yO1GiWCpiAsO7+0klI9wbHeEzn38av8+LSxYJeYNcunCBE48+ytzCHPv372ZxaRGf6sfj8jI1NYXbI6MZVXKFHPliAa/fTSTazvVrl9CqYXQDJJdEdnGBZCrNz199lT/4w39CKb9GV1cHP37uOT7z2ScxBIlrt27ytQOHiCUSvHvmNC63m3AsiqqqeFQPwUiYQCiMXtVx+wL8xle/TLGYp1IqkoxGeenVl/nKl7/C9PQ0xVKVmfH7VEpForE412/e4tDh/YyNjrJ7z26mp6fB1Jmemqezs5PTp99iYGCAleUCa6vL/Obv/DYLsws8duwEZ94+xdHjR0imMmg6pJNtfPMbf8GTTzzKY4+fIJddYHL8Hvv27WF2eoqrV68yuLuPeCbDV/v6URSZifFJ/H4fZ86cJZ1OMz0/x8jEfdKJGPv37eGZb38br9dPsZAj5PMi9vUwny8z19WKL+JDOTLItStXGewfYuLKbdI+H0p2BfObz9E7s0CfpvO1XZ+n9JU/INHeivrrj9HT0U6WJf7os7/JU08+Ts+uXoYPDkN2FcIBBMHcjM5unAsF09Sxnh23nzu1kpPO3G792yNXzWSnU9RQdIwwNtfpTuCBB3ZETd/pDkmStjtyZAWmGw5Ey7isWdOlJmCkznwxTExT2NDnjcgwNRAs+ksQECWwZk+3Ogat+sP+PGrPeaOvD448rRd+4DRkfW6IUn0SJFi3PawsNoydJ/fa7IdT2QbniG36wnqfufEcYZ2BTu067LRi6+41a9lGtkdNz1odBE4RVdgKqJ2iuNZn0WhtNDu/W7vPDuwN88Hr5kQBE33TuVLXn/p2zA37q/GzM9Ed12lT7NBwt199zVZy6q/1Wn09jWXKR3kByicZOGokM60BCCc7zikz+0cFsH97sg2b22cb3qlX8KPSRwEYO7neqGwtM59VGG0VSo3r+CT5YJx8AwDxy085XneOpDXeYlAjq6ATBIEtGQDZ1OmbC2JrGVG082VzQe10TmyNZG4KbqetM436W+vLxofGimCn5HRPs0zBNTItZWErP+xKqlGb2/GwmaB3msPbjc3pXqeyTcfuYCzYo6RWwbvdGB9mLlnuAqwRVxNdEEGQEHUBTNDdKoYBhm6AaVCYu0dAcfH2qbcI+PwUKxrXzr3NKz/4Ph6jwpO+FmIn3yfzn19EOfkG3J9GikeZDfkIPnKAfHuav7x2kcTTj/H6/BS9Tz/J5bUlZhSZ2EAfi4bGvFbhxTdfQ/X7iaaSrOZy6KZBpVIlmYwjCsL6K13Wcly8cIGenl5+/rOf0dHew6uvvoLP50XTK2QyaeKxBAcPHGJichRF8SKKEoXiGqqq0NXVhW6YuBQ3pgnXr10jnU6jaRWGdg+xlsvR1dVNpVokn19jdSVLuVJiz/BufvKjn5JMyXgDEV575TQjI7dJJlOsrWYxKkU8vgCKoqB4POuRJVmmtT2DoevIsowgSMzOzNLe0cZSdolgMIggCAQDQQKBADdv3iQYDtHf30OlXCaTacHtdrGwME8qlWJmeppDhw6jKG6yy8v4/X7GxyeIxxOEI2G0aoVEPE53Zw+KS6JcKtPR0cno2CiyW2bs3igDg4O0ZFrwer3cunGbA/v3Mzs3i0txEwgGmZ6eYmUly4njjyIIIkF/ENWjcvXqNURESuUyg0N7eOv0aY4/egIEAaNcIRaL4fH6WMrmMQWBfLGI7HZz9u1zJBIJxkZH6O/bRTwe48aNG6heDx0dnUxNTeFyuYhEQ4TDATraOzANkQ8+vMAXv/hF1tbW6Orqwu12M9jXQ7lc5crVq3j9Ae7evk0qlaK3t5dsdplz586xb98BfF4viUSCkdH7fP5zXyC3lqO1rYX33n+XJx57kqqu0ZJJIwoQ9PlZLRZYLBVJDPZTSScQ+3spD3bzyuw4nY8fQwkHKRVy+M5fh9Pn4cwHfMYTYWA+T+LGfUovncU1Nov41c9gHBpcT/QkgrR1422dnLA6V+1G9U5ks13eOkV0t5NvduN8J3aAnerklkM/7HVt53g2LLzYAC8N6tqmZ3V9NHHIKL2lA87bV63gxdoPO/+tfHQ6qtFMb9jLm4a9zu231DYju4510r07Jyc97cwbJ/C6E3vUzv9GdTWi7SK1G71uoEetoNY0TYvO3H4s9cDu4W0FHF5VtP2YH96Oa5boaDu+fFyyOvAelprZPjvDMs0dFh8l2/AvFXi1/74d4NspOS2e7Qzuh6m7ydUdG8sPEynarj9O9+kPwKv8lacb8nVrRMsJzNgBou29WGb99tH1PtnGYxFOG565LZv+60Gmk0dtK1itX9y1HVh2AV4X/TbrwbcgCJjYIs627LG18dmz/zUSDNs9x2Yeui1csT23nUY17V41p7KNwKuTMWH9ezuDxcpfq1e9RlYw2mgc1jHbjQprmaae1gbj2k4p1srquo5ZqaAoHvSKhipWqazOcfHMS+QmR7lw+hX8VBi7e5dquUxbSzuSIPGNb3yfEyWD/d99g4FXbyBdvY/hVZlpiTDeliB+4gg5r4eiLFLQqtweG0Vxy0yM36clnQLTYHpqko72DgKBAMVikXwux8L8HHNzc+zZs4eXXn4J1eOhXCjR1dGBiMDtm7coFQqYuoGu6WhVjVgswe49ewgEA+TWsgT8PvyBCO+f/4CKVsatqGRXltm7by/lUpFCocDu4X14VZUrly4jSALhSJiAP0B2dYX9+/c/iCsYhANBFhcWCMei+AMBtLJJJCowOj7LwnyWPcO7KeTz9PX2UK6UkdwK/QP96IZOIhHn7t075PJrxGJxVrKraFUdXyCAIJl4VDe6ZnD29DnyuTz3x+/T0dVONBblzu2bCAJkV5aRRJG5mVkSiQQdHR0sLi8RioSZn5tjNVdgZnaWgV27SLckOXnyeQqFInuGBpidnkJxK0SiEXp7e5BdIpFIlFA4hKZpGLrO/fEp5mbn2LN3D/fHxwj6Qty8cZ0DB/Zz6fIVXnr5FT732c9SKOTZu3eYK1cuk0qlmZyaJJ6MPXjnd57lxXlKlRJen5+1fBHDMDl48BArq6scPXYMj8eFIAgsLS4jiiI9PV0cPHiIiYkJWlszxGIx8vlVgsEApUqFa9dv0dnZiSAIeDweZmdnUVWVe7du09Pbjc/nIxgI43aJXLt2DVEUcLlkjh07ygcfXKCjvY1r167z6ac/g1uW8fq8qF4v+/btoVLVKBTyeNxuivkCV65eJRwJkc+vce3KVbq7ujh39m0KuTzHThxFVBX0eJBKPIRrsJdyRwrP3n7MvjbMnjby6Ril1iSu5VXeywTY9ZnHWcmtEY5E0MqVjWz862t56xZiJ3lgXcP2aI9dFjX6XRCEhqDYKrusOqaRHm0acWGrTqi1YdVTzeSYkxy0gx9rFl9rfY22ga7XZZPzQn3k2w6O1vX21v7UXjtkmubG83RyDDjxrfYcGumZWpLEWqTe+t7R2m64jXqFTVBc05PWKLZ9e60TH51AYCOwXV/P1voaPVf7M2meYLDxXLIDDOtcto7Fbj/Z3/PupA/tc6CRDWEtb+dJo7rtY2k09e0Zu+vniPM9ze2e+vXTjJzWf6P+O/3u1K8aNTsiYb/nYZzv1nnQTGbY22g0hmayQxSlvwev8PE8DE7UaNJ+zFq3LWEYDxflcVJynxhl1xA6M4gHBpu2/zDGPzhMdrNeSJumuQEiN8rZwGtN0dh6s20/rcLarmyADRC6JdmGRQBbganVY1snGGkMnncGgB6O6pSA/ZptDDuux6aEncru5NnvVNhZycp/uzLbSR074e1OytjlSjM5szmnalkoJWRZxmtI3Lxyk6nRu3x49jkuvvdzhCoM7ztEMJoimGgjlOnh/IXrtCQymD96jWPfeBH1vWvkU0FOmXnavvBriG0Jfnzypzxy6Ah3791jOTtPOOBHccuYWhXFp7J3317a2lup6hr7DuxjYXGJeCJOKBxiYXGBcrXC5z73OXRNZ6ivn2K+wPnz7xOJRKmUq5w7d46V5WXcLjcBvx9ME5dLwqW48Pq93Lp5m4nRCaLxBNOzcxw5coCXXnqVVDqDbup8+OGHHNh/kNNvv01raxtr2RUGBvtp6+wgt7ZKMpFgOZslXyiQX8sRjUTRdYOWtlZW83nCgTA+r4tMWy8tLTGSLR0EQyHSmRaisQTJdBJJWjeyDV3nyuXLHDh4lIA/gCQKzM3NUKxUiMXDgIZH8XL10nXu3r1LR1cHkVgEl+LC41bI54tkMm0Eg2HKpRKVSpWLFy8ST8RRPB7SyQSJVIbFxSUy6SThSAhNN+jq6mZmchxZddPd08PNG7cQTIPZqQkKlSrRaBSfqpJdzjI5t8CxE8f43ve+Q19vDwtzSwQDfkKhIMFQiGPHTrAwN8XKyjLBoJ+V7DIzUzN0d7UjS5DJZAiHQkQSUVTVjcslEQr4yLS04JIlZqYnSSRilCtFEvEEly5eor9/F1euXCIcjnD9+nXa2tq4cOEiqUQSURKZmp7CpSgM7x5mfHyceDzOmTNn6O/vJxZNkc0uonoU5mamWc4uc+TwIQLBAMlkgkq1Sm9vD+NjIwztHkQzdBYXpnn73XdJJFvIr65w+cpVDh86xPzsLDdv3mJmdpaAP0QsGkYSDMbu3cUX9JFKJxkdGeXUW6fZNTjA7Zu3SSfTSLILJAkRgWrFwO3xIqkq7rFJgr/2FD84+yZPnHiUQnYV2aNsyIMHq3pbo9r+W6M1bjfanZIoOYEMSZIcjcCHsVF20u9GOk0QBPs+xq312YCeaZp199gdAE7ytqb3anWst+/8Dve6fjR4t6o1IZBTW41k/naRq9rW2BqItRrgpmnjjVB/hKT2LK2g1e6AdqJan2qgvFauEch2po+n3xrV04iHVvBotY82eVV/vVaXffejfXzNdLXVrtI0beONDNY+fRzwagfidfU1yXjUuN/bA2orNXcqNKbtxvwwgHS7+pzKNXqedmokO5s5LDbL/h0Ar82Y0OxaY8O68TkEuyLaKhS3emwa90GwfZrTumBrPtmtgtOuZD8uGLLXJR4YRDww6OgVtrZX3279mGvj2Y6n61s4HvwtOHh92FwUm6nwhQfAV8Q06heS07MXBAFBrG0NMh4AZHOjzUbbmQzNRJZcYIIoiOvnW4X1+wxDx624wBDAfNBPhM2tXbYJ43SO1Nq/7RS03TBwIrH2/MTN5FLbZZa2zx+78Ko72lQz4hwimNa/nYxI6xmIWjvW607zeLu+OX2cyOr9duZdLZHS5qc2N2sfSTAxMREEE0QTXZLQ0NBNg2rVwNAkPMEwQm6JD998lYWxcZ555ptEwz78oRB5TaV3+DH2Hf80RcOFP5xCdHnweAK0nb+F73/+v3DdGkM/9gjCo7shqnD77l3KpTLVagXV58GluGlJp7l48TKdXd2EwkEMwSQaCuKWJWRJZGF+jvfeOUd3dxeisG5U3h+/T9+uLkQRlrLLuH0+fKEQN27d4vHHH6VcKiOaEnv3D5FdXcWlKPT2duHxeFheWgTTZHCgn4pWQRJMMukWVlfmmZwYp6qbDOzqp7+3D80QOHv2HJ1d3bhVFY+iYuoG3miQUr5EtaLR0tpOqVxGkgXiiQh37t1FlmXGJ0bpyHRz7cKHuCWR2cklXnjxr9G0CrnlLD63h9HRUaLxGBOTk9wbGeHd995HdklEYxG8Ph+ZZIx7Y/cxRRc3b9zhU59+nLnFefYO72F6ZppAMADVCqFEGkESuXn1AmPTk0guiYHBQVLJNFMTk4iihNfj4c7t26heDxOjkwwf3I+OjmgKSJKCS3Lx1puvc+CRw9weG2O4b5CVpSXWcivEUnH2Du1hZXmJxYVFXC6Fjs4Oxicn6Ojq5NnvP8u+vbtRFA8uxQWiwOTUBI899QSlUgUMkdn5WRTVjalVUNQwlYrB6tIyRc3k5ddeY8/evXj9PjweH2ffPsfkxBTDe/fQvaube7dv0L9nkMXsMh6Ph5ZMG4Ig43J5aM20MjY2SigcRNOr7Bke5ubtO4yO3mF+fonp6XmuXb/F/sP7uHLpEvm1NZItKUrVCpIpkGpJUa1WuXXzFrv37sUlyaTiEQr5FR45fJCFhXniiQQLS8toBrhlN27JS7FYIZtbpbCW4/a9MVbWcjz16cd56WdvcezoMaqVHHdvXcctiiyvFKjqVdyqh4mJGdSbYwjxFLt/93e5efMul65cZ7C3jWq1SlXX0QwdQdARTBcSMi6hgg4b8n5zTYtb5InVGHeSW43kstN2R7s9sdEOWx2LpmmuJ6B5AHI2Xptiue50n7V/jawLJ7C80SfBWNdhVh1obo61xgMnEF7HGxEQBMwH/0QBMA2bThfrI3Wm+YAZ5rpsEusd19sBIajfCaU9yKruxBu7TWB/RjW9v/7O5E2+WfWtVVfYwZy93CZYtap9a8Ssds7UeSt6PTDGUrZmSjjbp0760Br1s9qMTjkg7PrT6YyrtT6ndu11Wb87kX3N1BwM1nXg1B9ne6C5Y8jJNlh/5o3tB+cx1ezE2mfrM7TeXwP2O03A2sx+2a5vTvZdo/q2szNr16zOmuYR6e3HZi/zdwK8/k1RIwH4Ue57cGXHbW9OiJ1723bSt18EfZx2d3rv1kXqrMSs3xsp6vqFvvO+bCwyQapTFqYtacLy8jKyJDt6qy1fGvZpu3FsqcvS9nYeYLuidVJAO+GFve2a0eTUnn0cjYRuI3qYvtmv7YQfjT2622/DNwUJEDFrjpNyCZdp4BFMPKKGKuvkFhf4xp//Rx5/7FPIboWqViaRSvH7v/+HtGa62b/vCKVykcnxGTxuL9W3PsDzB3+EdPZDlvZ0MdUWIy9BpbTCtSsXOXbicc68+yFdnZ1MTN4nlUrx4YcXKRZzdHV1UalU0TSdUrEECExOTRMKRYhEo6xkcySSSa5fv0Em04pPNqmWipi6TltLmmuXLnDixGNMTkyQbs3w45Mn2TM4RDAUIRyJcvHCBTq7OqmUy9y/f5+WlhZGR0cZHNzNs89+n76+bo4cPkquUCKVTKAobu7cG6VSLTI9PcWJ40cR0BkbG0EURSRBIBoOUa2WuHj5Kvfu3mNyfIKjx4/jdqmgV/H7ZURJxBR8pNvS9PR109nZwdj9KRbmJtl/6ACXr1xlcHCITDrD8UePk0omCfj9uNxLlzlqAAAgAElEQVQyo3du09ffhyzLvPH663R2drB7oJ9iPkd7eysej0Ihl8PlUREAWTQZ3neYRCyOz+tFr5bJ5dcIhULILpFdfb3ILokXX/wZ7V0d+Pw+ZiYnkRWZsdER2ts6UDwqbW0dvP7aq1QqFQZ2DyG6ZJYXF3jhr3/K009/Gq/Xw/TUJD3dXVQqZQYHBxAFAdMw8fv9lIpFEskkCAKlYglZclHRKjz7gx9y9MgjuBUFw6iiaSXKlTL79w7jVVUW5ufJLi0QCYcZGhpAUVy4XCKG5kYQJPSKTqVQQhRNTEMn4PeSy63hU2WCQR9ut4tsdpW+XQOMjY6wf/8+2tpbMQyNttY0QwMDqKqHcrnExYsXiEWiuN0iul4ln8+hqD7ef/8DVNWHonpYXl6ipSXD8soK0UiUTCbD1OQkK9ksbreM6vUQ8Ps4dvw4ExMThMNBFMXNjetXKJWKZFraMHRYXcuxtLRIIpFEUbz4rt5CqWqsffFTxJJxvv6v/pjduwa5ef0at2/c4PChA5iavg6WRANNMhC3vIJqHUw1W+M1OWIHLU5US3xnNbYb5RpwImcdtRUAN62jSd0NfxMc5KS5VeZut/um1vhm/orGx4Y2799se30b8VZD3N6WPaJTi87V3rPrBDya8c36jJy2mDsBOztvnNpw2s7r9GydbD1BqH/l4jo7P/oOI2s7dr3oFJCwf69L5rUDvtZ4uZM8NE4gycl2qLXp5NCw9qVRnKo5GGzYPcd6GlzZ0henfluPPP2i7PaHxS/b2YzW6/agyU7udXpO9Wvllxi86kb169BYWHychW0vt1Mg0zia63jXzks2eMDNytZoJyH6j0Lm6OT61uFIsGHfdsKP7co4KR4rrSso1xbAZq270UKzt2FX2tspH8MwKBZKG69rWK+j3iMlSRIu2b1Rl7WOjfd/WtqqRR+t3mOrUGg0r2u/NcrEaDe4nMZpVRbN5o1dgZu2e2A9C2WtTafIg5PH2gmEW9us8c/Jw+dk0DWqb6egvv4353VozahsGAIYoJUr+D1epm5e4/Rrb3Lm9TeoFpa5cv40YU+AY8dPoJlQLmtEEjFKZY1/9A9/j1SinT/6P/6Y1159hfKb59n977+N77V3mAoonJPK9B85xPj9UVozcUJ+Dy5ZYq1YpX9oL9FIGE2r0tPbS2/vLvr7+1hZXSOZTPPXP/0ZhmHQ2dlFIBDCq/qYmZ4FQSQej3Dt2jXa27spVjWm55aIxlNMTM3gD4aRRYm29nZkt4t8cY2wP4xH9fLcyeeZm53l+PFjAHR1dQEgu1xMTc3Q0d7Frv5uDAOS6RRnz5zm+rXrRGMxbt28xu/8o69RrZQp5HMsLs7R093Lyy+/RGdHG4Zeoa1rF15VZd/ePUxMTFGtVDG1MqKrQjSR4s3TH9LWkSCfXyMeTyC7PXhVF7LixqN6mJmcIuDzo3gVqloVSZQYuTdCJOxjbHSMgM/P4OAgoWCQ0dFRQoEAo2MjKIqb5eVVBEGgUioSDAT55je/TSqZwqPIXLlykf6+XkRRolwp4POp3Llzl8994YsEAn7mZmbJ59aIpaL09vaSSiY5deoMly5d4je+9GsEQ0FUr5dSpUIoEGBgcADZJaPrGvFYFIBcLsdbb53ixvWbHDx4kPHxcVpa0oyMjGAaJpFwBEVVUT1uhgb6CQVDrK4sEPCrKB4v05MTxKJR3nj9dXb19jI/NU5vbw+xRBxRhOziIpJLYnzsLtGgF7fLpFiqsry0RD6f56Wf/5wD+4a4fu0KiuIhEolz5sw5/H4fr732MpIkcPjIQXwelTt37zI1PU0+n6ct00o8HmNhYQ7DWE+SNT27wLHjJ7h46RK5QoHhPbuRHoCLe3fv8Prrr3H8+HHcLonrN67S3dNNMhnn4oUPiEXDmLqJSYXe3m66unooFsvcvTfKyL073Ll9i0MHD/L+u+/TvrTG2FqW0m98GsWrcPz4Ma5+cIPHTjxKwKfyF//hPzC4ew8Br4Iog664ETSjTt6ur2vnIyFOsrOR7rJGsmrfTXP9vGbtWrN3XdaAiv1IhNXJaJfV9rY3ZLvt91rbTv3fAFNCPbgWBAGBTflb02uapm2Use/0EkVxw5Fr6dwWHQh2mVoPXk2c9fAWHWSLejYCoNZ+2iOI9vPL1ms1IOzk4LVGVu3nXq1j0TTtAe9xvN/JzrHrZbs9sBMb1wkwbra5NVpq/ziBWzvwctLF9v43q9++S8HKv9pasJ5HtgJ/ex12XlnnmBP4tfPMags6kd3R32is29n4jfju5DR5WNrOxml2rdHvzWzPZvPHXu9O2v2lBq+Gsblt2Pp/jZo9tE+aPlpbv5h7tptcnxRp/+zfYrx5HqlBtuG/CdoUzpvnYgRhMwmDtYz1noa8EJzBTaNFCGDoZv3ZFaEeZJrm+hZmu7FSt83C1j+rYrKDsu140Uzp1POs8fvdmhlm1r5vlHXot11RNEpi4cRT62/2cvaEUk4K3+l+u6Jz4kvt+6aRYVXIhuP9VkPOIwl4ZBGf28Wf/emf4g35SKbb+NN/82c8/vgTDO/dy+joLMm2LkzRzf3R2/iCaf78P/5/uCQ395//Ob9VFvnHN+c5li2j93dzIxXCTIZRVA+53BotLS2YgsnK8jK6ZpBuaefazVs899xP+JVf+QL3Rkbw+wNIkotKRWNkZB2QqV6VlkwGE5PrN64xvHcvul5F9bqpVitMTM4QTaXp6x9AdrtJpdNMTU+Ry+W4e/cera0Z/H6FUDCE26MytHuIdCpBKBKmVC4hSRLZlRUisSiCKXLj5i0GBnpZWFymUCxyYN8wXV2dxJNpioU8quqlVCygVStUqxprhTzD+/ZhABc/uEhrdyfBgI+xkbuUigXOnD3Lo48eZ2Z2mkgkRkdXN263TCwSIr+2RiQaJbuc5cq1q4RCYdoyabRymbnFeVZWVlBVL6FwCK9PpS3Txvz8Aqo3gEtRmJyYoLOjE7dHQXa7wRTI53KEAgFUr49YLErA7yXg99PW2sqbb7xJS1sHIyN3SaZSSKJCsVxkJZulJZUkEg5hSCLVSoW52TmGBgc4deYU0UiYro5ODN18kL8Alpez5PI5FI9KPB7DME2isQQjoxMEAmHa2jIsLS3x0ksvcfjQIYqFImPj4wSCQeLxKPdHRgmGAlTKOVTVy/JKAVVR8fkCD+rTWF1aRPUHmF1cxK0oZJeXybSlaW9txe1xI7nd+H0h7o2Osmd4mO7ubvKra/h8ARSPSr5U5tLVaxw5vI9oJEJ7RzuRSJhTp86g+nyMT01y+dJlUsk02ewKXq8HTdNpzbRz5/YtJEliaGg3LS1pZJeMJIoszM8Tj8cIB4OEI1Huj43w9GeeQvV6mZ+fIZ2IoypuAoEwI/dus3/fQX74wx8TjkQY3rube7fvcPDgft59912KpTJ9RR1/ewbpq59HdbsorK3xP/3hP+Nr//BrKG6V1ZUc73/wHi+e/BED3d2EIvGN1zPUjirUDF0r2eVWM/nSzIizy8ZGZDdgnerdlElbHYFOfdlwkjrIXEdZ/CCrfl3Ukq0yVBTFumMeW/SOaJOxOLQl1ANRQajXZdYt0k7PoRFPrbLZ/rt9DE7X7M/OCq7s99ifTTMd5xQldD7itR3waQ4CdmL3bDcXneq10k4Alv0epyNKNZ5Yk1858c3aZydnfOOAldCwjBNP1v9obP80sjeatbtTss+Rj0vbyZqHrWsn9zSbl42u28f89+D1b4g+Wlt/u8Gr8dzrAL9w8GpXzE7XRUHaULRQD3AeSmALm15xJwVlB5WCICCJUp2BYz+TKwgCilvBMIxNT++D++1Z+QBHD6NTUqItXbcowtp3ewIJe7lGyseqLJzIauxZeVFncFEvkD4p8Fp7NnYPq1MdTm3ZeepU1uqMqLWj69pW4+zB3/l8nsuXL0M5x41LF3nu2Wf51OFDtA3vRlL8fOtbP+ZLX/otqia0dgwwvbTC2toqoXyOf/eb/yP/ZAkOnLrI8MQiPlnm7UoW6VOHUDsyqD6VtrZWfvrT5xkaGsTE5NqN21y+cInBgSEikSgmAqmWFsqVEq2tbSwsLhKNJNE1jaWlRfKFHG63i4pWplItr2/dzKTxuBVm5ibo7e0hkWjhxz98hkhApTUVpVpcpSURIdnayYcfXGBXTxcCGnNzC7RkWrh69SpDQ/1UNY1IJIIgCBRKRRS3m+89+31+5Vd/HckF+XyJF198EVkSqVQqTM3M8sH5Dzh48BB+v5+FxQXSqTTRRJxgNMrS8iqq20coHkSWQHW70DWNoaFBFpYWaUm1IiCQL2WRTIW7t25RzOeIxiKEQ0kymfUtrUG/yvLiHJ29vbSkW1hdXWNubh7V5yWfK7Awv4jgcqN6faheHx7Fw1o+j9uj4na5mZ2Z5sUXX0T1+mhva2Fubpb5uTkkJJaXV1B9QYIhP4uLSxTyVVra0pw//z593T3rc8itIEkyquJm5N5dfuVXv8DM5BRuyc0zz3wXt7IO8ARB4ubN20SjcQRRYGFpmWA4SndPHwNDu7ly6UPK5TJPP/0UMzPTtLW2EQyvR78LuRyJWIyZuSla0lHmZhdRPBFmZuZ5+dVX2X9wL4Jo4nWrrBSLtHZ1oWk6WkVDUbxoVYGq4aJsSMzPzROORAmFI9y6fRdFUpidX6Stuwu3qtK9axcuQSMYDBLwB5mcnKa9o4tAOEI0keTQwcPkcnnefecd2tvbSSZTiIKExy0SjycYGxvFH/AyPT2NIAqUSkUCfi+JeBxNN8DUkV0S8/OLJJMxFJdMLBzBo/oZ6O+nVKowPjHNkUcOIbtF2ltaWVxapLOjk4G+AZSbI4yvrTK2txcRA5co8utf+21u3b7D9777A37rt3+X3Xt3cf2D9/EJArou4ouG6wCYFTRY5W+jKJddvtjljB0AWettJGPtgMmpXqsstDrZHMEQbGTSbdTfLR/LK+1qekoS5br6a5l57TqgTs6L9bpEtI1lvZw923Jj8OqkM5x4bJXNwPprs2ygyMrjRs/AWm9tjjgB3mZgtvZ37T6niLr1+k5ttWblGvHJuczDg1frmeftgJZTu/bfrXPHybEsy/LG2WX7WKzlG+XuECzHAz4p8No4N0Z9yw9L1rX0SdDDPJuPU9dOyjWy02BrwOiXGryapv717ZjZKHS+/aRrTtsZ3k7KbAe1PkQPaou9NhnWf7P3YfOa/fr2fNtOMD0MeN1O0Nq3/FjJusXJqZ51xSJTrVaBxltenYDHlt/WM0yg6wYgbHxff9/bekImTDANc/2audVDuP77uqd6/X8R3RblNB98lx5sGbaTKIrr79qjfotOo4yWVr7V8fLBhw2jRNz4HaE+cVTtf6dnIFC/Pc3+v10obfdMa7STrU/Wsk6RBicPrJWsW8Nq5TRNa1p/bQzWM0ZuWcQ0dEQBRNNEESXKFY2RW7cYv3mTmOrB5U0Qi0RAFNm19wDL83mKawX+wW9/hUw6wXf/+dcZXixQ+Jf/hu7nTxM4eYYn4ikKioS5p4eVPb0sR/wMHz3MlSsXyLS24AuHEGU36VSScCSI1xcgkWphenKWjvYWVtZWSLb0EvKrFAtlZqZn6e7qBoq8fe4d+voHSSRjLC3MsGdwD27FRzzVwvWbt9A0g56eXayu5fF4PBw8dIzvfu9ZDhw4SFkXOPnCy7hkgcOHD4IgMT4xSzAcQdNMWtItmIbO5csXSSYTlIolQqEQgijx6LHjVKp5qlWNQCjE/dEJnvrMZwlFIsTiIdpbElQqJaKpJJq2vn3aJUtIAIaGblYJBsKYponslimXNVKpNIVSGcXjRTPAp4ZQPG6SiTSvvPImfUOD5FcXKZeK+H0BXG4FwS0jSG6KhRLLCwu0t2QQZAVdN/F4vQT9AQxBRFEU7t67hanr/PynL7D/4CMUSwUOHjhIMV8mFI0Q8PuRBBE1EKKim4RCQTxuBa2qo7gUpicn2Tu8m7mFWUrlCh7Fy+joKC63B38wiCS7WFxcIdmaYf/hAwS8XpKJJIsLcyQTcZLJOIYJoiDjkVXKxRWmxm8xMLiHRCJOuVSitTXDyuoqAiZul7R+1rRa4RvfeZZHH30SfyBIbm2ReDLOnj17MU2RCxcv4g97ybR1YFZhdmKCVDyCKCssZ+dZyy6xNDdLsVzANE0SsQSaViWdSSG7XbhkhdmZOWamZmhpzYAgI8kSLnR0rYrbJeFTVWZnZ+nq6iK7ssbE9DydXV0UC1m83hCBQICRkdu0pOKk42HOnTrFQF8/r77+Ot19/SwvzBGLBpmZnSHT1sHCwgLhaBxEGcXr4cP3z7OytsKRo4+QX81y88pl0pkMiqry4YUL9Pbvwn3tHsGOVqpffIz33juPbhgMdPXwr//o/+RP/uRfYSoiNy5f5frtEb70D34bU6wyN7HGWnaZYMiD26MiijJlvYQgmIiSiKYZjrtirNsb7bLGKtOsr8qpARPrMYNanRv1mCamYWweI4GN6LD54Jppmkjig2R7D37DNDeAYU3Wb8jKBuc+rX2u0WbSpAfaT5DWo6WIVDWNB8hyo691wNQBlAviVn1UyyBVS+K07uS0JMMT18Fz7VMbv1OCKSeqyW3YdLI2utcOeGtbg+27kqz32pM8OdkTtWv2iPcmuNpqqzUCmI3Jud1m9xmGiShadxQJdfWY5tY5bW2jxqMaH+z628pL+1btzTacHTZObVnnk93h7FROFEUw1222jUSdwtbIu90OdOyLfRceEpuT98E5WmGrPVJfmbn18xEDUA9L9nHupJ3tAkVO9zbbxWa1XZ3usZI9C/vfqfe8NmL8dplUPwl6OKHTsJaHbtO5ncbejYdpazsP0MOCV3AGK1blYr1u/1iFpbX8usASNs6b2CN8jYSUdaE4LXS7F9A0a4q23vvqFFGs1WthgGMZ6/9boqR2HrAZLW00xmaR1DoBb+ODXQk48d7p/a/bndty+t6IBzslp7XW7OM0xmaRVyvVZTGURVyiQW5+jlee/2veO/suQ0P9aNUK4XgYQxLwhZJIiKjzqxTfusAr//Rf8MTpawS+9Ry+b/6EI3kdaWyKxGAPC+kw5z0KS3EfA08+RqA1xeTUJO3t7dy4dQO/14f6YLsjZhW/z4usqJiIzM7MYlSr6HqRaCyI6g0yPjVOKBwm1ZJGkmQ0vcTpM+8gyevRxZG7d4knkoiSRKVa5tSpN3G5FVpaUyiKG0mWkV0SkiSQXV7G7fHx4YeX6OnuolgsUygUKJfLmJjkc7n185mmQVtbB5qmEQqHMQwDTa9y5dKHeFWVcrGM3+unu7cbVfWg6RXAJJVIIAgPjH1dZ2FhFpDxB3zcH79Pe3sGwxTIZrP4vD5cLhcTE5Nk0glkt0KlqrOaK7Awv/66luPHj7G0vEgsGsKjqswvLCDKMu+9+wE+v49wKEy5UqFSrWIi8Zff/EtOHH+U73znGTyqh2QihsslEw6FKZUquN0yXtVDOBxCr1YxELj44YcMDA4wNT1NZ1c3klsG0yTkD7A4v0BreyeK6qFcqRKLJTh79l0OHjqEx+NGEGF2boa2th5cLhkBcCsyoiAjyhUUD9y+eQ9RkvF6fYiiiEsWkd0u3F4vumYwNjrO6vIa/lCAcrnKWi7H7Ow8sUSCoV39qF4VQRARZBGPEkDTDSoVjZ/97OcM7x6kXKmytJxlZHSEXf19aKaEKIkkUwmmZ2c4cuAQy8srLC4t09nVRaVcxTRNgqEwY/cnKOQL+P0qgYCf7HKWldVVLl66THdPL6trq0iiRLlcprOjA0VxI2CSL6yxulrC6/cRCvkZuz+KXi3Tt2sXhmbQ3dPLuXfeobO9nVAkRD5fJJlIEgrHuHdvhMWFeUIBL7FUhmQyzdjoCLmVZeLRCPdGx7g/PkFPTy+S5MJ7e4w5rcqf3r2C1x/gC1/8VcYnJnnhp8+TzWY5dvwIiuIjlcmQaW0Fl5uI14vP7+GZb32bIwf3I+gaes1JKQgY+qactxrtjcCGXT5Zy9lBTrP7GslkJ/nX6H5rtLMRWXfM1OqwO65rIEx2ueqAt71WJxBnPDhq0QjgrddTD/JrWlPX9bodSE5tNeOD/VzsTm00p7rtPHF6/UsjJ6ozMNtJ8KQeuDUstc1cqv99vR5N0xz133YRP7t95dSe4zO2jcOpjYeNNjZ+ns4OdKf7rQ6GLfXYIq+CQ3K3ZtHZJj3/CPf8YqgZv7d7Fs3W03a293b0Sw9eTeojr40WTbNtIc08DU5Rpe0Uz04UU2NqrmQa1ddIKW7+vrO+OL2mpakgewBe5a883aRtZz47CbZGY9xQag2Uyvpna2KGRvdZo3fNlKATWcGzUxTQOhYrOLZ/cLjX3h+nntWE7Zb6cJ4Ths3zBVvPjNrH5sQvp2dTq6cRH+szIwpb+O7Ev+3IaT5ax+PIa9hRW06AG9a3nHk8HhAU/uhf/m+8d/oUv/qrX6a9ZwiRKhgC4dUq6pnLeP/kL1D+0/cIvHQO4eJ1Wv0hlvwKkROHGGuNYA51c/LSRYohFSEY4OqNmwwNDXLh0hUyre1cvXqJV176Gbv3HuTtc2/T29dPRTcp5lZIpNJ8/4c/wu/zIsgiK8tL9O/qYqWwhqKGiUcjZFeyeFUvzz77LMlUjKNHHyWZTOPxKOzbP7x+3lCCtdUc1arOiUdP4JJFdEN7cG5ZIhQMIooi8USKy1euEAsHaUknCfh9pFMJovEELpfI7ds3UFWVpeUlvKqXkZFR/AE/pXKZRDyGJLpYya5SKRdZWV0mGPQxPzeL3+cDQSRfKFLMFzElkUx7K17VhyyvRxN9Pi+GCasraxQKRWRRRJYFfH4/s3PzBEMh/H4/k+P3GRgYWn8rlqbjcikIooBLcaMoHjq7eolGIlQfgOtisYQ/qHD06GFyuRV6etoRBBGtWsHlkgkEQ1SrBi0tKU6ffZuurh6C4RCyW6WjowO3243PH0AzdJYWF/nRD39CJpOhpSXFWqHI2toKsViMcrlMpaoxMzuNpmtEoxG8Pi9ra3nya2sggOpVKZdLqKobn8/P/NwKJgLhcBi34qZQKuFRvYiSzMz0DH19fUxOTuD1+1FVL263QiAYZHV1DQkTl8tFuVoh4A8iyTIeReXS5ct88YufJxQMYiAQS8Txef2M3hsjmojznWe+y+HDh4knYyzMLyBLLmZmZsm0ZigWsrgVmfmFGZKpGPFEGFGUKRUKnDz5PAcPH6OjqwsTuH9/nO7ubianJkimUgiYJOJxAsEQ01OzhEJBFI+Cx+MhGk8yO7eAy+3BMCGeSjIxcZ9kKo2h6xRyed577wMGB/oJBf3k1la5cPkamUwK1e0iHk+wsJTFHwiSTrcQDkcYG7tPy1yWRVPnjy6+zb/4X/8XIuEAgWCEtaUl5men+fznn0ZVvCwuLFLRdERZwTR1piZmeePVt1hbWUU0NJLJNPqDKKMgSRgWOWaVZU6y26qzHlaWOdXXTHc5yS/DMDBsctbqcLXXuR0orAO11Otuu96x3ruhGxrsBqtrx/qnaW5sWW50XMauR+w6H+qPtTjZcU5R81q/7XrL3u9mz8X+m/U8sLXcBj7aAei1t70JorfcssXesvJgvZ5N3jr1Zd222FpvjawOeyd70e7wd+KbtT9WZ4AjgHSoxxrNduKX1Y7ezu6u9dfZOWBjhLm1LifbupEdbCnl2JdG2OGTomb129flds6SRrir0bWdkN1J+MsNXk396x+3Duui266MfQE6lfmYvdlxSae+NALNpmnUlW3UV6dxNaMaeBW+9Okd86URoGvkidvJNUEQNgSLU9mdbjdy6qd9HPZorZ3sgssOdDfKPVRvPvo9tVa3F6hbyzVr26p0G93zMLsdPs76sSbSaFTXdn116kftnmq1yqlTp/jXf/JnBD0Kv/ff/bcIngDf+vq/5bEfn8b753+F8P2fs/DuRTxdrcxlouR3d3PHJfLWyA0OPPUE95cWUVQvisfDvv17KZehtbWdfXt3oXj8qD4/fr+f7s42gj6VZKadod27kRWFbKFAZ2uGsmbQ0pImFvIzu7zII0ceIZdfJRJL4PWnmJu6z8zkFF6vSiqRJBaNIIkSitvF2bdfR5REwpEA2WyWUCiKIvs4+dyPOLBvmLnZWXweL4gKpWIJERPZJZJKJ0mnkigeF5IEiurC5VIRRQNJFPD7AszMTBCLRQmFw0xOzpBIpMkVynjUAO+8+w5dPZ34fR50XSMajbK6uoqsBjBMiEZi+IIBJFWhUsgzOTlBMpnk7p0RQpEQqsfLndv3EASTtrYMmiEiSxKGroGuAwKC5EKSXdy4fh0TF+FImGIpj4GJVtVYzmY5efIkXV1dBMNhtKrA9NQc0UiSq5dvkEhEiUQjaFoVQZTx+fyUK2X6+odYyq4guiXcsso7597G6/VQLJYIhkKYVY3W1jbiiQRlrYjf7ycSC1PVyrgVBUGCXX29+AMBDEOgVK4gywIBr49yuYIgymBWGBudJRxMM3JvlIEHr/BZXVvFFwhgIjE1PoEkifj8HhItMcDFt7/1HXp39WEYJpOTU+hahbm5ORYXFink8oRiITRdY3RslK7uTkxRwuVRWF5eJhaKEvQFcXtdHNx3iFu37uCSXLi9blTVR6Ylw7tvv83s7DIvvPASj33qSfKFEoFABH8wwOz0JEeOPMKzP/ox/f0DeL0+2trauHv3Nu2tbXzw4SXGR+/jcisgumhra2FpeRFBFBkdHWd6YRWX20swFAYRBFkkEgricrvxeryM3bvHwK4+7t8fZWR0hNaOdiRRoJjPEY9EOHXmHEP7DvHqyy+BIDI7N8+16zcYCsU42Rnj0f/m15iZGCURCfHTn73O0uwcxx85xF/96AdcPn+esdG77DuwD6/Xi6z6eP/8Fb761a8xMDCEyyUxNjZKMBhEUtwIkoQk1O9yaSa37IbbTmTNTl4d8rDycbt+2G0aJxC75fcGutwJZG2ANlvTTipnucwAACAASURBVPWalkz06yDZ+fU0tftr0VgnXWw/l+oEdBqDlcb8sQNMezI/pzHaAV49zzbLWvnX7LnZHcGNwKuVtp4hbQzAtrMlnfuwtbwgCHVZta19sZar7dpy4lOzvlgBunO5j2frbTZkR/FOdsXWCLy97q28bD5vflEAdifyZSdgc7u58VHJ3odf6jOvtYRNNbIKnJ0y0tlDur7InbwJ1oXTqG3r98ZtbLaz+dnZVhJ736jt76/bpWq/3jhqbB/DTskKXu0CpdkZE3sfm/VHEAREQV7PzPng/On6eOx1PRDCgomJgWkaG9s8mnnF7X2we2tFQdgQNYJD/+1krdvJI7yxlcl2jyOvHnysSS6sinenz7SR8LerMsGhnWZb7p3WhZ0/9rlgX1NOa8nehr2+Rk4Sqxd123UrlBEEExkR2ZCRTBGEIkZFRNfKmEYeqVTgvVPn+X//07/jwNAenn7yafpjScKvvEfkf/+/OTGTxYwEEY4MUzqyB7OnHaWrjcmFOVKpNKYBiXQ7Pz75V7S1JAh7Q6iywJVL18iXirz82qscPnwM0awgCgbvvvsOmbZOoskWTK2MosjMz87y6s9+ztCefXzw7jvsG97D9NwC3b29mIKLsF8mn53FpQbwKH7ujYwTicZobcugBH0sLCygelXau3sJqiFuXL2JJErk1la5d+82Q8N7SMQS3Lxxg3gkwvjYCD85eZK+3UMEQ0Hm52dYXs6RTMRwKwoVXaewVqBUKpHJpJFlkUSmBdM0+f/Ze+8oya7zsPP3cqxcXZ3j9OQcMIgEQBKkSHFXMnmULGnX2l39YZ+jVVha1kr0saW1ZMnnSPaRrEwxgABICkwgQIpEIHIGBpgZzACTQ+fc1V256oX9o6amq1+/6u4ZkuYx7W/OOz313g3fve++L9/7aZqGgI+paRTyeSJxi23bt1CplBA8ESMSoVApY5oWlXIBTZVRZIn52Rn8Wo3FxTyVssvM9Cw7dm6lVs5RqZaJpRIkEnFkWebKpRFqlTKReAxf13ErLlFbI59bIhZv55UXvkel5vPt7zzFkaOHUGQXfIWBwQHsaAzfF8ktTPHccy+zc+9WdFMkkkyiaSbnz10mnUoiCh6abuEJLpYNiutTqdWIRSO4VQfLtikVS9i2jk+VVCqBodmMj40RjcVwPY+lxSyq52FYFsVyCUVUeeXpF7hw9So7d+1gdOQqqXgKfIlUZycn332Hq5fO071lENO2qVVddEVjamKSN986xtFbD1MsFvB9F0OPsmfPLiYnxujp6Ca7kGXnnr10dvVgmhYLCwskU0l0XaMtnUJV62nEfNcnGokjSjKyruN6Hk6tSCJqE4/Fcb0alhnD9QTyxRJ7Duzktlvv5Jmnn2b7nu24gkq5OE002s33nn2Oj370oyTjMZaX5qk5ZV568U22bt1LMqGRTkUwdJ3xyXmWlhc4c+YckxNTzM5N8/aJd7j7zruYm53FtCwERWH06mWKhRLpVIaJiWmSbUniEZtMW5piqUJPVwbDNClUHMBnfmaSfXsPYpgqrlvj0KHD6KPjdH3iwwzfu59IzOLEiUss5sps29mP7zpoaLxx4iz33HUnzz71OFt37USUfbYP9SGLNbLFRfS2BEtz4zz+yMMcOXIYX9HxvXqfnufSvDezTloa/xdDaVqYHBCUUzZzNUNDOdyQJtNajN9IWA3uXxUbZzOEKH6teHqdxwT/iU1X/Z+HhyCKCGI9tY5Y3xB77VwJkEQJrunBvucjS9Iqo2wYrQ/b8tMwEqynGDe3uUYWCIQhN89Vo15zOp2w+W38XxTDlb8wvrZSbmXN1f8G5ce1MmRwzdXxabZD+MDqUPFG+w0FeW2dZhxWQ6O/ZmU07FDKRtlmxbXZ87aRzNHsWW6WOeuF/JaX0EgbfM3Zcd3gLYaUX9v7tT8enu8giN71ezcmO7eOzrxRGXw9aF6nwXM/gt9NqVRadeDpejpU8H6rKIZgnVZ0MYjvyjfy46y8+uHKa/D/3y8ErSthEEZ0NoabwbG11WYz4/9Bzou4fxviPUcgFmlJpMP2htwoNL7BVSE4m9hrENyj0ErRamX9bCh4YW0E/x+O91qL7fXfTfOzEdEKeqh/kO8wCA0G3LzH9Ub7a8Zzo++m+ZCtVm01z2GzQLE+o1+BZuJ6XSjzAUQ8UcARwRV9fD+FYlSQBI+HH3qUSqXMzh23cPS2WxByDlc++Ycc+fpzyPNZLsYNrI/cxbPnL5AZ6OXZp7+Hqoq8d+YiI1evMjp6FcuyaE+nMTSRQ4cOMTu/TCSZIJ9bZs++vRzYf5Av3P8gO3YOU61UeeGFF8lk2hEEkYnRq1QrFdozGWzLJpmOs3P7VsbHJ3jmmRfYt2cnsizw3ul36OjswVVMSoUFdu7awbvvnSSVilLIF3GrDoamMzM9xYNf/DIf+siHiCUiCJJId08PHZ2dqJpCqVymUqty/O2T9Pb2MjQwgOTVwKmwZes2zp87h66baJqFQN0bXV/GIoIgo0gK+DA7N0M0auPWqpimTjGfI7+0zNNPP8OBg4cQJJFSoYhhmBSKRTzP48rlK7z77nv09nXQ2ZWhUFgCwSW/XMIwIxhmlO89+T2Gh7cSjUUwLB1dt8jlSzz8xYfo6+vFNE0i8QTZ3ALbdmznzjtvR5VFJsdGSCVT2KaFU6uRyy2RjEU59tZJOroytLel8RwfWZJ58KGH2L2zrrQfe+NNMm0ZKtUSsqIzNjqO53oYuo5m6HXPjywQiUVBkPCAiG3i4aGoEpoisbCYRbcsfEGgVCwxvHWYTGcKXVPJ54o89eQzdPd0YNk28UScgd4uvvLVb3LuzDn6+3rRdQU7arFj1876aeqSQqVcuxaK6XL2zHv0dHexmF0k0WYhij6+7yCJAo888h2Gt/YjiA6qHMFxq7iOi1Or4boOL730IpamUK5UMMwIE5MzPPjgF9F1g7qXuxOoIQoyw8NbyeXzfOH+LyH7DqpkkExEmJmepFis0d7ewfjEKEePHmV8fIzOzvoe6qrj8fJLr7JlyzBdXT0MD29jaHCQvr5ekokEDz/8FRAkurt6ybR1oOsm99//Bdra2oglE7Rl0vgCtHd3U8gVyC7lUFSD2ZlZTpw4Tk9fJ22ZOLlClu7uDNroHNq9tzKtVunt7ePc2SvMLU4zPNRDMhnlT/7kP/I3n/5rbEunVKqSSnfTnklz5fJVVE0nFk+gaTpdHR1IokJ3Tz9ugL60pmUrvGQ94+164ZGbge+Hj4a104Dm03iD/TRoajB/eKu2NgOrlA5JWM1rrrHL4NacVbx0A3mrgWPQq9dKiQrz4gWV1/UE+2D5sHQvwd+ttrM1/dqA529+3tdbN76/WnEQxdXv9mZl2c2s1bD5DZuX4FapxrvdaP95K5yaI/VEUdyUPLmivDZwWLl3o8rrD9PDuqY3YfXWybCIBVVVb1qH2MxYNqKLYWV/rMOGG8rrZrT6m4EwS1wDWn0sYfd/UMSnGY/mj7bxPKxOq7aax7ZeWpl1cYpH61cTUd/oEJzgHAaVu+C46nXWMg6f1eFAzczjev0mArXeXLR6Z60so2HjvFFojHi9PT3Nz4NlguVazfPNfAvBMbfyZq5Xf7NCTjAlUSv8V1uG1+IK4ZbxIOG+Xl6QAB9FVlheWsQ2DZ57+AucePWbnH/7df7ZfT9Jx9BWRq7O8e8+/nH+t8dPklE0au87zFVL5u2L59g6PEwpX2BubhZNl+nq7mJocAvt7e3YkQgD/b0U8xUEwUM3TV5+5U0Wsot0dXYQiZjkc8tEInE6uzMomkY8FkdRVGRRoqeni+mZaVzHI5FIYZh1PH0Ptu3Yyez4FIop0tfXj+MqeDJUlqscO3aCW2+5naWlHIauMzc9zdzcDIoic/DIYUxDR9VkfDws2ya7uIDruaTSKSLRGAN9PUSjEeLxKF6tTG4pSySRppDPoaka0ViCbHYBwzAwLYuZmTl8zye7lCUajSArMoqqUC2VuTpylVyuQG93PQTaFwUUVUWWJAq5PHYkgisIdGQ6SCWSqJqNZdrYVpxoJMnZM++RzmTwEbFMi+WlZaZnJmjv7CSbXcavwZFbDiCKArpp4voe3b09yKLI/NwMEcvgxMmTtGcyTEzO4Hs+ufwSuiZz+Mjt6KaOIssoooxTc9ixfSee72LbFrFYgi8++GX27duLICtE7QgPP/wwO7fvxPM9orEYlWoZ3xP5/Oc+j6ZrdHd1UHMdEHwKuRzpTAeCIKAqGvNzsyRTKUrFPIauMzY+yfs/+CEkGWo1F0s3efPNN7jnfXdzy5HD1GpV7IjFmTNnSCdTTE1MMj01jWlYlCslbNtiaGiQ7/zTdzh69ChLyyVEQSGfK7G4sMwtR29FFD0Mw2BibIZ8IY+iKGiaiq5rRCI2mqpg2fU9vqZlo6kqe/fuZjG7wNWrV8m0pchm8zzx5JOIgsDdd7yP+blpJElG0wSqlQqirBKNRnjssW+haQoDAwPMz88TSyRYWq6vQVlWSSZSXLp4EUWTScaiCCKk0228/dbbxO0I//Td76JpOh/84AdYXl5CUVUcpwaCgCDKnDt3HlU1yHR0YlkGiUSM3r5hymWHoYFhRkdGsM+NUZ6eI/kL9zE3N8djjz3Ob//ObzI/P0VXTxc/8zM/z5ceeoAHvvhlJqYW+LM//VMGurqIRKJIikrEjvDay6/SPzBIMtXJH/3hf+T977sLT2y9R7KJEgG09O6tR4uaaVyQpgUheDLwRlErzX2uR7/XO3iv8TdYv6EYNnvbwqJsNjReCysKiSRJ+N5aGSE4ZlFavR82KBiHCejNBy4F56h5rMG+W8kHwTkK7p9s9iQ2K1zN9YO8KgjrCfvNKYbWPgv34IeNsXGIU6u6zXiuh8tm+23MQ0P2XE+eCvL3oHwYFrq+OfksOP9r38Oab+u6PNko419vZzNrqLnv71dfCW93bZmN1ker9XdDekDTu2imORvpSxvhdjOe1x/usbz/E37ksB7D+1FAkMgFFdofFoR59dYr+6OCzcxHsMxmlMwfFWxWCQ5CSy920+/N9u0jIkkKYs0lLilU5xY49c5z9PXt4L6P/Czfe/VV3nvzTdq+9HX+gS7cW/ezeHAHc7UqY6Nj3HvvvSwuLlIq5WlrT7Nn336isQS2rRGJRUi3ZTh37jyaadPR3YvrekQiFtVqmfnFHE8+8QRL2XlUtR4ut7y8zPT0NJVyBTwPB58du3dRdqq0d3Xg+yLT0zNMTo0DLi++9AZVp8ZSPo/vioxcucBidoF3T5/C810cp0rNcXjq6afYvmM7XT2dJGMxvvfUk0xNjiMJAiePv0UqHgPXpbCcI5vNcuniGTra07x35j1m5hfp6O2jUnHo7+9HUWRy+SziNaFjdmaeXK7A2OgVErEo1WoV3bDwfRFEia7uPmLxJJevjDIxMYFAff/9yXdOksm0MzU9g26YjIyO4ns++fwylWqRiclRJiYm64cg5ZZ56KEH6ezsoKMzQ2/vAIgiuqlhGiqiJNTT0EgSgihQylWYHJvk0vmL5AolegeHGBkb47FvfYdoIkX/4CCiJHDi5HEUWUEUJKYmJrl44QLpZIqFhQXy+TySJnP77XehyTqlfAnf9zl8+DCVSoV4PI7jOOiKhiwqHNh3gP6eHs6fu4jnwcz0HLpugQ+e4/HQAw+QTqUolfIszGWZmpxmamqCSqXEqdNnKBUrHH/rBEdvuY2IrbG8NM9LL75IPl9iaGgrjuNgmDqxuM1Sdo62dDunT71HtVJDECQ8DyKRGF/5ysNMTY+ze+92ZMmnVHC4fGEcXZMQfIGFuXmcWpWRq1dIJmLYsQS1mofnukxNjLFv/x58HPr6etg6vJ1KySESiXPl6lVUWeDq5QscOnSQPXt30zfQx94DB8nns8zPz/HhD/8E27fvplKpUCgUqbo+2aVltm8bplQq8Mabr+Hj0ZZOMTE2xuTkBJn2JN09GarVHB/9yQ+za/dOTp0+TXdPL3gwNjKGJquMXL7C4OAAHV0deL5LLBFB1SQUVWZ5eZlypYSuS3iVKnalxvT0JIlEgj/+4z+imC9QLJbp79vCsROn+OiHP8Zf/dU/MDE7zZ/8yb/ng/d8kMcffxJJUalUavyn//DHTM7M46Nw5JbbmR6fuCE61RDawmj2ZvnaejwwSDdvlpbeLDQrz0GFvhF22JyGrJWA3Yx3s1etkeJmIwjjd76/+jDDxv2wumGHDQYV0rD5X++dBMfa7E0OvqNmD2KY0vDfUt5oVjhudh01z2nzvbBxuK57/ZnjOC0NJ0EcG22uh0NYCrwfJYTNy48aPM/bVKjvjcJmZPdWRpQfFPx353ndDLQi8OuFRq7UqV/rWbDC6t4oLqzZvxBOeOtV/aYr6H1s9LPyt3E1LEzBxOBr8Q4j0qvtGs7nv4l3/Czs27bG2tI8R5s5uazZYraWmfgr+F/bj3DdA3utjuvU98TW89LV99SshB9I4UyH+n7S69Y7Vs96KFNqWJkk6fqpjoIg4IZYEMOYVvPv63c3oTS3soIG16Mg1vPDCtcmLFgvVJhowju4+poPxmj0uVnCs97Yg+Pb2LK7eo3TAjcACb9ugRPAv7ZeqlI9N6VTq4DvEZVNFGeZX/uFj/DOqTewbJ3b7vtFenu2c/XqBE/86z/g40+cRl5YpHjXYaSOdgRN4r3Tpzmwdy+njh9neGiIRCbJ0tIitaqLbcWoljzmJsdJx9LMLmaJRHVM0yAajeC6ZbZvG0bEYf/BW4gl28h0ZJBVjYgVZ25ukeHtw8TTCahVEGQFz/cxdZHv/NNTHDh0G5muJLppsO/gTkzdYmx0klIlz5aBAUQf7r3rNsYnRunuH6BYXmbvgX2UK2XwBQRZpliq0tu/Bd+DuB1lZmYG33PJtKU4fept9h2+DSSX9kw3mqKznFtiYW4BO2JhWgqSoOLhMDF9hYHBQRYWZukZ3FkXGlwHRVNw8FlazGLbNrValUx7G3rEZmx0FlGgflCOpDE5MUVbMk12cYnvPP4E73vf7eTy84iSSyxhEY21szC/yO5du7BjNrKsoJkqtZqHqumIMuSXC3iig6waSDgosoEgigwNb8HzREw9Sqanj30HDyCrCqJUTz2TyaSQBA/fdTj5zikOHDzEiRMn2b59G1OTE3zlq19jamaKfQcPIikg+R6lSoWuvn5cp8bMzBSWEePdd05y4MBeVF1Btw1EUSMeSyNrIhcvXiSdzJCMp7EsiwuXztPd24tlR+jp6UNRZFynzGtvHOfo7UdQFBFHFDBNk/6ePuxIlEK5hCQIOE4Ny7RwPJe33jyObdvYtsXV0RGq1Srlco6DB/eTSiXr71tWMS2zvtZtm2QizuTEFBErysLcHIVClkg8w2c/8xneevMVbrvtIJadQBRUFFmjVnH45mNfZ+/enRw9eoRUOk2mK8Pk1ByS4COJCuMTM3R1Jrl46RL9/YO8/ubrJFJxXnruJXbs2I1TczBViUxXmq6uLrq7uiiUijiSSHtnF7IkMzAwwHIhR0e6g3I5z/j4KC+//Bqp9nZSKZtSKc+x4yfZsW0X4+PjJJNxJqen6ekf5L1TpxkaGmB+fg47GkM/N4YXt+j9V7/IUraM68Jv/eYn2bp9F9/+5td4+Ymv8dOf+ATxeITLl8Z4/4d/mqVClumREYa6enjt9WP8q9/6JJLg8tabL/PZz/09R+96H0J+DmQFSTUQfX/VoaMrdGl1GrcGBPfzrX+66Wo6GUYLg97D67nAm+sHcAviGka/w7ySm8Wr+V5z9IvfjFujb8EDwcf1nHoeXbeuvKxSYATwfK+eZkeo55qtoywgivVcmz5rD+gLCuRB/h1mpF7jiUVCEmU816/TzGuPmrf3NBTusDlpeKODIdiNeWkoV76/ctXzrjbmrY5Fvc36tNXxXbu1qfn+inzX+t2F3au3ER7BF1Sum+WttW21ToHTjHNjjppls80oUc1rNzjnrYz2QY/96nXprex/FXwauWGvCQ3XvKyrL0Fs3ucrEObna8ZNEAQEpGt5ZlfaCcpvwa42q1JuNG/N30PwZOjm7+JmldhglEUztJIRm9ONtYLGGvsfas9rM2zWJX/zL/D7U15/sNBKeb1xHNar02yx8X0f979+Cf/qZGie16DStxmFJ2zPTSucgh+N77fGvaXS1jSuVrBmHKzed9lcLqiUrod3q76+37URHGsYLjeK1/dTNqxe0Dp+o20Hw4PXrAVhRcBs8ATFqSBUK8iex+Wz53jwwYd44akn+LXf/E2O3vMR2nq2cvnke6T+4G9I3P8t3qfGcY/uZawtymK+QCKZ4KWXX6RcKJBOpYjEokzOTpPPOczPZenp6WNhfonH/ulb3H3PHbz73lnS7RkMQ2Vubg7bsimXy6iqimnoTIxPcvHiRTJtKR566IscP36CyclJtm3dioDH3Pw0qqYTsSPMzczx+rG32LVzF6omkF1YpFb1WcoWGRudoK93gNxynqpbRRR9YvEIrlujWquhazqRSAzfc5mZnKCjox1JFCkVcqSTCRLpNJqhM7+4QN/AADXHw3EqjI9NYtsRPN/BMm2WczmWc1misSQL84v09/dSKXvUag7FQpFXXnoBVREplYtUy2V6e/qoVitUq1UikQi+71MuVmnvaENTFV544UUOHDjA008/zaFDBzlw4ABTk5NIkkx7pp1qxeWNN98mlUoSj1nMToxTLuZRZJXl7DK1ShVJkigXy0RiFtWKR6VcQtMMTp06jmUbqKrC8nIOQ1M5d+Y9Uok4pUKBkStjWLqBLIqMjVxl774DzM3Ns7iYpa+/l+npKT74oQ/Q1dlNsVhEEETKhTypdBuqqjI2eoW3jx1jaEsPui5SLC3j+BVsI8rZ985hGRaaKqPpOpVSBXyfBx56gI/85EeQRYVjx95CVVWikSiWpdHTM0ClWsa2DARRopArMD83TzKVxPdBEnxAZHk5TzLZRntHO5VqkUQySmdnJ729vWiahmmY1GoOhmmyPD+PYahEbIvzF89jRmyqjkM8kaCzu4NCsYBl2ezevYfde/agazon3jlFb083x469RalY5O577rp++MzC4iKxWAxJUlhYmOf1118jnclgaBKmaVGrVtmxfStXLl+iVCrT2dXJCy88SzqdQlEV8EWmpqdJp5JYdpSx0VGidgRVVbEtm2KhQDQWoT3Twc6duzAtk0Qshqpp9PYNUCrWPbq+D7ZtI4kS0YjN6VOniCfiuK6DcW6MsqkzdmQrpmHx1rG3+MZXH+Y3fuu32L9/H32Dg2Tau5iYnEY1TP797/9//P3f/jn3ffA+ksk0hVKZmltDQKcjk+EnPnwfhm3zlX98iHve/yFchLoxLJRetQ7HbXgUg8rPzfDgMH60pkyLdjairTf6PExgDfLFtW3U/zbmZb29oSs8rClnbfOhPIFyNypvNPOjlUEIq3LLer67mp+uM0eNcsFzPsI8xEEFLKhYfL88ejN1g2upeRzNZTazjsLe+0br42bGs5n3sN5chinn155sou/N43d9jBsEsoqiuOYb/kFpB8E1+INeUzcDm5VxBeHH/bThG1BeW30w/1N53TxudQvhCvHxHn0WqOd5BdYQ+WZP6mYIViPEIhi+EvYBNluKfb9hJQ1ve72wlI1wC1PCwwhB/WMLz30WLNcKj0YbrRhvqzUdVq7Zk7pev5vBK9jnRnutNuqjmalsxPBa4RTmkV6pe03Q8eu2UREYPfcuTz/xBK8+/yLt6Qy/83u/y9333MuBbXtxnzqO8rt/Qdc/PoGoKEgHd1I6soOSplOrVrl86RIdnR0MDQ4x0N+PoiiYUYtkW5o3Xz9Gb18nnV3tGKaOKApYtkZ3bz+TU9O0pZMkk0mmZ6aZnpmhq7OLyYlJdN1kcKAfWZYoFop84IP3oSgKHe0ZSsUCPT3dDQJOIV/iwJFDdWXSKaHKCvF4jEI+x/ETb3Pk8EEiERNZU0AQWF5aRFVEND2Kpul4nsfM9BSxiIltmciKSqVcwnFqnLt4kUQySSQaI58vUq1UURWJdCpTT3UieJQKJTo6OlFVBc+FaCzOzPQUIKNrJtGIgSyBosr0dHURi8avCesiMzOzSJKIU62SSKbJ5bI4rsPg4ACu5/Dsc89w6OBBZEVifGKCiB1F0w1cz2fb9h2oqszJ42+RiEZIxWOUqg7VioNlWExPTZJdXCASjaDKBuVigVK5yOBQP6qqIEkSlm0jiiKlUolkMonveXz7se+iKAqdnR1MTU1QLFUoFEsgiCSTCdLpFFzbE2xbEd45eZrOrnYs2wbfJ5NOkorHQRRRZQXbjiCIMoIv4bt1wdU0DPKFIvF4DEWR6ezsRNU0ioUS5XKZtrY0sixx9cp5IpEkpUqRRDTGa6++QX//ANVaDU3TmJ+fIxq95nXWDJ55+jk8HHp7uykU80Sj0Xp+13KNXK7A5OQ0pmkzOzVBLBrD9T3iyTiqqhOLRZFkEc/3MEwLp1bG90CSZMrlCp1dnUiSTDwW49ibx1A0iXg8gSTJqIrG1StXcRyP2ZkZ7rrrTkRJZmzkCvFYnHQ6yeVLF4lFIuw/eIhz585w9/vuwrQtnvju4xhmPZT+8sULWJEEiXicxYU5KuUqueU88ViMxYUsmlZPqbSYXWJ+YQ7Ph1QqjaJoVKpVdN1CVVWmJidQZJlEIkG1WiNiR5BOX0LOpNB+6aeZmZ5icmyUn/+ZT3Dx8iUmZmbYd/goD3z+ft7/gQ/w13/7aX7xl36J//eTv45hWLzy2jEy7Rk8z+Fff/Lf8qEP3INtWRimxW233AKCgijI+EI9PVOQXtU9aGsF1YbS2px3dL3TVDeigT9M5fVG0seEtdfMj1sqo9eUTkmSrnsow8o3Gyh/EMprK5yC4/H9lTQ49WutpyqsbnMfQfklqAw23n+rA7JWxhSeCmY9OeBG5LrWymvrcOeN2loPF0EQqNVqa9rdyOPfqfIo+QAAIABJREFUXOZmldfge2o+WfdarZCG6lEC108q3qTS1eij/nszymtABtqwl83Bfyvl9Ubb2IwB438I5XU9IrGZl3VziivXiVqwnfXaW/shbb7fMCG/FWFppRhspo+NlMvmPhrKq/C/3rOq/+b/r2E6m8AhCGFjXLv4W895WLhQo0arcKkwxhBMxRKGuyAIoZgEle7gs40U0mC55t+rribcmpVYaH0E/XrvvJUhoQGbMUoE8Q4TLFpBmHGp8Tt4KEejTLlaxtANVEnmsa8/girKpFNRtu/YRa1YY7+j86sjFQ68eh75s49SPf4e0pY+qnceYEQXsXs6OXvuHK7r8/prr+F7Lu0d7YiqwvjYeD38sVjAMAyKxSXSbXE0VWZ+fg7Rg/auDLKiMTU+RaYzTblSIZ5I0tHRhSjJfO0bj7J9xy5OnDxFKpkglUjw5Yf/kUNHjhC1LZxymZn5RZxymQe+cD+HjxzGcz1UWQWhRj5fQFUhErVIp+LE4xbj41fxfa5519Koqk6hWEWRZVzXxTR1fLdGNptFUnVESUE3dNJtGRbms5iGxfJyHlkUkSSoVBwUXUeS67bjhYUcY+OjxOMJvvilL3HXXbejyDq6ruM5NdKZDKZtomkmsiBTrlRYXl6it7cPURSJmAZf/eojvHfmNEdvvQVZkqlUyvT29jIzM00kYpFKJ7AjMTwPFEXiueefo1Iuk13Kkk63U6m5RGIxzp+/RE9vL6ZtIYkCiipTKtZYnJ9H0TSmp6dIp9Moskp2cZlioR427XugGyaSKHLg0MG6sppuw47YpFIpTp16l8XFebp7uvn2o9+mvT2DrEikkmkuXrqA53nouo5fqyDg8NnP/SOGanP8xLscP/4ee/buQlJkIhGbpeUcIKBrKrnlLJVqlZHRMQxVZXCgD8vScZ0yrlvFdUXKxQJzMzMMDmxFkmRmF+fRNI1KqcTycrauoFbKaLqKbph0dnUSjUcpFsqIkkylUiIWi2IaJs888wy33HYL84tZLCuCrOj89V/9JT293UQiNpVyFfz6iciFQgnLtphfXKCtLc3lyxd589ib7N27l2gsguO415XX8fEJZheyvHPqOFu3bUXRVPBlDMtA01RUVUUUJDTLxDI0FFXGEwQ60p0k2tqouQ7tbSmee/4lSsUlMm0JbMuiei39jaYZfPvb32b79m3EolGi8QS2HcXzPOYXZjn5zimSyTS2qZNI2BQKeQRRRFM1Ll26TNvEIlO1Cl8RShzcvZtjr79EpmcQSXC447ajjE9PMzMzz5tvvYWh6dz3gQ8wM3mZ//IXf8fP/eK/4B8++w9sHeph67Zhhvq7uf/zn+fobXdS8xy++o/f4PDBw/hyq4iROi1q7OELo5nr8eqNZIdgvev0Mez5JutvxqMYhtdGkS+r2l9zcEtQWVzZ1tNsGF6lCPlrZZpmgX9NtJGwOtVbkL8HZYLG77rhObhnee0WHeB6Spxmnrq+IB6igIe8k1ZzH8b/wsqtV6Z5nhq/62Var8tWeIbx/WaevMa5wErKnMb30Zi7VvJX8P7KO1prSAh7p42ywX6a3+HKGFooryGw3rtaY1T3W39f18sHHv2glNcw/NZ7/oNuMww2S3PgxzxVjuvVfn8zVptmuJmX9MNr9+ZxWX8hrpRpvUBWM6Cb2azfUF7Fn7p3Q7w2u9BbEcVgW6vw8LwNwzNCcWI1A22kCwharIKnGm5ICMLuCSvhRGF7cDfT7uYGJVy3Km7GY7wRbLZe2PMGs7mRk5mb12TzvfUYabCMYRqUKxUee+SbfOjueyktLmE88yby7/013V9/Hu/VE2CbOEO9yHcfpTLYhdrZxoWxUZ579lmGBgdIpJJcunSVdCrJbbce5crVK0TaUly6cJFUIkEuu1RXUrIFMm3tyLKJ60jYuoxhaZTLDoZmsJxfQlEVpqdnyOcLCILE7v0Hsawovb395PN5snNzDAxvIdPZgeC5PPiF+7nr3g9haQp79+6i6tR4/DuPs3v3HnyhiqrreFUfSdJ5/rmX2bJlG4qiYhoKhh1ndm6JatXB9+FrX/sa+/btRZZEZFmk5nmouoWiaDiuy8LsHKZhspxd5u23TmDqGjW3im5GuHjxIl09HfiOy/z8Mtt3bGNhYZG9e/YgyT6TE9PEYjGqVQdPhHLNQRQk5mcW0U2V2dk5otF6Gq0LZ8/S093HLUcP4eHj1GqUyyXa2tLE4/H6OhNdpiZnEAQRWZXp6+3FdV1UzcATFZ743rNs27GV8xcu09nVRblawtI1ZudmMc0Yb7z+Ou0dnXR3173W2WyeF194iTMXLvLW8RPEEkkuXLpMZ1ca3TT44pe+xOCWbfhejUqlyrZt2+np7WY5t8SBfYdZXJyjWi0zMjLC/v37sW2b5aUstqFSK5fZd+gI1UqZ5eUljt52G9FEFB8YnxjHsqPEolHK5RK55Sy9fQPk8gU6O9oYGx9lZnYSy9bRNZVstsi27VsRgO899SzPv/AiH/zwh/Ach6htoxsahqFz4eJZeno7iUTTTExOIggCZ8+dx7ajpFMRLl68gOM4zM7OYcajXBkdo7Ojm8nxaT7w/rtRZBHPcahVHHTVxPMccvkidsTG8aooikIm087iwiKFfIGenh6WskucOnWarq5uurq6AZFKuURvXw8zc7O8c+osO3btxHVrlIplTNNG1hRMvR4FsLicw1JNHv7a1+js7mR5YZ7de/bS1dWGrsuYhokiq5RKJZayOfbt28f09CSaqmPaNoVSmXffOUVnb4b+3j6eePxJXn75efbv341t21imxdlz59i//wDCO+e4ml9mz3/4FJ2pKJ/6N5/k8vQS/8cv/ywXz58l3ZZmabmMqukcPnSIM++epq8zxbMvvs5HPvZx/vzP/4zDB3Yiyg6aIrD/wBGee+4VhrYO0pnu5PHHv4sa1UjEE2GUCwiP8rkZRWCzcCPK63o8tRX/b0XX1zPiBmH1uQRrnze2I8myvKaf+n/WCrs+q8OugxFBQS9ws0LbXG/tPtkAr2oRJi5JEo7jXMd5vbltzIEoik17Xjf2JG4mRWMrCNZpRAA0nq1+/oOQQ1crhGFKaVjqozBFNOx+WBaKMDmw+Vnz+15Pma//DpFRBBdWnS3T2kjR+h2tr7w2FQnU+MHDeuvoZuTDm5VVN6rXeCc/1qlyfN/9/TAB9mZewOoXd+MhkcH2wmCtxTZYthUrCo5rfQtKczf1cbXGt5UVtdEvrG5vFbaPPgu+j/TPPtCSELciGuEHM62dv2ZCFnb8faOOKAr1DfhinbF5vns9zDmIy0ro0TV8r/0O23+zhkEKQn3Mogi+v+ZNeJ6H2LQOmxln8/ib5+VmiEYrJQ9hxYrcjHfz6Yph7TVD2KFTzW0Fy64XkrKe4toqx21w7hpQrVavt9n8XBIcBMC2LDzHQ3cr/KdPfYpf/ZX/i/KXv0Psd/+C0huncYf78e4+TGVHP/rWPtyIgSTLnHrnFJ1dXVy6dIH33XEnIyMjdPV009XbRywS4cTxtzl6+60UcgUunD3Dtq3DZDq6KJQd2tNJBF/C82osLExx6eoU/YM9SIrK3OIivu+Qjse4fOY03d29vHvuEn1dnXzm03/D/r07cWtlZudz7Nw5jOCXURWNwaHt6LqGK7loegT8Gtt37gKhhqnrTIxNYccTLGQX2XdgP7Nzc8iyQs11wSmjyQKxWD2F1eBgP4auIcsiVc8nlyugShIvPPcsW/oHcX0HUzcwTYNLFy9w9M470A0bXdNIp1MsLS6jmxZLuSyLi4sApFIpdN1gbGwEQRCw7Rjzs3MsLSySiMXIF3NUyhX8KuimTdVzSWXamJ3PoqoWueVFRElBEGR03aRUqnHixCkilk46083M7DxOrYwgKcSSEUwzSjqdYe/e7cxOzdHVmanncJ0Yo62jA103UBSR4W3bmV+YZWJiklq1Bgjs3buXdMwmlUoyOTFOOpFgoK+PcrHM2MgoXe1diMDU5BSOW8OwLDTdYCmXJRaLcfXKGIV8jc7ODIX8ErFEBGSTqqfguQ7ffOwRfv6f/wJL2WXmZurpbPp7B/nqV77Brt07kBWZSCSG5wg889TzdHd3kWpLomoJdCtCcXmajs4ORFlB1w16hgY5eOQQlVIJWRRQNQ1RELh0ZZS+/iE0VeWLD32FO26/FcHziNkRlucXGZ+ZZcuWrZw/d56777mbybFxJkYmefHFF9mzdwdmVEeWZGamZ4kl4pSdMi+88Dp9/Z1omowmS8iyyuzMNAOD/fT29bC0MEM8HqG9sx3PqVIpFYlFbYaGhsjlC7zx2jHSbe1EogZXLo0zPj7D8ZPH2LlrN6OjE9hWlNzSMsg658+eYc+ubcSiEURVRlFcJseuUCrU0I0kqqHwjUe+wcjICHfeeReKrjA9Oc2Fc+fYvWcnr7z8Fh0dXWzdNsz2HXuYmc1x/NjbtHW0sbA4z+LcAsn5HLVDO1ne2UEsGsUXDX7+4x/DSsd46rlnOLJ/L9999GE+8bM/y7/8v3+DQ7ccwZUi/Pr/81uYlsh9997Bdx79Fv/8l38VX7V4+JFv8pEP/QQTk+fpHehkaEsvl86cpWd4C1yjPZ7vIwpiSx65rpEzoEx41zyVoYcwhfDW6/QTVl3QOkzW9/1VezqDdHaljgf41HN++tRDSVcOTqxfwSgij2ZhXxDqvLie1q4egovX4J1c46MSvi9ea4tr8xgMCRav87XraoQgIjT/E8PneVVoLhL1YVyTa1h7iE1dh/Gv/w0e1BSmHDd+h22RajZWN2+Jaub9197Ymqu5XJi8tLmop0Z/DTlvrTex/nxl3lmzotZeohhcW6sPIgvb093g3et5woPlm6Ext80nUgcN9M3vOyh7hHn1r8soTeHB16/rm44a11poJYutFGi01fxeA9FsgWujeVgPwjybYTJomFweJov5Qv3wNEEUriMoNNW5GVgdidEkW16fhDqBkX6cPa83ctpwK1hPcfp+22sFzR/5Jlq8ob7DiUbrdsMIzGah4XkNHti0kTLWrLxt1F8j9Kf5b9CCFwyNbYzD91oz8Y2g1TtqdXLxqnoNYaTpYKIgQWl1fzOwhuE2KcTBl91MaILzfSPW9vVwuVHlu/GOmhXqzdQ3TRPHcdaEadXE+mmwxblZnn7kaxCLskdPYvzSpxDfvUT11r1odx9CbEviIPDkE0+zZWgAp+YwMz2LZdvMzMxQqZS5cOEC0XicublZopEIZ8+cxbIjmJZJuVJkx47tFPJ5lnM5dEPnmWeeJp9fRlFl4ok4Fy5dYduOLciSxtzcHD19AxQKJSRFJ19yOH9phOXFGfbv24tpmni+h2WrTE1OE0+04XlVJqYu097eiSiALCkU8jlkSaRQyFMuV/F8gXi8jcnJKTRVJRq1MCwVUVIoleoh0wvz88iqRiwWxXWq1KpVVCWC43hEIwnePX0Wy4zS1pGgUCwgyzLd3V1ouo4ky1RrNUqlEpquc/bMWYYGh9B1Hdu260YEERzHJRqNo6j13KGVaplarYphGNixGIlEkkq5hCIJaKaGbdk4TgXPd2jLtAM+ExOT2LaNqiooss47J0+zbdtWLMtAkRWyi3PomsVDDzzI9u1bmJmepVqt4Loe/X39yLJCsVior4OagyaBoeuMjo0zOjFOPN2GpSo4Xo3du3eiiFAu+1iWhee5DAz0oGoabW0ZXNdlamqKifFx2tMZSsUciXgEEZdnnn2B5dwynV3dXL06zveefo7bbzlAd3c7qiJjGgbxVDvt7R288dqr3Hv3nWQX8yiyQrlcwMdj7/49vPjiiwwMDPDpv/8c8bhNMhUnXyghIFIslqkUyywtLvL1r36FW44c5uKFC8zOzDO0ZSuqojE5MYmtCSxl5+jp7WZ8YppnX3iRu++9i2KhQLlUIp1O09bVQXtHF++74w4USWRhYQ5N04jF4lSqVTzPo62tE1EUmZyYRJFVdEND0zR0Tcd1XRRJQ9dNREVgfn6KanUZUDFMg9HRMW67/TY6Ozp57vmniUVj7N2zm917dlAslTl58gSmadCWTvP4d7/Fz/3cL6DrGlU3i6nKzM8uEYm0I6saVa8AvkRXVxfDw0NIksjSUoGZmTkGB4ewLYtdO7YxNTGGris898wz7Nuzh2jMJFcokEikyC0V6Kh6PNdpktg5zNToFI9+41H+l5/6GY6fOMUdt97Blx96gF/7zd+lVIVP//1nuOe2I9xzz+08+ND9DAxuYWpiHq8msm3nNiq1Gt1d3VSrNXbsHMayIhimxetvvMmuvXuuC5qe7+F6HuIGp62GwRpBkbWCfFBQXM+I29xuKzxa8ZsGP1ppf7WSFm6kDNL+EAUkyGN81vCgxnBbt7Mxj/L88EOSVst3wTGsxbfZmxpmzG6l9DfKBZXY5vluFS680btqbjts7JsxkDQgLMJrrddt4zUc7DJMDmi1xlrh3KyorwfB3PDNuYbDPLTNbYcpmt+P3H8zdW80SnCz8lFYztwwefVG1gtCiLNoE+1sFla1EWjux1p5db3a78NaS9RmIMwacSPQKrRxc9awzROJYJkg4dyIkLXGI9w604CgdSSsHe/4WYR4BOGewy373IxFbVWbgUMcggyguW7z/ocgrvUrPGSkGYdgG6Kw2pragLBDGILhxM3thinoQcIeRkjD5ifYditGETbvmyF8zQy3ue31DmYKhug07rXqKyh0Nc9d2Dw05ruZGTXvJ2sWBmQB/GqVP//P/5kPv//9JN+4SOxTf4N7+378Ow4yX62gqhK1ao133jnNrUdvQxJ9ZKkupERjCZ586iluvfUWItEofX19ZNJpTp8+xb59B8gVCtgRG9PSUWSFqB1jOZdDVmUSsTidXR2k29Lk8nn27T9AqVygVvXQVA3RLTFy5RKxSISOTAanUkZRRHbu3EGpVCSdaUOQBCanpllcXALBIxKxUSSFyYkJLp2/jOPXEKGuKGoGpmnhI3D/5z/Hvv37mJudAcFHlFUM06JcLKIoEnYkieOUmRgfJZlMIYsaoyMjTE/PcOrddzl85AiIDrYdoVZzqVaqiNfC4arVKo7r4rkuTs0lkUgiyTL4dQ+47/vEYlFUVUcQBGRZIhqN4roO8XgMx/GYmJwknUowNzOJHUsAAoahE41FqVZrXLl8iYGBASqVCoZhYBgWX/3qVziwfx+6qSP4Pq5bpVSsks/l6evrxvM8BgcGEUWxnmN2fIJSqYBlWUxMTNKWTJFdWuK111/nJz/2MTRdY3JinPaOdjzPIxWPMzE1TyRi0tPbhSgJ+NQP1BkZHSXTlsGpOcRicR555GscPLAfyzLZun2QtkwKTVe5fOUyU1Oj7Nm1i3giRr5QwHFcBFGmUq4w0N9HJGLx5rG36e7qYHpmkkg0ilNzSCTijI+P097ezZYtfdixBIZhIQgiC/NZCktLKIpCJGIhCAI9Pd20t3fw2c99nt6+vvr+4lQMz3dRVJW2TCd79uxDlH2yi4sMDw/j1Gq4+OiaTqlQZHJyHNPUqToOsqywmM2STiQRZIdKpUCmPYUkeZQrNUqlIqZlMjU1STSm4QsuiqYTsZNUyz6Kqlw/CVlRFKq1Gjt2bKEt3U6xUGBubgrNMFjKZtm+Yzue55JIxJEkCU2XkRQPWZAoFB1cX8awdQTRIbdcoqOzHcsyePutY1SrLsffPs7OnTuRZZErVy4ztGWQudlZhoe3EYlE+dKXHmDvvgNcuTKCJIqkswXy+7dwuVogHksx0D/M1MICsWiCwb5uXnn+CS6PTqBoOqdPn+ZXfvkXuXrlPINDW1hcyvHc8y/xl3/5t6QzCfbt3svc/AJXR0cplgooqo4oyuzbf5AH7/88Bw4cwKk5iLJUV9Ba7G0L8zK05KchtFoU1ipIYTxwo32Xwf5byS8rOK/dU9pMv+t1gsbPtXyjoZBfF6hDPJasCdkMKn7iWrkgsJdVlIK4rfWWNpTtlV7qPCx4cFLz72AmgjClrzE3YWnbmu+F8eIgz12FX1P55rDf5j5uVG5tJQutHleIEWVNP6ufBeuEyShhIbyNuWslpzWXaTWWZsU1HNeN4UbqhK+t1mXXKn8bR6MF+9osXtdPyV5HNl7/va5uz/PXRuwJm9Bbgk6mIA5huDSnnoQfc+XV8+qe1x/2Yl0Pvj/v1c2XCfPq3RiEM9vQki3KiPceQbz3yKbKhx2cEAbNY1rPa9qswLRq0/P8VQwmSBQa/QXvhxGkMKvW9XpBghB8vg4Ew7bXqxdUgjciPKuEhnXaC4YkBYWUMHzD2t2Mxz3I3Jpx2WhfS9haUBSFR+9/gPxygfs++jH0F0+h/ukXyH3wVqTeTgRBwDR18vk8hm6ysLBIV1cX5UKB48eP88orr3Lg0CH6BwYo5XNkOjsQBZHJ8XF8t0qms5dypYaiyJiWSbXkcu7MRV586WX27d9PIhlHUev5CsvlCrppoukaniPwmU//HUPbBkik05RqLuVqjedffAFDkegfHMDx6ieXjl6do6evm7ZMHFHUaW8bQBIdZEFgYnya9s523GoZx4G33j7J1u3b8HHYt28PiqygaTqpZBuIEoIko6kKi7MzuKjUakUsW0dVdS6cP0NXVzvxZIyt24cxbQNVM/A9AQGJbHYZWZGQFaW+J7VUIp5IYNsRlpdz5PJ5dF3n9Ol36ezsYGm5vrdWEgUuXrxQzzFaLiOKAlNj0/Ux+g66oTI5tYBpGmiahut4yJJIOp0GAc6cOUtPTzeqJnLb0VuoVit4CGiKwvT0BKlkG9u2bUcQPCLRCJIsMzIySiwWZ3RsDMMwUDWFvv4+xifmiCeTbBkawjJUFhdmeOWN4+zZvx/XcdA0ja9//esMDg6QzS5imgaypuE4DoosMzM9zUBfP5KusP/AfoqlMpWqi6qqRCIxQKanp5ctW4ZZyucwbQtVN/F8gSsXLvHCC8+xZXgLgiRRKizR2ZnBNE3mF5ZQNJNkOoFp2EyMToJfJZbuQATOnTnLN775GKoiIQiwZeswma52REkkn19maHiYxcUFtmzpR7VtjEgEVdWYnppF1w08XDRVRZYlFEVGvBatdv7CeSRVoj2dRtV1NENHU1Ref/U12jvbMYwIZ947S093F7phIEkSc3Oz6LpGLNJBseggKjICLuVyAduyiSfiGIZR/7YsE8+rMjs7h65rlMsFUm0Zenq6cR2HxcVFOjIdiGIVQfLwMVEUA0FS0E2darlMMZvHisRwXQd8l3Q6SWdnN4ZhEI1FkGR4863jbBkeplQuk0i1IUgymXQbiWQbyWSSudkpegs12j9wB/E7D/Prv/FJHn/qe/yb3/ttTMtGl1w8Z57dO4cZHR/jpz7+Cb7wxYd48ltP8L//yv+JKwh86lOfYt/+vXz4Jz5M1I7w7pkz/MEf/hG//Tu/w6f+7b/jg/d9mGrNRcVl5PJV+ocG8a6RJEkIz1e5mb1669HP9ZTh5ueb4a03Jie09mSt8Ny1Cs0aoVQICOC+v9bIKayEmtZ57ApfEgQB/I33PzZOg23uf828IwbaWYmQWju2tdA4ITn4PGjEXs873kpWFJrmKXgF27mx80luTs7daB02oNkwENbGemNvGKLXi2ZrhAi3kjeald/g/VaK8EaG/43gRsveiPIaFup8MzL+jSq8wfm/HuIuhkQYbGJNNdrbSO5v/pa9wDf7Y628Nva8rljx6nsrfN9jZa42JuhrF68QuFrXC9ZZuS803RNDkvOGtRvsVyAY2tKwitaJHdfGufrDbbWfdC3+4e02j2/1/LYOWwnOY5hlJThnYR7FsPZb5X9tZclsgMhqi14j9Hg9hu/XO1nZ/XFtksMI8fV7AS+rEEJoG+1w7SNtTLR3jThJG4QjXf+4m8o1rwz/WptBYul53go+DRxavMcVQuI3FW3sY1r7btYTpMIg7H2HrZNmZiT64IkCriTg1RxsSaXsuJgCfP6//hee+trD/Oy/+Jf09A6h/tPLyH/2eaofuZeXT59keWEWAYjGorzxxjvkl4qcOnESp5xnMZ8DX2Swd4h8MYco+hhaPdXN7Nwckqrw5LOvcmDfHuamxlFkhYmJy6Tb20m11RWOqKUzMzXD3OwMiwtZOju6cMo5Ri6dQxRq3HPv+zGiGSJWBFtTsK0IkUgcSfKwTIPlpSzpVIJvP/4dDh48TLFYRqBCtbwIgkAuV8VxBYaGOrBjUaqlErZtYNoWolfD0HQmRseRRZlCroQgCkjXEqLrtoFhKbjVMoZugqQSsaPML8yTSCcQJQFJFsFzUCQBSRTILWWRFR1ZlpEVGVVXUTSZ2ZkF2jvaEQSQJJGugV5GRuqH6timSk2EVFs7585dJpNpZ25ulkg0jetWqFYrRKMJYgmLasnh249+m0opRzyRQpJkQCAai6KqKtn5Rf7u7z/NrbffxuTEBMl0FFWxcWoen/3M3zI8PMD5s5dJp9rAF1hcWGKgv5/5+XkGBgdw/BqWleKB+z/DrbfsQ9UVXCS2b92CbmhIqoLj++zbs514MknVqSt8n/u7v2X3rt3IikIhV0ARJXxJpFoqIgoQSyUYGx1DknUEScZzqmiKiGVGcWr1/YNOrcrczDSHjxxiZGSEzu4+xkYnyGQydaWuWE9LMzt5tZ4mRxVJt2fQNJNqaZHU/8/eewZJll13fr/nbb50lVlZtsu0qfZmugeYGUBwhCXABbFLJ+6Sy12KCpIRqyVFShRXS664YkhiSLFB0YLEAgMQ3mNADAZ2LIDBcHx739VdXd6mz3xOH7KyKvNVZlUNBohQgLwdGV2Z75pz73vvnPM/59xzkwb9vb0MjY6xd99eFFVmcWEe09Apl6skUimcuIOmKoS+QDOJza1bN8jlMsiKgiDAwvxso02lhucHXL9+g6NHDzc8tbLC8uIKpqXTk00jCjrXrl4jk+lhdmaBWMxhbSVPLteHJMgUiyucP/syfb29VCo11tZK6JaNbsnML6yZdZQfAAAgAElEQVRSLJWxdJPbN6e4efUavf051spl/HIBzVBRNYNvfO1xcoMDmHYCzwsQBaiWygSeh6Hr5At5sn19uNU1VpYXqVc9KuUq+WIeVQUBl9XlZQ4d2s/iwjzXr17n7Esv0tubJhaLYds2S0srPPW9ZzhZh7v/8BJPxU3+5P/6v0mnEnzkL/6MMycO4mQyxEYPE3fSjI4doC83yNGjJ3nDW9/InclbDGZyqIbKr/7Gf49ad3noy59C0yV+67d+G9OJMTA4QG+uFwQBT0nw4rlzjI0OYpsWITLQSO7S3CO6KZs397q15mBoVdo6eY42ZNY2ACAqL7pFr3RSzqOJpcLQRxSFjb2pgiDRSGLT0F9EUaIJTpslICAk3NgP16rUbtIvN57VEAgbR3811kHc+KwT0KAXthwdQrjugW6df6sCJAiI6+M3/4ktGZ835r++/1CUhAZeDsUGDwoFREEiCEJkqZHLQlqnRVj3IHXTTVrXslVP2u7+Rr+334+tumcQNORvVK/rpI9t3Xe7hdzNZd0ARmLbmN0AduvcmnrpZt1273GrpzgKjlr78v3Nc3S7gc2ODgO2elo76ZqtHvEtelGX96qbwyM6Ruv3bnp2x+thd/2zlfbtnrlXUjp5YaM0RrMxb4y9/lYLbL5f0bltZ0yJ3teNLYA0969v/pPW97EThhD+mCds2rrntZPH7tXd+N2X7uN0YzQ/yrG3A2jb0bHduv0w5tBJ+EavdwLBndrvFLIhbglremV07kRrtxINf+jU95bfWv5uFT6t9ZshWN3AXydm1yk5R7TO1rl2ondn8PpqSmuYSauAETeUEwFT0RCCEDEU+ODf/i1vecubePNbfwJBUal96ivIf/oRvp+xcIaH6M/l6O/r5UtffgjbijE0MEi5VGJ83zjZ3l6uXL2CoZs4sRiaoZNMJlBUnccefZyx0TEy6QwXzl9k/9goa6urxGIOvb1ZVlcKfOHzX6Cvt4eepENuMIcdN0mlU7i+i2GaCAIoqkapUkE3dARCZqbvNoSEJLJ3fHRj/2ilUuHE8eOsrqzg2DYxJ4asaWiqhqYaXLx4hXTaoVyuEY8nsOwYoiQhSiprhQK6aeGHAT2ZNEtLC0zemiTTk1nXLUSqlQqBHyIpGiEQTyRZXVnDiTmIgowgiXheiCTLCILI0tISsiQjKRKyIjfOStVNKpUSqiKj6yq+61PKl4jFYhSKeZx4HEXV+MynP83pe05gWgaPPfYUfX1ZQkJURaVSyqMoGqIg4YcBuVwO13URJQl3PRFXtVbj1KmTBEFAKpWkVquytpJnYX6Rd73z7di2SSaXQZIFQiEgmY6jKjrTMzP09fUiiiKVUpnx8T1omsoLL77M0MAohq1RKhRYXlwkHovxqU9+iv0TE9i2zeWLFzl9+gxWzEYzDG7enOTK1Wvk+nuxLYNavYYgSSTjDW9j3a0hEFAulVBUDUEQyOfzmJZNNpvBjlnEEw4LC4s89+xzWJaFrumEoUA63UMilSYUBEKxoWDLmoIkyIiCgmXHSKaSuF6dCxcuYlk2htF4nkIEXNejsJZHkgQUWebDD36Yt7z5LUiiRICAIiuEAVy7do2+/gFq1Rq92RyGoVEqlgjDhpIa+CGTk5NkslniToyvfPlLHD9yGN1UWF5eIOaYgI9bDymXK0xPz7Awv8DCwgL1cpH8yiK2bnHl4kV6+7M88fijvOMdb8e0LeLxOIZusbyyjK5p7BnsQ9ZUfN+lVqlQLlfwPY+YbTMzN0sykUCWZQxNWgc2AqlUingygaoqaKpGEISIokw6nSGRSNHTk0bVFOxYjHKljKarnDh+HPncFZRsD+rP/CRPP/093vven2Js/wi9fWnm5udIplJcOXee+bl5Ll+6xB/8r/+RbC7JvWfuoVwqcOL0KRRDRRZl7n/gfh780IfRZY1jp08Rjztomorve8iewO//7u9yz4kj7BnbQ7lWQ2oJW+0e7bK9TG4y3k5RPNHyg8jiqExp/96Z1ih5TQMwRM3qnX5o9NNJTnQCCBtKsNAeQtvJ0xPtUYj8EnRITLRxrZkBPxS20BBGwiTDljawFSh102Fa/4/+3unadltuNssmOO4m71tp63Stc+lOb/f5bb0DsHkPW0O8dwOctqN1O2DbrX7r/81s1p3uXbTNdv10qrvb97D9+u7GbR3j1ejcu43K2E3kx6uhoa2/Tuwv8uOPNXht7nltlo116fKg/KBldw/oK3l4X33ZnrFE6+2+v83N7zszEvff/iHBQ49tSdjULK0MYzug2s2DB+3CsvVaFORE2zUqbVUGOoUIbcdcowCRLvXahu1gSdyp/7DlTLImbdE5CztYGpvtWsFv06LbFmbeYR3a79XW8O1WxSsaGtXt2e6mtGxXv/V5EUWR0PdQJQnB9Zi+fYePfeyj7B8dZ3zfOJplUa66uH/1Cay/+wqFN54iu28MWTHRNY0w8Ojr78eybIqFFTRdoVwpk+sfYO/YCIlEksXlZb7x9a+Sy/WytLTKzPQMi4vLzM0tMjV1m4H+XvoH+jAti/nZJb77vad57/v+GalUDE0VWc6X0TSTEJnpmUV0XUfXTHTDRDM0gsBFVmRMK0bguSQSNtPT0ziOQ7VaRdM0BAQW52bJpFOIigKSTOh51Ooe2UyOl86+yL79hxBlhVBoABefBkCWlcY5m6VKkWQsxuStO6STPRQKBZx4gheffwnfC0n19BCEHn4QYKgWMhKyIHJndhbLspEkGU3XeOSrD5Pr7SWdSnPt6jViMYfl5UXC0EeSRGr1KrN3plFVjeJ62KznN3Ixnjx5DF1TcN06zz7zIhMT+0gmEly6dAnb0DEMi0q1ih1PEPgetm03AJyioMgy+XyZQqFIbzZDpVTEC3wS8QTlcpn82ipBEHLj5hSmGcM0bYIgZOruFM8//xyHDx1unPOqCCSTcWRVwzIcRCQUvRFKbekaEiHje/ehKBqXr1zlwL791DwXQZSolqt88Utf4id/6j3oqszC0gKpdA+3b97GtmIoqowoC4R+wPzsHNlcLwICiqJx+/YUdswiDH3K5SJXr1zl9D1nCEP4xCc+xf79B5iamuLO9BwDg0MbfFmUQAo1ZFmj5tXwPQ/P81haWmZsdC8LC8uoOuiqwfzsAjPTM8RiBtVqhVOnThH4AaZhUKk1PH+zs3OMj4/z0osvIAoi6XSSO7cn0TSdQqHEC8+/xOjoCJVqhZ6eFPOzMxw5dJBKqYidSGHbcRRZw/dDiqUq8USS/r4+XnrpJdLJBLJhMXH4CEGogSghS3UOHZrgzvRdJElidnaWdDpDuVrCsS1u37zC0Ogo9VqNBz/4ISb2T+AkbOYW5shmMkxO3kJc94bVXZdUKoXnewQhaJqBJKkYuoEXCBSKZe5O32VoeJBqvYwVtykVi1imyaWLF+idXSVMOfziZx7kvT/9bj7/xc/SM5BFtw1uXL/BwuQMfX399OX6EMWQd7/7nYzt28PkzZvcvTNFPJVE0VX+y3/5U+49fS/33nOGMydOslYuknAc1lZWIPARXZ9f+oWf53d/+7d43794H6ougNCeRKadd25w6TZ+HQUsO0mWqOetVQ5sB5qbvF6W5S3yoYX7RnjxJp2bYwTtsliMhBMLwhY6thOXUY/chu4hRLyLYWfw2i5LIm1amoiiuBF+2nrGaCttm0A5bPstpH2touvfKrOb11v3HbbW7bYGu9U/om066S6tz8J2cra5dt28mt3KZv12L3OzuK67hcZWD11Uv9kOeLf2042W7UBt63Peus7dIsBaSzdguxPYjOpmnU5UaM3F0qn8MMDyD1q3dczdAN6dDA7RqIVNXbbd6SIIm9B1s+2Pcdhwc8/r9uWHARpfPXj9YZdXAoZ3C16b/+/WihR86VFga7ZheHXWoigz2M6S2PZCRK9F7klId0a0kxexU8KEbSawu3pbmnX20G9aq155v9F+tmO+reB1a/udLYQ/CE07FUURqRfLTF65xre/9S1+6V//MkgytuMgXLmN+W//E+GFm0jveiNiMoEkqfztBz7E5UuX6EmlkCQZJx7HC0KcuEXMMpieusMzzzzDoSOHmZqe5vChCW5eu8bYyAiHjhzl7Lnz3Hv//Zw8eYJUOoGoSEiaimGYDI8Oo1vahqc4HosRhj6CKFGv1pm6e5ezL50HL0ASAkxTh1AmCFU+8uEPc/zoBMlkijBspPWfn5+n7gv0ZjMszEwhSAKuV0fXDERRRNMsejJpdMMmFARESaSULxCELpVyCU3VWJxfwrHjBCGIkkK6J4XtmMzMztCf6yeb7WVu4S664uHELARBYnVthYXlWYYGh7k7dYe4E2N+bpoTx483MhQHAYZhcf78RfZNHEDRNERZRhAlkj09OPEYcSfOubPnWVpexa1XMAwFTVUQEBgaHkPTZFRNwTRMLCeO7/ukUgmK+QKpVIpKtYppGLzwwguk0mm++e0nePp73+W1997L3Tu3SWUyKLLM4uI8umZgx2Jcv3qLb33zm5w4fpxz584ycfgghw8dYn5unmwmS6mYR9MNkCSuXb3aCO+OJ/GCAEQBj4DQ97lw8RJHjhxFAHy/Rq1S4uMf+Qj//H0/TU8mjWGoqIaGIErM3p3DthMoqoLruXi1AFlSUTUZWVERBQlN05Bkhak7dxgcHMQ0TBJJm2QyyT333INpaRiGQq4vh1d38Wp1pibvELMS3Ll9FcOQCYFSscZTT32XiYkJQkK+9sgjHDt+hNvXJ+nv62NodIDF+RkMXee5Z59neM8ePvfZz/Ptxx6lJ51iYX6WZDLBU08+wbFjx1heXGJsbARNU1hby3P48CEmJ28yMjKEV/MIgVgijhV3KObLEEKxWMS2bbwwwLIMZBlG9wwCAUOjIywtLvH3f/8Ix08cJm7FEGWVRCpFGHgkYja3J6+T6xvADwIqlQqyoqMqKvfd9xpMU0PRVEzLoFIu4dbrGLqOqlnYdpzVtTxra3lM22ZleQ0n1jB+rBVWGBkd4eq1G1RrdQYGBimurWIaNnenZ9h/YILgxQssE3D7noP8y1/6BY6fPIokGCiWgefD+//ivyKLAUuL84S+R39/FiSFarnGvr0HkFWdl89d5O1veAMPfuhjXL12jfvfeB9f+NKX6O/vw3XrZDI9eEaIapn8/M/8HH/wH3+Pe0+fQNatbY2w678A7Rn025TdTrw50t9OIKdbaVUUO/cRpb0TuIi06yBvt8r9zuAkqtxHOmqneYeotkaT7p6dqAew1SC7VWeIzrHzeN3o6FSnm8xtBVO7BTKtv+0EHFpLa3hua52GXrP7REdRY8FWw/f2eUi2m1dr2Ql8t/69E6Bs/d6qX3VKGtntiJ/dlmjdVg/0Rp0dsg2/svvwoyk/rP676tXr/TedK57nNY7Qain/BF7/Cby+IvC6m8RKuwWvO6U83ynso/n3duB1u/29W8DrFqvwphdxJxplWd4R4EZp3E34zqbFd/fgdSeLWlSYNP/fEGo7MPz/P4DXjXWX4LFvfJM712/w3ve9F8F1Wf7cI+jv/yzSn38cd98e8icmEC0DSZJZW8tz/vwlLNPk6KEJlleWePjhr/Ka++7HdSvEbAMhCBkYGEKUZeKJBLlMDwMD/aQSSZ59/nkOHj3K2QsX6M30YJgahVIRSVUwdIPZ+RlCIcSyTGamZ5mbvYVpqUiiwNLyAkODozz56BO85swZLl06S26wD0U1+fgnPs8D972WTDpBEIbU63Usy0KSJB786Kc4cuggYuDiBR7JVIogFFhcXOLLDz3MiRNHCUMRf93zUSmWMC2NcrmCbdmcP3cJRdE29o5qmoLnu+i6znee/A65XC+iDMmYSqVSIfAFyrUSiiaiyAaWqXNn8haeWyeVTLG8soJpWqwVCoyNjrFaLKKqKvOLCzhxh3D9mEYRgf6+fq5cuU4YeuzZM0ghv4Yoipw/f4Xe3p4GMFFVanUfWZEQAMswOHvuHOlUiiAMceJxwjDk0KHjXDh/ltmZae6//zUsr+axLItEPIEiN/YM9/dl2b9/jHIpz/BwP6KscuvWLfpyfSzMzZNOJilVq0iKSjIRx62WMWPJxg4bqRGuq4oyf//ww0xMHMTQdSQZNEXhxLFj1Go1FE0h8ANcv3FW7EDfIH/1l3/DntE9De+qL5BwEvihi+f5rK3mefLJpxgcGiKdThP4/vr1GvV6wxOhqgqyIuD7AZ7rUi6U0FSddDqDKFQRcUGQUVWb2dlZ+vr6iNkmhw5PsLK6Si7by/z8HD4egwP9uK5Lf/8g1UqNcrnM/a9/gGymhz17htE1hYMHJxBFiTAIqbtVTMtkbW2NdKoH09KpVissL66ysrqKk0wgqSqKHFCtlTBMlVq9zOTtKZaWFzF1jaXFOe7cvsWeoT4sXePIoYMkYhrnzl4h25uj6tZQZAlZEolZKqEgUypV8byAUrGCKEAYeMiyyMLyMqIgUq/VSKWSVCoVFNXg1uQk/X39fO97TzMyOsrqagFRlHj55RfYu28UTdOpVur0pHsIQ/BqNVRV5ROf/DRHj59APX8NfSDHfX/yh2iGwkc++mF6nD5kU2VkbB9uNeA9P/k2dF1D02WuXbtKoexyz4nT/OWf/xW5gSFm5ufJz83zvp/+OeaWlzh4dILx8XGg8c6fPfsy9mCGMAxZmF7Aq5f49Kc+yhve9s6untEWzrfB25pyqG0f5CsAr1HZspO8FgShoxeoheNG2vxowCtsn/SvtckPC7y2Zip+teC1WzLDTvJ6O5AZ9Z7+sMHrdr+3grVX6nmNgtdoH7tNJrVTne1AfdNw3DXirsNvUZ0suk2p+X5shJS/Alq3q9t0evxjA687en3Xf2+LiIhU+TEHr+1hw53BQnRJdhf2SduB0dE+m/22fnYDbDrvE9i+7G6cxkvY3u8mk2r+3Zosqv3TSHK1laG19tMcp/nCN8Gr8J43bAGBTWbQ+r0Tzd2YeKdN5tuCx1Ck5ZRj2tZWECAiwFvp6hTCskFP82+2MurtikB7IoeNhBPrHzHSf+v8ulr+IsKnbfrN9Q/DNpohIAyD9YQW4bpwblzpnqUvMi4NZSa6/q2KQOf71H5ofVNZaP00qRHDxscPAzRRRqjXmb1zm0c+80l+4k1v4UiiF/dvv4D0+3+Gcf4Gvqkivu1+SokEiqKiaTpLCwt854nHGR8f4tSpEzzx1HcpFIucOHmMC+cuMjQ4gB9A3RPI9PUShj6GqvA3H3iQQ0dOcP7cy3z3+89w5p57kEOXdDLD+XNnyeVy4IdUayUSToKYYRL6HoYu4yR6EASNugvFcpWBXJo9o4NohkIm04tqxhCAif0j5LJxSsUCt+/OYzsxBBFESeCBM2fwfY9Hn/oeh46dwvMF5mdn6esbYuLgAVRJpFyqUCmtcPvmFKlUGkNvePpEWaJSqTA80I+sqhTXVtFUmVAIkWWVWDKO6VgYms5aUcD1RFRZYWU5j2U3srSKkkYYSsxMzWLHDEJCTMfhme8/i+d6+HWPmO0wOzVNvVjAsmLMTs9z4eJl+vpz7Ns/TjqdIiBE1VQkRSSbzfHhj3wEy7JJplJIgsTXv/ZNenp6qdYr7BkaQtV06l7IE48/jlevsriwwJEjRzhx6gRrhWWSySRhGDI7M4usqGiGjud5uJ6HoFk8+/Sz5PpyyATohoaVdJAUm9XlRUKvTj5fpFQPyaTTBH4dQxXwqkU0zWKwf4gL5y7g1n103eYrD3+Nw8eOEk+mUBQdUQwpljw01UASA2peicH+PUxP3yWZspEUmUKhgFt3MU2DQiFPb7aH6ekpqtUq1VqFEJnbd6YQRAFV15AVhXrdxTQMJEVAlEIkXaZSrqKpNpKs8+GPf4yf+RfvY2n2LgvLyzjpFI5lIcoipm2ytLSMbtosLiwjiTIvnT/Hax64j1q5RK1SIeE45NfW8DyXYjmPoisYZoxqsU4yZTM/N4/n+miagJNMkO3tbWxZCH001UZXZNxaFV13iNs2fbkcAgKmYZPt7Uc3dOqej6qrlKpV4onG2b22bSHJMnPzC9ixJIXVNSRRAFEgm0uj6yZ+AKVSmUyqByEMqFVcarWAUrnMjRvXyWTS2HaM4T0jTN+5hROzcWtVDuzfy9panrgTZ2pqikQ8iSgIfOCDHyKRSvGOd7ydJ7/9BP2LeeY9l9unxtBVhw+8/6Pc/7r7EIWATDrDB9//QSaOjLCwuEDdrTMwNMDqap3B4QFePvs89565h6mbt0nF48Qdja9/7WHufe0D6I7F2XNX+L3/5Q/55V/51ziaxpNP/gMPfvhjnDk8SnXuKg+8491IgkYQiiCG6wpqF3nUwiOb3p6o7Ght0cpnm8n02EiuKLQp8p3lQ4MPB4HfxovbSzutreNE9aDNSazL3PVPI2FmlJatH2iEILfOYQsptMrF9usNRXdTpoWBT4hIuEG7uD5WFDQ0ktkRCghsJmJqyvWGASFy34R2Y0EnY3BHQ3PrdLYBm1EDepOOBm3NNluBcifjRSc6XpmRo7Vtk6bGZ7PZ5rMQBXpbu+4Oohtz2NQPWsdu6mSt4DV6ukZrJNx29yRqsIhei9LVyRvben03jp1OzoPWPpt60A9SdrqHu6m7k8HkldDySsduluaqtiXTEoX11E2N65L4Y7znNQpeW0t38PqDl63g9VX3+AO02R4kdwNXOz1MkiTied62wKj1ZRYEgeChxxpj/tQb28aJtmn9PdpvN8Dciel2Sum9WXd3a7klhKMF1LZe60T/TowrOo8mg90uFXyn0g28CmKng+Lbx5ek6JENnQDxVgNB+9p2OGZA2Nwr1fGogs4URWcGRI46CMONYz3EEHwv4Nrls/y/f/LHJEydmW+8wME/+xzSxx+Gah0euAf/1EHkoSwBArpm4HkeV69c4ezLL3HvmTMcnDhAfm2VUyeP4cQsbt+aZN+BQ8iyTLlUJAxdKrU687MzhEHI/a97PTMzs/T39XP/6+8jFAL6+3PcvTvHvv1jTN2+jiwEzMzN05vN8fTTzxCGUPdcKpUSppHhm998lOPHDxOGAq4f8Pdf+SqHjx4DWUYQBKqVEgIBgeuSHd6DLMlMTd4mnUhyZ7pxDujevXvRNA23XkORlcYeSykgDOqomkHNLXH9xi3G944hSiLnzp1noH8AQzeRZJmFhSVMwwREBEnm/Evn6O3tRRJESoUC5VINSZC4dWMSO57AisWIp+J4IVTrNUZGhqlUKiwsLmOaJtevXmV4aIiRsUFq1Qqf+9xnuf++BwgR0FSFwcEB7t6dJpWwCTyfWq2OblpU6z5S4DOyZxhdVVhcXCCTTiCLItVymUQ8hiCqLC4uk0w49PSk6c3lSKfTJJIOqiJj2dbGex2Px9ez6Qp885Gvs2/fGEEooIkBvQO92DGdulvFD3zCUKRaKaFrGpVqFSceZ2FuBk2VEGichaooOpZtcf36VS5dusjAYJZjxw6hKBKzM/Ocfekc8bhFOpWkXi0T4hL4IZpm4jgGhqHh1n1kIUBTVXyvju/VefLJp8nlcgzvGcC0dIqFErlcL1N37pBIOLhunZWVNVRFQdM0NE1ldnaRXC7HWn6V2Zm7nDl9CpGAq1eusG/fOIQ+KyurKIpKqVSmpyeDIASoiojrVhkeGULRVHTTolQpYsccfB+q5cYZwrVanWKxQtxJUPfK1Gp1kskESytzpFJZSqUy1UqV5eVFdNNCkAQUTSNEBBFESaJYKmFYFrppUCnmkWWFYqmMqpvEbIu1tTVkuRE+resGkiiiqCp2zEaSJJaWp6lVq6QSaSrVMpoqoyoWsiIhSiFxJ83w0CCCCJVKlRBIp3qw7Bj5/BqaqZCIp7h86TIHDkzwmc98loWFRd719reTXg/x3rd3D8LZa8SG+7hxcpRkby8n772Hj374g7z3n78H16vzxte/ASUsMXHwIJeuTDK3WOI//M+/w7/8xZ/Hsg3uzsxRc0N+/Tf/B07fc4Izp09w6fJFnHSaZLKHP/rf/jO/9mu/im3bZHN9/MTbfoIDo/383Qc/wLt/4V/heTTAjxBs6y3sFAG0W6MoRM8X3yqbtvLlBh9uGlMbSfwktivbsfZNereO00nh7z7GpjLf9nvL8RwNILwpNzYjlTZBZWPu7aAjCH0kSdrw7DRkTfsxcK2yPrqGm3PcBJVRQ2/rPKJtW+fevN4N1ETbbPYVbiRcjK5bK3DsdGxidOyddJdom27XojRv3+f24LUJzjvpJt3WtFk6ORyi+4ebfbfqX90yH3fTuXZTN9qu27psAuJu6/HqAeVuyg9rjFfVT8RA1Syta/djDV59v/6foLPlpVmaD8p2Cn+zRPuJlh81eN3uAd4J/LS2awKN3bxsrf23M+itAC/K5KNhw9ExO4GcJvPYkqyiSxjOdnXaLGkdkjp0W8ftgHK0bStD7AZso212svDttmyhgU3BFS2toTRR8Np6/6KCPjpWg9m3HDK/QfvOoWnN+p2EU1NJia6bGIIsSmiyQiGf56MPfoTDB8fJWhb3P3qdY985T3Egi/aTb4LxQdbqFQzLIAhCatUaS4tLWJbFF7/wBY4fPUbMtkEESZZQNQVN1QnDkO889V2OHjuGoijrZ5mqLC0tMjw8xPkLlxgf39vwHMgCS8tLaKrG5z//RY4dPYwTj2GaFtlMumEgkGX6BvoxLbORLKdS5/EnHuf0mVNImoGi6ew9cABFNxADl1q1QqVcJp/Pk+vrJ6BxHEPgB6ytrpHN9REGDaWtXq+jagoCIr7fOObI91wESUHTZEZG9hKGITcnJ9k7vhev7jIzM0cQQrlcplqpMDc3RxCG9GdzVOs1NNOgVCzhxHRmZ+4iitA/2MfVG5foSWVR1EaI7Ze++HmOHT+BaVs4cYdSscD46AhL+VUEBKbuTDG0ZxQnFkPVFC5fvoRlWaia1ki8JCsgSIiCRL1WJV8okOvrIx6PUyoVEUUJy44BUHVDbjU2L24AACAASURBVN++TTaTxnXrrBYKODEHz68hiOB6HqVSiXKpgqIo3Lx5k1Q6zeieYSRFou77ZHtSeIQEns/s9CxOPIHne8Rsi+9993scPXoU3VBRFZfCWp7AF3HsJJVaFVVVGB4epn+gj0zGYXV1Cd+vYcdMBgdzVGsVFufn8P0aogypRA+GbuB6ZWRJQlUMFubnKRQLOE4j63I+X+bEiWMUi0WUdaOFLMuk00kURcb1XG7cuEWlUqFUKuLWXfoHBgiBuuvSn8tSr9ewLJtcLocgQrFURBQVRLFxxuTc3Bx+4FEs5hkc6EOQFEJEJBECv04Yhnz8o59kdXWFWCxGOpXh6rUbPPyVrxCP2+T6BrhzZ5q+vl4URcNzA+KJOKapk18rIogisqKxMDeHqmnIsrwR3l6tVlBkFVlRsSyT25O3kVWlEa6/mqewtka9Wqdaq7CaX8OybBRJxjA0BCSKpTLpnh6m78xy7uUbZLI2M3PXSacyFIolTNNkZXUF244hSgKVShVFVZmevott2SQTSWq1OsePnwAEZu5O4fk+2UyW+dlpzKUCk687wtBb30I6Fee5Z7/LxP59mDGVeCLO7/z73+bU6UMEAdhOkkQyzfkXn+FnfuZ9CKrM8kqeiUPH+MWf+1lmZ6ZI9qS55zWvRVQUXDfgTW96M0PDA8xNT2PHbGYXZjEUgcLqGicfeB2iqBKEEO4AXjsBjOb/reAqqqA3wVR7u859tY/X7hFqKPNs9NnJKLydyiBJ0nqb6JVuEThb6YrqGm36RQsIDsOmFzva3+YYkiSte11b+++UC2NrEqXWPjuG0ArtQLQVGLXK2+YZsJ36av0eBZVR3ao9nLx76GVUx+ikN0aBXLPfTmBpO7DVSQeL/h7VDzsZFLb20dkI0Pq907xbvdNNEB8N2e9kDIr237oerWUzaenWM3y3wwbb1Wlfq90aqjbnvBv8slPpRlenT5TuTnrzbnBFV/qjX4WtuuGPN3hd97zuZhF/GHV+1OC1+dLvxkq2ba8dHoRXS1tr2QCv655X3vOGrgyjU9smjbuioku9LXPslJGwC1Ddbm2igHu7e7JdH6+0dMrO1w0sd2Pqndd262+dmGcboBS3Mvkg2P1zuVmns+e1bawAlpeXMVSNP/7jP+Y//N7v88xHP8Zr/p8v43s+D3lFDr7tTciaTBi6hPiIskKxUOKlF17CNAyqtTonTxxn8tYthoeGQNHQdA1JkajWXVTN4ujRCc6fu4hpWMTjDoqmYpkm165eZc/IGJIso+sSpWoZ3w8w9ThDA32ouopuWQSizNTtKwiiSDKZQNVVZEVicX6RZNrizGtOU6/51AuL4FXxaiXkwCXwXJaX5kmmUpRqHrJmoAgiF85fJBaPk+3N8fnPfxEn4SAIIfV6jWq5TMyJ8dxzLxIGIi8+/xIDg3uQZJE7t2eIJxLEk3Hm5+ZYnFtkbO84umE2Qn59j5gTI5FKoqkGvgCaaWA7MQxZo1b1EQWVqZlZRsbHUAWZMAg5+9JL3P/ae1E1gxs3buA4DoIf4nsegmKyurTE6173egzbYfL6DRKJGPOzszz9vWfYd/AwnhcgSTJ3JifpSSQoVitkensRZRlRllnLr5JIZrh05RrXb95i34FDfP2RRzh59DC6YWA7DgghtVoZRZVRVR1D1ykUiyiyQra3F4DV/BKmbSLIBrIkIUoagR9imzZffuirjIwPoWsaQwODBOv/TMUhZtuYhsTs3G2S6V4WlxaIOTEkSQBfxbbiiILA2mqeMAyZnyuRX84jhCKG6eC5dTzXQxBc1tbWEFFQdINQaBgderI9jIw0zpzNZDIU8iXq9RqzszMIgOPEIARJURkcHMCJxUjE46ytLSLIKpquM3N3imK5jB+CYTmEhDjxGJpqsLy8TG9vL/F4HEGQ0HWFMAxAVPF9Ab9ewtAlVpdXOH3yXvoH+kkmU1y4cIHh4VGOHz9M30COG9en8L3GsTOeV0NVNWamZ9A0BceKcXd6FlGSSDgOszMzeK6LZZqEQYiqKLihxI3r11ldXiKdiFH1QnRdx4nFWVleYXBgkGKpSE82i6IoXLl4iWrFpViokO3txQvqeN4icaeXYmmFwcEB/u7Bhzl2fIJiqcBDD32Z/oEBbEdDECQEUULTdGzLplAoYNsxCoUi3/nOdzh96jgje8aZmZkjv5YnuVqm/ubX8RO//Mv85q/9CumExbETx6m5FZ588kne+ua3cvDkAYIgoJxfozflMDw0wJ27t0lns4yO78dyklw79zx/9Ed/yK/95r8j0CwCr8Zzz73IwYlDxGIWtmHgE+AkY7z47DOcPnkPdk8Pvi8QhCBIdJRH2/HcBo8N2sBrZ3kT9UZ191xs7i1t9741Ppvypqmsbx8C2j5GN/DabY7by84Wg3gQNJzXLXPstEewFbw2AG+7wi2KWxX1MOwCUOnusIiC19Z9w1HAFlX+W6O5OulkUcP41nrdPfKt8r7pWeyUbGg3ukOT1leit+w0TqNO9/4a97rFK07789xpDZulNTR9q9Ol81y6ZWjeDoh2ur4deG0dZ2tIdcu67LDntVN5dbr8D95H1KjySvvrpIM3Gneu/48OvDZL58XctPLAzpaK7V7gV3LzO48jRD7R/jc/3a7ttnQCMNvXb/XWClvadBKUQiKGcPwA0thgmyUsyiy3s6ZF67YK0yZT7mQtjIaBiJIA6/t0Nteq3VraHGPjHgsBzYPLm23CoJ3mcLNh21E1zU8nq3UnxSMI149eb861y31opXM7RikIjbNP1wds/95OzZa20ElQttWieTB9GG4K/XbrZvtai6KA73tIkri5lsL6kx40QoNDJBRRRghD6rUK9UqZhz/5AW5dvURMSZMwp1n6689x6jPfx3/9KYSTE+w7cID8WqGxT8+wQBSQBJkwEMj19pHuSaFpGqvL84yP7UFUVaambiOJIr4XsLy0hGUZFEsFFFWmN5chDMGrVwlDgd6+Qf7y/X/DQP8w5UoBU43z2LceZ2x8CEWTcZwY03em0GWFdI+DpsaRJIUg9AAVWZXxgzqqaODWymiagqgamLE4d6emSPakSKVzLK+USSeSTN28jplMQSDyyU98mlP3nOLggX1oisaF8xfp6UkRj9soqk4u10fMsegf6OXWjTv0ZjN4XgnT0AAB3TDI9GZZXl7GtmzuTk3R39ePH4b4QUgoK2iyQnEtjyAKuHhYjoWmKSAIfOYzn+fA/gkKpVWSCYdqucrffewTvOMd76RUKtGTzXDxyiWKK0W+9vVvsby6xtSdOxw5uh/XrbFnZITDh49QD1xMQyMkpF6rIcsKstA4iuL7T3+fwIdYzEbVTTLZDMm4jV8vk0rFsZJx5mZnsHUVCR/bttcFv0CtUufsiy8y2J9DURQKhSLxZAxECSEUCP0akhAgCjLF0iqGbpLrSSEKEqIiIwkhM3dukUhlqbkVRLmxR9n3fGbnZunJpPHDkPmFeZyEgyhKxGNJ5maXuH71KiP7htEsjVgijqY7zM0vkM32US6WmZqaRJF1CvkykgQCKt9+7EkOHZpAlgW8ukc82UMylWRlbRlV0/H9EF2RcF2XcrnaADqiQL1WRVUkdF0n2zeArCggNM/ebezTixkm9WqdW5MzKKaFoqj4gY+hSkhhnaoXcOXKFKNje3GDCpYTQ9U1srkcmq6hqwFCIFFYK5FfWyCXS7Oy1Di/WDVNlteKqIpCT0+Wrz/ydcbH9nB3bpVKpY6umQiiSCBJEAqYtomiaWiGjoACYYgsQyxmMTc/y9cfeYIjR47gUyWVHiEIawwPD7G2vMz3v/s0M/NVJg4dwHV9yqU65fIKI6PjFIprPPC617KysoTvBViWSSG/iqZqyLqKYRhUSlVKxSIHDx/Aso11b75MQIh04y53hpLc89538Q/PPceBiUP89d8+yMkTx9k7OoYQhvyPv/E/8Wd/+ue89Z3vIZ4aYn5ujjNn7qFvYIAP/c1/ZWL/QUqlFd77z36aaq2OFbMQBYUrl6+ztrZGJpvk2uWXGczl0EORO7dusf/QfgLVbpwtKqyfTd22V3RzX1+TV27d7xciIK//5iOIAQgehI3w3qbMkhARQgFREBEFkVAI1s+Y3ew/Om5nXaR5LWhr0+yjWzKcVrC2hf6IzGrKx9bjUQRJJCRsnIUusC4o2sdG2OplDQnWAem6zGmTZ4C4ubatul6bN1SQ2kCPsL5fRRSF9rVYP7oppB18Rj8bc6RxPwjXIXTLkkWPCmmO3fzeCURt1tv8NIwNrX1tfm90IXQBi61RT90N31G9aksvkTk3q20C8Na+m3U372vjXoS0n/8qbtC22WazNAFga2buKIjtFD7cMZM3W+fe1WDRpc1uwdpOjg5hXefc8rB0KYIgbEnn0vr8d3sud1OiOuDmOMK6ztvywm28r1vnFC3NfkIaMk6I3t+OGKf9x38Cr7u49sPsY/tsva8Afb6q8srH6Q5ktva7wUj29COM9Le1jTKEncBrJ+tUK1Nq9XxGvaCdrNTt55l2t1oKQgPsbr3YnaF1Yq6diiiKW/a5bgTf7gK8bgDnKCOMMKbWProz4m5GlM2xtldQNucUVSigPcSm2WbDKiw0gueafFoUBEQhAK/G//4Hv0/Ktjjx2gc4ePIMlpNmLJDo+T8/Q/jW1xCMDVEsFgkD+PjHP8HevXuRZQlJEqmWKszcmebq5cucP3eWeCKObZmcO3eeK1evYuo6V69epS+XI5fNcvnyZQ7s24/veYiiwPzcDJlcP+VyCVWROHzoAJl0AkVV+cY3vokgCpw4eQzPCygWixi6RkBAuVrE1B0KhQKh4COKMiIyrltlaWEZRZXQTIta3UMURdKZLFCjUMwTAquriySTDkYszve/931+8l3vxLR06vUSgijQm8tiWhaarhOGcO3adZLJJKqqEIvFmZ+foyeTQVVV/CDk5s2bVCsVZmbmWFpaYnR8L5VSmetXr5Pr7aNaqzJ1+zZzc3P0DfSDEDA7M0MymcZxHEZGR/DqLpneHmIxG0u3SKZS2HYMTVUafY6OkM5kEAQYHdnDk088zv33/zdcuXyNRDyFojQ8d6lEisuXLjI8NMhjj32Lsb0ThAFkejLEYzFc10eSZKanpwk9j5jjIMkyhqE3vHvroanNfeLlchnTdhjeM8z8/ByqrlNzXSRRZGFxkWQ8RbmUR7MdylUXK25jWjHcWhHNNKnVPeo1F9uOoRoGk5O30TULSVIpFJaxbRNN1wjCAN/z0HWVtbUVVldW+exnPsvP/sLPYlqN5FW1qseXvvgF9u0bR9c1bNvEceLYtsPU1F1S6TiaZrCytEAm28Py8hL5fIHbt6awTYNSsYAkgGUaGIbJwuIiDz/8VUbHRkkm4hQLJTzPp1wu49XrLMzNIgmgqypzMzMg+JSKBZaWl5mcnGKgr5fQd9F0lVrdRTNMKqUavb19qIqE51fwvRBNUSnkC0iihB+WqdZqpHtSZHrTVGpFnFiSWr2OKAgkkwkkRWJmdoajRw4ThD62HefZf/gHAs+lJ5NCUWUqhRWuXL7I4OBgI4mWZqAoMvV6HUFQ8N2Qg0fH0DQVzws5d/Yqe8ZyhKFPEAbsGRlGEBQS8TimoeE4MXJ9GWo1l1QqSRiIJBNZHCeG5/nEnSTFYpnzF66RSiZ44fmnyPXl0FSDWzcnCQIolfP09/fhPXuBweFhRv7Vezl8+AjT0zMMDx8gl+3l+edeRFMsRE1maWWeA/tHefLb36BUXibmaBimyujYCIIIzz3zIsePHufcuQvcvHkb1VCZnV3g13/91/mN3/zvsCwHVbMolGvYiTjJTA8+3bPet/Lobf9u46kQhkJD0SXc+D8QREIB/DAk2AB83UFHa2kFANEwy51obO2j27y6GVrbwFHkmtBJGRa6h91utI3SJbV73zomYSS6nWrrPDvpLk06W2V6q65CGLkHTTzdISS1mxe021q30tBJB9q5dAdRm+PsvNeym37R6gHermznwetWv5m/o9tcW9ehdV06rXs3+rv1u31m7vbS8binbcbZ/LOJCHdRhG2/bimvNEouyoO277y9beeO28cIo7hoF+P8owKv25XWmxRlGq2/dXoROz3EO1lzmi/U7pPb7H4e2zHERp3dpSuPlrbQnZb2m2vSXSh3oqmV8Uc30zfbRfuBrUe9bIYpbW3b2ueW0Kcu4HXznmy9X91CXTZo7WKJbSbDaK7flqzGEYYqdUk+1eyjkyGADuu1nbGgdd9MZIT1qUSfm/a9sVHvdjfw2vV9WjfY6aqG53mYisizTz9NfnmVd7z9nWTTWVSnl3qoId64jvgrf0Txnr0o+0Ypl2sNz44gcuz4CULAtkyWlxa4euEyI3tGOXfuHPsP7CedSXLl0mXGx8YZ2jOEYztM3rrJ959+mtOnT+Osg6eVlRVct0Y224Mka8iSjKpK1CoNb+bKWp5jR48wNDyAoqzv6wpCbMdGURVCIUQSdWRZolzOc+PaDZ584rscOTqBJGvEHBtBVlFkubG+gkC5UMPQY6iqxSc//mnue83rCCSZ8ZEx8mtr2DET16s3kteIAo2YOZEwDEgl08zOzuD5DXBXKpcxDAvfC7h+/QZ7x8ewbJPeXA5RVNBNg8cffYxDBw+zuLhIMp3g5vUbaIpKf/8A1UqFVDINgsDk5CRxJ4bv1hAkkVq1ThD6JJNpDMPA81wMXScMQlZWVnjyqSfYOzbKu975DgqlZTKZFJIEpdIqlWKdZ599ltGxERRVojfXix/KfPqzn2Zudo5UKoVbd1lYWGBoaAABDyeZJPB9dEWFdU9MvR7g+T6e52LbFl4oEPg+pmUiaxqSqvLZT32asb3jEIrouozou5Tza7iVVWKmTrFcQtNMEEQMTadULIMYkkykUFUdWZZZWV1o0OT5+H5ILGY3eALgxBzCMMS0YySSCaqVGqZusW/vKIoiIwhQrdUQJZGlhWUM0yKVjhME4HtlMukeQGBoaJBkIsXCwizDewaBEFlunLWqaTrHjx8n5sTwPY9r166RTvfgOA6OE0OWZWzbplwuA5BMxtB0k5WVVY4cPUSpsEo8blOqNpImBUjIgsSFCxfRdZWYY1AuVQjDAM/zqNVq1GshMTuJJKnIstoA8fkCc3Oz9KRT3Lp5nVjMwbFMioU1NNNC0zT27x0nnYo3jjmSBMTAI5FIoGo6yyurSLIKwMzMDIl4mjt37jI8vIcQH13TEKQCTiyHWw+RZQ1JVLBNiclbN3nu+Rfo6Unj+nWef+55RkZGePbZ53ns0Sc5dHiCMBSo110+97kvcN9r70fTJOKOjiRJpFMZHn30MQYHhkn3JAh8EF+8TOC6vDiW4LOf+TyyZDI5fYFTp/chilUWF6d517vfy9vf+kb6cz1kelK8+Y3vxrZ6eezRZ+nrHef6jTtIkshHPvQhfvXf/Bv27R3FTsXRdZ1//1v/DsNQKa4WkWQd044TS8epeC6i0H78SytfbpV/rWWrTGu0dV0PVTGp131kuWHI9TwPRVFpOizDsHHclqI0jnBrJvbpBGRbdZvmp7lHM6r3dAKAnfpqtmmdQ6etL606ADQikFrrAhteGVEU8X0fSd4KEqP9t3pyRFFcz1G6SXPUqNqoG5X1tF1v0tB6DzdDrzfnKa/z9421CyLjRGRy8950Aq6dfo8+O9HnpqlrtK7Lpoe7XaY3PaLNOTfv+XYRY1F9eGsSyM1xu9HYWlrXfzvPZKc5d9LLu+nwUUdIc76t+ku3+9CN7t2AwFYdNUpTp09LS3aD4gRhywFOHVu1633t7TuP3+HebYdHN969rXygQ+WNNo1KtH0Pwu7HHDXLP4HX9dJtkXZ6MHeqs9213VvHXn2JjvPKx966f6NTndYSPP4s4eQ0DPftGC7RjQl1qhvtp5MnsLXfKFDepHYHICp0YN47tOm2J6k1HKnT/ILI+oS7sNZ1IKLzPCK/NZl2hybNWh2772ZFjQLaRp1wC8PuNIwAuPU6QRDwiQ/+BXv37cOM9+KrSSqhQVguI37tO+i/838QvPYM3mCcUr7MzN1ZCoUiTiJBrVbjoYceYmL/fpYX5xkYGORLD32Zd//Ue8jmspiWSn41Ty7Xh6YrKLrOgYkJBvcMc2vyNgPDQ4SChyAJJNNpJFnl2sXLeK6LYVq4vo+s6ZimiSSFeH694aUVQlzfRTcsBFmjUimgqTaaouD7VbKZLKMjoyAElEp1DNMCAYpry3hunSAIKRTyCCJ4fp1Tp05SLhaRVJu56TmKhQLpTJpioY5m6IQErK3m0TQDSRJx6z6e75FKJXBdl2qlzsL8EqlUEk0zCPEBn2e+/yyjI/tw6yVWlpfoG+gjkUkiCQIJJ84jX/0ax0+c4tL5S9i2gyhrGLrB+ZfPoakCumGBICKKIYuLK8iyzNzcLIZpcPHiBYRA5G1vezvlSoVKvY7jxBEFFc9vKAZTd6d47X2vwTBNFMPAsGNYusSBA/s5cOggummhywKiCJou48Q05hZXuD05iVetsbi4QP/gAJWay6Pf/jYD/X1IAkiyirj+/MiSTBjC+PgoTiKJVw95/1//FSdO3YtlJxEViRAJy4wjSjKCJFOpFNENBUWUuXH1OsmEg+eV0TQDWdao1z08D3RNXwcfjVDzleU8ucFhAt/n9uQtCAMUWcB1XWbmZiiWSvRkMrg1j3KlysLiLD09WSxdZPruNCAgygKCHJLqSVB36/ihQBhKBL6LpmsIgoggNkI/k8kUoigQBCFeCCuraywsLpHJ9qIZBvmVAjUvINubg8DFipmEAgR+QDFf5sa1mxi6QjbTux7dIKBqGmurK6iqRtyJMzN1l9XVJcKgTuDXya+u4Ho+Q4ODKLJIqZCHMCS/OI+paswtLqPIMkHg47k1IMCyTZB1VN1EEiUMXUfRDARRQFFERJFGWL7oMT+3xKXzk8QdHVEEy9RYWphBV2XmF24xNDDM0NAoMcdBkRUGBvrxfZdYzOL06VN4Xp1arcYTjz/OL/y3P0+1vkYxv0Ym1Y8oKCwuLqIZMtlsHyvLy7zwwvn/j733jpLruu88Py+HyrFzRDdyIgGCOYkKVKRky5Il2d6z42PP2DPrs7tn7FmPrOMw1ozn7Ngza+/KsmVZgZJIWxIlSqJEiRRJgQkkwQCAIAg0GuhG5+7qULnqxf2j0EB1dVV3g9KOPfb+cArV9d4Nv/fefff+vr90GciV8eNhpA/fxaf/+L/wqU/+ER42uqqiayZf+fJX2T00zOLCPNFkmpIlMXHpLLpu8Bu/+Vt84pc+Qqo9wvjYKMl4mFJukZXsPOFUG6lUGkGAqlUiIClcd+AAH/nIL6AHFCQVBP+q8rLZ/LnRXF03AwMCriOgaSaeKyDLChOXpolGE+BLzI2N8+xTR8ktLrN9YBuWV/PysG275XrSbG1u5hbcDBQ047nV+UalZ+O5WqUmZS9/X3EvlpordtdY1xquRRDXgq16r6ir9Rqtahvz3bjmrbZdD8w9z7simF8pR+Na2dwSfIX3BrDYWLfVfW6UkVYBeStgUQ/i1gK4q23X81IPcBv5EoT1Ro5WtNk4alVmlVb36d3oPVr9blRYNANuWwGvreJVm/HWVPbc0vVtDbz6NQ3Eupobld8os/WGfG3Q8JVnvxWzaWO7DeB1NSnbzxq8Cq0sQv/YyLKLPzWjm2oQ6sqsPb8xGG7e1sbsNgM+jc3UT7it6m8EGOta2pCH+vuyJt183bfzq78PgPi531/D92bAuV4L1up8vRa5nn/f93EcB0lU1pRpti9s4zXVA8/673pq5HqdxqvJgiFtod16jfBWqfH5NW62LsvymriQGjUKJev7bbYYru137f2WZRnbttfVWW1TlmUUx8MWfSoiGLJKtVTG1EQUx+FP/vAPGWhLc+eHP4qAwuzMIl/64teYOfUmn915HfJzr2HdeohvHTvOnXfdTHt7mNnZSTTNRFUjqKrGqVOnOD8yyj333MP5M+cIRRTCwTAXL0xw3W0HkCWZSsXG83xmxifp6u1GMXTyK1ni4ShnR0bYe2Af1WwOWZfxBYV8rsCp105xx603cu7cGfp27ub1Eye58eabyJWKKCiIoo+kiFSrFdxqHl+SQVQIByM4lk2pXEbCYml5kb7BIRampwnHEswvLBI0dMLxJI7rks3NEw6mmJ4oo5oux54/jqZrvO2em5E1H8EXycxmSKfiyLJE1fIYGR1BN0z6+gaw88uMjk2RSKWIx0NMTWdoS6fJZpcxTYNqpYyLQygUQdeCWJaNrsusZJbIF/J09fUyNTpFR3c3X3ngQT76sQ+Db+O7PqVylVAowNjIWSQjQl9vL4qu4LoulWoFVZIRUDjx6nG2b+9BFEPIiszoxVGGdwyD57K0uIiiKKQScUrlEouLeWLxCLqugeAzO36Btt5hPCQyM5Mk0tGaO6vrk1lYwvdBkqGtLYUs14BA1fFxrCrFfI5oIoHj+siqwuJCBlM3cCwbTQtz7Lnj3POu67EtF0PVyJcc3hw5T3sqRlsyjO1LTExM0NbWVntXXB/Htnjm6ae55953o6ku8/MLxJPtTFy8xLFnn+bILTfT3d3LM888y80334prWQRCQR577IccuuE6kskEX/rCg3z0ox/GdR0cp0oknsZzHJaXF4lFI3gI4NtMXLpAJJomEIgjeFUs1695EWQWUGSYn8/R1TsAEsiyi205vPTCC+zbs5d4LMZK3sLQTaxKhVDEoFLNUi5XiMdSeG4tcc75kbPEYglApFSsoMhVBEmiattEY0ly+RX6+vqoVCrIsszFixcZ2DaMbdtossLo+fMMbNuGZVkszM7iey7t3e1oas2dOhxLIsgqgufza/0P4l/WnE9Nz9PZ2Y5UC/nj43OHOTyfJqCrfHnpKZ49sgx4eH5tnnAcB0EU8ByH/+3hHew9cANffeAhxn7HYExZwnFdRFFAElUK+QLgc9NiL/ecC2B0RAAAIABJREFU3EY6nWQ6sMIfd32/Zp0OhSgWywhCLWmUNJPh3714kNAffoqF+WV+9e/+Ff339RKOhAABy3KQBQ/B82nXe+n44SB/+l9+jxOvvsrHXvsXmIaBqqosLCwQTyTIF3IInsdv7vzXvKv9Hk7PneFF/xW+v/I4TqVKsZBDkVWi8XgNGAnwycHfqc26vs9fT3+J6eoc0pV1SQDfQxRE9mm7eU/Hz+HaOkvSKH8z/iUE18YHHM/j3MgoVasKLsSeD9GhtvH+97yfv3j5v2L3eUQiYcqlIsmObuLRGEgCaTnJL3V+nN2R7YRFk395+rcuL2C1mDmvtgES+PCJrk9wR/x2AI4uPc1Xph9oWHxWJ3r4q32fubySCPzx+f/IeHmicakC4Pb4bfxK1ycAGC9f4o/P/6fL60mdHHO53U9u+z/oM/sA+MrkV3l6+Zk1na9aUnv1Hj61/ZNX1pxfP/UbTfsG+KXOj3NX6k4Ansoc5StTX21Z9q/3/eWVvz99/j8xXr7UcPk1Rm+L38qvdP8SgiBwqTLBfzj36VqBJiLVJ4d/l36zD8/z+Mr01zi6+PSatj534LNXBPbGNXcVKDbm+2gmn24EjFbLrAL4+vjPmtywXv5YtfivlSMay6z9fUUXsWpJW5PJeu1+8avUKIPU34J65cDaftZ61TXL7lwPpFvdo/p+69tt7GuNgaGF3CgIV2O5t9rf2o42NpA05a0RYzYzBjVUW61zhQdvPa+bYZ417a2WFa/dILfK25X7JV2NZb6CB6g9x1W5VlG0a+5IvmbO/onTtYD5f0jg30yr1+z4T9vutZ6vp81e9lbl60lVVTz3KoDaaqa8awGOP2v6WYyLxkVv9dqb0VXNW2sw3zopx1qtdbVabT5Z1ikXLFGpJU3xbNxKCc13yS5aPPytb3H4lru47aYbKbo+zz9/jIOxTn4l5zM86+Ca0zgfuBPRDLCnsBNJNsjmLGLxTuyqi+952FYVx7IJBEwefOABPvyLH8U0JRzbYdgMUsqWKZfLpNJp5hbmGRgYYHziEoPDQ8Tjcc6efoOuni5KlSInT55k78EDSLKEZph09/Zw/NXX2L9/L1a1zLbBPuxqmYCu4ng+dsViJZtHwCeZiOILIo7nMTc/TzKeIBDUmZmcp72jh1KpiqLoKIpOOt3OC88/z+Ebr0cSdRQxiCiAbri4rkVvd0fNklMugSdhGAHSbW2Ikk/FqiKLMkODgyiqjlVxKRSL+AKk0mlWlhcAF1GEaDTGDx99jHe+852oWk0gmJwYp7u7h2rVolwu09HRiW3ZyLqErErc8467ETyXUDBA1bYwAgGqlSrBUAw1oOM4ZbBdZFlG0xQ8u8Zzd283lu1y9tyrdHZ2sH37NiRZxHN82trarrioKopMW0fNUnVpbIxt2wbJFQpo2SUMI0S5UqJSNgiFIkxNTeI6PhcuXOTed7+diYlx2traqFbLCLKKaeqIuHieW0tg5Doszs9SDQTo6e5BlAx0QyabzWPoJmfePMvQ9j30dHURDptUrCK6qTM4OHhlDC/MzdGeTvGud74dy7HJlSwCRoyJS1NYVoXrrz9IMplCFEWSySSKLIFbwrF93nbP25Ekk3y+wnve/W5UVSWXKxEMBhEEUNSaG2c2lyMSjVGtOAz0b2Niao5EooP8Sp6y5RCJRFhZWSGZStLd1we+wJe/+GU+8IF3IwoCd91xF8tLGQR8NF3Fdiw+/4XP8+EPf5DOni6C4QTFYplL4xcJBAJ09LZfTtwVoK8jTTFfQpJVZFmhVK7Q2z+I59fcoatVi6HtOyhXqmiaBsDQ7p04FZtcLouiyjiWzdT0LNFIBF3VwBPwPZ9f73/gyt6bgiDQ2dGGKPg4tgPAyRMnuKnnPViWQ09PLwgrgIBdrSJQswrXDAkSw9t3MTU1ycd+8ef4j96PsG2farXmIu/5PmYgAPhIOZme7k48z2Pi0jhKv4qqKjiOy8LCAt3dnUiXhUnLqmLbNp0dbRw5cpgleQnXcXBdDxBxPY9qsUTRzXLkxp08/ezjJFMROju7WJifZ3Fxmf7+ATJLGdKpNnLZHLqpc/7CKL+88uvgg0VNkScYNcWulJ++Msv+xhu/dWV+zDt5HN9dpxB1XZcT7km+OfMQ5VIFFxsxpOI67mWkB16bVxvvgD3kMC3M8RfVz1C9TcARfJalIm7EpeCPMbYyBoAsSPw48wS/0vvL/M62f4frr8YMutQAIZez8jaLm2xAl02Wq7XC+nrF+lsln4a2mnhEXfluYLORVhXt65jzr/wHrFWwb6Twxl+7Xq66CDfrv5n1dqu0kWzSzCJc/91M9nFdd80esRvx1ug1thFw2UxuW81ZUN/uKl2LtXUjahbWVm/EeCu7PTSjVvytXtdW+rpWefcfijY2dF2lLVteN+mn1TlBENaMoWtu/38Uy6vtlGpT0hb4bfVwtqKFaNHiNZS90kPzoy0mzxpvjS986/obuQ2tp43LNmq6mpH9q7+PAMifX2vd32hhWNWS1WeRa+yzWZ11WjFPWNceNF8EtjKBXNFQNt6HljXq+GtyrJnWdCMtanOr+8a9Nx+7jde/3l1pIwvxahv1i10rK3n92HA8GVkSMEXwKmV+/PiP2HvwZlRdo2xVCeg64jceY+H//Cs6JY1cKoawdwfBbZ2US2UmJqbo6uoEUUaWwHMdJEnihedfoL+vn/HxCcLhCCdOnOAjH/kwnmsxcu4cu3bt5sSJU1fifg4dOsRcZo5EIkGlUqFQKOC6LtFYCEnXkX0RX5KwyjaWVSUcCiJJtfE1PzONoiqkU2kq1QpKQKdUrKLJKq5TcwP2cShXKsQTKbLZAvhVgqEwuVyBgBmsubuqOmMXLzHY38dC5hKRUAf3f/lBPvqx91GtVggGw5RKVXLZLJ7nkkwlmJmdo6dvAF/wKFaK2Lkclu2SSnUycv4Sne1Bjj77Ih/6+Q8j+A4CLkuLK0RiCb75ze9w330f4szrr3LgwD5WVpbJ5/MYwRDFXJ5jx15g1749jI6OcO+99yIpMsvzGZ75yVHuff87EMQa4C4XS8xnJtmxYwe+L5ArFJAvZyxeWlrGcRySqTiFQpFwJITnuriug+eLlIslwpEwkiBQKhUQVY1quczoyCid7R2IskAwEqVcKhOPRQCBTCZDNBpHQKZQKBIMaVQrFk8++QQ33XyYWDKJiE9mYY5oPIUoK2BbVxY3y7JYyZZob29jaWmJRCKOpunk8wUq5SoLmTm279iG79dcfhcXF4nFYiwuzGFoCtFolHzJQtfCIAj4ogduBdcuI6khFFkhm8sSDocQHJ+z586RSKfwJdAMnYgRwrKqLC5m8DyXnv4+fM/HdVxEQaBiVQiaJpVSCVnVyRdKTE9OsGvPPsrlEhI++VKFWCzGyRMn2b1zN9VyCduuomkqPi7ZfI50Ry+25VAs5IlEAohaEM91EMTatiLgY5VdHNdGlkU0TSW7kicWT2JbDqLk4fnC5Yzg3uX4yVrWbw8fSVFwPBfNl5ibnUGWfKxKiXh7H5IAqiyRyxcwgkH+5eCDCAL8ycvvJB6PkV9ZplKpEAyFWJhf5o03znL3PXdh6iqWZfHGmXPs3jHIubOjDA0Ns7AwT6q9Hd8TLruHWiiKyKWL03R1d1OpVpEVmeVclmQ8wUsvvMju/XuZuHCJvr4+VFXBMHTmMwtEojGmJmaQZBtNNUg9egxhuJ/y5z7F17/6Fe5929vRIzpT05coFSv0dA8ycuZNvvGVB/j0Z/8UQ5IZmxhDk3Xakt3c/8Wv0dXZQ/+unXzh83+L49bmwd/7D7+Npmnc+Npd/EL0Q4TNKKVintmZKYa3D+Mj4q5iPtdDEqWapdOxUUR4+YVXkESZc+fPsnffHk68doo777yHp544xvbtw5w8eYr77ruPp556iJtuvpVorI0XXnyZ6w8d4ZUXj7Jj53YURWV+bhEtWItFjkQiTE9Ps7Scw7VtBvq7capFHht7AmXR43fTv8mv/ItfI18oo8YT2LaD43h4fi2WX5bcde61a9YE8er6Wm8ZWV3HVpOrtaLG9e7KmlZnDVq1tHmOu2YtarQYNfWQagKEWlsN13uDXavL60YyRKsyq9+/duJf4ePz1/v+cl3s80byy+p9tm27qRvrVu5L47lGxXTt+FoZofFeXS7dcG1XLcX11rN6y6sobny/Pc9viNddT41uuY0egRslxdqSvHd5bNSP5WaW1s2oUa5t5FFRlKvylLee3/rnuxXLa1MeWlheG89vZs1v9W5cwQSsl11bye1XG21QwDS5ntX5BcC2bUwzeM0g63+YmFfvv1PMa4sW32K9a+hhi+B1bfktt76l/ptPZDXyL+/zKt5395Z5qW+zWbKfVrROU+xvrd5WeFptXxDemk6pVZ1Wk+rPipq3tc7ReX2JFqD16vHNF+rV8qu/RcHFVGVyC0vcf/9XufWOt13OTlok+P1n0f6XTyOePk/g+n28ZAp03H4jnqGCD/ff/zVuueVWNE2mVMxRyOV4+uhR3jj1Ort27sJzXXp7upElmf1792EaGoIgoEgyAj4dXT2cPPkavb3djI1dpLevj2KhgOD5aJpKLp9HESUkRcZQNGzP5cTLL/PmmdMMDQ+QySxQKpaIJ+JUHQcEkWKhQKVcolS0OHNmhCeeepLrrrsBVZYAF1FSQFJw7SqioqNqOrZVwXNdFFVD03WWl5colYuYgQgD2waRZGrxs4JApVpB0zUKhRKJdA0IG0YATVWQRYlgMEA0HiObyxEIBpEkmM8s09vXhyD4KKKALMu4nse2bUMgCZimho/A5NQ0Y+MTLC+vkEwk8X2fQ4ePMHbhAr19vSDAYmaZYDBKZ1cHsqojSCKKIhEwNHzPZ2x8AlGQUGQV166QLxSIx+N4PkiKgiSITExMEI1EkWQZVVERBZFSqYgsS6iyiK4byIpMR1cXnidRKhZJJhOUKxUkCarVCouLixSLBZ579lmSyQQrKwVOnDjJnn274PIetNFIFElS8XyYn50jEo2BKKJoGpFwCFnxEdE5ffp1QuFILXuxoaOoMpquk1nIEAqFiEQi+L5PIBjEdV1K5QqBSJRvfv3r7NixA1VX8V2bfHYFVQsgSiKKIpPLZdH1GBfHxhkc7GMxM0s4qOM6AoqiEAqFiURiZHPLKHItS7Miq0iySLFYZHFhEQSRaDRKJBLBEwQuXLxIMGAiIVGtlhkc7MX1PcbHL9Dd08NKPsdDD3+HVLoDM2Diuh6pVJJcbgVV0/B9r+Zc6blIokS14qCpGoqsIgoyiiYhSwpPPP44XR1JRFFGlkRcx+ZHP3yU4aGhy4KxU9svF8Dz0HUN0whiVRwC0SiSJCCKPp7vomkqC36BfjvODe7A5fnCJxyO1BKWRSP0DfRh2xVcx2L0/CjJVArHtVE0vZaZWFMoF3N84Uv309s7SKGYB98iHk9SqZSoWhUkWSIajdfGa08PkUiEcDCIqipIkkS+WEAURXTDIByOEA4HsG0H/dwlvGgQ5ePvZVtXG4YMkUScublJDh+6npnpGcxglF/8+Y+RyRV5+YVjfPH+L9PZ3sWrL7/GPXffxbe//S20aJgjh49w5IYjHDxyhHR7lIVqhr+Z+yI3xY+gCiqTk5N0dnUgKgqCINViuDyQBAFFlHj8sceZvjTG3PQUkUgMMximUqlQtWxuve1OvvHNb3P4lv3E0wEGh4Z4/vhPuPmmW5BkBcu20U2DVDJBqVQknU5TKJVRVIP2tjiOU0uudvzl42wbHibdnsLzPaKxOK/PnsFaKrLy6CSf/Yv/xrk3TqDYZSbPnqErlUIP6oiKgOde9dppuo40ALDaStK4XcrWlatX/m4ApqtJ8dZWXFumGRDZbG3a7NxGa/FGMsm1AN5V+u7cIwgIfKD9fZteS31Sqka32HreW/G/+T1oDXgbvzcaH57XPCPv2md2tXxzfreeyLQZeIXWW1tuBl7rea0HcPX1ttJGfVtXQftVILcK5lfBcS079bU9t1qBLfCwyYHVn5spYDZVgDRpZ9N7vekB1lh0BUFAlpU/3LDRJvT/g9ettfgW611DD//Iwav3MwKvjQtis4WmfmKoHdxY69Oq71b03wO8Nptom2m+tqrxuxbwukaz3aL9evC6+lw281RY/W2IFg988YsM9W7juhtuxxYlpIceIfRv/wz5zCgvKy6J970TuS1Fe3dtX+DZ2VmCgRDXXXcYXdeZmZ3ih997nOHBnbgW3HLj7ZhBDV3XOHXqdVzXY2F+HnQJUVEwQwHmFucJhUMM79hOKBJk9OJ5tg0NMzs9w5uvn2Zufp6D11+H4IDtulTLJcrVEgM9fRiGQrGYvZyN2MIIRtACQSRRRld1Ji5eoLd3iGSqg13792JbNoVCDsF3UTQNSdERfR9BVpFlgUJ+mWg0iuv5OJ7Dyy+9xO69e3E9HyMgISsq42PziJJPKBTCDASpVB30kEE4EiW3nCMUMFlZXKJYLhMIBVB1g/nMAu3pNOm2TlzPY25+lkjAwPFcXn31VQaGBqhYJVzHIpvN0ds3SCyWpLuri6NP/YTb77gD23XYPjBEuVzGME0cT2BsbJKhwX4qlg0iuG4VwfO5/ytf4/bb7kRRdGzbZW5mglQ6xUImQygcxQcs2yaXzSH4oKgqTzz5JKlkElVRWFzM4Ns2Y+NjdHR3Mz0/R8CIoipKLeZRkMhkphFFgfb2Nmzb4sabbsRxHNKpdnp6ejEMGV0Po6say0vLeIj4SIQCQc6eHyHV3oHrw+z0JOXKCsFAmvaONLPz8zz54x/T39uDrCoUKxWCgQCTk5NX5grL8QiFw+QKBfRAiHg0QDgSRJREXMdCUSR0M8LCwjyBQG1fXE+x8XHQ1QCaGMBUYyC5LC0tYRg61aqFGTLA9wkFQ3iux9TMBJFQlHAogqZruL6LbTvMzWfo7+tHFEWWFzIEAhr5Uh49aBKLhkAS0c0AO/ccIJZIoakysqJg2RamqXPitVcIBQ10TatlLfc85ucvIYk+pqnX3l/Rp1KqMtjfjyQ5VMpVZElElkR2bB/Gcx2KpTKhUAjJg+ziEmWrhKZo4ImMnL1IsjPJxKVxZAF0rfbsdufT7M6l8DwX27FRFZ1CsYwoK6zks1SsCrFICKtaJharbT+lahqhUJRcPs9zx55j764htg3tRlZNqpUS2aV5HnzwYWZmFpAkDd8XUSSRcCBAqVDEtm1GR87R3tbGCy+9QP/gIIZhYts25XIF33eYmpomPr2IsL2XpZv20pmIcvSxR5mYm2Xbtn4eeeR7XH/9Yc6cGyU7l+OJZ17kDz75Kb7wpfu5ND5Je3uKb3/rIYJBjfs++hEigSCf+cvPcuTWWzlqPcGvnf/XdGod7A3vRvJlJFkiFA3hXxbmBA8uXRzj5Guv4Vo201NT9Pd0M3bxPAeuP0TVchCQCEXjWFWXffsP8ewTT3PdgX1oQoTJ8UsIikwsnuCxHz/Oq6+9TN9AL2Oj45ihEKdOv8HA0A4UH15+6RXi8TZ0PcTLzx8lEY5QyObp7uohEAoz2j9JuL2PNx+/yPzcEvbF13nxqSf50aOPcGH+Ejv378DQwuvX1LUT/br5fhW8vhVl8c8CvDbzTqpfi1rJAau5IhrLt7qOVtsINfu92lYjv/XHT+ZPElGj3J26q6kHVqv+mm2VA7TM/tuKv7Xntg5ea3O1sI7fGg9yS3mt2RhpVW4zahwDjePgrYJXQVgbt9oMHL8V8NpoeV09pijK1bb+kYPXjVyhrwW8rnlfWzGz5tBVHiRJQhSlf57gtX4wNhuQrYTznx1tZdDXg9P1L/Yqb2sHk7/mfG2wNZuYa4k8VsuufxEbJ5eradYFARpdSZpRK/C6VdDVaj+uZsmX1vF/eaPn2iF/S34VGy2A9S9v/YjYaMFsBN5X6tQOXGnLhzXZEVfbbZWBcLNJ8+pCcHWj+6ufRr4bz/usPvvGRfYqP2v7EwQBGQFXlMAXEH0BR/WQXYGwpPJvPvoRhndt56ab30XO9imcPE701/8I+eWznAwqhN9xJ2I8RigUoFQtI6sKzz39DPlsFkkSiUZDTE9NsJJZYu+ePcwtTrPnwC7OnHmd5196hQPXXU93Tw/VSpF4IoLggaFrnHj1NZKJJPFkmlK5jChJ9Pf34zrw9W88xPvu+xCd3V1UrSpaSAbXR9EMjh8/haFrJJLpy5lpJWLxGOVSDk3XKRSLtQ3sRRlVk/G8KvmVJYyggaaoGHqYBx74Ojt37mIxM08kHAXHRRFkfFHh+eeeIZ1Ksm1wiNmZCQxdZX4mAx7E40FkWSYzM0MoFmJhepZYNIqqSuimAjIYAR3TDNXiVCWJoGngI5GZm6C4sogq6ujxINWqSH//AKJgUcoW0PQQc7PTGIaKY1UxgkFc3yXdluTVV45TquTp7OpgbOwisViY/v4uJsbHSKXb8F2XUqHAEz95HlFW2L17J4LgIcsi33joOxw+eJjFTAZVF1icm8N3fRKpJMFwELvi1/aoNQ0WFjIIkkIkFsHUNaYmppgcnyKRCBEwFDRNwRUFYvEEqqwxcfEiyUQM17Vqe6UuL+A4FSKRGKVigeWVDIlkHN/1yS6vICoC6XiCC6PnCYVDhEMhwqE4uewSuqYia0Ha2tuJxqKYhkYoaOBYFo7jEo/HySwuEQknEEUZ0zBRZZGFzBKxWBzX8SiXLUbOj5FMp5mdnqatLY0nyAiexPxchkQyARIsZjP4vsPc3CyxaIIzZ0bAc7GqFgEzQLFYJBpOoKoaC4vzGLqJKEiX44sdnn/+GAODg5jhELKm1bJeV10kTUUSFaxKFV1TkCQBSYKFhUXCoQgLmQyKEiLRlgTZxHFEBKm2xY+mBbAsC0kSscp5TFPH9lx8SUeQPUQpgCBJ+IKH40mEzACubbO4tIhlW4QDUaZnpplfmCUSjxAKxQmFwniChyQpCIKMKMvomka5VEZwPJ555iX2792Da1Uo5/JEAiGWFpcwTJNyqYIq61TKBSrlIiCwb+8+XF8hFArgOSUkwSOzsEhnzyB33nkHqXScZCqGKCh86ctfoa2jg2KxyMDwMEgyb5w5V9uqR5V57tlnURWJUqlCNBbHXMwj/8Yn+Pd/8eds376P7XsPo4hF2pJBFEUlEGtHwadveAAEn3y5wvve915sx2f3nkO4vsqHfv7jjJw5QzgWx2qr8ufCf+NbC9/hXcl3cFviZlzL4uzIado62hAkBUUUOXv6JOdOnyG7vMzYxYvceustyJpJR1cfP3n6ODt37uf8yBjbhrfx48d+QltbnCd+/EP2HdzLQiZDV28bmcVl0skEL774Iju27+KWW24jGIgyMNjL+fMjHDl8hG9+4++JRMNUqhaJRJxQUOXi+CRdPb10dnfhCTZByaDH72IkPkLxvQ7VQxLLnsFHf/l/57N//vfcdN2N/MWf/CnHnvgBd918mL//8t9y8/UHKRPBFyQ8bFA8RO9yCI2/KqWsXytbyVeNbpdrt69jTbu+t95ahdB6m55Wa2MznhrlvFXZor58M2rqtrmBUN+qz9Vzdybv4M7E7RsCuFaK7Xr31sbr2YwnWJvN2HXdyzLh1a1l6rcGvMpb7fplubZ92xqxa43cfFX+WnUjbiarXm279rkqlzbbak9sIo+0BsOr2wHWZNZV2WVrALQZaL1W77h6mbLZGGy+fVVzo8ZGWERo+DSFFw2FBL+hzibXUf/dyN8aefXKv7q5wQd8H1GoKaPWHduENwHqytQA8j/prXI2A6//sLRV8Lp5mY0m69UyrWJMan9vpe/1MQ2bAfyNLK/XQs18/ptNChs30vwe1bfTSkO6EbUCqA0XsCV3i7VVfjoX4tp1NcscuPVx1wher/K0FgSLoojny9SmqVrKD8QqGgKi7SJaFnpcIhxJojz6POFPfQZvxzYezs1z+/vfC6KPYWoIssL4+DjhQIB0PEG5VGbq0kU6Ozt46idHaW/rQNNqyWl0TaO9rQPfgcnJSeKxON//4Q+4/oYbyOWydHZ2ksvnGBgYwHEdAoEAlUqZubkFIpEIN950I8VCiVxuhUxmDkUV0fUAsqwyNTVDd18HrucxcWmSzvZ2KqUSuqpi2Q6KrGCoSk0AL5epVi2SySQiNVfMM2feYGx8nN27d3FxdIx0WztvvHEaRZHwfZWXXjrOzh07UTUF3xcIBiKcOHmadFsbwVCQ8fEp+nq6QRZIxhPMzy7gOi6KqiIpCpbjsrgwjyBCMGhi21WKhRKyIBCPJXjttZMMDPbxtfsfZNeOHeRWMhRyRRLpOPFYgkAgSCFfxAzpdLSnEUWBUChAKt0JgkQq3Ybru/hAPBgAUcLxfRRVo6OtDU1TCEeC+Dj4rs3BQ4fRdZOVbJZQKEIgGEQ1NAr5AmYwiFWqsrK8iKaprKys0N3ZjaoFePCBv6NQKBONJrGqFrF4nHKllvxrKbOArusABENhzpx9k3RbGklWiERjOK6NaSq1/WYNk/n5DONjYxhmgNmZOU6cOMW2oWGq1SqLi0tEIxHm5+cIRYOEQybZ7BKiKLC4sIhpBjBME0GUiEajXBqbRBJhamKSgKGzspIjEY/jeh6e55JKpXBcj872FIXcMtVKmXy+iCSImKaJ67gYhkEwHCRfyCOKMslkmmgsysrKCmbAIBQKIEg6giQQiUXxEJBkDd93UVSFbYODIPhIkowoihQKtS18llYyNRAuioiSjCiJ2FWXSDSG7djMTM/Qu20IQXCplCooKAiehyTV3ktZFpifm+Ts2XEkWSEcieB5DoIAjgUCHo5bxbU9JNFDEEV03cQ0g1h2bX/dtvY2otEY1arLQ9/6FooskUwmEASfH4w8jR9XiPkGesCgq3MAx7E5efJVBgb6mZqaoqenB8uyCIejeK5Qiwn1QZBE9ICBJNoICFStmuXUME127NgBuMiKRLFQ4Pvf/xHve9/7SKZSnHnzDOlUnGAwQDC9SnifAAAgAElEQVQQIhQKoSgy/f19LCxk6OrqIhg0EUcn8G+5jui+XfzPv/w/MTw0zHVH9nH2zJt0dfQQjSR56sdPsf/Abjo7k9x2+y189zuPcPz4S1SrFSKRINFolCO3HKHz53r4z96f0qamuDf5btrMBFa5RLGYJxRPYJgGOC4PP/Rtzp8d5dyFi7z3/e9n1549lCpVwuEI+XyBUCiCoQd4/dRp+vp6KJZKRONB9u0/QGdnF7FYBPApFgoookg6mSYWiyAJPoLo8fnP/y233HIb09PTbN8+xHPPHyOZTOO4DqVykZGLFzl06BA+DrIIi5k5vLLM8isLlC/5dHS1kx8q84jyA4QPKkwMLjIyNk3IMZk9eZGA5HHixcdZWqkwvK0XVAlbAtnd+lq2Sq2239lKAp01cobws5XffhpwskprQmRaAOuN+l+lRoX9ZjJOM6vsRgr1xuONfNdbBRuB1U8vj2x2bxuBezNZr7kVupUM3CivNJ7fCt+tFAqbGRFWy2zVBb3u6DXzuUkTb7XIlnjY2rNtXVYQhHXMbAWS/LMAr/WDrNF15B8OxP704LV+Aro66TV/sRsnyPpz9YtKI6C7+qI2LCBNNK2NJH3wbYgfuGvNsdYZbP01E3f9AG81Say6+jTGgTRee43na5+o6u/BtcTvbHSuEeheuedN+nyr1Kghvfb665/DWpDOumOu56H5LlRLSKLDn/2vv83ImfMM7tqN3BlHsrKE/vqHaF/9Ad69t+D39ZLqSKOpCpVyiWI+j6xqtCVTHH/hJXRdp629BpQmpqe45Zab6e3pRjUMdE2lXCpRtW0G+vpqe1FqCkPDw5RKZULBIJKiEIlEqVoWjz36YwxDIRYNk0628dSTT9CWTrO0uMj3vvswd95xOw9/+8f0D/ajaKBqLslUCl0zURSDhx56iP6BfnLZHDMz8wSDQWZnplE1g2x2BdM0kCSZSjlHqZKjp7+LG44cJLs8TyKZQjUMRFEilUrx9b//OjfffCu6bpDLZQkEwmQyS7zxxhmuu+4gogjxWIL52RmUgE65VEY3DGRFoWpXkUURz3XRVJ2Z6RksyyIajWJoOrlsjmg0Rkd3F6VSHt+T6O7uQtYE4okkyyvLaJpBqVgiFAqgaPKVrJPZlSzBoEm5XMQwTURRRpJl5qZniCXjWLaFJCj84PuPsn//fqLhAKVinsnJS7S1deLiU61UiIZCuIKPZVUAD0PXmZvNUKmUME2DaCRCpVJFlFW2D29j7/599Pb1US7miMTiPPnUU+zeuYNiLkckGsEIhsjm8iQSSQRRQFVNHMdF02Uq5QqxWALX8VAUkUQyxtGjzyEi8O53vwdJkbk4epEf/egxbjh8GPDRDZ1yqVTbs1eUCIXDPP2T54jF4liWRb6QRVUMAgET27IIhgKYZphisYTnuVhWhWg0gu24rCxl8PEJRSIIglzbk1RVEUSx9i1JxOJxNENHNw18r5ZFWFZklpaWLu+fC67nXnnnXMdBUSUEobantOe7iIJEpVLFMHVKpRK6plMtWywtLxMKhWveDqIPeLS1pZEcEcEpIDsFTr7yNLnlS6Ta+/B9n1KxSCqdoq2zF9MMUiqXkRUF13UYvzDFsReeZefOYRzbRVFESsUSgUCQubl5QEDVFVRNYW5+AUVV2Lt3D7pmMHJuhGq1yt+84xzPxS5xX24/M3PzxKNxBKG2ndbIuRF6e/oplSsUiwUALNviWw99m/aONlLJBBMT4xi6im27zMxk6O7pIRKLcPLEawgCzM/NkUqnEQSRRDLOd77zMAcPHkCSPAqFIpVylVKpxKuvvIKuq8iSRiQcJpvLoIzNkD/YSdeRYT7x8Q/S3h7m2eeOc9ORWxm9OMHMwiL7duxCUeHJp57g+Esn+eCHfo4jRw4TCptMTV2i4uRRfi3EA6W/5+3Rt9Hrd2EaGtVilsWFWVLt7UiqhiLCyKnXSKXS7N1/iH0HD5JIpvA8cFyfUqXICy88z84d2/jG17/Knj1DWBWb/oEBwtEQxZJFIhrEtqqoikIwEOaxHz3Kzp3bWV5e5vjLx3n1lVc5ePB6IuE4yWSCM2+eYtfOvbz00nFuuulmnn3uWT54331YVoUTJ04QCYc5d26USDhKe1uKk6+e4z033It3vkxwPICe04kmwug3aJzbN4UUaePb//UJ8qUq+YmnefjBL3Fkz/VExQi+oaIoyroEQqtrZbNt55olI2q1rrZS5tYE3avJnN4K6Nwo4UwroNLq2Ko82WxdX8d3Xf+N112fmGjVatoohzXer0a5trG9jXhodf31slQ9H/V9ryrFrw38Nc9lsrEsvhZY1/jZGFA2uzetedqc72bjs6UM16LdZpbxZs/jyjF/8zG4Kf2MwGuza2qWzXm17GZtNX5fqdMCvK65Lw28/LMAr/XUbAL4h6GfHrzW09WJ5nLNDSaqZgvI+pdpvctuqzaupUyzvjbjc3XCq59M63mv/7S6vmvTM63l4aceI42LAk2u9afroVXHb7He2sV5dbJqVJCskud5CK7FiWeP8tADXyRoStz94V9g76EbmZlZpDvWRvK3/hzhwgzevbfjhjXwwTAUBM9ncX6BpfllDNPgxWPHkEWRvQf2U6iWSaSS6IZONrdCbmWRMyOj9HR2cObMG1yamGTn7u3IqszMzDTBQICzb55BN/QagFBqe/22p7qpWkVWVjLYto2hm4xeGGVhYYHb77iNbHaZW245jKLrZDJLGHKQgKkyOTnDQmaFO992Jy4+gi/hIpJIpYhEIrx0/DiSJCNJEoFAgLAZQZBURElheWmF9mQbrl9BUhQQJWbn5rn55utIJlIEAsGaAKZIRCIRdu/ejSSD49aE73g8gqiq+L6MFtLIFXJoikxAU8nMzWIGYySTKUzTRBBEsvnl2jYikQgoMla1xNDwbhzXxsVC1QxUWUOWNCqVIo5TRjMCtffcFzh54jQDfamahVRVeeBrf8fI2fOcHRll/4G9+L7Ls08d5fDhm3jyySfp6uwgFA4iCQKmGaBcKZNKxMivLKCbBpLkYeoaSwsZkm1dpNJJXN/DME2WllcIR0JIkk++sIKiyTjVHLKqsW3bEOfPnMWqljADAVxBwDQCZBYWERUB1xX5wQ8eJZGMEjAifOfbj7B9+04QXSy7zM5dewgFAlSrFZazy0yMT3H3XXfjug6VSgnHEQgGQuBDxargCz4DvYMsLi2RSMZxXRdPlFB1FU3T8HARBRVZlggEDMyAgW1bNTdcXcMIBHAEGVlTEWUZx/dQVBWkywIbfi1W1vOYnBwnkYjjuh6yoiGLAp5rIYng2hZjFy+yuLSEoojouo7jeujGZeBqGHjY6EaQcqnK5KVpurp6sB0PUQLXrZDLLxMIBHCFEo6TZWU5z45dR1jOuxghA0nWUBQDX6glNVI1DUGQUCQNRZaQBI1tg33IsoChG1hVC9/3sW2bSrVMMplGEgUEUUA3THSjlpl2eSnHynKWtnQH30+/iShKvGtmB7FIDNerIog+iiwz0DuMJGp88Uv3c8/b7qJqlQmGTPq7uzBNnenpSbYPD+NUXcplj9Onz9Ld28PpN09haAadnd0kEilcx6eYX6FcKrB75w5UtfZsVFXlG1//Ju9657309vZiO1UujI7T09tFIKgiPP8G+vQKgY/dxw8feYz+viGGtg3yox8+iRmNsu3AHr74/3wGWfERkNm5/Wb+6NO/xz333INhalS0Iv+3/7e8br1J90QXuzt3EggYLM3P4FolOnt6cJCplIvkMnOcPfUyoqLhyhqRQITlpRW+9IUvceDAQRbmi5w5M8L4xTHee++7iMei5HPZWpxxOMzJkyMUCzOk00nwJZ5++gUOXr+Hjs4udDOIZfvcdvvdgMfszDylUoFtQ71kMjl27toNgkB/fy+vn3gFwYfzoxfYufsA8WQb+dwisWiYrt5+lhYXaO/sYSmb5223voOecB8pp42p5yeYH5oldF+UX0h8mJmFMKffnObV48eIBKq8MbFAd3f3mljRZsL4mlWlxZq/aSbSxmMCTWNUV8Fs/aeVi+9GIGMz+bC+fqMyvhEwNgv9WQWqq/38+qnf4Luz3+MD7e9bd72bgah6kNtK5qvnaaN42FbX2wpUXpsM2JrX1fteH1/a+lqby6VbPbbKy9b5Xk+b3cNG2opiZc35f2TgtZE2ekZvmTYAr63K/JMGr65r/UH972aaklW6FovXWwM0QsNnc2BxNW5gbVxBQ6k6nprzujpxXJ0w/bp6a69nfSxkI/+1v+uBYyvaysBvnPRb1W1Wrj6uY9P4jiZuwz7u5euvaRMFmscWbGQFbnyqTT8tgOqa0bCJZfda6Oo9Wc/h6rFaLMvVcbj6PGsLydUYZ9/3UH0QfAFRkPA9H0mXqNpVPM/DdRw0Rea3f/PfcNs9H+LWu9+LJ4qYRhzXczGKJdQ/+AzCYpb5A/0EYkEEz+f0yROkU22MjoxxfuQiHZ2deHbNdbR/aJB8Locm1eLnNFVDlhRy+SL79u3GA6LJFH0DgwQNnVdfOU4obBJPJLFsF8MIEgoaTFyaRJE1YskIphmoWUE1Dd0IoygqvX21pD3JVBJVVXBt+M7Dj3D4yA1YjkssHiUS1nCtPJoCRiSO61QZH72AJpuMTU+zb+9OTENF1lU8PObnZtEUDc8B35cQZBHBl/nuw98lGU+gGga+7zI/P0MhmyUcCWFbFcDF91xy2dqWOkggywqO4yN6HtlsAdvxCRgmMzPTWJUCwUgIURKoVkvMT2eIRmOEwxGcam2P1kKuQMCobVmjKj6O6yJJ4HsOtmWhaCqSoCBJMuVilkq1RCQaplDIEogkSbUPcM89d+BaZWanJkm3JUi2Jdm7f5hisYphhpBkCZcyhXyBcDDNVx94kIGBXnTdRBQ1NM1kdm6GSNBgbupSDQCGAkiiCvhoqg4O5AoVAgGVYiFHItmFHpBxXQ/BE1hZzhAKGpihGLmVFXzXxlQVJFlj+45hPN/CcSzMQABRkChbReKJGFbFZteunQiSSCAQwAiEKC0uU6lUa1ZPYOTMWVIdCSSpluXRc1wi4SCi76PINXCmaiKKKlOqVlH0AL6oULUtZLm25bkmgWf7HD/2Mm3JdjRVxnUsSsUihm6AX4tpT0QiZHMZVEXDFyxsz8d1LERAVjRUTccr2USiGvgSglBrN1fOEdBq99KzSthWmVQ6iaqp+L6LVclhOR7BUAxcH00KsrwyT7ItiSDohCMxJFXBc8v4eCCqBDSFarmCLIuIkke5UmR+YR5TD3HxwkVk2cV2XEwjSL5YIhyNYGoqpWIRSZQRRBHPhWKxTCQSpau7E8M0+E70BKIgM/ScSrq9jROvvEoonGJhcQ7LLiKLIoduOEjlcsx1Ll8kFNRYWl6gb3CQxcUCmgrhcJD2jjSmrhKPx3j2mWPs278bz3PwPJdoqg0zaBCKBjHNIFMTMxSLZe55+z0g+diexfPPvMDBvbuYmrzEyLkLdC7kKesyc3dcz85tnZRXJimJIR757lH+7D//X+wb6OWWt7+L7v7tJNM9XHfjdfz7f/vbDO3czncLP+Q/ZP4UR/C4O/xOhroHAZdsPoscVEmmuxAcjZX5UabOv4BrO0xnfJ5/+QS9PW20p7v5wfcf5bZbbyAWCvPy8Z/w0V/8OfoH+lleytLd1UeuUOSFF59leGiIro52zp9/k472AR75/uNMz40z0D/EyMgoR48+xQ2HDrG8OM8LL7/Kzl07iMVjaLpJPBYlGDQQBY/vPfI9Du7ZQTKVJhCMEY2GWZibZOLSFP2DwzUPhGCIx3/0GHffdReOU0EWfaqlEulwnM5qikvGNKfOjfDG4xN8/vOf49C+XUy8eZZTx57lqe9+g8PX7SeUSFIUNATHQVFURM9D8nx8qblL60ZurqvUbDuSK+uTuD5kqZU81zLesFlMXSMTng++fzn+9vIexE3W22agt357mMZzjRbN785+D0GAD6Tfd5WfJh6C9deyqlReBfHNZNpWQLqefL/mFbGR/Hv10NVY02uVfz3PvdJO7btmRb3aVu0JXJVHofEJrcavNpOdr1qD6/luJmm9dYB1LYC9lRLFdd21+7/6l+Uwv+7T0I6PS20Q1j71IXvNnnlN3t1cLm3G90byeTPQupHs3Xi8Gb9Xzm3CW63MahxtbU9xSfqnDF4bLK/Xpin66co0qXXNNa5Fw7NxubVJEpq/4Jv2sObXRhPiKrl/9Ff4PzmOeOfhdfVa/b4WqnfZ2bSdpgmb1u43uwpem7l51PO7Bsy+Jc7/v6dW2tr68zVa69bVLBmWK4h4AniCA3iILkTMIN976GFE16ecL3LvO96GaoY4duwFdu7cwcTYKPHvPYfxu3+OEDDgzkMEo2Fy+Sxz8wvs2LUHfJ9MZpmBwQGmpicZ7O/nzNk3iScTRMJhXMdhdHSURCJBPp+vxbGu5Dj75pv093eDb7G8tExPTw+qqqGqOuFIFEEEXVPJZnMIwCuvvFZzrTUNVFVBkxQW5hdIt6fRDB1fEKiWS+i6yfYdw5cnf5exsXHSqTaWlnKYZhh8KJVKl+P7BLbv3IksS7zx5htEwmFUxSQYDHP69Ot093QyMTFGMpVkYWGR3t5+YrEYqqKiKjKu65BKJ3BdGZCwbQFNC1EqOmSXFwkFTXwc8G2mLk3Tlu5AkhWWV7IEQiGWl/JoRoCxixfp7GjDMAOEwhH++nOfY//+fTiOzUsvHefo0Z+wb/8eBMFHlGRs26FSsahaNsFQgFwuh+97JBJRAsE4o6OjRKNhOju78XzQZR9D/3/Ze+/gyrL8vu9zc3r35Qc8xEbsPD3dPT1hZ2e5QTMbZsldakVzSUqkVCTFYJdLtssu2pZNs2TJrrLlKllakaLI5a604uY0M8ud2cmxJ/aEDtM5AGhkPDy8fPP1H6/RDaAf0OjZFass6odCAffcc84999x7z/l9f1EhnUlzdW4BU9aJ4wDfj3j9rWOksiksw8DQbaJQpH+gn3QmDQhcunQBTVd46qkXOXTwEKbZNpNtm+fWIA4J/BBdM2g6NdKpAqdOnmVwRw+6bqIoOqpqoOnGtUi6Jo16g5WVFXbuHCMGVFVFEmUWF5d54vGnGBsfxfc8kskUsqwSRhGmYeD7PoIgsFQuUW855Lu7QIixEgaqkUBRNJqtJrKiICoKkQAhMbKqEAsyEUI7tWXkE/oemq63v/24HTQFRabY200QOkSxx8L8DIWu4rVvCRzHQZJ1TNNAllQCz0E3LFRFRpYkSqUyqWyOTC5Jy2vi+QKqquF6Lgk7wczkBPNzc3R3ZViYm+PYW28xMjJKZWWFdC6PqhnUqzVsU2OlUcVK2BBbuG4LUXYJYonAd5FFCUUSiQURURCRhAi3WUEzbTKZLJqiUiwWKJUW6erqJQwFXDcgmUxSr5YRJRFBFHAcB1lRiMIQ33faeYN1g0eSxwnDAPsHZXbu2onfbNLV1YuVMtra60QKx6lSb9RRFRXDtPjedx/B9yP6+vpJp9MsLS4gSQqiqDI/P48gCBw4sJ9SaZEgCLk6NUsqnUJVVDzXo9VoIQoSx44do7vYTaVaQRBgz+5RiEMURaG3fxDt7ARRykL+5U/x6isvkM1lSKd7abU8fue/+m32HNxNtpCmUl3GiVx2/he7+L78OH+48E95/uqLHM4c4oGuDyPSwHNqBJ5POplBbWpcufAky4vvIHouanqc7/7gKe67/yHOnb3I8NAIiJDLFzATGq4f4DRcXnv9DXp6iuRzGSQJZufmcR2HPXv2Mjs7y2Kpxq694zScGh/5yINEQZPx8VHm5xd4/bU36C72cs+Rw3hOkyj0mJ6aIJvN8/JLL/P0M88yMDDI+OgQqm7w5FNPYxkmY2MjuEHIsWNvc+L4cfp7enjgIx9CVWXq9TovPP8yZ8+e5/iJ4+TSGfYV9nN68Cyf+9ufYaewi6VSjTfePc3DDz3AC089ztGnHmX6/TcxmvMM7dlPFEf4goQvyghxeNMetMoz3JYm6trxdW2rsF6Lt1mb1bK15dc1pZ127mtFq+lL1mKkG0BiPX+wlhfoxNtsx9LsRwt/BcDPFz57vUy8xvttBJWdgl2t3lMny7SN499Mu7nVM9lY/EH4ta14xbVKiM3HsLX/6vo6H3yc/7Fo9d5Wte43aPMxbuTRbrTYOtrvB6XtgFe4WZmzFe/9s3weG7+t/6TBaxQHf7T6Qt/K13WjhGRj+VZSg051O5xdV2f7mtetaXvSoO2/QKsL3M2BA9Zfr9N11y6ocRwTfe0xqNQ7BmzaKKXc7D46STPXnuu0UK8d5/VjxA4f2cb3oXNfW/XLhvF1Gn+nsa3+Xa8R70y3C/Bv9d5sFp1649/r9yopxLGPoSjEocPRF16jvLTMvr37yNppVpZXKJXmkVSNsd5+3viv/5DDX3sS8f1LxA/ex3JXllhoSx1lIUJWdDw/5tKlSxi6SU9PETtpsji/yEqlQv9AP48+8ggD/QPk8jl0XUfXdc6fP8/3f/Aon//85wl8l2qlTDabx3U8RFFmcXEJ0zRAiJmYmGR0dBRVkRElBdu28TyPKI5QFYVMNkO90UBVNURBIgoDgtBH1VRESUQixjItPD/gnXdP0NXdS7VaI2lbWAmLs2fO0lMsUq3WKHQV0FSFWJSYX5hneGSIVqtBMmlTbzSwE2kymQySJCFLAouLi0BEKp3G85soqohl6bh+EyuhI4ky5XIZEWg1q/QW+3BclzCG5557nvGxMer1FoZlksmkWVleIpPN02g6XLxwie5ijpWVChNXrvCpTz2Epss0m02q1SrpTAZZ0bBTaSRRQlFkBKHNqC0t1dtgT1dRNZ0gDJGFkMpKGVXTyBW6mbh4hfJKiWyuyMjoGIomEwUBxCJhCN/45tc4cuTINXNqgWQqyZ0HDlFvNhBkmSgOaTbqZDI5FhbmMAwdw2ib47qtgEQigaYL1GoOtXqT90+dQZYlcrkcjUa9reXr7cdxXWIiqtUKpmEhijI7BkdwnCaNZgPDMAGRyckr2LaNbmiEUUgylSbX1QWigCTGqIqAIOogtHP+NpsNDEMjCn1UVSYKA1zPR1PaOYMlIUaWJarVKr7vEkZx22fUh7nZeZ74yZMcuOMwqVQB33cQBBCv5dwVZYVms4quGpw8fpxsLsfszAySJJK8lpsWMSIIfXw3JmEn8N12mqJLZ89x8PAhms0GyVSK8fGdSJKMaVkEUQSCgCrLTE1cJteVQ5ZkiFQkRURUImRRo7qyQtK2qdfrSIqKJEpEUYDnttD0JJIk4bSaKIpMKpVqawUEiZnZGexkEkGIUdV27uWVlQqaaiBci+guICJLGl/2niGVSvFb8sdYWalw5vQp0tk8ii4zO30Vy7BRVYGEbROGMZIgsXf/AfK5LpaXl9E0CVmUAZG/+Mq/4+67j5DJZoB2jlnDMLEsG01T+cnjT1DsLpJIWMzMLtDT20cY+gwO9CNJIo16FVVpa7ANw0I4cYE4m4IvfBxFVxkcHuVXvvgP+IP/9Q/I5FPMr8xx1HmD/2n6n/KlpT/lneg4GTvHz2Ue4EO5+yia3QSBT9hy0JWYWnWOVqvMUvkSyVQXCWuEC5dm0bNdfPTjnyCbSWPbBrlChp6eIq7jYSUMsvkCF86c5VMPfwZFVXj//ZNMXLlMT18vxe4eHn3sUT7+8Y/y5JMvIkoh995ziNnpRU6+9xY7dgzxytGjHLn3XjLZLJIQYFsWItCV76LedOjt7WP//v2Mj49j2iaiJJPPZMnmMvzwh49Q6O7h4vnz/OZv/Sa1SpVKrUwmneY73/kelZUarZbL3Xffjed5jA2PYzfSvBy8yPec7zOm76OgjfD//vm/52997tf47qNPUmv4VEorvPTqKzz00EM0XQ9RkRHX8ANr97GtBKudAMjadqIowpo6GwHeRheXTfm5DfthGIbX2aTrbeKbgxjdZN64BaMvbBhnp3sFeHTuRwiCwOe6b+R5jeIbfoWrgGf1vtaaKq+aAq8CQGkD6F077xt9TTfO9VoAubb+apXNwOHtmMWuFZBvp83a92Wjf/Xa/1d51q1Miz8IdRrnrfDA2nnZDJDfeA9v7Q+73rpyK93krelWQLPTvW60btg4xu0A181j0WzN/6+dy43l/2mD1zWa140f9HZf7tv5CLauu/FB/+zMRG9Nt3cPmwGu211s4mvRhoUNQZs29rcdsLiduhvbbSjZEryu1tmsj60+rvaHJBGG4aZAdS11At23mt/bBa/b7+vW76Gq6MS+h9+s8du//uv8xm/9HqpuoCoqjWaLTDZLOqGiPncM67//5+yIRKS7dnO1P8tctUJf3wDLyytYukazWmZ2ep5azSGXTVMul4GYTDZFrVInIiKZTjE4MEgum0VRFXzf59KlS+RyOUbGd2NaJpVKBVXRqNWqSLJCHIsYlomma4gSaKpJFIeUSu3ckDMzMxQKeRRVISAijEJkSaZeqfG9b38PK2EiqyK+7xEjcO7904iSiGWadHV3YRgazzz9LIcPHySOQ+xUijiIKFcqJFMp6tUVNFNH1zUEoZ3nTtMMBAFU1aDVcmg2G9SqJWw7QTKVIY5FxFigslLh2Weeas/H8iLZQg+P//gntByX0dFhytVldFNHM0yGB3dQKS/TN9TPSqVKNpPG1HX8yOfK5UmO3HUEy1JJpbKMjA4jyQLVWoVUKo2ZsIhjEUQJzw/bmZQAUZA4/u5JTDtNoZAlnUrw9W98k+GhcexUAlkWCX2POI6oN1x6+nuYvjpLJp1FupYuJwhCiEWGhwdIJEziOETTDDzXp7w8TzKdolytkrRtDE0lRsa2LXRDZW52BkFQ2j6UctsCwkgk0A2d7mIPiiqDAIHnomlGO+pvHKGq7dyipmWiKDJB6GEnkxSL3bRaDpIok06lUFWVd997l2KxiCQp1wUpoecQBR6CqBAGPrIYt4P8RAGx7zN7dYbLfoMAACAASURBVBICH03TqVUrBIGP6/lIstIOGtZysJNJQKBZWSSftRke3oFmJIhCAUVtM1y1WhXTMiHy2rlyRZVCVwFFVhEFSFgJIkEkAoQY4jDCNlNEoQuCjB+6WJrKyePvMTgy1vZzlVUQZcIYxNgnitt5F3PZHLXlJWZnJkEQ0Q2r/X34LqZu4ngBeiKBIIjtKL9hhKrrRGGbSV1ZWWbiygS2nUDTVYIgJJfL4fkumq7jewFhGKMpOmEo0Gq2kCURVTX53nd+yPSDEpIk8Mn5Ebq7u3jvxAkGh0ZRZCgtzKMICggCVy5NkEwl2363MgiihGWaKIqEQNxOfzMyTDKZICai2WwH/Lp6dYpUOonntbh4/gKWZaJrMvlCD88++yx3330XnttiemqqnXM4jCiXy8SAfm4KMZ/Befg+ir09zMzN8+AnP4sjN/lq+Wv8o8n/maPVN8nGGT6S/jD3Ze6hSyigoaCrMrXKCrIkEgd1mvUyZ06d5uWXXuXwPR/CcRTeevsiXgi9PX0ooszbx96ip7ePM+cu0VvIMXFlguMn3mFoaJTaSol8VwFJlinkC4jI2EkLTTO4+8gRSqVFdu7cg6GruM0mwzv66O3pRxBERsbGKBTyqLrK22+9xeCOHTiOx0uvHOXylQl0XadYLPKtb32LPfv34jotbNPkvXeP88ADH+GpJ5/mYx/7GO+++w4HD91JFEYoispKeYV8vkA2m2FsbCcDA31cnb7Kc0+/wMN7Ps3xU8d5PfsqLyefR7pfpGu8n8/83S/yjUce5f03LzHcW+TqxBT3338PmhjjhesFpbfSQt6KCb4OgtdYC639u9ZUtxOIW9fnmv+jKCIMQ0RpQ9Aj4WbQvS1fwi2Y8E5lj83fDF5X42J0Gv9WAvGNAaTWnl8Lprbrt7j2+W3U2nYCsptRZ2AvrgM1N3exHli33TRubaL6swKum9Ht8KC3Bnbb6WujSfcHv7+teNrtvA8fdG47aXQ3ugRsd9yr9DcGvG6kjYj+g4C1zfrc7Jwg3PBj/Y9F2wWZ6xeh1UUaWLUq32IhadfdWooqCMKNVDlrwKsgrA9i8NMsNFsuDtem+bqcKr5Wn7VlAut/IgTitnkg8WrSl/X9bvhdpTAMr0tAOy0KnTSsnRaSTr46mwletpJet89f85UgXpOPrX286tPaaSxy2D4nCiKyohGXVnjqicdIp2x+6Zf/HqKWxI8r13rS0N99G+0f/p+ox04THNmLf+dOAtvCMmxmpqfp6etheX6RWr1FueoxOTWBKLiEgsC+Ow4gEbBcaWBnMrx34n0mJq5y+PBhavUaUSzy2utvcufBOxHkkEzSIgp9coU8fhCiSTrVep33z7xPIZtFE0SaXovAdUglkxgJG8cPePyxJ7j3noM03RUsLYHnOuiqhCRKnDh+gg/dfwTTTGAYFosLS3QXB/jmN77HXUc+hKJIyIrI4PAAoiAxv7CIpopYtoVhmyi6RohA4LpYpoWIjIDY1g66IaIo8md//m+570P3IV97z2anpzB0nYtXpnjjjeN89BM/h2VriEIa8BjfOcTI6DBRLCF4LXTNQBAVZFlEkkVMy0JTRHzHoV5toeoa2UyelZUS6bRJFGkosozjtOgqFAABMQxZXJhDUw3qtSaqEnHhwgVkWWXH6BgLs1dJJkwunb/A/R/+CKpuoMgiV65cRVZ1DMMk11VEk2W6CykmJy+RSqURIgFDTyJKEdXKEpadRpBlas0Wpm5Sr7vEoUPK1qg1myh6kmq1hRCLLC6W6Mp3tYUKfkQUgaEnCHwXRZYQhAhJloiiCMvKIMQxgediqiqLiwvk83kc18FzfNymSzLVFlrIsoikgChrIEGhu4Astme/nY5GIopFJDlBRIN6aYVUMkEk+DSaAU3Hw0ykUbQEteUpEnYeNd2FachogsDRl15idOcYUSQTEnLiveMslZYYGRlqM8+iQLVaQzNsFFOl5cZEkUjkhxiahK/IyPgslSsYiTRxFCMGPnHc1qDGYYv52askUkniSMBOZSgWCtRrdSzLZnJ6hlzSwK+UWFyeJ5lKoqkqQhRhGAkEScPOpIli8N2ISnUZM2ERBF5b0KJp1/xHQZI0hNhDRELXDbq68jhuHaflEoY+siKhKjK4bdNnLxA4fvw49VqL/v4epq5ewDRtqlWHU3dVaLYcdr5q0dfXQ19fP4899kMOHbqL6ekS9aZHIZfjsR89SaHYg2pqzE9Nk0qnWF4pY+rt99wwDTLZVDtqMzKKokAk4PttX9yjL7/Bp37+MxS6CzTrLUzdYGxsBMdzOXHyLIXuAfRMDlVWqNfq2Ckb4b3zBEmTxG98HvBpSRW+6T/BfzfxPzLvLfHJzCe4L3kPo+l+UkYP1VoVWZFJKBGt5UlUwWG5NEO9ssLE5Dw7xg9x5P6Pc/HiLNlsD4om03LrjI/uo1atE0Uxi4tzjI0MUqk2efyJJ9g1soPeQprXjp3ESiT40WM/4sKFCS5enuTq9AxzC1cZGhkmjhViMaBaaXDx4iTpdIpMukCz2eLcubOM7xzDNHSq1RaO45HOZJm6epX7732AwHdIJi0OHbyT81fmSSYTvPT8E+zau5NIkrhj/17m5+fYt28vqqry3nvHMQ2LarXGuXPn2bt3L4Hv0NNbxHMddo2OoCsiBwcOcOXZqzRnXVpBnXqywoves7QecAl/SeXs7nmeDV7nG//PV7BmljC8PLlhi1akYEo6IS1EIgRCECRiUULasDeu3ds67aNRFLV35msC47XAdZWvCMOwY0aFdfU3XEeSJMQNQaBEQVzXVxy3g6+tAqkoihDZwFOs0VJeb4Nw3W92bd12vkt4bOGvEASBX+j67I0xbWFiu3bcnfb+TvO2yndtBkY28h1r52qjr2snvutGDI3Ov6vVNz7jTlq3G8c3+/zeuA7r+hdF6dp11re7UW97tB1At90+NgK0jXVuNbYb839tDhFvqr8d68yt+t8OeN3qPrYay1Z9x+1PAkG8JqjZ5Lpb0d948Lrd4+3Qz0pz9tPQ7UiFtirbDni9FXUCr9fPbRFZ7mdBnWHnrejWEq6telkvVbwZvG4GQrei7UpxO9P2F7a1fUarC1UQ8Zdf+SrVSo3BHQOcu3CBnt5+nFaMqUVYFQfxt/8XtO8/z+xgN9onP4yQTdJo1JFljZmrV+kpFqnUauTyBZ5+9hmGhgbp782Tz1qYVgrHC6ksL3P67HnGxkbIXfO783yPickrpFJpTp08yR137CeOAkqlMgk7SRRFlJbL5PJZVF1leGQUVVVZLpVxA4dUMt328QwDnFaD7nyRTDaJbuqIooIgiczOzRLHbZPCHTv6KZdXiKKI944fp6+vi/6BXpIpA9ev43lNdMNGECTCICCbzXD16jSJZJIohtAPsDST//Dvv04um8NxWti2SRDEqLrGyPgYpmlx9eo8mm4wt7BIuVxj565xCvk8qZRFGAYEfsz09Ax9fb1tK1JBpFZtMjW7QCqTRZQEgjDEabTNOwVRIhZEkmmbt4+9w+joCJ7bwnFCbNtkuVzCMA1ee+01jr19gsGhQeq1FSxTpd5okUylEEUR3dCQJQkrYZHOphAkGTcIkEWBr3/9Gxw6dIgg9KhUK8RRgCiIPPf8i2QzeURRwA/ryJJAOp3HddppZQLfQ1NUdMPEMHQmJ69QKBRBkBBigTfeeJ0DB/bj+z5+4FOptKPl1moVoijE9308z2/7oYoiTqPGxMQlKrUKdipFKpXG8TxM22pr7CRAgqbjoWg6YdwOsiIIMVEQEkcQERGEAa7noKgqYQyNSpVkNsOpEyf4yWM/Yv+hu7GTaWRFQVFUpmdmMDQTXYwRZBEv0hjq76HZqBMEEb7vMj42Rk9vL2Ec44cRUQzEIaIQockiceAiCQ3EyGe5tIKpJyGO0Q0TUZIIfAdRiBFFmVqj0U71lM3j+yGqZiBIEnEUsrQwQyKRwLRTIAi88OILjO3eBaJGhECr6SCIIn7o02g1SCdMXKdOMpOjUq2RTKXQdIMwjNqm3aKIALSaDer1Jn4A/+pLf0wuX6RYyNFyHBKJBH4Q4TkVkERkBTJpm+7uXr785S9z4MAhbNtmeLiPA40+eo5F3LfzAEHQQhBk9u7bgygJdHd3kbAsvv3tb/HFX/0V0uk0oiSQTtj4oY9h6EiI+K5PFIf4YYAgilQbDTRFYWlxiWQqief77N2zC4jwPY/AD/naX36T02fOsH/fHirlZXYM9hMR8PSTT7L/jv0YVgLxvXMo3Xncz3+MfzHxx/yjy/8bS/4CD+U/waHkQWrLDb7yla+xa9cYmixjaDFC3GRleRbXbVJaqYGik8n10Tcwih8EpNNJUikbTdOwLIsfPfZX7N2zm5mZaXbuGkNRZSzLJJVNMToyzszsVfKFbmZn5knaNooq88lPf4YwirBMjUbdZffuPUSxS63WJJVK0WhUGBzsYam0TKHYhazKWHaC73zn2zzw4QfIZNLEccTQ0A4uXrxAFIek0ynOnbvI8I4BHn/sBwz0dWNaNn0Dw8RBjKJoTF+dwU4kyRfyxMQM7tjBzvFd9Pb2MDszw8LiAm+88Sb33nsvpaUlzp6/QH//IEPdIwxofRwo7KfH6WaXsIud0m6swGJhaZHKR1yOimfpOZHg1DuvcP/hD+NFAaGgEAkysdA2/RXjaEvGuDNIWh+tfy0PsWr5tBpIbWO7dVq+Tq5Uwnq+JgyCm9P7XAPZq9da7ee62WqH/XS1zmZ7+UbwKkkS0YYc7bejFdtYvhokqOM8dJrfuHMgzs3abFa2njr397Pi/7bu5/bA6/b73f5YPgh43U6/Py1tB7yu/X+7POst620Q8nyQO/vP4HWbx9uh/7+A17UmFu3jThKnm3ped7TOD2QT6gReN9q5/zS0lTTorxu8dvLrud5mG+D1VlrUW5V1ps03oK3KwxiEOOaJRx7lFz79KYZHd1KtrdA7OICq6IixjvLmO4i/80+IbYvJ3XlaVop0Jo3vexBE+CEsl0q8//77mAmbhcUF7r//w7x3/B0ySRXLkJFlnQiF+dlpurqLFLJpGo0GvX39lMvLFIvd6JrGyMgwtWqFhGXj+QG6YSBKEpadwAt9JFmm0WhQKi2T7+oinbZZWanheX7bz1YK6e7qByIW5mcxkynKK8vkczkMw6Sntw+n1WR+YR7Lstm1ayehD889+zxDw8PXzMlEVFXHc31+/PiP2bN7F8lUijCOiaOY2aszlEsrCEgUu4qk0xZh6CCqGjExiYQFooAfCOiGwcpKlb7eAS5dOs+OoQEURcL3A1KpJJpqtvN2ClCvN/j+Dx9HllWGhocI4wBFVagsLaPpGo7roOrtCMbEbX/MIPBRFI2WU8fzHObn5wnDmAMH7yadsUkkdBKGTssJmJycZMfQEM1mrT2GwMNMJIgFAcPUqVUq3HHHnaTTaRYX5xgY6Mc0DRpNlz279lAqLSMpIpoBtXqdZiNEFAIEQFNVKuUyXhSSsEw8t23WG8UxtUoVyzJJpmwqlRVs28Y0zTboDTxkWSWZTFKr1Xnm2ec4cMediIJPHMf0DfQjKSogIMkysQCu20RRBGRFRTMsHMdHklTEyKfVbKCqKqLUrisrEk6ziWFaxICl6sSyhKbKnD/5PvsP342qqniex+zsDIWubmYnr4JXw05lCGWDVnWZJx5/jD07d6NrCqIksbxSQTNNBERUVUNRQhQ83HoLXY1RjCT1hksqm0PWJKJg1e8pQtUUGo0qitL2Nw4REGT1eoTTKI6RJZGpKxfIZLO4fohhmQwMDqLqBgjytXe0LZhxXJd0OgmhT6teRTHaWswwahtdeo6HLMnX1ypJEHFcD003OXT4bnL5IoocY1oJgjC6BggEVlaqGIZFFMPSwhK7d+8hjkRq9TKCFDB/cpqRdA+apgAhum5i6DoQEYQhADt37SQMg3Yu4BgqlRV0XcM0dfwgRBYUKtUVNEOjUquSzmSp1yo06nV8zyObz4IQ47YayJKEpmi8/Orr/N2/96voqkhPV4E3Xn+VkeEBisUerITdjtd3YYrJX7yDf6D+37zXPMnPFx/mkLWLpJak3nKwbJtCvpueYjehX2d28iIp2+bixUucPnOZXNcOuorDXLw8i2pYQIQkwdTUBMePH6e3r5+zZy/QXcxTKOQwjDagnZudQTM0nnn6OR7+7GdQVIO3Xn+TXbt3cufBO1lcWkZWFUaHB9CUBFNTkyhqQBhKCGLMyPAgogTTM7MsLS3SN9CPIIqMjI4iEFOtVsjncywtLTK+c5xisYtqrcbp0+fJ2AaR76LrKuN79hPHAvOzi+RyOV566WX6+wcwDIPvf/8HGIZBV1eB5eVlHMdhqVRiaHiovdYmLF599Q3GxsZoNJpMTlymp6eHH3z/h+zYMcTM1DR92T7Ov3GZ8HyEv8PnbN8EPa/6zE8ucPC+IwSRAIiEgowoREhEIIjreIKNe9LG/aoNEG/W3q2e22x/q9VqGIZxg2foAF5jNrj0dACdq+A1CAJkWb6hA1wDgG9qcwvwmlJSHEweYIcxeINH2Mjcb4MP2MxkePVcJ6CyFXjdLjjerGwtdeLVNvNN3YqvW2WTbo9f/8/gdTt9bjXu2xE0bIu3vwV43Y6m928UeF19ANuRJqyWrUqpNkusvBlt1e8HfQnXjn9jP1stXJ3oVsGOOlx90/GsBWbrfCQ2MRu+HQC31VxvFel4W3BWuGFOs9ac+/p9bfC52Op6a/vcqvxnIb3a7jNerbaZFHVtP1EUoSgKruvyk0ce52tf/Xf8l7/3Dwkjn5YrsLC8SDqbZfHKNLP/zT+h57vPEtx3kPOWSe/gIKamcfHiJZ575gWchsMrr77FwTvvwNBVzp27hECIZVkM7dgBcYCuKwRei2S+C8sy6B/oo75SQpZlrly5wtjOcURJ4Ikf/5iDBw9QKi1z+dIkiWSKhG0jytcCV8QyX//aX9KdyyOL0HIbJBMJJMngnXfeQ1dlmo0yC/NVXnvjdXbvHkVVdSzTbAM9N6BRa3Dq5ClGx8YQJZGW0+SJx1/AtpPs3r2TWqWBLGvtoDuijGEYyHL7r+O4LC2WyKQypDIJenoG+KvHf8LJUyfoGyhiJzNEYYgkCISeh2ZYyLJIVz6H23KQRAlRDKhW6kiCiaoI+EFAEAbousGX/tW/4cFPforDh+4k8h0uXriAbSfxXJdsNo1hmAR+0DYP7u6iUWuQSecQZfC8FplsmnQ6Q7HYg6xIRHFAqVTCsGw0TaGnp8j7p0/T09PDytICruOimRb1Wo3Qd0naNhNXpslmsiSTJtVqlWq9hSQrQEwmbaOoBoZpIUsKqVSaerOGJLVNshNJG922qJTLpNNZAj8gDAOSdgKu+a1GQszklRnqtQaZbIZmsx35uV5vIMkKw8OjCKKAIIrYyRRRHCOKEq5TQ9N0okggDn0C30UQRMIgQpJEBDEmcFs4rSamaSGIMr7rUC+XuXz+AqqqoVsWF06fInSbJCyLI/fehyjLLM3Po0ki7x17i97+IoVcjjhyefmlZxkdHgV8hvqzVEsl6vUKsiyTSNkEUQxRiERIaf48C5MXOfb625w9+y5DY/uRjQSSqnHyxJtYiRSqIiILMZ7no+gmiqwC4HsOkgjqtQAncRwhiTGCJJFIprHMJI1mDYSIOARZVdvfcxRAFLd9r6V28CNRagPbOAzbmmjAd31EQcR1WiwszFGpVPEDF1mEXCqFEEW4voMkyyiKiheE+G47XZYiq2i6xdtvvUNvbw/dxRyapiEKMj09RQxTQ1UVvv3t7/PO2yc4cOcBJicm6Cp0EUURsiKTTFrYdgJigXqrTjJhEIU+iDLf+NZ3OXLkLkQRUskkXHNjsG0bO2lTKpewEjZvv/kGEhG6qXH3XXehqTJOs0YY+mSyGWZnrmIkUoiShKd6fKn/df7bw88wYg7xEet+koqNLMm4XoCqqEiiiK5EiLEAYQ1D0Xj8xy9SKjW5696PUugeIkahp9hNHAvUqnUEUaCnWGRwxwC6pjM+tov5+Rn6+/t55pnnME0L206xMDdD0s7S3ZXHdT0O332E02dO09/XS6vR4o2jr+G5LaamJvjwA/cxMz3NwOAQiiJx9uxZpqfmuOvQHSDQ/oaCEF3TKJXKuK5HImFz6dJlTp463V7HRJFyuYx6LQVT7+AAtp3EcRxeffU1ZqanefizD/O9732X+flFHLctSCiXl7l8+TJLpTJDQ0Moiophmjz11FN84Qt/h9nZWexEAl1T6e3tJ44kZmbnuOuuQ3iex+jYOMVCkQPp/RxvnmDpSMz4XB8/+A9/yQuPfpfPPPQgjSBGUmSIPBCkm3K2brbHrQrMJfmGP+ta89ZVE98gCFgb4CeO24HGVkFZHMfr5LrXzZbX/C8IwjrT4tUxxcRr/C9ZB14F4eZUOsK1760Tf7R6j0PGDnYYg+vLO4DgtdfZyJ9uNW9r63cSoq/W2WjCuxkI7tR2M1B5o85mYPT2coZuxr+v5yk3XmPrPn9WtKmwZQtBwOqDXjv+zQIkbTx/u2PpVKdT3U7X3A7dVpsN78PGVlspg1bpbxR4vR3q9LHfzsP8aYHH7VKnBWkzulmqcesxbVwANr5UHRemlRrCjl7Eg7s7gu2N4GmzublZU3xrqcxm4HWzTWQjeAVu8nm93We3nXF+ENp+f+uFBLfa5FzXxXEcvvkXf8kv//IvYdkmp86eorc4RBT7pCWF5P/wLyi4Aa0H7yHMZnnx+ddQVJXK8gLJVJpiVw+hH5NIZRgfG+KVV15mbHw3e3aOcO7sOdLpHLIiYFomfquKns4jizFOq4mla7zyyqvs2rMXx/UIAp+9u/cSxQFJO0kciXz7u9/mrrvaqZc8z2Hi8gw7x8bwHYe+/m6SaRtZUlipNhgf30k+m6a0OEe+MMBKdYWhgW5qtRaaqjI9NYltJSkvr5DJZkinUyyXS2QyacbHdmJaCoYhk8mmUBWFuflFdN2g2WwQhgGIIpaV4Ogrr9LX04cftwCJffsOYNsJBof6kSWpzQSFIZVyGUGRUSSYnp4kbScxTZuE3dbERr7M8RNvMTw6guu0Aw6dOX2Rw4cPMjFxkd7uAvlCAd8PSaZsWq0m9VodXdURZBERgT/+kz/BdwOGRwZpXTPfnZmZpaurCPgggJ3KIMoGvtcGmYqqICs6CU3CtlM0mi4p2yYOfBzP5emnnufcuXP09RdIpXKouoEoy4gEzExdQVJNVNkiCCJEKULRVOIwptlyqNQbtJwmmXQbxKtyW6tGFGGnkgRRgKKqPPn4MwwPj6CpGq1WC0EQkCW5beaqtSMwR+0d7xoAi2k1ywR+hKroKKJItVIhkUhSr1fRdZW52Wli36PltEhnMiDItOp1KqUS5YVFgkqdjA95ReLCa2/SvHiV1IqDd34Cda5E+fhp9is2/vkr6LNltLkK2bqHPzWNoqs04zrNWp3nX3iOkZFRDCuBFwY49TqKBNXlCVRi4lAj35PF0FqYuo4QKwTVBsl8FsKA2dkZZEnBsFLExFRWSqQSFpXlBeZn51A1lVariaaIaAkbWdYI/ZAwcDEMmWbdQdN1Ws0msgStehNN0wmiGAEJkBHiCFkS8T2PMPBp1B2CwGdqapLR0RGyhQKWpTN79QrlpQUSqoqetNuBoMIQ3w+J45CEpeI6dZpuk52j+/GDFo5bIQoFpiaX+EbPG7whXeJ+dtFqhvT37yCby6JqKivlCouLJexkAkWVWC4tEwYxL778Il35LIokISk6Q6PjuL6Lrsoszs3j1BvEkoChaywvL5NI2oiCQl+xm8pKCcsyaFRrJBI6s3MzRDFIskpvXxHNsnk0e5JfHfsaruDzG97HKI7uJg4jFFnGjwQkUUQUBALPI3RXMDSLamUBpxWQ7+qlq6eHnr5eXL/F1772F+waG+fypctkslkUVYdrcRJKy0vougEIlErL7N69h9defZ1sLo9tGuiqyfz8NC++8Dx777yTfCHPuTNnqJWr7ZyiQsyefWOoikw6nefyxBX6+npJJdMcfflN8hkLVVFxWi1efP5Furu7yeeLnDl9lu7uIq7nMTa2iyD0se0Ec3OzlJbrTE3PcPDQIeIownMcdu3azan3T1GtVHj44c9QLlc4ePAQURSye88ujr56lI99/EHK5TL9/X0cPXqUT33qUywsLpKwLCauXGGptECt2iSdyTI4MMjTzzyJqZsYhkEY+hSyaezlNKXEMs90H+O3PvJFktPLfPub3+L+hx5GUBRESUAQpI6BdlYjAK8Fp7J8zVJgk6BDG3Ofrpa5rnu9/+t5Njcw6G1t5/qgRp28blbB6/Uxb6zQYWteBa+b7bs31V8DXrcTJ6PTuY39deLVNivfqr/N+czt39/GNhuVB1v3s50xbtLyrwG8dirbDnjt1O6nUXL8LLDK7dLtgtd1tIFX3uo9X6W/YeBVuP57A4xtqLFBkrN2Ye0kcdqOlOJ2JGO3SxvHuxp8ae29bnW99oe1/eusPd5MKnJ97g7uRjy4a30/1wIXXM813QEMb7agbiaR2lh+0+0LqxsIrA1YJAiwGrhIEEAQJARBvPZurA+usPnzibhxM+tdzzebs81oKwC/vWtv/F1Pq32LMYjX3P8jQYJYwq+0eOKHPyAhhdz7wH1IikAq34Vp5xHiGPedE9h//w+hO4t7zz6IQYwixkYHKXTlSSZsNFnEtAwSqSTju4apN1e44459hKFPImGTSCZIp5PIqo4fiYShQ9D0IZZQTQvXlxkbGyFh6vzpv/lz+nqHUaQIopDp6VkqzSZTU1e5557DNOoVVpaWGRkbQVFEsl1ZIKJaqaLrJoHfwE6oXLhwjmJ/P2HgMdDbi5GwUbW25jSX76LRauD6LYrFQZ74yVO8+eYxjtx1D7IqYCUsBFFCFCUuXb7MxMUJ+ncMksykicKIWqWMkbAwTYvZ2VkKqSJLpUVSWYt01Se1yAAAIABJREFUOo3biigvz5KwTFzPJ5lMs1xeIPJE0qkEgiJy9vRpVM0gV8jhh8ukbAU7meHkiUvku1IcuecglqKQyXQTihGiHBMGAZIiU1leQBQE3n3vfRRFQjcN7r3nHlRJwPU9spkCsqyjqRqiFCMJIp7jMjczje82sVIZ/MAnYZksXJ0Fqa2lW1mpoqo6pXINIp9yuYVhmAyN9IEoIqsKRDGqqDI1MU3KTiBKEa7bQJbb4NwPY2TZ5Ftf/w4fvu8BPNfBcRsEAbx97H2GR4dw3BqqKOE1Pbp7CuTzaVRNxrRMtISFogoIuDTdJqKiQhSCEOIFLqIkI6lpRHxCMSbwArxqlXfeeJHB/gF0zeDpp58jYVmAi1mp479yHP3Fd0henKWv1CS3WKUSNlAFiWKum1yhG+Ge3cQ7BwiHimTuvoOVwQLp3/kC8sP3sjiWIje8A1kzEY5fxnh9gmQqw529O9ESaQJdJHSqBM0qgdskkyugiAHJlACEFPpGCQOBleVpEimd5so8guAjSzGe36LVLBN6LTQl4MqFM7TqdXp7d2AkkyiGhRBLxG6NarmEIIKqW3iBiKopyBJIIiyXlrCTeQQJJMlAiENazRKxGBPFMaqmI0oKCTsBMeTzeQREWk4dWVZIJnOYZhLdtiEWcFoNvJbHH//rP2FsoB87keT06TPoqkYceTSbHoEfk80mOHP6NE9+dIGz0TSfLe1keHyErmIXkiwShWH7PRFjUqkMS0sLLC4ukLBtDh+6CythUV4p4zsOzYrDSnmBrmIORdOQdYuv/Nmfce+9d1Nv1EjZKWK/hhO4pLMZzp85iWokCKMIkXYu5kwmyXPeaX7t8Hd4Ln2BT1d387//iY2YTHJxp4GiGYiSiiiBEPnUVpYQYxcxbjJ1dZrTZ69SHBzkBz/8IX4Q0NXdhWVa7N97B//2z/6cvfvGSKZMJqeuUlmuUqnUyecKCEQkjCyK0u57bHwMRVVx3BZe4FGvBdQbdXqL3bzy0lHSqS7ePf4usRDzkY99jEJXHklR+IuvfJWHHvoEiqKwslJnfOc4x946x47RFK+88gb79t7DpSvvU+jq5egLz3HkQ0dImCpWIsGJ909T7O0nk7YZGBhk//59TE5OkkqliGKYnZtjYLCPnp5uSosl3nrrTaIwZGR0DFnRGRvbjaGr5HJJ7IRNMplhfm4WO2GzuLRIIpEgkUjy8qsvUywWSGaSnDp9mqGhQYaHB0naNs2WT7aYY0QZRmyGfLX1CEf7p+gZLfL2Ky9z7tIp3n75NT506C5kw8INQkQR6m4LVVKQA4E269VOAyXKbd/+SJAJwhZRICBHEhohmqXh1pp41SZOq4nj1VFFld/71V/myW99k1ajyve/8ijvHH2G3//13+fsO+/wyV/8PILQjrbdtt6IEaUYLw5AEBGjuK2BF4R2cJk2g4CE0I5CfE17u1GTKYg3pz7hGhi9xnmsM1kGeHH5ZSadSQb1gettVn3RozBqX28LHnFtKp1VYL0WxK/GF1nLJ62WrT1eC5Q38lXr+eYbx4KwGihrPR+5Cka3YmduKBBW67UDL8Vr5vVm2lop1Aks/iz4606/2+l/o6LkZk1sZ0HC2nu61fi2ut528Ml26Kdpv5ZPvz6W+MZbJK55dkBHYVYn+iDgVfhpIlz9dZIfNDcMtBMQ6ty2k9Zsq2hanc536medpG9DPz9t5LD2304PPb5eR5Kkdf6q29co31xndcHbOIZVWl1E115P3NhPO7Rvx9xfN+5pg0a0w5yumgltljM1DtfnCFv7Qd2ovz4B+PZoo+/v+tDysP5j3I6vcCfqPKZb97V6f9dNoWKIBAiJiQTQEYi9gIsnTnLyndf5/M8/hGt04/shgigiSsCjL6H8X18m+rlDRP09XJmYopDNMT11lb6BQRzfI3BapJM2s/OLvP7WMT716U+QTCaoVatk0zmqzSaSJFGtVNAVlSuXLzO+cwhRdNspN1yDucUZhocG0RUFQdJAkLhy6SxPPf0kv/7rv4FpJ6mWq5imgaFr1Op1wijENHR830dTZaanr9LTP4jvO2iayszMHIMDfUxcniQIY3qHBtElaDaaiKKCrhvEcTsXZxgGOI6Dqsr4Qft9lGW5vdCKAkIkIMgSMzMzlJdKjI4OEQKmaTM9Nc3Rl17is5/7eVRDJY7gvXff48iRO1FVnVaryezsNH2DA1SXXQLfwQ9joigglU6iKBK1yjLptI2gWiwvNJiaukIc+iTTMlaiQDqXRiRCkXSWy4uoqoxt2Zw7N8HufaPt+0DAbbW4PDHB0NAIiYSN77sEgUutvkIu20UQtLWVrtukXC6Rzec4+uqb3H/vfSzMz7O8sszuPbuZmJzk9IlzfPrhB2m2GliJJI3qStvnWFaIIwFJlHFbDQRJQNd1lkpL6KoKkoKuGVw4f5Ydg+NIUoTnN5FllWazRSJptwM6aRaXzk9gpQy6urra0Tyj+Br4gvLyAslkGt+PkBUDCBBFgSiCWAXZl3CbMpq8wsm3n2VuweGuu+/hytQEe8d2EZ+fRPNEuLqI8IWP4/6dh7CG+nFdl2ptGdPSUNQUYRji+Q1kWUBVc9cDsiiKcl2TK8YBInE7iJKeJ1icRnv3LM0X30F88U1ouQj37AcvxOsrIqdlCJoIRESCgKLbCLFEsz6HBKiKiut61xhNGVmWeefYS+SyeRZmFzEUnVR3guGd99AKZFStbaoNIIsiYdDWIsWiAJGA5/r4XtBO3yP6ICiEvgd4SLJJTEQQ+EiyiBDLXJ2aIp/LoSoyju+jaRpCDCdPnGTfvn34QYDrOsRRW4seei0KXUXiWOQnTz5NsSfFgf138cNHHuGXfukLRIHM7+/5FmHg8xeTv0oQtFMazUxPMzQ0SLPZFm4sLZbp7+9henqGnp5emi0X329hGhqBH/CDRx7nC1/4HEQBhmrgtDwSGZvl0hLl5UVWymXGd46TsG2WlhZJ2SaaliKmHaxrKa7yL3e/zl/lTnNvZYA7mt0oosbf/2fT1IcyfOdf3oMktc3LBSGmWl4koesEjkMUBjTdiFSuSCzB9JUr9PUN8Orrx9izey8tx6OxMoNh6mTzXUzOzBN5ETuGBmg2GywtlWjUWgwNDZHvynLu3HlOvX+ae+6+C9PUSae6ePPN14hwsBMp3j91HkUxMHSTv/Xgh6jVK20/XlVDVi1OnTrJnr27MQyd+ellrGTM/NwKvT1DBGGNOBY4deIkB+4+hBSFaIYNiIRxRBj4LC0scObMGWw7haYaTE5O8uAnH+S9995GU1UM3WJ4bJxGvc7kxGXy2TSvvPIKDSdgoL+PsbFxHnvsR3zuF36B2blZBgcGmZmZobQ0z4cf+Dlq9SZxLHD8+EkOH94HAlhmgqeefI6f++iH2gHJRIEf/fgxeg7aLEk1VuQmoiRRCarIoUCXXMAMLL6Y+EX+9pFfIyvaxHGMK4mEoogWhQiEtGpVMikbX3IR3YjqzBK/+StfpNWKOXhomAuXz7Dnzo/yf/zzr3L5ygX8xgo9/UWWHYfIUVmpTqEpef7xP/4DrITKH/3RH/GlL32JWq3G7/7u7+LXKhz88L2EcluwSyzQdtO9YQ4sxuv345t4li1YqetCfdYz6b99/HcBgT/d96/X5Wz9/9h772jLrvrO87NPTjenl1PlXCWpFEqhJIHBJBFkjAO9YIw9HrvXuKc9eMb28rQ93TSzeuwZG7vby2uwwWDaxgaBEBIghEESSKWSVCpJVaoc3quXw33h5pPnj1uv6tWrV0GAme72/Na67757zz57//a5++zz+/7isvwkSdIN+10GsMty1LW8vsIwvMLteaUMt2zpXs3v9UDz5fjYK4/djEy7WlZrP4elS8Bakm4evF45l9Uy7Y8GvK5FN+NZd8klfZWi4NI58dplf67X7/Www/XC234UfPGjgle4UsZfOcdLdZYv0srrdT2eVVV/00z9V2d5XWsx3Kw2Yq1zbubca1kPf9y0FmC8Ufub0e5cDRivbr9yfqv/F0IQnR+HxSpSJnnpu+XaaZfaxFfHbKzcgFfXJVveoFZrD1fzdpWG6zrKiJXA/wq3oZui1QD76qQTq8dbfexaCoTVWQGvXn9XPkBXbg4rr9nK+cTi4rUJI1r1Bo4SceTwIWqVKnfedSd+4BFrSXxfQqk2EZ/4c5R/eJLoLXdAV4FGrc7k9BymYfLGseO8/voRNm/ZRqmY58hrb2BaNrfefisxMYHvk0mnEEJmqVKh1Wzi2A6O4+C22olrWm6FOI6wrQz5jhxxGLG4uIgkK6i6imOZbN++nUazgWGoaKpMEAQIIbO4tIBlGciSjGVZtJpNqpUqs3MLaLqGEBL5fJFmvY7nuvT19xFLAjmO8P0AWVbaWWxbLRRFIY5jlpYWMAwdRdWRJYlKpYppWTQaDRRVQdEUEraNY1ksLC5g2ja6ZmBbNhvWDfDEN7/Jli1b0XWdvt5uXM8ljgSarmMnLBRdQ1ctPN+lUGhbfqMwZL5cprOri8XFGrEQnDh+guGzY2zdsol0zsF1I3KFHCKOcJse6YyDqmnUag2KxRK1euVS2YZYQCKRRJYUxsbHyWTSVKtLKKqCqurEcVuTPzl+gUw2i2nZ5PIldFUhmUjg+R6SLFEo5OkodVBemCGdTqHIRvseiSLOnj5JZ1cnjUaT02fPUiqV2vGyuk4UxViOQxAEpFMpADRNJQxDbNvEdd12ZuUwRJZUzg6fZ936AVR1uY6fQKARxwLDtAndkHNnz5PJ5YiiAIhRFBVJUlgqn0PVa4wMj6MpSW657Q6UsTKtA2+QPzOD6M4h3vMA8e/9JpXbBqhGKnPzZRKpJJphMjlVJp3MoOkSftBC1w1azXbtW0VRmZ2dI1YkNM0kDNuZnpEkXL9JZOuE63uI790DH34X8dtvJxIQnR9Hefog4sIsTC0hRTJhJKOmsiAUfK+OpplgplHNJLJuo+g2rTDGUkzyxU7OnD5KJiVT6OzGdWNMM0F5YQ5VNYmi9vpVFBnXc9uu6RfjWr/+xDcodZQIgiaqohADYRwQxwpCXFTSRCGKrJFOpZAkQavZxLi4xqMwJJNJtcFdGDE7M0tHRwldU0mnUyxVqu3kXzt3oWlg6BY9PT18/vN/zY4de/h250kA9o/0IcsKX/nyYzRqLTZs2IymmcSxRC6bYmpqglwui2EYRIBl6pcSOK1fP4BhKBBFHHj+OXp7umm06iiyRDaXoVQsIiQZ33WRRMxseYHyzBipTJIfKOf4yO1fwVUC3ju7jVKrHdseBjG3H3RxkzrH39FBHIV4bgs5bqDKIdXqIrV6g2e//yKd3X1Mz5XJFUo0avO03AbVeoWhoQHmF2Z46snvYZspenuH0FQL2zH5zneeZM+e3Tzz9A+Io4hk0mHkwnkSiSTFYomJsQlq9SU6Orp48cWD3LH3fhqNFrfetouNG/sYGOqiUq2RuphJ3TZ0Xjz0KsPnz7Nx0wYWFss4joWmGVy4MIEQoBsas7PTHDz4Mnv33cmz3/0uyXQGVZVZWlig1WqRy2bo7e2hu7sHz/XYuWsnn//C53nHT7+NZrOJrrZDDp7+3vdYNzSILAlmZ2eQVZ19++5menqGLVs3MzE+wa233IqmaTzxxBNUq0v0DwwwNjpOrd4gk8nyzDP/SFdnJ4qqcfCFF1m3bgBFltEMk/6+IYpmGnlWZjAaYH/P3exKbMU/MYljOMy4czwbPM+fj/8Ff3bqP3J87hCxqNOjp5h+/QJzIyN8/1tPcuiZ7/OZP/4zvvrlf2BmqczH/+0f8J53fwCPJrEh8fHf+wSnRuf4w09+knvvuwdUDTeU+OM/+Y888ujfc+HCHI89/g3e+db70RSFDevWk01nWDc4yNcfeYyvf/MbFDuKnDp5HEezyKbSeC0XSzewbRvP8y7JFqvlhGXX4xvKhogrBPTHph8H4KHSu6+QDa6Qq9YAciuB0UpAsBatBlDLscFryQpXuEXfhMy8Wua47txXyTxryZPXktdvZGhZfWy1dfNm6IeV8W+Wp9XfrZW0aqXMt9ob70YGtOv9Piv/v94cV66Bm/09b6bNyvHWsvCv7u9GY/+zcBv+UTLb/qTP+1Hpejf4m7kOyxvZzZx7LXfX4H/+I+JnDyG994EVDK7SEslXx3Ss3IzXWuxr3QzXmsMl/m9io5Ek+U1dn5Uax8vX581tlGv9D2tboq+mqy3Qq2/+q74TIIURVizzxb/8ay6cOcS999yHmSqh2Flc1SbyIqS/ehTt459ExBHBT+2jqUkEnseZk6dZajR44fkXeMdPvxPDcjBtG8+tk88VOT8yQkd358UkRwqvvHyYeq1FIZsljqJ2siNV5fCR10hk8jimjWPa+H6dyclpOgollhYWqFQqOLZJ6Ho8d+AFNm7cQOg2CMMWyUSCSq2Kbig4iQSNRp3p6WmKhSKSJPH3f/cl1g0OMDkxyejIKB1dHRi6ShwEhG5AFMcYhoEkC+bmZrBtg8WFKqqioigKum4gSTKtVotnv/991q9bj2EYxESMjo2RTqWYHBuns6sTTdc5ffoMxUKRo0cPs/+BB4hjQaNZIwp9XL+JZaUolxcwDYNIxNQrTRaX5jBsjWQmh25oqAJU1WRiuoxtSGzYsA7TyNA72I1p2Xi+hGUZRL5LHNK2EuomfhARBgGW7aAIhS/+7RfZc+ttl5Q8zz93gA0b1hHHUbvUjySBgDAKcBI25XIZTdWYmVqgUpkhjH06u7qp1RrYTpJWa46OUi9Tk/McO36CRx97knXrBujpzNOsV0kkLFB0VFWh1WrRbDTRdYUYgSy3AaumCSS5HcPabLrUajUy2QymZaFoCt19HQStJoamUq9W0FSZiJBYRCBFmLaKHHpYySzV6hKJRAJZVghqs1RmL5C1UiTrBpmRBeIXjyGrOs0H7kL/tx9H+tBbaK3rQklqKIZFwkiTTjtEkYtAwjKSLMwOY+oRfsvjzInzOLaG79aQ8MmkbCQ9RiIm9AJMXUaSXESoE8kqUSQwhIykytTkmMVOm8KH30v8Lx4i2L0RJZkkvjCNfOB1wpPnIWGjzCwROXlkXaPVbCGIkCUJt9lE6BpGsoBlJ+jp7kGxe3EDl5ZXJZfvIA5CvFYLSVFQDZNYkmnV620LcaPGlq1byGTzaEp7z5NkBSGDImnEQLPpoqoaMzPTWJZBrVolikI0zcIwDExDx/c8Tpw8jiqrhGGEbdvouky90WJ6eoZSZ5Ew9jA0E0loBIHPrl3bSKWTPJY5iqKqPFTZzczkFL3dXTSaNZyEheUYKJrMmZPH0Q0VQ9eoNxq8fuQoXd0daJrSvgdpUZ6ZxnVbbNi4jqZbx6svkcnmCEIQmszU2CS1yiLFQp5UJocuC97IV/nV7V9nf3UDeytd6LKGkNpKDt9rsfcFj5Yj8+I+DU2RKc/OEDbqRAg8T2a27HLPA/tZqCzR1dnB4vw83Z0DnDxxhq3btnHo0MsMDA6wb/8D5PI5Djz/A9Zv6CcIIjZtadddjSKJHTu2cPr0SXKFPGEEhUKJgy+8yINvuZcogq1bt+A4DkIK28o3WePsmRG6+vpQZJ3jx08QBB5btm5l564dHDhwgO7uHuykytTkEkEQ8cax1+no7CSTSJJIZkkXigx0d6PqOq16FcvQKc8vIUkKCwtLHDlyhDPnTlEs5rhr3920Wk2iKKJYLEHYVjIVOzr5my/8HbffuY9NmzYxemEcwzDQdZXJiSlOnz5NLpfDMAwyqSz5XIFisYDvu4yOjvDQQ+9BiHaG9LHRcbbv2UkUB4yMDOPYNp///BcZGZ5g+7ZtLJanmbwwQl/XBoZKW9nbdwe7ktvZm7wFoy6xpFZ55MI3+dOpv+RL7mNM+2Wc7Xm27L6NXT91H3ff9yB37r2HCyNzDG7eSCrdx627HqTVcBFSi7v27ePZg8+yZfNWPvfpv+Y3fuNfAi3u2fdWfvljv8y+fbeTSmfIF4r8yaf+lJ9629u58977uXP/3VQqi9yx5xZ+41d+Dbda58RrR3n90GFyiRRWOonv+9fM3rs6Ec1KWhlLu7LNcqmc93a8Z02Q2X7SX50BWJblK+rQLh9b3vtXK/5XGwNWzmGlFfValr/rfb40/RWK9OvHeq4lv/1o4HU1/bDg9SdJcXRjmf16dLPg8c1et5tRiLyZ8eFK9/Vr4Yk3w+c/W7fh1Rfp2nP68cz1Wq6vP65+V9NaGoyb0aZcXmir265tiV3udy13Bf9jvw+A8pd/cM2N7FquwcAlV4IrC2avcL+5yN8y0FtrbpfcWtaY8rIn8eXkC6trq12ZBbHNz/VBZRyvsDxfdBG+2l3iarC/lobtRpvOWnNt890+R43an0MhCGj3pfoBLx16ma58jnPHXmbXPe9GkkPqbhVZ0RCHTpH47T/Dk2WmNvdT3NzD2PA8E2Oj9Pb3YNgW2XSamekJVEVgGyZzs3NY6TwJy2KuPEOpq4PP/82X+dCHfgbdUJFlQRTJ1CpLELTQLQtkFVWWiWmX4Wg2W9i2he+HLMwvEUUBxVKBylKVR778NX7pYx+lUpvFNizCMEJSdY4cOcr5c+f54AcfJgj8dlyZ55JKppmamqZeazAwMICiyvhBnSgKGBudpbu7D8uyaTZr6IZGFIXEYYBmOIRhxJlTJzl78hQ7d+3CSSURsoRt20CAiFWiqF0rVJFlojhGVnSiWKJamcO220lVwjBCVTVcr4qsGdRqS8iEGFaWKJB4/vnnuWf/XhQRMzU5TyKRRDcAFHwvRpF8Wq6LaaXx/Dq2ZV2sKRpz6OXD3HHXHVQWy6QTCb7xxDd4+3sfQggZRRLEsU91YYFnnj3Ae977fipLc7SaCziJFOMTswwObiESTeLAR9MsnnryOwz095HP6zRaPn3rNuO2PBrVKrbtIKQAz/URwqDZbFGt1SiW0gRehWa9iu2UkFUDzZQ5f34MDYkXDh5i//33kkgZyLqFCELOnjnLps2biBUJEQkIJeLIR4gQXw4wZZu5uSkM2yFhGbQ8H0XRcRtlRNhECIswjGkultHm51FLPaiHz8H4LGzbSGvfHuT7duJt6sOQVb796Ne5d/9byBWyeLFPreljaAoxAWEYUq00OHd2nDv37cT1IwxFImpU8COFd7/rg3zy3/8fJFIaqVSKQiGHYeh893vfZv/+e2n6Bn5zjqmpCXqG1rNQXiSbzSIrKvVWk0QqieRDo1klDENMQyN+fZT4+YOIl44ivXoasa4Hccc24moDUcwTSdJFj4UWQsTIQgFJaQN/RWZxYYFsvsBn/vIzfPSj/91Fy4lEq9VECNA1nTgOQQa3WUNVZWTZxg9AlUIazRbJVIZ6o8Xi/DSFfJ4oCIjDEFnXkISEEApLizWEkLDTFkFT4rnvP01vb55kKk+xq0AUBUgoLJZruG6dVKZdZ3dxYYHfuvUZZFXi02cfptVyGZucoVQoYho6rt9iobLIYE8fi/Pt2Mn5chlJknCSMrVKhO/XMfUUkhxQqy3Qavj0dA/SDOtEUYRl2hDHSGqGv/vbv6e3UOTW3i7OGrN85J3P8a8PbmLPZAZJcPEeVYljASJm09OTTA4a/OnHk4DB8WOn2LdvH2fPjFNeWOLue/Zx9vxZtu3YjttymZ+ZpbywyKYN65ifn8WwLISi8oXP/g0PPvgAlmVw+vQpbr11L8MjI+zavYsgCDh/7gSdXT006iEIgWka1OrzpJwCj37lUTo7s8iqyc5d2wlDD9cNqdcaDA51c/TwCwwOrUdPZDA0k9nZGdLJBCdPnKBvaIB0Ks/jX3+CB+6/l/mFWdK5ApWFJdLpLHXPx9EVmqGLk0hQmZ7nH59+mne9+50EgUezViOKQl544TD33/8AX/v6Yzz88MPopsGB557n1lt2U56dIQh9srk8U1MzHHj+IA8//DOMjo0wOLiOz3zms/zSL32EC6MLmGaTpJ2lXK6hOhH5dIn5+Vnmywtk0zlS2SQjw5P093dy7vwwrx45wkPveiflmXE6ujtJ5wrEkowctPBRCEOfUFYxCag3fRTVQBMRp6vDjPuT1Kkz788TxTGVsIIudIigy+gmcH1c18UwdFRdJQ4iloPq4jBCj0w+XPwFZidPI5+X6SltJGWn+ZWf/1U+9ad/yN333Mn4xDw9PT0cfvUQ+/bdyfGz02hShep8k+MnzrFv/15+8zc+zpcf/yINr4WVSKFKoOo6vusi4+HGalumWFYox1zx7F+Wk5ZBpyRJfOy1/544hs/u+TTBxdqyseBS3OpKt0pZlq8Az8tyxnI42PLna4VzLbvlrqbryaVXVJCIIqIoXBN8XOkRd7n9ShflK+XE+CqZZ+X/K12oV/J4PXlvbVpb7vxRgOrNWgjXsp7ekNZwJV5NNwrZezNy482c82ZoNRZYa7zr4a8buQ0vn6so2ptm+L86y+tlujZ4/UnRT2rca41zfc3XleD0epqR1a4HqwEmXC6Vo7zvQeDKRblSAwhc2qSXaXnzWmuTXDnuyr7WmtOlTX4NnhHSqjlIl4GsaCcjWNnfsqV1dT8rX3F8JQ/Lm+zyq/3d1X0sx6GsVjRcbyy4/IBb63cJZYhFOwutBqhC8HM/814+8tGPIasqQ4ODCDmm2VhC83ys//RV9E/9HdHtO4juvIWZpSVKpQLEghPHj6EbBk8++RQJx0FVNdLZHFMz88wvNejoyHP+3Dk2bdpEFMO2bTsIgoBGvY6mqRx6+RCDg4MMnz9Hd083CEEU++h6u8SH6zYRQkES7di/dDoBRAhJMDg4iO+7jI0NUyx1IysKRDG9vT0M9vejyAoz09M4lo3Xcjl69ASZTJrevl78wEXTZFTFRAidbCaLosoI0a79p2k6YRQT+B4Li0skEkkKuSyW7ZDOZLAd52IarrYQev78COlMhs985q/Yc8ttDA+PsLS4xMJ8mVbL5/XXjjIw0I+ma9TrbWvu5NQ0xUIBVWn/DzEdAAAgAElEQVQD+cXFJV5//TV6ejpBxKSSWebmygShi20nkFWZWm0R4hjXD4iCkDAMmJ2dJZPOc/jwqwwM9lGrLeI4NnEc4STTfP1rj6GqMmHgkc9mGVy/gdnZOYqlPLZlEsYSTz31HbZt3YHv17Ach8pSjXwuTxRH6JZOLl/C9wOqiwskHBvdMIkJOXnyFD3d/fztf/4C++7e17ZQazqpRBo/UpifXyDwWhRyBSqLdYaGNpDLFQijECELvJZLb28vYRQSRBGaDBMTE9gJG1mVESgQKkyMj1Hq6AQioosChixBZWIa/cIMxtgC+sHTKMkc8vp+og++FeX3fx3vA2/F3LcbL2MjKzKaopLP5NAMhYgQPwzQdQVZUtoJhKKIyYkp8vkOHMsEIRP4DaKwheVk2H//g6TSacIo5P/+1Ke4/8EHMGyTzu4eZstlhNCYHBsjXyhgWAkcSyYiQlUN/EBCQsMyNEZGhimVSsiKjNzdQbRnPd7bbyP+0E8T9edonrmAeuAo8YEjSHFMPDaNbJuoCYc4jvH8AFledvEDWZLp7Oxor9uwXWpIluW2gCig1XLRNA0BbauuUFB1Ha/VxLRsoqhdlieVsPH8gEbLRZJVDF3F83wkSaZaq6CpKmMXxtE1Cc1UyRU6mJ6cRVLbHgCtVhPbSRBEAaZl4vkhimLwV8HTKLLCO8ubqVXrdHZ1Yxoage/h+R65bJax4XM0mw0EYJg6sgKe26RZD0in0wRhCyHJGLqDrCjU6ktIRFiBoHpyFOX8LNHLx9im2/TNLHGkt87HHnqJn17cxDZtA0tFnaUOnUaXw0JeptYlMW4vkpmNaaZVzj7YSSLRRaspUeos0TcwRKFYoNao0dVVIqZdmujMqZPsvmUPgpj5uTILi4uYVoKuUgfdPd006i3eOHacRMKhp6cHVVOZm5ujr6eXz3/uC2zdshXHsTlz7hQdpS4OvXyYTCbFvrtvp7d/EE1T2vWHhcTM7CwjF4bZvWsXdiKFpOpcGBlBliRmZqZZv2E9mmFx+tRptm7dimNbJBI2xIJvPP44URjT09vNywdepqO7A1mVmZqa5J577kEIgaZqGLqO53moqkoun2Xr1s2MXBhmcXGJ3bt3IcvSRRAUYzspDMNmaGg9x46dIJ1NM1deYMuWLRw7fozp8Qvs2Laef/jSI2zdvpNcMUccxExOjjN6YZT+vgEOv3qIXLZEOu3w7LPPsjhfpZDPs26oH9/3sAwNhMToudMkUmkMVSUOfWbGhglDkFW9nehLz9Bv9lJo5dhmbKGz0cnJb5zgHVvewYDThy6ZmKHOxMlxNvZswJFt5LrAlhwKZh7qMa7h8fT0M5zQz/NM5iX+UX+GR+LHUB8yeDZ1gM9N/h1eMuBLJ77MYmuJ0A4IDJf5E8MU8z28+MpR1m3dxHt++p08+eSTvO/9D/ORj/wKKUPDqzcQMgQivgp4tJ8dXHpWr7RuLj/3H5t+nDiGdxfeefl7Lgvuq89bDSbXEvRXylYrz7+WNW3l8bXoSrnkavC3uu+1POVW8rYWn6vpWlbHlbLO9Xi9fHzt8X9c4PVG7d48UL5x2zfrQn1To/4YscmN+vpReL8s98tv2vL63xR4/ae2Ir8Zq+dqupmFfyPr3Oq2N0urN47r8b3S+nnF94893QaN79l/VR9rbcbXmuvKvpcTQN1oE75qo16Tf3FFe+IrHwRxfLm/y8mgVrdZ/bqsbVt9bDkJzHIfq3m9grMV6/Nar+V2az0UAVwiwjhGQyD7Ln/0iU/wf/7hfyCSFCZn5rATSeS4hfvKMRK/+kcwu0jrgTvRBzpYWFjk2aefRZU1Gs0KO3ZsJ5nKsHnLFkaGRxgeucDGTVtA0Tl/YRJVDhns7yUII+bmFnFbNb78pUeQhUypWMAyTU6dOsmGzZsQAgLfIxYhbstH1w0WF8sMn5/g29/+NnEc09FZoF6voKoKmUyKOA4odRQIY5VWq8Xk+Bi2ZfC9732P7q4uAIIgxHU9FpeqSJLAsjU0XUFVVQJf5rVXj2GYKuX5WdLpFIZhosg6QRCiyBJBGGIYOrMzk3R29TC/uMjIyAgzUzP09Pbi+SGJRAohBLtv2U0oYiwrQRSEDPR1kUhk8HyPbDbLxPgolm3QaLromoZt2kSxoFyeIZVMsnPHdprNJrZtUp6r8Mwzz9Df30MqmaHerKFrGoqqYlg2hm6g69olRcX01DRRHNDT28XE5DhD69aBJNHT3UN3VyeyBJad5JFHHmFg3RCqLBP4IZGksHPHNhbmy1imipA1lpaqdHZ2kkknMZNZEBKqLKMpMkHgMz4xQcJx0HWDOI5ZP9RHeaFMLlfEd0OEpPDKa2/w1LefYv36AWzdIoxbOEkbWYmYmZ0im84SE+N6Lqqm4bdcQr+J7Zhouk4sBF6rQhRBqSPHwvwEqmYRByHB2THUmSWMZ95A2rqR+ANvg3/3r5B/8Z2IfbcjDfYidBVJjogiH13RiES7vEsqmUQxFGKkdkbctIPrhcwvlDEMA9tOkE7nkeMASWlbZMHjka88yc7dO4lFRDqb4f6f2k/DbbZLz8gKyXSWh97zHt6y/630dA8RELMwN0ar3qTWcPmzT/0Fd991L/Pzs6TTaTzfw/dDbEMBIbOwWCVVKqFt7Ce6ayfuz76FkZ295Ab7ELUmPPEDeP0MmAbqzCKRIqh6rXYtVUlC07V2eSNFJghCZNHOOu77Abph4Lo+uqajazrTMzMoajt2PAyg2Wwhy4KlxQrJZApJ09GMdlbiGGjU65w8eZLunm6KmTyS6pLN52l5Mk889nUGBgdxHIdmo4ZuO1iWiR9GgIrrxYz3NshLCd7S3Ey9USOZTEAUMjszgx/4GIZJ6Lbo6e1hYWEeyzSp1xepVlp0d3czMzNLVpNwh2eRxpfgzDjpVoj+3TeIT45jdpZQ925Hesd9NN93H43/5WF+seuvuKWwl/6+3ZTXpSmvSzDVb3A+M8N0T8RMr6C63qHv4BJCglP7cyBMMpkiyIJao46iSHznO0+xecsmFhYXUBWFbDrN+ZHzJBwbRZZIOAniMCZfyKBpOnNzZXbt2s3JMydZv349Z06d5rVXX6VU6MDzXAaHBlAUQT6fxdQdOjpLlOdnefYHT7Nj+zZkWaHZbHLq1El27NhKqbM9f9tJUm80sE2Tx772NbZv38bMzAyWkyadTDE1PcHxY0cJw5C5mTniWOLOO2+nujTPkdeO09XThZOwyOYynDpxmo6ODmRJ5tTJU3R1dWPbFrZtI0kSqVQSophsNsNXv/pVNm3ejO0kUNUI01BptuqYpsrY2CQ7duzghQMHueOO2wkbU0SRYN+991FvNvC8mB88+yyGbnD77bcTBhE9PV2cOH6KanUe2zLZv/8tHH3jKIViHomQuZkJJkbHUAmwnCQQMzN2Ab+2QBDFBJGKbdjEUoyMhIhjpCgmAvp7ByikcxTsPGodCmqebX3byclpLFdnY3EDHVqRnJLFDmzOfP8077/1fWyw+tjl7KK/3ssdudtx6habkxvI2Gkm/EkqRoVX1Nf4zsJ3+Ur1Ub5qPsUX/Ud4JXGIRxe+ipkwKBaKfOQDH+Vzn/7P/MUf/ymHXz7IAw/cRyBpyEGEprS9c2Iug9eVSvqV7wBfn3kcIeD9Xe+9bJ2ULyu8V4Oxa5XPWf2+0iKrKMoVQHe1Yny1MWFlP6vlq9UK9NXyykrF/8rjK62pbRlu7eRDy7zfKOvs6jFXfn/lOWsbP9aitTwAr0X/FHL3xTPeVJ/Xs06uhTuubXi50qPxRi7LN8PbMq12V7+RtXq1AWh5jS5/bq+lfwYxr5fp/zvL6w+rCflR3Rt+WLoaTK3+7tpW2WUKL1pepYfuf1NjXes7uLxRrbbSrgUCr+hjzXvl6jle/3gbeF6PP7h24oLL2QDXPvPH/luHAkUI3HqV3/+93+GXP/ZRtESR+WqNMPA5+dohCk+fwPnk5whu2wJ37UKyTLymx8jIMHv33kIy4WBZNieOnyCKAkIC1q3fyCuvHML1mnQUC9SWFti2ZTujo+dYqizR1d2LpApqtSanTp/jjrvuQJUEjWaLVCbH2OgFMskEiqpw4PlDNJsuGzYMks1mSSZTbNq0mWPHj9HZ2UW1WsdxnItZfyVajTrf/e536ezqAklmz217cH2X1MXEQzGC3t5OcvksmqahKjqe54MI6Ooq4LbaiZKiMEZIEtPTk9iOhddySaUz+L5HZWmeZCaPYZokEynS6TSqrHD4tSPkckUOHz5MsZRHwicOIYoElmMRRi06uwpAiKrK2LZNGIekEzZBGBIJgak6nDxxklJHCVVtA5BarcWePXtYXJqn3mjiJFNoikEYgiRLeG4b4CuKhBAyhUKeYrGT0fEL9PX3g5DxWh6ZdJqF+TKObTExOUM6m8EwDaYmZ3jmmR+wa8cOwsglmyu2raF+hCIrKIrMUmWBkyfOUMhl20lw5ucx7AQJ20QICcMwCKMQWYR0dXURECHJMYKYRMJh//77kBVwvYB6fQkhYlLpJIlkgtCL0HQNSVEQgG2axFLbIqrKMr4XEAU1LKcNchvVCtr5acRzR1AWa/BT+4g++T/Bw+8m3tgFhiCImsRyO44TISFCCSIJEUdEkkC+6MXgByGVSsDPvv/nefvbHkQzTSzbvGiN0okiCV1pUm+5KJqOqhhs3LQLWQXT0tB0E8eICP0mpqrw1Le+yVBfPw9/8IMszjb4wAc+xIbNm9k01M/zz71Af/8Ad9x5B5omce7cMPl8HsMw+NznPs8de3fguxGgoFs6jaqgVm1x9MgJOjeuJ7l3F+H+24l+6R2I+25FFhKN4THUg29gjs6hrO8hXlhCSTjUqlWE1K5h2apXMCyzLSwLCVXWCPyQcnmeru5OZEVmvjwHsYJuGAgpJgxgYnyMMHDJpGwadY/nn3uB9es3kMvmiWPwwwaeHxD4AsdKMl+eYvOWbfzgB8+xdcsWBO26sYoioUgy586e5V3xVt7a2kIcR5iW2k7IR8w3Hn+Cvv4BJEnmsUcfoaNURNUUPNfFsk0SdonJAy/hLNRRnjuFqmvou9dj7NzI4r234P/2L2L+rx9BevhtiLtvQd7Yx6zT5MMnfp2iXuSW5E7ExdIdURSiKDKNpWl0w+G551/j0OFh7jkusOwkY+9ahyTrnD9/nlJnnmZjiVcOvcy+O+5CN00URUUIiS/9/ZfYe8c9GJrG8LnTlPI5hIiYmZ1F1RTy+TSvvvoS23ftbscfBiHpZJJzZ0+za+d2EBGaZlKvuxx94wgdHUU6uzvZfdteFstzl54XU1MT9PR2YWpme0+QZeIoBAR79uxBkSXOnjlDb+96ICKRtBjo76VcLtM/OEQ6X0A3NQxDpqOnF0WR8FsuxsX+dF3jy1/+CqqicvbseTZt2oTvB7xx7Dj9AwPEQdu6v237DsrlRXTdwPOafPup71AqltA0nUMvHWT90DoGB/pp1Jfw3EWmpusYtkUUeLhVn86ernbdaEXl0EuvUCwWqFZq6LpEJp2i1NvN+k0b0E0L323hNpvtMjWBh1BMJqamicKIwGvR2dOHqjkcPPAi9doSqWSS4ZERpqdnGJ+YIJ1Ok8vlaDTasemyquAHIbqmYultb5q56RlOnjyF5dhs3b4dr+kxOTpM0kkihIxlWEwNT9ORLuLPtNhe3MjSmQq3Fm5ld/4W9GGF+3N7GdIGySpZVF3hhcWDPBV9h0fiRziSeY3/4b3/krdu2scffuITaFqCznweWQgkWb6UIVi6gdHk8dknAMFDpXcTBEH7nFVZf1cC0uX3aym8V76vtL6uBirXs3qu7Gfl5+VsvmsdX8nvtVx1l/lYy1Nv5RyvFxN5M26oq46+ibY/3jY/HP3o/V7Pun0jvpd/p5tp+2Z4WY1nbqSUWItardYKBdD/D15/IvTDANH/ssDr9bVZa50Tfe17AFcmbLrBWCs1eyuPr9xslzfR5RtSUZSrtJRX8fNfAHi9rM16c24yPyxJsUAWUK8sMtDfTWdXBwstwfDIBcJaDel3/oSul8/wYleS0t5dCFlGCJlWvcXJE8cYGOjjlZdfYsOGLSyUywwMDSDJAl23MU2NbVs2ce70Sc6ePomsmGgaFIsFPD8gkXbo7Opj165dhJGPRIQfBCSSaRbm59qJXFoeqVSOKIpJpRJtDbHczvL65LeeZPu2HciyTKNRJ47bGWZVIdiwcQPpTBbTdmg0a+iGgef7CEkGSUKWIlzXpdFoArQzuwqP0dFzFItdRJFEvV4HAWHoE8chAglZUZhfKCMRYyXS7VhF00S+WMvODyLCMORbT36L3t5uUraGoprYdoJIgKbGxITIiszU1DSO49BoNfDdZjsZmKwgIpUvf/lLdHZ1kEolCYIAw2i7/xWKWRwnCUJidnoW204QSwJVkgmjgInJCUzD5Oy5cxSLnfi+h2FZyLLCwQPPUyyVkAQIEZFKZ3EcBzuR4KUXX6Zea7B96yY8v4msGCBBGEQYhkmjWSeZdLBNh2QyQRwE6JZDJMnIIsQPAlRVpTw/T0chx4XRUUzHptWqo2kys9OzKKrGwuI8uuUQuiG5fIEoEiiyga6peIGPkGVCP2B+ZhY7mcH3mhi6gSorLM0voOs54mPnsF45TegF8PFfIPnv/kdm+7rQCkVq1WFUVaDKOoQGkRK168TFCiKWiGOBiAKErl7MyOsjhIaITUQkcdutu4ikmGp1iUqlgiKrBH7MhXNHSOVLQDtBkaIYgIckC8JAIo4WGR8bJZlIsn7d+vZdrmi0aiEbN2zh1ttvw61X2bhxc9syPj2BpAiKhe5L1o877ridOKhDrCCrBn7so4oEkxPTvPvd7+HjH/84iqKCkNBUmZmgSeLO21Deux//595Ka10nwZEzKE+9RGu6TCKIIZ/GsE0sUyMKY5AkEBKe53PyxCmKxSKu51KtVzF1ncnJOWzHJghdGlWXarWC26hi6BKybCPLCplsljCKkCUZRAtJMgh8OHnyBLfdupulapXurh5mZ2cwDYvJqQkUWWCZFo5j47rtklhBGBBFLrIsMzYySm9PL4ViifL8PJvXD5JwbNKpJKZhUHntNOG3X8KOBMbP3E3q//pd+NA+prfmyL3rbShD20l0FXGDuF2dWgieufBdfuHcr9FjdnFfdh/RJYG5nU15dnYav+6SSOUxnRR33H0/p+4d4t+MfZdbb93L6dPnSCWz1Bpl8tkMncUSvhty+tx5cvkilmkhYkGh1E0cBiQsg0QmSbNRw0mmeenFgxRLOXp6ulB0G89zySRTjI5cYMf2LRiGRr1R59y5Cxx+5XV0Q6G7pwtVb2f7VhWoLFVwnCQdHUUWFsuYmkEUhW2FgGhb+ScnxoGYdCqFZWeo1SuAj+95JJMpwjgmlc3h+x6yHGHYCVy3iWWYPP29Z9i0ZTOSJDM4OETgB2zZvJVXX32VfK6ArKgIJCqVeWq1Oql0mtOnz5BMp1GEhixpdHf1MzU5y52378E0TR772qNs3bIJ162QSvfghwGmoRC7gvLSAvlcFsMwefXV11m/bpAXX3yZ2/buIpFwaIQesipz8MWX2Lh+CFlAR0cnzXqVXEcvmXyehJMinTSZXVggQiflJPC9FghBV3c3TsKh1NHJzMwMYeCTz+dRpIgYQRjF1Ko13jjyOolkinSyXQIrk8sRhAEiFGTTNoEX8Oxzz7FuaB0vvPAC54fP4fs+cejR1z+Aphu0goDZqTnyhTSNuTpmaLM5v44due10NUvsSezC9Xwel57gRXGY9POCbzz5DE88/iiHX3uNt779be24VQHyGnLnSnDwvs73XnIZBlBV9ZLosdo7bbXifiWtBgUrY2uXy+Asy1bXKyu4ur9lWg2YryUDra6SsPzefoYrV3ihXWu8a1lHV8bsrpQH12p7OWnUtStAXIv+OYPX5fX145JHV2fEXsvau5r3ayX8UlX10u//3zh4Df4ArnZhuD5ddgltnyLWeN1EL29aO7Q23YyW5HrnXc8NYrUW7spFdWUbohjidiKCOIqvuAzLVtn2WJcz8EZfexqEQHro/jUTErW1a1du5CJux6deDPq46Hdz9c23et4rXWnh6iQDMSAkqS3kCNGu2xmvcE249HflK1pm5OKcYoSQL26GV7ZtD331NV97s796TS2D4pXzufKcax9by8VCRrSTBsUx/+Hf/C4P7n8QO1NgZmqMQT1D8df/PRlJR3n4HXSuG2prv0MPt7bI/FwZVWnHYm3duplXXztKKp3i/LnzpBJpTp48QndXD7adoN5oct/99+F6DUwrief5CCni7KlTSFGMbRrIuoSiqsyV50inHZLJJJIio2kacuxiOA6R72LoFhDRaCwx0D9AOp2hXlsknUphmjbz8wscP3GCfC7HiwdfoLNUwJQElcoivt+iUa8gRQGKbHHu7Bnclksmk2V+fh7DsLGsBKqmIOKIaq2G6dhEQczE6AROwubokeNs3LCF/+fTn2X3jq1oukbTc1F1jXq9zj9+5x/p6+qkr7uLvt4+AtdnZOQCpmUiKyoKOkKAH7TIpNMIFAxdR1JkZFmFqF22ZGCgl1KxhCBmfHwCXbN5/sDTdHblGLvQTtAyceEsiUyCJ776DYY2DfH88wepLNbxfY+hoSGiuMVff/ZzbN+2g8nxKTZt3koUNEkkTPxQACEtt8HczBQ7tu1g/fqNeIGLk8ogggZhJKPIbfBnmSYQU6vVkWQZ12uDVa/Zwg0CBDHNZpNCqZMw1rBtC0UIZNkmwsC2TMpzM6ScDAkrhZN0EIpAUtrKBD+KaNQr2LqGkCTMVIrzJ4+SzWUIwoilSh1n0aXy1W+iyIL4Nz+M/LsfQazrJ4glZNnkE//7J+guddDV1UcUgVAEcRQgonbt4vmFMUwjIgwFreoio2dP4agSc/M1br91J3/we/8KVaoyNTaNCDwWZ2fIpy3mZy4w2N3BhXPnsSwbVVMRfpPqUru008TUKKliD6adxTCdds3W2MdvtXCyCdZvHiRlKRx74yTV+jQnj5/h0Ue+xf333oNs+Eiyh67rHH39NJqm46STlBdnQIqYmpgmk3X4rd/610xMjpLJpghFiOI2KGQyoGu0anWC2KWVT5J537uwPnIv85GPPjwHjz5DWMwQNSMiy4Q4RogYTVPIpjI4liBoLZFNpgglDct00DUFSQQknASFQgcRHtlcJ7IKMYLqUo1U0kaSfCYmq3zxi49Q6kjT19uL5zXIFzoYHxsn9lvomk4um+fs2bMk0yk8z70Yu6gwPTmBk8jgex6GYRHFEAQupWIOANVwYGoB//uHMSse4tfej/iDf0Ft/VZG5muoqk0uU+ClV14l25VHuDGKiFlanAKlxS+e/HV2mdu5LX0bgSc4fvwElqEReUtIQZN6eZ6lRszLh94gmSmQzqZRtZjevi40rR1TPzk5iutGDA+PUyqWUKSIl19+GU1WcSwDyxFU5md45fCrnDo7ytjoGC++eJBSqZvtO7bTbLaVan6ziUSIEBGqYvD8wedYt2EDlu2gaRq1WoVCoYSuK6iKzLnTZ5Akna985VH8wKXUUSCVShMLiTiWOD88jJ20GB2b4Y3jJ9i+cwepbBoCF9etkEwU+NrXvkGpK49tpZEI0RSFMJCYn5vj8OHDrN+4kb6hPohcJAS67vDqa4cZWtfHwOAA586eobe3F6EqOJaDoio88sgj3HbbLSwtzpNIWNTrNRAxuWyGqZlJvCiit78bvAqaU6Kju4DjOJhWiqVaDVWJUDWFAy8c5G1vfweyLLNu/QYOHDjI5i1baDY8bM2kp1jiu997mq07d7dd8eMYxVTbXixSwMzcEoYmoWsyiVSGVuCSSedZWqzj2Bott51sbvzCMB0dBZZqLSzLwWu2SDoOfX39zM9MMTY2wuC6dQwPj5OwTYKoyeT0JMWOIhs3rEPVVAbWDeEHHntv2U0kFBzHRtd1psemyKdsArfByPnTFIsFWi0f3TSYmZpkenKO3UN7sSZURs0J6neo/Gznz/OxX/plBjr7+cKnP8fU6BS37LyFIHSRFIko9pFU2h4iKwBmREQYhW1XYVm6KHrE7QoJXEz+FK+QPuOYS6Lpime+WBbLLvorBysyEa8GIiuB7FqgcaWMdT2AeJmW5Y/LWY6vbN+WoW7klnu9qhZryVVrt718bduy2o2TGV1LZvsnp7gtS7ZFZwHxtce/1rUTQrSt/Ctegiuvz1q/9c0oLq415ptxr17NxzKtVGCs5m/lGlxd9nL5/Z8BeP3hNSTt836CC/nHSNeynK5evDe6aS99t6JdfBEA3nDsHRuR798L6cQN4zovjb9maOrl2NTr8nidvlfyfnmslZvcWlqgteNkr0dvRsO1eqybndu1jskIojgmFhAKSCP433774/zWJ/6A1w+/yqvf+z47h9ajf/h3KDsamfc8gOs1CUP/YpZDhTgQSEpMqaOIpioIKaaruxNN1+jq6kaSFMrz0/T09OB5Hq7bwDA1PM+no6MD0zLRNIVYKHT19BHEEbGIaDU9FpcqFIsdl5Ik1atLpFNJZuYXSSZs3jh6gp7uHmq1Gh0deSQpRoiIaq2OohocP3aavbfvpdFoUqvX6eruoVopo8gy6WQGtxUzPjbN/MIiA0P9LC5VKJU6UFQFP/DRNI1yeQ7dNLEsC0WSiWN46qmnuPOu3ThOEllRuWvfXRw/epR8voCiasRBzMT4BHtu2YPveiSSDq8fPYqihAwODaLoBpKiEgWC0bHxiyU92plGG82wnUBHkinPL2DZDo7tIMkynucShRLj46Pctnc3qqqRz2fxfBdVlklmU2zatAGQ6O1pJ6fKZbKEQcjC4hy37b0VSQgmpyZ5+unvs3vXThrNBrqho8gqQkCz2QDAsk1UVRBLMbOTY2iGSWVpCcdJcvz4iTZY9X3SqTSK0r5eqqpiWiaB75FMJqnWGqiahheESJLKn/2nP1tsDU0AACAASURBVGf37l0oCiSSCRAQE6BoGrKstMuwhCGSaqCbNkKSCYOAKHCRpbYLkK1YaE8fovzy6wz/4jso/tHv0OrMY1o2gR8ihEoUxjz44FvI5DLtMeKYOA4Jm3UW5xbwGk1Gh88wPzNNUCtTXZzH9zwuXBilr+Twcx/4Gc4cP0UcNNHQGD51imOvvc7Y8Dm+8NnPIusFDEPDrS7w4rPPIOKApcVpujrzqFI7ZtZ3PVRV4+z5EexkivFTJ+ju7CdoeXzpb/4W2+nF9Rps27aTB+6/n2e//xRusx1L2KhX6O8v4DUjTpw4ztC6dUhCkM1kCcO2m2A+V0AIGc9XcBs+9UYd01KJPZdKpYqiGciajqcmsHbvQn3fW2m+7U7kc2OIrz+DVMpC9P+y995Rct3Hne/n5tC34/T09MxgMAE5J4KkGMQkUVSiKEpUsKJFe215bT+/t/bz7j7v8z577X1rn117JctrW5bkICqTFCmKkkmRBAGSIEgEImcMJmDydA433/2jEYcYACRle7XHdc6cnu7+3d+vbuyq+lZ9S0DQdTzfRpU1RoaHqNRq6GYKQRJQFAkIkGQRaKWl6qZGFIqUixWq1TqPPPIovf29KKpOPNFCY1etWoGi6FQrdU6fHqavt5/Hn3iCG962EUWTyLZlUBQZVVX4hf5v84P0QT5QWoEkyczOTFKr1chkMji2TSKZQGh6eIdPoew8RvTZ99L47ffiLVlMIptF1dtItnXgB3D9Tbfwm7/97xERiHAQJQlBVPmPJ/+YSW+K27K3IAsBTqOCikOpMIWo6ERKkoe++wR33HETS5ctp60tQ6k0i65LxGIWnhPgOR4jw8NMjR5n8ZKlyLKKKMmsXL0K3w0oFAtomkw6lkAQZVauWouiqtx0003EEioAqmagajoH9x/n5R2vsnz5SmJWjJ6eBciK0qpHliXS6RQLejpb5FSSjCAotLclWbliGZIokkklIQopFUuYloFpGRhWjPZsR6tFWOCBEOE0iuiaxOxMlWbdxTB0HNdmdnYWRVEJ/JBqtcb69euplFukW/Vak8HBYer1OmHk070gjyBGpJMpwhD8AEaHR8lk2li1eiWqKmGYGoEvkE5nOHr0KLqu0dOzgJiVIJHK4EcibZk2JicnKRQKWDGLeDxOMhnD9V1kSSbf2UUQuAwODjJ65gxLly7GSiQYGxsl156lq7sTURJRFZnJsVGSbWk8N6TeaODaHsXCNKVSjUYzwDAsdN3g2Z9swXXrZNrayHXk6O/vww98VPVsLbjS4jfYt28fbhCyaNlqbNdnfPwM2196BStmEnoeIhFuEGHbDpquEY/FaDQbCBEoikToB4iCBKKAH4UMLF3K9GwJzTDxA4/pyRmWLVvJ4aNHWLpoKc0THof8gwQdIWvljXz1K1/jFz73IIcOHkII4dGHH+GGG24EWSIUJYTwUjRKki/UwZ7L1CB6fW3rXBGlOXWll/n+AkgwXyD92uyNix2J+eyiKzuFF+aZz4m6Fsfx2myqKzm2b8ym+seXS53Ei3W4krM6V+aekbnO6xvJ4Hwjdui1zDnfmCvVNV/Obp97Hf9vTtjUcl7fjLyZ3rDzoa1v9Ya4FvT0cg+Fq60/3zYXXyjn157z3eV9zDlMv+kkQir+Ot0vjQJGc9a5jK4XOZ1XK+I/99189RSXnNfoaufl9UXuV3Ne30iD50v1m/v+6uftvJYXYHIAZEQiz+drf/LH/PKv/xquIJPNdrAo0Yb2879PuKwX89brWu1dSrP4QYCqaXiOz+nBIRb05Dl65BgLeno4PTjEgYOHWLxoEUNDw4RhiKoptGXaePrpZ+jr60XXday4Rb1exzB0gsAjk+7g8Sd+SM/CHizTxHVdenp6mJmZwTAMgiDg0P59mIZOPJVBkSUMXcf3fXbseIUlixdzZmyURCKJoqhIosxTTz9FPJ5E1TTaczkEAWKxOIViFSFS+ckzW7n57Xfy9NP/wIaN65FlGV03ECUJz3OJogjDaDmasiQTBS0CiVVr11ArF5ktlM72NdSwG0UUTcaI6YShT74jS4jEC1u30tvbS74zT1u2DS8I8XwPQYDJ8WmeefYZli9fhh+4BIHPyaNDZDIpSsUZ8h05BFFh3/59tGUyBEGA5wk0mmW6ujo4cWKQTCaBrKiosoKkKgS+x9DpIbLtaYgCmo0GL7/8MstXrMQ0Y+i6TiqVIN/diaHr6LqJIEqMjIwCkE6n2Lr1BbJtOVRNJhIFZAJ0M46maczMFOjr7UPVVEwzBkCpXEJVVGrVGpqhEwbeWefWJwo8ZmYLGKbF2tWr0DXlbBsHEVXTQAhxHA9VVlAUCc9ttoIgQisqL4sCAiGiKGNNV/F/uA1740q0v/3/SV2/Bk2XMQyNKJKRxBaj7rlL221WiZkaYugyeWaYwA04fvgIh/YdYO3KZchihCLKKJJMYXoaVZLZ+erL9OQH+Npf/w0rVvajSBqVSouAzDQ1vvmNh+juXkk+F0cSIiqzZYQwolicQIxCvvF332HVqmU4jRq1agVJEAk9H10WOHpikKnJAn/0h3/E53/1N1i0pIvXXnuN7gXdVKqz/PIv/QaVUoNf/qXP86/+1YNYRiswMDszQyKZJAgDzoyN8t//9AvceutthGGEICnU6zbNpk25XCHb0YGqmljxJKLgEAlGiwAmcDDaUngbV+LccyP6sVH87/4DYrmKlzSQjBipdIpEOo2kmAginB48RVtbBs/zKBRKSJJGEHjouslTP3qKNWvW0JHPYZo6giRQKVfo6xsgCGxURSOK4Mc/+jH5fAe333kHu/fsxvdDdEPHthtoiswP0ocgCnnvdD/VaoVUMk69VmdyYpL+/j4qJ4ZQnttDeaAd44v/hpn+haTb0uh6mkKtxM7XDpJKxFF1g0988tPokkRC1/GjEBB5bOqH/NXYX3Nf+/0okY8ke9SrE8hKnOmZAjtefY2lK9Zw49tuZmZqDNv2iCJQFJlb//IYPa/OMLg2g2G0rs98CuKZdo6dHmH3gWPkMhl0PcaWLdu47rrrCAOfHa/sYtGSxRiGQhS5KKpCsVhD0wzqtTqd+U5WrFhJIpHk+a1baM/lMAyTpt2k6TTJ5bKEQcT4xBgxK4YqqzhuA9v2WnXtsoQgwtatL9Lbt5AojPBc//wzRJFlSqUKmqKgmyaFYp216zbw8isvsGHDelKpFCMjo1ixBMVyCVEQaWvLMDE2TsyK0d3VhWXFyLZlkUSZRrMGkYggtrIjBARqtSqiKKJpKqIkMjoyQa1aY/D0IJqmoaganuehaxqmaeJ7IaVSgWQyyVNPPcXAwCIksdWeJp3OnL1vA04cP8l73/seDh06RDyZwNR1dE1FkiVsx0YSZYQwxEzEGRk+Q7a9C12JkYzHeWn7TpKJDiRVwPd8zoyeYf36FcSsONV6DQRQZJlTg6cxTRND15memmZgYIB0W5ZHvv8DojAk15bE0OMkk3E6u/PMFovk8p0YhsH0xDhHjx3DC0ISiRSu5zExOU2pXKM934liWDS9CM8XECQVIfJ57pnnyXd2kc21I0YBTsOmLWhjp/Qq3zzxDX511a+Sz3bw+//5D7njrrtoz+ZIZzLIqobTtFHVVjudc+STv3/8D9k6u41bM7ec/1y6DGHmxca8eLat1sW//8JFjpAgCGeT1i5vC80FA65mY859fb3NeGUk70oMxddqI8/ddv601jdvc78VhPHNlPidO2TzBRgu9/7SQMLZeeaOmbPOZe3FK+zH5da/eJ5rDTRcLmAyH2/N3Pkv93qx/IvzOo/8tCIwP81Izj9lVOh1dQJz9Lg2t+zy+l4p1flKzuu5MVeTKz1ELvn8DTqvZ/+74hYXo7tvTC49JvPl/F9xBlFADCJkP+KLf/BHfPjzn0HVLaZHKsT2ncT4N/+VcPkAwoYVNBpNirMVRoYGSSaTmGaMWr1Kd1c3TbuOqunUqk0GBgZYuLCfiYlJBDEilY7Tme9mePgMgiCxcGEvnucxNHyK7gU9zExPUa/XOHrwBGMTk2xYv57C1ARR1GL0rZRLJKwYQhRCEFKulMh2dmO7TRKWQRhGlMs1Ojs70Q2TPbv30NOzkHqjztp1a0gkMyiKwslTJ6lWa2hxFc91SSbiZDuzSLrI4oElzM5OE7NMFEUjDANURcV1HRRFRtZVQj/kG3/39yxasgRRllEEhc7OHg4cPEQu14YQCZw5M0GuI4+ARLVUJRJFojBE0zXMWAzJsJBkhWJhFoIAy7BIWBZP/vAJNm5Yi2s3eOzhH7Ji2WLSKYuZqSlko9WXdf369ei6jiqbtGVjTE1P0Ne3lFJlCkk0UCSFUBRp1Kp0d+Wx7RojI6dIJhP0LFjA0WOjGKaO69p4vo2VtBAR+ZuvfZ1qrUF/7yJOnTpFezbHsmUrkGUVRZVBEKmVisTiaZqNBtVqHd8LcFznLMrqIwgCuqZjGAYhIZ7rIIoi1VqdkcGjzM4WKRQq9BWqmKUqhUMnyTgBykwZtVDGKNUJRBHB0JAlmDlwiOxMHc5MI03Mok4U0E6MIc1WkDasQP23DyLUKxieg/7NH8EPnkfesptdf/wl+k+NI215BfWFnYTDI1S8OlNHDlHbuYf+pw7Qtv80K6fqmDuPkNhzCvHFI+ivHGWyVMSemWHpwqUIT+3mlqLPoskGsddO0nFiguzRMay9g3xwxUZeGxylXRfRfeh/cje5o2MsGqtjvnqC9L5hMnuPE995mPrMDIl0gmC2CLsO0LvtIP1DU9yCRvDsFnKHTtJzchxjxwHyt2yiMjxDaXCKP11/K+2vHCN8djvJ3UdJ7jqGsm0PytZdiJOzvP3e93Pm8HG6mxHCn/89B774FRYNz1J5YgvKrmNYu48jbN3JmFxDyWQpFibQntmO/vhLaDuPYBwaYveuXfTcdgOy46EdO4Mviti6iqzraAcHkScL5HwRZaaMPF0lUfMoHD5Oqj1LodlgxbLlFE+coKfp0+ZF6MUqybqHf2acRNPFHx1H6MqxbMkich1Z1OEx+kSDjB1ilpvoxRrVmNhyXom4/USmxXodtxAEgd7efgrbdhM/MoL94D2curWTRFcOwUhjmUn8QCWWVGnP52gzTCJaXAZOtYTqNwn1OMcbp3jw0C/xkfyHaNcMZmenGR0aI5NZwOh4mXrTJ5/vRldlNAUMI0Y8nuaZp59l+fIVrHtyFLMRsn2VxomTh+nqbGNookpb+wIalTr5VJJQdLCsGHv37WbN2uUgyphWnFQqThQ2seuzSKLF9GSRHdtfIZNOImlgWXHKlWqLWfhsS6JY3EJRZARRQBZUFEVCVRUqlRKaqaMbcY4dH6QjnyOeSNA/sAyBCFlUeOrJn7B0ZS+aphD4AlYsxZEjgyTSabZu286iZYtZtXYps1Oz2E6TbFs7vh9RLJfJ53K89OJL2I0G217cwupVqyiWirz4wnaSySyJRJzntzxPqVykp28h4lnSNVVVePbZ53nllV105btpz7UzNTXJmjWrSSbTeK7DC88/RzqZ5KWXdrBx4wZEUaSvrxdFVvDcJmPjY+Q7Ozl+/CSJpMXAwAAvvbiddevWIqsKW557Dk1VMGIGiWSS//GlL7Nh7RokVSWdaifCgygg8BtIskRv7wBDI6eIWxYrViynXJkilWojiEJilsXxI0dYvGQp09PTJOIJJsbH0TSNSqVMMt1OwoqRTelIks741Dg9/f2kO/JEfkS1UmZqYoz1GzaQzXWgGQn+7usPMT45jarHKI6dJpWwePYnPyGbiNPf3QmSiKaaRIiks2n27tzByuXLScdSLAg7GVJG2JbYxs3yraxduYlc30JUReHY8RN4TZtGsUI6l6HFltpK3f36mYco+2Xuzb8PONvX/nW//5epFzz7zfmAfHTBdhBa0cLz852zTS5+nfvZfLbGXCDnXLeEuYDEtQAKl3Ne5467FrkSOBCGV0tzfuPI67Xo9aZqRKMro8Tz6fK6Y3nRd/DW80UvdpLP1UufC3hcq106H5p6ueP0ZkC+N+O8Cm8EUfrnFM9vXqLo5Q7O1ZyiubWIZ2eaO+qa571SLezrv3rjx3m+czP3QXjpupfT6fLzXpjn6scy+NvHAZA+c++8+gkX1dYChBft85X25ar6z/noSuxp81/P8xf6X2j0fbnr49Lx86HAb/U+UgIRTxaQJQHR8dm5fQ+nju5g9Mwgn3jw1zHjScZ27WPhH30dzkwi3X4dYU8ezwspl6vUak3KxSkW9i6kaTuMjJ1hw4YNVGZnURSZWDyO44fISBRK06QzrVQzVVWpVGpsf/FlVq5YTioZp72rm1p1Bk1OYTslRMWiVpslFtNa6Vi6TqNWRwjBBwzLojQz2YpIyzKe64IgoMgarboZmJ6eJPQjMm1ZXn3lVVavXgNSQOAJPPTQt/jsZz/N1MQkPX0LCMUIURCZnZpF8D2e2fZSixG2OEsumwQkBk8N0bOwG1EU0DQFxw3xfZFKbQYhivCcKkEA3QsWo8gSnu/heR5Tk5PE43FUXUfRdOr1CknLIAp1jp88Qn//QqKI8+nXiqoSRiKKpuM2y0ShTMw0KBQm0LSW0TY9NUMu10HDdvF8l9LsNN35dirlMsn2HLWqhyRHaKqOKIW4fosZ2K4WSMR0Ko5KrVohk0ngunV0zaJYKuM4PoqqY8UsDEOhadfOItfK2Roon3qtgWFYFGbGSCbTaLoFgszU5BjxRJxYLAYRNBoNJsanME2L9lySUydP07OwhyAISA6OEwYhiqJQqdUwdA1BbPWJbNTrnHCrrL7jJvAdKNWQRstI5ToEQat+XhJbf0BTEFr9fkUBwXbh/L3V+vH0fR9ZlogkEffse01RkIML914URQgI59GIQBYJoghJlhFcH/mSZ9+FZ1kQRaCrOLaD53nEZaVVYzYnYBZFESgyodgyGhVBBNdnvmd0ZOoQQkSE4JzbJ+HsvshnnwERkSSCqrYMBEEExzlf14Yo4q1ehCgKrf6sn3kfUnceUZQRntyKtPcwjtNEVXUAHMdB13VCP8J+citcvwo629FPnkEAgrOEaI7roMgKAgJOLk2YMRkbL5IKbDK1gCBo1aeJ4lkdw1aZyHPlEjduXsvpk8fpakTYpSrJZAJNa7Hz+uuW8tmur4Eg8eWhBzgzeJzOfA4plIie30/oBYj/7beYUCpIQoKaH5HId5JOGsiyT+h76IqFFwlUKhXCAJ5++jk++pGf41TzKPe+dj83muvo8iwENGZnKxw8dIT77/8gUzNFMuks3/rW96g3Gjzw0Q9z8sgx1m5YA0JArVzktt96BU3X+MIn4zSbLu3ZDrZv38JHPvIJmnYTM2YyePIYYRTRPzBAIpnAkwWaMyVGhqc5NXicO25aTaDEyWQ6OD04SNzSUVQdz3doz7axffsrrF29nl17drF23SoESSKMQJZFFBEajTqJdAYvCGh1NxY5MzFGJpPBMDS8QECWZKQoBMnFdSJESSOMWv15z/X0PUfE02xUUGSVEydOsHLlShy/SXFmFkmUaWvvotl0mJmdpiPXjiSIqKoKMrz4wg5uvHEjzz67jXve+Q6Ghobo7u7GdV0efvhh7rnn3ezb/xqbr78BSTKQ1Aiv6SDLEqKmEnoQiXVCX6A0U0MSIZ5JgddEVRSee+5Fbrn97Xh+C11MJyyOHj9MT08vjh1gxQ10XaVRazIyfob+vl5UScKOWrnM5ZlC6zkkgKwaCELExPg4VszEcz2SbSkkRaFerSELFo1miWTKRFNj1OsumhZRt/1WZoCqcuzwKcYmT3PTLTcwMTpBR0cHIOLYHt/61jd55913kkkmeXnnXmZmiyxcsIBNm1YwNTVFR0cHp06dYsOGDVQrdRzH5ydPP819H/xAC0GuN5ianCaeSpFIpthRe4UD/iFy1Sx/aPwePek0j//Dc3z4gY9xdN9ejp3Yyy//5v9FqMpIQsQv7vkVAL6y7i9e5xhcTKz0OkRMFM6jty3n4tJn0MWmzsXOyMVo7FxbKgyj86RI59KYz80zd/1LU11bvajPOcrn7OaLM+Uux5B88fP12pyXuete0O2CXlee958SBHpTMrdX8Dz241teZh5E/sL1dPWa2CvJxS0w55tjPmf4chkDc0WW1Td8IOQ3usG/yD+/vNE01je7Bly4WMOtu4BLnddzYy44f1z6XnzjN+ZccqZr0e3Nynzz/3OIK4FICA2HHz76KKqe4Y673sPExBgEEv53nqH3C3+P19tJ8z03oycTVIpFElaSUydPkc/lWb1mHREhmu7S1p4lDEN27txHWybBhus2cPLEMbo6ujl86BB33HUHIHL61DFkWWfz5k0kUikQIg7u3UO+uxNJDhEVHQmfmGmc/5EljFBklaNHjjJTKHDzrW+nvT3HxMQkPT0LKBaKJJMpJFHGdX1kRUSWVezAR1I01qzfiOf6NEpl2to7+OSnPkkkCfT39VK1a+imQRCEZLM5Dh7cy3333YsEnDhyFGPdajTVxDAsHMdHNy28MMJ1A2RRIhW3UDWLwEvQaNSx3TphoFGr1ajVa5hmDElW0HWNSABd1zl5cpDFi5eTSMSQZalFjiUbTJQm6exu1aVCRExL4LhVCBzaku2EkkCxWKI9l6Xp1NFkBUPVUYQ26o5Noi1NhISqSSD4hECpVCGVSuO6LkePn6anuws9niKZTLbYQst19PYkM9OzLFq8CFXX8BotUqGxkWGy2TYybRmIZBCgWq1gmib5/EJK5Qq6IVOrNlssrVPTWP0WQRigKAozk7MMLEoS+i6ppIVuGniuhyAIKKpCc0UfCiJOEBBGQaulUeAzgIDnhkiCSHm2QOzkKKZpUjNk9NtuROxI4rk2hcIMqqwipXNARBj4iELExNgZUvE0USgxPDRIzDIwNJlSxWb//gOsX74SSQVZVvC8gHKpQibThpWwEKWz6eKyAoZEw3aQJBlJERFCBUmIKBdmScQThBF4joskSTz+ve+xed1mAqfWcu4ECVEUUBWdiclxUukk6bYUpmlSarSYnmeLJfKdvczMjpPJpNFVldmZadKZNOVSFctKMj4+hq6rGIaFKMhIsojv20yOT9LT20u5UiEWi7VatIjQrPuE1RlSe0/R/M3PXoKc+EGTZs3BetfN2HdtRpQChicnyefzeK5LIIpoagw+/yGEP/pb/G//mFJ7GnXDcqL2Nhzb4wc/eIJ3vPN2rFiC48dPsCy1mETMolK3cXMptm7dTi6XZmFfL4IAuY4OHNvBPGnjeC59ixe36oAbDsfHhlgTAIREgYsgSkSBT9CoEwka7oFB9MNjOJtXcM+2J1nwu7/Pl7/y37CsFL/z//5//Pvf+0MCe5aGZxMKIiRiiCrIuoplJXn//e+jHM3yW8d/m1XWMnqDPMg+iqqwvGMJuXwOL3DRda3lGCYsMpkUL72wjYXdXQwND5FOp0glMnTkc3iuy8aNm/DckCCIGBrqZmxsjImpSXp7F9De0YGiKqi6Rggook4gq4iSwMZN62naZbY9t43Fy9awfOUqDE0lCn2GhieJxw3Wrl1JGEZ0duaxLIswCokQESWB8uwMpXKJSJBIpJNEnk8QBrS1ZVpBFiREISCKPCamxmm6Pq7t0dfbj66rHNi7l4GBAdR4HNtu8tBDD/HhD32Sht9k1co1VGsVYgmDjo4OhEjA8wP+4akfc/fdd3P0yFFWr1qJ4zaJ3IgoDPA9j1tvvplCaQbPd1vtpdyAQrFCzNLZsHE9iiLx0vYX2LRpI07T5sSJE6zfuAExDGk2Z1FEhXx7imJxBlkWmJwqsHBBLzfddCuELdJATRUJQ5cXtu3g+s0h+/fv5wP3vY96vYQs6nR3d1MoFmlPp4kA3/UJgpBDh4+wfsN6XN+h2XAwTQvDMDHNkCg6y9ZsxggDkGUJAZGXXnoJUVRZvLQfUVKQRYFaZZaOjjjLVtxFGPiUZqdx7SadnV0cOXyYNatXUC4WWDzQx+233wKCiCxJFKfP0NHeTiKRZOXq9YxPzuLWKpRrTT744fuJCJmZLWIZZqtdmywQBQGb9Y302b3sTr7Gr0S/wR3Pbea37vt3PL/lOd79jrspF8aRgqB1fESJcwGwc87dG7Ux5hIqXW37+ZzIq8nl0jznkzeOol27fXox4/C/yM+2/FMHEn5mkFfXa0Rw5bzp+eTCPl4Lac/Vj8eVoicXHlhvfN751rpcesYFHS5F/i7/ULoaIn11PfwHf5coilC++nvz6idElz5Mr5TJOzdaePF+XeihemHeufs49xzMV/dxQeZPA7kw9urI69xtflrIa0CE7Dh87c++gF0r85lf/DUKZZuR1w6x4U++jhxBePv1RB0ZJOHseqJIaabI0OAg2XSWRFuG2dlZXKeJrmsossTJk2N0d2bpyLchKjKv7tjD7Xfcghd4BEFEo1bB80LOjE/Rlmujq7sTmi7Hh0ZY0NPFN77+Le59393ErDiRAFY8RnmmxNDIMMtXrECUZAI/IIp8Tp8+zdKlS883UT927ARWLE5nVwdRFGA7PslkCtt2KJcrTI2OsnL1StzIR5AkGrNFdMtEj+mUS3XSiQx22MBQNQLHZ3xikmQ6id30+d73Huazn/0MpVqNVNpiZHAUVVZpy8bQY2n+5qt/xYc/fD+JdIJ6ucnJU6eImXFMM0a5XGZg0UJEVW6RaUQCR44cYdnyJSiKwv59B+nvW4CsGRhmDLtRQ5clJqbGac9ZOLaD3QjYsfsgmzdvJh63gIDKzAyyopDKtCFIEnXbxvcCdr66D0WNuPnmmwiCqAVSRiEPff179PUtom9gAY88/CgPfu5zNBpV9uzex4033YBuqPiBB16rXVB7rh0/sCmVipSLNv39/Xihd7Y9jonvBVTKVWRZxXG8VisV32fPnj0sW7qM4kyVnoVd+EEVQVCwUhlEUUQ/NAhAc0VfC21WlPP3YRS4RA2P6PApxMkC0XQB8XMfwjh9hmDZ+K2mXgAAIABJREFUAoRUDsd1IYo4euQQq1YuJyI8m1ZeJvB9xkZGSCVTNOp1LDMGQojtuCDpPPHkj3jPPe+grSNHMplAkmQ8z6fZbBKPWwQhIIr4IYhBs0X0I0iIokqtWUHVdEDEcx10VaXp2IiCShgFqKpEaDepViqUSyVcu0kYhFiWhSiJSLKEbhh4XkTTtfnW9x7lQx96gETCIpdrJ/BcRCImJsbJZLNUyg1isTi6rhJ4HpVyjfHxMfoHFiLJOuMTY3T3dOP5HrqhMzU+zo+e3EJajXggt4jmV/8TnufRbDbxfZ+YJRKLJXnPuz/AI498D9930TWZZrOJZVk4joMQecTMNK4TUN+1G3XLq/DNp2HTKrxEgu2nT3HD29YiCAqioGKaJj/58Y+58W0bEQWd8fFJ2nNxxiam6F3Yh3KW8CwMBAxTxQt8bLtJrVSByKO35BKGIe6qHn5x4PsEnssf/HA17acrCJHPsQc20veRe7GdGPV6QKYriYSDZsRp+iJm1MQLQorVCtnOdgg9KmUHQ7eINJcHD3yeYrPETcoaKsUis7MlunoWEbMsZFkhCEUef/xhbr/9Dh7+ziN8/GMP0Gw28AOfnzy3lXve9W6cRo1f+bsCRPDVz/fw/Ucf47rNmwk8hxWrViNJIrG4ged5SLJMvdEgnogzM1tl3ysvccddd/PijhfYuLKXWDzLrtcOsWrNOnzfxdBkwtDjwIH9rFy5Gj+QEUVQNYldO3exaeN1hIg0amV0TUXRDfzIR5VkmrU6iqaCIBB4MHrmdCuTg4gIlfc99gmCICAKg1YNI8LZ3rkCu1e+yFPNJ8nn21lfvY5NR96OIEjnf5zHJybI5XJIksx/6f8dFg0sIAhd3rXr46Qr7Xi+gyypIER4ngcIPFF6FO+jNUxTIF3t4OYt7yYCwiBgamqazq5OXMdBUhReuuNxJpVxTCvN6r2b6T29CM/18Hyf2ZlZTNMkHo9Tz5bZdvMjjJ4pk8/neP8Pf+4smVBIYbZItj2LIIoEnsfu1ds503uSvXv28P7MA6w/dBONRgPTMPF9n2KhiBWPEYvFefiev0GVIQhCNv3odjqDHhS51e7K9Vx0rdV66FVlC7uWb8Ewc7z6vT38B/n3yXflz9aWtto6CUKrncyzNzxCwZqi2XS4ZfAd9AwvQZIVFFUjCANC10UzdMaVMzx70yPEzBRHDx3mt0//Z4IwRBQEarUaURQRj8epeTW+tPhPGIwf5vHrHmXs+Qpth9uZmBqnf9EAmmGyr7ofgLXxNaj/unHeLvC/a8DM5fu9iit95Lu8VnnRlNgae862mGNXyB+1EXNn53xWITwoXzavVGgPkT/inH/vfck8t/Lrxkq3u0irg1b2ygGJ8Hl9HislQv3V5nm93W9pRNOXt6uk1QHKnR4A4aSA+21tnjlB+aiDnG91afCeVQgOXDhOl9jW7SHax73z7+0vXGHOO33kNS17Ljgg4T4jzTvW+D/c8/8731QIp+Y3XC8eO5+cQ9jDMEQU5scH59r2cwMWb87HuXSuK42dLxV4PkT94m0vZ6fPt8258Zei7Jdu82aQ159uM8p/RDnX+/Pc31ud42dZLhepOrdf51JP/leIZl2sy9y/c/JGzsd8Ofb/O4gURPzo0Ye59W3X8ZnPfYLBof0kzkyw+Q/+Gr8zi3v/HQTZOMWZaWqVMuNnRojckEMHD6LpOqeGT6GoBggik5NT9Pf1MTk5gaRETE6NoSgylXKZm2++iWKpxOjoGQRBIJbM891HfkitZrPlmeeoFgt8+St/S76rF9ersXrZMkJBwg8EdNVAEkKSiQTXX389qmEgCCJ7X9tHvV5n6dKlLUTJbxGUyLJId3cnrmsjyyKR7+LZDarlAtVSAUHVEWQRp9lAFSUmJycQiCiXysSMGD968seIgsiZ4dNUa2Xa2rPEYgbtuTY++9lPM1uY5viRvUh4DAz0kOvqxEol8QOXT37q05imhSDKGKZBKpmioyPP9u2vsOW5rQShz7lLqVyqsXjxMkRRYfDUCLWag21XaTp1vMADPCTBJtfZje8nQEiim3Guv/5GokgkimSqVZ94KoURs/D9iFrVYXaijKHIrFmxjJuu34Rv12lUKnjNKk6tzG23vJ1dO/fhOiE//9nPYcVjaLrMnXfdhmFojIyMYBgmakwCGfwI/EDGtNJkkgau6/Ld7zyKplnUGz6CqLF164tosoYkSViWhed5XH/99SSSCVauW0ksFUOLmyQyWTzfbzEpnxXP8/B9G993EXyfYP9xgu2vIXzrxwiWSf3XP4aw869ofu6DIEmEYUQQhkQ4jI6OsGbNOmzbRYgCxkZHsRsNmvUm2fZ2GnYDhAAvbCLKApKqEs9k+PDHP07v0iUY8SSCohMgEp1tyRPQYsOsV8sogo8oawS0MrECIcJUBGQRRElA13U818bQdaIwQpU1JFFE0GOkcnn6ly6no7uHhJWgVqnRbDhIoorvRWx/dTf5zm4e/PlPMdDbTdzUKM5MU683EBSNzp5+ms2QH//DM0iyih+EnDh5GknRqNabSIqGbqp093QTAZqmUy5Vicdj3HrzrXzg3nuJopBGs4xhyohSQMxSUeQE9arPDx7/EZouo5sCoiij6yZBEBFFArOz43iujSTIDJsR/MYHsX/8JexlPSg793FLzUUfHidymgwPDvIXX/pzbM9FUlWCCDTToOHU6e3rRlZEXM8hCB2KE+MMnx5GQMBzHDo7OjB1g5oSUVegdmyYcKaI1PTo2DWMc8tyxv/rr7L2lz/DvuP7SHUmyC/qQFNUQr/O8888ji55VJyQuh1BGDIxdITixBj5VBpB9vjsnl9ksjzOPfk7kPBJxi2mp4u0tWcxTI1StYimq3zgvvtoa2vjEz/3cXzX4diRA4DArbfcdpZBeQFRBMViiWQiyYO/8BnWb1hJZ1cXzz37HAcOHqBYKmDXGxCEnDh6lK3PbSFmqtx669twXJu1a9ehqBaRqLF27UYIoVGpoCqtUodVq9ZQLlWRVRlFVfA9l3wux8TYONu3v4zruKhqayyRBKHExPg0//1P/wxZ0vD8gNCLcOwQQTTZ8+qrlIpFiGg5UIrayvBQVMIowozF2bx5A5pmMHR6gsmJWQBc10UAMukMsizh+x75fCdmzEQQW+2xzpw5g4DQcowjUBQVWZZZvWYVsbjRumFCiXNp9vV6nfZce+t3R5IgDChNTfDSc1v4zkPfplKuEQYRnu+jaxoLFnSRSFggRIRBwFf/+qvIIpw8cbSVUhpBsVAmlUq1HLAwJAhDFElBlVU2bNiI7bhUKzVEoVUbiiCQzqSRxFY6q2laAAhCQDqTxnO9s3ZChKYo50n6EqkUC/tWEE8l2Lh5I7rRat0kSfLZFjUyoighKwphGFCvVkgkEkiqhqrpyIqCKIAiSSiaQhRGuI6NEAYEoc2q1cuZnp5manqayalJDNMgnogjiAJBM2AzG7ATLrfuvws77mFYFsuWLqVWLnF434FLftPnGuzzBdyvGPg+e6xa7O//eEDT5VvivE6Zn0n766dlC0urg6sPegvyv4rdfjl5K7qd2+6n7X/9zCCvfmC/ZUUvv6/XPu21EA3NfzzfOsJ7bXK5fPNwzmfXgkJeKt6DvwuA8pXL11VfTJU9F1W9WIKL+pXB61OAzyHXc5shX2hmLLXq7Lg0+vN6XeTz67Xmnf9YzkWtL55vbk3I3HN/LTd0FEWI0dkeb4AvntUpEnFtG1VVUTybP/vCV/j2t7/LN77xdaxnd2F+8e/xb7sOejqwbRvTsggQaVZt8COmpkfo7O7h0ccew3V9Pv7R+5Bllccff4Lb77wNWZE4cfg4gqiwbsNGXL9JFAbIoowkyYiKjCyFNOtFXMehYSt4YYxEWsa3G8R0heHBkyxevoZSpUyhMEvfQF/Lga7VGBgYwHFcHnvs+3zkgU9RrszQqNdIp9qoNUrEE0k01cB1PBrNBo2mTSxhEYYBoefx0ot7ePe778ZpVkjETYpVGytuIgpCi7CkWEEXRUbGBqk3ZELqrFm9klq91WKhXm9iGgozM9O0tbXh+1CvNbFSCXRRZHZ2CisdZ2aygmGomDGN0Ff5znce4b7778E0DCYmJ1BVhfZsDqfZpFQssHP3Tt7znnsRFYWAALteIPIcEuksgS8zemaCbHs7gRvy2A8e5cMPfJC//ou/4Lab38Oi5d1EkshrO4/w8svP8Cuff5BYLM6JE8fp6u7AsFIAFAolXtj2Anff/S4cN+KFbc/z/vfcTaU8RYCCImsQBVgxHSFUqdsNytUidrNONp3BTLbx9NNPo6oKt9xyK3/6xS/zcx//KC9u28I777oDK5MiCDxcu0HogyJpjE+Os3hJH4II9XoDRTYIIhVxz0Esy8DpSBKNjtKcnkY/OYOwfAH2B25Gf9/bEZNpRFFmpjhNKtlB7Le/iLOkF9LxVrqvXaVWLFCr1Emk4lSrDRq1BtlkglqjjKQojI5NsmbdBrwgxEoliSIBz3MQBA8hkhAEkCWN//HnX+NjH/0EqXblPNlZ6/4TUWSZCJBEkTCwWymaQguZjYDIb6AqBr4fUq4UMQyTKJJbqBQQeU1GRkYYGxklEbMwDZPDx09w0y03kUjHUTWFydFhJDWNGtPRpRBT1ql4TVzbRVM07EaTWCzOvsNHeWXXLj73mU/hnUOsCdF1Dd/3GBkapL9vKW6hQGz7Xpy//L/Zc+ggMSvFsuWrQFRxnCYIHtVaATOm4jcgZqYoVoZoz3ZTKDcwjBjJZIpjx44hCjKC6JPrSFMuVpB+tBvxK9/FrNo0u7I8ceIoD/zCpxgZm0QzLZ547FHe/c67aGvP4Pk2pmESBDA1OU57ZxZVMVGIqE6PE54aRxsrIZbqRDGNZ+5LIfV1sK7/LqZUjd58B+n2DgZHJ4lncvhBRLPko6gR7bkUUeThVMr8wr/+j3zpa7+HGmmEssBk9Rjv3/8plsYWc3P2HWhRg8JMmb2vvcr1m2/FMC1EUcTzPCrVKrv2vsydd74DrxlwevAUibjFTKnIiqXLOHJwP6mkyaf/oojnunxuxXE+/LGPo5kxnnvmGW65+SbGxidJJdMUpk/SOzCAIMvYgY9lpJmdnOTE0WPcePPN2H7Eju3bWbNqJR25HD9+8iky2TZWrVuFqsmUikWsuI4kyqiyiucG6JrOdGGERCKF0/Qpl23yXTk8x2bXzh2sWL0a3TT57tcfJpmJs+n6TXTks4R+KwX7hRe2cduddxIGPlEgc/LEaSQZBhYtwG54/OQnz9KzoJdCoUhH5wLWbVhIFKg4TRfXqfL97z/ORz/+SSRZwgs8dmx/lfXr1xJGEYqkI2kwOnKa3p4eJFXH9SIqs1O8uOUlrESCu+55B5HbxG46nD59mv5lSxgdPkTMUNF0g1gyh6DEOfDaQTasW0Wz4VCrTmHGk1QrJTKpJFEQoOgZPNfj4KGD9PR0ke/sIBJEbKfJ8NBQK+0eBT90UXWNIJR46Ovf5ud/6TOosopAhN2oMjI0QSyeICKiuyfH7NQ0yWQbgS+ydes21q9fR6Ytxcsvbmf9xrXU3BrtqTRhGGHbLkNDw/T3LGNmdpJESseI6SiKRkCE37SJmTG+8KUv85EPvo9UMotAk1Mnj5BMZFGTWaxUEgIBpzEDiPh+wKFDh9m9aw833nQra1Ys4/nnn+Xud93DbKmMKAnEkhZf2fI3CCsE+tUB7q/ey6qNa3nkob9j5NZZUlqav1zz5yiCiOxHONKl9Zrn7LGLCZsuthUkSTpvJ52vJTwbFI6iCEVRWnWMZ22bC/bSHHtEfD2qdzFHwMU2z8V211yb5vX2rnCJvXfxvNeCFl5Y+1wd7rlsyqtuyrXQF/000lffVEZddHWnLOKcPXquwPf1NbHns57mnKPL6TJfBuDl6kyvxttyOblaxuG1yMX1sPPN+2aQ158dtuHozbMN/7Tlzd0c/1T54JcraH/rReLh41sAkD5wx+u+m69A/0pMZFeK8l2SinzR6/n/58x3+Yjm3DSINxf7mKvnm00TFi7aNkRGQEAJoTw9yb/7P3+DZCrDdZtu4BOf+CT6D54l9rXv47737QTtKRBENF0/u73Id779HRq1Goomk8lkqNcbDA0NsXzZYoqFIuvXbzhPkNHeniOf7wTA91spN+NjY2QyaWzXAQTK5TJhEJBIZkgkEvhulXq9ihW3SGUylMsVkqkkiWQCPwiwYtZ5shpFUejv76cwW+D7jz7K2jXr+cZD3yaXyxOLxdnx8g56e3spForoukoiHqdRa1CcLrF2/VokWQBJQBAlGvUymqpQLpVxbJdHvvcYGzetItueQRRlBgb6kGUJz/PQVA1FVXEcl5GRUUzDolF3+P6jj7N46RIkUaRQKJBOZzANC9ezURQFQZDJd3aSySQoFIvk2tvxPB9JFLHMGGbMpLunB03TCaNWap+m6JTLVVRVZ2amQGdXJ5qhIgkS7bksccti04YNaJrG89ueYfGiRUyMT5BOm6xYtZqm7ZLL5/EDn5npAoqsoKoKS5cuQRAi7EadJUsW4fouqtFCBxSt5WwVSkUcGyr1OqlMmly+nabdIAigra2NbLYdQYC733EnnttkzdrV2K7D1OQ0hqETt+LMTBf47ncf5q533kEYBdRqNSwrRRjUkHwP48wU9tQ04c4DCP09yB94O7Xf+iT1B+4jvnkdghFDUXUKxRJxK4246zjq8zvxlvSjaAph4FOYnkaIQJZkJs6Mcfz4SQ4dOcLiJYtpej66abJ05SpkVcOIxfD9Vu2qIivIsoIoKEiygud7rN+wgRdfeoGe3gVIooQoyciSjChJ5y0cAVBkhXrDbvXvBQTEVlsKQSGKwDRbqXKFQglZUdANjZCItrYsnV1dVGs1BEliwYJObKeJZSVaNXKiyNDwBIlkkuLsNMPDZ7ASiVY7lUYDx/do2g0W9vaw6bqNCJFPpVbFjOkoSivN1LabJOIxQERUZISJaZTvvwCxOL/4X/4TH/rYxyGKEMSIKAqxLIPxiXF000DRYkQC1BsRlVKRdCrJ6Mgw+VwHVswkZrbaulhWAmnpEhrvezvTvZ24w+NcP1FhLHBRBJGJcokzo8NsWL8OUZFRNY1KtY5pWtjNBnrTIdx7kmh4AnnLftxsAu/+t1P49D2M3nsLPatXk+9citGWxUy0kUmmCBFBlJBkGV3XOXr4EL/zH/4tN9ywiSB0OT08yrve/X5iBqhRiGOX+LXT/w/dahdrokXEVZ+x0QKZTJbegT503UJRJaZnpognLCRJJNfRjiKr2M1WT+IwDMnneti2dQe59m4mpgpkBZ1waQdDCzUW9vUgCBHFYpnevj5SyQTlSom9rx1h2ws7uP66GzE1Cz/wkQSBRQOLWjWhiPT39xH4Hr7nMzY2Tls2QbotQxhGRF6Iqiq4toPTdKhXazz55A/ZuOk6oijCcV3279/PwoFegsCjv7fnLPIYoWk68XiLoTdCRCBElqCnpxtRlnHtEqoqc+TwEVavXokoRIyNTaBpKvl8O23ZFIuXDuA4VQREBEFk3779jJ4ZY+PGTYyNjxJGHju2v8zatatQZIlyuUy5WiaZiCMAYRThuA7xuMXU9DS333E7JwaPE4QBsqzQtWAhxVKVznwv27buYNHAciTBZHaqQibTIlZ65tnn2bR5A0IYoqkGXhAiiAp79+/GSpgsWtKHbqpEBNTrNnHLIplKYRoGQhT8T/beM8qS9Kzz/MX7ho/rTXqfWVm+qqurqrtLTfuWaEnIYCQBYmGZOQxwYBk4hwE+zAJnZ5eZAfYww64ObjUCSQgJIVqtlm9vqqu7qrvUrrxP7/N6F24/RGZVVlaWaUnDwMBzzj333oh4TcSNeO/zf8z/4dnnnmXnzt0sLZbYvn0nmhTUazXefP0ovT2dpFJpQgLS6STNZo1kOkalVkXTVQxTJZ1N8J2j3+H48eMMDg2Qz2cggHK5gqap5LI5CuUSj3/9cXbt3AqBjyYVLl26SMKxmZ2dZcfOnSTak6iWTTNwyXV2ojspxi6cxLZ1Aq/F0uIM7R3dFItluru7yefzlEoVIOS223bi+i5f/sqX2bNnLwA72rdTe6uCyMFh7VW+vfAE070LnK2do62Y5Se3fAwvCAgFhKzXZTbWa9brF2sN9yERY/cqoPU877IedKX91SzGaxWljUh0rtKplGsJoK7Xdu041+g570C3XGUSXpUbeaHXnuPN5PsJXm9VIhB+Kx7F9eDv5iG3N3OWrfIo3ExuJbz3+9HmRn1dT+//n7tUzjsAr7fOdnbr/a2Vm/3YG+//7uPXbyTXLn5XrDQ3WyBvRVaZyjYCr7c6z/U37Y3ycze6fmvbh2HERLtqKVy76K7tS1GupYRf29+tys1CaTbav946pSgKAgV1hfGvWXeRvo/fcvny5z/PL/7cv6FzYJhsrgOefgn9j/+a6oN7MPMZqrU6UtMghGKxBH7AW2++ycBgH9u2befgiy/ywP33093ZSUdHG9PTM2SyuSghQAEpVE6dOsnU1BStpoumm6SSMYQAzdCpV+qkMxn+9u++xO5dO1HCFnMz4/T09CB1nQAFgY8mJZOTU6hCopsmumHSaDRXQIIDocfQ0AiWHUdIgzCIFnTbMcikMzSaTQKviWlZfP5zX2DPbbfT8usYhk4rKpBIq1YkDHws02Ls4jR33XEAJ6ECIUIEqKpOGMLU9DS27TA/v0A8lsSyLGKxBLpucdttt9NyWxi6ycWLY7xy6DC7du+kVqsSj8dxPZdUKnH5HtF1A0IlylGcnUPXNWLxBD4hSwtLfO3xb9Db20s8FrVZWFgkkUwgVIXA8wAFKVVMU0c1Bbt33cbMzAyDQ7109/TiegGaalCt1hBSQRUR4FelIAh8QkIqpWXS6STVWhUjFkPIiJFWyKhe7uLiMm++/TZbtm7HD3yUMMCyLGzbpNVqEovFWFqYJZ1JMT07Q0dXJzHLRlNV3JbPwuISD7/7YerNatSnFaOwXMY4cQnluaOQcNBHepn//V+kdt8I2bv2cfLcJD/8/o/xC7/8KwQheJ6H7ViI8/M4//dfUtw8yLLvoqsqzVqVuZk5KqUiuqZRr1RJZXOcOnOWex+8j1gqg2qYaIZFKCQhIJQgqhcIKIq68h6FFCkioH+wB03VkTIqCcQK/7CiKJcVc8+PQEIYhNRqdRzbouW6KEgURb2s5KmqTrVaRUoiRmAhCMKQi5cucezECbLpGJ7n4zgOrhcwNTXJc8+/xB137CWTSpFJ59E0SalSQTUMQqEQBD7pVALfa1IsLpNKZ1heXiYed6jXa2i6imkYCCHRdANlqI+5VoOOE+P8TPsIyoffzcz0ONlsBk1TqVSr5HN5DFPD9wRh6GHoaWqVAu093cjQw/MbuG6VC2cncOwEYSA4fvwYf/zH/x9/9LnP8lOf/K/YP/kBjFMXSR16k5SmsX//fkpKiOU4aLqGWWvRPHoC88w4+vEx3M19LN8xgvfLd7N4Vx+pvj5qDY/td+5D1SRzsws0fYVMe19k/BISw7RYWlzEsQza2jJ88EPvJxaz0DRJ0wtoy9u0JVIszs/yX8Y+wUnvIreLvcyMn8cI63zhS0+wY8dufEJqTQ9DE6iaSrFYRNNVfDfgpYMvMzAwRBBCs9XEa9UZ3TxKs9XEjtucbVOYHU1F5bFEgKaCods8+uiX2bFjO+l0jE1btuL7Lm25NF6rhhAqM7OzpDIpxscnOXf6HEePvsrOndsQUnLw0Es88MDd+EHIY49+hU0jmzANg4MvHqK3txcpBEODQwjNotlqYVsWHV2dKEJBCoVmvYZl2czMzNDe0UZPTx+qqjM1McNPPPvzDB/fztGu5wh8geuWCIOQ3p5eissFjhw+wqWxMe6++wD1eoVKtYQiA2KxOGEY8Dd/83keevgR0ukMjWaDbCYJBGzfspVqpUTg+5RLZXoH+1EVlW987ets2TyK41iEisByHKQm6evtxoo5WKaF6wWUK1XOnz/D/fffx8WLFzn62mvUKxWyuRiartLVM4gds9EVycVLY8TiKex4gq6OXmzLicB9K2BxvkQiGadSKVOpVNDUqAbtth07qVdbOE6Mrz7+OG25LLqm0mzUaTarOI6D5RhMT0+SzeXwXYGhxzh8+CjPP/cCe/fto6sjz8imYVKpJNNTk1w4f5GOjg5MU+fihfNYCZv9d+zl1KlTFJYWadRquM0aIMjmckgp0DWBW3eRQqCpBoWlKoP9PbQaDeoVj0QiBQpMTk7R3d2Npuk89fRzbN+2Gccx0Aydzq4uQiSqEChhSCqW4dzBt9htbePO3h9g1NjEfGWWnkt5PrTz/biEtJQQibhKhxEiel8FHWu9nauf17JQCyEQ8oqXclXnkWtCMNdHrq18YTXV6oqedK3+srb9WvC7vs79FX3m2tDPa3S0dWHIiqJcVaZldazrsdPeSN+63vab6WrvRNaD+GBWIawqKLEbzesWIjKV64PXtbrsWo/49a7T1f1cf163osPeTK6HJW5l7FuZy7+A1zXy/QSv35++/6E8ryujXXXTbLzvVkIAPM+LFq/XT6Ek44j7913Vz3d7nW/1gdkIGCprP98AvF4t1w9ZeKdzeKdtwjCMyKx8H13Xcetl/uQT/y/xeIL7HnoYaTj4QUDrrTOYv/VHKA/vR3Z00my2iEg7oj81x3HwGk36+3vJt+UJUchmszi2yfT0JI1mA98PaGtrZ2xsjFQ6RaPZolIps3XLFlLJDK8dfYN43CKecFCEZOziBdK5PKqm09nRxhvfeY1t23fiBxD4Ec26rkZW3Hgiyfz8PKlUGqEINF2nWqthGiaNaol4PMnM7DwXLp7nwIG7iMVNWm6DWrVBKhmxx/phiG3b9HR3sbi8hGGY6KrG9OQkuXweTTcJkZw6fRbHSaDqgmarxdLiJGEgmJ9fZHh4hFdfO8rhI0fYtmULhqmb99XcAAAgAElEQVSjKHDs7eNIqbKwMEMilaStow1D6jgxE13XkVJSKCxh2yZuy6VarTE1NcPLh16hf7Cf2ZkZPN+n2qhhxxK89OJLOJbN6OgwpWoBx7FIpjK4rodpWSzMT5NKRV6aQy+9SDqXwDLi2KbF/MI0yVQeRYkAlqFraJpEUwWqKqhW6hSWSgR+SL6jnVatTqvVQtMtissLWKaD7/o0G01y2Ti5XI65uQVePvgSXZ0daLqBEGIlLD4knc0DCqZp0Go2mZubAkIs2yGdjVikDdOOyLSWiphPHUZBQfmDX+PnXvkqH/tvn6DhCfJJmJpd5Fd/9dd54N77uO+R+/EDF6mpBFOLxH77EzR2beZio8bR147Q09XB/OwsiVgc09AJQ58wFAwMD7P3jjtAiWjQLMuK/oQDf2U9iqIhhFDwXJdQCVGEwPMCVE1GeDUEIVc+ECIUBbfVQllR2qQqCcIAIUCVCoQBXuBf9tCGBOiqAQji8Tie30LTDQI/KjNz4vgJKuUKo0ND5PI5isUi9UYVwzC45wfupVGPIhBCJFLXAIV4PE6z2SIeT6BJSatZJxZPIKSGZVmcO3eetrZ26vUGtUodgMWFBVzPxUilqLWlcM6MMTfSTn6kh9nZaTRdZWJ8CtuOMT8zjkQjDOuEfsD05BQi9HDdBmHYxLJ10skO/uQTn6S3p5+uznYS8Rw/+iMfZmzsLCO7N3OsPUXXr/0MSrmK8vizWF6Idn6C8OQFOHoS4/btlN63n/Df/wRLe7dijfZCsEzMsTE+8zL2mWlatw/x5PLLjLuz9Ol9WIk8lm3Rcj0ajQaxmIOlq4RCQVUjRmhVGrTl4oTeIkvzNdxcyG9e+j/5UP791JYqZLI5qnWXXHsPHZ1dNFs1mo1WFEJab9BsNrEtm8JygePHTnDq1FmGR4aJJxIEoYtu6Jw+fQJVwqaREVRN54knnqK/vwepgGXF6e7uoVot02hFOceDA70US8tIqaCgks1lCBUFQzeoVWrs3buHublZHMdhx86dLC/MkUpm2bptO7PT48TTWaZnZhjdPIqmqZQrZUw7zje+8XWGR0ZQFJXi4jIK0XVASpx4ClXV0KRGvVbjySee4EPqR5mdmWF810kKxSYXLpxnYHCY5UKJJ598ir7+Qfbs2U0Yhjz11FPcffc9JJIJpicWSCRtHMeJWMYVePXV10gm4tSqFc5fuMjo5tHo2fFDktk0UpFMjI3R1dkB+ExNLjIxMUUykaRVr6PrBhfPn2dyfAwp4MzJ1xkeGSTf0U5vbzdHj77KXe96F1KVfPIvPs2+vbcRAMlUEs93OXn8BMffPk6xuIxQQgzd4lOf/CsO3H0XQorLUT+u56JrFsuFIr7v0t6RI/RbNFotcm1ttLW3MTe3wMLiAgODAzTqLqpQKRVKHH3tKFu3bGZ5eZFk0iSWSFCrVslnUmSzeQrLS/ieh2FozM0toKkaXR3ddHZ2kkjGMU2DdK4dpIbt2NiqZHJ8mrffeoMzp89w+JUjDA4PoEnJmbMX6RscZn5++jJwPXfuHLftuZ143KHVbOEHCppuo0otqmsehpw5f467772LpekFFKnSaNQ5VjjOR/b8CH/4i/+J937g/aBE5ZKu1juugLeN0o7W62cAyhoAeVnnWdMmOvZqgBGEV4z7q4DyViLQNnJ03Bwkbdx+7fyu9epuDGb+oTyBN5L1/TU+qeO/LdHuulHe6y3M4RbA60bjX2/bqtzcY32DKX2fjvle+vgX8LpG/rmA12tj3jeyeKybyTsAr5eZR+/fx1rgutru2gXp1mS9NW/9+az2v97CF4bhVevvPyXw2mo2eeutt5gdO8V73/sIp86fI93RS6HmYfg+8uO/QW1TL2JzL5VqyPjYBI99+cts2bSJRrNJqVhEhCHNVoM333qDzZu38p2jrxFzHPp6upmanWFkJGJURAHd0HFdj/b2NhRFoV5t8MLBg3hunVw+g2FYxGImCIkTT9KqNVACD0W3UYTEbbqEfsDiwgzBSp5x5NVV8HyfcrmMEIITJ0/Q39MJikoinSSWtBFKgKoqpNMJwkDiuSGaoSE1lVQmhes1ef75l9i1cxfT42MYmoppJTlz9jyxWBxFkeTy7TQaTWzbIpGQhL5KV3cfrZbL4NAwg4NDnD51jEwmjRDRvaLrOrlcEtOxUKUkFU+i6iqu5xEGAfGEw/z8DFLqOE4c245RrdSxYxbtbe1k0mlMy0SRGgN9/TimQTxlo6gBBAGGblOp1nnt6Hfo620nDCVCUTF0SaYtReCqSARID9NK4jWqfPbTn6G3p5swcDEtFc/10FSdCxfGGRwYIRAKx954g2w2h6obOI5OYanAqZOncUwLVa1TLJbJ59rZvGmU0PfRTY1arYrnRazChXITVVWRikAJA8KwhakbCKmi6Squ10AKi8ax06gvvo7/0fcg/59/Sz0Z8v733kOoKrhKiOGkWA4MPvazP8/+A/cQi3t4notbaxL7z5+GfBq3v5N0MkmtUiKbTeIYNlKohGFAuVygvbsbO5Fgbm6eVDK5QowS4HteVMcYAA0hiZiJVQ1FBjTqTaTULnsmPM9FrgGvUY1NFaEoSCFoeS3kCmiVAnyvFYXoriDfMAyoVmpoapQjpmkiKnWiKIgQhvoHGB0dZXZyCrnCJu3ELDq6OlBVjXqtSCqdxDBtCrVK5Jltuvz5n/w5m7fvolmvErMtFCE5fuI0mXSW5UKBtnw7c/Nz5LOdKAS4XotkMoEmBJ/+q79ib/8QgSEItvQSi8U5d+4cQkgymRxtiTjL8wuUSzM4pk5v3xC6oeH5DUxLZX5+BtvK8mu/+hv85m/+Fs899yTfeOybbNsyQldHGsuA9r4RDF3lgu2T+qWfprRYwErHmbtnK9b/9Qv49+3D68qADp/767/lS1/4PLff9wDnppbYNB+iajqlfTv4j2N/xCV1io8P/QR1TyBESLlcIhaLIZWQwHPxAgUpNHxfIQigUZ7mxLGD7Nx2L799/vcJCchX46TjcYQWQ3HydLTncD2Xb3/zcfbctofpyRl03URKNSplpQh2bN9F/8AQrxx+lbb2PIo0Ofjiyzz4wIPUK2X6agK53OBCrcDoyDBvvv462Vw7mmaQziSwHI2FuWVsO0axVGVpqUQ2kyYgJFDgxedfIGbFyGbTJFNJEAq6YVItFTGtGM+/8DwDfV1IM0ZvXx9+ENBoNvn7xx5FUzX27t2Lpun85ac+w/zUDLZpYdkW0/MLSMOM6rBqGs1Gg+GhAXZc3E8s5vC09TWGhrbR3dNPGEo8z8d24uzadRumqWHbNgP9IxQKJZy4w+FDrzMw0IXntbDjNqZhMD4+yc4dOzB0i+7ePmZmZ9F0g1gshdAETz/xNO9+6GFQPCYmx/jOkWPcfc99HD70MptHRjAsk1QiTj6bQlNDdm/fgh8qaFYcRegMDY9GmXkhTI5NMzoyCCtpDKqAfD7DltF+hHDp6c7RqFXZuWM7umVfXocr5TK2HadSrXP82Al27dpKrVYknU1x+PCrOPE4mVyOwAtRNYHvBRiGg98qIERAf18no6P9JBJRqsmrR48Sj8fwWi6F5RIdHe3YtkWjXieZSGHoFsePncIPA1qeR2Fpgan5JTq7e2g2G5w9f4a2ji46+zrpHexhy47t+H6FVqtC/9AQ9VadhOMQkaQtousGVszh/Nmz5PMdnD17iVK5iaZJknGHCxcuMDg8hNAllYUiQgos02BCnYGZgN/7+O/y2uEj7N63d4X9+Vq9a1W3Wa/jrCXfvKxT3AC8XtHBlKv6C9blP0a1WzeuO7oRYF3rdb06So4N2nBNm7X9rdYb9X3/pl68f4zg1Xsl8pL/Ywev78QQ8P0+5mZz+mcLXv3A/V34/v4YV99A0WsjILaR+/tW5Z2Bn2gOV9rcmpVsY6B66yG9N9p2+QYM116llUcuSiyNcreimV+9X7nS3yrxytr5Xgs4lcsx/BuFS1z+vHJqa0MrEMqKtwUUoRD4PmG4WpT7yrhXg22x7oyuDZ1Zf01W22+URH+90A5TFViOzaf/4s/Ip5Js2X2ApqfQ3t4VhR/Fber//o8xSxVKO4bRVRNdSHRN0t/XSzzhYOo2lmVTqzd57PGv4/khQavB7XfciW5bnLt4gb6BwSvENUqAaekUimVUVSMIA2Zmp7n3gftpy+c5fPgIg4NDjI9N4LUCvvj5L7L7tt3kOjpASIQMMG2DmdlZMpl2Yok4fuAxP79IIqbTqFWZnpygu7OLU8eP0903iqIrBKGHGoRoqknL85GagaoqhIGLZtp43irVvKC3q49Wq0U2lydUFJYWCwwMDCClxLJ1dF1hanIM09IIQh3LSRCGAVKGVCpFDM0g05Yn5sQIPZ9MNo1uqUipETYK1EqLaI6D1HRUbQXYERL4Ib4neOap51gqzLNn3x0k03HCFXBVqZQiD1OzTq49R8v1ME2baqnE0vISyWSC/v4+FDROnzjB2MXzjGzeRKVcIQwFuqFhGhKv1UCRAbv23IZmWuhWijAQ+EGIbmqk0hlcz8MyBW0d7QhVJfA9Ah8My6S3vxehqzRagmy+DURIpV7BjsfQNC1SfG0HIQSGpqBIiRv4eJ6LbRhYTpxvPfEUo5tGEaFAmZpFffZVyr/0YVK/8OM06h6tus+X/9ufctved+HGOlHdMinbRno6luWDJ5i6NIn7J3+LemmK0mgXeE2W5qZJJlPUWx5uq4JqSLLteZK5HKpm8uRTTzI7N8/gyCaa9QrqagiwVHH9AFWVECqEAXiuh++H6LqOqgp834vWACFBEaAo+EHA3OwCthUDwojNWgoUoNGI8l4REimifhUFmo06lm0jNUGtUUXIKPxeKAqIEKEJfHzaOtpZmJnG91yybR0szC9h6Ca6GUeRGotLiyheSCxm4QUBQyOjtOWTWJaNInVcL+TJbz3Da0deo6O9nba2LKVigUatQhCGpNI56k2X5aUiP3Dv3bSadRInxmm972F03SCeiJNKZQlCyetvH2NgdBjNStLwNP7yk59jx45daHYML3Ro+jZ/9om/YtNQLx1d7ezcd4C9d+1iYHSEjt5eXMUnaen4vosdj7NQWCR2YCdzI/10330HhpFEBBZLxRkajUUeuOf93PvAQ1yavMhddxyg8s1XqFUqjHVK3oidx/MDPtT+PgJclubnSCSy2JZDcf48MiwidZ1Q2KgyBK9A3I7T1rWDJb/Cr574de7ydmHJGGMzC2QyWUxV4Ut//yil5SKPvPs91MoFFKFx5uwpPK9JqVQikTCxYzYeISNDQ1RLRRrlRUaGhvADn3Q2w3v+y0k2vVWm8JHdTM3O0Dc4RL1ep1xewrQkgSdJJBOX15pvP/EUS8sljhx5lT27dzE42E8oQr7z1lsM9A5QKVdZWJijo7OTIIR0agXUStAE0KgQsx2GhjfT2daOFKCrKkMDAwwMDNDZm0PTTXAF50+eRNMluqXSaLZIJhxGTu4kDHyWDlzAUwRKqDA9NYbvNxkZHaXR8gEXP3Bpui7lch3H0mlrT2PZFrZj88LBl+np6cP3o1xczVBxvRJt2TxvfOd1evr7KC8sMz41wcDIIIZh4MQcdty2m0JhEcMyMGybRrNOEDaYnLqIIiwq9SapdBbX9QgV8AkwVZ1KpUxXdztCleC5eC1otgK8wEM3bC5dmsQLBEvLFXL5DlRdo1GvogmFIGhRXiqQzWbp6emGIKoVbthxenp7yeUyTE+O8+nPfonxS1P09HSjqVAo10mlsxSWSzjxNKqWxPc9Ors60VQVVTNJpjNRKRupYlgOgd+i2aoxPNJHGLpIBWr1BsPD/RCoBL5PreJRLJWJOQla1Tq2JrE0DdNI0Gg2ME2NxeUitmUxNztHZ28XQTOkWFymu7uTpcV50uk4b7zxFsVige3bt6MbJm+8eoSBkVEeffRxWp7PdH6WS5UJyn/f4vTxN3n7tRfZd+89CLGiKinR+rOqJ6yG167qFtf1eipX63bRtmh7GB10GVWuhgfLlUGliNbJiA/gGi2OKMVqVZ+Jvl/JR1U2cH5c7RBZC5wjHZrL/SurKR8ru1fDhq/obtH5rD3/tTrV2uuz9pqs1dG+G+fC2j7Wjn09/XRD8Bqu1x9vPGaku65qyuKaNmuB/0Zzux42uar/70HWj32j63sj8qW1YeFrjR7fb/D6T4/3+l/kf6istx7eTMIwvMz4e73+1i9Ot/oQ3sxK9d/b+77+GqyepwxBhFdAtdqo85Mf+CCPvPt9jG7eueJV8iiXy8RsG/93P0HyhaPw0J1k8llU02Bi8hKNRp1sNseF8+OcOn2a8YlJHMfhQx/8AH093ezctZ1mq0Gr2SIZT6GqknqtSqVcwTQsAj/ENE0Mw0BVVdra26iW5jl5/DR7b7+LVrOBkIJcW4aP/y8f5823jvHJT34aESq0mkWUsElHvh3Pb+L7HouLRTLpHG4ApWqNLTu24Sseo9s2YVo6YRDQrNdx4kk0U6dQXI6oSvyQSrUWed5UiVAUms0Gnu8xNz9HSEAs5uD6DYKgRYiHYeiEhPT29dGouxHwUGBmagJBSMy2aNSrmIYR5TVqKkvLSywvL+P5LrYTw7RtFhfnaDXr1GsVWm6DeqOB5dg4doylpQLZbI6vf+1rvPj8SywsLoISEHMsbEvFNCT1Wg1VqCiBZGmhSE93H4deeplGvUWoKPT1D7J3336+8thX0XQNwzBoNBrMzc2haRpCjwh8hBLQrBRACjTDoFJrsFhYxHIMyrUGfhCyvLiAJsG0TAgVSqUI9GlSoVwq4raaFJYWUcKAZrOFbTuUSmWWlwsszM/SqNcQioJlWQgrjqdo/NAHfzgqh7NcIDj0OuL3/y3Jn/0odS8gpqukkhn+dWIn2ueeZmp8iosXx6jVGriuB6FCpdxkYLbC8LlZzAf2YWgqhcWFFQ+vQAlVfFSy7V0ESBAqUpU88sgjPPTwg4RhgGmaeJ7LKpGalCqe6xKEIY1GAyElUsrLf3SrnxURrnhhJUGgcPC5Q0gRECguQjWo1xuXc64jZUvgei2iWpctdEMDImIQ07So12soSEBAKAgD0FQdNxDEUzmkapKKJ+ns6ONTn/oM4QoIzmZTJFJp/CAk9H2SjoXbrFGrFgkDj8nxcVKpBJVKiXw+R7Vapb2tg3xnR8R27Hsonkcul2ZiYoJK0kFZKhEuLPHmG6/jey2kCAn8JoGv0GxEtWBd1+WjH/spUAxazZDAlZjS5rUjRylVmphGjLe/8wa65lMuzdGoVRCBernMTrPpksu1MTU1Q6km+Z3f/j2mLo3zv//mv6PWKqEbad48dpypmQWac3WWJ6cxTUEyHWfXvncRhApSVXGDJhMTp8mluvjC5x+lUm0SS3Zg2h2EahxVNpmZOsXE2Nu0tBioab4+/k3yeoY3Xz6Bqtns3LFrpf6zy4/92A9z+749+GGAIiXl4iIH7tzH5k3DtOdyCKlx/sJ54jGbVrOOCKHuuQQEvPnmGyzNLxIGAa7rYlsGvd1dEPikkilisThSyshzXm9QrzcIgoBdO3fQNzDAR378I4TCJ1A8Onvauf++B1AUha999atMTc7yxhtv4LpN5ufnojx1BKEfsFwscfbsGTSpoOkqy4Ulvv3Et1hYXODUqTMUixXCUHLw4EEO3HM3iVSMADAth/mFeUIUghCm5wr4vuRLn/0rxsemyLb34nstzh97BYHK8mIJQzVp1hs899xzSKly+vSZCGDgEYYew8ODpDMpNF0lEc8ihGDfvttRJdjJBO9+zw+ihAq+62HqBm6rycULF+jr6SMRS6CrBgoaw0NbUYTO1NQMQkT1rZuNFpqqUywWkFIln88Ti8UIfI9Tp07whc9/7nL9U9O2iMfjdHd301qp9ayrOrpukYhlaTTdyNunypUavlAuV9F1nenpaQzTxDZNfvRHf4REIkW93qKzo5dqpR7Vqm64fPGLXyTwXALP48LFiyBgenqWp556JiplRVQOKtfehtQ0YokEyUz0vAqpcuLESZaLJS5eOM8rr7zC9NQMqlRp1FvU3QBF1QiFEnEFtLUxMTFOT283UlFQhM/AQB9B6NLb101bPsf+/fvYvm07rtvi/Llz7L/jBzBth0ceeZhMKobreji2TV9XB/fedw/5XDtLE2MowSqJZHBLDpJVWQUTNyIz2sho7vv+5RzZd1riZO14N5pTtLZG+bk36+udjLve0fDdRPZ9t/LfW2/8xyyrbNb/VM7/n4znNQz93/2HuKiRVUm55gGK9n0vN/attFt/zPf20F5/vldblq5ndVp7I3v/+ncIvvIs8kMPrLEQrV8U11lg1lnUNvLobmRlulH8vqIoVzH3Xv6N1rVde8x6uRKyvD50+dZowK/nFb5sTVzxQAsUivOLfPOxr/Lr/+63QEqEptPyohp2lhug/oc/Qx55G+VHHkQxDYRQKZdKpBJJbNvm6NHXacu3oxkWR149Qv/AABfPn2XPntto+S6m6TA7O0cunaLWqFKrVvm7v/sS27dtwzQjoonJiUnSqRT1Wp1yqQBCohsGszPTDAwOUyqXicUdnn/+BT7yYx+NyC28KJd1ZnqBQrFAOp3D90Jsx6bVCikWKqSSOcJAYFsJarUimlRotVwqtQaKCInZDqqUzM0vkG3L47sumiZoNGrEnDjxeBzbsdBXgGoykWB6epowhM985q+pVut0dLZj2TGWiwVsxyGZSDI7N4tpWWi6iSIEiwuL2JbF5NQU7R1t6FInUGBucQlNNfBdFylVVE1H0wyE1Llw7iK7b7+N7p524jGHt958kwN330m1WqZcKlKr10inUkghURRBpVLBa7l4vk8u34aUgnK1TCqZwPU8kpkMjmOia1ZEvGQIdN0kCCyKxQJh0KBancPQk0gRsexqqoKuS5qNiEjE0HUWF5bwwgBNNyhX6khVJ+ZYCEVB13UymcxKPdYoQsE0onBLXQZUazVsxyEkRCgqfhgShAFquYL/xMtUfvoBtB95H6ZpYxsBz33rs6S7u2g99iJWEKK+5za6cm2AiipjLBcXSNoG9n/4CyZ7ktSFj+8FSCGZGB9H1Q26+/twgyi3Vkix4lH1UYQS5fCqahQUsVLKYdUE77qty+ckVRVCBaEIwiCMvK3h6voR3VNCCHZs24Eferz00kF6e/vQVO3yM+e6XlTr0fcRilzpM4zChEVULkzXjRXap/DKsy4UhJDE40ly+TxSjdaE/v5+YokYigjxA49W0+OJbz9Jf98AlmUAUTtVVTFMnZGREe66az+WZUSEXJoKQlIplbAtk3K5jOs3yGXztFwfu+lSbDTJ3Xk7UiosLRT45tee4MCB+5CqQqPRYHp6mniyjddffx3bMPjoj32Mu++8mx/+wPv48uOP09XZyWc+9Wd88MM/hK4LVDVk7NIlXnn5VeLxBP/bL/8KU5PTPPTQwxw7/hqPvPcA5co0mazF4PAQ89N12tqSjI+fprKgcPT1Y+wPTDTNYnbbZh5f/DKu5/Gh3I+SSQ9i6xZvHT/Gll3bkVJDUU0q5RqSKmfOHmfH7n2gOmhhgz88+weEVZcDWw5QrVfQLRUUj8BvUK/Vef7Z51hcWKSru4eYbfPC88/w8ssvceedd/DWWydIpdLouuTg8y8wMzXN9p07IhIs06Sjs4vNL8xQqVQ5dW8HUlU5dOgQs7Pz9HR3RwzmocrnP/83jIyMoGka3T1dXLhwhv6+TlqtOpoahe97rYB6tUh/fx+vvvoa73nPD1Jv1EilkiQSKZ555nnyuTzxeIxqtUQiYREEgnjcIR6PMdA/SL1a5/iJY1y4MBaBSOFRrhTQVBO/Bc898yQflD/B0vIypXvnqddrtLUn2LZjK57XoFKaI+FIvvB3X+fOO+7ixIkTbNm6iXy+Byk0kok0qmowNNiLKiVSqAShAkLi+R7FwiKmqXPk1e+gmTbPPf0sCpDJZZiYmqBWbZFJpWm5Lf70T/+Udx24C89t0Wi4XByfZNu2rRimRTKV5LOf+TRdnR0kEwmWlhao1aqYlk4iFqMtn6etLU82m8MPPPL5HI1mA8eJ8e1vP0l7LoNlWrz99nEuXZrgjTfeYP+dd9BymwRhyPlzFzh06Ah9fb20mg1MU2fv/l0sLc+STMVQNUG5XGdycoJnnn6StvY29u7fh6aEuF4T33MxDJOTJ85Tr9Xp6e1CSEG9XgWgVCpdLiOzvLhIOpVESp1arUI2k2BoaJC2fA6v1WJ87CKKqqFqBol4nKXFReZnZ+np6UbVNZaXFokn4pTLRcYuXUJVdc6cPodp28RiJqoapb80Gx5f+MLn2LZtC0EQcEY5T97O8UBwD+//4R9iYGSYP/3D3+OeB99LKDUUJbysm6zXhzbSey4b9ZQrEWyrOsxafeSy3qFcIYNa78EMI7fqTXWbtSldV5eyudYDuB4c36rH7nqexeu1u3LMunO+ib54s3O9nqzvc9Xzqt7prWm3scfxVjDC9c5x9X0jb+b663orQHP977GRo2gtSdTNMM5GmOFGx21Eyrp+3lFIufqOPa//ZMDrP4ZSOd8beP4fA15vZZzrHbf2JgseezY69gP3bVgLbKN+v1/2srUPzNqOrwrdXb+I3WDwKw/sxuD1RnNYG/58vcXDkwoyhPPHTnL+2EnueugHqTbqaKZK061hGjbGoTcxf/7/QHE9WvfvxVctLNOi1WhQXF6iWmnywosH2bZtG5VKJQrBVTWEEiKFwsTYJXoHhhCqyvTUJImYQRAGSKGyf/8dEML83BxOIk4insDzPHRdJx5Pk+lIotsaMSdNqVTns3/9GdLpBPfddy+mZVIoLaFqUXkU3ZS88vJrbN26g7/5m8+zbfso8YRGEDTRNcn87ByVSoVMLsHywgKZTA4rnsQwZBSD5AUk0xncIIDAR8qIdKfVahGiYNkmIQG1eo2nnniKXbtuQ1Eku3ftIZXMEEtYaHm+yMgAACAASURBVLrF+HjEzKpIleVigXQ2R6hIFKEQcxzm52bp6uqiWq/huSA1nVg8iVRUVCkxdIswFNSbkRe3Xinx6ONfZvdt24g7DgP9PRhOBASlkCQTKaYmJzF0AwiRMhrn+InjDAz24wcuiXScifExMpkMsXgcXVMJAgXTNJmbnSSXy+P7VXzPp1xq0N01wtNPPcWzTz3DkVeO8K4Dd1CvlpibXcBzPUzLwYklI2IrP+Dw4dcIEaQzKfyACJApkgAwNJ1SuYwfBCjA/Mw4mVw+qnEYBOgCyqUCerVB+MTL+L/yY+R+8n4q9YByYZG//9Tv8+H3f4TpokLH6VmkIqnsu51qYRHHSXDx4izdvR24f/wpwnIVd6CDeq1GveGDotDZ00m+qx3V1LEtJyopGPqEgRd5QYVA0zVabgTMXdel2XIjdmci4O25bgRwNe2yUnXlGY+Ap6KAEBAELkgQwqQt10Ho15ErtVsVRSBlVH5KCBVFiciVhFQJCS4fAyCUkCjvKEARUKtXUEUIQkQswgRUygsIAbbjoChRnu38zAz9A8MkM1mmF+Y4ffIiX//mt7htz26K5QKZdJqZmRlsx1lh1VTxWl5U0kIKTMvAMnTCUGF5uUQ6kWD8hSP855de4N4fuJcw0PhX/+u/4c4D76K3rwvLNnBdj3gqQ2dXFlOX9HR1s3fP7Vw4f4y9d93Fntt3MNidpbN7kCNHDuH5VbZtG2VwYCu27XDPPffy4IMP4nkeA53dQIhq2OzecxcXTx5jbrzOwYNfpa8nRrIvw/Y9u8kcmybARzw8yhcuPMnhw0f4+MhP0GzMYRkxNm/bhDQUQiVibU5aGiotevpHaco8pltmZuoVfmfuz3l35gEsI4lQTRRF57G//xqjw1soL88xMryJyYlJYo5DEKgg4MGH7qdSK9PTO0xISKNRoVau0NXWQTqTRlEVYok4gVDp+/o5bNvhb9OLZPN5evr6aFTrNBoNMpkkQmiMDI/w1NNPs2PHdnzfp70tTqNewTIMfDfg2aeex45ZZLMJbNtm27btBAFYloGUgmazRSqRJplKERKQSscoFZewrASKCCkUCiQTqci76bfYu28/jUaZanWRbCaFFAZ+M6Ajn2HzudtRFBjbdYx6ZYlExxAzE9NknDia7tASDvvv3IdhmqSySRTpY9sas3MTZHNJWq0KCoJLF8d59dXX0Q2b5WKReMIk7kSRGl2d/Rx55Qh37b+DZ55+hi07tuAkE7SqAZZtkskkGBzsJZGIoQpJo9nCDQLqjSq2bRKGPpZpMDw0iKpq6LpOMpXg7NmzZJJJGvU6i4tLHDt2gk2bN0UEW46NH8DIplGa1QK1Wp3+gQEe+8pXiTlxcvksqi6pVxvk8+1omgkEtLfnaTYb6LpNOp0jDCS1qouqqWSzKfbvu51YwsG0DPzAxTQ0AtdneWGJXFsvz7/wPJZlkEomSDgO0xOTxGOxyGgcQqmwSBh45NJ5ZqcnGR0dZGpqinw+h6qAaWi0dbTjtwLKpRrNukuzXqa9swMhJY1qFUVE0UqpZJrJyRleOvgym7eMUigsUS4XCcKQWrHMvffejRd4tHd081bjGLqn8xt3/hqKoeIqCi899gU6hreT6exCwYtSG7ixh3MtQFkLOldBxnpdBK5oX77vX9PnWiP/jfSb1TFXQeuGIHkDQLS2usO1NWA3lo28yjcCrxt9vxWg9U7kem2ugFd/zTE3Bm5w7W/03cxtNU94o/vlewHo6/v4bkH3ellrONnoHlwvUargPxPwejOLwzuxgLwT+X73dz2J5v8PFyrBZU/E2tfVlpngK88AID/4wJVmKzkUl3MuFAjCgNU8jPXWmXfkXV17069MSVmZ6kraAEG44ttVuConN/B9VvNZV/MvIu9LuA54r1LHX329bxamsna/qojLLS/Pq1Fn4dIZmk2X3u13Uqu4aIZOcWGR2FcOof7af0R54hDenTsJdo+iqAqNSglVGDQaLd4+dozZqUv0dvVRKVc4e/Y0p0+e5MH77yEet3n58Kts27mHt94+SeA2GB0doRX4ECrYlkWz2aBUKBB4Pom0QaE0S60gOXHsZYaHtzI7M0MiFotIJowYM5MT7Ni6hUqlSCzuoEsNz62jqDrSTDIyMkStVmXX7p0r16+FaVhMT82SyaTJZZMEikKlWo1YRxVBrVhElSpS03E9n4mJCdrb8oBkYWGZTCZPELqIlT9yVVXp6evEMA3m5mZ55uln2LVrF5YtmZuaYrBvgEajheGYxJwYgR8QuC5hbQJdsxFmCiFDvvXVZ9m5dxsXTpxChpJCuUGlXCKWTODhowkwBNRaVXZu3oTfamHFTDTLwWs2IwZVReA2q9SbLulsjiDwkKGLFU+xNLuMZeg4MY16oU46k6Pp+QgZEjbreK7H8nIDIQ3iiRj1egMpddKZLCEh+c4Ouru7eeDee6k0ykhDZ2FmmXxbHtMyqNXLqKEHWoyYIRkY7IVQwWt5CEXjpYMv05btYG52BlPzmZuZoFSu0vQUensHUMKoHE8QhuhjcyjPvob+mz9L46E7QbbhlSZItPWy+bZ3M1OdIp1sQz90DD908e/uxGuqNH1BrV7H/MZhYgePsjiYRWqSSrWKpoRRaF42jxASJQxQhI+iCkJFEAo1KsS+otAIRaJIgSJUpNDRNInrNRFCEnp1TE2iSIlUbELFww8bCEUSBIIQD+GrCFQCRaG83ELTQTdDhNTQFAU/VKJc4TAkDDxQRARQiXLxW14DVcpV3Y/QrUZeX81EUSSqUPFDD1VqoEhQIGZlELqKoktUTJYXahi2SiyZRPF9GoVFUpkMu3ftxHMD6pUWsZiDgoJpaDSaNTRN4rkequkQhAK/5SNUk5OnzjA4PISvCjrPT1F//130jQxi2Dr/6ud+hp6+PJoU4IU8+ndf4g/+w39lbmqWe++5B9uKYVkO2e4OHnv0q+zcuZW23hi1eoPO/l4UzaS0XMFOJPGbNYQimVms8oMf/jgZS7Jjex/z02MU5gtsHdlJLBXS09fJzGyRnXsfolqrkz12ASkE3oHb+cbSt+gfGOB+52HaezooL89haDq60InbCufPvkmpMEeyezu+NFHCAhfefpm39SmeLr7CFtGPoSY58sphFudnkQK6uzsjIp9ak96BfhaXF+no7SCVsKlVZvG9FgFNbDvKT7acGO09XZw6fYJ4LMPYpQm6uzvY9OwMUgguvruX42++xUvPv4Blx9m7dw+TEzMoyIgRfGGedMoh9GqY8RSqHqPlglBV7IRFe1sXS0uL2HGJT8iFsWkMQ0dVFcrFBUqFRQQBlhnDdUPCUKBKQa3mc+jgEZq1OrGEvhKFomLaNqlMHj8Q+H7IK4cPMbp1FM9x+drYozQ7mtQbPoaq0tbVTrXVJPADvvn442zeMUoQ+LQaLXRVpxU0sEyN5cVFDCsGqkE6k6F/oJ/lhXlajToLs0USyTSu5yH1kHy+jbNnz/LAQw9h6hJVgIJE0zU0XefIkcNMnr+Abup85/UTDAx0kYynaTYbkZG05dGW76XWqEXM+J7Lq68epqe3j1BqpDMZRkcGeeaZZxkd3YwbgKkJNFosLhfIZDPUalVGhgbZs3sHMzNjtGXaeObbX2e4P49pJ0klUiiySeCpqLqkWq2i6gZffPQxjh4+yuhQP2OXzhBzYswvLJNIOFSqdexYklQ6S7Pm0tHRxo6d2zFMh4XlafJt7Wi6jVQ1pKYTKEbEruw2yXd1U6vWSKTStLwWmqVT95vUyk2mZmZ4/Jvf4PT5ixw4cCemYyOkjWlq+C0f1baZm5pHCRW27NrO8twcm0aHMXWNM28ep6O/j2YAPpLjx48xG58lZ+f5qbafolwpk0qlmZubZPziRfbt3YUrAxTUSGdBQVnJSb0ZqAz8AAVlJaefleTUq/WlK6mmShTpcvk7l3Wy9SLEtTpt5IHjsm50Pb13LTCLiLqiCJfV76ufo+bKBi9W/v+VNcfdSjrY2i0bhWBfWy7yqhbhteV/biRhGOK/EoVGXwVeVw2hK6/L1+wG2xXELY25VtZ6RDfSp9d/XivrjRLX27eRp3ft2Dfqd33fa/X79WNe3r5yn6KwUmrsf2LCpvWe1++XleCdyD8UeP3HIVcDzdU6r+qHHrxcf2y94elmCdprwePa2mNXjbrRg7KmPayA1vULz7qH51rv8pXF7LvJoVg71lVWxZXFX4RXXi987ZsceekQt9/xLi5OzvLTP/4Rfrp/mNQv/R6tN08g7tjO0rY+Ev29eL6PqhoYhmRiYoJDhw5z6eI427Zu+//Ze/MgO67rzPOXN/ft7a921AoUUCBIggR3WhRJSZRkS5ZbbcuyLLdb4enp8DJue9rdM+OZDrWnJ7rdDsc42vao7ZG12JYXSRRFkaIWkuIC7hR3cMdeQO31XtXbc8/5I6uwFAEQlKWwHZ4bUQG8927evHnfy5vnO+c732Fiagjdktm+fSevvfYqQ0ODAFx22eU4rst9992PLBKqfVXW1texrRz7H3kUkpiRbUMgxfhhSLlcwbaLGJogIcQ08qyttcnlbJI0oVTK0/PaVKoVDMtkcWWFcqnIytIKn//s59kxvYNCvoAQgqXFRdbXOyiKgaaZJGmM5/UwrQK2VUCRdcIgRtG1rKSJLCFLMVIao6gyURSi6xpJHHH4zUP0Vaq0Gk163S6W7RJHKY6dw7ZsVldqVKt9yEKm02szv3ASy7LRVJXA99F1DVIPSdZIhSAMfJ55+ml27JzGNk3efPNNvnvffVT7yuiGgeNY1FZWMsqxElEu99HuBXz/2QMMVCskcUir28FyHBRJQ9NNAj/AsizW1tZodzwGBotomqDbDTBsC0XTMXQDv9NhceEkA4ODrDdaPPHUI4yPjWDoVlZnUFM2ci91XnrxRQYHB9ANDVkRVKplur0uqqpiWhZr9SXCVFAt5+n2OpimQ7OV0U+DwKdarRBFAWmaUq5WKVeqlCoDmcNIlvDqdcRjL8HBWdr/5ddQ3ncDpu2gaE2efPSbjE5vp95YoFLaRm21x2t/8iVGR7eR/Ng+ZFI+8XO/RvDmcd77wms85K9THc+cKOVqH36Y0Dc8glA1UklCEtJGOS0FNgQ6BDJxFG/krUKSgiRluc5JkqDIClESAQJZ1QGZJGrjez624RIEHWQRIkkanl8nIQRkvvhnX8B1bCzHRVYskjDLl43iCFlIBF5vA4SevseFsmm5ZfRjRVZQNZ04yUQzhNjIr0UiigKESGm32nzrW/cxOTGNpkqoWoJlaMRJgh/4VPr7CMIQVVEwTZMkSQijLvmCi+/5uE4e34/59re/w+i2cT7/uS9QKVcolUtEUUQu5yJ0HTG/zOj11/DU7BFM3WBhfp6OV2d9bZVnvv8k73//e2msd/nIT32QKO7i+x77H3mIREr5r//l97j22iuZnBhDU21q9TXW15qYqsHJowfpr5aZPXKQyO9xw7X7WDx6AN2UGdsxTaE6gBd5HHj9VexClVZXsFYT1FbbrJYc+t//XoTTx9cWbkc3BB8dvo1OS8G0cqi6wYnZg4i0TdBdo29gElW3iaOQNIZa7ST/y/L/zU59ByP2OL4X0mg0yOfzTE1Nks/neOHFFykVy3zlK1/m1ltvRZIldFXPatwmCY5bIgxTTNPFtnPouoEEFIslwihAkiR2PrRAmiZ8f6/FzJ7LmLlkDwvzcywtLzI2PsbsiYyJMDW1Hcs28cIQcyNH3DItkjRB0zTSWEJIErquI4RNPl+g3WpjWxZhGFHpz5EQZyDLb1Ms5UhSGVVR2H3JbjRTJ5ZU3jh0hMcee4yB/gqWadLzPFzHZdu2bfS6HXp9TdKxmDSVsW0X05Kze9swSNOESrmE5WQCU6oiSOIIXc/2OkhRdY0oDDB1jfrKMhOT4wz0VVhYWmZwcIB2p4ksBN2ux9TUVOagERKdTlbfWlUVlpdXGB/fziWXXYphGZTK/ZiOneXxqgr5fG6DQu9w/PhRDh8+zPDQEDMzMwgBhmEhAXEc4bg5LMtEVWRkIXH06BGGhkdQVRXXzbHeaGAZJrmCQyopqHLmtFJNCzdn02ytky/kTingNtfqjA0NMDUzjm3nkGWbV19/g117drIwX+f4iXly+TztbodCQSfBQ9dl4iQkiSRIBbJQ6Hld1tdrlMsFAs/DMA1SCUKvh9/zIBGYusvKYgPb1rFdl1deeYWPf/zjRH4P285Rry+jazJJHKPoKrqqoCiCxdUlprdPsd5cw8kX8KIU17IhlfjyX/8tcRDgjwUYscFt4lYG+vtYb65x+Z7LWVpYYmb3bhLFOMuwiaWUVEiQpOeMWJ4JVM5U6k2S5Kxo7Lnsk3NFT8/VzhWlvZAgz9Z25vm2HnO+yOPbjX2xEdi3G/NC418MeN0EufJEirInQbJ/sJzQt4vW/l3bO13ft/tss70TSvaZQPdtbWzp7DH+yYDXiwUgF72QP2D7YYHZMz1NW+m4FzrHVknyH+S859/Yzl67TfAqffjdp298ceEI6oW8MZvX+nbfUZqmGxmknHXeMze3NE1PgdfTa7h1Yz8tMHDmXM7HyVcU5aLWNsmS8zB1nSSM0ITC6vwiN9x4E70oRer5/MLhGrnb7yO59lKeN2D4kt2YtkXP66FpBp22j9drI2SZTrtLqVQmCkMGhsqcnJtl27Yp0iTB8z36+io889xzDA+N4OYcRrcNknMdNMPg9tvvxPM9Ltkzg65r+IGHbbqkCObmTjLQP8h6cxXbLvLIo4+RSiF9A/2Yho5tm/hhiKzq5PIF2s01TE3H73m0e12GBgdJkxhVVbj9a3dy+eVXECcxpqmjqDJe0EZTFZaX5zFMkFSDFDJ1YQks0yKOY+ZOzlMqlUhTUNSMmqbrOo1Gg0KhzEsHDnDwzUPk3BxxEnPs2AmEItANjXwux/LCMpZpIEkCVVVYWc7qLgpUjh5e4NJLL8M0FXRdxXFshoaGmNk9g2noSBI4OZs4iZFIWFxeJVcoM3t8jtGRfrxeBzefR1Z1wiDLTXrzjdfJ53MYlonvh9iuhaKqJDFohkqn5xFHCXfecQe3vOcW6mvrWI7N5XsuQZFBSBpra6v0ej1838f3e5TKZWzHyXJB05RUysp0+EEICAKvjenm8bsdJFmQxln+ZxgGVKtlkjTCzbnYuQJJCqqaRR5FEiNeOYS0/3m45hKCP/yfKV05g6IKkiSCJGV0YIxElLCtCn4v4vXXDjE1V8d1XZZ3jZN3LfaM7uCnn3qVF7s15NFRIMt1brZbjE7tIEpSEklCEilSkiDLGpvblhAypAIhZ3tTEPikSebJT9KETqeLpur4fg8hG9RW11GVFElKkWWVubkFDFPDtHXiMCUhc3asr65x5ZVXUe3vQ1U0vvSlv+aRB+9l31VXkwKyLJAlkIQgSWKQsqhCHKcIIZ+iMskiA6GKECSAJGQkJOIkQgiI44SvfuXrXHPVNTQbDYqVIo1WAyEEvV4XVdMIk4TQC3BdGyHAzVnESUAcxXi+j6oa+H7I8PAIt3/lb7n1llsYHR/n2PFjDA5mqqkpCXF9jeZaHfP6y9k2MoyiCEbGhink82wbGcH3PC6/fB+VaoFmK3PktDttrrh6HzfecB0zu3aSJhInj88yMTWJZVlIUYIqxfze7/8+73v/e3nhuScZLFuUq2WuvvZ6nnvlVSrVAWRNpdLXT6V/G6Nje3jwobt417uvom97H6kro6gp73Pez57WKI21NUb7R7n3/nsplhwGBwrYjkWp0odu5BGxz8njR7Esl79q3M5LvddJno8YHhzj7rvv4rrrr2NxaZ4HHniAHTu2o+kGbi7H1ddeQ0pCr9OkXu8Qxtn+4vkpkEUujx49TrvToVQu0+m2KRYLpMDM/mWiKObo+0YxTIuFhXlOnpjlhhuuPRUxiuOE1doKuqHT7nRQZB3DNOh22khCMHdygROzJxkd3Zb9VhKFN157jddfe43x8XG+89172bXrEnTNprbawnVLyIpGTMorL71ELm/j5HLousXQ4CDDQ4N4vQ69Xpf+/gGiMKbdzvZFRVOxzRytVo8wDijmDWq1OpaTQ9d0hCyhGSaykFBVmWaryWptHds00HWNdqeDqWl43R5+4ON5PTRDgxRs28LQTYIgwnEcHn30UbZvn6JeX8exM4pzFPvYls0LLxygOlClXlvmO9+6l0su34NpKARBSODHGzV7dZrNNS6/7FKCwEfICkJIdFsdNF1HNzS8MMAyTULfQ5IEjlvI9oE0xfN9DEPPRNqkBE2zyBeKaKaGaZsgZfT+bq+BImRUVaNULGKqErprcejNIzzwvYeZnJqg0lfk2JE5Hn7oYS67/DIG+geQSJFSgSJURKoiFJX5+UX+5m++zKWX7sE09UxoT1VZXFqmXCogJI8w7FEs52i3OliWRRB4pMB1112DlCYsLc5BqtI36CJIUWWVVAFNVgh8j0K5RKOxjqapGKZNvlwljkPSKGVxfp6pHVPM2QvYksX4kREuu3Q3C3Nz6LkiTz78PSLfY2R8CjlO0TWNaIPeG0aZsNaZDv1z2R5babkp6VsAw5n2zJmleC5ky7zFljrPec8FaLcGIc4ca9PWymyy0zbf+VKvzhVd3GxnRkvPNbezjzu3avO5jnm7dirX1CH7e4c2/1uv5Wy79wdtb2En/p0A9YX7nMtW3nru80VbN98/s+TSVho8/BMCrxfbftSR0h9FZHdr0vrbeU7+rsD8/OOf/f6Z4PVUjwt49M61YWzdsM61cZ17JmevRXoGVWRzoz9Tfj5bk63r99aN93znO39O7zknhwSkQcTKwhKf/j/+Ax/48Icxc0UWDx5n/Dd+FzNM8N5zHWnZYWCgDyHpvPLqATRNpdcNCPwE13WIk4hdu3bywosvMr1zkr7+QV564VV002RycoJWKxOkCMKQ5ZVVqn1lLMtAVVUkWWZsbJTRsW2s1ddwHRfTsIiCmHa7h+OYqKqJZVrU11Z56aXnuXLfVRimRW11hXy+gKoaSIrG0vz8KfElx3UZm5zcyP2E+fk5bnzXDeiGhmXZIFI0Lcu3lVIZy7JJ05AkEmgblGEhNBqtDoamsbq6SqVUZXFhiUKplIGBMEJWFBRNoVqtcN+93+V9770V0zSwTZuXXj7A+Pg4ecdFUVQs0ySKIuI4xrILKFpKFIb81Ze+zLtuugZVy4QxTMsg77p0Q59mo4lrmXiBh24ahGGCmy9w4sQsIo5x8jaaphGFMZpm0O72+OZdd/ITH3o/QdgjkSAKQ2r1Hjm3iGkoCCkhTUHICnv3XkG9XiefL2b3RRzRWKtz/MQCpqlimDr5fJE48MgV8ghFxet16bQ7HDx0nJFt27J8W1nGVGWCREEmRTcMWq02aZJiOyaQoCgCZEEiKQhZRoiU6LmXEQ8/R6SrdP/9J7F/6UOcmD+BbWjsf/B77Noxxcn5E1TL/YSpRRRHKErM2Pgw1jOvAAni1ivQNZ3q1+9H9iP2ryxQKJU2agPGDAwPoqg6KRkwlJIIiBCSDpsPsA0KfhRGnIrEiqy+n+93cRwbUoEqoNFo8xd/8UWuuXI3QnVRVAXbNTPhpUhAGqPqOZIYXEsnlhVUVeWpJ5/kQx98P65rUu3rQ8gypAlR4BMl6ana1KejFQJJymi8SBlZotNuYFomXhigqzJh5KHIWb5ssTTA0GAVx1YJQoFhZN9pt91GSBK27aDrOkHg0+m20TSVOIoJwwgJsaFy26VcKbJjchzf93j++RfYNTPDd7/7HaamJjNxqzDCOjpP+6YrMA2DtbU1wjird9tudanX1llcqPOpT32K6667jsHBYY4cPk7fYB/DQ4Osrqxy5PBxXEchIca0dPxum1p9HaGa7N13JaYhs2fnBG1fod0LGB4epdfpYNs5ur0uYRSTL1SY3jmBbRtESY9jR49RKhdpNttcd9Ut/Iff/jSm7aOLEF1PmV9apNQ/iR8arNUWiPw1osinpQb8ysF/x22FW7hi5xWkaUKr3aJUKjE4OECpVKRcLnHHHXeSy+VZb6zT119FExJrDY9KX5Ug8MjliyhqRlnNF3IUiyUOvnGIgcEqqq7R7fVY3JFn+cZtvLk2T7u1Thj4XHHF5RyfPUaxUEBVNdrrDSrlEgsLcwwNDyIkLaPuCQlSqNcb7Nq5C11XSdOA+to6+ZzDnj27OXb8GNdddy3EEceOHiOKEhbm5qhWygihEHbbRIEPioytqqwsznP33d/g3e++mUcfeZSx8XFarTZLi0sU8jlGjk2jzlssmYuYtooqJRSKVRTFpN3uMDt7nHK1jCRJNNabHD82y/Yd2zO1ZQTrjRau46JqOqZtY1g2qSShqxmjI1N9VXniice56up9yIogilLu+NqdXHnlXqLIR5Fl+qr9pFJE0Gvjd31eePF5JibGURWTP/mTz5ImKd1uh7Ftw/iBT7fTxfc8kFLSeIO+qgos24E0ZXVpEVlW6Ho+7XaXnucRhgHuRl3j5doKjltE0w3iJCQMQ1IkFMVC01Pmjh1D1kz8IKHVbLK62mRqYozhoTJT2yeo1WoMDw1siPxZ5FwXWUjEcYjvdWi3Gjzw0MPMzc3xEz/xYZqNFrOzJ1GEgmXnqPZVaayvYtsF1poNkAQHDrxOq9Wj2ldmZXmJarkEJIS+z+DAOLNzrxH5ITm3QCRJhF6WJqMYOo7tYGgaoe+TJDG5QoEwjJmZmWHb6DYWggU+NvLT/PxVH0NXVR7f/zA79l7K7olhvnPPnTz69PdZm1umr1xBFfJZjt0z7ZMLRR5P2U/n+Ox8fd+ubQKqrUJP5zV73sZu23ruDK+81b49GxBd3Dnf6Xs/ahzwztrFfyc/8plcxBxkWT5n/3catX2L3b+FjvxPArye68a6cATxrR6dsxf+nYO/TJBDPuMd6Rx/Fz/uVrB62ou1tY7UW71RZybKp+mZIkZn9Tw19tbznjnWuddxw5tyeL3+MgAAIABJREFU98MAiI/cku0y59k0zhxTbOjuSkiwEUGV2KizuPlavL2Cc7IZbRViAyRlI6cJkG6OevaNsjnFTBH5wsB1q9dw6+szQbGycTZV1wjDkK4XEkQha411js2f4MMf/Qi2YRHVa1R/+f/ipdoyR4bKjE5vB5HRzWqry+TdHDnLxjVNnnvmcaJAwrBkJFVQqg5QqZRJ05Tl5SWGBvrxfZ/R8W3ImoJhmOzasZPH9z/D9PQk9doirm0QRCmkgtFtY6wsL3Hi5HFGRiaJEsHLL79CzlFICGisNxga3MZdd97JZZdeQrFQJk5Soshn/uQxCm6BuYUFBoYHKVYK6HKWR7gwf5J8ziX2O0hJzOzsUcrFEstLy+iKzGp9Bdt1UfQCiyeO0mo0IE75yt98mRuuu55Ot0H/wDCpECi6DKFPs7HOAw88SM/3sUwdRZa49pqrCIMulqmiGw4Tk1PIioYk67Qa8zRaPm6+iK4J4s4CEjEoElfuu4xeu027HWDZJqkEsq4jJSkJKaksY9oOa+sNXMvCb7col8qMTm5H13VU3cAwLSRJQsgpfQP9JGmWQ61rOrbhsrKwzoEXn6fTWSWRJApOjtWFRQxDxbQ06rVVHMuitlrHtB1SyaO/b5heN8SyDTyvx3qjiWXaeF6MYbqU+0qQxsRRiEREs9Xj5PHDaIaG41jYjoMsK6SphKrpJEmE32uj6zpSfR3pyZdIluoov/vrxL/xL+i7bJJH99/D7ituIlByTI5aHH72UdBcWj2BmyuSSCClEQsn3qAoOUSDfaxPlinsfxVxz6PUpvrQHZ3Weo0HH3uc93zgg9imTqu7jmnYCGSiOEASMQITRc5o21n0UyZNFV458AYry2v87d/+OXv3Xo7r5kjirA5tGHhoisF111wHKAhN2bhhQREZZQ+hZEYzKe2eh63rkESZYmzUwck7pICuZ2Izsiqh6TZh5BEGAYrQEJogibMoere9RtxdRlUETrGKH8cIWXD88EHK5T6SVKbjB+z/3neIoxDHKXD3XXfz5BOPcd21+2g01ymXBhBSmkW8dYswSTANHc1Q0E0DTdcwLRvdMFlvrWHaBsViHstUqRQrzOzajt9t43XWiVKBPbcKP3krcyfnGBkaprb8fRZO1Mlbw4yN7sWPAz7y0Q8yuXMU0ylQ7B/h6AvfJ6VJ12/RNzDIcrfDwGA/uixQkSn39bNjYpqv/+3XmZmeziL1pV30ghrD/ROoikyq6ri5EppqEYQddL3Aam2V/qdex5lbx9o9Q7e7wr/9t/+SxcWXkUUXJT9MoTpM/8AOlldX0Q0FJc1yeW27wm8d/DS6pLK3sJtOt0mSxIyNTQAStVqdarWCYWhEQcyeS/eQL+SQhCDoNXn++eeYnJhCM0xEKtFcb5BzHBRZQpKy1IY0geZ6k8AP6Do6Ly8cY2J8jL5qEUMVJMQ0ajUgoVgu8NSTTzM8PICsyIRBTBz6G2q0Kqqmoxs6Tz7yCEeOHMY0TSQiXj7wEsNjI+SKLlIa89D+h7hi7zUUikV0M0VIgsD3KFaLhEmEpsssLjdI4pgbrr+GV197mSv3XYmQNG7/6u24ls3OHTvZc/d17Ojt4j79TsZGR+h5Eknis7gyi2maVKojCAIUSUJIMgPDY3h+l/u++x1832Nqxw7SJOWb99zD9I7t+L0OmioTdlcxnRJJKkhij9GJ7Vimgd9tkS847LlsN0kYgWSi6iZChERJgh8mjI5tY2x0BF0vIgTkcwbXXH01hXwR3dTo+T5uLo+iauiqwtzcLLIClqmTRD5JkrK4tIahO9iWg2KmdLoxwwMjnDz4CqVCJmQnyxZxFCGkCEN3CQKJ5559jr6yQSI06vVlCgWbVEoI/YxJUumvkJJi6AaOXaSvrx/HNgmiDrGQaTWbmJaBYWkUy/3ESUwYenzr299hcW6VnZdMoCsqchrTbqzy9HMH2LVrN6vLK+zeOUXO0QijgLHRcZIkodls8OLrB1lZW0dVcoyMDBOmKYZics8932ZqahJNFqRJhO/FGGaOw4eP8Fdf+gJDQyM89vgTBGFIz+1gH1JYe3qZsW2jzJ2cp2+gj9dfex7ddvnEL/4yQxPbeOW1V/mdT/9Hrrv8SkqWS8vzs+cFgiCKkRQJKQUFCTWRiKXTtsqmcz2zgbLf5KZdtfneqXrWG479zfey98UZGiLpRh7taftsq+V6ZgRVks5WI97aNlPKtuaVnju6em5b82JB6vk/zy500w48l9381tfx6XFSQSa0croF35OJjwrkybcCsnPRrjfHzUqznW2/n/X5DxnEvl2u6ub5t9q5Zx67+f8zI91vF0Tbevy5jjkLCG+GpNLs9/uD1Hn9Rwdez9cuZnF/WM3zvCzadWrcc43/w4iIXlxY/8x2oYjhxazD+ZwAqWsj9u5CGhu6+PG2LME5b9aL9P6cdVz6w1/vbCoX9tgJIU6dJoljkjhm/fAx/rdf/01uu+V9DFWGaK110TUF/bf/CKGpFD5wK8MjI6iqwr33fofhwSH8Tpdet0ejsY5pm1T6qhw7foTxiSnW19fQ1axGY6fdwbLMjFoURviBTy6fR9d0vJ6PVTCxXQPbdej5AZblousms7OzFPJ5kjShUikTJzG6pjAwWCWNZfqqQ7iuyzXXXEWz1SSOs6iR6zqkpMQhlMrlUxGrTquFqmYRUsd2icKIQrFALpdndbVGLp/DdrMaiwLBs09/n4mpCTTDIE4SfuxdP8bhI4epVkunaJ2yKoiimFK5wsjwCH2VKvliEUVVieIY3TBYbzTxghaWpSKJmJQQXbdYb3azUjNyQrfdI4oFimpy8sQi1b4BnnjiScbGttFqtzEMkxPHjmBoGjnXxut1sG2LE7MncGyLlZXVjMIsUtIkzpwepMzNzzMysg0hwR1fu52hoSE8v43tqmwb7UcImXyhgqEbGeaSJOq1GoODg3S7XXTdYHVllf6BQRRZxfd7WQQzick5DvV6jVwuh66rSLKg026jKgrdTpd8voiiaOTzBYSQmV9aws3lkSQ5i2xKoMkW0qF50vueRPr4h1D+66/SHR4kCGO02OP5AweYmJhBViVWFg4xPbUbSXMpl/uI0xBFiYlCMHQZLVFR7nkE96Hn4cFnqE/10REJxXKFan8/N9/6HhRNJYlD5A1F5QMHXqPa148kySga9Pwuqq7gh0FWukfTsSyTRx55mJ/7xM+Sc90Np4CMBOi6huf5/Plf/Dn79l0JQtqg5vaQhcho0Er2sJOQUFT1VG1gRZGRZRVNNwCZJMmowUmckKQio14qKmEYZh7eNKMGK0LBD0IMK0cQp5lzLU3J5YtktWRjTE1l5/Q0bj77bi65ZBdXX30lURyhaTK6buH5PY4dO0axVMxk/qU0m7eiZrVM4ywSZtsWqqKiyCqKquFHPqZpUq+v0T8wSDcIsI8tkN52PWoxx6GjRxgbupTl5QZzy0exCl26rZjBgQpdv83Royfprw7RN1AllmIG+oaYm11lfGKUueN1NHRarTniBJaW5rn77jvYs2ca05T52l3fZu++3bz++hEsR0eoRmagyBKqquJ7PZIkwrj7EYxGj94N+/jDlc/ySON5binehpQaVPsHiPyYNI4oFgwkKWC9XiOKQr6+8i2+XPs61yZXYWgGrWaHI4ePsW3bNpIkJZ/PZ/WOBfT19+H7Ho6TlXVKU5jeOYOqKARBD0kS5PM5kiSh3W5vGM8K99zzLWZm9iCEwqGDr7Lvyr2kxCRpguU4SLJA1QyKpQpBnJB3XFRNJZ/PYxgmksgcwt1e79Tzu1gsM7V9O4qm4eZzbNs2ChtlnixDx3FtbNvl/vvup1QqcN+9D1LI9+F7MbaVQ5I08oUiruNs1AaVyeVLvPzyyywtzXPbB95LFHtMvrYHTdNo3LRIksR02+vsf/gRJiemSZMU08hK4IRBQJpKzM0vARFX7L2cgf5+Wu0OSZKyc3oafyOXU1U0VpYXMK0C9foauZxLt9eFJCYMfAzTod3ukaY+D+5/iOGhPjqddcJQUCwUAQndMPF8D11TkKSUVrOBbdvECfh+VmKs3eqiqhpzcwtMTEzS6/Two4A4TCiXK3zhC19kbHwcx7YxNIev33EHl1++hzCNODp7KKvHa8Da2knm52vYG06JIGjg2ENEoUTOLWMaOQzd5cSJE4Shj6Zl7J7m+nomznXsEP19FWTNpODmkZDw/YhyuZ+J8TGKRZd33XA9xVKegYF+dE3dCDRIOPki+VwO0oS1eo1Wu0XP61Eslul1exSKeaqlMq+8/ArXX38NJ44fIV+wOXjwDfZcMoMftDFMmZNHjxF6Po5j0W6u02528Xo+t9x8M65r8cLyi9wy/m7CIyHjU5MMDA9hqjZHD77Bu37sBoIgximXGB0b5Wd+/udpNht8+atfQRWCSqmY5TVvMEcAEiA6Q15ECPEW+ubWwMNWEPJ2ds1WcHquiO6Z+bgXiuieizV4sey+883vYtqFAe/F2NEZW++U3b0VvN6tki4L1OvOjpCfC9yd9X8unG/8w8YmZ35HF3vOC4HcC41xIbbk+fqfa+zMIfL/g9d3/NkP0jbB1I8KvL7TH8VZZ72Ap+TvAl6VqVEYG3xn452HNrBlkLedE3B2nsDfE3hN0w2DF9BlBV1VeerRh7j5lluxCiVk08FLBeaXvoH6xAu0rt6NlcuhCGi3W0yMjSMhEXS7aKqa5U6S8f8LJQddc8jncpw8cYiR0SmazQbVSoVjR46yY8c0q/Ualm0ShwkryzX6+wsszs9TcHMkUQRCpbHeJE1TxsZGcRwLIQRhFNJuNWi3W1hWie9897tMTk0QRj6u66BpBpZp8eSTTzA5MY5p2DzzzLM4biaWEkdBJspk2tRqdYrFAssrqwRhhJPLYdkWUSKRxDFer0t/pYqkKuTyeUzLJE4Tcvkc7XZGe253WiiyhJsrcOTwEVRFxuv1iCUwTHNj3QVhHKOpWU7U8soKlmkhSTrfuOtuyqUijqFw9Pg8D+1/jOkdM4RhQqlcYWCgD9My0A0DWVExVWnDCZCgqln9z8APyOUL5PIFFFmwsryIBFimwfLSItWBIdI0IY5iRreNUCqVMAwHTZfQVQNDL4AkWJifo1wp0Wy3MU0LRVXo+T3y+QKOm6O+1sDNuSiKTJJGpFHEam2Vubk5xsfHmJ8/Sa5Q3Kjnl11rHKX0uj1c18X3fVRdR1U1ZEVFIiVNEqT9z8KhWZTPfRrpPdcQmRZCUVEVBVsRNL2Qgf4R/Had1ZV5dL2MYefphV2ESDh5chbTKFKrLVH69veh1qBjyqwVLcKcgW6YdLs+1cFBkDI6sO97aLpOmkrU6w1KpQqKotPqNtE0AyFrSJJySkxKVRX27JlB17TMKRFFpzz7vudjWSZXXLEXRc1yQNM0wTCMjGK2oXiZZGpPCClTea3Xa9i2iyz0LLdOtzYAsUBRM5EwidOKlELINNZb6JrOw/sf4ejxk0xO7UCSBSJNkdMUoVrZ3NKEJPQxTRtd10nSmCjysWwdSZLQdJUklkjSiEp50ymk0WqskwCmadJqtdENHc/voW1cc221jucFFKqZM0I3DGRZxXAdOL5AND1G2FfMKNopDAwPMrVjkkNH3mTX9hmixCOKYraNjpPECYEU4Qc9Thxf4MPv/+f86q/9KxZPrOP3AnTbY2BwBEmK2b59lHI5x4GXXuSGm26h67WZnNyDYio01rs88+zTTE6OkSQp7fY6lmWjP/0qkiTwbtzLl05+kdXeKu8xb6RccpEkwbGjhxkZHKBen8frNWk22/hSzK+d+G2u166ifnyNN988zMjwGMVyldnjR+h0ukiSRL6Qw/e7aLqGLASe7zN7/Dh9g8MbVN4Ur9tGEvJG7T8ZTddot9us11vsvTyjtT/62GP8DwsVBg42md9hEaUpkqzg+Rm983Of+yJ7Lr2CvGPRbrdQFBVV1ajXatRqdXL53MajKUt5aLSaOK6bRRg1DdKUtXod3/Po768QRxKjYxMUSwV2TM0Q+F0OHHiJXbt2oqkq3V7AN+68nSjw6XkhuVwRVRXs2jmF45gEocdlx29AEhIHdz2f/QZUGBocpbbSIE0Tul4Dy8qzuJDRcL0goNVuUioWkIXIIsUbda01XQdJsL7WwDQ1dMNlZWUVBJiWjizANh2azQ6zJ+YplypYlkOhUMTSDRqNLrbt8PLLB/D9AFUTOI6V5ZJKYBgaKyt1vva1r+G6BV559VVKpTIvHniJ6emdyBv0/WwvAMuy+fa3v42u6ERBxN69ezFtmxSZ1988yNTkTpLQo7m+Sqk6iGXbWKZJs7GKqjq4roskZRHXpcU6d37jTm56143oelayqNNu4tgWfX1VVlYXse0CgRcwOzuHF0TYtk0QeNRqy/heh3I5j6qb2I4NZI6tfLFEY30d17Ezx3MSMzE1RYogDAMMUyfqeui6RrlaodGok8+XAcHiwiKu47C0uIhQTVTNJkwFrU6XHZPTHHjpJfZcNoOmKrzGm0RJwm/d/JtIQqLRbPLr//o3+NQv/SKGZfKf/9N/4qb33UaSpiRJjG6Z7L3yCr78+S9w8I3XmZ6cxNQ1BBKpBIkEsQTyVg2SMwDn1vqcFwKvm8GNre+dOca5LKmt9NELgdcz/781yrel9zne+4cJXjdL5fxDB68Xgx1+GOD1YmrCXmhePwzwKv2oxIx+2C2MeimcP0T9du38eYznFwo6X3srqDk7FJ/9JedNlO/d9/+cd2x15maUkUsACE+8QvT6Q+fta7z3V9i8Mf0nv0zSWj1nP3l4BnXm5syD1lwmePr2LfM/PUftmp9G5Pqy87/2EPHcq5tXvdkbAOFW0a792KnjvPs/c+aIZ1/TzncjhnYDkMy/SvjGw6e7bGF76O/9lVMvg6e/StpaOT3kGVMQQ7tRdt6cjdlaJnrm7Gs689qUfR9FcqsAxG/sJ1l47Zx9JaeCvO+jpzyN8f7PnnM8CbB3v4en31xlfNcugvlXCN94mDcPHmTvjp3YrxyGwSqoG5SRlXGWFxZZWlhm17sKoHh4nodh6NlDSAgUWaa1AnowSBD65Cs5ktzsqd9sEqcoqoIkQa/X46E7jnDj1TdSLJRYDV7HKAYYtr0RfUpR5awGahrpSLUhvnnPt/jxD30Yz30V09Cytdzw1nq+j6bqRGt5eusyru0g2V1icymrVxlldVkty6bT7iBkgdGaQTcM2p0morRITBdN15GAdruzUSNTIu5adFds8vk8KB6Jc5JkIzKg6ya+H6DrWgayVyqoIjOSE3uFVG9uUEsAKasP2+31sPQSh77vsX1iBMst0VCeRVVkhCwyIHPGHpG2+zHTPOvr62C2MSqdTCE3iBCyjO/7GHpWnqdPXEsURViWSeCcIErbWY6xn0UBkBTW1moUzTFEe5A/+8Kf89Mfey/5sSYpmxSpjLIUhjGykFE643idCMuySMxVUm2dTqeT0RSFlAHDFERsILfHeHT/o+zbdyVS3zGElBkNCacfwhIp0lPrNI62Mf7yf6W98Aa5pUOomoEf+GhKBhTDKCGJIoxrP4Ts2ATJIMlzf43o1YijmNpqnUKpgpBT3G+tEDkaq24Fkab0vBrVMZ8oTlA0DUhJ4k31YIGc7kJILhKCID6MJNfOyjNHSskqZllo0ky2NwpBL36aOIpQFGWj7waPTZJQGUGR+wFBL1gAeY5TNDIywY8ojoEER7sOCY2jRw7Tv62BkP3Tm8nG7xogCV0MeYK5uWWStEdleG1DJV3Kvqc0y+HrdHvUaqsY4hq2T47jhSEAiiKf2guylAxIYgVZARH7BHGCqujMnzxBZWAARVEyIR0tEweTNqJXS0ur3PmNu/jlX/vXKIqM3/NQ5CzKnD80x+LMNub3TnHFFVfwve/dzk3v+iBRpKAaJi9+/3v09w3R9kJmdl9Kr+tz5MjLDAyVKbr9/PWXvsnVV03QanaZmJhAVsAPYnyvQWN9kSgI2TU9g+KWaHU9el4Op6AiEonF5cMMDQ2gKXkSJUCRFKTf+SyqKuP9m5/knz/9KVw7zxd3/p/ML7yOYVYJAxgemiAMQ+prq7iVET6/+lX+Zv6r/FTlQ7zx2mvs2nUpbx46Qt9gH8vzx+l0MmeO53eZmZlmpV5HFgpPPfE0777pZmzXJop8ZFkQhQm6rm7kAGZOrPX1NR588BG6nTb7rtrHJZfM8O7fepRGY51H/uA6JElF1yzW1lp88+67+OhHP4pqajzywIOMjA6zfft2DDMDOJIkIwmBv1Fr2tR1VFU9BQbiJKaxtobf65IvFTBNA1KdZ595jiv3XYos6wRenSAMsxJPsoqi5VhemKVUcFheafPAA4/wyZ//Z+imged7aJrGB77+SaIo4Cvv+e8UCwMEXpNu16dSrdJsN9F1FVlWqK2uoCgqbr6IosikcUi308ZycsiySqvVxjRNmo02+UKe1ZU55k8usn16F6qlE4cBJBHtRgNNNzlxch7HKTIxNU6v00YTEq8fPEp/fx+O62A6JoHvIZDpdbvIIqtz22z3EELQbmcsF8N1aDUaSEnCd7/zbQzL4sd+7EZkReDYLivLde688y6uv3Yf0zunKZQqPPvUCzz25CN8/Gc/SSGvo6g+iaQRRDEnjs0x1J8jSFI8z6NQyNTsO82EBx+6n/fd9h4sy0JRNNrtOppmoigyqiqo15soksoDD+7nyLFZfvyD72V4eADDkGk3mxQKRYJYQpZheXmFanUAWRbEcUirsU6n1aSvr0oiVEgV2u02lm2yujBPpb+PRrNNHESYTpGv33Enn/z5nwNChJyystZCEipf+codJGnKT//EBzEsnUq1zGuvv8njxaeoUuF3+TTT09PcddddvOeW2whFiKapDJRKfOa//ym/9e//HUEcEacJCMFff+aP+Ml/9lM8/8ILfOYzn6HrpXzkp36Km2++mYmpSVTHIk3Ttyj6ngs8XAzV88wxNo/ZtJHTzefOFqC7uRdezLgXop2eFvbJXm/2O11a563g6nwU161R4XP12XwuXRg7ZOUVJUls0IbPxgq9/5bVFDf/TXDOa916jac+Sy4OKF6onW8NL7ae7vnOfyGM83YCWed778zfxzu5VkXR3vHCvLMr/wfezqfS9vcxj3+I7TSwfmtx6LdttfXs70fWpItxkP29NyEESZzw+c9+jiv2XIYIVXK6S9HN4UgK9utHSYo52MjhS0lpt5oU3ByTE+O0mk28wMfNuRt4PIs4hH6URf1WlrCdIvMLCxnFNk4QkiCOI9qdNkAWhRMKaz2PXgr5SgVFz0CGLAvkjTJGaZrQaXWQEHzg/T+O70ds+lWTJN6oBZfVmYMUzTCwbRfP7xLFAUIWxEmMLAvUjShSp9PdABIJnueBlFHssohFpiToui5pkuXQqIqKY1kkUYgkqWzWqjMMEwnplApvkqZYhkZzvY4iMlq2BIRhAFJKFAbIskDXVKQ0ZWb3DPX1Fr3Aw7JMZCUrw5Om8cZTMcuTPnLkKK12l0KxTL5QRJIEaQqyIhPHCZqq4fse5XKFnh8QxQlBmJUkkGWFMAwRQhDHMXESYts2kpSwuHKYj33s4+Ry+QxUbdxHnudvfEdKBvzjiISUhKxkTAqZ2IkQBGGURRbJ8rqTOOXGG2/i2LHDKEpGnfWDM4BZmmb3oKpS/MvfR1glyqVhJFTiyKPXbiGR0Gl3svI0SMyfOEYQBCzV2tl4fkAcp5yYXcjyxYVAXvVRjreQUgj9AM/z8Tx/A2RmLWObCNI0E/WQ5SwvWMhZPb8stzwmjoNTzIhMbTjM9piN9VFUNfsMslXZuOeTJCL0PdI0RVYy0ZA4irJ/44QUOH58ljCIsu9WSomiECFLxHF0SsQtPZXalSLLElHoMdBfpa+vshE9SEnjiDiJsyOE4NWXZnn28RaWadMLokytOE1JE4kklmk2unTavcwQSQUnT8yzvr5Gq9kkSRIGBweJoiiL1MeZoNbBgweRUpibm+e++78Hkky72SXyI0zDIAx86rUaKDLp7CIT28YIuh7T269mrd5m9uRh/GiJ6R0TuK5DMV+gtrJKkkbsHB+BwOfV1w4wMTXG6PAQk5MFwqTG7/3eH/H8cweo1Rrk80Wef/4AEhpJmCAkgw99+GeYPbmCrpn09/dTr9eI45hGq0mURqiqQhx6LB17EU1RsrJU7R6WrBKEddK0Q2O9jpRKNNfa1OUO/+34Z0gOZA6bOAoJQp+H9z+MZdvsmJ5m7969TEyMU6lUkCSJSqWPSrnKLe9+D/ff+wBrq6uEgZcpUwuZk3Mn6HQ6+IFPp9NBkmQ+8pEP8bMf/xiDg330vA6qqtPf34/jOLQbTRRJcP+997N9copWcw1NgenpaXbt3EmcxKysrGzku2YiOd1uD8uyIIkgTfjs//unaIqCqmkMDgziOC6FQpEoSonChGq1D0hYWVlidaWG74U4Vg6/F6KqgkLRIQg9KpUSN9/8bjRN3tgLFJI0u480VaNcqiIklYOHThCnEUHSIU4jZMUmSWNc16ZcLiCJZCM6l+A4Do1GAz8IOHLsKH4QYjkOYZig6yY7tk9neY0pBEGELKtUqxUs22RsfITBoRJB2MC0oNVaYfvkBLOzx0BKCaMAr+eROQlatFodDh48iGFquDmHwcF+ZEXKBPpskygO+cQnPsEVV+zL1t+2cRyH4ZERPvmLv0ChkENXZZqNBrYpMb1jlF7QIkwDZudmNxSYu5iGjSzruE6RfK6MZbikiYyT0/mJD70fXVfxPR9ZKBi2TRBHpELQCyJyuUzl+/233cYvfupf8u1v3YOmaayu1HCcPLPHTmbPH0miUq2SkjklgiDAdXNYViaQ1G573H//g7TbPZIEKkOD+HFMEIQ8/tiTnDh5BCFHPPb4Q/S8Bgdefoa8IVNxdH7hZz7CrTdeTd9gH7ZrMb+4yIMP7SfZeKa88Myz+J0uOyYmsXI6hWpatv5iAAAgAElEQVQfkSQjFJPf/NX/ib/83BdIg4jA80miiMefepyBiVFuee8tfPXO27n33nv55X/1P3LXV27nD37nP/PHf/zHdLvdi7Lbzh/pfGufrTmbf1fb9Z3kcW5GjeGt1OULAfO3m+PFrM9mv3/M7Wzdnay9k2jo27WLFi39e2r/6CKvp9vFzHvrl3hhTwO81ct0ZsT2nXD3M2PuncyNDZpccsE+m4nop+f01jyHcx2T9X37m/Z0H87y7ES/9GkA5D/7j2/pe2bb6nnZutmeKy/jfHM7l5ctTTOZ/DNL3siyTByHZ1/xO/hdn08ETJKyyEsahaSKREJM2g750z/8A372Z38OSc+jmRq+3yO32kD9F/873mCV9F1XoauC+uoqpXyZNw6+wejYGGEcYegGXrdDuVzi9TffwLIcSqU+FE0mDj1azTZ2Lk/oZXlGpmlx6NBh7r3/QS677BIu27MT2zbxuh7H52ucOHKEd9/0LvwkwNAFum6SIhAK1Oo18rkCvhfS6/QwDZXvfvd+fvIjH6bbbWKaJqpZYG7uOJVykdCPiMMY03EwtZQkTZlbWOGBB/Zz/TXXMjoyRLvbpFgu02y2yOVyvPLKq+zcuZMwjBFyJgahaSZp0mP25ALbxsYQ+Pi9FouLTSand+N5HrMH32Db2FhmLCcx7XYLp9SPLBKEgJXFFarlARI5IvC66LpOlEh0Ox5526XZXEG3XJ544hmGBgYZHRvCsQxefeUAO3bNZAAEifW1DrZpomkyQdhD143/j7z3jrLjus58f3VO5bp1Y+duoBupEQkQYBKDSJGiSEmWLFnOz2Es2XKcsayZeeM1M362l7w8Y3lmveDnJFtOkkhZlCxSzDIpZpEUSBAgGJFT53jzrVzvj2qAjUYDJDWaP57nrNWrb986dc65detU772/b3+ber2RIUGJ4G/+6gv8q5/+MUynwIGX97Nnz57sXpIacdAmCjtousP41AJ93WUsy2JxsUqhUKDdaWKaJlEUoWk6adTAtPJEsYQ0otWs4RZKBGGIkCpBGCFQEHpWI1Ulo4MtLC7gFMqoqmBm4gxKnDI0PIwfBiRLTpg3NYf5xAHikQHSP/mPaHlJmESEqcTUC8hkliMvP8e2K99HHBbZuusKnn3mISZOHmDt8DZSUSbvCIK4w8xclVKpH9MxmZuZYs3v/AVRELB45UYWZ6bpKlXwk4SuNWtJ44Roqb6gKmWGWgKNZhNDz8rO2LZ9dtMQRhFRAAsLVe677x5+6dM/h0AnIUXTJNV6lXzBJU3UJQmLBEWJEEl67joJVSdJUuI4U6FOUoWsFmxwLiKciTzEoEgUqZHGIaqSEiuZg5qczV9OMwqx5/nnkGNFZM/QdjNBFTZx2sYwNMLIR9UExClCSuIUpJqp3vqtNkI1cB2H2PfwowZBEKMoKgkpRTdHHCccPXKMtcPDOE6OVMmo9M1Gk1aziSJTuipdCJkZ94VCifjMOEmnzSsf2cOOHZdzcmyccmGET/7CL3Hn176IKjtEforveeRzOlHs0/Aijh17hTgKufG6m5idWSRJIzrtgImxRbZt3cqZ8UMIcnzuc5/jL7/4B+QKa5mrN0kTUJWEkjNImEwxPX+GrvIaDKsPmTSJPvenqKqg9a9v51dPfJ4kjfjzdb9H3u2mNj9LGPnkCl186Sv30N01wNPbn+NoeJz3FW8i8hL27XuR7Zft4JWXD7Bz2w6++o2v86lP/Txh5KFpOkLRSPBQUkgSidQs5qcnOXL4KJfv2Y1uCuanZykWyzzx1HNce921ODmLwO9gmhYHD77C1q2b+eE/eJVqdZFn/+TGLJC3sIjrlpibXeDRRx9m06YRdl95DUnawTaLTE9Oolg6xVwev9VG1VVUTeJ7IaZpsrAwT6lUotmsYedypEhUwyCJI+amZ/nnB7/NJ370x2l3PKSMyeeLBEGIoRsEqY+qaRlFUJFZoC9oZgGQSENK+OC3fpo4innoE1+j2WziWFn+tePmiQIPTQqiBBAC2zA4c+IkoSJZM9jPqZMnGFizFhRYnJ/D0iTVepuunj40NaPvtdtt5hfm6e8ZIiJFNVS8+jxpFJAr9xDGCZau0ajO47hFokQghEbkd/C8GqVSN0EEYRSjahoTYyfo7x+k1qhT7ioQ+TECA1ULCfyATivgscee5LbbbybnGvidhFRqPPn4U+cUl7duHaKQ6wPZQdclcajT9n1yOYcwaiOFw8zsBF3lAQzTJ+iEtNp1+gaH8SOQUqFRXSCfK6MpClE6TaeTw3IM5uYXsQwTS9eYmRonX8gTRjGW42T58rqDIRM6nRYJCq1qjd6BfpqdDnEQoqRw6vQ4Tz79PJ/8hU/xF3/2Z9z+Qx/B0FPWDvZz7MhJct09NKo1ukp56tUZhga66YQphm4jpUan02Fudox8zmV6doGh4Q3c1bqbfrWX/1v7PbZu2sidX7mD6arKL/7yzzFXn2LthjXoQkGL4elvP0R3t8nE5CmUwGBgzQiKozMweg2VXI4gSggin1jxKCiS3/j1z+AUyvzyr/8yG0ZH8EIBipoJFqYtUuyL2jXnbKllJttKO+0cfTh963whxAVZWlkQc6XNlP29Usx0pd23fNyLlUpcjV56MXtudZv87ez+Szt3qyGOZ5FX8zf9c++tXNtKcarsTXFBn3dSd3f5+CvfX96W+yYXK/u4ck3LfYyLoeNn1a9X5tBeiiZ9MXR8tSw/seI7+H6Q1///5Lwm775UzvcD5a1Go1h57J3Ns/pm85+/i3jsNdShHavMvfIGXX2+s2t7txGWlVG2t+uzvO/ZUjnyYzdfMrqz/JyL5T+s1s6+fyku/blxOX9t2Qb8wUaJhBCINKN1JmmCBEQY8YX/80/4+X/1SQw3R6yppFGM9cQLGP/uvxGOjhDtuYxDb75Od1eZyfFx2q0O5a4CJ06coFzuBgTj42eo1hZZOzyMHwS0mh0OvnyQ/t4+2h2PRx99jEatzZq1I3zxr7/Iniv2cM01V1MqF1BVyeTEJMVimd6eLgYG+5lbnKOru2vJEYQgCInCDEUhinnjjUNsHB2l6bXYvn07pmWhGzZS1UmilELeRdd1NNWg3Q7I5Uxq9TpC0alWm7z3pvfR3W0TJS2q1QZSZFQ7VVVxHIvJyXFKpQqGobGwuIAqVVIlJI5TqgsNklhFlTaHDh3DDyPK5Rx510CqKq++9hq9ff3ECYRRwPzsLF7Ho7vSTRSH+GFEc3GB6vwsJddhenYWQzdQ9Uy4Yu3ajZTKZZ577nkGB4cplru484472HHZNmZnp+jpqeD7AWNjp+nv7yOOEwzDpNlsMzY2zu233cbRo0colwoM9PcxMz2JAtn10HVIFaI4RVdVTMvKnCKZ4PlNfE/wla/cCYDjWBTcrLyIYdmEgYdtG8wv1FGlTrPZIufmqS42MrqimTlLipIiVUGz0cBrdUhiMC2DjuehGyatxSrp3lcxnn0V8ckfpvpvfwoznyP1fNLUZ2riNKWCQyRtDrywl1ao0t3bw6tP3sP20bVs2rQRoZdodiImx49j53Qsx0Sogt/5T5/jwx/8MMFdDyKEwoQhMQ2NZrtF78AgyAwxMg3j3J6A7Mlm6DooCoauZ/TnTHqHKIqwTIfTp0/xoQ/dThyHCJGiiMwh1HQLoWikhEsKmZAmEREqQs2QsXp1HlNXs/s5XnomiBSpZP2FUMiWEpEokJCAkqHUUqhEUbRE+c0MrSRNEVJdQtrNJUQ4q7n74r4XGBwYQtczNoOiiCU6d1ZHWEkzNoMqVeqNBs1GjWIhh6ZLHMclihNs22R8fIZCqYRbyCM1SZwEhGEWlPG9LH+50lUkSbJ8ZsvKMTE5QdnOYbx2guKnPpGtKYxQpc6eK3Yh1YRUSXFzeaampunu6cJxbVqtmKGhQdIYqgsN4iQkCDxKxTJ/9Ef/jXv/+V7+5st/wW/+1n8gRqXcWyFnaOTcPqRwMXSHUEyTJC623U8uZ9Ga3suJI/uoHF7MgjWbRnk82EsUKfz42k/T9lX+6+f/kg/c/hP80z2P8ZEf+nlYm+cPJ36Xm5z3QhCii5jFxSZj42NcvmcX+196gY9//OPESUwSJ9keyDkEUZs4DEmSBM3QSRKfUqlEzs3Tbnt0dfVw6PARRjdvQGop7XadwE+xHLBtDV112Pz0NKZlcuBqi06nTRSFRDGYpsqVV+3GyZlIkalQp4lE01Qs20FTJZ1WAzvnkKBgWw5BEGJZOZIEwiBz8Ou1JkmscPCl77FuZBjd0BlcO5QpDKsGZ86coaurm6/fdRc7L9uF1/HIWTkCL2B6YgqJh2EaRDEkSsrom9sRUvC3s3/O0NBaUgSW4zI1OYWhqvjtFrrpoGoahw8fpb9/EMPOnPbenh5SBYSiMT01Q1dPD/lCnnqjimW5JCmgCPbvP8DAQC+KKkiSFMuwOXlqjK7uPmZm5+i0PRzbRtMtpKoRhgEnj5/gwMEDrF+/iSTOBJtc1yKftzO9ANMiCHwMU+ehBx9mZGQA0zKxbYuRkRHyBYdqbR7XLdGs1ejp7cP3A9ZvGiVfzJGQ4uQcVN0kShIcq8g/fu0uLrtsB1IYPP3084yObsIPOpiOg5srsVitAjGGLvG8Jn57EU0XBH4TTRpZIDKKaDTrGIZKsVTI9COUFNsx8f0OnhfQabexLRMpBAU3R71ex7BspJYpy5fzJrsu28bi3CR95Rx2LseaoX68wCdfKhH7Hoaq0tfXj2k6pELDjxSOHjtFo9Wkb6CHMBLk3DzFconFRp0j8VG6rDK/uvHXCFKLE+OLPPnkg3zwg7fRqFU5efhNRoc2Mnb4BZ7/57/nwOOP890HHue+B79FY3GRl/c9hRr6fOlr3yBNUjZs3ECS+CxMHOZ9N96IEkb8/m//NorX5oqrr0EkECPw0RBL9VNXs/POvV76tRxQWG7zKopyntWpLNk/y8e9lPO1vLbsxWy+5Y7r8pqvF6yVt7dZ35nz+u6Orzbm2ZxX9Zr4kv0u/LyXptm+23Vcar5LXaPVbPFLXffVzgEuCDqsNu8F61hlWQor74l/yYJNy5zX7KK/k7PeuXO3/As9+/fy32/N+043y+rOa/jGE6RBG23D1aue83Y3/so1reTzr3wQnX19KRWys597ubR5mp5/A591XsXHbj533moo6spo3qXWdHaMi9Fclp9/HiIepxeMB+l55yxfz2oRrEs9GM5t1ERhiSmIFqe8eeAgV+y6HLdSIYwS9LEpnE/+Lurje/Gv3Um8YRjfDygX82iapFQqAhBGIX39/dRqDVqtNgcOvMTll+/CMM0sh9PKcfToETasG0YIwci6deTzJqfPHOe2228hJcSxHdIkxsk5uPkC8ws1TF3S8ToUy2UURSGMMrTxicefwtB1HCcrUdDd08vU9DRd3V34foCqqZk8PtBszmGYgjD0iZMYyzKYGM+cUUUR3P3Ne9i8dSdSQOBHBIEkX3BQFPB9n1wuR6FQ5MzYGEIodHVlc6RpQt4t8Porb3DqzBnuf+AhfuQTP0K6VI9SNzQURSVfKFKvNbCdHFHQYbFaZf/+A4xuGUWIFFUzsHQNXdcQQsVybOJYwbJN2q0mcRhTr1VxHIfZ2Vlef/0NPnDrzehaVv9UCNDUjFJtWgZ7977I4MAgcZJSLleIwoDnn3+eQ4ffZOu2bVhWpu5cr1Vxci5JKpFSogmBqhnUalVM08C0TJJIsGHDOvoH+oH0HPISJRFSKExPTWPbLq6bx7IspmdmeOSRx9i5YyuGIZmcmMDJuTTqDSzD5MUX9zE6upVc3iHseMT7XkN95mXkmj7kX/0fqLdfgyLAMCS2bqLqgtNjZ+jt7SeVJpYA1bSxDIXLN/aQz+co9KwB1WV6ep6vfeVbrFu3CTffjYLJVVfuQkkSwn96GKEIOr1dGKaKk3OIUbAsB6EoWamqs9H5pf0VBMFbtGIlJQxDNE2jXq9h2zlc10ZKkFKj1axjmiZxnJUOSBLw/TaqVCGFKIxQVAMhBL7fIefY1GpVDMMkCs7WH1QQxCRLNE9NkyRRghAGSSpQUNHUzJEWQsnyqsMAIbP8SUUIVDXLGRdCyQTTVI3hkTUk8jipWESVLkkSLTnRYqmkT4CUmbC/1FTyeQdVpKBkZcrCMEbXNRzbpd1q0e600TSJrmukgK5rmKZJ4PtoekZVn56ewXFcDENDcyzkGyeIPnELQihIzeT06ZOMjq7nyNE3GR4eod5oQ6qwWJ2jUa9z5OhJRkfXUasusm54HWdOj1EuVWi1PIbXbOLjP/FjfPwTH6ZS6WPzlh0gYjq1Q0jDQWoaKCH11gyGViDqxDRqM5jUEKpGYRGUQhF55VXcNfF1Wu02VyRXEOFx66230gmaPPHUowz09/G52n9kjT3MOmcdpqEyOz1OX38/69av51vfuo/33ngDuq7h+yGapmPbFkJmKQtpkmT5oppOu5Uhf2mqYNkOtXqTfS/tY9OmDXidFpVyBcNwiBMfRVF4ce/LfOBkhoS8/t4yeTePrhsIVcc0NRari1lZphRqtUVsM8/c3DS5fBFlid4uVJUoSpGKoFqt8vLLL9PfP5CtL1UoFIroqsHM5CyDA2vp7VuDFDpzs1Vc10QIBcPQ2bnrMrwgxPM84ijk4QfvZ8voJqSWISF+EKMbGq9veIGDI3tZv2ETrWab6ckJojjmueeeY3TTJjyvg1RVpK5jGAZxmGBYOn6njee1CeMYUgUhBZppoqqSOApxcvkMdZGS9evXo5kaQpG02x66pnPs2DGE1EgSGBwYxPc6hEFKrVHDskykIujr70dVdZ797nfZtGkDjUaVIAwwdZNOu4UUIDWNrZu3I2QWJO54bUzLISWhWlvEtvIkcYJhmrx56BC1Wo1KpUyzVQMyle5afZHqQkZLHlrTj23mePyJp8k5KoMDQ0RAs9Gm4LpMjp8m51i0Ox10QyWOYwzDpt1q0mjWidOUSqWCZZq0Ox5BGDEzM00Uhli2SRQlhFGEYRgYmkqz3cEwLer1Brpu0Gi1aAcx0rAolsoITZIkHs12DbeQQ+qC2I/J513q9ToTk5M8/PCjRDE8+9xzXHf9dai6JIkVcvkcc3Oz9PX2crDzGgXp8v70fXixQLUcLtu2llJ3F6pIkH6V+vwJ/vn+LxMH86h6DidfoW9kM28cPolhKHz1H77MLe+5nof+6Ru8+dI+/vNnP8O9936dE8dOsnPbLh6670EOHjjAXHWBa3ZfnqW26AYk8Tl7ZyUdd5lxc87uWunAvgUOnG8HpbyF7K1m163WVjLuVnNIV8670v46+/qswvJqNuIP2nldDtwsHz85LlAcUHdeCGYtd9IvXM/5fVYCQ8vp0svHXc0mXg1FvRQgtHyNK8dY7dg7ccZXRZffpq1WDvOs83r2M0qp/q/hvMK5Pfg27d0jr2+Nf3En72I36Pltdec1Ov4CwEWc1wtmfMd9Lhltu8ApXjHCik212g2eLK/zenbUi+QWXIzisTKp/lLo6srxznsYpm89gM8ev9jHu9jnvpQDe3YeLc0oM5FI8WsNnnzgYS6/Yif+4y9hfuaP0O94kGTjWpJbr4VijnqtAQiCTotOu0m9Xqeru5uF+RoPPPAgu3btoljMI4WC49jMz83R09NHtVpnx/Yt7H/pRQYH+iiXy8zNz9Db04tQsn/8aRJw8uRxenp7iGIF23ZpVRfp6u3FC0OOHz1FuauCokgc26Veq2EaBm4pj6Gb1Ko1Zicn0aROu9Uk75pMjJ+mUq4QhpmIjiJ1UlRUoaDbFopI2XXZVlRLQaSZIWaYGlLNKJmTk1NIqaNKk1IpTxj6SxTuBE13icOE/r4Ka0eGuOLq3Wi6QJBiGhZekDI/u4BtOziuk4ktpRG26XDZZbtISViszRMGCY5to0idWKjU5uYplnpRpIKqqLx64HmG1wyQJBE9PV2MDI9gGoL2Up3JMMgQnjAKMA0T07QhhQMvv4ImM4rf8MgGLtu9iyCK0Qwd3bIwVKjVOjhuiZf372dgoIdUUXFyLpmWjIoqE9y8g2FoeJ5PvuDS7rTIFwt4nZBioYJpanh+hyiOyOUcdly2A6HEKEmE7eQJIwXLMNEUhZ6ebt58/Gm6T8+if+811LUD6P/ls8Sf+mGqSYDr2rTbTTy/habrdMKIwZFRhMyDEjNz4jCjo1t49cCT2Dmb3jUbaUY2tWbArTffwveefZbPfPbX0UwFIcF1VExDYj+yFykEc3kDRUnoGehHqhqaliGuZ51Xz/cxllBYXdeX6i8LoihY2mtgmib1WhNNU1DVTLAsSVJUVYclBc2UFF3XSWOFifEpxs6M0dfTTZpm4mVIgWZaEEXUam2KxQJB0KbTbqDrGp7XIQg8vOY8pqmj6yrtdh1Dl0RRkjEllgSRNN0E5azRBe12NXNGFfVcTcKIo6R46HItiiKzHOUkQUoFKTKBtjBKMEydNI1oNar4YUDgh6ialiGm7TbVxQXyuTyWYRN4Eaqu0mo0cGybo8eOYudMLNNC1wz+7M/+gve+9zq8tod5coLmh25gbm6SYqkXy1Zx8yZd3UUUJUO4bTtHkoQYhs76jes4deoQOdeiurjAN+56mJ07d/Pv/u1/4uX9h8m7ZXbv3oyp6bSbLVQZoqeLJGk3Y+NtdN2mWa2iKQEL00fIWypT8xrl/i1w/XvYL2J6usu0RIchdZjqiw127tyOlIL9L+3lox+8nQeO3c8/+ffgvlZg7doRVFXFsnXmZsZw80UGhkZo1Bq4rrMkRDSPbVuEoU8YJlimTbPRYmZ2jt7uHqI4JVUU4iRE02yG1w1jWwaWYZPEgiNHDmNoLkmski/k2P1CA6EonPzAGvxOgGk5+FFAEIZUFxsU872EcRPT0rFMB8uWdDoJX/7S37F5y0akZjA9u4CbMzKEHUE+n0foJrpugQKqLhkc7KPjd1Ck4PiRI4TtDoWKi6plewglRDOtLCAoU3bv3oll6jS9GNM0aTc66KqCpucgFfjeEspspHR1ldmyfQdS0zBsiyjyEFLBsCwM02B+fpZC3qXdbmFaFoYus3JAhk0SpahCkiopi7UFLNvM1LFj8P2Il/a9RP9gL2vWDiEVA9NyOHH8OKHv02r7lCol3njjNerVBk6+SLvTYdvWzei6ilQScm4J3/f53vPPUCm76GaeJFIIgg71WgPTtonCBFXTaLXa6FqOx558iu6uLlQpGN04gpQmji1RMDn85jEG+rsJ/ATT1Fi/YQ1JklDI5zC1gNBTuOe++9l5+Q7CoEPRzRDxSqWbJDUwnQJgkCYB+VwOw7AJohShqNQbHU6ePE1vby+mYRD6IWHoUSxVaDSanDp+DKfSj6bqqKRMT42jawqddkShWEKoCikx/f1rSWLJmVOTJLGk3F2m1qii61nqwYGXXuLGG2+kWq3S3dWFaejkXJNDb7zG5o0baTWbvB4eQQYqn974ScbGzzAyvBZbUylUuii5GmdefZoDLz7FY498jw4b+O6RBj/6G/+Z2z/644wtRnz0xz5BEin0VBJuvOl6Fhdn2H3Fdnor3UxPLvDwd54BzUAv5Hn9wEt8+S//jObcBFddeTkYzts7VMteL2fvLe8jVpyTvI1tuNJ2Wp5u9nagyWptNYfrYvbaD9p5XTnm2dfqZQnqZclF+73dXGcR5uXnLUczLwbgrLa2S6Ge76Sds+lXoN7/I9/R20wIvBUwSZIE0vNt8H/hzmv4+2dfK8qFaN/38yVeqq0W3fhBzPOW83rVBcfeqZLb+e38CMZb+a3n9zof9VxO75AX3MCK8tZmOhch+tbj2UAfvelcv5XO6zvZBMsR3mz+8wtZXywX9mwELnNeU87KssD5juvKB/LKXIN3EjU8u5ZQB10XGFHASy8e4IbQQf+1P0TdexCxbT3h+/awf3qGwaEhms0Od371Tvr7+6jW6hRKJbq6KllNUym56uo9zM/P0qjV6O6pMDc3z8jIer565z+y+/LdSFOSd/LUmx0MJ4eZ60JTwdIkx48e49Dhk2wa3cyxo8fp7enj8e88Tr7cy9e/8XU2bRwljlJypTxBp05/Vy+5fAG7bGFqNuPjJxns76PdCOh06qwdHiQmxVhSBFZVI0OwIoWpiRlK5QJzU1PEoU+axGjCWqpzmVHNDCMTI3LdElMT89SqLdySi+VYRFHM1Ng0Dz1wP9t3bOc7TzzB1h2XoQjJwvgEhmbQbHlYdo7Iy+rYCiEIk5hUVfE9D13NFEE1wyJv5/G8EF3TSGIfVTfw2k00qdKs11m/eQShqrj5ApNTs3znO08wtKabSBHYbpEoVPCCDA3stGPK5W5UVWdgqAtNMzhy+CSnx44wPLQO0xDUanMEXgtdK2CaJmHYQVFSbMdi3/43iLwai3Mz7N93kHXrR87eMIRhyqFXT9DV1U27U0eVkEYximbihx6GnqNWr2KaFp1OQBJDq9HC1CSqrhO/cRLz4FH6WwHyh67H++xPov7Sx6jbAjOXR1UhCDxcx6FT98k5KqbexXztCKZZRDRtqt7TaIHPg3fezeXv/ynagcB1XTSZ8t4br2XD6AjbL9u2VOA+Jm63OfzKPnr3HSeOY772vecZWruOnp4+VFXL6LxxiCoFaRpn6qeooKSgZBHVlExxVSgKUgG/00ZqGqZlnHvW6IYJqSSJVZr1FizV9lSlgpQpvT1lvKhJHEfomolUIAw6ELcxtQyh//rdDzGydgRVN9FMG922MypfqhD4AarIaMF+q4VmGygILDXEj3SkSCCNiLwAy7SIwpg0SSERaKpBqIyTApoySBTHSHVp/4cRCIGQGopiksYhgV8ln+tHNUykZiFVHU2XKKqJblnnnAjPa2GZJtXFGpDVTVZ1FyElYeizfetGOp0s19E8McXirduYnh6n0DuAbruAQEsjGgs6Lzz7IuuHB5mbHkMVAjWtQgjNao3Z2RNce/1N1Bqz3Hb7LXz0hz/Mxm1lcnhU2ncAACAASURBVGqB2Ykj9PfmGDvTpGRETLQdrrv2GvLKIh+66UOMjx9CM0b51X/z31hYnGF0204UKZBpjK1rbBRr+crv3sNnPvsbgEXOdhgsGsh8jt9e+D12OtvpkWXuu/dudu3ciVRNbKeIgsbY2GlmZsfpHhgCIZC6RoKCaecIg5BHH3mMHTt2UigVaXT8bL9rKgoKCxNjRH6IbjhMTU0ilBgpbcIwpFAoYNsO4pkj0OVy8speGvU6gRdkJaWkiiZVnnn6CYbXDmNqRpaLL2yQAVdefRWen6BKA9tySKIQ03GxHZu52UlK5T7Gx8YYP3Ma2zTQLYtGPeKVVw4yvL5CLl/Cb3dw8wWkkChIPK+NKhV03SQIUx75zpMceu0Qm7ZsYnxigkq5H6kphF7MiePHGRwogWbgh+G53HxV6hAKJk6OYRkWiqqhipROq45tFnnzyBlKXUVkklBfbGHmXNK4gxQqhu2gCI0v/+1X2L59B2PHj7JjdAONus+zz75EHLV44P77ufKKK+jr7+W+b93Njm1bGR4eRqqS/oEi1bmAlJBUtFAUlQfu/zYbNmxgy+gG0sBDtWzCqEMcQ6FYIk4iarU6hqEwceYU3eVevvvs81xx1U66e4qkKKhKDKnG0aMneOjhB1m/fiOqmmKbGpZl0+50ePSR77LnqqvJFXXW9PfjFHqwdQUvSkjQsKQGug4pNOoLGfNClbQ7LUzdYmZ6gTMnTrBu3QiFUoFqvYomJW6+i8biHDnb4bsvvMrxQ0exbIO7734Iy8mxcdN6yoUyX73zDnZs30GaKCzMnSZBY9/BfVy+azdRJHFzORbmFnnyyee58abbUVWFSsllw/p1dIKYJAnorpSZnJwEITnkH6UnqfAjlQ8jREK9PsfGdWt5+rFvszD2MLMHnuLIbMwHf/RTPPjkQeZm5mjOTnLDDR9Epk16yyWG1gzRNXQlxb5uNm95D7W6z6c+9euIUj+/8SufYnZqgacOTJHTFd5/+3UcevUFwvkaRqmPfFcFhIqapOdyDZfbQVKIc2KKmfmUIhQBafaeUJbrqSyBGisowJn9fb6tutyuylSqM6X+s8fOOrSrOaHvxBZbPs/5/S8898KUOuW8n+W26MXWspqtfzG0+GK5ntnM4rxzVtrIq51zMfbgyvPfCVK62rGzTuvZ7+PdOM/Lx7pYu2D9kDmrS06rwlvsgP9FkNe3nNeV7X+28/qDbO8OeX37tvJ+u9SyV9swF9ugZ/ud67tEG1Z++H0XbKR3I9e92sPi7VDQC5zRd7DHLkYxeTcbVChZTdZXn3yGkS88gH3fkyQ3XYly3eVE5TxBGFEqlknTlGazwY4dOxgaHETTJBOTY5QKBcYnzlCs9FCrVsnnXZqNJmGUsGbNWtI0ZWCgD03PcrKEEBQLBZIkZnxsnNmZSeqNBus2biWfd6lWF+nqLtNqNrn88t0kScCZMye5bMcO7rzzHxkZGeaOL3+Jq67ciR/4nDwxQRL4RFFIoVxCkSqKEJiWidBUhFAZP32GvFtgfm6eubkFpiYmGRwaQKpZ3VHf95lfrGZ5jpaJYZikSUKaKkih8sijj3Li5HG2bBlFqNnDqLZY5brrbyCOYx7+9sNcccUVaKqWPThT8PwO7VaTciVPrd7AMLKanbZlo0uNgy8fxM3nMUyTxfkqlmUzOzuHEALLtjB0A9/36HQ8mo0mjpNfoqIG9PR0ky84WE4O3/dxbAc355AmCs1Wm7u+/o+USgVyOQdDN3DdAqOj62m1mgiZlUfRNQvP85Gq4MSJU/T19bG4WOfhh7/NbR+4me6uLoIoQdM03HyOOI7IuXnmpif59qPf5prrrkVKkxQVQ1czSnYkePa7z1Jw89z9zbspV8ooQpBrB4hHnsNvd2j+4ifQ/uDXCK7cQpTPEQYRvh9QLJRQlITF6iyvvfwqi4s18gUXRdGYnDpDqdhLxCLF1Ob44ce48oYbyPdsJpfLroGqquzdu5dPfOxj2GaOOIQ0lvR093Hq2FEGXj6FgkKt7DA7N8fIuhGSNEFIiRAqrVYbKXRQ5JLy79k9pJCmypLhk9LptLFtGy8IaS1Txk7izNCJopg///M/ZefOXWiqShQGmGZWXkmqCpqW1ZDN8hdjLNMgxqPltdk4uh3LUlA1DZFq+O0YqSmgSMTSfS2kCiLM7nMsFEWQJgEkKmmqoZs6aSoRqoaQKZqZ0PYXSZUFIEWTa5YQ1yz3NU3TzIlPgSRGSrj//vvo7VmDIjPVbEWBKApQ0hTbMomiGKlmdNjpqWl6+/tIl5gvhq5BmjA5OUnfwCBuLs/xE8fpqXm0tqyDYp6iVSZJNJRU443XDjM42M/+/S+SJBF33nEnrlskAQ7se4ViPo+hqRT71lIolWi0W/QNrEHqvRiqy9TkQRaqh1FlG73QRdnVef+Ne8i5gihp0Arm6e7r4Zr37OZ7zz3Nbbfdglsqoqs6cZDQ6DT59//+dxgZGeJn/7ef4ed+6VPoIuLvT3+V51svcFW8jZ6+fnbv3oOmZjRp0hQpJF3dFYaGBhGKRCHF0FQ0qZDGEUJIhgYGePHFF+jp7SPvuigpdFptTp88SX9fH46b55vf/CZXXbmHTrtNpauLhcUFXtj7AkJIjuwoMn39GjRDMDkxhmMZOG7+nHFdqVRwXZOp2SmSBHTdoNPyMA0LJRF84+vfZPOmLdSaDQzLZmLiDD093QihYVkG3d1dSFUQxSGWZdPb242UEsvK43VqWR6nquEFAZph0Wi0cawsTWOwv5+hwX5M28a2bb721a/xK7OfZdPkViY3nKDRWESRKpqmoygSoWS1RjtelZOnT9A30IfQBEGQYlkGUZRS6SpiWDqqovC3f/f37L7qSog9dMMiSRNIU0Y3bcSyDExDJU0Tqo0Gqq7R39fNjTfehJRZjeI9ey5H03Wmp2coFEpIVfLKwcMEfsDAwCBSWGwcHQWRBbJVVeX0xDTd3T1ZPWYgjQRhkGbsHidP4AtOnDjKjh2bqdUWSZOYarWKY+cyJ0akbBrdiKIIikt1r1Vd53vf28s11+zBMJYo/ZpO7LdI0hTLdpieGCNJEwxNw/d97JyDqecJ/AhVNdBUk28/eC+qJukf7Mdx3Kz+bJKgSoXTZyZ46aVX+Omf/klII9588zAf+tDtSDXl+PGTbNy4nrm5GWzbwC30YBh5hteuoVVvoepQq82h6wpPf/dZ3n/rzdRqCwz09yEUlX9+5DsMDQ2RxBnKHqcKnumTfidgTbyGdes3kHPzoKgMOi1efvYBit0jzDUdrn7PTdzygQ/ykz/xcXp7ynzhC3+NF4aUuwdZP3oZjz/yGPZ4N+pMDzuuuopnXniKL339fm66/jo2rBum0jdEqWAzN9dganKOp597jIXFOh+47RZSBAmCJIlXzSk9awut9nv58eXO62r21aVACl3Xzyu3AxdHYS+VR/v2aOD3b6e/ndP8bo+tutYfQEGXd+OLvNN1n/f9vgNH9N0EHN7JmlaCVf+indc4Dn4fLoyM/I86mRdzZpaPe7EHwGpjvN16LuW8roxGXGrNK5HMS8194XW6NEK62k9y35OkZIJNq52zMmf2Um15UexLRZyW9zkvh+MSn3G1PIGLjX+xdnb9secj3zyJ/St/RM5x8G99D3URoy4Jy2iaga6qnDhxnE67zeOPPca2bVuX6gkKVFXQ21vBC1IMI4seL8wvcuLEGbp7evB9DydnE8Uh8ZLAUhQGLCzMMzw4QHdvNzNz87z8yus8/p1H6Ooq0z/QR6lUzMSMOnX27N6FEALXyTMw1E9/Xx9h1CBfyGGoZSoVl1K5REKWv5vPlxBLdE4hNXKmmeX1CUHedZmbnaVcyYraNxstSqUKQtcoFMrMzM5jWibTU3MYholhGmwaXc/IujXkcg7tjodt25RKBVAUpCq5/rprGRsbw7FtpKYjVYkmBYaUeFFAFEXkHBdd1ZFCkipQrnRlSJjUsrIiYZZ7FAZhVmszzUSXHMviwME3GB5eh5CS02dOMTA4QBonVOt1hJAYhomSCuIIHDtHuVJk/fphpKpnuY+6BUqW61uv12g0WliWi+d1ME2DSqXEF/7yi2zftpPNWzbQatZBEbiFInm3iB+0kapCHEMYttm8ZTOOWyRF5R++dAf9PRVs26a60Gb79h1IErZv30axWCD/+knkq0cRn/4xfubYXm7+xZ8lV8jQRClVDMPEdfNAShJ2iMMOmzeOMjgwiGq6LFRnGRxYTxx4PPPE03j1Z3DNbsrrrydKsmBIo9HANE22bNlCEkYkkcJf/9XfcuTQKe795t3ccO17UN44QlsV9G4dZWTDekzHQlVVUjL0MU0Unn9+L73dA2SsXoUoihCKoNVsIUV6LtihSLG0PwRSyiXnb4nyT8z27TtQVcFd/3gn17znalJS/CATWJJS0mw2sCwHXTMAh1QkSNUgClS8TkKtWkeTsG/fM/QNriFOkizPVSqkSoKpFUmVlCQKiZM2odfA78BDDz3K2nVDaPpZxEAjjVVU1SZKxwAFyQBCUbLPkZK9JyRxFKOpMbV6nY0bt2E7OXRDBxKEXOqfxAihLJWfkrS94Bwl3zANZmZnMFVJx/Po6e2h3mhiW3Z2r0/MYN5wNVNxSmPhGF09FRSZ4romtq2ja4LBgQGa9Ta33HwblZ4+1q1bz8L8PFtGdxAaLi3Pp3/NGqJU0ArnWZidQomqOJbOQM96RHELRmeeYs7CLg4yOzfP1i3v4Wd/5mf59Kd/maHBCpXuMsYf/z32C6/R2bONCRYoDOT56Y98hB/9+CeoRSGWkfIfzvweG6NhNncPkcoMXTl16jRuvkBW4DcT6Dpx/Di6qhH6PhChSgVVKiBU5mZm2b59O6quM356jDAIKBVLGKrOK2++wUB/Pz09FV575RW2b99BlERYpkVPbx+Tk9Ps3buX3r5ecnkbqYAqJYaR1ddtex0KhTxR5FMslvGDKKOpRz7NRg0pFTZvzkrqtDsJQqT09nTT6rRQFFBExgqYn58j5+ZJ0wgpBIfePIHruuh6Sq1WQzNMoihF1QRSUUkjeP21VygWXLzQx3FcbNtix/ZRdr1yLaIhmbnqBL7nU6x0UV2sEwYxtpPlhztunr7+taDoeG2P/S+/ydDafjRdJ4k6zM5nQmZrh4cplMuoSkqr49FuNrFMnUarjq4K5uZmiJKYkQ3r6eruolAoEIQh4xNnEDKl2W5hWQ5RmOK6NtXFWdy8zrr1I0hNR8iUwI/xwogkhhRBsVQiTSGOs3JovtfioQcfYNPmERSRUq01SUKP3t4ycRRSLpazoOPcNPmCy5q1wyRJwsLCPMV8nmqthu3k2Lx1A0JklPwwCFF1Fa9Rw7BdFKHitevouopQRFZzWlFotprEaYCqSQxTo7tYZvee3fhRSLvTwdANFhcWaLTaGIbJiWMnuHz3Lqq1eTZs2Jgh5VpCV1cvlqXT3V0miQNQl3KJwxqua2KYRXTNpNXocNP73ke77VEu5zFMi5deOkDgh+TzBVzH5aV9LxEnKc18m8piiZ+54WdAEYyNjfN7v/u/c/OowtSpU5gbbuKVV6bZuWsPY2PHiBOPnv4ePvbxH2Lrtiv5+89/g4VvRvwc/5ri3ACcMnD29zA4vg3Fl4wvjjFdO8Z//++f5w8+/1/54O0/xpVXX8vVN1zBX3z+jzny+svccuutqLqV1ZCFcwholtITn2cPrqymcfb4eTbTCkfnUky5lbbpyr5SyvPGWW5vnbXxwjA8t9aVY14IwFzcZr1Y+37yNr0/MQifl+jXnp/z+nZpc0JcWM7m7dpyZPRic6yG2C5/f/nfKz/rO7lGb3dNVxvvbFvOqrzYHMvL8CmK8i/ceV1CXv9nIaIr28VuguXtnSeQv9Xeznm92JgXv3m+n+vx7s+RH7sZPnLjRR3elQ+2S7VL9bnUZz2XS/Eu0NPvp52dT5uYI/j4b5FsX4e4ZhepquLYJlLViKKEIIiJAg/TNGi3W3zgA7dy+tQpevv6OXLkBP29fXhek+nJeQxdR9U18pUuvHaDNI3p7+9HSpVarY7XblGslEiSkFLB5czJE5TKZTRNZ3iwj+uuu4Genm5sxyAMfTqdFpZTYGpmBt0waHkdihWTSmUdVs5GUSHnVPCjDspZYzyN8TwPKaBerWLqJlMz0xSKRXTTJEoiBtcMIjXJnXfewe7du/E8D0M3+Oodd/Hy/lfYsnkjlUqZKArxfR/LMnBdh06riWE7NJsthEhIhSQlRQCdTptmo06+lKfdbnPHHV9l954rsV0X38vGkFLh9MkzNFttNDOj/zWqNQxLEgQ+d9x5Bzu2b0WRgoWFhewfnBB09VXQDY12p0V/fz+dToc0SoiSlHyhgO910FSVhx58mI0bN2FaBmEYcvc99zI42Idl2giRCYUYRqYw/Ddf/Buuvuq9LMzP4flt3v/+D2AYNoYBfT09ICSmY/MPf/cVdu+5jI7XwjQdDNOgVO4mDAIir8nuHaO4+RKQ4ObyzMyMIzTIF3OIp/YhLYPXfvPDOLe9l507L2dk3VryBYdGvY1pmkv1ZRM6rQYT46cpF10s3WBhbhFh5NH0CJ0Khh7TFS9Qj+tsvvJHEXqFIAjQdR3btlFVlWazyY989GN88hd+nt/6zL+hUnH5my/+NXt2b2ObJ2i1PY7MzLJh83pQRBYxFhLSDInc9+J+ZmbnEAJK5WK215OEN988xD3f/AbXXnstiEzlNE1SVFXSaDSwLDsTZBIKQqRYloWhm1yx5/Kl/SzRdD2jrpGiaiphkPDdZ54n8DzyxQovPv8iTzzyMOvWrcMyVAxTpa+/G9dxaTUamIZGFHaIAg+BhMRHFRmVWTcspmcmiaIOqkgQok29voCp2WiqhCTATycy2jMDSJkpnM7MTGU56EMDqFLB91tYtolhFECNIJEIqdBs1tF1k4QMpUrTFFUKXt7/Eo1GG1WVGKaB67qAimVZNBsNfK+N5ZikpKhnpgmu2EZ+0zr8OMXIl+j4Pram8MIL++np7kHXNEZHNzA5OUZrcRbD1in19nPPA08wvGYjp06cpK+nh9CLefXg86zpHkRXU1BUSn1bwKuxUFuk2L2G1187ydbtu3n2ySMcOLCPW25+H6ZuUK50oTx7gDDwCa7ayO9Mfp7xyhl+auSHsKROq+Pzp4//XxwqnGBDZxOaFEuot0qhWCRJodmo4XltbMck57q0OxnVVzd1Wu0mQRhkCtKKspQbr+PkXf7fP/1Trr7mGp565mmuvu560jTC0iWlYgnLsjlx8jStVotSqcjAYD9btmzie3ufR9V0usrdfOPrdzM41I/j2OiaBlLQbrUxjByNZgfbySGkRDeMDKVXVYIo5Oknn2DT+mGUNME0LNpeE9IERWFJ8E6j3alhmBbTkwsMrulGUw0Mw0FRBCiCxF8k9APmF+ocPnqEzdu34BSKgKS+OEPQnmb7mZsQQvLG6MFMQCmNOXL4OKViBSkhCNpMnJnl3nsfZNvmUZKgycjweqS+lG9tWNhWDsc00XSdGEmzViPnlpCpwuz0NIoq0RQF28lh5/IoUqVaq9FuBWiaQalcxjANpG4SxwLLNJBqArGGpsdoukmaKkzPnebk0ZP09PSRpGT1c0fX0W61URSVr3z5q+zasZWtW7YSRgGGZeC6Zbp6igRRQM4tMjfXJE1iTMuk2WphmTnq9Sb33XcvvT1dVCoVFCFRVajXm2iqgWPniOMYTUqCUCI0kzQK0A0zQ6f9DkoaolkW7XabKEppNHw0w6TRbqMbOiKJ8FoNTp+ZYc3wMMVigW2b12PYFh2vSW9PH6alL4l/mSRJjCCl02rS8WLSKAA8aq02Z05Nc/jNw2xYv4E4icnlcyRxhJAapmUy0N/Fvfc+xJ7duxgeHqKnr4ej7eNcVb6cy/KjoMQMrxtizwaN1/Z/m9MTCl+6/wD/5Y//H/r6SuSslP37X2PHZVey98kXePUPx/j1wc8ilZhnJ+8hHTrDseqLHJh9lHIvuLUhrurcwvrqHj78I7fTchcol006fpskspk9fYxGdZrq4hSX7979/7H33sGWXNd572/vzt0nn5vj5IgZDDAIRAYISgKTnihaMkXSdokWFWzpSWKpypZKJZOSbFbJ5rOkJ/m5JJMmCAYxgqSYSZAASCSCyMDkgJm5YW48+fTpuN8ffe/gzsUdYEDKdsnlhTp153T33r27T/fGWvv71rdQhn1RsLgWNFi1tWlV6/NVYaWWqHgpRWwtuLIaXK71mTYqgbM2eF1tG8fxRZol6/8thLgQ4Pw4wdOr+aGvNXiNH8vGYrzu1YPXiwO+Hw95fbVqIq/kP1/Oca+1nx9n/6uNf+1Cyf8JXv8B7ZVejlXbCFJ/1cAt6CAL/Wj9m1/xnGttrez4RknflxMwrjvTazj2pbG9ElXkHyp43ehaVyfMVRrKRi1fCx341UwIAe0u6f/12yyWXZzX7ScVInPUSFcKoGciJIYuaDTqFIpFXM8ll/OI45Rmo82JY8eY3DTGd77xPa7YvxfTc2l3fcaGBymWSpw+dZq5uQWmp2fZu3sniUhZXJzHMU0qpTKLtWWEAF1Ao9mh3W5SLObQDUm71SZfqFIqF0iVolgsghZw/3efZNOWzUg9AQziNETXDebn5qiUSizXaji2iWXoJFFCt+eTL+RJ05Q0zUqdWI6F5zpUKhUc1yEJIw6/cJS3v+3tHD16iHwhRy6XQ8qM4gmQJDFCaKRKYVoGUmqcn53F1A1ynkehUECRYFs2+6+8ijSFXhjiug6mkQUMea/I4aNHKFXLuLZD4PewHZ1O1+fGG264gHIZRqbgalsWlmNeqOkZBCFJkvCJez7B7a+/g1SlBL0emhSMjo6BEJw4cYLBwSG2bN5MFIeARAiFaVgrAXmP6667nk98/HOMjg4xMjZEHMdomgEqE3+q1RpIw2B0aJxUBRimpFZrYdsuQkrqtWXOnT7G5PgQzU5Ivb6E5+bxPBMn78B3n0DmHMRf/d8MbBmnUBmkUCggBHS7TUrFKgsLCziOg2makIT0D1TIeU6GbKWQGjmU8rFEGejy1bt/n8373o0oFSENCYPMCfF9H03TyOVy3HbzLSRpzK//+q+wtHSe9/3u+2g1lpic63D2xSkOTU2zafskuVyeJE1JkhRNgpCCrVu389BDDzM4UGV0ZHglsE4YHhzh6qv2o+kaURyDkGhSkqQxSilM0yJLU8/Ufy9QJVEkK/ngSaqIo5AwDBBSoOsm4xOTlMsZZXJ0ZIiDV+2iVHIQGplImJFDqGTlmQBdF+i6IElaNJaXqC30SGIN3TZRKmD37m2Ymk6uYJPP5ZFSEUZL1BtnMZ0ko0JGWQ1Wy9QoFYtMTIwjBBkVVsuuSUqHbq+JoTsoEpTK8niQBikZfXpxYZ5tWzYzMDDKN775Dfbv28v09DSFYpZiYJk6mlB0Ax/TNNHPzqFedwVdz+H9f/pX3HjjG7DMHLZmEgQB73rnu3jHO36B0yeP0z9QwdFhqbFML5UcuOZmPviBD7K4cJ5rDh4giVLedOfb+eV3v5d64wy6l3Li9DHOHHmM6vgoc7UGBTdHruBx9PA0d7z+GoaHKszP1Th96jSDJ2dp1uvot+7jL576KNVKmfGzZYYHxqj0DfCR+KNMH5rj5r23EwX+BXVuTcveeZUm5PIuUgqWlpaZm69RqVZRKMIoQDd0VCopl8ooldLxfSzb5sYbb0TTdbZs3kKUKgxNoglQScrM7Hn6B4bJF/JYlsnS0jzv/osXedO0x9zP7cLQTLZt3UH/QJn5hQW8fI6e38NxXCQ6puVy/vwshpEjSTPhOcfNYVouO7ZMIFT2HH7ik5/i+huuxTRM1Ep5kCAQWHbGiHLsPLNzL+JaJWzHYXFpGc9zIWqQyxVw3SJbd2wjUSlCN/nB93/Aji0TtJanuPL8T6OAE3uOsLRUA1KKhTJeLo+mCfxei2KxSKVSoVxyMbWATjsEQ6EbNlLqxGFMbWmBQqFAECtcy6LeaGNqBrZl4eY8NBRJkoJmkJV9knz8Y5/i6NHj7Nu/LxMh001OnXgRy9TpdJbJ28OYlmC51sa2C7g5g8mxSdI4RSDZf8UVaGaasTBWlL2/f/+DXH319eTzeXpBhJQetiOxbQulJJp0sW2TNI3JFfIEYYLfDThx4gh79+ym5/s0W20KBQ9DM9A1gyiMiZIYFSV8+74H+c537+fgVfuxXYdu16exvEgS95B6Ds8rYmge3/j6/Rw5epj+wQGGh/oJuy3KhRz9Q5sJ4wjT1Ih7XRSSfN4jCGNs22Jm9izF4gCahDROMA2dj9/zeW64/kaEprBzZcqlHJMTY5yfm6ZYyhHGXUg1lJC0W00c28DNlQh6HSrVEkKTPNB4hGWrxhvkTYyMDuP3utTPPEwvqPHJzz7GHW/85ygBR154kiTscOX+G+h932Xsof2UjDKPh9+hpp3hij1FNNGlv+LhGBGDowaH60d5ofk8mibY3DpA37Obef6Jp2nm5nj2+ZOcP3uC5599gjju0er0uOLaGy4gmKvz9apy76olSXLBt9qopmccx2i6duH7ajC86pdpK6KHq+jtegrw2uB1rWjR2mPWH6+UugghXvu5lM+99vvllJH8nxa8/gS04f/Rwev6xYjLbbd+/0Yxyau1P3LkCP39/Re+/zjB609OyP6fZBut3qza+m0XaGqvsn2j/M7X8lC/1hcAwNxzB+ael1NvV8e3kWWBRXpR/sDaNq+GYq7f9lps/WSy0eRxOYHr2vt90cSFuPDRhEQiMpQwVRe2r22zOjFdKkfiUr/rZV1r0iOKU5qNLvq3HqUb+Hi3XIPCIooUcRSh6zZSGqRpzPFjhzl7ZoYHH3yE6Zl5FpebhEmmsrp7z3Z27tmFZZfYuW8v8wsLNBfm6c+ZoDv0ehHj46MYuuD6G66nG6W0aj6D/SMYrks3ian29VMulyhUahWVMgAAIABJREFUqlTKNqVynlYQ0+spTN2m222RJimdVpNOu4auKkyOlWjMn6O97NNsLmFbDmkKZ89NUa/VqA5UMUwT03IwXJvhkWFSlTIzO4OmZRNZq9Ziy6btpIlPFProls6e/dtResB1N1yP7wcoBMePnwChCKMemmFjWDaHDh9l+twscZTQVx7k//vrvyVGICyTKAxJkghdF5w8dQySEJKEWq2OQqfR6vL4D5/ikx/9NH43JF8pMn9+gXyuSBgqekGCrmlIKeh2myzV5vDbASpOUUmIpesU3CKbt20h6vUgCinlcgRRSKlcxTJddmzbShL3cFybUrUfJ2fSbC7x7LMvIIROvljBtDzuvPMGxif7SNOUdivAD5p0/Q5Im3KlHxMYHCmxMLdI1BP09fehC0F9cYk0TthzxUHqbYVrC0qlCr3IR2g66ts/QnkO6V//AaHXh3L6UN0a93/zc7hGQtDuksiI4bEq3c4ikhZhc44nnnycVs9G0ws0lp+k6ERMHXmRE4e+xpc+9SEO3niQ6pCDbfYTxwZewUBoCsfNkZJSb83Tv2kMp1Dh+edP8dd/fjedpToqNUlmlihFKQPDA+S8HL1uG5KANOqQpDGJUti2zrt/6W3s3r2bjh/Qamd5ab2gSbri5Bi6hiYBaSCkjuvlSLJ0PAzdwNYtwiAkBZQWE8ddGktT+PXTEC6Rc/TMiSJFFxFKGtiug9QNmu2QOFaYpodlOcS9Or0oQGo6nW5EmlokiY3UK3jlQcyCwX+7+8MkURvHNGk1OgjTIRElIgpEykOag+RK2xB4CGx0QxBFAXGqEacamjRQaUQvqKMbFlLPEUU+ruGiaQkCQRQmSC1DbGbOTmEYFgODA0hD4Ad13vqzb6TdbjM+NsHi/DwKeODBh1ludnEtC11kRQOiKEHTbU6feAEtnKfk+ASiy/D4Ju79+y8jdcXAUJ7l5XP0pGB8ZJKxgSFePHOSen2GX/nN38IgREp48okHqTcPMTzSR7tlUC7t5qqDt+IUBkiCIr/3vn+LZbuMb8kzNLqFQnkbQ6PbePRHj2MaFpruYBcG2LJplMBvcfj5OcI0gajDdDpHrulgmVColNFNSbu+gAojhB6gmTq+HyEw8Ds+e3duQUmJoSkcQ8O2S/zgwQfphQmWbWMZCUkU4ne6xGFEkoS4hkHPD2l0IkJl0A0SckWXjt8hThMGhkZIU4WhG5gahHGbXNGiHXSxbBsdC+IIoSRxGpKqgIH+Ie7/1pch9XFcg06njqEnGLZJIg1ypSq/+E//CVEo+Na3vkur3SVOwXFSPnnPZ9CFJI5rjA9vQzcEzcYS/dU8fncZwxshFjZCQhKG6Cmkfos7br6eOOlSGZpkVashiiOGBob51je/h2XaLC4sriDRNrqVo1rtQ7dclNtPua+IlhgE7TqaiEnTDsVqhe8/9Ag5O6vH3N9XxLQtHnzoUQI/BiNHKg2mp84xMzWDZ3ts2zbKu37hzbh6Vu/Y0FOGBip84+vfRMg8swsnWVpu0t9fpterIZVBuxsQRwlSQKACwnaIhsbTTz3B1Qf38eafezOaBb0owLZswnCZdrNDEJjML7YIomUMy8Tx8gS9CMs0KBZzvP71b6BQLmI5Hq5dpNdWtNs9lBBggOeUqHW63HzzLegIOr0uR144hVCKiYkJVGrimgJNRhw+9DwHD+7gPe/6JUYHynTaPrrdRyB00rjLi8cP06o3mGt0UZqg2w3otWtMnTlNf2WENOoQ9DqEcUyUaNx6+42cmjpMGGnUFmqQBNSWFxkdHUNKk1bd5yP//ZMQG/RX80ihs3PzAGMjVRbm59BlhlImacL2HZuJpE3YbvLUQw/zkc/8kP/3nm/zlre/Bdcx+KP3/2d2hTeT+8srcB6r0ik+jdjyCFftg13jCr+1zPzMLJ4lGR3uA2GydSzHznGdU7VH+esn/4L6+DT7tFu5/nvv4sretfzy736AHVffzHLd597P/B302qRxiFgJOE0t84vW+pGalqVrvISAvRTErq/FmqYpcRxf5F+laUoURSt0cgUr6vJrkVwg0wLQMqFHECt/X7JVP201uF5FXdciw6uB9sWB7EufJInJxADTbFHxwj5edq61fV+urW239trWX8NaH1mRgEgRMkubebVgUqlMaGvt51JB/KUoy5eTdrieun25tn5sas3lbBRvbRR/pGmKaxcRWCghSX5MdPofDfK6XrDpUgjgRnYp1HR96ZZ/CPtfgQyv3SbEpQO2l+gcr/wCbdR/+id/g3rgCcRtBy87IHy1FTM2GMnqBJahXSuTqnhpbBnyunG+xfp+Xqs5hoctdX73t36L/N1fZfSK3YixYeIowjIMDj9/iEq1TOD7LM7PY2g6YxNDWJbB2Og4URAxOzNHp5utohuGgeM4DAxUAagODdILY5JEEMYxH7vn49x+x+s5f36OYq7MwsJZytUKS8s9SCMsyyaKU6JYEYYdpK6Rz+dQaZKpW1oOS4vnMQ2JaxkYlk25VKDZaGCa+krulobUNArFIoWcR9RLmDv/IqYJmtCJE0HPD+nv66deXyaMfHJeEaVAagmGbhLEiqGhQWzLYP78FJ6XQ0jBsWPHGBoeIk0VSRySopicGKeQd3n6yeeZOneON77xp9C1hF6njuXmaDRq6LpibHQwE8fRNeIoxXNz6FrEzp07uOrqg3z169+mUKgQxRFKSD78kY+wd+8VOI6FlALXdbAti2azy4unz+A4HrbtMTMzx1UH96PrEkXK7Ow0aRISBj1cz81UjYFWs47teNRrDXJunjTs0m63+dzn72Vi0xbitMBXvnYve6/YiYZJGoGX80hR9HodVBqjWy6D/UNMnZvK8jRNi1q9xsjoELV6jUKxSNRrki+UkJpG8oOn0GpNzv7xv8AolzFsh/nFZSwZEssmhmWwMN9jdLDC8tIifQPDHDpygsGBSfygRTnvoIVN/va//DGnnnicrSNFqgVJpzVH38AEfcPbSVLQiTl99hymaeG6HkpJdM2hu9wm9tskUYfX33oNlcoY3/zmfdzlCzxNZ9MbbgMZZ+joSu6mLjQkAt9vo4mEHz15BF0ISoU8URQgNB3PdS+g8KlKVlQrJSiQApTQUUjCKECoEE1E1JZm8VwPx3ExbBvNHkIJC5REk3pWD1YBQmS5iwUPqQuCKEIzdCBZUQaWJEmMInuWwiDKqLqWzcGD1xApieflSRIFQiMI/OzdIPs/rxAGIu3D1AdJkmQFQUxJkwipaQihY5oeKoUkzRBYoRKUyJws08yQZNMwV1A0HS6sQGsr3yVJnGCZDkImjI0PYVkaObeYBS5nZmnv30TSZ/OeX/41VBJSry/j5oukUpDzPGzLxtBtbCtHpb+PntJoBxonTy7yzl/6BUxDUjIC4jih1avR63VZmOtSb1h86EP38DN33knL79JqBrzjnW/Dsh38bsyHPvSX3HH77Sx2JQMjowwcepEXT59halMfj+tPkqqEP77rD5mfn6NcKnD3+U9xcORq+stVTMskTRTff/AhduzaQS8ICdpt8rk83SCkOjhEqgSpkGjEJHEMpsfmyU3EKgAh+W9/cw/XXLMf17Z5/IePks+7uLZLo15HpQkf+fCHueuuuzB0hed5BL2AoBdR+szTFEtFDt1UIUlS4jih2zxPX7WfONHpBRH33H03k5OTFIp5YhVyxZ7dGdvDcwl7PoHv06h3KJVKSCH4znfuY3RslF07d+PY7krppYgDBw6i63qWxy10ps+dpdqXnVfqNmkakqZZvWnbtoiTCMt0SIVEd2yEmWPb87sREg5veZJGbYah0UEKxUKGxFsGS0tLK2JxBkmSEkbpitgeeDmH48dPYes6utQzoa+TJzMkMYjwPI/R0WGETDh16kWSOOapp55iz64raDXb7Ni9l899/gtcedXVJGS1lB3LZs+e3ZybPsfkxCSO45CqJKPtGjpSKOr1OpZlYJkyE1BzXHq9ANM0eeD+h3Eshwfu/x47dm7HNA0sx2N2Zob52SnGRvvxwyaW5SIwSdIecdqm0tdPkibYtkej2eU73/4WfdUq5UoZhaK+1OH8+WlGR8c5fOgQg4MVHn/sSa659iBxEpMvFhAyT701z/BQFccy6XRahHEPx3X5wuc+T7mYQxJgmxlibbsFLMvCcRwM06LcP4hpe7RbjRXGS6aYPtRfYvrcLI8+/BT79m/DtgrYtiROu0xNzZHzBoGI8fEhDMPAtA0QOmGUMDgwSKfT5rneEcpWkQONg1h5h17rHHHzHPXeJr7yrUd4y1tv5tnHjvCB7X+O9myV53v3860jn+fKq6oU8y5RN8QxHLy8weBgBU0D09Dw1RIPPTzFlk0j9PdrRJHk4ad+yJKxQGVnga21vQwcnuSGn74TOWhw//1f59mnf8TunXspV/qQwkQoDeTFQcVGei7r/TWpvQQYrG5fTy9ePfYlYCE7LqutLS74cmtVh2HjEjyXsrWB60ZgyUY1U7N2L41voz4vtW+trSKv4prgssSl1o9jdbxxnFyyzUsbL963ekQcx684xlcb06X2XQ6D9IKvLTbYv+b+bvQsrT+nUopTJ08xsWmMOIlQQmHI/42R11dCUS91zCsFWesfwI1Q2Vdb3fhxkNe0OU/anL+sa3wlWsL6MVwOVeJyrnl1+8vs7Cycnb2s82zU7/pVq43Ot3aFb3XSW13tW111W7vq9UoI+vr+17eN4/hlfcRJSBr77BsZ5gZloTZvzkQ1opAvf+lLFPIFoiBg/vx5uu02pqHTbDW58sB+XMfi77/8RSxd8sQTTyCEyArXJwlS1+nr718Rt9GwLDBMuPqaKzl0+FkKeYPnnnuSyckJzs/Osbi0zAP338fCwjyWbWc1REsllII0TtGkTqwUUiriNMV0XJTUQQqU0Bib2ES+WMpygAQoleK6Dn4QcvTIC4yPb8IPYtIkIgp7GLrOIw8/Rj5XAKX47Oc+S6vVIggCQPHYI4+hSx1dM7Bdl1K5hN/tcuutt+J5OXK5PJ7nYRgG3W6Xqakp9u3fx5lzZ3FyHo16Hdd2EFLHNG1UKpk/v0C366PrRlY7VIBhWziey8c+dje6hG9+7WuMT2wiiSMcy8DvdJidmUEpRbfbxfd9UpXQ199HPldgeXmZhx76AVGc0Asyimpf3wDDw2O0Oh2UikniCNdxOXt2mqCXIKXB4mKNUqnI0NAQv/Ebv0Ex7zI8VOWtb3kzKlW4roNmQKdbIwzb5As2Xs4mVSldv0Mu7yEFhFFGK15cmqevv0qaKiwvRxCGcP8T6HNLyA//EWO7dmHbNioKGKwUcKtjjG27Hqe0ia37rqTrh9hunqWlJbZs3kyvs0x/2eDM8ac5efQIXR9279jOQz+4j4cf+g4jgxX0/ASR0nnqqSeI45iJsd1YZoF6o4amZe+e67ocOXIEz/MwTZMXz5zh9NnTBGEAgKaBpnuACZgYhkPP95G6hpcrYHs5DEuj3ljke/d9MwuoDBu/18nEryyLJE6RAjrt9sqyrEKKLgIfqackhLQ7NYqlIZLUBOERhCapSEgJESJEqYBEZSiiEHJF1Vdmite2neVKGkYmxiUknpfVEo3CTMk2jhVSakgNHMchScHQLXp+CEoQRzGQkiQxjVpzRVHZxzCyEjskijTJaM4InVStUDCFyIJXuerIpSulTjJqniYlUZSQppCmrOTxCnRNZ3p6hqWlRQAMU8d2XNqdDrqmocjG6XkeigjD1BgYGCKOFJou8MOAjh9y330PMTWdiQy1Om3SxOcDv//bLM2foVWbYvbMIU6ePs7k5m20WhFJavGBP/73PPzow/iBTq8TIzAYntiOVCXOnVnm+w/+gH/1W++kUjD5ypc+j1KK/v5+Wq0mtVoTXdeZn1/kD37/35GmMZ1uh/7+jJEwNzdLp+VTqvQzc34KU7dpNdsZKmoYIMRKbjr02k3azQZJnCCFwrUdOm2fX/3V3yAIekRxxPWvux4pJUHYw/VshIDffd/voGmChfkFkjgmDHp89StfZnBoAKVSej1/RagpE6BLUsXc3ByHDh/i137916lWqyRxhExDzs+fzwLXIKDZbKCSmEqlgm2bKGLe8uY34Tl5SHWmz82TJhLT1EiSiDjOnhchYdvOnah0hUabaPR6AbquUalUMAwd27bRtEwdN8sBl2iaIE4ClpYWUSJgeHgM27bJ5XLMz88zOjaC69oEfo+PffTjxJEiCANM00BKyczMNG6uwNlzU6RKse/KfRimgaZxoRxbq9Vi86YJxsdHeNMb78K2bT5+z8fRpI4SgsXlJfxOB01mgXir3WBkZARpaEgt8w0810WXGmEQMjwyjJfL0Wm1s3JeacKmyUka9QZvfcsb6XRabNu6hZ7fpVGvE/R8PNugUioQBCEojTiO0fVskce2XNI4wDIM0jik3VrkwIF9nDp9CqUEcSRYWlymWMwjRcztt9+MFPBzP/8zBFEboUNCBCrBMmykZpOmgkLRxbAESgTcesu1OFZKsdyP5WQpPK5tIKUgjWMsy6Ld6RKnimpfP8mKurhhWtRqNbbv2MxNN13P7Ows3W6HdqeNFDqVSlbebmigim5kC8pIgTA9pJWjGwt6abZwlSSwefM+iraNP/ci37v/Mf75e36T/tEy/osxP33snbRnu/ztM/8ZVWxyy01bSZIWPX8Jy4pQtEmSEE0TOLZBkkSoKObG1+3F1GM0FbJ9skAppzE6MsiCP8fM8AssV6fxHh3g7Wfexwff9FnmnzzLZz76N7gaaIILqOlaNHW977jWX1ubwrVeRGj172rAuL6PtfvX+nVr+1xPM71UELv6fS3leSPffy2CvNExP46/vt40TbtoTGvtlXzdVZT2UmPcKJ5YP/5VVHztPbyUXcrf3ihe2jjg3zj2Wf9brW3/Sosgq32ubu9222uQ65czSi/H/tEgr8krlMq5lF3Oj/uT9PNa0N9V6z34UZLpQ5dVKmejB2LVNkq8z4596ZiNihBfzgrXxf2tvAQrpXJ4622XvVK2fv9G/Posf/TlL8QFlHVl5W/1fEqt1Ch7Dbb+nKuT7Xp15Nnps2hhh7FHX8CarfPg4iLLS0uMT4yyfft2/F6IY2YrcP19fag0pdLfz+lTpynkc4yODmGZGsOj40gp+cIXvsDOnTuJlWBmeoYHvnsfmycmIQFdszENj+1btlJfWKJQtnGdPOdmzjM8NsxwXwHXc9FNA1ZEqgzDpllrEUYRnpuj22lRrlbRTAfMTOAnjBI03cQPgyxZNo4QMsvTCYIAKWLyhWE000HIGEGKJgyWFuvo0qBaKbN7z17CMKJYcmk2W2ye2MrS0hIIkSkGS9ANHU1qpCt0IVPTabW7uI6LY5o89Pjj3HrH69EtE892mJmaplAZBKXRafWoL7UIk5hqpUIYBWiaoBspFBqkimuv3s+Ve3dgOS5x5LNl0wR9pTK252IYBvPzcxQLBQxDp1Ip02p3+MIXPs873/VLIDT0lWCm6/sEicjqr3a6TL34In3lCmfOzXPs2Cl++Njj5L0cE5vHmDo3TeBnqr4aPVxbJ4mygEmaPobMFgAcu0gSSoQJzUad/moFy7IIooRypYhmgKabqFSgkhTxzAnQNdQ9f0irOgJSwzUltdkzHHn2R7zw7I9IOx4j/f3E4RkCWcF1PeJOB1sKguYZjh1+BF0otm69muVWQKPe4sqr97B95ziaVLSMbZhekc1btwMaZ0532LVrN//2D34XzUjodFqkSmBaNvl8iSSRaAb8zJt+ipEnjiMkmHsmSVEoESG1lCBq4To5FIJESZQSlKo5JscGGR0ewDBsNNMljuokaYqUJgidbqeJbTuEQYjrWqiwC0iE5mDoOQzDQ5kaCA0lMpq9TIE4QipFiqQXxhhmdk5d00njrHRPkgqSVBBHIVKa+N0eQmgIMnGrzFG2SFOF1ACZIVgqhXs//yV2796LJiVSZsHl7MwsmmZiWSZBGHLkyDF0oVEsFhASlJAIqZFEYYb4qpQkDhCaiRJpVkZC6cRJiJAaTz39DEODgyDI5ikhM1Sw26PZaGCYmVCOxMZxdJKgh/bcSbpvvAm9XCFJYrqtJgCG5eFHXZrNJpbuMTq8idtuvZP3/Mpv4rpgpG3e9ebXk9JBFx1M1aRnFol7LpVilf/wHz7In37wT7jrrXfy7//kP/GWt/4UrtPHE08/Q6d7HJXqHLz6Zn71vb/F3/7lB/ijP3gfi/fex4kTp4hv3sW329+nWi3zeusNXH/dbYyMFbl77tOMaiN4povrOSQh2LaLZUtM3eXQkWNs2ryFTreFoWeofc9vMz91gqGBfqTlIRKfNNU59NxhHn3o+2zdtR3HyZGkiiiJsBwLBRSKxRVqmsJzPNIkZXrqHFdffSUHftQGpTh6ez+GYaJpBpbrEUQJhXyZ8YkhenGMqZuQRCRBGydfoN3pkPNy5FyH2akp3FwB3QAhFb7vE4ZtTpw4gSBBahGe59Ju+Rw9cpyx8RGSJCVKElqtBpZhc/LoGXpRl2qlSqvVQqUQhhGddo/jx4+S9yxIwA49WtVlWptSHMfg2WeP0l8dxPd7JElWO7vb9akvNzhx/DR7dl+BacakqULXYXxiAk03KRRLlCsV4jRE6gLTkPzwsR8yPDyCEIKg16bVrJNfyfu9/bY7WF6qceNN12FbFiJN0U0LXRd0Ok1cL48QglY7u5+WYdLttHn0kR/SNzCEJiVpGCHNrHxUq9ni/MwsrqfhuiabNk0S+AGaJvFsA5GmFItF7EIey8jT7bQxLGjUu5Da9Do1SoUcSdSjXHIplIpMTEyC0vjoRz9BpZRnz54t1GqLaJpgbHyIKAzxvAJRJEiUBnETKW1On1rma1//Bnt37cN1PcIgRiUJhbxNIAo8/thTVColvJxOFASYuqReq1GuVoiimMDvghAoMtp+FIaYDuimztDwBKYZU6s1cewS7XaXJ596gk2TQxiWxDQLpCKkuzDP8uI8X7z3Xnbu2MmR9Bh2YvDOwTexcOYHzD7zGe67/0V+8Vd+Gy8v2frlOxCDCd2RBY6feJHm0hS7dg7QrLVRKsZxbDQpMK2s1Izf9REIHJVDmg00pTCEjdLaTI5u4jvf/SGm5bF7z26klXCk+xzumIs1U+Gfbf4Ddvs3MzV3kvK+EolIkNpL6rdrUdBV8aX1C/9SykzRfQMg5WLl4ouR3LUKxmvPd3GQurG/din/bH1/G+1bH5iv7Llw/KX81stFXvXrk4uC9kuN/9J2GQHnuu0qfXngebko9U9qL+tjo3u37ppW26z/Hdb68CPDI5keJOkK8mq+ZuT1H1HwGr+fi4oNv7r9Q/x4r9XWBl0b2arasL7l2kv2sdHqxasVFBYi+6zd/NIK12qgKy6x/+Vc+pehtH//AABypVTORijtK93vtRPaReNef9yan1itXliq1hQ6vnRe8EYrTOupERePSSCVQktS8rbF8WeeIkqg+N+/gdwyjjNSYsfObczOztOs19HSCJWkVKplOp0endYCxXKJQjGP6+XoJQmlvgE0Emzb4MBV15ISYOoWtmVRLOYplgoIIxM3+fSnP8m+/bsJU5++wTFOnTxFGIRYlkV1YBTbydHp1DCkTr3ewDAsPv3pz3LwmquJYh/H80iFQZIoTLIJ1dR1zs9O89jDD7Nzyw5STRD3AsJuFykl5fIQqYpRSYSmGRiGoNlYYHSkj3ypRJgK4jDBdk0UCsM0WZg7zRe/+m2uvuYmRBJg2pnislIaSRyi0phQxdimxfPPPU+93qK/0ke5mMfS9IwO1mxRKlTwwy4oxb2fu5exyUmKpTJKKHpByFOPPUXUC3ng/geY3LQFy8lx5vQp+gdHMtGPoINIFKbjkisUSZXCMCT1RhPL9th/4ACpIFNw1SRhGHN+ZoFjR55ioK+K4zhU+gYIopgdOyYpFwZIooirrt5FECQUSkWq1T4QGj1fsbi8SLFUodn1MW0LZFYaKUlilCYJgwDbtjKEW2Y1SNWKOq9AIA+dIvraQ3DDFeh/+l4CwyHq9LBNjTiNcNwK9XbEHQev5c/+039l5+030Hzy68xMn6KvlCOO6izPHka1uzx7vMYbfv7X8aXLlQeuYXznVkTQoecvIZwRBjdfg5QGYRgTp4pTJ1/ggx/8AEmUYps5bNPj2UcfpVz0WJyfx/M8SuVBGo0GI08dRwiINg2ghJ6VixESoQxSoUMaI1RE1+/iuh6go5kOzcYicW8ZVIhl5tB1i26viWeXePqZ55ncNImky9L8DK6XA2mhEKRJhBbHzJ2fIZdzQegIFWUvvWaQrtZuXakJmqQKNEEmFqNQKkFKM8s/1wSIhHPnZpk6u8BAfwmUIk4iEAKRKoQ00AyTkbEBcoVMJVZKC4VGoZRH2M+QpOcgqPD0M0+ya+9ekCCkXElRkCgJUuiIlVSqDO3KygmlQpFEbTrNgO999z727N5KFKYYdlbbVmo6+UKB/v4ylmUhpZ5xnoRCHn4RJoZI33wDkEDsE4s6rtdHmEhUT/CJuz/FgQNXUq2UuObaqzGcEHpLhO0passnaHVm6CsWOV/TaLVsAhETpinveMe7WJhb4t/8zu/x/n/3e5SrZXTHwrZLDI4Mkyv2s+/A1TRaXQ5cdSW220cHwT2PfY8b3/ZzPFM4wtHDh+jdl3DjrTdjuQ73zH2SzfYkego9v4uX80jiHqWyx4P3/4irr7kK25AYXh5NhTRaHZq1GiMjk4RKImRKEIQYhk6343PrbXdgaJJGPaPcerk8YZRgmjZJojh3ZopKuQoqAk2jUq2iS8nOBxZQSnH2Z7YQxwnPPvsMw0OjSJHluZqmSRonpCohiGPQDVSiEGm2sNRsdRid2EyUxgjDQtMtLNsk9luMTGzDdPLYpkUv0Pjudx/gmuuuwdBMEBCFPUQakaQJ+XKFxx95klK5RHWggkBhGiZhEjMxOYlpuihgbnCav3nkv7IysZ3CAAAgAElEQVRl6xiPPPpDDhy4kk6riWcbNJbmadfrFAcGyLkuO3bsoFgtZ6q7Ychjjz7O6PAoQpMIoRNGAadOneTZp44xObEpE6MDLNPiv/zVh6ktt9i9+wps2+Yzn/00IOjvL6BJWFqs4dk6S8tLeF4OXZegTAxDwzA1kIJuEDE+OYllmvQ6MYvLs1T6BvD9THm+XC6TKxQxHQ/DsFhYXGRgYBA/CIjTkERFNJeXKVb6iaKsBrLluuiWkb2LUtLt+ZheDl0zEZZEhBGdbo+rDu4mThT5QplcsUynE2A7BlIqeu2A+tIMpu1ge2UefexRHEtnz74dnJ+fwXZMCsUqSuTodRtUq/30DwyQqBDTdYl6IUnQYGlxgXs//2WCZovR8WEa7Q6EDXRdx7QcdE0jVTGp7qGnEbpp4+SKbBobpttpI6SOkCmWYWLny0jN4ujRYwxUS5yxZyhbVX6u8kaChWfwTx7n53/nP3Lm9AzbHrmVNIyIRzqcnT3M8WNz7N1dwLNsTNPANU2kEKRAolL8XgfLNLJFR1fDD2yefP40lf4Kid+m1oqYWWyxWKuxeaxKo9NgbGQHwotwNtl857nPUihI+s5vJ7rPRdsv0PIhcayD8AGdVeruWt9svS+V+V5qJYVUZb7ZyxC8VRbKiqMGL/PF1pblWbv/5X7ZxeDFRraR37radtXfXe361cKAywr0XIXcnCIHX+5bviYT6uLPGg84qzGuwco9vxDpyMy5Fyt/yQhNF1/D2gaCl45b83mpffZZ9aU3Ql4vLASQ1fkVUqxUjxAr3b303/o2G/UDFzM/dcPIBqUkUmlomvaag9d/NLTh/2M/vl1K7Gkjy6hx2mVTLC7F//+Hsssd93oVvfXjX91/kViUAj2FsN7ib/6fv6R/fJL8Upfc1AKn4i5hFGDoGkLAV7/6de5/4GFMx2R6dpYHf/AoX/3m/QhpsrTY4MSJU5QK5azeoKlRry1w6PmnMXQ4e/Y0qQoYnxih6zezcWjwL3/lPUghqFb6mZ6aZnxigu3bt2GaBqaRqah2/S6WnQW7S0uL/PJ7/gWWZbIwv4ymSabOnUGQIoQiCnvEcYhjO+zddyWf/8KXCXsxjp0jly+iSQNNE9RryxgrATTolCuDNFsdOp0mpi4wdQi6PiqCxlKT/r6t/OIv/jy6EeLlXDqdBj2/hZAJy8vL3PvFL+E6eaSUXHHFXrZv3woixvc7Gd07FbhOgSSNyec8dF1SqVY4efwkf/Hnf0EaK0zd4Jabb2N8bJL3vvfXGBgYwvcDer2IOEqRwkClGkdPnszuH5kARb3ZJlcoYVsmpAkq9DH1TEHY73YIgoBKdRjdcBG6iW6Z9KKA5doyXl5x0y3X0Gz6CJGV75iaOkez2eCHP3qCw4ePEsUJzzz1DHEYE0cRUkgMQ8/QuxUhoq7vs9SokUQREkF69Azq6w8TnjrH3ddvwv/Xb6ObRJimSV+lhG3qpGmM0DX2XLGf5+ca/OF//DPylSEqu1/H/t17OXL0G2jWMg/84AXk6EHe8u7foIek0Zji7Kmn6S2Cro1SGtpCYrwkcqFpGqZpsnfv3gvPfRzHLC8v85W//zYP/+AJvve9+zl56ghGTmPLrh1kqaUaSAdNCHQp6HW7GJrGow8/jkoNNGmT80oYQhGFAShFvlShUBm8oIbaajZBCV44dJR8oUiSJNSXGxSqm0hwCHsJMknIiihpVKv9CDSEkgRBiFwR8UijCJWmSN0kVZJeL6TXC1ArCsVxEiGkIIlSSCVC6bi2x/Zt2/D9NohMvENKsUIL1ECRKTeLlFTFJEmIIkapmCgMabc7RL2QG667Hl3XSZOEnt/LFg2TFJmtnCF0DWEYZOWEgDjESHsYukep2E+51I9te3huDpVmSpxKJSgVIcVL5R+yCwX54ixTr9sFZNfZ6SkwSnR62bFKh1vvuIkXnnuCudlT5J2U2gvfYfrMKbyhPQwceDulgX2cPd9jZHIbXiXP4OgY/QMjtJpdPnnPp3j3P/1ntP02YRgS9XzOz54h8ENmpqZot5YwrQAnlyC0Lu5N1/Gp509TKWzjp8/fxTuitzE7O025L08QJJmSrgaWaZPPF4GEfCFHHEO+kKNQyLNcWyIIAqIoJufmqNdbCM3iU5/6DIZm0u10UamiWMqTpjG+36OQL7K8XMfvZhTcTOQkpdNuEvZ6qFRw9uw08/OLZN5YSpJmOZphqLjqwHUkKBTgdzrUl5fRdR0pNVzXQwqdOIrRdIN6vZ7VjY5CDC2jiUdByAvPHkIhiZMQ09KygE6Du+66Mwu6Ix8/8EmTeOV3VHiexW2338DgYDVz3leczHw+j1JZ3mjmtMNtt92BYVhcddVBLMfDK5RA2nzvwcexnD50tZIjqAl0QxLHCs8tcO01r0NqBqTpyrMomBgb49ZbbkGREoQ+YdSj021z50+/kde/4Y383We+SIqB1G32799HEITUGw3KlQoLSw2CUGGYHkJmZcqyGqx1VMpKjrVEqJjPffaz9FWqBH7AzPQ0cRJimBJNMwiDiCSJqVbLJGlEHCcYpoltO/T1DdBqtZibXabZCDOGj5Hgug7T09PoukGaKqIoIE0TfL/Nrbddh2tbmJrI5og4JOc5mUZEEOO6eUbHNhEFOiePneSWG6/j5puuJQiaDA8O4lgFhIIwbLK0sEC1atNuz6EhiKIujmsTRAmVyiC7du3j+ptvwnJcqn19mIaBYedYrjXpdLrUl5cIw4RcLsfM7BRCJrTay4yMTZAvltEMk14vpNWs4XkOlUpWwkkoECgKesD86UPc/8jTfOmL3+KZe17Ea5fxx86juYqc16bPihkdsDh2ZIZmO0WzElrdGpZZJI4UlrWirq4rNM3GdRzmZhW6ZuA4eRpLiwyWXAZKRRyrwODwBM12g7nZOaKgx7XX38midprjxhfoerOkf1ZA/chCEysImNh4Uf9SPtSqXSrovJQv+D/SR3wtvu2l7HLGp+9L0ff9ZOd5NbsUwPOT2EZ+7/p9/yssow53f6I+/tEgr6mK338xV/61v3TrufavZK/l2I3arUdLV+3VkNe1nP61dN+1fy9l2aTyEj13bbu1/15POd4IeX1Z36vI68/e/rL7spYOsH686/nwa++JUuoCVKzWLJO9bAyXSAh/GQV5Df9+fV7AWuU8seJE5uyAB77zFU4ff47xkTJ9E/uwP/QxUsfG3bkV23OJoohzp8/Qafls376LrVvHUFLj+ReOc8cdd2JZLp/6u0+zadMmdF3S87s88OCjXLF3PyPDW+h1e5ybmuP87DyemyfnFVASNE0gRLbCpusmXj6PZZgsLC5Q7a8yc/YMpAKlYubn5xgcHM5ygaSg1eqQyxWJ44BcLssvSuOE5aVF8rk87VaXvv4Btu/YhePYhFHM/Q88wLbt22m1mpm8vWmi0pSu36PebFMsV/E8l0Ztmbn5WZTSOHL4GLl8jlojwHEkjpsFGlJoK0qrWf3AUqlKvlAgjrM8nWPHjjMyMkKn06ZYLHHmzDk8L4ebtxEqJY5Cdu3ew+bNm9m7Zw+OY9FsNnBzOlLGCBljuzq2LRkZ6QMtJVURhYJNrtTHt77xTUqFIp5nYdgOKkm4+6N3s2/vHhzLoNls0Wo1KRTyVCpVRsdG0bWsXmyqslqiYS8kiFokSUyaGMzMzlAuZ8iYbVts2bKDTVvGMA2TwYEhTFPQ7XRxbYN2u41uGJlTrRSGZWLZNurUNOKx5xBzy6T/8i0Y7//XHPzZuzBkjJCKxeU2Rc9mbn6aYrmUlblwXVzNx4qmMMM2nbDF+Zkn2Tn5U7SWyuzZv5/YnyNoztKeOYRsnEA1zhDp86RGkdR2abVinNwAYRhemEPiKKHdbmPbNoZh8MwzzzBYGuJ3fuffcPPNt3DnG27BKebRbQPraw+DgmTLJkQaI5SkXqtjWwaTm0czkQ+RIGUCK+qSmmGCppMISKKYKE7RNQNdN6mUK/T1V9CkwrMdMDWSNMZv17FtgVIBUnNRakXBPFXI1XqEK8vKpp6JJS0tLJHPeVk5Jb+HZepZ6JIkCJGysDCDYUikTAmjDvl8LgsApIYQWpaniAQhsG2LXtBG142VwEbQ9dsYVo35+Xm+/vdPsmXzOMVSFV2TpGmMJjSk1Gi1GxiGkbFbVujCutTpNBokUQfNzHJXd+3eSi+okaoYIayVeSjLp5dIgjDEMIwsR/bsbMYkeO/bQUg0Tef/J+/Ngyy76jvPz7n7vW9fMl+ulUvtm2rRWkICBEbAYOPGNgYbjHvaHXTHdAzuDnt67Ohxh8fTdNvR0W5veMxg2jabEKtASCDQQgm0l6RaVaq9KjMr95dvf+/uZ/64mUWqVCUJTDumPSfixcu82zn3vXvvO9/f7/v7fh3bJlZ1TD1D7C+g6xD5Xfbu2Y5pKoxPbKATqwwNTaCjMXvuHLozzDfv/y6WnaZYqZDN5gkDn+mL04wOD3PgwAEe+cEjbN26k9Mvn0FTJIVCkXKxj/PnTtPuLGGrG3j26eNUKv387v/xr2h1p7nw4hR37rmRD3zg1wiJ2L/nFrZ/YAutoEk2zibqrppE0zTq9R5jk2Pc9/WvMTw4QCpfRCWm1erw0slTKJpBtVqlWMhTGehPxHcyWXpuF8u0UVSVeqNBJpPBtixqK1Xi0Gd0dJTHHj3IwMAgff0V0ukU83OXMQYrVLeXePjyUUrlFIYlUPQkayZIKI1PP/ssxUIRTdVQFA3TNJFxzKHnDzExOYHve3g9FxSVwA9RFZVSuY9ut4NpqEmwQRHEMqLdbpHKZNB0nUw6QxRGWHaKVjuxe0FALBPQpWkKYRSjqkpSXqEqcEnj0MPPM75nA47jgOrj9loEUcDe/XsSSnoU4/shqUyKOO7Rbnuomkar3ebs2XOUinnu/+a32Lp1M4qAxcUVkJJcLo1tWUShpL9SQtVi9uzdgarFTExuAMAwTNLpLLGM8YOQTreXBJhiiaZCHMU0Gi2OHDnK2PgYnXYdt+dy4NY30e02yKSzOLaJbeuoukgcvEV8JZDXbDZJpZNghOu6GLqJohmcOnWWibFJInz8oIuq6CAjLNsBoRDHAbFUUaWKH7nIKAlmaHrynNV1Dcs08fyApeUmpm1i6Vm++tV72bdvO9lchk67wfLyCsQqQdDD9zsUciUWFmaQcYhlOkTSo1FvIxSVGJXNW7YTST/xao8FmgwQZmIB5zgOqqLgxwIR+eTyBbwgIA5c7HQeoamApNNqkXJsjh09zk0334LtpLjkXeJA5jZ+rjDBxUPf5bvPzNLtDfC/5j+Ou2GF0zMnuHTxIuePLHH328rYeoHhMXDSZY69cJ5NGzcRimUOvzBDpX8Qy7ABjSDqEEufXTsGkNJFNwSVviyDg0WCMOKxHzyFbjgMVEocO3ICVVE5feFF0qbNqWMXKY4anGs+Q/+JG3G2BpBtEseJT/N6Rt/6edX15p2SHz/zmEz1fjQXTuZm1zj2dWjCV2da19orj/dKCvP19rmafXit9lrn9pPggvXtFZ+3fPW5vLrD6y+68nmJ1x/b+gy4EEnW9HoldesWvGLftUzrG2FcvhYOC8OIkydPUqlUWLVc+sdLG47j8PdfueSnqzT70z7GtcAcvD54vZof/vfp+7Uu4qtB4NX0jlftsw68Xt3Wg+U1asjVoH3t2OsV4eQaFeWVg3/1+bzB81rbZv37+v7W99vpdPjAz3yAd979XjLFQTbu3M/Bv/oi2x/8IcdHihQG+pmemufUydPs272LnTt38syhQ3Qby6i6zs03H+D7Bx8lXyiyY8cOgqBHX1+BTNpOslkK1GtN5hZm2L59O2Pjo1imhut1SSBrRCxDNFUjDCStdpdjx44wPDxMFEcYioZppGm1WmwYH6PdaqNpKotLi5iGw4svHCObThNGgid+8CTFfIF7vnAPN+6/Gc0w0A2NhcV5HNOg3qyzbed2VASe3yOTzlJbWcG20wn9yXYIIvjhwcfZvmUrqXwe00ozPjmOk7ao12sMDlQgFnS6Pe77yoPU602mpqc5cfIkt9x6G8vLC6QzFm7PRRMOpmmxsLBIuVQmX8hi2TqRTFRcLcNANw2iIEAoEscxcVI2zUaLXq9HOp2mXmuQzeZoNVtEEaTTWUI/QDVMioUyfX0VIlWls7KI73ls2bSVI8eO03U9simb/v4+oijG9XymL56m1+uQy+bwXI+UnUJKQSFfolFv89JLJ3j59AW2bNuOaVvoppH4fVoCGcfIOEYVEbph0W23mJubp6+/H9NxCAIfU0rE918gPHEO7zd+luB3P4jYOoljOzQ7bQKvgapqlPqGWVmcJpYB6VwWJ1sijEEXbaaOP8Ll02cpbtxCHBcxtA6BfwnXr9JeeAktbtKqL2BaGYx0Cd0aJDdwM2HcQYsaFAe2JkBa15PJo5YAJ8uyiOMYy7I4cfgwP/ueX6LSPwzEOGkTGUfYBw+DpiA39BFLlW7P5+DjP2Dzlo34XoSqmfhhjKoIhKqh6Saqpidqw4rEsh00VcMwLbyejwhbRNJHNXRiVILQx+u55NIZwkgB1U6yo3EiGGaaBigJXTmOQhbn54hCn8AL0FUFJQ6YuXiO6nKVpfl5LENHRHDh4hzPHzpMf98QjpMmm82iKCorK3We+OEzTE5uwdAFoKwCeQPDTESZhEiysZqm40fTFApFdmx/O6mUiRA6nu+iaRrdThdNMzBsOwHNoUcUdFFVAykVDNMiJkoUOTGSwI4QWEYGlMSyIfleDIRIhGs818XUddSnjhH82nsIBvtQFRUQdFemELqOLgTz53+Aoyk0qvO0vR6qlUJ3HDSzTBBrPPToQW689XZcN+Y7Dz5A5AfcdssdzJ5/maFKP/lSjnx/kU7U5dDzx9gyuZsHvvkgf/Qf/wO3v+l2LMvhA+//IP/bb/9bFL3Dtu0TXP7WdxELS8T9ZQK3ztBAiZdPTpHtG+bf/Oa/Yda7xHOdQ+zIbMc0Heor82iGgW0X0U3B1q2badRXcLIFnnj8IBPjo9ipNBGCN995O6axOmGT0Gq3cBybKAoJo4B8PodQwO2EdDsdUo5No9bm5Etn2bVrG4qWBPwsU6U6IHhZ1Ni2dQeths/cbJXHv/8omzdvRjV0er7LYGWAQqEIKESR5NKFCwBs2bqZeqOO57nkiyWkUDEtB4ng8YNPMDE+hhASUOl12ly+PMfQ0DCxTMR4es0ubs9HUTSctIOIVYIAFFVFU2FuboZMrkC700ZTFTqdDr/w1Ed4u/Euzu86QbfTwtQMTM2iUa9TLBSSgJCm8b1HHmPjxBhhr0EmX0qY9JpCKu0gw5C5uQWqy0sMDPbz2KM/II4Fw8ODzMxc5tBzR9m5cxtxGGJoGrqmsbK8RLZQQFHUxIVYSiK/S7GYwzI0FBHRbDUJw4i/+fRnsG2b8bExLDuFYVi0Wl3SOZNWfYV02iYIw9UMKwSBj6EbaKqRiHsZOqZpEAYBum6i6gajowOAi6qbKIqNEDGqEIkOg1SorVSxUyU++eefplAq0j/Qh2aYNNsdLDuF5aSZmjpLJpNidm6Z/oE+Qhmzd+92FAU0M40aJ1oNftBEyhjbymClM1SrPYaGJghjH6/XpVwapOt7GKZB4Ee0V+b45je/w5Ytu/jOAw8wOjqK67kIVUPRDVzfZ2VxDlW3URSLjJMhikN0TSHyXaTv0en6pJ0c1ZUGMzOz+HmXu/reQe7iNNXzx3jzr/4Hxqr7GdEncXYm137JqeO7AaUBFV1RUUVEHPbo68tSqy2hGSkKpQKptEkQefiei6ap+K6LtpoltyyHOAoJAp+VZsTlpZCMpTMwmGd0dBtHj73E9k27sI0WlT4F3TQZGN/AYnUW45kRHpz7CzZt3ohipYFEzGk9vfNaAPLKXO46y6/X1uaC6+tYX2sedz3w+nrbrlt61TavXPvjCB6ttfCYQrwoUCrXxx1vpL2q7veNkF9fB7yuDnj17dW03avbldJA8Urweq3E2dV9X0tv5ifBKaZpUS6Xr+z7jxy8vlKw6VoRlTcSEXmjYkN/37YevK7vLzz/XDKZuY5g0xsBaOvbtSIn699Xt+Ja2errRbWujqoIIaDeQowNIfZsfdX+V9c0rO2zXonuyrHkj2j4MpZJHY8irrwUxJWaO+Qqt/6q7O2P+9BLxhKhqQ5SJsqmtc4y/+kP/29+/v0fYnzTRoQuyfzJ50gN9JPbtRUVeOnUyxRLRYqlPCtLc2zbNM7Q2DYytkW3VWfX/ltJZXSyGYtKucBydYXLc0tUCiVUCfd84fNs3bwjyQqIxNbDNnWWa8vkcv3EsaTrttENB03zGB7axn/79GfZvXsHXhjgByHLy41EzTdtEAYxiwt1FpfmuPGmHQhVw3FMBgYqnDs3xdvf9i4UTaJqIYauYRkpVqorpFMWuqEzu1illM8wM32Rvv4+hKYRKxorK1XKxRz5XAEpVWzHpNtqc+rEUcrFNIP9RWJp4voNiF127NvP8FCBvGPz7NNH2XPjfjKWThwJDMsinU+hI5mdn6U8OEDP9XG7icpku9UBITANg1AzsOMO0rBQ4hBMHcM00VQDw1CJYx/NdMhaCu1mDWFqmELFti10XSUKXFTVRtNNcrk8Tzz5FNu2bqcy2E8soV6vY1kGqUwKRTPQDQtdVTh76iRCUXCcFKapMzhU5obdN6CbOooqkJGPqijUV2q0Ww0ymcQqpd7sYjoOhVKBrtvG9wNSniD6xmPEu8c5/NEP8pmjz3H3e96FlUoj1KQ22LYzSGng+zF9A3mioEDKSqNEXTorDRzZZa7qccudd3Pq+Fmy8UWCRpVUKkO962E6Nt1YI1XeQNU10QujqPZIMn4lpteukS330237eK5HNqfR7mg4joPbq5G3Deampti5ZTvL1csMb+hLAhOFHLGMMS/MIjMp4nQaoYKmK2zavBkpEsr8mkWIohgEwTxSKkSxhp1KQRzQqi1jmkaivgoIA3TTRFNNpEzAnG46dLwYKUPcdgOEjRQSFDh74iSWArNTl2g3GklW3U7RrNeZuThN6PvomkpldIxCIc/MzAyKoZPLOGya2MF9X3uIwcEKliMQ6MgooL/Sh+VYhH6AoioYpkEkJUQJTVjVNGIUIglSWUDKGMeeQLNMdBERRZIwUvnrv/5bdu3cjWEpSdBJ0dBUgyiSKIpGjEDRTKJgrSYpYVIgIVYS1WNkEuWOZTJxM0wzAYi1BsFvvJ1YtmlXL6NHLpFq0epo2GaJ5eo5FhcuMDIyQV//JJqRIQxhaXEWz2+wY+cWNE3ne997iF/5yPuoDG5mz94bue/rD3L06Evc/Y670YRAFyp/+aefptf10Q2VX/rlX+K2A/vJpIukU0W+dO/XOfnCUxw4cCvBp7/KYEfyrt//zxQ+nONkWCU6bXD7gU34nVlKIsOnlj7HVmUSTVfQ9cQ6SmCCphD5XWwnyzfu+xbveOd7cCwL2zbJZRziOAnW9dp1jr90lmyhD9NxiGMPXQjajTqWbYKUWJaF46TQDYOx8RGCMLhS/6qooBpZhGJiWBaprEOhnGdlqcbA4FACKu00mq7QbrWw7RTHj5/gpZeOcO7cLDt3bcHQNGxjkCDqEfo+UdjDNjUmNm3k1JlTGKaJqllYlomVSiFUlWZtGcIeQRCRLeVRVIHf9Xj+ucOYNlimSafdppBL8fLJi1QGR1G1GFNV2fTyHlRF4diG55CRxDQs3F6HXC6N7wWYmoNh+gz0p9FEGZcOX/viA2zeuBVVUXFSBiqS4ydfRjWzjI9vxDQUNm/byOc+8yVuvmk/lqZjpywUVdJze1w4N8vw0CYUNUYo4Hs+n/iLT3LXXW+l3akRy4SiLSNJ2slw9uxFSqV+0ukc2VQKYagYpoIeC6QmcD2fTCpFEPQQoo2pZ4mlTqfT4N7Pf5Pt2zdz+vQpcqu/I5qu4HoeQSipNxoIIdE0SazqxAh0zSDwA5yUTWW4zHCljKEJoiggnUmhGUmtudfr4NgWI0P9hH6Erqh0uw1008D3fJ588jRHjh+mvz+Lk86jWQbtlkur3sZJ9Yg8lXS+RLfdxTEcTMMiikMU1eHChfNs27KJJ558jh1btlEs6GjCo7Xc46vffIhKZQOOZaNqAsXWIIYgipFCp+X6uG6boZEhTpw4xtNPP0lpfx83eaNoR77NVG8/e299J8Mv70KUBDIDlqlz5nwLRdQoOyqqriIMi6gTE0ddCgUDJY7RdJUw6KEqEEufWGQo5R38dg9Ntem4HTzfRSgpDj47jZ2yeMtdt5PNjOIGS2zfvplvPPgN+rMaqkieh3htvGgGRymx4fKbmM8cZHTndvAiwkDDTGdp+x6RBrGqoMYquq+B4iaBRQmx+BF8eS0QuD5xs5ZlVZRkHpZkXF8Nkq81F11/vOtl8V6vKcqawu/aPPJHHrBrY5MyRlHElbFdjdr8ew3iiyr6bfGranGvpf+yft21kkFXzu/qGtir6mDXRnL16+rjXFmenBbKamb1R7XKyXpFiCt/X/0drT/mq/t+ZX1r8rmusidXf/eu97rWN7T+OkjmGNr/f8DrtdqPA0j/IcHr+v7WMq/XAq/rAd/fo+frjueNLLvuUfdsRezZes1zuhr4vlbUbj1+FkJc+XctqKAqyqrfovqa9Rivte5a/UahShh1IGowffYioqfzoQ99GNu0UBVJfPgYlXu/S3TXzSxUl7FthwtnL7Iwv8CRFw8zMjpCEMU028vksiaKJtEtDdtKM3VpClM3MU2bdDZHq91hbn4Ry0nx9LPPsPfGveimhe/7+GFSLxX4YNsJPa663KCv3Een0+CWW28klUphWSaaplMql1FVWFpcIpstUltpEwQStxdgWRb1Rh2kZNPmTQg1prqywvJyjb6+PlBinnnmEJ7Xo1wqk05l+eYDD7Fv3/7V+jsFVTEwTZ04inFsm17PXbUksRkaHkJRVbxghTBKKOm1ZRfDsjsEk/MAACAASURBVNE1BUM1yRX6yRVytNuN5CEtJYHn8ZWvfJU3v+VOFCEh9MimLLwgwHVdUqk0nU4b03aoV5cwM7mETqlpKCLx+Uxq2XwM08Z3PcI4UaE1NJMvfekrTExM4tgWQRii6xphGLF33z4kEkNPjtNsthEIQt/DtGw0VUfXVQaGhrAsJ1FSjEJ838O0DFAUZCzxXJd6rUEumyWdSScTbtcjnc1iGImQVSqVQq834aGnkO+/C+MP/iXpYom3vPVNXJ69SLlc4uzZ06TTOQzTJAw8LF1w9ND9bBofor5yCrd3CbezSNdvMDhc5PyFE5imh2GaBLEFRhlPpBke2YdhDWGlhsiXx8gXhkllTFRd0Osu064vILUinqvwrrvfyy//8gew0xZx5GGbBi8fP43bjThz5jSj42O02m28MMDJpuj1uhjPn0QVCp5lrHqoJj9WiqIQRz6XL09jWhqqJuk120ipUa02UESMjHxSqRStdpd0Oo2iqKsKqUZiXC9jVBkgpSQIJPfe8xWmpi8zMT5Bu92kurhEMVfA7XaIo4h0yuHI4cPomkp1ZZ7A69BqrRCGXaQfcO7k8QT8xiGe26Nem2fXrglUJcDrdbFsm9DvYZlm4vUbxySYNVHalIqKoun0ej1MU0fImIi5JMjGIOFqZkkzEgC6f+9uMo5BrAhUVRD4HppugFib+CiJXYtlIxQVBEmGa3U9qzVwqiKI4hBVJQmOHDlDeGA79r5tuEFEvjBAsxPQPzxKOgO6EOStNKlUgUYrotkOEaqCYRlEgaBUKqEqJo6d40/+6yf40IffTy5b4iO//qu8930/i9Bgz7599NwAP4wI/C6/8Rv/MxvGhti6bYJLU+fQNYe52UWWl6t87rN/yTve9S6KL0+j6wa7/+U/5T71Gzxz6Sn+xQ3/lCiMqNfnyOs5vtn9HtULNYaLo5iWgaEbPP3UswwO9K/SXLvs27cPVQOk5Fvfup9Nmzai6waWbeH7IaW+Cpl0itDtoGk6rWaLIAiwbBshIqI4oNvpAYIXXzxCsVDi7NlzjI4OIYmYeL5Operz8PRRhgYrNOp1Jjduol6vYRgGuq4RRyG1eh3bNimX8mzeMsGeG24AEVKtLnN5ZpZypYBpmCgiocprhsHw8BCWbSEQ6CKh1KqKimMZhL7LyZfPM7JhhMszM+iayte+/iBvefNb0Y0UL584xbceeIC73/luhKoAIb4bsfnUbjzXZWbvGf727/6O3btu4LOf+yw7d+zE83yklLTaLQI/xHUhW0izYWiMQ88fotxXQtMUGs06u3fvZmJyI9XlBSqVPgRQKvZR7i+SL5U4e/YMlmVSq9V55ulDNBothkcHEusqBPv338SX7/0qumYxOjJOGADEyBh27txNub9MHEek02ZSLhBJzpw6w8BQBUM3WVpewjKTek/TzBLFiWf2HXfcgR/2ePi7P2TvnpuwLJUwSujKqpr4cmuagqZYxIHFn//JX7BjywT5cp4wDNF1nXwuw/T0RforFVwvQNWSIJEWC7odj15P8om/+m+sVBfYuHGCVDpFp90FITlw4CZSdoZGo4ftmBiGRV/fALop8TyJ5VioioLn+vhRhG3bGIbG2PgoAkkQBmzdfQNeJImkjhuEvPD8IW679SY0VZBK21yemUYTGi+dOMHQ0FBidZRNsezVKA73sfOmnZzsnqasRkRPHme2Os6BG25GOzhEZ3CWe+75HJsnN/DA/Q+wdTJPKZf8Lnh+jwe/d4FN24fRHBvNzKKQ2AVGcYSmqqhRl1qrQaimUDSNMGxiaCY9N2Z6MWBoeIhsLsX01GVKpSLPP3+YkYESfu0SGwZy1Ko1qvMLtHpdjk09S39qkvSJXfzh536dHXsrHHzkfk4c+QH7d46iRoI4DokRoAoioSFXAZiyKtj0eu1aoPaNJmZ+nCzrG5vDXr3Nq+ewrx7XVZnXVbVh9Zbgxxrj1ef8RhJsb+gDfr0j/ANgoSsY5/W+zzdwrJ8EvIrXAwH/X2lB2L3uQK8AH1W9Jvj7732O14rCXK9FjYXkj3T5imfU9fZ5I2D21ZnXV1N113b/0bZXAbsoukLpeKX8+Y/aGhV4DVRe6yF0rSzwFYrCGiUhil9hcB3JH3l/SSnhOmrC68ex1tYyves/o2uNW1EUVCVFHC7z8T/4d9y6683csu/trPgr/Oqv/Brf/tKXSH/4t+hOVvAmR0inc5w5fZ6NYxNcvHSRUn8fmVwGhMAyFM6dPcXo6CiKphJGGvV6jWeffoZdO3cyNDiI0DUURecLn7+HD/7KL6OZKpqmEoUhnXYLx7b58z/7JB/96D8HERBHOrqh4gcN0qksF87PsmF8A9XlZSqVflqtNk46qTXtdUNM0yIMQoSiceHCWbZs2YLr+ShqhK7ZKIrBhQtn2TA2iOuBoUp0VePChRlafsT4yDBP/fAgd9xxG046hxCSKA6pN5oUC2XCMKTT6XD0+DH6+/vZNDmGIhROnz7L+Pgkmm4gpcfh54+iaQ77b95DLD08t4siodNyafVcHNtkZXmBXNahWMgRYKGqKmEYYduJR2cEBJ6LnXLQlIggiEGqxHHis6lbFlMXLnFpaoptO7aTy+Q4feoMQ4MD9PcXkEJQq9XIZLJoqr5qXRKt+gsmILhZWyKTL3J5fonBSl9yPwgFpMpD3/0O7373O6nVFsjmy2iKlaj9xZJOt0WtXmV0bANSChCJt2cYBhgS5JcfRvyL96P8s3fjeSHdbgvbtoljSaPRoFwu0Wr6FEtlHvnuA7z3XXdy+oXHOXlyim27x6kM9hNFNmq6hIgCgt4K3e4cipZFMwfIlzYhdIeICIiRIk5UxoRMBIRETHNpis7yLOn+rVh6H/VaB8sRNHsr9JeLzM9M013xqC62mNg4hOf7ONYXGBwaRNW1JAL6Z5dRNivIvQbhuRHEUn8CwErzNIvH8TyPwcFKwo6QEikTIaQXPiHZvHGMbLmEcsMZhNNL7vHVJ8xqPJpw2kaZ2ogbaBw6+UPG/6c6I8PDeG4XwzBot9uw6lV57HMtZNOgXC6R3tcjtzUm8IMkQ8RqlDyO0bwMT/7pIpYtmNw8Rupdi+i6ia6rhGGQXAdCYJoW0wehedZgbHwCY7yHsfkyMo6vPBc7L60A4Owo4v1wF4qW2IJou15GOJ2kttu0kDJCXaVf+rMZlEsbCX0fpy8i2nl67SG47nmbvAcvTqL7GaQAf+gMZqqB8kdN+OMNUDKIUFcVHfu43Lyd+soJFi62yBrfYseuHRw5coxsLsfWbVsS65IYqs0dfPyPvsHv/s6/x9LOYhs/QNNMwjChn3qej2kmlHGR/hiNxSk8N+bi2T9m5/Z+HMfh8uV5zp45h2GaTIwPYdp7yXxygTOnT9P86J2kbjhIHEfsTm3H92McW8f3A04GZ/nLs1Umi7fhBz1uy7XYlEp8sz0/WPXfFfzVyxGV/kF8309svHyfXq9HtlDENC1mZy4w1F+i7YbMzCTlFZ7vo6ohYRChCIMwAE03OXv2HBs2DKMbiX/ve/79EbrdDo//lzuJZYjnehhOCiHB7fVoNVsUSkUQ4LodHMcmDnSeffZZyqU+Hn74EX7lVz6IlVZXA1V5ZqZn2bJ1HD8I0bXE2/fy1CX6+vrRTRMZ+Xz+M3/D2+5+L7liiU6nxYvPP81b3vJOen6LXL6EiJM67Fx+EN9zOXrsBW65+U4O/M3bKBaLPPDzX6BWr5PLFFiuLjE8PMTLL59kbGwDKSfN/Q88yE033k6uYPHQAw+i6yY/8467EWqMokqiSLI4v8Tw6AgyjtEVQbPpIdUIy7IIVtXqAWYvL1KpDCCVgAcf+DaDg0McOHCA5cV5srkMmprUhLfbTdLpPEEosR2HIPBQRIRumvS6HjKMkWqMY6eIwkR8SVN0QhnTcT2OvvgiN924D1VTqS1HnDp1it17x0lniqvXo1jNusVYuk6vI3B7DUyjh54pI8NEqMrtdTBMjVhCr+th2alEk2FxhnQ6TSbfhxcrSK9DdWWJoaEhwjDGTlnMz81iKGm+ft/9/PwvvgtD18llS3h+B9fzcd0e5WKJdrPFF754Lx/+yEfQVVbHphKFkrnZaUrFCiknzfzCRTLpEj23RzaXlK/4vk+pVGZ6ehrDsugb6OfB5YfwREBWTSyHZr05JqTBrz89yns+8re4D4R0T+gcjZ7nxhtv5POf+RR33jjBUMXEViMUTUUqEfV6QKGYwfVa6FoGXQXX7a0GvBSE69JTbL75nTPccftmKvkYQ1OZX+jw8DOLDAyPcNfb7qTZbCNjncXFKucunGTniMpAyeLMVA3P1dn3pgOknTKPPfIIm6zdDMntnPOf53O9/5NTp46gypgDd72Zj/3ex7GyWVAkgbSTh1kcowpJJK5PdV1PPb16Lnj1vO3qda+Vxb1ePeiayNHaXHr9Ma+e7/6Isvzqvl9d4vfKcbh/ltxT1se8a47jp9pkcq7r58mv2uQ6QYBX6Mlc1a6Vzf6pDPd10Km4Tjfrz0HXzR8bQf+jUhv+h6AD/32bku1HyfZfGedPW13sJ2lrN/6a19f6dsVk+uIs8uLsT9zHesD701I4C8MQ4JUKnle1tc9ZocmF87P83afvJ9+3gUgLyWUdHvrTT5D+td/GrRQQ2zdz333fYnFxmYcfeZhzF84Qy5BUymJpeRFNVZO6m8oovh+jqwZx6GI7Nu9+z3uYmp6i3W4wOzuD73nU6yt0uw1C30uoaYFPOuXQatX4hff9PLqu0G43sC0Dw9CIQuh2A+6//wGiMCafzxFGAaZpoKkqS8uLNJrLIAIULca0DPzA59TpUxi6xX1fu58w8IjCNpX+MoEr6DRbKAguXbrE2OQE27aOYRoa5b4Kpp3m3JkzVJeXCIOAYjEPSGrVJQxdsGvHdibGJhAiRafT4cXnD6NqKlHoEQY+N+y5gf5KGU2NCL0uteoiR44eZXZumaWlGp/77BcZGR5DMxMjd9O0mJubp9lsIiV02y2CCDKWTuR1UUSIocHs5UsoikxqgjVBub+PgYFBbNsilUmxY9c2srk0ikiApOPYqKqCRBKGAUEQISV4no8QCrZl4/Z6jI6Oohk6zVYTXddZWlomly2gqUYiAS8lcRQQBj5LC4t0O13K5T5I9JzxvB4IMGLgvoO477sD7Td+kZWVFSDi/IXT2LaNY+cRmOi6RV+xRITk7ne/g6kzx1hpuNz51ndSGpjEk33kintALdNqKrSbEQQRbjcgk+tDGhYRAVLtINUeKB5CeAh8JCqxlLQ6PulMhShuI0WXUl8a0xIUCmXCQLJhwzjFUh5Vi1laXqbeauL6HlEUX6lzUk978FiS5VqjE8koRgiFlJNicHDwSiAtiuNE7VeA6/pEoSAmqddcXzef1PMkR2y1O6uKxpJbbtrL0OAAcZyoN/uei4wjDCOxG0o7Nral0W7WIA7pdXuJanAUXsnG67pOp9Mmn0sR+CErSw0UIei023Q6nWTiEsV4PZcoDHEsi82TkywvLBB7HnI1QLfWjME05lAagcD3fBQpiKM4CXAIgW4YV0DzGudKVfVV2ldEr1tfUyRBkLxLuVrbFMcoCvi+d0WQiRc94t0mUUFBqInQk4xjoshloJwCT7B9217233QjCMENe25g06bNKEIh8AMQUCzl+ehH/zm9XpcTJ48Ckmg1gyUjMDR9NeMrifwGcRySy+VYqdZWn78qAwOD7Nm7h/379zA6OkY2V2Z+YZkoiuh1WldAuK4ZxFGAlAqKotOd61LVqyia4PzZCywtVgGJoiZUdV1PlHgL+ULi4ydlQimXsLJSp9Pu0uu1k3rXWKIIlfGNG/GiCEWodDsBumYTx/DY9w/SaDQYH9+ApitMTU1x9vQlhBDYtkMYxYSRxLQdYplk+pES2zQJw0T8xzBsVNVEVXRuv/1WQKPVccnmHFRNJ58v8OUvf4nJyTGiOODs2bNEUUzP7ZLPlzCtFLV6i2azw/t+4f00mlWCIMCxM7ztrp9BUSV2SgclJogC0hkHGUts0+LArQf4+tfvx3GcK/TFvv4+YhmTcjIgVSYnJzEMjZVaDSeVI5WzsUyLu9/5dn7mHW/n3nu/SBjGhJEgCCLKpTIylMRSIRZJVrFRryGlxLYcBAoyFhw7dhShJEyS/v4BxsbG8X0PocRcvHCBWEpULVEnn56ewjR1ut0WUZwEGRJRNInlGJimw/TMZVgVHWu1OghFYtsWI8MJi6LT6eL5LSY3juA4DpKAeqOGpurEUSIw1WpWiUUHzRboVppe10fGgtpyHc8PCSORWFIhII7Jph3ypSLpbBoIiMIOQoGBgUF8PwAkzUYLVVXw/CY33rSP/v5BUpaO22tgmRaGoVIsF/F8j3Q6zS+9/5fo9jqJ+jgJK0NVNQb6+4lDlzBo4xgGjWaNdDaDohsgVEwjEega2bCBgaFBznUv0KbDVzZ8igdu+Axf2vRn3GRuwvRifvjEHF/90j2YR0ZYyS9w6223YpuCQtbA96oYhgBVw48ivCAg62jEfgedCAKPdjtRB3ccB0UomJkiMoYdm0v0FfKgKHRabeI4plIZ4O1vv4s4VtmwYZhyucLWrVsZGqwQBR7dXo96N6YwtI3lpiRSLe74mXejbtVoDkwzkdnLv7Y+y7/60P/Fb37s93j6qWe5edc+fu6ut7Jy/iSXTryA6rdRCYleQ2tm7bn/eqBo/VxwPXC93r6vNad/Y5nMpF1rfvs/arveeV/N+Fzf1oD+G/mO/kdo/6how/Df37rlWu0nAcxr43w9L6sfF5Bf+4J+1ZJr9rP+gXJ1NCz67f8Cjz+Puurzer2+Xm8sinhlVEhyVR3r69xT6/ddywJH6yajV/e5FoWKw2Xu+cy3+fh//BQbJsd57umHmHjwKaw//BTh7i3IvdtYWKjT319BCJXRkRHyxQy5Qo5jx46ytLjE2IZRUhkH3VCRhCzMTZPJ5aiuVBOKbzGHYxu0W01M3aKYz+HYGkJR6HVayDhCFWA5BsVCGV0XLCxcpq9vgFpjCcvMY+op7rjzTSAkQeiuZmxjiA0ymQLdTo9MJoehW0giUqkUg4NDBIGkU+9gGJJ0WqXTcIkDi2ee+SGTk+P0DVQIEfi9JdKpDBcuzlAo9/P1L9/LHXe8iUhGqGpi+9JaqVLIZ1lcWsRxMgR0aDcXOfzCafKFUQw9wLR1dN3EcWwW5qeQoUdffxlNt1DVNJpmsH3rDvr6BrhweZbS0AiEAd1ul76+Mr1eFwHoqTya32BlaR5VT7KoxWIJRUsyLGEQgKJRLBXRVIWen4jd+F4XQwdFN1czrEn0dWF+kXQ6zRNPPEG5XObhhx9hcsMwlp1ieSWxF0pnMsQxOKk0Y2MTCEVQXVrgxImXGRkdIQ4D4gAeeug77Ni1ExSV6soKuVwGb2Ye7dmXUH7uLozf/ghIk26vjpPScJwMpplCRgaOkyGKIgxdx4slF8+fos8JyA8VCJD4qqQwuBmhFZCqhxp7yLhGp3UWxx6kPDhBgEQRHhINUBBSRZUWSmwRyUTt01A0CKHhzdDt9EilbVQtRsoMmqqD9FmYnSYIXMJQMjhkkMreiNDfgpa6jUuzRQqPvwSehqvsxfBydDtd5ufmyWtDaEsDRFNloukSzPYjZysEMwPIyyMUC2VMw0ExNeRCCTkzADODyNkBaicc1PlRoukhHK8fhI7neQg3ovuySfWwxcJTPZafC5l/LmT+SZ+lQxHtlS6amuRtZ0/Mk6kOceZ7l1k53KX6dEjrBZ+5J+rIyzZe1CGdTVNvtKgdUZh5ssX8U9A7YdE9maJ9MsXiIZh5eYUwDFlcXCSYj5h/OmLpsI5/qULnfJnpQyFGYwIuD1KrVUlZDqqqw/Ig0VQFeXmQ6FKZ6FwWOVMhmBlCaVYQUmLZGm69STw1hjo3SDRVov6SjjZXIZregHu+gB6bCEUSxQrNCxH2MzXidxzgOBMMbHgvkXYrKNs4f8El7LVx9AK57DhdcxeHDnuUBt7DpZlhLPvN9PzdxNoe/ChFZaCCqqps23UrPpO0uvt44pmQJ3+ooGg3U2uOkMreipQ9lpdqFHL9jGx4J5Hcy9z8Np55TuUPPv5ttuz4Jwj1Tv7JL/wOvz6xDUVIKu99L/926j5e8Cy+8ltT/Owvfozf+u3v8p/+86O8+xf/HX9R+zsmnXHKdpGWVuIrh89Qze3k8ZkGNxaSSdJZP08sI5rNJqZpEQQhA5UBvv/YYwwODWCYBhKwLYcI8IMAEUsMzeYrX/4alf4BhgYHaTQbPPf8M2zctJFcLk82W2bLwVniWPLcTWmcdBoJtNoNHNui024ThyGPP/EEGzduxNAt4kigqiH11mXSqQxvfvObqdbOkUqVUYTChg3DmKaOH7iUS/2JmrBpUm/00A2br953H7fecgvf+MY3uO3ATdhOFk01MXSdkydPUyz3ITBRREKjVhSdg48+ysLiPEOjm9hzcS+apnJ2xwmCOAKp4DhpWu0Wigq6oaKpOkMj4+TyDrWVKqahYpo223fspOe6aIaBjCSWbvCFe77E0MgopqMhI4ViIUutWmOlXieVTp6/4xPjiR+xprJhdJylpUUymRTpVI5uJyQMxKrY0iLZbA4nlWJufpZyuYQiVGQs6fVaeL6Llcqir6p0a5qK1wuoNxdBaAz0j6LpEst00C1wUjqqoqMZCqZlEIUxhuFw+MWjbB6fQOiSCJVYZtENlepilRefP8zUzDSTk5uJY4lp6tTqywgkFy8ucei55ymX+smk81y+fIlUKgmGNpsN8vkKhgGmGVGpDBOGkuriJeq1KqpqIvEJwuiKPZxpmdgph8ALUFRBHEk810eYWRRDodlpoRk5HMfEcGyCCGw7Q+RHaJZKJGM0XeOR+kF+Ub2LO0v7mJ+9wMhQic+f+RydVo/cs6O8J/XPyGb6iMtVDHw61WmySpvB0TKKkliBuX5ATEgkBULTCKXEsPIIQlzXQ9c02p0Wei6N360xUMiQzRp0gzo6Gq4bc/JclW3bt6FpaRQtAGnS67WRnTmKZoegV0NPD5EtjBH0ujz+g+9y4sQRdmzby+PPf5/xO0YxDIeJSzfz7bNf43//o9/lmR8+S9EyePKhr/P973+POPSY2LQZ1Ui/Ydrwa/2/xuJbS2asBUffyL7XWvfa+7wSIK9fdf39rk0b1m79hwDA16Myr9tCvFqfZm35a2Vlr6Yw/xSH+xOtXhvDP+qa1yjyfx+uvrhWY/urtUfXBmnrC8BfP1Jz7fXiqter93mjLTj5feLli6h9E8Drg+03euxXXsxXF6PLV1Jz152DEIIwDK+sf+V2P2rym99P1v/cW69kGdYO8+PUKKxx6a7cZCTiTDKOXxe4JrvLV/29vp9X0FOQyDggDl2e/vpD7Nq7CztvYD73Apt//69hYYXjo2W8vgKu22N4eBAhAwb6i9TrNfr6ikgJ+VyRwYEBNF3BsB1c12NhfpHLMwtECEYGh7GMRJFUMUyy2RyKoqFrKpZpkc2l+dKXv87WbTux0xkiqaJoGsvLS1T6K1yevkh5YJRHHnmc0ZFhzl84TS6fxdAdHv7uY5i6TqGYp91uUygUURQFz/eQQkHTEtP3S5fOs3nnNop9/cSRiuWkOPj4o9z9rrcRRIm/YRj4eK6P7WQwTZOUY7Hnpjfxqf/nUxw/eoSb9u3BMg1SpRJSKJSLRdrNGoszNSr9E9SadW65dTfPPXuYkZFRFCUijiNqKz2KfQMEgcAwBdmUg2WBFB6apdDf30fg9eh12pT7CvhBQCZbYGl5kVzKxI8VnFwJw0xhmBaKpuC5HraZIohVbN0g8H3sdIpWrYpuJGq3zXoDQ7VptduYlsnS4gK2ZWI4Dr7nUalUmNy0hViomLaJ1+skfpLLNTKZNDKOUESigFwqD2IbRnJZ6xZCUdlz435S2SwyjkmZBuLEBfTnTtJ7/11kfvMDiFgiFR9VVwjdiHyqght00AyBpSl06mexsiV6cxdRest0gxphmGZgdCeGM4ai6EAHQoXZmZOghqSKN2H0bSZUYxQ1BmHQ8UMMRcdUdSJCIiUZt5A6bmuFXnOGXHYj5XKZRrOOEA66JVDVGK/r8uKhFykVEh/KkeGDWMZ5XH8H6VwKITTM7zyV3C9bxghiUDSTXC5NuzGPncrQaneS7JVioqAgw4B2YxldlczOTZF2TGQcoioKCA3P7aCqiTVJGAagqHieS7NWI+04zEzP4ve6RH4bRSTKslHcZXZmmr6iRaVskrYFuXQGGQqiMCKdyjC/1GFppUq5v0wmbdNsNKguz2NoArfbw1RtFDVMAj9BgKJAr9dF11TOnT1NX6lEELgsV5fI5dJUFxfQibh08QKt2gqtRoPJiY1I4eL5LoqqoKxmgHyvh5bKgtD4xJ/8MTu3TSBlhGZYdHshZsYk8jRatcsIuUKvJUD1se00imqi6AbdpWkyM8uIxQaND93O4Ka9RLFC6AaowPJSnZGNO5CqTc/voUQm8xdfJpMpoVpZdE2QzZq0mssoocfy8gKFSoVux0PTUiiqzkBlkg998H388gd+li07xkGaTE23+JM//q+89Z1vpdNVOXHsGOW+PL4XYxsOrfoylYEx7r3n7/hfdu9lpdbgk+fmWd40jRQKv/P23yObyZLJF/jXv/Ux+nJ5zvbOcnzhOOOZCR599GFuvfVNCfshjhhPQTeEF+Y7mKaJaZlYls3s7Dzlcj8bxob54j1f5Mb9N+H2Ak6dPM3iUpWBgUHi1Yx5qZyjr7+ClUpT6kuzcXIS0zDodjo06svseaZBq9li8b1bCL0uug7ff/RxxsYmsK3EhmV8YgLCACETT+UwDvH9iFQmhWHpaFoWXddBhqTTaVw/wLBshND41re+zdjYBtKFDCDZsXkbR44f5653vAPLTNHueFiOydzcJTZNbsLUNaKgQ7u1gpCSRx57jJtvuxVF1RkfH2XP1C1UqPZ9wAAAIABJREFUq8ucGD9ELp8jjiRCkUgCdF2n23WTZ7kGMgyQgY9p2czNzfL444+za+dOvvfAg+zcuYu/+OSn+LVf/zCzl6fIZovoqqDbbhMHXV44dILxyTGEnvw+66qOpqh4XpdiuYBu6niBx9PPPMfuXbtYqV+mUhnBSaWJo5h0yqLZXCGWCmEcoukG6VQh8aUWyW/18eMnGR4dJ+1kadWWCMKAT37yM2zfuQ0Zuri9DopmUFu6CKjY6Rz/L3vvHWbZWd95ft73PTncWHUrV6fq6hyUWnQTBBgTTDKYNQ4YHocZz9jrfXDatb22d/zMjr32eIN3x97xjmdhQCAQFghJIIQQSAKUkboVWlLn7uquXHVzOHn/uNVSd9FqCWyPH+/M73nuU1XnnvPec859z1u/8P19v0kSo7S+rFgQxURxzML8LHG3RhT1eO65k5w8+SI7dkzj+y5pEhN0Ozi2he36LC/XsW0b39cploovQfLn5xdQRkKr3kEmGZarkUkLzzYpDYwjdA1Nzwh7bSzLp9NtEnRaBO0eStcxLJtut0scBHzybz6JqVtEQYptOywuXcA0DGxDBxIyYixTR5KxEq5wuPUsvxb9Ahs2bYI4oLNyhnva36ETGfzRjX/BhheuQ13bYW7+PKZlcM+9D3Li3Ao7tgxh6Dpx3MHQNEzNJU1T2o0mpmERJQGGJomiAEQ/yEuCHkmSYVhGn4zrxDls3ydRHotLGXuu3wZK48zxU9i5IidOvMDcyecYHzOoNgVGfhtx1mPL9DaiUKPTjti2fRNDw2M0a1Vis8np2bO80/85vse3OPDWN/Ou974PzTZ44rGHePqR7+JoKXtvuAYlFXGSkmYCKTJ0mZBml0vWXM0XvOhnXimYerXA9Up/X8lff3nclxtY+vu/fMz6c7pSwHvRXu55jV/R331Nlsm18wMp1Brm9oeLL67Wbni1/S+FSr8W9Y5X3edVXle0NYLWbG0AJX/w4PX/V7DhfwqWXDhKcuHoP/ZpXGYXs17r9WHhEhjIxZh4nf3nYm/+Yc23HbIwJtENNm3agvOJL2H/3v9Bb/8O0ne8gelrr+HC+fNoSlKvL3L8+PO0Oy3GxsYwDBshJLqp4+dtqvWlfv+d1DB0m+ee7/e+xmkCAnpBj14YEIVRv4dY0zBtCyklu3fvWiNlE1RXlpFZgm324aqVSoWTJ0/yjnf8KJouqVQq6LqGEBlnzp7m7Lk1mJxjk67BEXVNJwpCDE0niELGJyZIooQoDFCaIIpCprdvJyXDcV2qq6tYmoHjFQjjBN9zUSJFEPGBD/44H/pvPkwQpXS7UZ/AIgwQQmDZDmGccvbcGX7sXW8nirocP36K2QsLGIaNZZkMjwwwNzfHsRePceLkKbpBD2kYDI2O8ZW7voJCELa6FIolqtU6rUaNoFOjUW8RhjGGodNo1KjX68RxSrcTYtkujWYTU7d54IEHWV2t8uQThxkcHKTTamMogyTTue++bxIGEasrVUqlAVzHo9lsMDW1GSEEp06fgjSm02r1p68Gbt6l1WpimgZSKqIopt1uUBook8/7uI5BzndI45Ao6JKdOIP4xmNwfhHxV7+D9tF38exzh4nSLplSBLGiUBxCOEUMxyUJm7SWz9JcOkV38TTt3gzNuImen0LqHnGSXtInIlG6xLZyxL0M1/CwHaNfWU/7yALXdEiTfh9vhkaC9dL87pPT6Gi6IEkSTNNB1/sVpCTpSxG9/vUHSbOYnOMQ9npEYYilaZybOUMYxDQbLdrtDr1uDKRI1UdE2E6OGHAcGyEzOkGn34OlaxSKJYQSbJ3egqYZhGFEBqRZim4YfcmMuP8cpGvZbk3Ck489xszJkywuLZGR0GysMFLJEzQ7XH/tdjZPTRBmOrpdYH65w533PEZxtMxjh2c4M7vKubkOx08ugKYYHptk0+ZNVAbzlAsmYbCCrWV0WsuQdYmiFo6lUcx7lIs5SELmZy9gGzpZHLG6vMTRZ46yacpjcrNPGHQ5+uxTiEwQhzFiDT4cBCGgk0QZIHnrj7wdTRc4rk2apIhMW5MKUghlYdoV/MIQpl1ACp30/Dw8fITcY2dRsST8nY9iD26gvniO5fOnyeKYWOiURiZZWWoRBgIlbR5//Am27djN4tI8+/fuJMli4iwljRPOzsxSKA3SbbdYXFil0wkJgoDf+u1f5dvffZBdu3fTqLdJyHj+xaP8wi//Gkq3eNc73s7kyCCVSoXbb7+Nf//Xf0mj0aJccvnFn/85Ot0OExMT3HnHF7Atj8OHn6bVbmA7BocO7keJkPnZs7yn/DZO1k6j6SbveOdbESJhdbVGlsK91QK3z2iUyoN9iGmjzT33fJ3R0REazSphkvLOd76bhfl5GvUVNm/extjIKKR9aaHvfudhSqUyYdij1WySZdBq1QnDAMuyqVRGkFIRxzFHDj+NbXs0G11uetMbMA2dKEmRuoVjukhlcOzEGdqNLmEvolgokSYJrWaTp578HmG3y/FjJ+j21vruhSDstnnPu34UTWTEQZs06dLpNti1axvV2gppnHHq1ClqtRqVwWE63Q5f+tKXSBLBc8+dRAibTZs2kcvlmJycJI5jvnHoLm6e+AS6sgm7LTRdoJRCUwZkAtd1UZpCKUEcR5i2gxQmpdIA73//+1hdXabTi+l0QjSpEQcxOa+ASAVRnGL7ObxyhXe++519x1BIkjgmSWMQoOk6q6uriDRDoXH9Nddx9913Mzg4TERKkgk6nYAkzIg7cZ/0SNfRNZ00jok6XaJeD5KUdrMBWZc4aZMvFshSAZkkiiJcr4Bh+NSqPYIAHNsnDELSNGFyYgLDMOgGAflcjvHREcrFIqVCjp/7yE/xsY99BKkZnD5zltn5eQzLQuo6pi54/aHrmRwfod1q0+v2kBJWV1e58467yBIoFYu4nk+z3kbJlCCKCKKAOAxIgh5p2CHqdrAsF8cvcMutX2RxYWWNf8FG1wwyofPU4edYrbX5zC1fwC+UcbwcaQa9ThvXNgnCkEazxecPf4mfHPoge288SJr4WDImap2m00mozrSwvzpJvKVNoiBfdrn3a99hbLDCB997AJEGiCzBsV1M2yXO+pDWSiVHloWUCpV+f7BtYZlWHw5uW5imThB2yUjYsWMaw3R48DvH2Lp9CiEkWRozMTHJ6vIyu7dPsWvnOHGUUG+12TA1zYMPP051tcrGjRu45pr9zM7OoTK46847AGj7Vdp6g71PvQ+vkENognvv+yaf+vyd/PKv/Dq3fOIT/G+/82tUZ0/jyARd9tFASfTKbVuvZK+mHPEPYZcGrf+5P/tK5/KP8ZmXFsv+se/B39X+yVRe0yz+V1fLjFzZfnCs/Pos0NUm+iuV7q9mr6bzun78q0EA4PLK7ZV6CdbTeF/tOi7db/172R339/9+700vb5eXH3elbNb639UlGbdLt1+p0f9KUJPXmlXqBj10pei12tz95Tt4600/ivro/4jxzHHucTLkyDD5Qp6v3PVVDlx7DZKUNEnYuHkrtuthWzadXo9PfvJThGHIxOQ4xWKOhfklzp49y/jEJJs2bcG09H7vYaOJm/ORmkJlfcbRMO7LAGRJhu3Y5At5Wq02g+UiqyurxHFCkqY4rkeuUCRNYnRdoWkaSgrCMGL/NdcwNFxB1w0QkiiKWVlZodPpomsaaZoyOzdHsVREVyZK9eHGUmkYpkN1dQkpFLZt8/zzL1AslxGp5LbbvsDyyhLj40PkC0V0y+a++x5g187dIEIMw2B1tYrjeiwuVdk6vZkk6VPmD5QrFIoFlFL0goBarcrw8ChDw0OMjA6hNAvdcBGZYvu2Xdz6udvQlcXA0CCe62FaFpom8HJF2q0Wnt8XhhcSDMNC1y2SJMF2LO79+rfYt3sHg5UBRkfHSeIQ3/M4feoUw6MTPPnE41xz7bX4+RxJHCOlQOk6teoK1WqNjZs3Ua0uUSyWcFx/rSc2xHMc4jjh3NkZhoeG0ZTDI489ykAlR7M+h4g1kmeOoz93ivjcHCdv2s7QX/4+2miFdrvNUGWEmZljFIsVHNvl3Jlj2N4QndYCWriCCGu0OwuQtIk1l/HN1+DlN+J6Pplh9onKUlBCI5Yt0l6N+bnnieMWWerjaC5RJyLuBYStFVbnTtGqzSGUxHF9hMhIU9BFTBI0sTyfoJeiaTZC9iUqpJBoQuNrX7mbZqNFzs9TLJ8jXyjw2OMxk5s3I6WB+41HabVaZFs2YFo63V4HTdMwNIM01dGEQKQZmmYShD103SRLBZZlU280sCyv3xcqJWkm0NXLiJdut4dj6Lx49HkWzs/gGBq+Y5GR0mos4Ls6hbzHyFgJOwfNtuLebx5hesc+2qHghoM3UBoskM8Ps3vfFDfccC1Cg3y5SDsQPPjAQ+zbt5vF1TqnZhbZumUS3cgwTEEUdGjUqiRxl7DXotlYQVOKcjlHvb5E0OuR93OUN/RQVo+FswFpHKBpJoMDQyRIwijmL/6vv2D//uvwPBtBRqk8SBR10UwHKXUMXWducZ65+VkmJjagmT7SslBSIb/5GHK1TrhvE/GH3gIf/QDp2DgiSQl6dVzHpddLUZaN1BW/8d/9D7z73e/hgQceYOvWKQYGiyih+O9/89fxCy7Hz55iYmiEj/7iL/Oe970P37H44u13sHfPfmzH4nWHrqXXbZPL57F8n5mZ8+zat5NiQSLNgO3T02RZkz/5k7/gbT/yVn7rN3+D3/vd32P/7h3s2bcX+SOvZ/+v/UtuveVWTsnjqEjx4Z3vJwo7tGoRvlfA1B222NP8bfd29MCgs9hmaXmFjZs3cuHcefL5PEpXgMTQDT75yU/zgR//IJom6HQb5HIFXNfH930836bRbGFooCmI45R7v/5NbjhwHaal892HHmXL5k1YhoGUGs1mky996cv8+GIRyzKpf3gvFy7MUSwOYFk6aZqhazq1Wo1Oq8GLx45x/YEDaNLob69W+0gKx2VyYpIkSfFcj3yhQCZS4l7K6dMnKZcLnDp1kqLvoKTAWdMQdmyLXqdBoeRimorZC+dQmkGpVMRxXDZtmiII+iRFpmnx4ovHuPOOO9n/5l2UNuQxDYMvfPFWdu/ZRZYJbr31i1iWSalUQAhFHHRQUtLthvw/f/1JDh46QLPVwLYcBiojuI7NSKXI4GAZ13OwDJNGvY6m64AAkaFpqn+tq8sU832NXaUkjtWHVC/OLTFUKbNz5zbiOOazn7uFHdt38PThpxkfHcPL+X0JFyRxr0e306BeraEpDdMyGRkbZXVpkYceeoRtO3aiaxYbxicYHCqDMhDS4KHvPIJp2hTLAwRhgKkpatUqluviuD5pnBCuITTCqAdCw7QM0jSlMlQhn3OJ4z5RWxz1aDTqdIOQgYEKumGTpCFZmnDTm99MuxVgmIpur0fOLyBFRKfZ6nNFaH00QBJ2kNKh1Q5QmkapWKbT6VEZKhIGXR575DEQkve+991UKgPs3bcb17NpNhr4Xp+sMQhDNN1EWoIj6nn+96k/x3ZcVA+WZ77GQA4+t3qcX2n/AfuC64i31DEMnTiIWZmdo1IJGCh2kSIGGZOmEb1eC6USdKWIwx6aZtBuB8Rxn68hTvpQ2iTucxA4rgNkNJp1gtAiTA0O3vQ2Ot0uzxx5nrHhcYKgi4xWSaIZSKA0vIHc8DSjYxt49OFH2LZtK+WBEgLBZ75wOxmCs+dOc+rsKZ6bf5obvDfxP3/6D9l1cC+nji+ybf8eOkHKxPgWvvaVu/nq7bcxODDEhs3TZJlAaIrsFWQYX8kXvJS0af2+FzlYLhKwvuRvXlKxXe97X0pUtP69i8OvL8pcrWXvoht68X3txgTtxuSK+1/Nt361ca9ml17Hxev6u6iRXMmffq1tln/fQe76iOmHqbz+0wlev6/n9e8WvL7iEVf8kn4AWOyr2N9X8HrR1k/A9UHg1Zh4r2SvtKBcDF7V+9/y8kO1bgpeDVN/kc24z2fyMoz50mP/Llmx9ccoXcPSde78wm28793vJvjj/wgXFkjefpDi8AiVyihRHGIojeXFBUxDY3F+lTMzswyPjEEa0Ysi3vLWtzI4OMxqtUq70yWJumRZxsjoCJbjIDWJphSu5xHFEUJJeu0O3W4PIQWu75LFGZou0HQdy3LIkKRphufnOTNzntGJjWRpQpYmaJpGtVolCrosLS1TLJcwLZ0o6vdPRmFIvlDA830SkWHZNrpU1JZXuOeee4miLuXBAlLqtFo9dBJc1yNOU8Y2TJJ0uyyvrPC6g4eY2LiBbruK4+VA6owMjxH0QjrdGrpm9J2MJKU8WELXod1uYmoWuqXR6bS5886vsH/fNfR6IV/72teYmtpKvVXts0Q2l1FailJgOyaj4xXiIOHEydM4rk8mJbrWn0PLSyvYlovQBEJohFGfeTaMAnw3j+NoeL5DmmSYpkmWxBSLOYIkZnJ8FC/nkZGQpTGNRg3LtlFSUiwVEVIjV8iTZoIvf+kOtk9txbFMVlZX8P08pVKZKEqJ4gWmpqeQrZjsO0eRDz2NNjRA9lPv4OgHD3HDT3+AE+eeZ3Z2jg0TWzF0DzNrU1tpYZsGpuqgmwU8M+DoUw9SqQwijJg06VAYfB2mvRGlpcRCrGmDShQKYmj2NAqmT7ezShxGdNtn0EVA2F2k3ThFc3ERjQZ5X7C0vIhSOsqwkULDkAnN6gKNThffH0BKkySLMM08pAqJhiFNbvvC7filCtu2NdE1ncHRDyI1iWHYaF+5H9exEVvHEQIM0wAESZKRJR10EdBqLBMlAZZTWKsIK555+hk2btxAhkIqQZL26TyyLKXVahNFMbZtc+HEaUhSinmfer1KRsz8hbMMV/IUSzny5RKGU8FwHDR9lNe9/iC62+Guux/i0KEbCNopwyMWplJEcYeRsQ34uS0Yjs3uPbtBGjz48LPc8Kb3UCnbFMoudl92lPGxIaKwy8BAnspgkWazSZr08FyDWq1Bu9VhZLNNFCd0qw6+a3NuZhbLcdEMG6kUrz/0hr5eKzEZKUhJHIRYtke720Up8Lw8xaKPVDqJ0EhUiL7SgDOzPPhLhxh61xtY6dbIj46RpBB3a3jFIkKZKM2k224hiXjH299Nt9di06YJ4iTAdJw1SPEcyjTwi3mef+pZfvt3/4A0y4g6LfZcsxOQJLEkn/ewbJNuEAAKv5BDMzSq5+bJl8ts3XoA1xvg1ls+T5bFPPLww/zpn/wZX//qV9mz71o+/lu/T7Pe5u477uLIpx/k8390M45noISi11vEdiDLAoKgyUznAt+rHyY8JZmamubE6ecpeEU6vTaGoaPpfebuvXv2I6RCyAQhI1aXqtx88y3s3rOv39KgIjSZYJk6QZRx6OBNRHEXyNi4caoP9UOysLBAoZBny9Qmdn13FU3TOPm2IXrdAN/zyVQfRfGJv/kbrrtmP55rI7R+1fHzn/08zz13lD27d+G6DvPz84RBiOnZLC4sM3P2LPmcB5hYloHlmFSGhjj5wlGUpmN5Pq1mG9MwOXb0JCOj47SbXe740l3ceOggnu9hmBrdXgfLNun1AjRNw3Vcdu3ahaULer0aqYjZve9GwrCJaTlMjG1gaGiIr997N9u3b0dJ6LTbmI7Pvj37abfrmJZBrdqiVCkhZQJJl/mF8+i6ot3p4nsejeoqMgPT1Ol1eujKgChEARGyz9yuNF584QXCXo+RkUFQCY16g9e/7gBKSiYmJml32+iWDpla02RPaLdWcL0iytCRmkaUJbSWAx789kNs27GTF54/yj13f4WDhw4xv7RMvlBgfHSYs2dnmdiwAdPU0JREVwqp93tgpcjIogDLyWHYJqlQaIZOFgV9PgNNEvTaGEoiNA0/51NrdOhFGZ/7zK1cd90+dKMfAHnuAGHSxrZtJDqrK+dxDB2EJIhjkkRgmpJmI+ZTn/4smybHKOXzjI6PsVydw3NthgYrVAbzlEo+iAjTlIgso9vt4uXy9MIEN1dACsFT9cOMmyP8ZPl9aLqOS5uTx25habbF05HBrz32+1TH5hB6D8vQefyRb1AupoyPSWw1iO70e7AlGqamQ5ohFMSBpFlvY7kamm6g6TpxHON6HiSCIAiJwhhEv7J+/kKbVmBhejmU0BkoDXN+ZhbH0enWTiG1JmEg0ZwC997/PUaGRpneOs2DD97Pt7/9AM8+9xwyC/FMgUWbG/dPo5IGUZrx/pGP8bG/eif/5t/+L/SimES6dDOP7x09x007t/GZz97K+JYpxjeOk4kYhPZ9/tgr/X2pj3el4OliYLn++CRJLkMIXkmW8dJtL/uYVy/cXMmupEH7avZq8Ns0TVFSe+naX2sg+oOc9w9qrzbO+pbDv7cgdt0w/0UEr68ly/GDZEIu2vdna6507NWzS6/lXC7VeX31IO3i+2KtzfT7abDXV4rXzwptrTp3OT359weXF4mPLjbRk2ZrxJp9BtL0zvv7id333vTyOYgrL0ovXXN2Efcu1mDHGch+wHIRhXxZLX3tgf5hWOeStd4GKQRKpKgo4+a//ne89abXk97yDcyvfZfVA9OY+RyW1Sc7CqOYRx96mPPnL7Blegcj4xUef+xxRodHcBybubkFcjkPZECpNIhh5WnVGpiGSa/TYfbCWQaKRarLy7QaNbI4xJSgSYO52UUOHz7C1NQUQjdYmr8AWYSQiiDqYZgWtmHQrC6ScyRJotAMtcYAaaEMjVKpSBoFNGsr6JrNysoCpbKLEBlxkqHpGkkgmDlzAdKYiU3TOI5HoVhAUzqua2NYOpnSabU6mFJSrdcZGhokSyOyJCYMI2wjx8LceSqDPkmcYrkOmjJI4oTTJ89QGSwDkjQV6IaJYSgsy2B0vEIYhuTzee67/yGuP3AAx7VIEkGv0cBy86DZfP0b32Tbtu24nsnszAymruP5Tp/l8uw8D37rQSYnhpCaQmSKmXNnqK0sM3Nqmfn580xPbyWKQzQl6QVdpNLIkMRhjO+XEVlKbWVuTR7HRskM03KJk4wkjei1gzWpoFM4rodt+2iWhkyNvp6dbEOgSB84At89jLrpOoI/+mnMX/xZ1I4tjE0OE4YOzzx0H7uv3Uu110EaBsIok1cNQr2vC9mcuZ/O6jK6CNFUl04DhDWMOzBBrAQhEYI1ErE4hTQliHqEtRlSW8ctjCFTF81WtFerEKdEkQB/nKmt+1lcfB5NttCTzXi5AnEqkCJl5cIFSsMlLKvA2fPHKZbzBEFGnIXoDlw4c5Y3v+FN2E5MwT/dZ8V1rqXW7JGlGe69DyOARjmHaemITJImMb1eE8vuE5boVp400yCNkEojTTK+dd/Xmd48TiI1BBB0AjSpkSb9ea5pGieee5bq6nmSNKTZqFHwHZbn53ELgmYzJZEWpYmdyKhBu52SL5dpNhuYhs/2fdfTbfco5H2CXoDmlNCtPK12gG6mKOlBluF4Hrt27SUOYoIwYHWlTS4/hOlqPPTYEaQoUizmabVqoDQsS+F7Bo7tEIYx+WGJUorGQka90cX1PAoDFaycT5b1UCJEiQwhUpIoRqGoLs+Ryw8ipEkad1G6iZDa2pqWIVOJPLNAOOIir/coOaPU4za2M4CSBqsrK8T1eU6dPo1fHka382TCIE26ZAgMwyZNFY4GcytVBsc3YhgGlqZRKJUQsk29vozUbDrdZUyz39NumhpJltBqN+l2W5iGjqlr9NKUNJbUVuukieL9HzrEjTe+hV/6Zx/n47/9G2zaOsnoxDhvfuNNHDp0Az/9kQ+xacNObGVhJC7lguD97/wIb3zzuxga28QLR45x08Y38R+a/4kf2XMjvmHx7JETTG2d4O3mGQ6OGNx1dB6/WEJpAk3LUAJqK1XcXJltO7b2g37XIeiG2K7DSnUFy9AIo37FzbYddENSr1dZWa0xNDxCGCUYps2je2HuvVO0Wm38nI9h6sQppJFg69Q26rUqSRwwPDJOnGREYY+Dr9uP5SiqtVWiAG679Svc8Lr95HM2lUqJTruJ7uQxpCSNEqSSKDtHcWCIMEwQKJSmMzIy3J+jtsPA0BiubXPm5BnKpTJKCJQUrNTqfPfB+9m1cztBEFK8c4zS3CjNTU0sLaVeXSHn5XniiaeYmJhk2/addDvL6FJgOh6xULSaVfKFMkmqcc8995HGKQMDFXKlEk8efoaxsUnyxRxhlOB4PmgQJymu55NkIHRFkCZImUHWZ7UeGR2lUC4TpxIhDDIhMKXO448/wfjkOFLTSFLIkphUKaRSSCDJBLd89jbGJwbIeTZuvkxKwrZtU5iWS740yPBwmfpqlZxv0At7DA8PIURCt9vBsi3a3Q5ZGkGaEAYhjuvTqC7QandxHA+lJFJatFpNbMtAIamu1NFVRrNRozI0ihQ2vp/DtU163Q66YZOaFoQdwtYyTi6PwMDw80RJiu971KpVEqGjNJdrr91Hq11FSgFpj8LAGAJFu7bEyPgUcSJpd+okkcDxCmSEfVWBSCCyiAvteb7dfISP5/85O0qb0ImZOXMn3fMvcPvtj/LnI98gEwJtSiNnubxw+CHyXspwEVyvQtDrEEUdNC3D0C2CXhuhQkwzjzA1lNlnZhbERN0Iy4AsE8QqJMg85hdDbFtHUuPr31mh0YrYtm0zpm5w+vQptu7awP1f/zqbJwqoMKCTxAyM7GJsfCeVEQ+pNErFCYoDkyyef5Yfff00o2WLcs5Al13GRvPEcoEcm3nn8If42F9/mB9724/x8V/5b/n4r/4q58+cY+fecZbOneU799zCyPA4oxvejK4CRNpPSvRXwCsj7y7+ftGXvejvrfdlLwZMl/qUF7dfDHivFFD137u84vr95/AyT85FD3W9u3mpnM4lI6y99/3n+9qD0Es4aSRrTvLlryz7fi6cSwNyKftkjZcdd5UC29WQo1c/16t/hy+NK0W/NWhNnu61cNf8Fxm8/iAZkR80eP1Bj/1hxr80eH0NRwEvV09Zf2uzAAAgAElEQVT7137lcS8GfJc+5JfCJi5uf6XK6PoJLsXl9zm98/7+9ve++WUow7pZun7BueIkFpfDrMUlx168jle8G1e735lAkCGyDNIU19IJ2h3Kix3sP/003TfvJ9A1LMvqyzF0unQ7TXbu2MZQZQDLMREZVCoV7v36vezZu5tivsCpkycYHR2h1Wz3AzvHodluM75hksNHnkEoQTfosXHzZlzfY25hHscrUiqXUZpOeWCQdE1LL1/Is1qtkcvl0aTGzPkZPM/tZxWRSCl44onvcdedd7L/mn1kaUoUhviej9L0PotmlmDbPlkmCHstpJA8+J0H2H/dPgp5j3zBJY4iDMPg1MnT5HI+hm6jK5Obb/4809umMHSDRrNJq9ViaHiIT3/6s4Rhj2KpwBdvu4MwihkZGUYqKBbzBEGIZZp9yDd9Yq1+Ty7k8wVWlqu8461v4sK50+gyRiQJN3/uVq6//joMLWV8KIdjwvxilYHSAKu1VcoDffKcwcFBtm+fJk5CiqUyYRAyUCli2YpcLseGjRupN2q4nku93qDT6WJbNgsLC5w/P0OxUgKREKcJ+eIgmmFTr60QJynOxT4y2ddnHR+fwHFcPN8DMuKwRhZ3yE4toH3rKdi7Besvf4fFA9O4Y2NouCwszFAq27Q7AVum9+LlByCKEN0OieciVJdu2GLm5Dcws7PEcUgodBLdBmuAocm9ZJoHmULPYrK1Z0NTGq1Gk7Nnz0JvlkI6S9iYJVQabr6CkD6dUOKXx6hsHiPoSWRm0aotEEdLJCLCLeRp1FYp5l2iBDSZw/N9wijDlB66ZhJEITm7gKLv3EyOr3L23AzHTg/QWm5w9Onn2LjSQPoe+uRoX9JF9jUuDdOk1wuxbZtqdZV8wUeTsq8Bm2Xs2LGdRx99lInJzSgl0XVBp9PE0A0s02L+wiwqS8gSi6X5FWpLC8RBE0OlDI1UCOUAdn4IHYFbLOLky8SpolZdQZLR6yV9pm2h1tABMYZhImWfNTQTCbXaEhkxpmmQyYRCcYzDR57lxWPn2LBlKzu278PJWXTDGr2gx+Hnmrx47Bx7d09h6D02ThSJtaC/DgU5llZrTE6MYDs2juOQxjFKSDTDBLI1Ep1FTMOk1a6TK7hIZa37Z7y2vj5/AuNtB6kNGJydPcvExHZ0yyNOMixd8uD993HgdW8EwyJL+7I2//GvP80N1x1AKUmjscqRJ59gett2gjihUV3GcyzCMML3PTRloms2lukQBoInv3eEoaEKmmZhrUGaTdMhjlIkGXGUUsgXqK6u8PDD32Xr1C4+8pGfIcm6bJgsc+TIYU7/4f9K4fQ8//rOO/j5X/wIUmX8xsd/l7u/djef/NTN+Pk8Tz31FGNjY+iRRuykfLf+CBu1SZqNDmOTIxwcMVBKcVoOYghJEkcsL6/g5fLolsO3H/w201un0TRFGEZIIbBsq79O6S4RMZZjEQQ9FIJnjjzN9p3bqNereJ4DIsOxLZI4xXFclNL6yQ0lOfbi8zi2SSHv4zgeSZqSJiml0gBe3mXm/CKWXuDe+77JwTfcSLnYv18njp8mnxtAafD880c5d+4c4xNjWLZFksSYhr6GNkqIsphc3iGOOgyUcggp+d6TTzA4WAb6UlKu4zC9dRrdsHjsySP8fPuX2aS2MH/DOY4ceYoNE9vohTFj4yNIlWAYQKahGxaIft9rPlek0+lg2ya79+xc0wFt47gOA+UK5dIQWRazvLxCr9dDCIFpGH0CO8Ok3Wqi6zoXzi8Cau0eCaSSfPYzn2XXrt1YtkEiUgYGB9A1RaNWxdY1lKbWSBT7vfa6keOhhx5jx84p8oX8WvDZT2Q2G3W2Tm2GLMG2XZqtKvl8gVazQZZm+L5H0Ovhuh5BLySKEjzPp93qggjxcwUyoUiilDQKSJMIv5jvtyhYJr0ooVQe6EONu12QEcXiGqxYN9GkRq9VIw5DTL8IQpJJhVL6WnIjj2crGrUmjdoKlUof4i2UwCTm8JNHGJrchmn0fZA46aDrBieOncN29P6aoyTn22d5sP0Ifzb1b3jb8Nv6qAkjoXvyPpJej6GB9zJ65C20Ny8Qxj1MBfXVOWYvLLFhwu73rIcBpm2TJAm9XptuJyOLXcK4SSYVcQyu019nkRmZEiwsZsyfq+PaOY6/+AIDhRIyMckNDbF121Z6UZuNG7YwUBogy1L27pqi05jFtRRnLqwyPLGDx598lg2To9z/ze8wPj7El+/8EjumNpL32mRJl7yvYRoZhi4wtRQtv0Ix3M+7h97Lr/6nf8FP/OxPMDw+yL/98z/m47/5m3zoJz/K4088xIP338fP/eTPEJgZcZYhhOy3YK3z2V4pCLrUn78aQvBS3xIul5h8pSDylX36V/fb1wePwS0GybMKbU/6Q1VlfxATV6Eievka1/vJf3/o0Ndy3GWFL7LLEaD/NXi93H4Y2PBrDUD/ISbi97H1rgWNrxS8Xrkkf6WHMrts26VZoJezSet7R9cvDK9hoq+fgHu2It54HaLgv/yZa1mgl4LZ9VCOK0zi9PtTXJed76XB75UWoyuxDUM/2FaAJiVhr8s9d9zFDQcOof/zPybZsQkmh1BSW9PakywtLtGsVgnDEMMyKeYLNFpNur2AN950ExkpcxfOA2CaJseOnWBycgKpCdrtNisrK+y/5hoKhQKDlQq1eg1d17EsC8OyiaIehXye+dl5zp45zbHjxxgaGqFcKrG4tEIu52EYOo7jkqLQdZM0jSkVCkyMjVEeKANgmCZplmIaBgiBbXsoZfDNbz3AhrFhhITtO7YjNEmn1cC27X7wAZRLJYIoJksSlNTRDYtut0XQCxgcGCCKIwzTYOvWHYyOjuD5LuPjG8jl89iWyalTJ7lwfobBwWGWlpdZWV3GNA2UVARBQJLE9Hohf/u3tzG9cw8PPfIkO3bvIpOKAze+juWlRaJeC0VCoZBH6R7PPXuEzVs20mw1SdMEsgzTtkjSlF6vi2naLC7M4ecdLNsniiJyea/vmFkOtmUTxRGu5zI0VCHTxNp35CCkRhgnKCFYWa1j6CaNRgPfc2i3W0gl6fX6urxSChr1OdSJBcwX54h//+dR/+zHmamtMD4+TioNFAqZtUkIkHqOdlQlSgMM0eDFpx+gPLiLWJrIdouVk4/h+RZKH2Pjnveh5SbJ5aZIlCRBIUSGnmYkcm0epykSQafdppSTLJ58jlazRmYbdNuK4uAEfmUjjl8klf3MsO2UaVZrCDFLu9EgTC2KpUFazRq27aJrPknWdw4PXfdGNm3eyPjkBF/4279FVxaVgTKue4w0zRie+AD/97/7S547+izvnZwCUycr+BiaTpr2+7tM03ip/8iyTFqtJq1GG6UrlK4TxRGbNm9BUwrShLm5C5imDhkszc0xN3OOXrsP0zW0mLwnGB0tYeVMBisbGBjbRavXJ49y8gUyYfDpmz/H5Pgo+VwOz82TyxeQUgMlieOAeq2JYdi0221cbwDPKaApkygB03ZQKsJ2dTZPTVMsFVmY7XDbl29n2/b95P0BTDfl2mu20WnUqK80OXd2keKYRYbg5NEVvFyJfCFHo9kgl89jWjZpBkgFQlKrNTh16iyGoZOmEX7OQ0gLSC9ZlyCJY7RnThJ94CcwigU2bdtD1JOkQiBkRq/dYvu2XQjNJMkkqysL2Ibg+v0HMHSIwjblco6Sn0MohaYpBCmeY+K4Lp1WzLPPvMDIyCi/8eu/yf59B/ipD/8MP/8LP0ecAAj27dvPm950E+XyAKYGYTfj93/vdzl06Fr27N1DnIQYhuTsuZOsLM2hKYOhp07iC4l20xv4U/6UJ63D/PF7/pTlpVUOve0gcRzw4vNHGR4bojhcZl9uD3914T9g9Wz2bN5Lq1Pn+oH+fXih6xNHIZqm4+dypElGmmVMjG/oa8l2uxiGQdANiOMEpen0whRdS+l1Ozi2Q7fdZdPmzXTXgjaxpvmrpCSMIsgEx148jmXZhGHA+MQoSpMoTaNe73Lm1EmGh4cwLZswScj7BXzHY3rbVryCh65iIKJQzmPaGqsr84yPTzK+YSMpGSJLSZJ+O8dFZnwwWJhfJOfmOPrM8zi+x549uzEtk1qjhmGauLZLo15Ht2zKg8OMPTGBZZu8sPUZKoMDZJnOp2/+FDt3bcUyNbqdJqaVI0pS0jQhCXtkQqxp5ib0gi62rWPZJnGccOrUWb58+13s3r2DXM5DSoHv50jiiDiKkULieS5Br8tAaYRnnn6WBx94gE2bNuA6Lnt27SHoBQiRYdg2vaBHdXWFQs5ndWkJO+dTXVnFsRwQOoZhUa812LFrGsMwEKIvTVav1xkerpAkEYYmCHoBnu+QRBm+52CaOvd87R7Gx8bRdZ04SQl6IZ/4xCc5cOBGEClpKlFKw9A0pIJut0cUxfSCCMu2kZqFlBqCDE0JigMFsizG83NcuDDPJz/xKTSRMTW9jQiFJGN5pUav06Hb6WBbOgvzM/heEV3XyeV9TMNGGRrVhTkefvRxTp5fZnZmlsWFKqNjo9x665dZWVphx84tdNpdjjdP8nhwmD+a/EPGl4fZsGGCIOgxf/Z+/OYpus40mxZ+Hl2apIMdTMMkjVM0DV48epRNG3KkCBzbpt3pEEcK29GRQsNxB0jSFqbpAxIlJa1mo08IR8bSSkK9OsOW6UEMo4dhCITUuPebx9FNgxsPvolzZ5c5fuIoy0tViFdp1y8gshjDm6AZaExMTvD8M88xPT1NHHcZGCizOncWxzKpDFQgDnFsmzhOyHQdVMpCeBQ/3soHB3+JL3zj33Ns6QR/8D/9GUna5qkjZzh15hTfe/QRnn34G7zxHe8iRUPpOoqETKgr+5WX2EWpw6v1Xl5anFnv/60nH8qy7DLljFfie0nTK6tUXO5zXu6nxt/SoCOvKJVzNbTmDwe1fQ3+uXhtwev646/2uhKy84qffYXTvexerv1c/71e1o+8boj/Gryus3/I7MhrtfWwh2TpNMJ00MZ3X3HfdVt+oM+ByxvCXzkwf+VxX3oQ1+9T8BEFf/2HXra4XDrGK1Ve12/KrrCQvJKtX7wuvUa5VnnN4oTjx16kMjqB/42nEE88Q3ZoD1JJbNtec0D6wVd9ZZXxDZMopdGo1RmoDGLoJqZp0gu6dLptJiYnaHW6bNi4EaQgDrvommJ4eBhNU6RJSrfbRYq+aLgUkvmFWQbKBVaWFrjnq/dQKha49rrr8f0caZriuj6tVhPPd0lTMAyHOImQIiPnOkRBXxamvxArpNKormnJ1ustbMfvVz50RV/JI6PVbBN0QqIwpdPu4LoOteoyGYpWo47nO5QrAxTzebrdLpquYRommqVjWz5pmpCJFNvOoesKz3PRlKJULPOZz9zKwsIC+/dfg+M6nDhxnCSJ8H2fVqvDwYOHkEKwdes2Ou0auqYI45gsjXEsE4TJi8fOMDwyyqaNk3Q6TfLFYv+7F5K5+QVK5UFEGtGoN/FyHo1Wk+WlBl7OJQh7tNodbMeluVaFFQKqtVUcJweZII1S2u0WURxQ8Ivcf/93mJtfZG5uns2bJvrMnpqO67hIJUmTAPd8DXV8lvT//Vc4B3bRarUYGBhgfn6eswszjFWGEVEbzTIR+iBSxEhpEXW6aCol661i5Xw6s8dRvTliwwR9FKu8nUymaCIjIyYVGZnoM9UiXn42pBAEQUCnE+PkxwkyHZEG6ErHLQyiDA+lEogsNLOL0BS+W6Reu0DOcIkokC+VqdbmqNdW8LwSYdwmAzaMbmR0rMLQeIWx4WFazQaeo3P+HFj2tRhembe87Sbe8rab0J94Fg3IPIs4zjhx4iSf/ewtbJuexrQ1gl4XXTcwTQuylIQMpWt9aLDSCcMOcRSQZRmu7dDt9li8MIelaTQay2Rph7DXRGQJudIQjx9+gT3XHkQJi0LBoVAq0ek0UVJj/75ricOw79QIha5rzM/Pks/15SSCXozv+wRBF82wiKOINEtpd5ropoYpEyxDYZk+s+dnGRsdYubCDOfOrfDckSfZMZUjizpcOHeeXiAwrDz+kAQhWTzfJ2OKU0F5sEKukCcBhKa9lA3XDYtisczQ8AC2ZaNpFql4Kc3IS5C0Vgd18jzZz74R0+ySBikr1RDTtUmzhNmZGTw3x0q1jmHZdJqrqDTkwoVTjI4NsrqyxOLCPLZh0mi1cXyfcsFn9vw5zpybod2O2TC5mTvv/DK/8iv/Ej+X45f/xS/h5yxSEixL56Mf+wieZ2MYCuKEOJSUinkmJivkSx5nzpykWCwyOjLBSGWUWrXF+OkFlpaXedxMmNuyiGXpZN8V/OxHfpZET2hUa0yMjjO2cZKYjEq+jGinfHH2Dtyqg2MZ7M1FZGnCJ+97htENm8iyjNpqlSSK0JUiSTM+85nPcsMN15NlGV/+0h1cc+1+ukEPoSSWgqDb7TPASoXSNDRNJ4kTQBBFMQf+z2eZerrF6f1FBgYGME0L07ZAZghNJ8kkn7v5Vnbt2EYu74HUqdaa5B2dxx69H8+38Qtlet0aYRSSZv3AOp+zCMIU3bJJ05Tq0iq9bo8L52cpFcs88/SzDA0NYNsGSknKgxU0Xaef3+gnIXXDJM0kOd+HLCVNU667cCNCCo5tP0q71UQzDaa2bqJZryKFxDZ94iwmE/11odtqYDoGcRQiZb//XEq15hCC63hUKhVM01iDGqYoqSOBXq+HFArD0PqMw0nC9574Hj/14Q8jpWRhfh7LtHji8ScYHBzAMG167S62aWGYBp7vgtCRCJr1Fl+755uMjJfZsXMXmk5fM1X1ybgsyyWJ4z40XGXEcYqm99EZnXaTMAjYvn07nuf3W5CkQErBgQMHSNJ47X9fxsLiApYhyZTi/2PvzaP0uM7zzt+9t/b69qX3Fd2NHeAGElxEiZZoSopMybIiW0nsSTKZ8Tg+9rHnTGaxnUmcxOc4J/FJbMuSItsa2Z7x2JYsySJHlESKpLiIK7iAJHawgW4AvXd/+1L7/FEACYIARcmezOb3nO983V9V3bq13Kr3ue/7Po9puRArup0eGdvBsGziKKLvedi2BUKj3WrQabfJ5Qpcd8NtGJqi6/VwMhnCbouv/OXXmJvZxsjwALXNNcIwopAf5A++8EWGRkZIhAbEmKbDzj172bFrF1tbm+i6zvjkMLt27WH/3t1oWsTrnONYOM+vD/wS73Xfy//6x1/E628xs22Q+usPEtTW0OY+Tu4be/jtqd/ky+JL3Ov+OA9++2Eee/xJbju4naFKjjDSCf0+umFw+uQKmayN5cTEcUCcJESJjqYppIjI5rI06y0MTeK6DplMDtfNk3GrnD61wtJSG9vN8MG/82OEcUw2W2F4tEJtrUYhF2Loab2zmZ0kVx7HzdgMFKq0e1uMjUxx8tTruFbI1labc4tnmZocRKmEJInIZAv0u21MW6cu5jENnR8f/mVWF+Y5GZzkt/7tr7Jrz23otsWPfuAmnvjOA7SbAXfc+QFCIZEyJOGdweulcrYr/bvv5/9d6/8ro6/XTHGFN8bRpXK6d2OpVI54R53Xa/X/bwq8vnWVHw68Xm5Xk865MjvzWtu+067fiG9fZZu/Ba/A1S/W5VHFVOP03drl7L2XX8x3urnfaVbl7QMoza/XxvZ+X+B6JUva1fp52ZbAm4XvaZT10rZXj99f3sTVZrPeuLnE5Z+0USElCQlSyXT8JCkAFfAG+/A7RV65YnAI3pyBu9qxXjkzdK3zHQuBJEaGXU4feZmJ7ddj/NNfp7F7gp4lMK0scZRw9Mhx1te3ePbQC+iWw8zcJAkJTz9ziFw2x7PPHmJmZgZdl6ytbpLNumRzBrqmiMNUCqTT6aBrGp12D9OxEErxx3/yJ9xy663oukGv3b+Y6iuYmZtgZm47lpkC53pji2wmh21nSOL02BcXz1CuVun1PYQysbM5EhGRxBb9bsyJ48dQ0kqF4et1yqUCzz/7DOOTcwSBRxh6aJrkxReeZ2xiHN3QMSyLwA9ptTt8/etf46abbiSKI5BpOq2mdAzDQBMpaEUKiBL8XpsL5zeoN3osLJyjUMgxOzHH9l3bMAyH82fPMTWzk0zW5emnn+aG/dfjew2EUtQb61RKReIoQrdMbMtgY32TTL7K6bNLlApFojCgVK4QJYI4glbTx3VMWo0mmUyOfD4PaDhOkUKhhEwkn/9PX+B97ztIs9kkk6viBalurWlbrK6s4roOjUaDOPTJug5CJoyOjVEpF5mdnSSKfBzbYX1rHSdjIVRC8NrrcOwc6ov/BnNyCL9vUSxZaHqIZbpYI7uINk/x8iNfxdAdnMEJEpUn8Nvo5iChkSNYeIj62bNsbZwgV7bp5G9neHonui5JIpHWiJKkEytxKhfzlmEpBZlcFmQJTdfJZUvUtrokyRa2KiDIkChFTIIfOXT6PiZ1thbm8eM+niyTy1VwDFJHP86gqSJB4DG7azsj4wMkUY+MnaVea7G6fp6B0jY2N7og+nT6LXQDso+/gugHvLS6yosvvMjB2w5w4OabsCwHmYQYuglohLHA0HXiOERp6fMsjEFpOlGU4JgO5xeXaDTr+F2foN9HJD3wa5RKGbKlIht1jz37DiItG8uRxFFEHEpM10AKizjp0+k1MG0H085w7vxZKpUKAo0g8CmUssQkSN3FkhqJFIRJiOPotLfWaW2tI8yYbq3Ht7/zKCqus2fnbkTUZddsGR1JEiWEicKLFCGK0rBKyan6Jdpdj3033k4mlyESEVIZKGnR6TQxdUlMRNfzyDpOymQqQgxdEiUSRYQmImQcEJ25gJe3OD+Tp9eTdLsBdmmY0DPx/Balap7Aa6FrCbHXYahc5sypeVzrAtIqsLzZZXRylmZ9jXypiDI0VpcWMGTM+Ox1bKw0WF9Z5tP/8d/xox+5B8NQmJpkfXUJEZtkzZCN5eNYyqCYHyUhRsoeSoVMjE+yMP80q8sbDI9OEQiNrfUezXYP+b3n8Tyf7Ec+wheP/wGDw2VuVrvIV2epuiWsbAY9K0iSBrbmsXJumZvLB/ha6wFqzRp7Jm9gX7aH1BQrmVEWXj9JtVzCsV263X5KEGZozGyb4YUXXmJiYorR8VFM28Q0dAxNJ1ExidCIE4VlWSgliNFIiNCUhddrc9tjTeRWh2N3FpAojh05hu3Y2LbD2YULFApD9HotqkNV3Eye2maLB+77KqNjI0xvn8F2Mvh+QL3mky9UEEJgmCZRYqIrSdhPeOC++7jp5pux7RxCgWnrVCtjBEGTRmOZMPaw3CyhB6dOnSBfyGCZWbxexNn5efKVHGEU0Nza4LoLt5MkcHL7YVZWlsllK5iWJJs1adY7PPvMYaYmJlhZ2cBxDJQwiOII27bwfR+BRhSHBH6CVIpet8OjjzzF/uv3Y+gmuqaTxDFCuli2g1IJ58+f5eWXX2R1tcXI2Ai6mUZuc3aapj4wUMa0BbpSrC9foFoscGF5Hd0uooTgqe89y8TkFCsrF5idGEDqGv0gQaIuph8LhAKpbHxPIURMRESn4+G4ZQzTQNdNwihGypTPQRg64qLMUeT7vPbq60hlMlAdpFmvYxlpFodpKc6fW0g1XeM+uqmRCInUdHpeE8N2ULqNVDqaiBBKoIRgdXkZpZvcdOvN6EZMIiJst0DQlximzm23HSCXyZNxMkip0N083d4meWVTqZokMsJ1sgS9Jlu1HmvGFi81X+VPd/w21xVuIGmukq3mGb7xIPH8Ixj1F/jig6vcPf1P4ZjLZ7b/B0Ql5AOtn+DxR79ORne4YfcuvKRFu+NjuR5KZiiVLZSIiRKNfhiQy1WRRppl4febaJpOGEXp+0P00YSOZoQIzcP3e4yPT3Bq/hxHTyyzb9cUXj+m3+4Tmy3OHV+mWtYg6BPoOQrlUQIvIdQUOVfje0+9zPEjLzNc1dk+VWZ1bZ2JmRJerwOxjlIxjpOn7/c4dfIcA9OwEh1nr/wJhhtT/Mxv/RT/7J/9IrfdfIBziw2+9/w8J0+d5ZGHvskn/+7HiXUbkUhAkggIiVFXgMkoit74+3KW4CiKrgCbb35SH/rqUdMrM/eucDq5Whbj1TIar2WXdF61g+EV7b59n5fK/C4Hx5dqe68GCt/e57ev8/Zt02NKEriku/dugfgluzLSerUJgGsHwN40JWXKo3GpV9fY9sro7OUfpf5/D14vLnkXJ/xaFgTBuwJLl+/r3dnVZz3++m3/4Mf5TjflNcHhn9xPcvgk8vod146sXrntVSOvV5zT5N3Xub6VdOrKdmNkkvDQN7/B9tlZ1MtnML77HNqP3IzveQip0Wq0CPyAQy8c4j133skrh19l+/bZdHZ4xy7OnDnF3Nz2N0getm2bxTA0gtAnjhK+8IU/4obrr8MwLDTNoFarky/mEUJw84EDF8mWNPK5HEHgI4TAtmwazTpSKtbWVjF07eKxCBbPLZDL5jBMg77Xx7YdouhSTYXk1IkTvPrqYTY3NpiZ2caRo68xNDSApklyuSxK09ANRZKA42QZGhoh47okSUKjvkUm4yClxuBAlXw+j26aRGHE1uYmjmVxZv4MxWKGKInRdAMpwLZMDF1QKhUYnxjCtXSWl1ZodZt0ez5ez8O0LWzXJI4jev0+xVIOoQxIEqIopNNJReolAtexUZrB+MQ4cehjW0aqFaoplFBEEWQyNg8++CDT09M0G02+8cAD7N2/l1ptk1cPv8q9934UpSVYpk29UcfQNUxDJwwC8oUSkNZ69ftpGmJKeKAR+D7tdgvXybCxsUUuW8AwbLxT59GeOUL0+X8Os6OcOXWcf/Wvf4Nc3kz1AzfauI6Na0hGRqcIpA26Bd0tdEtiSUlQO0Nj4xjLazUmZ8bxY0FojVEpVxFCpdqHACK9Xy/R/l9tfFmOg1KQzWYxLAtd9uh06/R6G0ATGfr4fgvLFPitVbS4RxCZjM/ciO24rK8vYpoK20lQWp96s4bjZEDEaEcYLV4AACAASURBVJrA93wK+QLNRg1Ls6nVamiWYvvcdbQ7HpVvPoVo99B37cSyDEqlfFrDqmm0W20y2RxhFCIvOhNhFNLpdrBtE3nx+SOF5NlnnuWp7z2FaygMFVPIWXQ6LTL5DKZdYGx6F6ZbpFguI5V+UeLD4Nmnn6MyWEbXbAxd4joW8iLhU7lUxDANogg8r4dtO/i+j1I6YZDQ7XdRKiHy2zhWKhGyvrHG/V95gNHRYQarBU6dfB2v18GQIRtbDWr1Fn0/RrMMdv8XGTI7TNqnKlhagW7P59iJk5TLBTJZFyE0oihOJyTiCN/3sS7WWUYCvCBCSCuVaRKCTqtFu93CeW2R9p27SWanyBXKGGaG1157hd/8jd/k3nvvxrYUSB3Ldsi4Wfp9n8rAII6sEosSlcFRNCPCUS7z84uMTUzj93pYuomQFnGcMDMzxcc/8TFy+QLz8/NUygUWzp6lkB9mc2sZy1AI5aBpeayMge93mT97llJlABRMTu2k3QlwbJsg8PnlX/4lbg819uzZw8mhHGcGFjh06BDqWYvIs5mYNEBGCGUSdw1MVSKTMdCUgd8KeTJ5mv35vey22wgpONZzqZbLrK9vkMsV+OxnP8cdt99BmETk8jlGR4fxvB7ZbI6NjTWy2Qzdbi9NQTUsTNO++OyNkFLgeV00zUQ3NHY8uoymayx8cIJuz8MwHVzXRilJ4Pm89sqrXHf9PoqlPIaeRm1ty2Rubg6EIIxiWq0ur586hbpY20+S1lcnRNRrLfzAY3CwQoK4OGEjaLW69HsBlXIV03CIhc63vvlN7rzzNtbWVshmciwvr7CxXmNkbByBoFFrc+PyrQghOLP3OJZpo2SAriuk0pEyJdmq1escPXaM7bOT9NpdMvk8vu9hGCanTr1OpVJhdWUD3VBksg5zczswDEUYBYRBQKvZoNtbI5MxaDQalCtDNJsdev0++/ft4y++9Bfs3bsX00plrTJuhqUL58hki2ldqu/xzHPPM7N9FnWRBOZrX/0Ke/fuIp9zsNzsxVpqiSSh1+sTRwmtdo/Pffb3uWH/jbiuQxB6aEaCiAWe38c0THq9LkKAFDEkCV7fAwRf+tKX8QKfBx/8FoMDVcbHpvmrv7qf6cltZLN5TMOi73cxDJNOp4vjOkS+l06iRRG6phEGMUvnlxgcGsK2LTRdwzJcfM8jiSWakSXrmnhBl3pjk2arTpwE9PohhoqJI4++L5EqplAsY5oW/V6fr37jPuZHFvmPs7/G3swumvUu7WadPfsPkMnauN5Jeu0+WnEfU6vvo9Nv89j0Q0hh8tH+PeQyW2wbKxOJC0gV871HTzA1sR0h+vj9HrmcezEmIJFKIHUTQQRJWr8slaTf7aCkYqO2hWFkSWIbN5MjSvpUB2Z47uWjtFsNgkhSyGfpei3ypkESN7BNk1ArEWJx5vXT+L7H4RePs2/vHiolA1dvoUTM5NQkYRgAEbZl0/f99NrGAZVKlW6rjpOXLDROMBDvpfui5CP/4q5UJkm3eOa557FMmJ8/yW133E5lcBiUeGOyVl7hx13Nt746oITL/dv097cHmS79f+1o6tujsFfu9/vZm+D18sjr1be9PIJ5pXzl94t+Xq3dd8Ii7xZgXsv+JqLFV8uI/EHtb8HrpSVvXMx3Uzn8VtM07W1h9HeyHx68vr3g/Idr+wcfiELIa97w1wSvn/4zWFhGfuxH/lrgNb4ymp1wTaf+yv68Y6Q7jiGJOX70GLfceADx878J+3dyZGWJ4aFRojjhG/d/g4FqlQMHbsIPPJYvLDM4UCEKI1zXxbQ0BocG6XW7dDpdnnvuORzHoZAv0Ov73HzzQZaXl2m1etTrLebn5xkZHUQKQb1eI/AvpniFHrpuEIYRQRDT69TRNYmpGVw4t8Tw2BBh5KUOE6RRUMtCSsnS0jInTpxgZHCMTEZndm6C0IdSJcfk1BiFYoE4iYjiCMOUeJ6HoVssnF1CKZ1Ws4lja4RRQC6fJwgiup0OruuysrZGLlMgiSNMU2dosEq/30G30ppTJSVLF84zUClz7MRRKqUKr778KjPbZwjDPqDhuDmcjI1QEfl8DsMw8QMP3bARQmKaaU2elBqW5YAQ1OqbOI5Bq9lgq14jm8vQbrdYXVunkC/T9ztsn9uO6+TpdnuMjo9iOxa2bTE+Ooaum/h+F9DIuBqtRgNdM1g+v4JluxiGjhQJgRcQ+EHKvunYWLZJpVKm1a5TKufRDQ1OLKBeOI76N7+Av38KwxDYGYM733OQqekJnnj8KXbvvo7zxw4xPLkT3x7EKRQJ2zWeuu/3mds7x5/94W+zfPivmLthD2Njk2y2GxjFbQyN7yFJ3syyuARcAVZXV8lkMle9dwN8NMMgUQo/kkRdheME9NpnyGiC5upJQn+LfnODVmMD27ExM9sx3DKxDIGI0JP0uoscP/48E+PXEUQeppWmDRq6ZHNziaxbpph7FctaQTPngAQ3o2M9+CxSCLSdE+RyBTRd4Pt9PN+jkK1w+JVXqA6UiCIPlIFu6GhK4fe7WIYkDFOW71w2x+DQIDldUa8v0Gitoek5Xjoxz6mz60xO30gvjHBzNrqmY5kOSQzj42NITUCcRnRIQtqtDoHfRWoSoTRioaEl6TOn3/cwdY2eHyIIMLWAsFvj9PEjLCxc4KmnXuTuO29kbXUZIaBZ2yL0+xRyOZY2ffxIMjAyzK6fM8gVDIzEYPDDfeJuhpI5xa49uzEvTrK88ZBKIoIgJJvLISRohIg4RImUIbvZbhGHIVGvT/7kCowMkPzcp9DtLEK3OH32HARNfuqTn8K2Y2pbqyirTIyi50co7WK6auKRaBk+9/tfZMeOXTTWW9z/fzzI8MgU1++7jrlt2+m0WvwP/+N/x/vuvotETyflfK/DQLVMLpvnX/3Gv+PeH/sISmqYVoFvPfQopgW5QhY3W8RwckjlsLrSZKg6wtFXX6Y8UORTf+8TVI8tkCQRlU/cw+89/2kO3HSAf/ne/5kwaPPqK0f47nef5MDNBwn7vZRZVxcgJBPWGJ9e/X1GwwHuGDAggWO9HEmcpGmmhsGBAzdx+JVXeP7Q88zOTHNhaZGBgRLra1uYlpnyBVwk+0IIgjDAMm2SBPxeC9PUUcokkbDjkSUAntprki9V8KMolXtKEo4deZWZyXGyxTztdhulJKalMzI8Sqfbpd8POPT8C0xPTTE5OUqxlD5T+/1uKu8jImwnw9T0NF6/gaY0NE2hXazp/KM//nNmZmZwHBdIGB8fYWV1maGhQTY3N8nmXKampun32vhen9XVVW7fugsBHNn2Ek888RQDVUnoQxxbKNMgX3aoVocZGxsn45osvD6PmyulkcsgYnh4lGefOcT8/AK7ds0RRP2LHA7p+zAM0pTar3/lK9x4/U2p9IxpUiyXGRooIyTs378P07SICImimF63i9ftYdouQtNodzvs3rcHKRPiMCUFO3jrLZimxla9SaFQZHFhkdpmDdex6Xa6LC+vYZgW2YxLqZRF0zXiJKZWT995maxLkkT0/T4JMWG3y8bGGtWBAaTU2X/dHsYmxlhfW+PWg7dQr9XZdxFgO45Js1nHth0ANrdqZBwXQ2n0uh10TdDtNLD0HA995zsIpRioViAJ6bab9DodiqUKUjfpdzr0+z0KhTzdbp+nn36GmdkddLcW0wlPp0ASBiQxGLpJAgSTMGYM8wsj/zXzpxfZtm07oa4wlY238iJLrz/ANx7d5Kd++tcIvlyiW13nW4UHiKIONy6O8dJ3PXbugXZbUS6UmZkeRqgamtSwTYNet41hmrQ7Lbo98AKFYZgomeD1O4RhKm+kpAlqBMsycDMGSnOQWpl2x6PVj3j/++9mdHKKdmuL0bExevUFcjkbz49wK9P0+gIlIqa3TTA0PI2SHpbqQ28TN6PwejG1egfXNTAtnXYvJpfNIFWEFArTzrG+BpVqzPnWEjvVe7gwcpJar8ehw6/wX/38zzE9UeSZ7z3Gw9/5Np/6uz8JjokUoCHSKuTL3LbLgd2bqbwp+HxD7eIq/t7lPv3ltbJSyjeCTrquXyM78c02/nOC10t2LZKnyyPN12r33YLXH6a+9m/B638Gezfg9cqT+NexHxa4XvtCpt+9h36PcP65d5TKufL3q9V5Xrb2W/ZzrZrQy2e2Lm1zLZKkK39LkoTk/sfS3z9615vrvL3jb2lXXq1PV86KJe88gK48nmtd3yTyOH3yBNXqIIv/4Y+oLqzRvWGObCZLGMZsbdYwDYPVlWXm5uZ4/fVTTE9NYdsO7XaLJ554guHhYer1TfKFLJlsluGRIdbW13AuvjxNU0fXFf1+wPeefJJ77/0wJBGddoeM6+I6Nkkc4/shjUaTbNal3+9RqQwgpMSyLQaHhjlzZoHqYAUpoF5r8czTLzI+OYKUEsuyATAMUobLJCXecLMumqYhpSSKEnw/4Fvfeph9+/aSEFEulzBsm2IhQ7tRI0agGw79Xo9isYCUCieT4dCzh5mcGsEwEhqNeipRoBlIqRNHCTk3S5xY2G4GTTPI58soU0PKhFKhRDafw1AJnVYdTVN02j2yWRdIa9OSJCYMQ5SETreD1EwMTUdECYZpYtkukJJrlcplfud3Ps3BgzdhXUxle/S7j3DjDTcQX3xJbayv893vPsaefbuQQmPxwjkGBoYQQvHy4VfJ5Yvohs75cwsU8kUCP+aZZ55lanqC9fVVHMfF6wcYcUjy6CGSM0uIP/kXbIyXKWVtlpdWKA+Mc/ilQ0xNTjM7O8vq2koKxpXA69XJ2DFSBhTzGRqrJ3HiDrMzFdDy1Na3kIZkZt+PkggXKbSU+VpwEbym97vjOJeNv7em7Aguf3nrZHPDRDiYzgCdvkTPWHR6EYXCCKY1QCY/jlkeQGoxkGBYLqHXJuw02TW7j0QUiGWC78foyqLXbWJZisaWR7l4CMtqc/pMiUolh1QR9oOHSIiJZ4bQdAOIL9a4OgRhSKVcptfpYFsWmkrZvAUC3/eI4hBTt99gjM1kXZxMhlyxyPDYJNNz+9h93U3s3LWPVqdLtVwhjlLG6sAPeeqpp3HtlK1XVymhmCBOI6txguu69P2AjbUNvv61v8QwDKrlIhvr5yjmDFTYIO7V6LXqRGFMkgjCQJDLKDr9MI1uGiZRFKCbGWynhHIlN/+3eaQP6oVh5GYBNmyyd67jTtaJW3lk5KBrGnEUomuKJIowbBcpJX6rRf/kPHK1RvPMORZfPExFGhj1Dhw6Cju2Ufu5f4Dn90miBL/vMTE+hptR5LJl/LBHr++RK5TptdsceeUVGpubbJue4sknv8D4tu3ccuv72Lf3AOPDBaa2TTO3c45/8o//PtVyHi8O+fgnP8b4+BgikhRLZVxXp1Zbh0jnQx/9MZRI0HWD9a0tAmLmhofJ5wsYms3x42dxLcHI4AitboexyTFarQamaeAcOs7rr89j3XMH92/ej+tmSZ6OuO09M+jRBH/4hS/yyU99BKUaKNEkIkOcgKXbHOkdZSPaoKhGWGjDpi8Jo4hsNgsCtra22DYzzdzMHCvLy0RRRC6bx3ZcXDd97m1ubnLktWOMjo7SajYxTYvaVpPHH3+Mubk5kkixePYMt7zcJ45h4Z5pTp8+weunjvP4408wN7uDerPNtrkZ1jbWKeSLPP/8ISYmRun2u1i2zf333c9dd72PKPQIohDTMPA9H0M3UcT4XoN2s4muG2ysL5N1C3znoUeZmZmi0+5y193vxbVN1tdX0XVJFMUMDAwipYZt2xi6Tq2xRqmYoVHfolgpkTtVJMqErO5YZHZuhjDwiWON8xeWGRio4vseMg7QNB0EHD16miiCbM5lYeEMrpuSHxVLJaoDZXRdw/cTNEOldehRyNkz87z/ro/R7UWYlkUch2hKsLBwDuANkC4F9Lp94liwsLjIQLVIFMd4fogAdCnx+h627aTvW5GQK1WRCSydPwdCMFAtYuh6qvV9/X5Gx4dwM9DpemjSJpstkQrYCcIwwrJsalt1jh09yXU37KPf6+EHIdmsi2boKeN80COT1XBcgyD0WV1doVQq4YcxQkiUTJnjfd9DylTeyjBNDFOjUi0xNjmFZeh0Wk2UHmNZJiQxjdYWruOSJKCUiRA23/veIWa3DeE6BvniKImmoSmdwPOBBN2yeaz5JJ/kYxwcv51ctsjmxhaZYgYZr7F19Cssrq1x/R0/jXe+iH2kQrK9x8O5h5HCQX7V5ZbbMmQcgSZ9bD0iCHosrUQoPX4jEyeIIRES39Mx7EKa8k2MpkkMIyX6k0JjaaUL1JGiTb3W45FHDnN0/iwjU1Ps23Mdi+dPUyoVWDxzgZy9RRQK4jAkMUqsbXaQUvDq0dfI5i2iUPLQN7/NzplRpOxjWg66JZCaQEmTR797krm5YXy/i0Sn0fV49ch5xkZLRPo6tMZ46fBzXPeR/YxNjHLk2Es4egZb02isr6CLkO27dmJZJhGKWL61hO9S8OJKBuFrRWTf6pte3f/zfR9d19+IvL61jasDx0v7u1xe51oWPqsRxwn6rd8fvF7NhwbeIJO6MhJ7KaPwze3env77/bBIFEXft8zxanjjyj5e3r9rtXG1FO13CoS9m8jwDwNef7Ak6b+1/1vs0s195WD/Qe1vEty/m/Z/0Bz8v449+9TTSCkZavnseehl/IM76XSa2I6F5Vh8/ev3US1X2blzJ1ubG2i6xujoGEePHgUEH3j/j5Bx8wwPjRBFIVHk4/tddu3aQaFYwPO6QEi316bX6/KBD3wAz+uxtLSE41h0Om1836fVahAGMaVSGSHAMCSbWx2QGkhJvdlk28ws/Z5Hq93BMCzm5xc5c+YskNYPDw8P02isYZoOW5ttFhfPEoQBYRQjhMIwbbK5IrWtNkIoer0OQdRBSIjCAN/zsQ0bIQ1cNwW9qbPj8/xzh/B9n8D3yGRclDIIg4QwBIHi6LHjnDx1Es2UoEVoZoKmmSQxvPbaa0RJwLn5M8S+j9fpEngeSkha7TZRFBKEEVGc0Ou1UErhByFSKOr1Zqop62TSNEMv5OzZs/zCL/wCKyvLSCno9lp86EP3oGkamjIh0RgeHuTDH/4wzWYqkzM8MkEiNDZqde64870UixV63R6TkxM4jpNKIAiFUpLqQJWg22P5gacQX38asW874lufRU5vp1wpsLayjOf59PoJt9xyK51OP3WwZ0fJj83Qqq+zefYlmmuvc375DJE9yJf/5AtU8y596VJbbeG3e4gwpt3tcfnLLE7Ca6a4X2kykoR+kMo8iQBPbqLcPDIzQn58CtxxRmYOYLjDuLlJTHsczRIoLUaqBFB0w3larXXOL8yz1TiLFDpSmCjpEIXQ7/upTJRMs0tGRkb41//yd2lspIRfEoVITPr9NnEckaY+S5QukQrcTAYldSK/l8pVJGCYFlLX0+hmswEkGIaOXawwMDZHrjQFmo2mTDIZh9mZYSxD8tA3HwZgeXmNpQvLhFGEbVoIIWg06kRRiKFpZLMlEiR+z8PrdHnPe+5g187tbKyv8M0H7mPx9MssnD7MwutHWVpcZGNtg2a9hpN1UdN9Rm8tUD2gY1QkI9MjFGaz7P0vDe7+7QxxM8Q6OoHUTDxW6W/U8b41SNLUsd//EuatT5JMHoXCKl6/Tvv8MvLUIsnjL+I8/CJWI0ROT2Ht3M7I7bfhV4oko4N0P/GjtH/+Z7iwWUfFEPsejc11ksAjEpJWz0caNv0AZOhD5HPj/r0MD1T4/Kd/F9ecJfQtQPLMcw/zs//NP+SDH7qLMG6RzRn4YYtd1++nOlDE1jX0RBAGMWHoY1kG2WyWXr/F6sYKQeSTL+UYGR2gs1HjyYce5rO/+1liL2Rp4QRR1KPbbeMlEbpu0ut5cP0uJn/8w2iawdDoOH0vpl5LWFmtkcm1+fMvfYZ81sXvGRAVEJpieW2VE6dP8BOFj3LKP8Optsb5KAtJRJxAvdFAaopcIU+726HX7TI5McnC2fMYukOn06HRbJIkCdVKlW3bZonjBMexqdXqrK2tcc8H7yUMYHN9k2qpTBBGSKlQUjEzNcH1+3fzMz/905i2y6691xEKjeGhUQQaBw/eRhgGWI5Bq93kox+9l1azQTbrkM2ksmNSaYAiCT0215ZwXQMlEoYGh+l2+4RBwpkzi/h+iJAKIQwkJl/6s6+Rzxd59NHH8f2ITqdHHEMhXyEKJZXyMI5T4L69/zvP3v0d4iTCD7oUyhPk8iVGRweJgoCMkUMRsbW5TiIkN95yG2NjI2iaYnZuBsPUGRsfYXCwghSSOE5wnSyQoOk6ruMwMTmBJzZJVAtByPzJM7RrPTJukaGhEQQCpSQiTojCiJcPH2b77t0kkYdlGBTyRb71jW+joaHrBo8+8hjtdpdsJoeQKTng+Ng4M9tmaDa2qDdqRFGI7RiYpiQMDHLZIqat0+1tsL6+Sa/rEQYx7XaXSqXKzbffSafbww8Dup12em7DAMPQEDIijqHT6RP4MFAZJwqNlLBLaTi2DXFCLBKkrtFod/DDmAuLJ1EyRGppzaRlmuQLwxTyA7hOgWqhQpR0iOmCilheucDdd9+NFCF+IlnfbBMHXvpuNUziKGKptUojbHJP9QN84P0fJAgioihBCUm/d46ws8Ds7oM88+wTaK/kWNeXcLMFOq0GnfYqyk/Aa6P5Oq6VwfcaaIZPmBiEMehWmoatDINsvkhlIIduJEgV0u7VCYKIJE7fI1EcUBxoUCnm0KIya8tr3HrHFLHQuO2O21m+sMTIYJkwCjk7v0CSeGhKR5eC2uYmU9ummZyZ4aaDt2EaWcqlSWy3iJ6J8PsBntcmTtL05DCQSAndno+uGyQxFC249WABwk2yKs+GdZqP5f4J/+jv/X3yrsUf/9EfUMyPYplZksDnK1/+U/77X/xFwm4PREwo3w5Cr/xcyy+VUhKG4TVB7SVLy4XeGbz9dUztidD2vbv3+eV2OUDVdR14s/710nJ4O+Hpu/UdLtnl+rf/T7H/q/HG/4sir+Gv85YS3zft2mFzwbW2udLeCRS+2wjplb9fbdklqRw1feAt61+jV2/0+80b86059FdSW19932+eg6v29/Ji60t7FJcCqem+4vu+m/b73rveVph9yZKLEZm0eFu8bYAKkS5LNZqTt012Xdm3K+sFLv2tJwGxUMSJQCPiT//wM9y8/wYWnz3C+D//faL9OxAzM3zvyWcI+j4Lr8+zb/8ecuUCZxYXyeeyFHMZ/rc//zJ333MPf/mVr3LjgZs5/OKLrC2vU8yXWFpeZWioyvrGFpaTo9vp8e1vfptbDt7C+vo6wyNDfP7zf8Cu3dehGw65vEGn18I2S/hhyMr6GqZpkM9kiaKQbruLlArXtYhIkFLD1C0sQ2d2doLR0UnazSaCHs1anXJ5jCBqkc0VqVSH6bdXsXQbP4iJkhDdcLjhwD68bp1mvY5hZFlZOItUikKlSt/ziL0+XnCRtl6T6EqwfdcM+XwJpRyiOE3NO39+EZHESAm5XA5dS9LoaqOWppVZLkqTjI2PcvLYMe771hPc+SP3YLkWbsYmCCIsS+F1G0hg4ewqp06e5YXnX2TbxDgnjh8h41pkCgUa9U021uqsrJxjYKBKo9lgfHyKWqNBrlgmjPoopfPaK69SKZt0Wn2UpjhzZpHR0RFQ6SxpIZ9BiojFc2fJZl3CIGKrvoXl6MzsmEN2PeRLJ1FPv0p11zThr/xDMj/7Cba2zrFx4QSl4j4SJ6FcnuLC+UdorNQojk5i5ioQKbRYxymWqPsR0wNV7v9Pn6dz9gFmdswhnAKbG32++L98nSSJ+fJffpNP/vTPEgnjsjEhEcirzKq++e15aQSh5/UIfQ+v3cJvtwmbHoYW0G2u49caNFoLRJ2QjFlEmBLf6BKHUSrbkUhkAo7KI6WOlclj2CUMO8H3u2iaRt/vYNopsAn7hxBC8uwTbQ6+92ZGxsbJPvocJDHJ1ACa7iKFwvfb6HoqudTv99ENSRD5BFGMabskSJSS9PtdfF/w+c/9ATfccB2RiFBCw/N9dNO8mP4ZI5XCi3z8fh8RhyRJzOjIMDfceD2gaLWa9PptBoYG8AMf27VTUi9hYhk6Kqrz4osv42o+KmiQc/OsL58jiXVW1lt4oYmRc5j5eJabfsmmNGczfLNBedxk+qMmQ++TVK8D7bgGz+bpHAqwMEi6EWKpgbYSos9HyKMK7gfxrRD1Uhf92BbG2RWcRh0x0CA4ME73Ex+j/bH30JqbwNu1i7lP/iT/4N//T3S3z7BgaghDMjpWxLYtpGby73/rd7jjzvcjdAdNj2i3mpSLFUKvw/lz5ygVq/i+YPHcOmFkMbZ9klj42Mpma2uLTmuDztYFytVR3OwgrpPh1KlTFMslUALiLi+88Cqzs7sRKuH8qVcYH5/l8acOMTM1Tr9+gcxAme27rmf/3vcg9RaxLBHpBplinrDdQITT3H3Pe/j4r/wj7H3XUW9sYrZ19trXM0CFA7fdwtjYKGEsCWOdRBO8fOw1Hvjq/WysdxkaneLWnXfwmdc+g/B1JqqzxHHMseOnmJycIiZKo0mmorZRI5PLMDQ2RBR5BL0WlUr5IsO0oN9rk8m4RFGM67qUSkWkCImTBDfnoEybnY8tk5Bw9p5RojhC002UYRJFIZIQr5em+0olOX7iBJVqFZKUvToMPArFHJ1OB6V0PM9DU+kyoQxW1zscP3aGRquF5Tpk81lmZqdo1JpoSpHL2CQEuBmL3Xt2EIYx09PbSOI0G0Eqgd/vYdlp6uYLhw6Tz5rksnk2NrZwXJu+10ZpNlHSBhXg9XXavTaVgSoaik6txvMvHKJaqaA0DakEXt/nK1/9Cjt37cb3A5QRIxJFRHredKlTq3XI5UppVDOXRTc1LN3g1MljVMolWo0GbjaLmbEYHZugXV+lWMjT7afjNa0JTiBRHD58hNGxMSxXR0mBFDqmZZLgLvaBnAAAIABJREFUYzsFTMthcnqcNFNDp93tY1kpmRSx5A+/8Edks3lGJ8fQtYhGbQ2v77G5toHj5PncH/4x7739NoSUbG1tIZMITbMxTRvDMgjjAC/oYShJGAZ4fj+tfw9iPD/Viu11O2TzQ7Rabb79te8yPpXh8SdfY2ZmnFa7jVA+/X6I1AzcTJ5+r4fjmBSLLg8/8izbd1xPpmAjhCLsd2h3akg95KXaCW7OXs895QPc86MfwrYdzFxA2Qg4/djncGwNlZlhYvZOso/txpgG5ST8RfjnNJtt/nHm7zAxlieOPUh6aHqGONYplXQ0BZEfIkWArpnEkY6Vn8BysnTqi2ScCvV6G1NPZf+y2RI5Q9ENIhK6lPI2cSI4eXqLmw/cRrPT4ezZJU4fPYZSEaMDOSxLp9ntcfxsg2y+jGXGaIbNmVMn6bdDTh0/xNxkDqFrxLGBbdqQhEgRU61k0BUkmskDD59ifGwAXXjEWg4n4xKHKyTtcQJ0Rq+3OPi+95HLa3zwYx8jU8jz4APfIG6fJVceZWb3ATQRQ/yGBwpJQhKnuVXvJnKXvkOjN3zRq63z/aKAb13nrTKSl9p9p6CQ2hajtl3Jjvzu9V4vl+255LenP8iLmVppqdElV/5yIHql9M/lbV5+jn7QoNZb+sE7X4srt3undd5+LeTF47och7x1P/8fTxsOf/1ay37YSOS7tXcaDN/PrmQZuwRejdmD7yKK+s43yKXvKzVdf5B2rlz6Rn+u2OQSeJUfveuN3y4Hl1fT1roaGH2nVIJ3OhdvOYcipYkxERx94UWu27mX1dMbbPvV30PuniO5bpZ2s8n2uVkyro2mK4aHRnj55cOcPHmSbdNjuLbOwVtvodWs4Tom1XKJiclJhoeGOHL0VW665SYgIZvLU6ttkctlmZubo9XsUa5mieOA4aFJKtUcmlJIKXAcl8DX2KqtMTo2gmkoSCKOvHaac+cXGR0dZWlpBcd2iOM4lTRQCiEFShNYjs36+gVGR8YI45hmo0kYpqlfQQy6meORRx5l145pZBIRhBGu62DbKTFTLpvlyNHjDI9MpLPyiWB9bY37vn4/u3dup99ukC3mkUIQRyHPPPM9xifnUJrJK68eZWJymgRF3jHx/ZBcoYLSbZqtOo5t0GzWKZWK3HbHQZQWs7qyjKFrWKaFUgbddgfP9xgYGmB8fJzp6SnCKGBoaJBSqYzSFK5rk8sVESohX66mEgpJgmNqJLGi3++g6Qau4xImfQzdJIpDRkZHCSOfOAZNKDzPR5M6UdDHtiyi0KdcLBIur6KtNOAbTyBu2Uv0S5+i9VPvQ4wNkcll8brNNHIUmhyfP8To8CSFvKAwNEESZwlaWyydeZRQ+lhKY7yQ54n7PsP+2ZBekjAxu5/VlR7rqy1OHzvC+NggP/GTn6I8tYcwUW8ZE1cbB5cvvzTDunzmJJ2tRbz2OQw20L0+K0uvY5l9DNkg7Foo0aLbPYsfBeSzIxAplNBJhCARMaZh0qht4AU+pp2h14tYOHuOwcFhBBpJrKEphamOoklFfWuaL3/pG9QbTW5c2kIAybYRgihGKZAyJgpBXKzb1XUTEBdTs7hI6JESY1mmy47tO9FNDcNIr6OhG6RzVREysWh3uli6TqPRwPM8HNfCzbisrK7guA7ZXBbTNDBNkzBK0wwjDOLeFlq0RWdznm67zsbaBbZqdWrNLiQSx80TahF7fqLM7o/q2L5O85sS72GJfNomfl6SHHJQfxaj/ipB1iySDrgYiE6I6IbQD4hLGuLGUYL3DSJuG2TzxzJ4HynR/+A44sfnkB8bJLrFRdu+hl16ElsdRknF4VfOUioNsWvnTr7ytfu5673vxzQMAs+j1+vhODa333E7tm0SxX3iqEu33UQkEVsbHWZndxFHgnvv/Ti/+iu/xs4dO7EtyYkTr1EoZClkhrAtkyjwWd1YIZNzaDZajI1V2dxco1GvcfTwsxy85SCaYbGyucbY8CQIxfjoCGHUY2llkcGBKeq1On/1tQfYu3c7nWaNC+fOMDY2jGZlMIweH/rwBxgo7abbhsXzx3ntO4fZVdxHvdGgmC/Q63rs3n0dtp1nx85dDAwMMTkxwPhYle3Tgzz35Ldxhko41gJ7MmU2fcHQwMX00SRBiIT1tTUGh8eIBXS6qaSXflHbU9MNoighm80QJwm6ppEkCUEQsLi4SKVSYXNzi1w2g90K2KxqrGzTWb1wBkNGXFjaYmVlJS1tsA0ajTq2ZVMu5Hn1pRcxHQdN0zA0izCAo0dPMj4+mspWydSpVkrjpZdeZvuOHWzbNo3SFYjUuczkchTLZUQCjXoTy7QxDRvDStOj45SLCF2ZCF3SatVxbZOBShFN0+n1+5w8eYKJyUk63Tqm7kJsXIzI9DE1haYZ+GFCLpdnenoC27ZTQqYwZG3pArfcfAtePwKpYRg2sRcyf2aRcqVCGAeYpokQMH9mPuUkMA3OLSxSrQ5g2xa5XJZOtw0EaEonl8uytbVFJptFqpTROx3jHtu3z+G4NlEcEQYxUgk0JdA0BSg2NzcYHBwgDCN6vT7/J3vvHWXJdd93fu6tnF7s192v8+QcgMFgQBKBIBhFUeIq+4g6VrJW9q5s09ahzPXxSvIxd9e7liWtrWSJtChSFAmCCSQIkCAJgCAyBhiEybGnp3P3y7Hi/lE9g5lBIxDSH3sk33Pe6dP1qureqndv1S98f99v3vPo9fo0W11002Hbpm3EJGSyOWZnLlEqDoBQyOVTvdWDB28iDjsYpoVtOfS6Prpu0Gw20CQkkQ+hT6ffI5P1WFlZwfNcfL+DpusoUqXZaGKaHpmsgWUWWa7OsnPnXqSMsW0bqSQsLqwwWMqwsjBPq92mUBzAMCwmxoa5eOki/aCL7eTotms4dhFDN3mu9yI/U/op/DMhoXDJD5UJogZPfOk/knNXODk9z9j2D1J7qUTu/Dhia5t+p8VMc4lyr4B3XNDvdcjk3BQFIwWaJlNODL+HKlOyxW4IsdTxQ4uwXwd/lSCscv+3TzJaHsFzVVrtFeIgIpYSQ1UgUfBji537DtHstMhkPbI5l4mxKTZumqJbv4hUVRqtiFxpC4uLFUZKOWYuXmJsfJRHH3uUTRvGyXoxumJy4fwstmOhKAmqouF4BmGYkOCwtNhmctQjFhm+/M1T7NpUQCiCi6tLvL/4c3ynfy+ZTKpp7LgZyuURHnn4Yd574yTf/uZ93Hr7nVi50jWowSvvxDUH5nobeb335XoETW/eLn9jp+yt+BB/G7/jih2wDvj1+mu7vO/rjeFvg8b8u26vdf+v3efa///BOK9XT+bXgxKsn4198+21BHvfTFuvnhRecV61TTe/iXOsu/VV+7wik/PK9b468/o6Y+PVtNmXZ9flbcm9j6SbP3THq3D7Vy+u14KCrM+q9lrX/WqGtquPi+IYEfo0Fuc4dewoU4rD0Mf+ELlzK/He7RBHtOt1lhYX8P0+ly5dolweRNN0FuaX2LVzK2dOn2BichJFkXS7PQaKA8QIavUalmVhuw5BFOP7PlHQwzAM+n4fRWpYlk4Yhmi6Qa26RDabY3llGd0wOX/hEtmMhx/0MQ2dlcVFJiY20+400XWVgWIJx7UJfJ/Z2VlyufTYRqNKIiRCRFi6SbPTJokVCnmP6uoyhpsysE5OjtDprKCpkm7bJxGpfFGr1UJVBROTG1haqXDs2HGCoM/o6CjPHn6OgXwe19JRDANV0UiSlFnYcnSa7Trbd2yh328jZIyIodsNWVltkMnm6XbbOI6F4zoEfgAKzF66xKWZGXLZXGrMCIXQDzDNNGper9VBCjIZD/0qtskwDFFVA91QaLba2JaNFFBZXcEwTMKwTxxBFIPjmti2QwI0W51UpzeC1coqjmWjqBqmobO8vEy70cR8+Tz6c6eRH7iV6Hf+Z5IPvgN9fAjHtkBIZi/N4No6tcoKucIEXlFiGTmOHT2MbtkIP6DohvzVn/42k8YysyeeY2HmNJHw+d7Tj3HbO26nH1g0mnD6+Ckuzc4RhX2GRseY2H4DsdCvrI31XkBXB3i63S6WZVGv15F+l4wDzZWLNCqXCHrnyRYLLK5EhJHD0PAGut0qmh7QrDURaBAl9PoRpqEREaCpJu12HUSMZWfQDQvXddMa5CAh8GM0VaHb+AFxnDA7M8SD33qY3/job5B59BlEktAaHkDTjRQiL2J01UkDK4p2hVjiMnpDUVSCIOLUybO0m20Gh4fQdBVJ6gBcfuQEQcDDD32fRx56iJtu3I8iJV42hyCm0WrheRkUVUNRBUEYoumpvEYUg6rEVBfOUFu+SHVlmcpql2a9T7E8ztDOEmOHMky8z2Zb0cT7iiR6RkWe0DFXJRoK6oYs5AzkvkGObu5S/bEy5k9uI7h1EO4o47+jRHx7mb6xQjiiEt62EXPQIHYVFAVUXUVRXaQwCWONU2fmyeS20eoOYOgGhnKGjWMneOdtA5jmHPv3baLXmua//OGfs3nDBE4mh+M4CBEjRAo5NA0FXVXotbv8s1//KD/6wQ8RBBEf+cjP02w1OH/+JENDGVaWFzFtm14n5N9+/N+wb88unnz2GUbGRlhZrJDJ2Di2Ta1SZ/fOnUSRyvHjJxkoFlAUhbmZWTzPJo4i3IxHu56gqII/+P0/wnY09uzex8YNY9RqK1hWhgsXTrNx4wYaJ+b4n979Ab7x6H387m9/gvHxCf71v/oXfPjHP8j3v/8YH/utj2OYFlu3byFJEjKuTiaTzj3X9dg6uIMx61m22gZn/AyV1aUUFmoYtFsppNZ0XS5DzBUEYRRg2w5SpmQtYRwQBAG+76OqKivLyyiqipdNA4WQcGbKprZ/ONVWNVLSplazi205PPz9h9ixczuaqiJFWr9p2yaWk0FVNTRFo1arE/gBnmczOztLsVik20klfhzbpTRQApGgqhJN1dJs0eX3V5xyDkgpU2Z1Jc3CfPWr93Ls2FGmNkxhO3bKrB6GQMJPfefX2Tt9M933Vum203FCwgP3f4eR8ggxPaSM02d5u46qxikcPEqZ2XVdx3NtFEXDME0+/zd/w86dO/A7PU6dPsPY+CiaCoqi0e12KZfLVCoVVEXBsW0uXJjBMk0gTuWHZEIcpGvO9bKIBFqtRjpfFYXZmWl0XUPTNRAiDV4lEZd1a7/1rZRv4czZMxSLBWzbZmb6Ao1mm8/99ee5+dAhxNqzwMt66JqCaRjEgGFYqIpCrbJKJuPQD0JUVUdT1FSnF1KSLU1nbm6OoeEyYRCi63rKGm2paTmBH/LUk08TBYLB4Qyrq3127NycMg6rCu12J0VzlMr43RZCSvL5ImEEgR9gWQYDpQEc10YIg3vu/ga57BB9rcEznRf57aF/x8c+9nE+/JM/g2dCp3Ycs/84nW7A0MT78eUNjD27D9/pIws+GSdD86EuxTMBBw9sJwz6CCUkCFQQIaoqCPze2hwWdLotLDeD6+ZpdhvoImR1dh7bdunHHcZGc2hKhCrVVM86TtBVSbcXMz3fYvrSCrv27EVRVVzXptPrEAZNov5sioqyM2QKkwyXx3FtHdvJcub0Re666y40aXHy6BGGhgzyhRymKUiSPsla7XOcBISRz+CwQS6jIxXJ0vIyWyazIARWRhBWSzz/8kvc9MHt2J7Lxs1bWF5cZt/evRRsCbHP7Pwc77j93QTJq0mahFw/a7pe0uONILFXB4tf/d0Pn5W8vsWLgqQtEOtzLv7Q7ZXrfLX/cnUC6PL21zvH62Wt1+/zlbaeY/x6x76Zz/UErJdreK8d77XX+A/GeYU35wT9bZ3X9VL1b7VdHkNw9mngzTmvb/LM113fGzuv149JruNwiquox4UQ8MIpyLqI2w+86ft6+di3Wqv7WvvrSUjcqfGdb32F7ccXKfxfnyPatZGlcpF+t8cD33yAYiFLNpPBMFR27NgGoodAoTgwhN/vMzk+yszcIkJojI1u4PkXXuKpp55lYmKS0bFxjp88yXB5hG6ng2WodHtdsoU8miohsfjaV7/BxOQgGyc38vJLJ3AzLl7WpdPp8chD32ff/htI4pigF/A3n/8Ct912iCQJMUyTZq1JxvPWmEsFtuvg2RaamcFzbY48e4SJzZO0mz6WpSCJWF1t8f2Hn2D7tp1IVRIEUMjl8aMIpMRzHaT0EVLBdrIUiwVyORc/iiiVRhgeKhHHPRLF4PHHnqQ8PIKqaiRRQD6XI/J9et0uAnjx5dMsL9UYKY/wpbvvZnxyEl3XWF1ZxTJsTMvBsVy+8+BD3HLLQZrNOs12m7lLc4RRjKJqOJ6FYejEcUSj0UxZFNVUoD6OBYmM8SyDfq+HVFRqjTr5jAUy5ty5iwSBJJPNpkQMqoFuWAipsLo0R2GNgCqIQhIEVgTeS+dQHQvxpx8nvnM/es4mjvqcP3uaQqGIH6akVs8ffopWo0Z5dDehbBJ0dQYKeVylz+zph3n++19g82iJyckhZLKKmszTXJ5n14Y9LDV7PPbESTTV4dLFcxw/v4SuiytSQbnhqVeCVGH4qjl8ed1IKdH1NABiWRaL87PkXQtTFehAPzJQ3U0UxvagZwcxikOYdobZi0s4asLcxWPojiSXHSCROrGIiDBIkh5+v4Pfi9AtjTDuYZiSOIJuJ0QQIePnOXn8JIXce3Acg9HxQbxKAwpFzixXyWZymFbqhJ89PUucxOiagaoqhGEfRepEUQr7nb4wx8kTZ9izayeKrqGqCiJJiBI/1fFLBO1Wn+3bNzA1OYIkYWZ2jsGhEZIkwbZdpFTRDYtur42b8Ujl/1KpqMbCSWoL5wl6Ee1Sj90/PcqeX8gz+RMqA/sTnL6C8dkIMW/R+fUdJB/ZQfIjG/HfPUT7Fo9oX4FkX4FkIkN+soztGUhNQ9VSOaUkiUmikGh2ASEl6vgQreoioRRUG20ymSHiOKHba1JvNBgZGUVRNECh1Yrx/QKJHMfvtzGsAMe4SNad5v3vjhkeeAFLPcFipUyMoNGoYBl5It9neXEZy3B5x623ks25WLaOpgsKxSx+uMrw8BALM3OMTW5nZeUSuWyOG/bexNjEBs6dv8DeXTdw7uw5Mm6O8tA4iV7gmaeOcM/nPs9EKUdhfACRhFQWl/EyRbqBwnceeIidu7Zwy6Fb+eSn/pT3/fjPcu7Ui8T9FvVqjYHSJpqtKgOfu5d/vGcf7/s//jd+/3t/zrKY5/c+9h/we3VcL8eF6WmeOfw0h265CcNUeOm5I7R7XSa37sbIjFFAoRH9gDAJOdGykarE9TIkiUKnGzAwMIwk1Tzut7ucPXWKgcFyup59H6kkdHtdDEPHNNP6Q8u2yeYLxHFEGISYuo4mIPL7JFGKUImiBNvNUhwYYGpyAlUAKDzwrQfZsXsPUlOxTJd7vvhFhoZKnDt/mpHRIXTdIAwCwijiwvnzWLbDgw9+l127diGlYGl2Ds9xWVleXkO4KIRBjzAKME0d00yzxffd901+6id/il27thMnAdYaYgQhUXWLzcd3g0h4YeIJdM2kUY0IozpbNm9aQ0VIdNOjXu+S9TKoRAhFodVuYdkOQgh6oZ+WGXTaZF0Tz1SxMx7ZXB5DU9CVgDAS6LpOp90ik/FQVZUkTrg4PcfE5CRPPfU4gwPDNKsV6tUO03MLuK6Lpkg67RamZdL1fUrFQRzXJoqCVNM5UUkIaazJvg0Uh/AyHhkvQxKnzMXFwWGk0LjpwE24to6iCHKFLFKRqEoaoLQcFz+MCPo9so5JnEgM06LZbPL8s88yXB7A9TyiWBAJDccr0O/10LSUVFBVNXRDp9Pt0+v5CGJ2bd9Px69gWIO8/NJzDAxkUFUdXTewHYNeNwDVwLBdhFDo93ppYE8xSJKIenUFU7GxMgajo4M81XuWDxU+wMfu+t/500/+CZsmh8mpq5x77ou4tsPjz/S5sOiyo3wQ88kh2Nnh5eMvMj09x/Tpl3jfe7fh6D6ulcFyBPd/+xhbtgyhiJAkDpCaBUJB09L3RBIJcvksfqdO1OsjHclQLoOpJsRBQK/vIxKBYRv0O23CSOXZFy+yZ+/bUTWL6Qsz5HMFkkRDVyVxbwXTyhL7VYSeZ25umdXVKiEmGzeO8+0H72X6/BxJ1GRwQCEMIQxioiBmYb5KsZTHtBxWlpoUB1IVARHUGSsP4wchjmeixQFPHjvPz2z4NT7x7X+Nl/f41F/+NQduOsQ377+f//AHf85IwaI6f55mvcvmGw5dsQWveiGua/Nd/85cz3F9LVTf6+37t0lG9T9lEL6soB4Kr+r7rTvE653jzWeS3/i79bZfHzy43C7fsyiKXlPS72+TmU7WJWW9NtklpfL333l9PSdo/ajLG910cd3n2uPWj26sf8y1/cp1j30l83romuOvFmB+5RyX1/cb6aBejp6sD9VdKzK96llxeeJc/i/t6PKe4kqG6Kp+7jiAcufNV/ZhLWN77TiubZcZAV8L9nD1Inm96I8QoCAQa4LMdt/n05/4f/jxr5zAO3aJ+L1vY8XTcF0HUzfRNYPSQAGhCjLZDGfPnCb0Ezr9iLGJSeyMhdBhID+AaTm02h2Gy2NMjA8zMzdHoVikWMjy8tETLC2uMDY+iaokVFYW0EwHIRM2b9nE9PQ8heIgxdIAp0+dZXBgmIFCkQ0bxuh3WqlmqmOwZ89ewkRJobMiQbcdEkWClCwvLHLxzDlk7JPP5Dh+4izb9+4k8lPiibm5ZRaXGizOz5HLuoxPjNLtdHAdhyAMaLdqqFKwsrSKpruEYYSmpHWWp06eIeu6BH6fr371a8zMrpJ1LDJuka/dex9Hjx+llHeJowiEQs+PyGTyuFmbbN7Fy+js23cDc3NzazJCJWqNKq7tEcUhe/bvJhICy8uQdVws22RpaZFiIYel6VRXlqlVq2S8TEq6oVtIobAwf4lCNktltYrrecRrMFFkQhQK6vUmU1MjtNt1PDebzkcS4jjE8XIkMgGZMvkqPR/l4WdovO8A6u/+AjWaqImOSEBTNYSQBHGHysVp8tkpDF0yNWgiXI/W/ALL8+cpDI5y+gdfxaGGIw0kAbHSox8EdPwE3Rnks3d/DUPNUFmu8dB3HmHPngO0ehGeruE5PsPlPAODOzE1i1AoSAmKCIni14Y4Xd7uuUVagaDS7tJs95jYfge9xgU0miyvtikMZNCEg66nwvGOK6EriLsVlivn0c0xNLtBr6cSVxpki1lEpBGHES88/zym6fD+93+Q3TtuZPt2A4RDo1ZkbGyKWr3J4Pn5VGqg6NFuNKhW6ghpMDhc4lN/8ZccuOkAUpEoigEyJhGSOBYcfvpZbjt0CM3RUoKvOGBlcQEvn0MkBlEAtdUlRCIwDQNkgqZIep0mmmahahpPPvEkuq6T99wrxDlJEPD1L3+ZhblpyjcXmPwFyegtDtGKIDjjIo4PwtMm6gM+yTsn6P7KVtShTKobHHdRFRVNNdF0A6mYaSZHlSkjsqnRbFTp9UIMwyVW+sQX5uh2fZTREaxsCUO38LwsUSJIpIJhudiWkToQa46VaroYpoWp6ywv1zDsCVZXdOpVD0XfzJ996j5u3L+BjPE4ityHlx8joY0iSqAoaJZKqeQQhgHT0zM4rsb0zGky3hhCiVmtrZL1bHIDIwhFYFo6LzzzIr/6i7/GHXfdRaOzxPLSIhNjW6itLvGZT/8177rrPYxNTZGxS1RbVYpDDi899ywbBsp89vOf5NZ3fIDVeoM9N+xnuCC5+28e5YVjL/GOO97FPX/5x+ze4RE98hK1Sov4bXv5g8X/ytePf50v/PP7KA975AbL7Nq5lc1TozRXlsjoOsOTwxSK40ghWVo6j21pmMpJVvwKl4Iyuu7QqDeRUpDNOrRaFXTD4Llnn8O1M4yOjNEJIjQ9ra/WVYHfDTF1CyE0EikQqqDfD+l3+mnWTdHJLvi43YQgZxLHEtv00HRBHEPfD0GkGe6NG6bw+x1s06DbD9m1YytSJIyMjBMkCkkYM33xEuOTkwwMDaMoGoVCnkzGRdOUVDqk3SGIwXMzEEZAml2QCvT9HoiYrVt20GzV0A0DiZnOY6EhkZw/fZKDC7chhGR6/1l6vRjb0lBUA8dz18jXFOJY0g96WLZJ6Aes1hsUB4vESUQSxgSBQNWgWqul5R66msLyw5Dnnz3M8NgUyJgojLh4/hKaopHxMqApDA2XUCRUqzVOnbrA5q3b6AcdclkbL58DoeDYHpoqiPstvv71B9i4YZIk7jF3sUa73SSbyWLbdprJdixqtQqe5+D7EadPX6BYzCGVlAxKN5JU0kUmzM/PkMnkMC2PZmMV1zYhgU43wDRMOq0WtmUzWC7TbVexnWJqSMuYYy+8zMjYCBERQoKIIFZMdFUl8rt4to6mZajVL5DPDFAuD6PpNmG/SadXp91oQT9gudHBsWwkIJOEbqtFDJw7O83o+CixjMnYgiVWONE+x9ue2ckf/8f/F9vrUq+cJqu2WJ5+lmbLJcncxE/8wj+m9scSu6ThZ5pMjI8T+HVOxi+TG9bJBhqREhL0u2yZymGt6Z0bZiohI4npd/sIRSeKA1ZrEsfLgtpHC3yyXp5mrYKuq0hVJ06yJEmNOHZI1B6qajO1ay/9ICRjqoSRwPIM5mfmSTpLmHpIvxvi92MGy1NkS2Ua9SWyjku5PMzD33uCjl9nz44pmvU+pq5haDCQz6JbOv0gDXyqehoUTxKboy+fZmRinH6vhSojHFdAc5AbcndyuPs4t972dlrtOuMjY6gDUyjtBoPZHoefO8yPfOgXUbRUG1tIiYgUpAJxFHPZxE2u2HtvnEm82hF9LQTm9dnN13dcr7fpr/2ET6USmtot8VXbf/h29ViTJFmrd70WwXi1Vu31NanXf97IGb9G1eB1srRCiCvO61tJMr1eMkteYZu+2hdRuCIpiEBK+Q/Def27bW/lfG/mmNfYR7dRSlMo2aG30O86vbxBhOT6RX3572th8KEsAAAgAElEQVRlZq9+ILyRdtPlLWEYrrsw1tO7Wu/7N9NEspYhjiLmv/ckB/70fpoFF/UDtxFqOu12C8u0eewHj7O0tMjRY0c5eOhtfPJT/52dO3YzNjLF3Pwyjz/xDLt374YoYWFxkaXlZb75zQcIg5ChwQHGJyYRCGzL5MEHv0McR4yOjmKaOtlshih8JTrVajWQisR2LE6cPI6qSLyMS+D7ZLNZ/H4fVdeprixRKBZT42X6IrlcgXhN59exbUoDA1gZF6GkdYWB72MYOr7fx8t4fP3r96KoKrfefhthFBJGIbbj8OQTTzM0NEQcC3TNot1tEYXpeS3Tol6vMTQ8iGGaGLqJqqqUR4cZHCpw6NBN7N61O4X25vKYhkm71aKQz6MqOq6TodNtIaVFLufhuTbNRp1sNkeYCOIkvpK5lSREYYyu65TLw0hF0u12MR0H3bSIEtANHRB0Ox3y+TxJkrC6uoLrunR7PVwvg1AUpFQpDQ6RAPnSAJ12h8XFeWzLoNWokQhJkkSpHnOzC999CvkrP4Hzyz9NFEpydgnDtdEMkxgBQuJ4AyhJH81zEEaBjDfEUnUZN5nGMFRacpjTT/4ViAvkspKe38Sxxjh+9DyGnuXzn72PTRv20aitMFQeI1sc4fEnn+Pxw4fRpeCuu95OcXicwfHdSFUhRCLS3oliUBTl1fP5qnmvaBpuxiMIQqbGJ5ibOYuI26wsL5MoJm5xAKkYRGGC63n0wghF1el2e5i2pNvp4HkjxHEfz+gTC0m7HWOYJqMjYwQBbNuynUw2g1c4RLVaora8jOtZNNt1RudWUx3ioSK5jMc9X/oi586dYdfunezbuw/L0oGIOI5RRSrLoWg6xWKJ2dl5ysMDJCS02m0y2RwiEURhm0ZtiX67h5QhIolYXFxkYLDMk08dZnhoiG6vi1QUxsfHCZOITr+L322hWl3iqQvc9luDeBsE3W8CX9JxTpkY5xPUcx2U0238n99I9J4xFFUSxSGKJoji1Lm4DFWSSsoQ3mjU6Pd7mIaeyodcuMTqSpViMUf//Cy1aoP8zq0ICbVqFdtJs12apq2Ry8XMzc5i2Ta6rkMckSQRrVaTfGEAy8zR7wbc/fkvMT09x499+GcJ4iKVlSqD+cdBFDh7volIbLyMSUKAVBIc10OgMzu7RC5f4uL5ZdqtLr/0S7/Gr/7y/0rXb+G6NhJBp9Pn0KF38NjjT/PBH30PGzdsIkkkMbBj1y78IGRiagzFBtctEgeS//SJf88dt+5h94FDgE4+l6M8MoCkx6ZN23jg2/eyZdtWtm57O6XyKO6RC5w5c5H40C185vxfoaiSf3Pbx9GUmChWmJqaotfpcvLkCbbv3IG0bKIwgjig3aywvLzCxECF892LPNH0cRUHKcBxXAI/SGsbez08L0cUxhw/cYKR4RFULabXb7JaaZDNuHS6HQzDIkakGsSKQuj3CMM2hqHznt87xuiTC5y8YyAtN4hCFD2GRKR6omFAp92hXq+Ty+eIwgip6uiXYcACvvnAA+zfuyflDbBNkiRC03QKhTz9fp+EmPnZeQr5Ip/+zGc4eNMBpExYXlmkVBpAyrRGVVFlqsWZxGl5ST9E0wQJacAk62XYfHIPQgqOTD6NY7tUKwt4Xho4FagkqEgZp6URCcxMz5Bg4XpZVEWDWKBqBn2/i2GYqKrBamURU3NYXV1F1RQKpQJxkhD4IS8ceZGpqUlUTaHT7qJpOgjJ6Ng44+NldEPDcWxc1yVKQF3TTn3xyPOYpoFmZHjm2WeZ2rCBu+/+GgMlN5W1URSiOEJRVHRdo9VuoaoG5fII7W6LOI6ZvjCLALyMm5JpKSoCjTCMSWKJoTucP3eRYqGEZkIQ+bQ6bYQUOJbDseMnGBoaoVqpMThYQkiQ0uTll4/jeQ66bhD4qTa25ThIYVBvLtKoRUg1od328XtNDMshXyzxhS98hUszq+zcvpPFxRkcB5qtVZJIp1weIU4Czp05j6LofKvzff6X7C/zj276MIqXw3A0co5La/k8Yfc4sTLMJz/3bcZevJlNym7YVkM3U2LBZtXn9zb8F14un2H/sXEcL4smNQxdI5Yd4sTH70nCyEcApmWj6WaqS+6VabeWSMIuMtJptCsoWoKUOo/94BTjGwskooZpFFipBDz9xCqTm/Zx//3fZeumSc5On6OQL3Lk8GEG8xAnAZqqYDoFGt1U5iuXcwmjhF6/xy2HbuOll55lasRAkRGZrEVCSBCHBH6AVBU0zUBRdfpdECJioOSg6AmaWqDTqRLFCc9Pv8Re+04Kuyzmggvs3b8bTZGcO3mKeqPD1FQe0WtQ6Wrs3b+HRAiQyppTda3TcxlGvN57cj279rVgta+2KddL6Fy/7+vboevrvL719soYrk1wvdmM5w/jB13tXL5RYOCtoFVfa+xvcBTAFVZlRfl7nHlNkuh3rr45603A14rAvH5781ncNzoGXokIxfH6REZKdhAlO/i657jSyzrZ39fLOl/u7/oagTeKuLzWtqsjROv2uxYpUlX1dRfFa/1u6533+qhSkiQomgpRROz30WYX4Jd/B3nzXpJ9O5BSo9fpc+LkCYaHh2k2Ghw6dJDSYBnDsrjhhpv43vceZvPmCUbGRti2fSP16gqWqZHN5vDcDIauc+TI8+zbtw8hFRaXFrEsg107tzM1OcF9932TbTu20+v3WZidY6BYQBBjGjqGaV6JKo2OjqDrGobh0O91UBSFIIqRic/S8gozl+apVusMDhTSKJeqUq1WieIYdJOV1Rpf/9q97N29jyTx0XQVQcwNN+xjcmoDmp6y2VqWwcrqKps3byeOE9xMlgsXLnLu3Gk2bJzCth063TbFYpFqdZUwCNmwYQOqqjI2OU6c9CAJOXHsFF4ht1bLlUrLdFtNup0m7U4D01bRdA1DU6nXqjiuDYlEaHINjhYj4pDa6jK5/ADdbpdWq0UY+JiOjaqZCEUnJkGqCsFluFaS0Gy1ybgOjWYT3/fRDZ0wkiAklWoF0zLx+z5JEpPPZWnWqiRRiGaaqQboah310SOIX7wL8yN3IJIAwzLo+T38RHDqzFkyuTyKphHg4Bp9fNoEwqXTTtCjRe797/+Wvbt3YJd2o1d6JIHP17/6FOXht/GDpx7n4uwiI5NbWK33abYCQj9ky47tPPPci1yaX0W1DfZu38UTjz/Ene9/L73EwvEc+lGIIhUECWLtRX39nL9m3iuCTi/A0k2qqxX89jxDg4NUGm0GSmUypTJCqqi6iaLZuLkhFFNDVR0W504ggha2MULHr9NpzaGbGbz8ELbr0Wp26LZa3HjDXoKon9ZH2Q6WYtDo1uj2Omx8+jR6q0szZ9P1e2zdtpWDBw8gSSUIojgginyiKKS+vIKm6ynzq5fBzWRRE5+e72OYFoqiEnZ7tBuzKPSQQkcREYoi0EwLL1Pkke8/gWPp6IbO6NgohmGQKAp2PsG7aQb1lnNkHYPKIwnxlxS8sxrKoTLx7jzdcUn4gUHiD29DbC8gpExhjSImIUTK9FkUhCGNRhNN1TANmy98/h62bNpBxrNp1CsEfoTn5pmfm6PgZsiNjrLYb+FlvDWHEpI4QpGCamUV07LI5/NACq+ydA1VkaBIEmnQ7TYwdZWbDx5g85ZNRHGCZWjY3hgJRTQepZgLsb2bQAapfJWh0ukGtNsx//Sf/XN++md+Hs+LGRsb5X3vey+mqWIaKkeeO0y+WOT48XP86j/5dT76Gx+l12+jmxaJAoZt8sJLL3HwloMkImJxcZa5hQYFb4i73nmQUiEhMvIUi6OcO3uOsdFhRNIll9XZvWsfkS8Z2TZOiEr3/kcojwzTObCDlzIvMjY+xo8N/iS33/Y2ioUhfu5nf45bb7+NzVu34uXyxJqOoQmmz56gmPEoDZUhfIEoDvmzSy+wxZ1M67tNi16vD0j63R6XZubo+3127d7N2dNnGRzK0ut3yOZKrFYWsV2XTqeLqqytozidQwl9DFVj8/cWieOIU+8aRNXUNWiqQRypCFL5r1ptlXK5TBCktfhxFBDFMQ89/DAbN21i6+aNaJrEMPUr+uNJkpAQIwT0+z3yuQKqqnHg4AHiyGdlZQHdVOn3faIYdMOh026hKha6rtLr91hZqZDJWtRqdT79l5/mbYduYerodhRFYXrvKeZmLpIruARBwNfuvY/jx0+nv0PcQdU1kihO2V8VBcvW6fXbEAc0Gz1MS0ddk/XRVMmX7v4aBw/djOWYkIQkKJimxaYNm6g3qly8eIFScZhjx49TKg0SC8HS/HlUVSWOBZZt02m1ESLh9OmT7N23D8fxCEPB5s3biOOQDRs2Uxp00Q09DcQlkn7fJ44ifN/nnnu+zJbNW4njkNlLc3z7Ww/xjre/nYg+mqahaxaf+cxnKZWGKBYzJAiyuQy9fhPVcFEUA9N0iQJQ0BgdL6GqBkdfPsnJky8xNjGKKk0c26NSWyGfy9BstdAthwgFwjXnK7bRTbg4vczGDePUGg0SqXLy1Hl+9IPvQtcEpqHT64Z4XoHHHn2KleUVisU8D37rUZYmaywdXuau5dsYGM5gFYooMmD5whmKTpf66nPkS+/lZ/g/KTRHOao+TaE4yFPPPM5A0ebRRx7k6I5j5DIWH9HehR/6iMQnSgIaVYfvPHiSHTvLqJqa6mrHCYpmoGoGhj2AoXUJ+i3Onlqk3lAYGR2i1V1massEJ0+EZLJpViwWfRIcxjZNsP+G/RiqSq5UxlA1CvkMzdUzZPMeuiZZqXUYGJ4ijBMUNSFBrpVHTTFSHmZhZobSYJZet41QLFRDR1UkfhisIeMUej2BkCFRGNJp6nzzvhfZvnOCWAgMx+OpU89xc/cDZLfrzPoXcR2dW3Zv59nji3zhy59n90SWI0eOQgJbtu0gTNIA9GXb+Ep52VqQ9/p35GVbcD1d2NdHSF6xKq+zMV9t+75C9bK+I3a18/rDOHhvZHtLobzqXG9k61+93xs1KeUVvoo38o+uvr/r+RLrEVFe/dtctnNeqz75tRJm8PfceY2TH55t+M1FAv5uM6+vRIPklajC+o7wm3de30y7DM99K5GTN7oeRVEIf+W3ie99+Bq2Ya5b8Osd+3rtsnP6WuO9vDjCMEGTCVGzTuvHP0o0PkS0ezO6ntZU1qsVRsrjLC8vsXvXDuYXLlEsZGk062Q9l/GREeYW5hkYKlJvVonCgJyXIZIKvX6f06dO8c7bb8f1PP7bX/wFu3fvxrUtUp85ZM+e/RiGxdmz55iY2sDi0jKGZWJY5lqmU1AaKKFpGr4f8OlPf5ZtWzdx6dIlhsvjGKZKNl+kWCjSrNUYHSmgqAphFKPrLnd/4SucOHGCmw7ciKapHDnyPDt37kCRKnEc4wc+tuXy9FNPMTE+QbVawdR12u2UzbDVauF5WaamxgEIozQj5GXSGlrTMqlUKgyXh+h2alimix8IvvvQQxx5/hluvGE/mm7QaLYIYxAyJpvJsbK8iGO4CBFj2ybz83PYlkOzuUzQ76NKAyEUgiig2WiRJDGu69BqtbBtm2a9zac++RkOHjyAENDrtLFtO4WHqiqGlmawbdtJDVzDQVPAcQz8XhdD15Ak1Ks1pNCo1dp4WQdjZhn57Sfp/eqHKPz6T1CrNWn1AzTLxs56+M0Wv/nRf8mHfuQD9DtthJUhI3wunXoJ22hy+sVv0Jo9ymOPPMXszAz12WfIDHVZrS1wz1e+R6VXIXR3kRvZzod++p9w020fYuv+O8l5HqXhPMPDJb72xfsxzJjOSpUN4wPs3L2VoY27MCyDSKREMSI1u9ed09e8RCIQIqZZXcBWfGrVJtnSJL3IpjQ8BbGCIiAhgjX2X0UoSCWPZUbkbJ2VpfMMjW+n00xrbTEVKqur2KZNMWtRWZ2hVB5D1TWqK6vUlmvEMmHThk3o9z+GEoO6ZQrTdbBME1VR6LY7aLpFt9tZW2uQcTLMLy4hVQWpCOKwz9kzFxgeKdNtt4kDn4Q+3WaDJIxJFJVuPyGXLxIEAYoi2LJpI6ZlMlwuo2kqidVB23sO7abjRJWA1W/E1A6HDC7lsVsK4b87QHBjhmSzh7YlT+wYSNchISQRAimVNQbkgDiO0LSUkMwwzDU5ny7btm3BtDRWVxtk8lnyxQKOm6FYymONDqIWC/hhB9t0EEKSJCnBVRQG2JaBohm0Wi3iKEIqCmEMfthf+x0luqZSWV1C1xVq9QqqriII8SMfVXNIkjIyOYuafB1Fy9HpZxFSZ3FpBdfN8u733omiRRh6xCMPP84993yJAzftRyVieWWZsYlJNN3j3PQsv/Wbv4xQJF4uh+HYtCurxH7Ef/uTP+GGfbvIaHm+cs8Xmdw4hGpqVOsh3VDwkX/0q/yn//sPUaTkhr07WVg8y/kzK/zn3/sz3v2eXeSdEt6R00CE9p47+eKle9B0nef/+BjvfOfb6bR6bN68maXKKiMTY3SCAE3EIHxs28XLDkECmnwZQ+r83txjbNE2owqNIPRRFEG73cR1LHRDZ2JiAqkKdEtDSh1Ds+h3W7iZAppupnWOIkJRYmIkUtMxHYfaaoetDy+gairHby+hqGkdcspWq6NqEkWJicKE1dUK+XwOKSWtZpULF2e4+ZZbaLdbSCKkVIkTkFLjc39zN3t274QkWSMqS2s1EQkRKcJIVzUc10E3LDRdI0rSbG8cCV548XnGx0fJ54tUVlfJ5PLs2bOLJOyz/eyNJMDJrS/SadfJZgZoNNocvPkgk1PjWLaO7wckJPh+F+IIRVPRjNRhiYKImZkFCoVcavBHglanwYH9NyF1hb7v465pXEupUlmtMDCQZ3r6AoPlYUqDA7RbDfS1uvS//uzd7L/xprQEI4yRAgxLx3U9Op0+nmvyxS9+iT17tuE4OqqSluOktacpssHQU2d2z559zM8t8Nzzz3HLLYfYsnkrnW4Vx82gKgYnT57h0KGDuK5Fq9ni5ZeOMTpaxrRUkGuM0t0+F86eIwpBd/qEYcLY2AY2bhwkCAUkPeLYpzgwxMrqDPlcnn63z+LcEquVObJZlx88ephNW4cYLm3kwQfvZ+PmTZiGzu5t20ikJIxjTMtB1S2anR6GYbFn3x5mF+Z5oXUcMZDwR+P/lVtvOcTwSJ6sWqRdeYH28vNoSZv7vvwdDlz8fZrVLnJfi8GRIaqtZTZv2YGmGJw7e5yLBy8gRcwdi9tQNA2FAKnqSNVi9+6NJHSIwgRV1QBBGAuQkliY9FtVsp5BLu8xPKoQ+h10JQOJw5mzlxgaNDEVA0SbQn6AbGmMe+/9BuXyIKab5Xvf+g6TE8OoooJlm2iK5OJslTMXFhif3Ei73aRVb7N9+y4e/cGDbJ7awHe/d5hOd5HhgTz1WhvHNZEksJYV9bJ5ZheWyGXT8h7HdhgZddGNhJXFGi8cmUExGsz5K+yvvJvsdofP3f9JbnnHjdx2x4/y7OFnOHd+BrUzx6nT59mybR+D4xNILX0/Xm5SymvM0PWSKD9ctvWab1/nu1f3t9753qrz+kZjE8i3YK+zZheHb4rI6nry0zc1rnX2u3qc16PJXiF0vLbf1zrn/3Be19r/35zXNJqUXIl6XIZIAISXjhI3lpGZwTfu5YeY0EmSEIbhNU7smznmjfq5kkleRyrnh3Fe19vntVhZr+477R9Cv8eZf/EJBhs95LsOESYRjz3+GOVymZMnTjAyMoaiSOq1CgOlInHYJ5v16PV7fP+RRxgemSKXKxJFCZqi8/LzRxkaKyOFZPOmTWmmTCps27GDwdIgiJhadYWV5RWyuTzVap2jx45RHh4BBJVKhVw+h+8Ha1CxPpZl0+32GBubwPMsRsoj+EFMTCprE0cJWddlaekiURynZBW6y8T4BuKwjxSwYcMkTz/9DDfecCNB4PPy0aMMDw/T7/YYHhyi1+uSzXj0uj0UXSNJYiDBMCw0TaHT6eB5HrquI4SksrpCr9cjSQSO4zA/ew7bKnDxYiop8b5334FhmEhFYbVSRzMsBApRCEkY88XPf4XcQMoO6rkeUZQQBy10TefU6QvkCwUiYh579DFKpRKqqpLJZum0WvR6ISsrVXbs2EachDiWTaVaxXIcIP1NHddd0zFUUKVOkoRUqytoay+3yPdpNjvki4MsTs8xfPwiyfQ84s9+B+39hzCUAVTp0elFqKaLoto4SsQ73nYLnmMjkpi+0HGDDtX5GcLwEloyy/e+fi+lkT1s3zxFVltAdXayefIOXOsmfuWf/iYLTZt2X6UwtIHzs03czAQLF4+ycfMoYafNnXfcyp3vvgM9EkyMDbBUmcc3igyXR1LW4TU5p/Wc1+vXg4wF3XadTnOFuYsnGRrdiOmWKA5P4ocxjm6RlsQHCJEgiFFiBaFlmJs9yeryPCRVsgPbkbGB73foJf0UYtxuY+owM32afGkUW36OrHOGfmcnYRJSq9YYOXIGRZE0Ch6KaRL0AxQhWVhY4MWXjrJp00YgZVglFnjZLEJVUgknv0+3FxBGAYqETrNORIClGgwOllmsrDJQmkDVNIQATUmj7rl8gThbRd9zEe3gSUQzofVdi7nHKnTqfQabLlZD0v34DQQ5ialJQpFgqCZxJFlaWcKwDLrdHpqqIYWGphloWvrsjeNUSzCMuyBCWq0KjqtjmUWEiFE0hWq9gR92sSyDTruD65o0G20My0JRUshnu5lqe/b8kGw2ZdqMwhBVt1F1SRQHSKGSRAoZz4M4IYxivEwOkgDH81hZXiYMYnRrAiGLyPAHqGKVSOzCcTwURRLFfYZHCqwutNi25QA3H7ydp58+TC5rkCvkOXr8BJu27OZHfuTHUOJV6q0Ouu3QC3xefPJpJsbGOfriUZYW5ti79Ua2bJ8gN+zQ7vpIMhQGB7j97e/FtTJ898Fv8ZMf/iCdfpV/9S9/lz/8wz/nE//+o5QHdiCeOIKXcfBvvpNPHvsjLNvmT37pL/G7NdrNDhMTk2zZvgWhKszMXqLoWUBIpxugaB71ygpJeBjPcnms2acetRm1ynR7XRRV4LgWYb+P7bqsViroho6qKySxBrHE81RanYAwjBACTFNFiIhuL0QzHXy/z+GnXuSuc6nRdvbdoyRC4vd9FCXm2w8+wPYdm6jU5rH0DFIIdENncXGBwVKRQrFEGMdIElzLSplngxSGH8cwXC7R6XRI4pg4iWk1ayiqipAKJ4+fhATcjIuQKcu7oij0uz6W6RLFPnEcYegWtm2RiDTTl8Q+W8/cCAm8OPk0xVyGRiMgk8nihz1sx0QqCQIVRZWYhk6zXiGbG061zFUDJdHIF4oYhkKr1aHfS9lyVakiNIV6vY6haiAkzWaTXCbD8tI8mzZtRLfsVKIlCMlmMiRRzHOHX2Tv/hswLZUkiBEyIZvNAApRLLANSSFf4v9j783DLLnKM8/fObFH3DXvzby5Z1XWvpeqtK8IhAEBkhGNsds2Nja4bbdxe2u73bbHHre72zN4azDjeYzbGNxgGwNiMZJACxICoX1XqaTac6vcM+8e+5k/IquUKlVJAjybZ758bj1560aciLh5TsS3vN/71vqK6JogSQxa7TZLS4s4to1pWgAEYQBkPAWPPfYYBw7uY3JyCtfVyOVKrK42GRkZRcoU3ZDomsd3vv0YExOTbNkyTquzikojuq0Gfb1lqtVBlhsTKKVj6R7T0y+Sy1cI/BXcnE2nmyK1EE3qOKbDQw8+wshYP7mcw8aNO+kGCzTrih07t6JpEEcBYafLn33sk1x68RVIA5QMEFpCtdyPH/jc/uLXMccdPr3zb/jNn/t1brzxLbiuwec/eSs9xRVKXoPVqRb7Tv4ZnQDCsTqr7SUKhRKmFyJFniceOczRF44xe9UkaRzztsbl6KZL2OmSy5cJ1Gn8ZJEoyIgIA7+LlBqW4xIEMWgutqaIohZxEqCTMY2XSx5BMk//UA+O3YXIIU0kDz14jNrIXrZs2YFtSR5+8jG2j2/HNEDGCyAgiQJaXcGGzbuxc0VsyyQKEgLfZ9P4CJHfJVEmff3Q3+NhGiZBWCeNs+AVsrVRGxhDE4ooauBHC7iehiDCtUv013ooFQ2eODbBRGOSvfNX85mH/ztvevcVfPwv/45f/qUP0eqEOME0Srr0jWxlfMculJYi0c4+C6WUqHWcLf/XB6/yFcHXevteg9f1/avnP7PvLXiF87cjvWL87yN4Pfe7Xn+e517TmbjjzPb/f/C6zhTJ750bDJ0LMT33s1eaOM/rwvpJL43z6vucf2KojCHOtLn9S19lZOMYhmEQPPRZ0sWTGJsuednVveq1X4CI6tzXmcl85jzOwDEuRDX+atAEodaml8rc72QteNVvuh6x9rN+jHOrvuuhBOdjeVu/oNYTN537XSql0ITixGe/xPjf30f4lmvQHAcUuLaFZ7scO3qUVjdgdmYS29Zxc3mkZpAkJrm8zfCGUfr7qywvr2CZLiurdaSpc/r0PJqmE8YhxXKRFIlj6ywszGDqBnahSKlUZnF+EYVix65ddNp1cjmP3r4+klThtwOSJMa2TZaXlrAtm2Ipjx+EGdyZ7GFhyBwCEy9XoOXHVHv7MzbNNOZb376PvXt2QxoSxyE7d+3AyeXQDI3h4UGkJmiuLlMsF5CGwdzcAvlcHl2m2LaLEJIg7GCYBrqmk8Yxgd/E76xSrgxiWQZRFGA6DvlihWarTV+tl1qtSrPZ4dlnnuPw888zPFSjp5TD73ZRxPT0ltm1bweel0MpSRzFaDLBkC6W5VKp9qLrEpkm5HJVhBC4nksQ+Lj5HlzXxHM0LEvH7wbopp4xzApBs7mCYViEUUq345NJZ5gkaUouV6TT8QmjmJX6EiXNxXj+ONXnjsHV+0g++pskI72UbI2l5Tk0PaHTWWF+9jidxhzl6hDTE0eIDBvbltjFHC88/gSjW7fQCZsYkUIzB3G9Erd940koXsKRqRW2X/JGAsfm+YlpPFPjiqRK8L8AACAASURBVEsvZnriFCePHGZsuEqcOkRakaEN4+SKFrfe+kXm5pY5dGiCpw4d5spLdtBqNBjo30icKAxdrnW+vpQEOt+aS1NBsLpE7C+gW0W82iYsL4/QRFbdEYoUUEJDkb1Skd2Hqj09qCQh7kYg+igOuKRxA8fuh1Tiuh6rjRa1gTHSsIuhH0NoCulcTqu+yEj/MNZdDwGClapLMVek3WrRbrWp1WqYWuZUaLrOzORU1jdqmwSdDqen5rnv3u/w2CMPctH+ffjdTH/RtT3SVGNuYQXDcumpVllcXKSnp5Il2Io+9nXHMHdNolZT0kdrJCdtuosNkiRioFvEaUiC39iG7yXkPJcwySSWojjFsBzm55f5H5/4Gy6++FJMy0IJn1ZjDktLCbstJo8f57knn6BQzNFTrmJbeXQjD7ogCAKW5+YYGhxAkyb103N4lg2GvQanDJlfmMV2bAzLRDP0zMmADMYqBHHkE4YJaaxI/E7WPmFoxCjQBLabwSU7rRalUgGpge3Y+L4glcOY4ggqmSJRO/mD//QHXHXplahIEsY6k5NH6fqrvHDoCP2DG6lW+3n6qad45slnkGlKGIf4fpug3WSot0JfbZxvfPM+fvL9P83SUsCHfu1n+OkPfgANHceyKBRdoqBLoSh58vFTfOGLX+Di/fvYd/Eb+ZGf/DEUy7zrnT9KN24yOrWARPC15jGmxmaRMmFPvY9ivocnnnwawxSUS3n+w6/8Fu9+5w+xtDSLaRi4tsv/8l/+kNGxQWobbmK+uZlvfu1ejhWPs6u4ncMvHKG/NgTKQDMMgsCnUPRoNhs4toeUCqlDEKVY+trzzLRJElBKXyPrizA0g9GNY2y/bw4pBS9eN7j294iwLIctW7bTboe4Tpn66uIajFzHcz38KKXZrFMseMRRwt/93T8SK50oiEiVT75Q5oFvfYdt27biOA4KwZEXDzFQG+UTH/8Ue/fsoL82yL33PsD4xg0sLy3j2gXu+trX6OvrIZ/LrSWpE77zwIOMjY0TRQEqDfGtgOWRSVbcJeIYnEIeIRWGoTE3M4dr56jXV5mdWSaXK6E0ASpkeXGZT/z3T3DpZRejCOm0uywt1nE9E88zEVpGZlctlwnDkMmJCQYGqszNT1Op9KFpJpOTp3Fdl6XlBZAKxy6gRMLoyCB+p0MsElQK7WYHISSmbdLpdPA8hzBOMFyHTnOVfKGE6xVQQiMIuhhrydNmfRVdh61bduF3I77yT//EZVdcSRJ1Mtm4oINlSaRIMS2L4aEaGzdtJBYSmSry+QKGaSGkhjQicm4V03AJwwClbGzHxHTKqFTDtSTdVodY+QSBSavVYfv2Leiaia4nWIaNrkdoWkqjXifnFYlTqPVVcT0D1zFpNxq4jk272+HF8DitUoe/3v6H7Khu4p0330y+mEdPA0aHJoia87hWC+PrP8bqfITcEWE4Dv21QVqrS0QdhedaPP7IY4yPD/LQyP0kKVw/v5N77ngBr5SnWHJI4xRHL2NZJkmcEkUBUigarQ66aeJ5g7QaR0kikzTVMLQEqaW02iu4domgm6ASgTJSHn9ukRcnAq686nJ0QzA7O09/uUJff5WnnnyCsuejyRSnWMRv+ujSRVoeliYpVEvcfedddDsJvUObeOCb9xKsLFHry1OuVoi7Cq/oEQVddF1DN3SSNGvd6rS72NLMgtyOTpK0cGyFKR1Wmhq1rT3kvDLv6ns/D2n38uwzzzEztUijFXJ4aoY9/R533/5l3v5jP4tIM7IqoUmUFCgBco3PRwpxlsSJc/zB8/mH53umvjweeIV3e57Xy/3ic/3Vc3tev9+q69nxxRkiVQVirWXhPNqvZ2y9H3EG2fl6qq+vt8p6oXN9rXjrfMc5d5+XH5Oz1y0E/7LZhpV6ZfC6/vdzWbVee7wzAd33L4Vz/uMpBIKjL7zIqZOn2L1vD1LKfzapnNd7jeer9Lyu8c95fzZ4vfmNr5jA638/95gXIm26EJb+fPaNz36Z7X/6D4gdo6ixMbqtBlHYXWN7DNi8bRtR0GVswwi9fb0kaUwYwfzCCrmCi9QNIj9lZbnB/Pw8GzaM4noWzz57mPHxjeQ8jzSO+au//gQXX3oQz/WwHY8kTlhYWKTcU17TK5X4jSa5nJdBJkkxNR3L1IgiH8vQMYwMhqaANEmIk4Ryqcqzzx7i9tvvYHp6Ct/vMDQ0gKZlNyDHdvjbT/8PrrvuWso9PZnsCIK52dlMa9LQcdwimmGA0Jg5vcCDDz7Glm3bM7Y+qTBMjRefepHGaoOl5SWqtRq5fJFTp2bwHG9NB66FLnVsy14j3ogwDZ1yuczmLVsRZPA915YoFdPtNInCDokysS03C2KBdrdL2w/IFYv4fjfTyg1amQ6jmUkSkAbUV1ep1foQZBUI3TCYmJjEtm1cx856Xc9C0STN1VUMTUclKbEfUFhuU2hFGPc8CjvGMP7zvyG85Q3UOy3ynkMQBLTbTdw14pFSqSdjjfVcysUeDMtj6fiTWKbBxsFh7rr902BajGy5is987i4uu+4dXHLtTTx1fJG3vesWcoVeqqUKOcekUCzR29eHkJJLLr2Ej3z0Izz53FPcdMsPcd/9j9BoJNx8ywc4ePkBnjv0MEO9FbZs2odrCZrdSfpqY6RJmVSGr7kWVQJzU6dwHQHCQHdLmfP8KrB7qSAVCikzOKMhErpBm1zOob60grB70HWdJApxDIkkIWwH2NZh6o0G5C+n4JU5cfwkw08dAxSzjoljO2v9iT5JnOB5LlPTU5AqioVCFojJTNO3r6+P7du3ctHBi8kXC+TyOSzbJggjbNumUq1iuznSJCVXcmDoNNYlh7EPzqEmLOJv9iAfkojpkHipTjDXojbvYkQa6X88gOp1MU2XKMl6b5XKIMKQYloa1159FagQv72MJX2SqEUU+qASXMeiVuulVBtF6hZxKhBSp768RM7LkcvnqdcbaLqGfOYIyew8Sa0H07DRDe1sD1SapjiOS7PZwjBNGo0GjuPQ7nSRQuBYFpquEcY+QRAQxxHFfAmVgu/7uK5Lew0uH0cC0zIy1IQxgKaeJ2jfx96LPsjbbn4vd37jAfy6zxVXHqRUynHJZRdRqZSp11cpFIps3baZwaEapWKR6akpVlfrVKoVfvEXfpOxsRGSNEDTJDv372fT1u1Iw+SFo8ewPA/XsjENj76+Kh/6xV/ANCQDowOsNJc4evQQlZ4xbrrp3bzvv/4O6Z4RzKLgm+kTSCn44K73c9dd9zIyMophmHhekT/90z/jHe94B4VSEaUE733vj/FHH/4I1b4yUhOEvs8tV76HP5/5C4qqyI7RbShS2u0GQkhSlWmALi+vYNs2jUYT23JIYoUkWeMEMEiTDAav0gTfDzEMCyEkW++ZJlWKZ67oIQxCTMM8K/mma5Iw9PE8B0O3CIOIlZVVmvVFems1EiGRhsVFBy+mWsrT29uDYYDteAwO9qNpnHUiS4U+klhxyWV7ePyJxxge3ML4ljFmTp8in/fQNINyOU+lUsGyLOI4Q8H09dWQmsHjjz7C2PAgJ9Mp5uxpCoUqh188QiHnotIIy9BYXlqkWa/zpc/fxvLiCrOn55BICmvJ0z179qDpIIRGFMVUeysIqTImWmngdzukaYJpGBSKBaIownE8LNshSVNK5QKQUigWsO2sH3hwaBCpQ9dvoxsahiZBKSzLyAiodBddF/jdNpqQdDoJExNTCDQefvhRND3GNB0MLYemQxS36e8fJE1TDhw8gG5mnAgKgZfzMtSGkARJguvaGLaO0DQ6zRaaptFqZWtEKI0gDEjTBEgxTIlu6LRWu6RJRKs7j2OCY1dodXw2bxul2VglDCNarQ7tdgfLtlCGi+3kMjIxoaj1V3E9C01KXLeISg0W02Xurz/Aj0z/IFdvuhzHzSOkSbPVJEmaWEpDRQuYD1yCNrUHfcsUdT/l0KEXefjRx9i6dTNhIuj6AVJqTJw6ytHdxzEMwS3xpQxt6MXNO4g0IUkCFBph6OO4FnES4tgOqdKJY0Gzo2M5bUJfcPTFafoHSwRRF8PIkZIQBzGupaPLPErk2bRtBN3U0EyNbjckjlP6BgezQCBqQhIghEQlXUyvjLBqPPPMU8Rhm0sOHGR4eBBNhKw2ptm5vRfLTWi1V7CMhCSRWGa2bhRZf7Nh5kiRGLokCRSaqYhUiGll+vOz8/McObqC3mNS04dwJ2pc8XMHKRQKbNq0mZtvupFbv/hlhgb7+dQn/4b3vf9nidckVMSZOO7Ms229XyhfH8nQ60EPvrTNq/vC5xtLbkjRdifn1Xl9PQjG853T+Sw7z5frop57bufjtPl+7PXs//0e40LjvVTg+hccvKZp/HsXiuLh/HC89Z+d+/+apr0Cp/3PYWcyIlKKrB8yVdx+2x1cc/21wHqpnEtfts+rncf6yfp6sijnBobrf4cLS3e8bJx148FLwat28/UvO68zr3PPYf3xXqv39dWyU0opHvqN/8K+Dqjr9pOk4Fj2GpmRQEqd0A+Jw+xGGqcKXcv6ZKemTmPZGrOzs1SrPaRpSn9/f6a/h2JgcIjlpcWMxTKKOD07w47tGeMoQiKUIlUJhVKRNEmYmZ5h8tQpagMZG269Ucc23UzKwrVZWV2l2Wrj5TK42vLKKqViCSETisUcvb097LtoF/39A5i6jlIpqyurDPT3c9lll+PYBmEUkaosG1UsFpmdmyefz5EkktnTs+Rci2KxyNzCIhOTU0yfnqRW66PZaPHoI0+TLxXYtmMbmm4gNIN8rpBVCFwPN+eyNL9AsVAiiqM1wq0U0zSI44RPf/oz7N9/EVIma9IoOpblIqTOV2+7jUpPhWIxTxhFGXmNBENCHLYxDItcPrfmcCq6nTpezkMh8LtdOq1MJP7ZZ56lt7c3cyytrO/nIx/5KFdddRVhFGBZJnJmAf3bTxHNLqLfeC36f/059Pe8kUUhKBdzyNjHMbJgpOQWCbshYTdAQ8ez8qwunKLklNDQeeb+2/ibP/kdmgvTnHzqdt50/Q2Y+XH2XXwRhZxFs7mMigPynsND3/oWjqlzeuoEAwP93P/N+zj03DPs3LGN0ZFB9u7ZRr5YotpTwdRNpk+eYmbmNFdffQW27rOyMMsLzz9Ob8XFzdWQdhWhpRfMDp+xOEzQVczy0jRerojhldF1/RVreP361aQOGqSArut0VidJxQr6mo6h7RTPSibphkGKxHVskvhRXCfHYmMjlm3SajUo3f8kmpTIzWOYDiSlBeZPrJLL55iemWagvx8VJyRpshZEBMxMz7C0vEgcB+TzJbqdDvX6KpBR7gfdBrHewN3eQNt+CuvSF5G5BvJUieA7JcS0jfGdJZSj0colBMMB3QEF1w/DT+xBz3ugrd1HkpAk7mYVttBH0yCJA0jr+J0V0tCnvtzGsYoo08HJlXEKFQy3gJCZpqsms+qcIUDT1+B6UYhlGrSOnsp6bweqGIaFFBaW6SKliSYMFhdXKRRzoBS6YSCFQOoGkPXF6rqBYRikaUo+lyeNY9qtFnGyxvy9lohI4mQtoRVnfblUca0lLGOJK675eS7ad5D9u7djWopKX5m5pSV0IdB1nXKpipSKRmOVYrFItVql3e7Q19vHO2+6hU2bR6lUeqhWa2zesinTTJVQ6Slz6uQJKhWHMFAsrZ4gjiOk1iTRUhyngCEHeP7wEzzy+BO89wMfpJU0GeqrcEPhBq41rsQyPX7v9/5nLrv0MgYGhgkDxT333MN73vNufu0//Ht27NzOC0eO8Ja3vp2JqROsLM1TLuTxvCokPl+vf4PBqIYAPNdDN3RMI2MfP3H8FLValXwuT6fbxXVsDJnxLAipYRoGoEgTxW233cHY2AbmF+Y5+EiTwA94/JICQki++tWvsmvnDpRKiaMQXddIooRWs0Mun+fpp59g25Zx3JwHmoZKEwyR0m2vopKIOA3RDBPbtlEo4jjBNGySKOFb3/o2/QN9jIwMo2k2K/Vlyj1FXNfD70ZUesq02x0mJiap1XqJoihjO0/Bcx0aq8t8+tP/yMjYEPlCGSVS8vkCs6dncB2HarWXJ596mre/4508d+hZrr3u6izxY2ffkWlmbN9xlGDZFoapEwY+QkqOHj1Gf38/mgSpCeJUYZgWSkmEBM3IJCniNV9HpZCqlERl8kRJkuC5DkIplhaWMhj32lzWpWJ5aQGvUGR6eoEvfukL7N61i6nJSZSKGR/fhBQKpSIc1yBRCZoOqYpxXJNOK8R2LISAqekZSqWeDIItIlqtLFlhmRZTU9M88cSTDA+NgEjXuCMCms0GubzH4489xdfv+BrXXHM5YRSQxhGaUcTL2zQay6RxTD5fwPMKhGGI5zpIzQKy55tKFUHgI2VW7YkjaMQd/v7057D/xuSPP/jHWGYOqUuEZmJYkjRuomsuPac3Ed9zDe2he4iQLDVC9u4/QKVaJV8oUCgUSJKIr375K1x9xQHu67sLgeBtK5ehGV3uvP0IG8d7sJ0MFq/rOlEU4TpOlmTwCkRxwtTpZWyni0gFadgmV3SQmsLvGCilcO08KV06vuDJp06Rr5YYHR5lamoG3bCp9vSSqpiFxXkmXnieYtEmX6iC6OLHAsMeZHSkF8fOc/jFF6g3F2i3pnj0oRNo2jLzs4qjzy8zMtSLEjFJFCA1SRTFOI5LEEt0I8+xI8cougK3YONHkiQRWDbMLDaYXzFZqS9j9Tls8LfwYv9jLCzOcvfdd/LFWz/PxOlZSo7CX57mLTf/MIabJ4qirLoqxStCSrFWnltfZTzXzz9XivFCccCrQVbPfH6+Cu/Zz3OcN3A937YXstdTTHoJ6Xnh8S+k7vHd2vkqpa+27fp9zldI/F6C+Jd8mu8+eBWvFVj8P8XixP++T/TcLzx7/9rDvvIrenXd1UwvSUAqMAwLUkGQ+Agh6N755wA4b/63r3p+5455ZtzXDDrPBs/yLBz33IW/ftsLmeTlsITwp34XAO3jv/uy/dffONbj+88X1L6ea11vcRxz6sQJNv7wb5NcehHJyCCoLtJy6HZa2IZBEsbMzszx6KOPsOfAxRw7fpRLDu4j7AZ0OgnFnswZKZQ9JAZSGqys1LEsE9Ox0YBuq4EUgjAM0U2NIIzo6x9idWmeQrlMLCTdRpeTx06w5+A+pJTEUcQjDz/Mrt0X4Qdt+vt7iaKYJFHce9fdhFHED7z5zRimSRIr6o0VenrK+F0f0zTodNr0VEo8f+gFxjduAsMgDjoZe7GmE6dZ3yGJIgkipmeXqfWWSeIGSgjcXJFuKLAsQRrHaMKga95Gvb5CHEdUKhXSJAUBc7NzbOy/EU2MEnXbdJOTTC3dzdjoKFKTGaunrp3tmS7Im1leruPYOQ6d/ATbdvUTRzG2beMHHWzLzmCSaoT2XIWg26bS30NoP4Ri7YGSxlkCQEiSOMIKLsfvOpw8cYpdF2uE4iRRFKLrBlGUOfNpEqHNK6x7XORv/xvUm6+ifcevIrXshi6SmHg6g7hmEzDzRtQatJ01+SG1fn2qtX+klkHg1/SUL7z21zwcBEqla5I3a/cKIbKbgcgetClk2W0FgpdT6AtAVrag3F600jD21b9yNmnU/qdfPmdbSRL6BEGLZOwG8vvfjeu6JBMP4j/9Wc6gOM5cl0CAAvumP8lkJFLB6ld/m6R5AoGNbtioNEJqGkEU4259E+nOH6LkJnSO/T7xk8+RMIzQBEKllD9rkGoxS5dNUXnHAEaPQzJvsnpnSBpPkSRZJexMX1KapKRJnnztDUTGKh1jHtszyedz2dowmuTHfXATomkNMZ8nmNRwkgIKiUgV8v4Zkr09LP1gDw/ffw8H9veiazns3nFMq4qZGiQyRiUBUoQ0W0uYRg7DtFhdrWMaFk65hiYUqIQwFTS7IbaKcV2PRAkQWc88KkWXcPzoEUr5HLlCiVQzUCSkUUDyyCGEUHjXXUwUarTayxiGkbEgK0UYZoRprVaLyclJtm/fTio0VBQwe3qaweFRNM3KoK9Ao76E5zqgZzquhqnRbDTJ5V1832d5eZm+vj4SpdA0sHiWKN7I7//BcTZtHGFgrMa+/QeYnl2hv+pQLFTxuzHPH36anbs2859//8P89u/8FpZlcPjwYXbv3YPjOUydOs3p6VW2bO1nYmKC8fENJGmEUilBoGPIComYZXEu5pf+3Yf4yte/zMLqIpPH51lpnOLARZeRJgZhfY6Ziec4cPU1dNoJrlOk3eoSRRGrK21Wljv8+cf+lF//jV9leNMgQqYEQYAmbVzXJmn+LZZpkljvo918kcuffhfv7H0LclWn3NNDnEYIIWk2WlSrvYRRlySJcF2HJI3w603cXAH0jEsgCrp4XoHllRblchk/7NK3EKFrGl859hgHDhzA8zyiwEcIxfHjx9iwcYw4zIIzxzEwbUG31UJzXISmIaKApNPCdCx03WBi5hSDI1sIA/jc5z/Lu2/5V6SpZOLkC/TXRtGkhmbEgMbCYoOxDYP4gc/qchvPzZiMTUtH07Pnlm5mTN/333s3N/7A9ST359m0ZYyTG04SqRBSgzDo4jhGloQVOkkSZQGgpqOAxsoy5XKVKIqRGhi6yfLyErl8Fvh4bg6EhhQKSOl2muiWR5pkfofvt7BsA6Ey4r84Tjh1aoKRsV5s2yUM4kzqRyYE3YCwG2DYNpadyafMzk5SLFeIMRGJQeA38TyXOMq0cXfs3IJSLVqNBp5bBGGQrB07UTHdjo/jmsRxkMmuaAZxFGCbitAPSVQmETQ9Pc1XvvIV3ve+9+F6GlJqa9e6QrlcJol1lhYmqPQUiTGBEMPIsdqcoFrqJ4oDpiZnKRVr3HnX17n++muyxiahYXsOjufht30sW6PRXCXnVvjz5z/Oe2rv5Hf3/ntYe2bFsY7heMRRB1PWibtN+E/7iXqfhNJppFXmqWdbxFjs3LMP329T7Slx5MjzeKbDzMRzRLWQcu8Kw63NGFaDVruLZRWxHIhDgaYLpLTx/SaGLlGahaZbBHE/prZITrdZnD+MV+0jirvUF3MIGVAt99GNjhCEHg88uEg9CnjPD96E7rhohstn//7zvPWGazEci5PPPM3QkI6br9Fpv4Du9FOsXsr01DOUescxjDwiVeipz+NPP8ShJx7mujfuQyZNzDRF6ApdZs82oRkYlksnLpKIPN+++w7eePkYkTT5xjePUi4U2L+/l5NTp3n4sYCh4SJvevMt6I9XePHAt9j0lj6mJmd58tGHULbB/NO30Z06zErpIv7oLz5FrFKkrsEFKokpmZrFesbcc7dZn9w9X7HmlX7uq1dy19s/V3x0bgL6fGjElzZ+eVX2fMHhhRCN342dD2p9oUT7uedwvs9ebZvXMl03v+tI/P89lddXIWz6P9vEOnz2a297hmIaEJCkCYmKOTMXzld5fT32UtbmjGN9wTM478R7qXIr1/pZX/pBKaSQqFSdfX9mnDNjnSFs0n/wlbDhc491Psrs11poZyd+apFqbZTS+Pgf/xX7j7yA+/xp4st2oWuCoBvQDLqY0qbVWObYsSOUe2r4MWimQX9Pjp7aAO1mgySB5w8fZduO7ThmgVSlpCLG8fLceuttlAsF+nrKCJHpcebLPRimQyZwbyANC8vQmT7xIv39NZSUzE7Pn9UNVLGi0FPEtU10UqIgpNnusGl8nK1bt2XZZUdjdbWB7ebIwpQUP2iTz+dIE0FPpY+pmTkWTs+Sd10WlxYRMktUhEFEGITcfscdDA4P43iZUy6lBgrSNIA0+9utJp9HCDJIlm6gaQZzs6fptLv01frQ6OP0iWXKff3oZpt8OQCRfe+6bpzVXNN1Ay3cREqAY3lUB30gzPqpBeh6dmwhQIU6aVAlV+jDciBUJ0mSGCElupAZPFKTCClZWSrSWx6g2t9HpC2QUs/mnaZljkOrhbbUQPQN4n7sI8Qb+pECuoe/mFXN4hhNJCStebTCMInuYIxehr7xjXQLGzGLFUQak2gefgSdIMHKVRB2HmHaFHbdwELqUdx8I4G/QpLo6F4PysiBmUeYBRLpkuQ3EQ9cgyptQRY3IOI2kbTRnBKpdNCcMrF0aQWCbvkiGDyIPrA7c8bimEjptP0U08iC8jjVsPJVjA1XoymFEoLoyNdesWZVGhNHAXrvHnKDB9H1lKR+gmTu+XVr5Mx6yv4A9ra3Qpox/UWnvk3aWSVBYjseod9AGhqGaUNukMQaQRgmsvUt4tlZ0HoQKiPkcE7ppLmAdPcCRmsjM1+RpMUO1tAs6WpMHKSoNKtYCikwCgnuWET5xgS7t0ve07F1ECJAygBbGiQv5ogfLZGe9Fg54VOwSplsEArx9BKJB533FxCqyaaNo+huHqWXyOX68bttpJlkFaKwhe1YNBptCsUholjSDRXFSo3ET1AiIUqyKqOlWximwcL8AnEYYEhJq9NA10wkkmKpQCIMpK6j62tJDARqej67Rw4N0vVb2LaH47ikKWiansGk0wTbzlPtrRFGIVJIun5AT6UX07QIYp9up7MWxFikUhInAUkagdKII4HjOszOzlOrDaBpRnYfVZKEGqZ2mOvf4OL1vY0oNLjumhu45MBFbNhQ49jRIziOzcjwKHd+7V7edfOP88gjh/hvH/s4l1x5GUcOvwAoHNemWqlhGDa5XA/fefAhRkaHCKIWpcogLx47zI/865/mmuvegEoTrrz8ckyh8ZM//j7ee+PbGR0eQN3+IJ/8n/6QG3/5p1huNGgszjF3ehKlaZhOkVzRwfYE23fupn9gA7blM3niBMO1GkGnwRc/dyeXHOjQaS8hxD5Sw0ETis+evJV9xR3oholQWWK12+liWSaaAUIKgiD7rgzTQegGcRqThD5SJeiOmTFeq4Rut4mfFyzrAdu3bkOXBvOz83gFlyTVWF5uYFkeH/+rj7N3/25yBY8wTOm2Wvh+h6g+g2MB+RIIl06QEsUCw9Bpz+7SRQAAIABJREFU1evs3befKImpL6/SW6tm3AQqwbZt0jSk043QDdCkRhIL4qCO45rYrk2kFKblQBKztDjH5VdchtBN3v7Me+k9PcSdxlfI2zYvHHqR+uoyhWIB0zJRSrGysoJAMj05TcErEIQx5XyZNG4jdQEpHHruEMNDw5iGmekt6/pZgjLdNDE0A6ll7QSmbqISQSpBaBph2KW3ksc0XVBnKloxQkh000S3rKwFwTQRSkc3HJqNTgaNFxLH0TEMDSEMSpUqmhRoQkM3DLpBxiYdBAFhFGDbLoeeOUy5x0LKBNvyWJifQwpIEojilEajQS6fJ/bbHDywD4TBZz7zGfbs3s3KyhLlcg8gODU5yWc+cytXX3M9YVRHGgZREpGmFprhEQcptf4BTEujUCxSLvURxBorqy1SBbZtoOkaqYKV1SYPRY8zXBziw5s/TDf0SUPBh3/vT3jTm67m5LEHKVk6C5NHsL60AxnrxP0nSZIuYbvJzFzIG974Zp58+mEqlQq27VDrq6BIufOeB0iWE2pGAc9VGNJFNySmIUkSQMboRp40CjImfQFBEFNvNClVRvA7XdJ4HkwLy3BprTYoFwSIEF2PmZuJaLV0wgRcZ5DR8VFCP6S+0mD37l3Mzc1x7OhJenpcCp4iVSFp1EU3yvhpnkq1B02zeO7ZZ+kpF5G6xh23fZ6+cpW+AriuxHRK6BpriTWTTjcmiSJM1yBJYHzjIKiEVCXUKiWGh6oEQYOS65BzE5440kaqiL7SEN12yK//5W+SK+UZGtnFNVdczNHjL7Bv5wjzT9/BzGyHzZe/BZcOKZmMz3pf8MyjTqXpOgLEV/qN64O51yMReX5TL3ud2e2M7x/do5Mel2jj6esc75Xn+V1sfXafC8Gjz1XpOBdKfL5WvPWFrPUyReuD/nOPeSHOmvWV6lerIp871vrP1tu/bNjw/43B63djrzVJv9fg9Yyl6YWlZeDlUN5zJ87ZyfQKluBXSuy8YuKX8sh921Cj/Resqp6L4z934b2u4DWr+aIrweLMDDs+dRdq3w4oF0Aput02mlAcfeEYrVaDeqtFnGQZ7+MnTmDrGqVKP6YpyBeKjI6N4ro2aapotRpYpolKFXt27UHTwHFM4iTBdFzmTs/iODZeLkez3cY0XDSpYeqSyO/imAZPP/cswyPDpGlCIe+hkoDpyQlMw8K2XE7PzFPIF1irj+E4LrZlE4QhSRrhOgauZbG8vEwhnydNUwqFHI5V4ON/+XGuvfZ6cvkePvOZv+XiAxdz6uQErVYbieTUiRMZi7Au8fJ5lEoAyckTEyjjeObA+9djy91Y7KWcP0jV24eWbIIkh2matP0A16qhJeNo0QbaS4M881ib2QmHbRveQmelF9uyaHWaeG4RU45DMIaj7URPNuPIHYStAQrmPsJmFdNySYXCdIqEjX5csRNb7Cbt9GMkW5g+YdNXvgrHLBMGPpphYOnDBPVBXG0HMtmCPtWDfecKyU/8Gs57foqVxipJnCKlTu++tyI33kBx37tRlR2EL96Bs+Nm9OpGhJXD0CRBp0uhPIIojaP1bEIvjnFkcpnxS9+MKg/RSvOQ2uRLPQhpo5VG0CtbCa0hvvXkBP90/7PInnFiexDd66VULnLy5EmqtQEm65LeTZcgy+PMtj1kZZy6KmJVt9Jsh1T7BlBIjk0u04yL3P/YceabgrxnMRkM8lS0kf3v+Fk0wyCWGgKBsfUtmNveirk1e7lb30o7v5M5a4TC6GXketYYUcujGFtvxN75Nqztb0Vsvg5n19uwd74VY/Pbzq65NE2ZT4sUx6/C2H4T5YtuISn1kgxejNz8Vpzhi7FtgyBOMIxnKezYgdr6H7HHb+BEMsbMNx5g7D0FjNI2tJkqmtRZeKZNb98mvDc4eDt6MLkMa2SI8psFzmCNcLmKfHKA8HmbzjEBiw7xaR2x5BLO6hiJm8EcLRvHsdC0tQrRYhd5uE79V/pJDInplHG8IaSm4+SqJBiZ3FCSIqRDkgiSRMeyStx665fYs3cvhUKJMMigeoMDNTzHQZMZoUi706ZcKq/d61iT0pGsriyjr7Fx27bN0aNHsC2LlZVl3NV2hhgYHqDdaqEUGIZxFrqtlMKzbVSaoGvQbq2C0InjDI0wNzeHl8thmSZCiQxZ4XexLAvLslEKHvjOg/RUyhSLRSzLIk3TjKm562MYJkr0o6lJXCcEuZsf/dc/yn33fYPLL9/L8RNH6amUmJ6ZYGzDIL/6q7/NBz7wfsrlPCOjQ1xz7fXs3rGXiy7az+nTM4RJlz/5kz/jvnsfoN0J2bhhG5/8689w/XXX851vP8D1b7ieTZs28t8+8kdcdfXl/MwHf5bLrryUn/qZn2D1r/6RN+zchXrTPn738P/KY/Gz/KstN2F7BerNOl7OZmLiJPv27cuOFYf09fbz2KNP0Fup8f6f+gA/84H9GWxXHeSBx57hTePXc0f9DtqyS4+soJQgimJa7TaWbRPFMaaZVebCMM7YnYMAx7ZIU4Vp2iRputbvDEuLS+RzBTodH8s0CUOfMPK56+572LZtB5Zt4rgGm8a34HkOd931dXbs2MHc7CzVWplOawEpTXS7hiazlOLc3AJ9fTVcJ4dSAst2OD09g5fPYM4PPPAdNm4Yo9PpUOmtoukgtUxT1XFN/DBEM82M70CArZvk8l4mKyMVmw7tJk1STux+ASEEPT1V3JxDoZAnimI0zcC1LRRQKpdxXIepqUk0ucan4NjMzs6zefNmgjDAsi3iKMpIjmQmB2UYBt1OC4nAD3x0PSMj1Ndy3t1WkzQK0QwbTWbIEk03skSPoeN3O7iOAyiajTq5fA4pNbrdAJVqgKLdaRPHEZbtgErodlqotSRQBp1XSKkDEsuwkFqMpul0O5mslJvz1jSicwhNcvjQMcbHN62hHGDnzt0YRgatNQyLIIhxPY9LL7mMiYkTZPrnJqisfUgKSNIOK6sLREmXfMFGM1JWlkP+4R/+kfn5BbZt20YSJ3RVyIPxI9jC4resX+SGy9/Jr/z6bzE3X+eRRw9xzRuvpK/mUm+sknt0K/ozQ0RbTiH1kCQJ6HYCFhom9aaPImZkeIBIJbQaPmmiME3JwYMHUGkHz9EI/BaWbRFEEZaVPa+jqEUQREipUCrGdQuYloOZG6XdnkemLWyzSBC2MAyNNI2Jkwhd6ihCeqoWubzL88+fYGJqhuXVOpNT0+TzeUY3jtPuBEyceJ5KXoIu0VSC7ZaIyOPYOVJl0qi3OHXyJFNTpxgcvpTnnnueHTsGcF2ddquDYxtra01nZblFyZVIKbCtMktLDUwjxdAhTSIc0yBNO6Qp5PIljp1cYrVeZ8eOnZRmB/hm+nU2jG7kLz/2Ud7x9reRLxSYnp3j8PFJvv2dh7n5PT+CaVqkGCjxSj/yFS1uZ4PKl/upr5c/5fXauWOEXzFQC/IsYdPrtTiOzzveaxz9Nfd5teroq71fHwesD/hfD2T41f5vPenqGTs3DjlfcHzG/j8RvH4vuOrv115Pz+brzfJ8L8HrmYm2vu/1QvZq1c6zC37d+2zSvfIaXwFVGBtEjA2eHX89LPmMncnivFrG54xdqOncdBxEJHj0nq9xmeFi3PYg6dUX0Ww2CIIA13MRScLK4irlcpFmu8Vqw+fgwX0Mj4xSq5bpBjHtVp1qby+6odFqt0CA49gZPDYK0aSgXq8jUHT8ANvL016tY1oWpmXRaDQo5G0mp0/Q21ci8FeR+IyNjROEIfl8Hscx6TZXMXSdUqWPbjeTy2m161imzf/2v/8F+/bu5dTJE/TVahimTqpiJk6eolarEYQRiIyUACIuu3QfaCmIlIHaALlcjkq1wujYGI898gjXXHMNhWKRmdOzmJa9pkkJKMj1LIBKidv92I6HkBpzC6cplUukacrU5BSVvl5MywSVYBiS+uoK+UKZsdExhoaHUAp8P8BzHXI5h+WlBp7nkiYh3W4HQ19zSjyLbidCEy5LKyvkih6xUlhmpgG4vLKM5+XQDAM/CPG8PEmSgADNyHp9LcMgjWOMZhdx76OID3+Ib0cNNm3KejF1zSCfLxIlZLp8jQ4iahMf+SpBfmitZw7StE2ruUzkN0nSLn7cotiTIwwC3NIAghxx6NPsKLx8mcmZYzRWQgrlPFMT09T6aly0dzdbtmyhWa9T6elhdm6WTZvGabc79A/00+l0MAyT5549zOHnn+HgwX3opo5pGNx9zzfYtmUHlWqVSqWMaUr6+8uozgKHJ5eZboHruARhTL5aQwpBFEXoun52HSSdLtMTJ8nlHHp7R2l2O9iWlcl1JBFpQxK2unQ6beJIQ8UuuvHS+tE0DVPrUp9f5PRSi8GhfuamT2E7Jex8heMnTlLI5bBMCyEdUoZRaR9xGpPLu2yZfRowoVWl3WlhGCa91Sq0NDhRRCUCc88smtMmfqQIh3uwugVWV+8mUVOUi7tI0gTXddf0iyOmp2fIF4romobUFFEUkoQR2gOLRO8aRt8zSq5YIUwhlpDGOkqYaLrB8tIiOc9F6CB1g0arTRD67N23H0RKmsTEUYptmXieh5RZddQyDYIgQKVZz+Ts6Vl6a/2gEqQU5HN5TNtGSkFPpYxuaOTzeeKJ01l6faAXy7IwTPNl/fpSSiZPnCTn2ZyemaJarZKSBamgcF0Hw7QIuj5/+6lPsX37dhwv04tttZooBBs3bEQIstYEXader1MoFDKnnYy8KFFlbPkIidhEFOX5hX/783zqr7/AW978LpqNiKHBcTrtlJtvuZlqX55iwcU2Tf7dh36JU6cmuOjAfpLUp9pfYcvWHbz5B24kjGKGhkf5wuc+x4ED+7nlXTehaYpKpcwNb34DiIQ4jrjm2vfycz/38/zw0Cbqqy1Ojm/mPnEPTdHmaudKjr5whKGRQdrtDsVCD77f5Utf/gLXXf8m0hT8bkD/wBBXXnkpg7UZ2u0Wf/4XD/HJf/gCP/7DP8IluV381eyn6HN6KepFLMvEcRwcx8ZxbFaWV/noRz/G9W+4HtMySZME3+9gWS5K6Ger/igoFErs/6dpNs+kLO+qEMchxWKe8U1b0DSdfN6j1WpQrfZhmjqjo8MIISgU8sQqIuq2EcJCs6vEUYflpRV6e/uI4wSJxhe++EW2bttKY3WV2mA/mtTXiKo8bNcGka4xzNs0m83M6ZYZR4BSIIWGLqHb7YKAZrPF6JPbEQIm9h7h63fezb69+1itr+C6DlLL2iua9VU0TUc3DZrtFpWeAkE3wfMc2t0O+UIRTdfxfR9N17Oe1SjN5IDWerFNXWY6ooaF7/tYThboSalhWybd/4O9N4+26zzLPH/f9+15OOO999x50tVgSbZs2bIzOw4UCYGM0BRQDE0IdAFNQXdXda2iVqdSUBTdxaKoXr1YVKUJdAJJkZCZ2I6deFY8yLLlSYMla77zfOaz5/5jX8myIssOUP0H9LfWXdI5Z+/9fWefffZ5n/d93ufptkDoGKZGGAUoqWNb+flWStFsNLAt63IP4iUdgkajQ6vVJI7iXFhJ5XR828p1C2zHJegFaFqesPnUp/6EqYlJLFuRpQLX9bEdY4vdo9FsNrFtmy9/6evcsGc3jz/1BNumpjENE03PVYx1TafXC/jKV79EpVJmoFalUPQwTJs0TdA0jTiOEOi4ThFNWWSZpL7ZwLB03v3ud7Bz1zbSLGCOZf567W7uKr2TT47+c6aGJnjPu9+KWzCJsw4f+MCdZOtPs37uEezHJlCHd9GZegq3aJEkPZI4QCEZn7mFXpAyNNhPEoc4rsf6Wp2V5RWmJkf4rPVX3LP0EG839mCZCRlqywtYEcc5U8r1+3K1YZmSpIIslZiFYaKgjmsmCKETRW00XUOpXCQpS22UVEiZoZTNqZfnmNm+g5tvPYDr+wz0V9AMB9M0KfsGhupheSYqSXj++ecZnthJGGqcu/ByLvpWdhifqNGsr3Dr/gmOPXeIWsHFNQSpgCRJ6fVymzqvUiWMI1LpUaxNI0VMmvWIuk1MXZGkIZbjkaQJutQRpkc36TLW28nML0+wY8cMhgj497/3B3ztngdYafQ4fnqOfleytjTPre/8wbxHWb42Zr0amF4ZvF5PvPVa8ef3ixeurmhGT0pAvAa8vpnjvhl9mWvMfs3jvNn1Xrnua233ugWqNwFS34h1efWarwavr1fJ/QcBXi+N/y/B6xuN72ct+rbbv++q62s57tff9mr6xNU8e3j1q3E9xeUrL7grQWqWZa+hHlx9E7leRfj15rjy/62ghyc8PvfHf8Bb//JJoqkpoqpJqVjcUprUSFOYm11kZtsEnuewa+duDh9+ju07djB/8QwDw0NUKwMc/O53MUyTSl//lgJlxNLiEq5t0aivU6lUCaMe1b4BYgSlok+S5GJbutKIg5hKuZ/NZgfXL5FmCpH1KJT6SNOEIOzkPm7lCr0kRRkafsHGsQyWl5d45zvega5rrK0s8637v02lOsDmRpPJqW1IXUc3TVIh6AYBhgJBlme0pYQkykWpZIbUJNt27EQzDIIg4OwrZzF1k7m5BfoHyriORSqWOX9umeH+21lcXMS2bAq+xcmTc8yenyNNodxXBXLfYSU1BLkU/r3f+hanXzlHux2ysd7G88wtanOZNMuYn50lS1MKhQKdTgspDSSQhB2EAMv26DSanDt9CsMwKPdVQJikCRQKProuaTQ28PwSy6sr6JokDkMay6sYz76M9vGPcmbXALftP4CmSRYW5/FcnzhO0RyTNCUXh4rbdI//NWnfOFEvBySoMrZlkQSrkKYUvD5OnzzH8MgQmZQIIoSIcf0qaBq2HdFfmqDR3GB+bpn77/sWA4NVioUSrWabKIzY2Nyk3qgTxzGu56KbBr1ejzROKPoWBc9ndXWTxuYiN+3dy8baGghBFGVYpoEUEVF9ieMXmhw606WxvoFruUxv2w26Ym1tDdu2L1/7uubSXl8ijZo01xs4rk7ci0jDgHZzhY0Lz7O+/jIi3WRzYx2ZSpyiR5qml32kk2iFtBvRTXS8goM/uIvMrILyKfkFglYL1/No9WyipIqt22QSbO0l9EePka27pGUdy7LQdTNvIZACgaK3mHL2gSbJWQ9bFNnqiCAMzyKkwLJmtgR2BFIKpMwoLiuMEEQzIF3vEa91MS+EMFkg/ie7kZogSXMPS0M3kKRbKr8pupIYUhEnIKSO41gIYoI4wrY11tZW8ByfYrkEUhDGCZqp02y3cR2XzY1NLNNksDZInIKuSZSE1ZU1HM+h02ljGLnvbLvdQiysEQQB7vZJojjCMMytyo9Ot9tlbW0Nv+DRDTqUK31kmYHUBEpTtNttLMskijMMPVcSHh4exjAMgjDEsW0ajQaW5aBp6nLwblkWAEkSE4U55VIqDSFt9OxBPvzj/4mvffUb/MBd/4htM1N86lN/jOsZvOMdb0V3TM6de5mjLz5P2S8jjBY37N6FpumsrCyw0agzN7/Ajl07GB0bIExa3DCzjf/pf/51lpcvUm8ss2fPjWg6pGnE0vIyX//qfRQLcJdm5+rf797PF859Ecux+amZ/47VxRWiJGNudpVnDx/l9tvvYGZmGzEh586eZmR0iDiNGB0aJIufxjBNJqZ+gt03ThG215n0aowVxvmvs19mmz1Ct9HMAV6nhWYYmJbJgdtuo9Gs0251URI0JWi0ughlIkkhS5FKEsfwli+cobjQ5sS7BlBKI4piNCOv6MZxQhwneYU7S0iSCF03aLfrCOGiY+D7RUKRkiUJju2wsbFCELb562/czft/9IeRSvDC888yNjGJlIqnnjpEtVrJk6cIlDKIolzjwdA1JJKwF2JqBs2NOsgY03BIU8XXv3o3d7Xfi2HoPFK4D8Ny+cJf/iXT2yYploqEYYiuGdiGRrfXxXRsDMNA10ETFocPHWJ6ZhqltEs/lihN5m0wccqpU6dwXYeg10MKydkzFykWB9BMjSiO0Q2L9Y06um7gOE7eGkOCVIJOO+DRhx9kYmKcOI5wXZcLFy5QrdaQUhCEbdIspFAo5yrxjs/Ro8fpH+yj1cyTv5Zls7K6RpqkWLZDFCXs2rWb+751LwcO3Iqum0RhBCR0Wi2UEOhKIYGb9u3F9mz6B2poShGEXeI4xPMcMjI8z2V6eppyucjy8gLFoo+mTOqbm1ycPc/AQB/qUoyCzsGDT3DjjfvQDZMozD/b55ovcqJ7kt8Z+lec/5PTfOC9HyFLJX1DI/ilIpae4ag2jaXHSR+axjp6J2sD38HzN2i3WzieBWlIFqVcmF1kZno3SA2lDI48fYSJ8SFK1QKFUh9/7HyKeWORD/XeDTTRNQ9dSoKoiZAQBEVOvHyO/moFy5LEUYKmGbR7IYbQCTrrdMMGIgOlmURxgqEE3WSdXKVbECYxURIxNbObUrUfv1RAioiTJ07h+wVOnngRy0yRKsZE5n3Vro3n1fCKHlEQ4/tF2s0Ow2NjLC2tICmh6QnSbJPEAkSCbZkUij5CWUh6xEFAkkkS5WDoKUnY3RIOVHS6XaSSWJnk2LllFhZW2Dd6O6+0XuH//Mzv8J53vZ0vfukb/MZv/K8cevJJWvVNfBmzfWyA4tRe+gfKl2nDV1o8fk+seGUR9nWKRm9UAXwz4+rYNHpScS3w+t9mvDGIfDPjzQDeNyMideW4Vhx/vT7Zq6nNr1cI/AcBXv8mWZRrjVeP870WLpdev3rb1+N5571o4qq/vzsLnuur9l59wVx+J5f/VUIiRZ61FuS0pnyZYisQfXXdl/rqrr5xpI8cJjs/D+NDr8kmXYsu8GY+o0uvKwTpFojWDB1zs8Rv/davsydR7Dy2SPSWmxCWx6MPP8bsxVmGhkZJk5CTL59guDbCZr3JQ488wL59t0OWUOnvY2FxljSKGRsbJQ57mAriWKGUjmk6SGUilYnrOXR7bQQZGpJMyi1BBVAiY6PRxPN9hFDEUYbULHSnRBKsQxKg6SWkUpimgcgSTE0nDjOajQbFgod0FDqS4dFJdu3axsL8PM8efpEb9kwgM8iilHarjuPoaEJnbmGNYkWn3eri+iWU1Lhw4QJZkqJrGlEYksQJJ08eZ/eeXdhOAdM02GzUKbl7KOvb0G0Lu1QmCgNUJlmY3eDRgwepjfYzNFpDS10ajQZpmqErnUarQf9AlZtvuZFSqcjExBiZllHyCqyurSM1mzBIqI2MEUYxpHGu1olBpgSGoxBC8dQTT3LzLW/B8wpk9Dj46INMjGxHyIB2q45rV+l0WrRaLUqlQZrdBsmh4xTGx4h/6+NUCgXiLCPJBK5fQjMszl+8QKuximNaREGd9vIxOH8Qs/ZWkmwTwwDd9ImjkG/f821qfWMkoSQg5czZ85i6SRZLDFPDNCVkCYZeRGgpuqHjeQ5xGDMztYMnDj3FxPggnXbI2MQ4tuejdI2VlVVsy6TXbmF5HlGc0mq1KRcL2EUfkSVsbq7ien4e2IosF29qL7HRijh1PqG/HDA0WmZ46kZMy6bo2mRxRJZm6JoOMmKjW0c3LGwNmsuzpN0m3c1Vsl4TW3YIei3WNzbo6xvHK1TRbes1PzpBkNBcb+JXB8lUQNCaxbc1tHQLEBkF5hbnKZVsRNYjzTqYVhUt+RLi801kPSKbzpVbsywX+hIyD5A13aBSKWPbuU2JVAqEIAjP5veZdDCvpCcJUTvEfKGOTFLa+0307VXaAxLGfdI9FcRHt5HJBCFSTMMhimLSNKHbbeWV4UySpkle2RESQa7Qq2sOhp4LvAilo7QUlVl0gw6NVp2CXSBqRTiuieNahElICkgBaZpQb9Tx/ELe258JUqHodiJcpwDlItbYKAtrS3helSjqYNsWaZKi6ya27aIbGrpm0Gy2sRyPOIlyKyHHJU1z1eE4TBgeqKHJgCzZRAqVV4hdj0ykQIgUoFTuyZ0lOkJINE1AJslSRaebYRgxH/u5UVL1Dgo1yYnTJ/npn/klelFGZaDGmWPPYtsmu3bvZnl9lc5GzOBAP93uKroW0mq2eMu+d/LwPV9n564dJGkZ39H5xjfv5p//y3/JTftvJRIacZbQrCuWl1fZc8sMP/aRn8Y69ByGrZB3vo2Hug8gRcb7vXczPb2NvTtu5xP/+neZ2T3I3PIsxeIwiohnn3iOG7bfgrDaueCPfAmpFHrhAEP9E/TXqiQy4z//688wevs0B5tPYK76lMv9SE1HNwyCINoSybJ46qnnmJyaQWz1BYe9Ho7tIIWeaw0QsPuxZeIo4sS7KnR6PTzPp95s4boWaSJZXl6kWOlHyS5J0kWqArZXQgjoBiHtTpeS4xClCWEY4vslSqUqE1NjWJZJfWMD3/Op9hVpt5v4npOLbCUpUWsZhJYnX3STsJORihTddEnTEGQX0/ERIq9ojo0Pcev829F0k2MzLzI9OcItt93IwECNRqOD43gkaUqU5v2mucZYghQ6cRoyMj5Kt9vlwvlZPN/FdW2yLCWKUo4dPUqSpgwOjWA5HlEMcwtLDA7Wtq63FOIEyzJBCJJMoMkwvxc3Ojzy8KOcPHGGmZmdeV9sFFGqVhAyIwg6mKbH+toynitptEIOPfM8e2/cQxZnuJ6P1BS9bhtb03B9P6flmwZx1GNiagYpYgwlWdvcwCt5SC0XXVMqo9tdR2gSTUniICaJQGkW83MXcB2DKI4QUkdJycULc1T7+rEdj/XNeWyzRLuZ4Ps+YapD2iPurTEyOoE0dM6cusiXvvg1FkcX6GktPr3r0+yv3sS77npLbm0VRjhOg82NLl7bp33mP7L2uE717M+xMfYScxtt2oGOaYZocYJlFmiEqwyVh1lfb5AKk6Mvn2D77u14fgXP1wmDFvd7D6AZGjuP7maw3I+KO8QqQddLBHGDtfUOxXKGa/cRRRtkSR9JluEVh9ls17GMBNL8HmybRg72NY00DRBJiVarQZRInjw4x+D4JI3GOkkY4vv99A0V6dbZattjAAAgAElEQVRDNNukWqpiymXiVKBEgowFqT5EpmXYuomuoN5ex3P6sN0hvvL1u+n3TQqmh7ALhLGOSZNYZZBkCGHTCgIsZ5CgHiJUC8dzOX9uHt/VMY2UJDIRbsDcuTYrzS4zk3sYMgrc+tFBlGvxwQ+9ny9+8XP8xE/+FN+87yE+8PYqF87OccPkPgZmdl12N80ux6gCeUl073JYm2t85F6wYou19toY/XtZhJfi1Ut/14xIr/p7dV+45POaod1xSekXXv9Yr44rRUyvOesVMf6rMfP3vqerx+uBwCzLWUdKqdcc/43mv9a219v3Wj3GV+93NWP0Wse89D6U0v7+g9e/q/HqSXx9hd/v/1hXjr87lbI3mP1NHOT6u1z58OoL79Lj+Hf+C9kLJ1EfvOs12/6tEwlb8+Q9YCEvPvEUWXuBD/31izRu2MZfPfYATx16mh/94fcxOFjjM5/9c3bu3Mbk5AStdpNytczUtmnq9Tph0KVaKeeWDH6J9fUNBmoD2LZDkmQ8/fTTeJ7L008/TblcxjLzTHS73SWKYkxdIYWg1wswLBvDMJFS0u120XSdTqeDbdvMnn8FTUnW1jcol2t5pj/K0DSTOIJHHz7I5MQUQjc5e/I8ll9ASCgWXUxD4bo+K8trrK+u018bIEkyNteb1GpDZMQIqYiilDAM6av2EUXRZYpioeAxvW0KXdc4fuwYmp5RLRdpNjZZWlxEGSZIjVazxcbaGgNDBjfs3cG2bTvo9UCSousCw9RI0pReL2B4aIgwCGi3O5CBUnnfk25IEAmf+/PPMzY2hl/wsCyDNGgg0xTP1pi7eApb1xifnKTdbmOYBkoJxkbGSJKMMAxyQSihoWmQZQnLSyv09wIK55YJfv830coFNKGRErCyukSr1WBxaZ6pqQmUzLAth2cOH2LgzF8ijQJGpUqvnZBEJivLy7iOxbZtUwjNoFIbxPNdojCk3W4ze3Eev+ChlM7yyhqu6+U/ZilcvDDL8MgwbsFj544dvPTiEXy/zMlTp9i9Zzf333c/lXKZzY1NxibG6fYCyuUSQ4NDrK+vUSrlr+m6ycrqOuVKFWurvzMJuuys9rj3xQYailKxj5CIwfEdZAgMywGlk2QZIlOUSiXCbkAaZcTZOkIJNptreEWTi/Nr2KUqldo4yqmQKgPDMl5NACkFSRcjSxCGS7mvzOriEo5VRAiDKA2RKsXzCxC/RNibR4gBpGxgZPfAPXou0ratyKX+90s/2kkSI6UiSVI0TeVzbv0gdYNXEAgK/k7iJEFuhhiH1uiOmqx/bIjygUniQQ9jpoo2UUGNFRBKkGZxLjKT5HMlSUyjsYGmGaxvbGJZJkpJNjbr2La11X8lSJOITi/ANAwa9Q00LcW0LHy/xNrqEn39uZpxt9fBdmyk1LbWv+VfKRVLCwsYho5h6nTaTWxDR7NNEgGVsosmc8CUphntTmcLMKe52qzM75brm/kaLcsiiqKcnbJl5xKGEVESI6VGhsS0HBqNJqZl0ut2sCybXjcgimM0TSBEwvr6aq6wqhvo0iCmD5E1KZj30WqN0apL/uPv/yG/+29/m+ZGnTvvvJWpbVP0ujF91XGeee5pLNem1e1R6RuiF3bodTPsgoPm6qCZnDz6PL/xm/8M3TCI0xSROdx37930WjE//mMf5Z//q9+k6HlEDz6OVJLj/UWe5CnCKObtvI1Ou8dtB+7A9X2qNYdi0SFLJIguhw8dYs/uG+nGm6SJhUqPIKWiHdzE7MWLVKpFLMvi7JmL/C8/+Ft8YfVzWBWTCiUcJ/fVbTUbmKaBaRoMDQ+zsbGG45gIkaE0jSyF73znQQp+gWKpyMwDC0ipOHJHCdfzScmwHTsXjBMatqWTZjEiE7ndl5KkYRdNCVzPIUoSMgTzc0sUi0Xm52exbBPLsnMQbZjMXrxItb9KHKfoRu5HjQBFgtBMTNslTTM67SZCpqSZYGlhkY2Ndap9AywtLaMbOoWCz46X9yAknLrheeKoB5qOlJJWo06p6JDGXXTDRkqZ3zeDCMs00XWdzXpuj1QuVwmCHkkSIYRAKY3+vgpDQ0PESU6jlUIyNDQIIssTLElMHKbMz89TKBbQdQWpThRlOHaRwdo4O3Zs5ytf+Qp79u5BSJFf6yoP+J/47mGGh4aJwpAwFNz7rW/jew6VcjGnIQc9fNcljmKUZuS2KmFEFCaEQYhSKWQ5bVjIjGZjBYmG0mw0rYCSdm4ho2esrs3y3SdeZPv27SRpRLlcpd0NaDbqeT+y45DT9E3iSFAuVWl1mnz1q/egZIqpS8rVflbXV3B9H39fgcV4kc+M/AdGStsIgi5CKAzdIwqh20hoz99PffNzLJ9LGT/yezBRJ7YVtlnkldPn2bVzknZzla3bHo2NRcI4RJk2Y1MTeF6ZYy+dQMiUXjfggeJ3WVvdYPDxIbbt6CPOmoi4xPPPnmJ4tEaxbOMaFo5mkiTrpGmGZfdYWpN5i064gWHkPtOaypkoUkpM0yAOQciUThBimGWU6VKulOn1AorFEgtL84wMjVMs+2gio9dewLAKxFFEvRlR7N9BlsG9d9/LyPAos3NzSBS232Pv7p2srZygVG1BWuTihXmq5QKa7iHTvM1Ftx2UWWZlM8HUI7S4iedYpFJsJVsEmsowNA+UzZnzs+w33kb5Az2wygwMjVAulrj/3nsoeQ6jfTaVSsZzz7/E+3/il4jiMAesSuX+21JCxmWl+6tj1Evx4xuHmG8mRr3+Njl4Be2OKx0//vZzXxs8vvlK6NUj2aL/Q44doigC3rgKe611XW/+673+RjTuax3n73XlNUmjT8K1P9DX64N9vR7MNzNeL0Nw9TavZnRefe56gDN48osks0fRRve87rHfiFd+5etvdGEApEn6movosuXG1mNty/P2SsWxq+11sm88kj/+wJ3fs+4rt7/0/KW1XVmZvdZahUzJkhjPtoh7XU4fe4n3HJ1Ha3ZRb7uV7Tfs4MCttzJ38TzVcpnxiQmEkvi+Q6/XphcE1AaH0GTG5sYGhUKRZw8/h+H6lIoeG2sr+MUinU6HOI4YGR1mfGwM27aI44jFxSX6qv05jS/tkiGRUkMoSRQGhGGAZZmXA6s4Sqj19/PK6dNMTIzndiMyJYy6ZOTG8ZOTYwRBC8u38G0LqemYpo4mBeVSkXqjw9joGGkSg1QEQcRTTz7N+MQImmaiaRpKaXnfY5Zx9GiuOGuaBhCjaRorK2vs2LGDbqeJ45jouiIMExyvwPrqOuVSiWKpiJQ2SpmkScba2hoyi7AcgziOCKOIgl8iSWIMQyfLwLJs1tYuoJRGr5ORxRquYzIyPoqmG2RJTJhk6KZLo92m0t9HikaU5NWPJE0Jw1ykw7R00kzkircSZs+/gudbDOkO4uDzPPOjtzHyvreyubGGZlgsr84yPj7K3NxFtm/fhqYrLFNjfWWDyuw9hHPP0S3sYGn1Zfqroxw5cpyzp1+hNlAjSBIKlSovHHuJM6dOsXfPTYRBRBAEVKoVfL9AlsGFCxfRdZ3FuQXGxsfxCh7IFBLJyvoyi8trCMBzbcbHxxgaGqQ2OEiSZqyt5q9duHiBkdERNKVwHJ9CsYyUuR/j2to6QZxQGpxCa51j39vuoh2VefbpZ1lZPc/FuRX2H7idSOR9XYoMJXTijDzAQ6cdxDj+EGFigebSNzxJoTpCgI1b6sMpeLlxztb3TNM0Lp4+imcppOWi2wWqRY9OOyAIIwqlAufOn8SyXDz1dTzjMJZ6Ep3vkjKFuKeRW/FM+UilSNP8R+9SgAwiD2bJSM5uoj+7jmhHiI0U2RKkooQ230MdbxD/2BTqZ3dh+QXiRNAJEpI4odPpYRgmSRrSbjew7UIemCnB7MVZBodqZOS+za7rECURSum512AYoSkDJXM17Dz5kCGNFF0z0ZVBkoQkWY8s0ygU/C02h7alVB2RJLlabNEtXFatdW2LLI1pt5qILKNRX0NkAqmZrKys0Ndfpdmq0+t1MS2T8+fPMTg4iO24l3vuLMui1+thWFu9q7pBpxvg+kUEGQiF5/kIMpTMhVCEyL1bNSMHruVyBWurj09JjSTNSNIqDz7wBLfcuECa7OQjH/ppfv5nf47/+hef58AdN9Hpdjh9+gIf/fB/z89+/Ke5MDtPbXAUyy5gGimlyjiVWpV6e50//fSfctvNe5BKsrglLvWed32QO991gLvuvIuP/+IvYPk6SZhiHXqBMIo44jk8YzxDmmT8Hx/8A37t136FselxiqUKUgvotlpYmssXvvQX3LR3D6Oj06w31jh25CR9FY/5+Yxnn1nlhr1TZCTYlsvg4DAFr8DN2U7+dOOzWIFOrVDLe+BNYysOzdCkwLEtFhZmKRQKdNsdHnvsCd72trcThiFJEnHjk5sIKTnzQ1N5tVIpRJayvLjMKyfPMDTcx+GnD2GYPkpaaCpFZrl4SpKmpBkYlkUa5/FvsVTAtg2U0mm3WygpGRoaIowiPM/HNEzYUufP0oT8m5v7BwsSjjz/DKurDQ4fOoyuKSbGxrd6cQtkCGaO7SXLYO7m8ywvb2K7Nrqm4XsOQaeB4xlkGIBECg3bdlldW0BpEs/16HV7HDz4ODMz27YUf0Wuct3rbNkxGaRpSppmLC0t4Lg2WZozB6TSqVardLodlMirWp1uE8s2sGwT07S58aa9+J6D57rEcZgLM0UxBx99ik6nzeDgEKbl8uILL5DGIZ5r0OsFeH4RXdPoBV0sO7ffiaKUT//Jn3HTTTdgOya2W0Bk0GrV6TQSPN/DsHTCJEJTKa1WgyQGTTq0OgFPPfkEN+7dQyZAM3QcyyZL87hFSsHiwhLFYgWpJGtrK9xx+ztxXJNKtbRFvU9p6SH3LX6bf6f/NrfuuJk0CkmiCN/xWVtZwdQVg+VVlo99hc5qhZ2NTxB3bB668AjTMztxbIPl1TalUgVEj3p9hYJTQBJimSYpBrpZZmF+if7+IdZWV6hU+7nPuRvf9/iV4V/na199kFptL767Qf9AP5ahk8YhmZKkQhHGOt954CROqYTtVDEMg7CzQqHgbNnX5YAjDAI0zSBOIpSSeIUqvSDm/Nw6E5NTpFmGUhLLsonDlCgJWJxbwjZa2G5+ntJM4BaGIRUkaYZAUilXeOyxpxgdG2BxNuCJR15gfGKGghvj2QqhZ7nXfRwQhlFufxQKhqZvolPfIO2uI1VKjCSLM2xL0G0nOLZBN8g4uXiR2/rexnMbj/ONpx9lx/adDNZqbCwt8ZEPfZA//P0/5K37fTZWF+kbuomhqSmSNEEqRbIVNwpeW0i5BMIuW+fIa+OBK6t+r1ZerzeuXbS5FDfHT+WA8Erweq0w/2om4tVU2Uu+tN8z+1VMzjda7+v1tCqlXhOLX8mSfDPHvPR+r6wYXx3Dfy/z9PrM1Neb68o1/b0Gr2n6Km349cY1wdHfsDr4Zva5VgbmjcBrdPxhsrDzN1YbvvqL8aYuSF5b3r+0usv7XrHcqy/SS3PEX38wv3l84N3XXdPVz7/hGkUGaYql6/z2Jz7JR4vjGJ+9m4237OXC4jLVcgElBeuryxQKPrbj4LgepqmxsryE0k0s2+fCxYtMTU8jleKeb93LzPbtxJ0m62vLVCoVur2AWm0AIaDb63LixDGGhof5ype/xtT0NErl4MV1i1sqluo1oipnz57NxV2SlBMvn2Lbth1oukkQ9nL7ED0Hf2EQIUWKVNBLAlqbdSzLoFFvoBs2QZBQKBRYWJilv6+CpusopTE6MkijuY7rVIiTYOvzEqyurLGyvEan06Pg+ziOSZYJLNPjqUPPMDI2kldz9PswSwuknUm+/OWv8cQTj3P7HXdgGhW+850HkUIy0F8l6uXCG67vg1BkSX4+Wq0mpVIxz9zJAN3w+NSn/oxqqZ+x8UGOHT9BX38/UkKj3ePkqfOMT06xtr6G45XQtyxFet0eumYgpaLeWGFzo8VzR47ieiZDw4PoKxtw8CXkb/08Qz//kzTrK0gZU6pUsC2b+maDSrlKlsLmZoOV5YuUzt9DfPohnF3vxS166KbL5maTkeERpsYmOfXKaUbHJkizDMewGBkdRlMGZ86cw7ZMVlZW0ZSOYZnUajUg49y584yPj9HtdnEci8OHnuW2O26lVhthcGiIZmODvmofc3NztNptOt0u3Xbe4zuzYzspGfX1NSzbISUjCrucPXuaqclJHNtHM0wSFF7rZYzpd/L444/S6Ya85cB+qv01TL+MIUHEAUmWkUpyFU7HwS30UygOUSzXqPTXcH0f3fTwCn1kJCiVIHiV3t/tdhHBJu36KgEGfnkA4vWcMaBZ9MIQzy3k1aPsSaTsEaZvAzlFEPoY98+TZSC2FYjiBKVyqpaUeQUAIZBCkB5bQ5vvkvzCNpJJh+TCHHrDwZwXCEOR/I97SW8bYG19Bdf1CaM8iZEmIYZhkCQ5pUnTdRYXVjFNgyxNKRZLBFEPx3FptTuYpkEYhTi2C1tiRgsLi+gSNMMgCmNMXUfoBiQp9c1VHNtBaRb1eoOMNPdXTrIrwKJOrxdBKul0u0RJjKZrBL0e8dk5RLNNxxRUKgNkEhzHRtO0XMBJz4XICr5H0Atod7o4jk0QBFvnSbKyvEqvmwecnpevO07SPFAUkjDskaZ5sJWlKVmW0um06OurkaWSIAyI4hDL0AjCgHq9wfjobjTdpFp5mlAcIMkUN+/fjwT8oo2UJosLDd77Q3fxS7/4i5BF7N61g82lOQ4fOo5u6/RXC0yNjLKxsUKlUkXTTXy/xL49d/C+97+VXreFJjPOzc1x/KWTVNfqdDXJJ792D8H+BoVCiX///t9lcKjMZz/3Rfr6BqmWHbqtNg8/+AT7D+xjamIakTl0w4Tf/w//O6+cViwtu2xsLjG5bYhKpUoQxLxy6jR9/VUmBkbpBC0O9p5inLGte2dumyWEoN1q572Gjs3xYy8Thgkz27fzqU99infd+U48z2HHQ/MIASffPUCa5LZKggTX8Vlf28SxFbX+YUrlErqu0W21MSybjPxayNIMbSvQW1iYz63QyCvulmVebrERW4ldXTeIopjNzc3ct9rxyICFhTmKfgnHtZmYnGHn9u0MDvaxurJOp9umXKkQJjGntp/g04t/RK1Wo1zt46GHvs3M9DZEBqtrK9iWgdBMLjnVZWlKGLby3vgtJoDrejhuzoq59LueJgme5+dCUUqhaRqua5Nm+XdPiLwXPYkTHvj2d9i1cxdCQkZKliV0u12UkoRxgCQDUhqNTQrFIpqSTE/NMDTcT6lYQTd0pqbGmRofYXCoH9txkJpOEAY4tkm73abZbNDtdCmVyvRVivhFjyxTJHGCrgRf+OI9nL9wmtpgH6Yh6XRaeJ7P+XOzzM8vMzBY5MD+fSwvLVCtlEmSCCU1pFKEYUi320YKjYWFJe6771s4jo3nFUjTENdzEGhkWcLjjWfYvbaDd+oHGBgogyS3F0ojyhUT3Yx46Yk/Zf7CGieemWDn+R8h3lXHKpiUygXq9XWmdszgOlVefO4wfRUHXYEQGlmSkKWCNNFxC0Vct0BKRLWvnz/b+AtMy+ZDyYdxnZR6Y55qSZCmHWzLgpwVTJqkBL2MY8dW2H3zFKXSAHEU45pblXzxqi2deeleplKEMGg0EzrdmEz5bGzUGRkZpq+/glQGaZySKbANh179JEq3ECImCgPOnV/kwuw8wyPDjIyNcP78Gd56xzvpdkL6awrDXcH2YxwJpp4RiQSV5RX1JE0xTR0yHWXoxGFKGHYwTEEcxIgso9OrY5mjBFlCf3WQY6fnGK2OM9q7gZt+YRvzc7OU/SIvnzrFN77+TYaHChzYWcAzfR57+iUO3PXD+T1AXvJav9TS9mo8+T2g6Rrg9eo49s2N1wevAOkZCW6GdmNy3Xj3WnNej5p77ZW8cZX0enH1lc9fT+H39fa9mu77Zotkf5Px/4PXrXGti+ZvemL/W4HXN6M2/GYsZS5td711XvZvuqpv4GrwmsTJ92SErswYZVkG33wU4Jrg9ep1XfncG4JXmRB2u/zbf/MJ/unkTXh/+Hm6P3A7qlzh4vmLmEbua+q7DnOzF6lUq/QiMA0N13Mo+GVanZD1jToDA4MEYcD+/fvpdTsM95Uoeg4PPvQwmmEwNDTEmTOnGR4eRtc1pFDs27d/i46U4vgu6+sNSqUSm2tLuL6PYeikaUqxWMyVTKWir3+YzXort8FINKQ0iENBsxGQxDmAsy0HzXQwhEkctSgWKxx+5ijfuPt+bj+wD9+zSdOILMutIBxHkmQBInNY31zBMA2ajRau4/Pkk4eo9vVTKPgYpoYQOnGc8fW77+O2AweQSiNWJ4mjCF+/iX037WPbzHba3TYvn3yBgYEqk+PT/Omn/5yhWpWh4WE0wyBDI+iGnDl7msnJcZIkJghCXLOCplvctO8GBgc9dM2gNjSEpuu5iJGu4VkOtqFwbY2Fi3OUKjXqjQbHjh9ndGwcMmi116lWhhkbm6RQsODwCcRL5zj/sffRetuN2G4/BVdRKTvUWw1ajZByqUoUJti2i6YZ2C9/nuDkAxxe9pic3k4iTTQ5iGFpPP/c8wzWhugfGOCFl45Sq/Zx5OnDVPrKnD17nlKhRKlUYGpqOldR9lyklouMDQwO5sFWfZNus8n09A5eOfcKQ8PjBJ0OSdSjUCzgeT7lShXfLzB77jxpmlLpq5KkCd1mg4WVZZSS+K6JIhftabW6LK2s4FaG0FoXUVrEgX/0IU6eWKZW0jAcjyhTfOubXyNorqNsC8f38l5SMiLZReoStJSYgCRKUdJCZBIlE6KkjZImAL1ej3a7TW9zgYJj0D82QyIc2s3TRHFIsTBAikaaCOrNTUrucUTWphuMoGk6iAx178X8Djad93dnWbqlnJoihMrFcE7VYbVH519sJ5vyaHgxUXKUcLoHv/o+oncOkpXynljLyGnGpmkhpeT48Rfp7+/DNCw2Nhq4rkupWEHTBZqeJ2myLEHXTUzDQgi2wG4O8rLskuWUIkkyEDL3WQ0Etq3QZARorKx0KJXcXBgJaLU6pInMVbKFREmd//xf/oQ73/MehKZQUqLpOuHx02hBTDbcR6cdYLsmSRLnjBUUzWYbz7PotNs4tkO6ZaUDsLCwgOd5+E4BxzZzOx1dcvHiBcqVKrpmEva6OaDWc5EmKQWtVhMpdbQt4R9dy1WZZ2dPU6pUsSwL07BRRoUs3URTF2jFu/AKZYb7htGMhP6BAd5yx12YQvCPf/yj3LJvF5WyjQhjTpyY5/FDT3Dj7mnqyyuU+wr09Q3QC2LOnrvADdv38tjjd/PMM4c4cfwlTLfCH/9f/zfv+tWP8SwhBw++xId/9t14rRI/suv9hPEm/8Ov/Qt++Zd+FZEFeG6R1mbEDTfuQhMaJ0/McfjZF/jNf/ZL/JtP/A7/5Kd+hve+750UqzatVptSqY9KtUyjsYkUOiNxjf9n/fOM+xNYmZ2r7GoGvV6IbVpATl91nQLfuvd+Dtx+K6OjI/i+i6bDrkcWSZOYgzekeJ6PLhWNRp2N9U2GB0exXcWRw0fRrJylc/jJIzz57BG279hJFqecOvky/ZUKjucQRbkiepaB0iT1zfrlvrFOr4uSiueff4FarZZXYU0Ttmx7KqUChuFgmAb33fdtdu/aSS9ookmDoZEaCSlhGPHckee4/bZ96FrGemOV7RPTfO2rX2N8YpJiuZwzHrJ0i/YsWV1dpVB8NUGiKZ1qtR+lJHEcAhAnKbZlI4SkXm/m/bdh73KFbnVlHdf1QWZoSmN6aoYv/dVX2LP3FnTNRCmTdjsEEeF5Nhkxq6tL+K6NbtooJVhdXaVWK7Gx0UTXNbIsZqCvTBB0kUpDN1w0Q9tS9E6xbYdOp8P09DaisIPpGPTCDEPTCLot9t5yM9PbJikVKqShRreb4ro+fsFhdLSKED1818J1bIQAXdcARRwnpEmK5zk06rl2wh133EGj2WCgVsPxDJIMGo02GPDA+qP8ivoYe0Zm8B2NQqlCs9lgfv4shRIcee4RFo48wzt++OP4x/fhmf2ooYBisczCwhK1wSGW1i+ysRIzMTpMEq0hCTBdF9I2pqFod3o8f+w001MzeAWHF186ygszzyJExt6TN9BfGubEC+fpL5URsk0SBwgkrlLIpIOuInbsGMd25ymUdjB7cZ5KwUAJQRTl/fGXEjMgSdIerlvl/vuPMLNjO6fOLjA0PJInYF2bc2cvIAHHd5GpRtQ4TpIJBCEyS2h3U26+5QCpAtPSKJV8Mm0Zzx6FTOOBb73Ased09m43ECIhRKELQSZ00jQBYkDj7CvHGR3bg+Y4PH7wUbaNDOcFjrTHyqrFKxfOUXQ8VpoJPS1kp9pH7LRYiM7wpS9/lamZG/jJn/kFvvSFP6Ii2shYwx/spyWrTE1P55VkLU8aSfFauvDVwOz1mLtXAslLYe31Y/rrg1ftxhS19/q2N69Hzb0WI/S6OOZvAV6v5ff6/QhW/V2A1+/HEeYfBHjNsuSTVwLD156X6/etvnHf6Gv3eb0P44qtgCspw1eCvuubGF8Cr9r0gevOfYkicfXcWZbTCvJ/Xzv3676frUxWmuWE4e/5gnKlmvFrpawvZW6Srz+UP/7gu6/7xbn6/99zLgVoW1ntVILoZHz1s3/Cj5xpUvvSQXrv2Y+olgkTCIMutmmweHGWkfFJkIqNjTX6KhXm5s4zMFAlCAIeffgRtm/fzonjR5maGkOpjKDdItUMQjQGh8cZGe6jF0SUyn20m3WqJRdluwiRsra+TLHok6U5hdrQDerNJkqXl4OYXhCQpCmWZSHihAe+/W1GJybJshjD0Oj12nzn/vvxXJeRiSEyJVBConQD03RJpaBW62fHtinCMKLTDYjjjDAKiIIOs/PLeF4RRMra6iYjgwOXPfy2bd/O6ZOnefjhh9m/fz+tbhvbsfAtg2LBwjQUkTiJkhdsuSMAACAASURBVAI928lnPvN53vLW2zF1xXBtjLOnzhFGIT/0/vdQrlRyypxmsDQ3xwPffoI4bWJbFq5bIUm7rKwu43kurWYLy/bJZIKhG4TdgFMnT+B4HqVKkSRLabU79NcGgASJhmt7LMzNMze7yLbpHfQ6dayNDXjiJUIlkX/0SYzb9lEqFshURBjC2mqDNAqo+blIj2GYtBZeJv7mPyVZOcMzcwl9RYPG5hy1oR20WxuYhsVLLx1joFbG8Vyq/f0YhkGlUkLTNESWUS6XOH/uIovLS3i+z1NPPcXw0DBKKi6cm+W5I8+TZYKHHznIzbffTKVUYXN1mVZjk1OvXEBTGocPP41pGLi2w8LyEiMjQyiR4hg6mZB0mwFry+uUSgV67VXK1QqOX6bV7pClGa1YUa0fYcF5O7fuvYGjr8wyUPWRcR1bgycff5zbD7wVvVAiSQQqUQipcrVf8h8yoSSZSMhETCZASRONPHu/On8WuuukSZPYLGN7FWxTZ2VhjVJpmCjVyESGMiWe7aFzCEEbYUyBVLTbm5gPrSA3IjjfRs62EUFKYgvQJEmaoJ3eJF1oof32jcRVH6UbZEJh+mX0gTFC3cayrC2aokac5YJEIktZnJ9jaHgyt9torlIpl0lTyeLiLK6Xf+ekkCjNJglDNlaXsR2XDAVpRpqkW/2gimzrvqekRKqMoLeGYTqgHKSS+L5C0z2QgmRLbEm3NRAghUBJ2HXDDgx9i7UhNYJeiL6yDoA5MYHruqRJ3nNVb9WxTIP6+jquX0AIhabpaEqj025h6Dqe76OkYrOxhmnbCKkhhMAwja2gKSNJE9ZWVtEMDaVJ4jjCdl1sU0GWkkQhhp6LVXnlfjIkSZqim3res5gWseTz/MF/epTt22/nqScfxy7U8HyfqLuAKhW5MDvHUG2QVmODUJoM1Ib47nfv5dbbbqXgT/OD7/4hfvJjv8Jmvc7vfeJ/40d/6iMMDwyTRoqxiZt58sGDfPAjP0Cpb5Cf/scf5+Bjn+Mmfx+DXZ/RsT6iMOPDH/kAH/v5X+HDP/ZeFtcuMDm9HcsUtOKIbtji5RefZ2h8kF/++TvxrE2kO0CSmKRpnqBoNhvYrk1rfZm4F1IslnmpfZSZwjhJHLGytIzveERphGlZ6Mb/y96bB0ly3fedn/fyvuquPqevmZ7pmek5cBEHSZAiKfEQKdK6NqhwSJZXouXdtbwRkr1a7kp2rBwb1koOh7WOXZukxUPLGxTBmyBIkAAJEPc9GAyAOfs+qrvrzqw894/sAWaGMwAocf/R+kVUAFP1KjO7qjLz/X7fK48tO3DgAHd/+y7KlRKGaWKaLvXnm4RFk623z5BlkijO0dELF5ZRdRXTdhifHKdUqhCGMXumJjlyaJ40iXn4kYeYPzqP3I22sSyLTGRIRbC2uopXyA25hFRQVYM7v/w1jh+9Hte2WF9b5umnnmVouI6qK0RRRMoATdGY3jMBSoblOKi6xA9CNjcaFNwiI7UiSRoRZxmDIOXeH93HB375H2DaFkLKPFIlztBUk4WFJUZG6jmDRTFQNZMsS0iSOM8/FnlzxjAMkjSnQRumgZR5U0UKnaefOMH+2Wna7U1swyVNEp588gluf8ubiaMA1VDy81VqCKGi6znt3XGKqGoeOSOFguMY9DptbNtB13XiOEbVTXpx7iwsshApBEtrmyRhxMAf8MgjjzC9bxrXlrR2+giRopkWX/ryd1BlSsGzSZOAKOqysLhEvV6l2dpBUQySOMa0iySZgmZa9Pwem1s76JrBD3/4II8+9BTz183jFhxs18W2C3z0o/8X1193PZqqYlsmT7dPYvUMvvB7f8NHP/Fl/vt//ntsbC5SrNVxDI0LP/wYU/JFDt38O8j0BtzvHEIe7SJsC7/fZGioCFKnudnEsAXV2gjNnTaGmSB2jR+3mmtEocrE9H4Mp8DC6TNMTU5z0jyFG7n8kv1uPM/lRz++n1OnGswfGscyNQQl/DRAd1yQCkkyIOzr2GaRIBjQ8deJglxjGvk+qjR54UyTaqmI1FJ6vQETE0NYpo/fCdnc2mZy3wyeW6datHj21ItMTk6jiJhOo4vrtslihRQf17J46vlzzOy9npW1dV58/gSh7/HIY0+TZAHVWsZNt0wgZIBpgcx8ojhAEZIkCRFCRaTg95qUR/fgGhYTIx6J7BKGIbbtYdsp9ZJHlCZsN1usbfvUZotUnp3m89/4HJM3jfDww/fz4AP38bY3v5k777yL+RvH6DT7/Ppv/T4P/OheigUP1y3sNlCza5oeZVmeMHzlevSVguhitOSV9cJPrpEvNTi9dO6r11/XLtouLQIvew4lXwTvPq66/ezywvlaJrLX/lsu//frBfGuRTF+LYrwT6SZXLG/MAyvjppf1oj4e1y8/mRUztVmXRuu/9mOn5aS8Mp4teL1J/ZyFRT3yoL29XY5rozMueyEv6L+vVpnKP3avfl23v9zPyGgv9IN+dUoG8pubZ/u1v3pC2eY+VefoNro0739ONQrCEWFTLCyvEi71aRYKqPuun56jsPmVgvP8xhEg3wjArIU9u7dS6/XQ9U0PLdIFMdAyv3338fcoXl0zYAso9NsEEY+tlsiGAwoFYt0ez22GptkqcCyLMIwYKhSIk0ShFRB5i6nmiLJyCgUPaQU9PpdXMcmSRLmDx9idHSEOAmJ4whFajQaTRzbIk5SpCpwbYOP/9UnGR8f5cL50xyc28sg6OAVaziOjaapVMoV4jQhCiM0XWNra4sffP/7WLbBzTe/Ad3IjaQ8L9d66YZBJF4CYH3BYXJikqefepI9E+NEScDE1AS2YzGIQvr9Hqqq0NzZYWR4mE53h5tuegOVSp0si2h1NvC8Sp7LmSY5tTOJCPwA23VRNYNytcjSco6Cq5pBnGT0+h0My8YwbRCS8fFhumfP4zz0HCyso/7m+0j/+ENkRQfHtel0Whiqh0DF73Wp1stcWD9NsTLB9lPfQdz3x0i3gjb780xMDuMVylTr08SpwtLSEsViEVXVGR4aYnNrC8u0+OQnPsHi4iJHjhzB8wosLi1x5Og85UquSa3V6oAgSTL6/T433HADTz75BLfediuFsgvkiJ9umExNTiEVwZEj8zz22GNUKzX27ZvhmWdOkMQZnleCNKJeH6E2NEQQxpRqQyyuNAgGOZJhWRrNZoQuIwrJOsvKLI3VMzzx+EOEYcALz73E3L45quNDaOYoUpgIMXg5rP3VzmkJhFFE0G+jiBSkglsaIoxB1w0IOwTBANt0iEKfxXNnqA+NomaPQNYlyvagiDz7UXluh6xusvOHcygHKigrfZQH1hENH7UZIRa6yA/PMah4iF2qpRAw0EzaKdTqdXZ2digWi5w9dxbXdlE1FYTA0HUsy92NlgoIw5A0zV1C+76fx4RoGhvr6xQLBfwgwHFdLtJHdV0jDAfEcUK316PgebSaTTRNJQnDPAc0laQIkgQyQtI0pt3q4DgucTxAU1WSOGawm4+51diiuotuarrK4NwiCDCmJuj3+/T9Prqhouu5yZPf9yGNMUyDOIlBkXR2tvA8jyTNyGRuEHSxqZhlKaZp7OpzBYqU2HbOJACxG8UTk8YCUDBNi16v+7KONktT+r0emqoiyQj6A86ePct73znN1uYclq2xd2YS01R5+pmn2DM5Ta06xCc/8XFuuPF6bMdmeWmTX/2196NrBjff9HYefeI+NFMjjgJ+7Vfez+pmg5MnTvL1r3+Td7/73Xzk//6P/OL73kOlVuPxxx/l/e97L6cXVimUyqiahVRshAy54cajOK7B2Ng4cZzSa+cOuZ5jc/DgPuIkxlG/RqXa5MkTOkPVKc6eOUelUiAMAxSpUCrZ1IfqHHTn+PPzf0lF1ijrlV0jpRBNV1leWcZ2bLq9NqapMTMzjVco8IlPfIqjR46z/uYxzt1QfFkTlyQpaQLFYoksS8hIMPTclTeOBuhG7hivazqf/fwXcWwXx3FwLJuz589imjq6keutW60dXNfl29+6m0LR4fDhQ3zxC1/g8KHDGIZJoehguTaqqqEgCeIQKWSOFBpGbgaVJOi6TqlYIssy3vrjDzC7eoSl2fMUPI/9B2dRNTU3bBOSNINWq4Fp2jz99LPUa0OQhbuZp5BEMZ12G9dzSeIYTdMYBOHLGjch8o7w0soypXIZ07KxLJNWu0XQjwDBhfMLzM0dQlEEwSBA0zV67S73/fghZmf3ociMTmsH17Joddp0ug1s28Q0iqiqZGdnG89z80gd1yNLEnq9Hpqu4bkupDFCCg7PzxPFEZqiYlslND0/1gfuf4hb3nA9lpWhaSquVeHk888xOztDu9XkoR8/xPTUGIE/QNVMkCqaYeM4Np1OG0XC2992O7qqEEcxd33rLmzTZmy8yvDwMBKLMAy5r3M/v1P8DT78j/6AD/3uP6VQ0sg8g0Ji0zn9Je780l+x0aiw/5Z/SPjJUUQVGEmIwgGSFEVI0lSlUPIolItEg5RCocTG5gZJ2EHXQdEUNM0kTVUWVxrUa7VcK/2AwW9P/TZJIjh/YZlbbrmNpbWnqNcmyLIY1dxClSZxmKPnhqblMX6JpFCuo6kgEp8oTtENhb4f8eCDS8xM2Wiagq4pCJGSxAFnF3rURutUqiWSQCdjgKLqGIZJFEaEnRYpO5i6Q5qFbDX6BLGHVSgwNFxhcs80xWrE9N79rC43cC2HjfVtnj+5SBL2cSyJKkqghUihQaag6SoFr8BWNyUcpIgsIIw6KEiEzJv9QRCyud7EdMosrbaYv26OrWyN9xY/iLc0zJt+/2a+fOc3+NN//S+551ufYnZvmTBMGJk5wvzBg3zly1/l6LGjyCwhk8qrIn8XwZir0WN/Gqrs3+a1a8G+12Ih5u94JftUCAHitRNELq7H/7+rZy4/xkvH61nTv9r7IW+ovXZ98ve4eL1o2PTKeO0v/WodmWsJna8cr47WXvuLvFb34eK4lDZ8rTkXj/PKPNX8v1fOvXxfl54Yr/wN4rKuyqXHmdOKf9IE6uIjN4FIyb5xX74Qe//bfiJ8+OK46HJ2tc/mZUtsIUilQMlAv/th/N/5E/QD0/g3H6aTJFiFEopUEHGMKnPtz+TMDFGc8olPfJzrjh/FsBwcxyHL8oV6pVrLcwBJEALMXVqXqqvYjkW9UmZ5ZY2Reh2yBNuxcQoeIssXHFvbO0hVpVat5GYsWYaua7RbLWzHpbG1jWk7PPXUM8SDkP4gYHRsFNvKEad+P8BxXAaBT7vTJE0zsjTj6aee4cSJkziOxj333MvU5BSB3+P2t7ydfq/H4UOHaLealMplVM0mjkP6fj9HsUR+I1ClgqpKbrrpeubn51FUjSiOSJI8BsE0bQaDEPSzpEnGcOk2CkWXQsGlWPQIkxjDsjAtE1PTMEyDLE3xXJdmc4dixUaRJr1uj0LRQdcKuF4hp+xaFo3GJkWvkNv1ZwmGYZGkMZVqlc1GgyzLjaQMXbLV2MZ1bUxdkj59CvvZs2QffBfaf/gDmlNV4gzanW00TVIqVdHI0cX/9LH/zOGj89iFEuFjn4GnPkZamWNlu4VTGafb9UmFCcIijCKWlpZ49tnnuO22N9Lt+pw9c4YkDDh+/DrCOOL0mbOMjY0SJRHdbpcsS3B2XabHxsY5ffosMzOTbG1tMTw8TL1eJxz0UaWCZVm0Wy0aW1uMjAyxtLREv+dz6NARkjSi2+tjuy6m7dDrdrmwsEiG4NFHn2B8cgpFqni2ha6phNGALAmJrTrO1iOMHn87ilVlo7FJtVLi3OkzhAOf+lCdbquFKjNcJ0fpLzVPu/LaIEROLFJUldbOJrahkuAwND6D5XgoZPj9NnGcYVoOQiqUqiVOnDjFaO0ciuzTC4ZIwgQ/HKAerpMcq2CNlGiZIckbR0hurxHpEWk/IfjVEcJpDyEtkjTD0K2XI6IMw8gNZkyLIBiQxOnL0VyKooAA3++QkaLreQMqN7/Jr+C24yClxHWsXLPsuISBjyIyND13GlbV/GGaFmkS49gWG+ubuK6LVDR22i0MzUBXNeJogKJIbNtCoqAqGYEf5O6ViorrWrk+Vur0ej2kzEiX1xFCEg9VcVwXw1TRFIkCdDo9CsXirnkar0SLZQmtdpskI0e9BHQ6XTRNzxtEmnpxJmL32pg7aL5yfwjDBMM0SZIEw9TRNI00SQl8n2KpCFnG8tIKnlekXN6LoZ/iox+7g2r9GKWCyQsvnOL4jTeRZYK/+It/z3/3P/wz/GhAa7sLmcHC4mn27p3hV3/lH9Jqb2IZDoauoqqCYrHMdrPNwUPzlIs2N904zz/+b/8pv7sZ82sj4+zMHaJXihCuQtqWHDp4lD/6nz5MnHYYH5sBFNY2TrOzM+DZJx5hbm4/iinw/S718hIZgvd+4E/54K//BufOnWJsrMr/8kd/wi+//4P4gzZIjSQCqSqc8l+iKipkWZpHlwmJbdvoupp/95pCY7NJpVzlhhtv5K677qJaK2NZOdovpUIYxpx87nlOPHuC+fl5HNchHAx2jehS0l2N80svnuE973ofjzzyCPPzh9FU8uu4ldNUc6p6bgx2YP9BisUiuqFx5MhBTNPAtmxMx0IqEt/vYxkGQs1ZBnJXt55mGUkUYxgm3U6uXzz+zK0YA5vTB08ilCx3Ke77u/d3ZVc7LdjeajI2Oo5lGWRJ7jyfJikiS4iiEFVRdrPKXYIgQNUkUskzhweDgHp9iL7fp+B5pEmKrhq51hLYN7uPcDAgSWIULb+H64rOyRdeYHpmAkXk54qqaiiqxPNcpGIQJxJF5uhXGIZIKel1uuh6fo/Isph+t4nrFjBsm2a7TblUIo5ihNDw/R5JEvHG296EY+sYlglC5cRzpzkyP8f2doORkVH27duP4zr44QDTccgyie8nNDaWGRqqU69XQYCqStIkZeHCIseOHaVcLWBZNs88/RzfevQu4j0pfzn/b3B0gSYthKpQtcs0zn6dnZUv0QqO8uaf/3eE9xrYWyWSuSZpFnDuzCLPn3iOiYlJzl9YyKnVEsJBymOPPcW+uUP02iuQ+Vi6TZr4uI5DeWiSjY0dytUKc4cPcf+P7kdVVCan9pCkEZGvcuFCg9X18+ypD6NoeT53EieoiiBJY6RiMohNsiRFSVsoQiWOAwpFk9kDFaQeoaoWaZqiSp14YPDcCwssLAw4NH8dXiEGadBoNBgbHaPX6XPq2WcYHt11kiekXBxhcW2bKNWo1Ws8/tiTeG4JKW1qtRK6FrO6soRT1BgfActwUayIXi9DkwokIYMoZNDvkmhVhkenSMIOiowJ+v2c4p3l8W8Fz6XrD1jf7IIQdAZtzL0qtWAM/xFYnTjH//OpT/DOt16HqjTxnALrvZQbb7yFtfUO0zPTOUslkz+xXr8MsVOufY98PePiOvu15gf/p0H8sIZ266U5r6/PWOlylPKKtbG4ChDFRcT4cibmz3pcC0G91txrjatRlV9t7qWSxP9f0IYval5ffVy7mLz4/39b9+Gr7ee1vtCr7ev1aF4vLbKvLEpfbX8XO1AX//3K9l5BXa/Ggb9UFH+tTov8pZ9D+cDbXvNvfLUfbpqmxAJSMtTPfYfO//ofyG4/SjY3TWN7h1KlAkJHZhmnnnmKSqFAsVhEs3WkqnD8+FEG/S52wSVNUx588FE2NhqMjo6TJD00VSEI+rieSzAIUDSFOIwoegWq5SJry0tEUYhm24RC0m40MEwLt1DAMEw67RaqqqFruRuvXSiRJBm6rhP4fSbHxwj8hLu/912OHb+OrY0NDNPCtjz++lOf5sCBWYaHa6gydyd2bIvZ2b1IGTI+PkmtNky7ucMggZ1mC69QwjRd4lgQJxH5J5M7KgpFzeODogGkKVLJ8hxMmRcEUoJlOAhUhJT04xO5IUV/Ek1XsG2TneYOQZiiGxZJEhH02iRZhmHkC2zTyOM+XLuIZkC71eWbX3mUqb1j6LpJv9+nUCzRD0LSNELXVHa2trAsl06ri6FpWIbG2soyJc8jCgJ6Wxtoz7yEEURs/6vfZvg3fpkki3InT83cdVLMg9BfevEhRkaGufnWN5FFbdKv/DOyzVM0nQOcX1xlbt8cm9st1tZ7TE3OsrS8wMjICKZpUatVOXnyJMVihRPPPM3m+ioHDswyMTXN5NQMhmFQqVRIs5h+v4fruExNTaMqOuVKleXlRer1Gr7fx/f7vPDs8+ybnubCubOMj+cuo2fOnGFychKvUOK73/0+W40NDh4+SKHk8enP/jXXXX8rwyMjeWcRiKMuycDHsy02NrcQqoEidNrdiG7PJ1x4DH/4HSi6wdzBfVQqBV46/QJPPvgkx4/VieMOUaBhFAovN4iudn5lWe4CmWWw3VgjCnrUx/eTKQZCSgK/TbvXp1wdobHTwXA9NNOiXqki4gdRZEAqJjE0DdO2CS2JUbLJ0oQkSzBMiwEDtGkN7ecPEVeLqLqLpkskxm73GLaffwJ/cw13eA/NZgsQ2LaFoeUxPj2/T5ImKGqMokokGn4/RAoVZK4PjuI4v2akCWkGSSYY+H10VWV1fR1dN3YXCRIhFRYXL+C6Np5bQNF0gjjCsg2yeECv3WIQgmPbRFGUo5nJgDiO6fd8VE1ns7FOsVThI//5rzh2/CgZMenSOpChz0zki2NdEAUBze2dvDi1bMSuyzExBH0f3TaxLBvbNCCNiXeLqI2NTcrlEoIcUUviOHc+FoIoHpBlCb1eF9MyELvGbmmWEMfx7rU7p61pigoiY2mpQRynlKtlBqHkF34uIeaNPHDfvbzr3e+i1etj6Bq33fZm2u0upWoVV6+iSAuh+KRZwMSeKTrdgC989kv8H3/257z5LbdDmlIfnWB4fJQP/uoHuO3W6+l0Mt5XGSaMAgrvfA+/+I33cN/WD5hdmeR3//GH+Pa3H+btP38Ljc0Ouq5TrgtKpTLDtTKaprLT61C0LbL4aaI45UP/5KPcffdXeNs7bsF1LQ7sO8K5MxuMTY6QCQVVdzngHOIvzv05ZaPMkDOMrpu5l0CWr7l7vS6mafDJj3+W/fv3U62VGR0bwfO8l5sCrVYbz/NI05hqtc7ChSWyDApurrdVFR1FMRBKQrFYZm1tkze96TakktJqbuAVPKTUSGNBs9lC01Qsy8D3+0BuKpakA9IkRlEEKQpSEXS7beJBH00z6DR3MHUNMomumeS68Yv6ccneE4dQpOTM/ElSkaFkKu1mi3KxgMhSwkEf03RZWFhidGyENA2xdRdN19na3kRREyzDIfB9atU6H/+rj7Nv7yyO5yCFoN1u5ci9UPB7PXa2tvj0pz7DsSPHdovlBE1T2Npu4HkumqERRXlW8dyBWVQp2NzapFobRtUNWtsNLlxoUK2OIGSKSDMGgxDTtOj7AarMm1MJgiQekEQ+plUkTPP4qizO0LQ88q3vtyiXPbY2G0hdQ9dLpELDK3k4to1uWjQa20jFRKgqpm3nLAmh8Om//gxvvvUm/CBAagZhmtHYXMErljlx4nnmj85j6DkaXK66rA9v8+b0rZQWdKoFl3u//xBHrr+BC4/9KRdO/4C9M/+ErHoDvQcD9pw/ymB/I8/VjTO+f8+PiMKIZnOHjcYaw/U9JFGAbVoMj4yh6gp+axVDT9AVizTx6XW32e5J1tfb9PsDzp8/w+23345jGShKTBK10VWFB378GNddtwdP7yO1nDra7XSRIiPLEpAOTnEPnWYPjSZS9BGZgcAkiwOitMKpkytUaw5x1kYAnU5Cb5BiFVwmp2bp93q0Wy0WFxbZ2NxiZnwUqW2hKgIY0OvGTM1OUx+a49SLZzl0eD/ddoCmq2QEWJrHS6dWWV1uUXF1vJLguRNJ7r1hgq7HGGYRXREUhvfTCzJMLSUedNBUgd/vIZW8ESOyAZbj8tKZTS4srrJ/7iDjE+O82DrJbDxPXG3x1fu+xq3Hp5FJk63NHaZvegsTUwdZb/gIXcd0chbXlevRy9a28ifX4j+NxvPl7bzG3DwqR1xRvL5+ZPflY7pSz3oV5PXS4vWn3ddPM36Wn89FoOtqn/vV3nslAPZfi9dXoQ3/LArXV7oUr4dDfw0YPughvTrK0MxV579ssiQvLzillLvc/1f2fynq+sqcV9DWS4vWS4eye4F5+ZiueFwq4728CL4Kh/8qqO21PhMpJUHYQnz2+2T//pO8NFvGO3QExyqwud7g81+4g5uuvxEhAirVGts7fRZXX6JWGaW5s0m1PMwgirBcEwkUHJuh+hC6adHv9/FKJTRFo9vs0u7s4BY8gkFIvxdg2wpOsYDluKwvr6DHMZbjkCTQ2NzE82zSTMEydV568RTdXkTBc9ne3iSJAkxNQ1d0dN1i374J4sinVKkgVY04DDg4N4vreQS7mqTt7Q533/VdDh86SKE4gmUrSAlS2nz5q19nbW2N1k4Tv9+nWi6zs71JdWgIoegkKcgs121qup7TdzUdVZHsbG9hGSYDf4Bq6kRJSN/vojtLtDp9ZLonb0YkgqKngjRobjeolFyiKEDIDE210XWbhARNdWm3m3ieh5QZ+2brbGw08FwX09Q4v3CaUrGGZRj0ez5SNUiyGN3QMW2bhcVlJmf2kmV5fqf1/Sfh+kMo/+mP2FI0NMMmU1LavQ6uU0aTKp6ts7l+nurYCEFPob32Auq9/5oBgnjsZgpDYwyNTCPVcQzPZM/0XgZhmC9YJTz40IMcPnyQkZE6jz30OM+efIZ3vevdtFp9nnnqeZIsxjAckmyAbXk01lsYmoZCxsrmJqgKE6MjpEmSR3KsrDB/9AhnTp9heHgMsatrHB4e4fmTJ1EEFAs288eO8+P7H2JybA8F2+bFF06hayqqItE0Bc8rYFg2vb7PIAmpjdTpdWK++rWvMnv0JkayM/j6NPbEUWYOHWDzwinkoM3wSG6oFfT6NFbPMDI9j6YIICUVMte/XsKCSJKETiiI2ptEnQYyTRj0h4OfrQAAIABJREFU2rjFPfSCJpWCQmurg6GZOJZHP2hD1ifweyhqFU0uIdUp0t1rRJokIAXtXhfXcSFLMC0Lw60yCENUNY/J6fX6ZGmCkDFCKESP3UO2s4J18Ga++517iaIuo8MjJCioeoShO3mBodsgVIJ+yPbGFr1OF1NTSGXuFhkFAYqeG0MpIjek6Q/61GtDJGmEqkmSNCJLM/xOk4JrEWUhUrVRRO6E3G7tgExp+wGOW0JVNTRDRVHzAkDfjawq2BbLiyscPXqEJA4RWYpYbQCgTU2Sidzhs99uEQ96FMtlNEMnDPsoio6iqSRZjKXZKIpOq9tAN+3c0V3oOHaBB370ABPje5CkSCGQqkIQ+gi0XUaDvXst13MX5zRG1XQEKlEU7uotYXunzfj4NN/81jeYnd3LIBSYpsA2z/CHH/4y7/iF2xitjdHa3iQK+yAzev0ATxFodopdKRGlGkmSougZ199wC297xzt46JEHOXjoKGniQzogzuD4Ldfz/l/+b9AffhxVkzQOzvMjcS+9Xo/r/KPccuuNDI8X+Bd/8Cc4msPc/lFUIdjY7FGo6JxfPEfRHQKh4ujPoygqJ08N8/Djj7FnYha3WKVSr1AbLdDr93evhRGWIpjTx/nI8qeI4wg2BZbrsXhhAdsy8Ps+XqHMseNHc5lJmmEYFu/68IMc+MEaL711D3ffdTdzBw5iOQalYpE0TSkVq2imgmEoqCqESYiqusg0pLm9jGGoZEJFyAzdMEl3XbWXF5epDw+RIpCZQKqSNIkQWYRl2wzChH63Sbfbo1yuoRgOuqqgagaqYZMkuTNwGPmkSYJpmCiqyoEXriNNU146dBJFCmSmkBITpSGm5ZBGEkVTKJct+t0WRadIxw9RVEjTBMsqkAKWXWCj0eLmN9xAEnXQbJcoiggHIa7j0OtssL6+ztjYFLN7Z7nnu99j36FZen4br+QgpERVM9IM0kwj6MeopoGixuio2G6RVncTzy1QKjn4/SaqzOh0BqxvrlEfHiKMYnr+ANt22d5Yp1QusN1uYphFVClQhaDTbua+FmmM6xWIU4lbLKBKnZ3mMoNek6JjoWgmYRjS6wyw7ASpmaQhqEqCVDKuu+4WpJYzE8JehMaAxaUOF85dwPNsakNVyFJeaJ7mnvb9VNUSv+G/k/1jo+jjQ9xzz5Pcvj+kefZO1hpDPL2kMfbCTcxt3Ep6XZcXF08yPGqQ9DNeeGmB9fVNWu0mrZ0N0ijiwIEjrG+tYpoaplqhH/YouB4DfxspBJpUMB2T4T2TDI2M8L8f/DO+rn6d/ScOMDI6QZLp2JbKTmOJfTPDFBwdEgnEpJmKVxoiTBIUVWV5pUkWh7iWj1AtpKrlrtAiJZJw93cvcPR4CV0WUNWM6rBDnFiMDBVxq+MIoVLwiuiqYGdziZERD020KLgjhEmAFiucvrCDXRtlZKQGqkDXK/z4oR8wMbqXhx98mHJNoVoyqdTBMWoE3W1qJZVCIfcSGAQdhCJQzRKGO0wU+WRRi3TgEabbuZylH5NJnSCKeO78DsMj47zl9tsQZETJgMXN87xh8A4q70r4zOfvZKc14OC+Gn4zY2R6AlMarJxbYf/h4yRZfM01pZSSLE1fZrdcXMAKebnO89WkdddGacVlj0tzXl95/vJxNVbnTzIxr6xRZO5rQe4LcDWzpldjZ/5d65nXM+da8y6tVa6cezXTq8veu9uMvljIKFL+1+L1mq/8DDoXP4ttyPo0Sn36VX+QVzNqurSwvdrjlcLytQv219OZuvjKq6G/f5sc3fSBE6h/8h95ZtJj/y23oesmCwvn0Q2Vt771TRhqgTRKeeqJE5w/e56i52HaNrqhsbqygaYpJGmMIjUURSOMIkrlIjs720RRhOcV8HtdRsaHSGONOMooFi2aO9t0e31URcM088xIoRjoukmSpNz1nbs5PD9Pu9mkXCpTHx6i18udh23bptv1WV5ewXAcyqUShmEQBwMWF5bQVY2trU3K5QIwYGtjiyDocesbb+HUS6e44wt3csutN6AosLa2ys7GIktLi/z6r/4yjzz6OLpuMbV3kgTIkpRkECI0nygUbDda2I5OnIQEwQBtl6qpqAoINde2BAMMzaVg70XEBVaXNnBslW5/jTjRsCwTRdXQVBNdc2hsr6MoGYbh0NjcJo5iVtdWcWyTJMnD4Xd2mliWTaFQIuzv0Gtt4dk6gd/FK9dyQ4lBQBL62Jpku93GPbkCikT/2IfJhMS0djNrVbFLl1RIk9zgI0vB0D00acP9f0yCRBvZh6lXaKy3WVpcxPe7uRP0boEihWBlYYUsEbSbfUy9QLnsceONN3D+/HmiKObGG25gu7nJ8NAQlq0S+D7VoWHSNI+FqJQrkCS7EQ0uiqJw/vwFJiYnWVla4cSJE1i2RbHs4vtdgkGfyYlRSuUCQlExDZ0fP/AjZvfvZWxsT55D6fu7kRMGWSo4e/oMxXIF3/fxHJMbbziOqioMwhCr9zzh2BsRUmVqzwxpqjE0NMpXv/otHn30KSanZhhkgqGhERKxGxmQvXIuX0To1DRi+cyTdHbOo9BFNSzc0hjIjND3iaIOcTLIXat7PUClVKihKU0UXiRMyqiKlmeT3r2IONNCO5i7KCuK3NW1q8RRhNw9v3Vdz03NVJCKSnD6GaQU2AeuZ//sHPV6Odd5StjeaZAhESKnfgKEwYByuUSxUEA3dDRVp9/3c1OdaPCyg+/KygpjY6OEgwhdNwjDkGZzh24vYGx8D0JVSRFsrG/gOjZZluG6LoZh4npFRAbtdhNNkQiZ092FFKRJSpqkdHu9/HcgMjRNh3aPkAxtpEY8CEiFyurqClNTU8RIUiFRpYaiCFbXVqhUS2xurOd6W5Gx1WhiOyaDQUASJzz33Eks06FSrzKIIuI0wXFdVlfWcBwHKS/mX79yT1ldXaPgFYjj3BQuTTJsy6XvBywuXuDg3H4MQ8cPDDxrkTe/6Y10uzplr4x0PTTdREGwdO4843sqhGmCZrjsbDZpNrap1ks8/vjjdDodHn74YaamZtANBT/o8oY33EKhWKHV6uA+fpIkSSm85+18q/MdyuUSf3jr73PX17/Cf/nk51leWsO1PQS5I3Wz0+PJJ59gbu4Qhu7khkHJkyRJxpve+od4BYsPfvCDQLKbJZ7gOV6eSz2IWFtd543Tt/Gews/zqY3P0Y3ajFl7uOOLX+DQwTmq1VoeNyThnnvuoVqt4vs+B3+4AcATNzrMHZxF1QSKklOvt7e3qFaLCAlbmw1MwyGOJe1WC93QqNWrSFVFU3UUKYnjlCiO0VSVWi33P9B0jXaziaqaxNGALI1zl2ndxDQNCoUiZBBFUe5voKi75+oucq6rRFGEqmn4vs/h09fT7/dZuv7FHMlNIjRDQ9U0ojDiC5//LIePHiNJEnTDJM4kTzz5BJOTE7n5mRAEQQtFkVi2RZYmeJ6LqhtIJGmS0ev4IFJm9s8hFBXLNjg0P4dp2limie8PiKIETZEgFPo9nzNnz2HqCo5loigmUZyi6JJ+t41lWwhUut2AT3/mC1xYXGR0bA9esUyUZAwGEbV6Ldc6aiadTo877/wy+/btxXWdnGlASqvdwit6NDY3iQddvEKB7WaLUqWKEClJ0mV7e5vh+hjdziaKhCyLCNOUH9z3MCPDZS6cP8fI8Ci9oM3wcJ2RkTqTU5M8t3KSH4UPs5Su8qHh3+Z/m/4TDkwcBV2ws9TnnbcbnHn8k2jV2zhy428w99SvUNkeQX9DRGYG9Psha8s+FxZPErTOcezQJK6h0Gu12bNvBqkZDI/UgZjA77OwsECl5EEWIEVMHAZIRSWJBf1ezLfd75GlKb9V+E3CaMDWdoNWs4fnjHDuzIuMDJsIkYGM0XUT3+9hmSqqNHCr03hemTjpkkS7EUZhmF+72ODm6w4h6KJIlTDISKXD6bM+4+P7MR0H21QhTTlx4rm8+b+5gOsMiJOMQdyms93FKI0TCxdN0REIlhcvMH94jgsXFjh2/DiGbVEp1bnvnocYnzApF1S8go3vd4jCEEXR0XWHIHYw7CFUCUGvyR1/82P2TExhuwaDKI+Uy2KFxdUBiqbhuiaGabCyssb+Y7P0liLKG3t4gvvZ3lxhqAyNrVUCGVEqD/Hi6VMM76miWx7Ay+fAZWtUcbnM7ZIXrrrO/enW71cwJi8rXl/lXa+5j9dGJV/PNq+1tr+WudXr3e7PYs61DLQu0rOllGS8Us8AKH+fkdeLbsOvPn764vJaNNdLEcVLn/u7jqvxy6+FXF5t/xe//CtP3Ev1rRfHxR/ytTpP1zqWNE1fXrBeHMm/+QjZDx9HvvWml5+70pH40nDkK0eS5Ce9+LOPc2ZzmYPvfBuDVJIm8W5+q4kgY2trE7/X55FHH2L+yCzDI3UsJ9dw1msj+EF/1/VxA69YBpGRJCG1chlVN0mzFM9z6HTanDuzxBNPPIHramiqgVcoIRWFXrdNqeCy0+qhG7ke6MCBAyRJShzF6JpBSoZtmbl+FQFCUqnWUPU8500RuX7tM5/+LAjB/rkDmLbO6vICtUo9RzkVwej4KMfnb2B1bRlVldRqVWb3TnLzG25AN0wmJqY5c/YsXrGAaZmEQcDO1haaCYbm5McsU4QERdVobOxw13fuolj0sO0iEpHf4JICirSR6FSrNeI0IIr6OE41L7SjHN2JwvzGaTsmaSpRpOTU8y+wd+8sfr+L5znEccY3v3kX5XIlz0m0bFyvwCBOKVWHSJKU9fV1TEOjs7NFr9thuFyD7z5M4fN/TtPMCP0Bqqqg6ZIwHNBobOMVHOIoYmlxkQfuf4DJmf0kp75GuvQAO/YMnZ0GDz7wFAfmjlAqOZiGzsLiIqVKiSSJeeyRx9m3d5wkCTn53AmKBY+19RUmJycAQRzHuRlQwcayLOIkwPeDHEW0Lba2thj4PqahoWo6TzzxBHEcE4YR7V6XA/v309jcYKuxhWl7eF6JxYVlKpU6UZSw02py5sxZ3vH2tzEIfNY3Gmi6hqbrFIsF4lTh+ZOnMA2D+lCdYqlIu7lFt9MhyzIqo3tRG4+hjd6E5u7B8ypsbHe5957vcvbsBXZ2Wszu208Q+oyMTyJ2f5tc0py62DCKezv0thbxrAzL0RhEkkGsYxdson6PYNCjXC7TancolYfQNZM0zgj8CxjKOZodE9dx6fd6WN9cIV3pIN8yhqrp+H6ffr+PaVovh8FfLCyzVJARARCeeZbBIMCaPU4cZ7Q625iWBYBhWJimTpqk7Ow00VQV13E4e/Yslm2gKJI0yyM84jRDVRXOnT9PoVBAitzUaDCIMEwDRVGwd3+DuUo6jw7xbDuPElF2jZIEL0crGLqOEBmpzCmegyBAyQSaruO4HlvbWziul/9dQzUGBYc0iSFL0Awb1/PQTWMXocogzWg0NqjXa0RxhGHoCDSSdDfWSVNezoU9/dIZjh09RiozNF1FEZAkIa5bRAhBr5dHfeiGzvlz5ykWS3iuByIjDnOa6dbWNo7toWoqMzPTZGlMOBjguh7drs74yJm8kHUPESk6hm7QaXaYm91Pq7uFXSjhBxmeY6PLjG7QYXp6kpWVNbYaLQ4ePEyp7KLrrzBC+v02xadPc/7cBT6/coqFqVUEGR+ovYfJyTH2TB2gXq/xuU9/ht/6zd9keHgE0/aoViu5UzqSVqtJyTnDww8/zP/4Lz7N+//Be3fptxlCZLx0+kUc3ebMS2cwdZPh+gjLS8s4wuFoeJBvZd/DjwM+8JZfQogMTTN23bcT9u7by9NPPc3MzAzXP9JC0zQWf3GG79/7PeYOHqCxuYNh6BQKLqap0+v3qZarnD59jlp9BNPQcpqhFKiqzsZ6HoemqCqamjdyotDHsGyyFO744h0cOXIdf3PHHVx/3TF0wyLLcifoYDAgCkMsQ8c0LXzfJxgE6LpGEPQRQuTeBbv3x/2njmAaOs/NPEaSJthuvq00k6ytrnL06CE2GzuUKmXCOEFRdCYnxi65n2dsbaxRKpdB5vFPF84voBsWAvjcZz5LkiTYro1p7jb8JGQkZJmgsbVFt9tDU02kzHWJ6+ubzMzsxdAkpqUTJwKpqJCFOJaOIlUyVDTdYv7wIY5ddxTHyY3HPvKRv+L5509y7NgRNhvbqLqFZeh4rkO5XEbXNSCnK6t6TlG2HZs0inAcjyQFw7QZ9NuEYY9yeZg4hizp4jkF4jRC1SxMq4xr6oztGWWn1aFYLrC8cA4MhR+2H+JU+hK/N/Qhkr/s8Ye/9M/RpMlv/6MPUR1yecuROU49+V8gbJC576b83bcTb2fIG7r0B33SLMY0XO75zg+Zmfa46cgESbTNnjGHvbOjXFhskyY6npu7XKsy14o+9NDD1CsetpU3K6RIWV/fZn2jxRP7ThIMAt4XvocLCxfwPJdadZQH73+MOGoxscfLddoqaKqBEBmKktLtBqxs9hhEKbYFmoxIdmNyFEXFUAtEYYjIFBQ1Iw4Tmt2Ux585y+joHuyCQhbH2LZLqVylWqtRKxWQoosiXRAJSmJi18Y4cWqBeq1OGISYlqRcrCAVgWEZtDtdnnz8WTRjwOSUjqMV8f0WkMcgSaFhOCrdAUSZShJ3EfSYmy2jixSRDUhjhUzR6LU6vHR2i0QIJvbswfMKlMtV7rjjb6iMlJkWB/nSxqep1QrcND9GY7nBjW99D9fd9E4+9+k72TM1w9DY2K6BZngZuHMpoHKRlfhysXoVJPBa49WR11dejx/OG7Dardde476+Qu+VtfuVSO1FVtXrKT6vVhu8Xj+fK997ZX1wZT3werdzcVzLE+fKBsMrlGH59xx5zf5uyOu1x6vH7LzWcz/tSNsbZIMewnD+1tu9FhK6++pl816teL3WtoUQP/FJpp/+BrS6yPf/3FWP5eLxXGtkWYY8t0L2bz9G6QPv5Ns/uI+HHvoxx47Ok0mBkCpryxuUawWSVGNoZJjxySpeIV+AN5s7CFTa7Sa6ECSZZHN7h+GROrouef7ESZ599iT79u3lxHPPUK+PMjpcIY0D+kHEcH2CRqNJoVCkVHCJowGmbXHhwgK9fpdKtUQcZ3z0Ix9jcmISr+Siq4I0EywtrnH+wgK1oWEG/Q6f/9wXOTw/z8LSIu9733upj44hNJMojndRJYsoHhD4Pt12nyhKufe+ezl27DhZJlA0C6TK+uYmxaJHqeTyxc9/iZl9e3FchziJKRdHSLMYKVPCQe7iKFBx3Qr7D8xRKpW44447qFZKVCsVbEsnCPsYRoF+0MZ2bJaWfZ56/DGGhoZ23YaDXHsXpqiKiaopZASUCmUUReerd36dNMn4yle+yc233ML09BSqJslQc3pjJkhSQRTlRigbG5uYtoNTKKHe+yTZO25kZd7GKYznOuGgj2mpGLpFFKYYhoquqnhukYNzh8jSDuHd/zPm1A2sr65Sru9jcmoWt2gjCFlbXmdqapowGtBptbENlyAOqNWHmN63l3K1wuhIDU3TePGF02iaSqlUYGRklE6nR5ZFOLZLOPCRUsV2PdyCzQsvnsJ1PObmDmDbNmmaMDEzzdrKKuuraxw5eoSh0XG+8527OXLkKIZh4Dgupm1jGhbFQgEhoFCqIKRkdW2NSrVCs91jfW2Vm264jl63haYpBIOYDBgZHyFKY8L2NnrU5F/+u29w+y+8i/LoGJYSEYYDdrY2eOvtt1ErexSG9yDNAoLkMuT1InW42Vih194mjGOkVkDJNIbG5+j2mmRJl25bp1oZAQHiIjLQb+Ko30NXtzGdQ5DmOaraww2SNEW8aZidnRamaexqCPOO9+rqKqaZm88YuoNuiPx8XDyNQGAfOEqaQBQP0A0LXbNZXdnEdhWEAF010VSVjIxypYiqqew0G+i73fT+wEdTTVzPYX1tlXp9CMgzbzVNQ0pJnCRkccja+kZOCRaCcBDkRbZhkolcJ95pt5BIsjShubOF5RYRIjfQabfaOF6JNEux7V2qaKagqSmOZeWsBjNHtbIs3dVupUiR6xfDKMh/T2FKHEbc870fsWdiDMsxyFIVKQWD/5e99wyy7LzPO3/ve96Tz833ds490xN6AgZDEACzSIpicUnZlkWZ3LVKki1LsiyuV1Jt1XrtLW0o2SVrVSqttapdS7JEUqIYQIkRIBiQgcEQcQbAAJNnOue+ffPJ++H0AIPhDIL200p7urpu9+2T7ukT/s/7PP/n8TtUqxX6alWiJMAyNHqdBqHfwbTy9Ho9bNvCti2UEuR3XbOzSJ0I0zTp9TooXdFut7EsE0SCaRhoSkNXOppewA+LVAqnuff+54mDQe779n0oU3HymZPsOzDL0lKdfC6PLkMunXuOyZk9SJlSKtY4fvvdvPc9H+Azn/kV4iQgTWMsox8vr6E9eoqcV4L3HeQZ/TnSJOETAx9npxMwOTXCbccO8Yv/7Gf59re+yfDwMN/9wYPM7D2I6+QQIqVUKiGi57Esi9rQRwnCXpapLUHpGt1um1qpQl9fPw898Cim4dDXXwJgsn+SY9YR/mT9z+k3aliJgaYMgiAGYqTUmJicQArJvodXiOOYl9/fx8HZWeI4xTIzM7vAD1HKQCmdrc0NSqUiW/Vtnnv6aUbGx2i2O5CmuLbDD596loGBQZI0G1xN4oC19R08r4SpG5TKNQYHBtjaWOfZ504xMDiCYSiklBi6QpNZvFdmZuQTJxGWbZIkWb56uvvs23PmIHESc+XQGdI4JU4Srl5dYXVth9HRETzPolzII9KUOEowdrNThdCQUkOIFENahGGC0hVhGGWO65qO3+twYP9e9u2bxHUdNKWIogSZCkI/QNMlpqlotdpUq7VMLbC+iefmUKaBZZs02g0sy0YmIc2teYS0SJFIpROnKWF3J3M/1iRJFDOz90B2bRBRrzdYWd7Adkz6+/sQIqVeryM1mZm5OR5RlCk5LNNhp97hy1+6h6NHDrOztYJl5HjxxauUKzma7R1MPTNmi6OEJNT47ne/T6GUp1zpIxUaa8ky97YeorZZ5Q8Gf4uJ5m380X/6I375X/5Tmq1tPv3pf8JQSef883+AkUrmtkZQJ99BqT4GR7bwQx/T8rh8aZ7luUVif4FjBwdIkgb5nMJQOivrXYaqOdbXttEMA7QU0zZIkRSLNZ4+eYKRwTJSd0iCDq7rUuob5QflH5ImKR/a+TCDQ8PYtouMY554/Lu8/z2HMESE7XoEgU/gR1kLUK+DbuiU+8awDIOwswGxDySZQiGIca0hpN5Ek2W6/hZKz3HyqXmGpiYZHBzBNCWGk2d1dZ2g57O5sYGSIUo2Eeikooel2SysbnLk+Hs4/cJp9s0eQMiEFBO/10ASUi7UuHBhmYtnd2ht+1RLwe4gtJ6pD5KUZq+JlxsA4dDrttBVQtq7gqkUnV6P73zvKms7LWZnBrh4aYNKpUKlOkoul+exRx/lYx/7KFdXLzIS7KX0E1Va4Sayu0BBg0sbDQ4f/yBXL10lTALG9+x9lRS5GYMqpXwV8F2rXZP07bGPbwTkrk2vMa/RW1rvLbd3Qz/rjZ9FKfWGdfQt13sLJvZW88JbI+7+tpjnTZe7AcP8nWZe4yT4n68HmtfLa299oN78wEt5cxb0pmt7w+28/jtTEP3ovvUe+XPixTM3dRu+8QS8tltSarsuiPzI/K/X3/+ozv8a+3qNGb2eaX3N/IXrml7T1+H5V41jvvlw9vt14PXVm8XuqNeNk4w1EpEAKWGry8u//tvkRAp7xxifnGL28CGSJKZVb2MZir/52rfpbDVZXLzMM88+zdTUIUxD4XhlvvbVr3F49gD9AzWU6bCxuc7E+DCRHyJRmIbB9J5xEiK8fJ52vQm6ZHB8nHKpyncfOMG5V84zM3OAK1cXKFYH8cMWxWIBpRS6VCRxyvDQKNVaDUM3iZMeaRph2zqnTj3HkUOzoGnsP7gfzVB4OZew2yJJBJ//i//CoYMz+K2Idi+gVBgiTTuUC300O2vsP3QAy/aIY9hc2eSz/+WzdHs9RidGMT2L2UOzrC7NI5MQ25B0uz6m42U9tCrBFBbtVpeTJ05y/3fuJfC7vP/H3omhMpaqJ+bQrBAR5zA1k3ajS6VcYXJmT2aA4feAmK3tOl/4/OeZGh/DskyCEFzPQemC6ek9hJHgIx/5MMMjA0iZEEc+Pd+nsbOBbWi8cuoFiqUCjmnz8stn2XdgP+bCOmJlk+Zv/QJWZRDHs5CJjkEdT9OJIoPLVy4y1O/R7ATkch5rC5dp3/9vMWyPpLAXzSly4vGnOXBwBikSkljj9OkzJGnCyPAoJClraysMj0/QbtRZXV4gFYKN+g5ewWN0fADXcViYW0TTbYLQZ2F+mfm5eVo7dV45c5ZKpQ/DtBkYGKbd2uHkiZNITaM6UOOlF19iz54DjE/288rZlykVHaSA/oEBzl28hDINom6PMy+9hOt6CAlzc1eoVSvEUYxpWHRaAXsn9uP7DYyCzhPPXmBmvMrWZgPPKSCkAblB1Px3EcPvYOrgIVICBoZnGJsc5q67x3nga48yuW+acv8oynVJAZUKRAqS7DVNErYXLuN4BnsOfoilVkhlbA95O48pewRxSLE6QhCHaLqAuEOjvkC+OIyjnkTQJEyGiWOR5Yn+cCMDXneVsewCaQLtRhNdk8RRj5zn7mZu2qysLqKUQZoK/Aun0A0DNTlLz+8QBiGWaVCvN/jC5z/LUN8QpUoNVAZeZJqZkkVJguN56KaNEBrEEUJkkTmlUh9JYtBqBiRRl/X1VTo9n1y+jKYJ8vk8lmnsWpulxHGCYZkoTSFSibEbixNHMbbloBsaIk2JIh/HNtmqr+D7bdI0gRRsx6QbBCQIkuTaYNUChXweSOj5vd2Hq9y9QUqSVCPo+WzXNxka7CeNfQxls762TC7nEKcJmq4jlEnUa9PYuowuIoSWsdHb29s4jsvWylVsI8vq1DWbJIJGs0ku76E0hett3h3BAAAgAElEQVTk2WmsZZ83SYBMRu5329z77fsolWY4fnSNvmrMWqPM8Xe+F0cfoaAED33/e/z8z/83zMzsZ3zvQRzNIk0Fqe7R6CQM9Dscmh7n6cee5OjR97Dda6FpNuLhJ7lw/iyfe+U0rWMJ4HNgfS+PPnyRvZP9nHn+Epcuv8Dd7z7CySef4tTTJ7nj8GF+93f/d37sYx9n5dzTLG0Vue97yxyfOcLLLy3zub/4HO/94F30OjsUHYdYKmSi8eu//hv8i1/7JeKgh64cTr/wAvuHRhhP9/Fnm59jwBjAkJlsvNfyOfPSWYaHRonDhAOPrSGlxsUPj4JICQKfMEgxDZc/+ZM/5Y53HgOpYdkuygDPzTM+WiMKA6IwwrI8/CChsTFPdWAAoQxEClEQkfdyhL0uX/v6N7j73cfwHI9yscD45BBSz6JAdKWRJJnR1rW4G8dyiIIEXRm0fR9dSYJuB5EIzJ5Js7TNct9clmPdapDPlznxxA/ZOz2FrkmiGJo7dfxeB8t10VKfdrtDFMUYpsPC4gIdf5Fey8GwfdLURZMRUhfoloEfJbsxOopGvU4cSaRmIqWg2+1RKuWJkxDDzNpmvvyVLzJ76DAaYGgKKWI0XbC+WadYGSDo9jD0zB8jDBNcz+bMC5eo1fpxXUWhkCOXK7Awv4gUgqmpGRCQCoFpG4gQpG6A0DCVhiIlFgrLsThyZJZWq4lt5HjllQs89tgDvPc9t+NYOXp+A6lFLK/M0e2t88xTzxIGEbZt8kL0IqdaL/OHB/4nfvPAryLSAjN7JrnrrmOU80WuLq9QGhogXvshO5uneeQHDlZ4J3du/gO2J5cwcwaNnQ5KOvzNl75E0bbZv7+HpaLMLFEJpDRYuLRMLhdQqRXIFz1KuSorV7u4jqTV8TF1C88M0DSI04SIJr224NvuIyjd5OPpP0bIhNiPQfUY6wddE7x8OcEuuYQ+LC3HtBOJm7PRtZQ4sAnjhNBfxzIk65sR9bBKKZ/Qaa4Rpj69oMCTJxao9OcQUYFysY/R6RJS1FAKHM/BcR3W19ZwjAilrSOEIhUBKo7QnD4cZ5DBoRG0NEVTBs8/9zQD/f2YTp4oSRis+gyNxBj6Hmq1AMewiUiJRZq1YigHHbBzNYJUp9vysXRJp9vE0Is0muvsmRpGN7ocnL2dU68sIXIOe4Y9ytUC0ivQ3lzG7JYoHHQIrJhTpx/itn1jFCoDHH3vR1hb2WZmdJpitQyGQu66v18DPTdmkr7O1Ve+Hhi9EXlzK6bzxlkz5lXcVDb8dhjeMAqAFE2Tu9t4PXC+GRa5WRvhjdNbYV1vprQE3nC5GyW/N1NXXv/ZwzD80eMhs77WV/10sl93P38GPJSm/u6C1+RHonLeymjDWxmFeHs0+dvZzt/Gbfhmy2S9QilKKX6UKX5zDf2tmNpXLw7x5id98s2Hsp8/8f43nPd1y6WQiqwPV9ZbVP7Dn5G8+xCtJMWyPEiz3iBdMwiCLoVimWdPPs2x40d57/vex7333ofnmXhejsmJCc6dO0u92UBXOqVyMXtIN5tsbW1TrZVZXlkijlNsyyUJQyzXRtMVL595hZdefpGPfvTDeK7JTmOTYjmPblqIVEACpCmapvj617/OgQMHyJzhAzSp4wcR+w8cJIgjROxjG4o0DklCnzgMCKOE2247jGvbzF1ZZG1zk0ajievqGMpE6Qaul4Hk1eVVrl69yvTeaSanJqnWqqRJjGM5mKaB57gkaeYQLJRC03TiKKTbbtPtdBgfHydJI/bunabW14cmDXTdwFePkYo1LLGfC+fO8cADD3DbsduQehYroCuNJE6xHZf3ve/9RGGEVyhAAu12m6WlJRzbo79vEE1pNJtNLNsijEKE0DB1RavdRukGQRChDINqrYYpJel3niD8jU9TuPsYyrDZ3mmT84psbS/R68RI5ZEvFdnZXqdQLBOEAfbc/cTzJ1gWQ/QPjrC+vsX09Ay5fI719Q0WFpc4dOgISRy++qAKw5ByX5WtzQ2Gh4exbIeN9U1cx8MyTfwgZHBoGKXr+L0exUKO+vY2e/ftx/cDHMdFihRNg536Dsduuy2LNul1sUyTrY1tSEOuXrnC/gOzWJaH4+R4/vlTDPQPsLm2zsT4JBcvnqPWV2VkZBxS2NjYolwusb61yIkTjxIGHSw7z8tn5qmVDdJUI5cv0O12cQslkjhlj7fJTvE4iJTTz5/n8MG9+L0t7v/G/UQiRbNzWPkShWKRNE5e9yCL45jG+iKt9g6F8ggDo6NYlokhdNbX5khEiperZtd8kmDoJkoaSGWhpyfRRIdmt/qqq6t8YjmTqL2rD4EgjiMEAtOyWFxaIF8oIESWt1coFKhvb1MsFAgvvQikaBOzOK6LZWXRNqBRyOUYGOjf7XNaIOc5RGGA1A2kphOHQbZtkd0oBJksfmFhCdO0uO++e+mrlXA9NzsGCHbq25hmFvXUal2L6nBIgfW1DVzXIUmzDMk4DrOBO6VnfY1hjK50hNSyuB7TytaVJgSPP0s8t4g9NYYUmQRNKbmboRmjND07LklMt9vDsT0M06BYKuPYFlITSKGTy7l0O11cL0evF2IoHU2mQEin7ePmK0RxnDFcUuI6NomQaMqk0WhgGgrTsQhCHwFsbW1TLBVoNtu7zGZmamWZBtValVKpj3anhmWcZ2ZinoApfu93/28++9n/zK/+2mf4tc/8d4xPz/Dkk0+xsbzA2Pg4URJiWSYlz2VnewPLVuSKBZRpkEQ9YttCzUxwxz/6SX77od9hYmKMu6J3Ybk20xPjVCpDCAmeU+ShB5/ihRee4+d+7p9x97vfy9LyGmND/fzH3/8zHnv8FJ/65E/y67/5P/J7f/Af0S2JoZkE3RjTsTCUxqc+/U/QDMXP/9Nf5JOf/BT3fOWr3P2uuxgSwzTaOzzjP8eUO4mu6zi2w7mzZ8kXCjzxxBO866UAwzR45f197OzsYOgGfq+HrgzOnj3L7OwsQpOQCho7mwgkYZAx5w8/8igTE5N85Stf5gPvfw+6ZbO5sUHs+5iWQaPRIIxCDuzfj5MziaOEMOghtMwQy7Yzh1/TNFheXsJxc3Q6meuzaSqSOMI0bYRIMEwLgaA+scpK3zxpKgFJr9fEtnPkCyU0DSxLEscpjmPRaXcwbZuw18LxPOI4KxhLJZdSsUYvCIhjME0LkcY0Gk1M0wQh0DVFmibEcUIYxtz/ne+y/8A+SEFpiqtXrlIs1kjjjIUfGBwjDHuZI7bMJNH5fCHrV9+tF6I4wbEtNrfWMAybQiEPItlVEDjUalVs28LzbHSlMmWOrrO8uIphOuimgSZBKY3NjXVynkMQBFi2RafbYHBoiAMHDqNpmakaQsMwHaqVIVy3wkD/IAcPHuLZ9DSapvHVo/8n9qpBq9NlcGiUqFsniBL0XIm+soPub3LqiS8jjQrvmP00+5/9GM3xZcqjRaKox/PPP8fli1e5850jrK9cYWS0iqW7CBkjhUKg49g2xaLL/OI2plei2WnSaGc9x6sbm5kagza6HqOkRIgEx87zncLTaLrBR7sfwzA0/K6Pl8uhp4onTzzPuUsr4Ptcfvk8tx/bQ9DbxNZ7pCnUGxG5Qj9C9FAiIE7gG/ee4sAeF9d2ERroRpnGTpOxiTLzC+fwk4BLl9oIFZAvFKk3drIWhCTl7EvPU8xHaDLLeZWxpB2A4dTohRFBEKAMxeBAH0qTKN0AYOnqGrquOPH408xMFuj1drCdHJ1OgKE0kt3saT82uTK3yGCthGsLlJaSJhp9/RVyOZegE7DdaHDp6ip+qDNUq2G7RSynxDMnTlJxBplbnOPPH/7P7N/jUNK7nLlwmT2HjjO/uMHpUy9w/O53InT1GsnyVmSs4vV17/V/v9kyN77etM53QE4myP63z4rCa8A0CIKsneAmbX632re3Ml1PTr3dKYqiW27v+uNyIwN+s3luxijfNNT0Bhyiyf8fvN44x5uu9/8L4DWz3L+VydL/e/CqdvNZbzW6I6Uk+cZD2TIff+vgFVJSITP50pe+hTh3BXH7LEqZNBptnj/1Ajs7dZRQ2Lai3Wqztb7DyuoyM/v3MTE5QT5ns7a6RhKFlCoVRicncSyLJIm4ePFCBmgqFaQGlmWxtrqJYTivZipKIRkcGGD/7CyG0pifn2NifAIhMwZFExpryyuYholmSPbt28fc/ByOYxL1IgI/6xW1XIcoSTCVkfWfahJdtwjDDlcuXWZooMbmxjp5r0alrw/L1HnuuecYGh4i71Y5c+YVyqUSUsDE9BSO41Drq/Hlv/oihw7MsrG1iWEYCAGf+/xfcvs73oGmaYR+QKfVo9drITWJ4xrU+qtUqmXCQFLfqpMmKdK5ksUAxdMU8jn27pshSoJMqtdp0Wq2yDlFNMOg1W5juy5hFLO5ukqlXKRaqWJZDp1OD93K+r+ElBimhal0Wu02puNQrFaQuxm0ulL0fvAExpE9yN/4NHEiMAwHy/RIhIbuKpRZoBcrojRERDG2bRLNPU7j4T/Ar91GKBx2ml02N+sMDY8SRwlLSyt0ugGO63Hh/CsUCjlOnjzJxMQE0tAolUqEQcRXv3wPY6NjVEplhNTQd+Wj7WaDUrHAy2de5vDhw/SimDNnXuGll17i0MF9rK8s4eRyOJbB9tY2xVKZpbl5BmoDOI7B2OgY65s79PUN8tRTz5DP5bFtm3K5Qj5fwLR0XnzpNK5bwnEdzpx5iUq1RLFYZHpqnJHhQeIwZWRwEE0LyecLNFtNLNskDHw0t49w4UmKlQG2wjz79t6Gpkm6HZ8ffO/rnDj5DMfvuIOR0THQMufj68ErwMbSRQoFF2VUMD0XqQkSP6HXrVMoF1lZq+O6Do16h7CXIjGJiNGSk+haj4gxDF1nZ6eO93wzK1zf1YdGBgxzhQLtXrBbqMpXt+33unieR7vdRiyeJ00z8JqmKTv1etZfbFhUqxUMy0ApDVMTSAHKtEAq4gSUzExmdnZ2ULogjiS9XkClUkbIlHzeYWR4BNM20LTMVdK2LHq+/2q+pO/7rG9s4PcCTNN8VXIVxRkDrGmCja0mvh9y5cpV+mr9KGWxU2+Sy+dZXl5E0yQsrpEmMX45h65JkjTB9TzSNMXQjWxUWylWV9cY6O8nCnzCODPqcbwcqQBz13hnZWWdXL6AZdo065uYpk0v9NHNAt2en103ukEQhghNR2g6YRTjd5poIkEoDUM3EEJi2xZCaDi2RxxlrG8cgZQJpXIREDiOR0I/KSGu9iBjU3fxC7/8P1Bvt1nfaoDQ+If/8Ge492++wq/88j/H0BMuX3yBkeEJvHyOmQN7abTXaNW3KBcKhOUq5p4pemHAuwfu5i7jOL/z736ff/3f/xzt1iYPPvQIs4dn+N73v8f/+r/8Dl/4wpd45ewVcrk8frdNuTzC8XfexU//9D+g16vzrW/dz13vvgPH8xCJRtgT2J7ivnu/QX1nm+GxCSaGDhCGEXNzC+ybOUQQtbirejt/uf1l4jShqqpEoc/MvhkEMDU9zfh3L2NZFhc/NIJpmui6gRAxuq5n+afKJJ9zdgf2QyzTJk01giBkYGAA2zII/B4T03sRAtqNBjJNsRyLYjEbGPVyDptbqziuh27oxEmIabpZ0a/rRFFEuVQiRaAbCilTwrCLbmhoysDv+Wgqmy9KUxIkUjNAKhxbQymdXD6HaWgsLc7jenlIwfM81tfXsBwDgUYUx2xtbhJFTf7ys/cztafG3JUmlZqJQJDzCqQpGLoiTQXb29sU8nniOGVtbY2pqSnSFO6556+ZnT2C0iVK03j44Ye5cnWeUqWa5UErjZ4f0O52sQyLKAwA6PkBfq9Foehi27lswGmXPVpeXiKX90iSmMBv0et26LU76JrJ97//CCdOPMno8AiLi3NUqlV2NpfxAx9NaVi2g+PkQCosx0bpOj2/i2XabG23sKwcQugYpsmf/eDzxLWUv779r9CaimptgE6vix91uXjmKTS3wO/90Z/zwaNVXrjvD9FUi4N3/Ducrx9C60/QRiJ838d1dfoqFX7w/R9w+5Eiw4MutlGl4/sYeozA4ty5C/QNeEBAmri0uzr3fe9Bjtz+DgrlHEMjw1QrNTqdBnG4Q95zicMA8Lk3/zx+L+SOhTupVEp0Wx0SBN/5ziPM7L+NWl+N7a0N7r5zEi8v0KSJkepIJF6pgOGN0mjVMUUbS5fs2z+KZyW7vdaS+flFqjUPpboMDo4TRS6aXuDI0RniSGDsthfMz81jKUXRC3HtIlKB3w6I05SnT11gau8MG9t1ioU8gpSrVy5T7euj2/N54PunGRmsYZgt+vMSaUES6Zx6/hy1WhEpUwq5IobbT9eP2VpbIQjabG2tkfM8UiIMI6FdV1iOj6GbTE0epdPz8cOYJMwirTaWthmPZ/j8+T9GJBvsG7bYOzPFwuIiQrm8+/0fQBomqSZ3Wzi4KXj9EfB0HXh9M8MmpdTrQN+twKvsT5H9t6hy30Jb3rUB+Gvbe23+N8cb19qF3mj910unbzXdaj+VUrdc7nrm9c16WW8l70750e3eeLz/TsuGbwSvb3RCXjfXm643TV874G/0D3y727kVqL4GXtXUHbfc1muS6NefcDffh9e/d227N9pX30xWcG3eJL61a/C1Za+XDb/Z8Xg1a1bGiFRHpoKtf/2/oaYHEf0DRHGEaRpsbWxj2jYPP/QwOc9kYnyMNE6ZPbKfdqdLIV9mYWEew7IYHx1F6RqmZZDGCUkSUioXyefzKE3HsCySJOGer9zD7IHDbO3UKRXyWaB2FBPE4Dkefi/k29/+DmNjk9iWxtZWVmB6+QJSk1y6dIV9M/uRmiRXLLK0vESlmkkWNZHywMMnUKaO6TgIzSIKYoaHxuh0soxYodsU8jbrWyvs3ZPFO3zlS1+mWC6Qz3mceOJxxkdH+eIXv8httx3l8JEjGRvkWGiahmFY9PUPUCiXdiVnEWmacM9Xv8bd77obpUssy8L3QzY3tvjqPfdw+/FjROo8AggagwghMiMS3UACSZL1qNa3d+i2W+TyHmEUoGsCxxT0ei2iOERqCqFp6CqFNKHX7SCFwO90SJFZ0Z/z0I2sv1e7soS9vEnn3/8sXnWI+sY6loLGxjJ+zydOfYTu4tkurfoaIyMDLD31VaJHfx9z5sexq9O4bg7Lsunr66fXbWOaFkkMgR8wOTFGp92k3W5z7NhtrK+vQxzh5QoYtsOhwwcplgtIpUgTkErQ62V5v9vb2+hKYVkWhUKeXq/LXXfehdDEbvyJSa/TwrYttjYbbKyvEUYJTzz5CIePHsZ2c1w4f5Hl5WXuvutOlhbnqPVVMUyLU8+f5o533olUgvPnL3D78ePouoEMbfygg+mYeLkidh7WlteoVvvQlMLxbDQBQZjwxHMXGOmcoG7N4pTLvPzKK+jSI4xWWF+uU8rnmJyeplQbIE1fLy2Kooit5UtoSpAvjiMMi5QQEUGvW0eZOo5bodPuEIY+lUoOIWJSoeHqzyFoI/UpSFMWlxapvBxkRcF7hgjDEMO0aLWauLaV5ZvKLK6n026jdEUKOI5DOjJD7uAdpAmEQUA+XyAMgqwVQ2T31q31dfI5D003abS6mQQ2DPC7LWzbxbadzAlby67tJE0QUuB53m5mYEp9ewvbMND0LHMTIdja2sLQdcqlMpblEMcJuq4TxRIpNer1bXq9HsVKDV1XDA4NkpIQRSHeLjD13BxKGcQLywghcaYn0Q0zczSPY5SmceXKHJVKheXVVQb7h2g1mzi2Thr1MA2DJMliLtZWF3A9l3KpAlIgtYwBRmRmTaChSYmuG+w0G7iui0gzVYpumFi2lQmhRRYHI6XMDHeuFS5So9vtcfHSRfr6q0Rx1ksdJylRFBCLEgiHwfIpmtF7+MmPf4Kf/kefoOTZDPXl+eSnPsnQyAQLiwtMT0/Q6/jEmiTVTZr1OrlKkSCE48ffTadZ5wMfuIuR0gQT1QLHjh2lUC7x4kunqVb6qfS5jIz185n/9jOcOHGSBx87QZqEOFqPC1e2OHxwjVfOfAfdmuHgzDuoN3YYmxzDUDqPP/o4xXKZmb3T/Pvf/h1ePHOJl154jn37J/nQh99LPl8gTpo4jslsbj9/vPR5xqwx8qZNvV5nfmEe0zSQ/QU2DpTYHrBJEgiDMOvf1jVK5SK1Wj8QI1IIgw7dbsD3vv8Ie/fO0O20sEzF2PgQcQyL8wvkvRzb2w2K1QpxktLqtEEKRBpjGi4xmds2iZbFl0UZsx+HEVLLPAEy5+GYTqdHHIWYpkMcp4RxRPdMzNknzzF4oEpjZxuRptiul8mOowhNaly6eImhkRHiJMGxDEzbodnsoknF1/76b5jZc5CVlWWWFpd597vvQDcEly5eplLqw+8FtDo7WJa320+tsbq2yuzsLGvrKwAcOnQIx3FZ38yc5aenJ7kyd5V9M/uyXnGRAeB2q4WuG1iWQRhmzwXXNoniAJEqNjY3sSwHXTfIF/IIkYGmKI5xvRxxDLbjUOsvE/g9ivk8ff39aLqivt2gXO1je7uBJjV0lSdNE+o7q0RxB9NUuwM8GnHss9NYJzJTLlSu8n8c/D325sfRLZ0o0SgWKmgSSrV+/DDhZz7xIZ5/6E/JGQucnrMoP/ETOFoOubeHZhqYus3K0hz333svBa/IQNUgZ0tIA/y4jalnKqdqtYRuaKClSCyeefo0M9OzbK2HDI32oZQg9CO8vIMuJI3WCrrQiOMIKyhxXLubC9+7wtHbjtBtd0jThLHJcWp9VZ568nFMs8PwoEPHj/jBgy8iNRPH8EgtH8uZxHMFve4WSdDAsExII9IUNjc7lEolCnmDOPSxzWG+/8DTzBwaRVcldKXT6rTRTYNatcqVi5coF3rIWJBoARINabpU+/dRb7QYGhxEVyYXLpzn3NnzTEzsQdMMLp6/yOrqHHv3TOHZbUwnRxgE9PeVUZZBKiHwE7ZagsGRKVrNJp6rqFRyaFIjCHpA1p9v2lnv+fmzl3AqfSRpgoo7bNYb7JmaotTqp/CTOT764+/j7EsnMJSiu7VBrW+UKEwZmzlALLOaUiIy87yb1Jqvq5GvK01flRLfol69Vd17c6D3o/Nd35Z3q/W8IQOcvjlGeSuy5DcDrm+0njeSJL8d9vqWP9+AQW5GFv69Aq9vbXorFPpbNzN6e9u5+QlxDbxqk+/4kZGM64Fm9sqb7tvNzrvrL9hbsa7X3pOZJeGtP9m15a+B10984KZ/v366ZiqDSEliwc4LZyl87lsYHzxCpCwgQgjJ0NAQumnz/LPPMrN3ksZOnXarRbVWwsvnCQPBUz88yYFDhzCUYmlxHscxUUonTVPa7RbNRovz584zNDwGCMZGR3jqhz/k4NEj6FKws7VFHCfkKh6kEcWCRxj1GBjqx29tUy6XCWMIk5Qkirjv3vspFDJGTZmKfLFAmkasrSxjGzqnnn2OvlqeYs4lDkLqjR7f+Pq32LNnDNOxiBKN+asX6OuvsLTY4OLlC7zz+FGm90yjdI3x0TEWrs4xODhAX18/YZxw/tIlPMcmipNs5FRXGJaJRsLqyiKu53Dnne8FoNVu0u12sR0P01AcPnQQSJHOPFIILA4gNT1jvJWi2+zguhZSZA6TmoAkjVG6BnFMFLYRpOhmJtfa2q6ThN2MgYpjSBMc1+ab37iXO95xB6+8fIZafz+q3UM+/jziP/wS3UGP9fU2A9Uya4tX0ESHSnUUtIhWKyRnmih8tl/5HvKHf4hfO04r9fB7Aql0DEORJDG6BvNX53nskccwDMXgQJVyuYTnubTb7cwUpd3GcnOkUoJIiWXmyGiZNqHfxVCvmR4U8gUefugRJsaG0TRFFCc88ODDTO/Zg1AaUiSsra6xtrqF7VgcPHSYfbN7kUqxtV2nf6CfiYlxLFOnVMrjBz5BGFEqV/H9ENtRDA0NcunSZXTdYmN1kbmFVxgcGacXWDQ7barFHC+8eIbp6Wm6vTZBr4tluVQGJkiCNtrmaZbNEW67/Q5ybo0gXOKxB59k/7699A0NU+obQkj16rUVxzHtdpu4u4Gua/QNzBBLDaWn6Ojs1FdY39rAciq7Mlqf+fkLOK5CN/JoyZMo2SFIRpBSUq1U4cIOwtPhthpRkhAEPTzHRpMQC7V7j8nctxvNJoaRuUCnSYLrupnk1TQzYw/dyLKmZTaiSxTRCyNM20HqBmkSQhRg2TpputtnimSnvg4CdN1EUwZSaiRpihAJnXYLXSmEVK9mVHuuixBZNp7v+3Q6Hc6dPc8X/uoeZmcP4rke+XyeIAqzqJ40QYhMthX4PkIolKazU2+iNjaIwhAxMkSKIAg6u+6zAr/n4zgujutAQtYzGfTotbZxbIcgCHedk/3dOAeNVruF0rVdo6wIpcVYho1lO5nTrOMCgsbWBo7nEicpiMx9WdNACIUQkm6vRRiGGViKY2zL3nUlTojCYDf+ythlOmwEeZJoHt+3+Re/9FvMXT5Lc3uFD37gLganpkmFRaFYRtcVugRhevgBVAsV9JxDuxOhP3+BX/+ZnyYq6yizyDPPfYuxsXFse4Af/9An+ciHP4njeri5HJZV5sSJh/mpT36KQwf2UHLhT7/wNT74ngZJuIpb/igfePdP8G/+7b9BM1M6rR2q5SJerornmBy77Z3c9a4P8dGPvAvLSTFNydWrcwwOVVlaWmB/3z6SVPJY/QQDokIYhLiem+X9ThepD2YupO1WB9txabdbWLaOUplSqdVsoDRFr9ckiQX5Yo2Xz5zhwIG9ZAZQKWkq0ZWGppkYpovUsqLbti3SJMWxLJptH9N2qNfrEGtoSpCmCUppRGGIpmcxOUpqaFLPWlcckyTZNXNSkp96/GeZXtzP2b3PEkcdioUqQZTF76RJim3a9A/20fUjDEMn9DukQkfXLX745FPc9c47MfUS0zM15q/W8YoBObfM+fMXCCN48BmrbHwAACAASURBVMEHmZ3dTxSBrmv4vR6O62YAwlJ4bhYLppROLldEIglDGB/fS6tR55mnTzI5Mc5OfYtSqYgyTLqtFnNX5+jvHyCOItrtJrpyKBZLbG01CIIse1nTsvuTYWbKnSiOMUyTIGyzd880kR/ywEMPcejwEWr9w1y5MsfQ8HDGuGgRcZy1beTcMprQiCNo1Bu4jo1lKb65+QD/9cDP8FN9HydMfKKoB+goZdHrdjALfZTzBbTGHJ36C5hewBF+l9LyGCuVqxi2Rn2nhaFMLpw7w/LCEsV8makZDT2NiOId8rlKlrKpYhAxSaSQyiZNUkwzwssZvPTiGWaP3s7GxhpKaizMX0ZXJlLt4Foufi9mSk5R3B7i/R/8CYIoQEmNlYUNhkcHWZi7yisvnOWdh8bwjAjLMhkarlEqaaws9igNGJjmKGur57EsEEmXKMp6K3Sls77RpNft4rkGMoWmv8b49ADPPrvC8MgItmXR6nSye0oUMzU2Rti5gq7pxGTgNVUuVxeaWLbHhbPn2ao3ODR7mHKxjKYbPPfcae44fjuXLl5k7vI2B2ZKxKlAyoA07aEZNqlMSVMduzCCMvNogG1H+L0mkR8hNQnSIhEtksiiUqlhG1WurLUyObrfZXLvYb770DeZMY/yWOMhTj73CCNDLtvrq3iaxuaWzxe/cA8f+cefwnDtrFbNCs6b1rfX1703luNvtba/PmbmRvAavaCRrAlE3+sZ0LcSxfO3Ib5uBHlvN5Lyjaa36kr8Vqc3/dzite3eig3/ewVe385owWvL/Og8QrzGLl7//s1GB25Fu2fvZ99vdn5dA6/Gnjtvua83jia9Ebq88UR/q7KB6y/8t3RJbDcRY4Okh/feUsKcpikyBXaZFxmZPPm9+9n5vz7LgDIJ9u2h2WwjhUKTmRNp2ItIwjaHDh3E9YrUdxoMDo9iWBamqTh08ABJGqLpklK5ghA6iZa5ExuGTRTFPPbY4+zdd5g4SXHzHmPTYygElmuQYFGoFOjs7KArie936Kv1sbq0SrFSRdM0HvjBgzzy0CO8447j3HHHcfLFHJZlESfxbr4oOLbN+sYG77jzOK6bw7Rs4iQmSduMjAxQKtbYafYoVQtIYaArD10XCEL6BgaJU4mQKUncplqb4NSLp5mcHCFJQgb6aly6cplysUaj3sBzbEQYs7B8GTSDUqUfXUIU+DiWQ7fTxnMcpKZoNn0QMcK8AkDcGwbNJghTRBqASPGjEFB0WyF2PoeuTJQyMpC2tY1ueXQ6MV4+j2lncrkwSrCdLJg8jgR7908ipUWhYoIfI7/zOOJTH2XnQ++gXBtBipCO3yJROsXKFFvb83TaMZVqDRV1Of3o18mf+k+YUz/G1ZUWX/vaNxFpQmN7i0sXzkOSUqmVUUqn1Wxw97vuROmCXuCztrnF8PAIYa/L1fk1JiYmSdOEFIElNbqtNlIIdpoNbNdFpJJet00SZ7FHHX+HYrHC4sIqs7P7IY3Y2lilUOzHyxVZmL9Mtb+fCxfPUy7VkJLMzCqIePnlV/DyLsoU6MqhU2+wvDBPGAYsLczhuS6e67Bd32R6zzSVyjCb6w06zW0spTBMyejoFEkMaSI4ffoFAj+iVCrQwcZrvshmq8jl1QaNxhp9gwe4dPYseTehUnFY3dymMDiFMjL3XU2TCE2jU29CEmH1D6GLhI2VBXY2F5ASin1jWKaN3+shhKKvbwSEhZ+EONqzSDpEQR+IGEhJjlZJjmXA1W9sYRiKdqeLZRcIej3W11bIuQ4Age+ztb1NrdpHoVCk0+mS92wkFikRrXYbwzRpt9q0W23cfAFNSrY2N3FtiyiM8IMIQy/gB10MU5HEMbbtAJIoihFk9zNNF0ipMB0XqQykzO4bSRzR7bRpbG1hWDpSVxiGoloucez2w5RLRYRMiaJuJptvdmg1Oji5PErXsS0DQ2UDAZbrEl2dz5x8x4ZoNBq0G9vkcx4bm2vU+qo0duq7PYUppm0hlUGj0cJwPAzT4vK5c3jFAaRmkAKmadBut+i1WriuS5woNN0iiuMsriqMUErRCbJs2yDooTSZMYcK0lhHCh8ldVqNOpaRQ+mSII6QykIpiaGbkKTMXblKPl8mSSKEzJ4/lvY8Ufw+lOgxMjWMtIawrTxf/5tv8LnPfY4PfuCDhKLHzvYO1VKZldUVOmubvPzCs3zaN0guLHB6YJi/rv8VV7UOfc0ZPM/jV37xZxD0+NV/9S/5hX/+c7Q7WwwNlNBEgp52CZwRvGiDmZkOV65eoX/kv+JdP3Ybw7VB2luLlEo5pF7lytWL2Dkbp2Bj2YJEgGF4kEoqFY/1xjYDw8NIpbEnneGFxhke7TzBaH6Csl2l3W7zjW98m8OHjgCSP/7jP+H2Y7dn8V9plPUqxwmmneVhm4bL2so24+MTDPQXUVqEYRn4UUp9YxvXzdFqNalWcyTsgpckotXaQTdd/K7P5soGru2i21rmLE2C7/dIhESkISJNMxdjaXDyqWcY7O8nTVLiMCQOe+w9f5QoCFi+/Qz50gixgF7XhzjBNHR0pVjf2iCOAkzLRDcsAt8niiLGJybodH3snIVp59h3cIo4lkhNUM279PVXqNXK2G4O183i3eJY0Gw28XK57HmrwfraAgIfTZmEccRXvvwljh2dxXJtZg8fIgizFgep6aRxiNp1W5aaIlGKnKVIoy71epc//bPPcvrFMyyurDI9OQphl42NLc6evYjr5JGahqlr+H6XQqlAFCYM9A2xtHiZYjFHmsaYhk6zHZEv5FheXcS0s5xxISS5XIGNzQ1eji6Saim/6f4rKuUaBAlmorO8dJFc3sR0XAK9QaHbz2MP/yp+kmf1vruYWvww4lgT5Zm0G02KeRfSmNPPneH226Yol0JKrothOySpRhT6hEEXXUmiSCfVIpIk5LvffpHZo1Uund/h7vccIEJhWiY5s0hlaJT1pQ3ydgpRRJyEREGXNHVZXltjYKhIt9Wm0e5lLtSWzp6pYS5e6fDYky8zM9OPLrsoCUPDeRKKKKXwShW6m/PEiYZtmigliKKYYtGmUslkuVKXXL7UoFKeYWFpm4OHb6PZ3qFcqkGS0u20MERAp7cGROTcIZrhNjLR6RucplAYoFYp0d9Xw49aJELDNix63TqVqkOruc7MnjFeOneagZKLbrjZoE0Y4SDphgnKKLGz3YCkS6fZwlQCqUGnC45bRCmJJMLvhFxYbbB4dZX+vkEO336UuatX0A3FkDvGi5ee5uTyY3hpxPG7bkP3EvoH+lEq4didH8OXMcoI0AKbRL5mGHSt7n3VVPQaKLsFeH2zGvn6Ojpz+Ja71bEg+JJBckVDv+v1hk03Atkb37v2cxzHaLvteTfs3evmvX7Z1+/P68HmzTDLzfbp+untpI7cal3XE27Xk203m65JnbMvkOK11xTxuuP79wq8vtH0Vv45b2eU5K2eHG9l29czr28EAt+67fVrF/AbnbQ3urO9bh1vuhXgyAzi6MwbSiRkCsnuYICWgE2XH9x/Hz92ahUmRkhqFTqNJj88eZLJyUmCno+hDMbGxmi3O/T8kHKpTC6fQ1OC9fVltrfWqVRH+Iu/+CIjI6MopeH7Pu1GE9d1KOTz7Nu/n3ajjqE0vvPt+9i/90AG2oI2msz6x3TdZHV19dWHc7WaFe9B2KFSLfDe991FRFYEp0lE0G2CppOmoJTN+kaDYrGPhfkFQGNubp5K+f9h702D5LruK8/fvfftS+5ZexV2oLCQBEFwkyxRixdZtuWxJE+Pe3o6Rl6ltjvcPQ53uG33zMTEREe4PT3u7mmPx2pbliy13bIWW5Yoa6E27iRIgACxg6gCUFhqycrMyvXlW+fDK1IgCFLbfPL0i8gAMt+SL7Pue/k/95z/OXV0TSCQeF4R3dAZjUJGwYjr16/xta99lbe85YewTJevfvURBILxiQnCOGDXrm1ITQAJcRLR2QiwLBvPc+lsbPDo489SqhSYmpwiDIZsbHTJSDFMHU0XDIIepBof//h/Zuu2GeziMnEU0Vr2uXplmc/81ae468BuTNNAKR1kzqzGcZDb70cjhsPcot/3i1imQ5LGZGlKlIKhWzQbq3i2Qbu7iudVkcYQldURjz5Ltnc7/PYHcD2LNIvodVJ0Q+DYOhcXzjKz7QCOa9Bafgk7XkF/4l+jT93FUBVASt7xzney3mhx6J57GBurc+bMWerTc9iOQ7FUwLQ0rl9fQqQaxUIFhOT8xZd45slnueeeQ3zxC59n/77djKIMoXQMy0bTTcI4RUmJ49qcP3eeffv3E4QhlWqNS4tXmNsym2d92j4xA5I4Yrw2hWUbLN+4wezMLGfPnKFanSJNA2bmxgiCIZZZpN/vcfHiS5QrZXbs2E4mJNX6GKbt0GpvcOXyJa5cWWIUjJBKMT4xxspKg8WLi+iawWA4pFiy2b5jC8PhEF23CKIYr3+ambf8PFMzM3h+iR//yZ/ks5/6S0489xxGAvWZOTyv8ErmaGu9QbexTqlQxKnO4RgmrdZlKtUanW5IqTxFo7GKZZnYtk2ns4FlWbQ7LXyrhRRNMjGLkHKTkU5euRZHQR/H9VHKQCoNTUkKhVzaJ6XCsizK5TJBMKLx9c+gN6+T1eeIk4TeYD2XEaIwdB3LtOj3+limgZRyszdRJ01Tlq4sMjY+no/JTBLHoDQDTc+zU9nMPwyCEJFJ0kTQaa5jmTlAFJqGb7toup7H5JADOqVJBoMhpmmhKZOw38Kx80zbKIkgy3LznijaNNAYkV1bhgyyyTE818WxbZaWrjE1NUuS5Gxwt5ezy5D/KLuuk08ASUW1XsMwzFxCrHJXYk1pmKYFUtJut3F9FyVzObJpmgyHQzzPJ0lSLMt6+WbOoNPKzXbSDN10MCwDqRlEo4AoCNCFTrZZx4RhRBLFXLt2nXq9Squ5juNOoMQl0LcTZQWEobO6PqJgD9g2dxee66LsEdNT20hixS/94gd57/t+hjQJqI2NoT99CssyebFi8qdrH2XD6HD8j49x+L79lEs6/X6fam0Cv1CiXKrwG//sd3nvz7yfL/7t52h0h9x1xw4s8zztdhvTfpBC2cGzHZQakqmI3/v9f8v7fuYfsLqygq5MohEoLWPQH2CZBp1OEwm0GmtYhkKm8J7pn8S1Cnzk6keZ93dSLhT54W6N8fWEGyVBr9vl9OkzbNu+lW6nm7vH6zpS6CRJQhylfPKTn6Iz7LJz13aCUYjSbTTdQ5MS03I5eeo0pXIZTc/3TZMU23YBjRPHjzM+VkdqGZ7v8O///X9k7/wu4jjG9T1SdBAatmkiiEjjgEo1N+eybZs4jtm3cA+e6/HSvhdB6KRxzMrKCnES43l5lIzrueiGkUdSmSZZlhHFIUkasbp2nTiJaLbWKfgFyPIIlXJ9iv4gwDBNLMOg1WiihEaaCVobG/jFIoKY5voa9Xpts4h2EUKwd+9uLNug1x/Q7/exLZtz5y7guh5KGGQpKE0CKfEoRpcZQdAnzVIO33OYUtHnnnvuJopiesMAx/Z55JFvcOLECd705jfRajbo9wdUqzXK5SpZBqbr4PlFNMMkjBK+/PDDzO/ZhWvbKCnzbGcz72cPVcQjncf5Hf9DPLjnIcIgI4silJXguA69/ojRMOHZ51pM+BeQ6yeorv9Tdl36acShdc4vn+fEidPsPbCXUb/Hww9/iWG/gW+HlDwTQxtBliKFRKQCdEWURBjSRJGBlOzeM44CPA/ioc7zp66x58A99Pod2v02ly6e5/LCJarFAo6r84R3mlY1wFq2NgGfjq6bVGplHNum0+lw+vSTPPim3RQ8gWN5RCPJKOoSpxGGVSaKfUw5QGmSYdBlOOjlSpQ0T5xIk4w4TlB2leeOHWdsapyx8QpCOBiGRWOtQWN9nWp9C2QjkmhIGo8gCxn0+0RZbrRkOTaGaaIbksWFS0xMTNJqNxibmENJkzBuc/rFK9yxd5xMJoRhTJqOyJIEqRmEqc216w3K1QqmoVAyQVMCXemkWY8o1BkOU2xHxytWmJyY4+q165TKRV48eZrDhw8hYslh782843fu5etf/Rw/8o630lpdJgg0avWtjM3uwi1XyGQCiUYmX0sq3QyklFKv9FjeXP9+J4b0O23z7aic17oN37q8nhrx9mzn7SW3Lz9/OWf9dutuB0bfqDf2u5EW3265tSf4u8UmN6ecvMZvR6pXgfO/1+A1ScL/FW4/YL+TJvyN1317m+8W0P4g9L2sbUFN70PZ/m1lD7djfN9I+pumr71QXx70N/e9vrzutp/nls/2vXy+m89JZpBKEAhUnLF08STz1Unsj32Z9C330BkMiIKAXbt2Icmb19eWlxkEffxiEaXpeK7D0888TW2shmWbTE9OcuGly7TbHQ4cOIBUGZ1Wm3KpxI0buUtqf9DHsSy+/OUvMT01ja4ZhGFAuVJASgOlNBYuLjI7N0eWZdy4sUyhUKTXDdE0Hcdxc6merjPo9yBLiUYBhmGzvLxCmkKzucHySoOdO3awurrK337+88zOzlAtFXC9AlGSIYWi0+lQLJQoFHwOHTqUZ6FaFk889jjveOfbyRD0Bhu5O6VpMRqFLCws8OSTz3HHHfswTR3TNEBozM6Oo6SGUnlGpl/IzWGiOELTNLqdgAceeADHNUm0BZSUjJfvR9cMDt19N5aVRxxYtoMQisGgx2g4YDQaoet5vNAoHG3KsAUXzl/A81wMwyIaRdiOTSYyTCt3YEwZIZ48jRgMUH/0O/TjEKVJOp0efrGOkilKZtiajluqkkYdzr34DBz/S3QJ2vSbGfRDgmGM65bJ0gTf8zh3/iz33XcfN5bXKJeKGIaGZZkopXHlyjWeffYIB+64g4npCWYmpxEiY/uOrSwtLVGujHHhwkUKhXz8GKaVy51FSn2sRpqmWJbNxYuLlMoV/vIvP8naWoOpyUk2us28oDy/gGFIJsanGA4DbMvGtjy+/JUvMjU5TjAMcWwfw9BwPS9n46Vg6dp16vWx/PvUdCYnxpiYmMyvqE1g5BdKmJrCMk36QUAcj1hcXGRsbAzbctgIBOVoEVHeiSzO0Gx3OfbiGWr1CmdOHMXWFPXZLWzfuYswlfnYSGJG/S5j1TGUV0USEXRX8Qp1vFKNbneAbesoJel0NhgOB6ysLFOvVYiiEEMugZwiywRJkgMtJSVJHCMl6LpFfzBE0w2kyN2HsyyXtEdxLhU0DIPspWNko4A1o4Lt2ERJgGk6LN9YoeDnTs+6nrNKL/8IR1GEruvU6lW63QG6bpBEMU89+TRbt25BkNFYW6NQ8BkOejkLm2Z5FmoW532Gm32gvY0NoiTBtOx8bjeDNBuiaZCmMcGoj0hjhNJprDcp+B6jYS7vXVtfx/NdDE0RXbkBgLl1Fk3TCYNgU2apkaQZURTmMtJNt0hjs9c1TTLCUUicxEBufCeAlZVlHMdGaToIge1sqjSSNO/F1vXNe7FCqTwzNI7j3PRm0EPTdUwzZwF1U8sjjeIA0k15fBqTJklu5AW4boF+v0ex6OWuyJkkC49juD9Eo9WgPraV8y8+zsT4LPXxKqWKg5QmcZTRbK1z96EDFIo+aSqwjpzJM23v38u3gie4ceMG/8uP/Ssmpysce+4ptmzZzq7d+6iP18lIOPrscR566CFOHT/Ke372v+fGtUXq1esUiyWWrk8zDAS1wgwf/uP/m63bd/Bj7/pZ0mjIoL/Bf/rjD/Nb/+K3+dCv/TKmYUKWkiQjioXyplzToNvpYVkue70DrAyX+dzaw/h43P2/H6X44grf2iPo9fq8+8d/HNdzOHnyFBMTkyglaLe7KKXodDZ46cJF3vbOd6BrkmAwwHF9+v0AU89l8aZpst5sEMcRum6gawbBMMzjsupVyBL6gx6WZXPXwbvQ9Vw5ZNnu5iSPQpAiYFN2m7tQIwWabrDz9H6yDE5uP0KGot/tUi6WMC0LqXKJfBSFyM3sY7KMNEuw7dwBtl6vEY5CyqUyhmGSJPC3n/s8++44yJWlJcbHxyBLcCybixcXcDyPUrmIlIIwiPnC5/8OgcGlhWtMzkzlDNmgt/k9dSiXyrk78Ze/wj333MsTjz3KyuoKs1tm6fU6hMEI0zQxLStXVqGo1auEwRDXc/EKRSzDZPv2HezevQvPt/E9h1qtShgGhOEI27YRKs8vHoUhpmWxa/s2IHc8DYIRtusTxxEtscEXm4/wT2Z/gffN/ARXrzb4yIf/lHrFJVMZleo4QT+kVq0wWx3n8qkPU1l9M/rjP8z6litYFThz7jxve/sPozRJMLjK8o0VZqcqEPWxdY9CQYAQOTCME44+v87UtEeWdiC2kbab9/ATE4UDSBUJisZ6l4laBUPapCLh8MG7abeuohnwb+qf4rh2jres3EeUWDi+z/raGr1+l0KhyGg4QlcJvqdhaCGjQcyNG6vYroZummhamVFistFYBBJcx4A0wfN9+v0BaQpSavR7Ay6cj7l8qUkceeydP0ySxWQkJEnMxMQEwUiytnKFoN+gVLSJwgTbVCirQnV8GsvxsR2LKAwoFysE4YhytUgUurx44jhC9EjTIVNjBkmWYGgTKGw0BWEs2egp9uw7jOkWeOH5J5kYqxCHA4bBAN11uLCwxiCS2J6FImFifJYsy7ODDxw4SDDs88K555kb7eaf//kH0dwI39V46ptfpliu45crLK/12LH/LuIsQpdG3od+S838CsP3cp37OrXqG4G311v3imx4E7zqD7w2KubmbV/v+HEcv4p5/XZt/1oy6GY2Ofc+eGOJ72uVmj+4zPhWia8QuY/O60XlvFGcz22/l1uwzt9v8LrJvH4/f5DvBrx+L/v/IINCmG7++C6A8suzQbeaML16+1dfdG/IsL7OrMl382myy9dho4so+a96/eZzUinEeSsiLz79HCfPvcCWSz04s0i8Y5r1lRvUxyZ46oknGR8fp7G2hqVnTExPolsmw2CAQlCt1fALRY48+zyu7VOq+OzbewdPPP4EJ0+dYGp8Al3T8Qu5PMkyLUzTYvuOHQRhwOyWGYqFAqtr17Asj8uXlxiNYhzHwbItTMMgjhOyNAc5cZwyCkIcKweTmqZjmA4bzXUKnkuv2yHLYrbtmOPjH/s499xziLe+5c2UyyVG/T66adFsdRgMhzz75FNs3bab548+R6Vc43N//TAH7phndnoKIWC91aJWq2MaHlmmgdAolyvsnZ/H802CoEdeGqRYtgIMXjx5gW3bJ8nIaLe7uE4RTXN48omnePzxx9i7dxe+fohoOItm5dmGvV4XTSW4hRpxJhgFAwyZ4rllmo0mlXIVJRVS10gSUFLjuWePsHfPHlqNVSzLRhkmUjfQhUmrvYJz7BrZ4iXEH/1PjOoujuOiKQcpHDItwrIUrbUGCo2ia3D0qa8xrXXQX/o7vnIm4+yFi2zfvhXP8+j0ugx6PU6dOsW99x3mpZde4urCIvVKiWazQZSkOG6Jcr3Egb176bRbaJrAK3uYtkkY5jP0ulR88eEvsGvXLhzLot/rIjWNJI0AWFq6gu34VKtV+oMhb3/bO5id3YLrSHTdp7MxYHZmglZznUqlyumTp/E9j69/8xF+4sd/mrXVDsP+gNGoh+t62F4+hhqra+zYuQPSlBePn6Dk+0RpRK/fY3FxEaUkc3OzrK41OHfyON1Om51757GNAo7jsLKyTJKkNNZbeJbJ+uUX0Hf8MMsra+w/eD933LWPIGhx4vgR7rzjTqa37iZEhwyWr1wkiXtEoxGFiVnSpEO/1SXBIkoElgGWYzIcDrAsk2KpgNIkRd9BZi1M7RK9oIRmmkgh0X7/ONpTqyQP1BAiwzBddMNCKsmlxYW8CFaSfn9Ar9ul1+/jeR6jiyfIyNC3HqBULqEbOmli0Go2qNVqaJuGWcPhgCiK8H2fCxcu5GZPmo6mmWhCsb52nbNnTzLs9aiUiliGRRTk0UamYRBFIZqSKEND03RIMyzDYqPVxrCsHCRmmz2HykAqQZYlOSjxSqAZmJZJv9NmFISMRiHVsXGESOlutNA9j8RziHSNVqtNueizeGkRy7axNs1vwijajM5JCcMQ3TRRSDSlg5ZnEPb7PSzTwPc8yDKkZpKREcZ5rEsap5txQnKT3RMIKWk0GkTRCKkErudjWjoyM2isXcc2beIwwbJ1hkEPTTeI04yPfvSjzM/vxXEcLl9a4sknH+PgwTvpdjsYVgVTnmRt2aVcmUZgMdpYI4hWGJ8eo9PNMHRBmkY88OC9ZAxprLdxXB/5+AskcUT/0HYeT45w5coVfnH/L1EsFZiemIRMI05jonRAmgZoUtBstpibniRWPpNTE5jyJBcvLvKZT6/w1ne8ia9/9RHuu28e05UUSlU0EZKmI+I44l/+1m8TpRGNtQZkKZapEWUuqZCkQlCs1On2A3r9Fu+aeRuzxgwfvvwxzJLJ/e0J1t93R94D7fkICXGU5L2eukRKDds2cWyTu+++C8vy+MSff5R7D98NZLkjvcpI0gS/4NHtbzA+NoEQijSF4y+cZGamyjDooWuSKMrwvTJCA5I4Lyw1nXjUxdAlYZwilEWGTkZCGAf5RK4y2HVmPyC4eMdZTMPg61/9GvPze5BKEcURcZpgWXlkkuu6AOhGns+6vt6kWKigaSamabGyskoYhhy+9zB/+B/+Az/2Iz/C4uJFfN9DGXnOpeu42KaOrgRKl9imjabpnDp1mvl9O9A0iW1ZgMC2bZSmIYXGqZOn2Tu/H8uGPXt2gsiwbBvN0MiUToLKfxNsnyefepK79s9DljLoD0jTGNd3MG2dIOwSDAcImZFlEVIJlBLkrQExnps79FquiVSK3qCP4zlc763x/MYxnhu8wD+d+iV+YeYXGIUR1coM9x6+i3BwjYkt+xgOEzzHZL25RHb5r7G7Aeobv0q4Y53YytAswZatW7ly+Rp//alPQRpy9XKDrVs8YSj46AAAIABJREFUts7aFBwLaZkkWUacJGSkJOkQ29bRlYdQMWcXG5x4rsHETIKhxhFak28+cY3t8/czNVOi2WoxObOVKOjQWDuF57p8rZLfE/ee2IbtzuL4HiINmZqdZTgccO7seRbPr9Dvtdm2tQZpgmWaeL5FFGoovYRTLdJtXqNQsEniEYayCMIhmqZtqksMojBhbBzm909TnypgFzQuLS4zNT2OUhCMAjobHXQZUSlrREmfDJ9k2MIuTCDNAkr3iNMIkcX0OgOKpRKJiHnkKw9zx959PP6N59mxo0yt4GJYitMnLxMlTXQtJSVhbGobo1Sg2wbTYzVarTWyZIQQCVFvgF8soylBuWCThD2OHT3D8ZNnGYxCSqUxwlGfcq2Aa3i8xX43j8Zf5pN//he8/6fupzdqc9f9ByEpMja7K2deyX0Bbq5hb5WwCiFeGyZ5E1B6I4OmV697dQ0dP5P7aMh7o++r/r8VhL5y/ulr6/zbpYK8fIzbSXW/FxXp93K+t3Nhvh1ATZLkdfNyX3e5JZ7zv4LXW5Zbv/D8Oa96vJFu/PX/YDcPbMEbOh5tLrdzDX49efB3yyjffC437/vyv7deFDevu3kGRSBec/Hc/JmllKT/4v+Ex46+oduw1EBqNipN+eZXPsu73/3fov35F9FKRbKpcWy3iG5bzEzN0e8OKFXKBFEXXXPRNY8LFy5xaWmVVqdLtVokS2LqY2NITSdLEiYmxpiamaE6XsewLVobbTzXw3Vd4jTPKStXy6TEpIlOwa8CUK2WqI+NY+mK1WvXsd0iIySFgk1z+TrFQgHLKxGLFJEplq5cxfELSM0AKalUKpSKBQxNMjM7ge3keZLSkCSRZPnGKq7tUPAL7N4zz5985M8wNJ39B3ZSHZuk6LpYtqRY8Oi2+zz99LMUiy4f++jHyTKNYsmGJMUv1Flv3MCzHUzfotsbYpoarfVlatVxkihGM7Q8piFJcIyUB978AEoZfOtr32BicjvN1TYyjQmjIV6xkpvGRDGariFMAyVSlK4hlETqBmmUYpop15cuMzu3h0wzsS3JKBxhmTZSKIL1VbzlFml3iPz0H9JQF3F0D6UMgriDZlhEyZDL556mXta5unwd085jjtJn/i/O30joRmXe9RNvZ/nqIuVSCadQYvn6FfbfdRdf/NJX2bljN5amIfQRtXqV69ebFItFNKnI4hgExFmCqQStxjppkuB7NkppjE9M4DoupqE4deo4pVKBOIwxTYt6bRwlDUajkGAw4PzpU6yvLTMxM0MQRIThiELJp14fYxgGuAWPc2fP5e6ZccC1a4skScLu3Xt5afE81fIYZ8+cY2Z2FqFgOAw58twxtm3fjuv4eK5HtVZiYmqSDFAqYfvuHTRaTQxDJ8sk7VabTruDbehsNJs0BynbtQWsnT/D5JYtdNtD1pZb7NgtcZTAL0/TWrnGxOxOhrFB3LjOsL+CX61TKlhcvbyAGEG5rFhtLOH407msTBmYpkMcZ1hWbhKUJRcx1BK6uZUkiel2u9hH24gsYWM+RtklMnIWSAClchWEIkOidJ2ia2LqFq1WB3ntPEII9B13goCNjR66rmE7LoYmWFtbznusdQ3TtgnDhPp4jTSLsEwLkaX0eh1cx2XvgTuYnJ7Bclx6/QE3VlYolDySNMEwdTJS+p0BUZpgWAakEdI28LwC4TCk1WjQ6a4TpxmWabG+vk7R9yEWdNZz12WvVMyZ3iSi226SIfBKVZRfRroetmVgm8amGZjAcR2Wl2/geR6aYRBHERvNJiW/QJLGCCVZbzbwPBspR6QJKGWTIEFJBv0ewXCI73qQZCQxaLpOLm+TRGEHpUncQglNKZJRiNQVmmbS7rYplapImZKRIFBIaTAcBqxevUG7vcGWrVsJw4jHH32C97znp3KjN9NGZpJRaFEpPgvCRzO3YLsmrl/lxrVlSr6LrnSGvQCRQRplFAsmG80GpRcXieKYwnt+lM+tfp5i0eF9Uw+BMpCawvY8Fi5dwrZtPM8j6GocPHiAYdrCSMdw3BTFUc6ePsf7/rvfYaOR8Bu/8ZvUx8c5dOggSnVJ1QRKlNm1Y4YXjh5jbTVi69bteAWPMIkxVUxzvYluF9GFjogjBr0uml1kvryfd5XfyidWPs3fHlrFK5Z5/hvP0u+tMzU1x9UrC4SjIY5X2IwNkYRhSKvdIYoHHDp8CGNTzi0FpKlEyiyXS46NIbQicTRAVwmt1iqV2hiW7WGYLmEUIFRCho6mBMFwiO049PpDNNMmkzoy0fjSw19lfteW/PdUGcSpYvvJnShN8dLelyBL2LZ9N1KDjJgsFWjSASnybFfbJpUGIuqhWw6OXwQhaa6ukCYxBd+jVCyga5I77roTIQWVWgUpNTSRm5MhcsNEpGAUxGgGjE/W2D2/Gxn1abZ6GLaPUJBlCiUVpDHTUxOcPPE8u+cPYFpuzsKPBoz6QzTNQNd1xKaKYNvcNN1ug7OnjhENu1TGx/I8V6WwjQKG7ZCk5GNSWmiaTUqEYWhsjDZoJ13ObpzludZR+qrH3zS+xLmNC8wwxx/v/9e8e+wdLN6I8RGceeEUvX6P4sQEQTSibhh01Qhz+BKrR/8I+8n/g6EbMHZXlUyXDPu9vF9/5Ty1YoUkC7hr/wRjpRSlC2KZkCXhK2ZImlQUPJuEPpZbJA4zbOVQqxmMj40jJKxcT4gyxbYte9EdF8POSIKUTreFncbYpsEn0kcwTJMfbt7H9evLpGlEfWI8VySZNqbhoWQLwZBqwUIRY+iCwSAlk20iWUBKi25zGc82GQU9UGBqkiDIuHZ9RDhKcP0YUp0wUvzFZ1/g3jvfhOloSCVRmsS2TQzdoVQtsnxtAUdkGLZPmkYkUcLp85eZGJuh1egwHEQsXLrE2fOn2bVzB1u31Ulih9PnTrGw1Oae/TsgGVIppVQqddLSDM89cZ6JuTJecZ5MjPjaV77KltkqphaxtLCB5VuYRobn5KZ1YZwxVrGwLZ3hyCIZJMxsn6JYKpIVUsylIo8cexS9cp0HDtaxHZ+x+hzPnVrg8INvI810UtLXMqRSbMb6iU3XmdfW4t+NSvPmWj8HYS/X6/n6+JlcEaE/kH5fvaMv19GvwQEiuwWPpJu4LsuvX5G94kh8cz2fifzkMkBI8QoEeSMzpu9VVflypvzLqqk0TfNgdsGrvm+1Ccxfjxy7uW3xlQfZqx5K/T3Oef1+wesbPf9u191m61v2+e6Di6Mz3yRZu4Sqb/s+3/v25/JGx7qdbPhVgPY2wPrW/dPPfzP//xvkvI4GATJNee6Jxwm6PerjU3i/9zHCu+fBtiDL0NKYi6dfRBcRzbXrZMJEbTIUTz39JNVKmWG/w9Uri2zdOoe7KTUiTVFKYtrfDnj2fZ9Tp06RJAmFQmHTURTCUd7bNhwGbHTaSCkQmkSKjDAI0HSdT3ziE+zevZNqqUiGYDgK0ZRg0O1z/NgLPPXUk/R7bcLRiPHxGkka0xv08D0fTdPodDsICQsXFvA8j2KxwGDQp9fr8sCDb2b79q1IFVMqVzBNGySEcYRlO5SLPhDhug6XFi+xc+cstuXz1NNH2L17G1lKDqQcF4HI82GVQmkamq6RphlK6hR8n41OjxMnTvK2h95OnMQ8+8wTzM/vxC/6JGmKaShWl69vOnDCRruFpm/GPSQxaaIhZULBL+YOhAsXmKjXaTablMpFksWrqG89T3L3NuTv/XNEwSdNNVxnDiVtXFsnHiYIUaC93mJudgdSeHTCJvq1J5FXn2bDPcAdd99FEA7wPY8ky0AZeI7LKAz51re+SaVcZn7PboJRj3Z7g3a7x8zcDN1ON5cBIzBMiyRWJIkizTRGUYJtGQwHQy5fvoxlm4yN17Bth4WFBcqlMq12i363w/KN6yxdWeLBH3orrlfg5MmTjI+NkcQRWRYTxRFHnj/J1i07abfWuf/+B0jThOmZGaq1Go7jkSGwLYder0Ox6CKEwbWl6+zft5c0DdEti8efeJxtW7fSbDQQKbhuCSUMxupTrCyv47oup8+eZteuXblE2XPZtm0X/bWLWIUaXz12mdm5CtXyDI2Vq+hS8jf/5Rvs2LaN6vQs0lNookHcD5CmjeN7dDbaaDJlFCp0o4hpmSxfX6JSKiJFxkarSWNthVJpDJO/QYk211d0XNdD07ScdU1i1vco/HJt05VUy+W+ce5urG+CrjjKZeZhGCOunYMsw9ub9+8bhoFpGgilMwoGlIqFPNIlI2cB9NwJNpdQ5ZJm13VQUiK0PEM2SWJcz2VsbIwsTWiuN3EchySJc5fezftVq7GOadmbM9p5PINpWnlElJL4vscoGDGKI2zbxXVNBt0OjltA1xW+5+XXQAa9VgvHNun1eyRpSpKkFIpFwlHO/mq6zkZrHaU0bNfLZaKaQkoNy3JQSrK+vkahUCYM8wibXq/DsD+kWCqy6UmB0hRBMEQqyWgUoGkqz5tOcxMLyFkgIQS6YSAgl3kbJlIq+v0etmMzHPTYuWsHmibQdI311Rb1sVpuGJNEBMMATS8gtDFM+TwieZE0HaPRSJicmGM0inBdj2DU5ytf/TJHjx7jwIHDLK+1qJ+5glCSwYMH+PSlz+F7Hu8dex9hLInjIUJAsVjGtnwG/ZA3PXAfv/prv8Kp0yewrSJ+0eBzn/kDRiOTUvU+htFlPvqxD/OH//FPsM0K66shmqFjGg6d3jJzc3O892d/FqES7r3vIHEy5Dd/45/x/p99P1GWoiuBrglOHFugWptjdbmNHdj83J8sIzXBJ+vHkXM6D+5+E6bSGBur5ZNeukmrtZHf47KESqWCpmsMBgNsy0JIyWCQKxOGQR/fLxAMw1z4m4RstFts2bKdUThCSkUURoxGQT5elU5vYwPbNvPJiMTIc15FyPr6NXbtmsW0HPICVLB46QoHLx1C0zTO7j6NrmmvSHaFyHjssSf4xte/wcG778Y0crdqyzJJ0hSh9Lw1KI3xvbwHehgMyMvGFE0XZFmMpkm6vQ2yJMUwTYRQCKmTJhmWnbeiCCExDIv2eoN2t4ftuHmftlScPXsWTSmKm2omx/Vob7Tphh2kIQmTAamCKIu51LtEM22yHjXoyD5a3aVthpwNFzjXe4mXBhe5GFzgpcEiF4cLPNl9ltP9s5zovsiJjZO82D3D0f5xgiSgFPncbe7nJ2o/ym9O/RYf9H+O9+76OSZsF4ng2KkFlq9e5EO//EF++UO/RKrlRoJaqNNcPcva4tcpL34AZ+NOsr0RxBlBGBEPBaPwBk8/eoFaHeamSpR9DV0mKC1vyxFkCLGZB09CKmJ0vUIUdxEiwXIESmUIkZEkktZ6xKWrLfYdnKfdWcczJ3jumaeYmqrjaAOGwxZfq59C0wweuHKIqdktbNuxgyiOAXj+6DFAMgpSnj9yjl3bJ/K4LSRfevgM8/vmWG3FFEoFPAPSJEDJ3FQvGPQ2Ha/7FAoOmhYi0Lh6YxX0MSYnClh+kRvLN7BMiySKePSxJxBihG/FuJYgkQajfoOVlSG6M87YxBTf/ObjOK7DvgP7mN87j1Iao57PF/72kyRDxdY5yVgl9x8QMiOMAnpDydKFK8wfuANl1EnjmN07txENB2RxD8+zEcT4vosUgnA0Yhj0KPtVrlzvoXuT7NqzA8M0kFJw5Lln8ac93u29H7n3BnG6SJwoLKvEnff+EMoqokwTqanX9nSK7wzKvhsc8HpM5quZV15l2PS9YpHvny29zWs3fwXi2+D1B8MStz+XV4H+26g6xU146Patja/X7/vt5f8X4PUHWW6V5P4AR7rleK8elLd7n5dfD1/4Ill3DX3HfbedEbpVEnHzvm80sG9lVW8nHc6y7FWhzK84md3yfrdzOHs5Kkf81KvB683HOXn8FFYacf7FF3jnj7wL7dhFtCdfID20D9PMwVKnE1KtlVGGjuG61GqznDx5knq9wt69u6kWfbbOzbBt21Y812Fjo8naeptjR48wPTNFFOeApdvp0O93mZudwfc9ur0NbCvP/LNMF6WBbVuEYYhtWaQyYTgYYtkO/W6X++89jOPYsDmb97WvP8L8ru0oobNt63YO3X0HhYLD3Ow0YRShWybK0JGZRDc0bMdGSo1Bv8vU9CRZmiAkFIuF3K0xixlFfZQykZpOkoJmGChdYkiJaQoKBZ/777sfZILjlFm+foOCZ7Gx0d2UQuZZkZqmyIREaRrDYEAaZ2RJxlqjybWla+zZM09kPUHES+zb9XYarQaGbtBYXUdTGZrIGPT6SKHjetYrfVVxnNBuhlxavEC9ViOKY+rjFSzdAiFIT19EHb9A+j9/gNE/eBCrUEE3TGIRIYTJaNTh0W9+hunJCtKwcrCbxvg2DBtn4PE/YFA5zMTW3eimwrJsDMvCdjziNEVJPXdg3LEdhKJcLhGnIyYmJnHdEpqW4to+jWYT1yty9vQ5qrUKn/70p/Og9JJH0fcJoxHTU9N4nkN/0EU3LYLRCNtxME2TfreNZdnUxsdRusmxEydIwgTDULSaeX+lV/YZq07z4T/6T+zZu5OVlVW2bduK4ziAQEmNI88cxfcdigWHNI1ptfp0uxvE8YixsSoJGjOzMywuLDBRH+e5Z59jamaCdmsDKSTFosfipcs88OADGJaFVyphuS6XFy+RpGAPLrD7J36DazdepLHaZ3JsH+tryyxc+BbbZkpkmoVd2UY8AC1ps9ELGJ+YRBeCleY1CsU5ioUJGmtLjNXrROGI4aBPu9Vk65Y5ktTAlM8i6GN5e8hSlQOox28wCkcUfmofV5euUSgUWFhYoFIu01hbRarcbKnb7WJZFmkGjusyuvACcRzTr8xy7do1hsOAUqmcs6WGgVSKVqOB7RTySJ3uRp6HGUZ0NtqUy2VG4QjdyPtzkzg3uEHkkTTdbp9qrZob14QRQipIM1rr61SrNcjye9fly4tMTk2imwYvu75naYrIQLPMTXfzFE1JojhlOOizsrJMoVhCSInRajFqtTGrZZAKQ8+jaoDNTOURSmRkWZ7JilSsra7gOnlfrBQCy7ZJ0k0pKuA6Nq7rEYZh3uuUQUb6yn0wSWPiOKHX76MAsZkBm0YJuqZjGSZpkkepSKHo9ro4tk2WpvhehSCIWV1uUa2Ms77e4MSLx9k9vwvTtHGs/PoNY0mYjKFrAaZ6DNeO6Q+nMQyXIBhiWpL5vbs4ePBu0szjI3/659wziDFMg6Ud4zwWPEEUBTxkHqZSr9LvBZx88STr6w0+/vG/4oH738Ldd29nbKzG7MwO3vv+H+dDv/KLTE7ex6FDH0DzTMZrk/zCz3+II0eOUCrbxGkXzynS7fXpDta4en2Z3/1Xv8X+/XswLUkcj5ibnaBaq6GZJv1uB5HF/P6/+7e886GH+MWf/8d84Jf/EdpXnuKuZoX3vPff8ZkvfJZnK0dox21mzAl0zSSMEx791mPs2zdPliWv9BVnaS7dFiL3XGi3m1i2BUik0IjCEEPP+5TlpgS9280Nc0ajIUrlUnFdN9B1gzgMieMWreYyRc9nZbVJwa+AgH6/j2maFAtFPnfhM/QOrxM7GZ/55CfZd8cedF3lhl/VKvfeey9K5KxZMBqgSYnSLTJUbkITjYjTfBLPNM08jkQIBv0QQ7fpdoZ4Tolmcx3fL3FjZY1SqUqGYGVliTAcYZoWUugUSkVsy+HIkSNs374dXWlkDlzqXOKausE1bZkr8RIvBCd4cXCShdElLoSLnOmd5dzgPCAppDZplGIZNppySCPFYXWAe927efv0O9ir7uS+6j0cLh3kH068n38y88v845l/xE87b+ODe36FX93yIT6w7X/gZ+rv5ofG3sR2bw9LF9cYtK9Sn5klGnSIwyH1qTkaK8v8+q//KqlMsQoerUaLK+cvUdfOs3LuaSZP/i7xvi6xnnHm1POMTVaxrCE3riwRj25w1x17CLpXKPkmiJT+MMJzS7lpGxpJEhNGA5LU5XOfPcre/VNoQkMg8b0iaToiTUd4nsvV5QHXb/S58867eOLxr/CmB95Ef9hFpW10GfF3pRfY2Biw49gulpaX2LZtB5eXriKlxp7dewijERcXLnL48Dy2mZDSRaiI2aka0pQUqzsxdItu6wqkI0QWbjJ2uYmdVyhRKvnE8ZAssYkTk9rkHVy+dJ4tu/ZQKBY4e/I0Rd9n3/478D0FcYsw6ILhMxo0WFmJ2bXvAS5eWmB+fh/jk3WULmmsN1HKBDHg6NOn2be7zKEDHpZlUiqPM+jHCFJ812F20ifOXAbhkMWLC2QpXLm4SMHP0PRctZWlMeEoQEmJaUo2WgOOHF3EKNR55tnH0DWDUrGAZVt8/YlHMFzJg+E/pDP+LEILKLgFLN/hyedOsnffXUhN5RLvLNuMJcvbLoR4dUvd7WrqW2vkN1Ikvh54BTAeTF9TV38vjOYbyW+/U41/60uvYllvYl5vjfy5HSa5GWe8HG35qnr/Nu2KQoj8vsMt2OSmfV5eXtVOeBuX5Zv3T9MUTdP/K3h9o+X/u1mJ78y8vh44ftltWNt+7233+U6g+rWShW8PwNsB4Fv3vW3T9evM2rwKzH7h0fzFn3zra7Z5+X1r03N84sN/wLt+7J2EysH4xJdACeTsJMFwwNWlK3zpK98iI6E2PkEqLT7z6c+ysHCOgwfvxNQN0iwBIRgGEd3hgFK1DCjm5qbQ9dxF0dBycxTHsUniBEPX87y//gDXsdnYaKOUIAgCCn4BKSVBr0fRr3DshZNYtk1trJbfWDWNXr/Hnj07SaMRf/XZv6E2Nk6h4KAMPTcBMixOv3iKG9eWIcsoFH0yMqTSII3RdY1hMMyzSjfPUQrJRrtNmlkYespoGPHpT/01+/fthUyjH/RwPA+pLKTSEFJRKfnACK9QRNdMTNOk2VwnGPYxXR8E2KYJqeDIM0fYs38vly6+xPhYHeGdR9NjRLSdYrmMkga+UyBFwzAM1ptt+sOISqWcm99s9nUFg4Qg6FDwPWyngFDQ67RxltbIzlyCP/vfGO3cDiLFMIokCaTRNRZfWmC8PsaWHdtIsLly5SxeoYyuS575wv9D5fhHSOsHcaZ2kcYx3U6XLElprLV4+qlnqRRLuL5Np93E0Ayu31jj6LHnOHDnfrJUYOgGqytXKfg+jeY65XKFlRsrVCol+r0eBw7so1CwUTJnotebTcrlYp41alo5u2NaKE2jUCxz6fJltm7ZiqnrTE6OU/Acxseq1Ko1rl9bybM8DcGB/bvxPZ9qbYyLCxcZDAcsL6+y3mxT8HzqY2WyLCWOEkrVGtPT4zRbDdqtDvXaOJcXL7FjxzZM22Gj06VYMGmut1FKceLE8xT8IrVKlY2NDsPhiE984j8zv2cPhdoURvMFsol7GJ88yNLyRYI+7NmzgzvvnsO3NMIoYeuuO1m5fJl+6wqWV0Ag2WitU6hsYb21wrmzx9mza54gAcNyiJIMzTAZBCN6/Q2Kzimk6HP1ukmhWCZNYrQnV9BNk+yts7iOQxAElEolkiShVPRyJnCzWEcIslTQajVJL59C1zXKdz5ArVbbdCEOCIcdlKYTp+B5BaTQ6PW6lEoeCPD8AhKBYZi5S28GINE1nThO2NjosrHRpVQqEkc5SxuGIabtkCUppKAZGpZhkZHgeXnPXp4DKwjDEUmcousmWZIiMo3uoIthmsRxxsZGm8mJCaRSIBXBsZPIbp90PHfNTBKQQm4KUgRKaeimwWAwxDINlBB4vg+ZpNFYz1ky8kxYw9BJorwvahRFOdAQksZ6A8fJ3YV7vX7u6GqYaErhORZpCkJp6JvGWf1+jzRNsCyXKI5xHJssSwmCIaMw5Pq1a1y6dJkjTz/L/jt3sXT1Mnv37uczn/k8ggTP8zDN3PQMUSaKSuhqCUd/hE/8xd+xd987CeMevX6LXneIo+k0GjeovOdHeYwhG40265V1PGyyF2IKxSl+/df+JR/80K9g2bB79x6uXr1GpWyybes8ljHGf/Pet0MUs964QnV8msXr1yhYFf7sIx/jbW9/M4WSQRA10TWFaTjYrsOf/ulf8tBDb+LChfN4XgFN6XiOg+sWyYRJEsXITPHmh96CTAS1aoVd+3YivvhEbmD17nfyP973Xt6qHeC/PPUwLzgn8XSPujVGOBpQr1dprDdpN3tUqiU0XQcginPTq8Eg2DTAywvhz332Ye66cz/rzTWknhsxvTwGPN8lSSI0pectF2nODAuRkqYZnY0B9YlZHn3yGc6cPsX8/B6yNEMgGBpDVC3Bd33WblynPlFD0wyEyO9fmqYhZUoKmIaFSEDXNIJRiJCSOInRdRMhJL3eAF03kZv3vtEoYm21ybe++Tj7993J88eOUx+rIzVFMAogE5TKZdIUDMMkywSd/5e9N4+S7CzPPH/fd/cbcWPNjNyXytp3VakkoQVJgIWwsDHgxmCz2A3YLGMPtmmPz/Q0bfe429PjmXF7a9t0YwNewWwSEgi0IISQqrSVapGqSrVlbblnZOwRd7/zx80qqkolwB56zhz3fHninMgbd48b977P+7zv84RNGqUmc/4C9y0/wJHeUbIiw6Q5wXXWdva0d/LLW3+Z9yrv4dc2/TK/NPlh3pd7Oz9t/ATht+B283rev/3dvKFwO28e+AnuzPwYt4/cxM7SLuylEv/jT/0v3Dy6k3u2vQmrY1K0+7CEg6LaeI2IXr2GKuokqNTqDeqtDpNTE4xVTCLFJOy2aDeqNHoeT373SQYGi4yMDyF1Cxn0WLOuzMzBzyIP/QRFYzu9wTa1pRWmJsYIE8GpE0exlTYb1xfottuUSg5SUfCjEFWqhIFHgsriYpNmq8tApcLcXBehuQwN9iOTMLWfQsH3u8RxhCp1Gq7OhdkVyn05Nm0YR1cM/CQi7FRRiHiw8BxuL+Yd4ueIhEer4bNl2xaajQ6WZWGYKsuzHZ7ft5+hcj/5bA5dszFM0GybTH4Mt9vG1n26nQYFfqZOAAAgAElEQVTaqsW3Qqq0G8XguT6KFAih0Oz4PPTYAd7+1jeBMFCEoFAskMlm8f2Egy88RTEjsCwDLTdA1HMZHplkZqnOyNgapKLSbNXIOja6nmHfvufo74upDJQgXqGQCel1I/zQR9MFqlBwXRdEm0x+C9mSTS4zSDZrEQdNbNMnDGKiOELT0/u5VFQMI73n9w8OIfUMu7Zuxw1SUcVjR45gWxZHzr7IULnMZOMn8Sce5sVDT2Nk87Q9jbWbtpII9RLTemmIK2PR78duXovQuRrYXet/SFWG/6n9rv/Px7XB65Xs52UfXQXIr7nGa8xzrXkvYoVLhBrJK9nvVwHi13r/avvy/zOvP2D8vwFer2Yvr2ZRo+nngNQq51rjWj++y6e9Gni9Oqv0ahfi5eD10jzXyM5cnP/SuAhe3/xK8HrxFQiNB7/812zbvBlNc7B/55MEe7aDlbIInXabndt2EAVdck6WjJUlIeGGG3aTyzl89tOfZfv2bfh+gJ11yJeKxMSrNf8hmqqiGzaCmGp1BcfJ0Ww2sSwTTdMxTZN2u0Umk6HdbqZ9i0HKAmlIXC8EFAZHhhEkeG4PTddRVUkY+pimzvade8hkHbqdJlLXabXSHqSvfPErrF2zltHRERrNGrZt0Wp1iEMfgEIhT7fbwbZthFRJYvjWY9+i0wmxbchmCnQ7PgMDFTTdWi3lMpHS5Oz5c2SdDEGvg2FKdNMmChOkFPR6KSA3rFTEQ0qB7/mMj03ghh5TExOomkKonSSJYiy5mSiKIFHotT0+/4Wv0N9f5tyFGYIQyqUCtXoDJ5un2WyRc0pkHY0kiVE1C0VTUWo1km/vR/mv/45wchxTs9AMhSTRQUgyikulPEEcZ0gUEz900EVEEBq0DnyZ/tOfp6lvohpmQQYoQqG+0sQyTZIENm3czIsHD1EaKLK8OE8cg6ZnufHGXURRQJKAqmjousDz/JSl1wyGBwZIIkm340IC5VKJJEmIojRp8MIL+/F8F8vOpmq4SUKj2aDT8yiWynTbbTqdFr1Om2ajQa1epbq8wtq1G1EUlUMHnyEOXBynyKEjR7juup0oikKlMkCn28UyDZ59di9Dw8MIJHbWJkki5ufnkUKlXOxnbm6GQjHPhZkLFIplctkM2Uw5FRKSgiSKsW2b6elzGIaZMsaZDOVSH1HQRvGqaCN3MzyR4WsPPMbQQB/Hj51j45pJup6PXbSZnzmEreiY2QJeEKJrKpo+SN+AiaYn2FoBLJsoAT+MMO0MuUIR0xBo8XNAh3xpFyv1OpqiIPfOI4TEu3kQVaaJoSSOUVQVt5daaMQJKIpGvHqvsCwLGbokVhZtYBJN04iiEE3T6bWWyTgFogQ0RSeO0kBGiJgkTlhcWKLX6mBYVloSKdI+4LQvV2JbGSzLJgwDer0up05NMzw8RIyk3WymthqaShxGdHsdVmpVMk6OKIrpdds0G01Mw2RmZgbfC3EyBXRDRSgKuqbjZNNS5a7ngpAkM/MEvo8Y7qe6tIimm6iquvpQVfA8l1a7QzabQVUk3U6LME7QNJ1MJkOSxMRx2q+UJEnqb5tJy5L9wEeRChk7QxjESKFgWlZ6vpIYVVEIPBfDtIkTweLcPKZpokhBo1nHsrKwClqXl5fo6yvj+i0UmbK7W7Zuptmqceedd6IoGp4bMzk5jOM4l9gJAM/zWKmrWPYwu3bUSeIVNHMjdsbCNByCTovp6VNYpsnOnbvYtGEzuZl+7nBu5c47fpyvf30fv/qxX0cqMXHS5cL5C2zatBlVSXjpxRP89Wfu5aZbNhH5Po8//iCmXWbd5m3E0RJ79uxGUUwCH0RikHEUBDr7nnmGUmmMoYESE5MTqKrG8eMn6bRajI+v5eCLL/P6O1/Pz73rnRRKo4RdyS9+4KP8wgc+SPWzXyAKA6y3vI6V6nkqjsrPbv5XvLbvej4z/7c0oiY7h7cipSAKIZcro6gJqqKkIkm+j6Kq2LaDYajUGzWEgOpSi+HhCpmshWlbJHGClAqaqiEkmKZOt91B0Qx6rkvodjHMEufPzSIlCENhdGKEzRs3AQn12gpxAgOVQVQd/usnP8V123dQrJQJ/JCFhSVUNS3J1zVBt+fSbnVZml8g52TpdLsoapo8WVxYwnFyKUMfxyiKSrU6z8MPP8T1e3ZTKpeIY5WXjx1nfHwUO7PqTaxa/Jf/8kmuv+F6jndO8MjStzjcfYloNuD9a9/Hxwd/hXtW7uL9G9/Hm8d+nF25HRSiLBOFKUqlMr7vg8jgddr86Z/8CTfefCuvve2mVRs2SejFqAKiWKPn1ojiFmfPv8i/eMdbKfdnOD19lMpAGddr01zssv+JfTQWzqMHNbDz9PX1Y2VzeL6LlnQIhEF9aYGRwQpmocjObddRKudAFehmFiMOOXLyGfTmQSpHfoMF/TzlsQFqSw0unDvHd596luqcx47tCmqcJ5sHqVm4vo+ipT3BiiLpdH0WFhqMDI/QabfY/8JRdt0wgW2ZELv4QR1N1QmCCGKdXlsyV3UxMoLtOzZw5uQCnt/FtG0sxcfrNnm4bz/tdsCu09fzmlv30Gp4qIaCoZtomsbLx4/gB3Ns2TJMMR8iRBXNcCEogq6hGCWiqE3it0giD1VJCKMYVeokIqJQ7KPZaKOqEj9oITSDeldl69ZJSNIknqZrJEAUCiQeQXeZUjFHLzHB63H8xCkmN25F0TIoioaTyyAVCIKYsbE17H9qmoOHn+bcyQaVQp5cwSCiSxh3CXoullUiTnyyhe20vA6mVqbbrSPiNoI2ijBRVHmpJ9L3I8DE91Itg6GR9Tz95NPccufriMKAykA/feV+jh45hj3oU4km6fZqnOt+i0RzULKDrNt03aqoylWx948YvF7LT/Xyca3y139MD+z3m/fVP3t18HppGa59DJdjiB8EKK817WqhKam8UpU5iV+53z8seL1IqP2zBq9xEv725RR2ajVivMIO5uL79HX5iU57in60I3nVdV6rFFgIcYl51dfd9Ip5pUzLiK4+niu9VS/KUl+5D3L1R33RD+xqq5yLgRiARKR9ZqQXvVBk2vQtxKVGbCm+Z/wshEA88EQ670/eccWxXfR1NRLJF//iT3nfez5MlBgsf/qL5GaWYffmNLMtFfLZHK1WE1VIyqUKyyvnGRsdTEFsLHFdl8mpSRKStHE9Tuh1XWbOTFMslZFKlke//W2cTIZSXz+oKoZu0uu6CAUa9Rbnpi+Qc3IkYYxqmhgZi2atwWK1SamvQBC5ZCwzFclQJM1WFdvOoqoZkkTFc3tIkWBZNoHbxlBVVEVn53XX0z8wQBi4xHGCbdtouiSTcfjUX/wlu3ffQBhCz40wTQ0pBUePHeOuH3sDmqKg6wZDw4OrWX4Fv+fRbbURIiabzTJzdp5cPpdaLAiFRqOGoVvkszkUKVGFpF5dwdBN4jhmbmGetFluVaRAP50yT9EGTp+cplQqcXrmDLfffjOKhKk1Uzzz7H5UNWZ0bJSV+gr5goNuKEhFRTctavVlDEB58Gn45XcSvGYriqHSc6tY+RLNdouMFrLcWGH2Qo169QwxSxSKJfJWQvubv4k88wjB6OtxhtfT31/G7/rse/p5hkfGyDhZvvvdp8jmskxtWEOrVqWvPEA2m8OyFKIkwbIsOt0uiZDYmRKqoWPqJq1mEyEEzeYiff1FMlmb09NncL0eLxw4wJrJKc6fO8PmTRvwvHAVqGj4nR6N5SWGh4chkVimjpPJEMchxWKJrJNjfmGOfLlIq+Oi6RlOnjpFFAb0lUsUCkXanTaVgX5cz2Vqaj3tdqo8PD87TzabwzAtBkcGaTTOMzoyypkzZ9m4cZLQ95CGzb6n9jI+NoqZMalUylimRRSGjAynPsGKSFioLlMcnCQ5/SAvNhz6Khtwshb/+c/+nLf+3Nt54O/vY8fuDJq2nlZnhjiJMPODhEkTmQi0YoXFuSUmxuqoehVDnUOXc2TNKoYyh5pcIAgUDO0kkjYrTYdyKYuiSeRTi6lowq2lNIgJXYRiIoVOt9fBymhoGkglRooIRY3RNFD6BtEGxkkSQRgGJEmMooZY2SyKkmBoIGWEkCFSSXDdABJwMllMWyOT1VHUBEGIbevpOtUEIWMazTa2rqHrOuW+LJquIJKArGOg6qCqEqmBbpjYmRwgiCMfx7HJ5TMoiqDcV8DJ2yhahCITOm2PwO/gey4oMVLEWKaKlrfRB0voeYdiuYhhpP3UmmFCEmKZIlUh1SRSTZWcVQVUNcH3wvS+LVJ1WE0TZDImiYiQMkHXFeI4QNUkvV4TTTOIowRFDVBlTJKEaLoKxJAEZHMWfhCkrJyiohlKul5dIZd3gBhNUcnYNqommZtdot1ycbIZMjmVoaEiTs4CEYGM0VSBlBFhGK/a75go+hiG4UGyiJAumjKLalXZsrVMsc/nwtICqiURmo3fOkIud4rt21Vs+xwyOUvQO4euVunr1/npt/0r7nnzz/Kmn3gjpr6f5w88xFvfupZ8bg5VdpHRWXR9GVWdR9PHaKwsoQmBUAoINWLdugnyuRLNVptOt8vHPvgRfvHDH2BxYYF1E2v4wj98ife//yPkizq1RhPDNqnVFtn46/8Scc/dbNh0HR/52K+QKw3zmx/7ef7l236Buytv4uHqY5zuTiOlTtkqUa8u4hRyhGFM4Mdomobn9mg3lwkDn3KphG3pDAwNY1g2qmoQBj5xEq7aOxksLCyhaTqqqqCIVJhIN9JzPTtXJ0Gia+DYNl/6whdYu3YS2zZZqVbZc+I2hhbWsjJaZ83aCR765qMMDYwwOzNLFAUMD1dIEo16vYmuW/QPDSOF5OyZMxRyWQLPpVh28P0YTVPxgy5CaHRbLcZGpvjCF77ILbfcQMbWWbduHNtW6bVbqBL2PfUCO++6jq83v4Ebuvy4dhd/tvE/8Pa+e9hcvoGzLx1n65ZtPLPvGeYunCVrqTiFQbKOQxiFzM7N0Wss0Ww2ufN1b2BxbpFnn36Oj3zoV/jgBz7I3Pw5LEthYfY8D3/zcW664U5uvfV2Tp88gGNVOHroAoaqk0Q+f/j7f8i7P/ohpjavRYqQ2XNNKn0TNNuzSEUlwWDvd15gfGqY+do85VyFMGpg6JKDz5/k2WceY93ICGef/32i87fR37mDzHabp595ip07dzIwYGBrbfI5SasaUCwpaLpCp7mCTCyWFpvY9hBCjTENQbnsoOsJlq0xMdGPLlIxuDCxyOcG6Lg9EnQWlxtkcjaWodLqdNmwYQ+GZWDaNopqY1oWftDijdXbWHN4C4mQLM0vM7Z2ipePHEU3NKIwZHh4hOeffp6N64aIel1U1UCzTBICEq2M5RQQYYiIIzqtLsZqIi0Kuzzy2GkKOQ2BS8crM3thnkj0Mzy8nsNHzpEr2Ugp2bt3LyPDQ0g9xJIOhtEgSgzC0MPv1VCzQ5T7xlAVlenTJ8nYFkEQsLCwgG0bTJ84Qc+tYqoGW7YJSGxsqYGaoJkOYdxEkQ51N0HVS8ycP8H56aOUyxaB18HQJL7nIpWEbidG00ySxCVCxXLy+EmeythWdDVm5sIsfX0VOl0XRcSU8jaKXmOk/lbmKw8xP3OWSv8gbgzl0Y0kSXhFTB1fpeNyZax8VbR+DWXiix6kV4O7q8VLv0dKXSR0UqGl78XgP1z58OXbhiv7QS/HC1eC5CtBd5Ikl6zhxOrftY7z6u1e6/2rTXs1RjqJk0vtOin0+N45h4vAWa7u8yrCEFf+D+LSeby43D9v8LrKvKYZR+VSRuBaprzXYiXTaT9q8PqDx9VM6EXwqq298Yp54NXLhq/8AV3bU+ni53GcXAFUIZWyvoIRTq5ic/ne+qMoShnXy/pehRAkDzye7utlgk3J6vWrxnD/F77M6EQFxynx0299Nx9ZCGHDKHE5jxQKvh9y4NCLrF+7nlw+z1//zeeYmlpDsVhKgwBdZWRkGNOyMAwLKVSmp8/iZHPopk4QephmhmIxR6lUIPAD3G4PAWi6zoXz52n3fMxsnmK5D9PWUqbIjzhy+DDz84sMDQ2l/WyKwA16VOcX0DQNw8ogFIU4guXlKp7nEkYBxUIfiqpTq9d5+fhRwjjA7fXo6+9P+52iiCj0ueWWW0iShHqthqJIPvPpv2XHddsZGRnCMDV8N+ZTn/pLgjBicnKc+fklSqUCD3z1fvorA+RyeQzDYm5uhlK5QKfbQqyyNfNzc5RKOcLIJwyD1b4tSSaTJe/YRGFAFAaE8gRxEoM3Tl+xhFRk6g1XW6RUKuIFERs2bqa/XGSlupyWcEZh2kurKESrXpXGM0fw14+i/Nr7SEmxiGy2j9DzyJiS/c/tZXhqB7m8TbmYwbEc3NNPUv/ih9DMHEy+Hs0u0GyuIKXg2JGj3PiaG1NVQd9j86ZNZHJZVF1FEKDpJppmYJgWbc9LTdNVjcANWZhZwCnm8X2f6soSjUaNYqGAk8ul9gl9/dhWdlVES7Jhwzqmz05TKJQwLJNjR19m+tQ023dsR6oaDz38CNPTpxkcHMQwDdrtDnYmi2FaxFGEZZr091cYHBzENHWiKMILPBRVQdXS76O6vMKxIyewLYel5UX6K33YGYvlpSp/9/d/T+AnDFQqFMt5UHTm56poioKiQqtTT69pJ4dumLiuy5EjLzE+Nk6h1MfR46foy1s0Z14it/FuBgYGGB4eZt3aMqcOHcEqJGTyO3CskHbXZWhwjCDs4Th9CKHRn88RRTOoqkpCTK+X9ui5bg9FU5GigEyOIEUHzViHVEAgwZYka7OI4SxxHK9WLMQIBIZuoKrf66uJk/RhG4XRxXIf4jBlG1VVwTA0PM9F13RAEEWpemIcx6iKhkgiwtAlihM0Le3nC8No1fs0nS/0QzJWllptBUVRsbNmKrqmSISQJCJNtIEgjhWkTJdNnwtpMk9RVxN1QqaPdyGIIoGdsQijKFXj1FMRm7jbS7O/2VRkJ4pAVVPBHKIARJy2CFwMEqKUjYvimDgSqKpGGIWp8MtqEtD3/dVSULm67RhNtS8lJ6WMVu/lCp4XrPZxqUgpCMMYfZWp8T037Y28LNhRFIVuz6Xb7dLtxGRzBe69915uvfUmpJTMzM6Sy+VXE5KS2kqdTMamVq2ztLREEMVYVgZNafLkEy9RzOcwsw4JCtpfH8Q6soKycytDQyPkHA/DiNBUlZg0aJJCQTdNTCvPPW97L+vXroXIwzRmMEwLy/TQdZ2ILEJIet2IKBrjheencd0Ip2CTyZdS+40Dx/md//lDvO71t+Pkc7z1bT/NgRcPMrFmEs/zuPuuuzh98gRWNm2bGBoaolQsMzc3h6qp/MZv/AZSiXnuued5/3vfxez5BbaMbebW5GYUTePLy/fSiBtomobla4RBxOf/4R/YvHUzQpVYupl+1xEIoRDFEeGqf3UcR+mzSdMJ/JCsk0FVFaI4QAgV3/fxPBchBZ7roxsquq6SzRQwVR0nl8XOZnEKJfY89TpWDtSJ39zA80IiIeivVJgYH6PSV+Tpvd+lXB4gIcGy0+edpgmGR1LfaE016fTamKZNs1UnwV/16rb4zGf/hve//5f49neeotWs0t/fT7PdwrV9DjWOUBuscio4ycfL7+cj6jt5y/a7aa1UyRXLWE6ecsnCsk1GRkeZmBwlkzVRlCy+52MaJqZhMjJSwHFsslmLkdFBdu+6jXf8zLs4cuQYmzZtQUqNymARy7IwLR1wmRjbQBwp/NZv/TtuvGkPmzdtZePOzTj5fv78k3/Jra+9G9Uc5I1vfCt3vvZmls4vUJkYZHR8A4W+PEJRMaw+rKyOj4aiF9i1ewuLRz/FA/fv4/Y1v4W6UkaMxAwMDuMFs7z47CKKeoGJEQdTN7GsDAldOr7By0eXmVo7AVRxzCGiuImUqSc0xEgS4lCgSBdDSkIvQsg2gdfPSy/OURgQPPfMaTLOFCMT42hGwskTJwijiGzGZGVpniRcZs2GXZTKo2zbuZPnD+9nzw03c/DgQTZu3MCxl15keWkZ3+2yuDBHtjDE8ZPLDFYc9GyeZqeHQUi3U2V+ZpkoiND0BFUIBscqWGaESHReOjLPti0TfPepFzDtIvlSHzNnz5EvlNi4cQs930cjobWySODOYFtFkCFRCGNTO+m5EAYh/cODKJrCSnWFidE1dNs9ymWTlw6dZ+MWEyMZxA+6GGZALBNkBGEcI4SONCuYdh5JRK+9TClnoBLjdgPEKvO6suLSbLrYjsJj3z7G/JLL4rLLzt3bOXb4IEMDFZaXFlmcn2N0bJwTJ09xbPpFNmZfw7TYh52vc+zYcQZHpyiPb0w1Gi5jUK8Gr98PpF3LM/Vqpvbq/y/ev/3PGUQvKijbomsyuBfXH4bhD2UZc3nMf20LzCsKgV8x7YcByT/K8f0Y6KtJusv399VbGP87BK+Xn5DvZ3Oz+g74YYWP/tuNy7/ca5UNX+vCSEH5K9eVJNfOrFy+nVebfqkMOLmq5l1eWVoghLgU8F36MW9fD6/dfYXPa5KiYEyp8vg3H+GW21+L68Kdkcnwi6eIbt9N4PkErodhGpw5c4ZCzqHdbbNlyw7C0MPJpuqfC4tzqyXANt1uhzNnz2BbNqZpkMlmSJKIw4deolavMjQ8lJZ/kQq7JAKOvTjNhs2byRczEHWp1WpYRmoJMTo6nKoyxjG5QiHtffE9Wq02mq5jWxl6nS6HDh3hiSeeYOd1O9B1jaXFJbKOg2mZDI+MkMlmKTg2ipLKs4dRTBD4KIqKIlWazRa6bpAvFKlUyquMChi6weTkGsYnJlAUser1CBs3rAMBqqqxsDDP+fMXyOfzZGwbkhBVSrLZLImAWm0FEGQyWfTVigPfdy+VBobqKVRNJ25PrAbLEUImSBISmVpoREFIo1UnCHwM3WB5aQlNSVBFjExiTC+AJw7g/t5HUPr6EVKgKhG1Rhsl8chlLAYGKgShSrM+w9y5s2RrL9N9/D/i5tbDwDY0KwNE6KrGmdNnKRXLPL9/P0PDQ1Srp8g4NkkskTJlsuJEEAQhvu9fuualEKiqTl9/hVptCctIlapzWYeMY+N5fgpiABEnzM5eIJ93UDWDTCa1MclkHeZm51m3Zi1xEqHqJlGcMDk5Tj6f4/TpaYZHRml3Oji5PIau0ev1OH36FJZlo2ta6jNqmCiKQrW6giIVfM/HsiwKhdT71LQ1DENDU002bdvGmsn1nD19iv6BMudmFpi5MMfGDWt5+dhRQLJ27RTdbg/HyWFnLAaHBpmfmyeTzQEJseow5B3m2ycTtu56DcvLyxx8YS/dahc3qbJ56xvw2+eJRQ4VK7VayQ5zZmYWyzSYnwU7t41mNwtyhFgMM7sgsTLrELGFiJ5BkT08f4goTvA9gRzNEPebhIGkUWukNlBSoqopIyjQINHpdFw01cL3Ijodj/bCPDIMUK1Utdj3A1TFQFU12k2XMIAkvthfCKrUOHt2mnKpwNxMDUO3OX9ulmKhTBAkdDo9Zi7M4bs+pq6tshoqCA3XS8Hv0lIdgYZAIY5TBe00yBDMzc0jIiXN9KPQbvfodDyk1PG8kGazSdbJ0u32CII4tbWJBJ1nDhItNZCj44QxRGGCEGmg02038XoeUrMhFshEodv1kKuAxzRNAt/D7Xl4XkC77aKqFiQKYZiQJAphCFJqdDsddF3D9XqkGWmDMEyBspQ6rO6zaVoAtFotstkcrVYHXU/nJdFYnK/TbUe89NIJNmxYR19fiXXr1tJsdJAYCE2FRMFQLLq9kL/9uy8zMTJIp91lzZq12JYNikHiHSaOJlGUPdSCCM1YS/LAYc4cOsFL+TF+q/kJ7l1+grf0fZSZMy7vet+/5Q9+/wu8593/GjcaRrXHOXbkGXKOg2FCvQlGZjsnXvw0sxemaYdvJF/aQRj08aY3/BTlvj4OHDzCHXfcTiIUgqDJ2skp3vhjt7HS7lCoVDCtDCNjI6iaRhyGKAIe/Nr9fOX+B7nrrteRyzucPnWW8+fP8bnPfY43vOFOTMNk3fr1qNIm5wzz7DOH+T//45/x8Z/5GO8feh+u2+XrrYcIlICslmXT1Caq1WUylomhOySJxvPPH+LLX/oqN968ZzXxkRD4IXYmQ61aQ9cMup0ee596ipHRUZ54Yh/lYj/ZbAZFlThOgWIpR87JcebMBe6/7xvcesttJLFgabHKdedvJJ/LcWrzizz53Se59babkVLQajaZnj7NoRcPMz4xTn9/X6oqnbERQtBYfSYmgGmlntyaqhEnEbpmIREMVCrkyjk6eotoNGJv52kOB0eohXV6x3v8m92/zG+NfID1egVTU/AiydkzF5hcs5ZeGGLopNcqCrpusrC4SBiE7H/+WTZtXM+F82dR1YT5+QUcJ0eSwPJyi3/ziX/Du9/7c9SbNUzLpNZq0Gm7DA1WUESEoRf40Ic+xB/98e8zOzuDbqgMjgximhZ7rr+RKBTU61We2fccH/7Q+5gcn+Av/uqT3HzTHSSJS7vdRCQGe596nL5KgYGczdLp71A/9zRve9e/Jjm2hVq1ztneSXLFDBDw5GN7CfwGjiHIFCIgQpUZTp46iyTD5JSD7y8RxxEQ0+t1Ut/3ICaJdZZqC9hWgZ5XI4oFyAhFMZmZPY+VjTH1daw0Q6Y2D6FqCUOVYRAKbs/l+LFjTE2OEkkHqVoIIsbXrGH2wjx7rr8e13XJ5nI45hiN+hy7rx/m/LkqoZujVDTI961HqjZec54kbuJkDQp5E2RA5IeYWTv1hdVNSv0V2u0GU2s3MLF+E6WBAWZnZumvDDA7O0u5r0QYuDi2Qqczg2kO0Qna9Do+itHH8VMXqC4vUSgVOTM9Tc7J0+l4LCwss7C0TLFi8Ny+s6xZZ1LISkwzwQtUFBKQkm7bpzS4nkioqErC8uIMuhIiSdWcNU0njmKWq22cbI58Lo8iM7x0bJbxNcO8/PIB1q3dgh8ENBpNCoUiQibk8kUEKhiS9kAAACAASURBVGEjZq39Ws4ZX8VQFQwzw7bdtxBJ/co49yom9eo4+vJqzYsx7tViQRfnvTxWvtqSJ3xMJemIK9SGXzmuBHFX2FFeBni/H3a59rRXZ1Gvtez3A43AFfv3CusevgeoLz+vr6bFc+39l1es61qknJRXfm//XYDXa40fBF6/N/1HvVevHJf7HV29T0mSEC+fQRg2ysjWKz67fHy/C+8VPlevGD/4wpYX9+Uia32tC/Dq7eWzVwBX+B6PbQiFpQuzDI6v5+CBo2z8T59F7NpMVCjSqTXpNJtcOHeG7Tu20um06Rvo5zOf/RsW5meYnj7LmqkJpEyoVAaQauqB2N/fT0JMLpduU8iEUqkPVULGyTA/M0ur0cQwDQzbolFfplguIyII2x7ZrMHXH/hmqhhYyOJkFFRNI0lEKpSi6RT7imQshySIOPnycaRqcuedt9PtdCiVC9gZE0SyCrAipKLRqM3T7rRQFEm9XiObSUvRfD+kWCzzyMPfYmpqEssyiOME07ARMu2LzWYdnn3uOYaGKkSxTxS4qX2G18M0NTZu3AKJQJEKsddA0w1W6g00y6ZVa9LruriuS6vdTLP8ZpZqrU6+UMTjKFJoPPrAOQQJlUofrt8jUygTIQCJmkQIQ6NQLNLpuPT1DdL2PVTDxg1i1O8cJH7DzWg/dRNSzyIEJFEHFIjdJn67TeBLFASd9gXWDmapf+0TiLV3cvrlWUr9U8zMVFOLHwEDlSF6HZ8tW7eiqgq2XaTT9vn6A/czOlJBNzNomp7ahRCgCcmJ48dxnAyaodPqdOk1V4jDiNPHT7P/2f1MTI2RyToYRgpGNSVBVQRSlWi6ja5nsWwNzw8Ig4hatcbep59m0+Yt9Fcql66ZmZkZRkbHyBeKvPzycUQcsbi4yNZt2xBScPzYCTJ2FsvOEPip5VF1eYVOp0m308Tzu2RsBytjECcxqmrR6npIJE98+1ts37WdjFNidGSYZmMFz/XZtm03YeLz6U9/ll27dzMze4EojkiChIyTw3FSAO53G1RMl7ByA5VKhef2PknBKrPxujFyxfXMTD+FL8FQEqqN87TcgJGpbajiKIViRNvvJ/B8DMOm0+6RJJJcrkjkd/GCCFNbxvMKhFGAadjESZiqOKJiaiqCGNdzSUhLiFVVpV6rYWdSgTRVTRWwo31fw79wEnPjLhACuWr9oogETTMgkWkyQgHfDTD0DKVigTgKKBYHUBQFJ+cwNzdHxrExDZ1s1kJT0xJg1JQZ9YMwtYoixDYtNFVlpbqAqqmXEkm+71IqFwm8IPU0lun+SORq/6okk7EvWetIqRAEAaqqEV2YgwS0sXE6jTaGlV5bQoJlaBj6KrtLhB96GLZOFAYIkeB5PYRIUFcF1nQ9ZZ41TUPTtUtlYem9N+21AzANm4S0l1XTFNqdJkIkGKZ1qSVESAkx+H4PXVORIgXrx18+w+zsHEvLi2zeuoFWbRFVSrqej2KYHD/+EpNjIzz39D7GRyfYum0HiwtnKRTKPPTwI2zYsIGu34YY+svnSZy3UDRyyDiDsvcFCqUCztvu4iszn0cq8Na+dxB06gyMbON/+vhvcvzkS6hWhNRC8uoQ/9u//2PueP2bEIbJysoSW9Z2yWQzOOU78aWk12rwja/dy6/++sd5zS23kMtVaPWadNqziDBkoe0zMDFJIlUCPyAiwvd9nIzF3LnzrBkb4Wd//gO4Xps4ivndf/9/8DHP4p7cAPrrbuDtb387P/WWt9L2m5y9cI5773+Au+++i/GpMTKaRXisy6/u/hhn3DN8fvkrtGSbqeI4fqOLmTGRiuS+++7jPe99N4ZhUl1ZxjQter2AR775TfK5Mlk7R3W5xuZNW5CKRJU2lcog9331XrJZi0zGQVEES4tL9PcNcf2Ne2i2llDVGF2N2Xx6D3Ecc3hiP339DpaR2kZlszmQCntuvJEk9rBtC1XTURWDKIowDBPP99N+WhEjUImiGMMwqXd7PH7mUVrlNo/Uv4Wnd9iS3cz7Bt7Nv934CT5Y+UXef90vMq5tIAxCWg2focpmDCfP8MA49WYTxRLMXpgjX+jHD9LfWqnUz7kzx9i9ewe+1yWbMTl+/BR/93efZ3JiLf19A9i5HLfdfguqLuj5LVqdOoXCAH3Ffk6dPIXfa2Nncmzesp5Ot87OXVt5+OFvsGHjJoTvQRwhhKSUF7z+dbez0pzDC2LWjJfI2QUOHtjHQF+J5/cdZNd1WzA0l/qZfdROfgVNHcFVN8Fjo2SnJKPDgxA1WZieYdOGBmN9fWSshChWaTRANwKKeRVNmqhah71PnGZycgpBKgZHIkliiR/Bww+dYmrrBPd++Si5vEq5NA6yyfBwFl0UqXcDFmoNNu/YgBIPMH3qKH2VYbqdHo1qnb/a9iBP5w9xl3oH83MXyGRLnD19imKphGFafOfJvRw58jQijpkad8jlPAYGDBIkdmE9M3MzZPV5VMUiDDvoWoLnxahSEiUSXTGQMqEXVamtWMzM1ukfnkLL5hkZHUDXdfK5HLoiqNaX0FUfRXFRlWGkJRBIpNZHFKtMrRnDUBQqlQqGZWHYOZ54ai+37ZnkyIHTrJ2sMFLRyOgxgQdP7Zuhv1zEsBRAI1JzoBjMXjhHpVJG0kPTIoSmkQQdVC2kVMxj6AlBUCdXytN2azh2P0N940ys28DBQ4dx8gWGhoZpNJfo9SKEojFYyqN0MpzN38fc9Aks02L/gRfZedsbL8WuUq4msF+FtLkcNF2rl/UiSL1Wj+jV67uoNqzeFL5aeP0KZvRq55DLqx//cQTaPw24fL9tXK7YfHHeHxWzK6VyxXFfC7Ncvfg/Bbz+YH77/6PjWtmWV17EaQnZq+Czf8zWrnq9+rhW0/jlNfXGTT+DdsO/uOYyrzweeemV1olfFAWJLzs2uco+XJzve+NqVeFLpcUkCEWmvllpLeCll0iA+BplxNc6K6sMcccL2brnNVyYOcXumWXymSzJ2rW0ayt869GHcbJZhgZH+NYjj1EqlXj84Ud45zvezjt+9hcYHBii2UqVdxOZECU6qmZDGKMmIaHXJApCCBKqS/P0Dwxh6BYDQ2M02h6G6RAHMQcPHeWL//AF/LCHXrARusOb3/YWRqdGEYqCVAykahKjpf2wUbjaBS2RusnE+rVs37aOKOyiyJBuu7WanYIzZ86hKBIpYvK5EuW+CgiVYmkQRdH4gz/8z+x//kV6vS53vem15B0TTUstdRIJQZQQRDFIj93Xb6fdXkFVdAyriGlmyTmZ1C6EgKyloKoJmlWgWltBioTIDXG7KkmoEfkBoR9i6FniJKKvr48ojOjVS8h4BN0q8NC3HqPdbuLoJRbOncFWYhKhUK3VV79juWpJEqArKl67iVipIZZWSD7+IaI4R9heoFM7j2rksK0ixf4xrMIAwsrSmH2JJHFYfPTPObviU631mNyyja8//CCDw/0kccDK4jxnpl+mMlwANabRafLMs88gFYXrdt3EyZPz1JZXSGKPnlvD0A10zeD0yWm+8/hTEIOhq5TK/fhul0pfid17dhN0fVzfJRI6nU6PZqvNwNAY2Xw/iq7i+w1e2L8fXdFYWFhg3eaNvOmee5BKQHVhFikgiT12XLeb0OvwxGOPMDQwxKFDRzF0m0a9xfGXT7Bt1y56vosg4uFHHiKMY8rD/SSJxo4dO3GcfmYvnCP2XA7vf44kCXFsBVUX/ORP/yxfu++buLUFNC2mf6Cf3Xt202gsQ6LzP3z0Vzh+7Bhuu0un0SIi5rln9/HyscMIEXOhmyXffJ5WtcFidYE779zC2g0eQddncfko/eU1TK65Hjf2GRm/g3xlI4vTM5haiKq4BO0VPN9fNTCX9FcqnDh5EqwcdnYIgYJUVdxOB9/vIg40sI70SHwPxdDxQ4HrRtiWQyZTQCgqTrFAIiSmCmHocbHPXrCauY4jNCFIwgg/jHB9j4iYVqdL6MXESUKsRoQkhLFC12+CGqDoMDw6kvbYC5VEzWA6ZcxsERJB7Ie47dQTs1FvksQhQdBFClCUFOy0VgWaBALbsahWF4iDgPpiHREHqIpMS5dlGpz3el1EHGAYGsElpAiRCMiV84RBG1WN6XY7tJpdzp+dT/0K/RhF0wlDgyRR6HQ8QEVRDLqtFroqSBI/LZuUqULy/NwcAMvLyywvLhB4IZpqEiUpQEtBkk/GzqNKC+II3/WJwxhVEakatKIBOucuzCIUhc3bNjC5ZoKMZXNg/wHuu/8hCn1FJiZHUBWF08eOEcVw/a238eWv3kev0+Qb3/gOsYy58/Wvo1ZbRPqg6WNI4aKEZxnsG2N54RxSJCho/PHvfZLp0xfodXykrGPksvzB//W7LCyeY2JilEqhxP4n9vLkkw/zO//hY2hqnelTByjkHGKStFomClk5d5qcHfB3f/8ZbLuAZSXEcYtu9Twlu49Mvsz//olPkCULgYemgyYzWGaOnhewVGvxR3/2V8TCpd5oEMYBf/Anv4s6O4d7/CQHn3uGr37pC5w+8hKazLB5825+4YO/yB1330Gr1aAXRWjZArqw+LXx3+axnV/jJmMb/1C9l321Qzy9tJfjSwf46Ec+SjaXlo33FfPEfhcpIu5+449TKDgoaoxt63z1/vuRhJRKOoHf4J6770ZTbUzNgDggl89x4vRpnnt2L5lcP36kc+7cIn4QpMroiUq+WEYqFlEEvV4bRcTIJCKfz7G8vIhMYpq1ZbyuS9gLePD+B2m3XZLEoB21ealzmMeqj/P3y3+LVCx+qfJhvnv9o3xu9FP83obfZk9yPb/za78LScThw88wP3tk1SJnmKbbQwjBysos3VYdPbEYGdzCs999jurcs+SdLsQWpmMTJiG1+koqbtiTvHj4ZQaH+uj2arihRzZrkwQerVqHgYEJujWX++79Ej23zXt/4cOols76TdsZHtzMe975EW57zd0cOXCc2kqb+dk5HnzgS1w4f57ykEP/4Ahfv/+raM46fuZdP4+tDvJH/+lv2LrrBv7gTz5DdbGKTRVPHaU48Xoe+9rDWO0cK2GdrtfGyuo89MjT2NkBsiULzUif9V996AioBcI4x+ziHJrRz5qNQ4TECNVA1Uxi4SHVEE3zeec7diH9OhOTeWzDJggaSJGgazZh4LOytEQYRHzn8WdotxaQ0sDvNum0atxx1z3MWEvsX9nPzNw8gyPjqMSsWz+O0GIOHjzAlqkKb75zDT92+xgi8THNClLm0MwcURJTcBxUY5Aw6mHbWXpugmro9MKIL33pCCEGra6L6qk8/uQR6i0F27FTdWS3RRJ2ULSEbhSga0WIVog8FyGrRI3zhJ6gWa1RyBkstzrsf+El6tUa1YUZ4qjDT7z5x3j08QNUVzrMzMzi5GxiTQcz4eYbtqDpEhF7hF4Xt9NF13TcTocLZ84gCVASDxF0iEVCgs7J6ROEcYhhjUHSYs3ABHHcYrHeotOusXXLJg4fOkC+kEVPdMZHR8iXCjy2/wmcZIjnD51l266NLC68yMtPP4cWBShCgKIQiehSvEqcEIdRqi5/FRt7OZC8HFRdjGsvj78vZwovzpMylFfG0a+GOy5nei9nLy+C5Mv35wc5i/ww49XWc61juXxc3np4+Tm5/P9rjWslCq5efxgHxEQkIkYokCQRSZJWOqSnJiYRkkTINLMtX2ml88OMfxbM63/78U9Hvtei8F+9DvzKxvFrNZJfvdjVF+kPs53LP7vU/H3Z+i4fl/yi/uYBOHQcsWPDFeswE8Hexx4l9loUOwr9/+ufUn3NNrRSBjtfwLJs4jhhZnaWnTuuo1qv09ffR6mUp16vMj4yjGVqGLrB3OwiVtZhaXmJkyeOY5gGdsbh+MmTZGwb08rypXvvZ9vWLTz3/H6QEi/0KZSKXLdzO1u3bUXXDO5/4OsMDw6jSIVHH3mEDes3Evg9/vCP/xRFVRkbHUHTVNpdF1VRqFaXsG2DpZUzxEnacO7kbKIoJgxCBKm6ahAFmJrC4uJ82kNlWNSbNe6840463dTTz7JtVEXjm998GFXTyOcdms06+VyROA7w3JB6rYvj2ARhh0cfeZS1U5vpdjp87WtfY8OGTRw/cZJyoZCqtKo6tplN/SUFlMtFCsUSzXZ3VclUEPg+fjeH186gSMnAQIWBoSGEopIv5em0O0SxyqPfeAgnn6fRXMAPWmiqwWPfeYLrdu4k6nRIFmvI97yBsxcucP7MKYaGRoiQEHvMnz+NIkJMW2elOYOZeMiDf01u4xsx82UO/t/svXe4XOd95/d5T2/T79w7tzd0gARIEGxih0j1ZlnVki05kizHku31OnHstTaxY69rNl7nib3Os/Zabiq2JTctSZOUxA6QABuITpSL29v0cvrJH+eCBEGAkpN1nmd38z7PPLgz8847ZzDnvPMr3/Lcy9x66+3ouka1uoIspRxEwzLxAx/LNNAUk6NHjzA9PcnC4hyBF+F6HsVSGUmouN0ufeUyO3fuZObCzKt2LQ8/9DDXXXc9j3z7u0xv3cbRFw5SKRVRNB2328X1PAzLfPV8rtWqOI7N+MQYQhIcOvAMlqFRKJbIFXKohoxETLu5jmUZVCoD2HaWwaEKpmm+akvS67TQVJkwDLFMC8cy6TS71JrrDFQGCYIQQzdwPZ9SX4WjR06iqSqmrbJj23aSMFWGloTEiZMnGRoZodWoEXoemqLi9ly2bN6Kk7UZ6B9AU3U6nR5hLFDCJn/65S/z9o//NKdOnseUBIdfOMKuPfsIui3sQhkv6ILIYdoWGSuDoswDCTMXAgaHR1+9doMgYHBwkHazhsIqingFISp0uz2cTAb5T08jzjRJ3jKY8ko3uKqaphGkWFVkkUDgsb66RIJAVjX8M0cQkoS5ZTeLC3Nksw6SpBDFEZ6X2sQYhkGtWsexU2hxEESEfoxlZVlaWsQ0LJJkIyF+9Uc+gSQiCNMinaqqqKqa8nZlhWqtSbE0gCJLNJpNisVi6jfbbiNpKpmMjURMEvqohoUfpHYjCIEiCTRNTblJsowsq+gTI8gjgymPF1IooWEhSQoSMDDQjx9G9HopQiJJJObnLqBpGoqioKrqBvTb3khILbrdHoqi4Dip1VAcReRymVRjTZI3CpBpBzhVPm0TJxHSBge92+1iWxaLC/Pk83k0XcOyHQI/JAg8CvkSR44c4fixY3zyhz/M7PwMfeU+ZmfmmJud5ZprriUMYqamN9Got7jllpsolgokiSCbsdENjQSJOA6RmeFH/rv/C023UZ85ipA0fvIvv8WOzw0hyTEfGL6bTrfDhz/8SRRVZWl5gfHJCaY3TWNmciwtn6FRr/Gr//rf8uEPvo9u6zEUGaJwF//x97/KPfvzGFYboY/jRTqnXznOw/94gJvfchstv87e62/EcIr4UZvG6hyO04csweOPP8Yf/+FX0JQMw4NFJkbHkBGEnkf8nx7HMAy0D96LrGmUByt842tfZeu2ftxOi1PH5qlUBvipL/xLyqVBhoYqGI6HIRTePfJeJs5s5Y++/BVue+vNPN09zNHeUZb9RbpJl5KZo7pSJZMt8tDD32J0dBQhVFaW15kYn8YwLb76la+xuLjIgQMHuP3OO2jUGrz40mFGx8cpFvsZHx0hjmOeeOJxNE3lzvbbEMDPP/WzXL/3WqIwSqG0WY1Xemc45p/kpfZR2qLHye5ZznTPcyGYZSa4AENwIbrAS+0jHKgfZEgfZG92N78y9ot8MP9+hqQyiRdRLBWRhEYQ+Lzt7fvRjRhEyMjwGJZtkc1laTZb+JFL1nbIZQsEMRhael1MTlV4+dhL9PeNslpdIp9Nfzvm5+epDI1y9/67GBgcwDB1YknCc9sszl9gcGiIBInf/PVf46/+6uv84A9+mFtuvhshy5Co/B//7t/xW7/1KzgZnVI5tWr75jf/jg+8/4NUa2uEQYyuW1iGjZW1ufXGW5iYmGBycpKTJ47ysY98hFzWp7tyjm/9w3Psvu2DbJHvRF6wWFFmUPU2D/79C+SKVYbK/QReL90zlNTeyFS6ZDImlYEykvDRNRlZCMLYR1UhSQLCMMY0JAI/wHYMRscHUBQvFcfyUh6jpkskGKytR9xx11sxDYlioUCz2SCbzbG+tsYDzkNYtsWnsj9CGETMzc9TGSwThCFDlREOHXiatbU1iv2pXZRIJEzHQzWGkLQ8xAF+e5kw7CGSVBcgThL8IGTrlmEMUyZJfCQhM7ltO5m8jarraGoB08rgBzHVtTXCwMM2YiLvAiIJiWMVkXR4/qU5EA4TU5OoioSQZQrFPJIko2gW7ZbL+NAgjq2wOHeK4YEs4CFJIZKQQeqiKhqGZqFlKpiZIvlclqMvH6FcsDB0iJIEzTDwPJ+hoSGCIOSlQ3MUijGFosnMwjKnTyVcf9MuGo0Wmq5x5sxpRBzzxFNPsbyyyp69uyi5w5xOXmS1foaJyTHWV122XrcX3bJTVA6vxa6yLL+WoEpXRmJe3mW8eP9iIncpXPhy2Gz0zOs7r1fuUn7/ecL3RlC+7hN87xlXiduvJGB1tU71m633vR6/dCSXz7skb34VlSpe84tNkgRFlv/bhA1fbVytsnDp+H6+yEsJyOnc710xeTPs+eWVoNfmvjbncgz+93qfS9e9vFV/eQXqDa/jjRf05fP5va/BhaXXWeUYikpreY3f/rVf5SNv3U/mZ36HF3FxrtmMqipEQsYwTA49c4gtmzfzd//w92zfuZ1iqUSz2SCOPCzHQsQJcRSzuLRGsa8PiZiR4QqGaSLJKgMDA9QbdXL5Ijuv2UPg92g0Wmzbtp1CX4kwDkiiVCQkjgWVyhCObaOpClNTU+kmJyRyuQLjk+NoikK9VsUybSSRIImEOIqw7RyO3cfaaoNCoUwc9ajXG/SX+1E34ICKpGCYOr12l8cfexw7k8FxTAYqfSkENJa4//6HMEyHgYEyJCH5fB6RyHh+lyhMaNR75PImUexx7bXXEQcyWUdj+84dhAkcffkYwyMFEiCMAlrtBkHcQZJDwAc5RjMVdMVAkKBIgnzBwVA1NF1icWmNwaFRFB1kIdPrdmk0XJbn5rlm901EYcDIyBidZsjIaCW1lVmponVc9I++BSufZ2hgEEXRUHULTUso5rN0Oy1czydTKpA8+2Uk2UbOjSEbDp1Gh5deeoGJ8RHWq6sMDQ9jWhZHjx6lVCgiSDtnvu8xMjqIogrOnp1hfGIC23ZwPQ+316GvrwQi4ZVXTjMyOoKmqwhJodjXTxgGDAyNUMoZnD9zljPnzqMoqXBWNpfd8F3UgJh8oYAQgjAK2TQ5xdLKPLl8gThOiEVEFAUYqk4+nycmRlYMfN9FUWRm5y7Q39+fBjiBz9DQMKqm0W52OHniJJIUUSiWmJtbYmZmhk2btqAbJqVCCVVX0U2NVrNNtxvQ67RZW11naGgITdeQLQ0z46BZBk4+R9d3uXD+PKdOnUaWFdZWqxw6/Dzl/kHu2VPigeMh/aPX8qmP/iB33H4rg+PTeN0OTq6EG/sUCqPMzc8hkhhdX0ZWFDRtDGSNMAxxHCcV9ul2qa4tMdh3Ckkssrwi01ceIvB81GfWAAhu7EPZMBa8yFtZX1vDskxEEhO4PTqdDrliH5KqEZw5Agikie14vW5a4AlDNE3bgOYqCAGmlUFWZCQRo0ipWqeuG9i2iR94xHGEaWgpZ1ZRcHtd2q0mjpNBVmWa7SamriOU1A/ZsjOARJyEG+JS6et0PRVZ6rZTJfp2q4miW4RRSKvVwjQ01leXsW0boaTHSBIT+h6yLJEkMZKUegz7/obtT6eFrioIRUPTVCSRoMgauXw2tcUSKb88l8vS7naxLAdJSKhKmoAahkHPddNES5UBCUVRgVSgSZZTYSBdV0lIVXAlKUHVZLrdHrZl43o9XK+LYVhIQkFRBfVagwMHDrBt6zaeePJp9u29hXo19bIu95do1OtkHBtN1bj/wYcYGRpCM1U0zcJzuxv+1h00rYQiHSVK6jR7FvmXZ5FliY//4a/xa9/+dQYGBnh38d0oUh476/DM4QPceNNNhFHMocPPs3nrFurVVUq5AYbKkwyNljHUoyRAq7OZb3z177huXxFFk5G1ceJEY6C/iKFkGJ8YZ2buFYYGB/mDP/gz9u67jsBt4lg5Oq0m4xMTvPXed/D0wUP88Cc+Rq22jixLqSflw8+m1/Lbb0c1TRRdx1ZlJNWjv3+A/tI4qpJwy4138uU//hMmJipUSqN8+tM/wXt/4IOUSxl+6C3v4s78+/iprT/O3swm+uUyJ9pn+Pu1B4gtON06izxksCTWmfEvcM49TTtb40z3AkvKErnJPKN7R5nz5znTOovSr4IkaEVtmlGTuldnenKa8ZExNp+4hoSE89efpO7UeSU4y4K8zGPtJ/FXPN41dB+fGf0RxpRRrnGu4fwjM3zslo+yx97OLn0r3Rd7vFN9B/tX7+aLu7/AHX03Y6KSzzsIkVqClfsG8LyATMYiwWV1dZVCocDBg4cZqAzS87pkcg6aphD7MQ888DCl/hKd+hKVoXH82MN2TBzNoheGlAql1CpIyJSHBsnlc7Q7bdbWayRSwtzsDNMTE1SrLQwrQxKGfP7zP0Y+XyRjl/jiT3+Re++9j3v370dVBe1OA9fzOX9+htHRMSoDQ7i+R22tjiwUfv4XvsTJ48/xtne8i+uuu4Fur8U9d95MIaexvHSCnOJx/4MH2XrT3cx8vYWhGtTieSpDGc4cX2PbNpWc5WDoOlESIIsQ29KwNAjjHiQJYdDlomWXptj4fohpOgSBReB7qJpFFCnEcQdZCjANE5EoJHGMEAGapnPo8CsMDE6gGAlJHJFxshiGSRSFPJz7NmEY8E73nRiWxbmZCyn1KUmQhcLhQ4cYGCjyyIOn2bGtH1nuEboaej4HskrkNyBYR5IUTF2l220jKwqmaaCrGmHYIwhDao2Qx588z8233gpoY12Q5QAAIABJREFUGKbGE089y8DAAEkUUirmaVdXkOMWYSjIZgbxe3WGJ7YzPL6dmdkLNOo1ur0e2XwOWdVQhMLy4hK9XoulhQtcu2OavpzEykojLaArcmrtFSd0Wm28WCMk5beqUkTOUSD2UFR1QwQywvcDAPrLBoqQCV2bXJ/B8ZNnkVVBLp+jXq9z5x2302w3uOnmm5mfX6Cvr4+yNAhlOLr2EPlcSLcxz6HDR3nLHfcQaw4ieWMSKkkS0QaX80px8+tiWl7jvV4NLnxxXIQNa7e8EYX4Wn5x5TX/qeONMf/3n7z+U6DJb5ZbXJ5cX54PXJrsX/r8FYsHvDG3QLw+z5Cl/z95veL4Xsnf97HCZXO/d/IaX+UCch/+PcKzzyJP3vDqF/cacfr1laCL4+LfVyKAX95xvRIc4NJx+bqp+vAbO7dvOP6vPQjL6xBG8OIpePEUyaFjzP7Dw9w7ug3nd79OoOkcdVQmJydQZIMk8Om2mlT6y2RyDtftu57Y7ZDJl3j44UcpFPoJkohOqwkIhifHkeOEXrdBFHQJg4AYga7oRIG3ARUUGDKYpoltm7TaTXRdxu246IZBFEeYloGmyDQadebmZhgc7Ke61mJ68zSGqSMJWF9b4z/80R+xZ89OLNPmmYOHef75E0xtGqRUtun1XHRNwTRNVteq1KpVLMtAKEYadCoKI0NjfPuh73D9nmuJwh6h5yOQOPzcy2zftoPR4SGyWZ3AE3z5y3/KNddsxTR1yuU+FEUmDGJUReXc+TNYqkCoCpKqMD42jmlnSRKd3/v9/8jw8CTlcgHfD8nnSiiagaLpECWIJMbzu3TdRRRDZW5ugev37CNJQFU9WrVW+uOpGhw7eoRr9myjVOzD7foIQmxDI0kk5KUqwUQF9Z59oMpkrSyqYtLudfFCCVlWaLV9cqUhwmZA+ORv4pe3kM1lCRKDkZF+JsdG6LQaDI+MIsk6hw8/T1+pn2w2jyyrhJHLps3T1Ot1RkZGKPcVmJk5TzbroGoS58+e4/Tp09i2zfbt24iSCEREuVLh9CunGegvcuLoUaa27yCSTKbGRpEVjf5KP7KaQuvjKMFzA3TdIIwiJFkGAdm8TavRJpfJEocuQs3QrPd45tDz5Et9WKbFyZMn6evro1Qq0vNTVcHFxSX8KEbRDTzfY8fW7TQba1TKAxT6yyRJwulTJxmfGIXE5emnDvDww08yWBkkX3CwbBPLMtA1hXp1DUvPsLK0jEyCo2vUVpeZnV3m3nvfSqGQp1jMUewrY+XyOI0j9O9+BwPbb+YTP3AX588cZ3zTDhShoFsmZj5PtyfTV8qhqRpxfIEkjmh3s3hBep1ftBOzbZtssQ8lfAiJNqq1jThRUoucp5dTCO4tA5w7d5Z8rkAQBKyvrzEyNES35yJkBSEU8sUSYZLyRv1XXiSKIuytNyCL1H83CCKiJOJSpoHn+yiyoFFfJU4S7GwOgQ8iQpJScS6vm75W0wyiIKTVaJEv5un5Lo5tIzb2KUFMGLr4fgdN1QmjCFVLCxiNeh38kCRRkFUDK5NNuwCahqZpyJKEYxmpb6OkIglB4LuYhk4UhsRxhKaqqTKwpqfF4WgDXhwrkMTMzp4lY2Xo9LqvBkuSJJFICW4vwDIdfNdDiBjdMFlaXiafyyFLEq7bRVV1Go0mmq4SxwFCAiEJ4iT1Ng4CH0lKmJubpVAoIQkJw1CJiXF7AZqacukd22HXzh1s376J48dPcfTlI9ywdw9h0KbYV6K/XCAJPWqNBpKs8vijj7N91zY8N0AWIKkakqRQW29y4UJA1pphsPQiPKnQ7vg0runniHUWRMy7+vcTxj6aYTIxOUEQpPZA5XKF1toyH3jvZ3jHuz7A7pu3cGFhjt/+7T/hrnt+DNUpc8ud1zM8KKMqBn6vD1Pz+Fc/94vs2DaE7zYYG5nizPGj/OZv/AEf/+SnsHNZLNlA1zU0PUGocNe9tyPJOoZjIlQJL+py9t/+Casrq8zvmuIb3/gmGSfD1u2baXdlNCuPagkIe4hE5Rf+p3/Fj37mQ3j1E2zbtpWBoQnWl1fYMjWOJCm43RClG3D7wLv5jff9Fo/9/Le4VtnKPcV7ecfgbUzXJyierfD+0fezO97BU//+KT71oR+mfrLKbZveQqZncU1xD0KOmPcX6CY92lGLqlflocbDPNd5gdHlKWblC/z55JfJKzlu1Pdya3IT/2bL/8znNn2afdk9nH7qLEvPzvO+PW/nvbvfyo7iPnYZ41Q6efZPv52bN93K/X/7ANNTm8mXHby4g6HmCcOESqVCu91G03Ra7TqapmKZBVQ5x8j4cCoeKCK6vdTjWpcNLNNheHyQsNvCdoYJEXRaDXqtLrJuUa/VKRX7eM+738O973wbhqkTRgm244CQadZbdJo9PvyhH+HWt9zLJz76CT772c+QzWb43Oc+y7/+5Z9nbGyEv/zaX1MZGKLX86lUUg9iRZGQlZhMroRjZPi93/19funf/DpjwwUGhkZotFx+5Ze+xDe/9ufcdPMUqiyzPvcSRr7D1PR2Bp+7DXU4ZHjzAGvLHSxnneVzLYaGFJIIXLeLrkpotornRWiGhqqZRHGMphsISYPERVJT//eDB44xPjmG0H1iJOIgQMHC9VwgIIoCZEnHMCXKgyWeOXSKXbt3o6qCl48co9FoYtsWjxS+Q6vV5G2t+9ANk75Khdp6HctIFasPHHySG/dU2Ld3BJkYRdZIiJDUHF0vtXdbmj2P13PRVAlESIKMaWrEYUzguziZMgcOnkI2bYIwYaC8iUPPP8WePTvJODayovDSkaPIUY8kaWA6GfwYkrhKlMSg5MgUSjiZHP2lIkEQcujQsxQyNuVCFtXu5+CTL+K6swz2l0iSFH2mGwlREBMLGcfQMbNlEsUijCSyTkzoN0kijyAICMMAVVURG0gS5BBZyEgoxKIJXomENrqqUakMsbpeY2R0EN8LGB+fIExi6Mg0T8U8VvsmlT4bSwiK+RJYOQYmd6II8TrO66sJ0vfVkHotjr5S3HsxKbt4PzyoAiDfGFxxjTdb85863sDVTf7pnderPfb9Pn8lJOel46KbyRWT9De/e/HNX7/ef93Ja/i/vJF7+uZc1Ku1yy/vMl463vyku7qv65XGlda5aJWjTO27wnFd/E4vvsdrCelF7L18mUnwlSokVxONenXOqz5NG9YHV5Hqft0av/sXafJabcKpGTg1g//yCcTps+SqbVqGydNRg2v27CCXd1LBFKGzsrrGuZkZ2u0WgwMDBF5AtbrODTft5uSpcyixz/D4CE4ux9rCKo1Gg2zORlI0svk+/KCNrKgomoZhWKxXqyiqQ71Z50+//HVu2ncrSexiZ3OpsqnXRVNiHrj/AbZs25rCeVar+ImL7chEfsjczBIkIddcs4dSfz+12jrlvjw7d+1AkxIaq8sUchZ+pIFQ+db9D3LulTM01qtMjlaIAVXV6bU6CEkwMFAkCiVq1TZOxmT3nu04eZso8VP4s20zOzvP9btvoFZdR9Es6vU6lm2BFFMeyBNECYqs0Go26XY6RGhomsye3bv4u7/9B7ZfcwPZvEHgdwk9Qb2xgCZColCwtlbHGXqZUJqlnL8t7VRZOq22j+vKPPXE04yPFNmz9xZqSx1q9RUOH36RKIa1eofyQBmxtIZcyiHtvw0p8riw0kTSMhiyimRIeL6PaZvEoUd87G+IO8vYwztptt1UQdWtgSrjR6kh/LnTZ5AlmZGhYWrVGrqu4xg23W6LWrO+IVBkpwFwq0MchoxNTzAyOIRIIjRNRUhJCm+MY7KZDAmCvlIGEclcOHseATh9xgafzEBICstrywyUckiqhhDgdxr4Xoym6eimxOrSDKYmoWoOmq4wMTHGK6dO0N9XSAXCMjlmzl1AljUKBZPq+jqqapLPW0RhjG6onD5zlkzGQUghQ4PDZLMFLNMhCn0kWeH6G64n4xjkHIvVtSqZbIGnDz7Hcy8eQ1ZsHnjwfrZunaK6VueRhx5j+85tdDtNjh89TbfbJpvLMjo2TtSro0sKSfZGGiuPEMs9xqeuY3H+KUyrHz1jo0kZWtUVFMNHV+tousnSQoZMKYcX+MRhwPryIpoQG9ygg6hyDyFPIkkxKMqGzytIbxnEsk00RSEOehhqiKwbKKogjgNm5+YwDQMZUGUZ95WXUpjdthuQFJUgitKOtyQQsgABQRBimgqQoBt22pUVgihJkBKZVrONamrMz85hbCSRiqxSLPYRhZDEErX1NUTkops2Qa+N22lh23lkzQQhsbCwmIqUaCpCNVhfr5LL2ShyAoFLzw1QFB1DV3D9EJIIEfWQVYGkqbiHjuItLKMPDxFEqbpoGPhpsUyVaXd7aLpKp9uhXB4EITEzc4FSXxFJjkGAiBJUTUVIabdflhSELKHJqdiV6/s4uWKajOoqsYhZX6gDMYoSoMgCPwgIwxQmHUURmp52oTXdIPBjbDtVXe+26rSa6+SyJqdPHOOWO+6gVMoiSxHICZlcgXanxzf/9gEmJjcze2GOe++7l16rx5NPfJdjJ86xtLDI2PAo7W4Vw84TRYN0ejJWtExdXefFVoOX7HMoqsU99gcw1RBZ1hFSh9raedxGhEaGtrfCps0TOLbB5OgW3OYqd9/7ESJtEFnWaXY9kugMSQJLSzq/87//Ov/i575EiEK7Bzfdcgef/9yP8Tv//g/4/I//BGrs4bo9VteWWViaJV/sh0ilur7MieMnGKoMo0gGzhMvMbcwx9RP/zC9XsC3H36UfXtuwFBtVGSqy2uEkk+nUecLX/w8bpQwMD5G/9Akf/h7f0xfoYznBeSzeeIwJGdX6HU73HPrbSwtnGPb4HVIXQN3pcVN269nMOMwXhhnyJ4g72fYpe5hsDHCrcVbUY6Xmf3uc/zcvT/JBwuf4FMTn+bt+Tt4u30fn8x/lP9+/NNM7xpn7y07+PHK5/nUyKe5NX8tTjPD8MA4yDK1RhVhlrjj7rcjd+dYb8+SsQfRDB3dMcgWHSQp4MabdmM5BpqRxVALhKFLGLeQFVBkk3xWRooFktgo5Joytibz+JOPMTE5SSRg5qUXCAKFoYlt+CKk3UsoFGwef/RRtm/bQy+WsKUujg1RAjuvvZ3J4XFqK1368n20m+uYps7LLx+jr2+Uj33ioxQKFnbe4Nq9N0MUcsO1g2zasRfP9xgY7kezdfw4QApcECa9ro+OCnKNRj1CUnWuv3mQjNpP05/jrfvvpbu+QKU8g1t/BdOYYXVtBj3MYNX2o58cpFaeQ1FVzi7N8PTjc9z+li30uj00U0PIoMpph1kzswR+CstXFB1FVXD9DiiCOA6JkwTTFJiZDCISGJKJH7lIqolm2AihbFhaRgRBwtx8i5mZDk5Wo9vyiSWN63duYXVxgW+XHsWybd7PB2i32yzOLzA4UuL08SUWFpdYr9cYHRknFjU0RSIJY+KkgepMoFoDBMEScq9Lu9klk9OI44QoDCAKUUgIgw6ImCgW7LjuVgYGh7GyJlY+h23kWK2uYtsmWcchDjxUpYplFIEWUTckkmxy5a3MnjuLbWfo+T6WbVEqFbGcHGdmZtGULp7f48K5efZcm8ewh4mjGKI2ru8SBD6Oo+MnOYTkoCshSRQgkgBEhBAyJG3C0E+RU3KOTtsgET6xVEeWHNrtBiOVCl2hcOTUUbJmkULWIWNbVNfXKZX7WF5eZ1SfoLF7nU3T+zh0+DsgdXnq4HH23/chVDUmTF6Dx0JqC5nao7FhzcHrunwAnueh6zpra2uvomcuj6cvRyDSEYj+BHny0gbSxdg7vV2OqEwP4Y3Crd9rCGQEUmpjd5XE9dIO6KXrvlns/2ZQ4KvlRZd/jksbblfqYqfH//pbcsVU7f998vpfrGDTf0sjDMPXmRlfOi4nS1+NoH3xuX9qNejVkzkBHBvuuP7V2+rUAGdLCtx6HatjA6xWU25nFEAUJPQ6PY6+fJRjR19m85ZphBSTkDA6Ns7x48fZvGmK/kol9UwMQzRd55F/fIjF+Xk0VU0DWtVgcXGRXq9HHMcb/Dafvr4CH/rwB1A1iV6vw+LcHPNzs6i6TrvncsMNN9BsNgHwA5+hyigkqQ/X4uI8lqPzyLcfIgg8dF1LoZEy+EFIoTTAQ995grX1BbrdOu957zu57+33AeBFMV3X4y++8lWEqlGuDLFebzC/tMIj332MMIZeL0SRVCzLolgqYmgGH/7I+zh95gj5YoF2q4osJbz4/PO4HY92vUcURSAk4kji7Jk5/uJP/oxmrYmqaOSLBbIZB5HIaKqJoqn0940QxAqxUEBoRFHKD5QliVKhQBxGZByHanWNm2+5hRjB+voq67VFxiYq3HHXrWzbvolrdu4kiSLi+WXE9AhR4BEncioiIjqEUQ2v2cRQVKrrTRqNLv6RP8c1KynXNvARAkI/QEQxjmUiJzGvnD7Ns88+y4kTJzbsRHyef+Ewum4wNTGN7wb4rs+D9z+AIknMz87y4nMvpF0lJ4Pn+6iqRrvWottJIamFYpFGq4uVzbBlx3YOv/ACcZh2oeSU0kguk6Veb9FqtvHcANPM0u2EzF5YRZIzlAamUM0BOp0miASBxPT0VoRQGKyM8J3vPMqjjz5BvpDD812mpyfp60ttj4LAJQxD3J7P6dPn6HY8nnrqAMeOHcN12ywvrzA+Pk7GtonjmNn5eQYrwywtLXHt7l28//3vplIp8dnP/iiOnaHV7uJksoxPTaDoOpObphifmmB+dpYXnnuWplQgPvs3zMyc4PipWQrFCkHYI5cp4vU61NeWOX/+HJaTJYoMhJCJ45hC2cZUM7id1NanPFDEymisrS5i6OrG3iCl/s8X9xUBQehjWjadTpcwTAhDkfK9hILnhoyNTqBrGrpuEATBq2qoUZTaBziOg+/7zJ6fQZMUIi/AMS0uisnJGyJGQegjyyqQ+siSSAwNj+AH6R6g6iq1Ro2e20sViZ08jtNHEKZVf0k1UsGHKEQmpr9UwO91CP2UOlAqlQiCkCiKCMIOubyNokobXRQJVTNAKAgUiCDpdBFd91UOaxgGxHGC53p0Ns49WZJwbGfjsyZs3boFQUKn0yVJwAt8fNcjDoO04KHrCCHQdZ1SqUQul0MQE0cBSQISMuVKAcNQkSWFIARNM1FkmTiKyWaz6LpOHKXCTqaV2uf4vs9qrU55YAihaPQPj3Di2FkeevC79JdH6e8bw/N6ZDIO73nvu8jmHO6+5w4QCYcOHWb//nu45567MEyVufkL2LZN/0AfK6srHDh4kvV911L62Bbefd95fn36Oj7W904cJ6bdjCCRWV9JuGXvB4kjjV/65X/Nz/6Pv8o9976X6/bdTNvrkR/oxynkUKUANWkxPrgV28qSxBJf/fP/xJd+8bdxMibT05MgQk6dPkG90eZXfumXicKQudkFDN2hMjDM7MwKtWqbJJFodxpcmD1HGHn03Da6rrJ37/WUy2Xuvms/zxw8TLPR49Czh/nD//DH3HnHW7HMHOUBGzsTUSz24bpp1+TGm/Zy6PABHn30O/hBB90Q9NwGlqUR4LBv333cddt7uPf297B5ch9+z6Zc2MFP/cQvc+rYGvncAF/4wheYmh7HtBTe9d47mZrchCLyZLIWiVRDVbLIwkGTciSeTiFbREokosAFqUe73WbTpimazSaKKlEsFtk0PYFueeimQs7Zyvp6gzgW6JpNu+ViZzIUCoUN/+aUi69pGqbhpJoBrsu5V84RhQnNZos4jmm1G7TbbW675Q4iX8KQMpRHNjG5ZRRFaWIJmXJfkUa7xS233YYb+LSadU6dXMD1ZJJYYu91uzl6/Dn6Bwo8+uijuL0IOTG49cY7eOLRxwjcDqoS8uEP/QAZR0M30r1FinooSUB9ZQ011vmFn/kS52bn8ZKE+x96mGv3XsfaaotcQeGGm7awvNgikzUIfBCqiWzZSOoAUqgTNiIkN6FXa6M/PkEjP0+13iBCYmp0jH3X7WRh/iyGJhNHHRRZICTQdJVmc33Dv1rHNA1c1yNJQBMWijAwFJOhygimJpMkHXy/gaooaIYgTjyEHKOpKpqqkxCydesg2SzU1tts2TbJ9h1bmF+YQygKiqJSq9ZoNRuYuszk+BAkgsnJQW6+8RrGhx3OnXwRhbRY7fohQrFIt5WYOEqIIp+R0TJJEqDIMqqqIJk6Hip+UuDlE11eOhYxf2GVTsOnWeuRMwsksUepUEAICdOwGBkZ3fAtDoA4hS4j8cLzL6CoCqZj4fW6JHEISSoQNz05QasVc+7sAp1uTBhpJCyh6x6KrpMvDGEaGaIowTRNDj//PPPzC/h+hJBUOu0etVoVSTgoUgaBRr3WYH7hFHGUoMpZZElh8+Yhjh55CaVT54YtU8ycPc/XvvF3BEhkshmSOKYyXcSJcmTzRf7kL75J/9gOBktFhN/k1NHniYT2apx6EZX4/cS3uq4ThmG6J18l0bs8hlb3h6j3BG86503j53+mcfn6lx9TFEX/WYSh/rk/x/+T8V9Y5zUd/9wnw3/OcSkEAa7ceb30vV9/Iqb/XtpdvdQf6UpVj0sfu7Slf+kxSOI1gvqVIA+XrwPAH/8txDFcs2njveHFZ5/muuv2UO0E5DNZtm/fgSSr/PVffYPJiUlOnzhNo15jcLCfwaF+VtdWQQgMw8J2dIqFVD6+Ua+jaRpOJsPua65hbXUZXTd48olnKBTzjIyOvGqpIkkS7VYH3ZBwHDvt8kgJtm6QzWboeS6W7aDKOp1uD8fJbNhr6MgyCEliZGQURYNdO3fT6XXJZjJISMRCIgwCTMumMjyGoSbYjoWmGXTabUp9JbKFEqoi2LVzJ6qRWiTESUA2k6fd6pLJZjh14jQP3H8/u3btoFDsQ5M15hfPMDJaQZENPK9HPpelUCiSsXPEEai6ShxJvHzkOOfOzvDhH/hAep6oChNT42iKRK/nsry4hCRL6EaGds9jeaXKzIVZhqdc4jhmbd4mn88RhgGSgFyhhK7rrFdXyGbyjI71U2+uEoYxumGgKHIq2nJunrXd4/QGcphOAVOHyK+zujqPIgw0VcU2LcTKEeJzj5BU9mBoqVqj6wVoqpImJ55Hu9Vk85bt1Gq1V7mvnXabTZsmOH7iFH2lMnOzC5w5dQpFlhgbHSGXzeFYDrpuoOoafhgghMA2HDzPT1WxBeSL5RTKQ0yxVGRlZZXBwSHcjeKGqqpomkGr2STjZHC9ENs2WFlNrVWEKpNIkAQ+kqQgyyqKqiEhI8sKIFhfr5Iv5AkjF01RkBUNRMzq6ir95TL95QpnTp+h03O5Ye8+picnmF+Yob8yzLGjR+n1OsRxTP9AhVMnXwEBlUo/iipjGBqe10WWZA4cOMi73/teQkIyjolhOSwuzTE+PMbQUJlQJCStRYSmkhveg0BibnkByQ3QbZs4dhkd3QqyjG4WOXb8eSy7jJWt4LZCiCKcrE2UBMwtzjI6WCHoPoGqhYTJJLKAGFAOrKabzVvKNJqdlMOkaZw5c57hkTF6bnodRVFqDaNrGiAIM31IlUm6UYLjOK/uU7lMBiEELx95mUK+kHJfSRMvXdfRVIX5+WVyGQdNU5FljSRJixZBGKBqMpIs0HSdZqOJbWU4euw0pf4Sumkiqzog4bvdNLEzdBRZplZdx3RyKLKClMpKAy5hBF3Xw9A1QKJWa5DNFUjihCSK8c7PIkkS8tgQ8gbtIo7T7r+qaciyTBCkFkGSJPB8j163i6YpaYdUNeh0u9iGTrtRJ5vNIW3wWkM/SAuPikycRERBiJxihYGAZruJZWfpdHw01SJOUg4wSbrHWpaFkCQCP0TZEK7K5AoISabT6dJqtZjeMs3evbvp9Nrops7y8sqG7ZKScmmTGBDks3na3RrZXIbx8RGKhRKu28G0LRRJY8eOLai6SrttoJnDxM1XqIQv8+SBBsXsNJ1gFtNw+Okv/gya0WPvTVP87v/5V/zoZz5N2qaOiCSZwD0C4TxaYtJud+n1jpPJZvnIR3+Wd79vP33FPEkU0VcoIgt4/vmX+fHPfY7DBw9w991poq3IOqOjU9z/4MNMTU3heW3Gx8fJZrMIIWjNLdIrZ1H2bENRNL71D/fzkQ99hFzeptVu8/GP/wiV4UH+5pt/xo5dW7DsPnRdR1EU8lmLTMaiv3+AczNnKBbzHD50mEzGJjuQRdUi3vPO9/BDH/sAZlbHdXusrVW5+eabeejhB3nh8MuEUZd/+bNfRNNVVC0hl8tQyA2hG1BtnMWwdIQUoBkxkuKiaQUUWbCyski5nMNzu6iqkfLzRIymC4Ss0O2tsnD2PHfu/zT7999BZbCPKApRFI31lSVqtRqlvn6ijXZGGLpomoksp4UXt93FMBxMK0On10RVJarVKrbpIKPQbrQZGpuk5zWori9hKBary3M02l2cfDEtPsYeslrCtDKsrK6jyRqTU8OsV1eQZUG5r8K9+9/BD338E+zZvQdZDpGlCFM3kTUZ12uTRCFSIpifnWNqfBPNWpfFuSXylTySbnL3/rv4yS9+noxtsVo7R2WoRD47DnEDzSyj6wI5qpLVBF71EL3mDKV8HuPsuxAXpjgtnmP33n0pDz50OXzwaSZHNfoKfQRxC1XRQIDruSiKQNnY61vtLrqhkyQQe10S/FTsVEogDvG8NopmoCo6Pa+DsqGuniQJYRCjqAJJCgnjhPGJG4jiBpplszh3Ad2waYgm09IUE2uj9PUV6HTaqIpFFHfQZMiZIaNDDqoUY+gGsmYQIeOGFtlskdrKPH15iSDqIskhvp/y8OMwIgkjNE1C1UxkNUcYe/hBwOBQBbfTolpfQ5ZVVEXlwvnz9Np1ctkAkWhESQ9VJCwstykPb2Ogvw8vDMhYZqrGTkJ1bZ1sJoOTy3Hg8W9z640TFPMS3VYEOIRJTJzEBJ6MokgsVV2279pHr9chn+vjqSceY2xkANOQiZKoCST0AAAgAElEQVQQyzTo9RrIiqB/II8qVM6dmcVxLCK6DA+X0OMeuhwzvnUXpcoY2YyF73ep1xqcOXeWij/G2Nv7aYRdmp06u8ezSMBKtcmOG+4k5vXx9eXdwxRGfOU4+3KK3eWx8FWRi1dJ5K4Ul19tvFkX9PuFCb8ZgvRKz18Nzvxmr/9ex/9mx/Da5Ks/ePGY/isXbPr/Jnn95xiXHu+bJa/fz+uv9vjV5ly8QF930r7JtXXV/9uN5FVcu/lV6fBudZmRiSli1cQxdIQm02y02L51G45tIaKAXD7LjTfdiOt6yIpCsVBgcXGFvr4csiSIkMjYFiQJkqJAkhAlIU42x9btu3AyNr7vpVAPTafTbiPLKkKKNjxRNYRINsQWFEzDpF5tARJf+/pfcv3e61hfW8Pr9ZDlmJ7rocg6iITFxVUqg0P0Oi5f+YuvousGL73wPH19JSzbInBdlpZWefbQc2zfsZ18PpduTHGA5/YQksSJYycplbKsrVU5d/Y8WzZPsWnLNHt27yLwA+JEcPzYiwwNDVGtNVA1E03XCKIYwzTpuu6GWmAawFcGBjAtA8sxsG2LtdUVLEsljHsokoZtmSi6hCRbGIZGEods2TxNpJyGJKGcuRHf91lbWyUIQmzHIRYSzWYVVVLRDJUw8slmy0Sx4NiRlxgarhAePUNy8zZyu7eQaAZus8rK/ALTU5uQLYe19VWKeZv2I7+ClB1Ezw8TBSDJGpadQdU0ms02pmlRq1VZXFhhaHiYIAhIkoR8ocCFmQtknCyaolGrrrJ95040XWFm9gL9lQqPPvId2t0O67UaA5UBSBKeePQJhkdHWF9bw3FsJEkmTkIkkXoAq5K2cT7GKJqCJCRQJEQSEQQBnZ7HN//2r7nrjtvJZW0kOabbbeGYNkEYIqsKXuATdF3Oz5xn0/QUo2Mj6IbF6VPHCPyQY8dOs2XrZpxMhsCPmDk/w+bNmxkdG+Xxxx6nXO7jsce+y+TkZlZWltm2eRNOJoNupPCtcn8fy8vLqJqGJqu4vR7Hj5/grrvvpFZfR5IlFhcXyDk5JBGzvLJK/0CZnueiOwWshe8wcffPcPCZZxibHqDslFLRlahNJLJcWFrFyRbIZMcRSpF6vUHGNMhm0g6wUBTy+T4WZ05Typ9Fln2CZAJpQ8hMPLWMAGbHXCqVQWq1dTLZLOX+Sgq1kyWiOEJVVOq1darVOs1mk77BESTdxMlkXrfHCJEQxRHDI6M0Gg0MM4VmqVoKH/Z8l4yTp9upp/6VkkqSQBiFKKqMJG2Ib8gKSwtz5HJZ8sUisojpdDpouo7f7aEZJrquEYYRvu+RLxaJE7GhPBmTxCGN2jqKaqWiLL5HFIY4mQz1ZhNDU1OkwcJKmngP9acdIzntEqf+sIIgjJBlhSSJieOUpxttWG2lfF4NWVHQVZnq6gqFYgk/SlAUiSgIcd2Ujy9QiIKIKArR9HSvkxUFWdYIo2QjSe0Sxwm6lopPyQL8ICAIww1lYhkQ+J6LZRo4mQySKkjiEMvUCcKIXK5AGMbEcbIhgpX67TZqTUbHKiiaTKvV5snHDrKwMM/g8BBPPPoM6+srFH2dgw8/ydS1u1heN6iUJbZP1zCc+9AsGVWVWV29QDarc+r0af6Hn/0SC/NnGegvQOITRWBxP5a2xsnTKvPzF5ic1BBC4VOf/hKSHNBo1mg26uQLOXzfY3RkjB/++Ie49cbryfdlqVZXyWazfOUrX+djP/Qx2p0ajp1BUTROnz6D5/qwaztDb7udKAqQpIR7772HOAyRVZ8dO7ZhW3kSKeaXv/S/cv7cIm+58zZ8L1WWbTXWmZwYR1ZUzp49j+v6nD17nt/8jf+NT37iB5m9cIZOO2R0ogJKQByHOHaehx9+kB/9zCf5x/sf4af+xWcpl0uEvsKDDzxC113n2t07mZ9foFgs0OrWEUioqkIc+0h/VPm/2XvvMDvO+u77M72dXravdlfSqhf3hmzTjCvGBUzHhISWEEpCgIS8ISQkEEILxS+dYGISCMbYBuOKu2XLRbasLq200vZyepk+8/xxJGNk2QZyPc+TXO/7u665zrWzM3PumXPPzP27f99C9JhG74V5xvaOY+gSsqQQxjFtp0W1WiaXyRMjszAxxYc+9gkGl+SRpJgo9hAlASGGVCrF5oe3YCZS+F6AJIU8/thTlMtVenoKuC2f11x6OW9569UomoSmK5i6hefa1GqLSAQEgcfH//KTfPEL3+SNb34DmaRGMpvHDmIalUUUIUC2EkiSwvX/+TP6+wYQRRHftxGP6E1cecXlGLrOli1bUBWZ+++/D9+NeHjLFjZsOIGuQi/7DoxRazQZWDJMy3bwQ59VK4dJZSxUGWK/yeHJMUZHRzuoo0hm196nyKSHaNX34VW2orkl5ic3E/o2M4+tpGv3H2Cc6mFkTHTDQJIEiDxGlgwiCVUmDldIpDQUScINYgRRQpXEDk9bVvA8H8PoiCtpqkAYRTheQIRMHPpEqIhiFknq6DzYdgtVkYjjjp6CIitEQYxuJZicatFs1+nqHaSYzeAHIWcnzuV05TQmp6YwDBPEjr9sLPmMH5hmbuYwuWyEKIh4noskK8SxRKawFEGQEPFo1w5Rq9eRZZE4FJFlEU3WiXwPSY7wIpiYKrFs5SpyPd1YCYsnH3+UkZGlxLGEKAooCqQsCyFeRBINwtgmdB1iJYOVWUIU+NRrNURRZvMjD9PX30cmk6PRbFEpl8kmRFYsSyNGLUQ5zx13PsrISB+6JrBz+2FSKQNBTWGmu7CbTYJQIHDaGJpAGLbRzM6EmyAEKKpG4IfYLZtUMoUsCySSFo5bQxQsDk7OsFizyWaLbHnkfnynxejoaqJYIqiEVPwan73205x2yhossYHfbrFnz15edvEbiCT5ORoxzx3UvvgY98UohNGcQNwSEBK/3Xj8xeK/mrz+Lt/z7OTy+SiC/1vjf1Py+v/Dhv8bxW8DQ3g+W5wX2vbZZsRH1z+fd+vzhmWAoT2zX6PRYKCvt2OpoRlASExIMmkxOztDvVbhnrtvp14vd9REDYtMpkilVuW22++g1WxSLi0gyp227d69Ez/0QRIp9nSDLBEJIiECqqpiWRZRHBGGIbpuIYkyi4uLncGZpGF7LrOzMzy+5THsRpt2y+Ed7/hDZElhYGAAz2vj+Q6JRIJ6o4UgqsiSyuJCBdNMc/lrXse6VWu54LzzSCZMWq067VbA8NByzjprE4IksrA4RxgE+G6bRq2EKkssG14CYYDvtDnnJWchixBGDrbdIIpCGk2b5cuXYBpp+nuXdSCGQccvMhRijIRBJIQ0Gm1qtRq1eolUWkdSoVov09vbRWVxlkRCQ1FETFOnVl9EEAXKpQV0Q8Zu1/A9F0EUmF+YIyZCVmTiOASxM1eRLxQwLYNGvYVlpYhCkTiUWbtuTQfmM1chceIKKpUSqmaQTaQYHR6lXY8JJAlBFqjt+CVReQxbHzjiUegTRyLNho0bQCRIxIJINl8gjmMWFxcpFosUCwW2P/00rhNQLPTQbDSw23XmF0t09/WybHQZnu+zdtVaTMNg5aqVeEFAabHMiaeehqKoOO02j21+mDgMEeKAhflpiHwOHBhHlhUUVWb3zp0cGDsAQoxp6mSOJD2vf8M7+MXNd7LlwceZOjiJKes8tXU7oijhujayIqDpGsPDS7j7nruAkFQyyxlnvITR5Ss5+eTTaDTabHtyO77vIysi6bSF7zu84hUv5aknn+Lss8/FtDrJ9cL8PNVqlYWFxQ6s3WnTbDbZv+8AO7fvwjRTrFu3lvnFGQpdadKJJEuXDOG7LqZhkM0V+OkNN5FK5Qm0btBTPH7DF1i/4WR6egrMTi/Qtutk0gl6erpYMjxEFHlEUUAcQcLKMjb2NF7QYPzQAWTJQFbSKGrH+oUYgjDqQFJdD/eDa5l9exddxTxRHJIrZKk3a8RAGHrYTov5+Rk836HVbtPX10t/fz+iKKIoyjO0hvHxcRqNBrEoEAKL1TLJbAZREHFdrwM1jgLiOEISYzRVwvfaEPsgCCiKShD4tG27M8MfBBTyGSQpRtEkJg+Nk0ok8BwHQ1VAlAmRUHQTM5kmjH89WSeKIq12i3SqiKZagIimaQhCjCDEpDMpYiLKC53E9Sh8WpY7SerBgwdxXRff79hVua5HHMfMz88hCqCqCn7gEUWdCQBN13Fsm8GBfuQjA98oinAch1QqhW3bEMsdLizgOi2aLRtBUADpiO9yjGVZJBIJms0mYRAe4drFJJNJXNftJNdEyKLAwtwcceATBhKSaNJshICObXt885vfplZr8KMf/YgoEiiVSyiKgm23OHR4nDCIUFWDc895OQISF15wMX29g6RumOHi8jJuvfUO7q3v5J6qgu9XKJfvQxeXoilZ9u/fiyLmOWXjJRw6uJWkBYRtZAKkIMJp2wiCxPDSdaxfcQqN6kqc1hmEnsWddz7O/OwM/X29VEqLVMslHnj4Xm6+5UZOP/98RjeczNBwD2MHdvOud/0RYWSjagJPPL6DB+5/lGJhgL7eEd75h+/DdWLmF2bRDYG777uNgZUj9C9fjayE/OT6HxHHPv9x3a34sYmVyXPpFZcxPT2NaWlMTh2mWCxy1pnnIqDx9qvfxWc/+wX2bD3IYPca5udcPvel7yDEOoaWJw4tNp31Kr759R/wz5/7R8488zQajQaNuoehFTjjzFNpu7NEIXi2ihDleeLRA5TmQ3zHekaQ8Rtf/1cW5trceecddPjOEqal02w2GF29jnyhl8e378dIBUhyhB+0kZWYwxNj6LqOLMusXbsWVVU588wz2blzJw89tIUVK9bgui6iKPNXf/XXzM7O4vs+0BkDlMuzdBUtBCqocZv3vfMjvOq8t2ITsTAzCaKApCgYlknK1Dg8PUa5usDZm85FEmQ0NU0ymSaVtsjmTGZmx/nMP/0duVyOL37hK7zi5Rfx5S9ew4rRVXz8rz+BbQusXHcSazaezNN7dpHtSbPplWcyPNhNPmUSejUOH9zJ2vVLEQWNODQRRI8Vq9cThzJBexrR3cv8/ntJqilqW9exdN/H0E+XiJMC1XqTKAzxnTbtto1p6UiKiqJkiGKDqYkZpqZmAQnH7kycS50SK81mkyAICUKZat1HUbOoWhFJ1RClDD+5/gFaToCAiqoY+H6AJAnEcYSAghCrEPscnthHPtuFKKq02g7Ndpunnt6G6wesWrOeVLrI9u172bVjN5puMLxsHZGQxAscBFFGiGMi30WKOlY4jt1mcX4RUYJCvhtZ0kkm04RhQNPzsSORmiNTs032jbvMztVJpruwnZgolEkkMqiqjiLLHXXnZvMI9ULED1wEYjTLQtM0LNNEFSVESeHMszYhKRoRImEEd/zyVxzYs5/xvXvBFwmlKue+4kQM08BtuaxZsxFNM8hkc4RBSDKVIpcrMjtXQkAkYVpEkYgk6AiCweJ8jTgUsSwDwxBQVIlWwyFhpJhaDHjsqTJbH9/O2K6n6M4myKQTTE5OoekmB6sHKBwcYsO6DUyOH+TA9ALJhM5gIcF3v/al446Lf5tx9IvFr0VUO+H9SMP7kfZfOub/jTg2ef2dx/3/jeN/ZPLa6VTHW37/OB5R+dfrXmx54eP+tjfS85XffxPa0FFVjWMIw1/Dgp/vho2iiCgInzFyJnqWitlxjn+88xcEAWHjClg5RHzkekwfnsAqDOBLJrFv49oNPKfjP2YlktTbba58w1sYWLKEmdnJjnJeEOC5Lle/9W1omkkyVSB0fRy7TXdXN3EYI0oCQSBQmi8zOb6P6sICRCJhEAEiZiJJ2ymhGyY9vX3ohnoEtmqxc+c4uXwvqqlgpU3sdguBiIWFGTL5IkGkEMUgyTGyqNJVNIg8myeffJR0wcTzGgiqQtP1Safy2H7M/Q8+2OHw+D6WmePQ4QlaTsxNv7iTA2P7QbQRRY1lK5aS67Ewk2lqlTrJVJ5kKkM2leDwRIlGo801X7sGu+nitzxkBMrzCwR+hO/DnXfeTjJpkkwl6enpp16tYBo6kuSSySQRMBEkCccPKWSX0G5USCYsElYKSdFRNR0QkBQd1wlJJTPEUYTdaiFGPoqo0mjVSGQyRKggB4iKQyjEaGYCgLqeort7CKc5R9NrEhkKSsZEERWyuon34FfxsuvQJQFTk8l25YikGNUQaTdqNOsNJiemiWOJgcGhZ4Sawiig1W4yunI523ZsJduV5+QzNtE/0IfvxfhuxIH9e+lZkqNSLbHtiW3cdcttFNNJHn7oHhBDlo8uI5lIMj15GFlSKRT7EGWNRqNGvdEkikX6ewdQgMWpecJAwHZ9RCJUqcUZL1lLJEYkkhm8wGH/+EFESUGTdZxyDVk3kDSDMzedjZVK4XkNHt68hX1jY8Q4KLLAiSedzNYnnqSY6+InP/4piqTy1JNPs27DRvKFLgjh5BNPIZnKU8gXOXxwjNmZGRJGgq58kVa9wsjSJUxOjKNpGopsYNsR9XYdUZNpOHUMK0WjUSOTLVKp1BBxmXV76G/9ikLG5dCOXaiDy5DUJHZsMlOaQhdFVFlDFW3kuIpdm6VY7EGUdPpHljE5cQi/ucjkwd2EQo4YCSFwWCjNoesSpi6TSWeQZI0gjIgjEbftQuhDLOG6AV3FDjd9aHg5SAr1VovyY3dSefR2nPoUCCGDQ0MkTRPPtZFEiVSio7I7NzOFKksIUkdhu91waNs2fiwiyAZBGLH1iUdw3Y5XsqmbEAk4LRcrmcduuwhhwPCyYQRETM2iXC0hxCHlxXk818FxHGZmZonDkNLCFIsLU2TTaWQjQUREtVKi1XKoVhr4XkgUhsQRFLv7O89RUQRiYgIcp83SZcO4noskCURRSOw7LM5Pk0omqFaaIEgYepJ0KoNIjOs6iLpJK5ZxIgHoDH4SqSSxGGGaGmFU6VheyQKg4Pkdr9k4DvE9B5GYOO5Y9lgJo9MeSe48630PSRYJiYjiuNN3daOj1izGxHjolkTbrtFs1jnrzE04doDddkDwSZoaXd1Zwihg2dAyfnHLHQwv7SbGRddMvvKlL7Bv724kUSKOfV71qvP5WfMJflDZjKispJjeyXev/WearTobT1jDF770adoth76eQX5+052M7Z/Fi0xOOuFEPNun1awjKSqz1XnMdJb5+gRWHi577VUszrcxtDyPP7qXbVvHOefMl7Jy7YnPvHtCDC64+Apm5heIQ5BFhTM3nci5Lz+dweEiLafE597/IaLD+0in8oiCSW9v7zP7txyB+eoUdqvOdT/+Hrff8YvOcQOfiy59A6YqcXjvViamxsnlEqxZNUC9MUfPyABzpSZ/+/cf52UvO5WJsTF27HyScnWKSvkQaSvmNRe/lGQyyXe+/UMMPUkmD8lsFVNLcWB/BS2pEogepi6ybnSApKbhBVUkAex2lTe//koQK7zkpa9kcn4e27NRZI2lIyuPwLuhHbaZn55menYOy+ohCtMsXboGIYx40xveTOAFzE5P8SfvezcnnnAa73vfexClDsdbzyQ59YxT2bVjJ48/thPb1RFi6OkZpmXLiFoftpamb00PH/jzt5BSNAIth+8GXPuNrxKHESVHYGRgmDDwWbpygOnSJIHg89SOXdRbAX/1t5/mD9/3Qb783e/y0le/ks3bHuWa73yVL37zMxTSFp/55N8im0JHSEpS6Otazsc+9DFMWWLs0CKuq/DZf/p/6R/ZQH1mAadVpl6fBdvnnjvu5k1vfy0nbfoDBs78Aqf90Y1c+eEn2PXgabirJlmwJ6iUG/QUM5QXJzF1E93KsudAwNhsnq/c/BP+4Luf4vzv/jXnXPNnnPT37+CP/v3L3Lr9EYhDNFVBEkUMXcWPI2677SBP7jtA9wfOoftDlzH4kfN5/+ZPMvTRiyl84Dx6/vxy+j/yZoofeh2DH38jxQ9fygev/xKGErF+aYbK3CS10hxx5LOkrw+v1+Mbt36N0vwhHLfKqrWjOKFDdbFJuzGH0/KQhTStVhvd0ggEEDQZXTVBCyj2DAM6QWgTRi7NlkMU6RC76KrJ/j2HCV2Hl561nnajiltvoSkCJ596OvOlKsgBETGTU/Pk0yGqkiIIG8QO1FsuWx54gsnxg8yVF8l1F9m+9SFkIUQUZW686RYymTyvOv9sioPD7DrQQkpIaIKESgMhbIIYI4rzRIAYBsR+DS1pUms02HjSaTRsF8dzkUOBIAoIkTEtC1UWiISYQDSpNSQEZKLYZ3GxxNo1A1x83hqKOZFD4wv0Di4nU0yTTGZYfvIIlpdk6YpR7np4gpHRjRgFFcdxqM7t5OC+vQSOfWRCrzM2fiEY6/EElI7d9qi+zNGiT6dQxJHlhSG2zy4sHR+iG/HMqlh8zhJHv51ScSz85vK82x1T7Hoh3ZwXmgA4XtL763XiMcuxG8YIMccsEUIcQRQi/p652/9I2PD/ifivltKP5bo+E4qBWBxGTBV/q2M8X7ueDQc++vfz3li/Q7ufD0sf37UZHA+pK4cYgSzKCIqGH0ZIooDdbGAkMx2hlCDkhhtu4LTTTkLVVEwrwfe//wO6e7rJF7JomtmB3QkKEcER2IDc4d9pEpKgMD42zaNbHuH0UzcwOT1HuVLBNBPc8svbWNI3CHGM0+oMdgViHn74YSYnJ1mxYiUCMqKqkUolkUXQFREEGUWWaTZqJKwEhq7Tbrfx3JBsLoeqqjz1xBOYiQRWIgWRQLPpdARNugrU6zVUTaGrJ48kiawYHaWnu4/Z+RL5fA+1Wpkw9DB084iCnYjrOmiaSjqdQNVVKpUK69avQzM0bNvGdV0MQyPwfVaMjtJu28RR5yFjJk08L8QPfQxDp9F0jnDuOj5mne/obCvLMr64FwA1HqVarSKIMcm0xdz0DIZhoug6mmEgCuIzXGhRFIgjETkGHtuB+O4rsVJJSqVJEprE3OxsZwAv5/G3/AuCV+OuJ+dYvmI1O3buJZXKoioq+/btozw/TzFfJA4jdEXj4PhBNm7cwGOPPUpPTy+qqpK0LCrlMvv37WZwsJcwiti//wBEIMkqA329tFsO6zdspNBVxEomGBpaiuv7TE1MUMznMBPJzlsEgZiYZctGkWWJfXv3Mjc7y4pVKwk8H8/1kEWZbVufZGiwF5GQOBRIJgzm5qY48/RN1Gp1dFXl3rvvoa9/AEmWESS5w312WjSaDZaPjtJotECUkRWZvt5eCEJ6urpIZpLs2LGDdatX0aiVeOC+h+nv7yOZsnBcj3KpShTH+J7Prl07GV46SK1aJ53pQMysRIfj67ouupLC1E3isIVmJFi1ZhUIAVHo0je4Cs9ziPfewpw2RKqQx7frtJpVevuWMjFRI5lJ8vTW79HdLaIoS0il09QbLVTVxNJF3FaZwcFRbE9GV2colUTyXUU8vwNtr1QamGYSBI6o5UooqgqCQKvZRFE7AksThw53eJfJJMH2BwlqZdxCF7GgoOlJwlBAlgRkSSUMQwQiNNUkFkUQYmq1CrlsGllRqddrKIqCpuroutY55hGBIkVRUBTzmf4tigKSIuN5ATOzs2RzWRAETNNAkiREUcQ0DKqVGl1dRRRZY2FhsQObj2J0wwBRIplII0oSpdICyYSJ47aJZxaIoghtZBDP846o+naerZqmdTxTkxamaSKJMoZpdhJIUcRutxEECEIP3/ewDAshFvE8H1VR8P0A1/WQJQVFM5menkXTdFRZJRZ4pu1HRa/a7Qau6xLHQoe3hwSCR+A3McwkxAqSKOA4DhDRbNYxrAQIQseGyLKQZRFd1ykW86xcOYqiSCiyxMTkFI7TxNAtli1dwY4d2xhZOkzgO6xYM8zCrE/f4YBWw8E8v59bm3uI44hL86djqDuJ5TPpKi7Hs9t899s/oKdrmMGhHr737Z/xhje+iSAokTDTFHOT5PJpQtYTyR1FaMtK4jbbSES8748/xJ7du3nleedSqc3y1a98hRNPPonNj2whXyhyyUWv4L3vfe+R6rCCJAnYjgOA7/sUi0XSn/0O7q82o11+HpJgcd7551FvtAAozc+zfsM6in1L2XT2Jr785c9TqdcZGhxk6fIVvPKc01BFgb4lq5icmubP/vzDXH7Flbiuh+fYXPm6C3n44UdRVIVEWscwLBRRJ5tJ09Pbjd2O+dM//RPe+KY3omoSxUIX5VINK5HE9upYCZWJw4fIZ9PESFhpDf8RDdtpY6+eQ7cipFhk+fJluO0mmiIzceggmx/diigIXHLJhWzccAJxKGEaFoHv0WiU0JU8uXye5cuXoqoyvd3dDAwu4Re3/Iy+/m6azRaKJjAzNc05m15KKlPgvvs3s3zpEIIos7hYIZ3JIUoSohAzdmAHug7JVBYQOPHEkwiCiGazhd2q0t2Vx/dc+vq6sF2X/fsP8qar386tt9/BwuLiEY/lzv1434Obue32uzn1xJMYHBjoQHEjHyGWuPBVFyAQ87JzX8aWLQ+RzRT44XXX8epLLkYSQhzXo1Fr8MGP/g0f/+Rn2D92ANvxSBgyjXbA5GKZG8d/wqw7z5VnX4Vpydx/70OsXr0eP/TRFFBUiXd9/Z38YuIWDlWmsX2PhGZQd9rsX5jixm0PM1Ga46INpxPHMY7tgKDQPzDI4ekD3Hf4SUxFw9J0LM3CVHUszcTSDCxNRxYl3KAj2PPW01/GaUuXocgGm7ccZOnqFQgEqLrF33X9PeMjB7iSy1F1C01PUMhl2T82zuTkDBMTE/R0aWQySVyngYjQeeereZAEWlWbyJtH1yWCIKJS9ZhdqJJLJyHqoEJU1eSOO7bw8le9FFnXUTWZrU9sw27b9PT14rQdMkmF8tyujpBhHOK5NpEv0jd0AqlcL/lijrnZKZaNrEBSNMIY1q1Zw/T0FHaziuBVWb9mACS7IzlNTBT7GKZGHNB5pukWom5ycHKKvkIPpYUpVMFFl0MkWUGQhM5kgSwgIhELDq4jcwbpup4AACAASURBVPdd2xkeTaPJCul0EdPQURWHR5/cy/xCA1HRO0q7kQCqj1XO0ndWkV3Tu9i1ezemEZLPKjz1+D5cxeK0088gFiQQpU4idGxC+gKw4ecrFj1bdfioVY4ggHx6eNwx8/HWHc9zVRCOWmK+cOHrRfOPY8/phbcGXliJ+Ng4tqB1vIT61+uO/fYXVzo+Nr+QJPn/G5zX3zeOJ3B0bByfdP1fx4Q/k2Smul40cT2WRH5cEvoxn89u93NmWo7prEf/fzyD4Wcnw7+B+b/rEYS2S5SyeGTzgwz09yIrOkIcYzebPPjAgwwPj+B7AT+9/npe+rJzmJ4ZJ5lMYpgJli8fxbAMKpUqyUSWvft20dvbS7m0QCaXp2XbmLqG7budqoJmceKpJ+NGPvl8hkKhc80KhS4WZufo7emmUi1x0403Uy7VKHQVeMUrX47dttm1ey8rVi0njgPq1RKe5/PjH9/E0mVLSaVS+L6P63pYVgLDNNENDUmRGejrJpXJIIgSruMd8SPto9lskkwlkWWJuflZkokUk5NTyJJCKpMhigTGxvZQLOZp1dsIYky5XMI0TWRZotYoo+kGo6MrmF9Y5JEtWwlDkdtuvYtTTzmNSrlMJpPml7+8jcHBAQzDwI8CTCPT8aIMAnTdxPM8Wq02lpU48tvFxB37S2R6UKJBNCXdqfbEEbHQqVo0mi0M3cB2bDRd5yiUTBAgDCLEqXkERcL6o0vYvPleRoY20Gq4pBLdCEIC0Z7Ave8zHHC6OH3TeYRIpNM5nLYLQsTC4hxrV69B13WiGA6OjzOydAjD0BkcHDwCL1Upl0vkC3lyhTypdIZas01f7wA33ngTZ5xxOo8/8ThDS5YQxzH1ZhNJVWk22xw8OM7Q8DAPPvAQXd3dyLJyZNAvEQodWHwqkWBwySCx2Dkv1w15+qmnEQgoFvrxvZAD+6fYu+cAq1etplark8sXmJycprunh2w+R8faxUMQQTPUjhCU41CrN0kn052BAB1Lq3qtRkjACRs3srCwwPz8HGtOOAHd0mj5LRRDJ1PoQldksrk8vX09pNMpao0auVwOwzRBkDo+pBL4ns9tt91KOpsmkUrDEWhqHAlMz0xRjtJkgxmQDfTuXlzbJ/Kr6HqafPcIiJDP2SQsE8fO07AbyIqOKMiYssPkoafJdq1CNRoI0R7adkfRuVQqkbp+lsSYg3BSAVmUO5ynfO4Zy5c4jhAFAVlW6MrnOn3bStDe8wSKLNNz8gUIgki5Movj1BBiEUmUOmqajo1mWARhgCgJaJJCu9FA1joJqyIrxLGAaVqdwVqliihKyLIKokcY2ohiyOLiLIaZwg8CDMPAMIwOhBwol0pYponveRiaAojEiJiJBOIR8aZ2s4EiRUSCTBj61CsV4jjCtExiP0BKJtG6CkRxdITfGiPL0hH+b4J20yGKI+bnF1BVE1mROmrGnociK2iaAkfuxVazSSqZIgwDwijENDtV1CjuPFNN06Baq6JqGoZhYNs2mqbheR7JpInvRbSabVRV6UDiRQHfcymVOmJQYRgfEe4DSQZNN5iemkFR1CNcPanTjwWh4ycdxGhqku999zpEUSKf6+fRRzZzzrnnUK/X0FSZWBBZtXI97Tv2oKgKc8s97vLGCTyPq3pPoV6bZnCgj4hVRIHP1VdfTTqVo+20uPjiyygtzlIuTXLDT2/l7W9dhyCGKPopRLFAu/4Iduswt9zyJM1mjfe+5z1c8uqLcF0bw9S57LLXsmJ0NW+/+u289soryOY0stkMjh0QBAGyLJHJZH7jvRX//F4kSeDHzVn6+0YodhW45dZbAdj8wAMsXTpCT88w5dIE1VqZh7c8RlehyLe/+68sGerjsQceZN/BOQaXLkWTTP7hU//ABRe+kk9+8hNcdNErkUSD1avWcmhyPyeffCqEEjf+7AayuQxtd5o//cA7yeWTXPfDH7Bh/XrS6QymlSQiwvddhpcsYXFugYmJBXoHu+GJNJqqkTw7jyzrFPIpqpUKiqLgeR5DIyNcecVreeubX8/G9RvYv2+cVMJg6+NP0d8zyK23/JL9Bye46MKL2LnnKeJA5PJXX8Xylat52cs3USovkjBzeIFNpVQimUhgJVMUuopoqsLU9Azvfs97uezyK5BlkbGx3YyODDE9MYNqmBiGSRyJ7N9/kA996C/YuH41oiBQq5UpFrK4XsBr3/AWJicn6e7q4vP/+Pd8+P3vZ8XIak7YsIGndjzN1NQ0jz2xlddcfBFXvfFtXHrhlfzZBz/M1W97Ex/+8/cjizEf++gneM+7300iYbBu3QrIDiGoab74tW/y7e99H4D3/uFVfOevNvAnl/bwB31fpl/ewANT9/LUoW1oisK6gRUsHRnBdR2spMni9Dz//It/4oZtNwJw8fJN/OvVn+D/ufxK/uDU19CbS3P/vqd5auogohBz6vAqNFVDECQSyYDhvj7e/dLzufrE1/CRS97Gm046l/dfcBXvedmb+eOL38ufXXQ1YxO72TZ9AF1R+ZfXvh8hihAlk7GxGZ7asZtTTj6Re+65j12rd9NoNrjEuZDtO3fR3dNLFLTIZQuUFuY4fGgPa1f2EsceuiaBqBBF4IY6oqogCxquPUHgOUiShK6njiCvGohiTCqTZK5UZfW6kzCsLLqZIowDlgwM0d/XRdtxsJtt8Buo4gIiGoIY43kOYZDAjjQSmS5sp00mlcT3Q/bs20s+X2Dr40+QzaQZGzvEtieeZmiJSTppdNBTYYAsK52JNSEgAoxEnhiLTHqQKKpgaFCvzhNHIbEg4bkOceR1BKeO2L+IIgwuLSBoIqEXE4YOupJA02BkaIiu7iJxbDAwOEQQ2DSaDQzBYuHhGo9F97Fr/2Fedd6FTE9sJWtmWbZ6I6vXn4gnqB3PcuKOEv2zk62jHy/Adf1NzYbnJlrhlg4CRj49ePZ/npPUHTuuPvYzjiNEUXpm/+eLF81VjlklPk+l99hjPp+y8jPHOYY/fOw5/EYTnll37PV6/n2fr32/T/L6PxI2/PvGs03l/29+97Hf/3+6Tc9OVI/tTMe24xlowIPbYNs+ygsLxJGPpgk4jRpC6KHrGktGliESUVmc58zTTmF4oJ/Va1YRxTFhFGMlkqiqRhgIfP3r32RoeAlB6JGwTIIwJF8oIssyWSWkPruPQtonDiodSIgYEQQuEFEs5hlduRw3cElmUlzxutdRbzgML12OqqoUu/OMrlhGq14m8GzS2QxmMs3LXnk+//bDHzG3WEY1THTLJAg8/MAhFkKC0KVcWcC2m3iejePY9PV30W43UTUNAYl226GY7yGKBHLZAlPTUyyWF/ADnxNOOIFGrUnCSqHpGsWuLjRNw3U90ukMMzMzIIgUiz0UilnyhQyvu+pKHKeOqsQEoc9FF11EKpWmXCkhxgKyoDA9OYtruwiCQKPRIJfL4dgOgR/g+x1FXkmSaDdk5mdcqtUaoiCTSGZQNR0rlaZeb6BpCqmEjgAoivKMd7Aki0QT07TXDbFYmmLN2mV4godsyIRyiKCLhFu/iWsM0j+4Gsf1GD98mHKlwo4dTyOJMLikn9mFebwgQJQlpmdn2LNnF6IkUKlUGB8/RLlURjN0UtksqXSeZsvnwNghECTe9OY3ERNyyllnEYsS99xzN1sff4L52QUy2TRr1q3joYce4ZxzX0EQhNi2Awi02zZBGIIQk0xYVGsVYgH8KESUFKxEgg0bN9J2WpSqZWRV4qxNL2F2fob5hXlEWaZvySBdPb00W02IImanJ3AaVQJBJCDuqNsSU1mcI/I8tm/bxoFDB8n3dtFq1mg0m9SbbQZHRrnn9lvx7Sae3UCIAyQhJpNLUW/UmJ2b5+D4Yfr6ejEsA8/3+fF//idBEDE3NUG9Psull19MV+8wvudRrdWYmpqDWGN4ZIR0pkDcv4nc/EMIboN0Koccx9Sqs8hKiOO2icIAYgFZ7tjFQEdcZWz/HnQlwCcijMIOnycS0GSVhGEhl1yYaVItzVFaLJHP548o5HYS10Qy0REZ8zwWF+fpKnYhHKkYIAg03BYIMV35Liw9hefZ1GoViKHVsEGKkOQjE2OxwMJcCcdxOjzQI88Yz/ORJJFMJoOud7j1e/eMIUs6nhdiWWliRBRVRVEVgjAm8D1azQaJhEUUBhi6hqoKBKEPQueeml8s43seuiKyMD2Oqkmoqkw+l8cwLNqOj7J8CG3lcKdSLIg0G00cxyEIfBJJC4hoNBtEYUShUOzAyY6ovjeazQ6/tmGjKdoReoGO77epN2oQRwSBh+vaeHaThGUQxRG5YhFN04jjmGaz+cx97LkhhmlRKBRotqo0GhVaTQddySAKEnHscXSwYJod4RnHsenr60PTdGJiiEXaLRtRFFiYL7Fj+2780OVd73knYRwgynDixg3s3LWbRDJDu+USeAbIDTLZLIoKQ4NLiaOIOIoJAh+fAVTxCVrtOrqh0m7X+afPfgrH90hkPOYX9qLLFocPTxJFIYIA+/btIWiVkEWbSnmKX9xxN8vWbqTRnqHRLPPaK9/I3Xdt4W1veTeSqKFpGrl8EsvSqFTK5PIZfN9HkiSq1So33ngjvu8f4Vh3rsEll1xCJpukt/fXE8KNRqPzHnNs8mmLhdICANValY985CPU5uao1RrceOMvSCSzXHnlVXzqk58i9H0+/7kv4ro+oqCwb+8hCoVCh+cuy9x3330EQYAki/iewMxUnX/9zk3s2Pkk1eoijuPge2CZOVotG0NP8sPr/pO77niAKPZpO02QIhRNJ5Q0jHQe2UyhWGnmy3VkWSadTnP48CSpVIZUUuWtb3kDpYUSWzY/iazKtJwGo6PLuO7a/+CsU1/OBz/wUUDCNFLc+su7O/x2SaNUWqTZKiFKLrImsmRkgF/cejOxGHaoFpUy5VKN2ekGBw7uBzre5evWnsDpp53FS848h6XDo4wMjVCr1PnetdcyMTkBwH9c931Gl41QLBa5+uqruezVl/PRD34YgN379vGzm3/O333yU9z2ywf56F98nCsufzVj+7dz/U9/yEkbT+Wr//JVfnXnbdx/362ookB9bpavfe0aAC694Bw+/RevxRQbyPZq+iov540XXMrbN70NgM/f9AWmZquEgUipXOe++x5jz9hBvn1vJ/E9b/UZfO6172PqwAzNps+WB/Zx9Rkv409f+hoAvvyrG6k57c7Ep6/SbtaYn11EkQzSRYNWu4Ghm5RKPoEfE4U6TUfg59s3A/DqDWeRS6VIZVKEscP6tYNkk0l2b9/HprPOIgwjspkckixz5hmn43o21focui6wesUSzn3JKhQRCDuIMy8IkXUT1/FQVQ1JEdENBVUzkSQRTQmRaaEpMiIiITLzZYd7Hnga14sJA9i2bRuz87Ps27OdSqVMvdbA0nQkRUDVLKJYQDUN5uYbDI0sodFsICkKqmqQSBms37AWTVPYsH4dE+OHGBubIdXdi2QkCNsejt1GkhWIJRTZxAvTLJZdojAkCtsoog2hiKYlEeQMst6HmcxhaCZEIAgisuqiyVl0XUM1Jcb2KISxjKLJ/OpXjxLFCngVslbMY1se6li8iCGWlaImlRnQh/nbj/8l73znOzn77Nfx1I7DILr89EfXIRJ1EtaOZ8RvjF2fDXd9dkHn+cbhv0u8EDz5ePG78k1/l+P/PjaYLxRHr8+x1/C3bcsL6eocte/5r/KS/wcnr8/PQT1ajTp2/dGLebyLeuyP/5vVzufj2P72XNujP5Z/+Gn8w08ft1p6bCX0hTrksRXWo53leNLfz4EAP6vTHNuBjv4dReFxz3OhvMDadRuZn69jphLUWy1002Dp0hFiSUaTZVaNLkc1dTRVRxBCZDmkUllElQ3y3V28/g2XYZkpEFSqtRoQYdstZFmhHajku0fwfJDjmK60SeA7lEvjyFIDIaoT4KNqMplEAl1XuOSyC2guVpk8OEF1cZGkKSOrIaIQUS5VQBIYHunhve9+FwnNQApcnOpMJylEwvcdJFElkysQRxJxKBKJMbomk82maLda/OyGm3HtkJgAJIFsIU2zNk9PVw5imyCI0Y0UoiJg2zZBEOCFAREigRfS39tHtVxmduYwI4MjpJMWptERvJmdq3Tgu3JE4HmkTA0x1vjc5z9LodhNKtONJKn4XkSpVEFRO8mnpOggyrh+gJGw6OkZIAojpibHCTybZrWKoWqsWbOaMI6JBAXHsTt95ohYQ+zYSBPzmBefjSIq1KbmUCILQ8ujCArxzA78sfuZ85JousXY3v2M9HXT31tgcGiQIJZoNiMOjU127BoUhWwhz/Kloxwen6TZajM41EffUBfpYg7VUDAsGdupsmrVOuKohu8sYDftjpVwJsV5F17AOWefRSGd4KGHHmZ6coqzzz6bSIhxfYd0Ok+jVufA3n3s2rYHp+USCBGJdAZR1jA0AVkKmJ+fw3Ei/NCnq6sb12kSBy7thsPw6Ciu47Ft6zbiOCK0beIQDo9PcejAJEGzgd9sQRAwsGSAVDaLomms27iB0ZUrQRTp7R5CTyRJ5XMcPHiIQqGbVtOjMtfirlvuoja/wAP33YtlKvT3FcjnEiTMJIcPjuE051nWn+PR+27HTObQjRxxKCDi0Gy57Nm5m0I2Rbk8je0IFHNweK6GYPZQevqXZMwEiP04vkOzsh9DE0mkEwiyhpJI4jWbVNuw64lHEGaeIgpCBFFC514UuY2e0NHNJIXuHgShAxE2EgkgxPc96tUakR/RbpewGyVkMUYxdNRYxHNsYkJkpVPl1FWLMBKp1Fqoukk6200um6FamUNRJYQ4RlMV6pUKoRAxsnoUVREQIoVmzSFwfUTBp9mqI8oSmqIgCRGjo8upNxoslqoYZpLAD6nX60hSh9sURDZmMovjyUgiLM7uIhYNRElFVkRiPHJJhcD1CUORfHcffqtJGHhY6QSKYaAZJu22TbttI8kS5VIZ3VRRFA1FSSFLCUAjlcmRyuYRFQVJFZifnkJXFLKpJLXaArqVwPUDHM+l3WoS+h6+7+C4bXzfw3Vd2i2XOIrQVYWZiUmmDk9AFJHP5QkjAVHWURQDAZl6vU0hP4hntzF0mXqjRKG7C0QFMY4JopiJqamOrZEks2/3HiLfx2k1EQWVKBT46U9+StLSOeWkdUiCiJlUOe9VF/D0U9uwUhobNm4giiWu+/efkLQMfEckOGIhFUQ+iwtlpqdniWKVy990LVL+81xzzV8SRTJf+db3uOOheznlrDMZXrmBv/rkP/HI49v4zne+h65ruI7IP3z6Gl5x6RtZccK7OO/Sv6HdruC6Pn6kEKJw/U03ccElF/ODH32P2+/5OVY2TbbQixvqFPL9fONfvsUnPv6PtG0dRWywas0oH/jQnzO6ai3dP/kyG2++lo/+5Uf5wmf+hsXJ6jPvMEtPIsQGb3vz23n/n3yE7kI/AFNT03zjS//MDbfcztf+/afceMdNLFk2wOmvOIPvX/9vdPX38fVv/ZB6VWHz5s1sOudkbr7uej74gT+jf3SQWmDT0z/Am9/6p1x0xeWsO/0EHt7+EE/s2E/d8XGDkLHxPXz285/lote8mZPO3cTXf/gN3vKOd3DeNefw7S3f4vvf+i6yL9B264ShS+x7aMi0S01Wrt2Aleni7nvvpdiTRZZEbr7pegwz4pprv87r33IVDz/0OC03wpXKPLj9XqbLBxkZXcUfvvM99C/rJXIbLF+2hDDy+emPfkLY9HCjCLtRxbebtBpNms0my1as5NWXvZ6x8QpdmW5CWyB2O/36Lz/yPu667wFKDZ9A0NAUiW99s5McnnXG6WxYv54TXnIyf/OZTyKrAvff/StKhw7R39sHwJ333ssJ65fzwP238Ncf/zBT05N09ae48o2v4vwLX835F17Cu/74HZx08tm47Sn+7dpr8TwPgLe94yLaCzuI202cQyfSlKscXJjjY1d9AlEQabtt7t53D08/PU61voiR8Pn3+3+GG3T2f9/Lr0Q1Y87aNEpKV3nJSwZJJPK8a9MFiIKA7bvc9OQDCHEMYQNVzVHoLWDbAs16E1UT0HQVYoHx8cNMHDjE9Y/8nKrdBOCtZ72KIA6x7QBVhSXLLAZ70+zevYNabRzbdhFliViSsN02qizSUxzG9Vr87Ib7sJ0mYegjKRbbth9CVXUIHYLYRhFkAqfO9IEWiizguT6SCIEbEIQRgqAgC01OWbeRM07uJVdIICkxp5x0EpqisWRwhK5cD1EQ8uTWRzvQ6DhCFCKEGJYvW8Vjjz5Gb3eBlJXG8T0cJ2JhroznusgqbDxlLSedugG3XWVuugamAF4ELRHbDYiJabQ9dNNCViSCKMAJXKLY5+D4fhJWjjCKiCKBhuOhmClcN0QIUjTb8zTbdeyWxOziQQgjVEnl0stOhsjH0iXsAFTg0Yfu5ubbfonvOahLZNSsSvN2g9LCIpoRc+UV7yBZSKBLCl67RRi6+ATYhM+pJB6N4yEVn73dsSjH4/NjxWflF8+tJL5QAtzZX/41EFKInrMIYvwbS3zkfJ5TDT6GQ3o0XizRfD4q4rE5x7NzkmP1cZ6bk0RAhCDExHEIiMSxAIgIgvQbWx4VkEUUQBRelLP7QiH/frv9946jF/t/sffeUZZc5bn3r3I4uU/nnu5JPTlogmYkjTISyBKSEJYRGAMWmcs1wjYIzAVjywbbgG2wsQDL2MTPlwsGSQTlrNFII2mkyTn0dA6nTz6nToVd9f1RPaNBHpFs7lr+/L1r1ep1TteuXbVPVe333e/zPs9/NLL/dVhw6AkA1P7Vv1L7s6Xizwx8zxaMvvzeiOUWzn6jn1lTe2qfM4/h+wLbTqIaNk7TJ5tp5/57H2TFipXYhsX0xDSKBA23QWdXH9l0O1NTk3R2diLLIbgxHLJer5LO5JgYm8W0MrR3tOE4Dg2nQjqdAkkgooBW4ODWmrSn0wwfPcbCBUsQkU5IwEypQMrOUy55PPzE41x77TWk0gkKhSnSZhfFmVk03USTTMIopFqvIoKAajPCtnIMD48wuGQJjuvhey7FQoFAwD333MfrX38DQRBSrZZJJtNcffVV8QqiJPO1b3yLCy+8iFVrN9NsuHie4OCBXaxbfw6O08IPXBRFw9R1ZDnEb3n4foCqqvT09DIyMo5lGSQSFrVaLa7bVWUKhRLCV8hkEkRunZvf/jtoukyEYGZmlt6+HoQQsfM+V+8aBD6u20Kxj6AoCqn0SgxLY3a2GLMUanUiCQzTRJZldNMiFAFeqwlhiF1uEdgmwZpFFCZGGVy0ipn6KLIUYhoS4vB3ID/Iwu5zOHlyhPmL56MlTUrFIooq8/z255mamOZ1r38trVaLvfv2sG79OprVMj293USRzNT0JH3z5oECRDKe2yKdytCslSmUyzSaTZauWI7kuyhKDKU17BQPPPAgo6Oj9Pb0EkURpVKJefPmMTY6Rl9vJ+aSQZ588mlkQvLtOXr7epEj8FDJ5LNc95vX02zWaVQcpqZGWbZyGegKS1evQpFDyuUp+noyCL/MVGEW2UxwyeVXsPOF5zF0mzAMqVRq2HaCet1BhD6mZeHUHUQUEskKeBLplI3U08myZUvRNI2To+P0zBsgk29npbYGIoXhk6M0m00sI0E+30GxXGLLZa8hiiRmpscYG5tC0wcwTY0o9Lnwwotwmk06OuYxOTmLbgRYZhItt4HeY/cwOb0Pz/fQnDLHd++he/nF9HRlCIVLqTJER3I+bVGZYms/iVQaO9lPIHwiKSICUokUgfA5OXSSBUSEIoRQIZuL4dOGblKpVEhk8qiyRMtpMTk9SX9vD7ph0vK8uXdChOfH0kxdXV0EgUetVKQjn8cLAjo681RmizQaTfL5NqJAUChNk2trJ5MD12uhSBoQYJoKtVqNfDZLGIaIKCKbzZCe042VFUEulzq92JRIdBIIn0xGpVopIUlZkMTcJCpj6DalYplsto0wjIiQUPXEnNyNAkKgy0AYIVwXV9fJ5rJIKCiKTKvVQIgAyzIJfI+hoRPkcm1oWoLu3nmxHI5hkU3aNOoNVEWJJV0UGREEZDNdczqwGhImajKGzQkg155HUyQaToMIsBNJojDE9+P3bTabRJIEuXw7kiTFcP8oQoiAaI6FuKurCykKaDVqDPT3xc+ObBFGLpohcd111xD4Hp4fsxR79RZRGLFw0UIUTaPZcrDtFG9761uYmR2no6ODMArRVZ3JmQrtHW3ksmnCMDhdkyv8g9z45pt47ImnYh1cVaNQmGVrYZYXdu3m/rvvZHhsKR/48EfZs3c/uq6jyFAq13nk8Ue54sqL2fbgg3RkMjz66OO0t3ciazUKs9On56DC5ASWafL+D7wL00riA3f/4Glufu8HcF0XgKSqMek0+Pb//j5dnZ30di443X507Di/+46b+devf5N02ubTn/trADKZNq6/8U089exWACzTwvVc9u0/wL79B9i9dy9f/tyfke+Uuera82mGJT700d/nQ5/807n2Sd76zrfx/O4dyLJMcq58Q5FtWk2Jot/gitdcd/o8ZFkmnUpRrlTYUX2OHSPPsfjQAjZuWsTKc85HkUBVJcYnRklnE5wibJLlmChmbGyCkdFxtj71zOljlqpFLr/yNRw7dhxVUdF0jXKlwoOPPMpjT27le//6TS7acj6pdJa3/u7b8DyPZq3Gl754O5/+zN8A8MxjT5LPdPLkY4+ze9dBAJxWBd+L+KvP/Blf+MLn2fv0Y6QthWQ2S8K2GB4bBWDzuRtptVpokcrtf/clqqU6d/3oLn77pjdwleTzL9/8Ns+/sJM9u4/y1397G8lEhocfeYiIFq+64hJqjUMsz/fT2d2Goad55KnHUHXt9PWdt3gtlaHvYxomVvF8zH6bNX0rmZqaoTfXy2hxlK/9+Kts+p217N6xG8OSSbe7p9svbk9jJ2UIwfViBE69ViOdyNGTyTNWLvDood28UywV6AAAIABJREFU86LrMZMGQtJwXT/mF4g8At9AEjLF4gwLBtegW/N429feD8CCfBdrOgfwPT+eS3WdMHBYsjDP4SMnKRarOOkibqsCgYcqJXnyqadxyx5Ll8MFGzvoyJdQNRdVEWQzclx2oFv0DSzD9UNKlSKpnI0vNFxfQnED7HQaP6wSCpWGo7Br51GK9QYLlwtUQ6LeqJJOZ5iaHiLb3s38hb0s6Iuolg4jyxHCCxAC9uzbzcJlG/A8D+G2GD55lIULl5NKJ5mdnSWbzeJ5LlpYIqX69HdkkBpNSJkEQZ0XdtTo7UmxoD+L6zRxm2UiJYMUSQh0UplOhocnUWUfx1Fpz3cwMzNCNpPAVx0iWZA1EwSew6s3dSDbCq7bwHHjzGmjmcSymlx7wxJ+fPdBLrn4Kp5/bjur1q3nqaFneG31RgaXr+K53UcYWHw5n/3LO3jzTZfyx7e+n//1uX9EtxMQidjP4AwI7KnSt5/h777cXpGzhp/2jc/8/IvYr9Lml7FYJu6V457/aIb258oS/Sf08Qufy6+9h/8L9kokQ2fb75UG9uUrLf9ZlNuvZGdj9nr5w/XyGtZT+5y5nXIq4KfT8WdmYl9+HUKIn2p3pp06h5dncuOXAAwMzEdEIALYu3s/Rw8fZcP6c+nu6iYKBAsXLSKZSKDKCo26i+sGNJsOmqYhSRGHDhzE81xMXSPwW7Eua6mM22rRcppoagJNTSJCA83IIMkpJCtLqGXJ9w4SqIk48xNFaLpOw2lSr9Xo7u2hVKngi4COrh4836Utn8J3q3huDPnLtWVpa89h2TaO6xNGUK/XadSrJG2T9o5u+vr6uOF11/PiCzuxLJNkMsHExDj/57vfQVag2XS4/NLLOHjgELPFKplMDtO0kGUFx3HQdQ0pgpnpWdyWS6Nex3VjSFCpVKLRaNKebyOZSPLlL39lzhlWkBWJ7p4eurq7sRMJEkkDITwKs9P4vksulyWKYqa6KAopleLgVFFkUqkkaKP40glkRaZaq5Fvb6eruwdV09A1nWq1iuu6p58RVZbRNYVg9xG49iJyuQypdBvVRkhbtgdFsvGqDmJoO3b/ObQ8n0WDgxiGRt1p0NaeR9U0LrzwQhKJBOMTE+i6FjvxskKmLUe1WuUf//EO2rJ5fNeHSMJzPRJ2kka9wdFDB+jtHWDNmg0A7Nu9m9CP9TNHR8e46pqrefvbb2bBggH27N5NZ0c7sqLETkMUsWfvXnzfY/WqVfiuHzOrRqDpJtV6nVqjBgpk2zIkUzbpXAbdMvECQRT6SFFAFHoUZsZZsnQpEbB161YWLVrEKQTHE09sRZYUNFXFsMxYbqTZJGFaRGHIA/fdx8jQEKMjI3hBgOO2EESsWL0SRVPJZrPs2bOXdCrDoYNHEWHI2NgE8/oX4YkIf067MZFIoGk6L7ywE12TKBWL/Ms/f5N63WFqYoKTJ8YozMwyXRe4SoLxp+6hr3MROTtLRktgCBtZbiABuUQP27Y/S8bw6MhItC9chmrm0FSIwhCIGB4exWnW6e6OIcBIEpZl0fI8ohBKpSItp4kIQvwgQtNMejq7CSQJLwhQJInA94nCCEWR6OjoQFVlVE3FazWRZAnTstFUhVQySVsui2nENa71Wo0olChXivh+6/T7Sdd0UqkUURiiaRq2HY9xIHzCSBAGAZ7rQBTGdF1RXM9aqRZJptO0dfYxPj6G58Ws55Ikk0ylCUOQZBlJ1hAiJswIgoBjx45Qq1bwdx3E33MQt+XOTc5zz4gqYdkmURSRTifp6+khYVuEQtB0WiDJ+IGg5bok7QQSEkIIWp5Ppd4gwkXVQhrNMpIcX4Prxe8d3TSQNQ1VVdF1HcIghr8RaxYLETA9M4WsGTieFzMix78UuqEhK/Fv1mw2kZFwW01kTcGyEigqdHbmUTUFYw6CjSRjqDpuq0VPXy+abmCaJiII0HUVRZNACqnc0MO2pSXy7V0xk7Gq0mzGxHgAX/naXnbt3slXvvQFRk7s5Y6/v53XXHIl8wcGaDabfOBDH+LTn/0bKpUqd37nXzm+91lGD3+be37waXK5HLOzs9z68Y9TKZV4/NGHOHp4H51duZ9iC06aCQI/RMghTb/CA/fdyXtv+RCu67J82XI+/qEPM3nj7zH2uvfzv279EIqqcmTowOn2HZ1Zbrrpt3j3Oz/I0PFZ/DgpR61R4alnt/KOt93MV//+K7zhtTfw7BMv8OHf/zCSJPHQw4/yu+/6ALVSC1VJIMlJpkszmKYJwI/vuZeHHn2UP//jT3B03zZ++L3vMHz0KKtXL2TRknYM2+WiC7fw+c99jgO7nmH7w3dxaNcTNMqzfOvr32JwcAnHTgzx5pvfT6vm4jUDPCHwhSBSYw6DeA6OfZS+/gGuuvpq3vu+95++tls+9PuoisL3vv11xvaeZPjkCR558B4WL1qI7/u8/5Y/xLCSqIZBEIXolkkmYROcGgTg2e3PMTVR4MSxIR588If4fhA/bwmd2267jeHhES67+AKmJofp6eniu9+987RfcP7mzWQyGVKJDKpskEykybW1gQLLli4CoDBb4NYPf4xAONz/wD2sWb2W1avOwdCTiLBFKmWx/8Bems06l1x4CSEv1RGOHdxGrXYIN9Kwi8uYjE6g6yr79u2j2YrLDApugRNH9nP+uSvYsLaHRm32DMdKQnhxDaBumKiahmWZqBqEc4sD+8ZPUGvM0vJaRKh4noZpJ0ml2lBUiyjSWDy4nFK5xnMHXuRI8TgAv3XuZZiWiW7oqGqc9xEtlaYzyvoNg4yPTqHIEblshsnxCWZnCiwfXIxkCYaH62x94hAhKs2qieeo9Hb3IkJIZ/NEGLHMTMIi35GK5QBVnZCIwPeRZAlFNZicrtI9bzFuEMv+7HxxF4lEEgjp7h4ANHY8vxPPDYhCDUkSyBIEQmPe/IUk0zm8wCeZsOnsaAcp4vjx44ggxDQskok0haJgcNlqVBuEEiKHMpKfZN3aHro7DCLRQJECPLeFrupYho2VSNPdM4/O7h7KtRquG1Kvt7ATqRjh5btIoUrT1RgrCnyzCxHI2HaaVDKHplmoCYGpSQSexiWXrGdq7HlarQYtx+Wc89fSWFDkiqNv4rF/e5HuRV3c9NbLkbwaqwbnUysXEUGAOpfpO9OfP+UXv/z7M+OFn8W4G0UR2k0u+hu9n/LRT7U/5Yv/rHjh1L4/r0Tw5THIK2WBTx3zzH1/Xrzy8oD8lRCZZzvu2c7vbMc/RUB45nW+Uh3xLxKz/Sz7/0Tw+t/ZzsSl/zpWO049OLIs02q1SNgJokjCDyO2bnuSBfMH8NwmQrSIZJ+tz2xFtW1kxaBaqxARsmjhIoaHRymVKjz99DZMQ8M0NTyvybKlC+jpyaOqEpqqYBpJAh8sO42iJQgijUYzIBA69UZIYbZGR9ogcCIsu4dkpp15i7q4aMtmFszvpTRbIBI+um5RKhXJZtPUKmUeuf9hRoaG0OQIw5BIJg0WDS7Gsi0UGTzPQdEUwsgn357hogsvoNFoUq836e/v4/Wvfx31egXZMFm4YIDXXHkp7fkMo6OjJGybTZs2YNs6URQwOjJMy3GoVGpEYYAkyUxPF+jvHwAkFFUGCd79rvcSBAFtbVmE51MpFZiZGmNi7AQiDLBsi1QyhWlaqKrC+PgYshzD2LPZDLIiI0Ixt2I/95KRwbQsVE3H9WKnRNM1crkctWo1dvwlGUkzcaoOjE1jvuU6nnjkMY4cHgI9y8T4LMlEDg7eg5TsZLLYoOU4TI5NMjYygdfwES50dHYhafCq37iM3r5ent+xg/PPP49qpcLQ0CiqbnHJJZdi2ybl4gzNeiwLUa81OHlimGUr1nLk+BHGJ0c4vP8Qy5atwvcCJiemCPwWB/bu5pGHH+Tk0BALF8ynVq0gopCOzk5ODJ1g1erVbDh3AyPj45wcnUA1TIIoQJYiUokEhqpTKpSIFJNMvgtNN7FMi6OHD2ElErR3dBOhYpoZwsBFQXDRheeRTFpIUkSzWee6668BSaBqCrWaQ63WJAgiVMUASWHd2vUokUwum6dWKSJFgpXLBwkDDykSVGslzj13A+lMhhtvvJHxqSkWLlrMF//uixQmJ6gXp/jRD39MV2cPu3ftp7dnAMvUGR0Z4drrXoudMlAVl1w2i9NqkMtnSC2+mEF5mGbNY7YksFJ9+LVxnEaRULQIWnVWbRhk/47H8EqCwJpHZKjoikwUCSQk+nrmQaQQiTibBxFR6BIE8aJWwrZJWCbjJ4+hqjKO56OZJoqsIYVQr9SQUzm0tnYURUY3tLn6RJmF8/upNeqks1kCESCpKmYiZhz2hE93X2+cHVSS6GoGSZLxfT+uOyYONAuFAmEkEGGA73uUSkV0zcBptNAUDVlSEDhIyORSHSBr+LJgXt98VFWLNW8jH02W8d0Goe9SLhRRJIEUiZiMrX8+iXQWiFBVFUmWGB8fR0LF9dwYehwJNE1FImRqahIRBIQiwjY1/FYTKQywdA1VUSCKqFXraJpBOtOGpmlUq1VSqVSsIStLqJKCaAVUZou4niAQEqqi0Wq6NOtNNFVHnctmGrqJL0AzLEzbwmk1Y4Zjp4FlxvWysiQTKRqZtjYa9QrCdQmCeMFQVVRSyTS+F/KNb36bUrGEpirICqi6FmdFlTjwzbd3YidT+O06m66/FEWV+BPraq4/0EkURQRBHGCUKy7f+eplvO0NC5GiFOdftJm//fwX+OOPfQyAnbv3snXbM3z0g7dy348foDHroGkGoajyJ5/4JAD3PPgguw7s5eN/9sdce+O1SGix/NCcnTwyST7TTdPziSLBnT/8CdVqjXxbG3d9/7t85NYPIBBousb/fM97+OgHf59G46X2ExMTvO+9H+Scteu57U//gn374sC20Wzym6+7ns986uPc8PpX8Vef+1/09GX4+Mdu5R03xzWVz+7aS4DFk09sR48Ulq04B+YIVur1Op/900+x//kXsAyNTRdsYKo8zDnnrEJRQ6yEzP0/+RHvuPldpNMRa1acR7UyQWFqmmuvv4of3vVjdF3nxPAIGzeuQSKkUq5x/MQokpJCkeOAaGx0kijyqTdbuL7g8LHjp69NVRTu/cmdpK0ubr/9i4weOc7qc1bz9W/8EwDjExN89Z+/gSSrjE+O4/ouRw/sxWk6p49hWxqu08LQbBYMLESKkmx/5kUOHDiE70n80Uf+nGf2HOXKq19LFAnEGQ77/IEBZmdncWsBv3PTW5AihT/71J/zgT+4hUw6c3q/27/89wydGGHLlouwbJOJyTEcp86Xbv9n7rjjqxw+fBg/aEHok0y/BC0szB5E1n0yzXdRVicZnhmmWqqzdOUySs0iAFWvypbzFtORUZnfm6Q303W6/aHJEQgDwiBAhBGaYRKJgKlylclqCYDpWhk7YdOoNTg5NMP9D+zEDRNMzYQ03IiTE1M8/NhuPLfBnTu+T0SEKqu89eIrIYKWE5O3iVCgJkPaOxdy7FCVvp4ckqQwOjrBiaFRtj/9OI3KCOMjR+nu1tlywWoiyWR0okSzJQgjBU8kiZSYc0GJQsqFKVpOFc+rkLRkVDnE9xwkoVCvOvTPG+CFF57jgos2YRgmg4ODHDp0EFmRURUJORJkEhYz4yPoZpJms0q9Uue5Z4+iGnlGx8bQNJmW26Q8W8H3fZYsWUJXVzeyrPLM089y4uQ023fsJMDDTuZQFQlDUzH1CCVqIUUqimIQRQotL8CPYoq8iYlREpbG0iXzybVlCERAIhkzt2tKEsPQ8YI6djLJ7j3HiCKZYrFCuVwj8CMcr4VwBI8/doBHnnyR3p4cnuewdMlSFFmhYRU5IQ5xS+oTfOwPP0FXWxJF9jl25AAzMzPIikEomWf1YV/JN365nusrmdwVIXf97MD0PxKI/UftF+n7F8ma/ley/7LB63/ezfLKtbOntp/fz9nand1ezmr2i2aMX76dubJxpkzOmTh4GSmmYp8LPn8Wo9qZfcV/ZVRJwbaTWLIGUYiqqkSKQRB6NGrj3PK+m6nWyghUJqZKbNv6LOesPQfXbaEZBqEQmLrN8eMnIYRMOs073v5GzFSKI0NjpDPt1PwGViKB2/IwdJlGowZSgOtWKBQmGD55nOeffRoZQTaToK09TcvXUDSVe390L3te3EelVCJhyihSSGe+HeFLFAtFujvbcJwKdiLJBZdvoW9gIRE2CgZeq0FxZgzfbbDtqR04TUG1PIoma8iRiWnKhLhkshae75JKpci3daKEIEKZbU/vYOvWp/E8F0ULqdYLRJGMruYYWLSCYrnG4cPHGDk5jecH5Ls6ee7FXXz33+6kXiui2iZ22gLhYaVyTEyOoSg2gpC+gfl4koQTCKxUBs+XCYTP/PlLaDoRIpKRlCSVYhW/5eE2m4RCoMga9YpLxs7SrDmYps2J46OnV4mz2S7kUOC1HDzXxT48SnTJOURtKS44/zI2n7sRU6kQNY+x74nv4B+8m5beQzqRI/BCmo0qC/q7SegJJkaHiYKQKFCQpBBZCVm/fgOqZuH7Ef3zOhHCY9nyQabGT5AyI6ykTRT5zE6PUS6MkrADFs3vZGpyjP4F8xFRhKSolCtllixZSm9PL9dd81pmC6VY51eEvPjsDlRZ0N3ZhSzJdObymKrOdGEWP/BjCKgv4bo+QghyuTy+W8dtNiCEkJAFi+bjR4LZcol8Rzem1UajUkONBH6jwvHD+9i/9xC2mUGVTGqVOpqqkE0YJCwTw7TwRKxXOnrkKD1dXRw4cJT7H7hvjklQJwxlRBiRzXXzxJNPMzk5xYED+5gsFHBaDjfe8Fp0BXK5DK//zTfy45/cw9DJYTLZPLbdxrKVqzh+4iii5WIoOtNjI7QlEyiSSmR3ICfzKCfuoprtwXXHEGoXUtjO7h17qU2/QDvH6enrRMsPkpQhn7PxRDBXixLS8idQNA9JM0CScT0PL5JIahGh8Gn5AjPTSc+8RYRBSBR5RJFAVSQiKSKVy5C86Fqs868GwGm2UFUdVdEJ5ASKohJ6Eb7TpNWYxXcbEIUgKWiGTiJhIEsagR9RKs9AFJCyTYTrUq6W6OjuAGSajRYgk0nnEEA624YIJUQokAOVeq1OIDwkCVQUvMAnIEJVJNxahUqtgW5ayJpCJpfBFwLPD8hmckSBx+z0KJKkEEVgGjb5tg5EVMXz6kRCglAnEhp+KJHv6KRUqaDpCqCiG/rcDBqjSFQ1DixdzyUQAVEk05bvRgTgNVr4PpTLRXRDor0th6FJpJImge9j2gayGuEHLrqh0tPbhQh9GuUqkQiRFQXbthF+HNSEQlCaLWCYFoppEyBjWkmQIyRFx06kCWWF3QcOkMim2bJlI3rSIt/dFTMRKwqegLGJItue2YkmhdTKFbq64kWNwPXon9fPa697Hd+/877T88OF5y+nt28DWnQ/hvoM2598nr75eS7Ycg6GrgPw2t9YwVveqPCVO/4BzbKIopBsJsG83ji7GgQBiWQOFZuJ4SK7n93GfT9+5HQf3/ze/8PwxElKMwVaVY0f3HUPAG/5nTcSRS3QFP5OqbPr1WspV4q86Q1vImUlT7cvlxr84Ad3sWTZIJe/6koOHjx6+n9H9+9HBCpPP7WXO778XTpyWXTN589v+zimaRKIgO/96NtcedW53PGVL1N1NFpuHLwl7CRtnWt4+3vfixcmqTs+ixevwPNl6lUT2evlH7/4Vf70Ex9hcsTBsAP27BziK1++g+rWAsYhidUrVwMR/+P3fo9SsULCClkxuIA7v/UQgYgXCBRZozytIiXaSWQUnnj0pbF521t/h3QyxbrzVvCHn/wwiWwS4USsWrKagf7+2McQPsJx6c13kTIMFi1dzy23fIQLNlzAxNAkmy68kHxvnmUr5zN/oJPt27fz+b/9e4ZOjFMoFHj//3w3F2y5kqAGMydHWTQ473T/SasL2+qiJRw2bdnA0y88ytKVizl+8jiLliw5vd+uvTsZXLmaMIo4cfQYXT3zifQUd/7kbl5z9SW8/jd/CyVhghTxumtvxDTjzP5nv/owjtvOyW1deIbPues3YKoqX3/ySzEZGSAigYJHq1XEdTxuuuQCTC2+977wyJ0YdpbQTOKHASKUmZpV+YfHfnzacQ9Cge8LsrlOOvN5bMMncjXmL9tApr2Hrp4ucvkc3V3dPHDwIQBeveZSknonIgJFD/A9B+E7IEzCYIqli+HAC8e5cdsF3Dr9PmYmpqgUx6mUjrN8YQetWoPeAUHCtOial2LnjllK1QmeenKMYt0lbRmUCsN0diQwtIhICSjWUlQa7ag6GL6NJ1pUqw0WLegkcGyGRqbJZHIsWbgEVXFpBXVOHj5M0phCkqsQQM1tMTITUGulmbewnYEF/TgNB1XSGViwmCcfe5LHHt3KT+57kGbTYWBgHtdcvoprXr0CEYQ0anWcZp2AFg88dAghtWOqNqHko9pZUqkOGrVR6pUyk+NVpian8OsF3PoUulRHowWeixT5hKEf61HrNdatSqOqAaahY+gaSC1MyQRF5tWXr+CijQO4ToP5/f3cedf30TVBQteY1CZR7JA/aPsKZvsq2js7aTg+K5avQ0NBjcS/Qyy+Evvv2fzwU3Y26cmfh9o8lUQ4c3v5cc/s+9Tff5fdDCWiUOK0/usr2K8SiJ4t63sq+fVTcYQUEwgKIc6abT7bmL00DmKu9jWc287SNpKRUU5vv4r9lw1e/7vay+HDZ0vrv/w7WZZPr5z/ssdv1esIIXDdGIoX+ALfC+js7GZ0fArd1MhmEwg/YHDJImYK0ximQXtHHtdtUa1WYkmcUon9+/dj20lkSaaru5MoEqQTacrl2RjeohocPHiEr/3LtwhDiWw2S3d3N6tWraZYKsY6nMjIiszIyDCvfvWVbNq8GTsRw4B37z5IpdYgxCeMWjgtD9vOoRsmKcvi+NEjfPMb36DWaDA6PkVbrgtdS3DJxVeyd/dBdC2J67qEoY/nhWiKSSgkbCtJuVymMDtNs9kgjAIuvmQL69atpa9vHs1GE9u2iaIQz3MxTJklS+ezafMali7rpz3fDsDatWv47Te9kba2dogUKpUalUoVSZLo7OpENwy6u3pwHJeEbNFmJzi0ZwdKWKJZKSBaNUwloFUvUpgcIZ9vIwgCLCsxhziL2LlzB0NDx9F0FQiJIkG9Xgckjh49xvPPv0iz6WBJMtGeo7RufjXlyixHjhyi3qgQiBZt85azUJ3Ek5OM1UL27N1FNpsik8lx8PARCoUiR44e48EHH2B8YpQoDGg4Tfbu28e9996LLwKKxTLDw8NYloWiatSbTQK3RaNeJ5XJcP6FF1Opt/BDmUWLBrEsM5alqVTJ5XIIISgUChQrBTZsXkc2nyaRtli1ai3NRotCoYjb8ti2/RlUQ+eGG67nkYcepl6rnda1PHlyCDth02w0OXToME6riRCCVCpFKCSy2TZkWSWZTGAlLBqOQxBCW76T9vY2PM+h6dS5++4f4vshLdfD9VzybTn27NpJqTpDiEfDqbD5/PVce+21KKqMYRgoisKLL+5k165dXHbZpTiOQ09PD+vXbSSZTNHR3kGxOAvE2fJrr3st6WSC57Y/w8TEBFEUsnnzJkqlMtVmg77+eRiWydEjR0CEqP0bUWb2slir40sJwjBkz4tjZOwl9A0sZ2SsRrOlsmDhMkQY8eSTT82xX0eEkUrCbpAwxjDkvSgb2pHXtyMTISJpTgLGjbPRskS5XCKZSCDLMtPT03i+j+vG9cnxxCZhGAZhKIgiqBYLKESYpk4QRlipDKadwPMCdD2GxzUdh2qtgqLK5OZqXINAICsSqWSKYrFIrVYljASWaSLCODscRjHsNwxDGo06URQiK7HeaqPRIHBbyBI0Wy2ariCTycSC9uUKiqpQq5TQ5sTnFVUnlcnNaU7H779qtYKq6JiGPTeBS4RRrO+oKLFkSwxDC2k0G6ffm03XRTN0evr64kXDKHZehBBUKlVUXUNVFdLp1FyWuUmhMIPneRw8eJgolJgtVAiCuL7U931yuRypVAJN04iiiNHRUZxWa+7+Dcnn83H9oTqnFRsEqIpMqVSKZY5UhWXLlyHLMitXriSTySACEWewmw6B7/PwIw+ydOkSDhw4gGHo+D86wsl/fDw+x1oZIp91a1dxCtK6cd0i5s9fih+tIKU+wAXn9xIEAQsWLCLflgPggk19mEaDcjFm4JXoYtnySxhcvOj0eI2MnuTTf3Ebn/70baxddy7XXvdSreif/Mmf0N/fT6NRY2T8GLV6DYBLL74Y07CZmpzhPZ/6OBtuuIq+3n7GxqZY0L/wdPs1a1fyqlddxl1338mVr76MN73pJgA6OzqYmpxkZGSELVvO5/vf/x618hSh7/ORP/gwq1euBGDXzn04bsDN734369YuQJqDtW7csJ4lizvo6uqKywZaHn6tgWlYJBI2f/RHt3LTG29gycqlfOzPPsW8ZRt507tv4S+/8HnmX7+SxTcu5YWdL8RzsirT3d2NLEO1Wuamm25EVePaz0w2w7PPPYUIPKamprjyyitPX1tHPo9hGOzevZu7774bITxS6QTVap3OzjgDOTE1xcOPPEbLc3F9D13X2bNnD/feey9f/OIXObL/IDOTM0xPz3LOhgtYtnyQb37ra1x55WWk0haDSxbwgQ/cwpGjx6k3Wxw5cux0/1Mzk7ztzb+NJEnccsstXH755UxPT9Pe3k6r9RI0eeHCeSQSCQB27NhBLpfDcRxuu+02BgYGiP1hKV7Isi3e8963A/DE7hKfumMfYSGBtUjl7gd/wmd+8tfc/sA/oZxB/rJ33y4MQ0eSoDffzTsuuAaAJ4/u5X986685fHQfphwyW5/lQ9/8G+544i5U+aX2vhvSaLSwkwbrNqxCUl3cVovpyQKBJ2HoOk8c2cZ4aQKAd7zqrXPOOUiSjaZn0a0MTqsBoUpXV54LL14NYOGsAAAgAElEQVRFvpLBmgghqnDF5Zvp7+mkpztHR3saEbgI30ORfDZuXEl3Tz8bN2/ATtg8s30btVoJp1nDaTkErsdsYZh6fSqGQqt1xiarbN16nESqjYPHn6a9LU0QeBSKJU4OT6AZKXL5HKqmYBoKlh5haionToxwxRVXIkkaumkjKSpHjx9HMw2uueZqNm8+l6uvvorZ2RkMQ6NQLvPUE0c5cayBZSYw1LgUpH9eO0Sx/I2q6kiyQSRppDNdBJHEmjUrqVSm0HRB0lJRVfADH1lVqNc9ZMlAVSxCoaJrCfzAx7Ks00GTLIfouooIfbq6O16aA8KIZCLF/oMHWbp8kK3TD9FvLOLbn/0JL+7eSSqTJpJCwv8A+c/PM/8RDf+Rn00R9OssM/x12tmC8lgBwENV1dMcOb+uvn/VMfv/g9f/YvZKwerLP5+NKe2XOf6p4FXXdUZHR4kGehBd7Tz40CPs2XMAEUhYqSyZXIJIOBzZt58XXnye1atW4nkulUqFSrWKCENSqRRr1q5h5cqVc3ATCUmKmJ2dREXF1BVMWwVZp7Ojl/M2X4iuJYgisOxY9qOnpzvWLPQj3FaLrq5OqtUKQyeOo6oK9z3wCE9te4FsWwdWSsM0oVb38Hw91owMfHq7O/nd330LmmnRO7CYaq08J7sScc66VSTsTkQY4voOUaRy372PUa24OI6LYeikM0kMM4YGqyqkszaaptFoNBEi4tChg/zgzu/F9VpBHDgGfot6vUYoAiQEntekVm0yMz1LwkqQSNiIwEeRVQxdw2k6GJqNCDyqlQr9fX0EfoBhJhgZG6Pu1EhnU3R0ddBy43rBQqEYsxHKcPHFF5JK2aiqhIg8urrb0HUV3w9oy7XRbDpkMlnE488TXn0+Y6bP8RMHWbS4H9OSmZwaA8fB2XMn+ry1DC5dyKZN69ANjWwuhyTrdHb30tvXj23bdHXlEaKFbVusW7+O6294He3dnWSy7fR09+J7HqlsDjvdRqNSwbYsJFXHSKZJt8/DSubQTRtVUZmdnSWZTNBoNLAsk2XLlpJM5ajW6pwcHWNqusiunbvRdYtdO/egKBpbLruUVC6N06iydvUq6pU6O1/YQRR45DIpAqfBU09tZ9OmTViWiee5scxJqDI5Mc2uXbtoug6KZZBqa0O3U4xOFmnvaEPVJHRd4eqrr2HXi/uYmSlRLBTx3Ba9vV0sW7YcRTfQLYsTx4/x3LPPQQSPPvogUShYumQJlXKFer3B6MgIMzMz7N+1jycefwo3COjr76NSLSPrCqqhcdFFWzAVhXK5QrVU4uD+faQyWTact4nDx48xWyzG0DwRIdtdjNdAeubblPwM9cYwg4PLaLZ0hkaHmCjYfOH27/PjB7YiMDjvgssolSokk1lcv5tG9E4a7jtRlHaiKxrIV/VRni0i6TaWnSCbsjEUges6+L6LIknIkkR7Po+iKHFARSy7JETAxMQEQRBQKpWolmeZmRnn6LHDyKpJqGj4yKi6he/5+C0PVVFpb8/PrVZLGFaKaq2GYehomoJpxIRmqVSCaq0ckwZ5PoQhqqYShBGyEsX6qkSYpkkUga5ISGH8vLR19VGvV7Bti2wmgwhCcqkUMgKnWUcgoeg2khTF0jjCo7e3FxEohCJmDfc8B8+P4bqVSuV0TU8Q+JiGge97cQ1/IkkoxRqr5eIsXrNJKDyIBKl0ikKhiKZLuJ6DoqjYVjJGsoSwcOEgt//DP+G2ACSECJElhVDEmsW+7zI7W6Snpw/bjoPZVqtFGIbU63VEEI+LrqsEvk++7YzfKIrwAx/T0pGVGLEjREC9XEVT4K1v+W36+3sZHFzMo489iravhHGwRhgJPjN5D5889n9YuXThaSxRMqlTq5aQpAye6GJez/M0m3VKxTrSXHAgRYLAD3nfe97ByMQkpr2KtvxGFs5/KYOXz6f58K0f5At/9zkCyeLMhEAQtKhUywwuWUTDKb70vR/R2zOf/nmL8IP6nISNwcx0gU/OQZIBPK+JZVl8/OMfJZ0xMMz4vDra2zl+fIiNGzdSrZV5+pknOXHiAJHw+au/+Az9fXHmcnq6wGyhjqQbHN53gOGhIQAStkWjOoNpWeiyyslDRxk7fBzTtBHC5y8/+0ne/Pa38/4P3soDDz3C2MQkEJHLZulMdtKZ7EKbQ8HUa7U5jgSTVNrmox/7vdPwXDthEIQ1koZKLpU6nVEFWL9+PY1Ggw0bNvAbv/EbLFm6kKGhE9TrdY4djYNMSdW5+oYb0JIWY4VJXNelv78f13W5++67qRfLpKwMF198Ffc9tJ0P33oLqgazxSmSSYt0xuLr3/wOVccnm++mv2/gdP87X9zBR/7gg+i6Tq1WY3p6mr6+PiRJouW8FLwWpkcYHh5ixwvP0dXVgaxAW1uWP73tj7nrrrvIZDKnS0iSySQf/dB7ecPV6wG4/+khtvxgDfM/0su7v/tePn/v51nQsYDrV10LgKnqXLRlPao2RyYpK/z+pW/gDRsuBeDfdjzK5V/8GN0feTPr/vyd3D/6JAvz3bx9S4wSMTWdbDKPlbDRjTQnR2YZnWhQKEwiAhVdy7ByzSq+9dQPAOjJdXPBoosIIxlF0QmFxf/+zg6qDYFmSISBSiarImtjzJ/fx4oVnVz9muXIwRRq2CSXAU1poSmCwGth6SGZfMTQWA1f8gkJuHDLRtqzBglLQogAXVFY0J+kv8/EdyNOTDi0oixLV53HORs2c/mVlyJHHtMTo2SzbXR2DRAIk2p1AlMJSSctmpUppFDh/PMvABnGx0uMjE4iQomly1fgBwLHa6CZKiJw6epsY3T4BE9v30kya9Hd20apXCIMfHRFYu2qblJmAJGDaeRIZbqRFJOJsSq5XBuN5jQrl3eSTYOqOMhSQBgJdMvAtg0UVZp7v2s0Gy10TaPZbKBpKpqmEYhYcSKTtZGVgHM3bmJmegKn2WJyukB3Ty++12LJyiVU0kX+/lX3sWTFEjp6O4mkECFFCOmXk3X5RU3sVRB7f3YQ9181eFVV9d/FB6cIyeCXl/j5Zey/RfD6f0sH9WyD+asM8CtBc38VqPPZYA5nntOZWPaX016fDab8swLeM2HJp/7X1dXF8XqRIGPzqssv47zNm6nVauRyaUQgk0xkWLp8Ple86kpq9QZECqGQOXDwIIZpUqvXCYSgUqtRq9WICJFlibZ8HkmNUBSLH955PxIR/QPdDC5ZgKLERCaBCDh65CiNRo1Go0Gj3kLTVByniQiDORKUFtdfdy0XX3wux48dQngKriPRlu9C1uP60nrTJ5FM4boOUhQS+h5t+TS6oZBMGUzNDNF0qhw7NsSXvvJV7r3vXi6+5EJybRksK84qhUIgSwqNRpNACExTZ2JiHNtOEYUSa9as5g033YCumhi6hRRpWGYaTYkzgUQBTrNGMqnR091Gs1mjWJjFdwOcmkMoXCTJh8gn1GUyHR0kc92UqvDdOx+kvWchipnClzS8UOOB+x8BFPL5NqQ5vvSJyQksy4o1NCMJ27bmxlKlszvLRRefjzw9izReQP/E+1i4YJAlgyuQJBW3JRABzDxxO5Gdj2uOHQfXdZEVBU3XGFg4n0gWnBw9wUUXX4ih6sjIaEgMnzhBFAZMT03w7LMv8vTTz7LtqW1MThfQrCS2lWRqaoZ6rcb09BSi5RH6AcePHcd1PebPX8CRIzHEr1yu4DgtRk9OkE6mmdc9D+FDZ1cHjz/xKKtWLafpNPC9gML0DNlsiqXLBulbMMDqNWtBUci3d+CLkGuuuS4mQZFDZEmCCBr1CpoW63XaiQSeLwhEiIgEPb1dgMqePXs4cuQg+fYsgfCYmJzh5MlhFCIySYt63WPl6nOp1jxWrVjNeZvOw3UcNp+7ARF4lGdLzM7OUqlUWLFyJUNDQ6xfs5p8PkcilcJ1Q7KpDqQwQFJBMzU6O9vp7u7G1FXWrzsHSVH52r/8C5vO3cSq1avo7u0hlKFaqlKV0wgBixsHkGWNhnuU/sURpVqdVZsu4QN/9AnO2XQelYbPFVe8nnKpzrGTeerOCkZHJqm1HDyuQlGmCRFksnnkSKLlOOi6Tr1eozAzSXs+R61Wg/AlYbAoimg8+K8UfvjPBEFAPt+GPFer2tPXh520yWZThEFA4LQQjosqwcz0BJouoevmXMYzQpIUZgol2vLtCOFRKsyiqzqaZiKhYug2umahqhK1agXX89EMC1kBx6kDcRCXSCTwRYQUQqVcQgiwLBMk8DwPRVGRVQOn5aObGrVKGTkCCRnTNJElGddz8P0A07RJJFIgSTjNFs1mM854zpHk6bpO06mTSiUxTAPhCYQXMDQ0RCACVEPFdRxkOSaK6e7rIRTMoVd8gsAnn++IZbV8n/e851309nVhGBaBL4iQ8P2AQPhomjoH61KIwpiAxLIsdE2no70dRZaRpYhGrUa1UsbzPVpOvLAlIc1lNmIpAz/waDYdtm/bTvD/knfeUZJd1bn/3Vy3cuicu6cnK4xmlJCYEUpIwuQkbBEdwAabaD/bGGNh4IHlhAwPE2zAgEwQUWSUhVBiFGc0OfV0T+euXHXzOe+P29MzjEdCmOfnx3p7rVq9um6oc6ruvWeHb3+f76EQkEiaMXnO1mej6Rrd3V0IETEjm+yYP0wmk8Xz4sBERILvfef7IFRctweNgzTqU2SzWebnY8bgXC5Lo97gta95NePr1rP+zDPYvWsHgXuiUh0sJzoSiQQf+di/EolgZVs6a9DdXSJhpQn8E46TaWoEoUujWWX+n75M5eM3o6kWd93zI/YdeGJlv2azzfaHnmRwYIxqtcr09DQAC/OLfPITn15OSrgkEgYbzjqPkCQzi1UiGfd7N1sN+vv7yCRVTKObgf64YpywUrzrXX9JT08PUoHRtavpGh7Addt4fou3//G7uOen92HbNh/6wPt48O7vUp09xD133sGXrv42T/7pAbZs3gSA74f89hv+AKclURWDjWdsWEkQqIrCxRdvxW/UObh3L3Mzsytzm52d5bHHHkNVY5k115GISKG7u5PBoeXkQASf/NgnODZxFFONycluvPFGHMfhlltu4cN/94/0Dw7Q1dXBReefg6Hb3PrjO+nq6gE06rUWH/rQ+9ly8XkUeoqsGj4RPPcNdDI8PoRlxYRf3d3dtNttTNNkYmL/yn6rx8boH+jloosuZM3acWzbitdeRfLil7wIz/XR9QR2Kodh6sjQ4ePvvZr/9ccbed7YNaztWEdvvodzx87jzc95Gx97yUc4NhszHo919hIGLsgQREjge0gZ8b4rX82Xf/fdvGzLpXQnO+nLdXDu8Br+4nm/xV1//Pe0vLgvelVHH23fQTMSzM63cHybWsNGRWJZkMqYNEOPO3f/DIDrtr0C07SBJKpuIqTDdb95ISkjRp5YCQVkhKUluHvDdr7TcyeK8Mhmk2iWiq5K7GT8HFJNHUPPEyqCtRsvY2ysn9rSNO1mDUMLCL0W6VRmmYcgQkGSyXdx191zPLh9F+m85Lvf/zaP/uwwu/fsJwg9dDWKpcxCD6d6EFsTeC0XP0rwxM45luoSNJVcpkgYBMu9+dX4QlFiJvN6vY7Tckgn03TnNTadnaBUqmMnFFTdQFU1wqhK5Ps0fZemq+MLlVpjia5SAYIlanN7kF6VKBCYdiyb53sBzUYdiUsQthHSQ1EFuqEQRiGGoeO6DoHvYRpp6hVBrVqn3qgwP1+mq7NAqVCiXm8RRJL77v0JT+x4grsO30bCzZISGdrVKvfddTeR0yZotVZ69I9DX0+FuR73c09HzHSqTwwngren8qsh9sGfSYXyVFKkU8f2ywSKv2wc8YsIpU610zEjPxV0+uS2xGc6ll81KP61CV7/X7Jfpdc2ccWbSVzx5tNueypWsZOroafD5v+iC+aZsJCdus/xCysm/2ijGyqaqhCEHkHok0qlqFYWUBUTz5dkiymKxRKlYgeeG7IwXyZhJ4iEYGZuFsMwsG0bQ9eWMz0qrabD5PQk8ws18vkeQq9No7XEsekJoshHSonrOGw6Z9MKvOTue+7l8Scep1QqkUomKRTy1KpVFudmSKdU1oyPoMoEhpbBC30ct0kY+hiJFGgamq6xd89ucqkUTjukvNSkUXfp6x0mki6rV6/jut98PS992UvIZGzq9Qqzs9N4nke1WkVVDRbml0Aqy1XMXOz4qiqHDh2KNTIbs6RSGq1WNYYBOQ6tZhPTMimWCuh6hOe3KBSy9Pb0krTTMamJCAlDl2ptgaAl8ds+vtPENgOuufxyDClJqJJ2tYwmQgb6R2jUYzmP0EugiDw9PX3ouoll2bRabQzdWnZkI/ygxeLCDNFd23Hf/ArCZA47kYkZoVs+qVSW0aExkpXHCXNjtAKFZLYLU7fwPR8hJal0Eiuhc8UVlxGGAdVqjaMTUyzOzDLQ2wORoLNUYvv2h0mn01x00UV0dffghhHHZhbYt+8ApWKBQjbNvid34DabzM1Ms1Quoyiwbt06CoUCILEsi2LBZu+ex4AWC/NHCQKXNWtWkcmmMQwN3/Vo1Goszs0SRBFCVbBsm0azzcOPPkaz7dBuObSabYIgQNXi+yeViqHtG8/YSBhFpJMZEqaFqggsS+XY1Cznnnseq8bH+Pa3v8mll26jp7uXudk5qpUKM8eOgephWNA32E3LqWAaJrt372Z+fhZFgcOHD/P8FzyfPXt2Mzc3x4UXXsh9993DOZvO4oEHHySbLfLE408yPzuLkIJas07/8AC1ag1D15ianGT//oM897Ir0NTlhJKmMl9ZwlI1Nm65gKCwDnHwNrSFJn0DRfygDPQQKgGpfJJExiadKfCBD94QkwflN9FyexgdHWW+XCVUO/GOrUKb389SpYaiSAzDYKlSplKr09PTw+zMNJlUmna7jbL8zPGDACljWY9EIrFMkiRZvXocNCPuB0WSSVosHJumWangOS0KhRxCxtBY3dCW94NiqXOZiXmKdCoJQtJueTiOvxzogu+6pNPpZSdBYlkmVsJC0/S4w0iCqidYWFigkMsBAlVTkCKek6rqCMXASqZQVYWUbRK4Liz3vEZCoGkqCdtaqQTWay2y2eLPPSuDIJanMk0T3/dpNhsYqs7i/ALDg4P0DfThBB7plI2iqkxOTeK6HkEgYoi/Egdivh+SyxXi6kRCw0poMVGVEIgodiwTCYtms0mpVAKp4Hn+SnIxjEImJiZQFInneuiGQalUwjAMEnYilvTQVJqNJq7bjsneJESRYMvmzViWiZSCyamj5HJZTNNARBGWZWHbCRbLFTKZLIcOH6VciXVUPc/nrDM3sbRUZceOfTRbafo7J1hYmKdYjL+ndrtFNpvlOVu30dndxac+9Q90daV+Tg5HCoXOjl7e+tZ3cu2rrsM0TkDyqrUFhAwJfOjuPFGtlYoAJaTt1Bmfa9P48b1MT8/y4pdcA+qJ4DeTLtDbM8If/P7b+Mu/fB/LJLO0nTZzcwsEQcDOnTvQdIX7t+/E8VU6+wZ5YudOAMbHxwhDHxG41N0yqhGvt1bS4LZ7vs+TO3fywQ/9T1wZIm0TicC2LbY/+igA60bP4O1vfQs9vV0omkp3Xy+bzjkbw9CYXg5EFUXn1df9Ds+98oVUK02ed81vcFwqJ4okd991H+1Gna6ODro7Olfm1tHRwdatWzlw4ACaFidpw1BgJWJ2boBGrcE5Z57F7T/8MaVsDHP/8z//c1KpFIuLi/zwjtuZnp/jB9//NkcO7OBjH/1nzt1yAZVyC8+NQOrMzB8jkTRQDUk+Z684sHsP7KPQXeLgwYNkMhna7TaPPPJIjCrZswuIK9yrx9csr2c+69evpd1untCxVGINyDCI4fFSSkTkEQQtruq/jn+9+Ga+9Adf4rG/f5jPv/4rvHjdSznrjPXMi0UAzhtah4KKnbBQVYW208Q0dTo6imxbvZGPX/dOHv6zf+KhP/k7bnnzX/HWq67DNmweOrIPgAtWnUkmn0ZKE1RJd3+ejZuGyGbyNBpLLJWn+eztNxFEcQD0nNXnce+996CpSTw/QDM8Qn8RNXJRNRMhW6jo6EqOBzM7udt8nGyqiBdInCBASI0okgRCEkQCVc3iC5WlJR9VicimLGamp/GcNjIShIFA0w0UdKQ0OHTkKKvXjrN27dnoapaXvfRlnHf+WoqlbvL5Ao16mWZ1gb07HqanaOG1G9h2ikMTi+RKo6xas4lDRw5Tr9VYmp8nnUyQzaQ4NjmBmUjiewGJRJKdO3fy8PZHOH9TL2k1iyGz6MtanGEkkUh8X6InbKxknnK1iqlHBE6dI/ufoCOfgCgk8DXcICKMoLOjk2wqBRh4riAKNepVF6SF6zqoqoKqKpiWQasZ8eADO1FVk2QyiW2nqFYqFApFOjo7lxPbkvMvuIALtp6PMDyK/jjDvb105Avc+r3vYfDzrLe/qh1/1j4Td/9UNt//SjtdAP3fZf9dRFW/NsHrqdXDU7edLmvyHxuLfzGxkhIrEKCqyvIF+9TB5EnvnOb1y81tRU/1KZq7FSWWLTh1bs8kcP1FxFAnU1uf2A+kqiGCkIfvuYM+K4VabaJKH7e9hK5AX18/reYC5YVZnnjkMDfd9DVC4eJ5LTyvTeCqPPbIEwz29TM3O4Ouqeh2gigIEX6Erpl09w7T2V1k3fpV1GsOSSvF6PAQvu8QRSHJVIbFxaMIIWk7PlddfQXd/aOouoluRiRsnVSyh1JvHwMjq6m1HKQqSOUMqpUlpJA0m3UsJSJ0ahydOMKatRtoRy3sZJK5+VlUTSVhp1Ckyle/8hVC3yEKXdBVEukUuWInt99xH+22wr9/6Qt0dnUQBLE0y+TkDIEfs3sODAxj2zkyuS7QLLKlDvRUkmw+Q7texmtUUYRgZmYe/CblxWlCVRCGLaykxeJSjWyui1S6RLNVR9UhkUyS7+jFzplYKZMHHtxBNtXB/OwEa9eN0nbquJ5HSrmUlLwURfVA1fm3z36Fhdlpau0qqqECGqaeodPRkaaO9eoXoxmgRir9g4NkMxoTk3txprcjPIdk1xqyxW4ECqEQGIaNqgoa9QrSbTKxbw+3//g2qrU2w6NrsPMdqKaFpuu0Gm1e96prSZgm6CaGriNdFydscN6FFwAWKBbZQolao8mZZ5yF57h4vuCW73wXK2GTTKVQVBVVh9XrN2Eli4ytWkWz1sb3fILAB0XDsnVWrVlDsbMf3/WZnpigvDBPJmmjSkkunebAgf0sLCyhKyYJ3cRrt1B1AykUGrUG9UqNQ0cOxfeYamBoGp29XURKiKYnWLvmTBy3xtBIL5c/9wowEuw7NM3+XbtRDZXA97ATafxQY2hkjGbbo1yucd4FZzE7c4xnX7wVUKjUqly47XIqjRbPuugiNMtgw6ZNdBY7mdi7B0tVeeDBR+gZGkBNZhGaSVd3idr8LJNTB5CahEjSnjuGoidRFBfNSCGLa0hMfT0mTdJs+kfWINsBqiuY2HeAjGVx9voNDPalqNTqdHYP4bpthkfGWZydJfpME/2mCpbZQkHGEHYriWWmMDQVTVWZOnaUdruF57RQhCRwQqQQcX+p04r7LpGEXkC9WoHAxGmFeFIl19OLnrSQok2pmEczbEIZEgSCVqtG6HtYlo7n+fT2DaGYBoqpYehgJSzCMEIRIUY6g2qZ+KGLqkYI1QRMKktNMql8TA2hRPQPD+N4HpoCYSBQVBXP81gqz6MqIa7TIoogkcqgGjr25o2YmzZgmhb1ehvHaROGMdNtDG0G07AQkUBTNdqtNqquYSczmGaSZtNB6oLOni5QdeSyJFSjESDQGR0Zw1AgcNsEfoBmJPBRCLw2Qvh0dHUihaReqdPZ2bms7RxXJbx2m8DxsE0ThIfnVDA1Bcd1EFJhdHwNrudjWglqjTqRCjKShL5HGDoYGqRSNpaZQYYShZBM1qJ3sB8pYX5mnr7ufiLFIog02i0HEYUszEzRUSxgJ226ervo6+0BYGJikrO2bKbWWGRgoEjgZajO3UEuVUBbdtxmZuYwTI3ZVhNVL3PhuRZ24igf+8S/nbRianjU+Icbb2SoI0UkTrAF57pHCUUS2wzQzPpyMguuf9+H8H0dw8gRIhkYGuLWu+9keOhMrv/rv1s5fnG2Qr6o88+fuoFPf+pfmJuLpVSa7RbXveZaZucmuPjZz6JaaXHG+jESxiKmWGJubg6Azeds5sCBQ6Aa2GkTTY8rKpoCOVsytnojW7ZcgW2myFnd7N89xT/+499wbPoYAH/2F+/A85tkC504LnzqY59BUeBofZqjk3H1MJIRXYM27/6rP6XU3YudMwj8uLc29FyuufJKcj05Ml2DKOkTDKqaorJQbjE80sNDD36d33vDbzPUO0zKyLJ/b1z5TOcyrN24gZdd+xoWKyGRFPQN5Jic3MlNn/8kRw8cxNRdms4sWy64kEazzA9+eAvpjImd1Ihkm3f+4Zs5tPtREJJVG5/FqpEYOnz7nXdycM9OSrksMvB54uHHueCci7nrx/dx512xHu3VV16BUBXwQzwnpFJzyCQT3HvHD0gmLfIdHUQqaKrEi2x8L2B+748QiyaFJ96GHNuHH/gsLfmUBg3OvWAt9zz+Y46UJwC4av0V3HnXXlzXIYossuk0mi4JRICmW4RBE9020bRehIQwcLh336McWIgr8C/YcD61hQq1OnzrOz8hk87gVqbI5vKs2bAFzSrwze3fAmDrugvYPLCZYiaD40oiNU1CLyGFRjuQCKETRjqO5+BHVVBUFFUhFA5IDVXNEIRtrISFbeVJmDatyENVi9i2wuGD+3Gb4Lk1QukSSR1NM3DcOJHmeAF7D2kcmZhg3epeBkd6aPseuqqj6LEUkp0sUKnMQjhDJlVAyIBmY5G+gQ56erqZODrJ5vM2UejK0GjW0S2TSBgMDo4QeVArH+XRh+6hXmuTzGZJZrJYmTSmKXHDNoqqIqRC2iihZ7Podld0vtAAACAASURBVD9Wqot8vpulhQUqiweIWov4fplHdzR5cnIezwmRuNQqFeq1Br7bJJOxcVyHvQeOMT3vkrTTCOkjhMTzfKyExtZLN4KqELoBhAsIRWdydg5NiaHvz9l2CZZtc3DvTnyrQck8k3xPJ+dceC6Li4uoYbhSAV1hEhbxS0YCGYmfq76ejDI8nZ1cHTxOynQ8RlCWZQtPkDOpHJfYO/56Ojtd5VdV1TjBo0pQRPw6yU6WuPxFY/9li1rH53rqnE+2k8mvTo5XTi6sPR3q9P8krPrXJnj9/9meqo/1mdjJF/fxPtZfxhKJBI7joB6ZR51dQtMsNM1E00xcT8G08kRoSBVe+KIXEgmBH/qsXT/Gtde+nFqtjKpJTFNB1yWL83PUaz4333wLi+VFLEVDV1Q6OjtIF3OUKzM0WlUUDSrVKo7rUewawnUjbvq3L2AQUV6q4jkBSwtLPPrIdtIZE0VqKGgkLBMpXZrNJh0dnRSLRZJ2El9R8aTCoYkp7r77p1h6kigKGR7px06ZTM9MoWsJnnv1sxkYzmMYBihyuf/O4KqrLiOXs7jm6t/g0KEjVKt1kskMo6PDKKoklbbZvv0hfM9DiohqpYzvOuiaSttzKXR2Y9oFdCtLZ/cadKMEJCHSsA0bqemUuvqJFJ1Ko0kul0Mi0XSYmZ3AMgxAkMum0U0Dy05x/30PUMh3EIYSw0jS9jymphex0ymue91vMTgyTsJKo2kGkgiJBz97Ev7gRTSdJp7rsFT1mJ6cxfMC2s0y9T23YuT7kVLFbftUl2rc9MUvUa3UObD/MK2Gy9GZGn0ja3jWxduwLIv9+/YRBgGLCwt8/wffp1gq0tHfBRqI0KO6NIuhRazfcCa3/vgO7v/pA+zesYfenv5Y9zWdpL+/myjyufzyK0gm09TrDRRFks3n417nKKS7p5dyo0rTaTE0PEToe9iGxXe/9W0eeughHNelf2AAKWHnzifp7x/g7rvuob+/n5GRYe69997l/r8ESAOBQyZnkcsWGRoaQkpJpVLFtlMkUwnaThOhRKw/cx1Sk+zZs5t0OoXrOjz/+b/BwMAAqqITePGCqRsaQgrOPvts+vr6MQyTdCLNzV/+KkMDfeiqoFJZwE5Y+K5PZalMpVLmvvsfoFDoxDRttm7dimkYyCikkM8xODBAvtTBmjVrabVaSCHJ5AvcdtvdzE7XkER4ZhHdqzJ79CCanuDzN32Dtie4+ZvfY836TVQcBwcPW+Z59L6vYYj9eM0qWmTR1TGClcjSdjKU8g0WFqYpVxYwDJViMYdi2OQ7uimUusnmixhG7EjbSWt5IVVw2g5CRIRhyKFD+ykWClSqdfLFAkHgYeo6pmnRcjyCMERKia5aaGosqC4UQRSGJCwrln+KohXiNNPUcJwmnufQrJYhDDEVk8lDx5BSYhgmpmUtL6QnnnNxD2ysT4tUyOaylEoF5mdrhL6KplooSqxLGyUs2kjq9foyyYyHpunsevIgkfBQdWe5h9RkcXGRjo4ODAW8VhMZhXSVTlRmj2top1MpGs14u6rEnIuaoaCbKrquoQiFaqWCoigrjI6u61JeWmLiyBRzc4uEgSCZTJMvFIlEDH0ulTpxXA/L0Gk06oSRIPBcoiigVOqmWffwfQ/btrHMJFGkYeqpmGEYhXqthRQ6URTryeqmRqNZQUpBGPk0mnX8IKDY2YXrurH+bzK58t2uXr2KyA8Y6B+hu2eEQmkNw0NpdG16JcgbHBwgCH1KxW7clo6qxj1tf/VX71/5npq1Kr6ICA2VQ4f3kk6fYAtuLM2ga5JAqgwOj/Lyl74EgENHjvDlL3yB2YOH0TUVw9R4zWtewvZHfxpHlsumqCH5QhpV8+joTiDkiV7Mt//Jn9LT00cYukilRTZTZGzwIj58Qwwn1nWd5z/vas466yw8z8NQ4OHtD8XnVVSWqg00s8mVVz2bRx/bzpEjR3jOJVfwspe+akUq5qf33c/U0TIiTGAnsmzd+mymp2f4q+/+2co4HKfN5i2buPSySzCtmKTGdd14zbUUyosHWFyooWAycWRm5bh6rcn3bvkhiCQXXvh8PnLjh3C9CtXaPOOrVwHwsY9+lD98y7v4nTf8IVdc9gKkjFCxWVpwec+7P8SZZ40zM3OMhfkqH/2nT3LjRz7F4UNT7HjiSXQtyStf/joG+ldTKgwhhYHntXj7H70pntv9D1Kpxez71WqFDRtXMTO/l9nyEY5MxMHltoufzdJiHVRBIqVTqc+xZ/9uLrr42ehainbbRVEkldos+YxOVN7PcClPetc7EOlpRHKGnq48pq6jKAkWGw4f/NHH4+svt5pBu8RzLj8HNI1k0o5/J8NAVRWkFBiGSdsN+cyX7mP742Wa9Srv+c4X4rGt2cS2sy8iUA2E1LnmqqvpKHZzbLJOvV6nUqnxxNRuDszF8kTXXfxSWk6d0fFh0tk0PX2rcVXYe3SOnbta4HvUFhtIEcV6wDICIQh9haWyz623PYamSEK/RRi0iFBZrAmMRB6pqPT09xEpoOk5giCLlgipNmrc8s39uG4aRfXYuC5Py/PQdQNTV5idmkANXRrVRaanjqArKq26i2WlcdwaiiFAMXEjm6Yj2LjxTMIgAnSe97xrEFLw5JM78TyXY3OTaGqG2Ylp5o8+ydoRgzCoEAQOYRihazaeF4AW0vAaqGY3Qi9QLpfRZYVswiGhNensymAnLDasLXL2eA8Z20RDEoU+ug66aVJvVEgmJBduGWG4V0cGPqEvadQFilqkWiujKrE0UBAFCCRtL6TVqpPPlegb6KVWbxCJiAsvOJej5V2Uypcyu1Cj5fq8+vWv4/GdO+L1RT+B5DgeWP0ijdVfBztZYeS4P386n/4/M9fTwYRPDZB/lR7VUyHTv6r92v6SJ1clT/2h/k+UsU/tIf1lz3tqhfS4eQ9+Fe/Br/6HgPTkfZ5q2zOB/j6d/aLMyFNZq9XCskyElHh+gJWwqdXj3tXjn9nb283OXU+ysLREV1c3umGgGwpXPvcybNsCRUGIuL/M9z3OPf9curp78BwnJlxVVQzTpKe3D8OMRcALxQ6SyRRSKNRrjdiJiQKOTU1i20mGh0Y4d8u5RKEPUqIpGj97cDue6xCFx4WplbjPVsSO7po1a9m27RLCMCAMQ3RDQwEMwySKiBk8PQff9xFRRLvZplFvYRgquXySru5OctnscnVeJYoCTMvA9102b96EH3gYukY6lSIKQ3zPwzBNkDrz82WCUOL5LoKQZruOogrQBQvHjiDcFqYM6S6k0Q0DTdNotZp0d3cvV3wanHHmeoIgIJcrcOH555HJpslksqBpGKZGX+8wQeihaiGWmURVVJBxhjBaWIJ6k8YlG7B0HURItjOi6c6xuDjP6tFNyKOPsujbLC4scHDffo4emWBocJikncLQDZy2SyaTpFYvk8polDrSWAmFbDpDPp9n27ZtRCLuHT333C1Yhk6xWMT1fNxWm+ddfTVjY2OkM2nCKKRSKWMYOgsL85iWQTodyyal02nCyCcUEiFCTMMgkpJNm89h/cb1tJ0WnV0dHDx0kGuedw3nbt5CPpulXq2iqhq+H5DL5jj/ggu56667qVSq5PI5TMNcDppcwMf3m2iGQIgIVdVJpTIsLVUIPI/A9/E9D2QMYV6/ft3y79FFvVGjXKuxf99Bdu/Yg2nGxEXl8iKO49CoN9i9aw/VapWRkRFKxRJDg4NkMjZ7du9CU3U6Ojo4NjXJxc/eRi5fQjcsWo6LaehIKUglkxw+dJD+oRH8MKBUKhJJQb7YQU9PV5xI0hWyuQJ1rZuSHeD5AS9/+UtJGIIXvuBqfC+k0WqSzqdpNUPO3RyiEvdyTUw8yd4DjxMEHig5gsAgm6lh2zaLi4sEYYCi6dSbLYzl61HTYvZB09RX7v1CMe53tSyd0bFhZqaP0tnVgev7MfmIYVCr1yh0dIESw6GliGIhL1WLE2Guy7HpaRRFodVqEQQB7XabRrNJJpshEjFLtKKozM3NkcnklgNKHdMw8Dx3haX3eIY3DENUVaVareJ7PlEo6OrOk8vbKGpAGLaZn59E07S4h9Q0V5yCMAxZu3YNqgqVyhKO4zA1NUkmk8HzPGq1OkKC5/pMTR3Ddd24N3x5LbKTSbq6ugkCjzD0se0kumnguC5SCFynRW9vLB0jhMAwDLq6urBtm97efh568BFuu+12IhFXMj3Pp+141JstVE0FEVEs5FFUfRnuG1dqUqkklmXhB0HMBh0JNE2n1W4iEWRz2bg/XlNAVeju6SGXj6HGUgh6e3uwbRtFM5bZXBUUTVthq1dQuPPOO5ibX1i+Xn0i0YulPrji/GhGL0E4zJM79xAGCqoWw+5c90R1NZlMYpoJFAVWr17N4kJ1ZZtwGxCG+AJabZc3/t7vkE6naTQafOKzn+HOe+6k1WigIvns5/6FN731bSRte+X4UqnE0tISum6iqnDWWRsBsEyLO+65i3f8j3czOTlFvVFmdnaWV1z3m3zs03Fw9PrXXUcmkyYMQyzL4sC+3WxYvx6IYeVS0SmVSkRRwObNmygU8mzd9iwqlQrPuuAiAP71c5/hK1/9Jm94/ZuoVusYFrz79j/hWzu+Tj6XByCVTgESw9BJpWKm+kwmDuAlgsGRIVRV5eDBg9xwww0rc0ukkrzyJS/jZ/c/RrUakcnatNoNEgkLEcX34xvf9EYeefhR3vSm3+OrN3+Rgwf388EP38CVL7yGrrEu7v7J3axevZburj4uuWQrf/yu/8HefXtYvyGG977h9b/Lzp1P8I1vfAvLSqBpGq96+UtZv3YNUkquedELueW7t3HLt27Ddw1u+tItvP/DHwHg8ku38oY3vISu3gR79u3HsHRCEXDTl79Dvns9VjrPkSOThKEgnysS+DMoWpkHv+/wt9/8V540b8dFsHffDgxb4d9v/xLP/59XsWtqF1krx5vO/X1G+gqEbgNdaEi/hhCCR47u58bbv8nu6QlaThs7keZFrzyTafUoL/7UX/Pk9GE603k+8lvvxAtZ1gONKBRMypVjbDn/HCYnp3jooe189aFvx8+1VJ6Lx88nmU6SzmZQdR0iDVMdZt2aTWzeUiBSIrL5EqoeguohllsPhHQolJKcf8H6mPzG0NGNBJVmxNDIOnTTJpEwaDabdPcO0GoEHJ2Yw20LioUurnnxGIlMC92AzkIHPT29pDMZ2o7L0PAwC0uLjI2OMjQ4wNz8POs2nIXvg+ODH5q0fR09WcIL4eChQ8uJsjhZqKkK69ev58D+fXR1pDmw90nWjHfwwudvpJR1sMyYoyPwQyKhEEYiFj1REqTzg9SbLrlsgqA5g/AWSZgQBE2qlSaq2kAVXpxE0C1ULQGKgYhMkok8hp4k9ARe28UwTAzD5NixaXbu2EWpWEQIgedFBKRZbGjYySznnb+FKIhoNuscOXo0Jsls1EkUQhJhJ2Yyi53J03Q9ztx0zs/1U/6ysNqnkoKR8ni1VfkP+576/+lkdk61Z1KpfKrxnTyvpzr2eNX5+FieSXxwcsD/VGM9+b2T/z7d+E+NZZ5p1fsX2a9t8Hq6LMGvg8nGIrKx+HNQ3f9K+1WbotvtNmeccUZ8oSmQy2cwLYPv/eC7eG6ZhKUQ+S65TBLT0lEUDcNIMTk5i5AejUaN6ekZ0skid97xAKZu0d2TZmy8nyCUOL6Pbhp88Ytf5NGHH0FRbDwPND2BOP7gEQGFfAZFhXqzxrZtF1AuL3B0YpLassD14uIc1UqNczZtwdATFIqFZXKVENu2ka6L9Dwef/hhWs06qGCZKRIJm3K5SjZT4Ctf/iqf+8xXSBh5DFNFV00swyb0JaHvMz83i+87DI8OoKoSSRy4zswcQ4iIIPCpVJZYmJ/DcdqkUkmQAhEKDM3kyR07UQj50hf/nVajTUepm30HJ2g7IcWuLkw7gxdCICWqoiAigedGSGHgOm0qS4tIIvww4OCRCebmpkhYBqgSV/82jvotRBCyOD+NrvkoImYg9gMfwzDRH96H+toXxOQN2TS+62AnxigVx+jq6SNwpjCjGqXhtXT3dLJhw1rGx0bo6ixRXlqgq7NENpNiYWqOrJXi8YcfY8cTuxlfdQbTU8e45Vvfjh1mJKHvUK8s8egjj9P2JHsPTyF9jyOHDzAw1M/o2jGE8EARywGHTrPZiOVv7nsg7mOUEVJRkSIEBIEQpBIJdE1D1VUUU6dvZIhas4kQgokDh8ANyOVyLC0uUa5UueP2O7jyyivIZrOMj49z2+23EUURYRihKQXSyV4UVEAuk7vMkLRTtCst6gs1csk8N33+33Fa7oqDGffMJsnkcgwPjdLfO0DbbZPJpFi7bg1RFNFqtdm48Uy6+jp51taLeWzHTtxAYpoqGzasJYoEP/rhD1m7Zg1L5TKHDh/FcQOWlpZ46MEHUIByeQlNU7HsFFEUMXl0gigS6JbN8GgP/f2DQEAUhZTWPIuUpVHKWvjNaarzO7FklZ/edTtpKwWRwFcihkdHkSik8t0c2juBItM0Wz4HDhxmdv5ZJKw6ljFPX+8A+/fF7KUp2ybwXY4dPYIQ4LpxDzUAEnzPB0VSqZbxfZds1iRhm+QLJZJ2BrFcNUfV8fyAwcF+atVFXNdBQUM3UnieR0epRL1eJ5FIkE6nVyRrVMWg2XCQmgmaQXd/H5liGikFnueBosTQYkXBMAyCIE5MaZpG26mSTtv4QUAQSIQUREIwN7eIridJp0r4+w7h7N5PKhV/z6aRQ9NV2u4SmqZRqzrYdoLe3r4VwiYjkcKy0yTTuZh0Ro8J5oQQlMtlxDJBnalpSBEhpESgk8nmabUaaFrE7NwcIjoheXY8YDINm21bL2XzOefhej6pTBZNN0kkU6QzOZAQ+B5LCwtEUmIZFtXKEgo+ftCIe38VhUh4BGELqXjkcjkcp4Xj1vHDJooat80IobGwUOfJnTuwTJ2wwyAoGSRSGaSIq+RoOroRy7g0W20u3baV0ZEhjs0cIwLCqIihPrmyls0vprj97iYjI2Nks3l836PVbuD6tZV15Ue33ov0Jarv8ol//iyhf4LspLuYRifCtGysVIY1q1fz/ve8G9MweGLnTv74+utZ+6PP0/mVj/GHb383YRDywfd/cOV4VbG4/dZ72btrjk9+4nNoejyuC87fwjv/6I/47Be+yMVXPJ9zLryK8TPO5l++8GmEEGzbupUbPvTXZDIZpJR4nsf46BCe6wBxgtOwk8xONxCRxv79+0lnEnzow9ezefPZbDpjM7lsjlarxfs//H6+f/v3WXvmei665BJu2f0Nnn/VVWzcEAfSyjKLNAjq9Sr5fBZl+ftrBwJPJsnmbPoHurjhbz9wYm6qwHdrfOADH2DX3iM4jkM6laXZ8DDMWCs1CiM+9r/+kQ1nDjA0mmHTps3xfbJs/f3DHDo4CcDIWDc9vfFnaLrPD3/0HYZHhli1psQLXngV7ZaL50UcOTLHzf9+EyPDw4RRxHW/82re+d53sfrs9fz1hz9MvV7nzI0b+OQ/fYRWwycKNdZv2IwXwODwGBJj5fNd12fvnkPc+qOf4pcjfG+A8oMb+ODD7+U5f//7rPmzF/KKz72OsbcM8fYvvJV9s/tY3TPKLe/4HBdt6MNMpnjwkYOU6ylakYeiKExXFvnwD7/Mpf/wJ6x6z2tZ/95XcvZ7X8mbb/pbds8eZVVHH9940/X0pfJYeoZkqpPyUp0ocujsyFJr1Onp7eaMs8/mu4/EusYvPf9ljA6tRtUMFFXDTKQp1+to6Q6s3CCalWN6KeSBnx3BD1R8N0LTEvihxA8EKRsy6RChavihIJQWfcObkYDntPBaDQ7s3c+RAxOkMy5jY2k0LMKgRtbKEXlpAt9msTJB4PtkczlU0yZQTHwsjh1bQDUSlLq7mV1YIlPoplw1WShbeCKPne1kcHSUycnDpNIJDFMnjAKkFCyVFxkdG0UJFHqKXZhaC5UWactG+BEyksvSZgnS2RSansVODRBpGUrFHKps0axOoKs+EgXTVMlmuzGSGkGkIhSJVExm5lo88sQhFDUgCB3CMESqBslMgUqjiRd4DA31sHpVH57nkjCTSKXA927fw2MHQpptD6fdQFN1qvUy255zKWEU8s1v3Iwr5tFEgou2PJe2H6InbKbn534hPPU/U8BRuwRK59MHf6dWQp/Ot/9lyZlOO6ZnEDs8FSHV/037r/rspxcu+n/ITq0+nq4a+Z8rSz+zL/VXxWufOqYoilay/CfOfXyfn5/b8f1UVUUsO2nAzx17nLjp5CzL092gx893OpNSYkiBQMEwbW6//U7Glqc+PxvT/7/iZa9AsyTtRo3BgV4efvRxRvr7USPJ127+As97/ovYf2Avm86+AClD/KDFyNggdjqJ58QyD8l0ClUauKHLK175ShKGjh81KZZKiFAwNzNBPlcikUigSIee3iKKkUKGEYFh8JnPfJ5rr30VnekUHZl0rPMlBJWFJYRUSaZ1UskShqWhaXBsaorLr7wUw9CRoSSUFYSS4ju3/JjNm87h2tdch6kr6DpEvkcQtajXXLK5HAJBV2YYAMdt093Ti6KAiCQdpW5U3UBRTFStQBQ2yKRTOI7D5NEZ8vkOjA6DSy+/nDBy+Y1rLkNIgapbjK9eTXlhFkUR5PKCUMRMlMVCFsOQKIpE0yBhpskWNKSu4bVrqMJlfN2Z1KsuP/nJT7jkhQoSFSOhUujoxA/A1HxarVgeJZqahdkljD96BUlhEwgDoYTseug+ekeGODo5R3+HjSsVAj8i5naRFLo6qLXqdHUV2bdvP329AwytX8X2nz3M+VsupF5dpFlb5Ildu3j5ta9ifn6Rzq4uoqBFJptFXVxEU33OP3sdc4s11q4f5/HHHqG7u4diocQZZ6xjenqC7u4BHKfN3NwUs7OThKFE17JMT+yno2uQem2eUr6D0FKIIg9NhDTKiyRzOaqVRQxNoXeoB99z2L9/P+ds3oSC5KqrnouZsGOtTl9BVU2CUMFY1uUVQqDrFkG7StI2CVyLanmRdCaDQMVxfa665ko01SQSgvmFGXRVo1DIY6kJND1CTwhCX3Dbrd/hwgsvwPN8Bgd7kAR4kUmr2WJsfADH98kmbbZv3845mzexdduF7N6zk3WrN5BfswohIJIQeDED6QMPbOfyyy9j376dpNNpspkC5cVZXM+jd2iAAJV2s45hK+hmEYwkfuUQ9VqRnpF+hG6zecsFvO33f58/eNNv8+QTk/zO74GmKcgowRv/8D10d5d46MW/yfjqYebtLqrBa8mb30KIfaxau5aFhRmKxU4q5Sr9wwOEQcTcwgLZbA7dMPB8HzPyKVfaFLt6UaTAj1RCqaCEPm4r1l1O2fkY4uzWMI0Utp1BNaHRdEjZKbLZ4jL02owrF0KQzGSJogg/8OkfHkQKFT/wkcssnCoS07LwfJ9kJrmiHaked05UUPCwDBtTtwjDkMXFWTo7O9E0qNUqJO0U/swcKgr1RgPdVNCxCEIV08oTBpLujm5UDYIgwnFCOjpz+JGgXi1TK1codnaiCDVOWKXTmJqBIlQKxTwiElimSRgEBL5DpemSTmVRUejsSiJQUIgIwgAjoVNeKNPZ2UUqnUDR06jCwzQSoEiiwEOxkmiGgWpa+I02bqOKr0t6+4bxgxDdMiBcDlRUFRQ1Rn/oJslkiiAwYyZ0BJ7nk0pa2LYJwuDggcP0XTsY3y9+wNbCGRiaTthyafpxAHe7u4c3TXwO3/exrATRksBUFT69ZhUKcXDqJ+/jK0NH+PLkrcgJePvgZgzD4J2P37iyxlx1zTbarZC3TP8p4Vafhcd+uLLtjftuQMiQq83n8JzC5RTzJVa/agOX9j6HXZ/fzfwjC7QaPlZWY/Vl42x8/RnYsyf6Qt976Aa+WbuZVYUxdtd3UliIYd27Gvu47CWX8cVz/pWPfvzj7Nq3D3TIjeYYumqQnlf28Madb6PRrJHNZrh+1Z/hH2zFCQPg67u+ydS9k3T1dfPQg49g2zZrw3HG7CHeJ9/D297xu7zyt17Ai97zcqbvn8Grevi6R99FvYy8cARxls5jr308XkNaDe6t/oQvzn1tpVduKYxlgb5S/hrb9/yMvx+9AcPQyWZPQKr/5tDf0V8cZOAjg3zWuJFgwuNMcTarD2/Ac+Pf/dbWj5gbmEatqoRLEbqq8fDiIyvnuOPuu3nxi17EVxvf4v7Gg6gKcf9oPcLelETK+8i1k3wo/V4WylXuf+AJPpX4KENDQ2z+1Dmkvpxi6u4pmtMtFE1h/IxxXveSV/Fbr30ZD9fu4Wu7foxup2hUq6RSaVRN59GlHSuff9cPf8Rb3vx7fIUv8fXZr3Lx489jYGCYVc8bprq/TnO+RavpUEjmGC6NctUl29h79X4+qnwSFYmQCvJal5vcezAT8KcLL+KcoTHefMkL+N7Rh5grV6g125hpndJQnoHzuxi9tJdviAd4x/QIWtggclrcePGnl58ioGsmYRiw/8cHaS9f69c9+7k0awv8yL+b73fehZQgknFbgNAkqVIa0e3xvuxrEGGIodhMzVRJp0xUPU2tUSeZzuI32qjJIrOzLUYTPo1mmWSii1QmTSaXJ5Uu4ruHMFU1RjeFdRKajqLM88j9i5y1ZQPDI2v5xKf+mbe86S+QYYvyUp0zNo4jwhAVlWyuiKrmSBV7SaWTOE6LbKqLSI0wEga6lmTh2ALpgkk6mWN+5hirx4fZsWcPP7tnL1s2KWh6CieYwVA7CEIPM6kQqSZuo4aRKTC75LMqV2d66hAdWQ1TRqhSQ9XBc01QmviBzpFDbVaNScK6ysBAjlBUUWQCGZWxrASeb1F3l1icr1Do6MZxHEq5LL6IuOv+veyZaNPR2Q9RyEtf8nIi4XNo8jCHD0wxMrqWIweO8OyLz0YP24Rhk56OZyEbM3zib67n1W+78bRERj8XLJ7kxp/qxzRIMAAAIABJREFU15+ODRjA+s1gpY/1dJw7J+978vtPV/l9yjhF/jw0+KnsdOc/ORY4eWyn8/WfKcHULyKFlfK4/vGJftif/+zTHXW8cvufj6m066+//j998P9NkzK6/hft89/FevV0duoPGR6KIXva6Ln/oen5dARSx8+xEpiK+K/neRxnVYui6D/M++ngDU8X2K7ciChIFJxmE7deYfjB/cgowh3rJ5VKxpqCkaTdbLM4v8j4+CpS2TS5fA7DMOjp6iaTS2MYNvMLszQaVUZHxmOIL5JMrgCqzk1f+CKjY4OYpoVpGHH1xhNYpkUiYWEaCYSQ1OvVuFdRUZclJxTOOz+GDFsJE12NoW1uq83Xb76Z8dFVfPMbNzM0MIpmGHhum3w+j23byxINFm6rSsJOMTQ8iqbrFPJpykuLJBIWbdcl8F0MI0G93iSfL/CDH9xOKm3T1dW5XL0LcNwGbbeJpiscPnKYhx/ezvj4KgSCZCpJOpNF1wx27dpJV1cfuqFh2UmSqRSO+7/Ze/NgS677vu9zTu/L3Ze3z3szb+bNBgw2AgS4QARBmgtEkZS4WZRsyYwiy1KkUiK7yn+4KnLsSlKKU6mkJNlKZCmORIriIooQARIiQXEDgeFgm32fN2/f7357784f/QYYAAOCtOUkLqerbs3c1+vtPt19vuf7/X2/HonvMzraeClSqFQs4zgOYeijKHk93NbWDo6dx3Yoqoqpm1imhaIqZJng3LkzzB7Nr7OaHgQh0FUNb+Bhuw5pnCIe/z7Kb/4s6R2zJEFE6A3o9zYZGxllGAyoVitcPvMC7tp3KO57C54XIqRk6Hm0d9p5/lqpnGfdahLfG6AqCteuXWV0bIz9+w+gSJWnn/4+hmmytbVJnMLk1DTDgYdh2piGyaXLl7n7rrtZXV2FDBRV4LouBbfIYNhBVRXmDh5gY2Mdzx9CHOEWK5QqhTwiRdcRu/mWpVKFDInn+TQaTXqd7i77BZOTk3h+Pio/v7CQSyvTlOHQo9VqU69WUSQkUf7y10wVhEKhUMAuOFy7cp1ed4BpGAiR0R92ifyIYrFIsVgkTGKiIOHRR7+M6xYZH5+i1d7iwIEDlMuVnCFVNRRVYX1tjdHRGsmuZGt67zQXL12mXK7gOi5DL+CZ48dp1KpMjI7k0R5ZRrVWQUBumtNoEkYRlWoV27JQVA1d0wmHLfrDiGJlFL3ikm1fxR84hHqN5cU1GtVRysUKUZKwvbPNPXcl9Pp9wvQ25udP84//m3dycL2PrkWU36eRZFV2+vfi6qe4fPEHTO+5DVUqFFyXLE3IUigWCvl5MSxEZRSnOYLjFvMBMSERgCJBkqCpAt2QdLo9dENDN1RUxSDOYjTdRdNMPK+Ppqp5jaumkSQRaRwTRhFSSnzP23UTTuh2u7iOy2AwxDB1pFRRVQ0QZGlKlmZIqSClkj/FhKTd6easrK5imkWGQx/XLaGpFkKoxAuLKKqCtW8GqSh0tjYIowBrl4kdeh6Goe2+6FV0QyEMA0qFAqViCSEFqmGgaCphFGFYZh4tpWmEYYgA1lZXyYSP41qYtk4Q9gmCmN5una2iSMIwpFAoIqVAkZBGASkZhmGTpiGmZeB5wUs14NVKFUQuhx322+i6JEOiqwrr6xu4bgFN03MDk2y3XCFNEVLZjfvRIMsjdEZG6mTkksc4Bk0zuLs0xWFtnK3NbT7wc/ez/L42zbvKZGTomg5C5GYuZNxp3cftEzGf+T//EfffkfHUjkekaEDCnUaVJEn5kxPf5s4PHePkH59iZnovrlPgy5tfQUqJPWJx+6du4/ZPHUXIjCxLuKd6iLsmjxInAYvBOheUC8w8PMPsR/Zx+4MlZh9uMvmBo6iWyidnP0GvvcN3v/VdvnT1UXpZi+npaWqNKtNvmWb8QxMc+tAce7Rx9sXjbC5f59Nf+besfmCH+jtq7Ll3CgQoQuPixYvYtsvfGXmEml7m4x/9ONr7bErvKXLyxRcZGWsyMT5Bt9uhXq9QM2rYlyzGJyYpFks8f+gFDn3iILf/4m0c/eQRpt45iTWat583zz6AvmliagEH3n6Y08PzL8nn5n5mlmO/dIzKXAUywYcnforFxSWKhSLJR1O69wwYPzSClNDvDdB0A0NXmTb38N65d/Hrv/4bfOAXH2HxyCJpkt8HYZBHRI3eM8axT93OH/7jf8373vEepBSc2Hme5XiVVquF4+Zu4qZlARkjbp13Nh6kWKxwcO4o3wqezOXfqmT0nhEOfngft/39Ixz8ucP801/+LR4+/Fbsgst6ssqJ9ilUzUBRFRRVJc1g9K4mR/7+YRqX9/LBj36Eg7ffzldX/5rN1ia//q1/xlfv/ALqWzP2PryXg49M8vfe8TD//OBv8YF7PoXTHOH71tO4hTL9QUgU+Ag0VD0fZL2/dwfNrMb77nwA62ED68MmR396L3OP7GHmwTEqe12EBDcyab6oY9sGlq3zV9ZTSEXb7UDng/n1AzVu//hRfvu9/4Rj+hEs02HV3OKkdm7XuChDVRVUTSOKYqI45GPqR9F0myQTLIysEVgej3SP4VpFkkiC5tDqSGb330GnN6Q5kicyzF+/xszMDOVyDduIMfQERVVBmsSxj67O0piCwFd5+ulLjE/a7N13mBMvfIvDtx3CNqzdzOeQrY0dNjc3SFPBlStXGRsfY219HsuxmZyYJEkDbEfB0Au025vMz1/FG4Rosc/2yiJvf/MU0TDFMWwyGSIykEJneaHD1YWI2sgBipUmO61tCrrHoLuJoWdIVWUYxKwttSgUKziOw4XzV2mM1zB0jX7k0Wg2SdlElTUGnkemBGxtaFxfj1nZSXjm+WWuLrVYXvSZmD7C3KHbiGKfh9/5Dgb9AWR5VnKxWMIwXU6/+Bx7xlw0EaMEY6hVjf/pz/4FcRbyd37qY6SErzAfhVcCwVx18tp+8uv1n3/UeT+0P/1j7eeNywRfb/s/rkT6R1nnjee/kUz6tb/j5muTEwjab//wo73Ffv/fopJ/3ClO/Fcc6KvB2I8y3Wq5G5v5cRrKq7+/kd775n+Db/w+ANa7f/U1dHqWvXKU41aglPSV23v00Ud517vehWVZL7GpNxrGDXb31Qzuy7/9tY335fk5E2xlGX/8v/0rPvK502RRDB95F63WNq5rI7AIhj79XgvP61Afyzs6W+sbrK2u8baH3ka52CSOA6SSQKazunKdqekZkApxkqIh8aMeqmaSxilR2MNxagRBglBiQEOSEkYBuqHRHwywzSJB4DP0+hSLBdbX15gc28PQG2JbNlEc4w8GVKtFPvvnj7L/8GHuvOMIUgjCMEDXddqdFmsLVxif3ovplJi/usD+mXH6wyGZkBRKZTQZ4g1TdN0kzhJEZpKkeTRNu92iVCri2HlcQKFUwPdj+n0f28lBy+bmBvV6jdiPUVSBwGRnZ5NCtUJre5PRZoNg0ENVJWEm0HUdwzCJw4QkzTsdQkiSOCXbZXl1TSOMol155BBF6gy9IbL8JNfnF9jX+BW+9Jdf5sMf+gC2qZNKSXR9GfWpk4Rf/T0g4PjTP+DQ3CyWJTBdl6JT5Iuf/wuOln0K1z9Pp/wAtmOjGwZbW1sIoTI62kAqMgcYMuHpp3/Avn1zFEtlojjK3VX7fTY2tnBcl5GxMRzLYm1tDc3QKZXKyDRkeXmZIAipVqs0Gg36/R7nzp3lvvvu5+SLJ5ma2kOxWEIoKkIKnvve37D/6J04ZQMhNZLAJ44SLNvi8uVLNOojhGHESHOcTKTs7GxRqVRfkgb/4f/xb7n//gc4fGQO27aI45Q0zZkPITI+//kv8Iu/8CkSJUagIBUVKTOSCLa3dzj5wgs8/M63EycB7a0ea5sb3HHP3fhRiN/xuHD+PFeuXOGDH/oQrc4GpVKF7c02xVKRjY019h/Yz9bGOlJG1BrjRGmMpukMun2kzMFyHKe0ui0qxQKDdptzF+e5445jdLttCoUCiqLQ7XZZWFjgjjvuyOuxBRi6SdRfYrsT4oUqzWaT1tWnqdsZv/PsDP/1b/0T/uW//O+550338tWvPsFPfuDd/PzHeyRJjNR/CtM8TRBaqL/zImEYwz/9CRSZmzUdP+5z55GzhKGN59deer7opoXv5zExuq7vyhFDhGah6yaDfg+SlCAYYlsGceSjGAqKtPKsXZGhqQ5h6mOoObMapX10abwEyuI4RFVVPD/KY6h2wRciI8tAkRpJnJGS13Vubm5Sr9dRVYU8YeZlWVgcxXhenziO0HSFKIpw3Rz8WqZNmmYkx19ASgXl3jsxDJV+awO3XCMmj+CRQpBGHoqqQaoTxQMUFQbDkHKpwsrKMrVmHmeSxEneyUfsAvIUXc0jaNq9bQqFMr1uH1VVkYqCoevstHbQVBXTMtBVg163TangMuj1UAslNKETBh2kpoEw0RTY3NzEMA2KhSKdVouCq+ZRJEqFLA1QVJU4SQnDCNu2GQ7yATYpVDTNYH5+nvGJMfr9DpBQKpTQNH0371hgGhbd/galYp1B30PXDTy/S5qkFEtlwiDKQbaiEXhDDCPPvC5XbQrG8/SHe/jv/sU6v/lbv4huXMB1C0TJA5w7e4nGuEuhaGGYKjs7G1Qrs6RpjFQEntdDZBqOYyOVFClUOp0+i1fnOXToLk6dPcPh2/YzHIR87vOf5ed//pMImUu5kzCX/l+5vMSdd+8nSxJQUkZGx+n2I8qKZHNzk42dNZrNZl5r3+4zPj5Or9ejWCySRTH93hBN0yiXyywvt7nvzfcwf+08164tsH//UbreJlJoZFnGTmuT1AfDMilWyqRkmKZJEnt877tPs7y8yoc//DOoj+ukiUT7mYQ0hX5nhTjNqDdHUVQtP/7hAM0u40UplqEgZMjy8iquU8D3QwqFaYaDeR7/ymc5dOBBDhw5hEi32Gl1mZiaBqFy6dIZ9u6dZnt7i3qjyvb2JivzG7zpTXcjJASBR6YYkEmy3eglbxjRbNZJswippHzrW08yPT2DqphMTOzh8vnLNJo1hKpgmCaqobOzfh1TN4ijhCTJ6A2GHDl2O+Ggw9raGtWRCVI1pN8dUHNqbCxv8vhfPc5HP/5JdtrLxMmAw3cdYuWvfcwn6uyMnWZi6gg7W6voYps02GZ+oYdUpoh1wZ6ZGTTN4NL5i5SKdcpFj6e+8ySdbck7H6xhGDpSajx74lSeOz9X3/WkyPtApmXh+yFpJkiJ0XQFmWmcv+wxNjFHpSExrDq9TjuPhHNcPC8kjROyVGA6DpkQ9Pv5INxg4CFQMW2FLJHUq2UuXTzJnpn9qEpMv7OBoZtomkWrt02tug8hdRLhkUYKCNjc2ARgfGKcreVLWEYPsphOK0AKiWq0efKrC7zz3fex0/Lwk5iTZ4f85M+8C9ccY2HpDGkWMzt7gNZ2l4Xr15ibO8RT33uKo7cdojFWgUQDdDQ949KVs5w9eY39cyNUymUK9ggnvv+XzEzWcawVAq9OsWpD4CFEQpLFhLGFM3ofTrFEGPhYqqS78jekSZjHWcUZtlthe7WNbkp0K0FVioR+hGXEDGIFXaqg1VBkRKc9ZG094PlTFzly7F5Uq4BmWszNzXHy+WeZnBpFleC6NUSWPx/W19exHZtioUCcKgzb11m++jyH52YwO29Cnc14VPlzfv4f/D1UYSM05RVM64128FINqPJaKvBW5M/NLObNysgf5kFzMyB7I1bz9VjZLM3zaX8Y63pjvfgmd+U3ml5vfz8q4L0ZP9wgzvL/vzL55LW//fWTVG5sT9OMH5t1/E+GeU2z+L+9+fvfHsP6HyYF/nEKrYUQLzGv2ux9tz6aNwLR2Su3d/vtt78EWF9dcH2rxnqrBnQrXXwmRX6vhgGf/eN/w09sKZAmpEdmMU0LKRS6nTbPvfAintenWsqjTUZHxhhpjlKpVQijENsq4AdD/GCIaThst9tUqg22N9dpb63jWDat3g6W7dJutXEtWF/doFarIVSIkxRVZqiGgWZYqEJHN3Sef/55ypUqjl3IjYlUmecuRhGGbWEUbRQBW5tdjt19F+2dHR599FH27t2LqqqcO3eOQT9lz/Q03nBAvVQiyeLclCNLMU2dOE4IghjNUNnYWkE3dDbXN7BtazerFjTVpNvpYpgmn/7MZzg4dwhNFTlL5xaQIgUkfjCk3/P5/Oc/x3333YOhSYa9DkEU4ZQqCC1n0qQQpGlMloGum6RJSru7jVt00VTJ+uoam1tb2AUXMri+cJ3R0VEicZFKpQThLLpqUKkWUZXcYER+6wTpz70X44E7kKrJ2OQEkCJUFdMusbO1xczEOEXZJ1o/TWX6bqSaIWVGuVLGtA0yMpIkyTtaQmFkfBLbKRJFIZcuXqDoFvC8Ic2RJkJIKrUCndYmZdfGsixMw+TqlSvs33+Ab3/7u8zum0XVNRCSJMk4f/485VIJXdeI4gjLNlhbW2b//v0YVoFvf/ubzOyZwe/1sAslhn7A5OQkoT+g3+/R6fYolYskWYKqqmxsbHDx0mXe/8gjzEzPoKqS7e1tQODYLkHos7C4wHve+z7CKOb0Cy/QqDfRdYM4jkBCoVhgdnY/p06ewnEcNMPELRQ4e+Ys5WKJ5549jmFaPPSOh9jYXENKjcCLqFbzqKPxiVHWVtcIhj6Foo0XxJhuCSElmirpdlrEkcepkyepN2rohs65cxc4euQovX4PRckZPtPKa7Nt28b3fSzbRtN0jh9/lrFGDcUosba0ius4rLVDGnKDd77tzWT1I1RrLm9+61v4qQ//NJ/73Bc5OjekWh1FMwZ0+3VWVn2uiD7u248SWw6XLm5hmkWazQGmM4WmLIAsoRklVM1keWmBarWSM5KDIa7rMBz20M1ctisRrK+vMDo2jqLqKFr+rLDMIq2dFqapMxwGdNotSq5CFPSwTBeh6GRAkmVoukEUJQgp0TWNKAxz1YHUdp91koHXQzctkiSh4Lr0ux00TUXVVNIsAVIyMgI/wjA1UlIcp4gg2WUXEzRNzYH82jaBH5COVNjcWsEwioRRSpYHHJKEAbqhkiYpUmisrS/jWDoIlf7Qp1Yro2SCYW+Aa1tkcYokH+FPkty0LU0SVN1ECh1dt9A0gyQO0fQ8a7XguvT6PUhT/CBEqip2oUgmJMQJ/e4WdrFInEiyJAf1tmUTRRFOwc7PjWIRk6JKycbGJoViieHQQ9M04jgftBNCIYpSSqUScRRSLJbxg4BBv49lOai/cwr9+Bbh/WV0Vc8HzAyDOA0RZBiWnTPbKnh+jye/8Tc0G036/R5ZFtKoVSBbRKp17r7/H+KURlleG1BuHCJCo1RrUnBMdENjc2uVWr3CYKhiWjbdXptSpYjM8qi6wcDH84aUy0Vam2cpFhqsLG+g2RalQhnf85mYHEPKlCjy6XS36fV6/INf+BV+7uc/wWjDJg0TyBRWFhZ56vs/4NBtR7GLJTB1vDhiZ6vD4uIS4+OTSKmyeP0q/Z6HppkE4ZDvfv8cv/aPfpnxUYsoSdhsDThz+ix79uxBSgXXKVMq6fQGbRzXRKoZQTiktbPDwbnDHDp0FF0zib+tknTBegsEYZfN9U0mJqYIoogwShBCMgwGpEJFlSlhf40Yia4baKqG47i0e+u4tsEv/Oxv8Pa3P0ypLqkUR0lIMSyToZcwPjKxm/tqkJFQqZQZ9ntYtsbKygLFosvG9iZJErO6ssbU5AxbrWVOnT7DnulZ0lQwPTODrhcpFSooMiAIN6nVJgjCELdQIBNg6g5ry6s4msZTTz1LuTJGEPvUm2P4YYJl2cTDHjITIDU2Wy3ufeABvvDZP2HfvklGR2psr6+hn26g9zXMSZtQ6HiDbbJM4LplVEVy9coLjNaP0O8HkBmUig0aY2MIOcQf2rS7HepFnSyTKGrKyGiDRrNORpQrDNIMx3Xxh4OXSwxsmywFKVKEavPFv/g2Bw7OYlkOK4tLeIMBYZJSqzWIo5hisUgURwz9IYaqkcQhlqFj6DoiU3FdgytXLlCvj7G42KFUriM1m3YvpFwZwynWePIbTxCFQyrlKqZTZ3t7hUqlQbFU4fTZE+yZPsLa6iauLRGph225JJHg8NFRQt+j5Ga02l3CUKFWy9he3sSp5BnzQkh03WTP9CRf+cpjvPd972HoDVA1l263RRINkIpCqTzCzPQUjfoolumyvr7KN775LJoQ7BlvMH+tT7HmYEiQqkYsFezSGMIwuXjpDBXbob3yAiIb5v0tLVfGXb5wiZHxEcgShIhI4hTTLNIfCk6cGnJ9scXSKjx38hSFyhjLGz7v//CHMU2LsYlxKmUXRUTUmmVIM44/dYIMgVt0WVyYR5Eq+2dn2d7ZYGPpPCVnSKNSpjPwKLgV1Pk69/3mQSK9QJGU6CbAeQNgCSFeBnk/AoB7NbHj/68m8TMq6ptvQSjdYr0f1SjqlmDyR7Ai+nFA8o3pjcyVfhQS7uZlbwwQvB7z+vLf3vhcKIr6YzOv/9mD1/8Q++b/GOD1VszoK6ZXgdebG+/NN8zr/a6bmdibJRU3tnfDRColQwBXz57iy3/+GR5504OkBRvRqBJHCcOhR5L4TExO4do2KgmWbXPyxdOUq1XKtQqOY5MmguGwj26oDAY+zbExkixDJaPiWgRhhFu0UbScRcjiHqVShf7AQ6oCqWioxESpIE6gtdVGUbI8ciOFOMpyCWathKFpOV+sKQwCjzQKefG5M1y+coX77r2HI0eOoGlqDvQVlfWNLlN7JvAHPVpb21SaTVRNQwqBrqkIqWBaLmkWE0Z93IKLrpkYhoFlmTlYDj36gw6IhDvvPoZUwOsNqZZrCJHheT0s2yGOQ8qlBlNTkximiqmpmLpGnIFqOLvXPmFleQnHtkniDFXVWVxaZGysQaffw/eGJGHEyNjo7nEq1Os1pJCE4gJRGGJwCMM0cR0LiEjaQ8SJcyj/6leRlkWCgecPqDVqXJ+/jlOokAQB2xsrKDuXWL98HLN+gDDyMEwjd15NE65cvkKj0SRJICJDUQ2yJKPXbWOZOvVqHd/3qdcbFEslzl84zfhoI++ga7n7abFQwDRNoihmeXmFMAqoVmu4rsvW1hbVqoNhqRTLDlHscfnqBfbs2csf/MEf8cEPPpLXKUcB15dWGJuYYDDokcQ+uqZTLJWI4wTLNomjmFqtzvSePXTaHVRVQ1XzNm6aFlkGJ0+9yB133sHQ83DcAiP1KgvXF7ly5Qq1eg3NVMgQyEww0miiazqZzO8327KYv3qNN9//Jr7zre+yvLLCzMwUjz/+dQ4cOEihUEBKcBwT03A4ffIUiipQNRO7UAEyoigg8PokScTUxCSZFDz77PNMTOYS+uvX55mensa2LRRVZW09Z4uSNKXX7+M4DqMj41y7cg5VLzDSrKPpuSMzzija9a+wHpXZe+xeWp0OpVKNt7zl7fRbX6dQrOEHJb78V08Rxwl3vv1+ZNniwsULzO7bx8LCOo4zydLSMuXqOLqySHdgEUUZg16bRrNBp93BGW4zf/oFhFvAtAtIqSEQFIsuUZziBzFxDI5tkcQSTdMwTBVdM3Ftm2FvgzAYomguKDr+rsRRSImi5WzrcDhEkZKNjQ0q5fqu4VJu4GVaDnES4XseW1sbaKrK0vIStXqNOIlRFImqanluHnldm5QaUmooUmNnu0PBLZMsruROvbPTmKak308plar4QYBIYizDIEojVEUlzQS6rhCHQwyrgGk7eMM+ulQQZJiGQb/XJUsT4ixB13XIMqIoyqNyVJXNzXUcx0RRVKQQmKZJt9vB9z0c28YpFDAsh/4wQFEkJBlJNMB0Cghp4A/7eJ6Xd8LJ0HSFJFFYWdnALVoo5AN5AMZu59ayXjZccu0iQuYGRMOhh2lZpHGMZTpk311FKpLh3Q6GZhFFCaqmEsQ+ipCA3HVVzmPEyqUGn/70Z3jbW99Co1Gm3drGMreIkgKq+1bCyOT5k2fYs28WLwgYeBFq4pAmEkVR8b2EIBJ86lO/yEc/9hHSLCYIt9neWaNYsjAtSZJ5bCxdoFqfZmbmIFvtFqViiW63R6XiIkRGmiaMNGu4bplaZYLZ2Rk2li/iugUEGpVylTSTCFVDtUyEomA4Dkqi8ru/+/u85z3vQwiFNFR40z0P8ud/9igPveNdPPmdH/DZz/wx73zH3TRHJ9hu5c92y7aQUiFLJc+e+Bb1RhXbtdhubVEuF+m2e9iOg6LoCBTCZ/J3VntmlaHfplKokZFhWvk78PHHv8bkzASGbmOqKYYyJBbmS7Vkq6trlOsGX/7SX+J3TT75cz9LqZEicHGKNlGScunyIivzLZqNCWyriDcMOXvmEuPNKbJUxbZL6JpNKiKkUJidnWNleY3R8TJTU3tRhEUUxXnGvWKiSkmaDImibWx7hCiO6fX7xEmCSBXq1Spff+wxbLvEodvvolIrMPRzA7U0SdhYXqBYLKGbNqppoVkWB4/dSXNyD20vRHdr+I9nROkAa6TIMI5wTRXXrpBEYGiSYkHlwsIimi25sniRA4f38M2vfh1T2ow1LUZGYe16nytXrjGzbxShDEkZImWeOY4QeH6AJIVMUCiU8bz8nRHHEZlqo6pVhCJzb4soplgoYLslbMch8Dw2NjaoN+q0Oh3WlpcpFl1MU6e13cI2XVZWr7Bnz3h+vwQ71Ko2YeBRKdbo7vRQ9AITozVKxSKK4iAVAz/qUirWSNOUeqPAYCDx+n2ypIWSDcnIiOIWhqGgKimWamIXauimhaZvYuuS6tgB5q9f59EvP8q9b7oPITNc18UwDLZ3NilX6wRBi2Ihj3CLEoFjm/jDiC98/ouE0ZByKWZutkDBalMqGSjGCjLV8YKEKNVxy/vo9iJGmyP4nR5KtpirVdKUNMlQhMQ2bQrFCmQSQzeIA8n19W2ePX2dS0sqdrHGxFSRyfGjzB3ez8S+CnFc5dG/eoxqY5Rqrc7y4iJRkGEbZY4euoPt1jqN0TIMHk2OAAAgAElEQVSWbvHtb3+HTqeDaWqE/XVqFYEqTWojY2iGwNrcz/Lc8xRHprGikEiRr6n9vMEaKopyS7rqjcBr/ExODP0/AV5fr3zwVuv9OOD1Rv/+1dOPqiC9ef6N7dwKvL62HPK15+LVYPg/K/D6tzW9DEBvfP52pldH7bzEaPoDZKGBqE/f8liAV4DRG39/SfJw0/eb57266PzmxvOKmtksD1TOl8vpfBUQWUZKRkpKKjJEHCGkTq1So716lTt8BzVKCAtOLlcMYxSZoRoaq2vr6MKiPjGBpilIkdHrD/D9iGKhyF988S8hVaiUy3TbW0CCkIKhF+DUmqhSRcnf0iRC0B9GPPmNZzh39gJHjxwkSQUpIFAoFS0yVGq1KrZl4FgmvU6ParWG1MEPBqR+gu2aCKEzd/gAB+b2IgFFyQPEpSIoFAvsmaqDKtBNC6dUIstSNtfXqFWrzC8s4Tg2/V4bVVVx7SJxlPC5z36eA7OzJHFMliYgVTRNhxQMVWdjZY2xifFcYjQYoKo6vV4v7xhlEYqaS28N0yKMMzTDRlVUMr+Dqtg4tk57awfHtRj222yur9Dpeow0mqQJlEtV0jhApAFhEqFpKmmqESvnUTQVVRzGcW2SNEVKA/n8BeSbjpC+9ycY9D3UZEC5qBNFEc3GFLrMBw5KjRGSa98gCiPs+jSnT77IxPhepCZQZYap61y5fIlKoUhnp8/O5gpXL15kpDLKyedPgK6RZpJCsUic5HKxiYlp5hdWKFerqLturMvrm0xMTLJncpx6o4FUJUkSU3IK9PsBW1ttogiqtSbNxjjd7gBT1Vlb22D2wCydzjYze/fT7XYplQqYhsvGxg71+ghSCBbm5/G9IXEKO9s7bK2vUaqWiKOELBMkaYJp6XTaXer1Gp4X8Ok//SxBHLK6vMYDb76f3qCHrRuILCYjBamA1FAUjYVr8xSLOhOTe9DUAvtmZ/nGk9/g3vvexJFjhyhVi7uRKzGdziZuuYpj5fEkE6PjeMMBWRKzs7WNZdqUy1Wk6dDtePzgmWe5+45jaJpPu9WhUqmy09rEG/ap1xosLq5SKJS5dPlyXmuZRah6SL/boVQbpXbnGJWZOoqnEAud0sbXce7/JRojk1xfXObKmauI7ADN0QlSMWB8fI52u41pmjz/3PPs27uPx7/yGG972/34gc+F84u8cPIyx47dTuwvcfrkPHMHD9NudygUSnjHv4Yd9Knedj9SM/CGA3Y2VjFNC8e2iEIPf9jFcByGfh+pCKI4JUkTVMsiTqC3vUmtOZK75hpaPiieZXnNfZYPFOi6jmPbuWlReqMUAlSZIbI8wqReH8FxihSLBYJ+C8fW6Pe7GIaLRBAFEVkSkaRR/gzMclY0I4KVTYSUyOkptrc7VIsKsVCwDJU0HiBNnUHPx/cDMvJ60Fgo2JZFHHr4wwFCN8mkJM5SLNtGqgLVMPE9j063R5qkuLaFN/Qp7uaBSpmbv4RhjGna2JaNqmqEccLAG+KaJpBx9cplxsamESJnii1Tx7RckjRDKJI4hHZ7h3q9gshgaWGJUrlMRprLpRVJHKdkSYxpmsRp/jRFpGhafi5t00GKDPHUav7OenA/SRajaQr+cEAShJh2gQzQNZVer4dtOuiGzl133wVSkGYqmqWgimWQTeYXLLqDJY4c2ocmIQlC6mWH1bVVbMfAtHLp+bC3xic+9hGkUFhe2EJJDab2zBJGCWGioGllRiYOg6qytrnM2GiN9Fd+m/rxU1w+OEW5UMXSHDqtDid/8Bxf+Pxn+emPfZxKtUGUCAZDjyAMUeJlrl9+lrGqg6FKFhdWqJQcpEiQmcrv/+4f8u5H3ssv/fJ/wd/8zdf58pf/gt/7/f+Fn/zg+/i9P/hD9s8dxjJ1bFOws9VibXmZy5dO8c/++f+IaRW49977UaXK9uYO5dIIP/Phv8vsgRGmpiaQJx1UVaX8sIpbKGG4Ff7iS1+kWa2iZhpTYzMM/T7VSonF5RUKlQkSBKqe5wPruoutVTlw4DYqDZPbbp/J1RalIv3+AF3VKJccJqfH0MyY5cXzFF2X0cYIUqTouoFqwOLaFWqVGXwvRtcNsixFCCP3G9BjDEMSBDFpGhDFAapho+pVTpw4y5Nf+yrveughdL1AKjJQNWbmDrLv4CyGliEVlSxW+N43v0vsB1RHRnDcEudOnSbxPKLhgD/6oz/k6JF9DHptinYJ+bUKzpzNWneNcrHI8vIShqYSh13iYAdFeriGxtlT53jg3ndx6fxZ7r3/fnba29QaYwyGAmG1cdwJjn//KoYRUK8ZxKFBlqYoUuZSeVUSJwmqpiF2s6Sf+OszjI02qZS6TEweptvvEMcRKYJO36dYnsQsaDjFAmmq4Do2mqZRrdWJswzTsShUKhhGiTQRdDob2IUyul5AURwSBLqj0+vsoJsOnZ6PUyyQkOHYJYTIIIvpdT0MXdLrtWk26qSJh+0UkZlClgqkYhAkuQzX0GO++c3znLva58XnXsC0E97/k48QhiamoXLu7Cnq1VHq9RpKOqCz1WNlcQVVJixdnef5506RROtsb7eJ+y32TlSplW0UTcFxHYZ9FQnYpRHcyh6kXScL+ziGSmvrEgpDFDOj4BQI/AhVUYiSAAWNNEuIRJevP7HKlqez04X3v+8nOLB/hPXlLQ4dPcjpsxfZOz1HMNhmbGKcrY1NHMvh29/+Hm96813olopmCFZXlzE0jWeeeZajc+OEgyUK+pBmvYhmOJiFAopukiQe+uZeivcPqIwW6QsdIV4J6F7T/90FcT/M++WVgEyQHL8BXuPd/vONdbnp8zKg/GGeMjeO7fXB4o8GXn+YZPhW0uZb7S9NU3Rdf0le/8P2l0+5udzL5lW3Yl3TXXL7BtaQvIyvbv1RFOX/B6//X5tefWGVxgxKY+b1ln4Ne3oz+BVCvMS83twob9wsr97frcDrq48tZ13J+zIAaYbMoNPp8oNnT3D40Bxe4NE4vQx+SFovMhh0sCwF1TTRDTOXJnlDtndajI+MMRyEZJnG2vI1ojBEoGI5DtVanXKpjO/7FGyXJAHFsGhtbxF4HpqqMvA8dM3YZUk1et0+1UoViYJUQgLfI46j3BRGyZ00myN1DMcgTiIWry3S2myhaLnUyh94KFKh2+0jpcr62iqlcoEo8tnYWMUpFBCoaNJEiATHdQijFCkMHOflAPQ4TtA1g32zs0RxzPLKCpVqFV3P5YS27fD7//rf8NA7H2Z9YwVN0/G9ANctopuCOE7p9zyk0DBNPfcYTVMQgigKESJle3sHx9Hxg4hWb0C9UacxMophO3gDH5FJPH+IH+axCFkSkMYJhmqTRBIpR9FkDX8w4Mtf+kuO7t0H3zqB9j/8Gn01o1ousbmzhemWkKrFIIxRRYCqQafTIVs+QW9nm0JjksXr89QbYwhFkGY6puVQKlcxLAtD1Sg6Bs1GlULRIk76VAq54UelUuX0mbPUmo3ciMUy0RSVhWvzPPf8cxy7/XZWVleI4pgzp04xOTVFFEVsbGzS6/kcve0YOzt5TXWSRFw4fwlNkRw+cpggjFBFRhwpWKZLa2cV3dCo1moEQcT5cxc4eOgw5WqFbrtDmiSYpoWu58BTVVSWluapVEoUSwVURcGybPo9j8NH9rFv3yxf+OKXGB+f5Nr8NYqlMkPPw3JcEApx2mN8fOKl7UlN5dr8VR56x09w6oUXGRsZRSK4cvUqzbFRTNtBZhFmoY7QVEJvgKlJev0uFy5eZO+BOVTTJoli/uwzf8rHP/5RVF1FERrFssOJ549z4MAhHLfA5uY2X/vqE9x51zFGRpr8X//uT7jjjvswdJOx8RovPvsiY0em0Q2DaCcmM0bYvvoMIo3xnf3UyyM88fhjHLvzNr73vS8zNlbiwvklpqamUL92htnUZcVJOHL4CMePP025nDMUR2+/j7W1S4xPlDh/7hrj4/tYW9ugVq1x7TuPYVkWxoE5pHTQVZNSyUEqKlEUY5oGlm3R6w/QNS0/l5aVM6tZgqrpmIaBNN3cjTeKkIqk1WrhOi6ddgepSDzP25XHCXzPQ92tJRUS4ijEMFQECWQxidem3dpEN0x22rlaot1qYVm5VBcpiKIYy3IxDA1FKtDuga6hjTVyqX8Ws77TobxrxpRKBdM08bwBpaLDcNjFdookaUIc5TWlKaBIsZvRm/+91/MouAV0VcW2bPrDPrbjIqUkigPINJJE5KZ0WYyq5tm5qqaiq0ouWZYq9eYoUqpkacxw2MPzPCzLydmELCUOAoaDHlKS14uVy2RS5KZVacz2xiqFSp0sTkmTBKEAicAbdFlbW8pltwnYrk3wjfm8HvfBcUDB93xURcOxHdLdzooUIjfsQtDt97BtezcDWCEIOhjqOklWJUwPMTq6F0tfh6yNqlcZDHtsbm6xd+/0bjSQSaoLNE3n9AsnGW/UCWKfbq8DMsG2S2SpisyMvC40yd91y//7n1MqlvmNx7/ExXMXeegd70ToPqat8+73vAOpxki9CIqG1AxMp8DoWIPx8Rl63Ri7UKNcq1O0VUr2FGmk83u/+z/z0U9+EF0XvPvdD/HkN75OtTbOyMgI9UaJ2dkZSqUioRpTr9XZ2dyg4pr82q//V9x+9AimZZJkGZbtYGgGH/jA+9kzPcZwAPJFgzRNiG9v0+93SOOIY3ccwnIMFEVQKpewXJtWq8XY2FieUbz7vnftApcunKdYrBLFHkeO7GNx4TqjzQmGgU+W5TnUpmnudmgzvGGPQW9AuVJGygipaARBQrlaZ319E8sysSyTTqeNbqgYpsqVKxexbRvTtDD0vNRD03SiMGJkaop77j7G6tIS3Xab+YUFJsbHiYIA0gRdVUmyBLKM2QPTzBycQFMlUmaMNutEkc/YWJO3PfRmNE2SpgIjLpD9tUurvoym69i2Tbk4imlCtz0PqY+Kgq7H1Ksj6FaTkak9nDp9jlarzeyBA2xut5idOMrG5jz3PzCKgsX6sk6hYJGR5TnuUoDIkFIlDEO8wQDfG3L40H4UGWLpGlcXt5mYOUi51kQ3bCqVKr1+hywLiWKBaZWJM4EiI/zAw7VdpFBIhYqi6gip0h8EVIo2SZKwtLTMSHMCbxDT66yDlNSbIzngihPIoN3a4cKF84yNj7O2NM/Y2CyqptP32wgykjQgjfOINlXT8f0hmm4wPT3D5MQY05M2333yDPsP3IleGDDYiti7bw/Hj/+AWr3KsN/n/IUFVla3KBdLrC+vc+nyOR66d5LRmsAyE+r13HFcYuLHKZkqCMOMTG9SqO6h2/OJ45C4f5Wa6zPwJVdWEwyhYBGQpBlBqtHpDhjEKc8c3+b+t9/HkTvuJ0Eys28WRdMZHxtHM0wazRHOnjnNoN9jemaaxcUl9u3dR6NepzNsoakWw65HMNyGdMjOyhXGmgmjTZ1aycWyLQQJg/YOXqdLZ3MRV9vHSrBO6ViNLIgR2q1lrMpuXnWeO30TIfQjyIjjZ3LFnv5A+go295XLvbLv/e8jz83nv3FO7I3f8+r9/DAQeiv289WE2aun16a7vHZbrz3WV3Pbtz6/N6/37wNe/9MKSf2PPL1egfQb5RTduBCvvqA/rAG+2n46y14OVk6S5BWA9OZA4FuxrDfv58Yyrz7+17tBb2wvSRJIM/zegDSIKFoun/t3fwJpyoPv/ym63zuBcnWZOMkL1zWp5M6imUAKycTUJL3ugMce+yonTpxgbX01NzpKUubm5uh1e0CKVBXi0CdNY575wXEunjtJtVzAdWyGvk+5WEPXDBYX55mcnKDT6dFqb0OS4g87ZBlousrS0hIChbX1daIwoNtuQZoxPT1DmsUUTYew26O1scGpE8/iug5JElGr1/B9HykVRhrTRGHG9YUrCMWntb2NpmkomkKv12FpaQldNwHJcOiTphmFYoFSqcz+A3MkqWBpYQHTNNje2eG//OVfZnNrm1LZQSop9UaJbn+LKIooFsp84Qtf4sSJ48Rxwvz8dTRVJwxDNE1jGMHI+CRCN9GcMmtr65BJ4ijFcQqYhsO1a9eZv36dSrXGYBjgBxFnzp5jfXOLi2d8LPbh9wdIIfn4Jz5B9vx55EP38PTmEpZlsbi4iKIkKAhCPySLI7ZbK1y+eoZOb41o6zyGbRInEa12izhJdh9WgiwTKIrKYDAgiiJUXWe71SJJYWJqmmq9xr69+9je2uK2I0cZ9gcIIdja2mZldQXTsXnLWx7A9/pMTU1QazYZbTb56yeewLRtZvbOEMYRjz32GLOz+9FUnX6nz9zcAfZMT7GxuU673SaOM3baO4SRz9LyKoEfEwYxnpe7b1+4cBEhFeavXcUfDpmYmCKJUzbWN4nCkMXFBTY21lEVSZrGRFHAW996P8NeH9uxefjd7+bEiRPUq3WWF5fwhh5JFEEao+sacZrihwHff/r7kMVMToyh63kO5vbWDltbW4yOjhDHCVmmMPRClDSm7Jp0BwOEFNQqFR588O0IKfD8IXGU8NGPfYQoyt2RNc1la7PH/fe9AzKT/nCI7bj5wEkYcu3KZT7xib/L2bOnUDSXMJEcu+tOTMtCSsni4iK6btF1jqKe+wyf/On38aGffITr81f4pX/4q8wdOkIYhhw5coTFhQXqy0MKV1qEQcATTzzBxMQEaZrSbDb59Kf/lPl5BSHL3HlnnXPnzjA+Pkq322FychJVVUlSQegPyLKYKIoZekM0XaPb6xFGIQXXxTBNKpUKyY1RaamQCIluOS+5fWqqgsgyKuUSaRpTrVbRVI1er0eWZkRBiKEbaKqKIiVCKKi6jqooBN6ArY0VgqhPtV6jP4gplyaRQsF2HCAjjnPpryIVOp0uye6zrDNaw7332I2nJb4/pFqpEkQRg6GPkCphHPN/s/fmQZJd13nn7953354v98zal96qd+w7CHEFRZESZY8pM4I0Fbb2sWSNqRlLITtiLA0tWZZHngnJWkxKMiVSHGqxSAIixQVoYhMAYu0Geu9Gd3VX116VlXvm2+ePVw02Wg2Q0vynmNvRkVVZ7913M+tmvfOd75zvK5VL9Ho9XMchCEKGQx/DMOn1B+hKo9VqkkTRtlTAkGKhiD8csLy8SBgMcXIeQkriMMLUdYbDPs3mZgaQk5TsHwRBQBxHNDbXCPqdLG8tNJaXl8nnMkX3MAzp9Xqv30fGxsbRpIZpWgz7rcxSJIrRNZ16rU4cZz28jUaDJPJJkhgv77Fjx45MWMYyMqsdpSOEIAiHr7el9Pt9VlaWuZolT5KEXr9PHMc4tp0pKm/f7yw7s6wJ/IBiocLa2gpRuISp2vS6PoV8hbm5XfT7PYIgIIoicqaLSOHwTQfJFRwmp8YZHatTLBaJ4wQpFRevPIFhDTFMjTSx6Pd6pCT84e9/ksUrl7FNg7XVLfK1EaRhZvcnEmxTp9tuomuC9aFGJymx0pI0+hob3ZitVo9yvURlpMCjjz9Kq7WJbdusrq7yO7/9e/z7X/63RPGQm266iTSV9HshSpqkqUacSCoj45x+9SiOqei2m5mPpRAImRKEA8Iw5PzZS2ysbSAQyEQR+Qm9VpvG+gaapnHi1Cn8JNpO/pWIouzrleVlhr2AfmfI4UP7ESJFyoT+oMXU1BS25eF5HoVC4fW4QUoIgiFRFBEEQ+bnL7C6cZ5z585AaqKosrKyxJkzp0jTmJGRGpcvLWIaLnv27MsUuFG0Wh2eeOIpGo0mShnoSpKzbQaDHve/7W1MjI0T+gFffuhhkigm8H3SMMBQGavZbXeYn7/EysoqSZzy5S9/hcXFJaIQlpZWMu/1CzrCSSiWS5RLZdI4AVL6/SG1kSmUUUCoPL3eEOIBS5fmaW0FTIyOcu+9dxPHmWbF1498ix27DtBsJ8wvBDz29CmefuEUwnCJkhTDVKSpJAEM0yTnOuTzOZQ+QBJhGUUO33wfEovAl6SpngH/QoE4Sbh44QK9dpPQbxPFCc2tNgKJ0hRRFBEnEYNBj2KxgNA0EAJlZvcKy3GJ0xDbVkRRn7W1BZSmaLdbFAoFbr75ZoQQzM8vYFomC0urjI7PkUqJVIJURCgDdE1iWw5B4LOxdhmVNinlA971jmmefuzPePrrT/Dko1+i07iELWO+8sUv8PgTz3Ds+DnOXVxiaXmNfq/NA3fOEQcdTNNnx0ydSqVEGqesr7WwrSKmXsAtTGDmRun0AkyVIMMeiT+g2+lj6A4vP71MpxUirRipBBurA5564TJPPxdhVmcY23UAKTXuuusums0mlXKVja0t/DBkeWWF0foo46PjbGxscsftt/HVr34Zy1JM1CdobaxRdBM6G5eJuhsc2FelXi3iuWVazZDm+iari4sMO202VhYZ+jE9rqBeU5x68RHSdHBdlSHfboXbLhu+Pqa+VoToO1nTXBVRvV4j5kbHXjvXmx177TzXE1Xf6f+N5n2z8twbxf/XVni+2dquxzFX38tr1/Hd4KNrj7kRK/z3Gf8/83rN+G7r1K8ff5dzkvYaqd9DWrkb1pHfCAi/4VrXHfudNs13XE+SIKQkTRLCgc/P/euP8wMf+ABnjx7n/rvv5qnHH2f//sOoP36IsDcgPbgfKRQ526HVbmPqBiJNCIOAOJbs2b2TYiGPMjXGJqcwDBvXdcnnHIhDttpNRqoFev0ue+b2IeMBXs6h2+tSrI4Qhymt9haVSokgiGg02szsGMPvBQRBEydXQwrJSy8ew3ULLC8tUS6XGHS6GKZFznOp1EpEQmC5JpZjUB2pY5g6UgoCP8A0LNqdHlHUwTBNSsU6rWYPyzAQuiBKQhzbpFyu0e126XQ6FIslfD+g1++iGwZK03n22W9x+OAccZQJGQmhZZ6AqUITmeiMJgVKGWxtdbn/vvupj1ZI4xSlFI7joHRFGPo4BvSaDVqbyxjKYGpylvbWFr6f9Yz+wSc/TX2kzp69u9F0Hdt2sZ0cxVKV8+cvcWnhIp5hUq1U0E0Dv9FEe/YVgl//Ocb278ewHHKFEp3NeQpuidAPMVSKqcYY9BKmJncQvvJZRHkfqcjsNsbGpvHDgCsLF1FSEAUBfn9IFKd86/lnOXT4FoYBODkPTTc4efos6+ubKE0yMTpGHEV4hTzFcolcIU/k+zS3NrBzLrGQtNY3uee+e2l3OkgpkJrkvvvu5ejLR9Gk4tLFK0zPTLK2ukSv38MwLWq1MQxX4HompBYnj5+k0+1jGiYzs1OkhOiGjWfblEtFhGZSyHssXlnCHw6QMmFzfR3X8eh2WoRhQJKEBMMQw3awXZe9e3ZT8nKYuoY/7BNs9yKmQhIlCsOQTE9MksYxf/Xwwxw4eJDxyQlM28T1PGzb4pGvP8qOmZ1ousOLj30DQ4aM7pxDSUGn28UwDTQpII0zlsNSKF1D03U2N5YoFGtIzaDXb7O+sQmpoLHZwHMdKpUSea/My8ee5etfe5Jbb70dzTGxqg5JmmBHOhsbba6srDFRgg9/6B/x4Z/6ZQ4eOMBP/HiNsVHJwsImDz/0KO998EG8Yysg4BVvwMbGJu958N3EcUy9VmdmdpYgGJDPV6mOFBit+ZhWjSSNiOZPAgJr1x1EcZdOZwvTcLEcmyiKsG07U8LWFEkcv96n2e100JRBuzuk32mjNIXvDzCMrGx4OBhg6Dp+EAJg2zaGbiDSLNu8vLyMpmn0ByGmaRIGPsGwT6VcxLDH8IMoy9DrgjBIMHQDXdfodpskqWA49AnDLBkxf2mekVqd3qCPoSu6rRb+oEOhPIIQEqUrUAYSSb/bhTQlCUIsN79towTDwRAhJZZhkCYxvW4XXVdIqeH7fUbqZfygTyIUAoFp6CxeuUyp4lEoeBl74QcImSWIEJn7ZOwPkGn2GuNUQpoB/PWNDdI065VNSUEotlotvHwhE0DrbiCRSGHS7/XQlEYkdHShIdKIVqeBUAZxErGx2aBYqiGNjJUyv7UJJET3lEkQpEkm+uM4FkLqhGG2ns2NDTSpMnsgP3g9IShEiGKJMCrRH95ErqBjGw2CMOJjP/zvefDBDyDkEKmJLLkZpqwuXCYMArrDLh2/i7Mt2tZqt7GsfMYYenUEVqZo3e8ycewcAujcf5BP/B//noOH9lEd3UmYahRLVfyOjyYilq9cJg6GdNtNbFPiKpO/+vMv0Nta59C+aUKZR1hDEhWQSoNC3iVN4PzZS7z4/Kv83M//FMgs6bG4sMVDX/oGt91yM4tXNmi2elQnxvmFn/1JHnjgfpy8B9siQeurK+TzORzX4j/96u9yOL4Fz8vzmnOa6clZCp7H6dPnKJRKjI5Nk2BgmdrrIjNKKXKWjZIW//W3fptazcOwXCxbw/fbtJt9PvXf/pi77ruDMAxf730b+gOuXLnMnl2zOI6DoesoqtTqdUwnputfYmpyF1PTk4RRQBSFnDxxiZ07d7K5sUXgxyjNZW19mZmZGT7+8Y/z/ve/n3PHT7K0MM/cgX389M99HM/xIE64+abDvPDcc3zyU59k9+4ZCoU6YSRJhMbCpQXW1xoYmsUdt9/N6dPn2L3nJpQuCYIQns4hIsnA7RJH27ZRniKJU5LUQBouvSDEUj5J1ODixSskosTkZIU4ijh75jSVSpW5m/Yh9YTQN/nmE0cZ3TnKwuIQQ5lcnr9EMediWFlVQ+APSJNM1GwQZDFUGEkGUqGkJBUppiU49epzON4IhbyL59ikYR9JF00vUypl1ydN6PaH5HMWhp7iD7oMI4FhWVi2hTIshmFEuVzF9yP6vSGO6WCYWZIxS6DG+MMhu/fsZ7O5Sj7vsXR5ndF6nV67g2OZSGERJxH94ZBSqYQkwXU0wmBItZRnvG4wPhIxPeGia1uYShAHA4oeJLHP4f1T7JzU2DNlYYo+wpBgKVSsGMQDdEOhVEoURbhuDj0/y2ZPUMrn6W1eJuqew3F10DUQMXO7FFJPsLwxur0h1bJJFOcpj9Q4eOhOhr2AhUvzGIbOyE18OckAACAASURBVMgIzz/7LKVahZyXJ5fzMHWd5StX8ApVXnzxBdI0otVep9/cJBhcobnxMkVzQC2v0OwC8/OrxImGbussrw2pjc+gOQWWN3uguaRBh/HhvRznNxnbdzuWW3xrkudN4uJrgdn1bOHVnlf9nm+D178dX39nBvet4vLXQSzfHfP6VuNG1Zs3Oub69sJrx43Y2Kterm91zeuZVyHeqLNzI9b2H3TZcEr8S3/fX+hbI/w3Zi3+LgJO1/ez3uia18/jP/lHxIsnUTvver08INu0N5g/3f44ZCaHpMnf7nO9Phtz49d6tUb/b69bSonYflSmwft/4PuJSJjYNUOhXmXX/n2ESUT83x8mjRK6k3Vee+08Xr6EZRlcvHAZpSwWl67QWF2kWspTH6nh5Qs89sTj3HToAOvLS7R7HZyCx5FvPMHo+AjFYpHlpWXq9TopGkGcZv0oSYzr6ogUojBC6QO6rRZf+/o3ue3Ouzh35jJf+uLDPPjgg5w6dYK19Q3m9u4nX8mhLJskFSwvLVLMF2k3O6SpwPPyLK8u4to2rm3TbLXI5/NI3WLp8mtEQcCpU2eo1uoZ+5XCiRPn2VhbZ3p2Fjfvsbq6xtrKKpVKlSiO2Gxssu/APnw/otfvYFoaSokMkIgYQwn8cIhmGMR+DDJkMGjjOi6W5dDv9VldXYU087TVdYutVpdafYIgDDFMDalp5DyPKIq45947GZ8YRVeKbqeFZSoCf4gQkpGxEda2juKVoNeR5HM24uhp0kO7ab/3IErroOICpFtsNc9jW1Xi1KA3aLO2tsE73vE+3vPge3AXv8Krr7Xp9CJ2zc0htYRBu8XE+ChHvvEoM1PTPP/yUfbv282e3Xt45JFHGa3X+bM//QvGR8fQNMnMjhlSIXDcLCHR2NjkwvkLiFhQrVWIY0EwDGlurjO7e0fWi6ZpKM0gDYYoAbOz0xw7dpS9++dora8zNjtDY6sFUUJEiGU6DLpDlBLMze0lJc3UgA1FLpcjJiaN4cKF16iNFrg8f5lczsLNmczO7CIMEkbHRjh56iSHDh2iudXh8qWLjE5MICU8/fijTO7YgdAUlpNjY71BtVrl8qUrlAo2SQqa0ul2mwipqI+MkpLgyj4XL5yjVKlRKOSRWopmSKZ3zAA64cAnTGIsO4+QFlITxGm0bceSfUwH3QECWF9e5LVzp5nbvZMzJ0/z3DPP8eCDD+J6OTYbm0gtYWV5i/e9711ILcI0TLSigdIUrYUtlK5YW99gZGwCsfYS0Z7v48Spk2ysfIF8Ps+OnTczNjrDYNjGe2UNgeQrnQUMUzE1NU2/P+DsubOMj03y8ksvs2/fzRh6H6X69PsmIInmj6NpGvqOgyglUErHMrP3Z6u5gWmZmEYuUymPE1zHQSIYDoaYloNrGTSbDRzHwHXyRGGC0HQMyyQVEPp9oiDCNm3CYEhMhKYbWVmmY2VMrQBNV2iGQXcQ0Nhco1qvkGCRpDHBsE0YBtimja5Lwjgll3Mzv2XToFAsEgaZv+xgOMTL50m2PVq3GlsoXWN16TJ52yMMQjzPoTds4zoWvW6AZW1b3iidXt/HzhXQlGTQ62C5LkgNqRko3UZtM+2GaWDZDqmwQUriyM/aIFAIIjrtLrbjYeUr2I7HYOiTJhGm5aApGzfnYJpZGbOUCUkUky8VaTbXGTSXEIaJVyyAJpGGSYRi0GwSxT28fJ5croKm6ayurTIyMkIQpmiQsdlPLYGQhHePoLatfJIkU0zWlfa6D3a+kEfTZKZAa5kc+cYRpqd3YloCma6ytPkgxWKdl578OmOTOomQ/OAP/TymyiENgZZaXDj7CvUydDoG5WqRUrnMyMgEUZSZ10sJmkwzNk+ErFxZIw1T/vOvfIIHujq9bodnSgk/+7P/K5/7ky9w+MAcI2WPpcuv4XkWSSw58ujTfOKX/zNLi6tsrq9z6PBN3HzXnezav4841fC7i6QhJKGWCW1FkjgOsByDe+//HugZ/Nf/67/QWG3QaXR5x/fchJGDxStXqFSKkPo8duQF3v3e70WzJH4cbSsEO8RYCGHy4LvvIukZfOYrn+WZxWeQesLkxC40JSmXC1y5tIhn57mydJFSKUcU+SjNQNNNWo1Nfv3Xf42P/fMfxXYspFBomk2z1eGdD76TTqdLf7iOpkCTLq3OCmOjkwhp0+51CJKAXKHEwuIihlJopKyuXKZcqiGEg9JtpqeLnDt3komJMRzbAiIMx8G0dO5/230YhkNlZII0lRS8EssrK1iexjPPPMZorcRnP/OnfOSjP8rLr5xj/749dDvrlD2Dcn2SickJTFMQJ0MOHJ6j3d7E0oYUPJfVP09wqxaxPcRxTJI0JfATlGGi6SZhBH/++S9yaG4akpDR8TF0q4Dr5gCJYStM22N9sYUQmRK2SBVnTh3nf/r+t3H23Hk2N/rs2lFBS1PiZIhSFlGYMPR7PPb4Ms1YsvemW0l9QYIi5zh02gN2zR1CJAGapqOZ5na5v5F54RoazeYm7U6XMBxiu0X8IBNH29hsUqnUWF9vEIYBUqb4wx45t4zpCLo9n2FzkSjsIkSKQtJptjBztUyhOepTKBVJtRzNVo+VpWXyhRyGDt2ewcNffpFdO2dQskOcJqBpLCxF/M2zl9g/V0dXeYK4QbVWoLPV5KbDBVxDkM/FhGGAm7eye00cZ2JVMoU4R3cQkatOkKr6tkd3hN9aJuycRaiYKOyiYzMYdDHNAnEa8uSTZ2l1i4ztvJX6xF7KIxNcWpinXstzeWGV3ftmSWLBxtoKLz33IhNj4/R6PRYXLuA6itULJ3DUGrunFTnVxNZ8cnpEtVBCKJeVrQ4XLi5TGr+Jcwsd9t78NrzyLMXyBDEOY9MHECoHZkKxs4tnlv6QpSuv0vI1RsbGEEohNQHpde1zkFVBCLH9KF/HnW9kBVPSdLsa8g09r1dj6G/3f14bZ2dx+dXrvREPvGEdb8qqvjlAvLYi80bjRuDwrSov34wsu3591/yEb2OJb3/9xu8zj/VrdYSuLU++tic4jmPgHzh4jePwl/6+zOjfZ3y34PXvesxVtWE5e8ebUv6vN3XfAIhev5luZHPzndZyPYUvrpv36qYSQmCaJlJK2r/1WYa9HtrhPUxNTqJpAl03SeKUI9/8JnfffS+VeolKrUyv32dpdYULr11kbvccpm3TaXcYn5hkYWGBQsmjVCpTLFXw/R5REuO6HlEsSJI+URJkHpj5PK5nIbF55plnOXz4MLVanYOH92FaBmOjo+zatSuzVehvEcUJcZhSKdWI4pB+v8/q2iqmaZIvVomjBF03aHc6mDmbOMysNKqVEUZGJnj55VfYM7cHwzAyH9J6KQOzUjDoD/nWs89x4OCBrAy4kEeTEn2bQU3TFH8YALC8lNmmOE4uK5PMNAIy0NrvYxgmw+GQkdERdF3Hsi0G/S6NzQGlUoVev0kURzQaDYbDAZoU6IZJo7GZsbVqu//CMBAiy2KP7rxILFbA34EpBOqxFwn+47+iNJH1niIMUqURBilpaCHThGjQQHcKjNRG2TttY88/xJJfpdXeolgu0O20IYnoDyNGqnVOnjjJ3ffeiaMMXnz+Bc6eOs3s9CyOaWFYKVIKzp45Q7lcQUgolUqsrqyRJAmWbZFzLNIk5fz5s+yYnSKKUlaWltlY36Cxucn01ASXLl2m2+0wMTFJv9/HH/jk8nlqtSqNjQ02NltIIajVK0gJQouRGnheDrYlx6Sm8ByXfD6P5Vi8euwUe/ft47XXLuA4OYTQKBcsCoU8SQKWk+PM8RPM7txFKiEloVSskqYplmVw/PhRxsbqnDs/T61eR0qFlDpKi8gXChiGmX1uNJNSdRShKVzXRgBxmKKkRBk6jVYbIVKeevIp5ub2IkSaCQihIaUgScHLF8jlPZaWlrn11ltZXF6hWiszOTVFt9fnC1/6ErfeehsAO3bsROlZ0gQUkQOGbnL2+TM4ls3CpXkmd+xDrL+ENXYrs/u+h/GRRfwgxrQqhD54ORfrhWW63R7BHTu5++47KBQKPPzww1y+fJm777qbvXv30h8M8H0bNyeR6QqLS33MtYsIAYPKJJBiGBaCTN3Xtu1tq58QXUGr3cJ2LJIkQlMSTdNJ0xjP81BKEUZRlkBTBmEY4Ac+juWilE4qErq9No6b2UM1NhukSZKJEKUQRxH9wZCc6+E6BQaDfmY3kAYYpglJ9rdtOAgY+D1sx0KITN07TROSF14lWlhiUPSwTBOlZCZcZrkYhoFlOiglSBFsbTUpFEpZ2W5nwObmKkkKpm4Qpwl+4EOa4lg2qch6fzVNx/ezUuBcLkeagtJ1ur2MoRWwbT+jgZDbCsEQ+UNSNJSSSC1jnRcXFyjkXNI0wTYVart/yw8yRlQkadbjViyztr6BZRooXcMwbZShkwotU90l6+/PNq6k3+9lSpyuIp7NIcdzRL6PEJIwSjBMlzTNBEKkFDS2NknTBFMvIJDM7dlLFMVoeohIlml078XL5dA1l3ItRJMaiZzA0FP6rVU0FOVqHT9OsPNFND3BUBD0BoQYCE1m1iSWRyo0bNOisdHhs3/8OT7wgQ9Q+tYJLNvmQ3/wOxw8cA/DoeB9P/B+Uqnx6c98hre/6z2cOPkMd99zOzffdoC3vf0OQj9mZLROKmKiOELpCsfUUbrOMAgwLTdLEqdQKVfRlOKP/ugv+O9//Ifccc/d/I8vPsyHP/ohEBLL8lhZWcHzXF58/iXe9/7vZWV1mWKhgkTjyCNHqI/UsGyNOOrg7i5xzz+5kw9+8Pv55pEj5EslfvHf/TuOvfIqt952F46b4z/8yi/x9rc/QBiGLC2uUCpXWFlc4kd+5EfQdJ3jrx4n5+ZYWlylUi4TR5nCv+0YJEmMoVvouoVlOvh+SJqAUjqN5TV2zs4hlUEiNLRUI02z93ijsYpt2VQqVQI/AiQbG5vopCgRowFf+dKXmZme4f/81V/l4IF9RFGAk88xOz2D5zjcesvtfO7zf8qP/cQ/x/d7lIouTzz+TWqjkwB4bp6nnniWyfFZbMfgypXLLJ1sUntuH8PZDeycztAf0my2qdSLLK0sE/ghi5eWuHLhCjt31XEdjX6nydrKOonuYloF+oM+mtQ5eeIUO3ZOo5QkX/A4cHAvnd46e6YrTFZtLDtBUwkSganns9hHRvR7IQdvuYm8t4sLFy4jNIv+sI2mh9i2R38w4MSZ03gFjygeImVWpSZFgpRkCTQRY1s27VYTz3HQDfCHPRzbYDjokvccNC2zO/L9AbblEA07+GGEYXsMopRiucbQH6A0gWkq1tfb2I7DVqNDqTKKkfMYtNu0uyFRFDI+XkKpANAy7YtEY3Kyhql30ZWNoStsS2dkIk8w0DDtHoaRA71PMFToKgMVlmXT7gUUSuOkWh63OMnySocw6GDETRJ/C2WEGBKiQJFqAWE0wl/85TFuuu172LHnVoRukIqUKNExDAdlGNiOTc5x8IMhAp1de/ZSqdUoFl3OnHqJkYqCqMFUOcC2BXbOIJI+tuni5lzanQHtTsjc3CGm9t2D1AtEUabDEoQRtVqNV469jGkYXDx/idrIBM2lNjvEu/jysf/I6GSJA3fcT5ga2ElALL4tanRtjPsGoPom7OPrx7qg7YiR9Tfvk706buT+cW2l5Jsxna9f7y26Of8+GOitwOtbnXP18c30ct783Ld4bde9B1fZbinlP1zwmiRZ2fB3Cxiv3yRvlWW4/lwhxBv6S9+sjvytrn3t99fOexW8ZszrjSn012v2k29voOtf+42uc/0H8kbrvn7jpGmKtp0NuVYFLU1TOp0OQZABMv1zX8U2Tc6bKcVCHpFm0v9BMGRqagrTtAiSDHAFfkCpXKGUL9EfDOj2+zz2zcdwLIfb77oNz/PQlJ71naURSlNZQBprCKmIt3swOp0QL5dn6KfcfuctKM2g0+6Ryhjbtjl7+jTj46O8/NKLzMzsw7IN2u11lIrQpInruhRLRTSpEacay8sr/PVX/po777mLOE4wdJ2HHvoKR775OKZhMDk1Sc51iaJMPMawFZZl02l3eeSRI+zbv5+pqUl0XSdJM/uLrc3GdpBgIKWGUhqBH1EsVUkQSJEJuWQ+jBpK6XR7fU6dOsXkZBb0d7odXNfh85/7C2666TCWo6NJhZf3yLkuup6V6/UHfXI5D03TtnvYMjCudEWszuHYNmXvduTxi4S7JxEf+T78Tg/DKIIeEidgu1WkMPjKw18gHHaoz8wwNzPFbFXQPf01xm96kLm5HSCgUMzz1BNPsmffIZSmUS6XsmyxaVIoFzl0y83kygVGpycpFkq4doF8vkyz0UUZEIUhI/U6pmmgaRrzFy8ihKTVatPptFlZXqPVbHLwwAGWl5ZYWVnhwIGDrKyuILXsxryxtkZ9ZASlZ6xqIV+iXq9z+nTWs+W4FoZuEAQhSikuzc+jlMal+XnK5RKd/oCJ8Ul0Q0fpiqWlFWZmd7C5sUin16VUqaIpnR0zs5w4cXJb9CSk2WyTz3vouobr2BiGotcbMDoywfraBkmSsnB5nrGxMaSWWYgMIp31jSY5x+bk8VcZHR3lka89ShRGVGt1nHyBvOuQxAlpGgNZ+bjSDIQEoWmZGm8U4bouSZqS8zw8z2Hg+0xNzzD0fSYmJ3jooYeYnJygUMwjNY04CslPlOl2e6ydWyLnORw4uB8ExMMWTz/+CP/2//4iH/zAKLpuUChVOXtmhUKhhPnCEs1mi8eTZXbu2olhGJw4cYIkSbjvvvt46OGHOH36NINBgGuX8QoGg/4CxuoG6+sb6LOH0Q0T07QgFUSJT5pKNJmV6qVJhGPb9Pp9hoNBxjQrjTRJSJKYbreH41go/WrfpSKOYpIkzZS8Acu26PcyMTdD6UgSpMp8XaWUWaIojpFC4vt9NLHtbWpeFRPKgrWEhHa7jWVZaJpGp9NBrjSyv3mjWcIiigJWV9ZwHJfGZmObFUrwhyE5r8BwGOC69nYPvJP51CJQukI39CzTnwh008jscGTmiaiUpNvrZXYSUUy33c4qBeIUP/CRKrP2SZOYKAgQApQykVIQRQGa1HBch067TaeT+dr6foBhGSil0+8PyXklarVR4jhjDAxToTSB72f9yEpTNJtNDEMiZWYl4vtDHMeh2Wzi7qohx3MABL7PcOAjpEQZJkkcbicYFKZpZsklf0Au79BorJIywLJNZLpMe3A7tmVRHd/Ns0//OTtmZ2m2HBYW52mtLeL7AR/94R/ln37kX2C7JlvNNV45ehSlaTRbXTQJnuvQbrUwdZu1pWUeuO+d/N6nPsWP/9RP8LHaGEqX/Iu//F1a3U3e873fw4c//M/42Mc+yp133Y6uK4rFClI6jE/sIpcrcnD/Qf7Dr/4y973tLqTUaTUH/PnnP8+OndOkSIaDmA9+8Ae4774HKBRKbGyscPiWW/np/+XH2Lt/H7fcejeWa5DPFdF1i8nJKUxT4/s/+IMsLF1iamqKT/zvv8K9d76NmelJdMNCJAnrS0s4uRTLDnntwivcdtthbM/jIx/9CPfe+wClcgEhY/bv24umsnvv+PgUQmrk3RytVgtlGEyM1Xnt3EXaW32mJidpNtdxch5xHDMcDGm1t9CVA6QsryxSKJSx7RyeY4PQQGn0hgOKbpFGo0Uun8NyNFpbfZaX1qiURzKRMa9Ad6tJ3vMQKYyPTuIVC7znne/g8vwFRsdGKVSqiCSlvdVgOAx4z4MPkoqYXreN0mTmg2tYSKkRDIdsbjTw/YByKQMi5b8+SOrE5HZqDIcDbNtBVwZSK2KYNo8d+Qalgs2+uWksL48/aONaKQYhR556mqmpfRx75QQj1SrTs5PEYYxuKIZBL0tUBwXOvHoU100wHZ0wsQiCkEe+9gq79oyQiphK1UJ3RhCyxONPHmHv/ttIUh/XNbh0cYFCYYSZ2Tk0aWDqNr3OENP0WF5cpViqE0WCAIE0HHL5Ksurm9RKZTqtHq8cPc7euf2ksaDT7+O6BsuLy3iuTRj0sZw8hlPA98Os0iQc0u32MhGt5oBSpYxp5ShWxgiFgSYsgiRgbv84pq0TRRph1CdNfSxT4dgZ45/EERJFFPfZbA45/tISlaqDlCVePXGZ9c02E1MT9AcGyspjehP0QxCqhOuWKRRyNFbOkgwW0bVMUFOXNrEYcPxkl+eOXuEDH3oHhdokfmpQrU6ytNBhx9wsvj9kq7FJtVZjY2WF9Y0VPMdh/uwx8BcJ2peo2AMcuYWRtohMB9cuY2kuSTdCJAOGAYjcNGN730bqTrLV8ul1+xQ8j3KpiKZJnnjqKQ4ePMzE+Cj10SoLK2ucWznL7d47eH7wGc6ffppBLBmb3oOhaQjdeENsfC34vEoUXR/RXxsLCyGQIyly5I0x9dXw+/Vj5HcGiNfH5TfEItcwxVfPufY61z537bxvNt+NAPubHXsVI7xZC+ObVXhe+9z14PV6sH4jIPwPGrxC8kvfbcbhrajy73a8FdB9q8zLm4HXq+Pb4PXOG577hjnegkh9s+tcpeRvVK9+/bqvbtIkjl9n867OeVX50jCMTN3z019CJClj77kPXdPQpCAVoCkya5Yo4fnnj+GYNhfPX6DT7tJpbbHv4H5KlRKTk+NMjo7SHfZwbBdEJu6xeGWFQjFPznWzUpt4iGkpSuUK/jAi59kowyZJe3RaIV/8wsN4xQq6MnAdC01CqeDR7m7RG3QYqY2xsdLFK2ZqpXGSeS0mSQBJzOzUVOYlmUqUEbNj1xz3338PuZxOqZRDaoJOt4Pt2CjdhkTy0Bce4kM/9CFqI3W6nQ5JkhCEIZZlkc97fO2rjzA1OcPa6gq9fpdyuYhmZN6m7dYGtuVy6uQZKpUqjcYGhVKJ6elpoiTCtCwMU0ckGjfdPMdg2CVNNc6cOUepVAYEURSj1PbvU0Cv20NqCk2TdHtdlFJE8ixpEiOj3WgvnCL5nz9MOlHBckawrSJPPPmnHNizj0EcYtomu/fsZ8eegwgjpbO5xsall7E2jiIq+/CHw4wtb3WZGJskV8rj2hZREOG4LhfPnWV1ZRnbsnFsJ2OxZNYr7OVzSC2lUMyj61lSIhN5irCcHKurmxw8dBipFPOXLlOr19ENRa1e5aUXX2DPnjlcL4fneZiWhecZmIbJyvI6xVKNOPUZ9PuMT4xjmjb9boSmWTSbHU6fPk2pVML3fcbHRkjSBMvxsC2dKArw8g7VahXTNBBKxysU0HWdtbUN+r5PmkLOcdna3GRscpJCPk+r1aFSrhIECeWyy8LCErVandOnT9LY6DE1NUWn28EwLTRhcPbUSYa9FkEYUB0ZZWRknImxMZIkJYkF66vLVKvljDWWEsd2CYdD4ihAqYzVioKIP/zU7zNSq9NobLG8sszMzE4QUBup0u40uO++BzCs7KYcRhFh0CMOUpbOLzJRr+Pkc9t2VAN0O8dUfJrWyD28+50VLMuiP5QUSnv59B99jnuTGppSTH3sQY6++DJKKU6fOsW73vUu/GBAoVAg7+WpVWt8/s8eYm5uP+MTHvqunXQKe6iURhFCZn6qMiGKQwzdJrOHysp+19Y2KJeyctUojHFyDgLo9fqZkIaCMIoRQstUchFIBWmaiTtl/acGURjT2mogiElFgpSCxaXFzE7HdQiHmyRpiGUV8MMIpSykiElFyObGCvliDdtyMqucJMXQDeLFFRCC0r45RJr1atRqNdI0AuETxj0MM8/Qz3oLLcsgiSJ03cQPutiWRxxFtDpNTNvA0C2ajQ6JjNCUBoKMWU9SDMNkMBhimiY512KrsYXj5rO+1CRgdeEKrpuj1eli5zyEiIGEzY1N4lgQhplonGEZ+EGAmyuSpgJ/6GPbNgmSNI3RlEJtA+c0Sel22jiWja5pWJYOxJlittTQdA1d6Zlq8raoyWCQ+b8aloFl6AR+j34/RCmdU6fOEPghIyNjBEGIVCZSKEyl0JSGEgtYZhU/mCDUJLVilgRN0wlMN8fE2Agjo2PcdOhWxmpjRP0Q0pTJ6Vlsr0jeVDimxmtnT1DOe7Q2G5RLBX7iJ38STZd87Ec+SmjZqFsOYO7ZxdTMBLaj84777sUfNBDJEKWFCKWDkJnirJYS9SW33XELw2BAmhp84pd+A5kmvOs9D6B0nSgS/PiP/xiTE7P85f/4ArfcdhDD6NFuL1Iplnn6iaP8q3/5M/zQh/8pXq7I7//Bpzh0eD/d7WTGxuoaH3z/h3j0648xOlYiCCRLlzf5+E//PB969w/RWelTm6rzO7/1aWb3j2KaNpqukYoIP2pR9Mo4TqYYrOuZ2OH+ub24rkulVsNzbI69/Cq//mu/yerqEvfecztSt2i325iWidQSNGmw1VyjUs1n1QZDn1RKBn4fS08Y9lbxciWiKCXnFfmTP/l/mJ6c5bd/+/e45577ybkF3vve93HH7fcQRjGmlSOOFU7ZIUkjFpcWGZkapdeLOHn8OP/6Z36G973vfeTyecIowjIykNftDDDsHK1WE9MQ1Op5ur1NdGUTPZNHe8XD37WBabkMBv7r4jaajJAiYXx8kpGRKT7/+S/QGw7xPJti3qTfa3HzwT08/fQxNrfa+MGAsbEqrfaQtbV1JiYnGA51igWDwsgkgyRi0BF86WsvUyp7HNxXwrUdgiAmUSZSO8Q3nzxCuVxjc6uJbliU8mVefukF5nZP02plFQaaECgpCZOYSqVEb9DDdh1c3cEwFP6wh0ZKs72F4zpMz0wxGPZpbG1Sq1fZ2LxCpVQnTfqYls3lhSVsK0fo94iDPutrG5n9W8kjjsEyXeKoi8DHscoEqUGaWui6x+pqEztXwjI9hNRJE400DdH1Ov1gHdvy6PeHWLkCtYqJIU1SowXsYXb3DP0wRlqzuJWdoHlcvHKJyYlpOo1LNNZPYmsBTsFjdX3A+lqPhaUt1jcVxfoEh26/j3J+kqeeOoVUEbre7Ta1zAAAIABJREFUYaKWI0Jja32N0VqVXq9HqVDilVeep7F0ASPdpFYOkWkXU08x7AJmYYQkjGi011nbatAaaKx0i4zM3MbZSw1KxRqf/+xnOXRoP73mKrt2jNHtdVicv8jxkyfZe+Awhmnx5a9+gwceeAf18Qp2mmOv9YN8c/UPuHj6GO993/sQlXGu8q5XY+PrRZIy3Ze3Jnreanw7bn/jdW7cM/qdAeT1pbbXr+mt1nUtDrj+uGsrLr+TP+x3mv+tn38jAXij867+7OrjP+iy4avM69XxVgDx+uf+v6paXTvnjbIO1x9zI+uaq+dcC16v71slyfwNBZAmV+vtr27Aqxvv28+/caRv+H/1WEhfd1kiTZFCvH7m62sM4+2NlKISDSMSBCJEiMyOJkli+PRfQZLATXMIBN1Wh1CApmVWMbqS7Jjdg+3Y/M0zT7Fz5yynz5xjamaEKIowDIeu3ySfL5MQYuoa/VaXdmeIYehcvrzAzMw0brmEJm0GzQGmlSK0gH5/gOV4GKbi/MmTHD/+Kjump6iUijS3GuQLefKlIp6bZ9AdMOj3OXdugenZKqsr69iWizIzWx/TcUgRaEoxHA4wDYM0TXFzeaJkCEIgpUJTFppmkAJzc3totRpoxLS6PY5846+ZnZ7EyeUh1di9cweWrlEolrDsPJqh09zaxDYVrmOzubrK2MQ4SZqgK0hkSJpKklgRRUkW9AsNoWnboieK2ekxWq0uvh9h2TZKKTY3ljl+7Bi79hzATwZZL45lEAY+qX4Rqelo8yW05XXCX/hRUhR/9rnPcOr4Rd79rg+y1Vqh1epRLJTYarXIl0rogx5+EOPpEM8/QVic49LlZQxlYpkG/nCAY9psbKxz6fI8S4vreIUCKZL19Q1GR0bptbtYtoemCfzhgFMnTlHOW5w/+xoLlzKQmyYxG6vrzM3tZH7+PFMzE4yMTZHzHKLYZ3lphfvf+V76gy7PfetpkgS8Yo00zcpqTcvmiSeOsGfXTo4dfQnXtnByBQxD0e/3SeKEqckpNKXh2g6vnV1EVxaLl18j70miaIhhmLS73YzhkplfZxynOG4O265QruYx7Byul8PJSdqtIV/72jfYs3cng6GP7RZxLZM4iSlV62ysLOL7A8ZHR+j3++i2Tn20imFajI1PIoRE0+CxI48zOTFBs73O448/xqGDh2hsNSgW8rRaTVaWV9H1EEGfxvoWbs5hcqJEpVqgUC5hOQV0wyBJU3SVscfVyii9XhfdUEgJ/XabY88f48kjT3Db7XeSCIEmJLrQSKQFjTMcfsc/xip3sn2ie5j2OAcPHSY8cYX8WIWnBxfIex4nThzHNE1AMD0zg6F0JsfHee3iOW6++TCnT1+hUNiJbW9RLMQ89TdHefrJv2H3rh1YjkmcZrZEaZpgaIogGGBZJkppJIDSFUE4RFcS08oziDLmRdN0BgOfzCVmgBQa/X4HiFAqUwFtbjUoV4qEUUje1TPbCSHRTAPNUDSXTtMPdLx8AS2NkUqSIgijFCkNSCXz8/OZVZIShKHP4PxllKZhTE+ytHyZQqEKQjAIhuS8IikGhuYipKTZbGbqrmlCp9MjX6ix1WpiWDZSk2ha1ucUpymOk5Xra8IgjWI6zS62Y2CYGlEQcGl+uwxd0/CDBMvKYZiSKIqxbAtNCuIENhtblMp1dMNESIkuJTE6pmlD0EUoA02GpEmI1AyIBd3WJiL1UZpGEKaYjmKrtYVpZb2FIoXhsIdpKIgjesOQFNBeaSBX+5izJaIooNvqQjJg0OnSaPrkizaPPnqEkfoEhUIeXZMEUYhp2IQBWIZAcIlur81Q3sHmlSu89NIj7J7bj57LvEwN3UFIi5xX4dd+7TcoVhQzk6MYImRj8RxWvkqMojq2myvzTS6eX+F/+zf/hn/ykR8lShJU3CN38376oyUMZbJ55TIVy8KtTRGlKXbeJJYD2isdLs8vMjI+QZQOwC4yDHoEvQ4hEQdvP8gHvu+D6KZJtzfAdmyOPHGE9fVlPvl7v8n3PHAbtlMnX6gTxTH5ossPfPAfsbyyRLO9yrvecx9h1KdemqHbGTI1Pcupk8v84i/+OmsbF9GTPlKL+aEf/mf0Pq1T2ZpC3ZNiWHnCRFCrjSKkhuvmCQOB5eqEw01c22WYuLTaG/zCL/4s9997M+3VVaq1fUxMVrnnntt5x9u/F9vRCMKQSmkCfxgwMlZk0M+8wLPy+yHLqwtUq1kiD6nQ9Byp0Dl69CiVYpFD+w4woMWePXOUclV++if/JZ/83d9l5+4ZdM/Adiz+22/9Ljt2zWI7GmEcMDG+A0tqjI+N8qEP/WPa7Q36nTV010OIrF3kv/zGb7Bn3w4cxySIQizHxSuU+KNP/BV3nH07WzuuYBez6hKhFMp0UZa7HbNoGCqz6XFyHs+99CK333krxD66TAl6LQw9Yffum5GWy9nTZ9i5YyeFXIX11S2+/tW/ZueuaQzHIsXk/2XvvYM0yc86z88vvX/9W766utrbme6Z0WgkjYSEE0IIjzCnA2G0sAgOOC6ODQ6O3YiN5Qji9i4O9jZYYo84tLewMkiDZkZIGo3GaEx3j2k/7U15+9p83/R5f2T10NPjJLEbcXHsL6Kioqoy8833rXzzfb7P8zVPfu1JpEzjwH4DXVgIMSQJLIaZweW5FmdPneYD73+QHTt3UC55XL56liN331cYb62v4DomA39Irx+QxQmy6TEM2uhJSkqC3+9j6CaSDC899zhBdxNBglepozkeIlcwzBqqZkPeAcVDVRQMXcbzbCQBG+0N6nWbSxcu0Kg02ei0iJIARdURqAyCVbyKRZIZqGaNKJcQRoNuLymaXIZLnOTozhioFrploxkjoBjY1RprqwnTU6PIukwQWOhGhSRRMI0cMpVy2SHuX0ekHU6dvkC5vB1NW6VcmuDJ5y4zv5RguHX27NlZ5LmXdZrNEchMTp26hKbKuG6ZtfVVuu11vv70wxzdVWLXuMBxoJcX8ijPsRj2e8TDIf6gg1HdyXrX5Mr1PqlosmffXVTKCpfOX2LPjrspVw2qXp1OZ8ALp04hhM7S0jLz8xdojGgcuesDXL12EcNWGOp9SovjnOteYMm/wo9//NcwY4VYk4rrTBJb/hKvpfW+KtG7rYTOuU2+BySnZbJVCdF8KyxR0LH/PurmtdNdIQSCojErkBAUGduSkMmzW3ThtwbL3wooflMK9B3HeLP9vnXwfmvgB7frYfNbmEOIV2Ww0h1T8P9fT17fym34HzJh/VbWt0NZvrNTEl85BhS04dcdN3/9cd7scb+V5/yansht4PXW0raAUyJBJnIyKScTElkuKPiMEjz6FKgK+Y4JJARRGOKWy6iqiiQEnU6Hl146zehIk4OHDlAueRw8cAhdkxFCRZaN4oMsjNEMjSROiKIEVddoNuuUy8UH3yAYoKsqVy5fpbmVFSoLCVmRSdOEerPBd3/P96CoCv7Ax/E8cnKiJENCQtMV1lZXmN62HduR8UplgiBkc7PNieMn2Da9DUmSuPDKBW7eWKBSrmDoGp1OB8u0abc6xTSRnDhOyNIEVZPRVAXdNNANi9GRUXp9n1wIorhLTsTa2iKWbSCknM3NNuVyCUWRC7MYy6I/CEizvMiGSzMUoXHi+HHCYZ9GvYymKshyRq/bLqI4woDBMGA4HDIcDopCNSs60pbtoWoKQkgEvo+qKCTyFdIkRntmwI37pmnPWGxuzHFw/zsYn6zQaq1SLjWoNavEcYLjuLz88kla3XXGJqcQyy8Sb86x5mvsmpkCUm7cuM7MzDYWFxZw7MIgZ2J8gizPGR0dJcsyrly5wuTkJFGSkiYhL734MvccvZeV5QVWV9eZ3b4DSZKoVCvMzE5i2hbVWpX1jU2qtSpBOKDkuUxNTuIP+vR7Lfbv20OpXEFWVLI0otfzqVTKPProI0xOTTA5MUaWZyiaRpbmHD92jAMHDnD69CmiMEJW4OGHH2H/gX2MjjVIkhjTcLh69TrN5iiypOD3u8iyhKwoCEkiS0NkJUGWVLI0wdA1DMNi166dBe1T08gpKJa27bC8ssKhAweoN+tkeU6n28PzHGTg7x59BE2VIU3o9vpsn55hbW0VTVd5x33v5NKly1SrNUzTxjIdNjbW0XUVTdOxzTrDSFCrNZCFgqHZHD/xAjMz2wqGhKwgCXj44UfZt28filpcT2XPZWxikm3T2zEsE0VVWVtd47lnn2XHrp2F4U+wwkV/mUa9hmZUWN+IOXnyLFfcmMkffICpyUl2zO6k1Wrzwz/8w4yPjzO/MM/x548xNj7G9tntHD9+nG3bZjBNj4cffoa7j+xlfCTj8F3vRVUVkixFIEjiEEFOnqfEUYQ/8DHNIvMVKIBRt4uhm6i6xqDfQdM0yNiKYHHIRVbEdKiFUU2egWUZ5FmGrml0en1sp4wQMpZpMhz4+L0+jbFpciEV7tKyQhAEhGHIcDgkTgIq1TKSkFBklSwHZXWDnJys2Xx18qiqRZavrKjkOUSxj65LuK5BkgaoqlrEysiieN8jISS4fv065UoFSZIYDnyyTAIyhoMuTtljOCymwVEc4jglWq02pmmwuraM61kkcYRpmlvTZyBLIc+KDFlZLhpVeYKQi+lpFkVkQmJjbQ1N01FUg1a7RbnskWcJQlLQDLOYQCraVhSOhJClreacIE5SNF0vMm//r3NkF1uId4+SIrBMB1WVEEJhZHSCOBly1+G78FyPNIswDJ3sVkM1T1FUkPI5rlzt8d4H/wf+u9/4JLv2vpeUBrkAXdeIAp8sS1lbW+Ud99/L1Mw2ZFUlyWBts0USpyiKjFBUNMXg+PPH+L3f/33sUoqihki5QjDosLq6we/87v/E2VNnCJKIxqSNJEwMrYZCA8vVGBkbZ3l+CU2WyWKZH/vID/ILP/txdMWk5FS5ePESXslGlgV//uf/ng9/6IN4jsfP/NTPFAZ8mkaSBhhGoVu+evUa73zn/TTqIwTDiL/6q09zz5EjPPCuu/hvPvYjWKbCRz/6Azz44PvYNrWN//kP/gU//CM/gXWphCTBi/mT3HvfESolhz/7P/+Ug/v3Yhsaj3/1y0xP7MLQVPJcoGgqquoVr+1WCLtQUzQz4NrN84yNN+gNlgCdf/Onf8Z977iHXn8N07LI84R2u0O1Wqfb8Wk0GrRaLWzbJs9zVlYXmZ6ewLYN/H6Xvj8kGCY88/Qz/Ppv/Cq2o9JqtbAck8FgyOEDdzEyMYJpFrnnum4QpBF5nnP95hwz23dguVVWVlap1huEUUptbAJdkiETnD/7ChNjk2yc7XLv6Q+g7s2JPL8wLZINJEBVCpMgISmQw9996UtMT2/js5/9DL/w8U8UkpqDdxEGA1RFYDsaJ0+9gqJY7N5/kMFgyNVrlxkbrxLFXWZmZun7A/IsY9eOWW4sLuDYJapVk81OiGZnVBu7UIwKH/zuD2C5Bv1+4ThuGQIpy7hw6TK7du4ABFmaU6lUSXNIhz10DVSzTJbGrKwsUy6XyPOMicldTG3bjSTrWE6FJM5RZBiGHaQ8Y+7GHKZVuLBHUcL163O02z127NyLAEZHJ7BsD8dxsG2LxaVFSqUKrltnbWUN167g2i6WqaKrgnCYUC5NYblTGLqFaddBmESxTCLZhJGGrtfpdYdYtoNTmsUrlfH7G5TclDCU0fWM3uYViDZRyVhf15mc1Al6Kl9++hR79h7iA9/9QeqjdXTDpddtU65UuXLlKo16ndbGBtevX2OkbiGSNTxzyM6aKDJqNYNcNahaHmkU0el0QJJAlVht2YxOHmJxucuRw0eZnq0iy9Dze9iuw8NfeoReu0vYu8nFc8/jt1coe7C2tI7IZM6cus7cwhK79+wgDANGx8dY763xoPYjLLlf4qFH/xK5OcX41HRRR27loqZJ8mou9ZsCNPHaOjv6K43smoRyf/qaWvrtp6h3Hvb1wPOWv8zb7X979M63i3m+VSzxrYDXt9jg9b/idRE8/zjB69utb+bC+Iest9Kb3vnYt2teb+/s5Lemoq+ZKL8xiH2jqfJbXoB3nCt3AGwll8gERHmCqkGexpDJyJJcaLlkheyFs6CrSCN18izFNAyQJMIgIN2KxQBBq7XJyEidJI7Is4yzZ08x0hzlxImXcWybod8tKJayRjgsJp39fhfLtsiynDSKUCSZ8YlxFhaWqJTrXLt6BcdxME0Dp+QSJzGt9gaNZmPL6CbjG08+w8joCHEcUqlVsB2HOA2Yn1+kOdLgoc8/zNTUJM1Gk431DW7euMHhw0dZXlrCdR2GwwFDP6ZSriLIWVpa4Mqly4yPjyJLMoNgUACYNCNJM2zHpeQ6FLcjCUkoPPTQoxw4cBRJBl3T6Hba6LpGkhc29MtLq3zmc19g767dBMMhE+NjaKqEJCDPYjrtDXRdo9dp4/sDcpEzMTleGNWkEoom0/d9LMMmjgYIchzLIY5TEuUSkiSjPTlA+q2f45//6/+Nj/30f8uhw/cyOuHwHe9/EEOr0w9aW3mtA+r1OtVmYbhy9fiXSdYvc2VxSL+7Qb1eo+8X8UPLSyu4roOqabRabRRFoVTyUBSZV155hcnJCc6dO4ciS4yPjzMcBrheibHxCTKRU2sU08j19UXKlRKIwkX5xo1raGpBT/f9HpYuEwZDFFXFHwywbRvD0tF1kzhJC+A6vY2V5WVGR5uFnirKaDYbyEpedFRziUajhO/3iaKgyEH0apw/d4HtM7OcOXWKkUaDnIQwiouCLIpRlIThsIvIC31xEmWk2YC11TXiWPDKhbNYpoXjOkiyRK1cZ7O9gW5oBHGEZbuQJmRxwv69e1ElmSgM+E+f/ix7du8kiUMq1SqdTo/x8QmiMOHMmfMYhk2cBJw9dwFJUqjVJlEMiYwUSc64+Mo57r77XrI0Y35ufitGRiNKYjqdDqqmYhgmm+sbWM0SZtmhvb6BpZuYlsX0tm2omkauuiSXv8RDL7bZvu876fVzVtcWuHDhBtPbpqhWq2iqxrmz5zh69ChhGHHp8mVeePEFvvMD76NS8ZAVhdnZHeiGSavVYn96Fb1ZI866DPrLWFaTjCKTUIgcWQjyLCHLc0qlUpH/OCjicsLhEF0TBeNASMhCEAYBnucShTG+P8C0jUKXmcv0e0MMWyeMQ2RZJsuLybmsaFsNoYQ8TfAqTeI0RxJgWgbkkOUpjl04DJumjqYV+vMoSsgzQTI3R5ZlLEuCsbExVFWwuLRMqVQ0eiRJIFAhl4prxrAJg4IKrxsGQTDA7/cRQqJRbyJLMrIsoW+dXxQOcF2DKM3IU4iDCN3SieOMarUCeYZpKERBH92wtsCbyubGBppWGDZlacrm5iaWZZLneQGeZZkc0FQVy3GQZBUJGU3XmL95k3KlwjAIUXUdEiAHv9dHUWRkTSVJIUdGVhTyLfMq+dnVYkL+QIMcwXAQYlgac3OLpFnK/Px1PK9SRAHJaYGtJWmroZ4iySkyC8zNheT5/bz3u99T6NdVhTSJUYTA9zvohoYk54yM1MkkpWgEpjmmU2aiUcWyTIIkQVVVqrU65WqFlZUzvPTiNxgZ20XvocdoBBnf9yu/xHsefDc7d+3E1mo88bWn+KGPfB8/+7M/SpQXZiDdVgtFKPzyz3+c3//d32N+YZnf/LXf4F/+wT/nc3/zaX7tk79MnqZsm5pkfHQUhMKzzz/Prj27iOIheZ5y6fIrNBpNtm/fzs0b8/ziL36Cu+8+yqGDR3n2qWP89m/9j1TKNZ5/9hiNRoN/92d/zka7Q7lSpVoqsfKVTVzXY/z7yywu3SBLUt733gcxdI0nn/g6U5MT/M5v/x4/9KM/Tq/fI/DXOX9hnkq5hqzolKolFhc2qTfrNEemUGQP3dRwnBIf/L4f4Cd+/Ceo1T3aG8v4/S6GaqBKKhWvyqDfgyxHU1QUSaY/7OE4FieOH6PX7bBrxx4mxyYZn5rEcjXavTWaI2MoIsd1LHJJIklAllV0zUCWJYIkJBM5tlNCknRsq4RpaXS6PRRdY21jlZnxSchh7sYctevTuJ/bjrw7IhuRabd61Ktl0iQjjgPyJGJp7ga5pKLrOjt37qTd2eS9D76HTnuNqakd9Ad9FFNg6DZZ1sI1DQa9IfNLfTrtHoZuMDU9ieNYdLo+ju3iOi7PPvssU+MNTh47w749JiIxCaJ1VHMWw3ZIY59Wt0uWJUi5hMgjLN3A9gptsOt6xee8BKtrG4zWvUJv7I0SD7tUa2VuDe/CLKMfDDAdiyj08XubyLJKFG0y6A8YH9/BxuYytuVQrjSo1kdpNMdptzq4pTq5UEAq/CKGwwDP8xACpAy8sk4cDhgGXeK4SziIkRUd3TZZb62gaCadbg9J1ckVHUkzcd0ap89cYHSsgWbJJIqNICEOfBLfR1EVTNWns34eRcSoQqYf99HlKl0/xps4hGNXyZWUWnMEkaskUcSZc+eZnppC5Alp5CPlQ6L+TUpGD1X0kIVEqdks7lNZRL+7SJLJ5FKJQVzmzCtr3Pfej5BLJmsb64xNVIijHnmq49h1Xjx5kultM5w5cZwjB1xmJ23GajaeI9g+XaFSNvEcnZVNn+ZIg1qtxksvnWQo+Vg47M2+lyeu/TG/+Ud/QTD0Cw+FNCtq2q369/Z811u18KsTyTtYlumxIv/6VlTOHcDrTYdNt2ODYhtes82tKehb7XPn49y57Vv58tzytXkrivDtObhvtt4Ie9z5tzsf+9VzFdLrX4c7aM3/Fby+yfovPZl9o3/emz2mVN+GPLEfob8+51Xw1pTkb/v87jjPOx9BljXiNEZkCQZw/KknMAwTXZE4f/wpyukm4sR1CCJoFBlaCwuLeJ5HHN+iF8sois6nP/3XHDp4kLW1Feq1ClkWIiSZZn0MzZDRFIGqG2RpcRb93pDHHvsqe/fsQZZUOpubDIcBhmVx/NgxVpZXOHD4LmRJRqKwNBfkGFuTgjRJ+NpXH+P9738/SZoiJAnbcbeedYbnVQGolEvMzGwjzxPK5RJTUxMsLy3x5BNf567Dh6hUKvy7P/tzypUStmVTrRa6xGq1SpqlREkMSIVmzLLRDYMsSej3A+IowdQdxsdniMIct2SSJjGQE0UhYZThWhbdTpsds7Pohk6lVqbn96jVawyGAfoW2DAsC1nRcWyXPM+wLJMsz8lTEFJKlMbEYUQ47GFaNoOtaJVUu8Jgo4251ODr+2f4p5/8DWTV4BOf+AXuu+/+IlA9HZKJHEmSMU2r+N/ncaEfXn2OQXuVgVxh7949xElMr9/HNA2ao9NYro3l2Bx/4UVKnodpGly9eo2ZmRlOnTrJoYMHsSyTXq/HX37qP3L5ymWOHD3CyuoKpVKZIIiw7AKECklCCIlyubwFTgStVot40EdWFMrVOppucfHCRWq1Bn4/JEdw6tRpZnfu5onHH8fv9ymVyohcYWNjDc+z6bQ7SJJCqWxv6Zxzrl27wfS2GTbWN2g2a5AnlEsuQlZx3RLDYYgQCt12B9d18Xshy4srjI1OMBiuUSqV+MqXnsayZTqdPvWRBgjBxtoGtqkiyxJRGCFyGV1XSbOMbqfL+vo63W6Po/fcw8R4kzAYouo6SZIQRiGf+tR/4N5730G9VqNWrzE9vQ3XdXjpxVOMjddI0kIvWS559HsBpmEyPz+H67qFA65pMjk5RalUIs9yTENHHrcxqw55L0FGJgwDVEMnz3JWltewTJWJyiSXgvv57Kf/Az/8g+9gs53xwAP3QZ5z5ep1ZEkiTTOyNMW2bI4dP8Y9Rw4jKwXQHAyGCCHzyCOPUt44iabKbNCkUVlifaOIuFC3jFoKGq3CMCgA9/r6OrVanTiKkMhR5BRNM0GSCQYhruMQRUXea7fbwbStoitNTt/vk4kc0zDJsgxFlhn4XRRFxh8MSLPCPTdJQFWLfNIwiMnJXtV+CgSSJJNlOUJIbGxukOUp6loLWZbw9uwq9GtRj1KpTJbBMBigajKKZJDlRfdbVTUUWaCoOr5fuKW7rkO71cG2HYSATreNIiDNiilzcd+z6bfXaG8uYTsldL1wiZVlCIYFg0LTTWRJptfvUylXyPK0MI/TdIIwIkkSLMdC3ipKhsOATmsTy3ELo4wcojRGkVUMrYgcSrKEOIgxDK14r5Rc8ixj0As4c/oMszu24fd7aJqK/MwKURQh3jNKliUEgwBdV+h1fcbGR6nWSrRaXTzPIU0Djh97mWptBNMwSOIhSdBBU9epNfYhW+9BsxVs1yHPUrIkQduijt+4cZNKpUIUh6hIRFGIYeiomsb8xTOESczS6gpuuYrnOfjDPo1qhbHRCWRdxf7TLyDOXyf9vneRBT0cSwNMtm+f5ld+9ee5OX8eXakhCfjaY19h3/672Ld7krvvOUptpMmhQwf5yPd/L7/wiX9CtVbmiw8/xKFDd5GnGZsbbU6eOsPsju0IJHr9LmOjY+SZgufW8DyPd77zfqrVEoqas2fHHmzLQpZ0/tnv/C6f+8wX+MM/+hdMbN/OkaNHmJ5sUJkfL/T14yv84R/+IT/+Ex9FSDJBGOGVypQrVZ575kk+8F3fg64rXL7wMnGc4pgOL554Ads2+aP/5d/wzgfeiW1XiCMVWRFIUspv/Ppvs7KywvT0JIauE205T6dpRLfXolyucuLECR599FHe9a534VXKxFFCySuxtrqO77fRdIPBMMCwTOIkwbZseu1NLrxyEbdSJU1zZEkvjAKJCcMIWzcJhz7Hn3+aLIuo1keI4wHJsEvdU7l25QZVpca2Z+4lO2bRm17CmtYRssJnPv0ZZme2EycRruOwtr7O2PgEql40ZyQomkwSaIZaOGYbhfEasglpD1VApepy7cpN1pbn2bV7FwuLy0xOzVCr18gyWFpcYnpmG+fPnuH+e+8miVvYlkW1vI0Ah4yM9dVFJqZn8ezCrTlOE8Iow7Rs1lbXqdeaRHFIGPoYRmGg5ZUdBDLOynfRAAAgAElEQVR+r4MkZbQ7LYSQabfXGR1tEiURC/M3sS0dzTDYXF3FMj0M26S1vk6jOYKQFIKoiEqLkyFhmBNGCUIGTVYL13LbIooChCTTH7To+8Xnvj/s49geumkzDAcoSgppzsryImNTk8iSyuXzF2jUyxiGoDlSZxjE5HmCREqv08VzK8xdfRFVDHDMIp4qjBKsssEjXz7H/OIa737f93D65CkOHN5HnqvMz12jXKkwGAzxHJc46NNaX6JiD/GsBE3NySUdyalDlhP7PeIgJJUMFtdiVjsSO/Y9wOjkTlRT5/wrFzly92GEXNCXF+bWOHXqJBfOn2V5YYXxasSRA9OQR4RxgKqoCBJkOcHzFM5e3kTXdZI4YXJqmmqliijL2Mt11PEN7NkGludt1YtFk+32+vdOUPZqPX7b5FUIQfJ84Qlz++T1Tevtt8Ib+ZuDwG9q/29y+9cC5m+O/vt2cshv9W9//1q+0eT1tYO9/wpe32T9fwm8Ct1G6Dbw+ovqHwJe35JivPX9Vhcm57UUhCRJi4Jrc42/+JM/YTh3lT3uEO3mM3jz3yBfPEOm9BGLGWJ0BEmScGwH3/dRlCL/ShYS7U6P7du3o2kynuciiQTHNUjTjDCMMQwVRYL5xVXKlRq6rtHtDHnXAw9s0Tlynn3yaZojTfxgyK5dO5memuTlsxd44mtfZ//efXQ7XVqtdRzTZGNtHVM3tqYlMpbtoGo6cZIhJJlWp4WimOR5hq7L5GQYukaepwThkEajxvR04ZQsJME777+/MM0RElkOI80qeZ6ytr5OpVolTgrgqGoGQpLodztICqiqTBSGGKbFE08+xfTMBK3NTaqVckF/Q0HOEioVF8uyiLKY/rBPuVIBUWieBEVMRp5L5LmMIguSNKTV3sRxPBRZQSgZjmsVlL3IR1EMTr18iompKVR5N/p5g3jPNNt+8YdYby8j64U+ThYeiqLQ7c+xvLKJbTkIIRVxRBJkSUZw4RE0p0ZtahdXb8wxNj7OSLNOnqa8dOYSI6OjJFnK9tkdyGRb7qtDprdNs2PHLJZhEicRN27O8d4Hv4N77rmPnIxGowZCKp53GKNrBlES0et3UWSVc2cvMDo6RqVcJux3GJucYhjEtFpdbMtBVjWeffYYhm5zc26Onbt2s3/vXgzdYH1jg7m5BbZtm2J9fZnJyWnSGMKo0FBWKjW6nSGu52IYGpoq4fc7pEnIynqHfn+IYdhYlsPK8jq6pnH+3GX27z/Ic88eY2TcIklyrl5e4QPf+S7a7R4jYyMEQYhjOSwvzTE3d5Nmvcni4gpeqYQ/GOJ5JR5//AmOHr0Hz3N55htPsWv3ThRFQzMUXMdlZmYG13E58cILTEyOk5OTkzA+MY4maUiKTparKIqJRM7XvvYYBw8eolars7CwyMj4KLpu0G4XmcVZluGOV1BUhaQd4Ld7GKaJpCpoisoXPv837Dl0FGvlKX7pjx/hyH3v5TveO8Lqesa2T51Gfe4G2ncd4ub1GxiGwRe/+DBz8/P83M/9HOfOnqI50mBzs021WmdleRVV1ZhIF0m6XUbuuQ/bBllpIMs6YZKSpsV9RlU1RJ6RpilpnqMZBoqiFBN2OUcIheEwxDI8Wq1NgqCHospAjmHapGlCHId4JXvLuOnVVhxBfwPLMov4Ck1js9UiTzN0VSKJI1qbXSq1MmmasL6xjqapkCskcUKaJoThkFLJRTVdRMUBywIpRZJjyCUUxUDVZXq9dqGPTYbohgIiQeQyWS4wLWdLp57ieeUtEyQKsJ8npBmoisJg4LO81MYxQxQ5wrGbRFlUaGSzDL/Xx9R1wjghTYsIoW6vR5JlW8XqkHKliqLpxFEAeU6328MwbMollzCKkWSVOAyRFBnTMJCExOraGo5n02112NhYY2SkgRA5/V4PzylTq9XodjZBCCzDQHpmBSEJ1nbLlF0HTdUJgj5pkuF4Dr7fpVSq0/e7KGrO1PguZMVAZAvo6hoSayhKzNe+foYD9/8S1WoJWz6Boa7S73lsbqzjlmpMTEwVWaayDGmArsokccQwCHAUSLKU5sQESS5YXllhfLxB0lfxvAZR1mP4mSdRFBXlB96Ha2Qs37yMbA8RucLmuk+9PM3v/Pe/w0d+4EPcde8RusOYqQkTP4kwSxUqtRITozXiJCPPY/bs3oksFDbWV3n6qef4yA/9KHbJQ8oF5XKVxYVFPLdKGGRsbGxgOxqj41WyPKTvzzEYtDh+/Dk+9rGf5qM/+SNcuHiOf/2nf8r05Agzkw2GxxQkIePvHPBjP/pTJFKOrOogKViOR9cf8kMffg+ybnPz5g2aZYvZbWOYus3k2DSarPLO99xHnHZ44YXnmZ6exh+uQ54RBjmz23cyDLpEg4RyuQJ5wqXLZxkfb2I5NVzLYnRkhDAIUXUbTTGwDQfTsKnVVWzLwfGqvHLhMtPbZ3ny649TLdns2bMHoesoksFf/9VnqNVrbGwuomYKpqFjqILZmXFG6y6DTEXNQ/obc/irV5n17if5P8aQ9Az5yIBWsIrj2iR5j7HxOq7tEgZDbNfFK1dYWW/husWkMQoDDEMjTROy3MRwDBzLxO/EVEZGyeM+upyh6Rm1ksbkRJUrV6/w8pnz7Ni1i16vB8goioZbchnf2WRufpVnn7rJgXeMcPHqOpPb9yBJOWXPxR9khMM2Fy/eYGxikl6Q0O+2ChfzJCWKAxzXQpE10GwUTaDEEVES45Vu1RgWSiZQFAOEhmW5VEpVcpHiWC6mWSKVQhrVUXo9n1ySSbIMTdeQpJjPfvZvOXT3ERRVZnNtjWqtRhQFGKbK6uqASrWEZVWIE5lSqbFFE68g4RD1U3RNIgtjrl++RpJI5IOMRs1BVRLiVCKJTBxDJ4oG+MMutmdDcBNdzpEzQZpLqLrJE49dwJuewrH2IUldDh48iGHqBANw7RzdcLh27QajzQYnjn2DetXB09ZRRIik2JQbuxHEDDdXkIXCYjtmdd1i94H3sbAeIJka1aaDyCTOnrrIzLadZMisr66h6yrnzz3P5GgN1zC591AZkWXEaYbQCyagLMuIXKFkN+hnFmfPnmP/vgNYlk2pVCZkgCxrNDcO8qt//m72H30/zUaTW9mu+W0l8htNFG+X1t0CWEXO6xuD1zdy3n3zQv0/L3h9s6nqt6Ndfat1a/83Mnr69sDrPyLacJrFf/B227wZPfjvf/f2uanfzPFfTwX4Zi7eLaUyWxbbWRFRk2dZYdGUv/ZNUJg+3S7gLvYXefbqkW7/Is+LUbxSPE8h8q1tc0SmAIUhU55nW4ZF0Ou3MU2btLXEsS/+NU/8xR/zvdsl7mnEbMxfJkpyFhOb6r774PnTZHtT5KyBIlTCKGRjvYXnlorzFBKWaVApe4RByInjx6nV6rhOFVB55JFHOXDwbtJc8Jf/96eZ3TGFpuqUSzqQ4g8Kd8vpmXEcz8E0DAzDxB8OmN42xZ7du5BVGUVXcStlZCnF1iWGwwFOpYZi2WSZ4PrVS+hyiqpp9FoDPNslBxRJIQwDFKUQzGuqSRj4fOGhhzl8+G7a3Ta2YzPwN5EotJCSAmEY8dhXn2Dvnr2kcYRhGUTRkCQJaLc7lCujSAj63RaOa7Jj9yympmOaOp1OnyuX5/nGk9/g6H33kssKczcWkCSJZr2OvNUGzDMY+F00TQEy4ixG1U0kSeDYLgKJhLiYGKESRikrGz1s02R5ZQ3bVvC7fax+hKhX0B68jyxJsA2LRx/+OrO7JkAR2O44msgolTyCOELSZPwIYiGTXv0ql6/cYLOXsHvHDKqmMQhjgiShXjHRNAlVlpAlUUyHVZWLl64yf3MZSdK4uThHvdHAskxq9TIkKp32ZWxNI4oCJK1LHEnEWY7jepBmvHjiRe57x93cuHYZzyuz2fYxLYfFxQX6vTajow3a7Q57d0wTBT4jzSZk0PV7DMMhU5PjlMoOG5sbTM1sZ3Ozw5nTp3Btl3KtxHPPv8j9992DabuFMZipUamNkaQ2izdvcPrMaaI4ZGJqrMhL1TSmtk0QpyHNUQtVqSAJjWrdxnWalKsVrl2+hioJNCWnMjZFY2QMSVLwPIdsuEm33QJJY3pmO7qu0u912DG7lyhMuXblMuMTEywtLuP3fQaDPoNBl8nJcfI0h1xC02QQORJFxIwQIGSNfXvG6bauIckSdmkEcyu+5aUXX2akOYIQOXqziDgJ17pIqs7J06doNpokacLe/ftBVZH68+zcPcO/+rMn+OQ/fT+jjVm0Y/OEQcDn107zfR/8IHGcUC6XabdbbJsu9EK1WpP5uQVsu8xDD32eD3/4Q8w/9wWq5QpffLnHwcNF5mwcgchTFm5eQlcFilpMYXt+D9d1kZCKyBlPRdM8ut0Btm2ytrZMo1nDNC3yTMJ1SiSpQFZuxXjpCCEh8i0w6PdxPQ9Z0ojChDxJ0VUFy3ZIc4E/CKg3GyRhgiRr2K6BIpSiQNI0TMPAMoopZ58Yq1EvNFCZQJI12q02JDFZKmE7VcKBjyJpRGFImoQoukWWpcRJRJZlLCwu4XgeSZYhyBBZiqIWkTj6llmcoko4pTGQPYSSI1FMuSVZwS2X6PkDDEViZXkN13HRdJXO+jp+v48sZBzbJY5jZEkiSTNczyWMAmRFR5ZUdFVGVSHwA5I4JCXFcV3IFaKgQ3NklL4/BKEgJQn+oINuKuimhYzEysoK3ukBcZzifXg/UZJz4+Y1oihCljJMu4quGty4cY1KtUaaqshKTjDs4Ogn8eNDvHx6wNioR3N0El17T6ElZ76YxGs7yCWFdrvFYDBA1w3yXOCHA1AtZE0n8bvonsNqq4tdqpP0O2jZkChVGYQxS6traJqJ8dVnAYi+/33EkUypMk4WG6SZwoc+8oN87OM/z4/+5EdIyZifn0eRc2x3GiEJ0jRA0wye/MbLfOjDP8aXv/o4H/2pj9HqDinX67x0+iR3H72L4WBAe30eUpkkCkiTIf/rH/1bZDll176dZInFPYfu4RO/9MuUvSmeefokrfYakpywY8dedk7v55O/8kl+8mc+Sn6qeG/q7yoaf/M3L6PKCv2Ozx/9qz/mQ9/7AyysrGAYBu1um3JjguEgY+7mVdrtdfphzNjoCKZhsX37NpI4JImgtbJEo9ZkfX0NzVDxh4VnhKXpjE9NM4gTgjCm6/uMTtWx7FFkVSEM+iRxiOaW0E2XKJHo9fvMbB8lzTrIYczyWguvOYKk5Tz6ha8wf32Z73jPu2nUDDZWb9Lvt9B0HT/MSCUN0ow0gW4/ZmLmEOG/ryI1M9LZiDTOaFSbDIc9JGTq9VHSXMFzPYaDECEEjlW4CZNlGHrhYN3vDTBtjTgI8fsBYZggk6K7dcI0Z9jvYVspcRzS70bIio0/CIrGjm5x88YNatUKzz19lv27d7NjR5XW+pCZ2Vlst4qESZJKSFKEqplUqh5+v4eUp5iWgSRnSEqGKsusLq/R6/mMTTQIBgGbvSF/+7ePsffgveimQ2tzFats8en/5++Ynmiia31u3lihXKsRhT2iIGLoDwiiDqpmEwRDVE0iihIs3eKeI/fRbW8QDNpYbhlD1xgOhyiahSwlhUY/Szh95iWazRqKapBmGYpsMYyWMcqjuCWPSsWj221hlXV03cX3u8zNXWJycgdBHKAqNq+cOctE3WQ4WCbPIUljklQwGOQsr8Pk1Da279jOzI4ZVNUASaXVXsc2PW5cv8loo8HFM6+gi4jR0RRVTslUA6fcJIlSAn+JNFGIJAPNnmL20LtZ3WgRhyFpGODoJmGc4HkVnJJKFA05d+okK8s3GbTbvPvoJDsmE2RVwdhKlcjCCMPQthh3MYqcoes+169G5GaMpdVor8/huBX6SZtmZyeXs3+LHvfZdt/3YMsJQkgktxk13V7/v6ZuF1v19tb35PlC3iS/I9raoDAjKur022v812OG1/5869D5m37dqYt9O4zydvjlm8U3t4xm7wTyt1YBWgtMkue3ooJej0bS9HbsIkDcbjK79XXHayBL/4jcht9ovW0H4A3A67djif3trWLf+PzXydauI9Vn3nKkf7st9mssst/k6K/afudAVlwTbF0vGYIsS8mDNiIN0BYvc/bRTxGd+Rryyc+TXnoKpX2D6YkxRnYdIq7Pcn0jRlZU2utLTM3uQPzJS5DnpLsGMCyjShanTp1kcmJii9cOcZYUWaSey8zsDEmYEAQhURhw9J4jbGyu0esGLMwvcdfd+9A0hY3NNXTDICdDN/Qtk5OMy1euIMkyXqnElYvX6WxuYmgasiIVFCYUhoMQ2y2TAaQxcRRz7foN9h44TBLmPPrwI0xPTaDqKmEQYBg6g4GPEIJOu4csyRw6fBhFFdhOUTSncYSuWQyCEEVJ0TSV0bFR5ubm6XZ7CJHj2B7dTo96vUqey5w6eYparYSiygWwTZNXjX3q9RrTM5MohsYwDGiONPFcB0kSKIpGnikM/YQ46eN6DkmaIEQRcaCqKkmcFDRqw0QWCuQS5AJZksmymKmpaZIspNEYIV9pI5Kc3jvuZWGuRZ5YRHGPkdEmcRKDlNHvdMnJGPo+tqWDKKjX6fP/O7WdDzAyto1MlpAkQWdzk9XFFcbHi6gXWVaIorigqwnB5NQE42MjnDr5MgcPH8IwDHy/XxQeah/LAr/jU3GqLN2Yx/bKOLZLa7OL47jEcUSj2UTTNDY3WwgEa2trbJuZIY5jLNMijxM03cT1KgyjmLNnT7N37x4M06S9ucnFsxe5dPEKQlawHJc9+/bxwgsnWFxa4OCBu5BFwjPPPYtju5TLLpsbG3zqU/+R7/zu97N37x4sq6BgGoZBv9dDUFDge90uplEiDCNWV1fQVJNLly7w1JOP8+CD7+bY8RMIcvSt/3kUDrh29Qo7du9F0UwGvk+lXEK1TFRVZbPdYueu3aytbWKaJq7n0u50OHLkKIvLa3ilMrqpstleQ8g5aV5EPPmdNjeuXmHg95BlFa8yimI4ReamKEwobt68ychoA6PpAhCuD1AUlWaziRBFTEtBbw7xpkKa4SJ/8qV1fvPXP8J/+vTDeCc3qFSrLO8s0WyM8IWHvsCuXTu4+8hhvvD5L3Hw8GHiNOGzf/N5zp09x0/99E+SZSlO6yJRFKPOvhuFa9iOhWHbZKmEt5XlHEYxiiyjaxobm+uYpokQkMQJft/Htk1arU0ss8inzLKUYBji+z6mobG5vobnugRDH5KYwWADRU4RQmNp4Sa1SrWYrK6tYegqqmERRRHWlrkMDBGySpZnBIMExy5yX9vtDu1Om5LnEicJeZbT6/aQZZmNjYLRIQT0+j6240CekeeCbsenXK4TRgGLS4tYlomu69Qcu/gwFwqDQYhumMVzCSKCYICuq0gCwuGQYOATR0P6foDjuFv3yLSITpEEpXIV3/fRDR3D1DENnfXNdTzXJksTZFVlYWGBSqWCusV8kSSJKIoYDvp02mtUyi4LC0sokoYs6ZimQY6EaXlkuWBzZQnHsbAtq2DkSCphFOGdLO5xyb0l4iTBK1dwyxW86ghRGKLIBfXOtOziXiAUVGmTpRWfRPo5KrX7UKRlhGwxjMfQdQtTW0MIyMUUmqZRqZTo9XqYpkGaJqiJjx8EmJaLohmIaEjZKwMKKBayWiLotfipH/8ozz79FD/ygx9G+vJzJGlC9sEH+MbT3+D0mfN8/GO/wgc/+CF+6Z/8Iqat0u/36fV6lMtlPM/j5KmTPP300+zff4D19U0OHjpAFvb4g9/7Z0iZzCMPfQnDUTl06CCOYzMY+Fy+dJadO/dRrjogD7jnvqOcOvYCw3iI5TX49d/6TVYW5lhaXiFOY0ZG60xtm+SZ559gz959/PKvfIIgHCKfchFC8C+/+AccPnQYz/SoejVk4L3vfgDbUNGtQioiRI6uywjJwXM8Lr9ykV0792HaBmkas75eZBAXrAsFRZPRLJUg9vGcJlIuce3KNUzHo9sfYkhAlrC0eIWKWyEX4JoGiwtzPPWNZ5gcaRCHQ5Kwx8VXzjDSqKK7o3z1sSfYu2s7J555gu/6zu9i555Z7KqLYpuouk2lPoqsmghVRVFNNFlD03JKJYPrX5/DeXka+UhCEkcszM9Rb9QZDAekSU4YpDz68FeY3TFJGEXkWU6Sxui6gSTdqosorg9Np9tpU614XLx0jq99/QRHjt6LYeikmSDLNYSc0mikjFZc5Bh27t7HpYuXmJmdJUwi1pcWGB93aHVuUG/UkSWNm5cv0Gp3GUQxTqWOZXpkWVFDlcsVZKVwSvccA0nOMW0LVTHwfZ88F7huiR0zEwx6Hb706BfZvXs3SRTj2R62bSDrGtXGBGmcEg4HlLwapmWh6eZW0kCMYVhIaEgSLCwuUKvV0DUdIUuQp0W+syITRUVCwdLSKuPj23DdCoOBT5rk2J5LGkVIQsHv97AsC8sppE3tzU0azQamaRdZzXJCv9+hUS/Rb6+iyBJp0scwFCThsrrS4sDRAzRHDqG7Ckmisr66yvz8TcbHRnn8scexyg06rQUMWow1BI7eRcgGrlVm6LdI4g2SEOZbKkPRRIgSN27eZPv27QwGPuMToximjqoL4jDB1FQ++9efY/7qNTTF530P7sG2EuK4C7mMphVRd1l+CwQVACnLc7JEYLuC69e7bN9+gB37Khiay/MvPMes2MfTPIkyPI8zuQtnYgcijwtTMF4/kXzNMOoOQJs8X+yj3J+8Buy+9hhvD16/mfVGpk5vuf1/Jmbpm0WApml6G9CXXufp87bHeYPTu3O/f/Tg9dZ6M8Hz7eD1TlHx2zn7vtU2dz7WG1N/t8DryUfIeuuod+S83rog3iiQ+DXPh/zV7W+tWxTgLEvJVq7C5iL5teOI5YuIuZdITvw12fmvkJx7jOiVJ+ldexE1HbCx2eaFC0toY3tZC2Qmdx/AKI8wCMEx6nzus5+lUa8x7A+ovbCOtBaT/7/svXmQZVd95/k559x9e2u+3LOyMmuv0r4iIWSbxoBtbAy4Z2xsbLcd0W33RLjD455wz7hjeiZ6HNHR0dMxMeEJBzYGLxB4GyAAAQYkJIGQEFJJVaXal6ysrNwz377cff64WUISAmyiZ/6Y9ol4kfHuu+/dm/e9e+/5/n7f5c5xMncFEdZo1CcKM5O9m42UooieyZICEJgF7adULpGkKZ7v4bkOC/sXcFxFv9ejOtbYE4wryHN0TeE4Dn5QohSUSbOMRqNEmoU8+61nOHb8KArBhz/8ERoTswTlMp1eC89x+PYLz3PPffcX5hIiwTIl5XIAQvD4E0/gug5KSXy/hGXbWJaO5Zh0u0UkjaZMOp0mZ06dpVSu0m4OERjUqg2efOLreF6VSsVhe7NZmCPpCikEly5fpFKrYRgaSTjEdkvousW5cxfI8xzLluRCYJk23U4HyzIRQrC9vc3y8k2+9uST3HnnCbq9HpZlgxDohoaSGu1mB9932d1tIYRgOBjgOjZRPKLX7/PNb36bxcUFBuLr9O0V9JMhv/P8E7z1rQ/zoQ99iP/lf/1dXNcnFxmur1Ot1Nje3KRS8lm7eZ04SjANg/DFj3Fx12R7e4dqfYxLF89CmtGojbO1s8nKyiq6bhTmFaKgmg+HQ5q7u0xOThCUykRRiOf5LC1d4+zLy+yfP4ZhaWztXGesUWJ9s42uzMLcSwi8wEUIxebmNkmSEPglXnzxRSYmJnFch93dJsP+gBurNxmfmODUSy9y/MRxsjwjSRIqpQqrK6u87W2PMj5VdE8lhRPy4sFFPCeg391m8eB+atUx1lZXmZgY59ixY3zq0/83k5OTDAcDtjY2WFq6RhD4mKaJUhLHctnabHH27DlMU+fSpWtIkfK2Rx9CSMlgMOLg4gIbG+v4gY9f8pmYnCTN4cbKOo5jsb21QZRkjMIhp069jEDheWVyMhzPotEY58WTL7F44MCrucqmqaNyDaU5pInENm12d1eZ37+IH9SIs4w0jQptVhRRLpWYGG8gZI5R90jTlHh7SLvTxrIsVldX8TwPTVNousLZJxmePMPP/e4f4ZcTjhw5SPzEVRzH5Wwt5qmnnuaDv/hBgiDAMAxefPEkaZowGo2QSvH+972fjc11DFNDXztFlmWc6hgcP3YYW79InNQxHY1+P8GxXQajAY7tEkYh1WqZbrdDHEdYlotuaPQHA6qVOoNBv6AAC4GuGVSqNTrtNp4XIKVE0yRJ2MWyLBA6Uhq4vk0Yxmi6iV8KCmMiIdE1rTgOSYJlBEhpk4uEVmuVaqWxd02FIPDJ8hyt3UWNYuxaFSEEhmni2HYBNuOYJE0xDQPdUDiuQ783xLR0PN9D13Xa7RaDXkHxdRyH1ZUVatUyw8EIx3HodttYtkmW5QyGQ2r1GmE4olKrggDDMAvzqBykodPvD7Ftm36vg+sV107bsmk1d3FsC00rYpM6nQ6maSJlMZkrsrqhVC5M0dIUPK9Cuz0gjkOE1LAsmyiOMUwd3TTpD4bYtscoHFEqBYhvrEGes3NUUSpVybIc07BIkyJTNwqL/2k4CvniF7+E73lUy0288gM8+iO/wdzcLH75IW6sBQiZ0253qZS6gCDJpkjTlCQZ4fsezeYuSkk0mWPYPhmCQb/DYDBie3ebXrtNrdYgAiqey6/92j/nkUfeVsRrff5pNCUxf/qtmHbA7Pwif/HRj/M7//q3UTrkIiXPcnzfJ89zoiiiMV6jXKpQrY5hGDo5MffdfQ87u5s8/fRTvO9978evFFT14rcIc/snyHODXEi6/RZ+UOHvPv8YP/2Bn0EKn1dOneHIkQUuXjrPkaOHOXBwAZA0Jqao1it0+x0My2TbWsG6Lee2+4/SaTeZnHaxHcEobBMnfYQMefZbL/HVrz7Offfeh2m6bDRvUKsYzM5U6fa30c0AIcHzHEbDkGazxWRjEalZIEykLDEadPAcl6ef/BpHTxwnlzlhP6Jaq+J6OgKDXAjWVqyWOIcAACAASURBVJbxXYfb7rgTXRbsp5dPfZuHH36YPFMkQuOee+7n7KnT3H/fPQhhoVsZm1s3UNJA112yXKIpRafZZGNtlUqlRr/fJRwNCb5yEAKJqBY6Z8MyyUXOoN9jY3OTSrlCtVylMV551c09yzJarTZKKVZXbwJQLpcKloHnkaYJ01Mz3HX3gyzfuE6lWqU3SNDNMtXaQVReoz9okckdesMeW5s7nD51ljgUjI/5hHHM8dvuQdNL6IaPcEsEvkfcb1I2AcNGSmg1Wxi6TpzlOKZi2G8ThjGG7aGERpYJBoMI13UJR22yNGZx8RBxKqlWxoniIZNTDeI4Q2kGvXYLxzHp90dsbG+SZpIsEziuSWt3F1N3COMOWT5CaUUWtBASXQJ5SpaDUjabm1uMj08SRiFxHDPsF1KCNO2jhEUWx2R5jtQ08jxF121sW5GmOb1exMraMk4yot/rM9aY4ImnnkHFPUoVh35P8crFTTabLfYfupNrNzap1Co0t9tMTo0z6neRZExOzRB2RySDm0zXdSwjI80jLMcjGo1IU0hyjVOvtLn3offyysVLOI5CGRa1Wo3aHhXatAy67SGXL5yh277KWCXm3nvmWdzvYaqYcJhBbiDlXuKDWQB60zT2cpBN4jjm+WdWOHp4lisXV9GMERPTUySxZGH/AjQ1xu6e49z6U3ziTz7Mu973QZRpvxqVc2tu/Voa7Kvz6jcwKpPnFEKAuj/5rnn5d95b/H0zY6U3YoU3a1p957XXY4LvN/4hwPWN+OTN5I6v3Y/X6FFfB9C/H3B9s5F/D8bra8c/gte98b0P6g8+iP/vdWD3Kjh7bsNy3z1vWvn5QZpXQU6eJmTbS6QXnyK98DWyV/6O7OSnyc9+GdZege0riGhAPOgw6LY4u9LlwsoOWTDLSjvi5ettepnJlZub3HX/w+RSsbp2g3LgMBpEbG7s8NlP/RVHbzvK/IF9iLhD8OxWEVdzfAqpJKm5Q9otgtCVUsRxgqE0up02jm2zub5Gr1tQcXu9PlEcI6QiTQesrtyk0agU7zUKl2EpNQSga4o0TQnDwuhJNwxSQNds5uYOcurMBQJfZ7wxxb79B8hFiuPqCHTGJxp0u11Mw6LVvEng28VNMRccOXKUarX86iTy9OkzuJ5exO14ZUzT40/+5KPcd+/dNHc7HDx4mFOnTrO1tcm++Wnm9hVdRsc2efyrT3Lq5VPU6xXCcMjtd9yO7TjYlkU8GmE5JYaDkC8+9nfcd989kA9xHR+ltMKBFfa0PCnT05McP3EM0zAxTQuELFyXk4gsA9dxGI2GeK7L9vYWjmMiJWi6JAjqpInA8zwieRpdTzGuefzUn/9nLEfwvvf/BIEfEMVJYUyxu4YmLKJwiGNq5GmEX67zyunT1Da+wvrIo1ZvcOPGTRYXC1ffkydPcfjoIRzPxfd9nnzqKeZmZ5FSw7Zs0iQBBOcvXCDbM64Za4yxs7XEKErwS+PoqoptTpOmI7Y2Nos4ElOhNAVoBL6PZZm4tsfa2hrVaoV+v08cx6yurbJw4CCd1g5T4xX8co0wDLFtmzgM0QyDar1KlqesLC/hOzYZRf5wmuS0m+u02rvomkWe5ezsbPPVrz7OL37ol1BS4jo2tmWxb37fXoU7RO4BKF13uHz5EteXr/Lj73g33c4uc/MzWLZNuVSn3+9RGxtDagpUodnTDQvb9bEtnXqtzPL1VRpjdcbHGrzw/IvsXziIaRmcP3+Gaq1OtVqntbvN1ctXKZfKDPp9FCGZkEhdoWk5lq2j6RZCaCRJiCYTsszg6aefZjjoM1avg8iwxnyElIy2+vi+h5CCUqkoNghBESVVH5Bs7VIaO4w+3kDJmJ3PnKZWqzD2/ge5/8EHSLOMs2fPU6uPcfb0i5QCjzvvuIu5mXlurCwzPj5G4PtEV55lfX2d5zdz7rzjIRzzNJevjKiPjQGSPBfYlgnIwvxnNCiKR55Hr9/Hti10rYjR6nXblMoBaRqTJhn9fg/b89F0izCOaXdbKJHgODW2twdYvlNcI5SO0gzSLKfd6RST3Cyj2WxSCgK6vS2yTIGEwA24euUatm3vgb7CLT05fRHaXYz9s4UUoFwhiePCBVyA5xcgN8sTev0unucSRiNM0ygKHY7DKAzxgxJ5lhJ4NrpMEdJASlmwOkiQysQPKgXANnU0DXq9LpquMxwOsS0bpWtFzrQsMoJ7/ZAsA9Mo9lfkoAwTQy86i5VKhTAKC008gt3dXTTTRtNNpGaQ5pIPf+RPOHH8MKVyiTiNMQwdw7QRUjEYjnCcgG5nh26njfvjC/C2KQzTotPp4bkerd0mcTjEMIu4rNFwgFIaR44ew3VtLO0K/fgtfODnfpOf//n/ll//td/gyuVlFhcP4Ljmq53XKJkAICdCSoHj2ly6XBgCKdMhDEcEpsbOKMQLPEyREYUDdF3yhS89SbU+yU6zzb/9d/8zPzKQGIbOzRPTxJmiUp/kZ37iHXi+iW5prK2v7ZluZcU9wTSxbQPXDVi5sYHtGKRpiGbYuIHD4eOHsDwbTdewbnWEdY1huIuSDgIb3dAgt3jwoXtASuKR4gM//bP8/Id+jn3z+0jztMihNXSeeOJbzMzOMBj0SPOU8TmXVrjF3Nw0nmeDbhAmYDsVlBYglM/0bJ17770PgcnK8iaVsTFMqWMqg6uXl0CzyPKUXr+D5/q4rk+UDMjliJwIIRXkyZ5zdR+/7NLutajW5pC6JM5HIG3SMEZXEHge7U6fX/rVf8Hbf/zHmFuYo9npgjQZdDuQC8YbUzz59NeZmT1ImnYo+wY3ry0TlGtYuo7ME5avXGRqrA66Dhnoqx75E2W4I0I3FKsrK+TkOJ6D6/qMjVUZ9HqMj9dY31rD93x2tndxPYcgKGNZJp7nojTF5sYGQblEOIqwTY+dnRa6pdjaXGU4GGIYDokQmKaNYdko0yeo7UNXOrpucvjQAkqOGJuwmZqZQ+hlesMhpmWAgCgaFdExw4gw6kCWcvaVs5SDMl61gsxisjjGsFyuL28hyXnxxVOEUcz4eAMh470Ctc9HPvpxDh46gR8UndROu0uSRLSau2gaGIaFX/YxLBfbstG0jHA4wjYddMMq2Cxuic2NNpoGeZYShSOUphHGkqBUwrR1chKETCmXagihaHc2cK0Ko0EX03IKc8k8ZTCIMMwMgcJxqtQbHlGc4XkGWdREi3epVkogMr7xzWtML9zO7fffhmkt4PiC9ZUdxutl/vZTn6ZeK3Hj+hKjUczS+ec5ciDANnogc+xSwKDXI01DosygO3Bwag0M02d6YoxSUKI23kBpOt1ep5DT9DtcvnSFV15+iRvXNpmb8pkY8zBUSjyMqNQCwqSLEgIhZRHBJiXDfp88zwmjCIFk8dB+krRNtVohV218606a7W2uLy1hJx4XL17iqfa3OFbJcavTzB44wRslorcic94wyX/dXF97IEV/MH3dnP17sTa/Hz649Z43W+/V57n47mX/hcYtavD3+uwfLL38IfZH/CN4/XevX/L9QF7+A17/7i/pv0QH9vtuLy+MOdJr3wZytP33fdf238yq+tY6WZaRN1dIz3+N5BsfJVt+iTweIewSeDWYOI42dpi+Oc7ffvmbfOWZF3nxlUucu3qTi0s3C+ogBnGa0Gvu0usNOXzkeGGP75ZojDe4fOkCL734PHqecODQfuZmpjEMC9MtoX31Ino7Rp7fhReaMJ2jNdeQX7yAPLeEdv4a6cF5pG4TRimlahVTN0GqIhpHU2iaxub6BuNT04XpUQ4ZOf1uzt/+zV9z5MAMUuokyRDP88lSnTxL0KRCZBCFHSp+Cdv1GRsfZ2dnnSAwECIiFwXlzjYcmjttgqqPUBZr67t861snmZkfJ4xjlGaQIekPRkyNz2OZOt1Ok06zyYljJ0jSmINHDhKnQ8anxpmbn6HTbWGZHktLN1FKcPe9d3H0+FFs16VaaTDoDdGkQgqFYTmsr64RxQMeePAhbq5fZaw6gcRhZ3sVy1KQ6/S6PVzHLTpKSUSmJHGSoes266vbWCpHMzRSAUqZZElGnoPjuKRpkRc7HHRoN7c5d/YswrpCuRSgX/G4+fBBokGPNBqQqwTH80hTCeisXX+Rje0t/HId23AwbZNKo05680XiKGF2/wm2Nq+xu9VmYeEQaZ4xNdXAthy2NzcxNcHShQvUazW6gx5OEJAj2D83hxN45DkMOj1mZg9yY+Umuzs76IaGV3Lo9wY8/9y3OHH77YRxwif/7NMsHp5HtyVxGGLaBjP7ZlG6ju06rG9s8eCDD/DFL3wRKQX7DywSjyI6ux0unD3H+ESN7a0NbNfCMHSuX79O4Pt8+9svs7q6wczsNH45QMUjyuU60iyO2QP33su5My/gey7tZgvbckmFYGNtC4nENiyiOMJxdCYmxrjrznv59Kc+zUMP34euG5w/dwElBRk2L588Sb1SRjct0jDFMC1yAaNR4R7baXU49fJJDh5YpFqt4FiSdqtNtTqG7/sgM0zDL27uBpw7exlTc/HLJUAQRzmG7SJlytrNa7iORxQrDMfi4P59mKbCdCyyZITVKDMcDKEdI3LB1uYWhm2ha9Dc2cSwPMxqj3QwZLTTJ5s5hmMO8F8aFnqetx4kzwpX5DROUGnG3fc+wMLiYT7ykY8yHIVcuXqVb3z9m5y47U5EPOTs9S12Upt77nkA09jCD3SkqhDHUXEVFjm51NE0hWOYmJpBrzfAcUw6nW7hNi3AtvWCSuq45BJs1ybLNTRi4nAT23ARhokyNHRDomsKshBTM0jiGKVre4CuiaYsLNshI8OyiognckG726ZWq5GLHKVpjMII03ZIltcAaNkGteoYSimiOAGlY7kuozBEJFFBu/b9AtTmRU5smmakaUY0HBbaMCSaCNlcvYJbLpMKSZbmiKxgK3TaO1iOSRRDluSYpo1AIgSIgimIvKV9kgpdLxx4h6OQJMtx/RLkinA0QJMZW2tN/LLPxsYGpmXi+gEil0RRH8fSiMOQh+57EClTNA1GowGGYZKEQ4SA7c1Net02tcYEXuAjJKQJKGURDTqE/YRef0RQq5HHI5TUUZqNkBpxFGOaORrLxOoXyHL4tV//Z1iuolSxKFdKPPPVF5kYH5BlKdeXuuhaguvVaW2tYeoOjfEDPPnVk/jOkJI9wTB2qVhVvvzYExw9dgfXlpaYnprgw3/wx7z7HT+Jpdk898yzHLl+E9fx+MvukP/x3/wbHn3kASpjY/zO//A/8Y53vJNWewfP9Qqas0iQMsXVbfq9m/zWv/wt3vtTHyBLuvRbawRBjSyTaJkg13QM5ZDEYJk6cs89m0Ty2Ke+xMq1G0xPVxhEEbubgs995pPMzR9k//5FXNcnHMIf/l8f4z/+/r/nbQ89yq9+6Ff5lQ/9PLmmcLw6UaKBguWLNxh0QjY2d7FcnyjN2Vxdx7IUUTjkV375V/nl/+Z9pMmQJE9x3AC32sCyXGzLRQrJYDBApAlSc1DKwJIxwjTZWt/Ac10M18Ly3SLvWNhkqaLXb0LuMowyTMclTiN+6j0/RmsnZnp6HNs2+M1//t9z3133MjM3S6YppuYXGeysM+i3EZrBzOx+MiLCqEd/2CHJc8r1CTaXr5DlEvuJaTIdQrmBkAmao2M7JXTNJc1ymq0tPNdCkOMGAWEYkaQpSukkOeiapNtqF+euHaBEtnffZs/TI8X1S9ieR8n3+cRHPk4cR5SqPiiLdjfBq5cZn9yP7zdwHFi6scTk5Bx5HtNt7uLZJTTLx3I8NMsgFTGmYaNbHvsOHMWwXMJui1wowlTieGV2m02ScMiLL7zInXfcge/ZWGaJS5euU6nU2T+/D0MbopSFUi6tnRampjGINGynhu5kmIZLPOxgOyaDYYLpuAyjAcrQMewAoQyUEkUUITqjMMPzPKQlC2+J5avUKmVUbpPmEXkmMPSAnJRcl2SAZTlkuQ5xhmVp7DS3UUowHPaw/YCbly+giS3KZQ1dRjSbJsIcZ2Z+gSyxGQ1H9DtDRJayvr6GZsDRE4fZN3Wc3vZZbr9tHKmF5DpF7mszx5A52y2X9bbO7IF7SZXB6ZcvcPXqDQ4eOYBGSpaOSKKUpWs3+eazT3L+lev87E8d5uhiDQEEniic+/cYHlmaoXRIU5080xBqgEgjRKbYjcbQ5RBdz9GlIE9zLlxqsry2S6vT4vDBw2wvN/FqPve+/3aGqsWf/af/k/e89xcwXLvIm45jhJJ7ZoniO4JUISg0rd+hr9/SvopXu7av7U4WDylfK098PQZ5I1Z4bXf21iO7FR+zRxv+QQzPH4qSLL6j9b0Vj/P3AbOvPRbweg3rrWXf85ELBBIpZHGvQxZePFC0q3NQSvuvCbz+fcYPX7X4L92BveUknFx9HgRo++/7rnXeWP259WPOmzdIn/sk2anPQRIhGwcQk0fAGyM3HXLdJhpF/N3nv0A06HH5wgWq5Spvfesj7Jtb4OqVS5w4fpRuZ8j4RJ39ixNcvnKVpeur3HHHAyTJkPX1NdbX13jH299BqVxhbuEgjlvBtAu6Tfj8FczJMtfeN47znruRcwvkwTbRr/8LzF/+OfJLy4jnT/OXzz/LwSMHsSyDMIxxHI/RKOT06TOM1RtUq+VXIyYkOdubqyQJ+CWHSrVKGCXEaUQcp/zVX/4N21vrzOybYDQagAhJ0ozBcIDve6/SjTXNJI9z8hyarRbrW5uYmk2rWUQcTE1N8I2nT2JoLufOXqbb7lMKKmT5gCiE4SCk0aiztr7Cvvl9hFGIrpn0ByPyPCfwfbI0wfcdDE3R6/fQdZ2bKzdJopRarYKQOVkekeURrdYOlWoJpQp9V5pk/MVf/CX3P3APUmmEUQeBjmUG3FxZQaoU07AYDfp8/emnGfZ7jE82kJqOppus3Vzl7PlLzC8ukAFpmqEbZkGFa4wzOztDJM5jajrW9RJj//KXWFldYWKigeuXsCyXHFAaTE5MMT69nzDOCUqF+6dp2yRLz+A4LqtbXcYn64yNNbBtmwsXzjE5NcHuzi7j4xNMTEyQS42rS9eZmp5md3uTaNBnMBwBRebkcDBgNBxw+eIFbFNn3+wsly5eKDpetsWNGzeY3TfH3HQJqXQM00dqOmQJWZpiWdZenI/NhUuXWFg8yMKBRdI849q1JS5cuswjjz7Kt55/gbXVNY6fuI1Wu/iub1xf4eqVJeZmJhirurR3V0mFjdJcNF3DMGx0w6M6M4sybLxSma89/RTjjTphGLGzvY2Q0G63Ck32zhadTod77r0HXbfYWNtibnaer3z1Cebm5jB0SaVa4ZUzrzA7O0m708Z2XXSlQ5ZTqVeZnZvGchz8UgmpKXaaTTq9HqVKCV3X9gyJBFLklL0qF86dptttMjFRpdvewbEColGIbTp8+A//mIff8ghCaJw/e5HzFy4zv3AAQxNEW0NUH3aau9imzeVLlxmfnKLX6xJ4PlIzMCtdBILo8iXkoffi2E02/vYVgsBHf/tRMgzyXGE7DkvL1yhXapw+fYYoijly5Aibm5u87/3v59lnn2X2jkfYTl1mZqap1xsgx3CMl8jlOErpjIYJSVLoxqUQRKMBzVYLv1QmTWIM00IIQZwU1DCBxLJt0luOhpkkGo32coPLCGEi0EjiHCkNBv02cZygaQa6rqOUot8b4vmFJr3Ich0V3dU4JvA9NGWiRCFRkDIjTWPk+g55nmEvzhAnMZrI6bSaeI5FmkQkccTOdpOxsXE6nR5JkmFYRezR7m6hYbb36LhCKoSmodsuoCOlRpbF7Da3sUynyGl23SK+R0nSpHCvVFIRxzG6Iem0uwWoFRpJGpLEEZZtYloGrXYT19LIswTbtQnKYwhZTIYs0yRNY2xNEo6GjKIQ2w1IhUJXoBsauq4jhCTey6t2XI9ytcag10MqyWg0QimNLElRuoFuWJy7eJFyvYZrmURxyurqBidPvsSVq1dY3G+T45LIe+j3O4XrOx+j4l0lzG5ndfUiCws6pmWxvuHhumMFzdDUSbKcKMpodTaoVHT+6I/+kLe9/WGk1PnK41/hnvvuYmJqnOEo5O0/9k9457veyeRMnV/+1X+K/YF34rz/J3jllTN89rOf5fd///fp9zr8zHvei2EobEsjjqDbKa71QmhksYlpS9797vegGZJc9ikFdVKhc+r0acqlAM1SkKUIkWGagiQJae62IZfUa3UajTq2azI+PUMcDhkbc/mp97wPXRdk+RDbUTzwlrv4tV/5Z5w+c5rf/u1/xZlXXmLh5u3IZZ1BeRORjzD9CoeOHeJ3//W/wlI5f/3xj9FqRbx86hRTUxN88IO/QBR38XyPMIpw7CqapRPHEUpIVCbQpMapUyc5dOQoYRTSaW6DUHiOi1Iarhdw4/oKnufTbrcYjUYEgceN5WVsR8e0FK+cfYkoipmfO8zN1WvcuLHEr//ab4JhkiQRO1trlF0NTemEcUSlWkMojZsrG/T7IyqVGr5XodMeESVb6F0D7fNTJMeaWIGNUAaGbpOEfXRVsCoc28Z0HMIoIY2L7E1EBnmKY9m0drYxDMFw2CEIbOIood/vY9k2uq7IsyJGxzIN8iTl/vsf5JvPfoPJqQaKjJLvkCY5/UGLOMlw/Tr18iyWXSPNQ7a3r2OYgt2dJrpSKAFKQH8wwHNrdJptDNmn3e4TBAErK2t87nOPkaQZtx8/xsFDh/GDAN0w6Pe7BIFPUApwHJtyYDIMR2i6wrINHMfixvJN9s1OYeiSTruDVJI4SrBMm1E42qPCjgijmCxNGHR75CKh2+0xNjZOlkF3d4VRb8Bko8LG6g2iUYhmWaRZCiT0+i2yJMU2TVaWl3FsiwvnL+B6BdMsjjKUEpgYhN0VDBky7KfEuUTqNdqDDCvwqY2NMxwNqdWqLC0t4fs+1dI0zz71HBoXGa+NyGQXXdkQm0RRH2V02d7x6cc2M4sH8IMynl2nUnEZDbvMzS6gGQb9fg8yja89/gTbm7v89DsOUXL6GFqM7RYNCqUVGtc8L2QQSrq0mkM21ncZGx9D5SZhLPjSl85z7PAkiD5h1CfOJNfXW2y0Q37y3e/m608/zdFDR5npL2C8PeXLX/wUZTHk+vUrmGOzNMYbrwLVW1rO187nX0sl/g64fH2n9Y303zeHA28ODL9v1zN/c1zxZjTfHwbAvtZD5/vlv75xm99rWz94H76/hBP+Eby+SUf0+7fvX7/u68ebLf9eOtm/z3vJi+XJtYI2rC/c/+pnvpGL/urndjZJvvkXZC9/FmEHMHMHsjQBhg1AmqTouk6WZXz0jz/CsNfn/rvvZjgY8OCDb2F8fBLdMFi6dhnLttlc36HeqLBv7iBbO02mp6d47lvP8OILL0AODz/8CJ/93Oe474H76fYjmq02p86c4flvf5uHxSRbO5u47zzAldVlpg4fASFQnSsED/0MycP3kD3+LIdtn3iihq5r6JrO1vY2fhBgKA3Pdel0mgipcF2PLIkZq5YwLZfGRJ00z4pYGENh6CYnjt3GvvlpdN3FMPa6KanE813yPENKRXO3jWnYCHI2NjapNRqUKiXOn7nI888/z5133sEoHNJsthDkBIFLq7XLvn0zGLZi0Ev4m7/5W06cOEatUSVNU6IwJo5jnvvW8xw4cABNSXRdsrq2jGM7tNpt6vU61WoVTSm2d7ZwPQsoKpVzszNYlkk4SrBdAyV1Zmf3MQr7mKYNIiUKcz72sY/zlofux3EMut0egR/wypkzaEqysLiAUMarVarJqRmgqM71hwMcx0ZTheY2SVKkvVRkKJ4z+Gt6PPqjj+IFLjeWb5JlkmvXlyhXfFrNDpZXxnFdTNPEUIpmp4u48XWUEJTG9mHYNggYDoeMjTUQpMRRws52s6DEfe0pHnnbI3S6HWzdwDEtojRlbXWVbz7zTRYWFtje2GByYoJwNMI0dNqtJvsXFvADn3anzfh4g+tXTzE5Pkma5hhWEcCu6/qr+mnXdQkCn3K5Qp7lGKZOEJQZnxin1+ty7OhxKuUSruchlWJzY5N9c3OFi3MWUqv5tHY38arTfPnLX8PzbF544QUW9h9CaTmkEe3dTabH69y4cZOF/fup1+tkecLU1AydbhvTMpicnCxMbUg4e+40pbJPt9Nmfn4/QVDi1OlTTE9N4fs23X4f3TARFLSvjAylKZI0QUqdTOYEpRLlagUhKfIDhyEZObom+MqXvsJDb3kLpqnY2d7EsAyyLMJxLDRNcfddd7C1tUpQdimVS4xNNLAdk1aziReUyXLQdQ2JoFavIzUNTQqSJEFIhVntIh2LwUun0Bd+Abd8E726n3i+QtoIUMrmTz7yUa5fX+LBB+9lOAhZWlpift88SulcuXqFtbU1ojBkYWGBkydP8sgjb2M0DDGMEnFiYagLCG0cQQGUyFLiaIggRzOMvcJLiGEYSKWQSqFJRa/Xw7JtblW40yzdy98to/Q9x/Q8ZTjqY1k6WZJh2y5KFfR/KQun4CgKcR2bYX9A4LsYhl7opjSdLMlptZo4rs1o1EdpgvTmVnFN3jeFpjRG/Q6aUrSaTVzHwzAMAr+05xxsEoYhlm0xGAyo1Wp7EwDB5tYmpVJALhXDMEOXGoNBD8PQMS0Tw7SxbBvTsMjShFa7jWEYNJtNXNdFKkm/X+h6bcsmTXN0Q0JeGFnFcYSua6zdXMEPfJrtJrZdBtK97xzSJKbbbuJ6LlLTEFIjzXKUyEmSGMMsJrM5EqlUEWUkJEtXLzE9NYXxievkJzdRd48jDZMsTymXK1i2zdb6Oppu8swzz/Loo48yPTWJpW+TsI9RPIumS6QEz7iIEJJE3MXMXJ1ePyHLK3j+HEFQI076KF1HKp1wEPKNr7/Ag/f9CEpp1BqTZKTccedteH6hPy3On5hf+MUPMjM7heMbmLrLzs42kPN7v/d7WKZDFkecO3uW/fOzSJmi6w5nz56lXK6QJcPisAAAIABJREFUJjmeV2UYdTAtlzBMkFpMnmhEKQUbSFNkFIAqjmM2NlYoeS6O5fDlrzzB57/wGD/+rndg2yY761uYZs7d99zDE1/7BkHJARlx4cJZDENRDkp71OWgiGN5YR/Nq10qP6oIw4iN5i7/+3/8D/iORa/Zot9t8cBbf5SxsQpPf/1rHDlyDN0szhXTctje6TEadcizBEMz+YP/4w+4+657WTywj5dOn6HRGMPSJZrSiJIUwyr04IFdwrBMPN8hHI345Cf/isXFBaanp9htbjE7O83W1jYTjX3YjqLRqJGlGoPREFOXRIM2jiExLZ8Lly4zMzfPKIowNAvbKSJiBBqG7lCt1cg+VQeVIxs5qRIopSFzSOIhN5avoDSjiCbb2EBpil6nh2kaBRVdk+xubVOpFL4AmiYRJEhhYNsuUJg6ITSyNEYTGb1uB6EZTM9MYdsmvusQRyFZKqjUfIQyEdJAMOKlU6epjdWxLAdT99G0HE3piD2juCQrdJaB75GlXW6sbFCr1dja3OHQoaMsLh5gOOzxyU9+kqnpWYRQIDOCUsBgOGBrewtD5QiliiJcnrO9vYuu6ZiWJEszup0ufrmMpnRGoyLbWElBFI1w3ADynNbuLpVqgB+U2N1tMwpDLMfAsktkCGyvBLIwhDNNneGwx2A4QOWCVrPJWL1Ot9Om0RijXPa5sXyT2dl5dF2yvXYN1+yiiQhNN4ily2cfe46f/Nn3YzkujuvjeQ6rq6scPHgAy7Y4d/ZlRNjj0H4BcYiul8nTIaOwhW54nDm7zvjsvUzPH8IJXPIsL3wd7JRazefSlWt84bEvcPTwQT7xZ39OFvX56fc8jCPbaFKgpMQwzb0CXkQcR/h+4d+QZQm6YZADpl14vihDZ2bSx/O04jful+j1U1Y3hnjlaY4dPczKjWU6zTbzxkF2b1/nC5/7HIemNK5ducS9P/6BIvovTV/Vtt7qQr7We+a1gCv6pEF6RqFOFMXGW6Dv9ZrX77j1vvHxWmzwAzHHa+J0vh94/GEpxW/cr+8b7fkGRuit56/tHL8WB91a/npQ/90AOc+LY62U2usC/1dFG/7e4x/Cz/5hqgn/0B9NdisOB14Fr2/Web018iwjO/cVkm98FCwfMXc3wq/DXlRE4cqZ0el0eflb3+Yzn/kMeZ4zHIW02l12Wy3m5+d57LHPs7W5TjLqc8/9D6LpFhcvniXJJGPjDY4cPYTjuBw9doTjx0+ws9Phjrvu5urSNYLAxbVtFg8s4PsOtfuO0F8sYzbq6IbNzuYWERpOb4Vnr6zRmD+AeOgu9D/9LMZYlZEhMCwdL3AZDfr4rkOv00ZIDdt1icIIJRU3blyjOtYgIyJPEzTTo/BHBk3qnDt/hvr4FOSCZnOHLJN84hOf5M677kTXi+7cxvomucyw9iIfOu0mtWqZgwcW0HXF+fOvMDM7xeLiPLVaFd/3GQ1DbKeE7egsLu4nSVOiOMZzPYTIGQ0HHDh0ENPUyXNQSmAYqugQSYGmaQxHIaWSy/Xr17CtgrpVLtXodjtkeY5purTa2xiGiWVZDEZtTNMmGmgYps6hQ/uBFE0z8IIyOYIDBw4yNz9HnCZsbbV47tnnOby4AHnOX/zZn7J6c4Xbjx8jS9OilUpOs7WLX98iS1Psp0dM/M5voDkWyyuXsS2fam0Mz3dReo6rTD7/ucdYXJxn5fplLl+6imGZ6KNNBjde4uSlNRqT+3Fsm5UbK2iyyD6s1ca4cnWJhcUDHDm8iBAFDbJSqRCGEUrXGHR7HD18hBs3Vzh/7hz33ncf4xOTWJZNs1nEKriBz87uDuUgIB0NGas5NLdXOHvmFHP79pPEMbu7O+xsbeN7Pkk6pN1uc+rll5loNDh/9hLT0xP0ek2g6NTqpo5mKAQ5uq7wLIEQCV4QcPb8VWb3LzA3M00W9zl69DCGpnP2zKkip9Cy6HTa6JrGF77wRY7ffgJdV2jKZnl5mampKbI04+TJl2iMNbAtF8d2mZyc4blnnsYLAjTdYHpygjyXNJttvMBHypQo7jMcDLFtkzyDne0WQoMkSbANizSO0KRANxwc24I8ZN/0NJ3hiImJSba3dxmfmsM0FWECQllYtk0cD8mzGN320PZyVPMsZ3m56LIIBZIETZcgCxLScNDDsGysWq/QlC8P+dhf/R33/pOHeOrSGfY98CCd7pCdrQ32z8zRbrU4d+E8L7xwklazxdWrV4tIhSSm2+nwrne9i2j3Jude/jYXr62yvLxCEAQ89sXncB2XRqPM7k4Xy3YQecLW5gaGrmPaDkJp9Do9LMdBAGE0wrEchsMRtu2AFMRxTDjqELgeUjrkMiXLbt14QSnJcDAiTXJA4ngOUhUFPcvSaO1uUymV6HTaWJaBlIIkziBPaHea5HmKbTuMhiPkRrO4QU81yDIgi8mFJEoy/KDMzs4unu8UtF4KN9g0zzF0A4DRaESSK2rVEnkaMeh20ZRJnETIrMi87fRGaIa2x7AYMRh0i0KdpuG4hX43TVOU1DB0gzAqMmCTJEXXDfKcQhOPwPPKIMCxLPrdEZqhI/Ki+NHc2aJSHyNH0Gq397rHQ/JMMAqHhbN7DstL13AdGyVAV5KS5xQRal9dI2uPEA+Ng5Qk8RBDLyKyHNvh3NnznHzpFMePH+ell15mcT7ipVcqOO4ijmMjVYSen2U0DAnTO0hTA6VVuXh5hanZMVY3rmEoie54xFGKpWlYdsDGSo9q3SITKY5voxuKjc0NbMchSVNa7Q18v4Zp+khhkyZF9m+p7EKu8Zu/8d9xYGGGe+++l16vxerN6+i2olarYOyZvFiOhWakJLHEMHyklrF09SZ+ZYwwDhEkCGFArhiNIkpBiXDQZnNji8OHjvLo23+UTOacP3eW//S//WcOHZzGduc4dGQ/hilptzvsnz9Eya9z7twL3HXnPbhukX/tXZ3AME3ai7sYeoPO9jXi0YjLF5coVSa57Y4H0OwB9TGfO+64kzQVfOYzj7OwuB+ANEtIkwG7O7uUvTInjt7G1uYOlZpHqVqj0+0QjfoYuk6YxAjdJOwmbK/v4pRs0izEti3uuftB8lRi6MW1TwiwbZt/+3v/nrvuPk6v18b3apx+8RnGxypk5GimgdJ0Ll2+zvjENLnMsU0DTQddl/T7Q1zXJbukw5cC5B0RSR6hdAdD5WysL+G4JSq1KZRuQA62ZTActFFKUKqU99zvPcJRSC41NMPGNByU1Li5ulr4EOhGce5rNrYm2N5cZWNjE8OwEFKh6SaaZZMpDd0Q9PsRhuGSZD3SdEi9Po6mK3RNQwkdIQs9pVJFccQyHXbbO9ieQ5LqzExNcOH8BVqtLmdOn2Nra5fjx48yPjnO448/wf33P1SwSqQGSMrlCobUkFKn2e5hmh6eX6NWrxAmfZJUR+k6aZ4ilY6UiiyNydMYqRyiKEEpiWXq5EKiawW7wy95DHptTMMFAUrXyDGwLA1Nk4ULvV/HdT22d5tYtkWtXkeIjDAcUquNk+eSKB7Q2roKSRdNuoySIUle5cCh28mlgeO4vHzyNLV6kReupOCll19idqLKeG2EnocIzSAJY5TMiBKdG+s5R+/8SQajIZkQpNkI27BYun6Vkh+QJhn1egOVpzz5+GOYKuOOo2M0qjFByefcuZsITVAulxn0uliWCeTEcURh9ZMhlcAPfBBJwWDUBY6MQAOpbESeI1HYTsDy9VUOHTvG1OQkM/um0Fc8nuh9jne+532sX/86J0+f5mc+9FuYlonn+0Rx/Grx8Y302dfO8+PHdRgItAeSV197Ldjdm7m/CTj9B7Az3wS8/n8xfhDW+V6uzG98/lrA/4NdmF+/3f+fg9cfPuf11nhtheCN6/6Dgob/Htt77ecVPPZivXRrCWG4aNPHv0vjmqYJkJM+93GypRdQ++5BlScRt/JgpUAIjTzO6LW7/Omf/zk3b6wickHZD5gYa7C7u0F3lHDm4mUsQ9HeWuW9P/dP+fSnPs3GxioPPfxWbr/zKI5tEo8UX/nS47z1x96yd1GFNE+Y3TdDmuQYliLLI2rVOngm7kSNXAhsz2N9Y52oHxN4NvOBwpseIw3G6UuwPvMk+okDQIKUCqUb9Hpddrc3KNfHydOMP/3ox5ifn6e106VSrzMYhQhStre3+H/Ye9MgSc7zvvP3Hnln1tnVXX1Nd0/PPTgGN0CQ4KmDkilSFG8yZIm2bFlrR3jXil1Zshwb+2XXsdpQyOvQSpblkGTKEimLEkWRAC+QOAjiGOIYDDADzEzP1T19V1fXnfd+yAYEjECBtPRpV29ERVdl55tZFd2V+f6f53/4QYk4SVCGolwdIxt2UYbAdBxMz+LYDTdg2xXIUgwFvlPCNLKis6Iy7MBEUljZD4YDbFvjGmW+/Jf3Mzezj16nwxe/8Oesb1yj3+1z4OB+/MAqaCqmIoxDtFKQmmyub6EkXLq4RLlUwSmNoZUPQmHYsLp8mQMHDiCQDAchluGAFJjKgxxs1yZDI5WgXKoQhiFLly/TnGoWlXXLIslS0jDH0CZSajY3tvACjzSJ2VxfRSuFtiR33n0X8wv78R0X0oRROMC2bTzPY5SdQRom5vMK+2Pv4fzGMovHbyBQDlsbq1SqPpYhiAUUTvGSsfFpdnd2mN83hexcRveWee7CBocOHafT2eHkyZPcdNMJMgmW7XBgcZ7W5jVyJ2Xl2iqTzSaXr1zk2WfPMDMzRbVW59LVZebm9nP8xK2cO3+B4bDPpaXzCLLCpbffp1avFY7BqU3gOEiRMj45SWurj2ma9Po93MDHsB20XWZ56QwH58cg3aU5cwPd3oAgqOO6VUy/wsUL52gEijxqI9IQ5eyjVAswLIfBwMCSIMipTzTItSZTUCv57PYHaNPlmWfP0O/1eN9P/AMGvQ5ZmtKLJZMz0+TkpHGKQBAEJS4uXaW1vUtzcpJqo0Tgl2g0fHIyzp5+kUGvTa3qo5Rmtz2gVqrw9NPPUKuOsbHRYnJ8nCQecG15Fdt2CEddyGM63Rad9hZ52sUtB0QRtNtDAt9DoZCquFEmuYXh7WVixgmG0MhUgDKYuXUeq2qxcXEF1/MZjsLCBM2wyHKBkibxwKS7rmAYceX8czRveRtx1OHi+VUe/uaD3Pf2e1m6dInmVJN7772LAwcPcPrUKZSCsUadO+94K42JGpatGD36n5g1+9z4Yz9LY6zB2sY6M/PzBKUZajWwjWXSuEKqLErlKlJCHIbFAs1zWVm9gmkbmIbFoN8hqFSRyiSLBuxurVGuVEiVJMszZB6S5QqpckbDFNsxyWUXx6kilUGvt41SkrUry1RqY8SjHq1ul8AvE0U9dne3MZSBZXooKQkCnyxLMA1FsrwOQqLnZ5AkZDnYjokoQrgYDodk5KRpTpzs6ZploeHRUiORJNEAJRSdTg/XtTEtMMwAwzSR0qBSHmPY3UQqQX/YJ6jW0VmCkgntnWt4jovMFYblIKQAUhAZShmsLBeFgVfeizaKjmoYZTiuy8rlc5TLAUmW4wYV0rwP0sNxXIb9Lu2tDpZnYnoBSms2VleYbM5imXIv69smNzykUmTfuoJSissLMZ7rkaQptuMzHGRcurKENixWrqxgKsmVy+e57RaT/+1/fZn3v/9DDPMULWPCzlMIKZHuYf7JT/8PaJFzy83HsQ2JYymcoMqF8+eo16vkMmc4WufA4QXqY1M89K2H2TdTwpQmnlFD5jFaDim5h1BiQGujw3ve8U5+4swK+onnyN91CzJJ+ZG3v4PM1FQbFZSlCSoVPMfDMAy63Q6GqQjThCxTZEkMeUSeZHiuz8bGGs2pJkJrtq/u8m9++Zf5+Ec/SBgO8ESdJNT86I99kE/+zM9iuQ55uMO9P/LjVCfH+J/++S/w7rffR5ZkNMbnae1IwtBneqZGpEwMO8DVLr1HRkgt4a6I1maP5WvL3HjLCSzP5fyFq0SRQWewTeBVOXfmAg986UvM7TvKzGyVa6sXKZeq5EnCZPMgbsnjga/8Af32Gqeef5Ibj7yVbz70RW67/T089/wLRXyTmROnCc8+f4qjx/axvf40SmhG4Tif+MAPcfnKGaZmq0XWZvkwo3BEo96gVqpjqJx98/vpRwlBvUFm2IyEQz2wido72NrF9XM6rU121lbwbJPdC33UZybIFwZk7og4jzEtTZ4X7qyGY7G6vka5HJDFIcq0UXaFJB2RI4lCSKIE07TIKb7fYTgiTTIMx8e0beKkKPSSCpK0QxQPmV84RJzsUKtMFJ3zrI3IBIgi2qTb3aVaGSeJcqRSjIYjHMdmbeMa2xsJvudjGDmD7hBhCBzHpNftUgqKApFQmsWDBzl6/ChJFlOpVKlWqywu7EPkI6TlgjDo9Vp4tkeSjBiNYrQ0kcLkP/zfv8ktt9+BqS1MUyJFhu+USWNIc4XpuuRKk0VDLMMmy0BbDpbSdHZ7r0bKZWlWSBqUJIli4qiPqZ3CBV5IpJRsrHZ48smnOXb8GGkekYpsr4guGPZ32dnaQaiIr/7laRaOBMRplSef6eCUapQbNbr9Hq2dLeanJ9nc2CBLc6ZnZrj//geQeZ9qWWNojzDfQXtzxOoQ4zPHyaTAtkz86hiOU4VcUBsL6CfbaCMgGXX5xhcf4IfffgOH95fYP1cnyzKisENzokLJdwt5jF/Im7I83YOtRTxfOBwgiMniiBRNnuTEOSAkcdInQ7LTz9nY7KCEYmbhIEplSOGgNxzONR7DtC2+8rXPcNsN8+ysdzh61zsZxDmuCElEwQ4gBylEwWgVfwXcANInDYDXgdfXYoDXal/fCEe8cqy/RtPNX5OHmn9vyvD1x/heADJJEpRSbzjnv3d8rw7y9eO15/7rFOHXP/JXPvLeFiX/P00bfnPw+oOMNwOnf9Pvv1ce0mvH9wKvauoYavrYq9ullH+1b56RPv6HZMunkAfvRZo2r80BzvMcrSR/9JnP8OijjxRiZ5FQrgR85CM/xfml8/T7I+q1KmXfobvbwrFtdjs7zM/PvxoVMxx0GQz6OK7PeLNJlIywzEK3ZRoGSVIsXKQUDPp9sgzsvdxC0zQYjYZUqlVOn3qB3UHERL7JapjhNW8gPbqIfvAJRHdAx9ZFpRVBa2uT6WazqI5qxa233Y5Ump3tLaZmp8nJCEchjfEmOzs7+J6HUqpwfdSaNANDG5DDxuoGD3/r2+zbNwkipz+IkCJFCIVh2GRZjmnqQkNn2Ti2RZxkWI5NvVGjXC0xNz/HzTfdyuTkDO12G8ty6HY7WJbNaBRR8ktcW17h5ZfPsrAwT6Va3buYKr7xtW8wPTVJEo9ASBzHI05SXNfj9AunaTTqaA0bm2vsdrp4no+SgjRJaO/sMDk5Q54X1cU8z7BMi0cfeZQHHvgKt912K1euXEEIge8HBH5A4JfQpoFpmuQIRsM+SoI2NZ1Op8jOlBGkJYzvthCfeC/jB+aJ0oR+a5fTZ15g39wsO+02nh+wvd1memqGXq9Pc2ISQ0vC9TOkq88xeeRuHMen1dpiemaKcDSiXKmQpTm9/oD+sMfk2DQlp8bWxioTYz4TjSrSsIiTmGq1yoWl80xPTeJ5LpZp0pycJI4Tur0Oi4v7MS2LS5evIKXmmw9+hd6gT6k8xtbmDpOTE1hWUQUeDUPCcMTs1Did3R1yIej1rqF1nyzbIRxu4lsGrc3louumLAy/xm/95u+yb3YWz/PZ3FjH0ILx5jiDwRAhFaur6zRqFdIMTp16nt2dXeb3TVGr13nq5EkWFvdjWx6jYQ/PtTCNImJECIjihLGxOlubG1xYWqLf3Ys16Q+Zm5/HtCxQAtMs3FxBUK3VGYURShmcP3+O1dVlDhw4jFa6AHJ2Ca0dSqU6pVIdw/SKbr1ThNR7jkWvv4thFMUNIVIECr2nTUziiCRL8aZLSC3JdiOUNjC03tPpFI6KGRH9zoAsgZVrq8zaLS6bN3OHabPPnGb/vbczGA6oVmvs7u6yvr7O+ESDfrfPT33wQxiWzUsvvczlK0vceNNxkqWnCIIA+8BbaO+0OPX8c7zzne+g096mXDFQokUYm2jLJ89Stjc38PyANM33blgS1/UIwxjHNskpnLYlKb7vFrRY1yPLZEHrS3JGYZ9SUCWKhhhGkWHabhdOpVJYkKc4XkAWDymVaximRX/QLUCfsjDtwhm4tbMD5AzDEHO7g5SSQcnBsQykULRaO3iej2U6KKkLVsdeBmwUh/iBS7u9zW67haFloXUVklKpxCgcMej3cD2PVmsTw5AgMkxDF6Zrns9wOEIaFpmUDMIIw/KR2iGJ41evecsrV3Fsl1KpxO7uLp7vo6Qsuoh7HdQkSWiM1QijIn4ojhPW1y5DpjG0pr2zjaWNgpZu2XsOy4PCDEXLvduOQOqC6q6+s15ce3700F50k8WlS5f4kz/5PO9+z9uJ44TLly5zz913kmeXkarEXff8ayzHQpgCkSlKzktYlkEib+TjH/oUSbJMuSzJMos4itCmS6VSZTQKCUchWhm0WkXGrudZNKcagEG/H5ERMwwH9FptXn75WRbmD3D3W+5h7vEX0MMQ84Pv5oVnz+K5Zcaak2R5XhQx06LYs7W1TbVawzStQlcPhSu4oUmTmBdfPM3kVBPDskEIauUxjt94HNMyWV65glImW+02hu0yNTnO8pXLLMw1gTqt7W0++lMfQGrNH3/2s+w/sJ+PfeTj/Pr/9e/4mU9/jIycRx5+mP3z8wwfz7AsF+tugysXzqENxczsNKZp8X/877/Gj/zIezGdnEcfeZSbbryBo0cOc/DwYZRO8DyHxx59imPHDpOmmiSN6Pc2ufH4zUzNzHH16haVqoPr+5RLFSrVEq3WFkFQoVQq47iawCshsFCWy333vpMf+dH3EoU5+6YW6Y6G/Mqv/Gt+4Rd+Diky+sMu4ahLpRzsdQA1eRJiipQnnnicfXP70YaCbRPxsgdP1jG+2kQtgppMME2FZRvkuUkcFVp2KU1K5Ro7O1sEvkueZoyGQxzDLYBZPKAx5mE7LrmAMIywTRslFMaeB4JpFgyKPIvodHYplUpFNrOhC0MfKensxRlpXWQ7e55fAAQBDz/0CDMzM5iGjW07WLZmY3MZrRO+9fBDOE6J8cYEtu2QJBnhqDCOBMHOzi5TU9N0u22kAEFaxCkpAyUEpi7yMHudXb779NM4ngcIxpsTXLp0kbGxMQBs2yZJMqIkxXIcRqNCKtPa3kQZFmFYuBdrU5FmaaH9lDlKW9i2w6A/ZNAfEJTKZFnOyrVl6vUaa2vr9AcD7rrrTkZhH/LkVbpmmsS0d9oYhoEpe/TbO8xM19naanP6zAXedt/dBStG2uybnKO920VkEoHguWdOobWBY9vsm5nnwuUNbH8Kx59CmB5r66s0JqqsXduk3e6wdHEJxzZIEo9yMMHjDz/LyqXLTE3FHD40i1YxYdgjzRNMw0AKSb9fxKSle9IgwzAYhRFCyMLPwDSLOLE4JkdiGiamZaKUQkFR0ECjlMGZs9cYRAlT01MIoUgvKyp3VVGBzUTdoOJ6lOpTLN5yN4blotIRqShkNq9d92d59ro1/vcCr282rgevSZJcByR/sM7s9ZGar4xXNKyvyK7eaM7fZny/lOXvGyRfN/3vwesPMP424PV7WWRfv89rn78CXrP2NdLVl0h3Vsjbq7C7RrZzjXxnheSb/w/5qItcvBsh9avANUszyIvO7O/+9m+jleS9P/TDTDebrKxv8NGPfJzBMGR+boFnTp3mbXfdior73HLLLSwevYkjhxYwDInnOeybnaVRb4DM8Hwf07XJ4oztzW0qlRLRaIRj27S2W3Q6HaqVGqZhEH3xWfSlbfLFRpHLZhjsm9/P9OwsUTjA7a0T1Y9iuB7yxDH4zc/C0YUiV4uiMjeKBihyOt0eGYpnT7/AM08/ydzcLLZt4/sV0izH2Vso7u7uEMchg7AI8167tobKJQ9+/Rvc99Z3IjWYrgnSIM9ikjQv3DCVhVY5w+GQ9fV1Sn4Jr+RRqZYQStAf9BlrjJEkhbGC49ggUmzLIUoybLugM8bDHvv2TVMqlxiGI5I8p9/ucvzYUVzXYjToElTGSPcqdcooIjAc26LX26Rer2IY5SJkO44Y9PtUqxWyvRt3lha5kGmScODAAW677RZ6/R6zM9PkGTi2g2VaPHXyJAcPHkBJhdQK05QoWRTplJRorUlGFewNk2yzzX8NEg4ePoTKUyqVGqZtYrse/VGEpS0MpVFS4XsuSM3KylWWr61S3nwMc/JGLl66iOM6lIKAUsljY32Daq3BxtY2zZlpBEX3SSrB6upVtDIplUsorfB8h5mZKXa2NllevkqrtcNEc5JSpUql7NLa2eb551/gtttvx3VdtKmZmz/A2MQMm2vrDAcDLMPg7JmzNGoNNjdXiUYjGhNNvFId35lka6tHEpt43jiGranWGthehc3tPlK4TDXHmJzYR5qkNCdLmIZiFEc4Xok8zRn1B2gtSbOMxliD6ckJXFti2zatnQ7LKyvkUczM1Dgb66tYjlXolzbXuXr1KvsXFrBsE0nKeKPB4995mPFGg8QwKNdqGIbN1sY2vuuRC8VuZ5dKrUaGYHJikqmpSTqdPlqZbG1v0u8NeP6Fl3n8yacZa0xRLtfodrcxbUEcZxh7f/NBv19kAGYhUlqQ54xGfSzHRGkTZ9wjyzPSnahwUMxz4jhBKb13E0uLSCbDxrJLlEfnuGzcwfGTK+Tnd/mja89x4qYbeOSRhwkCH9MwaTbHmZ6aIgoTVtfWOXXqKT7wgffR7/cQV59hY2OD0x2DhfkZFg8sYLk2Vd8q6H2GgLxLtyuwTYNKqVxoLbXBoDegXKow6I/wXJ/BoFssWgajwkRDKoKSU+hipIXcA/qOY5NlgjAKITEKx99sRJamaFHGKZmkuYA4KvIYhwPK5Qqu4+FYxXfAC3xcz8O0bLRp0bGgdOQAaRIJh6ZwAAAgAElEQVSjJShdxFMFQQkhFFqZpDkYpsK2DZQWDHsh1UoNy7SRQmGZmiRNEUISJ8UCdHVljcnmJMNwiGEaKGUQxylKF4WoKA5JomgvcscgjiJs20TJYrFdqVQwDYvhqIjLMPYidQxDQ56TZzlJHCGlQkqD0SjCNE0qnsY2g8J93Sm0wUG1SpakDHp9hJSUS8VnsyyviBIiJcty9OMbDIcjuGcS07bY3NzG83zuuP12hqM+ly5f5N3vegeeZzE7tcWv//s1hnGA7dtsbqxy6UKLuZkrZFnETvcIUkhmZ7fRqotQ81xdXmasMUmaZnz969/g8cef4MSNd1Or1fB9m1o9oNUZEKdguz6GZbF8bZWS6CBkwtTMAjvdFtXHXgSge+8t/O5//i+89NISv/qr/5ajh48xNTWNQJNmMYPBABAMh0NMuzAIM7RiNBoWpmGegW3bKGGQRDmjMOSf/vzP8ZGPfpigFCA9k8pYnRM33shNRw/zwtMn+dgnP8YnPvTP+fJffJFPfOr9CNfn+E3HyKIun/zoB/gnn/4E5UaN8+fOcPNNN/H882eZ2tyPwOCsfJHVa2e4+9570Npga7PFW996L45r4PsueZ4xPTVBOBqCjtjaWkMpzQ3Hb+E3//2v0xzfR6fXIww7VEsNVjd6LB44yMTUJBubV5FSF4DVdknTjFLJZ3t7nZK3gBA2p888wuyBAzx18iRXLl7hd37rt/nh976LT37yw6RpSLu7Q7VWYtBe5YUXXmTfzBxpJMjWWxiXKsz2j5I+5pL81wrZIwFqOSBPBNfsqzQOV0nSGCkFW5trxfdLQRSFhRyAQt8YhSMUGYqYcNjBdW1s20CS0e110IZJmoLWRQ6qaduvensAxMku5AaeW0abEkMXngdZnuE4PlJp4ihna2uL0h7Iy/Pieu/5AX/xF1+iXB6jUvMYGyuyaQ8ePE61MokQkiSJSZKI1tY2nU6Xa9fWsC2niLQa7FCpFBGBUkmSeABZxsbGMoHvs9XqcsMNxymVgr3IpZSrV5eZmpoliVOk0qxvbxUUdi335EdDatWANJMorcnjEGUqtFYM+509erXLYDDEshxKpQrLyyv4gVdEoglwHA+3bHPlykUmGnVWrl6iXpuELEUJkLIAzka2yeS4xNEB2sgY33cTFy9dZWJiBttx2Wm1SPOMl868yIVzL5FFQ268/Rbm54+B0cBrTOGVDrHZGRDUSjQmJrhy8RrN5iRJEnHo4AJS5kTpJn/6x/8FM1/n+FGb2dkao0GLLAmRUqK0sVdEMiHPEbIwaypCTiVJnJClOZbjo5TBYDjCcT3iKMYwNGEYAmBJkyxLCzMqU2IZEVHiUirXaXe2kD2bLz3+l7j7Bb/yy/8zhw8t8PQTT3D3u358756SkUiTV3qVr+pAeb0nzt8EXt8soeSVn9fraff2+J4Y4o2OdT14feU4rzTUXvmOvNF5/zbj+wGvb8Z8ff3Or3/59+D1TcYbtb+v/91rX1///HoR9vcybHqjqsgr4DX85m+TXnmWfPsy+cYFsvXz5BsXyDeXEKUGcuoYCPXKxCLXD8G5M2f53B/+EW9/+zu4+y1vwbJsWlvb2JZPpVzFMW2yJGe87tOcmABpUKpUqddqpHmO53usrW/RaEwxHEUkeUwYxvhBmbW1LZqTk6R5jOPaJGmK53o8/tiTlIISne4uxl+exmqHrO4vjH601jz4zW+xsLCAXa6TbV4kzkfUpubJxupkL15EX1nn+e1NSr6PbZv0R32U1CAkzz7zDG+5527m5hZJ44hwNMCwHJQ29vSUcWFKZCi0NlBSEoYj4jjmzrtvx3E9DDNHipROu1N0QF2b4bCPEpIkgU6nTbVaIhyNMEyJEBnD4aCoJJOTExHFEVJCGI5I0gjHLSqtghTb9VG6yHJMk4Tt9Q1qY016/S7brS3GJ5rEcUISJ2xvbePYLq7tMRz2ieME3yuTU1iSp0mCaZjEYXHxdh2XbqfLA/c/wJFDR0izQusZBD5ZnrG5vs6X7v9LvMDjxK0nuLT0UtEpEQIpFZ1OB9t2SdOcKNxzLnz8acJbDzH18Q8yOdGgv7NFkkOlVieMM1yvxPryKmmckEQh58+dpTY+jRu4VH2D5KX7cWZuwfdLbG200FojBFTrVVrbLQI/wNCK1mALqQy0aeH6ZS5d3qJccmjvtPG8gDTLMPZCyT3XZTjos3L1CkHg49g+8/P7yTPFd77zbW6/4zZOv/ACpmHj+T6jcEhQCigFZSzTIiXDtm0ef/wpZmb38+2nHmP/wQVK1RKZgCgxyYTJaBhR8wKe+Na3KNcrlEsltrbWQSTYlo1pueRCEw37BdXcL7O2uoqpJUk45OLSC6SZ4uDh48zO7aM2Vufl8+cKYyvT4bFHH+fw4UPEcc6TTz1FY2yM8WYNISX7D8xRrVXI4hRDacJhRKVaJk0TotEI09Q4jsVD3/omBw8c4qmT3+HFF85w7PgxymUfoTLGmw0OHVgg8Cw+99nPMjk5SeCXsC0bhCYjJUlzLNNhNOqRZgXhxjANlNZkaYY55hT/a62o0Gfm+R6wUXsFN4HT6JMbA772pafwRZc//dJjvHviMK3tNtx7iNOnTuF7Dudefol773kr2rTYae3wta9/ld3OLh/+qffjeR7D/oDowhN4nseplkG/u8PhI0dI02L9sbR0mYmmj0yvkOU1pISd1jZe4JPmOY6p6XX7CAS2pRFKkCVJkWdqGORCs7F+Dc+xkdIkE9DrdTAtDbnCtiyKYAi1Z1yWkaYpOUV33LUNcqn3DE2GhZOvoTAMzaDfw9CacK9Q1+8P8IIypm2TZylSSuIkwrQK1kiWpZiWwfLVQlNsGCZ5nCOExDDMQosnU+IofnVbwV7xMU0Xwyy6xwi4cvUq5XKFdrtN2TMLwxKhIEmwTEWcprR2Wvh+QBKnBe3PNNFas9MqvpNJHCGFJM/3nFqlZHNzg8BzkSJn5eolVlfbVOt14iQupCZC0u+0GQ76jI83yVDs7PRotdosXVpi32Sdfr+PdbLNtWsrRLeWaXd72LZHEqc8+9zTNBpN5ubmGA76KPE8w9EC55YW+NjPfgptKmqBx+zcDLZ+rrh/GfeQEmObGximQXdUZ6wxwdNPP4frehw5cpQTJ27hve99Lz/24++h02mzem2TejCBJS0+9bGP85Pv+wC/9zu/z2133YzplFBmCcMG6+snydIU8333ceDgEU7ceQdvu/se7rrzdi5dvMCVS0tYtsN4Y6JgMVgOUiuyLGPt2jU6nV2qlTLSqKKlQ5ZmBI7NMA35+Cc+vkdrUyBTsizFNkxuO3EDv/RL/4oMl2MH5/jMH/4Gn/rpn+NTn/wEH/7QB9GmQGsT2/Ppj/o0qj4IqDWmEc8YbG2scfDDY8zuX+S7332CMIwol2q0d7colW20NqnXa4yGHdbWrjAKATSVSp0wCrnx0CLLyxvM7z+ANFLGalP49TGee/4paqVZ0qRHGI/o94YoaXFt9SpZHlOvNOjHEEZ9mvUSw6jN4uIChw4d4m3vugfXsllZWaHT7VIfHycXit7yAHG2jPPsJPlnSvBojfySBVsG0shgf4o4HJKO9zCaimA8IE9jhBIIKUhGMb3BDr5v45gGyyvXXmV0CanY2W1TLZcwrIR2p4NplhkNIY77JKnAsj2yLEaKlG5vUNBiNzYolUrEUYTrlkgzClOyXDMa7aK1JE8N8jxhd3eA1qooyGiTJC6MHi1bcuONN1IulxkOYxzHxzAtklhy9uxZarUKnW6barWGlhmB51GrValWyiRJTJ7HOE7hlNze7WObGtP0cAOXNFP4QYMojsjyjNFwRJJkzO2b5tpqoc29eHmJxQOLKCEgS8jTHMewCm8Cw8Y0FCIdUNSvBEJpvFIJsqKjZdt2YWxnF3Fu29ub1Os1wnAEWYzvuAghcB0H19UYjkLkCYPBgFKpwtbyGTxLkuURlmPxpfuf5NrKKifuuJNWp4VTtvEcjWlrpmaa3H7XbfQGQy5fXWZ8coqV1VUc16RSK7O0dIlmo4mlTDZbG9iG5PxLZ/nWQ48Q97p0NzZ4692LeJaEPCaLE7QyAcUruWCmYSFkwaxRhi4MM6MErSyWLlwiKPlkSUKaxOR5VtxPDYMoHCGAKCoyo4UqVtjdzi6ra128oE6mYppynpvfvx/n8IgP/+Q/ZNDfZXXpRe589z/AdH0MJUlyY+9e8pr1u3g9JrgevL4ZdngjnPHG218/783Mk67/3Rt1Oq/f9nehnf2b8M73e57Xzb9u378Hr3+H48343T/IeC14jU9+HpRG778DUW6+/uFWXneu4gKXM+z2eORbD9EcH+fEbXcwDCOk1Dz84EOE4S4Xzr9EpeTywP1fxDVg8chxvvDAN1hY2E8y6nP6zBLzC3MobXH/Aw9y04lbcH2LPBeMBhHV+jgvnnmRsUaFLM8wLYv1a+t0Oj1mZmYIAg/7uytkWYa+7wi9fq94nzlMjE9w7vwSjalp5MoLLIc55fE50rkF1G99ltZElXKlymDYw7QNpDRxXRfTNHBtm+WVIvNtrF5BaAMlTaIowrItIKPX7+JYFoNB0bWM4phB2Md2XJJkSKezQ61SQ0iNlBBFQ7RSCOGwu9tCqRzyjCQa0d5uUatU2VjfpBwE5ChWVjYYq01iWz65CDEMm15/QBwNyKVDHKekccLF8+fptncYn54HAeVKAUyjUR/Xsbn/y1+hHFQZDUPGJ+qYyoVcsrWzget4dDq7XLp0sXAT3N2lVqsRxRFjY43CeTlPiOOoqEoqSWOsxuHDh6hUy2gtadRKtNttvKBSuMYaFoPBENt2MAyTlbWXqSwvw89/DG9xEde2uXjuBcpj4yAV6xtb+KUa9aBEp9Oh02kzPT1JphyUEpD0SU//Kee2Jc3mNN/+9uNEUUipFOB4Fmmace6ll6j4AV/4/FeZnznE9to6pEPGahW2t7eZnJrmuedOsba2wXhzEiEgHA25eOFlbrzhGI9++zuUyzW2tnY5f36JeNRnfHyc6elJAs9DWhbNyQnSLCVNEkajiMbUFBtra9x4/CY2NzY5fvgIGkijmFNPP0fJDCEdYHs2wjSoTTQolyo89/xJDhxcoN+L6HU6KNNBmzZpNECR0umN8AOXxkQDg5zmZI0sU+TC4ImnHmdieoZ6YwyEoNcZEIUp7d0WZ158mXvvfRsXL15kbLzJ5mYHPyghpMm5My9QLVd58oknWVhcIEkjOjsd1tZWyLKE2269jSRJmZ1tsrj/IMvLyyASnj91BiUNAtfDUZqZhUlKwRhSWHR7HWzPR2pRaC2RhWY5z9FKEcfJHkAV2A2/6La2QvI8JYyiIuOUQguTZAOCmR7KjrGzCcYCh2Fng5lwjlLZJbx9numpKc6cfYG7774HkPzH3/lPvPUt93Lw4CLPPPtdDhxYpLPb44H7v8qRYIihDW58789w+NAiX//Gg8zNL7K6usmp509z+FADpbbZ7Wi63Q6VcomMnMEoRMviJu3YNkk6QipFGieQQyYkSE006mMoQb8/RNsFPU8pQRILkiRmc+tKQYVUJsiINAvZ2mgTVKoM+x204zIc7GLbNmmSMBz0gJzA9wrgY5qMhsOC1h0Xxki9XhfLMlBKoLViMBhgWtarzsJRFGOYFq3tZYbDLlJlJNmIbrdL4Adobex1SCx6vfVChhBHe4Zigkq5gpCiuLYbJsqwyYRBdzBCm3bhzJzERTdQKsJREdc1Go2KzolpkiYxURQVxbA4JkpjhoM+nmfT73WRAsq1JkgFIt8rehh02zuUS2VQiixVtNsddlo7HD12iN2dVSzLRj/ZouT7VH/sEH6lQp4JDNNgolnHc8qE0RDfWWbQC4mSf8S/+be/yk98+ANYVgHAO8MNfH+KjEX6Q4/llUuU/V2EEChjnn6/cDA3DINSqUQURTz15Hf40Ic/gGkaVCtTfOwnP8KRg4dYW1nhPe98N8uXlzly5wlKlTGU8FE6Jf/yI2RpSvSuE2RCUqnX+A+//mu87a1343kOH/3Ih/gf/9Uv0uv19opwgt5wgBACU2vq9RqmofmJD3yan/zgByn5Lm97yz188h9+qnCnznKk0Ax7O3iORxzGzMxOoQzB7k7G1ITkbfcdpzZ2iDtuuYk0jShVakS5IhMmhobLS2cJ/BJrWx16p/qoIKZ8d8LStS61isX05BwgmGiO8cyzT1CpNEjTCEhwHBPbHueJJ77LgcWDZFmMTmP+5b/8X/joJz+FaStG/YRMg9IZJWeKIDCxHE3gV4iiDKWhWi2x2+oT1H26uzuoTGEaLqZRYxRplO2xfuUKhjBpJgvw7YDkCw7ug/so9ycQQpEvRogjCXEzRkzE5M6QUMdoJRASkLLwzIhHZHuCwfZWG8dzkUIz6I0YH59GSgupcjIhcTyf4WjI9nqban0SlESbErKMoFQrKPFxhO+Z+H4FwzDRSpNnGRKDLE9QWkNuQJLR729jGpIsUaTpCNcr3Ny1oUEILi2tECcjSmWHnBQEaG0wCvuk6RDfdRkbb5CT4nkuw2GIITPSPCGKIvqDPp5r49qFrMiyPAzTIc1S4kSgTYM0k/zFF77CYNBjcnKCPMu5emWFWj3giSe+y26ny1333Ek0HBVSneGA5595jlqljrZMkJr2ziZZ3EGJgqUhVHGN0EoyHPSLa4dWeJ5bRPNUSoRRiECgRYbvBgyGIzIEvc4acTgkTRNM0y5YFGYBIpO0Q5oJDs03WVyY5ctf/hr33H0fhjQJw5BqdYxKrUFrp0/Zb6ANA9MwqJXHuPDSGSabM0gBtpmR0yEo1Sj5Ll/72tfpdAY0q5rjh6YJgt4ehTxECUGeJSRZIQcQuUCqIiouyxLSvMjM1srAsh1q1TqGFsThiMD3ScKiKGBZFkmSEscxpmUSp0XsWq83wLJcdncj1jb7HL7hEO2XQpx5TTTR5eqFmKMHj3Ll5Ud56Lsv8bZ3vBvDkMRCo/Y6ra+6CMvXA8VXwKu6M35TXPCD4YUfDLxe//r6Duz186+nEP9N4832/UHe25uOvwevrx9vFn/zN/1xro/B+X7O80bjr/6hCqFqlu0935uSnP4qKI2ozrzRbPaKPpAXlaDebpvnvvsUC3MzPPPsM3SGOdfWNnji0UcgHtKYmODQwUN845vfYHFxkSM3HKE3GNGcaHL+pRc5emg/45NTLK+s0Jya5MjxwyRxRJ5pls4vkaZh4UbrOnRaHdautdDKJY5GDIdDli5cxDI9Rt98jjiOWZ0PkGi0tllbXaNe9amUAwaJJhn2cDtXcOZOEDcayJeWacQJamEM23FIEkXSHyC0pFwrEQ4HjDWnUKZJLgxarW021rYIwx6B55FGObatEcokHI4IByNklnPyqdOUvDKVmltU3YTNi6dfwDJtOp0elUqN7c11Pve5P2Nza5e5/Ys4XpmgVKG90+Wzf/IF5vYf3XMctfmz//YnlHyPUqmCFCmDXhtTW7S22/zpf/sct91xO+OTk0zOzbPT3sE2JYNeB2kYmJZHnMQcOnKASrWC4zgMhrtoo8gqi8M+g2HC2FiVsUaNzY0NLl+8zERzAj/wKFcqPP74U4z6Qxrj47iBR3fYR1kucZqRZkAu+P3f+V3ufctb2W3vINIhIh3gBaXi8yMx3IdIajsEn/xFttrbxFJQ2zcPiUJpzdKF84yPVUgMSWO8Sq3sUQlsdnt9li+eZ6K5j+HpP2di7jja8Zibm6Vctjn55LNUqmMokeLZAVdX17jvvnvQRkZ9rAbC5vEnTnLLrTfxxGNPcvTocerNBiaacy+fo1avMTbRZGN7h0NHjqKUxvdcAt/j2IkbuXrpHDJPOP/yy1xauowSmq2tbSYmC9rihfMX2LdvjrNnzzI7M0VCypmzLzE7t8Dk1CzPvXiB5vQCUppEYUSlWmEwaLP/wHG2W10atSqOH5AkIzrtLUqlGlJ79AY9kjTDclyk7ZDlBqVKhTgJOXjwQKHPdBw21jfwA5+ZuVkQirHxElka4bo+tfE6htJcvbJEdazObnvEWKPK7Ow+ls4vE4URzX1NxsYbGKZJlmc8f+oZyuUq7Z02M9PTtLc7HDh4mFJQ4sLSErv9XSpjU0ghePThbzHVbJKMNtDaIM5AagOJQmtBkmbk+Z4hUxZjj3lIIemutFCGRstCv5nEI5TKUdLFrnUK/ehuEaOzaF+jfa5Ks1ljfbHKM6dO85Z776FcKTHWKHPvvXexsbGF51W56aabefGFCzz4zW/ywZ/6IOsn78dxHP785ApHjh9lZnYfvd4ArW3m5mbRRoplDui3uziWj5KKnZ0u4/UmiRCILMHQCq1NIkw816HfbaMNC6EMsiRCagvDdovraA5aO0BGb2eLxsQia6vLTDTKZJlBJhzKlRJZMsI0DVauXKTRmCBJwbAs8iwjqASsra9hWzZCSAb9IckLL8HmFqJRxXE8pBBkmcNut4dhKizTxrAsSBNWV9dw/QrV8hhxGmE7JrbpoTDY3m4xHIW4r8TUaA9tmGRxSDYaEg/7GBqUhCyLCMMOggyJRGuDNCl0XrbtIoQCFHE6wrRMtFG4k4ZhiGVqLMtGGBqhNY7tE/gBw34PUyucYALTKo7n2HaxiNcmhu1i2h5ZDiefeg6RR8zOjLO6ukWnPaBcrWNEgnzC45IVEgQ+l89fpLW5xtXlHWpjZQJ3hzTeoD34aXr9Ef/on30aSxs89sh3WFw8yiga0ulZaKvJQw8/RDTSHDxgcv7cebJkBlMpHvjCN/Adn3q1jjY0t5+4gVq1whPfeYzJZpmg3OA//8Hv8e9+49fQgcnRW49CNMLIBCef/A61iWn48kNIacL7385Y1cfA5ra77qDVSjj78jl+8Zf+Bbbjs7XVxvdLXFu/hGlA4AVsb/X5/Oe/yPEbTnDTjUdoTPm0d1v8/D/9F4xih63WNrZtEA2HmIaFYwX0uiEbm5v45RLlMRe7XGVs8iBCS3y7xo+/7318+h9/GtuysC2TKOuSIbCMcX7j1/9Pfugf30Nv8gq2ZzHqdPCsMq7jsrmzRVCp0pyep7/bRZMQjkb41QkgJQwHVCtVVlc3aUw0ect99xCMOUgytEjRhoulTRwnYjBoE7h+0XU2JVcvX6Xs1xgOBjjaoVqrsNa6RpKNCEo+/V6bvDPE+2oT8/NT5M/YiIEgCQbIG2La7gaimmAEEkMLwmSIaSoG/T7d9i7VSoXhcEiv28Eyim6aZVqAwK+UEUJi2S7aMojTEKEypJLYpk08HGFaDkE5IAkLgyOEQZxmZHuuraZlkQuDUThkOIpwXAdkhlaSOIpJopA4GiJtm2gUMeq2ESQE5SpJkhLGOaZlEoW7jE+OU6n6RHGEZRfU4jTqYtkWWZKQhX2U6RLFMZZtFyynJCdJQxyviufVQEtGwwFxmrC+sbEXFZTjeQY7W5uQxhw8dpyJqotpajKR4tsJpdoU+/bNMDlZReYax1XkZERJzHhziiTL0Cqi225hSE2p3CQGTMPiK1/6Mo5lsbm9xtTMDKMoRklNOAwZDYYYRsFM6XQGjMKIIPAIwy62Kei3rhHUXAYjReDOILMQbUgGg8toYaENjR/4DMI+J59dY3e3w9x8vaDwGj5PPvw4swt1rl5dJRr0yNKY6sQ4pshASTKVkaGwzUmePvkYn/vcX7B/tsw73zLH/IyD40SQC2QmyFNNFEdo02AwzLFUlSSzScM+rm3RHwncoEyGQggNFLTs4bBPrxvR6yWYvsaSkixPEVLgWDZRmJHLIWurGQ8+uMzhGycZdYe8uLTO/MIidSvAXR9jbXKJY4dnef7085y/dJZLz3+Hd77znajaLK4IyShAa5YVWtc9NPBXa/6eQDRS9CJ/jZp7Pe64Hjx+LyBY7AuIvHiQ72G611N+gdd748CrhkcIUchsXoM/Xjte14UtxNqvPq5/Vxk5Qsq9Y/IGj4JV8co596yXXm3MfU9q8atz/ur9gnzdwdX/392GXxnfTxXg76yC8Abz39DVeG/bK+BV1WeB63JexSsgt6CSrV88z6mnv0uns8uTTz9HLBSOCRcvvMShIwdZOLDIoN9GSKjX69x8881sbK7TaIzTaIyjlSKXkvMXL7F///5iARxGWJbFxQtLlMslkihifW2d8XqVzk6LwPd49JGHcT2P9fV1djsd4iRi8mKPcBSyfajOM8+eYmNjm36vi21ZrK1v0NrpUarPYidbhFsrXAsnCaYbqD++H3HTQaQyUFLjl1y2tjaJhwMMKUnR/P7v/QE333Qz1XKNP/+zP+WOO2/BMk0QCiEzkrjoxEol8T2HqX11PLeKFJrWziZCJMzOzuO6ReSEUopSUOHw4cPcfOImpJJIw6A/6LFy9TL33HUbD9z/RW6++RaSJOa2O05QKrtIVeT7xUlKu91jZnYfx44dxbYtNv5f8t47SJLsvvP7vPfSZ1aWa+9musfbtdyFIQAtKADLI0ACIHF3pMRTSOLpeCJ5QVJShFycLnihu1BIDIWkCFEEKVFnSB55JHELEAC5WAuz3o7302N62lZ1l0//9Ef2usGCAIP6Dy+ioruqXmVm9eRkvu/v9zXr63iOjWUq8iwh8H36/S6GabCxvkboB1y/coWZiQmE7ZDlgiTL8AMPx7VIswRhGDTGp5nfu0C/v0O/t001CDCEYt/B/VhW2V3SWQ7CwLFMlJIoqVlYXEAqowRfysFyAgpZ0mw62y1Udp685jE8+GF6/Q6DfpdqxSeNhtimQ73aRGJhiyF3VlbY7nRxwgbr669w+NBx8sIiOf9nxF6VQa/g1ZdfYXy8yeGDRwl8h9WVGyxfu8H9999Hr9NmrFFna2OLdmuD6akxhPJYW9tkbnaO61cvs7a2wn333cN3nvs28wtzVMIAISWB73P71i2ef+45Dh49hO/ZuzEWAXsOHKDQBZVKhdFgyM3ry0zPzmIoA89zabVa1OqNMjfPdnjxpRe477xKkQoAACAASURBVIGH6Q8G2K6D5Rh0+x3ieITnVcoQewmrN9cYa47R7/a5fu0ag363zAOuVcmLgu1WmzAMKQqNaZWxGmGtztrqKmHF58b1y9gKBr02Y7VZHDfkpVdfYN+BfVw4d5HJyeYujd3B8W00gueef4ET9x6ls7VVZnm2t6kEAVNTMziuS1itEkcRne4OK7evUwlcpqfGadRCTCtEa83i4jyajFSDX6kSJSlSlTXiPI6wLAdllEZHUhTYYz66KEjbw7IIpiSFBi0lWiiUlNi1HlIqLr7W58/+3V9w32yO2FrCdU2eNwYc2r+PURQzNTVHgcHW5hrf/tZzfOc7z3Hw0AEWFvZQrYZcvHiWw8GAnZ1tLo5MDh+6lxdffI1vfusZXj/1OrVqyGCwSbM5hhRb+JU9CFMiTYUwy8gvU0mGwyFCGQgtGHQ72JbEMCSD/jam6WFaNjvbOyRRgmOXWto0LbWdJTgz6Q+HCBR5qkEmWIZJnhXUqg063Q6GYSKVJI1j0kwQBOFu5xo83ya+eos8iombNRzXodfv4NoujiUxLYNc78YNjSIcz8M0DXSR4uxGIHU7Q0zLpBJWSJIYITXRcIhCkiYZWigcL6TfH+AFIb1BjOX4xNGQdnt7N5vXBATGbnciiQZsba1Sb0wgkGgtQEsGwwgpBFIpsjQjTVOEKinJjuNhGg5CFty6dZNGo0Ecp8RxRmtzDdu0cGyL1155hZMnjjHotVCyYHZ2gtbGagkA5uv8X4//Ph/76MNkucYLQoJqhenpWZTcxDVvot1fYHPDZGxsDg1UQp99+/YyijpUgjE8z8c0JfVGwPETh5Hcol6vgZgGXfDSm6fQIsX3oOJJwnqNNC2oBA1su8bEzDif/fxP4fk2RZ4glSBONaPOiBdfeIlavYHz+LMoqTB/4kOcuXCBUVQyJLY2d/h7P/8f82u/+l8yGA1oNOrkeUK9UUcKTRyl/NRnPs8//Y3fKLWWboEX2IS+T29nm//6v/h1fuJT/x6rd1boDhMWpvfzzNPPkWeaV197mQceuJcs07sU9QJNRtWv8Qv/2X8EoiBJMrSW/PwX/kN+4pOfxDdt6qHixz75cX7pV36JwK/ieWOYEjo721y5dInp8XHIM0bxiEGvR7M5TlaIXQosVCoB1ZpPPEx4+uln2bO0SMXzSaIYDEGSDLAMxbVrl2mOTWI7DrdX7rC4uJ/tnQ5CFKWBnJJIqUotrzBwHZ/0N2vIyCI/MEAdzjFnQFUEhYRrV69SqZQO1WDsFtXBtmzOnr2A7weEYaknV9Jgq7XGTmeHwC9jpdIkRghBnmuUsEjiFF3kiDxlOOhg2ZL+IEKaBtIwdhe5JoZhkERDuu0WpoQ0128zDZQyytxT1y0LPnnBdneA63rUajWcoEp/FKOEyerqGtVKiG1Z3Lx+BVNJlIAiS7l6+RKN8T1oXbLBlLIRShJFEXlesh8QNnGaABKhDAajHSpByGCQ8vTTz3Hi5IPYDOjstHa1tQLbdbAN6A8GBJUqAk2aGbTbLUxLU6n4ZPlbAEiXRTkBaZJTCUM0BWk+wrIdRsMeBw8sEoQBYaWClCbXr9/ipRee58ih/azdWeb8+bPMzU1jWSXYS9IEx7XJioLAmWIYaZpjTYajdZQ5ZGN9B88po/oEgsHODlqPOHl8gbWbywSWSX1ige12l4P7lsiESRhYFHlErd6kE3U5c/FN5ucPYOgGt2/c4uWXHuf0mQv8p3/nIabCHo6lEUCeZXh2abaVZSkaXV7DpcmZM+dIBfi+w1a7jWVbDDMfy65AkWFITZElpNrgj758neEoYmayjARDKgqtybMYadkoA2zD4MBik9AXeLU6SWEzSjTzzSU6az3+8Or/w5lL11k4dJQHPvxR/uxP/5Rf+MVfRls+Rp5SlBEM7+SU3oUF5GKB2Ju/Z01/t/fN+4HX74Up/mrT1+8Gr981969++v77vvu47p67222+Gyi/3/beAvlSyrcbc+/XEJSyTAv4bhB/d+f1hwC8vt8/5g/aNb2bc55l2f8vfPD3c/f6rve+R+f13fNLejFYyuDCuXO8/MILeK7HTqdLlGRoBHlcMDE+SZpqTp25yOEDx6jVqhw+up8o7mBYLo7tcGdlhf4wYmnffuqNRkkf1KWJkWM7WKaBYRjUwhqrq2vYloVpKs6fP09ru8WVq9fodrv0eh22t9t8SI+jDMVf9K5z5MgRdjodkmTEjeWrnDhxkgsXrxCGVYxaiNNb48brT5Hd/zC1Fy+WFZtGrewK9ToEno+hJIZp4QQ299xzHKU0RZ5w4vgxPNeiAPJCEyUjsqik1EVxAkVGnI6QwkYpA8e1S0OVvGA4GKKUQgrJqVNncFwLz3fLhaEUGFLQqIfYlsnhw4fw/BAhIctTlKl23docbLvswpYhymW1lSJHCsHGxgYTU1NstVpUAg8pDerVBv3+gGajSYGm0A4vv/Qmr73yOvv372dnu4vvhzhOld//1/+WpaU91MMKpizYWN9ganqGOI1Aw5nTp9hY30Ri0Wpt06iPgTDwfKu8+GhJFJUB47nWRKMRoWOTdl5FHtxLOv9Jxhoz3Li+Si0YQ4s2hlGQpH0sS5BHMY7rUamXjp6+E2CIGuAyOv0HOOP7GQwyJienEApu3Vqj0ayhixRdCAaDIYYhuHzlCndW1rjnnuNUQo8rV26wuG8fo3jEnj3zNMfq9Po9lpYWKXRpeW9aJt1OFyHLyvnU9ARCFwSBz3eef4koTljat4Rllo6D29ttao0GylBYpsmtmzcYm5gsdZKOw9TUJK21O7zwnWdpb6zRrFUokohKpYohJTdv3qLebPLicy+VWXjVakk7U4KJ6RnyXHP10mVarTZhpdQ69/v9XQ2jxPd9fN9jZmqSbrez617Z5M+/+jU63TbHT55g0BvSbFaxXRe0QhlgGgaHDx1hfWMFz7GwTIugUkEqgyhJSnORomBjfZ2lA/sxlS4zDpOYPE8ptMnNG9epVDyUIXH9atmJMI237z+GEMRxaTgmhC5jtqSGJGNrZY08S4mjEaZloLVASgtd5NiNPkWhefKxM3z+c5+hu3oRb2ueatPjW7rDj/3YhxASHMei19uhXqsxMTnJBz7wAZ588knSNCXPUxzXorZ4AnP+BNp0CMMxnnnmWX7+7/0HUBScPHESyGg0m1jqAnE6T5oWWI6PEAbDXhfXscsbnCqjrTY217Esk16/SzUMSwdcAdYuZa0oMqQQtNstqrUGSmosu9RMaS1wbIftzhbtVgvbdhgOBjhOGUclhChjJrLSeVnrnPX11bIQvNZGKYW9uAelBKZlILWi3VrDsAyKQjAa9gnC6m48jqDdblPsmiaFYZU4iUuHU3Jcx8F1bba2tqhUKqX5npBloSYvo3gM08IyFWFYxTQNCk25yEtLA6c4ianXa0RxTr/fx7Ydbt28zTPPPLvr2G3R63SpVasgywgdJSVJloPIcV2X0SiiElQYDodUw4AwDN8VZ2CwvrrO7PQCUppMTFQIayF+xePkPUfwfYteb4BG4rgGtlHg22cZ5T9OxkHeePMss3ML+IHLV77yGEtLi0glyDK4cfWrNOs5m62Czc11JsbiUlMaHiGOYhYPHuHIkf04jip1zG6FCxcuEyUp4xPTDNMejXqVW7dvlD9vXqM5Mcvm6h2+/tWv8pmf/HFaly/QOHmCwdIkU7OzoG1+5qd/mi/8zN/mV3/11/j7f/8f8tnPfQbTkiRJhBASnSUIrXj5xdfYbrW57957yLIeUpoUmcazbB555BHifoc9MzNUG3WGg4jH//JxfuVX/hG1WpVHH/1kqcuvVNhub5c07iRGmQLTNhDCII5Tjh06yek3X2JxcYla3eJv/+zPMzU1w+ZWB5TJU09/g/vuu5fp6SlaW5s063WSPCcMfJQ00cLmtVdLmn5R5CRpTJ5ojh47QlALuXF9mWatSW/YQ+hS4zg1McNOr0+cpMzOLXDz1m2UYTE9VUcjMQwb13PZ2e7QarUwv11H3nDQ94ywAsmg30cJxShJkAjGmk183yPNM6RhMRx0GQ16CGEwOztLEsd4nsdwOGR1bY3pqQmyNCud2Xe14qZh7kpASjZEv98nDCt0ux00GtcJyr+h1gz6fWzLBV2w024zNTnB7ds3GZ+YwjAUUpaLZtOyy+KckKU/RxCUKQlFmb8slEFnu0MaRayvryGVYG52sqSkGiamaWBZJpZbAtY4HmIozeZWm0ajjlJyV7ZkYDtl7nJJMy4osoJolPHSS68ShgE6L83YbMfDMG3iNEJkMcq0SLUki2Jst4qhJHHSJxrFgCLepcJeu3YN3/Mw7FKbKzC5euU2jbEqWRKjJEhlkGUxSVIwOTnF/qW92Lag2ajRqDdxXIdR1Kfiu6RpXFKLpSLX64RhBbTEki6WmmAY99B5BiTkSYzrWbiug6ESGtUq21stvvrk6wQVj95gHbNS4cxrZ1ic3ws6RmuDsfosve1N/s2/+j2S0QaHj4Tct38GT3VLk0HlI/I+eZ6R5hm5TsnJsR2HJM/Ics3k9BQVU+L4VaRTxZ9cwBI2o1EpFUmiAbZjUsRDDh2rc/TgPBWlSPKcKMkIw/ru/2uFRpMlMZYpUFJw9vwO5y/eIahWadhNGs4EU5+t88Ef/TCPP/UE//fv/Qumag7dTpeD99yPqQRaqvcASrEL4N4vlubdr30viu73Gt8L4N416/vP/x5P38+PJ8/ztye9Rw5593H9NZp+7/nuf8XXfks/fLcOt2SkvjMM9UMAXt8a38t06QcdWZZx8+ZN6vX63/jY3j3eqsaUDnfveuw+z89+A5T6LtpwCVwzRJGzfPkyz3/zmxx64AMcOXacarXKys0V5mbmMGwH1zYZa9QZn5jgwQeO0h/0iUcphvIwbEUtrIKGKMloTk1T6F0XFa25deMmN27coFELybKUO7fXeOnV1xFIBsM+axsbpHlBozFGHMd84IMPoXVO80KbNEnxPnGSi5custXaBJFy6OASYRiyd2kfY+N1ECYDHTDpRtR2LsHeQ6jH36Q7U1LEzr55hrmpWWzPZ5SmdDtdhv1Su/mlP32Me04cod3eJE4TvKCKYRkYWiIMB9NysZQAbCzLJcuHvPnmGShCPM8g3TWEKHSBaThMTI5hWQZ5XmBJRTQaMBoMCMIaynbIkoxCaxzXRykbUNy4scrXvvaX7F3cg+04CKExpEJnGY5lMT49zSBKcXyfNInRGbz++mnm9iyhbBttKkwBgedw+NBedDGkMTZOUSR0tls0wgrRMMMxYLu1SXNyisK0UXnKKBoxMzfPzNwsQkeEVZ/RqI/avXH3u32+/cy3OHT4IHE6YtDtlvq9q7dJqiuopRkujhpUAo9atcKp117j1371v+GRj32CqYkZWltbVGpNtrc7+H6AFBrBFFp3ub78Et6tZxnpKs3pPZi2jXJMOv0RjXqdOI5otTqcPn8B2zWp1cdw3BDHd8jJqDgOfljB8UrHzH6vw7Wr15icnGF5+RYzM3NlrqZl4dg2jXqDLEnxHYs4StjZ7jM7O4NjOaxvbFAba1AfH0No2NnZxjQMqtWQvBBYlolhKu6srFCt1QmrNaq1MUajnK985XHuv+cYVy5cZP++JUzHZWZ2Gr9SIcsF15aX2bf/IJbroIuCl154iQ998EOYlsnW1hb1egMhRGnYY1nkhSZH4QY13LCKYSmOHD3I0aNHMczS7TYIHC5fucrc9AJFlnDh3DmeefpZDh9aIqgEpZ5JGURphmu75HlBksSYu2DUMG1yLfH9KmlesLZ2h/0H9lEUZY7nKE4x0Ax7Ozi2wU5nB8cLkLIgi/v0OxtkhYGVadora1TrNWQeYxkC05QkSYZl2kgp2Umu4Dou8817SOMu6aDFQjSP6Tsc/sXP8+QTz7Bnfg//5g/+kHOnziIMhee6dDpdrl29XoINS3H48GHePH8dtzrB6TcvMIo6zM5N8cSTT/PxH/toWUAwBK5rUCTbwA4anygelbpuWXYzhZTkQoHUBGGIYTnYlkeW5gjLoMgzsqxcxJXGKjFBUEEYFiIvTaxMx0EKjalKd8og8IECzyu12mmeYxjltvJCvw2I8yzHcVz06iYgScebWLYiSRJErmlvruAGPlqa6DzFMO1SZyVBY2BZDqNRRJZH2K6/u2jIiKMRtqVw/AqmZTKKhtiWQWdnAykFnuuQpSX9bzAodbhltqvEtBVaSKIkxbZLlsr4+BhJEjM+Mc6J4yewHKeUlbyruGZIgetYRFEf2/Z2CzwWt2/fYHyiSZppCi12waiHlglCCMbGJtja3uGP/+gr7F3ah9VLsBKTzA6QRRmnZlsFqniT5Zshg+hjOL7F/NICyII0GbJ37yLLy7doNqaxPZhrvoASKzjBIwSBg21sIZH87M/9t/zzf/Y/85//0j/EMA0KZeAEdXQhMS2ThT2zDEY7+GEFZUo8x2TY22Gi2SA3FI4h+PgjHwKd4n38o4h7H+DilXPMz0yRRjl/9+f+DvVGSBKnfP1rj/OxRz6C55m4XtlZu3juNHGUMjkxUxre2TZhaBOGE4z6KS889xytKKJqGyxfPI+SOX7dYnFpjl//9f+KRx/9cXQhyPQOo1GEECZ5ZnHrxkUMU/DMs99kdnYv0SjlN//X3+QzP/loWXisWLh/fIjRC4qpn6jTHbRZOnwA07PJdc74eJPhcEBreweFJI4zlOUxPVMjSWM6nS5hpc6VS1d54sknOHj0MINej+1Wm4npGW5cv03ghijhYPk2WZ7T7faYmpqh0IIk7uI4FZRhs7m5RaUSUq1WiJ4XKNNAjQmELhAUGIbFMEp36fyKLM+xnJIF5TklK8IPfJSSeJ5T5mAXGb7vYSqT1dV1XC+gyDVCaEzDwDAVo1EP0xQoy0IIhe24pDkUcYZpWWV0UZySxiOE1kRRzM5Ol9m5BbZ3tlBGgRCaJE4xLBup1NudH1sJkjhiY6tNJSylNF/9ymPce+I4YejhVyqkWYpUFlGUkWYZcRLhWCXtNxoMUVoThCUN2jAMiiKn222RJH08x0MhS01vmmMZFg899ABjzQCv1sR0HIbDiKIA3zdZvX2DenMclIupDP7Vv/5D9u3bT71eJY01juvieS6j0ZAwDLFtB9cN6fa6OI5FEDrYVkCRp0COkCboEaZll8U6EkajNkkq8fwaWki00GTDFtvtTYQoi215UcFSDW5cv0SSr9Pvb3Pl6m2UtKg3bAw0o2KI0A7paIBlC6anZ5ibdrGKHr2tG3z9y9/m9soqF86cYmEh5w//5de5dOpNjhzSLM5Z9NptDh1cwii6ZCgM0yMfdZGGT6EdbKeKYQdYToPBSNPt5YS1aQyrQipcHG8C2wlJRyNU0cdQBYYsSLKYNMspcnCUQXd7h1TGSCExTY9BP6PIwXVMlHKxXWvX3LFBt9dhfs8BKpUaWU8wVkzzL6/9Fvfdc4gj++e5dOECnVvnGfW7fPRTn8W0rJL1+K61OLvnVlGUXcNiHfRQIHzeu66/q6P4gzTQ3o0T3n/uD4BtvsfTt7b7nu/CblTe3fTmu7b/Vof0r61t/X6YXXz358o/8Tuv/VCA13dOjnced1cbvpee9d1DSvnXAq4/KDB+p4t61+cBrQvyc0+AMiiaC6ALDPQurjTQKEY7O6zduMb8wjwLe5ZIRz362202t9rsdEdkOmNxzx6Ggx6ebxC4Hq+//ga5Vly5foN9SwuYlotp+whlIiVltAKCNM2pN8bY3NjiySe/xfj4HK++8Rq+7+G6FqNhH0MpTNvi0NJeuoM+d9Y2GfYTpvqa2vwE+fEJfuTBH2FzfYu56TkW9u4hywviUYrnFNjK4BuPP87yWoeJSR/X2kRcH2FVqliVGoZloizFubMXCCsWjWoFnTt8/S//gk9/7scRllMuGAvB8pUruFaO6wfkaVkNHoyGu1QRgS4KZucXCGoBypTYtomQgnZ7G9s16fc7b1v0S1VSNy3bwfdc1lZWeOrJ5zl85AhlHKdGaEGtVqfRqDE+WcWg4OyZszz/4iucuPd+MBU5AqkleRzjmIrBoFwYf+lP/4j9+xZwTMVOaxPHtZCGgVdpICjNmIQsCAKLsbFJBqMhY1PT5IXF6y+f5ctfe5wf/fCHWFm5gWkK+lttgsY4mCbFYIdEF/Q7MfeePMogaWP5DQxhM+ruYL58Dj7kQMVDLn2CxtgYzz/3LI/++x/mxH33MbnQQKcVfLvN8uWrzMzNkxYJadpFZC5rN0/hGEPMWy/gz97DKM+4dvkyY7UGnZ0WlqHwgxqz8/PUAp+F+QWuXb3G9MwkfhAgpcnp199kdfU2M9NT2H7A1776OPv2HwKh8H0fISRpXOpyXMfDFAbKdkEJtjttGo0aUadPe2uT1TsrzM7OlAZWWhFWApaXb/H662dZXJzm6tUr5FnB6uo6yjKYmZvFtG0c1+FHHn6ILO3jV32uLF/Dtjwsu9Sbur6L59s0mrWygq8EC3sWMBwHQzn4FYcoGZDlmtZGm62NTZQUDPo7oBM8wyDTKcqQZGlCmvTxwiqFcqhWKlAkvHnqFPsPHOTEvcfJNOSDbRw3JM/gxvIKjfEm6BKImbaDMkyQBso0KTSs3lpBGTaVaghSkCUphrIpKEiLbJd6XUFowai/g2mZoGwqleaumZOBaSqk6wKabNTHNj0QNmm0w9heA6UM0m4V0wtxLItkdg3nP/kob7yyzJ07K9xzz31MTc1y6/Yqg0HE7du3OX7iKBcuXOTTn/lbhGENx63Q6Qw4f/4iuZTcurXCpz7xSRb37uHrX/0Gy8vXOXTwMEHQ5vz5vUxPvEFBjVFsoOKcXGekqcRxK6TpAKXKiAqBRCNobW8jRYFpmeVCVSmENLDtgCiKEUVCIdWukZHNYDhCWTaDwQDHcUuNnOuTxH1cx6G10cJzK1hWws5OB7fSKGN38oh0eRVlGLgH9lGkKUlSZqJWm5PkhUAJSRLH5Gle5qwWOYZl7xa+PGzbI41iDOUAJr3+kCQr8H2v7IIogZTg+RXSLN/VDWnyQmA7Xtl5yjNs2yDNQUiFZRjkUR+vWiGKywzXohCle7koKXiGZaORmJZNmmSU4LcCRUqv28W2bFzHRQjBdmeHwHGRogyId+yAaNhnZ6fF2GSDe+5/ANuxcL54EeP0NvIjUyRFgW1LRH4Kaczxxd9NysKPY3L52nnCqks2iLFMj3pjDKEk/cE2jjwLQpDJ47R6XZTcw0P3f4H/47d+jwMnHuTggTm0zrEMhSCnt7XB5toWhjTQUlPxQrJEE0cSL6iQoxG5IEoSvLCGaQfozCLLRgSBx7XrKwjDoFqTVD2JxMJruOybWaDiW9y6cw3DMZhsNljbavNvH/sKzUaTD3/wIcKxgLXVLe6stPnjP/kqn/7kfQTVcS7eXGfx0L201xW//Cu/yBd+9lGEcIniEa7lYyiDPE/ROmFqcgrHbvDNZ17l8OF9bHfu8NM/81nqlTk+91Of5eSJg0xtHEDrnMvuS0T9nLn5ObI0IRmOKDKFEj7VesjZ85fYbndIRjHhdA0QJIMI4oyxqUP84//hH/PpTz9CNWwyPr5ESky9YuH5BrHMyaKMx770VXbaQw4f2s9g0KG906Zaq3F75TZjzXE21rfwXAd50UWMFJE1KHNupQmiLN4kWckOSNOMIitQZOR5zubmFr7nEUUDotEIZZlIw0BZFnECZ85eYHxiCtcPWLm5hmk57OzsUKtVy06r1UALCUJiWBaqSOl21hj0YorcZHX1BmPTk/jVGn4lxFAWhmGCNhhFEZZjILDIixFSanQhKBAgJK5joxRQFBw4uFtcNE0MA3Q22s3ytRkNRpx+7TQHD+1na3OH9Y0hjakaqiiBej+OcS0P06pgWh45pROuxkLmHVzHQOQJ29st0jjD8Rza7SEV36ffjxibmCvzSA1Blmfcd9/9KKtgfWONyemZ8r5XFKyt3CYMPeJ0SJ5H2BYM+z2G3QTDkdiWjzJc0BmO3ySKUgwpGA0HeG6AyC0Mpbly+SymUpQpFZKK71PkBfloC6/q0mqvEwZ1xvccpl5vMOh32NlqEVYksbYJfJcsyfDcgDgZoVSEoQZMTdTYtyfk3hPTNCs2gZNx9GDIyQcnEVlOYNjMzlSxjIwb17usbw6Ynp8gThKkMFFmHeF4JCjSYkBY209hFqSxSZKtEYYB/dEN0mgHV6Scu77Bk09cZvFQDcewEDovdbCFRqgC33WI44LNATz2tSscPTiBkDF5WjDsdjENm83NLp7nc+7cNbZGJvc8eAx5y+HIrywwiGJOn7sIO2fort/i4LEHePjRz2AYKVpLpHxnjV/sAri3Hun/61KcNVAPZe95/W5d6t3v3Q1mv4tijOK7xaXvjz3eo7HVlI7zu14Q754rhABZUp/zonhbaiTfUqfufva7tg+lw/XuvHKuQApVWvDoXYO2u4+PMuP8u79H+ZCi3Ce7x13uX4F+Z5b6YQCv74z3A5N/tWHT32T8dbb5fkHCYvf1t8Crqs2XUThClCbdQiMYsb21yrDbZjDs8eRTTzE3O0mrvcFGa4ugGnJg/yJpMqTRDJnfMwe5ZBSn3P/Ag7zx5mmOHTvIysrqbjB7uWhXhiqd3aSi1+uhi5Tl5esMBj327Jmj2+1Tr9Wo10LmFxY4feo0Y1PTdAd9Pv7IIxw8sJ+xTzzA6NA4vu+X+zl+khdefpGHHrqfaNhncmICadisrW1x8PARrl2/ihOYTC+eIJ/sIM62EZMLeEFpZlCvN1FK02ptUAmbHD9xFE2BLGzWVlcJvCp/8Ad/wp69i+giI04yTNPCskyEociTCKUkQkiSNMU0RJk9qSWvv/omt26sceLYcYajDmnSQ6eawPdRUnH61Bm0kPzIQw9RkGGZBmmWkacRW5ubVCoBUgiSBGzLJU0zxifH6XU7uK4Lhd49+wq22lt4fml+MDs7Q5KkDAYR4amxSwAAIABJREFUYVjd7fom5JnEthwc2+fChSvUx91d06ycUX+HRt3mwx/6MJal8DwH8ox+lBMN+1RcG4Sk0DZ//tjXSeOYpX370Ji0W3cIigz1xhW6H/cwHQfvyN8qdUZZSpEmLB04hDQslq/dJBpsEnhNUhSm7bPdaqP9HMMzGZ/aQ3zmy/RUiOcFVHwfJSjdFJOUixcv4Tgurc0Nkiym0aijtcaybEzLZmp6mkazgZSSeJQwOTFGvV4lDANu3ryBQLOxuY4yTAzD5M8f+wq3VlY4cHA/33z2WQ7uP0Ccaqbn5nADn9XVO0yMT3Dl2kVqjQrDUZ8feegBTNNkfGyCmzdvsrS0xNjYFLdv3aZeq3Lu/Blc12a7PSBNC/btO4hl+ayurhCGIZcuXiIMA2zbotvpEEeDMsLIscmzBCkKXMdDSQvf89je3mZ8fAzHdvADnzNnzpEVmkZ9DNt2UGZJxwWBoQRpWhqhjKKIwK/wxutvMj4+wTDOWV3dYH5qClNq1lbv0NraQu2a8CRJgmUbCFFQCwNq9RqZzkuWuM5RUpNnCYaUSKEwlUl/MEApsCwbjUKZikHaR1kGw24fjQUFJQjSEmU6DEY9rCCDQpF3nZIlpEzyq0/h3vcow2iH1bURz7/wIlevXeVnf+7vcvnKFRqNGocPH2Jubg7TLN3Ar1y+zBFrg81Lr5D7Y/zMz3yeb3/722zv7OAHNpatmJufwbIk9XGbNKlhyvNoJsniDrYXlGYjQiAVRFGMbTv0+wNsx6FSCej1+riuR38wwDJtEIIkTmi321TDoDRFkpI4TnYja0q6eZamZcd6NMI2FXmuCSoVDMMgz0uq7ijpoYQgiTOMze2SIjY/iWmU9Mo0TRiNhjiOvVuRBtctCyE7nRZ+ELxNQc/SlDQbUpChDIFhgu1ILl+6QRhWS3OZLEcpk2gU49gucZLQ6ewQBD6j4QilFOsb63iuT7Sr733pxReZnpvDNErKtDIEUpRdKSkVypBst1uYpqTIU6RUIA2EhCiO8Xy/rLYLyfmzl3nlpVdAwNj4OGkaUavW3nYr17rMCFQvrAMa/aEppEow9BnidILLyx/kN/7Z/4btuDz8gYeZrI+RxSnRMMXzy86HJsV1HExOgRak+mR5Xudw5/YGR44c5aEPfgDL1Jw7d5bJyQm0LvjdL/42H//4J6jU6hRkmAgUBk8/+SQL89OYBoz6Ed5uZvj66hr+9g4XX36J2p45quE4laCOoRRnTp0l8JscPLyXiu+CKjBtG9cJ0FlCc3ySR37sExw7cpgsSRDKAC1YXNrL/v2LnD71BidOPsjepSUKHaFEwE/85COkaYTrVCl0zMbG7TKj2jC5sXyHixfO0x+m3Lp5m0NHFonjPq7jo3PBI498lOmZCaIXHYLAZ/yTLo7rlN1JnbNy6zYXL15icmIWVMrc/CwzszMl5d+U2IaJ5wdcu77M9LTFRz/6MKP+iMmJkI3NK3hhk0F3m3Z7G8cP6Xa2uPfe+6jXq1RCj15/m83NTcbHJ+j1erRaW6RpSq+/Q7g6Tj7QeJMmAl0aL1kmhlJ4gYcS0O/3CHyP3mCAMkxq9QaIcpHueEEpZSp0SZmNRyztW8SyTdbX13jyG0/QqNeYnpkq7yNpitYtbMcqY26kDWT4FRfbDnA9H98PsOwyrk9JgWB3/SIVhmkiFBhGGQnV7XVK5oQumXS2bZEmpSNtHJfMln6/j+f6bGx38Sp1csBybManJrAtOHX6NEtL+5GGRuqCKEkwDJMkjjFNs8xT16WpWpHnaF1wY/kWpuWQ5jljYzN0+x1cJwAK0jTHdW0GwwHD0RDXczEtiRQmYaXKYLiDabqkSUy7tUW92SidxZXHyq0Wf/gHf8IHP/hhTNtESokU0O12d6mXMBoOCStVoiihvbNBnI2YmBxDKRMBVKsVOjstdjptakGD7iCl0RhH5NAbJKRJxtT4DGHYoNXqUnRSDASGDes7XbBdTK0QRYFAoHV5nfEcj1roIIoE3x7DkJo07yGNgpwC2zBKnW6UI6hS2D7adBHKx3bGMQ2DqC/xfChGQ0I/JhsOqFjTxHELnWr8wGZzfZu5ORclLFzXJIujsgOa5xRoXEsiLc3S4h58e0SeFdiWgzIlgxi2OwqhNOtbfe5s9dm/Z55qf5Lhg6s8/9x3qPg+j37iI7z63Hc4cOxeDt7/QUxDU+i7qMB3gc533Ibficq5m0L7g1CC7+68vh9F+Pt99u7X3u+h73rv3YknP8i+3pn3jpFVKfF5n2P4norbt7bx3a/d3Xn9oQev4n3a0+99/3vnvP4g4/u5Gb815y2O+VsgtiiKt8GrvvYiIpzAcKu7J5kgzxOKImXU2eHl51+hWmly6o3zuH6DCxeusLK2Sb02TprkjAYD1u7cYWlpP35QRxoGa+sbIODkiZNIQ9Acm2D1zhq1WhV0jtalq+agN+BLf/olVlduonWGIKfV2mRx8SCnT50i8Fxu3V7hY498nD0H9jE5NYmSYFmKL3/5y9SqNUBSrzdAaI6fPIZpCm7fusGZN0+zfHuTEyfu5dLly5iWxQceeJDrt2/SqE9R1NvoLEAXJr3+Nr4XkuucUTQkqNQQUrO+tka1ElCruWxtrfORj36MWqNCnmZstbZRhqLQGbZtk0SjMsgdged59HolDWxrq8WJYycZG7Ppdwc89cQzOLaHa0muX1vm8uVr+EGNQsPUzBj9fhfXcUjiGNcxMQyJkhK05OVX3+TQ4SNMz0whhaYSBESDEWI35mN1dZ09i9PYtsnc/Hypux3GVGs1bt5cptmoUeiUwaCP77tsb7eZmZ4iimN8N8RULv2dHVxTMYr69IYDWltb1MOQv3z6OR44cYTlSxepjk1gCMnevdPsO7BAnMZkWUSjPsGZ338M4+GT+PfsxmLMfhjDMHn91dcIXA8vrDKKBJMTVZ56/HEW9x1ibHIOaTgIrciHK6zf2KYezJCe+xOs+iyDUcqrL77I5OQEa6urzM3PMze3gL8LaONohJSiXMxbNmura/i1kFE0Qmt4+htPMTM7QZrGWJZBtRbu/m4SeD5FpqmEIXsXF7l540bZxShylg4e5s6dO1iWxdTUZElNc30EgiQtMJRNr98nTVNm52bLDGDl8Pjj38C2DSYmxzBNheMEVGtVWlubeL6J5/o8/pePs766zqFDBzh75iyNelhGh1RDLKtcRJ06dYrJySnyVHPx4nkOHDjA5UuXME0Lx/FoNsfwvYArV65RqzdI8wzLsOh1tomTGM93sWwb1y4XVFOT01Qa4zzz7Lfodboszs9iyII3Xn+dQ4cPY5o2vV6PWlglzVOyLAaRo3UOogxyT5MY14YkitGFoL21QzSKCWt1pKTMTZYWWR7RPLqANxaiOymG4WNIA6kUoyjGsm2QUPQDko7N5sYqUkCWCxhtsV0cZGp/nf3793D48APMLczguCbHj5/g2vXr7Nm7iGlZLC/f4tq1q1SrFZJTX8FKu+z/yKepBAG9/oAjh49y+/Y616/d4MCBgzzz9EscO1bj9lqAYysC9wY77Yxac4rhcASU2nYpFKPhiLAaAhrDUKXJzO5CWWuwbIv19Q1mpqfp9joUWhONYnw/JM1ShoMBhllmILueQ55nmKbNaBfsFVrT2oqxHRPbylDKQCmP9OYKaE3bAtd1UMpEa43nuygpS5qx5dPpdrEsE8ezGQ0jhBAkcUyWpdTq42xutvnyY3/OiWPHUFIwNjaDEJI4jvE8/20qpOO4OI5TXmuUxHYcpFJYlo2SCqkshoMRSRQzMTmFkCBlQZHnu51mH12WwtFFjus5JcVQl27UWV7qyxASqQykMmhtdjl86BALC/MIJZCyKDv+yuKZp55hfmEO13FJn1pGa0geHOJbV0jFSaL8M/zOb/8+//R/+Z84euwYvuUgCsmoE/Fbv/1FPvSjD7LZWsOybNJhgqVOowvNpcsBtqFJ0oJPf/rzfPkr/477jh/gIx/7KL/4i/+AosjZ2FjnE48+ihYG3e6AL37xt5mZmMA0FN1Oj62tdXzfRmiDb3/zRTrbPer1EP+f/y7Oy2fpfvAYsrB55cVX+e/++3/C5376C3zjiac4enSWQmr6gyGO45MMIwo9AmmANDCV4lvPPk2cSG7fvkGjGXLr1i0Wlw4Shk063R0CT1JoE8MsM38t00WohCjqI6Vifa3F/NwSXiXgMz/5OX71l/8R21t3mJ5q0O8MCXyPYTRkamYKdapOlmc8ufNl7r3/PrS2GA6HNGpVFvcult1NmbOxsYbjutiezcatFYQQ+EGF2lgTs0i5vbzB//hP/nc+9YlP0OtsYbg1lIZnn32Wxf0HcG1Jq7VFo1Gj0DFh1SNNJEoZhGFIGAa02i1qtSruchUZK7p6C6kEvueTZwmWZbLd3sD3HRCaNEtxXZfr128SVmrleScVZZCCRAoBuijBnirPadM0mZ2dZXxynDRL8DwXy7IZdHrEUWk8hyg1hTu9DrZddtgN00XuZhKnyahkvkQRjuuW+5OCaJTSam1RrVVLd2DbId+VBihDopTCMsyyqFPkdLd7jDeb6CzCtXKi0Q5x1CNLU+bn95AkAzzHYRSNSk1uEOJ6PoYqpVaGYbC9vY3neijDJazWkMogqDbJc+j3t6n4VRzHZjSK8Dxvt1tRLuxLL6rymtHrb1PxK4yiIZMz06WsISsQAur1MT7wgYfpdrewHZ88K7+TlBLXcdBFVuqITQtluAipCas1LMsnzwz6vS08zy0LEIbEsQV2pUZrq8V4I8B2FFIWjKIBhu0yNjlPUoyoTTTZ3GjzxovXmG3sw7AHVAK7jA0KfYq0T6bLrN007mKYNoOoi+kFSKOOVONcX8/Y2ik4cs9DZCpk2B8yNVUh6ndwjIhhNODS2bOEQYStNGm6CcKn3R3w/PPXmVoYx1UD9i8tghwitUNRDJGFJk4yDNMEJZCFoigi6jWLIk1BlNc75RigfL757YscOXKSV167yhd+9h9Q95twR9I9uczM1CRPPfEEYPEvfud38Os1Hv74p/Bsi1zfpWtVijzP38YLb4FX8wPF92V4ynfpZe+m8b57CCFQyngPVvhBcMYPhGHEO3Pf+il376VFUZSFkV1a9FvP3zrm0hPirWN4B9RLKdHvavO+fRz6fXSw7zned35/Zz/qPXjshx68fr/xN+3I/qDAV6m32ujleMuISWtNcf0VqIyDVbqSAthSYkv49pPPMD4xQ7U5w70Pf5Ajx46zd2k/nW6PlZu3Oby4xN7FWRb3ztIf9pienmejtc6hI4ewbZO1tRWa4+NEUcz4+ARZmnD92hVsp6Q5vfnGmxw5fITl61fxA5coGiKlwaHj93DfA/cjleDk/fdjex5CJzhK0trYotpscnj/IhU/YPnada5evsyB/Xt5+ZVX2LtngdEo4fTpy3zkIw8RBB6PfenPaNSrhI0F/IqmPeoRvjRA721BXsWxPHShkFLhezV+6//8XY4ePYjvu3SHI2xXYZilG6jOYypBmRU7igbUGlXiKCMMAmzTodCC4TBma7OF73uEFZ9WawvD0Vy9ukqtXkaVTMyNU6uPMzk9z8VLFzl4cIk01wSez2DQQ0qBMlzSLC3Nd4TB/N45iqLM3Uvj3VwyNIYhGA4GdLpDGvUa3V5/t+kvCQIfaSiq1QrDQZ8iz/F2TVM8z2NrY4sXX3ydpX17sWzJufNXUGadsOailYXvewwHHaanZuh1h7hBFd9zociwnZw0izlz6ioXzp1hYWEP0+dv8eqnHiKaO86mOUFu+tTCMQ4f+v/Ye88oS87zzu9Xb+V08+0cpnumJyfkDBAgARJgALUSxCAuRcWzyrZsS2uv5dVqfY6P9oNkiaa40lrBC5GCSEqkCIIEBJKIBDDImBkMZjChZ6ZzvPlWrvKHagwBEORSXnk/6Kg+dd++VfftulVvvf/n+Ydd9DttCpUav/u7/5HhEYubr7uFMO2TKiqSoiIJgZW49P0A1BT53DcQzihudZDBwSFOnnqdyW1TNJubdHt9dF3jzOlTLM6vMjkxxey5c6ytLbNz5/Y8j07kkR9T23eysrTA0NAIjzzyCGdOn+HggUNUa1VaGw2SJKU+OMTs+VnGx7axc2YGIaC5uYyuyui6hqJqvPLKMQqOQ3NzMzee6fZxiwWcggOAEBIJKXv27qZYKaHpOk6hwNlzZykWKhx95RhxFNLtdJmbm+e6a68jTWN27NiBadq88PzzDI+MsbyyxrNPP8Xhw5fhez5JFOD5Pmtra4yMjCJJOVDv+z2yOKVarSAUmTjNkNIURZGJkojNjRaynOu3Aq/H6ddfozIwwLZtU0yOj5PEPrMXF9l/8BBIMmdOn2FocJDV1dWcfi3nerAsixCyDpmMqqjEWYSiGoQRVKo1dFPP2TdpihAqQtaRhYpWzQPq+8st/HCTKO0RJn1MSydNfXTVREgKQiiYlkuC4DOf+RNu8fdhnmuwPvMeLGuJubnXMYwSg/U6J06dYmRkjPmFBb71rYdRhM7gUJ0dO7ahr75KsViifNntJMDRV45z4MABNjdahFHI1NQU+/cfIM5cBiqbKHqRLNnA80IUrYSmqbQ7HTwvwLYdIAeMntcnTXNdsCwLPL+fMy62KNNZmmLoKqqm5FTdTM4NWPT8wdvtdnAcO/9eotzgRZLyIHvLNVEUiSRM8P0wz9xOITM01HIR3bDIMlheWca2LRrN3MwpSXM9YAaEUYQi5zRvPwgol8qESYauG+ycmUHXBFkSIRSDJIlQt1zD0zSmVCqSGzSmRHF4aZGbJilCUgj8bt4BVZUt06cGrmsRRxGhn9FpBRSKJiCxML9ApVJFFjqKrNLtdVF1DVUIyFJC36fTaaFrCgODg7zy0otEcYRlOwghSDKZNJEYH6qTCej1+hjPraOpfcQNKaHySS4sDWDqNvf95f24toRMwgsvv8jQ2DC6Y/LB97+Hbz/2DQ4dPgyZzYvPPofXfZKhwSEWloaRkj7l0grPPPMV7rrzX/Kdxx7k13/zf8GyTBa35AF+kqBqFoqiMTY8TLvXYHhsFN00mdoxSSrFGJbL/fd/C1nVueKaQ4Rf/hZBENK9YT+NzQ0e+fa3+MVf+hlGt21jz559zF04zsDwNnTdIY0iFhbOUCjaWE6BFEHoeUyOjzE+uY2R0SpCCP74s3/BS8dfQBYy/92v/CqmrrL/0GEQEUmSAoK+t4FtlllcXGJ6eoo4DilUBvnoR3+CX//VX+NTP3kP1bJDrxtjWjqFkstmu0t4RMb3PWY+MoEkWXj9CMe1EFJMs9lEU1VuvP4m3nXr7XS9gHJ9CLtogSRhaQZyKnH+4ib1oSEGx8q0uh22z+xDMWwcU2P/vv20+x6bGyt4/ZBSqcrKyhKmaSFEzliK45CFxTkOH96HabhER3XwBHINNM0gSdOtTmqK1+ts5ePKyIpK4LWoVwdzeioRQijMXbyIbWikSZS7nxv5/JMmOeArFF2QclaFsuWmbdhFNN0i9EM+/Qd/yL59+/L8YsUijHyEphD6PmkUYpkWvh/g2BZpnNFqtlCEjGlpOLaLEBpCUkizZGvNJdFqNjENkySSiMI+URigazonXzuNkCK8XgNF0SiWaiwtblAsFJHliGajjW7qyJJgY30TWddQRJ7xmsQZsiSI4oBOt8PpUycplWukiYqQE1QlQUpV0kxgGDq+75Em6SWKpZSpPPvcU9TrVRyzSpYGSEIg1Nwp3tAtMimj01tDUeChhx5h+46dSFLGxsYahmbxpb/+W7Ztm0BWMuI0yWPeFIGuqSwtLlAulUgTH8tyWFxYplSq0dxcwCkPY7slzp95lcDvUCiVIMsTHNI0o1TZRbev0u55HDo0hqy2SVFI0owwEYSJghQnqJZDkJXRrBJoJmZhDC8uUyhPIBSTgbEZJidHWZw/gWULLD1lcX6Wo8+dRhEBttllsFoB+py/6KO5Q0hpgKQFaGqZYlHGdSz8IEaSUyytSM9bxi2PEIQJmqGTZQmhH0KWG+4hdExbRpUtAj8gSQL27Zui31tk/8FdLG6uM1QtIS+5/MSffYQbb76Nw5dfzW/+xr9lfLDInR/8ADOHr0KTBAlvW9u/rZP6gzqv74QRflgtbBK/ybX3HY71/3n7/sTUSyD1zZ/zBuU5TdNLoD3/29vGJX1/8Pp9h/KW0/rGuXnrcf8ZvP4Xtv8W4FUIQZIklwybvtuy3wKvZ58GwyFT8wVonoMV8/ADX2PH1DhBFFMZGiZTJMKoj27qFAo2id9jeKBCpgSMjQ+gajKZkKjWB3JHUkOnWquw2WxjmzkVrdPOY0NOnz5HrVrj2WefY+fMDBvra5TLJRzHJgpiDl99DZquUSi4mLbF6voGc2dPMlir8/jjT7D3wCHU338Y9fk5XtbbTE6MoymCbVPTfPnLf8v09C5q9TGmpgdIk4T9+/exuDDP+PQB2q15bFNHmdmF/MVXyQ71SNIUKXLJUvC8mOefe5FDh/ejqTK6VSWMAtIkQs4UfM8jDPMuiVNwaLWb+WJNyDSbLTzP5/kXXuLyy65EUxW6nRbFgoskLF579Tw33Hg9mpnQ6HYxTBdNMxgbHeH1109QKg/SbrWQSJAlCVm20C7RdWQWli5SKDpAQqfdxdAsfN9DliV6PY84Bk1XAUGhUMiBQ99DyKDrGmmSUCqWSFIFXTNZX2uiqSZ79+0hzXosLJ2l0wuY2XkYVU2RdRPd0FBF7jhdHRjDsFz++LN/yLVX3YCQE4RiMDQww8jwCGJliWCtQenf/wKdXpcDV12DYTnEUUYcxhDHOOUSBw5cj6J2kFOZ1y+8xsDIGFkmk8QRilynMFpEKUuEL36J2BomljQ2NzYxDGPLRTemUqly9NgxXj12jPfd8UHiOGZ4eBBExrlzpxkeHsvD0iWBECqaInAch1arw969+zh27BjtdgPLMHnppVdoNJs0Wy3iKKVSyQsTI4Nl4igiCAIMy+FLf/M3zJ9/ncHBKsPDAwgpw7BcHn30UUbHRnJKraYSxiGSkFFVDSRBwa2gyBYXLy6wd89+qtUSe/fszb8bkd+H5y9cZP/+A2i6QbvbY/+e3WRpHl9x8uQJdu/dz9LSMqOjI7RabRYWFlE0QafZwjAMUgnSFGRJQpUFXhhQKFQBCU1TUFVBrVZGKBqqphKGASuLC4xt28Ezzz7H2NgYrmvT3GxQqVZotjroukHgRZw/f4ZafYQ0lUiTXG+VpoJuz8O0TNqdFpqmEYUBiqqRZTJkAqWikWUp/eUWllklTRRMo4yUWfh9CIMOum7hhzFCUYnilGuvuxHnhE/WWOW1kSm+9IUj3P0je9F1nbmLK4xNbKNULBMGAdffcC3Dg2O4BQvLNvBff5pGo8GSMUG1WkNV8viFb37z77nnx38E3VBYWp5HkytImUsmQlStgGX2CCMDVdNJ07zj0O12sG2LdqdNEOQZo2EUoqoKcRxtTfcCeatimyQR7U4bVTVQ1dxYLc0iJClnYrxRVRZS7iIZhAGKLBOlPqQZMjnNLclS0mIZvVLEMk1kReP02bOMjY2iqSqyItPr9ej1+thWnlVrGAayUBAidzYXQiGTYzRV5FS3qE+jsYLj1pEkkBWZMAjo93vIioznexiGfsmLYH3LHVkWMt1OA6dQRNO13AFeUbckBhl//qef4/rrbgYRkKYprlvEMh2iMCVNUnRdIxMScRigKrkZmGWYua5ISKiywsTEBJLIHTrDMKPf7/PUk4+wbXo7rp0gP3UOJIfgul+l2bOoVguEfsS7b/0AmhpSrZU5cOggum2BImiuL3Hg4B4efvgxpqcOMFgrEfnPUCqV+OSn/oAPfeB2agMB26bGkKRxXFPBqQzgb7E3LNvKC7mJwOt6jA4P4lZdOr0+QpGRNRm7YOH5EU8feYVf+pVfICGg8/kH6Pf7OPe8G8/rcd1119HqbFCo1MgSqJVVYski8lPSJETXUoIwQNNt/DChudng0W9/i117duOHXSzTxe/D9M5R9u87wH/+8/+Hu+66k2K5yrvfcyO/8Au/CJngmSOPogibWi134g0jD8Mpsbne5GP33MPsmeOQBaSxgmmbtHtdLMtFPe6iqAr2TQq+l/tc9PptLCPPB7YtG102ufmW2zCLJTTDIEpzI0MpgZ/71E/z0KOP8JFP3E3ICvWhKrpZQFENvG6TOI5BVnBsg1ptiChMqNXq5FnjWa5nNlVarQZuwcL3Ehrf8TFSC7m2xQ7bYid4foCcZQRBSBQneH5A0G9TrQ3kTt6ajKYblEslNEVGkWB1eQm3XANyeVJ+70n4vk+lUuHUqVNomoZsJghJRhYaB/ddhmnpyBLIQkfTBImU0Wk2IUpYWlrCcV0MQ2dpaQlN0RBiS9qZSYCCkBSQcgAQBD6u6+B5Hs2NLsWSRbYlexma3EWpXMB0DCTVAcXG6+QF5TBq0251KZSKWIZBpVIllYAsRAgFCXlLkiADMD46gq6brK93kJSIwOvy3JGXKRZruAWbdru1FevnkKQJMgZuQcMwdKTMJsNH0TSQZYSUz5leP8CyBd1On+3bDuWeGRLIsqDd6nD44BU4jokf9bFsC0nI+L0Ga2sLlIo2UeRhmRZnz5zFsQskCVTLLq2ewHEqFEwtnxPRUGSVLAHbdHjyic+TkTIxdYAoNUiwUeSUNJFYWFjHDxQc3cKtDODW9xAGKalkoBgDmHYNL+ihaCHd7gqETVwzRBcpftLHMIosLwqGR8ex9XVEZiKrMo8+cZ5UKTJajUiTFNtMKRgavTAFScWwFHrtACG6CK2Kbhi5KZ2coRv5sy6/DhT8sEMSKURBgO2opGmf4y8soCh12n4BMhOn6fKeX7uV8niFLJO458c+yuzJF7n59lspDo2jK/IPB16z7IcCr8D3gNfvF40jhHyJrfl2APuPD16/CzzfHIfzxtjeSF/J3ejfGMM/g9f/6i1N49/+QaJs8zfiAAAgAElEQVTmH7T9IND5j0EjfnPm0aUA40y6JFDOtQNbN8Fr3wJJgOkiISDJOPLEY9QrBQbGd/DY498hiiLGhkeI4wg5gzSKefGl50GkbJvYThjl4dCqqmOa1laGlkQYg2NYJEmCZurEYUzohezYvp0jTz/HNddcw9GjL6NoMqOj46w3WgwMjVJwDM6fOUXYb6FsuXYuL64QBj5XXnkln/+r+9i5lp/35akix187wdXXX8vs7Cw7d+6mVhvkmWeeyi3cTZ1Op0HBsXCdFMUaQlFUZKMH23cj/8lRsoMQGw26GzK2abNj+wzlikWv1+PRv/97VElicHAAWdewCiWiMEY2dJqtFtVyiV6nw/FjpxmfHEHTJHbN7KLV2UQzDPw4RdEtFBmiyKderwASXreLbVpsrq+xsbbCjulp4sTDMQ2efuoItlPgqScfZdv0dK7pycDSLS7MXsQtFLCdAkJR0TWFJJPRDRshpSiKhOcFrCxv8uBDD7Jn7058z8OyHSRZRZJUNldnMVwb3THQDIkk6mLqNuXSMK+8dJyZndM01jaIgx6bq01s284NWRSVuQvzXH7FtQThJqbpsr62jq5HKDIkz7+OfOtlLA7p7N6+m9VGiOtanD13imp1lI/9xK9w440HcGwJXSlydnaJ6clJDLtCnAJZilAjZEmiu+khvf5VzMGdKJrGxfNzOIUSzzx7hDiIqVXKbK5tsP/g5Tz51ONMTk2iWzaqbmLaLrZt8Y0H/p6R4TGWl5cYG64zt7DEo49/hyuvPEQYdtm19zDLy8vs3rsXp1BmdXWNq644yPrqInGaoRpFDFvQ67aJYrjqmisplYYZHt9GhsLSwiK6aWLoJsVCCd/Lg9N1RUWW80iYLBMIBUg9TEumVC5y7uwFnnzqSQ5ffgjdtFE0gyyJKZXLnD13homJMRAKq2vr9Loe4xPbWFicZ3RshFOnXufEiVPUqgNUikXcQpHNZgPbsrA0Nb9HNRXLyimfiiqTZBn9vsfi/BLlapUo9CHLUA0bzTCo1sroqoylKwiR8uf33sf2mT2cPHGcoapBmhVwHYM08VAViQyFLItzt045L4QISeD5PqqmAHGuP66ZCFkmWO8QxSmGJQNJbk5lJGi6iTE5hz3QJ9i0SOMITRXop3ooSRf3R+/h6edOsLF5np27JimXx3npxRd48Btf5/zsOfbv28+f/ul/4vrrr2Vu7iLG2mtoqsqT5zrMzOxhfmEB2zRIJZlvfvMRLNvlpZePcmH2BGNjo+hKiRSBoimIbJYgKGAYGnESbRkbycRJ7kgNErpuEccpZLm8wtJ1Llw4S7FczBc5prIFgsSWNEMgCZk4jul2OkRBiKbrxKGHLIGiGrkWM44xLJN2p42p62RpDEKQiVw/L4RAV1U21tdwLIsw8LFsF8MwCYIAz+uQZClCSKiKQJBHSKRJfv0h1K2ua4wkKfR6fVRNQVZ0TE1BEdDrB+RaaRXbcclSCUmSsezipSglJFB1FU3P83wPXXYAoaSQpqiajCSl9Pu9raJNSppGJOEbObAqSBrnZ89z5OlnSGPB1M7txEk+d0Sp4MLJowwODDE5vY3W2rcpFTYJHisiK8Ms7Z7EcV3iXkqjuUChViOMPIbHxzAsC0nOdfXFcol+P2N4eAJNk0EOKNpnSdOMO+/+HXS7hmOvE0UBr532ePn4OYZqJTQlQ0GgC4uVuWWyXpNzJ4/m7uthbtbSai5SKZVRKdBu+uybGSX02rlj9NefxjAsHjMNDMPm/e//AJ/6qV/mt3/r31CtlGl3BKVihSSJsQsFTLtMEkYEUYhtK2yuzlHQoT5UY/H8GSzDYXBwlF/6xV/mrjvv4n/6jd/Adgvc/6WHCfsR9/yLD3Jx9jyj9Z1EcY9qeYiLcwsUiy4bC/Pockyvu87Ejn2cX+5Sci0WF9uMjgyjyG0ajwi8Xh/psogLs/P877/9O7QbHSYnpqjX6whZMDW1k1tvvJUf/ZEfQbMEmqTSbXdJJbjxtlv4yCc+SK+RUTFGaDRWKdcHMDQJpJR+1+NvPvd3FCsO9foAum7R67WRZYksitAVHb8X4lplZMVmY2MT/ZyDlugIN6Hb7eWFWyQs3UDbkmu4tssXv/AFiqUatXqdz/7xn3DlNdcjJAijEFlVSdKUQrmKH3i5NlvOtZpLC+cpFwusr29Qqw+jaSYkuVnL+toSobdKGIfIskK7letXe80Wpm6QCXHpWotiCV13mJtbQEha7nCcpHkedL+Dqsp4vQ5F1yYMI3Qzdxj2wgjdcIgzUHWJJEmZn19GlcHvNxgYHKbb7VMqD2E7DmmSomgqfa9LEvsI2SQKfXy/nRcTMpUw9IiSBN0waWyuc/71OYZHh/A9jcmxAYKkh2npxHFAEufnAiUj6sdkWURIiqErKIpBr+PR76zRbi5SKBYRwiDwAmwjASEThh6GruLYBrohEaV9slRlY2WTSkknCkNc06LdbFMslQCVdmuDctnBD310u4yQQmTh4/ld0jih0Wih6TKqpuPHMcViFcvQWbh4BtuxMG0HIdsoboWhsV1YrkmsVFhZD5GVBNMqYFfGSfrLdDfOYdBjc/UslojJkh4SGf1+j4Jm0OuvMD5WQJZa9L0OhlknSD1UYTA1ZUMUoCi13M1asOU7EZMlgCQxd7HBQK1ClgZEoQeZIIxiZDkmSUL8QMr18IHJ40+/jmm62JZEZXAbL716nhtuvh7b1pHXVP74mU8zuKPO1776BbK0x+f/7NNMTm1n71XXo8kpCW8Fl+mbgB1saV4l6S3g9c3b24HnW2J33owvstzYKMtyw3gh53BAyFIODKUsf479FzDJd1NN0u/ppMIWoSdNtyRwb9R+cy0skkTGWzWweSykfOnnS3m3b8pwfQOoSmxRkPnBwPW72OodokSFeAuc+yee8xr/9v8fx/2vqW68UV15gyP+Zo482TsbNyVHvw6xj1QZRcpApCmWnhv+RHHI0uIiqqLRbXUYHh5keXEJCcHExGRuHT8+zuunzzA1vQPLKjI/fwEhKywsLlOtVBHalvnQlu7JLRVJY48sy1hcXGRhYQFV1dixY4a9e/exuLTA1I6deU5crc7LL76ArmpksoZu6Kyu5jmkxVfXCPyAwQ9fh66pnD71Onv2HiCOYr797W9yx+3v5qmnjlCt1yiXijz04DfYNjqJ5RYpuDZzs2fICgIO7kL7o6NI4wbadBOhhGwu9ShXasiqjmWaDI8MY1gWcRzn+ZVkdDsd3C1nW0nKGBoeQ8jgeX00zUbXtXzRlyToqkYYRdQH6nm+q6Jg6Aq6rvPUU8/w5JPPcvll16IYBl3PY8eundiuy8jwEJqmkSUZX/va15iYmGB4eBBFlRFyRpwE9LtNDNvMXQ2zmGazx1/eex+Tk1NcccXlCJFSLJXpdPuoqsrchYt8/f4H2LVrLyQZa0vLKIqg38+pRdu3bycMAtZX16hWK/S6Ad98+GFGR4ewHZeNjXVUTWDoOQXRLRQ5P7uIqcqYz7/O4k+9l9cW5hlPXsMOFpEqOygWiiRJzM//3M9w9JWjzOzYzV/+5X185jOf4ZM/9UlkTSdLExRiZEXD9/08HuT1ryAVxomBNIKHvvEwgR9y/U3XEoYBq2srTE5PMTI0hK6rvPrqqyiKQq1W58LZE/Q9j5ldu6gN1tlYWcN2Clxx5RXEsUe9VqHd7pMBtuMwNzfH/gN7yLacd+v1On97331UyxZJGjMwOIKkQL1SJUlzw5uFxVX6vS47pqc59dprnH39NMdPnGTb5BRIWxN0liDFKb12C9e2OXdulh3bZ1hdX2Hb1DZkIWi3OzgFh1OnTrJjeppOo5kzD1wHy7IwLQu3aFGplCkWi0xPT1EsFVFkic1Gk0Khgq7ZNDdWefXV49iWSZalxGmulVGkXDftFvLAdcgXRULWUeQERcllBWGYoKoG+w/vp1gsMzQ8QqFQxnYsNjc30LT8ms6S/CElC5HntwY9hGqiqAqClDSJSEkxBwokSUKyGaMqGr1ehzAIMXSLIPCQEJg1DzIIGy4PPvgQ09PbsU57kIR4OzQO3nAPtdo8YFMo1njgaw8xNTXNh+/+MA899BDvveMu/uq+v2b37r00j32Tglugcvg2nnnmOaIw4fFHn+DAgf0sLi5w2eFDuZHWyVNcddXVzM/NEcYSrgsSmwhJRpLs/DG61aXJ0tylN8syNtfWcl21YSIUlV6nhWXZaLqBJEkoSOiaARn0ug0sWyVJJZI4ptVsUi6XkGSZTAgUVSWIIlRJgSyj123jOCabm6soYYaSZaAoCElgmjZIEAQ+uq5h2/lndjotMhIsy0QWMrqmX6JEZmREUYSiqFtGToIkzjBNYysSSSCED6lGmqoYpk6cKSiaRsZWNJOhEgQeWRbn3SSRIWUGcZxuyQ7MrWtHpdvtocgqshAEQY8wDNANC0k2EAjCKCROIkrFInt378EpOiwtXKRctJi/OMuXv/z3SGGb8cmAoj1Lz9/HI0/uYe0rTzA0OMTm3kkW5jf5rX/z73n/h+7Ii6QhaLpFRpa7XANJGBHHEY5tEkU+sizR8fbzsU/8IR/84Af42v3f4PLLygghmD0vKBbKWKbNH/yfn2X37gM0Gi2OH32JcrXOf/q//zPT23dx7NQpCqUyO3btJE4hSjKkLII0xC04aKaD8vBTSELC/viHefnYKT5w948xPFTmIx/5KKVSic/80ad535230WptYBg5S2Flsc/Hf+IT/ORPfgzT1JnYvgM/1ShWhkgynSMvHuXnfvYTjI2NEEUBjmNx+WWHuemW6zEtHU2zeP31M2zfc4ivfOV+fvonP8knP/5jCK2Gppj8yX/8M6674T38+Ec+yQtHXuLG6y+jUDCYX1mjj8fQVWWyaoLfT7j64JX8z7/5G7z39neztrKIbarYro2hGfxv//Z3+NTP/gxCyrBt+5LkRMpCBCbHjx+nNlRElhRUTeb4sWNMjk3xwnNHueKay/j93/s0V1x+Daap853vPMVAbRjLLmAYDpKUsw/K5RL6bAG/EdDK1nELxVzGlGV5pneW0el0OH9+lsMHDzI+MUWr1eHGm24CJFQpJgpzLbmkqCRZXohJ061FsJShygpxnFAolpBlmcD38bwAQzNxbCd/XXdI0wxDz9MONE3D8/q4RZdms4GQpS0trUStVsWyTCzbRAhBt9vFdV1SEaMbLlGgEMc+hpHS2mzh+x6Om8t4VDkjjiIkZKqVGoZuXYpuS9PcZ6DXz51qyQRC0vD6fWzbyR3htwBFFIUU3RpZBmnWx9ZVNptNxia20fd7uBZ0Wz6OU0XIAj/q020FrK6sY1o6xWIVVdP5wl//DaOjo9i2ha7qxKlMKglUwySVZNqNdRbnV/B6HlHURSYvXqqaS7cXcvHixTwj2nAxrQKSLNPaWKXo2qQZWIUyiWKRBB26a4uUKjX8SMYwdWyriO/3aGw0qJTK2JUhCgNj2KZKEvYQmsvFuRWEpBEEfTTdZHBomOXlC2ysr/GF+77AWE3GSNYQ+KimIE2krdzVvBvuBR3SNEFKAyDEclyiIEBBRtMiLCtDVy0ee/xlLNPa6qpqpJlEHCckScLAQB3P7yJEzioJw5AsywgDBVkUMEyBrGS0WyFDg+MMDhQRwuPsbJNzF/pcmF9nZW2ZqjfE9b94JX9072cZGxnnTz/7H9g5OcJ7PvAh6lO70OSEJJPfggXebHgE72zY9Mb2dm3rD/bWkS7tk7/nHTAF4tJxvl9szdspyW+M4S3/w9vG9Pae39uNlt5+zDeP9+1j+GFw03ff8w7g9e2d138Gr++8/bAXwRu//0MB7TsKrLO3/v2NMaRbbsOJnetHnn/6aRqbm2iazumzs5w9e45mo8ny0hJJHPLKS6+wvrbG6NgQR4+9xNSOnUxNT3Fxbp4oShgfH0bXLUBgmCZxmuL1enzlb79MmiQMDAyQxCFPfecZZFmh2+2wZ+8+iqUCbsElCANq1TrnzpxheXGBw4cu5zvfOYJtW3Q6LbqtNtPT20ieOINlWcRXjjI3d54d26c58uwLzOzYwfDwEIqqsLa+zuS2SdrtFmOjI6zOL+CnEYVCkX6zSa3ukpULSJdNIt/7KmI2JJ2RcSd80kTi//r9P+eOO+6g73nce+/nuPzyy9HUXOsWeB5xHG1R/Tp4no9hmDz3/MuMjszklbsoQJJCwqhFFGaYhoaQMoSUL7KiKH9YnThxkqHhUWbPnyNMYqqVEpoqE8cRhqbR7XSYnt7OuXNn0HWdKMqz6HzfwzZM2p1u7u6XZTzy7ce4+eZ3IYSgWLQxzHySM22TOEpQhMSefQdQVR2yjCAIqFcrl4wYoiSh3+9Sr5XQdJlSqUy1WqBWr/Liiy8yPj6KbspcmNtkdHKYIEx56eXT6LNzFLeNIv3Lu9h/8DKSV++jdeEoZxoWG0vzDFVciDo89tQLDA4OUi4X+fjHP4ppO/hhXhDotTbp+yGtVovx8XH8l+9DFCfwowTbtFleWuBdt9xE3/NwbIs4ChkcGqToWjQbDUqlPGv47NlzVMsGsqKwvr5Ksehw5Kln2Lf/AKfPnMGxDXy/jyRkKtU6589foOhaqKrgpZePkmbktNRr30WpVsE2Xc6dWyKTZMLAo1xyQZIYGZ2gWq3S63fRNJWxsXGGRsaI4gTLsvD63dzgSDO38kFjZi/OEYcRkC+QTNPGtvL4pHqtxsPffJhdu3bR2MzzDxcWl3DdAmfOnMI0zS3b/ZO4rgNZRrOVZzyurq4wPj7G0NAQtuuQZWBYdt5dSTMC38cwjUt6ySTJUBWdJAnRVI00zRCyTBTHaLqyZV0v5Z0IkWCaNrKikgFxGLO+toEsy7TbG5RKDpKkInijSioTRhH2UAlJEgRrfXyvj21ruW4NgaJkCKEiF1pIkkTYKKCqOq5TwDjVRcpiWiMez19ImZr26bQFcSxx9sxZPnz33cRxmGtMVZm9e/dSq9ZpHH0YPwgo7L2F3Xv3c/HCHONjo+zZu5sjR55h+/ZpIOPGm2/lGw8+xOzZc+zfvw/dVMmkOgqvEAQ6CJM4ikjTFMu2CMOAIAgoFipkUk55zdIkz3pVc/1qRkbgeciytrUQIDcz0cwcTDk2YRAg5NyRWFFVBClZAqZpImSB5/WxLJvg+eNESyv0inZuWpPliwvTMomiEFVVQcozLufn5ymX8o5et9PDtp28wyqyvAOKhOd5aFsavzD0SNKUft/D0jWEYnDq9Bk0VdDutPLIEgkUVSHLMvq9Xj7PJnnXJo4ygtBHUWQURQGyPDJIM8iSCFkGP4qwbYc0ldjYaPDotx5leGQEy7HJkowkzoiSfl6RyhLKFZWZ7RqHDysIMU0z/AibGzPs3nWA3/vqF5m4+3aKI4P8xZ/9JUurLa694Wr6bY+/vu9L7N23H1WTt8BryoP3P4BjWTi2QRQG+EFAECT8+D0fxXFsHnjga9xyywRpmlCpHSLLQDcNrrr6Gk6cPMmxE0d51w1Xotsud33wbsZHRpme2YbrmLkbPxAGHpomE/l9giDEKZTIHniUOIrgrhu59ppr2DY5gW1r+H6E6zrcettNNNY3qNdqhF6EQMF2tjF//iI333QDhlOl68ucPnmSQqVOEMZcPHee4ZEyaRpjGBoZKXEaYVgqSQJCVhgaGeaZp57ld/+P/8Bjjz7K2XOnKQ7kBU5TV2l3+tx04018/GP3MFCVefbZp9m5/2q0QZVf/rf/ijvvei+lUhXb0rnjfbdTG6ihGyaOW+TkqZOMj4zz+JNP8IEfeT8ba+ssLi5SLBbzzGm/x8LcOrXhQao1B13o+GFEvV5FSBIPPfgw11x3Hb//e5/mvXfchWmZTE9PoZsaaZYRxjnVvt1u5OyG1wzoS1hDWxT6BGQh4XldDNMmimOmtu9gfm6OUsVBkjOEnKEZCoqs5EY5ipx3QWWZbqfPkSNHGBoayjNMXTfXobY7uQmVoaPrJrIksbK6glvK5yuJHKCmaYos5zR/wzTR9fxe7/caQIIf9NEMGQlBGIbour5V4I4gk/CDhEcf/zaT46P0ujmDwtB1JCml1+pAJii4Bfr9vIiq6QoXL8zz9FPPMDExgWmZCElmeXkNx3ZwjAJhlCIUDSGrZHGWu2pnkG4VJW3LpdHqU63W0HWZ1ZUGgZ/huiUeffwxZmZ2IiExMjKCpufO571Ol91792Lbdn6t6TqSouc0eSHz2rGTxFHE7j17WVtbp1h0yWIJ03GQJANDNamU8ixkIdRc599p5oZpUbBFK1aIogRBhuu6fPELf8fE5AyGpaIpDu3uOqVimX4/z78NgogsTul2+iiGRKlcI/QyirZNqzWHnMXoakAW9ZFRGKoZWIZCFGdbbJk8UztnvXjIaohrlQiTEEk2aXYFhiERBwLHNTCMUYLYZ3xygiQRDAzb9PseWZrhuoXc8yDySdMYx8kLOHmxE04cX2N11WdgUEVNHSR6uHZIEvax1DKbbY+LC00+9olPMjkxgbZq0pne4M4fv53A6zN/6nlq1QI//z/+a3xJRSQeCP0tHUfpTbE3ANK2BLEvRrK/P1YQb9sHvsvKfNNeb9k3y7NG3na8dwKR3wuK3/5Zb26UvdGJfUsHWLx1X/EO+3/vMcU7vueNju874arvxVBvy5eVpEtc4jfG+0885/W/HXj9x9iyNLt04b4TeLWHd/D0k0+iShLVSpUozXj2heMMj4ximAalksvG6gZ3f/huZnZM4QUd9u3fiV2s5lQUKacmG6aKougIWUFRZFRFQWSwc2oa0zCQhCAKElynyIkTr1IuF9hstNh/8CBhFGK7NlkY8sJzzwLgFKpUB0YoF02yKETKIpqbmwyez7u5r1gNKuUCQ0NVzp2fR1UVnnjiO1TKVUbHBjn+6nG2TU3jOi4DJRvJUEgTQWejRbGkIOt1Mtsmfdce5JUe8l+fQXIc0lGfg9eOsrrkUyoMYNsFJDIMQwNJQ5XJF9CGhqa6qIpDmkXs2DlJkgTEaZsw7GNoJqrInfm6nQaddgNNUbh4YQHHManVq0xtn0JWFHZs287QcB1JpIReF6GqRL5PpVjCdOzcbRGJ48dPMTI2gSyryJKMEPpWhVHguA4vvvAiV151BYqaOw+mWbpFh8iIw5BUNnBcm1deeZlqrU6n3UDVtC1xfEyh4NJqdQiDAFnYdLtd7v/qw4yPTaPIBsVSmdHaAGGwjtftIkca22eXkH7jo5g7dpBJKuG5h1FUg513/hrV4Qlm55cIJYmrrroK09IoVRzWN5ZxSwPImo4sZ3Qa65QqdTwvd33Nzj5IKjRUt8768jK2pQEBQ4OjhF6f0ZFBTrz2KstLi0RhxNj4OFkmUa3WiBOZY6+cYnJsivPnZimVbDY2G1i2S71apdvuEsYhxXKVwcFBlhYusm1qgq9+7QHuuON9+F6fThgiREyv18V1KxSKLqZu0W6us7S8TLFSQVZUVF1ByBILC6vUB4fxPZ8w8Cg4FpoiaDQ93ILLytoGM7v3sra0yMFDB5mfv7iV/RnQbjRJ05QDhw7iRwGWnkesZEhYtk29VsuBDwLfDymVKhw/dpThkWFGx4bQTYVOx8cw80q3rOauh6qssLGyQpKmGKZBJueRNKZh0G120HU9j3ZII2RVRlYkiCIkMsiSvHPVaaBqBkmaP0QVBF/84pe4+uqr0DSJvtfC1Gw83yNJQdYMNEVDq1msrKzwxAOPcGDfbnr9Jr1eF13TCaMesmxiVHtIkmD+VEClXCNNU8zTXYQE0dAKg9d8iInxPl+7/0VWVxt87OM/TpJERInPE088xo03X0Wj0WB9vYHprdKPISrvYmV1jRdffIE733c7WZqyc+dOKpUyR185ysjEFC+//DLvue02Xj1xjMHBcQyjR6czjaG+SJI4IMytyAiB53k4jkMYS6iqoNdpYFsqslBQVZ0kyWi1GhTKJSQhk2SgGRZp9t2HsmHouftoCo1mO3ckb24iayqtdjvPZzVsJKGSLSwjSRLG1EROX1Y0sizv1Oiajuf7JHFOw6qUq5AphGF/yzRGEIQhcRKiyAppypbmL/c9MAwtj+uwbFRh8+zzz3Dg8F5kBI6j0O00kSWBurU4VnUd2IoO0gzixEfX5K3FfYYkySRZikSG7/dIUw/FLuSdXSSyKKVSGqLb61Mql8gS+M4TTzNUH2Lh4kWS5FUGah5ffXCBJx8bQrU/xMc/9T9w75/+CSdfO8kNd9zG+370blrNBjMzM9x+57+gVq/x3//Sr1OvD3P4ssO02s08WkRI7N+5h0LBhixF15Rc460Y6LpFs9ngjve+C0VeAFKitMZzzz3L9p1TzM5e5OCh/ezbP4Mle9RHxlnZbGCoMqQ+MindVpOg30aTM2RVhiSmUqmQCZ3wbx9EU1XUD1wHqcfJEy8xNDqKLBk888xT2LbGC8++xN7dB/mLP/scjY0Ouw7tYM/uIRYWTlMdGuIL93+dqYFBDNvmzKlTXHfFYTr9JpVKGch48cUXmNg2QhRHGKaN5we8cvQVNhdX+a3/9d/R6fn83Tce4tpbLieJPRYXZhmfHGdicgzdgJW5l7jsyito9Uxuv/VO/tUv/DyT20axHSXvVokMw3Kw3QqSbLGytMj+vQe45bbrcSo6rl2mUChsAbSE5sYKv/Zr/5pP/fzP4vU2WbywyF/c+yVc16JYtJmemqBcHeTjH/sEjz32JJ/73Oe49dZbmV88i+WYWwwiCUNXOXv2DNXVESRP0FOa6IaFkDXiKMDQVaJMyQFJnFIolrbyheUcyAmFMIqRhIKqqkS+hyIkFpfXGR0ZplgsoOsqcRgjCxlN12m323heP3fzFqAZGhEZmpBzdpUkIykampwXfRrNFnGSkCQ5QMyN13IjxW6ng+M4KIqSs6okjSzNUG2VyW3TSJJJs9HH6/fZWF/D1BR6HZ9Xj51g27ZtqHp+HkI/olKuMzY2gevm6bNiHdUAACAASURBVA+NRmsrl1xCU2B1Y4UoizENhW5nkySRUJQkl3EoFpKso6oF3IKBrsjIapH6YAFEn1rVQZFkZFkjCH28oI0iy3z+c3/Frt27SNKITqeJ6zi55pKMNEyQIglZtzFtDcvRuffeL3L1NVeQSRFer0MS9XCcPJYnDCOajQ0cUybOVNIsJokC7EIR/A6JpNBLNQ4cvhpD1fHDHmdOz+M4YBoWkpYSdFZJuhs02i3qQ6Po6lbhKAtQ5CYiaaCJCJU2StpjeqxCGLeIZRVZUZHSHn6YYRgGlunk0h1JprUhEaU6X3/oOKdOGwRxA8cqIWl9nn9hgYWVTTabAUePnmVq+wCKAEXRWF1dR9MEmiajaybdXg9dMxBCI0tkSnWN2rCBJkx8QhRdI5MUUknQjwL63ZjxqWkkRSAwMPoWry2+glffYNfMdpRgjTOnT/GeD/0YgWxiyhFJpr6lgyqJ73Y/ASSbtwDXHxY7fC/2eHsn861dyTe/552O9T044x0ow5BHR71Zuwo5FfrNY/lBndc3vfp9x/LDN/rewW35TeBVCPFPvfP6dsOmf9j2D+2w/qAv53ucxLYCeLN0i0ee5YYMb7HJlhKkNCF57dsgK2DXiIMgD0ZWDL7xzUe549230W53WVlZxrEMVJGiqTKbG5tkmcAyCtiuTdDv4xRKWKUq0tZnZFnK3Nw85UoFz+vTaLWxDIu1lTUK5QLPP/csRcfkssN7OXDZNcRhE1VW0HQTNQsYGKiysLzIzpkdvPT8szRbDUZGakRRQLfnUzrZRFEEx4sel195FedmL4Ikcfb109z1/ruwiy5et0+WwPPPPsv27VN4UYAsGTz84MP4/iaWoaDbJolskyUh6f4x+lMltCcXkB5eRkw5uDtD5NhFV0o4lsOFM7P81efv5aqrr0KWVfq93tZ3ELDZ2MQyXJIky906SVFVnbWGh6IIrGIF0y0jCx3bKfPlL9/P+MgkmqYxMFQjynzSBISsoRkmUtRD0Q2anR6mbjJ7bp5KxWV8ciiv9kZ9BBlp6iHL0O35DA2U0TSZgmPTbLRQhEEUR7TXG8iSACFRcC167RDLcCgXC6QZOK7Liy+9wPT0DsIw4czpM0QRyIpErV7FLVX5+kPf4ubbrqPbXEa3XY4cOUp9YILRdovY0Wj99B05dfzCPCce/AyObdCr7MdwzJzGHiYUTYfTJ55HVxWGxmdwiw5pHEIGXhBDGjNQqaPIErTP0Z57heLQDKYlMzw0xPLiJrImUyiVWF3fJEngkcePcNONN/HasaMUqzWCTMK2TNbWNti3fweqoiHJFqVymeGhOnPz89huiWptkIiUOEsZGhyh2wuYmByj4FoYusnFM7NUa4O8duoso2PDPPzQQzQ3N0hSmdHRSchSsqiL5/VJ0pSRiXFaG0sM1uu0Ww0UVSbL/l/23jvIsvM87/x9J6ebQ+c03dPTkzAJmEGkQFEEQUgiZZKSaGXJqpW8ipRW9lZ5Jcu2dmXJsq3arZXXy7WsRECiSAQRYEAgiQwMBsAETE49nfPN95589o/TAAGIIKn1btWWSt/Uramuc+PM6Xve93uf5/fozM7PEvgeIo6pbdXZsXOKTrdHudyP5RhoukSj06JUKiILiWuXr2BmipiWlRZEkspWo4ntZImihM/+1ec4dOgI3U6Hrteif3AASbHeyhCdn1skk8nQ7rS3ASA+W5sbqLKMLCdoisH6xhzZbIYk0VDUhEatlW60KAmx0IkkKc3uFDKKbqAogtDv4btt/Njn0KH9iCRG0y0UPYMX+BiGiaJoRGGEJmu01jfQA5Udo+OESYimZTFNmyDuousZRJKg5hsIErRugbm5OYqFAsalNMOxqzzH0L3/gjg8z569t7BzZhdhEBCGPrlsjtOnzjI1tZ/P3P8AH/zQ99DNjvPlk4vUN9e4847bURSJal8fDzzwEGHUYdfMHqIIErfB6PAwxVKV2etzTIyOoyompt0kZieqOI3b05ElBT9KsEwr/S5NIsJOC8/zMLN5Go0mqibR67UJvRBVM7a/oxPW11fIZNJ4CSFJaWxVz0XRjDQ7OUlA6Oh6yglIG8FUqhwvLAOCuqWRyThsba1h6BqGYTA/v4Cum7huD8ux02gDSUaWY5ATgjhEEhKaZmxn9rpYpr4NTZJTKAsg4oh2q8nm+ib9lX66roeqm1hWJp3qkNqHgjDNrNV1nSB0kVULRJrDKqSYMOzRbDQwLQdJVtOCPoQkivE9j3whRzd0KWTLJFGTntdketcuOp0LTO7M0OxUUc2b2T0zzZGjA6yuXuHMiVlue/+tHLv9NmZnF5iZ3o0kVCTJhLiBKkXIssKe3RMMDk/w7//jH/HhD9xJfX2B5a0amVwB3XIIYxkkHVt+FE2+SC5/C3HPR1ZXU6iV2Mm/+s1/zUc++sM8+9zXOHBwP5rqINsGUQyWonPj2iJ6Lk8sZDRVpdvqkM/kiBJQnTLrc1cxDQv18E648yD2wDAXL85RyA+gSgmKpPLG6dPsmdnFZx98kqO33cHMvhlKfSXc5iqLi3McPHSEwA/ZMTRGoZgj62TIZQp819338jM/8Qv8xm/8C77/Iz/A4OggsqvRqrf5l7/5m3zwnu/j5ZfP8OEPf5jf/p9+mae/+hi//hu/zn/63d/j9mPfzecffJw//+P/xD/+Rx/CAwxnBytrXSwj4ceP/gxDxihXahfJ53NomkEYpMW6kEK67ga2bnHp6iWmdk4jCQ2hyhjIrC+tYFgmYa/Nj/74D6HpOvW1Hh/+0PfxZ5/5K/LZAp7boa+viNAkZELi0OWjH/sofhxTyOWQhJx6OmWZWHIYHxogPisRdsAcMAmjdJIICbKanr+9bocw8FldXeGVl15g165poiggTiIkQFEUuh0vfW9xTNZSERKpFBeFKIyRVYnNjVVs3UCRBCSpZUJRVELXp1avEyceYdjDMTPUt7bQdAXiEFPXCH2PIAZdS+0AQqh4bgfDNInimDgBVXZp1TfodXvUNjdxLI1MNosfelT7Khi2SRgFFEo5MjkrVQEJaHddZF1HyB5up0WrXUdV1XSq7Ecolo6VyWGbGXzXxW93QEjomkmChJAE9Y0NdF1lYWGBTMZC1mR63S6KpKAKwcryAn/9+S8zMzOFJFJo2v4DR5i7sYymQRz55HMlQt/nqSeeobZVZ9feSSxH5fL5a5w6+Sof+8QPkEQuIg6RIg/P76U0epGmH0hJSLfT5I3Xn2d8uEQSNug2FojjTRQESdCh01tF0kGXdSzbwHYymGaGTqMGKKDYVIcn8CLB3PXz6GqIiDx6zXlE2CUMemmtpOi0vQbEOoqAMPIwrSpxomEaFb78pVPY2SEef+YaRnaY5S0fxTS45dgMa5sB2dIk125E3Fjc4sZcgx0jBtcWIw7uzuJ2OxApmJZEHFrIagc/DIi6CpoeoigOUdKm3oRW3UbR19BEhksXLlEtFhGRoL7R4PTlDbo+TE7vYWl1jrguUZjMo09rWKbFb/4PP08+l+W+H/gEieagxRGxpG0Pm9Lr8Js92zdTVb41NX07kPU9eolvO8lEeuuWvHkReNt6+zT3vSJ33nz9d0xV39bQvnX8rT/v1ZK+832nLIkISLZ7zeQ9bt+mt5IkEFJqS3jb1PXt6+/55PW/rXn9u65v1di+WwrwDlHAWzsKvONkkxBECcTnnwJJRi8OsTA3ty25cmi3msRxwJUrl+l2epQKBVTN4Oz5C8zs3Uel2o+TzbG4skwmm8HQNbRtEqau62iaTrlUgthjaXGeoaEhNM3gsS99BeKE+YUFmu02QkiMjo0RRS4PP/wok5M7aWxtMj+/yNz8IpubNQ4fPETgecRRxOj4OH4MQzd8AJQ7pzn5+imiMPUkxHHEmTfOsGfvXi5duEI2m0M3NDIZi+tXr7C+tk673eLWW48gixgzUyBMNL7w8COMj08gVzOI9+9BTJRR/vICYisk2dcl6Gjoio3jWOzZt492p41pGszN3qBS7QMBtmUiSTLtdgfLNpCkdOrhei75XIFafQvT1CEJ8aKEw4cOpF/8agpn0bVUciOQaDQauL0ehulgmjbrq+tsbtYpldMIlmaji+04hEEXtxtjGBmC0CPwu2lTEkOv1+PK1ausrq/S63QZHEzjHs6eO4/v+QwO9tHp1CkWy/i+Sy6Xx7YthJDJ5wp4nksQeISRTyGf4bbbbkcIUBSVKJTZqm3QnzPQnn4d8R9+gyBTxNAz6JpCtvkahUIBdfp76IWCQmGAhx/6MsNjfQyPjZAtV2h2feLQQ5YEuqZimQaN5gatZjP1p0Q+yvLL6NUpWu0mC4vL1BotRkaHWV5dRtM1ZEVw5MgxvF6XwaEBbCdDGEU8+/TT9PcPcOr0a4RhxMLiArmcQ76QQYgUqFOvt1hbW2Ggv484CVleXKJe20RTFJIo5viJV9kxNUm1UknVBXGCLKuMjY0xvzBHoVDEsM10GinJRGEap3D58jXK5SK6rnL92gK79++lWMgjJKj09XP2zGuMjQzz+ONfwjY1HNtCklWCMCCVdvoUi6XtPF6blZUViuUiZ8+dpa+vwqFDB9na2mBgZJRcLovb87EMG9f1efLJpzjxynHyhQw9z6Xb7bC1uYVlmhSLReJtqEI24xBFCd1eG1lOUBSdOI5x3S6qahCEPrKcFiNhlNKi099rA1WVSGJQVQ3fD5BkCVlSUzpoHJEkMQkRUegiIhmEQKiQIJMAkiITxyoyEXqpRwJsLqp0ez16PZeMYhHkFHxxns3i3ajGGIYxS6vZwzILSHLqybzppgMsLa2we88MtmWxvLyM67r0el0q1Sq5fJ5cPoeumkxMDiOQ6HS65PMF1tY3efyJp3AcnfHxQZB06vUYy/aIKaPLZ5GUYZC0FHQiScQkGJqObhpEsO37DomCkHw+zWqW5ZScG4UhCIjjJJUwdtpAQkKPKJJQZB1FTdIsXSJkSabTTvM6pZUNwjCkuG9m21MKmqrheR6lcjmlDktSutGIYGlphWw289YEKvSC7VgRQRLHuG4vvSaI1PMXhTGaZqDrGv39/QRhCnyR5BRuomo6kqSwtVUnmzWJ0wDN7YIlZSpIAiBOiertHraVxpCEYYCsbBckQuHq1euMjw6jSNDrLVIua6i6hGXn2KrnKRTHuHZtgWp1J7Ls0KjP8wu/dJT33XWYKO7jA67Gmc//DaVbD1MoO9z/wGc4euw2rl69wfd9/z0gCz74we9GAgzDolAuI4RgdXUVVZNT0njyAkFQp+Pu5pEHH0ExBFZ2gMXFLv/4kz9MuZDlwP7dbK6tsLq4jGKoGFrq/fulX/xlPv6JTyBvSwRVVUqnhMUKSZJQtAURIWGuCLkc8wsrjI7t4Ld++7e54447+Z3f+V2qff0cPXYLI2PDlMp5VE1KMy5jlWpfP8gSsmwRxjJJHPDsMy8hCY1KpY+//Mv/zB/8x99D1QRRkmAoBq7vMj4xQhBE3HXXHfzbf/P7/ORP/jSf/vSf8od/+L/zK7/88wyNTHD9+lX+4N//25RG77dwnAyqpqGqOsv/uUF8Q2LXJ0eJk4iTJ1/l05/+L9x993ezvr7K/Pwca4s1bMdmaKSPrfoGUZjwpUcfww8CRsfH2FyuU+kbABl8r43b63D0jiOsrMyRdRxOvX6aweFJRCKwbQvkCD90adRSCOCbeaVZU8P3ukTndHBV5GLq134z+1GItGhWFGX73BMcPnSIZquFZdk0m6mfMQjClIYsCZIkpra5SaFYRFF1BIJmu41uGLTabXL5wluTWtd1mZufI5fLbsfhuGSzWQI/QlZVavVG6odV000dXTeobW2Ry+WJETS21snlUvmvoeucOPEqk9O7qTd6vHbiJAN9gygykES8duIEWcfGsmxyuSxxBIbuIEQaB6NtQxib9TaZTBZZUYijICX7ejGqkm4cEcOzzzzP+MROVE3bTiQQJHECkkYmU8KyHHw/tQwkMaytbaBrJtMzN6XgMMuh0+kRhzFf++rT3HLsKE42R4JOu1Wjv2+A4ZFhtmobhFFMp91h794JbFul57dpNZsoQiLrFPCDmDBpI4iYu3aVci5PX1VA0sPr1REEEDaI/JBeu46Eh6kKdHsAXdVo1teQ4gTDLqEbKo3GJo5dQELDsbVUcbe5QiGnEAU9TNMgjMJUekqVOEiQVZ8oEbiBgaHA0nqNmqcyfegIBw4dYWh0FFmWmZqapNTXx+TUTmRVYWJyB4dvPsKttx+k0ahx/UaTwWoVIRmoho0XNUjIEiUBuixD7OBHIYvLa7SaGayMysL8NSYGp5GFnyY9yDptN2RpbZPzN1zabsThm2+j2+4wYo2wxgq9apf7/+J+GisXGRzoZ+bgLVilATQCIkl9ZxP4tqJeCEH0NY34uow0Eb+jSfxbvlK+uXz47bmp77W+AUl65zT2TYnudzJse3O9/THfbDL77da7X/NbT1jfeezdcuJ3T3y/2fqH5vX/hfWdjMLfPCHeOiG/6bFv/JwkCXIiE4mE5NxTIGS2PEGv6xLFsLm+RiHj8Ma5s7g9l2KxwP69e1ld36JQqvDCiy+y/+Ahvvb00xw5fBDdMAiDlCypmyZRFNJoNFFkhST0qG3VsCybwI9xMlkWFxbIZjN0ul2OHrsdXRG0u012TO6iUasjC5ibW0TVbcZGR7l8+QKdbofNjU2iOCFIYiojQ2zlJa621hjo76der1PI53G7zW2/nkSn0+PsG+cYGRkmTkLcbpeRsTEazVaaeZfLp3Eaqs2emWlUVUUoMkgSylCB5J5dJPNdpFeXkfeF0M3T7nYplErYjo3ruji2jWVlgXTa7LouuVwulewlCf62BDOIE2zLIvBdhJyGK4ttAIa8DVipb25i6BpvnDnL1cuzjI+PpgVnHBNHIbZlUakUaLU7HH/5dYaGhgh9lzCCy1eu0d8/wNbWJraTSeFYuSyVvgqFfIlysYQkyfRcD8t0yBdymIZKFAe8+OJxfD+gVCqysrzGZ/7ifm699RiZrINpGszOzlIu52g1XCzL5CtPfpWh/mHGxkfQnnud+K6DqJ+4D82MmF+4hOvVkBafw/dDSjf/I2TFIoygWWszOlZBsSyCWEJXLXRVQBKzvraKbVkomsBz05zNjaaPcfVBuuYwlp3BsjMMj4ygqjqLS0uMDA9j2SZf+cqTHDx4gM2tTb761ac4eNM+ojhhenoXmi6zY+dOJsbHcDIWly9dQtdNFheWGBwaZLC/nySJuHr9Klsba+yZ2YPn+ly/dpUDR46kQBZD5/UTrzA6NMTi4gqDQ9Xt3MA8zU4P23L40he/yNjIMCdPnmHX9G50Y3u6ligohppKpxw7hT+NTBAJiR3Tu8jkq3iRhGOmMSSvvf46Y+NjIARbtRrNZoPBwT5UTadUKhJHEaoioesaqqajKjKBH7C2tkauWGDX9C5mZqaRpJix0VGymQyVcoVCscj12RtkMzlUVcbtRbz04otM7Ryn3WnzF3/+WaamppFlkKXUy+h7PRQ5/f7R1NSnFicQBS6yrAEKqq4iiQREKiN9K1QcQRCmvuIgAElOkISSymAlAShEoYdSSGXDSbdMqVwim80R9VuEfRpJa5HPPvUGEwfupdvNokgXcL0IWU4BUoV8gfWN9RRohODZZ5/lIx/5XvbtP0AUR9RqdTY3t5jcMYnvd3Bsh2KhiKabLC6v0Gw1OXL4Jnyvg51Li9wostD1AKQ8IrkK0gCygDDwkZRUio2QCAKfOE5jiExTp9vtoekGSZJmSupaSiFNvaYJJAmapuL5LQzdQZZUEAEQ4rkptEpVNGRJZvaFl8nn8yQDFdyeCyTIspJOh6IohWbFEYlIkIREJpOjtlVDVlQM00BTFBAijTsQaWSHJAS6ZZFEUVrgy+mkZn19HV030jxK20QIgSwpBEGAaZrEsU8QRKytrZHP52m1WpiGwfraGpKIUVUZ28mzuVnjoYce4qabbqLbbWCaNpvrGzQb18hZSwiu4GQMhDJIGPazuuGQzQ3jBxr5/ABhkAA6xEVOnb7B0LDOyNAW6iNzlIOY/h/6AAurS1SqQzhOnn033USjvUVtc5VK2cELQrpeTBTH+L6LaRkkSYCimCjJawR+QLs3w8zUHrL5SdzYwbJ0RBJx8uRr1GtNel2PqakpFF2j3eqiqxozu2b40mOPY5smqq6hmxq1RoNSvkI3CJm9fBZF0zEzVRRFwzAsLl+5xO133EZffx87d+7hlmNH6bpdsnmD5ZUFBAmKIqMZFmEUEEYxqmHyT372v+MHvv9eSsUBhFC4667buOXoDIgkpVRHMVEEiibRN1AmDn0uXzjPvffcyxce/TK/8qu/xg//0A8yuWcmVYVEIaVKiabbxTRVFEUhjmIuXbjB4Po4tmUhDru4Xo9yJccHP3gvbi/AMCy6nQ6GYjKxY4ww8pFUWJldZWp6FyOjY3gdl3/2a7/Fvd97H2ZGYWN9lf1795MpmmScbBqVpJlkC0V0VWdpaQHDMhAKXL10lVwuh66nyoOrF0/jZLPIV/JE7ZjNcB3btpEkQQqS8zAMY7voFXi+D0IQJzGGptNutui5PXTdoNlsY1kmkiTI5fM0Wm2iKELV1BSiKOQ0WzcBoSj43S6KKlMqFdM8ZtvZphOnPtpEknEyDl7go2pqCkNL0mt5s9lEUmSKuWxKOt4uyvuHR4iRsOwsMzt34fW6CDkijiK+8pWvcPjwzfhBA9fvYVkmKyuLWLaOphpIxIShi647NJstbMtmY2OdbC5DTIjATzesvQ4j4yN4Xpc48ZGVmESExEmAnXEQsgB8Xjn+CtVKFUVReeSRL3Dk5qMUyxa2rbO2vkS5nMXzW+zeM4OsppuOPbdHPpdDVRVkRZDLZmi3EgzVIJ/VabfamEYVt+Om8T1qiJ3V6DZc5q5fYHw0Q+itEPQ6KJJAJNsgO6XIxUtX0LUix1+8xOjIMJvzJ/A660hKSKibWLpDHPnYls7S4uo2AC9BU2JUuYeShHhuNwVzCYkwium6PVQtZSg0OhZPPDWPXZohV9jB/j23okkKwlS3N+OyOI7D5StXyOYytNotiqVimqceJRTKY+zZP02l2sfnH3qes+fnkXWTx5+4QKnST6EgOH7iMqVqH5m8jqxBsVikVMiDqNNqrSG0DKcv1nn+pVmGRg7g+x2mp3Zy5cI5hqsljCCPVBU8cemrGLpC0fRZXVnm+3/wR1AyJaJek0TR31HDv5s2HD6mwbqEdDR4qzl7ew/w5uO+Xc/wZrfwrZq5d8fqfKue5L2OvbkR9c3WN2X0vMfzvtd9vzGk+9uxN+++D297j+9ubL/heVX+oXn9b13fiYb7b52073r8m8fe/reSKAQiITn3JIkQrLTTyUi+XOXRLzyGLBISlNTIb5lcOH+abjdkbHQEyzZZWVliZHgQr9tIGyIng6qqtNotTNOi2+1hGAZhJMhlC7zy8gmSMOb5p59hZvcunJxJ/+Ag4xM7uHLxDPlSkVyugqUbPPH4l6jVauzZdxOWpaHICZMz0zgZhzfOnObYrUeZ621yZvUaEJNxbG6/7RinTr6OqkoMDPSzvLLB3e9/H8vLy9yYncd1fSRZYve+/QyPjSFklVa3Rxy0MbNlJBGRiBhJSYvwJ558nOGRIdg/SVItId+YQ0rqmPYEkQSyJKGpKoau4/sRm1ubqJqCbVn0ej3CUBDGoGk6Z0+fYWTHOIqQCbwITbfQNUG70URTFP7rH/9XDh08hGOb9LpdqtV+Hnn4C+zdN4NpW3zpS1/k0KGbtqegPZIkZmZmH37osTS/RqFogoj57F89ys0338r9D/wVu/fsRlFlFBUsM8vG2jqPP/Eke/bsxQ8DbNvi0sVLqIrBgYOHyWUzhNugoZmZPchKTBh65ItlysV+EknQrHWp1Te55ZZDWLZF59QFts5eYvFTP0aihVhWntlrSzz0uS/wXZMysiTxxlaW0ZEhXj/xEkcO7qG+tUUia/huzBcffpSh4TKWaZDEKTW10XQhlimVSnTdBtrmKWQjj2JVIE7oddu02gH5fBHHyeD6HoMDQ6haugGwd88M165cRNEsFheXGJ8Yod5scf3KNSzTotXqUK2kUDHTFKwuLXPy5GkOHL6Zal+Zbten0Wyxd98+Wp0WpmURJxHDg4N0mi36h/u5PnuF0dEdPPCZB+l12wz0D7Jn936ErFLI59H1lA575o3TVCtDSLLANjTmZq+Rz+cJPZ/N9RWS0GdteY1zZ96gUikSBAHVvn4sx8H3farVfhzbxvU7KIrFpUuXqFaqNBoNZFmmtbGO73p0Om0Gh/potOqsra4RhTEri4tU+sr4XgrAsmyH5eUV3J5PvbHJ4MA4w8MDhFFCHCWUi8NUKmUuXzmHLEzsjI0iS3RaTTyvh6rKSHIqO5eJQVJJhJL6okVMvH0xjCK4enWWUmEQrc/AyNvgChQZJGR8zwXS2AYhK4hEJe7o9Bo9EkklSeBvHvkbpqcm8dYvceuHfoQ/fvhrPPTwV3j99S2+974BHn/8BWZ27yGMAizLxrYzOHaW/isPwdwJWqU9uK7LU08+xQc+8AGefPxJLEvBNCzW1tax8xmGhocYn9iB53YJfY9suUocJ+iaRr0WYtlpVIxIrtOog23qyJpJu+timiaKIpBl7a0oBrfXRZJVtra20HWNIAzeIjLLsoycjl4w9WxK7ZVi3J6PKuuYhg1C0KjX8AOPUrC9CTA8gK7rGIaO5/mpbCqK2KrVcDI2URwQbasBLMsgSWIQKe05itImutPpYFtWWpArErWNjTSuRAJJUTG3M2h1TSeKRCpBTCISQiQ5RpF1wjDCti1UTUJTNcIgJJ/LoGkKrVYTWTERQmbf3r0kcR1T3yCJVilkrmAYGqZ8iEDaj2bmePa5dWTJpFqtkhBtFzUKYRCh6TFCJJh6ATdIsKws6svnAI313QUse4KPf+zHuOee+yiUrjY3CgAAIABJREFUMhhWgZyjcfrUc+RLJaysQxJJWLZOQkStvoGmZTCl08iyglBu4eXnXiUSCdXBKt1Ok3azhp0v8r67P8Q//cVPkSnkkSQZTVN54iuPMzo6yFDfOJ/61Kf46Ec+gpWxcPJZhKaCZjFUrRLLGfjLR4lPn0c6PE25WkBSII4CCsUilqMTRL30mjkyiqLoqIpFGPdQdYlWr4Vuatx51/vIZRXeOHORa9cuc+r0y9y07wiFYplnnn2OsfExZEUHOUZTE+Znr7FnZoa19evoGYv+oSoKHpLpMHftGhNjQ0QSaLZNEijIisQzTz/L/n2HkE5rKKqCfMQnSSLq9Q0URefpp59nanKaTCZLp7lFuVomihJA4X/9/T9k74GbsLNZGpt1xscmKPflEVqIIgwqxWG+/uyL7Jya5qHPP4yiyAyN9dNpNfiDf/cH3HPv9xInKn3VErVaDV3X8TyPvqEKsu7gnxQoroQxYOD7HmEY4vtptnIcxSiKQpLE2JaNtE3ijqMYVVWxbGsbiJQ2rrIs4YUxmqamvv44ZnlhFkVWUhvJdhRKEqfRXd1uG8/zcF0Py3IgEcRJhCxLdLttFhfm0DQFTVVS/7eqpw26qSMkGSQl9aYLCXyXbqeDJEucP3+GyakJoiRG1Q1mdu/j8w9+gXyuRDFfJUlSQJQspxvJRB5x4hEnEgIZSZb59Kf/C7fffieSLEOcpJ9BNVB0hzBwMQ0bXTchUej1AjTDIYxiJBKqlT48z8UPPPbt34NqqCRJRBjEOHaGxcV58qUqcaygawqh72NoJkEQkiQh7U4TIUmYGQPLlGi3FpFEzNriMoaWgqyEYuCGMkFrnlxGQhIBAL7rIYnUY+wH/nbWrollSoyNK4ikiW46RG4HJemiiIQo9gi8AF3Pka/kqbfXydgZep06SVAHLwaRcOPGAraTRZY1dEcl8mM8T+aRx16jl5hMzwzR9WoUKzn8pIZKymGYX1igWCphGzaB75LN2qytrLC5uUW5rNPpKXjeGqYxwPT+GfYfvJVao4Ms2QyMFvH8hE43z7Xrawz051ASm3p9hSBwkcQQiZTnC18+xeyyi27lcDIZxiZGOHDkKKMTU5iZDHEjoXHKY8/P7OT3f/+3+PiHv4tDBw/glAdYa3lU8w6Jor+zERTvbAyj4yqClDb87hicN2/vleX69l7gTZLwt2og393gfefe0vd+jrevb/U+v9P7vlsK/c3W2/8t3+vYm5/t77nn9TvJeRX/D27bj3yPMf93spI3g5SEQEjpDuWbUTlvPrcvd5AlSOZOU8eg2WhRqpTRDAshJNbWN8jmi+zePYOu6YyO7mBj5Qp91SFMM8fMrmnGxgboG6hgGznazS5CkXnwwUc5cNNBPM9Nd3pFLyUyOhmKxRK9XpezF85y+MB+BgcG0XSDlfUm12cvIxJwOx61+hbvv/tOzp19CbezhWPq2Pk8lWqRal8VrxewWWsyOTZC0Gth2hZnL19jz/QU65tNNB1G+io8+/KL5DJFqtV+so7J/Moabq/OUF8VR7dZX7lBN1Tor1iIRCNBQcYkocvQ8DCqYZFIMko5z8Nfe4bpA1l6X7iENjZOt9Uk8D0iBGG4SbkwiqoINjdXiUOdR7/8ZUaGR4gCn1KpiGmoxLhcvHAFTQFNVZmbW6TV7nHrrbeysbGCaRioqsmNG3MU8hkmd+1EKCozM3uQEhCqgqpZKIqG53WwTJ1sVkM3dTK5LLv37qXdqvG+u74LSdbekvMvLS5z4sTrHLjp8Db5+VEqlX527tyFaRqQeMSRxP0PPMi+AzcR4qNrFoEfIJIQWYogUbGzOqqm8bWnnmew2o/99ePcP1Pmtp/4BK+cPkW1ZNBXrnDXnceIN8+iOmX6DnyEc2eucejwUc5fuoSqmDRrIaXCMD/8oz/GP/3FXyAWEoZlcWPhBuW+9JxQFRVZllDcVaKNK/haBc/zWFxcpra2zPBwH3PzN1hcXGVsbBJFkblw4Q0c26ZYKFOslmk261QqFVSR4DhZXnzxRW45doyLly9Q6SujKAq5Qo5CsYSl25B41Da79DoeTkYBBXRdJY5ialsNLl+9SrHUTzab5+tf/zr33vshSjmbc2dP47pd1jdWKRQLJFKEpAgMI0On6/LaiVMMD/ezur6OlcmTiIgbszdwHIck9pieHmdltcbs/DLDQ8OIOCKMfGRpO4NPUpGjEN3U0C0DLwxYXFwim3Po+T52No8XxIgwpFwpI0sSPd/H1BwcK0Oz3cKyTcp9JXzfY2hsHOSE4y8fJ5c10PW0WFEUmUcefoRjd96JtO0r/PznHmOgfyQFksgyzUabREgksYIi68gKxCJGigJqtS1Uw6BQLBMlIdnxIrKpEm32cL0UBqaoyVsTxDiMEKGO10nShi5SkUXCTGUIyYtB8UmIaNtHOHbkLv7D7/9ffPJH7kPT2ly9ukrGsXnl1bP09Q0RhQli/mXiJMTccZTNzRqlSgUna1MuD1Aql7k+e404ijAMB0M3+Is/+xMOHT5EuTrAK8dfY3wbkKQbFl5gomshSeRh6jU63SztVo1SoUiSxERxROR7qKqE63tYToHQD8nls0hC4HshumoTeD3WVjdSmBIyvchFRILQDTAtnSiJ6HZarC3NkSTbMJqldQDU8SE8r8f6yjqFfBFZUeh6HWzHJIoS2o0OTiaDkCS6nSaaoqIqKt2Ou+15lVBVFUmR6LppFJas6QhJ5a8e+BwH9h8iCiI0RUWQIGvhttVBQ0gaCRKEHr7fJZvLEwRyCvfy2vhum0TSUHWTJFxEl66hiAsQN6jVbFT9bjbqdxNyG40gpFqus7Co88KLr3H7HXcRhoDk4XZ7XLk4j0gShFC4dv0agyP9mHoBLwgwj99IqdY3H8Bwcnz8Bz/CQH+RKAzwPR8hSwwMTyBJJkkkbStnSInKPZdep0HOukK93gD9NgbHB2l3VqiWC0ShSaU6zKuvvMpv/LNfwrRi4qTNxfNXGRgY4Oq1a+zZtx8/VnCDkNvuuD2dgkQxQvbRZQkvgjCKif/ofphbJvneu1i8sU6nGXHilePM7N2H6wUgdPKFDJGv8uVHn2LH2BCx7+KHIXYuj4gVLMWCRMJUFP7nf/Ov+OSP/SjZgkHPdRnoH+WeD3w/P/lTHycII6JEp1OvY+DRCHxGhsd4/rmX2TmzBy3wyWoeJ57/CoVqH7pdRI11Go0OO3YOIcs6yWsai4vzVO4usb58iZw1jCQEP/FTP8WfP/B5/snP/hrZkolqZZFUlTOvHmf6phleePYq1f4MS2tLmDmVselJhJLh3MmzfPdtd/CTP/2zeB2fhz7/CHfdcTe5QgHdMNh/cC+6IZMkPXTDRlVV1pZX6DRb5ItVVFkmOitTW24Q6wG5XBFVs5AEqY9ShpWVVXK5PL4XEHodJAlQZGIhsA19W/KugiQTxRCFEYpKSv9F0OmmMvfY7yJLUhqTZqt4vofjODhOBkSMEDIRgs3GFqpioWo61UoV0zS2M9MzRHFMz+uhGxoIgecH25OlCFnS0TSNZmOdkZEhXnrxZYaGR4gSlVzBYWZ6GseScBwHhESj3cDKWMihYKvhoygZAt9HVX02N9e4+/3vB2Q818cPengBGKaFovoYikUY+mxsbJHNllKQ1lYHQ3eRZYXLV2bJZBwcx9rmEYCIJS6ePYtlZOkfHKLVbZHLpLwS8PC9NpKeR1ZUmu0mmhGhBwlyWEOzoVZrECoD1NtbjI7uQAiNlZVFTKWN1w7RVZ8Xn55naGqSOOpC5NNphfRiQa3eYWsTSmUfPJVm4KAobspC8LookkYYr9NuCYJkFSVxMK0KSWLhJQGG3CEWEbmCgSQ0LMtCTgKCICEUMvsOHuCmfbeg2RYTE9O4XY8oUPD8EEXRqNdrFHNZgrDN4vwqmmxhGSbZjE6jVcfQdJ555lVanTYrK0uMj48BKlO7pjn+6jlylXE26i2arYjF1TazK20W1wWvnF7lxPnrLCyuMzA0wdr6Jh/7xMfJl4t4rkcmW0CWVU69+hqVch/5qMLvPv5bXJub467pJqE1yu7b7yFfslETg0i808cppHd6RuPjKbVevTV6x1DqW0GU3u1FTTuUb4CgvtNp6rdqRL/ZiuP479Sgvvt13z31fftngm/k1L7ZQ307ntA7O65tyvH2z6laDuS/37Lh74Q2/Hf7z/r/Yr01eX2X51WWFUQUEV99mY2GS2VghPWNGq4fo6h66o/QDTzf4/KlS1y5coH9e6foG+hneHQQ05RoNFfRNJOt2iqGqbPVaHPXnXfgeT1OnDjO8MgQqqKjKjpez2dh4QZLS3N0ey4T42P4QchLLx9nbWWJ22+9GdM08f00yiYKY8IwQRIGqpbh2edP0O147Nw5Q7vdZbpnsPHGFYKChhuEKWW2WMAwHbzQp1QeYGpynNOnz9Lf38/rp05y330fptmqMTs7y9rqOnPz17nl6K2pxFmzQNb4P/7o/2R6ZkcKHkGgqQkyMdWRQcwkQG926Vxr4IxVCSMPO2OiaRJxBK7XQpJjTEtn967d2LaFYRoYZhpx0et0GB6ewDBM4iSkUChu+3gUoiii2/VA+Bi6hu8nFPJZFFXZlv1FxFHC+bPnKBTymKZBvd7AMm02NrfQNRNF1vjTP/kTBHDuwjkmJ3cQRWk8ju/7DA4Nks069A8M8fTTX0eS4aGHHuSWo4dIEsHs7A127Zohl83Qc3tkslmCMMLzAja36pRKBdY31tgzsxPzhdNs7Z9E/rEPU+kvMr5jlGKxCkKl1epQ2nM3q/IghmGyY8cOgqBLJmMyODDMwsICI2P9/PhP/xBSotBptdPoGz9GyCGKKiNLcO3aBbLVfoLzjyGVZ0gSQS6X49SZN9gxOcnlS5c4evMtvHLiVQYG+qmWS7z80ktMTk0RxgnZTJZet5tKIk0L0zTJ5dPd0EzG4fz58xSLBZIE6vUmtmXheR3GJ4ZSz6AsU6s1ME2TRr2JrKRU12pfmV0zO1laWiCXK9DudpnauZMgCCiVKjSbDYQAwzBx7AyFvMnW5iqlYhHTdNjaqiGQKBaL5LI5hEgJwoVSgc2NdaIwYG1tk0qlgtvz+NxfP8ju/XvSQHRVwzFtmrUapXIZVdWxLQffD3nm6WfYuXMnrVaL0dEhhIDzF84xMDAICDY3t6hWqriehyxJ9Ff7MAyDv/7rz3HbrbezsbHO3XffjSSrzM5exTZtds/sRZZjNF0likMMUydJYm7cmOfVE68zOjbO6uoqEjJOJoesKCRJhCbF6GULgOOPv4BpZbFsiwTwvABDN0FICElCkuVtkrKMkCD7xBb6vI+70yTeusQ9P/+/8YMf/0E++cOf5F/+69/mJ378dgI/Szabp1IuE4Yd2q11xMLrtFodGtkpXnzxZSzLYvfuPTz00EMsLMxy7OgRBgf7WVxc5dLFi4RhyMzumRToEiXEUcDm5jrZTBZZ1XC9CF038bqb2NYGQagjSeZ2tEWCLGupD1bVUhiWIhNG6SRLNwzCMETRNBwnQ5wIeq6LqmkpzVdVaHXq6IaNaZhougGSgm7ZyKUCcn+ZSJbQdZ1sJiXLKqpKq9lEU1UajSalYglIM+rmblwnXyjQbrXZ3NzE2vYUJgl0Oi62lUFRVDRNI4xCpqZ2oBkKQkSEgYskpdFJIAiDCKTU1gACXddpt5okYYRQNFRdxfM8VKWFIZ0EZIL4AG3/ozzwsMT1WYWhkYPISo1s5hrFQpvzFzoMDE5x5OZDSFIay/TGmQv0VQcpl4o4mTQuKJ/PbudmQkId7eV51jd89A++j5iIrGPTbbusLKywulZncLA/pbqbKnEcIuRUNhYEEUkiUS4VEcGrmKbJRnMCEBQy5zH1Gj/7c7/Dh++9j+HhfnTd5Fd/9df56Ec+QV9fH3EcMzs7y8jICIqWsHffTiBBVVXCMMIPe+k1VICma0hffC7N0r33DiQ0nnriqxw9vJ9uu4ltmxiGSqNZQxKCXdO7ePGF55jZNUUQxyClU0SxXaguzS/wcz/3c5T7qjQaNZrNFplMlo997GMEYQdZ0VAVhXa9Rl9fFd3I02mETIxNEIUeVmGK//Gf/0v+7E//kv/+F/85iuIwd32OhfnrZAsKqqqw+WSXfD7LA2c/g6pLDO+YpNGu8alf+SV+5id+nOuXzyPLBv/L7/0ebrvF9OQobhBw990fwPXqjE+MsHNslOeeeYaRkWEGBkb5nnvuY8f0DoqFAtVqhSSOWVieY3h4GNMy0TSVOErYqtUxzVRlNDgwSBBHXL58icJWH2Yziz0GQezT6TUIgg5R5CLLFtlsjjiOkGSBosjIisrS0hKFQoEoDNja2iLz1ndQSudWlFQxEscxmVxqmYiTCCSJGEGzVsexMwjk1DYVhXiuj21ZWKaJrhvp77oQ277YHIqqEQSpeikIfCRJ2famC3o9F1lIeF4PSVJQZYOR4Qmi0OfVEyeRpYTjL71MHKnouoOmm2SzWaIwotdpcenKFXzPZWSkH0U3cJwcQRihaBqKLKNpEoaqEYchCzeu4npd/LBL30CVIPSJwpCnv/51dkyNIYSEZVo8//yz9PVVaTaa2HaGXq9DoZDF8wNeOv4SOyZGiENBHEesrq9g2zmCuEngtVmYXWCgOEkQz7OxugQiiyrbVLI2Vy+eInZ7rC3MUcoqyHKP555+ndGxEolIMEQTRcmwuCHx1ZevsLYiCLA5c24dySjx+BNzXLm6Tq4QU8wXkMnR8a6SRBqV/iGSeBRJypCINoapUG8uk7gbJLEgjkMkScHzXYKoh6z28/AXXiJfGmV4bBJFjgmDEISEYViYekKn3aC/r8LG1iaakZKJnUyWRqdBrpQjicC2cwwOjWCaFrt27STwfWZv3CCfL3Dt6jVuv+1OvF7I3r0HGBkbplgqcsvRYzSbLT58373s2jnD4cNHuengIc6fP8/k1CRXLp9n164ZTr7+Gv39fVhCQ6rZuLcu8cKTf8r0qI5sjjC9/xiSqiAjEYtv1O/izSkE35g8xq9oACjHwrdq/BRo9E4P7Lv7gPdqXv+uPcW7G8RvN7n9uzau7/Vcb65vfNa//f6/XfP67V5TCPEPzev/n5tXKQE9gYXnH0ZoGexcBct2uP+B+zl27DZKlSpTOyawLJsbs1cZGR2g3Wiya9cerl6/TqVSRhIgqwaN5hpO1iGXr9LpNLFsi9HRYQA8N2J1eY3Q93nh+afZu3cXhw4d4czpsxw6fISV1VUCt8PgYB+aamCYGjdmL9Ns1lOJlaoSxRE7d82wc+cOVlcW6HSa6J89SW4zYGFEYWBgiPHxHWiaysrKGn2DfWRyFc6ffo1isYSdyTC9excvvXicHZOjTE1OMbFjEsPSsK0MYQiapRMlMhNjO7AcA8OweezRxxgeLCKLbeKoYhBVYszPvMFWxkLNpl4rKVZptzuYhk0UJnS6bXRVI4yDtJCKQgxFQTd0lpY20yDzxEeWFVRVQ9NUHCeDaWTRzXTiVa0MEwTdNG+RGE0FQnjsi4++FYZeKpfpdnoEQZRmqG1LRXbP7GLP3j3bMs6IjGOSLxYolksICWwnyxtvnOH7vu8+dk5NYVhpAz09Pf2Wb9fK2CQJyJKKphloukHP7aFpKpmTl0mKOfR/92t0gh75fIZKuUyESRhFtFodWm2XQsXB9yNkSXDhwjn6KllAZWHpBpmcRr6YQVN0Tpx4hcHBQYIgIIq6NOsNstkMW7V1CkPj+Ge/SCJpRLKFoqgMDY9x+fIlVEVmoK+Pbs8jn8nQ7fXYu3cfFy5epNI3yNraClEcceXyVSwr9WI//sQT3HTgAKdOnWRsbDyVlRkmtu2QxAJNT5ibv46uWfhBSKfdwbZtrl29xr79+3CcLJIk8cTjTzI9vRtZkdNwdjX1Cfr+/83ee0dZdpdnus/O6eRQOXZ3dXWWOkhqSaAcQCYaIUAasLGMGV+GATzY4xl77nhsjz34MvZywiCETDYIIYIEKOdWt7rV6py7unI+p04OO88fuyQaGWzjmXXv+K751qrVdbrO2bXrnF2nfu/v/b7ndXAcl1q9hihIGLrB0tI0uqZSLlfId/RQqzcYHBjiheefZ3pqmnQqQy6fwYzFyOYilz6X7+bRRx5h7bp1jI+N0zPQRyKZRJQk7Eab2clpsvkOZmfnUFWdeq3Opk2bUVV1FRR1jiAMGRwcYHFpiUwmTzKRZvzCeeKJOKqqEvo+iqzS2dmFruuoqsb8/DzpVAZD19A0lUa9ge20EcQQ09Rfcxg6OrpYmF9E100e/PZ32LRxE4YZw/NcFFmkUV0h1pslDEKSWDz08A9Zt24dAhKapuM4LrKioiQbINsEnoEkSjiOy8rT56JomlGdoDTOR//qaYqFAk89+SQfvPvfMjRYADr4+te/zlVXXgbYxGIqweRhCssrvLwEjXqLgYFBnnv2WVzXpqMjR3d3F5al8+xze1lZWWH37iuIxSKRp+sG5fIKQ4MDRDu50WwtYQtBGsK2FRLmCUShCmIcWTGp1Gqrc6E+TruFrCp4nhvlna9ms7pBgCjK0Qy0IKApKs1mmzD0se06oqJHkCU/wEokkWUFSdcQNRXf9/FW2/csy8L3QzRNpV6rk8lmERDwPI9QEMhl0wRBgKZqJFMpZPnVnW4RVdH5m7/5LFfs3o3rOsiSEM3vSVEWoiRGItexnahVWpQolwpomoznCQS+h6FrzM/PkkhlaDTqxKwmMuM0wrfy/IsF1o0MousVdl4KO7ZLJOKzaGoN3zd4/vlJPF+hs6OTWq2Mqkl4vstTT+xhfnaBRx59mCuvuoJWq00mk2FmZhJBcknHa4TP2yiqRWPnNsBBFmXctsOe519E1WN0dGaRZB9JknBch6mZSZKJ9KoQVyAMMJWTCILA7FI3lmWRjJUIw5CVcoJ6o04qlUCRNV555Qi7dl1BpbKCKIoUCgU0TSOfj0fRTY7D17/2d6STGbo68wghSKuiM3jo2aij6cbdhJ5MZ66L2cnz3H77L/Kxf/sRWs06ZiKGpsgEvs/gwAAnjh+h2XZJpHOIYogkeNTrDQgD4okYLadNKpVAVTVEUcS0DExTR5ZEFDHKCB0bn+D40Qs8/PCP6O7uRhBDtEyGHbt2cOedd5JKxVlcnkaSTXp60miajSKIqCez6LrGxveM8M533s77f/VfIUsidrPOxIVzDPTkGZta4m1veztbN6/nzPFDdPb2k0waWDEDACUIOXniKKl0mtn5Zf7yM5/jhpuuISDA89zoPReHru5O9u7dSyaTBQQSyST1ep2Pf+xj3P6u27E9l2KxSNdwHv9Zg6C7haQpyIqKLIroioKsRJFtQeCBEBKE0Qx9IpnAXwXdxRPJiOchiYRBgKYpUbu9IBKGAaIQUqtXMSwLx4ta1pNWguJKiUq5SiKZwHMc2u02umFQLpXQDJ2J8XESiQTxWJxKpRKNkgQRCVlVFMJQwPMioSxJMoHv0Gq1SSYyLC4Wcd2ARnWF48fOIomwecNGXBey2TSiGNBoliiXC6iqzODQGjq7OvB9h0q1gayqKJqKJEsEQYjvt2g1GlRXKnR35ogl0hRXyqRSWYIg0jiDg/2r+bQy8USSwcE+TNPAMmOASL1ei/KVUxl6+nqQRAFJVKlWy6TSSSRR5W/v+QajI914TgmBBrIq4TRbVGs+tr3CzOQUkiLS3TPA8uI8Az0pHK9Ef08/ntcim0+imnGKFZWxyRaBaFIqzHDLL+yif2iAjds2UC5FkVOdnZ3MzS5jmiLxWBZDzVNpjGHbIvFME0GwmJ6ejbi0bhVNVUHwkWUVz3MQFIHjJ0pUm0l2v/E6vMDDadU5fvwEg4NDtByb8bPnaNUrXDh/jlwmj6apjF+YpLOzm1gsAaKM02rTbrt4nkdnZxeCGDA5MUlPdw8rpRV27dqFELqcOXOatSPrEFWPzs5uFEVjYWGRwvISe154iZcPHmLnzp2slFbIZjMMDfZRr9cYWbeW82PnabQqdNTWkHm7w5WjSbo6FJpekr6hzWiWCciEwo9nXC8Wr77vAxDsV0AQkK/wottB8Nr9L177v14H/EsXrz+hYS6a2f2HHheGIbZtr+aS/+Pfc7Xl+v//4vXHL+RPa+v9/0a8Xmy3v3pRh8GPL9wwDPHbVb76+b9mq1XFUmUOnDqPQMBN113Do48+Qt9AP9/9zgOcPn0GSRQZHuqjr7uXSq1G/8BwFB4taQiCxvzcEolUFkSJ2elpdF1DQObUqbOkEinarRYLc/M0alUgpLOjC1k3SCbTyJJIIhEjmYzzwx88SnmljCI0UGWBdrtFJhPHiqlcOH+aVmOFxblJquUVusZtXNflbM7DcwOWFpeoVOuYusbePU/T3d3HwvwCsXicY8eOsGH9CJaVpFQq0D8wgB9AtV6i0Wjz8Pceoa8vTjqRRLfiKIqIiER/XxeKEiHLXddGsZJQPId/3VtIfOMZhA1rkXQLAglVlfjcZ7/M2dNTjIysQZLFVZBLDVEIIPAplVfI5boJxQhJ7wcupVIRzw35y7/8DBs3jeL7bkTz9T0kPFTNIAQkQebc6VPkczkuu/wyTCsOgogsyTiOS6NRJxHXscwYkizg+g66rvOdB7/P8FA/iqLjeB71VpNkKsWGDevRFIl6rUK10cRzXWKxqE1LUyP3tLC8hGO3UGQJXxD45jfuZ3ssj3d+itof/RumykXWb93MgZcOkklkcWyfs6dOkIzH6OnopR36+G4AvkijUiIZM6g1W7TtGrppEAQqTmuF4aF+DF3hlZcPMLJ2LTEzAaFCLJ1mcalIzDIJZw/gW/1MT83Q29tHGAYYusEPfvgow0MDq6LbpVQuMzg0iCiqGIZC4PskExk0TUWWFXZfuRtFUchms5imSdtpAzB24QKWaaJrGqYZZ3Jihu6uHkIfFFkh25FH1VQ8J2R5eYmtWy8hDAUc3+Pw4cNkMhmqlRq5fAfn6cBIAAAgAElEQVSJRDzKpRMEFEXG8Ww6O7rp6OphbmmJro4OTp0+ybp1awmDgHg8hqYbSIqKYzu4tkOIQFdXB/Pzs1x++eW0Wi0UWQVBpNloEo/FERSJbCaDKAok4jGOnTxOT1cXheUCjVqN3oFBmq02kihRr1a47wufp7urm7Ztk0wkWZib5+DLR0gmk8zNzSBJCpaV4MjhQ3R3dXHs2HE0XUMUBBYWF/B8H90wUJXIjejv7yWRiLFz53ZUTecrX/46O7bvQJIEhBCMriQIYBdabNm6hcAP+exn72HLli0ICMiyQKxvGdls45czIIAoyuRmRfzAx70kjz+1F3H920jnOvjtf//v+NgnPk4sfxWf/ouvcNP1u2nbK6xdu55qtU3l2DN093Qxr/Zz25t/IYIfjU9w8603Mzg4jCKr1OtVNm7axtLyMq1WC1mW0HUd1/E4e+YkqVQSTVERhABRFPB8E1WpIWsp6s2rufnt/5V//YmvIIYFbr1pK4KgIwkysqJSq9cxDGOV/KkQhiLiatyHKEAY+FEGYiqOoirYrSYEIaZloRkmjm3jOS3qjQaSHAFjBEFkpVRGllVajQaKDOAjSArTk5Mkk0lCAVrNOs1GC1lWokB7McqnFQRwXZtdl+1YdSuir0mSTOgLSKJEtVJFkRVMU4ve52T1tQW6KMjMz8+SSiawYnFUETR5HsJlBO0NKFKJ4aFBWrbMtx54iA2j23GDDKGQZ3HJx4x1kk5nmJ2Zw/M8HvzOt9m5cweSJLJ27VpG1q3hsst2IqkSjh1QrzaYmZpkeDhLEFjMfOMYmi4jX38NiiyzMDtLo17lxhveiGYZxOI6QeAzOTGLZaRJpSOx5/luRAY+d4Fmo4AVH0TWhzF0g2r5GIZh8MRT57jllltZWSmSy2UxLY0HHvgmN998M77vMzw8DECt3OATH/sNbnvzWxARGF0/wukzp5EkAc910DQZfrAHURRR334ze57dx0t793PNddezVCjyxuuvw4zH8AIfWQJVlZEEmReef5qrr7mJyek5stkkYdBAljX27tmDIEAsGcf3fIrFIpZlRq+fLKFKIvVyAUGQyXX1szQ7yTVvuJbpyUlmZ6bo6BLozGX48le/ztZt61FVH1k2SMQUfKfK8uwyJ74xRy6XIXtjgtvf+150qYXddOjK9zM2NsboplFSKQPTUmlUy+RTSVLZAVbKk2hqkk9+8re57LI3smHDKLrk093VwRuvuQ4jrlMsFsh35DFNA0kJKRaLjI5uIAwEvvi3X2Lrtq0sLy/z4Q/9GrMzs+Q7O8jlcnhWG++YjNDWCeMiiqQzNz1P3IjhBv5rbfCyrOD6HrKsEQYgCX40NrFK4BYFgYX5WWJWDM+NoqMkEWqlZdKZDPVGG9O0ImK3EB0zHrdQVRndtHBcByQw40kkSSCRSKApCkEQRJtIQUC1WkVVFQRRwGl7+L4NBBw4cDCKoJFVarUoR/bcudN0dmTxfImh4UHqtQpDa4eZm59E00JMQyUes4jFk/ihiOf5iEKUWywJAoQCx44eJxnLYpgSqqZHedCCwOTELPWaTSKRRZajWJ1qrcTYuXk68p20mxU0VWFhbg5ZUpBFhVqzgWmaUUasrlKr1wAR36sjhS5Oq0VPj0qp2ODsqTnOnV1gcmKGvu4ECDKq2iKeSGGlM6Q6++nszFBaPo+m2qsbohq26zG9ovGjJw/w9ne8iw0jw7zxipuIJVQSVj+nTpxj56WXM7Kph1znADOzZRQtRFLa2PYyeDatRkgmM0ixVCGRyBKPd6KKDoFfQ5JCCMTVTZ04J06V8MU0wyODqFqAIkb8iXa7SSJmICOyOH2SfDygWVkAu4zbLnNw3x7SyRROy+bkyTOcPnuSSy7dGo3bBdE8dSqVJh6PI0kSftCif6CPcqlMs1mi7fjsfXEfV115FYaukUgnufnWG9n30ov4gY9jR7yAdqvJ+XPnGRhey2OPPc2m3DY+9dm7kYwJBtfn0Y0BRjbsQFRVAkEhFILXL+qBH4vT4OUo+1vY5fzEjCv8fSH5DxJ6XxeF888RmRdrjotv/zSx/LPq4vv+tMe8/muvaptXndfXw6Auvi1J0s88j7+X1LJ63H+O8/rzbwP8n/pn1eLiNEtzYyiiQK28zNEjRzjw0vOMnz9JJm3x3DNPkM7GicVMWq026UwOL6yQyRm07BKZbJxypcTU9AJhEEMI9SgCQNNpt10ajfYqjVOiUl7hyJEj+H7AuuF1PPbYo1y4MMHBQ6/gug4jGzZQb7QYGlhDs9agJ9/P3PQS42cnKSwUKa+U2HXJdgLHJ5/qAFtEliVisRiDg8N4fsCa4WGsRAJVFsmlYizPjIOk4fk+PT0dXDh3iq7OLur1Ol/+8leYnp7BSiQwLYvB/iHatSKzE2cJBZ9Q8PF9J/qDpidQNQsImZufRoh3MKecxL7tUqQn96HgUqsXKJQm+aVfvpMrr7wSK6YRAJVqBV0RcZpVKuUCsZhOSIAfeAgC1Bs1cvlIRP3mJ/89vu+QTnWhKjp+0EYU4cknHqewtILnCcxOz/DygQMEfsDhw4dXXZeAdDpNZ2cecEmlU+Q78iRTCdrtNrfd9hZkWY1EjKxGWaGBj6JIVKsV8rksqVQew4wBIbX6CocO7UdXdfp6ulFlAcuQMS2TD7z1F5GOnOGP9SrzzRZDQ2vxA5nenjV85MMfZ2h4gPmZC4ihw8y3PkT49B+iG2nstsdKsYKhxbAsnY2bRhFQITBptFY4e/4Yy4U5dl+5k5de3E+75XPq5HlMPY1hpqmmthA2FqlXSiwsLDA7Oc6JY8fI5TvYvvNyZmemOPTKKxiGRVdXL089/QzT0zMoikw6k6LdtjEMk/Pnz1Or1XBdF9f1WFxaxjAtZFVm7bq1VCorCGhMTy2zfv0mKqXqa5RLx7FxXAdFc+kbyCJILcwYGJbJVVdfjb2akSyKEq1Wm3q9HgmLMCCRzjEzt4jjBaRzGQQxZMuWzSSScUZHR6J8V0lhaamIIMhYVpx6o4KqSvT2dnPw4AEs1cButXFsG800SHfksWIWkiwydv4siixw+e6dtO1W1JpkxBBElVQqy/z8PLqu8e53vwtRFBgY6EeWJQYHB7nuuhsYGBhizZo1HD9+HNMwiFsxbNtloH+QgaEBksksG0Y30dPTi6Loq468iOO2VonCPqVykSuvvIrpyVk8N0CWDYIQghBERQIhggldc8013HffF5BkEUUE17GjmZMg4GuP7OdTX3qM5+ZmIvK3ICIoBpozTzoT54knH0GUndfewzo6Mlx7w7WcOHWBpeU2qUyGEJ+3vPVt1OsNfvDwD7n8ssvo7Oji+ef28PWvfZNv3f8AzUaDiYkJtm/fjq7rfPe736VYKLK4uAjACy+8wOLiPCvFAoIgYntd+H5IInEeUYpcJ4QEUnAUwTuLFzggKSTiKQhFfD/EdX3KpQqSGCKGPgvzs7hOC9OM4DFBGJJKZlBlAXwXQQBFknBaTYylFZiYQZYVQCCX60ZVDBRFRjcVgsBGkiS6u7tXoTcOiqKgqAqKolBaWYEwRNdUZBkMU0bRorniKNZIplppUG8t4QU1RNnG9aucOnkEUYIg8PEcj0q5hiyEDA8N4gOCJOA7RxEkHcXYhtsOKBVjNJox6i2Jd7/nAwiCEgn3QCCbzRCGHq5rc/UbruLxx5/gV+/+MCDTarYxYyIBbV56aT/NZptYIsX8/BKypCAJDvfe+yRBvgO5r5NSucRHPvoxbvvFd3L5ddfQMTzEXb/0Xj5/3z1Rt8nopcRjORTZQpIkwEcQPUbWjdK/9v3Y4RXEYiZh6EeuiiDwoQ99iFjMJJ3K8tWvf5n/9ulP8fkv3kdnfy87d1/BBz90N/c/8C0yiT7u/qWPctP1b2LTho00alU0WaMz24mp6cxMTfC3J1/mrU/cz+C6NbzjrrfyXz79n/job32c8fl5Hnn8GdxQpNFoUKtVmJufYnFxkVQ2h5mKse2SjcTiSeLpfpK5Tt71/g9wyZVX0dk7QL67jw1bLiHb2cOn//RP8TwPu9XAbbUQFYVCqcYl20dptUtcddVuXj7wCnnNwC41ufv9H+Ps2SXuv/9xkmkNRRZZnF9k3fAG9A86eHdOs7g0S9tp8v47fhG71mDTxkvoH9xArQ3fe/irnDt3BLvV4vz5C7SaAbG4Sbvl89d/eQ9aMs/Djz7DC889jSH5/Oj730I3DXIdHQiSyB/+8R+h6QqtVoN6vU4sluDXf/0jaJpGV1cX1WoVSZKwbTtyrR2H2JtDmJMQlkREKaCvv5NCYR5VlVCUaDMn8IXViJTVhXwYrEY9yTTqDXzPpSOfQxDAbkc5xaXSCros0KhWsAwLIRSYnZrG9zyKxSU8z8Vx2lTqdeLpJKqpEyDgug7LhSXCMKTeaKxSbgXS6TSNRgPbtmk128iSzKlTJ7nisivo6eklnYkAfNlciu07NpPKpOjq6SGRSpHOZTlx/ByxWBrflXjy0ecpF9qUShXqjeYqqd2nuDTL2PnThL7Hts1b8dyQsfMTtBwXNwBPkBle28vgUA+F4hyIDr4HY2NjbBjdhiwZaJpCrVYhnUlz7NgxfN8nl+tAEhXGx6coLK+QyXdgxk08r0m7UWLqwmny6T7ymUE002BwNMPgUC+66fPinj2sLLVJaC664iGGNr5dIZ+UaDVrNFtFPC9kcb7K/qdeZvvWDQiawHcfe4ya72OLIkuVOl2D3SiJJlNjJeygSN+6bjT9Ur59/xia2oEp50jGi7RWZsjmLBy/gaxItNo1wCcMfdq2TRiKNGtRjvngcDeaDq5do1JtEISgygJHDx1gfPI43V0y6XiFnlwdnSk641Uu3ZhCCQpMnTvIli1buOHG61hanmfv3ucJAp/vP/QQC4sLjF8Yx7EdlpbruI5CKt6JISXRTYMdO3dQq9dZWlhkZMMaHL/NFbt3sfuK3WiqEbm5tkd3VzeHDx9lYG0fdWGWT77zI9x421YEwcd3HL76t19ClqMOrlfrZ7mWQj5AzAf/JGF4cV0cpfO/S4VhiO/7+L7/Tz63V+dof9bxLj6O7/v/bFH+89S/OOf1x/Wz4Uv/b9WrL5BIRLATWM39CiEQXYJQQAwCZK/NPZ/6b9z05veTrZ8mQGTLVbcxP79Mtd5kemYBVTVwWg6GmWTd6ACVwjK1lsDw2pFVAqtEKtOJaeok0xae36ZZryMRZV7qmkYmm+HZZ56hp7eX7p5OVkpFRkZHyeY62XrpdmKmjhQ6NB0HQkimTOZnp/HcGulchnxvH5VymYGeXpZWVqi1bGYWClx7y5sIXziLKImcTNTYuXMb45NjDA/2UCgso5tJrHiCcqnI0uIi27ZuQxBDXt6/H1mUME2TsQtjHDx4jEqxzOjGIXr7BpFEmVZ5BkWLEciAIK061xL33vtlbrzhBiRVI16ZRf+Vf4c0vQyPvYS+ZgBPEJAlFwQPK54jDNqoioLjhciqiRBWUbU+JMWhtDRFGNikkmlEQYnaoUIXXQ+jPLXm6mycqHFhYpKNmzYiyTKDg+tZv2ENRsxiYGAEx60SuD6KquIHArKWwMdGFBUmLkzz2I8eYc1QH5oVR1RUJEHAbdXRNANJIsL+CxLNepnA91d3fDU6O3uRZA1BDGk7bSRVgwCEHz5P/R3XMfyJDzNfWMHxXAKngSyI3HzzLQwbTd5550cIUJEWnkcSFYKea4nHYvzgBz9kx67d/MF/+WMGu7uRAp+6XSGb7MJuuwz0D9OoBfgONKsrtOoFunu7CGUFM96Ff/aH6PlBhkc3YhnRjncqlaJer7Jh02bWjoywsDhPKpUknU5TLxWx0ikEWUZXZCRZY3FpkaGhIQQCXMfm+997iC2bt1BeKROPWWhaFDFw9vwZYnGTgy+9zMv7X8Z1XPp6OpFFH1E0CUUF1/eRRRlBEXj4u4+ycXSUdC5NIIb4BNHctutx6uQpOjpTeI6NKsmUyyvoZgxhFaAgK0okLuMxmo0mSdPEk3x01aBcqhL4IdVqjXxfF41WDcNQMXWdwPU4deokqWSWSrVGcaVIJp8n8B0Cz6XttvF8n0azQSqdIp5MouoGfd0dlEor1Bp1jJiFJPpMTk4yM7vIzst30rQbzM9OMzKyDt3QIuJnGGDoCqeOH8fQDDRDxXUdfD/6A9JoNEhYcVLJGKl0DM9rsVIskejLIkkyTsHGa7ZxnAZdPd3suGQHnlOl3SoQ645yQ1dmfH7v84/zzSdeYTAe55qeXlqjGkG9AGYXbmodiiERBCKf/tM/BeBDd9/ByNA6Dh08yIH9exgUo9gct2MTRw4fxw9cBMkjnjA5c+Ys119/I5ddvhtBUpFkkdm5SQaHhuno6CWRSPHi3r04jsNll+8km00SjyVYWCigaiqOIxEKcb72zR8yObXEZTvfyI7tv4yuzqNLhwiDFo2mRBAKGLoJQojttFBUBWF17jSeTCPJEtVyBUOPWnYV3cILQkqrWbxBEGKfHENoOfidWXzfw3XbCEKAIIZIsoIgKZSKC1iWSaXSxDRVVERkRQFRJB6zIJSRJIFqtUKpWCFmZQgRKRXLKKKArgrouoUoqCAoaGqCXEc3jhMgKQqiJKPqBo1WA0nUkYQqSngIURvF9dMEwQBLSy1S6Rx+EEF1jhx6hXgiiWlajJ3dTy6RwQtDgtCjXCrT1dWFYWqYlo4kgRAq2LYHYsj50ycYHl7PUqFILpcilfYYGb0Zb8cmjhsiN73pFva/vJ9yuYym6TRbLSanpnj88Sd55tk9bN12CZ09GVp2HdvxEEUNSTSx2w3u//K3OHzgKKObNxHaLrK4gCCI1NsZlgoz3PG+O/jiV77KxORUJKAsi5VSiVOnT/P4k08QKj63v+8Obr/9vSTicQzLIJuLU6m1efC7P+T/+fO/4G9eepaJRhXHcYjH49QbdU6fPcXYhbOsGVrD9ddfid+0KRRLdHT2oMcNZhfnefzxp4hZFpZloesasZiFaRh4nk82m6FtOxFFGvjYxz5BX8cgYaiiWTFEEdJJndMnZjk3OcPE9ARXX7aZ7JrNfO3+B+nIxllaOMc733oToSTjBQKiFgNNIplPYlhZFDWKFHrne95DoVzjw//XvyGdTaIoAh/5ld+BIMYNN++kUiqS7kiy/6VX0HQRx2uQNmKcOHaYm970Zpq2H+Vt2y7nzpwmZiV46HtPsn3HFkZG1mGYURap7/kEftQN4HoumiUjyyqGYeB6IPSKKLmQ4CUN/6yIK/oIKSHKRZZlvMBDkCD0PZaXCphWFP+mKhJ2u4kf+FF0lhB1FZmWjh8G6KaF70XXPPiIYkg8bhJKEoaq0qjV0DUTVTOAEBkRIQBRDLAsk2a7TTweddSEgO8HyKKEoZsIsoCmmmiqxRfuvY8dO3dQLC6i6SG+4zE7vUSuM4+mioRhNLPb1Z1F02RisRjtts/9336QrRs3ousmTqvJ8cMHSaS62LPnJRAk+np7UXWJ8fExBgZ6IPTxXB/L0hBFnanpWbLpHkTJY6BvhM/d8zcMrelFUGRMK06j0WTdyBpadgNRUrBMGVUSSSckmtUCtZULKL5D6DZJpiXOnDpOT0+SzpyOIbbIZQIMRUUOHAaGEqiKiB+4tJoF8Bs0G01kNc5iUaJYbOHKMRySFMtVtmzewtbNW3G9BkvzRXJpE0WUCQKJU2dP0JUfRghlMjkNAYm2U0SU2iQSnVQaC1ixNLKcIfDBTFo41TJeYFCvu+iKCEKFTG4UM9FNKpNFEmN4YYuZyQsEtkq+O4OIjlNZwNICXA9UPYoOVBWBwFsmnXRplefwnQKnjp1h1443MDk5yfXXXUetWkfRdGLxGKIkYOgqttviyaeeZnT9Bs6ePYciy6wf3chzTz1LKp4iZiR46oknyWVSnDj6CsdPH+PcyUNcusYiYThkrDwaWRaNp9j74hFGRgY4d/4kV93wVkLBIpBWs7kREMNoGl4ggsWJgoC8JUDY4v2EE3mx43qxE/t6jfB6Mu/Pcjv/sTzX18fzvP44P3FuF8miIAwQRAEuetyr1PmfQCkJIn9fU/2kqxwKAgir/7sKqRV/iuP8enf19W70qx2q/zNtw//Hef1fUEEQvPbxaglhNJsT2i1eeXEPl199I/39w4RhSKvVioiAl1xCPt+JJMk0mhFhcuOGDawUCoyMbmTnri0cPXwCIbSo1RrYThlRigLBY7EY2UyWRC6NrKvImhplDioKnuuSiMXxXJfZmVlS2RSKrpHr6ABRJJ/JIosCIiGqImLbLqYZj3b+FYlCcZ7DRw/T09NNZ1cE09AME8O0uHTXNsYnz6KqHsePnUJVNcrlIoLoAR6Dg/00GnU0VeUNV+/ikks2Mdjfyw3XXc+vfvBuhteuJZFMcWF8Asf1OHFmjNLMBHKziChG7b6EPnf/6i/jeC0cSQJBYP7I03zGLLB05Tr8x/bhzK9QLDWIJ5L4nk1I9EulyAJOu0rgJ5GVyIXQ9RSZdI7C4jKyIHDy+FFkMUTWUkhKgK4LGKqBH/i84eqrIiq070JQRVdF6uUyj/zw+wi+iGokaLddWs0m7VoVTbPwAuju7ePd77uLWDJL4EVEURCwYklKyws0KhUKy8u0GnWSyTRWLB4RZxWZZquJ6zWx7RaxWBJVNmjvPYQb0+EDt7Gmv5tbbrmJNWuG6OruIJ0wyS8+yV0bfdwTD/IXf/5XHDz4CvVKkYWZMwiyz+13vhdPVvjGdx5haGQ7zz27lwvHTqFqFsNrRiiulLHiFn67g3s+/98pN/YTBHXCZk8UG5LqQ2wXCYOAUNBAiMAjIyNDFAoLPPDAN0gkTOr1MpalUSqXsJstCEBWVDzHxtA0lhYWOH/2PCISd9xxB6VSiXQ6jeM4IATUajU2btzI1NQ0nT0Z3vK2N7Hr8h1ohoUoaXieQxhEYfECIvXKCm++9UYqlWVOnziKJsrMjk+yPL9ItVyJFh2KharovPDCC/R096MSRG4b4AUCvhABRjo7O3+c2SZLBGGA5/ts37GD8lKB5bkF2q0WrufhEbJh3XoEBNaNrmft6Hp8T0HXE2hmnK6eYXL5PLIkkUhEYfevZhSKkkRXRyf1ao29e/cxMNjPlq0bKRaLGLrBli1bWVpapNVq0Wg0MFSFYqHIpi1bSKYj2qcsKxi6iSTKWGaM++77IrKs8vl7vgChQiqZRHADvEabSnEWRY8xNbuAJKvUWm2MeJpkdgBBjAi2Riz+E/t9giAgyzJyoht34QSSaGC3A373d/7gtfsoajS/dfPNN3HNNW/kZDuL03c5E+OzaJrGXf/qLi6//Aqy2TRvfettPProD7AsA01ts2XTCMcPn+b73/kugV+jXC5w9913k812MnZumtmZuQiilU4TBgGVShlV1vC86CQts0wiU2GpfhMrzV+nXHJJGkcx1RkcpwkhpJKpaBddkDAtM3KZRYgnLCDA9WxEUaRUKpFMJXFcB1lRUBQZz3XwnBaqLCCK0XMRBCHNRhvPC0jnOmnbNqlEHKdZQ1BlJFVGFCWKpToITUDANDJ0dXXjBzV8r4GiQLNdR5BElpeKBGHAzPQ0YRjBTfzVWb5Ws87i/Cym0UQVX0YMjmGHN+MFBvd94Unm5kqcPTe2Smy1WFmpsG3bTkw9heu3MWJpUFQQJHLZbh544EFGRtaiqlI03ykJyIqIZRmsW7eGa667kcAPOLDvJXp6+hAFBzsUee65x3nPe9/HysoK69aO8L53v4+nH3+MuekL3Hn7u1EUhZf27+Oeez8DBBiih1MrEjQrKEGLeqXFqdMvcOubL8NQYywszEbgoCDAdXx+/w8/xdHjJxFFkf/wm7/JiUOHOH/kGC89/zy/8YlPEIYhn/rUp/j2/d8km7UIpDqiUgdDRdY1vv/w93jqqacQBYHfvvxa5qfOc/LIAc6eOMRvffLjhGHIp//sT/jm/d/k+ImDdHbmEAQJQp1rr30jkxfOMD1+htNHXuL8yQOcO3GSM8ePM3H+NMcPv8ytN90CQE9PNzdedw2CZBMKLe677z5aTY9WM2Cgq5/P/NlfcfVV17D+ksvxHJdsKk1PTy+pVAfff+hR/KBNqTKHqgnMzMzx3LP7WF4q87nP3svKygozM3MMD6/FsmK4jk+93qTpebzzve+h6Qr4YQJCjW1bruDXP/wbZNIdrBkewXWj9YPtNKk3SshK5JaGocsrh/Yx2D+K50rUa218L+TYsVOEuOTzeTo7O0nEM1Qri8zPXWBufhxJ8Ah3tOH/LiG+20Fc0jEPd9Mad2g368hBQK2wjOe65HJ5IIIS+Z6PoesRRTgMCQIfwzBem3drt9uohkGxVAFRwQ9EBFnH92xEKURSRFYqRc6ePbFK7y2yvFSg2XKRBAVL12jUK9SblWikRxRQVZXlpSU01SAIIlDju+94B5Kuk853kc33EkoqQ2vWMT83i4jJiWNjLMzPMz89iWs3QfRYs36Q9911ByEme1/cR7tts33nFXT39HLbbW9hw+hGvv3gdyjXllB1E1FKoJtxrIRC4EWgsi1bNuJRwnOjdd/WrVvp6e1HUw0ERGQp2iiKxZJogsvC7EHc9hlalbMEpWnapQWmZubQs700BYtNo920GzMkYlGb+zPPn6LaaLFp2zCB30YWfXy7RjamErpNFCnKsu7rlxka7OXkiRkcz+HOu+5EU1Ua9RoCPgvTsxx66RXq1Qqe3+TKK3exvLxAJp1lemaBoY1rqDUlfMegtLyIpUnMTZ3CETxEVaZaWKLhOZw+PUNh0cbxmoyNK5y9MI0VB0VxWC6Mk04myOZypPNxCoUCRw8fo2gblLwkhpXDDZvIuoRqmljJbnSrh6QpgF1j1+ZuhNZeFPs00ycfRWrPMX/uGOePvELQbFFZXmDf809yzdU7KK+skIrH8L021coybqvNuRMneHnvk+STsOfpbzPSF/Dm3XnedvMm4h0mQtBipnIYeW64rUcAACAASURBVG4jBw4us1yEMy8fol+3eeqhL2FLNlIQcWlEUQTpx7Lotbbh4HVtxT9DB/xTtcJPq38om/X19bPE8j+lfkwO/l9br84H/zz1Dz0f/1j9ixWvP60n++ehXP289dPs9dfnuV58XkEQoIoSgueghR5Dmzbj+1GrYxAEVGsNSqUKnV3duJ4PosSNt7yJkZERYjGLyekZJNFgzZp1jI9fYHFxAdt20HUN3/ep1xs4jvfacLkoiszPzrFxwwYkQWRxcQFVVqiUSiQSMb7xjb+jVqtTqzWYHB/nlQP7OX70MP09nTSbNebmZunIdzIzPUO5UiYVN/DdFksL0xw9cgBV0XBdn1PHL+C0ZYQgzhvecBVB6BGGAQIwOjLMhvVrOXfmFKlEgvJKgfmZKcqlZcbHzvL8s0+iGyaKotLd3YsZi7Hl0sspVxtMT02hCA6GLuH7NpqqoaombRdcqwN95QLpjm66fufXEH7jfaT3n8fdewpdM2jUI7qt7bjUqnVMPUYsaeJ5K4S+i2mpVKs2gqSzsFRk26WXougKkiwRIqHpFoIkYZgGsbiFriqUiktICjSbDqYV541v3I0k6zh2GU0LCMMGotRGDEWEMKTRrPJXf/2XnDk3hmEoIERwhGqjjuvaJJNpOjt7iacyyLKOLKukM1lUTSWZiqiOfhBE82PLJdTTU8if+jixeJIv3HsfxeIymi4jNpaQX/gz7MXztLu3EU6/zNt2D7Bt21bGLoyzdu0IdtvFNE0mLpzn8JGDVFsOO3ZfQzqdZX6hSLXWQlJk2o6NbO7jd/7Df+SGK/81hYUyauIkjuOw4qoQeiiKwtiFC/T09tJoNDhz6hSB5/Oud7yTVCLJ2NlzCEFIIpXE1E2mJ6aQZI1QCBndtIHTZ8+QzmY5f+ECiqKQy+UolcooqkqlWgZC2i0b1/ExTI1UJgmiwOLiApIsR7TKwKfeaDIzM49uWDRadbLZFKMbRnl5/wGWFpfo6uoknc2QymYoFkrE4ia3vulmbLtNqVRmbm6e2ZlZDh88SDadee131HGc19pokqkUHZ2duJ5HJpNhy+bNtBtNQt+nVW/QbDbZ8+KeaKdRgP0v7mV2agJCN8r1XG1vkyQJ13FYXFykVK2gqRqVcoWZ6Wk2btxEu9UCfLq7uzHNGIahIwjRIrBcLrOytEQun6fZdvB9j1arje8HhCGMT0wgKwof/OCv4Psud951F4deOYogK/zdn32Fe//wM4iCzKkz53nhhT14dptnnnoaxw3wgihoPgRC76L3sdV/RVFAUEwWzx/A910MQ+Paa6997X6B30JRZL705S+xafMmbvnAR4mPXEaz1SSTjeG6bZ54/GkAGo0mW7ZsodlocO8X7qXVbHDLLTeTSed4/LGnadtNfvCDh6hUSqwbWUehUEJRdBRFBQE6Ojpw3QBJlACwHR1JCOjtOEuzWUZP/BoV724QVCRhDs+LwB+KpIAoY8Vi6LqE6/iEoRCRSOUo5zKdTkexVBGSBMIQWZaIx2IIgKoqiJKEYUR5jppqQhgiSTIIArbj4CNSrZRRpIB0Kk4YQqvdBPzVa1dBUyXicRPTjNNs2eTzHZGDtArFczwPRYsitkxDpq+7jiqcxvYvxebd6HqDatXgvXd+gAceeJBTp8/gupE4GBwcYGWliOs5iAj0do8ShD6aKtJstLn11lvQdQXbcVheXsG2XRYXC4xdGEdVNPwwZHZ2iksu2UzbbgHQbigcOzrB8nIRw9D53N98hj/4g9+jWCxBqPD5z97Lb/3GbwHw1a99laPHDuH7PplMBoB6vUZHLsGf/PEOBnv3UirOUyov4/se4+MT3P+tB/j2gw8C8Cu/9Mt88mOfJGVl0Ywka9aO8lu/+du8+eZbAfi9P/jPnD5xnCAIWFxeprxSYnJ8gh899iMAPvxrH+Kj3/wizapNIhZDlyV+/z//J95zx+0A/O7v/j67dl2+mluq4DhtBFdheXGZwPNo1lvoUpx226HRrJFMpKmUmzz6xKMAvO/d70JEwdAtlhYLvOc970HXI8iOHjPYuWMruizSavu06zUe+v53CQUJxw35/f/6JzgtjaOHx3jx+eNY6hquLb+V7/zKY9z7+S9iGBb9/QM0Gi3+7E//nM997h7CUOC5Zx6jpztNoVAgk+ql3XIoFqpoagzHaTM+cZabb74eURRpNR0mJ+awbZt4PI5t2+x5YS/T0zMUCgUMw8CK6WzeMoJtt5mdnaXRaFKrNskmk/T19NKdz0HoI3gCuiLB9gryf6wg3WWjleIIx+LUxhzcthvBiRApFouwGnfxKol7cX6ewPMRRYFarYamaViWBWFASLSgjTJTBVzbJfCi7GQzFmPd2rU0a02y6QzplIlpGczOzLA0O49lmBimie+51GtVZqansEwD22kRhC6eZ2OttqbLiowfgG4Y7Nu/D1XRuO++e8jlUoiCSDqTZ25ukWa9zeLiEoZhcOjoPtat68C0QlRTRiCMAH6Gxjve8XbiVozRkXV4dhMh9Bk7d45ac456cxFFTuA5CkePHaFYXGTXrkvwPRunVQXfJpUwkXE5ffwQCzMn0BUNXeugtGJSIY+n9RFP9TNx8jRCo4ofGMQtk8pKAacdMDoyTLtdwXOaaIpEo9lAlkJqlWUIbXRDRRTb+LaIrtfo6u6gZddp2w6CIDJ27gxnTk3QqpVJai5ebZGJUydYnJ+lr6+Hk6dPIogiL+45wtRkFd3UUQ2ftl1Gl2QU30YWZES5k1DOo2gKA8PRZmxXd47OvMWzj79Au6aRyQywOLfIqdPn0UyJgf4RVMNk49YrODfZ4PEXTnPyRIHSCtQqNnajhBxWIdZBon8jZtd6pNggg715UnEJwZ+hq6NMwpqkubgPp3yIjYMhYf0E3spBGgsvIjePU5t9ntE+m/UDLgOdDhuGNH7xLbsQJWg0A44eLXDqdECsYxcTNQFBF9i5+Y/Y/f7/zpobfp0jky32PvwtvGMPIbkBoeshhCF++JNi6vXzra93DV+tnxZP89Oc2p+3LnZaL3ZmXz2Pf0wAvh4qdfHPcPH3ePXYr37+857v6wXxq/Otrz/eq8/n/6xm+xcrXv93qotftFcvDCEUqVXK+HabZ596nGQ2ies1CcOAZDKBpmlcGJ+g0WjguC6+H+B5Pt/73ve4bNcu9uzdz8JcmX379tHbl2dwcICYlaHdblGrVYnHE8jyKtTAMFiYncNptVmYX+DI4cP09fWxiqDGcxx+4U1vxm61WJxboFquMLp+Pc16NM+Q70jR3d3B/MIi6UyWVrNNRy5FrbTMZdu3sm6oD9dtUa+W2X7pNrZs3sJyocRjj/0ISRTo6OjEcXwKxWUWFubYuXNHhLQXJCYnJmjUa4Shy/LyLPv27eOb37qfIAyZmZlFUjS27LiKQ8fPMTc1hufa6Fo0f+c4MD+3wmITrOYc73j7O2iLFsFNl/HUh3+Bjq4uhL97jNz0Cn65BqFIPtvJgw98n7Gxcf4He+8dJsdV5vt/Klfn7unp6clBM8qyZEVbtmUZ5wjYsJhggxfMsjiymDXRLNwLy3KXtOTFXowBm+DFIGfLOUiygpWzRqPJuXOqXPePlmWWS9jdyz6/u8/zO89Tf0x3narqrp5T5z3v+/18XUfAqIiIgka56hCONJBMtaDoOo7nYxlFRF/FMD1sv/6QLRQKOK4FnoNhu8xmy9guoFC3F3EEKsUKsqTjCQqVYgHRrwMfbvrwh5g/fy7ZzDTVShHDNFA0mVRTEw8/+gSZXBnbE/B8qJn1bHHNqOHhEQyGCYfCuLYNz29F+ODbEBfPRdQC3HjTLURjYUqD+3Ce/TZCpAm9Zw2SFkNuPY2F7lFURaajs4ds0UZXg8ge9B88hGfnKdcKXHTFFSRb2lD1MO98z3tAlEES0bQQE2MnyGVHiIR1VDGEruuEw0EEAaZnZujp7UGSRMrlMuVSpR4Ijk8gCCLLTl+Oomr09fWhqQoHDxxCkhT0sI6kyqw68wyQJJYuX86ePXsolUr1yZZh0JCII8sSg4ODbN26jXS6hSNHjlGtVQkEdbK5GQRRQNU0ZFmhpaWFTK5AoiHJbDbHlq3bWbR4McuWn46iaZRrVVzBp7Exie87lEq5ermkpNDe3kl3Vxc9XR0c3LPz1EC6adMmHKe+CKSo9VI7WVE4dOQwxUqZSrXK9OQU+ZkMalAnGo3iux5WpUZTQxzHqmAbJQTfRhAE8vk8lUoFgHAoRDweZ+DEALF4jMZk40lwh4MogWHWyGazWJbNzp07CQQCtLe3MTo8jCTKyJqGKEtEY7FToITDhw5j2w7gkc9n2LFjG8FgiJpls+6881m0eDlj41lmpqd433XXockiM5Pj+J6LZdUAn/sePEDTpZ9m894TAHxxx1a07/4TDed/ivS1/8zKu7YyNTNOpVpk7Vkr3hjofItypcLwpMWqc6+jqecieha/mX/4xv2Yjs/I6CBXXvkWpqZmSDY00tc3n6eeeppVay7iB/c9xi0f/wof+fT3+ehnf8y5l97Ml7/5ED9/6DlGxobp7uph66tbMYy6X7UggCCpv4XlE7GMMMVSiLbWaSRlgpExl+/dB++84R6Wn/23tM77EMnuG1m8+nY+/JG72b7jCLKsIQoyvicCEqVSCUVRuPmOewm33MCHPvIveL7P/c8e4JxLP0e6769pm/vXXHjl53jxlQM4jgcIZGam+NFPX+aM8z/J3OWfJN31fq6/8Z958YUd5LNTmCYUCjkE0SAY0vjxTzejNtzAvNP/Bsf1CYZi1AvRxJPVAQonhqYJNb4bNfFORoefByEO6pvQdJ/xsX3s3mvy8b/7CSvPeTef/fLP+dhdP2Lxqrdz/mUf4qMf/19ksgUCQQkZmeNHhzFqNQrZGQTBp6OzDR+vbu0UiKEoOpFwjEK+hGk6uJ5DOKwTjQROBRjJxhg/v+ceAK6+8gJWrVpCY2MDK1esRpHCZDN5AmrwJInZ5eGHH6FiWriCiBoMgqxi2yUqlRK+4BEKSTQ2NlAsd5FKX8Jn7vrMqbu5ft16xkcn+NhHP8bkdAbDcokEQ/R2dAIwOTXFhkceIxRsoKmpi3ggxJNPPXGq/y233kogGEeWQpQLVcyahWX63HLTzfX+k5NsePgpIpE4rmtTrmSRxTDVokV2JodjwqUXX43jGgQCOp4H3/7u3af0Wu95xzspZQ2qFQdNjZBOpxkbH8bzTUzJ4R3vfAv7dm8jrGpEw0E+9fFPcPPNt9LV08eTG5/F8cqcvW4Fa89age3U2P7ka5w971y++c1vUy6XEZB45unn2LRpC2eftQ5V0QnqAv2H9xJWZWYnpxkZPYFhGFx99dUUSxlqRp54Q4DGVAOfvesLdHctRECjWKhx3nkXctllV9HQkCCVSjI6NsBzzz+J55skEjEqlQq25eJ5MD2doVyoEghEcGwQLAG7UiEzOYhrZZEX5BE+k0e7wiFUTNIw3IuXF05qmwWy2Ry5bJZYNEaxUCQei5+aqNq2fVJXa+E6Bi1NjQieS2ZmGgGPUCCMouh0dHShaXW7uVAogus6lMo5fMFDUyU0VTtp5aXiOjaKIpNsSFAo5BFEB1H00XUNXQsg4uG7NqVCAds0cR0Tx3K55ppLSaejPPv087zw0lYam9qolA22bd7Obx7cwPrzziWdbkKSFBxXAcGlWi3ievXAWBUDSIJLNjOCJPo0JtIIyOgBFc9zyRemWLlyOZFYAMcz8DwbRbCYnhhkeOAQ0xNDdLenCIWCBAONBCOtNHZ0Ego18uCvnmTH7uNEEp3s3D2A6YrYTo1EIkBzc4LONo22dAzXsTHtKr4goCoKmlb3WnV9EAgQiwTxHZ1Mboa3X/sXZDIZHMehs6OT1vZWWlt1EvE8mENoboHO9k4eeujX9PR0o6gS69Yt503nr0WUHGxHRZbaUFUfIz9IZuoEerwRz4uzd88ECD7RSJyGRI3mtERudrrOhfDKDA+Ocs7Z55HL5zhyeICz1q9DANLNXSSaF9HYfRZD0wJozbhCgFyxRnF6GNeYxqpOY5dL2KKIqOnEkymam1ppTKRINkVpTMVJNCaINyZIp0KcvnQeTY0x0qkGmlrayGSruCTYtGOEFzYPMzYjYCitnJgx6OrpZfe+oyxYvAyv2WDO0cUIpSyHT2R4aMsYz+2e4lvfug8tEEBT1D84xze/HcD+duCPxgH/nizi72ZXBUH4kxrRP2dS7t+b5fyPZIH/2DH+T1rxv/8a/lT7b6t5/a++2X/MaPi3b0jdFue3M6/g+x6u7BMW4YYr1nPjrR8h3NjMwX0HaTVPIMoqRT/KoYMHGR0ZoqOtnTmd3aTbmjh96Wn09x/kvPXrmc4UOfOslWhqENO0URSbmakMgWCIXD4DroGiqXiuSzwSw3UcJFmkta2VzZs2YdQMYtEYsXgcPawQi8cIaEE8t8K+3Xtob2llNptjZGwMy3QRBAfHrbF02RnM5rLMmdvLgcMHaWhsYq8+S2FhlOGRISLRIA2NMWRNR/Ccekako5WmRJRqtYbteDieS6Gcoa9vIYuXLCKTmSSgRZg3vw/XNKmWDSoVi1dffBHbqtHe2kwlO41knMAyygihJnxJoSkVJRyJIJhFBF1Bb+rElSP0rVpI9sxOlL52CvuOEXp5P/SPUpjJkJo7hzkLFyAiks1k+PFPHmT16uW4voAoqUi+y9CxwwRCGooaxjJNVMnBtRwCoRiG5RGNxvFsmdnZHI2pZlxfRtREbMuiZlqEI1FyuTyyJCKL4Jg2qqbiC9TBPqKK7/h1qwbPo7O7h1g0SimfJV/IEAoEeGzDI8yfvwBJVvA9m3K5jNo/il0zqfztjYTCIpVqjvffcAtt1SN0zm5Bbl+MF27B80UyswXC0Ti1/CSya6KFNQqJxXgy6HqQVKIJLagRCIR4/3uvZ/9rr1GcOsodt3yCp596ge45HaQ65hFrbCccb6SYnaSaH0cWJKyhzYiWQSw1h0Ihh6IIFAs52lvbGBwYIRaOEgoGyeWzDJw4jlGzMG0LVVPI5DM0tzTi2D6jI/20tjTj2QKxZIxAKEg91ycyPZmrZxmSCdasXUs8niQajTA6PERzSyPhaBCjUqJUyhONRECUSUTjSCI4jk1f7xxQ66WSJ44PoUkKYU1ncmaGcDCKaXrImko4EqNUKlKr1XXRqqYTDIfw8enu7cHzfJ7f+BJz5/XWvftsh8amFIKoYtqQSCZJtaSoVm3SzS34fv37dR2fpuYk45Nj6FqIyakJFFmlWqwQCehkpiZQZZFEvIHJiUlSqQa27XitDrCRFGRVRdM0FE2lo6sT13YxDZO29nZszz5Jzfaw7ToJU5QEdC3I6MgE0USKcCDEyy9t4qxz1hEK+siSRktrOyeGTrB2zXI8z0VWBBYtXkS1XCMcDqMnyxw9UWDT1ilM28HzfYK6SjwSIBRQ65vs8pZL1tHQ1E1IlvjHb/wTAJdedBrXf+DveeSJlyiVKkgClCsGxwdG+cnPnmT+nBaWLV1IMBzl/p/+lIMH9nLRJRfw1mvv5JHHX2JwaIJCsUxA16hUakzP5tmz7zgbHn2JSy95E6OjY7S1NWAZVTQ5hOu5/PRnjzMyOsX5563ivHNXIEk6hqGgyhPc+emv8OWv/oDDx3JkcxU0VcW0bDLZMrv3DXL/g68yf14rixd14nourusgKxqSrPDw49vZu3+IJUu6ePz5/Xz5F1uZmi4gywKFYo2h4Vl+9uDLnLaojb7uNO++8ft85wcbyebKiIJAuWzQPzDFgxte4y2Xr6QlFcZzQdPCKHqAHbuO8vhTu4lGg9z6V5fgWga+5NfJw6IEfp5ybj/f+sEOAG6/9b1E4924jobrNbNz7xQXXXUrO147SL5QQhAEQsEAM7M5xidm2P7aQaIRnfPOWsbU5CTFSolUuoXb7vgK77rhU3z5q/dx4/veiut43H//AwT1AIVylUOHDrBg3hzMmogvVog3xE6SYPO8tiPHN+75IQA3//VNzO/r4cTBac4548186CPvIRoPsnjJErbv2MHAiQFK5SIf/qubmJ4eJxqN4rkCKBFC6n4kScTTzkFKNuP58NivXiAcDbHvwF6i0Shf+ru7+NY3v8/cxStZdvpSRKnA7GwOnyCPPrEBz/NYsHgh69efgyTVraAefWwjO3btJBoNc9cnP4Ntezz95NMsXnQagiAhByMkk0187etfxfM8mpoauOjii8hkS7Qnmzh89GW6OtsYGZ6hqamHM884j3gyQiCooKgit99xB7lcjnPWnoXo+bz88st0d7fT1tLOL3+2geWnn47n2qxYcSZ/85EPMTvjE2/RUSI6Le0NnHPmEjIjQ+zY9Aq9i+ey44WHaGlppOKp9OXnUy6X6LwiQWNDEtf3WHLaIq648iISDRG0gEjV8hgZHaevdz733PstLrjwcjLZcc46eyWJhgRG+Xhdu+3oXPWWy6kakwhynch74403ct311yJpJRRVJp81WLBgEdFoHMOw+NznPscFF5xPPBFldDJHpWyjaAHEoIplVZGVMMFQI4gCIxPHaYg3IbYb+GcWEBwZeXsMbxZMvUbFLBMPJ+oMAbUuP5qZmMK0XYKaCm5d5uGKCrbtkMvM0tTYSD6XJ1+YIRSJMTU5hW87qJqCKEq4jkcwHKKcLxONRtAjQQRJxKgZqHoAQajbxymagCxrdf/aTJ7HH3+KztZmLNMgGIqgKDLNLWHC0ShaoKFe0rukk945nTiuSLShkdlsjrlzF5OIa2i6jqJoyKLA4SP9bN60l1g8QCLZjGE7eLj42BQKeZLJFGogiSIHmZ0dp7WlDbuSxa5ZKHKezMwIrivR3NpBOJGs+576HlMTQwhmFc8eY3JsCtcXGBocRZaDnBgdJ1M06GqNENJcFCFEuTKKKmsYhoGPj2X6BIIquq5TqVQREOtUZ1XCdWuIqkR3VwuqppNo7KRQcrBsg9aGOJY5SDwqISKgqAaFgsuKM85GlUWiiQYCuo6qhTgxeJBgwKdarJAvZokmIujBMJImokoeczvDKJ6FJwJeE5IwTkdrN69sOoQaC7Jg3lwEX8B16v72hfwk0WiSSsVE0RTkUJD5i05jYrqMIDWxZ/8MnXPmsvnlTSQiOrWqRX62QrlgYFseRs2hUChTqTpkciWKRQvL0hgdm6ZmWUxM5yiVVBy1E9MP09G7mFT7HMINKeLRVvr6FtdZBPgcHxhgJjNLuVKhzeoht2qA9evPIygHWXvmBXzpa3eza+ODLJzbjNyxDNWuIUjSvwnevO0KANIa55TnKfxbeu7vy7z+bkzin6Thv7G9oZf9z2Zmf5+m9HUGD/5vKVh/J9PpOHa92uqkM9DrC+T/Ntb5t6AmAR/hJM3/DdLQn461Xj/G6+d/vcT49XP9/7Th/4ea4PnMzMyy/vwLOHzkGAP9J5jXOwdB0al5Mr/5za9Zt+4cyuUyg4MnOH68H9eGUqFCZraujWpvT1MzqvjA0OAIgqASisTYd+AQ6ZZ2RDWALAZQZI1t27cSDGns2P4azz7zHIqi0tzSTEtrM9t3bMc2TPA8tIDOwNAIq844g4phkG5tZe3Z51KqmEiSQm9vD/v37yQcaWJwaJqgFsUqG6SbGolEwnR2tGPUDIyqQSSgEovF6JrTx9DIBFt27iOcSBGJx8kX8syf28XgwGFeeHYjqYYGli9bxlNPPUtfbx+trWnOOnsNZ557Ia4UYF//GB2LziTavALT1VC9GRTBwvYCSJIGkTT+4F5MA3LZCr6rMqdnCZGrLsH9wt9QfPhrVG95Bw09nXRuOwKv7ME9MsKWzVt47/uuR5MFJseGuf8n9/HQhkfZvvsgrh1kbOIIesBnerKGqGh4vo+qyViOwfETx1i8eCEH9u3FrRkMHDyCIqk0N7WgKTq5bAFJk5E0na07dvPT+x/EtnxwJfBEtr66tT6h86FQyFMqF9iw4WFiiRR6MMSbr34rWjBA1TTqJuyygnt4EOHWd6KGPCYmR/HLOe69cTlz/FF2ZoM4gUY8HETR4acP/JSx8Un0tsXIroDki6hKiIaGRo4cPUg0rmFZVTzfJBAUWXfuKs658jJmzSKxVN2nUhZVEDQypSrJrj6khjSHDrxIQAsjSCqe5BKPRjm0/wCe4/Lq5s0sO30JiiZx5OghAsEAvb1zaO9oJRaL0tbWRndnD5WSjeCr9PYspJCrMDtbJBQKUa1UqFZr5LJZotEgfX3dRKIhNE3CtCqUyoWTekMRxxIJBiMEAiGOHztOuVikWCwyMTFFqVjh6NFjbN3yKuFgkObmNIZRY3p6iqZ0I5VKCUkC2zbIZrI4lks4HMW0PBRFx7McasUyjmGxb9ceFi7qxcfDdlx2797L5MQkmqIQj0V4dcsWTKNeoiaKAp7vUamWmZ4ZRpZ0EtF2AoEIuqoRj8UIRaOULQ9PDpHL5xHFumeg7bosW3Y6oXCEUrGICMjySfNvfFRdRNMFLLuGosqIgkw2U+A3v36cffsOgy/R2tbCkiULCQQkRNnnuuvezdTkGDtf24PZ5JEN5jhtyRIUpb5CjyDguDUakiEE0aXY38zCQA//8O4VLJ2TBODWt5/FoV98kiMP3sXe++9kzxfXsLhZRVE07v3hL0+NabfecTeKKvHoQ9/k4I5/Zevfn8njf3ce8/o6sW2HL339F4yOTvLYo4+hKArXXXc9sViMFcsX8YW/u5kvfOZ6Du18iPu+fxf/+Pn38av7v8yKZfOZnMryl3/1Gfr7+3nooQ1IkszQ0DClUvnUuQ3DxLbNOoXackBso6cryaf+9l08/fA3KQ59gOmBeyiM/4itL3yJd779HEzT5sabv8uJwQlkWcZ1XYJBFUFwEU7mdB9/8jV+s+kYX7/pIqYG72Wy/7vsfOVLrFjWg+N43PnZB/jbz/6Y13YN8MC9tzPR/z2mBv6Zzc98gTndaapVi4984n4ELUQoSbAxeAAAIABJREFUGkcQRTQRpNfLJUURVVVRVAWrNonqH0H2t+IaB/Hleac+n+134QnNeGIC1/f58O1fxDQtLnzTGra/8hMKUy/Rf+DXDB5+mM3P/5iP3nY9XV3t/PMPfsLTz7+CqgW455/vrk+YT7Z4PEIq1cDNN3+IpcuWMH9eD+94x9sAqJTLDByb4JknX8Vz8rhegv4TI6f6Llu2DHyZaEON/Yefxfcl8vk8gaBGT08XAAMDQ2zatIV0ugXHdikWymRnppFEEQHY+MRGnGKJqC7y9qsvQNfqExXXdamUTRYsWMAX//5/IAgCwWCUWLSRb33rO6cmhgcPHWB2ZhJZgvHpGpbzen8f+fYvcfTid/HFL36RycnJkxl1CUF4oyRu3/6DuLZLQ6yB/QcOEQsuoFpW6OxOMzCyCTUygqbV6aT3P/BLBgYGALj0wiv4l3+5n3C4ATUQZHJmmquuvpx8KY/luuzdu5emVCtNzTEEZF55fAszQ1lMU+TDH/04Z15wMaIvsW7dOwkH2mhqCnL40GEUReHYsWPkcjmef2Ej2ewswWAUVYngO0FGx4/T1pamWCxz84fvpFausHzpcsaGJyjna1RqBkf6jyEqHpMzoySbEuhqDM/zESWfSjWLYym4tkxvby/jE0NMTQ/jeR533XUXP/zhDxFFkWjAJ9kgEw0oCLZQL2WXRXRdZnh4mHlzF+NLOj4ivmtyNPUS+Vv2IJ1mET/SRrrQhesazGYnUHWJQilDT28bqXSSeCKGKAkYVpVifhpZ8kkkE/iyTCSZJBZNIMkqkqSh6UEcXyBbyINcB1xJos7w0BilYhHLMggGdVzbQVMdbLNEfraEIChIkkJDsoGrr76KZDKBpiuIooxjKYyPFhkeGOPVTZvrXs2hBPlCidHRMQ4fPsQ5Z6+lr68HnzqlvGZYlCsWPXN6OHZ8P65l4FZz/Pz+n6KIMqKkE4w0YDkihjHNiYFdqFIZqzKO4eUwvTKuH6SlZTGhoE4+O0M5N0MhP43vWyQbQrjMUDUyRKIRmlrTXPnmS/GcIkvntbOwO42m+pSrZcqVPJp6cowSPEQRFEWgVCpSqZTrv21BqNtz4eB5EorYyGO/fpXK7AmmhraRmdhHWzLC9td2UasJGCaoWn089wSRyelpTKOGUS7hI/Pkxs3seG0GWU7j+gKu0M3jv9lNpbCP7LFpHBsCqbkE0gvA9XCYwndjpNMRbGeIzGiePfuOMJWZIBAWcV2TctVD1SP09PXR0d1FZ0uag/v3oesaWjjKmnXrkWPzWbX+WkLplQTTK2jsPZdo51oG8xHi3esItpxJ/4RGpOUM5i2/kqlKkMGZMCW/k/mrrqJ3xfnEGhJk8jnyxQLhUIjm5mYmZkYYnTpBICrT2dvMunXnkUo1s/isRSBBr7uQwYETrHvT+RQdj3VXXMlwrsb9d/+AtGoiaqE/Ord/PcP6n/VT/X+lKSftqP6r2+vVqL+9/Vkyu3+m6/svb78v+/m72+++9x/JwP4x36Q/1X67Vvx1/LTkS8RjDezZu4/m9nZamtrQNQVX1NjTP04gEGDnztdobWs9CUVy+dWDD/L0xo10dHQwNjaObVuMj49x7OgxOjo68T0IhcOcuXYttZp50iRbIjObpbOzg3K5yPnnX0AwGKSnp5uRkWEqlTIXX3IJjclGDh44iKqpmJaDJIksXXYaExNT+ILIFVe+GdcFURAIBjWO9e8nGtVJp+MYtQzBgEZjsoGjRw7jui4jIyO4jokgSezdd4CZmQyxhkYSyRSppmZaW9vqZNoF84lEwowMD7Jj+zYuufgSGpNJcplZnnl6I50tKWTfoTWVJJvJIeottLb3MTM+iOwbqIpczxAFmxBqebI7Hubu7/8LjulxyeVvZvPW3UzOFGls78Rcvwrxa3dQ/dWXKVy2Bml4mquLKtmHnmD6tX20NDXytqvfyhlrzuDCSy5HVl2aU31YhsRDv34A169r9QW/XsYxb14vtWoJVZYYGx5m57YdyLLE8PAwMzPTvPTiS9RqBpbjsWL1maxYsYpIKEytaiJAXU/p+UiSQjqdRlUV3v2udyFJKqZpYtsGnuegqiqqosHWA9jzOplZ3IPqVYmPbEV56fuIkkSpYRmGKyIKMrlcjlw+w2233ka5WsbyRIikkMU4uqbh2D6BQABFEQmFQidXBP26xUqlRqo1zdpz1pIrFinkS7g+6KEYE7M5ZL1ODxYlBdOyMey6Tci8efOYmpqit7cPQfRB8FiydCmO6yIrGrZrI4gC4+NjTIyNEQyqVKtFDh7cQ0NDmFRjBMdx8Ny6PnpyYgLHtdE0hZnZKSRJxHEsAgGdUDCIgIznCWRyRVzHo693LpFQhHA4hOv6WJbLgvkLOGP1amqVMoVcjpnpKaKxKJIoIisSmq4CPqos4Tg22WyWQDCIFghSLpQIB8NIiCyctwAEF8Oooak6a9asoa21Dc9z0VSJN523HuWkF/DU1CSe56LrOu0dLRw6eARZ1nnqqac5euQYtmMzMztDMBjisSefZjaTQ5JVOjq78HyBo/3HcT2vbuvjOuzdtetkqbKEbZtomkI4HKZYLOJ6PtFonGw2z9ZXt1IsFqjVqni+i+dZCJLIhoc3MKenh+6uPsLhMMFgEEEQ2LjxKSzLQhTEOrXzZDDlei5dXV1cdvmlaGrdRNwcyCFunWZ6egJdDyCEmnDyo6iKzrve/d5T45wsS/zLdz+KJNSIxaPouk5Kr/Kju+tQp/HJWTY8+jSpphRXXXVVXUcaCXPPd/4Ha5bP5frrriWdTnHaaQvRNJlF8zv5zS++SlOqgUNHBpmYKta1z4EQ6XQzkWj01LiuKAqmaRMI6AQCAWq1Gnd96m+56xPv4II3JdHDK5D8g4iizKL5bfz47tu57OIVVKsW993/Ap7nEQwGsaz6/9zrRNl8oco377iS979tLYGAhqgEWDCvi5/ecxuCIDA0PMv37nmGX95/B5dfvAxd17Bti+XLevnK378HgFe3H6d/YBJBqmtlHdtCrRvE4ns2vr0dVXiJWHCcUiXJibHT0KNn4ftvmLgbRt0/UFYUcoUSg0MTAHznG59kbl9nXTcfjdOQSLJwQReXX7SC99/wVhAV/uLaa2ltb+PmW25mbHTs1DFVTcF2LHzfxbRNatUyplFDVlVSqSRBPcxpS5YjSRWy+RATU9On+ra0taFpOo5fYGTsMIqsEo/XS3DnvO7HWiqRSqWpVmqUShW++93v09zSdPK7FWhpaadaqFArHkAQB+jq7ACgUqmwa/c+LrzwQo4e209Dsn6fJUniC1/8/KkJ1cTEBB0dHdTKNebMa6OtI32q/1C5wJLFS7jjjjtwHIdisUi5XGTvvl2n+k/NzCIjU8wUePypjczkDlIsjyCKIqW8R2N87smxN8wnP/1ZABoSDchSgBdf3spZ687hssuvrJdAR3XaO9toSKbYuPFpqlWTzq4Umhbg2cdewKnCJz9xF088/QyFmsm6cy6gUHa57fY7saplFi5cSHt7G93d3ZimiabppNMtfPUr32B6Ko9tQVdXF61tab785S8zcHyEYCCAZdgcO3yccsEgGp5LY2IeM9MGqdRcBgbybN++i3vu/iGCIBBPRPE9kWKxTLVqkEgkOH78OI888giTk5PcdtttHD16lFRjAs+p4bs1dFUjEAggyQJT0+Moisr+fUdOWWloAZ1isUhjawLpzWWUj5eQYiKBva00y3PwfRXXlTFND8M0KZSKyKpMMBQi3ZRCkgQmJiewXQ+Euuex7TioWr0CQpJl4onEyVJcH1lWiccTRKMxRFEkm8swNTnJ1OQEo6PDPP/cixSL5ToJ1vMQJYETJ4YoFAq4rsfdd99L/7ERcrk8eC7TU1M4rsix/hOkUmm2bdvGyy+9wKubXyEWb0ALBPA8GBwcQlFkbr/tJtpa2iiX8pyxejW+5xMOxVDVIJKiguPSmGhAcMGzfIKBNPFEkkrVpGoWkZU6K0ISPELBuoOALOrEYgkcW0OSYkCKxmQna1afRkuzwKIFERTRw/cFtICCJEr1CiDXw/N89IB2kqUgo6lqHYalKPWyasDxCpx/0TI2vXKMVPNceucvomJbnL5yFSOjeWQljKyK2LZLOBol3ZQmm83S338M065y+VWXUK65gEQmO05QnmX56XOxbInZ8hiSICIHk/haEi0QxXJLRKJpytUMPd0hThzei1mxkaUgkhQCV6Wnay7lcgXDMHAcl0I2hyLJSLLCyNg4viQTi8tIsksiESYU0cjkslTNGitWrqR/YADPB00PMj01Q66Qp3duNxdesp75i3p5edOz+GIFx/dYvGQJu3bvRpIkgoEAy05fyeOPbySZTOP5EiPDAyxZshjHdbASFawdGr/42c+YnBzHFz1uuf2vmcwUGByZZM+zj1Ep5+vPyj9iJfP7qL/wBjH4D8Ukv9tef+31TKQoin8QfPSHKMO//dofiol+9zpfP96fCiB/Ow763fP+Pu3s6+23Na2/q2/93WP8ZzPO/22C1//q9uf2Y/Idj+ETw7z/xr8iGI6gKzrVSplCIUe1UmHFiuVcdNGF5HNZEok4a85YzZzuFtpbUwwOnqBv7jxmZ/L0dPeSTCaRFZFDh/fR338Y26oRCQXZtmULtm2SaEiQiCcolcpIkkIkEuXVV19l/vx59MzpwhcFpiYnyWYy+ILA+nPOZuuWl5icGCYc1LBcE9f3GBufJhAIk25K09fThlWrMDMzw0x2luTGCaKPnqCrqxPbtDht8RJCkSiiotCUSjG3u5PGeJjnn9nIzp2vYbsuohwkEIrjiyJLTl+CL7mIgsPx48doTDZy6cWXsXP3XgYHBpgYHmJ0cIhqucwLL24m1TKXWqWAaE6g6SqbN2/GSMwlMb2TT7z/cgIBhQd+8XNWrz2LZEsLO3cdINXUwuj4GEpLA9rbLkD7zdc5+PF30voXl9FccAj86kVCT22h+vJ29EwRXfAxTINAMMBb3nIlAjajJ44xPTbKxiee4fFHN6AHFMqVIo8//STXXvcuatUyHe3NiILPjR+4AV0JMDYyjmkYzO3topQZZ9vWV3Ecg/nzepAloV5VLngIgo9l2+RmZlAED8+pks9MoAo+/nPbEUwb8ZbLSY+/gPfMN/Ezw3hdq6mGmujqaePss8+gVCrRlGohEo7iiw5dPe1oQQWxYyW2USU0tZ1qxWFwYILhoQlqVY9K2aJYLFMuV8mPzVDOZqkZZTq7unBkE0+wCWgSLYkkI0f66elbj2XbgI/gyRRrVQRFZvmqlXTN6SYYihBPNDI4OMJ99/0M0/SYnMogKwqpxiSJeJBf/+o3aKrGwgXzGTxxnIGBfgTfJ6DrBPQA6aY0M9MZpqdn6ezsAgREUcH3RVKpNLVaDdd1CYfjaHqIfC6PKIhUq1WSyRQ7X9uNZdmokoQkCOi6Rld3F6IsYlk2Rs2iVrUQBYVQQKE5ncR2DP71oQdBhGA4QrFU5vGnniKaSNT9CWWVmdlpTLOCKIgcOnQAz7PJZmZxbBfTNGhvb0OSBDzPJR5rpr2jmWhc5sILz2Pp6SvIZfPg2eCafPC972Hu3Pl4PuTzJQKBEMuWr8CyHWRJwjINFi6oLwr4noAiB5GkAIqsoyivkzw9PnDjdXzwQzcQi4cxarW6JhQPH4m+uQvqsKCaRTQaPUVQPvfcc9izZy9GzWN2poBjgyiomIaJ61mAjSBpAIQtjdC4T2Njmny+gK9G2LzhHjwPwg1vPOw+cMOVLDttDmOj4zz99EaisSidnR0MDh6ho60JADUQYMWKFfzoRz9icnLq1APy0KGDHD12GFFyCYZl2ts7eXXLNnQtwLIlfQBEE2ks08Go1RdMXOcNYFOd5BvFsnwMw8a2HBzTwfKCWH4aX2hACsxDVWYBg3x2hssuPh2AV7cfe2N89wREQcJ16w/djrYk1978FoT53bh23T/StKokkxpzuuuf6ewz53PmqgXoep2mGg6FcGyDyy9ZhabVy8kGBqdxXRvXrQJD+O6Jk5ctkq+swBTez3TlMqINbfT0hPBoQda6Tn23mqbVr8+1iEcDpyYVk5N5ArqOoihkMjlGhsdRfDhzzXJK+VlufP8NuFYFzzUQJI9Hf/U98pPPMT38FKZp8cwzzzIyOs7rhm4iEl/72rexzCpzelPE4iDLFnqom3Kleup6IpEY1VqJ9paF9HQtwcdhYmKCSrWIYb6xXx04FiIWS3DTTTdjGmXAJzM7SzLeSCzRRDzmgpgjEEyf6ve1b/0T1WoVBJtCaYzpmVGCQY3v/uAbp/Ypl8o88cgz/ORHvwDDY83pp5167ysHt+K4Dh/4wAcIh8PUajUUVeLr3/j6qX2KxRJ4Ap+48xNcd/37UDSHUFjn2WdewjJUpsZtxscmeWTDE2TzOQAuv/QyVF3G9R3mL+ply9ZtNKQayRanqJoVPAFisRiHDw1gOlk8V+RXGzbwD1/5Kh/84AfxPYdkPMT56y+k6k7w91/5NIofYGxsjM2bt/DAAw/Q3NzM2jUX8smPf44Vy9dwzTVvRVFlFLkOH3rLWy9jwcK5iIj8z899kR3bdvHk48+yc+dRHnrocYqVMsVyieGRcVasXMy73/NOBgZOUC6ZaLp8cnyCXKbKiuVnsWjRIlpaWpienqa3txdRi6MGI5SsMr5ShyyZZpWGZJTWlnbmdC9Ccsq4psH4VJZ1l74ZbJdcJovXaKPcVMF62yTeEQWOBUklmzFMg2AofGpR3XF9LE/CE1Q6O3soF4tYNQNBAsd1CIWD5AtZJHysWgnLKBMKqNi2ge971GomsqwTCTfQ0tqObcsUiibvfM+1aJqEj4cgiJiGQ2vLHNJNHZRKed569RWcceZy5i1cyFlnraa7swUJGUnRiMYaePe73sV5567jjDUr2LjxRQzDJhQO0dFV14h7GIhygFCigTnz+pAUDddxGBo4RqkwjVUr43sQb2zGl0PgSJi1MslYA5VSlophI0gKkiwgyiK+JOKLIjVTpX+ghiuFcKj71OuBEIcOzKArPRjVCsFgHMd1sWo+AvWqI0UO4NgupVIZRZHxAV3XKZfLuHa9gsSxy4QjLoGwyuRkjpGxHIKqMzQ2yfyFa8hkDFzPQZIUivkZarUKvi+wYNEyaqUK1WoGSRbY9MpWWlJpwpEaLS0Q0gL0zokjSTVkwUZVQxhEkKUkNauEJHr09bSw/qwWnPIgTz/2BPfd+0uKpQrVaolCbobt27YSDkZIJJuJxBsIhiIsW7YU37XJThWo5D1ww8hSAk31aGqMMDJ8jEhII6BJnHHmSvrm9pHJzOLjosoBSjmbNSsuQJfT+KJAOBZh+fLlbNu2jf5jx1BlibdfczWKLFItl2hq0Hj1leeYHBth2h8hMtDGe99zPZ0tSa675k2EmOUrX/qfBNtX8N5r38ODd38d27b/ZGAnSdJJHfgfbv+RuOJ1iOQfSrr9bsD354pX/r/0ov2/oSb/twte/z2U4T/195+rvQ4n+H2rE77vs3vLMwwVZTq6lpCp5aladYR6b3cPIcliemwAx7EZmZjhiedfArfKkYHDnLbiTARBZMeOTUiCwqvbtuOLsGDx6TTEo8TCOtVKjrPXnYWiKniOi2PXPTvHxkaxq3Dh+jcR0EVSyTl4rkw0lmbe3CU4NZcD+4/Q2BglMzuB4xqUZwtMjh5kzepuDh08QLlcIB4NMTk+jKqq9C5cilp0kPM2VcNAlFwOHn6Ng/sOMzs1g6JqZPMVBF+hOZ2iWMpSLJY5PpDD9lVWrj0fX0+y5IyzSHV0crj/OIePHOfX//ow8USAK665hkWr1jI+leXeH91DU2sLFiFEKUFmNoNsj3PeReegNaSQ0wvxtnwfwc4gKRI2Ds0daXbvOYQvVlAkC78q8dX/9S1uv+NOQquW4N98LWP/+CFGv/MJijf+BV3nrETdfxjhgecJbd6LdegIrQ1xQKC1q5NEU4oLL7qIN1/1Lnx0lq1ezi23fACjPIPpVLEch3AkwrHjRwkFw7S1NKEqNr5v8fTzz2MaJrlMnlg8SbVWo+aUcVwJVU+gaBojo/2YVgVN00hoMdyXduMvDmLe2ot76Bd45QJ2x3L8lsVU7Xow5nlCfaVakahZBrIWQJR8HFfAc0VwHfSu1XD4ObKDk3zsto+QTEY4eGgPOC43vO9DJJo76Z7TRSiRQNZ18rlZAoEYklD30zPdPJ1zFlGuOfiAJCiokoguSdTKRUTBxzItctMZdFnBMatc/Zar2L1rF63tXXU7HU1DkCQuOO8CPM+lVLaZu2AZLR1tlAoVfNfB92wamhro6urG93xsw0IRJQozk+B7GL5LtpinVCpQyGRRBBld0zmwfx+SKDI1OcE1b3srsioyMnScYqGIHowwm8tQKGXYs2s70WgYwzB44Cc/Y/+BQ/T3H6e5qZl3vO3tKKLECy+8gKoqXHzRxQwNDmFaHrKokEwkkBWVo0f7GRoaQxIDRGMN+D4MDwzQf/gAouCAb4DqEUlEcD0XMFGlGqEQtLQkkFWHiplBVGF0ZIZIJIlp1hg8cZxgMFAHRCkKqqbRmE7jCSBIYJk1pjLTqKqMZZtIioQoexhGDd8XaEyl6lozOQC+xfKVC5B1l2KlgOfVH0K7du1CVcKMjU7wq4d+SUtLC4oSrFvFNE4S7Sxhu3Vrl5Mj5EnRi0gorCMGI6xdNgfLdClk3xjvVi5fytDgANe/+3oaG5J1rb8P6889k9bWemBSKFZ5+fmXeNvb38FjT2xkNlNCURxa2nv49g8eYenqa5m39O1cfd3f8Ze3fp2mngt4+vltAExOTjOndyH3/vgBDhw5SK1iMDZezyQKvghifUJYqdXQg3EEGQ4fmuS2v/kuK8/5DLGWv0aO306k5a9o6r2J2z5W129OTuXxhTKmWUNSQvjIpyYdK5fPQdE19FAIRVFPriTLBINRGhujAKw4fQ6iXP+4pUIJ17XRQ/VMUWNDBIBipoAuTKEJryEqaVCXnnz2iDSmRFR1mES4gOOGsbwOPE/CsX9rhd0Hz3PwKlkk1+b89asAuOKam3j7tbezZctBBE/hqSeepmRWeO6FFwmFG3E9j4Ae5cSxMf71549w8HA/tVoNXdfIZDJcfNGFNKeb6O8/geMLSKrOnXd+gh8/cC+CIpFIyZiWQqVaJ3y/3nLT4+iaiCdp+IH6Ukk8FSeSSNCYaju130svvoTrutSMIqpuoOoqhmESi8cJRCR0H0aGJymWKnzi03dy1RVvAWDX/l18657vsn3bViKpbmolnw9/+EYefuQRFKW+ICCIIkuXLuXEwCh3ffwfqRZFrnlrvez5vuP7+fBzv2Hnvh3s2LWfD9/yST5y2208/PCjb/QXBMSgwDve+xeEwxG6e87G9mJcdPlVrD5nFT0LW/j85z/PS5ufx3Hq5dZXXLmWv3z/NWiaj2ObtCRc4nKVuKYjC3Ud3KLTVtHb001IagYPPvnJv+SLn/8cbS2tlCs5Bk4M8a53vwMRgaGhY7gUKFUKrFq9jDndC1HkIE3JOJ+7604uuuAMfnzvd7n1pr/k8Q2byM2I9MxZwsc+9RG+/u3v0NjazKc+9xmmclMsW72a6973dsYHjtHW2MaFF5xDsVginysiS0GOHBrCMC1Wrl6B7Vr09i3A8xQWLlhMJN5IPB7HLmXZu2c/nuQzlc9iGj6N6UjdF5IghVIZXzSwfYep4eMItk2h4qGEU5ieS7VSRMZHmVdEu2kKFAt2BVC9GGbVIBiMIMsq1VIRz/CRkDCNGoloCE2GoBbEcx1kVSHWEMcFapUSkueA54AY4rEnXiAQjOK6DlCHJ4r4LJg3j8nJcUyjhCQKiJKDIMg8smED3/vO9wiHNFJNMaoVi0BABNGmXClQyuXZs2cX5co0+A6O7zNbyDM6PMqvHnwESdAQBQHPtNDFAJLoIqk6smDj+TYeLl3tCQJ+Bg+DYCRFpVxBsAqIAYlqtUi1Mk5zczPgYdoutiOhqwEkz8e0cpTzRcKxNNliGVUMEgzEaWnrYu5pCxiZHWNk1mX3EYPd+6cRJYG6LadNzapiewJq1KdaNRElk5prMTQVQw/GqFWriL6L77qsXNXBYw+9TENUwywZbN/1Eh4RfDGJIIoEVIWQXCMgqkTjKUQZ1LCKJJusPWMey5aeRizRjqw0oKoCnlXEqc6AM0Vx+hieUUMONaGHe5B1BVH0kCWZppYwK1fEOH9dirisMjGyj+NHdpFOpll++lJ8wcVUCnTOWYCglkEKUPPzhJNBmlqTWM7/Zu+9g+O67rvvz+17ty8WHSAIkgBIkKBYxCpSElUtyVa3RFGWbMexLFmOq1wilzixrSd+Epe4xEWKrGrLsiJZVO+FIin2ClYQAEn0tr3cft8/lqIVO/LkTZ5n5slMzswOFthbzt6LOed+z+9bivgUCWhxbMNH18LU1TcjByPsPXIIW5IYHJsiWdUIYolgWCFWFePgkYPEYyC4EomEiiLGkAM5MtkSB/Yc5/Chft7auoe3tx+i7/gUr775Ok9vfBIkn1cf2UbP+DCHu3sY29vPV752F7mix/Uf+wyvP/Zb9MIUuihhoSH4FuIpe37B59QiYAVovrtK+ucqte8GnP8Gm4j+6ZePi8+fmjf9ufzY/0jF9b3aH1dAwfuT1x8fvwIZRTwPfF8AKqy+f7vfn5oyvVf//iu47L8deP1/qbmu+55lc0kWaW+fxdlnn00mk2FsaLxCC/HLhNxJ+k4OMTaeIp5IYpZLhAMac+cv4MILL8R1bEaHB/ngtVfgezaXXfI+FEnGtizi8SSlUrlC9ZEEfN8iX0jhuGWGho8zONyHrDooAR9Nl8gVx9myeSNDAyc5dLCbV156jng8SlVVTcXhUA9yvP8k4XCUurp6mpumEYnEyBcMfCRKxTKe46CqAURRZnhkHESFuvppzF+wkDMWLEAUPGIRlb7jvcye047N+51mAAAgAElEQVRZLhEJBWhqqOPVl19ianyceDiGrgaIBIOsu2EdiaoqUrk0b2/Zgu/7p7RaPosXLkISZPLZYsVlVtEZHxrEzE6iii5OohG/bjbGM3eh5wfwfRfXNrn+hisJBhLs33uUfDHL17/xFa666gNMnz4N1zMJhGX+8sufQbvyfPJf/igDv/o8mz9/BdmVc9EKJjz4CuKTb+FtPYg1OI4iybz08gscP9F36hFfolQy0bU4+/ce4eGHHuPo4eMUizk8ryLiD4ejLF68jPb2DoZHRnnggQdxHAdNDSFK4DgljFKZRYsWk81kMbcexHnjNZzLVZwzBQqGQXeumpxch+nJKIpCMBgkHKnEBfi+x8DAALpeqczIkko4FKFcNjAnj2IWBjg+XiA68hKdnbORJIFzzllDOBzmtts+gWEY7N9/AE3TsE2DkK7gFzJglNm1fQfZbJGAGqoE2Ns2u3fv4tixXhB9wpEIx44dY2xijFgiweYtbxOJRirOxKEQI8NDWIZBJBzB8zxGRkcQfJ/R0VEMo0wgEECSK5QYUZQYHhzFskxUVUXXg9i2japqhIIhJkbHiUUi6JrK6MQ4x0+exBNgZvssLMuioaGBAwcOYtseiqqTSCYIR1REAYyCydy585AVhWAwjChIzJs3j6bmJgqFPIFAANu28AVIpdOMjY1hlst0zJlNb28vvudTKpSY1TaLSy+9FM/zmJiYIF/I09jYRHvHHBRZxXZcfNtlcmIS23aRVR1VC2FbHuFwjN5jJxAFBd+Tmd7aTKGQxbWhpWU6hUIREDh06Aj5XAHRF5EEqaLllCQUWWHTxk2oinqqcimh6zqO41Aql09hTh9RlCkVLURBZfbsdjzfw/c9lixZhCSJrD57FR+66UaKxSKyXBnq65rCSAGTUDD6pzYLQoW6SbAGd+IQsiKyYsWy0x8HArVMnx4jl88xf/78iqGI76PrQSYnJwDIZLNYtoVj29x6662Yhsk16+7g+pvvZP3Tb3Li5CiWZRMJ61QlosSiIQJaxeVxaipNPp+jo6ODTZs28euHH6a2plL9dD0XURSxLItkMomqqvz87sdYueYvuPveJ+g+2EuhWCYWDVFXG6OuNkQ0GgAqVWlJCFYo0cIfVrgBIpEAtm2frvQDCIKP77uop2jV0eg7UTkSiWQVrudhGObpcR6gVBpFlidAXYGo1OO6p66uL5HKVFEwGslkg/hiDNcD1/NBeBd4FTzSmQmGJ9L4osLPfnQn87vaKRTLPP3iFi54/ydonn0B9z/6Gj+/+/fUN04jENDYsXM799x9NzU11VRVVeG6DvF4EkmUqampQdUUEDw6OztPGb4UyKTTLF++Aj0QQhYtHK+WQCBAU9MfQGkulyOdyQIinu1UNMOGTXo8Re5UlRJgaHgI0zTp7+9H07RKjIt/Ga5yNTU1NTz99HoEAZLJKu67915++L0fcs7qSvzSfQ/+isuvuYZYUGXxihU89NtHWbrkTK699rrKvQmHaWlp5s6vfYV0NsUbb7zBzGkzOG/NGgD+NTPIslXLue7mq+g+tp0Hf/0InR1trF5xVuW+RaIYZZNVq1ahaTKyAooqUChmEEQXz7d44fmX2bx1CwCLFixiWlMrvi8SjYaRJB/HtOk/fpJisXhapzU62s9UepLV56yhWLB58vkXcUWN886/mFi0Ck0O0d7eTlNjM0uXrKz8n8x2SSWHWbt2Lc8//zybNr9KoZjh6NGjtLW18YUvfIFPf+Y2nlz/GMnqOP/8zz/iq1/7CutuvJ6du7bx9W/cSTAsUDZTLFnWScmYYO/+t4lEIiQSCZLJJF1dXfi+wL33PoBp2BiGdUpiYVXi+XI5yuUyy5eeiSxGmDltLrZlUCyWcF2/IuvwPAzDwHUFAsEQelDD983Tx1BVFcdxiERDeLUWkx/YDxflEd4OUR62MM2KLj0cDqFpIrZtUiwWsCyHTCaHh48W0BEFGB8ZRRQEHA98Ucb2QA/BdWsvp1zOMjh0nLJRQFYU6hsa2blrD8WSQTgUpa/vBAIinmfT3tHKX37sY3g5GXMLJE7UUjogUDwioJTD7NtyiCs/cCWiUOmPIHg0NNSwavVKrrnmarZs2YosKyiaji+IeFQq1/lSGcsoMDrYR9kwMFFJxtowyhaeWGAic5KpsRSJeD2ep5NOlxEEi5Au4LklXK+IqjrgWhRKJtlCmVAwiGGalQxpo0w8kWBkdIxsdgy3OE5bax0+Pq7nYVsVhk4wpCMLQSRUfEfCMR3e3rSdcilHQNPwEUFQCWhB9HAWxy3g+WWuufpqorEIzdOmk8+X8PDp6z9G//FeovEInuuiKi5WWWbXtkG27dyK4Q+jacFT7BcV07QoFXKokoMgWASDMWQliksADwU9oFAuTqEqLqEQLD6zlZpqhdRolrHRPqJxH0XxeeXpfbhmnq1v9KIIFg2JeQi+jKrKmGYZy3SwHBtV1xAkASQBQRRoSrbw5ktv0drYyuTwJIoSZnh4HMswONnfSzFlk0sPs3PzHnoO7uTAjgP8+qF/of/YDnoPb6Wnez+iXCASKFAdEvDLNvtH97DYXUnqxDHGUyfoXLWAz97xRcKRGE898zzBWJKH7ruXUjaF5Ht4yPjCewPI9/r9z237Xu2/WmT7v1Woe6/z/P851381GueP2/+A1/9Ck2X5PVc5slOT7Nmzh2g8QV1jCzNaZuDZDq7r4jgO7XMXMb19LjNnzGLBvE7CqognyAiiRFUswujIELZVIJ9Pkc1MosgSIiKipOIjVfK8RAnf9RGQmJiYonXmLAYHBkA0mEqN09Q8g1wxx9IzF7Jj2yYuOHcltcko42MDWJbMZCpLU1MT7e1z2LF9N9u376K/f4DeY8dRgwkuuexqZs7swDEdcvkigiCy6uzziMZrmDGzk4JhMjw2Rio1TjgE56xZRaGYZ8XSZcRDQTynzJyOmYwPD/Pr+x/EKZoc2rcPyzDp6JzN2pvXce21a9m65W1md8zisssuZXBwgNqqRiZGU+zcvYtAJEm8cQ6y55If68UuDeElahGmL8Z64x6kLfcjDm0nrJtMTJhceNH16AkVw8mx8MwuylYRRCiYBV7d8DKGVSQRr6cm3kbTWStJ3vlxnJ/dwfCv7mD8IxdTDOsEd/XCr5/hfEdhWiqPeWIYq2jx2uubcWwXPRjg+uuvY8mSZaTSKTRdI1FVTalsMTg4xrPPPs+0llZuu+2THD8xgFvy8As5hGIOLVeEvT0k9xxFXOThfrQeq6YOYfoqxEQrh3t6iMXChEJRfE84DVRS6UnAo7NzDuapLDfb9sjnC/z+908ipPZhj2xjxvILCGUP8pVPrWP3/gOMj02h6yqXX3EZrusyp6OTbDpTicVRYdOzv2XRnFl0zGxjcjSNa3gMDg4SCgU4Y8F8Wluno2oKAT1IqWySrE6ih4MsXbGcXD5PbW0NNdU1NDXUUy6XsC2bdCpLTXWSgwcPML1lOkePHGPL5m2MjAwxNTWFZbm8+uoGduzYVnmg8X0EQWRkdJyhgUE800J0PRRJpGP2bJpbpqGoKrKi4Hk+ExPjbNu2jb27D1JVXY+Hy9jkCRob68lMFTANB9fx2bt3D8uXL2dqKoVtO+zYuQPHsbDsMhddfCH5fI6pyQmmNTeBKJLN5xkaHEQPaIyOjjA+PsbRniPU1FTjeS4nBwbp6z+B60mMjaXxHZeqWJJNm7ZSLLkUChaWJWBZAk1NMxClIKWCzdjEILF4gL17uxEQCYcieC7U1DQQ0CIMnRhkZGgU07QR5Yqr5NnnnM22bdsYGBxAEmV8H1RNw3UdDKOE7zt4rshLL76JZQrIkkCxUKBQKKCpMmWjQCweQRRBVgV8wUMSRTzfxnZM8NTThdd3QG+F9uojSgqoIZjcx8JFXafHNEFKEAppvPDiE0hyBVB7nk9Qj1FbWwGZQV1n5syZ9Pf3c/jwYdY/t4GXXt2GJIl8/MOXc9fXPsID//wVDu94hK9+5nL69z3FJRdVHvBD4Qj5fJb+vl7OWX02vv+Hic6yLBzXRZIkfN/nwIFjfOmr/4TneVx95Xlseu1X5MbfZOzkC+zf+TAnjz7H975Tyfz08VEU77SrouNYf5hAfQF/+z787ftOGYV5BAIqqiqfBvee5yL43ikqmYQkV8xPSqU/0GfVgI4vd2G5dVhuLYIYPnVuUBQRRRaJxJPgiwQ0DQ+RdCp7ev9CoUg8VktNcweCEqKmppqnfvd9bv/YJXzqE2tpaa7BB/YdOMa3/v4eLv7AZ3np5U10zZvHlVddTSIRZ+myJeRyad7evJ377nsISZIwDANRgp6eHp599lkymQzjExPMmT2PjW9txTLLyHICRVFob2s/3R/X86mun4Yoyaiqiui5bNu0FU1UOXn8BACRSIQ77vgskiTRNW8+2WwRVVUpGSEyuYoZSE1tNeFwGEmSuPLKKwiHQ9zz819w9z/fzaXvex9ts2YyrbmJ1WedxYduuInnX3iZ8dFKBXj27HYEzadk5bh+3TV89o5P8+1vf5vHf/uv3LvsEi6uaaG2pobmpiY62mbxpc99kVefeQHLrixMzJo1i2LRZOPGN+g+uJN8IUMoHKC6JkFAV5AVgR/+5C66D+wH4KYbb2Je50pcR2Bw8CQ/+ekPcASFWLIGPRRGlmVK+Ry+P8WM2a189x+/x9NPPM2D//oEU0WDrjPOpJQ1mVbfQigUolyCXMYkGknSHd1M7ZVBfve7xzCtAk+ufxTPc5k1czb33fcAwWCAX97zA2Z3tpDJjqEFRCIxmUxuhHBUomymsC0f03RRlSCeKxKNJhgfS5FKZSgW80xOjRKPJllzznmcv+YCPnnrJ9m/50BF+y6KRKMVnfrJE33s23mM7CQUcin27dmPruns37sPSfQIaDKhQIKqmmYSVdWIgoVtu2iqDghomo6LBIJIPBFHW1VC+YsUod4awtkEnltZ6EnnxhFln0QyiShJhMNhHHxs28Z3PRpqazFKRaqrG0jnTJBVVM1Dkip553W1TeRzFqNjExTLJkuWL2f6jFZcF/JZg3LZwnFNOjpnku+zUfYk0Jb6jHfu5Wj5MHokhDweYUl4NdVHZhI/2IzwdhQ2RZH6dFry7ZS2O3S6Cxl6IY2zTye92cEbVLFOQFCpIqxL1ERVdF1HCNcxNHIERbYQCNPYcA51NVXYjoekRwjGooiOheR72GaRUEBhcnKUsKYSTVZzxtJlRKNhNE2ju/sAU1MZxsam6OycT9e8NpbOm0YkUMQXRSRFwxcq+dSuZWOXXIK6SlAPENYVPnzjShTBRpJFRCWE48ps33ycyz6wmF1bd3OifxhNVrBdi4NH+nD9CKIoMq25nuaWRkpGkVRqityYQC4zRVNrhJIZZt8+n9RUAc8XEUUFSdYRXBvLGGNs5BDFQhmbEHKwiXDVDDxfIqg6qLKP4BVIp/YR1HMs7AqRGh1k28a9PHzfg5y1aiHj48dZsrydzW+/jGlNUMqUKOSzlMpFPNuntqEZyxGJxqrJZsrIUoBg2Gfu/GZmtMXZf+h1uvcdYsfWzTz68D2ofp49b7+Gb+0joZmce1aC1Ys6mTMjyDmrGlnUqXPthXNpbariA2vaaK/2uPna5Yz7B5hTOpOumiiyFmXfsMOaiy9m647t3PaZO+ibKLD+icfZ8vpLBLwyniDhr/GR1lj/5hn/f8Dr/4DX/7ZNUZQ/uRHvlNiTiSi9R4+QL5Qo2x66anPllZUA9lgsRqI6SaIqztyuufQcPcRZK5eyd+8eJsdH2b9vL6FoAlnTCUYiyAENSZURFZFsLoOqBQAFy/QRPIVy0Wbbtj10dx/FsSR830NRdIaG8qRzJVRVZdWqszg5eAJfsAmFXNKZArKq0XP0ANlsjo7ZHczvms+yZUvp6GinuamRF154jrqGBkzHIxjUMS2TdGqM9NQEGze8RVUyTjgcI56sIxhJsHXbDvr6hsjmLTIFg63bttLX14tpljln9cqKriUSore3l+7uA4yPjSCIKooosWXTRrK5LJdc/j627diNY7qkp8YwyjZlP4SnJjFMH2PqJJnhg1huGXnWCnzHxut+gfK/fhN5z73kT25HjyUolkokklUEQ1GCwSpa58yn5NgEIkE+9+nPkJnMU1dbxciJEyhSlGBzJ30za4n86BtYT/6Y/u/eivPhD2DqAcK7epAff5Wr62ci7+5mtq7hZceod2zqbQmvb4TSa9tQdhxkua/wiTPOJHnwGOJrW5gzOIX8yDNIz27Bf2YzwvY9uAt87Jui+F11ZGsW8Njre9iydRuBgMp1113NxNQwogiiJFaqQiWDeKJiuiMIFQ2haZrkclmSyQRr134QxzYrkRLlEmakkdleP3f9r38ily1hOyaWVULTNDTVwShlEH04fOAY73v/hby5aSPBeJw5He3EAiLxeBxflNEwUBQV3xfwPJGursVks0UEWWYqlSKWiNPb20s8HuPooUPEozGy2SyNTc1MjI8xt7OT/Xv3Ul1VTXf3QWbMaENVAxw8cIAbb1zH/DO6kGUFUZAolgrEampwfJg5YyaCCB4ukigxPjbG4UOHSE1NYZkOpVKRj3z0Q9TUJjnRdwSrXMZzJAzTYd7C+SiqjI/LypXLmT1nFlVVVZTLZVavOgtJBlWVGDxxkqAeYN78eeRKBQKSQkjXaetoR1QUqquTyLLErFkzEQSork4yd14n8UQcH2hobMKj4vqYSFTie4LhEE3NTQiiQDgcQtUUYvEQslS5XmetXowo+ezv3kMun+XE8RO4rouiKiiKTDgYBLdCT5JEiRUrV5BIJLAsB0GQ8DyPSDiEpikIAoyPjRMOhxkeHsR3fVSlYuZx6MBhptJZfEHE9X1kRcM7RfHxfZBlBce1/zBo+T6+X7HXl0QJVdUQ9CrEbA8P//q+05sZRpmiMY2lS2eRyWVxHJdSuYRhlpmcqFReHRe2bd3G3HnzaGtr44GHngTgIx+6nO9/9w4WL5hFS3OSaCLOxz9xG4btcnJg+NS+Dka5QEdbO0apzE03fYixd5kITU5MMD4+wdjYGI8/+Qqu69LeNo17f/41Fp7RgSwrmJZFNBLDQ2RoVD/9/XB6kWUL38siK3/QKZ022Dj13jRNPB9AOK2LlWUZSRQq1UffB0FC8EUkIYVA5X75Qpyy04ogJRAFDUU5VfU1TKLRIILvoSgyou8iOBaOaSKdArgAmhLhwP5+8EXu/sU9vL35bTZveptVKzr51tdv4bEHv8NI7wvc/eO/pq6m4p56019+DVlQSKVSjI6O8sorL7Fi5VLmzOlg3bp15HKFSs4tCjNmzGDu3Lm0tLRglMvs2LGDY8f60YMiJUPBNE3a29tO9+fQkSOkMyW2bt2J5/iIrs/6Z55H1YO8ufEtAObMnoMkCWzYsKGijw7FKBQK1NbWMjExgSRJLF16JplsGgQwjBJ9fceIhOOcveoc/vqLX2bb5rfYtfkN1q9/iu//0w8QvCI7dm4HoKOjjULJJFnXzJKVi5nW0ohjGVz1/su5Zno7j557Nfu2H+ScFefy4rMv8albb+OF519h+86tAJy9+iyqqqKcd94FdLTPQ1MD4AtMTkxRLJTYsX0nGzZuACAY1Lnppqso5CpV5KpknOuuu4GS7ROKVyMqAUzTpJDPMXf2GZRth/6hPm75xDWEBRMnP863vvllLCvFnXd+lkwmx5FDxxkfy4Ivce21V6HrOtu2bePQ4f3cftuX2LxxHxecdzlrzr2AxqZaFp85n3PXnI2qaoyOTpDNplFVmfnz51WoeV6Q8ZEiV195Ez/43i+IhOr5l3vuJxSKkEjEqKtPImJhm3n27t7OnV/5IgsXdOK6LqZpntaXRcMxmpurOHp0F3U19SxZuIzJ0Uke/c0jBDWNV19+HtMs4qLQffgYQTVAPl/kO9/5LnogRLFg4PhBPCGMIOrYZR9hnkXky2WMfhetECI1niYSTZDJlphK5VA0DU9wETwfy6p4bKSzWTQ1gGG6qGoARbCxLRdFCTAxXtETVycb0DWF++69m5HBkxRzWQTBQ5I0du7Yy8jwCF5flFA2gf+JDEenvU3HB+uYcfs0zLUjpG86wqeO38STs37ByNq9ZP/yCP5nh3CWZzBXTtLTuIfYlSKRyz2M1Wm0ZS4FN4MiSPhv6Rg7EgjHWpFGE4QLQWrrz0DXk2SzI4xN7iaVGsX1XAKahGOkURWJfC6HpgUpG1BXPwMpmAS7zNRwPwMDAziex/IVK9i7dz8bN24hoIfZs6ePvK3jKSqioCAIMpKkgufhuQ6CAJnCJOl8DgEfyxzGdj1sD1RVQfZtovEgR/b3Mj44TkDVKRULxOJhGqbNwnHDeAL4nkdv/3FKhklADWL6I0TjUebOWY1h2MzubEFRAwgi2I6FpgVAEpAED9Ep4DuT6HIZy3Lx1XpKbgLkJJapokgRuubOJqzFiEYziEKZzPgoS7um88rzT7LhpZ2MDfaw5+3jvPTMc2SnjjM1mWV8LMtT63/P079/FFW0eejeX7B1wyu8uP5xHrx/PS88s4mNb+6j9+gkQ8c2sfSMWi5aMwfBHWfZwiiKn6WlVUFWFLKlcZYunEksJBPQPFSlSEsigqL6VNU3sWv3NhYvlrD8PD+88wlefmErS2ctIpcd5++//VXGR4dZfe5FOGKQL3z60zz9m18R0VSY6yHOdU7PGe/MG5Xp5c9Tdd9t5vrO9n9M+X3n57/H5Hyvv/17prJ/ri9/ztj23bGg7/Tj3Qyld7Z/59x/TAH+94Dpu/v27+Gk/yqI/R/w+n+pWabB9OnTGRgYYCqdZuuWN4hGQwiCQDaXJ5uZQBR93t78FtW1SUzbJB4JU5OsAK993YeQFR1NDyNICqZjYXk2sUQUz/cQBBlRDDA5OUypnKGpuYZsfoqG+lpmtTXT3FJPXUMDDc01pDJZmltacDyPgK7TMr2eXD5PQ1Mdyeo4uq6RyaQYHRuhv7+ffD4Lns2iRQuxbYe6piYc20bAJx4LMrtjJs2NdWiKRM+RHuobWogl6qlNNpJKFWme3kairoELLnofeihEMKTj4dDXdxRBglQ6g1Euo0gihmkxvbWVjvY2duzYgRQQWX7WWfQcPYqmSmRTWYaO7MX2VeJNs9ETTSSCIoJVxHFd1LqZSO0rCHSeT0ByUfc+jPvc94imjmEZJoKk4XgCliUSCscJBAL87d/+DboeoJieoK62hod/8yhLV15YuTfZPLd/6jNs6D+Kf937Eb57B5+ot0j96IuUr78Qbf5snMEJwk9vhdE09mQWYyKNumQe3kXLUC8/l8BV58Ot1+D+418h/dPnEZ6/C/flB3nmimbsW6vxZwUR2s5CmXYGsWQtVYkkyWRVhdIkegR0GUHw8H2XYDBEJBI7HRNiGAaiKKJpGuFwkGwuje2YCCKVnF9Jwo3U4edG+NbtN1JTUwd4qJqC7/sMDfVQlYjieXDG/CWkikWqGuspuy6eb3No73ai0SgZpRrsAqVSiWLRYMOGzRQKBsnqWhCgrqGe+oYGkskkqVSKqclJ0qkUx4+fwDQtamqS9Pf30draSqlYRlNUTMMmmazG811s2yCXq8Ti7Ny5C13XMV2HY7292K6D63sEgjrpqSkmxyeoSVaD59PfdxxRFMhm04TDATTJI5tKU13VTDhWhSu6uK7N6OgwCB6TU2NwKu9MlmVSqRSmWaahpoaW6S0UjRKJmiR7tu+gpipJ2TDoO3mcYDCIruuUSkVc18W2LWRVpLo2SSabJpvNgCQhKTJdXXMRfZtcLk2pnEdSBPpO9KJqMh4GtTUN1NU2kMmO4rgWnXNn43kO1TVVIPjU1FUTCev09x4jm5pCFEWy2SymYRKNRJHliobP933KRul0ZEJdXR0XXHAeL770DIZh8+bvX0VIecztnIdpWnguVObLikYFBHK5IgIisvyuXLdTdEhVDWBZdoXaHa7FLwyfps4ChEJBDKuBjvY6SqUsyvmfpubqb6AoIqJUOdbhQ0epqqri6JEj2LbNyNgkAAvO6ECWYcaMRhYtmkOxXGbvvm7uu/8hjvZWdK2e67Fi5QqWLVlCR1s7Tz/9DHV19QAcP95PNBZDVVXq6+sZGBwDoHP29IqBlVgB5oqsIYoyvgevb9hZuW7IZM0uHCuNKhdQpDLvyIjembTFUxO4oig4tofvi4indLGu61MqFfE9B0nwkcQiipImlqgBoXJ9LDeKIILjlnHcEvFYxQxrcjJLaipVydxzXUaHBnCMEr7rsG3nntPX1sdhTmc72zZv5sM33cTqVatpbGrk/AvOw8els7OTeCzM2usu4Jc/uROATLbIvu4e9u/fjyiKrFy5gtdff51oLIyqKTz4wEPgC/T09PPcc8/R1taGYRgkk0mWr1jGBz94BQIu4WiM0dFRWqdPp/kUdfiZ519ED4VZfc4aLMsiqGt88IZ1ZAoFBoYqkToXXnghguDT0dFBNB4nFIqQTqexi6/SMaPiliwIAtOmTWNycpJyuUxHRwfLl63iicefoa62Gct0USMBXMFF0USee+ZJcvk8sizzFx++EUnUME2BYCSIYZQoFAp8/x9/gH3d+Ug3X8FT618koFbxq395BNc1MVwLy7aQZZnrr7sSx7VRFA3fk1GVMK4jEdCiyFIQQdD47aO/B+Caq65FlePcsO56WltbMIwy99/3GwaGR3D8ivOxLIkkEglkQni+xLXXX83Q6CGOde8kGZaJhwUcL8/3f/Rt1q9fz333PUQ0kmBgYIi4V8W253ezePESLrvsEhQpzqsvb+ELn7+T1taZpDOTuG6FsqvIGnogQjqdY3h4DM8TMAybXGGUx598kO/+wzf4/B23UjYnueOOO6itrSUcDlfceadGKRVzGOUcppFDllwURUGWZWzbJpPJsGP7bny/wBmLWnFNH8/xEJHY+vYW0qlJFpwxH8soAtDR3kVmssChg0c4//zz8WML+xgAACAASURBVDwYGxvDcWTuvud+tm/dz5HDfYwOjlGO54h8s4RjukR6GhFPhEmEawmH4niehySJiD7oAR3Ph1gywdRUiqmpFI5lUsxMYDtlRMkhkQwhKy6GlUGVBNZd/0ESkTBBTcW0SvQc6YETGjMHz0QoqZgfG0eYlSMRC7F/Tw/hSJCnnlpPdU2Ccy9YzZU3X0nNrBpcXcCPavRHjqMu9TjzY3PxzsgROttCWWLQsDZA4iMFvHU9OF/qwbx2gMC5TkUKsV/EfUXD3KQTH55DQmpCFAJEItWIKPi2R644gay5mHYRURbIFvL4agRVdIgHBCRJRpIlHNelsbGJq666mmAoQkPTXH67fhOOVFkcKJUNKhmgYsUXwhYJhuMoSgxVSxDUo7ieiKwGcB0LCZuOeTpdXe1c9L7FNE3TEBE4fPQQI2MTeL6M4zpMTqbo6joD03I5fPAou3ZM4LgS8WqHD1x+LrqmUCyV0HQVX/BA9FE0DRAJBlQ02aCUGcKxynhCmGiyFU9OoIdiKGqIQrFIIW9SymtMa9U46+wodbUlLlrdxrmrYFrSZd0Hp7F4TgOSXObF51+he98RCsUsM6fHGB3qZuniGZwxt4Gp0WOcs7Ke9laRiDbBeaums3RhM4mwRSIKS87sxLUNRKeaUtnhqSe7cYQYsuARjlQhq2H0iE5IzVN0SgynfBStiaiiMeYd4vZ5/8DLrz7B0Z0P4dlFvnnnHVx03jlks1m+/9N7mDOvi7t/8k9kJ4ZxjOJ7gr//SLrJO9u847z7Xpmw/1G96h8DyT8+z5/rw5875ru3eTdwffd3ey+Dpf+s3vY/2/7bgNf/0yXn/xPtnRUYQRARfQHBq8iVHd9n+OQAiixTWx3DLaeYNX0Wv/jJz3Bdl7q6WmIhnT3bt1HMZNHkysAyt2sR6UwBRZS46PxzKtRA2yKoaqiCgopMemyC/iNHOH70AFMj/Uiuy9jAEAP9J9GVAPl8gZMnsxRLDrGEgqYo1DU0ki/mqErUoAY0fCdEV1c7mYyBYYl0zK6hq2sO5ZKD49m0z5nNyMgwe3bvIJ9PkUtNEQqF8Vw41jPErp37TukmHeprEgyfPEZ6aoJoLMKZSxbQ3b2HQ92HkdUoubyD7UnEI2GMQopcJs85515Ee8dcgqEQeGWqquJMpdMkEwnMvI8sW5z3vtUsX3EhCAItbQt55IGH2bJhI5Iaw5JjeEiYxZNkJnuQXCg4JnJ9B2L7GsRoHc6hDdhPfpvy3ucQPQtVDeA4Fq5nsnjxQibGJpD0GFPZDJdfcTHf+rs7WL5qNelCmp/e/WM++vFb6D2wDVWx+eHPf4jS1szeapXA3/wVPV++hdJbD1L40V9x4NNr+eWiJpwvfATllqtwb74A9+b3452/FHXuLNS5M7FkBf+Nu7i0HdzkDKTpZyDrUXxBRRAELr10DZ3z5iIrOrbnEQonEQQR13aQ8HGsMrgiqqxVJpd8Bt91CKgqkVAETdURTlHOQ+FGfnHPgxTDzSSGNqDINtlMEd/XEFUdUashO5lFcm2GRo4TiXfy9qbX8ItjGCWLtkWLyFsFJLUWuzCOIEFAVzlnzdkc6zuGbZrkDQskBVGQwTVwymna5swjmojR1TUXyzCpqq6hpXU6ggDBoMzatVej6yqqAo0NtYiiSFNTM4nqODX1NQiCRHUsxpqzV7Fvzx6KBQPX1zBtk6ZpzdTUN4CsMH9JF67nUFNVQyweJ9owjWh1LZ7rMDE0xOTgSGXBRFOYGhtGFQRs16IqmSCVrpipyIqOI8k89PBjPHj/b5maSGO6BlXVcYqFPI11tVi2y/59+9FkleGhQRRNpudIL6WSQbIqyYG93fz6gYexrUoEiYtANpVHU0Mc7z9BS/M0JkdG0ZQIpl2gUM6SqGpmuK+X3GSOZE0NuVwOo+RgGGWOHj3GrLYOolW1HO3pQ5I1VC0Igswbr21AEBxEwSeoJQnpCXxPAdHCFwxuueUWLEzGB0bRPBnbNZEFGdsw0WSJXHoK3zXxXYd4PIYv+HiuQ1ivAKw0Nm5cxvEsFE09pU1T8FK9eL5yerwrlcs4BCmXwzTVhwmoGiMjEyiSgCJXdKvTmuu59IpL6Oyaw6EjB2hsqBg5bXp7Fz4qr7z6JrKiEgnHWLS4iyN9KQqFCv1WUWU6Zndy/8O/4cXXXseyyuTz+VPHnY4sQCQYppAtkohXzJR6egdRVQVRPFU5lir9fe6Ft9iwcRfwDkiP4cvLsfwufDeLKLwTTeATXjKbQGcLkuSiaQLBoIgsOwinzCck0SMa01E1D1kqIglFXFfFdlvw/QrAVSQZp2xjl20USaNr/mygMqE///IuUqkpHHxELQhKiN/85gl++vNHT1/bwYFR8HwisQR33/MrNm9+m2XLFxKNVxEIRvn5L+7GdSvU5VAkcnq/YETlwosu4a1Nm6iureHS919OamKK3zz0IH/x0ZvwHJdZrbNYuWwpnm1jlkrEoyFc00OWHDxPJp8XMQtBzl11KR++sMIOeub5Fxk60cfw4HFEWaBgGaw5bzm/ffRhisUikiRx4YXnYpouM2bMIp/NMzExQbK2AVU6ilXYjmmWyRVPIssxYvE6PPJkMnne3Pga9z3wK04ODmC7DjJx7EKBX993N1+6sxK79OGbbqClbR7lYpp/+NtvUhqb4P0XXY4aDNM6fyZff2IDrFzN+69Zw99883b++su3MTQ0wLf/4e8B+OhHP0xN3TR8R2LjK6+zbHYnqVyJnRtfRdQUbFmnr+couXwOgKuvuhYPm4fuuw8cF7tk89nbbyeKjVOYor4hyfa397Bv81H+/q7vEPBBEwPo0VZ++9jLeIpEoraZuqbZeJLGtR+6grt+dBeOFGH79gPs/tYgc/vOJhQW6Zq3kLKb586//SyTuSGGxkapa2inua6B1FQOSZI40r0DRYpw5uLlOI5DbW2S+sYYX7rzq8SbGugfOUYsXo3gZ3GtLD0H+xDJsu/VH6N6Y8h6gus+dDOGXaiYq5RMVDSCyWZWrllBXVM7oVAdvlxCD0vkiimefekFgpEqWmfNJVGdQBRlAgGV0ckBotEyK85cyq7tG5AFC98XSFbV4Pg+X/nrryOqOqZVIhhXOX7WduxrRyhkC7hbRZRBDXwfyzLI5TLICEiej2fbVNVU09CQIBYPkDdsxscGsA0XhSBmqUwkLBIIBaiqTRKrqca3ggSO1/GBxFUsWbiUDa0v0ntxLxdeeTbjA+Ncf91n+MAHryU7OczPfrYe04Obb76SYmaQgCDxm/t/QW5ykIGe47S3dTI1lWbP7kMc6h7Cs3yOHOvDD0SQ9SQFYZLY3ADqeS7yLVmKd3Rz6NoHmLqom8AcDfHINAIHplHa6WAMWciChiaFwAsSjTZgWy6q4OMaJmo0AEoOTZFBEAhoKgI+khzAFzSaW+dw4flLce0gm3cN4/kijhfClVxkuQpREfF9DUHyKFp5XCECog+2gWs5uJKDZAVwfYdX3tjFE0+8RC6Tp6EuybTWIKHIdHKmyfQZ0zCyxwkoIsvOWsWVl59DKCgTCEQYODFCeiJDKKRjlAwUQUVwyrimhe+ZuI6NWUxhuHk02cEtT1AoFgkkOnHVKoqFLI4l8dJbPWjhGKoiIPoKWiCOohapr5+FElQQZaitF1Akm+mNInPbFK6/YgEJxaap2qe1WSUesvjwunNprYNZjSGM9Bh11TrIDqoiUci5PPLEDlJ5DzUCqiRx9RXzSeh5EC1yuSECSjWmV0ZQVFQ1xJ49fXi+yYBhsvtYN7Oq2pjbvpRtw1nidTP4zJe+Qd7J8PkvfYW+nuOsufwWbrjyGv7us3+J2qNg7ftDxRNBoeJT5IPnV97/mSYIQqWwcMrU6bRfji9W5GG+CL6IJCp/st+/h3tEUTxtMvfHBkj/UeqyIEgIgkSFkfUH1993tP3CKdr6OyZNgiD9SbW1goE4/bkoyv+m4vruKu27my/829d/pv23Aa//L7bTOUaVBAY8AWRfQDRsXnrqceZ3zSGfSZOfGObIwR6+9jffxPP9Cu3tX5/FshwSVTqqqoKnMj4xgaYHOee88/B9D8QA6WwJRAnH90jnMoTjCRpbWpg2YwauIFAwTY6dOEHJNDBsi4VLFrL8rJUYlsObr79JbiLF4QP78T0Po+xy9PAABw/0ksvlyKYnyWYzHDg4SC7vMautCzUQZ3yyiOUoNDXNID0xxaF9++gNFgksb6WhsYZoIsrMtlnEqhJ0Hz5IJp9nYHScyckpstksTY2NmGaZvt6jzJ7ThihJbN+xm6bmGRzqPsJTTz2CJDrs3tHN4MAIoyNjNDc3s3TZYvL5PJqmUVWVIBjSaWioZf36J2mZ3sSyZUsZHR0jGG8CNYakBRBFk3LxJJIvgO/hi+AlmlDaVyNOX4Q8uAt7/Z2UNz2Ebxu4rsu2bduor6+nVFTYu+c4ejDBdWuvp1yC5qbpKIqEonq0tHeAphOuriHZ2MRZ553PZGqKfLHAt771D9x04+doaGjgtts+ga6r4IsochhBEDAMA88oYm7+LcLrP8USZeS2sxBjDZhWmUrupoPnWciKgIeNGtBwbQ8RBagMdp7nI4kysVgcQQDbsQkGg0xOTjGVGsfxyoyODyBKAo5j4/llbr/9dqINHdTVVmMd20wkEuGVV15BkiT0eJRIMoGDT01zA66ss2z1+QRi1WiRJJN5A6NURqnvQvQsNKXyvURJJBzW8X0XyTIZPzlAuVAkmzcIJ2qJx4P4nk86lUZA5NlnXkRVdbK5DPlillRmgmw6w7HefvLFIo5tsWnjFkRJomV6M55v4dgWhm3QPnsWqdQ4nlkimUwQi0ewHQNB9JAllUgsgeG4uJ7PxEiKl154BVH00UMqSkDGcQTKZQ9FiTAynsWxXXy/Ygh05uIzSVZVEwrqdHZ2cOO6taiywt7uQyAphKMJFLXiiLlo0UJEUSQUDiMg0dhYSyAgIwgutbVVrLvhBgrZHIoko6sazdMbcQWH6TNngShRVV2NY+VwnTKhQADf8Wme3ko6kyGfSdPU1EgsFiMYDLJgwYLTE8bMllY0SaFcyHOwezdnn7uUYimD41ikMylyuQwPPng/paKBYdik01lCgRj5bBEEEGWoa6hCVgU83yOgR3jj9U0Vc2DPRThFE547swIsXxg5Se98HVy1YkqUSOAFEjjZYfr6jp0e7yRJRfQVfD8AiDzz9PM89+wL/OD7Pz29ShvQNXxX4He/e4yFCxdxwXkVw6cn1r/B3b96nCuvWouHxvDIKHf+zY958JFniUUrofCiKFI2yqxYuYKpySnmzptHMBisjLWiwFQqhSTJBIMh1px9JgCHDh/nU5/734yPTyEKkJ6c4Ge//B0f/vi3SFbFAE65MyvYtg2CTrrYeYpGDT4C5slRnFSuMuYKPsIpnfm7nRhdF1zjKJ4zSKowE8Ntp2SIvCMcFgQRPagT0DRcz6W5qY5VKxcA8OWv/ZRd+/qxTYfq6lo2bd3Lg7/bzNDI2Olr2929GwSXzrkzWbB4CV/8xs/54Y8f4Sc/updiLsWtt3+ETKHMk89s43Nf/EcAGhtqqE6GeHPDq3zopnU4jsUtt/8dLZ1XcOsXfkkiEefI0cMcPXYEAZVMukQuV0BRJERJwfMKnDgJb72xn+/98Ou8+vpT3JGcRX0oQqlU4oYP3UT/8eOMj49jWRY//ek9fPs7dwFw883rOHPpPGTFRZRsfAwaGqv45CdvR6/9KvHp30bTNAJajEJhHlu2OXTv72HHjj088PC/8Ovf3Md3vvMdBAJkMhn+5d6H+MKXvsHo2Dgd7bP4zt/9b+yySygc4G//19cJ1zby4qtv8OTjT/KLH/2S1996BllxsSyLLZv3cvtffYkbP/ZxRkZHaG9r46tf/DKP/epx7rzja3TMW8Cvn1mPrvusWtFJQEgTCVjc+8C9ALROb+WiC9cQCumo4Qzj41nSUxCNJwhXVVMsG4iCwNy5c9i5bwe5rMkNa29CEHw83+Tc8y/BdAQ+efvnyKRLDJwYxSybaIqMKkNzUy2tra2YhkE2W+Tiiy8jk3K47JLrWLt2HeGo9P+R995RclznmfevcnUOMz3TPXkATMIgAyQIgDlnUhSDRJESqUBaVrAVVytLtmSZIiVZ0ipnKjJJDGCOYiZyBgZpAMxgcp7OXV1x/2iAAmHStr5vv+P9dt9z+nSfrrq3qm5137rPG56HV954hHR6lqbmOlRVZWoyQyKRQEBBlnSKRYNiegbZdQmpQcJqFVZWwEKl7IrUNc/FsH2cc8mHeezJ17Ftkx07NyKILpYJd935bSwTVCXApo27GR2pPKsF0caUdCKJFBeedz4PP3AP00N95HI5ZAVGR4dpm9fJkiWrGRiYoql5HomaOrLTvVx52ekkqv089MRDpOY0k06n8TyPQDCAf4FI6L9lkd4/g1N0cTbq+I/W4M8nKI+6iAURz7SOOZYEBERCwTB1dQs4OjCK57lopRj5gz7sA0HcnQHcLRrilgBmNId82yxblz3DnQ98gfv/9HMeevARXEfg6Wcepru7m3wxxysvrWXZwuXk8y5LTjmPu779c1addQH7+w9zweWXMjg4jOvCY489QUvLHL5x111sXL+BfDaHJIgkqlOYZY+ZqRL5DIwOFahJ1mImdzO96lmMj6+jdPkbSO1TyBMx2NiEMtSINpLAnLDRfVX4gx0IkkMwUIUqSHilIyBYiDIsXLIQxzWx7SKmWSCdh03bxylYcWZy8NxLPWRLYVzFh+jYWMUSIgoSGi++sI5COYAny7hYyKJCSU7z6L0bOXdVG2G/jmO76FqMUslmYmoKVa1C1zRmpibQjumK7+05AEiMjWc4OlokawUQRQNFdXE8l2zRY+2jPVi2hCI7OGUDxZpEcWYxSxn27+/FdlSQUgRTiwnEo1x98VxKmSLlfBnXslBVkGWPUimHpiqoisrh3j7WPraZU05dQEtzAE0sEo0LlEpTqKqH3y8yPT2CKHlUVftpa69DEAtocgBJ1PAHdE47ZS7ViRhg4/ML6AEPzWdjOEle2jDNjDGJz/Oh6H7y2QzvvWYZ3W0xwmGd1afXI7kaFy6Z5btf/T3f+uqnqY5X8dSTz/Loo4+ixOJ857vf5Od/eJg3XtlI8fEy0us+JAEcz8X1/m3967+HEU60E4Gc41TYhY+D2pNB3nGQe3Lq8PHo7Yl6s/9P7e36P9n+s1HVt+vn+Hn+tcf8j0z+j3f538NOzq3+a27Y/2oNo5O9Cngex4muzXyRwd4jLF2yAFlRmU5nWNbVwac//nfc/ft7kbb++E3myt7eXs5Ys4RcrkRdXR0vvvIyV1x1JeOTU2iaXGEYtVxs20aUReLxOFa5ItOybes26pIpFEXFNC003UdnRzt9h3sZHBrgzLPPpqa6hgM9ewlGQuzZvRPP1mlungtukVwuTXVVnERNgnLZYseOrdQ3NhCLR4nFg+zffxjBLZOsqSISjdEftKFVJRIJkhss8NKr62huSNLZ0U59QyOCqFLITZPN5fEHJZpbk9QmGhAlmfHxKZKJaoaO9tHc2EC+OMPWLZuJRpLk83lqk8kKkcTAALFYDaZp4jiVeouyadHc3ERAk5icHEeRNaanTaKBWlxHRlcMLNNF8HKUSkVULY6qBjCtEoI/jlPvQ3LLyJNHsR/7F7zWU6lWIzz+6NMcOHiI9910I2NvPES8KsqfX3yJSy69CHDImCXC4RhH+49SX99ANl9CTbbjU2T+8NNv0Davi6VXXkBMLBJwHEYPDFGTSFHW4jiyiDq8HWvnYwihBGr7KkTRRRAlNF3HMDKAh+NWGJZLxWKF8MX1OHToENFIlPqmOkaGRvD5Kqystl2pUTRNk2AwjKJoWCbIkkJ9XSvGvg3IssJsegKjLHD44DSNsRiBgy9y1KnizDPPxDRN+vv7WdTRhVU2jxG6eHi4qKKC7bj4AiFEz0DUZCzPpZRLU7JF/EEfHZ3z8CybqbGKcHyqrp6WuW2Ylo1l5ek7coSx0XEKuTxz2jsQRJFwJIIgesRiUQ7uO0JHVweWZbJl0xaWLFlGLlsAwWX966+zYsWKCrNu2IcsS1jlEpKmUywU8AdCxKIxHNMmXlWFVa5EEkOhMJdffjmyDLIi4fOHUTUfen0dmXSGuW3tgMPU1PQxsjTnTUmZRQvns337TtrmdbBw4SJs26GnZy+LlywGESYnZoiFo0QjMWRJwbFtrHIZXdPpnt/FzGwOo1xA86nkCwVyhQxV1bW4joPrmKiyiCh5CHiMjY0QidTgei41tbVMjA/j84fIZnMEoxqjo6OkUilcz2N0bIQd23ex4pSlpFJJXNehWCzh90WIRn1IssNNN9/Eyy+9wsqVqyreTsfl4msuxfMLCEURUQJZVTDMMnt69jE4NELRMAjkAoCH68H15y3mx396jSPD0yx+3x1URQLoqgJ4PPatW6nJDhLU7DfnvWLBYH5bBwODfwRRoK24kxbVwll2FX96fDtQ0SDcum07V1xxFbOzaWIhh/a2Jg72DvDpL3ybz37xO4RDATLZShrWpReuQhBFnnzmDSzLIhqJUl2VIJVMcaj3IIZRAiqyZI7t4jguoihx+MBO3n3VuTz06Iv86jeP8avfPEYkHCBfKOE4LsuWdnLzjZfzqc/9KyCiSAEEAWQFgsEQjqu9eV3OVIU4SeloxbYcZEk+5mV+c8JHEEQECVyxlXAkietYlXTuY+sSwyghIOBBRSvWtvjuv36O8y66jdGxKS6/5u/RVAVREimVyiSqo/zul1/lXTd8DoBzzjkHTdNwvTKC6LGn5xBf6qk4Dr585++PjVke265EjH0+jVtuPI9gKMill12CaRoUikVOfNQVDQPNp/P8c39GlXTWrDmdp59+nE/83UfZ8MZ6zjmviV27JzjjzCt5fd3DKKpIWNN55NoPculjv2P/gQOcf9HFhIJBSobxpqf/nLPP4fOf/xSSJJHN5AkEApXP2exbnpOWZREORTFKHu3tnfyP738bn6+aO77xL3z1a/+CJEksXNpNOpN+8xm9Yvky/vjH+wiHqvjHL32Zz//DR3E9Gz0gk0lP0D+0l6/dWQHvoaogoXCYTDpDpWoZmpua+NM9vycWjpFI1NLTs49gOEhnTReua7Jj5yYWLjuFg4eHeGNDRaLpb277MLLiMTE5juNaVCfrOev0S9iw+QVszyXq0xFcD0/0uP7m93LrjR/ki1/6bxSLBpOTUyxasQxN0/jM5z9HJBjiQCZLY30Co5jHsTTmtDbCFg9Jlmmob+KSi6/kb//2Nh568BE+9MHbeODBnxGM2EyPTxKriWNaZf74wFoS9c2IaMTiESIxBcmVUBQVw3S5/rr30tIyh7vv+QWWXaJYNCqyMJLIxVfeQDCkMzkxTCwewnKnOeW0DgxrAp+SoLNjPkNDw8SrwniejWEYyLLM9773PWoTFVIn2RegWCwSCPqYnp4lmazh+T+/zEfarsMTBcKRICWjwPIVSzAdKJsF6urqyGazRCIRNE1jeGKQuu46xPYpMutc4sUU9kERyZWxelXkUgAn4GLLAq4gIKgSrqHSnO2GgyA0mqi6jD0vQ8nNkg4PodfZzJk/n4cffJpTVqzi5z//Mc3Nzax7Yxu33voBdu3ZzN13/4aDh4/Q2eXy3htu5OVX3mDT1m1kZ21qUn4iUT/Dw6Pc8O6rWb9+PV/4wmcZHh7GsWwioTCXXnIJmzdvZGRsildf2cjll13DjTe+hy99+QtkcnkUuUCgKoQsqbjdMbJtA1inT9MQb8F4Y4pSr4wymkLcF8cMlRCUuZjhHHpAQ+Ewm15/ndWrz0ISfRw83EdjYyOTk9OsPvMMxkZHicZ0Du/dy8SkTTojsP71TVx8bgOiAI5rYBhlVq5chD8cxbEn8WwHWZYJ+mq54MIgjjcNnsjzLzyD64W56dariOowPjZLVLcI+TWefeoJLrniOkIRH4rskaqrZmJ6gupMBLdYpr1VRfDAxaK1pQbPq6x1/X4/rmliGhkURWPNygXMZKaIVIXBipIdH6VKF9FD06iqWiEZK5VxBRPBk7BtEVGAVKqW+mSBqrif7EwaSRLw+eJ4KMxM5dAUKBZKBMNxMA0kUcKxDDzHwsFFFjXqUz48V8a2y3iygICCWS6zffsuJiby+PwyUkmibJr4VB1ByKMpFWWIyewgVfoUS/3vYm7dN1HtNKlENeMTs0QjtXz/+z/gD7/+FT/7yU8Ri2McOrCXhcv/wrwviR6e670FPJ78fhwrnFxbeqI5TuXenfj920lvnox5Tv781xInndjHX/p3/82xTsZOJ9bBnnxNx/c97oQ/niZ9Yl+iKFai16Lwb/r7a+3/N+D1f0c7/iOQHLCkSsqwT9PZuW4TjXMiRJKNxCLNzKbHufbq6wlHI4zlLeralhId20woUMXWLT2cdtopPLz2Pi69/DpyhSKeKBKO+Bgb6QckROJk8zlqahNkZrOokspg/yCJWDWlgkE0EiMUDDA1PoFflrE8EGUF1ScSr66m78ghli3vpr9vgr6+ozQ0VFNMZwlocTZv3sWKJYvobOvA8UymxscYHx1l0eJFpGemkFWJRStXIdsumdw0mVyGjq5u9KNjSG6JzPQ04XCU2dkS27ZuYtnyZfj0MH6fzcTEMNF4DbIi03ugD7NYJhJWMYo2TU1z6D96lDXnrEEUZEqlErW1dciKzo7t2+he2Illm/h8OnX1KXwK6LqKrKrIusqzzz7PJRefBxgouNhmBsct8MaOnby84yixSDUfftc5yIqGrAdwG6MIRhp7dhDLOsq53QnOX1yDaA1TNsrI+LlocQpvZDeCKKI4Dta0RLVp4g7OoJXyCP1v4MkS37y2vaJ5ah5B2vRLyqJAHLD3gVeusDJ7qg917qkUPRlJ1NB0AcuskC+EQhGKhTKqqqMqUkWr15NwXItIOEhDXS0eoKoaz6e0yQAAIABJREFUsqSgKCq5fI5QqCJDMzs7SygUYf22Xfz26VfZvL+f8akZgrrEws4hbr78XC5btQyRDNaREebqOUS5osG6sL2TmbGJSmR4XKB5TjeHDveSqqtFU30cOLAPWbAJxKLct0Pi8d/cx4GhNKWyRU08yJlL5nBqc4RrLzsHV5SwHZuRsRGyM1O0t3UiCxI1NTEE3c/dT67n3mc20T+WxrBcIn6Fc5a3c+nyRk7pbGViYoKm1lbGx8c5fc15+HwarmdTNh1qa+v47VM7ePDVPfQOTWM6LjWxEN0NUb50+5W01PgRXJtEVZSdO7fS3NpIMBRBUjQsp4iIRywRxvZgdiJNPF5FbW3y2NiF2LN7F21t8wj4fUxOTNLXexCfprBwwQLKxQKFYpZiscD0xBSp+nr29OwlFgngC5iEgh77evbSvXQpYSFYYXwUZTzHo3f/ITq7uvFkG9PI4guECYQ1XElF1lQEUQbbpZjLEQyEUZQKK+vxhV8gHKK+uZ5UQzN44A+omGWTsuGiyDqmaTObHicaqeXMM8/l4IFeTNNg986t3PpPH6NYLCIVRDRVwXFsRFFi+YplzO/uRpYUMgMFAgE/atBh6VkOz9/3Lu768Wa27JxgOl3Eto/ptMkOSBpRtfzmfBcLvMLYwBfxxEPEQwXs8AyipLHLKFIsVVJ/zdJe5jZouPYuaqJ1/P3fNPOB917HXd99nUefOszw6AyiJNHdmeSTty/m1ptWcf0tvwPAcwZRhWcQXJHp6VZOPfVUTPP7lTmWwwTUV/ArVTiOwyf/di5/a7ewemUNv/rdBg73jeC6Lgvn13Dd1d188vaVPPDwnso8TRHJeZKc2YlfaMKyHCSxUtOHOwleGgGQnS3IgOcoeEISqFy76I2AuRFBLCM6Bp43gORVxknwKmBSkmQcux/Z2YuAiOK6LG33eOXJ93HXd9fz4mtHyGZNIuEAa1bO51c/upJC/sibYxvSNiOYRxA9l8Xzo3znrk+ydXsve/f3MjY2xuR0Dl2TmduZ4IJz5vKxD6+koS5CtlxCVaqYnJykJj4GztCbfQaV15jXYBO7yo/Pn+DZP/fw8U98gmx2mva5h1DkJJdeUMZxv88dX2rBtn+P6E2xLBnhgXt+wb0PPMarr/6ZkdFxggGZ+Z0NvP+9p3DL+05Fkl4B00WMfPCYYwEi6ovI3l8i9a7r4mFx513f5JOf/iif/szfsWtHP5defBl9Rw8zNjpGvpAnUV3F0qXLOP/sC/jIR26kLLiUSiWefeI5vvq1L1KyZOxCgZrqFBdfcCFPP/0ixd4jjFsG2UIBXdNYecpKbrjxPZx/zikUMyXWPvg4Z194Po8/9wS5/DSRQJCyGGbpitMZmRznN7//E57noaoql1x6NpnsJMVigTmti9m8ZQM9va9x8MBhEvX1iJJILpNG9wcJxALc/8DvESUJw7J4/bWt3HhLK65r09E1h3RmgrnzGjnce4j5ixZz/wP3sWZlF000sLenh6W3rODuu3/No0/ezfREFqNkU8wLJFNtRP0ZcvlZdC3C0iWn0trazOKFq9m5cyeqaiDLYb773e9y66238uDjD6PrOjPjIwRDGkf2D5BK1RKoa8W1DAaO9tHU2ILrQnWVn/POvRjTNMllDWQFOjrnVWq7HZn05FFqEg0sWb4MyyrjSB62YaBqImXDIRSMMZOe5vP//bMoeo59+3czt3UBsmBQthzy6VnC4TDj4+PU1NSgqhXiuEi4FlFUyOUniJ1eRTbXR+SiGKZVZHoqQ1N9J9mdBaxcFlUQmd2Zp3ZpmDH/EA3zmsnmpklnx2mbu4jR8TIprR5Zk3nh+ZeRpQBnnH4udQ0Rnnj6XtrbO3js0afxBwQ8PczDD7/A8MBOPv43txNNVaNKNs/uWEddajHjQ6P86Hu/4eVXnyabH68EBZwQq05dyYL583n04UcYHxmlv3+cOa3tnHXWGv700B+oTUbp2TWGKsQo5hQkXx7XdDCMSRqSQQ7ufRLqHKJzAuTzG/ApEZiKIo7GkQfjyGON1M52ozujODsE7KBNZ3U3Dz52P+9933UYlosmR1AwaGpp5praZsrWKH5/nHw5hChI6GoZRXaRFAXPmkR0HHRflIKRpjg2iBgM8tq6LIuXdROLBwiFO7DsAp6o0bNniJrT4pTyRRZ3d6JrGmYgxvPPvciZp5/Lwq5FjI+NYAdsOuboqDKYrsuyZXXIko1tCxTNEroSrhDPCVmmh7chCCq2f0FlrapUo9UmMNNHKJslBIoIXhGfHsAsC5iGgSBaRKMRzjqtmUJmmmAoju26WOUyiCbBoJ9yOUskpmJaNp7rIXgCmhLEEQwEUcYolxGRccUKT4jf78Mo2aiKxsL5NZyyqAnFMil7Jpqu4doKLiaCoOETXXyRMEVrmHD/9dzxlXt54tESN1x3HY//+TmO9B5i/Ru7mOwfoCSHWLduLR+8yGZqYoxaN4onSYANqP9prHAiUDzRZFl+W+Klt2v7dmZZlaDG8ejm/9to5n/W3qnuFSrz/r+3/UT7a4H3iSb8r45K/n9ltmO844me7El4J3v77e9c3Pwf2fF9FMNP2TeL4XnMHpjk0V/9hFs+fjvberYRsKfJmyLPPvgkv3nsJXb/+lPYejWq5mff/r1MTI3R3NxCKBQlEJDxh6LYLvg1hZHRQQLhOP5ADEmSsMsGAwMDIDjU1qSYGp1C1RSymTy5bJo9e3bS1T2PxUuWkMlmURSdcCTC669tYMXSBWRmphk/xmIYDenYtkG+VKCuoQWjZKHrAUbHhhFFj6qaVoaHhunumkskqiBNmkxNzDKpeCBKzG2bh09V6TvSS10qUREir0rQ19dPb+9hqhIJ0pkip56ynM2bN7Cwu5PxsRGsssPs9Ay5goEjyKxes5r+o/3U19dTU5vAtiREGcLRAI7rYJoOogCC6AICoqCRzeTx+bRj3t88pmmgqyqu4HH/sxv42J2/oT4RZsPvv0rAF6Wcn8YX9mNaCooawnNMBMogKLiWgyiJuIKLjIpplZEVGVFUsF0DDxA8mXzeYHBgiM4F8yraXzYcOjLC3PZGJElEwGViYozqaKRCHiNomFZlMi0bs8d0ThUcx0UQKnUNx71SruviiTKiNYMoythCAMFzmRivLESra5o4sHcftbU1hMJB8CTu+P4v+flzGymZlckr5NcpGBX9OIAbL1rNjz5zM15hGhEPY9G1hGuqSM/kOHToEMuWLcOyLCSfRWm2zPjoERqaEuTzOpmCwfs/cAvbd1YkJBRZIqArZAplPM9DkUU+d/0a3n3GQpKpWtLpaYLRAIokocgyew8c5sPfepLe4RkAZEkgoKtki+UKqY4k8k+3nMtHrjoDo1xEUjRefXUDS5YvoKamhsHRaW7+6h/Yc3j02PFFArpGplB6s/2X3n8GZ3RU0dzRRSQUOvabjuI5AuNTYyTi1SCYyGoAQRawyiaWZePaLpZpEgqHkWWJ2ZkMwWCUbHaCcDjOli1bWbFiKYZVRNcr0hC27ZLL5pkeG2Re10I8ZATXQ0TAdAr4/BqmKTA5PkIoFMLn08lk0vh8OjPpAolElEIuR3V1DUd6+zAsk7ltbQz2H0VwXFra5nKo/zD1qSSTwyOkWttRNJFioYAkKaiy9JaHn+M4FNMThGMNCILEs88+xumr12ClVBAElEkXTVOxTKvCDi24VFXHkUUwbRtECdMtUNuRr9yfH5fx8LA/qlWIhQSB3NE45v7XUJd+gEB7CNHZT75QIhyOIEhBcPPMPLEWxxVZr5zLBeeezczMLK75JLIokEwmEQQPT/DAk5menqFQbkP1t1IopImGSgTUQ/j8PjKZDMFgEEEQGRsbJ5Gopn+ki4nRDAf293Lje5LIUu5NtsZCIU8oFEKUZCwnSTrXiCwKBPwWPm0nnucgihWCMkEUwPWwrTKuvBJBTuDh4lnb0cVDeJ6DNV75D6lJ9djTQMUTqoBjnnFh4liEVcAjjOMKiKKAgIAldCGr83BdB9xBJLcHXBfHtpEVjeHhEeJVUSbGJ9m5r4Xzzj8HSRKRWYdVnkbXNcDDdT1GR8dJVCfo2Zeja8EN7N69k+6FjfjELXheRTM5Eong8+nH9JIFTG8ZO3dMEInphPz9SIwRDofIZPJUV8cxjCI+3c/krE1V4gos06DslKmOjuE6JoX8JJqm4DoCkiwhf3sAT4jhfPkjlE2P9Pgewr5thEIBXM+uRJe9yriIgkRJfH/lGL4QAelpcEYpGQayopJ1PoZVyGMaT1FXV0fBWMHBgwf59r/+kO//4F+58MILWL9uE4JcwDJF9u87yJy5TXz9rh/ymU/fyuToIPV189l7aBcNqTnk8lPE43FisQTex7+CICgUvv13aJpcYW528jiOg9/vZ3h4GNEK8MMf/pAv/sNnkNUyciiIZGqkM0cJhgP0DRapTSUJBmQ828Au2xCIglPGp0hkp8dR/DKyFOCJR1/hyqsuZmLqKLFEEtOUwfK48qxzeeb1taiKj5Hhaa647FrOPvtc7rjrnzAQef7pp7j0vLNQ/tjIts3b6T97A+ddfAUDRyYJ+GzKpQmWr1zDTMZk7UN/5JwLz0eixMc+8CXe9cGbWLJgIY31SSIhEGWLnTv20t21gn37DnDHHV/jFz//DSNjh7n77l9y+prz+cnP7uW+B36Bac8SDCSwTQFFFSkUM1x15bv55S9+j+WN0tw0F00Nsmf3fhYt7cBxHAzDqETLw2EkLMBlw2tbObBviGXLG/GFIrS0dSGqPqz0DJIs43gukq4iSBK5iWkc0uTzRZobFqL4VZ5++inOO/8sZmenCIVCBJQopVIJpACtHYsYPrSVnds20jGvHs8rEahrZqh/irpkkFKxgGjFUHx+JqcHkGQfdjlAVb1JIQdTE0Wq4glWLltE9/y5PPzwPWQNl2xJ4MVnX2LVyuV88NZbePml55FUi40bN9LR0cXU5AzPPvscH/no3yJYk+w7eIDGeV0Y0xlms320NM/jUx/7HrZo8tvf/pYf/OB7XHnl5QSCPr73ve/y2c98gVx6O7s2vcqCU1bjDyRI1tZhOiUy2X5mpvMkYklcx8E2y9S3t9C77nkCqoqq1WEe7CW9r5ri0SZC4jziShLRkrD8ZWRdruhtBwUGswPEa0MI/hnWPvQUydoYDXUB6pJhoEzJLuJTA0hWASkYwCsYFJ0Ym3YMMjwyRV3TPLqXdFBdVcNofz+1MRWnuB/TFdFjCzjYO8HyUxdh2gaS62PrGxtx7AKJhEGyXkWyZQSniBSKIuDhWBauY+Ph4fMFsB0H07IRBIGyG8UXbULz+aHsIgXC2KVxrMIQbjmLJ3hokobjlDBti1CkgULuKLIkgaujazK5Ug7HsfFpGuWShSTJiIqKoFhkJv3o4QxYLrKsgQuaJlF0VXp2DDK31YemGbjlEHpIxi7ncR0NVxYQRFCFAKY1i+hGwbYw5BJGpp7oyKn0X/4xzOFBdk+p3Ls2y20fu43s1BEWLl7F3PaFHD28C+2hJJn0JOfcfyomoIg2Hvpb2XWFd04fPhFYviUa6QpvbjsuA+cck4Q72U7u+0SyphMZg09uczKY/Esb6c31xIkR17eyBL8VdHve27MHn3hOJzMMn4jPjr+Oy4weHxNFUf5qBCt95Stf+Wvb/JeY69lfeadt/9UkTqILjgSCrXJ4+0Ya4wVKQpS2+fOx81kWLlvFb3/9G1JzO7lqeQOeGuRw3wAbNm4gHA4yb948spkcGzdtIFGbwvPAMAwKhTyRaBWWXVmoKLKCKLhUVVWRSecYHRpny7bN9PTsZWZmFkGEmUyaYDBMOBSmuqqKwaNHqUulGBoa4MCBQ8cYRYvk81mqq6oxLZfZdBlFVZmaHmfevHbq6prB8/D5RIxShvHRSRKP9OPuHqG3ulIwHw0HkBUZz3Pp6+9nZHgM2/EYGhxibts8DKNEY30dO7ZvQ5JESmWDeHWCcqkErkM4EiESjbBjxy6WL1vOtu1bK0Q8NTXs2rkTVVXw+0PgCbiOy9DQIIlEDZlMmmg0ymOPrqWhIYXPr1EqFZDlIKKssfPAUZ5+YzvRoJ/P3Xw1RmGa7EwfsmVgFIr4fAFm8zk8UQBRRxBUEFU8Ucdxs2gBiXwpi6zJgITreKiahiTJqLqCU7RRJQfHLaIHRDQ1hIeH6zhEo1FM00JWfdiOjarK/PGP97NsxYqKp9RxEMVKhF6SxGOsuxaKqiBTZmKsH0lV0P0VNstIOEixkGf/3n3Mn9/NwMBRXn75RRxJ59M/vh/DtDll/hwe/s5n+dpHr+VDl63C5/fzxs6D7D48iN/n47QVi3EHtjIRmIsa8CFLGvX19RQKBSzLYnBkkLpEE5IoEA6HsCyFG99/C1u2bUdXZf7mjDi//ufb+fAlS7jx/CVkSza7j4zxRs8gV5y9gvrqELIsI4sqfUcGCYfj3PDlP3BgaAafpvDNj13BTz7zLi7oivGBy0+jZNrsPjLOyzuOsGbxXBqTMURBIJvNUJ+MU8xn+eCdD7LtwDA+Tea28zv5w798kPee3c5Vq+ZiIbL78Div7hrgmgvW0N5YjSi4yKKIgAiChCh6ZGczeJ5JOp3DH/BTKpXoO3wEz638f8pGFtezCEcCiIqEAMzOpununl+5R56LKEiUzTJQIdioTtQyMjrO5g0bCAZ0Dh06TDAUqNSZigpbN2/F5/OjyAq6z8eRI/1UVVehKDIBfwCjZBEORwgEgxQLBQYHBujo6EBSFOJVVXiOwNG+QYKhMKos4jg2u3buJJlM4h0rNQAqtcuajOvJmKZFTU0cXyBEtKmK9OwMAVvC80R03c/sTIbdu3fT0tJS0XAVJSRJRpZ0zJkA5ZkQym4Dz1LI1tZipaOYsyFcW8TNDOHqcZyaiynZXZSdRbjS6RhlBZ9Pwhgcwyy5LLzsVsyygaqqZEv1DA7aKFoXgjKfV16bJl6zEldsByFKIOCnUCiSTHXgim1YTgtjUxEUfSGi3MUDD+5kYFijs7OL2toE4GGYSe7+/assXno9DnOxnBYQ2zDsZkQlha5prF+3jrb2hZTtRtKFKJpvMaIyl2I5hSS3o2hzMAwL25VQNQVBSuKI3XjSErzwItzgIlxpMZ60FEfowhWbsbx6RKUNlKXYYjeutISy24qgtDExEyEQWQJChLGxUXy6D1GOYQstOLSy9tFdNM65kED4FAyrjldem2JkZJhUXYrdu3cTiS9kYjqG6luIJ82jf0DFF1zC5s05dvdMMHfOHF559VUWLV7JU88dpr7+LAKhZbz62jgbt86waMm1GFYT5bLE/n176exsxyNBNl9P36BEc8ulbNoyTTYfp7pmDeu3jjGnpYXpmSnCoTKiVMW23a08/PggS1Z8kDu/9SKnrv4o8oY+yqbHaFs91VUNvPBCL3f/bh+nrL4NT16B4l/NdHYO+XIHevh09uzZQ6lUJBgMUyy3kc4lCVWdxcBoEtcVscsWAf84kiSyuyfHNddcwze/8S0aGlLc8fWv8YlPfAJBMpBElddfX8+8eR2sOPV0nnn6MbZu3oJtKXQv6uaB+x7Ew6O6uoa//+TnOM8SK86ly88gFApglGxss4yu+bBtF1XReM8NN6KoMqvWrKRoZPBHAkjH0gz9gRCqVoMuO3iOie73I8ka09OjaJKCZdkUiiZFY4ZwKMr8rgWIkodpFsHVcB2ZqbFp/LpO05xWRscmiMXivO/mG1m8dAEPPPAA4VicNatWoUhQ3iSRrKml/YYkwUgQUfLzzbu+xnU3vAufP4ioagz1zbJkyZkYhRJmscSVV19NJOhn147NhMIifUMjVNekqEok8QU0rrj6cqYmxmjvaGPxomXU17Vw0y3XYzk5AgEfritxxeVXc9bZa0ilkpx15jk4tsuWLZuoqUkiSSKpuhp6D/WSSqXeTP92XRdVVbEti6nJGerrmmhpbyZVV4+qabi2SSgQpFgsYjs20ao4hw8doq4mVZEiUzRkSccRTNra56IqOpKk4veH8ASZg3v3MTjYTzabYWFXG6FohNq6eiQ9RDZbJFnbSHp2jPGxEWbTJWSfn8xsibUPPsLocC+ibFOfbGT96xu56MLzeOX1Z7nl5g+wfWsPNcla/GGVb971AxZ0d3DrrTfS0FhLdqrMtVffSPvcbiZG04wMTjA0NMP+nh5OXXkGPn8CRXCIRqqJhKtQFBHDLHLa6qU0NdcQiopUJwLMae5k3Yb1NDRGKKSzrH16MyuWncGW9TsRbIlgOMX4SBHP1kjP5GhsamF02EAWp5CUPHknjx2J4SR7KaSeYbxmB5ELTJ6afZZVH1jKY/seINWeQJN9hIkh9ftQh2voSC0hN12mf3iIoYlRWlo62bFtGkWVCfkkTFsiFAuTK5kgCnR0NLOgezmBgA8Bib4jfWgq+BUD15MoWjqK5kdAQpREdu7egWGmaZ5Tzfh4nkQ4haLmQZawyuaboERRNfCcCqGkA7ruR9N8eK6LY5RQFSiUXfyawtT4CLFwEDwQxDyObSGJDrZjIQpKRcLJLCMKUqU0QKsBT8R2yvj9Kq5nIwoBisUSG9bto7omSkCTsEwbTwDTcUjPwJaNh1m6bA6ua+DYHoIi4jgynutDVDw810EUdWxPQPWFUGQByzMpWAUSpaXYTX9GUAoUbJn7H36ZZaeewodu/QDjU7PE4lVYZoHMa2UkwSV5UQBRVfEkFdd+K3jk3wGvJ6bivmUf7y+g8USA+XaRy5P7Pg46j4Petzv2yVI8b5Wy4S3A9cRtf2FDPvmc3xm8ntz/O4HYE6/v+JhIkvTVf9Phf2D/R4DX4/ZOofnjdnIOeeXFSTf036eSfrs+LctAQKI0VeKxe36CZ/TQsvBykFQCksTXvv593nfr+3nfB25BG1iH55o8/vwbzJ/fhaJKzJ3TyoF9++nsXoBZNvH7/aiaj1g0jqJpSEqFLt2xbEJhnWy2QCQSx6dpJGqriUSi1NYmiYQjKKpOQ0MTAqCqKooq89LzL1CTqmfh4iVks3mqqyPMzqaxbI/mlnaGh2fIZDMsWtJJuexQKnocOribmtowA4P9zO9cgbRlEEVRmWjVaW+bQyTsY/PWLaTq6hkbn8BDwigaLF++nPq6WsrFIls2rWfZsqWYlkldfSMDg8Ms6O4kEg2Ry2Xp6++jOlbN9h3baGltRpQlNE2moaGOcrmibVnIF4hEw1RVVQNeJa3J8Vi8eMExr5BDMBjA9jxEwWX7viM8s24XkVCA26+/BA+BWLwGPRRDVnzMzEyyZ9s66uN+PNFGl21k0UHwbHxyELdkE9DDeCaU89MogovglLGMLANHDmAZOWS5EtnS/FEUxYfruJUaTdNE0zQ8BCRJAMGlubkeRQ2CJ1Aq5FDESn0PVEDI8cVCMZ2mOlFL2RIRJB1XkMBzCfh0rHKJ6kSS6uo4CxZ28d9/dC97jgxTEw/z/E+/jFMuEYtG0WSPzqYE+bLLjgP9bN13hA++63w0K0+8rhFCMRA0RFFky5Yt1NXVEa9OgKWgKTKvv/4Ke/cP8f0f/RCAr3zoYv7u8naCNc0okkQ46OfSNQvZ0NPPwFiabfv6uXTF3MpYKCK1tQn+8MSr3PNiJV3zby5fws0XLyESjlQcMLjceOlprN9zlIHxNPuOTrCk3kcqWcvUxCiJ+gae23SInzyyAYDPvOcMPvHuswlHQ8SjMQKqzNnLWtmyf5TBiTQ9R8ZoUmYQ8RBFAX8gRD6fJ59No8oyk5Nj1NU1VpwFgsjszBQtLY0IgkffoQFGRkcpFg3C4SiyKCErIuBSKhkIkoTjuoyNjlNVHadcNpBkHb/ux+9TqaqKIMsqiiKj6z4y2SxzWufhulCVSHCchCRRW8PszAyu63Fgfy/JuiRmuUwoGOSJJ54gVV9PKBKmXDQruqnFMpqqkJmdJRIOEw0H8QcDOI5N35HDxKvi4LkU8wVGxiaxHIt4PMorr6+nfXknqqpQHJlC0fwMDgxRW5uksamRX/3qlyxdupwHH1xLd1c3tmXgHov4+XpLzM7OopySJJ3OIAgVTVPPKmEXpgl0XkaxYKBpOroU4vnnd9LaHCE0N46/oQFP9fO7396HKEq8sX49l110JX+453727z/IxZdcRL6QIRj0cc+993DaaatRFT+uW0YQJRzHQ9d9/OxnP2dwcJDVq1exfNlyBgeGyKSn2bhxA7lcjjWrzuDRtY/Q2tpGNlsgEAwwPjZG0O9HEKCltQVREpEkGV2XEAQR2zKwbQNRkJnNTKFrCrIWwnUcpqen8fl8CILE6GhF+kXXNFzHrURbFQnTNJEVBdtxABfXcREAQYBQMILrepTLZaLRCFbJqni/5QoLZGdnJ6+9/jqJRC0+n8rwyBhnnLGGYDBAMlkLCMzOpFEVlaNHB6hvqCcSDdNY34BhGOzftx9d02md08q8eXPwXIfeA4doaWlFkgVqa2vo6zvKC8+/zLuvvZrdu3fT3t6JYZRpakkxeHSY+oZa2ttayOVydHR1s/bRtdSlakjWukzPtnHd9bfwjW/chSiKLFu+AFES8G/ZhyTJWKedyvRUgZbmNmZmpli0ZB6uU6ky8vllNL3iJEol6/H5KoRCmuZHD0iMjA1TKBSpS9Zz0QWXctP7VqPpGj17C/T09PCpT30SSfa47bYPoagqHiVEQaW6qg7LBESBBd0d/PB7P+Waa95DIKKyZvXppFK1bFi/iZmZPJcgUy7byFechWWVef2V9dRUJ7nvvj+SSjaQyxW59vpruOLKq7jksku5/aO3YbkGgq2g6xqlks0///MPqY2pxOIRHM/D8UR0wcKn+3FdgU9/+ku85z1XMDk1dcxJ5WIYRQQC9B86SqKqig1b1pFMtfD3n/oc17/nev7HD/6VpcuXsPK0NdTGEgwNHCXVlMLZIiMKEr7VBqbjIIg6B/fvY82aNXgITKan+O63vs2VV78bv9/ELE/SXN/3x2B5AAAgAElEQVTEBeedy/tvvgFFg0RNK5FIFYZRxsNElG0E16P34BF8epgvfOEfWLGqE89zGB8fJ5ls5Oabb+a9772O66+/llgsjihIrF+3lTvv/AY33fQeJNlFFirZMa5j4ToWoYAf2wOQmZ6cYcUpS3AlEQ+QBA/PNpnN5cnkstQka8mnMwT9AXx6AJ/Pj1EqgwChqM62bdtIJesBCU31Mzk9hVnK0dJQz5lrVhONRUmm6hkcT3PVdTdx6403IONjYnqIZF2KSCTJvI5Orr3qJr5+xx187/v/gq740JUgsXCYVact45mXnkUUFDrnLeT7P/oOa05fSk1iLo88/CeWL19Cf18vDz9wHzdcfw3V8QjJmiqeefoxurrnc/HlFxAMaCiiw1nnXMzy5adTk0oSS6g8/eQ6JsanOe2008iks+i6j4A/VCGrjPlobuhizQUXIoo2B/bt4JE/3UeqpY2ePfuQZJFIVMYTDRJVVRwd2oPlydQmTyHaPp/a1HLq4nPITb/ExMgj+IIx3tjyFF4EqlbN45C7hR+t/w4XfX0NysIsbsijLtLAnPJyagJzGD9cxpFEtu3sYdHiGBs3HqXnQJqamjm88epGopEqPNfFHwwgKzoN9fUMDvZSHZGYSReQ9ASm7SCJIqFIiNraZtaufZqDB/sYGJ5mTlMYCRVRU9BkD9d2cDwQJQVFBNf1jtXfCzi2g+AYBBSPcjmDFgjhegKKL0LOEAlEasEuYtkqCD48TyGfqWTRhCIBXEdAVWUy+Rk0n4RlG7gO6HoA13HR/RKpVAORiI9SIY8/GERWNRzHIxIVmddeQzQawLHBMFwi8RCu6+fVV7dRWxdCVTVyRZiaNVH9MpaZRxIlopEQzmwAOTBK1r+fxsaGiqLB0tVMTmaRNZWjI0MMHh0gOdFC0Kfy1Xs/xFVXvxtbCSLxl7pU13U5xvT3F/m1kwDo27IGH9NvP7nm9Z32f0vbY6nCtm2/mZX0dm3eCfQKwl9Yhd8J+AoCb65Rj337717P253j20WDT663FUXx/27w+l8hpSMIAp4joshlFMljcmSKtvb5lMUgo5MT2MUMTXO6aGxo5GO3386lnSHymTR9UxbhSJg5rU3s2bWDoN9PJm8wOTGOJIrUJBvIzGYoGgV0fyU9QfAEjLKBbXsV3VXPRtE1wuEoO3bsolgokk9PMzUxzpx57ZRMC80fZH7XfAKRGJlMBs8qMzQyRkd7F54ncOhwH/VNtWi6iuNAW3sHe/ftRpIgGIqycPFyhsdHkNb1AVBYWEV7VzvTM9NkS3D3M5v42VOb+O2ft3PPyzv49ZOv8OfNe3Bci2hAZcGCbsKhMAN9/VRFo/QPDPKnP2/h1y/28MCGQ9z/Rg8bDo+z68gwrmkS0xUaG5rp2buPYiFPfWMtgmhz2Se/wcfu+hWqojM72Mdz2w/xxR/ez1d+9jD/9NOHOHNZF4uv/zzPrNsFQDZf4q67H+Fbv3uCO3/9JHfc/QSuqHL+6uXMa2nCs20kRWNicoIf3P8C//jTh/iHH9/L13+9ll89+gJb9h+ksa6W5voklUxLnarqFFokxiV//10++70/8tz63ayZ38rvfvdbTjttJaIgYJkmoiRxyz/+kFv/8cfc98wG3nfpmfhUGU3V8BCRZI3j6agcS8PT9ACGLaDpflzHRRQccuk0qqIQT1Skc8pmCdOx+cQ3foPtuNz+rnM499RlxKoSjG+9H92eJNpyKnMaavnFwy9gWjatddV0z63Hy07gJlpQfTGy2SxdXV0UCgU0v8rY0DiybNPcXMcPfvJrdu7eja7r/Pwfb0ea2IITakCRK4v5mXSa6oiPx9cdYCpb5IzuRpJVUdZtWEfLnGZ++/RWdh0ew6+r3Pe1D+D3+/AEkYnJKWqTtfh1nbBf4ZFXexifyfG+S1ajiA4NjfUYpsU9z+9ix8Fh/LrC77/6P7l7zyg5qnvd+1exq3P3hJ6cZ5QDyggFMiKLjDAZbEzGBmNjY5tgg319SAbDsbFBYASYnEQUQQgBkkDSKIyyZkaanHs6Vle8H1oIzLHv8XnDfd979lqzZq1evbureu+qXc/+P+FSIoUR0tkMikdBEAR8Xj+K4PLWmp30jSS57pIzaKqvxef3Y9kW+/ftpzhWimW57GndQ13DWLLZDAICsVgR2UySTCZFeWUN5aUxoqEQ7XtaMSyLSCRIIjmKaVr4/CFs2yISiTA8nKe8Ybts27qNkpIYqldDRKCvv59wJIogCGSyGd5Y/joTJ04AwB/wYpsi+/e3k86kGD9+DPHRJGvXrCE5mmDm7FmUV1aSTCbZuW0biiziDWiUlpby/Isvcsi0qaQyCVRVRZZlCgsKEADbtpAFL5u2tjB23DgymSwBzY8QkfH7/dhxC0WVSCQTFBcXYlkGcw6dhZ5LsXd3G2WlZZhGhoyeRdO8eHak8fk09LF+ZFlBUZQDO8kCTvd6fvXCbhYddxKSJLJ18xouv+QycnYVE1LNuJaFt7yKmTMqEUWLOXOPxjJha0sL533nPDxehd7eAVxc5s07FMuyePGFl9CNNBXlFbS378MwTA49dA41tZWUlheza9fO/CaQLbJgwTwaGhpY/clnHHPs4WiaD1lWyWST7Nqxk4KCKH6/H1cUyOgZfB6NZHIU15bzNv+SiKTkH3YkUcCyRBRVxu/PVx1cV8CXHEExdPAFyOpJNI8f2zFxHAdZVnBsF1kWEQUJQYDe3i5sy0bzaGTTOplMjmV/fYbtO3YxafJUXAQyGZ1331nB4QuPwHKy+PxeVFUhEMwzFTTNx/r1G1i39guOPuoYPv/8M0pKitCzOTyqSmFRMY2NY0hlkkQLwnR3dbDyo48ZP34in3zyMXUNlRTHipg4cSLr1n5JLmdQUVlOQWGYVHqUosIYiiJg2zqrVn1CfcNYmsY0URLLm6g8/tcvePDB36MoCpKo4jguPm8A+6O12LbNtiIf1bUl9PT0cNhhc9BzcYIhL5atY5kWsqRgWfmYOHBRFA+ODcgKgUAIv+Znf+t+jjrqOKqrLFzXpaJyHkuWLMHFZP2GNRQVFxII+hgaGsU2ZX7845/x8MMPcuSxCwgFVfbsbOPuu3/Ddy46Db/fw+joECtWvMeUyYdQ07KXdWu+oPH6S/IxSa7CW28vp7KygokTJxAKBwmGA2heH5dedimSLGI7Ej4lyoTxTZx08snccuudzJoxgx/+8HrOWHwimiwgqF4ySR1N0fjVL+5gyQXnEQkX5F0/bRGP6ieZSpKNJ0A0mL1gGh5PCNMyGTduHAsPPwJZ9vDFunWcc/rZzJ49i/K6SnLFaX7x+C1Uji0iGCnEFwhzyNQpDA8N4Qv68AQUzjz1dExGcZ0EXqEc3RnhyGOOYuyEyezYu4+mqrGcd853UCWFgE9CUyAcLuHll5bz5JNP8ci/P0A4Woyi+Aj4I8iyyAsvPMPdd9+FYer4vF5A4u677ubVV19BVWUkSaSjvZWA349X82AaOWRJwpVVXEckVhLDMBP0dnXg9/vImTYeXwBRkfF4PHR3dVFRWkZ8ZIT77/sDCxYsQFU9ZPUEhilQV9tAJptCEF0c16Aw6EWwTWKlpbR39yFIMh7Ni1/1sHDuXB68/9fMm7cQVVMYTWTwesu58KxTKCwOcsoZZ7BhUzsXX3I5S867hPaOLoYTQxy76HxOP3UxN950ETNnTAfbx00338I1V1/L+eddzM03/pypM8fR2dvDy6+/hisKNG/dzCUXXkbPQC/7O9q58ZoreWfFOnL2CLoxgs9bwBlnnML48WOQZQWv5iedMvn880+pq6/PU4RHHFo2bSAc9lDXWMYxi45i07YdLFp0HNXV5biYBIJ+2lr3MmH8ESDF8Hg8qHYF2dx+drV/RGHRTKLhY9GkZiIeG8W1iJWUU1U1nocefhBZ9rCvvwu7LE2yto/gcTqeMoFUMk1tbiJjw9MxR6OU+CZQ5G9g985W6ivHMJJNICoSZZWVpJM5kkMD6OleYjEPLhqSVoKs+igoKEQQQXJFpk+eRDoxSHlZKc1bd2FaIuWxvHwLQUAWRRzTwDItFFnGdkwkCXBNJEHhy41biUb9qK5BTh8mkdSJlVUjShKG6UH0lGCJXnyBMDt27iMS1lBVAdO0cRwBx/GT0y08Hi1/33XBdSBnjOalOWYSUQ3iuDaOZeCRFbJ6Ao/mYpsuum4RigRIJeO4okt5WQkhn4ykeNnb1ks2IxAOmYCA3xcmmUggCSpaz5GMVL+OoBsgw9U3/oHvXXEN0aICNL+X5a+/wRRnNrg2u4236O/vZeyUmX+X1frVevlNiuw/qkL+B/yA+L+smv6r7SvTp39F7vj1Mf9jXerfg+dvF+3+a+D1Xz2H/yvg9b9VVM7/F+AVQBRkXAxk1cQbKgBPBYlMHM2rcvNPbsZ2XR5+6BF2bNmCY+d3uxLJBJFoBK/mBaChoZ4phxxCIBAgkUjw1ltv4/MFDjijOti2hWGY+Hx+IuEIwWAAx8lXaUOhIJUVlWSzOq5tMWH8OGzLIhwtQFI0bFfAcQWKCgsxsmnKyirJUyE1Dpk+HcfVURQJPWuxYf16imIRDpk+jZLSKjxakGA0RFFRIX6fj6LCQj75ZDXL3l3L6b98nD+++jE79/eRM0w0j8pgUmflpr3cunQFwZJqFEWlq7MTn9fD5s1buO2Zj7nv9XV8sauDZCaHKonE0znW7e7mty+t5qFXVuHYDoqsUlNbhSKLOI55cFyzOZM7n1nB7Y++QEtr19f0A1umOBpCU6QDYyIQiwaJRUMURQLEoiFCXg1EhbTrQYlWsnHvKAuvfJDf/vVdNuzYRyqbQ1UVugbivPzhBhZd+2/89ql3MSU/cV1g3aY9WK6fP99+HX6vh407Wnls+ceccvIpZDPZg3Srv76xktc++gJRFPjjz68hpOUd9rJ6DlcQOeHqXxGedwGHnHMjgiDm6RuSg6CI6GYGx81i5rKkUykkWcHha1e6zzbtQD+gcz1h/ixs28XI2fhlCzsTx3agobKCsTXlAKzauBO1oAq3fzfp+CCaprF27Vp6enoIh8N0de/PL7IBPz293XR253W2jfUN3Po//oRrm6TTaTSfl8HBAXbt2s208XUH5/7rH68nl8vR2TWIbYn0DueNcGpLIphm3sVyaGiIru4u/P4Ae3bvpjr2dU7lW6s34/cHsIHe/a109eV1stWxMF7JJpvLoXg1EEU8moYsypQGvnaKffWjZjKGRTKdoa21lUDAi8fnJ5szmDtvPnvb9oELu3fvRhBA07yEQkEk1cW0MnR3teFYaYqLi/nii3Vomgd/IIBpmsTjcdra2ohGo2SzGSzTYOqUKWxs3oQjCHg8+ZzedCqNYRgEg0FOPfVUDCOHi00ylUQSFba1bKe+rpZ4fBgXOOyweUyZPJlIJIJlWwQCASZNHE8g6KWjqx3TNjl18Wl4NI1YSTGSlN840HM5XA7oZ1yJ0XgCSVIQkKitqiYcCqHrOogKjmMRDPjJ5bJ4fRq6nkFRRU5dfDKqIpNKpvIPUqp64No6sPEiimSz2bzDuSeAYCY55/RTD1YZPR6bdV+s5tKLL0JwXDL7uzjt7D+xdOkeSkqqCfn3k0q3s2TJmWiahuvIyJKKLCmIooisyCw57xymTp1CLpdjy5bNlJaWsWbt58iKBNg0NtZTU1PNxys/Zf++jjwlzbYIR/LmWK+//hqvvPIyseJiFEXN2+7beTBpmHmt1GefraV541ZkyYMrKAiyh6HhBLIs49jfyNkDzN1bMXduJpmI4/UouOQ1OV5v/t4syzKpZBJRgJyepaigAK+msq+9ja1bWvhi7ZcsnH8EZ595Tj63zxXo7OzhmmuuI5czkBWR8vISioqLkWUZENiwYQMzZ87ksssuxzRNpkyZTD6eJw/8y8rK2LFjB6lUGse2qays4JRTTmHVqlWUlZUTiYRobd2FIDoYhsXRRx/LmjVriMcH8WoeRkfjSJKI6lE56aSTcGwbRZURGWSgL0hjYz2SJLFy5Up0XSc+ksJ1JOTbbyD9wwuYNm0qWT1BVVU52WyKkpISLDtDX18XAI4j4vH4D0Y85IG+jJ61EFBQZA+FkWLq6uqQJAnTNLEsi/b2dhzHoaqqimg0jCAIlJZU85Mf/4ybbrqJN996nYkTx+Lzebj11p/y0coVmFaWTZvXU1gU5Kqrr+C4RUfj1TQmTpyIKslsad5EXXUNl19+KSeeeDy2bWJZRl5z7dooigdFUQiHSujpHuCll16hrq6WhoY6fvu7+3jowYcpKoww0L0fXyjCth27uOGGG8iOxtm6ZQeq4iMxmqKnp5dsxiQSDtI/0E1lRSmCAoWFEerqaohECujtGUQUVBYuXMjfnn6GtrY2crkcZtjgwh9cyPTpsznrnPOJRAP8/g8PUl1diyCJJBIJFDkEOHjUAA8/8DLNW76ktr6OnA1N46aSjqcY3ziOW+74GZMPnc8jf3qM+EiKdDrLpEkTSKWH+WJtM7msg0A+o/XY444mk8mQZy2ZKIrCM88uY2RkGEXxYJkifr8fRVGQ5TwgdV03H6Mj5XXjNjblxVFsI4vjwpgJkykoLOXhPz5KU1MTqVSK/r4+LrjwAryFBfiLS0im0ni1EK4r5mUlsoDj5hjs7SQSCWE7MG7SVEKRKFs3bSaXTVFdWsQtP70JSRLyrvr+KMcdewoVJTEeeui37O/chy9YSeu+bg6ZOZfjTjqRqrp6mtfvZXNLC6PJbqKRMK++/C5P/nUpV3zvSr5/xbVceMF3yWREjjnmNGbOOJy9HX28tWoVMw4/jN/f/zhlsSZiBTWkUwaNTTWUVRQg4mdgeDcfrnoZzW+xc9dmfH6JI444Iu/KKik4KCw542LKi6pxHJXegSSzZsxHkv14tAKyGQXX9hOLjiWbCTE4oNPWtZF06g16O3dTU3kCVeMmYEfiVJdVM7amAK/cx2D3R7z/3jvcc889hEIRRuMZvvh8K2PqpmBYIr2hLoLn2Fy/Zwmpc1axxn6b93r+hq9IIOYrosadxBHyEiYPH4u9Lki4rRRffxHV4hTs0QBtu7qRFRWfL0B8JENXRzemkUDTUsyaVUNfVy/h8GRSehbHzOEgoudymLkc2XQyT9t13QPjlMEVTCzb5ZBZc3EANzeKYg7iEzOkh3uws3GGEhkkzY83XEDWthgzYRxFxUV5p2tJRpY8vPz8Gl59qRnX8ZDJpLFsHWwFUVCQxHyOaM50ESUFWZawjBxepQxTV8jlbAQRcuYoHkUBR8fjgWw6hWFa1NbXM6ZpHNGwD03TGI2nSKUyWEXtiFaAYHIOeiZFRXkBigi//vXdaJrG2eecSUdXJ8uERyi4MkFBJMBH772FR/5av/kf6bhfv/7/dvsmJfifZap+u/0jnPTt/NZvtv9dJlD/1fbfCrz+VybMNyfYv9rnnw26R7YxJB8OPooLI3SnkjTVjaeyuIKjT7yQvz71PNt37UT0F+QvbiAUCKDKGp99toHheAbNH2DLxrUIjkl9fS1HHTWP4ZEBnnv+RQwdcAQ0TSRn2tiuRc7IEYgUYuYMdmzbhiy5lJYWYgsuumnQ399DNjFCX0crW7a2MNzbiaGnaJoyhYKiYjZt2kRb2y6G+jsY7BlmsLcPx8oguCY+xcNAXx+ZzCh9fd1UVdQhyRqGbRKIhGgbsvn1sg/RDZNDGitYfs8P6Xz9QVbd+30++O33+e3Fx3LOkdPp2NfF+vWbMS2wbJcXN/fy5a4OZEnktktP4tkfnMjrvzyPh797NPPH5MHW8i938m9PvkJdfR1ev4ogeEHUDv7ef3n1fQbTOe678SL2vP4QbW8+wu7XHmJ8XYydr/wbt3/vHACKo0G2PH8vG5++m9bXH+FXS+Zz7bmLEGwTTRLZsaeNM278Df0jCRYfMYuVf/4FfSseoeedh9j98r/x44tPRRJF7nr0BV577xPeeeM1SouC+FWXsTVl/Oa67wDwxxffZU/vIP6AhiTLvPjmB/z0wWUAXH/eiRwxayyqFsAVQdUkEBzcA06lLpDTM6iyiOvISK6IKnlwbQkchaLiGIIoILgSoiLjCgLb2noP/hbVxVEE10IWckiii2kZJEfjjMaHGF9fAcD21k4sx8WSfAQzCVp37uGYIxYQK4giuzLJNi+xWDEZWyQUrMO20gfmtcNPfnwLAi6RaBEDQ8MUl5bh0zR2tOw+eAyWJ0gw4ueM009iYKAXPZd3aHWArVu3s23bLlTVw/yFCxBEm4rqOhC+DuLuHs2QSA7gVRXGTZxGVs/3F0QRwwZsi6HuLro7OsjlbCxcYhUlB/u3dw+hODaKYNHUUIdtmmzZtB7NIyIJMiXFEQb6B6iuqmJoMMHoqM7GjTvQ0y4IfmKldTSNm4IkucycPgdJ8CAAkqQQjRbR1DgGRVRJxlMMDvRh2TqTJ45HdUV8gSBlFTG8gTz1UxEcwgEVv1dClgTCwQiGMcgppyxCEiVEQSaVSLCxeT2GbSCrKqIs09fTw6Yt2/H7o0yeMBVJFCgujpIzDGxHAUQUWUKR84LpnO6g+EWOP+EYsqkE3Z0dZKwMsqoSCASRJYG33noP1aOhqCq27eD1BlA9Qfw+mYJCjYqqMvw+PzndoLOzE8dxUVUPgiDg9XrzO7mKF2QvkxvCJFODCIKNTAk3/+jneBQBJzYDoXQuTyz9C4vP/D7vvG/wnQufpLjYJRDM4goGhpWhrqGSSDTMyHCKJ5YuRZRsXNuiq6OLkqISLENn0XEnEQrljelkJa/DuvCScygpKwchQDASwOPx88br77PwyAX4AiFWf7aO/v4BLNvBdgR6euO8uvxdVry3hkPnzKN/YJiRwTjrVq/EShkYGZmcbtDeth/TdBAE6QCQNRFEgUgkgmk4mIZFJqMzODiIZensbduOaVj09QyiZywUyYdlutRUNWFZOaYdMp2qumpeee0Vhgb6sXSdyvIyJMXFsDJk0g779vXgOC4D/YMAzJ49iw/ee5/21lbeXP4GHfs6CXgjOE6O+fMPRVZEdu7eiYiDbcis/uQLYrESpkydTuOYOpBVxoybzsjwKAsOn8uyp5/mkEOmoKddMkkFAZnu7n7SaZdNW7bnTeTMbhzXR44qFiw8mmwmx1GHLyQx0k1FVSXJTBzdTBAI+xgaGSaoBrFdEV8okq+OuF5KympBkpE9MplcBlEU8znDfi+SbBEOaLgCyF6FQEjEExZRFIFIOMDyN1+lurEB0SNRVlWDLSiYLmT0JI/86Q+MHT+GcDSEacTJGTaK30+wIExl+VjKy8azqXk/Pl8xZ597LslUikhBkHQuTcOYMfQO7UeSVQzT5plnn+O22+/EdV1MK4tLlmQyiZ5JECmRqR83Bhsv7a17ue+Bu6hrbGA04xKrGc9oop/Jk2bw5boWPv/iQw6bP42u7jZCoRBFxWEkJYueijP70DkIokJICvPlF1/w9NOPAxk8ksPK91cgiCpPvvg3rvvRdbi2zkfvfkxReYSk/nU+ZFZPIas2imtTGS3EkFIYmSyGbnPRDYt4dumLBP0xXEckGpTIega58Y7rcQ5UP5I6LHvuWYrKirjo8kvZsaubSZOmYNs2oVCQnTt3U1pSTjTkYc3qtQDYpBE1hZLyCEZuiIBs09TUxOhokpxu4zoyAiqyIIJjIKsKHi3Enj3dRAsK8KousnRgw9jIkhwdYiSTpHZcE6ZqHzy3nGmgKHkQIssiji2xe2cnrfv2IBVGSWOwfeMnvPzsy4RCMoFQFDHgJxCqIpEapbykmtSwTmlhmHseeIrLLv4FTfUV3Hzj9xjfOJHH/v0hPnrnDVL9/Rwxt5yufS2EghOoHbOQQFEhf1v6JJ9+/B4/uP5iHnv8bjz+IGPGNLJv325eevUVABobqnj0wZ/jWiP86t576Ni/ib7+BDddfw/pns04iQSnHnMSyRGbVMoByUdH62co2jCSGMEbFVm7cRU9ukxOLqW8qp7+/v2okoYsi5RWxpCUQgorY4g+icFEkvqa+VjGOG684XdIosaW5nZKY1Mwo4dil0ynrGkiZVEI6O/y4euPcd9D93HjHT/ixjt+xIS5UzhlyZmMpONkjBwVtRF8TfX8euW9lJ5Zwav2nRT/sBfp5maUu5rZce7bSKeOIC4ewK4SEXy9KEMNTBUuYOBzkzv+/U4W/epIDr1zLk0/mMTht5/Ng8uXM//IqURCNv1dAoMjEl6/H8UXwLFd2jtMBMVmU3s7P315KUfdfwv1t1xC9U/PYPLPF3Pp0rv4/TsfYroyjtWLbHeTTbThVzZiJ4aRbQdNnsyAKXHTC49xzP23UP/Tsyn/0Un8Zu/DvJxczotfvk/IH8UjBxFlA78vQC6XRpEUfIqCY1rYpoogqThuCq+mIGBi2yaaGkH1hxElDUUN4AkWIiHgIYWm9pPTQZEUQiEPBdEgmuJBL2ymdNPNBD1BYlGBKy+dwYbPP2D1x6/y1F+W0tvexRWXLsEbreXllXtYtX47Q607kW0nnzKAiIh9EA9Anmr7VWHlm0ZI/whL/GfOvf+roty3ZZDfrAb/580BHATBPbjR983/4PzTqvBXYPkruvK/0r6Nuf7vgvv/42jD/5mu9X9H+/ZkkhwwBRE355IZzPHZF5sZ2zSGzs5Orr3uKvbu3cn2jiEuvvwqFpRmcASRvX1p2tvbyaTTuK5FSUkRTU1NCIKAZTsomoeh4RFOOulkWrZupby0DFn2IIgylmWjyCK6kUQUNVrb9lFVXUNhUQH7WlsZTSSorqnBxaWsrAwtGCAY8NPVuY9kfBBJVEklE3i9HsIhP8PDw0yYMIFEMsloPEltbR0D/T0okkQukyHo95J4ZzM+n5eOSpmr7n+ejGExtb6UF391BbGIn5atW4lGQtiWQX1FjKMOGUN9RRGWlWPq1Emsbt7KA698CsDtl57KCdPGUlFWyeYtG3Atmzljq0g6Mm09Q2zau0ly5bQAACAASURBVJ+rz16EKEioqorrOvzt3c/o6BvCtGwe+cnFXHjykexo2UZONwh6/Xi9EvH4CB2Dad76dAOaLHLdd04mEPCzfPlbLDrhOGRFQvWoZPUsNz/wLFv2dHDa4TN57PZriRUWoIkOkijg2BZHz5uJT1P5cN1W9nb18G+3fJ+SWBFgIIkCY2vLaOseZFtrJ59s3MGS4w9DkRWu+h9L6eof5pAxtfzpl99H15OIonzwZuA4Dn97Zw0dvYNEAj6+e/oRCKKL4IoMDPQSDPlAsHEsgWwmw8hInEAggO1kcF2LN1c1s65lL5Ggn/mNpdTXNdDV2YPf2I8kyXhKZyJLHta17Gb99lYsx+FHF52K67i4Q/t4d9sIU6fOoGNfD9decwPPvfgsRx51JKosEYporPtyAxubt5BMJfnxNWfD/s9QSiegyjLKgarRi+9+yob2fDZmLBqkJmCieTWCwQBb2wZo3t1NMqPzmxsvJFZSgiDJiJJMJpnC4/HyzqfNvPdlPiakIOhlyTGzMA0HBJfNrX1s3NVFMpPjhnOOoau7ny/Wfcm8uXMxczq+QIA77v0zWzrzILsw5Oe0hRPJ6nntqtcXoCASJBKNYtkuLjJlpSUYhkVhYQGO41BcHOOD9z+msqIMTdP4fO1nhCK+A9QbhcHBIYKBAKtWrqQkFsPI6hhGjsKiIlTVQyqVzkejCDJ6bhTTSFNX2cCGjduRZQ2fL6/pTiSGiRQUoigK3T3dFBXHCEULqamuZnBgAF/AD6JAKBQiVlKG5Vh4vB669nfmq4mum3djFMw8W8cVGBgYIhAMkEnEadnaQigQzus7HYNkV5LP3/mUklgpkyZPJJvNswEURT2wgOZzUhPJNJrXh2EIiIJIab8MOOhj8rThv9vJHd6DFBuPWjyGtWu/pCBYzq23/pxXXnmFxd/9BUed9UNSqVEOmzebkpIydu7sZdKkU+jp+ZTiogAjwxaZbCbvYCpLhEMRfN4AqioRLYgyZkwTLjavvvImzc3NTJwwAUlWERDRDZu/PvkUifgQQwPdTJh6COPHj+XZp59l0oSJLDp+ES+89CIbNjRTVVWNiIBP9RLwSnR3t7Ng3qF4NJWy0nI69+9n29ZNaMEIZWWl9HV3EwpHSWcMhJ49GLkcuYJKTN1C8wZp3riJ+rrGvMmVoLB+3WYU2cdrry0nk9FpaKhFzyUJhGRC/hjpZJyZM6fh8cgoXhXDyvH0U88wZ/ahbGreREmsBL/fRzKZxOvVMAyDWHHsYI5va1srgYD/ICtGFKG6ugK/X8ZxXGpqKvD5vHi9fopjhbiCwI7tO5BlG18gyKwZcxAlB0WRSSbTRKMRwuEosqSxedMmKityWJbLhs1h6uqamHbIXIqKQqRTo7Rs3Ua0oIxPP13NxInjGR4eIRwuQHRERlM2K1Z8yPixjciijIiI4AqIiKSTaTTNQ29vLwUFBciyTF9fP4FQCMsySA6PEIlFkZwOwGXC5GNBEhkdjRMKhQ6u5Y6dQRBAllUuu/Rqph4yhWikmO3bt2EcMGFyMVA1KCwKccYZp+E57XjEk45EQOUPD/2J++59kDPOPhHbMZg2fQozZ01joC/D448vZe5hc1FVmWS6j2DIhyxLvPHGa9x19200NTYQDPmxLBOvV6Nn33ai0TDnnH8OvnCIdDqFrht4VB9ezYuiSDiWxIO/f5RYrIK29v3MPmQWi089GUmVCUQLmTxtBpKQZ1hksxmi0RBjB6fhGw5AjcEzzz5PR0cH8+cdxqxDG8iks+AEybkmvlCISFEMX8jHgsMORQ146e7vQE+N4EomAiLbd+wllzOYN3chl15yIWPHjiWZSPLCC88zbvwY5syZxdXXXEFRcYRkapRcTqGitgFEEQuTgMePgEVPdyfhcCE7du+kqCiGZTsYho0kyaQzScLBEmzLxHYH0dQwINDd082Ty54lmUqxcN5cxo5toihWSiaTYWRolD8/9hgA1117A6FgPuMbbLxeP8Fg6ICMQWR4YIiAT8Mry4wbX8nQ4CjJxAg53SUQiNDf34+iiFTXlLDg8Nls2bGNyy67Co/gUlgcYcP6DUyeNJloNIgW1CgsqGTJuRdQUBhAsDWOP34ugpTj9w/egyiJtGzZxsmnnEzL9h1UVleRzqTBdpg9bQZdPX1kDZu6+gq6uto59uhT+Oyz1cyZfyg9faOAyrvvvcecOTOJFtqIkoyelhlNjuCXTR5f+iSHLVhIJqsTDirs2rHvQAa0gc8bonPvZuKpFNV1DUQLY5jInHnupYwkXarrpjIwYmIJCumciOovoaxmMr966EUeXPYeXb29WJaFR9MYHh6mb2CQv73wCrNnzuamn/yQnJPhwu+cTl15ARNnHM2nazdj4yUYKqV3oAs96NLS3c6yFbcw4/QurMZ3eLr1fi54+la+7FtH3BjBo+Sr7Z3xTtbsX8PyLz/m0prrWFh+LIrjI9NZxM6WYcrVyZRFynm++QMuevoONuzfxVA6geuCpqiMZJK0D/Wyqu1LPt2zlRMmTUV2XbBSeMUCNC1NIrWRv370Z77z0JV8sXc9Q6kRXMCrehlJx9k/3MPbLZ/xyd7tHDf5OGRPgKzhYJoCHm+eseXRFBwHFEXGsm1EwUVRFBTZiyT7yaRHkBUJj+JHkgQE0UEQXWzLRJRAz2awHRNVVfJu8/IgSrYMb/dR6HUfEfCWM9DfxbHHHElp6TjOOmcRpZUuV33/Nq78/hUUhUXefPYpzrzgYnJm3r1fFMD9llb1HxkV/cfX/jmO+UcmS//V9377WP7Ze75q/3nEzdeA+5+B6m/rWf/ZsXzzu/9b04a/OTjfHoxvo/h/hur/K4j/H/3Q32zftIQGAdt2GRwcRpSgpLQI08zR19fH7bfdyayZh3LyUcdx9ZVXoaoqwWCQsvJiMtkEEyeNwbSyiJKNaeQpmuFQGFVRqatvwMxlGdNYg2VlMcwsjmuTTKTJ5QwURSEY0iiIhhBFCIfDNDY2IQgimUwWRVYZGBhCxEZWZIpjJdTU1LNn5y5sR2D2nHkkEykaG8ewt7UVzaNRWFhAMpmksrIG23YwTZPNzc3IkoiR0/lsyx4GUzoAt55/AvGhYWw7QzgiYTp5B7j1GzeSyei0t7UiySqffLaGtXv6AYiF/Rw1sZTEaBJF8yBJCo1NjeRyOkePiQGQzpms3rwLXJlMNoWIdDCEflxtBWccfRiWZTFl6lQGBvrx+jx4PAolJSVIBy4+n9+Pi0s6k+G4RcehKH4SSYNMxiaZcXlz9UYAbr74VGTJRRIFDNGL7ip4I0XotsB5JxwOwPa2boZGE8Tjwwz09eDYFqqicN+PLqWmvJj+4VGuuPOP3PrQMrbu2U/Aq3H3VReA48HnjSCKEo7zlS26zBsP/ZyR1U+z5aUHECURUZQQcSgrLcEyTBKjKRBsevvyVVZBzO+GqYrCUDwBgNej4vN56eruxOPxgCDguiKPP7aMl19ajp7Jj1EqozM0NITtL0JIdNNYkV8ANm/eysaN6zn3osX4PCFc02X/vj0cf/xJAOh6jnuWvgm5ODg2gpg3JUilUqzt+Dr7M5nJ4fP6qKisxBcIcPSsMQDkTJuH/vZhPj9TEnEdm87OLmzb5qn3tx7sn85ZrF79Kdu372TVqo9ZMLk239+wePD596mqquD008/Esm1a21tJZdJsG/66cjsYH2V4ZASfL4Rh5F0QdcMkmU7T09eL49p8/PEnvP/+B3R2drF/f54WfdKJx+HzaTiuw2Hz5hMMhhEEGVGU0Lwarusya/Ysenq68fo0iooLsR2bVCZNtKAAWZHRFCgqKEaRvSSSccoqynnhxZdJpbK8uXw5qiySy5o4rkOspPjgxhSiSCgcJJvNIIsCtmWxdu0aBARGhoYpKiwiFAwSCgTyO5uuSC5rIQoK4XAYSQKv10tdXR2DQwPEk6NYVl6fq+s5RDHvQhwIBPF4NPILjoBjWTiCiOYPkUym8WhKfjGfGsCYFj1ozPDVvTYej2NpUfTeHaiqxqFzDmPnzt288upLvPPuG5SUFPPBBx9RX9+AZRkoqsSuXXuQtCCx8rORZYf+3u34fAEsy0KWJRobmwgGooiSiouLIAns3rOXZDLJyMgIjz76GKPxOIaRxatpxGJlfPDxp1x1818oLDscy85yyCHT6ezqYuu2rUyaPJXx4yfxxmvL6e7sYPyEBsaMraW8vJBde1pAVFFUlaqaMg49bAJezYMiuZQUh9i1fQuyBCIimsdH3ljaw4oV71IQjWIaJhIS5fUncPKSW3ht+QoWHbeIeDzO4GA/kiRTVBjjvffeYX9nBx0dHXmKlesSCga5+IKLsEyTSDhCwBcglU5TWlqKYZg89dRTbNu+jRXvr6CxsYGjjz6KaDRC8+bNuMCK91aQHE1g2Tkk2UHzikiyhdcvIMkCkiTT0NBIWVkZoiSyc9deenuHePXV1zBNi5aWFkzTZPXqdzl1cQOjiRiWcwIV5U1s2LCB75x3IV9++SWzZs9gwfzDcRyHefMWIPzlFSIvfMi/P/InJFlgaHiAwsJofvPNNfP6NtFBzyaxrbwsoLq6Gtd16e/v/7s1Wtd1Uqk0ab0UQaynp6cXRfEcNBn5audeFGW6e7rIZBNIksSpJ59LKpUlEPTx9ttvEwiE8t9TU0pH594DGnBQVRnbtjls7nzuvONuXNclGAyiqirRaJSbbrqJZDKJ41gg2KiqSsvWnRg5l5NOWozP50PPZVi3bi2KIpFIxIlES1G9CoGQhqz5CAZDeS2w7dDZ2U0qlUJSFX70kx9TWVPNnrZWfn3X3ezZ3Up8JEEynuT2n/8S08rHim1r2UE6pWNvF2Fn/twF8cCzi20joBGKFCJpKgFNw7Ygnc6iKiKxihpsXOrra1FVjYA/SiAQ4oH77sUxXM4/70JUVaalZQuC6HLrrT8jnR1gT+smVM2kt38Po8lukqlRzjz9dARBwqf5cewcpmlSUlaB7Qg0jhmHx+fFHwwTjERBkikrKcQyR3HtHH2dowwl4gRDUSZMmHzwATcWi1FcXIxt2/kYHN/Xco6cldeMfzXGuq4jCAIBfwVO1kO8X0cSAoyb2MSuvXsojpUSLYjh9Xp44oknePTRx2hra2PCxDFEYwJHnziPTz7eyB0/+wV/XfYoZ59zFldeeTVlZWWEijRG4kmuvvYann/+L3z30kuIxWLoepry8jImjJ/KY396hIrycn7y459y0/U3cN7iM3j75Vepb6qntKKEaHGQYCDC+PHjue32X3DB5VfS3t1HIBIhEApz4YUXIgkiuFHSIy5XXn4DtTVjiaeSXP3979LT3kbI58UwMtx++508+PuH8Xq9pDOjvPHWBxSVFKGoDsnEEMOpXiwpQ6jIR85NYpDBFyhG9ZUQLRnLrx94kefeXA/A9RdM4+lfnsX2D17mzMPnM3fmHPSczhXXXs/7H6xCkTUQFLRQkPc+XElXd5yAr5Bdu/ZQHWvCkJIctXAei4+rwxaDtA4H+MVjazAsi3FNjTzzl4e55rIlrF/9Pm+/+CJBv5+O9D6OfmsG62e/TnL+Pn7zxe3skdp4ddvjbIpv4ebl92I5NhOjU3jjzBfo+l4H7ddtZvsPPuLaBXnm25q27dy74nVE5Hw+uT5CdjTHlxvj/OzFP2HaFuPLa3ntxj/T/mAzHY/upP2Pu/nhydcD8NnuDdy/8hnCJU1EyycQKpuAIZXiCRaybW8HohbCFD2IHh+65WCYFqbrkHNBkAVs1yKeHCaVjWOYBpIoHZTIWLaFJEpk9ezB5xqzeg1KrgJ90+Fc88Mn+d6Fp7O35XM8ko4gKHQ9GuS22ffwwqvv0jeYRNUC9HbuxzFyuK6dZ1R+C4N8Rbf9R9jkmzE3327fxCjfNnL69t83+/wjUPhtzPPNKvDfR+J8bTz1zyjE3+77zc/4qgL77XP6Z5Tj/ycknv/HgNf/Xzc3n1mUzoyS0YcYO74Shywj8SEWLz6TM04/j6ZYiAvOPC0/cV0wdCguLMe2JGqqGxkZzrB5y2bWrV1Ld0933hxneDRvMmKkURSbtD7MwEAv2WwGvy+EqnjJpAZRFRc7l6Nl0xZU1YNl2fT29GHbDju278DKpvD5AuRMgZHRDK4jMGXKNJqbW7AMh/b2Tjyqj1gsxsBgL13d+0ikMhTFSonHE0TCEQaPqWTXDIVdXSMAFIZ8FPmzIJp4FD/jxkynpKKacZMms+DwI/AGQqgeP4YFZVX1bNiVBw1TaovwaeA6Nt297YwfP46dO3cgSSKxsEpxJATAh2vWs3btejKZNC0tO3Cd/MUxZ1ID+zt7QZQRZIHZc2chKuA4FpZl/d2weLQ8ODEtC8UjEQz58PoU1u/YfTAP9fSb7qHp1OsZu/haxi2+lnGn3cDYU65l8mnXMPfCWw5+Vv9IgoJIhNJYCbIs4joWwYCHx2+/BlkS+eiLFv788vsAXH36fHZt/RJFEbEdA8cWwRXz4AgFQXRwsbFtJ6/nEFQG+nuwTQsBlUi4FNUj0NBQR2lZCYNDvdiWjeu4eNSvgrFdJkwcS1VlBd3dnfmbiOhw7pLFnHHWSbhuXhcrCALBYBjNp0GwiOlFJl1d+5kxcyot25q5/KoL6Oke4vmnn6M4FmHevGOZPXsWAA//5RkeXBlnz74ubMfls+ad3PHMGjbv7TtIHRMFmD59+sEb0axxpcwYWwnAfX/7mN88/gYbNm0lmRhlIGVw8a+WsWlPz8H+hpHj6GOOZOrUSRx11NGccNgkptTnacH3PruS2x5+js3bdrHiw5UYaojLfv0sG3d1osh5bbOmadTW1eO6Ih99tArHgUC4AFXzUl1VgSy6zJo1i7POOpNQKERZWRl5lz2Dva27cHHo7O7BcTyIkhfDcggEQ5jYqD6N+jENmI4Fkogv4CcYDGI7NqZlsnfnJkaHkmBrBCIBwpEAi087mWXLlnHu2eeQ03X27NxLd0cnqiQx0NuP7QKCiNfvO6BFzWJkdWZNn0lfdzfdnZ2MjIwwODBAJpMFx2FkOMvuXft5++33SWfSOI6JKCn4ggFqm+oYN6mJ0tJSBvr7MQyTLVta0HUdw/iaogjgODaCIIMgEQiGMMwUupEgUWZj1HnhgHmEruuIokg0GkUKFCMM7cCyLNLpLFOnTmba9EmoHhchvY9f3ngxkXABiiriOBYBf5BEeoRkJk0q08SMGTUI6KRSqXw2qiDx9NN/44P3P0aUZH72y4d4/pXVLDziCL773cu44IILUFSJrJ7GtQxc281PsgMtkxph3vyF+EMh6hsbsG2HoqJiZs6YyaxZM3HxgKCSycKUyYeB7GILMvs7hgmH6wj6JMxcAisbp7qiEFEwsUwdXIuiWABfxMPhC+fT39eLz6uxe/fXFHnHNdm1exuHzp1FMhVHVYKYOZlTTj2RqTNmUlldi2m5fPDuBzg5h9bWVkzDpLamDl3PEQoGue+++2lubub8888nFivmpJNORFEVwuEQiiJTXVOJLIscfvgRVFfVkssoPPv0G1imhGFYZNI6jmMc0MB7GBmJI4kqw8MJVqxYyemnn5XXkSkKnZ1tLFhYxWh8Inf8+mXOW3Ih117zAyZOnEh93RjuuusuTNPA4/FSVVWTN0oZHEWLp7jookswrQyxkijzF8xBEC1y2TiKZNHduReP4lBU4CeTyeTNzMhT5UpKSnAch76+PmpqahiNZ0kkgmxrGSUULMLIuXg8HhzHIZ1OE4/HUeUwFeWVWJbO6tUrWfXx5zy97Dk2bdrEqk9XUddUS3V9A7X1k7npRz/nvfdW0tffSV9/J7+87Wd8vuZTJk+eiCx5MA2HxGgaXIllTz/JT392Mz297WSyI2ieMLGiOn7+09+xaeMeCmPlHH/yqSw6eTFFZdXMPuxwbr3jflp2toLgkD6gi9M0H5rHR1VVFfc98AiR4lJCxSGKK4v43jXf53eP3MPsIxdQ09REdUMNv7v/t0SKColVFLN9x05M0yaTSbNnz24SiTi2lV/LPv38cxYecQZllWMprSxnytSZ3HHbHXR2dNDf0UFd40REWUMQVSKhEoL+UmxLzm/UlhYQLQggyQLTpk3l+uuvZfOWZsaNmQ6OH1kMEyuqJxquZKB7D8888RgjPf04GRsci3RylGAwiOLz4biQTKWxHBvLsXFcAdDZvfdT2tq2IZrl+IMB1m/chJE1sO38OisfuAfv2LEDwzBIxvsPXiuWYx5kfqgH1qxsNkvWHkXTbEIhaG3fjCPLTJ05E1uSkX0hLCfFRRedzyerPqe2toHf/e4eRoZldMPmkX+/l1lzvfj8CieccAK33PJTotEoe/dtoaSyjCOPms9ocj8lxQWkUzkaGxuZPXsOH33wOd+99AKee+5ZZh16KBVlpVx8wRJ27NnOlxvWMHZcLb6gzJ//vAzXhr88+ifimRGiRaVkDJulTzzBE088QTabobu/H1URWbr0AbZsW0WsugFZUdi7bTNXXHwR/QPdLF26lKuvup73V3yI49hcfuUt+IMhzNwImXg7lWX1YCvoGR3XsXAdE03TCIULSGdt7n/4cQAuueBcfvij25k0uxw18QJXn13O8VOL8aoKek7nr089x4vPv0kgUslzr66korKUMWMawbXJjA5SHKxFDCTR9VZqK0YoqxrP/cuayZkOXk3hL3+4k4BX45prrqS8shBFzvDmi0+gKArZnMGafZ/y0Kv3c83Dh/OBtZdPIm9x5hM35NdD4ITjihAaN/JB7h5G/LsI28XcUb+MM8eeAsAbm9eA6GBhIigOGXOAVze/j3XgWW7p+Tczp7wQMbubzMBG+rd9xE8XLeGsOacC8Mqat7F1h2zSwszJRAqqkXz1NIw/CjU4Fm9oHEgVeLxVJFMSrhBB8caQ5CJEOUogFENUfEiiAuSNoXBFfN4ggiDjUX3YFvj9IXI5HatxLdWdF3HezIvo2LGLztZmEqNtSIQZ2eOi/U/y3jNKjurc9/5V6tw90z05aILSKOeMEAgkgcg5mowxYAOyAXNsbDAYAyJHE0wWiCwhogJRQkgo5zDSjCan7unpHCq+H1oafLj42Nc3rHvWu9eqL9O7wlTV3rWf5/mHlIfLfn4DB9tj1LdGOObo6YR7uw8naf7P81v/Z9oRLYL/lXYk+fT3xzmicPzjfkf+9lP+tP+n2n+b4PXHEfxPZS7+WcX1X2lHMgL/rEp7xFjYsix0m4ZoqjgdJXjyqvCYSWLhENlshqyhkzF1amsL6e7pwRJkBNlOa1cTvdEIO/fsYtrM6QwcMopwOM7Z555HMNSDz+WiseEA6axJRrOTzIg4PX4KC0soLi1CtzQMBOyOQopKK9CxqBo4mJ6+PlJZlbz8AkwTRgwfhq9gAKYp4rSJGEac6cfPpKC0kHHjx1FRU4PXI1NbU0ZLSwMjhw9nYE0tDQcOUr9rK353zhexR1bRCwtoD+aC16qSAC5XMT29aSKJJE0tB2huakaxOymtria/MMCoMRNIxmPkOxXC8RzMs7Iwj4aDh7CEDHm+Arq7e8jPyyfP60M0BXz23MtvSQ7Gjh2O2+1lxMhhiGKu2lbo91FdXXW4wiEc5qyZiJITSXaQ1XMVR8MwSCR6cDrzcDh8CEhIog1dh85gpP859vTFCEbi9PTF6QlH/26L0ROO9veLpnRUJDRBxhQURNmJYEqMqCniunPn9fc767hp/OK8+Vx+6XlYepZEXOeFl1+m8VAb+/fsQ81EEY0sVjaNLFg5ISDTIBAow0JEEDNk0jH6usNIikJ7dxeBvEJsDi+WaMNhP7wQyKh4vT62bN1GqLcXw9AwDJO8fF/Ox9CTB4DTpiBLOThsxlWCvn8tDZ/8lVB3J2nNAN2OI8/Dd9v30tGTQZHgyQceoG7IEHRd54HlPUy75hlK59/Bmbe/yaqNB5g/bQRja3NVcrdDRhAM1FQaSzMRDHj612cyalApumHy2LvrOPl3b1F34UOcfcc7fL7pICfNGMHEIaUABHxuQOS7dd/T0xFCECxe+dOFjBlcjm6YPPfJVo6/+QUuWLiC465/hhXr9jGuJp+jxw4EwO91klUzyE6FcRNHo6oJNDWLnkkTCYXQUkl0MqhmltbOVpxeGzoZTEFicN0INN3AKUuIokS4rxtJNAiHQgTbu7BL9pyMvyIT7u5ES2uks1maW1qwKXYGDhuPw2Wjvn4Hkqjgc9lxu2xc+LMLUOweknFobGpF1SwyqkFBUSFOUSeTiiAIFl0tHWxbtwWn049q6HyxejUjx02ioeEg/kAAsFDsdory7KQSERoOHmLPzgMkIyqmkBPqkkU7sqBgAZWTqjjnl2dTf3AvdruA220jFOrGNAzUbBZRtCFasOSd93j0kacQRQeS6MLhyMeyREzLwsRAsdkxLRAlAbsrj0ysi3Q0i0MEb7FCLN2H0+slsfp+/nyWn95wELvNhc/n4aFH/kJ3Vxg1a5GIO+joKCabPsTqL79k8WvvsmrFSiZPGo1hWgimyQOPvMbCh1+mra2HjvYu3nzzTVwuB26PAwMLT77MuHHj+sfX2tU7WbrkbYKdPdht+bS2ttLR0USwL8gDjz9FKBzD7vYxbOQQ2jvrSfQFef/txZSXFaMbWZBlBJsPp7+Wr9dsyokbxWJk1TSSlUsy9XR1MXTwEDZt3IzL5ek/d2XVAI49fjbReITS4kpUNUl3TxDNMJHQ+P679WzdtBNZthOLRxg0qJpUKk5Xdwcej4dd27ZxyYUX4rQpWKbJsGFDSMRj7Ni+i48+/Jgd23dgU+wIkkhLWzOS3YbT5ebCi89FtttzQlyiyaqVa/l42SdYpkZjYw+mpjOgspDzzjmHvbsb0PQslZWVFBaqbN4c4oEH36KssJgnHruPiy84G4dkx1A7Wf3Vl5hI2Lw2MtkE8XAEUzNySsp5Dr5cvYVMKoyhRdE1CcXpIZnVKRtQQ2cwjKA46A13kFUTqFoa9Qi33gAAIABJREFUn88DgkYi0ktZcRmxjIZD0XnvvU+59OIbiYbCCGo7pmbicdmxK+B1udEt0C1weT1s27WZY44+li+/XsnlV1/Fso8+pKOzA7vdQTAY4uNPVnDuhefw7KULCDz3IQ8/eC/XX3cpHrfA9p170fQMbpeCnknj8Ug4HCalJUWIlgPJ5mTkkCkMqvRw6ZVnYWGwectWVFXDZrPReKiJv/3tOaZPP5YPliwn1NNJ075edm3ZQ2+ohVg8QXNTN263m6LCwsNbEUVFheT5fBQXFVFUWISi5L5Vdrud4+bNAFHG7nBQWVGFS/TT0tQMwPcbN7Nn7x6yapZMJkvDoUM8/uSTjBo9ludeeoX6Pd9jk0RMQ6Q71E1Wz4Jkcsppp7Fu4wbuuOO3NLXswWZz8MnHKxk7ZjyjJ4yksKKQ517+G7qg89Cjj3DFLxcwYvJ4Js6cxOnnnc6qNZ8TKC4iEU3w9coPaGpqQlVVurs7URQBiyx33/805118M1OPOYmhk6q49NKraDnUgGlkkZXcN0iQ3WRVkWJ/IQG3D7v7B0RMb1cPbe2tXHPdLxkybAKBkgFMnHYUNy34D5o6OqgcNJThY6fhddnpau6iq2U/jy68l5LqEfgrBrDk43eob6pn/ZbtHDt3LlWVtSz96F0CleMwshq/+4/bWfLRe5xzyZWcc/bNFJUVUjSggmPnXsI5F8/nd3+4G5vTxltvfcZ5F5/OpKNmc9lllzBl/Eiuv+kGBk+YwJ33PcjUWfPRdCfLFn3Ah0s+4dobbsZV5Of66xcQ62tm1YrlvPPBUu57/FEqBg/hjHOv5onnFyM6JQL5lfzy5zdhGAbHnXgiTz/3CiNGHYcnIBNNN1JUkIfbLtO8fwO9Pb2kMgqq6SWbMZEkAa9TYt1XGzATLiwZRJudpZ+sJJHIrZV+ecP16HIZoud4/BMvY/TRc7nywpFccdZYAJZ8uJSTpg6ldWsj4wbOYs/2TvKcBXz+2SdMmziab76+A3PHJyxfdDW+QaciVx3PV2u2AXD2MbUMry1g265DBMNJuru7GTtyBJPGjuGoqRMBWPrpKh54+nEefOR97r/nVP5jwT3UDgwA4PW4eHfJaiIlfdyz9BE+TCxidfW9rCw/i3FjcxX4ZFpHah2H3ufAFBVkyYOh5FBbfqeHgLOIUE8Plqpj6SrVlQHUdCcTBtQAkMhESUb2kYm0U79rM6FQE1oqTDoRxjAy7NrdyrKPt5GlDH/lKFTLkbN0c1XgcFegGgmcioJpqggo6IaGZuhIsoSJBaKFbhmYgoUoiCTUNqyhG7ll1DPMdd7CaQV3su4vYYSvAowoHY0vz82E0dWcfuoZnHz+hVSWlnLZ+edhJhLomSySYSHl2E//qf2Y8/rPUJ0/jkF+qv2j337Mff1HUN3cllPbP7IdOe7f98uFiDkRQtPkn3Jc/xlH939n+28TvP6/2H7IQhzONghZli5bjNsr4vH5mT37OATD5Khp0zl67knkFxTQFVVZ+vkGbLIdQ9UJBApRbHY00ySTSrNhwybGj5+MKShUVQ2ira2Jffu2oqkq6DkzaJusoGazJGJxEAz8gXz8gTwE0aQvFEFCovFgA02NBwn2dGC3Saxft5ZsRmX/vkOYhoFl6uhmlmQyQXVNLa1tbUQiMdo7Omg8dAiPO6fKGk8lKCsvQ7MkbIehbwDxWJxUKsnkSROoKC+npyfEji2bifdF2L55Cwf27+Ngwz5mzpxBMBhEPPwyJ9NZxoyfQlY10A0Tf0EexaUFBAq9TJg8CrfHDUB7Wxtt7R1k0jki/hGzZEPXsCzrcNbXAsHCpthyPFHLPJxlA0kScxl+KwNCBsNMg6AhCBbG4USI024jsuY1Ql+9RPTbRUS/e4Pw6lcJff0K3Z//jZZPniOyZjGRb1/n6PFD0bU0oqCg6wa9vUEsdLI6fPDVxv53Ynt9EyY5bqgoi/h8Tq647DLaWpvZt28fNsWBZgqkshqpdJpkLEYyFqWjs43e3l5aWtppaW7D7rAjiSIV5RXE4nFUTQNEyosLAIgkUgTDYaqqq5g3by54a1HtZUDufrR15YRhKooLiMViZLNZfIXl2IbMYmi+wNDGRZjfvUDvxqUUeWU2rVvDbQtuZv+OfYwZN5x1qz9nzjGzOG6Yl9ryANWlfo4eW8vNZ07k9gumcqgjCEBteQAE6An2kEwlUGwytQOKWXr/ZfzlmhOYO6WOquI8qkv9zBo3iEd+dRqv/vESQvFcVbCm1I9h6Bw962iyapx0JkFFcT7v3XsJD99wOnMmDWFgeQHVZQGOnTCYRxecwdIHr6O5K6dKXOAS6ensQkbALiuIQHtzCwfqG/AHijEEBZvsBkOmbvAoHDYvbkcegiVh6BZ94TCpTArDVBExUdUMsiSSTCXo7OokHA7T1dmNTbHTdOgAGCY1VbXE+uI0HWokFOpF1XWy2SyRaJRAIEA2kyYU7CGdSXD88TNRZCeiZSMSCRGJRrDbHaiqRTicIBAopuHgPjZv/J6aAVV0t3czadJEOjrbkRWJdDpJJqOiaRqGruc8oG12NFXF5/OwcsVnrFm9BgC7x4HkkLnwgguxLItwOIyaVZEkmQ+WfphLYKQznHjiCQweXMumDdt5752lyI0pbIeSWKaJYMpgCYhCDs4cN2zY4i3YHSJ2h4goGThdNgQRRElCkhXeeP1NLvnZVWiqSKQvxvo1O3HZAkT60mzaHMHuGMiZZ41n7rzhWMSoHFDOvHlzkQR3/7jp6OygqLiI4cOHEw5HMHQTEQlFdhz2icy1np5u5s+fw1FHTcHhkMnP96DraWbOnIzDbpGIhzFNHQuRouIKPF4PZ5x5Gg6njGKX0TWNdCrF++8vJZMxyGQsJFFGEhUMU0CRZfx+PwWFAcaMHUVhUX7/ubNqln379jJo8GC8+XlIiow/38Pqr1ehaVlmHj2DKVMmcaD+IMlEBtFuy82dWZXtW7ZQN3wUhSUlTJ0xHbfPhd3pINjXy8TJkxg5ZhTDR43A0HNz3+AhgxAlC8s0EEXhMPQyB9GfNWsWJ84/ge07ttHe0czatd9SWOhH01McbNzJ6q++IZPqo7TUw5ARl1A7fBQXXHBBDoJ/1nyeefYR5sw9lilTJ6DYJGRZJq0nee/Dd0hnkiiyhBGPctycaRQW+bHb7UhSzpM3EolhGBZVVTVkMioOhwtNM3DYc565iqJgt9v71YUtLUZVucqrr/8Z2eUAxYmhW+iaQdOhVlwuF6KV8xpNxKJEwiF+c9tVfLn6c3Rd55STTub6a66ioynI9o1bufryKwF4eNPXLPnuG/YfPIDL60W3YMqUSeT5ArS3hXl78accamynuyuMZdqw2/JJJmIsfOhPPPXKKzS3tuP1eHnjtZdpOrCb3ds2s27N18ydfRzpdJqrr70ebC5kxWDY8EEECvx4vHYW3v9nJo+fwIF9+9mxZRf33PkQG9du4JYbb2Xfjnru/N2f8HhylejTTzuFitJyFCm3mAwGQwRDQTq7OwHw+XxMmzIZTdMRRRGXywWAruvct/BR7rjr3hzcVjQoLilETadQxB88F50uNx5fKSk1S0pLkFCjRCK5xGwqleWEeaez8MHHaGg8BJZFLB5n9bffcf75l/PGG+/hsHs5/viTqK6uJpVKUVpaSl9fhNlz5vHne+6j/kADuq7jcbtZu3495112BS+8sujIp5hMRmPRojcoLPIT7usiFIz3j5XGpoPMOv543lvyAdFoDg7e1tbOCy+9zPSjZ/HhRx+i2GTa2jvxFxTi9nr4e+uOF564lxNPPoMt23cSTyQQEOhobyUZD4Pp5WDLIb5Yu5pVX39OW1trP6+/szvIV99v5LM1y3nznY/x+fy0NAWprh5ANquxcOFCKitz4pBbt2zl1ZdeJZtJMXnqRJ5+9j5E6cjaTuKOu57mqut/zXfffw9YpDNZdu+t5493L+TqX9yE1+vllVf/hiDptLY14nLLNDTuxFtQzehJ87j2xtupb9hHPBVHliAW6cWT5+5HxNjtTiZOGsf+AzuIdidI9Cb55KPlANQNGURdzSDsNh+L3l1OS0cF7oJjUB2DmX38DAA03eSt1+9l97rfoAbvwOhaQYG0nGMn7WPXhluo8mVwyzD7uNNJU0xHn9kfGFeU5rHvm8Vcf83ZrF+zGo+jigcfe5Gd++sZP24CADt376Grq48bb/g1mbRJU2srp55yIgDxRIrqkX5OPuk6Hn7qDtK6zu49Ai+9e4gXvvoEgOEDAxile3G1n4B0cAbZsJ9KXxkAfekE7yxfi24VoMs6Xb1hgjER2a2zqXEnAOMH1JFNdmBXQgweaMcpRYmH61ETLaSiB6gbpHDuBccSTbQj2Zz0hDUEWzndvWnau2LItnySaQPNABMRBAG7zYaqaWiajiTZsCm2nP2cZWIBuhwhUfEVTquKYsZRYx9F784+5Kgdm5jjHTudboLBXto6w+iaycbv12H7FyuO/yig/N/VjlRL/532r17X/yvqw/9tgtefwmr/oxv9jzIN/1X7V6qzP9XHsixMQ0ZRFMrKCxg7djRNh1rw+XwIlsWLz/2VRS8+x9KPl9N48AB9vSHKy8sQBInC4pxgR1trM7qeJZ7M0HCoiZ27dtHY0EhzazsDBlRSWVmKx+ki1BXBMk1MU8fpsOP1uEkkEiQScfz+fJKJJGPHjsEyTdKpJL2hIKap8+5bi5kyaTwtze3MPOo4ouEYmXQap9OBbpjs2bOX7u4gdXXDsNkdhMMRXE4bBiDIdnbt3sOEsJvq+gyDq3KQ0EjGoL21lc0bvufjZR9SUVHNjKmT6AuFsHSDcaNHUllVSntHG5FIFIeUu/89sSypjMG4ceNpbjpEwF/Bgfo2olGVWFSjuSMHPRoycABDhwyms7P7P93zHAQpB1HU9DTZbAbTzFlM5OALP/CQZbEASbRjWRK6kSWTSeW4PgV+ANJZlca2IIIo5ypPZs53S9PUnK2EKPDQgw/030/LMvq9vAoLi8hmM9z0wCu0dvdSXuQnkOehoa2LO559FxMR3dCRJQvR0jjm6OmceOI8VFVHFJXDFZ3cosbldBII+Glpbqe4qAxFUYjEYqSSKdRMhoKCAoTDQ3V4bWX/vWjp6SM/4EM3DTy1x+AbOBtBkDAtONCWWyDV1ZTnuDfJBKZpoosKnsEzMKqPQTANHM0b8Xx3L5v+ejWLHvwPagZUEE3EWbN2LY888iCLrq7lm6euZdOrt/LOXy7n2vPm4vEXEE7lMnAzxw5GECw0QyUv38fGzRtBsIhFI1xy0jTevPsKvnz8F7x2y4m88+fLuOSkaXT3xmhozwXXk4cNAEHAMHSqqirRNB1NM3E67MwZV8HCq49l44s3snzhRbz6x/O4cN4kmtq6aWjvBeCUWRPJ83qwTANZEmhpOsTQoYMOC5CA1+uloWE3kqyjqjEsK01HVyMfLfsAmyJTUVFJYUER77/zLrqu43Y6yWbT1NZWU15eSiDgP6z6LFEQyEeR7Xy3dj09wR4C/nxKSssoLCpBEECUJXbt3kUmmQB0ho+qQxQtJEnis8+WEwj4icbjiGJO2t9mt1EzsIahwwYxc+YMRo8aQWEgH7vDnhM4kqTcvCfK7Ny+nUK/j6FDBiLaJGyKgmVpnHzSiYwfN64fBWJaJlk1SyyaRNdy4lRgcfY5Z2LoBp2dXUiyjGKTmTxpMvFoAvuWMLatEXbv3ImAiCyJ6JqKgER+oAhLEDEih4jGenG73bS2th62IgFdU1n0+qu88LdXScQzPPHkY8QizTidWSoH+qgbXQrSVEJ9I1m+cgOnnDKVvLweMJv4ds2qvxvXCgICZaUVuFwevv9+E889+xyTxk/mi1Vf9Pc79bRTsNllamtriUXitLd0M2f2ydhlL1ddfg0VZcWHPQgFLBTiyRSSIiLKYFoWhmrgdrgQBJFx4yfRE+rFM/ts3m2KsmLFl7kkRCyCbuhousaBhob+c1cNqGDEyGFs2byZZCZDU3MzLo+LY2cfQ29viG+//YZt2zdz5VVXYiGiZjWyqsaQwQMZMKCC9tYW2jvbyWgqsqRgmgYDa2vQDY2a2hqcTgcbN24gFApisykYhkZhUQEH6utRs1lWrfoCBJFXXn2RTZu+Z9zY0UydOoVhw4ahaSoOh8ypp53ImWfMo6hYQNMDuLwmJ516LAMHVXPHHX8gk8lwzTW/oKmpieWfrUSWXHR29LLo5Re4/KpLsTsdgEW4uwNJNrDZHGiqmVNkRqS4qISuzm5SyTQCIoFAIbKUU8QWBIl0OqfsKwgCXV1d5HnyOfWU4ZSWhAkEAqQyBj5fPgJOysoG0NnZCZaGKJjk57nJz3Ox+O03MQyDstIKXnnhZe6++/ecfsbJuF0+7r97IWNGjgLgzh1r8eb5sJARJTu6kaGnp4fSkgoqymtwOtyUFFeQSpiccdqFBDujZMwojU1NADz/5F85ef6J2OwylVXVxCMqTy18lKKCAtLpNLf89jZOP/NEXG5bDoaHgddn4/1338Hl9CEpNk4+fR75+flcfNGlhIIxvvrmS/r6com1888+l95gL3abhKYZ+PLyePzZpzCPCFWZJnv27eepJx4n3NNNd1szHy9977AwHjz5zLO0tDZhmFni8RimqqKm0kiHf1c1k4C/DJfbQVZNkpfnJS8vR7t54IGFbNu2jacefpqO5gYOHdjLJ8veZ9zYMViWxa23/QehvhgZPTdvVFVVAXDtL3/Ftu07sNvt3Pzr61nz+Ud0NO5j3/ZNHH/MTH7zu9sJ9ebm3tcXvclnn62gN9SH15tHaUl1/1j53e/voqa6mnfffI225t3s27WRpe+9SVXVAMLhPn59y22k00n8BYV0dHbxxuK3GXs4aAK465EXmX30Ubg9Vaz9ZgfTJszmbw//CZtSwMIH/8CMGZNY8KureO+NZ/jtLxbw8B8eoyKvmqOnTOPM084G4Iprr2fg4BrS6TQNjQcRRZGrr74G08rBXidOmsAVPzuPq668hKkzpyCIKubhytKnK1fx9vsfcefvbqPz0Gbqt33P3o07OPfMnCbEW+8uZc236wiGOonF+vB4HaQzKR57+KH+/2HCxKlUDxpCoLCIzz/7nLqBw5BkG5IkIooyr7zyGplsnPIKP4YWYtvWldQf2A/AoNpqbJbMH353F7PmnERKT/H2JyvIr57J8Sfe1H8Oio7n2DPf5OY727jxlrv5el0XvsCpjJ14O8POvZX8ab9Aqj0Lt6+aSHN9/26WQ8bn7OaLpQ+Q7N6OYqqUlw2gqraOA/WN/f22bN3JqhXLOXCgkQ8+WsFxxx2D3ZYrEOzvUFn17RYa2roZOWYuzX1RHLXlNAfTiAJImV52BBazdfSNZAfsxNczjQuqr8Vly7lHvN68hMa+ekQ9TcDpx1SD3Pv2WyzZ8hU2UeGmeZfjdniQJQtBT6NFO3EpOi7ZRDEzkAmS6dlJsmsX8a49lPtN0uH92BWBgL8ARCcubxEOlx8LBYfDhappyDYZt8dHNqOjSHay6QySouDxenLfNUccvWQP8bxNOAYG6fM0YgkmAgLr121k4MBBXH75lZx/8c/J8/q5544/Isn/Y+XyyBg/Uq3st3U83OfH3NEfB4X/ijLvj7WAftz+/pj/LMb5++v68T4/jreO6Bb8I67rf/V//BRn9t9p8r+11/9P2395kwUTkGlv66W8QEKUQbGb/PKXV7Bqxees/W49M6ZMxALKKqsYPHEqmBIOm0RT4x7WrfmOKUcdRU1NJcGudkRBpKuzg+SQAXiceWzeuJHGQ+2ccdapyJIdQ9fBsjh0qJlRI0ewd+9+8n0FRM1eHG47M6bPYMvmDTS3tJPv8xPuDeN0OtiwYRPDR46kpbmV2toqBg+pIxYNM+vYYzl48CBOl5uSsjJqa2rp6Q2SCEcIuPIRd7SgxxOUDMgNwFA0QVdco6baSZ8sk59fQE9nExUDBlFcWsK6dd9RXTMAtyufUaPGMKh0PXvbe9ndEiST0dixbQuTJ4zjk88+p7y8gkgkSl9GIJrOZSVHD6xAVkQqK8s4rIGSu82ICJAj3cs5PzhFdmAauQDItP5+MMmYZhrTNLAsEZvNDkhMHT2kf9C/9/k6brzwZCxZyOH1hdxCWhQFdD3D9b+8Fk1Tcbk8qGqWnJS4ha4bvL1yI8u+Puzn+sfriMZTXHL7Y7y5/FuOnTyaE6aORFNBzei4PU5sioxugGiZOd5kVsPry8dEJpWMsmbNOoqK8xk0qIa+SIhYNMquXbuYN28OhmGiyALTR9fhsCtkshor129n/PAa0uksNsUFlkJvqI9wMkl9cwcAsyeNQtM0fL48UqkkDoeMIMCatesZPmwY+TWTMS0bZqQVee+nOPUlWP4qZg6chq28jBjgdDlzirEeL7Jo58U3VwLg97qYPWEw3d1dlJSUIcoK02fMxBJEqqtrCAXDRMNRiooK6A2HaWw4gMPh4O01OR5hvsfJ5KGlxGNRHE43gqIQCkYY4PKTSkYpLimis60TUzeIxxN48wLoqsbH6w/v73UyrCzHaw6GQlimRmXVAHTLxDBNdE1FlnRqqgfQFw6Rl+cnlUpgmSYDa8vp6mojnc5SW1vDzJmzKAgU0tnZRSC/kHg8hm5YyIoNRVbo6e6hoKgAQZLpCQUZMXIIWjZDUpSoHTQYDA27y8GIESPobG9FkgUEycJp9yLZFU48dS6WqFBdVYNpCdgcdmoGVhKNBVG8FUg2GbfXSSodJ5vJggDRvjgZVUUS4PQzTkXTNNxeB1ldQzYVZFkkHosiiUr/x++I6NIld7/Dpv1t3PqzOVx31jRe+XQjby7fRFswhk2W8NtNskoRhpEhnU7hcrnYtGkzA2qq8LhdTLzsYdqDUR656UxOGVDIn+68i7W7mmhtayeRTLBj2wby1AwutxNdNnnttVcIx4Js3rGRnbt28sBTD+H35zNh/DguOu8qjpl1NCl1BOH4LNRMhKuvvZgVn2/onz5/dtUd/2k6rawopn7bMvbtbchxsP/2IQAfffQh046axuNPv8/q7zbRG47y2PMfM7i2hOOPHcfsWdOYPGUiJgaWBfn5BWTSGdZv2M1nK77jy6830N0TpqcnjNfnZsTwgZx75hymTZxAtC+NaViUlZeiaSqiZGfwoOH912RaOTXfnL+oRE1NDXv2NrLy8/V8/OnXdHaH6ewKYVNkCgJezjt7Ptdfcw42WaSsspyWxgMg5MTbgp1Bps+5gta2bu647XJ+dsHJvPbmZ7z7wZe0tHaSl+dhxtTRnD5/GlUDSnE6nUydNpM77n6O95eupLNrMXk+LzOmjubeO39Ffp50WJzIxF9cgsPVzaU/f4LFb3/GaSefzqIXnuPqq69h04bdTJgwiaFDRlBTM5xXXn2dBbfeiCLJnHP62RTKMoZlUVk9CF0T+OLLNTz7/DPs2r2LYDCIw24nUBCgtqaGmUcdxZWXX0pJSRmGkVuEKIpCcXExnZ3d+Hw+FGcRmrYfn89HOpMmz+EirWp8uOwTTj/jFPLzPWCZqFqKUChINJph/fe592LMiFEoikQiIfLEE49jt7m55557ue/uuzn57LNoTcXZu7+eQEEFAmB32ME0MDWNRx67j5cXPY+iSERjfdTV1fHEIy9ysH0LAEUFxQwoDxz+rlvoqsqXX6xhzOha7vzjbfxqwW9ZseIz1qz6GBBxOfOIJZPk5/vIpC36wiFcdhuNe7YxaNgY2tpbeHPxu+zcux2Amppq5s6ZR29vLoEsKwp2h8UXX/2QiEkkEnz0wTLmHH88fX19+LxOZs06iksuuZiXXn4VgOf/9gL3L7wbvz+PUGeQWCxGIpYAQNUNTDWLaqRRs1kUbP2L1XQ6zbdffs6wIXVs3rmd8ePHM2XKdN5evJgxEyaSTCVZsepTLrr4XCRywcjGTZv56ONc1ezee+7k7DNOx5+XhyQKVFSUsujFZzjn4qtYuz5nu3PhRedx0gkncNL8U1j8xiIE+w/VJ0mWeO+tt/D5HP3vxbw5x/P2m69wzOz5tLa28ddnn+fXN/wKA4GGpkNU1f4w1urqhvDEI49z6633sX/nZuyCxIgRQ4irPkpLyxkxbDIFxRIjR45iUO041q7ZxrARdfzxzt/yxKMvMbJuGLv372Pzjg0MH17LwIFDkUQXX37xNbf8YQEAsiIgihkWv/4qumlQWjIAScpBoiORKE8++CBqOk6+r4RYLEZVdYDHH/oz9QcPsX3nHt5f+iHz58zGtHL+2LoqcNYp5/Li658C8MmnH/HwA/fiD5Rzz10XMWvmXGSfgs2mYRgie/fu5fzzT0Wx65SWVaEKCULhHC2rqKiA39y8gAfv+wuqbFJSWMS4cZfT1XIIERt5vjyisSi76/dCoIXfPTaPt1a8yowTTsRdVszGhq3Y21sRbaV09bQxvG4AdYNKcLucJFNp9jVGKP7FGVjyboaUFWBk9zBj6jjam7poaWvtfw6dXR1cdPHZyLKd4+bOp7m1lZeeeY0Ft/2K7p5ezrv68pyuhsdDLB5HkWVmHzuKk4+dRCKU4N5HVxFuKeWsC9cyqmIGY+JX89rst7h2zZXs627lrBduRxYlnDY78UwKRZKYUzeBUUyhNq8MZCe6KeJwgZ7pQ9XTCIJEX6gPl9uO21lEbWUVoqKR1XvxuE1CoV5EfwU2nx2bzYUhmGRSWRRJRteS2JxOBFNGFO1E+qLYFNAtg0wsisflRM1qiKIbl0PE48rw1bd7GT90LpFIhNqxtfz85z/noYfv45tvN5JnV/C4c9Zy2k8gav9Xqqv/yr5Hgr9/FDz+OHj9n70mURR/8thH1hqWZfVTKP9vt/82ldcfK2P9VxmJf8dL6IesQm6zLPq3f7YfVgYBGzoWZ1xwJgfbE5i6mVOflEwmHTWeK665mqEjhjOo1EuZEsdjzyeQX4gkOxk5ehLePC/FFWUYJvT2drF902ZmTR70L4sbAAAgAElEQVTEoQO7OdTaxpC6gYwaVZkzYDdVJEUioxkMHzUKwaZQVFpEMt1HdU0Fx885jhUrPqesrJpgT5RYJIKqZfEXF1BRU4WATt2I4az66kuSqQQ1NUPYumUnHe0ddLS1UFpcyJ4De4lH+sh32hk5bCCZVJLCwgJOO34qxXlOAN5efxBJkSkvL2T3jvVUDBrOvoP16EaGseNGUb9rF6loiOaGvZw/exIAoViSxSvXUF5ejq4bDB48FLvdyYyZR/PXD78BIN/josJugQmy001vMIp1RLlNAEHSc8/JsuNy+BGw5WwynA783hxHLZZIoWtZJMGNgB3ZZst5olo6eU4bJ8/KXc+Tb31C/aE2XnzuBTQ1A1bO41MQcpYhPp+PaCqDgYjkcCEhYwo6B9ra+P2TOT/XBRedypiB5ZwyawKXnToLgFseeYVwXMUSFLweH1gCyWQOktfT3YWazeKwO2hv7SQSjlFUmI/DJYEgoWZTeD1eCor8TD9qGqmsjiLIYOS4YqccneOkvLzsK8J9UZwOB1amj9Url9DZ1sbtj+TsCjwuB3Mnj8LmdqELIk63H0RwOvM5evYsSirLEOViXl70Lm+tWE2iYBDykCmoqoG5/SPUD36PzTmEvtZm7E43GRPqWzp4/O3cczrv6KF4nTY8Th+KaENPZ5FNAbLQ09mDmtFpa+vCMC1GjxnL4Lo6IprEk+/lLJNOn1LDwJpq8vIKiMcSdAZjVFUPJpvOIos27IqLgD8fQ7cozC8g0ttLW7CXZz5YB8C1px/FoME1hCNhSooDCAL0hHrBlCgsDKAbufsvSm5crgK6OyO0t3Zgk2XSqkhlRRWKJKFmM1g2A0uSaG7poKHxIPFwmGCwBw77jupaFl++H1GG+SedQGFhIYWFlXjdTgTLxMRC00xExUagpBSvP4BmWBimCIaAwyaTyvQiCyKmlsIuyFimzI5du9i2cSfJZBaH04HPY6OrtZV8twev14PL5SAvUExhSTkeXx6iKOF0erEkg2zaQpZdJDJJJERkSUFTTXRNJpNOAZDO6lx0xyLufmEFjR1hbIpENJmhKaxy1cK3SeQPRlZkBEnkost+hsfrBdHWnyU+1NzGiQ9u44X3V9Bw6BDSYZEWy5BzglJY1Dd08uTzj3LP/fewfsP3pNJpFEWhpyfI8hWruPSqC5g5cxqjB4/HI/p49L4X8ecNJpAf6J9H83wu/Pleigr8+LxOvB47qYzKV19/wcGDP1QMaoeMYO5pN/LO0hXE4wksy6KzO8Sa9bt59uUV5BcUEYmmMDUJAQFBkOkJRplz0nU8/Pgitm7fT08wjNNlp68vxtrvtrHg1oe47tePMGrccFLxCJLiwGb3oKZV1n79Zf+508kUiWiChvomUokUsXCc08/5Nbf/6SnWbdhFc0snToedRDJNU0s3Dzz6CkcddwWHmlsxzCyGmKC8JMDqVav47tu1/d8zt6eQsy7+Hfc88BLNh5NOXV29LFn2Nbf96QXcviIeevhRjj7+Uh569BW6e8IYhkl3Ty9LP/qaU85dQDSeZNGixUT6wkiihCQaGHquCmezmezb343d4yKvKI+mtlZee/VtTpl/Nts27QDAH8inqCgPQ81RK3QlyX0PPMZZ557JylUr6ejoQFEULAuam1v4+pvV3HPvfaz64nMUm0kq3UsiEUGW7AwfPZbBw4ZzxdVXoSVCuJ12YtEogmLDlO1IksA3X37Gzp0b0CwVNR2hp6ebrq4gH334Wf/9fuLxR0hn4tx8ywJqywt56bW/klfiZUBNGV45F3Ct/uJzbKJFVlNJhOIIshPN0Jlz3FEIoo1QKMKdt9/J3p3buOWXN9LSlBMOHD1qFPc/8DICMmrWxELlpFNncvIps6iurAFA0zQef/oBsnoQBA273Uk2YxJq3syO7Ws52HyItG5DkQKMHDWYK645hYMNuarVpRdfyuDqWgr8eURSKZK2BIs+eYmW1ub+/2/SxEnMmDaJLZu/J5tOYVgaqCpDqqv6++zbV4+EF+QAAX8JDrsXtycHL3bYRbJWFFmxsWP7XgTTQjw8Ps8641RGjyonGt3L9DETWPXBcp596Fny5QBTJua+H5u3bCeVMOgNN+FwwJKlOf/TyopybrhuAQFvIQ6bna5wCNPUiegqN97yQ9UvrcXZuXMrGzesZcTwgWSzyf7frrzsSoqLSvB6AoiCE0VRMMwsfp/EOWfMB2DZsk+IdPdx03U389iDz5DNaP37Gxm4+eYbeOW1O6kbNJyHH/4Lgr2WBVdfw/yTz+JPf7yN0sKRBHt9XHrRmXz95QpeeWkJV1x2OX+++xJOOuEkAD5b+SXX/WIBibSN51++C0WO4VByehBYApJLQXYq2GQnu3duJRTMIYJKS4q46NxTOOmEE9m16yA2u5v3l71Pw756zjrrFAD279lPa/s20ukk2USGZLCVISOGseGb5TTs2khLwz78+R7CoUPc//Bj/Oa2m9n33S6UaAQ5pfPnPz9ILBXD7rIQTA8VxeNJJHLztixJ3HHfIzz+3IuU+UQ+XPoyoZaDXHXZpRyoX4+i5OYOXU8Rak7ywK0fMGbKuehmNddc8SBqpo6K0vEMqa4hG2vEbTMR8TL7uKMAWP7NQeq78nAPn0/S5+HggSXUf/E0h756k9379/U/h8bQPnxlTt5473VSaZXiggHMmTyXle9/yrixuWSDdRiSDmCYJqZZQmHZBER7Odf96lYGj8tQM/48bnv8Ba5aNpW6k5tYdva7jC3IaRnopkE8k+rfX7csps8sojzPxvr17RxsPEi2L0zW0LArNkwzg8NlIUoGAnFMK4aqppAlL4Llpyigk4wdJBpqJ5noQU3kqBfJVBZFtpGMJlCzMTLZXuxOB9G4yabtQTxONzZBxmZzouh5SEkXxfZ8jhk/FhAI9nRTVjWYUVMnogQsHn3oL6iSgxK/l1RfCFPTEQUBwbTgR5siyZh6TjAKS8QyBSzzf/Ro/an2U8rBPyWcBD9QGY/EPUfQW0eO//f7mKbOEa/XI56upmn+J+HTH1eJf3xdfx+4/rjPT6kt9x9XyG2IQo5//G+0/zbB6//t9u/i0nft2sXEiRNp7exh7ITJINsoKqsEXePqyy9DsdnQdY36fRuJ9LWx/rs17NtZz/jRU+nr7CTY0YEoWBx9zFFksiLptMW4sdNxugoZOXoasqwgSTL6Yf6bAGBBYWEhAwZUIUkOLFNk7NgxZLMpiksLSSSTrP5mDfv27KG0pIhgOEY2a3DCvPmkEikikQgut5uBAwdRXT2QxsYmnA43yVQWzRAIBsMIokRfJEogUMB/nD8HQYBN9a1c+8Qy2hMCFVW1bFzzLfleH199t4Wf/+Ul3GXVdPf24vR4mDa2jpOm5eBez362kQ++30t3X5hUspeMnuUXf/krmw/lrGHOnT6CupHjWPzGYlZ+uIS8PN8P9gKmhWkI7N69l87OLtKZBBZ6zlcNgbrqHJ8llkzz8dq1mKSIJ4I5XoNpoeo6+/fv455fXYjf5yaeTHPmLQ8gldWSVnUscgMwGI7yzbYGzrv1Ia6953kEBDAhnYpxcH8bV/7hGVIZlQl1tcwfV4WWSdHZ1sofrjyNEbWVxJNprr7rCXQ1jWJTiMWj9PX1oaoql9/zEmXzr2f8z37Lx598TCIRI5FIc+kll5FJZ9A1i95wL5l0TjFWkiSSqRjJVAywuPWS03A77XT3Rrn49qfZfbCZ3u1vM6akjyXrtrNqa26xf93Z80DPIFomEiamniadSnPSjX+i+LgrGHf+b4jFOjj9zLlMmz6F/LwykIpYtrObV7fH6SqajJbpIWBkCPX28trH6zj5ludJqwZDy7xcNn88liiCJCJgIMlw4OB+7nvxXZas2YUpyYwcORSX00Y6q/L8km8547aXSGU1xg4s4uaL57Blyxa6urooKSnB73ficFp89N123vlyI23BbjTTYl/9AULxFO+t2c+8m54nldWZMbqWM2ZUk0rqVFbUoqkCpSVVlBQPoK+vj3Q6jcPhoLGxkXQqi6KIuLwCgwYNwjQkJk6cgK5rlJSWkMlkKCkuI5POUFNTw9C6OvL9AWpra0nGY4RCIerqhiHLErqm4cvzIgoiuqUiSArdPT3Iih273UZfXxi73U4qmUKRFUBH11US8SRuVz7JrIppCXywbBkdbTllzOrqSlweF4gymiXiyc+jM9iDIEu5YFIweffdt8iqacLhMLquoaoGH370EYZu4PP6yOoZTMtAVgTcbr0fPvi3pd+wdX8bD99wOg1L/8jet+7g6WtnM3fSYAAeeuMrVnW0Y5omsiRjqCo9nV3989lLK7YTSxm8eNMsmg82sX9XPVs3bMGX58Pn8xFJZLj8qvM51NTEjOlTWPLWazQdbKCrtZNN6zaz4IZf43Q4ae1u5cprL+fAgQN0dLRx4TkXMHPiMf3nefKhm2g/8BRLXr+NfVveYf3XL2K3K4DBpCk/wAl/dtXtHDdrMq/89fc88+iV7N24jN9cfy4et5Ou7hALbl3It2vW0NzcRG7qNpBlkXnHT+HV5++ifscS+jq/JtTyOS37P+Su319Bsd/D1u313P/wy4RCQdLpNIsXL6a5uZnq2tr+c+u6QTAYoqOjnT179tPR0cWg2lIeW3gLW79/nURwLQd3fUi44xs+/eAJxo0eSntnkGtuWIiuWVQOGEY0rlFUUsHMY47hiGfeXfc9SUdnFx+++xi9HV/Q1fo5H7z3KIUF+XR1hfjLwpd494PNuBwO7vvDlXQcWMHeTe9x5UXH4XI6aDjUxiNPvMYlP7sYm03G4QjS3e3JJV8ARbbR2d1EU0MPu3Yc4K/PPsrVv7icX99yAy5PDsKnaSrpdBph/Ei00cPZ+H09Dzx4PwDXXnUld/7+dpoOHqCjpZ2O5nZWrfiEc88+g8GDB9PX14ff70dRlByf7/BaRFVVnF4fFuDLy8slkwwNWRG59NKfUVJSQm+oD8nup7S0lrq6sRxobAGgqLAIv9+P3ebkiSeeJJ41uP5XN/Lzqy6jLOBhsDdH/di5Zz99kV4cdjFX/ciqOJ1ObrjxRqprykgm49QNG8QLLz6NvziHVgBQbBKvvv4MmzZtw253kUnrjBk9nkQqTV/kB0G/vLwBKKIf7bBwt6plKasZwZTpx1JTVcuj9z/Inj07yGQyLH5zSX9F4uKLz6ahaT9ZXcPnyUc6Q8N5vvGf1hPBnh40TWPChAnouomBnYwJvnx/f5+e7g7c9gSJaCMHG+p5Y/Giw9+6HC/TYc/DZrMx46gpyIrFkcMPGjSIZFaiu0/H4ReZOWcic06dQVTtpLAwp5vw8ssvodgkSkrKSKezbNyUs2eZPn0K8XiUHTu2IYkKoiiTSmWoqarlmKNmIh+GLTslhUE1Qwj2JbFkD+HeWP91D6sbyPLly7Esi6amxhzsXABZdHPUtKkA7Nq9B7e/iL8+/zc2fL+WWN8PasUPLbyfXy+4mfbWHv7857uYP/9Eli59n59fcwWK7OSxJ59h687NjJ8ymH0tXaxYu4rK4W4auloYPuUEHnziEQDsDhtPPPkYN916Az//+a1kNQeikntBM9ks3V1BFOX/Y+89o+SorrX/X8Wuzt0zPTmPRqNRRhJKCCEJkTMGRDbIGJOMjcEBG7gEA85gMMEGG2NAJkcBBgsJhIQIyjmHyXk6p4r/Dz0aYe71fe/7/n0/3LXuXqvWzOquU1Vd59Sps/d+9vMoRKODGLrDhg2FzPy4Mc0Egj5KSosL+t+CzKxZx1DT0EgwWHB+B4aG0CQXouRi18FOPJFqyiuKmDhpHNXV1Ri6Q3tbD4FwBcctXMCvH/w5v3r8NyxefAMvv/4C6zetxKuFCLjr2b9/P48++ujIQj9cFKastJg5s2fy6ONPMvfY47BMiV/8/LdMmzJ3ZAwgyFQ0NPK3VSupLK3hxutvYOnSl9i05VOKKypRfX6axk2itLqWwWSKm6+7HlVV0HWDxd/+Oeu3ZDlq8iWMGncyCa/GjY8+Q8GZKdjBFXtI7c2zcNpC3nnzJV545Qluf+JGpi2YTUdHL3946DfcePEN7N62mY/ee41TT5rPyo+Xc9X13yNUXsUpZ1/Anff/Fl03WLbiE67+9h1c9fjPmPPsQnqsQzw0/wE2XP4J+29Zznvf+RlnTJzNR3s2csmf7+OVjR/g80FtTTWO6OBYNplMHssCt9uLrpuks0kcbGzHwrbySJJDPi/h9wUIBQO4ZC+SYuA4edweN4IoIssStu0gijKiJJDJJmhpqsQ0c+QMneyQG9e+hWjRWagDR1HLTJJ2L72hnezbs5M7f3A/9cXTsB2BH/zwVkKhEC+/8OIwIu8fFS8Om2ma/1Im3n8FOe1XTRRFJEkaYQf//2v/WUb4X2H/Cxv+J/ZVDaX/qg0ODoJusvDk+WzatIFQKMBQdIDutnb6+7ZwbsRAdrnJZS0+/nA1R0+fQVdHKzu2rcXj9uHzB1iwcBa5vM6qNas46aTTSKdiIAiomh+fz086k8IwDbw+rVDf5dhks1n8Pi+ZlEle1ykqDjMwYNA4agKbjE1Yto1jO/T39fLFF+spLSsjk45j5HWKIyUEQwGS8TjdnZ1omofSknI0lxe35inIvIgSsiAgPbqGCyqCJC4/hfv/uowtB3u49N5nUAURtyQRN49ET79nb2Pc+TPRWhro7eljcWmEaLCIT+ND3POXv3H/MwJeUSJhmSOxl4uOncixo8pwv7KJ8wZ86PkM6o5lOK2FOhvx0wMIlTuYevo08noOdSiL9eDb2LIMAjQ7MC9SxsqBXq684zH87qcIBb0IwHUTJ3OtXMoY00BROnhjwjFcvnENbfEk33/gaX7w4F8I+jwYpkk6e0TLdF5xGdLP/1bQpbRMbtuykp1dvfg9Go+eeRJjVwxgW70AyLLMn6oncXxrNxt2HeKBJe9yxzcXEQoGKXprN2LfboT2AjRISOS4LlGL+sJW9LFl2CePZ3TTaJzuGO7nNuE4BXIpAZGACA6FCbd20TSeuus7LL7zIT7bupdjv/Fv+FWRjGEXpFiAS6sb+ZFQjhMpBgfisSGKn1yL5Ng4rYXoMrEMpU9+Cjh45tRiNZvkMzm2rNnO4yvX8P3fPosigUf5jPiXouILp43mwe+chSQ6SM/vxNeXIZdJk3ccqvJ58r1Jbl+6mdufXIYiibgUidSX2p9cUs6DkdGE/7IXu6+PkpI05qUeUq48oiiw4+P9PLFxBz/+wzIUQcAjyf8wribVhlhy95UkkwOE/rTzS9FBGyGTISDLuFwuBqb4qZ1Vj9cbxtx4AN/f9yOJKkXZHKLWhW1bYFsEFRXzllnkc0nKK8pw/rKFcE8S095HxKWSTqYwBQFN08g3epDOmYAkClj9CYQleyg3DVS1oGFbIorgOKhA/Ow63I3F9PX14VrZjadfxC1IZDMpzhDDiHt7EAQHqbKd/MU+BEnCRKT21W4URUEQ+xAQkB2bK2jGfqET8/g6nLCAS3UzKu3D94fNIIBlmYi3FVAHyoProKMQCc+bDg989xSuGPQgPLaFgYEoi0IhLo5M4oxwjDXRAe5Ys5ozG5swDIPojnacZ7bgxLJAgZTlzeNmMC6UQPrufQi3XsuoplFIskCyZ5CHX91MW1sXx0Yqeb5oIv5X12K/tg6rroKm267hjrt+QkmomNt+ejvJaA+Ja2/mB5qb5jdXcmywhuLhPl23Ns2UidXMmipjrtmK/vJ+HFvkalvhw2VHsnEVZWHOO2M6J504j/Q9Syj94E3uEkL4Kkdxz95tfLp6Cy+XHAX9KlJLIwMDPVTo8EJ4PMqKdpwV7SCAjkDQsvmeIHPcD85lwU+e5amn3+T2unHkf/YBF3p9GB99/A8LDvW1Dfy9u5VgMMS8efPpOP+nPKU1UL4xjrPxIxzxY1y2U2BtrjB5783HGXPUmWzfeYD3z7yDk0e1kOrtZXxZKW1tr2IPFBb7tu3wwTu/pyhUjPPLdxFaB1koCHw3VM0dgzHefHs5pS6ND7//bUq+cRoulwvfUIYfdbjxldfz8MFdvPH0Uu72RCi7fCzG2jzLV6WRhuWozH0dLHjtI6JDSfRtW7iurAjllp9xtmGRTRUCFW63h472LvzvrGTjxk0c9MvYtk2TL8TPYhpSKoWzdiu56ZNRVY2ZeZWJZinGgy+h+r3osoJiQ17XcQYLzp8kSXT3D1GT7kDN5vE8uhzHKbDET8jlcGka4ryj0S84H0uPI7b30fVuoQ663HBQbv4Fju2gKTK2A86tV+OrCjDU3kqV18/GaB8HD7XxzDPPcPXV38A0BTyqh1QiTiRcxM6d28lnTX74w+/jdktks0lqa6rYuXs3O3ftxBGzPPrI4xRH/Nx9z534fWFKIqW0dXSM9Hl31xD5rIyoGCgeoUBGZdvEEhncssYJ8+dx5eLLeerpx3j1taUAnHjCQioqw+QyOWTFQzZp0Nvbx6JFi/jd7x9l955C2cOll1xCOp3G5w2AIyOgoHlD/H35hyPnT6fTDPYPYJkCe/bsYty4Fj76bM3wu0ZBVQI4dop0JkZRsIjDq5aqyiq6ehJU1o6jfyiNoHiQVC9uXxC3uxCwaGoq6DNbpkAykaWvr0DCV11ZjeqSKS4upq+vH58vQHvrIVxuP16XRnFREb19fZh5g1defI3rb7qJrO6Ac4RtuL6+mhlHz2Hb9i00ja5DUUSSqTjBQAmVVYXaWNM02bp7BzOnTeGLTz6ktqJkpP3iK6/knXeXUlVZyX33301xJMDVV1/NlCnTCAZDPPfCc9z9s5+OzP1mOoPf7yugDiSZvJ4nmUwSi8UIBDw88viDpNIOIbcfVTss6yHi9QQQBInBoT5ERSWdKWSPS0vL6e7uRFW8dHV1EQgEWLduA2effTo+X4HEzbIdisJlpHUY3TKZlJ7GSMfQ9UFMXaCqshHHEXjvvY856+zzcPs0lrzyLJ+/9wU79q+naXQNh/Z3cf/dD/DLh+7msssv4f7fPkQ0GiOXN/jTk49y6UWXU1sZJJnIU1Zawt/XryaXcUgOqzeUlJQhub1kdIPtGzbz+msvMhTt5swzT8QWFRCgsqYeR1QQFI3mhip+ffcP+NHdD7DvwCEWXf4NvmyqInHfDy7l1p8XUGVTprUy1HYXet5DuVLOtk6FJx95HlVReeulN6ioUbjg0lNIJ1T8gRBPPv4brrvxh7z59jJuvfNuFsybR6RqNOr27VTXj2fo7x/xxc5eRFFkwXgvydo/obUE8XYsYGp+Gj8ZcxSq9Cte2biCO978C6t/OAfLMBAkcLs8GJaCIJhYlk0g4Ec3ssiyTD6TxrJMVLXw7s/mU2SzJo6joakO/f2DVFRUcVjRRlFUNM2N40B5RTG2aWOaOVyuIIH4DAZHP4k6aRvd3etI5zTWfabz5KsbWaR+h2jjEF98+jFTZkzlhJNOIB6N87P77ufkcxZRVBLhn5lt2wj/JLv6f2v/GQvx/6sVNLf/dfnMw7qx/13Mw/8jM6//FWKlrzqf/50RgMMdLooikUiE/v5+tm9eh+joqJLNpHHNVDfWMHvesXg8Bcjt7l2teH3FeP0BJEVk6tGTaWhqZP+BVlrbuxgcGmL+gmPweSWKgi4cK4ttG6TTGbLZHF6vD8dxMPI6OA6KopDX8zg4BMNBQkVBGhpHYTsyxZEI8XiS3u4eNq77ArcqsHbtp0RKIuzYs4dISYTW1jYGh2Js3b6TdEanv6+PPfsOkDcsstks+Xwel0tF1/PkczmOn9zIst98mwuOnUizx4csCOi2Tb3by2kllTw2YQZTyyoRJYmBgQH8gRCj6xpY0jKVX42awAxvEJ8kk7EtSlUXp4RLue1rxzB3VBHRRIKuzg7cHjc+fwBVURCHF2I4IAiQy2cRRQnLsgrYewqSOQ7wl6nHckPDGEa5fRimRXvPIG09g8RzeQRRwuVSEQWBo8IRPp93Ovc0jmNeRSXFQR+pTIEAapTXzwWV9Tw1dQ5Ljj6uUOtqW3ww0MfyroKj+ovvXEZV0I/jOEiyjCTLWLZDk+bm3nFTAPjdS8tY/sVmcrksjuOgG/o/jEXNXdD6lGSJeLSfeGwA3cyPCD8LFF6yjm0jiTK2Y6O5VeZNbeGTp+/jiqMmU+v2krccgprEgkg5z0yby0MTjgbBobWji6FokoA/hGHoWNaRqKogCNhWIRvgDwQQZItkqoezJo9jcW0T4/0hvKpIVreoCns4q6KSR+qa+d6ZEwj6vASDoUJ/AF6vD5/XRyQS4ZyKai4uraSlKITXrZI3LCrDfs4sKee5SdN5Ydpsir0+TMvErRUIYiRRRBJlvJqPs5oauKy8mnG+AF5ZJmuZVGluTi0q4Zljj+HF+69GUxVk2YXjWFiWQSabBgFESUQedjhcLhXLthiK9mHoBrJcoPB3u93DBF/OcB00LH3jXfz+IKl0avg4BXSDkc8jK/IwHMpClmX27t1Db083OCYCApaho+czmIaBns+TyWRwHNBUDV03qa6upby8vIDkwMHtLsDoXJobVdMQBJBscDkC+VSm8Czn8+A4BUKE4XIGwzDp7xvEtgsLtNqaShDsQntRwNrUh7WpD0E8EpOsjAS4/NQZiJI0XAZhF6QCLJPvj2oGYGcixtbBfkRRpLKqiprqmhHmzwVFESa5IzhqmmR2iGQigWVZmKaJac7hrxsLgZBvN09n/dqNQAGu61gOyWgCK59DEkT8skrUyLO2v5PKygryuj4CQQaYOHEiZ565mP1v6DhFHvyPzcP1zRYS41TEYm1kv3POPJb5xx9PKqMTjcYKNcyOzTl1owHI2Rb7UwlUVcZxTBzLYe/uA0iiXPhNgoCDgGlapNMF1ElLVZiSoId0JseG1jZURcEyTVRFLYyHYZNlhbPOOpdZs2byxJN/IBgKUV5WXiDlMG10XSeTSSMAc+bMQXPJTJ08BoD1iRj9ff143BpdHce535YAACAASURBVB143O4RR+PsM+bTUF+HaRkwDLVKp1IsGjdx5NyLm8ZSU1qEIFkMDUXxBDSq57ZwzqICDPBQJoXw7QnoG+P0/GIDp5x8CuGiwiJbQKKzs5u8nmby5ImUl1chygp79u6jvaNz+LepRCJlGHqOiRMnEHIV7nnS1MkBCCKZTGFsbtq0mVzWxOsN4PZ4EAVxhEFVVVR2nHM10f4+nn/uWYKR0pHApGVZCALDKJrCp4ZhsmfPHvo6DmCmhsgNZ31UQcCxYffuPeQyeRzLRMBC1Vw4koR7mHU9m9e5/NKLkMUc/oAXTIPf/vpX9Az28vHHa3jwgUeQRDdDQ33sP7SXY+bMAqCtvYMXXnqN55Y8xR3/dituj4zt5OkdjPL4k38aue/ZXJ558+bR1r6v8J6xRXp7WvEHPeRtnWWrPiaTG6K3r3/kXl5w3tcQHAVLVGnv7Oec077GypUr0TSNk086ceTYh1oPFtALsRSlJRU8+uBDdHW0svzDI86rbYHmKsHrK+f0M05h1uzphbkBhrkgLBzyWJbBQF+Sw9l8QRBwiRor31+DaodR7ADnn3UJPjVMPleQkxvVNAqwkcSCJFg2W/g8nzfI5dKUlZXi9wfBkRg3biK7t25n5+bNX8oORhjVWIci5FCcJHUNlSPXrWleZEWksbEBn88DQkEeJhQI4XxpfqqrKsUys5SUFeEoR+aDl158nX1725g/fyGffrqa9vaD/O6RB3DI09xSy09/cR+O4xAJhXjrry9xYMs+nn3yZb6z+CaI5bn9h7cAIMkiuXwayc4RCfiw7TaUYfJIWZIpLalGQMbBYMLkZs48q0DIhAD+gAdNc3HMMccUJPvGTsSjBUjEC4E90zQ4uL+HFctX8eKS5+hvP0Q27YCtYFkWBw/t4b333+Rvb73NYw/+BrcsoNsCM4+bxFXXfIuScD2vvbSUKy+7HL/fSzDopzhcyLr39PYxa+ZUnn/uz3yxdjv33/swvT0JDh3q4NPPPiGdKcBsqyoqycZiBF02x82dQSrVTevBHTTU1mDlM8QH+3DMPI6Zx8pn0MlwzpnzWPr8r7nxuguZOmU8NdWVjGsZw8Xnn8vH7y1l1LhTR/rh1PMfo6HpbGrrRzO6cZCnX3kCgDmTKnn7qTt49uEnyHR5EVO9SKbE6y+t4JorrgYgk8nw0/vu58orr2XhKWcwmEhx270/BWDB3Pnces/vGHPMFZx4x1U861xIbtrLVJaO4jvVBdKreC7Nx7tW4VLd5ByHbMpEc7lIpZLIskg6k0DVNDLZPC7Vjd/nx9SzaJqMS9FQZRlRSJHPZYgURzAtB01zYxgmlukwNBgjk02BoOPWBLx+P2KyHNn0E6t5nqywDyVYg6VEGDs9jJBOM6ohQu/AXq6+4XL2Hehg2/ZdHHvssZx9+mm8/HKB9PGrMp7/DEr7X5Hk/Gr7/9P3/xWZncP2ZbnPL8OW/6N2lmX9Q13r4Qzzl53d/0hm9LBkz1ftyxqy/6++2f9mXv/FNnfePGJ9Awx1t6OqMnErhyYYKAEv8Vga23GIxROYUozBhMXzL+yhNFLJ+v49iC4Dw4Bly1Zw6aUXkU2l6GzrQpU1bEklntBRVYmaumpy+TySpKKpLgzHRFEVctksHq+HTMbEMCAUCvPuO8uYcfREREEhn0tjWTkmTZyMy+dFlASmzZxF/8AADQ0NDPQPsnjxVaxfvx6XYlJeWUFdYwO7t28k9/UJdOfSlBY30d7Vg5NNE3CrXHbsWBYvmMT4ic3YtkFrazumJdDV1cuG0hC5dBvT3FP42zt/I+CPUH9xC/OVyZxfWsGy5SsoLw7j0jT27tuHqmo0jJ3Auk8/oWteNSXTp7OntYMpE5p50ZyFx+vFkRTyZg6XKqPrFj1mFt/VxxIOaSiqG9OyCAom9wtn8zNBxLINRNEBw8aRXCRSGQJ+F5KTxxJCuB2bG+0zuUkSCssmp/Bgqi4Vc9h5xDYRJLDyWRbKIdbvP5bKyipUdxDbzjA0qYqiogjJZAqXqmGYWS5TJL4uXo9pCGBlicYGSZxaj2PD2z8+nVwuh9utkUyn8Af8GKZFpeSQSKZwynzkb5pHNpslnkjgDxQR8PpAlrFMA1twUCWB+spi7r3/GsBBbnsL2xaQR1+ArMo4w15+vS2xavUaxrWMpvgHx6PIGq/mFpDJRykqKmWgt41QSTmS4kfARVlkNKXn1TDjnDlIikL681+hlB6NaDgIXj95b5ihvjh6TsevujAubCGRStF5sI14Os6cuXOZIiqomzYxpmU0siLQ2z1AVXUtlqWTy2bYfGA/ReEyzFwBttvW3k5VkUJABsQcM66cyqzF04nH4nT3DWHmdUY3N+P2ejCsLDgKXd29yLLCaw39nHjCCbhcLroHBigpKUFUbCzHQTVNujo7qaiqwBxXgjCjma7OVpKpKFVV9di2heh1k8/lGFjyBpZp4fZoZBeNxjEd+vu7qautprerl/KKag4d2Ikgu6gvqyCViKFW+mn/Wg0V1SqpeB9ZO4RLdREMhhkYGMRxLCJuHwf37aP2+FrM46uQDIe2zkNU1DSBLOMIeSRTZP3qT4kUhRnd0syh88qpKC/HECXa29sJl5XhVlVw4NO3/86YvUFaxtYQmjeK3FwTl8fNYOdOZDWFyxtGuuVo7Js3QHSQurALSVTQLx6HLIkcXLuJ4FGTsZ0sU/IW8gWfYVo2G/r6qBLG4VT4yH5nGs6mDyGXYfZZR+FcMBu2txJ56i6SeR8ul4u+/h4OzZhJbNhpuWH3anAcxA9bAZF4PI77j79AHtbQTQ8L22u3f5tVRaVcufha9uzbDC89CEAwGMSlqRwoKmLrQQ1vL4wdP47AN2pwb9kBbxQIm354y3kcPNDK6tVbkWeHOOXUE1AiZdQ6EtQVavZeaDS57/K5ZDIJisLFvNf9EcoPT+ODlZ/zxtLl7Nx1kGg0QT4/jAV9/8j8PTStlug3W6iorGbjps3UNtTC314C4L1AivGmBQIsWHAcgye6+GjrdmQtxMOPP0d7Zz9D0QSZTA5e/OM/vBcGjxnF35pDLLrwXLz5PKlkDuH8z6A9zfiWMbS3dZPLJ6i4+WTefOtdmlum0jy6DJY+D8DM205FO20cqhVHDjkI5Xl6rxxNasMRqGX74GSqTqhHnZNCcKtkh+ueP25ro/OpB1m+6hlOOfkMdm8f4OTTFuAdTLL19h/BngJ5UFE4Qv6Hl3Lvz3/Fontvpvi81fQODnL89hVMO3omN9QWM16S+P3jT/DIow8TnzGJjq69tLQ0sWnDBmbPOo7du/dSUlKCy7IKMjiqC2dULYIgIP/hItLpQby+IjTdYvPWnYwZP4Gr5sznuq+fwZxZU9Amj4HVA2TKihEfvZsHr74OUUhw7ZVfY3J1MZKq4I2UQF0FbICBgUFcLhdmLoogBZEdh7vuuhPB4+KC8y+humwMOArRaJwxYyfQtKOD6qoaOjrb+dGtt5HPZjn7rJPQDdi6dSO333kfnZ2dKLKCYRp4PC7+9NRjBIJuHMfC0CWKgzKOkyVv6Tz0xOOEvBJXfvNaAEpLS7jwgvPBkcnmUtTWNXLuOedwSs/XyDyqcM3VV/HY75/ANE3eeGsps2fORBJU5s45gfqaKs6/8CJSqRSiIGA7Dg42hpwlkzUoDwTx+/0jsL5cLodDHts2KCsrY/vGTpxh59UyDPbt2MHYhgbM3CDR2ACvvvQkydihEYZQv9+P2+3GNG38/iB1dXV093TT29fPxo0bmX5UgRdCllXSmRxrP/uC6qpyhqIF5FAyneGR3/yaSy4+FYk0XV1H6nnvvPNeXn5pCbZtkk6nsewciUSCiL+azdsKUiiyJBH2SuTSMQajQ8jaEemsiy78OpOPGstrr77B03/+M7PnTCUcDnLcccdy3Y3Xcv8vf0t1VTXP/+FJjj5+HLt29fDiC69QWyLy/tsP89KyjQDYtsW0aVPYuGkdWr1NPr+H6HBdq2mZ7N9/ALdHpr6+FsWlIg0nj0VRIJtNo7lk3KrKgf1tDAwNko7GePKxJwvHtmz8oRL+/t5T3Pr9m/lo2WtceOV3URQRSXbQjTQNo87nqosWc/Zpp3PeeQs59/LrWP/pq/z2t3/g0otvwtQN9uzZSO3YCFVVVYwf18K+AwfZun0njfXVlIWKQC3l/HMuZuHCBZx19qms23SE6K6uugKvLBHtOERbdy+qYDBhQgt9vQOoaohIyI8gGuzasonSkkrckSYGWvczc+pspkwag6qNQfVIHDi4i4qKUVimyBtLC3Oyz+th3NwpWGYYKd6KZ6CNroHCPNzcUMzJM/sp8g2S33gFbeJ0/GVH0dxUhyQfcWiam0cz9/L5eMMR9IyIMJyEGFVfSfOU6WhFzdx+r83aj57jli+uxRYm0XfgCPNRT1sQ15g6zCILv62STCcIBn3k8hk0TSWX19HcXrBtctkcomgTT+RoOzBITXUFgbAXM2/iODKW6dDd30VxKIDtOLhcLlRFwLQL+q+OYeMbGk9yzNOEPOPJWlt48LefsXnrEA//5nvcdPn5bNm8ksXfuofBIZkTTz6Fnt5uOto62bFtO9vae7n62muGny9xhNDoMIkiAP/CJORXOYC+bF9mCP5nrL6HHcv/k3YrHKmdPXweRVGwbRvDMP7dd4ed1sPn+O8ic/oflHl1vrL9830EoZBh+Pdt/v32Vc/fcez/oG3B/mkNrFg4pyg4GLaOFvaRy3RTFvFSM/k4tEgzIa0UPRkHx0FwHGTJx0DPEJWRMLl0H6KUYcqECdRVR6itqWTP7p28/e7f2Lv/AMlsipJIALdqEQoFSQ728/pLL6JbJtH4IIMDPdi6iCpprFq1ClXVcLt9WJbJ7DnTUFQXsioxd+5cJk+eRiCoIjg59u7cRial8/6yFXT09FFRXck7771HMFRMPGFj6fDBsg9IZHRaW/fjDxUzmNCpaxyN5pIRRSgtCVBTV826LbuIJ22aRo0m4NPwet2UlPiYNGECG9ZtZPrR0wgGNIZ628il+okN9bBw/lwkUaC2tooZ06dSV1eLRxSREWkaPZbuzk58qkjroXaSaR0LCcsyUWQNy3JQFJnq6nLCRT4EyU3eMEDUEQUNCwEEh0wqiZXL4ygaiAKapoAgYwpeTDODaeULjqnjYDtgOQY5I4NlW8O8xiBICraggOQhl00SClcRjebJ51LoqTwuQaKn7RCSpWPnk3hdHhwTBNtGcHLgqLgUHz5vkGAwQEfnAUTJRpaFQjY7n0cRRXbvPYDmC+ByexFEDa8/SFlFOcGgH0MwMLCwHBGXrGLpOg4Kfn8Qvz9EIePloLlkBNvCyOZwdB0jl+OEucfhWEkkVxGoKu5AkFC4BstxEQzXosoBBMtBFCxsIY8jyGRzeQxDRwrU4OgpHNWFnYjhcrmQJZUtW7bwxbpPkVWJSEkxNXVVeDQXmdgQuzd+zphR9QxFY9iCTFl5Cbu2bSCdTCOJEs1NzVimjWnp2KJIfXMzbp8PtytMIp4nnsgiSi4UzUNDfT0+r0Znx0Hy+Qy2ZWJhUFJaRCoWJzbUi5FP09F2kLaOVvK2TjqdxbIcbESqG0Zhmw4fLF9Of2wAxaXi8wYK2oCqimU7SC6NkxbOZuuGzSRjUbB1ujsO4nFrdPf0UVZazv5duykvr6a6qg5JdSNqXuLxBLqTxMaPJ9xASbiEgd4e9uzehCyaBLweTD1HdWUJmseFY8sobo2Siiry+QQ+xSbbP4jtWEycOYPmoyazv+0QtuGAKBNNJSgpLWGgt5UvPluPIAhMm9FMc2MdtuXQ058ojPu8SXFFA6q7CM0VwM4dye7XV5Vh6DYDfd3YjsC0adMwTAPV5SkQnAUK5C+t9SJG3kDPm4iYI+/YUMA7UgHl5DMEwzLJ9ACRSIi+/sGRKXBwcJDBoSH6BwbpH+hHN3TiifjwZ/0jL7B3lr7DoV27uOqb5+N8qTxI9VksffslBnv7mDFzNnnbjcc7jv70WPqGRo/s51IqaRnj4rvfmcP13z6XuvoK1m9Yh0s78io74YTjcWyRVNrCxGb+8fO54LKb+e4tP+fDj9bS0zNQkLsqDhEO+SgNeUcktqKJNFW11cQSQ0yaWI9fO3KR02c2URzJUVxk0tgoMHq0wNIPVnHx4h/z6Rfb6ejsQ9cNwiEfZaVBykqDaK7Calg3Brnu2ycRKU1RVJyisUnGsQtQ+NLSINu2r2fc2Aiq1s+FiyYyabybjraDI+f2BqvI5mvp7yvjRz9ezuzZD7BieYBXXjwi5ZPOCTiKnysuvxafL4jPW3AGPB4PxUU2N1xzI6FAJRWVtTzx+NOEfFAaKSCB4rEY8Xgc118/4GonwriaMfz5j08SiRSzc9cunnvuL8yeM4/qulpyZoI33vwripQkncjiVoOMbhyPZdiMHj0aVS0Qfg0ODpKLZunsrcFRp2BaWQTBTd5SiWVt8rqNgsLtt36fSEURE6dNJDRcq+0gICkKUyZP4Ok/PcbRM48hm0jTtruD5//yDpl8YcHVUFeDxy0juby4NIH2gV4sySQebSc1uIdE/CCiJpCxvaz6aD+P//4pljzzFHW1daTTaW754Y9paplGWeVYTjj5bD777Au+eeUV1NXWAFBe7Ka+wk04UoKh59DUHJ5AIzJewl4vipglnozy3vsFBvZLL74A28kjiTrlAS+ymeeiSy6gpLQYVVEpj3gZN7YFKGSmbvzezVx/07eZOL2Fy761mO07dnLPXXcjDqNHBgYGSQ7mycZyDOUtXKHiEakdj9eFjIZH89LX00lLSzWWeXiRLDNmchOVo4uwvX50USGWjuHxluHzFWo2o9EoouRgWCaCJDJuTIGAZ/XqVVx2yTXMP/5cunpjSKJNzrb5zcOPYivaSNbFNHI88eSfGUqYWFKY0tARGbdp045C0cJ4NR9WOoXXpVJdUUlPT4Ld23YAMHHiBDp6oyycfylhbzUHdx4hCtq6/QuW/PVp4okoqipTWlbGdTf+mISRor29gHyqry3nqBmNOEmRoCTyx8fv5pzzz+epv65g9ZrPABAFkSw6AZ9Ke+9B5MA4HKUw58mSxOeffUIw4KO7s4uuthiCMLzeExVcvkZETWPH9o+RjBjZ3hiipjLrmElAARGV0XM8+tgDRMqKOP+Sb7Bt+ydYVoZELElP5xC7dxwkJjkseft1Ssrr+NPvf8uubVGuuuIaqio8XHTpeVx9w/X84qcPkkmnWbigQPi4e/de9u7rwxAUHn30V5hSnOWr/sx1155HpKwcALemMXZMLX9+agWGmqB50mwOduUZTKmEKhpxhcPEUhm6uwYZO2Ea3kgljm0SLi5CR0fxjkL0erFEN4q7lEQ2jewRefXtAvz93DNOwms72NluEtEEjrt0xPnqSHgZe8xNBGqPJyFKlLn2M7j9Lzz/+M1EB3pH+tEXDjBmYjWdO7dz47cWIw4jelo7DqJbIuUlMosuPoXHnn+Xex94C6FIo9cTH2kvlB/A6C1FaW0hY0hIkoNjGiiCjGOAbcq4XS5y2RSO7SBJfmTRYuzEOoJFGomhOIZgIAl50uke9u4b5L0PtpJL51BlMB0RlxJEzxq4sjVgaHSHXyZSoeCYfq67dh5//O3FlK87k6buq1j+4RbWf/Q30tGtYCY4uGc7gzkZlyJwwpzpiLaJICsFciQsEAUsxwZRAFEo6AgLNoLo4PCPTuM/k4/5qt/xH0ntFFy5wmbbR5zNf8wCi1/Zzx5xNL96jCMbXznvYXInq1DyJP17MqnDJEyOMKyf+yVyppH78E8Ip/5v7H+Q8/o/wwzDIBwOk0lkee+dd0hEuxCFDKGSShqaxyGIIl6fj9nTJ3HGaQuJxQfJ6AZXfPNbVNWUsuD4ucyZcyybNm1n1jFzWXDSyQQiJSx9733KKqoQRYf9Bw9imA6CLRIIBikqLiYeT+A4cMyxc7Bsi2g0iiNAUbgIxe1FVDXauntY9tFKNm3cycsvvUUua7Fh3XpOO+McKipryBsW4yZOoLi8lPrRTTSMHoUsQS4VZ8L4SaQSSaoqy+nr6UEUZFxuD4cOdRGPJfBrblLJQYaigxw4eIDiSJBoXz+HDhzE7w2SN2z84QjlNY2Eikro7+0mk4wxOBjlwxUryWZ1ensG2LR5PVdceRn+gIdIJEQ02k9T0xh8fhVJtunvi9HR0TEy+A9Ht2xAkRWS8SHMXBIBEdsW0Nx+JMUz/KAWIkamWcD2y7I8UtNmmmYB0ibI+HwBBEFE13PkslmMvMlLL7yOLLqJx4YYGuxj9eqPUGQRt9dL3rBwuX2obh9Z3SKTTSIIDDMHSphmDgQbj0ejt68XQVCQRBXLEjBNyOVMkukMjY3N5DI6B/cf4Kk//plELIUkqPR09WDnvPR1x1BVgT179qAoAXDAsq2RF0ph0hOxLJNUKoFh6AwNDWBjUFpagWWmyGV1BgeGePrpZ8iksqxYsQLDMLAsayQCJwgmPp8P2xZJpC0sPQ6KiuDYOJkkXb2tTJw0lnFjx5LL5Onq6GYomqS/fxDdNBnTMoblH6xAcgReePavmDmdhroGNE0jlUrR2tpKT3c39Y1NmKaNkdMxDB1ZkXG73QVd2kx6OCroUFJWRk1tHRs3bgYUREFm0/qNBENBzl10AarHQ2dXFx6XRiaZQpVFXKqCqqoIooSiKJx66qkjmYby8nIaGhtZsXwZmWSMvo6DhCMBpk6fgsfjQddtKiqrkSSVktIy+gcHMCwDQdX4/PMv2LTuC+x8Gq83iOZ2s//gARxEBEWiprGBopIyRFVFcsmk0hlMRyCfzfHS88+TSCRwa26KioqIx+OEw2HMvI5gOWzcuJWq+jE0jWlCcSmFWlmvh8qqGo6bPxvL1tE0L6JsoqouOtrbC2LrooJteVC9IQRVQ1E1xGFoXjDoJhqN8tGKLzB0i48+/JhcRqegKCWOsHhbpslHH32EkTWwTWckZGeaJrFYDEcrxuzZxqGDnYiCC8Nw6Nv45si899BvHqa3vZvdm7az/L136GvvZ9WKZezcvJVvXXoV11x5Ldd/6/scOtjKqOYmbr/931i+4u8j7XUdSkorGDthLHsP7Gfa0TPQcwqlkTpcmmdkv1RyFL/4dRu/fqiV5/6yAlNPMf+4ajzu7i/Nwl1IQgfFwQSa0s+/3ftrduw6SHGRjz899i269j1GrPMP9B16jMH2J+g+9DiVFQW4nksZQnMdoqoyTm/fbvxB6UvnTtDfJ/LRR3sxrXHc8/NVvPTqGiRJYvK4Mdx49cVkBj6nY+/7fPdbl7Nu5UoCww5kJhOme2AmKecMhrLTcOQZI/BuSezj4gsnYlkuEsmJnP+153jskTjPPXtkEfiHxz9jz36HV95aw6233c27771LfUMF8+cfc+T6ogNs37CV3//+Cf7tjnvR9cLz3NPTxcoP3ufBX/6Mvs6DfLjsLT5Z+R4vLnmCskjBWfT5/MxbcDwet5sxzc089+JzLDz+eDauXcvjjzzCJRddxKjGBhLJJG+/+y7XfvsmFpx8DoFQgVDM49Xo6GzDNE0cx8Hj8RCJRPB6vZREakglHGzTTT7noAgabtnNrFkz0K0Ep5+3iBNPu4iOPp3SsgL0tKe3m1gsSn+0n5VrPiZvmnh8AUrKS7jk8kvo7Owc7i8vP7/3TwhmKcmEjsejoaoymUyGm265ldPPPJ18LsmO7VvIpXr48xMPM765gW1rP+P+u37KnNmzqa+rob6+luPnH8+Tj/6OX//8fjq7CqzP1fVhErkUKhFcSgjD0Vn7+To01Y0sKkSKSnhuyUvoeiEQcfU3F5PNZhlKdGKJOdZ8vpqPP1lFLJpm+7bt9LRvwjOMgj9u7ixmz55ObW01TU2jOOWkk3h76Vuce/bpIw7iqFGNuDSFyqpyNJdCX28vh5dtqXie++97kHjUoLSkilw+zeH1oGXl6entQJIdXIKbuppmpk49BkQX9vA+ReEAmVgXgqNh6hIN1QUSt97+fu6444cs+csjpGJdxPt7CHh8fPzJam758Y+/9JyZtLe389mnG8Bx0dN3aOSbJ596mmi0n9NOPxlJkhAFlWw2T0dXO68vfRuAc88+i3Fjp7HklYeYOnMiXb2ZI0e2cvzgBz8gn7N46OHf09M9yC/u+w3fve57yHJhdmrv6CGZEDnU1oXL7cXlcREu8TL3hDl88tlwdlIQSSbSjBo/FX9RKelUnOJgYT6xbZOvnXc6LpeMKMqUFqmk44Vr0HNxOju3kopnKC8bz5ov1jH/1KPJG0M0NRVI3DLZHA0NDSOQeUVRePO15VhOmpzZDmKW7s4EQdVN56H1eDWb1t0JqqrKee31l0imBmgZX0EifZAHH7ofw8hx1hkn4R9WTDj3wkUYus2KZetIpKIIoo0lWix5uYAwmTh+DGPHTeYbV1+CaWrgklhwygmESiJkLZNUOormlvD5NdKZGJado3VvGx5V4a3XX8Cl5LGyKXZv3UTIq+JVZH71y9+wd98+PG43N3/nOro6e/G7NdwuDVlWmTK5QLq5cs0G+qVJlM+4mYrjfkrV2G9RN34Ct3z3aF5+4Rcj/RiSS7n7ngeoqBvDXb+4h5rawvO95vPN7N66EUmAbNZmIGHgL2ni0T8+zklnnzDSvmaezcQnq+gZjDGwK4Sua5jICIqEbUns2B1j67ZuvO4i3C4/mWSG1Z/tIpVNMhRrJxD0Igoytp3DJVocM30UR40pwaVpOI44DOU2sWwLPaVgN35CaUURh/ZsgXwO8gY+t4bLpVJVXUVXdIhf/v5JkrKHu+66ixkzZpBIJOjp6WH+/Pn/reWJhTFr/5cypYft8Dr5P3IU/7sJlb5qh6HC/6pM7P86r8P2VTHeL9t/hiM/HN2AQufEYjH27t3LtKNn4NLcuH1hOnsGyKaTeL0eUDzs7YqRTqTIZ/NUVdZQX98IgkK4oh5T9jOYtlEDZVRX1mLY1L5nOwAAIABJREFUAo6k0NQ8liXPvoAiy5SUlnPKaachOBa6YSGKEpFICZrbjW7oKKpKfWMDoiSRM3T09BC1FWFUQee42VNJprKUllZx8MAhDD2N3+viw+V/xzDymJaFAyiuQkZt+qxZ1I9qor21DY/HxbZtG8nlMrg1N5IkES4pJh6PYRsZ/J4gnR0x6uom0NcVI50pCNa7NIVcLk0iMUhRpIQt27bjdrvp6emhvq6OSKSY/r4+dKNA2PPCCy/w2aefoigKk4+ajCSDx+Mnn7MoLS2jpqbmH+654ziFrJxt4PcV6lQEoZAzFyUJhh3UI/ThBQdPEAQkqVCvJcsSh/VbHVsc/j+FJBmYVorm5hocJ0OkuIhRo6o544wTScSjtLYeoKgohKqqpBJJ8tk8mubGtu1hvVgRf8BHJpPGcQoQrMqKKtxuN9lslhdffLFQvywIJBJZDuxrpbG+kZaW0XjcXjrbuwgFgyTigzy/5DlSyTR19aNwELFs6x/GpCRJvPH6G1iWTWlpKQ42fr+XnJnBslR6uroRgUhxmDNPP41Q0I/f7x/+/TK6rmPbNl1d3RimyYb1G/EUj0LPJgv1ki43QjLGhIljcQCvx4tHc7F103oE0WHW7Fm0tnWwdv0m3F4v7W3tLDr/QkRJYsPmzUSjUdLpNNlsluqaGrI5nYGBIVyahmA7HDx4sFA/l9fp7urG4/aQSCbZvn0Hsupi/IQJSIqKLEiURIooKvaTTCbR3BozZs6kcXQTgVCIzu7uAolZJl2o9TEtdu8uiL+7XGrhnuFw0imnIKsq1bV1BMIhMrkcnV1dSKJAIpGhKBIhncni9fkY0zIGURRpaRlDaaSYcMCPIKgYpkW4KIwkuYhGh3Ach3Aogm05GIbBrl176Orpx3FEzjj1FNxubbhe1MTr9Rb++vxs2bSezz9bg6Kq6FaebDpJy+hmDMNAVX0k01EUl0xxcQXpXIJsNksyFUeWZUwDdDOHf3QIT4MPRJPDiJG+WJriSIhgyE9sKIoqK3S0t6Pnddau30I0WajfKgp4mDx5Iv6AF9V1hHjFrWmEQiFEVcPSM4xqmIBtSSQTOYSejSP7HY7eNjTUMW3qdH7y49vJZvJEisu559/u4M7bbuOen97FshV/Z+qMqbg1L8fOnTXSfsfOg+gWZHJJmlvGsHLVp7S27eeyy67km9+4emS/ts49nLDwZMKhGl59bSdtrS0svvJDPlx9pN7u0UdWsHu3lz8/tYlkto7Xl64D4KSFpzFtyhVEY7NYdOErDAzOJ5U+mdjKdgb6CuRJ7W2lXH/dx3S0zyFcvIjHntw3ctya2tP5yW3PcvTRl7Fn7yCrPi1oeo4b3cLXzr2In9z+S5LZKuKZCr51w63cdvuvqKltGH42FbZs2kB/7wCqq5JYTMa2C87rW2/vIJ46iSf+uJP9++McN+9U/vTUE7y19PWRc+/atpnrr7+OSxdfwbJl73PllV/nd797iElHTRjZxzBsfvnrX7F61RpWr/ocj7vgOJ940vFcsOgyrr7mOpa+8xbTZx7NVd+8luLiEiIlBZIcfzDA6s++KCyMRLjiusXk83kCgQAXX3Qhj/7uYTZv2MSBvbu4847b0DSNHTt3cdc997J27Rfkclmqq6tIJBI4jkM8HkcURXL5OLlchoce/D0goesmyYEBErE06XQOyzZJZ1Js2bSPH33/PkKhQi1rLBbj1h//kNvvvo2Zx85ClFyIsoQoS+T0NPv2F0iPJk8eR7hYRpDTeL0eQuEA6XQWET9LlrxamPeFDHOPmcbJp8wnEPQxNBTjtddf4Zqrvs6ypS+yacsaNm1eT01FFeec8zXWb95MdrgudMJRR1NW3YRYiBRimjJ6VmfNx2tIxpJkU1n++vzLABx7zLGEg8XYtk0oOApD9zBhwixuuunH+P0KLS1NVFU3owxLtSiyj3fefJdPP/6MTWu38PyS55g3+2g2bFw30qcejxdwsG2LZDxBcSiMOUxel8/lmDXraLq7e4nH0vh8npFFqiRL1Nc1EvAX0dW1k/fef4Gewf1YcopUcjizJQh4fSEkJYeiZbnuhks45aTjAfj+T37C8lXLKa8oIhQKsXLFh1x74w109fTg8XiGm4t4PB6mTZvCX//6HBWV5SPXbZomZ5x1BnfefTeBQIDu7l5WrV7HeZcsIq/rVFWWc9XirzPYc4DisE5Haw8zZh6ZDyzL4sQTT6SkpDBGXe7/j733jJKrOLf+fyd3jpPzaDTSaJQDyoBIIgeByNgYI5LBxtgYENgk2zgRDNiAAQM2yQSTMyKIKIQIEkgojzQ5dk/nPvn90JII9/q+9r3+v2vdtf71SetMnTpVR6eqa9ezn71VDjvkUGbPnMHBh5Tq7ezq5uIrLmfJcUvRPH76Bod44JEn+e55FxGPlWy4XMCvwcjgUMlruJAjkdzNGBEwLZ1UKkN5vInunkE++bRkHSVKEtWVdUSjUbwBjTPPO4ehVAZV8lJZVbtn/AVjAEnNkcp2YdojnH7GtwlXtlPXsog77n6Qgw46gMGBDchqkXVffEB/chteP5x11neRJBlVFUmmBhElm0gkTn1tAxf94BwAOrp7+OUN13Lkkn3waHXs2Jnn2FN+wMDgEH6/j1t/fzOFgssHH79OQ/1ExEw3D95xI8FYOdVV9fziut9SKOh0dXWhKBrFYpHOvl4uvea3jGRdsgUbny9AKBRiW8cOvv/j5fziNyXK8K9+cRX+UIxYtILUcIKqikqKusV55y4DSmkGRx17Ms89/y6arx67YSpO1Tlc/7DCIytK9PEZE6JMrnmIQ9pcXrr/CZ7/67Mcsm8pnzaTzXLUid/hpRUrMUyHjm2dDCSSXP2Lm/jjbfcAMGvmDKbPOZpH//4R24vbQfSybWeKj9b1MZJSMG2JtrZWqmpimE6WvJ7Ccg0G+m0cQ8Sj+rEcEWwXSXHBlVFFl/raSj78bDuJrICZL2A5LvFYiRlRNArkcjlMJYTlq+Tam5/j2j8+CKqXdHKYmeObee7he9lnahu333476XSanp4efD4fN9988z8EiaW9pvS1COVXMcc3c0S/mTP7zbzW/0qw6av45Zv5t18tu4HwPwNgd9vo/Gd5rd/sz1cx1H8WQf53CTj9/+D131zKysrYe++9+WL7JmRfAN1RkDxxQn4PPTu2UbQc2ibNoGi6jBnbhqJ4aG+biGvZbNuwkYjPy6vPP8v+C+fx4QdrUCSV8ooqpk2dwT4L90UUZaqqa4hGI2iahEvJSkqQRGzHxePxkC/kKRSLaJqG3+8nGCsDWUMLhJE9flxBIJEcRZIlxo5tJJ8ZZt6c6TiWTlVlJUbRwNZ1Vr65Eq83SF9/gkIhi8cj09raTLGQwbZ0PF6VyVMm4Qt4CYc8dHdvp6Gpnk1bNuEKFo1jWhjXNp5wJIhHFWisr6Br504OO/RQmsaMJRiO0rFjO4oiMZIYIh6PYpo2iw86mGAwRHl5BflcgaKewtDBsRQQTEzTpK+vD8Mw9kwGnyqBY6EbJqbtgGvhYu+hLvxnE8d1SyJPqqoiCCKiKKAqHgRBKv0we6LYpkTAF6Z9wkRsy8axLXBL9htejwfHMujv7UYWAdfmbw89RDqdwzBMZFlEUUQSiSQgsnNnF7U19ehGEV0vIoguJ598ErZt4vF68Xp9vPLKq7zz1tu0tDTx9FNPlMRt9AKmNcIPLjwXTQ1gmg6uUIoeS2KJHqKNOYRifD7DIyN4vR66u7vwejUkqaRSbFkKb69cxfDwAMVClnA4SC6XYe7cuWiaVtq0uoAAhYIOlMQ2klkDhUJJ6EZRcQs58rkCpmmSGEny2dpPmTN7OjV1VWRzORobm5k2bRabt22jqaUFwzSxEdhr7lxEUSAQCNDe3o7rOGzYsAmPz49t2WzcuJGamhpc1yWbzdI8ppnevl7KKiqZ0N6O64JhWliOhWnq1NfVICsC0XCYtZ9+iiSJePw+HBFqm8YwOprC41FQJZfOrk7Gjy8J50iSTFdXFyPJJIgSnmAYW1KxXQmvz09ZWbyUQ1ZVxTtvv4fH68V1HYqGTmJogEg4REVVJVu3bWd4eIRCsUg4EsFxXbxeD16Pj2ym5NObz+eY2D6JeFkFo+k0q1etIpvN7tngm6ZZ2ghKEmVlUYr5NK5j4DgWO7dvxzEt/B4vgqCRL+QpaW3Juw5nRPbbbxGSKLNmzcdIkofESBLdMBkZzrEbvK7+oodMJsWi/eegqTINDbUUCzkk0SXrBrB3yS/uU4hQW1uH6Rpfz8sRQNd1BC2CPfAZW7fu4Bc//zUvvvAyR+6/F0FvCeg+/cyzXP+7mxgcHEaWVa644mds2rSJRCLBE48/RiaV5tmnnsQRXLwBL+vXb0BV5T3zcWdnN7YDb7/7DpZl8eLLL9M+qZm7776TC75/wZ7ubNyymVDAT2Vc4zc3/wJvVOa3N/6K+qrKPXWWHn82FTXTaZ64iKGESrFYEriZOnkm4YiCpjnccfsfGexPsPzSK1m5PU/RLEW6YvEQaz5cy9NPP4uoyCw5/oQ97Q4PD3HccUtYevwStm3pZXCwlDu37MzvMGHiuF05czK6YVA08viDMpu3lkCWZbmMDA7y+suvMWXCNNat2bxHIGfe/EMo6AWOWnIA8XgUQbC5+OIf8swzT+159oUXfYdXV7xIoegyrrWduXMW8v3vX8RbK9/bU0cL+Pnw0zW88MILXHrJcl7bpVq7fsN6fMEYoUg5y392NTPnzGU4UcRwND789PPSf7MgsKOzG1mUSubmYilXq7Ozk0KhgKqqOMhUVtdw2eUXc+Z3Syqlb771NlOnTiYWi+C6NtFolEAgQD6fLwmTqQ6avI5lZ0zGNA3CET/xSIBjjz4GWdAwdJewX+UHF1yIXrA4eenSPeNZsHA+Q0NDILrIqgdEGUdwWPv552SzJSGtyvIqLrzwQvx+P6OpQZLJESRR4757HmVkNIMgCygSaIpA3jYwgIraeo496STytkE6NYBjexEEP7fdfhMen5877iwJNo0dO4YDF38b1VNOLt8PogmuxtzZ85BFmaeeeJp169bzxcbSwdgRhxxJOp3B4/FgOiaCYhGr1Nje/QmpZBbHERA9Iexd1MkZ06aSSw7zwtOPkUkMIAguqixw95//8pUJ6KCqMoVCDku3SoyhXXmDwaDGvIWTqa2rJBqNfiMiIxKNlmEYNumEwVFHnEggWIbtlBg0AJZpYwt+DF3CMhR2bO/j9ltvpr1tHLphcOFPrqCpfSZ14ydzxJKjeenll1m+/FL8u8Cr3x+msrKSV159gUcfexCBLy02bvj1z+no6GDx4UuI1rUxZfYijjn+VLp7uomEw9zwq0sJBPwoJNn2xVp+c+2NGMUvLYq2bO6gWCwSDHl5673XCYX9/OIXP2PZd09n//2O5IhDjwTgoUceY1NnFy2TJtM4fhI///X1tI1r4/JLLtr1XUM+MQBmgVxyBFmVEJVSPyVZxrFF9KJDPusiSnGmzSgJLQqigibHSY4Og5whk09RVTOeiy68glxW3zV+P4IbwLV9VJQ1kx61yRaG94yhs7OXh/72Z7yBOM3NC5kx63C+c97ZrF23msGhfkLBMoYG0xRyFi+88BIPPvAYiZEsF5x7Ns31jbiuy533PMJl1/yS1sljmDJ7H977YDU+n48/3X4Tl176U/oHRxjfPhbLUVD8cdomzdrzfI/mR1W8eLQAsqQRDpVxwKEHc//fHufin95CvG4Swao6Js1eyJx9D+ahR5/A49G48bqf8d0zvkN5ZTXFos7WLZtwTBvbdtlnnwVc/MPzEQSBbR0dHHfyqcQrm6ivGUv7lDbufahkGdM+oZ17/vg7ysvraWnKUR1+jVltOvtMbuWc089AEAQGhoY5/vRzaJm6F4uPOIzpC+dy+51/wXVdWseO49FH7ufowy6gusHD3vscSHVdNbqjsXVHlk8/7yNTMMllRpHFkiuDK6h4fDFOWDoHVbTxqBq6lUMSXAqFHIoaxLRFZNXL1q4MWzoGce1S7muhWMBxHSRRIp1OE9Echjq3sf/8iVxwzjJs02B4NE/niM6J3z6X0YyBYRjMmjWLa665hra2NsaOHfsPo6K7D6z/p+X/Rrf9V+i4oiiWXA3+SUD5r9J8/78Wyv1fI9i0+yV8+ZL/PS/lv3MK8E3TYChFHQRJwHEd4jVleIMVxPIyMY+XRGoYsyhQXtOEMuLD1jy0T54MuFSUhxCcLHfccSuLFi7k3j/fxd777M36Deton9jG2o9X8fm6z5jUPpFwOMzWTRnqmmpQvV5SaROv6qOoZxF9CunsKK4h4gt5kSQRxxGxdBtRFojE4qRH0zguTGhrYeasmezY0cWGjRtpGz+NWDxCJpciEPAhSSICIeLllZiWgWXr1NU14Y+VU8wNsGDvWaQLIls2rKNQ7EBWg6i+MqbPHM/qjz5l+oyp7OzYTiadpjeTIBLx0VhXg1nUUWvqsEU/Hp+Cbe2gfkwrI0MDyLKKpefRNJn33ltFOpXCsF+jrqGVYLBE+f34o3XMmdeAbkmUl1fiOpRUgNERBB+iKOAYKSQZLEAvFPF4vICAhYbqFrFdAVdWUOwCoqigGyaSrOK6Aq5jIkguLgKCK5aUWSUZ23YxTR1TzxMuq8S1HRRRoVBIU15Vg2OZJBPDeP0Bzvv+97B0m6JuoKg5JLGC9Z9vZNXq1Zx95jn0940Qi3pJJZOEIyE6u7tpGduCqTvkCmmWnfUdhodGqKlrYumJ9TiuTSAcxhvyY5gOjm3z8ccfMXfeLAYHhnEtnfqGOkzFixoS+Pbpp2FaAuUVdWSyBXw+DRyJrt7tDAwOEwrHEaUAglRERiSXHMUT8COrGqZRJJXIEQlFkSSIlUexAxOx171TUhUWZXBd8qkcTzz1FOeeexaxeBmuIKNnkoQDYVav/oDWcS0smL8AvZjn008+JBQOMmnSRCrKKsgZOURNQvX7mTm9iVtuuYlzz1vG+PFj0XUbRXHZ0bkF2zaQRS8fr3qfyqpqUqk8tmURCAZAdFEklTWrPmXC+HomtU8ka5h4XBN9tIAnouHRNEzDxpZcqirCJEf6CIbipLIZerp3smDh3uzY3lVaRQQDTVWIxyvxecPIikghP8LECeMZ6R8gGvehyCrBcBzdsDF1k9bx48lmEkQiURAVXNFEkL0MjaSQJZnu7j4qKisQga7uHnwBhUOOPoJsOkMgEGDHtp00NzfT2dOP6lFpHTeJs+rGs6NjEz6tnJq6aj5as56WcWMZHOxkwoTJuAgomoRuquDaPPrI0xx77LFYVh7HdgiFwsiygt/vxXVLa1T3YIpnV3WydL+p2EKOyrpyGsbU4Dgutz72OgBt0SjTtAgp18CxS9hl9xrnOC5ejwbFEHZukNraMGeffRp33fVnDp1tc+LeLdz9ykbeeGsFhy8+ANe2yBTyhGMiZ333TO6/53F+e8cNFGWFWbNm8vqKFxjbPIOa2kYU2U8oGCSVTvP+66v5U/nt/Gj5MrIZuP3WmxnJdhH0eWhrG7Nn7a2qrqB5fBn1Y/bBwY+Z62F0+HM8gS9tNpKJFE///e8cffThjGaMPddXvvUuy877Hrad4p7b7mLDpm6uu/5Klh53/J46iaEUd999N/EKGdcZppD80qIpXlfOogWLmD1rDt6Yj9/feRsA6zZs4PTTD0Kywtz1h3tpn9RIOuHHF42R2QWyNm/ZzIG3XE/AV8bxJy0mlyvg7PK1CgY8iLKCbfmJBHwsWDiNQMCHwJd9j1dWYRk6XhHGtNYzZ+4BXPTDy/jplT/aU8enSaxd8x633XkXt912I6eceBjX/+EuOjp3cvjhh3HusouZMXMqN9z4Cw4+8kjyRZFnn38JgKGhPl5+/lkmFzQ8foVCRsI2CzQ3t5BMDmE7eQTRxdQlTMMhGgkCpbxBSVIwHAFR8YNtsX1bD65r0dv/Lq3Nc/ls/Srmzp1DwfSSz+dxQiIP/O1eLlt+MZf85DJGswVeW/USiqKQz1nMnTOPVR+8z21/up1vfet4erp38MJzb3PW2d8Cx+TWW/8IQDQa4oc/vISM2YUsVBLwxxBcP6ZVZPEh88mOFvB7FKSAguqTyWRHkCWV3t5evN4gZfFKELwYTg7XLJLNGryy4kP+/mQp4n3pZZeCnidfHCWZT+KPVOJVAvQPbWbKXm2s2/gp5/2gBJJCwSDLzj4N1auVIs/JAcrKGxnu72W0fwsx7yQUBfKfxBBKnH30HgPxgTKOEE9H+5sHUZb50wf38va775cUu3Hxef04toT2UgVqT5KOnh24faVtm7g+jHRvObTpdE/opLKyHJxd8/YtL2bey9YtW/DI5Qy+XiAUaCF/QOeuaC6sf2Mrxu0BRBGymRxj/DMRJXjppLf545rf8+iGv9Hb04siyxw4bjHf3/simofGcI95HwCFV6E9PZu0pPPgIy/SsfWzPd/inK6DWXHWIm5843e8vW0lw7khqkM1LD56AVddfhE7tm7CfkTAGhxDuzyBZaH59L/euef+9ffu5JnhJ1l82JHk+jsIrZiNZ20/7o4aHN3g9xP/zEzjTu774B769G4cxyYaivKt+WdwTPgY1n24vrRHy4jw4CQc0UKMGwSPT6JqJaq806sgPlgF6Twpw8XnqYEtJWBuDVoY5Plg9Vb2r1+I8aaCLYj8dtId3P/eg6X70y7WnTGyp3UTDodxZBvl7ZY9YyjraeSY9AWY95nkRBmntUhmWg9Tps9i49s9bL/GpawsSmvNYdQVLEZHkygPVpLLpXj9gRe586l7eOaF5+nrGSBXzFEXrme/1gM4f975jNnexKFHnE7/k93Yx+tsXPcZoYifsncn7Hm+d0MA6YEqasR6Mi8XiO1fINmU4/vnnMcHb65h05YtDGYHUWSVtoomDhh3EGfMPpMGqxlXSdO7cwfjasYxpfdIjE8lYmYcSRa4JPZL9l+2hIc+vZ9VPe/Qk+hB1w1ikRiT41M5esoxnDz9NDwf+ICTKXN0RH2AofrfMGy9wnGzp3BIxQM89OLTfNT3MX3p3pJlo7+MiZWTOXyvIwjMsRjpybLyg/fQ/6ggEcZNw1zPcUwelwEXnB0WGSnBxpEtNDe3EBDCqIVyEEQUBMDGJ0glhwZc7OjmkkK3GuD0CTORXA9it4DbWXKpEB0vVmaUtR8tYO5pCaqbspR55uO+fixJqYBuOPgkg/vuf4AtW9bS1DoR2ROmrCbCxo1byaXTiLaOJXgRBQHJEUsUfddFEkREoZTKtpulVIq0Cv9BXGl3+SrO+GrZXW/3PSVQ7Oxql/9Qd3cbgvClHU6pjd3R0d2g9D9nlX4dtP7Huo5jfe0e96vaVLtyYP9De8438dy/Xv7XgNf/beXAg4/h8b/8GVGy8IZUsrkUWd0h4hjkR/sRY9X09PWjmzaG6XLKicfz98efYPKUSbz68os0NtSxdfMm1q1dR/uECQSDAd5//31mz5vL9q3biMbjxMtqsB2dQjGL1xcmGIhiFUuqfvHyMkQBFFXGcRR2dmwnGokQ8CvIoSoefeQJAsEwuCIrXnsBQYR58+ezY0cXoqjSPKaBljFjyOXS1NRWE/LI+HwqVt5hZKgXT7AMXyCEYeZIJQZRJIeurgITJ06mt6ePmup63l+9msMOW8y6Tz+ikO+ivKyCmjqZrZvXUShaxGJxJtU1svrDApoiIwoCC6a08/Gaz3Acm4ntkxlN62zctI1QpILBkX4+/7zIlOkz2bp1M+3t7TiOS7FgIgUFXBc8vgiGLWMaOXxe/56JrwpFCukh/MEwRb2IYWRBDqKonpJQk+0gS0JpTgkg4GCL4EoCRdPCF4ggBsPYroUkiSRGEkQiYRKJEcJBP7ZVIBINohsWwyP91NbVI4hgmjbz5s+hoaGRol5g7bpPmTtnEr29Cfz+MhobxpBMDqKpQeJlEXbs2El9fQ22Y2AYJdsVQYRgIEZ/Xy8ezc/8+XNwMXnh+adYtmwZgiSh4EGSPOAICLbLmtUfMG/ubAp6nmAgwJiWJs47/ywsx2LTxk20tY8FQSISV7EBy3XRfAGCwQiiCJZtkMtkCATD2KKEYBdA8oEgMNDbw/FLl5IrFPB4vBQLWVKpYby+EPGyGNFYlKrqWjo6OgiFwkyfNg3HtTEdY5fynkBFvIpCPs153zuLt995izlz5uDx+SnqGfbaaw6q4qFrZx8TJo5HlhVC4Qgvv/IKdU11fPLxOmZMn05jYx2Dw8M0hspwDBNbhGRqlLAcJhyOln4cJAFbctm4cQ2L9m+kp6uThQv3ZtOWrfT1DTF2bAuO4+Lz+5FkiW3btiIrEpZZpLlxApFojI6dm/B7I5SVV/DCCy+y16yZSDnwBGIIho1j2WBbGJaB16sgAp98+AFTp0zBEwzi9/upqi7DcRz6+/toamrC49FIp1OUlZWhqTKbvvgYSfIjCDJVdWUkR3rYa/5UTNuhvKoVw8giCgr9/SlisSiK4ufgxYsRBId9992bYtFCUUqUaI/Hs8cOI+BRufQPTzAyPMKkej97zZxKV1+S6/76Ou+uKwkCXTtnPq4LkqjhOubXqEaCIJPPF9G0KG73+8iSF68nxNVX/ZwPrt+PHx49lZfWZ+ju6eHHV1xG/9AAp57+XcorYri2wfwD5vK72ht49NFnuOOu2znm8KN5/60NvP/OayRGMpSXlZFKp2lsjWGaJiMD4PELGPYg+YREZShCwBPfs65OnjST3p5hKsqrKWTy3Pvnv3DBBctYs2bDnjpVVVUct2QJK1a8xK+v+w1jGhvZvnMnH37yHq+8tIJJ7WNpGzeZufMP5tRTvsXHn3yCz+cjn89TXVfNuAktCFIelyJG6MuT9M8+WcfiRftxx123cuXPf8uBBxzIp2vX8pf772dK+zhmTcnx8qtP8PmmONmiw6NPPkosFiORSDBx0gSCwSDbt3ZQXqUSDocJBP0kUwm2bd9CNBYouuYdAAAgAElEQVTANE3effttjjhyMatWvc9DD92559mPPfYYVRVVjB8/HsdxqKqOkhjt5vY7btpTZ8uObax850POPvNbnH36WWQKvdx+74PkcnkMWeeTDW9x4cWn88bKl1m15jOu+eU1+AN+jKRBRUUV3zv/bAJ3PIblGNx003U88dSTHH3UkRy75CimxiZimibFYoFXX32TW24tAfd5c+fw+foNVFdXo3i8uHaexYcdQF9/P3PnzOGlZ99gzpzZuK6Nbo6gm1l+/OMrufSS5XR0dJRSFVIWlVVRVEXGEC1aGlv5cM1qPv98PSef+l1+ee1VLFv2XbK5BJdd/jNeXfEaAFf9+CSc3Ci6qqHbHrxKEdu2mbbXdDq7upg8cRIDPb28/vrrtDS28ucHn+Lc887grw9cj6bBEUfuR0NlK5LsYcP6jTz15DNcf/MtOI7DMUcdzlGHHERP/3rq68YS8E/BxcQRh6moqMA0HY47bgkXX34ZAMccfRS2bVMs6kiSRDxagWHmqayKYhsBvIEIrithm1n2mTebk45dysEth+HZ4EU3DHYmd3Lf6rv4wzs3A3DRop9w7ZM/QVU1Vn+whlZ9Ji4StU1jeP6cFSCUDlctC/7+8JMs/f2R4KisffUd7KfiyLKCawuMHdMOWDiug2GaeL1B7r7tFm77/W28f+P6XXNcwOf3glDa5HokL5ce9VOW3/8jkskk5cEYxj2Bkg6EbrBu+TZwihQKJpoSZMfmXgaf+hsLZs8m926C4psKkizhuhJ/Oum+r23UrVOGCPj9VJeNJ7NDRFJEBFFh8uQpTHTbSfyiwMDgANokeO7hBxno3kl74zh2JIYYHUni2jYfrPqABQv34twF57Ns7rfxnhrELR9lxYoVzDePJv9JkUOcRvquHMEVbVTVBdfHaDaHnLH4xbVXcM2VP8W+04/rioSCGrgOoiTwp5Pu5W7pfvrqPsEw88yYOQ1pREKWZFxXBFHg1L1O5+SZp9HT24Vt2fh8fkzToq62gVCZn+Rv8uBCMjGC65pkU2m2bt3O/PYZiJqHjm3baRs3hZ2hNLFYBAQXj1+lXI2jGzq+QJDO/s/59qlLOf/cM4l8UUNylUEwHKFQKLDxiy/YPNJJW3srFWVh8PbSm+vDF6pmTPkc+q4cpau7k7ZxrTiCiOOWUopG81kKqT6CqsDyk5Yzw1iIY1vk8wUCwQAuu6xLAMHw0dQwnlxxgFymDMX0oSgqpqkjyxpzGucxt3k+jMuTbOvAo8mEzVoKj3sAG1X1kMkV8Pn9CJKIozVQve+VlPu2MvzZCzh9Q9yw+FJSoyLpnEl5Qy0B1UMuV6ToS1F/rI8v1u9kqNuiOd4IpgW2QNGy8YV9CIhkMmnCVSFWbN7BznQP05sn0+CJgaADDrYloGkeBCxwQQxkECWXRGqAgOxFRi4Jcyq7AJ7gkHUSbN6SY2xvhkjcS9/2fqbHoqSzCcY0NnDJ0h9z9VXXcf1Nt7L6vVU8++xNnHPmYvyaQf/oKIJSgs2Cu+cc6WtlN/D8d/mf7m7nn4lwfpX2W/q3tOf67r59s/6/Ur7swz8/rv9J/uv/GvAqyzK9vb2Ul5dj2zaqqu7hiP9PXsB/jOj+4/KP6nz1JGXPSYeoITg26UyS6rpqtny+iVAoAnoWryugBFow9DCSqNHf14ckyfj8PorFIg0NDSyYP4+XXn6VtrYJjGlpYfv2DnyBkmH2rJlTCYYjIKl8+slHNDbXIQoStuMgyQLSrneSGEny1sqVHHrIwVRVVpNKJ/B5I2TSefZdtB/vvbeKYiFP0B9EN3QGBwYoL6/j1VfewBUsNEUmHAkwblwrxcwwolTysS1kk2heBV03qKurZae1g5qqMvr6Bqmua2D8+DZGhgY55eTTeOPNFSiKRjhaydrPNhIICrS2NLJh43YUTaNj+2Ycy8QyDZKjafqGeymP1+LapZOi8vI4zaFGkMHr9fHWGyuYPG0m9fUNZDIZQqEQfn8I23ZKIjWCiCgqKKq6SzVawDAMPB6JocG+khKmrJXOjySZXC6HJGlksjn8XhHF40MQpdJpkiAgK6VNAIBhGSiSSC6XxbEtTN0gFIwzMjxEWbwcARVV8ZRyfPUciuznvfffYfZeUxkc6mPt2nUce+wxpFMD9PX2kRotsmDvvRBEEReHgYEBqqoqkSSFbD6H3+9H0zQcx6GYMwkFQ3g0D8VCAUUV+da3TkVWZHTDxB36GBcBuXoelq7TsX07M6ZNKVGjHQsXkBSRgb5hEskE6VSadDrP++++wXEnnIAgy8iyjG07WLaJ61okRoZQJBnBG8fIDKJGGnEFkWR/D/2JJIsOOgBch9HRYaorK3EFmUmxydjYjCaSRKNR6uvr0TSNZDIJQoFAMMzHH32CX/ODaKEoCgsX7I0sy4iyiE8KAA627RKLR/F6JDZs3MikSZPZd9E+iAgMDQ2TGh3F61VRtBiO7WAbJqZbEncqFHPYVsm/Vjd0XFdm4sQp7OzspHX8eHChacwYwpFYaQ1xXbp7+2lt8ePzevD6fPj9tbz+xkoW7beQ2to6HFumu6uL8ePG88Ybr7PkuGPQDQtFUsil0+jFPIIqU1VRSU9nJ3vNnknA50f2+BlNpTAMHUH0UFtbx+joKOXlFciyRCqVAldDVQUkUaKiqgFRkIhFajFNHc3jY2Cgh2AwyFtvvcXmjVs544xlPPTwnZxz7ll8+ukaJk+ehCA4pDNpgoHg16iFx+49gc29Ka7962sokojf9yqju/JcAS46eV+OCDXjAoV8EVVTcL8CXg3d4KWXXubwxfsi2iaJoQTRSByPR2PKlCkIAvzpthu5ZPk1rN+wgd/ceAO/ufGGUiTCcchkMnueVVNVyyknnsSC+fvT1bWJlW+uoqP7C360/DJefu0VXl/5BnfefzfZXIZJk9q545Y7+OH3l3PMcSfuacO2XG699VZ+evk1/PjCi/D4RQxL4PHHn9lT59lnn+GIww5DVVVOWLqUYFTjgkuWMzwyzCnfWoIil6jOpmUiyzLXX3MV1/7uevJ5cCWXhx55kKYxVYwd24wkhPa06xg2uVSO0874NqII5559Nk8+/STbtm3nwp8sL+W3BwKk38vgui7fPvV0urp28sZbb+K6DrfeeivnnHUhkprFsixyu6Kyra3jkGWZUMhHZ882RlMZJk2exs+uHM8dfy1RSPff/0CmTJmCKIr09g/w1DOP8fY7rzE00sdLs0ter63jZtA2LsTly3/Cr667jTdXrubnV1/Fj35yKR998gkfffIJfp+fOYv2xzAMZs6YydIlS1n+s+W4LqSSQ2x+ZyWTp0xB8Fps3baVG266iRtuugmPx4PP6yU5Orrn2xjX2sofbvk9kUikFAEwDfLF7B6l3ERilGIxT0/nFlpaminqWcJRD88++yw/veJK7rzzTjTVy0gywdDQCPF4GFkWSaWSXHvVz7nq2it57vnnee7554mEw6R20e0BTj5kHnMnRgj5/Kze8BFTp7SQHBniht/dwsDALvsgweXSSy/ltZffILNXlsoahYKe4J133uP5F17kRz8GTdPQNJV0+svv9DunnszNN/4SzeNH85Xh9Wp88XkXkZiGL2iB40MUFZ58+mkKhdJcOvOMb+Pz+XAEkUJex8pl8EVDFI0C0VgFyvd1BATOXLqMbZ3bWbfhC+BH+P0+XNclny+1I0kSl/z4Ryy/7EeMjo6iqhoTJ05EnGxhiHkcp4jg6qiChIuNgMDMrS2IcpFUZpg77vwrp5x+Cs3j63CKWbp3dlBRVYnkCsQjMdJpB8ty8Hg9tC1rwA1ncCUTr6bsAt8Gn61bx7z5e1MsGMSjESxLQjxtgF/96jd85/QzKS+rxtG6MLMK2/oGeP65J0l+2MlAzxIuvfQn5OoGKBh5RDFAMORDUQVsS0QSNRRFw7B0dNPEe5LCZ198wmBvgrvuvIeHHr6fV559mZsevokXL36RBR1zaG6oJ1lM8HbTCmYumUWf8wHL776AF254mpVvPc/Rh51EYniUdx97muaWcrLBnVz516s59dh9mXPgQkxBBDlMdVkTW1Zvpz06nnw+iySJ9B36GU01M8A1eeaZv3LQwQux9XI0TzmNQpxEvkgwGMWJ53BbhpGEMKpXw7IMZAXczcP46jwovlCJUeBA8aAEsXCETRs30NTYACSokhykwQBppYOQ7KWxoZXLr7icK65YTrgiQ2fXx5TXNaOgYRsm+UKWNq0FSRZQFAVjdpKfPnQhB+5/APsesx8tBErsMO92RAGCQT8z95pK7+Ao7mmjaI7IZ0+/yuSTqzFch0x6FNcpEo94ibplHHnEIQQjtQwUd/CD753BzbfeSrSpllwhSzQaJZEewmtXIUoC/UP91J4SIZvtpmAYVFZWYxpFRFEgOTqCx6OiFjwkhvvx1vhQzhDo6d3J4ECKaXP2BrUIOPisTXSlIRScRHCMylD+LbLab8nu6OO+u97ixLm/p8MsMPuA/QnG/Dz36psMDxQ58YQjcL+VoHekn4CqIPqiCKLKyy8/w7Rp04jFBd7//HXG1LXx83vPIxpy+OVV36V1rA6ZKAWnm0DAxkukFPHTDDx2jHXrr6eqIkZNdRWjo0mKuoxP8zGQ3MLRs1UCqkoqO0rDzDgrPllGvD7AWx+GOG/mZcxecBBbt3URi0TYb599efaZJ1kwfw4zDjwWBAURqaRaLThfRiF34QLbtvcoAf/fMMfXlYC/Xr4KWL/a1n+FZ76ZMicIX4/qfhVP/SN/1v+sL5Ik7bHMKdXhaxHb3ffsvmbbNtKuaO//BMBLV1999X/75v+XxcW+2u/34zgOmqYxOlqy7fgv7/k3ANN/pXy1Ddsu8sWad4nWjEHy+AkHYpg2qDvfQZQVsvhRVA+y6mVkZIh8bhRZkpk2fQZTp89CVH1MnjSFTVu30drWTl1jI+MmtLNp4wYyySR1tbUUdJOhwQTBoI9t23cQjYZLJs0+H5KsIgguY1uakVUNVVUJBqN8+tl6YvEogUCQlpZmBvt7sSyTeLyMnTt3ousmoVAYUQZZFolGwuzY0YHq8YDsxbEMHNvCEUSMvI5pmAwODhKKhCkUsuQLRRLJYWzLYP3n6wiHAvh8Xrq6ehEFmcqaKjZ/sYm62moQXYxchvXr1xOLxQkEwlTVVFMsWDi2Q1VtGT6/nz/ecTfzFkxHkmQ+XrOeqdMn4fWWxlTI62hqYJdVkYBezKBIMrIk4rjuLhAjots2tm0RK6vGRkMWFUCis6uHV199DQSRWMSPpvmRRBkwMQ0bVZaRRMhlE5hmFk31guviOg56sYjXF0BVJVKjo9iOjWU7aJqMi43XE8VyClRVlROLxWhrG4+LhWOJNDU30NBUxcDgAIbuIkkKkUiMzs4uFEUlFA4jSTKODYWiydDgINu2bSWdTvHyiy9jGjbNzWNwhNJJqdPzDnZ2ELm8naGREdra2vD6fOjFNKqqIUgigiQRCgZoahyDaRURgHg0RGVVBV1dXYSCQfK5LJqmUSzkqYhXoCoaTm4A0cog+yrAsiiPx+hP5altakBVRIYHesER+Gz9RlZ/+Amtbe3s6NhCWVmcQCDApk2bqa9vQi/qKKoHn6ohuiaqFqKxsZmBgQFGR5PkdR3N40EUZFzHRRAFtm/fzoQJE7Bsl1w+h2XYlMXLcR0bAQNHEkiMpEr0XWy8vgAd2zaj6wZ+vw+PR2F4JEGsLILXp7Fl01aGhpJoXg8frF5F67gWgqEQ8Xg5kixg2xaJ4QT+YIStW7cxdlwTkuxiGi62qVNVVU3zmDEoqsro6CA+T+kgJBiOEgmFsS2b0UyKusZGHBFUWaOzq4vqmgqKukUmnSYcDiNJErZto+sGqdQoiUSWWLwGW7Qo5DJospdH/nYfhqEzNJKnsaERvz9Ad2c3giAxZepEbFunobER2xJQVYm0mycYDJEdSvH4irV0DY5y8IHTuOsPy/B4VPqH0owks/h8KvNmtnDDz07k1EUz8G7OAy6BE8ailvnwVQa4+Z5XyGR1jlkyk2+fezSSqGL1foG/9QAK7gh64V2idQG89dU0t9Vx6gmLaB1bh21bZLIm6XQGx3Gor6tg0d6T+eH5Szn1+NlMnx7gsstOQNH68AUUnnxmBUcfeRzFQprRVJJUOoNpmsiizS+vOpiDDmihf2ALf324FG1rbWnm++cvRhI2sHjxGE7/ziJ8/gSxaIq/PLwSgJAvyNLjjkOWRSZNyTBvfh1HHLoXAwNJBgaTmJZFJOxjysQ2/nzXnTT1v8OzH20mlS1y9JHtnHLiZJobZYL+NF2d73HH3S8C0Ll1B9877wdI0hdEw/2Eg6OctHQhpmnT358kly/g83kI+cPc+vtf89PLf8zrrz/OZ+s7mD6lhl/9/AQ86gCO1YlXS3LjLU+QLxQ44pAjmTY1iORuZvZeVfi8SQSxj2Awwc9//QAAZ595FvGyCLZtEfF/ztzZNUTCGbLZLm69o0RzvWDZdN5d+RZr3nuXgxYfT/uUCia1FWmoDTM4lCKdLeA4NvV1cX5w3hKuWP5bhgaHee7F5wgGNK65/EBq9m5Em1PLmMlBJrQ1Ewz4cF0JXbdIZzKEggFmzWzlgnOP5u4//pBoJIMs9hHwjiAJvfgCDdx2x32k02naxjdy0CIPDQ31pc2Q2IxhuDQ3jWX8+DYEQeSkk06mdew4IpEgxWKWUCjIkuOOoLm5nqXHLiGbzTI8NEw6kyYeL2O/Rfvyu19fz5lnHIcW93PvX97l9ZVPM3f2Ah5+4GHWrf2CbGGUdDrN+PHjuf5319Pe1krH1k+Zv+9+5PMFKsorEUUZw9RJJhLYlk1dbR2L99+PQw48gF9ddw3eQADTEvGoYWzbIVam0d/fTSxazuhoEp/Xzw9+dDF9ff1MnjiBS35yIZKk4qIgCCKCnUVUQDcdPGoYveAwMDzCWWefheS6KB4NwzDJZXMIAtTX13LsUYfzk4su4IwzTidfKLDmww9pamrGdcGybBKDBvmsSTgUZGigF6+qYQk2siwQDPpwsZg+eSKRaIBMZhQJSAyOEInU4OxaP7PZNF6vl6Je5IMPP6CpaSyy7IBg4boWqqIxvm0q6cwQpp5EFGxsUaFv+3aWHH0kkugQ8EvoqPj9AURJ54zvnMCEcWM5aPFhTJo4nYcefIwf/OD7eDwaXd1bCAZlUskS1TNfHEK3bHzBIEXboaayGiOX5YSjjqS3t5vWSW2cec6Z6LaObuts79xGa/MMKmq9JBJFqmvC/Pnev1FZUcb+B8wj5Kti86bPOPjgfQmH4iiSh5NOPpxQNEzOdvH7q1jx4keEwibNzY24goCsQaGYxu+JkS8k8flFKiqiKJoHfzjMSGIEVREpmDni0WoE0SKdSSMJATRJIpvpx6OJGHmHfDaL5QgoioosCFz1s18yvnU8tdU1XP+b3zCpfSLpwgia14s/5EdUXPL5PKri4de/uoGpUyczZsxY3n5jDa+99DqC7VJTWUYwWEE+X2Dnjp3cessd/Px3V9PUWEVVeQxBVlD9ITAtiqaNJYr0DY8Q0Co47/wzOPjQhcycOQMBm5GhHsIBD2bRoLdnkFTWIB4v5/UVr+FaFj+65CKiZREQXWxsBEnA6/WRSmwnkx6hpr4N07AZTY1QWVXOhvWbMYwikWgQxzEJBH3YjoHmC2HjkNdNKqrrqK+vZTDRRzio0rVlI9Xlk5HdOEbBJVEYoN/oZ9a0y3ACCvWtXqzse0TCAl4pS3JwK907NuPoRZ579knKqiJUVJQT8lcQ9Nskhgzy5ggzZs/ntZff4NtnnkFZZZTjli6lvr6ZK396B0ZOYe99m5AwUTwV+MNetu7sQfGOZWfHRia0tVIopLEtm+RwFsGv88UXSYLBSqKBGsriY8nrY7nrgfV8+JnBoUddQfOUCUQqqtG8PkLhECvffpPZ8xby8IN341FUTvnehahaAAERERdXtAHpa+JF7leikt8EsN/EIP+dfNF/Nn+1VOdLwLtbTOqbYkz/qHz1b4ahoyjKnmu704729OMr3dndvviNPkqSdM0/OcQv2/p/KZX8PymGmSulp/2blKp2l93j/+Ypwb9y7zeLbdsomoox1MuTDz/OySefAW6U7oGd+Ff/GkGW2OZEaaivJ5/OYhR0DF0nmUjSN5Jiwf4HIgguQjHH3x7/O98640wsy0AUob+zj+ryOO+8s4IF+yxm5RuvMWPWdOLlFTiOAK7BJ59+SHPzeKKxChB1BFdl7dq1pRNcUcQy8qRG0ziOiNfjZzgxSDKRJJfJMTKcIB6LMX7aJDLpPE0NddhOEq+3AsfMk8+NoHo1ipbJzo3bKObyjBvXzptvraKm2o+pi8TjFdiOztYdO6guryEcjIEq09XfSWNNDaLtMJpKUF1byVBfL9mcjm5AQXdobmmikM8wPNSDPxRh2oy9yJoFIqEI2CJ/vedhvnvWqQwPD1JRUYmh27iOguovefPqRh5VU8mmCoRCfizDxjZF7rv/Hs5adj6CaCMoJpLow7JdbN3i0cceZeKUSUyaNBXXtRAlcdcCVKIMZjIpPF61ZApv6kTCUUzTxTIdBFXDcWxUVUEQSlZJslaiIblGEa8i09nfTSgYRlV8pNNZorEAtiUjCC5FPYMiB5AkFUmS2bD+CxLJURYsmoFjS1imgGU6GHYGUZTwaT6ymVF0PYvP58cfLEcQRIrr7ystGC1LwHG5/y9/4axlZyEoKms+WsvYMZXkkglqmlv3iIrIsky+kCYQCDLQP0gwGMLj1XBdg4GBIWprGjAMG2NwHcLgh4gVs9HTSbxeH0OKn60bvmDW7JlIqoTsqti2zX33/YXDDz8Mv18mnckRj1eAIKMqCrqdJ5/L4vV4EIBiyqSjcyehSJjq2mocF6LhMLZjsXNHB+VlZchaAL/XQ7GQQpJc1q/fRNuECeRyOVTNh2HaJBMJQsEg27ZsZa9Zs0ibGXxelXwmhyjIeLUIDkW6ujpobmrDdRR6ezYSLitHklS8ipdCcQjb1hAkL6Ztsnb1uyxYOBfHtSgWDELBKJu3bmdMSwuaIpBLJ1ADcfRcnnQmQ7gsxlB3P5FoGH/AiyhJuK5AvpBH9mgliybTxLQEjEKGaCiAK3kwbRHTHCXgD2CbNq7j0rFjC6nRPFOnzsCxLQZHEiUhH1FA86pkshl8Xj9GoYAsqPz1Lw9x+rLTEGpVgqEgd/3ydh5Zlea9z7ZzyVkHcu3PTkAQRBzHKuXduC49Pb3UlFWR2jpM9NkhAJxL2ku58m7p98Y0DVTVg+M6jGwbgLXP4tvvKroMiwnjNayRbSVQEhnDlo2b8Xr9xMvKGBhpw3EcrrvuOu798/kYxX5EScayBRzbQlNlXMmhUCxjZLiMaEghmcsQ0DYQCYfZ/H/Ye+9wy8rC/vezetu9nt7nzJneYAozMIBUaQqCFAUrisRYHtSYiBos0USSXE1QNEYTaZYoKqigRlEY6lSm9zm97l5XvX/sEUXR3Pzu797nuffJ+zznn7P2WvtdZ6+91vm+33boMOlUklgygu+JHD58hL6B1yFJNq4oILo5TG0WT5IJXA8JKJRLWNEwMhZHT4p0dLQjSSqz44/Q2z2E5zns2r2DRcPDBAREozGqdi8ebYw/9BEGVg8yYSr09na3ztnzUBSZgweP0dXZzfN7A1YsX4qMyszkL+jrT/ObTnECgT0v7mXR8BCClMENOtB1nVKtQdw4zPbnn2f1qhU4bhXHFjl86Chr1q3iox9+gLe8+d188jOf5Wv/9jGCYBpBUPCD1vckHE7QbNg88avtbNn6PhzPY2ZmhuH+KWamZolEwpw8eYyRJf3s23uEbFsHRmgIz+9nYLCb97/3Bt765vPwPMik4wiCiCxrNOwSphFleqGH48ePsGL5Wo4f+xbLlw0giS2Pv+04aJqCgEChpGFGVuAFAbn5UTrTc9SqNQLfx/U9orE4fhC0QJazGjfQufWd7+Leez6IoYxhO03mZgtMTC1h2ap2Dh9ZYPJ4mYsv3EypcpQvf/Un3HTzlcQSKgcO7mL7c0e47robMPQwkmIzM3uSdLYTWXAwNZ2hvhH2HjhAIKk0XdDEAEUKeP1rruXs8y7isstvIdbeJGxYqEKIuvtz9u6YoXfRxbzqnA08/eTPcQKfU1MzPPK9p7j4kvPo7c/gOA3ioaXc85WP84E7PkS5UqBRnaetvZ1KuYyiKMzMzJDI9lIpTDA1OUepqjLUlySVSuAHHuVykVAoRN2WKBSKtLe3Y5phcuU5/HqeWCRNqR6l6c7gOB6HDx1n48az8FyfpjtDvd6kM9OB43hUmw4KMQ7s2cfISCdbNl/Ij37yQyKZGLVSmZNHjvHLX/+UW265hXg8jiAIFMotxcv0uEOjWeb8i1az//lDNOwighCQzWYpeApuNY9lmLiKSW1hnEgkgu/76LpOo9GgIVloikq9WMVQDDy9gEQaAoV6cx4ZFwEVTYlx50f/kr/8qw/imzaFqUk0QUNVU0SSIseOHae3ZxBZCiNLGoGc5/ChEwz0L6ZaaWLXFrjvvvt4z3vezejoSV48MM6WzZsQPBtFFgg8B2SF/HxApVLg2Og2lvWsRbAm6e46m1yhihWOMza+nf6exdz/L4+RaRNZtCpMe3YYt6nSrMuoMRm3ViGkKVQbDolkFhsBSXaZX5glGo2iKDKSHqFSqhCWfZp2lRPHT9HZ2UkorIPgUW62Fs0VRaFer6OoOm7dRcMjNzdKPK2xd/9hsm29jE+WWLtuPU27RCwUpVouYddL+KKEroWplBwCbMIRjV898QSpRDef/fS9fOcHn+PbD/+I4aFeBvoW0azoKKE6Rw4fp7t3kHDU5PjoMdrNMIeOj7P2zLNQJZlyo0F+bor2bAxFEjh28giSaJBMtDExluPWW2/jk5+9g/bOEWKxBN/7zr/xhluuIxB0iqUakYRBvV4macaplKvU601CoQiq7iIGDb4AACAASURBVDA/nyOZTOI4Dof3z5NMxslk40iyhx94lBZKxFJJRFWj5jRpFnOErChjU7vp7V5Mw7GoVxvUKiXaMhEsU+S5bbv5ySPf4a8+eidyLMXM8V8zdXwfUweeIOxO4zeKdK+9k47hmzlSnOSL/3End1z9Z4xPHmF0appzLrqOwK/zi8ce46x1GzD0MDt27Gbnjp9z6OBONKXJlZdcxK+e2kG20+WWKzfz9PYFHnjoX/jCJ9/BxOQJzPQwqhvw020H+MGzAX/9vhEs28WKhTg2Os3t738QMzHAvz/4r8QyWcZOjWJoJtMTswhCmPHDz/PjRx/g9g//FWvOPh9N014eDiq+Ml55SaUZiH/odxWll732NwFrrzR+ozoNhD9dh/O7Htnf951CK1BKlv9QiBv8L8CtP5zvnw6YApBl+b/9Tv+fYV493/k4/O8Hr/9PjCAIsB0bXYQ9O1/gqaee5OTYE0QSCuG5Q3iBSKR7hGajgeM4KIrM6KlT6HqIufmFVqCC53HqyEEWLx7BCkcIALvR5KH7H2R6coJUOs6Rwycg8BkY6GdsfJxwNIrvebS3ZSlXGlhmBEFw8dyATCb90oVcr9aIRKJIosTzLzzH0NBiDh081FpRNnUMQ2dgaBEH9r9IT1eWfG4B3dCplguoskQQgGGGqBZrqIrKs88+z5p16zl14ghBIFGpVOjoyHLy5Bi+55CIhzl2/BiKrNLV0UZuYZ54LMrU9BQLcwstn4Pt0tPby5EjR7Esk86Odvr7B0GUUZUQ+AGCELDuzDVMT82iaSqGYfCle7/M+vXrsb0GiqIgyyqO4xEKx1oeHcdFUTVOjR5j2bKVCEKAj4eAgh8ESILA0KIhMm1ZFEkCfKTTJcq+52HbDoqq4Ll+y0fkQ7XWoNFsgCCiagqSJDI2NkYymSQIBAr5eexmE9dxCXxQdRXX8XBdH8Mw8QOHWrXJ/MI8hqnxs5/+gngiTuD7xGIx0ukUgeCjqSYPPPAQ23e8wPIVSzENA1mSsEwDz3MAmdm5BcLhEP7CHppNG7NzHa7joqk6HR0d+IJAKBRFUQV0xUDWNGq1KvPzC0QiYQzDRBAkDNPEdpwWS4uIrpuoigYING0HYfY55PgwmqwgNKoIsRT9fX2IAgiiiBAIHDx4EFVVWLp0KdVKudWralrIstxivxsNNEVFkWVkSUJUNaxwCFVTcdwW216tVrBCFvsP7Kevrw/f86iUq3heQK1eJxlPIJ2WOO/ff5BUMkEsFqXZaLBr5w6GFw0hKQZiICJLKuOjUzTsCoIAum6ya9dO4vEIsiQwOTNDpVyhkMsTjYbRNIt7vvgVVqxczoplS8nlc8zOztHW3sFCrsDc/DyK2pLVep5D0/F5etvT9Pf3YVgWpqZTrVbQdBXX85idmycRjyPK0ukeYpl77/0a2UyKdCbF0888T1tbFss0KRSKp8NvRKKROL7vIYqgyBqmaeC4Looit+4tts3OF3aTyWRQZJnt219g3ZnrcHJNKPsYmsFPnj3K+FyBTUt6OLO7g/EDE6gNl+p0mcpkEcsz8cqttG5pbwFRFKlmFeqzZWpzdRrzVYRCk8J4kaDkIPkSTnkO0Ygjt52NrAzy9W89RzizCdvtpVFOUyzEufOjX+O8C84lm81gmiaR6Ai1moaiLuL4uM7zz02TSS8nX0lQrshIisAzz75AZ/ciHv3RXvp7t3L0sE1b20ZsP0Oj2UWpnGJ+oUAsGmpVf9lZnvjFflJ9W3n7LR/n5FGPar2NeNcmBCdDLBbhhRd2kM12cmBfieeeqTIwsIVC0SLwu9jzYoF4ai133vm3bN16LsrUTtRAohjeTCg0SOD1MzMrMTWl8Im/fpCO9nNYvmYxogjFfImd22fp6D0P283wvvfezcYNN9DZuxE/6ECU0nz3u99jZGQZri/w8Hd385cfuIezNryWYycEFHkxd975dTZuuJErrrqCWCrB8MgSzFgPvtDF/IJFw06iaUNMTsoEfhfLlr8Kx3N54olf8fnPf55XX/42rrv2DtauvQyJNKNjAhOTGrV6hlRbD9FIkttvv431G87H9wd56KGdWMYQst7JujNvZM36K4lF1/Hii7uxQhZTU7P0D22i3mwB77kFk1BkCV7QgeO1Mb/go2s6oiQiSjonT3lE48uZn9dIZs6k7mVwgg6afoZ3vfX9nHfuFrq62lm37hJueMN7qNthms0+3v++O7jxpmt49JHH+cAH3se73/12ZEXgnnu/zHXXX4VAQFu2iyVLRiiVyrz1rW/nta+9CsuyUESTQr6EZUR585vegSiD64PtNpFFjyOH99Hd08fatWtZt2Edd7z/rSiCxq/+cw+hiEZ//xo8FNafsYa2TJaTpybp7R/m2te9jktffRGLFw/iek2ue90bueI159LT08v8/DyyLGLbDqYZAkQaDRszFMHUFHTdQFZCJGKtXk7TNFE1jXq9QSgSf8naND01gxlOUi6WiEYS/PLJ53nDDa/l9nfejqYofOuhh1i9YhWlcp2olaJSsqkU6uTKOV54die6otHRmeDWt7+Dh7//MMNLF/PYjx9l9YoVXHjpheSLBaxwCNt1OHLkEOGIxbq1Z/MXf/FB3v6Om6nVbBKpBLppcvzkCWKpDL7TRFEVHD9AFX1kWaZUKuH7PpIkoRo2pfxsa6HVazI5MUU8Gsaxy2iKgCQpLCzk0Q2dcmWeoeFuZC+JaHukkglKjQK+D6lUGmixOtPT44yPHkZXVVKJFHf/3We57LIrGBgcRNVUUuk0iuESiWrEIgaFfI7AcwkEgXg8ygvbt3HueVtxUag0F0jEOzFMHUnyKZanqZRqTI0tsGi4B8XwURWLarXBpz/1GS6+fCu5+XEy6TCSJuLTIBBkarUqmUyWZsNG8BrUGk00zSDwfUr5El1dPYTDYURRwnFc7GaA77gookRufoFIKM7n//ELTI6PsWLVUnbtfIEzztyAoui0d3ZgOw10TWN6cpzx8VEURcajimFq2HadE6cOoBsS8WiSu+76JPf885eoN2dJZ7uIRS0IBP7x7n+mVs9zztbzTy8CuoQsg0wyg6RqVMoFHn/0e/QNDBOJhanXa/iIyKJCuVyh2XTIZrNsPfccMtkkHW1d7Nz+Aueeu4VyoYCpWzhNF0NXKeRzNKp1LNMiEoniuh71akCj4RKLJpgYn2T5stUcOnyAWDxEs1nHMA3qDZ9CsUC9XkWTRXzfQ1EMwhGFZtNFN2OtZ5ogELJ07GaNeCKCpkhYkQhN1yfa3ke6c4Bosp2Ko1ImStM5yLe+9Xl2PrWdM3uuYdLP090zyK6de9m5Yzv9g4t4/Cc/45e//BV9gwPohkbHwBBXX/96HnnsMabmSzzy/W3oms66JZ2YMZXBlZvo7YxQc+v4koou+QSBxb99/RESEZvpOYFnduxjttCkvWsloWiWWCpELN5GJBTlz9/9Pg4fPIImenzzvi8T+DZ/9r47kEzrZZLgFtPaGr+PW34LNF+hPuZ3JLVB8Ltc7StjDUEQECX5FbHRK1XV/BY4/+mK0NPT+2+P3571//WD/K8wr/8DXn9v/O84futiaOneG7UiG9av5Ni+p1i+eiXiqf0EokJFjKLrJp7roekqnu+Rz1XxfZ/tzz7L8cOHEL0m9XqDmZk5LN0iN79As1pmyZKlPPvc02iqSTikUioXGOgf4Ic/fISe7n5EUcAww4CIj4Om6gRBQKPRRNNUZFFBlhUgINuWoV512bdvP0uWLGZs/BR9fT089/Tz2M0SnR1JwlYc166erpSRmJ6axdQtdu3aR63WRFVNovE4mWQax/HQDQ3T1NlwxiZ0XSQS00mnUjSqNjNzUxRyC3hBQCrbQdiKMbeQp1gqtjq2Kh75fJ5kKsmOnS8yPLKMbz14P2vWrAZaiaGmEaGjowvbsdm4aT0IPoZp0qoolBFFFR8oFEtYVggIWDzSiyC0wEEgCAS+jCSLVCtFrFAISZYJPAe7WcN1bERBwPMDZFmhUW/QbDpYVhjVCKFoOpph4gYebrNKtVqhva0dIZDwvYB6JUc8HkdSNHL5MoHvo6o6IStCEICqikiSRiwWZXpmkjWrzyAUtjAMFU2T8QMXRAXX9Vm9ehWrVy9HkWUURX4pnU5VdRTZ4uv/9u9s2rQBZ2YXkiyzd8ylp6eXdDaD5/tU6g103UKSBDxfATEgFA5jmGYrYU+2qNRqiLKEYYbI5YuYehhBaMnfEILW6vLkNuTYcOv70aghpbKtEARJolGrIyASCoVoNm1yuRxtmQy5+Ty1ag3TtNi/fx/xaIo9u/bgOg4z09OYyXir99RzqZYrJOIxVE3l5ImTLF++gkKxSMiQ2bfvIOFIgoOHjhGyNPygFbAUCoVxXRsCH0EIWLFiOX7gU8gXMUwNBFpp00KTSCiOpoZwvRq6CYpioKka2WyWSDjM9PQsjz32nwwvGmbv3j0MDA5ghSIgiEiyhqpppFJxQpEIsqq0vNOSQr1RJ3J61b5SLhOLR8kX85TLVSLROIcO7EeUW352z3bYv/cwGzZuQFFk2tqyPP3MU7RleykVijz15JP09PRw5PAY/f2dTE1PcPLEGKl0nHA4RLlSxtB1HNuhXGxw9OhRenq7Wb58hAABwzA4fvw4vb29fOc/dzM6k2PL6kGWdqV4cfcB2jvSGIaBLMmnPbith6TiCPhxFTurIkjyaRmRjBuAJIpA0FKTNBd4/uACatuZRCJRVq9ahyyrBIj8w9/dTbYtw6LhYXRL5pOfuou3vu3NaJpCOKRQr9vMzOWxTI10MsbFW2/mhpsvRzFlFD3L9OhJzjzjDA4cOsjq1au4/4H7CUcSHDp0kOHFfUTjBoKnEY6HKRYrjAz3o8gBl17wKgZ6Bkil2jh1fJwf/OB7fPYzf897/vwDSKJGrVbgS1/8OtdcexWRqEkmnqBeqbDvxb0sX7aMTCLFgf/8BqlUAm1wHZapk8vXuOmmmzl+fIzb3nU7I0uGUTQBTVWRJYW+3kX8+33f5LGf/Jhbbn4DTz35JKvWDOLYLuOjM6xZuZ752QLpuEbYsLjt1lu5/75/w3OTuEGeK646F1nWeeh732HpqtWk2zM07QaarjExuod6yeK55w+wZOUgxVyOaDRC07HJZLMsW7acZMzk3PM2s2TpELVGlcH+1Qwu7iKeMZDkEJVqDkEQqNWafPjDH+aSSy7hq1/+OhdcupLbbns3fX3DrFm9lk984lMk4mnOOeccxkbnOOOMjUR/vQtzYoZCJkLgK5w6NU7IiiIKCqIsIssq8VgUWZYYGzuJFUrh2FVEwSO3MElMjXP02AEuvfQ8bnvnW4jFUyiqwC9/8SxbNp9LJKqx+azNvPP269h/aCfffPAHvPcDbycatVAUg9dd/SZefdn5JBJxBgcHMM0wm886n3fedjOmJVKu5tFUFVVVQARREZBFB10PWLxsJT94+Ac8eN+XKcyfIgjKNKsybe3DFGtVNEMnm0qza/tuenpHePs73sPnv/AZRpYM4Xp1fN/lHe98CydO7WFwcIhYNEUgK0iqgS9IjE3OkG7rJPAEVEni+PFRevr72bVjJ4lEqnW/rVYpV6oYZgjbtjFNk2PHjvMf332cT37677j6uuvpG+jkjde+nmNHjtDb3YVIwMPf/TZnbljXUibIMm+65RauvfYaPvKRv+S97/8zpqdH0TQFw9RRDYOlI4vw/TqBIqNoKn4rboeerm5UVeTBB77DDTdcjyh51GwP3YogKBLRZBhRkJBVjUqlRihkUq2UUVQN23Gp1euEIxGO7dsOPoRCEWpNh2ysnXJ5lELhFOVClfGJWVLpBILUYPFID4XiDG0xg8P79uD5HtFkklq1QSTSCs6TZIdwVCUdiWDpOuVCnljYQgrHQBJxg4CZhTna0yaO3UTwNR754U9pax/A9Wo8/ezjnHPuWehKnMDSCIVT+L5DvZrHsDwC3yMZS1G3a2Tb2+jo6CCV7kSWJC6//FI8EUKGQbWUx7BaOQSRWARJ0BCQEBCgWaR1S5TxRA01ME77+HxcJ8Cy0ihiQOC55BcWwPe44JzL+Pq/fpVlK5YgqCKpZJZCoYIoCliWit2s4NoiCA7ZbBLLihB4KgQymqbS3d2DrpvE4lEuvexiYkkN1/ORFRPPs9E1A001Wbp0GBGV2el5orEosixQb7jc8cEPs2LJEO0plUSqncd+8lP6h5fjIBDWLHxP4J57vsjCwhyZTJJ7vvhVzj97Ez969GHOOmcrQcPl7//uc2zesgXPdZGQicZa2RogUCq1nmm6rlKtFUhlojTqHvF4lKPHDhGLRTl18hSqFcHUDdKJKDNjo1iREK4toukiCws5nKZLOplmfHwcRZEpVko0nALDS5e0qosCkUBuQ1QSGIkhMkNb6F51CTJpRhbLxM0TBLmnqJbzPPCVr9HVMcyt774du9LAsCIML1/O8Mgg01OjnLlxA9GQwmBfD6+68HKWrl7D9364jSO7dtHeHuMdd32XvbsOgpLk0597kPPO3oLv5ti6fg0d3d382ae/yb6DFT5452c4c9PFjCxdzrJli/mnf/461YrN2976di6++Fymjz1DbmGS4WUrufDV1+ArLweuLfD6ytbF3+bj/HHw+pv9/hAM8vLtgoAgSn/UG/v7r/1d8PqbcMbf+FX/8AB/9K3/+Jz+B7y+fPiB+/E/Bix/90N7Jer8v+N9/b87XtJ9CwE+Mh3Zdn72459w9avfBVoE4dQzIEoYmT4cx0EUJURJJRpLkUqnyOfm6eropFZ3uOjSCzly/CQz0zNUCgtMj54kHA5Tb9iEwhajJ8dYt2YpnR1taJpBd2cvVjiCKAWnjytQreXRNev03yVAEETKlTKKqtBoNjFMC8e26evr5Ylf/oItm7eQzxXo7u5hdGyM5ctX4bgeiqwgKTqy1kpE1VSV/oFFJBIpFE1FVEUalVZq3eTkBDOzc9TrNWLJFD/9+RM0600E36GtPUt3dwcv7jvI0KJlxJIxDh48yJKly6iUK3R1DzAzO02xlGfdGWfiegEDA934vofnBixdvJKToydJp9NIYgvMtbyKAa7r4Qc+stwyuauKgiKL1GtFXLeBJOmIokCxXEBVTBACDF3GdmxESYGgFZCgmwYg4flNJKnVhaXrOqIo4bo2kii2wH8AqiS2pHX5ApqqUCzkcZo1QuEIuVwez/Go1xpkMm2Mjo5Sq9VYyM1SKddxXIdEIooq63hea+6e56HrKo7rIcvK6XAymcJCDvc0+yZIEqVSjcd+/DivveZqVFWhObWz1dkVW0okHiMQBARRRFd0vvqVr5DJxEll22jYDWRZRVFVEER+9vgvkSSIRk1EAQKvxWZYoSiu5+P5Hs8/u50sJwjCA8gSCI06rhlGkCXwYHZyBjNkceLESUZGRgiHWyzF1Ows+mk2ItvehiyLpNMpLCvE7MwcPT0dCAGoikYykaRZrxH4Aal0mlqjgRUOE3guXV3dOG6TwcFefM8lHA7jeR6GEaJWLlOv1fH9ACscolypkF+YIRIx8QOXXC5HOtWJ57YCFMIhC8MIMzo6QTqRwnVsdEPHcV36+gbo7uxg+fJhBFFgZnaGRDxJvV5trfAHLiDi+fD0tmdoy2bp7u1B0TTwAkxLZ3Jqgng8TjgSY2x8ioHeHnTTQJREFElm5cqliBKIioTTrNHf10utYTM/P8+ypUvQNI1UOsV3v/t9Np91Nu3tbYiCz7ant9HZ3vmSV/ZHjzwGvsDQ8CLCkTCO4yJJEhMTE2SzWR547HnGZwtsWtHLRRtXsnvnHvoGepBEmXK5jCAKSFKLwbYzCs2MgqIordC3wG/5ugURSWylmsqygps/Rf+qc3nj+/6W1117DZIkUq1VeO65XVxx6WV84hN3MTs/w1tuvZmNG9dTb1QJRyyajRKeDx3dAwiBS8hSuf6mN+EFPk8+8Qyrl68hbMice+5WPvrxj4IksGrtaj73d3fzhjdeiySJlMsNnt32LF19GQJf5RePP8GD33yACy++hEAWmZiaZGRkiE1nrefCCy7j0Uce4/3vex/v/cC7uOji17BQmMEIqTz99FNMz81wxvr1dPX2EIpGaHMnEEWJvNHLNx/6NslsF6Kks2zFajp7OgjHLAQBFuYX2L1zD5+8628YWDTIlVddwshID319HeiqQqPq8/Y3v5vVK1fRbFSQZZMbb7yZy6+8nM1bN7Jq9SIWcjNEozEkSWA2X6E9kyUWDpGbmcZt1CjmC5w8Nc0/3fNFrr/5ep7f9muOHD3C5NQUi0cWE41EOe+si+jv76O3b5BEqgfVsJldyPGmN9/GzW96C7Ls8OSvn6Et28XnPvc57vzYX/DQ/fdxznmbCIUySLLPZZddxKnRUVKpJH/27lu58KILUFUJ4/s/R54vIJ+/CVWVWcjNkcmmUDWZYqmGJEm4boNcboaQpZNIJalWykQsE1PV6e3vZ/HIEE3PQdZ0xsemME2Dz/7NFzh5YpTrb3wNpdwCiiITi2VYd+ZZhEIW4mm1y5lnbqRYqBIJR+jt66ReqxMKhTA1G8MUado1IokYhVyOum1jmFEEX6BUqKKIKre88d2cs3UDohxidmGU5auGKFdKRCISCBa+26C/r4dA9EllM/R0d5FOpQGRVDKDY3sMLurEbvqAjCrL2I0G+D7JeBxJEFjIFVFFlUa9ATK0d/Si6iayqiFrKpphomsaitKymvz08Z/xxhtey/Wvvx5ZEXFq01TKDoIokEzFae9oY8OmM7C9EpMTJ0kmwixbuohMOstrXnM5uqlgezblwiyLhocRZI252XEk0SYeiSMLMDF6iq72NqZnZimV57nu2us5evQEiWQEt+7yuc/8A5s3bsL3q8zNzaIaIXTTRAiaaGYERJlAkLDCEXwEkoluIpEMri8iSwrlYp3PfOZuLr30KhKJFKKk4PlNYnETx3FQZYvR6e2YRpRQOIPrq3jkEUUFWTQQJY/RsRPIooFuWLi+T1dPD81mg3g0gix5WIaOYCtocgQ/0DGsFN29wzh2gUVDyxEFDVkO0GSHekEhFJbQVIVdLzyPSpx4IkVbt4WsGBTzOVzHY2pyBlGUEaUoIT2EqbVqqfL5VmVZ4MmtACKpRsN2COka9VoVw4rwzK9f4NvfuY+Nm9YR+AF208MXmlTrFbLtGQxL56Y3vIWmW0RVPVy7yanxOdo6O/FdAafuoMoGj37/F6xYOYIZCjM5XeS2t36YN9z0JnL5PIYeoV4NKNcqCJKH45cQiaPpBrVqCcs0mJvJU8wVuO/f7+OKK1+L47RUXREjyt9+9gvcfvu7CEdkrFCEp7e9wLpVK1HEJkHgIoki559/Pv19gyQTaSpVl7Fju7ji1Rdw77/eT0d7N5de9mr2H3yRjs4+FD1MqThHNBJlfn6Bc87ZynXXX0Y4YjI9NYPr+CiKhOM0yGSyeJ5PNtuGqrbIGgEZ3YhSrec5dmSKQnGevv4+6pUapUKZtrYOFFPHDFnkcgUS2R4QFOanRlE8h3J+llgkjCDIyKKK0p4inb0ALTyCY4q0+1USEYGhxV08+tP/5N6//wQ3vuEm+hctYW56ivz0BOGoxvzYATKxCM+/8CLpNoPb/vxDLB5cSj4vM9mI0ZPuZv+BOY6cqoEXRzY88rbA0mVb6B5Zy8c+8jmiiTDxZDuP//RXhKNRtm49l18/sY0lS4eo1mZ4+IGvsHTNGbzj/R9CjaURpZcD1xboeDk++F3/awsv/CF28H+PCf1T4PWlff+L7b8rH37p/YM/3gv7Eqb6nfn+ATA/HfD0+9v/oK/nFcDry0A0/38Hr6eZ1/9q/CmA+v8GeP3tResDKqqgEVIsqvYMVTeHMbEfX5RwrQSKIuF6AZpqIUkq4LJz+wuMjo6z9YKLiCfjxFMp9u19kXqlyJLhASRJJZnKsmjxIMePHEdVPTKZLMeOn+TJJ58iVyzQ19dFpdJiShGbqLJFs9mS1QL4uGiahq6buI6P6zSo1ip0d3XjOh6NehPD1Bgfn2FsfJpoMoRlRrG9AEFSmJufIxIJMTU1jeO4mCETw1JJxhPs3r2LjvZOBgcXMT07Tratn8WL17AwP0uhMEW1WqNSLbFx0xYmp+ZRFJFMNkupWGL50hWcGBsnn1+gvT1Ntr1ljv/+wz9l0fAQs9PjGJpPZ08fpVIF3TBa5yS0+ihVVcEPXE4ThrScqx6i5NFoOphGBNtuohkKqtoCLJ7bbMm7kBBEqXWsIEAQZUTRo1KtYBot5rpSKeN5DRr1OpqqIQQSjmOzsJAjnoi1wGupcDrIQsaxbQoLC0TjKXRdx7IsUskkogTxWOr0vB0cJ0DT9NZlIwoUi0WssEmlUkXXDABUWeZnP/spA4N9CKKMLGuMLBpGUiRc16c5tQNZlkgObW5JvxSFg4cPEQtFySQSJJIWmmGgKCq+7zM7N4siKyweXEI8FsL3bFRFQRZlkFwkUcO2bQQRkpE0wexTCNEhfN9BdF1qXoAWirDtyW0ooky2o51kMsH4+EQrTU5VEWWZRCqBrCq4noft1JBVmUajSSyRxKmVsQwTz28tqqiSiB/41BsNBKnFBDcaDURBpFiYxXNrmEYYP/CYmZ2jUCihiDKlYomx8XE6u7qp1GokIkmOHj2OqpqYRph9Lx7nJz95lLXrVmA3PRTZJN2W4slf/ZqOtizjk+N0dXfTrDeIRkPUakVESURXdRRZwfc8qpUivtOkVrdRZJXZmTkGBgc4NTaGaZpIQKNZx7ZtrHCII0dOsGjRML7TaFVU6AYnT5zADxropobrubhNm9zCPLF4gkg4DEGA7wE4hKwUhh5ienoUQQwY6Oun3qhjGCYLuTwLc3NcdvmVqJoOItSqVWRZpq2tDVEUefDx5xmbKXDWyj42r+ino70L9fRCjaooyLLUCgTz/Ze8LoIgEHgeou/SaNSRVQ1REHGcVt9oML0TY+nVbL38RmLxApy34wAAIABJREFUMM4v7mD8ya+z9rUfAddh48b1vOa1V1Ks5JFlmXw+R61WRRI9otE4DScgZOoU8rNgiGhKnCVDy/iLO97LimVLWL9+PYsWD9P0Wknfl1x4MQ27jKpqiBgUcjP0DnWgqVGee2onr3r1RYRiURqOTe9gD+Vqib+/+2+46MLLOHnyJNdedzWRmMbsTIm+gU4E0SeWiNM/NIBumSiGhhv4eMefQ5ZlJvwsq1auQdZ0zt36KhYPLyXAQRB9TNNClgT6ewcZ7F/MWedsIhY32L37WSIRg/mZAjdc/1bCoTj33/8Nhkd6+NCHPsU1193A5vM2EkkauM0mzZpJKr6Iyy97DXd98uNEwxF+/MPvU5ibYfHgAPWqxOq1q7jqmsvRzTDDAz20d7TT1z9IKBxGVRVee9nFdPdniaVbjOzMwiGi4S5WrzmPeCrEiWP7AInOjj5uvfXt1BsVrrv2StqyPYBO080Rj0UJhyMUi0Xa2uNMzZxCEHxie06wsJAjfPmrcNw6mUwKz3dRFAnDiOL7LrZdZ3Z2EhEBK2Jh6QZ7d+8jEo4yOT+DHtZRDQtEk6999SusWrWMG65/M4lEhrb2OB//6Ec595zLcH2Jul3jFz97ikwmzalTJ+jt6yST7OfTn/40W85eTzgcIh6L09s2SCSaxLKSNB0VWWpiWlE8T0HwZAJXxpBUQlY7t73nHVzy6tcztGgZsurSqNVJRVLUHAFJ8Aj8Jh4Og4sH8RwBUZQ5dPAwmUw7AhquX8VzRECkVsohBD6aIuE0G3hOEyucYu/uvdz1ib/m6mtfgyQaiKLE+Pg4sizh+0Gr21GSaTabJBJJMolWWIskiRTnT5HtHkaURSZnJpjPzyMpEjErTTrVjiyYHD50nEa9RjQWIl9aIBSLYGkyCBKBoOLYFdqyUWqFGhKgiCJT4+O0d/cSixtEIslWdZ7X4NY3vZPrrrmRgb4eyqVZ4ok4oqwjSBKFuSkESX3pn0lVVQHwpIBas4KqeJRL0zQdlV//ajfnv+oyfNFBEgUMU+XkqeN0tPciiSaqOcSPv7+NH/7gxyxZ2o8nFIjHUxDoOE6LhVbUMLppsn3nbtq7OsCxkUSfE8eOYJkqTqOKKAX4uPT0tTNfmKReqbLzhWP09AwgKjUa+Wk+/fF7OGPjcjTdRJd0ynmBaCLKqakXSaW7CZkKx4+fYmpyFs8ViWfDVMtzlIoTSKrHxNQJUrFufFfA8+rkC+PooTTVUhFDkfA8n872PlavGWF2fvy0zUpHMkTqzQZTM9PkiwUUK4wo2VSKMxTn5+kZGsE0wux4YRezUzlSsXYEX6etK0mt3qRYcvnkXR/j5jddx4v7nmF48QCeb4NoIKsiueIEltGHLIuELI1qtcySkRXc9bGPceWVV5POZLnrrrvYuGk9Y0dH2XruJXzk43/Nm956I4cOHWbN8rVYisiLO58knk6d9mnPs3PHXnQtzFf/9Rv8+ucPs3TpMOs3v4rOrj4cv0nPQC+SYrD3wCEyyTC6plMslrjxxptIpzqwGwLFvM/0ZI1kWqfRbGBZFrputNKyS3OIkoKLjKyFiYQlJCFMIhHGcZtErRCnRseJJ5JU63UUTSKb6aPpguvYNEoLxLLtIEtoRhhfkFrhWr5JINSJprJ09K9HTC+lElSIRx3K0zOEdZmZhQK79hwkm0zQ19aG1tlHWzbFXL5C98gGJg9P0zM8wrFD2/nivV/h1vfezqrhLkzDwlOifPITd6FrGZZtvoqF6YDLL34N+A3KlWkcByLRNpKZDMePHWHzWVt405tvYPmKPvZuf4FLrrqaRas3IOg6QtCqonkZi3kaDvx+avBv0nxbLRkvT/YNfo+N/Q14faUO2N/u88q//32w+TLvq+e/bC6vtN9v5v9Kaca/Cz5ftv//gNeXjz8FXv9gteO3W3hFWv4VXvPbn//qmH96vPTh+iKi10pvq9k2jVKFY8cn6JDLSMkBRL3FlqiKiO9UmJk8jqpKp0GRgCIEmKZJ4HrYTZtFw0uZmFpg9bqVROJRWj4SD9WIMD4+Rr1SZN261fT39lCvNBAFgSBwEALYtWs3bW1dLZmg6OMHIqKoQgCy5GMYOqqmY4YiqJpCpVTgxRf3UiyVcJ0mR48eY3Cwn/z8DLoiYdcdAk8hmUoj4ZGfn2F2Zo59+w8yNNhDbn6Gnr5+xkcnOHniKKYhUy4XGZuYRdV0Mtkohw+OMzszSSiqYTeV1kNZ8glch1QiQ6FYIhI1OXTgICtXLmHfvkMsW74aWVVRJRsrZOEjIkrgNKpIsnb6vGQCwUeUAnbv2EdHRx+BKGDqBoIkY/ugKiECz0eSxNOyRwFRCPC8Rusm4/vYto0iSWin2VsfCUHSMTXzdIJxK425Uq7S1pZFEEVs2+dr//oAi4eHiIRNavUaqUyGaCJO3S6gygZB4GPqKoHgthKJzQiirCIJUK1VaTYbhCMhEFQEPGTRRwgEHE9CFGUSySR2s0Hge2i6hksTRVbJj7+IGU7Q0NpOy9Ch2XAJhTTimTiKEaFac/nKl+5h1YrVTE1MkYzHkMSAcq2ErCnIksLEqXEMI0KAg6K2fL+1WhGlsAsl1I4oaYiOgxKN4Uoy4XCIgYF+fEQEUWB8/CRxy8DxPFKpNHPTc8higN2o8o2vfpPcfAtIhCIxBAEk2cB1PH72s8cZXNSSvE9OTNDd2UngOMzMTFAs5FEVA1HUmJ2dRVJUMtl2Dh84hG7q+AScsXYtxVKRUCRCpTBHZ2cHoihRq9eRJJFavUomlcYwVQ4f3k/ItOgd6EM1TaKJBKVCiWajSKVcI5HKUquWkSWRZ595miOHj7BocDELhQKpVAbEgEQqSqNRJ5PsRBZ0vnjvPazfuIVSuUo0EqOQmyeZiAABumng+z6haATPcZkcnyabaufgi/tx6g2SbVlkRaTWqBFLJCgUCyRSIQLBIZNtRxBcfASscAw38AhFLEZGliEpoOkyrmujqhq23USWWys3N128jg++4QLOXjWM68LE5CSCKKAbGmNjo4RDMfAcNBncmSKiI1FXJALfRZQ15NOp2iAgSyJC4OPNHUBdeiVmpotAlnEOPUosGkFZcgmSIZPqyCLrGkgBshIiFs9iWiEkKYyPQC43jWVZGFYKXTUwDA9ZdTlz42baetvp6u+hVCmhaS1Z6Pann+VTH/9HnKZPNmsyvGwNgiDTtKssXbEc359H9ExGT5yiszOC4KsMDPQgARFLYnbmKN/55sNcePn5eKJHrVhGUysU83kSkRS4VfAXkCYP06jXcdLDROMK3/jaNzlyeB/LVixiz549JOJpwuEYrutTqVdo60ohSR6yZPHFe/6dCy66mImjRZ7ato37H7yPK665iqWr1nLt66/ijJWdSIicc/Y1nLV1C32DvXhCnXfcfiuqP83zz2zj4IFxrrr2epr4RLMJvMBHUzQ+f/fdOE6VwYFeXtxxkkP799HWrvDsjv2EIgnKpTqfuOsTXH3dLciqSFsmhOA0iUW72bFjB719bRiGgetAtdHEdhzmFsZJxJN4qNTrVSqleXAdZLmNQ4dO0H18EtM0KK3tQxMV6q6LrFrUS00qpRK1ShURgUQiSXtHN7l8EUlWCUUj5Epl3n/Hx7j2tdejoiKpAhvWb0ZWZCZnDpPKWjTtJl/78jf5yEc/zB0f+nOQHGYnq3z9a9+gVmuyaeNZNL0KW7ZsaPnH8FsVOqaAKBv86ldP093dhitL5GYnmBs/QjRm4ok+i5eu5t6vfo63ve0tgENYD5FI9XLy6HEkuU6p5LJi2RJuuOl60m3tHB8dxzJjXHTeBdz54TuoOXkkv4LjLRD4EqaZRGscIV/10awsTmUGOaQwNTNGpq2Da657PXv27KK3u4d6vco/feELrD9zA7t37UbEQLdgZnaKUCRDKNwOkoPt1ohEBzh5bIJMNorg1vnC3f/Mdde8hZpdoGJXKJVL5KaKGFqY6dk8Q0PLQVaozS0gyyoHDh2if9EgQSAiiQKSpjI5N0/f8GKCep5apUmj2uSyK67guutuYsumsxHVCj39aU6enCCZzSIJCna9JVUXAhEBaDYaWKbJ1OQUYdMESUKUDQwximR6XHLpVmyngmu7nDx2gnJZZXDxECeO7SSo6vzl+27njW+4mte87nJSqTRWKIaAhuM0KRTnqNXLhIQ644e3M7JmA0Fg8Jabb2bTxvU0Gw10JUquXibT3oumWczPThEyRNKpNlRVJBTRcT2HqbETXPP6qzHMNNWmR8SIUJd8Rsf3MdSzjKbcjugXURSLZKqDTLYH35khk8oyMVPGF3QWDbc86ZrZkrC2d/aCD4rWeh6WclVmcqP09nXyL1/8NoloGCs2Sc0JETJCmGKSro4Q9XIV3/ZIxDNMzSzw9JNPs2hgBEXSyWTT+EKTaLtFEJg4dpkvfeHL/B93fwXTEggwSGX6QQp4x1veydkbVtGe7mbbM0+TymbAD6GpPnt27ebsc67gyaefZMOmdZyxbiMfuuNjPPfCTh750aPcePMNdPT2IeGjaQbPPb+DtvZu5mZKTE9O8y9fuZdLL74Qu1nlvge/zfcevp/2zi7u+dI3aO/U6evp4+jhYyzMTTDQl+b4/hMEok3Y7KfOCQLb5PCRfXR2penozOA4IqLg4bglTh47iKZIyKE4qmZSr1eRFY9GYx4rHscLNOKxGM3GPE3bpV53McOtdohibh5dtyjkChw5cIhyTaG7u5udu7fR3pElCFwCycMTJXxBQAxE1LDF0MAGyguAXyQWChjoTvOjH/4Hf/+P/8BbbrudoF7HsuIcPHCCjkycUDzF3OwMI6s2cfUb3kZfZwfhWJY16zexculi6k2Hiq3Tlu7im9/9Hk3Xo3/5YnbtOU4y3sEPvvsQO194BrsJn//Hv2H10i4sL8/u3UcxUz2s3XweMo0W+fEHQwSE03hOQBQk/k/23jtKkruw9/1Ujp3D5NkJuzPa2agNyhLKQglFQEIRAcYYG4wxtjH4gsO7vg/7Xpvgy+EZgy0bsAkCK6EIAmUJ7WpXm8PsTs4907krvz9qJISC/e5L553rV+f0Od3TFedUV9X3901RCOWVCpqqvyXOEAUhznlaVUDFwSKsViqupikKEqx6at8IdiEmb1bRz2o7xqp3NgJREF9Du68PinordjWeX0AUhHhdwpuBZ6w9/CWCigQhZmxfe/3yy3j/V+H46ncREbIk/8cEr28//Z9nWv+vsrQRq2boMDayOysr1GvL5N1pmigohgFRSLNRpdlqkEoliVCw7ARDw4McPX4QU09y+OhxNm/bQa6tjd61Azz26ONs2LQF1VB58RfPY5s2TqtJsT3PyfFRlldKIAr8YtduNm7ajiSZTJ4cp6+/SK22jCJpSFIsR439bAKLc+Nk0kk8N2Lf3gMMrRuhUMhiGxbNRgOJEF2NUFWZkIh8MUsgBEyOH6HlNDh0+Bjz82UMI8HiwhK6YTIxNc15557P8eOjVGtVenu7yBeznLb9DI4cOoSmq/Su6UIzTRTZZPT4QZq1FXLFLIMDg8wtzDM0PMxTTz6PKEkIUcjIhmFEWUCUNR57/Am6e3sRRAFRkalVl4EQBAFRlBAijWIxRRi6gEwUOiAIyKoKxOC22awjyxKCEBeQS1J8YRFFGUmUCcUmIhJHDo5hmAaaDr7roukazaYTX4BMC9f3adSbLJdK7NixDVGRYjDRcnAaTXQjRRC4hEGIIAY4rkelWsUwTIgEjFXWtV6vk0ylWFpcwtRN5ubmcF0fRVXQTRk7oaGoEpIsIQgSYSgiSgKuE/DSoQVOOe0q9u7dS2dXO0EUYNsmvtOCKGB2epp0KsEZO8/hySefJplMkM6kGD1xhGbTI5suEkUhhiUhihrNVh3f9zF0A13X8EtHQbKQtQQEPpIk40kyhmHi+yHNZgNVVcjlCoyNjdHWUUQESkuLGIbNseMn6Ojs4vTTT+PEiSP84oXdrB85hanJSURRZMOGDXzvu/+KZadIJtOEUcShQ4fIZdJ0d3UzMzdHLp8nwiOXz7NSWqarsxcjaZFMJXGdFoHXRJZCkOKuVtPUadYqLNeqnHPuWeiahtNsYRs2kqKRsC08v4XvtTBME0UW2L/vGEePHmf9+g1IkkI+n0dWRTo620gkMvgBvLxrN7quk8+10XKrnBw7yvbtOyFo0VbIMTp6nL7BQSJBQJE1ZqZnabZaeK6H33LoXdNPIEqkclnauruoV1bQNYXQ92k1WqQzSUQhQtdUojAiQkSSFcIwRJFlmq0WmioSBCF79+zHtpK4bgvbtldvLK8OognU6nU0XSeXz2GaFpIoUsjnURSJUJQQJBnjgQWMcZf//tPvcuqppyJJwmvJxAgC83Oz6JoGy0dppUdwRB3dsvCPP0ZIhDR4KfV67PNSVYWg0cBUTWYnZ6hXyliJ2JvsuC00VYNIIohq1OplWk6LVCpJEP5SgqSqKp7nkbbznHfeRZz3jncgSRKaFeH7Hvff9zCnDG/i7ru/zpZNZ/OVr/x3fv7kT7jumpsoL03jOC3u/s53uen2D8SyzPYOAj/A0A1UySYKDb73vfsYGBgmDGXmHAul41SMZBuu5/GO885EN1V27d7NWWefRrEtQ7NZxXNDPv6xT3L5O69BlkQOHTrMlVdeQSqZplSe4JLLLuDlPS+QSpmslOb53Of/lLu/cS9XX3MtH/j1G+korGVhYZa29gyOu8iKYzCy9Qxuf/8H+chHPohhyYShzMkToxD5nH3WafT0DPLMs8+y75XjLJVKbNw0Qv/AEJZlYZom73rXuwiCRvyAQsTJsXG+/e1/4vIrLkKUAgxDo1xe4amfv8jQ8AAPPXQfhw6/Qm9XH3NzM3R1d2JZFpJs4HkOxUNjCALUd67nxOg4HT0dBEEDiSZHj0yTTCXi8DdDxPUaiJJKpVxB0zSSyRTvvPwqNEXhD37v9zh1505SSRtdl0kmE4iiTDKR49Zbbua2225hZmaGQrbIxo1r2bZtM93dXei6ztLCIvVag2wuSxCGND2HWq2Epuqs6evFDxyqlRq2mUDTDERBYXJ8gs989jPohoxhaLRaHuedcxHPPfM0H/jg7TRaFQQS/PHn/xPTM1MkUxkWllcghI0bRrAsjUIxg+f41OolMpl2fF8gaE5yYmaBXLEXQ1FoeRKJZBrLtCmVlunrG2R6epy/+Isv8NnPfoYoCunp6Sabs5ibn6WzYw3veMc7ufnm6xBFkCUZSVIoLzcZPXGMwYFeLrv0Yh55+AE6e3qQFY1Wo4XfavLI449z43tvBDFEFCJK5SO4oUP/uiGEUAQ/QhIUWo7P4SOjtLd3MzU5TtP1iSL4wIfuQpYFqvU5dp62naPHRunrH2R+YZ5EIh0zRELInr0v0dPbycLiLKoqEYQuglyHQMV3m/jhDHJkIAgSlXKVVDpNd8LEVEUUTSWVKuA4MLJpmHXD63EdL+7XFlsIAjiug2nqmJaB7zqomoFqdzBxfIrzLtgBQkRndwearpHMZJifWYgTSyMPz6sh6wLJVAK31aC0tIAUxMn8TaeK59bAaKEYSTrSvTSXZ0lkFarzy6SzmTiB3FRo1VbYvWsvp4xsIplKUa1UkESNgweOMTy8mf/8Z3/FyMY1hK7FDdfezi23Xk++mGVleYnHH32WTSPbyWYzGFaKyckJHn/0SQ4e2UcuU8S2UsiSRjZTRFI8SqUl6o0KqiYiyQFWIoPT8nDdKoqsUK1PMTiUJ5nOEAQyYeTyL997kDvvvJ1Ko06xtwuvUcbSbMLQ4Ut//TXOOedi7vrAXXzwg3fSaJa56X3Xc965F3DOuefQ29MNxLV+//rDB/ibL38VSRK45NLrWSrVuOaaG0lmEhTbM7gOrN8wyKGjB7jo4vMxTR0Bic7OLpKpRJyNIavkim1Iqo1tpwj8iIHBPhAgCCESRVzHQ1UMkskMs9NzpHNF5hdmyeWzhAEcObKHdDYO7VuYmyOTzdN0fLL5PJadQBJFVpZXkDWVdCpJ6Dqs37IV13OwLZPaygq6IiOLiRgMASIRnu+gKDqpQpG1m7eT6+nl0IkxRtZ3cd0Vp1GeeZl7v/t9Hrz3+wysO4VSLSSfthkbH+WLX/pLunrydHZ24nkOiiIhiXB89Cg9a4f46Md/kz/6/H8iW8jhN+scOXgUx/EIBLj8qiv5+c93YypNgvoUcrDE5e/9MNffdBuyofGqu/XNhNebcYQoiui6/lo36r9Lkr2O9Xz1Jb4xkfiNzOmrOOTVQCdRfDPAfYMH9u324bVE47gD582794ZjfDsJ86v399ez0K9uU/6Pyry+/fT2J8QvKfj/+6XEURTFdROrEgJD1/G9CE32EWf3YWUKeIGK70fIsorrhFhW7DV5NTUsmbJ56KFHmJtfYMvW7ciqTKNZ48TxUYZOWU8YBTTqNY4f2U97ezcHDoyxUvIYOWUDhUKR9euHEaWQam2JdWuH8fwWx4+P0tW1hlJpmWPHjtDR2RFXwgQqM9NLSJpCZ1cehBau45NKpZidnuHss8/gxPGjIIjk80X80McwdTLpZNwdmsoxNTnLxZddiq5pJFNp7GSaKAoYGBxg/ch6dENFVhSmpmZwHR87aZBMZcgViyTsNKap0Ww2mJ2fob9/kHyhiKprrFs3QiqdYqCvA91Qcby4ZF1AIJ2Jg3LikZvVUWgplv8GfhT7zhQRQZQRiPCDiBCQJBHPbQEx0CUSV3+UcS+sJMmro0IyQSBxz/cf4MwzzkKSJFynsXrx0TANE99vYpkGsizHJfWRTzZX4OTJMRKJJJ7rYFlJZDnCczxEMUKSNTRNpVFv0Gq28FwfP/BJ2AkkUeapJ59mzZoeEokE6XQ2Hp0KZdTVvl7fF9j10h7yhRyyIkEk4LstcvkCXT2diJJAEAaIoogsidSqDdrainhuk0bDYe3ataTTKRAisrnYO9xsNlEUAUWTkCQd13WwLCse+JMk3JldyEYWJAMCH6KIOgLllSp2Is3UxDh2Mk5lXFxYotBWYHpqkmwqQ7lSpn9gLW3Fdubm5mhvz9NWbCeZTDI/P49lmbRaDoIY1w+0d3QwMT5BX38/zz71cwptRQqFItVqFTthcfDAQdrb2pBkGVWRiMKQZsthaWkeSYyQFBtFUWi1GhiGRqGtgNNq4XsetVqdzGpicUSI5zooqkyt1sQ0dBJWhmbLYXZ2Ht/3SWfSqKqMrEj4kUiz3kQUBCzDAEHAMFQM08S2YsDpOA6qrqNoKrph4LZcTMvkyJFD5PM5FEFkanqaRDqNrMoEgY+uqiwuLpDL5hAEkccefYz+vj5EUaLZaNHygtj7rKmxHFEUEeUIzwtZXCrR09ONpsVVRUtLSyhK/B5A0zVaTgtVlQmCgCiKqFarqKpKGMaXP+toC9d1eXLpANt27EAQAogEWs04advQNSRRJFw6jDl8MaLdhpXK4Bz6cTwy3HcxmrZaB+T7qJKI70f85Cc/pbOrHd20MEyNIPBQFRVJVNE1m9DXMY0cUSiB+MsbpKqqSJKEbkTYKY2AOqWVWQxTRVUNensGOXbsCKedthWnKdLT081N77ue0JeZmRmjt6+PM84+hzCSSGdTuE0HgmhVtmnw5FPPsm54mPaOTkwrwb7D4+zeP8rySpmRjeuJQodqtcnIhi3YCZOVlQVUVWN+bonrrr2RAweO0NPdxZNP/pxNmzZBJJFJ58nnO/nOd37IF/78r9m/9zhnnXMmd971USQtQlFcJKmOqohMjs2QMNtB0YkQ+NCv3YUoRSBGRFGI77bo6elClRUiNDq7i7RaARdedAmKJnD6aWfy0Y9+lMnJST75yU9y+RUXoCoygiiTy+VJJhO0teeRJIGZ2VksK8HAuiyCIDE7XcFraaRTKmsHB2m5LnYiQRiFFIt5hCd/QUREeM42MvkiEQFRFPDKL17k1O1nMjZ2nM6udpZKi5TLK4ShQDaTXZWfK/hBhKnp3H7rbbzzyivRNRVJhiAMyeXaaNY9NF2i5bjcedv72TiyCV1TsE2bu//+bpZLJa656hpmZ+a46JJL8CIPVdNp1CoxuzUzh++5GKqGrOhceMFl/PqHPsx9P/oRQ+tHqFRWuPmmW7jpvbexbdsORseOce65ZyLLOo8//hSiENG7pgdZUbn3/h9zztnn0DfYRz6fZGV5gUKunUZrhVSqgCAqLEwepqNvBFE18VsNUrl2avUKqqZgGjogYpkaPT3dFAoFHn30Edra2pCViEQyA5HEnXd+AMOQECUJSYoHoSRRobOzjcB3WFycxU4YpDIFytU6hqaRsnS2bN/Gvn17kRQByzKw1A5Mu0gkgOcvcPjgM6SSXa/lF2RzeQzbRjctEkkLEZ9GvUJHdzthKGFaNo7rxgMQska5XKbRrDEw0E+1WiWZTKJpGgC2nsHWi4iRTL3lcGjvAfK5PHMLiwiCiBJVODGxj2Q+ieeGNJ05evqH2P3Sfj784d/gjtvex9TcCSrlOpaZRlU0ZFlC1y2aLQ/NznPi8AGyxSSqqpPJ5FlYXMB1AxrVOp7TQFUFNAVEpQ0h1Il8iYRhU1qp0t3Xi+u24uNJGoSCQb1UZuLEPvS0TSado95sYNk6E+Oj+C2Xnp41RMi0HIdms06l3KBvzQC+H7Jz52lIio+ppunr7WdwsJs9u+Y4ZXg9Z511On5Qoto8Si7XT6NeYdOW0xjZMIIqi9gJG1GQqdebjJ48wOZNW8nlcti2iWWbzC0u8/hjT3DqthHWn7KeyVF49pnnOXX7NurNZXTT5+qrbkYSQiRFBFkia5jce+9DdHbmeeJnT3POOedy0UUX0NPbTTaXZqW8gCRrTIxN8Pxzz5M0TTo7u9i8aRtrB9bS39eHbAZUqss8/pNH+PEj3+eSd55FZUnjq1/9O66+6j188hO/z823XIcsxZ3DqqZQb1RpeSKJhMniwhyRF3LwyGFM20BSYl9ttbGCbphYZgJ8nTjRAAAgAElEQVRBEGP5sGURhi6+76OpNm3FHI4XYugJKstVJN1gpVIhlU7iOi7lUoXbbr2NOz9wO57XwpB1FMPE93zECITAZ2ryJG2FTvxVUiJ6lTUUAEWnFYbIWjtD67bQqNaprlTJ2Em27OhnaW6er//tD0hmh/jW3X/Prpf2cvvtH6Crox/LNigW23jsscc5tP8g69YOoZoWN954I6+8spcvfemLLM9XOXXTDv7ua19HVwTuv+cH/P6nb+eBH36XTKodWe3kg5/8FIppEAmrwYarAPD1tZuCKP2KP/T1XaqvyovfkvF8PZ7gV6s84+V+WXnzlqDz3wCkbwx2ej37+vp53lIS/O+A1/iY33w8r9/GG8GyIAhI4v8PXt8w/R8Bpv/P+GCDVbY8Iq62KDc13Ooc2dIr+I0KVtsaBCEiCDwSqQRhFOF4HoqiIwgypmkxsHYN6XSOVqOFbRh4rSpLi3MMDPQjCAKTJ8fJJZOMTc6wpn+AanWF7o4Uc7PjRPhMT81x9NAJOnsLKGqK++9/lK3btrFn9y5GNpyCIAqEkYihi9RaNZLZLPoqK6WZBo7nMtDfR7m8zNjkNMvLNY4eHmVmcgZdUUmn25BW606GhtahGCIJ28YwEqQzOV7e/RzrhtZRr9eYnJymXK6Qby+SyXTQ1duBkcgRhh7jE9OkcxnWnbKRDSPD1GpOHLWuywiIZLIpnGYZWZI5fHyaZr3K2oF+hNADQiIxQohitib27wmIYogQSTTqDmEUoCkaS8tldNOGKEKRZURJfe3HBgFB4K4uHyIIEEYyohixdcsQihL3rbZaLarVCpqm0GhWsSSX2alJMul8zEKpMmIosrJcQdFV2rvaCTwHWQGn6RF4AZJqxInQhoEQgSRKKKtgYn5+iUw6i66JgMQP7vkRGzeNgCASRQF+6KDIoGgiqVSKIHJRFY1sJoGiirh+C0kWkUQVUZARFQVJ0RgbGyOXTWMYMmEYYJomsiQxO1vn5IkjdHdlMEwLQbQRiFA0GceNgyFk2SBcfBlBTSKpBoIgInguWAmOHD3O+MQs01PjNJpN8oUCiUQSVdF45smnUCRYv2kDTuDy4wcfYmhoHaoiYGgW9UYTTVeo16vs2rWb8y88n0TCQjd0crkiu3fvobuzSCqZQlZVNNOgWmvQUSyiKgqNVpVGucKLz7/I+o2nkssXWFkpk7AsypUyiWQSZJnpE6O0Wk3yhSLICvOlEnZCZ9eulwjckJSdRtVsXtn7MsND69ENnf6BPg4cOkBHZweabiDJCpEgsGfPy4ysH2Z6chxJEYhCnW9+49vs2H4qqplAlJXYT66qlJdLRJKAqogUiznSSYvQ98jmsqiqilOvMTs9iWGnsJMx+6gbNoVcG3v37EHXYslnud5AUWQMPQavqqzTdBuoskmxWESUI5xWC1lWsO0kghBXYHX1dCMIArIiE0Yhnteg0XB44IEfs3nzViRCfD9AP9zA933yF6zjoYcfZuvWzZwYHeelF/exbrgfWYrl49HSEaqFczEKgwSRjH/kQUQEwr7zY50SUVxYrqsIssbQyHrMpIUsylSqKyQS1upvU2GxNIVh2EQE+GEdQZReq+lwXRdp9UE/CAOaLY9Mpg1FlWjUXRJ2grmFMTo6chTynXR1tdNoLfHpT3+Wq264CdWQiHwPt97EF+Dh+x5EFiS6envx/BZdPW1IakgqbdNsNejp6UOUJDK5FJlcgn/4u2+Qz3Xzve/dz6nbNyNKsLiwwiMPP8bWrVswDJV9ew+wZesmZFmkXnOZmD1Be0cbp+88g9O2n8nLL+1mbn6B93/kNgJ8slYBITT59O9/juuvuwFZFgmdBscOvUI2n0BQBCJBwvNLcY+0E/LkEy/Q2dOBqDj09fdhWhaNVoXf/vjvoCgKkiRx0UUXkU6prJRXiCKBSFTIpfPUalUWlxaxrTS7d+3jrjs/xu23306xLcWWU9dSmluI7Q6SjBdF6JpCRIj89J7Y53zWFkRFJ4wgcn1a5SaFrhTpTMx2WlYS28ywvFJCVTUajQaZTJZmqxmfKwFc+a5rME0FUQTXcbnx+pu48Yb30fBLiJFIb1cfn/it38XQc9xx+/v5+298kw0j67ntltu57777uebaaxFViYbrkk1m2b/vGJlUgTvueD933HozCBqXXfEuvv7Vr7Lrhed51/U30Ww63Hj9Ldx4/a189LfvZHj9IF3tPezbO863v/Nt3vvuG7n77m+yecupbNi8FVNXafktTFNheuIEmXQH5eoshpGgVmsycewEnQMjiKrCL55/klS+DcMAUXKRZWLVSaNGW1sRWZZwXWe1JkpndHSctrY2Atz4PhVCEIQEoY9hRqiqhCzILJfKmIaFncwgqyaqLOA2VkgVivSs6aZaLZO0DepOC0EUESWZ0YNH6esewEpYeL4LQoSmq6hGCkSJVqtGs1FGVUVcT0FVk8iKgqj4aKpGpRJnYsiygOtEaKqJouiAhKLoqIpCvTxGELooWgcmHpZpk8sX0AwDPzRQ0gaGXcStyjRr00SaSXt7H1ddfhWptIZqqCQTeR584CdccMGlfPxjv8tTT79Evq2ApGms68rgINLe3o/rRiRSNrZhkk1nSSUtVCVC0UIavsmnfveTXHLxmYhCFaPQB1KEaliEgUpzrk4ykcJ1J0hnDOy2AXxCoijEtnQmjh5kaHiE+bkS6Uwex3VJpZJMTc1SrZbJ5ZIsl+ewzTSl5THyBQMCnc7ePJXaFK7jokgKjWaFRjMgk0shKSkajsv87BGKxTzNZpMwCOnvX0PgC2iqydzcPIosk8zkGVo7hGlC4Pv09XXRN5hC0RQUVadaq6AIIYtTM/z1f/trTtt5Gnuf30N3Zz97D7zIdddfQyars7CwQC5b5LOf/QxXXHE5iiZz74/u57yzzuF7//Iddu3Zy9DaDThNl/m5eRJ5lWy2nR3bz6XY1kG5UuG0bZvRk1kmp+a5/4ff58abrsY0bFoth/mFOUQJRo9MkUlpZJMhqiBjZwqkM0kajUbci25HaJrB6IkxMpkUtfoKzZZHIqUR+CEJq0Cj2kJSDMJQ4q7bP8wFl11Osb0IeEiRSBiI3HLrLciaQGlpCVM2ccSAk6NjzE3NsqargEyIIPuolh5bwgQVQYqfqaMovkdomoqqKxQ7ewjVBN1Dp9I/dCbLc7PILJNOe7z7pnczeuIwZ55xFo8+9hN2v7yPTCrPxPgM3/vnH+A4Aemkzf69e7F0neG1a7ntjmv5tbvew83XnYPmncRgin/46tfo6OjgHe+8mps/9oeEqgiSgBQbz4jeIKkVV5WNYRi+ifF8dfoVoPs2zKcoiW8Cfr9UV731suLrEovftL5VwPvG5d7K9/qm6VUW/PVM7irufc1T+zbdtv/Wuv8nB6/+518vnn69gfiX/4i396/+vzX9ig781X0EvKZIVmsijL2IKAjUrS4UWUWTBALfYXl5ATEKkRQPz28gYWLIIalUEtXQaToN5mbmMHQTr17Fj2SiwKe0XKKruw3L1Ghva+fk8UmWSnMMDQ2jagmyxSyVZQ/DVNi+YwvLy4sEvo9paIgCuE0XTZNXA18kFE0liEJeeuElhoc2Ua010AyRI8dOsnnLFto7CiyVFtA0jQMHDqOKBlHkEIURTz/9Et09Hbheg9LiMnPzZabGx7FtDUNTaTkeYhDitlosLc1Sr1RwGw0mp8ZZO3AK4ycOI8oigqThRQKyCHg+siaQSBZYLNXobM9TbC/wwIMPMnTKekBAEiAIYpYJQjzPjc8AUeXQoWP0dPciivHIlxDFATURIlEIiiIDwepAwi9HzQQBBDdCEiGSo7gvVlAJRIUIMC0Tz3NwPCi0d3Hw0GGy2Tye43P3t75FPttGR3snQhRQqy0jCirVWh3TtmjUFtBki8nxCVLpJN/8xrdxWk16B7tRNYGEpaEYSVpOk2wmgSqCIhsIxDJcTdWxzRQhHhI6e17eS6b8BO78HrTsdqorswi0kGWLkIh6tU42laJSKWHZSURR5atf+zp2MkkmV+DRhx9mx/YdVOs1nMCNzw/dJgxEBGQkJcCf20OzFRIIJr7jI+GxQkT/wBDpjMzIxg2k01lkSSLEZWlpnp07dxAJEuVaPa5icH06O9oJvIBGrYIoCOiqBmHIxpGNrJTLqKqM49QRBDh5cpT+/n4iv8zs5DSeI2OlMkhRncW5eTL5zlgBkMtg6DKIEX4QxP5Y2YvrciKBZDoHkcDc7DT5tix+5BI6DXrWDCAqCvPzCxiJHIapU6uVyCRTlCtVKtUy7Z1FQt/n3h/8iLZ8muHhIZaXV1iYW6Cjqx1Rgu07TiWIBMSowcTYGC//Yg+1RpO2zg40UaXZcnjiiZ8x2D+AIKm4SLyy60UK2TzTsysUOzohivA9n+mJaQqdHWRzWURRQNc1Go5HPmchRA5RCD/72bN0dXch4PPg/fcxuHYYWbSQFZ/FhUl0xeD4sXHWDQ4RBD6EYaxMkEQkJE7ddiqBEK6mdPuYRxrIsoR2ZiebN23l0R8/iqEbnHX+2fiuF/uGZQWWDmNvvhb0NNXyMurM0yAIKGuvoV5dRpUiIq+JqqQQRZdKZQFdTdBsLUAEQqQjCgLLyzOAzEMP/5jBgXUEvkDQLJFLZWk2XWRDoFydJ3Q9EnY6ZpqlgCgSkeW4uqKt2I4kFxHkCFkOcFou1eUKO3eeThQGWAkD1RDYu3sPv/HRTzG7sML1N1xO020iiDLZVDuHDuwnndTwDj9KjxmQWbOBMHD4x6//AxdeegEXXXkBrUYDp9picnqec8/djqlDwjAJWw5/9Rdf5k//9M/58G/eSTJlMD01zuz0OF/8r19keO16Pv1nv06tUsFrhnzmM3/CmoE17Dz9dD7+id/h3e99L3/6Z1/g0ssvQxQDUnYSwZcYPznO73zsc1x19RV8+g/+lK2nDFCrLCNIVQQ5ImFlWFlaIIgCNDUDikurGZBO5SAKcRo1PN/DDwJyuSKaFg/EXHjmdmRNIZ0uIPoKi0sT6IkcgqRhyNCqLuG6Pur4Mp4m0VybRdYtCENWKhWK3d0EwQqBH7K4uEI6nWSxNIspi6yU58jlM8iyQas+R8rO8I2/+wfeddU7abgrmKZNGMj85PEnOe+8C5AUDUTQNIO/+9tv8ruf/jTnXXgmvQMdCIrEJe94DydOHmfrqd0M9HSQ1m3GJ6b5o89+jlOGTmH9KcP0DY0gClXSZo477voY/3zfv/LFL3yBnTu3kSkkuPbd78StiezYdhm/9pGbSSbbGdncQyKd4+DhE2w5dStR2AQhQpEiRk8cpb2rm1AM0bUOHEdGUXT6B0/BdVwCz6Ote01cF4RKFMkslk6SzWZQNZ0wCpianmT4lGEQIiRZif3nBGiqTHl5HC2ZYvH4HJqlIDgLqIrBZz//Bf7kv/w1H/rNT7A8O0EuWWBm+giZbCeLKxO4ToAsazheI7axSBGhB64PmUI7y5VlTDOLlRAgFHFaVYJyFTWdxDAk6jOzJIudBKFDEHh4XkgUCkhyiGmaPPf0PpZKc/T19SGIAZ7XRFYErr/uTm587+0IskwQVjAsm0q1ia5plJYmmF/YjxRF2GqCA68cIZPqR1Ildr/wAmsHe7nx2uu44bprMXSV+x64l/e853bWj+zAlCPa21LUVhaZnC6RTRk062UsXeObX/8mjj9Pe3GAubkpBMFDJkm5XOeG667Ebbn4rkrC1JmdOUS9Ok1Xeweh1omsLJK1uqh5L5IST0GIJBTFpdWs03JUmvIimpSBYAE7KeA7GmZCoVAocvz4Cbo6+qiUFkknizz37F7+4A8+x7tvugkiFdtKk0hmqJbBtlXmZqcgrBO5LoqqoUgZNCMiwkeQakQCiIpOIMkImoIsitx00y2cfsY70EwDTawwMTNDMpdjZXkKp1nBSBQJNY2Ork6clRIdfQU613QRRgp9g2sZn3iZqy79TbZu72PH6X1UFpPk2hQ6Orv4yt98nU9+6vN85atf48Ybr+WjH/l1dmw7m0gQWLtukJ/89BFwPfqL3ZTqS/T1rqFYzHLxVefTKFU5fPAg2UKWYrGXeg3WDa/BRWWhVCWVMVB1m8AXUA0PRbFwPB+vVsOWJWbn5/j8f/lLTtuynY5ikdLiIqaugqbiBy0qlWXu+tAHMPCoLc+ztDiDF3mkMglefO45NEknYSVRVB0EiUTSpL09j+OKqHqeo8f20t6zltAXkUMJQYz9m6IQ1xsFUYAfhoiqRjrfBqoBokbPxjO58JIreOGx+3jmsW9z7kiavU/dg+vMsFJaZk27TUIXkAyNr37zHxga6OT+H3yNAy8/yS+efYpn7v0GOzcO8vBjjxCINjvOeSc3/MZnefedv866DZvRVQlRWQWBggCSSBSJsf9UjJnRVxta3yiXfZWFfTPQfRtM8YbXq/7V2BcbrW4pBpGrzlSiNy4kvD1N91YM7dtipte28Uuf65vWs/rH16TB8bj2a75ZgTfP8z+5bNj//Os//yqT/Xrw+v+t6dV9c5oOtdIE2sxe/DAkUexEEqHaCqhWytiGhm2nqFQdRFFHFgVkycfxPBBF0uk0URjS1p5jbPQ4B48eZ6BvDVu3bOGhhx5kZMN6kokEY6PH6ewpYpoJFpcqeF4LWVHQdRVNU1laKpHL5dB0DUVW8L2QiYlxMtkch48coaOjE0ESyaTS6IaMbsQjwxs3bkTVVF54/kWG1q2nXm/R19fDT3/6UzZvHaFRb9DZ3UW1UqOt2IaqSQiihm0ZiAJoukEUCezatZuVSo0NGzfwzLMvUq1UufiSS5iamoslI2JAKpFG0/TX+mpLy0sYhoWqKaiaRIRKZ0dPLFtBJIwg8EX27z9Ae3s3kqQAIZIo0dnZToRP4Ic4jouu6yDEF5IgDJieniadTtNsNpFlCVGUiKI4sElWJEJiEBz/ZKNVZk2N/auRhKoqzMzMMjiwNpZTKTKmbcW9f34sEw6JkOU4uKDZrJFIWAiCgigKtFpNtmzZzsDAGiRZQlV0ZqbmkSUR207gOC6CJOO0HEzTwLJMwhAEQcTxWoSBwMpKmZw4i+8HHJpT6OntRdZ0Gg0fURJWpZoCqiIThCFBAJs2byJfyKPpCmsHe7Fsg4gIw7SZHBsnnUoRRj6moeMHIWF9Ecmv0gxMgkjAiBzMzh5kSUGSIAgjVEWL12HotJxYIvrzJ37Ghg3raTUbREBbscgP77kHSZSpO03yxSKaYTC3MI9t2SiqHHcP1usMrRsCMcIwEjz/i5fp6OpkfnqCQkcbtWa8b/GgQ4DjOEQC2LZNdaWObmgEfkCz4TI6Nk4ul6NRb2JbCTRNx7Zsmk0P0zARAMuySNg6kiTx5FPPxTH+uSypdJJquUxlZQUvFMgWiizML9LT00uzUWdqeprOzk6iKGLvK/vp6uzh8IHDdHV1kE4l8dwWlm3R1taO03JRNRtB1ikW8hw4cIQtp54Ooo8gRLH8DGg16zz91JNs2rKFKBJRdQ1VFonCgCgU6entR9NVquUqbW3tJFMZHLdG4IMs6siShqxIjI4ep629g6mpGV56aTdr+vtRpIgw8pAlJZaoBiHW0Ra+7+ONpBAkib41veSLBRzXQdfVVSmvTLBwEHndFSiJNjzPJzr5k9jnOnwZqiKzML9EW7Ed39eoVWsIQuztiUIfwzDZv+8Q6XQaXYvrMoqFdo4ePUY6naG0uEgyk+fZ515geXmZnu4e6mWfaqXBp37vU1QqJWw7iaqqNJtNBEFYDSZr0ahVyaTyzE4v0rOmB01XWFqaJ4oi2to66Otby1133UUqbbBrz4v09/XjuyFf/vLfcP655yOOPsHixFGMoXMoV8tceck16FYCL4Q//1/+V/bseoUb3nMj6XSCuZl5XnzhF3zly1/nc5//M6666iqK7QWWZko89sijXHLZJWzYvInLr74CP3R48IGH6VszyJVXXsX1193Aho0jXH31VaQzSc4863SSSZv/7W+/RhiIPPHTp9iyZQsXX3Qlf/iZ3+fP//NfcuXlV3PppZfS3bMGz5E5uP84h/bvYc2aNSiKQUQTVVE5evQo6XQGwzCJovh83rdv32sPRtl0jmQ+S7VZpbS8gCSJpAsFFE2lXFmm1VzGtpP427ZS6slTrZRpuAHJZBJd1/F9H1EIaDV9bCuFIAiMT5ykLdfJwuI8+WKBxaUSHZ0d7Nn7Ck8+9RyXX3k5iUSSSqVOFEn86Ef3cfnlVyCIPiIRtWqDm2+6hXffdAMf/a1fw07oKIrMbbffzq133sTwhkG8AMYn5kjYGa6++l10drWzfkM/fhTRaixRWaly8y23YqcNPvLh3+C3f+fjSAQ0amVkVaOvt5+Nm9fSajlcdvl5/NZv/Ra9vV3U6ivYCZ0w9OL6MWR03QLRR5RhqTRHvbWIbRmEUUDTdTCtBKIgI4siqqpQbywhiTr1uocsqyQSKcIQHMdD13Wmp2fIZLJ4ns/KUg0r2cWf/9FfcOGll5FKSiyv1MnlO/jkpz6F57kUMklGj4/jBzW6utag6hrz8yUK+TZ03UDTDHw/VuSYloYo+wgISKJKtb6E6wRomskTj/yUvuEhdE0mY9gcPDFGOp1GURT2799Pd1c3x44eI5crkMvlGBpei+d5lEqL+L7H2NgYt7zvdkQp7s9WVRkkCS+ImJqeQ1Z1Ojp6UNUE8wtlxicmyRaypDIGlqWSsE0ue+dl6Jk884tLbD11GwP9a1ElBduSmJ+fJZ3OYJo2qipx8uQYmXSW4eFTSOZz3HPPoywtLSGIAqlUB81Wk/0HXqajI4eAj52SECKVXKaL48dHyRQ0KksRCbuM6xpoWoJaq4KupQl9jaXFJRKZDM1yiNNo4rgRRDq2KRP6HooUex9FMe4nSKdT3HTze7FUH12Pa4pCAbJtRSqlZXLZAvlcOwk7i24KuK2IenOR5eUSUiggiQa+G1BZXiFhWziNCu+58T2slJZYLs2RTxeQ1QSibGNqKWwjh2aaSLJCMZ+loy1NMplHkrRYgin7qKrPu6+/i67uFNm8RWd7P8uLNdoKbZx91k527X6KO2+7g1pthYXSAuee/w5uveUmPvDBD/HEk08yNTGFZdisWz/Ivfc+xObN27jnhw+wfct6MlmbsclRGs0K2XwSRdGRNZOElaRcqtJoeZw4MYFlq1TLLtl0Aa/p8b3v/oALLrqQ087YgW1oGIZOuVzDc0E1NGQ5tlc5jkerXkNRJVLpBIKoUqs1Wdu/lkTCQpRCIlwkxWRs/CSphEk6lSUIAk4eL9HW0wmSH3uoI/lXmcw3yFLDMEQWBERVA0Hk7LPPoW9kB4cOjVJvOmTzHdQWDrI0cYCgNsOJoy+TtSLKs5NcfPZWxCjkmaefpXPTmVx07fv42B/+GRvPvoT1O86mo6MNPwiQldhWFom/+pwv8GYJ7xtlvbIsvyUT+28RbG/13eslt/H7N0h834o0fYt1/I8Se6/6X/9tj+5bf/xV+fGvzvMfCry+ylX/e+bot5v+LY352837P7Lu6HUFwIIgQOAxNT1FvnwYSdGZWFyg3mjQ1tWHrmqoIiyV50il80iSgh+sUK9Wse04jTaKorgnM5fCadaJBIXJsTHm5mcJgoCDhw7S3d1BGHis6V9DIpWnu6sXr1VF1zQs02R87CSdHR3IiowkybhuHLyTyebxfJ/e3jXMzs4iCXE6q2nJRJFPPteB6zsEfsDMzAInT0ywfv1GTp48imEYlGslRtZvZmz8BOMnp5mZmaFYSJHOtmOZBidPnGRyagbdstB0g9PPOBdEAd8XWLduiEqlxJHDx0hn8uze9TyvvLyPhYV5+tf2gaBgGjZzczMkEiZh5IHAqofPpeXUifDRNYlMKkXguyhqBEi4bgtZFUAIcRo+9957L+vWrUPTNVy3hee5ZDJZwjD2HktSfHFZWFjANO04/TgSiMI4JMnxWwiCwJe//GXSyRypVAbdUFEUFUEU8QMfSZbIZPJYpsE/3n03Q0NDpAt5BEGkWa8R+A6hICCIKppu4HpxkXutXkFVVIRI4scPPYYmS5imiSgpLC4tszA/Q3tHO8ulMmNjE4QhWLbFv/zz92g5LQazTSRJxuzegWlneeihn7BubT+e56GpKmEQA+ggDOOESTFCkkUCv04yZbNSXiGdziIJAqlUelWCLTA9PYlhJWktHUcJW4h6jpbvYQkhpAvMzk1jGwn8MJa3yLKM6/iIisZyaZliPs/y4gLJZJJsPs/ExDjJZILTdu4kncswevwEiqKxUl5GU2TqtSqeF6c++56HnbAIQoVCsR1Nl+lpL1BtOaSybcxPTaAbWuy3VOPu2mq1yuLCIslUiigE07RJpTOEEawslxk9foLACXC9AFFWMU2LhGmwsjTPyvIyqWyW/sG1dLV3U6lVSCYTWIaJJMqcnJimu2cN2VweVVERJVhYWCSXz3P8+HF6egeoVmp0dbbT3dnJ0aNHURSQFAVZ1VBlg7nFSQzbQpEDkgkbUVVR5NXKJNcBScR3W3R3d6LqBqKkEnoeC/ML7N2zj/6BtQhy3PU6Oz3H0SPH42OlSbXsUqu4HDp0AM1Q6eruRhJF7r//Aa551zWIqorv15meGsfQLGQlrsXQD9cRRYnWcAJBimi0GhiWHnelR8ThTmFAtHgYdfhKQjVDIpEkVCwaxhqkbCdCpKPIOlEQ8uCPf8ZTTz3Lxo2bkKRYgi9JMrlsnvm5EmMnZsjlsziOg+s68UNBKGLZCVKpFG2FdiwtweTEHF/84pf54pf+G1u2rCefb8PzvNeyBILIRVEFwsDjmaef55yzzgfZx3Vb8SBVJKDrJtu2bUVWBMLIw7BUTNOg1WxywTsuYaVUR55/GV3XUQZOw/dFyvUGS8vLvPDUs9x15/u56NJLOHLsIIVcG1EgcOTQEc4480I+8TufoFatYOkWd976a9xzzz2ce965dA328o///C0626lz0WcAACAASURBVDrZvn0nAjIf+9jH+e53v0uxrcC3vn03a9f1kk5n8H2ff/qnf+bOOz7A0tISI+u38K1/+i533Hkzr7zyCueecwmOGxC4Av/1C1/kh9+/l9/46B2MnjjOYP8wouwhyTFAtSybxcUlEskksizT0dHxmg85kUhQqq9Qba7Qu6Yd3UohCyFR4CIqErZtMb+whBSC6/n0rOnDSiRxHCcegIgiZqfmUGQzBnlCiG3ZWLoVy8CXSnR1tzM6Osng4CDvuvZqHNdh+uQCX/qrL3HuWWdz8YXn8y/f+RanjKwjk0nxx3/8J3zpK3/D3379awwP96HpCr7vMr88Tr4tg6wYGFYSSZEIvQjDMLATKhENFM3G9yromk4ml0VSAz7+259CiEL2730FyzA4eOQAN9x4Na1GRCIlc/P73ksyZcaBU7rMwYOHyOXS+H6AIMgEQYTnhCiiSTqdQZYFVNOg1qwDIrIoo0oKnu/RbLZAcPE9GdtKIwoSzz7zHNlsnlQqQxAGpNOZ/529946W7K6vfD8npzqnct26OfbtnNVSSyiCRBAmGQTCJOMHzIANjs/jtd4wfraHGb/BeEg25gFjGz8nwNjGRkISKCGEUG51up1u3+6bQ9WtXHXy++O0RNMS+I2X31rvLfu31l236tRJVXXOr377t/d3b5rNFpqm0+vWSWXSTI8Mo6RCPC+g1uigqCatRp3BwQIbq2ukrAylPodqpU6z5bO4sEyj0aRcHiTsxbQbHRYuXsQ0BAR6CIKKKKgoWsxmtUl1s8X5U7Ns27ebZr2G12gyMr2VIAiI45j+/n4qG1V+/dd/g9tvfy31RhVN06jVaqQzNpqmUigU0DSVIPBptuoYhk4kynh+gKgopDMlJNGistnETKXYsm0CQY6xNJFUSuHkqePcc+932HXVYey0jaHK6JLK008+jmlJ5PNFwjBCUUUWV9YYG5+ksrmJZqgYTob+/q3s2bOLTD5Ntx1RKmcYGi6haQJur41LC0nK0euoNFp1qrWzFDPbOHbqG4wO3k7VvYhlKnzmk3+GqWfYvWcbXqRimwbrS5tYqRyNZo3l+VmGhwYwdIWnn/oBmWyeKAqQJDBNFUVoMT9/ASeXwxdA1U1+9z//NyrVJlumdyCIEq5XRZENVD1RdM3NbhD4Ef2lAqdPnmBiZITK5hrNRpO0k2J0dJDTp55Gs3Qsx6JWXSeKXGRRxY9CVFUAwWdlqUIqZWOmNMK4Q61aY2pyC5u1dfoHSsQELMzNMH/hIm5bJGMNoBkuM6dP8dZ3vh3DNnjfu9/Fyto6o5OT3HTjy/nvn/wDDhzYx65d+5ifX+LixVViV+aebz3IgYPXMDQ0Qbfjo2kKzU4Hy3Aw1QymoZBL53BsBUvLEHvwv7zvg9z+ujfQdZsMDxSIiVFVA0O3k8n0fAZZion8AFO3IA6YmTlBNpsliER0zcbtdlhamkfVRSxbwfVUbNvEsQ3OnJ7BNA0UDS5cPEt/aQhJyuL7nRei3a4c8guCgCzLiT+DIOELMoGkYZS2cOC6W9i7/xq2bt9LtjBIsxvjhQoTW/fz7vd9hAPXXsv2vYfpm9jFf/w/PsVr3vDTjE5MgaJiplKIkkQYhUlihyAkEuFL2dQvSGgRX6hjvXz5DzFBzJW1pFeC2x8HVJ8HvD/+7wrgLPxw2xfyWC9zGP5xx/mnsM7z5/v8+VwOZn9cNqwo/GhM0Eut869ANvxPtf93mNd/nuz4R78cIYqIMTEWHkWUFdShnaSdDBfPnCCfszl17gzdToduz8VKpdAUgzjwabQ6CJKCJCnIkkyv0+TJxx6n68YErk+Iz57dBzh3do6LFxcp5jIIssqR504yMTpK4FVQVJ3AD5mZmaFUzCc3HhKypKLpCo89/hTZbI52u025XCIMA1bX1xkoD1OvN1FUAU03E6MbUeRl119Ps9XE1E2WV5bZtXsn52eXmJiYQhAiRoeHeO7IMY7OHMW2TDRVxUpZDA4Pcuy5I1Q3aszMHMdJZSkP9iNKLoIgMDw6xfDoMFNT21hZmqdczifvWzZw3S66riNJ+iWWT+fuu7/Fyuoq27dvw/c6CIhomobrtlA1E9dNavkEZOJQ5ODBq1AvZY7qupoApCBAFJIOp91p4Ps+jpNJblJRg8hHVwIgRhIT1vbAgX3kcmlkSQBEVE0jDKMkG1ORkUWFRr3O2PgYuWweSQyQRQnDSOo8BUlCkU06nRbFUpaNjSpB5LNw4QKbm1Wuue5aSuV+vvDFL7JjxzZKxTx95QJhGNFqdrnrm3dz9TXXEBFSLg/RaNTpUzeSjqKwBVVJsXBxgdGRHImTcoQfRszNLfBnX/4yh689hCQLdLsdmrU6djqLICl4rkurUUOIReq1GrKsYhopJFXCr88Tt5cQzT4MU0UKfGJNR7V1RNlGliQq1XUsy0SWFALfZWVxCduyqdabDA2P0G53iaIkMzWdTiKHnFSGL3/5zxgfHWFosJ8oDkhZJstLS6TTGWqbdSxbT9yag4Dnjp+mXM4xd/YMY+OT+L5LFEU0mk1Stk0cx2SzDqqi0uv1CMOQxQsXyOdzlAcH8H0f1/XJF4vJoCzwWF2eJ0QklyvQajZRFAnP9Wh3GqRSNqsr6zz9xLN4nkf/YD93ffMf2FhbZWhoCFGUUFUVRVWQRXj26ScQCFA0jWL/AKaqIqsaG5UKkiSiazKiLKPJAmurq7Q7LqZmEJKwoJpuoirJ/UIUocoyPa+LrphYhoMfhih6Mph/4DsPMTmxhYWlBaanp0mlTFKWztkzp9iydSuOY3Py5DFuueVG/KCHJIIQajzx+BG27JgmvsTgazMtiKE2plDd2CBl2/iej+BHtDotdF1DICRYfJJ4yx10Q4U/+tzn2Xf9TzG/GRMj85W//HsGB8rYtowf9XjDG16PLMt0u00ymXRyn4mgyjZf++o/cPXhgyiKQqGQR5JjZN0kiDqEYYeN5TWe+MGTTG0d4VWveiUxAZubFVRVZ3FxkVwuh6IoyLJOrVbj/Ow59u3dQ6fVwEjpgPACA/nnf/6XTE2NERMAYJp5okhAVQQ2q1VOHDvBqFpFVmTCoT0YRgbZlOkvFdmxZZr5+QsYKYN8IcPv/95nePLxZzlz5hRHjp3kj//4c9x66w0U80VufvWr+bXf+FUGhvsxVJP15Qr79u/Hc0O63S77D+zj4x//fW6//VXMzp5i+44tVDdcXnnba/mLP/8KkhywfecYX//aN3HSNvsOTDE+McTI+ASZbJrf+s2P8kef+zRzs6fYvn2CcrnM+tom+bzF3IXzDAwO0mx2SFmZpI44CAiCgPPnzzM8PEzk1Qkin0I2S2ezRbvZIeg0mT97mvkLC5SHtmGbadr1GoWiQ9NtoComgiDQ6/WS/M9QxO1FdNo9EEJct4ckBhh6lly+TBSLWHaWdreJosqIokLGzHDdddfwxS/9AcPDJW648SASMmEccMttL2fHrt28993v4z3veQ/Ly4vYKYeco6GKGn4HZo4fYXysgCSLyIqAJIsEoUsUmyhSiN+LMFMOHbdF3GtRq7d5+8/8LO97/y8xMJjnzNlTHDrwSt7/796RuMLKIquryxQKffSXR9jYSNQCnW4TTZOJexUyjsUPHnkYXRFQ7TKmmWZh/iLFnEOrVaXZuZTzLUSYeg4/6CArl7wZ3A66rrC+VkGSZHK5PJVKlcH+PrxIoLKwTHEgi6LaxLGMZaVYnJ/FMhV01STt5PH8BqpioJsOp88c47rrDvH1r/8dk2MjST24KGIaGinLQpAUiCV0UySf60NWJHZu2Uqkgq5B0GrgCUm+u6Ikhnj/5WP/hd/57f+KZVmkbBnXDXAchyDwkGUJ3/eJCRDFGNftJZOZrQhZDMjYOvXNDUxVxe91iYIevXYTWYho1htoukS90eL3PvEF3nvn7ciCx+rSItl0nmarQ62+RD5bJo6h022QzQ8gKQoxMWbKpLa5RNbK4bs1qusXmT17DtUQ6bQbVNYbCLGBkx2jVq8R4qJoOiMDu2j3jjM+dJD1Zp1eECBHCoev242VEomiEGQN2/YxVYcwjmh05vn4Jz7HG376zYSAGwbkswU0TSHGx7AUKrUufQPDyLKCJst0m03sTJYYhVw+Tyx6zJ49y0B5kiDs0usGZEtbyBXyyJqIosp4no+dy5PN9SEpGs12C11UKZUHCeIQVQnR9JBzZ2cplsq0ux5xDO3WOk7awfV8FFVHxkQ3JDQ1hSTotHsbHD1+ltX1DW64+Sbc0GVgYgAzlWOz0kaTJHTdw0qbpAtZZEXihptu5Nypi/z9P3yNq67ey/ad29g6OcLI6AD9Q2XOnb3AJz7xaV7+8psxbIV6rUK31ULTRBRZxvU2ERCpV5e4+daXMzQ2gUiEIvhous2J42eSki3JRZEURDGiWk1cwlutOqOjIzRbLbK5fohVmo1KAoKQSJlZBNnE8zooUkw6baOqMk7OwYgatNYvkrUN0KwXABPwgjnQ5S0WBMQ4RBBCBFFAESJiUUKxc9jlEXKTe9l73SvYffgWJvddR2ZoC6nyMKncAMXBMdBURJJtRSFCIkQiJBblS7JY4RLj+2Ly7MfJb18oJxTFFwHRfwprvFR96o/DG1c+/ZFtLwOvL7mHf4L9vfz1y42nnh9Hy3Ly+bzIbTh+ibrcK471b+D1/0Pg9UpaPwpiLl5YJVt5iiACNzOBBCzNHkfTFIoDQ5Ryg3RdH11LIQkWcdQlmysiyVrixioIrC4vMD42zs7dV7G2vEL/YInTp84iyzrZTJZsxuapZ4/Q7nh02nWEuMny8galYh/5QgFBjEk5DrOzc+i6iev2GBmbQJEVvnX3XWzdOo0Qc8k9TsKyUkhKQODHeJ6Pbug89NADDA4O0OskjrQIEe1WwONPPImhi4iiwPLCBrv2bWewf5BcPpc4DRo62bRDynIYHx9leWkVRZfpKzpcOH+BQmkA1TSIQrAsBV2TeeqpZ+jvH8XzewkziUwQSkShyJapHTQbbTKZHKoiIUsGrhsAAoKY1PgJQlK3+ZW//hpTU5MIosjffeNvGRsbvfRDHSBLicmTrICsKJduchFR0JDFkHZzFVFUEISEjRIFMA2DOA6JkQj8AN/3ECUBWZJwez6rqyuJVEtW8b0mnY6LrGiEcYSVstisNnDSNkHgYhgpIMZJWRRLRXpujygWmZgYJ5tJY+oqYRzS6XTRNYurD12dRCsJMYZuMjwyjFA7iQiYQ7vwPZGFC/Pomsfs3BJPPPEEW6a3ct999/PqV91GOpO4i0ZRRNbJEiHSbHfodds4KZNO1+WP/+RPKRX70XWLjWqSzytVnkErbMHzuygIoBvEuoLni8RRQBwl8l3DSPHYo99lx9ZtpNNZZE1H0XQM3cTQddqtGqIYsrayweLCKtNbppmamuD0mVOk0w6Vyga27WDbDu1Gl9WNBUp9BeqVJtm+QfxOBSEMMZ0cYejRarWwbZtWp42mafh+95KqQEqyTaVEyt11XRzHpv+SzNfzXDar65QKWSJBRtM0TNOgXqugqiphFFJvNJAElcHyEO1Wg4nJcR568AF0VSGdzTE4OIisyFh2isjrMTkxRkxIqdxPrdHi9PETSKrCwNAQmqYhIyNKOmIEjzz0PZ47eortO7ajqgqiLCNcym+TRIGLF+eQxSQSR1V0HnroEXbs3okkC8QhpJ0cZ8+e48abbyQIQ+IoqZcfHhrm6WeeIQh8yv0lrJSOrCTZcb22wKPff5Ide7ehXLLbdwsas/ImraBHIVtAMwwkRJYXlij1l2g06shRj7h6FuHAhxFFiRtuuBFFSVQHmmayY+tuNjfX0I2Q/qE+FEWj2WyTy2V58IEHmZqaZHl5mU4rZN+eqzEtFVWV0XQZ3/eQVJU4cmk3Nzl25Djf++73uO6Gg5hmClmWk1poz08idDIZBEEgDGVStkGjXkXXZTyvRzZXQJYVOp0Oppli586dWKlEXt5sNlCULHEcEcce62tr7N61m2j+aWJiOvmtEKuYGZXQ7XHimWf47Y/9FlddfRUp2+bg/sOcnjnDr/3ar7B153aa7SrZtMXd//Atdl59AMSYTqeDLupsmdjK8ZPH2bp1G1/96leZnJxkeWmVffv30N9fYnikjBin+cY37sL3Ayqbi8RCj8CX2L17J+uVCximyi//8q+zZcsE99x9F6++7RYOXb2PvnKe4ydO8sEPfphXv+YW8sUigiAiiQpxJLBRWcNxEom1bdt0Oh1OH3uCTDZDvdrA6/kQi6RkgXw2Tb7YT70rYOk6zmf+HPF7R/Bv2MnjP3gWwzDwPA/DMNBkC103+PjHf49rrzuEaeoEfps40hFFHQSRY8ePMzNzjIHBPn7xI7/KwT37yecz/OIvfYh9+3cwOjbI29/+s3zg37+fZrvD8PA4b3vzO8jl02iahqrqCFGP2maTe+56kP/zC59mz94tCJLEubNzaJpGq9VGNwqIeCiySrvjEeKxPHeORr3DoWtuoFAeob65wjve8TYO7ruVO+58DYpsIEmQyaZZX6uSsrKIkkgQeLRadQxDo1ubYW35Itumx9FVkMwR6o0GxUKGOOphGDKxkES1CGKA70nYtsbc3HnK5T7q9RqGoaPrFvPz86TTaXRdJ/QkeoGGGqiImoimG2QzBTzPY3xsGF0TkUSNhYUVrJSE2wvQDJONyiKqJnHgwFWIQpQYA0XQ63XI5/MIsoznhrQ7m9RrLU7OnGB6fAI0EQGf+bOn0NMFNE1jfX0dURQ5fM1hDD2Z6KturpLLFZNJCrcDxPR6Pbq9Joqq4DjpRMIbqJw/P0O5P0+300EVRTRFwtBUnn36ScZGRiAWEOSIvvIQr/2pt1FbPk7oddE1nQcfeow9e/eTLxjYqTzLy8t4fhfLfp7tFInjCFns4XVichmDlCnhpNKsVdcZHhrG1DP4PQkz1c/qxjlUPaaQHwA3w8XV+1CEKSS9i2EVyabSHJ/5HjE9ioUhFN1kceEYy/NrlMplKvVZDl97O5lcDtd3cTJpapVNcrksYRTQ6TRZr3Rw0jkC10NTFL73yMNMb9vOgQNXkbJNJDmmXCoThxqnTh+jVCoTCBlEOSIWXKIooFQq0wkCwkhE0XRkVWbuxDLZ/ACRILG6skAumyOTsVmr1JFkDV0xuOubX6VQKGIYKVrtFplUgXanThTK+H6EovmUiwd4+pmnKZQ1VKuNqGWwnRKPPfx91laW0VSXdD5DpVYjX+hDUSS+9+Dj/OVf/ynv+8C7CeOQ9dXThHGbQl+GXD5Hqa/A2NgEa5tLKArUKhV0QyUMA9Y2LqBrKXy3hp3NY2cLCFGAYyosrdQYGBhGlCJcrwaxiKarfOELX2T37n2Ypp6YFHousmKgyhaeW2doaITKRhKziCSjGwpx1ENRZOq1On5gQ3eeJx79R+bnnqI8efgFdhNAeAm33SSyJkoMn+IQOXKJEfGQCWIJL6ojCT6i6BNELrImEYQxGjGGFBMHTVw5RSwoRKJMLIpEooQo/JB1TI790uD1pfx4XsqY6f9P4PVKhvhy8AokMZOXmOUrgSlXMM6XDvYjq/wrA68vUZH8Isz/z5ERi5c9/p/XhD/fki8r+Y7iOMLUTTbWKjhrjyPJKqaTotdYI2Vq+JFEFClIagpJFJAlEBSQpGRmiThGkiX8IKC/P4MXhWiagxd7hF6PRqvF7a97LUsLi8zOzbJ/735UKTluve1TLpbwvRaPPfoEfcU8iysbRLHMhQsLTExOISkSiDA2NoppJjEunh8g0MXQjASgRT+8uHfu3ImsKiwsLjC9bYLNap3NWp31tQXSGQfLtjly4ijDg/3k83202j00XaXTa9DXN8wTjz9NvugwvWMrnU4Vxx7ESKVotmrce8/dDAyOsbxawUqnkSSblCWiawabm03uuvub7Nq/B0mM+O5D93H1tQcJSWJBosDnrrvvYnxqmpPPHcFK5dCtxIV4eGAKWeuwvLTI1PguJKVzKe82kU4LCJdqW8VL9uYRcewTISCpDogqCBEI4SWJcASCiBhHuG6HlGVCLKKrNn/7d3/H8vIaW7ZMJbOWqo6hG3he7xLzWEPRFHRdp9loIsUhvt+j50Z84++/wcT4CI6TI5226HSbeEGALCfOq5ZtcPHCedaWlsj1lYijkF6ng1g/RSyIiIV9qJpEu9Pmu488w/T0NDt27edLX/gSb3jtbfQN9iegjpjQ94kvRTcYhoauG0lcEzKTk9OMjAyRspPYhiNHz1NQKkSxgJ4qge+xuLSKkSkTBh5/+IdfYOfOHWTTaaIwwPcCMpk05+bOMDQ8TK1WRxIjjh07wZbJrfR6HsX+PgYHBtF1lbXKGlvGBwmimEJpgFQqw8bqGq7bZXxqO52Wi2MZmJaBrhukM9kk7kbRSDkpREJUWaDVbBCjoisyuq4RxgKypvP9R79L2lKxUg5BGOF5Po898ih9pTKz5y7QNzgACHz/0ccYHholCmNy2QKyqNLtdFldX+Hg1Xtw3ZC9+w8yNjFBNpei13XZ3NxElgRcL0DVdXpegG1n0FQhiaDIZFA1LYlwiqPkOpJEprZNs3f/Lh74zneYmBpP5LWXrr0ojHDsDKKkcH72IvlSgcmt40hCRGVlhdpmk/6BPgqlXLK+38WwUiiaQRTE3Hfvo1z3sms4e+YsuWw/sgqe66NpccJu5fJEvouiqngqpEtZFFFC1mTiKELTFNK5NHEQkbIs/NWThGY/FWsv2Uwat9emffZ+2qszxHo/CB5hXGVocJr1C/P84R9+kr17t1KrtZmYLhMEiRMyUhsn47BaXcFrb3L6+BEGh/N06xU6jRa5/ABbd+zl1ttfgyhp/PzPf5C9e3ZRyCXsQa/TwzLTfPbTn+PQnv2sLS8wUC6jGiZhJIOiE4Qxbq/G4tJp0pkMrWaPeq1HOp1DU0EUA8KoRyaTZWllFXnpKJIIc12DlYV5yqUiiqKCbHD33ffzgff/AhEulWoFJ+tg2jYD/Vm6vSaRALv2HqS3scGdd7yLPbsP8fjjD5NNx1Q2PQxHJwiaWGrM6kqTrdsGsBwZUTQIuh6SKHDnHXdSWdvE1By2TmxFlUQUwSBrZ3n5rbfhui6vfd3tZIoF2q6PKErUawEf+cgvEEY9JDWFqhgEYczS8grZjIVp6niez8ZahbSTY2B0ElNTiSUZIzuIG7kIioRhZ1AsmzBooMgSymPHCIOQxs4RBgYmSKd1mo0qjp2iUp3HsjQOH34ZV+2/kbHRHezYvY9YDPnQz3+Yn3rD9Qz2D5OyVEzdgFAjnbPRdZXPfubT/OZ/+k3cnsed7/gArVYHz23jZEx0I6bZqpLJ2IhizJnZi5QHxpjetpvXv+n1RCLks0m/lclk+JM/+WO2T0+jyDb7D1zNBz/4PlaWligPjHD2xCx7du2mF3o89t37efMd7+T2N7yCYsai0dlEFFXiWCNlO3hBG0WJkCWQIhCiRVbn1rCzIdVaAzM9imKZpFMyXm0ZxbRxxTT/2y/9J3bs3IrtZNFME6IepWIJzwvotD0s00ZRZYJeB003UM00seTS2FzGcBQsO4XnegSBB0KEFwT89Ve+znBfnrX1FcrlITpuHU2zSGdSOE4KURQ4d36e8uAwrU5AeXCIVqcLSEgSaLKOLERk8gVEVSMOJVzXxyn2YegpWq0mmYyDqipk7BS9XpMw8jAMC93UL0kiFXo9H8fJE3otDNXg9MxpMnaG1eoGpfIgimqi6iZB2CEUVQTVptnYJGcn0WOrVQ9JcXAMm2ef+jbbDt9KHBZxOy0iI0CLYjzF4ez5iwzkCihagC4VmL3wAIVMHj+2UXSDTjvkm9/6DgevPkihb4DQg0e//wMm92yntraIKHjIooAiyqA0SdtjiHKI6wUokojX61AsjmDZJfwIvF4L08yT7ytRbzYYGNiCqcmYKQe/26G1voIiKvzgqccYGpvg/e/5FU4cP8kNN9+MoCt4gU+302F0aCuaKnLk2WdxrCJ/99W72LNnOwsLG3iejKKt025XsFMOcazQ8wJOHD3H21/3Bt76xteDFFEYG8QwJObOnaI8OE4opjjy+CkCN8RSNWzTpL+Uo1wqQuSTSzu4PkQxmCkNUY5YWang9Ta47babOX1yjumJ/ShIvPddb+fDH3kf01sn8KMAW9/Cf/udz0DcJevkKfU57N+/H121KOaKKILIxQvrpJwSPiGZUoaN9TUcK82RZ46xc/duFFkllhqYxngSf5Mrsr68ihQHzJ4/Q9/4GMeOHMcwdXRTp1QaQlRlWp0e11xzC+Nje3j7u9+CZpo4mSwQgughST6NVhUnYyNJOoIcUas1EEUdRTBQZJPTp55icmKcC4tNXvn6D/Dtb/4DWyamiQUJpB863F459o5jgRCRWJAIUIkREYkR4gAZBQEFBA1R1BBiESGOiQTwgVhUkYgTw9AoiWUULwNqz0uC4yjBGAKJq7AoQRSHIMQJySEJl5yTLjMvel5KK14BhK8AhlcaOL0U8/n88gRr/Oj6oiAQhRHESYxP/BLHuRIUv1Qd7k+SGL/wX0xSbmPiZDIh/lFUlrzOC5LrF4Fb/tWB1/8n7Z8v9/2XbHGcAIXjx09S7p4j1hwiFS7OnSOXzyCqFk6uj6BTQVUUYkEBSUNTwfN96rUaAgKqKtNqdoliAVnRSWdMsmkbRTPQ9RTfe+RhbDvDtS97GdliiXyhwOM/eJLrrr2WkzMzXHP4BmZOz7Br926+8+37OHBgL4oiE3otThw7wubGBqVCifpmHSul0W03SJlpZs/OYqdtvnP//WyZnCSOE9lDsZTDDxNn35mZGYqlARRZ4sLsWXZtm2Jiagtz5+eYmTmZ1Dxms9xz30McPHgNzUaFVr1Bo1XHMjP4nsv8wjyOlScKAnbu2cF99z/E/qsO0Ws3+Ouv/A2HDh1icjKJ7hAQSKWzIEmYKTPJBhMEtmyZRFYE3I7LPfc+yA58gAAAIABJREFUxLYdW9EUFVU18QOPxx9/mtHRCQRBQDdMZCnJxPQDH+VSZqgoJjd/HMWIonCpY0gc3oRLcyRJByMgoiDLKl/+8l+wd+8+PN9n156dbN++jXarjiqLqJqFJCvMzs7RXx4gwgVETp8+hyyqaKqOblkoikYuX0AQRVRNZmFhnkwmx4W5JfLZhJlod7p8/Wt/j+cGTEyO8OSTT3LPt+5l14DE0vISjxzfYHp6mr5ymW3btpLLOsQIfP/7j3Dry28kiCMUWUIAwjBEUTQkCeI4yfZcWVrFtk063SRTNYpCYkTS2Ry6KhNvnkSyB4mDJG4n1k3iOOTGm25A12WiMMDtdYnxsCyLUt8AJ06cpr88yMWLp9m2fRpRjHnu6LMMDI7w1a98hV07dyQRQ6KIICp859sPoBsGsqKgygLtTp1uu06rtYmTKVBv1FBUNfnRCEX+rz/5MtumJmjUa0BMLp/H83xEKWFTa5U1tkxOXDI5auC7PVzXp95qMD45jmrqpB0bTVXodTucPXOGQqHImTOnefjh71IoFjlx8iRpI8WxY0eZ3jGNZilosopppTh16jSlUpGUbbC4sELatpCkCFk2sUyddCaLLMr0uh5EYQJQRYGIJHd4ZLCPOPaSSCVJICSRPgmiiKQodFsdbMfGD3w0RcGxbe69717K/WVyhQyqpjJz4jS5TBYJAUkW2HvgALEQMzo6jCj6SQyKqCCJUCr1E8Y+bjdmc7PGhblZ8vkC58/P8cADD5OybdLpDJ1Om/W1Koqi4S4+gTz1RsyRKWQ5yVH2HvvvqK1Z8gfeRCbjcHHhDJaZJfA0hgaH6esbQNd0qvVlTD1No14nX3BoN30sRWb2zCxTUzvQ7CK+LxMC9993D1Njo8gxdHo93vyWnyadcUCIWVpcQdd1Hnzwft5yx5vweyHfuf9+er0eoxOjSHKMEKoIsYBuKKQzNmEIzx05hmXZ2HbqkqOqj6poKIqGokhoa6eoVjc51Ta44abDKJHKH3/pS1x9+Cre9q63EuBCKL4QzfDoo4+gaB4TE+O0W10effRRNjaa1OodPv9HX+C3P/ZRnKzO0OggXhBTyvdhqCbXXrMVz+thp3K0uy5iHLNnz26efvoZPvaxj/H2O9/GRu08xVKeT3zi97nxplv55Kc+zStf9QoyWQOELnZaoVppML11K2Hkk86mkZWY5557mnK5SDbjYFk2rVYbURRwnBQJUeHS7DQ4PzfH2OgoqqZhqHLCoukGgmwRRNC560EM00S57QZcr825Uw1sq5+uu8GNN76cD33ow4iSxJvf8mamt00R0+Xs2TO84hWvwjCkS6ZyOnEcsW3bDtLpPJmcyVvueAOFQpbqZo2feefP8p73vIdGs4GqqehqYqA2M3OKQr5AuT9LFAUIYkgYuaTspAREVRPWde+eg6Qti4cfeIDf/OhHkcWQXrdJdbPDgYP7EWXQdYWvffWrvOWOt5DPpgnDgEy2RBgmvgZB2GH2/Cnk7hrnzz1Mz3cpDWxhsM/m9LnT7DxwK77QjxSscWF2hsZmjVJxiNCPUESd6W1TGKZG120QCSGREFGtrJPLOnRbdURZJmWpIEAU63Q3zmOaFopp43kym9VVFEWmWq1gWRa7du3k85/9K/733/pdrr/hJnLFPIIgo2kym5sV8rkSlmW8UEPWatU4cfw5PvZbf8DNN9/ERnWVMOqQz49cmoBPJskEQUxM+1SJuQvnsFI6z37vCJ/61Gd57RvfhKDp6GpAEPgQS6iKRaftUa8v0+31KPcPoOoqkiwlZRiBSLXaRFd0VlfXqW9WyGbyWE6Bo8/Ns2XHEOfOneLfvfdXObB3gli3+Nxnv8Arb30Fkq5h6w6SrKDIAoVChpYn8cEP/gJ3vuX1LJ+fxy6WkGQFy0ik+qahUtmsoWs2TjpDq1mn026yXllKcn8XN8kWswiSStuPyKXT6LJIECaz/57XI44CLC2D74aYhs7GxgrLS/M0Oz0ytpNkcZs2n/nMZ7jzHe+i3Qt49atu43WveyWKqmBaNoQCR556Drfh4/XaSETs3LGD//EHH+PkySfZsXeaXDFNtwueG5PNFBFQaLc6lPIljp98jkOHD1AsZYhiGQKXjGMnowpRZKDPIZ02OfLck+QLaR566CH6BwY5fuIkoiQjWQ5IMrVmG0FWUfUU50+fZHh4FE3VeO7oMeJY5s4734qmCSgqBLLGpz/9RcbHRhku5/idj/5X3v1z72B9fZ04jjl69Ch7r72W6lqV1/7Um3jf+99H2raZn7tAf98A46OTeL0A2XI4fuwUjqWzMr+AaZvkHBshhuPHTjM0NI2oBvT1l1A0jZ4XcGH2JEODg8ydW6CvOMyttx1mYf4ilmGwvLiI5/YopDMsL1zENk3On51FUjXyuRznz51m/sI5Uimd4dF+5udOMTU5iaLqjE1Pcvdd32Tr9DZiUSbmxdmhzz9+3hwJhB+VGl8B0p4Ho5cbKV3pBnz5Ns+/lsS5ST8EtdKLwd/z4PVFy3/CsufP6fLXfhKJFoYhoii9aPmVubKXf07P7/vH5rn+z7TLWN7k6ZVMePwjbPlLtX8Dry9q/zLg9UXFxj9p68sulMuXCXHM+NgE7VOP4GkZ0A0QZARBJJ0r0e4FrC4eo9lpYaSyiIKK57cRBAHHTuG6LmEQYJgm7XYLVTOIBZ9WowaCwlNPP8vY6DC1yiZT26ZRVJULc3M0N2vEgkCn2+X48dOIkkC302HL9CStVp1SsY92s8Hi4hJjY2Ocn7vIyOgYiCCJUNmoMzY5gR8EjI+PIwoC3/3uwziOTTqTRhIlDMPAcRwGBwcwDIvFhSXa7RbrGxvUajW2bt1Kp91hbu4Chw5djaLpPP74I1x//fWIkoiAyn333cu+/ftYX2tQLOewnRSNhovrugz0FRifmOS+++5jz77dxGGUzBBnMiiKgISP7/rIagJEA8+nWMxh2Tl0U0PXFJqNNp7noygaJ2dOMDU1jSQlHdbRo8fwPA/bNqnVqiiKAnHC4qmK+kLHJgoCSd5qhCQJQARxIuvsuR7Dw4MomoQQB0l2q6ImtvmihOu5ZDIZJElGVSQ0zSCfLzFzcob+ch8ISU1SNpvFdz2slEE6nUIQ4NjR40xOT+FHEbJqIsoaVx06TOB1kQSRm266CRSTxVrM1M5DaJqSvLcwRBDA80MEYsp9RTRDT2TOnoeAgCzrtFoNDENFICaTztBs1jFNHUlS8FwfSVUwDBPJ7sdfeRLPc5G1NEIYsd5LDB4kRcFzu7huD8fO0u7UqFSqpFIZUraDqinkCzl6bo9qpcLgwChxLKBIIvX6JsuraxRKfTQbbR584CGuve46nFyajbVlLDMxUGnUOzhOlkargSiLKLLK+dkF1lZW2LFtO5KikcmWiMIeCCJPP/MsIjGWaSVGXJUq1Y0K/eUy9XaHHTu2IcsyjXodUYiJ44hWo8Hw8BAX5y+ye/dutm3bQrVa5dChq5i/OM/U9CTZfDph6gWRIIgYGBhAEEVcv0XgxkR+j9X1RRynzIMP3M/4xATHjh5DlkVStkO3102YWCGZsVTkpG42DEI810MQJSRBJI6TXEi/5yMrMk7ahjgi8DxyhSLpTAZVU+i5Lvd/+yGuOnCQ9bVlNE1FVEQkQUaIA3QtotPqYhgO8xcvkLLSxFKMJMg8/OD9XMsYG89exNo6wM6dO6nVN8nnM0iSwFe+8reMjAyTaj6Ht/MDiJZE2inw3Yd/wDCnEYjRpl/DqVPnUFWJZ58+zfm5ZZrNOnv2bCMKfZy0hiIZKLKEJIaEvoBsyGiyiu8H1JtNsukMqhbTP5QnDGKCIOL0mTOkM2kuXJjDyaaxLZuFhQV27d5BHIesLF1kamoLe/bsZaNapd1pk1T3yZyfm0NTE6Z+cGAYEOl02nS7NTY2NkhZaaI4QhQj4soSVrbIlutfRxh7iJFMqa+Pe++5j21bd9Cst5BllcXFBTRNo9xfIp/LAjKSqLBj5zQrlU3e9Pqf5uzMGUZGRxgYG2Jx6RjF4ijtWoSMjiIt4fnw3vf+e97ytjsxNIlGo0EqlcYwTO655x7e9ObXcerUWb70P/6UN7/5Dl52wzVomgLEKKpEFMaIkoZmqHiBR6vdxjQUSoUi9c06tc1aMtiVJNbXV2l3GnQ6LdYWlxgcH6dQ7CcOI1qdDufPniZtOyAmJRdR5OE8fRJRkAiv3UujXSObHqTRqJMv2JjqKAcPHiaKO6TSMXZGQJY1+vr6SDsFur0agiARRaBrFhsbG9x406t5//t/DsNUIBaJI4V3/+x7qFYrpGybBx/8Ln2lEr4fkMlkAYF6o4IkSSiqgqrqxJFI6EMcSbz73T/Hq151Ow8/8BB79x7k3nu+zeTUOHEU8xv/4T/y+je/EUmBzbUVfv4Xf4X/8Gu/wpGnn6R/eAhBjDl16jTFYglJFmm16shih/5SjpGxG0AcoLZxnsVqjYGhXQhqGl3qUavWUY0UumEhSTJOykTTDQRRRFYTxY7reWiSjO/2SDsOfgSy7KGoOn6oIIctJNNEkFS61TZf/fpfcP31L2NxcYGBgX6OHTtKp+Xz7JHn+PAvfwQnYyMggRARxSHtdg/P20CWIiobq6yvzzM5Ncg1B1+G57axbItMIUcUCsyeP8vgUD+/89u/y733PsB11x3GNE0sy6LVajI5NsX+g/vRLQNJkdhYW0ZVVVTFIKkXN7AdAwQJ03Jw3ZBmI5HhK7LKyZMz9Pf30Wk36O/L4YcxKAb5bAHD0XHsFJ//zGeJgi6Tu/awd+cB+ov9XFxeprZWpZDPYpga9WaddCrLTTdcTSZlU61uoDk2qqIRBSGdbgOEgLnzFxEVg2wuh6GAY+cZHhmk1WrRbHTI5y4Z6sQiuG3iziax5hD4AZIgUlldZ2VpjZRl0Ww2CfyAL3z+C7z61W8i71isrS1hplJcd931yLqFqhqIxJiaTqfbodPtEfRcLs7NMTG5nU99+hPcePONvP8D7+Po0YcZmRzGsCzOnpulUBxClpNeqNvrcu7cWU6dOMab3vomBkcGkWIRSdF47ukncOwUrVYLSVb4iz/7U2w7zXXX3Ygs6uSGJjHTRYbGtyIbaVQ5ZH1tlVw2S+iHCDHc8Yaf5YYbbmRsYoBKbZ5t2/awUVkllTLxvB6qHnHjDTehaj77Dkxx0y0vp1arMzQ0xNLSEjfffDOtep1UKotppbAtC0M3OHfmPKViiTiKmZk5TiabQxFNfL/B6PA033/sSSZHxyDy+frffINDV1+PLHVp1Gr0Oi5xENNptchmMpi6xe99/BO842feThQKCLGEoacIA3Bdj5Rjo2o6+UIfURzTbNQoFrLouoQYB2hGilatwsDwKMePnyHbN8jIwABrq0tkSnmi+MWg6/JImjAMLzGkLz2Ov9KA6PIx+/P/nweoV0qCLx/vJ2DzxZLg54/9ImnzZZE5L9UuP9cfx3xezuL+JKxzJev74/Zz+TH/aZny5Tu54hyvkCfH/Cib/FLv7Z8DXn98uNC/tX/R9vzsjmHoKLJCu+Fip9LIccDZY08gdNYZG7makZG91DfrSLQAgXanDQLoukqv1yYMXWzHRJIEoijATqdw0hn279vPrt07sXSNVr1Gp9tkYX6OvmIhAbYTk4QxLK+uc2HuPM16lSj0kuzLwgC6lqJUHmRoZAQvDIgFHVmzsGyHdq+DpqnEcYSqytx0040UiwWiWCCKRQzTIV8okM5YFPtKDAxP4uSGWF1dZd/+fcyeO8PZs2eRRIVjzz4OhEiawvGTM2QyWbLZHE46TbfT5cDV12JYST1pJpVjduYMn/2DP0SWZF716lcCMUIMTz31JEIUIEc9VuZm0HUZP/RQVBXTsKnXKwwMlDFNnUZzk7/8ypfpdj1KfSWuv/EwYQTVao04TmTQo6OjtBo1CrnEcVcUBBzbRhKTWkFFlhLdzqW6hiiOk9lqIZF0X3XoILEQEcYefrdOFLoIkoxi2iDGqJqCJIssry0R+AKdjgcI9Pf3IQgRzdomtcoqT/7gUYjCpCbTd2m161z3sqtw6ytUl2dR4g57to2hST6NzRbf/Me7ODlzAntwB2O7X8HQ4GBisCPG6IaGIIg8+MBD+H5Ep+PSbNRQVQVN04nDmGa9x6Pf+z7dTpterwVCgCwpiKJEt9PjzJnz9NyQSIgJEZBHX4HYniOSJMQoYG5+CVFRkUSJlOXQanZpt7uU+/rpLw8mAUNxEhkUhhKW6aBpKbqdEEEQ2LlzB5qmsWvXLs7PXSSbyfOhD/0Cvu+DKDCxZQtmKsX6RpNCaYyN9Q3K/WUkWSaKI0w75u3veiMdt8biygJ+FKBIEsvLKxw8cBDCiFgQOH1+jmL/EKWBQRRNo6+vxF3/+I/MHD3O5soqa6sreG6P4ZEhZFlkx45pavV1wsgDfDYqKxw8fJCQAN/1CLoBQRAiSlIi15ZlKtV1lpdWIAop5B3CAGZn51Fllb17dlEu5fj+Ez/g4uICAvDcM88Qdl38SKLZdtFNB1k20EUZiaR+WhIEKpUKsiLjB0nN51/91V8hiEoCFGIRRdXYvWcfFy9c5FvfvJswCiDyWVlawet2adXWcXSDbsfnG3//TT75yc8QBhGIPre/5lac1YhSXWVldR1dV9m6dRJBjIjxeee73kmfHSBYZezBLZw6dQrfizl3doHAj5EkhU998nNoSopCbpB9ew7zl3/9Vxy69hDnZk8Tek3qtRpRENBuNjl29Dne/c530PA8Mrk0c+dPMdyXJuxUWLowQ7O1QaqYRUxZPPvU0xiazsDwEIZl0mi06Ovro1qtoBsy6ZxEoWQTxwK//r9+lFbDZ2nxDKHb4Uuf/3NMq59bbrmFIEjMmorFIt1em263Sxgmkm5ZEdGveSP6obejqClAZbOXOMP2FQb5o098kVdc9RruuOOtl+LCZIrFPF5XZ2WxzerKJmfOHmfrrjGQfGrVOl/7m/+bvfeOsuSs77w/ldPNqXPume7JSZoZSSOUQYgkkEgSGeOA7cW8xoDBNhb2gm28xuv12ph9DYgokJCEBAIFlJCEwgRNzj090zncHCvvH3dGSINk4z3sH/u++5xT5/StrvtU1e3u6t/v+aYfUq4E9Oa2cvedDyEqNfYevpeZqQOYqsJ3b/s+xUKZcqVAR2cax3HYuXMnvb29VGshfQMr+eF992N7Ln5g07Ib+B40agK6mm67CasyoiximFHshkujZiMEMp3ZbgzDxHVddKPt3tmyq/T2DlKt+vi+ghC0nczHx8eJx+PYtk15cZ6IIkPo47ktTh09QjSaZLFwlEyHSrPh8/b3XINLAUFSEMUMTisJBCwszBGGIYZhEbHi7N61n6d//jyaavHhD3+McqVFoVil2Qr4my/8dyYnJ0ilUpimyRVXXAXAhz70IUSxbbiXSuYQBInTp6eo11r8+EcPU1jyufvO+7nlzz/Hvffey3/70lco1hw2b9/BNdddz0OP/Zyv/OutiKrE7Pw0XV1JpqZnEYWQ3p4uZmbnmZ45ycqxIXzfp1F3Wb1qM66YwfaieG6RmeITFOwI2y99HYFgIgoO9TooRoZc3wrKtk3NLpPMKASBR63awvdkvFBFEkzsVkitWMd3QkQRTp48hu00qdXqlBsOoSTTbDaZPnaYq66+AtezGV0xzLHjR1i7bjVvvela7vnxd5EUganZGXzfZ3Z2DkO3qNVq4Jk0qwJ4JqtXbsFtKhiRKr0DqbOGaEm8oM7AYCeLi/NcfeUbuPkdv4MsGTh2SOBLpJKd1PwakZRJubCA4jukEt0IaFSrVYLQZm5+Et9X0bQk1apPrRZgGRkCXyYIPYZH+kgk4vT25PDdArOLZwgkmaq9hGurVPI2P33ke3zx7/6BVatWMTjUzw033MjKFatYOboOMYT52SmsqInfWMb38iyXanQPD9No1GnX4gG1ehVRhHXr15Lr6qZUrqJrKpIQgVBBFEVGRgeZOXkETQjQpBDJqzF9bC+S1k4kuO9H91NYqjE+Psj01CkUSUUMdf74439BPNrZjuiKaKB6fP7zf40oqPihgG7pPPnYTr72lW8xfeY0zVaZ17x6B7ff/QP++otf5PDEUTr6u9h6xTtI5DYgMsBA58V8//u3oygSlWoB3ZAYXdHH5s1j5LrSIEjMTecJfY/bbrsNz2kRiZhIArz5+ptIJfr44he+zJe/9G1yus4/fu5zXLNtG24+j9cqk4kbeI0KpiJg1ypce92r+NKXvkw5L/PBd9/C3MIpmq0KjuMwO7OEXwnZ/9xBnnjsSY5OTGEmOtuOyJOTbNy4kWq1CrJKgMD1b3gLs9NzFJdKfOvWu5ibWeCpJx9jeKibVrlAb66fdC6NIxjkkkMEvsTkqQl+9/d+EwIXLQwozi9gCDJ//1d/ixiauC2fqakTfO97X2Hy5Cyf/cxfcd+9D3Hjm28inehi596j3Pb9eylUbQTNRBYFTF0jDBwCr0kiYZJfriCJBqErkM10E4oWsWiCZi3P0vKZf7Pe9n3/Jcjq+bX4K+37tzJX4eVpvf9e3f+r7v91j1/1nv53nPP8cQ79/nVdy//ByOvLoaHna2B/PeOV+N//Hh/8xccEYoAn+HhHHqVUK5Ps6KXStBH0GKZlUi4XMGMJ/FDBigltiiECkWgSLxAICQgCG0nW8FwBw5RRZYtGs06l0mTfvp2M9A0wcfIEDdsjkepgeKCPwvIsXd292C2beDyGLMl0dneQimeolOp09/QQCCKxeBTD1NB0jVOTkxiqguv4GJYJgkC52KYuO7bLPffey9p16xDFdjEtyiKiIiEGPgIiqUSKo0cOs2HjJp75+bPMzy2Sy+XI5HLE4lmq1TJDA4P09HYhiQrFwhxzM1OsWb+RWm0ay4wzO1dgsTBNT18f68cG0XUVXYkShCGCYtI/mGVmZhlDTxJILkEooWsahCLNloeqqmimShgCgcDatRvI55e4+67vs3nTZgxT58v//GW2bN6K59cRxHYTLogSfhAiyTKe5xMKEn7bAQDXcxCl9iqXAEiSiiCE7dXxwEeW2g2FKBsgSYgiBIGDECr4fni2OFNRJJFKtYKuqxiajN2soUdixBJpFvJ5RlaOUlqeQVJk/MBHV2UWS2UUzUQ3YmiaQSgGNJsh2WwPa9esQxBcrJiJ5wWEvgShQOh7tByPlaPr+PF997Fu4wgR3SAIfFTdRFE1BE2mf3Cobd7VclEUFVXRef75/fT1DbZNjKwoAkI7difRiVc8CXYFCY2etWvbSKHc1lgpksr83CKxeJx6o4hj20yfXmBpcYGOrk4ajRaLC4ukEnGcZgMRj2wux57nDzJ56iQrxgZpuTVi0QiLc4vEYlEmJiaxWzaNeg0vcInHEwRBgBf4EIjohkW5Uqe7sxNdU5mYnCIai2NYJpFEAkUx2bVrD0IQYMk61WIFSVEYGVtBtrODY0cn2LhpK9/+zrdZt24tzZaD5/hksx24XoDjB/T0D9JqNrBMncD1cFo2U6cm2yi5obMwP0vEyGEYKoHgk+7oJZRgcGCEaNzEC31sJ8CxRXbt2s3oilESqURbG+d61CpNCoUS0XiMUIIAcB0HgpDJM5PksjmEQOTEicm2K3d/L5IsASGyJLWRyWiSRCqLopuoahIrIqEZTUTJJBSjHD5ymKuuvI6h0T4MvZ2p6Xsh5okWiqoQv3yAnbt2nzWcMbFbAYomE+SPIHVtRBu9mLgZoVwqs+2CzSzt/g7RiMnKa99PpVqiUfd4y1vezN13347nelTrLWKpHLqexAtAVk2SqW4uvexKUpk0uikgSwJHD5xidGwc08qQzQ5CaCNLDmPja5AVGadlo0oKh/cd59577oXQY2zlCK2yg+/WEKmxenScL/zlP3DJFa/HiilcefVFzEyd4gPv/wACIq2mzf69h8nEu/jJ/Q+xcdNGBEnCMKMEnkDLbiFKIAoqO596mg994EP83n/6CPFMig//Px8mZVoM9w/x4H0P0J3tBlXkjz/1J4yPryeb7cdQDDRNpW+4i9e9/tXIokDLLnHXHXdz7WvewODwKoxYB64nUSmX8QnJJAb5z3/5t2zatpWrrruWTdu38o2vfJPhwT5kRALHxYqmUBWDb37rG6zfsJrndj7NQN8IgddGjVXNQRZ0QjWCFktRLi+jRCJoqkjc0qnUHXI9I4joFBZPE1FdRN+mWq8hhA7lYp50LIti1NqmVw/uQhAElNdsxLNFluYDDh44w08efJDLLt+B64bs27Ofu26/k2qhyMiKUVRF5eTESY4fnSXbmWVgYBXlSp2OHoNUwuKhBx7g05+6hRtuuBnDjLD1gjWcmTpMPBFBxMBvNbnmmmuIRC1ERaJeqxOJRLnrjh+wftVmPvDu93Pl5RdwbPIol1z2Kt71zvfw1Vv/gQ/9xge4ePulyJLOnt17ef31V6KqTQLfJ5EcxAtqBEKIZumkUlE0I4UfwMLSAqlMCgSRualjNMvL4FYIGja5/iHmztQpLp4mZbpUbZ9kKkHg+xiagYSK4wV86xvfZbh/EE0ESQhRJaUt6RF8QilAVhIk4gPIokFhcQLFymLoUXzfp2Ool3SiEwhxnBbpVAcCJm7YJJnownVdms089UKd3/vIH3HxpZfjNivcc/ePScQ6+fM/+2sef/xRLtlxAZmuFdg1B/wAI6IS+AKaajI1NcPqtaMkUhqqoqKpAnajTKtRQA5UnFYDVZdQTGjWKiBoyGocIfSJWSKhH1JYzmNZMfbtP0C5sMDISB+FYoFoNIbjxBH1JlWnTDbTj6rn8VydSCzOkf3HEJqL6B0DEHqYlsymCzeRSaUoV1vU7ToeyySi/URNGV0xOXlqglSul4SpYzeqGDqcOH6Q3p5OZLI0CouUinNE0ykK+b3E40lEMULD9QjdReLpNPOLRWKpbgo1D12PMj09y7PP7WJ0bBwrbpBIdbD7+UPIuohqCajSxJqXAAAgAElEQVSaSMupk0hFmDp9lDe9+e2USnU0TaXlV3GWyvQN9bFu43oCPyR0BdZtWIsoSTz40OOMj22gOH8Mz3X4zJ99liuuuoItF6ylvFygM5FBRKTVcuhI9NNqKkyenKanK44kh6xaPcbM3Dw9XX1oioaoG2TTadatGaOzJ0thaQkzpvCBD36Ev/7CX7F23SYikSSVch3LirK8lOcN119LJmewvHyG3/yN95LM9RF6BuVSiyOHjhKLdtHT3U9HR2/bQLA8QyIR53N//mku2n4BWjKDqElU6lVs2+a3f/PDXHH5NXz/jls5s7BIX18fKdMgUJPc+s1/Ze2ajciiAGK+rVGPpfj7//J3KKFPMjXEPffcx9aLt3P4xGEicsjPfjbBmo3dRPSQnz99jO9+73uMja/klr/4UxRNxIzF6ekZIR5P4wU2lYUTzEyfQZY0kskeSiWHVDbDgd37+Mcv/mdGu12WThwgEZE5eegw4fIiSmeO0DcwIzJe0EQkAnhtOrYfIBESvCj5IwzbFNaXq+VfPM4hj+dQ3BfvB36p8QU4Jzt9CcVYeClq+6v46JyPUr788e06NAw5SxkOOItxnt1+gRCfH9Fz/pwvRmZf7vVLru1saxWeJWyHLzruF2hz+NJ5XuQI/cJnELar6HOdmvT/r5zXlxu/fr3qv3m2/wBHPBBDCMHbdQ+i04JIElPX8DzQjBiakWB5cRErEsN2XVRVB7uAazep1yrgNYlFNPwggarqlKvzlKt5Wq2QbLaT/v5Oms0GY6vWs3ffQQYGBpEE2LtnD9nOLiYnT6NqKoVCgfxShVWrh6nW8liRJFOnTxKNGNitJoEf4jke6Uwa3/dRNbWtD1VVdu7axfDQEOvWr6deq1EuVUgk2tETkiRTLOdJpDIs5Qts3b4Nu1Wlr7+PYqnA+PgYkgjFUpm52VlM0+DUxASZTIannnyKDRs2oWoGt995OytWrEYAWvUS+AGppEQ6l2I5nyeesrDtJrIsEoskANB0HU3TEARwXf9sfMlZREwQEcKAXTv3EY1GuO5116HrKkHgcsGWbYiiiKqLPLdzN6lUElEUX3i4ce7hFfgEQYCiKAiA49gosoznurT/fEU810NW2sZPnu++8NCTJPkszVikVCxjmjFEnBeyP0NBQFRUVFWjsJynI5PAbVbRzrpBmqZFvVonnc5gGCaO7Z3VSUWQFIeurrYLoVs8QmBX0BNdFAuL7N27k57uLIoWRVZC1q5diWXFcVwXwzARRQHHbaGoMrLYdmVuthwM3SKgSSIZQ9NkbLsBIrSaDUxLJwh9RLMLb+oRZLMXIgmQZELfQRKgXq+1qU2eSK1WJR5v6087OrNYho7rOESjMRbzRe75wb00Gw16eruQVYXB/kFSqRQL8wtErRixaBzXbZJJZZBkCd0wqdUapNMZ9u7dRy7Xie97RCNRYrEYszPTqIpCNJLmO9/5DmvXrmV+fh5TVVi9aoxkOkGjVScas6g3GyRTMerVClbEwvWarFu3hmazRRjA0uIcqiKzMD9Hd1cXiiQxOXGCWNTEsVtYlkmj6RCJRCmVy2SyacxYnGjUwnNsCEAMRfY8v4v+gX6EUKRWa9DVk2H16nF0XUORFSSprcvxg5BYNIYfuGepxAoPPfggI6Mr6Ovr59ChI0xMTLJ69VosK0KlVkSSRFRVadO4VRlNVajVKuQ6MthOC13TmJtZJJPuIAh94vE4YShwZmqCjs4cktReIdWO1CiXy7irEwz09RGEPnfeeRcrV46jKirh9JNI624itLpRjAhWNIMoqegLTxCEIdkL30YsGgdBYNu2bXR3d6PrGslkggcffIBcRwpZEWnZdZqtKp1dGTRBQRAFUpkstu9jtwrsP7Cfvv4hbMfDc8E0zfZn4/tIkkRffz/jq8cYGOpHURV+9tQuVq/fQM126O4b5fDx0zz66MNcsuMiioUC3d29iKKIbduEuPT0punu6CdfzDM4NICqqziODSFts7IgwLFdDE3iTW95I6lsiu6+LlRD4fTUGfqHB1i9fg227xBP6FxzzdUMjwwyMXGUdDqFosh0dnYQhgGJRBxNF9m2fSvNVg1VlcDQsQyVVr1MLhXDFxtcvGMTZkRFUUQcp0kunSWTzvAXn/0sX/ibz3P51ZdjWSZjYytRFIW+3n5m5ybPLjQpCIKILYjIqkQ5P01HysB1XZ545CEIfOKxCKIQAgGJuMWJ46eJJzoxoyqNRpFKZQE/rGJFMpw+M4329BFkWeH0QAZJlklnsjz8yAN86LffiyiFBEGAaRisX7eeTRs20LQ9XLdBJpskHjdRNYums0QqraLIUVIpi+7uLm666T1Uqy1GhlciqwGOZ9OoNnCaDpOn5klncoRCgKQGhF5bVnHsyCnGx1bz5utvxPNrXPKqy1A1gw//9u8wM1Xi4IHj3HDjG7n0so287Z2v5cjhI8QiXQgoKJpNy2mg6xqNutM2RJTbGrVkMokkSYiiSFfXAJmuIcxUD/XQxEolSVg5cr1pHrnvTtJdg7iuj2lGWFxYQhAkZFmht2eQMAiYPHWCO+66k2ajRV9fP8v5BTo6s4SCjCiA59rEY5F2tjZt85elxSVOTuwjEjUQRRlVsajXHDy/2s5flgREKSBmJnn1a68jlohh6hI7dlxKLJ5gxcoV9PX3sGnLerzAZ3mhnaPdsG0M08C2bXp7e3niiScYGxtDAJrNOhHLQBQkqvUZevv6kKUE+GmarTy6GUFSFAg9ZqfPIBtR4skoMi6G5NE7NIokq+i6dnbBVWRxYYGIkSUR6afVkHBaLroWkoxaBF6RaLqX2dlp4vE4mXSOvXv38/a3vJGPfuR3OD1xlK5sB9XKLIIo4noiv/Phj/KG67eiaCqKnKAjsxJN6aQeVBClkFBSUa0kMi6lUhNF1TBUHd/xkBULTY8BIoYRoVhepLuni02bNpDJpDA0UKR2o5yMZzC1GLVG26TM0KLkF+sook+j1kSRRHyvgRtOMjyyAseWyOfn0CIOJ07MIIkCl1y0DVNXMFQFwzSo1otsumAtjlthamqCUmGRvQd2M7ZqhDNnDpLpTCJrLpbpU607RKwY+/YeQteNtjaTJtXleU6ePMxycZ6u/pU88OAPuXLH5eTnTzFx/CgdHTl0K4JuxQhkleeefobB/hFKxSqF5RIdvV0IiOiaxre/9XUuuXQdzzz7JBOTE+Q6O+no6MCuu3z9698mmekgFsvx1M8eZbBvkEwyxTvf8U5kReL97/sNLr/8Kk6dOkV/3wB7dh7g0Z/ez+Wv2koy3nYfN3WDeq3BpTt2kMnlkLQoP33sMcbWrOWq17yWTDbOylVrUU2D7972A6anlvnEJz7BwsIyAjK7d+9j/cZxZEkkxMU0JSJmHz39K/CRkXUV1dAhdIlaBv39OWIxHS2lMbU4Tc+KHkr1BRanZtFCidmZCXKZBEEgI4gBYigQCgKBoMB5es+XQ/5ejnr8SvvDsP0cfHGDec4D5Zfq/uCXNbP/3jhfX/sKR513/PmmVa8878s1p/+W7vYVTvuy84Zh+DK+uS+nBX7pIf+3ef01Nq8vx8s+nzv+H9LC4hMGIt7+B5AUhRPzZU5Pnmagf4gQBVmPYJkGSCEEIposUslPoaltYxEEmJuZJpHJwtlYhIiZQ9N1At8HwSUWT1Cu2SSTCR64/ycU88tELIvN2y9BVVUkUUASRVTZxPVqlMp5SqUGlVKRRLKdxShLEvv37SMajSGKIrquc/DgQRLJRDsvMPRZXl6iVCoSS6gcO3aEbDaF47WIxRPIioppmniBi12vEIoiumHSmctRWlqgVKlx+vQkqqLi2A7PPvMUl77qcgRR4c4772Tz5o105johcIhFDArLRVLJOLW6w66dhyhXGiTiCr4romoqqi7j+yKSJOB5HrVaDdMw8QOHwBcgCNGUkKPHJ3jqqSdZu24ttVoFQRB54P6HSJ3V3ywvVUink5imQb1exzRNbM8jDAJkMUSUxTYC7gfout52cZMkQs5GCOn6C0J1SWo3zZ4bYNsOP/3pT+nvH+Dhnz7CiZMTDPR14gcgqxqi1DYqUhWFarVMxNSRxBBFb8foCGFwNkoHggCqlTqmaeF5LqqqIUsagiAjzD2BW5rly7c/wxWXXUZPdx+KpCPIIghtCqEQSgSCQLPZpFwuk0wkyC+180d916NQKIEg4joulhkj8IV2NqIqIckCoijhez6qmQS3CrYH8TRIMo1aBVmWqdVqJJJJNMXg9tu/y8aNF3D40CFcr8nkyUky6QymaZFIJkmns8RisbauRJawTKPdLAUhruexsDBHKhFjKb9MOpPBdhz2Pr+XsbExurq6kWQZyzTxPI9Cfpmuzg48z8N2fPr7e0kmk0TjURQx5MiRYyQzGVRNJAw98vki9WqFMPDp7OpC00Q0Vader5NMJohELAr5Al1d3RQKBQgDWs0GmWyaaDLBd267jQ2bt3D33fdQLJVYvXo1TaeFKIiosoxpGBw6fJhVq1aiyCqEQtsITGmbNQli23TM87wXaNztbEyQpXZu2vBIO9pJFASi0QjdXV3cf//9jI+PYZgaQeCjKDKCKFCt1vFcm1q1TDyRQJCBEKJmglqtjqqpHD9+kr7efrIdacIQVE2mXqsR7i204zzWphEED03XGB8b57bvfI9Vw514C/sRt3+KZ595lo7uAQ4eOMLuPc8zxDEazRrV5FY0zcCyTOLxGL4fomkqjUad6ekpOjo6EBCJJ6LU61V0Q2H6zBSmHqVWb5LJJSksLbBixTg3vvUdvPWtbycasxAEgeXlZdLpdJsGFvhEohYhAqIk0T+0ghARWTEJBYmuni5EIeThhx7jzJkZ1q3bQDQWoVwpsLS0SDaXopRv6wNNy0SSJU6cOE5s/x14p57FWHkJzUYLwzTI5jqYW5glEo8gyrBibBxFV3F9F83QUJWQz33uc6RTaVavWYnneezavZOurk44q5923RampdOym3huiBfK5BemeeDHP+SZZ55jfM1F/NM//Sv33nU/H/uDT7J908Ws2zzOZ/7ks3zsD/+QD3zwZnRL59Spk/T19VMu1/jBD+7loos3oyoGhqHjeR6BIOLbdXTRY256isJynnXr1xNLJMkvL2OqMktLSzTsJl09Q8haFDG0KC43GR4cZ2lhCUVPkM11IMYieMN9xMdXk07F0QyF1WvHiCVMyuUS37/z+2y98EJKxSL/9N//kYsuvhLPb2CaKlZEB2Radhnd0Ah9HXBRVZVvfuM73Pq1W7nhxhsR5XYDnF9e4mN/+Ae86Q030XIa9PR207TrqLKC63qMrRzjissu53XXvY5MNkIkGUNWZCqlCs/vPkqz2SSVjpLrNFnKT9PTM0DUyrKwMI9uQj5fRNNMVNVEEnUEKUTX9RcKT1EUcTwBL1SoOwHRaBxJcFFFk5lTR0kmLWKpPhKJJPVag9nZeY4cOUZnRy92q53dncslWb9pI6qisbycp6e3k0jUBFElDB3mZqfIpnO4fhsRbjbbi3HxpIosawihhe+JLC4uMjt9hsX5JSzTREThyiuu5KpXv4ZUOkWjVqRQKmNFLC7ecQm/9du/STQaR9FEfNtF03SMSBw/cNE0jZmZGTRNIwgCVFUi8AMmT50i8EM60ispFqoUSou4YZFUIkvL8QjFEFWW8R0XLRJBV1VOHjtCvVZCi6eRJZ2FmVl8r0EgzuP7Lr09PdTqC0ydnkZGQqKI32wgqwJaJIuqyWcpnBCxYtz8zrdw5Oh+hgdXYUUF7FaFIIR4IsuVV70aRegiYmXYd2A3saSEoFTwUIGQeCyBG4ChRjBNg8BzEQgplOp05LpQJYFavcaZmTliMQPbblFv1NFUjfzSIqqi4NgOH/7tj/C+93wIRQdw2LN7N309Iwhhi1bTR5YNIhED1TDY+cwJrr78Bu64617ecP0NDI+MoOsyhiJRys9jWRGCMKCzK4esgESWzswgF2+9gltu+Vs0LUnMMvju9+7jnrsf4KrLr0JWFaoVm5GhNWQyKWy7ieDHOH1ills+81fcfNNvkOlOs3bNCKEHktRi68WXYVkWpXIVWVVoNZr0dvfxV5/7W2684a089ugjrN20Ht/1kcS2QeOmC0YZHVlJKpUlmc6g6yZ/9qlPMzQ6zjtvfh+PP/wIuiSxetUqqtUSBw/vZ2hkgBUr17Bxwxquuupy5vJF3veu9/GpT3+cbC6Jpikszsxz+NAh0uksxUqFH/34J2zcvIWLdlxMiIikqGi6RkCZqZMLXHPN69lx2RiSYjM00kkkJrN+/RiVSpVsOkOr2aBaLXDT23+L3/393+Ojf/AR5hansL1m22E8Gae3t59q3Sabu4h0bi2+n0JTs+hSnagZpyuXYO/up9n33F4ymRiJuIHohwSySei3ZSPngIlzOtdzNXzb8OgXNONztf655u38XNZzjd0vo6m/0LH+Yv5XZmi+uKd48XvO7zteqaN46TG/nLTy4rlffF3njxebU52b83y0+LzTvvRM5/VH0nmfzYvf8+Lm9cWI8P9tXv83Ia8vJ3L+j8/htaOODzyAICnE+lYRiURxWjZGxKRaqyGrOi23TuiGlJenEIQQHwUvVIhEE8iKiapHcJygHdguKTSaVSzTpFhaQhA1RFkhHo/S2ZGhuzNHf18vkmqRSqZQZIlyuYQktwH705NnkFWN/oERxlatodls0Gg2GRkdpZAvcvToUSRZ4smnnmLNmlXUalV8vx1obpoGkYhFR0cPtt1upALPw3M8VEXliZ89xtiKUUwrxoMPPQq+h6koRBJx8st5BgcGOD15mhUrRlB1E82wOH7sGJs3jHPowEE6u3Ls27eX0dE1eG6N6Zk5xsY28Py+faxdPci3v3kX6zaspuXU0DSTIPDxfJdYNNq25MZHEBQmJyYolxYZX7OWLZs3sf/AAbq6ernttu9xweYL6OnpRJCgUm6RziRQVQXTNNvOighIkkDotpBVDS8E+UWrba7rvmDmdC4rFto0CddzEQUJAZFm06a7u4eR4WEGB9sr9q7n47k+rXodKQgolAqoqtbeH4aIooQsQa1aRtV1Aq9tsFMuVXjqqadYWlpiaGjkhSxTf+kAkiTRv+5KYokoiOCH7RV8AQm71UJVRSRVxzQsJEGhXKqxZ9cuerp7sSwLK2pimBq+2y44JVnEO0sL9zwfSWob1EiSiC2nEfKHCRARIkkUWaTRcojEE4SChGvX6R/oZedzezk5cZJLd1zEiROTKLJCIhHltm9/k81bLyQaiZxFvjRcpw60aTDVSome7hwLCwvIsoJumLRchzWrVrOUX0I3NIrFAtFIBNdzsSyL+blZotEooeARhj6mZVEslmk0a3T39LM4v8SJo0cwVIWunj6SsTgH9h+kp3+AZr2K03LP5ve6+IJINBanXm+SSqbYv+8gvX19aIbO1MwM27ZfgqSoSLLCpo2b8H0XVVHILy2xtLBIIp1CjxhoiooonM0ylcEPZMJQ+AW6T0gQBjQbLVRVRRDBcxweefRR+vv7UTQNz20iSe3Q+4MHDzI8MgQE6LoGhG1NtmoS+C7xWAxBlAkCcB0bVQFJknHckAceeIhivgKEJJMp/MBBURTM4y0UVaM1HkMUvPbPXJTxvJBupcjhJQVt+Jr24pXvIYbw6IMPclFPFVWRMVa96YWmQJJEGg0bw9CRJJHPf/5z3HzT+3n9697IDTfcQDqd5OmfP836LZupVVtkkmlmzpxC1yx+8IP7uOWzf4FhSiB4eF74AvrabDaZW5zFtCL4QTumqri4jGWYKJKE02qQSccZGBjmk5/4NDfc8FZGRodpNMqYpkUqmUZTozRqTQ4cOsDI6Ai2a5PNZrBPPM3u3XtIrL2CmelZQl/EsKLEk0kESaRQKuK77UJZOEuWqldrBL6Eppl8+V++zIqVw/T19aIoMpZltp8jehTHtYnH0vzNX3+Rr3/tVi7ctIEtmzexeu12VCPOhnUbuObqK2g2irzxdVeDIrFq5Vo+//nPsW37Bjp6uiAUuP/+BxgeWsFXv/o1rn3ta1hYWCSRjOF6dcJAIKYpHNy3j8EV7RxgFB3ZjFKpVpDEkGy2D0GU0CyTeqtFvVrEMkzCwEeWA2otmJ2bI7V2FDuVRFWjOM0Wqt6OCPP89u/b6OgIIgLvf9/7mJuZYXBohK7uNJIsAyJ+6KHrMUJfR1EkFEnBdUM2bdrIa697NaLkt59LgsDJY0f42B/8PsVyi2arQSzWZh0VC/PE4lHC0GfrhReSSiaYmDjM0IoVeH6ALIhMT7dzcC+55GJOnTrBqlVrEAUNP6yTTMY5fuwMvT2DCIJCGIZMT09hRkwURWF6eppsNtsuSv12PrchOeg0mJ+dRMag0SizsLxINJ4l8EPm5xf5+Mc/yQc/+EEkSaNSqpFfXmRoqJd8sUg8liCX60CSwXFbIMpUq8tk0kkkQcEPbSqVCvFYEt8Hzw3R1CT5pSqNepOOzixxK44sqXz6U5/BacFb3/YW1qzfgCAJRAwF1TBwXJtrrrmKsfFVZzO4pyksFikWK2Q7uvH8FrVajUgkQiqVIggCNE0mDH1SyTSKrBAGLoomEomZhEJI4Mo4noukiPiujxiKRCMRwiAkGkkgKRaBKOK2AkxdY3lpGt3y6cquYGZqjqXlU/T1jBCL6lTyE7SaNh1dA0h6hDNTk3R2dlIuVfndD/8+73v/u4gl4kQj3ZyeOYxTb9FqOWdjVOK4vg+STyoTQ9Uljp04xtJsg2w8QaNebhs8igbzc1Mkk3EOHzxILJHBcZrUq3nK9Qpd/X34ToDrhjz44E/Ztu0i4mac5aU8/f19ZNJZctkOSrUCVgQajQrRaBTVNNlx6dVcdfXryHR24AU6QhBwyy2f4Ob33Ew03QG+g65IzM2cYv/zuxhZsZJKtYamGSiKjoBGo1ZnsL+fFWNjzMzNErVkxlZtpLOjm3QyTrlWwrKSnJlcoFwpEOJTKlbZt3MX73nXu0gk48TiEvMLpwkDGSdwyfaOImsa3R1ZLFNncfoU0USSi7fv4JFHHuauu27j+htvIPTbWt+OjgzDw0M06g6SpPPwo4/S199DcXGBS6+8GllVefCB+1i7chXpZJIjxw6zbsMaNE3ho3/4Me743jcYG19BLJNhy8YL2XbxBUxMTtJs+oyvHGVhfp7BoWG6envo6OwiFjEgbJuJ6ZqG1/J57OE7iGhJMtkss/NnSKXSRCMJmk2XaqXJF//L37N6fB2GblCrVrn6VTu4+aa30nLKRCNt4y9JieJ7PsVihXS6h7/9uz/l4su2sGvv43R26iwUq0SjnZyePMJgXwcr+kdoNorc+s//lQsvvJBQMl6i+3wlmd/5brgvbtoEob3I/Iv/2a/QHwi/jLKea15fiYr7UtOlV5j35TuK816fbxL7izr1/Mb4fBDu5c5zvoHV+ad9JUMpQRBeAHFe7lLPR15fMGz6X2he/w82bPqFtrVtDf+r3Mr5mthX3s7NKQjiS1YIzv0i/nuo6/nHhoGKzNkfmigQSSZRrAi+BPmlGQzFQ3LLpCJRLFNB1S2imRwoFqoWp9kKcD0Px7MRRA8hFBGFEFHwcFwH1/fRdRVJFag1GyTSGWLpJMdOn0AIWxC6JOIJRleMoRkCz+87QCyWZWzlCI7TYG76DPue34OmaYiixOLcEhs3rCEMJGRFw6+HZBM5HvjJI8hSHMeJ0qx62C0fSdQQBBVZinDiRFsHuHZ8FaVyEwSVDeu30N2/kgMnplEVkYsu3k7L9eno6Wf/gSM8/dQz7N+9h56uHM88u491G9Zx9OgRLth+FbZo4PqwavV69h3YQ19vL2hJarZNo9HENCyCMAAhxNBNSsUCgd9EFEW8wGF2vq2b9YMFwrDBtgsuJGpo3PS2NzB5+jCiIDA9OY2mthAFAc/1cR0Xz3X5yb0/QQw1QsnCth3E0EMIIETB9UJkyUMU/XYer3B2JSkAL/CRFRFJ8hCFFmvXr8T3PfbuPUCtWkdVNI4dOcE3b/0mZiSGbFqkU51EE23nxlSio40+eC7RWA7XDgGPWrNCOpviimuu5FVXXEbDdahUSjSbVZAEgsClr78f35UIAhFJ8mnWyziegxGxCMIWTqOKJITUaxW+9e2vs+NV2xBVhUrT4/FHn6ZZbpAvNXDDADcMsAOvjdKpMp7fwvObhLaPIptIkRxC6TSC02Ipv0Q8FkeVFTRFQjY0Isk0azas4eb3vpMnnvo5F164mcNHjnLy5CRve9vbsJs1YvE40XQaLRIhkekESWa5UGBwaCXLBQfXDUgkogQ4ZDMJFAWilobdKIPfJHArGLLA3NQ80Wg7+1U3kmRzXRw+dJhsJkNHLkfg2/T3d6GoOrIeIb+wjOP6rN+8juWlPEcPnqHZcBBlmQAF0xCRZRlDj1Kt26zftIFYzGR5cYmujk4C36NRL5JMmIiCh0h7BTMAekeH8DwHDQFfEHDxaXouSBq3f+f7iGFAtboMtE20IMSK6AhCiICIqqq85ppr0FWFwLURFZmTxycRXInr3/R6jJiIJInteCPazryqBIpioKg6guDSrC2hiCG2G+KLErKu8O6b304yGaG7q4f5hXkEX0QIZFzXo9Vo4DbrBL6MLLUz9hRZIyydZOTS91Cq1bAsi/JSk3Qyyqf+9CN8b3YD4o5/xG7Uee7R+3jXm17Lsb2HSEQilJbzlJdLfPOr36Ili9z9ox9g1wpg+2zfdgWh6xCNRimUKiSzPUSyKd7x3neDLHF84hReQBu9kjyabgVFb+M6gu9RWVpE9mxi8TRBKFGr21SqNgcOHuf7P/gRd/3wbkbGhyk3qqiaxMkT07ztxg/SaghY8SwrV65HQMHUdHzXQVUVtmzZQDyhMzzSTzKdYs+eXbTKZYRmk5ljx0gnY/iOy57n9uLbArquc/mVF7Fpywpu+YuPMzK8mlQqg6rKuK7Pzx5/lgMskKoAACAASURBVEJhma1brmBhvsDb33E9//B3n+Xee+8jFOLc+JZ3Mzs7T7VR4eldj/Hmt12LGgFRlkh3xti2/WKuveY9/OyJg8TjXbzu2tcSMSQ+/9k/RVYMujoT1MvTaGGdlKUhShLrt1yIpEqEYgRLMTjw1BN0ZzrxQgNJcPBdlyCU0SNxrERAsb7AcrWIZCZRTYHRsVEaLZ+ZuSUEWUBQVSrVJq2mTeBXEAUHQxPxA4cvffmf+R9f+wobNyXJLx9FcrLYtQb/8sX/Fy2wEJBx/Botu8q2Cy8nDNoOyIFr8o0vfZuw5bNyvI9yax4rG0GPSShqyBuvfQs9PUlcp47r+AyNjHHpFVey++AJXK+C71VQ1Rh//Mk/4bLLLmN2bpqIlaRacVDUgF17foYgyKQznW1jpkYNVZXp6ekgFosgCCH9/b24rs0tt3yGnz3yI+Znj+IGUaotHSu5CjGsYIl1hvv7iUUCXK/EwPAAH//oR0mqOo8/9CQ/uufHPPvss9xx1+30ZDQWF4/hS038lsdP7vgJhVNT6Jh4vkRLCPBFHduXefKJnyM1y6hKlCNHjvCt73wNVReYnZvm69+6g/seeIIHHn+S17/9enAgoTv8/JG7sRsuut52vl+3bhOaJtFo5UnGO9m4cROrVo3RbJVxm2fQNBfdUinOT1GZOUmIgxDqTE/NoWgepeoyk5OTaLJFtVBB1JqEQQvRlVBEC9PKErREmrUGiBqJ1CDpeAJFNLHiLUZWjOJVE9i2xLP7JulMdhMU9+G2iohylq7eEQ4e2kfeXiKb7WNy/zJxI8XXbv0fTE5NokSj+EqJjniSetWgaft4YZOW42IlTLzAAc+nNLfIqv5Rdj6zG0nWqFVLhM1FHn/8cbr7h1gq51mxfhhLt2k5ZZbrLXQtyuyJ4/iCRK4zzVtueCNnTk2yf/9xvMBnau44x08eYev2rchKBwvzPj2d4yTiGRp2wFe/8XU+9smPoukKKdEjGU/QkltIqk9QlmjV5qg3KoRqjDUXvYbndx9ADBxOHHmemYnjHD60hz+75ZO8+g1XEYo2linxzM+eoFXNs7A4RTlwMbQcjtNiavYg6XSC7dsuoVJd5qobd1AL8+zeuYsjh47yx3/0l7SaPrWyTBh4BIFPuWYzMVHkxw8eatPe0xpmGEVVcyyePsHrX30tLafAuk1rKFQVBNHAVGXedN0b+cLf/DNvevs7GFkxTC4V5SO/816OnZpC1lLMTBXxWwUCZ5pTxw7wiU98BscNMLWAC7dfyR999F9QdYtULsepxRnG11yMqpiMja1CVDI89tghJCdFXy7Pb73jvaxccwWvv+Fj/PDBR/jq175OxNLIZAY4cXiJqNHBx/7wo/yn3/8TfEFh60WXE0sO0jPYx4qhToayCZKpDpqhzvLcApouE4nHcNH4vT/6DI1ayKaxCxGCOIXTHobaIJNOo6k5dh94hkhiiDe/47f4+ZOPItdOoHsiIOLLAT5NBLHtUxLiI4ghotSOm3lx3X4+FVaW5Rfowucjri/E8IQiYSBAKL6wnWt4zzWQothe5PvF1h4vjvIJQ4Fzru3t3eLLbMFLNkGQEATpJfMKgvDCdZ+7zpe7/nP3hSi8sEmK3P76/BGEiAhIgvjCJoQghCAiICK8ZB5E4SXfP/f+l/us/6Pj/xPI6//qzf/q45UFzL/6aL/X3X8/SDJyZghRlEglU1QrNXRNp2WHVGstKrU68USCarVGIpFDVttZnIocICkmgd+mC7qujSQqbQMfXCRRwm3UiRoarXoFwWuRjBqIssbc7AyiKDI5eQpJ0TgzNU9ndx99/QP0DPQjiCIduQwH9h3g8OEjbNy4gYMHn2d2ZpbXX3cV+dJxVFVgeHiIQmmR4yf2YBlRnnnmGUZGh5EliYWlJQYG+pEVkVgygWmKBHhE4waKGtLf19m+53QGwzTp7OqmqzPHkcNH6enpIZfLMDw6zsmTE2iqSk9vN8/v2YWmmSznl9m18zmufc3VeMCOiy7GdWwMo20oReDguj5WNA6SRKteR9Mtent7qVUrJGL9iJKEqoXU68sEocPw8DiNus1DDz3M1gu3UavbKIqK7wc4jsPatesIQh9ZEs82yCAS4ocBsiQiCYCgEvgh9XodRZGQ5XZ0juf6bcv8EGRFI/Dh6Z8/y2OPPk5XV5bVq1azZcsFqJpCqVREUzUQBQLfp5hfpl6vEwQuR44c56c/fZgtF2wkEokwOzvfjq2RBTTN5KmnniIaiaO3JvF9jwU7zTe/8S0MXSeXS581kZLxgxBVlkBo6+SCQCCTyRCPJ5FlnVKpTF9fNycnjvKje+9l5YphVEUi9NtaX9u2kSWZMJDZt+8gfuCjagaSU8WXAqLpHuyWg6LI1OsVZEVDkVUikQiB7zEwMIDntejq7GJ5uUCxWKKntxvfb1P4QkIUUaBWq9OR6wDg0MH99PV1YUUjLC3lWVzM06g1KZUqdHZ2Mzs7TzzVRnoNM0KhVKBlN5mdmSWbS2GaOqVSqa1nDEEQJTq7uqlUqkydOd3OujQ1IlYcgPmFGWRFRBQFKpUqhhZpP9h9h3x+nkQ8ThAEhEC1ViOZjLUpfqJIqVjgzOnTjIyOEIbQajln/wEF/E/23jvKsrpM9//sHE7OlUNX6JwjTWhpcg4OoRtEkGDAOKMjODiKImN29KroOCBjxiEoSEZCE7tp6EAHurqruivnqpPTTr8/TqMMNt6Ze39/3Fn3vmuddapO7ZN27XXOfr/v83we27LRNQ1V0ejs6EI3VBRNRhRrUVmKIpHL5WuT16Ne6x07d9LU3MyRw/2EwhHCgRjpTA5D92Mf3WeC4GE7LpIkk8tmUdUaJdrzQDNMMtkCmm7guTaC64AnUldXz9j4OIlkHFUVmZ6egcEijiYwFbYx/Qa6oeI4NomwiTW2iz/mV7F+/TpmJoYpVly+/d1vsHbdGk486T0c6u2nIpRpbGzk1NPP5+prP8a+/Xs47YxTyBfSTM+OYfr86IpAz4F9CBKohoqiirgONfq6CpZjoWoaoiATDJqoqgqIWFYVTQlgVUSCAYNCIc++PXvQNJWqm0cQLUTJwh9QiCcCLJu3mpnJSVzLYrh/AMMX4Jmnn+dDH7oB0y+zdes2OjrmMDU9jiB4BAMBrMOvgiBQiHTj2hKiKBCNRgmYIV56cRvLl63FwUFVdRRFxbYddN3klVe20dLSRrFYRtdNwKJqlZBEkfq6Bna+voebb/oczzz7OOVKnob6Rg4fHuT5519meHiMK993NcVimc7ODoK+GIYaJVfKYlc9VixfzqWXXEJja5JCIcf9997H6lWrUXUVWXDBc8jk82TyJVynim6YKKrO5GSWWCKC6NkYpoYkSZjBAFMTk0QTdTXwXNUmmx6nob4Fvy+IKApUqlVUVUXedZCEBVm/gl11EUUF02fiOBaea/D1r3+H7u65hEIhDEPHxea4tedSregsX9PKl2/9Kp+9+SZuvPFDWE6JTGaKj974KWwnj6KKDA9N0Nkxh3KlTDgS4/DhIeZ0LGZ2aoYvfuFL3Hbr7UgKlIrVWlam4PD+azbR0dGN328yM53BMIJ0zGmjsSnFvPkdCIKD6VPxaTLBoB9R8KPp6p9UQuVyGb/fj+06FItF/H4/kiTV6NHVCeqb6pDVMLIq4PebZCaHyGezhBNJHFdGVgw8TyPsD+NUKzzyyLNcufn9fO7mW7jlHz6P41YwzBC67mfL0y9y/nkXMDg4RH1jE6Kk4CHglxUkSSGZqq/lNZsKU9MTXHzRRRQKOa6++mpEyWDuvLl85u8+hkCRkYERmlobSdal8AdieKKLbTts376DcDiIpqvIsk5/3xFyuTyxZBLBFWp+W8Cx8vj9OpovBq5ELBZkbOwI/+O79xAKNnLzTbfx3os3YXsWuuZDEAVE0aVcyTM51YPug6mZEXSzBoRxHYdDh3YRCcXYt38Pqbo65nTNwbPS5LIThJIdWLZEOlsknkqhaAE0ycfJG07nsSce5aL3XsQDD/yeru5u7GqJA/t20da5BEcoY9tFXMvCr2lMT4xjBnxkCyU000dTWzu+gEHVqjKbLbB04SIqxTw4Hv29g4SDYURJp7G5g8xMmubGZmTJw3PLaLKEVa6QzZZpa2vB7/PR2TGf9115NaJWxPTZmH6BqlVANwMkEkm2vvIq0WiY+vYSDz+0l3/7yWOcf95JjI5tYWIix8svb2XRgqX0H+mns3MxlivQ2NyB6Y9RVx+nri5JfUMKVZNJZ2Z4fdce7vrpz3FdmxOOW0Uul6VSLTFnzhysqsCFF17KY4/9jiWL1iGJKoZu09jczIknnsSP7vgXrn7/BxAEmZdffImmpnpCQT+PP/YIJ29cwcz4EW6++Rbu+8O95LJZNl9xPcVShlg8gSgZvPjcFp55+imamltZvHwZIb+G40GxVKRczLFy3Upy+RzZ2QKdc+ZSyDuYZph7fnsfluWydds2Fi1I8rO77+JvLrqY/bsGuOtndzDSP838uV30HTnCWedcQnpyJ23tAr+95yla587nzru+ydjYAU7cuIqFS+aiyRoBM0I0GieVirN4yXy+/Z3vsXHjBj72iY+wZ8/rRE2X7W/spa6zm8GDb9BZF0D1BaiUi+RzBTTFJD0zykBfH4KgYIai+PR6csU89fXzufPO+znjrAspFKdwXYuQP8KLz2/liUd/QUdHC6YZQ/ACIFh/cT4vcOyp7DHP5N9Fenusv79z27+ceR3LnviXEKS/rL+UCb/ba31n1uu7vU/hGM3qW7e4rnvMzNt3edJjvtR3gqPeXv/Xyob/T25e3ykHeKt5FWOtCIKIKEiUCkUEUcZ2JUyfH8M0KVdqUTq2W1u9mJ2doFzOIyk+FFmiWMyiagquLeAh4roVypUyiAqIEj5fEFVVa3ReSSI9O0smk2HbtlfpHxinq3MukqIyp7MTzW8gyTJWpdYMHzzYi2WX6OyaQyqeZHZmlGSyBdNIkc+KeI5ET08fi5csrMFoBLCsKsFwCMe18YC9+/bhWjayKtf8ipUKkihiOzVOWbFYIhaN8sbuXaxds45INMKTTz5Oqq6R3t4+ZmdnaGtpoqEuTrkqkMtmMHWVaMRPJl9BwCIcioIngWgj4aEoGoKs4LoehibjIaKqGqLoIUkGheIMkmLheSKGFgURZEmlvb2T++//PfvffJPh4VESiQTRaPRP0y1ZrhkIJUnCsivMzqb/dJttC0e9wSqC6OG4FgIykizXKLyShGW7CIg0N7Ww7rg1hMM+HMdFVmQkSUBVZPKFArKiYugqpqESiURxXQvD8NPdPRcEi2wmSzKZQpZlHMdmbGycJx5/klSqjrg0iSiJ+JtWsnDhQlpamsmk0wQCNbmUYZg1Hp1Ta7SCwSC6bvLkE8+w/803efmlF1mxYglNzXV0d3WSiMdxnFp4vaQo2LaNphr84ue/4bjjj+MXv/41a1cuQ7SLOPYMcqgZ163tI0WT8Lzace/YLqqq4LkuguARCofI5YoUi2Vi0Qj79u0jGAggijJOqYCqaYyOj5HNpJFlAVmR0FSD2ekMhm5SKJZrTd3AAHV19ci6SqVqoeo64XAQ8NBUlWIpx1sha7KqMTg4hC8QQNN18vk8iUSCYCiEJEEhX6avr4/W1mbC4QD5XA5dM/H7/OB56IZCtVoGj6P+UQ1N1XA9F01TOXToII0NDYRCwaPkPBlRVpAUreYRGp+gXC5jmj5kSTm64iv8ORhdFNE1HQQBx7ERBJFUqo5KpUI8HkeWoFItMzY2gumvyTFnZ9I4jo1pmMiSyosvPk8ikURRFBRFxXJBVQ1+9Ytf0tbahICD60r8+tf3kCvkEKVaxm4gEOKInGXrzAG6urrxBQwsu4ogChTH9qME62k88VpiIR8DRw5x9y/u4Z+/+x0mJifw+YL87Ge/4D2nvgdR0Tl8ZBRVCTA2NsR5551NMGRQtXMEfWEURSIcDlIo1iin4CJJCp5nMzo2gG1ZhAJBREHEsSvYVoXDfQOEAmFKhSrf+86POXHDGnRNJRQMkkjEOTIwgShqBPwRDvYcJp8r89ADD/OpT36SG66/nnR6lqeffp71x6+jriHOrl2v8fgTT3LqqRuRlZpkW1UVrL5XyeayhBa+B1kyECUPy7J55KHHKBccGupbEGS47trrOe+888jlskxPp9m/v4fFi5dgGH48HBy3ytDQYG2iPJPmYx/+e848+1TmLZhDIGhgVwQWLVzG+vUnsnz5SiIJHU0HXReQjp4UyKrG+993Lfv27uXuf/sJ7730XHRNIxSOMTs7i6opVAozhCIR3th3gFRTO30Hd+Pz+5AkA8eRGBg5jGtXqVaK7O/pIdFQj6mZjE9MIkgyouARDJhIgo7rwvBwP/WpBgQE1Lv/gHCwH+20dViWzdIly7niiivwB0w8x+B3v/s9F114EYahYVkVZmZneXVrH1/60u2U7WEuu+xqbvjQdag6lIt54okosqziCSU0XcZnxFixbCmWZXP6aedy509+yd59e2htbWPB/IVUyhWampsoFi3OPvtszjxrI5ouIMs+vv2tf+Z/fO8HXHnlZhrqU3zjG19j1eplVKoFQqEgfW/uobm1BdczUdTa1OMtj5vruriex8jICOFwGNu2sSyL7EQPQ2MjtHYsplIpk50Zp5hNE08m8USFSsVFVX14gsJrW1+hLpGgbOWpb0jS2dXKtldfwO8PEQzESE9nMXQfVdvjhRef5+mnn2H9cevBgzf37GTfmz3EU/WMj49hmALNLU21aYwgsXnzFSxZsozFCxcQCigkYj5SyRZm0lPMptM898JLzJnTyvTUNJPj0zQ21uPYFprup5DJY1sOxWoFwwiiqjqS4CBJNoIECGE8z0YSbWTZ4/j1p9LW1k4yFeemmz/NmjXrSaYSzKbH8Qd0+vp6CQcCBEMRdCPAzGwa0zSAKj7djyiI+IN+QuEQ2fw0qgblSgVXDiIpPiKxFA89/DCPPvQkJ524kc2bruCii84nnU3zwAN/4LSNG6mUcrR3NtM/NEUw5MfUVcJ+k6mxSfAcQtEokqbhCDLheIBiqYTPHyIWq0PxquC6eLbIzFSW+vp6TF+EyZksqUQcu1pheKQfWYQ9O3fS1tyCrPro7TtIe/scHnvscTo7OjlwcB+CAIqmY2hBhkeHEUWFgD/AcevX4skKjuPj/HNOYnKyFxmN9jndLFm8hHQ6w6bLLueqa65A1SV0U6VSLaEqEs3NTRSLBRRFRtc15s5fzPnnX0A4FMCzy6iGRk/PflKpenQtxJHDw6xaOY9QqAVZUbj5Hz/C37x3E67r8cLzL3HyyaewZ+9+Fi2ajyR7FAp51q5djSgVOdK3m02bryRTLTI1luHuu+7h5I3r0VSDsYkZcFxOOuEkYskojmAzPT7GyOg4Dz74e1YuX4akQygYIhqp4/O33EZX1xKGhoapq2/g+utvwOcP09nUwKbNm9F0FcHJc+57zycebiSTnua+B+7ltNMvpKu1wsTs6yxZdAXzV3Uj2SXCYT+iopHJFPHrAdauXc+myzdx/AnH0dk5h1POOB1NURBch6aGMNGghploxNWDCLlJCmOHibd38YeHHmXJkuW8+upr1CfDTE/OgmRQtDzqknGmZkc5cmSUW790Ox/+6LWkZ4b5zN/9PWeffSGaHmblvMXs3buHWDyKYeq4HAtQ9L/evL41WX03ENLb6y2A05/r3ZvXv94oHhvQdKzX9m7N6zt//2vN6ztl1H+1/l/z+h/L85wvvnPcfSyD87tp0t9Na/6ffPY/3ec//3r/TDir/cNqB7f9xhMgyRBtQhBryGmfz4+m6/T39+P3G8iCAGJtoifKCrbroGlaDdUv1wLrXfcovdhxkCUJx63gN4O4skHV8vCoRbzkCrUmwbYchgaHaWpqolSogOCRzsyyZOlShkdG8BkGfX29zF+wiAVLliCJNkNDQ/QdHiZVn2L3GzuRFBuXHIXCOO3tDfgCURRFYXZmilDQj2s7VCtlVEUlGotSKXi1xtrzqFYs/v0397Fs5Yqjfk6RTCZDMpFAlhS2bdvGaaefSsAQaW5uwueP8Pprr9HUWM+jjz3J1NQ4oXAQWVUIhVM4TobengGee/Yl6hrDyJKKKCq1Zl2A7Mwkpi+A7Tg4to0ou1SsYm0iKPqplAVkVWRkdARFkZk7dy6r16yhu7sTv98knZ5FNxQcx0Y6CtDxPA9J1CgXSuiaRsWq8vOf/5JIOEQg6KdULKJqGtLR48R2HBDEmqTYBU1T0HQFSRawHAefz8f05AS6rpLL5TFNPwIu+fws5bLF7OwUsWiS4aFhQkENTVWplC0KhTyyImHqKuuPP7FGkZ3egyAIVPR28rncUVy5yMjoMLMz0yQTCZAlREFClD1ESURWNBpb2njlpZe44PzzapMUUUBTFUBiYmKKXC5HJBpHVZQa9VWu+WlWr1qNoSiQHsQpD1E1GhkeHqW/v59wKFzzHQsCgiegKBKlUgmfz2B8fIyGhnqGBkeYmhxnzdo1vPLKVra/uoOp4R4am5tBUvD5/ZQLOeqb2hgeHmdsdIzGxjrC0TjT0zPU1dWRz+cxfH4kScauVinmskxPTZHPFWluaqRSLmEafirlEqlkgnKxiOvY+AwDw++nWrWYnZ2mUnbYtfsN6hvqCIeCaKpO/5E+QqEgU1PjDPQPEAlHmJ2dJRyJks3lsOwaAVcSZfK5ItlsHmSVYDBM38Fe/D4fiqaA6xKLxDB0g8mJSQYGBzAMA8MwcBwLURQQBRnHdcnnskiyhCDJCKKIdNRHveO110jVJwnHghi6jGtXuOc395PLZqiva0AQROrrWhkcHMAwVRA8FFmjUiozNDzM0mVLQfB48fltbDz5VBKJBMlUnAd//wgLFywhFArR1d1GsZhh0xd+xSe+dT8AxzdWkJpP4A+v9NLe1kxjewcnnbyBX/7qVySSdWh7fsKaFgc3voaq45KMx/nyP93Ck889gajINDQ2EI7GMFwZzxUpVMDwmWiqgoDK8NA4lUoVw1SJx2NUKxaO7eDYFbLZWV7fvpuGhiSqorBx48kIoku1UsbUdTzXIR7r4pyzLuKC8y/h1i/8E9u37eaUjSfzpS/fiiSLdHZ20jW3iyP9B2if04zrClx48XmMjg4RjUbe+ibA7d+B7TjccseD3PvvD3LGGaciiiIrli1j9xuvM6ejlZe2buOTn/wU2WyGRDLGli0v8uijj3DhhRfguBauIzEyMkIsGkfX/eRzFW64/kOYfplcLk0y3sBrO/fS2TWPH9zxYx557DFu+8rnWbZsEa2tdUiiQz4/i2aEefyxp7nty7eyafO5uG6WkeFxkslWVFNHkAUkUWBwcIjFi5Yiuh7VSgFJ0slks3iCQKqhCVM3CQSCBMMJRNVAlhSqVavmIxMF8CSq1RpQLhA0ce0aCVd6YSeWVaGwcg7+gI8bbrge3VCBGvTkjDNPw7YrqGpNoWI5sGnzJsygiz8QQhAlStUMpibi03WmZ3LIkopuCJTLVUp5hUcee5jLNm0iVd/IwNAIV1xxMfFwjIDPx9lnnsyNn7iRQCDANdd8oOZtT08TCiUoFQQ2b7oKf1CiZ/8Rvv2db/GJT3wcQzcQJZGAauF4Ctm8i6QJHOo5iKZpOI5TW9TRVJLJ5J/o1bIsE4lFaZrThecGKBYyWPlxgpEw+3v6SCQb8flqqo2qUyUW8eNYeSxrlnAwwKIF82isT5FobOJnP72btctXkKhPkC1niUYDnH7GqZi6ilUpEY6FSdU3Eo/WkZ6YJV4XxPNgYmwWx5YQBYXdr21heKgfPWCALFApWtTVN6L7gnTPm0cuPY2IyMjQGPPndTM+NsLhIyN85m8/jWGYdM6di+4PoEkwOzHCbDZNJlsiFq8Hz2VsdIRCroQRVkByiCUDnHPBKaQSrVh2jtGxw4TDEQK+CJUiFPMigUASwwhStUpUqxkMuYHRkQniqTiSBOnsNKYvgqhEKFeKeK5EMlmP68BLf3yOJcuWYEQ1DJ9C0Gdy8imncKTnCH29R5i7cDEhv4ksKVRKTo2wLwgYpp/hkWGGBwdpbkjhOgK9PQdJRONMTozXTrJFmf7BEcYnJ2lubMRyXBwc/D4Fxy6iGQEMn85sOoOq+giENOLxCILgEY0GqauPks+U6OjoRBQNbMdE1z3GxyYIBIMEAiay0EBTvY/B4WeJxOsIBtdTtSfxmf7aNHdmlrauOE2NDUzPjNVk7ZaOrvnwPJGB/mG+/rVvcdopJ/O7Bx5kz949nHzqRgr5CvPnL6gtXCJRrpR58N57GJuZZHC0n7/920+BC5VKlWSyno9//JNc9f5LCIcMHLvCwJEBXt26nbvvvJOVy+Yyb+EKyq5Ae1sXRw4P0j2vkWjIjytq1MXrOeG4E7hs83uZmBmhKZmgZDmcevoZyJJEsVJC0Wvxfeeffy6yKtDa0srzLz7ND+/4AcefsAFNCBNtDCL7TCLhIpYnE/ZH6evdzwc/cgOSYjI5soPx8RnCocUofpeAEWd6KoOpBxgdnEQSDDRd45JLLqZQyHLffffym39/gHgoiSRIVMszTKWzxOIpSkWLD17/EZatOolSAQRXxrM9UskQsh4EV+TWL36Jyy7bhCa7jI330d3VxQc+cDnp3AEGekdobmmlqakDSTH5yEdu5bRT3sNg/36O9PfQ2rkAy7L+dD5fGzAdu6F76+e3Q4+Oda7/9vu9nUL8zvpLe+O7b/PXmr1jeVzfdaL6jinu2+2M/6EhPVbv9C6P9W7lOM5fNMHi25733ejJ/5d5Xv971DtN4oI/ipRoxxMcPMEBwQURBBEWLe4il55kZmoCWZKRZAnXc1FVFQ8B15Uolws4jn2UNKuiahIIoCgalYqD4lkENAnZqVBMTxEPGuRzJYKBMMFAmL7efkTPRhRsFi7oBKrEI3Fsy6Gzcy5Vz0XSNKKRMJWKbhLkvgAAIABJREFUzZnnXERzxzxO33gl2146AK5CKtGOQpzevj7S6VmOHO6jXCqy87XtGKqK57q8unUbYOPzq0xODVO18lx/w9VouoGqaYQj4aMS21pj3tXVhaoo2OVZhvsPsW3bqzQ2tzMzm2PzZRdz2ikbWbZ8JfWN7UTDMeKxMHPnzmPB/MWYho6i+xAkGc+28awKmiqD5+E4bi3PVPDhN+uRhACi7CBpOSRZpam5kVDETywRwnEq/OjHP8T1HKLRMK7nULUq2LZVi1DxYGR4il/+4tekZ9Noms7mzZfT1t6K54Fh+CiVyhQKmaPTXgHHtQG3hm+XPATBYXB4EFWrNcbRaISdr7/Oli1bcFyXwcEBbKeKKIrE43Esy6K7u/uoJ6K24GD6DKrlEo5TARF8AV8tpkcQCAaD3HffvWiahiQqNDU30N01B8etYtm1aB9ZEXFdC8ex8PlNzjrzDKLhEFu3bsX1JERVxZMU6pva6Jw3H1GoEW2rVoVFi+aRy8xSyGUoWALYFl5+Akl0aG5uZPHipdh27bhXFIXntjxHNps9SosFWZHRDIX5C+cyb+58Dvf2sXTJEs45+1w2vmcdkuSRTCZ4bfsOOuZ0g6ASj6ZYvWolAg7FUpEHH/o9A4P9tWgNUaaQKzAxOsrYyAiKINLW1k6lXMVza951p1pmZnKcoM9genwMu1qiatmAh2GYBANBTj75VAYHR5idznCkb4BotHY89PUdYvHiJciSTigU4uDBg6iqim3b6JqP6ak0oVCUZLIezR8kX65SyBco5LIc2L8Xq2qxa9cuJElmYmKcYCBw9EtQBkHA9Rx6eg7ieR4vv/IybxEL07NpqtUqrucSC7by5t5B8AzKZRdZ0Ln2A9dy1plnsX/fPlzHBU/hjTf2IIki2ewsbrWKriqcdeZZeIKIrJlsOOk9/PJXvyIQCKAoCpsuu4pDhw7XFkNkiMWDtXy8tz6rCuP4Wtfwgas2Ew6HcUQNv9/k8ssvZ/HipQj5Eez0AJqoYVUsfnTHP6OpNfDF0OAQmXSJO35wN6MDY7z0wjYefuwZZNWPIMiUig6TE7OEw3EUWcOpVsjOphFxETwPU1M5beNpZGanqJRnGBs9BNS+0DOZDI7jkM4N8YdHf4OiV/jCl/6OL3zp73jy+Wf54wtb+No/f5vpQpaqlWfV6qW4rsOO1/dw/Q0foLNzDlu2PEulUmFmJv0n4Nrtt3+V1avXcumll/P000/zr3f+kMsuP5+f/eIOFi1cRqVSJRKJkM1m+epXv8IP7/geX/v6V5iaGsNzFfa8cYDDfcPkcxX6eoe4fNPFPPPs4+iaycR4ht5D/bgufOhDH+L666/luJV/w+rl59LfW2B6wqZUqGVLH7duPYODg1h2kb7efcxpbyaTyRAIhRFlGU/WaWpuxa6UoVJi/rwlOLZLKpVAUV1EQUeSDTxXweePkM2UmZpNk8lkyGUz2FaVYrFMpVwj005PT6PJKoVsjunpKQRqypV0ZhxNFxmfGCKdmSKdHcays2i6XFPSSAqpZD3+sEW+PIBjq6i6Ql1dvDYhyuV56cVXGRmeYGJiCknU+PnP7uGpp55i48aNuF6V8y84E00X+fo3vsqFF57L8y88xb79uxDEmjdL1w1SyUZ0XWdsdJpwOI4oQktzO48/9jSVsoem+pElg4HDfSiiQj6fp1CqqStKpRKO4zA0NITrupTLZWRZxrIsfvrTu7ns6k/R0rYSf9DHkmWrueaGT/JmTy+RaIJ8vsjE5Ci5/AyaLuJRRVYcujqWc8Zpl/Dtb9zFm3sm6T18iPXr1/EPn/ssVbuAGdQIRXz845e+yNK162jo6KJxzlw2nHIqH/v4jVx/1TXs2LEL1xGpS7Vg6EG2b3uDFfPbWLKgm/lLllPX2EnzvE70SJBYfYpIIk5r9yLmLFjMxVdczrUf+jDRcIR58xZw1lnncOmll6PrJi++/AJ6OEZD9wq6F29g4fKTMYMRAtEkHQtW0L10HYlUJ/fc83tSiTai4QYMQ0FVJbrndjE6Mo6mBhkd6yORCrB12xZsN4MsGfh8PlzbpLFhDlXbw3EENFnhmWdfwnIN4uEgomtx6UUXUReLsaC7C39ARdZcKlaWBx+6D59fJRKKMjWeYXbGYvjwYfx6ENOMU3UNtFAcUTfpaJ9DZ0sDimuRnc4h2LD/jTdobm4klGrGFmXa5nZywikbOHhoP4oq4HoW6cwkPYf24oskmE4XWLFmPbFkA/niFIGQiidUiScDHBl4k9aOAIKcQVQLuFIOy67Q1NzA3LndCKKH7W1nYnicBR3nEQw3MmntwbFddu/eTcj0c/zaNbzy7E6Ge6eJ6I1E9HrwFMZGp7nzX39GKBjnvHMvZnLwCOvXrebGj36ckifiuSrp2RyqqvLhj1wHQpmP3vgJzrtwA+deeCqGWVdTBWSz9Pf3c+mll+LziyBW6O8/QktLG5rqo5T3CIcSrFp5PI6rMzk7weWbL+WhP9zPHXd8B9d1aWtr48EHHyYUCtHUXM+B/fuY29lFtVrl4r+5FARfzd4ilSha4/jCLgcP7Wfe/A4+cO1VqKrCMy/fT0VKgxTBNLuxnSKqBqGwgc8vI4g2nfNWsWjuhXzusx/Hq1gU7Dyaz8VzZgjqZUqlKp/73OewrAqJZJyPfvSj3HTzLUTCdSRjKW656WZ80UZGjhxBqxb52nfvJrX4DOLRFi675Gr27dtPLB5CD8SIJOo58/Qz+N63vsHrL/bwk+/9it/c/QCm5CMeDJNK1NPa1E4gEGD769u46/c/JNUaZeG8VSzq2Mj4+DiHDx/+Dz7Td6u/NgF9Z2P59sbwrd//d+qvDdjeUpP871RNPfj/r3L13aN9jl1v31//1fpvM3l1XOuL8J/b0ceayB5rm2PXsVZChHccmG+HOgnUFi2OPQV+J5XLPvgSgi+KKBsIbyX+1v6I60EwksDxBFTPwZZlLLuKCMiShCQJBAyNfK6I7RRBEJAkjfHxIwTNIOVijmxuDEOP4uGRzo2BYOA5RZAkguEgLc31ZKbGmJrNsGHjqeC6FMt59u7aTmt7O66k49kVZibH6Oxow1E1nFIVR3Foa23lUM9e2jtbcSUNRbIxDB+uLaEIFepa2hkbm0E3BZqbG9CNEBOT4/j9PhLRBMPDw3iugy8YoliugOcSjIYZmxijqbmRTCaHoIUoW9Dc0EBTUz3TszM01EVwFT/prMXDD93D3PldyLKJ5TlE4kF0PYQkQqmcQZIFHFdCNwxyuSwCFqVSDllTEEWPUqWM4wrIslGDF4nSUc+lUFvhc0TCwRoS/le//Hf27tlPV2c3fr8Px3bQdYVYrI6q7SBJLoGgH0WpTchkRUESZVTdwHWFmoxWkCjlp9EME9cTkBD55S/vZeWKlUflmRrTs6UaDViRiMdilMsWhq4juALPPP00TS1NSKJJpVKivrGOQtECEWbTWYKmyfjIMGbLWtzAPCqVCstXLCdfyBAMGkhKAGwB2yqgqgae4NYoyG4tgqVazRIMRnj40T8yOj7FooWLGB0eIxbyU8hnUBQF17PI5/LoSm2KoGtB7rrrpxy/YT1kx3DsHFKkldlMCRGBV7dup6WtCddx6O7uRJJELMdBkkR003/Uk2ngiRI7d+xkx/YdaLpKLJXC8iQkSaGnp5cD+3uJRn2MjY3w3JbnCAb91KdaOG7dccxOT9dInigYqs6bbx6kbU4rsWQUFK0mwTZrxMx8Nk1DSxsly6KcyzF0uI+p6cmjE2IF3TTwmTLNbc24okcqlULzaWhqjHA0hie4PPT750Ess3TpElTVQPBkBgf7aWhIEQwFmJmZRfdcysUCja3NVKsOdbE6yqUs5YJLsZRBlFTGRoZrmbA+Hce1qFoWniPgM4K0t7UzMTHK4MAIu1/dTmNrJ4apEAzICEgEAiai7CDKJq5nkcnOYgb86IaBJHukUnU89eQzrF69mlLFQ5SrZGamePaPL9M6pwnHcVm8eGHNCykCskeiLkrooTG0niKFDpPfPr2TwfE06xc0clx9GXf1DQxNTBCKRsGzKOTSWNUyuqZQ6XkUAGn+yeTTGahKHDh0iKpTZX7nIiJGmBULGmmZ34EvoDGnNYWpSSiShCIoVCtZHKtMMWehK1G2vbqdWDKK4Qti+qMMjRyhqbmJXbv30tLaycDQYSRZwvTFyGU1PnrjBwkFo3z7m98nHIzS1dnFCevXEQ3FWblsOdNTY/z4R3dx/PEnIIkSz7/wAp+/6csUcln27utl/sKViFoRQVapGo1o4VZWrVpKU7SOgYG9dHctIBpvo765maamOjzP5dprPsYZZ57MFZuvQpI81q9fh98X5f4H7uPMM89gcmoUVQPDB6edei7zFyxC01WCYZ0ff/eHNNQFaGlO4DoW773kHLa+8iKf+cxnue6GaylV8+imzLIVC4nEQ7iezqOPPcMP7/hXjlt/HH7Dx8c+8nFO3XAiAlCpVilbNgXbJp6qJ1+sEArHyGcm8FwPWdZxXQvcIuGgD1nwwC7T33eQpsYkoipTLJdJhMJMp6dRDZnw7kO1z7JTTgDFh1CxCfg9FCUIsoeqBrCqCq7noBkStuMc9YVLR6m2LngSihpA1k3u+pefctFFFzI5VmB6osDo6DD3/PZuli6by1duu40f/fBf2Xz1JSxbdSK33HIbn/v0J7n9y99E0/x0zF+I41XBs5gYH2fVqsWomkO1micQCiIpLoLkUqrkkWQRTQug+OMEgn40PAaHhqlLpYjFYvh8PjxRrqkZBJGvfOWfuOmmz9FzoIdioeaDnZya4tDhQX76898yf948Vi9fhiim8Ad8uA64QhBfNMjYWJ6f/eoevvhPf8ey1Us4+5Tz+OQn/p5ntrzAe96zjh2vv8qFl1zFc8+/xNT0NKJQA6eMjo7y2o7XKDgVzjn9TDpb23j6qYdJJkwWLmglbVlIosF3vv99APymD9M0CYVCmIZRu5g+/H4fS5cv4/Rzz0K0sixe0s3QcC9tLSl6D+zn1/9eU04k4jE0VSUYDKHrOoGAH5/Pj8/n4+yzTiEWN4iE4xw6coRQMIpTcZDwyKaHCcXbyRVKNDY1YRpBEBVK+UEq5VkCsSBBvcje3TsxjSTNzR0MDByhrrGR737rR3z3u9+jIhSZP385qioQNFR2bjvAZz/9Ja674WpEU6G+MYJkZ2hqmc/aVadzwwevRJVh94tPUd/YzMhMgUC8jqrjUciVCAaStLZ1USoVyE5PEjBN+vv6iIXDROONzEzPYpfLGLJMXbKOouUS0pLk87N4qoqpwdTUJD69nkIxT7Y4RDQyj4HBGVQtRLFcJeiLksuVkWQFTQsgyxFK1SqapnDNldfR3dDFHT+4gwXzFpKqr6OhpZH6ZIwde/fS1jWH6fQkguEia1BXl6QulaIulcIfUinbFQ72HiCZSnLOqafxnlPOwAyFWLqkiyUL23l6y4u0dcxDcCwyk73IZoqRgWFWLV9B2/x2TK226BmJxNm+fTflMjz/0hY2bFzOVRdewc9++yTHrV3Kt775XTZdfj2/f+gJ5nfXc+PHPoiiyRQLDn41gl2q8tRTjzOntZW5XYtpaw6DIGOjUC1WUSSJcKKOiy66gnMvOJMNGzYwPjRBc72JKWoceHM/DYlOHLfIaadew/vf91Gy1d3oShL0EGddeC6ia1PJj1OqyITCTfiDAWYyQ5x2yqUggKxa/OF325k3vxVZzWD4PVYsX40h2FQr01z83is47eQzaIhqHB4a4JLNF7L2+FWUrCqP3ftbDhzs5fxLL2Xt2rUIgsjCRUvonNeJZOiISgxREonG4zz/3IN0t82jlJ9C02VKVh7N8EgF/Wx5+AFyIwPUNTXjGH5q1A3n6Lm8d5RqDa7n1K7d2rUggCgJeLi1XFfBq90u1nyz/7NehKO0es9z/6LX+POg69jK0v/QpXhvTWjf1kP8F+rtcuI/Xd72aP+lRz0a/efhgVCDNnmuhyjU4gDf+T6O1fT/v8nrf5t6F9mzKAEe5UKGnv07GR/qx6+p1NxZElVXJF+o+VwCwTCW4yGJIsm6emxkgolGZE2n6hapOlXq6ruoWAKhUApDD1Aq2niuihmMceX73odVrfLEE3+k9+AwPQcG2PbKdiRBQBFhcmqGnTt2UC0VkWQZT64QDJt4boWpsSEmRvqQRQfPLqHpCrLpw7JKRMJh8tkiuUyZqbFhCtkM0UgUVxBxRZVIJMLOnTvIZTMIokA2myUWjbJr125CoRDhcJTe3l527nz96Bd1gKmpIk88+hT79/QQDjVQKZfxPA/TNNB0Fcuq1qJK1Jqk2sPCssu1HETLQxQ0JNfGsyv4NQVV9LBKBQzDwLIsqtUqHh62U2LN2uX4AhqyLLB58xVcfNHF1D4jHBy3QiDgIxDUaWtvRNNVJEnGdV0su0SxmAGxCp6A7VhIkgiCgy8QB0RkSaBYLvChD1+L61k16JZdpn1OI2eddSbd3V14nkc8lsB2ZF7ZuoOly1ZQLBXwB3zYrsPY2ATp2Ry66qetuZlyuUpjcxuFfAHbLmH6NHRdIxKJYZo12MEDv3vgqPdLQhJBQKBqVRFEkVAwSKWU570Xncs1V23Cs0ts2fIcExPjyLKM7Tjk0lk0VaFcLqHpKmDxkRtvQFFVqq5ARUniFiZIJGJkc1lSqSSCIOE4DrlcFklS0FQDkLEtB8epzfdkWWTduuM4/fQziUbiOI6Mppp4CKxes5KOrlZUQyOerOPMs8+nqaWTqZl+hkcOEQhqlEp5HnrkIXbtfYOmlmaQZCzXo+fAPqqVMpNTE4yPTzA8OsvMdAFJMtD9IZasWs28+UuYnJzmuWe30NvTx+4de3FtCcGTGRsbRRIlZLkW/WJVHM6/4DRSqYaj4AKHUjlHZ2cns7OzVCoVMpkMQyOjHDnSz749e4nHImx/fTs7du+neU4riVQ9TS0pjjtxPbFEHM+BfLqALmk1f6uVQVEFYpEG5nQ0cdbZp+N5Lp4ngCIQr4uhqBJO1aKYyeG6EqFQFE3VkSSZRx99hGg0ytlnn83vfvc7JMlBFGQCoQgbNmzgxz/4KZKiYAYMXGw8UcBxXMqVytEVWKEWd+UctTtU88ipJSiKn7bmdqqlMjguYKMbCvlCBqgFs+dmZ/j+97/P8hVrWDJ3DU89/EeeeeI5Vq9dw7KV65E1jUw+j2oYVGwbzTQpFV1aWlqJxSMcGTjAnXfeSUdHB6qqks/nKZVKJBIJJEli3rx5+Hw+2lvmIrgarg3RqJ9K2aazYwGfv+WLbDh5PabfQ1VVjj/+eD7/+S9wsKePU085G0MPcv55f8Njj/yRH93xLzXfY8gkMzOBggjJ+XjJbiynSLlcZvGKhazfsJZ1x69GVjy++MWb6R84zA/v+D7/cMvnUBSJxrpm8tkCiiwhyzbXXHkpbrmM6mp84oM3UZqWaG2vI5OZ5fktL6PIAe66+07mzltE/8AozW3tfPd73+a49av5p9u/ythIho9+5LOccPx7sCyLAwcO4HpVrr/ug9x+++10dbWTy8/y+o6t2Hb16ImTi6yIBPxRPFdGVXyMjkwB4PP5KJVKNWK2YaBqBqIik0imaGufQ09PD729veh6Lds4ny+iqiqlUhnXq1EuXcvGdgWKVQtZE/AJURTP4pEH/41H73+SmUGwbZuxsTEURaFUKlHJzSJYJUS7zOz4MF/92pd5/PHHufzyTeTzea6//hquu+46NNXHbbfdzsc+fiPlrI1ThcceewxBsfnMjReycmGSUnoMx5YolCRSTUkUw0Qzw/iDDYhIBHxBJKF2LSIxMzOF4FaQRI+Dh/qYv2ABmq5TLJVqpH4JHBF+/etfc9ttXwHg2g9cTX//YXZsf5l7f/GvXHDeudi2zY2f+DSvvLoTWbepOjlUFdxqiQO7dzM+Msp113wA17I5dKCHz970aRoaU+zbu5/+IzNsuurDTE5N09rSzB8e+i2DI/2Mjw/w6MO/JxaOMJue5aLLN3PgQA/Llq5EEk0O940RCzbgC0X/dD7wzVtvYv/rW9i7+yW2vfg4g7372bnteV7a8gzf/vq38CoSqi+CYoZp61pIxZVJp0t/uv++17fx2gvP03dwN3t3b6W/bx+HDuxksLefiy+4GBEJ1y3Q0tqBjUSu4mBGUkQa2vEHFIIhDVlxQKgg2jquEyCe6ETET6UapL1zNYWiQ9UqYlt5qhWLTVeexUy6n2JO5dxzz+TQoUNkMhmaW+p4eevTRz39AhMT0wT8UdKZSW782AeYnh3EcUus3XAcU9Oj1MVCOOUqEgYhv0nQr/Ctb9xGz/49GIbB9u3bMU2T/v5+qo5NvljA8NXi1AqlEn7TJJOZQBSqKKJE2ZIxfD6qpTSKXSI/OgQOBHwmsugiSzYPP/QIF11wIYauMj42xMdu+HtWLD6O0ZFJ/EEf605cQ0dXF93z5/Hs81v4xy9+kcEjRwiaPrIzGTRRx50ZJTN0mI6mBLt2bUVUXO69/zFSyWZSyUZER+SV7a/y07t/gmdVKOTLDI5Ose6kE3A9KFUFRC2JJDjMXzgP2dDQJI2pmWGmp6dxbJFlS9fwpVtv5xvf/BrJZAP7DrzMdTe8j/7eN7jnVz8i5BO59R8+T3PLIg4fGsYqVgn6g6xZdyIDI+P09/fz8otbaGtNUS0UyE1P8+gDDyLaHqqnIooyn/n7v+WKKy9jdHSUVcevRvensBAJx9oQZAfPlbnwolNQlAx+VUdRtKPNFwwOHaZiS0iSRjqdYTZdoLGhjXIlQ0/PIQ4dHObSy89BDxj4QglkI4QUCBKMBRDkAD/64b0MDwxyuP8N5jSn+MwnPsWjDzyB7oV5/PGtfPazt+JUHVynTDxp4Hh5OrqaeGPP60xNj5GveIQiraxYu5HP3Px5ctPTHNq3j4FDhwgZBkeGRjjxpI001jfw5O9+S6A8iWCXkT0PwfMQvD+TeeHP8t+3oEVv1du3ebf6z2zzznq3SJ//k+uvvcf/lX3wn6n/NpPXtzyv/5V6t2noXxtV/0+JXMdoOv8rY29r16N4joUYTBz7+YFIOIyua8iKcVSu6v3pn69INpIEtlMhHEwclT86SFINoKFJcfw+jWq1iCB4WPYMlUoZVQZVFfEFTRJ1TYyODZDLpunsmEdz6xx2bN/KOeecjeO6TI4OkcsX6JzTimr6qVZtHBckV+WPjz9FLJpAEHWqVi0D03HAFzDRFIUtz77AgvndFPJ5BodG0XUdv98PgkgkFKFSLdLc0kog4EfXas2fKAhMTtSk0rPpHM3NTSyY300mk0bT/eQLadram2hrbWHe/C4MU0U4utpTLpcxTKMGg7IcJLEmn5VEkXQmQzAQqvmbFIF8Po+qqYiigKap2JaN63mYpg9RkhAAx63ieW4t1sET2bd/H/X19eDB+NgEtu0Qj8dRFAVZrnkTJycnCAQD6JpONptDUTRkWcJxbCqVEqJkIgnw/7H33lFyVNe+/6dy5zTTPTlII2mUAxICIQFCIhgQIJKIJgkwYJIDxgSDjbEN9rVIxhjbgMk5mWwkhIRAoJylkTRBk2d6Uk/niu+PlmSM4b77ru97a/m3fnutWqtXVfXpU6eqT529v3t/v6n0MJrLhSQJ+6NmIrIsYeyX64j3xhEEgWw2y7IVn1NVUUlzcxOlJSUk0wYDA/1oqsZbb7xDZWUZgYAH3RAwLYfHH3ucWKy4kNpl25imgSCAoihU11TjDXgQBBlTzyJJMoZpY1oOr738EiNHjkSSJRzHwuVxM3HSRPK5HG6XG9sR+WzlFyiyRmlZJbKsYRg62WwOUZZQrByK6GDmB+jLSsR7eqmsrOTtd96jvn4MsiLtT9+V+Xj5Cqqra3AoRN5M00SRRDo62tjVsBO3u6BB6fcHkGWZklgJPT1dhVpIy2Tjhg2MHTuORCJFZUUtmbRB/bjRVFVW4nZ5DqagYxbOD/iDqJrGhg1rCYaC2JZNOBImm8+RTKYpjkbZvm07Rx05G0EAWVZ4/rnnOHL2LBKJoUIqmuXQ2R4nmxukvKyMjo52gsEggUAQQRBRVAWAaDRGrLSM4uJiBAcGBgYwbZPx4yfR2tbM+nWbGDO6FtOweeP1N9i6dRuVFZWs/uwLKqqq9zP82iiKiqIq6JkcbZ1xIpEQuWwSRXYVIpYIvPDCa9iOQ1VV+UE91dGjxrCvpZWu7i4mT56IR1PYsWM3sdIYsgKHzZhFOp1Ec4mIooNjge0IfPH5GkalCmzLxjg/z/1tPe29Q8wa6eWoY09B90/Etmw+WraMqqryAmu1qiFLClbjUnTdoDFTy4KTF5IzLI6ePxdVEbjyissIhr2YjomoaBQVRXG7vXi8fnTDYsuGzaTSg4gixKKlPPP0i5x+xkJkVSQQCBZksDwu2ttb8fsDJIaS5HI95HPDyLJBZ/d2rrluMaLkUFQcJpnuJJltIxiIcswx8zEtg1NPPYWqympa9jVy8oITuXzxlRw6cxbFJQE8LhkZlS2b1hEKlwEWmzZtIDE8zEAqxeSpY3EcCSvvcNxxcymKRqivr+exPz/F8ScchZHLsnr1CkaOqEF0FAw9R8PuXXg8fj799HNefOFlduzeximnnMLIkSPQ9Tw7d+xg5+4mRo6uR9JU5hxxGIZucu21N3DW2adzwgnHUlpexsiRIxElh1hJEY5NgbHbMZFkWLToTGLFxehGDr/fSyqVQHX7AAddz+M4Nn6/m3Qqi9vtJZNN09HZhulIhEMRmppbyGTSlJeXUl5Zg+0IeF0aLreHfE7Hu24nsqwwPHUMmuDm6Pmnc955l/Djm37BlKmTSaUzTJw8hSX3PUh1dQ2x8jCOY+LxeFBkFV3P4nK7MS2LUDhMLp9i/LhJvP7aOyy+/FI6u1oYOXIkL734GtOmTqe+fgyq6NDTO8TCM85g0aIFlBV5EVUNR/UWSM9kFT03hFtzF4QgBAvBNunr6yIgnkXJAAAgAElEQVSbSYJjsLthB1XVZWBZdHa0M3rcRCwRZFVBVGRkdT/Let7grLPOJpEY5vj583n2uafweHxgW8w4ZAqyILBtRwO98Tg7d+/mssWXYFkZZGTeevUDVFFkxMgxPPH4k8ydezjPPv08CxeehijZXHTx+fz8nntYt3Edoijy0H1LOHzmLKycierSqC6r5duLvs0fH/9jATXPmhx7zHzS6QzBoJ9ly1dQWlXJffcvAeA7l5yPy6sRLSljeChFIBykpaWVmsoq3IpCR2srgiyTSAyzYcNGotEYiUSCZ194AYCrrrgE084iSgrBYJBEIrFf2xZs06ajrR3b1gvvSMHB4/OSzecQRAlh/ztQlmXa2trQZIOWzh3Eysro6WpBCxSTz5uobrXA9u2RCUdKwLIIBYtJJLM89ZcnmX3EbARBpKe3k7KyGJlcHpfbj2ALZBJJfIEAZWWllFUEGehPsbelhdJoFJ9bZV9zM26vF9t2MJ08R8yZTVl5NYaep6Kigg8//JBDDz2URCpDWXkZogjp9DCaS8NxRGwzjW4kUFQfLlcQRItc1sDn9eOIYNkiXq8H07KId/dxyJRD+fa3z8Oy8hRF/Jx28kLOv2ARZZUlHDJ9Gjv37OSYufNo2N3A9BmHcPiswwmHLWpG15LKpZBUh7/99QsSQzlGjRxHNp0n4AswZeYM1q9fx6SJ4/FoGn94/DF+9IMfkEklqKgaQSBcCNJZuTQul8ZgMoVl9ZDMDIBi4VIL/93WfT24tBDvvfcex58wj872XiQciiMmRZXT0ESLG264jvb2Ds484ywuv+ZGopEg55x+GqKicvNP7uC0BafwxJN/ory8GK9HwXJ0oiUljB8/hcsuvYI5R8xG9QQpKg5gkyEUKCGRjCMSADFHW2s3N37vCk484SwmjCtDUYcRLYEXXnqXdFanqChEOtVLrHIsdt7m/HO/zdQZhxGNxNiwcTVnnXke0w+ZTbRUwuNRsU2b4VQKl0fFNATS+TQBfxGWYaDrKUpiZYwbO4Hx4ydzwvEnc933r2XBaQuorCqhtWknj/zh91x6ycVkslnKyitRNRe2LZJOWqRSA1x80SX4vB6qqqvZsnU7L7/8JrFYjJKSCpYuW0lZWYxkop++vgEqamuxTKsArwr/rJF64PNXCZAO+gaI/8DK+2Wt1G/i3HEc5580Zv+Z1Onr7ZtSmf87qbv/lXO+abP3E2MebMf5+uv9pnZt20aW5f8fef1X7YCY8f8tc4wsTmbom44iCCKGI+IvLsXjC+L1+UklU8gCqKJDvGcfiaFuBuJd2KYJ4gGRUQszl0aRLHp6GhExMfOgiBqyrKFpLrKZLCBhOjahkI/yiijF0SLWbfgcSYZsNkUumyWTSjFiRB3bt23DpSl4fF68qsSWjRsYWz8Gl9eFoMDeplY+Xr6Cns4uerq6yWXzBcdHz5DLDzNh0lT2NDaT1w3i3V0kBvoP6mkB5HJZPG43PT09uFwuTNMEBD766CPCocBBx3L9uk0UFxXRF+/nySefxTAMHMdmYKAfVVMQBQHLdHBsEUlSC6iBJRAKFpFOp8jlM2SzeTweH8PJNJlMDscRSCaTaJpWIGOyHSRJJpfN4XJpiKKCZRmMHzeWP/3xz/T3DeP1RMhlDRynMME4joBh6BQVFePYArYlEvBHDtan2raJqsnYgl2QllFUbEcgn88jinKBZEqQ8Xjc6HqeYKhA4uH3B6iursbj8XLYzCMQUPB5I7z51ntEozEuuPA83C6F4cQQLreHT1Z9xmFVacrZiyCI5PUclqXT19+Nqeu4PS6SqWRBwiWbRc/nC06PrLDglIWEiooZTifpHegnbxQQ43A4RE9vL7t37+HQQyfj9khYdoZMfghRUHn2mRcKGmaeEIIjIZhZvD4vEydNRJQE5s8/DtM0yeWyODakU/ufPdM6iFa7XG66e7qpH1tHeUURoXCQSDiMaVlkszqGaRPv7qVuRA1F4QChoJtEIoGez9Ha1oyDjipJxLt7UCSZof4BZCTCoSDi/nrSfF5nXH0No2rLady9E8s08Pl8eP0eFFXmpBOPL8hQKRbDyUHOOOMMQCDgD7BvXyOGrpPL5nG5RATJpqgohK4biKLM0NAQsiRh7yeASaXSCIKEkc9TXl7G1GlT8HndhII+SopKySTTrPxoORPqxxKLRtm2cxfHf+tE3G6Vgf402YxOJjtES3MHzz33EuPGjkdRVPweH9s376C7sxckhfpxk9i7dzf9A33oehZdz2DbNpu3bKa0tJRQKEw6nWT9ug1Yjo1uDoNg8PKLL2IbOrl0Gscq3IdZs2YV5jxBxLYpIHoAegrKpnLRxRdz9PxjuPTK7zBizHgWnnEOL770OomhLH19A8iyyrovtvHQQ7/nzrtu5/RFJ1FWW8b3b7mBVG6QtJHGEQoEZZOnTcUfDvHciy/S3dPGX559luNPOYOx02bw5tK/8q1TT2bN2rVks1k0TSOZTFJWVrb/WXFRM3oaYyYdxtKln+LzBrn8yus54uj5lNdWMfuok7j11odo2LMVR8hyyaUX0NfficstU11TTnl5DJdH4q6f3839Dz3AeRdfQv208Sw4+3wOn30oP7jhKgIhP9OnT2fGoYeDpNEbH0RTfQQDURRFIRot4tTTTuamH9/C4UfP5tKrvktp9SimzJzJZddcQ2tPF5V1lfzhiYd59Z0XOfmkhTQ07Oah3z/IaWeeypkXnMNZF5xJ/cQxHDV3Dnf94hds276NSy+7AH9QprjExYKTTyUQCFBRUcG4CVMJFBfz8COPMDA4wJL7H+CkU08nVjuCiTNmsfjqa+np7cMwc8T7uklnk9z34P1MnjaL6rp6RtTX893rv4csKwQCAQzDIJPJ4PL4SKVS/PSuuwkEw8z71kmkU1neff8D5j/7KNElt1NdN4ZZcw9j0XknoTtpFi++mGh5jHRO4Ff3/oE/PfkId97zQ0pKy/ntbx9AVVUMw8AbKMJCQZDdZHWHn939K3yRCC2dTRiGQXE0RC6XoaSklL179/K9H97IaYvOYsqMerr7mpg+6xgmH3MOixb/gD8/+QzZXBLDSOLX3FjZDI6eIjPcRTIZx+tRqKgoIhx2EwioADQ3NhApCqO6XSiK8g+BX48j8fGHy2htbQPgtp/cXsiaMQwGBgbIpNN43Qrfv+4GANauXcfevc243T70vE1RMMaGLzbR3dlFJBQmFo3SsGsXPl+AJ574Mw4ZVq/5DIC5Rx7JCcedyK0/uJXf/eLXkMvR3d7G+o3ruPyySwB46fVXwBEpL4+xcdMagkEvsvr3hezDD/+RuhHjsS2FaFE1liURChUhOPD56pWkh+N4FZlsYoijDj8Mjyxh8/f3qzfoIlYeRhJdJIdzqIoXVfGSzQ6yYf1aujt7iUZK6GltxsgMI9omqgimkSOfM9FUDwIyFeXVpIbTjB4zAd2UUGQ3/UNdCJpFMOilOBwiFivGdiwe+9NL7Nq5j5JyL5cvvpqx9VP43o23sHPH7gIxnWUhijJ33PFTrr/u+2iah5JYGX19fXjcAepGT8Y0HeIdrYwaUc5AfweKz4/o8iJ7vORsCccpZFicd955f69hNk0UTUOQCgFtr1ujr7eLoYFucpkMIKK5PLj8YTJ4CFfU09/fwfDQIF7NT3XVaLAd+uN9rFj+EcnhBKlkJ93dTXR1t+IL+nj8L08yMDRIpLgIRVMJhIJovhiCEiRSUofqLuXkRWdwzEnHo5Nm/KRyEkO7sRyDQ2dOo6urjd0Nmzn1tNNwsOhsb0UQRNZv2MLZC89kuLeL3z9wL16viJmTCUeqkMQQn63czJovthLwx8iks/ziFz9j9pFTCQZirPh4DY5joect3P5SMqaDLph89/vXoVs2Tz/5GLff+gMuvmgRgbCPsxedj8vlIpVO4NYE+hJ9ZIwcuujwo1tuRXZ7SKfy5PIZYrFiZFkm5PEgWwrxziZ6O/fw1LNPY5gOVdUxWlu24nN7OPbY4zjqqKPweFwUF0dA0Oju6uOXv7yHCeOnICARi0XwuL3UjRyLIOns3b4JtyqhCBAOuFG0KKpbZGB4F59+9gnfWXwDOUtg/NSpuAI+frXkHk5ccAxjJ9YRCfsZWVvNzT/6Mbpu0tTYypbN23nxhdf48N13+GLVZ/zxoYdpbNiJbonsaGgiWlrD7Xf+kp6ubhp2N/HIY08zeuIMImU1kM+z+YvVyKLEl/5C/2Bf1oI94CT+3/QV/l3svzoOB+bhA+f/q2P3bzfyX2b2+ur+/xP75iLsA7TT/1nm99/z1h3nH+Hwr96Q/xNW4wIat194WBQIhVwYTo6hgT4UScVUVMLhGEF/GE1N09vWiOgkUNCwjTR6PonoAo8/CmIAj9eLKIGqhXCkAIHiGE3NO3GpLoLhMizHhWWLbFv/KaPq6pBVF51d7aQNFX8kwpjJ02lraWbnpg1kB/MIjkWspARssPNp/H4vE6dORNRsXnvlbTK5PKZt4fUUUVxUgayKzJp1GKIoUlFehdvlRZUVkskk2A5eT2GBU1M3kgmTJ+Dz+6iuquCYo+aSzRrIgJEdZOq0GXy6chWxEj+HzJxMLpNEz+WIRIpwub1IioosFXQvB/sHkEUZBMhk00iyjKoW6NGzeR2fL4SqBdB1mWC4CMcRCs6oZWE6Fr5ggIyewxZsVNFGkyXCgSKefPJJ3F6FUNDPyy+8jG3myKSSqJKGgwSihC0YJJPdyIpyEG2UJTeqaKPrOWRFRXCcwjMmOJiOju1kSQ7FEYVCGmAw5ENWZerrKvnwww/48+OPYQvgcttcevFFDAwMMJzsQ3UpKKqP/t5eaivLqSn1o5LdL8eiEQwWIwguPlu9FlVV0WQPjmXiD3jA9pLPplFlA4fCYiASCVFeWopjgYiIpkLQ76a+fgyhojBllaU4goPHHULWRC678lJwbCzFDbkMZAfxejzk9Cxun4uOznZefuk1PK4QDzzwIM89/wyzZx/Ou++8h+MYCI5CJp+nsqqW7t5Bpkw/gnAojNvjQZRlfMEgiWSS0WPG0jc4hKS6mXLILBTylNbUURTyMxhvw8wMomfSZDJZYiUhstkklqOSTKZxbBt/KEj1iPHYosrMWTNJJQcY6Osik04jiQIur4fOnm4E1UU0VozX5wZJwbAyFMeqUX0hRtbXEQmXIyDjcvnJ5wtOsS2AbmTQVAHdzNOwZzeSKuIJBxFVDctWaGmNEy2NEYqpvPD868yffwK2KDB73hzmzT+aXC7Fli3b2Ne6B49XQ9M8VFfVEghFsPJJHMPixWfeZP2G9URixei5LFMm1FBTPQK/z49h6DiOw2A8xaTx09i+bRdbtuxENxQM08IxBBzLi6hITJs2Gc3lweMPobj9bN28BWwYHk7iAJKiMDyUBMAydS743q9ZuvJD9jTuQZIlMpkMa9et46prruGRP/6OoqIIoiBw1kULuPq6G/nB924lm80AoKkaZt7AyhXS8lUsTEMHoHnXTn7yyzt55M+P0dbRgaIqZLJZNm/bwoKFZ/Li8y8jWzKaUohia14Pmt99cJ5M6Tqzjj6Z5198lb6+OIoiE++L8/obb3Hk3AX09aX4bPVaQsUlOGaaDVu2InrcNOzZzN+Wv8ZPfnoXa9ZtIJcvZBd09sR55d1lHD3/eH7/6O/JpIcw8yrZvIGpZrBVC0OXuPW2O5l3wtH86c+P07BnL4ZpoblcNO9r4ZXXXufcCy4kl82QSWUJ+oMUhYs554JF3H7HHXyy6lPaO9qRJYlcLsv27dtY8sB9nH3B2YwcVQlCgQDMcHTMXBrRcgqM3YAqy5y84DTu+c0SWva14jgQ7+vjhZdf59SzL6C5sZPk0BDHzDueJfc9SE9vL7ZtE4/HeemVVzll4bls3bQVUdAIBssoLR2F4miYurl/RC1+ee+vufiyK/i0owVcGrlcjq3bG7jl1h+z+NIrqBtXRWIgwW9//RuuvvIKXIqMLBUIPzzuAEZeRhLdWHYB0bdsECUFr6eA6tfUVmE5NvOOOZVYcSXHHnckSx76Dx5/6gmWr/zkIDGhbhi07Gtj6UcruPnmW+nu7SMDdPR0krPSJDJDFFdNpLR2Aldf/0MyusRAWiNYMgHVDZ2dvfh9EdKZHKZuIVh5HD3FW6++xmcrvuDjlZ8U+uzxMPuI2QUtbtlNNFJCOt5PWanEvOMOO/isvf/2+xg5G9nlYsSoOkKhAF1dXVTXhlFkFY/Hw95Nm7jkwrNJJAxa2wqOcWoohZ7Uuemmm7n+1luJ93YSLgqxeeMmSoMFHetsLsvGTesYjA+wr6GNaROm8MAddx/87UXfXsxdd92PZHqQRJuuri4UReGmH/6QYn8YJ2fR2t1M3dhRWCJILpkv19F53RFSCQlBsUlnOhGsNGtXriM5JFBRUcGcow5hYDBOWVUViuphaGgYERmv5kP1u8maOt19XfQNtFNcHWBfSycuVULSvLg8JUiWw/C+zWz65B00HLDhh7f+iJETxmCLIsccPZeioJ+pE0dwxcWns3X9ckKhAI6Z5md33cYv7vsVOX2Ajs42vF4/fYP7aG/ajj8QQQ3VkJN8VI6qw7YNBKXgmCeHu5H9xViCxO6mZkSPn3yiE4+Yp71xJ9FgENF26NdTlI0eTVnNFLo7Wmlt2sLKpR+hCHn2NW5mzapPqa6ZBJKPTB6GM3k698YxDINweQm//8OrJC0Bl9uNkR8mOdTD1dcsRlMUhhJ9ZDOD5BIDrP1sG07a4jc/uYsbr/guOTmHKTskUgb3/vwPrF6+F3uoi8FEmkC0hnDZSIZ7szz6yDMUx0ZhGTate3fzzGuvEq6YxPxjF6HaJm++sZKWhk42rtnA3BPmMnPGobS07GDNug847/wFbN2ygcMOq+SK715IKiWxe8dK7rljCXNmHkekqIqFi84j2dxNT2+COQtOwdIUohE/9/72dm66/nr6OgewVD+VpVPIDOls+nwFh82aRMu+PZy9aCGOlWOgK0Nv6yCffLIGRROoLJ/G7DlHYZs6fq+MnodoxTjwFCG7ZZKpPvL5PEgRBFugYedeetp7+OXPf0U2l6ZuxCFs27aDutFRSmN1jJw4GUt0kdUdsjkYSu4jFh1HY1M7c4+dxYkLzgRLx7Lbsa0Bli/7K1k9QSDsYTiXwxcox847bNvZRFnVGOrrxzFz4njmzZ5JV/cuLCVI+djDEZE4c+G5hANRPlu1mj3N7VTUjOAX9/wKwTIxB5PkUnFimknX3q1YZh4JFdFRwP47C7GAhG2xH6j4Z1/kyzWk38QS/NVjX5XYOYDwfl2a7YHzvgwAfV371n4eggOBu/8uIdKX+/R1fpdt24W+2A6CAyL7610FcARAFAr1sF9Bnw+0daC9/64T+2/nvH6T/X8xAmJbEsFQhNJoBDM7gJ7sRpTdiJIft7uWUNFoujriZPLDZKwU3kiMXDYLjo3breEgoBsW3Z3r6e7ajYBEbe0EJNliKNGHbqQxzCRXfWcxE8aPY8XyZezasQWvWyaXzuF1+XGpHjRVY3vDWvY270A3LcKhEj768HP27mpkeCDFzq0NnHryaWjYRAIiiaEOenq66OnuIhgM4tJUTMukYfcuNJebzvYOUqkked2grWUvjmkiihKRkhiCYhCK+cjbWVwBFVGBdC7NhClTsC2HQ6dOQ1Y0fH7/wXueTqcLfxggWhLDEcC0bFxuD7KiksvryLKKprmxHRtBLKByhmkV2FUFkUw2R3IwiZ7V8WhuLN1gaHgQQYJzzzuTKy6/GNPIIiBx7jnnAxLDw2mee+4ltm/dgW05GHkTWXSTGBrENI2CpqdVQGkPMFwqilzYbwMI2DYFTVlFJK9nMW0Dw9LJ5VNceNF5fPfaq4jGItiOhculEolECtqfsoLjQFFxiJF1VQSCfsAhm8tg2SZDiSFCoQBj6kfS3NyIJEpYJuRzAtu3b6O9vQvTsHG5BUTJIpkcIJ0ZRFFttm7bRjotISteXK4CgYFt2ZiGRV7PgWCiKAKSJCK6AgiyAraIIChomptMJkt1dQXnX3AuDhYXXXwhc+bM4q233uSss84ALD5esRRVkdCNHKVlMQShkGJjGgaSKCIAwWCIeF8vfp+PoaFBtm/fTibnsGdHA9u376W6th7NG8CRFJ54+hlERUMQNWzHoqQkhm0XSKJkTSVrGDTsaSIaq0RzhyiORmlpbQVBoDgaJRgKYeMUJltJxOuN4PUGUSQJr1fDEQ0am3YjS14sU6CtrRm3y4WmuVFdbjTVxdTJk+nq7CQcCmGbFq+/+hoRv0hbUyeVZaM4+7xFPPn0M8RKSrFNmw3rNuDx+Bg3fgwTJowjm00XiNlkizPPWkA2NwyCyUmnHM+3v30emzetJ5kcZnA4sf85KhA5ZTM5XnrlGWTFZs6RhzNx0ljC4SIqKqoKms26iWOLTDt0Jrm8xfPPvMimtZsQRRFJlvD5fIiiQHt7G5rLBcCTa9J8/sXnXHHRYtr37KWrtZmG7ds48fiTALj3N7+lzanBKp5EJFKMx6MiSFk8Hg2AouISAqEYLk+Ixq1NDPamOSAB8Kennqavf5CnHn+clsZ2lr2/lA/eeoUjZ8/Ctm2u/+H3WLt5Kd29A+imRTaVIZtJHZwXb7n1NlRV5dVXn6eleQ993T28/dq7FEeKyeVyXHjphdSNqsPlUkkMp5gx/TAwJK68+gZ27GrA7/dz5WVX0tPWxeZ1a9nw6E2cMGMstm1z8623sGzpMlRJZMyoWnxuD7Ig8+TTf+HBh3+HbdvMmD6d5e+/zeerVrJ9+072NTXy9puv8a3jj2Pnjl3s2bOHJb+9H9s2GVVXx89/+hPuvPVWdmzaxmcff84bL7zFay+8RmmsnMHBQS5efBkb139ONjNAZ1cTg4leunpaD4ZNb7/rLgYTCV546kn2bNpGf3c7b7/xGpFIhK7uHu66+ydcesV38HjcfPS39+hra6ZlbwNP/uUJ3G43exsbef3NVzHNYRTFIpPpQ3eSDA0V6mM3b93B7x75PeecfTqNu7awr7GBjWs/587bb0MQBJYtW8pPf3oXqVSa239yK6VlUdLpNAcCu3o+jSjkMfJJUqnCfcrn84WF036JHdM0KC0Lsmz523jDAd5f+j4vvvwSoihy5mmLeP+v77Jz82Z8qocdWzby5muvcO45Z6PKIl5NwRMqprGtC0+o+OBzIEkqDVs20bj5E7xWnMZdrYyfNBXF6wZNxK3KvP/+3zAthxNPOpnDZs1gZ0MDAGPr6xGNDJZlYdlZvH6B+EATgVAVwUCU4qLC7+xr20MytQ9RSaL5MtRPKaN8RCULFy3CURQamvbxmwcew+0vId6dOLjoHD9hJL6gRWl5kI2bvqC8fCSK5ufbF1/Ep6tXHryG5u42PBEfs487gvhAP3ff86uDx27/2V08/MQf8JUGqK4fx5VXf5enn32WX/7yP1hy/5855bQLmTh+NprqQxRFmpubEYS/I7fHnrCA8VMOoaJiNHOOXshFi69j847t9A/2Ey2J4fZ4yWRztHe1IygOPr+KKlvIgo5jSki4iEXKKAqVMDyYoaZyFE17Wpkzay4uJYOqGARipeTlIjJikMRgL50dbciCjIRKaW2YnJThrl//iu7BNBOmHc5QIs6evTtJDPdRV1eLLIQ4/5zvMDxoEysaSWXdeAxHACfPcLyDVE8HsgjYDqZp43X7cIwhBnpa8LksJCtN8Yh6BgyBklHjMd1BHF8EtxhDFYoR7DCTJhxFwBdlzKhJpJMmguNiZO042tsakUUYN3YsLXvbOPmcE1m1ehNT6w/h8m/PZduWzdTX11NaXEVRuIbRtTMI+EJUltfR2ZnANFXGThyDrIlcfd2VPPrY73jyoce58qLFqIrEdTdfz+HHz6K1o5d8Nk1Xxz7SqSRVNcVcfMk5vPPum5y+8GwOnTEbt+Li1ltvpbl5H25PhJHVElMnTuCZp95kT1MrJnFqamOcdOJCTj7xHEQnjOQuwxACjBgzg8nTj8EXtFizbjluTSSXSrP0o9e54jsX0dPbgaJCw+4tnLPofB743aP88bFnSAzq3H777YRCYaZPP5RMKkNlZSW/f+R+bvr+z+nsGCRaqlBWVklO7yeR7OTkE8+jvXeA+HAa03GojBXhEfPkc3aBkdoTwusJ0d3dgqRAfKCfSROnkM/nWbnyYyTZJpNNkc/nySdM4p29+HwBNK+PoqIIjuNwxunnMLpuMhdecAXbd2zC76miOFLN5d85H8tw4VgCenYYWbGQvSaBkMy2bWt45dUXKa+uIWWk+XTVUsaNLELK7GM41cWrrz3PXXf9jFAoxI9vuIY1n60kFo3SP5whWl1H3ZQjSRoKPZ3tvP/SEwi2jrR/7sIRC9t++++k5n7V/rMa0H+l/W+W1vmftf8dodT/C/u38fi+PFBfl0/9XykI/qrH/z/Vp6/W0v53a3MPIL4Hvm85Be2lxNAAmzeuZXiwh77OnbQ0rmZgYAe6uYWKaIhsogc7P0wuNYRlWIXFv+Bg2TaS7KKmahKhYBm5nI4sS9iWhEsLEAzEEASZnr44mtuF1+th4amnMrK2hnf++g5rvljHBx8so6goSmNjL6NGT2Rv4x6SqX5OOHEOJ35rHkNDvQSDHrZvX8+a1Z+STSWIx7uJhMPEiqKs+OgjLNNgoL+fL75Yg+1ASawYVZHpjcepG1GL4zgYpokoCthI+Pxh3N4QPl8xiWGTurqRRGMlIEr0dHbi8vqxEcnndWRZxuv1YDs2msuFIApoLhcerxfN5cbl9hAKh9HcBYkeWSnUy0qKiCjJ6IZBJpvF7fESinhB0LHtLMl0Hz6/n2Q6ieXoqJqI26UgigKrVq1C1w2KIjEWnraQsfVj97NsitiWgEvVwHZwbBvHdrBtC8uykWV5f8qw9JW6CQHHVnC7QyiKF0XxUlpehsfrRpQFunu6UJRCenF/fx+27WBbDvl8HqLRT84AACAASURBVMs2UFQBZ3+d67ZtWwmHQ7j2E1lFIkEikUIq7tDQEN3dPSz/eClr12wsyLUgY1sSXk8RblcIx5b4dNUqdu9pweXxYVp58vkcnZ1dKIpGJpOhu7sLyzIxTQtBEBF8USTRS9PePaxbuwGf14+iSFiWgWnq+HweyspKOOGEb2HZJoapM+uIw8AyEQQwLAPLKMjCmLrBUN8A2DbdPd2MGlWHaRoUR4sZP34cJeXV7GtuYtvOBlZ++gVDqSyax8/Z5yyiu6eXrq5e9LxOXzyOLMvYlo2iqYiixMi6UZgWuFxeBgcTVFfXFhZ7gohu6MiKgqKqZLNZdKOQgTHQFy8EFSyTMWPqEUWZfftaaW9vR5VlBFGiuzvOnt27aWlpIZvJ0rh3L4qiUFFRjqmnKYmWsm9fB6IqMXf+PMLhMGs/X8OkSZPojcdRFQVRLNR62g7k8xk2btpQkFkSwONzoygy4+vH4tiw6tPP2bptC4ODw/j9IXx+P2effTpuj4IsgygWorMtLS34/X6CwSDvvvfufiRPJBwuRhIFvD4P+Xxu//zpUFpagiwXFr9DaZ2XXniJO+68A18wQDKVoqW1kycefprSWAm2bfPqxiTa+DOQRA1/wEVFZcnB+h3LKtRUC6JcYCt1pIPzbmI4wa/uvIV5xxyF5pKpra1l6pQjeev1dygvK8M0Te79jz9QN6oer8eHz+fDJSsH58tsNsv9v7mXOXMOp7OzA8PI8/JLL/HJ0lWEQyGSyST3PbCE5pZG/JEAuUya7914PevWrwfgsT8+ytVXXYWkgNunUROL8MxtF1FVWQ3AXb+4i1w+hSCadHV1EO8b4I6f3gHA/GPm8dYbbzK2vpa6UdX4/W7CoQDHzpvHU48/wYwZMxk3bjyLFy9mTH0dTz/xBN+/8UZ++IObqKurI+AP0dc3wODAEBs/3YLH7aFlXyu5XB5JEJk8cQIjaiqJFYcL7I2A49i8985bnHzKKSi+Aip66Iyp/OzOWwB4+72/0d7RxTtvv87hRx6BIrrJZQzmz5/HVVcuBuDV197ENvO07dvDQF8nggKlJQUHLZlMccbpC3jsTw8hSoWF1cgRI7jtlpv53g3XAvDoo4/ywosv4HJpWHYWj9d9sNZJUSUEwcLrc+F2qTi2SWJoAMc2C0gMBYbOvJ7C7ZHZum09mzZuBmDKhAk07dkLmJhWnk8+WU4sFuPoo47kwft/S3HYh2gV5vlRo0bR3d39pRenxPj6scQ7Oti+bgMVZSOpqR+H4dgoksS+pt3MPepo3G4/sqbiKBZd3Z0AuDSVDeu/wLJMFEVi2/ZNqJpAVVU9suKipLSAjnZ39iOYPrJpgXC4ggkTZ3D2okVU19aQTGewHZGe/n5a2zp48MHf4VYLGQJ7mloRHB+KFOKJP7/CzT++nUw2zwsvv0TgoMYw9PTGMQWLURPqqKiu4IuNaw8e6+zuxDANRFFkYHCA5R+v4LY7fsaMo2Zz+jnnECuvYcFJp9Pb24skCYwYUceePU0Hv//F2nUHNRY7Orp46933+MFtN3Hrz2+jrbODdC6LPxSmOBplKJEg3tONYxuYRo7hoSS5dA7BEelq78Kjeejt6mHN6jXccO0NPPPUEyTTWXQ0xkyYjm7KeN0eQv4AmzauJ5NKEYx6SeYSIAt4gxGyekFvd8yYMYwePbqQQixnqRtdSrhIw7SHyeYLpSaWmaWrrQU9k0WWBBzbRBJEJET64930x7v4dOUKOtr30duyk2KPgF8xyfS14aT7yGf7aGraSjAgEe/fhyxr5PMmoqjg94coK6vE7dLo6eri6DmzUWQ45fQTOe74b2EaBqtW/JVjjj6aDz9YyltvvMvSD5aTGdYZ7I/z8MOP4lJDLF/xGUXFMSzHJpVJ0NbRwpyZMzn9lAUEAj5Ur5twaRHB4nLu+umd2EaGcMRPU/NODDODKMJxx82ntLSU1qY9uBWB446bjyRpHHvsEej5DMXFxeQyGUQ7SjQymt6efiqrw4ys9/L2317Hlkx0O01rZxPX3nAVrW1NCNgY2QzrN67CH9AOBs5Hja7lyb/8BVtWmTJjFkP9KXp7+0ilMixZcj963iQWK6FuVC3PPfsSTY3N6Eb6YFq3y6WyZMkS3JrCxZcuBkmlry+Ok03wxht/JZ3OYtug6yayI1BZXcGEyRMZHOijvLycefPnYNkZVE3g/vvvx8hZeD0uwkEvyz78kFQqhWkW5oyPV3zEzp072bhpPZLoQs+D41ikUzprPl1NxOfh/Q/eRlBURExmTBvP9ddeRbA4RFlVNb/+7a+ZMrmejpbduL0eEslhrr3+OsbU1/PR0vcZUVtNKjWM7QikMnl84SioPsaMHschEybQ09aKYBlIBzIZxH9c2x/wI75cB/tV/+LLSOqXj/1XnL6v14gtfOfAO/arSiYHENcv/+7XkT99nc/y1X5/uR9fRZS/vO/LNcFfbf+r/f66a/lXnO1/G+f1f9Lp/Lcx0cLGpn78BDz+MC5fEbphUlxcS0nkcDKpEgaSSSQ5gCT58bhcaIpCLpumvX0fAJGiGHnHD0oASVLo7ekklUoViHd0q+AUBcIIiouZR8wh3j/A9p07OfSww+ntT5DVbWxJ5uxzzmfipCmMHjMaWRbZuGENy1eswLRFDNMhEAoxYeokJDVMKFBOT083WzZu4LCZhzI0NMhQYpDFV1yGaVqossTgQD+6YSLICqKksGf3HhwrhyyJmHoeRVSQRRey6CI5OMi2bTsIhMIEi8K4PF5Ulxu317s/ncNB1TQEUcR2CnzDhb0FNNbeHxQooKyFhZSsSCiqiijJ+ANBLNvGQcXlCZI3bDSXB1HWCARCIDj4fT40RUNWYPKUiWiaSjI5TEdHK0ODvaiKgG0ZvPv2e2zZvJ10OgOOhWFkEAQRVS0QRel6oWZWkmRsyyGbyWFZNo7gFEgCAFESsR0HBBFVc1FSVkYqlcTBoaKqiuFEksbGZrxeL5Zp0N/XX7heB6ZMmUJvby8ejwefz0suV6jxtG2DaDTMqFG1XLp4EeeffyGGYZFMJsnlDOK9A2zZsg1JErnggnMZM74GUQHbFJFkgZKSMiRJwefzUVpaga4XnHHbNujXRQQ1QlkQxo6tZ+3ajXg8XlS1UGutKCp+f4Ad2xswDQfLdJBlBT2Tp6VlH7Ks0ravHd0w6OnuwczrbNuylZLSUmzLKmji7teoXb7qM0ZUlnLM/GMZO34CkliocQ343ZSXlNDYsJuly/5GV3dXIXop2GRSWQbi/az9fDUNu7ahyA4+v59MNrvfoRNQVG3/c1OQ8bEFyOcy+DxusB2GhjPgqCDozDzsEGYdPhfT0DEtB8XlYcSIkbg0F1WVlei6zp7de+jt6cUXLsITdJMzk7jcHqpGVjE41M/co2ajqRJFRSF6enrJ501yWZPWlk4EQWbc2In4fRF2bt+LTSH9Z/nSj1nx8WcUFZdTWVmOS/Pw3LMvIEsq0WiEktLYwUBeXs9QUVlGeUUpogQnn/wtZMGipamJMfVjGDdpLDU11WiaSmqih/y0ILl8jny2gJxVlkQ5dPoMZFXAxsLjDzB9xkwEzSIWiwGwa89eMnphbo7H4xi6gG0VXkSpTApRAVkTqZs0GtErI+3XlZt1+CwuPOcCJElEki1UTUZSwTBNbrjuRgA+XPYR8f4kum4yNDiIW1UPTosLTvwWo2pr8bqLGVE7BlmWeeTRJWRzfSw6ayEAr7/5OmPGjCJtDGDkBunobAXg0ENncOLJJ1EzsgZJFcmbaYT9msz3L/ktAA0Nu9i6dQumkSESDvHOO++STCVRFIUH738Qx5YYGsiSz4EgSHT3dJAYKhC1bdq4BccW8HqDpNLD2I7JE48/CY7MwEAvsiLQG+9k8pRxuN0mx807BoANG7fjmAqZVIbGPU309fYfzAA98bjj8Eo+8lkdRZL5za/vR5Zl5s2de3BMFl92ObHiSsxMBtsapqa6mMzwAEfPmQnAvtZ2Nq7fSFlJKfmsTmtnN/398YPfv+Haa9A0D6Vvf47xyPNksoO0tbVy3bVXAQVW4bb2dnx+F4JYWGCK+5F0SZCxDLBNB9s00HNZQgE/pp7HsQvniIKEqqpYlkHLrs3s3o+AdnT38h+/vZfpM6ZSHA1RXlFC3izUkEsCOEaeRH8PucEB0n1xgqpCKt5KX7yLB+5bwuq1O4hWTKK0Zgb+WBUZ08I0bYzBAbZuWoep69iOgi2ALegkk4Xnu7q6ClUy6R8ojMHY+kk0N3ZjCTJdvZ14PQUndOeOBm7/0d0M9qXp7UuwdsMWbrj6au788U9Yu2oty979iN/ffzfRsIvTTz+dCfWTAPj08y84deHp9PR0cfTcI7jplh/gC/oIhqK88uZfD457e0snXsVPJpVBUEXGTZvI+eeew/Fz5vDycy/T09FKf28b69es5rqrr0JRFBqbGrn8usW88f7z3PfAPQhSjuaW3exuaOTnP/sV13znKt587Xlam3bQ2LCVzZ+vYM2q5Zx26ikALF22jJtvux1RUpAVN7bgweML43YFcCwBl6xQEg3idskkBuNUVcZQZIGy0iJmTJ/Cpo1rOG7e2WQzKskU+FQFId1PKmGi5wzGjh5Ff38bgi1QFo3hc2losoMomHg9EYYG03R1DNDbkyCv53j44Yfp7e3FMPM0bt1KwC3h0iRi5RV096VxTAPRAQmRndt2U1RaS3lNPQvPvJBR9VOR0ejt7Cc3nCfsL8bnCiLZOaoriunsbiZrJMhkkvh8bnp7u1i9ehWdnW2URSuRJYEf3XQjkphFMETSw3HyuQTlpaPYsXU3f3j4DzQ3NvD2W69w3nmn4NEc7vzJHYiyRiKVxLZVEFQqqmqprK5h9IQKzjrnVBRVIjecZ8HxC+noTvDwQ7+jOOgl3tNJTU0dPl+As84+jcuvvABJyREtcvPjW75L3hjib0s/YF9nHtFlcvNNF1Ls0nC5JZYuXcqf//QUouDiiFmzSfQNY+dNymLlRCNRfvfwE2SGdXZu2caZp53KdddfRTAQJhgoRhQ0BgcTmFaWRH6YUxedzt13383s2UdSUl7Fj276MT6fH3t/Rlgy28b842Yx2J+np7eLk751HolBm3ETo2Ti7dz7i58TTyQJl1TQ2R3nu9deiWllSaYG8Pk1/vKnZxBkhVhllAWnzmflypUgWDQ270CSHG644QbUoA9fUEYVc7htHdsWGBwcRNUcimMqRxw5nmuuuYY9Tevpjbdi5j1kMhmOmDmDRH8f555/FT/60T1sXL8LVRRo72hGdokEwlEiJVVMnH4kWccNTjGTp8wmkczgiAJ33XsfrZ09jB07HrcssmLpO2xY8TdUzU0GD0KghDdffp59jbvBsbFxCkDSfvsyWPZlh/E/M1EU/9N033/VbNv+B7T2y7X+/y/sP/PNvinl+F9Fbf9tnNcD9k0MW9/k3X95/5ejEH8f0K9u/3v757rYr+3pP2z/HG050I/C50Kb+7WjKPTNFEEGdMOiono0RYFqIpVTUcKVWG4RzQPBcDWBohKQA6D6cUQLG6ioKEdwHLLDDqIoIzkmblUhEilCcYmkUwOoikP/QB+IEqIsYugWOA5jx1ZSVhXlxOPncsik8ei5NIaYx7FN9uzcy66GfZx1wRWcvHARMw6bxbzjTmX8lENwu8vZsbWZd95aSmX5SBAsHNtm68ZteF2u/8XeewfJVZ5p37+TT+cwOStnoTAIIQkJASYZAwaDE04YbNb2ep0wxl6bNc4B44Bh19kmZ0y0kMgCBVDOGmmkybGnu6fjyef7o0cDxuDPu1v7vd9WvXfVqanqfqbD6eeE67nCTTmfZnx8hMNHjlJTW08sEsY0DGzLYUrbNI4e7cTMF8llx9m27TUOHd6DLJWJxGrZu3svw4ODBINBPElGED1E38AojlfS2Ty3Ii+aaC/y5pWfEyFKfzUvBNB1HVmS0BQVRHVCo6+jqUEkScTHpVjM4PkmIyNDyBJE4iGyuQKC4NHaXE2yKkHZAB+dM99xDg319QR0FcsyCAbCOE6ljY3vuYTDQQQviG+ChkgoFMMSgrh2CscpVj6r4+FPHNyu6yOJEoFwBFFWGRwYJhgIkIiHsRwbSdGQtQCVhGUBzy0Ri2uYpoHjSIRjIfKlHL7g4wKZQoF4sp6RkW4E30BWdbSARjCisWjJSaSzWaKJKlRFBXwc3wVPQ5FlysVxcFwOH+pEU/WJ+SpS3TYHUVSRC8Mc6+ylr7eX3HgZfAnP88lmK7/Rjp2vEQiqRMLJCWAbo6lpCggQj4d57pnnCIfj9PYN0ljfxGubNuP7MtlMno6OTjwP1ixfxswFS2lorqK2JkLnwR48w+LXv7wV14X5ixeyeu0aFi1ZCr6IXTS46877qK6qZuWpK5g+YxZly8N3LSIhDUWUUMUAgiMgeSJmoUhpPEspUyCXzSBIDrKqUFvdiGUZjI6k+M3vfofpm4ymsoxnMqgSHD58mOrGGsby47S2zqC1uY13X3gBrhSlu3OQzNAImiwheT6CUpHrDfZ3UygW0IMSsVgYPJ8nHl2H67noIR3DcOk8chhPgD0H9rLq9JW0tDTQ2lRPNBZBDyi859JLGE+PY3s+ohiiWPSQJJWt27Zy0uKF5HJjiIKJ5+SxfY+pM6cxZWor5UKZvp4h8EWE2XFy9S5hDQJihSl797vfQ6FcIqhHsE2PkKoTVD2USJCzzjoTgExqiOG+3XQf7yGgBek4dBhrwtca1sMItoIiCVjlNJoq4rqVi+ma004lX7YRPBA9h/7BjkrSdUDm9DUrgcrFbfuurUiSRHp0lL6+jsnjec3ad9A6bRa4EqnhVCWsavchYskmWprnApW05337tiN5GoGAz+69uwA4c+0ZCK5EIppk4wsvYZbMyTnavnTp5Kr2nr0HEV2Z0UyGjZtfAWDpkiVMb53CuWecQdkZQlUgO5pDC0Rx/BKGXWD2vGnccOM3MO0S0ViSRKKJ2oYmPnLVRzhl1UoWtC/gq9+8nmWrVhBvrufRJ58E4Ml16zEdl1xmEC0Q5GhnD5ZZ2ZdbN23k+Q3rueHab6DYKnUBnWSoiobGpsl90r54IfliGVEPcKRzD45vo0WrqG+ePTmmrraOsdE0yXgNul5DLFlhF5sa62mdWksqPYo8WiBW9ojFk9TUt6EHw5xyyjIADKuIpGi4vowHCBPhXq9s2opjCyhCEC0QRtPjWLYCooIWjFfOuaLAoUMd9PUMMf+k5dx4w9fQdZ2R0WG+esPX+M3vf09PXz+jqTEUJYygqLieQblcprOjm+4jndzzpzs4sv8gf77/QSIhne27trHyzNUsOPVkoi31OI5K0DIZ2beZB379A8695ApS+TK+4CH4Ir73OnsvCCKxWB219W3Ivsbo4CBtU+rxzDxVegzXqez7+sYo3/v+twhrddRWK7QvnM8/feZaLrvwA6xauoDPXfNJvnDdjdhemFPXLGXXzu1EI9HKHDpygLse/A0XX3YRuXyedc88yi9u+ymO60zOs0AgjFkqU8gOUUhnOH6kl3+/9UfceMN1nHXW2dimh+zBjKY4N3z5s/zm5z8HoH9ggF/+6jZq6jTGRg3mzFzB1Kkz2bb5QW78xhdZveadJIOtxKUaGlvnMmvOPB68/04+8+mrAVj39Aaee/5lQqEQdn6Aoa7j4Iq8+uoeDFvkyOEdqIpNJpPBsnSKTp6hbD8tM1r5wc0/Zd2fn2PNKe9gxZK17Nl2hOGeHEeOdvGxj17Fww8+QkgJE5Si6EKc4f48mhqusGqWTzIeoq2xGief5tiRHlwRahvm4RgyC5adRsExMRyNSLgRQTEpuiKiFqFsmTQ0RSst21SBQiGFILokmxohoOMqGrakIwSiSGoIF4VgKEGyqoGhnn5+99vbyRvQ2NRKMlnF8y88zs9u+nfmzV5KuVSgu2uIkuUiBHRC8VqmzWvht/fcxZnvvoRr/+1rPPTU3RiOw+5d2/jUJ67mqo//E7u2vURQ8Shn8/z0+78kFEywc9cBDh/uomBY3HnvPUybOwXTFnH8MKFEC6nxPJ6k4CsaJceh5FgUiiq/+OkfGcukWLRyJXff9SS+E2P7awdRVY1DR/exYmU7mfQhbvuPH3LnnU/x2kubEb0SncMpSobFRe+9hKa2WqbPrOeZl5+ipWU2ZrnMU08+SCrVS3V1kkP7++g7coTRvg5++/tbuOjCFWx+4RmOd3TT3bWTXH43o0PHSFTX0dOfQRFrmD63jW27dqKGRQaHHLRkA7Pnt1FXXYfpxenMejhWiYAcJxao4daf/4x//uSHaG2Mokk+TglKpg9yhKmz24lWV6NHZTzL5Ln12+ntynPqymUktQBB0WS4t5fGuiRVSZtSwae+eQkDw2nmzZqNqsoEojW4UpzevuP85Mff4rx3ncVYMcumLa/Re2yEXHYQo1TmrDPPoaq2jl1793P84FGCkkJXdydXX/1JTmk/mec3PE3JMGk/9XTufuplRDHMypVnMe4G+MAnP0N/3zCjnZ3IrltRCWgSolzJJpFkYVJO7HsCAtLkveUbccYbPadvZGDfSrV5ot7MdL6x3vzYG1nWN497O3A4yZ6+yZv6Rv/tiTGu702Oe7vtjePfioF9u+3tUpv/0fpfB17/M/X/R7ZWEGUEJfC3jwsgipWb/UnAW3kGJJHhsRSmY+L5LqJrI3huxe+HjzOR4Of5ApKo4NgeuVweBB9VkxAFE8cpYphZcuMpbMtG1yv9IaPRKIosoSoSuqZQXVVFeiyNoqiEoxEKpTzBkEpI0yuR+ZrG2jPPoOPoEURJrEgyZYloPEqplKK3vxNFg9de28ToaIrDh49QW1dHqVTCdixi0RgL5s/HMk10TcPzHPBdHnzwAWqq6wiHggQCAdLpDJ4noKlhspksTc3NWLaFqusokoDjuAwPpbAsBxBBlPEFqcKuvsUixNtJzoFKQ2VRrAC0id6IriuQyxXwPB9F0ciNF0gmqykbJo5jk0jESCQiHDt+gGIxhecW0DWXSFShriGBZRcBl2IxhyzpSKJKLp+vfDR1hILRTbbQiyhZyJJDQKvGMittIHy/iG1X5GKSJE5IjSs+skSyimA4hKzIBAIVf2IkFEYUJRDAKFuoapixsQy2beC5PtFIDE3TAZ9gQMMol6muqUGQFAKajCi4BHUNWYSqZAzXdV43+1PpB3rzT27GcTxK5TJdXV2oE0yYZVkgijiiAkaBOXNmccG73sl9993LQw8/hGlaBAIBDhzYT3t7O5lMGsexKRWLqJqEokqUiiWikQSqIrN508vs27sH33NYumQR5bLJxo2vUMiXOHDgEIVCjpGRYVRFwXEcBkcGOdZ9nPd94L1omkoyEScWDTE4NMB4fpyB4SGWLz8FSRIpl8tIkoSiyOTG86TH0hRLBQYH+xlLp8jnx3E9B0GE6qoktbU1eL5PLpfj+PFjDA4MMp7L8a4LLkASBGprazl+/Dgg0NDQwK6du4lHE0SjUR548H6GR4YIBTX27NlNc0sLju3ieS7r1v0FH4GengFkWUdVdVzXRdUlPv2Zq5AkiXw+T3//IOeddwGSKLNgwUKSySQtrU20tjWxtH0JxWJh4hwn4Hoef/rTnyb379lnrqW2popYLEaxVMZ2Jy6I+HR0dFA2DGzHoKvrGK7j4VkWpQNP4WkVSWMkHEXTKpIzUZS5/PLLGUtlUEWVExl1dqabmmP3Ul9fT3d3NzfffDPFQhGA7u4e8vk8juMhijLxeBxFqTCvuh7A9x3C4Upbp7bW6QiCwPDwMHV1dZPHZV9vH67r0tDcREvblMnHv//db2G7BpZVRtVEHNekbUoTiUQUVX39kmaWBELBONFwHYViJUiqqbEFx/HIZMY57bS11NU1YVkWiiwTCoWoSlb6bKbHMvieSCwcIzVaYeeqq6sYTg2zactm2lpnkM8XeOThR9HUAKYh0nm0BwGtIq0LBJAkkY9d9RHe+4H38cijj9DT24dlWcTjcWpqaqitqUGf8BjPmj2L3t5eSkWT7q5eVq08fZKpvvbL17N0eTsf/OgHOeOcM1hx+moGhwcwSsXJ71pdU8Phg/srgTPVNQwPj6BIMqXi615hXQ8giiKyDK2tbZjGBECrq2VkOEUmXfFsioJIuWwiCD6RSJSWlmYAUqkUolg5h46Ojk5eWxcsWEAqNUJXdwfZ7BiWXaKqKobn2ZPp1Y7jMGfOHGbPno2macyaMZWbvvctwqEQr772Gl/7+jc5afGpLF+1mk9+4mP86rZbEEURy/ZYcvJyDA8ufM/lzF64iCuuvApVCTBv3nwCeggRCV0N4BRH2fjseh565HHmL16BJEk0Nb0O8AVBIBKJAGAYBgcOHAC7jCKJtEydTl3zFArFLIIEzgRLEktEQLXZtf8VMtkeZLGIQIqR1FEe/POf+Pp3r6MqFuR73/kmgu/y0D138Zuf3koiFieTzfLt7/+CthnTmL9oKe+97EMcO97J+WedhzZx/vQnsgwK+SK5XB7LsigVbf7y1AZuuunHRIIBtm7dytbXtiNJKvFonGlt0wD4y7r1pNMZWlpa2LVrJ6VSiaOHMgT1Oly7jO0NIwXGEcSKXLerq4frr7tucs49vf4ZAMbGMiiKQigUYcmSJRw5coTqmhaKZZtoIo6oiEhikMaGVgTBx/cdnnjqz7QvW8KPb/ouU6a00Nl1hPr6Wq699jre/74Pk0zUcaSjg3/913+dSOW3CQZCHNq7n1QqjS9ArLqGltZ6VN3F8TM0NEfArbD6mqaB4LFg3nysUgkJF8l3CYeC5AvjmKaNrGgMDQ1NBtyc2LLZLIZhoSgamhZgbCxDKBRkZGSEz3zmUyxevBjwaT9lNTd869s4OMxfdBLf+eFXqG3Q0HUPX3AxDRdJVGlrm048VkU+V6axsZHGxkbuuOMOhoeHKBVtisUS//4ft7Jz53ZisTgLF1bO1YlkrQN9UgAAIABJREFUjKqqKqoSSYrFIjU1NSTiUWpqGjBNm1AwTDyeRBAUFFkjntRom9KIJkf5wpc+TzqXZvGydhpbW2iom0E0Us3n/uV6PvOp65ClEDf/4qcc2H+QSDCMaLu0tDTR0NCIqgZRVZ2SJ2B6Au++9HLqapvpONyNYRZpbGxEEjWymQKJqlb6hoYJJ0IIUpTxnM4vf3YPR48eo74xSm2TW0mrzhfQNIXa+hj1tW3IUqByf+T6LFy4kICq8NijjyCIIlf/06fo7u2hrr4BwzD40nXX8stbf8bI6AB4FiAzMpwhlojy4EMP8ZnPfpadO3fzh9sfwrA09GAd0Xgbg8MGQyNH0TSbBSdN59DhvezavoMH7rufSCzK0a7jSJJEKpWmXDJ57+XvJxIJYVsuoVCIr3/964yOjtLSXEffUA/BYJDGhhbmzlvIf/zHrxhLZbnhhm8CIgE7y8tPPci/33QjQWcc3xdYtGgRqZFhDu3ZSUh0cUwL3sJ6+I8CsH/UJ/p2Y04wqX/v//8zbOZbBU79dzDTm/fD/zT++r/g9f/jEsJJpNqpf/XYicTifD4/sRpRAbOSDz4ioqYxb/ECgvEArm3S03mQcmGcsiNSdkwcHxQ1iO8LOK5IPFaLogQRJRHbLeE4JqoiUy6W0ScaSufz47iuVQEfjkM2lUKRhAm2UcA0LARJ4pQVyygWc2x+cSNbN28mXpXE9lzapk7FcV1Mx8UFbLtEd9dRznzHWpa2LyURS1BX18hJCxcRi8bYuXMHsixhlCzSqQy+B65jMzoyRCioc8nFFxINx+np6cEybZYuWcZg/xgvvrAFo5SnvX0JM2fPwpclRMeiv7sXWdZQFJVycRxflECQqYD+t/7N/95KlGVZmGYJSZgw53siImAZFpoaJh6vAaESkqNpKj4OouTS0tKMWcyTGuohnRqs9Ab1PAKBMKWijSSq+J5Gb88g4VC00mLHjhAJTSGot4IbRnBkHA80PYznCgi+MCED9vB9t8LAOi6CCKmxFJs2v0rZchkZHqJcLFIqllAS05DiUwiFYgwP5gjoEUZTI/iuCL5MsVCmXCqSz2TwXRfDsJAUnUx6gMzYCL7r4DkWpcI4TMxBSZTQVZ1XXtnMl679MsFgCE0LcN555+H7PoZhoOuV/qNS1XREMYzs5VBVibPPXsvFF12EKEgMDgxy0sIFTJ06lVKpxCuvbKqwLulBVFni3rvuBV+iKhGltirO/Dkz2bNrO6XCOAP9QyyYfxJNTS2oikYoGqa5uRE8H8/zOedd5zJv0XwMy+B45xF0RaaUz9JYX4MoCai6zoIF8wCQFYmn169j3/59JJNVeB6YRplQRCEejyErMooiIwhguRMtkdxKil4iFqWqKs6MmdPZvXsnQVVFlkWam5oJBcOEQiHmzp6HJMoMDw9z0cUXIUgCjl3k3HeeQ219Hd09Axw5fJhzzz4HSVRwPQnPVyjkDSRJwjBy+GIeWVLR9QA7tu9gfLzIwT37kAQJ14fmtiYct4QiV3owPvHEU9x99924jssll17Mtu2v4vs+ZilPSFeQJAE9GEELxSqSfMembJRJVCeZPr2VxsY68q8dI7xzB9rMdyFFK0Dl6fUbkDyRcsnE9wSuvPITxGIJfvqjm+k53j1x3IAiK7zwwgvMnTuXO+64g2RVBfwdOdLB17/+dQJ6hJHhdCVhfKJURSMS1bBsA0GQKRYsbNvGNM2/OkZ1VWb//v2EI1HcNwRm/MtnPo2kiTiugaKC51mV/rWSx/JTT54cVyx6KGqUXbs6cewKGBkZGeKHP/whjz36BLt27uPVrTsJBAKEQiFUVZ48cximiecrvPzSRvwJIOP7Hr7gkCsW8JwgQT3JRz7yMUwDPvz+f+LxR57ltlt+zVeuvZ7UyCh/uP03PPjwg0iSxFeu+xJbXnyOQ3t3ceTgPnZs38rRI8e46MKLAHAm5K47tu9n4YKlHD/e+7pKSNaYtWgeelLnsWeeYMbS+aBIjAwMTn7XUrnM9OltiK5PdW0LyWSSZCxIXf3r/cQN02X23FmMpofxLAtl0kcsMW/uEqZPn4nveSAIBPQoCM7EgseJhT/wcSdAYSsn1EOhUIBQWCWe1EkkQ4RCOunMML19nYh+JfREnFC/jIyOoWoyff29XPmRD7B3105u/vEPedcF59LYWE8qNcafH3uML133r1z87it4adOrHOg8xunnXcjUeYuIN7SSMVwsRySbKTE8MIzo+Ty/YT3PPnU3iWSMz37payxcecHkYtUbz/+NjQ0A9PX3s3z5crxylvRYP51dfURqpjFeGCOejDMwMAxAVU0N8ZoGlp68BFWVGRoYZtuWTaw5/TTe9e6LCSYTmMVRjnUcQLBdiuNZfvuLW1g2v53rv/glFp00n9aWVprq6li78hTWP/4kN95wPaVyGYCVK5YgiBAK1JLJZJg9o5WOfUOcd8GlfPkL/8zgUD/z5s1j5aq1KHqEjS9vYdqUCnjt6uomGqlm/fp1PPWXxwgGdSLJOJ5vUBwfIxSKMF4o43oWpmnS2NBEdVU9s2fPAuB4Vxe2bTOlbSpVyRr27N5HoVCipbkNLZggnSsQikWxMfHMMFZZIJ/LoqoOTz3zAB/9xGXMntfGSLqPWXOnMTDYwymnnMIzG17g4IEu6usbGR0dIxKJMZ7N09vbz5aXXsKzfWxfJJCoxnNDbHn5VTKjo+zcvYNyqYAkgoiHLIo4tkVVJEA5P45nlSmPp6hLVuO4oOkRgsEgw8PDBINBstnspGUmFIyjKqGJPIc4c+fN5Jp/+jjPPb+edGaUXbu3oap1hOJhDLeM6XoggWuabHphC+k0qFKY7mMD5NIGgqdiFD1MwyWZrGbtGacjiC5HOweR1TD/8vnPI2ki6za8xOhYmlBY4/DBfZTzBe694z7GC3ksz6KQzTAyOIZtQLno4DsSH/vwx/Fsl3MvWI0ouYTlOEJAJF4TY2hsgK7+4wwPD1Oy+ujp6eLk9hWctGQajuRwyvLVFLIG5Wwa3zF5ev0z5Es2AjLjSAQTSbKpHIW0xfsuuZqTFs9kbCxNW+sMfvvbP/Jv3/4FU2fPJpgIkC9p3Hffa7zrXRexbt166utr6e4+hiIEqE5Uk8+lUGQD31H56Y9vJRmrxbEqGSu4LqcuX4Ir2KjBIIFImMxYjr6ePu574G7uefAuWhqrsEs5NFEmEKphvJDnltt+yr0P3EVD4xQWLFrAmjPWkM0XCIZjtLTNIJmsJj0yzKUXv4fq2jZ+9L3vs/LUFZQtk9kL5mGYJXQ9wJS2mQwNjZAdz1BX24wkqiQSVcyfP5e581pYtWYZ02ZPRxZE8iUH11M466yz+fH3f8Du7TtoP2keK05bRV9fD65RwMWnYJbp7eti32tbOLh1CwFRRkGs+NC8/xx4fTPb+vfq7cb8I+m8b8XC/r3P9H/B6/+B+kcmwpsp6v9qbPTbGZ7/S+X7eNkhvEw/XqYfN92Pnx3ATfcTkk/Q6HCCeRUQ8H2Rvu4eBMcirCtMmTkHLRhDl0BTlUprGNdGxkaSJcqGDahkswUkWUFWw9iujB5MoOpxXKcCTgyzhKpqqGqQUCSK7XsUDBstmABBwPY8RFlDElRUTWPRkiWcsnw5IgLKhFBCUzREfAZ7juP7Aarr2pg6az7zTmqns7ODrVu3IIoStTWNdB3vZ8umrWzetKWyH1yPoB7lD3/4A4Lg47o2u3btob9/gI0vb2T2nBlMm95GQ0s9yZpk5aD0QdFV6urrCQQCCG6Z/mO7kX0LyXMREPCEv9X6/73fy/d9HMdGEiU0RcJzTGyrhCS66JqKQAU4OL6LrMj4PpRLJo4Dql5FY9NMqpL11Na1YLsyjz6yjrtuf5jb/3gffX1DiKJHS2szoighSTKOW8QXTUTNJlvoYCy9jfHMcRQZEFQcX0VVdBzHwrTKKIqKY1t4jktjQyOr1pxOc+sUaqqTmIZBbnycda8OkRGmEAjqJJJBFFXiycc3UCoY3Pmnuzna0Ukum60w/4LEbbfdxtHDHSAIhMMxRFFDFHVUNUi5VOChBx7AsRw812fl6hW4uAiygBZQcV134iQpYdt2pQ9xsgFFjZE+to0HH3iUWCyIrilk0xmaGhq49557SCYTVFdX096+FNd1qa6pZcP69TQ1NPLa9m1UVVcTjkaprq1l6vTpHDh0iOrqBMmqBOFwkEBQx7Rt+rr72fnaLkzTo1w0KOSLtLa2kayuwcYnEq3maGcX2WyWxoaKD7Svr4fOzqO8853nM3PGdEyrRCKZxPcrvpVCvoSmBvE8AZAQZB/DtggEQ0TCYaqr4miaQq6Q5Zyzz2Lvru1YlkFNTR1jY1kQKp6u450dHD58iOeef5F4shbHMCkbZbSQTiQSZnhwCMe2yefHmTl7BnpIIRQOkc+XCASiSKKCKChomsryU9txXYMZU5oZHOinbFl4UAnNcQU0TeOCC87jvPPPJhQKo+sKF198AU8++QShaHgCgPm4joPkQzGXA99nwYL5eL6HbTv09/XR2JEjNDKda27bNnmclAyDZYuXYRoOf/rT7SxZ3I5p2lx62eW0tFaCjSzLYmwsTalU4uWXX8bzvEnmdWn7Ir7xzS+C4FBdVQmLOxFANJ4roOthyuUypmlMtAjSaGtrI5PJTB6XzfV1LFmyhK7ePoqGM/l4JByiVPIYzxYJ6GEkScH3RDLpPB1HDkyOmzq1CUcoM3/xAqqrK+FEjmvyhS9+ivdcdhELFsxj0aKFiKs+ztisC3Eca/L9dVXGEWxkwaAqEQZgdHQULaSiBgOMpcZRNZn3vu8SgkGddX95lI0vPss1V3+CKz9yJb4j8Oc/V7yNV3zgA3zyqqtorJvG7l0HSadz6HoQy3IYHq6ApPRYhmSimksvvRRJFhgZ7UOSKpfn4cFhjFKRlsY2quMNyGKIYLCKqTPmT37XvoF+fM8mrOsIcohMKkNxPI3rmJNjsuN5LMenqXkqjpXGnwCWQyMj4CukRjMIE60NMukinm9i2y79EyC5rr4W0ywTiUTw3IpvHyoZA57nEYsmyWQqHvp4vIrZs+cznklPzBUTVVVJJBIIgockCSiqTDQa5hNXfpjv3fhVXtzwCHu2vcLnPv0JBEHglS1bueUXv2TR7CnYtonr2nieg66ryKrEzFlTiYVVxoZ6mNXawLvecwULlq1EjCYwtcBk+Msbb8rmzq0sZB06fJg9e/awbfurhCMazS2NeK5EXV0bA8NpRlOVJOb2BQsZ7RtBUQIIWpLWWStwvBouu/QTxGItxEI11DXV8PkvfpFj3cM89sR6PvfFLzGeKdN1pIvHH7qfn//oNn7z45u49affp33REp59/tnJa9KSxQu45+4H+fY3b2XuguloapnHHnqamfNmIWIyONCLrGg8/NhTqKEA/3rj9cyZM6Myl20Hy/RZc/oqPnjF5TiOw9zFzfT07qcuGSGb8bC9Km75xW0VO4rvYtnlCtiYKEmSkCQFQRBJJKpQZI2+vn6CikNYFXlxw9OM9Pbz5S9exwcuv4LqRDWOZVE2i5x7/tk0T21l7vwF6MEQ8Xic/Qf2sPK0dlpaq3n00ceZN3c+v/n1b3Fdj7q6Bqrqa5FlBdFT2Pz8Zp5c9yKntq+msaaN2XNWIXgunm2BaxFQZMqFPGXbQ1Y1tFAUWQ8h+R6KHsEXNUJ6iH379iHLMuFwmHg8jud5OK5B57HD5AsZwhGdra9uorYuCYJLdU2Uf/vm13Edi5HhI+g6dOzvoLV5EdFAA8sWreLhh55F8FwEz+dzn/0sZqnMpo0vcSLN+frrrwM8li0/GdtxGBoe49vf/iF/fnwDJcumq/cYz2/YgFks847V76C5uZW+vj7sYoEffO87GKUcWzdtRBJc7r7zdrqOHWHa1CWYBhw/uhNF8OnrO0ZLQy2aKpBMJnH8FMtPPZmf3HQLiAXSo0M4tsTiJaeixwIcP3qI0886h0i8jrGRLLWJECPdhxnrP0wspvHarh10d/Vy1533MTg4zFe/9gU+/tH3MnPKFM498zwa68N8+lPvwbCHuPLKD5MbtxkfU1m7+jT6ursY6uvDLJWBPAHdwzZL3P6H23EMn6GxAlNmtmGVU3Tsfo3ZixbQ3zNAVaKWfR17sR2JbDpDIqwjYKHqCsFQCMsz+MQ1VxOJVjFvQQMbX3mMZLXEyGgn+w+8yuZXDtOQbObXt/4WWY3y0BOPEU3GCSoakuWi6xrlks3gQBp8CVkW6erqo61tKnPmzCEYDILt0tDcgI2Jqvts37ODq6+5ksBEuvbZZ65g4bI1vHqol9Pe+V6SjdPxbYtCqciytWeyZPlaDh0d4skHH8E3bVzT+iscccL3euJe8s2hRm8EcW8V7PTmcidkym+W4Z5QGLzRO/vG1zgBWt/YT/Xv1ZtDmN74P2/+++bv8Fav9Xb2zf8pAPu/Frz+by159mqEUBxBlEGUEeXKX2wDt3MrlT6vbywBWZBoqqvnhXVPo0g+ZQdcQaaYSSH6ArlMFsFzKebGyBdzaIFKqm48WYXr+ViugSvYyJpEySwSDoeJxWOVNiKyRMmwQJCwHAdRVtFDUTzXxfNBlHUS8Rrapk4BUeDY8eOs+8tfOHrgMDu3bccwTFzbplzI0djSjCf5uILDeHGMtinNIHgMDQ0zNDRKX+8QAwODBAJB9u7dy8jIMJs3vcoll1xKJpOmv7+XuXPn09LSwpLFi+joOMSMGW3o4eCEl85H9MF1bawT0mfBQRNNzEKWTGoEx3Y40ZLjjfVWJ4wTCxqO40yED3lkxzMgeARDKpLoI/gOpVIRhEpf30I+j2GYFXZMCyMpCp7gEgzpuLhIqsSFF57PhRedz+Xvu5gpU+twXAPPs/F9b8L35+Oj4DoBkrFp1CXnIPtqpX+uYINSkfMVS8VJaaXrOoRCIRzXq3w/QSSdTiPJEqFQiClTplFdVc/IyCDj+SFkWeDSS96PLMvUVNezfdsOorEIgUgcNRDgIx/+CFWJeKXXLQqWLdDXP4IgaoRDQS6/7HLwJ3q+6jKeb5PPZzGtEpIk4XkeiiJTLhtomoYn+LiCSEI0Ofec85Alkdv/9EcCehBRFFmzZjWO4yBJMseOHcO2bSzbZc2a0znn7HewYME8auoamDNvPoc6jhBPJpkxczZPPvU4+/fvJRQOsGvXdg4eOkIiUc2smXPoOtbLhr9sIKgH8RHQQ2E8RGQtxNSpM5g2dRrmhFy9ubmZttZWjHK5Ip1UBFRFxbIcYtEYsqzi+wK6FiAYCOP53sSigUu5bLBn1y5cxyYQDOB5LolYjGAwgK7rxOMJspkMkUiApuZ6TjppIRe88yKefPJp0mNpXNdFURUi0SBLFy+lpqaWSDREOKojSB6aJhEKRsCTsS2R3p4ByuUSDY21JJIRXNegpjaJJEk4tscdt9/Jww8/iuf5dHUfY/r0E0qOyqLUeeedR9GwkXUdWVZQZQnHMggGg8iKhIeHPCGdrraOgazjRqew9sy1Ey1Q4Jxzz+G73/4Oqqryu9/9jkwmw913383Tzz4DE6DqBBg5//zz2bx5M6Ojo+RyOQBqa6sJRzTyhTSyrOI4zgmDPy9t3IjriCiyhqrKDI/04vs+hUKB555/AahcNBsaaikV80yZMgVpQnIM8OLGl4nFa2hoaEbTQoiChqaFaGpq5dChijc2kUjQ0BhnYLCTQjHDye0VRvbZ554jle5HD8jYThlFFRElgeaWJp574fnK5wTeceYaFFXktNNOYeHcCtO1c9cexsZSSIqMJElYVol777sdSQbPK3By+wIEHEqFMo889AgdR44AsHRJO8lkLZ6rcOjAcT50xZWoSpBSscy27dsAqKmp4SMf+SiWZdDTc5x582ZjT/iHG+tq2PLyRkb6UhQzJq4FtgVnn3PB5D6prq4CweHY0U6yuSKxWALfdZDE128mRsdGCISipMbyhIISnlt5/f7+frq6+ojFEniei2M7JJNVpFIjlEoldu2q+IUXLpyH73vs27cPQZBIxCsse09PD6IoIwoqsWgSSdQo5A1sy2Pbjp0AaJqG67pkcwUsy6Kuro7t27cTCOookkx1sgpZlFAlgQsveifvPPccABzP5/2XXIAsCeC7+J5T2bCRJLj/gbvoOLSHmbNasaUYrqJj4eMKlevDCWXIiRurs86qBGTl8wX6h0dYtHQZsizjmAapgUHKpseGZ56b3GfzZsZxzEFQCqgRCUt2md++mL2H9vDJT3wIgSyj2TQLFrWz7+BRPv/lr3Da2jN56MGHyWZzeC7MmDGL5zdvoWXaDI4eO876Zytz/B1nnUFjQz1//MNdfPiKaxhJ9ZLN9PP73/8BWZUY7O+htbmJYDDIJZdehoeDIPns2F3ZpzOmTaNcsonFYliWwTPPPENmTGNKywKKhXECkTIlt5cVp66ekLELjOdSHDh4CIDW5mYEQcA0bYaGRgARVdVpaWljw1MPo4kOZ6xaRVNNHV/43L9w049/iGt5FMZLjKbHEAQJVdX41re/i2X7KIrCtGmtqBrEEjKqovHud1/KOeecg2U5JBIJZi2YhxbQGRsZpbWuleUrZzMydpQ9uzdjWWUi0RAD/b24rotpmhTy4yiBEI4g4UsKSCqlYh5V1bGcyo1+e3s7oigSCAQmZcSlUp6pU1sRRZ98PsuyZe24rk1393ECQZ0vfOFzGMU0gm+QHhokqIQ4dHQ/e/e/ik+Oz197NaMjQ3R3HaWttQnXMbjig++np6eXgYEBzjrrDDzfIRIPIMjQ0NjCx678JB+78mqSySQzZ07ng1e8n3AwyM9v/hmHOg7T3NKCLEIhnwHfZt7cWZhGEcsscfedd/DSS3tJjRQRyJMaGiQRCrF540ZUYNNLhwkFqsFJ8OKzBxgdLtNYncS1PU5a0k6iroqTFswjlRpjYGgYUZQwMiMERYP8WB/HOw9geiXal57K2Wefz4033kjZyNHcFGZsZJg7/nA3gwMHEaR+Viw/B9O0aWmtJRJ3eeovj1JbW0VLSxv5XBFBKHLNNR8mHAzwyauv4Sc/+hlKJEHZtMmODSE5BY51d+E6Ps3NzTS3tOC5ErV1zRzcuwvDyGFaBWRFQtNUrvvqVzh2vJunn1iPW4a7/3g/Qz1pVEL8/g+/Ij3WQ22DiumPIgQ1fnTzT7j6qqt4/P6HGBionLf6+gbQ9SCNjY0UCwaHDx/B931s2+T+ex7E9aCnv4tSeZyvfOXLyKpId3cnY+khXnppPdmhbs5cvYLuw/sZH+7BLJVoamnBEhX0eCNLV57N4vkLueHr3yAcjaIor/vn3+oe8+22f6TenBD8VszumwHy/3S9kQh8c3bQ/6n6Xwte/zMT4q0M0q+vIrw5fOlvQ5z+9j3ePOavw5kqw986CMrt3QOOhbb24+hrr0JfexXa6R9HO+ezCNFavFTv5GeuvF7Ff+HJEktWn05/bxelsQFUySNUU4fnOsSTCVzRAVFHtB1kAWzHwnFcJEFCQqqA3Ow4iiRRNoo4noLlVPogBgIa4+OV4JnRvk4kJ0cwoCL4DgIeoiITi0aRRYmurm7aT16OL8vMmjUDz7IwjSIDY0XqG5swSzY4Aps2biUzmiMSibHv8EFWrV1DvlTmwosvYdXqNVi2zwsvbkGUobu7j337jvD8c6+wa+d+XnjuBSyzwIwZM3niqRcIygKKIlX6cAKm7REOyRzeu4Wu48cZzjgc2P4ihdQReo7uwS47OC7YOCC6SAIVr47ngg+u42EZDq7h4FoWnudj22DZJVQtgusL5EsGklaF5clEIhEkQUYUdfRoBFkWKBQyOK6JbRUYz+YRhCC24aDg4voWkZhObX0tLtJEkFKF9TetMh7guWVEsQwi5AyfQCyB6xgIbgEdFUGAgKJiGxaSrBAMJxEkFQQBo1xAV2Tq65vRgiGymRHmzqhHcMdRZBVVUvAdg8b6IL5gM39+Gx/60GXYro/sKQiejR6UiFdVkR1LgWuTHh3hofvvR5UEPF/CdstIsoPrGgiuCLZGQNWR8CnmU/iOhWf7hAMhRBFUKYITqENUkwiF48RjtXzg/VfwwAP3kc+VGB3OTTI1iqwjS3qFSfFNMukhdmzbgufY9PV0MXVKKyCSy5eIRmIc6TjCxpde5uILLyYaCrFj5y7S4zmmTpvCuy+9hIcfvh/LMpAkBVH26e/pwTQtisUypuVhGwUMo8RYJks2U2kB4bkCuXyO6upkhTlyHUyzjCAKDI2OgOch4CNJIvv2H2Bx+ylImobggazoNE6dyeHDBymXCniuTTRSTXf3ILoWplQqUiqOccaaZcQSUTqO7EfwRHRVJVaTIDM2SMk00YJhPNvEsQMVj4AgMdh3jFe37uD551+Y9JSHki2UDRNFEHjw3j/zwQ9+jEsuuRBJ9pkxeyamY2MaJq9ufQ3fg/RYGlXSETyBbGYcBJl9+48yMjqOZVsInozgQ7R4gEAkgRlqQ5JUmlrn0nWsIgk2igXeceFqRF3kxY0vcvzoMWrjtbzvsguRpdcvG65b8TQnkjGiMZ2a2qrKE4LE/t2H8AwDQfdIVicmkp1hy6tbeGnrFoqGwIYNm4lHG3CNAgoOv/rNrwFYs2olLS2zOHKgAydfYnTg9WTcJ55ez9GDB3HcMocPHySVGkHTYSTVyR9vvxOAy95zCan0OA01rQQjQS6dSCF+bdtODncMYDkeoUgMBG2ytdBNP/kZAHPmzGLG/KmMjIyAlCSbdYlEIjiOw9ev/w6XnHUpv/n9XYhaGFGRUbwSd9x7B9/6/rcJJUL86e4/0jvUi2VWgPDmLZuAAkp0nGs+fSVPPL6O0aFh/vWrX5pcLHB9h9/86d8RFJWaxnqCsQiyUvFFRuJhVq48j0hSRQpm2b71FVwrzyP3Pzi5T1RBJhFrpnFKG7oiM5QaQ4tESI0NT46ZOn0GvuCi6D6S1oLH6wsC3//RD9BUGccykCR9x8eKAAAgAElEQVQB0yzR0jyDn/3slskcgDNWrqa7oxOvZGKMj3PSvAqL+cyzL6CoAYqGjyIquFaeYraXDU89ypZXK61fPMfDKdrIjkMuVyCTLhILBDi2ezMdHTt48vHHcEyRuuqp3H3nQ9TW1QMgSjIP/WUTrutSKoyz97VNPHL7r9ixZStj/aO0NM3hjPMuwpeDSLKLY3tg+yim/Tf3CL4vsnbtWtraKsqB3955P9FYjNRIiuJ4Fl2HiBbjpp/9CIAVK05l5er3UdPUile0iFCNYGX5/r99ng1P3sO1n7sW3/X43e/vJDc+TlNtnFmzWvnwle8nFLe56srP8uvb7iGZNNDVGi698Ap27nmF5zduRBRF1p66mvVPbeIrX/0M8xcLNNVOQdNbeXjdz8mmPELJNkZHsvzxd7/H8WC4VOTRx9exactWAC541wUM9/Zz5MBhwoEwp5++mnhYZXi4GxsLhABBrZZFi2ZiGgZGqcx3v/djDMMA4Ox3nIUkgBbWqa5RaK53KZSOM5LtJRqbjqLWctbZF7Nn/1EC8QiXf/DDOKJATXMtmYF+RNdHkMN85fpvEg5E2bjlZQp2itHxfjxR59yL1lCwchQMmyefXs9QapQZrbNRtAiOCErUIREJoqga7aesQPIdHMFh7rzT2LhxOy4+khTCM8cICh6CJxGK15MpVnzCrlNA1hU8z6FUKiCIPnV11YiiQOeRI4ieTwCJLc+9yMbnX6C/qwvRNhkaGWPV2nOQghLHO3P84Ds309KoIZsu/3zNN3j66b0c2r8XXdeoa2njyk/9M6n0GKmhLkYGBjiwYxv7Ow7x1H1PsOn5zfR296BFJO5/8h5mz6nn6NGjIISR9QS+pvH5667kpNlTOLJvL3ogxu133EVVdS07tu2gOlYFts+jjz9GPB6mobEGwZdINjWihqs5/ayLKVkSa89fjGHHEIMOX/7ahzh+YJDu4VFsKcULL61DkQVsT6Kxpg7BNsnlx6iJ1vOzX95Ly5w11DRORXBKpIo5/rL+eVatWA2WhWfkGB3qJxKIU187k3JJ5de/upUdL+9j0eylNDXXIwgCL25cRyadI56IYjk6mUKOgp2m7Bb46je+iebbhAISuVKZafOWEYvVoCVClJ0cVdEgpdQxHrjnPn548x0M9uUJelDIFRgZyBAPawwN9FLfeBJNrYv54JWfYeGpi9GrFW655SdUNc5DDLegR2swMznef+l7uOHfvskZ512KlpxC/9gIJy9fQN4pMpAzOGnhNEwjRSRaWZB+5/veS2owzfL57YyNpjjesY9bbv4PWhoX8ZOf307b7EU0zprP7r0H+d3t9xKpm8XeHa/x6osv897zL0QwximlexkYyfDRyz7IrT+6ifFiFiQHX3QRxNfbxrxdcNLbyXnf6NU+UW9HslTyJ8S/aYlzQlH6Vom+b6y/eV3Xm5RAC2+COJP+Wr+y4fl/Nf6vNv4WuJ9IExYEodIt4U2bL/BXf/8r9b8WvP53642T7b/bcPj/7X3+UTO3svgCvJGj+K7zV89VQjZkYrEYkhamUByj59he/FIBVRFxbRdV05FkmXA0zMBgL7LsYJpZfEx8wcP2vAnZTRRZErEtC01V0TWNYnmcUFBFlmUSVXXISgizmMWxyliuRdmxMT2Hqvo60uk0Rzs6eObp9fiChFEuc9/9DzA8MEp3Vzeu7VDIF7BME9MqY9kWH7ziA8RiCRYtbkcPBnA8h3gyzsrTViFLKsV8CbNsoioadQ0NjIyOVVYpVZFVa06haDkgSZPJaJoo0d3Vx7wly5m9eDnLTz+HuaecS+P0RcycPYv+7gOovoXmKbiWjOV4pIZSjKfHMYoliuM5fMf+f9h7zzg5qnPd91+5qnOYnjzSzEgzmqCRUEAJESSRs03OmOSAsQ0Y2zhtbGNsY3DYzhiMjbeJxhhjMhiDCAIBiiiHmdHk2Lm7utL50COZIKe9zz33d+7vrk8z1WutququWms9632e58V1i/QP9FAopBEEG1XVEAQRSZLRdR+SDIVCjkIhi2nmse0SiiejSjKViRh4JTxPIBQKUbJMFEXGdUDRfaiaDq6F6Fk4yEiyztjIBILrISDjeSKuK5BO5ct5MGU/iDK2VSKbTuI6JVRNxXLsKeANruPiOBa6ZjA4OEw2lSUUDBIMGBR2P4Hd+wyOa5PJZDHNAmPjg8iyRG19PQXTJBGPl58Hz0XXfAiCRCQUQxAEamqrOOvsD5NKJbHsMv08l88BHkWzwB133InjiMiySiBYychYmrfXbcbyBGRNI53OkBcCCEocvdjPk088h+eJXHbZpeiGxIKFs9m6bTOC4LFp82bS6SyqrOLYLoFQkMVLFiGpGoIsM6O1lXhlnPrpDXTOns1FF17I/AXz2dvdjeDKLFo0G59RYsvGt3jkgYfQJJfhfZuZHNxJfmyAZ55+nr6+fgzDoG9gH+l0AVX10VDfxAP3P4gkKgiCjCypjI5OYJXKLt+mWZyiP4bIjCcppHM4tsPM1hZsHN5+cyMT40nwBBzbJRKpJJXO0t3TQyY7ybTpdQiiR2VlHEURicbC+PwGXV2d5AsZoKxrjMUq2LjhHVITOSQ0/vynJ7DMAunUJDt27WDlqsNZvnw5iqKTThXIpE18viCiKNLW1gpC6QBTYOqlQJYMBvqHsW2HkdFhLDtPKj1JMFTWUQcCER79458RBZlUMs3k9pcRBAH/qT9B8wcQJIGlyxfQMbvs1itLAolACM8qoioCq45ezhErlpQnzwPGEaAoCo7o8pErL0PzB1BVDYCSVeTQRfOJRAK4XpqBwb3lyQ8IhcJccPHF/PqeX5PNZhEEgXXvvMPp513Ijp27kCSJ66+7kWRqgnQ6yejoMNOm1R8YDyVJ4uTTTuKpp58iHA4Si8VYs2YtJ558BuPj4wQCAT796Wuorq5FEAQkSeLMM85gwYIFAFz6kUv51d2/RJJdxsYH2frIjznrhJW8PgW0vv3tb+A4HolEnGKxROO0Fr7yhZsA+OOfH2WsMMwZZ52O41oADA+NMzAwznkXXcLQ4CjHHHMc3/zmt7jgvPMAeOChh7jtu3fyja/8hGzS4YwPn8k1n/4kv73/PgL+MiXZLJZoqG8C18+zz/yFYjHPgQ11T6Kndxei5CCINp1z24hVBvGF/6bnBA9ZlssLB88hHA5jWQ7R6N80r6Iklo3zLIvkZBa/PzT1e4S49757ufIT17A9FsCZ107Osrj55lu47fbbAPjoVVcyZ+482jo7aGqZhqhZnHTKinIO0okJLrnscl5/4xVu/o9v8ttf/Y5vfON2Lr3yUwcMkpLpFA/edw+vvvg0XtHmY5+8lquv+zJr1m4hUj2L8y+/hurmmRQlh3kLF/K7++4D4PjjjsPFI50rsnv7Ng49ZDYXfuLzLDrsSC66/GIWL19EEY/0FAV6f8oIVVUPLPAOzO+SiCh4XHXZxQC88NcXufgjV1Kc6Mav2PQnM5x/+eVs27YDSZL45te/iumFEfU4eshHxpxAMhx+8Mu7WXDMCdz2i5+AEGTu3AW89PKTHLmqi7HRJHlL4t4H72VWl84XvnIJPd29rDx2KZ0LuvjEZ74AwHXXfZqrPn4VR606jGVLFpJNZ3AVg8s//kl+d9+DvPX68zz44P0EoyEuu+oy9u3dw/e/eTtXffTjAFTE41xx2Uc46eRVGD6RmroYhl9k0eHLuf/3j/HG2s2YZtktWFEFNm7axMevuZZf3PFrAFatWMWKI1YxPDyMZ1v4AxFkI0Zl5TRqqxqY3TWLbC7NokXLGBocxa+6rHvjZUTHRPEcOjs7D6SYGp8cIhzVufCCy9i+tZe339yKJBr07O5DFVVeeWk19TX1rHl5LXpAxbPyJOIhmlpmYvii1NQ2MTA4geupmNkirm0yZ04n72zdwsh4FsHVmJiYIJMZRpZLVCZi2FYJyyzhWC6hYAWSaDA+lsbvi5DPWSxYsADTNNnd282yIw7n0KWraJ+9gERlNRUVUcJhjVJeZMmiw/j2rbfSPzzCzj3b+NgnrqRYynH4ESsQPIkbr7+eqCFy9y9/wJbNb7Fw0VJWrFrBESsXsuyILsxcFjNbpJQ2+fynruWNl19l4ZxDcAslfvGjnyC7EAxEWL16dTlCbhVwCuM8/uiDHH/i8WRNCyUYYsPO3Tz+zDOUXIGmjrmM7+tBFwVGJ8bRQ2G8Ugkch127d+DiMGt2Ow/c83tES+BHt30fM5vCtgTeeP1tisUS06Y1sm9wgE9fewPPPv0SZt5Gk2RSAxOsfuEvnHfh+WRdj8EBm7fXv0UwbhMIhhC9CkRdZWZHK7f/6Ed0949SsOHkD51FwYFcycOn68TCEXyazjsbN/GXZ5/DLpVITWZpae1EUlQEO0nQB+FYmLFcFknWOfnUUyg5BSaSkyRTOaoqKhkdHiESi7N81bG0d7VTZte5mJkMflUhkqjjwYfu5c+/v5+B7TvYumU3XV1zaJ01g4nJfoR8hiMXH0YhnWfnpi1EVYmN2/uoqptJKltg85ZNRCNxRkaG6e7ZgyL70DSDqz/5cUbHBvjE1R8jFqvAyTv07trLh08+laF9vVRV1lNdXcfdd99NJBLB59N5dc0baH4/J554EoJVppRL3v8s6nkwDPL+yKvneQfme8cpew78dzDL+9PTvNtd+O9d17vb/u8uB8sR++8U+Z9X+f9OOZhD2L8T9t5f918RXL+bH/7PLKv3PyRSwxzEqha84R2ItR0H+nj3QzejpY3xsX5GBvsZHOgmFDKIVzWD5GDLHo6nUpmoZaR/iEg0RHIyRSSewCqZ+PwhbMtBUxSsUhFJEimVHHy6QXIyiSRreIKEKKnIioLplF8aVVZBBFlWOHLFCp547HGWH3446XSWkeFh5h8yn4H+QZ555nlWHn00fft60TWVyooqsvkCeAKarqKoMrIiows6M2bOxO/3E/AHSafTROIxGpujDI8MserYlQTDITS/gW4YOO7fdnNcx0YTBRwXBNnAobxzI2ohEBxct8jY6CirX7yDE44/jUhFFZZnEw5Fp/KsllBVFUmSKeSzNNTXkcsXEHBxHAFFUclms8RiUYpmiUAwgCKK5AsFVFVnb/fb1NU3ks2aBP0xVFUimZwkEAhj2xaappVpMQWPUDCAKHg4HqRSKdauXcvChfOorKkGD2zb5cc//gnXXXcdgiwhiTKyoiIJAulUinhFAlVSGB4ewmeE8fsNTLOA5wr8+bEn+cglFzAxkSQciVIclXEcj4A/zmN/fIbDDltCLBZGwEEQ1bJTcC5LvpgnHAozMTFBZaKK4bEklZXVU8+ZzdNPP02iqpEjj1yOrqqYRZNMboS5c7rwGX5ct4SLRSweJRyJYFs2CBKFQpZNOwdZVm1BYYLaWAOvvPIKsgKHH3EYlmVSX1c3RdEWEESX0ZFhFAnGkpPU1tdjmhaappcNk6wSll1i44YNOK5Lw7QGHNeleeZM1q9bw/TpcRYunMsbr7xB19xWRMmjp3uI2vpqLrjoQiRR4JVXX6OhoR7LNZEUKBVzXHLJuYyO9JCorkcUYP369SxbtoRSySQcjZDNZjD8PiQ9wI6dO6ioTBCMhRE8j5kzWqioqCCfy/Lqq69x5IqVCAJU11RjOxZWyaJYLPH2W+uor6siXAyxa1cflmWzcOGhZNIlfEGJ119fw/TpTTz26GOcddZZHHfcsYwO7WVfzzBHrzoOT/Jj2xLJyQxPP/0Mnifx4TNPQBIlOjraABPHsSmaJrpmsH79JipiFbhTxm9z5nQhihAOhxEFCcdxyWQy1NbUIQkSMXGSwaF3CF74ayxBwierlCyL4G2/wnHLeppi0WTbF75Ldu8+5s+fh4dH3LERRYXAW3/TlQqCgDgyjHTnI/gUGaG3rI803tiCcfu9ZZOjC4+mtr6mbA4HfOXQo/jlulf52s03oUkyn7lGJmUWD/T33W/fysoVR+J94z+JlSzkl7fjvov+esuio/nWxlc494IL8PkMRA+yUwY4miTzuxPPYdZ9f6Hswmxjf+kqRFHkv377G85YeRxbhvq55lPXcv21n8WnqCSL5baiIHLLN29i1cpj8AaHUH/8G4SSyxmpNPGKGNmlR3Pzmud5Z9s7LD5sEYZhIEsSmezfHH3vbl3GOf4A41/6BmfuG+PxWCW7J0b45q03IwgC9917F+lSEQ+4fM4ihsbGeDyXJbi3n8EnnuXhnT0cc9wSCq++hZAq91t6+Clq3thNVXUFlmWheQIjV5+Bqv5t+jZ+/zzi2l50UcArFgjoOrZtoU+rPFCn2N1P6IG/EhYEBER46S0ADolUcGjHQm7/9a+5RxSJRCKkUqkD2qqjjjyKL3zhBkp22dW+UChgGDqdnbP56JWX87Nf/JInn3qKJ596quxuncth2zbHH3MMc+bN59Zbv0MsFqdr7lzmHzIH2x8iUpng8Wee5YVXX4NrbyAQCCDLMslk8sD1Llu2lM99/gZcARRJpDIaZMPbaw98Xltbh6yp2FPAXfDeq+HaP6/uXyAVbQu/KNBYGeEL13+Cb9/+U377u4f5r3v/QCDgP5ADVpZlfvD9b9E2qwlBcTHtPIqkcddPf89ll1584PyTqQIOPpYsXsbpp52NLGkIQo6de7dx9bXPAOD3+QBhaiOwvPFyw7XXcsP11zA40Mv0hgYmx8fwBSvQVJ2R0VEe/fMT3PnrBxBFkW98+xYcx3nPMzajqZl77v4V9fW1KFKMRLyZXNrmt7/7Azt27eKLN339wH2EQiHy+fyBaCvAMUcfw3lnnMcnPvFJfvif38YsFHE8EVHWyEwWsUpF9u3rJx6P861vfRPXBVEypzwyVDZs2ERLywxKtkkgZqDpAq5nYjsqO3f08Pjjj3PiiadSW1PD+eddyD33/BeKKhAOh8kU8oyO7qO+oYGxyQkUypvLoUiMbDaLXcwzOjJEOBphdtdcCoUikiDjOSUyqSTZbIpSwaG2tpa9u/bS1dWF53nk83kqKhLgCQwMDBAOTCdfLFAwi3iKhOEPUSoVyRWK2IJDMBhg965d1NbWouoSTc3tJKqaEIVytG7N628xc2Yz4DIyuI8rrriKn/7sh4yOCRx/3EqG+/uJJSJ85KqP8PjjT1BVU8/Pf/xTunt2k8vl0FSdUqnEjh076OhsYffuvfT19XH66aczmRzjlFNOpFDM4A9EKDk2ihbmqisuxXEsHF2hr6cXQw/x1S9/gTvu+iVYDrZlsn7jOs4683w8V+Hkk0/ENE10PYBZdHFsl6/ddAsf/dhltHfMpKo2zt133cuqFcfSvXcvNbUxDNnPx676KOPJSaoaYiiqyVnnnMdEagSfIREIRjnl1BOIRqLIcoJMdhJRLGc8qK6uJh6PMzk6QkVFhImJJEsXLyGXdcjnR9B0P6YFEi7pdBqzZBOIVCBJErIvyO/uu5c7f3UH4XCE/r5BRvr66O3tY2S8j5XHnErA53LJZZcwu62FKy87l+zkJHfd/RjXXfMxsG0+99kb+OS1n8d1HUzTYmJyDL+i8NYba0hlczRNa8DKp6mrn8bQ6Bie43H+uRdw41dvZsXShVz36av5zT0P0D88xP33PcQZZ5zF5s0bmZgcZvniVezZ3ct//e4efvDD77J8+TI2bNjA4GA/0WiU+fPnk85kuefe+7joovN44pE/c9EVl2IWTBBFXKEsadtf9utT/xlmeD8mOVh5t+70fxJoe7d53f7zSZJ00Gt8N375RzThg6X0eX8qnP338Peozv9d8CrddNNN/62G/6eL69k3/e/s73/CF/9gm4P1cXBQbO8pT75y86EHoRIIEKnFXv9nhPg0BFH6YHvHxsOguqYGTywwObSHyfFJCoUkquyh+KJoqojgmdhOAU2T8WwBXdOwLLNsy5+aQBBEUqkUiiIhizKFggmCgAuoho4oKSiqgecKjA0PEwoGscxymof2zk4qq6vI5Qo0NTUieAI9e/uprEqwa/duOtrakCUBWTKYc8ghZb2a6BIK+1E0HVmVUTUVURSJxMMkqhM0zWiiuq6altZGQuEgwtSiUDcMJMouwrIoUsrl2bh+I+0dXUiKhm1bKKKLiIuLgCDKTJvWSGdHB+n0EO9sehvBU5E0AxdQNBVJkXE8h0xysmwaYJZQFJV8oeyeqygKju0iySquXdaAFc0SsqwR8EexHRmfPwySilUq4LouqqZi2w6uK+DYhSk9sYJpOdilDD7DR+fsLhRVp1DMliMDeCxbuqwcLaAcWZ1IjmH4wgR9fhxkHE/EpxnlNBcSSBJYJZt5cxeSL2bR/H4818Wd2IHjWIxaMaY1NFJbW0k6M4aLgKRo+Hx+VElEkqeoiMEgqcwk0UgFllVCFAVkWWLjxg1UVNbS0FDLwEA/zz//PAsWtpFI1KEoEkUzi667FPLpcoQyk8bQNWQZBEEhplk4sU4q7K30pGWWLl1CKplCVVUUNYCqqrS0NNPX301VZQxFEjF0P3u7+6hJVLNh/Xre2fwOo6PDNDc1smdPD9U11YQiEULhMEge9XVNGD6DPXu20Tw9gqzKmKUQqr+SiroqHMdClhWaZ7QwNp4kXhEHQUSTNSbGxti7Zy+NzY1IsozrOdTV1aAoMrZTdld1XAdZUqfyWAoEDAPPsfFc0DWFN15/jblzZzM8PkYwGMQslaby3gJIpJMZWmbOJBKJkMlm6ehoo1DMEwj4ERQXWVGYVt+AXbIZGxujIlGB3xAQPY2JZIYdO/eiqBKrV6/hiCMO55B589iyZQN+v5/kZBpDV1C1MnCaGE9RW1uP7eaYM6cTRZHKzq7O1IbY1C5tNBYFFxQ3idD3Ar6TfoISSSAIEsLqjchI7Nqxix9tep1cPsfQwAgfX7KC0niaYCCIIIo4XpmW+XLfHlbv28O0GW1c+OmboQjaO3uRRJm7179GbzrJTNnHSR3zsG0H5rUznje5+57/IpvLcU7HIdx8+PFIksRANsVkMU9I1Vne1MLd999DS3M18ZiO9OoWBMraWkmW+MbLzwJwYrSOr3/9G0zqHiMjY6QzGeK6j1NaZ/Pb0y9kWUNjeSwVyu7pxSVdB4DzVb46Ep5E2iyQMosUbItav59Tpjfzyxu+xMkfvwqQEXNZpHXbMQslxscmmRxPUVnwuOrwo/FEj5Qmk83nQBCYHqtgRV0TX11+LHWShiQLRCIhaiqr+PCSw8nPaGR0bIRsNotPVpiXqOXqlnl8+chjeWGol40jg3Qlqjj/3DNQG+qZ0TINd98Qdz/2J1JmkdPbZrO4cUY5J68gIcsq4Q8dRy6X57bbvgfAxXMX0RiJY9kldF0DPCRJZkAW+Pmz5Vyyn778chI9I7iugyxLvNizm5d6dzM9HOUXx55OYsVi0qZZpksL0NY2i89efwO3ffd2fH4N1xPIF4r4A3EEDDxPY9Wqw3j2qRepq68jlU7heR4dHe18+ctf5Pu33c7LL6/mpdWraZzeyOKlS2np6AQbOjs7mdE8E90op/AqFPJkszkqKuIsWbKEz3/+c9x663fQNA1BFClMDPLSM4/S093DY8+V8+7OnTuPk086DcGzEKbSer17Tn//PK3ofhSnxI63X+eaay5memMcxxKZTGXJ5fJUVSY48aST+NnPvs+JJ6zEKubwGTXYdoZiZgjVg5//5Fbe2LAJgMOWLefYkxZjZiyee/p1+noyCFKW9vZGBNQpLXD5PZw+bRqnnXoSX/zC9Vx5+RVsXf8SzU0NdPf1Ea2uRwtWMr5vD62tM9F0EU3zY9sOuXwO27GpqkwQNEJ89PKPc9rJp3LkiuWMjY2yZOGhVFSGCIYN2jpaqa2qY9P6jVRUVCAIAplMBlmWaKhv4OhVq/jC5z7Lf3zls7TOauEvz7/ACSccz+TYEMFoJem8R3IijaHofOHzX+G7372Nqz95JZJsI6ga+/qHMPxBohU12KUcJctCVBQ0VcAsppEUldbWdi699BJ279mC4Jqcd96ZTCYHWfPaK3R0tGF6Nm5hgnwxTyhRQ8ksoGoKW7a9Q8P0ejRE3li7hraOVpBUEH307t7E6Hg/0xoa8fuihIM+Nm/aTEf7bJ579gUaGqvwsBkZGcLzHDzPYWhgAJ/fj6gqBKMRZBV279lNZVUN4UAUpyTiWRP4Qwa6L0AmbxOOBrEcE8d1uO/+hzjs6MM579yzMQs2P/vFPXzn+z+ns60dTdVRw0H8coA8RRpnzKJQMInGw0Qr4yi6Tsl1qK1voHFGMxvfXs/cuV0sWnQoqiYRiscxbZt8Ng1OnuGBHv764hoWdrVRKIxj2h5joxPU1dajqzI1FToTYxlUVWLx0kXkiyWefOYZFiyagye51NbNwvBHCPpifOPr3+KWb32TRx75PU2zqmltbaOmupbevdt4c+0L3Pil2/n+D77LFVd8hLmdXTz11KO0dXQCGpGKEIpuo0suxXwKu5Sjv3eAmqoEgmtRKmQp5tMossbExBhjo+OIgszQ4BiCW6SiohZB0ig5JTxUamqnk89mwbJA8hEIGWTySUqWjeNKyIZI68xOYtEQ6dE8vojOh04/ncOXLuHpPz/CEcuWUlvfSDjkJ5PNs3vPEPMWzmLjxrd47bU1RMKVpJODrH5jLUuPOJJoPMLk2AC6TyWoawRlg7AWom7mTFpnNHD+uedyxRXXcN4F59HeMYva2ioEwWPxoiV8/JM3cO1nb8ATPeYtnIMu+7n33vsJBgMctnwJ3d17SWVLrFi5gp7ebg5pa+fZZ5+mvb0DTxTxBAHPfW8O179nbAQHD4T97e8PGsT+P1Hej4EOdp5/dh8HrXMQoPv3Uv/sB8eSKH7t371+4f9Nwe2/UxzXLCtJ/0UK7vtD5P9q23/W51RPB45NffqB+vvT37y/FJ79CQD60Z94z/Fy3+V+Si/eiZtLItW0va9PD1yX11a/yJFHrcBxBfZsX0dFPEwmM0rJzFHydFTFh6H5CIc0BMHCUWrwHCmB+wUAACAASURBVIt8Nks4GMURbARULMvBw0aRBTxPQBTVsimGYDM22AeyiiTp1NTUUDLz5DIZCvkiqh5AkFWymTShUIBsJo3mM5BsuP/+B2mZ1YbrQkNjLbquM61xGqIiIYgiElM52aaY7sIUc31/OgYPZ+q7hcnJFLFYnFLWpLunG1kxQDKZXtsI+RG87CiC4B3Q0gEIkozgi+CJHnhlXv9zzzyLZbusOukEFC0AcohUdhzZzSPLYTwkZA2y6QzxigSiJOF6MDk+UY5eicKUNtolOTmOruvYtk0wGMRyXCRJwbZKKLKAaWbQdQM8AVFUEAQBWRUZHx1FlmUURUU1QjiORyadQxQVHnroYQ5deAhNTc0oiowsK2x5Zz227TF7zuzyJoQexPPcssmKYzM+Pkq8ejqCU2JyYhz/6F8oFQqILR/G7/eTSafRFQnTcgiEQriei1kqIYsqpZIJglvOfZrJkjdLVFXXoMgy27duZmZrJ7ZtUTI97v3dQ1x+1SWMjIxSWZUgX5jEc2wikRh4Ynmn2LVRNJ1cLoORn2DPvnHqvDcwwx1k3DCJyji//e1vuOiSi7FsE78vgOeJFCybsGKzZUcPkViCWCLE6OAwsXAURTNIZrPs2LKNRYsXMTDQz8aNG5jV0kwkUoFh+BAlE9lLkUqWQNTK1PZEPblUGlX1ISAxMZ7kr6+8wOJD59M+q5WS4+EJEpnJYfzBII7jIsky6956mwWHzEFAYO1bbzN3zkJS6TEMn0Ihb1GZqKOEi6q6PPHkU5x4/GkoikMxX0ASRLq7u2loaSlrqk2brZs3YJUKLFp6BH37BoiGQwRDOtlcEcNnIAgC+UIBTddBkMp0PAlefn0zw0ODnHzSidx1192cffZ5BEMKrld2dy6WCsiKiOh5IAgoio7jeliWg20XMHwGeFI5qboo4OEiSzoT42meeepPnD5bQJh/Ob6uc7AFB7fg8ocH/8jZF51OySvwq5/dz/HHn0ixaBIJx3jg/nu58qrL6OnuY1ZrF/fc8yvOPfdcIpEIn//8jdx444088ugfOfe8D7Fv3z7q6qZhmw7d+zbT1FyHrvtwzCCbtrzC+RdfzsDgED/70Q+48Oxz6Osfo35aI0gOuVwOx3EoFHLouoqqlfP4+gz/lAmUyLTmGQDc9p1vcPmln+Hss8/lh/95G5adw3VtEokaAgEdUXLwXJVC3kUxpqjNtsfaN9azbMFiZE1m645NVFRFCUf8eC/9mkLRxLfyU0iyi+W4UxRcAatUzvObnhzm+mu/xN49fTz/3EsEQhK2Y+LzyyBYDPUMYZV06qZV4SkmEOLZPz1CS+shrF3/NsecsJJQMIwip3BLMn/6/fPMXdLFtOn1mGaOrVt2s2tnD8esWowrWoQjMWTVjyJa7N61l7q6aTh2eZGg+QTWr9vKwgWLEESHvXt2MaO5hWw2TyAQImVmMTQdwbHxrFL5d2msQTUiWIUS2CauZ/H5L9/EL355F8uWLeOR++4klzdJVDai+X3s6++lMlGP42TIpZKItoovEWVwcJCqRCWOZaGrGts2reOQQxdjeYAk4xQzDA3txbH8TJ/RiJDey4tP/oFCJs363aN8+Xt3UizmD7pxvP+Y5go4oostlbVYsicyuG0zG7e+w0mnnYYlqjhIH5jP91Pd9keM928O76+naga73nyF7WueYu6iFoqKiSDXUV3TDlRjC+MoYhDT6WUi2U9t1WxEXcXMyUi2jWsN0rO7GykcJ+bT6O8boXX2Mq6+4noOmdfB/AVzWff2Rny+AF+76Succ/5xfPwTVxLwhwhEZyAKDocunM1fnn8K19bx+TQk2SOXy+HzBfAcH4ruICoigqhhWybJySzxeBzHzfPko49z89dvx9Aruf+Ru3GYoCpaS//AXjQjgESIHdv28PzzT3PicUeRnhyio72VSKKO1a+s5/hTj2c81Y2q+0mNJdm68W2WLGglaftoqIzTu2cvVbVN9AyN8/brL3L6h05iz549NDe14/NLFE2bYgkQZCQ1QMiQyUwOYLkCsi+ApvtIJZOE/CFymSyGL8y5557Fr+/6KWvW/JVVq1ZQKEkUi0Wi0Ri5rIkUlvBMAdkFXbYYHekhHJ+O7ep4do5caoBIoo5cPk0qlaIiXoPnjqPoNQjoOGaOnXveYm7XUmy7xPhkP917xmiaNoOa2goGh3oRZQfbriUQ9CErDp5Q1nUXTe+A3j2TSaEUiqixKtLZNCExS3e/STSuYfgk3lq7hUULVxCrrmZsaJAf3H4rH7nkQmrrm/D5/azfso7WjnZK40lUQ0VURUquh+V46FqQfCFFojLOrp17mZaoRhRFdEOhr6+XyspKSkBA18ilk+zYtgUbj865h4Gnkpnsw+eLgabgCSAJIkLJRpUNXnrxeWIRg7GxPi772FdZu2YtxxxzJH94+HfoygQ+fwLDF8UVVFxcLAeyuTTpdIrm5kbGBvuQZZlcLkdDQwOFQgFH1NE0eWpdI/DHBx/k9NPOxjQLhCISPn+UzRu28eCDD3PVRy/BsrPous5Pfn4n1197HaVciu29ozQ21pMrTFDfUEX/3r1MjOXomj2fhx9+mBNPOgEj4EfwIDk2zt2/vJOLr7qSWFhH02W6h3JU1s7ATO1C99eza3s3lZEItmsRS4TIWybFksp4z2u0ds5lYjJP0B9g64aNzFl6JDhZ1r2+mpDhp3lOF16hhOdKTOYLFOw0quBn4fylvPDsM4iCxdWf/gzHHHkYn/zUZ9i7r59IvBlFcymWJqmqrGFyMsNDd91BdWM7115/HevXvsaTzz3Fcceuoq6hFlNU3sP0OLAefReQK49F5TF8v+mlKL4XRJbrix9o++4x0vM8BOm9Edj9col/VFzb+UD09f3X++7z/L3P/l45cI/C+/533A8A3HezY0RRRJKkfxuh/98TeXX/9cjrP7Jt/u+Wg+1A/CPw+q9EXt9T+4BBE4iRGux1jyHEG8quxO8+J6CpZWprNpujMhYCx6GYy5BNpWlomo2qBAkGE2TzFslUAcvKoukiPp+BWSqSSuXRNANFUcraV22/xXZ5QTwyMkqiuhpV82P4fKQmJhBEj2wmTVVlFf2DQ8TjCQYHB6moiCNLAqLnkkqmsWyH8YkJUqk0Q0N97Ny5g3nz5peBqiCAM/WSHXhR939PfzO/KrsFC8hy2dXzrl/9hmhIpSYaRMn0IE/swjWzKE3zkOs7kaqaEGPTkBKNoOhgFUEQEab6aGxooErOoeXHYXIf3sReDHMCybZRvCKGoZJKF4lVVZWjca5bNkwyfOX8r0WzTK/AIxQKIQjlqGoun8fn81HM5/HpOo5dolQycW0BVdPJZNLkcjlcWyAUiuA4bhlY5kw2bdpMb28fzz7zLJOTk9RU1aEbOs899xx/+ctzHHvM0dTV1SErIuAheBKiIDE+Pk4wGMTvCyDJKvlMBk1TYXIHggBeZBaG4SuDYFFAkmUmJicBAVGUMYsFdF3F80BTDTRVJhiKMJlMoqkqmiIjylI5H2jBZMvWrdTV1WMWTRzbIRDw4TP8mGaZIqvrBrIsMTo2jmEYaJpBILcPp3k58uBreJFmSmaJxYsXMZlKEfD72bBhI4lEAlEWyIwNYASCRGIxXLeEWSiiyCpPPvUMjY1NjA4PEw6HqIjHaGycXs5PbHtT4AwUyaKvb4hItIpoLIEs+/D5DSRJZP36dWxY9xYTyQyd7R28+srLNM+YgSCJJCfHePXVV+no6MSybaoqKxHx6OntYfvOnQSDBi+9tJq6uunEYlE8z6J7XzexWIKmxibAob+vB5/PD6JIJBoHx8JzXGy7DIjbOzoZGBygqqqKoaFBMpkUI6NjhMIhxCkNt6qq5AtZZMUlmx6loamRgD+CILosXbaYBx96gM7ZrSB4KLJMybJQZBnHdkgmU/gDZU2hLMvIsog7NTGKYtlpUZYkPA8UVaEtWkCJ1CEtuhpV0TBLFqqk0N7WRjIzQSAUYGI0zec+93muueYaQKC1tQVJEtiwYSOypFBdGyESDeN5Lt/73m0cf8Kx3Pu7hzjm2JVYdh5ZkZAkh6bmaWzftpOAL4bgBbDsHPf//kHS6QzHHH0EXR0dKIqOrCqMT4zi9wfYs2cP1dVV+HwGgiiUHVJFaco11uBb3ykb6XzsY1fR1DiTsbExUukJVE2kvb0dRdHYuGkdtbW15PMm1133OY4++ngGB0Z47rkXaGufxa6tu8lks0xvbCy7sksK9p43sR0HbcYicoUJVNVAFCUKheKBvM4hTePkE07lqMOPRJM1Vr/2HA89dD9LlyxDkhTiMT+33vpDDpk3l1AkhGNpVCUi5PJ5vv/9H3DGGR/C8IdJ50ZxXYmZra3EKsJ4noPPZ1BVVc3MmS1IeMTiUSRZwvVEPMcjGAxhGAZj48PEYmH6e3tpnt7I2MgA4ZBKOBqiu7ubdDoHnoSqKUiiiFOyKVkO4WCEidFBAuEY2UIBURHZsXULe3v7eOXV15g+fRpXXnYxsVgCUdYolgpEIiFcx0Xwym7coWCErJkmGPQhCh6aJrN3zy6aG2dihIM4ro0n2IiiSDxaScifQBRGuemTFzOjrQvbqGTpUccS0A2QlYPOz3+LAHg4IriChICMY3vs2bGZ+YuXohhB3Klnen+b9+umHMdhx44dJBKJ91LhBIe+vWuZHNlE7fQGqhtmUTBVcoUksUgVY+MTBEM6muZHkcI4jotoqWzb2M0vf3EPq19+ja65K8jmSvzm7t8Qr6hClAIsXz6Xma0NdM6eQSweYvbsNnZs6+Gmm76Kzxcs5xsVPRRF4MwPn0kkFGdwYBxRFMhm0/j9OoLocvjyVVxx1WWks1lkRUV0CyQnkmiyzppX19A8I84555zDLbd8j5mts5g/fwGmZREI+BkeHOJ7t93Kj378Q357z13s3LkVTVeZ3tSMLxAlXlFOuYJUwnJFiqbNnNnzSGcKpHImWzZtxTQt1r65nnkLFtMyYxr79vVSUZFA13yMjY4SDIWZmEwjKyrZbI4N69bx9a/9B8cedxx+fxC7ZDOwrxdVBFV2UHSDs88+A8+xaW6agSKrTCTTRKMxSqaNosh4to2maMiySDqfwlAUVD2AJ0iMjvRTWRFjYHCIYqlIbUMz23f1sa9nHZF4JXjg90lEIjHGRjP4/AYlO8PM5llMTCQJBAJs3rwNTfWTzxfw3BKqomAWS6QmMwSnXOYVWcUwAoTDBuPpLBWVVaSTKf70p7+w8ugjEUSXyqoqDMOHVcggCi5btm/l2BNO4Js3f4vlRxxONB5BQGB4eICAP8DoyCCCYyE7JpoSIBTQSY5PIHsKu3aVnXB/ccfPaWubRTweJ5fOMjI0juEPM236LCKRKKKsIwgetpUkElamxo4ck+P9KGIJLSgTDIbYs2eYiTEPIySyasVKnnziCRRFYeHhhxGOVpPOFskXckTCfnr7RklUVJKoSJDNZpEVBV8giKb78PmDyIqGmSvy6iur2bF1O9PqpvPcc8/i9wcQRA/LNtmw4XVefvkl0ulJOjrbAJft23fy4TPP4v4HHiDg0+maO41NG9Yxs7ETXYpRsDI0z2hly5YdPPLoI5x6+sl4jsXTzz1Dc0sLM2a1owUD9Pf1Eo9GGR0ZZ9OGzdTWVFIsuezr28vQQA9/Xf0iTz7xGCuPXM66N9bgM2SGhpPE47UInsSyJUs45UOnEAn5SU1OUFlRixiQGR8d4s5f/pQFC2bz7FPPsWPbDr5045fZsHkD48lxvvrlb9JY30DJdtCNCPf8+k7uv/duliw6hGg4wJbNGzj51NOobWxGVhUWLpzP3PYOnv7zn5i/+FCsqfXm3yv7xzvX9d4Hcg8Wgf3n1GBBPPi5/hHmEf9Ov/+ozb+LoQRBOACHDrT13jtOvzvS+y5a8b8def2/B7z+m7ThvxcC/58IhN/fz7uOvOezfxTh3Q9epaaFf/96tQBucgAvOYgYTHygjj8YJBQMk89nKTkiii+EEYzjj1TieR6qXtaCqr4AyBoBVaZUAkkykBUDRSkv7icnxwkGA5hmAcdxKJVKaJqGYfjwBBlPlJBlCU0WyObSqHJ51yYQCKHqOoVijrVr36S+ro7MxBjvbNuBrCgcf8KJzGxtpWfvTmY0N+Pz+1EVDcuyyWUz2LaLQJkC53nOlGOZhygIaIqGJJaNj7a8sxldV7Am+ggqRaqlLILn0KPPYOYZ10JdO27FdJyK6ajRBqT4NMSaNqTp8xGbl6FMn4eYaOFbdzyIWzmfIX+MioXH4cYa2TrcRzAyHSc/BslBjHQvXmYEr5hFFAWQVQRJmaK7qkiyjDRliIIgoGoqjuOiKTKmWUAUIZ/L4VguslrW6rq4+P0+VDWI43koqsxkKoksqtTX1jN9Wj1LlyxmRlMTsYoKzKLJm2++weFHLCcejaBoclnjpuk4lovnevj8AVy3HD3M53JIAvgMg/zgemRRRIy3U7JKjI6NEfAZCKKIYZR1Vz6fH01TcV0PRdGnIpMj2K5HIpGgt7eX6qrKA/pbRVZYsHAeqqKRSMQJ+MtmByCgyCq/vedeDjnkkPJgKwioikau6KDlBskHq5EGX2Pci1NVXd5p9vv9WHZZr1QeyE2cfJLBkVESiYqym/XebkbHJqiuqiUcCDM+MUp1dRVvvfkmkUiYWEUFqqYSDAXL2jvdI1ZRh6SGeO65v5CcyLBuw9tUVSZ4552NHHPsCkbGkhi6zu5du/EF/RTNAjVVlcRiMQKBIPv6+ggGgwwPDyJKIoctPxwjoNDU1Mq2bbsRRMgVkzQ1TcM2BV5f8wbhsEEingBBwhNEREXFtYq4jks2kydRVcnI6CixWIRCIUcwHMQfCBIKhcjmcvgDARAFPM9FlHxoikTJLKL6I0QiESRZxHEt2jtaMc08gUCAkmnjIaAoCoInUCyabNiwgXg8jqbJuB54rksun8WyCiRTScKRWJnOlBvEG9mMcNgXMWI1WJZDMBwnm0rhM2QMvx8XkbaWds4++xxOOeUUzjv3fFYetZJTTj2JG7/4OS6//DIS1b4DY8ehkT6ckc1cePUtXHLxuZx+6okE/QaWm8VxBELBCqySgCxGeOrpP/HCSy+QzeVYtWo57S2thMMxBEnkzbdeJ5Goorq6GkWREQRIpZL4fD6sklVmL8gKt3z72wBcfNGFNDc3ceihC2md1UhFIo6hG5hFB1UDnxFkeGiCOXPmEA3HOfus8+nt6eWUU46hraWTklViaGSI1994k1mzOnG612BbNtqMxeQLaXSfj2LRxOczys6OuPz4B//JnK65xGJRbrjhs1x21QUcceQRpFMZwuEYqfwQ8Xg9HbM7efThP/DVG7+N6WU54qjlnH322SiCRLZogmhj+COIqoeuKhSLeXRDQdMMBCTe2biF2vpqFFXFccG1yhH3oeF+qmsqyq6qjogoCMTjAbZt38CGTe/Q1TWb8bEk8XglomciuDZDA8Mk0xkUVcNMTeBJKqZjo+kqtYkEL65+hVdefY2amhrOPucsEGSKxRIb1r1FPBLCdW001ceuXd0giRgBlbGxURRFZmx0hO3bttLWMQ9PKDvie56NKMk4roYuy4z1v8rYrm3MP/oMWpafRqyyFp9o4ojqe+a7/VEDSZLKv7UiU7IBQUUVBES7SH/vTpo7D8FTdBzb+YCu6n0LIeLx+Ac2sT0M6msTvLXmRZavOAtXaiWTS6FoNrKgo8k+FMMhn5HRlQpyhTFKhUkqYhU8/MgDXP2ZT1JTM5OvfekWPnP9Z2ie0YpjCkSjYX76059y2GFHcspJZ9PWOpfLrjydUNhPIGjQ17cHWS+bI44OTzA2WpbrVFfV8d1bb+foY1ZSMFNcecUn+M1v7uHQRYuRZJltm9YQC1dwwXkXce6ZFxCvgXA4xIMPPsKfH3+azo4uZs1pZ3hgmK6OTjpnNnHokkW0tM5k5+7d+AIhqmrr+OKX/4MlSxchSx7JiTH84WoEFFQ1yOIlx/G5az9DorqO6rrpdHbNQZdFUqlRqqvrcGwJn8/Pw79/lLa2LlTNh+N6rDhsOaeefhqXfuRyRFlGk2XymSLfueVm5s5pI50cIZqoxnUdert7UGQVs2iRN3P0dA/whz88Qi6fQrQ9KuJRRsdHUDSVUsYmHIuTyafRVZnhwX4qKhJEo2EcD6qrG2iobKSvfxJNCyF5GoJoEwlXsmHjeioroxTyFv5QkGyuyL6+EWbOnEMoBMGgjy9/6SvM7VpALJLAFR1kWWd4aBxR0ChYaRTDIBpNYFsCjitSXVONrCqIkkC+mEVyTcYmR1m4eDGBWJTGxhn4AwGSqQl2bt1Ga0sjw0Mj3PGzO1g4p5No0ODpp58nOT6CoWpkkzlmtc8ilUqxePGhVFdXAaAIAkPDE4hygNfWbqYmUUk2X0DVXWSxxJZ1u1AUH5FIJcnRNAE1SNZScbwSs9qbUVSPM885Fceyufyyy9m+fQuzFy3Bcsvpj3LZSTynwL33/5Fly5YiyxIIHqruw3Y9/MEQCBKuJ/CzH/wn9TU11FRVM61uOrM62/nVr+/ilFNP4ac/+wUfOvMUQtEgCxfNJxQJ8ehjf+KUk8/AFwwzq72VykSEPz7wHEEjTKIiyve/9y1aZs+mULRpaGxm6WFL8USPvbt2ML15BtHKSoKxGJLgoRgaAX8Ax7RJjY6yZdteHMFk4cI5SILJ3HldLFwwj6CusvqFp2lr6+SOO+/msGVHMTY2ztFHrcLnV6iuTlBRUYnnSXiqn3isjvldhxLQdTa8tZ7zzj2PRHWcaDxObeN0rv/UjfhUneuu/xyHH3E0saDHpRddwPSGWsxCinBQZSzn8r3v3srpp52C67mM9vaybOmhvPLaKzS1tOLxXmD2bkOiv41T72IJCgKCcDBgd3B84rpuWT8sy9iO854x9P0mTwcr/x3U8/7I8fuv9aAbkO8/0bvg0H7vmv197acOS5L0/4PX/xPlg8/Ivw5eBc2PlGhEeBcoPWi9SDXOxqcQonUI0t+ir57g4SEiAHt378L9X+y9d5hcd3n+/Tm9TZ/dnZ2tWu1q1bssy5JludsYxcYFG2yaMcaYEiCEEOAH+b2QBBwISeg1ECCBGGwwbhiILRfJsi3JVpdWdVfaXqbPnDn1/WMkFyEbePNe7x+/N9/r0nVpZ875zpzvnPLcz3M/9+1WME0TX5Dw0AhCh1qtiu97yJKEEIQEkoKuxwgCgVKpiGlGqDtlDEulXrexjDiCIKKo4inaboB4iiJdr9eYmpygozOLKDaM0UMBcvkCCi798xdgmBF0XWdkdJRkKk0q1egxPHJwL1NTU8yZMwdBkJAEiWq1hGGYBAFUqzUmxqYYGjzJA796CF0zOXrkEDPTebY99zyiENLb10W7EdKihZhLXod52QfI9q5C1iIEp9ZbFEAMX5kAEAUIhQAPgcuvvoY5i9Ywa948ouku4m2LyYs6U6Q4Xo+j9p2D276QaKYXx64T5oYJh/cRFEYJ7BKiAGjGS8GRJAFCw98UEc3QkRUZw4yiG1Gmc1Nomn7K3zKkUJppCISHIaZp4tTr+L5LGHqUywV0XSKeiBLisXbdOrKtWWRJpO7UUBQZxw3Y8tSTFAo52tvaESUJL/ARgWq5hGnoeNP7GkA3uxRVVQl8n/HREQwjgWlZFIp5RFmgUnIYHRnj6LFjDZEUKQRBRJJlDF3H8xwQZHQtgihKHDo8QFtbhiB0qDs1KqUaCD6FQpGVK1chSgKOY6NqOt///o9oacmQSCXRRvYiCCpWcwdlu45uaI2eaj+kWm2AfadeY3pkiGSqGU0z8OoByVQT2bY29u3dQ++sLrJtWaanJ+nr7UVTFfYPDNDZ3XnqYSBSLU+jG0kKZYe5/T0kohajJ4dJpVMsWLgQPRJh/oJeMi1N7N27nw0bLiCZTuG7Dogi+/btp7evD1lRGircroeq61QrLslknHRTnKamJsbHZkglE3ieTXd3FxErwc6d+9i2bQcd2XbKxQKqaSCrGiMjow2D+9BDklRyuRzReAJB0lEVkUgsih+eamsQBCRZIQzcRt+zqOF7DoIY4rgumm4hhiKbn3qGtmwHmq7jOHUevP9hzj13Da1tWURRIAg9REFCFCUEsVHRjUbjVMo2AgLBoYf43G/KvP62T+L5HpKkMDVdxNAkJCmgUCpTqbkYqo5t17n++uu55JJL2fTYJuKJCHfe+e5GX7RCQ8wl1UJi+CFke5L00o1cfPF6SsUKl158FXe87zZcR0RVLD796U/xja9/m2J5jKHhkxRLJdavW89FF6zF80MkWUbVFWLRBNPT0ySTCep1G9dz8X0fTdVO0a3gc3fdBcBVV15F/9yeRr++IlCtltBUC0nSSCR1JNEgYsXRdAlBLHHr29/F2jVrUZSQyclRDEulvaOdeCKOqiqEQ1uRFQWx6xwiVoKJqVFmZmaIRmOnlB4lzlu3jrJdJdGUYOM1f0Yq2UylUuXXjzxI35wePARy0zUMXSMZM5nbv4D+hX2YpoxEiCob/Oj732TlsiV84a6vsGLlKnyvRt2xURQRp+7i1D1+/IOfsnT5QkRJIJfPoSoC0zOTNJJPUVw3wLB0NCOKIGr4oUhPTz/5XIGOziwHB3bjViaRJIHm1jSGqaNqKsmmOKJmYOomgueiyBJPbtnKk09tprU1w+3vuQNRlPFcj57OdkTRwzJUqhUfSdLQLJNCMU9raxZJkKnX6ixatBg0Ed8/lYxEIgwVArlMtTjD47+8m6aF57Ns3SX4gYhEeCrZ8/vPO9d1cV0XRVGQXAHfDXCrNQ688Dj5if3kJk7SNXcxlYqN6NcRT/Xun80G78werhefC6LCvf/+Ew7vO8a56y9HjFkQBKTirRRyNqpap1oLMUwNzy8TjVlImgKiimmJZJsTPL91F65fYt3Fq5E1mXfc/C627djMyMgw119/PWvXbGDp0hVMTR/jXbe9n7ZsWHRjvQAAIABJREFUN11dXZixGEODJ+jq7KBSLpHJRvinL32Zj/7lp7BrDi0tLRw/doz3vu/Peedt70ZRZULBJZlu5cqrNjI8NgoBtLZ0ces7b2Xx8nlcfuWF4NmEnogkKoSSwE033EZX52zyxQJr1p+HGY/QP3c2/9f//jRPPrGFJ363lTWrNvCD732X9mwbT295jisuX0c0mUJQVep2ianxQdo72vAckcOHBtl/YB9rzr0Qw4hSqVXRdZNZ7W2sW3cBqhWnXquhyiGhLHP1G64hEGQEQSOXr7FmzXn81V9+mCCoY0U0IrE4iViG/Qf2c9XGS0imMlQqeXynRnGiiKHHmcpPI2sCpWKOjmyWfKHIwb0vUJ4cwStNE4m3kc6k2b3nBXy3znRuiEQiRXNTK57rQxBFUEICQJRFWtsyuLUqkig3EoOigGlq5CoTVCoVUqkkwydHmBnLk21u5T/+7UfM6upm7sI+DNOiVKoQicZRNZ3HNj1JNJagq72DE8eOEG9uBUIK01N8/u8/xw1vfB2WmaTuyMxfvJKf3HMvV1/3ehLpJKpmkGntolDIYds22WwGWZZwHAdRlfnlL3/F2tXn8bpLL+XOO+9A0gQMU8F3PLLZPnKlKm4oYhhRNM3CMmV8L48me9hVm0y2i5/f/XN83yae0JiVzVItFRCCAMNQQQ5ZueocgsAll5+iZpeJGTqGpjA6fIJCbppifgYjEmPF6hUoms5H//oTnLtuNRuvfh2IAitWrCM/LWBZCdLNKRAkevvmIok6d//8FyxbvpjAq9PXv5xMW5bHnniUa994LaYSAU9i5/YX6O5sY3pyDFWN09XeDr5LpTCJU55CN3TyZYdSoc6jjz7J1ddspKsvQz43RUuqBcQq8USaQsnlvAs2sO3ZJ7jz/R9AECQq5SKhb9Pc0o5l6hw8tJ90c5qB3VtBUEi3ZNi9ZzvnXXARxWoeTRMxNIN3vuV2vvWtb1IuTCPJMjt372LRgkXIssnw8DTJVIpavc6ll76BOV1trFy6BMuKcnzwCLNndTB64iS+7RHPvCSOd2bf60v3IvGMv88a/Z8dE5wCe77vN5hbfyK79A9t+XKgerY+2FewWF4F4wiCQHhmNfksm76c4iwIwv+A1/+vxn8HvIqxFsRYyx/svxX0KMHMScLCK6uvp6m1oijQlE5QnRxkaPA46XQLqqLhBaCpOpYZIXB9omaUOi4h4Lo2EUvFdQLqTgU/cHE9B0NPUCoVqdaKaJpCqVTCq9UQBAHHdci2ZRkZHkIAHMchEo2jGxaCVwNJY2IqR24mR7lcYnR0nFQqjayoCH6diy66iF07d9HR0UUunyedSlCuVJFlrRFsCxLxeIKBgwMMDQ4xOjrC8WODuI7L8sX9RIvHEPQY4sXvRmlbhiULVD0FWW2Yz4tCiETDq/eV4DVs+HdKMnYYoHgiquwiCQp+HdpbU0RSCZYuWU8qFUfSPL761R/QtfJSkiv/DGH+lUipDKIA/uRxguF9EPgIepTwNL1bFAmERiJBlCQEQSIIRCxTRRQlggAURUdRQwQhRFU1CoUCpqkjiCArEhBgmga1ehVd1xEQ8YMQz6kThD4IIIoymeYmstksQeDj+V5DtVlRKRXzjf3FBHK8i3ogo+s6tm3zy1/ci+MKZFpbUTWJIHTZ/twe5s6dywP338+sWV0QeDS3ZKjVaoRhgCrLhMhsffo5tm59hmXLl+B6NpIU4nkevhcS0vAli0aj1Ot1fL8BeIcGTzJv3ny0eApbiiFVx1DsOlroUxdEQknC98JTAjzw3DPPkE3FEVWDqekZirlqoyIphNRrVaqVEslkmqnpaeLxhprz0PAwHR0N25R8vkhrSwxZtkDWCcM65UKevp45TExO8uy27cyeMwfPKxEGIS1NGX71wAMsWrwIx65hGAbRaAzTNAmCgCOHBuiZ1YMoySiyiefb1OtlLCuKoccIQg9VhTAIqZQ9ajWHzZs3s3zpYiQawZssq5wYHMTUVQaPHUU3Y6RSCWRF4/kX9pBpTRP4AY7jIKvqKa8zB9+rUshNoZhRVLlBUVdkFVFQkCWV7dtfYOHCxYyMjrDl6c2sX3cBxVKBeCJGzW70wSqy9lISKgRJVJiazGHO7EBsnsead3+PkycHSadTgIgVSSAELo888hBtHZ2kmlqYGp9ElhXuv/9+zjlnNdu3bac120w0ZjAxPoFh6EQiMXK5EtrYFrZv247Us55MpoXmplZuufmdOH6N6ckSmmpw1esv57o3vJGNf3YpX/7a16hUKly98RoWzJ2NIMiUq2U0XWH/vgE6OzvxfQ/Pc7Esk4mJCcrlyqlrTeKuLzRsW9721rcgigH33Hsvc+f2oWkatapDPl/i5Mgh4tEWvvjFf2TtujWEQY7AFYlYMSrlPIapIsoCn/r0p1i6bBmSJCIFeeRYO3LTHDwXZC0knU6Ry+VOgWcJ1w+IJWJMTs+g6iqhKzA+Mc4FG9ZSLM0QhDLpRBu2Xaa7q4VkrIl0thlDk1BEiQP7DpOMa7S1tVIu+qxctQpBdLEsHUkScd2AaqVObqrAynOW4fkOdccl8G0MwyAeTyCgIAoqsiGiqBa1ukcklmDgwCE6O9up1op0dmfQxAa9P0QgFKHuOLi+i6ToiCFMjYxgmDqbHn+SzU9vpbe3l5tuemPjnBFECB2cehXCEEE0UDSTYqlAKpnG90N8L+T5HS+wYP4iQtkjRIRQQBI0BFHCFfL89qH78SZzrL/pDlRFRQwcBEEkEFQ4pWtweiiKwokTJ6hUKpw4cYJDewdIxlPMTE2hCUVODu5iemICX46wbccLVHKTtHXPbjwNXwZeX8164cWgTK6RTSW56sorKToFxopDdLT2YZfB0uNYEQdJieMHVUKhRhiKTM7Usaxm2jIZLEXj4O4hbrjlCipukUqlSjLSwif/9/u45NJ1iFLIgQMH+OpXv8x1197ETTfczuDxMW64/mbu/MAdpFIpqpUK2dYWTo4McOnFV/Ev//wtLrn4Ymp2GUmG9773Q3heyEx+ilRzAj+Q0K0I7Z1ZNFFjejrPx/76Y7zn/bdRtfPIYUgq0crJkVFSLU3cdM2tbN/+PJddcSlmVGdkYoSOzgxXb7ya1195NV+465/51X0P8oV/+Dyf+ezfMDkxw7XXXcn4TJ6mTBMILomYyoH9A0Qjab71ze+yZMli/vMn9zB/wQJi8QR1x2brE0+gGiZDo+MkYhbjIyeINKWw6y66ZhKJJGlubue2224j9OvE4gY1u4goq5wYnOCHP/o3brzpWnxUNE2iUsyRG58hX6ySaW8hlDw0RUECjg8OsWzxXIYG9mDPTFGXZaJJDdMSGRw8iOdXqFZdopEEhmkycOAEbV0ZHMcmnU5y9NhhOtsaNOje3tmMjA7jeQ7N2RTJRJLBwRN0dnXxpbv+mQ3nr6deLTF33lx2H9hFa7YVUWwIOIqiQm/ffFqbW/CcOoYsIVtxREGgpSlFe1s7s7qbOHFikvkLVvH9H/0H7/ngBxg5eYhI1KK5pZWxsWlMQ0NRFE4OnyAej2HbNkdPDLF+3XoUSSIVjbJk+VIOHx9A0xTqFRvZUBjPjSMoIeVKAVEKkeUZDh7YSXtmNkrQRK5SYMnixZiWimkqeOUCyVgc13MolPLUfYdqtUZzc5ogdLEsg/LMDDNTkyRiUZLxGOlkgub2LjRDI5pIsPb8C/jxj3/IypUrEEUJy0zw03//NYVCgVI5R7GYp7Ojm3y+wn0P3s+ac1di6BKC7uB4Ds3Ns3jooSdYNKeXa6+5lv17DnDu6hV84+tfYe26y9AUkWohR2tLAim0cf2AA0eHKeSrzO6Zy959O+ju7SBiRbDLLmZUQBQN6qFGue7QP6uZWt1l776G5/qTmzbxwK9+QzIdo7unDd1QSUQqGLEITuhSrU2TaulGUUQsy6AwUWBh/0J8AcaGh3jL227h83d9kUVLltLe0ctnPvs5mlpSHBg4SFu2h0vPX0O9WmvErxq0ZVp4ZstmnnriKdZedumL95szwevp3vvT4PUl6vBZo/+zY4KXJ+henO/VBaD+uFlfGi9XBP5TwOuZ2wRnfpfXAK8vu3f/nyvY5Pn2K77o2RbvRWPdsyz8q43fP/6zrccfmuf39/n9ZX1JevrVvsPpt160yJkZwXnwc4g95yBYqbMCY4mAarFMqZhvKAVbBrpmEfghAiF+4CKpOgSQm5pAkQWS6Rb8UMBzXaQwQJBlPM9DEhWC0CMIXCTJoFLJ4fsOIgqCLOHUfeLxJJIkUK2VGzSYUglZgmeeeYbjx8dZsnQpsiKRSiUxVYVNjz/O615/NZphMTwyRrY1jSzL+GEj2x4icfzoUR5//FEMXaW7vQ1FUZjf20azUkPtXgZLNiIp6ovHfNrP8BVrIb70m59NrOvl48z3T8/jlmZwbZuv/OM/kLAUbv/wRzi063m65ixDcUtw6DH8kQGEZBtSqgPBiL3s5vHKH79SLqJrKo5j47khqiYTApIkIyEjiTK2UwRCVDlFzZ7BdUX8sI4sW3zrm9/g/e//ALVaBVVV0VQJSRQJCbHtGiBgRiONqsep82JqfJxEIopdK2NXbVTVIJlO4wYBtWoZSQgol1081yeZTOD5DolUlFKxRuCL/PBH/8bNN99INGpRq7rE41EmJ4ZBUohGotRqNpYVYapQJBVP4dguP7vnZ7zl7W+hWsgjSyp1p040ZiELUD66Cb9wglBsIaqr+JEkI/WAdLqDnbue49DAUZYv6SFqJohEYjRnWxkZHqajvYO6XWPbtmcxTYNs5ywGB4+zaOF8FMOC0CP0fYaGhkklTYZOjrB85XlUS1UUWaYe1FEEiXwuh6JpxCyjkfKRZERJYnomR6YlQbmYRzdMpsanMcxoQzylWiIWTSHKAoSNSqyhKtSdGo8+9iwXXXwBu3btZs/ufVx3/UaikTie6yNKIVu3/I7Fi89l0xNbuezSDYReiGYZ1G2PZ5/bRibTQmdHG6EIkVgUIQh4ZutWlqxaTVSpUZwZwkovJAjdF6k1QRDg2i66IVKruezYvof5C/pIJFOAxPDwCVoyTaiqCgiNPj1RJhTDButifB9u7hixW/6DMNSRFIHAFyiXPERR4vrrbuLv//7z3Peru/ngh97HxNgkmx55mmIpx0c++V5Gjk+RSkfRLBnfg3K1RiqVwnV8nN99FNd1kc7/HG5Yw4hFEAWVwIYvf/Uuzl9/LmvXno8ghPg+FPMOxweP0tc3C0XzUGSLcqlGteogiA6BL7Bjxy5aMgmWLGlQFEURJibHkeUGMInFEqdaEBqqosVikUwmQ7ncEA2RFYm67aGpUb797e9w880383d/+zkeeOAh7r775xTyE3z1K9+kWq3yHz/9HsMjx2lpzeA5ErKsoekiNddGVRRkQWRmappEIkHVriFLAslYjHKpQLEyQyrVxac//Xk+9qmPYEkCniQgKipuzcUt22iWxExuhGSihXpNpu6U2L5tN7Ztc8Mbr6ZQqSKKIoqioCiNPlDRr1KrBIShj2GJeIGIaeocOnyQbDbDxMQEg0NjrF61nlqthl0v0tbUwujYEOmmBIcPHaN/4XxEQSNfqBCJmEhygB/KjAxPkG6KU67kiMUiaJKJLOvU7TKCFsMLQtwQlMBGDuvU/ZCDBwaZ2z+Piclhsh0tjJ8YZla2g5/850+55R1vwzuDBicFDm+96c1846vfYDw3TaI1i2mayPJL7CHh1Lae1+iRlQOHD33wL/jK17/OwMHDzJnbh+0ECGHIs5t+xb99+4vELJPClA1GjC//5G40NXLW+/xra1M0hu95BK7Hjm3b6ciaNDVnULUIUzN50ulmwtBHEENKpRKFksBDD9zLbbfeyOChQxRmSnzrOz/nW/96F1W7xnPPHsWzp1i2agWJpmacchmCEC0Wx3XqKJLAls2bOO/8SwiCgEqlQjQaRVEFfK9xLU5NjzM+McyH/vyTPPjg/VgRjXe+81aWLF7Pre98A3U7z9R4nnQyhSzrmGYC1BAEFz8QOT6wj/7+flBNTh4Z5A2vv4Yf//hLtM3qI5Xqo+JXqVcqyIQUZ6Y5duQo7bPn0Nkzm5ODAzSn2pmYnKS9uw1BAsexkfyQ/EydfL7M8eOHuePWO3jokXtZsGQxb3rTO/nHL32KeKyFzU++wKIlC4gnVRRdo16vnbJVacP1G7Z0rtug/o+PjxONxhF8j4P7D7BqxUrGJoeIp3oZnRxi19bdzJs7h87OLJGoRqk8gyD6oDSTn3IwLRu37qBFdCKRCPVylUQyTr14kl17BmjKdKNGIiiaxLEjg1hmnHrdobkpQzKdQhVttj7+PN1z5hIqNXInhkm0tKImLSb3HyDR2oOiRlh1zjq+/I2vcPEFG1Bln+PH92HXqrS1tVMo2Gx5fCsbN17F3iN72Ll9P+993+1s276V5ctW86Mffp+3vvWtVGt1HMchkUohCDCTG6NYLDK3fzEzpVFKBYeIlWZgYIBUKkG2KUGhON0QsRJNInGZeDyJqqocOHCAjt4OFCHK1/7pWxw5spevf+0L1HwfUQjADahXQ/7yox/jM3/3GdItSQQJ6kENU0tRnCkRjYh4bp7DRyfp6W2jmAtQ1IBYrJWBvTvJZJI0Z7PMFIqYukahItOUSvOhO9/Op/72Y+SmHO64/cN85zvfY17vXMrhCaq2QkSNUXeG+Ju//hzDYzm++Z3vMV3M0ZVtYnjkOK2ZNqoVn0ptgt/+5glufvM7KJfLPPPMZi654ioCexLDUKmFCkoQxfGnkCWNHdv30NvXwR3v+gBf/erXiScjaAYIgo/neRzYf5QrLruW3Yefo1So0N7SShi4lIsz6NE00WiUiYlxFFVix9YtbLhkYwMw+XnGxqpE4zL1us3OnYdJRDuJJnwO7txNU0uGH999N3e8/Way2SyFQonf/va3XHnllcSbM0yPlxnY9TTnX3UllUKRRCJB3XOREPjJz+7hzz/yEex6jUAUEMQQwleCtNcCmS/Fkn8Yv5zJXhHCV8a1Z9v31Sq1Z1ZcG3oiZxefOit+OY1RXxSleuUx/jEYU5WVP5nV/H9E5fXVsgNne7D9P+t5/e/1yL58eCf3EhQnEWMtr7rN6ZNE1KMIkRT+nt+AVyc04i/a55w+UbwA7JqN5zlIAhC6gIAgSNTqLopm0ND4FdBUuUH9dVxESaJWrVKYmUSUVEzTagBYWWpQjmUFz3MaAaGsEQYSlhXFcRwawmABwqlgeXxsnGKxiKJGgYDRk0OcHDzO7r07WbKkQbEoFatsemwTlVKR9vYOZqZnGD4xzK8fvp/hk4OEgcfKlcsozkywrMMkY4bIi65Emn8ZnOqFOj3CMHzFBXZq0V6xdq954Z/x/umMvasZmForl1/6Oo7s38TzT96P5hcblJMF56P3LIWWPrDL+EefI8yPEvouoSCCrL04p+f7iKJ0iqJtouomYeAjS43KRs0u4fsNAR5REnEdEdet8fOf/4JzVq8ARBbOX8yTT26mt28Ov374t/T2dYLQ8Gf8wQ9+TH//fKyIRblURtMa9G8hEBrCC2aEMAixTAvXqyKeqg47do1ILIphmBSLRVLpBI4tIssStlMiGo3Q3taNpiuIst/oc4umMbUokuKjaiK+J/GL++6nf85c7v/lfbx+48YXLWcsy6BSKeHWbaxoiod//Tt6IhM41mwUw0KqFggFgWd3HmDJ0kWsOmclpiFQLlYIwxDbcYlEIgwOHkOUROKxKBHLIJVO09TSSt310QzzFKUzjuf5pFNRYvE4+Zki+ZkiuqqjWQblUvmUMBgYhs7uvXsbIlGi2KCUiyGqqlCrVFAlBUSZXH6GdCqNXXOYni5gWhq53ASlQpVkvI2OWZ2UykXa2ttpaW0lYhqNHhSlIfKVTscx9CizZs1m184dKLJBsVpFFGSefOJJ+mZ3s2v3buYvmI8fBogItDQ3Mz4+Suh7+F6AYjXheQ6yJIPQEGCSZZjJT7Fnzz4sM0bP7G5CIUAQRDRdx/c9REmiWCxi6A3rkSAI8Qqj+ENPYlzzbfSmDrxAYnJqEkUUqeRnODxwjF8/9CBvuvFGQt9m+bJF6FqSObPn8M1vfYW3vOPNqJbF8aHjPP67x/DrPpF4hKNHj5BpzeAdfoTBwePEFl5HQEi14vCZv/kcc+f2Mj0zxZz+OUxPT5OKJ5EFhWrZRQhF4tEEfuhSKBSJRiNErCiFYo5kIkUmkyWTaSKZTBAEDYVvTdeIRCwikQiCICKKEp7noyjyiw9LWZaxbfuU5ZNKSMCSJUvwag6HDh7gzjveTeC51OsuF164getveAOu6zA0OEg63YymGriu17hWQh/BDwkcl0ceephMuomBIwP4vk/UslBVjWK5giTpdHZ1kU5GQfA4fvw48XgcCYHx8VH27TtIf/8cnn9+F8eODdI/ZwFNTc20tLQwPjlIMtGKEIq4dQ/X8RAQ8QQfUdEIJQUkFUNXqdVsalWb5qYWpmemmTtvAYqicvDgAWKxBMePHaFcLdPe3oEfBKCZVKsuTs2GwEYRA9ywIWyjajK5/DTRSBoCmSB0KZamEKR4I7kjeIiiy+TMOF7dYnxskkymmVRTrOHTLYiMDA+zet15iKrCy5+Nruty4zVX8cYbb2TZ6rWMTOdpbW15BXAFEAgQggBZEjk0cJD/+N73ueM9d6KZJtGmFBAiiQr33f8wa85fz5+98c30L1rJ7R/4KBsuuhQzEcfzwrM+y18rODs9ZElCVzXyuRytmTjRaIxqtY7nB/ieAITYdhmEhpjQ45seZe155xGPJ0inmjhv7Vr8sI6qanR0zAF/kHi8hdDXcO1xksmQEyOTHD+2k0hUZ07vYiq1CrqhsHfvbtrbMziOi++FjIyM4XoOc/p7ufjii4jFLGRZ5JprrmbZiiUEQZVUMkYsFuPYkWF6ZvWye89evMAnEolCGJLNNjMxNY5l6dQqJTo6ulmybDGlokcxH2BGlYaoougjigHdvfNpzrYiSSI4AQMHj9OabaNm14lEEkiiglNzSCbTAGzZ8jRvfcfbmJyeIDed44rLriI7qwc/VIiYJqmEzq8fvJdFy5bhusEphoCE61YRCFFkiXKpSDKZQNYMDCNCtqMTSdWYnJgiGmkmlTSZPbsbL7D4/g9/yPJzlqOZp2xXfAnLjFIuT9La2snI2EncWgW7VkPTDAr5GaZnCvT29VMul0il0li6STRisn3b07S2JolZCQ4f3ouqR+jo7GJ87ARe3SbV1EEgKjz72FPMXbgM1w359Kc/jqYHtLSm+fm9/8maNefi1H1EwWBw8DiB5xNPRFlxzjL6+3uZmpqkNdOBrkV47rGHaWlqwvcDzGiCUFRRDYOaUycaTxKEMieOH6EplaFSqvLVL/8L561ZzeDQAJ2ds4jH09x115e47Mo3IMoaI6NjtHd1Eo82PNcHB4+Sbo7T3Jqkbiu86aabOe/8dcTiUZYsXYrrutRqNoqqE7gCoacwM12iKZ3h5Mg4uq5hmAqyaPLss1tItXUwMzNJIpXAE2QEVWdmrEQykUCRQxKpCLICs2f3oesxvvaVb1OqTjBvQT+yJlHKT1AuTHN0YJCPf/zj3PX5u1i5cgWrV53HZZdeTrVapVDMYdfqfPQv/5p169axZ89urrzyilMJOhU9EuWB+x5m9qx5SJKPgMlFG67irz/2cXrn9vLd7/wr27c+x8P3P8Csvlk0N7dg6DFGhmdwawqJhEYma7D1mWfonjUPMbTYtXM36VScRDyCKtiIknJKLTsgFouDAG7d5TeP/BfZTDu7dj/L2jXrOHzkGHf9w+d5123vJiDA8arkCjMsXrqQ/QdGCEORX9zzY+LNzfiBR7E4g2vXqDl11qw6h+9977usWr2qEROeirteHmf+MeD19D31NXHKmeCV18Y+r/X66fj3dFx8tsrrawLQ010ZLzu+P/j9zxiS+D+0YeCPy3L8aRXnP740/4eG8+zPCKYGX1Nt+EUqFEKj57VnNeHEYcLj2yAMwIi9zAO20XMZiUU4ODCAKptEYykK+TKJePJU36uEgELgA0Ij0JYVBUWRCQKXIJCBEF1Xqddr2LaDW6/jeR6eFzSEYEIfRVHwPBffd7HtCrVKDUlSeeH5nURj0QadWNcolQpMTU+xaNlSsu3t7Hj+eZ566ikcp47n1XFch0cffQS3PM3rLruAlUsXsn7NCrJanf6kQKR/DfqG2xGaehrrIP1+9ur3DJfPuABf6/c/W49UEATEhTIyKqFi0r96PWsuXsfhnXt49PEdzFuyAksGuakT2hYgz78QwUpBNY9/YhfB5FHCWh58B1GPICkKum406MxBgCILiELD+sH1bEwjRqGQQ5JFCEV0XWXx4gZFNwhCDEPn+OAxNm3axMTEBM0tTei6jqYZLFi0iGgsSr3eoL4GfgiTz2PPHENNzSIURQhBDANK1TKO62NFLGqVCorSCNxkSaJaLSOKDeCpKCptbe3U63XK5SqqLmHXXYJApFKq4Di1RgYdiXPOWdMQhxJDDh86RFtbB5GIhiyJpzxfNar1Klasmah3glCUUaPNBKKI6VQJjCjJ5jQIAZPjJyjmKwiCRLIljm2Xae9opViaoTXbQrVaJ2KanDh5Es8PSCYTL4p/7XxhGx0d8xFFlWQyRrkyg2pK6EaUwwcPkM22EImY+AGYhkmxkCcSsZAlET8UcD0HyzTZt28/sqLS2dFFuVzFtm1CQcKyLCrlCpYZ5xf33sfCRf2IQoiqyJiGjizJbN26Bc9zSCSSFIoFtmx+hs72Drq6Ojh8dIj58/r52X/ezazuLlKpBJIik25qwvFcdFWlUMgzPDJCc2uWZCKDL4b4roskN4CZ67g4tohpRUjEW5g1qx+7biNK4LohoS8wOHiCdLqJwA9QVJV6vY4iQnD4Eb62VeaCG/6cUrWGJHkoQkPB2/VsZvXO5m3veDvRWJTu2W3HTUecAAAgAElEQVRU7TJWxODE0BHe9/734RFSKk4zOjzGRRdcRk9PD3pEJR6PMTk5ycz2n9HW3s59z+XYse05lq9Yxfp1FzE6PkhLS4aVK1fR1Jxg5OQghHBicITRkTFcx8OIqlQqDar8wMABuru70HUTWVaZyU02hOc0nXw+hyCALEsMDQ2RzxcQBZFoNEaxWMEwLHbseIHm5gxjYxOUigVisSi+7yJKIYoqMX/hfDq6OognEhw6dIRV56wgX5imVq2Tbe2kPDZMS9JAjyeo2x66riBKIiICkUgEKxKhu7uT5nQTdc+j7gXEk63ousqRQwfYs2cHVjxJa1Mrj/36t1SqDt29fXS1z6JWc9B1i76+PgxD567P/wMHDhzgsssvplKu8V+/+y0L5s/jxIkharUqoRygmyqCFOK5IoqkIisKsXgcz/eJRhOIgojn12nLtiGJOpnWNG1tXXh+QNUuEyBgWRaGblAo5LFrFTQzRuCDKIIVMRBCBVmUqTs1YjEdzash2DNUJo5Szo9Rr5b4q4/9A6vXLGNWTwcQ4tRtJEGgVCmT6Wyn6taRT6nhC4JApVLhXbffSntPHygKrS3teH79xUTr6dFQK1Y5fugwUhBy3vq1NLdl8QhBFPGFhsXT/P55qIZFqFikWtpxQwHVshqKnZL8iirBS+ylV09cnn7d930kUWR6apqh4wdJJFPIioaiakSjEYqlGSzLQJKhMDPGdTdcx70/+xXJRBPPPLuNvjkdjIwdI5GKUPdKRAyDv/rYp7jwwkuJxy2GTw6x7dmdXHn5NQSejCCJaHqjd7Kzq51yuYiuG+TzRZLJdIPiHfooioSqyTiOSxgK7N9/nHSyDd+VUaQYQ4PHuOM97+KOO28jlogThjA5foJYKkMYKhRmcrj1GuvXX87JiQn27j5APNJCe3czYQgnh0Zobmnj0MBRYk1JBFEgZsV5wzVvYOWqFbR3dCGKKmNjk3ztX76GaWm0tbXx/PO7OHxkP/P657Fy5WpMw+ST/+uzRK0YigLRiM68+fM4NjhKpRTy5S9/lQ0XnYcYeliGwd7du0km4gS+16ic+T6yLFOu2iiyzM9/eh+/++39rL3gfFTFYGT0JPPn90MIiqKhqyqSIGBEZVxPQ9XALs5g16qks13YVYd8sYTj2CQSKYr5CoHvUK2USaeTtGYyVEs1jKhMe9dsNFklDGqMn6zyoQ9+hp/+/Fe865a3kOlq5X994hO0tTYReGWsZIrFi+fjBz7pVAuHDx9nw4Y1RMwIpVKR5tY0nuvyg+//mIsvupxSucDUxAh79+9j8dLl3P/gww1Klu+hKgLjoyOMnBhh3ty5XHHZlbz1lrdxww3XkstN0dHVgWHEGRub5PUbX8eH/uLDbNx4Ff/0z19k7drzyE9OMjU1hSDDRRdfhBmNEtETvPmWt5BIN2FEdFLJFC/s3sWipcvRdIO3vulmNv7Z6/nIX3yYjVdfgyCrGLpE3amQae2mVi0SSaToaG9DRCCeasULJJ7dsgVZquL7Nv0LlmCIXWzYcDFve8e13HTzVaxZd24j2SXUeHrLI5w8MsYb3/J2WtsyrFq9HF01+PMP3sHmLVu44IILUFWZhx/cxNJlS1l3/rm0tbVyzz33cu65yxEUlXyhjKkZPL31Ucyoh+fZ3P7ud6IZPr/7r9/x3jvfR29fL8uWLaGjqxtRFHBdmxd2bmfnjl28/R1vBimgp6ePZ7bt4Eff/3eOHBmgu7uDzU89RXt3N4aq8+ijj9HW3oZLlVQqwXPbnmHbM5u54rIL8JwayZZO7rnnl3zq43/FyeFJfvHLe7jsigtJJloZG5tBUmIcPXaIvp4ulp67AadepzAxTntrho3X3sSbrn090ahFZ/csBEUhFGU4JUj08jj/zH7PM5NwgvBK8aWzxrFnAa8vn++17n9nxr5nshhPx8MvH695XxVf+swzt3u50NOZ4/S2jYLC/6gNA2cHK/+98f/efK9mlXPWzzn9H1lrbN86n3DqKOHQ81Cv0BDaUQlEAUSJlkwWURbwPIdIRKVcGsGujiPIAuBRs6tIkoCmRxFlhRCQJQFFMU/RekYIQ1AVnUJuimg0TiQSR1FVSsVxKuUinuth6AYQMjU9xdYt27jkoksQBA9dckloHiv6s6xZNIvOpEFCrNGXCFkzN8PqOc0s6YrTYXmsnp1m7oJ5WJqEJvr4TpWwqQdp/a2NY1XURqXxjAsdzq6sFvL7XP0/NtkQBA1fxzIxPNHBC4qogUo1aGEy5/OJT/0dTZlmklqdaEtng+IniHhWM1rvauRFlyFl5yEoOkF+DP/os4SFMfBdBEGkXMwjKw1V2prtnPpQCUkSCQUPhBDXCRqUYiVAVXVCHHp7Z7FixTJWLF9GS6aV7dt3kMk0o2oikhTiujaCIOK5IaPP34sp2pidK/GCAEUSUMQQWY+h6SYhAXa9glOvQSjgOE5DzTUo4HsCQmjw3e9+j/PXr0aUVSQ0XLtOtZxD1RQU2UQSNSxLpVKpsWPHs6xcvgRV19ANHUtVKBQKHDhwGN1IMnDgEF3tHYwOHYbKCMdG66SbG9T3ZGATxlMoqoahyZQLVeb2L8TxQdejKLKOUw84MTRKUyZLYWYaTZVpamqGMCA/U2Dnzh3M7ulEj+vY9RJCGHLPLx5i1eoNBE4FPJfQd6jWSmhmDFmWqVYqBL7HwMABWppbKVeKmJEIyaYU6WSaqamGxVM8HscwdURURkZmmJwYZeWq+cSjUXK5CQg8atUKiUQTHZ1tKKpC4IdkWluwzDjlfAFJkRibyGFpARMTE4xPTrHhwgtpb29ny9Nb6Oruxvdc7r//AS689BJEUUERVBy/jKoaCAgU8gUikQiu6+GHNlZEw/Nstj73GJ3tfWx9+jk2bXqKmek8CxYsQpQkpFNBvXfsMZTu81l+0+cxIxaiIlPLDxOLNeMjIxsaqqZi1x1CIUCzZAxLJZcboqujnc9+9m+58OLXcd/dP+ZvP/M5lqxYBZqE41TQDZ0wCEgWXyAMQ6x5l3HZFRehKhrFfJG3vePNvPv291IslpnJjdGU0pElCVFQqFaqqIpM9+xuCsU8udwMCxcuZPPmzWRb21AUje3bn2XOnDlUqjWi0QiarlEqFfE8jzCERCKJ47iIovQi7dY0TVRVpakpRbVaRdUUgsCl5jhIqkQoNsTu5syey4GD+1iwYA6Vis0vf/EwPYWnGH3hvxiVM2x+aivtPR1IasNT0TBNJmemcWplnnn2WVTDIp5MI8kmk5MT9PV20TerC81swlIsDu87wh3veT/XXHcjg0cHuezS13HLLW9mz56dBKHN+vUbWL5sBYZhYhky/XNms3/fbro620in4oRBjcCvErgeYiDzztvfzQUbLkJWVGp2HUVTKeRzaLpCEIQIqPhBHd+XCBEwLZXy9DiObSPKGtF4ClFv6AsEAaiqzNT0BI5TR1VUjh49hiiAkUpQsatoVgQlnsVq6ePqqy7n+OB+2tqbEVGZnBpnYmycxcuXU3FsJF0FN3gx+NE0DVmLIBkRHK+OGrh4YYiiKGc85jymxscZHTqBIgikZ3UQCAKc8nStSzJCCFrgIhMgEiIIQQMHAKLwUuLy5cnMV7vfnxkwKopC6Ac4dYf2bIp8voAkq0RjcSamhojFG+0YmmqSiqvs37efWV39NDW3IusqF665nre//d0EgUgQCqQTczj/4g0YcZWDB4ZpyyzEqVR47ukxrnvDLay7aBnvveMvWbp0GbIsk8m0UCqVEEUZ04ygKBLlShFNNQgCAVUxmZ4u0dXTxPT0BM88/TTPPLOZDRvWcu11G5FVl5l8DkEQkQQPSU3w9NM76crMplrKIRtp9JhOT0c7qViKo8cP4nkyF264ig9++JM8vekx6l6N1q52ciWb2299M//4pS+SbcvS1d3Jju07eOO1NxKJ6vz433/Ewf1HWLVwHu9/3wfxRZFLr7qSkSPHKOYmuWrjFQSShGJG+NIXvkm55HD77bcRUCARizE1OUk221ARz+VmqJenKRULRCMWoiBwYniQVUtXc+7qFSArSFRYtKAfMRQhEMhPl6jV8iCCZimUKwLHjx9A9mw6O7twJAMZhVQ6hWVqTIxPIniQL0zS2T6LaCTF1s0v0JSKEUubTObLeDUHXRZo78jQ1JrhI5+8k3ppACvZxLy5c2lKpnhu61bQo8TiMXzfZnxinN6+XsZGTvKjf/sR1157DSOTw6QSrSxdcg6SJKJoPh1z5hNvbqGnt5dstplMJo0SBrh2CXyXOT2z+f4PfsiXvvjPBH7Azp07mNM3G0Ex6Jk9l/d/8L0kmwx6OlPkpka58YbrsDSdf//hf7Jhw0UkUklEWUMQVHbv2kq2rR1RUXjgNw9iV2qcf/56CsUKkqxx842vp1zJceObr6Xu1ZFVhVq5iGlpVEsuvl8nFksihSGH9w+wZct2emfNwfNnSEQboES3mvjNr+/ls3/7CTrae7j7J4/QO7+LkydtPC9HeyZGTGknPqudwZGjWFETRTepOyMsmL8QVdGZmprk8MAo0ZjB+vVrCMOAbGs7U5MnMWMJpmfyKMh84a5vse78NSQTLWiaztTUCMsWzmVkbJS6b5OdlSVwRaq1PCdHBlh5zgJuuvF1GEYcWUxRsas0t0Yo56a48orLMHSD/r5+HCXB6NAQgV2gvSOJoHZx+SXXIocxBvY2zj9J91i34Ur+9V+/x8IFfVjRJi65bAPT0zPkcj779pzkr/7XX3DHHXegCCLvef8n+N53v8u82bNYMG8RG697C+1pHU3TuPsX97Fo2TJCQUA4SyXyD1dIX/naWcHfa//5muOPwS+nQeUftd8ZYPXM43ytz3ux5/X/D+D15Q3Qf+z4U7jXpwrwZ/w7+3x/yj6nh3f0OcIwROldfZZ5X1l2DxAIw4ZYiRCApCeQepbwf7P33nFy3eXZ9/f0Or3s7Gzvu1r1btmSbMk2Bmxwt7HBxhiDIYEQAgmE5DHJizHthYeakIBJaObBVMc0E9sCV1xkq/eyWml7m50+pz1/jGRLQqa9ef54876//cxnZ86cNufM3L+7XPd1idkFdU3JkT14Y/sIZoYJ5icQSjO4syewFQt3fpJyaRzftYjYcWqSgiHqFCuzyKpOzfNAlBACkUAKqLk1EqkU4WgU07YwLAvTDiGrUh1qYkeJxBJ1pmDP5fihPZCbYM1gM1J+iJRUIBHSiDW1I6W7EdpXI2b6ELMDCIsuRxh8NeLAxQj9m+uPwUuRejcgdKxF7DoPsXMtctMgkmrV9bKC+nUUBLGu2SwIINSDVEGQTpImnfYQzmZ1OxMGcWrZKzk7QRCgCB5CECAIMh4+vl8m29SCLpv4+XHmpoYpzc4QTXczMVNFlgQ0RUKWJORQGjfWhty7AXnRa5EjKfITx5Fmh5Bzx3CL8/hOFdfzMMIxJMlElUNUyhUMI6DqKai6AkgnKyu1UxmpOruxWyEWi2CHwkyMTuNVfUqVHLYVRkBELR5EwEdLD1ArF+vXUKjrPRZL06iy9pL0hee6aKpMtVKiXPMwDQvDMHBrFbINDczOTSBKItVaAUXQUTQRXVF4+omnSKbrTMg7tm+nr78Pw9DI5aZBklFUnUQyzTf+/dskwgapdATTjmGU9uBoDfi+jIeCJrhIrounqriBgigrmJaOAMzNzbB37246OtuwQyY7X9xOR3ML+fk8J0bGCYdCeE6BWNTCthIY4Si1ao1qucTiJYN4gct8Lsfo2ARtHV1UqhVq+QK6ESJkmaiqQTjZjODXMA0Z16mC74Og4lElkUywa9dBdr7wOJZlEAqZZJoy6IaBqIYZPTGDbihYoRBVt8LoyAjpRBpJUZmcHSYSiyCpFpOTRfbu3c+SFQswtDDDw4fp7OlEVeGXD/2aRQuXIKsigwsXU6u4fPmfv0JLWxvRaIJSfhbTknn2mb1kMg1UK3l0va7rG/igyxambSErImvPW0VnVxs1p0rIDjOfy3Nk+5MklALhV38GLWzjiT6SLGIbOp5kUqsFpOwoubl5JNHFNEVkDNyqhFuRAY1Dh47S1tJM/+JBBhYOsnLVKlRZR5EDnKqIhMkTD3yVlq5BgvQizHCc6ckcf/b2d/K1b3yNZCqOqqqEQ3Eef+KnRKJhUqkE5UqVlavWUqjkkRUV1/MZG5ugr68Og69US3T39KIoGpNTIwRuGT9w0ewII4cPkYhGkEU4PnSYxuZmfN8nHIsQiCDrCsViCcsMgSdRydfYufMA3/7GDxgbmWbxokGe+NUzpFNxNN1jbOwQmzavQxnfRjqVIjG4ie7OLgzbwPccVEnCqXp88bNfZOOmywnHIsTiIQQcvv6v9/LQQz9j46aNoIpIvomkqDR3tnLN9dfQkE5w4sQIHZ3t7Nt3gKeffo6BzmWUch5/+Rfvo1bJ09GbIRA8VF2t6/UKAr6no6lxiuUcpXKZ889bQTJhMzszimUq4FcJhRJ4joDv1KiWJimWRCxbp1yZRxAC3OIUrlNkbm6aRCRFbtrl2NAhwiGN2elxwiELSRUQdINEJouqGTgVAVULUXVENEUjcMpMTxyld8FSBFEhCMpU83kMXcW26r3Iku8D0hl21/VrBF4NBPBEkEWhDmsXT9poIcBRVHIzYygTeUaqVVraOiAQCBDwAQVOMm+LuIAP+H7dzosnNcDP5pk419z+Sk6iHwQEAtiRMIf27ScajWFZOlOTY/i+Qlg38KuVug6y2EE0oSOoMu/+y09QcR3+/oNv58233oYimgwfGWVgRQu6JuEXLK654gpee8VqmnuWcvjoVt59x1XUPIPvfPVfaG7pYuXqleSnjyLpNuFwHEEU8fwaUzOjWEYKTdMZnThAKt5GqeQSj6dIN6ZZsmIxkiIR4CEh88hPttCV7WeqNEXIsvnC577A6tUbURSRuanjPPqTB1mxag179u9lwcJeZqaL3HzL9VSDcZauWk8iJEFpGlkCz4GurnYWL1zAd+/7LuetPh9BNdi1bYj9e3fwt39/M4I9Tyq5gFWrF9DS2MaydUtYsGQBTlBG08H1CnzuE19g/YbFrFw9SLHkoJsNiLKKohsgqKh6GFM3CKeaqXkiTqlCfrZIc3MTlWoZ25QoVMvs2rOThmwKQZKYmpnHoEwkFCPwJHw/R7qhA8moE4kZksbsXB5NM7BiCcxYI75qI1VdPBV0K0QsXMG2bIZGciTTWaaH9+DlJ7DSLeTyI/iVMu2dSxkbPoAdixJOZfjeDx/g8J5jrFyyFFUUaYg18MjPf0WAy5VXX8n2F4f4xMc+xvrNG1B0BUH28cUypVqNVDyBKkv8w933cNGrXkU0GkO3whh2GFfw6Rw8H0l3Edwqjz30AF7lBEKQYtfWnaxZdT6CbpJMWqRbBqjhUy6W6OrvIxxp5PHHttLQkGQ2N8zWJ/byy4ce4eKLNvHYw49hWdCc6ePjd/9P9u3eTtvgAkxVYvTYERobW6m4GqasMzExSSIVxw43oAsFKhWTSlChpVFCrM3S1DaIGmlHMxNQyTM/P04kmUBR03S024wPVWlORbjrb/+Gno5OGlvC2IkmUokkB/fuIx1Jse/A0yQSCYaODtGUbWb10rW0d7ey+8BuovE40VCd3Toal3C9MpWqxC9//gNuf/Ofs37dZq655koCH3bs3Ed/fxcN6TB7dm8lnm7m2ed38s1v/pDrb3wDoDI7N0FufgwJEdHTCYUVIoaNYSb40c8epzWZ4ZZbb+ZDd/09w8PjJBIGX/vql7nzHW/FDolcdOkaZMmiKdNMMh4hGrd54smnGB2foFINeNsdd/I3f/PXPPzLh1h3/gpaOtsYGxnm43f9GZoWZnK2zOT0EQJbozyfpzw5xdTkCB19bfjey6jBP0TO5qS1+i2bda41hLrhO6d+60n3GT/wT2GK/2SpnNOTfz5BvaAkCNQFLuvaJ6fORTj5XBLFuk74S3+c9Os5xa760v7rfq7w3z94PTVOLzn/Xube/8eV1/+6/bmHn0UQhHNWXs9uiBZOdkIHooAvgCMCgQxGDCEzgNB3IUrHcuhaDaEkQbQJxbYozc7hOiXCtXksLw9zx5CKk0ilcbTqHEJuBKUwhuQUoTCJX5ghJLlIlRwUZwgK00jV+frz0ix+fgqhOANThxBnjqLkjxMxNZp6FmF3rWRcbyJzye0Ig69Gal8J6R7EaCOEGxAjjSDrSLJSh3qJErJaZ6U8G75wroSEcDJoPf26C5wjcXFW8HquvtZTy19pnP6dAlBVCQKBtedvZNnaNQysWI3nVHnsu//K/MFnkN15QEUJfCr5ApaqIDgOhlRh+56DHK8ZDJGiZLYj6xZBKY8+P0wwcYTK7HHK+RFU2UeUFDRFxfd9KrUagQC6olGtVJBlCc9zmJmaIRZPUHVqKLLMIw8/zMJFS1Fkg+PHR7DdoXqSIzaAYWrUalU0XWVqagbLNlEUE01XkGWVqlOjWCygGwamXg++i8U8jdksgShgaAZ+IBKOGIiCcJIFWeL5rVtZsHCQaq3CggUDBIGA4/hEQgkkud47q2k6R48Mccmlr2ZmbppQrBln/HlS6QySFuHY0BCSoWMHDnNVn9n54slAR8RxfWzLJpVMUy7VME2bTDbF3Pw0+XKOlo4mZnMFbNvCMiy2b9+BYZmEbYvJiXGi0TiyLBMNx5ibzZFIxdENtX4dDYttW7cyevw4diiEgIznBWiaBchUqi6eV4fGx2JRujsWoagSihYgywrHhkZ5/tnnyc/O0dqaQdPrGrqxcIyho0NEYzHcssau7ftpaWpidm6EFSsGGDo8wr5de1EUn57uTgI09u09wtJlixHEetXqB/d/m9tvu52J8XGikRCyXHff0+kGBNlH12VkRcEPAmam6jrBgeCTTqdfqmo9vuUJUokkqiLDiV+jLbsJJ9GFblp4noSIWk+KuAG1WpmjQwewzBCVShFNkzh4aC+pdJi5XI54Mkr/gl6skIEoijRnW3n/X32Ab379W1x7zeV89jNfINvYzE+emybSu4nehT0IqkqpWqW1rY2+vl6CwEVRwQ9K9PcuwnFAVjRMy6TmllB1g8nJSZqamojFYnW5r5NwwsnJSWzbRtNsTN1AlDRk1UYWatghC9dz8HwPOxQBAgIfXB8CX8S2Tdyai6ZqjI2OEo018Junn+POO9+JIAi0tqcIRy100ySVasYPVJSJ7XUEQ+NiECVkVeXo0eMU5kvEY1E2b7oISQ2QJY1DB4fIZLJoUoQrrrgKxwVNC1OtzrP/wG7i8QiGqSEIAalUgrXnrWbFymWsW7cGXRfRDRlFldixcweXXHo5szMlfA9+8IPvU61WSaWTyJKGqkocGxqnWJwhnc4QCaeRRZtaVeLg4Z2MHB/nb97/AW56w00YmowqCRw9vJ+R40M0di8mkmwgHInheTB2YpTeBY2UynlESaSQL2FKERTRAB9qxTlU1UcQfEzDQBI0nKqPaSQRJRlVkfBrRXbtPEimsRnTDhMgEXBmBZT63Thpo3nJSp8i2Ds1JN9hZniIu//xI7z7Q393Toja2ayXv+3Q/Q45uj+4wgEvPPMMvb29dSRBPIZmqhTz09SqJWLJOKWKQ6VW4i23vJWRQyf4q3e9EzuW4qprr6K7v5PFKwYx1BSjJ06gyBq33n4dpdoYzzy3ixPHTvB/f/QeNl12BR/++D8wuGgRj2/ZglcuY0QTSJKM6zp1jfByCV2JMzU1RSgsYZkxdKvE2PgQ1UoB163iVQNmZnJ88AN/x403vpkfPfgTLt28ibHj46xavoyOtgxyWKPml1l3wVpq+Ezl57jlxlvo713E8uUrEEWBE8PHkQWYmyuiKTFUTaMx20ixXGTJkqV8+9vfQRQ8+gaa6e7ppFLUySSXsP2FQ0RjGpJaIRQyKRWLFOZ8dr0wSlCNsXBRGxsuXIcfuESicfL5WUqleXRdIAgc5nM5bFNnOlfAtkOokoRh6nzk7nsQBIl0JoWmxdA0na1bn8UOmTQ0pAkUm6onkJubA99D0U2mJieJRsJMT00Ri0fZu38HAQ6WaaBpCl6tTLlSYnJsHteBYr5GS2sXlYpPMpZgajpHvlajo7OdhkyWStUlnk6i6haKKNIQMbjsdRezf/8OwqEQ737Xe8g2tuD6ZRynRk/PIPGEzbFjw/R09hJ4EvgShioT1DxmJyZZsmgpDek0X/rkx/nh93/E5s2vwvVkntryCF0dacJ2lPaeXmqBj6xE2HDBKr7/4++w6eL1RKwoR44cJRZK4JSrBG6JL33+C1ywbi3JuE3g1ti1Zw+33vpGFFWiu7eLwQXdyNo8C5c00dXdjqqGePVlr+KWW2+lVoPp6Xlmp0fp6etmYnKSLb/aQnd3H2Bw71f+he7OFqolj1g6iR+4lPIzEDiEIjaRSAgBA10L0MMxNEth+eqlJNIpUpkMxfwUBw/sZmDhQko1DyffTHNTF02tKQ4c2sbug0eZr8yRaUyRDIX42798DwP9q9GFNN+4936WLu7mTbfcRKGQA8Fjw8Z1xGJhmjt60C0TD4l4Ko0o1AnAzjtvbV1+zzX41je/y8b1FzMxNs9HP/IZXn/1pQS+zPTUDDfffAO+JPCpz3wcxVAIRInAr/L2t7+NTGOK7s4W/KDGnn3PcfU1r8Pzanzuc5/lttveiiD4iL7Hm998B+/76w/w4f9xF03ZLA//56O85tWXY5kSri9SdWokUlEEz+BLn/8Xrrv2Jrbt3s+CwaVnEIn+4XHD7w9eTx/nJCg9rQ/1Zb/5TxuniCODk0Hnbx3rt2w1L68P57DlwGnBfBAESH8C2/D/a4JXz3c+fK7lpy7MuXDk/9XjlfZ7Ltz6K41TsOFTlddzMSOeWiYLdcZgQQDLMhk7cZyobmBqGjgOpfkcw0N5XE9AibaipRegtPehdq9Fa1/K7nyZYiRLtWUR+2c1WhavZVJrRe1YjWNkmJqawVcNIi29SOEUWHjkKoYAACAASURBVHFEO4FgJ+rPQ0mEU6/DKaSO1Yh9F6KsvB598BKE9qUEiTZCLT24ovIS7djZ1+NcMK6zIcDn0ut76YcnBGft97czWIL4csP4ueAOv6uR/PTjn7nMQxBFfCHAV1RQNLRUB8mwSaVa4dDELJ3tXeTn82QaMxQKRbZte5HPf+puDF1nw6ZLaG7vIrt4KZG+5ZiD56MtvQyzcRWCruIVZwnmJhCnjlGdHUOsFvF8kDW1nq0S6r1ftWqZdKoBP6jLXoQsm1qtyvGRMaYm5hBFkZB7tN5D2LiUudws4XAYEAid/B8EEtVaCUFSXyK+kWWF/NwMfuBRyOdAAF3TEYIAWTEIhDqBV2G+gKLq9C8YRBREfN9jaGgIWVbY8uivSKcbCAQfx3WQZZne3j4e+dVjDA72Mz9f4PDQCVLCEGK4k1KxSHNLlmqpjCX42OlG9u/bg6ariILGwYMHyWazqKrG/fffT8hOEAgyDZkmKuUqqYYkXs3h8KEjROMJsg1JquUy0USSXC6PpmsInseTTz9Nf38/vuCjKjJVN6A508j01DjpxjSlyjyCBLqh4ngVRo5PkkjE61DuwGN4eJJQ2GRs4gSFfImQlaCvp5uWpkbmi7OEIwlApFIqk8/nscM2qiqQTsd4fuuz9PYMsn3bXvK5AjPTU/T2tdHc2kKpUmDBYB+K5lJzCyB4tLW0oWkasVgURREQJZHnnt1BY1MaWQHXqROsIYh4bsBDP3+IVatXMD4+Xtf09X1++YuHWbx4EbpQRi8cRNj8QexQGAIJWVAoFyr4BORz0zjVMo3ZLNVqkVAozNTkDNlsI5VKmYZMlvn8PAigaiq6rFIp+ixbvJrlS5cRjeikk42oss4XPv8F3vmOt9fbEiQZVVNob2nhDW94A83NWbLZDOMTJ4hGGxFEFUVVqDoVdEvF90VCodAZNkI6ScxWq9Xqep+izu4dO7BDUXxkbEvDDwQM08YORcjnZgj8eg9drezheXUd2hPHT+DUXN7/V+/jvHUX4Do+d955J49ueYjXX3UpIPDii3uoVDwsO4RwYisgMB/pwbItXL9KMtFAuVQikTApV6YJBJHnn9vJqlVrqJTLxKNxPnrPPWzduo01a88HijQ0pDl27Bi//tUTPP7YU0QiURoaMjhOHe6sagqKptDT183a887nwQd+xq9+9Ss2bd6Mrmn09PQSBDI//tFPKVfm6OkeoFSa5/77v8fqlRfwPz/zeaamZlm3fhUtTW1cdOEGLFujVCrgOBWKxSL9/f14ahT/ZHUy8AKi0QT50iilUoVQKExTUwuBk8MNSoQjCttf+BXJVIZyqcjkxBSu4+PUXJYsXsNrrrgURXQYO3aUdGMH0WgcSdXwEPADgXpd9GWb6osnhcQ8H0NWqLoO1WoVTavr9T733HMY5Tx/9+538Rd3fYhoQ+NLMOBXmkNPl5j4Q4LXU/PK2Sit052pU/uST7J02rbN+NgEogpurUw6lWBqZg5RBcuI8epLLkcWK3z32/+LbbsOsva8ZUiyj+t6/OsXv8a2bc+weMkSVF0mnoyQzfbSmGrh2te/muaudjwFAtdlZGiEgYHFeEKdcKsx24AoSmiqRU/3AG+/820kkmHmZmqIgUDISJBONFMpCvh+kVrVpbtnAd09/fQNDvDtb3yLf/rSV7nlltsQRIe9Rw/TnM1SLBcQZJ1oIsWBHXsBgVWrVgAi373vm6xYs5p0upEli5Zy9fU3YoctypUSjlvXGs/NTNDcnCEIZDKZbn78wNcZHT/KHW95P9OTNSRBx9DCWJaE448RT7mE7Ti6IaHpOh+5+2Ns2rgRw5AYHT2GIstYponneqimTRBArVzGsE06u3pYtHgp5UqVF7bupKe3g1is3tOryCqyGaXm1LXCTd3GDTxi0TiVchHL0sgV82i6SioRpZDLU5orIKsChfkZ/vMXj6GoBnbUY3JmlMZsnHxpFjseplwFWZWpVB003WZqYoR4PAm+y/Ch/cQzMXbv3kN31wBz0zl27drBW+54E9MzU1hGnOMnDvHznz5COp3is5/5LIsGlxKK6EyOjFMqFhkbHSfTlMUpV9h44SYU2eR1V1zF9ddeTjJh4wcKXiBw98c+wo033ExzU5yB/l6i0SSVosfxo9u4+65Pc+XVr0XTFDZv3gz4PProFpYtW0lndzvHRoaxwhGmp+fQxDjHTxxD1yyS8VZ0Tee6625EN23Gxmb44f0/YP2GVYiiTKlUZtGShSDK3Hrz7VQK06Qb4vQuWIooBdi6TG5uBllVMW0DWQrwHYHRieMkMmnK1RJ2yELVTI4fH6FWmqGtvYVSqcTE1DSOP4akFSiVC5hmglxhnsFFi1BkFVOWSEbD/Nl772TN2tVs3/EMkYRLOtlKsZhj9ZoV1Go1LMvihptuZeHgIhRFJz9fQlEMIhGbkdFhOjs7KRWnWHfBMgTRwQ+qpBtitLZ3Mjdf5M23vZEf/K9/4fKrb8QP6uSjphFC01Qq5SLz+RnmpmdozDTx+K9fhEChq2MJDz/0G7KtKSKWghhU8X2ZdKaF3MwE8/NThGyTr//711m1bi2NTU10drQSDpvYtoCmQ7Y1xXe//y1ee/nF+IJ2Trt2Lj/1Zd/zNH6A34MwPbXvUwHsS6/P0aMqnLXN6edyavnvsqd1X/y3+2GFk9ueOofTfW1RFM9N5CS8fOwgCJD/W+u8+r+75/UPybL+nxp/zPHODl7P2tMZ+wyCAIKA4wcO86H3vI8vfurThKUqO599iiN7drDl5w/yznf8Oc0xmZ3P/hJLdlF0G9NQAYWOlk72799KyDbp7T+PLY/ez8I1F1OWIhQcHTfUitW7mHDvasSGHoR0N1Kmt/4804PU2IeY6YV0N0K2HyHSiGBE6pAB4dT5CkiBiIh4Rn/q77pWr3SvTtfpO2Md8axrfA6V+/rv6g+7D2fDyM8VvAJ1/UIhAMFHxEMkQJEhmm6mob2fwWVLsEMxitUaniRjhiJkWttZu+58Fq9ch2qGkDSTOutcXQsx8EGMRJAy3ajdq5F6NlJpWMbxyRkMI4Qydwxx8iBU8nVNV0FGU3WcmofnexiWQeB7mIZBYzZDOBxjanqKmDCCpqmIqQX13jNZJQgkSpUSCAKybOL6Fao1j1K5jCzXZWOqFRdN03Bdl0q5RCGX48CB/YxPzNLU0kipVEHwfArlMjNzObY+/zzxeIzmllampiZYunQJuq6CIKKqMgiQzxfRVZlI1MS2Q5jhBPL0sxydBM+DSDTM9FyesCojCAE1QSSRrGdVH3/icXp6etA0iZbWRgxdx/V8du/aTUs2y66d2zF0g2xTM9FUgur8bL06pFkMHx8mlUxSq+TJNrWgaiauB1Ojw0SiKTzHIRQx0cMWITuCLNflZXLzOVLJuvZyoVDAtCyskIGiKBi6xQtbt1EuFjl69AiJVIxQ1MIXVWanZ7BNi1QqgaRITE3PUHNrdPd0I8squfk8Q8eGqFbLbL5kIwEilm0hSRqB4OO5PqpiY1khEMQ6EYVXJghcSgWfVEOMQj6PKIhIkky5UkOVFaKREJFYBMuyXqpWLly4jAd/8iBtyjDWwqtROjciiSq1Sg1NFrnzbXdw2etejaXJKJJC2ZHI58fRNJNDB05gmRGefOIZsi0tlCs1TMsmQMCrVLnn7s9w90c+Tk9PJ4sX93L44BDdnb1c9qrLOHr0MDPTUzQ1N3Fo3wHyM7Pc9KabCYfrLK6TE3PopoZhGtTbIgQEQaZQKDIxMUE4HH5pgpakeg+rYRi4rovvezRlG6jWagSiQMiOIEoqCDKyolOYm8QOhfFdnyuvvoG3vuVt7Du4m9aWVu7+yN28+ZZbef7F5/j0pz/NvV/7Cpe9ZhORWARZMck0tqHpGpqh4A89B4DRt55iqYQoO2iaSsi2mJs/zq5dz9KU7eVvP/gPbLxwA9GYQW5uggs3bWDZ8qWouooo+ORyeWLRFK0tXbS3dTE7O8+zz24lN5fnnns+wV3/42PccOO1mKaBadkMLuwin5+lr6+P7373fnbt2k0228P3v/dDrr3uckJhi4ZUhv6+ASYmxsk0Jlm+Yin33/9DZmamkaUASaoxX3IwLJtoPMHI2AQRy6JWzter8oLIvgOH6Whro1KuUSyUcNwqtmnholCpCWhKCFnSmJycpr29A1WtIzFSjU2sXjNIyNKYOHYcV9ZIppMIkkAgBPgEiGcJ0gdCPXgV/YDAcbn1rW/h2muvRRRFKpUKTU1NPPaj7zN66ACbbriGZLoZzzvTGTq3zf7jgtffNRecTvb33W99m/6+fiLRCJIkEopEmBwbw9B0BFnHc/MochTHFVi2pp9LX3sVzzz+G378o/vYsH4dD/7oIdpaUtx+x00IgsY//OMnuWDjRXzqE5/nPe9+L/t2PMNNt9+IhwCOzy9+9hCLV52H6/nUaiXiiQggUK14NDQkWb16DXv27OI97/ofvP6KV6EqCnNzs6xevYw733kbsiyxeNlqKm4FI6TQ3tLJ44+9yLLla/i3r9/Lzt37WLl0OZIvUijWECWVdCjEBz74PjZsOB+nVmPT5ovQLQPXrfHqSzYQTbUgKxJ2WKfm1FAUlfzsLKaR5Hvfe4D2niYa0wk2XXwerU2LKZVK9HZ38qlPfpKB/l5CIQO35pJpyCDKkMvlWLZ8FbVSvdVFkSWi4QSlYhlFkREUDRDYt3s3maZGpqfnCIWiXH3Ntbz3ve8in88xNjpGU7YNUTDxanlCloIkSUiyCYJLbm4eQ1fJzU+i6CEMXadUKDE3lUMTdVzB48TRvXR39LJw2UKSiTQhO1JHSugRBMUmFo2iaioIEp4vsP3ph/H8gFi8zgguKgY//P5P2L3zIDe94QY++amPcfGlF7F3715CdopkymbDBa/i+9+/j/e8552EwxbVwKn35cdiVGoOTe1tmJE407PzNDc30ZhMUSiXaWlr5Dv33c/ypYu55OILEGQNzy2z/YU9/McDW1i+bJDPffbvaG3oI542saMppqbrc11f3wLm8zUsS0OSNPxAYXomTzJmYuhRalWPYmme/GweMxRGMcI4FYe2bDPhmEIQyNihEKMTwwSChKGa/PX77ySaCmEYERRFo1Yq8MCPHmDh4pVUvTIjw4eJ2SkEXUTTNFRJwqu6jBw7QUtzO77gYhg6czOzxMMxHF/CsDRKlSrJZAufvufjXHzxa8jnKxi6jqKKvPltbycc01m3YQ3Nzd08/cRW9u3bw6rVy9m+bTfzuRIbN6zj3+69l66OdkzdQFFNZnMTtLe3IAoqGzdcwA3XX4euG0xNzTIznaOtswtJNXj95ZcwO3GQTGMf937ly7Q0NfOxuz/B+vUXYVk6+/fvIxlPYBpRREHj6qtfz1vf+hba2trpHuji4O5tBLUSghIilm5ifuYEsbiJqoosGOine2CQmlNh7749lIoFRM8lnkgQT6eIxWK0NrfgS/o5g9fTg71zWK8/yI79rhGcY1vf884ZqP5BGrGn3hN+G9UonGs9XoYEnzrGmZXX+r+X5v7/1mzDr1B5hVPw6ZfZel95/Ckarr9/nPumn3tyPZuw6ewK5emBlXcSchANhfnkPR/nbbe/ldzcLAEOTV0D/OAXW/nnT3+JaHaGmN3G/h1P40zuYu+LL3B43z7iURVD9ji89RHaYmXmiwFoUUq5USTTpqYoNLd2gxSAQJ01TBRewqOffk7CSej8GdXNkwsDETx8FFnB87yXP8dZj9OvyEvvn3p9jn4A13UBkKQz36sHs/VrXK+4CjiO81vV99OzW6cHxWcvP/sevsz2zGmY/ZPbBz6e7yLIEoEggyxjRSIomkYg1jNKsm7gCwKBUK+iCSc7dEVR4IzfryCiaBpGNEq8exVqx3LcVA8jZQEkBbU4gTI7hOjX2WcLlRqKYSGL4JTzmOEEc3NTbHn0ERY2yQgISIkFKLKJ7wY41TkMKc6WR58hk00hBCUsSzl5HgqyrBMIc8iKhmXHUFSFilvC0gUE3+fZJ19g4YLlzBcmef7Zp6jkYdnKlezauY9Q2CQctlAUnVJpvg4ztG0IwK2VcJwqlhHl8MFhMtIQgVfj6ESF7p4+nJqPF4AnCOhuhXB7L2UnYGJykuXLFrFv9zZ0U+fJZ55h+OgI3V1thEM6NadEV98ghmUiyxLT4+N4iBRLBSy7LhekGyayZvDCizvJNGQolQooos/8XA7PE3n2ue10dfaC63L08DEOHdhPNtOAYdfhqIZR14QdPrKXVDKJKEpkmtp45vntDCzoI5NtQpBUREFAVkSOHxshEjHwggpCYOI5PqZp4OPRkElxYO8Q4YRDe3sfubkqmqkhKRK+JyCKKrKs4gY+gV8nd/Bch0pF5xvf/irnn78OQw8jSmq9MimKKKpGNJZEkj3AxfcDJEHjy//yz1yyupWY4eGuez+GZeN7oMoa1VqJlSsXEYmnqDoCr33dldx087WkIhZu1WF6cpxsY4zOjgYKOYlnfr2VD3/oLl71mov53Of/ma7uBfz9P7yX/gUDiMiEQw1MTuYZ/dFNLIqPoi14PUIgk0mlSKejVNwqY0OTBK6CZUdpzIRRJJEtjz5MpiGFKASUStM0NDTg+wKCpCELIq5To1IpoioiNaeIbiaYnc8RT8Vw3Qolp4KqGXi+i+vm0SIigtSGI8m88ZZXU57xybRm8AWXCzddRKqxmQXd7dz2jneQaW0iYmnoKoyOjmCYFoou4fkOwvBz9eCoZRW6oSAFKgI+kiqjGmkasgsQfIkrr7wc3ahrYptRDVmGI4d20pwOMz41jhAovPDcHq69+o1YRpgPvv+v2L9vJ2+/43b6e/tojkc5cmySxYtWc9fffIDmpg5WLFvOsRMHaWxq4sLNl/Gpj36Uuz92F0bIxMHB96rU3BoN8RRhK8T8bI7lK89ndOIwfQt6KFZ8YiGZSMTGDaIYUQ1d11/iBBAEaMym0H1A0QhkiYZ0mh0v7mBy7DjxsEU6kWH7ji2EYjaBoiErAcX5MZra+4iKAmPHjpNo76W5tak+P1BHBIlnzVkAUiAgBz6BU+D1r7mIf3/wfkzPxvEMPLnKnud/yQ+/8W+0Ll7Fa658E5VagCieu+p6ikn4XGibIPjdWf4zqhAnnUTf918KXE+919O/kmptjsMHd9CUaaDqy3iBX2+9KM0g63ECHAxD58KNl3L99dcSjkp0d66mo7OD9Rs2oMsqoiYimhKHdk7wk/ue5LobLuL9//ghLrvmSvZsfYZMehmaEeIdt/9ffOWf/5Z3/sU7ME2NuVyeaDyBIEssGGhlZOQE3/z6D/iLv3gPkWQYQQowbY2rb7oOBYGI1UM+n6PkHMZzFC6/+Cre8KbbKObzOPMTDC5YyuzMBHd9+O+47ZZb2b9zLwtXLuId7/gA8WQKOwrFqlDXUJY1IslGdm5/kfGxUVKpBKapUankiSczqKLAN77+LdZtuJT2jiwIBlNzQ1x53UWcGJ7gite9llg8Qq3moqg6qqLgSi5BoGPpVRoybRwbPoFlhsjl8kiSTKlUQA1qHNizk0XLluGXHOZmJrFtmVtvewN4AYVSnsbmNMVaHl8s45YdJiZnsSJJ8qUqpiQyPjpMKp1CsuKE5TCS6FAueoyeKHDvv3+Z7s4OFi9djC84REIJygj4osTzz2yjJdNBrehQ8RxUwcVzS5RrBWKRBpqaOpmbK2DGbARJJxyPcOlrLgXF4Orr34wZDtM3uAAnqJHOdHF4+EWuuupapiYL1Coe6cYkmmEjyibpxjSuW0WUbCRVwgs8Dhw+xJrz16FoEQRZItkYpexUQIuQnyvS39XLIw/+kLXrL+DI0XE2bj6fRYMrkWQBy5bRNAHf83GqAc88+xj9A61IXoyGRp+RqVEUXSXb0o5mRLjns3/N8sXnY6oGz//mEfq6+vGDAsOTc1iRFE9veYqe5n4GBkTcWgl8k9HJfRSO7yPd1oughVF1i+L4cdrbGymWA/btO0zMCjMxeQhZ0dB0C8moMT85xczUHOVSmfvu+3cGF60nX5ghmYqxc+cu1q9fTyzUgODMs/2F/6SvawGy6aOrYbyqxve/+0s6OlpYMLCIf/rSV9mw/kK+8IUvcs3lN5BOD/BPX/gKB3a8wKbNC3nLbX/O61/3Ror5EW6++S0ECMiqjGFaBIJHKBZBFHSqJZ+QGSXwpjjv/AXoVpqLLr0EQy6DpJIvezQ1tVPM51FjCu//4IeYnBijPDvGww8+TLa1g4bOPo4Nj9CYStLQFKch3UAQQENDinQ4yp6DOzlw6CBKzWZ8ZgrZshBVmXKhQEdDlqqsMO/WUCQVoybhSWeiP07ZrdODu1Nv/TG8Pi/7lKcgwqf815cfp+zj6T7uqeP8lvTkOfbr+/5LzMKn29bg5F/dx3+5J1Y4KVX4cmwhvhRjnI04/f9s8Pry+FMC0f9TVdpzB69K1+pXqLqeeS7BSVIJIQC/6vDEE0/wwgsv8NhvnuU/fvpzDh85xm+eeQG3JtDQGqO3ezV7du0klIjQ2NZFa0c7L279DUcO7aZ3cT9PPvlr2np6KJQrmKFOrHCK5rb2upDy6UXNc+HTTzu3M6uUZ1KAz+fyhEIhPM8796c7R1X19O1PrXNqiKJYdzaEc4vOn73uuYLXV8om/b6M1u/LQv2uz3JqnVO9AqdWOd2pOnuIUh3CZFgWmY4uxHQP1cwijhQCLFVGHN2J7JYQdftlCnZJJhyyGRjopzZ7jD37DhNrX4pmWLiOC6KLoru0tLegqBqyouI5Pppm4nkBoiSiqxaBr+G7Mvv2HqKrq5djR8fQDJPm9kZcvwy+RltbI62tzTy65QkG+vqo1ep9WLqqUakUOXF8EsOyCAI4uP8grR2t1ByHTCZJde99CLEeaq5EyLY5cuQIpWKRmucQsy2CcoGvfef7bNq0iRPHh2lvb0fTNTo7O2lqbERRFOLxBEEgMjs1TXE+j6oq7N+/n67uHsLhCGNj46RTjYiizP69e4hGIsRjEQxdIRyNouoGhq7R19fN1OQoTz35GxKJRL33VPBAlFEU5SXIaiyaxA/qCYbAc1i+bBGxaJRyqYTjuPiBj+d5hO0oTz75a7LNWRRZ59e/3kJPTw9zuTy5XIHR4cNs2LARRYsQjoVBqOsyK4pEEHhIkoDr+szMzKBqCk8/9RTxRJLNmzfiBz4vvPDCSThznUVcksT6VOFVEQiQJQVRgKZUhLR/lNCrPoYSa2cul8MwLCRBZnp6EgIfw44iyxJvfOPNaFq9mq9qNnY4hm6ZBILEL37xCPNzc9z65jcSS0ZZs+p87njrnVxy6Xoef+IxFi9cyje+8S3e8Wdv48O3ryEQPBIrriOXy+F7VcBBM2wa04088sijtHe1U64WGBufoLmllWrNQVE1ErE0lZqDIArsO7CPaDh8sjfSZ8eO7XS0dzI5NUe5XGF8fIZ4vIFazeXwwaMkY6l6b2/gAQaKIiL6NVRRwxUCFKWOchBEEUPT68zqgU+lmMNxKoQjMURRxXGdOpHQsecBAS+7jGIxj60mqVRr+NQndM91UWQHWRaQJIX5XJHZ6QJhO8GXv/SvLBxcjuMKyJLJ2+64k8ce30I2m+Ta66/mne+6g2Q6zr3/9jVuvOF65vI5Xty+lX/72pe59c3XUCoV6OlaRCKdYHj4AMsWrcb1PIKgruPpOQGmYeE5Pl+79+u89a13cMPNV7Js+UJAJGRHCESJUrWErlqIQZnc1ByaJBM4LvnZOaQAHN8DRUITJean5kgkmtENnVg8zPCJY2Qbe0jEmxElGzkwsPUoyXQC2fcYGxtn7+EjdHV3/k6bWTd8Pr4gYNhRrn/jWwgCDb1WQTFr6AoceGwrZiTMzW95O75iIskKQfDyfBEEwRkViZdt5Zk2Uzyrl+zs5OS5bOwpm3yG46g6HDlwkAUDvZTdIk65SiIWY3xiAsMOM5fLE4lEGR0Z5ac//QWrV6+FGqxZdQHPPLOFRDxCpVbEDsU5cXyW4aFDnBjdw4UbLyDd1Iila6SjMa677kpec8X5vOm2G7jyqteiqupJAiYRRVUJAv+kNmmMfL7E6lVr8SkxM5vjwIHDqLLB+NBhLrv0tVx44YWEQgrzM3m2PvUbnt+2lZ6BTrItKdasXUEsFuH1r7+SsdEZopEkkbhNQBE/cHAdife8871sWLceS5dxq0X6BxbUURChKOWSi23F0DQF33O57zvf5LWvuwTHqcNgz1+3gc7ObtpbOlm7dg2XXXYpiiIRj8cYOXGCSDzOzFSF2ckpxkeOYFkqVbdGPNWAJ4DnutiWgaKo+IJEuVhHAe3bvxcRmJrI0dreTs3xiERjEAj4vsTo2BhOpUgqHqZQLBKyzJNs7BEqpRz54hSiqPL0k9v4wQ++x1VXXk00GmF2doZisUg8GeLEscPoisThg3t53etexW233YFfKXLkwEFURccwTQqFMuFomPz8LPd+7TusWLEcyzYwDJVQ2AJ8hoaOYJkWmqaRzaYpFSrMzEzy1Xu/yIqVK3n2N8/S2JBFlgTm5+dAUMjnchw9dIg1q1cQCAKhUIhEIoll63WNdMPihedewDBsRMWgoTVL70Af7V2d7D90hHQyw/btO2lsbKRYLPKtb32DKy6/kn17D2KbcYqlWWTVJhqNsX//vjpyRBP5wPv+kauvupKu/g5KVY9oOFxPjKsymUwcRZE4fHQbnlMjV6iQSCZIpNsoOFAuV3n4oZ+xafOllGol4okWHE9AEuDEiXGy2VZ0Xada8pgcG0NTw2SzLTQ1NZHNdmGZMtVKhT279tLV0cbeXQfZvmMbmzddzI4dQ5ghC0U2+fGPf0x//wBdXR3ccMMNbNmyhWuvvZYLLriAYyN7+fmjP+Oii1dz/gXL8AszvOGGmzF1hfHj+zBCJqLg8+Tjj9Pf24OhqdiGwcTkHKNjE6TSKWzdQlBECnkXzZDZvX0X2eY2VEMlHFIIAmqQPAAAIABJREFU/CLVkwmY+775LS7ZtBHd8siXXEJ2E0898Ri/2vJzsk0tEEA4HGJuboZ9+7ezZPEqTpyYYvmyXhYuGEQWIqxYsoEbr7qOn/3HD8k2tZNMJfFeCurObIE79fxMSZk/vA3xdNv2+9Y/O6l3+vLfRyb1UqLwtFUcx0FRlDN87z8l4IY/LXj90470/48zxukEE/+VQzy5O0XX+OjH7uH5bS8yOlPCF3S6Ovvx/BobX3UJt972ATQ7iaDHaO5fTTTVhBWy2bBhA8tWnEdj+3r2HfOYnhPp711BIEQwQlEQBc7+rp0dBP4xnysWi71i4Aq/O3g9+7h/yDi9Sn3fffdRKBT+qO3/2HF6YP/7jMWprNQZ+obn+Hyn9qnI4AcOJd8nj0oolSXT2knHiotgwaVMD76JIDMAw9twR/aSz80hnrx/1WqJILue3ovejqzIzOVyPPbEk8zOzBIIOqVyFQQPx3frVVlfwHVdBAGCQEBRFDzfI9PYiOfBwJKF9A0uoLWtC8uOYoUS5OaL5OYnmRgfJZvN0tLcTDxWD+Z0TaW7u7vez6Ro+B5Isg2Cjj8/hCBbBGqc5qZmKpUSTU0Z+vt7aG5qpCpJiJUSN19xGb7nMDMzS6lSxfMCalUHH5cnn36SA4cOY1ohDu3dz/49e5kYG2fh4kUUC3XCG9cBUZR58omn6OvpwTJ0Svkc1XKB+WKFqelpZuem8b0qyXiEYrHMseE6pFfV6tIvvuehaRpBEFB1YW6+wPT0FELgsmfXi4hiQKGQx3WquK6DYdYdKEVWKRWrKKrIps0X4vkuY2PjjI9Nks9PE49myeUKVJwqAgKqWu//q9aquJ6LKIgkkwlkWeaC9RuJRC1qThVBgOXLl6KqCk8/8Sjlif0U5iZw3QqSKOLUXMrFIlNjw8QL2/D7bkRrWcO3v/U9otEErgOVskut6pHJZJEFGSFwyc1OUS1V8dBwkZA0nUDUcXyNpcsWcdXVl9PT04FlWZTLZR544AG6uju46uoruPfee1m6bCGf/fwnECUBQQgol4uYpo6siIgiPPjggzz++ON4noNl60RjcbJNzUSiMUzLBkHE9yTKpSqO4zA42I+iSsiKiGma/G/23jverqrc+/3OPleve+1esks66Z0QSOgk0nuxYENRFPuxAeccFRUR9agg8ip4UMECiIAgQgqkAClAID3ZLbvv1eus7x87gZ1Nonju+957z3vv+HzW57PWnHPMMWZZz3jK7/k9hUIZw7CIR4O0NrfQPqkNs2Rhmw6jI2ny2TzZTBHBVYAiplHErLikUoeRBJlsOoeAg2VUKFTKiIINThlF10in0285xd4yZmauptJxHkbJQJM1li5cwe9++wgDhwdwbJNKqUi+MIrjmjiOhaqqpEZKZFIGL258jUzGRFODRMIJ/vznJ/EHdBqbE0yeOgVFk+kb7OaKqy4mUZfAcgqce+5Knn3uaeJVOtWJGOWSgyKpTO5oJhgOI0kSg/0DCLaFZYJtCciyyqpVp3HXXXciqwaWZSGKMqZpkys7aB4Pjl1hoLcbj6aRz2axTRNNUXh5yxYUvw/BNVFFgUf+8Ag+b5iqeA2VikljYz26R6V/oBfJLSFgICoiRinLC5s2Ek0kWHHq8ncnIxlLt6gYYFgyftnLYw/9D75/2yd4/g8P8uamV2nomE64ugHEMYfM+PVz/HpzvHXo6Odo3tW7lcXj0Tbjz+PVPSTCdVRKCoIUJh72kctliMSqcGQviUQ1hmEwMjrAo4/9gbq6On78/Xv45MduoCoaopBJE46GwFX59S9/z4UXnc0d//E13nhjJ2apwMjQMJLi5eEHf4tH8xKJe2hqmcuHrv8A2A6dBw8gi2OIHtcVSKfT3HbbbZQreSpGmeraeiZPnUVNrJoZ06ZRXxPmy1/4IjWRFmTJ5dbb/gVFMjjn3JUsPHUpgaBOIOhDVT1cfNFl3HPPvRQKBTq736BQTGKZIocOdFMulUglh1FVh3QmyUknnUQymeWnP/k5rq1SLpcwLJPfPPwrQiEZF5OqRAzTtDncO4wkSVx66aWEw2ESiQTJZJJwOExyNMsP77qHh377J5qbaolFAnh9HnKFLKIyVtvVcSAciVIxLZK5DJFYlPbWNuoSNTQ3NzM4MIyu+XBsCceWiMRjTJs+la4Du5HdCr29vRzYt59yscTIwCCGUSQSCTEw0Mdll13GD3/4Q+677xe88MJmRkfSyIqIbeRRRBuf7jJ9ShOP/uE/SURDHNyzjz8/8jhP/vlpRjNZ/EE/siiiiiq739xLKBCm69BBkskBSsUM+VyGz3/28xiVCooMqWSGUCjID3/0Pc497wz8fj8PPvggmzZtQhRF8vk8ydFBvJqXRLwaXVMZHOrHNCuUy2XKJYN8roSRy/CjH/yAXLHEguUrMAQBNeAjWSgwdfZsXEciHIphGA6ua3P9B69FVfw0N07mllu/hCh4iMfG8qcNo4IoubTVt/Nvt9yKrED/YC+BWIy16zdx3lln4lFEUtkU/+P+u4nFailVitTU1xAK1tGXNJBUH62trXzwumsQdR+q14/pinj9Plw1z/SZM/D6bAxzCNcu0dQyhVTaoFB0aGxuRVVFstk8wWCYNWvWUFtTxb333suSJcvp6Rtl74EBCnkLkIjH47z2+itEIiGuvPJy1q59jkIhx1lnnUFzawfXX389oUiMtmkzyVs+ZH+CZMkmY0gEfRKNtdUUMzkO7dtH5/69VAp59u7aTWtbBxXXpWQomJZIOBxBkQQa6idhmS7hcJjDfZ30DRxAkSV27NjGxZdehKBKmE6B1tZWzli1mn179vD5m2+ivr6Zhx56GE3TqK6uZtGyBQz2DyPaAj39B+kf3M9r2zfx21/8ktGhfs448xR2bd+B4oyl/9nysXmfx4MSvxt5diIZ94/6TJSZ47e/2/HGy19VVY/Z9o60u+PI9f+VdtJ/u8jr38dn/z8TeT3+C/f3H9DRxXSiMXRMHuaRl820LLx+Hxs2vojmwIqTT+H5tRuYPW8ud37/26xZcyVLlsxj186thGtaaWxoJJtJkq8IFOwAPv9k5i46k9qGWRzszOCJBInUBHEFE5kxeOvxvDHjr+3ofRpPejExomhb9jFenOOCtMd5m45+jgftPXY+b485Mbp6tM2aNQtN04471onmMP738Tz3Ewmg3q1QOV5kePy+ifdWEAQcV0Rx3THGYElFcBwcF7yBIB5fEJ8/zLqdnXja56CXkvhy3biKl4LpEPD70TUdUZbQdBVEhZamFrxeldu/cw9nrVyFKFiomowkyuze/SaRaATHsSmVCugelV27d75V3sRyy9iOS6lgsnfXQV7d+RpNDc1EIn6ikSid3f3Eq+OMJEcIBCO4gotZMZFVheGRERrrG9i9+yDr166nVe9EUn289OohqhLVRCLhMeIaVcV1bARRBgSkSoG0YZEtFAiFogQCQUTXxcahvWMykUiM0WSS6uoEtQ11qJpKKpnE5/exYcMGQEaWJZ548gmmTJ5CPF5FOpPC59dR1AB+vw+PV2M0lUbVvEyfMY3mlkZcAZLJLKIkMjg0xPDwMKFgEEV2KeZz1NbVAgKK5iGTGkEQwePxjjE0l4rs2PoaLc2NyIqKLKns27efcDhCLB7HcRyqqxOEowk6e/aO1WEWOMIy6iKJGrlcaawMliwcKZsBqjoGDVMUDVGUMfIZaouvoigyYu8mhOIQpmUhe2PIugd56BVyeiu+5TfhuhZzZs9n3/5OquLVvLhhIz/96U9YsXwFhmEjSSb9/YfR1SC9Xb1EI0HWPv80r257jZqqGpqa6nGdAgcP7cUVBJ796zree90HeP8HLmNgoI+5CxbT0FxH+5Q23K7nkGQFtf09lEsW9917H3PnzKG1YwpNdU3c/u3bOXfN6ciajgMk02niVQksx+GZJ5+ktb0DUVIwTBjo68Tn85PNZklU1SAKErZdoVIpHGGiLuDRvPR0djGpqYlyMY1rK8haBRAZOZzBrPRRKKrEY0HS6VG8uoas+5AEg1I+g6rrxKJhCoUSkqRhmAblcgkbmf6hArfechvPPvtXliycx+lnnExLawOSKOI6Dh6PD6Nikc0WuOfun3HXd7/PooULmL9gHrpf57prr2X+vPncddcPWbBgLl/56lfYuGkHK05bji/gwxcIYLsqjbXVpJLD1DY2IzsOr+7YRkNjgq6uHv70yF9RPSINdXHMSp7kcB+Rqhps26CYTxOLBqmujhGtiiMKHmxboFTKEw2Fsaw8liUQCsfIZFNIsogoi+heneaWJkzTZc/ObTQ3NzFr3iIGR5IYdpm+wT78wQgHu/bi80j4dAHTLJErFChlR3EEhWQuR219/THkeuPb2wgTAa/mw6mU6D+0k76D29n58tMIuQFaOxqYPGU6yb5RVlx2FaLHj2XbY/Dj8YyYJ4yeTlwr3t5zVEaPJy2ZKH/Hbx/PrWCkCwwcfJVJUzqQ1SCDyT7SmRyqruPRfGTSaUQRautiDA4kWb9+M/PnzecX99/HshXzGBzMMZgaIeT3c84ZK8gUsgyOpnn5hReZN3sG+Wyem2/+F2bMnEk8NoXzVp+NXYbLLjuPcCREY2MjuVwOWRIRRAdZFjnzrFXU1lUh4DCSL6H7PBza9TLhcAhfWCFR00bH5PkEoxLxuhq2bN7EuWefjasoDPb2EArGePovz3HjJ27glFOXEKsaIw47dKgbr1dj+fLlPP7nx5g+cyrdPd1UVzcwVj5OoK6+FheLzoO7aJw0BcOy6es6SCRWx223fotTlp9KKOzHo3p49NFHOP+CNXg8Orlcllg0AZKAbQn4vSJVjU2omo+Az08mNYomgD8cw7FNcvkiuj9IMBDAcR0O93RTLuQJx4Nvvbe2Y+O6AqJVIDkyyOTJ7Vi2RSASw65UqIpE8XmDDA0lGR4eYNKkVnAlvH6YOqWNyR0z0LQAsiwj6RqxaIJypUL/YD/TZkyn4ogE/F5mz52PpHponzqFnW/uwKur7Hp9D1ddcyWOU8Hn09BVD7d/89vMmDGFD13/IfxeH3v37kTzaPg8AZYtXY6u6ciizMubX2ZSSyvxaISuQwfJF/Joip9wMEQ+N0B9czOO63L55VfiujYzZsxEEmXWrD6fr3/961x4wflouo4sSmOpWCY4VoGVK0/nnLPPJxqNk0yNYlsS99zzc26/4wu4toasiQwPD6FpOuWSQS5XQJK9/Oa397Ps5EVUCi51DQkuu+gCotEIsh5k/oIZ1CQmYTsFvIFq/vC7F5kzazLOkVrxmdFB8mULw8wjGLDjlZfwxgVe3zGAz2uxb+8WYv52tr26gwvOv5z3vf/99Bzej+CKDA8OUZOoIZdNo2oi8+YuxhfwEI4HmNQ+lfdedzXnnrOadCrD5z//Ja65+nI2bFjPli2bOf30Vdx00yfp70tx2798nVNPWcl37/wPPvfFW1l17vmcvGolt/37v2OZw2h6iGnT5hGKxKhYZVKZCg4KplWia/8bFEsgyRa6GkJ0BTTFz8GubvzBED6PSnWsik0vbmLu/AV4fR4CPp2+vrH384wzT+H81efwqY/fxMKlpxEJBwmF/Dz3t2cIBhrYtXMnp56yhPqmVvZ1HWbXru1MmVrHSbNm8ds/PM3i+XPYvm0b02dMHyO0PFKHfaJcOhYR8k799O+hCN9tO5Fh/I/gwscEYoR36sHHO+dEgqa/p4sLgvB/NtvwUeP174e3/98PG65sfhi79w2UxpnARK/HsYqBJEnYto2qqMiKwuKlS/nVj75PXVUNb+zey4GeXqZPa+DN1ztZ+7dHmd7RyKx5q0gO99F56CA1zdPJ2yGCukDJrpApFzFxmTS5AUGxABsJ5Rjjdfyf6RijDfGY7aIovkWkdJRoRRTEYxSDt/r+nc/RCMjxjj3axiI87/wDT/TMH81pOh5z8d9rJzIyx485Ufk5Hkv0PxrzRDm4giDgCl4010TGQUJCdMdyhx0kLFHF5/MxdcZUdF1h3b5RHG+caGY/SmkUFwHJG0IURUpGCVXxIMsKkuRy8snzwCmSGU2hKkEKxSTR2FiE3OPxoio+TAuqqmqolG0QZFQ5iIiAz6fQ2BCntaODoLcKWYSKUSSWaGb/wX3UN9aTL5SRZJF8LkMoEkbTNNavXcvUaZNYOKMKq2ctSmIetmUTjVWBAIViAdt2jkTAFEqGiUdwQVE52NtPIBTBq3uQBBdZ1xkdTaJ5VERRwBEFPD4vBw4cGCPpKOXQNJ36+kaKpSIzZk5FEBQOHuqkurqGilXm4N4udF1DVlU8/hCuoCCKFoIItjVWMsLj1QgFg4RCoTFnkeri2BayolIxXfIFg7qaMI7jYpoWvb2Hqa2ro62lnXw+y649u2lpbicSiaJpCj2Hu6mvr2Pvvk66ezuZPbcDEQ1BBMMwufdnv6CxoY0N6zbR1FTLhg3raGhqRFZ0HMdAVXQqFZvtL20kMPwCzHwv6WkfoG7lRyg5KmK2B+vQ37D6toOvCnXlbfjD/iNQZAnLEujrG+DFDRv5+Mc+RqIqxmWXXMG1117Mrx64n9kzFlFTNUZuVV9XxV133sUlF11GoZzD55FwHAt/KEpTQysf/vANBMIi4UgAVfMgSWP/c2vfs5RLBnc8/DrLlp5Ke2sbsiRzy7/eSk1VDTfc8BEK5RzBcAQYy2G3bRvDMOhoaxqDTCpefn7frzjllHnous6uXXuIRRN4vT5Gh/sIBT2YZo6hoW5CkTh1dXVYZolCIYkk+nHlLJriQ5UC3HrLxzjjzKtQVXBdG13XMBDJjgwQDnpxJIXkyBCa7gVkJFlEkkQ8ksoTj/+FD13/YVafey7nrT4NVXXp6+smFI4higq4GqIgs27dWq5779UsXbCY5pZ66ptrSNTHufLyS6itrQNXYM+efVxxxeXcfc9/csEFqxHEMaeUKPswinka6ur501PPcNOHPs2k1gZQ0jTWt3O4q4TsKdDUWEtNIopRzuELRZFkgYBPQxQtwhEvpqWzZfN2qhMJNF2iksugqhaprEGuZBOMeJBUGUVX6RsaQPd52LZpO+0tNeg+PxVRRZNFNF0iGo1hlAUC/gSRYBWSJaIqEQZHyoz272Hm7AVU1zchq8IYFPs4xut4ufjCc5t4eePzjHRtQ8h2cqBzM211DcRq2/jXb3+P9153Ff6WmRjWERku2LjOsTlYRyMExxL4HWs4i+LxZfLxnJsT147xEYB//eINpIbWMWdWPXsO9BCuacQfCqGIMla5TCgURVZcBgZ7yKSLLFq4nHwhw3suWENjSy2loszsefPYsO4vpJM9bN2+l7aOhZx56kIkCbKZPOeuvpjqSQq4MS65ZCWKkGLevPl0dnajqiper4dsPsvBQ3sQRJuqqhiyDLoeYDCdwR/wUBsWEFUfHdNaUOQY3/3e3UyZVYviC7Jw7jwioSjd3QPUJBLkshV6e/tomVSLKBlk8mk0OYHfH+Bg93bap83k5FNPJhiNIGs6yeE0wWCArds2s2DhLBTVIR6N0jeUoVKyaaypxXY07v7pz7j929/k7HNWUR2v4+STlzE0PIDf70VRZIYGhikapTHSqTe2MG3uqegeP+VCnqhXp+fgfnxVteiKjObx4QgyCC6yLDF0uI/JbW1IOhRLhTElWRpz4BdGD+MP+HAkhXypQjqdpbm+nkd/9wdmnTSHkWSRuvoEXV2dhEIhsvl+CoUsgwNpBvqT1NY0MpzJofuDyLKG1+unXDFBVfB4VGRNp3XyVMpmhfq6GnRZIhKI8ezzTxHw62NpA5KHM1adi+saFAsVwqEgsXgARAHbBEnwsOuN/aTSQ1xwwUW0tXWwZ88uenq6OP30VVx+yTWUCnna2usJxaNomodzz1nNokULUFUNTR9jwT337LMwKwVkyYOIjUfVUSWdvv69XH3Ve4/k5GZxXZdAwM/sWXM40LUFvydBvpzEdeCWr/8bZ511HrrfTzgU46RZk8mNDvHIb/7MU8//iVnTp7Jp42bapy+gXE5hFhUkxWDT5teYPetsUn2vUVffgKbIlItZfMEw+ewwg4cHueu73+KcC9/LH/5zGzu2beb5Z5/nnBUfIVIvsWzZKjSPSjAqMtg3wpQp0xgaGqJcKTJwuAfDEIkmwoxk+/H4A5y1ciWLFi/mk5/8DB3t06itizJz5gzOOON0dF1jaHiIpoYwbY1xJjVVU9MQ48s3fJxSZojkwEFWr1xCxsiQyRgochjDsvD6vTiih/e//0Occ8YK5p/USnXdJEaSfQz2Z4lH45TLZba/+jqTp86glC+hygrNTQ1Imk6lUmJoaJDkkJfa+ij1zT6MvEFAi3H3fb+gtbUZXVd55ZUtfOUrP2T984+zevVKUjkZ023G65Eo5Eapq5/Lr3/9Cu9ZM5eNL26kta0dSVURROkdeuw79cX/vcbr0TI2f8+WOjZINW784+i2E3+PofreXV3bo/v/P2G8/jNt7GHB24akcJzPsc11HeDtqOLb/d59G3vwxx/H3LUW1ygeQ9j0NtT2BF4RYSz6qnt0PnzDR7n/t7/m8GA/OA6y4mV0uJtf3nsPd9/9M05ZshjDtViwbDnRSIjCcB+2M0omJzHYl6G9uQ41oOM6IgIKDsdGWd9STFwRxz5yHePYfY+hyXaFIzkpY7UWnXGQABfeoeQcc0ePXqfgHD0acHHd48AQhGPLIY3/Q40/3zEeomOexbF9bNvGcZxjYBTHa+P7jp/T+O9HCaqOB4l4+zhx3LMVcN2j8xWPzFcCp4IFWAg4uGP1yAQB13UQsLGwcBAQVD+trVPQoo0ktSq8wQBCqhe7dxuVgR14G+Yiii6FQhqf7qNUKVIxDUQpDGIFWVIQJAFFVbEdAV0aewaCDB6PiiLDQF8/FgaK4h+LThgutmCyZ/9+EnV1+LwyIX+AA3sO8ebWddQFHJL9Bzi0+zX2vf4yKxZPR/WHsfY9ihRoRvElGB0dIZstEIvHUGWN7a9sJ+D3IMsilUoZVVHJp9N0j6aZOX0alUoZzePFBva9uY/Onl5i/iDlUoqQL4Su+ZAUhZ0732D6tOnsfO01Zs2aTTZbQJREGmprSadSxOLVOK5FPp8hEglTKVcoFosEgiEKhQK4kBwZJRwMjuUJOw6lfAHJq4GgIIgKmiKTTY8QCMeQBAVN82CYFgG/H8MsI8oyrjsGee3t6yYQ8hKN1oLrYd/u3Zhmkba2DkQJJHFMqNckqqmuioJj8Mae/cyZM5dwKIQg2JiGiSSLlEs5YqlN/LkzysyLbqSc6UbzxiGyiNCM9yBPOpM/PPUijWd8jlhLA4W8jaaGMSomHp9KrKqKpScvxTFH8KhFzjr7PXg9IVaedib5QgZPyEs6lyObL/HJz34G0y7z12eepa19Ov5ADMt00H0BBMXFdiT27uvE54+g6T5KBQO3868U8jmefr3C0mWTaW6qw3VUrrrsKiyrgscrYVQyiKIXTZVwXQNRgIAvRMkooOki27fsZM05Z2AUIZnqIx6vJ15VjSsUKOQtCgWDfN7ENCUK2Qyvvb6LWKKOWG01gmwgiyEsS8Bwcqw86xx8wQjqkdqwI8kUYY+O7vHgCiqiqBOIBJEUlXK+gmga+FWF0p5naU94CEyahS8SJJXtR/N68Pr9SLJAPp/i0N43iYbCjAwOMjo0wPSFs1E8OoFQFKPsMDDYRzDkp6GxDkGEaCzG6StOprrGj+WYVCoG+eQIwbAXG4v2SZO58LqLmDJtPk31rSiqQ3NbK9GoTKy6FgMNPViPkc8wPDyIrCmgBKhYOq5boqmxBY/Hg2GU+MkPf8HiU8/A6/cQUrzIsoVr6hiVLF6PRNeBARYsmU8hP0oqlcGjhwAHQZAolSqIIvj0ACWjwkB2BC3ox7QtrHKaJx59lMltrUi67x0yUZIkLCRs0UQWYaizm+SBLWikGB04SFNDI3t7Rli/YSuP/+EZrrj6g3QsXoYg6mPOOdc+Zm1529iUxslMkfFO3fHGrHskJ3389+Ot8WNdxxiSXXiblFAQmDtvNpM75hOJN/Dq1i1MmraEbF8XbnEErByKrpBNZ/B7o1gO5PJperrSfPIjH+Ti91xEX38P1dUz+NFPvsull17D355Zz6MP3c+qs08ln01S09hAslxGk3R8PpV8oUQoHmWoN83fnvsbcxfMw7QhEq1Bk3Q8skYulccfTJAvjxILeXANE4uxSLumR2loqOaMVXOpr67h0d+vZ87SOeQrRdJ9aby+ALZTor2jmVUrV3PNVR8mGAmieQVee3Mn02YsQrAd/vbU08RDEfbs3Uvr5A68mkVv1y5kWcV0dXyeCJ2H9uI4RTp7D/KtW79BKV/ggvecy4J5M1G8Hjp732T6zJNw3QBls8zLm14lFAhRW1vPd+/4Be1NNTTU1iCoCqaqEaiuwSrnQBDJZnIM9vURCIWwTYFUMk334YMEdT/BQIB0Lo2q+SmbLq4bJJNzefGFV5g2bQqSKWE6ZWYvnIuryuze9DySJDFasfF6vQTVAB6PTF39NJo7ggykRpjU3EQhe4DsyBCxqiZ0vxejCLIGxXJhjAxP0/AqKnv37KWqKcHcWQtxhArx2jCegB/HVdG0EjJ5hgdzfODDH+TSS6+nv7+PLVvWcdrKxdQ3TmJoeBTd40WUwHIqeP06J7VP4uILzyNYE2Pf7pcp5or89Ef30lhXT6VYwh/UKRVLfO+On7Jk+TyMSp5yqYTgCni9GrLkQZZlyuUcLhaNjY0oukgyeYh4pJ6NL71KY3MTusfHskWLqYpHsBUJSVPp7x0lGIjQ0BTnm//2Y5YvWo6myMSrNBT8ZLKj9A3muemzX6ClrZrW9pNYt+l16toi+H0JcCR83gSRhJfLr7iRcq6b2bMaWXna6dx//0Ocfu4iCqUK0XAV5593GtNbl9KxaArhUAOyZPLDO3+EWfbxkY9/iqq6ZtqaGpHMLKeeuponnvq3rVwIAAAgAElEQVQDtXUxdF0hHKpiyowZXHHFxShOlp//+NssOu1cLrjsCj584yfYum0H9e0nEa6Kk8llmb94ASoC2dEsiqiwe/ce4tFqSrkKSxevoGNqAxUUgj6ZPXsP8KGPXs/y01ewY+MGTl4+B5cski7RN5Kkp7uPkGrx8ovP0TqpCVvop7VlKkbJwhQqTDlpBu2TmigWC8iSyGWXX0Q8FuCW227D649x+aUXc/31V3HLLbdx4EAPK1ct4Lw103BkLw2NzRi2iz8WRxBsRHGsBOKYuHunHusKwrEizD2xjjpRVx3voDuRbnuifcIRPg2EIxaTMCYrx74fH0l59HwTCaiOOb/jjl3DERIpURgr5XO0OY6DLMn/v/E6vk00ghzneMXP39ELmPhg/9dFZyeyDcP4COKx4xz1kBw1yARBwBVFrrn2WjIjo2zZtJErLriAuXPn09ZxEjv3dPP8U4/Q1NSIXSnS/cZ2evdsQ/NGiSUamDFvFqIuHEN28dYVHsf78/eIL8Z7cP6RJ+Z4+94+xuVEkImJx7zzfp14jIlzO7rtqOF61IiFv0+kNLFNNGRPJByOl7d11Fg+Huzu6P6J0YG3fh8xtmVlDHKrej143QJ7kxU8J52J0LsJFR0rNYjoC6F4/eQyaYKBOgYHUjz80O+ZN28+iuQZ4wp1BQRRQhJMbNdBEGWMsk2laBGJBdE0GVyRUrnAoUO9xKIxJFEgHPSye+PjBIpv4M9spjWUQrHSuLlemiLQGLFx0vtwD6/HNQtIibkUigVq6mrRNA1NVbBtk3gsimVaKIqCpmuUy2W8kkBXOkM0GiYcCeG6NhXTpL66Do/fSy6bIRQP4PUHkBUN3RNg6tQOXFxaWloAAUESKZVKqIpCd3c3wVCIUNBPOBJFlDS6O/v54+8fY3hkkPb2ZkQJqqqiiPqYUS8KAn6fH0dQUGQdq2JglIrEoxFM1+Lll15GUz14dB8Vo0goFCaVStPS0sxguofm5hZcSyWTTLFj2yaWLJtH++Q2DNN8656LAoSCHgTJYWi4j1LJZtr0qVQqJXRdRVE8lEsF5L7NONEpLP3ED8BRicfacJHYuWsL3/3OTzj17POYsnwNoUQTiuJDFGUe+NUvWbJkPq5bGnP6OBALeqkUs0RrGqiYZYrlIrIqUSwXCIWDlEoFHnv0j4TDQSolk/b2dlzX5X3vex/Lli7H6/GQzaSZMrkDywJJAk0TsPY/haJKnHThZ4klqkBScEWBB355P088+SgrTl2GpnlR9TGiExcHEFAUHSplDKNCKFyD5FV54nePkM+N0HXoMB2t7ezYtpmh4RS1tbXU1NRQLpepitXS0NjIyOgggZAPx65g2TbFYglcCVwVVQpw8UUXsnr12VTFo/zHt39FOOTHFQx0v4Jru1hlgyefeJqXXt6CIAskUq+hmnnE5tmUjfwYc7Y3iGm6jI5mSKVy9PcOcfXVH+Dyy6/G6wsQjvoREDDKNldd8V7e+74rxxxsgkQmkyWRqCZaGyWZTqK5Mts2b2XKjFYEYWwd6u4c5EBnF3/9y3NMm9LC4Mgh6hubkfQQOBJULFyjTKViU13TgChpZDIlfN4gsptGkUTMSoGdr77C+Refj2kWcUwHUfRguWm6Og9T3xAHwSISTmCUbUZHR0lUNTAyksEqZ/n5z+4mOTLEpKYGFM1LxShhWGVcF2KxOB5dorOzh9nzFiCoMhN9kaIo4gqg2TqabfC5Gy9BcXNU1UTQgzEEXzWnX/whzn7PNVzx/o/ROG0Ggj+E4JzYWfi2s+9tWX4i+Tvx9z9c24/6QsftV7UEoWgDO3bsZ9ac5by+dQOhcACvP4o3VoNZsSnmK/gDEXRPgGikioULl/C1L32Fn91zH7t29xDxhvn9w/fxpS9+mng0wAc/dCWDI2lGcodIVNWTHvLx0x/cSSaZ4cX1L7BkwRIsF046aRabt2ylrWUmmdEywUQEryYhuSaiayIqfpIjGWRJITWaQVNCaLrI4PAbmBWLwf4iP/r+vzG5dQF1te24ioEsWOzdu4dwOMyNN36MgYE+1j7/ApFIlHisCtdVkF0Pr+/YSSaVZO6C2fT1JvF7vDQ1t+FYEgMDaaIxD8FgCF0L0tQwhVNXrOCcc1ezcNFiCsUCsaoaHNfE7w9xuHeU3z70nwyMDNHe3sQHP3gtP/nBt2lqbaazp4toJEExZ/K3Z9Yztb2d4aEhquJRImE/vQcO0tfTRUN9DWa5RCxRheO6yGoATQnznW/+lGTfKOV8mR//6PtcdME55AsjlEpFFFXBdh18gWbWXHQFn/nsTcQCDocPbqWmZRoHD3Ty0ssvs2DeHGxbQlUtYuEqLEdhcGSIiBdsRyBfsPD4ExQKaZ5+8kmsikEg4Cc9WiGZGqWmbqxW89BwH6JVoPPQi1imhWnoTJ8zBX/AT3NzO7o3Qqkwwle+/FWWLF5CTV0Ng8ODtE+ex55db/LN73yTcy+8kHg4TigUprV1Etu27gAkWpsSlIpJTjl5CUNDu8llJXw+Pz6/h97Dh4hGE3zxi19k9erVBINhstk8FaOCKstEIwlaWjtQxCBGxSQU9CJgkBsS2Lh2M1s3voRjl2htrueyK6/FquSxHZNoVZyBzl4+/rEbufmmT/G+a66kNh5G9SoEAh5CXpX08AD+aJRMSuA3v/0N8xZNRvKEQNF4+m9r+dq//juyx084FEJV41zz/otpaPNTE6vGyJuMDHaxYP48gpEEn//8p2moS+DYFerq6zn/gtV0dHQcWa81rlp9Do/98RFeeXkbSxcvwbIkGuqbOO2UFezbtYeFc+fjSgoBv4fWtiZy2RTV8Sbu/+Vvqa5pYN6CeTz0uwdZvGgF+WIfxeIgG57dyfoNf2Xu3PlcfsWVbNy0hfect4Z1G9bR3DKJVCpLTU0jrptDkhTuuPMnnH3Ohei+EP19OXAtMqkMH/3gJ3j19XVcedVlDA13UzGy1NW2MDI6zIH9B3n66b/QWOPj85/9FKefuQpXhFe2b+fO79xBR1sHsqpQXV+HcwRR97YcOlYfPhrdPI7Yelft3ejiJ9RbeacMfTc68cTzvaOv+/b2t/gKxum5kiT9lyKv/0cTNr0DfjoO8vpu+/xXx/1n2j9KYH4rtC5JiJKKYZr8y9e+zLZXtzE8PMzBQ4d48KGHefKZpzmYLvPNnzzI3b95llj7IvS6yfhDUbKlsaL0ovLOOR4PTvUOuMBx5vlujDfbtt8qeXOiNrHo8cTz/DMJ30fnPD4/a3x+8VHDdTyE0TTNf/gMJl7zeLjz0e0TKc8nvmdH5zTRWB0P45gYYXirL2P9LMem7FjYkoDdNJeZi09n09q/UigO43gd/LPOwuncjtGzG11XMe0CdXVV3HDj1cgKbN68mZGRUfbv38/BA4coFovYtk25VGFwcBhN81AxDGRRolQoI4rKWFSyXEQZXE/uxW9RLx1EUxTUmoWI9WfhRucRn7ISuWou3bkYTnQJatMaxNozee3VXfh8YWxLQNcUHMdGkkQsszIWXdU0BgYG8QUCKKLAGctX8fJLr2OUBTKpMpIg8PxzfyMcCXOw8xABX5SRkSTJ1AilUoFMLosky5imSSqTZvuOHRiGQXd3N5Zlkc/ncZ0i3b0HcEUTVyhx5RXv4azTT8c2bYyKwdDQMJnUKCIuBw8dwnFdhvoGEBwLSXTI5TIcPNQFrsjSJcsYHBwkk03hD3gBCAZD7N+/j9yoC5aX559by/DoIVasPAmv34MoKqiqB93rRRAlKuUS/X09uK7NUHKEM04/FVGw8Pt0cC1cx0LsfREx3ET1Rd+nlC+g+wOUBSgaBrNmzOJbt985BuUUHURZwHFAFB1WnLqUYrGMWbFwLRsRi3I5TTbTT7FURpRkZEXFsh1EQUKWFOpq67n4okuIReO88MILGIbBwYMHuemmmzDKFRYtWEgsGiWdTKHpMq5rI8siyvSLoP08WibV4dgauWwFw8zzgQ9cx798+TO4rokk6m+974qivPU+e/0+VFXl8OHDLF+6jBkzZ1JXV8eaNWvIFfK0T+7g5JNPZt26dYiiSDAYRJZFDKNIdXUVmXQFSfTi2C62bRIIBHj4oUcYHurj7p/8FE32kR4t8sBvfsz6jX+hUizx0+/+J27ZwKPrY4yWV13BjNmzcGyRdCrHHd/+GVtf2o/fH8SyHLxeP5FIjNbWdk5dtZLq2nryxTLrX9iIImrkMnmy6TSZ9BAXX3wxoigSCATQNI0vf/nLlIppwv4oHn+IZDpFpWJRKpXI5dJc+97LmDV7Oh+/8SPouobX66W7u5tKIY/oWNhWhYBf40DnVvoG9lIqJymW+8kVuxBQKRUNujp7WbhwKaZZQTArJAcP4/MrPPvXtUydMhNcieefW0upZDA6PEBtYwuiolAVjSBLKuecfR7pVBbHhu7uTvL5LIGgj1g8guvaeCJVXH7te5F0FXucY02SJCRJGsuLsyo8/ut7eezBn7Ns0VI+8uk7OP2KL3Damo+zaOX78ARqEPxRypKGK/lxTPmEMvx468k/8upPTL8YL/PHn/eE8lwpYsgGiZZq1r7wNPU1MbL5CiVHATy4ro3P78W2TQqFAo7jcO1157P81JkEIw4XXrKCuQuDrNvwMJblsGPHCJ/+1I8olktMariEb/zrLwn6e/jM5z5Kc2uIK64+m8P9++gf7QK5zOIlU9l/cAu6nsd2KgwNDTAw1E/34R5279xNc0Mj8UiUgE9nZHSQVGoUXQtgGiKvvfomt/37N/jCzZ+mvbEBWVQol8vE49WEQ9XMmT2PBx54gPPXrEaRBMrFEoLlcOEF53LZpReybMlCQgEfTrmMKyiUTZFIrJppbW0MDQ2RTmf45CduprvrMANDg/z07nt5/M9PY5oypaKJ1+MnnyuyedPLpFIZbr75Y4TDYR5+6PeUzAKFcoGWlmaSIwP8+PvfoyERY8e2V3n26efo6xnErDg4TpbWjiiBKLRNm4QgK5SNsZJltmnx0sYXuenma6mp1/nOHV9BVPLU19dQW9tIJFyDpvpxFQVPMIAuSry0ZQNVtVFsFKbOaGXlKWcjOBYgUixUcF2BdCpLNBqnr/cwf3z4j8TDYRwriybJXLjmfHq6uvDqHra89CLNTZPo6RoincqRyWQQZY26pnYsV+X6D38E18jjkVwy6SF6D3ciCxbf+MbX6evrBUnkpLnzqBgFSsU011x9Bario5iHF198kaaWKu66605mzphDuVIcKyckaoSD1fziF/fh83kZHR1lYGCIvr7DfOITn0BA4cf/cQ+WKfKxGz6BzxPnjZ37GRwcZv7sxdz44RtxTYfuzh4+c/P7mDe3iTnzmvEHHSruKD29B4jFIsycOZ1sNkvTghn8ce2z9OYziGEFKSxwqPM1Rob2UUqX6D+0i/LgG+x+6XEWTQ1z+I2NVPr3kO/ZTku4xNCeF9nw2K/o2TvMp274NN/+5nfJpmDnlnXsfW0zulKir3cPxUoO0S2DkeX8884lmyuiKBLlko1jK2ialwf/eC/JQg+XXrOab33vVmbP78A0TaZNm8bUqVPZunUrkiQgiC6ZzCiaprB16xbWrDmX5uZ6fv3rB1i4aD6rzjiNaDiGR1apr4py55130dzcQk11HRdffCmGa3DKacsBh1g0RKWQQxJEXM3PN773Q1xZY2gkh9fvY+26Z4gEvTz04K/5xX0P89gf/0ZN1VSefHwTHo9CMOjn379xG3/602Ok0sNUynk++uGPsP2VrUzrmMwPf/B9wkEvr+7YjugeqwdPjICeSE7Zto19ghqtE2XnPwqsjB/3uPJQeBvuOx5Z+I/aRD174r6jOu7E+R+LPP3n2v/Rxut/l3Yig/p422XGFAdRUwgmQjS0tfHcurVs3LQWry5T5ZfIDPbx+rYd5EtlhlNZps6dQ9vkVgRs5AmkFv/VeZ7I4JzYJElCluV/eqz/q23i/MYbvkejr7ZtY5omhjHG3jkeSvxuzj/x2PF/wnfLnDzxPO/m2bgC2CJ4KeDRVC696jq8/iCp9DDl2qkIZ30F2RvGPfgyTiGJKEpHSq0IzJozjbq6BC0tzTQ0NvL8c+uQJRVVVQmHQ+QLWRRVo1goUy6ZSLJOTUynsvNuyPeyL5VAqT8Ngq3owSq6u7oYGhxi7BJcqqvjeLwygiSgenTa2yYx2H8YVT6S/+BCuVzBHxiDZPb09NDQ0IjrQtl2wMgzMNCDaZcIhX3YlsnixYtwXJdVp6/ErggookI0FEISoGIYSLLEaCqJx+Nh0ZLFNDc389RTT9HR0UEsFsMyRGqrWzBMgXgsgaZpFPN58rkiHt1PJFJN1OtDtG3aWifhChDUZYxSFll28YeD1DY2AjKpVJra2mqisSCWZdDX14eAQC6XpbE2wZ8f/z2rVi1j8uQZWJYP15WoVBxEQQEcBFFE0zU2bngBkFi27FRk2UVTJQTBIpdLYfVvA1mjr+16Dhzs56WNb3B44DCqzyUUDbNx/Wt09fThCC6mY4IkIkku2VyKtrZJ4KoItoyujkU8c/kRSqURHFQMS8R2FXyBGH956jksUwRXZaA/iSx5ueWWWxgZGeHuu+9m9uzZBLw+PvOpTyMLIma5guva7Nq1C5BRm1cSnXY+KgI+2cdfHnuCYjqDKEFn1wFy+Sx+X5ht27ZhGGP3amBggHK5jCm42LjMnDadW7/8VepbmvBHw1Rcm0KlTLZYwLZtVq1aRalUQtM0UpkBFBUCgQD79/byve/ejSR68Hg8KIrENddcSWN9AqNU4k9/fJKnHn+Wn9//BBdfch011THe3PEiru1wuLuHW2+9FVkeq+kJNjte3cr5F57FnHlTMM0ShUIG1zWx7Qqi6LDl5c088OAvmTFrGhddej7FrMktX7kNn0fhsUd+y7333ovjOJRKJerq6vje975HPjnC9e//IIWyydnnn49ZkQgEwogS/Onx36GoDqZVpKe3C9t2qU7UYZcz7HpzBzZl9nTuY/q02dTXtaGrMWprWgn4YxiuhqSHaZs6h4qtYtsgIlHKZRgY6mLhgmU4tkS55HD6qnNRFT91tTEGhgdwcMjnRxhKZ+iYMZOr3vd+BE2npqaGhoY6QqEAlmUiimALErYg4CCA4B6DHBEEgUcffZQXnnmKqpBJqTjCnr0jFNQIpiuDT8NQDEQqiK6JgIPsgGb9369yTJTTR2Wu4zgIrgCuTCJay/SOkxgcTdHU2oEvGEESRXp6D+HxKmRzKQJBHdsp8+mbvkowkODii65g6dKT2bB+J95ADf2jo5TdEme85zSCwSb2dG3h8ivP4bWX9/HS9l3EaprwhmI0t8/kpJkrePDBxwkHa/F5Avi9XhS3gmmUaGyeRCCaoLmpgWI+z7atm/F5ZWrrg3g8PgYP21RKIp//ws388ld/4oEHfkLIZ+FXvKiqh2VLT+OSi67l0UeeYO3a9Uiig8+rcbinE0E0eeih+yjkhyiXcliGyaSWBjKZMUKz3t5eVEUgEk5Qnajnfe+/jo99/CN0H+7lox+7kaGRNIgK6XQaRdG45prraGlpYfeuvYz0d+P3BhgeyVDT2Iqqe+jp6SIS9vGRD11Jfa2f9rYWfnX/A3h1P69seQ1NryUaa8e0goxmNQaGkkiKhuOYlIspggGJ7oEhfOEqJk2eg6jEyeXGckJ7u0eplASCIZFnnvojqiIRjdUSiNfiIJBKDyHLOgN93QCoqsqrO14nGAyza9cufMEqHnrodxTzSTCHKRQK5PN5li87mUI+z/kXnIntmMTj1YSCcWqqG1G8YRStiSnTT0EJ6KT6+6nk05jlLI11YUYG+nBMk9raGr57xx3oXi+jw53UJAJ0TGpi6PAooyM5li1bRi6fPBJ19CDqOoLq50DXKIe6c3z1a1+kVC7Q29PH1Ckn4Q94KZfL9PUNsH3bayiyzlVXXUO5ZPG5z34JwzD46te+xOe/8DkqFZPv3/EDfvzjH+PxBdnx+l5ENUIs0UZ9Qw1XXX0l6XSaWKyKcjqDaNikeocY6eykd++bdLQ3M3lyA9FgiJc3rceRdOYtnU2sLkrFCpDLFxlNjSLKY5Dr/oEh7rz9y3z6pgv4zM3XMmPKTKpjOh1tNYT8EpMmVfH4E4+Ba6KINj/58X+g6h4CgRB9h5Ps29NLwB/DE2tn5vxVDAyXOXnpmYiuTmd/L2gysbpqTj/vbBRFQhQFDhw4QFUixux5bYymurHsCrfffjuf++wXeO75ZzDKEs89s4FtW59j3dr1vP7662zcuBmPx4PukxEVG39QY8P6Z8E1qInXEwhXEaqKI+kikipx2RUXM/OkDnANPn7Dh7nq6ku44MLVXHPtVUya1EK5XEbTFKZNm0Z3dzcXXnYNb+45xC1f/TqlTA7BMHnwV/djWxaxcOgdTrh3qyMe1aH/Wd37RO2f1f/frXF5NBDzv3Mu49t/G9iwbRu3wjsx3eO3TWzvjBSe6JhjmXPhWLKI8VDiseOO/3viWMfuG4MIWAdfAkBpWzzOW8IRaPCRHMe3zvvO6xNlAUGWsBwHWdX5n9y9d7hdZZ33/Vl1r7XX7uX0ltNPTnJSSQcSIKFKCR1FELABKoj6Oj7zKI4zYpuxjA6KiCJFpTgKIiWhJUAgJCQESE9O7333ssr7x85JTk4C4sxzve/1zH1d69rXWuted9tr/e7f91fPPOtc/vT4H8nEY1hOlvHREeY2zObjV15DdX01y9atJpPJF/KlFhx+jvqjvp9GlUI1ClijYO4nIJ5Q94Oe/6By/Ec700fpZPUlbLtgkicgHvWBnZrDVKTJqbYdx0FAomBlLyIg4jj2CcAV28Gx7YINvmWhqAqKonyo+fxd5hjOiT660+sfe27KD/ZEZ3ph6n1EQHRAsBwERCzHwRZl8gdfQFN19k/6aKyroFcuJlDdhr13I/l8goyloul+XCo4NqiSgiKKiILC5s3bqa5uZsNzG5g7twULcCkuursP4Vdj5N75JaKnGr1kPv5gGFlWGBkZRpZlXC6NcCRKKhHHNG0U1YUkKwhH5trb20tlZSWDg0MYHjfZTJJcBmTZLhD1cJjJiQmy2Swet0EqPkHTwrnIooWhq8RSCdw+P/m8yXhsgv7eHiRZYHh4mP6+AaqqakjGkzh5m6HhSZ566gXq66s448wz4UgybMPjYWRktKAtdmn0Dw3h9wdwe1zkzRySJNHbM4jHXzBV1lSBZM5kbHwSWXLRebiTkD+AJdhYuRwSAoqoIgsKljCMKEQw/DLhaISqWVWIsoRl2ZiWiSC6ePzRP1FdEwTLQRShs2OUxcuXIIggi15yZgLV5TAxOYor0YeT6Md7wS8pqa4hnZmgvqWFXM5EVwt+hwc69vPmKy+yZvUKRCRER8Z2QHO5kUSFXbt28PbuXVTV1PLm69sJ+koIheswHQ+xiWFu/8ItXHTehVTVFDM2Os7wwAT3/OIeNm7YyK9/8xCXXX45c+bOJhQOMjTax2lrVoJo49JVRoa7scwEoZCHu//jVyxedBqZfJJ4Kk64KEikOMzhvVuob1nMI489TWNdBeGQTiadwxssRlMVMFPIssHE2BC2maY0Wg5qlpJwM4P9vXijKm5vhMREDJ/uJTkmceO1N3HVx69kbDRNwBvF5bJ58uGfc94F55MXRCbHJ9i3+22qq6oZHhpi/oIGJDnBFeuvwHC7CUbKuOq663DJEhYSeiCEqhVy5Irdb1NWWoK7fjGjQ/0Ew1EURSWbzeHxeDFNi7KyMka79zLUdxjHsfFGwtQ3NxKMlOAyPEh2AEcEzS0juSRiiRT+SAn1DTWURH14NIX2vv2EfG5y6TxefwnufJxDu9+mOBzGyTnkEwlKa2bx3v6dVNbVoWqluBQPo2NDuA0RKw+K5Oa7//JvLFzYQiqRpbfvIFXVpeQsG0X30tHRTTSg0zfUh6x7OHygncP7duESEwQjJYiym1TWIhwKkslkcByHVCqFPxrAFsBxxGN7nihiAbYggCDi0T04loNkC7z49AYWty3g0d//kpc2bmbVuou5/ObPoShHaLFdoFOOI+NwxG9VcLDFqRgHx1F4pnxTC/6rxwct/CDa+4F0WCz4VhV8XKd6OTI1QUAURBzBxhQtBMti0zMbaSitJO9KE0+lcXJxDK+biayAz+ujfed2ItEKkqlhBNz0dU2ST9hUNpUiiQHchkBpaYSvfPEbLJkXYc78WQSDtYTCfkqLqhnpeYdkXiE5JPDuey8yt7UJTdPRNB8jozGMcACX7kY3dOLJUXK5NH98+I+8uWkrlbVlWAmbjc9tZHhyjObGWdx0/TVogsB7e3dy5z/fiSQrXHf9p/ned7/LTTd9lHVnncrTf30SwxtGVwMURQP09ewgVFKFI3gJRiuQXDaWPc47O98ipLv56m2f4/IrLkZSBQYGumlrm83CBfN4Z+s7nHb6fBLxEb77nX/j3HOWYWUlzlt3OevWrsYyY9x68xeQRIMn/vIss+e0oesaXk+QfMYkm4mjqAJGqJSzL7wMw2sgmHH8Po2JyXECAT8P/vJe5i1bgtvtZmx0HI/h5rRTl3H+OZdxw0cvJpeIIeLlYO8uIsFKViw6ndxkgjnLm3C7Q9jYGD4VVS0hnZxA0XTGxtOUVFciYTI+nqSiqo6hoQFKo2W8/ebz3HjzdYT8LmQzj+H209HZScWsOtz+EGOj3ai6hiiLTIwMEPa4GBtOkMuZuH0efvLD+1h9znLsXC05qxshDzu2djF3fhWGR2J+6wrIO8SH+5FUHX9Ep6e7j4mRUUJBL7l0lk0vbuGKy64kJzgYqotvfO02zli5FNGlMzkR5/DhTn7z64dYsXQNkWgpsq7S0b6PxvoqvEEdVYqxa8crtLS08tSffs/Obe9SWV7N5VdcyE///T8IBiLU1NThDXoIF0cY6Ojj//nGbUxmJggFinB7JA5sf53Db+zG5VbR/BbxIZPKcBmpdA+z5obBlDMnMZoAACAASURBVDGtOMODedq7DzDS342ITdWsaiRRY+Wq1SxcOYudO3qobTAY6I7j9+UYTg+hug1EW+Vzn/02q8+ZgynZNNQvJJNpZ3A4zcanHsJvCGian/6+EYqjEfp7D9HQUoU3bOD1lyDJLpxMkq3P/Ynmljn0dA7gD2qEgiWkbImKigaS8TwXXXohN372Bt544y1kxaa5tZX6liaKSysIhQMkkzH27d1N1Ofjs7fewsIFZxEJVVNeqmGaAv1dB0jHBrFzccpK6llzxkosB0LRas69+CKWnnIK7oDC6tUr6e8a4I4v3kVVUzVGxM9tN38TJsdZdfoa9ICX8qoob775MhddfhEeyY0qBgiWeQEVyXGOpMZyCoz2FBU8wrs6ONOwwDH/0ylQIYgCjl2gkUcFigJH8sgWYs8c81sVjrLWhZanYIBwHBkujOUYLZ0KfvqhlCkf6IbJ0TF/EJsvS39/ntf/e8DrEZ/X99usPkz5ML6YU+VkPjR/63x6OdEftPB7DLwuOWn/J2tvphp/yk7ctm1eevZ5rFSW8uISbrzxRq655lqef/4FahrrWHv+2Si6UnCYZpppwYw+j4/q+D5hsJ0T655sfH8rZ9R0EPe3JE/TAdxxZsPYR013p9Z6qkxJ1EVRmtHWsXam6jjT1sVxHCzbOq7dDyoz5/m33sG/5/4Hmc+dzCREEASye59BlBWazvksT//5cYKGRlFlDVL5Mpzu7QjpEfC6cRyFd9/bjdvtxbYdfAGJmroqDK9KU2MVlplAkl3cc/cvaJ09l653NxFWxsnrLaTSKdKpBAP9A6iyQvhInlfHtjE8HmRFRlUVMuksicQkY2NjRMIROjoKkm9/wIsgCExMJBkcGaS0uAQHh2w2h9frYyKWxC+DZQSRVR3HEXF7vbgUhdGhAVTRoay8DkkWCQb9BZ8f1YUqK0xMjuMLeKlvnIUgiEeCrOgM9/fiOJBKJBkeGsQybSLhMLICsiiTzZhseXUrjQ0NiLKMJElsee11ampq8BoeNF0nnzdRVYXuzi7ymSx9/f1U1FQRi4+w6+09DA8naGysY9/eDsy8jdfrpbu7i9KyUkRRoLG+AU3TeWXzm5SXljPQN8C2rVvRXTqbX95EY1Mrsqwh2xbm4U3I5/yIt/cnKCryY7g94IDf68OxbAQHysvKOW3NGoZGh1ANA1sQEY/Ql3w+TyAQwOfViYRCBANhdr29g4qKMn78Hz/jIx9ZyyWXfIR8LoPb8LBv7wHmzGmjvmEWF1xwLpdedh6yJCIKErYFoXCQbDaHpuls3/4WleX1BAMRRFGmyTdJ775XCVcu4Rtf/zZnnXl2IeeuaBIprqFmVgOyqvHixueZVVuHpGrEJsdJTCZIpnNoLhnDqyFIJqrfh5UTaT+4m/q6akYGxgiG3WzbvoVsJk9dUxXVsxr5w+8fZVZtFZOxQS64eD15R0FW/PT1T5DNiShKkuLiMhBkKipq+OSnrqOxqYFQJIwg2iQmJ5mIJQmEQoyMDOB1qzhdOwrfVmUb0aIImWwe27YxzUJOV1VVObj/EPfe8yuuuuZadLefsbE4s6qrUVUBHIuXNr3K0FAfVVXlCLZFMh4j6NNQsOnv7cax8oX/vquTwb4uqqrL6Z4YY1ZLK6akkkEkbtooLh+VlSXExidIjI2RzyTxGi4UUaC/t5e+7k7CUZ2iIjeBgA9Nz9NxoJ2icIiJ0VE6Dx8mHAkTKSohk85RXV1FaXEZ0UgJguIhncsQ8OnIkoqmabz++us0NDQgqydaxwiI4BQEfDgO9/7kbjZs2ICsKsxZvAB/JMQZZ67l0qs+SumsBkxJRxJmSt5PRvdmgtcT3S+m07iTCf5ORjdPuCYc7/YizKgjHGGqBFHEzOWprZ7FljcfJVpcQXm4ATM2ip0ZwjAMXKqMLIs4hh8hY/DZm7/AgqWLuPHz1/HGK1t5+cUtXHjhBXzqk5/m3nt+y8svvsbs1mb6ujtR1RyHD/Xxldu+TCwl0tgY5Z0dXQwPjbN7905Me5zDHdt579V9lBaV4ggCoqhh5iaoq26mqqYOfyBE0B8gk8+wfMUiHMskn8/jCYSpbWjgnd170L0+1l9yIbNnN9LT3cnHr/0Yuq5z1unnEAhFmD23FU8kiJOHof5hvnTHHVx88QX09I3g9gSprKpl4ZJFpHNJ9uzeTWlJOam4yeFDXTz3zFOUlIVpndPCokULuen6L5HNZWhbUMlXv/ZFrrrqY3zvOz8GRPK5BCWlXhwhgSoJDPYPIcoyRUWlIILLJSE5WRKxUQ53HqK4uJ7OrjEWn9KE1x9GkSTcmoqVz9Lb20kkXEk2IxEK+rCEIWrr5mDlTXS3zarTZ1NZ00L7gV5ER8RrGOQzCsnkBDjg9UaQVZvJwX58hpvJsRFGh0bYv+c9GuYvIVQyCwsvkitKPj+J2+PGsvP0D/ZAPoWuuRFEF+FQCFWUONz1LrU1c8jnBBYvbiSZHGVkcALNncdj+Hj8safJWZNUVFSTzjo8+9xT7Nz+Hps3v8GatafiD4ToOtzFH/7wMKWlJUTCJXzly1+lokImGgmyes2Z/PJXv2XB0pUcPniQdWecTk1ZlEQyywO/+y2zW5tZsmQRMgIjg51g5zn7/IsQVYP5cxYw0DdKd3cfv/j5L/nmt75F3hI4dKidkuJiOjs7uOjSz6KpAmvPOBUzl2K0ZwTJ66KovoH2/XuY11xDuMRFe/vb6HoRjz3yHksXn4KsCBhembe2dVBREaauvgFJdlFaVkHfwCC5XIYNT7/JsuULsEmRSWUJBYtwKW4mJ7Jcdvnl+AyBXCKJoen84F+/x9pTz6KqqpSi4iixTJyQzyCZGKWmuoRkfIzhgX500Y0oJ0imMvz0Z4+xcPV8wkUe4vExcpkxFC3Mlz5/O6eduowXXnwaX1CntKgcB5v77r2XqqpKBvrHuOjC9fzDV79GeXkpgq2w850dnHve+XgMF9u2b8DrDRAIBFEVD4Y7QD5vkstmMAw3Pq+Xl156qSD8Vop5+MFHqK0Nc/nV53D6qsu54dov8sDvv0dZxSSqbnLwUBd2TmWwL011dRFCXuTFjVuwyRApKkIUJcwp7Ogc7+ZQ4G+P0ajCPY7dO3LY1rG0lI7jYDvHW+/NTBt2Uhp5Ahk+HrwKM87fD+t8kDnzhy3/o8Gr7Zh3nozBn76xzVy89wNk/9XyvsBuWnk/n8WprdPJJhF9RUjRWSdp55gm8YM0ddNz2nUd6mRe6xxampp55bXXOees83h16+tc/fFrKKosKQA5QTxeiiKcuH4n87c8bq7TUuVMf27689OZjb+13tMjB089M3V9ps/SCbb0wslDjU9fn6mqx3LOHrO5nxIACNOc5UVRPEoABEE46p/3fnP5oHfrZOOZvjbT+5w+xumHoijkcrmCaaNlnbDuhTaO9Znb+zQOEmrTudSUF/PaphdJJyZQQz60+lMwB7uw+vYjBcsJhqO43QYP/+4P1DfU4ja8OIAqybyw4XlKikppnTOHgd4+FKMMcqMo5ii25COVTCJJMj6fBwebfC6HZVloul5IG2A75LM53G4XHsODy6URDAYIBAKk0yk0TcfwehkbG0ORRMBBVQuMtEvXIZ9l96EufOEidMODadnkMmmSk5MkYjEm4hkCAT+2Y+LxGBzef5DyinJkVcHjMVBUETNn4fMYbNv6BhUV5Tg2RKMRdN3N/gMHKCoqRpZtJElFFGSGhkaYnBijtLyU/fv209I8G1UuBKjJ5/K4DQNBFHEsh8qKCnL5HKquEgh6iATKMHMZNN0gGi0hnc4wOjrKjh1vMWfOHLLpNIpLQhAUBocm6O7qLDAfskJFeQXRohAej44jCuS7tyKWzEGYdR5nnXEOt9zyCXSXm/HJGLruJpfLH3mvBXK5DN5AENO2cXDIJNNYloXL5UKWZYrCXlKJJIqi0tjURCqbZtVpq7GsFGNjQwQDfu791W+oq21g6xtvUl5RhD9gkE3H6ers5vJLL+Oaqz9aCCh+xNQ7l8uTTVuIooosq1jbfoI4cYB2s4mAP8QTTzyBKMHCpYtJJXNEgmEOtXcQ8nuJRKJMpuJEghFs0yZSVIykSBxqP4Q/5MaRdKycTTTkZmxsmFTS5IILruCLd3yVXbsO0zZ/PslUHFmRiBYF8foVZHeQTa9s5Z239zEyPElZWQWRqIt0xuZrX/sGZ5x1FmOj3ei6j1tvvY11Z5+FoRv8+v77md3WSsCroQgW6UPbMPN5qJp/JApiQXjV09NDSUkJBw4cYFbNLObMm483EDoSDVJidGwAf8BgeGiUaFERTc2NuBQJ0Ta5+z9+xIpTFiMi4DbcdHZ1UV1Zg+Dksc0ssWQSXTLIJ3M8++QzmKk8tZU1iC4NK5djqL+XuppKxidGEUWJfN6kv7+HqupyKspqMNxuDC1CJp3m0P59lJaUMjkxyYO/fZBTz1yLpumItoPH4wdRYXQshiOrmHaedDKGImu4XC48Hg+5XA7d0I+kWDKP0lxJlMGhkL/btimJFOEPBFiyfBmyS8UWQJJcOKKAI6nYgkRBVzudFp6YLkGSjqd7R8n6DBr5QTR1Jm092bPOzOem5QufSqmGIOAgIAoSmqbj5CRKS6oQLIftW/+MaKapqKnDRsDGxlI9ZOK91DfPprKmiQcf+k8Wzm3iH7/2LSoqSkinYzTUN3L22UvZse0tnntmA/PmnMbI+CBtTa2sPus83FqWxpYoFeUl+Dwhtm55i0svuYp977xBtNhP1kwSKvLjlhW8ngi+YJS//uUpFiycR3lZCYKTpbOjgxdffJkzzjobfyBISXkFXr+PeGwCr8dAVRQ2b9qM4zi0Ns1lzdozsUSHvG0TcPt44IEH+MpXvoTu0piIxZAVF3nLpqS8BGQIeYL89Cf3UlpSxeTEOPPaWplVV4PhcaPpOnvf7SEWH+Wi9WeiqirZrM2f//gM/X19XHrphVRXRUkkRpAEGY83yLbtO9ANL4omERsbIhEbJ5FMMndOG5IaIuAPkc0M090zjNcwOHxoP5UVpZhmllWr1lJdVc/3fvBtzj13Oa9u6uJnP/kFt33hVkLBAO/se5PZrc0oosWuXa8TDISwTBvTzPO7hx6nbX4TYa+BbVuMjY5juN3U1FSjKTDc00PUF0B3qexv30cwVHBHCfp9OJkkHq+PweFxYrE4HsODrOaxchq3f/6LXHLJWeguDVVRURSJnr5BTl1xFs+//Awts+dieEI0NFWx/pKrue/XDxEpDuAPBOjt6WbNGWvQdDdz2xZwyimnEPR6GBiI0dK8gMqKRtxelQ3PPktZSZjDh/fR2jqXf/3RD3C5FObNbeMj555Hc10lxaUl+EIRAEYGx1m2bCWr15zBD3/0I6669moCwTB3fPEOfv3re/nSHbcTSwmsP/90ejv34NJEdCWA6AZX0EvE6+Lge9t55bVdNLeUIioiLbOX8S//9C+sWLGS3oG9KFIR/oCMYfjwBUIcau8kUhxhzfIz+N1Dj6IZMtESL5mkQ3G0mNGRScbHJvnYdVdz4/U30t/djduj8/3v/4z5LS0oqkAo7CUUcBPy+0mnJrn5M5/hgvPOR3e5GRnsJ5MeweXy8NifNnHVR6/EtpLs2dmFV3MRKS7jjS2bCXpdBEJempoayOccYrEJlp+yjMWLTmHvngP85x+f4LOf+QwHD+2lNFpJWVWU7p4uIpEQdbUluFQfT/91A0VFpVx26VVUV5XR3NRIwBdk86aXmN3SiCwpXHzxtex4axs+r8Oevd10d73LF267nkikjofu/wO11W389je/4+JLLmVkfByPW+bf/vVn7N/fxUcuPr/gjiGJCKpyRDh4Eh5TOJY7u8Dnn8grS9OUM1M8/cx0Ye+HV47y2jPp5gxrz5lgdSYvO1Wm8+YnU269H+Cdfv2/Al6Fv9fk8/+vkjdT7zvQ/w7y/3vm/2Haf//2PszYjn/Wtk9sayaos/I2f7j/Yfq6BliwcBFyGnone7nyxisRJBApSNSnv2COcGKb001vj2MAjop9xBPunUz7+H4271P1TuakPnNOwFHN8nRwfHR84t/+vx37GBgGsB3z6Piy2Sz5fB5s57jxWo6NLMsoioKmHQs082HKB41l5tyna0/fT5o1dS2TyaAoykn/k+PAa8erSAhIVSvI5/OIOHR0dBDr3cmi5ecyPBLH3fECTtdbEKrC8pYRT6QJBoM4QmF9Y6PjCJbDxPgYFdUV/PGxR5g/t5We9v0sinSQVcvI4yMQLUFRZHK5LIIgIMsq4+NjBMIhbMsmHUtgeA2y2Sy6Wyefz2OaeSYnYsiSTCDoRxIkLCuHZecLa65qhfc9ncYWZZLeKIIIw8ND1NVWk0lncese8maedDqBS1M4sP8QrY31WI6ALarksjlsM4emSsiqhuU4/OWpvzK7sQHF5aK6uoZsrmBCn8/E2bf3MHV19bjdOgODvXgDfiYmJigvKyebSrHz7V0sXbaMbD5PPJ5gYjyGLIDH0DjccZilK5eSGs/Q27eD6pqVxDMJDMNNKpVGkhRsy+KhBx7iM7deiygYjI2P4fMGUV02iXgWj8dD3oyx9fWdzKqpIjL8AtolP8QVmockulG0NO2H+ugbjPHyyy+zefNmfvzjHxMOhxGFLAg6uqFhkkXGxb59++jr62Pt2rXk0gPIkoZlqeQdcLldmHkZnCS2leXA3gM0Nbdx6FAn27dv5/wLziKZmkQXgwwPD5JOp1mwYAF9IyN4vd6jApXXt2xh4fyljI1NYL18O6FwEH3d9xkdneTgwb3UN1SjajoRb5DP33o73/rO98nEU4zHRimdVUJqMo1bMcjmE+RMkff2vMuSVQvx6m66D/UzPHKQ2uYm3O5SEqOj+MJexidMdI+EKtgIFIRKomSBHuD2T3+eL956G8GwF09IJ5lMoioeZFlkfGIQQ4Uf/fA33HzrHYiKhWPnyZsmkeIIifE+7Gwco38XpmmSalhHKBTCMa2j32XBJ7uCseEeSqqbSKfTCHYWx3LQdIHhoXHu+ue7ufHWa5hVVQ+mhU+XcOwUI+MpEskMbp8ft8fH8FAXXpeCW9cLkUlThSAwoWCE7u4ewuEooiiSTMbxh7yIoo3pQGdHH7WzGtn1znaqa8oJeTw4jo0qB8jmEgiygihKpJIZtmx5g9Vnr2Wkr4vhgUFaWtuYSJnEJgeprm/BzGcZ7O4kmU5RW1vL9u3bOf3003HkE4MjqbKLZDKJKIpMTk4SCEcw9ILvHYDgQCGbWq6wv5gyjjAzON+J7iaiOHMfO1H492HLB+4B0245joM0o6ooinAk76Jt20iKwt5Xt+PyjOAxfLh0HxFD5r0D3Uiqi9qKEmKCm7HBDopDdezZfZjKymr27X6T3u44Z5+7ilhigKJoOXfeeSc333AjFqPk837OWvcR3tj8FJ6SWpYtWMZP7/kKjfULKS1qYuvWrcybPxvVbRGPJYin0ng9fshaXHzFDQRDRbz39hts3vIaqmQSG+vB7Qug6gFu/uTtJFImd911F+VVRQiizNlr15GMZ/jeXd/l1ls/z3MvPEkiEWPD8xv5xCc+wSmLFrNx40a+9OU7ePih33G4aweaFiAUrcR2HPr6e4loEa68/HomY8NobhOft5jfP/IIZ6w9nZ/fczeVZTWoqsYNN9xEUVGIO7/5j+hakE/d9El+/h8/4sHf3s3V117Lnn3tLFi0go7uDiqqynHMNLKVwePxIesGwWAlQ+P9GB6Nw/sO0dHeS3VVGaWlQeKTI5SUFbFjRwc1DbV4XDr3/PhnrL/yJh586DfccNP1eL0GQxN78XtLsXM2uUycRAzefW8nCxbPJxKpYn/7dhpqG9i6dRs+X4DGhmYOHjxIc0M1zzzxJHPa5uIO+pF1P7t2vkU6GaOivAwxNYzsDqCHyvnTfz7Bxz56NSMjAxRHS5AckASHsYkYpp3jYx+/hd8/8iiarDKR7CYaKUF1+xgaOUhQL+JHP7qPr33980zEJ/BpbmKTCUzTZsuWNyguLubZvz7FmtNWsGjhPJ7f+AyzahsZHZugcXYLoWiUr3zhNj556y20zVvA66+9ScjwsnffLprnNmNbGXTBIlDWipl3cLkMnv7rRmY1llJWWslb27dz6vKlHD60h6qaKkY6d6FrItGaOvKWB9scJpPMMBkfoaTcw9uv9VHfWEy4tBxT9tO15xC3f+7b/Ob3XycQrCQ+OcrEeBJ/MEwiHcMT0Oh9e4Lyep1Lr/ooDz70CC5F5a0tm2lpaSJcXIblURjryHDXnf/AT+/7d/qGXYS0cbZsfZnTVy6m/+Bu7n74aa64/Crmzm3juWdfYOHCxQRDAk7OJmM6DExMEhsapqbOg+bMYWKii3fa36Oushy3rrN16y7Ou+hyuvu6aWxoZnJ0gh98/9+44MKP8OILr9E6p4F156zArRazedvTnHb6mcQnsmhyhngMZFkmnphE13UGBzrBUXj33b10dh1k585tXPfxm6hrakZwLLwuDUuE8ZFuKspnMZbU0SWJ7a9vZmx8kPbeXkLF5Tzx50e46cZbWLH0HLZt20hlaYCWVSswFQ3JlpGO8KXH8XfTwGuBxh2zMDwqtON4K0dHOJ7P/FtBm6BAv6doqOM4J8UFJ1PMnKxMd9ub/vz09k/of9p1l6L+3eDt/x7Nq23eebzR9LHj2J908sNxphb1bwNVUZyeY+5En8QPB0JPLIU/yuaD9+WZYz+5hu+4czFHy9xW5i9ZwtMbNzJujvHJWz59JCVHQXskSkekKoIAM6TWx+Y9A5w6R9bgiM/oTK0fFD72mf6cf4vxmK6lnQlgp8YwHbierM2p0+OuO8f8pk74CjliAnfEp1RAxDQtBI7PHevYAo4NlmmDA4qqHNfGdF/ao++eeOJYphORmWs8BaCPaYhP1K5PL1PA9eTvwTENvRKqQQhU4gCyoiDKMqFIhEceeIrSygYUXUEsqkSKzIWhvQhDe1E9biS5EKDFwUaVRXq7OxgbH+DQwYM01jeiaxqHu4cpLqlBS+9nJGPg8xmosoysKAiSDIKA2+09Ol9ZlrFTfQipbnJikD279xINF+Px+fF6PZimgCjJOE6GXN5ClAt5hx1HIJ6Iozt5TLeGKAgEAxFcmpux8XEUWUaTTHJWHpdLx+/28NRTLxKPJykrjmDmssiSStaxyaQTgE3NrFqipaVYto1LdREbj7HxuQ2UlkXYueMd2trmIUoipmmiuTTcuk46lUKUFIpLSohNTuL1Gng9Bjt3vYtp5pkYG8UxLbI2VJYWY+ZMxuNxSsKlHDqwj0jUj6676esbZvnKpbhUN5JsY7gD2MI4WAr33fMgbfNnI6pQW9OAMrwdoXwhQvOViKJIPDHB7nf34/f6KfIY/Pzff8l3v/NDXn3jDeqba1kybw3z5qygu7OdoogH0cqiSAI1tTVYjkzWERiPZQhFK8jbJnkrh0tyYZoWsqwjiDKK4SJUFqSptZKuAzspDbjRjBAPP/QIG557kZUr1uAPeshkMthOBkmyqKpswK0bxGJx3CObkGSBWGAxsqPg1z2M9g/iDRukJvzce9/PuPGG9fzb9+6npqqacFBncHiUkdEkFdUVeH1eqqorUCUXe3bvo6SoiJGhGIYRxBfwkUiNY5PG45VQJRUcnaGBMd58fStBv4GuujnvvLMxfDqPPv4ofm8Yy5JRdAuXoPLNr9zFe+/t47Yv3EY8NsmuHe/S3FCD36cwNLiXoD+CIPgQyuYgldVjuDUcy8GyswiyimUrhD1e7EyanODGJbkg76AKGu/u2YUsa7gND8tWLKQkFEEQZdJmHlWX6ehqJ1xai67oyLKCpMiIuTw+v5/tb22joiJKPl1IS6NoOsGiYkxBZDI2zMDQKMFQCJcuY+ZclEUjaFIO1SUiSCKde9/D8Efo7O9F8QbJmClM08alGdTW1JHP27iNAKUVNbg9PlyqgjfkBcFC0RUcRSKTzuHx+alvbADJQbYLEc1tWcQ2ZQRboePdXfz4219l9fJ5fPnLX+Xc8z+CbVsF14BMGlmRjsZDEAXpCC0Umcq9Oj3lzRRtO2YVc+L+PVOgdzLh3kwLoZntT2lVBaGQ9grHmerluL29wBNIOLZ1JPcgYNsU1YYY2/U2OdXGV9dI++7DNDasBElG9OeQJB+6kyA+qfGlO76EaB/i7dffxbInqahqJBzyEk8cYGHzGiIVw2QzNmOJzVx19RXUNyziPx//Ja1Nq3juiV/wq189xiN/fIXHHn2WM1atQ3bZpHICpdVlZHMeXt/yBsvOWMtXv3IDN3zyclIJH2/t3Ms//u/v8dzTW6gsbeKGz36Cyy+5lK1vPMeOXe/SsmQZK1acwle/+HnCReXc+NnPccNNV/PRj93I4sUrOXXVOdx332/QdJHPfuZjbHnzVWorltPbPUjIa+BVNT71sZuon72Am79yOy3zWrntljuIGmGi0RrWr78UXcziDbjB1qitqeeiS1bj9/lJpTJ07jtIeUUNBwfGaG5u4ZVXX2Z+WzN+PUBiLEUgGGDr1gO0tM7jcMd7/K+v3MHIyCS73jlIOplhz5bdFJWLRIrqEaUIL216gmikmmxsEEHQeeqFDvr7N/Hu/ldZtWoBD917L4tbm5Ech7d3t3PhJddTWVXPOeesJGvnGR0fwErnUR0XVRXVjI/H8AfDeINBJEGipnYuqu7hgQfuZ9HyMzGdGA2NbehujZLKOnzBCAGfh7bZzWx89mlmzVrI4PAon/r0p1iycBFGiYdsOsOl689h/6EdFFeXILtcKJpGLp/DMMKIksGCJc2Iis3w8AhuuYj29g42bniJX//qUb70xa8zd+EsSqtnga4QrAwwsG+Y73z/F1zx8dWY8QTNcxYQ8gUwVJVXXnyecDjAH594nNNOXY1pu3hz5wF+/pOHOGtdM4YnTUm0jNv+4XYuWHcZD/zidyxfPh9Bi3Hvv9/FU4+/wl/+rNwPsAAAIABJREFUtJM5S1qR7TydHYMoeg7d7QezFEXJUVwSIZuZJDmSJ6/GufrjlzMZy5LKDWN4PWhuAU0x6W/vIqAG+da/fIszzzmF8y44jfLyKhKxSQ72jtEwtxqPppC1RnGsYlavPZW7fnALq5eczWuvPkhD2wr6hifp7NjDxRetxuUqxxNVeX7j45y1+mwOd3QyODRCSakbO38IRXGhKzqGR+DeX93D6WsvZ1ZjM4rLRSKdorGhEd0ns+n5F1l/4blcf92X2fr6Ac4+dwFz51biEsOMjafxlVWQlEVkl0Zf1wiPPvokCxeuRJBEoqUBkETWrbuK2tomzj/nPD5y/tVcfvU1nHnGMmZVzubue+5i9ao1PPfMS5SWVDLQcxDZHGP7m2+zaPkcVFeWc845j8mxGGUlDo21VZRVVvPAw7/gnBVryCkyoiQiYh9BkYWjkAP2eBooOMLR/KjCEXvBk2lrj0up+SHA6xQJto+YKp/MAnA6TpgOio8XRorH/U7PnjGTh5+JO6ba+R+e59W887/zfGHxPoyW9b8GTj9M/47j4MSHcbJJBJfxf6RvUXQQBRldc9M2dx5Lliwil8shCMd8Nz+MIPtE6cjxmstj/Z3MfPV4JuP9zJ6n9zXzozrON+l9NJJHnxNOxrycfJInM3M45jtgzzg/9nGJonjUt3Y6SJ/Zz/ut7QeB+SmTtZOFIf+wkq6T3TvZem98+jnOOvdsstk0ReEQOS2Aq/5UUpaA3L2NzGg3KUtAcrlJxBJs27oNv9/L5ESc/Xv3MTIyzIJFi9jfMUyROozPH0B0+cnn81hH8s4eMxkBx7boaG/Hk3kP8nEEdzEjY3F8Ph+WlUMQHbKZLD29XYRDISRZQVVdCELBnFCUROR8Dnd5Nel0Hk1TsSwTl0tFkgQS8RiSotLT08POnTs47fRVTMZGKCuP0tF1mJKSKLJLp/NwO2OjY5SWlZPLZAgGAsQmY4xNjJPL5fEaAQYGB1FcoLtFDLef3t5ehoaG8Hg8eH0+LNPipZdepqqymng8wZzWOWTSKaLRKJlMlpbWufT39ODzuwlGomx/axfhaIhIUQhHEAlHouiaXBBYOHkEJCRJRFVcGIZBcWkxIDDeuRdXsgPjvLvIWy56u/spKSrjm3d+i3Vrz+Gllzbwj//76ygujabZjSBa/PBff8anPv0ZGptrQcqhqQEmY3EMjwfNJePYebo7uwgHgzhWnoG+Ln772wdYuHARjuOQSmaRJaOQxkdxkRpPMTQwhumIZLMmV155NTt2vE1tQw0A2WwhtYGqGCQTKVauXMGnz51FJpvB03opkqShaToXXnQRN3zqE/g9Jbz40l9RFJErr7gOWbHR3ArJlMXBA13UNZbj4GDmbSRRRndr6C6NVzZvpqqmGpeu4dZlsrkMoqAiiRqaptDX288N13+CT37yBl55dStNjU3EYpOUlZVQWlqMR9f4+T33U1Vdw0UXnUdbWwvPv/gCgVCQyWSMirISYvFxAkEvkqhgmgKKprFnzzvk83kMw0s2m0V1aQiiRDo2ScDvRXDZxOOjuFwCsmKjGwEUxYXH4yOVyiAJDvFkGs2tg2MRCQUwHRnHtNizby+hSBi3qgAO6XQan9dH3pYwvD4GB4eYjE0gSwKhUJiiaDHZbAZFFRFFma6Og3S2H0aQVQxPkHgiTjRahK7rGIZBJpvFzOXp7elheHCEUDSIqsp0dBwmEPCBYCOrMqIkIUgiqstFNBTB5XIxFazQAewjMk4Vic0bNhIb7mBosItlK1axv32Q5atWIYoiTz/9NM3NzQiCgGUfT0M/aA87QcPwATTy/cDrzGvTad7RPdY5eSyKmX5bUwLt6fXSWWh/ew/ltbVMxE2qyouZmEiiGyrJxAiipaBJ4PEHaZvXyuymehYsrCNrT+ANBJDlPAgxYon9DPW6ufnmm7nwnM8Q8FTz/HMvM6ethJaWShrqW1iy7FQ8QY2v/sMNlFXAP33jn5nd0sLwSDdm1qK2vBRvKIwm2BzYu5e2tgV0du3npk9ez7JTT6Ft0Wx6+nsxdIPx8QFu++LXuPa6axgd6mfntu3ce99v2bd3P0uXnUI6lSMWi7Ns+VIymThtbbPZtHkT0Wg5paWViKKDJMJTTz7DGWeeTfPcWjwBlblzGpicGCQ1Gae7v5c7vnw7y5YtYGhklL88+Rzf/Oad3Pq5m1AVDY9h8Nxzz7Lh+Q186ubPoLvc2JZZ8BeWRO6//zeUV5ZSVTWLzq6D1NaVk0tn8IfCjIyNUV1RRiqWZcOmZ1i45DREUUMQskQjZVh5B5fu509P/Zm60haKimpZ2HY6mhhh21sbqKyuwxss5qKL1zPQ34vhBs3QiUTCVJWXs33bTm646Ube2LqV62+8nnQqiWPn6OnpIRjy0zK7gUwiScCv4lIMDK8XSYZ8LgcOvPfubjJpkze2bqOqroKPX3s1HQf3Ew7M486vfYtVy9fhM2qx7DiJyTipRAK/14MiiYiii7yZQhRF/H4/mA73/fpeTl21kvvvf4AXX3wJjyEyd+4CNFXDrbsx88Pc9KmbUXSdO77wPc4//2z6BwfweA0GB/qYO7eFkdEYCxYuRlUN2uYv5PRVp6G6ZP767AZC0VKefPIlrrhkPa0tNbz08tOsPXsdquTlgvULuPrjlyDrYTLxNBs2bGLVqmUosoYsGsiKhe04DAz2IUleiop9aIpObGICn1clFdcpLS6mq3sfpeUB0tkRlq84BduR8BiljIykePutNzh73XnYVpxsMkkyo6DKDpaVpq11PuPjI9SWL0JQynh3VzvdBzuobymhuqaVvuF+muoaMbQwedOirKSKA/v3EQp5SY7b6G4fA4MTzGlbSDCiIssZ8plxggEDwTZxnBDFoSg+v8zF6y/FFl088siDXHLx+eSySXbveIyioiC66kO2dEZ7RtENi2w2zVtvvUFLcyPDowM0N8xl5YoFbHz+SdKZFIuWLmH1mtPo6xlhPDZCaXU9P/35r7j4squ46/v/jq7Bs89toqGpikRigqJQCX9+4gkMTSebEQlGvSiyiqEZuKNhTNNEnsFfW5aFcMQkeIqOicKJFoAn0MwZCp0Po0yart2dWfdk1pDvr0w6OZ3+ILo+s8//2T6v/5+B1+n1/8+VqT84u/l+rN7dJwRsOlLr72638NKIyHLhUFQJSS5E15XkD9Y2nwwwzhzLTKA6nTmYObfpH84HmWP/t8ErHx68vl//oiji2NbRMODTwevUfWGaedtREHyCidux8Z9sPicjCFOg9ajf1YyxfdD5ye4JgkCu/RWs8W6kYNVxdXKpFG2nLCSfy5FJZRGUHLIkIvjKyJW2FQLS9O9ASk/w8stbmLtgBdu3bWdyIkFZWRnlZWX0D/ZRVl5GuHI2wuhWRNWL6g6gKCrHNCgWjmMjywpieqCg/Q02I6YHKKufj0vTcCkFE/b9+w8WUrqIMqpLw7ZMcpk0CODSXDjZLHlJZSKRxhvQsc0siUQMze2mr3eIQCBIX28vK1euRBIhEPRj2Q59fb2Ew2EyWZNIOFwwr5UlZCA2GSMQCuALBigqLUYRRebObSWdSuN2Gxw62E4ul6W2dhaa5kKSRfK5PPl8Hr8vzIYNL9JQV01HRwcNjU109/aSy1jomo7ulpFVkfLKejx+L5IiFaSn2ODkkSSFeHwcXddxbA3HzuP3uxAEBduWMQ88hW/N/0Ita0YVNB57/GkaGmYzu6WNA/vbKSoP4HK7KC6NYNp5vIaHL9x2O+FoAEEyyZtZcraHX/z8VyxbvITBvoPkcxn2791Dc0MTkmijuyTOXHsWoiDh1r387uHHWLp0Do6ZIzExSXG0hKLScmTFjdfnw+v1oagyDz74B/wBNy6XDIhk0ha5XIbb7/g8dscGZFnGmHM5//St75DKmay/fD2aS0XXJdZfcjFej5/hkX5+ee/dnHb6av7yl+d55519LFpcMNfevm075aWVCKLDgX37WbliBbKqICkKkCMRz6IqbiwTevvbCQXD3PiJT5JJ5WhsaiWXyyBKAqaZRZQcPnHNVcybt4bFS5diS+Ng2SxasgDNo1LfWIeVt0hn0gwNj9DbO0RDQxPpXI6i4jCaphGPJ/H5vOTNQiJ1QxcZ6OvBEmX8Pj+JeJKxkTEi0TIKkXFBEmXcbonde/dw8HA7dTU1xCcnMLwhXn/1Ndrmz0NSFPa89w6CIFFVXUMylUX2RsiYFobhZmJ0BENTkWSd8YlRTDPPli2vE44GUWSRyopqPP4i8o5KNp9D0914DDedhw8QjJbiMTzYlo3X48YRQZYldF3jzTe3Ul1dhSTLhbysilJILyVIR2mpIIApitiOCBa8/txzdO/dhVuO4w9FqaxrZfW69VhOHlEUCQQCHD58mIrKSnK53HH0cSbZ/yCG5r8DXmfGTJgaw0y6O9OCZ/q9k4FXRZGxcYiEgvhUh5woY9qFdD9mOktmcoKB/kFMaZJIkUFpUT2dnVtZtGQO2bzE2zvfZVZ1FaKUQVODXHLJhcRiSe67+0F8XomG+lIcJ0YmJ1JbX8m6M5eTSY8xMT5EfVUNsxtqySV7EHMZ8tkYsqzxzB8f5zvf/C53//wnfOPr38DjD5CTLBRDIhAM4phpamqKWH/xlXj0LD6PRjQcZvVpp/H447/no9fcSDQS4a23ttM2dzazqorZsWsX/kAJA52jfOcH3+bKKy9lw4aNbN70Gtdc83G6ejtZc+ppnLJoEV6Pl9qGUhYvXUw2Hcfr9TJ//mIcW+K66z5GSVkQVTYYHelh4ZKFXHrlekpLinDrQRrqG3G5FGwrzdp1q3G5NXw+A69PI5WeJDYxij8cxHJsNJeIIGmsOuNs4uk06XSS++59gBVLFyMrER774+Pc8vkrKK8wWb6mlaw9wuDYftacvo6R8Ri+SJTLLruUnq5DfOoz15G2ssiqTDqZIFJcxZVXX8PadWvp7ulGUSXyuRR/+vPjuN0uRFEgOTxILjNOIFiO6YBNhlQqTTqVRxRczKptoKm1FrdXIx6bwKUoBKMQCI1RVa3z7MZn2P9eO/PnzCcZSxIJBejt6mbnu+8wa1YF8Xgc2xbQNYlTT1/Kw79/gOs/8Qk+e/OnObBnL27Nx/e/92NaZ5+CLWfxh8Icbh9h9rwlbNr8EnPmzuXAod3UNlTh0kUi4Vn849e/xQUfWU9HZx+7dm0mEKqhoWUR/qIAN1x9C5KYpKdvO3MXzqG7d4Le3jHqWxuQXH40TSQRH6KuthFZthgbaUdzQSoH0aIyLMfm29/+IeGgTk11FeFggKHBfhTFJhYbw+UqRLnv7e9n774OViw7n9hECocBDN2LrrgZ6t/P2GAvxUWnEoiOcmDvXjSh9v9l77zj5Dqru/+9vUwvOzPbe9Gqd1kuki03ueAaXDCYZoLpJCQE3ryEEJKQBBOCKTE1YMCAAVMMxo5xr2qWbLVdrbS72t6n93vv+8dqpdVqZcvJ+19yPp/72dl7z32eZ+bOnOf8TsUXTjMy0UX70grCkRIVMZuahpUMjQzR3zNAU90SJsanmZw5TqwySKmUJRatIJVMUxENkSnmiNZGGTneQz6ToLYyymf/z2e4/prr6RsY5Zk/PkWxVGTFyovJCnG+9C9fp7vrEFddtYGnH/sFy1dswbZDoBq4wyrLWvx43Sq1ldWoksJUfIqaympm4n0E/DKbNq6lbflaHEdkcmqKC87fhmQnuHzbBZTzeW67+VbMkJfRsQRHjhzg4i0X4VJ91DfWEA3UoMhe3MECP/rRb3jmkUfZetXlyLpxstDiHEnSrO4wX6YKi+i2C2WmKJ3Z//pssnW+/F0MSM6Xq4JwqtfrfPm6cC0L9fezzbvwmmVZs4URFfV/weti9OaA6Ll7uuZoIZB7vQdXPrYTALlp/clcm1P3nGlNnvt/4cZ86jhV4Eg4EX4gCPM35tPnPxs4mv8FnA/SFlqxZVmmeKJIz3wAtlCpeLOf4dyP4/X4Tq1lMZ43B/xn5xMWWJ7Ek15XQRCQTvQmnQtDm13DLO/8QlBz452pGJ1uFFgYcjH/2Z/te/NGObFzPNmn78EaO4jaceVpz+L3v/0t6zevx/S4mZnMkMpM4PX6wLExTJO02cCff/lXtDW3sTIKenGMttY2knmbpqYmBoeOs3TpMnKFAuGaZgSzEnvoCXBVIck6lmWRTqXJprO43G4KxSJK5ihJrY2kVI2R2IXkqcO2BPr7jxMMhhkaHKVQzBGJhChbFo4DmWwWQzeYnopjFQvkS2WiDQ1YdpliJk0insQfqCAQDBCfnqG+rp49e/edABthDuzvorWtA00zcESHbHo2L89yyqTSKdweD4ODQ/i8HgxdZ3JyAMMwCQYi/OGRZ+jt7cYwDCKRCLZjkUwm8Xq9uD1u4okZVq9egSiLTE1N0dN9hGWdSwkG/LzwwossXd5BIjGDrLmQxNlAe1kCabYaA/GZNL19x4jFYpRKFpqqkk6nmZ6J4ykNIckK/ss+zdDgYdymi44Vq8hkknh8LpqbGwhEIrj9Xkp2ifGxKaLhWlL5OKJsIasioiSjKw4tjUu4664P8U9fuIcPffxuli5bhSxrWLZNJpvDtgUURaVYKNPe0Y7NBBOjA9TEojiiyPd/fD8rVq7nxZdf5oGf/YQrtl/Bj+5/kHfceSvT0xN43H42briQbZdtJRL1Uej6w6xcqryILRduob6+llA0wOjQBLKaYmRwki/+072s37Ca66+7id7eATqXLePhhx/ijttvZWpyglDQz6v7dtHc2o7X5eZrX/0aF1x0IblCHl01kAQdj9fFTHyUUDCKx+XnqSef5PDh11ANiWO9PYyMjFIZq+XTn/oMzU2t3HX3XSST47gNGdN0s3PPHvyBEJYjUCqXCIYjKJqLimglFlB+9t8pHn0ZtXkDoiChKCrZfB5d1xCsHFBAUiuQRR1FMsiliygGiJJDsZhDEGz6e7tZunwldfVNTE9O4vf4KNlQzObw+nzYQCDox3R76B8YxusLk04n0FQVTTfweL0omkGxYCMrUCwWqaqswxesoPdYH7HKGJKigSTMhshbNpKi4gtHsS2Iz8QJhfx4PS4sW0USVcplh8rKGoaGRhkbHULTNTRVQ5wLmXWcE8WTHERHAFskPjbDwT3P0d4cRXFXsOGSKzEDUURBwhFm5ZXX6yUYDJ40/M33eJ4ZmXJKHp6rdX6+gXThfrKYLJ2vWM2f8/VC507xnCrkByCIRcxogO98+R6Kk920Lt1Md/dOVAlMPYzhBcXOY3jcWI6IZQuM9A2SzRepb1iK4Bjksnki/mXk7S6O9gzR2qkxOjJD54oq6mtXUy66ODzQTbQigFAqEnBHGRsp4zJBFh0mJrrQZYlEaoLa5lZiITdr1qzmIx/9IEePHOWyrZdzx203U8ol8LhDTA4eRJdmUETwGWXy+Sxub4DxsRFuvv4avF43Ab+LVCLOmlUrONpzkBXr15PNl1m3shNkLx/+8Id43/vew/IVSzFcKi6jgqWtS+k5fIz1m85HMWWefeJJ1q1bz9KVK8lmikxPpbjvm19m68UX8J1v/4jqygiPPvkkwYoIU+OTCJLF8NAIb/2TW7n26qsYHR0mX7AJhvwkkwlsS2B6chSPL4Q/WAG2g2oWcbtCuN0OsbDO2256F7ffeQPugI+Vq1fi0jR0oQLbCqNqVbQ0rsIWS3iDIQbHJvjQB+7i5huvYWJyBlkzSCTSWEUbQXEjqjLZTBJJnE0rCfhDNLc0UltbR8AfQ9FcKKZO//FxYpVVJFM5VN2FIkuUSgWilSFMjxfd7cLr8ePSXPzmkZe5dvu7kYVqli2/iM0XrcTt8yArKv/wj19k9epNdC7vIJWO43K5KRVBUQUy2TQbN22ko2M5A4ODrFy9DtUlc+mVl+MPR1EEH/HpYb7/vR+yZlMz6zdcTKgiQn19I5ruIpnJk0hkuOqaqxHlWXkla9Da0oTPbZBPx5mZnuTu99/O29/xVmTDxBsKY6oOxUIMj9nIRz90PTe+9XKcskJfz0GCAYu+o6/SsWobPUeHiFRWcNnlV2NbZRBEJqencZBJpw5zfGAAwQkg4KexaQ29PeN0HT7CqjVNTIwfQlBjPPLbxwiHdJavXcnLO/fgdZloikpFOMQrL3exatXF9PUM4zEqkajGF62nUJhmZcdqPvVXn+Gii9cRrNCxrByOXaZctAhU1ZIvzNbJSMcTYPsR0Xh13z7+5OZb6e3tp2ylSM7EcQSR3/7mRb5//1fY/cpu1qxdh6y7qKrdSDxr4w17UL0WRSdHIZlFlBW8/iATkymqYjGmJmeojPmZnkzw2t5eNmxcz4vPvsCqlfV84XP/yHf+/euUi2mWdTbRdfAQr3W9wp/ceBvRyhj5os3vf/ci521awb69L/LsM88SCAW4eOtbaIpVUNNah6BqzLWgPF2nOyWvRFFcNA1uLkT4pFyc56RaLP/09WgxvoU66Xwnzvz7zjVdcP4Y8/8XxdlispL4v57X/w/05sHrm+GZA69qy8ZFLBWvP/frJ1DbIMxVenQWHGe3wpwNvJ7Ngl4szvbFPHjwIDU1NbOzzftinw1sLaSzKTOvRyd/UOKpMU6u97/Qt1kUTyk9c57XuTFFUUSUhDPA6xmCZF4I8/wf++spTfMB8rm+7zei4uE/AA5K+5WnPUvHLlPXWEOpZOPzVIBY5OiRXlymzsjIcVSjmmNHernoylv4wTM9HBmdIuDEWRoVURUBSTfRNA+xmhoKxRKC6kNWZeyJfQiuWsQTebfdh44QiUYR7Sx28hielXfgCUawp7uQRIXegQlqamJIskhtbS1enwmODYLE8YEhJian0VQZXTeYnpoiFA4hul2zbXQMncf/8wlk1UW+kCGTypCIJ2lp66BcyqJqKvX1dZRKedLZBIbpRldnq/NaThmXe7bQk6YoDA8O4fN6UWSTQiGHKDoIgs3q1Wtoa2tD13V6eo5QX18/m9cni0SjFYyMDNI3MDCbB6zqZFMZEqk4wXCIUDiI49jYjoQoCAwNzLZGUSQBG4ldO/eRyaRobmmZjYawBVRFx6WWKR17CvXKLyIaHgqFSeLTM7iDAXRTxjBkHvrVg3ziL/+G2992G7ZlsXvHPhob2kEqIkoOMzPTSJJMKTOO3xOlrq6DJ557gXe+53ZsRETJoFQuI6kyhubFdmwUVSaZnEYQQCgr/N9Pfp7nd7zK297+fmyrRFtbKxs2bMCyS/zqF7/nsiu2EA77SKXybNp4IY1N1ZRKWdTh53Ec+It7fsVll17OX/7lJ7juuu04lorpzuH3VPL8s7tYv34tQ0Mj9PX1s3RFJ1ddfSlYErIkoOsy1dVhbFR279yFVbZo71yC5TjkMmUCgSCZbByHLLLo5/DBbrweF+vWLcdwq1RWVdLS3M43vvYdbrv17Vx7/Y1YYgqXIZGdzpArW7S2dJBMpdENF6IAiqxhGG5GRkYQJQFp+FVESWTKrMHvC1AolJAVhT8++TjZ1DR+rwtbcrDtHOnMFH6/TiaXRdNVBocGCFeEEAUbw3RjOxKFXB5NkSmUbcKBID3HjuL2enG7DI4e7aO+rhHbFhApUMhnUXUTUTXJW1DK5AmGPFhWCb8vTKEEtTVVJOPTOMqskpKemiCdKyBpJoJiINgObpdJOp3EsW0cR0cSZRRZRRRlnnjiKTZuWMP09DRen+9En+85GQXgoFoSgiORTaV56fn/pLrKT0mNEW1sRVQ1BKd4MpytXC7jOM5sYbgzFJ83No7Ov/ZGFvqF1+cD2jMMrmeRl2fzvJ4Y8TQeq6hSkA22rNzEi48+hGpGCAZkYtXVJFIOKFnSU4OY3mp0008mHyfoMkhmxplJJqitrWFo+AjBkE1yvBJZEdDEJrJ5G29QY8/uI/jDBitXb0Oyc4wM7aFQnqC+NQyWiePYDA0doipSiT8SQDBcjA4eJRD0Ut3kIRg0GB8fQpeyVIYVBKWCnv0v4DazZGfiJOLjmC4fkuHGKVvY5Ty79u7kq1/9Kh0dS3j+uRfYuH4l3nAERxJ49Nc/JVq1jJraarZdegG6IZFMTPOBD76fzMw4V2y/hOrmSkAnn87Q091NTX0dpYLDtksu40cPfJfJyVGuu/YWdr30IktXreYb993HpVu24Q1oHD7UxSf/4tMUCzke/u3DpNJFmpub0TUDQZCZnhrD7QtSKFpoisrQ0D4ETHS9SP/Rfdxw5S30Dffgj3hQNZ3+rgl+/4fvsGrDSkTFIpUbZ3hoFEUzsBwHq5xjZmqUaKwRze0hGKrAKYOgmkiSwMjIIO2tTWTSaXqOHMd0aTz/3Mt86Z6vIrtCRKorcLtDSIKFoLjRFBXLLlMopCmVcthoFIplnLKArhrYZpxoqArFUJjK9uL26ZQsC0SZQ4f7uWTbVYhSgbGxYcLhMIpioKgSk1PTeLx+0pkCLneAr37jPrZdtZXjw8exHJv0zHHy2VGuvux2ApEwsmYiIFIslunvHaIiXE11TZixsQlUQ+db3/o2t9x2G6KQ4ciBXfzyhw9S3xbmvI3rsMoiimmCDGQLFKVuvF6Lla3LKZQFynkfg70jNDdG8ZgeBFeMSLSGZDrO9EyS2rrZInyJVJrq2kZKSYv7v/8QV1x5LQMjvThShta2Jnx+DUXUCHubGctkSU5lWLdhKQPDg7S1VeFS6lF1GB05hJ1rZDK9i1iVQSI5xujIJL7oEkr5MZ5+9GlamloIxTQ87himFiCfFXjg/t/SsXorhhEmOZnj+/c9wNrz1zM4dJSVa9ro6tlHQ0sVX/7CAyzrXEr78gityxr47te/xYoVHWSLZcKxViLeLK/s+QMz4wfRLIWAWo3m8rL7ld1U1zTQPzDKD773HZZ2riIc9HHotV4aapZjGgKH9x8gGIQNqzdy/vZ3sPr885gp5DEClYTdNq/tO8Kx/gE+8vFPsmNXD5dvW09v327e/c73kUqXsEVxAwdeAAAgAElEQVQXYjaJv6YC2fSAs5hMWiDLFgGvC0Gj7dhnyLf5jpLF5OLrnV8IXBfmsM4f/1ydg2czJgqC8L/g9b9Gs6DxVEn/+WCEE8cbVO0S5ueBno1n9nrp6GyfV7lp/cnzp2jOc3pKqZjlgZO5SQvaCpwaW0RA4vRiGQIgngby5n+x53tNzxzz1LwIzizOmAfkotHoaV7ZxWLkF7PozLecv5FlaLEfxsnwXua/xzPza88lJA0RJFlGkiUEUcS2HQRRRJSk2UOQEEUJSZRPFXwST3h+BeckcD1z4bPWMoG5MU/Ne7b1nS1P61wNJoWuR0AQ0Jdcddp9NfX12M6JHF6xTNnS2bd7H0vaOnAkFccpsGn9Rqan4ux47iXQQjy2d5CDA5Msb4xQr6cxhCzpyRFMXUNUVBx3Nc74XhAEFDOEIEB1be1su5HEYeRgM6q/AVEUGZ8YRy8M4KloAkHCtgQkRcSxJSwrjygp+P0BYpEwijL7GXtdLo739ZKyHDTdhVUu09LeRkU0wmD/AC3NDbMVpx2BbCbDAz9+gCUdy3ju2edpb+ugVCgiqiqyqvKff/gDoiih6Tp+f5Adu/bQ2NyMKAkkUwnAIRB04wsEKNkOuUIRRZKR7DSm4WJiIoEkSnhdJrqmIakiusvA7w/Rc3SAhpoogpAjV4DHH/ktzaW9+KL1KP4YtiTg2Db19XU0N7dQLhcQRAnLsXCwKR95DHXZrbg7twMihhmiZAv4vC5EW8HUZP758/dxx003Y2g5XC6dqrpmHC2DLrlw7CLHeo5SXVlDamICX7CabKHMXe+8lZGpMUzTRKTETdffwPqV6whVRLDtApIkoUheNF2j5Ij88z9/mX+7516OHOwmWutG0b3cd993WNG+nLe990aOdu8m7PMgiW40VZ8Nty+XiK2/nb/4yh/413/7ImXbZvu12ynbRV565kmOHBwjlylxtHc/V954Lbl0HsWW8ftELKbJpS1GJsfx+v2Ilkh8aoqq6grWrF3K9MQU0+PjZIsKulfAcSzIOcimQSAWwPRUEgzqWKUZXGY1Rcuho6OOUtZC85TAFtFVL6+9ehDBgReff4E169aiqvKJXPYytl3Adoq4XCoM7sO2bXydl5DPF7AcAUWR6WhvxxsIULDA5w6Qzxdnq6SqGpIkUygUCQZDfO97/0GsqhpVDjA9keVTn/orLtt+MS63yXD/cRobmpF1HY/XYHpkHE1SmJkaJpvK4jFNhgePEwp6KRcy5JLTSKJJqSwwPNaPpukgiMiqiYCMJCqomsFMfAyPW8NUVSzHomyVMUwPgqwjqjA2OYLLayDIDm1LWrAFCRsRTTdxnNn9ZVb+CjiOAJJFGQdB9RKO1dLUuoymZZ2AgyiAI8wWVHMQ4MT+Ikkyp4obnl6gaTH5vrgsP1O5mr9XLTwWkizLZ8jTs6WsnFT0Tquqf2r/BwHEPKqlIqoqikfB783g8YQZGc5hyAVG+w6Tnsnz9IvPUVXVSnZmEl8gjICXimCUUmGM/mP7aWraxMTEYUbH9hF0B1m/qZNc3qaxJcjYwDA1DW4mRoaoq2oml5vNcysUSvg8GvHEBOGaJeTTHgqZQ+TTWeqqahgYHsetwuZ1ddTWVqHqQcrFcRTDTbSqlWwuhRlcQjo/w/hwlpqaKlRPkuVtyzl/25WkUgnWLamjom4Fe3c8gUvKsfa8S2lrUVi+op1swcZUfbz/vR/g7z73ZVatP5+Wpe2MTw7i9/lwe7288PIr3PbWO1nSuZY//8TdfPbTf8PdH/g0PSNHEASFZcuWsfm8TWiGiihEyWWyxJNjZByBVedtYd36leTLWSzAG6ggWhMDRcQ0Q9jFNFV1LSDayLIHj7+W6pYGNE2jsbEFSdFwhV101jdTEJJISg2ibOANBJEVhWIuRUUghoCJqKkIFMnnMpQFGZecQ1HdFJw8iiJSFWmhqqqGna/sp2RlGeqdYCKdZ+2KtWgKZOwCvpCJJLrQlSJer4rLiILskE9P89Izj9NYU0U4YJDPF1BUjVQqh1CSkUURt1tnxZpOJMXG0GD/7p343W7KlkV6rIeKYBW6GaG3q4uQR2XLtkuxyvD4I0+zqqOCcPUSjh2dpLa+dtZ4JKlYTp6B/mN0tC0hMZNG9WjopkQxm8Yp2jhlmX0v/Jr2lZuxKNPR3sJvHvgdn/vkR4j6cjzzh4dpXbGBWHU705NpDNXF++66i1VrO9i99yjbrroZI+zFythkJ/vAyWEEWplJx/F7I2QSGTSphBJwc9lV70Y0HYJhg/07+zhyuJ/61nZKokNPXy91tUvoXLackaljaJpONpHjxR0vEIzUo/qqCDd5kcpFJqeGqY40ITpFxsdeobp6Baq7gWBEpbGhkumsiWyXSaYGWbF2NTdefilvv+V2+gfH2LjlIgIhF88+9RpN9U00NzVz/3d/SUVVhJaWOlyuEJorzx03beez//g9dEugtb2O3uNH6Ts+zfnnX4usqmTyEyRSk7Q0N9F9uJe62haWLWmi4BQpSjrTySJvufkGLtt+CZu2bkZXYxiGg+HKImSzNFe30LX/FX7x61186av/wJatl3Lt1Tez77WnMQy48+2388vfPMj2629izzNP0TvaRz5vY2c9fONfPs/SziV4Al4sywFHxrHtE8WZTsZinnHML9bpOCcCjR3nVEGnBe1yFpOfIqcKQM35uOacKyd1eGYL382thwVYQRAEsE/N65xo3XeugHju///Nef1v0KkP+7+ST3nuHtk58Lp4zuvCtZxJixUgOte5Fzv/ermpp80rSK97/WxA84wfw4JqaHO0WJuexbyzC8OUz5Zf+3qf08nzgnMidE46ccgnwbkkSSiKcrrX9cQ9b0wLvA2vg9EXGg7e7LOdo8LhRxAAvfPqM/LA5o+pGwZt7a3ksnls2+LJR58kncnx0o6XeOst1/OpT36MhoZ2jgxMsGcki129krplG/EHw2Qn+lGT/cjpccpqDOIHSTsBNF1DECysYhJn5hBK81W8euAoLrcbUSgjp3ooSBVks3lMl4tyucQrr+yloqIaWREpFjMokkQinsTr9ZNIJogF/fhq61FVDduxGR2bwDRNvF43x/t7qa6uIpvL4/NGCAWjpFMZLrhwM6IAA4NDuFwGxUIBy7LpXNKBbdlIgohtWRi6TjKVJJfNEggGKZYsZNXAdkBTNWamZxgZ6kOUldmiPfk8HrebqalpKiIRXKaHQwcO0rliGV3dXTQ01bNnzx42N+kIThnSo9hmFThgaD5279pJTU0MKCE6MuVSGWdsL47mQ9321zh2HigzPDxIpKKSIz0H8fvCiGKZ7VdeyW9+/Shbt52H1+dDVd0IosXURByf343P58MwXHzorr+gdUk1+fI4saooNRE/xXwGw/By6x13EqqMUS6lkGSJQj7Pb377a+qj1UyMjvPnn/w4slvClvPYpQJeX5glrZ3YRYsffOcHuE2TWHUM1ePFNHwcOLwfRZcRJInrbriBkmAhCSZ3v/fDXH3ZtWQosnbdekaGhljZuZyf/fx3/PbXv+PlHS9y/fVXULZzFPMOkaoIouiQTSUIV1SRL+Qplgr4fEFUVSdYoWFbWUxdY2x4AgkBt6mCVaCc7SdbyKIbfmxspqeGMTQXut+Prqr88fE/0t65FE9FkNqmWgxdJhMfw6KEqspMTk3h8wYRRY1y70tIkkzc3YzHHcKl28iCRSGbJjk9idflQlYMcCCbySKJErbtYBgmoiixpGMJsVgV+VwZVVG4/PJLKJXzyJKAyz3bI7hcLlJIlSiVJL797R9w9TVvwSELCPzud4/R0NiBIrtJJWcoWmVkVSYUiaCpOpIkYZompVKJvXv3UhGuIBqJks5ksazZFi+FQgHHmTVuyopMMBhEkiREUURVVWRZIh6fwev1cFL8CafymcZHhvB4/Ng42HaJysoIpQWhaW82Kun/xz51NqPe/Hvm7wELc1wXq8UwP1924TVLEFBFGSmf4Z8+8QEmMiWWrdiM5q9H9VVS17oaR3RzwbZrcPnrEV0hzEgj+aJF78FXKCdG6Tt8iJxjMjGRR5QlIrUa2RmFUEUdBw91c/i1fpraluJ1+znW082+/QdYtnIV3//6z3GbQbyRIFVNK8nnk3z2M1/l6qvexU9+9jMuWB6g+8BBvGYlIxOTFO0UE0NH8Hn8FFIFnntsJ48/9RoXXXgBkGHg+CBYGoKY59jxbkIhFZdZZHrqCIbs4+GHnqahNsL02DGO9vSgiiKpmVFWL23imacfQaJIyOelqqKSf/67L7NmQz3LljVw5RU38uH3/ynvfvft/OiB+7nmuu2IUpy2Ja2IioDp8mC4XCSdHPFElsaadiKVOtGojOJoOHYBXVUoF0somopt68iKg+SAXS5xtPsIsigyPjqM2zShLDMyMEJFyI9dyCAGKpA9ARBEHCuN5gjIgoOhSSiyPLuPKxLT48NoTgGPVGZqbATJdnBKM3Tvf43xwTFe2vEsW7ZsQtdLLO9op7N9OQFfnkx2gJA7Rn/3DqwiJLIJSsUC2XSJfHIYj2ni8VWxfPVFbF7RRjGZ45cP/ITGyiiWMkR8MkFupkzXvhfp2f8kpjeC6JTw+1yMjI8gZDPseHkHsWCE737rm+iKwp7d/0lzUyPkLUb7upFMCIdMhga6SWUm+fl//IrfPfQLIgGToN/gfe99Oxs3rMHURYr5adraqynmBulsqcNSNaKV9SRnBhgamWTbVVcQrq1kyxU3U19lMtB3GEoFBnuPc91b3sXhw93ccce7ufraq9h+zaXcePN7ufyyyxDEMsmZFKpQIpWYxuX3YPgCTEwMgyiiaSbpRI6aWA2tne0EghUcPdBFMZ5iJldE1wwqKtwMHp/A6w3g80col2d7hgcCAXKlNFWxleTzXmK1bvy+SkTJJpcdp6WxCQGDUrFAIt1FsELHVGq4/m13Mjw+Sn1jCFGZpDidJjMp8ZMf/pRLL1mHQAqLEN/896/j9UEgGCGgxrj6pssY7nuBxNQ4S1dtJZ936Fy6jHhyhnwxTchsoVQoIokWbpeMUMrR032Ehpp6hGKOLeetZbx/H5Pjg/z5xz/G5VdewOTgCC8+/wgun8Y77/o/jPYN4fcqtDQ0UhWJcejALloaW3jpxeexrQJLO5vp7U5z0aWdtDZtwJEGqfUZTM9M0tC2lHxRxJEUBMc6QzdfGCY8X8dcFJwu0K3L5fLJAq6nRlgYRXhqvJPGwDN4FpHDzgLjIefudJmj/xHg9c24qc+Fzgw5WsxCfIr3LKO84bhzNBc2PB+8nrmGs1ugF851es7smfR6n9f8L9xCr+zCtb0Rxl3sR7T4OIt7Zc9mHVp4fv77md+UebHCRwv70M6/NvtigRfYORXSOz+09zSPKTYLPdlnvPd5+cIAgnjqOb1eDut/53tdOPwIOA5ax/bT1rLwc7HtMjYgyjK5TI6lzSvI5MqsXn8+3/7mf7B6xRpy2TTBijBrVq/maG8vv/zDs2y8+jaOE6H+kndSdCTSE8O4VTeaUETQXDg2FCZeQw62kXCqeXnXbtra29HcQZyhpxmdEYhW1VEul1EUiVA4wsDAED6va7bojjAbEmU7Nh6PB3JpyqabdCbP4a5u2ts7kCWJYiFHJBQiEY8zOjaGx+NiamoMt1tH1QRUTZz11lolZqanaG5pQVVVUqkUggCJeJxAwIfH48Uf9GMYLhRNRZQVRMEhn83Q1dXF2pVrMUwfsmLy2KNPIks6gaCHdDpHLltganISf8BL//FhKiujKLkRXOVpQnc+RH5kP2JqgGdfOUZ8OsXBQ6/R3tFCqVhAkjScYhKr/zmMq++hJLmQxNl8dZfpI5Us4fWZCI5BKjXJLx78JRdf8haqakNkC3k0xcX42HE++MGPs2XL+bhcLkoli4u3biObmSaXS1Pf0IIi22iaiSBoSKqATZGRoQFMw0uhUGTZsqX85pe/5oILL2QmGSdXLCCKApGQjiRDoZBgeqqPTRu3MTU5QTAUpuzI3PNP97Bh41oaGmpwGS5wBDL5HM88+Rwf/fBHyOczROqqERyHWDTGl/7lK2zauJmhwSG++vUv8+xzT9NzqIvjg2PUNzcyMTGBSzewBAXDpePgkC9YaIaJpJToP3IEl26SzRZ5+snnWbt2JcV8mcTMMZAUdD2E4XKRScUZ7B+lurGR5OQI9339q/gCIRpbW5BEUFWZdCqOpChkszm8Xh+yrFIoFHEGd1EoFPF2bkUUFaxyAkkSGR+fwOVy4/MFKZZnrd2KoiIIIrlcnkwmiyTNhrqLwmzl3mIpz9BwL9FYBZPjU1iCQD5fYGYqTn//MD/68YMcHxji8T/+kc3nrUMQZKamUqiam2PH+ulY0kasKgaiSNkGWRIplUokk0k8Hg+RSASrXCaTyWHbDqZLP1ngAwTGxyeQZAnDME6TLYZhsGfPHmpra087r6oqY2Nj9B85QlNLC5bj4PW5cWybklU+Tb7O1Vc4zeIvnBmatpgsW8gzPwztDBnrnFnj4WwhxwvzYxdbjyRJlMtn9lOcP+6ckdKxBBwLxHKBZx7/TyoaI1Q3NuAJVyBqMpZTxMlP4ApKiLKEpjsouUl++s0vctmlFyH76yhoEYKGm3//xndYsWw9zW31/PpnP6W6rgbkIqbLS7gyRHxmmFxuGm/AgyCpPPLwb3G5VVauX4bhiZDLDlIqSHi8MqvW1NHVPczXvv0AN935QYqSSqSugcFDE/QeP0pbWy2F3CiDEzkK+RKJ1CgXbdmMpniYmkzSWN+CY0kUCw6aUuRb3/wZDz30KI/87qdcf82VTMfjVFXGSCUncIppNp9/HooK+Vye+HSK889bj2kW6Oo+SKkkEXDptLXVsXbjefzm17/mkm0bERAo5fOzYGzXTlxqipAqMzPUy/69TzA12oNuRshmE3g9HqzybF/W5555BbdZpPdQD1OTUziWBbaNrsokZqaIT8YpFrIM9B1lsLeXA6+8ilcOIubjjB05SDpTIJWYIpmYZGBgkHKpxMz0OOVcHkMWmRwbYHB4mHQ8ScAtMTo8BI6GpgpEYwES8SE0UUEWZUIVBqVSBooisQqd8fEEmtvAsbOUswWKuQSGaRAKR4nEqllz3nLMQID6ljrcQR2XUaKcFwj7QlT4DZKJYULRFezbvQevO8BMIk3Al8eycsRnRqmujaAa4HFL+LwB+rr7iAZ1jh/pYbKvH5+q8tRjjzI+GufCC9axZesGdu96ife+551Mjg5SX1tFIZ8iV5jGMAQO7T2CtzJAOlXgzz78CT7xF59j9fqNqLqJYAd46KffZXRwiE998lMsW7mJ3p5xUpk4sVgVq9esxh908Y53fJiHHvo5NXVRhgfHmRkvkc6W2Luvi5aWlYyPD1G2C/h9EeySgCoXufvj72HFymVEIkES8UHCVXVMT8apqHCTyxRxubwUS+D3hbEsi4DPiyCJyJKPr937bWrrI3jdPvqPHQWnBCjksiUcK48l5shl01gFHUudJJ9PYmhechmbd7z7g2QKBp/9h88zkZ0mUteIXXJx2bZLiNUIvOedH6WpppFoQ4xiehhDc+PyVDI9McU9X/wX2lubKOTS3POFf2Pbts3Eoh5KhQzHju7G4zOAApnkILqc5cBre7l4y2Z+/uCDXP2Wi/FoXtxumV179vDTnz1CdirOTTdeyuZNG6iMhCnkJ+k62MXx/uNs3XoBEyN9PPDgr6hr0ojPpPH4ckwPDpPIFKiqbUQ13ThWCcc5XaefcwCdTouHBJ+87wzMuYj+vSBaRZg3xyld9nSM4Czm3HMW6P/iuQHX+cf/iLDhc01CPnc6d8Dw5sDr4pyLgdc5Ojev6png7myfyetdg7MD30UB1iJx9/8dej1L+rnyzre4LwzDfSOgOPtigdLFvHzXE8fc2KfGOQfjiXMKXM8KktND6N7MezxXKhx+BADtRNjw2cYWHIeyBLYt4nf5+d43/pbLrr0UM+ShrrYG0XaoqQ7w8B8eJx3PEDS9DB/v58knfk9bSx3pdJpY6xr+9rsPs3zNCszkMcSyjU0OMseh6Sq8gQhLli1H19VZoDa6i8msG83w4PHO5vNpqkEw6EGWZBRFQxBFdM0kmUyimzpiuUjOskFWsYVZ75FVLpLPponPTBII+PD5/Bw91kskEqOqqpZX9uzD7fIhyCKaLGLoGntefZXKqmqm4zMEw0FCFQFkVSadSiNJCpIsUyrbiILD1OgQqfg0yzqXMjU9RsEqYHoMli7tpKuri1g0zIEDXUTCEXKZDPH4BJ0dqxjo76eCYdJVlyJHO/E0rCS78z9oPf9WJBzWr1+NrmmzFkpJgmQ/ZdUHTdfh0U0QZWzH4vnndjIymKGpuY7tl9/Mtku2cPHWi3nyqT3sfe0lmpubUUQNhzw33HgrgmBhGAaZdJbh0f1QMHnuyVfZculWEoUcNiq2JaGpJQb7X6WysoVUssS77nwfb3vb7YQrwwyOjLBv135+8cCvGRuYYWRwGttWsMsFaipDZJFob23hG1/5NhdsuoR77/kiKzo7KGRSHP/VpzFmXuPAqElHeweiXkLQC5QyAooiYrpdPPPcTqojAbZeciGOLKCKOo8//BS3vO3t3Pu1+9i8+QJK+TK2KKEbGrqhE0+kEQSJUiFPbTTK5Pg40ZpqPN5KHFHmox/7FI0NtXQf6aaqsgNFM5menGBJ2ypsp0DUFHnLNZdTVV2DruqoijqbU+cNoIo6LtONbduMT4wSDHmxeveQy+Ux2zfjOCWSuRSiqqOZXuLJArJmntigRfL5ApOTUxw71suPf/wA27ZdimXZpFN5+vv7iMYCTM9MEA4HeeaPL7Ny7SZ++tNfsuO5nVx59ZUsW7aCy664nGvecgWUZLKZEg/85Ke8vPNl3ve+9zI+MYHp0VA1FUHUsMvF02SRIAiUixa67sbj8ZJMTZIvlDEMA0EQMU0XinoqgsRxZltyfec73+Laa69hLuxsrmCTIAgoikJNOIpl29iSdSJS5HTlYn4xpsVA5By9kad04f1nu+dsgHXhPafawZ1dpi6UvYsZSOf+yraELQmgm1x0zbXUNbQRq2qh7EjIiOzdsZvR1x7nqV/dz0RPDwdf28Vo/xHiE90kxo5guDzUVNfR9cojXHvdGgKeEDte2kF8PAeYPP7082C5CUaiREJh3EaAv/nMV7CtCHe+71YcS0NT/bzjtk+yvL2BJa1LKBaOUC7F8emrae9cQjLXT2UwgBUvIKgy7csbKRSz6KpBy/IQH/vQ57jm6hsQpCTBgB+v38X46DCiICIpLu772g/50w99nOtuvpbrrr0MARnD7SWRTBKJ+jEMiX2vdSFIDpKsoRledHmKctkhGKpCdynEfC5KVh7ZCPLSs3s51nWA5e1LGBscZKjvKN+490tcdeV2BLJMJ0eI1HUQirVjKjLH+4+hSBLDA4MUk+NE/Y3ks92kR6dRXT4OHzpMLBYhFPIRj08TqXBhl3K4FAWnWMbrLqOIQSanu8jnUwz2DiNLDlWVFSRTSUyXi1I+SSBQgSPIHBvop66mFhGRydFj1Dd3oBkVuHWVcjmHz6uiSRpH+w/T2LoCWfWTz44xNNxHrLaTaCyA7mT418/8NWs2b2H/oX14PRKVUQ8ziTQVoTAeQ6VcSKCVTQaOH8MfVOkd6qehZSmIDrGIic+v4A2qCLJGtKKKoD9CWdIxvBV4TJmpeAKP20s+N0nL0jX84hcPsWL1WjpWrKT78D4uuXQzPf1HaO1oJ50vUe3TsUsO8UQSQ1eJ5y2WN29G8RbZu3MX192wnUhVNWMzfRTSg+x84nF+9MCz9Pb00da+gtvf9WE62+sJhFVGRsZZv2Ez3d3d5FMltl56Of6KALHqJp57bjfTMxNs27aZQjFLyF+HJyBw7OgI2BJeX4a3XHcnNQ3LmU4VqWlqwu2VCIfCCEIOXXVTshUSyRy5TJ5Xdu+mrqaS8zdewl3vvQXRdpganyGRG6Eq3MC//uN97N67k7ZljfzrF/6ZG296L+lMlv/7V59gWUsbdh5CFRXImsS2TZt49JGf0NiqomsOzz91kJbmlaiSyI7dD/LBP/0bvGEdxVVJyAjQ1NKJLsPAsSP4TBceXSUWChOtFNC0Ipn0DD3dR/CFg3h9UR555ClGB/uYGBvijrvu5vHfP8x73v0OfCE4NjBCdbSBl57dzTVXb+Hzf/M5VC1FPhcnk5pi+Yo6EhNxkukCVtGmoSrEBRdfy6GDR+lobeH+bz3O/kPP8eSzO3j/h/6KT33iz1DIUxbkc6iJcqZsO433xJ85HX9Rvnl+DVEUF4dCCxx3wmIYZaFz77+gyv6PAK9vjhbmQc5tXnMPUjiDh3nN0+eOhVaL2Yd05vXFPF2n+GZJqmhArlmKoLkXmevsa1jIc2o+G8c5vWLu7Ht9/VCrNwK2Z4TsOq/v3Z3f9mWxMN6FlqRzodebb+G4C70AZ+M5zUAgLEggn8tjPZnP6pzgmb021/d1sdDn+V7gOX5BPNOIsdDitJgytZD/XKINCodnc161ju2vy4cgzFYbFRzKTokVra3EZ5K4VB3dJdG6qomXn9nL1i1b8Pnc/O6xx/jcF/6atrYO/vjoH9EEAdnKMdjbTf9MgVUrGyiPdyE7Gk6wnoISxmOYzExOYro8FId2QDlPuH4FhqEQT07PeoUEAfFEpU/bsWeFLMx6EoslSrk8pbIDmkoo6GZqcgJF0fFXVDKdSJHJZHHpGtHaegxTR5ZgcjpOKBJDcnLYgKIbVNfW4SARCvgR7TKiIHDgwAES09Pomo6uaYyPTyAiUCzahMIxUuksqXQGn8+HVSpzpPsoiXiGjqXtmKZKX38fLW3tqKqE22fQc+Q4MXcas30L/XGBoMtH6fCvKAZacBsmouQgSDalchFJkJFlGWumj3f83eO0tqynJhzEEiwq6300NzQBJW67/SYCwRCyplIREti0aR3xZMCiccIAACAASURBVALD70J3e+k/NsI37v0e563fRNDnIeivZ9m6i3jn3X9KKGCAIuLSJGYm+kmliwQirRStPKZL4YYbrp71sm9ch8vlYceOPVx/w80kU2lcPi/LVnSg6Cq5kkOkIsy+fa+ydu16vnrvvVx5xVZaWhqpqa0me+BnVPhUHj/i4cLNGyiXR9H1ALruRhDLjI4Nsv2qy2ltbaG6porEzAzFUpGtl1/C6NgQP3ngP7j5xusIV8z2xZVEkUIhh99vYFkZfN4AlpWm6JSRXAF+94tfcv5Fa7n6yj8hGIK2JS24vS7KJXji6Rdo6mgiMTXA337+KyxZ2YbfH0KQdByniKqKyIg45SQT40PglHCbOpIAzsB+JEWkXNmOKGuUSg4uVxBZViimRvDpFpYoI4kS05N5ojE/gbCf+ppqXIqCZNu8964P8K53votMOovbdFPIF6lpbESRZdatW0dLextu1eT+73+fJe2tSIJE0ZZ475/ezb1f/zpHjx6loaGe2uYKSqW5BKQ8hihSLBQQZZne4wMYHh+65CBgkc/n0TUPXleQmckEpUIZu2wjiAqZVI5X9+2nurIWXTPo6Ow8EUZ8KoJHEIST7XMmkwk8fj+iIGNbnPDmnjqcecXsFgOUC+X7wtdn2xMW8i88v/Dc2e49G/BduI8t3Avmk+M4OEIZAQuYDd3TTS82wmyvRUEgVlXN73/0c3RvDdu2X4dm+nBVVrBk9aUsXX8NO1/ZzdBID0cPdlFWVJZtPI+pjMrt7/sk27bfSNuSZdz90Q/QP3gMRzLRPXUc7pnggq1XYIsOVY0tlJBZu2kFX/7SD+lcWkNbezuOEqGmZSWTqQl0vYRliwyPp9FMidHjr5LPxlE9VeSnbZ545DHCHh9tdZUM9e2npraFsYEDpJI9+AJ+fv7z33DeeZ3cces7+OjHPoLqj3DRhVdxzZU387GP/hm33PYn7Nh1mHv+/ovcctPljE7tw+Vzc/m2t3Ln268Eq8BAX4loXRxTquWSq9qprVuFrehEamOEI5WsX11FJBZkcqqI212PL+AinRmhkIuzZGkzlmPiC/tI5yxkY4py0Uc86ZDNjLFi9Tq8EY1cNokhRBHlHJqvgql4Ck12mJksEIpqvPjcIVavWEewop2ZxGFCPh2vux6MGfq6ZyjkZgj4dbwuNyNDwwz3HUJTdYo5CY/biy069Bx7kYBfxyoX8MXqyc1M89orO2le2knI8JDOFRAElfGBITpbqrENFx1tDYwODXJ4fxcP/OBB1iydzbc/PthPtH4Jv334CfbsOcjFF22hr6cLTRgn5HeTTqfo6TpGY+MFvLrvQTJTXTTVd2I7KUzDj1cLo6tFFDWO4nNz0SUXk8ooiFKcLesvJlcco6q6AfBgiyUOHTjAM8+9RFVNLaFICFlx0XP0WQqTSe679wHWLFlJOv4ycjGB191ITUeI626+jgu3XsX5W5egyyqf/ft/o74mQluDj1898hRPv3CE8zY1kszEUQwfZUGlvTFGR2s1KUfHr+scH3iUhsb1uHxBNBcIdpCiAulcCq/fC5KGYAsMjxxHV4O8+Pxeahua0Mw0oZDOyuUbkGWHW++4haJVpKm1mea2Vfz4/t/Q1NrGig1L2HzRejRDZtMFl+P2uDANP5W1jUyMFmjpDCCUqxkc7kPxhbn+5msI+sPIaphgRR0T072EayvZeN5beW3/Ma6/4V3ccsO1/PJXP6Yi4mV48hiJVIqXd+xm+7UXo7uLqIhE66ox5UqGj/WCy49X8VKM72XteatZs/FGXHoz3Yd/SmfrUtzmWiaGutFUkd7eYb72rd+za8/D3P2Rv+Xmt74fl6kiWxnyWKxZtZy6mhiKLPDLh3/IbTd9kh37f8FjD89w/R2X8bvf76RsWdRWRfm3f/k+LQ0hApWN2HIOyRFZLO/McWxEUTih+5/KgT0pA08c4gmQ6tjOibzVE9mpzgkfy4njbIGVJ2N65uTmIpyCKM6eF870+M6XrfOr0y+k/wWv50BvBBbOxWzw3/GSCZoLQXOd0zznPOZZNnlBEPjBD37Ixg2b+cH9P+TDH/7gmxrztE2fswPdsyknZ1sjvH5BpbPdczae+Ws9GzBc+H5mX59ay7l69F2m7/+x995hclTX2u+vqrqrc+6enIPCKOeEhMgCk0TOIpic4fhggsFEh4MxyWBjjA0SWSZJZBASklDOWZqcp2emc+6uqvuHJJDESOBwvnPuvd96nv10V9WO1V1vrb3etdfmkUceY/r0o6ioKD+oH0diCv7RcQ1U7wknzOKaq69DQ+Poo2cclO/Um5/i5t+9P+C1gWT/eE1mC0898xzDR4ykpameZCzA6HGTqaos4735b3LuObN5/PEnWLd+I9u372LFN6tobm3EZDIz69RTkYtHY/YVIpp8iNEQccmKIOpQNQGj2Uim/j1EexUGsx32gadOr0dVNVKp5N59J9Npstkssl5HOBTCareSy2SQNIWeWAqdXo/JbMZkMiKg4nY5UVWNxuYW7C4XRlkmm0nh83mQDTr6+/pwu71kFRVR0pNJp7nl8be57KHXae0Jc+np0xE0iUw2i06vw2IxYTZb967dFUWam1tweRxks1kCwSC1gwbj7+2nrKyYUChIYUEhNpuN6Tf+iftf/IxJo4cx2NJFyjcRa8kI2hobMLR+jLl0PJKkIgh8u73UvLlv0d3tp8LQQ8h3HGeddx7+vg3oTFasZi/XXfEgkXgnJpOZvLw8ent7EXQGRJ1MNpfDbNCxc/sWCvLLOHnWybzwpz8SDgd46umn+GLxV/jy3NgsIsl0Gp0okstkcTjd5BSNdLIfu8VEqC+ExeAgr6iIVCrN8KFDcdjMQJrlK5czefIkli5dTl3dMBQlhyRKGGUToghTj56I2W4hmUnjjm8BQSBv/CVMmzKZm26+mpwq8c2yteTl+TAaTfT3RbCaTZhMJnbs2EFFRQWfffYZ02ccgyBK5OUXYDAY2V3fSENDA748L6qaRZYNCOjIpUJEQkFcNjuD6sYSigSQNIHOlg2kchLt7T14PAUMGjwUSRIxmRxMmXwiHp+XbE4imUwgGyQ0NNKpDNFYnLz8IlRNJJ1RiMVTyCYHWVs+tsJKREnGYjShqiqZbAZBzdHd1YMmyEQiUZwOD4gJrGYHRcUl5DI52js6GDd1KvlF+RjNBjRRw+60I+uNKIpKNpsjnU7h9Xjw5nnp7e+lrLwMDZXzzz8HhBxjxo4kGg3i8joRBZlAIIjJJJNTVZD2rrH12F0o6Sx6g55oLEY2l0OURHr8PaQzKXx5XowmA4qmks1msFjMWK0WMtkMoXAQq9UCaPviC3yHQblcDofDgaZpZDKZASd1R3rHHA63fkj+lffokeo4lHH9MV45330//HtJVfca24qrhjJs8nQsBWU4SioxGd34vFWIko2a2qGUVw2huGwkk6afRGNrgCnTZ5GIZ/jptVdx2pmnYjAZKK2oxOPNQwVOmHUi5VVlBPp7iCeSJFNpmpqauffnd9HcuJWCAjeRSJKiQh3R/hTHzbiSW2+9A3RBdIKJyvJyJNHGhRfehM4oc8KJP8FgsmCyGugPBNBUkUwqR15xGZJcwKxZ56HXSYwbNQ2ULB3+NkRBYOWK5WzctJpZs47B7bVy9NFT6Pa3MWrsMNpa+rhiztU43AZsdgt2ezk5LYXXXUFb6xbC/UGqqioIhvtIp1QMeh0GyUUsFsVql+nr7efWW/6T2WeciV6WCYUS5NQYwUAfqhamsbGBQYPKKa6tQMqJbFi5nECgD4unEKvRiM3uJhyMsm7NekaMGUNay1FVNZxMJkl90zIsJgeCKBBKdKPkjNhlB9193ZSUVaKIBtKqgNFmo6auDoPTh8HhIZfMYDaZCPTFKS8ehtFlJJdN09fTjaAqpJNBwvEIFruJdDKEw6bH7CwmGVNIxUx0tqZYtOQzTj5lEr1+P8OGj0eSLfT3xXjyieeZMuVYVq7aTGmFD6szjw8WfsrUaTPZvq2DYUPKcNtc5DQjiBL+ngBPPP405517Dql0GL1iwKjPku8rwGCw4rAaaW7bSSSSZu3aLYwYXkdRvptnn3mW00//CaAg6t1kEwZee3UhexqbGTXhJLZs20JpaQ1oJkS9jmRUIR5JkkxGMOjN7Nzdxejhw0jE09QOOYp33vuS2afPoD8Q4bHHfs3Js07BIusRhRyyzU3Dzm0k4j04bRUMHzaCk088jnx3IVlVj6wzEQqGEQWRztZu8nxeHHYrep1INJ6ipNRLb08/LU2d2J0GTGY7ggg6nZ50OsXguqF48/Lx5ReQU0VKSqsJ9vcRjcZBk9iwYQuDa8sQ9XFKimpIpwL09vXgthnIpaKk0ymKigvZvXUnb735JhPGj2H9qpXIZiNurxtEkRtv/g+uvuIWBg8ezLHHTWH1mm+orh5MJhVCbzJz3fX3MO3oE/AV2SnwOEnEO3Dn52EyO4in24gFc0hmAcmaRzrcSDLhx+kxEIh0cu9/3sVbb8znqKlTyKXC+NxWHnjsb8w64XRWL/uGU044jsoRPq688PcYbVuYOHoaQ6pNVJWUMueSc1GVGLXVg1i+dAmTZhwHuiyiJn1LSB1Kkh2MX4f3vjwsVv4I+P1elgHK/BDBMpDx8FD5Zyav/24f3P/VcuDE5Z8t/0Mv3B+TZ3++l1+ey8MPP8qSJV//U/0ZSH7MpPDAPhzIRP7QGqMD8xwpWNKBzO5Aa1EPnWge7vc4sI3DtacoymEfnIP2wTqEmR3IAn+kvhz6ux4aUe3A+g/cO/aflf1j/f5C/R+WQ3+rge7DfsnIRu564CE0QaKkuJCyggKchU6279nKiScdSzoZ4bY772HGjBPJzy/nqp/eRF8wRm8gis9bxOqVG9jYZSLom0hcsOKRchgsJlo728n2bUdQc2h6B6FgEEXVkHR6VEVFFKCltRVV2cu42qxWVEVBUbIkE3EkkwmToKLX6YnHUnu35ZAEAv4ONm1Yh9PlYv3GbRj1Br5ZvpxgIEAw2IdeL1BSUs7y5Sswyoa9kR/NJvYrpZlMBlEn4ysoQi8byGQypJJJuv09IIogClTV1uD2enH78igtr0TRNIaNHEIqnaagqAgVWLJ0Geq+/8qmjRvQKylS1nKcDhe1Q4ZjkA3Ikkh/fw979tQjoMNoMHPF5Vcx5ajjQTJw/XUXkVPD2GxFiKJIZ0cDL/75vxg9aiLjxk4iGAxiMBgwO/KQTXbcbi+iBmNHjsDpsrNr1y6efeY5LGYHTz39e3JqHKtdYueurZh1BkRBT2tnL9fecDMjR42kunYMFTUjuOn2O1n05Vfs2r6TPz/3R0xGDdmQYviIUq6/4Qpk2cisWaeQTifZtWsPHo8Hk1lPTU0FgknEke9GNMkkMhpPL9jG+ZedRSATpmTQWCZMmcFb77zNVVddi9FoxenwsGjRYj7++FPa2jo48cRZjB8/EVGvw+sr5TdPPMn044/jpNNO5sxzz2HqjGO4576Hqa9vprGxiVAkjttuI9bTRiKbxGhxEku04bDa8DjLsVpcLF+xjGuuv4ox40ZRWlVC3dgyxk8dzzU3XcWnn3+GKIr09fWxY8cOkikFVdMh6UzUN7SSSquI+UPBV8e2rbsRBIF4KIGmKMiyDpPVRXnlUKLBEMloBIMk0NXWSn9/kLa2DqKpFLXDhjFkeBWyWUeOHHaXE53BiN1qRC9paLksJlkPItx19110dHXw0t9eQi+L+Hs7iMYCmMwSiprE390LqoCa04hHEyRyGWSTEYD25hbSsQQfLPgUQdKTU1VMFgullYVU1JSgM4Jk0LDbrciyjqKiAlavXkkoFCCZTJJMJr+1fh+IB6IooigKqqqi0+kOi+sHljkQZw7Fnh/C7P11HHrtwHOHYvFA2Hyk9g8NTnJo2wMbM79vYD0w7/49CYtqyrB5HOQEBVDR2yykxAw5fQZFFhDNJrx1o0jozVQNG0Eql0Qyi5icRjLkCMRipHISOVGHwWZCNKko+iR1I0cycuxYxk6cyPkXX4zZIdMXCOLvSyDqrbTsCVFRVsSW7e+zc/caQv3Q3LYZ2WbBW1zMM8/+F7NOmc2wMWNo7mylYtAQjjrmJHbuXEuKJH2hLhrrNxIK7yYab2LwEBc93ZvYtHILH8xfyKDq4fxk1oWce/bNuK0+ageNxumqpqstS1VBORs3r+D6626luX43nYHtTJx4Njfd+FOMkp6KEicdrY30B7rx+fIxWQp59KHf09ZWT3vHRqwWE398+q+EwxHSyRwBfy9KKkJN5Vg8zipGDJuMomZJqRHQchgU8HochFO9RGI9NNSvoLrGxtSZY9HLMoUlhTh9LsKJCE53BIvZCqIJqwMsujx2bV1Pcb6XRCJGVtWoKsvDZoLW+g3Egy0E/XuweRTMVgP5BUX0hYLEYjHsbhcVtdWEA0G2bWtByOqxGRy0twbY3RTGoPOxcMGnIEWoG2Piw48/x+VzUDt4EIFAAlEXYMjwPD5f/D7ufDuzzz8Dk7WE+oYeamqHkUymKfBZ2byhg18+/Afeeecd1q7YwIZ16xk7diT+/j46eyKQ8rNq6SusXTmPaLyLTVtXYrEaCAYCZOJxPlnwdz7+4CNuu+UmVEWhpbGd7VtWIput3HDHrbz/2Vzyq31MPPpEsoKGt8RANBon2BXhtVdfxu0sZ/uuXVx40YlUDSkimk1i9+hQNT+ZtEa+p5RzzjifbDxKU1MLvf4+NE3B4bBQVjqMzuZu7rzxRshqNDa2Y5DSODwyhXl6Ar07aahvp621m47ONgoKPTgcLgyylWg4Q0FBAZ1dLWQyGawWJwAGk4rDZURRk+RyOXzeIlIJgXgmhYIEkplhIyeRV1xAVdVwNm1ZhstpQS+k2LR2BUYdxIJdKJletEycY4+eTDISIBnp46qrL2Dc+InMOuV8Xp73HsmYgT/+8QXaOuqZOm0iwUACk9VEKhnmhZf+ytmXXEF7Uws5NYKnoARJlNm6eQnR5C6KKybhLikkmOjhtTcXIOvdFOcX8+jD/4le1Dhm2mi2rFtCfr6PeFrC4fTy6RcfMuu06Xz6xbuomRruuG8C99z8KiceM5L6XZvxWDTEZCczp9WRTPrRawIGaR8OC98FMz0UHw/UMw+HtwMZ7v4ROVDvPZKefqguPFA60hKPf0b+f8a8/pib9u9jRAeSzPavUHqb0eVVceedP2Pe3FcpLy//UWzZwDKQm/J3smnTZhYsWIjD6fhRzOtArOXeWg92Rz5wAnqkugbKd6gl5se4xQ4kmqah1+sPe+1I/dqX63vt/hCT8OijvwLgkksvpqKi4gfbGGhs/wyAAMydO4/WllZmzJj+vf/L4sVLSKfTHD1jOuMnjD+o3IGKnyRJ34Le3u9Z0MBqsbFp42YKi0tJpbIU5heQX1BASXkZgUCUZcuXsXnTJkwmE1OmTiGbVWhsbGbXjt007mnE6bPSF8pQmOsklQVPfhHplsUgmcHgIZvTMBgMiIKEqihomoLH60Wnk0ADv9+PKIlYrDYMBiOiqiFm0zT29NIXjFBeXoGialgsRixWGyaTGY8nj57uTnr9PdRUVeNwuFEUAUQoKS1GVXOkkwl0ksTKzY2EYinG1ZVz7MShBIMBHA4H3V09iIJEfl4+oWCQUCCIhEjDnl24nW5yGQW9JGI06EDQ0dTURHFJKeUV1Tw/fzHRZIaxpWYm11pQSibj87lIZnOo2/+OVDQSnaTH5cpn+7ZdeHxuEBQURUEX3oN16IlkdEbAiiAp9PlbeXPuq7S299Pb28fgwbX4e7vxOBxoSgZNA4PJQiqrIUkiBtnMpRdfSjKR4q9/fZlJ0yZhMMoUePPRMhpzX3uD8y66mM1bthCNxbBaLASCIXbt2cPiFUsoLPBy5203cPNN1zFyRB06SUDQWQkHE1jtBkKRDlyOQnZs38aunVsxm2Ty84v2so1t7Zx2zf0sXN1Cf6AfAFnW09ffx5atm+ns6WTE8DpKSoqpLq/G5XJTWFjElVdeRVFhEZt2rOXam65jydLF9Pb1IQgCBtlAj7+H9Rs28vLc15g+dQq+wlJMdhe5rEZO1TAb3NhcsPiLNdx624O8/s4bPPXs0+zcuYNIJIzZZCKdTuP3+9mxfQfZbIaJE8Zht9uorKzGYDYi6SUisQg2hw2P10Pj7j348krwevPJ5FJ0Nnbi9jnJallyWRFN06Mq/VgtNhr3dFJbU00kmsDj8dLR04PL68Vh1qPXiehFEVnUk0lmCIf6MZmMrF61mpaWZkxWC5ddfhllFWVMPWoqSxZ/TTQaR1U0XG4nBoMJr9uLpgi0NDUj63Xku93EIzFC4QgOtxuTzUphYRnZXJaCwgI0cvv2XxW+c/XV9u5hrSg5qqoqsVjMOJyufS7D+zHlhw1i/6yS8WPx/EgK1Y/1ZBkIW3/MuYH6u7fN7xseD+2LwF6Dmx6QNA1VkAAVQcjtXZukaYiChqjt3YwCQUVAQdi37YRBlkHIIYqgqcq+4CmgIaIJAogimiCSE7KMmTCZrdsbGTRiEhZ3KV8uW0p5VQHtLW3YzE4mTZpEWjHyzYqNeD12/vj8i4wcPpSJE4bz7FNPUlCQxz2/eII7/uNn9PY04tAphIOdRCNdeLyFiCaJ8aNGUVaSx5Rpk4gnolhsDtwOIzaXg6KyAvp6OyAVw1Fg4LRTL8NulFmz4TWuvfg3bNy6mLqh4/lqyXIWLd3G6WfNItgXIBnuZdLkEjw+C3q9kUg4SS6bIb/YjQ6ZVFQBNYEo24hFAwiaCavFQKa3lbziakz5Tpx2I7HWHkx2F3leC+lMki5/nGBvJx6fhXg4jtdpwSSZQMwiGuxEAmZ0pNGLcXS6FKG+VkoLbPQFctgsZvp7e7C7PBSXlNPe1YrN6iIRTxGOhFEiabr9fXgKCikprUBUk4hCDtAoLi0mkc2RSqVxu5z4fDY8XhNr1jUw+7TzWfT5BmafN5uepg3UVJSj5bIYTBCL+smkszjtJtx2I8GeFgrKZBYs+Irjjj+GqvJC8jwljB03GJfHTiIdxWwz882KNRR48zDgYk/LHlqbu8jLd9Pe1IOs1xg9poT5r33B9u07GDVyDO/8/RPy7UbKqgroDXYSj0UwG2PYDXYE0nR0t1FSPIVsNsz046dhMJehM1spL/LQ1x+mcvAgEFMce/xE4kGVJYtWs37tWqoqi7jv3geZddKxOPML0JGlOxhDzRkoKcnn+b+8yJRjZpFN+OlubSUVz1DgK2L4iHEYDCJejxuLzU44lCYY7GPh+x8zcsQIunp2Y7KY6GjvxuPJo6u7kwKvBVmvkk2HaG7cRmmJC6ujFIPBgk6vI51JY3C4EGU7+UVu+vtiFBWWUFFRQ1dnLxU1tTS2NFA3fBCFJUXMf/sdHFYPbpeZ+W+8j8lg5aJLzuXuu6+nrKyckuJqli5dTjoTJ7+glES4m2ggwpVXXYjPUUV/qJ3CgkG88crfOeaYSUjCUHSGABI5ssEMp5x9DsmUwPPPzaU/rFJZXU441MeZs89kd2Mn0ayePJeVKVPHsXHLVpav2sbkKYNYv66d1+fPpXBImkd+9ylLvlrP4JoaXG4X//W7v6DXBI475QxUOYeIbq+j7yHGu/0Twu+IiX9Mjx2gyMD5f0y04cOVPYQIO5Ku/3+Z1/8XiNKxHaVj+/90N4CDAx4dKANNXgeSH8sy/3eJIAik0+kj7id7JBmIRf5XFLbDWb0OFVVVv03/Lnnm0lpWPH0h199w3RGZEUVRvmXbFUVBQkFgbyj1o084mYaWDuwmO6KgJ62oeItKyMv3kp/vo6SkiIrKMppamtmybSsTJkzgmquv5uKLL8bmsDJu1gW8uSGIKbAbfX89ciaB0VqMQZSw252kUilEUUQv68nlsqTTaRRVpbOzkzyfD9loxGg0koyEERIR8BQyctwYpk2dSi6nYTSY9kbFlSSUnEJne/te959jjkUSJZYtWc6e3U0g7nXVFUXIZJP09vVyzuQiVr54C9edPo5MJovVbkMURULBMG6nl0QshsVkwuN0sejLL3HY7GTTGWKRGIG+fgRNIRqN4vV50TSNXC73LYs1csQI7N5ChlYXkY71o5P23ncFDVlnYvOm7SxfvpJ0KoXBIGE06QmmdfTWryYcDuLvayCZjFNTPYz2pggXXngxRx89E71eT21tLaE+Px2trTz6yCPEkhneWfAx69atI5FIEI3G6enp4bprb0QS9SSTKaLROGvXr+em224ll8sx66QT+fDvr7J06Uo2b9zEFXOuAOCx3/yWDz5awLPPPk1RURESEv19Qerr64lEQoTCPUSjUfLy8kgkElTXVOLvDNDd7uf8iy6lxR/DZTXw4p+e467r7+P6S6+hpnQIleUVJJNJLrvySuobdqGq8Mor89i2bQeLFi1m6dLlzLnqp7S0NuN2ufnLi8+wZ0sjzz35HPfddTennDyLdDrNFddeR2dvP5LBjs1dQJEnj2xapbOzm6HDJuAudLJ1+1ZsViv3338fO7fvoml7Iyu+2MTaZav4y3MvMnnSZHw+Hxs2bEBVVbq62lGUDHa7BZNJJhTqZ6hHJN22iWAwtNcgJkqIGoDG+vUb2bxpO1abAafTTl3dcKxWD06HG51OprysEiQd2UyKfn8vHy5YSHtrG0uXfE0qniCdSDJ+zGhOOv4E7HY7qqpiMBiQZZniolIqK6oJhcKEQ3E0VSAajhDsD+B1e9AUldXfrGDlNysoKCjA5fVg8ziwWu1YrVZ0Ot0+7NMdlDRNQ5blb7cAO3Ct0ZFcu36Icf2flH8EmwdibX9o3IceH+k+ZAXT3iSayWpGRMWEqJpAMYJiRMiZ0ef06FUzomJCUMyIqooODXIKgqKiI4cOFUnTkFQRSRXRhH3r0EQBRIG0pqGKBo4+fhYWpw/FlGbS9J9g0k1jzMjjcLsU2lsSiOQxrO4o+nuT3H/fvXhcNrZu2cix3PYdqAAAIABJREFUM49iSG0NmlDE+nVNJGMaeXYP+c48SgvLaG7xE42L+Ht3MGJMIW/M/wPbdi7nhJMmIevTGK0Knb27EfQhJFFBNghkMyrhYIwpk6pp2rObSy66gBtuvIPWtn5mHP0Tvlm+kqbmPSx47w1UIUA82kckHCceD2N36kmlY3uZNU8eahZ21a9BFWJkcxEULUaip4eWliYkm5nevh4iHR3odF6SUWhvDhAMagwfMoj+ni40JYOgpgn3asgGDYvdxub1ndQ3bENRM3hdZkoK7KxYtBC9vRi9o5jq0VPojmr0pUUMhnwcjhIKi2pRFT1aSsNhcSHKJjp6+6kdnI/TLZLKdKFoQcwuEadHh6bB6/M+4/mnPmTt2rUMrhnH88+9isEoU+Qu5+nfPs8fn/kz2zZu57NPPufOO24jHuln2ZIv0HIJgsEGjjt+Bv5+P8UlBQyurSEc7qero5WcksZkNnDiKXMoLpzMtk19+Fwl+LwFmIxWamqr6Olqw9/TxDlnX8ill85BUyXsNi9izkIqnmJQTS1Szky0t4dt67eTTWik4jqampNs3bmFwuICjGYHRWVV9HQmyaRNhII5rFY3Pk8eks6ATidT4Csg3+fl0UcfRZZlVFUllUrypxf/RvXgIZRXVnLP/fehM5pw2grIpYwkozr6uhTCkQCaphAIBPjso8+w2WxIksTOnbtxuVxMmDAOo0nE6/WSTmXZuaOehe/Np6u9gZ7OJqwmWLxoAamEgiwbsNlsiJJGVjOSTOvZubsRb0EJKnqWLl2DLDtYvGQZeQUlRBP97Ni9jRnHHkd5dS3Nu/YwbtRIln79FWtWLWP1us+58sorOPH4Mxk8aAQVlUUsW76ans4OaisKSIa7yCZECvJL6e1LoJfsdLR189Wnu/D7d/LmK69jQWT1pmUUVxUx56prmDR5Og8++hg6vYHO7i7+8vJcNu9oZNfWPRh1Tj74YBlHzTyPPdsT2Hwt3HDdc3T35ph6/Hk48gdhshUQj+W4/Y67ULK5I2LV/knrvz947b9X/rvnB/+7R/8vi3BI0gZIB+cZ2HV0oHIHpn+kL/tq1LTvWzV+lBzc9uGY0gF7cJiX+v6H4UC28MDJnCAIqFoOBJW9Rv59nz8gB25Vc7gJ4j+qlBx6rNfrD3KFG8gV+HDuYPuDk6CJoH1/m4VDyxzU9gChyg91sTgUYA50p/4h8BkoOMqRRAm3o4TbD+rv/jVaB06SD5ysC4KAigEECUkWyCTDpFJxWprbUI0G7AUF5ASJ0soqrrr2Nspqx1AxZCznzbmS2+7+JYXlI7jgsmt44W/zCIRU1m3ajK56PNFRFxPKqYiyC9CjJqNIET+mdByiQTLhIEZBwmKQUbJZurr9JJI5hJxCNhTAhErUaENwWmnv7KStq5kcGZLpFBoSnS1tbN24nomTRiPrdMiyHp1Bx1EzpzJoUAX1O7eRTUeBLE6nG4fdzbARo0GScLvdNNY30NnWQywWZ0jdYJLZOGanizUbN6AzSBx77FG4XG50BiNN7W389eVX6OzwE+rvZ8eW7YQDQbo72tDpdACosXYCOTt9/Z2IQg4l1YsgaPS296CSwWQycc5555PMZElmcuhkCU9ePmY1js9TRXtDF0osjaTI3HrXdbR1NmCw5MhqUWKJMEajhcryah795SO07miizFWE2eBi44rVREN9uPKciFo/mUiQDcvXEY8nuPehh9A0jaGDa3nlpT8z5djT+XD+a+iUJDdcOQeXfa+71n2/fBRVdBDLSFh8hbw6bx4el5uWxi7y3YPpbfezavkaIrEMOUGP22Xj488/obmlBYAnrp7KSTNPpbu/lbphw/n6yy/4dMF7VFdWkclkeOihx7j1mjmMnzAJi83EsUcNZ2vDVpqamgF48IF7OPWU0+lqa6W1qY2LL5nNC8//CY/bRyKR5KH7HyYTSxFLJujq3YpMOw4py9ervuDjzxciyzIvv/Rnrrv0Kvrb/GTELAXlDobUDWX2mbPo8wfI5XLMnDkTTROoLKxETUM8kkCSZBwOJ5k9X5PY/gmSTkVAompEBV19fnSCkXETx1FaU4IouHntzc/I6VWCmX7Mgp/Nq99n2RdfcMvV15NSzPj9CVYv38TCBZ+xbVc9f/3bW2QUCavPSzSXxGCSESRA1Eik4jRub2DRJ1+Q785DlmX0RgOSwUg6ncJls/Hqn+dSXlhEiceOEulByCWRNNCECDa7TC6X2vesZ9G0LIKg7P0uqKgoaIJKJpdGRUFVc/vyCoD4oyaq/8hk9nD4fjhMPZIV/sDlJgf24VAcG8jweOj3A88NJPvx+Lv3hg5R1LFXNdqb9jb73bGkZtGjIKpZREFBENIIZAEVRA1NBzlRJSekQMqgsdf1MauBJonk0MiqerKqBJJMVlPJqAqoGiICqBqoGkbRTDankdVAySXQSRYcbhN6TxJHZTX5g09GcrqIJAMYrQKugjxCUT8GqxmPp5ihw0ewdcdWFi99kSHDfOhNPlKmasJqml5/mmignqd+82vCvSnSiTDBjhQXn3MtQwcVkF9ZgSRCkduN156HZDeSCBno7dvNtsYO7rvnTaacUE00leOKay/mzbffI8+e4ZtPv6a/vYvzL7gSi1xAoBfyfIOpHTyBeEbCIJppauhk0fJ3cPnKCPZE6WoOsW3TRpYvXoMfGXueG4vkIJV1UzP1GLbv2oiCgs2UZUSNBAYDZrMX2SCQzKl4a6tJRWVsksTwcfkMrR5M9dBhxMRS+jP5JLMGmrYsx6APEOkP07ljE01r3kGvJlGFAIFwI0o2TM6WxWQXMWkqxZ489uwOowgV5CQPzS19bF3Wyafvb6ZueAXFpYWced5JDB1cyN9e/xUbtn1OLp1CtLs5afbZnHrmWUiCjqkTJ3HUpOn8+pl5HHfGjQgGCzbDKGprhnLcSUehGe1EFQO7G0J4XJUU+iqxOVxkhAAJOczpl53DkJFTGTpZo6BwBBaHnRN+MhOv7UT8oTYEWWDr9i7++Oe/sHjlcsxWJ5FwAlmWCSbyGHtMHbLThqDk4XWFOGrGMWxYswMxl+D4KWMwe+OUV7jJJjpo3rmGYHsnDq8bp8/O8SefxF0/e4b33p+P2VVIPBjGbnfwyD0PI4kpovEoPocNm9jP1yu+5vKfXkNlbQ2OPD0Ojw9BE3HaPNg9BazbupxwLM5vf/8bVCFGY0MbTucgPvv4c16bN49hIyYwaOh0CopGUloxhiw+qgfPpKNlJ/U7V7Nl4xLy3WZy0U50aoQ8dzm7djayef12Jh19PHnVQzj6hDORNCMGczma6sLu9FI5opKfnH0OyVyS/AIXK775hoqyCbzw0h/54NO/YnMbcPtqMRl9FFZNIymZMDkKSYl9JBSJtGrBH45SUTGEMy+axsgxZ9Pkh66ciRlTT+eTj1aRUqMk4hFmzjiLNn8E0VDErJPO4PKLT2L8lPF8/tl7vPraU1x05Yn4CgW69hRy732z6K3PcvUFM3n19Wc45axzWbe1kWi4hUGTp5LTZxFzMhywyuNgvVFEECSEvS+Uw+qKhxIZB+ms++KSinv32fjeXEIQhG8NavvToTFND9iw4yCdcz+eKoqCJIjf4tr+z8PV8Y/I/8cnr/875dXP12KQLXz99VIAHnnkMQyy5aDU3NzyvXIbN2zkmquvZ8iQETgdPtyufMaPm8wD9z9IX1/fP92fVCrFs88+xwnHz6KkuBy7zU1FeTXnnnsBn332+WFf/GazFbPZytdfLyUajfLggw8xZsxYPB4fpaVlnHPOuaxZs3droCMpEF9++SVz5lzO0KHD8HrzKC0tY9KkKdx553+watWqb/MdqAgpisLcufM4/fQzqaiowul0U15ewWmnnc78+X8fUPkBGDp0GBaLjblz5xGJRHjggV8yevSYvX0uqeC8cy9k9eo1P+q+RaNRfvnAQ4waORaX00dxURlnzT6HNWvWHlZp2r1rN0/87klOnnUqQ4eMwOnw4vMWMmniVB544MG9AXr+CWvVmQ9+RN75L/Hww48eNs/OnTu57dY7GDN6PD5vIV5PAaNGjObSS+fwznvvk1EVRo0fy+bNqxEzGUI9EdSsnmAohCZo3HPf3bwy7298+PlnnHL26Uz/yQzGT5zMzt2NFOaVU5hfzLQpU0nKNkSDREPHHkbf9Tb5177Cb5d1kXHlE5VNyDYnCALpaJT5izbz208amXDHy5T99EWG3P46p/zuc95esZtgIEx5eTU6ScYo6+nv7yEWiVFVU8PinQFO+9lfKD/zfvJOuY/ac3/NhMt/x0X3/oVP1zQjaArxWJhEvA9Jp3Lbk+/iPeFernlkHoMG11BcXILNZsNoMmAyG+jv6yWSVHjgxU84497XGHH5k1Se/RDXP/MFq/odLNvVjzc/n7phddQ31BONRb7bFy3pZ11uMpGAmUTaj90hoWkCslXH9qZu/vDROo695SnGXP4UNbMfZea1f+A3H3bQt2cVak5l9Lg6fPluJFlk3Yb1lJblk8lkCAVjJJNpdJKbRCrG2+++xOChNTgdpezaWc+YieMxO2S8Pgcvz32P3z3+LKIgs27VFlauWgnAaaecgtVqI9jTw2lnnozeoEOQBLxOFwAdHZ0sX/4Nbkc+3e0hLr74QmKJIJFokEwmx9fLvmb0mJHMnj0bg96MIGi8v3ABAFUleZw2+1xuvvEWZp9xFu++/wGSXmbb5t38dM5VACxf/Q2yzcrGbZuYMXMiRkOOzz//CIDK8nLOP/dcgoEQg4aUcsklF+J0eDGbrJx03Ol7y69YTjgcxmKx0NcfQUWgu9fPr3/3DADX/vQann36T2zctBO7w4coyrjdbjKZBLJBo7CwCIvZRcOedmLRFJlcEMQ4O3dtA0BTJTKZDJJOIhyNIhsNSDodTudeTwFB1bBbbRjMJs46+0xQFZobW9i+ZTnpVIBhI0axZUcjSiTBhlVrOGraNC67fA5Hn3AcxUVlmExW0ikFnc6IiIAkiOhECVSNaUdPYdT4kTjcDp577jkiwQgmyYaSUkjFMxQVFLFr1y6qq2t55+0FJMJxYqEger3+R00q9xvH/ics9Pvx79/lXXKoMfVw8q+292ONwPuVtH+Vqd5veD1wje5A9R44dkEQ9kWOFrHYHIQiUTq7/MhGK5u3NbFm9Q7KKuvoD6YJhVO071lLw44NxEIBslkFSTSRX1hIa2szr7z+JnafExUrv3z0YRQ1SX5BBXkuOyadiL+7h0Cfn7aeLqpqaigtLqS6vIQnXniJ0pohDB81kqF1daQUiIQThMMxXG4voViQlOZh5IQZONx5NLX7eXfhl4iShWg8jcNRSiKVZezESVgdHqoGDUVvNJPJQTQYYdumLaBmyWkZPG4bHZ0hwhk7McWJoJOQjTYCwRTvvf8psuRBFHR0+XeilwWaGrpp72zDZDKikwxUVY/AoDfS0d6AwWDCZHbgcFsRJR0NDQ3IssyY8ROoHTIGh6uMREpHe1cAyegkk5HwuItwOgvQdEbq6srwd/XhzfdituZRUllGJhvDKMPWTRtp7eiks7OTOZdewtoVi9Hn4px08rFEQz3EwxFUxcbiRWv46ot1WE0ldLZF6fMncbhkBDEFYhpBVEgGemmt30Y0HKCntw+PYTqrN/4NvWAl3p/PJ1/+ng8+XsRbb33JXXc/TM3QAsaOmkx/bxiDXk93RzNmu5V4XE8iphEO9xLsDbJnz951/a+/9iZ/n7+AbFokkxYwmxxs374Lg8HM/T+/gTGjfNjNhVx345Vcd91tzJ+/EASZSCRNPNlHONKH0WgiHlXRS27y8vJ55tknSSSjzJs3l2hfL42NzcSzWQYPr2PCiDocViNLv/4KndGCweomnY5z8SUXcPoZJxMK95Nf7qahrZ0NG3fjcRlA6WDIyNGUVA1i+OjJiAYHspLALouYZZnhI8YwbnIdRpOAyWqivaOVdFYhlbUyfsJMkAyIosjvnnqU0WNHYbV6GTliGiU1NZRUlNPa0c7a1WtY+uVXlJVVsmvnHtraOvjii0UU5lfx5O+eI5sSePvtj1ixdjcoKutWbUaHCavRRjSZZfT4yVQPGk555SDqd3dx3HEnMefyi8nP9+LL89DZ08kNt1+OKOdQUho1Q4ZxwWXncf5FV3Hyqeeye9suUpEIWzZvwGa2MWH8VK666ipMJtNhyY9DyZ9D4xj8n5CBPFREUTzAG+i/X3T/R1r5N8i/Qj//Iy+YH8MEHskt88eIyaAnPz+PQCBINpvFYrHsiwT5nRwacOKhBx/hscd+/W3bZrOZbDbLli1b2bJlKy+/PJf33vs7o8eMPmQs+w8Y8OW/e/duZp95LvX19d+OyW6309PjZ+GCD1m44EOuueanPPnUE4cdT3d3N9OmHUVDQyNGoxFRFAkEgnzyyad8+eUi3n77LY4//rjvWeETiQTXXns977777rfnbDYbiUSSbdu2sW3bNr75ZgUrViz/9rooinR393DBBRewZs3ab887HA76+vr58stF+9p8m3nz5iLL8oB9DoWCTJ8+g9279yDLMkajkf7+AAsXfshHH33MH557hjlzLj2ozIH3rau7mxsmT6ehoeGgMX/88ad88cUi/v7OW5x44gnfKlP7y5522pm0tLR+e87hcBAOh9m0aTObNm1m3txX+fiTDxk0qPag31HTtO9Ifu2Hg6YcWBbg8cef4IH7H/y2P0ajEb1ez549e9izZw/z58+nvacVh9PG6WedTkdrDy5nHrF0GkGn5/IrruScc87hjfnz2F3fwG8ef5xgMMiw0SOJxtK8+7fX6evvJJtNU1Ts47K6PbSpRXT07kQQ4NhRFQTiCZwuJ4rBiD+YYs7vF7J+13dssc1sIBBLs3pXF6t3dfH52hYuO6qYstIiwqEgDrsdjy+Ps3/+V5ZvaTmoXDqr0Nwdork7xOfrG7nhvJMxWwxksul9jNT+cRsQBGhvb6G4uBAEDZ1Oz8crN/Kff/iMdGYvQyXrJAyyjpbuIC3dQRZvbOLLZ26grsLNiBFDUBXx27DxosHOWZecjxK3klHbSceSAPxh/lqeemPxd8+sUU82p7CtsZttjd289uVWXqtYy7QZY1G1NN293Rx30kxS2SgjR0+ita2NqVMmM2nMFB548D84+dTT6OrtYk9TPcFQHya3BXdhLUouzRVXX088GuCxRx+koua7/855F1yIkslg0WsU1FSiqTIFhTpWrFxBxaAaYrEYi776jL/9+WVkvZkX/voUxSX5bN26leef/xP33Hc3IhKtTc0kE2nOOecU5H2sbWnVYLRBp/Hzn9Vhczl5+dWXUFSVmUdN4Y233gIgm80yetw4Lrr8cuLJfjZtXkd9YxMAQwYPIR5PkJdXQMDfTktzkEVLP+HGm27hzNmn8drbfyGbzXLRJRfz5RcfU1VVRy6dpqG1m47OTgDOOGU2v/jZwyz8+CMG1Q0jlYphNRkRRI1QKMRZZ59GLJagoKAYWZb4esmn5BUUMmrUKFLpvS68kk6HRbLQFAxQN3I48ViIrKaSTeeQJQ1J0pMkh8vlIpdRKPIVkxJ6SXR2UZRfyPy33yYc6ee4Y2fQ1NRET3c7laVFuI89du/ygJyKyWxCh0YymaSto4NcLofZbmPE2BHIssztt99OJpVh2ZJluD127v3FPbz51mtIVshEkpx21nn0R0KUV1WSzmQGfPYPnbgdzER+DyZ+tPxQ0Ljvr7/6fh8GOn8oG7D/+FCG9dC+wMETclEUD1rHv7++QwPxHdjHAxWvgfDyh2SgMgN5Bh3IQuzPu5/tPfS+HmldmyAI5FQFad/+vP7eXrraO6gbVUeVYxjdnZ0YZQNHzTiVu+++m4mTjyaaaMBgddHRoWPoyMG0tDfQ3rONgrxCLBYTp87+Cbt37eT+h+cyath4zjq3gJIaEdkcJJMUkPUmsjmN6qGj0OkEEjEFhRyJdIwdO3oZNVgmE2yjssjKyq8/5hd338vu+jbGTZ5CzfBaRFMemWyGzpYtVFfVUTv0ZhQpyKBJg9FLdjJKP2okS2VVKdFIiGnTJtPtT5MMqWSCKmWDK3Dl2xBUHf1hDbfXRzrRS0t7PRWlI5B0SUaPmcAzf3icC8+YQSqeQtXnsFhlBL2RlsZmQoEg06eOY82qLxC7JuIbbmb4mDrUWD5ZrReDaCSZyLK5ayfFBaWYjS5ETaSwwElvXzvrVn2Nv3cX02dOpazaQWmZnXB/ijFjKrnhmlvQ622MH1PEnAtvZMOueto6OxgyaBDvf7SQN155EUE28fhvf8Xdd95CrL+NZCJDfcNOHI4SMmmFYKifyvJhCLKbQp8bQdKjSHq++HQ3xx4/ilQujGjU09mdxqgdD/oEqmknl1x2A2P29LBz2x6e/8N/4fSmSUZ1bNneQCgWRpJEykssfPjeMoqKihg7eTi5jAEPKRRF48knb8VgUun292Ax5HPsMROQRBN6nYWHH3kC2Rxkx7Yl2F3Q2q7jD8+9QM3QwYwdUYuihEnE0wT6kuT5iinIL8Hf301BYR59/R2cffZscqk45VXVyEYLuVyabMZNga+EqoosmzY0MGL4GFau/YKjJk1AVaC1pZ2i0nyMRjNTj6rD39tAc1sfzqIcOoMZfyCM05GP2eYmqwhs2rKdTZu3M35cNeOnTCMUiTBo6BD0qHS3B2mv30qkv4tFixZw8613oilGmlqbKass5857H2D48Coeffg+ur1+9IIZozmHzSEgSirnn382ekmP225BlhReevlVWrr20NbaSEVZFcfNPJH169YxxTmZkuJy1m9YgsVgp72tm08+/pSXXnqRhvpOtm5uYM7lNzJs9AiUbIrGHU1UDh5MKNJDXWIqr762gHFj6hAlmTfenM+819+mpnoYX69YQjweRzYYvocjh+KPpmnfM3wdinkD4eGBXpH7y6kHYM+B1w4K+Kl+h2PfnfyuzgHL/jetRPm/zOv/gJw1YxStbU1MmTIZgNtvv5XWtqaDUmlpybf5n376WR599FdYrVYefuSXNLfUEwz5CYV7WbFyKTOPOZqurm7OPvs8YrHYQW3t/7MNJKFQiFN/cib19fXMnHk0Xy76jGCol+6edrp72vnNb/e2+cILL/LcH54/rAJzxx13IssyH330If39vfT0dPH114sZNKiWbDbLLbfcOmC56667gXfffRdRFLnjjtvZtWsHXV0d9PX52b17Jy+99CITJ048qEwmk+G8885jzZq1jB49mnfe+Tt9fX46O9vx+7t54YU/4fP5+PDDj7jvvvsPO/Zf/eo39Pb2MXfuK/T29tDT08X6DWuYPv0oVFXl5ptuZcOGjQeVOVCpuv22O5FlPZ98+iGBoJ++/m6WLvtuzDfdeOtBD/P+B3rixIn8/vePs237ZsKRfrp72glH+vno4wVMmDCejo5O5lx2xff6e9D+tPvkQMA4krzwwov84r4HUFWVn5x6CqtWf0Mw1Iu/t5P2thYWLvyAc889B0ESUQRICzqySg5PcT4WrwW318P7Cz7g+huvQ5IFho8cyTEzjwbg/Q/fp7i4kst+9lOkAhdnX3c1NRMnY8l28+Kne9d2j60tZFhVEbl0klw6QVNjA3Mensf6Xe3UVfh48T9OZ9tL1/PKLdNpffce/uu6E3DbTXy+dg9LGpIkEglqqwdhlM3M+3AVy7e0YJR1/P62M6l//W5+e14df7/7VLa9/nOevfM0TppUTSQeo72zCwWRRDJBbp91UlU0+voCFJf4EMW9LpSfr6rntiffI53JMW5wMQsev5r6d3/Brjd/zurnf8r8Ry/jwhPHEvT34O9qJxWLoqTT34KnVjSNxx5+nLilC521EL1e5M9Le3ny9a+wGPXcdel0trx+O60LHmTLK7fzye+v4ahRlfijCmeccwo9PUkyGbBYrQRCveh0wrcrDCRJ4s6fX4lONuCwVWAyWzn+5DHMPHoCqphDlA10t/fy7PNPoDf/P+y9d3gdxfX//9q7t3f13mXLklzlbmzcAFeKCz1AwEASegsltFBDbx8glARMiSmmGnAHU9xxk2xZLrK61a6k2/u9u78/riXLsmxMkk/J8/ue59nH8t2Z2ZnZnTOnvM+ZCM+/9Ajl5dsBSEpKoqAoH5VGwt5RTygs4/FECQRg1ervGFiYD0DVvr289+7b/O2NN3G7nQSCbhITE3jggQd44uknCEdDHG5qYcn7S1i5anmP0q7RqLHbO1my5G9otRIyPiTRj81Wj9vZ1fP9bdu6mf0Vu/B5vIw9bRqiMmZQkmUwm6zIskDAH6WkZAjXXXcdwbADBF9P/clTphAIBAhFwOX2sHbdxtj4EpJY881P3HTrLTz3ypMMH1NCyeASxp42lsefeBpZVpOaFofZoicU8uPzO5gw9gxKBo2k+bANlUqD1+tFkiUUSpHTJk3E7nQiKpUYzSb27NlDU2MjG3/4iXAkgs/nYf36H9n4wwa27jhMVDazb+9+7rr5OjzREJu2bkGORNm3swJ3i432jsMoxCgyQfwBJ63NLTTWNyDIEA1HELUKVDqRji4bdXV1LF68mJKyUkpHDeWjrz4kpA7RFXQRVCsxJCaRmp1NUA73KD59r/9N6k9R+2fpZGEVpxLr1V+Zbk/lP9OXfybj+y9Rt+f2VMp0X91CaiQSwWw2U1xcDIIChVJJZnYe8QnJpBcUcPsdf8QbDJBdkMvwkUMZNv0MFi9dA6p8NvzYQSQsYLbG4fV6UShEHvzLTdxwy40kpWai08VRVeFCqzPRbneTWVBKCC3lm7fjd3swmPQUlg6gtDADR/MBDu/dRGfNTixKH/c9cAc33XQT9Y3ttNk8VFdX4/fZaarfRWNtJU31+wg21+Our8QY9ONp2Eu8SU1XWyMH9+6iYsdGdJYoGq2P0tIkXN4D7D7wHcFIM6mZSlTKBqLBrejNIg5PF4JSJDs/k3PmTURQRAgHDMTHJyCq3UiyAa1ax5APtZ5sAAAgAElEQVTSEjqcHaQkJyMaduLx2kAhIJl2kpSSRl5eHkqlkoHFJbQ1VVO9r5zGmn343c2s/3Y7aZZMchLyiLgj6FVG0EdQ63U0N+7ixkUXcvct1zBr6ii2bFvFoJF5nDZ+NB1dnSz+x4dMnDUPyZjEc88/Q3amhdRkDWnp8UyYNIiRYwYQDHcxvCyfqNBBXW0Dsiyze3clem0cl1x3IdZMK4ebXFy36DEUBgPJeUa63FEUqoHYvRpEhYvxp2VQfeAngvYQydnJzDh7DqLeRHJ2Hq11WyjIzmT2nFl0eDtQmRMQBRPvvbuEDRt+YvoZE1l05XUMLBzC88+9RFJiKlZLHM6wAot5Ajm5Bbz81GrqGmpZuXYlQ4cP4eftW+mwOQkGolRVVTF58mT2768iPj6euDgrkWiAzi4bO/aWE5ZlkBX4u5w8+OTj1LZUk52fQGaalgO7f6KkeDiiQotaZWD2rHPpqHcRDQZxetqw2QVKRswjHPKh1Sgx6PSEgyEUlnTCSiOZWXmcPXcuWVmluBxRAkEJr9fPlm1bkKxWGlxesopHcc1N97N5cwVKlYbTp42ieGgqt12/iEf+fBfVNeWozQI/7viep555BINRjcvdSTjio7pmN7Nnn44UdvLOB29TNmEEohjkuj9cS2nJQPZW7sLb1YnP2cXe8m3cd9cdnDZxLJddcTFarZYXX3iVaVPOpqQskwN1DbR1tpCZHcZmd1NVvYeWdjflew6i0iXy8WcrGDB4OMvXbuLs8686Ib85FV7fzft6G/l+iWf2Nqj9UtneYXn/23G3/zHK6z8bf3Nsnb4xsKdqjo6VlWOJBH9VLOKpwp2OeVovAaCjo4MHH3gIQRD4eOkH3HnnHaSlpQKxDbmsrIxvvllGWdkImpoO89Zbi499dk+bx/f7ib88RX19PVOmTObrb77ktNMmoNVqEQQBq9XKzTffyN/feiNW9omniEQi/UIXRKXI8hVfM2XqJASFjEKEkaNG8N577wHQ0NDA5s2be8YmCALr1n3PZ599BsCzzz7Dww8/REZGRk+Z9PR0LrjgAl544ajHV5Zl3nrrbbZv30FxcTErVy5nxoyz0Ol0ABgMBi699BI+//xTBEHgzTffpL3d1u8cO51O3n//XRYsmN8DwxtUVMwXX3xOYWEhkUiERx5+9Jix9l6oSqXIylXLmTz59J6FP3r0KJZ8cHTMmzZtPs678N77i7nu+j9QWFiARqNBEAQ0Gg3Tpk1lxcqvSUlJZufOXWzYsPGY/sbe5ZG3KdBvn/qjzs5O7rs3psSff/5CPv74A4YNG9rzXSYkxTP9jKm8+97bJJisaCQlolbkcEMdB7f8SKIcwmKxEA02sPT9x2k5vJe2Q+VcOD8G69y642fmXTAZhaRgwXnzGDlsKPEmI4GwxMZ9MSj7RdOHEZUFEpMzaGt38sWG/ezY30R+WhzfPPN7Jo0oxJKYiCxHUCuUnD1hCM/9bgaCAO+u2EZmfhFKjYaEZBMVh1oBuODMYVwyZzSJSSZGjhnOmAmjSTRrmFycxGu3ziUQcGGztaBUaohGdSjFmMLk8/qwHW4mGhJoajjM/qoq7n75C2QZhhcm8dmTFzEgzcQ7b72DQqEmPy+PTKPEc3+YQUqcGUt8FipdHN99vw45EgRAmzqW4iHFqBwmdm7ZSofLy5Mr2hAEuO3sMm66cDopiQkIgkByaiqjh+TywaNXMTTLgDcQZOmni5FkNxq1EqMumb8+u/goFEiOojHqkSIa/v7WQzTW/EiCykhuXjbKcAiVFCItIxFRFDEZE9BpzESkWN309FQO7i0HhYrsoqFEIwEkyUtdbTVLP/yStPRcAHZXVmHr6KDT0Yooagj6NJhNSbTbGrn1hlvQqGUGlKZy692/JylJh04TW2/bf/6Z3IQof3rkCdat30o0okQpaUktHEhaRlzPNxiWtbz28ot0tjXz7LMfEG+OB2DvviqIKlAoID5zAA6Xh8fveQqLKoFD1Qd66re1N+N2u4k3GlGEWqivrQEgMzOTTeXf8uEX77CnsgJRIRIOhdlTWcnTzz3HqNNOp6LyAAq1iCXRTAQBT1imxeYgJS3rGIVAQCYSDGBQq1AqVCgQKBlczIDSAZRNLMPtFui0BXjo/sd5/pkXKR5RxrAxU0jLTuPmW2/H3xHB7YyQmVeEwxtgZ8Vu9DoTe8sraatt4OO/v4uKWIKSuIR4Bg4uQadSEwlFUUpa/M4g586eS0KyAYUYIRQKQVSBTtKjlAVkIYQCmVhC2+PRQcfGyMdiorrjW2NxUSen/qz7/XlUfwnp0ftYh2Nip/ppu3f93ntef7FX/cHl+va7Py9tf+EbvdvrHe/aFwLXW2ns6xE9UbvRaJRIJIKrw4FCEhDkI+9CiF1RGWThaMyaLAvHXd3vr7dwqFAoUERjsbCiKKJUqVCoVYiCElkSYsY5pYgccjF0VCmWBBNObxSlLgUJkWt+9wcyMhI4d94E9lWsp7y8nJ932QkoTBRmj0JShtDFZ6LSD6Jk+Hj0lji279yOyahECjspnX422rR43C41ohTAftjNmjWbUKeVEj9wKM3+GsL+Cs6cPYl7br2W5LQkRCmIXq1BktQkJCQTZ4qjrSOMNW4ovpCAyVqMJ2AnLr6YosHDKC0bT8DWhtmsxe52YDWngc+A1qBFEVVhMatxeLwoA2qaa7cRcXrpamoiHGpFNOipbexCK2pAF0fjnv18t3Itto6DSHKApoZDuFq0rPtyO2JIxNEawev30dzWgNKgxl6zg7zS8eTkF+H01mLvinLhhTPIKDTw4huv8fkXG9m55QDVW3eyd9dWrl10N1n58YQVDtojPnbXuNEpDDjb92G32fno/a9IThTxBzbTZrPR6UzmH59/h8qSS87AoZSWlPHc068QxkxYlYTFoqKjrQmjMo3XX3mZSKQDoyGP/JJhvPHuM6xfW47OGM9hWydLPlhK04FatBoRSTZSMn4UipR4JF8H+3auJdWUgkmbSlAYxpCxE2ls6UAnpmO3tTB0cBnnnTMHW3sDAb+TiOSieFI+N9y9iLFTJtEYiGJVq3C6m0lJL+WeJ+/j6aeeQq+ScbQ1MaCgBEtKCtbULGbNW8hP2zdiSdchaXX45ShavY6U1HjMOg3ffLKEmqpyJAn+ePvtpKXnoDOkkpIxlDv+9BzlW7ZTW9dMQmYm7rCbqMKDQqHAbEphz+5ydGoZlSKM32tDrRB59KE7ibpaUQgBqhurychKJ9FsoLmxieSkLIJhLUOGTEYT8XFw1x7+dPu9PPPY84w6bTrhoI0vlzxNe/UWSieOIxx1IIZshBwOTps4m9XLd7L+21V89/UOfli3jfxB6bi8DpTKTv5856WovW3EpQ3grX/8DbvPxRerNtLV6cMdaGLqWRO59LeLmH5mNht//I7G2lree/dZ/P5DaDUmfD4P/rBEQLbS0LKPCWNno1VJDCnO4bFHb6No4BDOPHMWcZYAVyycgq2zo4f/CFKM1xwve0vEMpzLCMLRnAB90Rq9qXfugL7HJ/bl1735aW9lOSpLCGIsuZyETFQ+nt/3bbd3IjoJOZaQ7t9A/zHK6/8F+mcsDX3rKExJKExJJ63T26X/wQcf4fP5GDmyjGnTpvZbXqlUcsGF5wOwZs3ant9jm/OJsyy+805M0brllpt6ks/0pXPOORuz2UxHRyc7duzst8yiq64kNTXluN8HDy4lNzcXgD17Ko+5163YlpQUc801V/fbbn/0zjvvAHDNNVdjMpn6LTNixAiKi4sJhUL8+GP/Z+iOHz+OqVOPn0+dTsctt8Q8xatXr8XlcvUIL70FlauuupLk5OPf4+DBg0845l8io9HIpEkTAdi4cdOvqnsiaMaXXyzD7XajUql48qm/9IzlZN+ySqFiyhnT2FtdzQ8//Uj97rXsWLceq2Al0tlKp+cw06ePxmg0EggE2FN1AEQFSUlJBAIB0tMzWdGUjDcYQaNScN7ppbicNjRqPS0tNpZtjsFGz59ailojYjKbaW5qYcjQUiSihEJ+Zk0pY1B2MqFIlC1VjbS1teCwOxGPMMv2Ti9KVKxZs5LsnCxaWprZvn0nokKHUmNCkFWEAiEOVFZSV70f+YhCp9XpMMcno1KpSElOoc0rUt9qB+D+y85EiGhoqD/Eby9dgMdpo7W5mZy8gez6eSt6qRNl126o/5Yzc5x0G7+WffMJZ8+5AJVVybDRY7j6ugfxh2WG5Sdy3RVnoFRqEFATlUJEwjHP2berVnLu0Nj3u3LVGnRaM26Xn9aWdq677hZ2bNqJq8vOS888y+qvv0OlVHD27IuxWDJweLoIyqAyGPFFosgqNTffeBO/u/paNm/ehsMZQ1/oNFoGFQ3G5fQQjgSpr23n3j89yLrv17D003eprz0IgMloYMMPq/A62rn7rj+x9OPPmXnWudx6873IITWH9jVj1KSwfNm3rFu7nSsuiSEDOh0uXr/vBkRR5IwzzsBms7Fu3TrsnUG+WHmUDyGGOOOsCRQWFiKIStqaYwalhsYGPvj4XYKuTmRfCyrBwwWXLqTD7ealV1/rqe52+VCrNdg6nDQddtHe4QagfHc5P278idkzZ7Dy6y957+03WfbRl7z60ivEx8XR1tbGhRdejMfj6VFUEhPjaWpqQJajCIKMUqlAqRSPgUyFw2GUSiXJycmx7NgqFTk5SSQkxLH47fd5/Y232VN5kKbDbSSnJTBybCmDRw9i/qXnkJgZz8LLFjBnwWxKRg5k3NQJFJSWsvDSK9izv4pIJIIsy3R1dKLXxLF21ffs2LGDd5b8jbxBGT1oiv8L3tS+POJfifHsbcT7pX30VLzKp7IPdwuA/Z03/q/QiRAv0WgUURSpra1l+84dRHsJbr2V5V/bl5PFDvdG98iyTFTUEYqK6CxJDCgdQVTUEY3GjueSFUo0BjPFY+ZiTSli0ulnokZBJNiKo7MGheTBYWuhfNtWrr36dkoHjScc0CJFjIRa3LTVV1JzaC9trRE84RamzBjN6HFj0YjpDC+eg0ZnZu+enbzxX39BF+liUE4Kh5vqUOvNoFTR6ewkLdWMLLjxBR3IComGmkPYWuuR/DpeefYfaJOSaLc7UKk07K3YjUZWEPZb0agE2lrayUo7nZpqDzq9iexCA03N9STFF2DUpzB06FCUKhmtTqBwcApTpk8gJTWTxpouCvLOQKszMWCohYp9G2luPQz+EB53CK0xBWNiHp1t5Wz5+T0mTJhGan46dncISVTzybJPmbtgBpNnjubr5bsZMfwsXnjuv6jbt4f0tDyKB0yibMR4Nm3YSVTSU1CUweYdqxDFBELuIiIBgZS4BK687AKaanaxffvPbNi0ngvmL6CmYheJAqSmDaTd7sMVdHHBpVfgbOjkh+VreeOV1wkFZM6aPpy05DTGj57K76//PSOnFZOVM5riQaehli1s+3EnOm0RySmDOFhzkJbWvWRmJrFmzdcEAk5cLhsul43169egUgv4fAHiLOlUVZRj1hrJSc3GbXNw7W9/y6GGOoKhEJIkkZWRycpVaxAUIjl5+Wh1etQqE7IUM7Dcd++DqFUmrFYrSlFNcnIynZ124lJzmXTmHNJyBxJAICnZyrPPPcGq1V/T0dnCwKI8EhKTWbVmNdu2bMFqNiIKRlKSM6k5VMfMmWcSlX2AAqslCYfdzf3334/KGI8vKDFy2FAaD+7DE2ynqDQLt6eDcMhPV6cNh8PFnHMncM8DN3Dl1dejlkJ0ddiZfMb5lI6ci9bdgdcrkD98FvHJuUQ6m3j/4zcZPXEqc+efx6y5C1h0wV2UFo7ilVffomp/gLLRixhbNpnHH34CnU7H4nf+xs7tBwj61KiVJgRBoMslk5EziJTMfBJScrEk5KBW6RlUNIxbbryPbVuqeeqx92lucmOK03LpVfO47bbbiI+P58YbbyQ+Pp4vv/yS5ORkdDpdD8/oC/HtXvd9z3ntzWNOxEf64z3d5U/Vs3uq/Ou/2zP7H6O8/lrPZX/W2n+1/X9m8+7rBdaMuxDNuAt/sS/dtHFDTImprNxLdlYe2Vn5fa48srPyePyxJwBoqG/o19Ldl6r2VtHVFYP2XXPN78jJzu/3ys0p6IEiNzQ09NvW6DGjesba3f/uRZSWlgaA3W4/xlq9ZctWAGbNmnWMBby/uei+PB5Pj0L46KOPkpdXcMLr4MGYYN7Y2Nhvu5MnTz6hV3zKEUisJEns2LHzmONl+o65dz+75yAt/ciYu+z9ztc336zg0ksup6iolDhrEhq1Aa3GiFZj5JNPYt7ow02Hj2+/T8zrMV4NrbnfZ23eHEt4VVY2gtTUlGNir/p+y92/RcNRQgqRM889h4nTzsCrspAz+ixGzLqM9NJJxCclY7GaOHfuDACWfPQxCUmJ5A4oIC0rE2tiAssOagE4q9iIvXoTZoOC2tpDZOfmsK8+5pF946vtDL/saYZf/gyz7v4H4697i8G/eZbpf3yPIb95ioNNsXL1zR0oVSIqlZopZZkIAqzcvI+Fd7+GU0zD5vCRmJTAsKHDqSivRKPWUFtTw6ABRdRUHyIhzkrAH8vMarfbUSpVSLJM0O/n6+9i32GcQU3Y3o5BZyTBasHj7OKndd8SJ3fgr3iPAl0L7XWV1Lf7+Xynj92pN+CNxry5Wp2IFFWwfPnXgITWFIsJ3dfQxZBLn2PIxY9Rcv7DlF74FKUXPUbRgke5bfFWXvguNr4DB6uRIhpCQSEGeV+1lr+/8RZySCKvoIiL5l/OlZdfxrTJC0FKQNDIRKMSarUGg8GIwWAkEgiy+K132LhxG5Fo7L1GolHmz7uYri4ndrudgQMGM3v2XC64YCGCIkxJ8SDgiMVWEvjqy+Xcf/8DnH/+hWzYsIEhQ4bg8deQnqFHULiYOXs0pSWjCHn9WC2xMd65eCuvvfE37F1u7rn7fkJhiQUXLKCzy4lKFTOICSLMOW8uUdlAMBTlh3XfkpuTC8Btd93LjTffT3PjQazxOtpdNi678re0tLSiUsbOcFYqRaLRCPEJKWTkDcUfjPb0u6hoIEs/XsKE08ZTtb+K4cNH8uxTz/HwQw/F1tHhwyxevBgAq9WKIMiMGzcGo1GPwaDDZDKAIBDw+zl06FDPmug+CkkQBAwGA2G/j3ZbC+2d7cQlJXLegvkUFhUSkSPICglUYRQaGZQSETlCRIZAxI8n6EUWwBhnYdLUKRjNJlavXo1aIRIJ+Dlr2jQKB+Tz2huvoDFqjuHdvY1mvwTt6gsxPdE+1TcWqjfv66uU9W6nt0e1N+S1GyHQn2e1L4S4+7f+BK8T7Vcn2pd/aXy9n913X+r9/xNR37nsO6+930U3dUOTMzIymDJtWo+XQe41579GuOztRek73t7z0vsdhSUBSVCi0hpQqLSodUbMZjOWuHhSMrJR6kxkF43DnDYAhcaE3mimvbWN+HgrnZ02JDmMXqfE75NYdNXvsXf5MJsS6DzcjigpGDigFEERz4H9Cl5+5Ws6u5xk5ybS2FyJyZrClKkTmT51DCaNjK29gYgUpahkOD5XF4kWEYNOQSBkxx3oQms0kpxYTKezgYaWci64YjgqjZnUzFxC4SgDBw0iNTWZxJR42toqCUdbiSok2m02FEIcvqCDESNHEJGM+IKwZ38lESGGVNGatViTLHR1daBUKtHGeQir2skvyuerr3Zxxx3v4nF58ftDOOxuorICncrK0EHn0mFz4HTIWOMTsDsdKFQyaVlxBMIObrjtOmzOZgYPz0ZrDlJdt5nOLhs5BXoyc3VYLGn4g178YTtGUzy52aPxBxQ01B+mpakRgxrSkzLIzy1myUdfsHXDJl585insDonikmEkJKsQRZFmWw3DR+ZyyaVn0d5aTWVlFWMGD+XNl17FYrRQ29iINVFNm62WqOTDZFSy+9AGbI42Dh2wsbfcAVGJUSPKMGh1mA1GdGoNQckPSpGQJNFqc2A2GyEisHn9dtxuL6+8+l8MHjkEc7wJQQWtzY387vfX0WV3Un2oFrMlDr3OgtfrJRwO8vTTT6NS6hEEJV6vH1kSsVriSErNIT0rD0tCIimZ6chylHvuuYdRo8twuVwoVQpKh5Vx0UWXUFZWRiTgZc3qdVRVHaSzswuVSkUoGCEQCPDl58sxGqwIClCpdag0OhQKJVZrHN//sJugX8+m9ZVEvCoO13RhNcWTkpZMVn4mN9x+O1qtnkAQElMHsHLdDpobtpGQoKLZ1oA30sGBmg1otGFUujRaO1uor6vjkb/8if0HdzF3/kxSsxPZvnszZ8+dy6WXXMKyzz5Fq1Syfv2PtLS0o9clcN5588kvHMHMOfNJzczm82WraG33s7tiH25niPfe+YTiojJef+NhDrfs4/NlazAaBrNixQoqKiq48cYb2b17N2eccQa6I2eV917boigeF4bWm3/15Qf9hSX0RcL0vdeXF/Ut37fd3nL7yZA7vZXwbkjzL+knp0L/Mcrr/1+ppaUFAL/fT1tb+wkvl8sFgM/vP6V2m4+0C2CzdZy07e5F4/P137bJGPMg9d1kZVlGqYxB1sLhMHB0AbW1tQGQlZV1ygaBtra2nr50ddlpb28/4dX9PJ/Pd8xzuyk9Pf2YfvbuQ+97thPAjrvH3LuN7uf0jDkSPoYBSJLE5Zdfyfx5C/nkk0+pq60jFAoRFxdHSkoyKSnJaLUxpc/r8/FL1LvfCmNyv2Xa2toByMrOOnVDDiIhJGSViqgAJSVjyS3OwpyhR6mzkJpeREO9jbkzzwRg46aNNLY0EwqFOHToEKJSybdHMmlPnXkZqcYoNK4nP9tKEHq8XHa3H5vDS7vdQ6fLT4fTT5c7gM3uod3uIRKNvWuPP4BCIdDa2sasyaN5YNEM1CqRddtruPrxjxhy6TOM+u3z3PrSl7gw4rJ3YDEZCEWCFAwYyMYtP+MPxJRXs8lI2O/B1t5OTU0NB+piCaMykiyEwh58XgdxFisd7V0UWgO01+9mm3oBEx5t5K8706lUTmX+7W8RFc09MO7Jp5+JL9BFnCaex//8EM2tjQAEwhI2h492uwebw4PNHhtru91DlyeM2x9LDuVyufjH+x8zd8481Go1s86ZTc2hA7idDjZvWU9DbTPDhg7mtZffJRhUIaoE1IIKOSQhBaM0HKon5A3idnnRavWo1Jqedt9+6z2ys3L5/PNPcTg7mDVrBm63l/a2LnyBWOIfg8HEQ48+z/qNu/lq2Qocjg6CYRdXLjofUYDWlhYEWSAtJZn09BTOm38Wf33+SbKTjPhDUe5/6H5GjBvBlyu/5OLLL2bbjq387pprSE6KhTfodQYS47PoaPexeu33KFQCH7+7mJysLELhEEu//oRRU84lIWsgCy++mM1bNnPpwvMpyM+NvTOzgZzcDJQqSEhJo2DA0YRUN95wPQqlCpVGy/U33kQkEmT58uVcdP5vyM3NA2Dt2m97fdzScZc46Vriz76TtLS0Y5Jf9N6cO9o7mTFjBmfNmo7RqgYxCGIYSZaRZMWRlP8xmKggqxFkJaKsRCHJIIdQyAEkZHQGA/Pnz0eQZMJBFwGfg+bmwwiihnD4qBLZV8DoTyj4Z+hEQsmp1Onbl25hpj9LfX8C0ono1xiZ/y9Rf3MnSRJarRYJOZZDQJZjSuwpULcy/M8ayQVBACl63CXLElEZJASS0zOJShJmiwWt2YI+Lp5gxIQ/qEVCgzUxEW84yGWXX8jTzzxOdm4a9Q3VaOO1eAIiq9f+jEqjZtzE03ng4Yfw+YOU79rL31//gJa2TlxeD2qjgQ6Pn1aHnfiUTCRZgbO9AVWoi9rqQ9jtncQnJCLJGizxRRSVjqNw4AySU05DjCjQqrQoNRokpQJHwI3D7mXPzkOEfDJqrRK9NUwgoCUuPhOD2YzVasXldjBwYCHhkExmegGC0oQ1LomUjESSkjUodSJqrYVI1MINN/+RH9evw5yYgMViRquCqNeBzpSOIc6LWZeNUe+hvqaK9OQ4mupqsBpMGDRaqg9WEY1ECEXV5BeNRq/XkZ5agF6vJikpiQPV1VjiklFrTPhCTsKCjYGDhyKo9VgT06ipbcbZ4WbD+h2YEzMYNHwEGXk5/OmPd2Nva0eQXSgFifjMgWissXNoD+xuwpJYQkZWNufPm8HTjz5J2GVm764KvC4faWkFqPWpDB0xjsTkDObNX8iUKdNwO32EAlHqa5tobmrD4/KTkJCMx+NBq9Xy0cf/YGBJMY3t7YyZNBlPwI+oUSGqVCjVKsLhMGlpadx6xx3ICpH0rCyiCJSXl2OxGtHoQK0RcTqdRCIRNBodGo2GAweqCfn8EIkS8DpRIiFFFUTCMnqdmW0/7+T8hRczfsJEFKKIw94JskSXvZWEhDiyMnOQJSVqlYlIWGLSxOk4HB6MRj3thxux29ppbu3gq+VrOWvWbIKRIBDA6W7Gaa/DoLfSUOMhEFKzdNk/cHqhsGgwufk5FBRmM3jMmTTWNKH0eAn6I5RNOZuq8nL+fO9TZKQnsfKrz7C5W7nymhvJzRqOHPHz04+fMH3aWDRqmYsvvhCtVsuzzz+CTq/kcFML3679nlUrVvPp0k/weV0gy2z/eQeRsMCSJR+yYuU3dNnbaG7sABTcfscdLP3sM9avX8+WLVt4/fXXcTgcSJJEZWXlUdiwIByjNJ4qIudUDHO/xE9ORCcyvv0ant9tHP5X6D8m23Bf6ut5Ohn1tVCeqL2TPK1vi79w/9c9+0RlBQEi0ZiAe821i3j55Rf7q3V8b0/BqtH7w6lvOERKyrGw3xP1u79xSPLRxXRMNsfeh1QJMggSAkcznnWXP9mG3XsckcjRw5vXrfuWsWPH9izmvtmZf6nPMUdm9Eh/j9yXjz9aQkYmEomgVCqPnVOBfgW6vtQ7eP7tt9/h44+WIooid999F5dccgn5+Xmx5wmxMlf+dhFLlnx4jDLcMzfdj+jv2b271tu70p0R97tIPmAAACAASURBVAT96ysUd/+rkmPzGQVkOYgiokANIMoo1DqGjR6LFJbIycqkvrGJjz/9jD/ffj2d3nZuufnPPd7qiWfNZvlGN9OyoygPrCQcPGoY+OTP8xhakEhichK+YICAx084EsFotqLR6pARsLc7aO9yYrYmICpFdu8s5w/njmNEtomq9gg/7dzPz5WNtHS4+fi7cj7+rpypQ7P44LFrCISDZA8wEW9V88n22PEuHTYbyYnxtLW1MnxIEXrdd4AHtVpJTkYGVfsq6Gpv5LRskbpolL/uyGH3gY+5+7ZrycrP4NVnX+bQvgp+d8PvMRoNOJwuDtU3kJyaSclYBaOmTmTdzLkAXD4hmWf/eD5BtRm1GEdtfRVJiYloWn/mp4MRBl38CrW1NXj9HiJBJaOGj+FwfR1JecO484+PULmzirikDFwuBz9vLWfUyHG8+94y7r33HkLRTpKSCvFFq1GoJCStFrXWyG8uv4rK/Qf4/ofvcTicLF/2FVOmTsVlF9BodIhKmYLCHJ55+iWaW2Le/VAgREJaEk++9jSP3/0gUyeO468vPs/sOTOwtzk5fcpYXnjhBRYuuJiE9CDWhATOnLGQsdIPvLl8J983GSiv2E1aWibJSRmEnS5uWnQDbx+B+A8sHMBTT77IrNmz+XzZ20hSlOw0CwtnTiQkaynfe4D6pkZEUaSwYAAXnH0erXW1fP5N7J0VFRfjCoCvy43FpCYr4yivGjA4m2A0gOSPw6hXokkIY9Wb6WhzkJ9XQF1dLQ0NjdDNE/usg2g0ikqtJhqNotXpiESjPetfEISetW9OSOTt9xczalQZEPNUH7OOUPayNHcnBwNRPHIOtUIRO9dbIaDW67C7XWzdUsHgISWMHFdGRAoiKGSkaHfcY6/FDkd+616n3Tz+eO/rL8G0+nod+8sQ2Zd6w8p67wuyLKNSqfqt058lv/e93v/v7oNSqTzGw9ufh7SvJ7K/oyS6hbz+xtS9V3TvG4Ko6K4cux89Ood957I/6F7vMsedNx6Vevhuz1i6w3hOIrd0Gzq732/3ObNy73noLstRKHKsztF5Olr2SDtR+UhNCUlSoNEa0GgNmMrSAAmP14lOpyF3mJ6hoorOjg6uv/EObrz+BuKzsohqJIYgkZoUoXLfXiymfJITLRz2ubn15j8QDLTSUl+L3pyHrEpi1Phh+I8Y0w2pxTS4/Oi1etJSUmPrIhzE0dlORnYWVfX7yM7LJehxY1FrqWmtR1RqSc3KpXzXbrILihg4KJZNfPiYISilOBobWshKyyWgDJOVl0koKNDYWI9Kq0UZhp0/fYPb7eSMOefj63SRmTQACZGUdA1trXtITC0FbTttDbswRhJprl2LRqfGF6giJT0FnULFvl31FJZksmvPTjLSB6FTibTX7GXxX3/kunsfwZqUzr6DDTxw/0Pcdc+NFA0eBkBXV4jExFQ8HheN1Qcw6tI5eLAelGa+37SG8p/tXHvDRZw2fRSybGbuhaNpbeliy0YPRYNaGDI0nvf/8Q7nzr2eTVv3MKBsEgExSlBQcOYZZ/P6M3/jzIXnUjYqlUiogzHjslBj5JFHX0Wn0zH3nDPxRmqwGgfwwfsruOqaheQNMCKHUijI12I2a8jJvgOVxUyCZMeSFIc50UpXVxeiDO1NTWg1etyKMAMHpqLQmdi/r44XHn+Rux68gkgkwtYtlcycNQuHw0lHl42M+ETC/gBp6ckoleD2NRKJSKQkDkCp6cTeEcagT2T6jGmIqhCLl7yNQi0QdIVob3XywH33sG/vVppqQgwfMw6NRaTlcCtKVRdDh4/A7nQTn5JFxBPljpsW8daSv6IXDVhUKiaOHU9NTR02l8SaNRsYN3ooOkRa2mycO/Ny5i+cw6233cCMUWP5ZNkymus66GitZuyYUcTrzYyYMI/Hnn4FJYsYUJDLyNJhfPrFSuzBKCu/+AiLScfmrTv4y5MP0NXVjk5rprWlicSENCRlhECtieVf/50xY8YQkTS0O11csfAc5JCazNpGPv38M8Y/+wQH923A1gGvv/kwD/zpdi6aPYk9NVWMGDuSiopdoFPQWNdM4eDBsXUqgEI4NglTjLr5zsnlum4+KAixvUeS5aM86CQqSV95vC8qpzcv7M0H++O7CmJ1RSGWeVgUFKCKydP/SjDH//O8/g+Tf83L+Ne8fEplJUki9YhSWbln77+1H6m9lNU9/+a2u+lkAlG3slxfX39KmRcBkpOPehcrK/f2KLMnitc9GR0+3HySe0chuynJKafUfr9wPflYIWLpx58AcOWVV/LAA/dTWFhwnIDUesQj/aspHOz5s3fsQlpqzPvVfTzPv4MiUZlAMEzZ2HHkZcWU0XfefIWfVr6LzWOj1h6DmV9xyWVEpSiz51+KMPQ83MOuxGo4Ot6K6ka0Og2yJBPyB7FYrDQ3tyLIIEUk9lTsobammkEDBxANRzDqdaSlpuN0upk4diSLzh7L63fNo/LD+3j3nnlcctYIANZVNPLiB2sxanXY2zpBFlCrYhDflJRUln35Jbt2lvPpp1+QZDECUN3Qzv69+wk172FiZoTt7gHc9WWEkuFjueaaRUyaNImhJaN595336HJ20dBU33POa35+Fl5/B8mmdF599g1cjhgKYr9TR7BlHxGfiCx7KcgfhEEVBV8Hwy9/AYvFzPgJY5m/4BzOPvcMHn/iQR788z2sXf4RVy06n6joI6MgGafLwZ133kFhYT4PPPAAdXV1BLwR3A4nrq4IXk8Is15HwO9lcMkgsrOyAWi32UCQyM7JJDkxvuc7DgQCXH311Rw4GDsea/q0aXzz9ZfEmU0UFBSQlpbCrbfeisGgY8yk0XhCPoqHlaIyqLnk4lupqa7l4P5t6DVKbjhnND+sWsWeTT8wdexobvrDTWRmp3HDbTfEkg4BgwqHYO/ykJuby46dW4lEvZgSErj3oT9z881/YO3yr9ny/TrWLF/JZx9/wswZ02jubMF3BOqdYFSjxUlGehrbNm4k+QhkGaBhTzUWtRq9PsR9D1+PUtCBBEnJcag1sfEqhKMHpveFgHYrTCfiVaIYOwdWp9cwevRIZDmKoh87WX/w0m5Fqlvw6A2tMhqNjB079oThEt10Iq/kr4HYnoxOJS7pZJb6/oScU+1DX1hZNz/vDxbX3c/e934NnLi/Mieaw1PxSpzI0Np99Z3Xk8H8+mvnZMbYvmW746j/Ve+1RqNFlgUS4pPQxyeTkp3P0//1V5Kz8qipayYUUpJXOIxd5dUMHjoZp0dE1MSBqKO1w86Bg3Yys4t54+/vYrQaCYYFNDoLGp2FxORMMrIKqGvtxOnx09raikaU6XBUceDgehJT1Ph9HTgDMk02JzZnEKUhjv11LQhKAUFUUbH7IPUNXaiEPAQhAaeng6pDm6jeV83BqoPo1VoG5g/EZXfQbrMzrGwsaVl5dHY5sTtaaGyoxdnZibvLDWEBUQqQnjIIkyUDR8iJOxxEa00gNacYSYwnpFQxdMxoEpLiKRqQQ3pKPDk5RQwsGsHFv1mExRjHg/c/xZ13PMgD9z9GcdFIDlTuw93lwKzXsb+yAq1SJDUni7jUZAYMLmHwyBFce+3v+evrL/Dqq6/hdoVpbm5GkJJY/301y5Z9jUbvxh/RUzZ6EqdNGM2dt12NKhpk8Rt/Zc/ebai0EnZ/O2aNjwO7t5OYkI7ZksLLr/2VUeNHMmfeLDJy0ykqOB2DwcCjf7mDAUWZuJ0R1JpOAuE2qg7sJCx5cThiEN329nacTjfx8Ym4XC7i4+NRKBRotVoOt7QRDgUYPLiQK689n4H541n/QwXDh0yg9XAXmzbsxGq1oFAoaG13olGloBCjxFmyUCutdHY14/P6kSSJmkN1qJRGDLokEpMseL0+rJYEtFodP23cRFxCEt98s4KKPZVEJInGhlayMguoKK9CiooEg150BgVPPPlwLBFSwEFj0wGUmgDDR+YybmIhqelxzJk7k4qKSnRaK18sW8I11/6GF158kjXffs3fXnuWooIcpk6dTmJKIftqumhrbeX1195EpdYxdvxEfD6J8l2V5OcUcvW1N3L55dfy3HMvIEe1fPPVOlav2EhNjYP9+1vQ6SykpiUwecps9uyuwtbSxOD8fDrravlgyVIeeeQRfnftVSTEmxk3ahrjRo/jq68/Q6cXUar1BIMywYDEpo3bUYtanE5nD3IQYvJcdwhLX77xS17UvsbGX+IlvflX33v/bPzqP4sS+iX6f8rr/yJ1J1M6mQV2wmnjAdiyZeu/VQEpHVyK2RyLk1y69JN/S5t9IQ0n20zHjRsLwIoVK045CDwuLo7iI3F6n3zyaY8w3tsje6p0okROAD/8ELunUCgYMnTwKQtEx8Uscez/m47EsQ4fPqzfNjweDz9v3dbvvV+iqLOx5+/ecXHjjhzHtH37DlpaWv+ptvuSLAsIgkhUivL6azFDTFNLF4fbfahURioqKgCYP2cuaRlZJKQXYErKx1I4ivbC6QwqiCm83209gBj1E42GUYkikhSltKQYpUIkEgySFB+PSilQffAAshTF6/EQjkTp6rKjEASWf/0Vn3zyGdFolMEFGTxz8zmMKckBYP3uOlavXMWW9Zupq23q8QDIkkRxcQkerxeH00NWXCxzrisQxWJWkJuRxE7dAv5r2UEuvfwqTps4nmXLlrF3byVXXH41V11zLcUlg5kwaepRhz1hfH47HR0NTJ8+nosvmA/Atn2NHG6s56tPv0CW/ESjMlL7PoS8KVx5zR8QlQI6nY62thaUqiiiKsTzLzzF7DPGc+/9t2BO1IIyzMhRQ0hNS0SpUrB9+3Zyc/NJTc5g1cqvUWEiKyObv7/2Bhedv5AXXniOAXl5R1+WSoHP46axrhaH3UU4FEUhKCmv2N0Tyz5h/CjkaJArLr6Qrdu20NHVSV1DLXEJ8YhqBVFZQqvXsXtvBX9f/DbZeVZSMyTCET8I0N7ejkqlYtSIwfi9LbR0tKK3xGD1BfmFjBw+hqKBpciywPTpU7BYDUQlmXA0giXegt1px6TTo1WKtLY2U31oP75IbPMuGpDP1PGl1O/fwcYfPiTeHGTK6KOw4Y3ffcOHf3+V2v31XHvNnSgkmZA/SiQS5uDBWMbinNycnnjE3utUoVDEktls/4TwtqX9fuvRaBS1Wo1CAbIcJRIN9Qt36k957f692zLdrRiFw2G0Wi0Wi4WkpKSeUIH+6L9beT0VGNr/lPLazc/7E9J6PKX/Icprf3vhqSqv3UaWU6FuhMu/przG+qlSahAVaiRJwB2IoNAYUOnNxKVkMHjIcHILhhCM6igoGcW2nTVoDel4g0pcQYHMvAHkF42jur6DJ55/ibr6ehzuAIEwCEodJmsS1oRURk2aRlxKGlUH9rP5562YrXFEJRWdHR46Ov0ojQkI+gSKh48jKbuIwaNOY3BZGckZOQwsHYHWmIzaqEAWZQzmFDKzhxBnjiMjNZ1IMELVnipMehNJaRm4IyL5JWVEUXOw5hAvvPQi4XAEj8vLxh834Xa0oxSMRCU1CSlxjDptCubEdBLSC4hPHYjWEofKYMAbDMUUs+bDfPzR5zzz/Gs0He7gmaef5zeX/YHDLR3c/+BjrP12Ewlxybz80qvsrzpARlo69q4OTBYzokpJVJYIBIPMnTMPSfYyc+ZMRMGA1xvgncXLmXz6AtKz0ohP0dPeFSQxJZOln36I09nED2tX8rfXXmT0qFLSsxO475E/kptuIiM1CY1Kx/oNW1l09RXsP1jBsOFFiCIIkoVXX32ZhsN7qK3bh1plwh/wIaElJ38IKk0CVqsFnU5DfHw8JpMZvz+A1+vlp59+6uFZySmpxFnMqJVRRo4tQZIkvv7mc7SGCIGwjbNmTsKo1dBQX8sNN9yGVp+Kx+tAiqhJSswgHPERCkkkJCTFDIEaM4KsQxRlVq5YTdXeg8iyTGdHFyhEbrntdgYPGYZE7DjF1157k0FFJRgMJrQ6FU5XB16fI5ZHRTaSlTkQnzdMS0sbqSnpDCzK4bXXXyYlOY2bb7oDt7cDjQ5uu/1GWlubCPs9qDVK1Bo9zTY3q9b+zML5CzAYjIgKDe3tTl557W0mjDudUcNHsmrld1x59fXYnS70hiS2/lxJdU0zn33xLW22AC5nAI1K4ImnX+JQTQN33HYzyQlWrHojK5Yv59abr6dseCm7d+3id4tuQoHISy8+yw/fr+GjT5eSmprJO4s/IisjhwSLmYKCgmOMVwqFAlEU/0eV17685F8xjP0/5bUP/Ro4bu86v7T5/XfR0efFLkEQMB1RHh1OB9D/B3bJJRej08UyBt58820nxYlLkoTD4Til/iiVSq747WUAvP/eP47Lbtu3L93JnU40tv5g3P29m+52r7jicgD27q3ijTfePKFVvS+k+MorrwTg+++/56OPPj6p5+Bkfd64cRPr12847vdAIMCLL8bg2WecOb3HAnmcUNPHq9rfN9X9d/fvFkvsfVdU7O63T48/9gRut7vfe8cImL8A9+jtyV6wYB5ms5lIJMJdd959XF/79Rj3ob5jFxVKJBkiiGQW5DH2SPKqleureP/DrwEYUFBI2ahheP0+FIKV1sNBTOZ8hhVN5KpL5gGw/oCLL5etItBRjxT14/HasdmakaUgeo2I225DVKlJirfgdtjRKFWkZWSSkGCh+XA9c2aeydy5Z6NSqcnKyqSr00FbayyWW2/QU1hUxKixE2ix2VGpY55Xj89HY0sL6enZyIJASU4cGYkxReuZbw7QknoBD73wDlnZGTS3NLB69Ursjg6CIT/5uXnodBoW/e56vv1hZw8kW6/XY+/ycf3NV1MytJALLzwbrVZDNCrxp6+6OG9WGSAiBzuQumrRlV3K559/ytq1q/F6nTz22JNEo2E8HhcWSxy1tbWcPm0qianpKKIKDlbv5bnnniYpKYEhQ4bw2KN/YeumjQwekktDbSuiEGXe3NnccestnL9wPh98uIRxY2PGof969WXWrlzB5ZdczJo1azl48BCPPfYXnn7uaQCysjKZMWcKu8u38uwjD5OankJlVQWlw4ag0SlZcN5CDu6rZ8SQ8aQmpaMyySCE6TjcglIlIisk3D4b1159JQopQsWOjcyeM4/lK1cAcO7M2djtNj5eugRJinD33feiURsI+iO4nR6i4Qg+r5NXX3oCv6eTBKuFg4fqeffDmDJ50ZxpaBUCToeHnCQFe8u/R6XyMWFMzAD03eZdjCkrICkuDZM6mc7WOrRKFSu+Wc2hQ7EjdWbPnn0Mf+r97QuCQNTZjuw6GtveV8GVJIlIJIQkR1CplAjC8cpeX4Wor9ete1123xOE2BFZOp2OcDh8zP1fEk5Otm8dAxM7CfVVHE8mGHXPQ99x9pc8qj8lvm//e7fRmwd1K219k4L0Lts9xt7XMQbDk/Cxk8Gq+yrR/Rkg+lOge3vzT1Sm97vtLtvtLT3ROzlVBbr3d9y7zydT9PvyfUmOHJlHAVAiCgbUWhVRosiCREQKo9CIaE3xpGQNIjErn7FTp2FNzyK9YBDjps5AbU4jKSePURMnEUVgxJhRZOZmYk20otarUagVCCoBs9WCKT6RmfMuYMqceWTkj2Po6JkUjzyD4pGnk5NXhNGSiFJrRFDqCEUUaC3pBNAgq42YklLwRTvRmbXojamolFmoDAZ8kQhRUUHJ8GEotFoM5iTCopkOL1gTU5k882Jeev0DMvJLsCQkc/b88xCUerbv2kBqioXG2sNoDYnUNrSh0hrwBP0YDEZkVFjiM/BFjHR61EyeNpXf3XQzHS4va1avwuFy8sP6b/nT/XfwzPNPseCCRSz9fDVKbTyC2ojN4QVJRoGA2+lCKYq8s3gJ5jgFVks8lRVNhENRAgGZw631xCUrsZrzSU9LQKdXkZNfQIfTR05uLhdedBHRSJC6g3tZtnQJOmsyv7/uViacNplxY8sw63Xce/fNtDXXoFPDwUPlPPjn+yj4/9g77zA5imvR/7p7enLYnc1Bu9og7SonBJJQBiSSAIOQRBQ5Y4TB5pJMMMlgsMGAwYBJJucscpAJykhCWVptzmly7O73x2hWs7MzKwlz7/t83zvft9/2dHedOlVddU6dUKcqhmG3Z2AwShikDHSCk9qaHiIYae9oJqqEcLlctLd1EvBHyM7Oxul0YrVaMRqNmKwWwsEQrY0tyAYjRnOU/7rxElzeOsxWaGyqpbmpgZLSPB5/8hHe/eg9MjNyqG/cgUaI3JwijHonvb0unNlmfMF2QmEPNquTY485iYkTJ9LV08SkQw8jv7CY7Tt2IekNRFX4/vtvOf30xfj8HtzuXiIRhaysTDIzMykuGoaAkaVnXcK7b3/Oc0+/zdpVO4lGw/z974+xbv1q3O4ehhSXYDE72PzTLu79418589yr+fzLNegNDkKBMFMOO4RzzzyHDHsWP27czg+rN1LX1MqKFV/zz2eepHpkFZdf9RtKSisIhlTuuvuPXPO7K7jlzj9gtDjYU9dMMOTj0ksvpbKqnAcff4jq8eNw5A/hrjtv5uijZ7Jq5Uq2ba7lbw8/zoqvv2La1MkcM+8YRo4bTvXoESxbtozjjpkPaoCtW7emlB+p+OmBGDdTeU3T8Z50a8FE2ZX8fiJ9ybQk8+Z07/0c+I9VXv83wKhRIwFYvvyTtGGs+fl53HHnbQB89OFyjj1mAd99932/LI/btm3nL395iAnjJ/PhBx8dcP033PBflFeUE41GWXD8STz4l7/S0bFvEedyufjk4085//yLOGLuvINu32ADdNasWSxceAoAv/nNNfz+97f0hetqmkZLSwvPPvssF198Sb9yF1xwPpMnx5SlCy+8iFtvvY3Gxsa+54FAgBUrVvCb31zDmDGpPZwADoeD0087k7fefLvPc7t9+3ZOPvkUtm/fgSRJ3HzzjQfd5sFg3rxYgqN//OMfPPnkU31hla2trVx77e+4//4/k5WV1a/Mv2tkcTgc3HnXHwB47bU3OHXhEtav/7HveU9PDx99tJxTFy7uS/oVhwGe5L7rvQxMAElvYMnpsezZH3/2Ke8sXw7A9OmHI+gl8goKUUMSyy67nmDQQk+bgWzZwMhhMe/rr19u5k/Pf017Uz0GvYAsC7i9Lt787Afue30tJ9z6Hs1NTbhdLhoa6vnV7/7GDU98yltfrMYbDODMzMLr9dDt9vDk+2up74l57GaOK6PX6yZ/yBCOmn8Mmc5YvzqznEw5/HDGT5jAlGlTOPa4efxp2YkIAqyuC3LTY69y7Y23MG/ekeTn57Nz104WnX4WL7zzITqTxBVXXYbBaOHuPz5MYG8Cs3A4SknxCJZdcxdPPP02uQUjuPyyKwD4/KduFv3hLf61voFw7XeIIxaArYBdu3fz5jtvUVpZybhxkxAECaczm927aimpHEbV6IlUjxjD9JlHMGJEFTNnTScajR2zU1lZyU+b11NZUcjYsePR1BAGSce2LVt48/U3WLp0KbffcSuSJPHTli0898arnLZkMScsOInsnFy6XC4+/zKWxOjm31+PKoYZN2YU7739Fn/564McOX8eJRXDycgrY/ueer7/chXrvt/AfXfcTzRqQK+VcNvtr/Bu0xh6hp2PJId56h9PYLM7+HblOu7+091omsbQwiGc9asT+eCjN5k1expmsxlNlWht6eGhh/7G8o8+p62xCVkTOOG4uaz4+nNuu+MOLrn6alRVZf4RMzl61iR6Orupa+xh06oaJoyejUY2d/zhTvR6mbqWXs6+8jbWb/wYUd5Nc+NuXnzxBS67PNb/w4cP46wzzzigubI/oZrq0YEoGukg+WiCVEpgui0Vg9EZPxrll4LBQlgVRfkfOdInXT8fiPHtQHDHjRSqqvYL2UuuKzGrcyoa9rcIHAz+3SN9kjM4D9wnlxr20SugqbHz7EUtiqhGETUFCQVNi6IBgiwRVhV0BgFkhSgagmRCE81EpQghJURUjRAKR4moYSJqGFVQ+v5ENBAlZLODqGzGmGHDqwVR9CGCkgdBA6vZiMNqw24148zIxGzOorS0CqvdRlaOk4Lcieh0uZQMLcKWpVFcUUbFyGqCmoZkNtPW04szO5ch5VUMGzkWk9lGc5eCyVnMpm016K1mDBYzRlsWEw6p4KMPXiHUE8TV5aeooASv24XFJJFls6NDx09ba8kpGE5RxURKSovIyc9j1pzZPPvMk8w+YipRzcshh43m+1Vf8eyLb7KztpXC0mFoOjOC3kp3SxtSVCXQ60anaPxrxXfsrtnC/PlHo5dteL1+Tj97CSPGFjHziMm4es001W1FJyoEIypTZx3D3GOOIzsvD1QBWYXpkw7FHdbz8BMv8MADD7D5p1VsWruOCaNH0ly3i88++oCJhxaTk5NFwCdiNWfh8XbS2l6DM9dIRq4eY0YASYoZYILBIJIkYzCYaGtro7y8nDVr1hAOh9lVsxu/x0eOMw8wIwomiosqKMirJMM2lLysUeTn5NLQuAfZEGXxkpPwecNUDs+nq6eBhx58nEhYIDMzE0UNUt+wA70pTCio4fUE0DSNkqE5ZGRk4Av4+fKbFSiqis8fpLAoB0eGCbNFJhT2YjRYiEbAaLCgKXrMNj9PPn0vi5Ycw2+vu4KsbDseT4DFixdTWjqEN996Gaslmx++28Bzz7zGkkXnc9Kii5gx+wR6XX7am+vJcuh49umn6WjvwmiycONNt3DDTddz5NwZeL3dRCJh3n3/He76472sWruGiBri8acexO3v4TfXXs369esJ+gO0dzQiyioVI6rQLFbqerw0Nuzkn88/xZTDpjGkaBjzjpzD8Kpy1q1Zw5JFpzNl+iSaW+oJhgO89eZrPPXEozgcjr61YfI8hX/PC3pgfCA1n/05UT3p+OQvAf+xCZt+KTgwD+7+Plp/K8dge6gS3WZnnXUmf/nzQ+zetZvKiipycrL7Qsi++PIziouLALjivsRUlAAAIABJREFUissJhcLcfNMtfPXVN3w1+yj0ej02mw23291P2B7MAHM6nXz44XssOnUJGzdu4rrrrue6664nIyMDVVX7KTMVlRX7xT9YXwp7vc3xJ5qm8be/PUokEuGdd97l/vsf4P77H8ButxMKhfpShY8ZM6Yffr1ez6uvvso555zD119/w7333se9996H3W5HFEVcLldf/YlJlvoljwJuuOE6nnrqac4442wMBgNGY2yvQbyeBx/6M5MnH9K3YBnQbmH/fR1vczwR1LJly3jzzbfZvn07l19+BVde+WvsdnsfzRdceD6hYJDnn3+hD0c0Gu0LGTkQ6OvnBI/JRRddQE93N7fe+gfef/8D3n//A0wmEzqdrp+nN76vQiO+mO6fNKYPNCWWiEQFVYOFCxdy3e9upLOrG7q6EUWRG26+nozcnD6PypdrP2Pnpp+w5hiZMmcu57hbeW/FFlas/JGHPm/noc8/xmbUIYginkCY+BDSSQI6nUok5Ka0tBS/P8DrXzXxOnDz82uwmfUgCHh8+/b8Th1RwKQhFhxmM3U7NrBp02Z83n3HFsm6MK1tXYwYUY4gqhwxcRh/OaOS371Sy8q161lywUXodBKyJBEIhXnm3Y8BKD3hVCRDBiHCvPDSX5k6Yw7Qg042oWkKnq46nIYoke5Gbrnuahw2M7fdcRff7/Kw8KZ/opcErPYteLx/7jdnu9raqa/dgdsfYtSoqUR9nX2KUkFhIXvqOxhWWYUkwvkXXcFjT76MGK7jqafeoKiwhOOOW4BYmMGcucfR291O9fgKTFYT9915B9dcfwMffByjv3xkKcFgsG9+/PrSS5l16DRcbSq5eUV8vXELC5trWHrBpX20FRTlM35iFUOHGrn7vhvxtdWyp6aepq5mLr4uZtwxGg0ICH0ZnQGWnLqQ++68BVdXBFkw8+qbr3HBr6/k6muWYTWYWLl+LZ98/iUABoMBnU7C59uXYfv0xafwp9tvBk0hqIkMU34kLGaTkVeAVYU9rV386YYz+O1dL/Dt6i0cddISMhwOfH5/X99WVJTz+uuvoTcY+jRPLWEx36cs9uXQGTyJjoBuL/uW2JdMRyXZBhzDQ98YTuaLfdZron0vCYKEpsYS6iTym0RvY+Le2eT6ksvsTxFKVNgSaUtlRR9s0ZR8VEyi9/hAldpE72G6eg5k8ZTodYxDcn8lH9cgxuLBY/UmfK84/YmRP/GjixL7JdmLn+zRTryf/I1SKcGDnn+rJHjm4zQnJGtK9IrodHoURQNE9iX7iv/vnyxLEOJRTwrsTTaGGjNYqNreoGJNh0ZsXsmCiBoOIyOApgAKCCAJ+j68AiAix6pKEL0qKqAiqAqCoqCJIkbJCFGQEBF0CioCOqsVSZKIRAKxsEndvr3AmhbEaIWopgdRD9GYrC8qjm0BqaoeRRgFXaz1GDMyKJJlZH2UOXOnoSgK0WgUsw40xcIpZ1yHu6cXW04uO9euZcLQcoLBIDWtHVitOoZWDicUUTGZI3i8BnQWHSUFsXB/UZL6krqFw2GmzBpFb28v2QUZCIKAxWHHLMSW2RWWQ2ltbeWMpefgj4Roc3VhyxHJ1PIwmCK07a5h5tjD+Hbly1SOmsHjj77CsUdPp7uzB1fQTfnQUipKClAiXrra6zGJ7TQ0t6OGI8iKh8pxI3nl5Q9Zu2EjJ5x0HD0BL4IcIBhS0YkaIZ+CaDLT1uonM9NJV30QQW+jrTWIFo5SXGxDrwtgFK34fL0MG16GRTahj4YhHCIoiuidDiLh5phXXNAR8nZjtUh8+e3XzJw6C0k20NjeSFFuEf7eACG3yBmnnIAkuOlsbScnI5tsey41W1uQJT1llRWEFRV0Q3DmCrQ0ubj2xmvYvHkdE8ZNp7lzJ9nZ2WzZvoXy8nLqamuQZRlRFNEpvQRVE+FIlKbmdoqL9VRXV+MJBqiSTdTWb6G100WO3cn4ieOwOaysWPE9rz//D2ZMnch77zzPnCMPZ+XaDRx53Hx6fR7uuOs+LrxoGT1trWxsaOSNt95k2TVXseCEeRw2cQqbNmyitb6eKy+4DFW28NBf/sgzzzzPvKOO46WX32TZsmsxY8Lb1kGZ00Rvdg6HHXY+Tz37LBPHz2Dx0nNYt3EnD/zxTqZMrEJVLWzd8i8KshqYM208xUVHs2pLJwaDgagWQkRDSclG+/PKRN4nimLsfGn68xNJFfumfzx5YB83EIQBWk4iD+yTPVp/OZacywFiTo04T9LpdH3sph//1v49wy+AdOutt/7swv+ToGrRW/9tHAlW0/8u60Xyh0yGyO7YuZKCwUJOWTVz586hvWE3vV1ddPe66OnpxeVycf44M5a2TURrViFXHMq0aVNZvGQRQsdu/H4//kAQj9eH1aRn5NB8Fs2ewJ3/dQXHnnZObNC52wl+8zQ//vAtH/6wBbtB5MIxeqI1q4jWrELKGYpgsJCZmcGZU4ZSZtOIKCq+QAiXx4emRCnKzmDmxBFce/PvufvuOzCbzQQ/e4RozWqiNau558XPAFg8ykqxfzeC3oxojyVVUpo2E171Gi+8/yUN7b1MKzYwxdqFsmcNyp7V6MoPRafTsXDhKYyz+Qj6vXj8ob1tkikvyOLkGWO55oLFlIw+tK9NkW+fwdixhcXThjG2sghFUfEGQ3i8fqJKlLy8fKZOncqlC4/i/vOPxNy2EWXP6r31ruFvb3yB2xfk1EULueeeOxEQaN69jR63B5vZyOzxlTx69akcXWlB2bMaQW9GsOfEQsQaN3PXQ0/G2jzSQpFvV19fRGtibQJ4/vl/Ul9Xz9RiA1MsXX19rmveyKnTqokYHLR7gvi8PswmI5MqC7ll6dEsO3oU733yNT/taWFUjp6j8/xIOWWgNwPw3GOPUN/SzrRiI1OtXf3qfmH59zR0+Zg5cwYzZkwn9PnfUGvXENm9isjuVRxWILNg6uhYf0UFPL4AgiBQWpzPnLFDueGMoxghtvR9H2XPaqI1a9CVT+4bu+GVrxLZ9nW/epU9q9G3bmZjo6vv2Jk5Mw/n3Co1hqcmhi+06wfMvTXI3dvJHTkFryIye2olx4wfSdjrwhcM4QmEURSVXIeJiWVOLp4/mjNmFJLrtOPMzsTo9XJIeR5FTjMGvQwIeANhQmGF3Awz0ydUcM3p0zl9UhEj8zIxKSGCXZ0cMrKC5atr2drkYmSemXmHlePubmPb5g0o7W3YtTBj86ycctRUAn4/Hn+IQCgWSpfjtJFt1XHhr+Zy6bQCqh1BtOZNyO3bePytL3H7gxxdaeGll9/ggiuuYMKEsUR3f4tQ8y8OKzRyysyxCKEuAsEwvoiG1xfAarMxrLISURF45upTWTDahq5tJ/nhNr579QEMHdt44bO1uP1BCgvy+eydb9n29RvMyHJx/IQCjB0/ojVvpNoRZpglgHfnCrZ5TTTVN/HiCy/wq2oZdedKxmZGqXBIyCYzvd4A/kAQh8VEeUkFf/rD9Sz91QJM2z9E376VPSve5MjqTCy9O1h6xHgefu0TfKEIbpebhx/4K0LjD4h1P9C1+V9UWgJkylEMBj3hqEIgGCaiqJQUF3HkrJncueRwjq00kemrJ7DzWw4tlVh4eBnmnu18/vUqLFmVDCnOQ/H1EPT2Eo5EiUSi5DnMzJ80nHsunM8Zh+ZjLhqCWYri8njQtn1JTrgdqbMGqbuOAsFDlQXmTShHM2fRG1Do7XWh18uMLMnlogWH89fLF5Djr0XZswqlNjZWpewyRKMVQRCIbP2S6KYP+8a3VLZvrKfi63FhHpMhg+cqgH3hwQOEewoZlKjUJO5vSidbUoWBJtY7uAE1/ZaOVIrzYHiS27i/OtLRki70OFUfJNefCkf83XShbMne7sS+SyybiCvd90tWZhNxJCvBiXUkvnMg65FUyb2Sv1eqsPGBfdi/Lw6MhuRn/773JJ2RIjHqINW4SC4XV0ZT4Y1703U63V5lOJLwHQQEUUQQRXQGAwgipaWlqKqKLMs4nU4MRiP6vcZtWa/HarVi3atYS3sVVk3TCIVCffvqE0PpZVlG04mokoBk1JOZk41k0uPIyWZI8RC2rt9E2BvA4shHlDzU1DcxafIJrNtcxz13P86i006neuREnv/HS5xx5sl0eBowWLKoGDGXUDjKypXrOf7YBegNVtpb9uAN1FFamoXNnEko5MBs0mjr2El+Xg5OZzHoc3Dasgj4W9GrUSxWA0a9HovdQVgQ6HK5ETUJe4YVk9mMqoIjOwfJoCcQ8KKGfej0GWiaDlUFo8EIgkhRcSFKJIjPH8CemYUsiNx51z3MO+pIerw9WK2ZfPnlCmSdhaeefJ7jjz8JuzNm7KjZU0uOM5fOjjpOPnExxx57FEWFRWiKDoPJQCgYJS+3EEGQcblcOJ1Oent7kSQJk8mOqgrs3LaLzIwsLCYbkaiE2WDG6bTR2NxDcWEWKkEsVgNz584it6iYefNnM7y6itYONzfdch+//c0y9HoD06fP4J//fI53332Nq5ZdQWaWA2dWLoFAhMcefJT7H3iUCy65go3btlJWWs2pC0/j6quXMWH8JM674CweevABXK5O0BTWrltFXn4RBfnFjJ94GM8//xIPP/IAi089mbaWOs477yxknR6LRU/18GGEwwHqGhoYN2k6mg5EUUJCiGWqT5jjseuBe1kTk9rFp2s/Xpo8hw/QGJjI3+PZ0+MyJpmXxS72/Y4ZB1PjT+SbkiTdNigxqcr/Ui7c/26IKsF+hCYyqIMRkv+3wf9JLMGNPGIWuuLRAEQbfyKy9au0ZUxHXdF3HfrhFVRP6rNHpaKR6EfOBUB1txNa+WrfM4HEtNQahsMW9Sma4S1fojRtTolTtOVgmLK47/dgmZJ1VbOQikfFvG1Nm1G2fzOwz/f+1M+9vG/gh1a+jObp3Eto4vsCUtFIpOGzEUWRaG8r0TWvp3WEy4ec2tem6LYvUZoTsyjH8I497x4a2nt57PFHOfvsM2P1f/5oEqY4o4i1SSwaGVNem7YQ3fZV2vbHv5OmaYRWvorW9536Exz7TnOAgd8pGQyHLQJrNgCRrV+hNO1rk9DHoCDavhnNosN+0kOoqkr4i7+lWbiBXB37ToIgEG3cvHfs9fe89NV/xGV998KrXtvbpoELGalwJLoRs2M4e1uJrnljQFs0QEDEMPlURKuD2s0fY3W7MfvaiYb9KBEVnb8ZLeQhhJGgohGx2pB1ApoWJSOqoSgqiqphMpvxeHwIAphNJqJmCwZnFj5fAH/rHjJlA729vRgMBgx6A/5AEJvNSiQSZWOzi9IiJ3W1u3EIGoXZdsJhhfquILJORNIZsDqy+XzdZnRDhpFhlDBFglQ59bi9AUaPnYyGzI4d2xk+ohINEXncKShmK2YDdK15D727g7r6ZmxWMzbRjehuRMofhVsyY59yPv945kXOPe88vJ8+iN1hQVNjczQSCeHqddHQ1MyEk6/EZ3DQ0enCHqgh072DHpcbR6aTbVt2MWJENZIk4vV6EKddyKvPv071sCrGWfbgaanBkeFAb9DvTWwBGU4nzQEz+ZOOQ9UF0SvtuL5fzrp1Gxk5ahROZybhSIAVK36gsrIC4/jjWL21k7NOO4tnbl/M6AI7w4eP4uNPljN79izkUDeCKBKylxKuPhYl0sEbL73DyUNF2ttaGTKkGINepq6+jqHl5ehkAyvbTYyYthDJGEVs30btFy/hcFjRGy0o0SCZDjOgEQyF6MnJRFUEIpZiilx1mDQBr9dDMBgir7AIJRRCBUzlkxCGz0WWdIQ6mohueDm2J529FuaE4ZrIIyJbv0Bt2dr3TD/nsrTzcN+ci8+PgXtAE2Ewz2eiUpWo2CR6K1N5U1NBOk/s/sKzUil0yUpoctvSWcqTZXEq3PH7SsJRRKnoTfQaJyuPcVyJR+oM1rZUHoLE+/Fn6RSiVP2Uql9SQXLd8evE5/vrzzjNyfuN49eJfZCshCd7TPpD6uORBldekz3C/z2h4qn6Nt043l90Qap+T8Kwz0sESNq+KARBSPBMDRaNsdeIFY+QSlWXlqJbVQEkBPRRiASCNHV0oCm9NDW2MnzkFNo7a8nPLiMUbubTjz/hqBlH09iyheISB12dbqqHT2L1j59RVpxPht2Byxsk5A6jSSF27qrDYioG0cD4SdUIoorHG8XvB6PdgNmgUl+3hoKsUkRjLnrZQkSTiCgRPB4XmfY8Orta+yLXanfXMPGwQ3C7ezFIIpaMItSID1dPJzl5BaiiSE9XK9mZVnburqWkfAwhVw82Rxa+gJdA0I1Rb+aD9z9i/vzjsFkz6O1x48yT2b1zFxVlZciint3139PW7Kd4SD5fffUNFmMuxyw4kVAoxObNmxk5ciThSJDs7GzC4TCRSARRkpEkCVdnN5FIhOUffcQdd/2Fzz/5AJ3Bi9FSzDeff8KJJx1LKBSgsaEVmzOfRx68hz/cclPsmKPb76erpY65c+Zx5llL0OtFiguyWbX6W0aNGcnu3R2s+NcqhhRmM33GfE486STMVjPXXXMTH3/yHmecuYj8vEK6e7u4847b+fP992I0SGzatIGRYyewcuUGRo+ZiM6gJ+Tz0FC7g8KCXOyOTHZt3UFUiaDX61CUCNt3bOXoE0/FnpeLpNMhCzo0KRVfFfsZUxPnROxi4KATkryd8XGZbt6nMraJDJwTcQNRfHtJHG9fBKQopeTnibxKluWD9ib+f+X1/xL8crQk40k9BhIZ/S9Vd7rwssQQhnioFcRD7/aeH5qwiOmXlVEcuGBRlf6LgIPxmvdN1r1JVqqrRlNfX8/f//43zjzrjJTvJi/WUnk7kmlM7pd+75C0ZyxFwpd0OBIXtIO943n7KgBsJz3Y54VIVS7ZgpdomUtXJnGhlcqqHw83TqQ3leVfIwyajIgEKBiUCC09PYSVKHlWOzpZo8vtQtv4IuqWt1H0mfTKhdTUNTO8YijtLc3YMrIoKikFnQ6vJ4DZZsdk1LN713YsZis6SY+Alx3bdzJ0aDnr1v/I5MnjyMwoRBWCRKMqO7e30NOxh/Fjq9BCnRh6duMqmsm6H9dx2OEzWbu9jdFTz+WIefMpG+rk9t9dwaP33oPRWsDQYaV4AkEsdif2zGp+ffNlCIYswgpYZZFwyIXL1YLFNhRNcBKNNCP+8DDh7e8gVh2B+fArsVsq+fvTTzNt1qHc8vs7ePa5pwl4O1j97XquuPhGnvnHI+QUDCUn34HRGGBHTRvDKwoRxTCS0UpEM+LvCTLpkAls376ZqBKmob6J9oZOnnz8KW67+3a6WrdjslsYUlmKARs1W+twZBeil7vp7G0np3A4UrQNrxueffY9elw9XPHrSxGI0tzuIzsrg8barfzpL49TUlDMb687F1tmJts3NfDhR+9w7rlnYd/0MA0NTVSe+xL+qI7333mR5x57gedfe4MrL7uU7CwHv//977j0oot55oXnsWbn0tnWhaTCv77/joW/OpmP3vua3DwzxgwrQqSH5tqf+HT511x00a8pzPbS09lD1vDDsTjy8UUUwu5uervaMJotbPxxOzPmz0EwxDyVsiAiqEZUwb830YyEXugvOFMK+qT5tD+IzQNpwBxMhH9XeU1VJhX8UsprMq9L1bbBlK1E3nywymsyf0lUXlMpbgcSEp1YJjFMOLntfR6FJFk0mIL6SyiviqL0k42p6E/Ek3zf7/djMpkGrTc9/H/ldS8GNAGiaKgC6BPCsjVN26/yqmlan0KQuBBPpA9Sr8hUAQRZB+HY1gFBiyKLZrq6e4iIESyambqaVmSDh+//tYKSoXlUlpdhM+pobdmN191KTlEVetFPb3cnRWVj2bFrF2VDq7DYs6ivb0QUOjAZsvH4RCqrR9DW3kjtzloOmzKets7daBEnjoJ8fL4QJp0en6+LrGwHwYiVaDSKXq8jFPYT6Oggd2gpIU1j+09bkc0OqsoKcPe0YrBYEYwWon4/Jr1GU0sH+cUjiXp7MVsziBCltb2RnEwnjY3N5OYUMH/ecXz11TcYrToCnh5EouzZvY3q6uHcfMN9XHrZRQT8YcqHjqOldzeSJNHQ0MCYMWNi3khJIhAIxIwFOhGdTkdbYzOSJGG32vAGoLujiSFDrSiCg5uuvZnbbr+Jiy66iEWLTuOkE0/G1dOEQaewfuNWBJ2FjtZeli27hptuvo533n2VZ5/6e2yPrdkAZPDhh18xYmwJw8vH8usrruKaq69iwQmLuP2O6zlsynh0kgGvFzzuHrZu3sBPm9Zzww3XI5llgn6BbpefRYtP4e7b7+Th++/mjjtvY1d9M96Obmw2GxMmTcQb8LJr1y7OOv9swpKAqknI6NB06gDlVVUHRnzExy6ASoooj19AeUUdOD/TKa/xd0QGyqP/p5XXREhlUU0F+xN4+wu1+mUhddjWz4V9ffAzyqgp2nwQClby7zjexLOpEuuM9/OBhrYNUCbVFCF1ojZggZPq2J6q4aP6lNez9npeU9GWDtLh7YcnWVkltUdiMIjv0Y23OXGvVuL9vvddjWhoSBklKRdniX2ZaoGaeD1YG1OFcsUuxL6yiqL0fY/4AiNxP1xfWUGjYdcOZESy8ovxdLfjdGZQU1dDd1MD+e5VGOuX0xWU8RmH8s1333PiiSdis2cg683oDBZ0qofV69czbtJEREXju69WkJ1XzJBiGzW791A1cjiu7m5s1lzWrtnMqLGlWGwydbVNFOXICM3bCOWVsavTQGa+G5UJWHKGYrOHeemF9ygfOobNP66mengB7V1uTBm51NXVMXniOKbOPBZX1EBx+Sj8IQgFggh6EYvDirfDzzWX/oZH7l5C4JOb0JcdTrjuB5qD2fzmuW60jCwuuGgxixaehj/YjoARTdXx4/rNmGUTZouBqqoKTBYj7777ITNmHI4/7EVv1GEwG9izqQ6zyU5XdwuODDOP/OkJVq9eSabTxsUXX8iIYVkgSIgGO1HBzCOPPQFCmCElhZx91rkImgnZ1IbVmk9YCXLp0kuoHDKWKXPn4vN6OOKIyXjcYWLHw4QQBIm1q7cg6N2MHj2a4qIheJffgKKoNAxZyvvvfcqC4xby2mtv8dH772E0SVx/w3WccPypHDI5l+9Xrqex2YU9M5tde2oYM7KKnXVtRIIhqkuL0Wsd/PnBv1JYWsWEydMJRxUMokJOYRHZBQVIBj0edy/RYIC25mZkm5EhQ2LnJMdD9g72vOd9Yz+FtyRpvibzusQ5kDyukz2YB6IkpPN2pqr/QOTdgfKbUCiE2WxOe/xPHA4kmVDyO+m8nenoT6W8pjMaJpdJxaMG824mQir8gxn+En+n28eayGfTKZQDjJwpvnmy8hvH7/P5MJlMfWGCyfQOprym80QfjDI72NxIbm//54MbB+L7c/uPl/19P2lAaHa8zL7fqQwFqaMcktuYqn37+lBKKnPgC7B0ctXv99PR4ePF514jL8MBdDJ92qF0tLcwrLwCTRHYuH4rh86cQFR1IQomEL1EIyYkUSMYqkdU7egduQhhNzu3bSYruxyjvZgMu0hP6xpQHGAtp6OrE787gNOWSU5xNiZrbK+0zmpDVFVUfwBXuA2TIRNJNKOTo2ialZ6eLnQ6EZPZiN/vx2o1o5f3jkcxStAfxWg04vV60ev1qFoIUVJobW3GoLdi1GeC1oPRZMIfjGKxZqIEfDHj8s7dFOQXIct6nHk5hPzdBAIBbFlODJoZTS+iqlEMgoQnFCIYDGIwGPqOINuwfgNVVZVYbRkoqpFAoANBA5vZSktTK7l2jZo9Tdgys1h8xul8/NlH+P063nrtJY6YcSwbN37P/IXHoYTCmHV6XN1e2js7yczJQvF5eO2t9zju5NM579yLuOrKSxhamonP00Zu7hi279iM05nBmNGTWb1yE4dPq8bb3YMiw5pdQa46fSGffPYeTz/9BEuXno9ks/DBO+9w4nFH88HbbzBz6jRGzjqcoBqN7esVxFgEUZLzID5PkpXWdONMVVU0YaBs6redAaHfOlNRlAEydTCFN51zKT4l+s1pqT9v0OsOXnn9X7Hn9ZdQOJMX9f9p8HPo7iuTKq7lIJhwMsQFbKoslYMt6pIheY9PIr0DPR2pPQnJZR/+66O4XC4WLDiecePGpiwzGF3pvIr98DBwkXLwY6t/HyUvhOKLvDhI5gwEo2MATQP7aZ+HIR1N6foukY6B0J9OQUy9AOxHi6wjL8vJ1ZddASGVb79exT+ffQ4DItu27OHjVW2MmH8FXTWrKDc2U1aYRVtXL+iMeH0eLBYTm9b+wNDSIkxGCXd3GwFvF1ZrhKDPi0FvRdCBUW/GF2jFnuGnu70FV0cPqqceR6QH+7gjaVO70PQKJUUTsWR6kWWFujoPPneQERXDWLP2O3rd3cydeyJRTWbVD6uxm61UjB6GOxDGas/C7w0S9Qs8cO/9DC8bhsNgY9vGLVT3/BO5eAJybjWCyUDX7o1cMMfG2Nm/YuqRC9iwbgMFheWEghpdnb243W42b9rAihUrGDNmDM88/TR6zcyyK69m7uwj2b1jNya9gQ3rN2KzZXDmGWdywQXnc9KS+Sw5azHTZ8+itqmZ+ppWxo2bRk1tB6+9/gFffLaC999+haElBbh6OjAZRDatbyEUVMjNKeCImTOZNeMQOrq6+e7bldjsRiwWOzqdTGFRIT3dvYweMxpfIEBGRjavvPIGBeEdWK12HnxzB9dddx2KFuHoY4/klVfe4A933s7Hn3xMR1cnl1/6Oz757FsuveQaurq7WXTqyfh9YfKybYQ8zdTt+J5ml4+lF1/C6IkTUWUdJWVlmI0GwooCgoDX70PQJGxmO2ajBWdOLKxKEIR+idl+Hv9OXWZ/SlM65SiVwS5V2cS/n6s4pIKUoYtpeK4sy7S1tWGxWAbFeSD9mqqd6RT1dG1P5MHJobCD1Zuu7gOlOzEfRjplN9U3SjYEJvPlZK/I/vhuMiTKm8SyoigSehPcAAAgAElEQVSmPBc3/pcqv0fyvf2NuQMZ/6nakqhQD3w+uMIen4uJe6lTGfr74xgY+p2MVtNS1ZXaoJvcxnQyNPYsWdYfeF6VVHJVFGNneupkPU0NjWQ5M5g3fw4GfR6zZ89nxIixuNx+Hn/iGXRyEzlZDt59fQV/uvtRfrXkSPbs7KWjrYt77rmTyYfOQxR0ZGfnYbU58fkDyPhprK+lu7eb4vJR2Bx2QoEQAW8A2Sgj62WiERWT2UBneztBf4jMrFhocSAQRNMk1KiCxWKirbUFZ2YGBr2MwWgkLu5VNYIk6vb2hcry5R9RUVmGq7cXvWzE6cxh8+Yt5Djz6O0Nkp1TQE+PC2dmNrLeRG1tI3n5RWRk5qBoYbo72snIyARRTyjgRpQyUKIiHR070BscGA1GwuEIVosVRVEpLCxEp5PZtGkLVnsGr778AtOmTaOlqZmRI0ex+seNnHbmubQ0d1KSX0TA66KopBBB8rN16w6WnLmI7Rs20dHagd5so8vtQmfQk5VZwO7ddZSWDcNisfPYg3/mrLPOIByNUj1qPM1NDUw+dAKtbS3k5mZTNCSPl159m8L8AkJhN9u31KDX+cgrsFFSmscrrz7PjKmzGD2ign888TAFeRZEMUBF9QRUAWI5lfbxjlTjbn9yL34/5lAYuG8/cexpqtbPsJWKR6ha+uPG0vHb+J1+czrpNUk8+D2v/zFH5QwmVAZ7lgjpPkgcx2DPD5bW/2k40D5IVSax3QeDI7lcqkVb4gRJVd/+vkky3lT4Etueip747/2Nn4MROImM5EAs+4OHcQ1sTxziC4B4aEZiX/TLmJlQVyKeVEdtHGifx9uZiHMAM0vINpe4mO/LXJxiXMTfjUQiBCNhHn70UbSogqTK1O2q487b72TVN1+zYN4R2DKKKFtwH4+szWJ3j56hpl5y/RvIVRtwbf+UckcApfUnfE3bkfztZOjD5OqiiN31FMge5O46fHVr0Fr3YO9qokjrplhoxkyIVttY1jV2EhYMZBXmg+gkGPFiMMuMnzSTrKw8Nm/ZxHkXXsKpZ1+EzpKDKlkoHzaanbvreffdDxk6tBxUjYDXy8a1GyjNL+H3v7ue4487huMPNWOWFZoDJhRFw+tXsFbOQHVUMrz1KfjsWh6+/148rjDNTR3MmnkEdpuTefOOpL29Fa/Xi9VqZ8qh08jLycfd46Gnq5e87EJmzJjKhg3ruOeee/juux9wB7uRzTImu5nFZ5yNIEv8tP0nNDHIkfMO49HH/8iG9evpaG8hFPRisxroau8gqvUSibjp6t4G8k4mjK1i4/ofWb9+Pes3/EhOTg6RsEpLSxvRaJjqUaPQ6U2cdsZSOrq68fr82B1OQuEobR2tPPLYX6geWcUXX37FnCOOpKyilNffWU5uXhn33vcAG9b/SEtTI5FIhLC/h53bfqSru5mpc+YQUlQUQSQ7JwdJ1uHIduL2euhxuZAEEZ1Oz/KPPuHss89B1hlSzpd0CkiykpEuPD4dH0nEEZ/Pydl6083hxN+pElzEw0cT8afDlUhbMqQql1x38n1FUcjKyhqg3CbylcHkQip+lKq+VP2ezBP7KywDvdGJkMyPEt9JNHoOJm8S+zA5o3tiG9LJhER+l3gvca9qYhKfxP5KJ8eS7yXXFaclfhZtOoUruQ9S0ZgcxZPcL4ONpURIVvxTyap0fZdMd/LvVPIjFaTyaifi258iniijk8dIctv7j/NY9mRNU9A0JeXYOtA2Jo4di9nIWUtPZ8EpC8jOLySnsJCK6rFEBT1lw0Zz9HEnc/RRp+PzqpgsIvc9cCPNzY3IOiNXXHYNd9xxBw5rJtk5hcjmTDw+P7nZmbg9vdis+ezcswUdXnQ60BtkfD4fZrMVg96M1WFn17bNaEqElo4uerpix7ZYLGbcLj92q5mQ309hfi5+rxtZEmhtbcXv9yMIAj6fj+7uTkQRwuEgfr8Xv99LOKyQnzeEutomwuEQwYBCYX45ne1eTCYLCiBIMkaLlZb2DoKRML29vbjdXjyeAJ0dLgxGPU8//TSyrEfTFGw2B5omYDZb8fuDrF+/ga6uLjRVpKpqBNFokC1bduDzBjAaDXz++XIe+tvjGCx29tQ28vCjj/L4I39HiBqZMXM+I6oO4YH7nyDkCbDsqt+yu7YVu81JbnYOkWgXw0aV4gm04PXWcscdNxP0exk5YjSCZKSoOBdBECgtLeWxx//K5i1rKCou5spl16LTG6gqL2Hn9mZuufleJNHKxx99w6yZ0+jpaue885bS1tnOpCkTWfPdD+hFqZ//6GB0ksQ1X3wuJvKDxLmZPF/jYzF+L50s3R+kSkqXaj7E6/o58L8ibPjnwGDCeLDnB4p7/4Ptlw0b3gc/wwObEObaZ+k9gLDhREgVhtQXQnqAE29/3yReTzxEtZ+iLA7ed8lCI1Xo68EwiMHeTRU2vD8Y0HYhfXhVqkVd8MeXEQQB4/glg9Yz2PhOXPgkl0kXRtxHi9rfAqhqUQRB6AsX7rcnoq9uDUWMokUVDJqB+dOPpb2lhqOOnMrmjWuprhiGJTMDWVaYPWsyxUW5NDa3k6F1YBMCOBw2FMGMVQzTunM9BoMBTVUxWGTawyEMBgdIJjrbazEZMjGbMtjj7qZqdCmvvbCWKYdWo8g+xh/6K4j28tmn7zB97slgyEGUzKz6+lNKigp5/rUPmT7vVxwxdyY+fxBdNMSPq1ZQW9vJ2MlTycsvxumwsG5jA39/9CFOOnE+CxYuxPXaEiKWIbgVgdLSCgIRBW93E1nZZYQjEaJ1X6MJRp5tGEtGTgXff7+ars5ennv2z3g9fj799EtOPOEkNEXk+hv/i3PPX8qkwyawatUPDC3OoKPdzbBhVUSjYdzeHiyWWDKPjnYX9fW1bN++lUsvu5Dbb/s9t956K929XYiSRmFhIdGIwNN/exFblofTz7gEIdrMrj3vU7PVydjx8+nxdWAwm8m0ZXL0/ON58aV/8uxzT3LTHbehqbHjbXrfuQpBEAhNvo2srCxkvUAgEOCpx5/m5Zdf46WXXiC/0IHBlkHNzhr++uAj3HvX7SBEkHVWnnzsfo6afwSVY8YQ6ksWKiDund+qoCKKOgL+EB1tbWQ4nXzzxefMnD6NrMI8wpHUZ26mMizFF6fJC8YYpE6+FB/3qfZMDqZgpRPWyQl44uUkSfpFzmWN05tO2Uy3pz0RkpXWn7uVJp1il0o2JvZ3OkilpCXfT1a6Uhka09EZb2vi90weMwejxP4cmZdKsY3f39+aItXYTafgJ+NJlTl0MEj1XdMZUwZCbPwlh/kmUJO2THo4kDIHhjedQSAOyQt8Uer/TqLsP5Axmwz7vpWwlz4RDRFJpyEKGl5XgLBf48knnmf+3PHYM3RoqhF/oAuTUUUJSwSCTdjMGcjGTBw52fR4/AhRsMomfNFecqz5NDd9RmtNC87qORTmlNLW0EWXx8WoMSNpamsiwyJiMtvoDQh0NHeRV2hAJ2s01nkpG1KAyWxAVaOIYsyrV9vcypjR4wkEAihqEAH69qXabDY0LUpbazcF+SX4/B4CAS+Z1iyeeeZVFp22CE1y4/X6yc7OJhJR8HoC2Gw2vJ5ewn4fVosD0WAn4neht8kYDDJmnZEPP/2amTNnEggEsFqtaJpGMODGYnYSDIUIKT5spkwkUaW1uQFVCaESIBqWWLr0Yj755Au6uztZ8/0Kjj95NkGfFX8gQnv9NgwZeUQFM6fMP4LPP3qbrfU7mXz4dHyebrxdrcimHO66605KhhRx2mmLCYUU3nzjHS6//HI2/bSOgkIn+VnlvPjyW/xq0bF8/68tOIxGavZs54svPuHmm29h5pyprF27lsxsJ9FolM2bNxPxhJhy1BzQ6/rm5MC5si+CLtE4Fr+XcpyJQr8yA8Ze8hI0lQxj8OO8UkGqIE5F2+d40TQNg6w/aCHzHxs2PJiF62DgwHDsT6k88HCbPowpFTUh6S9dXYP9JQtDGEh/qvCZ2J8gkHK0HYjlMnlxl6pv4+8lWtkHswALQuzgdDQBTY2lDxdELUajoCFKe88l1UQ0NR4eJA5oQyp6EhdniQvLVN8meVEwuACij74YHYOPB03TECUQxFg5QUjt7Yin/O/rLyQERAREgiufQO1txFB1XKwPEBEEEVXR9vXJ3vEx2II0JWPSYnXEwsv7j7F97/Rf8CdFU6U0bKCJiJoONAkVgSWLF/Lum6/R0dTApZedz9qta8jLFpg7ZwYjRoxk3bpNjBs3luYuFWvBWNpDOn7Y0MzK7W0oOZV8urGZcfPO5PPtOkZPuxDHkEOp97oQM8dSOeUIbCX5FBVnsXnjJjQxhze+2UnhsLGcdPSvUejmrAvuIKJYybbrqG3rRECkuLCY0dUVrFv1BbNmTCIQCIJi5PVXP2D27Elcs+xmCvNz6e4KMWFqJWMmVVJWVUB49+cIjT/w5XYXZeVVCKIeUdAjG42s2biDwsISdrSFybRoDI1u4O7nV7J1Rw3HHn8sQysKcGZnM2RoCTfdciOOgkzOPG0hkhjBZAXRAqFeH39+9HHGjx+HzaTDZs8nEpKJhFUeefRPiKLKwlNPxuPxcNS8Y3DYszGbRTIL7PiCPZiI8s8XP2bpxRcjGxz4e0WCPTb8KoydOAVHdjayWSEzz8ySM07lq6++5owzl6ITohglK421Xez64jGyMp0IxUcRCASxWDIQJT3vv/kh552zlEDQg6iD5oZtVA0rY0hpGflDh6Dpdexa+SkNXZ3MOOooooKCJOkQURAFFUUABQ2zogdVREPAaLMi2cyUDq9k9U8bcOQ4MWlGfKEwyDKSKmJQJDS5//xOpWgmjsfYdexPVRVEMXZGa3y+xcvtT96k4y/x8nF+l5ikJ3FfZrLikvg7FQ9NVyZeVyqjYSremkinqqpEo1FkWe5372Dk2WAK3mDP0/Vtqj5N9sYle+gS+yTl/vwU+FPJoOQyg32PxGtRFPtYpaqpsXC95P7oE9nCvj8ttcwaTB7Fn8U9vImKb+L4ivdFYh+l8oyna2fivbRGdlHotxQRGIgnVlRIkEep1zz9vyUp342dTysO+EZ7G4uqgYaAFjv9fCC5otQPd3I9giSgahpa7FBKBFFI/HB7aZAAca9BXSTl8BYlEGJ0IAiIgjRI++N/cd6jxhREQQMFdJqGQdIYUVFMt9vNsMpRrPxhFZs3bGfkhGFkFpVjyyqhu6ebSK8Lm0ki5GklO9tITc1mivLHYNBL9Lg7sDqsZBdU4urqRtWgaGgxGCWaGzvJzs4h4HdTmGXAmpODXg1jEv2Eop10ei30erwU5mUgKD5E1YszPx+P201TYwsOWxaIAhajBvjx+v1YjVbMJhPBcBBRkgmroEYM7NyzjsrhBVgsZmSbk47WXq666LdoUgZlVZNwWjOo2dNAXkExXV0dFOfn4/f1otNLhDWZIWVFyFIYq0lHRBQISgaMKDTWbqW7q5XioZUEAl2ENYHs3CHYzBns3r2WCeNncs7SpYTVCLff+hDHnXQCBlMmguJGinYQDlnIysnhxAXz+MMdvyUYcrFi1TYOmzQeUZMQFBN6g8xJJ51IVdVwAgE/w8srsDlzOGT6XP7rtzfi7nRhtigUlBZjNGdw7DFHIkoKGQ4L84+diBL1cPbSC1h21bUcMfs4rKYMbr/lTqwmgWlzjiISVdFpGpo4kA9omrqXZahIUnws9V+LJ6+zRUEALRaKLEDidEPTNHSSLqUxrR8fIIYjPqNS/olJiU/F2DyK8bnYS5Ig7tNYVA2dTndbipkzKPxHK6+/BPwyeH4OjnTK6y9XV/q2HTy9+7MWJocmpCuTSvilEpT9yg7YnJ4Kn9BfWCclbNhfu5KV08He27/ymvzsAPo7hcEgmY7kBYuQ4DEKb/8IAH3VMQO8UUlYB12Ep6JfVZM8D6lMaVpy/6TG1f9e//aEAz5eeuGflJaUsGrVagKhKHMOn0/QL/L+e5/R2NDOmDGjuO63NzHlsGkYDHo0Raazq5NRo0YSCkaw25wsX/4V7W2NaIQYWlLKqh920dHhYczoiXz41md8uvwHjj7+bFb+uJsLL7mM8866CJPdQFZxKY68PHwRBbtBwmoyoCkaJqsdg9mKtWgUPb1etm1YiyHqpscfoqSkmpNOXkBtQx3r129g5ozZ+L0h3CsewZZTRmn1BBx2O02NjTgcDjweF87sAgx6mdy8bARnGQbPHk45xM6YYy/nnAsvQNV86PUGrrjiSu699z4cmVZMeplwKMSe2jpKhpaTacrg0EOnISDy0fsfkOHM5vjjT2TipIkcffSRDBlSjNlsISsrh8svu5Ljjz+eH9dtprikBC0i0tHSy5dfruTwGZPp7vFw8bkXIEoKJy8+HZ9XQdbp0ZtkWpvbMBmtjB0zDpvVjhJV2blzDw899DATy0xYnbn81GmivLyMto5WVq7+gVmHT2VYVSXZudkYzGZKyoagoSMnNx8Rlc72Fr76bDkX//oaIoKEIOj2joWYlyFu+YhKEhEtQijqR9MiOAWVPRt/YlL1KPRhFb1BjyooGAwymqagKhFUYX+ZVlMM3QGetX1jeX9zZTBIt/hPdS/dXN8f3sR7iYuWwZTEdPckSUKW5QMq80vDYMpr8u/BPH0DeOR+aE9WEA+m75Jp6fd872WfUj0AWQr8pDZ+pIJUXtXBxlc6fKmMGanqPyDPbHJ5Dm4b0s+F5HDzOC39DBopymna4IZcQdy7qN+7tzgajSIOSNCU3GdpECX+3G+LYIATYm85CYHO9nY+/vhjMnOyMRlNWK1Wph1+OC0ttZhMdup27WbksHIspgxqautix5kpGkXFFTS170KJKgiqiqDY6PEHKMovwuP1oAkiUSVKhtWEwShhs1nwB0P4fBIGWY8/GEU2O7FbstCUMHl5ueh0Mt09PXgCYerrGxk2rAq/P0hDQwM6MUooGMRgtKEqQRAE6hsbyczMRUAkM9PBiFEV6HQ6fN4QYsTP+6+/wg3XLuO1V59hxLBikIJkOA30uFqw2WVQBcxWA6FwGFnWEwgEMOplftryE7YMJ5qkwyQKZGVmYrPZCEY1rBYjobDKPXf/H/beO06Oo0z8/naanGdnc9AGaZWlVU6WjZxwTmAbDjA4YWNjE+84sgl3B8fdwR3RwAE23NkEY4OzsSVs2ZKTJFvBytqc885Onu73j9Hs9vT0zK5kAy+/47H3o+nuCk9VPfXU8zz11FNf4+v//E/cdMP7eeH5F3E4HVjsFprnLeDee/4bm8OGzSowOT7Ct755N5dcfjkLFy2gob6GslCQx5/czubN63jgV/czb14T3oAPi0VmYKAPxZLxMKuoqmXL2edQXVnOV7/8Bern1JLWFL729X/nJz/6b0IhLwsXNJNMxgj6y7A7fFSUVxOLxkFIs2BhE3a7hbQk4wkEQDxpODH509OmGVUZ50Q2wnkhQhTINbSe6hqk+5jHm/L4h5a7Q3w697z+TXn9m/L6JssqvDMxW+XVTOAopLxqmpazFuiV1xyBpYjyqq/P6JbxF1NeyRe2jHiIokgqlZrGJUd5fRwAS/Pbc9qXj0txtw9ztylycXuTyutUX2M4Y4TK+6+/gfbOXh5/4o9MjKWZGI3zu98/jiDJ2B0uHvn9H3B5fARLynnk0Sc5a/MWDh8+ztp16zl8qAOL4mV4YJiWVXPZf2A/TY2beOBXj/De6z7IXXf9O/v39lBXu5ILr70Wi9tF07xmUkSoLa9jbKwDUUpgd/oZ6jrM/j2v8+TjfyApyNTNXcAPvvPfrFu/kbqmJhYsX8bIyBiJhEbT/BrqGsp49umnWL5kIS41jLD/F2hlq3A4HBw/doKSQJDRkQGsVgd2lxurDJqWRAUEVx1HXn+Bxc42lLplRNJpRkaGuP76G7FZXShSlHQ6xc033cJ733MDzzy+nb7eQZxONxs3bOKG62+hoXEu/f19fPe7/8UFF17A3LlzkWULd3z4I4RCZTz77HNccdVVjI8M8vRTT7B7124+dOvHULUYTpuXd7zzWtZv3oC7pIr7f/FL/vlfvsbZbzuHmorGjLFg4wYS6TQfv+NTbNmyhd6+DuyNq6loOY/y8nIUq0BJqZ/6hlp8Pht/eOZJlq1YxS9/+RDL164kmQZZFOnvaePA3l20rF2PYPMgyw5ETUZDQxNl0oKCTBqLAMl0nHRkjIOvvsS/f+mzDPYc5/VXX2K4r5+f3v3fhCOTtCxdyrPPbaNqTjVxUlhkS0bIPAUFNv+MZP7Zt9MBIy80C/Y2k/I6W4XOqMSYXUlTrDy9QGTGH2cLs1UaC+EwE75/DuW1WEASfdnGOnK+G3jwbJRX0YDLbNy89XWfknJNvqBqXDeM6WdUYI3lq+bntWcDs1F69eOQp7wLuR5eZuLWTLSdVV6zYyBJEsbglqejvGJcT03BsJuc+Z+0puIL+Jk3v5n6eU24PW5UTaO7u5vGhnr2vLibrU89TXmohOFwCl8gRP28BfQPhhEtfsITowR95UhSmoH+EQKlpfT3dvLs1qdZ2rICQZQJuES6e3qwOFzIDjfD/V24vG5sHj9p2YJfUejv6WZoZATZ5sTi8CKIGhUVZSSTCc4/70Ju//BHcNttSLKI21uClhpn//69zG2ah6ZJKJKF4dE2+vsHQJOIROJUVVVSP6cWu1vhrC1rGQ/3U1ldRVqNIwgadocNm81GSkvT1tYGmorL5WFwcJDOzm5qq2twyCKpZApFkent6wNNI5VOE40nOfecc7n6HZeTiss0NFZgtdkQJTu+oMDqlRspr6pix87tLFu2lHt+cg+egIdYPEZ1VRkdbW186Sv/xPq1y7BYJGpqq+jpHaCzs4O6ulrcbhf9QyMoFgWXw4oALFy8mK1Pb2P16jOYHI9yywdu4B8/90ks1hTHj/Tz0o5dlFdWUVtbx+EjB5k7rwanS2Lh4qWEYwk8fj+qpCGSPxezR02m56T5mqDPl3c1l4H8NF1U87dSeTUNvKdNx0U5GRvg/33l1bjY6KFQhxdzvSoEgo75narbcLHypheS4lbPN1OXvs5iZZhZc8wU0EL9bbYwzRRy3sydywzX3LKNi6+J0KBNu0JlUuTeO1hMuS6mMJqlnUl51UPGPbZY27IVmNNzVtEzczHU04J+59WIc/Z3hnnl9ku27Gy/Ge9s1fdtofmQNR7k1CvkuqDphQuznWMAxaKQUDVWbVjP7l17iIYniaVGCMfCVNZUc9mVl9PR0ce6Deuwu2wsW76Szs4OUmoKu8PJzp27OHqsnQsvu4K+oQjlVYv4z+/9FJdT49e//SVLVy3n1V0vU9tQx+5De2lpWUxZSQ3hyT58Lg/f+4/v0VxdQ2frfsqq6rDbnNRW1VBdW8PRI4c5q2UR49EYMRRQnFS4JbY+8xyV5T4OHd7H2jNWYXfaiL/+AFoywqTiI62KxGIqTzzxFMtalnDk4BH8wRBqOsHOHS8TCFZit1gZS7lQIwMIe+/lUHeasFBKaWkFiUQcIRYjmVa55j3vYahvhDs/eDsXXXEJV116MR+548NccuWVzG2czwUXnEt5RQk1NbXIsoKmCvz4xz/hxhtv5sYbbsbqFvjIbTfw7muvYvHyxex84TX+4ZMf4cc/uJfmhUuorK+mu7MDUJkYG6Ovu5/Dh/ficjnxBUsIlpZS4g2was1S1m9swWZTCIcjPPz7x1mzZi3JVJpEMsXgQDfLV64imUoyp7EJu0VFS6XZtWsPzc3N+AI+HK4S4nGVob5unHICl8OOpFhA0/j597/F3hef5X9++N8c2fcGq1as5n0fuoP65ctYc9YW5q9ayTmXXcaSVav4xEc+ykB3H+eccy6SLKOmNdP7M2ejiBUSBMzKmY1yVEhp0AdBy5Zp5E2nsgOoxyWruBqvOJhJOTRrTyF+bgZmhkd9nxsVIyMUGptihsTsb03T8txm9Xhk21Gobn0dRq+VYuNspKlcwTDXGJBnzjRxBUTL55mFwGwty7uKzIC72e6ssa1GI67+ezF6zCpYOfUWwdes/kI4FoJi9KwaFNvsCJiNbSHQyO/PzNGk6X7KX5NN5CSjYlEEf30ufZopChIE0pqGqMik1DSqpmGxWQlPTmKxOUDVOGPjRmSrjf6+LuY01LBr96ssWLCEzvZuqqsWoqkgSBEkKUFXxyClJR6cToWGuQuRZRt79+0jVFKBIlnpONFOQ2MZ4VgUURJRUhEQJRSriNNuZXx0kPD4KOUVNbR3Hqc0FOLSS67i+edfIeBzMTY6htXuwSKmqSitoKOjHY00k5PDBEM+PK4gVqsdi1Vg1+4D+CsqGInEmIwlkEQFjzvA0GCY0pIaLIqLkYlR7FY3imBnbGQYu82K2+OnsroGWUszOdQPokjvwDCBkhBep5U0Ik6Xh1QqTiwyhqQ5kGzD2GxuxkZlLI4J7JIXh9tNIpWgtqaWqvIS1m7cQH1DA6lkjCOHDvGvX/8C0dgECxYsYXB4Eq+7lLKyCgYHR3j494+x4czzuONDtyGlBcrKq/nsF/+Zf/j4HWx/fgc7tz/LRz/0QeYtXEEs3o9FqOTzn/s0GzYvp6amltWrVwIaBw8d4LFHHmfr41tZtHARTrfT9Chblu6m+Y+5TF8UdPNV0zTkk7uy2bxmEcsL6VJGyjWub2ZV643G/2eU10Jw2paCAumnB+qtV15PH95a5fX0yzBPeyptNN6RZ1aeIGTOuuakEUzq0IzlvHl3pUIK76m0Mav8FYJpAaNwfj0TyBUmpxlK4tBjCIKAdf6FBduQKcc8qmSxC90FDEFLTF2cza83MGN00xZxMac/kwkV0Sajkua8c7fQ1XacE8c7+c53f8ihQ+1s376H6spSEJJs3fYU//M/93PjjdczPDLIQ797kPkLFrNv30EWLm3h0KFReoYm+finP8aTDz7MwiXLaZw3j1tvvY2ysgpCpbXEwykO7unjyScfo2HVOn7w3V9z0WVCO4QAACAASURBVEVXkhKiKA4nNquD1mPHOH7sMHU1VaieGuYvWMDRV1+gbfezbNv2B1IxlZISN35PAKxBKivnEd/xbWxVLTh8FRw6dJT6+nmUl1eQ1hLU19aDrGCRZV7a+SrLV65h6x+eYnnLSiz+OYiOAM62h3jwyd1s39fJhg1rcYgW9h08RHgySk1lFWX+AOdedD5nblpDZVUlZRWV2G1urnzHJeze/SobN56B3xfklltu4Z577qV53gIEQaCre5h3XXUN1ZVz2LP3MBNjUZYubmbbMy8wHk1QUlVCSdDHZ//xU6xa0cJVl1+F1yez+awz+cwXvsCmzW/DKmmk1SjHTxzm0KHDmQAc4Rg1tbUk02ksVitenxdZVojG4jhdTvo7j9LX20Njw3yQFFRBQtZsOJxWvC4L9979Tepq6xkdD7PtmafZ8/wfWDCnguXr1nHxNdfirZtDWBBxKl5UVUaSLGiChizbOO/tFxMbi9DV2cucOY0kUnFTgdvs2q7Cc6343NYrCqez5hQTus3wMfKbYoqopmlTkWhng4sxjVFIKWb4NVOC9Py8EJ5mEXzN2mdWv3G9mA0/LtYvRjATuIoJggXbacTfqATr+nkqi6682ew8muFS7P1shNps3dmdez0eM+1Im7kh6tPMhgaNO8GnOr+m+k7IfRaLlGOm5IuimDnraiwfMW+McvHIV441g7xlhkl+WwxeV1ncsjZrAVQhK1+APxDA5nRjEUUG+npx+/1Ex/tRFA23247L6aavr4/SCgeCIKPIIlYxhNNjZXx0gMrKMvr6xvF6g0RTAhbJiizIDPcNIsouLJYAgz2jyLEUg8kJZEWk9dhhKkv9OBQBizNAW/thysvLsVrc1Nc3o0gqbrcLRJmBrk6GhkeoqatiIjyCw6mQViUG+kfxeDxE46N0H9wHqSg11eW0v3GQxY1NjMVHKSsLkUhGGBsbxV9Sipa20N3Ry9ann2Jpy1LSoowkyQz2dGOT0rR29VJV14AiS4wN9WF1ukmrYLHIxCbHSERVegZeA6yMj9qYjHdw+EA7pRVVKHYFUYSKoI/f/u733PmRj7Js6WKWLl7MxEQnyUSK114/SH//BAF/OR6Pj5tu/CA7XniRtWeczcsv7GR1SwtdPUOIVjeL5lXi8/vxup184VOf5Ip33kBP7xvs3H6E8GQ/n/jUrXR1dXHw4BGi0RidnR3Mm9NI0BWgb3CQBUsWoBWQkXP5b+67WcmnhiSi4cqpHM8FXZ16vmZaz6lXfVrK619ttOFCC3sxKGZFfKv6QT/ws3mf+874zaxdp69IG3EohtPpgjHkttl3/V2jeTgh5Z2f1Ujn5M9OGn1gEmO027yFRVDz3J7M3PiMOM1GSCsEhZiNmSuYMa1ZP2XxmcJRmxYuJh76MCDguvRbOeOZFdqNwvb0Aj0d3n/q6h1Bzmmrse1GOFVlfqptQm5AHGP7NU0jNhbhgV/+iru//V3KgyEOHz2ExWLhzjvv5O677+b6917ByOg4otXJuRddxuKly0jbcsO0S2ktJ9KxpmnEoime++MuLrvqIro6DzHQF8bnCrH75WdYu7aGSHiEyGg/42NDlFfN4/Nf/De+8W9f5eltv6GmfB2R6AipaDvzm9di9wh0dLVSv3AlPYd7CL78aZRl15JMQ+vRViqqSnC7aujo6aayIgCCyuuvv86SxcuxKFbS6RiaKBONTCILKq+/8CwLvX20LbiL2//xGwy2t3Hrh27m4kvOo6zcx4nWozQtWkVkMobD4WLPntf52Q++w6IV67n9jjuQ1BjvuuRt/OahJ1mx/gJuv/N2vB4Ll196FcfaXmTLmZey69V9bH/xedas3kBbWztz5zXws5/9mKaGZbSsnEdlVTmf+fTn+MznPoss2bDZMxfNd3Z30zx3LtHJCJOPfJxIJILvHT8hkRglEolQGqwglowhyzKtra0kEgkaGxuRZJlUKoVsUUgkEthdThRNRUwlOX7wAH2dBxmbiHLRO9/NSDiBqChYZGvOOBpBFDTUk1dVHH19L9/7929x9btu5MxLzmcyNo6AhigoRSOeZ2jPGG0935VXVc2D/+gX8+yfcWfVbA4YvxcSoI1XyxS7gkRfhpG3FdtBnAmMPFXPF/V8Rd/Pxgi/+j4qVH6hZ7M26ftYHxHayM/1Y6IPymfciS22S5AFvUJv9IQx5s0bT8Hgnp5W88a3UF593cbo1/q69cH8zPqzmCKabVMW+vr6KC0tJRqNYrVaTXExln8q8oSRPrL/znTFDuTbgkXy55+xXWb0lz/n0jnPxoiuqqpORWzNpjPacY20pi9P3z96Gsr8zushw/PMtz9oAvScaMdlszMemcQW7uFYdx+DExMsW76AMr8TSXERTYzx0ktvsGbDcsb6R7ALUbY+8RiByuVgDVAWDFBZ4yCWFhFsFVgQCA+fYGJ8CJuzmpLSMjq7jjF/YT3xeJxkIoXX6ScpiPT2d+O0qiiyFafTzejYOBaLBVESGBkZwOf3kIyL2KxexqP9WBQ7Vqsdq2zl4Bt7CAaDjIyM4HA4sNlsTCTB47Di87iJTI6R1Gz4vEFisRhpNYaaVrjtttv45je/icfjIRwO4/P5GBgYoqrGx9BIB+NDAlXVIcbHx3G7/KTSCQQk7r77x1xx+TUk4mmqS8to7zjKrR+6kd8//FuGBsJ0d3Rzz89+xqc+eRvR6Cgd/b3U1C7kwQefRFUtbH3mYb7/g28Rjzj52Mdv56rLr+DMLS2UlzZy0w23EwgpXHrJhZC08rGP3sl/fPNLROKDbNpyJYJgJxYeoKe3k1S8F6foZHBUJpKOsv9QK/fd+2t++LMfsWjVQkTdjug07ZkbY4vN0+y80dNeNo/x2sUpmjVOZTF/fTKToXOyGALD6dNm31lkpfCELwB/U15Nvr0ZKMTAiwkP/5eV1zxlUKe8Tn3TXYNzqspr9l9RKnxmp5DQ91YrrzMJRkYwCin6fsm2Oft7ctvXQBBwbP5kXhlwaspr9ioiYzuKKd+zBX1ZWaNEIeVVkiQGh4YoKwmhJVNEJsIIssTBgweZP38+oiiiCEkURSGW0rA63USjURSrJXfsktP1ZPtZViQEzYYka2jESMsuHnngcW59/9/xlS/eyaYtqyjxWLGLCbo629m//whvO/NS3B4ru189TE1NFYePvcSxY31sPns14xNRjh5vZefz+/jw4h5SjhDeulVoWEBII8hWjh9vY9vWrVx11eUEAgEGB0d5/vkX2LRxAztfeomVLSsIBvzEIxGEI/ezVbqathGJzZsv4L77/pfHn3iYyy6/kLvu+gKqoHLPPT9Hli2sXLGa2opqUmqKp/7wBBs3rMRliRGqqKGjfxyHw4EkJLFILlLqOB7nHNau2cSP7/0OtbUNxKJJ/AEXI6MDaGkbNruALMtMTESxOawkE2ksFgten52UoKEoCvF4nLEHbs/Q2Jlfwu50ICk2Esk0kckxXC4Xdrs9o7Aq1pNXXGXu9hVFkSMvbaOvf5jy6lqSaYF5K5ahKAqiKKCm0jgcDqKxZA7d5HkHaBqIGpqgYUOgp62DX//kZ9zx6c8QFyTSgoggpE0X1Cy8WeVVv+DPVnnVz4NCYBTCjQqaPr9xbpspr2+G15vxvEKKaCGj7WyUV6NCY0xjVF71fWImSGXz6cdC0zRSqRQWiyWHJt5q5TVvHRJyr7sQtMJnWgsZWYspr/qryMzw1uOk7z8jvmb9Zpw/hZTX0zGQFKKtonmKKK9mSnEhusqXFXKVV/3QGJXXbB5JMDcCmCmvRkNO9nfm+0xX+8xizRUz9w8cOXCQRCKBV7Hw3PPPsWb9KvxBGyPD3YRKVzA82EHH8R7WrF4IDhedx/eiTvRSWd3Io48+zX995/t8/vMfQbA4aFl7Nq0Hd+P3zSEpOhCc4BCsDAz00tZ+gisufwcvPP8KK9etQtUSDPd3IqQncZfWIqoprFqC9tbDpC1BSkJBZFlGlhQ0TUBNjmN3B1AlK2PhOG4lwcDAALFYDKfTidvtpqtviLrqGpLJOOOjYwgWGb+vjMnJCHaHjCTaePnll2lpacFqtbJr1y7mL2xCli0oisLIyBBej4tMFHkRNaWclBszBuyXXnqZB37zIP/y1U9w4kQHFsXKd77zPT77hc/j9XrxeF309XYgCBpjExHCY5OUBoJ8+a4v8S/f+Ca797zA9e//CDfedB1vP+9tVFQ7OX6kH487iMcvYnOEOH6kg6eeeILVqxeRjIeZ0zif0tJyvnTX5/jgzXcQCkkMDQzT2LiMA0depqt9nLPPPo+du18lUFPGwvmLcugo87u48pq9ojDHWFNEeTXSo55PGWlMX4aRzs34mZnyapyvp6O8/tW5DWehmCJaCLIDY8YgZ7L2vVmYTfn5aU4Hn9nn0RPdTPiZfTeOgX5RK1RWTkRgQ9mZMvLx0p+f1NeV8w5zgXEa71zczM5AFVNM9YaS2QRCMVrF9bgUWkTN2mZG51NCvCBNpVHmbMQyZ1NOX5oJGLl9Ahomd0/qBHW98msmBBjrM+JeiA4y33Jx0wuD2Xc2u5W0ppLWVESrgqjIlFVWICoyoiKjSSKqKCEoFlRNQzgpwOXsOAtC5k8USKZSWG02VNJoqCTTCTQh44JVP6ee8ZERyioqWbRsGbJkYXhohHgswtjkOAN9x/G4PBw5tgtZTuNyu6morMLjc3Df//6Ga666kVWrzsRWtxb1yMPs23eQ1oEwcxqbiETClATLWLZsKRaL9eS5RCvHjh7H4/Hw/HPPMT4+zrzmBTz0y3uYXybwSmI5551/Efv3H6a/v5eFixawcsUKGhobECWJa655F5/4+N9z6NBhFEUhEQ+zdOkiSkJlvO89t7Bx8/kEQlXYLG5i4TRWm0QikaC3ewxBgM1b1rN16zbqaufw0ssvMG9eE3t276O8IsQLL+yks6OHujlziMUSuFxuRBGi0Rh9vf3Ikkz62B+QJAl783mkkioWWcJqlRBEAVEUptw00ye9+DRVRVLhxe0vIERH8AWC1M9tpr55PmnFDpICauZqkVQ6harmziOjC5OEhEZm7NDAYXPQ1XaMX9z7C84//yISSRWkwmcHp5WR6XdZXmEEwRh0Jedb/uJfjJeauc3qcTIrVy9s6K3jZgY243t9XqNSrK/XeN5R78Jp5GfGMs3WEqNiZ4aLfmxngkLrlRkfz9alF6iy7ZAkKadvjX1t7Bdj/+pxzdlNLaB0C1n+oy+PXGOaviyjEFiMjxeTg8x4crF+zOKXPTOupwVjf2R/m/F4s3xm635O/xToN9NvouG9Zt5+/Ts9Tvqyc728jHJJLk2Kojh1lnYKN226zfr6Cq2JhebHTBsXgpC7i2zKP7TMPZzBUAl+n4+RESv/9e0fsH7tJgKBSnp7w7z22j4WzG8iHoHtzz1LqDwAJHG67AwPDlJWWkZSSzGvqZ7h4RH8AT+RsT6c3lKcgVKCZT6UtEAw6EMUMtcNeT0+jrTvxe2CeHwIf4mbjs4Jjh4+iNMuMj42REVtOQcP7iMaHScQcNDXf4xoOEUskURSFFQgFQvj9/sZHR1FVVW6u7uxiAKjY6OIooDVZsNht+CwOxgfHUdNp3HYbcypq+HQwQMIqMxtaiSlJRFEDTUNmioxPDyI2+1E01Ta2tpxOf3s3PkiToeL5uZmamtrcNhVZEmisrKGpUuXIStW7HYbE5EJBEnB4fLitLnp7urE6VAIhfw0zV1AW/sRPvOPXyRU5mXr08/QsmIhoWAVRw4fw2oTCATLcbuc1FRX0lBfz6t79jE6MkB9bSXLW1ahpkQOHn0Dyeqita2T6poAQ4OT9HR10jcwyDnnXEBaS+XRt9l6ZDZX9fSuGd5nadpMnpuqL48s83mIEQcj3ZsdsTHOAUkU78on6OLwV6u86qGYoDBbeCvKePM45L05nVJOob5Ts5DOrIzMrryiyp8m5L8zCf6Tz8BzFds8XARzQcUMZ7OAL0aBx2zSGtto5tpVTEAyw83ICLLv9YFl9MKg8c8odOX3jZaDV8aSlut2q99NN+JvrM/YH8VowuyTcVwlQctcHyiAKApIUsalOaucCiiAhCiJiJw8G2SgEy2TEFmRmQhPYLXZ0DQpQxOCgKqK2OWMErPxrC34yyop8Vdz6I1OFEsAT3kdpY0LeOHpR/nSF7/LJz91GwfeOMFrr73K0mXL6B3oIB4XsbudBEI+0vYU3rkt2FqfoWbJBjRcJFMxvv2tH+Fy2fH5vaiqyonjbcyfvxCf38ua1S00NjaiCiILqpyoVh9r3n0XFruLG993JfPn1XH+uWdSWuKlojRILKVx/Qdu5LLLLufGG25m/pI5qIkIkfEwr+87zm0f/gjhWJRHn3yM0lCA7due45vf/DYXX3wJk+Ekjz/xIOdfeC5ul5tAIEh5RQmqqvLjH/+UjRvX09XVzfq1m09uAAj09PQSCPj4/Cf+kSsvvYLxkTGUnucQBZFozRZkUUGLTbBnx9PUL1iEJGXuPJRlCUm2IIgik2PjbHvqaSQE1mzaRO28+Qh2B2lFQVQTCGqKzGqZuTNRFPIFaz2dCWnxpAlCAzRki4Wqxhpsso1HH/k9m85YT7KA4qovM18QMMtT3BhXjIbN6pwNvyykkOm/F+InhXhN8fmYr6QWwnUmxakQ3oUMd7NdO8x4ndkOgJ5fGXfCzXiqGW56HLNlG3cWjMKemTJ48mPOs2BCT0ah8lRhtsrrTPRnpGljWv2aMOM5WMzHbKbxLpZWNbyfrRRTiD6m25ibXhRzA9hkjroYhHBD+Wb8ykjj5m0vrrxm7nudlilM5ySQEjMKrE1SSFkkzjt3E7KURLEoeILlWBlClJLU1s/D5fcy2r8fu00iVF6D1RrE4S5h/ebNKJIVq9VNWWUdIiJpi4on6MQqyIRHw1itErKcIJ2aJJmcxGkLkpyMUlXdxFjCCrEkCBqB8jJEux1FdeCylWC3+NHSMNDfR+WcJXj8XhLxKBPDfYwMj5BOp6mtrSWRSODz+agsc+Jw2ZAVEUFSCY+PMj4WxucJYrdZGRzoAS1NZUU5/X09uJwORNlBJDqOKGpYrQ6c9hLC4XE0UrhcNlJJAY/HyWOPPUx5RZCa2nJajx0jEAggKzIulx0ppTA40E0kMkHAV8b99z+E1y4TiUZIo2F1OXA7vNz1pc/SUD+X3Xt28L53f4g33thPKmHh9g99ksGhAfp7Wjl84DVELUVvVxeeknpK/Q40LYYmWgj4fdQ31+MvraW2ei6HD+6haWEL46OjbFy9iR/8109o2bB8Sv6cprVc70Uj7eXNmZNG4WnaNokAjMkam3eQ/dT0i5y5UyAN8H9LeS0k2Ge/zQQzCRh6Rv/nV2yFk3+FhCj9n9n3WdZyCu0yU3z0VufZlmUUAvIWWDEzPwSBk8qFuWCYXUCz71Q1P8CI3jUqE9n2ZJ9pmT9ByEQC1jSmnjPBiTI59HUXCtBiFmDCzOc/p41ImZ3i7J8gZoJSncRB0zjZHnEK70y/GHdBcgUivYBoZBgFhQZNQBSlTBRFFfT0U8gQoJ8bxrT69zPNMTWtIQqZi+IFxKlx0bQMLoIgEolGkSSF7NgZhUVRFKZvIjhJOGZ0IAiZM3lWqzVHUMn0UWZ3MK2mkGUBj9eJJqR44slHaVnegtvi4Rt3fYM5FQoXXHwRUdVBVeM8Fi6dw0Akzo4/vIycTLL2nMXEYilcDjuTqQSjvVHG9z+C5Gvg/vt/zbvefTWtrUfweNz4PD4GB4c4cugwybjIcP8gojTJ/n0n8NCNs3Edluo1PPCr35OISnz0Ex9DdGr4KgKoFpnJ8QStR1u5+sorOLx/F8MTceY0LgDJwSWXX0zLsrX86Ic/paerjzl1jdx8yy088tijxBJpOns6WbRkGddffwcbN20iGAwQj6t0dPRx8aXnoigOKsrrmAjHGBrrR5Jl7HYHA4NjLF25FMlmwRcMMLn/d5m7Qeeeg8tVQio8yO/uu5ulq9cgOSpISirpyBh2xc3zTz7FZGySlZvWUT9/LqLVQSKtoWmZWYAm6OZE5j8z11f9+GtiZhwz+SGtalhtfhob5vDrX36fPTt30dyyCpvNjiCIqKqGqHN7mi7LSKNGHmuijBSBYsqU3s212BpjJlSYzWkzMPIjfVrjDq5ZVGKzMrL5ZqsIFloXCglYZsqw2XU/ZvSQ/W3crTTbDStU3/Rv3TqBkCOrmfEzs7YbQRAy9CkK07Q927xZ3IxjqedtZsplfrvy22G2VhnLn0ko1r83urTr+1/vyWPc4S9UXiH8RWG6FwVDe8zwOZkpm5iT7CJzPRcgiBmhI1uiqmqZf7Mhm6byaBmRBHLGMadfpuphymiKxox9qGlZZbmAXCeKpFUtR0ASDLQKAqImICKiIqDYwe/3MjI6xujQMDv/uI0lK9YhKw5S6iTJVJjKxjPB6mT3q0f4zN9/hLWr6kmkFGIJlcrKEOGJXsprmlBRiISHEZMDjEyO4HC76egeQbF7CMcilJX6kTTo6uonEk3idDvx+N0MDY8RCtaTlGU0iwOrx4+QhvhYjGDQSXQyTDQSxWZxECyrI5FM0919golwLy6HiGSvJaWBJLmIxIcIBuejWF1oksp4dACXtRTJkqJvuAunN4DTWc3EcA+KqHDg9b2UlviQLTJjY2Ecdicjo0O4nAHsDgtPP/MU69eejdtRjqfEQntXN509vUgWK6mURndfFxarQuuJNnZs38mW89fj9QV55OHnECUNm03jkoveSVlZOWdsXk90ZJK29nZeP7SHD3/iTnbtP8qChgaa5y9h3/4TpFUbO3Y8ynkXXcVXvvZdntz2Rz5w7QfobOshEZlg7/4XWb9xA51dfbiscGDfLmx2lQXzV5HSUkiWjJyoCPJJg20+7U/xYyMNCtmVlSnK1cjlLdnvGV51Ms3JMrJzBFXL0LNu/mUNOjPpYUadTY/36Sivp27e+xv8DXRwqucf9UrUW2kUMBN+ssLWWwFmu7FgvttZKE2xPMb+MNvRKQbh391J+Hd3TOU1uibOhNup1KUHM2Z0KoaMQsahrPBhsVhM63kzuBaqT/9elmXe9/7rOHTkMG3dnUhWC8tWbaKqdi5Llq5AECTEuJV5jYu49JIrCJSV0328jaHuNo4feAkhPsjBqI24aMM6cYAbr38Po8M9nHXGJg6/cYBELILNIrBs2Xz8ATd9/b0EAiEGB/pxapMoZUtpbTvOspb5fOj2D/Kd73yH8mANXmcpQtJKZ8cJenu7aWhqRJAV/AE7DqfC/gN7+PGPf0xJyMuOnc8yOtZPqNTHAw/eTzwe46KLLmT//n00Njbwm9/cz9y5DaTVKLICDz74GyRJIpVK0d7RyoYNa6iqqkJRJDweDw899FuqqqqwWCwIgpBxVU4mcduDDPcc59Dep7npugtQosNYojEsCQVSTr71r1+nb6CflhUrpvraCKqqFj2XOlv6VNUUKiLXvf8G2trbsdvtJJPJgufd/xxQiOZOZe4VE+ZPB7I8IuuiNxNoWuas6Ez1FxvHtxKM54yLKWmzgdmkPV0++Vauc8XqONV6ivHSmdY0s/R6XPTrgbGc7DejseHP0U9GKFbnbHDSG3eK7S7NtDb+KXiToGbmbHV1NRWVlbz9kovQkBFEBcXiQpRsxOJjxOJhlq1YyUc/8Rmqa+dTUl5PZ/cIw2MJFIuP4YGDiFoEq7UESWnCYrHQ3dlFc3MzLoeDUChENBrNxCgQJAZHhvEHSpBkGw0N80mlBYLBIKWlpTgcDqx2G6UV5Rw90Y6qgkMWsYspkuNDnDh8AJ/HS2VlPch2EOIcP34MWbbidATo7jzE+NggkmjB6vBjscdIJTWqypuxKA66ew/h87vp7e1m3boNfO1f/p2h4QFCoRKGh0fxen3EUwNMTob50K0f5Ve/vo/JeBey6KV57grmNi7jkx/7IiMjI7S0tOD3Bamvr+fWWz9I+7E+HIqX/q4h/K4QLkeIaGyce39xN5GwxkMP/waNNKtXraWitIp1qzcQ8PpxOez801c/x5Yta/jEJ/+BeGSSa668mFuuu5Znn/8Rre07cLoUursTvPTyIMuXL6epqSnTvy4X//u//4uiKKY0NSMNzEImm80cn40M++eGv9qd12Iwm0GdbWf/JRae6efZu6+ZfTdant8sFBL6C8GpELSqqjNeZWBUSHP6Tcs9pzXT/YRGK5Ae9Gdg9G2Zqf3GcTQqz9ldFzWdu4tilidPUROmr8mZ3sGd3uFJHn4MTcu959UoUOgVcL2Cayw3+30m0AsmRuHaLGiNmQBudgYui1Mm2I+UY7U/FWHUmMcoRJjNuynQNERJom5OHSk1zaoN63jsiadIYecLX/gS559/Pv2tg5zo6cLrdlJdV8NgRyfjQ71ERruJjXVT6ovRGXVQNXmIoZQVu82Cw6pQGgox0N+P02khEPBw5MgRxsYnWLRkMVXOCbTR46jL7wBJpKwsQP2cOaxZu5Zf3/8gd9z69yxqXkZVlYP1687g+z/4IS/seJErr7gEWUoTCvq54LyLuemDN1LfUMOBN/by3ve9i67uNmTZwi23fpC6ObVoqMiKzOjYEFabzOjIMOeedx6Tk5OomkoyGeP66z9AeUUZ6XSKVDrFkiVL2Lr1aerq6hgdHUXs2Iaqqlx049e48KxGkqN7Gep5g/2vPUdr5yCT0UlUNc6W8y9g/qKFpNGQFTm775RHN0ZB1zjP9fM/x2KsP5sppAErVbVlRGMqcxcuQlEUXXozfjt7upoNGPluOp0bmKwQPerfmYH+26m6KxvryOKjKErRthuDJBnL1P8u5HFh5J1mu7d6MNslLpTGDB+z/jXjbeZlGnnUzLuqxfrdaJw09tFMQZPMd4fNvVuyQZsK0Ya+/Wb4GvvIuN4a0+jLNnNnN85Xs3yF2p4NxGgWuGq2kNNfunfZco20lS15qk8FE5dpct/l0bpJ+wTy++eU/ywrzAAAIABJREFUQcilNUEQ0AzHkowyQ/aUoyiJOJxObE4HVpuL7t5+BEnB5nATKPHg9tmx2v1MjscYD48RTiiIgoXxsXHGRkZoP9yNP1iFJxAgngpz/PABLIodEYVHH32UuU0NDA8MUVnbSDipsmT5IiRJRlEcIFix2uykEpFM7ANRIqkmePqZp1iz4Uw629t5Y99eJDRaTxyjNBTCYnPiC5SSUhUmwoNUVdUyPpognU5RGnSACrF4CofDDeowFosPcCLKoFjjPLdtGy0tKxkbibBm9QZC5T7QMgbY4ZEhbM44bmcpybjC6rVLeOjhn3Ls6AkCQS9Ol5XLL7+Y8bERQMDr9bFjxw7mNTfx/e/8C/Ob53DZpRditUUJlc8jmhymqbmWbc/s4Qtf/AQ3fvAWqirrSSZUbrz+A2xctYZ0OsGaNctwuWVKyusYHxvixOG9uOwKdfUNDAyPESqvYtW6tSRJsv/13TitMr+6/5fMa55PoLSGqroqVNKIgoiIOHW6rqAsYzwXrqNvHSHm8CC9R8g0PRtkWDNeZ8DFCGbeica0/6fchovBWymI/CVgGv83p7zml/f/X5AkqeiVFpDPnHMXxPyJZ/Z8SmByn6kZTrP9lk6n0TQNWc4I01m3OH06Y0ThqW9CfgCN7P2rgiCQOPQYkKu8muFjFKSM74x9PFswEwRnU04hASYrWOvngFGYOx28zL6b7khnfGPQBLA5HUgWhXkLllFRUcuixQsQNY3B/jE2n7+Zg3tfxedzUhKcw7btT5FMxBnqGyQQkgiW1+Oyu7CNH8eqyKixIcaG+3E4XHh9HsKT44TsaZrKZcaPbceixfj23sV4K5ooKw/idLoIT4xz1xe/wksvvsrPf/oTdrzwR7acs4Z//cY3ufLKq2lomsev7nuIFSuWkVLjXH7ZVcQTSZYtW545N1RZeXIHVSEajaAoMm63i0Rc44YbrueSSy5icHAUu81JMhUnFCrBYlEIBH0ggqLIvPvd7+Hcc8+hqakRRVHo7u7GHazAXr2C62+6ia1P/oj1axaRSMqMRSc52Bbn7Zddid0lgeKccmOaFrTzhfpiipdxrAoK9qIKmg1BSuMPlGBzuAzzybSG4kSkAzOjzExQSMExo31RFEmlUgXjAmTTmfHK0+F1ZnnMFN3ZwEyGx9PBoZhiOFN5s8mXv2uQa/TStMK7yGZKuaZpeQq/UVk2U64L9cGp7soXos/Z9IUxQNds850qnrOBrKF1JtfxQuXm8RMht1zTq2zyEM4vX6/gmtVtVF4lSUJTzd26i51fzQOzzyf7XC9H5Jal449CxpU0nowTKivB4XZic9gzeQSVZFrB5/Hg8ioMDY5QEQoRGR2itqoUSfKDpCDbVcbHWqmrmoPXHeDY8XbWrF6Nokg8/cSTrD3jbDyBIMl0FFHUkGRrRokSVRRJQBNENFFEkjSWLVuMrLhwON2UhMqRbU5Em5OaOY1MRpJY7W6SiTQOp4IiW7HbvNgdIhOTcbyeIKSTqKlRZMnO2NgE3T2dBEsCHD3SyrrVa4nHEnR2dlBaWoKoaEQjCUDEoig47F6SSYjHY0gyLFq0mEWLF9LZ1UHA72doeAifxw2ItLd1s3TpQkDlrC1ngChgtTsYGu/C6SzllVdeYcmSFVRV1nL1te9g1yt7eerJZ3jX313Nf/3n13n+hZ3MXzQft89DWWUVIjIlIS/egI/SsirmzF1PRWUDR44eIxYf4cihPdTWNOCxW/G43DyzdRvrzjgbl88FokbGKVzMi7hdjA4LkpBuToiimJNpSjbESP8mhGiYJ6fDs//mNvw3+KuFVCqVd/5qJijmsjCbBbVQ3tN1g8gutkYc9AtU1i0TMG1vVng9HQVyNqBXlvW4wp/e5W+mfjUKYVkhw8xd5U8N2XpUNJAlFLsNT6iKytom+vuG8fuDrNq0kThx6hqq0ZIRRqISl7/rOhoXrKKhaS3ekkpKQwGGKs5CqFyJZvGCoOGNHkUe2kP8+B+xtf0BJdpFf8KN/+yv8PW9dfz89ztYuHAByUSaQwePIioyq1au4crLr+D9172bhfNr2PH8H7n22qvZd+AgX7jrS5y16RJ6u4b5zKc+S8OcOh74zUO8+13v5YxNZ/Gua9/Lvn0Hefnll0mn05w4cSJzl57dy7333Ick2qmtaSAWTeP1ekmlUng8LhDSCEIm+ujvfvcgfr8fr9dLJBKhsbER17yz6RVr+e2DP2D+/HKQrcSFUjaecwO3fPhfSVCGxVZKWsieMTs5zlqG9gtd7THTWJvt0k6nVdEQicQT+MvKZqzjVOFU5oh+3hdzKzSWPxucT5VXFoKZlNfTdWcsxptPZQ6fjiBkVp/xqhezP32a2YyzMX8ymUQQhBwXP2Nbje3J1nO6fNeI92zzmPW/Hhc97c5mrIy7s3q+PRtF2IiT2Rp5KkajQutnMpnM203+U4EgFL6iC6YNG28Wl0K8QN96TYC0CA63BUkBURYy14xpFlRkREkiJSRx+Z2MjvSwd88Ogh4b3cff4KV9TzE82UVHawdBexXbnnmG8fFxFjbPR1VVDuzfz5IlyxBkGU2SkGUZQUyRVuOoaurkfaxZw72MaFFIi5mriBzuAIGqejyV82huWctgWENx+hkdCWOVrMSiKVpbWzl67CA7X3wOxV7K6EQMiTjxsU6G+tJ4fS5KK2y0th2lpmoRPd2DvPbaXhob61G1ODt2PI+qpZiYmEBVoastRiqV5kTbPhwOB6/tamOoP8WCeWtIxux0d4yTTMUZGhzB4/ERLCmhs6udcNiGy13LgQO9VFYuJpaa4IHfPsHVV99IZ+8JfL5yGhoXcO217+bRRx7iwgvO4NY77yRUWcNvHnocq7OEjrY2JIuCN1SKv7qBrrFOUhbo6R2kqWoZqxacSXV1NUNDQ1x99dVcd9119PT0kEwmTce4EJyqnGRM+2avQzRuROSv028e/mrueU2mogURNe7EFWKSZpb6t0JBMA5UMZgtI5+prr/UuBkX4mLfTHdGdM+F3MIKWSOLlmm4mxQhd/Jp6vTl9NO7meqsyzDDpZAbU94YGcs1S6u781T/fuq7mk9j+nrCv7sTANel38op3yxypD5qoT6AjDE6crGdsJmYUPZbtn69wGB8LtY3+jpEUZzqp9nMW0mSpu4VNeJtVveMrubaNF6Dg4NYFZl4ZAQtMYqshXn9lZ00zl1AW2cfy5csZXhoiN6Ol5k3bz4dvcM0LtlAd2+UYE0zPQdf59Wdz7Pp7ItpP7aTp598kZtv/SwtZ6ygprqOOXXNpJIq4+Eh/ueen2CxyHz3u9/nnVe9B5czyPtvuYr77v0RkRis3XQBzz23laqKUhSLxFfv+ld++av7+MUvfkFFRQU///nPWbt2LStWrSCZjCPJGg6HDUWxMjwUBsDpkkirCQTZPqVsZVzc0/T29lJZWZnp/0SKkZiGbJGwjZ3g6V99j/LSKK6qFRwblFi56kxKa+tzgqWZLYQCGQXNjJb142+WxkwonB430TSNKIondyim80wL17ljbhYZ14x/GevX8y0j7erbYvxdbP0oVhbk0qx+Phuh2Fw25tXP2UJ5ZjIaGt1h9WUWWgP1O1L6HUmzOVuobrN+Loa3vmxjX2bAjEcZaS/f2CAI5uOlX/fyFVvjnChMc9n26c9ym90BnIWp+Zy9Zq0I752VTCTmj4uayvUGmNXa+CagKJ5icZdsIM+xymzuGfMad7xmKlOPy9Q6VKTphdtkpkyIhhSGglUzGszliVnIabsocfD1fajxJH6Pl+ef/SNzm0sY6hlDIonbLeEtqSOSEikJuFETY5RWNiH7K0iLCooWRWN6TujpNHeNLUyD8Xicnp4eykM+IuFJRA3eeOMNSgMKDQ0NRKNxnE43Bw4fonneQsZHJ/D6XFisIsdbT6AgIylWBEVAEDT6OnpoXrAI2eliYiyC2+0mlUoxNNCH1+vNXNWTUkmn09jtdj796a9y52230tPdTn3TQhS7HUFKMNrZisflZefLuzhry0VEI5N84uN38uEP3covf/ULrrnmGurr64lGo/z85z/nHddcS8Afoq2jncamWhCSHDzQztx51aDZsVoV0imJhx95ku7ubs466wwcdivJyR5+8bMHee/1f8ek5mTNhhZSWhRBFElpKpIq57nUG4Px5XnniLOY1waYrX6kX6OMsv1s8v2/fc+rWthteKYzNGbwVlh09WX9OfK8mXx/Cigq6OtcWIxjYzZOMylMUDiKpyAIU6vK9LgaV6bcM3OZdHlY5z6JhelE3z6zb2blFrrv6iSCU23U99nUd8MVQsY6EoceB/LdhmcyAOjrmUmoLNy+wlBsjE/VgKMf1zzlvsBYzLa+mcZTEKav3EEQsNqsiEBnWyvBYAkTY+OU1C3EZrNhS4Y5cqKdgbCGGkvS1TuG0xNiIpJAwYfV5iUdGeW5rU8j2OycccaZrFyzgW/+593823/+Gx+84SY0NcX69au5/LKL6eseY3IyysaNG3js8cdwu92896Yb8PsDpOIJnnjkYd5/0wcIlQaIxeKUl5Vz2+03IcvgdNnYvHkDJSE/iWQKu93O3r17qa6upb2tC7fbhcNhRxDBbrODmInsnI12LQkSyWQKq8WGLCuokkwyGcGqRom/8SBDR1/iSP8E/prFbH771di9JXlKgn6eTtPuzDRViO6Kj3X+Hai59G6aq0BZsxe0Z0PLhfjeTHRZbP4VUqJni1+hs4pm+M9mHkG+S3MxHmr2rF83ZlKGzMDMIFJIWZsp6rM5bRj73MzFW/87v51mtGUsx4hKobE26zdjvrx4CSY0lP2eXaeM9eX0oWFcNE2bivyrT3+qa4ep0F0AiqYxWefykhieC61/OcasAnNjusz8ejQMMqoJO5l5bs3CEdRADwL5cyhbTiFaAdBU8Pv9VFVVEY/HmUyl8QV87H31MEsXLmH7i1uprq5nbDSGw+bi+IkOahoasTjcqGgIgpqDm5EXT9dp3tZ0Oo2iKHi9XmSrHbfHD6KMLxhiZGiEV3e/TllZKdF4mFK/m1QyTWt7N8HSENt37mR+QyU4SpEtLizxCZz+AKFQBXv27GUyPI6AQCIeA0HEZneAIGJRHFhtVsbHR3jttT1cccU1+DxubFaF8GQMl8eDzSISj8WxO+y43G5UNUMX8Vic899+IQuWzKOuoZ5DR4+gCnD+BW/HYvVy4MBBWo8c4ZUXnydQEmJiLEYiOYnXW0Ja1bAodpwOD+vXrOP1Pa/RNLeJ7o6j3HzjrSh2gf7hScorSxBEDUGQULXMtYAzzZE8PkDxzafZlGEGp7LeFMorS9Jds8qgg7865bWQRTX7rdjznwpOVZgvJBz8paAYIzOCmVAB5rtWZgJMti7jblihBd5YnzHtlPXXaP0WcgVnTZvu52lcc3f10mljRNLiu8yzdffJDm/RgENCLq3mKboFTL7Z/tMrr2ZGg6wlzBj8yNifpyNYG/Pod6AKlWWm2BTbdZt6J5jPaWPZemHA+GcMBGSkfzM+kiO4CAKiJGGxWPH5gygWBy5vKROxODabDbvVjqTYsdpdHNzXSVn1IpauOItdL+3jc5//IsvXbGBuYy2iVWTx6g0kJqOIpGg93gOayPy5q7ji8qsYGRpjw9otvP7afgQBjh8/ys0334Ld7uTgwb3seOE1Gpuauezi8/CGfKhJkb6+IUIlJZRVBTh89BA1tdVIsogoC8SiKRwOF5om8KtfPkA0GueVV15iydLmk9dDSKROXpcUi8Wx2x2oaZVYLD6lzILKeH8nQx2HGd7+fRoqfaz+uy/TsOwM4oINBAlJKKxETe/u5wdjmg2dGQXw/LzT3yVJIpFIGARDM++b3HlpRnuFcDKWBYWNqUYaMwviYix3pjO2+vQzC8C5+Yxlmu3sCYIw5cpcaGfKWJ5ZX+qVJ/0cLFR/No8el2JGC2O9+nfGPjLylOJlmwj3mtEImdvGTNvyo+vq8TC/Ts0YiHBmo0GxNdasD8x2R8xoTo+3ad1mfaXzTJkNDZpBMfnO+M64zhmVa/3aZwZZZdtsDhWqV0+hxrSiKKKmc68AzOTJNaKZBb0p1F/Tc6pQC/Ifp8ZYzQ9+Z6Qp87VaRJQkEATsbhf1c+cSKAmyYN4a/ue+X7D5vHMIR1IcPHwMVVKICgrLWlpIqSpZb4E8E5ApHZm3Wb8+qyevEbTZ7UyMh5kzbwE1tXUcOXIYi6wQjU3icQdJqRCNRViyZCHx+CSi7EAUBByKRu/AMDZngLLSChw2mbbWE5SXleN2u4glUig2B5Phcex2O1aLE58viGKxc+LYUVQ1RXlFNZ3d3VgFDZvLRTqdZmS4n9KQjR0vbiVU4aO8KsiO7TuYU1dHaagUu81GIp6gt7+HVCrJZGScc845C4vVw8hwhNo55Rw5fJS/e+81XHvNO9n16g4e+u29bD5jMU/+4Tl8bgs7nt+Dx+eleckSLHYpc6O5JqIho0iFDYJmfFkUxUJENKuASnq+YdxFLyQ3FcLN7O90zrz+1bkNz7SAwczK7FsNhYSY2cJfegyyBD6bvtWD3gVptpEAzQSgU7nGwljPtPJqiFQsGKzHOtfd6cms5jyruUdAKeY2rF/8ZwKji6R5olyByEizerdhPU7ZMUi2Pg+AMmej6Xjqx8gouGTdyWa7oJqBfq7N5uJsvduyaXeYzFnjmBlB7z6nf56pHTkuXUKulXhKcQVU3R2hoiiiaJlxHejtw2q189LW+9l83kVMJESiPSd4/YVnaFg+F9lRSiBYTuvBN/CWVFExdymj/Z2UBkuYwMbhHQ+ze8cOfnj3g3z3+z/F7nMhW5J0dLTxpbu+RlXVXL78lS+yfft23nbWOfzsp/dRGoJzL3kP/cND1NcEmIzHENI2REHhq1+5i49/+jbKysqQZRmHw0EikUBCIh5Lc/ToMRJxlWQyzqIlTQhiipHhcTzuAHa3h4qKCtra2nC5XKSSSV555RU2btxIKpViz/ZnGOhuZXioj7eXHUFxuAi98/uEEylEIYlEEjTFtJ9zxkbIPael73MjFOLf5nw3Q9eKokxFrM6mzaRX8/Lku2vOvF4YjUszKbozvTPjLzAtWBQ7g2TsN/158WJQaP4ZFaBi/WKc92bv9XUZldhi7SjEx4w4FKpTX0YhXl1o3PT0ZISsgF4sDeQKdtnfxjHJ8sHMOWfjna25ynv290y0VmgdN/ZDFh89jvo1QU8feeWJ+fxRLBA08c2CGV8wKupGt0m923DBaMda/ppkVm8OnxGmvxkDc6mqikj+8QEVA/2phY08Rpgux2zMDTv1kuHIgMFt2HhswtjWvHLFTB5FPBkUMmpDtsYQLTYSkzEUSSOSSqC43EgJFUFT0QSVtCAiFQl0Vgh/c1ARAFHLtCcmCiiSBLE4na0nUOUEk+OThPxB0qkIycQEvtI6wv2djE+EaVy5hv2v7GbB0nW0t56gqsRJOpVgZGISlzeA7PAgyja0xCC9PSO85903c+bms7nu+vdQ4vNw7OhBmpqXMB6JMN7XTklVHZKs0ddxBI/NT119PfEU7D98mNRoP6+99hqpVIpzzjmHyspKwrEhkG2Eowksdhm3JcRFF17JT+75D3zeEIHAQpYtWcyWM9ZzzTvOxuMRWbr+DDauWsqXP/c9Fi1bStIG9XNrUNFIpSRSqoBVnv1G3dTcEPL5tB7S6fR08CYDGHm+/oiJsZ5CkCfLMT3nrIrllJnGX53yWhyKu/OYt9X4Lp8Bz9RH/x977x0nR3E0fn9nZvf2di/ponTKWQIEEjkYEUSQyGAyxtgEPxhssMEm+H2wjbERPxscMcY2wmBsgrARDzkIBCiAhEkCRRBKJ52ki9Ll29udef+Y69me3p4NJ4Ef+3HpMx/dznSorq6urqrurtYp6rYqbLPk1+OSC6gl57C9JB0DDU79OXMYHDkZcIbf45yPoaszVsF/njItnZ0+MYjB5UUwlAxG7XmnHM6qqmVnMuKDDC5VYXP/8BtpBv6VZc+gytHozOYVE2lU2gaVIQsqWZip6XXnaoKUJhXUfleNV8Mw0pwSAIbpD5QjKyCyEikrPjojH/yrP2p7ZX6xbRunO8Tzzz5JY8MnnHrK4Sz/YClloaEccPiRLHzzLb5wzJFsXruO1p1dlFXUMmbcGLY11JPoaGfF8vcoiJZSNXQsodBOTGMQHy3/lHPOPZuuZBPbtzVTXTmCxx75H7541gVECtpY/sEaDKuTivJakmYhw4bV4pCkp6eboSOrvGAgtu2e5Un0hejt7aW0tJS5c+cyY8ZRlJSU8NFHHzFq1CgqKytxDJNdOxsoLy1zg2z0drF89RYOPuxIdjVvZtljd1I4dCzjDppO8Xt3u9EbT/+Vn1+UcaOTpUEyI+i8pcxfMt1lJVZfrt/YyVWxDuJJ0dfZytFN1PLYypReh6dY+RTpxNZKVQFWz/kGydtccAk6P6uTV/K7fK80yVa+PGbFmM4loEhQG1VFLJO81rU1yGEh865cpuooVOMMqM4zFc8gp4FO7oq0Mr+oSqWcVwbdPCtwVoOIyW31ZKThL8eSVpLl9maC3JxBmc8GuwgqMSns9HtngxwKuTqWwG1zLudZZfmo1i8MXPHNNM3087gKbXMBecdECufs57UzQZBcDCpXV2+K5n6e7+vrS7/P1El39rS2tlJdXU1nZyeFkTCJ3jhbt2xhSHUNjuOwdssGhldX0tO4mS3rP2DUfofStK2F8ROGESkaQns8TE/bJpJ9rWCWUzF4CiZtfLh8BfvtN41EIsnil15hxLjxDBs3CcNOYhoOpmNjxiK07dxBYaiPD97ZTLggRmNjI0fNOILW9R9QVFNKQXQsFlEWv/E/HHnM0bR2tVNRNoiW+m3UDh/MghefZ+L4vYgnDBJ9fby//D3+59lnuP1ndzCoopyoOZhtG9fS07eLJ55eyo23fZeioiKtM0+ALvqwPFdlmifEt0QigWVZafJWTiMcIkHzm+M4GJZeb1b5Xi5jIMbrv9y24XxgYBPowLyHKoPoTeLPAnIpeeC152IY5QJBisBAcMgJN+WMqMDB502VtqDqBIJpWtqBppYpKxmZlKEgUA1nx3FQj1E5NlrBpasvU/3ZvgnDPlM7dO3MpOyreMtCOEjhk/PKeMtJ3Hc6Qz2lEKbR1dCv7qjKJrjCvLe3l4KCgrRtk/J4F/WYZg/DRw1j3Oi9KYmMpqxoAvfccxuDykuxkzb77HMAccegorKalR99QFvrdsYMq+bZ519k6pSJvDH/ObZuXIVpFlNWUk7JoGLGjhtBwk7S0dHJYYcdwbe//V1uvPEGzjnnbB5++HFmnjydTz5Zx4hRI9jV1kQ0Fqajo5XqmhqfQhwKhXDoAxKYps1+U/cmFCogHA5TWVlJWVlZv+KQIFY0iN6EQyhWTG9hDYMLk7z+yC+IN66n3Y4ycu9pjN1nKol1C8CA8MSZSt/p+zGXsaH7ruszuZ8yl+/vo1whm5Mnn7Ky8Xemb0EGhSrTgvDSKcxBOASN03zbNhAZKIO8jU3gIf+fr3Gsa6OOljLIhnLa3B5AS1UeirRq29T5QqV5LoHzhJKp1hFk6GYy0FUZKd7JR02C+Mpn+KkGliLjdfyktjUXOSHm5RRva66cMfwrw7rzn0H8nWmMyM5Mx3F8W4Idx/HarOs/3cpUar73jzlTyqN+zxUE7ZW3Sltzj3SsGjT5lZs+56q6ti5qspFWrkFhYSGG4Ub1TiRtIoWFFIQjWFYIKxSmqrSQAtOio7OdmuFD2dnawYQx46nfsZnWXV1YlkFt1VjC1mCaGzvpibfR09vFkCG1NDY2UV1dw5ARozFCEf7wx/soLwqzo24jI8YMxwgVYDgGLQ0tlMXKiXf38OnHa5g8YRTRiuG0dHTwxsK3ueDc8/n+Ldfx8doGSkvLiBaGWLXyI1p2bWZwdSkVlUWECmDMxIOZMHEap55+PpUVY/jzn55gycKX2b69kUn7TuaEE0+jtLKEUCikvftYIpSf2pJsk8eyn/4pmor/VdmfJoPExoZMcjHLbjod/wzkzOu/9VU5svKbbRIOyptLPp3w35Plfx6g8z76hPJuQpCSoH7XKaRqP6qDTKwwyfnkcuX2qV7uIENMCOqgLbU6vHPd/iwLFQhebZLxl0HgJNMiselNb+uwDGq56sSq0jiTUJJ/q7yh4i4LSp3SoBOooh/FIytoQbjIfSS/F+0Q1wEF8XMmhcKyLKLRqPdOxkelH0CfEyMUKSYZirN83Wu09q3l2utvYkf9p4wcUsZDDzxEUUkpz7/4EjNPPIldLa08//xznHXG2azfuJVvXPNNTp95DAWEWPjaS1RXF/HCy8/Q3d1LOBxmyZJFTN5rLPf87lc0NDWBaRGOxJi41xTKK0oYOnQIGzZ8yoSJ49PoZts2dXWbKSgIEwpZOI5NUXGEcIFBaVkM07JJJHsoKoxQEIpQGA6R7N3Jokd+zetP3kdxeSnxirEcdeaXmXzgEWD235eoOIlU3lAnUTniqY7m4i5knWGg9qHKt9m2LKm4BKURfwd9ywV2x3iT65ONBBU3HQ+qsk9VVGR6yWl0clBV1OU+lL+r+OqMOLVt6gpLNlrIkIm2OpyCfuveZ+rnbMas3EfyirfgTZFG7ReZpuK3rj/UdurGUhB/C9xUeqhzT9BOGbXeZDLpG6tqfep2Qvl/NZ1u/tONcZnOuWyJl+kh3ql9pOtrec4XecR7edzIuAu+kOsV+CYSibSxpJYhQ6Y+D9KL1LbLfZsL6MrT8Xmuci3TOAqSw7niKtPLChdgOwaRaBFNLa3sbGtn3Zp1RMKFdPfZUFBI7eAh1G/ZitPXQ2VZESs+eIG29jpCEZuq6jBjR4aoqamhqKiI3t5e2tvbaWvbSWFRjK9/7b+YMG4i+02ZRlNjC709fSQSEO91WLv+YyprKhkyuIItmz7GKRhEXwLO++IZvLlkIQWxKK8ueI3/+q8NAAAgAElEQVSr/usq6jZtYZ9p+xEND6M4NpSlS1aAXURbdx3Nbet59/0FfPjhQrbUrWTS+FGcc/4lvP7mMhp37vDGm8qvQWNPgCxDxFjV0V8ny/Lta7lOtX553KrtyGYXZIJ/65XXga2i7p7S8fmWmmvJua12+IVo8IDYE5BJQMueWt1g0OVNf+dfjdAPsCzCUrN6m+l3rgM+pzRpjsvMXv7uhXeR2LGSgkkn5YVDkLKTj/DKlCebYM2URltOWsAmXTAm/9aUIH7JjY/SVzNEufF43L8CYtmYITdCb03VUIpiFVRX1LBs4XMcddShRIurscww9XXb6OlO0N4Tp25rA+07uzAjRWxvaGbUqFE07djOwYceQFtXF+PGT6aktIz58+dTO2QYlRVVVFVXYoRsGhpbicYKGTlyMolEL8UlxRQVFfWH/k/3dJeWlhKNRvvbYdDT0+OlEVvM2tt3sXntp5QU2Nx95/fZb/Je9BoW046ZyciJUyksLsPAxrHj9H38MgYGkcmz/HQlYCs8eoU4W99k4qHskL+8yoZbPuXo2pEP3+noJfOj+j5X/HTb6cX7TO0R9eYaoyCoblFOpnrE37m2SUdfVb4FySedQRk8b6TXq0urbgXO1Je6tsplyPl1eKvvMzkx5DJ19MnUZpU+vrpN5YyvJn8Q6Oivw9F9r9IzHR8HvwJuavDIhbdUmS/eecdLTIVemnKz8Z6XUf6mROslL90n03vVaAjWA/KRdUFBzNR6FQyzlquuvKpgGxYGBpYVoqiomKbmFlatWEF1VQ2jRg2mu7OZjtYu+nrjFMYcSssrGDdiEh+uWoVVYFJSXMT2TdvZ1ryTkpJSqqtrSCSSfPCPxYwZO5akE6agIEZHZw+xoiL6bIe+eDerV77PsSfOIlQQoqWlgbHjaikMl7Pqg0UMqaomWlTKgiWvMW2/fTnp+BlAAiyThQsWUjGoGMfpI1oUY3PdNtasXEVrUzPLFi7kqMMOZujQWsxIFZOnTmTMuNGg6LKCF338oCGlrP+ojjM1nS6vvj80fSCVK3hVV45ujhHvLPP/QLThgYEYADrSG8ojCysbcwB3I+lKTftupD/pudxHbMFwnBRfBAteXRl+kCcxt52q0AmeOHL1jsn1iHKCDFLxTT7ELXu4gxQQ1Qsll2dZZr9AFVtw/YE7HEezNddRVh4Nx+sbB7v/t9/Dalr9/Wf602E4mJaBg+3lyTRZprXTST2maflwBHeLjex9jq99EcOAyOSTfeXqVlhkHHSePJU/5MAXQf0R1K9yX8nCSyhm8t9yPpUPvP51g8T3G0j0h493aW9ZruEKSQzD6X9AbDCRV0NkvOQ6ZK+1iov8tyhHFsRJwwEHCsIFdHf2sGjxEpJmiOqKUbzy6jKOnXEcO4063npjFYnOViZOGMHhh84iafZy0w9m09i6k1mzTmDVylUYTjedbR0cdOB02rsdurvjjBw5CsfowzESJPvilJfHqB1Sw/r1qykrreTd995i4oRxLp4h0xMsDv1beZwoth3HCoFtxwkbDhgWcceiI9FLV7KX5pXL+cWvZmOHbWaecSbjpk5n4tRDiMTKCIUs3LNLBhDq5zmDgoknu+8cA9OwAp0YQeNZ5lP1bJ3aF6qSrZ5DBhPTtLBtp397oTSGPXnu+P627dQ2SR1+OkMg0yO3ScZX3U2QTSYEycAgvhR5ZH4W9AmioUzntPJNl3CG2c9DEg3U/KLfBK1EO2UcRBp1LnDldeqIhrzzQlef3EbxW65flTPqI+/uEOlVmST3j2mavi2NKs5q/4ZCIS+N2k4PP9PAME13O6jhRi93bE0fKHwijw+3zlD//GD087yRNmbUHS2q3BL1hEIhiX5u9OPU40+n5UnpH45eR1HnlFCoAJdlXL3DNA0tvwicXfxcWS/+Tzq2x6dCfVH53rH9eotlWe70Cin5aKT43TANb6uxTDPDMjEtk6RtY1rpUZlNw8+XAv+VK1dSU1PjpjfwxpRbv8awVY1KXAPcMk1wnJSW5jiELMvdrkxq7Am8VBD9mdIt9eNDdWzJ7wX4y1d1VqU9Too3HNudJ41cdGshvL3H8VVlYINhu3qWBYMqyrCSELdtCosrsEOD6N25Czscp6JsJK31m6kYPJbOjmZqaoopKCghHKmmq6sRMxyla1cr5RGTkqJSikrKsA34cPky6resZcz4qURCBRgmDB5ZixUqwQj1UFlTSlHlMAoSHTQ3dPDhhys5YP/J1NaUECqJUVBQRt2GLVSWRJh64BkkwluZNGkiRYWVVJaWY4WH8cTDT7LvlInsfewMNm7uZvioIQwbWollJkgSwgGskAWGG09H8KhHB83cI8tinS6VTmrNfGQ7mIbp9hfuXcKGaUrXBrrjR+BGAA5yHbrfAzFe/60DNqVDDoNFMl5Tq4A5ZMsbdNs99CkFwwnBrXzNv+Y8Vrx2hz+CjFcZ1AEnthXoPPuiT2R66NKA//A5gIHlW9V1HAc5mnCubUkLnEQy7TykbPzZth0YbCnXemWcHcfxhJGsXHc8/S0MA4pP/40vfyZhJb4LUO/Xy4VP1D7VCSvVS6iWJ7dRBsEPmbY/Gaafx1y6qG3zG8O6usV3uW4BMt/I5coBMQDidhILA9MwsBNJtm6uo6S4mLkPPsQZp8xi/msvM2zwSPaZehShaDsvP/MwE0fuQ6dRxnMvLOBrV3yZqoowH733LiXRMP94fzknn3kxJVVDXJwsSCTi2HaCotIyTNMkEolgmiZdbXF2te2gorIcywxhW+mGSdI2MZx+Lyk2OzpaKTAKGFZSzWP3/YHX5r/Ibb++i/LqSghZOKaBbRf4FHB1W6baN/JvndEnb31TFXTHcbxxq65aqX0m94vsXLFtKfKn6V7tI/LoAuO4uOgdOpm2M6q8rPKnTtapnnMZ1LTqWUDZaFFXg3QramkyKIusV1eVIG2zB07SH8Ub8LajqfXI9YlxItKoNA1aidXxkqxE62getDoVBOpqhA5/mXdUnrZtm3g8TjgcTnO8yO2Q222apusYkMDolxkyPeT6xf9yWf2le+W6BrZ+K6zaJrlcuV2p8a2Ov9yja6v1qTTzg0pTzeqmpj/lflJ3mYh2+HjB9jt9TdMkYSd9/C7nBbygSXL9hmKwyn1jGIYv2rCgayKR8O4udZusMe7UNioRiXXztLpDTdBBzJmZ6Kb+VsdjJpmhk+9Z65GSevnT5ulcILvOZmLg2DZrV6xixNBh9HW20rBrE+3NvQyrimEUllJcGmbDpnWUlA6lqbGHgw/dj6TtkOjrYd3qjygtqaSkooZN23ZQU1FOQcjCsooIhU36+vowwyG2bthOeXmUjrYmLCNEX6KDtrYu2traOPTQA6nbsp5YrJrujiTbtm6mp6eJISOn0NXRSHf7TloatrNizcdsbrA5eOr+TJsyjl0FMWYedwI7GrYzeHAlpgXJXFaolX5Ujydkm0ch3XEsaOlz3KuRszU4yL9zDdBWEArnbcj8W595/XeGIONtT5chG0351id7e7OBHHUx1zyZoKCgAHAFeV9fn++MUNCZGVkZ1ClSuu1WqiKVnyDODkF0FxNMNuGQDXT0EOeZstFroKDjKd079ZqTTEay/M40LW81QnbuyB70THTVKY+qZ1pdmQWwHNc7bpruasCQEcNYv2EDX/3alXy49hO+ePbZbP14BbazA6MwzKjhU1m3YhM3Xn8zF51/Hi3NzbzyymtUVQ/GxuLoY45n+Mjh9PT0sGHjp4BNb283hdEIvYk+jJBFn52kq7eHeDJBeVUlhmVBQLQ/20gAJpYdIoRB4c4eirsTXHjGGVgF8Mvf/YqymlrsUCFGOIpjFGAY/lWxtDLz5AvZGBMGjUzvgoIC7Sp8UFk6vgiaWNX+k7/JPKHjAVkuyXir7dCteKn1hEIhQqFQRlknvou0OlxEeQIHIb8yyU91FU5OqzoV5EesKKq4iHc6Ogj81T5U06h0F+2Saai2SS5fTitwUemb7VHxV52qgi/VfjZNk8LCQgoKCtJwkfEV5Qt6ibQq3TP1mZo3135W+VFtswDdGNG1WZ2n83nU8aqOp2x5RVpdX8njXnwX9Qm6yQaqnF813nR0Ek5jeeeNSC/+1+ESDoc9J6PM75kgKK3cdgFirhYgy9BcIRcdL1/HUBCosmVPQ6+dwLQsBpWUUl+3hXC0GDMUZa8pU8EqZPiIWj7++GOqKocQDocZN34ULz37PL3dbexq2cHwkbV09bTT2rqN8aNqaWpqoKOrk011H9PaWs/qle9R/+kG6N1KT3s9FcUWD97zY4YOG8whh05lyr4TaGjcRlNTEz2tTWzbvI5lSxdx0MEHkkzsoH5DKwdNPZCdLVu47cffZ85D9xEbVEpJeSXFRRV0x3cxYtRQN64E/l0cgn7ZQJYpqiMiTW9R5IAMucRx0TljZRw+K/jPymtAGbKQ/mxIpNt+kdmbr+aT83i/jPSVrj0B2YSaqFvFY0+CztNumn4voYqLl8dJBfDxBqOy8iqv4ATiYCt9hN5b7itPutNSHdAqnYIMhGxKfMfT1+I4UHz6r9OUed3kHGR0qCs5qhc5qIxcJ2UV7yBQvbtBfSKvvHo876SMH8dxcEjmPZnrzofIXnodrpYNttHvUTYMbAMihkV9fSs7m3cwtCrC0jeeom7rKq746i0sW7aeSCxEc2sTWzfUUVlVjRmNsP9+k3j7zWXsf/AhVA8fTtym/97SBEk7QXd3J53dCcaMGUMikeD999+nszPBEUcegIuu3qBL9nZj9RVg93WxYP7fefvFhUyeegBHn3U25WOHkQw5RHpD3uqnoKHcRl27BcjKuPy/4BXxf7Y+lbc4yaD+lusX5ZpmSOF3/XVYfgjeTqXKUnksBK00ZluZkI1MnTzQ5c3Ed5lWSFT5CKmVULUeuZ8cx0Hc5el55o10j3uQHJHp4pO5AW0QaeU25SIf1HYFjdFM5ajzVi55ZMiUJ1D5M1M7DTyHgO0fF+pWPx2tnbS4DLbH67IjQsZTHTdBY0JpSXqKDPOIXJ/ufQoHfT3Z+kHwsGEYaTsEBPh4SzcUA7aterofmrGYIQ+kdiekVSXNn8m086HpOAfdmZtxTKg7JZSxnQ0ErwielOWYzEc6+RY0Jrz/NSuvQbTMDNmdpbYBpgORcAHv/+MdagcPZ2fHFkbXTqRr1zb6kjvp7OgmFC6kraOHEaNG48TbqNu4joaWVg4/agb19esZUllNtKCIhcuWU1E9lPKSGMm+Fkw7SdWgWjZvX0GPXUAo4VC/dinTjj6f5uYGEokEBQVRtm9roTLagxGKYhQOomrIcDbXfUK4bzQbN7/CkOoyKqpGM+Gw4+ns7CXm9NJuhymIJLGscD+dMscgCJpjcjF0czKG1TuJNX0W1Pdy+UJ+CaeMKjcGclXOf1Ze++Gz9hL8q4NOiROQyQOcrbxc0qiMLnsJg8qRv8lKoi6tKgQyla8qVZmUrCC6yF5Hma7ybxWXbO13HDAMt+yZM2cRixXzk5/cnubxFsqkvgx9ZEcZr0zpci0zl75Xvd9BsGnTJmLRUmLRUuo21/nSqryjqztbP2fqE5m/TLP/LJLdT49+IzZhJykpr2TU2Il0dnZy8JEXctQhM1j/7pssfm8u4XHbSSR38sG7i+nt6eRvjz8FmEyYOJl33n2fBW8sYOfOnfT2dtOXiBMOWxQXFzNiyFBadjTyyao1VA+q4Oijj6a7uzsjTZ/++zzu/c0vmfvgfXz6yQpmz32SS/6/71MzfCgloVKinSEckrz11psUFZVQVFSS1mYZuhfeSffCO308oNsWKoNMMx1tdX2eC7+IvsoWkTPoXS7RSzPhkAufD2TFQV4JUw2hfGSGnCebo0l8SyQSXl8FtTUXIzOb3NDhKPIGgboy5RuHA4B8ZFM+oHPCyPVFIhFs26avry8rTpnkoRxNVH6XqbxMPP9Z0SMb6PhJ8Ky8Aqo7gzxQZ706v6mQ67dcZVQmXNUxnan8bPNSproy5VUd1bksRHzefJIJQv1hRxJ2kv0OPoiyQRWMGjOBrt4EjS27qKgYhOM4dHf3UlZWxsqVH/Hx2vfZa+IoIqEInZ1JSkuL2Fq3nuameg499FBGjh5FWVklppmgtMTi49XvUlg6kolTZlBUMYm9p0wnZBWSTDpMmDCJ+q1NLH3zfapqonTFd7FjZzObtrXS1R3mr3PnUVpVSN32Zn53z31090KoMIIdSlJcEiZhm+6RHSOJbaTLhXxAt3MuG2/oYKD9K8sqMWbFjrrdhfSLlf7Xgjpwg1OmOkRNpBM+ap7Ue8PIf9U1aOJN7/iBDvTMzCbqUb3YMqgrjDJjB3lpg7wpQTjoPLo6D3dQ+bIADapLvDcMA8fuH4iS4HaVPav/W/oqpGm424D8vk58XZPyEokDGravbh2Nxeqs1x4j4cNVrAzK7VC3Isn0C1p1kSe6/qb345RKo5br4SDjp+Ci1iHaKa/WqIqrUJSCVt907VD7VbeCng1sST9zHMP326vTSOf3oHbLfWQYJnbSvUzdm9RtVy7Iq5OizoTjnmsyHAerP2gJjoMdb6UvmcQqrqKzq5PBk44iaiaZFS1i+5ItFBWGufDCs3j3o3X8/O7f0hvvooedHHD4QfQ6BpZTQm932N0ObEVpam2hpGAX4VCMESPGYFkOvb1xCiMx+hIJQqFC+rrj2Mlu+npa+XjFClZ+tIqaaC+RcAdO8RD2mnoacL+Lv2nR1dMBFuC450ZTNE0fg57yu2uLtl/VPG55brmGYWEYYNsO4AZV6u9Jr2/E/5lWjNrb2/n1b37D//zPU2zauAnLshg/fjznnHMOV111lXQVi+jz1N9SrwuM0/B/8cUXeeCBB/jHP/5Ba2sr5eXl7L///lx66aWceuqpZALDMLz877zzjpd/2rRpXHrppZxyyilp6XWwY8cO7rvvPl5++WU2btxIT08P1dXVTJo0ienTp3Pttdd6WwhDoVCaASTLHFnGBOGsygaT/jN8tuOd5VPxTZvn+j85klQNUoaFURJUlvxOxwNBc4Iq83RpcgWdnAiaV+XfafEVVLDduzwT8T43/Fn/3aXqtlQ5vzt+hMwVu0v07RFbXGWDRMUzlU+nB+jn3lReq79sWQFWnczpeLnlCd3KQZ3aUsEppX428AUMM5WdJbLM9/KTMuaFY1EFxxY7IAw3LoWROh8PYDuCT+Utlf55zTsXS/CclaYr9L+3LIvGxkYqKytT40bgHJJ1E7zxJ867GobhG2uGYXgbyTzaONLKv5DdYgFNmgvleVzXhrTzw6Tzd7r+rIxb6bMhdoNoqaWHFF56nUjmXbu/zkTCBmzMiIVBIRXVDmXlE2na0cSQ4RMxnQRvLXqNQWVFrP5oDfRFqKysxLCb6e4LES0bTCKZpGtXE6FwlM72Bro6Wuhti1NeAnZfK9s2L6Ztx2jadu6ggji1gyfS1mowpKqWk04uZFe8ivauEPtMOYS//f1J9po8je/edAXllYVEYjHOvSJKa0sTkUgEJxzF6UtQEApBEkwyXyeWSUdSZa4MOn06qA9FUC1Zp87FYSnXk5Jf2Xc25gP/QsZrMGRScj5vyDZxfp6gGhLqe93vfGgXVL6u7UFbAeXvoqwgRSsbbXPZn7+nIFt7gJTSYKQH/VFBpaVuu18mKD79N9qyk8mkp8hA9i1uchoZp2xKYVCEw0z9odJEBD/KZPAK8CkmWSDImx+Er46O8laXIOFdUFDg9ZlIGw6HqaisJGknSSQSvPzs64wePYoRw2uIDZ7AF/Y/EjPRy3tLXqcsEqfuvacI1Yxl8qQJ3Hv/o/z17y+wYMEcCkJJtm2up9AoZ9LgQaz+eBXRSCV/euBhvvKVr1BW3U1xzKJx+2bGjBqNbXXwj3eW8MYrL3LglAMZMygKZQdx8VmHU1pZzvw3FgTSKxaLMnHihDT6qs6MIF4SefzGa26QiyzavHkzM2eexKZNm/rxjdHb28t7773He++9x9y5c3n22WcpLy/PveJ+SCaTXHXVVTz88MNeGwYNGkRLSwsvvfQSL730Epdccgn33HNPYP6rr76aRx55JC3/yy+/zMsvv8yXv/xlfvvb32Yci/PmzePaa6+lra0NcHkrGo1SV1dHXV0dr7zyCpdffjmlpaU899xzzJgxg8LCwrzbK0A9ArCnIZd+1c0nOrmYqQw5TTaZm61uFYLksU4uBjlwg+oVMBC9QTdX9vX1eauVua50+A3cdINVTiMMU9kBEeQc0RnOqd/BkdxVSJWvyG7JuPTSGI5PZucChmF4xqHjON71OqIc1+DSOy5kozKorTq9q6KigkgkQjzR58sjnMUe35N+3YkjOd2SySRW2v16wZCJLqpuozqZ5HTqN7n/BM32hDzJVoaOx1Jj2cZwQuzc1UNLYxulZSU4ZoS2Xa0MHjqeVcs/4ohDp1G3uYGh5VVsfO9TegoiDKsdzMgx4+lIWDTvaidkRlj15uscdvjhREdNYldDM0NqRjG0Yhy/+90DXDj5QjZuWkeksJDhIybQ3lFLKFpM88fbGTJuOBd//RLKy8uIx3vccekYxLt6GFReSTwel9wz+UMmfUZApsUmVU4KR4l8tlw2Pv+ZNpaAf1njVSfc8iFoyjuQuwGWDwR5Z/PJmwtkMtgHwmCqd22gdFDzqRF5dYfI5b9N0/RFv82kLMsgBLy8XVYW+OoKkjzhZDKYde2TcfIr9emRUuXJwLb99Qpc1HZka6+cRl5NlLPJRmXQCplqMAbxVLrHPpjPdbjL5aqevKCyMq286H7r67PT+kpOo+IFqZULneKmluHxqeI9B0gkk8SlFbHjTjqRro5O2rvaiBSW0NVlYxlRJu0/ncl7TcGMt/L43D+zdlA1h4wZz1cf/S2VRjWrV7zLqOEl1G14jdWNG+lp7aB00Aiuvuhw3ln6KN1d0N7RghkymPPJBsZVD2X6ccdxzFHnM2LK0Wys28kNN3+JZ058ih57JxhdafQSE9RBBx3EBx+876OHoJ+8FVElvToWUopM+gSq9qdp+vvAP15SClEymeScc85l06ZNDKkdwn1z7uPYY4/Btm2e+PsTXHvNt1i+fDmXX3458+bNS6tHlK07e2sYBj/+8Y89w/Xqq6/mxhtvpKqqis7OTh588EFuueUWHnroIcaMGcMNN9yQZiDdfvvtnuF69dVXc8MNN3j5//znP3PLLbfwl7/8xcuvgyeffJLLLrsM27b54he/yPXXX8/UqVMxDIPOzk6WL1/O008/TUGBG1Br1qxZGa/HkPtP7isRJVeATBd1TMiyVFeHl15R7sUVJap80Xn/g86ZB7UrH8NQLTPIsMlUpujnfGRdEOjaL9NFn18/F/p/+1da5fPG+Tj35XGqn6dSY12dX8V5VN3Ka3pbkzm02wXZoSsr3LrWyGkE3mrZ6th1ZMNQkn1C5rn5g2mnzrHZ5i5Rbjwed68g0aTzcHbcv8VZVNu2vfnGe5/0rxyr47g/cU54q/yp4uSjW4DuKctvVf/KVa9U0+WiV6fJFcPdW1BSWkJpWQlLl73JXpMmUzVkOINHjGPosAk43Qk2bH6ZzVtXsG7tcsbuewSFVowXnr6fkRP2Yp/9D6Shvpqjj7mYto5Wepvj9HS0sH6dQ9XgCPtMmUrYchg2bBgd3Uk+3byVvfc5mEhxjDPPOZveZJzC4ihdfR04TohE0gRsTCtMb9wNpJga35lvWNDROIjXdDI1fe5N11fVMS+XH6S752PzBNWVD/wLBWzqUlWlHHJlFjSw543XoHLS6awVuXnXl8+ElC9kM17zrVs36QalUY1XMWiCC08pFrK3TzfYsk0qOvDyK0GetMarcjWOGlTITqYrcPk6XmTBo7Zn1qyTWLRoMd/73s3ccst/A+mr0rIBqRqv2bycA6WlnEZuez7CTjVoNm3axN57TwFg9eqVjBo1Kh03M3M9Oh4R/KQz+lXw+Fpz9ZKhKMm2ZRByDBLd3Sxf9jbrP1nHUTNOJ1JaTMjqw+5qpDDUS9P2bbz80gLKa4ZTaGxhw/p1lMSibPhkLZ0dbVRWTaMnGWbKAQcRKgxRkIwwZvI4xk/ZlwRROjpsCqNhunvaSSYchg0bQXNHM8WxKHayjyWLlnDiSe721c7OdiB4lVWmk/y7/alrATdImExfNa88bNXxLH6LqrMZrw8++GeuvvobALz2+gIOOfQQT5kzTZPHH/sbl112GQDPPPMMxxxzTBpuquEi2t3S0sKECRPo6enhtNNO49FHH03rz9tvv5077riDWCzGihUrqKqq8sZgc3MzkydPpqenh1NPPVWbf/bs2b781dXVvu/bt2/nkEMOobW1lW984xvccccdHv6qzFBpqK6EZBuLsvEq00Unm7IpqwJsdWXKTk+bSVaoilYueXIBXXt0x2VU0DnL8tEN8lGyVYUuve50uZu+Q0e/Ciz/n46TTr5l3mUijlLI84h7p7Jcb/Z+lK/GCewDyUizbdtbhfRoZPgjJgNeIEWvHie93UlbkXlSYD93lVXjEDL89FUDQcnOPbFqlcmh5PGh6XeiqvOdfG2PkHeG5XfOCONVlgty/0BqfOa6Y0mGTEeCVBroHOWyTpbrqvhAjNc0fAyXfiHTBNugu7eDsBWisCDK4395mGikkEOmH0FPex3b1q+FviTtHb0Mrihmx5b1bNiykfETJjHjnEtp3tFIw7Z1WE4L8Xic3mQFTqSQ4bVjaGtdS29PEVWD96a5rYVJ+47DckIkHMAwcAwT7CQGkX59IY6DP5gnpPgwH+NVpZdMJ5UHcjE2s+mm+cjoTPkFXgO5KudfduU1N8hueKm/d9cITJWTbWDuGaMwEwPublsGut1DN6jUgaAaXepk7ZuQHffssXYyEWCI+z0dTAvPN5DtnJdcXhDOvvSSES2f+fBvlVTuqlWUDtlhks1rKeOkeooFzQzDoGvhneA4RI/yr+bE43F+85u7efzxv/6IQx8AACAASURBVLFhwwYKCgrYf//9ueaab3DiiSdq6bFjxw5eeullXnzxRdauXcu2bduJx+MMHVrL9OnT+cY3vsHee+8VSNP581/h/vv/xLvvvktjYyOFhYVUVlYybtxYjjvuOC6++EtUVFR49cXjcRYtWswLL7zA0qXLqK+vp6WlhUGDythvv6lcfPGXOO+8c3P21sm8ZJqmZ7z6aC2dO964cTOz75jNK6+8SlNjE1XVVcw4dgY33XQDoVCIvfbaB4A1a1YwanTKOE4mkyxduowXnn+RhYsWsXVLPY2NjZSUlLD33ntx7nnncNllXyUcDnt1W0kHB4etOxr4woknA7B21Qm0bmvm7nvu4bnnn6eltYXi4hIOP/xwbrzxXPbdbwJH9vNKLBbDsiz6+voIhUJs3LCR2Xf8lFfnv0pjUxMVFRVM/8IXuOXGm+iNJzlk+uEu7qs/YfiIwZ6yJ98dp46DhQsXMmuWi1t3d6f3TShNy5Yt4/nnX+C1p55hW0snTZf8hZKSYvbee2/OPfdcLr30Miyr/8ywbWOacsARUa87lsXZYdsWRqyFN+w1UTnFqujRRx/FIQcfCjYYGK5y6picd9553HbbbWzcuJFHH32UY489No03VIU86bjj6tXXFtDT0wPAt7/9bS2Pfetb3+KnP/0pXV1dPPnkk1x55ZXeuHz99dd9+XVw7bXXevnnzZvHlVde6ft+77330trayrBhw7jtttvSjBBZNsjOOgHC6FcdUzrZpq66BikdOieGRzvlbmjxl2nod1XoQMZXTaseJQiih0wHnfGuc8LoHGI6OglFO58VzCCnnuqE8JchO4/wxkHqSI2+Hj3+cjvE30IOquNKN0cKI87pH8vKapadVOivwQe/89kwDNCs7PvplD7vpfz8hvu3VJ9hpPetm9LwnavU8pZpgHQvroGJkxTfQv3ttEE2MkVas798RUeS75GVjXsfZU0phkIAn4i6UzpEqh2G4V4ZJN9v6zhOSs0wwLBMDMcdPx0dHUSjUfHJV48ugriIKCs7C4DUyq7kTJDr9+gqYkFI/Kg63dSFCY/WSrkqBJ2b9HA1zTSHQqj/t8C/sMClRV8ywVkXnQ9A0rQZVFVObe1ePD53Lm1129lALz0d2xi71zhGjJvAzqYGCotNispi7Ni0g/a2HipqC6kdug92n4XNSKyoQUlNOUZJEQmjBJu4byi656cTbs85Bo6RcnaI86U4enkb5OzK1YhVQSwQ6b4HyXsdqDuZ1PlIltFq+er8lQ/8mxuv/4F/BuSzJ142avPxpmWDfM4eD6TebG3MdtYzqO5c6aDWb+/cAspqfl9fH6eeehpLlrxJKBSiuLiYnTt38tprr/Haa6/xve/dzPe+d7PnCRXlff/7P+CRR1KrRqWlpSQSCdav38D69Rt47LG53H//HM4884w0vO644//xk5/c7v2OxWI4jsPGjRvZuHEjr766gGnTpnHUUdO9NG+9tZTTT0+VFYlEiEQiNDY28eqrr/Lqq6/y9NPP8Oc/P5B2hUsmOnsKRAZeWLp0Gaeffgbt7e7qYzQapW1XG3/96195+umnuffe3wWWX1dXx/HHzfR+h0IhYrEYLS0tLF68hMWLl/D443/j2WefSjuPGAqlVgtWrVnDlV+/koaGBmKxGIZh0NLSzHPPPcuiRQtZ8Np89t13iu/ssmmaLF26jNNOPdOHe0dHB3974gleeOklbrr+e14dvfFdWNbQQGeJgGy8V1dXx3HHnZBqh2UQKyqhpaXV1+annnqKWCyWlv/222dzxx3/D4Dly5czYcIETNP0zuX5Jz5/3q6uLt56aykAJ5xwAjowDIMTTjiB++67j1dffVXbVjHReu3uVxrqNm/20k2ePNmXT+BVXFzMsGHDqKurY/78+Z7xads2mzPkFxCUX4BYrT3//PO9u6qDQJ30dQqzOrbzgVxWcDPhlqtczZRW3caca3kwMLmugmq45pNPB7KCF0TXlKLv3wbqDxz0+YBQLh0n6Tv6o67yqw4O0Mcw2B3wnMQZykvJR/171RmsvlPr04FwEOXKE2LOUqM/Z8MvUzoXkcwro8KQFnNKMpnEtPznkzONPY/emt0TuwuqYSvjrcMnyGjdU+A4DpZpYkTCXHz5ZXS2d1NUEuGBX/0/osXD6O2KsuHDxRRX1xJPhpi2/7Fs3tjKoCGDSYZsItFuKiMjaWxtpKikGEIdGEY3OJ/tmFXlfdB9rTrYnWOBmUDnsAgCeeEnX/h8otv8L4RsQlXnNdsdQax6HnYHN115e3KSGCgusgc8k+CHVGh/MREErRzLj3p2QlYsdJOSwE0tK6htcj3if3l7i5pW9oKq9MikdOlWf1R8Zc+8eGRPWfqqgruq5eZz39933xzeeeddfvObX9PQsJ36+i2sXbuas846E3ANzRdeeNGjmWjz6NGjufHGG1iyZBHbt9ezZctmWlqaePvtpZx//nn09vZy5ZVfp76+3of75s2bmT3b3eZ4zTXf5JNP1tLU1MC2bVvZsmUz8+e/xH/919coLS3xeVtjsSjnnXce8+Y9wYYNn9LS0kRDw3Y2b97InXf+jNLSUp588kn+8Ic/ptFLB7JDJFOa1tZWLrroItrb2xkzZgwvvvgcjU3b2NGwlYUL32DUqFF885vXBJZhWSFOPfUUHvrLA3y6/mN2tTWzo2ErjU3b+OMf76V2aC1LFr/JD3/4Iy+P4I3e3l7v3WWXX8a4ceNYvHgRzc2NNLds57nnn6a2dghtbW1869rrsG33Og0RBGPXrl1ccMGXJNyfp6W5kdaWJt5csojhw0Zw2x2peiMx//ZQU6P4yNdPqCDz+mmnncpDD/2ZlU/fxY6Ff2D79noaGrbz+9/fS21tLUuWLOFHP/qRly9IKent7WXHjh1pRpigkTqm16xZ66XdZ599fCtosuK2117uroAdO3bQ0tLiK1tdrQsKaKGuuMnjVYzBlStX+nCWQVwzo67yyflXrVrlk0EbN25k27ZtABx55JEsX76cr3zlK4wbN47KykomT57MV7/6VZYtW5Ymc1V5odJSBTkmQFAf6eSj/F6W3yqoK26ZVhx1yqsOL7nv5PzJZHLA3ntduSoNgugj3svBelS8ISVbVfqpECS3ctEddHjr+CFTeTraCpBXUGSFU/BRUPny3/IcHgRycBgdv8n9rOs3WQcJwknVJYJAx7tyn4s0Kr1kg17lLzm9qifpjm0IEGnV7fu6R6SNx+MenrpziuKeXLWtohwxroLGllynSkvZGFfpE8QDOl5V6880dtTxK8somV91YOFGb3Ysk4SdwCwuIu7AV755PclQGWs/3UGyp4Pqymps26CptYeGXRswQknMcCkb1nfS2LaLsRMn0dfXRzhsYWTdfZkb6NosvxPzmOy8FJBJ/spz5kDlJ6T3tTr+dXOEjMtA6/4/a7z+Bz47yGWylSeZIOZVB13aaqNkXMqCXVXKMhkxmSAXr3vQRCnOu8iwO7gMBHbt2sUvf/kLLr/8MjcUu+MwfPhwHnroz3zhC18A4NZbb02j8/e+dzPf//4t7LfffhQVFQEuLfbaay/mzLmPmTNn0tnZyV/+8ldfff/4xzvYts2ECeO5447Z1NbWeu0tLy/niCOO4Je//AXTpk3zhJxlWRx88ME88MD9nHjiCVRXV3t5KioquPrqq/jd79zIrvfe+3uvrlwM1Gzw+9//gW3btlNYWMgzzz7J0ccc5fHOQQcdyHPPPYMlnStySCkHtm0zfPgwHv/bo3zxi2cxdGit19/FxcV8+ZKL+dvfHgPg/jkPeNtJvclUCmJUU1PNs88/xQEHTcMxbEKhMMcdN4Pf/vY3ACxZ8iZbtmz1437vH9ku4X7MsUdhWOAYNgcctD8LFy6grKzUS287VqAzJZ/710aMGMHjj8/l3HPPYczxXyd2wJdSbf7yxfztb48D8Kc//clrcxAUFxdTWVkZuCKhKnfbtqWcJUOHDg0sV/62ffv2QENJHY+jR4/x/l6xYkWa8wrcc7HCwBT/C5DPW69evdpXp6intbU1MP+6deu8v999912OPfZY5s2bR1tbG9FolK1bt/LEE09w/PHHc+eddwa2PxfIJIuC5Hc2ma4rf0/JPJV3dUr3noAg400HpulG8xUr5Lr2qkaVXI/6DAQ+rzlFNR6Fsqw7/iPkYybcMhkhqgEiIMhRkk/5As98VqjUvEEK+UBw2ROQz1gLcgTsKRwEiPt48wHVABsozRKJhG8uE4Z8c3Nz1jnOMSBhQshJYBs2dqSQE844m6a2JB+u2kZHr8HHn27CCpuUV1dTVl1NwjHYZ9qBjNtnNAkz0b+tOgR2ZED4q5CPTMq1vD0lL2UI0i8+K1z+hYxXQ3nyB52XTv6mTjRBE46u3PTB5uLpOPQ/6ndH86SVHJgmn8G9O5NkxjyO6XuCPERqEJAgb1DgpGDY2se0cM8zGqktMLotcjqvjy54UZAH2ccntoGB5Z6/dfRBB9K8kYI+dv/fSlq5XtVTq6OjmlYqrT+N+2v48OFccsmXfTiJcm+66UYAVq9ew4oVK7X9odIB3Alm1iz3rOxbb73lw08YS+3tHXR0dHjv5TbJk2YymfRW4FUvoqjLMAxmzXK35q5fv57t23d4uIi8AlT6eN8k+ttJ3P4zDJ588kkAzjnnbMaOGY9jG5hGyLszuKqqiiuuuEIir1uO3P84ppdHrgPH5OCDDqGmpsaNEPvBirS+F/Ctb19LUSzmSTbHdu8tnjlzlqcYr1yxyivfsQ3mzUvhPm7sBF95hmFQUlbM1752uffOtN2xkhovEt2cRGo8ZRjvjuN4q7+if+RvhmFwwAH7U1NTTWdnJx9++AFg497t6j7//d+30NHh8seIESN8410ovqn6Tdz7JA0Mw6K9vdOrLxqN+ba+yW2Xtyu3t7f72qTjR/rvMT3m6KO97d0/+9nPPP6Rjeu77rrLe59IJOju7vbKPeqoo7z8d955p5aOQfkBdu7c6f19xx13UFNTw5NPPsmOHTvYunUr77zzDscccwyO43Drrbfy7LPPpo1reXwFyQzdvKf2s05mq2XkMpeouOU7n+rmDXX+lh2IcnmyEZWJp3MFUadlhXEcg2TSvQYqkbBxj0MaHr+ml236HncLsInjGN7jniu1pcePo2kSmCYFtuZRdxUY/TiaiMBLIo0q+1X+UA1WWX6n6VAOYDv959HdR12VFHJBxiWNZ+jX+Bz3CEjStj1tyM7AX5mczo7jYDuGe5crJg4mmI732CRxnKRHQ9tOYFmGu1XX7L9j1Uw/W67Oc7r5WsuLjomdxJs7BL1CpoXVHztArITKc7GP3xOOG1q3/7Fx0p9kqi7H7l9t7H8My3T/9/i8f2XWdMtKOrabNotTwjAMd6txf99bhin1d/BqdiaHhkxDH00dzWOZ7j25OB7uVjhERVWl10b1SfGfgZNw67NsEzuepM+Ic/FVF7BiQzeVRWM55tCZbK1vYey+07GtKIPKi7DNbki6QaG8tpD0tcFxHB//CFqKdmXi1Xx1eC0tpT4xHP+K6UDtglzypeup6eUMBP6FjNf/wL8i7A5zZoNMAz9bvUFCMldcszkPdBNaPrjkArpVYRn/6dOnB7bnyCO/4K24vf/++2n4rFixguuuu57DDjuCoUOHU1xcSklJGUVFJVx33XcA2LrVv234wAMPpLKyku3bt3Psscfx+9//gbVrP84quAzDoKOjg1/96tfMnDmLkSNHU1ZWTixWTCxWTFVVjZdHbFXW9W8+Z/vi8TirVq3up8WRvrbLNJ0+PXU2V7dLIB6Pc//993PaaWcwZsw4yssrKSoqIRotIhKJ0tDQ0E8r/8qpDIcccpD2vWVZVFVVAdDS0qrFffr0I315ZMXvqKNTuLOHxqBpmvT19XHffXM4+cTjGTN6tNdm0V8NDY1A5jbryhX/6wKe6AysgYBOCRBjtbKykm98w41kvGDBAi6//HLWrFlDX18fW7Zs4Uc/+hF33313WqAjAZWVlVx99dVe/iuuuMKX/7bbbsuYX+Yt27b5y1/+wvHHH++lmTRpEo8++ii1tbWAG7lYpYlhGN64zvds3mcJucjBPQ35zD2ykasaQOqKUCKR2O1Vq0x0ULfifpZzqFqvOqfkqzSr8HngHVRvNl7LtU26s9+ifHX7vZov0zlXmbeCwLZtWlpaaG1tTTvWoY4ncY1OJhAGaVBZuvyibUE7yT7rMT1QHsqFB7LVJ/62LIvv3nwTy95/l9ffWsKk/fZx72bNYnzmuu15IDjmOy4HuttAB/8Mea7CfwI2/Qc+UxBCb09uURGgeuPVekWaTHnVd7kqeimhpf8urwZkG98DPTgv6JrK6xdkQ4fWBuaNRCJUVFTQ0NBAY2Oj79vvf/8HbrrpZp9nrqyslIICdxtMT08PbW1tdHV1+vINGjSIBx/8E5deejmrV6/mu991Ix+XlZXxhS8cwRe/eBZnn312WtCldevWcfLJp/qMnVgsxqBBZYjIzMIIFHXqhLZh6O9h1EFLS4unWAhjANx+lQMjyTRUFY2GhgZOPfU0VqxInX0sLCykqqrSa2NjYxO2bafRSobi4hLte8dxpC29qbtig3AXeQQfDxs2zHu/p5TI5uZmTjnlVG2bTdNtc1OT2+bOzvS7ZINADgCTSCQIhUJp57tLSlJ06uoKLltezSwuLvZ9Uyd8ddXmBz/4AVu3buWxxx5j7ty5zJ0715d//PjxzJw5k3vuuYdoNEokEvHJtltuuYX6+vq88utwPfzwwznooHSnRlFREV/72te47bbb+Oijj2hoaKCmpsZri6CfvML1vwH+WcarqDsbiG2OanwD/by1+w6BTHIq03nNzxLksSdQSDl48i9PlaWfJ4j5NxPdcuUPkc62U9fTiPJtxXjRrRIGle+ni56fDMPdAdTb25tWljqebNu9XzeTwRyPx71I9ZZl9UdcTt/toGu/rNPo2vpZwe4YofnqVqquKuoOh8OEBxVTXF3BgUcdBpEw0UiURCKRcXyqjo9cVlpzAZ3umgskk8mMsS1yhc+r7zPBP98l+zmCrKTovu3O0nnadoYBeEZ2J89A8N5dCFoZUZXDTJOX3F65nCD8RP/JZ2pUga6WpasnCGRhl8+qqRpgQhc0Sv4t8FRXC1X+1G0Zkdsh0oZGHk541OHaetQJJ4j/AdasWcvNN38P27Y566wzef31BTQ1NbB16xY2bPiU9evXMXv27f1l+fMbhsGMGTNYseJD7rvvj3zpSxcxfvw4du3axfPPv8AVV/wXRxxxZFqgpyuv/Dpbt25l1KhRPPzwX9i8eSONjTvYuHEDGzZ8yrp1H6fRWzfROo7+8mwBwkPurpykOzvEkyngmAw33XQzK1aspLKykj/84V7Wr3eDTW3evIkNG9azYcN6z7i07Uxbrew0fs60Wq37rY4dx3G8KMuA7+9M4PJLuoIkyr7xxpv621zBr79+JB/9/gJaW5vZtGkjGzeuZ+PG9ZJB7V/JUvtLJ++EwiunFd+HDBni5a2vr9fKc8MwfE4QgYuq5KltFo9lWcyZM4ennnqK8847j8mTJzNixAgOOeQQbr31Vt58803PcB4/frxvHBuGu6Lxxz/+kSeffFKbf/Hixb78MshndSdNmuSTY8IZ4jgOkyZN8tLV1dV57dYFJRHjXzc/ZZItuqMMKq0yjUUdqFtG5fJ1fK1ua5NluzxeDMPw0UcHmY1RvIBouqMMuUIu+oV4ZAde0JyvW4HNRudc5vagOVI+4y2M+UxRk4NoJPeLjl/UAC+6vlHbKpcp82OuSrxMF5W/wX/FlPxb5ll55Uond+R6dPSVaaKmlfGQvyWTSfr6+nyRm+VH3RYv01Z3BCscDhOLxQiHw772qONLZySr8kK3K0HgkI+RJpcbtJMsG1+r9cl6TyKR8I67ZBvT6rwj65tlgwax/4EHsGVbPVZB2AvUps69un5V5a3aPpnGcjAwVRfUyVydHNeBbds+w1XmRR0ddN/kfsqlb0VZQWkz4ZAN/rPyuhswUKL/u4Hj9Efm1AgQAbkyeq71BQ0IgYuoOp968xG4+ZSX6aqWPYVDZOoFaXnUbb0yxONxLxJrdXW19/6pp54imUwyadIkHnzwAe3Z4IaGHRlxKSoq4qKLLuTCCy8AXENj7tzHuf322axevZobbriRRx99BIAtW7awdOkyAB544H4OO+ywNAVzx47M9eUKYrKxLIuKinLPS719+3YvjSpM1aA6Avr6+njqqacB+MUvfs55552bNmknk0mam5vzxjPFw3r5UllZ6eEu8FO3+zmOQ329HvdM4E5O+m/+Nv+CkyIL09IMtM25wKRJkzzletWqVcycOVOraK1atQqAwYMHU1FRkXc9pmly/PHHc9xxx/nKFbBkyRIADjvssMDxetxxx3H88cenfbNt28t/6KGH+vJMnjzZ61e1/2XeVeVqLgaLUMBkJTcXI2egoJsDPgsQK3vqfbMyZBpP6kqrrLjmC7IiG5RdlJsJ392BgdA7Vx4KqifffP4xu/s0yKX+gSrJ2QI25gOZeMxQ6CA7bzJBJkeJrrUivWdw5lD2QOgmxpz8OxPOnyUIQ0t3Lj6vchzAdthr8l70OX2QYx/BnjuSJozyfHcIQjqP6dJ8XrAndO3/UyuvnyfoPI5+MNIex7F9j2GYuNsm5XT9uQO8e74alDQD8SZnAhEAxrRABE2SvXD5TIqqR8nnpVQCHonAOmrAKBFMx7H13qrAdgR4rVRvmvjbV54UtEcEQlAD+6jl6qIkq7io3lXVo5sLLF68OLD8JUve9CLvHXjgAd57sWq1775TfHjLhtlrr72RRiNVOMsrI0OHDuX666/jmmu+2Z//dS/tli1bvDxyFGIZFix4LQ1/IHD7i9xvqidV8GckEmHvvd0rVRYtWpSGt8i7aNHitPINw6CpqdmLpjtt2lTAf24T4M033/TSGEY/L/YHXBJBXQCPT0wj5D7aLZ8OGDa2k6AgEmLvvfcGYOHCRW4f9/OfKB/HZOFCGXf/GJFFv8enWJp6UzRtbGz02jN16n6+byKP3Gax2iwCnxhG6m+1Hp0nWfVox2IxDjvsMADmz5/vlxFSOeJ+V9n4lLcgy3Xpgk5lWgV/6623+PhjdyfAl770JY8fdV59tQzHcVi6dKmX/6KLLvKlLyws9KKAi2jFMr8LWbB27Vrv28iRI733mWS87ixjEKjyW4aMyrLjXxnTrQioqw6yfFHrkFdT5bEr55NXKdIDIqXKU8e1LHuDziwGz5v+gEiG4fh42/3bv4JnGA4u+d08ZsgA08ExbO+RaaLSUKZDJlz0eNte/aYJoZDp/e0GgdKN96TXJrd9+n7PHBTJ6N9+nOoXmQ/VcSu3TeUZn16B7T2mkT7GdIafCFBlGFYquFZ/ftNwwEl6gdvcn+nXfziOg+GYmFipwEgS/unt1+/+8oI9GUgBg9L7zccLUlo5D8irtW5/mSb9vKgJyiMFvDRMP/1FOrndueoaoo88nC3TFyhKBAsSNDbR7yLIJEO1wTEFLfrpaeMGJBJ1iEcEKcJ2sBNJt3+l4EVp6SBNptokSVoG8UQSJ2l6OzSy6bg6uZgJghxtQTqqrtwgnDLxWFD56jh1nNQ1Srnwh67N6pwxEPiP8fof+F8B/4ygIroAPPlCPgJ+d8oTuMqPDMmdm0nu3Ox7V1dXx1//+te0tLZte1dtTJ48iSlTpnjfSkvdiMErV67S4vHyy/N9xp4M8t2lOohG3Uis8nal0tIy7++PPvooLU97ezs/+1nqWhDbzh7iX1V65dUVmb5nnuned/vEE/P49NNP08ptbm5mzpw52jrku2o//DAd70Qiwa233pYRz1SbUlFzc+VHcVfvE0/MY8OGDWnfM+HuTjr+4EDZ6jYMg9LSUq/Nur7Kp825gGxYCKX34osvBlyHw7vvvpu2tXLevBQ9VONQLlMnb7I5htrb2/nOd9xgZTNmzNCeSc0EueQX7XvrrbdYtmyZ9170TU9Pj9evBx10kG/XxO6AzAN7WqbtKZDP8glcZaVZTRvE07pAVvI2WdM0034HGbhBoOZRnTNyudmC9uQDsrEXVL7K57r6swWaEek/z/OsQXTStXFP0vTzApXXcjFy5DbKTvFskE3eD6RftcalhtcHoneJcnYHMvG5ilMu+O2O4ZUvnjJOA6XDQGOr6CAfufVZjcV/rdH9T4JsHsZ8y8rGQJnSZPPg6Lz9QWnymYxzgaAzTTpQ08ie8SCvjFpmpq2VOq+S/B70d5HJCoc8QYt6VE+mTnHKpvzp2qb2h84LJkAoVXKankW/oHvhXb56y8rKuO667/Dgg3/2VsPq6+v5yle+yhtvuFs+f/jDH/h45fjj3dWq1atX853vfJemJncLaGdnJ/ff/ye+/OVLfFsx5Un2rrt+zplnnsUjjzzqO4vX29vL3//+BL/+9d0AnHjiCV57J0+exIgRIwC46qqref/9971vb7/9NrNmnczOna1SfX6vsM7bqAt4IqcV6b7+9Supqamhu7ubM844iyVLlnh1v/vue5x++hkkEunBL2zbpqioiMMPd1cBb7rpZl5//XVPuf7ww48488wv8t5773n35DpO8GqXUJbl8uX/1fY5jsNVV32dwYNd3E8//UwWLlzopX///fc55ZTTfLjLk7PKV+qYC4Li4mKpzd9j0Yp673zsypUrOessf5t1cPvtsykuLqW4uJjNm1POFtXRoDunbds2F110Efvssw+O43DRRRexYMECzys/b948rrnmGgBOPPFEjj32WK8MQd/Zs2dTVFREUVERmzZt8uHmOA5vv/02d911F6tXr6avzw2S1dvby4svvsjxxx/PRx99RE1NDffcc4+W99555x3uuusuL8qwyP/SSy/58t99991a+lxwwQWeUXvppZfyyiuveErHmjVrOO+889i2bRumafLDH/7QV7cAWSapym0Qk6lF1AAAIABJREFUCFnoXY9B+jjTeevV9gf9Vuks/pdXKGWnkzpe1fNlsuzNJEt1jyhLt8KgrvLo8gcZs/Ico2uD3AeyIa7KLJXuslNBLkudK3SGtzqnqOccRd3quFf1HbXPVFzUFSD1b928rqN/LmfpdPwn6CTLsCDjWz7Lm2mFS+YDlRZy/Zn0EBkfFW+dfqIrNyh90MqX+C6CMmUzxFQ9RtZ91HZn0rd0oOqE6vjRrerJPCXjKKfZnYUHta06PtSNZXEeXsYpk56t4q7SQeXzTDJTLidTXTL+6o69oLEn51X7JBtOuYCOPrmu2maC/5x5zQF2d6/8fyAdPm/Pvuql19UvzpP9M7zKewo6n/kWyaZ1AHzlmFH8Y1uIa665luuv/w5FhWF2tqeitF5/1lSOM16l85lXMctGEDv6BmbMmME555zD3//+d+bMuZ85c+6nrKiAju4+krbD1DGVXHThedw0+14A+jYtIf7h4wD0rnmf+fM/YP78VwCIFlhEi0tpbd3p0XvisDJ+MMOi85lveXjMvmASl/6inlWrVnPkkUcRi0Zx7D66exNEIyEe+u7xnHv7iwB0L7mb5H6jCZWPwrZt4quf8crpePmHtNekItKaZcOJHe3eZ2uaJm3/803fGA4Dc646iAt/+jKffvopJ544i1gsholDR1c3ZUUF/PxrX+CKX7nblhNv/JiOQTGKT/8NhmHws5/9jJnHz6C+vp6TTjqFSNgiHDLp6O4jZBnc/d+XcceD8+ns7MTuaqbj6WtT/dTQ7v3d/vIP6T3nRxilwwGIfziXxGb3Dl2nyz2X3PPeI7SVvo05aARFx9zAoEGDePjhv3LGqSfz6aefMnPmScQiIQwDOnsSlBUV8Juf3MhXrvsJAKGmFXQs/wWi+V0rU+dh25+6hpIzUsZU9wePpWgq4Qzwk68dx2nLP6S+vp6zf1JPJGxRUPh32tvbCYVC3Hvv7/jxj39CZ2dwdOXdgVAoxOOPP87JJ5/Mpk2bOO2004jF3DtfU1uapzJnzhytpzlTJE6A7du3c+utt3LrrbdimiZlZWW0tbV5+SZMmMDcuXMZPnx4YP7bbruN2267DdM0KS0tpb293Zf/scceS8svzzGPPvoop512GmvWrOGss84iGo1SUFDArl27ADfoys9//nPPOM9HTqlpM8k6nTKTbz35OH1lB6YK6llftR4X/Nv2DSNlcMmQqc2ysp2t3aoBJG9tDZpnxO+ks3tzi+xkkHeWZNJRZANPbceemI9FuzP1fRA/7M7igDy3Z2uHWJ3Mtb1u5OX0FTn5iMhnqct45Wu6VeU/QQOVHz6PFehMzoB8y9jTafcUyGPacRz3ztZ/MuxJ2+SzOoevg1zHayb4P7vyms+krPOwZve2qE/2Pe9qGp3nMmi1KRdPTlBa9f1nwcAq/ir9hdBVPbmGYXhnaw0zde7PIYlDkqTdh0PSl8Yh6aXzzniQmrw9r4909kPOJ8o2LbxHvJO9nm7DbB9Ocl1y2wQNxDddP6rebJE3d0FtIM9yBSGTpx+7n1tv/SETJkwg3pegNFbA9Cm1PHLTCdx8/oG+3AKnP/1pDj++5BD2HllOJGyRtB32GlHOf19wIM/86BSKY1EpE17Qhy/PmMRdVxzBWUeMZfKIQUQLQrS1tVNePogjjjiCn1w5k/mzz6BmUMxX74kHjOTZ393ArFkzGTRoEIlkgsqSCBccPYFXZp/BUVOGooJOUXO8NrgrnWq7dHDo5CG8/rOzuPisE6mtrSWRSFBWWsSFx0xg/uwzGF1T6qUtixX46j3ooAN5+ddf44zDxlBZUohtOxQXhjnjsDE8+6NTuOCkVPRnt3+1KPjak3n8GTi2QzLhtueII47gtZ+eyYXHTGBIeYxE0qYsFuGiYybwyh1nMGZE6hqdstLifmW+/1GqkJVuMoTxmDZ5NAsXvs7ZZ3+Ryopyt83FxZx99tksWLCAL33p4rQ84tyb+3/wCplO0dc9Y8eO5b333uOmm25i7733xjAMwuEw+++/P7Nnz+bVV1+lrKzMFzXW375U+arBtP/++3PddddxyCGHUFVVRUdHBxUVFRx99NH86le/4q233mLixIlaeQbuue1vf/vbHHzwwVRVVdHZ2enl/+Uvf8nbb7/NxIkT08a07FgbMmQIixYt4vbbb+eAAw6goKCA7u5uRo0axSWXXMLixYu59NJL01YfZAVSlrE6eSKvfrh9FKwEGYbhGUtp35Wze+qcJW/vVflbTqeuusq46OSivAIjvjtO0nuE4aqWqfa93Ea5P3VHDXTzlTpnibLE+TvvUQwKlZ7yFmXBp2bIwgxZGJbpPspYsW07dabQNLDCIV9/engp5wJVnlD7Xu6XVLvdM6umGcI9T2z6HnHGWKaR7TgkbdunCKnGvWlZmJYlpJJWF1H5TrRZtEs/r7q4ejiaDoYFZsjAMWyssGZONQ3MkOU7UyoHSjMMA7fpDpjuGUiZdwSoK9+6nVKqnifrHQ5JXxsxDe+8pnyOUwXHgL5kAkzDO2fa291DyLS8PEG7kmRjXKVnYD9ojhoEpZVlRNKxSTp6mSDjpe4ckHnLo5ud/mTTzXXnh4MeTMN7euK9JOyk2x9WemwX9chFkCwN0r0F/bPlyeWbvAshu62SWqkPwjsfUOdyOQ6HF3dDSjPQRSLjs/Qa7UnoS3T//+29S68kS3IeaBGZearqPvrBloSGpiGI02hwJ3DB7XCW/AUioH9ADTmjXyDMmqKWIjDUooUZaUcJA/AniBuuesHhYzYSJA0EkBKazWb3vbfOyczwWeSxiM8/N/NHZOSpPHX9Awp1MtPD3dzd3Nxe7rEpocpsayYKjRf/eSa3HPLXqpYycXqQ9XyiwJNBhN+19HUrT2yOFh5/S2gyeFGy8OX25/YkfUFzeN58aozDuS+B0qkELwyRucw4Li8otwxzhjdXFp959eTqVY+z0pNTCBHoaV6UxHgT0d9LYLpzz+KYoaDjZ1jRwnFHGnGT4JQVazz08w9/+K/kt37rf5Vf/MVflD/7sz9JFF7831KG8TMbUS1RAF4TufHRsfnhD/+V/OZv/pb84i/+ovzpn/4/Cb9PZzttapom84XmyaY0t8mKx0LLMAxyPqf9ZbpLkTruu77LlOnR58/nsxut8+rF7zyZouPAYxAr+mk5LGutPeYhK5LBY8bzUSPv9TdVVNh415uOc/RH3w1EY/DLMp3YBzyvZyq/zvrEecIy+LylsOv3vIZzc4TP47Oc3qnjEj0TSJZaW/G0rIVhuCjMEY3GkGo9XAZljFcG+8N8xOOgazyvQ5ASOuwSWRKmyyWB86tfhOYOaPBwDifqT3oRWbJXjSHplxqAs8wIJI+nNKKJYzlNk+yGeK0wH1vAC5qQbp4HRG7uFbxH66VTIcCrtgZbjmt6MWYPuPQ7ugN/52GNPurpPNa4FNtfaZuV5G3NfJb6vOW5VIaO1cyrUt4nrrGP5vGZDNkxxNkMbx/eNDf0UaQN12yyVjn2wtcit7BzBkpNvXEd7bTl6mvBNf3gOjxaLOWz5llWbCw6EwWGsgWHYZDgRJiw76h0iywLUds7HA5JukWYLosXb8NFo4rfF2cpYKxkekKTFTBWulWJH4ZBjsejPDw8JP1FowrrV7r5N2vdWMolzxEqe9y+RRPOH9PEhptlCFrrXZUpyxhmo/b9+/fyu7/7uyJyOadr8R2Pj9e2NT74L7fRcbuoBFsOoBCCfPnll/Iv/sVC+ziOs2a4bCrLGChPKr9YwLHD+Z2mkChO2I7WpwoSPo/vu+RzhnjOEeuN1mNY2j6dTnI4HKJ5wXFKFGlj3JscWQB8vQ0bzTUptJ5xZhlgqWGxjEHJyaT915vGmR/1b5wPbD/hReJ9jgiV9g82xLF+69lcejN+tuSPNy5Y1lpLShM7p1Smm2crx9hZNkrcrynEKbYikhhTQSQqsxvjd31aZVBB1cyDJL1R7TlKn7Z4QX8fhmXt8h6wjEnyVTpuUOc0TcIBROVfb55FRCZJ1zH/PY+79jH4Z+xmZ+cYOzaRl3Usx/0uos9yjHCUPZHrII9Qv8gaEWLw9y6eA3SW4/9enRbNlpzx1mNpbZcMMZTPqMvkxsFDTTtzHQ36MNJUCljldFJvb2d9JefMzuk2HpT/QggyCBnfmbRn1oHX2EfL/O7kdDoleoXW7ekbJXwUxus94Rpj72NDbiyuGaeaetGoEYmN11moO2vXVEZmxA+dTqfEYAzh8pxe2MLtWof+VZnE77GsZbxwH7UMtjsMw1z3fr8362PFtYSsYpER8J5xYymOHh2qMOqY1zyDv+s/HYd/+2//nfzZn/2Z/Pqv/0P5/ve/Lw8PD3I6neSP/uiP5J/+0/9d/vzP/195+/at/OZv/i+J4ljysFvtl7zZpd9wU/n93/99+ZM/+VP59V//h/KDH/zAoP3P5e3bt/KP//FvXOgcNRKq/Bc7IfBfTvHRfwsf5A2+3GaMG12tTGD+UTw8PLgGj6cU3QKoRF7bbk1KFSoKakQfj0fzVVJrU7RuAcsgFKmTQbUO61o6Sr9Z9Xsy8+IYbUcyN6N9mQzLgxxtSMtsBA/2+URP2b78bRv4WyMnB+b2G94Nuxgsmd+cdlomsUWusyOohv9ytLQalbcEyvNaPuH0+1thXssb1ffadH3PqXcLeE5Yq8xadON1YyyT9YEJuQPkPEU5pm6pl+v3jChspnaOTGXBaJc96Gq81njo2FhghchLH8RnMTrDm+EwXCKuh8MhKsvKieclZnq1HYsW6zMCz7UhLF7wNgZMF+UxbjFe9bm//Mu/lN/+7X8mv/3b/0yGYZBvf/vb8vOf/1yenp5E5GIQ/d7v/R/ygx/8wFSsvBRbRslrW2vY4vj+xV/8pfzO7/xz+Z3f+ecu7f/yX/6e/NIv/dLFUAgn4oGlTjToS15sHsPSHl4yXq11VlNf7dxrFsRLGa8YnfYiKrXg6JgFNQL1cpkQgvsO5Joo8EtBeciK/HnwHF3XKGWe3MPfPAPRMsAvBuP1ii23a609bp9pQ1rmOQ9LGX7G/3vZo17CeM0pu+OQpmnn6rs87P/G9SwGY/0cWllV2gbXrw6mNuO1zmHvtflSYOdujUzXsbi1Y20xXrcxOq/RYT8EWvbYa4A68TBc7um4hfH6Ks+88mazJprxUih694wyLZt4rp3qiNBkMNbob2wlzPMTjNSiMU51rak32WSnWEijgjH3eSBBaNAig600WUJ3/mzVw9WSwsPzMFLaUK6v+H3p7CzTj+Mjkp7x8hQyNKat32vBbVhn01rqstqvFYrar+Ws1UXZ+I//8T/K//V//hv59//+D+W//Jf/T3784x/Lfr+X733vf5Bf/Z//J/kn/+R/k+9//398riSlH9OV0XlgOR3wvDaOr3cmT59VmrU9/f4//If/IP/6X/8b+cM/NGj/1V+V3/qt35Qf/OAHjUoNz3t8cY3SH7+CwX5maTeVdTV8xOOg42bxj/X6kxawY8eqq9VZ4j3PmRPIDzknEMo6q/1S33NGWq4sjz/3yQL2Y6t9uNbgrtUPEBZPWYZp7lmLb+Y5G+wztlH9MEyaqhvDz3ip6eNSJpU9KMt0n8Hzz2wwD+Zhw5r5mQpzY99dkZPz3j5mlWVa+Jk4gypN4+Tz/BOf9we9CfdjizbLaL5qrUwkO6jLVv18DlJkOfvLKDkIc+tzlFRH47O/lmOK2cw7r+rt+bVlS8/U0DKdztHeb5WxdLLaDC7WN7je3N0d+N01yNV7jTF/2O2bH+rG643Rjde0Xl6otWcjmF6ONOaM10HSs3psvCb0GzSYh8+5jwXjlY1uhBehazFeVYBqlNJSlDyv6L0ar5xybdFvbX5It2W8WoYip43P9TUYr0iLfo9noXLn7Xmc9Bxq7hKiEj9afbVRb7xqny+3ei4IgS/MKisWnvGQo3cr45X5NGe88nnyWucJfm8dS+DoA/fdOhd3jfFaM7aoWGlZTxHH39DB4o0ltlFrePF5Xm+da/SrlO1g9YOVylY9A+V61PfR7iufeUUHB97ge3kuNba0LW8PY6NTW8L2tYx1v4G171i0cL0+/HeTenXgOJb4xVpj+D3ytfaB98WlXd94nR2REkejUW9qzXKoMV5z618vaJr3j42NVzPD4Jlffv7zn8vnn3+ePKPYDendEPdovGYxxbrRRBFcPdceyXc2cCFTC/kjx9foBLnGeFVcY8TW6OndeCWczu9XE8ob7Evk168RQlsapIzsua9MVDIp2sIvmXpZCbGUHKutaZoiI8J9piHy6l1cwUYo1pMrwwoFKqCs/JeQK8OGoZd2gxt6C//U8KX3m0V3S9oZG4YW9PyrRgs8ZR6V6dm4HEP0G2/WlkEzDhcjDc8sWwqf1z/LecDjZfVDNzyLp2baDKOCjWjPYES6Q2DHYJqanjohdhSlOUdlLePVS5O3eMtT6jxDoLTJ4/OaUu+hZb+wDQX/UhdML2YDxKIbHSOW4ayfmbewPlQ6PTCP8f7Jcgc/b536h7SuTXW2siBKsNrk8Sg5ACJHR7ANGZx/jE4910Dl07G1DDreT5M9TOzxqDEAlsuAlrOKeiHgNMX7kL3+7Pcss/FaM1fs7LH76vcNHXPYt0VPtNqkyw3ZcSdL/6zLFltRoxPOmOJ+oHHlylDDeGWjzKLFk6uenEQjdH7WuTAoqmMiWjLPWHLUrbcS0X4RYhmf3PbsvL6otFeX2l5jB5iOCkdeeQ4w65lWo9jSF7jsNE3y5vDQPDn9zOvXACEE+eKLL+Szzz7LLu4PATa6atK0LLR42b1nre/VI81leNPMRdIY6HnTaAoauIgPOVdrlL6tgQ4nC+h48IwZNoKmaRK9xsTbTDiSN46jTOd8mnlJced59njL62Nuc7GeUZqucdihUar1sgE0TUG++uoreffu3TNNS1k7/bE9KlaSWzVllCbF8XgsGq+59lA5R4OZ57Mm1ZYjr6Wzrl76tD5zK7nBZ7xDCDd/uX3NGslhq73hqueHtD6RRRkexzE1Pq7wA3AWyNox9BTtrc9Or9n3rL2hVhYj1vQhhEu08Rvf/Hb0vafAr21nDea+j7GBkBvTaLwyt9B6KDnEEF7k0qLFMgg/JHLO9Fu2ySjRgHu/Yo0cvEZ23hqvLvJqbdiW9xGR8wqt6X/Jy2TVm5TVSOAwiUiQixfQvtCGwelTJVpERJ6enuRwOBTHwPO0WGWvwdp6MPIaeVo5BTjECrcV4WDDpUQTRgM5shNFugY6zxri17BgxAXrRhpK85o7Y+J5SFmgYX+s/nteNh4DC2yk4b/c2ihFhtho4L5yXSKxN3ymmVKANS2XPYLaP/0dn2nxQjK/MC9x373+YwRUxDaMrDWLhjjXlUu55b4O4ySn01nGYS8acfX6jH232sW/mU+xH9hn7C/PFa/nkrHvvYfZQk4OWlH7S33MowvPaf/0b0smYDtWey0yAuupSb/FenX+PvvsM/l3/+7/ll/7tV+b+eV8PprPMA0t8t7ij9bncrIJgeOh/3hPYJmU9iV1LvE6T8+BW6+gsFP2rd+XelgmWe8zJ0dbkpq+rOGFHw+mY28Zj/Q1X558seZ+6f+yxr01mOMdbTtdw0tK8KUPFbwwTPNanKZpNpx4jtDxiDReaEllqbe/4t5YevfoEOIo/NPTk+x2sXzk9VrST8dxNA1Imzfj+nmPbjVuQgjpO6HHeN1jG66MMljDSpfO0WGVzb0/dpYDA9XPUWKRuU+ezoBj7e0xPK8iZYeotZ48mZjbJ2t0QpUDemGg0lezx2iZh/2h2Tr+8FcOdjRhGAZ5//598zOHw+HFPH8vBVwo+s8CvovPKqPpTzXtoUDl9FGs61pPFUZi+J/XD6ST/7GioWPiK2T+uChtNfxUmpsSPKPKA0fxOXKitFvPsdKMUXF+lZFVfw3QqPeiITX1toxpaQw17a8GGnnL0Wjxa66+2jHMOTUYOQeAQsfQUtJraCmNmTdHuH5K84hlSmW5znEc5csvv1y99nhuHh+P8qMf/WiWG9dEQ+8FOP85+XCrdteiVfZwZN8ro/+GYWh6/yJnZ7yErrF1G7o/lvbv1natfYj/1dbzF3/xFzIMgzw8PCTj3MIT1/CftnnN3v4h+OUekXPwMK7VpVrWcysvrd1Hr8Gri7zm4HmMWnDr8Zi9Kc9R1tbIa8k7sxV96KmtfaYWtcYde6f07/PJOHu1I1og8uopvd7YWZs8e5ctT9ocjWQZ8Rx5taJ7lref6fA8V1YUJRoDqsui24qMlIyEUv0cYXx8fJRPPvlkNvZPp9P86p6aqBfWj7DWehRh0PGQ9BUwuv44OuV5Fj2avIgMrx/+jQ1lz5jNRfzw9xo5UIpEaj1MX+SxHc4yDKOcT0HY9+nNhbW+PF7FKBgrkrgu+cy4ri9rLez3+yQShvMyjmO0LmtlqrfXcPSHI6/aRklu4trEtcIXfnC7wzDMl7VZdZb6hmVCCPL4+Chv3rwxo3p4bhD5F515tcD1xHKB5yS3TvnStVsaoxcajWgnjQffzqv9XCKZlzOjVPtc9gIrSyg+521eeESfx8RAs16xtkvWntUu9ylqF2Sgrq90beUzd/CzN48cAbXpS6PjvPdNEh+REOMVH3onAD6nf59OJ9nvL3+joXA6neRHP/qR/Mqv/Eqk6Ed9HOPomvLw3O/p4lh5fHyU/X7/TOfCHzX8bu3rfGlS7vkaeLKT67/0iWQ1RzIl1v0s1ERea5DsUVa9rPNxhJcjyc9lWH+N5UKqCzL/1MDaT6+ZR9Zt9Ls19kbpmWnqZ147NsRLeJ/Xgi+vuWA7p4OlwG+BcbzcAMyGi4UaD7BijcNlGIb5PKNGUVoieaW2cWM/neL3i2qb5/N5vkF3C3jzVjLokFZvU7Gw2+3MiGyuTVXkauhv4b9brddbrIO18JwLIpdxPR6P8yUpNfOn8AysFkUg9/vCX75xXFpH6DzzHBiKmrXsORq4HjX+S2C61sgkNMyt+hF5p0E71ipl9XxRHo+WKIxFy4WeurIlurdc92vGdk39W5etrWeaJnl6epK3b98Kp2ArfvmXf3k2CM7ns0FHLPNZJuX2jbmGRt4NIciw2zZSZhk9Fs7ns+yGctv3svfUIOfkbsE10UvWsa7hd89wvRd8FJFX7ENt5JUjIyJienpvha3qtzb1WgFyPeLzNho5zoG9hFUI8RzJYN8Qi4tVb4Zl5Q+fsyIXOYMxF/3k7xBqFFk8580Re4VL86pGMRo+Vtk1Z9BawN5o9SKqEWsB50Ppfnx8lM8//1yenp7ispqwoBG0IVWsk77BzdPaf1QScD70+9Mxfuch1sued2x3iaJM0UbiRfKtebXq53lTz3wuWqhj70XbcputH6GLI6M5g8VaTy18V5LFWO/j42N0NAJ/s+bwfD7PEYzHx0d5eHjIpnJbc8TtYFlLzozjKLvdTo7Ho5ntgPDWraXE4pq3omVIg/V3ydnj8buFGqPYekbXJI4zGlC4Tq1sE6Sb19GMMT2bqdESXF9KS87JhKjVGeL1Eu9pl7bjrByNfnI7VlvL55qI6MIfSQbTHPFO4rVRXdYawWghZkHEmQ3xOuTIK8798l2I6grB36dxzcXzbx1/2c8OXDPDY0z36yFceAP3smma5Ic//KH8xm/8hrvHcR9TxOOi0Xzky8PhEO2R2L41BiGcExmkYL1C6bJ0htzraTyHcQ4sO3OylC9sykVVZ32DjOKqM7CTvaZzwEixp9PyPKF8we9vlW5bu996/Q1nekXbWNdX/eytU57zNa/K+Sgir2uVIyz/mjw89wNdcPfhAMkJBDZiLWzpbc7Rt3VK2zAMst/vi55ZLfvSDis03C1Ym9lPf/pT2e12yU2w03Tpo0ZorA20xQE1p3pTeq9ePuClX67FVvyl3nvLUBFZIt7H4zFKM2UHh8g6g0PL5dbMrR0liDdv3riGNK43Td3/+c9/Lt/85jdlGAZ5+/at7HY7eXp6at7svTGMjZB0Uy+tQ3Z0HQ6HZD5fi+O5BDRaRbbbk3WMc46BASJe+j3y7VbrtUbuWnIQabiVw3urOoZhmJ2NbGAp1vahdd/i1HELa89so1NQ+/mP/tE/mn9DmhE1485yBZ1x6vTynmGHTk1m08ei9957P3J79YdGbo9mQ3srbFHnR2e81qZaKrrxeg3ua8yiaMtzhAMVPd1ocmmCt1S2LeG1RVs1RivS0LpGrkXJyLGitb/wC78Q3Y7NyryixXi1Ijeek+N8vhiteIPeFlijiCLdOtde5FWhvzH9NeO0lfG69djlwJFiT4nUNa6GK85/TjYw1hivqOyW1h8rnPosKhMlXnqpsb8WOCbIU7dytEV1UrQN/7+1M5PBfJEzXq+hawtj2Gp/miZ5+/atjOP4fBuufRbYe77UXgu96tzLOR7X9j+E5ciLyriHhwc5Ho9VxmuuXV7byo+Hw8F1rvE5c9wrNSPLG4cP4cy+BaKxvsPuIC/e25iX9MFb0LuJDLqnQczhPD1GhDalC8l6Be1DoIW2nLd6S8PcrCvQGEu9EZWLfiape4GMi2FROL3oTpgy3vaCEaUbBr6+IsdPnlGMKSKl9Alvrmp4IcfbrIBxilRrW7dEjndnwT/G3w8Sv3OS+zVN0/yMpRR7Cirzj9ZVa+jkjJrWcbaMH89YYkcef2d9tuplR85iWAzJmrOcBGxYe+m4W/Icz48a+9yPGvD8tspQjc7o31x3Sz0efTz+LKc40o7GWY0CbUUCmf6cHOdnLdljjUVJkfJQGudJUufkEGwZgPQi3cgXLQpYOnaWk5T3j3xf7bGoeS9jmlqvdS5HJU7URvyM1eccnyxtsI6QHhlJ689fXDUMw/NlSfF59/johrVPxryZ9GkM6TnsaZGzfHaVnQ8sUy25uJTl8bTHxYIlBy7yJ6WFn7GQ0EfvfbX0GWu/KLVTal9EkouTcinMMygFOJdqPD9nveZG8rLejEgjAAAgAElEQVQO04Y9fYD3Y0/eWXt6zb5R2tdCCKveZT7rEyH+jK9W8vZ0kXLmA9O9Jm3463k/9dcUKtS2qKO1ni3aXgNP8Oc8+9Yz0xRfHc79yQmR0uZTg5px36KdD4HSxmz1fat+bpEWc0/jzny6Fqywi8QGXa6/NWd41oxZif/xYqFpmqKMBOajtbJIZQbKD8s5oLdpcztqOJba52wKlC+qrDO26J9V39bQPqiD4aWg/cH20clggaNZW9Fgje2W4419rIWuH71gr5WWa+SOngf3fsvxiUY+S85E/of1W3t7bgw4yqr15ID3LXAWhvdvv9/Lfr+vKpsbrzVzc8t9rcl4vlMof+z3+4h3t5TBHmrnJYQgDw8PLzqWIYRiNuAW4/NqIq98YVONF4nLoHcu5zHOeTG4XqvNa9Myr5mTKu9MqFcYZlqGbVPQPC8TRtLwkhUV+iEEGUZ747cuuZkF4fNV81Y0Rb8reYtYqI7jaEabE6WWI9SFaEUuqqXfoeHNdLFynfOSc705/m8FeyNL9VpGAPaJ0375dSlWPdM0zbwbfX+OL/fIKam4BqK5AS88P8t9wbnyLsmpWfclbyzOfVKO13BI+8xrgtcMLg/rMpC1F/t431v86K11pJ//99qKvPyDf+FRCXrZTvxM2YC3aPLKeg6c0l6Gz1pyhdfpNQZbjn5PGea10WLQWnqAl11i7d88hrkxXb5j+vgSohpYfSxFXv3MixxQdlpt23xe2u/LvK1R1niOynOC319+C1Q2Pgpk0RqAvmEYRJ5p4SMi8Tj6qbX4DF68g31k/ubn9LOZKTYs5UTEvHTIOuKCugBHKSdZ1vzcZlj20Ms4nZOx9z7jXKmBog6oNHAc8+goQ0IvvxrHej2NjDG/10Zikedr9HYP18rAFlmK42zRWmPzYFZUSZdjfdPTHbRsjXMGedxqiz9r+a/VhU0tSrEKnHEc5YsvvpB37965z7zUBSMdNizjEd/TqGWs+VvrNGhRlhKhWEhJmaap+mRwLg2jBXhzp6fUv9R5OOs86ceGXDSyNsXwlueQ5/OSFW8kKjsCU4NxS3Daa+tzTH9NHbiRtsp/bbfm3Dk64SxaW1ETBUdYTjFVDHHceSzXzDPLVG372ps1rTPvii2M7Y9VRr0kWtZQi3K/lK1vZzlGsE2En9dCLf18z0JO/7xUWKYF9/RhGJL3jI7k8BrHUZ7vO1xkxxXDstUr7m6NrbMnattbC3Q4IGpsHpTntXLb4kcM9NUitwffQrd5dZFXS/kuDcx+t5fT+TTfHFpzE92HwDVzYXlN2AM0fzYigR6zz4qW2K9nKNFU+i1R5Ph8q8RC2oukeW2pUokR3dqFhBd34PlXkdhzadUZGblT/GJzPYtnRU+tsyQMHjNUYjkdyTszkzO0tH9YPwomFWwWbTmFwvIEKo06xnxuEdvDubDg1e1FXpUm61wyRqvm30ZSdKe4LM8bXqpkRczQc6391jOaWI81hsgD3DZGZyLanMhrLqrHv09TTDeCN69Wb3MJNdExppedOCU6eP49pF79kIzjbneYDTas06K/5CEvyXevL8wfPA7cby6D+wLKLl3/6LVH2ei9zofp4n7qWtRbUjkrZhgGd//OjY21tpPzjFTey9TBV81c2kkvRPOiHgu/LLelL7/x+z/5bOo002btR8vraGT+zo6ox3QhL2u/ZxuK9pglAyreY7RsLBOsiHSdYh+n8cbyhtsOEFWdZesUj8E4+BHeJZK6hzmN55Kx8MI5ygDydC5rX4wcdWSt4lnDaZrmc6c5Hrcir1g2hCDjQJfoDfHN2pZOUiN3rVfaoNxLIqYhJH2yIq8cnU3Opo42TZbxVwOWky1G1xr93ZpPi0dF4ghpTX0KjMYiWGYor+n3KBvZ8cnyHOlk2i2a+JmvVeS1JaJzPF2uGNcNd+vXX3xM8ML9pTSAte0kArhiUVjPWimMIss5HusCnlIf9P2kurlZRqBFi1UGN3lUBBSopPEG6tWv32EqvPL4vFmN8btKc6k0/EoV/B4Fm/5rMU64D/qbGnmo8GH/hmGIPIC40V6DUsSsRuDmIlRr6KvZcFmZsjaSFuOxBEt5q30t0xZti/gyCGHx1lrvc27uWoxtvukTjTOuo2WuatYyo1Q/nqH1opuW/EMnnBqdJd4vKWCW4ahjlzvT7SnZOcdMy7gvZWP5NE3p+JfmxJYZ9cc2dByQB7h9dlzoHO928eUt1hhoWW/fP53SNHmmKb2EaHle5Qc6Kmv6fCm7vE/2sm7BwTjXY0etWFbm5IM1Rwo2+GvWoNefS4W3ybphWLcwx2nQt79hW+XEOC76hkiaKo2YZV5lHtta/Z7n2nL+eNH3e0ALbaUMANYlPOPVM/Rz9a9xDjBeXeS1BSWPgJVGtTVw0/Vo8ui0NqN0rsuKFtZRU+5SmJjeOvMaSNhRGdNjKXQD5xB7Z/n2WBGRYUzTzby+zBvOuc5TJeIryTnvvtfnS0XxuODGZnkIrfHnNLucEM1tnB5PoVdZ68ffcgbvtSgpDQjtPysd8zyMBo/xuDPPAXLeTnQAeGVz0VoLVt9LRgfPBwPlGHqOPWeLJ3talXqlbZrsTZKN+Zr60UmS491a5HjNMnI4fXahxXdyXMql9fJZvHHcu5s2O+IsOYH1hxCiKD3LGytqiEpqbm23pH1a+6gl+6y+5NYIlx+GwTzjzg4vBUcD2RBe2oqdhTpnLBO9vuD3liy1jKmLgW9locRyis96roWOD/JePCaWAclrJl7f5/NZDoeD6ayo1Tss8Nhd5ibOUsLIN7bJ+2wNH0f7HvVhKjjoLvSRw2SIfxepN7girDBmOW0YaXHXZYgd6yIi467dqGDdxtsjmV5LJ0LwmdYSr4nUOfMYVkBB65p1kEBy1qmes98sHdTSZ0q86ulqWN+8xkO5/0lU20DqFIp/Y7prnR9c7msVeb0WuUm5BV46774GH4Kmazwulif+FrhVSrnFb6kiUVdP7vtShCqEJQ2aU1aVJqxnCy+Zhdr5a1GmRVJ6c/R70dMaz6LVrs5nTtFtnW+vHk4dRGi/rOi+VVdpw7ccOuipz9Fwq/X0IWE5BRTe3KNSc43M1eiJ7mGYMYFt8VxZ7bas7RyPtKy5FlzzfGltXMrYz2K2DdOyRhaxU8RzhtwSKOtqIuQ55N7h3OKcs2gsje9Weovl9NDvSzJrefZ+9LkcPEe+5/jRfexalJwIL6mD5+DJRx2HYRh8YdHYDuquW++NcyZD2Favr3UGtdQn0iOvM2q8PYpcxOVDgWliT+KFgXgDTctyOtEqIVQZec2VMceSbjjFd3CadUK9GD3Qz0n16nWcFgOsxqOF9XupwPoZ04D5vaNWH0vRgprNMuud3IhnvQgs9mOtR9bzyuaQUzznMTQir1qOecFyHJRSEK3vLJmByoF+zhkLfNYOjRGkD59h2jHyxpEeK2LkyTqWDyw7c4rP5f9dYjhxG7VAfrH6kuuP1Z4nU5FWNizsuuIMgLRfdLupLJGzZc4PUSYFz5Elqy0eYrli9QmjbSwDLedJPmoYt5vjLY+mtWBZxAa7VV6jJVZUIo0QcT31ymSNTF7GKj5qMU1WWi5HfdoNXExV94yzlEaOPosIvVsVz5nyPlDStSw+t35DmuLnWe7sTDkZ98mWh5YsneW3SMw3mf4sDl7KMNml8mOUIZLTuYyueb02bLPzOjfOnSItpvwGXWWWhZANl9MdrXFn5Iwe83ZhBum7LVE9i7dK/JZzUA2B7gJxHBc4liiHLfpzY9jiUEzoP9tp8tGzQ1qH51zlebT2ydIc2Wv7UrZHXr/G0MjZ6XSaF46+f+q1OChqUbOoLSHBSvEW7axBbk5mo/gOvJHXRohEUgfMGhpan0Uj8rkWEbkuIlADz4ON8CKYFnIODVXgPcdIC0rKZIkfvXM2WxkyLYqLZ9Tnytf8pl1YE1FEhUjHkw2wl8qC0fa3ho77reWW8jdniYiU15FnlCNyymsLruG7azCOL3MhZckJlCt7a5TS7hmzw8MxrC3lHuutmctpmuR0OslPfvIT+Tt/5+8UaZEG/phpaBhmdXDoxYXar2EY5mp43/WylLTsLfCSvJNzirUAx1Kkvg9byR6sayswL6zV5bbERxl5XdOnexiHtTSM4yiPj48XAXmcIi/+559/LkHO2c1lK+SiHLNRJhRxMt6TynV6TG9FFuY2jXdYKjD6gfTmvHLzb8bNtcnnkKbbouGMdIvYt3PmaPbaZkOxhp9avHs1ka5c/ey1a6Ev5yHNeQs9uocxjnTqe4A9unLn5pimuJ1JRC4e7mlaogg5BShn9HnjwPykZXOGaasSPwyDWC9+GgJf1EJRhBCS22M5AqGRHe6LhVJatkU/3+Kc67c5j3ApzKV9LhM7IzBddOlrep6W6VblCXkAvd74fS1P4ljzuccaPmavu7XmWoyFFrBxmnOGYVnbeEvnXy9J4jq0j3Y/2DlzjmSz5ShNeap80V/a9jqDlCNoOZnKa4/HdOnPLtlHvXpwPDjF3VuvSNtut0R7L/Xu52fYYYLjjWvQclyfmQaqY5pOiTzw5nN+hm74nY1ESMU19/AQ15Oc9TTYECNntQa76hrajpVVw2PlreWIT0ivU0Nw5g1YT8tYnaP6NXLM4x2NF0VirfPEpbOclhHG9FuZhskc8Xgb7bboR1y+xdhjXXYUg8YNLwXDPcD6vhZadj/ueuT16wZd3NM0yfl8lvN5MV6naZKnpyfZH8YmhvoYUKM83TraUWssaKrXveKacaoxwBQtQp+fWeMVxCjObjxkI4xb31DeMi41WMM/1zglaurFzyqPfGMkVph9w2Edbbkzei1Y6PLHmw3OmrmpOTOr0NRGK8XYe943osqwlNuXgmes6hjgTeRb0tXiWNvtbN66Z5lei1ZlVCTvfLIi5hbi55dIX+06QQMMDeUWPsZjAmthO8JuGxWrKV/ze8n4i8cyDQQU5bfaozqn/BqcF8Dcx7CO1+8Fa+ness9b6Ye16MbrRwA1Xp+enmQ3LtfgzxGPvX1T48eMnGKu2OpSEQ9eRJRp2PIg/C1wzTh5UQ2rvrXGq+cpLtE7e2/HMYoiWM9tZfxw20hnLd0W0KvfSkPOeL12zkWWaCJ64jlyOAxxVC2n/Hgp0zls5XxYIgF+GUtxLqEltbUUMa0xXlvGLheJubWyh4oyGhM6BrdKXazh/2U8/Nus71mu12BNKiXKU0btHOG87nbLnGO9ubXFaxD3iblMgSZ9DvvfOp+e8bolXyTRyQxY7nr14f9WHfi/yOLKw3XjZbuw8TpHyNfcynwltI/ncxyFH6/PHn5RrJHrW+u/ur5a5MVVDvvXIlxzacNrFC3vGd4sX/L84Zq5UEH4xRdfXBS055dQ6+b+8PAg7z55U2zX62tpbNkAKAIuZJqm+MIj7n/NgmTFav7eeK+rVW/ughJuR0SSC5qsCMglRdROqeL+lHgLU59y9eS+L40tGgutSjGXUZqt+j06S8ZKKy3ecxEt9IomTRu2nAlumlBmbcyGy3B5n92FH0fxUv9aDJ0cULlXp5bnJMB1o+PC/We6wpCmFI5in6OsVabkuZb4M/8ef4dRTY6urEFO4RYR4UtjTidW6qfECcIpwOnlQHGU1qMfjTQ02rX/NX1u5V0t46WF1tbvfa6F1dY4Lpcf6Rjwa4Ns2GnDFqzxQV6N95z4srKck2Th3XqH0fJ9/Oq01qieZXRYz2MdvmxOI6Dn83l+z3hUEmQRrwn9nXk6BvNfnHrMc8Sym8dKFewz8fVIfG9dmOXpCvMzg/EdzSum1M4yg1Jma9KGNUXZ25/a5K8Pjx8jWs62IxkemuuaeWxcLlYbhkFk8nWFuZqKcSlddsXp/SISHRuapikxXodhKF4w1XrJVgnMNy0ydBTjGNUQt61jv9U5Xw85Warf9QubvsY4HC4R1wnkrW7yJawx/vG5LfCSXupSO54C+fyHiJQjumgs4Xf6rJcCxb9Zm+VrcThtCc8Aa4m8xEqN305OMXxJZ9Y10HNN1jnTremv8eYreF3UOEQsZdhztLwUdrtd1GelRw1Ne23X188yWdtixTwnN19CZrDcWuNAVtQqdPivBgsfpe2uWQotzrZr0KK05sbfW/9c1js/jQaFN0cqa/i7EEIki2r7Y9W/rDVyPEJ9bDzZxnBaN4LT/S1HjLUfTdOU3DbMZ9/175dAjZN8jWFkPVMyOs2ztWA8hRBkGNvfTGDqag6dqFPhGr7Mpz3nWmaaJtm/YDi25h6UtUA50KoL5PhlDS9dg48i8qpYa4ThszXCLnnW+K6lBm8Tb5mbaZrkeDzK6XSav9vtdrLb7WbDtqZfTZuy89qb+ecG+hfjMD3HlXhYBz/K4np5jHpF7Btoa6JIw/B84UnmwimvTzl61/CCF4HxNtkcrI3jGg+g1TZuUChAld4SD5oXdK2khYFjWUonvkbe6PM4R1bftQzTUFJEmf+tMc1Fifh7XIMW3fH4xAqcbcjFPMDyF79b2t4lY1NqJ4clismvjbE2dboQYyynkaeXPMVKFGdnXPpuR2eHIb6cJrdGrOwBi1e9OnJrg3+vMSKzzkD4+5oLtfS3VqWKZaS3xlva4+fsNO84g8Ee2zPRR1lLwyDIl3qZUTonazI6YudpzlBp2btqjShV3JGXmT/cvZ5+Q0OAMza07KVu0ivGVLZ678+c53BM+UejqnNmwAC/GRd9iRgX7ozxum8x8Jgea2+InMDapBp7u9jw9HQk3Gd4r7fmyBoDHltvH8Isi4Qfn6uYacgMD/eJ6fQy3oZhicTyHFnwdKm14LYxqtrqRMT9qHVP8OrR/717H/hzj7xugHs/f+hhHMfo8gqRi3J27SK5B1x7YVAIocqZ4G2Sa9veAjXnEjyevWdevvVlWa3QeX8perwN29p4vHTmHHIR6VwqekuZGnBE1lJqsM94lhG/e356fpZpYy/1S0U3SrCUvDXp4TgfXjr4S2Hrc6Ytc5VT/pRvco6XLbH1HKSG1zqaLGVxK+SMp2va1PWLa1tlskYtW9YN7y+5TCbvWe89nrl2rN+9s5xr5PoWsNYIfub0WL1QsnZ+rVRpqy3sO/JsTh7cg1yf+/YBzujeAnzkZq388Nbnrfj71UZePc9T6cyJ9fy1WBN5tSIYW9CGDMTj0Oqhs56JaAvknS289iZX/yIQ/NSMeXE57XA0CL8/n0JyyQu3XTPuyWblvDonKgORV2++a6KcnE7MvB5HcMiT61xywdEq9ooeDofIMCgpbC1GYA3fl3gWPbeeImHVUYpc5qJWXt9yPGB5u3N9aoXHU0gzKoAlBUPElqUcJbC9qvEFJ3aKUrxuOLUR6dPU5xBSnvdo9eaTPf1Iy4L0FR9a9TKG9mU0sTPCppWVhGFYoqohDMkzOIY5GcA8mzMwckqz5+xQWq30Uo+HPP7PyTwvSoOo4YEW8LiU2l+LpR37dUnxOonlucVzGp1dYJexaMjtf1YGAD9jrblao5bHteRgwLqx3tL8WDxm8bGIzGt8XhsGKUOIeSWpf2fIBYhkTtMkYfAzZZSm3UAywKClZR+p2RMVbGxz296aL83HIktjXYQDBjo33hlpk+aM8c2v18mhRS/HcZqmKWqH97trHDuWXOM+Wo4W1o28/jOf8Huia2Wqtda8tnvktSNBDaOpUHgtjota4CJhpWAcl0seWHi2CBb2UmmqNI7lrbyDlvFtebus6BUbnTU07nY7OR6PTf2552hvDlb6eAmeQ8AqkxuTraKcOdRsIBZKtNXMN/Lj8t1S/zDEBptGWtDx8l//63+V737370bZJbzB4jNbjGlM23Y3TSN4XHhNa590DPHWazRotWxK99IO/q+o4eHUKE+fv2bNt9RRisrUGDQ5fMh90YtuaZ+s5eop2gjPic2OzXhvsccZFVNrvNca/hwZtdpFw9OiP0dvjseWOtev8bn+1TXE9dRUxMZgVb3w7IcGp/4yH7XqK1uAnX6IhAbn1T5ajp1T9wrOYNqa5ltlCb0a45UteM87e+3mtQY108KRnlI/cvVYz9c+ez6f5a/+6q/kb/2tv2WW4XryCi+1zQNhnPVcFLFnI5AiMHYYW8s8CzrjJjUcB3OzDnTbrNE/9OhySgsrCAu98XeXtp5/mhXo2COXg+XtU4UVNyvLcB2GQX72s5/JZ599NisXLDg4Eme1j2OC5/JYeWA69X8cNwR/32JMWQoLpt3ynFoeR45S1yju3LYV6S7RbtWHNOaMAwaOby2Udzzl3nKILHMdR2B2u/TVEyzbVAlcDMj0XZx626oqyXgJC0fS/+qv/kpOp1MSZRpH/xUWuJbP5/NcLyoWyzNjxNdsDF76qHReolJe9CH+Pj5vJ4J1DCLzbaEx3azEWREnBCtJOaOCjXpr/XhRIa4L+6sRksS5R1EyjoDl2rG+y/G/Nz4sO3LPXsjH59P9QfvptYdtsNG0rJXRHYMl+hGi70TsG+Fjg65eUeQIC8p3TybGvCpyGR/t6858LqefpfpM6nwehuX4kyXPmc/P57OIOm+0XoOmhY2DjOMgIaA8GWQQg19o/2R+DFOa9RSe9/9JgkwSZBxSQz2RyUSvpRetMQhyetNcplDtkgmT7iMWP+tN4DguzAfe31qHp++aY8CR1oa9MqcfJt8NyzMiaZYTP2utNW7batM03EfKHJN4ze6GUWQYJEzPZ66ny4VYSIvVXi5TCGm04PFDqh/4Y9SCV2O8dlwPZZi//bf/tpxOp02uyP4QyAmUmgVxC+dGrs61v4lAqhH1zxuDTz/9tJLitH1L2PI56hKQvhpjfQ2d+tkyWpGGUh36XY1Bh/W28I9X7y3GCJFzalkGiwe86OTybFrGmgc0arGvLdDy3/jGN+Sb3/ymHI/HKueJRX9pPEopp6wsaVlN97WN2BCl3K+ROzVjZ6Vm5fjZqt8ri7/noldr+rYmOh5CSBQhjwZPUffqfS5VUabe6dwy7vq9pdgrP3nPrckiYvmTWyM1QCfRWuT6kTN4FKrXTMF+fZeFRa6Xy14js7396rUhJ48sI/PaqOnafeOlsIYfauQXf1/Txj3zl6UjXFXfvXXQw/H0VRCxU5hqvEn3AssLwcjRfVd948jqMOV/F0O4yXJRwzAM9plX53bh8/mcnIlQYamf582Q6sVoRU445M5SlsBKsdXOWoW2hYaWejm6YEVZcvQjf3pC3aMpF4Ws8bhaG6fXZoti6605/Wydy8G/1VOt/4YhPddooWbT8vqFUW7PWF2iTTklL6bzfD4urzYAQ44j9FrvZT53rqK8wKeB1/QyH3Edx+MxiQDOvSikJWo7Cmus2FttpeJpHy/0nqOyw2BHprht/KyRJItfeP7WyJWccol99s5AlRQu6/MWzpoaB0aNAp3KlYV/Lr/Vv/4ph3QtxymT6BhbHCNHqsUad9vYOxwO83pop82fI89JdPnOlmu8p1j1L5/Ti8lExqgfPGc6ZlE2DRivwzBE73Bd2mRjMuYXXb8er3Hk2up3CEG8W2hRP6jV6zxHW+txqFpDyNNVLd0A5QTLeeTvUtuWrMjNvefQ3AI5umvmjHnf53tfbpUcOlHEdbe7OFTnoDPQNub1AKsfzG8tjvyW8flanHnNCc+OrxdYSbYwG46wx2zh9bFoYSHnCep75t21XmV8fosyWzyTQ6tRX1MHlkOHBb7i5KXO7rSgxejxoowtTopbAA1cpDG3X1xDn2ewrHVK5p4pGRLe96p05M5eec4ibPtamaDtbIGcQ2dNG9fIlZbIcQttNRHDpT7bGYROh1LbLY67XNlx3EWOFqus5Wy2cDqdZBzH5yMz6+bJklXx57hOzKYoQZ1KpbEdx7Hq1mLWSVr5BXnwJeUu40O2fQvU8P0a1MivGtnLOmfu7o7gtJuDF8Dgvz3abon706QK0MnCfx1fT9RERBfv7YJbGa9MS854vVfevZammn5Za7j2ma2gik2N19Zrm5/FvmCUFcEXUdwDasfBK3sPxiumzmIEH2ncct9AZxXWV1I01lyG4RlHXj/0u8PhIMMwyPHIEbwFuXln4/WaCMe1zyv03eWlNmrbuYYX1DFQ83wLTdae5dXn/cNMiGto499ybYYQomMmnqOrJlqm9agR2zpHKmeZV3L8UTPuiBqaautTJ+cafuR53mKdrcWHbPsWuKXxahmrvNZKa4X5RXmI69TnW/vBvKXtcTs1tG2NV5c2rEDl4TrGqun/h1mMWxgSpuAPoywpvkE2618pjVj8VJRaBcA7aG6lKJfq5d9Y2V0Lz1u9hl+Vz2suB9oiKuEZaa03xnn1tEaSttw01ox7zXxZ/KjPt8DiFwVf7oSomZtc+pHKiZp1iZupH5Gueb1B++3OSQ3TcjusRnz0jG2tIW59xnko8YBlIPOFSa4c3gj+PLTzcE39aBzlUppZVnvniq2yyGM8xhhhz9F5jeKZmytPvufBaXeLEshlFpTXCCqlrceRsmUldrIN8NoeiwYtyxct6e8zH5KcGSrSskOI5c1A7wkJEl8GJCIyjPHZ6DAZyjukBZeO98wYl36O4xjdODsMQ1WUdTeMkayYpslMLY4ugjL4vWUf9VDak3PP5Nqs4UNv/eb0sBq98VY6Q+24to6lVz/v/zW6LNZXIw9KR0Byss6T57gHl7JStL41acOvLvLa8WGR81xeA8tLc2vPDbbT2p8a2q6hH6MeHPnwDIdbez3vydH1kh7ee/Am40ZQ2sSs33NGnac0IO95beZ+vyd+2QK1/dlCbm1Zx9p6PL5fswco/95yHV2zTl9qr9Ho3vF4jCJtJWOZ/ynNDFzLa+aoNOe5Z0u/XTu+TENisN6It2rG0psL/J7lL9eLjowW5+caR2nH/QNlQ+v81qz9axyquTWNt/rfEq828spYv4A/TOSVozT83daIxucDRl7dRyu8btnvg+9BQm99q6fOusmzFjXe8BJavGEcMcLN3Uot0pPs/uAAACAASURBVGfwVSqImrQzjgbWeEprLpbI9c2rvzRHNfOw5VrkuvR/64IjVGysvntOCyti6nlwuazWOU3pe5+Z5rZxsd4bya9JiC9q0zKWXOS+LetqSQnE82dWdoZFv1U/f48GvIWc4lxSqnPz6tWl9WEfa175lJs/b9yttluRk+G1zhiR+MItj9e5H9alXZ48tngH68/NUZ1Rd9lDlkh1GslcXh9lv3eUDR/cz/jVRwhvLef6MYV4bZQir/obv4LKKBzVMQ6pzEkRZzIMQxzFD0Y7QS6OAZVr09kwfml8vcuGYlJorYT4/CveIefJIO1yNN7wWh5L32gxRGpkEqN2b9xiX/ToK9Ht9dE783sNrTl9xttT1l7sWYK3/7TuS1Zfcpdk1u5PrF9745LDw/7QrCS/ugubXhs8YfSS2MKI+hjhv4Nvm3FSo0Cv739JHuCbEI/HYxT5iG5i3FDoWjewMtac+7sneMYC9v10Os3v51XlJrfZlNpTJ4P3fO7ymA91SZQ3Tpd+5J8RSZVu/XvNGK55lchrwa3W0zAMVZfSrEEtT1rl8Jb5mmdrxgf3AFTWVG5bzj1+1mv7Moax/Lf4Eeu32mJD3XIulpwttbiVIq5YxvNSf42TeKGpfKES7nOXfc9f+yw7S8YPjjuO9zRNEob6s9DR3FHacAvvvhSuceS/JLaQ9VYdXprslu1aqHVwtqLGNlEdtgbc71vrHa848mrR/WEUE6YkhDBfzV71fCG60eJBS+i4c2HT4iVk4zJ3DlTPuFgbuWekWmfmWBlgYcZRM6advYWscNQqCTXjY3m6vDHE37cQjjU8y1Ha0mag9Vo8jHR7NDAtVnSJldZSXV59+D3Xga99sOYbeavWeZKjFdtAnssp4FyX5T3FSE8L0DteuvY/FxXDV1kwtH8t9JUir9Y69RGvqeenzPqxHK89z5GGkTYrgp6LNuf6jp9x/JBXsD5rfHMy1uprOk4pbefzWQ6HQ2Qk8M3JKHt5DHPntz3ZhA5GlqE4NrieuD7feIz5R89tejJJ1xvSUcpyQTlpjbPX/xbZz3wS0U0ZFyP0kedoXmMU4Q3TKaExx1vDMMgw7hP5yvw3jEb/wkLvOI7za/sYVmbKTNO0GN8iIsNum1t/cwY033/A52/nZ6H5mv25BVvV5+2JXG/OOVuLklPCo8/i3Q/hBLX0x9zewr+v2bst3mesHQuUkz3y2vHqcGsPbwtQIdHP6uFeq7TzhqfCQNuq9dZZHtiSJ7mm3teOLft6bV2mcuMAvZmsoK8xwPgZ5F0sW+MwsLBVRoIXMSq1LRKnVb4EtvYcswJWE1GvARtLW8jUa/uOjj2tT/taqpsdHQiOBFtj6Mns3LgwTXj+0DLW1o4tRw+toxqeE4b5BmnN0b+lwn+rDC6d610D7+Lc6+c1mJ0/9DjXa/GujsWSwmzX711stgXmdSWxoWelML9WbDF2ayKjlkPrHnTVWlyr06iumntWMwtfmsd65HUDmCPoeKZKXvFrN4e1nhb06nu/1yrWNZ7/WpoQGGEo0aGR1xysiAVuVNZY8kamSoKOjeVdXrPGrvF0oZHCkZRSFCVHwzVK29awoxsxPI997nxQC+/W1I/0clmO0niRFqtNr52SFxsNAyvyaCnqJZlUkg0ceeFxqjfY46gKe6Kxjpo1aBlB1tkdrpOfvWBKlFs2tnnOMCW1RC/21eO7mkirFzHhCEPrWmfHyDUyz8oc0e/UeEUDlced39NZQ0sSqatc/x5PpHJkMTwvv58rnomBc1TaW6xop9aBc4R8j2Ob4wGPh/DsaQhhjrxif5hPpxA7GsK0HLfA+rPrEc6+u3xr3b/h3NHB6ynLC5lop4fc3mV9761t/m6U+BZwjALjM+wUao0kemNsfb+VLpijpWZ/WktDjT6Na/HWBpynp1vzmoN35EB5Id3Lto+8ar3jOK66bbhHXju+tmCh7W2SCHfjrowqtNBmtVcDVoi1vpKDAp+/d9xyM/zQ8HgMwYbMNWm916LV0Lk2irXGuGqt34LV5jI3+ZvALVx7nnQLxdAzmtc6UdfMCbfDt66KiHz11VcyjuOcsYAOBpZ3axxTLc6wFsfIUiY2ytc4g9hwbaEVn7faa523GkeJ5dbXCA07GBT7/X5+tyvSt9/v3WdeG1rW1RqDKGfEvISB9bGiJG8/5Li27IkfSk+wMBvRdcdqI7y6yOuaDbvmmWuMhTqUBW8I9hmpGq/HNXTnIwotFflG0TwHdPZkOvtndRaiLsIYIywlOrG+EEKWNhH7tr7a+r1nPAWixpvNCoxlZOdoqjWktawqDSWvsNfPUkTTKl/Da149GInCCJZXFttGhdfro+V15PlsiTJFZ7SgHi9CYtGFZby+rjEkS5GeUnutXl+L1pooR9r3NPWaz6mW1rSl0A+Fs3rWuKDzYBzHSEH3ZcSYeMCvkefWumInR029+HwtD5SiEvo8ri3PGGnZj5jWUhmvTpZfXru4Xiw54xmIepvsLFcmgy/HeN7CmfozxmMZ/TSmlwhZZ4QxvTSHEr9whBHnde6/1cekofid0Pp+Vs/QtyKiFr/gd16fJyk7crWukoxmGnP11shM3P+HYZhvKGZ+wc+8H1njsoWBhfsWI7duLFpK82k9n2sn1/bWxiXraLrW8P9bOlh5DryjFpbu0KIfaso78iw60mr7mCv35vDQI69rcXsjvr9S10Krsi2yeGe3FEbq7b0Xz2SNMeP9jmejSkZF7nxZLSyv31ZjWOOkuIb22na0rdznmvprNveW+q6t51roJrrVurGUlJY+4XnyD4V7cQjj3LQ+p1izLizonCA9nkK6lo+uiYioclbzTM54baXNK7tmzizD+qV4kZ0Uz3+ISBxx3kJW54DnVKMzjplh2OIyoBYDqcZw8I4IlOpFGtauo9J4bLW3855xL3Lz3lDj7Fd+4YvuLIQQktT8XFlLLr60fLHQjddn3Mo7s6Cm3q/f4m2Jwim2NlxF5O7SknLjUhqvaZqqlQSNXF7Td8tw2Uq4FSMAoAhfwxPcTi4aVopE5er3FNNW+r1xeWnnCzoutjZeQwjRhRm1iuEtL0epwZrI/K3oYOO11RitiR6s5V3r7B3TuMZBVPq+Jnq2xnitoW02DDL6wCz7q2u/b+P11gYrwj0vnRmHLWRFq/5Ympc1kTuWN2vXUWk8tuItjlzeXgd/nWh1iJTWG79GsaV91mM+ZLDn1aUNe/gQg9iSYoTXsjNmYfCcWowpOLU0WNhyA2NBYxcqn6UMQopl47jg914bVpncBU4t42QZLjo2aFTzeHkbiaX8o4FTExVlZTOnvHN7+j+nhHAfa8enZo64PqSB3+FYUjQ9xdz6HttRwWulVXp8zt+VLkfCebAMPI0ae+9Rs8ZSy3s3J/KFLJZCW5pP5AWkxTpnq23m5K83Fxb9+p3Fw+klakNEk3dRlhrBVp9sGtLILa5z/p7b4vni+pdxs+vR56wbqa2y3jotjYuIHakuyZwWZw0bz7myyne5lH383qMDL/PynrXaT6J1hJKSzXIUvzsHiooFY2zGeMx2dP2t9+oTa9/g+YwA6bxen73x1TYmseWuCNwcPKSv+9Hf57bpUjNNG1a6+WI3qx2lCdd4MschpRX7YO2X1lji89Y6yckDdGBwe6V9czCWUM3lUDl4Tscavdaq60OgRjdhxxHKGUt2oi7irenj8SgPDw/Rd3zpHc89fl8TMGjhF6//uo/u93t5enqK9pQaPboGOach61Y4Doj+qpw7wDVeJHz2Q3o0LNyDk0M3sJZxmctWGFMt4A3pyy+/lE8++UQeHx9lv9/P541EUuFjbXi68aIAFFl4wToDZClh+s8zwPhsnnWDpdcOKryn0+VWSE8prjFe8Rk1ug+Hw3z1eg0tWBf/7Sl4nlLm/V7aGLz2MWpoKYg474jac1ioPOl4acoQphFZzzItCI8XsE+oeONNpVo2Z2x5/fHKspK6GCWxkY7jgm2jgcbKJ37nOSfwN06py/GhOmL8NeLfqptzQnn1MZQXcmde9XceM8uosZRdy2BmWMpKDlz26elpVhRreMlLufScQfrM+XxO5oH7YdGHa0znG3lgHEcJlFUVpviM/jAMcwk2imaDDLpjyXF2/HG/52ehH3g5Uo2DZP7bmAZeGwO9ukVkubDJcyBIJvtsCx0k4s9x8H+TlO9Rtuicc595DK19WPdNzyjOITKOJR3D2iy2GqeSJSuQhnvQT3POJi6DCCFEexbWcz6f50y8h4cH+eu//mv59NNP5zk+nU7y8PAw88B+v5cf//jH8q1vfSuqn52IaDQ/PT25ugg+N03TzC9rjE19lmkuYY39sgbX1P96Iq/Hx5nQ6s2Qr0cPZY9uDdjjhV6xlzA8aw9bvxRa034jDLHwmSyBPpWjNUxPUq7iqnz2mprPGGClHT1M2I7Fs9gnfQ69gjkvp+fZ5U0R1wvPleUlLNGogv9wODSto1xZXtOWZ5E9pR7feYpXzdmr3GZSWx6fQ2WHnRJctmTw4xhZm24OwzCIDPFrpkyvO2UoID8qmD9L8pgdJfybRz/yG5cZx1HCEK+BYRjmS27YQEnWpCBP8atByuu+Rd4h/yHfqSMOlah1+xKPrcUTsSNtGOxX9CgNdvv++y4XcOQrf3ENAucI20BnCMsrfEb7tNSXRslyGSn5vsflIoyxPJ2mKYn0nYP96rLIeRhS2W3JRKw3kSNDvJeEEGQU+/U3Vn1uRGqIx4Z1HiyL4O/USaDQS5Msh8LyxVI/O1lCSN+VPgyDTFJ3GZ63Z1pjYfZxsjOmtE6lhenDuYjmaoVe5/FriwMx0X3ot2ma5L/9t/8m3/nOd2YHCesR1rM19efKavnZQSpL2+fzWWSYZv7h/cLCNE3y9HiSw+EQj/WQ6kUod3J0sv6E7VvZWUin9k3bmqZJwrQ4D3e7ncgwJU7Q6bw4rKdpmi9CrbaNJOZDi8YceB8rISd7p2mStw9vmg2IHnl9hbgnw1UkVaxfK1qjRYiajTIH79kWxcADp3ri51xqoYIFMP/fejanBtw3TbNpmRdWarY+e1WihSOjre1z5I/nrQXTNMluv2zGW80ZGgVbjy+nf9aUb1m1uCZucY6e21FY62mLtmvOPC2Kk+9wLMkxVBa5LV5zOflVY6hr5AE/a/uWrKwZS0vxYqeYx3OWAwz/PxwOl7V+iiNza15BX+uYQqCTcpH15ct/OFWX5UwYfL2Dx9DKWMB2rLnjCGbcVmpsY1182/w0TTLuL9lB+lzJSF27/jynHLZRW/NavY7Hbmvo+H3ve9+Tr776Klu2RgaVwM/GcnIpc9kbFofk4+OjPDw8SAj2MRHNhpvOMpeZ+eG5XpxHfmWTB8spaZXxnkUcDgc5n5Z1tN/v5XR+SiKm5/OlzPv37+Xdu3eRc792P8nJlxJP3YMN8moir6fTU0RoFd2ZyOs1KEVem+vbQHkpeb7W1LdWqHs0mMoKzdFERuAwDHPktYYmTyEK1quKwhgpQ0lUcoxvUuXIgP5tIfJwT+lV5ZYnXH8rGRbsYfQ8v9Z31u/JsDieVwX2fY0RxFEHixb2erNixNGsGuOJFVPLG2ytRRxnHPecAE8iF1Rvac6tvjPNVjtZBTWcynRPdj1zFAHmnhX+LZDrq7YzG7RjHLkYx3GO0lhRk9mTnbS18NSlX35qlTf+uTKMNZkz3pq5/BbP2TSdos+X/7m9xamiTiEcS2vsQ+aQ3TIOzAf2De4sD712GZYcXX6LUztz9GJ9IpLIEF6r7JyM1ico1FpmCBIfrSikqI7j5dU4uf3AWxvDAO9NHdP1O4Q83+rzqtzz7yIiw47Ou4sdPeSxZbqxv9M0RUaxZ2RqW9x3qyzPSU4v8nQFT/aZ+2vF1mfRsoWzqtQ35hEv86VmzaHMKuk+WDfSmSvj6RCJU2PYz+VDCDLuJPpco5NMulTQySJn8y4J7Tcasl5/Srqbp59pG8fjUQ6HgxyflnTk8/k8R1WRDoy8hnC5SwZvEPYivvwd0sX6B5blZ3Nj4O3bOT7oZ1477gqWl9rbBD4kLIVEJI5KWs/UbkDsBeRnW6NWniCwvr8qpduB7R2/HrkxuIWnb22kfc14XhPpzEUyPGWzVI+HUt+0HzUR+zXI9ZXRQoPljbc22YssWEF4A7zI4Zb1i9Q5NPV8+VpavHOWipq10rKeOIskb5S0v24kh5KcxrVxPp7mKFAIQcLkK+ez8yejwPM+xIbQrMgaESRNR+Y9x3KWufKFaPKM0hLd3vitmaM1kemPCVv0f438rpW3Oae51oNlrX4kuoYGSueytvM2Z5RjWc8Bq8ei9Hs9q+31pQSVC7k9+HA4yF//9V/LNz7/lpzP5+Xs7XQUkXi89vvDTPf5fJ5TjnmtcUAA+4+0cZ+8sjl946XX4auJvOKZ12oMy/kba8KsRRiMMzoDe5MrIriJx4Iif4PszOjAWliMU11vxXnQVYB6Z1pC3ntleXLRw+vSS0j6Tuedx3Gcbz6ehRb1GeeMhWOuPa/MnDLl3HzsGdGWh9sSSggVMpxqWyNgPL7hPrYq4LO3NOMVxM/XrguuwxoHK0WptOnlPPa5jRifrUnxwbn2ZIXn1VRvrUV/Tu4kUaXMLd1Wn0pOGCsigHVofyw+Yfo95PrWsunm+M/bT+J0zSH6Lee19jzcClVkFO1GmR15XfjQij7Fr9xSQyQ/x3X7BiqL3Gedp91uF40bjq1Of7zmlkgE8soyTtZlUssFQiWZg3OkSqOI7RRSWr0LUiz5yQ4WjHR5/J4ElydbRvN+6q2ROSIKc4HOkPl7g/U0cpzjS+6L1qP91nHFtaR0YB+xb3zz8TAMc0QUZR32P4Qwt81teDJK29bvrHkx92eJn1FEzggyyqYbvTaxdv/PrQVvHxKBNHNjLFl2sMyzaCvJ/LUGZWkPYQO3Zt/IyXcuk2sTncP8vUXfNE1RNPkyP+PzhVN7eXo6yel0ksNhnPeRcRwj+0hkyRSx5r60h12rr/XIq4OtowMdL49bzV/uHGUuCrTmnInyoeeJblVIa6K1t/CGRelxN/K21XgqS8iN51ZprlZ7NfImV7bFo54zfj20bDQ1ygGn/bWsVe5rDU+xMlpTP7ZRKrt1lN8bkxbaagyZNVBDRQ0/xUVODcnceutmkQnlNkv8gbJFIxCHw2F+9vJ8bJxeeKLctkXLtXJXDVSrDuZVS+lDWlBJXCOjeM9qzU5Aw9X6bY3TqAbarvc8to2OvxCCjLv0EieFOkA0OuU5GvRZRMkIserCufPGKjeGMy/eKIjl8VSLTMFjBor9fi/H47GqHstZsOZOCJF10WeNouacS1i/lvWyVG6RAWAdb2G9UdOMLzRCCnEIcjw+PacRX84JPz09ym73Zi4zTZPwZame4apl7s2G+igjr7PCZZ1zLKAl8up5IUyPYcP52xZvEnq1aoUH1z/u0tSNmohLuSHjinKqlzcB9GjidfQhhCXykIm8cgRn3lCtm6ZHmj+eE6Od2rmxFJZ5w82MQRL5yggSz4Nueei4LfYAo0FaEz1jemrKsjfboptp2HJD0E1SwdExbc+KiDAwMmDJgZJCbI0L8y7+vXhUywaiZhV49dfM38wn5/q0dmscmJ84MnFN9kkcibPlnrbvrducEexFV7CenHPEjZZlnvW87NbaqMFChx95VeUHjYdLW74MUi992rdY5nEEwcwSGOKz1PwbGs5LXQtN2Edel5pOd1E6lzWxKMxLOxaNKC/5YqDcXFhr2oKeYdPzalonyx89/zafg3seq9O0vE5pHEeZTueELi86yOPHPIdyBhXo8/ksw87g7Snua2ltiTgRXIM+nYdxXM61z7QNhtOLaLHmyYpu5rJbsG0ui3zKzyp9bChFcvK5Wo066/jW6BmsO2D005MZyGd4a23ES+RYZ30DHUxffPGFHA4HeffunYhcLhJ6eHiI6sZxW5xmQ7T2ahxb2Fcsv4Vjr0bf8PStrZ2KnMHDv6NOfD4t4+Fldb1//15CCPLu3buL7Dg/iYiYr+Lx5FZORrTYLfxMj7zeCfDg9EtBb9Z7bfCEvv4mIub7RNvbSOuVFak5tXSUDNDcc7WRgJayjJwy31pPbtPx5tVTYpWGLY1WhSqfqojmkBsHr7+3cgSqPLHef7sGLWOrPIbKe229XnRCf9NnXosDtRaWEYYwUyEr6mx9pgWeA8aaQ1WacuuU61P+8ZxtluKkf1uRditKjg5cXedIvyVv9CuMbN9C9njA9zCWUnnVcLTmRI2IAT574D23RV+Z58Oq80aprnP9qpBXlhdpczJfA8tY0O9P9Jq0HDSCubecA5m29X8rLddCzjmMDhrMTEPHiT6r/77xjW9EBu/bt2+jery+luj1DMOafWN2BNxYr9g6U0ekfCmWfu+9C3wYg1yU3jg6zo4OhMrOGl69Vv/ZYh5ebeQVvTZuH0byGlacM624oDC5YS4SrI7QHIiW1WdKKdSfi5By5GCNh2Rr6MuS2btcw8zan9ytqZ5X3Eq787xL87gNi29nprXy3a8WTbnf9P1ljJlfKYsghEs02VK6cuNqeU+xLfTeel63nGAtzSPypJUyym3l6vGU3lwfuT/IJ8xPJVnhje0cnSDaOE0JveKocJcUT+zrPHbjomzMEYpn6KU6qAh40VAvK8BSdnD8vHG61hjYyrhd5jn1SmsUr0YulmRqHvyMnVUR05A/52VFxS3vuDjvX12er0lhtgxPPlNP7yOc0ht09Tsr4sP0Hw4H+U//6T/J3/2736Uyi+KshtvT05O8ffs2GQs0oC3FO6btNCtwF4MyfU0P/+0ZLfmxTIF05upChZV5AS9ssqKFXB+uW2zX6o/n9Ms587ie3W4nx+NxoXuInZn6Tlp8Tg12EZn7mJM3h8NhlrMtUSCrX/q7l+GhS1j7ypH/EIJMlI3Ad7Hw+Omc8XdsDCpvTtP0zBN0CdKAGQbPbT5vP7vd5VVC4z427HAP0PlOdFcaH/yN917LqMf5xnrW7BOjpDLburTMoh/LJPsp/K9ZJlsEpGrkQo2+oePHBjrrMtYekdPbdG7mOxbo9n69zdxyQLprpLCvDsMgh92+R147fNzC69SK3W4nT09P87mDNYopXhHO8DzoLExfGzxDCYVVTb8sRbKVBi+1qAZbj723IdW243lj9XtPUbSgBqL1ztAQQvF8TQu8taybrKX4IC04RnG/4npLc3zrtfSSa7VW0b2lHG1VtlvGxzMwLn0ql/e6zU5blrGW0YNOI3T+Mh4fH+V73/vebCRHRgyV/+STT+R4PEZGcQghMmZq4SlhSIPKBqU9F4HxHGQIby7ZYEZlFWkrAcdO61OjtASrTaw3p7QiuNy4G2ej73Q6zUxm0eSNHZe1ns3J7hojp4Qc/9c8w+2P9NvZiN7i+rnw4WLkh3CJg4/jKO/fv19uyw3L+D48PMjp+SZbj74QggQnSlu79649z3ortKwVz0H4IeCNN/bHWoNPT0/znQE5aDlcj/vndxHVZAut2RtVXzrs2k3R7ePdHXcLZvQPgXEc5ac//elVSmBuc9AUR/QkonLUsrncE7Av7OFtEa7XRLKQf66Zuy1hzeca41XHFL8/HA6R0l1aP8fj0T13s1UEsUSLHh/AcfGMV6xLv2eUzhF9bMZrqb2XMF5raFCDoYXPLQMu116NvGQa8AZedHJZQENM+XQcR9ntdvM/TT/0FHcEZzugbGyds5zxip81slVKHeRsCAveOOuepm2qIcK0tNaP8qGG/pzxasGTT5iaqBdy6Thie0xXiY/0X42Sb/12jX60lfFqnQUVWZySOl74epTT6TQ/h//UQfT27duZR7XeL7/8Uo5H33AVWYIEHn/U7L16CdA9oWauUcbek/FqjTfLRc6q0ld2lfr88PAwrx+VM4ooop/ZL1rnehiGKsPafPa1KPFPT++DSGOKIb8uoua1DxVjn3sxtasI0rXUNWnDZl3OxU81TKPCrBRB2granpWaxMJQf7fmNfH4ZS7iQo8ZP6uL1zvvkSj6MEfzmMmSjlQj/PDZ7Lg7/DBvBhWXX+VoqVE8rPGw5tCKlOS8srk0ZI4GWMDfOFrDBnzJSOToidaJQpthGYDW76qMlfhC6eDvauDxMKd2Ic+VxkOfCyHIOOwTGaHpzryJe5+5b6hMWePPdOB3KC9a+dBWqiwlbDG4cnXlxtJqN82M4PpiBwM+u9TnH43I0YFr4TLmnJK+7BsXOk+JAZGms1tHGyZqM74l04q65OQGfh+/QzZuR2SMMnBwf8lF6NBYxnHH/sQ0pjfcevTq77vdLnmNTknhQ9lj7R38N9c3R7dHIyUw2NH6Fj2Ay+LlVaV6cnuDpg0jrTwO79+/lzdv3izzL6kizrSw7EBauCzLFZT33p6I9HqyQcudn9l/XgugC+I4hhDkJz/5ifzCL/yCyHQxOh4fH2d+wneNXp4fqB+nmE9Hg3emxckxDIOcg5ElRHqF7i26D3iy2uo78hpGj/H7a4zb0TgBzTq8p0dauEY3bmnn2vpK9LFBi3uzNTdenaPQMZlhaV+dTofDQUII87EN71hZjuaP+sKmmrD1PcAzjDouKHl4rbLenLPi3PLstSgZM5aQWMMb154ZLNHqtSlyHQ9japqHlo3Loz/XDm+2sSKetts6TkhbyZmxNWrTeEqRU5H4dQDT2T6/akXRas4Eq9KC1/C/hBe7Zk4WPl8+e+VrxrEVOO4t0PKPj49zZFIkljvDMMxRrss5wIuhlzOKFa1rgM9/WrLYS+W0lH41xDgTAun3xix3qRimE9eOe8vaVnnDZ2ORbsbiPEjPpJUcT4jZCJqM8lM8JzWyw3O4Yr+U9jUyE5XhnGEtIvLu3btofNiQ4zRorQdpt44aleSQ1TfmWeUPjYpiFGmZ+91Mt8V3OJbf+c53Lo5CGeSrr76a+6oGgkUfzg3OCRpx7PDTdifxLy+c50iWtz6sr/30+gAAF61JREFU3eNULliOnXvC10F/X6uHish8C/YwDPNlc+gI1Mwvb+1siVcTeT2dnoJI6u2xBHxNn7wNqcbzohcGzBNKRS9erzgSwmcYxIoehjh8nvNwrfGWWt6xmyqS1uVGKy6qYqGpf6tXcr/fS5BzdpwGuqwrhBC9KieE4F6alOtTbj7mhT0taXFJdc9z4L22Z6Z/jDd4i94SLRx1YKjwKQkZK1pg9StHi1WGPemW99sSiFrG45Ma5ZM9wV47CowKeUom0obKjtVX7zerzhr6dDwinhviSIS5iYXRHU99ppSK2bKnYPSDaVFjgL+3eItp5rFkZdszFjyZGMidv9sN2dufkQZVtGvOXZYifFw3R6KxrzWRESstzprzy3djNMaXNuw+LW2PEc9e5ol5lw0LW8ZazyD90Z5cWEPL3+xYXGjhOeTL1jiylztrqUD+84x6VAatOvQCGaQBx5h5mPkD14/SYO1PlgyxxteTrzldjeX7vNbH2HAPISTRNTak1QDmZ9h5h/1RYxOdHTw+pmNF6L6AwGeS04t9pmm58IflxUJPPO96xnueq2EZx3lMWe+EMjwePH447yISGSI5WcE0eMjt/2uMppKhm6uTDfcPYZjyOqpxTNXoA57uUFqPNfXn2rX2i3lfkEWGTtMkenF2JDOInz/qyOtrwjiOMhXfMXt/XqfXAhRoawXROC43+M6L71wnKC1acnTwJTq2EMsLsmmaZL/fz8blOI4SVvgd9HmL3lIkDWkujftWHswaAe8JcKSBFYqcAecZbfgdvr7J2/T1GVZ6sV2L7hJq6Cs934qaZ67x6FrRIFwzWG+pndxYsKHKbXpgpeB4fLpcNGGc11FewPqtaJwFNly8spbhE6cox8ZIooQ768EquyjUViqx3Y+lvjjbQRVzi5YWvsE1M45j0udaB0qJr7Uefoc6PudlfVh0lBwTJRq1rwzPUMnRgr9bjpXafl1jFLAjRt+9GkXHrWgy0jemt/WG82SuD12XbHxj1JSzCHj8cwaZyiz9p871VtTssWuAxrqlj+SwVTZbrUEq8vFGQLfIqEN4zuYcrplPa7+w1sZ+v5fj03sRkdVnWz286sirgieMlcGt+8g59egBUyYK9EobZimTprWvz5F8X0sMXfLyI3Ie+vThdZFXVfh1Y8stsnlzcV5hMwtqOMcxLzzntUNZvnl+piaNcN78zhW3tkr8vi6kJYQgUzglKXEWvTVecI7WsNFaYzCyJ91rz/Le8zNrhLilWHiRJo5IqNPDOoMjEp/n4npVIcHv8f9FQU8VBI/W+Vr6ivFg3sQIhvfs3Ec6r80e6RDK0XxLSfbkL35WGjxDxfoe29b58hxWzPeWk6AEL+JwqWf57jLm/jrBOeGoIMqyFrmLddWuF1bQ8X+uF9cGKvn4jI6Bnt27jHnJ0WXdDD9FfKTRKo1M6flcHqvYoF+iabyGvfGx0zanSCYwu/DazxkvLEtzBp0ajOzoYAcEQuv2aLBuRsc+lFKZ4zmJ5XXssEij+lZ7Fq+yHORIpEZR379/P9f95vAgh8NhvjVX+WRuR8IcRVW6d8Mli8hSrJFfcsa+9kGj7sMwJBGjIUhETwhDlC0yDIPsdss64jPg+rc+t1zGRTqswUb4mh4RkWFXLx9YFltz7+kMJf7HMazJRlCU1m+u7EsYuaxztMhhb08stYftWnqXt4dYddcGJywaLb3DcwBrlqNiHFJalVdFLrzytYq85pThV4ErDNUPiZce95yBqJvpZSGtr2cWRjVpw9R+ydBARSsHFPwiMl+cE3mg5TZn7xS1QpkVmZeE0shROaVLf0Mhj0olGj+oMKIShQI6hDC/3BsdKla7+gynqnEZRosHdG2U6nw+p6npFeD2MLLACgorydi+wusrRzt4PbDCWkv3NYjriA2pEFrW/3MNZNRYPLEF3Zbh7tFpjSkbbPxs/NqO9JVd2HbOWaFjoPWp4j5Ny+VgPEYqEw+HgxEF9ufCc3ywrFA3MxqCCo7uluaqRlFE+j0Zwe9u1jXIcqe0PryIFxubbGCizMvJKksOWAY48hQbITq/7969ExGZ3wk7TdPs4FscSCpj48jTNE0yhdjI1hR/dHZoWwreP1C/wPZ57LDfp9M0t4NzKxLfhj1NyxnZixMjvldgMBR+D/rcecV+zOtnK91iCzmWw1ZR4DVgA3INWozIa9ta02ZtXSq39CiDSGrYSkjPOAe5Prj46iKvNajx4Gza7yEW9NM0JcZpQgs8M9OyQeS1Bms8XLk2a8Yy57XOwfQywW19c6SADU+KxFbdzDukCgQq6iGE2as0j91QvuFWJPZCIy1YT9ywnZ6FmzTW7dHN7bBCjdAXyLduYFY7mi4Yw24XlRGkG/vJ/7OChS8RZ4WZjSesV9Oo+V2QKID/+3//7/Ld7343Sa3DuUBlR5Vk5vmSMcHjhYoObgasFImIjMT+lpc2oRvWjF40o+8Kn8cbvKgleWEppJZRYRkQIum5QuyLFV3GflnRfc9Ljgbk5XOstO12QxIVW7NfePOJf3OEkZWyIMYZ9BBHMzlSZM0TG7S5OdHxOZ/DbCRevrdu0uabvhdF5TKGaZomO+UsvrEMqKjVcamHo8XLs3H0Gw0KfR8szi/yBBqIKHeRFh7TSGkbjjHd4RDNDUey2GGQy465GEnLuVeui/mVx26/38vj4+PcjkYDcRzwO/xfDeRhGGYaUL6xgY88ivOpZSwnn0ZY9ZkwLK/YGcdxvgF1Pksepoj+YRhkN4wR3RbOZ3t8se94AdfDw4PwrdzIS1999ZXsdrvZ8Mb+41iN+0v9P/rRj+Qf/IN/ML/KxOKtefwklXleBuDMl5LyFKdgWxHdEEK0n1q6G4+rJydRf0JYe7uJKW671GevT9YzEZ3OM7wueVzY8V2Lqw23wX6zQY2eXaP/e/sFPqNrg9OBrX2Px0r/1nX95vDw9Ym8dnTUoCaquizm+LOipLSvMcj5+UaHaVKfZeS3Kt1ro7pW2yHYl4CU2kflCRVnBipFF0X7XLcZwvMqQM/n82zEWuP1+eefz3WqwBaRyNOotCBNFtQ4W3MOSoEXBS2bYH1K0DBcolyYds5OlJmHJH3/7bVAZR2V12u89Z7yVDMmqPSKyGy4XgtPEUXa9H+OWkEtIsbrIBA5Q8UqU/s7KmolLEbOUt+FFtuQZv5FoBPKW9N6q6XOu/5jmnluFfxKID4q4PURkR9TVf78i+fYeMW+stLMbents2pEsrPMo02NLYTyOz6LEUfOWFHw8QlP1mud2EerPhGZDUFuh8dEnSN6pvR4PJrRcoW1BnG89/t9JNu1XTVY1GGw28XyUJ0H4zjKu3fvTH7DyBSu+e9///vy2Wefyc9+9jN58+aNSbfXDxGRULgnYy3Y0dBxAY8LH/dpwbX7CzpXETU6X86pXVtWxF/D3n6HBjE6xVYb8Fts0i+BXOS1xpPgPcNY5RHJvIPTnUh+By08cw2sMVgzPjXIbZC3aG9WcGvO0g6xAjSdSUk36N3th8QjxGX4PZjeWVsP5/NZxmGfRADx/K1GxXKeY+xHTqlCgeEZIbOH2/CaWvVbYOUEz6Qtv7GBmxowTBP/z17v3W4nP/nJT+STTz6ZlQxUSixFFvvJ44LrFfklipwD3ZjyiNEfjsjidwz9DRVI9FLWGCfjLqWR20/6HJYI8dIAGVH0HulcNAznaabL+GzJDWtuuJ0cP6KHn40eb9yX+pbo8oW+9IZjfoYdMxz9xOetscO+6T+MOvNatcZFUxktp5V+xkvesAy2b8mGC88sr/jQVEbkqcsYsIE7Uf1pKivyHBpdOG46Hkh37OhYLq7DqBnifA6RsaD1qNKJ48bjYxlkzKOWQa2GTAjnKHq33z9Ec6yKn0aPWd5oGeRrftey/q2y4ng8yuFwmA1axeFwmI0nPPqAUdTj8Zicu7fkDtKhQOOU15+ON8sy/axtah+enp7mNt68eSPTNMnxvIzr6XSS/bib53CaJjk/31yozx4OB+HXA7EMvvRviMYW5bAazHpudqF/ST/HOq09zNqXp2mScZ86bkqGhBUtnMh45SgkRhNnGimSqWNn6QbeXqN95/15K0Q6Q8hHVddEXvH26nm9r1BVPcMrN6+l+ry9iutimZlzHGH9a43FnP7I9Vp6gfW9fjdN09c38rq1kfSxoY+Pbbh6CktOgHiKUi0uRkO5HCozqqQhDZZR4tFrfWaF2urzFnwTe93j32rSbbiPOGchXF6M/fnnn0eKmSLnPUZldm0/VbHhyEpOEckpBrgBWGmyW2FWOIZUAeX0YwZHrBBoiODvWyk2tU4ULMevw9iKBs/RkwMbQl6aOtZ3MSCDxEIjjvwzbfg5J8s8sILDUUleYzmFyPpe68ILlFgx0//RAaCfa+eSlSp8DjMgLOcAp71ifZ5cUWNqMWKf00TH5Z27s9Hw3Hd2WDC9aiToZzSu9G+tW9P31KmB48mOFMuZxXLWmm9v7HOKMe413Ib2DaOomop4Op3k/fv38u7TT+R4PM6G+vunY+Rg1rk6HA7wOT5HjM4CBjqqWZbzOIUQp9Lq76fTaTa2PVg6yDVgObsGXTd83WiZv2v2wJxuqE6e3GvjbhHNf523BhG2FgofG/r4LKlHCB4XVQ5y7zq9dhHWppmw8RobgYtBW5pX3Nxzny0DYwu+Qbq5Te6P97ylVOk/Tfu1vHu5eVJFCMe41jhS/PEf/3HUR8uwQWMOy1pg43W32yWXjGwBy1M+TVPVe0it+WT6dWyxbv5uDWrGgPmFb/e8Fh4NuXFhnE6nhCZ0nGH6fKmeHG2qVKwxXplnvXTUEs/kjNf9fm8aj9ZYIm/VKmHM4/rcw8NDpFBZ/MHzoMY204f/dD70TKmWR+PQ+jeO4+x8Y4cGOxH2+318HjQEefPmzaw4nk6n57OZ8Zr72c9+lpWTen6W6eI9xltLWsZSYC1HgK5TpfHNmzfz+D09Pcnj46N88cUX8vbt28TAx/7ifopRZ5ZxOfmDGTu4F+J3+ll/1/HCMqV1trUe9lIytcPGNY7vrdAyf7X7k9cOO19RN83ptZrZsDVeTdrw8fgYRLbzFHnRkZrxyL0qh+tfQ2/LnNx68aDyvSbasCVyXu/Sq3J4nEIISarxHH3S/kqaxpfUF9LzTEVeMmhNLoLKYKaBU88hxZNT7rAfuWiJdXaUIxeWJ957BpUsViZ1Pr0oh4VpiucphPPs9VMlBMvoqzcYGPXAlC82QjlqN02TPDw8yB/8wR/Ir/3arxFtl3G13qXHacXcV2vuNZXOGpdEfhnHEKw+X53iFfzXgFjRq5YNM7u+qRyWx3YsPiulDdfShv9jKiSncZbGd3HYpFFsfhTXUc5pgGU9frLkACJN8V7OdCPvIqbpRKmkZd4axzFJU2X6l/qnRN5gdEyNBoxs6vriMdNoHRqu6AzT+tUQVYMK+61joXSi0cLjq/RP0yTv37+XTz75JDJweW7xVmEdU6VRDUw1cNGAtZxj6BRQA/d0Oj1fyLccfbmUSy9+QVnIewL/hs5I7LO15o7Hozw8PES047MLjZdxxWiy1qfyfua7fWowB3hnO/MV7knWXrYgXXPjmModrBt1Q28Pq9njecvCV/RYjp3z+SxDiJ0Ha1Jhrf3YkyOLHKvLLGJ4OrhVrsYxUIsWY896zts3rL1njY7M+6DVbi5FHMF7I7ej/9fQme4P+UCOpU9ZZUREDnpTZAM+irRhRUtUrMVY7cjjtY6lZXjhgrOE9tbOgsUIjj/nHAULDXXCH1FjIHtte8Int3mpQLcME37WUyRQSdBzT4tSFaLb7i4G5yjn8yS73SV9zALONSt/3vkOpe9v/uZv5Ac/+EHyu6a8vX//PonutACND+t8WW0dnpF5C2A/lUa+sdea3xplR+codyGLwmvHqzfXdk45Q8PVckZYbfMa0LO1l/rsowgWDWuOLpRkNM6Rt95z47U8u5RFGtkBpJexWcoNllWjTkTkyy+/lM8++2w2LvHMJq4XkcVAVuMII5HorOL2VL5YxxD0b426oUGpz2IflZ7dbieffvrpXF6NS7wYDCMTf/M3fyOffvrpPBfv37+Xt2/fRhFSTDHGtY7vGFXsdjv56U9/Ku/evXvm2yGKHF5kZpyhgNkB+/1eDoeDPD09ZeeK+cGCykV2zCmvoFH65s2bqE9aTnkne9QF6GQe4+i97/xJ6cf1yLxUMmpuoR8pPbvdzgyitNSD/3dsC8+hmEPNsZt5vjJ7mGW4vhR0nd8Crybyyhc2eQaG/nYLzAu8IvLKz1gCsrY9CzkFaUsaWuC1s3X9ikhBL0SedAOJDIkwRkKFNyR+nZE5XsbrjUo8adGqkVdvo0P6lw06fb0OKsgoOFh59M7L4DscLePe66v+bylPXBYVFi2PF2To95oSHEKY3/d3OLyJznvpVEVG0hin8w2yi9rGuWTvI/ZZv+N3RKZKzuV7vfFSFTSFzifyX8ngx88cQTIN4iHe6LCfODb4PXtGReIz0afTKbrxeRzH6OIzppMj7Jac4f4rPdYGnfsNy3Df2JDGtY3nN68x7HnsOKruOWUimsYw87eu03HYR/OGY6rrFo1X5F/LScJzYSmp6MSJ60jPcmvZxfBYxvny+yJvuD41CtGI1D6KLA4BTX3V9tDIU8MNaUc9gHlQ36XJY699sF5/pW1ZNGK9mtqP/ITGII+ztR9ae+UXX3whx+NRnp6e5Dvf+Y4cDgc5Ho/y5Zdfyre//e3osqKcYwyN9q+++ko+/fTTZ8N/ibpexuA49wMNcf0OZZy3p6MRh3uAlv/P//k/y9/7e38vKod8p/yLY89zgrys+8MwDGa0cwhLOeRX3ON5D2C5LhKvnQviyJNiXidjRVTVkBEJJpL1NfU60dqtcK3eeCu9EOte+xzv/yJ2JBWxRt+1xlDXDPJkyeGd2BwGf1h7Qk7v8PQD73kPvMewg8cap4f94esdee2wwQqMlwb8dYSVDjcrKhUOI88I5DZu5XnldlS584wl3MCt51HpykUorGdF8rzFtGBKnMhFaXv37t0s4PTM0ziO8vbt22fhN9Bz8YVWwzCIDEtqncjlpukSLKGKG0qNobPf7+doAToQdCxPp1OkdCl4w+J2MI0O67bAKY3MB4kDhIAb2cPDwzw2qvyNY6rQKmpeN2K1t/ZcKht0VmSW1x2uEStq2kK31Y7S472zNqbpcokZRqDQeVTb71I0ei2Ud7AfOl/LWVrmt+VZvrHdi0yqcalrGqOZ0zTNRi+mwmKEToGvVLHGhJ1ASBM6OyyHiDpyWA7g7b36vNaLr6DRfnkyEPn0008/nV/fpXx0OBwiw7UmCwHH5ZNPPpnp+Oqrr+R8Psu3vvWtaAz0PaUqa/B2Yy2jNxpbQMNQx0LP7f/9v//3q2jVcWKg3EOZMQyDDLv0pu9RUoNX51EdI+w0eSm9qCYCd6s1fQ2uGR92GNwb1uw/94BrHLC3wkuto1cTee3o6Ojo6Ojo6Ojo6Oj4+uL+3DsdHR0dHR0dHR0dHR0dHYRuvHZ0dHR0dHR0dHR0dHTcPbrx2tHR0dHR0dHR0dHR0XH36MZrR0dHR0dHR0dHR0dHx92jG68dHR0dHR0dHR0dHR0dd49uvHZ0dHR0dHR0dHR0dHTcPbrx2tHR0dHR0dHR0dHR0XH36MZrR0dHR0dHR0dHR0dHx92jG68dHR0dHR0dHR0dHR0dd49uvHZ0dHR0dHR0dHR0dHTcPbrx2tHR0dHR0dHR0dHR0XH36MZrR0dHR0dHR0dHR0dHx92jG68dHR0dHR0dHR0dHR0dd49uvHZ0dHR0dHR0dHR0dHTcPbrx2tHR0dHR0dHR0dHR0XH36MZrR0dHR0dHR0dHR0dHx92jG68dHR0dHR0dHR0dHR0dd49uvHZ0dHR0dHR0dHR0dHTcPbrx2tHR0dHR0dHR0dHR0XH36MZrR0dHR0dHR0dHR0dHx92jG68dHR0dHR0dHR0dHR0dd49uvHZ0dHR0dHR0dHR0dHTcPbrx2tHR0dHR0dHR0dHR0XH36MZrR0dHR0dHR0dHR0dHx92jG68dHR0dHR0dHR0dHR0dd49uvHZ0dHR0dHR0dHR0dHTcPf5/CFASBF7Z3H4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Run object detection\n", - "image = skimage.io.imread(image_list[3])\n", - "results = model.detect([image], verbose=1)\n", - "\n", - "# Display results\n", - "ax = get_ax(1)\n", - "r = results[0]\n", - "visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], \n", - " dataset.class_names, r['scores'], ax=ax,\n", - " title=\"Predictions\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Figure 1(b)- column 3 & Figure 2(a)- column 1: Mask prediction by SeBRe on rotated brain sections" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "mrcnn_val_data = os.path.join(ROOT_DIR, 'DATASETsubmit\\\\mrcnn_val_data')\n", - "os.chdir(mrcnn_val_data)\n", - "image_list = glob.glob('rot*')\n", - "image_list = natsorted(image_list, key=lambda y: y.lower())" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing 1 images\n", - "image shape: (2457, 2745, 3) min: 0.00000 max: 255.00000\n", - "molded_images shape: (1, 384, 384, 3) min: -123.70000 max: 149.10000\n", - "image_metas shape: (1, 17) min: 0.00000 max: 2745.00000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAANPCAYAAADaHoJVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXmcJUd15/uLyLy3qqt679bSi1oLQgIkDEJisYXM7oXFMM/284zBCAzI2M/72M9vYGYsG4RmbDPjN7afWW0Wgxcw2JbBBhsMGIZFAmQQkmUJbS2pW0K9qbur6t6bmfH+uDfyRkZGZkbmXepW1e/7QXRVLrHlUvHLc+IcoZQCIYQQQgghhBAyq8jVbgAhhBBCCCGEEFIGhSshhBBCCCGEkJmGwpUQQgghhBBCyExD4UoIIYQQQgghZKahcCWEEEIIIYQQMtNQuBJCCCGEEEIImWkoXAkhhJApIIQ4TwihhBDh4Pe/E0Jc3aCcA0KIU0KIYPytJIQQQmYTCldCCCHEQAhxjxBieSAOHxJC/LEQYvO461FK/aBS6r2e7Xm+cd59SqnNSql43G0ihBBCZhUKV0IIISTPS5RSmwE8BcBTAfxnc6fow7+hhBBCyJTgH11CCCGkAKXUAwD+DsClQojPCCGuE0J8AcASgAuEENuEEO8WQhwSQjwghHizduEVQgRCiN8RQjwihLgLwIvMsgflvdb4/XVCiNuEECeFELcKIZ4ihHg/gAMAbhhYgP9vh8vxXiHE3wghjgoh7hRCvM4o81ohxF8IId43KPdbQogrjP2/Nmj3SSHE7UKI501wOAkhhJDGULgSQgghBQghzgHwQgBfH2z6CQDXANgC4F4A7wUQAbgQwGUAvg+AFqOvA/DiwfYrAPxIST0/CuBaAK8EsBXADwE4opT6CQD3YWABVkr9luP0PwVwP4C9gzreYgnQHwLwZwC2A/gbAL8/qPNiAD8L4KlKqS0Avh/APdWjQgghhEwfCldCCCEkz18JIY4D+DyAzwJ4y2D7e5RS31JKRQB2AvhBAL+olDqtlHoYwP8E8O8Hx/6fAH5XKXVQKXUUwPUl9b0WwG8ppW5Ufe5USt1b1ciBsH4mgF9TSq0opW4G8C70Bbbm80qpjw/WxL4fwJMG22MAcwCeIIRoKaXuUUp9u6pOQgghZDUIV7sBhBBCyAzyMqXUP5obhBAAcNDYdC6AFoBDg31A/4OwPmavdXyZED0HQBPRuBfAUaXUSaueK4zfDxs/LwGYF0KESqk7hRC/iL6l9xIhxCcA/LJS6sEG7SCEEEImCi2uhBBCiD/K+PkggA6A3Uqp7YP/tiqlLhnsP4S+INUcKCn3IIDHeNRp8yCAnUKILVY9D5ScMyxYqQ8qpZ6JvghXAP67z3mEEELItKFwJYQQQhqglDoE4JMA3iqE2CqEkEKIxwghnjU45C8A/LwQYr8QYgeA/6ekuHcB+BUhxOWDiMUXCiHOHex7CMAFBW04COB/A7heCDEvhPguAK8B8IGq9gshLhZCPFcIMQdgBcAy+u7DhBBCyMxB4UoIIYQ055UA2gBuBXAMwIcB7BnseyeATwD4FwBfA/CRokKUUh8CcB2ADwI4CeCv0F9DC/TXxv5nIcRxIcSvOE7/DwDOQ9/6+lEAv66U+gePts8B+G8AHkHfnfhMAG/wOI8QQgiZOkKpMg8kQgghhBBCCCFkdaHFlRBCCCGEEELITEPhSgghhBBCCCFkpqFwJYQQQgghhBAy01C4EkIIIYQQQgiZaShcCSGEEEIIIYTMNBSuhBBCCCGEEEJmGgpXQgghhBBCCCEzTbjaDahDFEVMOksIIYQQQtYFSg2ntkIox3YJKWXmOELWC2EYilrHT6ohhBBCCCGEkGKEGM7blUqMn9Vg/9SbRMjMQuFKCCGEEELIVOmL1DiO0y1ZEUvhSogNhSshhBBCCCETJuPuK+L+78J0AQ5y5yRJX+DSXZgQCldCCCGEEEImhhacWoQCgJAJhSghNaFwJYQQQgghpCFDt15XcKWsYE33J8PEHkIICCGsQE19H2GFHhIlIFQLTAZCNjoUroQQQgghhDREi8wkiSuOJISMAoUrIYQQQgghtRhaUXWAJZfFlBAyPihcCSGEEEII8UApNQiqFA03DlyEpQgyx9m4owYL5/HpfikACCRJAillzqWYkI0EhSshhBBCCCEF2OtV+8LVncaGEDI5xFr6ahNF0dppLCGEEEIIWWMMXYBd0YB9cVlX65xThJQSDNJE1gthGNb66kOLKyGEEEII2bCYwlKp+iLVRSb1DS2yhIwFCldCCCGEELIB6YtLU6yOS3BSrBIyfihcCSGEEELIhsEOsKRgRgP2c8MVoh8wyUegmsfoIEsu9+GqqMS6PmpislGhcCWEEEIIIeuarDvwQLhibYVO0RGFKVzJRoXClRBCCCGErGvcwrXvFrxW3HqZCodsdChcCSGEEELIjONy4c1HAFYqdhyH3HF9rdqfBgsYEYBdVliRD9iklPQWvLYLcJVLcLad2f1rRWQTMgkoXAkhhBBCyIzjivZrClcdaKlaFBJC1iYUroQQQgghZM2QilMRpwGLhpZSmTlOKTXIfepR3ipQVHeZ6O6vcxV0HSYbDgpXQgghhBAy05guwEOxpjakcNuIfSYEoHAlhBBCCCEzjoIhXLV1VamBi7DYUG7BdIcmGxUKV0IIIYQQMgXyLrtC6KBKQzGWJFH683C7KdCGP0sRDA7Uu7JrYYXIil5U6TzlaqNI3Y5ToegI2OQ6twhdTpH11LV9WHcPEHIQYSqAO3AVIesPCldCCCGEELIqJEk+qNKsucLqdbRSyplrGyEbCQpXQgghhBAyEbKurH3Rp8Vq/+cIddEBl5qISLM97pQzxfvHKVqblDUMNDVsDz2FyUaCwpUQQgghhEyErCW177Ibx0PXXSEdAq6Gyy0hZONA4UoIIYQQQiZCZu2q6ltXRUaX0vWWEOIHhSshhBBCCPHAFbhoaD01XYB1MKPswa4yxaAc00XXddiw7DTgUgM32UYReSsswGnQJlfApoZluhgGiZKpq3SiEgihIHSQKkLWMRSuhBBCCCGkEdlowEn6rxAbJ0WN7ittx4RMFgpXQgghhBDiJGuhzFpUkyRBkkRD4TYIHtQPIFSMmV6m4IjG7awSy67gTFZBheWbAaG0lTXTlwnodFd/dJ1m2zbINwKywaFwJYQQQgghTkyxZkcAVqqGa2zmvKHIdAvB+mVuFOsuIRsZCldCCCGEEOJkaFlNAGGlrhEAVDPrqGmtzG1r0M5JpKwhhMwWFK6EEEIIIRsFlZ/6KXRybq8K/aBLacAlAQgMAwANrabIrGctFY46IJFSUKofT1jIrPDtu9y6AigN2+ayrqbtQXmQIpUY7RP+Itd2z3X2d8Q0Pub4l/VRH2u3iZD1DoUrIYQQQshGwRH5VgwWZyZJYgjXZm7A48Z37SohZP1D4UoIIYQQsmHIC1LtCmxa/GQwG663FK6EEA2FKyGEEELIOiYbSTdO163abqnZoElJ/twkG8nWjB7sKscHc42rLs8WqWYE4iIBm9adlNed6Y93KyeHK8pxVR/t44GNl4KIbEwoXAkhhBBC1jFxHKc/m8JVCx0tGNP1rA3R59cRT7pus42EEOKCwpUQQgghZE3jFpymVdVGi1YhBJIkyeVe1UGOiiyYrlytvoI1a8Xt/xvIFpK4L6btdbhCCGfgIyGzFuD+NuS2mWS2eAZTMusBBtbNiiBQvlRap63cuUBBACrRQ6IAKeRg/2iBogiZRShcCSGEEELWCUmSpNZLXyGpLbCEEDLLULgSQgghhKxhomiYX1ULUG1F9Vn3WJR+hRBCZgkKV0IIIYSQGUZKmXH5taMAm2gBGobDKZ4WpqZANQMp6cBIrjyldXCVU+dcu216uwszgJRdTlH5AKyAUu5yq8qSUsJR9UTwHctsDtgJN4qQVYLClRBCCCFkhonjOCdctdDzEZhVx7VarVQIa5oEWpplXGty1xN9C3uw6umLCJkkFK6EEEIIIatOXyia1lVtWbURAgOrmoKd1EULTSllRuCWCRqnCE6DAvkLISlFvx+qXOzqeuI4dgpKZ1utgE32Eb6peDL7hSP9jKPtvpZoV7AoYBhMybSKOs/PWE11ep9hfWXiWyAcWIEFEpVASn1dxxNEipBZgMKVEEIIIWSV0UIliqJSceNLFEWQUtZy3c2KupGqr6yHOUf94BgRMoTClRBCCCFkldEBlrRoda3JrEMQBJl8rT5kLYuNqvWuh8LVD44RIUMoXAkhhBBCpox2AR6KVJX+LoRILaU6z6oLl6gxt2lx6MxnOtimBa59rg58VBWsqImwqnJdriq/7Fy7//Y5rm2Z8rxdjf3cofsn9f+pSjlU1sZcmRUkSTK4tt6nEDLzULgSQgghhEwYLUC1FbQoBY0d7bcuDM4zhGNByPqCwpUQQgghZMLEcYw4jpEkCcIwzLjx2lZC0124rkVzXFbR9cCo6X0IIbOFWEtfo6IoWjuNJYQQQsg6xRXpN59Kxl6varqC+rjLuiLlusRYnblcnVypuXPlsD9la2/NNaxVQlpHzbXbkzvXiCrs6neVMHXlmDUj9rrq8aXqOuiowkXtKi/c0R6VHXspJRRi5+lStMvLJ2QVCcOw1hclWlwJIYQQQkZEB1cysS2nUspUkNlBk1zipyqX6rRzreo2TyMnalGqnFnE9zqYa1zH2bckSSDWxlARMhIUroQQQgghJUgpEcdDi5YQQ1Gqt5suvkWipCqXqv5XWytNMZskSa7cqjWyZcc18bgzyy7NZ1pggZRSpml6hsfK0va46mradp/z7LqKojI3DUqlaRKcqumaZ7pJk/UChSshhBBCSAl2NFgz16qvKNBuqtqSWHReEARIkiRjxXO6zq5BXOK7CDPa8WpB0UfIbEHHAkIIIYSQEpIkQRRF6X+2RdS3DABpYKaic7XLsRZ4prV1tYXcqCilnC7VLmahvxSuhMwWDM5ECCGEkA1L1hWz7/ar3X+LgiKZgqYsME+Zm6cpTLV7cVWeT7NuX7fdsnJc7TS32W02AwCNa42ms+1G8KE0oJXMr/01McezrGyfgFhluXPT44yAS2mZIknPdY3PpObcSqniAFAihpTBYD/tVWS2YHAmQgghhBBP7GBIpmARQmTWsJrbfSMDT5JRrIGmsPLtw6wES5qVdtgkSYIgCKZqpU3rommHbAAoXAkhhBCyrjHXo5qCU+dV1Qih0t+1ONJRdG1xZ1vlXClgygShGfTHXMfqKtuu1+yTud2u27Qe+loSzf6Y9Q22ep1bhUvYuXLa6mPtyMxlfXBFatblFx2bsyxbVmyXtTyJh9tOnDiBxcXFNF2Q3cZJClnzOhUFkiJkvUDhSgghhJB1jZmKJo5jxHHsTEmjBYsdIMkWPRQH0yeKIszPz6drjH2YpGsuMGzDwsLCQHT7Ry+eFsOPIqvdEkJGh8KVEEIIIesWU6xq7HWi5nad+sa07hXlXCXTQ1vI9UcF33Mm0Y4+w3tg06ZN/cBTcXdi9Talb4lVZnMJWbMwOBMhhBBC1iBZN10gn2dUW1bN47Q4dbvCFmO6rBbtt9tjYrsSnz59GgsLC+maSJcYc9Wn2+4KEFXUXlfbqra56oPIu7/aLsl2Ob4Bkoo+JoxKkiSI4xhhWN9WUxZ4C7DGpuDcfgGOQE1GoKsyiq5//kAzN65xbREBEICSCIIWIyWTmYLBmQghhBCyodCWUW2V8xITNXEFaWqKEAJbt25N21m0NtElnPSxpoDRUWyL1n/6rrc0j9NrfM36ElVu6XRF9l1N9EeKcQo1c1ymgR1Ea1bGlpDVgBZXQgghhKwJshbGJHXjNd2ANUUpSYrKLKIsqE9VmT7W2SrsfmiLWZHY1XVWRQ12WTjNDwB2UCchRMbi6ss4RaNtLS86pm7dZj990uX41J0Z/8RxnTwtriZlFl6XVRcAIGJoiysg0zzChMwCtLgSQgghZN1hiqm+UE1SkeUSqEEQpOeNwiTcKu3IxVWMIqbs/WVlRVGUWm5nTdyY7t/jTodT9aGhCdmyxnMPRVEEpVR6bxOy0aBwJYQQQshMo91ps2tWy9dEutZ3NsF3jeaoZZZRZUUcl3ANgqDUdXm16fV6aLfbYxfVReuBRyFzzcZS4vD6ELJRoaswIYQQQlYV7Q6rXYBt62rVXKUsuJArcrArJ6vpJqpdZotETFGgpjJ3U5c48hWUppi0AyEVWR+LxJKrFtvFtWg8TffWsj6MLP5cbq+ebspNXIXrzIVd7sqNLLa+ffQ8rupeyriEi7ZfGwmZMHQVJoQQQsiawgzqo1RWrPpYwZoIJZfYqCt0TJHaxBDge44Wq5Ny4S0TXpltjuFZSwYQH5rcD4SQ6UDhSgghhJBVom850mtVmwRCMo+pI6JGFa62dXVUS1/ZOZNIE2OXb7dHk21j/tz1JvSqgloRQlYPCldCCCGETBzTSpkKVdXNRs0VSF0jXeKwqmyTKmGqyzUD3ZS5f9qRfO1ov9rVuai9+lxT6LpEUpV7st6v3ZntdqTtLkjXkgkZZLXXbrvpFmu6OVflaZ00dVzD7XN8yy7Cvg5Fddepbxi1OetOrpRyuny7okrr+8D8AFQkwhWYy5WsTShcCSGEEDJRTLGn/1NKASKBlALulZfTwTfHaRWmaPApx16b2iQHqmt9q+5PYOxzWbKr2qvPMd2UIYbrbccd2bcOs5YvdlJIKSHg/kBRhv4YEwQBoiiaZBMJmSoMzkQIIYSQhuRFny144jhGr9fLHWf+XOV6Kx3HOTEsVqZF0/4d6Bt3bUEnBlZT2+rorkpkxISUElEUIQzDtNwia69pMfTJyWrX63NOHREurWsHDD8lmHUJOR4X6aYfCMygVE0jM9cJYlRnDXKSJICSzvuzLGerbTXNpXdSDqu8rJPH1WV5VxBCQooQwOp9gCCEwZkIIYQQMnVMcRjHcRpgyWXt82EcaWymuf5Si9ii/k7LUNDEGjkuN9ppoYX0alp9J4EZqblcVM/GdSBk2lC4EkIIIWRkoihCHMcZi5O9rrMOGaHZ8Hzb+jtJkiRBGIaIosgpqKYloptYJJsI19VcIzlMnbS+8BWulK1ko0JXYUIIIYRUYrr1DteqRunvZpAjmyrBY+YndeZHNY6zc6Fm6ilot5kD1WhUvp4KC57L5bjoOF23vc1uW9G55u/2+JSdU0fQpWPj2KdLzLhxI860oyw9TxRFaLValflOV1OAjjIHdl7bWu66noyS77Xg2H7TBV2FyapDV2FCCCGEjB0zsNJwLV5/Al8mWoHqFCPmekmfvK3jJNO2kuPquKeOK3jQLFgVdV/6YtXvHKVUutZ3FvpACFkfULgSQgghGxa3JcgMAKSDK2VTrvT/87WcFQk4WXSOJV61dS+zzVG+wDBNTOp2iWGE3UwgHMNymroVewZI0ttN66t5ptKpScy+WmllzH6VpVexAyH5Wm7t/a5zh3U7AjoNrq8YrFkOgxAyGUwb1SBzUQJAFLcnF6Sowlrs6o8rHdG4xLDLAjxSea6gSRh6utsBvbzq9rXW1rDq6jrjJEYQ0OJK1g4UroQQQghJUUqlwZX0xD4IgqkF5mkiStJzKto4DtfQcViE7fNNV+smUW2b1q1FlCj4gKHboAVXGLQRx3GmbTSoEkKmBYUrIYQQQjKRgDVNAyuNQhMrmO85owrXcbkymxbJNKettQ9oFmjJt25dfl+4Fo+fPiaKIjzynaPYvXt35ljqVkLItGBwJkIIIWQDYQqwJInSNav2MdNAOgRnkcusfZzL1Gdu0aLQdC/N5IZ1rEM1c5fqMQqCILdW09leK/er7SrswmV51dvtqMjarde8VlXu2bbbtNl2c5vL4qqcEZuGbqXaSmwGbHKlAqoK5ORqo92PSaU2GldwpknWMxkUAAGVCEgZrru0QmTtwOBMhBBCCMmhhUUURYbl0L1mcj1hRuT1xRR3LgvrJIRTmdV4+KHBfx1jUdvHRavVQhRFzjWuJva6XpumeX512Rrffq73+52Q9Qw/sRBCCCEbgE6ng16vl65RBJBzU12PmMLVV8T6CNdxBAlyibqybXWosmSOSq/Xw+23314pTCcpXKWU6X++VLWHEDK70FWYEEIIWcNk8mymgqsfYCmKovL1nyO6X7r+KOs1kXWtfakQHGFe4jrTjFxcZM10Rb/Nj2m9yL22a2xmvxXoyY6Y61pLa0YxNo+3y64c80H02YzbtGOlapWrMNBfFx228hFyRwqwZVfpKNPp7uxwVXaVWeVq7arHHFff6NmTDrI1EoPraH7ckJJOmGT60FWYEEII2UCYax91gCWdX9V0L530OrZRLGfTwjUGpjgpO2ec4sO15tMUruaa1kmRGYukfj1l61ZnmVqpaAaY12Wt9ZeQ9QQtroQQQsiM47LEaTdfnb7GtAopFVeWNziw8BgfUeLKpWpaEe19mboL0DlXfYMQZcp3WeWA2hbgIourafW0MdsrjT64BI/C0DJtl+ESSWWWPK/rZLbble8zyZdTZXE1y/N1SfYd/3FZK83xHfeHFVdfqu7zmZlzq2H+4jiOB6mYZCNPCUJGgRZXQgghZJ1hWk6VUv2gOGuI1YjAmrp21qzfPLds3WYZtivrqH2atJBYr5bE9dgnQjYyFK6EEELIjKMtZjoicBiGqWvwWrCO1LGgTVK41nENLVsz6tsHbcEa1Yo16fWS9prZ9QKFKyHrC7oKE0IIIauIMNKJmOJBDXKQmu6iZYFqzO1N0oSMC9cf6qoWVAmzoj6YAXlcwZBK21kQLRjIupUqDIPYpK6UyOZJ1cdFUZSJcmu3IHXttbZl3byzrtY5l2IR90tWEoDuc5Jbu+lydy7E4T7sDICk8iJXBDKNVN3EFdjnWFegKp+ypzXHHZdbcK1rNgay95qCEBICfbdhQqYBXYUJIYSQNYaZokOnrAmDIN0HTF+ATpM661lntR4pJcIwTK3hQP/jwyQZisiJVjM2Rgl0Na17ZDUxA62t1z4SMgoUroQQQsiE0QLDdB2VUg5S1nQz1lR9vD25rzPZbxI4popJCGhfy1nZ+bal0i67yl3X3qZFQ3pNrJQzZtmmtTcZlG/myS0q25W2xTUWZiAuO+CVrvfo0aPodJZx9tlnZ9pURca6V3CMnarHPC8dCystjz6mqM5c3TXXC9v7ckGlVsGT0LdO/cw3Sf1jbh+XVdm8XlKa17dxkYRMFApXQgghZMLYYkhbVk1XYFpYJoM5vuYYm8GuTHICcUxum6bg83Hptve5RGa328Xy8jLm59sAkBFFVR8qMsdN6dbTY75R73VbuPsebzMJ63NaF4UrmWEoXAkhhJAJI4RAFEWZFDZFaxpT1lAMilmmyrpnb5NS5oTruFw307Wylht4v5qsFc28R7IpcrLl7d27F0kSodfrDdKa5PtVJFyH9YzcNS82qmDVFK1TLzp2mKomyyTG0RSuhMwqDM5ECCGEjMzQcmoG8InjOBdgaRSqAh/5Rs9Njyva76q7RtAkX5ztdIksR33mmWYE4XxxeSurvd1Vpl135jgjMFPZWBaNTlIylmUuw/YHjlQEISuKAECJbF9T4ZuIzPYkSSCk4/5UMu+mbJRpukmX4evWao+nC1PQF7kIrydxbFqoq9yqR+13PyjTsKx+eQzSRCYLgzMRQgghq4CewPfXrUaZtX9kNhjX9XBFuq3DKCJrnAaHdN01Yuf+SQqlcTNr7SGEjB8KV0IIIaQCM8CPxrSAdDqddLttBdPH+uIKOKPRFpg4jhGGIZRSCKw0KDYuS14T0TUJYeAss8Jq7LoWTeozAyyZFq2isTf3mW62LotjWXAiM12Obx9sa2vOulpRX/YeyFpczTWu2eshCvtnHpt1OS4OOlQWHCsZpH5y9UXXb64TzwTPstozCUYNhtT0Q4VSKuMq7Lt+uQmutd6EzBoUroQQQkgFOuiNnjBrq+q0J3e6Pp1yxbX+jdTDFIXmx4YyTCGSHu8ZbMcs3xaFvhGBNaX3nyMC7Wowqguvz7rkSWPW5+siPQ5W+9oRMmtQuBJCCCEV2MGVgOGavNUIbkPROj5s4eoTiMlcc+obKdcMzFVkVfZJD2MfX7KzUZnjpio4ls/5RdumJeymZdm165yGOCZkLcHgTIQQQjY8QuSjfSqlkCQJ4jjO5OZ0n+/IH1oxwbVdLMchMHwDBVVN/EcJxOSa5NeZ+NepxxWsSLtXmgGxnO6/FW1Lr83gd1nhkg1kraX99gUZcZvuc5ztGitX3k8dSKnonGEl5aIn02/pd9/5XkcJdyTmBNnURK6xcZXtcg8ucukuKqfonh9HHthpCelxLz0A3OOoP4wJtJo3lhAPGJyJEEIIqYk5IdRCtWjNHZk+vtGSJ1n3OMvx7UfVWuS1em+OQxzWLaNoHOu6Z9cpexZo8kFsuJZ4Qo0ipCEUroQQQjY8et1qr9dLg9lo92Dbqkemj6877iQYV50ZgdTAel22f63dn02Fq/ks1s2tWyR47XKajOVqflipQlu1646VGbSLkFmBrsKEEEI2DKbbnOkGLITKHVcWBVUfU1bHtOZ8Tldjl4ukcU5VH8aVpqWJW3BZOUURbH3Lybj7OtrjEoJ63au5pthlpVNq6E4+PN/tXqxQbE012+gU7EYuVZcbaPqzkk43UFdgKWce11xfsrjGKt1mFGPuN12Fq1xYy+ova6ftzqyFW1l9dfponlP2nvBdAmC2KzNWjmuv0xeVtbWsP2W4XO8FWmNbxkCIC7oKE0IIIQ70BLbT6aTCNQiCwURttEmZOZmsWg+73tHW6zCsnmL4rG+0jxdC5ASIK9LruAPbmG3VAkIH6LLrqxLNSYkIGIfrqg9adCmlEMjxplQRY/xs43uPrKZVfly4+jqt+4GQtQAtroQQQtYFtmWiHyU2SV2ANWYe0CqrT5llsmzNnF3mak6mfQMkVQVVKivbPLbX62F5eRlbtmxJxVpR7tW6rq5F60Rt62tZeUUBgYDh54tcUCHL1bJKmA4PdFlhAUDm29DQ3VRKmbHCpuVawZnK7nWFONd+ZzuSvBVRmcbggj6YY15Uz6SfkbLnoM7zr8fRhcvaW3a/1a3bPGdoSv3lAAAgAElEQVTsSxhcwbxEAilCSBlCpReaQpqMD1pcCSGEbEjMKLJKKURRhDjq5tzczLQkk5gsz5pb3bTb0mq1EIZhVtwYHwrWskVMM8t9GAqeVW7IBmeSz50pamf5XiRk3FC4EkIIWRdo91+9dhWA0+KhU6W4LIDjoEkwlEmyGgF8bPFO4To9UlGzyu3Y6ExauK6n54kQX+gqTAghZE2gBaFem6qtqlqomsFzUjdgkRVPuhxX2fZxPu0xsYPeuNZBugIKjfp3uMrt1xlwqEZwplEmyL5uynXL88Fec2q6V8bx0DU2E8CnoE67/y43c2eQIsutUtcjZZh3PzaOM8sH8usczWBV/R/yOWRN10+Xa2k2yrFn0B+X9zCGZY9y3xTdI0UuxnWpch93fcjS50RRBACZd4zeb34YG1VE1lmSMHYcrsIKMaAkgqAFIXTf6SpMxgddhQkhhKxbtEjt9XqZibJtVdUBfMw1hpPEtiim9aM4uMq0gsnodqylD9XjoChoknltfMsZ1zUqiwpbhqsPRS7pvq7C2WBR4xEjrmdwLd93uj9asNrBuPQHKkLIdKDFlRBCyMxhClKl+kJVWz2KkJa1x+WuOig0X59Vt20tKgvEZIoI02rjmrgXWUdHSTkxDmuxfa5LXFVN0MvEXdEY+Lox+waT8m1PneNcYtMVFVinlMm0MclaDu3APpm6jfXArv2pdQ/5gE9mPcPiCqzp6F9f7U6fJAlEUBw0qYjsM5oNdlZ2jo/QG+UeKWx3km+bchRZFbxpkh+amrgAN3mG/N8TACAGqZXCxu8oQoqgxZUQQsiaRlsx4jgeTPZjr0mc70R7EtMu38njtCbAVVSN1axNTldjne64sYXeapNxrR/B/dO+NmWiq9Jl2UETV+O1yiTv8/UwPoRQuBJCCJkJtFAtWs9Xha8FbhITONeEvCiNRVkbp0XVWrpZm+RSuI4f/ZwppTBK2lX73i9zrbbXBfvg+9yuh3tkVO+LqrI1a3mMyMaGrsKEEEJWlV6vl5vsZsWrnzXIdypm/iFJA+9Y27zqc7gmm/0YNdCKr+utT9tsytZ/Vq3DzKyNtNY0+rTXPq7IQueaxFe5UtqutXbd+ncpZan7cVHeWaPwzH4pZT+QTa5A9ziaAaLS+8ao1zwuF8RJ5J8H01XY1a/M8+Rw6dVl6jWcTYWNPt8cP9e9aLrYu9zxbRd88/wid+SqIE7S8YZwuQpXMWsCeVztcYtlBe0qLEQwcoAsQmzqugrzDiSEEDI1TDfgXq+HlZWVTF7VUrEwY0yivUWTUKVUuiZxHOhoxya2kChr41q6TkWU9WHS4sT8SFDVDp82BEGA06dPFx5rXtsgCNDpdDLbfK67D1XtrerrKNdkXH2oYlr1+DLOa6ffy4TMKnQVJoQQMjWiKMrlWNUT0rUmhCbhelfkKqgFv52OY5R6AHfwnzrrdNcyZUJoki6bGjuoEQra4eNaG0URtm3bhiiKKi3RSZJg8+bN2TLHeP/6WOtdH2F8XIHL7s9piclJLjlowrjao6/duN4xhEwCugoTQggZicwkP04yk9MoiqBEtVVJU1csZM41trsm+03W15ntsussmyg3TXviyv1aB5dw0Nv0GmIh3OlgRhWsZa6307RQ+aw1to83f/a5PxSGbryuMR8GAiuwklvRhvvXxHGYw5fVOZYO92HbTdl03c09By73Y4f1tMr93XQT1uh72XwmzP1BEDRe1+7KK1vk/lv0scZuj8ul2MxV6/rQNslgSqOW7XJ/b7ocQkoJgdZI7SHEhFGFCSGETBUzn6EUIpO6RgiRyRE5a+vDpoWvVaQq96tPPbb4StfxjtEldNYYddw0dSb2WoiVuXAXrQcuKi+HmH3rl2+/zLFYjbWSo+QzNt9x6/H5IWStQIsrIYQQL0wroBZD2pKSTuoGb2lzMpsgLhVMLutkmXXWFgNp2Q4LiBnMpcwKalpjm7iJ6uOLJvG+k12XFce2epQJq7I2V1khfS2uRSK4zBJVZJ1y9afqHLtNRVZ0sxzX/ef6iFK2zSzHmce1whJqugYLlRVx/UBNjoi8A+FaFAQr/Vnk95sBmyrHcnC+y2JqbhvXWsoq4eprzRQqH7CpKuBS1fWuY8XNHefx7NVlnJZd0/Ol7seDtG4Vpu7Ea0lDkNmEFldCCCETQU+qtcuptjTFcex2PxxgipwmE50yK21GnNQu2X/iVcf1dBR8JqY+wW+mZRXixHU0tHgIggBKFVtui+4/7dnQageO/fXugVGt1b51+AjXuh96pmkF3aheI4TMAhSuhBBCvEiSJJ0oa3EURVEmmMckhGuZi1/GitVgIuk7CTXdQSfp5lglkIMgQK/XK23DaglXTuTro1Q/kmtVQBynlRVAq9Vfbxgnw0iw6T1dsx3TuG/6Ar36HeD7oagqYNMkoHAlZPWgqzAhhBAAg/WocS9jPe31en3RJhyuYYnbTdN2mRWyOlqoPq/Jft9zMu6E1kTd1QdTaOs+VbmlNqGq3/ax2mpVNmF37a8TpKjMZdan7a72uNrWxOJdVY8d3MoOFGS3w/5XU38949Bt3WW9NF3RE6hcUCLtPpxpwyC4k91uV79d96xLkPpe2yqa3A+2Cz8ABKLcfV+TwNHGZLRn0XWsWU8dt3UfzGULqyV8R/1AIQQgxCAPspJgZk0yCnQVJoQQ0gjTFbjT6aSTrCAIEMWr991wlKAq6xU9Jk2t2C6K1lGOm1kKdGP2edQJvdmvorqGH4WSWq65VdemyZiOer19A2IVie50+5gea74n/GgaWZ2QWYAWV0II2QCY1hf9xT8Mw3StauoCnETpOZm/DwUWV9uqp38217+GLZnZb6d6GZclz7cMlyWqifVJW9b0WNqBglzCoEh0uOoe5e+zq56qoEm+ZdaxPo1iUZ2EG7Iryq9pJS1aR23vsy2zUkoIoXL3le6Hj/VQW1z1/RTHMeDwVjAtt672FFnjzba5ApXZ46HLL6qnzLqc65s1hpm6k+w9b49fWo9zzNx1meW5ttv7M+dM8FtKk2dHXwvzQ8Goz8No7s4qtbgKBKDFlYwCLa6EEEJymNF39eRQW1XHGZTFjlhZ5Na4mozLVVKXUbTe1OmGaIz1RrAQNRHIk2SUdlSdO661j6YrqRrBHGm31xS7TdvoGgNXntZa5Yx5zWiTjzGEkLUBhSshhGwAtAuwnmACBZbOmmUWrZ/L/j6diLy+uNYDNrXula0zrVpXaO+rW/daYKMJ17prd11k1lM3PL/og5H9Yaku9r1qRgnWHhx1y5mkcK2z5pYQMvvQVZgQQtYJ6aQUWcuqjgasRauOYJqoKC+8VMGEVuTF7tBF0nCbdLhFSqMtzqKNyaPL/VDvz+RstfpcRJFQ9C2nycTW7r8up6mLn6u9tgW9rG5zXxP0PeMS36522G6ePmKmyv3VRROLeXYsszmJzbHLjmnxhwnTyihE/jrEBV3XAcsyaz7hcsUO8n0VSX6skI9KbD7f9jXwuf9tV1WXC++govw2mXddNvM8Z663zI+vywXY6VIvh9cgvRcrboVKt2Ar4FOdNaFmeS7visyxDQT7KO8R8zqWvSeqywH0x0gpQgjhFymaEBd0FSaEkA1KOhFJFKIoQqfTSV1ZzXQu5oRpFAuR78RHT7TsKKo2RSJxNSdFdQTRajHpuqWUubRHmlHvIY05ofadlE+i35O0yFaeU9Lv7HGj1V23nU0EVh23at/WFIlr0/NDCJFacMfBKPf1evOe0GQ+6kCV3baEjB0KV0IIWSdEUYRerwckWQGQtQqJVMRKObpwrWNNKxI/LsuOa/9q4DtpdwX9mRaTrltbeaqE6yiMKlzH7Wba1DJetz2Zjz8lt3nWulq+v/RAZMVeemiFaK77nqgqO1Omp3R1lWkGsqpbng+jWjjXI7ZwJWSa0FWYEELWCOZkL45jKKXSdat6mxAijfZr4pxEibzIEQjcAsLhKmxaSLU4jY1JXpkFxJwQjrLONI7jNGVPkeCtmnTbfbWPsy3LrnJGmaSaFukTJ05g69atmXaVtc1nUp0kCTqdDubn5zNjEcexU4wWUSRAzOuvj7Mn/OOaazSx+tnjN2xf3lXe7kuffN5NPYbZgER593ZVEHHV5SqsXVyzY5c/X+d2zXbW4YqKONc/u067vVXHuc4xXXPTZ7noMiV5F1XXsWaZrral7s8ON2NZsKbe2UeRP07WWunvLs/rWOO9V+fjT52PO5PBiFugJKQM161IJ5OHrsKEELJOEUKg1+ulotW2gunJQ9WarOGEvry+7KQPmbLH6T43ipUrXa/b0CpipgApwyUeiybFRWs97XPM45eWlrC4uIgtW7YUWp5NOp0O5ubmvNfftdvt3DbXOly7D3Uou451rHbjEruTdDk21wgO15D6r52u686ad88c3T27CaOO6STlTdq2NWbiGJe7PSEbAVpcCSFkRtDvY9t6FUURoiiCDv6SCbDhmkiqobjU7rzSZVgrCMRkWlxT69TAypOxTBTUnUMkOQucLc7076YwtsWoKdLrCs7UGq3b7nBz1tu09dZHmNp9CMMQvV4vJwrNMn3KNrdnxrwkyIur35qiPKT6/mq1Wpl10E3EY9m1cAXbqoOrPfoe1ddsnBN/n1yp5s9xHCMMw9yxiXV++mw58rN6j3nBMzYKroBG2nqYuV5J/kAl3F4NLs8Nodwf1ly5ne0yiyyvdj3Tsv45P2Y1sLgWMY10WXZwtaYCOpBzE2ohWe/Q4koIIWsU08UySRLEcZxdu1VzMmFORpqYIUzhqk/PiLUR3WNNcW1ji0Nzm+s4u81lY5Udl2xZpsAOgiAVc0V16//0sd1u1zlx1uXUseyWbRsXWnAtLS1hbm5yk89J9CFzf64iUkp0u92McE1FWAPX5lkjI95HLMvlTbDa168pk75eq2VNn9X7kBDAtXiCEELIqpAkCVZWVtDpdBBFUc7yWddF10wR0bQ9Zt5XYHyTGyll+p+LovWJ9hi4rJhV/c2kzhj8Z27TbYqiyLtuXa4pXkwefvhhr/Wk+mOFbf2clEBrtVpIkgSLi4tjL9tkEn2YFeEK9MdxVEZxwZ8krnu/KeZ7bFb768uk+zDt8aFwJWsBugoTQsiUsN3ZtFXVFofFuIIpuSrycyU0AzGl2wpEQII47+JnCLZUCGIYJMl0izQtmT7rMqvcX33+drlcF22hY07WXFZYTVVOxqJ1ndoaq92HbfFaFPSnyPWxqt/2+WWulk3//tdxbQZQmgapyjJedlyVYDVdz8eB6ZZslml6RdhtM2vO3IsYWuB9PQ+GG+u7CrvaZrZbuwpn2lgRNCnFESDJfu40gci7v/p+eCh6bn3Oy+SvdnyIM99Po1DHVTg9p6APvm3x/WDXZMyLnu/cByMVpuO7lnQFWX3oKkwIITOKFnhKKfR6vVyamrX2B78sj2tGpLqioE4Blyi0J2z2ujrzXxPfnLUmpvjUlk2Xa/M4KZt82+JxGpZKIfoBxepEL55VdD7korROa4XVTNfUJHDSuNZ6Trvf08J3fMzrsNb+1hCiocWVEELGhCkE9CRJW5viOEbU7eXOkYFj/aMYToqz68uyImsc1iRtEaya1Lm+6ieDNmTcmEusB0KINH2Nb9tM8Wee53KlLTrHZcG0XXyr1txWYZ7jst7oulyW2yYCskqclu03x6uuFbusHa57JIoidLtdLCwsOOuxr1vVPd2kvcXjm7/nlXKPi+k+HgSBU38JZK3s/fa5n6vEUYIrcJHTgqfyAsTZxwIrrE730tS6mntOkvz1lFKmY1W11EA/L/YzBCDzvnBZXO3gQvZxrnvNfgaaYl7D9HnKOKQ49puu0o7gVy5PiSqauPjq8S6ywtb3cFCQMuiXmQhwJSLxhRZXQghZRUyRFEURer2eU9TZk406ItS03K3m+j5zcpX229hnY4rHcbqtVZ3jWitm/m5HO26C7zrgSV+vsvJXY01oq9UqXPc7i1RZr3w/amjX1KoPQhkxVlLvrOD73nEJI/N8n3rK7lVb6K4XprXOtEoYr+bfFULKWDt/TQghZMYxgxm53ELLhFedL+x6QrjakwttKQHylk7XekpzMtokPcq4hKttcdHXS7s2j2oBLbNmTEu4FonmutacUYmiCO12O2Mhn2XKxsW0MvquNa7CFq7jWGc5SaoEpXmcK+VUkVXU9b4oq0d7b8zyWDXBtMhOsm9Va3qLPjwSstrQVZgQQmrgci/VAZZcx2VIHG5ghjtfKngsN6vUlc7wQ7PdKu0ouT59KNrnKsO0rKbi0yWOHGVWuaBVWXFMV+qidrnq0uNW5v6rz88EqnG4JNr1lFl77MlnHaHoOsc1LkUTXFdf7Y8EZe0pc9f1sbYVTbjLJsgui3gRdVyFqyf+Lmto3i3V1W/fe7/IVbhOjtT8Rj9Lo5krNvMRxTFsrnqk0SP9fjGPS5+N2B3syDy3bL+z7R6izeed53puxzXv9XavLkC7Gvt+DBgnVc9ymbeI+9kAgEFEdiVBV2HiC12FCSFkgmgx1Ol0KkWRjV73VuaG2J/I12+XuQ5MTxSbrtVUSo01kI9r4mqugXONR1EUX9tiWyR86ra3ar2p2QZdd5Eb6CiTY3P8JzmRbXKPjCtIzlrAdc9mrveYrk3mPh85S+p0SZ/BiuOqggKVfSwhs0fRsohUgK9Ww8iGgBZXQggxsCeptjtpHPcDLGUCmxif3ocWrdjYXzwxk1WWHXOSgCC33xmx12GR0QJPR0btb0xyQrDImiMDd5Res+1F1jZXGhzbWuISgaa7oR0Eqh8ApHgs6oo+O6WJrkdHA9ZttHO9llFkeTTH0XetXtk4FQmDsvtOf3Qxo+M2WXdcxwKqiaIIc3Nzzg8kVRRZsatcpEejOIiTRkpZYIWt7l/64UU6rJEVqW/s+9X0CCmijsXVHudYOaynRnmu6+CyKOpt5v1f99r6uLk28XqowmxPbtmBI2BTf4fDRVoM22ieM00h3+SZd39UVNCfMALZAi2uxBdaXAkhZARMAZYkCaIoSico/QnF+OsrIzuJdZxT45UvpUSn00mD5ZgTsGE9bmHqnrz7TST1mNq5FKWUmfW6RWNR1520Cebk04xEHEVRuk0fN058RGtVv5uMSx133nGjny2f4EWuc4GNYfX1ZdoCZ9rnr9a50yxTMyuB98qY1XaRjQGFKyGEGAwtq3FmAjEUNuPNBVj1xTtrPXCd41ePFghmhFdTEA4FlNuC5qrHbnuR+DSFoCYMQyilUktnmYVBC51JrgUz3bjN1Dh2v8ZpuQGGa6XLqCNcm1hKXdsmOTlfXl7G5s2b0ev1al9L857lBHpo9ZtGhN04jiGCZvXY7axz7UYRck2ejUm2p4pZCbxXxiy3jax/6CpMCNnwaMua6RKacUvNCKYkJ16ElXe1f/ww8MbwOIdYMH82XOfseoUQSOJhHRoZ5Le53Atd7RBy2L/UFTfJu//2A0blXZJ1mfoYHxFWRdHaTp3PMb0+Hm7TRRNA1yTf/ltoXns70rBr4mp/BDDXP9su0ubvRe0zx9F0Y9Z1mC6+LqqEqes6jSJ69faqdb9mvyfxMcJ1narWWFYLdrersHmtAUBY9fQD1fhHU3bm9Uwc42K5Che5jxe56wqVf85Mt1XzOPN8pfq5R3PXy5HHdVxeAE2OLbqe4xZcTndmkd2fPq/C8c5xXe8JtneSKJVA/zUTCBAErdVtEFkz0FWYEEIq0JOJOI5LI9Zqsi61/nU0aZfdhmw5jjVwKK6nKMBRUd1mHea2OI5TgWxS3tZyXCKqbKJWFRW4X0B5+1znVFlPtFisayGyJ6OusSmqWwtVt8W/PrP4gVoIgU6ng02bNo21fWXjXOecOkxSEFWtBahysyerx1oSnoSsFShcCSEbil6vl6avCcMwYwky12CaZN0T/epp4k6WddnNljNoiaPM4gmrbRF0l2m119imx6MvXN0Bn4rbWo4pqqvGqkzYlrkzF03op2HV8BWurvr1van32QFg6jJrokZfl3GLVqDAClZxvUe9H9J6ap/pJtMej2MZkXc2ydxLvDyEjAW6ChNC1iWmm1Z2zeJQRJQJJh8rjRYT0hAY9v7qhrrdGHXZvV4vFZB6fWrWypg4z9X/pqIHgTEGeqIdp66OTSfstkuzbc00xXhVPWZ7zTEwreL6euoyq9rvuo52kChdtm8fi/piu/Pq+m1hYX4sqbs2MWv9zwtzc7/tymrWXWVJbvLhpambaNEHhmoXXt/y8xZ2u/zy8wPH9Xa4DzsiqRZGFZYOUe3oous6uOox3YerqJNrVNdtvzvq7G9CVTm2G745TuP8MDWK63MV5jsifXdUNNd+R/pQFkXafi+52lb0QbXo/aX7EwQBoGgfI+XQVZgQsqExxaoZodHeP85Jls8aM59zXe3RljctYIuOq1rHZ9c5jmAuRZZE13F2u+qMfZP8oa6xKkslMysfcavcu+0++NzHLvFjrucuq89V97gDAZVNxPXa5lHL19B9c32hr+043+eu8jfCfTOu5yQjyEduFSFZaHElhKx5TGFnfoF3v9/KXVRdFjJtoYuiyDmJLvvjXCXWknhoqSsSBnEcp1F4dZm6PUK6XQVzVixHwKY46SEIgsz5dcWhzgtr5lltio9Lp2mF1XWb1lPTKmpagkzrgG0VLnfP9mubfax9TXzdVl3oe8MO6qSUyvS/KL1MmTXT3mff5y6rp7nNDBxVZI0z21tmoS86t6ovVZg5lV0feKqvg0s4J7nrPAmLq4vEMMul97Qrn3MBdS2uheWUjFud61RlxXUd53LF189BUd2jPIO+2J4ZZR9JnR+UHD7Fdd4TdtmAv8V1HGLVLieQc43LJBsDWlwJIesebVE1Lat6Aqkn0k1xuZ6awsElLpu4VZpl6zKKJjd2m8z2QOStynXq1mU16YOeKIZhmF6HaVk9lFLodrup+3SRYKvTr7qW+CJrpUuQjfsjsW5n048OLjL3VY1zikSrxsdq5RrLcY1ZUX9GuVdnJd9mOkYjNkG/O810WatJketv0+Nmmcy7S45HPBKyXpmNNxQhhNTAtK4CWUvTqJNJ27Klyyqb1I0qXMvWC+ljbOGaWmGhGgvGUQWC+QHBTvsyTlzt1BZec589BrZ1rwrdn6pUM3a7bFzr0CYhcnT/9RrgcQhXfV/5pjUyhWuRpdrHquOToqjs/DLKPjAU1VOFvtdXOzDS8L4arRwhxMyIVsBa91khXO3j1ppbr3lPuiyuvkzSkkzIrEBXYULIzGGKuDiOU9dFM++jPm6IIy+lK5+pI4hJJkav9QXf/F0IgcSwbqUuamI44Usnsr7BUhxtNM/NTEYQ5CdyYmjNSturpNfExc7jqt1Oi1yWXXk3fayatmuuXbbLzdlej2kLU/sesIV/WSRec5/dNr3NtEabFu+iibTdNlM0m14ALiGtxXLug0mSd3dXnhYZuw9lbrzmPWC7XZrj5eqrLy4LtBkoyoV2By86ZhQPhz75nMy++IqEKgHm2p+5J4WjDs+8qXagn/S+S6qPBYYupnXGudmc0vU8Zd8PRR/2lHI95wUusy6PFadQLO9vHa+b9D0QOO5flb925nVI26vy25QYfmhzfdibtnAtqlughSAIaA0mhdBVmBCyLuh0OumE2bQqTesPslk3MJwkwJj8pP/OwN/kTHtVfSuQOfnTKXCqsCeUPnW6rl/VGlM98SmzAtZxb9ViyLZi63+1iHBF4y0SgXZgE1MAa+uw2TfbQmS7bANAKGRmciqlRNzgZjPb4otuh26TLWRdlF0D+6OCXY/r3hkl4nUR2Ws6tmILqbpvis7RxMo/WvA0qBPMa72y2q7hSZI4P2jUCdBHyFqFFldCyNSx3WOVUuj1eun+sslsMcUW10w50vF13/jZ9eU880XcWXVW/PR/ca+5zLm1GWlq9HgI6Z7oCuSDjwjpGCtVHFgns72kjaaV0/xwUDU5cl1b8z/TtdRujznB12JJW9tdLpm2gNIC0cfNVbfH5RbrmpiaAtK0GpdZg11lFlmA7H7FcYx2EObug8RlgbPaqdtmb6vC1QdbqJjXx3xWTEu9z8TeXJtu1un6mFC37f6U5wd23admv6vOqRKr9vNh1yWEQOJaCpCUW2lNq5yLsmA9VceNi+y7yfW8+lr4s2PRH6u8O3hxO4Y/D8fZr+4qC2fWkur4MANHsLgKi2sURf22ov9+LVrWYJbZZElIlReNf0Fh5gMwITa0uBJC1gR6stbr9XKTwbX0Qc0kO5HJ73eJF3uCoFRxCgGnoB9hrOxxticpemJdFE3ZLCfvrlddbhlZd77y4+riEvRN7jk90bUt1Ho8yq6zies6rKZVBygOdmVbioGhO3+r1XKeU0RRH3XdvmuN1ypFY5N5T3jeBqt9v6wW5ljV9SpYiwRBf7lIlPiniVqrf08JcUHhSgiZOrZYtf+wju1r75TJCFfHftNikxGqlpWmaLZaJlybjJUtrFxrWrUwqyrHtgCZ2O5sRZZT2+LkCpRVVrYvtnAts6KV1aPPs3ONusqrEv52Xat97xd5HtjrffUxRf1rcu1Wu+/ToOwdl7Hseo5FkXfFesccq6GXh//5k8pNPCl0H+t81Fmrf08JcUFXYULI2CgSLnlX4Dhzjnlu1gWx6I+zXyAms45Stz2Xy2ySFVH2sWY/E0eQDdc8SFS0JbUwlvTFrkfnb8yIPsOlOBWUiHNi0Fe46mtji8iia232UZ8rhEAURc7IpUXlaMw8rSb2GNque0V/31pJkrrcxoMy48HHAqkkAiEBSEgF9BBBCIX5+Xn0eh10u13IVhtQOn9t2HdRVj1EUYR2O0Qv6iIIBOJoOK6tVgtJkiAMgJVuB1HSTyPUlgLLahicSUJBJX13wLDXzlmRulIhwMDdetA9p5un5bLd76P/n1B7jbc53vY9UGYdN92/7fvBx5V2eMzwuRuK5vLgOGbfbddml+V40MUV58kAACAASURBVHOP0cn3UVP20cH1vDWdg9njXeW2qo9RSkEE5e/K9L6Bv8t23bXI5jvITDNWjmsd9HCpxbD+8rHI3iN+9bjdh8uvXfba1ltfXiWkE0cfi97NdSyzZR8gm6EACASyBXc+ZLLRoaswIWRV0X/4tPsg4LZAVZUxTeqsVSqbrLjWbdXpSzphqHAhrNynsttsl0PfSaaZG9d3cumauOvrX8dKUGVB0hGQffqhxZOewHXNsgfr4ZSQEKq/hjRJEkgkSBTQFRGkkOh1lhFFUV9gdjqQIkQ7DBFFXSilsIQ5tNptnFhaRhi2gAQQiQ7MFGC5E0OIEMsREMcCYRigFyv0YoHtYYDlUx0IGaALhaC1gLm5eSwHxwaTSWNc4gCxUP0PI2Lw0SJxC0ZtLU+vW43Hqug6AvngSq6IyK721CX73uB3a5OySK1rwcJmfqT0Tb1UVY5vf5sISp8PA/myV49ZvvaEjAKFK5kanVe/oXBfePXLEDz7aQCA+DNfQfTevyo8du6P35L+3L3296HufdB5XPCspyJ81b8DACT3PIDeb/xBYZmtX/+/IM/bBwCI3vNRxJ+90XmcOHcv2tf+bPo7+5TvU38SkUC+4zfTyVX8pj+EOHgoc0xa/1WXQ77yh/rb73kQyXVvN1uXbesbfwri3L39Y99/A9Q/f9V5rDiwB/KNr09/j6/5r1CDL7828uUvgbrqyf0yP/dV4IMfy3dcC8G3XZv+ot7yTuC+Q/ljAeCZl0O+8iUA+tcJb3mnWQwABb2SVbzhdWmf8Cd/O+iTY9Jxzh6I/zzsk3r9tZnGJabF9cdfAvG9V/StWp+9EeoDNxhFqv7/hO7Tr6fnJde9I9ungeAVEFDPvAzqx1/UnxDd+yBw/bsK5nwC4o3XAPvO7BfxJzdAfP7rABSEkMgEYjlnT/9Yzet/0ywm0wy8/EXAVZf3N/zzVxEMrlNmmqh/edt/HW57yzuBex/sF6eFvN535VOgXv5iCAXEdz+A1m+9O/PRQAGYQ/8jRPLLr8LhJMKNN96Ip377IQRf+SaOHT+GhYUFLGzahFZ7DsvLy2hfsB873vJL6Ha76Jw8je1veheWOivodDo4deo09uzbjxaATmcZ37x4Dy796dfgPR/+AM68+zu49I7vYLnTxZlnnY2k1YYUgzQ6QiD4gzcCACIVQvz3t0M9cChtpTJNrldeBvHyF/cF6z0PoHf9O51jCgD4T8N7T/3JDcDnv5YZSyVEf6wO7IF84zXD5/anh9dJoB9AKP02Yl0nfPBj6YCr4Un9+/8P/8uwuuveARzMPk8Kg8vxzKcAr3hhf+N9h6Cuf3dBhwD5xmsy74h40CdbTohz90C+8afS3+PX/TqKEK94EeSzrgAAJJ+9CepPsu8IZZQevvPaYZlvejtU5nnKniPf9RuFdVYhpUQURaUf2mZZvJiC08fC6FNOnXM0vmPUZD3pao7/LF97QkaBwpVMhTIxRNYOprtf39bTn7D2/1ibwnCY3qN/XqERMWWSX6oH07jcdr3F31XNsGKm/18eYEa3oL9cbTg+qYA0LKwqN712lymlzIiATB3oCy1luuqKYYuz52TX2Q6vY75sAQE5+BChhLC6PewPhJVbsF/B4OeKMTaKcTbDRDl+1JYXYyKrkiR10R7ehIZbcCyBKIFULXQ7PRy87z50ex20WyGOHz+BHdu2YueOnejc+wB2PuYxeMI5F2HxUAeLu87E7jPOgAAQJzGiTge79pyN03NtnHjwIB548H48/qKL0V1ZAqDQCiTm2yHu/Lfb8ejxo9i1Yzt2PmkPVo4fxlXPeSa2nXUf5o9+CQp9l+ql08s4/sgRSCFx5MgRvPvlr8LWrVvxQz/2o3hKZwVh0k/HKfS1UICQfaGpPR76D6cxgNaYCeuZ07+K9P+K72/7JPsoLbj77cmWrxus89cKLZAxuEZieCOkTdeutdnKy9uXlutqt9mF4ZPXZLov9HNkfppS5U+zvOrywneeay28jZkbWJ9TFcxsuGygmIzoVdltdvvsteuuY8vaYtfZFHs5A+D2KqkS9EOX9vy+zNKQNHhYfqxHFYy+QlxU5HMuy2Nt1+eq3+V+PErf+h4ydBUmo8M1rmQqRO/5KACk1kKyNtETYjOCqjmB8nWhEp55FlRBPge9RjYzcatYF1raLpGkfUsnfkXliaybpJQyXeNa1MbUVbYiX2k6YVDutWu6bZmJrcymkLHPT104rXW8dloTn+i9Zlocvc1spznhMcuucuvNCHLHxK0qsFFVH5RS6Ha7SJIE7XYb7dZmrJxewj98/O+xdPxRJN0evnTT17BlyyKi3gpeffXLsWXrAlqBRLK1jW1bd+HRE6fR6wocOnQYP/bDr8D1178ZT33aZVhYnAMQ4fSShJRAey5Eu93uex2EAu12G2EYIo5jdLtdHH90GZ/5+xvwkhdchcXFRXTbOxCv9BCE/VQ+UbeDQAiEocTiYoATJ06kffjyl7+M7XNt3PvAYdz7wEO47GlX4unPuBLzW4fBWlxiJp2EWpNde2JrXkM7h2qv18vUof8riz5sX297ratrch3HMcIwzLmQKhWn98dQqGTXzdr9N9tj9rmc+i7+Zj0+7bHbZOMjXF3YwcwK6/Yssuw1ra9Trmz9wahizM0++ltcXQ3Klt13zXcLV3cQuOw7tf9vNieznWKnTLgWX1c/IegaD6fIdwhXs+yiZ9C3vXWFa/Fxg49LSiII8lHHCam7xpXClRCSwZz0mJa4OI7TP9iuCZp9blHZ/T/K+X3COg4AVGEwB0dwJmeFroocVj+Vn5QAWSFli4BMkZ5/5F3vW3MCZx7nyknqsmroPK6moJQizJXtvCYiyVxD8/oVWStcuOqxJ6YukWRjb0uSJDM5zo5Rf/20UApC9dPzJgJY6sVozy1ifi5Ad/kUomQeiQwRdRIsHzuKD73nnUiWj0OGLTzm4sfhoidcinDTAqKuwsLCAh49dRJbtm5F0G712xxHaLUVTp8+jVBuw3cePo4///P34AXP/wGcccZZCEOJVhs4sZTgwJ5dWFk6DhWEWJFt7N4kcPT4CZw8tYK9+w8gimJsTyLcffBBnPe4x6MbJ/jcZ/8RV1zxFLTnQiwtncKxoydx5hn7EIbz2LplE+657y6ctedMnF7uQYoWOt1lbFmMcP/dt+PQfYdx4ugytu8+D4no4t/9yEvw6NIphO0FIAxw6tQpbN22Gb2VZQgJCISpuCm7P5VSEGGQ5qg1r3MZZc9IFXawHvt62/XY7x7fNmYp9gCoU07Ze6/sXahz2eqPOq73SN02+NRdxijX0BdXsK48zad7el13/h3W/zf7HkpyVlqzOcNjh38D8vuq0cJXvwuLIpHb24QQztyuTS2hrve07/Uuuz993g3p3zVQwJIhdYUr7faEkAxSytTaEkURut0uut1uRhg1RVty1hsu1y5TtLn2uyZseiJnTrz09XBFAjbrMSeCddqt69V1mJMTl/A02+NbdpO2AUjvQef4yRYSJREriTgR6CZA0lUIVQvJShdYWsYtX/oSPvGX78OLn/V0nL9nB97wq7+ELVu24AUvfBle+NIfxtOufBZ2nLkHC1t3oN1u45d+6Zcywk738+TJ0wAkVlaWsPuMHbj6J1+Lh48cx7/e8W2s9CIoGWLX9h2QMsDJRzv42Mc+gc5yF/fd+x1INY+Fub6F9yMf+UvcettXcc+9t6HbO41udxn33nsQp072IMU8Hj2xhDPO3IWwJaBUD1/+8pfxnve8J23Lgw8+iHvuvA/Hjy3jvPMfh8dceAnOv+BiXPLkSzA/H+J97/lj3P7NWxB0uohPLWOTDNFbWkEMhQjD6+i6N82PM+ZHKtc1mQT2B7M6lqDVpvZzd8+DwL2H0mc93V7Sb+JP0Tt3NSlrT9GHj6IPTOOsm5C1xvqbQZKZJLnngX6QGjLTaJfK5eXlXK7VcUDhWo6eAOu0Mdri5VNOE3Fouuj6Clff/owqXJXqR6tttVoQiYJIFOTAsioVoFQAKdsI5BykaAMqRChC/Nstt+JZ330lfufN16Fz/AS2COB7Ln08fvonfhyvf92rcdVznotgcTvO2H8Bjp/uQLbnoYRI+37XXXchiiJIKdHpdJAkCebnNiPqAQuLc2i1ge8cOYLX/Mw1OPzwI3jVa16Lk6eX0UIPy6eWceihR/Bnf/qXuPf2u3D1y1+DQM6hFbRx/Ngx3Py1m7B3/07s238mlpYeBQC89KUvxcKmbThxfAmbNi2i2+2n0oGIsbS0hKuvvhq33XYbAODEiRO47rrrEQYLWOkE2L5rL/afeyHmF+bwlKc+BVdcfhlu++Y38Ncf+hDe90d/jG9945tYevQkZNK3StupkOz/dBTwTCTigus6bjaScI2vewfi696Rey4oMMbDehGuSqmxfDCetbEgZBToKkymgg7OZEbPJdPHfN51xF/trmb/gdRuPUUunXrCZefr9CPJle9yFYYI8tsG5wPWH/rBfnMdk85nmmHgHptxj1LuvKZl7q3m8VVrMF2Yrlrawm0e61r/Z4vBJElS1+eMW7ORx9Uc49RVa3BuEA7HIY7jzH69TWOurzXbU7SWTJflk/vV7K+uI+MKFw1dhrUFFjJAICROnXgUX/zC/8bS0hIWJfDZz38Jdx+8Hz/3M9fgwgPnQIYhMIho3EkEVDiPMGyj0+lgZWUJ7XYbQTuEjPr1Hzl2FNu2b8fCls24++67cdaunQiDOczPz+PRk0fw0MMPoBVsxe///tsQRwqXPvFxeOnLXoyDd9yGbiIgWwtQSuAx55+HO267Fdt2bMe2bVsRzoXYvHURH3j7W/H9L3op9l3wOEDO40tf/CI+/7mb8NnPfRof+vAHcfjwg9i2bQegBA7edx8uetyFePDwA7jgwscBKgCiGDfeeCMuvfQJ+OpXv47du3fjiU+6FFJECGSCJIqwcrqHTq+LL37ly7jttm9hZWUJP/KjP4xzL7oY27dvRxAE6PV6mWA+9jWMkXUntF0b02tTIdhM90fbTbGMupamIjddu76si2VeMBSJiKI6M4HIPFwolVKIr/kNAP0IxD4fheqOhasP5s+Zd2SFq6j5jqszX8yOc5PxHc90LzsGeddcdzOy7e33vdxF2Oyve6yarA8d7Het8ihoQ1WgwbJnuej4uu2tIpBztc8h6xeucSUzCYXrbGAKJC1U9Borl3DzEa76d98JaZ+8cFWutUMNhGumjZ7CNYmz6+bsiR2QFWNmn4Fy4Vo0Jub2Xq+X+d0MjOMrXM3tpnDNBOexhCtEYgQaCbw/RJj3TNGkt0isFo2HHl+X9WpOZcX0kSNH8MhDh/FPn/oUkCi84AUvwMrpJdzzb9/EuRc+AWcduBC9RGHp9EksxW3MywRzoUR7bh633X0Qpx55GE996uXo9jqYa4U4/ND92Lf3fEgpsdLtAELgfR/4E1x22WV40iWXYq690G8jTqPTPYWH7n0EmzZtwef/+Qt4wfc9F1u2bsLnPv23OGPfBbjmZ34Zr7761XjG5ZdBYAXHTpzAWXv24N6DD+AZz/ge3HvLLfjijV/DTbfchje95TpIkUAlIR5++DDOOns3Wq05SDGH97/vz/CpT92AP3z7H2DLts0IWptw6uQy5kKBzkoXrbl5tNshekmMxdZWfPuef8XeA3vQnpsDZAtSdSFjhSMPHcbyyUfx+c9+Fudf/mQ8/elPx+LiovNDhTnuMYb3d1nO0NUUrvZ6QBf6XnUdN2vCtaiMuvM0Vx+K2raRhKvZ/OE7ziXypitcq65TlXC1192WPWMUrmTWqCtcmQ6HkHWOOSFaWVlx7nd9oS0TLrKfiDGdCQign+uz6Fhkg08oNdiaACrR1tV8m6EMy6NVKgZ1anJWCmfLAZXodsp0IiMDhSSJIUQ/IuWwJypNLyKDfqlSikEk5WEdug+29UT3xZwY6kmNKY61UDUnwK6JrP2hwNyWmYRKfT3VoN0KKhlOslORCAmpg4Ykg6miqHYt0+UEEJCi4Au/cX4sYoSyBakkEAeQSiBRy5CtFfSSHgS2QgYdnEoUwrANGUuoXoD5cBPiWGH5xCP4vd+7Dmft2ovtm9s466x5fO3fHsbznvcyHD+xhG279+CBo1/DU577XBw9chxRvIQQc4iXe3jvu9+NV77yFYjnQgRBgD/9o7fjCRc/Hs+88rvR63ax0olw7vmPw8kjxxDMLeDRrsTmzQv42F/dgCdccB7uffgQztq5G0snT2H3ju3onFT4H7/9/+LXfv2/4Fnf/3ycWl7B4vxmnPPYp2FlZQUfeP8HMDc317/OAjjzbIWTx47jMedcjG4kcN4Tr0K0cBae/N3PxkMPPogzd2/FHXd8G/vOORcPHTqMTYubsWPnLnzkrz+I1776JzHfXoBMWlh59DSSbhef/PSNeNrTrsCWbW0ImSCAwE03fRp79+6H7CUIZILTp49jYdMWdKIOvvmtO3DppZfiCZc/A52lCLd86Racf8F+7Ny1Be05IE5CJFIA7TaUAlpKoJUI9CAAodCSAogShEELUdLL3ItCCMSZ53r4r/0hqNCa7gxdm5/4p8G+Mx9ERLoet9XSAV+yUb+FyG4TjvdMlVgssub22+UWAMOy7XdUP/iPwPA5D4Igk5O1qUHBDrxV1IcEw3eugupHqC2o0i6rUmTVPG7wW76NjqB0TSh7fyqF3Hu5/58tBJPK/gzLBhLH34OC1mXKLBKcrkckcQhl873t+ltU3R6jZTXvwaoPIHbZTQQvIQDXuBKyLtF/dJIkQbfbRa/XQ7fbXbW2lP0RNK09vn9UV5MqNyz9XxAEGUsPgNzkQm/T546jXXqi4hpzW1Q0xYzC6ROsJ5R9i10vjhGJGF2ZYBmL6IjNUOF2xGoLlpdbaB9tQx3u4e4bv4Ej//YN/MvnPop3/s5/xKFDh3DhRRfjkidegYu/66m45Ior8azvfR5arXk89NB3cPdd9+HAOedjuSuwuHkHIObQjSL8zu++FR/56F/g4e8cxtatW6BUjOv/25vwgh94KU6dinDzzf+Kn77mF/CXf/Y3+MpXbsInP/lJXPOan8Q3/+VmvO9978PFF1+Mc848E/PtELt27cKb3nw9RLgJP/2zr8eOnVsRtgSSpIdTp07grDPPxDe/8Q1s3bIFy0tLCIMAWxY349ChQ/jgBz+IzZs340N//heIky6uv/7NOHbsCHbu3IWbbroZ5557PjYv9F2MzzrzbHS7Xbz//R/AVVddhVarlY7xzTffjDe84Q34whe+gOPHj6PX6wvJpz3tGdiyZQuWl5dx9933Ym5uHq1WC3Ec495770Wn08Ell1yCCy+8AGeccQZuueVW/Ma1b8EfvfsDUN0EIgKSqJ8YNlEKseh/8JBSopcoREmcEa36upetg6167utSdk+Xicey+3xcbXSNhavsoUdE/vxZf+9pJnFtXUz770FVv5r02/UBoUzYa/Hn82zZ2wjZKATXXnvtarfBmyRJrl3tNpBmxH/9KQBA+LLnrXJL1j/awmFGBh33H//C0lw7HJbBzCnpBMU10ax2exoHQhRbOe16zLy1KSpr9bStSrps+1+zrqbuk6lxWmXzb+aOVyJ1+Sy1YFTk2DX7Jz3HXyQDsSv7loJEJFBYwNEjD2Pl1Gk8dNd3cP+378TyQ4/gH/72BuzauoCjD92D2275Ci77rotxznlPws7dO7G4bT9uvu0OHD21BPQEduw4E//0T/+M00unsG/fAchwC2Q4hzgBAIXLL38KXvTCH8RK5xTuuecuHDiwD2EoEAdtLK8s4bOf+TQO338QT378E/CN227D5z73eezftxd33fFveM6zvxebFhbxqb/7OLZv34luJ8LRR5fRiWOcu+8MJCrGwqZ5LJ08iQ9/+EP4yJ//JXbv2IkzduzEJz7+d5gPW7j11ltx4thxnHveeQjDELt37cLP/NxP4dt33oHvveqZ2Hf2Phx5+CjOPbAfH//Y32Pf3n146OGHsXXLdjx64lG86x3vwp49exEGLdx557exY/tO7N59Js4++ywcOGcfNi8uIBnkyJ1rb8LXvnYzFhc3912eVzrYtDCPiy56LLZs2YLFxQXMb9qExc2LOOvsvdi791ycPBnh/3jJC3HugfPwxEufmFqalMAgzdDA92CQb0gY37rT+0AMf9f/1nNddG51bHOt2xxGf7aPM9tYhO+zV2ZxLfp9WHZ+zJIbPgMAkD/07FqWqip835XKsc23dl830Sb9yV7b8QvXquvosnpWWa99ttnve33PFllCy/qetqPi/jPLsbfVsXj6Pht1yhWiOKc32XhIKX+jzvF0FSZkHaDFqp4A2V9rzeix7vx2fmtbm2BPAlyisN+m/LmFrlMFAtOHItcxs21FwnOY5y+71hTGH2+7Djv3rTlZ8cGeWNlW02SQz9ReZ5fut9asmveHK08t4M7Ra06C7AmXa0yFGLpxtsMWet0eZAAszs/j2LFjwKkjePT+23Hy+DG0eltx/PDdUOefgdPBI1gKDmDhjH144VOfiVbYRrfbQyIkTp9axq/86hvwqp/893jO058BIRV++EdeCgB4x7vejjPOPIAo7uH7nvdcdFZO4eMf+1v8/M//LKK4248OPN/GrbfeAjHfwqWPfwKe/eyn4FOf+DB60RG84idehaNHHsGWxTlEURcH77sPe/edg9tuuwOHDh/BVc96Dj5+w9/g1PIK/sOPvBhRt4tz9u3HgfPOxfe98EW4ff9tOP/883HHHXdg165duP/++/GMZzwDd951F46dOA4hBG760pcRdXt433vfi7vuuBP/8IlP4rLvehKkkrjye56JBx98EPsPnIv/9bu/h6WlJRw6dAi/+Ztvxtve9jZ8+tOfwXOe8xxIIbDnrLOhkgRRtwchFbqdCL1ejO3bd+CBBx7AK17+Srz//e/HwuI5mJ+fx9133425uRbO3rsHSgls27od+w+cizPO3IfzLngcVBLgxs9/GXOb2rjokovQmmtDRT2ErQWIRAChQHsOWDoVod1uF94X+h6UUiKOY4RhCKWUc42sUv119kFQLE7M7VXul8P73rWtuPyyd6EvvuLGhfkMNQnyZlK21jazbdA01zp6+xx9/cqOtd8zdtn2O8x1vr0ve+3L1/vb7XUJT/scc2mGvc/uo8+HheE7Mb/PfEfqd24URQiC7PW22146VgX1546zxjTzt6OkX67zXfeX65pVuXmX5ZImpAoKV0LWGKYgcAUM0sfQfciNT0AXGx3gxbRmmmtVdTAk+4NB0z/MVW0sy+nqSnkCuC0qOmqwTztN0W5OauzJjx4Dnc5nYWEBKytdzLfa+IePfwwPHbwPRw4dwr7HXoxLnng+5rZswr49F2DzvgUsn96MR4/disc85qkQrQQHH7of+/bvx7FjJ7Cychz/3+++D2/4hZ/DxY/fjy1bNkFhBd/81lfx9KddiVe+8ifQFsDhw4dx5NBBnL17D7a1NuO2W+/Ejp3bcPbZZ+H0qWWcd+5F+KO3vwfh8jzO2HEOfvHn34hvfOMb2HP/Yfz1R/8CB87ehbPOOhPnX/x4fP3mW3DfA4/iFa/8Kdx26834g//527j/3nvQlXOIllaw/6w9OHj4EJ5+1ZW47LIr8Na3vhVXXHEF9gQHcPXVV+N1P/YKfOvO23H7PXdhPmjhP/3HX8Vznv8iHD16BN/3/O/H6695DXZsncORRx7GjTd9DRdccAGuv/638du/8z+wf/9+HHv0BD7xiU/g61//F5w+vYwgaOHYI0fwj5/4JIJQ4epXvQJbt27G6eUOOp0u5tqb8Lc3fBzf/d1XYuvWrXjta1+LX/zFX8BjH/tYCKEQxQqbNs3jq1//Kg4cOBef/+Jncd3v/S/s27kLf/WnH8S3/uVreMEPPB+d3goOH7wHO3fux8WXPglnH9iN8y86G/Pzu9HpdLL3J7IiQf+no0CPC9M9fZw0fWZHWYMZvPGnoFQ+zcmkPGRWA/P9OK0UaGth3Mz83K7rbXsrTApf62iTa7ceU96R2YGuwmQqyCc/DsGznwaxfetqN2XmKfrKqkWITmPhOq/KUuoj1HKuRYNAIuZ/RdYB85hAyhKX4mRQsELfwgeoRPR9FJWASgZugLK/r98klZ4jBNJ/XfvT4yTQD6yBdNv/z957R0eW3fedn5crFyqiqpBzo/NM9yTOcIZRokxTK4riUj4ry6Yo6Zz1kWTZq7VoSUdLLVe2j7SyolfJFL1aUqJMSwxDDieSnNSTQ+eMRo4FFCqnF/aPQgFVhVcAumc4HHHw7YPTwHs3/O597917v7/f7/6uRc2qCLX77eZuAakmByKSJCMgbv6AgGnUAq3YuQIKgoAgNshKrV5RFAALURJqcghbMghCTVZRrAUDsaj9NMouisJWGzb7r/m5tVdabDV0M5COZNYstkItwrAgWEgb4bRqj8YCs+YSbFoqUEWigmSCaEoYooEkKFRKei3Ik1HBIytIuoFULvGFP/tTzr/4HN/52tdJLS7Rl+hmYTHJvQ+8n57hcULRLgoVAyQNX0cPSysreDqchKMeNIeIx+lBk5xoZomZGzP804/9OH2jo1iKm5EDx5AsGbfk4Cv/40GGBw5QrsDU9Cynz51m/PBRZhdXOHT/PaiKSHJ2mm8/9E0e+do3OXHv/Vy8eIF4opPJyau89uoL/OF/+WP8fheaKlLKZimnspx+9nmS6Rl+57c/w1BfD3o+TSWX4j9+9j8R7wwQDnt58ttPIFR0iqUKVy9dQa/ozE7P8qv/+6+Sr+ZI9HZx6PAR7rn3Xl48fZov/vXnKJVyvPe9D9AZi3Hk2HE6EkGm5+dwOt189CMf4f/93B/z9b//AqWCxZNPPYXLrfE//ej76E24KFQ1BMtE10vcffIIr7/6EjMzKwR8HVQLRaIhD8cO9eBwBggEA/zVf/sr7rv/3fgDfkRRRRQF3E4XC3OzjAz2ra3jaAAAIABJREFU87Ef+wlyuSIf/8mfBs3BPQ/cz8DYCMfvewAUkXCHl9MvvMSX/uvf4BIteuNRNElAtHSq5QKGIm8OElW9iqxIqGUJU7DQBRNLMJCpgll7s0RBoFIuoykqkihiCS0KFqH2TW1/j4XN763+Q8O3XP+pBUNqTddu3BM304qihChKNAbm2S1aeKtFsfVa7fqWbPWxQOjwIAb9TeN6o0XuZmBnebSzGjaVK7Atz07Bmew8cuxcUGErOnjr9daKajK2H39bZW/X3+3my90syfX/d7PS1klmO0+d7Xka5bFsfkAUt4hr6ztg9w61Xoftc7IAiIKIsPEPy9qq0s5KbjOv203Ygl0TGtK1887ZEYKxMTdu1ryPdzBu1lV4n7ju4y2B0OHbJ617ROO5inV3nrqF1W5/ZbsJ981CuxJ3q2vH+3b7KC2bdrXZb7nXdrZaCPdSzubiwLLPa7fQsS3PRvZGeXZyA9vp2s20pek+2624tXetTr43FvxtyrYQQDCwkDBRMAUZRAtFVKlWqyiCgVEtszA9yR//0R8xcWOKd9//Hg4fvQ3LsogmYiRTKUZGx+gbGERSNXSjQlUvs7a2zre+9Rif/cxneOrJ73LXnbfjdruplHTKpTLZ9Qya08Mjjz7O6PAwy0sLvP7qGVIri6wsLXHk6FHOX7jIL/7CL3DixDGee/ZZjh45QjqVJtHTw5Vz53AoMk8/9Qz/6pf+Nf5gkEq5zGuvvUo8FqcrEWN2ZoFf+/SneeD++7hw/jxjY4dIZbP8yId+hESim/6BfmZmZzh45BiK6uTHPvqjSLJE/8AQKyuruDxu/vuf/jm/KPvxnLlE4bkXGf/pn8Tn9XHo4GE++TM/y2d+67M8+9RTfOzHP8YzTz9DJpPlj/7wj3D5fLhdPnzuDg4fPMhtx4/hcjq44+67+eLf/C0/8fGfYKC/j0wqxdJKmpMnbuPo0cNoigNDN5mZXyART/CpT/4Mt99+nOHhfq5en+Xf/cqv8Jv/x2/SGevE7XFRLFYwDJ2lxUU6o1GwTI7fdjv33Xc/165e55FHH0EQTQ4eOoDb5SESjnJjeoof/pEPUbUMLl65ynJyjd/9nd9DUxwookKH14egG6iiVFNwGAaSUNvHbAp15Y6EYG0t9iVJ4tq1a3g8HkzL3Dbm7bSYbVba2bkCbyct7T8Nuxs37+57K+nsxoCdyNabIcMmQbYbZ26inr26me5Wzl5xs31yK334RufR3fLUyXf9Xa8fR7XT+L4bqd6zDHt93nbEdZd0e5mz7EVqnHf28U7GzRLX/XNc97GPtyHqRLX+fTaes9q6v7BRY/tm7k2tw5Zj7qGudu6stUJtLMZm84QtimJTut00uu2IYOsCazfN+aZLomG/t6m1r+3ytrax9bm1cxOz24NsJ/terzX1RcOZto3ue3V34XoEZJHtctfaWivfEEQsJLBELKuIKigU1te5fvkM3/za3/O+972f4ZExnN4AuiGztp7G0nMEg8Fa+bLK4uIibk/Hhhtxid/93d9jdGScL/3tF/jrP/hDxP/6JVwuN6nUGoqi4nZ7WF5c4saNGxyIxohqTuYXFumMRtCrVdYzGapVg0I+z9DwIAsL8/T09LK0uIzH60VIrqFWylgWqKqKIAqUS2VUVUWSJCqVCoZhbETwNVAUlXw+j2VZOBwO9GoVVdM2F566rmNZ5sYeTam2r82y0Co6ltuJqetQqmC6HEiSRCaTQRBFNFVDliXS6Qxut2uz/0vlMh63h0Ihj8/ro1KtbOwPNSlWqziHBzlz7iw+jwen24UkSRSLRWKdMXLZHEsry0TCYVZX11hTBPrGBonGenl9eoLs//IRQqEQA0P96IaIw6Hy1Hef5H3vfQ+XL56nUKkyODBC/ZAB0yoTDgepVqsYlo6syRTLJSRVQs9VcTtdzNyY5MqlyyzMzVHJpwiEQ7zn/e+ju78PUZERVRFDABMZSxAQBRnRbLYqzczMkEgksMTmvYW18WzLotaKxnHPMKqb5w9vfV/bA6S1N2I27/Gu1ddscb0VL5VWeVvTGX/9IFgW4k9/ZDNNXYZ2Ftd2cth9/+3ybNYj2XjL7HHaaBw3bm1P7t7l3ZRtBwvnXhWAu9Wz25hrl98uz25taNyvq+v65j7wnWTf6xzf6P3TlEa0t7hua1c7i+sO6Xa2PreDhSCIiILM/uEm+7jZc1z3ies+3hLo/+0rAMj/8qPfZ0neXmgc9Ov7gRotCnslJfXrjZPaXvLYldG4gDRNc88Lmt3QOPkK4vZCTaM5LWCbri5nq7w7tXG3AEWt96FG9OqkrrUde2uwabu/q3EP6p6KaXgWjdhpEdO60KlZkBv25G60QVEU0uk0sixvEgC5ZR1RzyMiIMsOKtUqqiaTTCZxu1S++uWvcGj0AB6njMetISgOREHG5QsyMTmHrDoI+DROnTrFh//Jh1hbW+O3P/tZPvXuDzL0wkXEhVUsw0BeSmJVKgjFEhVNRRBFFEXGNLcCmZTLFWSng4zHib8jQKlUJLW2hsvtrv1dLGKaBg6no9YvlsiVK5eJdiUwokHiiS4Wk0m8XhcPfeMh3vu+94JpUiqW8Xo7ECWBV197hZN3nAREHnnkUe658y6cLo1cIUtnrAsLWF1cAsHCsgxcTjemCZevXuboXXeS31jQn3v+eSI+P5VKhY5giGg0yksvvsjw8CgryRVkSaJarTI4OMiFC1eo6hU8HheHDh1iaXERXdfp6YmRnlkkMzWHKIrEop3kCxn8HQFmZmYJh8KsraXI5dOEwxE6NBfichJVURCrOpZpIigKZtDPfDFH4Mgh5GAHXx+KcOL221AkgUvXrnLkyDHS6wUsyyIY7ECSa8REc6pYMiALCJJIajFFsVCgv6sHTAtMk6WZq7z88sukMxnmFua5+953MTQ+xMDAAJrmplI1kB2uzXeyMTCLrusg2X1TW0GeGt/D7e+23RfTnKdWRrt9sWJTutpYoG/W04p2481eF+/1/PrPfQYA+S8/YyvVbt+0HW5mvN8rQbErezfsRKRr9+3PDG/Mu9d6dhr/bkU2O+xVtltpw83UvdM8t6WgFe0VxjbEVcRGqWvXLQ0Kp7py0zadjdyNaG6DSc27R0IU90PtvNOxT1z38bZE+ZO/BoD2+f/wfZbk+4/WBUjdutpIquq4WW36G7W42hHXxp2qb6Ts3Yhro8V1M88uxLV1MWxXJ2wPwGJZFrIs2xLTzbxvkLhatC/7ZnArxLWer94vpmmCJW6z6Gqak9OnT/Ptb3+bT33qUyiKgiyaTYqUurVf103y6znmb1wlvTZPR4eTclWgUrYYGTuMqmn81ef/kp/8559EVR2Ypkkuk0ezwDU5h/EXf4urXEWYX0ao6iDLmA6VNUXGEwmD34MZcDG3tEKou5dz584jyyIjI8O8/vKrnLjjJJlcnlKpgtvt4ca1y4yODmNZJprLg25ZJBeWUBSJYimPJCqYJsS6oojA2moSn6+DTLZIoidGNpPF7fKQz+UxdAPN42U1uYIkCeSytXtnT5/DkuD4bQfpCPhIp3J4vQHKxQJXr16io8NPT08fC/NLDA4NUC6XMAwTw9AJh8OkVpeZnJzk6LFjVHSDbCaL1+vHskzK5QrlcgmPx8Orr5zj2LEjOJwKuVwGt9vH6uoa58+9jqw4KJYr9HR1kVlPUSoV6e3tI5aIk8nmCAZDGEaJxYVluuJdpFIpioUcPd19TF+8CKZBFzJu3UBKZRHW05iKgh4JYLicGF1hzFCI35i7jiypfPrf/ztMs8LMzAxDI0NUqjVrq+rQUAWJYqUWnElVVQCq1TKiBUalyuryCrMzMzz3/FOMD4/y2KMP88v/279l9Mgh0Dy276hu6W2J627WJ8Fmj/etENd6/lrZ7QOW3QxxbReB9c0mrrdE+n7Aietu+F4Q1+8F3i7EtVGWtuls5G6EHXGtzUly2zz7eGfgZonrvqpjH/t4i9EYEbg+kO90jEEr9jqR3pzrTnu8VVEOb8VCXO/DegRbu/v1shvJWM0ldOvooNZjYd4M1BdWrXJJkoSu629J5MVGYo+1tTivQ9dNenv7+eEf/hEkSUGWVTBLm3mKxSKFQoFisUg2m0fSBc688hKxkMbkwip33fsB/MEu1vNVLFHCEjUmv/0Ch589jTC7iHNmHqVqYPk8WB4Xi4KB7/ZxDKeK1OFDkFTWZpd46fo1etwyaqbMpckJZp9+jpGRUU7eew+zczN4XA7mZ+cwEAmGozz51NOM9HUhWJDLF3D7fKiyRqlUIhSO4/G6kWWFyRvTrK2vklxcJBwKYVQreNxOisUimUwav9/P8vIygY4gjz7+GF2JOH093WTSaZ757jP09fZzfeEG77r/JD6fh1w6j8flZHLiOhcvXeKDH/wALreb0QNjZDPrm9+1x+Mlny/Q2RnG4VR55ZWXGRkdxeNxUamWSK6s0N3dzTcfepD73/1uDh0cxzSqnDt/kf6+XirVMmAxPn6IckXHsCzW11Y5fPggToeb1bVVstksnbEYyyvL5HPrLC8lSa2lGBocQpFFlpZXuLG6Qk9vD3pXF7O5LN7jB8mvruKTZEoTU4iLS4TnlxByRX4vHMAIBRF//3MYkSCun/045UoJl8PJ6uoqTmcFLeABs8KViRscPHYEQRTJVcGpqGiqkw5dIBHr4eTxY1w8fYbjYwd54emneew7D/Pzv/xrTUF26t/CTvqdvVgwd7p/M99Ja3lvFG9VhGC7uePNjrz8jw17sUp/r+r8QSRge/FquhX8YzKc7ePtg/3gTPt4S2B87QkA5B97//dZkrcGjYuzVjfgZjJlQD2q7kb023Zj+W5Ep3XCbLScNl7b1Hxa2EQmrAkgCgKWuXHQhSiAUP8BC6tNCJ+9oSYD1CMI13/qUXgbowU3RhrGEhAQMU0LUZBqEX6FjSi/lgA2YTEFpM0owPX09WiGdlrspj607PebNcppWrXoiI0q6E1lhLAVlbguoyCIWBab/9fbVO99ywJRkLa1xc6ibPe8N62kG09IALBqz9EATMvciBhsoYgSFaOEKAr43R6MYoXVhRXmppa4eOYC1y9exioV+M5DX8ctQ2lukpeefYJ4T5zRw8cYv/0udDnC1Pwykc44+svneNfnH6LriecxszlMn5vVSICzikngA/dxQzQJHRhmvVpGc3soVHRcLg9rq2v4vR4W5ueQZI2RoWFEdAb6e5EVmdm5OQ4ePY7T5cbhcDA7PYXX7WJ4ZBCHy42kKKTWM6RSKYKRDhYWZknEY1y4fI3xI8d56BvfwusNIIoqum4STyR48aVX6OnuRtcryLLEajJFLBJAtCzKhRIHx8cJRwMcODTElUsXGOjtJ5VcR0CkXC5RyOZJpdbp7x8kFI4wMXEdAZFkchlVkfC4HcxOTZIr6aiai3QmRyqVZmFxiZ7uBE6nC1V1kV4vsLy0St9QL26Pm1BHBzPTs5w5e45iuczh8XE0TcOpquRyORwON5ZosbK0xNpKktnpGTqjUbKZPB6Ph9HRMU6fOYNhQGdnGK/HQyGf57lTz9Hb0wuWwfUbNwjG42QdCt7DI2QSISrDPYgODTVXQL58HeX0BYSL19DmVygeGkEUJSYnp+nwh5EkiWAwiFkVsUyFq6+dpSsaRBIM0pk1REXDUlz0DA4xcvAgxWKBvliChZl55qemiceiiLKIKVogCxi6DljIoogoUNuJbQkbUVK3Ynm3WnkEQUBCbPonIGAJDVHDax9A03fZjNZ0OxOe1rG0tcxWYt7OYmw++N1a+h99T7M0VrOsrXXY/W6ncGsdz7Yp5Cxrs7nCRqTnejmt2zB2QmudjXna5725bR57qdvuXqNSuLUvdx37dylzsyUtipPWMupxKt6oQtQ+b+PMXU9Tf34t/dnwrOs5asG3hdZitte7cc+ifbq9yN78/knAlvW1Fm3/B4/w72Nv2I8qvI+3Jd5pxLVxwmpdDDRCFO0WFvYD+JuhyW2atHdJt/WHzf3vwSRj2zybSMPtFwF2ix97n7hGS2s7mObWkT/Ni5btrn/1ehqtH43n9e0EOwJqS8J3ef5Ni1623Mc25anLWH/2AuhlDafiZW5iln/44pfwaQ6Sc2f53J/+Z+46Psa1i68T6XASDfroSPRy8p53MzByDM0VwrAcODUnKxeuEv3TL+H8q7/HHO6n9O7bMUf6ybgcuKJhFKeLbDZDrDPG5UtXqFYNOoJBlubnwbJ4/LEn6B8aoKe/lyeeeIzxg+PoehlZkTFMk6HhIQr5IufPn8XvdTM41IcoGMwvr2OZFl//+teJhEPIgkh3VxxTNykVipTL1doCTS+zsrwEokA0FuOZU8+DJeDz+QiFQqyuJsmk1+nq7aKvv5+llSSra+skEl0sLK7QGY3S2RmjWCqSSMSYn5/F5XbzrnvvoVIpk0qt4XG7uHjxMuPj4wSDASYmbiCJGo9/+3GOHDlCtVrlwIEDqKpKuVxienoWWVaIx+I4HCoLiwt4PG7KpSIejwdZVdE0jdTaGlDzKFAVlVQqRalYxKE5iCcSVE2dWHc3qyurnDp1ip6eHlRVYWhokBsTk/T09nLt+nUOHjrE8vIKkWiYdDoLlkClWiEajZBMruENhVgyq0gjAzw2d4N1l0bv4hrS5QmkTJ7kcD8///O/wIc+9AGcLgeyJGKYYFQMvG4nAgLJ5Bp+X5RqWWK9sIpBLcjVwOAQ8e5ellMpcoUCjz/6GKtLKwz39uOWVExAEkQss0amLAsQtrsK27q32nwfhmXYkgV74rq3b6sdAW1F43i/U13tiOte5bFD61zTWs5OFutGmevj1V48Qnbql92Ia+NY+UY9glrnWjtC3Xjdzkq9l/F1p2fb7tpO791e0Z647rkEoKUNNu7DjXizrKF7kb0e3X4f70zsE9d9vC3xg0Zc64N66wS46ZbZkq6O1kHcbr+PKErbrt2UNn0HNOWxmSjq95v2vthYOt7oFGNvDbZJaDW3W5KkzSOBWjX1tfNQtwipIAi2q926smAn60ltMVRP3xwBWBBoWgDVXIK3IpvWF1L1KLWtVpTGfHZyNLaldRHYaLGvB5Np7J9NKwNbstSfZbFYxtJ1jEoVq6pTLpZYXVrg1NNPkFqaxusRcWuQM8rc98D76B0aYfjQUZwdYSJd/cgeL6lsCVHxYAouXnj+NRz/40FG/uSLVC2L77oEYsePomgyxWIRh8NJtapz6tRzXLpwkb7eXpLJVdLpNDMzM5w8cYzr169z+223E43FkGSJaDSC0+ng/PlzeLwe+geGKFeqTFyfIJfLoakyomjh9bq5cGmCQrGIQ1Xp6e4iGOjg1DNPYZoW3T29dCUSnDn9OqMjQ2gODd0w6entJRyJoCgqsiQzNTmJaeocOjTGzNwcwVCIC+cvsbi0zJGjR/F4PPR0d5NMruDzepmanmR1NYkoiUiSSFcizpUrl3E4HVy6dJVAoAO3243X68fj9TE2NoJh6Kyvr1Mul7hy5TJHjxyhUqmSWkuRWl9D1WTGDx6kUi7h83m4PnG9Jmc4gmkYOF1OFFVFEESef/EFxscPoFernD5zmnvuuxdTAL2sMzw8zMMPf4uRkWFWV5cJhzvJ5nJcvz5BX18/oiwRiYSZn1tg/OAhnn7qaXL5LH29AxiGiao50BwagiAyeOQQ2Z4QLklFfOYVvKtp7v3Nf4/f7+bKpYuEQgHKhQpm1eQLX/gCw8PDOJ0eNNXH/FyST//Gv+XOO+6kUCoRCkd5+dXT9A70MTQ8zMjgCFRNHv3mw0xdu8Hw6CiKrIBZ204niTJmw/7FzSjfLZY6URTt3VOEBq+HhvNG7fZD2o4jLePqzZAOO8teqxUWaCKu9XraBeWz+70R7a61G2Na5Wzs591JJ9vytMpr16c7wW78267gFbfJa9eWvT6v3Syl7dLeLG5VAVFHvd32BLt1LVH3HLCVZDPv5vNpuLtTfIg3+h3sJE/zO7ofXfidin3iuo+3JX7QiGvr5NxIEm5mohOE7RPnzQ7gNzuhbP5uQz/rk1Q9IM9Gwu3l3JSEe5XN5mID8azLVD+GYftirPH3uuubTT176F7LspAlZbO+pom4JSBMvZ5GbbwkSZuTctOC1eb9sH9+9u9QozXEMIymwF6NstPwXtb7yypU+I+f/W3+4Hf+b9LJNZZn51mcv4xLE5mavobH52b80DjBRD+Do+OYkgvJ0cHsUoZwbJBsLovPH8YwBdauTqB89vcZuzGP8YF3c7qU5djx4wgIzM3P4Ha7EUWRmZlZCoUisVgnp8+cZmhwAEUV6IyGqJo6nfEYLpeHM6+fQZZlenr7yWSzJOJx+vsGyOQKXLh4GXSD+fl5Tpy4Hb1qoCpqzQIa70RzaITCIRxOJ5oikcnnCHXGWFicR1FFYvEe8oXipsJClkTWUqscOXwIp9OJ2+2iUMwyODREuVRhZXmFtdUkiiLi9boQBAh0dLC4uIjP5ycWi9PV3YPX4yWXy6NIMuFgCIDungSFYh6X14NuWhh6mXA4TCgUxO120dXVRaFQ4Bvf+CaHDh0mmVxhZGSISrVKIZ/D53FjWlaNkDudVCpl9KpBIBAgm88RCoWZnJ7C4XTg8/owDIOrV67y8ksv0tvXS7lcxuVyMTQ0wuT0NKZl4fZ4eOWVlxFFkWqlSv/AAMVCkcmpKe666y6Wl5JMTU/z8KOP4O/ooCsRrwWrUlWIR8HnQTv1Kr61NbQPPUA0EmJ6apJENM5rL7/Gb/2fn+XOu+4ikYihqiqWZREJxfijP/gTjh4+TGe0E3/Aj6qqyLKC0+UmEokyODTM9clJLp45h0NzEggEMQwTUZKxWkiqZVmbQ0GTQsfmM7FsLjaWs9u3Z6fQ2ita87abC6zTlxH8XsQHTjalbVVWNZZXH4eaxuY9yrJbuluxeu5Eim8Vu+VtnHffiIuvXZ1vloXRruybzbOTzO2Ia+1e21J3vLSbouJmsXuerXd8673fJ67vVOyf47qPtyUqn/kTANTP/ML3WZI3B43RZuuTaGOwpTrsBvBm7en2gBqiKG9z+drNInAz2u162WIbi2u9LZvadLs57038EjcXIHuINNxoSdimiW7JbxgGWNsnQ0neHp3Trv8EpG0LpBpx3XK/rVtKaufR1ch1nZy2O/am3ob6O2T7jjRErLEjvvWz/xoVJ/X/LctCtGr5qtUqsizzxBNPkJ1eJhgMoikq/T29VMplCqUMU7Mz3PXu+3nh5dfpHxpBT8+QzuY4duwO0vkK33r428zOzvPLv/rLWLqBurSK4+d+DT3cQe7IGCtrKTSHhiIrmJZJpZzFsiAciVOt6oiihKKpXLtykbNnXuPE8SN43Q6eevkV7rvvATrDcTKpLMmVZfyRTr76D3/PHSdvx9ANjt1+gmeePcWh0ZrrqyAIBDtqZ4wOj/WiqBrZfAGfP8B6Os3q0jxdvf0oDieVcp5cZh1dVwCTSCjEhfNniYSCuPw+pqdmGB4eo1wqEQx4WFtNUSqV0TQN3agQjYZAMMnlyxQKRcLhKGdOn+PgwUPolsHK0hL5XI5oOMLq6ipd3TEMy8Dr81GuVMlmS8zN3KAj0IGmaUxNTnHb7bdRKVURBJGpyRn8HX4KhTSDI6MIlkUpnyOTzRLpjFGuVsll85w5c5b3vve9fPWrX2VocJi5pUX6unuIR6Koqkq+WCCdWSUcCnPjxhSDg8OsJtdQHRqyopBKpZibmwNgbGQIELlw/iInT56gVM6jSE5eO/0aw2OjBMMdlAoFQsEgiqSytLxEZyKGkFzD+Z0Xqd53gtynP4XX4+K5p57nzhN38eqFSwyP9JHPpwkGg5RKOn5HgqWlOZbXFjhydBRTqGKYIMsygiBQMXQuXLhAPB5HypS4cOUSL589zX0P3M/d974LRZObrHqWZWHZeErYBR037c6Ituwj0G4e7/EmWlwbf28NktRuPtgcR+rWZbvjud6AxXU3me3Oq26HVgtxK5HenQi2l6mVlLairrBs9TzZCduUem3utwto9b0k4nvN82ZZXJvSN1zaLTp9o1J2L9g1nbWlgN3aUrMfK/adipuNKrxvcd3HWwLpPXcivefO77cYe4ady1OdjDSS1kY3Ujt3JrsBvNn1dHu9jdpIO3ma07ZHK8nb1j67PBvVC6JAPRCDXRAnBJN6gKKmn73aYjfym5aBKNbcb7FEDMPEMusBimoBm2pWaQAL0zQwTH3TnbrZ9ak5gvBGi0CwNlxva3/bauqtjcBNGx0gihIItWBZgggW5mZ+UZBpDRjFRkAY0zI25KhFw6jnszCxrK0+s9gISCFYGGbtjFLD0LfkFZpd4jaf/YacJjW3SgsBXS+jqgpO1YFZ1VERqQgWmBZGvsSf/d4fcuLAYRwug+GRMSqWjDMYpCBBKB7i4qUrmGWBXKHCL/3Kr/IvfvqnCYRiiKqT5FqaR594nHiii8zyNP4HHyH8nz7PJRmeLqW5cOkyuVwOr9uNZVZIrS3hcgdwOBzIssjCwiJOh2ujnyosLSxy8o77yJd1xge78bhczM0vs55JMzDYiyILdCViCCKMHRhhbnaK7q4obqeTvqEBIrEYqdQaToeTYDjAysoqPp8fSZEQBItAOEo2m0dGJL+eQlMEyuUSlmXg9rqJdsZYWFhicXmJeCxGPpNmemoSzePGqBZ45pnn8Xj8SDKUKhUWFlN0xrtxaioLszO4vB4cbheZ1Brf/s6TjB04QmciTqy7C1FRcTkcCHqFyYnrJLq6mJ9Z4OChYXK5HAMDYximhc/rIZ8v8PjjjzM2NobD4WJmbopEVxeirFGt6nhcTs6deZ352WXuuOM4Dk0mEe/C7fLh8zoJBPwEQwEkReL1119j4sYUM7PzzM3NMzwySKIrTCadJRDo4Mzp00QiYcZGxliYmyOXzTA6MsTly+cJBjtwez1gWUgC+L0+VldWWZxfYml5iaDfx9zMVUSvg+eoNfYVAAAgAElEQVSm5hm9sYDy8nkqc0v4f+heTLNKNp+jszOEw+EgmVxHxIlBFsUh4PG70ZxODCSSK0uosoIkwYunnqEz2IFimXT09jI0PML4yBjf+dZjJGcXUUWZQCyKIYFpWahS7Z1XDJCtWqAmQ2wmrvXvvh6kqfFfzc2i9m0Lgrj5A9sDtTWWt23Y2oN1b3NI2cV9ttGy2jputbrtNspnO5bbXGvd+9lONrt2Naavj0V2bbUre+v3VsVg7WenPmznAmynpK3/Xa1Wt/VDO6Vua/829tNO/duu7a192hoIajdCfzNEsFVh2zR9bZL91ucgNF1rRC3Wwcb3YTPH1wM01rO365+mMvcYKb9xPq6JaWFhbLQNhI35fyclxz5+cLDvKryPfbwJsAv4YOee1DqR1mE3sdXRZEWw7KIONlgUbPa43Ax2ksN2+tnZo6jhYjt59jgRi9sXTfUmNrkBt9QjyzLXr18nFotvLli2nou1beJsVCTYXa+jRpRbJt6WujcXPcL2Pcg7maDr/d8uKnC7hWmr9aFuJa/N8xaCVSOnlq7h1tw88eijCJZFJp1i+vJlTj35JJfOn+O240dRHQrdPX04PX5kWcPhcmEaBh//iY/zYx/9KPF4N7NzC/zkJz5BRyiIrLgQRQWrYhHwBvCfucx9f/MI/qllJoe68R0+TCLeSWc8SqwzxuTkJKm1FN3dvZw9f5lz58/T09tNOpNBczj42le/Tk9PnJHhYYKhCFPTk8zPXKdc0VlPZSmVygT9HczMLrC+niYcimAaFsVCgWpVp1guMTc/i8vtJBoJ4/V5WVlZQ99wg65WdKYmp4iGAmTS66iqQmo9Tby7B7fLjW6YqKpKJp0mFg0Tjnbi93pRVRWn04Xf72dxfo7bb7uTUDhMMrlIPNGJrldRFZHUWhJd11EVFUVWCIcjHDhwAK/XjdOpUCrlSa0t43KIzM1cJx6PMjs3x/PPv4aqSoyNjiHJKlDzAlhaWiIUCqMoCm63G0WTqVZ1VFXji1/8IuPjB3B53AwND3Jj8homOk6nRkdHBx2BAKqqsrKywvT0NP39/QwO9jM+Nk5vbw8ut4tsPkupWMLr8dLb20uxVEI3dJ5/7hQf/OAHyGYzRCNR1tZS5PNF/H4/0c4oxWIBt9uNYRqcOXeOnp4+YokYDqebZNEkdPII6sXryIuruNYyXAm5SMR7MEwDp9OBZQlcuXKNs2dexzAMurq7aq7qkkQlm0eVVQRBIFfIM3ZoHNntxDJFZFlGkRWO33acjkCAx594iAf/7ss4TJG+/n4MVUUXzK1IqNSWtGLL99R2zBWa0zXcabp+M8R0r/fbkUfYbq1sV07rHLQXpWV9zNmpXe3muHaEz857pD3hb2/Ba4d28jYTNmFbnrpnSWs9duW0tr317/ZEvLnsdgrhdrgVRUhjusZn0nZO30Xum6l7s743sczd0gkbCqYtt+F94vpOwD5x3cc+9oBG7WdrJNhWC2trvlYta7uFwV4maNPcfojhm7XXo5H42Fle7aQTRBvLrm3heyeudlryRuvoFrmUti802H6GbCgUqlllt0X83V6v3aKqdRHWGNGwWRtuX17j2q2+ODStLbffxgVR60Ks9X3ZSSvf6iJoWRaWaeFQNSqFIugmi7NzPPPQN3nxu4/THfbiEEqcfu5JYtFePC434+PjRGMxFIcGgsby6ipOlwsEgcmpaT7xE59gaHgMh8tFIp5Ar+isp/O88MJLrCyu8Ll/8yv8s+fPc2RqEX2km5e1Al3DBxAFifX1FMVSDq/HiyBIVKs6sqyQK5bw+rxEOyMkEl213yMxqpUCmUyGhfklYvFORkeHCAQjhMIx1lZTxKIRpmfn8XjchMNhVldXGRoaolQqgSgRi0WpVMrkcnlUhwOQWFhYYHV1hb6+Ps6eOcfSwgwHxsZwul1UdZOqbrGeSuNwuZAkESyTi+fP4Xb7SCZXKJZKxOMJSqUS8ViEhx9+DE1zMDzSj27quNxeVpcXEYQaIQuHI3zrmw+hqBoOh4qmyZiGTi6bxqF5WZyfA9MAS+LJp17gAx/8MIZZRlEUjKrF2lqS5cUk6XSGYrGIZRn4/R4cmsLM9AwXL1xibPQAzz3/PIVSiXi0i+npWSLhGMViBbfbh25UUBQZv99HNBrBMAz0SgmH04HX68cwDdweF8FAiBs3JoiEI0QiYSzLZHR0hKXlJSRZpqu7BwsYHBhiYXGBYrGIx+NmdnamFmTK5WRiYprhkVEEUSIS7sRSBRjshdkFpBfPEp1LUr4yyVJPFK/XzfT0NC+99BLnz58jn8/T19+PoqropsHZl09z4eIlnB4Pid5ekCQsQcKoGlRK5RrxEAV8fj8HDg8zEE1w5uVXCEZCuAJ+HA4HlmmCKGBaFhL2e1btvifDMpuUgK1jht2Cfy+Wsb2S3dZ0xs/9FtY3nkT4yANN93dy12xUfNkRvHr+xnHxZmSC5j349fuN5LoxXyMxbi27hvbWUzt5GtvQmmanegRBsCWtddTLqu8RbpWpnqZdn7TDXkjrXtu9l7pa5/F2bdmLrHXsxc26cU3Q7j2w+2Za625nBW9OVyetOys/9vGDhX3iuo+3Jcqf/DWMrz3xtgnO1BqN1W6yrKM+8L5ZZ7I1limKwmZ02K1J4XsXpGA3QmrXA98L4tq6qKlVbud6Zr94rFb07c/hJjbebluk2NTd/hFvvQ91iOLeXMwa676VhYwkSFSLJU49/QwXXj9DenWNDq/GgdFhOjp8mLrO2Mgoij+CryPAeiaH3x9ANy2KVRFFUfF4XUxMTGCZEA7Gaq6YLhdrq6t85td/AxciyS9/jY88+hw/ZmnIiU5uDMbJuBReeuUVqlUQJQlBtFAkGbfbSyAQpFwpE4mGuXTpCocPH8LjdpNN53jttbPIkkS5nMPn9bK0lKR/sJ+p6VmWkikcTg8XLl5AFA0UzcHVq1fp7+9jeXmRru4EqqZy4cI1sAz8HT58HSGmpmcJhSLk82kOHT6AKEI+m2dgsB/NobGeXsfl9pDN5iiXdUxqEalXVhbpinWytrqO2+Mm3t3FhYsX0RQVSdJxOl3E4glEsWbdV1UXU1OTWKKM5nSjKjLLK0sMDo8Q7QwzNTVJwB+kkCuRK1XpinWiV8t0dnaTyRnML85z6PAoAiKlQpVAIMDVK9cwDIN0Js3k5ARHjx7G43ETj8WZnV0g0d3D4tISmUyWWGecM2fOcujgYVZXU0zemMTrc7G4uEi5XGJycpJ4PIYkwnoqha+jA4fLhWEaVMsVCoU8HR0dpDMZLKBYzNHV3c3lK1cIhcIATN6YolqtMj09ydzcLAcOjFIqFRjo60GWnaxnMnjdTvKZLOcunKe3r5cFGTwDPchnr8CVG8jXpvAurCDffQxBEPmnH/4wc3Nz/Ppv/Dqf+MQncHncRKJdfPPhb1GuVBkeGUGvGAiWyOT160SjUYyafyKmUBsDg50R+gZ7+OpXvszpF55loHsIVVURpA1Fo9G8L3Mn5aHZ4o1hNw7tpRy767cyF1gPPglC++Nw2tW1a7k7zE12403j3Fefh+qEdC9un+328e8FduT7Zq2edu1pB7syd6ujHW6V3L7Rclrn0t3y3CqhbUl0a/lasNs7Igi1bTf7xPWdh33iuo+3Jd5uUYXr0Vgbz7ncq/vNrS5W7Mq0Ow7ne0FcbbW0dulsiOJbRVwty+452BNXSZS3u9ntkbi2aooty7ol4tq4wLM/1sh+QfdGiKsqKvybX/rXfO5P/5xf/F//FT2JboLDw0juAKonxHoBZG8UxeNFUhyks3mcTg9G2eT0hat4fG5UVUIUQFOdaKLGN/6v32XkoafofPgp/kmmyt0vX+B2S2bOpTJ/oBezN0Yk0QmWRjzRST5fYvzQOIom4dTcmKbJ6toaoiIR6QxRzheplIqkU+vMzsyjl3Veff1VDL1MZzTK4cPHeP3MaYYPHKSru5eqCR1+N5oG4XAMp0ujszNCqVQgEOhAliSSqQKZ9RQLC/MEQxHW1rP8w1e+zD13n0TXy2CaZNJZPL4A09NTVKplfF4vlXKFhx9+nIGBfjxeN92JTgy9jMcToCPQgSBJFAoFVhaXcLoARDKZPJpDIbmawun0kVxJgqgwemAcTZUZGRnE5fFRKuQJB8OcPXOB7zzxNIdvP4Qim8zNTyKrKiNjRxgc6qNYylGuVJidXkSRFSZu3KC/vw+v10MsFuP6xDUUWSSbyZHNFpAkmbvuuht/IIBllrj77jtZWJghFOpgZGyAcrlMINCBw6GhqDKyIrO0MIfP30FqPU1ydRXd0DF1HbfbTaVSwe/3o8gKqfQqqqpRLBZZWlrm2VPPUSlVOHL0MLIsMTo6REfAz9LyIunVZYLBTgr5Aq+/+jJD/f30DQ+yODfP1OQkBUnAdeIwmuzAd3kC6fw1lNOX6CvquN5/H9FolA/+0AdxulyUqxVUr5+DRw4zPDKKVdXRJBlNUgiEAtRjsImShGlZ6KZA1SFgqQJ3Hz+MvrLMmVcvMzg0hCmCJMsIYnN4uX+sxHWvpG8nGTbLvUniameZbFTICcLO513vrPC1vbwj2rkKvxHi2mrxa7z+g0xcd3MT33P9b5C42rmZt3ue+8T1nYl94rqPtyXeLsTVMIymgdRuMK39vxGYR6iRy9pRGttJ617cyVrRnL/20xwwZOcFgV3d7cqvy2vnaiU2BD7abKNJQ4AGYWv6aCWUeyCu9QWQadWCDolizUW48YzSJgInbMgjbpQvWNvSbcogbAX72AoM1R71yIV2kSMFQaDOO5uf7/b9XHWSWpfTwsS0jKZ3pzFCZ11uO4VH/W9TMLEEC2GjPaJloVvOjTp0LNNAEZxUSwLJ6esImPzUv/wXOLweVI+LckFEFmXSmXWWV5YIRQIYepVKuUpnNEohX8S1nEL+z3/B4NnruP77IwS+9h3CX3wQ7989yPjKOtmZOdb0KlkR9JOHSPZ08ur0FNFIFLfTRXJxCUmBSCTOC8+/wOjoCJl0Dp/fR1mHK9cnmJmZxOVQUDSJSKQW9Ek3dE6cvB3BMllNphg/eIRr16/T4Q/g9XvQq1WuX72KUakSCkVZX11ioL+XxcV5VlZXiEQjGJaJS1bp8PkY6B+iXCojWCazc/NIVpXOcAi3p4O1bAGzkqUrEScYCLC0uEh3V5yBwS7W15JoqoQsKVyfmCIQ9IBgUiyVqJQN/N4ghgUdHSFefuklDN3E63Zj6mXcAR+DfXFkq0qpVECQVBYX5qhURQLhOKpDY2ysn2AkhiypBAJRFNUJisj83AwdvhAepxdJtlDU2rumaSKvv/YygwN9nD19gWi0k1AojMfr5pFHvsWhgwfw+72UikUMwySTSRMI+qgaRTSHg5XlRUKBIMVihfVMnqGhQVxON5ZV2/cpiWCaFrIiMjN7A4fTQaFQpLe/DwuTWKyTQCDExPVJjh09hsutojlU1tcyOFSZ5Oo8i4s5qtUKDk0lGAyRXF1FUmTKFZ1CucJTzz7DkePHsSJ+qqP9WKEgyvQiykvnkJ54Bu+zrxK4cgPh+VeR3nuCarWKJIImWZRLOQI+F5Kko5s6xXyOlaVF/B43EhbVKjglBxgmpqzg6+niyitPce38WV567kXufNd9FAQZ2SpSFS1MRcG0BCRTwrQqG+N1PYCNhSQKCNS+McGyEKn1k13EdDvcDJm1S7dt3mhjcW0cL1rROtfYKcAa8zUqZVujBss1itDQF/UgPRayKNVcsi0L06oFlZOkrYCCkrAxylv1fgXd0JHluiKx9iMJwraAP/V82641kMvWNtu5PrfzktqJ1NmRvsa9s61p7WSwK/NmcSvK770QULt3odZHzUELW4P+NSm1xY0FQeNPLQogWFsBnaw2Ch87OevvliSKm/nttOH1eXWrr/dJ6zsF+8fh7ONtifInfw0A7fP/4S2v2+5g93bv/dYgvj0wRXMokNZ7tzaJ1d2PW12Xbxa3RKBp7hdRFGnccrtprTBrgW2q1WoDcbU/OqDx+JnNxZKwfeJsJ/tOaHRpu5W8O943bfpMaHQFFjctD43nuraz1DcuFHfa22Oa5uaiTQAE00KwwJRFLENENlWMSpGrl17j/LlX8bm8HDh0HEFxYFgSDrebtcU1lhcXePZ3fp9PhroIFCq1iJClMvJicqMBAkY0DKKIFY/ywunXCR0dp5Qvka2U8YdCGLpONpPi8JFDpNezBAIhBEFgYvI6Ho8LTVNxOj1cvXKNWLwTsPB6PeTyFToCQf7q83/BJz72URRVQVE1rl+7wUsvvcxP/dQ/R5ElVpZXEEWRF196ke6ubjrCAWLRGOvpNB6Xi2RyCVmUCIZCJJNJunt7qVQqXLp8CVWSyOcL+HwBXnntdU6evIOl5SXuOHEYvZLH4wsiai5yqWUkUWZmdpburi7cbjfJtSSKrCIrMuVyBZ/XjyhayKrCcnINl8tFZi1DIBJAVVRSa2t4PB6Mau3Ilt6BPnKZddwuJxXDJBgOszQ/TygSx+XygmUwPztNKJrA5VS5fOkCiqIwPHaAYjGPItUCOk1OTVAs5BgdPsyzzz5DZ2eYjg4ful47p7VUKiHKEssrKyTicaqGjs/j4/z5iwwODKOoEppDYS2VQhLAqBo88ti3Sa1neeD+u3A63VTKVdxuFw6HimmJlMtFTMsgHuvipRdfobuvi0Q8TrFUQBRkspkCDz74ED/8Q+8jk03j1Lw89thD/Myn/hl6RebUc89x5PBhdF3H5/dz9eo1KhVjY5+0xfDIELpe5ezZsyQSCRKJBJn5RdzpPPJaGjOTxZ0rgm5guRxY0RCCLJP1u3AHA+jRIJWf+Z/JZLNMTExw2223oWkahUKO2dlZ4vFONE1DkgUkK8/zT5/iyuUJDt12G8fuOInL48OSRYqVMpqiogpgmOamN8ZultL6Z78Xa9BerrWrq47N/ZY/91sggPyXn9lWd7ujadrJ2G5sq5djR/Datad1O0z97OPGa4okbXos1Y8T0k1zm3K0nd+QnQXX2oW41q9vBTW00HUd2DrSqDH/blbnVgVia5/bEddb8ZCxwxvNs5MXT/P2FbHhuW0dI9R6EkLT/NQg2mZftcR0gJoHw15lrOdvum833db0JkiiQvu3Zx8/iLjZ43D2D07axw8s6hNbI3YjE1sTW3Oe2sT2vZW3UYZ2RKcRe1m87FbPXiDLMtlsFlVVmxYJe8WtTNRvNkRRRNf1PUXx3MmSvVtbTJtFczvryCYRZyOiMWCZtSWBRBnRcjFxeYbvPvowTzzxd3zsY+8n5OsiNzNH93Ie+SvfRkhncczOMyZI3KYpKHKeks+D4HEjSTLF2w8hOFVESUI3JdbX1xEEga7778U0TSZnLjA2NsZqeo1DRw5TrpQp53Kk02kURcPpcXPoyBF0o4IsCFy5MsGB8QOI4sYZsZLA1OQEl69c4eM//nHm5+dIZ9c5MHaA4eFhotEopWKRTLWM0+1AURRy+SwHDo5RNQwuXLzA0tIyuUyGD3/4h1lP5RAlhZ6efs6dO0dntJOhgWGmpi4zNjZEMplmZGQYj8fLxMQ1dF0nmy9QNkwcLi9YEmvr63R2xtANg/MXztPd24PD4QQgubpGPl8gHosxcX0SSZXx+Ty4PQrzC0t4PS46An4q5TIIAl5/B16nG6emoTk0cqU8Hr8XWeyiUCizmlzCMKqUykVkqea62tvXi8vlYurGDUQZEvEuisU8kXAIQQiwvLLCmbPnOFAdIRAMEIp0oMoK6+kUlVyV7u4uHJrG7Pw8S4tLgMCly1cY6B/gwoUrdPXE8Pq8FK0iBw8exEQkEgmhKBoT1yfp6upCkkBzuCmXy+TzBVZW1hg7MM7Vq5dwOZw4HNrmEUz+jg6mZ2e54447mLg6TSQSw7QkVKfGgYMHcLidLC4uUjV1uru6WFxYYT2VItoZRRQEbly/gapoJGIJpiYn6e/vx0yIPPrIoywtLfKRj3yEBx/6Bj9523txWAJWah3PUgrh4g2c+SKOL30LZ2eICFCNPsRspYT06Z+lMxREk1QK6SKapuFPROgeGef2O+/hu489wf/3//wXPvKJn6G7twuXqGBZ+gYRvXkF4xtVQP5jQNPYU9c/NrTV0PWmNKIoQp3QWVbNCisIVBvOmK0TIbugQVabc1FvVfbWn8agivvYHTf7Xm+uhfZ6xN0bRH1+3Mk1fR/7gH1X4X28Rfheugo3TlyNGuM6dnLTbMVW2u2uRabZ7F7TqoVtnEjtXHPboZFMN/5tl263fZM3537U3A+1/5tJVv2oAZfLtTmh1NLZ929tj0ozYWtU2TbXdXNoWhTZLF7sXMkarQhN1oCWiMSNKuD6NbElwvJOz6X199b9dFvn9jb3b811XUQvV5FECcEEEZFiZo2XTr1AaT2HZznJ+wUHdzx8nq6vniL08PMIl24gKDJWbxxjsJfcicN8+exrRO++g5zbxUK5hCMR48XXXqGrq4vZ2VlEQSSVSmEYOmfPncM0LE6cPMnXHvwag/19OJ0aly5fJhaLIckKoiiRSqWwsHA4HeSyWUKhMLOzsySTq5imQTGfo2+gn1hnJyAwOz3HgfExKhUdj8fD1NQUPr8P3agSDAYxLZNINEI4HGZtLUWsM4bX6+XwwYPMzs3SGY9jYZFOr+Nyubh08QJOpwNRMohGo6TTaY4dO8r8/BylYplEd4zU+hqxeAyXU+Pa1UlisRip9DqKqhBPxBFEgXwuT7lcJhQKE45EuH7tGuFIhHAkjKKoLC4sEAhG8Pm96NUKlXKZyxcvE4l0YmKiWxZOtwdFkVlZXEAQ5JrLoyDw2muvMzI2xpf/9kucuOMEq2urNdOBaeH1+5i8MYXH4wVBIJ/PEQwG6YxF8Xd0ICsqCJDP5fB5fciKQjqdweV0YSHQlUhw8cIldN1kfn4By4LhkQHW11NYlkEwHKQz1oksiWQzWXTd4NKli4RCAWRFQlU1nn32OU6fPs2RI4cJ+IMsLi6yuLiAqiisJle5993vJpGIYRoGi4srDA8PoakSc3Nz+LxeNE3jwoXzDA0Nks3kUBSVp599hnvedQ9z83M4VBeCIOB0Osik04BJPl/kwNgYqdVVotEoPb29GC4HaizCtUIW97FDfHd1iZX+BOHbjpAsFbk0cZ24IOO6Nk30q9/B+egpzKuTnAm5CIZCzM5O82d//me8933vZ2hoEFmU+dajT6CKAolIFFmRMUURURCbvrHW765pjGggcDuNoa1jdDvsZuHdHA8e/G5tl8NHHrBNezNkrHV8MhuIZWPdTdY400IWRCzdqAW5Mi0E3UCyAMPEoahUiiUUVcE0TERB5P9n772D5Ezv+87Pm7vfznm6JwcMBjljEzeQlGhSJHe1kkhaTqpjSbbPsq7kUpXvypZsn0+2WGWpJNWdKMkUpZNkUaTEsMzLXe5id7kBwGIBLDJmBpicZ3o6d7/9pvujZ4CeQQ/CculbSvhOdU33G574vs/zfH/pcR0XURBx1sbWZiGms/a72Tz5diP85nZqrm2zpng9rbvRGG/GVnvP3q5/W/1upX29W9ypnPe6Rlj/fqfy3moOfPs0brwvrTSpt+wNyw3J/mYBbStXHFq1WUtTYbdxwm1EFv67KkC6j1tx38f1Pt6T+FEQ13VCslW033shj5uxmbg2jm0kSbeebz3ZvRv4UUiXBVosBtxbJ0RpzTRsY3tupaFoZQN0a5mbJec/TFvdNGnb2gdpfZG1eQFi2/bNNFpqaVrv5Xu3aG6v9XK2SkdyFWqVGhfePs/3v/c8X/ujz5P+vS+y49XzdHzjBTrOXkZczFOKRinv6mNpoIPlsJesV8LfnqQsivh0nVSqjexKlng8iSTJvPjC91leXkL3evHpHvxBH4uLCxSKBXYM7WB5ZZmO3h527tqJhIVj2eTzBcpmjVA0yhe/+CW6uroQcTFrNcKRMKIgoaoqtm2TSiUYv36d/oEBHMdlZmqWleVVllaWCAYDRKMRZmZmUFUZB4dQOMjM7DSqplAqlchk2lFkhWis4Ve6d99ukBwMo0I2u0QiHiEQ0ImEA9RNE1VVkGQRQYREMkIwECEej2FaBqoqk1td4dRb57l6dZh4PEbNqKBpKqIkEwwFGR4Zpr2jg7GxcUQXfH4foiTjugKOJeDa4PGorK4s4FgW8UgCxwJ/2I/i8TVcvUwDo1wmHE1iVGsEfAFSbWnyxTJDAwPYjkWlViYei1IrV9EDIXSvny9/+avs2bOHYDDIamGpsT+spqOqHmRZQ0TAsmwmJ6fp6OhCllXqdZN6vUZ7ph3LtDj6wGF0n4pX9zA5cR1d19B9OuVKiaA/SDAUplgo0dGR4cTJ49TNKqm2NtrbO0gk4tiOQcAf5urVqxw8sB9ZlnAcl7pt4fUqXLhwnlAwwsi1Ya5cvYiuaqSSSUaHhxGAN48fx5Vk+ga20dXdTTASIhyNoEoahXwBQRDweD28+OILDA0N8fqrrxIKBenu7iIai7K8vEjAH0DXfciyQrq9g5phMDI1Rt+hA7Tt3YXVmYa9Q1z2KNRKZRLDE3SOTqMsLLKUClI2qviiEfzROMl0J/t3D3Dm5Eme++5zROJJIsk0rmO2XJhvMUC0HDPezWPrxzecC/lh7zaEnkzrct0DWo1PrcYtx3GQZZmZmRlCqpff/W+/g0dW0CSZeqXGH//ff8BrL/+Ar3/lq9RKZc6dPkPdMtG9XrweD6LQ0Lw6AjdcJm6Mu5uEc5ZlId2G4G1uJ7tpLt8cMPGdzhE/zLxyu3vvTTj87hPXO52/W3K++VyDuN7Ejfmrlamw69wy767Pb7fk47bIe8uirAvP7xPXv0+47+N6H+9J2C+dBEB64ugdr90sIV6XclrWzS1QNktkmzVr63u63e2z3eq6rfJZlwZv1vTdi5R8vax3lFQ2le1OAXM3RIKUWkia7/LNaVUfQWzl79takn87zcRmLXWzSdbyY20AACAASURBVFCz382G3+6tE+Pmfr+bvDeUg5uOvK00Ms39vI5WdVwvo23bN7QPzXUUJQ3bVNE8Bla9iCqFWVie4PWXTuKRfbh1h6H+bXzxb/6Y1WyeoOny1LHL9Ko6WdEhsHcHq5rK6etjiKLAkaNH+MY3v8vjjz7M2Ng19h08yPLKCuVigWg0zksvvcSHP/xhrl65ilfXWViYZ/fuXczOzjA0NEQuV+HYsWM89dSThEIBLl26SN2wqRlVMpkU2ewK+/bt4/z58+zZs4+rV0fIZNK88ML3eOihBxAkkWgijetIvHn8BOVikcceewjcOqu5Vdoy3Vy+ep3O9jRe3UPdqOLzBVjN5iiVCnR1dZHNriBJjQBXejDGlcsXiYaChEJhyuUK5y8P89ijD1IuZrGtOslUGtN2kASRpaUlwsEgRs3Aq2mUjDzRRBpJ9rAwN4/uVSlW6pw/e5Yd2wYIh/0Y9Sr+gI5tu3z968+zd89B+ralqNeqhIJxlpaWKFXyvPHG23zwQ0+gYKHKMnU8rGZzWJUC3X1dzM8vIIoi6bY0pmUhezTMuoEsiBTyJY69+DL/4CMfwB/wY7sOLhKy7KVSXKJctYgl2sB1MI0idbNGMBimZti89toJZEXngSM7cV0HURDQVJXlpSVESUD16ISjcSxboFqu8uL3XuDJn/so2ZUVquUK169f54GjR1leWSKRjLO0tEhbup2vffVbZNqSHDp8GBf49ne/w6OPPUZA8zK/OEdbe5rZ2XnaU528fOx59u7bh+bTAZkXnn+RSqnKx578EIZhNAipx0O9XmduaoZStcKO3TuxalWq5RIXr08zPz3Bzzz1cSRR4fzFEdoyXdTrZRbmZ9A1DVmUqNYNunu6yLS3s5xdRZF1/ubLX6EzE2FgYIBUKoUgCOi6zkuvvo0kuxwZGsBz7jLSzAKlAwOUfv0XkVUfATXEyuwy/s4IHhUmRi9x5uRpJFflH//v/woqNhiA4ODKLk7TkNCskWy1OF73e30ngsh3Qmq2Gq+28nXd6lrZdnFlgToWVt3EI2s4jp+FmSmWpq8xeuUS4+PjvH78JLm5SWIeF6OUoyZ4UAMxnPwSMiYuDorXC4qOpin079nLp/+3X2V5eZnt27ahx/uRZZFqrYwogqLICK4JiDgCuEi4gNw0l7QaP9ePi6KIadsbzt0NmrWft2urDcLsVm3X4rrN+dxN2e6l7Butl+4NdzvPNfu4Nv9uSmnLtO+Ut9NCcN3K5ar5/B3r6m6MXdEQNt+7a9J9/Pjhvo/rfbwncTeEdR3Ng21zEIhqtYrH47nj/a0CHr0bWJ+Ef9hASu9GOTbn/eMonWz2BX0n7bi5zj9MX7wTE8DNJnnQqNO6L63JIrIYp16ukV8uMTU2SyCssHfnAUJ+hVdf+SZXx4bJdHt52K+z9wsnqLW3Uzx6kPGZ6+zZPYRcKPNIZxeWVUcQ4JFHD5HORAkEVFZWFnj1tdeRkNi1ayeDg4PU63VMy2JqZBTTNMnmCnR292K7UCwWOHToIJIkUTdNPB4PmXQCv1+nXMmzsDCH40B3dy+r2VVEQWB6app4PInHq+PxeJAEkeNvvkkimcB1LK6PjTE02IffH0AQYNeunSzOT+O6dSRZxLbrmJbByMgwhUKBvr5erl69zLbBbdTrJsffOMHQ4AAPPfgApmkxPDyCz6tx+NAeVEVidnYBr+6nkM+STCYpl8sA2K6KY7nMz8ySae8iFPCztLiAKMlsH+ijvSPDxOQkHd1d5LOLhMMR9uzeS29fH/MLkwR0lZMn3+TQkcME7QDbBitYlk0o6KNaqeLK0N6e4dypKa4Mj9Hb24Pu8zYIgqqgqhq1SgVN17Bsm0cefZRgKMrV4cu0pdvw6n5kWUTVdMYnx/D5IywvLdLX04GGl2rNQECiPZNmcHAHjmNSKhbx+30sLC7TkemkXq9jmBamaeM4LrrupVwtMjk5iSoriKLI9NQUDz/8MJ1d3di2STAYRkDgp596EsOosby8TFsmzf79+1EVBcOo0dXVhY1DJp3GtV0kScGr6/iCASzT5iM/9RFMw0L3yUxPT9Pf38/w8DDbt2+ns6uTqZlpFElG1HQunLtEJtNOuZDFNC0mZ2dYXFzEQWRhYZaB3m6MWpVgMERbwM/E5DjLy0tEIlHOXn6Lga529h3ch2ma1Os2mqqSyxXZv68PQQJHElje2Y4vFSBwehT/v/sj7CN7KP/jj7OQnyXcmwDHpKdvkJmpeU68eoLv/OkX+PDP/Ay2quE6DpoLzWLB25HWrd71HwXudrwyP6tveU56vI64qxHLwbgi4/7Ag+uC6DiYrkC5UKK24lBd9PBHpz6D7TrEEyl+eeA/0OXvQ1NlTMvFcmxURULA4XLheV4r/Tllo0KH283T5V9h8f8yUNQ4U2oFLTBNR2cnshxEfKqEnbRQJRvrFQ3nsod1FZ3ZRDqEuI30s+Ub9bb+ONjwm6VBn9aDMwmA8FgNcacJgHNJwX2l9ZzvAuL/Wrrx2/6yDsutiY6ww0R6wmjctyhifeVmm27uBelnK4iptfXHSxrOpdbLZCHhIH+ieuO3+Vlfy+sApMeNG/3kXFKwjilbPmfqL1dupvk3Htyl1usYcaeF/P56I81FEetvN7XTmoYcQP5EDbGtcdg6pmBflGlFXMWkg/qp+o3ftf9nY5oC4PkVY8t63sz6x289ch8/PrhvKnwf7zmsE9f14EqCIGDbNoqi3Pi9eWBsNgltFT7/nWArc7PNx5qDU9xtupt9Q+5InJq+r0tqt/TjbWWte1cl25jWzd+3v+5eCPRmkrfVBvY3091a67EVcb1zv7fWBm/Ou5X5VfOxZu30OmzbRpblhsmbDRgyE9cu8zdf+FMO7t5FrjiP61TAqZLPL9HX10nHhMuOP3uJ+t7t2HuHqNsGgVAUTfNSLjcWRooi4/GqyKLI5PgEHo+PqZkFjhx+kOmpKWKxCH6/j0QiieNAOBIlHA6zsLhAf38/b711ilQyydzcLFevXqG9PUM8Hmd0dBSv7mFxcY7Ozk5cV0AUJE6ffosDB/YjKyK9vT24jsPs7Dy5XI6LFy7Q2ZEhX1jlypUrVMplMpkMExNThEJBwiE/NaOKV9coVypE4zFikSiRSITVXJaurk4EQaBUNhi+cpmhwQF8uhfd52Xn7n0kElEunj9HtVLj7NnzLC9nOXhwH7Isc/7CBeKJBJZts7q0QiQcRZEkLMsmn8uztDBHW1sKTVVBVtD0AFbdwDAMXFckFI4RDPoIhwMUihUURUNSJEzTJpaIIYsCqqJRLBuYVp3OjjaqhsCpt06jah4WF+dRPR40WUXVNCqVKrWaQSQaQ1QkZEUlmUpimha27WBbDpFwlJnpWRYXFwmFwli4CKKER/OQiEc5e+YtQKFcruL3B6hUavh8Af72y1+lZlh0dnYiSRLFwip79u1GFAQi4Qi610tffz9Xr14lEo9RKBRYXFjC7wtg2xaVWhVJkvB4PISCQXw+nezKIrquI0kKyytZQsEAfl8QQYSlpQWqtSqFQpHTZ95maXGePXv2srKS5bXXXsfr1VFUmXSmjWAgxOjIdULhOG1tSaYnJwlHInT39JLJZBgbG2N8bJRHHnkYy6yTSKbQ/X6i0QiuY1GvVenv7caragRCES5fvkJ3dy+jo9c4efIUkmjTlko1XIVtUCMxpB2DiBdHcBazGDMzZJ7+CUzDRPf6qVUNerp72HdwP6eff5m6AIG2FIIqIW964+9IXFtowt5tjavz8inciVnoTt9W02f94dZkCEDssRGSDUGtlQXGFUDAMkwunT/PzPgI1XIO1zJ4ffZz1OsVLDvPNs8TeMUgkqxQKJWpmza6LuM6Fo5/CSM4QjoTJxPupEd9BEl0cW2Les2gWMwzPztFvVbDyMwRTfkwZB13QlkjjsKGLW5wXdAdGDJumi2/pd0Y2TeMs4DQbSEk1qytliSY2Fq/Ih2p32gr97IKlS1cRhJOo60AygLOZWXLNIWddUT/WtHH5S2Jo+Bzb5BRAOeUumWa6/0EwJKEe7s6HTVvpnlRhsoWz2nCQexdc3cpC7cS7GZN8y7rRp2ccWmtTi00rj4XafdNiyTr5MY0BUB+wL7lfbolnRbv2J3fjY3nG+uc+0Ga/j7gvqnwfbwn0Wwq3Epj2GwWvI5Wz+YPS0ZbkZtWxOtOx+4lv81msFuRn1bmwjfMfFpMMluamHFrHe/FVLi5nJZloai3bjfww6LZ7HfdzLZ1YAdxg8nTZv/QzeZQzWbYW/Vxq618mvvprk2OWzyrXq+XarXaIK4Fh5df+AF79rUxMfE2HjWAJ+jBtlS6OwfJrZbxj8/h/w+fpXR4H3ImhuPWMa0yRlUiFArz+c//GU8//TSVSpFarUoqkaZaKrKwsISoqFy4eJl0WxRBdNi9ezfTU3N0dfYxNTNBKBgkl8+RiMcxrTqaplEuVTAtk0AgSKlU5uyZUxw9ehRZERm7PoFtu7S3dzI9PUUyGSOZTBEMBigUSsiKgizKGLUq03OTDA4NspotUK9VCfr91AwDV4BapYKiysSScYLBMEbdZGpsgsHBbdTNOvlcDp/Px9JKhRPHXyMRDTE0tA2fP4Csh5EEG8Ex8WgeVnMlCsUy8Zgf07LI5XOEwxFC4RC1YoWV5SWMugGSRLq9A6taxeNRMC2TSt0mGk/jmiUKxTymJVAq1gmFdYJ+lfPnh5mZmefhR44QTySo1uuMjwwzPTnDtck5fvEXfwGrmuPa+AqXLl3gyac+Rr1uoCgS1XKFcrlEOBrh2rVx3jp1hk/9/CeRZRFpbQuR69fGyBeK7N6xm/n5eUZGhnngoYeo1Br+oPFYnKmpKfKrq+zae5jcahZFlgmFQkxPTTIxPkbddnn8sUeZnBinq7uTpZUl/D4/Pt3H6OgIAgKyLJPMtGGbLrrXy/TUJG3JOIpPp1wq4fV6mZ+bw6jWiIR9+IMhEBRy+QK65uGb3/geBw/uwbIrpNMZShWTt9++iCzA9qHtlEtl+vv7efnll3EF6O3ppJjP0TcwxCuvvMGhA7u5MnyVkWvXeeDoA+RyeTKpNEvLC2zfvm3Nb7EhUDPrdUTBZuz6GAcPHsao1hmbmmZoaIiLFy8Sj8cpl8sEg350f4Dz5y+wOL/IrqGd7Nw/hGBaqN95CXYPMPsb/wuyo2BZDqFQCE1TsJ0alak5fu+//3d+9d/9eyLpOLIs4Fob3/nm8WHz2OuKGwWUG9wmfgjTTrgprLN+6T+BC9Ln/uMGV5fN6dsvNciQ/H7zlvFo83hYr5XJruSRHZFf+cVfYOLSWQ4MRdA8CrIoYTgCJUvgI08+zWf//Bg+XaUj08bP/dzP8cwzz9CfsOnvSjE9NowjuHz/hVcomHD0wHZqxVVUVce2FZzSEuVKHc0fxhOIcfiB9xHf+xh79+5F9/sa+wmLEiK37pnePM6uC2AFQcBu0b7vRFjQ7Gfb3E43rKVa3N/KSWezW0urNG93/l7xo9ZQtk7/5jx3O0HOOta1r55/XWvs97oJ97I2aJmXe2vvSNLWAob7+LuDezUVvq9xvY//KTD/zz/AefsK8k9/8BYSspmMrKN5YvthFg6tcC9mYu+G5narCe5ugy7dS0j69ZQ2S7LvFc0bgW8OktHs6/tOCX3z/VunIbTMc6uJtllbumW/bcHim8n0Zo3rnbBeJtNsSMtHRkb4+l/8Po898ijXrw/T0z9EKNyLL9iGrqeYnS8SrAv4/uPvU2iLkg15sSwH3efDcSDo95BbzbJjaAejwyPguBi1GnNzs4SCPrq6M6geBaNeYcfQTqLRMB5NJRQKszC/hF9XmRgfA8cmHouAa6P7/bSlU8zNzVMsFJiamubxx99HtVqmu7sLTdWYmZkj3dbOW2+d4tFHH0bzqIyPTxKPxSkUinz7G99k27Y+QpEApUqBRCLN4vwS7Zk0wUAABxsJiUDA39iTdHmZcCRGJBRkYXGBYqFAIBjAcW0WFrKUiwUefugBLLuO1+vB4/OhqRKLi3NMTU1iGHUCwRD53Aq6ruPzBzAts+HHLciEgn40TSUQCuP1B1hdyVEs5ChXSoBAIBDCMMo4WKiqRqFQJBILosgipaKBKKsMj16hq7sTGwFFEJmamObow+8jEg1hW2UUxYPu9SLLMmbd5PRbZ4hEImsRi0Xa2jK4CMSTCUqlIpIsIksyqUSSaDyOpjYiEYcjYeLJJAIm4VCQYqlEIpEkHI3h8ShIksDI6FWSyTiiCD09XfT2D7C6ssIzX3sGWVFJd7RTLBTw+31EwmEkQSQej+MIArrXh205nHj9DTraUyDLqKqMIstEQiEcx0HTJBBEfP4giwtL1GoV+vq3093dQXZ5Hts2icYShGMJOtvb6exoBFCaGB9n565ddHf3o6kKsiISDIVYWFomFYsSjkQolMscPHgQwzAQcWlLp5ifn2N4ZIShoZ2MDF+hv7+XpZUs7V3d+AIRXnrldbq62gmFgriuQzQWpaOjnVwhz3J2hUxHO9nVFQa2DaDrGvl8AWJhtDfP451axvOxx5mfW8ar+ymWioiqgBTS6Wnr4AfffYH+3h6kkBdxEzvZTFw3CrY2EtfN1jH3is3EyrZt3G+9jICA+OQTG8qwfu2NcbXLROyxWyW7YexxXRexUOHzf/DH/Nt/86uI9TyxiIPHF0FSA6Q7hkh07GXv0Y+yUtG5cuE89ZrJ5QuXObLvAK5p8sbZUS5eHGduscDpsyN8+GOfwJZSnD97mW09PTi2xIULw+zdFmWgvxOsGkZ+mfnJUa5dOMWJ57/B9PAFzFqZgCZhSRqqquK6NwPhNc/nzVo5510irnBr7IPmfFul2Go2aBYmb9X371Qr3wr/fxLX282nzVjXvspHrRuRpe91nryb8jRDFO/7uP59wP2owvfxnsBmUmN/oxFVWHrqAzd8UO+EVqTuToPkna5tZd66+Xzzdc3XbkWIWgVq2qoutyPMrcp1g9jBLZ+tojYKN/64+WmRdiuN5Ho51zUDjQAJa2ZFrrAWfVdg3YJn8wKkdXmkxn1uU4nW0tpwvCWh3KKvBIcGoW78R1j74K5tYwMILoLIje/g4uIgCjKuAwJiwwXIbeTd3M9btQ/cXOhICIgOCI6LLTrIuAiGycmXXsMne/CnfHR1byMa7cHjTVGuOqiayujoKB2ahvXpXyOnq/geOowsSbz80gsM9HQjuy7Veh3dq6NpKqqqcfyNE2wfGiIWC5FMpahWDQJ+P7MzM2wb3InH46Nas1hZWSWRSpLLrZDOZOjp7admmNiOTbVSpVqtkEln0HU/ujdIJB7C5w0wevkSiiqwb98RJAV279lNrVbn6tXrDA9fY9/+A+QreUwBTp46TcQfI+SNoGgimfYMkqwwPjFJ3bCZnhsnEo0Si8Txe0NUShVsR2F4+DK27RIOxiiXi6TTfoZ2DlKtm6iaD9dxmJ4eJxQOo/r8lCoG7ekOzGodrx7g8uWrRKNhIuEQy4uLGNUa/qCffKlEOBLBsUBRIRgOEYlF8QcaUZCLuRyqLGPVK3R2pMitrKAGg8STUQJ+L4lYgnAsjlm1CEaidA/2E4n4yK8sIboSriih6l584QC67qGjI4OiKWDbSIjkCnnK1RJeRSMejVIpl9F1D6ZVo1g2UBSRtlSCF48dw6jbdPX1YBgmquZBRERCQsDFqJWJRUN4tMZWRKKoUKoa1A2T/fv2k0imkFWNlaUlgsEQkiRj2S6WbeP16lQrZSzbJBgKoWpeFuanCfj9OLbF8vIiXp+GovjRdT9G1cB1HF5//Ti7hrYh4BKORvDqfnSvD5/Xg0dTaQwHDj29neg+D47jsjA3jShAzTTo7etG9weRZYFkNATYhCIh6qUK+VKFaCrD9fFJOjMZxkeGWV1eRUDCMi0kCXp627l4aZhyKc/Y2Bg9vQO8ffEysWiI7333ea5fm+CBBx4kkUhy9eplevp6WaxVcNri+N44i311HN/HH6VulvH5dFzXQ0xw+LM//zJyMMmzz73M0b2H8Pp1LBzcteFGciVkR8YRb92man2UkgQRwQXHskHcOnL5Vmg1Jt6YF7/5MsAN4rp5vNl8T/N/13WRgbpjI6gq9ZqFXahz7sx5fu+3PkNGr7A4n6O9cxeh9CDxzHbOXZ3hgUd/gr2HHmBleYVDB46yd/dhtu9s5+LVcxx58DE++uGPsv/wIWzBizfQxYlT4yh+kYEd+5G0AY69epadh/oZ7N9OqbhCV8YDTo54VMUnyQi1ZRavv8382AivHvsBb508SU88jVApIwp5tGAQUwxSrjf8UmVEZNdBdF0EQUREQHYFZAckd21YZuNHbOofXHfDcVEQGnvHui6SKLa8p5U1jrPFWmAzKROb8llP753YH91pDfCjxMY5rXWem+OD3JiefS5ir4OQ2jjn36nMm/f4va1AedPHdYQN99/H303cJ6738Z7COkm1n2kQV/HJ99/1va0C99zL4PXuSQI3nt9K0roVcb2XCelezKOFLa5vee0diOs61id2y7JuW9dWe7NuCfcu+2EL4nr3125dng2mxPbNLZRa1Wf9ujsKSQQBR2hEIfWpGsV8ma9/7evs2XOQQDBCPJWgVLTI5opcunyZT/38J3j44ffRdn2Ott/4PYT+bszd25m8Po4kSfT19CKJErl8AQQJy3LIZnOEQ2E8Xg/Xr48xMTFBb28fkqRw+vRZqtXGliejI8O89uoPKBby7N69CwHw6X5EUca2LBLJJLIsUy6XkBUZ27Y5efJN+gZ6KZfKpFIJHNdmcmoOs27i9/kRBIFMe4ZTp96kZlTp7eunq7MTjyoT9PmQJYFAOEylUqFSKZPJpAmFAvQP9FIpV9E0D0a9jmmaGEadXbsGcR2baCSGx6tQtwxs20H3BfD5/Hg0DzWjgj8QQFM1PKqHwmqBudk52jvbmJycYGj7dnKrOWRFJeD3k81mCUfCIIqIooTjWA2/SMfBMm1WV1d55pmvs337EF5dx7ahUjHw6j5kUUKk4S9qWTYri0sEAn4E10WWJGRJopgvEI7GcRwbXfdiVKt4NQ3DqPHsd79LT08voiQTTybwqCqiJODYNqIkMjp6jW9+8zts6x9gdTXLjh076e7tZSW7RDAUwqyb1OsGq6ur+AJ+ZEWhVCkhCgLlUoVSqcybb52+4Zv89rlzDA4NEl0rr6IoaJqGLMscO3aMaqXh05pMJPiTP/kTnnj8CQr5ApIoEYlGsdfMZRcXl1A1lXKpzP79+5iemkDzqOTzOaKRGCsrq8iKxvzcDEtLS3i9XsrlCoFAgEKhwtTUBDt37mpsa6No1GoGAi4BfwBZ1qjW6qiiQrqjE4+uk11ZBsemr7ebcDiC3+/H69O5dn0UXfdy/MRJ3v/4Y3R0dDIxNcVrr71OKhnn0MHD6D6dtrYU169fY/euHdi2TW41R6yzEzedQHvlFPXL15jojzM+eo2gz8PM9Cy//p9+k30HDtPR2cbk2FW2Dw3iAormwbXdhshMAOc248j6di+iKDaCCN3jfHK761sR15ZYkqAsIPg2mtw6uA0xnGUh1EyOfe9ZfuP/+CdEAjKJmMKBI30IWpB80aVYLPPoY4/z7PPPsX3HID3d3TzzlW9y/I1TXLx8iv/ym7/Fn/3pF5gYu0ZvTw8How/zIfFTPCi/n5+K/CMyhX52t+/j9bmXKZSLCIKHdHsXC8t5qqYMWozZxTKKxw8ImJbB8vIsI1cu8cJ3vsPw5fPMzU0gijJe2Y9PVxvBxSQJ03EQZLkhXVybo9bHVFq031bC6PW2WRcMNGPz3u63ELXb98DNfFoc+3EmrrfLc8Oxta9i0kVMvjNXoXdeL/Fdi1lyH+9d3Ceu9/GegOve3JPNdV2cbxxDEED+6Z+4a7LlOA6GYeDxeFr6rtwJf1eI61bmuI59921yt8RVFEVM00RRlC1Nrhpf7kUL3vq69Wfk5l6A7z5xbaktbyLSW9XndnW6cUYUsNcWWZph8Zv/+b/y1JOfwOv18eabb5JIdFCtu2i+APFElKef/CiR50/Q9f9+lcr+Xdjb+pBEmWgojCRIuC7o/gAnT51iYmyWjvZOlhaXqVTL2LbF6mqW3t4+ZEmhWqsxOTlFT08vkaCfVDJBNBKmbtRoT7dx+cpVBga28+KLx1hcXMare0i1JfBoKtPTU4iiwNDQELZtUSyWKZULxGIRdN3Pd779PVRNIxgMoqoyrmuTSsVZzeZpSyYIB/0sL80Ri4dZzZXQNJWZmWl0nxdFETFNu+FPW64wNzdHpVLB59cxzTKqqpJdWcUf8DI7t0CmvRNBkpAkmWx2Bb/fD7iUi2UunLtIMpmkbtTwBT1EY1FARFW9nDh+El9Ap1gqEIvFyOXyiIJMLreKz+djYWGBSDiCpnno6u4jEo0zv7DM2+cusnvPXmzLYnlxec0EWOHE8eOcfusUstTYE9euWyiSwhe/+CVwXELhcGM/S1VlcnwcVVHp6upa025qa/tamuRyOaq1Kl6vj1Aowq6duwkE/MSiMWp1A9dxqVTLBIMhXFxkScbn91OuVJAUmUq5QrVcY+zaGL3dPaQ7O/GoGsl4AgeX02fOkM9laW/vQBCgVqtSKpV4/Y3j7Ny5i0wmzfLyCvv27sNFwOcLIEoyqqpRrdbIri6TTCVRVIVgKAiAponouhfLbkQwtkw4f+ESO3dsIxKJUK/XiUajzM0tEInEyGZX8fsDTE/NEovFUFUZAQFJkLl0aZjXXz+J16uRSCWZnZ2loyPD5Ng4uk8nFo+TyxeYnZ3j4sULHDiwn8HtQxSKBSrVKpZlMzExjoCL47js2bOH/GqWWCzM/MwMhXyecqmIz+dD0L2UQj5Cb16kfblIdLXIK9kJLo5P81Mff5qu7k6OHt5PaXWGZ597ngP7DyCpGq7T0J4JgntHmdr6uOkK/3OJ6/p4Zf25F+eSjHTE3OhWI4JrOxiFewSZ1gAAIABJREFUPF//67/i9z7zXwh7CvR0xOnu7uUnfuopjj72MWbny+j+EJ/4h5/k+OvH+dTAPyPx8jY+GPgoj3o+yD/f/2tobyc4Yj7Bk9ov0DW+j/B8O5igSApOQCRiRumxt/ORXT9LG0N8ZeQ5RsaXOHNxipMX5hieKXP5+iLRVAe5YpnOtjBhn0NQdrArZXKLS1y9dJZv/O3XeOaLX+Ej/+AD+LweambDRMJ0HMS1Ots0fE5tAaR7IK6bXY5uNwffMhfebb+2EKD/fSKuW+Fu3Lje+Q4P94nr3wfcJ6738SPHZsnm5omg2RR4fWB0vvEicG8a1xtmVbcJkLD52GYTls3ka3O5tjJ5uZ3PbfP9W5WjVXmb0YqItwpOtDm/DWV0bt0E/HZoNWk1B8wQhEagl3w+j6ZpW5NW2ED0NvvIbG7z9ZAYrYhz83W23UrLe2sZGhqQ1m3Vihw3l9N1GzZot1wr3OprLQg3g7Y0t3HDsLNhSuhaNrmVLP/qn3yaX/3Vf4tH14E6IV2iVnH5y7/+EvsOHiB8bYz0b/w+ocujfCk7h9zVQcDvR9M0KuUC58+fI5fLo+s6E+NTjE9MMDc3S09PD7n8KtsHt1MsFQgFwywuLaJpGj09PSQTSWZnp5AkkWw2i8+nIwiQTGdYXFohm80SDAZIJOOsLC2jqArhUAh/IMjkxATt7Rk0j49qrUIo7Mfr0QmHI/R0d6NqCl6vhu7zkE6nSSXbGB2+ytLSPAPbBqjbJtNTc5RKBYZ2bCefW2U1l0VRVAyjjt/vZ25ujlQqRSAYJJ9foVKukF1epVwp0t7RjSQr1EwDo1ZD1/2oXg3DqGPUDNLpNNFohEAwgOXU8eo6o6PXiccSvP32eR586CjhaBhZlJBEmdGRUTo6ugAXTdMoForoPp1arRGY6vgbJ9i7dy8ILsOXhzlx4iRHjh7FdV08mof9B/diGgbhYIhCvki1Vsej+8hls8QSibVtjkQK+RzxeJzF5SUqlSper5fsygqiKODz+VEUlYX5Rfz+ALq3EdDERUBVNSRRoFotE/D7kEQRRVUaAZYUBbNucW10jIGBQWLxOB7di+rxYFSrqKpCIpnEcmy6O7vQdf3Gs+nz+dm7dz/FYhFRFInH4ly6dIlwOIrP56dYKje0sx4PotTYJ3VxaRlFVqgZdWzTYGqqERV4fHyCTHsHL3z/BR586AjLy0uEwxGq1RqxWJyFhXlUTcPnC/D662/Q39uL5tUYvjJCJBxjeOQa8USCeCKBoim88P3nKBbyPPzQg6gejWAwjCTLeLweDhzYh8+nr2215OVb3/42Q9u3s2vHEIrW8GeNxSIsL86TTIQplSqcPXOWwcFBDMNgfGyc9GA/ViKEfPoKymqJeM2h959+gs6efkRJRVNlOtIJJibGeP31N9ixcw9enw9BsBAFGxfxlve7+f2/OXgIG65rFoRt9oFtPr4VnG++1Lj+449vKfh0XRf7zUaUYPFI/UaajuNQK1UYuXCeP/qd/8Zf/PFnEewa//ATH2N+xmByzmR8vsT7nngaTyDA229c4HHno3zS+BdoiwHKvhzXFkZxdZgrTjKVnaBImdOFV1C2W0w6I6xIcyR2hHjh+EvMMExVKxGxkuzRDvHzA5/m4dSH2ad/gJ89/Eu8kT3Hz/z0Jxi5tsjU/Aqi5DAw0Em9XGHb9j14vAF0XcArOtjFAq++eozvfuvr+EJB+rcNIMsqgmmv1bvhFiNKEq5tt1wDbIXbkbDNfbLhGLeuaVpBbDWX3yG/rcp5u2PvZsCnrdY3d7pn48HGP/uChLso3qJ1vZu0txKa37mu4j2tce7jxxP3iet9/MjRTOA2m+FshXXiKj31gXvKazPBuxdy2Iq43ume2+HdlPjdTjt794m8O2VqLke9Xsfnu/0WDI2btu7vW4UFN/fjvd0kJAgb/WHWjm4oZ1MuwN0Flrjl2dmkcW08J621162ea9u00ASJC2+d5cVvP8vsyBj//Jf+Jd5QGEF0KGenqKyMsbpS5f2JNOl//9t4nnmeKVXEed9Rop3tTEyMEwwGuH5tlJ7+Ljo6Oxi7PkapUKSvp5e5+WkeePAIyWQCRZaZX5gnFksQiYR49tln0TQV27YJBP1UajVs1yXd3k46k0FWVVRVoVqtcPLkSX7yQx9kfHyMWqWOIIhEIhEERKrVGolEHJCJJuLIClTKFTLtbayuriBKUKlUqVaqlMsVTNuiVq1x4sQJ9h44hB4IUC4ViCeihENhNE0jFAwjiTKGYRAIBJAkiXgihiQprK4ukW5rZ3Jilu7uLgRJRRRFJEXCxWVlaQXN70OSJUKhELIkUTPrlOsVXNtG9/pxXfD5fQzt2I7tWpSKBTRNw6ybLC0sEQxHUBWFcqmIIAp4PF5wbRRZprOzg0BQRxRdFuaWeeTR96H5dEzbJuj3Ydo1FLXh/zw7v8gbJ0/xwMOPMLCtD38wgOrREAWB115/jVQ8geLxkM5kcByHSxcuEgrF8Pv8mHUTr9eDosgUcjlkVUNWNYrFAitLS8QjYUzDoG4Y4LiYpoksSOAKdHX3IIgSjgCC0nhPivkC2ewKCNDe2Y4iSdTr61uLNN4FSW7sLfvcc8+RSqUwagaKpmJaJolkg3CWymUEQcRxXH7wg9eYmp6lLZUhGNDRdR+CKNDe0Y7rusQSMYr5VQAcx+Xq1eFGhOhaEctxsGybrq5O6tUqmlcjGo1z6eIluro66ehKc+bsBS5eOs/TT30cSRTw6T4CoSDnLlwgnWmnbhgEAn5sy2R2bp5gOIxZr9PV2YGAjVcPcG10lCuXL3HgwG4mro+SznTSO9BPtVYj1Zaiq7sbRZGRAjpzfgXvcp7ghXE4N0zxwUP84ef+nOXlHDt27+aBA0N85zvP0Zbupi2dAcFCkCxcV9ryPd80iNwyPmwlHL0b3NC4fvyJ297rvNnY71M6at3YHs51Xf7HH/0Jz3zhC0xevYQi2yQzYa5PLFO1QqxWVSLJFKVTAvuvPMLPxz9Nfr7AsaXvkTgc5tibL7LjyCBvXX4LT0zEG9dYqWbp7ksTDIWRZZmp6Uk6OtKkEhFi0SDp3nbUDpE5zyiuBN66TlswTY+wjX/a9UscNT/IzyY/zaf6/jUHPZ9ku/UJdkafQpndg5zvI+u9Qk9PAIwChlFicW6W2Zk5VpdX2DU4yNzkPK5pEfD5QWj4nYo/7PzYqt1b9LPLRuFzq+jOsFGEeoN4tTh2pzLe6xrmneJu7938TN96QeOf+SUNZ1xCfsC69Zp3oWy3I67v5trrPt57uE9c7+NdhyAISJK0wfy32Qx486fVIGN+7fnGIvUeiWszMWk1iW2WbN9pomu+ZysCtdUiplWU461wJ1/Vm+nYuK6zti5qBBAShNtHU75RdkFY+7Dx00oDLDisByi6Gcjo1n5qlm4LQmP/3Oa+v1n+m/c0Pwet+wkkWUSU1oI6Ce7Nojd/WN8DcH2POeFmuQV3Tcu6Hppqa2wuz61t32hrFwfHtW8Rmq/XX6prjQBOooMguFiWjUfxUF5c4Qt/+T/o7Oji8JGjdPX0I+p+FheWWZhd5NzxN9n3tVP0fus1/M+/Rr0jzVhnjGXR5uTp02iaRsAfoL29k+XlLD6vj2qlSq1WY+euIY6feI2HH34Aw6gRi0UZGR0hmUjh2DZzczMcPHSAdHsGURbQfV6isRSvvPIDzpw5w9DgdsauXSMYDBMIBuhoTxHUdSI+H+FoAFUSGb5yhdVslr5tAximw+TUJOFgENuoszA3haT4iMUTrGSz2I5Fqi1FIOgjGIgSi0VJxuLoqoquqKzkc2geD7bjYNkNAnXl0nWi0SCSZKHIEgtzCwRDIQRBQJElBBlsS0D1aiiKgiSI1GsGsWgE2bERXBdREkBs+CDqPh+aR6NYrCA4IsdefJH2dBqfrlPKF8ln84CIqKjMz8/guBBPtVGrlFFEF9vxIYhQKmfRdRHLrJEvFddMj2FqcpJgOIAogiTJqB4v8USSzo52IqEgxfIqwaAfXJdcrkBXVy+yorCynMWjerlw/jJTkzNs29bLxQuXGRkeZaB/G6IocnX4Om1t7ZimhcejsrKyQDCcpFCu4CKgqBqTU1OMXRvn1VdfZ3ZmjrffPkcqmcTr8VIrVykWS9iOg1EzcG0H3evly3/7DLVKnRdfPMbOnUMszE7i8ajs2buHQiFPKBrlr77wV+zePYTXI4MLoUAUyTFRZQVF08i0d+MNhvjcH/4BjgM9PQMU8mVKpSo93T0ouobfH6BYKK75FmcRxTptbZ3oepBro9fo7u5A07wMDw+za88uZEVmfn6Rvft2sW1gJ7WaQTqTxKjbjF25QnemndzKCulUijdeexVNkens7cS24PnnnsfnV0ll4kxPzLMws8ShQwcYvT5BviISirUhKZBKhrk+OoIqKKC4a76rXrShbbjpFNrla4T+9jv0Lq8wKIvIj+yn7Kh84IMf4Ktf+gtq5QLdfTuRtCimVbkRwGd9XHXFFoPTprGheUy5G23T5nFR/PgTiB9/YsN16+N9swvFjb1BDxuIoopkSyxOLvKZX/81Lr19hmpplULJ4Of/2b9h//ue4kMff5r9ew7zj8xf5pDwMLa/zivzLxLfF2Lbrj7Onn6L3u5unv3usyRSIQqlHBcvXCS3skq2VObk6TMk0ymujQ5jlEtoWoi5hRUWVxYw62UunjvLfG4eb7vCTH2KXDjHNWsUfZuJ01Gi6K5C2GV6ZQGhpNKZGGBn8AEeD/xLBq1P8lDqX/BA28c4lHyYRDHNiXN/wsLINeby87jEKNWzZNoDqLav8f7bDoqs4NoCIhKO0PCBbcQXELBECc0qI+LiiiIWApYNpmsjaCoVq44kS1hGHdF2qdoGsqdhnlyzbZAlBNfGFQQq1SqSomC7DR9o17KRJBFsC8l1sAWRxqNhg2sCFoIg3xIEaj1oVHMgJ0kUNwST2nzPhul70zPxbqBZ0bD+e9OjfUt+N9YBa4EerZONukpHzJaa5i3zdmlql7UgWtzqwiO46212s61cLATBbRx7R3sj3MePA+4T1/t417A+ka+H8L8d7mSOIj75AZSnf+JHUcx7MoXZfN9m3I58v5My3Sm/9WlqYx3uTL5vmzct2uIO/qOtJM1baRPWJ711SJJ0M4hJKw2lbd9lm7aS9t69F1ErM7DN59bPN5d9K0GEIMggOAhSg9CIgkqlYvLbv/Wf+cmf/BCyrGHWHQQHzNFxor/zeZTP/TVHz1xDNkyy7Umkxx8iq6sYdQO/T0eSVXbu3Mn09DSptiSOa3H+7XMkkgm2DWxrBMaRVTSPSigUQhQlotEYoVAIVVOJxSLUDINEMkk4HMare6nXDFZWVvCoGpn2DnyBAPPz85iWibvWDpOTk8iqgqZ5iEbjRONxXFHi0sULpJJJcB3y+Tyd3V24tku5VCIaCaMpCqViEZxGG549ewZRlghHIkzPztLV3UkwGECSGibmqqoSDAQ5efINMpk018cmGRgYYmZ6lnK5BLgkEknAxaFhtlo3DIrFItmVFVSPl9V8Dq9Xx7IdysUSqqIiS0Jja5xAkEQyjtfvYWGxYTL90kuvMDg0hKIqxOJhZEVBEERqtSq57Cp6yI/mkalWKuh6EFwVec0vU1O9aB4PqqJQKZdQFA3LtHAcB1XVMAyDQr4RIMtyHERJwKt7qJbLKIpMIBDEsR0OHz6EV28Q8YA/gMfroV6vce7t87x15vQaSXYwqmXC0QiLiwsEAkE8Hg9er05He5rBwUF6+3rx6l7aOzKMjV1jemqGRCJBJBLBcRx8Ph+mVcWsmxw9eoT9+/cjCAKBQACPrjMzM8ept04ztGMnB3bvRfd6MOo1HMcFQSRfzOH3NwJBpZKphkY8Fmbnrl14PV7K5SovvPACe3bvYXpmmlAwzFe/8jUkQWZqaoqO9jSCqDI5Oc0rP3iJAwf2IogSHo+GLCuMjo7y3Pef5+jRI5w88RaRSIjl7GLjmQuHmZ6doVKrYlome/ftxQVMy8YwLJaWlnjwwaOoqkoqlSGVSCLJAoIkcP78JYIhP1cuXSQYDOHz6fhDfhRNRZGVG5rkqgjCrn4s3UPbUp7Q7DK+bAH38cN4VImB3h5+97d/h498+COogoSDiSzL4Lo3AjC12ge7Fd6JRuterhcEAfukArhIRxtuFK5l8xef/zMunj+DKNk8+PCD/OZnfodQrI3tO3fz2d/9A35q6ZNUchVOma+Sc+YRNZsTp46Tz68yPT2FadWpVAwqtRqlQoF0MkY82ohQvnPHIBcunMO1HSqVGoZZZmZ2mqmpORYXsni1MJZbIxKL0NXVjovJ0uIM24e28+bJN+noT6OENMpKhen8dcyIwWsTxwjv8SAFLBaXFvA5KbrUB+kLPsS+yMeQc2GCpQ6kzhrVSonLFy7jk2NIAZAUF0F0sKjjSBaKbSG5NpJrIdD4bgsajiBhu8IaGQTqJqLrouAiWQbzY9cJqgrFfIGQ7md5do6oz0+9WEIBHKMGtoVCI2Kz4zTmBtuycVwXSWoQWheBNVrbkKsib9mHzeaw96JR/VES162Ey63y23zdDeJ61Lo34ropfUEQbqmjIAgbfIg33yzcJ65/p3GfuN7Hu4LNGtXmga8V7kQe71Y6/U7wXiaud/bhaOFzsyFuRGsCfLsytjKxuhNxdV0XWZZvKW8rreVm4trqOdlc3rvzUXl3iGsr8+Hb9cNWz7SFCCJIroMmabx99iKf+9xf8KlPfIxo3SX22b/B/8Vv4f/LZ/A++wqiJCLu2MYln0zgkUOsug56IMBqLo/rOMxMTzf2yAyFWFxeIJ1JUa/XCAaCvPTSS4BAX98AsWiC5ZVF/j/23jvIriy/7/vcHF+O/TpnpAEwg8GE3Qm7yyVFkxZLMssyVZItV7EsWZarbImWTMpFusrlYpGWVNKuTZGUZZtm2iV3ObPL2Qk7Oxl5EAdhEBsd0Ln75fxu8h8PjWk0GhjM7lCSl/hVvX79zrv3nHPvPe/3O99fjEZj3LhxExCo1+sIQjdjp22HaLZbKLKK47goYkA0EmF0fJIgEAgEkXOnz5IvFNj7+OPIqkKmp4fA95hfXGR1vUA4GuPWwjzjI72IAtQbTdLZDAEC169cIR6P4TrdzbLv+cSiMfzAR5REMj09NNodktkslXKelZUVBAReeullhgaHaTUbrK2tke3p5dbcEuVKk3Nnz7B3396ua6coYJgGhmHjBz6yJGGZJq+++iqZvl6SyRQEAoHn8+5b7xCybDrtBoZuoOkqsiriCz52OIwkyty6Nc/uPXuwwiHwO2iaTqvdYer6FJl0lnK9zne++10e27uPIOi6D5umiSzJ3fsV+LTaTcJ2GMdxuDV3i1qthm2H8TwfwYNqrYZtWzQ7TayQxdT1G/T29dJut6g3a4TCNsHtWrHZniySIlKtVcAXuX79Orv37CIejyFLMoradYUGgaNHjpGIpwj8Dp7nsb6eZ3BwEMdpY5g6iqxiGAalUolUKtV1i3Yb9Pf3oSgqCwuLvPrqqzy2bz/NVpul5VVK5RLjY+OIQUCtViWeTCBKErppEo6GmZmdo91qIcsSgu/z0svf4YkDT7K0vIyiqN0Y0k4bXTdQVZ2B/gEWFhbJZLI4jo9uGCSTcfbv34umqwR+wNTUFIlEgkwmQzqVIhyxCYeiGKZGIhEj8EUkWSIcjdA30IcgiXhBgGYYgIiiaHx86RKpVIpv/emfMjY6yvVr1xga7iedSVEoVjh/7iSNRocDTz6DHbHxhA6KpNLudAj8ridGrVZFVRRamoK5fzftZgv16Fmks5dwpueRn9rDxOgoX/9n/4ywrjI0PkogdLnwhgXMe4hkMw/z/dbjHkaubOZbgiDgnewCI+lpFwIf0fF4583vc+bUSYqVMv/kV36VVHYAxQjzvVdf4286f4+IHmVGu0a5UkYWXVZWV+jt7aNWr3czXosC1VqFdDJDxNRp1lYImT7psI1lSKytrZNIJlgvVkln4qysrSKJMgQSsqxRb1Zp1OucP3+WwOvQbFTI5Qb44P33GR0dplQq0dc/wNzsAqlMjqHRMWqNBp7scnn+InONOS4UPsBINXBqAjusrxBy46ydW8QqmhTVq1TW18mMDqGqGh3PIZBuexZ50u3nJSAGAkLg0xYtgkBACFxwWohBgOV7OPUq01c+5vt//hK/9Ru/wfdffolvfeP3uHLuJIfe+B4zV84xc/kjXvve6xx5710unjzB6SOHEVtNMv1D4Hf53W2Nxh2FBggEokhANyv5Bm2nOL0ne/1DrKG/rMC1+xu+m0SpW7JOQLwNXh/RjyM9Aq6P6KFoK9jbYLpb3X//IoDmg+jzSkzwafRpfW91Ud4AXxv35EEgaWv/m0Hsnbqst93BBGE7i6p4l7vY5j42z+Vu191NfWyLUT/d4rodgNtwE978uTvWvVl4N/ex9fofhjYPv3Gf/eCTwvXb0caY94tL2tzXxv+bz4N7k2L5vo/ruoiSjOA6SI7D2Q9PYAciz1Qd+r72Daw/eg2x0cRJxfGe2IN3YA8Luord30+6tw+n02Fq6gaWHWFxcYnBwUFyPTmi8a7F1PPcbrbZZALX8ajVaoyPjVMoFmm1WvQPDNBotqjWagwMDoAgYFoWtmXgui61WgNBEJEkianr1zl69Bg3pqYpFIvUajUG+/qQFJl0tltKRZJEJMEnmUxz8dJlLNtidHQYVe6uyU7HRZIVNF0jm81QqZQpl8tE43GuX7/O/MISfuCR6+1FksXbmb5dOq067XaLXE8v9VqD4eFhjh89zPMvvEi+UOba9Zus5QvIYsCOHTtYWloCAvL5NaxQlNnZWcqlMvV6jUQiwej4OEEQ8PGlSySSCcZGR0kkkoTCIZqNFqqu03FaiJKALCv4HoSsMJIsgRTgtNsEAei6SavRJBmPIysRbk7NEI/FkEQPz68TsmM06k0W5heo1xvYlkWhUCYWj1Gv1cj2ZHnj9Te5fu0GQ8NDmJbFyuoq8ViMdrPF8RMnEESR3t4cggCdThtVUwGBldU1TMukUikxPDTG+MQoiUScYrHI+uo60ViEVrNFq9lCFCQuf3yFaCyE63qkUmnW83kikTCzM9Nk0j3U63VyudwdrwZZEWg0GrieSzgc5cSJU0RjMUzTRFVVJicm0DWVM2fOMjo6yvLyMqZlIokiQSAQioS6ILxeQ8AnGk8jSQrJZArDNGm1W7zx/e/zxOOPIwgC7XabweFhPN8jk+nl9OmT6LqCoiooqs7aygqWbaGq3YRusVgMP3CQJZUb169Tq1dJJtK89957RCIRLNugWqsSCkWRZRVJFKhVKjhuB1VVMA2D2dlZxkZGCfCQVYWBwVEyqRizM/PEYnGskE2708LQTAShy5NkWeKtt37AQN8AAQKyqtCJhXF606jnriA7HuJKiciXv4Aiihw79B7PPP8ikqbi3bajiUE3o+0Gf9hOcbuVF/8wllf/f/03BIfOwPNP3HPMZl7mn1S7YxzsIAY+xeUVPjx0mBMfnsAK2YxM7mTf/ie5cOESvbUhJmr7ONU8xL79+2i3WpSLZdZWCximxfzsDP25NOl4hLAtcmt2juH+JMmoiiK2sRWZSESh066QTqeplKt02j6mpjDYn6JYWCCVDtFo+KytrjE8OMytuQV0RccMh8lm0nzw/nskE0nK5TKSIpLMJJmZm2ZsbIhLF8/jum08QDU0qk6dy4vn6UTzWLLEmPY8Xt1BrsC68jaHj11nfHgMU7Vx2j6mFqHhS4iyhucLuK5PEIi0axWCVpk3vv1HnPzgXWanb/Dr//SX+dM/+gP+4Pf/H04dPUGrWqeULzC5u4/3336fwso0lury8UcneOMHxzl+7CxuvcT1Sxd489XvIqkKx44cYt+ePWiKQuD6SIEHvoskSni+D4IIm4Dp1vcN2pwTZDvZdE9OiPusmc+DHrRP2dy2VZYLgoD3YVeJojzj49/nd7DtXmi7vrcZXxTuvU+3/SAIAhBF6XO/H4/oPwx6BFwf0WeizcJ5cxtsb+37Ycn9X/41/vsnEV88+NDn/PtiUve77u0skJ9Fk7pd++aPn2yOPr2fB81VFLYDoQ8Grg8z17u/fLAl9Id6dsG9QnUje/BntVbc6XKbtb1ZMG+30dA0rQtcBRVLknn/G3/MyPeOkv76NzGvTOHmMlQP7KbUn8GeGCLQFbzAZ/7WArVqjUg4zOLiItVyiUgswdzcHNPT08zMzJKIR1lbXWVgcIi52Vv4AaSSSSzL5NKli0xMjKKqMhcuXiGdTpNJp7v1PWtVHKeDKksoqsrq6hqHDx9lx+ROJEVG1Qyy6QwjQ0OcOvkh0VgEhABVlcll0szPzjA/O0VfXz/NdodYNELI0kASCRBRFRVFkVheXMSwLQzLJJFM0HYcypUapmUxMjzKlctXsE2dYn6VYmGNaDRCKpnC9wNi0QQCImOjIzSbTSrVOoqu8eWvfJndO8fQNI3XXnudgYFB2q0WqmaQSCQIh0MUiwUs00JVNOq1OtFojFA4gijLrBfySLLS3SwGoMgSiiyDD+fPXqC3px9REmg2aoSsEIIoIQgiq8tLyCKoqsTj+/eiSCKddgu306Zeb3H4gyNcuHCJgweexLJMXFdAVVRCYZNms4HrBjz3/IsYYQNFVdBUjY8vXMbQDB7bu59kMomsKBQKBeyQjSJryLKKoZsEgUCr1eLi+UtYtkEoHML3A0rFCrIk8uGJD4lGYiQScTrtFtVqld7efpqtNu+++x7j4+NYlkWtWqNarZJOp/nWt77FxMQEkqhQq9eQRAnbDpNIpFhaWmBkaAhJgFuz0yzN32J2cRFZUTh06DD79u6hXChi2WFcx2FpcYFIJIQgBsSTPXTanTvXoigK2Z4MZ06dZH1tjWxPD7Zt03HavPLKqxw8sJ90KoFmmHQ8geL6CtFolFAoxI0bN4hGo2giyE+5AAAgAElEQVR615rdk8uRSMTwXJifm2d4eBBJDKhUyoTsCMtLq6yuzJPr7UESIZ6I0Wq1GB+bpFyqcOXqJVKZDK98702GenM88+xBBMGn3epgaSFa7Sa6rgM+1WqF3Xt2IwsSgiQiKjKqqqJYJtVkHPHUBZZn5rCbHpmf+woXLn7E3Ow8O/buAVlEDEAMwBeFe3j85s+fB/l/+D2Ecg3hr754Dw/bzI/EQQ9xt09geigCrMzO8Pv/9t+yuLBIIHjkS2V27drF7I0pnl78GTpWEzOrcezYUcKhEFevXUWURJr1Mrsn+9GkKpm4jBy02bOzH1loUSmsEQ2FiMYsLFMgl42hSCL51TV0VaJaKPHYjhzxqM3ayiKxeJxGo0I4FGZxeQmQWVxeJBGP43Y6rKysIMsyUzPTrK+vk1/P4/s+qysreI7Lnr2PoekmsUQK07C5OT1LR1+mZU6RYJKstx+xpDOijTHXeo/f+d+/RqPaYCDbg6F61NaWSIdUlm5e5jd/7Z+wdO0i3/g3/4pbl05SKyzz0Ufn0f0OmiYzPDrGwee+xN/8O/8Vr719mI4r8vQXvsj0zCKTE48xPrqbx7/4JZ595gC6qpBNp+jtzfHeW29w/sxJ3nrzdd5/7x1a9RrZRAScNkLgo8oynXa7q9zcohTdUPZ6nvfQMuvfFXDdbuwtrfe0b/zv3gau8tPeXVuHT73GbcbcfjeyncfVxh/hEXD9MaZHwPURPRRtZ2Hd3P55glYA7/e/C+XqZ0rO9O8TuN6vfavG/Yfp4+7v7rUwb+Cs+42x8Yw2Yke3JpoSEO4BbJtdkjfN5r7zh/vXj+3288BTP1fgut013jnlAXGtm4+RJOmueT0IuAZBgOu6fPhHL5P4x/+cwddOUMsX0F/Yh7t/mLIZY2puFk1XaLebmKaO7wdM3bjJieMnEAWRXK6XwcE+Pjh8hPmFRbLZHkZGRvB9h7XVNTKZHmKxBNVqg+mbU0SjETS9G8NaKK5TLjf54IMP2LP3MZrNBt/98+9w8OCTdNoN6vUmPT051tfzAPT295OIx4nHYkRCNhNjY7TaDXbv2UWpkCdsWRTX1tixc4xKtYZlhdA0hYvnz2JHIyCIXaujaeG5HTp+1xWs2WqhaQZe4JPtyeE5PrValXQyhmVqiIHH4vIS0WiMtdU8um4giiK1WhXTsml1OoxNjCOIAYoElWqFyYldJJNJ6vUa8WSqe7/9gHQ6hW3ZNOut28lABAIBvCDAtEP4QYDr+rTqTYr5dRRJZnZujtnpOfp7B/ADj6PHDjF9c5ZYPE7HcRjoz6EqIs3WKuBjaCYnj59h7+4D1Ft1xkbHGBsfp93pUK1WIZCIxiJcvfoxtVqNZqONgEgsHaVWq/HWm2/RrjeJ2BFCsTjtdgtV1QiCgHA4jCCIiIJEo9nC9VxkWSJkhegf6EMQwXFc4rEkvucTjcXo6cmiKAqRSJh6vcnNqWkGBoZYWVllYHAQx3FYW13F930cx6FYLJJKpZAllWqtSiQcoVarEbLD5LIZBHwMTcVpNRno72VgfAJV1Xjq4FNMXbuGKks0Gm2OHTnCE088jud1sCwD15V4//332bFjB81mA9M0iMViJOMxcr09mJZJrV6j0Wzy9FPPELINOk6bVttlemaB48fe57nnnsfzPaKRKPV6A1mBIJBRFBlVlXEcHyEIcDptYvEIiqJQqzZ5/70PeObZJ7l69TJjY6OEQ2EMQ+8+62YHRVWw7BCRSBLPaROL2cRiYc6d+oiwlWBheY4gCGg06tghG9/zUCUVSZERZanrfhgENNoeb8/c4KlARpRlgv/4S+zeu4vf+dpv8VN/9WeRdQ0pAMkHT+QeT5etfG0rX/ys/C545f3uKv8U4CpYAVgQBB6qILAyP8ef/P4fkMvE+Ke/9ms8/ewXGR0ZJVcZJr06yqHlH3Rd1SWJjz/+mMmdI4TDFsX8CmPDCUb6w5h6B7fVQVU8DEMhHk1w5eM5cn1xfK9BN8WRQDwSJ5HSyWUMVFHgxPGbDA30YUVU4vEwrXaT8fFJ6s0mqVSqW8vZ0PE9Fx9YWS7iugFBICKKCmErhBCIjA5PIikK0WiI6zcuU6kWkGUTRfNYqHyEpAoM8CJKPUSoFuVA79Ps/9kcr7zyHU6+9yofvPEdvvG7X+f1b/+/1FemqRRWKcxP8VNffJL33j1My/OwZIGPr0yRyOX4yZ/96/zxt1/h4LMv8NieF3j8iefIr9W5dnWWf/RL/zPfe+8H/MIv/AK/+zu/jeO00HSNr77wDO1GA7fTYWF+gTd/8AMOvfsm73/wHqqisrq6Qjhso5n2ts9vuzXxIOvmXWvjR1hXn4UEYbtSQw8LXD+D+/uWMR8B10e0lR4B10cE3N8VeIPuF3uxwcx+FAYhbMPUfphyOA9i9A9yvXnQ+T/MmA+Oj/T4JBswd16+f68L0PbPQrjntV32YmlTEmECn8DvjivcfkHQjYES4HZll7vuldB1hLtrHEH8ZM6i2M34uxWn3hc0BsKd1+Z+BeETd7eNOWwW5HfccgPxnvMFsXsdAX43+zABgX+739sxLkFwe2zur0DY2r7VrfpOXmKhG7fkBwGSGKBLOhdOXuLId15l/lf/BS++eRo3GaH+9E7KmShWthdJ7iZYqlXbFNYLxCIhZDng5rUZhgZ7iUVtcj1ZTp88xfDYKKlkguHBPibHR7h4/gzjOyeIxsIoUjdT95kzZxkeHGd2do6dO3dw6dIlPDdgaHCAcnGdWKhbziUaiVEoFBFQSPXkEESRXCbLd156idGRUTRVoVQu4vou+WKBRDJNu9XC93x0XaftuBQrTZKpDJ1Oh0gkiiippBIJ8AN03URSZIqVGhEriu856KpGpVjBlgVUaviCwtzcHP0DQ6ysFojEUuiqgeuCbpgYlsnyyiqSCLfm5+gf7EfVNdqdNjM3Z7FDYRYW54nGIkSjMZAFEAJ8z0WTJRbm51DtrhXQDuk0GjV0XUOUJATX4c+/+11cz2VyxyTtTgdRULm1sMjS8hLZbC8Xzl/Gsg3SqRSaqmIYFuv5Ep4bEIvGQRDo6c8hyCKGZrCyssLlKx+z57E95It54vE4ru8BIqZh09ebo9WqU680iEUipJIJSpUKex/fz8eXz5FOx2m36rRbLeq1On7goirdUkQXL1zAtnQCZFy3hSTJnPzwIwaH+rh24yojo6Os5/OYlkmz1WJlcZ1Gs8GOXZMMjQwiKyqSpNKTzfDeex/guh6XL18mm+0hEo3w5ptvsXPnLk6e/JBkKk4hX+DqtWsEgkC6t5dau4Ot6Jw7c5ZQKESuvw8rGqZRqzM2MYaqaciKTiDoiATIkoChq1SrZUxDp5jPE00kQVBYXFwmFotimDL1Zp21tQKKrNGsV+lJR9izZz/NZotyqUIkEmF9fZ1iqUgqGafRrKGpGr7vgCCi6jKC2I2TFUWVo8dOMj4+wMDgALW6x63FJeKZGIosk0im8NwAQzNoNUscPvYhe/ftpVar8fY77zA8NESptEYsGiGVyhAEAq4PuqFQLpdQJIlWq4koieimQv/IIGI6iXb8HOLKGuJPPMtrL32DJx9/llgqhiuAp6gIwfay8UFyYCuf/zTZc6cczs996R4vkK1hKr4QIHsermDzwQdHOfTanxA2GqAIJHr6scIZ4u9OMlu9zv4XHufmzesUywvk8yWKq/MM9yUZ74+gii0kUcL3FTRdZm29get7hEM66VQIUQwQJZVaw8F1XTRNQNcMIlEZ/IBMOkQkBorgMz19C6deZ89olmRcIp0M4bQbFIolHKfFzvEcPbkenE6TwA/Ir6+jqgr1Rg1En8XlW0TCGUaGJ8n2ZFlaWiYSSbC8ukiiV6QgnsdvC6RaT2FUcpQuOOTELAvN71BcnqOwukIq3cPkrt3UxYBiQ+HKYpO/9rf+c/6zv/UPmK+oGIkBJvd+ganZFX7hb/8d/uSllzjz4XH2Pr6P/QcP0vCgb2yC//v/+kOyPSPEUoOsFB127X+et987x6/82q8yPtHLrsl+euMxLpy9gOz5vPv6a6huh9f+9JsUCmtcu3geTRaJxqK4SAh+N4uwQFdpIgg+QeAQID1wTWyQJIp3MhITbGTXvXutfV55OLYqbzfClDavv411Lz/lIj/VLYWzoVzcmCPB9j5d3WPvHlO4vekQtry22Qoh0C1P1gXYG9UXHoHXHzd6BFwfEXCvC/Dmz/cTwD8qYN2uz88buH6W+NvPWzu3fX/b30thm3iNh6XtnhPB9pbx7ef4cONunt4nfd8fBD4o+dInH+5Nc795jE8A8L1rZLP78SeW0btB/J15CneD4c0xx5u9CLZT0Pi+f1vYBsiihCxJ2JLP73zt62Tqbfb9q28yKmh4zx3EHx2gUKvRm+tjdnYeUZCxQhqmoZNKJZieniKVTLIwv0w2m2VxcQkBgYGBftbWily/fo3+/j6OHTvCvv17CehuShRZ4vr1G5QqFdbWVtB1Bcd1GBkZJWRHsaMG2VwGz+9ghUxaTpu+gT4Cz+sm1SGgWCyQTCSoNUqEwhaRsI3nOWi6TCKRZG52mng8Sj6/Ri7XQzKVYnFxAVHsltGxbQtFDGi3W1SrZXzfI5WIc/nKdXp6MviBh9N2sW2T+YV5REVD1VQMUyccCSPLMrqu4QcB7U4HSVJQVBXf86jUavT29tNpO5RLFZZm5um0HfoHBjAsA1/wcV0fSZJoNuoEgYvjtIjEbicgarepVCpYdhhRlHCdDjt37UGSZBRVIRwOIykqud4cO3ft4ubMDOMT46RTMZLJBLqhUSwWyGTTyIrK4tIK9VoDTVVxO21ESaLZbDA4OIiua5TLFVq1BpZxO3GTItNxHVLpFJqhY1g6XuDSk+tB1TXwu7GciqIAIrVaE93QEUWJcrnKzPRNfM/rWk7dFqqqY+gmheIaVy5fI5XKkEwkWFycxzA0hoZHSWdTeJ6DLEl33J0DOWBsYox4Ms5zLzxHPJVgeWGRp58+SLvVotFs0Nc3QCwaYWl5mYmJCWq1On/2Z39GNtODrluAyIkTJ+jr68M0NAxNw/McHKeNJIiAiG1byLJMq9kiHA6j6Sqrq0sQ+Jw4cZShoT5kWcQ0QkiijKqodBwH0zSpVhtYls3MzCyWZZNIJIjGIlSrVUK2Tb3R6GabDpvouo4s6XheQH59jS995YvoRghJVlhfLfP2W++wd/ceXM+h02kTi0YRBJ9yucToyAimodJs1OjJ9NBoNDjy4UmisTjpdIZisYBtGviBTzjcTbSl6zqSJOE6LUBADIURZRnpzGWoNgm9MMJH549wYN/PoSgGrriAGJj38LWHlTUb8akPDVw31XHdLNc22rz3VPwZBXnQoe36REyDyuIUjUqTm/MFDh3/iF/c8z+grhj4gw1W19Y4c+YM1UoJVZGJWyqpeBSv00ASQBFlFEnDdcuE7RCS4hHg4jgu6ytFrJBONBrGdSWWFsoUamX6e7P4boewrQNtdF0jGrcJ2RC1JRqNJucvXCKbCaMobR7bNUKtUqZaXiGTChM4LdrNbqiDbqgceOIghmWyvlbCtk3a7TrxZIpqpYSmiFiGhKEFFJw5hOwKSshHr2eJ5Pews/Ff8Kz23/JXUv8jL1j/DY+7f5svKX+Xv57+h7wQ+Rvs9L+CcC7Fk9qX+JkdP89e8SmeNV8gfivDz8X+U76s/Qz7nGfQboV4TDyAe1XiyV/YS7lU5vz5C/zKL/8Kvh9Qa7o8+cxTrKzmeWz/U7z08vfJlxbI5DK03BYnz55mcXWBm+dPcPrYYWZvXMPSLcaHxxBkARERx/W6gS6igidICA+Z/2Hb2Optjvk8gOvG+9Z1t1mubuS1eJA1GcAPtk/SuPHfhuwPggBBfMg9CnfXdf8s+5tH9P8fegRc/5LQdtam7cDM/eIstjKpzUzpR6XtgPHDAtdPs6j+qN9/Gm0HdB483v3u3yfWvg3a/P393F63atvvCIpNomvrBmfzcd3zHw40B4F/F9DbKhQ2NmH3m+tWKwHQtZbexwJ6N22vBLjH7Vm4V3B1/79XgG5WvGyA1u2UMZ7romkageth6QYqIr/3ta/xfEdj7F+/jDA+yEcRnXeOnWBwaJhwKIKiaCiqBoGIJCncuDFDMp6iWqmzuLDC7t07uyVVmk3mZmfZuXMH8XiSublZisUC+/bvJZFMoGo6QhAwNzuLHbIZHBwinUmwsrrM5OQErutz5fI1NMNCkVUOvX+EsdEJrFAUARXbVCgVCyiKjK5ptNptJiYmqNfbmGaISxcvMzg4RK1RIZvNIAgBpqkjiiKu63VLfwgCtm3TbrUgcGm32pimgWWZNJoNenKD3Lo1jWkarK3miSeTaKZOOBIlEo1QLpWp1Wq0Wi1UXcP1fOLxONVKjePHjrPnsT0oqkY41C3nEwRQK5XJpNNd0CcJiLKE1/bxXY9qpUQsHu3GKgoKnXaHG9euMjs9Q663n2ajiap143pf+fNXiMaitDttItEYmq6xsDDPxMQY8USMZqOGZZuIooCu68zfuoUgyaiKhucF6KpKfm2FeCJBsVhEEETqjQa2HUYRRF5/43VSqQTzCwsMjQwR4KPIMrVaFcPQ0XWdTqcDAV1QJErIksqF8xdxHBfLsggCn3AkRH9fP2tr65RKeRqNJq1Wh/7+HL4r0N/fz8L8LVyngyQJtD2fWDTCzakbHD18mGQqhef7VPNraLKMIolIQOB2y8YkknECISCRTHHz5gyyIqLpOpFomKkbN/jJr34V0wwRicbwPR/TNEkmEiwtLaJqCkuLC+iaxuLCIvFEipmZaTRdQxIlPvjgfWRFRpUtBEEim+lBVXR03aJQKGDoOhcvXsTzA67fuEnYDtNstXj11dfYs3s3iwuLtDpNYtEYQRDcAbm+16HddiiX61imTbVWxjRVED06nRaWZfPYnp00mmVC4Qi6qiKKAqViCcuyCTwPXVORZQlJlMlmsrRdH1mWUBWlGwucSlBv1FFV9Q7v8n0fP3AI/ABZVgjSSeSpWQig/xd/kt/+P/45qchexndMoIcqdNraXZvs7UDChlzd2OBv5k8bYz6IB28Grpv52sb5G/zcfU0nWBMRn2jScX00CeYun6SwViA7MMm+7E/w9MpXWTbnKDULnDp1mnQ2SzGfJ3AbHNgfQ5VFCmt13I5HMqmiaDUQdARBwDBFwEc3TMIhE0npIIjd+qQECpG4jRAImJqI49QQgMJ6jVanRSYdRZNElpYKJOMpkskQYVvGMEzm51ZR5RYDuRTpRIjx8WFc18H3XS58dIlbt2ZJp3OUSkVSiSiz80sMDg1RKa3Tl03gdRqomk673SKUFCl45ylIJ1joHKUanuMHN17nxPpxpoIbqOMuwiA4koOrtVCjKlqgI1QlSgsVFEfDLfuoikLTrCHKAnExhYlNptXH0Mwextb28mLkrxCdz1A93SHTHiD+VJSxXbuo1hwGR3Zy9OgpZm/l2bHrABcu3cSwkgzGJR7buQNNlvjTP/5jXn/lu8zOzrBzcrxbL9kwQZRBkBECb9vwm+3k61a5u3Vn9ln3ONsBzs2ycvN633i/n+y/Hwnig5Mz3WNdZfs9613zDLbzqHqUXfjHjR4B17+E9CDA+VBWsr9Aeljg+nloED8v+mxC4dMdZO6NN73//b+/kuHT5/WJoHm4uUtSV4g6jnOnFuvmONOtQPB+gH6ztUGSthfC28x2m6ZthOsWjesnfW7vnrexkXzQ2EEQIAaA4/EvfuN/I3Bc1LdOs+flI5QO7qQx0IOmmaTSGWKxKI1mA03XEEWJQqnMpfOXiUTCyJLE+Y8+olqpsra+TDyepF6vMzo6ih94FAsFhgYH6O3rZXllFU03CQK6MYTRCIVikZ5cD7Vqtyao57t02h2uXLmKohpUy2WePvgUzUaL1157gz179iFLPpfOX6Qv18+Zs+foHxhElkUikTjLS6vk83l6e3Oomsr0zZuEbJv8+jqaplGrN5EVBV3TWV5eJhbrupjKqsbpM+fI9Q6QLxQJh+PYIZ1mvUpf3wCu71O9nQxIUVQC38e0LDRdR5AUTMOi1Wzi+Q7j46M0201qtSrRSBTPc/BcF0kSyfXlaDSblAplKqUKN65fQxK7Fj/TspmeucXJD09hGjoC0NfbRyjULUmDACE7RCqVZmh4mHx+HV0z0FSVcrlEIhmj3Wpi2yEcx8Xzugl8JFkmEraZm72FoZlc+vgyqXQK33dJJpNYtk08nuDWrQWWlhc5+NRBVFUlmUqiyBKe6+I4PivLK9TqdSLhGCtLq6ysrNDptG6vQxFREllcXCWbydLpNAmHQizMd2ObVVUkGo2SSfcgCAEXzp9neGiIlZVlRoaHqFSqhJNJIECTJVZXV2m3O/QPDGLIMjenpgiHwqyvrbO8tMzw0AC35mexbJNWq8OffOslspkk2WymCxRVhcWFBcLRKKdOniJfzDM8NIgsgRkKIysK4UgEy7JQVBVNM6hUuooO3/cZGx2l43Q4d/oCo6MjSJJEYb2A5wasLC+xur7KwMAA8ViSD0+eQVUlentz9Pb2ous6kUgYXdeoVGp3AKTTcVhZLtJotPjBW9/nwIHHKZcrvP/+YUaGB7AsA1FUqDeqhKM2+BKu1421bDZaNOotyqUSrY7D+QsfMzg0jCCJdyzBhUKeiclxELqlluq1WrcsTrOJLMvdZF6IVKt1REkisA3kkxe4sCfNC194gXfefJe+oX4U3USQ1Hv411aL6ub27fjip8mzrcB1K3+6k4PiVNeiLx1oIsgKpibwe7/1m6wtL5AdHOW/Tv06C40F3vroDSzd5MDBJ7hxYxpd1RkZiBO3kxRLedI5nXBc7oZoeDrL+Sa2HUYQulm4m00XWfSRFZEA0FQNUQJFEdBknZtTV9ANDV2LYlkRrFCky2udDolUmmg0ghB4RGyLhYUVZmdX2b17gnqlhCL5tFtVLNtkdXUJ07DwAoe5uWUOHjjA/MItxsd2IEoiCwvzxKIhPv7oCvGEiSiJyKqC5zmIYkDDUUnkRnAli3g6x/PPP0etWsIKhTESBiVvjWhfjBJLvP3R6+x6cQIh43F2/iR9+7LIEZGivwYpB9IuQX+LSnwFNSExX5wlLMeIKDF26XuJnOlBPGOhLcT47q2XaXfgv/zFv8/Saonf/OdfRzUiXDh3AhSN6ZlpmvUyTz0xweKteV57+WUOHfqAr371pwgQcFwXeRsr43Yyfbv93LYxoT/Eful+1t5PM24AtL+p4l2SkPZ49+n8wc13jfEpU//k2O2U4I+A648bPQKuf0loM3N7kPvGI+D62eizW2sfHrh+mqDYrv0TQPZplt9PtPVbkxzdj/zbGmBBEDaVvbn73I2N2oOA68ZxnuchiNtfwzYz3qbpMwBX8V4Xp43Pm+Nr73vtHZd333qbsGmx+9hlBt86xZX+JKuKQDqdwbZDhMMhREmg1aoT4CNKEpIoYhoqPT1JVlfmKRRW2Ld3J9euXccyQywtLSMI0GjWAA/DNCmVK5w7fxFZUYnHorSaDWq1Ku1Om0QiST5fZHJyEj/wMA2dM2dOs2f3DkQ8Oq0artOiXC5iWTqtVpNoKIqIxNDQKK4fICldV0zTNFBUgXDEQBSULigMIBQKUa3WOHr0JLlcH2treZaXVzh06AjDoxMIosz4+A4kWcWyozieiyQGlEt5mo0OhmkjG11XV8/zkRWVer3JW2+9w8jIBJ1Oh1KpgCAE+H4b3TIxDQOn08YPfJr1GrIuo2karVYHfJEb127S25uhJ9tDIpGkXusgCCo9PVkC32egrw/bsjl//iLxZJJvf/vbnD57li9/5csoskwkGmXmxhSGpiIS4DptSsUC9XqHwAdDN3EcF1lWOPL+W133RDNMx/UIRLh+7TLDw8MEAZw9e45oJE62L3P71xzguw7VcpnpG1PomknIsohHY6yv5ikXy4yMDmHZBrIs0mw2OfnhSS58fJWdOyaJxSIYus7C/AKDg4OsrS0RjyfotLvu0JOT46ysLNHfP0Cr1ebtt95lx77H8D2XiG1TLhYZHB7GsCx8USSaSGCEwtjRCNVGE0vTEMUAWVUwrBBffO5LqKqAqigEvo9lGJTLZdI9Wfr7+4nHYhTya+iajC/qyNonFsUrl68iywqe57K8tIRlWeiahus4TE/foCeXxLQU1vMr9PRk8b2AbDbD62+8QSrVQ6lcZ+9jk8TjMWKxKJqmIN/OfH3u3LmuoiPwu8oHz+bo0SMMDPaQziSIxzIMDkzSbtTptD1ULYKq23jA2ZMf4boutmWxML/MkSPHeerppyhXahiWTa6vn/mleUS/hRB4DAwPIsgSHiDc5gm6piErCk6ng6rorK8VWM8XSKWSyIkwwrlr5JQwl1SDv/bzX+SbL/8ZY8Mvoofu9UbazA83K/R+WOBKqYow2IOwb/Je3rQ5Hv9Ut8SSdKBJ2/VRRI9Db3ybREylX3yWA/JP0xyoMTo6jBCISIrIlWtTGIqOLFSQqDA3l6dWURHFMKmURakyy0JeRZFkImEF2wwxMz1PJBxBkixcR0IUZTqdJrLgoog6lqUhyjKnz9wkmdI5d/E68VgYVfXxhRb5wjKtVo3A9RBlldxgDlULEQQepi6haxJ2KIRh6qRSaWZvzRKyk/h+wPLyEmsr62i6Sb3RYOrqVQYHstiWgKbriLJCo9mg47gs5X1avsrw+G6Ghobw3SamqTF1YwrX7aBqMqqqo4simqqxurpCuVolkUry9rvv0N/XRxB0Le+rqyscPnyYiYlRBMMn3hehoqzjJ5p4fQ06mQblVhl10WJ38wBffPwLaI95pLJxUtk4X/+tf8nf/wf/mG++9OcMDfbz8//JT9KuL+DXPa5cPk+pXKbteOT6+kEQUFXlnvX0acD1juJ4myX07xq4uu/KBA3hTpzrvSc8uPkRcH1E96NHwPUR3UUbQvQvih6671IVYSnc1lsAACAASURBVDCHuH/Htl//RYDWzYx3OxedzwMsB4F/n2+2twZuTobQJZ/NyZ02v3ddZ29/L0i3+xTwA7rILbjbsrg1fnSrRfTeGX5S3Ls7nbvjRbd1+9m0YduubaP5rmv2BQi6tdjuJGS6H5gNbgumoHutCLcTMgjBneQMG3Jrs3v01tjfjbElXyTwAwQENkJbDVHh1/+nX0KorvEfrQWE3jhO/rnnmC6VuXrlI3qyNqYiUW81CQKBpaU8585eYO7mDdLJKKIYYNoWa2tNduzYjR80iYRSZDIZItEo5UoFOxxhaHgA33Vx2y1CtsGuPZP4nQ6qKrK4tMjY2ASlcg3btnE9B8sykCSZJw88Rb5UpK9/ECsUotlskV9fJ5GIkenJEY6F8XGRVZFGs4zXdmi1WoQiYVpOB9OKsL6ySjIZ58y5U+h6iEq1Ta1eZ2hokLnZOUbHJ2k6PqPjI1iWwcz0NRRVQtFk3GYT3wuIxTOcOn2GxaVlBvoGEfDI55eQhIBKocr6coH+wV4C12NteY1QOMaN6TlyyQwfHj/J5YsfE7FCqJJCrd5CkhQOHz7M+PgoO3ZOcO3aFRKpJIV8gVqtQqlUQNM1Dh05zI6du/AFsMMWoZBFT3aAoaFBbNtAFERW1/JIvoeiSNRqNcLhONFwgquXrvLe++8yPDZEKBSmUq7SbHk0Gg0iUYupqcuMjw3RPzBwO/GXTKFQJp6MEY+FkARwnA4/eOsddu/ZS09vH6qmsbZWJBoPEwQOzUaLRDqN7wc06g3CoQjhUITH9kyQziR55ZVXmNixg0Q6RTG/RjqTpdVsUamUSSQTvPra99m5eyeiKoAQICORToQpl0ocO3ESKxTBdVwUQWBu5ibRUJjC2jq1aoVcrguuw5EosqLxu7/9fxJ4Hol4CMMwyOcLJFMpXM/HNmxq1Sqe51Kr1zEtm0Bw8VwHRVZ5/fXv0zcwjKIINJoNjhw9Qk9PD6ZhIggilqUhKQbRWJblpXXwIJlOI0kSmUyGgf5+xkbHsGyTarXWtcwW1tENjY7XrRm8trYOSLzx+g9YW5/nJ37iRUZHRwgQUFSJ48cPMbFjZ9d1Hxen0wDPo68vQzQcR5YNKtUC+5/Ygap6pFIJqtUyqWQU3A6RaJxQJI4oaviBhOv6gI/n+4iySLVWRZQEfKeNpqv09map12sIgkjr1iKKopP7pb9LoJpcOXOS4sxZ9n/xJ/AEDw8XgQApCECU7gljuJfvbs8ft+W9+ybvgNb7eeMIgoB/SkUgIHjSQxUFTEngv/+Hv0K9LvOPHvttlLjMleWLiKJPKB1DQqRerlGt5xnqi5JMJIhEDLIZk2hYoNOuE7YjmJpHKOTTTS4ooms6rud3y0J5Dn4A4VAcSZKQ1IC220GWFXp7U8iGRiQcptnoMD27RDrVQznfptkWqXagVC3Slw6hCDVClonr+Them4AARZSplKrUWwJtX2ZoZJChkUGEAAxLYXJ8AEv3wK8jiy6CYhO4Ds1alfOXV7CsFOVa1206Ho8xde0q2YEBTMuk1WiQSaVxPYcjR4+x9/HHOXv2HJqmk+vpJZfrZer6TdqOz7mLp5mcGGXXjsdolIsgCly6PM2tuRV6e9MU1sq0nQ5NsYE5oaCUFOxanLmP55n2L2GoYV744k8yPbfMf/dLv8yFyzc499Fl9u/aQ13uIEsCfZEwzbUVXnnpOzz95BO3y3tpuEGAKAhIQYdAkO+sgQ1voa2KkdsH3EnYtPG6LSG70j4IbifgfbBi+37rbOtxmz2tNuhOVuHPEbhuHm/b/YoQ3P0igED83PKxPKL/MOgRcP0xoc0JZrZ7fZYf7caP/EcFsPfLRPxQc9i/876g9S+KtsaCbqfJ/NGZ38Pk0rt7TnePee/521vO73U5FjdZYe/eUP1o1yRJ0n1jtD697T4ZiPlkHX6atfkuJcOmhE1bn+V2ngZb17iH2nWflAR0MSC/MMcrf/KH7Jncy1cPz6EdPU/7q8+w2mhx4fxHfOELTyGJAY16h3qtTTgU44MPPuDxx/exvrZMp9NEFBXW83lOnT6NaSokklEcx2NubpbFpSWKxQq6YZFJp7g1N0s8EUc3NVbXlllZr5BMZUmnu26Z586dpS/XQ7vVZH5+jlg0Qj6/TrvtceLECTrtFpalMzIyhCxLdByPVquFYRpUKxUsy6SUz6PrGrIoYRgG09M3iURsnE4AgQoCDA71ksvm0BWJTDpBs1Gjr68H33cI/A6WoeK6HTRdodN2abXbKKqCYRqkEkls26LZaSErEqZpY4cjDI+NAgGapjE1NUVffz+9vb2IksryygovfOl5kqkEhqlj23HOnTvPzalpHn/iSYJAIJPJIIoy0WgUSe4mrEqnMuzatRNJkpBlGVVV8P2AQ+8dZteOCUTRR8Tn2rXLRGMJNEMjloij6jqLS8tUanXWCuscePIATqtFvVLBjoQZGx9HkkT6BvoxLROCgFKxiCBCpieFH3RAkpFUBd2yGBkfRdE02q6DKAhUyjXi8Qg3blwnk+lF12R0Q8GyDVzfw7AswmGbTrvN6OgICOD5LpoWIIgBzVYDw9CRZZHxsTFK5SKarmOaJrVKDVkWCQKB3r5+BgeGcF2HWDRGJp1mdm6OgaEBQqEQp8+cIZPOIooChXyekZFRGo0m0WiIUqmEJMpYlk29XqdYLGEYRhe0RyKcPXuWTrtJTyZDrVphfm6OdCpJNBJjfT3P5MQOQqEwjuPi+wHRSIijxz8knUozPDREyLap1mosrywxODhIs9mmkC/guB3m52+RTKZYX19HVhREUcbzPCRRIhIOk82keeLAE8TjMRqtRjfhiyjS39+PKEh0Om18z2d6Zpp4PM71qVus59dIJEKEQyaRUAQ/gKmpGbKZXmRZwfVg6sY0giAxNXUT2w5x4sRJohEb0zQRBQHTMG4nnWpiWzalcgXTNGm3O1iCiDC/ivM3fhqv3cBrlDl3+jiT+1/AsEJdDZkIgugjIN0nZOFeC9rnSf6prtuydLCDHHgcf/8d3v7+Kzz7+DP8tPj3WInMMLZjhOvXr9Lbn+X4kcN0mi6VchW3WSUR09ENlcX5OdLpBAIerutSqzUQRbBDNq7jEvhg2QatdqOrwFIUgsCn2giYmZ3HNHVsywI8BFxs00IIAnp7M7hOg0Q8QixmoesqyVgYEQ9ZgUazgyiKSLKIpmkIgsTRw5fJ5PopVjqMjU/czpi+wlp+mXNnjhF4FXrSYWRZxLJjtJo1Ou0OrmDTPzDB4so6kVji/2PvvYI8SfL7vk+W939v2k73+N2Z3Z31ONwdcIcjQAAkAYgUKRGKUChCjNAD9aBQkAoFHvgi6UkKRYgKChRDgqijRFDQGWLP7e0e7m7PzbpZM2bH9nT3tHd/78rroXpme2Z6zO4tDrfi/CIqurs6KzOrKiszvz/z/dFoNMjncjTaTWrVGoaqsr29RblcJo4hiFJurG1x4eJFdCnh3Jk32Gp16Q96+MMW9UqZM6+f4cLcHG+dOUOvP6RWrVCp5pElwdbOFhOTYyhKykLnArXhIcrlMofyx/nnL/9Tzp09x6lnn8awLQ4eOsb//if/infPnGN6OsfG8iL1Sp5ua5tWZ4sLZ8/w4ud/E8vxiDK6XFI+XCdvAtY7x9CDrLN3yUcYfw/rCXWz3F8GcP04IpA/UuztI/nll0fA9VMuDwKXHwd83kuj9kBt1z71POzCvJfV9c70Lp/04n4n6dHeft6pObwXiP0o97ZXxEcEj3dvfO62DN9ZPntm0j7t3OMe9nEV/qjvbr8N2V7AmJH9RHfFk2ZW0TvbeXC7exfu2+vc39V67/u8E9ArikIYhtkfkoomBGkw5J2f/Yz/+1/+CZ+VLJ76X77F3OINgi99FiSwHIu5a3Ncvz7HM0+fQhIaH1y4SLVSQVZkNF1hemqCfr/PwYOHsAwHxzF4/MRxUiHQVZUojjl58kkGwxGNRpNC3qOwu1HvdFrUa1VkzcUPAgaDIZZpUC0XkaSUzc11ojAil8uxvr6K5xYYHx/j0KHZLGbQ0lm8scjk5AHanRau6+I4DkmaEkcR+VyetfU1At9nanIcSZb5+te/wbPPvoBlGzSam/gjnySJGA17OK6FpimMRoLr1+YJfB/TsNA0C1VXSXef49bmJlNTU6RJglAkZElCUTWiBJAkvvaVrzIcDXn3vXep1ark8wXiVFCt11heugEiZae5w3A0YHZ2mhdefI6UCIhRlcxl9dvf/hatVpOjRw8jkNna3CRNUgxdJ05iWs0WaZJgGCq5nEuSxBw4MI1pO1xfnKdYLhGn4LgujuPy1KmnQAg6rSa9bofZw4eQJEF/MGBza5MojFi5scHbb53h6rU5PM9DVXUUISEjcfonP2Vmcpo0jonDkLm5azz22Am63RZXr1zl3NkPmJiooWkSrU4Tw7DodAckUYTj2JiWubtRV1FlDSFUBgOffL5Is9nBMhU6nQ6tdoecl2fpxhJCpFiOg5fLo6oq3U4HTVVASBSKBRApQpaYGJ9CVRWGwwGqqmKaOkeOHGZtdZ1qtXYrhnlldYVKpcJgMODG0iIHZg5QKOSZmphA1zUC32d6epKNjTWmp2cpFArYts3169eZm5sjjmPGxuq8+/5Zer0+s7MzzF29zJl33sW2LUqlEoPBiAvnP8CyDaanp4miiNOnT/PEE6foD/pIkoTrOpw/fw6ASrVKkibESRbz3Gw1gSz+NQP6MfVajQsXzuMHUK0U0DTBGz87TTAKKdXGMHULXdVZXllH002GgyEzBw5gmAYvvfQSO1sNpqfH0XWdm0q0fq+Ha9v0+wO8XJb71rJskGTkc5eJ/qPfI40DjsxOsbm1wdZGm/GJKYSiIcu75EvcbeH5yKBij6SLq9DuIvLuvuvPrbnwrQy4qs8HXL98gT/9k3/B6vXLVPJjvGj/AZ3CNqqq4dgWrfaQ9eVlfL/H7MEa43WNWilPGAxwbIMgGKHpKrIs0HUT13UghTAMcdwsDVUchxhGpuwLgoDtdkC3287GuyoThyGSnKBIGXgQJMhyShwNSdMI0giJBJKYOIE4UthYb+G5Oa5em2fQDzkwU2V9u0l1fJKdnQ18v0u9Ps3Ro0e5fPEcs5NjaCImikNKpRr+sAeSilc+yDASHDx0mNmDBykWC3zn5e/geR79Xo9yKUfg+6xvbLI4v8DPXn8dSRak8Yho0OSZE0e5ujxHt9Fn1OtTLWmsLF0mEg7dbpsXn/sMcQxbW9v86LWfcvyxkxQKJc6fPYdtGcjjEs5qJSNk6xjMfHGM6dlJXnrpmxTKdU6cfBpJGDz52CTPP/c8G2tLGct53qbT2OAvfnCaL/3mb2GaNoZh449GSLJ0K8f4/WR/b619C344xvZR1N+r7j1/3bNc/KYK4uMD13v18159upexIY7SW8rtR1bX/3/II+D6KZJ9g/AfAEw/DsD6RX/c+8bc7i7U5NxPvD8PC7zv6tN9zj283GtxeLACICv/YNKmm8D17jL3aPshY1wfJA/7LG+7n33iVPd7FncuSHsX5dsXpP3jt/d717c0w1GEJEkEQYAmSViawj/5oz/i8PgEz51b5fC3z7B5cILh8cOUq1U03UCWE44cPs6zzz7D2toqSzfWsHSF2YMzFIp5Njc3MU0bgUSxVCIOBfWxCr3hEFX10FUJwzBZWV3l4KGDTEyOkcYhqq6RL+RxPZc4jPneK6/S2NpmcmKCQb+LYWpIsoTteIyPTxLHCflink67yWg4wLJNrly7Sq1Wp1guo6lZXtQ4yhhsF+bnkWQNP4xQVY3BcEB/MMQ0HcbGxrAdHU2T0XUV3TSxLZMkTuh0erhuHsvJkyQJhw4eQtV0NMPKmHRVBRAU8gW6nTY/fu3HHD92LHMJVVSEkBgMB4TDEatra/zdv/f3WFpawrVs3n3vXaampvBcl3arg6qoFEs5er0OKQmLi/N4nkMcZa5f1WqFYqGI6+bwRz6dThtd0/n617/G+NgYmqqSK+RJiIniGEU1WFpapVjIk8t59Hp91lbXOfP2GZ544jj+KOAb3/wW75x5l/5gSLVWwfd9ZFmhWq0ihECRdcbH6xw+cphCsYjjFCCOCUZB9ixUmbWVFbrtFhcuXqRen8AwNEzD5Pixk+TyDlHiIwnBcBCgyRavv36acrmCoqlAShiFDPshYRTjuR6SkNBUBVXJ0rU4bg5Z1VheXuHY0cMgJCRZodVso6kqL/35nzM9M0MYBSiqTLvVIYpBU1U0XWNjY41isQCAppqkKXR7XUb+CG03ZdC5s2dZWFzg8cceZzgaYjsurXYXx3WQFZl6vU6cRGxsrmPZJmNjdaIo5PDhg/S6PRASTz7xBIqiEPgj6mPjzMweQFVVrl69xurqOk8/89QtEqaDBw8jSTLNVosvf/nLPPvM0wTBCMs2QWRAVpYlUlLyuTyyLOOPAhzHQVEUWq0mpmUwPTWdKUlknVwuR61eRdIM5ueuY5smSDLdwYjvvfoq4+N1ZBneOfM2juVw8onHsUwLRZaRZQlll3guCAJ0Q89ArRBIjoX4YA7ml0m/8AKyrvLN776KOuxQrdQpFKvESYqqPhyw+CiS/Ff/I+mP30H8zV/f9/9xnBHgpAsKWAnyYz5KEvHqS1/BEBHj44f5Qv4PudA8y+raBhMTk0iyycLVa2gqmJbA0nxMRSZJIjRNRlEkVE3J3NMVHVmWEAL8wN9NPxQgy1nMtqFnqYt0TaVeK5EmARJZfvIkSYjilDSV8P0AXdOy8REEmIZBHIfYtoOQJNbXG/S6I1zPxbQsKpUaqpai6jYLyxt84dc/T85zuPjBHI5j0W1uoQkflZAEUDSDfq/F9k6PxbURBw4fYnJyElmRMjZpXSWfK3Jw9gDddpNzZ8/y1ptnCEOfvKNiyQMOTRbwbI03zlxBVzWePTXO7LRCOAxZWOwyO1OmlNdpbG1z7eo8240Gw2HA4uINVtfWKOQ96pUimmNAOUJd8KjYdY4WjzHP+4yN1+l0etTqNf72v/+3WVlc5O133qfZaqBrEnKaYBsK6ysbnP7ZaZxcgYmJcSQEcXp/PoY7FfAf1+L6aQOu+1+y+wyQ9zEUPJJPszwCrp8iuR9wvd9E9mkArnf2M/5H/z3pj95C+r3f+EsFrg9T9mHOPbz8uwlc0/TD/G43y2bHfu7QDwdcb57fe/3N9DofBbjelDiOef/Nn/G//vEf8x8fPcWR/+7L5FoDul94EefgNK5tEscJnf6Q1ZXr6LqDruk0W03Gx6dRCFBUhSiNMU2Lc+9fYDgMKORd+r0AWQbddDh7bo7lxTkq1Spj42MsLWeWxsb2JpZjo5kGo8GIbqvH48cO0Ww0GKvX0XQVRZVod3qEUQbIkASGqdNubHPk6GHarTb5fIGLl65Qq08QhQFZupUcvu/zZ3/2ZwSR4KmnTiGrmdttuVQm8BNMS6Hd2UBWZCSh0RsNkCSJMIgxDYerVxZwyy6WrdHtNdANBSTo9XskccxwOKTTaSNSwcmTJ9hYX2Nnp8E7Z95lZnaW4bCPhODEyZPohk61UiX0A64vzHP44EF2NrcZHxun3x1gWDaumyeOIYpSGjttypU816/PUa1VWV5aIZcrsLmxTq/bI4oiHn/8MQqFPEEQYDkWvj9C1y3iSPDSN76NY+msr60yMzODY3tMTE6ys7VKvljkwMwhnnrmGc6dv8DRo4dQFAVZUZDkLFY8CntohsCydTrdNv3+gMWVFYQiI2sqq+ur1CfGyJeLTIyPI1IZw9BYW11jYvwAiikjREqv1+XG/Arf+cYr/NZv/3U0TcU0TfwgQNM10iQmSUJa7R10Q5CKgEG3gxAScSwACdd1IY3x/QBF1ViYX8C2LC6cP8/MwYMYpsryyg0mJqcxdJtBv0en3aJYzDMYDBAIBoMRruth6AamaSBLErquMT4+Tpoku7ltDbp9Hy+XI4oTLl25hOXY9DptbNtGiJTNrY3smjRGIPODH/6QZ555BkgyRYxmYOg6zWaT6ekDFAolFFViOByxubnJ4uINoiimVq9Sr9epVMoUS4WMeKpQQgjoD3vZxlOWSYFhf4iqKfT7faI4pFqtsr25SqlY5713L3Dl2lUOHT2AoprEgU+z2aDd7fHG2+8QBT7PPf80cRwwNTXJicdOYjnmrnuqTBxHxHFMGsfYjku/38f3A1RNo9FoYPsRca/P1cdnKNRrzBx7jNHSOa5dX2Kn2aXb7TExMca9mAzuNfc8SG6yCvM3f23fem56tShPJEgnQlQBvcYGZ372Qzqbq0SpzQvqH7Amljl54klkWeb73/8+tUqRzfUtNjca1ItVqkUVTckYmh3HJIpCIEXTDDqdLnGcYFkZO7cQmfUvCxVJ6XQG6GqEREiaxqiqRhBGdHo9DMNlaXkNVdVQNRVJ0bK8zIqchTREEWHUxbZdJicnQQQs3riGbRv0ewFzC1v8td/891hd3cR1XDa21vjg0ntUShaOESPiHpZbwLYcRBrSHUSUxk9w6PgRNF1FkKBpCggo5IsYmkKrsU2z1aSx00KRUw5Nl6lYITMTBdx8njiNKeY0NAG1coF80cSxU8brJqW8yty1G+SLOcIkIIxCavUKi0sLTIwVKOYtTMdDNVT6Vhd75KHP55naOs5Yb5qNNxs8U3ueYX2LrfUO5Vqdublr2JYGcYBrWgzbbRrtNtvNNpNTB6hWK8Ti4cJn/l0DrvvtjfcC1/3izR/Jp1ceAddfItkPUO2NXb3fNR9HHtY15Oe9Zj/Zu+De/P2mC4wQguSlH2Tnfv9LH7uNB7V9s/075S+TnIo9FAk3CY7uNYNLWWALaZLeDFolYxrKrhG7v++tJ3MRlm5TBnwY/yndOsTuzzhJ70FBmJE8ZWy8dx8ZAVTKPbmmuH083xmP8+F7//A+koxFav9xtUu6dLPtzAqzh3xJZH0l3X0+u6RNAokkvklg9SHQveW+nCZYpkVvq8F/84//iKfqk/zBy+fIvfIG/rMn8E+dIFUdrly5iqRkVsM3Tr9OvzPk4vn3sU2N5aUl+v0hQz+kVh8nTmJM02B6+gCbOxvUykUsW2Nja4dOu8dPfvwan/vMcxSrRZBT+oMBruUxNV1me6ONY5uoioysGLQ6DcYmJlhYWMJ1Xfr9Iabu0e910VTQNYU4iun2OoRRzHDkU6pUqI/ViOKQzfV5hCTRHwyxTYtiLoeXyyOTMur3sG2d/rCHphtIkoLnluh0BpiWRRz4FAp5oiRGs2xQdOYuXmJ9dYOpiSnCIERTZLY22iwu3CCfK1ApV9hp7KBqKp6X49rcHDOzByiWCvgjn2KxiKrpfPnLX+bE8aPcWJzjyVMnME1zd2ymWI5Bvz/g+vXrmJbFz06fRlYVNN1CCJlCocS3XvoWvU6P1988zZNPPYnjuiiKiqYbBGGEbuhsrG5z/eoCm5sbfPZzv4IiKYxGPrquY+gmq8urWLaFbmiE4ZAUQS5X4sxbZ6iUCjS21ym4NtcuXyRfrpAkoEg6ObfAlYtXUCWFtaV1zr1/jueffx5ZgpHfRxYKXs5ha2eLyQNTdAZNhr0hru2hyHrmdpnzkESC59kgYoQk0Wp2cQ2DRmObXM5D1Sz6/QRShaWlNXRNx9A0Wo1GRrjkekhCoVTMYndPPXOKTqdNuVRGUVQUWUGk4JgWC/OLeF4hs2zJYJkWkpzQ7jSQZYWLF69hWjqSLCNUlTBMMDSLKBxg6Dr+cIRrO2iqgiw7fOXPvoouq1RLFa7NXSeIYkq5MsNBh0rZw9i1wJu2S3/Qx7QMhJQShAOGgwFJmqDIKrVahXzOJhUJxUIBIWXzkqLrQESaxDiWjZQIVpfWaG01qI2XkQQMBz3SOGHY6+MV8iyt3EBW4HOf/yySUCHyOXv+IgkqSQI3lhb4D/+Dv4Uq6ySxjKbpGKbMKByiGzrDwQDTtOm0epj5AnESEwYjkiRGM0xMN0caRqiX53H/4R9iaAbD7oBrl8/x137jtzj3/lm++MUvopkG8R7Pj3vFut5rvtw7T92U9JsZcL3T4nonQEnTlChKSCXBxXPvcOHN04waG8zaX+SFid9iebRIrVZAkFLwPLa3mqjKiKOHXMp5jUQKSVGJohhZCklCH1XoBFFKt+Oj6QJFUUgTGUnRSBOJJEpJkxTL0omSAFAgVXb5AhOiJIQks8g6noSQJM6eXaNYKaLrEqqkksY+KAIpgxn4/gBNsUkig/YgZmGpj2LYGJpEFAY4jodnu0xP5FGlAaok8Eo1Et0mFRGuk0PPH8a2tYyoSJYzEjzHQSQSIo753l/8gMvzC1RzCtMVk7yrMj5ZYej3UESErcWUqya2naJrMkEAXq6IlAZomo4kx1iGStGx2GmHNBo9NEWlPxwga3kUWeeVV16lWCmiTUjsGGtIkoLSsTgkPY66aVJanUIdFvhH/9sf8bu/87t0Ok3effctnnrmFGMHCmwubXHtwjyxiDn2zHFk2URJE2RSFCEhUgF78qHej1DyQ1rHD48HAeA7znJzfb7JobHfXuoWR0pfIFVS5Nn9NwlCukcomLj7EHd2POv8bf295zclJdn+QGSki/cD24/k0yGPgOsvqfzlgqdMPorl8V7XfxJ9uCl7SXY+BK77p8P5pNq81/9/nufySYnYz/K4X7mP0d/bNPX7XbuPC+/+Y/LutqMo07DeS8N5JxPx3vrvfR93W5rvTPGUpiliD4HFfi7Ee0XZ1V7fuD7Pv/6Tf8l/EeUY/+dfI8nnaDzzGFJ9jCuXrzEajTh/7n3GxsYol8vMzh4kjjL32FKxSLlcYubgDPl8nuXljJhkaXmZuWvX+fyvfZ6dnW2Gwz6GrmIZBk+fepIoHiFJGktLa1QqZSQRESNYW9/CdWw21lfotrqYloXn5qlUanz3u6/w+GPHUVUVw9AIAp9er0ccx5SrFVRdI5fL4Y9GGLrB2srqHsuV2M0zGlAb86682gAAIABJREFUn8qsJ0mMYZoYlsXqyhq5fI5Wu0W/30eWZPI5j5E/Ym7uOtXqGKZhUKoUuTZ3jcNHDqNqGt1eH9symT4wSRgGqKqOZVm88sqrBIHP9IFpxsfHiaIY3dBJAh/DMDBtC9O0WFpaolQq4fsR62ub9Pp91tfX+elPf4rneUxNT3H02FGmpqYwNCXr02jIqWeeZmp6kueeeybbjApQVYVOp43vj3A9G9dxqFTKjE+Ok8u5WLaDrEoMR0NyhSKqrqMoEhsb61QqVaIwwTAM1tdWOHL4MLmci6IotNsdqtUqvu9j2TYJKZplsbW9QSpSpqYnGQ77WKbGcDhApCpxnLK2tk6xVCZNwbNtgjAgSSJa7RYzB2Zot1pUKiU2t7awHQddN7l85QMOzEyztraGIsucP3uOOE5ueSx4nsfi4iLVWgVJSMRxQn/Qz96loSNLMrqhsbq6iqqomKZFEA5ZWLyBoqpYlpWBmzDarVPBsiyq1TqqJqObBq7j4bgOaytrFIs50hQCP/MmgARF03niiZPs7DQolkokQG28xubmNkeOHUY3TVbX1ymWy3Q6fba3tsnl8vR7fTw3h2HpWJaLoqpZnQJarSau40KazRsvf+dlbiwvMjs7SxLHbG1vU6lUkFQZRVV56623GKuPoek6rueRJCnlSpl+f4DjuKQJdDodZqZnmV9Y5MCBaaIoxPVsNN1kMPS5cvUq0wemKBUrhEGMqqp02h1y+RypAEGKpmooispNDV5qGchvn0dq9glffIqtrW3KBYkby0sMBj716RmEZiApt89Dd851D/JOuVnmFiDZk8f1QaR1UpqSCrh69QorSzeYuzzH7zzxd2n0exx8/CCqIWe5pk2Hi5cv0mpscPRgFUNOQdhcu7qEppnomgpCQVUtfEa4Xp5USkASjPyYKEpQVBVEiqGrJHGMrCikgKYqKCqQRnjeONeuLdFstqjX6wSjhGA0pF7PE8c+UZSQkGZ4IpVIElA1JbPWWw7XF7eIUouxyUnm5+c4ePAQjcY2KysLuLbANjLrfirp1OpZSMXKaoP3zt9AliVyrsfi/CK27SALiSiCfrfBm6+/zqHZCi+eOsT0RJ04GqLrEoYuI0kC0zTRFBVDkzOWYxnePXeJkldhOBhQqxUp5A1KRZ2JCZvZyQqHZia48MEcxALd0CmXS8iyxMrKChNT45w+91Na2hb9YovF7QXGCmOU1mv8/S/9fdpTazz73ItEqc7pty8wVrKplHMIEXL6jbd5+unPU5+cQUgyiZBIJIjTmP3Svew31u61d9hP7g1cby9zZzt7z8mzyT1B6+4FDx13+nGssDf7BGmm8xcfKskfyadbHgHXXyK5cyP+ly1/lcB1P4vgI+B6Rz/2Ba53j4v9NjL7WbRvq/s24LoPi/QDgOuHbjh3t60oykM9uzsp6n8e4PohYcXt9d1sI0nju+5HTQSja4uM/ts/5je+8RbSwCf40meIDk6j2g5hGPHjH/2YTrfJ5z73OYr5PHEc02636PeGNHYylspKtYyQQULJCI9CH8/LYlCjOMbzHBApiizQNZWcaxMRY+gulukQBANGfhc/ktFVnST18Ryb0TBgdW2TVquFoig8+eRTWJbB2tpKxr5r6mxubjIxPoWkyiCg025lMXpCIvRDXNdDUlRkWUYSKYossbC8zgcXPuDpp59BVjWuzV1ncnJilzxF4OU8ZElma2cLVdUZH5+g2WwyPz+PrMKxY0dRNQ0hMquVqmYkW5KQaTbbeG6OI0eOYRgaURSjaiqKupuTMA5AknC9PI7rZrGL+TyaqlGuVLhw4QKmafPCC89jmia5XI7RaIQsyxiy4NLFD0iSBC/vsdNqkCYxge+Ty3lIskSaJFRrFRAJzZ1tisUCQs5c0qMkQTd1VF3FME1GfgBpQiFfzOIl200q5RKHDh7MmGVHPr4fUCgWd+8lot3tkCvm0W2LQsGjWqtSrVQJRkMUWTAa9CgW66iqhmlaXLl8lXKpTKfTJI4DPM8lCEKEELiOQ6vVyFiLBfh+gKZn7MjtTgdd1VAkiWPHj2M7Nl7Oo91pU6vVUFSZc+fOs7S0zNz165w4+Ti9XpdrV68xMT6O6zkYhpFZ6C0V13WpVmtASrvdRkJg6Matb2Zzc5N+r41hmCAJ4jAm8kNe/u53mJyaYmNjk1KpmLkaywLTMqlWajRbLcYmx5AkgeN4qKqGLMsUiiXCOCSOMmVAHMfk80WWlpZISBCSwnA0wst5DEdD8rkcqqoyGo1QFJVcLsehQ7MZsLYtdEO/5c7b7/U4dPgIpmmyvrZOr9en0WyQzxXI5wssL60wGo1I4hTbshkbq/H97/8FnU6bkyef5IMLl/jBD37Ik08+hWEaRH7ClStXKRaLRHGEosq76UMyLxBJknc32XE2z7Q6iOGIlWdPUCpVuHD+NL/+hS/y45/9lPLYBOXaRJaN7I5580HAdW/4w9416Dbg+ntfuO/eIPpjm+RtHfFCSLVawzNtXv7Od/jtJ/8AV53ALnp8/4c/pFCsIKsy3U6XNOlyZLZKEvSRNYt+f0iSxLg5nVzOJogiNNOm180UU6NRgq65SAIQCaapZe9NlhHCJkklkiQhCAKiKKbTGVEuF8jlHeIkJo4jqiUPIULiOETXPRIBEgkSCoPBCMPUiZFotPrIWh3HrfLu2Xc5dGiWen2S0aiDpSn0OqsYaowiSZhunm67T7vbxy1MUKlNY5sOg/6ATrvL22++TbfT5eyFCyzNf8CBMZ0jB8vYakC73UBVIAgzlmTLMpEVgSSydxElEgs3mkxOHSKJ+ziOzmjYRZUEhqIw8n0cu8DQDymUC8iay/W5awghcejQYer1MTY3M7f6qekpHNemOdqi/niF05d+yOHgScJVGemUyr/5t6+w1gh56vFZLl96i5kDJQQab/7kPCeePoVbKJLICqkEKfFtytr9XIQ/aeB6r3X6I++ZfkHANVNqZ79Lt9IEPpJPszwCrn9Fsl/Kmv3klwVE7SefhKvwXrnNreUhgev9wc6D2/5FPd/7pUa4Z3/2bGRuArO9wPVe/b6Tufd+IkQGj2+ms/nwuPc93N7fXWB4j3Q4d7q67wWcd9Z1W6zqnd/DPmlubtYhSdItcpIkTm8DxLf6JT58lqqqMuj28P/Zn6L+4/+BNIzgtz5L+thBWoMBfhhiGiZbW1scPXKEjfUlNE2j1cpIgJo7DUqlIpsbm9mGv99nFAwpFErkPI+UhLGxMTqdHhcvXaJUytNuN1FkmV5vwNraJo12lyiMCPwBuqaQktLr+4yNjWEYCqqqUiqOIcmC1177EfV6nVzOJk5CWu0WmqbQbDaoVKr0+wOGwxG+P8S09CzvJDK6ZtLrtdlptNhpNBgNR4RBwOT0AY4fPUIcRQRRkBEEyTICQa/fI01S/MCnUisjSQpCKCzdWObQwVkM0yRJsmfY7/dRVRXfHzEc+vR6XV577TVOnDiBoir4/ojBcJBZLnSNdrvN4sIctuNh2TZR6GObBqPRKAP3acL4+DjlcgXTNLFtm83NLV793qvU6nVsy2BnZ4fa2BiGbmBbNqPhgMFwwPlz55iamkTTNJqNBn4QUMjniOMYRVHp94cYpsH29iaFQoEkSZBlme9971Uef+xxJCGhawqCkOFwxPXr17Edj3yhiKZrWcqj4QAv5yHJMkmaoEoygR9AmmIYJpZpYjkOL3/7FZIkJpfzsCwT27YwTWOXCVtmZXmFWm2MKApQVQXT0gmjjCxLAGEQY2gmruuSL+QyQKtpt1L+bG9vY5pZjPD0zAwzMzMkScxg0EcSMsPRgHK5RLPRJE0FYRIxGgUMBn3W11epVYtEcUyr1SaMYhzHwcu5yBIgBCurK0gINFVl5uAMruNRLBbptNuUSkUEEb1enxSJKI5JohBBwmA45PLlK+i6ga7rRGGIqesMhwOuz12n3+thmRbFcpGLH1ziW9/8NqVSKUtzJDJPjdFwhK4b2JaFZWjIkmA0HCIJwdbWFo7jIskKW1vbaKoGQpDPF6jVavhBQLfT4+LFS8zOztJotDMXQVLGx2ocP3qEJIXLly7T73UpFAvk83lIYwb9PoapZ4zMkkCRsuk3EQIhSaRxjCwgjtMs5+sHc3R//6/Tbvd57vlnOHv+PM+98DzHHjtBEAsk9cPQiHvN8/vOxfdYj5Jv/DArcw9yplvl3tYQAsSzI3RV4t3TP+LKe2cYLOZ5+vFfY7vT5sTJk3z/ez9ge2eDfq9Hu9FEl0fUyxVsJ/sOcjmThD5xGhBFEXFi8PrPLnDgwASqopPPlYniIZKUMhwOMwIcVN566wL5XIE4irFMB1nS0U0NzUhI0izVjaoLJAGaKpOmMpubbbx8DnbdjOMEwighShTee/8ySxsjJiZnefaFjH3acT1qtQKXzp9laiyPIsUYmoFsWCipRLM9Ynz2JIZmIqsZ4/n4+BjtTodWq8n2zg5q0uPksTqOJZBEhGUZ6JqcGdYRyIqM7wdE8QghZCQM3nrrBrZZxMv1sUwdTdGIQ0EUCjZ2It57fw4/hEa7ydzCIpKQWVldIQwCxsfHWF5eZjDY9ZApl3jvvffI53OUxoskTsRk6zDXzi9yNviAJ049y7e++RJ518SxFMLBkO3tLaamJjhw6CCytqt0SiIkSbltDOxVZO8dR8nHCPO6vdz+oPhOJfKttXczcxcW9t11CiFIuT9ova3OPW3fuq89l+691/33VLvfIxKStH+qqkfy6ZFHwPUXKHdu4h/m4/ll/rg+qb7tZzH8KBbXhwWef5VJqB+WGGCvIuPOyTpNU8Qdi9J+Y+hhxtXesSjtU0/K3XmB9/blptzU9t6mdNgnLvvOPt88t5dc6c4+3HYPdwDX/e5XCEEcJXQ6HUzTvMPS8eE1WrvH0h/+l3hvnGflxAzSsVlSTUVSFVRFwnFdRqMh21vbSELg5Sw8L4eh2/zkJz+hWCyQEDI9NU25WOHatWscOXqEVrOFpqrohoZhmpimTQpYuoKpG7S7fYqlGo12l6XldY4fmyHvGUiSTKs1JIx88vk8S8sLvPq9HyDJDuPjJZ548iSyLJBk2GlsksQxxVIRP/Azi6qQsQwDSUCn26JQLBBECablYBoKsqKxsHCDnJdjfGwCIcG/+j//JY5t4boOhqkThiFLy0tUq1XiKMa0TFqdFppqoCgaxUKBd995G8tw6ff65FyHnZ0tWo1tCsUySZzi+z4nTpxAklKiyEfXDNqdDp7nEUUxQhJUqzU6nS6mqROHPmkckACWZbC6ukQSJziOy00r4A9few1FUXj66aeRFYlCqQxAs9EmiWLCKKBeq1MsFvFHPoZpZK7Ils2PXvshuVwOVTV57933KRbzdDotivk8QRgQRzHFQpFWq41lWqwuLyCJmMHAp9lsUanWaLXamLZFFI7QDQ1N1ZAQJGHEaz/4Ea1mi29841vMzy9y+NhRJFlmY22V48eP4fsjur0OsiwRRwkCUFUVzytw/fo8rdYO4+NjNNtNbNsmimIW5hZobDcZG5tESDKKrtDYaSBLEhubG4yGA0rlEqPRgMFwhGnZJEnCwo15FEVmfHyCNE3Y2tomSRKKxTKyoiJLMqahE4VDkiTAslx03WB1ZYNms4mQUkQaE4YB9dpY9j2lmQLLNC2CIMQPfDzPQZchSWBzcwdVVlhanGesUsbxvAyQhzHf/ta3UWSxm3JkxHAwYHZ2hiDwMXQTz/VQZI3jx46TRCGyLLhx4waXL18mn8tz+vRpZibHCX2fMAjxhz6qpqGpKrKioqkqcZzg+yN2dnYwDAN/FFAoFJmZmWE4HPKVr3wd2zaZnhpnZ2sTEAz6Qwr5HAdnpykWCizOX8dzDYqlAq7nISQJSZYQabzrvirDbhoXfzRE1TT6sox24Ro/+b/+HxZnpzl46DGmJsdpd1pcuHQJ28lhOdZdc9iDgOv95KbFVfythwCuCKTnA0btbV792r9m8/olfvvz/xmjBhw+cQhNTXEtnc+8+CuceettDh6oM1YvEfo+UdhCV3UMXUVVszEgkXkoTE2OESd9FDXG9wfIqoysgD8a4do5tnc6yCqUK3l0XaDp6i6juSBKesiyjKraJEmEoRuEcUwUCTqtESJNUNWEMEiJIvDDmDBSSVKD5a0BqyurPHHyGI5no+smq8tLDLtt2jurlIou3e4A1TDot7uEqYFZHMPv9jBzHpqh0Wg1qNVrXLp8iWZzi1pRZ6pqgpQQJxD5A8IwyJQUKQRBiGboCElnMOjj5WwUNaJUtpBJcT0PBCiqjGooJFHIztYOBw6MEQVD8k6e7iDENK3M20WSOHnyCarVKsVigXfffZejR49Rq9U4/dM3qM/U0TEppVVWJ67yb7/6/7LdG7G8uMrTjz/GM88+RrM1j2uYnLt8jZNPP4eqaCgppPdIiXfX+v0xxt9+wPXO/9+5dt/86f8fBvEF5S5ypv36s5/cti+8SdNxGxB/uP10durmeYEkyR/5+3skv1zyCLj+AmTvh3VT7udqcT/3jQf9735a271l7wUS9rrt7nfNL0oeFrg+yHr6SVhU7/VM7qz/52lnP80lN7WKItOW7ucmnF0TAxkBUZYXlduOPWwG+7ZJevv7z1xsMyvqTYulJEm3Ex8hZWRKIiJJIyQZICEjUZLvWtD2G+s327tF5nATwBKTkiDtungKcfezv5nHde/1QgjiNOa173+f8XIF4hhVV0lEClGKgYa00mLwd/5z7CBm+Bu/Sn56AlnXQECv1SaJNTbXtzE0g2azxdLSMu3NZaI4wnIs4jjCHw6ZmJzAsi0UTcbL5ZCEzFitRrvbYWN7i1qtRr/XQyQxISpLyztYtk2hVKRaq+HYBoqssbi4zJtvvcn0dB3PK/Leufc5cvRxKqUJ0ihhdXWZSqWE69msrKwwVp+kWq5kREKlcuZ6Fwzp+T2CMKBcqjIcjNB1jbX1JWRkvKLL3OUrpMiYhRKGqnPk2FEM28S2dDrNBradx/VyjPyARqNJHEYUSyWkFOLQ5/r1azz+5AmS1MeyNWRZZWNjh0pljO+9+j2SOGF29iCD4ZBrc/OUy1XWVlepVWu4jkOn3UCRUww7h24YpICqG0iqwaAz4KVvfIvnnn8Ry7ZYXJgjjiNMS6VQcBkbq1PIFYCQKIy5cnmeV175LjOz41l8YhQwHHawbZM4Smk02mxvrDE7ewhZNjJLpa5Q8ExIwDJNSFLSJKCUz5GkEUsrS0xNz7C6tI5QVOpjY7iug6JIWUqhKAEM4ihF1SWGYUK9dpgrV+cplcr87u/+DkEwYntrk2q5QncwolCpIglBFPqUihV63TaWpRMGo+ye8lWuzV3h7PvvUCwU8JwiXsHCtC0UTUfVTaIYXMdDUmRyRRdVlYkGQyTVxLYdGjsNmo0GqqwQDH3yhQK249Bo7FAqV1hYmMcfDuj1emiqxtWr8+RyFVKRxSfmCwUWFuc5dGQWRXNQFY2N9XVyXh5J1VBkla9+9c+RJZVOp0OxmGd1bQXP80jjiDhKME2XXi/AtA36/R7tVotg5KMqOoWyh2m5FEoVev0h5UqF4WDE1tYWxVKepeUbTB+YIk1TBp2UNIowTIna2EEuX7uM7XikCPqjEa7rIisqYRCzs93Ac11EmlLIFTA9hySJmb8+hywJSoUCY2N1HMdG0zUKxSK2a+MVymi6SalYxsnlEIZBPl8CKSGKfHqtHp3tEatbPfL5HIqSMOoNMTQTSRLEaZi5vfshM4pB9Hf+Bo6jgFBx3BK5XJE/+zd/ymd+9TP4cQiShJIKtFTsJmz5eABWPHkU6deeg5xz37UmA64p6bMRQla5euUKr7/5Os9bv8/xUyewXJ1+YxNS6DRvoOoqrUaLvGPzzvlrHJkpIe26oPojH0M3kKSUJI5R1RhVlQiDEEEKJLsx1SYJKYapUypaBL6PphsIAUE8wtBUFFlHVg2EBIqmE4Y+YRwjKQ6nT1/m4OEqiqHQ6wcoikmSpsiqTKPVoDfQ+O2/8dsISaJUKLK1vka95KGFq1TLBqksYdsmYtihHWl49VmINC5eXWbYatDY6rG8tI6UBMjhiM8/V6daNBFSDCIhFSkjX0HVLcIoxDCM3e82IwdTlMyrxHNNFCmi25e5cmkFz9FQ5IDYT1FViZlDJaIo5vy5VY49XubqjXWSUGJm+gCqlnDl6gKVeoleb8DbZ97h+GOPEUQjckUP23EI9AB7Oc/hsaN8+c1/wT/8B/8JrWaLn/7sbZ56bIqc2ufd984xc+AQ585d4eSpU3RGAyzDQFVkUlJiEmKSXaXT7YckBLKU5dYWgLR7br+DfdbvO/cV2bEXrN7uEh+9mVmC7wSue/uTJpmCfnebc9uxl4gpIVPa39wFpXvqefB+l5s17oY2SbeFpT2ST588Aq6foOxHFrMfQLwfoLyffJJaoo8Kjj8p4PqgyebWpPbUMaRffx6R9z5S3Q9z7qPITbfb+z2XT0L2I+TYT+6tUXwYuUed+5yLk+ju95Te/a7SW8QHH7Id3+Xl+wBAf7fW9u6YMLidaXNvnUKIW1ZeWVEoFYq0G01kWcZ07GzziMzSxUso/+l/TeJabJ2Ywcnlbrlh+8OAYW9IlGakLpubW+xsbbOytMzsgUkqtRpvnTnD5z77WaqVKq12F1XV2NraYmysRqfbYjgYouk6IHBdh8Afsrq6jOdmie4PHz7Azs4mhVwRSQbPdfByHsVCgXK5ymDQZnx8iiROuXr5AidPHKY+Nk5/0OPq1StMTEywsrzCO++9Q71ep9/vsbO1Rc7L4fsJJBJraxuYhoGmKhTyBSzLozccoCCIo5hqvcbXvvJVjh0/hm1Z6JrOwvw87753DkmW0TSNQqHAzvY2hu1gWTY3lpaZmT1Iq9PBtVwCP0KWlcxtVhJMjI9nxDmyhCxLOI5DHEcosmB9fQNV1TL3Yz9ANzPLoqZpRHFIFPpYmkkqIJfL87Wvfh1Ts8gXcxQKBXK5HIZhkiQQRSFxnOC5OZ577ll0Q2V9fR3P83BdFyFkZFml2WxSKhd54623WFpaptfvMjtzgJE/otVqZwB9NMK0TbbWt0lImZiYpNVqoKsaXs5jNBxgWwaBPyKKAtIkZuXGMoamABG6ZhD4KYVinsGgx+RkHVWRcT2XTqdLsVRi5PvYtomu6YyGPWRF0Go1yOUL+H6IpsukCRw/doIgyIB6FPqYhsXiwiK5nIskgarI+P4IIaDb7RL5EULV0BQVx83Aa+BnoLXRbJDzcgiRxbAaZmZNNA2TTreDIitMTIyjqhLfffm7JHHMY48dY2d7C9O0UBQZazd2+uVXXuHI4SPkci7Xr1/n8ccfI05CXNchDEO63T6+PyKXc9nYWKNUKeM4DpZpYZkW5UqFXN5BIBFHMQvzC1iWgWU5dHsdpqYmqdertNttNE0nTWBl9QZPPPUEm1sN0iRkYmICTdPxPA9ZVknihIXFRRzHQRICVVXQNA2IUVUZIaBYzNPrd7Esi1wux3A4JE1TgjAAIfPmm28SBSELCwvICNbWN/DcEppscvHiRfqDFhc+uMTM7ASqIuj3huiGSqO5iW3nGA5HyNUy5hvv4xoq8bMnsG2bOI4IQp8XX3yBf/Y//c985ld/FaQPd/mpuHv9e1gReRdR8B7oTZO8rQEgvRAgC8H8xbNs3rjOl7x/wEp9ES8t8MG5s6imxRtvnKFQrJAGO0yPOziOSt7TdwmzMjCh6SpxHBMGIaqWuVgahpnFMisfuqgqiookS7Q7HUzTIo4TojhEkgRRkKAbBpqmkSQpiqoQDn00TUKImLF6BUMRpLFg7uoCjlPAjwTdgcz6RkgqaRw+epj1tWUc22RtdQUh1tGlLuCDJCMLiTROmF/rceT4c1y5coXx6TqSElMbr2E5Kmff+ynEbabqJQxN4LoafgQ3llpEoca1uQUqlTpCKNxYWqFYqOA4JqPRkJQsPCKMQiQBlqFSGytkSltFQ5JTojjANExmZ8YxtIRDk2XkaIRrqmxsrLK52cDzXOq1OkePHiNJUq5cuczE+BRnz56nNl6jtdWmEleZLk0y/itVGttbdFqrFDyZatkiiqHZ6nDqqWcJgoTmTgNZVdGNLKVVZsnMXGt/HkX63iX8o+9H7g9c95Z7aJfdn2NvvBe43so28AnupR/JL14eAddPUO7lGnm/c3vl5wGu94uR3a/snRasOwkh9gPcf1nAdW+9t9x58+5HAq03636Ycx9VZPneMRGfNHB9EGPk/YDrvWJEP7zmowFXSZJud6/eB7gmyS5wRdp1G757nHxc4Hqn7FUE7R2/e8eQEALbtCgXS+i6DrJElCTEvSH8k38K203S33gWx3N2+y9IEghGAcEowHBtvvvyy8wcmEaVJJ459TSjYIiiyDzz9NMs31jCtlyS9P9j702C7LryM7/fPXce3jznjBwwEUSRBItDUUWpVOqollpShHvR3rQ3XrhD4UU7wuGNV+1wL9xhu2V3W5Z6o7bcUrXclmpgUVUsFlUssopFEpwAEDMSQCaQ88s3j3f24iZAAEwMrMFWuflnPCLzvZvnnvveefec7/y///dJyLLAsiz6gy5zczNYpolu6JiWTbPVJJ1yqFbL6LrOoN9nOEioxLbhIBRoNupJRrVYZm1tk4nJPFKUWJjMz0/RaK0TRSqGqVEo5IjjBLQdOJBQLsPAY3ZmmuFwzJlTl3nlB9/nyMGDVCoVAG7eWEO3EgGkcOxSLiV9yaQzuL5PLpcnDKIEzKUyLCwuJWM9inj5Oy8TSQrlUhlZUfjgww+ZXzqIN/IJghDDNICITqdFJp1hbe0mw+EwyUIrCkIIoiikWqkhJIXzFy5y6tRpFhaXuHL5EsViHgjRdZVLFy5y7PHHCcKI5StXOfbY4xSKuQQIeAlYvX5thXKljGFYyEqiimpaBvl8HgmJIAjp9wdomka32yOVcpiYnKRWrTIa9SmDpZTaAAAgAElEQVSVE19SXTeThbeuEsUx/thHN0z8wEfTNJqNXYb9PhPVKq1WE9M0sE2L3d0687MH2N7apNdr4KQyNBodXvr2N+m0m5x46gmi0CcKA+IYcvkcqiJYXl7GSaXIZG0QEltbdWzb4frKCuNxj7fffg8JjQMH5hi7HcaDERIQBiHdTgfi8LZokWmZOHYKd+ySymRRZIU4jsnncvhBgKIoOLZFv9dndeUGH398mkI+i6pp7O7WmZycTGo6JQi8ERO1GpO1iQQ4qgqGbTMeDZCFQFFVUuk05VKZdDrNmTOnmJubIeU4uF4yBtKZDIPhgEKxQDaXQdcNoj0F5J2dHfK5HBEhzUaL4dAliiJKpRJhGDIYDEilEqVly7IQseDUqQ944qkvMBq5nP34LEePHsU0TcJwb9ND17h5cw3TMHjzjTcAkBUZx0kRRj6ykLGsJOtrmAZxFDEej7Bsi063QyqVwjAtqpUKiiIo5nKEvs9g5HH29HnOnr3As88+w9RMiSOHH8M0ZRRZYOgmw8EQIccIoWMaOoppEG/tonku8e/+JleuXKFaraCqCr7vMTsxydT0NEEQEAuJSCR3yJ8VuN55n3socJUkOOEixxF/8of/A7bs89tzf8BLZ7/Ns4deoFatkM4Xubq8zm6zzvEjJZSoTSGfIYgCgiBA13U0Q2cwGKLrBpqq4vkJXdsPAgzDxA8jfD/ZxJJllTCKURQt8b1VEzsc07SQhGDseoRRuFeWEiHHAllIuP4QYj+hvYqYUqmCalh0Rz5rmwMkkaFQKbCxucaxY4fpthuUCjk6jZsYckIxlzWFyB/jRTI3t8cgpVhcnCNXTNHpDimW8vR7PeQ45OB8EVsTSMIHyWM0gtXVDpmsRbGYx0npKKpA11UUVUbay5IbhkEQJtlYQ5dRVfACL6EV+x4xwR5dfZjU3Koy+bSGpsQUSyXqrT43NhuEgcvNGzeYnJzEtm3W19bIZYsIITh96iPa7DIbLyGrgo0zdU61T/JbX3mRhbkaP/7xa3zlxd+g325zc/U6N1du0txt8cVfezHReYii2xsO7ANc918T7B9/14Drfa1zHtCPT16DW6ucW5vsnwPXX+34HLj+Ys7zQDrpzwP4flYAfIsK8WAgw32fu98xD+vPned70HkeBvJ/1rgXDN8PuN/bnwe191mO+3nifu8rPJimHEXh7c/8XhB4NyXmPmPojvqRW+BQlj+pXf2kFvYTCvBttd4IfD+g0+liWTZhGCHLd9fh3tmf/cbkp4Cu+PSYujfTeqeY1J1tSEKgCBkZCd/3iSQI45jxv/46+pvvI772JTq9Prpu4AchUSjh+wntWNcUVE1laWmJwWCAriX2MoZtU9/ZxrEMxsMRm1vb1GoT2I7Jxx9/zOTkBIoiMxi20Q0DVdWJI4lXX/0+SwsL9Icj3nv/JIViBsOwMMwU2ztb5HJpKpUSvudz6tRpJEkil83e3uEHiU53gKYp2LbJ7u4ulmVhWja6prCxdhN35OL5EY3dDoHnMjlZZXNznUw6x/vvfUAqlSFXyOLoFh9+dJp0Po9tJpRlVdf2VFMVSsUiYRSh6zpywhXk6LHHsUwTRchMTk0iSVDf2kE3DG7euEEun6O+U8ex07RabZrNFtMzM7iuh2GYpJ0U16+vEkYx+XyeTCZNuVzCcSwkYsbjMbZlUS3X8PcWy5Vymc3NDd58802OHD5MGCRUvVMfnSadyWBaJiurKwghkc1m2Nne3hPnimk2WvR7fSYnJ9AtnSiMUVWFiWqFKAzY3NpmNErqgiVIvjdRhFBkhqMR16+vIFA4fOQwYRwRR6DrBru7DZyUgyxUTMNAVmDsRViWzfHjj/HYsSMEvossJHzfw06lkSXodNpkc1ks2wEiwjAmny+iqirFYgHHdpifX6RQKNDvd5BlQeCHnDr1McePP4G9p6Z7bfkK1VqNKJYIw8TKxrAszp79mEKhwNrNNba3txO6ccbBMm3a7Q5PPvkEfjCm2+szMTGRbCxYFpcuXsbQdQzTYjQa881vfZNnn32WGIlWs4WqyPheQKU6gTseUd/d5umnn8S2La5du4puGNiOw/rGBjOzc8iKQrPRotlqIUmJdc6F8xfIFwpATD5X4nvf/R7lcon67jaKorKzs02lWtmzbtIYDcbUJktohspuvUO/32dyqoqiyGxvb1Eul+j1e8RxyGgw5t333sW2HY4ePZrUK3seMTGDwRDTtOgNBggJMpk0o/EY27bRNZ1ur0ez2aRQLNDpdshm0vzoR2+QSqXo9Ts89vgRojik1+nd9kh23RDD1IniAE3RkRWZtbWb2JNV5LdOoYYR5d/9e8RxYpG1ubnBwuIi/+u//Jc888UvoigKQRTepRJ/rwbArXvb/SL6d98hPn0J8YVDD5wzbmVcOeFy8eNTfO+v/oLFqQpfKv5nTP/GNHFLIAs4f+Ei3cGIVrvB8YMVNMZJJQgyiX1ITLxXjqFpemLJRExiKZ7UgYaxjGnaRLGE54UIoaIZJrphMBz0CMOklhVJYDvOHmPCR5Vl+v0uiqIjqxqaLtBViyDoM/IidhojllfW6Q195heWqFSrZHNpHFvH0hWuXLpAY32DiVION3AxTQNv3AetiJ2bZGJqjiuXLqAZBpXyLGNvzNs/fY9L5y4jRT2KRRMhYsbjEblcEaFo5PMq2ZyBqkZIko+uSQR+okzt+bdAt0BVVRCACJGQ0TQLVRUYpoY7DjF0DcOQ6bZdIkkgNEEoKbx98gqSqnL08BKHDx+GWOIb3/gmz3zxaXa26wyHfU6ceJKYkLObpzlhvkDWyfLFg1/iX/yHf8azz5wg9H0217bRFBh0m4RxjFBUnv/K15CkZL4TQhBHMUEYJhu3QBiGd21A3znP32+ddHvF8Bk26z+Zq5Pfw5MqSPcHrnd6u++3Rr71+u0s8j5r1P2SH/e+vvfb3oVJe+D1F7Pe/Dz+v4nPgetnb3Nf0Zpb8Yv+Mjxqe/dm6u4FCQ/L5P0y+vjzZCjDP/sW8emLiCcOf+a+PAy43hn3o3R/1vhFva/7iSrslyG/81jYT+330xsE7LNwiuNPRKDuBofJcXePm0//vSwnu6q2bbO6usp4PCaVcvbt661/99sFvrvvD36P7p1476LoA1EQMB4Meeedd0hlM4Tf+zHmv/4L+s99AeFkABmBQrfXZ2Njh7W1dXx/TLezSzqVodvtUC6XiaKQH7/1E44ee5wwGLO9uYG5B0yL5Ry9fo/5+Xn6vT5OKk1/sI1l23R7Q0ZDj9MfnWZhfoGLV5bp9fssHZynWKpSr3f4yU9+TKmUo767TbVaoVKpUp2YZdBvkUpZ/Pt//w0KpTnm56eJ4xAhYOy66JqObpq0GnVmpydZu7FOuTJBsVTCSZl4/pCpqQkcJ8P09AEsU8WwTHa3d0FW8SIJTUiEcYyianuA0eSD99+j0WwQBAHZTIblK8t4nkc2naLd3N2rcVNIp9O89NK3efbZZ9B1g8uXr1Au10in0jhOGt8P+fZL3+Gxxx5HFgoffXQaWUjkC1lK5TyqKpAEXL92Dcuy0TSd0WCIYRrIMozdAdNTExw6dDShGsoCRVb3ahLTKKpCEAYUSgViQJEFnuvR6fSZmprCMHQUVU4sXYLEKieKfNrtJtl0HsdyIIbG7i6ykICQnd06kxNT6JrNxfOXSWVT3Lh5k3Q6g24aKIpKt9vn/PlLvPrqDzh4eIl8oQxESFJM4LnYjoXrjtna3CSTzbOxfpNKpYSqG4SAFAuEpCLLiWBNTIA3iul0mqxtXKPVbjI9dQBFUXFSGWRVo9PrYRgGw34XJMHqjTWEULAti7WNdS5fvEQQBMzMzFCtVOh0OviBi2Ul4la6piJJAbaT+NF6noeqaqRTKS5eWcYPYsqVGo8ff4JYAkXRUIRCEISYpsP/9X//NY8fO4rtmAgZzp47y8L8EoPhAEVVqZRrRJHEaOhz8+YmB+ZnkCRBfafOY489hu8HrK6sousGE7Ua2WwGVZGRhGBmZhpZFhiGjh/4fPDOB5y/fIojx45h6GkWF2YZuwOEkCiVinieSxQFqKrCsD/ixImnOfb4sWR8qCrddgfTsBCKghAypmlh6gnlNRGmMun3B9S3NpmenUbWVey0g2mZlHJ5Dh6a4+DhAwxHAzKZEinbJgp9rl27QaczJJ1OgxShKgqh76NrOkrKIdrYQR65BL/z60CMkJPNi1EU0O/0WJw9AIAiy3dRhe93X7tfRH/0l3BjE/F7v/HAe2NsxcjzEVIpoph2+Ld/9Ic8cWiOo8Z/wnhuTPfGgA/fe5elhYNs1DcZDnpM5FI4howbB6RSKXw/wLAS9ojreSCB5yYbSJ4fJABVNRgMA6JYQtNMRiOPIIixU4nPsqqCsZeBF0pCsYUYx7YYj4YIOQRhMxhEaLpAkmQiQrZ2PH767jUMu0ilUuH48WNcvHyFhcV5pNhDkWK80YhKIcbQkhriOFaI3Jh0ZZFsqcb6xhoTtQlS6Qoiihm5bd59533KuRJLS0UMK0QWAk01CUMP3YjQFQH4eOMhEjH+2MOxUiBLdzCPIIxCIqEhiwjTyLK2soVlKoRxzLAfoeoaXuCzszPGSaVQtSgp0chXKRdz5Iol3nrrLfr9IV/5ym9y5swZLly8wNNffIp2p4WuaVxfW2XyeBWrlUbrW3zlma/xp6/+EVeXrxHHClPVAqYuIakKmXyRwvQhRsMRvu8niulxjKYngns//OEPmZ2dTcbGA1h59wOun2Wc3vv8w4Dr/fq0r4jmz7CWvPv1O1lj0v7n+Dx+ZeJz4PoI8ahZwoftRO33uN9xt+KuXaeHtL1fH3+Zcb9J+FEA8sPeg+Bf/Tnx6sYDxZnupY7eTwTrzuMfpR93vpf3Ssvf7/N7GBj7JCLuUh3gFvDcTywgOVYI6fZxQiL5OY4+KZ8SCrdqTJMmJCTipOL01kbGHf//1HXf098EzApkodxu715C8e2/lUKEDJKI+e53X+aFX3v+U5RiSF6/fb1S8pCkRL0YKb4txiTL+4sm3PuZxnGMiO84lSQRxTGhnMWSTf7tH/53tHdWeaxwAOcP/jnul57EKxT4+tf/kgMLiwTExCHcWL3BxYsXmJqcoFKrYZo6Ila5cvkinu8hSQa6BtlcDt108KKQyalJduotstkMQeDj+SGmkcYQChsbOzipLK1mg2NHl2jtbnP48BKaJjE9nSzsPX/EByc/5sbKBs8/9wxClfDCCG8UgIjRNJVsPo8sC4ajFnEc3fYyVYTEjdUNpqZnuL66SqVW5Y033iCXyzIYDLGtFJpm0O60UBQQpk7kB4RRxOT0JINRj5Vrq3z35e9gaipnTp1mbnaO6tQklfIErUabMPB4/PHDdNotdNVgPA64dOUqxWqFVrtFt9Nl4cAiY3dEvpwhlGQsx2ZldYWZqRopS0WWfGRNZ2FhHsPU9zYzJDzXo76zg2Ho1GpVet02vh+hqQar126gyjIp22JrZ5N0JsulS9dw/ZB8uYgtqzQbu5SrFYIwRBEKkmqg6hYpO8VP3nyT0aCDO+iQyleRRSIsNHdgiVyuiqLCzvY2Z89+TCqVwjQtWq0WE7Uao1EfTdfY3Nnh4KE5VFUhk00ThTGKYrCyusXEVI1DRxbIZQucPX2BVM4hilROvvshU5MV6vVtqpUJBl2XTqdFOuMAIYosCL0ezUYPzwuJYo9Od4edjU3Onz3Hr33py1iGQRx7xLGg2WqSLxWwHQeETK87olKpkEpZpNMWu7stFEkwNTXN977/Kk+ceBovjMhks9gpk16nw269Tr3ZpDI9x1tvvEkumyeTzrKxvokkCaYmZ8llsnQ7TeLQA0LqO5ukHQtFwGg8JlsoUiwWkISMhIxjp2g0dinky+imBZKE64757ssvMRp0mZmaZfX6GrZlMxyOyOczjEcu1YkJDNOgP+hz7doySwfn8DyPrY0NNE1lPOyzcPgQ5VIVy9RpNXdI2TaKqiELmTCI8L0AzwswdAtFhlwmhe+OWF9bw7RMbMdh5ca1hJ4cgUDj7LmLeN6IKPRByEhCI4xGSW22JDHqD3CHQ9557zyBH5K2bTLpNEKB0PPodgeMxj4/+OEPmZydJpUpIGKfd9/5gHK5hmHojHUZ7eRZGPTg+ceRpDihbOsO2Xyey6srTM7OIus6QeB/+r545z33AXN4/J03kg3G333xnvnl1pyXUFpFOSIuhshCpX7pDC9//a9456Md/uHhf0I8MaJmTqLpCpOTRebmimRMgRx3MMwYUzMIgui257OqqIRBhCobbG6vYzkWspIINkWBQmc0wNB0fG/A2PNYvbmLqpp7dcfg+X3CcIQUgSBAiJgw8NE0Ay3WCAOfixcvkM0WCD0PRRkzHMgodpbiRJpjx59gZ3PE3OwU3e4AwgGnP3gNgjrFtMwo9HFMHc/z8NUM6/Ux6UyRMFbIl6sQR0jKmFNvvctoOMRjwJHZCpoIUGSVOIrxPB/LsECKb1tnaaqe+GD7LopqQCwR7rGaJEnCcwMkScF1hwg1QjcN+o0u2YJJhIcsq3jDMY1mE8dOMxyNWdu8SRQLGt0WN1ZdFD1i6fAsB2aPUJko0Gw1cL0RUzNTTE1NEsghm8E1Cl4NY5ji17/0O3ww/ogP3zvDoL9BrZZGimVOvncOv7VN1tL5w//xf+L5Z58l7aQYhwkjaX5+/q5kxq1HUspxtwXenXoeDwKu++lx3J31TM4XnlQBkJ/x73v8fn1LFjZ7zUgSkrj/Gu5TJW0kugGf+LVKwCf6G7c25eM4QpYfzW/+8/i7F58D13viYYvmW/HzZBPvFz9Lm3d+8X+V4n79vQVGH6YqfCvz/cvcOfssGer9APj+cb8pYT+6yz7ZyH3OEe8nU7+/3fgDu7TfhslD4w6bmqNHj3JvZna/4+56+p7JFD4DtT7+RGc58H0kQB+F/Nf/5B/z8Ts/4B9XDlH+7/+M4RNH4OAc9Z0dnnjiC6SzaX7w2mvMTM5QLBSYm53l7MdnOXRoidOnz6ApBtevXWUw7CNJMpubN1hcWCIIAnbrDaanZ5EkGAz6KKqCYVi8/fbbrN+8wbXrqzz51NO4nociy1imRSxJWI6DO3ap1xtYtkMhX0RTZaamE2GndDqHZZnoepJRLJVKDIdDSqUCmqqi6RpRFJHJZJCVxBuzXC4xHAwxLQvbSaEbBpNTU7ieR7lSwXYcFE1j1B+haTqdbo98vkitVCGfzzA5VSOfz0OcZDpNy+D7r7yCaeg4jkN5soam6bzz07fpdDscPnwI0zSoVms0dndRNQXTNtA1DQEUCwXiGPKFHKqmIWQVSRJ0Om10XafVavGj13/CRx+doVqdwPcCwgDqu3VSqXRCtVQEN9ZuMHtgHklSeOWVVzh4cIlsJsV4OObkB+8jZIlMOk3g+6ytrZKyLBQ5qS0sFQsUSiU2N3eQZUE2kyGVsgmDRFxmOBiytLSEqmosLy9j2xaOY6PrOnEskc3l0LRkQeP7PqqqcnX5Gq/97evkCzkcx8S2DEzD5Puvvsyxo8cIwwhVk6hOVPH8kEsXLiFEjG4YDAZjXM9nMBwyHCaCT7qhkE6nUGSd+cUlRqMx65ubVKoVgihmMByg6yqe6yJLYBomuqEhC8Hm5laS4XdshCyYnZvD93yuXbtOuVSm2+uQz+ZYWVnBtCx6vT6zM1OM3TGKotJoNHnjjR/zxBPHWd9Y47333qNWq2HZNkJWsW2LnZ1tXM9jcmICJBlvbywPhgNq1dIekIVWu8145HLk8BFURSeKI8YjF9cdc+3aVSzLZHpqmlanzbnz55memsA0dDRdxzRsPM/n+vXr1Go1fDckn8/h+z5xLKFqOkJIeL6PqmqMx2N0QycKAyQh0ajvoqoahmVimiZBGJJJp9ENA3fsc/nyFd597x1e/LUvoesaiqoldelSzPrGBplMFkUoNOoNzp6/zOLC3F7NrYtmGERByLWVFVw3wEmlKBaLpNIOsoBUOk0qnSGMQ4Rjw2CAvLoJ/+hrRFFIo9FA0w00XSeby6GoakIVfkDG9c7n92NH3bLD4XdfvOv4fdcrUfL8v/s3/wv93U0mqtN8zfov6A267HZ26Pd6VMolzn58kcsXr+EYKtmsTeCHmKaxpygfJvNwBFEUIytZ+gMPVVURwmA8jnjtzfNUK0tsbvfI5mdY2xiwvZ3U7GuaShxKmEaaKPSRpFsbl+D7PkGQCGXJqoFlGBiGTBhJCKXM+x9eZ6fRxnGy9LtjqtUiqzdWmawVKWYtLF2GyEdWDRRZEPiClZu7zB98AtNy2NltJjReVUUA66vrbO9ss7AwRWPjKum0hhCJsFccRYxHicdzFIVJCUEYEkcRQeDRanUxTB1JkjB0kyiKqO82MA0DSQg0VUWSkqz+Lf/ZKIzIpGwsJ4WqyTiOQxTJ9Ps+l66soysG5UqGYrHIybc/ZO7ANJqmMjU5wVtvvUWn3aVcKie082CNSjxN59qAJ5eeYfrLBRr16xycn6JebxAh09zZptvtcPixYxRrk5jpArH88PKrMAzvu/nOIyYe7vNqMo7nQuTHgts+ro+6nnpYtvdBSQMJ8Skwe78QiRXC5/ErGJ8D13viQcD1YdnVz4Hro8f9+nt79++lHwL3B673y9jeGz9LBvpOoapHjXvHxv+rwDX+9HO/COD6SABSuvv99X0f+R5D9HuP24/WfudC7FHOG8dx4rMIiBh6nS6KkLEGPf70f/9X/NOp4xz58Qrh157Hn6xBHGIZGoapIUkSw9GQ0I85c+ZjPM+nVqsiSVDfaTI7fQBNE5SrRQ4fOcLs7DSGYeK6PkLI/NVffYOlpQVUVUVCYJomM7MzpDNZqpUaQRjyve9+j4XFJXq9PqZt0+v30DWDYrGEoRvk8ikWF+YJwhFB6KNqJs36DiN3xPLyMuVymWw6heuOcD0XIcvEUQLUNc1EN3W2trbIZLOYho3h2GSyGYI4QDcMvCCk2epgGBbrNzdYX9+g0WxTqdaIIo9cPouQJXK5HLZj46QMZFmwsHAgUfPNZglI6pUX5g+wtDCPOx4jq4ndxk/efJNjxx4jlmJMRcH1XF79/qtsbe9QrdaQVZV33znJmTNnqNWqhGGEYegsLR3mxIkT5LKJYrBpmhRLeSRJYnd3l1qtSiaTQlJ0wijixFNPYmgqpi4TS4JKtUypVEYAq8tXKBVztJp1+oM+s3OzxJJgOHbpdbroqkrKtjj38Rly2TSWY5FKpdjc3OLMmY+ZmZlBFoJ2u41hmmxubZHL5Wm1GqTT6aQG13bodfvky2U63SaeNyJlmwz7PSqVPOVChWKphB+6GKZOrz8in0kxOzuHomq88/b7HD7yGE46i2WrWKZM4PsEXozhpHj9R29y6PARahM16o1dFFnjzOnT6JrCqN/FGw8oFCs0Gg0kITB0nddff535xQPEcUjo+/ieD7HASaWR5ZidnTpLi0sUioXE0ir0KOQLrKzcoFqt8eyzz9HtNlBVBVlW6Hb72FYK3bLY2UmsnGQB/V6HtfVtKuXE2smxTVrNXVrtNrEE6XQKVVb48L0POX7scVRdo1AoUi6XWb2xSrFUQJYldMMgn8vj+x7pVApV1ditt8hmckiSQEgSoRuysrqKads4qQySrBL4Ac1WE8s0kSQJVZGR5eTzkoXAdmws2yaMo70FK6iqxnA4pFwp8/jxxwkDH0mS0DSd/mCAREw6kyUKY/r9AVEQMzc3z/b2BpVaGd/3MHSDS5eWSaUyXF9ZYX5xnomJWkITJULREgqkrMoIRWZsG+gfXiRaXSd68WlsO4WQZVzXBUliOBiSsmxi6dPzyqPONbeB6z948Z77ZXTXcdE5FXYEUk1i2L5J2K8z6o/4SvY/xzgqcWV5Gd/3ccdjNDVFrzNEinyKeYd2q4FlmgSBjyzLaJrKYDDEdT3efmeZ0dhlarqCqmogyQTE6IbOgcUZ/NClN+wxN3OA+u4uhq5iWQ5hBBIeQk6yw/Et700lJIxibCtDY7eOokS4ocHVaw0kOc/cgSXmZmcwLBXXHTEcDli9colRr0HaMZCUpIxABuJYYeSpSGqGDz48zZGjx5AVGUFMp93j9Idncccdjj82jS57FPLpRIF37/1XVXUv26qgKjJBECBJCbAxbRtN05BlmUTUR2CYOmEY4tgOsqzQ7w8wLIvBwKVcnsAbjxGyj6yoBP4YWZYAlXZ7gKUrRIGLYWis39xm5dp1pmanKOQLtDstJEni2LHHWVvbYH19nVy+wNDpUxxOUN9p8mdn/w3Pf/EphoMelUqJH73+DhkzIp9Pc+XqMs+++BWy1VnCONh3rN2ejiWJZrOJYRh3zcu3j3tE4PogEUjJ5jZovfNvHhb3s/27s43Pget/3PEfNXB9GHX03sf94rOCnPud7+c57mGL/c9yPQ9r597zfVaAd7+d4jvjTuB6vxrPRznvgz7PO69lP0rwZ4kH7aLf/drPB1zvpfUmv3x6h/5hwPXOc4l9QOT9runeiPmEbhRFCc3szvPcfo/38TC8M27RlO4UbHjQ53Rrcg2CAAkwFQ1FEvz5v/jf+G96NtObA8Lf+hJBvkgkKehKTKedqMQuL19j7sAClmGwvrZOtVqhVC7wrW99k4MHD/O3r/0QWYHDhw+yemMdRU6yyJqmEoaJT66qKiiKRqfdRdNU2u0WumnRaDbI57OUSiVG4zGnP/6YYrGAZRqk0jbNZpN2s0ks+ZiGQafdJEYiCGTG4w4Ijfc/OMXRI4cZDXukUjaj0QjDMEECVTNotduYhgmSRKvVJgwlYllKlHH1RFW0Xm+RziTAwfd8ZmbmqNVqxJKEqkiYpsluY5dSqUQQhPi+hzseIyRBt9e7LbQSBgGaqtDvddF0Dc3Q0TWV6ckJgjAgqWncYTx2eeKJJ5GEIJ1O7a17ElqWbTvkcll03UjUOP0RuiETxS6dbgvTTrJvqZSD57mMxjZtBzoAACAASURBVMNEvdT3+Muvf53HHjuMEDGKKjEYDqjXG7ijMfWdbXK5DPlCgWwmQ7PZwrAdfvDaD7lw7jwvfOkFiGNSjoVlGYzdMWEQksvlsW2HdDqNZVp8+OEHLC4uEEYh33n5ZSqlSgLmHZs4jnHsFJVamXKpxEStmqjuKoIoDtA1C1nRUDWBH/jIskZrT4BIVXWWDh7kO9/5Dp7vUauVgJAohH5vRL5QIJ8vMhqN0HUN27EwdJOU41Ao5Cnk85imQSyJZGEtqxiGmYhP2SaZdAZdkZGFxMzsHLphIBHh+T6GaSIJCUPTME2dKIrxPI9MJk0QBAxHPVLpNIZhMDk5zUvf/g6dbpsjR44QBiGnTn1EuVRgOPSQhUTKsZJspwTpVJbRaIyqqWiahirL7Na3iYXEK6+8iu3Y5At5CoU8vj8ilU6j6Trj8RhVUZBVFWLBj3/8ExYXF9lY30AIgaophFGMYVh0+0Ne+tY3OHbsOKqqJP61QbDHcDDIpDP4YYCsqsQSXL60jKYZqKrKcDhClgU3bt5AACvXV8hkc3R7PeIoTOqGRyNUJamNrU3UqNYqyIrAcmzCIOT1N97k9OmPabbaPPvss5imjiLLSLJAUWQkIRHFEe1Wm0wxR2wZyO+exd9uID3/FJEA07ZwXZeNm2vkslk0S79dL/mgzfBb97e7QMcecBW//xv7Cu3civCvLVhVCJ8O8Po73Lh0io3ra/xm4Q945dxLfOGJJzhwYJ7AC+gPuyiyzPkLV5ibS5PNaMSxhK4nAk+Jmj6oika5VmJysgxijGEqhFFI1jGI/BhFlnHHAzJOikwug+8PKJcdgmBAFHkoIsbzxkgioePKsoKsyIxHLqZh0my1sJw0V9faNNoDnnv+BSoTZTq9OrYj4459xoMBkj+k39lkopIhkoaYpoY/HoCk4UkmqzdbvPDlFxOBPjlGleHtt07SbHcpF00WpmyyKQNJJN8FiFEUmTiO9jzJwfc9VEVF7M1nhmXi+z6+FyBE4i7gui6u5yVUU5HcS4Us0263EbGUjFHbYjgYYmgKYZBsLl25vMbs5DRHH59kNPK4trzN5HSVTDaX+C4XClTKZcIwZme7zheeegIQOE6ak1fe5in7eb565HeQvxCxu9smn8sxGu5yeGGCXruBkOHG+jbzR57AsK3bjJH7lbh1Op09G7FPs8V+VnGmvZ8+Gbf3rN3uHPf3LX+7Q0FYkqQHsr8+1Zf47vXCg9cwv1rJns/jk/iswPUR+YN/d+N+okqfx+fxdy1+ng2GR237523fdd0HTkIP+67d6oOy5wkYBPcXctgvZFmGKOb6T0/S+Kf/nP/0mz8lEgq7v/4cIyeVWDvIAtf1yWaznDt7DiEJtja2aTd3MXQZiQDb0vmd3/57VCpFFhcPYJkW9XqT8+cu8dprr9NsNnn77beYnCzz3PNPsbi4SC6X58LFS5w+fQbbMbFTDkuHFtnaWiObtZmemeLv//Zv4/pjapNlLNtgolpiaqpCoZAjDEKEUMhkCnzrW3/D5vo6ppmiP/AAgabIdNptTDOhpdlOGkmSGY2GCCVZVDpOhmw2SxxEhH4AUYgA6tt1Lp27hKoqrK3d4L333iWOQ1x3zGjsE8VQqdbo9gZsb+9y5qPzaIqB53sEYchLL71E7EvEAbijMZppops2kNQhN1u7ZDMZBoMR/ZGLaTkIWWFh/gDNxg4iDhmNRpw4cYJarcpgMGQ0GvHqD15lOBgSxzFBEO2pufbxfC9RwZTASTuE/ghdFfz+7/0DDN1AKCrDXoNsyqRYKNBqd3n//VOM3Zjd3fae3UaEKlReeO4FFhYP81ff+CaSrJDO52m2O7iui6ZrnDx5kh/96EfYts3y8nUqlSpRFJHP53jhS89zYH6ebrfHaDRmdXWV0WiAHAVEvkun3UFWdFLZIlMz84y8kDgWbG9tEwUh48GAQjGPosooiuDc+dP82pef4fixJXqdLqpiIasmpVqVKAowTY2UY9NqNui0m4zHiVCV6wdcv7lBd+hx+fIFWs0msqywvb2zt0HhIMsqvW6HKHBpN3cYDrqcfOc9KpUqiqYSRSFRGNDrDTEMk2qtgueN2N5ZQ0hyYqcTQbfb4Te/+hUWZqdRhCCWJHqDEUKWmZmtMh73GA77mKaF5waoqkEuWyAKQiRiCsUMuZxDPl8glU5RrVaZnp5G3gMFQeCztbXJ2bPn2NraIgx8gtDjuWefpdNpc/HieSIpxEpZQITnuYg45sCBBYSQ6fV6IEmomsJoNEDVNUbjMfKe4NRoPEbXDPK5IsQyr732GqoqWFxcQNcNDh0+AhJksxmKhTxhFOz96yMJGPS6tDrNJIMqRDJun36aMI558smn9q4T6vUtVFmFKCIOfUQM+WwO1x3BwRn8Sh7z/fNof/oNvDhk5I4hjJiZnuZP/viP8TyPMAzxPO9nXoM8CDR8AmYBITMxMUc+V2Vx4TCyIvPlL79AOp1sOqTTOUajPrKiMDVdQcgGkkh8cpMNSMFoNCYME2XhVBp0PUIQM+j18d0xiqxRKExyfaVBfcdjOFDotnsYqkYUeMhSgCz8vQ0PCYnEvghiVMlCBqJwQKFUpNGK2W3IIAycjIaQA9LpNEEQYdoWtUqJWiVLtZpGyC5SJHCHHlEIQrWYnDuMphmMxy6+N+LV77+MED6DYRvNVEmnVOSoh6IkYFXTFHRdRQiJOE6yrUnNpyAIAoIgRFFkfD+pz1RVjSAI6XR6yLJONlPYq1kOGbs9fHdMOqUhZI+R67LTiIjCmLE7Jp2ysC2ZF144SmNnm0bjKs3mFopqIKtw+tQpSsVSUnc9GLK9uYUsBK+//hqmpdPptqgPdujMb2NvFFg68/e5uRly8WoLI1OlPeiRLzisX7vI+vJZTPnuMbYfgJMkiVKpdNdzP+/a+N6/DV5XCV5XH3rcredu9esX1Z/P4/O4Fb/yGddfhnjRLwtc/CLb/mW281kzro8S91KFfxH9f1jW/JfV9t3x6BlXIR4VWO7zmTwk43oXcP055gXd0G6LPHwyQX568rnfZXxiq/PgjOyd/b7VbuD7qDe32fpv/2cm/+QbqJJg+PyTvLF6jXK1ws72FmocYsoxrh+gaSr9/oCJiRmcVJadnTVmZ2eQhMTlyxcpFHJEwPyBRVZXr3Pw0GGOf+EErjvg5MmTHJifJY4D/GBMGAp2duqoisZoOEjsEIKAQa9HuZQnikJkVcX1feIoQMgx7miIIgt8z0UoMp12l1w2x2jksr3dplrOYKcKHD36OFHg4Y4GaKpMvb6LYVmEUYwky9iWRbTns9tud9A0k1deeYXDhw8iSTHfeellXvzyb1LIlRBqiG1bzM3Ocfb8OV7729dYWjzIaDTCNEwkZCQhU8yVOX/hPLZjYTs2pmXjDQMuX7zAd7/3N0zPzGA5aSAiCnzyuTTdXh/TshNPUVVNsl39HoQBjm2SzhaI44SSmU6n8TwPTTGZnpljZ3sXSZLRVAPN0FBVDUVRUBSZTrfNuN9D1zQMw0SSBVs7O9haiKJq9PtjtrabPPfcc2iGhR+EGIZOOpXm6vI1JiemyJfKlMtl0plEBdl2UkxPTyKEYHJyimw2ixCCSrlCbaLGaDRgNB6TLxSIo0TczDB1stkclm3jjQY4to0sqyCpdPqDJEPjga4ZBMGYbDqFrmiomsygP0zqZXUBUoA77OO6IX4o4Xk+QeQTeAkwMA0DyzJoNuo0d1ucPHmS+cUl8sUi3cGQyWqFcrlCEETcvHmT+fk51rZ2cUyD0aCDLCQ0w8APAwI/oj8cIBSBqeuEvodlpVlZuY4sBE7KYjDoUShUGA6HmGYydp566il0WUIoCrKqMbdwIKl1DDyy2Qye5zEcDLEMG1U1abRapDNpIGTQa1Ms5li+dpOpqWkcx+HU6dPk81lMQ0U3DVZXb1KtVshlM9R368zOzKJpKtevX+fJJ7/AyHepVEqYZpLh+vY3vs1Xf+urrK2tJcJeUgLIdF1HCIVer0sURphWMj6ymRxxlPj5VqsVdCPJzHpjl82NLUqlEptbm+iagpBlwjDkwoXz5LM5et0+TtoBkfjnEkaEscTkxBTz8/NARMqx0TU1sYMhZHt7C9u2UWSFBGz76HNTSO+fR9gWO188xHg0wjEtTNPk0NJBhoGbZKhVdd/73YMyrpy+jJRNI3796U/dE+9kokTvJ1R+npHImCov/cX/yfnTl/m9uf+Ks+0PqFYn+fY3v83qyirHjx9jPAo5d/Yso2GTWimPqiSWL0HgIUlSUt+sqMTxmCgAQ9fZ3WnhWFmE4zLwQuxchnQxw9AdsHL5Opl0Gk2NkAiIwwDPT2pchZDwPQ9ZkRl0fIQIkZUAN1BYudljuy7x3HPPsHrjKttbdQYDl8mpmWQDxvfptzbIpGLCoI8qUthmijCQuLS8hZaeIuVkKFWKqJrC3OwEO1vrXL+6QrPX5YtPLGLLPSQhcD0PTdMIwwjf94iiCLEn1CP2NlGjMEjowbKE6yZ+rUEQoioqQZhkZi3LIIw8ZBlkVBQRgAjp9j1ef3OZQ/MlJCki8Mf4nodumGTSVeycj5Oa4PpKh+kDVXY269y8eYNGY5eZmVm63R75fIFCuYBl2qxvbLK4tESmlOb95Z+w6B3H8HP89Zk/R1ZjDi0UGXY7hEHAYOhxda3OlZubPPXUU7ctcu4cU/f+fOc4umMwPtJ8fO84TP4myW/5f6MT1wXKs+G+x9373K3s6i0K98+2Vv80QL/vkZ/7uf7Kxv+vqcJhHP2zxHss5tZ/0m0pVonbomP3oyzsk0l6EOV23wlnn/YeRfhmv2zYfmpuv8x40Hk+K4Xkzhvmo0R8+iJSxoEXn35g2/c7z34009ttf4b38cEKwQ/rz62anmhvHoiJ41uD7t5H9MmwvP349EImJlkoSUTEQYQINaTYR0i3FHqT89zTEZAkpFj6RB/4DpHfeyeIW75v0Z6P3+0xLSUKwHc+ohBueaMl5VafKDzfWpzBJyD81jXdCVgfNCZutRNGAjWW2Lq+Sj6dJ95uEf7+f4n4028iBwGr8xX8+Tk6nk8Ux5SLJbY2NxCySr3ZolDI4PuJ9UsQ+GxurLFwMLFaMk2LOI4Zj8bMzR3ggw/f58jRw/R6bc6dO8XSoSWeOvEMV6+tcfbsBR47dJjt+g61ao3JyQlqtQrpTApbU8gX8qxtbJPNFZClGFtXMU0TXdcIwhjPj4lRCLwRmXyeketjmha5jEk2XyDwxggpJJ22CaWYOAChStipNIpsIksx3/7Gy1y/eoN8ocjs7DTtxjYTU9PYloOmmRw8eJj33nsXVZPI5/PojoGqa+SyeQ7MzLO5kdj66JqOqspcXb6C46g0Gg2uXr3JWz95G1XTME2Fxx8/zNEji2TSDnEUo2sanU6XTrdHNpshjDxWr13FNgx+8uO3WN/YpFBMVGeDwNuj1cpEUYA7HhMFY1Jpm3QmhayqyJqy9/nHRFFAr9fD0G0kKeDayjb1Zoco8pBjkFWHeqNDFEcsLsyhaQpxNKJYLKKpDj/84RsU81kmqgUkxcdxTIhhenqWTCbHN771bR47ukQcSYSRTKPVpD8Ysrx8mWqliGWnuHTpOr3OLrqqsVOvoxsJxVXTJVZXVygUCozGQ97+6U9QYp+pqRqqLhNFMbu7DVKOTWcwwB27KEJG0TXeevtdzl24zsHFRRzboNtpk8sXiCKVXq/H9s4mqipjGg65YoHpmRmGgwGGrlLMp3H9YM/FISaTTbPbaGCrAtPUsdNZhm6IYacZDsdUKnlMQ2VrfY1cNkO318XzXSrVGppqsHz1KhMTNYSqUN/ZhjBgcmqaRrNLrlygvruLZZpcX75KKV9i5AXESAyHIyzLZLexw9B1KZULrF67RjqVRrdSoBpkUxbjcZ848pmZmiAMfQxbZ2N9nbnZWZqNOtPTU4RhyLnzFyiVKvT6faZnp9nZanLu7AVmZ6dxx0MOHVlAURxyeQfHsditt5M7l5TQlcfuGNUwkJVEUX1rY5N3332HayvXyBVyeL6HZVp4nk+702YwHJBNZ4mJ0VSTUx+d5QvHn8JOp8jkc5w+fQZDNfDdIBEoIiKVdshkMxi2iapKbKzfxLZsQs8nk84gVIVYgCyrSEIgqQpx2oZ3z+Ago73wFJqhE8Yx/dGQ/+OP/pjf+upXifaokKokII6RJQHRngr8nlL6pzJkL55AevHEfrMMtxTlQSJ6TwUpRjwTcv3Mu9RvXqZWneJY+Pv41T6DwZhmu4XtGBhGKvGknphgbnaaUt7AD4d7c1YikCUrKqqi0ekN98SzQqxUBlnT0JUMgQveEEw9w/ZOi3OXVgjCFguzBRQp2fjo99w9cbmQmL3rlTz6vYh2K6LeHrK6NuTFrzyP641ZWDiIoqiUikW67Q7dZofli5eYnYmQ4xFKZGM4Kr7XpdkZM3foBH4cUShP0my1sZwU45GLqhgsX1nlxGNlSpkYXTfxQx9VsVFU8IMRhp4iikIUdGQloj8O+NEbyziZPHpKEISQTleJJJ/OWOFbf/P/sPeeQZad6X3f7z0539i3c5yeGQzyLoBdgGFJLIO4EkXalGzRJZfLVSqr/MGqksv6pJKrZJf1yZ9U5aJlS7Jka4tiWJK7XG5eAAtyF4uMRRhMDp3Tvd0335Nffzg9g55BTwBBilwSz1TX3HvCG8459z3P/wn/5wKN8QDPBU1mqIqBUHSEahR1atMYy/JAU6mXDHzfO+Qw0BEipx/1qZXKmEqP6QmTg1bEfiel30spl+o4jk615mHbFq7j8/xzL/Dow49y9r13mJocRzUzhKawJM7w6COf4cWdH/DE4w9w7uI1/KBCOBoRD3ZwnQqfffJJdMM55ILIbwLKG+/5o//f+HwzPFeID2kox1mfbw/LLb4X63n22geswvKovn3L58Of9SGTsERyg8dLEQrisFif5O6Ekbf0faibKIr4kL5y618OIueIVvSJ/JjIX2ngmssPe1yPBSB30Js/qnfxfoHrfzrv3seT261xx4WbQBHeeTQ38W7t3O81EJ97EvG5J+9JXnHDEHBfbR6zSN/e1v3M4X7l6CkfvCiOr6d7FKge1+fN66BkCFHUXlWwGPVzJEW+WZwmKOpdCAeOKVNzXH+3As6j9/WYH4q89ZrenqN685oeeefcC6zerJWcZggJKoI09XjzhW/zD3/9V3n44ibj/+LfMWxUuXpyml1L54133kfRLBqNGpNT49i2icwzojDEtgyuXL6CrhtUq4UXsFwusXJ1lY2NLaampghKJYJyGVVV6XbbqKpgMOhzYvkEgiJ378yDZ/jMU08QxyGTU5MFOYgqaO036XfbBetpnlGtVBgM+vieX4TbJREyy9je3KLf7ZHEEaWgRKfTJU0SNBVkntDe7zI+WaPbb6OqFp1uzOraBtV6DVB59eXXmRxv8MjDZxgNQwy7hOt5dPr7nD93kSiKSJIEz/MYGxujUqlw0Gzh+T5pnmKaFrZjUatW2NnZPsx3TJiZmUHTdRzHZWlpCduxePonnsG1DYSQuK7LtWur1GoNBoMRUkosy0JVdKIwpVIpYdk2uzu7WJbF2bNnWVo6gWVaSCkZhSG2ZZNmKb1uB03TUVQVwzAIo4h2ax9D0wgHA3wvIBrF9Psjzp+7SrvdYXl5gXKpjK6bqJqKZZr0el38wKfX67K/f0CSpJw58wBZGhNFEf1BvzjG9w5rNRpMTY3jeQ5JIul2B7z+xmuMjzd45JGHSNOE/mBIrVZjotHAMA00VaVULhHFMbbhHZLtpIzCAY8+8gT97j5BKSCOUwzTxPdcomiEWw6IohTb9Q9LO+RMjU8wMzONoqpU6w2konDQ7PHOO+9Sq9ZQNRVTN5AIHMfBdZ2izEeSkaUxSMn1a1eYmpzA0HV6ve7NvDpNU5Ayu1kKRtdN6vUGqqZj2Q5Rf4CqagzDiFK5gkRlOBriex6mZaKoKl/6vT/g5Il5giAgSxI67S5ZmqHqKr7vowrB1tY2M7Nz5DLDsUxURRInEZ1uh16vh2vblEoBuq7R7XWp12oMBiGO7eA6HkHg02130HWFmalpdne2mZqaYL+1R9kvsbg0j2WZmI6FYVkYuoGmSRS1CNW0bYs4HWHoJsjiOiVJQpol5Ink0qUrLC6e4Hsv/jF7e/ssn1jEdV1cz8V1XRzHQVFUdN1kbKwBh4BcEYLZ2ZmCodt2+PZ3nuehRx9CKAphOAIpi/JGQQmhqGRZzoVLF5kYHyeKRgjlkHlZ0wh1FXN1GxEniF95lizLDvM6VX7u2Wf5/ks/ODS06McaJg833HWdvpvkr+kgJcqTIesX3uErv/0f2G8N+Jz33+I9YFKp1oiiEYsLc+y1trh6dYXdzW3SaJ/xMZc4Hh1e1/QIX0FBhKcpguFoVOQVA+EooVSeYLfZ48Klyzzy8BnmZuosLVQwtJQkGpGmIbbtoGkgZYplFiHJaZpiuTpC83j55R2qYzWkyKlUyuzu7rCzvUOWFTnEo0GPh07Po8h9yJOCNVnNSZOYXNpoTh27VGM0GuG5JcJRyvbWBpcunWNjo02a7bMwV0JTBMiCkCzLilDaXm+I69okcYJmaIBWkD0NB5RLPpqlk6SgGDpxqrK2uk0p0BlvlFAQ5GmGpsIoSrFNB8uwydKI6WkfASRphKKIQxIkiaI4ZFlEFPWxHJd33r5KLhOmpiZZW9tkbXOFpcVF1tc3OWj3SdOc8fEGpqkSlFzyPGU/aZJuK1SsGrXPl/jt332e986e48xD82ysX+Dk7DT7O212NreoNMZwSiUyoaAcwz1xJ73mFi6JD0760HHHRQzckBvAVftMeuy5d/Ko3vh0lHdE3mWsd5rH/eiDQhSa1CfA9cdL/soD1w/VeboHcL3dO3i79+5+wM1N79gx8fn349270/F3A3B38jbe7e+jyHHHH+e5vNccjhvr3frsdrtYlnWz7dutbvdagG/vE+5Q4PrIMfeaw53IDj48n1vzS4r9t5Z8+aC/e5NrFR8OQV0u0BWb//mf/gveevsHfPbpzyJU5eYL4tj58UHfxz1XNwDjHa/lcSVtZHFeln0QDnTrfG9c8w9+G7fvO7odCpp+Q9VQECi5ROQSUzH54de+zD/egoWrLYafe4qtwOG5554nTSUnTz0ACOpjFaIoZNDv0e10WF5ewrYsrl65juO4vHf2LKVSibNnz9Lr9jl77v2b4WKdTpvtrS0ajTEajTHK5TKOY+OahfLb7/cYb9Tpd7ts7e5QqVZp7u6SRBG+55JmxTxazT0CzyOMYnKZ49gWX/7yV3nwwYfY2tpCyvxm+RHLcRBC4vsOpVIVlJxcSmzLY3Njl5de/mFRgsX2MPTCY6CpKo7nU67W0A0D17OZnpyh0WhQqVR47rnnWFxcpN/vY+o6OQJNK8L/0iRib7fFwcEBUIRempbB5sY2nu/iuDZRElOpVDC0otxDGCWsb2whpMAwdc6fv0C9Vue1V1/nhy+9xImlZUDgeS7T09O8995ZZmfmef311xFCQeZQqVRJk4xSOUDTdfq9PrZts7e7y2R9nM2tTcqlEp1uj6vXrtPc3+ezTz3D5UsXeOzRB8lkUeYDmZOkMTs7O5x7/wJChYWFBRzLQlOLaAEpJN12n+Zek7GxOrpeEKRE8QjXc0hSiVA0PvWph9ncWCcoBTiHwMY0CsU/l8UzrRs6pmkipAJCIpQcTdNRVYM4HGLZDkLRaLX26XU6VCsVNre2qNQa7B90cB0T2zaZqI3R6XXJJWiaRhJHrK9vcbB/wPlz53j4oYfZ3tnCcT2kzDAMnc3NTVynhBA5iqJy+fJlJienCMOQemOcURgeAvOMKBwhpCSXBYNuGEasrK6haTprK6tMz0xjmoUHLcskpm2SJjGjUUipXGJhaQnLMOj3+1imRa/XQ1UUKtUyvW4Xy7JRtSLM9tqVy9TrNVRVYdAv6t9aloWmqpw7dw4ATddZuX6diclJbNuiubfHwX6LPM8YRUM8r2De1TSVOInwPAcpc4bDIXGSkqY5hqrS6e5jWQagkiNRNIGu6HQ7/aKmq66iagrXrqzx5JNPUq/XePDBhwmCCqqSk8scTdMwDAMpJaqis7KyQr1e4+DgAMd2uXzpIq3WHssnl9B0g3q9gWIWIfntdos8jWk0GgXTrmnRHwzRdRNFAVNXyREYRsFWruk6qeegvfwODEPkZx5BCIGqqqRZgms7fOPrX+fMgw+SK+Kmunx0Lcw/RpRP/pqOECAf69G8+h6vvvgdZqZP8Rnz7/Hile9QrVVJs4TA90nzhLXrW0w1qlRKUPIcDF1gmuahMbqIlMjzDMM0UYTEtm2EoqCoGrZT4qCbYDllWvstJscr+LZEV0ak4QDLNAvghoIkJU4iEBphmGMYgkwkdAc5nZ7L1Hyd5eVl1tbWmZ9fIE0z6vUxTMNCkQmXzr3KeN3A0DQ0XStAplDR9AoRLsFYUWppY22T1195lYX5OWr1KivX1jixUKFeMZFZjiI0sjxHKDlCqFiWh6oJVC0lSRI0w2C8UcXzTGxTh2xEnqfIJEVkKYuzdSoVD5mOMDSdJImRJAg9IU0KbgLLsMmzDM0ojMh5XugtmqahqAMUoSEzn2EvZ2m5xuJymc3NVbrDEY89/gTtdp+Tyw+CgO3tbSBH1Yq6su+8c5ZSpYxeUam1Znjlj1/n/XSF//F/+ie89toPWZwbJwv32bq6Si5yHv/M09h+GaHqtxA73kuPvP27EOKuBpXj2rvpcX0qucVjeie9+qYDgmOcCsdVWPiIeued9n8QsfCJ/LjIXxvgeleQdEw5kTt9v9v2OwHk+wVX99vPxznuz0Pud4G4HzkKTtVDr8zRNu7W1o3w1hshrvczjo97fe/UZmG0yG+O6YN9Hwbed8sB/bBoh5E4CopQ+dY3nuO/+vv/GbV6DVXT4LZn/RbgfIzF9bix3/H3cgxwfHyjSQAAIABJREFUzbPifqmHnt47GwSO7+cOgyBPU5RcoiJ4+fsv8Z0v/l984flzuLZL/vPPkFo2SZxx7foKp0+fZmZ2Gsc28XwfTVF54/U3mZycRBGC8+fO0+8PcT2PcrmMruucOXOacr3OAw+cYmZmhnA0ZKIxBgpMTk4A0Gw2sSyTs2+fZX+/xac+/TjXrl3FME0mpqZJopSXf/gq77z9NtVKBdstoasaayvXcWwDSY4XeKi6xauvvcnE5DSVWpWZ2VlszzsMlTWIosKz1hl0EEInGhUKbrnk8uknn2ByssF+s8Uffe1bPP7Up3HsMrppYDkqSRTx7o/OMzMzdZNYplqt4vs++/v7uIFHlsHO9haB4/Deuz/iT77/KjPTM3zjm9+i3x8wGAyp1xt4gYeiicLLJATDTp8kkzieD4DrmASBT6VSIk1SpqemiaOI7z73HDMzszQaY3Q6HU6deoD33z/P6uoqTz/9DF/8D1+kXK5wsH/A+EQd07Jo7jXJ85wL5y+g6yZ/+Id/SGOigecHLCydoF4rWIjLJQ/HtdjZbRGFEZZlomoCiWRh/gSGbZBmKa29XcJwRHVsjLX1dXY29xgMhszOFJ4927ZAgm4Z2I7PQauJqqTUqjUM02JlfY16rUa/06HZajEajajVagyGw4LxVit+u4bucNDuYpoqpmYV4d9xTiko43s+B60DqtUy/+o3/g0TE9PUyj7DXgdUnUq1zvXVFUxdYW97g6BcZvnECZaXT9Jq7TM7M41lOyiKQNUEumbyysuvo2oFYFo8scz2zh71sQajMMbzAgSFEa7f6xOHMUKofPc732FmeobxRgPTMChXK6xvrGGaGq3WLrVKhQwgz0nTlDiOqTca7Gy3KJcr9PpdbNtEN1XUQ2+i47gYhkmW5QRBgKUbXLx4gaAU4PolFFUjHkVcvXqVk8unuHzpMidPnsIwNFRFIPOU0bDPxEQDv1JB1XSGoxDLKUjNhJqTpClSSg4O2oTDkDzLCtCuqgjVLNZOAZoQqKrBxYuXCUoeuqagKQbbO5t4vse1ays8/9yLDAZtTp8+zcb6BpVqhX6/j6HraJrAtHSCko8QCoEbUG9UybKIOAkLIrRSGUWR5ElMyfdI4rTI9RRgWDamaZJEIwxVQejGLXmm+A7qxi6EMcqvfv7m++j66nWmJ6f4/d/9PZ79/LOgKkXY7G1r8g3v0tH1MfuH/wvyqy+i/O2fPX7NvLEeH4IFPtXnS//Pb9Dd3WRzt8cvjf/3TH92DKFCrVrnYP+AemOS/WYXlTZLixXeev08U5MVsjw7jIoQKKpSgHKlALQFuDMZhSESA9trsLm1z/KJBYSISIdNFBGiKQKJglAKQ0OSxbiuS5zAu29fIoqG6GaZa2ttdlpdfvpnfxrf86hWqwwGA8IwYnZmlvPnL+DbGtMTJraWkqYptmOR57C6sskoNGh1cxozC2RJiqZkpOmQEyeWSBJIBrssTJfQRYaq6uQyx7KtguDMMJFSJctjkGlBTiUFqpqTpSGmVtR7TdKUwTDEMXVk3kdTJLpRRDYoqkZOgqYUecuOazMYDVBVgzAc4Ng+4SghCgtiLkNXGA1iBsOIH/3oKqdPTTAY9gn8ccLY5Mr1dRYXFmnUG5iOxu7uHvPzC4CkXC4zNb2ApqmYvk5no8cDjQcxfqbP1ZVNlhYe5frVq8xPGdR8m629PTrDiGd+4vPITCFXuPO7/T7fyx9FjoYKIz4MiG/v92b/x7R13G/i4+qdnwDXH1/5BLjCJ8D1Y8pxIOm4/fcjN4Be8g/+GdlXnsP4tV+8Sf5zr7Zu9K/eIVz26Dg/6tg+ynNwo488z24Brkc9rkfP/0jAVeqAACkxLYNPPfoEJ5Zn0C2LLM9uAa63MwreC7je3XvMscBVHCEaP3qfbm/z9nPv9YLMkgRT0/nH/8M/4ov/5t/yTzdSvHKF6Cc+Ta5o/Lt//a958smnWVhYYGFxAV1T0XWBrpvsbO/gug57O7vkmcRxHObnF2k292iM1SlXSjSbTdr9LpVyGd93efGF54lGI06cPMnmxjr1sTpxEhWeJKkWNfYUwcTkBMPBkKBcKQhZTIulhQXC4ZD1rSYLszOoiqRc9lE1hebBPoNBwunTD3L2/XM8+NCDtDttFE1hOAoxLQdFqFi2g24r2GaJNM5xLYPLF89SGxtjNOhiGhaPPv4kbjlA5gab2+uUKjbvvvMuW6tNFhZnuXr1asGyOhrxzW9+k5MnT2JaFlGc8K1vfINHHz6DrggU1eFTn/o0Zx44g+f56JrG+OQEpmnQ63cJSiUkCiQ5g+EQx3HRdZVz773LxOQEe809HMfhq3/0R3zuc5/jiSc/g+e5vPnWGyAllumws7PL3/rlv4llWUxNTVGr1fjWt79NFA8plUr4vs/m5hZJFDMzM8vyyROUygF+qUwYRli2Sr/bp7m7jaLAO++e4/XXXueBB07hBw5SgmW6uL6FqRv0Oh3K5TKmbRFGMSLXmZufp1Tyi4gNRaFSqZKkKYqqEwQ+Mg/pdvp4gY9mGITDIb7rYhoW169dp1qtohs6ozAkSQakSYahe5iWDUpCGuVYtkO73cOyHX7zi7/JmdMPMBx0+Kmf/llazQN8z8J3LCzXJ85zXMdBIcfUBEJVSNOEt954m1KpRKvVYnyiCD89OGih6yYba9s0JhrUxxoIoRQlOITCuXPnqVVr7O7uYR6GnWqqhmM7nDq5jAB63Q6rKys0JifxfQeZp4TDAaaho+g2qirY3tpifGKcTEqQGi//8IdUq2Usx6Q/7OI5HuWgTJbnXLlyDcMwGQ2GdDsdlhYXiKK4AK1ximO7zM7MoSgqtVq9ILTJQnRNRVEFuqbQ73eRmolEwbTtAuypCkkyYjQKC29flFKv1MnzHD9wkUCWKaxvbWE7JntbW5RLNcbGGiRJxKVL56mU60xOTRCGIQiVg/0OzzxTpJqMjY2RJAnXV64zNlYny1MgBwQXL15irNbgBz94EcvRKVcrmKZFgkBFImTG9uYG1doYWX6jcrSGaRhcv3YF29CwPJ8oitA0jTRNC2Or76H84C1Gv/5LJIc1QtM8xVA1rly8xNM/+ROkQqId1pI8uk4fp6TfLIdzD+CqPpVgPJOSRyEHqxd485WXeOYnf4Enxd/l5Y3vIRQF0zKplCqsrGyyubGF70RMjtuUvHE0LSZLs4LJXICqCLIsJc8laRoTxTGW7ZJLiWWVaB1EOG6FnZ0Neu0daiUD04AsTtnfb2M7FnEYY5j6Yai9iab7lPyAd95dQTPrBLUq5WAMRc25fv0609MzDIcha6vr2LbD5uoVRH5A4Kgk2Y18bw1NtYhTi1wN0N2AlWvXmJ+boFpxAIVvf/uPiXtr1MoWlq6RxCkpyaEBJiHPwTRchqMemmKgay5pKtF1BZllkCv0wxjVtPCCGmkWoRk5rqkTJxFZXkQWCCVj0AHLtkmyCMPWGY2KEPQ4zgojs6qR5xlkNoahEyZt5heryNRgY7XD++e2aB1kaIbJXnOLhx9+gP2DFmEUMTMzh+cFSCRpVhhdOgcHrB+sscxDTFZr/Kvv/N/8/LO/yhuvfB/b2Ke7t43tV3jh+2/w/oXrnDx5BrcS/KUGrjfL6R1H3nTM2D4Brn995a80cEXKfy6KjG9kLosfxBFSmht/xwGao3JceMLd5Bbr0b1A8z3kfvq6F5i7UzvHAZWPCjLvNo7jtt0eInt76OiNF3j+hy8AAvG3n73v+dyv3Gmux923+5ecow+VEKAoGiBQFPWw2PWtz9HR+auHobQcM7+jXmjJodIlIMtTDEeQZpI0zZDyEJzKG5zCBVAWQuFoNPKNvo+2f6frdPN+5Pnh0MRhkW8OWURyJEX5BEUR5DKjINrJ0HXtsH7r8aHVACLTkRyGG8tD4C0VEBrtVpvWxhr/xGhQPRgR/9QTKFIhHsaUy3VqtSrnzr3HzOw4/X6bnZ0dPNfhpR+8xOVLV5A5aJpCELi89/5ZnvrMU7x/7jyTU1Nsbuzw2uuvYTsWQVDG8yt0BzG+qxCFCTKHK1euMjk5RZ6nTM/O8uZbP+LixfPYlsrKleu89vLLTE02cF0Hw7HJsgHfe/EFpmZmqNQaqKqJzAR5MiTPYjy3RGOsTqu1Rdkrc+3qFfIkRtcEjm2SRBmDQQfDUuiPelQaNXY2tpienkM3TcJwyM7GBoiMr37lK3z6saeYnZ6n3qgyGAyZmprEtA1K5YBKrY7rl7FNA5mHPP7Yp0FoSCFYWj6BokKWxVTKPlKmjIYjPN9DM0xELjnYa+IHDnE0xLKK8EPf99FNC88v0en22dre4oEHT9Lc28IyTQzDYXevSX2shhc4bK1dRtdzUFIsx2Judo75mXEUVUNRdM6dO8dTTz5Bp98mSlJqtQZCSBQ1YzjMMQyVXncfXS/KTyyfmEG3oD8c4TlV2u1dhoMIx/EKr59ukEmJpulMTDZo7m5jGCqaqZLIBN0w6bQOcAydg9Ye7XaXUqmCKhRUihDbJM3oD0Nm5mZQVIUsl5hGUY/TLpV5/8JlvvGVr/PEE0/g+RU2t7aL+qhlj0cfOQVE+KUyCKjXywwGfQzDZDjs0mkd8Lu/9bv0+yNOnXqQMAqxTI8rV1eZnp5GigTNVNBUFduwyTKFk6fPUCp77O7s4Ng2ZDnNvT2mZyeIoxH1WsDm5lrBkprm6J6DZugIJKXAwzJ1VFWyubFJOIpxnRJhGGPZNu12m3q1ThonGEIliocImaIKQWOsUYDUKGU4ChGqSrfTZW5ujjDMGGs02G3u0OkeoCoqjmnyW7/1JfI8IUlDxsZq9Pt9pJAgFDTNIJcq5WoDTRGMBj10VSFLIkaDAY7poSkGluPhlgISIdFVA5nlDHs9DFWQpgnlUg0/cEFk7B/s4QdlatVxTMsgTUN2trfwLA8VlfFGmVqtyl5zl6Ac0GiMkUnIshzTtBC5ZHx8jCiTpDnUahOAihACS1WIRxFXrlxncmqWJMlo7u0j8wzHMRmOBkxMTtEPY4SUWKZO+6CF67gIFEb5EO3KFtm5K6hf+ByabmOZGlkYszC3WBjU3ABxaNATmkouIBccm4t4v8AVIMlyLM/m+nsXufCjt9CUlCf1v0/pEYPxqSn2mvs4to2qCS5fuYxp6ji2zmTDRiig6yqKCjJPybIcVdXRlJwMgWW7hKMBliYYRiZBUCNO26xe2kPIEZOTPrphMYpCvMAhyxKEzA85eQQCiedoaIpOqli8d2GVL/z8L1GqVYiHIdVqGd2yyTIVTRfkeQ9DlehahG+baKqGaemQJMgM/Po0QncJOz0QBoZh8/65S8wvzKIoEZcvb1EODPxKiRe+f4GTy7OkhCiKjsiLvFvTcQrjsshQRMpw0CeTGULJ0Q0dTYFuew/T1EAqpBIUoRMOQUgFzShqY0dRiJACy7BRhUDXdVRVIEWKICMIPMiL6Jqt7S7DUU7JdxhFEt20sAOHYdTll37xb2CoDl//+h/xuZ95lnPnL+D7Dq/98CVOnFii2+6iaQa1iTq99RG9Zp9Xwu/x2Gcf41/+xr/kqSd+hk63T7m2hzrwWLl0kYvXfsTTP/GL6KaGVPPiPZ3lIG7lBznO+XCz7vAx+tDxTgABCPLrKsKVqA9lN3VvcfMft2DFGzpBnt8gS7pVxJHax/cr93RUSOWQWPKGviZuHdQn8pdW/koDVynlP7/P4xDizoWO/zJ4M/+ytHNU7kWI9FH23Q4Uby+HA7cm6/95yMdr97hF9cOg/TgjiBACZH7TM/sBi++9PaQ3ckI+dJw47rjj5U7X9Dgjw+1h2AUx5q3HRVGEaZpkWXZsuzfJl6Q8BK0pQmaQ55CnuCq89cabZJnkTCti/A9eIPyFnwStKL0ThiOkzPD9EvPzc4wGfRQEP3rrba5fv4bMM5566gkWF+do7zfxPZfJ6RkGgwGNRoMoinjh+Rf4hZ//G1y/do3x8THK5YD5uVn293eYnJzE931ycmzHZG11hfGJCXZ2d2k1Wzz6yGNMTy8wPT1VEOl4Fo2xKo5pUS6VUTWdUqnK+uYuz73wImceWMD1PAzdIAyHeL7J5ctrvPrqawyHQzbW1vA8Fy8IGA5H+L4PQqBrOoNBTJLldHp9KrU6tbExVEXlqaeeQlEV8jwrPIqaguN5KEJBVTRWrq7y3Hef58wDD2JaGqCgaQqOa9DvDOn3+yAkQbmEpusEngMKxHFEFIbst5qUq1X8ICBOEmzHwXIdfu9LX8E0bQSCp556EikzAt+n3+9Tq4/R6XYK79b1qxiqxdbODqcfeACBoFQK6PfauF5Aq7XPqVOnSJOENMtwbAfTMNjcXCeOI+r1Gs3mNmO1GuVSmYNOh+npcYbDPoZpFt5WxyQIHLqdA7Ispd8boClqYUGXEklMpVri4KAP0oRc4jkOSRSyt7dDfazOcBTjuG6RC7q+hu/5mJZLq7VPpVImzyVxnBL4LnutFjOzM0yOVRB6hiI0hCqo1CrYlsFo2Gc0GiDUlCgJCaMhpilo7e9i2hq12hiPPfYEqyubvPHGu3z6qUdBKMzNzVGr15Bk1GtVRoM+qhCsrK7y8suvsHxqHk1T6LQ7+H5AlkHnoImhawhFwfFKmJZPc79DrToGKORZRpzEyFyiqCqVShXHcUEWZHq5zPmd3/kdLl64wOzcHJ1uF9txGB9roGuFBzeTEtM08QMPVVWR5PR6XXRdxbA0ur02jm2RJhFRErG8fJKpqfECIGYJhqHT7RZjbjablEoVJJKNjQ00zWB7e4dSqczW1jZZlmHbNqpQaO7s4loOg8GIV199Fdt2ef3Ntzh56vSh56qorek4LpcuXsLzPDrtPoNBn1q9hm3bTE5OoKkZrdYemibYb+1hOxZC2rz0/Zf47ne/yyOPPky302Zne5vTJ09w6eJ5sjSmFBSkammSEscJuq6zu7vH9evXSdKiX8MyGUUhfuCR5zmGYWDbNv3+AEWoh3q6xFrfg//6CyTJiP1WB03VqNZqvPHGGzh2QZamqeoHrw9x61vjTwNcBQpxGvLWSy+yfu19nnnmSU4P/3OskwqDwYjtrW2mp6YplSqEo4SL597F1BJsQ8G0FIRS1DrVdQOkihBFHrKhW+SHwF8RKo5fZ2dvn163TRr3OX2yAWLIaJSwtd4kKHnk+RBVM9F0jVwWdaazNGEQSq6s7jA9d4qpiSkuXrnM2Fidy1cuU65U6fX61Co+UdhDFwm1ioqQMXmeoKjQ6w+IYo2Dgcb0wmlGYZ+x8QZpGoOEwC+xtrbJQ6cCKl6MYyssLM5iaAoil2RphKYWYehpCopy4/1V5JNblkWeZZi2TZZlRY63oiFQUKXJzkHEy69doV6vo4sUTVcxTYMkKYgqkyRB5jlZmqIqKqpa1OQWh0RXrutiGBqWpeEFNpbl8/Y7l6hW60xOjrO7u8Xjn3qi8HRnKb7nogjB5SsrVKsVNjc3efmVl1hcWmROWeaR04+w/IvzDDt90uGIS++/z/yiTTwC1YhoNtuUpxc5ceIEGRoSlVyqqMqtz9ntn4++1+/lcb0VuIL6UFaA1iP7b2lbHHcuxwJXjhjR7zROuLeOeOv24xxSnwDXHwf5Kw1cb9RxPepJO07uBCY+rqf0z+L827fdbnVSjrFEfVQPMdyZGOp+FoGjnrn7mffRMd9u6bsJ3r76AkKA+qs/96E53UmOtnWj/dsJAe42x/u5BkdzmW5t797A9fZ2bvW6fmA8OY486sbYNE27BRAWVuxjxnPbVAtw/MHn+wmXvsUzevi/pmm3bhMf3Pcb966okVe8sI6C3Jtg9SgRU5qhq4I0TlDJCYdDXn7u20xNzdLabbL0v/97zvo6721usbC4eAjUTEzTYDQYcvHieZAZly5e5OCgw1NPPXnIwqhTLgeEoxDbsqiONTBNkyhKuHDhAs9+/ll2d5rMz89i2zqWVeSkKkKQZTlRHCPJSdME17ZI0oyxxjhLS0vkWYbrl1BVQbuzT2OsxqDfYW11A8uy0Q0L2/W5fG2Fre1dTp2cxnEdkAqt1h62rTM9vchDDz1ErVplYWEBz/MYRTFBECCloNU6wPdLGKaDoqqHjKYKWZ5h6jpQGAi+9rU/Ym5uDsMx0DSVQW/AN7/+LR44/QCtvSa6YaLrRShUp9Om2z3ghz94hXK5RLVWQ1FUhKpiaIJer0+n06Feq9PaaxGUS4RhVIAWKdFUjcAvsbS4RJZneJ5HFA3p97qkaYbn+QRBiWqtwokTS1SrDWbnFojCEd1um2Zzh1q1TBgnvPrqa8zNz2MehuJalollGXS7XcbHxxkMuqhCMBz08Xyfar1ekAcNe4BAUy3yLAEyDvb3sSwbw7BwXR9DN4njiF7/gG63i+sE9LsjXnzheQLPJcsKIF6p1LEdlyiKMS2L0aio4zroh7Q7B5imSbfbJctydjf28PwKiqqxv9tkanaaXGbYjk2SJiiqguvYuI6D4/johoNpeTi2R7VcwzBLaJoFQmF6bpLJ6Rq5BF0vyJ9UVTlkc43RNQ3LNOj3B4yiiMZ4FUWIIn9bN7AdF/IE07IwLZvBcIRE4w++8lXC4Yj5+XmEEGxvb2M7DrbtsNdsoWkanu9j2TZCSirlCo888ii+H2DZDlmW3gT9aZ4hEQwGA7rdHqVSgGlaKIrK3l4Hzy3mo2kWjbEJNK34DVm2dcgzUEReBEFAp9PB8wM0w2Bra4sgKJGmhcGlVCrj+z6u52KZFnu7eyAEX/vq12h3Oti2w9LySeYXl/B8v/BqCYVvfvMbLC0t4Xs+vl8ijBKqtYKdudvroBsqmuagaRZn3zvPpYvXOXniNGurmzSbTSYmxmk06gRln3q1ikASBH5RYsixabWKZ+fChYtIKZmamsLzPITQmJhoECUxkJPlGZZhIeXh2qebaJqOphlQ8lBfepvkv/kCrU6LxthsEaAsIMsTxmqVosyQ65ImCary4RSXjwpc09+xkGd18odjTs5OsXrpLOfff5+fdP47rkTvMz4xTbVS5dKFC5i2TbfTJxz0OLE4Tsk1sGxBHIdomkYcJyiKShJnQI6mFqWrsixDUTXSXOXK1es88vAjmPoQx8zIshFJLNne3KNS8dC0jBy1SGORGXmWoSCIMovzlzdAcTB0jYUTiwgp6fY7OI6D7/jkWcjm+jVEPiDwJAopqq4hFMgkeN44mVIiV22mZyZptw/Is4zZmVnWVjd46QevoEQD5mcaSJmRIVDVlCwqytOkaVLUaM0kw9EA2y7AqiIEcVLkpOaSm9FS9uFvLfBsclXn3XM7TE96BC7ohsFwOMR1XdK0yMXN05Q8y1AP3+e2bTOKhuiahhAS01TJZYrMR6QpRCHU62OsrK4QxTHtdp/G2FhhzBqNGAyHLC2dLNiTPZvPfvazSDvB2a8g9Jyd+nW++O//P954/S3qtRqPP3Ga0ShnZfUKJDnXN3f5uZ/5PH5QI4plEfkibk3DOvr5qB4ihLhJGvZR5Djd+6a+dYfjj9NGjmMVPvr9OOLO2/u7XU+9URHhRjvF+Z8A1x8H+WsBXD+K/EV6V4/K3TxstwOnj8Jc/HHHcKfjPkqZn+OAk6IoxHF803qdfvk5AJRf+fydmrnreI8D0H+a63L/59wbuN6t3aK88L37StMUTdOKIuk3cmePtVAeM8JcHpuHek824SPHfegY8WEweieipuNYtlVNJQ4jNCHRFIXf/9Lv4KBQqTYY/5N30c9d5XLNZXHpBFEUoqpF2PUbb7zBzMwMreYunfYBp06ehlzg+D61eo04jVBUQRCUWN/cYmJyirW1dVqtFo8//jhvvvkmru0wOzNJs7lLt9ul1+0ShQmDwYidnT0mJyeJkxhTNwlKFUzLIgxHmIZGhiRLE1QVotGQwPeYnJlFMwy8ICDPM4LA59TyMratomkGL/3JyyRJwvRUgygMGY0KD5HQVBRdo9/rkxzmzQalMrpuIPMiRzfNClbcLEvQVI2Dgza7uztMT08TxzGqkuHYFsNhyHvvnkUzNPYPWgxHIdVqgOP4JElGuVRiafkEly9f5vvf/wG2bdNutZF5iuf5PP/8i5RLNV584Y95+NGHuXLlKrVajTQtFDDPN4miEZ5X1D80DJ0gcNE1ne3tHTzfQ9c1zp17n1zCzu4O5XKJwHdRVcFwMGQURiwuLeG6DlmSMOgXJSnCcEi1UiqUf1XQ3GuiCo04zTBsC5lKNF3Hsl1Wrm1w9cplKpUarhswDKMC6BtGkYuYp9TqDWzHxzQ0XEdncekEcTJianoKw/aIUjh/7hwzMzPkucT3fZIkYXNzi9OnTzIc9qlUykUpmd6I8alJLl++xKULFzj5wIMoQiJUFeUwEmBvd5fRcEgQjNHuDInDDF0ziMIUTbfJcslBe58oHuCXbGzLQ1W1Q0VWMBqNsF2vqJs6ClFUjRMnT+HYJiAwLRMUBSnAdT100ygAARTlXiyLp59+iitXLlMulw4JyXySNKU/6OMHAatra/T6XRzbJggCgqDEXquJ6wWYlsnmxiZIieM6jMIRgV/CsR3CKCLLcgb9AdXaRFG6Y3WDwSAklzmVSpVer41pWMgcTMNifX2VarnC+vo6tlMYYBzfo3vQIU1TGo0Gw8GQ4XBEq9kk8AN2mnuUSmXq4w1OnzzB2EQD2/dQVJVOe59XXn6J0ShiZnoayzLRdaMgr7IsEBJNKRiEdV0nikHVDFZX16lW67huQBQNiaMRTz/zNJquFeuJqrKzu0uaZ1RrNZrNA9qdNrMzs5w+fZrhcMj+/j6lUplS4GMYRbkUXdd5/bXXmJudJ05iFKEURFKopKQopoF48xz5MEL/qSfJcx1V14jSiEatyisvvogbFPneRXh3sWwfrVr2UYFr9qKBGAryz8Rko4hvffkrXLu4yhcm/xHGIqyurnP27FlmpqfISbl06Srt1i7kXWanalh2UY+0YEnm8BoVJE1C5GRZCoqKYdmhinggAAAgAElEQVTESYamm6yv7jI9aSDTYWGIMQyqlRJCFGDVNGwUUdTlTDNJLhWi1GJrr0smTbIk5sTJE+R5zsR4g9W1NbY2trB1lempKtvrV/BdBUXmN59/y3SJo4x+JMiESa/Tp1qr4B4aovb2mvR7fcaqVQKvCH1WNIM8G6IIiWk55NJAUQ3yNMa0rZu8FAVAz3Fd97C8nEARCmEYE4YJqpYiZczkuEelZKObh/XMOQT1ilqkziBxHJsoDA+NQuA4XnEfZU4chSi6CjJHSJX1jS0s22JlfZsHzzyOFIIg8Ll84QLVWo2tnT1mpsd57+x79Pt9fN/nR2+/zXZrm3l5GjnKWOE8c3OLzC0v0xlGXDq/z9h4jqNZDLoF67luOLhemVZrF89zP/SsHffuLmZ3v3LvSLE7Addbz777xrsB2buO7g7A9ROP64+PfAJcb5M/K9D3pyEAutc4jvMK3mnbn4X8pwKuNwCNoijoul68QA5DhZVfefYjtXtDboCsey7G97hP9+r7g/33B1xvsfjdsv3+wKOUkiRJGA4LJaHo5f6AqyIEaZoeS151P575Y0myxAchxEfbOcqkfHTst88xjmN0VWF7c5P/8u/+HZ796c8ROD7Tgxz///iPJE8/ysTiHN4hqPA8n52dXV579XXmZmcxDI133nkbwzBRhMp2c5/5hXl0Q2Wv2aLb7bO4uEySxHzve9+7GcocBCX2W000XeXCxfMsLS4xPj5Jc+8ARdVoH3Q4aB8wMzPN73/py4xPTGJaJoapMRx22W21UFUIfB/f92g1m2BY2K5LHEfIPKMU+Ni2Tjgasr/fZqw2wcbaGqXARWYxrucQxjGoKlGa4ZhWEaKcSZ577nl2tndB5sUfEt9zKTwfBuvr6ywsLFIqlXBdhyjsMOj1qVSqLJ44wfjUBLWxGnMzM5TKHufPXaJUqmLbNrqtU6+PMVYfY6ze4KB1QDgaoigaw1HE/Mw8URiTJCN0TcP3PK5dvcr01BSjuF14fU2LXreHpmkMBl063R7D0Yh6vY5QYKxRJyh7SCl58403Obm8RPtgn8nJcdLD8FVN09A1lbW1DcbqNYbDHr4fcOXyVaSU+G5ArTaG63skecbGyhaVSpkf/egdXnn5LdbWVrHcgLn5RSSCMIlRNY0oiVDIyHMd3bDpdncZDlt4QRXTMhCqSiZVpGIxNTFGGIZsbm4yHA4xTJNKpUQch+iGhmEaKEIw6O0TlD10S+HRRx4CVaAbOlleeC50VcdzXFzbZa/VZBRG9IcD0iRhNBqCnqDpGmkK1WoDRRRAS9dVojgmyzMM0yKVgl63i6KpbO3uUW+MF0punJBnOcNwSC4zNMNGIou6sY5F++CA5ROLpHmEY9sMhkO8IEDXTXZ3diiVy8RxRGN8DEVRsAydTreLEAqtVpvG+DhSQKVSxjCKkEcv8OkcFM9UFMYYhsX16ysEZZfnnv8ua6sraLpgfKJGUHLwXJ9+b8TuTougVELTVFqtJvX6GKVymVxKdF3Hs92ibJGUaLqG53ro2mFuqeugWyZuEKDKBMf1yKHImTc0FudnGB+fplwO0HUdRRSgQpIX4YQ5JHFCGEXojo6igl9yWVycI81ixhs1pqcnURTQDZ0kSxGKwHVdNN0AFHIpmRhv0G53bhJGTUxMMhyMqFU89vdb7Gxvk2c5Dz/4EHGSousq/X4f27JJkgyUw3V+Y49UVeAXP8crr75BfWIc09bJ45jW9ib/72/+R77wS19A17SbHq2PA1zz13SEhPQzKZ5hcv3sBeJ+xk86f4+V9CIHnQ6PP/44WZZiOTrtgy5ZMuLM6WmEHGLoRhHmKnMQeeHhPnREjYY9NE0lyXMkElUzCPwqnlUDdiHNyAUIcrJ8hCIgzwVkGaqiFpFCqoFE4+yFVUaJwl6rx6//F3+HXJFsrK+jagor16+zML/E5vo1bEule7CDawt0tTAASgHtVoeg5GOXauhWmX5nxFtvv8XExAQvvPA9apUq6xsblKs5lbLAcXTSTKArClIJGYWS/kBhZ7dJUDbQNYMsS1GVIsxeVVWiKKKg4xIkScpoFOH7AVKALlIcXaNcqjCMYoTMMQwTVdVQFIU0zRAyQ3KohyiCLM1AUQmHIzRFoGkaqq4dpjfoCFUgVJX9g5Cz51a4tnqVJBrx0INnyCQ0xifJ84iTy8tsbGxSrdYplyu8e+09HgweI8pGpKfaPPrYoyw/+hAPP/xTXL3UpVQZ0W7tYIicN157kyhRePTxJ6lUAuRtPCV3lfvWK4vjkt9wyF7TUT+T3tbMXy7geuv24722n8hfLvmowFV81ATpv0hJ0/SWwd6uTB/nsfw4oO/jstXe69oeB1KPnntc2PDd5C/iXt4Y53HA5qgk/+CfAaD/2//tz31MR4HWncJN7kRm9MH9yz+0/3iQqnzoOOAW4PeBfLDtprfymL6Pe4bu57m6CSQ5noX59nOFIm8Bn7cD1KP5r7eDVCXOyFVBookipMqwkEnK6uXL/OFv/z6O5ZLInF/+tV+jd22Dh//X/5NoeQ7xyDJxFBOnkGcphqawtb7J3m6TJ595htGwQ2tvi7HGBM89/yeM+l0WFxeZn59HVVVc16XdbiN0E891kbLIkX3nnXdYmFvEsF22tjeRWczp5UXev3CJ65ev8Mt/62+ytbPD4vISe60mmqKxs7lDliecOnMSRepImbCxucbJk6dI4hypGdiWTmd/rygnYtnsNvdR0wjdtDBtB/X/Z+9Ng+TK0vO855xz99zX2lArCkAD6L1nerp7yBlyyLFFUmEqJJEhhxmW9EeWaCvoCMoO/ZFky2EpGCHLssKiqXCEQxI5FqnRjMzh7DM9e/dMrwC60WiggQJQQKHWrMysXO9+/OMW0NXoQm8zpjie+SIyCsi89+TNzHvP/d7zvd/7mnZWvRqHDEY95hfmWN/colKpY9qSNLbod8cAXHj9PA89uEypWqE/HODaLnEYsdNqMTU5xWg0YmVlhdP3n6bf99nYuMXc/BEs0+TSpSvMzBxhb6/Dkdlp0iRlZ6eDkibTMw2iKKDT6aC1oFpp4PvjrEoVBJimSa/Xo1CuoHWK6zokabbgMehmtNHReEC30yVNwe91yJfK1Kam6A+HFD2XlYsXOXryNEqH7GyvZ7TZXIm97g6FYilL7pWR9V0qhY5D+nsdKtUGG9s71Kp1lEyzKk8UMxyMSPeF9jzXIYpC8ivrWVKtBUoZ9Hp9ioU8Gk2v4NC3FbVaA93qkt8bEkcBWmdKoJm9iYE0JMHpo3eAlLe6SToY3qHs3+7XBghLOYKJClGY4KFwrm8wGg2RQuO4Ltyho0FvqoK2coThiOpwgOr56FTfWaCSUiEQaM8hXJomjDJg65zPQLtSRqamG8dIZRBFY5idJSoX0fhY3QR7a5M0TRDCQEjxlsWvtUaFz376PzA9NcMvzM9RNEyUofYprVlffBiEXN3rMvGhhxiOegSdEc1On3w+x3g8xjSNrKIsJOPhiPWcxcSxJdJEY262MLp9lMr8KTVvzuuJbbFdyVNw80hHkLt4I2N1pAlSCuIk81ZFQ7/o0ooCChM1Cn6Cu90hjmOiMMDZr07FcUaj3T1SwjQMrt3YoL474EitjhCZ73NGZ4cgCIhLBaLJBqlMiNoDzKs3SZOYarWMkFmrhbnPWLlmQXV2DkjJ7Xbx1zYBsb9gkX22MIr4VnuH5sQEpYKbLbaZJrbtoJTi5s2bjEYDFo8u7gP2rJKbpBrx9HMwP8PK3/x1PvFzv8QXv/AnHD+5hBYhhiN4+rN/xK/9xl8HJ8c4yoT3Dpuv9Xdeyubcjz32jnN79LseoFF/y8dMEn73H/9PfOczf8y//Oh5njO+w4c/8hHWVleYnp/j+eefIxonrF25wBMfWqTXXuf48RmE0CgpMAzFaNjHssz9hQGJMj3QFjfXNphaOs1uJ6SaE3R3ruDlyyg9QpmQREZGyZ4qIQxJHAhsCwbjPmGY47VLY+YX56nU67jFKlrYWEqgCdne3iZveXTbG8CIyVJIHHUxTQdpGERJAJFCOHkwpri80mY4DvjQU08yGAzZ63aYnizx2oWXOfv8Gzx0f5FjCxWkNrBcC3803rfRkly5tMoDp5cY+QMMI6uuRlG07x0PnXYbzy1jmJCkSWZvEwxAGKQpmT92GIKIMZUgHI8QUqGlAWkCgv3v0iAIA0yzRJqOiJIxlpHHDyIcq8I4GnLzVp/17YSb69t84pMfYf1mh6nmFKYdM3nkCJ2OwcR0hY1b6+ztdSgWssWbnVaPzsUej1Wf5HL1LMnHBvzB7/9fPPHEU5gqYaKm+Ny/+5eIeEylWGP1+jq1uRP81j/4x0wvnUDut69qqdECUuSdLOUtxQDenh8dzE3uznmj382qudZ/PeKwKuw77Xv367ff9y37KHknB7kX+/Duz/DWi+rtuZ5S5jvm2T+NPxthGMb7Amo/1hXX91KZ/GGA6wcRD/pRbvtnheb8bvFeJgZRziMfOoFYmPlTPZ73+x2+c8X1sErm4eMfft68/ZgOO8d+2PP4oKXN7TiMPqx1doO41wLJwT7l29vdjkQKEgEi0Vha4KD4u//tb3Pj5hof//jP89RHf5YT952mpAVHfvt3CGeaxKeXkTJb+e529igWC4T+mMAPUMqgWC4yHo3wfZ8zL5/lE7/wSR548CG8XJ5iqUwQRqxcvcax48cRQuM4FlEwZtjvM39khnK1wo0bq9x333HKxcyIfmZ2Cte1MEyD+YVZ4iQinyvjj3xynsdwOMJ1HSw3T6IVl1duMr94lFTEjMcDDEPsi9j00WjKlTLj4RjDtDBNm8FwiOe4JElIrV4jTlJcO8/KyioiCensdtnZ3iaMAxYW54iiERqwbRc0tHe7NJpNzp47R73e4Pz51zgyM8ut9XWmpibJ57Meq0yMJ49pSkzDYDT2KZXKmZG7TunudXEcm9//N3/A4uISvX6Haq1Cr7+XiZLYFoYliCIf0zDo9/q4jpuBL1L6/T3K+5ZA3/3u93j8yaeIkgSJ5uxLzzM1USdF0tvr4HkeCIN2p8PTTz/N5NQUmbWLxDQVSRgzGg5JohTXKWBbHpZtMBj0CcMQy7JxbIdur8/5184ThAHN7hjXyKyhLNtGSIVj23T2upmaZ62MyucRUrC3sUVJKMbjMY7jEMcxtm0hyNS443plHywqjO4Aud9DrnW6T5ncT7RyDqpcyuicQYjV7ZIkUXZNymy1XiMQOmXoKdxiAdNUjLY2MYLMEuX2tWWY2WJRkEbE5axKn+oUrzvMQOg+BViqzK/ZNCRxzsXI2wz6uzjaQvYHZGI+b52DhBCkkzUeeuQhFo7OUwoTgsEAZWQiQEII4igTHfLqNcx6Fdu2CAc9GtJkNBpl1F6pkEqiby/qNaso18a0TMyRjxnF2fsL9gFpglCCVAlaOkKnMWEQIDZ36Xa7mGZmCWLbmXWXVJKRKRGuQ75UwAhi4t3ufiXeJIyirCq7DwT1ZBOpTEb9PrS6ePv+ogBif66RUiJyHtuRT6lQQkQp3SvXKJWK2UKFyiq78b7FS27hCKMgIvBHeHGKq7Med9uyUUrR6/UYDod88eUXmJ6eYfn4UWzHpd3tEsUxhWIRy7BYPnYMpQyS/TlSk7V1qFs7pGGI/5/8DCdPzvPoYw9g2QppiKwq39qkXGsiTIsUcWeOfdscPT+NWJi+8/veK277uMoPx8S+z0Qpx+f+6N/xF5b+NvFkj26nhz8aMBgMWT5+jKnJJnk3olwSjAZdbEviODY6zfr77X29AmFk52sSxwjAsQyUU2Lkx9hm9pBKoCQkaUgcpfvfd1ZlF0iiKMZ2KiRpgYtXW3S6Pbx8kdnZOTY21onHIYVCjijSbG3t4rkWmxtrNCoGUiYkSYphWvjBCK0F3X7C2Vdv4uZrVJtlPK9CtVpEE1DKl5C4XLp8FcuSzM1MogQInaJlimlCmkSUy0XCoIeUBoEfYBoZdT9NEizLIgw0bs5hFPSIEwHaIwWSOMJQIKVG6wSdCtJkv483jnBsE4Rxp5IupcQyLYKoT6pj0sRA4JIy5OLNXdptgZ0fsr3mc/Jkk3PPXWO9vUcuX2Dt1hpbG5vMTs9geR5CShzHI02hUqlRKJTwGhblYRM/GTNe6nJi7iTfePoZcvkGrZ0BP/jBq4z6W9RrDXqdXQb9Pbycy7HHHiORkAqR9V+naaYCfQAo3rm/H3LuvZOwafqCBezb4dwDuN793LuN/ZbnxHtj+937tbc/L6X6scmjf5LjJ4oq/KNcRflhwcJhFdLbydNtOufBVaZ3A3s/LhfbvY7zYO+u1hq5cIQfBWi9DaIOE2u6WyzoXtXW9xIHP9adz3CoyNJ7H1PKt/cCf5Bf+TBQ/lZAevhnPwiQM1XBNyvJB8e+2xbpsDGEbRIFIbZU4Ed89XNfYHXlGj//yT/H8ZOn2e3sEe10aP69f0barLI2USGMIlZWrlGvN1BC8u8//WmCIEAZilfOvcqxEydIk4Ruu8Pp0/czGIwYjoZooN3p8PrrFwnDiHyhQJpEXFu5wm6rhU5SOu1dcsUSzUaNXq+DYSpMyySfK1GrNylXaoCBTiVBGHLm5TNMTjRYXFqgUCoR+X1cy6FZbyB0CHpMLp8HNKPRmHqzSbvVottpY1kuhpklzVGUedolOiGKU+JYI6WJ1nDl0uvU63W0gMXFeYqlHFJJOu0unuOByFbupVBcubLC0tJR7rvvJEEQ0uv1mJmZRqms6jXoD4jjmOGwRz5fwrZdxuMRzz//HM1mg2q1glIKISXT00cwzKy6+IXPf4HHHnsU0zSJIh+dprRaLeq1Gi88/yKTkxP0ez2iOKJUKtEfDFhaPkav10cKgW0ZeI5NuVRgOA5YWVlhdn6eTrdHrVrPFIEdh2azThgEGEqyuXkd17Xwch4vvPAcU5PNOyq6ju0yGo/Z6/epVCosLi5Sq9XItfvoNGV8ah4xM8GoVGBbCfLHl0gaVUTeo9/v43k5Lt1YpXL8KHq6hl/JYc1P0s8ZiKka6VQjoz0qyXA0JCx56IkKcb0EU3XSZoWuayBnJkg8d//aTlCOyZq/gV92sBdmSCabBPUKYb2KX7SwcuYdyqA9WUZMVokbBZKJCmG9SDpRJazmoV7CskxMy8pEYCbKRPUiw6KLXymgp+rEpRpXhreozcwRBiPieITOVYibBeJ6Ab9UpOcayJkyQb1KUCtiWiZCkgnZlPMkE1XCapmwXiaoFPny2RcJKkWmTx5H60yMzM1Z+JU8YnqCrmuxlsYYcxOkE1WSegmnkGOvl4lmiXJ2bFG9SNIoMCrbJM0myUSDuFTixvU1cnYewxTIySZhpYRu1glrBbqugTU/g18r0AtDTMtEC43K57kR+xSOLbDq97EWJmGywpYMEdOZWnK73SMOxpgTDdy5OXquSVIvE9aKBPUSw3IeygWkkigh0cpkVymGRZeg4iHmpkkn6+yYAjnTRLoOSRRRKhVY73XZNQS7SvJ6p0vh2BL5NEXaFnOPPEQ+X8D2bJRh4OY8qtUqWmj8kY9hmli2hR8EmQ9sGGIYJiJJ2XjpFdy/9pcxjIC5+Rl6/T38IMByHKaqRaqNSbQyM0YB76A8/x4ifSGbS+SHY0QS88arL/K9r36FXzv2dwibeyQJzM0cwcvn8XIVPvuZ/8Dm2jU8BwpenlLJwbatrO9SaALfx/McUAZBkAndhWFIIZ9DqwJBqHGtlCTsYDs2OslYEjkvB4jMDibVQEKqFSvX2mxuj+n7kKSahx99jFZrh3qtgpIJ3V4br5DjyOwMadTDVD55R6BTH9uyQUAY+cRRipNvUm8e4+h993PxjfPU69NE0Zhr1y5jKpsvf/Fp8qU8lmFw68Yq+ZyN5zl02mNSnaKEwDYzYS1BNrfebnsJgwAlJYZy8UMf0zGRMk8cu4RpSpqEGDJF64zCDwqdxlimIgzCbIFEKtJ0nzUhJUmS0a8N5TEYSl566SJzsxOUc1Osr73O/OwShhugaZCv1dlpbZHLubRabWamZ3nllZdp7w2pVKtsbm4zNTnFcDjm6tWrGKaiVC9Q603zra99i9knc3z9m19je3ebX/2Lf4FEKF49d5Zev0e15FH0bCYaVZYefhQ35xGlGWhTaAw0+oBQ2J3z7z0Cztvbv8XH9X3ofdyriHB3jqI5PKe/nVe/+3Vz2LH/lCr84xA/Ba4fMH4UQPGwJF9rzXA4xLIsfN+/s0r/kxAHQdKPCogfNtbBifHuxweNu3e992d4P+9xyPl6YEI+7HO88zHe44aj773vQfB9Wznz9v63FSbh8J7igxEmMUQJRpTyuU9/hkKhwP0P3E+uWKM38mkMQ6b++9/hSr9H8eefwsvlcF2PZ555lgcfeIiLr79OLudSq9VYWFjkxRdf4sGHHsR1XHrdHru7baampykV8oxHQ2rVKqViHiUFr51/laWlZebm5vAKBaqNOtVmAymNzJfRtSkUM4EfncLm1g6JFnzh818i9CMaEzWOHJlCigQhs77ccsFld3cLy4Q0Ddjr7GZCO5aNaTkYRtY3peMExyvgeXlGoxHVaqYQazoutuVx88YtSqUSvj+mOTHF9Rs3MUyFUgLHdUAY5PN5ens9+v0elVqV8WjE/MIc29tbWKaJUpJ8IespTJOY186fZ3Z2Dtf1cF2bNBWk+zTV+fl5XNe54y86MzND4IckcUKpVGZqahohZfbQkhurN3n+uReYm51jbm4OpSSWbWDb5r4IjoVlGnz+C3/C7MwRHNtBSIHlOriOy8zsHOk+lVdISbfb48jMEXZ2tsnnHHZ2trBsC8fziFOwLJMkifBcFykVSZJVpqrVKuMgwLjd17i1m1UAphqgNUkSYyjFbmsH27Jp7ewCAtdzmZycxPYchFIYhkmSJPjjECkFyrQAnf1bGRiG2k/WPcIwRIjMj9FQBlKKzEZIZxVT27LIFStoZaNlRqlVAkJ/RBCOMQwHocyM+ur7BEGEEBKpLOJEM+r3cF2X0SgAJGGUkMQx/cGQnJdHGSapBtuwQQZEEYDEtBTSsNE6JggDPNtDyZQg6JHECYaUoFPiKFOFlfvXpWFmVWzHcVhcOEqpVEBK9mnRJjLLM+n3+1hWRq3P5zK632g0AiEZjUc4tsPeXg/bsjOKuaUwDElvdw9LmQz6faYmZ+h29thpreMHIdutXdrdLnv9PvNHjhDEUdar7/tYlkk+74EWmIaN74c0mg1EqpFo9vY62JaFlAb93oAj09NcvXqD1ZtrrFy9zoULFzl98ji97h6ubTMYDsjlcugkwjJtxuMR0zNNhEqRwiD0A1zHQUlJGASQatIk6+us1WqMhiNev3iV48eXiSseY8/imWe+j6Eyf2Cdptk8DLz4wgtIqajWqpw9d46JiQmEEriOk/WsdnuU+j7JX/nz5HLZvGAYJvlCEaQgGe7xze8+w9ETJ9HicOAKGVWY1Q3E/PQ7zvHpC2ZGT/1IhD/osXLhDO1bN/l46a8zavTZ3O5yZHqaazdX2drZ4fjyfWyvb3Dy+ALBuEehaBHHGWU51SlS6KyXO74Dq0mSDNhcvrpNudwg8rs4ZkQcx4R+hDJShJCZnY7UWIaFVCl+qHntwjp+rDAdj8nJCRYWF/FyDqatINUYtoWb84jDkL3WKnk7YtjvYpkpaSbxCzJlZ2OXcq1JrthAGA7ziwtYpkmrtcPRo8uYSnLjxjWicITEpNGoMzFRQCnBpUtrzExPYkpNmmiUoTCUepvVW5qm7Ha6lCoTdPZG9PopX/nqWUzXplkvYYiIJApx3BxSisyeSkiEshkGmjTOxCa73S6O4+zThhVhnJDisL6+w5HpBlLHNBsmtihjeUO+++xVOv0tHju1hDJScvk6l6/cxA+HlEtN4jAk59gUCh6OaWBYmaCWLGrM7Tz1ySqfu/Gv+LX/4i8zikYM/T4ffuwxvvfSa9SbE/y13/g1bly/yHjYZ+HofZTyJVJhZ3MAKZIkozpzV858CHA9LG6//m7A9f0yCN+2/SG7H3RrePd87nDg+uNSBPpJjp8C1w8Y96I2vNPr72UMIQSWlVEsbovv/KTEQeCqv/MCevUWH7Tqepvqeve4t//+KEFr9h5v/f+PCri+na77JlXmYKX4/Vbl3ytwvb0CrXVGET34/O2/dzMD7t4fgFTjKpPP/ts/wpIG9z/8IG6pwD//R/+Uhe+8yKlPfZ7g2CLp/Sczk3QNG+sbHDt+Asuyybku+VyOqelJev0+nU6H+YUFdKLZ2tzCtm0mpiaQpNxaWyMIfL7+ta9x9OgStWqVm6u32NzeZn5xCWVbaCm5dXOTlcuXkFJgux5CmQgRUq6VUZYk57pUKyUcz0GQMBr1MM3MUsSPNDudbaycCcqkVJkiDn3iRGM5OZJEMx6NSOME03XotDvk8wXiONr/AUySWPODHzyP1gmVSoFxJBiOBpw+fQrHsYmjmCgR3Lq5TrlYwLRNUuJ9oCEIwwDbtpBKMBiM+eIXv8DysWWUUhm1GMG1aysUi2WGwxFxHFEs5rl69Srj8Rjbttnr7lEslgDBl770ZarVGlEYMxgM6bR7LCwscurUaYrFAjdv3iBOosyyh5TxaITjOOy2tnn4gQe59MYbmb1JucT51y9CElOqVAmTlDAIsS2bp7/5LVzXZm7uCEkaZSqtdgVl5hDKoVSqMh6NSaKQMIxptTqsXLvG2VfO8cADD2Y2E0mK0+4hpCRtFNna3Mx6Ih2bOI4wpEG91qRQKCAMCRJS8eb1lCY6sy1SNlEacRu4ZteVAK3vWFoYhrGfyGdUYKUkQRiQJDG2WyJKJSgbZVhonRIHPrZpoYkxLYdUK8IwpN3awbYdHCcPQoFQ2FKQrO2QPPUwxuwMcmYaY6aJ8xc/iX75IlqLfbquQpkRrlNCKYMwCjEsByFThNb4owDbNuj3dsi5OfzxCNO0MyCoMsGhJE32KbeSNC3ZWJEAACAASURBVI1RysK0jH3hHYEQBikJe/0+hXwe13ZIkpgozADD+sYW1WoNU5ns7LQwDJt8Po9lmaRJxM7ONsLvE4QjCqU8165dodaoMDk1xWgccHT5GBPTU1TrNUb9HlIpHM/Fy3kYhsn6rTVyuQKmZSGkZGtnm2986WvUalWazTqj0RDTsFBScfnyVZ599nmeePJn6PUHFIoldtZvMBoM8XI5KpUKQsPW5jpRHOPYNrmCQxT7pHGm3ozW6CTFUApDSXr9HjnPRQrBaDAi1RaTU02UkfV67uy0mDkyh+tatNttbNvm1totji0vUyiU9oXbLFzPwzAMojBkNBziNuoY3z+L+d/8VUxlY5o2vX4f13NACnIGXL62yqkHHyZO37RFu3ueTv/n/xP9yhvv7uM6FMhGilzSOIZkbqLMZ//gU3yy8TfZMNc5MrvI2TMvcf8jD7C1fZ2tjR221taJwzZzc0UcJwNBYh9EKyWRgv1zzCGIEhy3ABgMhgLTyqEIIB1iOw6O5SJVkl0r0iQIxuhEoGVInBrESZ5BlDDZnGB6eoobN28wPTtDr9+lWJjEsF2iWHPt8hWs1MczNcoE09QIIbFsM7PicoqgJO29MaZdwvdj3JwBWmFIE3TIwtIkzVqF189fxvNMimUTyzTodvqUSg6eK0iTGGFoet0+tmUThSE6TbHtTGXYdi16ewnPfP8NFpeWubVxiyCCxbkmOVsQBD5BGJPEY7ROiWJNf5SwcnOHRsnDtEw8z0MpIytEqBShIFEpg9GQyUaJwOqTRlVMY4CMTI4uucw2j1IrpIRxwLXVNq3OGGkKdMi+6FWIYyniaEShVKM/6FEqFcHSVDpTJGOLh3/9ISYmpji6sMyoO2bxwSf4xje+xoVz38cUAYVCngtnLvLUUx9DWnkwbIRIMuAqfvyB67sz6H4KXH9c4ycKuN6d2H8QwCLl7cpTluzsM//fMt4PA1o/6HEdNs67UWDfy/G+twnggx3jvYCjEIL4H/4f6HOXUL/6iawnbJ/Gc/uY1P4K6d2g7nYcpIscHBe444N62PlwdxXzsDj8+xBveQghOaibd5vmq++aLO+IDwi9v3329+5977z3gd/2NmBNk4zumx26eNtDILM+VnEvgSnImt8OPNCkOiHVCUkaw774ytvo7akgTTQCidbse8papEkmUkOSYiqF0gYvfecrmCqisXSa61d3qD9/gV//3qvMJuB/9EG2XMnERJ1UaIIg4jOf/vfkbIswGBBEMaaVYhmKvU6fBx48jZIGqU6J04Sba9dxXUVnt5slj6bBI489Rq5UpNKo43kutmPjOjb+aETkB5w9+xrbOzt8+COP4/t9CjkbtOLqlWs0KnXy+ULmD6pMhMoAUOCPGO91GfYG1OolbKdIzmuQxjFf/Ny3OTI3wTjoUfDqeF6OKB1QzpexDBOdJgipCcIRJgnra2s89uhjnD17juvXb3Lq1FEmGnVsy6HT6fKHf/hpjt93nOZUA1SWQN+mCmstcHIF/CBkNBpSrVWZmJigUCiQz+Xp7nXxgzFHZo6Q6pBbt9ZwrCKWWSJfLdGsVrANxblXzhNpycRkEw1MTk2hBTSaTeq5Ip29dQbDIetrXV566XnSVNJoNnn1/Hmq1Rq27ZJqiWGavHbhPLmci0KyvbHDn3z5aY4uH8OxTExDsLW5zhNPPUWlUgUkpjLY2d3F8hx63V1aGze5cP48UpgYlqTZbDAaDzl533E818GyPbQG13ExWx0ARuUi+UIRZVjstHYZjsZUazVSIQnjAMcy6LR3CMZDHFXAMBV+MsbYX7xAGGiRMvL7RGGIkAZSxCRaoGw3o9EGA7QICOOskiqlzH7bKEt0dJIBSDkaITa38R++n9zcHOFOG/+NFewgxMHAPXMFnnkZzl1CnLuEePki0dDHvLaJPPc6w+89g/GtF5H/6x/Aa5eRr7yBOHcRfe4C4uxVEAlpHCJHEXIwJu0MUOMI50P3E01M4Cwex2jUSX/xMdrf+QGgsUwz8/+Nw/3ZwEBoCyklhlL4QbA/02gM6WAaNlKZRFGMH4a8fOYcMzPTmKYCIfjus88xVZ+mWHbRRkyqIQpiivkCwvbIl6tI0yFXLGHaDjoJqVSKjMdDet02SRQhpMWt9ZvU6yXGwyGW6SDSBM8x2Vpfw3FtCsUStWYJw3YwTZdeb0yhWOTy5Tc49cBpHvrQIwhTkMvnmJ09QrE0gemaFEo50BIpLEzPoZDLZ9V4wwIjE0wzTIFtCsbDHpalUGa2yJNqWLl6FSklhbLL9s4WpVINZVhUamVyRQeRana2t8l5HqZpUCjkuXz5Cp6XJf1JHGAaiv5el7HvIwyJc34FPerDEx8GAY5jYNuC4aDN1voqO7tdjp84nVnOKI3Wb79nvZuq8O37lVxMs0cSEZk5lDL4N//bP+WXp/82u+5Ndne3KOQs8oUiU81phoMetmvQqOawZYySt+9TMYYhGYxGCGGgVYxSBqQQRQGpjpBOhX5/SMERyNTHMB00PgKDJIrQaYCpINGZr69SOW6uj+n2LdbWrnH02H1MTE2Tc106uzsYhsGN1Wtsb2wTDYZYcgT0cK1MCEmZEiEVcaQBA8Msc/bsRUzLolAsEI8svvu97zG3MIMwUpIo4itf/zZhMGJ5YZb11VUmG0XKBYWXy5FoAy00cThCOQLDsElTiTQlyjIZx4IUgWVF1Csunic5fqLO8vwElqmIUx+h0oxpo6ysH1woOv2E1y7uMFvPYRqCRKeZdZUIMYx8ZgsUDpiZqqBMi2Sc541Ll6lUa7h5jSFsPMsEM2Xj1hYiDrjv6BFSf8wgiEjjDnmnymAkyVdzXL54naWlYyQpnL18ltnCPLO5BQZrfdSSj+e4DMcRL730PI889Chf/epX+KU/9wR7rXU2WgPK1ToLx0+ClAf6gI23nFcA6SGL8e+Ux74VuL5zvNM4t+Nti/iH5Eh3/802lKBFtkDPba/Wt+aNd8YWMQi9rxvwUwD7ZzXeL3D9yeGt/inFj0rR+P/PcdsiJ6t8kK1oR9EHBtQH+4fvjtsKlf+xQghxp9ID9/BO3Y83z50f7rx5tyrt7Qrvex9v37BeZmDaRPLtZ15ERpJBf8yxo3nu+/xnMc+cJ3r4PoYzNVzXYTLWtFodLNvEMCw+8Ymf59TJk/ze7/3v3HfqUY4uTuGPAzbXNzFNRblaxvPylMsllpaWKZdrBEFIuVxmt9ViMBiws73N7Nwc5XKZCxcuEAQBc3NzrK6u8gu/+HF6e12Ggz7VapUbN1apVKocXTpKq9Wi0ZxgdXWVs+cucPr+4ywuHaETjPEKBUyZY7u9ztxCnTAcE0djHn/iYdrtXY4szILIxEQc2yVMErZbLSanpzL6a6qIEp/pI9OYtsEv/OLPY1omiJQ4ThgOB3hejo9+9KMUi/k7v7EQBhvrW9SqRWzHZRxEFEtFBnspvV7vzm8kpaRRr9PpdvH9GMNQLC4scObMee4/7eEWbdIkwJDw8CMP0e2PiMKAY8uZl6LnOhiGYmtjk0qjwjhImJ6Z5PVLZzi2vMSN69eYmWpiWwY721uUK3XQCb/8y7/EcDAkGAdMTk7y63/pLxEFAWlkM/ZHGIaJIUEog5s31/ADH891gMyH1BACKS1q9SaOZ9Pt9qnXGwihmJtdpLW7S5pqLKXQvo/rOty4cYPl5WUcx2Fqairr2xUCpGAwGO57uBaxbAvkmDg18JwiaZJVFtI4wDRdDKtGZvIRE/ghuUKVOAHfD3GsAmM/q1DbnglakMaQrlzn7PnzPNQaYioD0hTxoZN4X/k2SZqiHAvvow8iTQOERfjxJ3GeXOTKyiUW5x9ghKAXC964uMJTTz6CTQ9p5Il7AwzDoN/fQwiBwqS7vkZzdXNfOKmAn6Q4toWx3SL9k2/ixinGwCeNIoytXdyRj7ZNokdPYjiCQKV0T80w0Wyy2SxT+85FpDQZDftUa3XCICFOhwghCYOYs2fPMTU1zZXL13jiI0+iUbRbHT721EexzIiRH+DIEmkKlmVh2wqkSeAHOJ6JbdkIIfGjMWkKb7xxmUceeSTrdxQmy4VlpBA4jpf1/kkTLSSlahUhFUiJ4+XwPI/d3TaNySbD0ZjmxAS9Xg/DsrBMm0a9xivnXqW90+by5cv8rd/8G5mgmBNhKwudpGxsbHB0eRlDSjrtNoqUNA4Y+2PK9TppqrPrdmqauelZ2q1dZmYyb9/i1VuEUURvro7WkjSVOE6OJAbDsJHCZHFxCSnBkjaGYdFud6nVqpimRafbIZ6sITZbIAOUIUkSQWunS5Jopo+cpD+yeO77z/PoRx5DmRko+5FEmpLEEdNTTZQyOH78JFES8/LzzxKmmtMnH+DEiVP862efIZ4uEOYiqjWbarWMJhMGU/u2VQiLONQkiUkYa0qVKrc22hxbPoUMtwiGCXEyAC1JdYRIM0EnLQTKzOjyOo0YDVoMejGPP/khZmaasG8fMxr61KqaqakJVq5cZ6/XYW66htAhQmSLq2mqIU7351UDpObE8WN4lTLlcomrK1d48qMPZ4uricPLL57jZ3/241x89TxjP+DBh+5HqT7SstA6JkpDkjiilC8zDv1siVfE6DRlr5Nw9eo2fmzy0IPT5Ispbk6Q6gSJIknAUCbjcQ/bNPCDaF+oSVP0FD/30fuxrA5O0WN3Zxcn55HGCi1Toigh51TRWhP5IUoJjp1oIM2Q0chGGpCwi60cZo+UmV/w6HQGHF0q8oOXbjG1/AhvXHsDdMzk5MdYWJrhmWe+yUeefILFpVmG+RbiTA7dcSmoeb7nfomvffVbTM3PYpkOf//v/QOuv/5VgiCinC/T2tlAkpKQojX7FkA/fKifC9/x9Xvlvv8x8+DsmPTbGHQ/jR/v+LGuuMIPDxSFOKx5/IOf5R9Eifjd4r2siv0w4/1pRPLHmY+r+tVPoHXmvem6Lkopzp49S71ef8f+33fqczgoAnX3Pu9Eez243XuJw6qmd1dc7xzTgadvi3Pd3XOTjflmvG/gKg6/Id1LQv7g93fw71vFmXjb62mqkaQoAcQJF86/ipevk7cUi6lF7e/8Ewgjbh6bJLe8QLfbwTZtLl+6yur1NaaaDTzPxTQM9nrdrOcvV2Vyso4SkrxXxPMceoMe3U6HZrNBf9/D1Mt7xElCe7eNZZjkXI9qqYJQgqmpqTsUuHq9RqojysU8tmXT2W2jU1hbX6fZbFIul/E8l063w/pmm8nJJuVKkXKpzGA4xnNLRGm4348VY5pQyHvk8nn6gzFJHDMaj7AsE8N08HIeiEz6Ik0Vg94uju3Q7rQREkxbIcgEPCwz6x0tlYoZqxSRVZGkwR/94ac5fmwe23EyMZdUo5OE4WhIpVy+Y+EihGA0HnPjxjrFYoHhsE+9UaNQyGcUUzSrq6tMTE0SxTE5L6sufupTf8CDDz6QUWelZrfTpVytsNve5uR9x7GUwjQU9XqVne0tkihGKANvX7goDrN+WSEUpVKRiUaDbrdNtVIhiiPiKAAEW9stXnn1VU6cOokUAiUVOtXYrke318dzHXw/oyeahsVgMOD//v1PMRz2mZqepBZl6ZWamXzTz1gIhsMhjuMQxpkaciYyFSOlotvv4HolOu0upggJ/B2SaISpbIaDkJ32Nrm8td+3LREYWFbWI2xaKqPt+iG8dAH9wqvI/pDowRPs/eZ/Tu7v/1eo3/xVgl/5ENaf/zmiTz7GrVPTiFOLqNNLJMvHcY6fwMzn6Ic+qVEgVg5Cm3z3u9+j2+txa22d6cVjGLkclucwGI+QpsQu1qkvzJIsT2M9uEywMI0zN4270cL4wWs4vRGyUSFdnkU5DqpZw8nnsGoVLKEww4R8N6B6uYVz/gbV71/E3WghL62S2+2jr67BgycY/cpH8K6sIaXimWe+zwP3P8T8/CSua6IMaDSrRMGQjZ0r1KuTDAcxjm0SRSNurK0hRabujJDcFjmRApRhUMgX8Lwco3FWsR4M+nS7mVhQp71HrBMKhQJRFON6HuMgIAoDpBSkacLKygqTk5OUShUEGtMwaG3vcOmNK5w99wo5x+YXP/Gf8sf/z+eoVovk8yY6zfp76/U6g+EQyzRxLJu9bptSsUilViVBIgSYhsEbr18iGI8ZD8e097rUajXsbj9byJxsgBBcW7nO17/2NeIkoVqtZarTKmKv1wahMUwTz8sTBj5akKmGb+6iayX0Lz5CEAZ0u3vU6xOYhothFfDcPGEwZnpyglinGZWct86r76XiCpBuC/RQIb2YKE6JBi1+8MXP8Inyb9H95BV2Xx0yMz3B4tJRlNKEYUAYjKhXHBpVF61DTNNAqow2L6UiTVKUIQnDkBs31lnf2KXWmGJ69gS77R5ptEcS9bHdrE/5tre3l8sTBBGGaZGmMWkiiROT2fkFZhfnGfkjrl+/TrVSxXPynH/1LI5jU61WM5Ejv0XO00idUZY1GsOwiOOUOAro9sY0JmdB2YRxSqVcodvrkcsVaLXa1KtVNtbX0ClcuvQG1YqBIYfYpos0BGE0olgqEoxiwqyBHClT0iTGUEUuXrhFpDXLyxO4rsS28oSBZuzH2JaDJsEwJHGUYFsuYegjSLAtRZr4JDLP2lonszqzBEILDEsipUKn2bURx2O0NvAKEEWa61fHDEZjCnWNihSe6+I5Fp6b0Z+PLy3z4svX6Y66LC1NMTe5xOrNWyRxgk6hVmtwffUG43wXcy9HqdtgujjHmd4P+I2/+l+S9/J85xtf5/FHlmlvr7G5vo1QFrWZeSqNKTJilgb59tzqMFXhd6qUymaKbN7b9vBeue97zb30PZ4/ZK/3tJ0QYr8dSiCF4j3nVT+NP/X4iaIKw+ErO4d5Ux0EMG+Nw9TK3p2r/37pw/cCE+/3Ir8beBwEI++l5/f/K9B6rwWE28+nn3sTuB4U/hFC0Gg07lRh3+m4Dz7CMLxTST2MTpIBrsO8VN8+3kGl4nttm9FP0rcpC98NXO/8RvvCR71ej9y+IMqb47zZt3Hod3gItezg8d5RTr4HcH3LWHcd291j3X1cUmQVroPUbZ3EWIZCppoXvv8sKk0xcwUqaYrz2/8LN8OA+IlHqNerxCnYls1oOOalF1/CsR2GoyGNem1fkClHo97glXPnmJmu49gOpXINlCSfz7O9vYNlG3zh83+SVV8rZfyxT71WA5HZS5imSZzEWT8fmm4nq+o+88x3ObZ8lCgICIIx1WqFl86c4/T9p/F9nzAKqNcbLCwcpVR0Mc2MFu0HKbZhs9dvY5gGvh8S+EOUkeK4Rd64vMqF189z/+lTbG+2OXPmLLOzM2hS2u09PvWpf0u5lGNycoZcPo8yBXEa0+v28VyXKMqYBc88830WFuczCuPKCsV8gVOnTjIcdklTTblco9vpoITMaNCuC2R0cq013/72t2k0Jmg0GuTzBUzTYDga0m61GAyH5PIFhFCYtsl4OKQ/6HH61KlMVRRNq7XD/PxRpBLE4RDHckhTwXA8xLItOt0uQRgyMTnD7u4O58+fp9lsMhqO6HS6NJt1ojhEmQZrt27tV0/BMCySVPPhD3+ITqeN5+a4ceMGjm1TrtYoVao4toEyFEoqut0uYRTy+Ecep9lsUmvUkWlCYpuYjSovvPgi1Wo1o2G6LkmSEO6ruoZhiOM4GEohlQta4ToKKX263XXG44BcLo9t2+QLHkJqLNtDSUUUhJlFhmUS3FrHePYc4jsvEZ2YRfzWX0H8d38D86MforKwyE67g2k7xHHCxvoWGkml0sQ0PcJQk/McktTBTwIqlRJog9/5R/+E3/u93+Uf/o//A7Nz8zSnptFJyOr5CxTOXaH+h18j/80zmF//PuZXn8V++kWcr71I7svP4fzxtxG7eyTTddKHlonmp0iqJUaVPOaxJYYLR9hxTJypBjRriJkpOL5I8uhJwuOzpIszREmEicBOBeblVZzPfBPRqCByNoW8R6NRw1U+29u3yJdyIFJaO5sMxz3qtSO4lgcMERIK+TqmaXJlZWX/d8hEukzDAASWZYOQxHHMzvYWpmlTrzcZDn2uXFnhyMIsjm1hGoLAH2PbFrZpY1lGZlM1PU0QxIxHPnES0W5t02w2Of/qawxGY/6zX/llXnn1VRqNBtVqmdFoiOflszmA7B7fae0iDUW1WiGJIyzLIQhCRqMBjuNSq9VBCC5eeoPlE8fxci7GTgchBclElX5/yJWLl0mShPn5eS5evJiJm0U9avUKu+1dyuUyvV4Pz82xsbFJo9kgXd8i3Rsw/qUnCIKQiYlJwjDCNC1CBZbSfP3Ln+fRxx5FK/WWe8Sd9pjPHw5c774vxP/aJblgYD0eIZSi5Ai+/bl/RdV/nBvhVabz8xRyHq32Hq5r8fKZl7mxegV/uM38kTKFQh5r3ypKk82dSZKSJD6mqSiUShQrVYRh8t1nL1Cp1Glvr+GYmihRSDKGhwbCQJNoC8OURGGExiVIXM6+domtzRb3P/Ag5UqFOEqJw5QoHNFut6lW6wx7PZqNHGG0h0JnPtKGQhkmIBESpHIZBeDlq6xvtpC41BuTRHFEuZJjt7VBIV/huedeoFYrcd/xefKuhlQTBCGpFsRxCjohSSOUyOy5RuMRfpDiOHlOnGiSpnskUUISO2xvdylXquxsdxBCU8g7pGkmUmgZBllfsCJJU1ZWupw5s8PSQgOpxtiWTaJN4iQhTQMME/xxhFIOKZAmBrfWdpmbm8bzTKQ2UUrteyqb2KZNGIas3lhnZnaWQX/ESy++SrvT5ebNNW6treO5OQr5Mutbq5z4mSXCtka0LKp2jZv2Cv/in/8ejz/yIK+d/Q4y9dle20BaNo9/7Bco1ScQUiGVuENXf0t+c1e+9H5z2rvj3SwI78477t72MOB6d94nhEDfAzvfvU/276z176fA9c92/MQB14NxKB+edwODhz77jsfxXsHfQXuWd1rJ+iBj/1mhYhwWhx3PQeB6sEKaJJnIyHg8fpMW+B7GtCzrnhNlHMdEUYRhGPcc727rnPcCXG/3hcIBsah7yq1n4zpOJgpxEJgfVO+Vhx7f23/bu+1+bosrHfb8wc/yTuf+HZGmg6JQvNnzmiRJ9m+doKSitbnB5s2bPP2lL/HAfccp/N1/Bq7Dl/b2qFSqKGA4DAjDkO3tLSYaDXZbLR758IdZvX6Vk/cdZ9Abcub5Mzz55GPkcxbf+OY3KJbrNGem2Nnc5ZVXz1GtlnnyqScIg4BSvsA3nv46x44dyxYqpGS7tYNAk2qNZVmMhkN83+fIzAxh4NPptqlUStiW4tT9j2SJt2MTJzFRFOA6FjoN8Ec9HNtl7VaLy2+8TmOySs7L45gOSRSizJQ4MrHMApubt8jlcvS6PjvbG+TzNl7OJed5HD+2jOfmKZWrIARbO9u4noNne0il2NjYyKw3bAvHy2EYiqnJCaTSpGlEpVTAtEzSVNDvDXjl3CtIU2HZ9r4NR+YduLiwsG97Y7Cz0yKfzyOFwB/5DAZDqrUG/cGAMAixzIxGOT09TXu3Rc7ziEKfMADbMjBkxHgw5rkXz1Kr1alUy1SqNWq1JkIIHNtmr9flyMwMw9GY+fmF7HwTIA2DXKGA5TqZF6OycByb3Z0tLFNSLJbJ53MYpoEybcI44cb1K3Q6nX2gK9ndbdGcmiSMIizbRJQKUHDp9vocPXoUZWTWPkIIpKEwDAspsr7gvW4b01QINFLFhOGI/5e9Nw+y7Lrv+z7nnLvft6+99+wbZrARACmJEkFqsyNKrFiRE8dxVLHixCWXk1TKSxzJJSmluCpRyeVSbFlLJKUoWRIpkhIpEeICkgCxL4NtMABmBrP0bL13v/3d9dz8cXsGPYOeAUBStmzh1zVT3e9u57173zm/7+/3/X1/URhTLU1QrEyRaOgPBsRhhmuViHVCOA4wlETFEeLZlzFfPM34r3+E6Jf/d+yf+Dh6uo2UmiiMeerJ5/n6177Jz/7MLzAzvYc777oXnZqsrvV44YU3OHnyLPWaievXEJag19/EUhZoyU/8jU9Q1Jru+fPUnzlB43e/wPSjL6IWrtAXIOanSSplZLNGVLQZOgZpvUx0zxGSmRZZyScGDNMmQyJlikBx+cpVmjPTmPUKuuSQFn20Y5EJTSZShOmSTdQJZyp0mh5eq45KNNaVNbKlVZxf+Lvol1+nZJkU/SKWWyROBNVKEw0YwkNkERvd8yBNTKOGlBkLFy/guDaOa2HbJoPBEMu2QQiuXLlKpVajWilhmibra5u89NIrLC4uc8fRg/Q7G3iORTAeYZkGtumwtrJMHI4JgzFrq+s89ugTHD58EMc2sW2LZmuKu+66l9W1FfYd2M2uPbPYjseXvvwIWRrhFwrILec/iWKCNMZQCpHB+XPncR2fMBxuBZBMbN9nZtcu0BrDUNidHkkSEzcqWGZeI7//wD5qtSrLK0tUKmUG/YByuYbnFBkOAk688hpxnNCeaOf9Z8djjO4A9V/9CLbtIKViaWkRyzbQdooOByxdOs+hg4cRlofmRk9bCPGOwPV6xvW5HNiZ94esrq7y+vNP8sqjf8Y+8xPU7vMJljM8xyNJJeVig8Wr6ywvLrJ7tkXJV7iuDZkmTiPI8jnTNE2UtBA5j4ZYKwqlKq3JeS5eXmDPXBXX1qQoTJWvD0kquHR5g3NvLtJq5ZTyjU7M8VcuUm7tYt+effR6A1rtNpZps7y0SpbGtCcmyVCMh0NENkIZMabIiOMQ07RzkaNxSJZpRoGmP9AsrvS4864PMBr1cHyHNE1zIS9yJkaxWOHy5SuQjin7BpYpsO0Ci1c3qVQqhGEHyxbEUYLEwDAVfsHHL9iodIhjCkgVpmuRiYBCsYFt+fS6mwiZIgW4br6uuK5PrAWxhkrZZrpdw3YypBxjGT7dvsfx4y8zPd9EIAlGNpkxztkdhkW77aJkiNQGwshIdYg08s80TVJQEXv21Flb2WRxuovMXQAAIABJREFUaUBqpCTxiDvvPEKtUWbPnnkq1SITk20EipOXTzCT7MGr2njfZXDh3CVeePYZfuhj99GsOly+sEBvFPIDH//PKdRaCCmRWyob2/2JrT9ueO7eyY/UJw2yVXXbrOv2ZMDNvu87+btih4ztTj70NcGlawmp2439mgCllO8D17/M9lcauN5sN38Bds445f+2C+HslMG8ISt1E/30ZhB5u8jSOx1zq/dxq+23u/atxvIXYe8IkrYB15uPybLstiDz2r7bbTswu3m/a3U8O2U2r+1/o9hTLs6Vb9oCqEjE9Z8tgCmubSWf9EVOe8syTd5oPn85TZO3AVK9reWCFCJvaXGr9yqvn57t4krXfhfiLby8/XO4JrZ08+d73QnS+i0wegvzdUaiJZlyMG2bKBjhEfClP/sCEsnk9Ay9YcS9v/onSMMguP8Ye/bu4vlnnmZtZR3bNjh39iylUpn19Q32HzjA0tJFdu+aJ040Wms0mpLv4nkFSsUyczOT6DhBqZjDhw+x3unSnprCr5QY9EdMzU7j+g4ZAtvyWVi4ytTERB4JTzUz0/OUClU8z2dtfZ2Z2VmkIVleWaFQKrK2tkqxVCSKIpIkwTJ91lbXiaKEs2fOYUg48eqrHDt6jDSJMAxFpzvk2edfot2eoFavoqSi1WqwtrHI/O69NBtNHMtCZCnD3iYTE23OnTuPXyhRLFZIU0Gm8xYhZBmWJRAiQUiNbUpGw8FW30EToRTdTpeV5RWee/Y5ZmZmcfxSnjUseEihcSyTKBhhGIKXX3mRQsHDMGzGQcTa+govvniCl198lWatSqtZxnHybEoYa8qlCiQay/FyASIjYmntHFGaMrtnD61mg87KOoKMcdhHRwmpTmk0WriOh9Tw+Dcewa1UcGyHKAjxHQd0xisvHEfrhEKhQKIzpGlz/sybGMqgVC6zvLREuVig6HtUajUinRLECaVyBdex8DyXXCU3ZmV9kXJ1iiROMVXejiZOMlIt0OmY3sYKri1RyiCMY8JhlygOsd0Cyi6QSi8Hs9IgSTOOHz9BkkiKFZMkAffyMuobz8K+Pfwv5YB/9sWHOPna67x+4jH27pql3x3yyouv83M/8y8gtdi76yBf/dIjfPzj38ez37zEj3zie/j5n/uf8K1pKqU6jqWxLl2Eh56g8sk/4/DZq0w//iL215+i9sLrOOOIcbtCeHCWaKaBOTtJ7BVYH4146JuPsPvYIcZS4NZbYEqC4RjXcUGD1imIDANFlmbYloWhQJBCliBRoCUIzcbGKq5lIZRCKhvbdRmpmIGzSeRYFDZjsk99jXM/+VH0U0/x9a8/zGS7jUCjZIKSBkppMpUxGGTUqhMIkSGkplDwqTcaKNND4KBUBpnKax91hmWZZFITxCkbm5vs3TPLvXcdQFkOnuPQ6WzQHw7pD8cUiiU63R62W8C0HEZBwAMfup+z5y4RhSP8gkehWAAJhrT5/T/4Q5rNFgXfp1wukQCOUyQJUzbXNvjKV77C3Xffg+8WSDVbLZBShOHQ7w9yVoKSDHs9NjvraJ1SDVIMw0Q36wgkpmPg+Q5KKYqFMrbt4xVdTNPk9OnTZKlgemqOZrPBlSvnWV66wmSjhXjpNNnf/wS9QR+hFKVKDaSJnVhEhqDXG9Bf3aQ5M3WDtJ4SW0DiFsB1+xoFOXAVGbgPxATrF/nzT/+/jAfrfFf17/DZ53+PBz/wcQQZ3W6H0bgDQrK8vEHBt2hUHYaDTdIkyTPetoNOJZkWSGGQiYRwXOCLX3yFickKQjg4Ejw/L52IgnWkockyhSEcir7D9FQFpMCwLLq9gGp9ionJNq2JSWq1KlLkfapL5QJGyaFUKnHuzXOEcUJ/c5Xxxia1ZgUhQachyjJIM42lYNgdUKjO0BsmVEtFpKlI4pR+r49h2Hh+ifOXz3Hx7Buk0YBy2aZRArTJxYsX0HqE45iYlodj2ChDkaYJppG35JIiwbAsRuMYYRgIchG2WGu6/ZBStYJpgGNJxsMe2okRwiAaSJSjIbUpl2081yRLMjIdkyUpw3CDSqWGEbu8+tpr2K6B5zkE4wFKZSQ6xrAVpBZSjLEtiyiWpFJhWgaG0kw0SkxUFPtmXGYm66yvb3Dq1CorKwGvvvoUrudTrpRpTzYZiQG1lSkGyyP+9UO/xI//rb/N4lKA60h6K2foD0c0Jnez7/AxMstCK4nQbw/yX3smr/siWbZjJueaD5H8kUt2QaEeiG/r4+7ke+zEgnxbade2+qq32GfbxZfEbTsm7GTXhSzzk229vfcB7F82e6/AVXwnW8r8RVuSJDsOdnvWCHamqt78+k7nuHm/nVRtb6XKe6vs37uJOr3TeL5T9h/iXl+7ZvxTPwuA+Vu/+J6PhXd/797Jtt+HtyjC6dv3y95+jzVv7Xer4MY1evLOmdQbx7wdWN8q2/tO57i53+r2rO6tvgfXM6rf/PVtZxPX/88A9n0f1tRBsmjEw7/72+gLj3PkyBEqlTL64iLOeoeoXkEqRXBplnAU8OU//xLf/zf341dMDMMgDMM8IiohimKspI4dTNPr9UnEAKO9jOu4OK5Dv9dHCMFoPKJeryK6swhdykVXjIsUWznwjuOEzY1N6vV63iM0VCy/YfDYN5/gr/21H6S4d41kK5ttWdfqIfO2J7pXY7guqNUadIIF3OaIMAxRUpGkGse2cxptkjA832J9c4NGo0lhpsfy+kV838Oy7TzLOxphWxYuLfpXLHrDAeW6h6xdxTCNrflC51kNnZHpFGMwz9XLG8zOzLAZn6HYzIiiCNjKHI9ywSClPV57csSbb57hez78Ifz5JUzTQhnGdQr6ysoqhmGyfFZyaPc9PP7YUxz9wByV2QDQOUC3LaIoyemBSUK02Aadg+GeOontmxhm3vtyY32DYjFX6ZVRhfFKAdf3yGSAqFxmMBjiFXwsyyKOoi2qvkT1ZrFUKfd5Shvg9BBZ3hvXsPIMiU5TuutjJtz7yFRe96tLp/JehXKLmr71/GVSoMYt0r6dj9vuk7orXL28gOs6lEtlMiEwDBOEYHylTaFQRAiT2FsANSJJchZHmmZcvbKI71rURlWMR5ZI/vnfpTvTYOkbv0G5UMH3fRxXYdo2mU4BwXDuByi05kFoLj/+KQrjRWyrTJwMKJULpLGi3+/gxybNL26QTNTImlWCiQVSnbG6uYnnefgFD51lSCHoLLuItM7K2ibjZJk77vJyCqZOGfSHrG92MAyDqckJVHQXmpRMZGh5BtNK0DojDANsO39OTMvGMaYx5TyjcRfPtwjSV0FsOaPyLepdNg4pPBYSnF9l+X/+MbqPfp7JPZWcqmlayC1xuzRNkZlLujGNZTrESZesuoAy8n6WWm8F5aREa40KJ4l6Zi7oVEzQ7hLdTgfPdbAde4ti62A7DldethkOR7SaLQqzXZSd0+fDMMQwTJTamn+iMgxahEHMOO4yMF7H8zyGwyH1eh2lJP3BgHqtRrjSwJJF4igh89fYGJ3D8zxK5VI+92X5eNeWB/jRITY21rgjFoyO9kgLeQ13mqZkW/OK4ziEa2VUUkfrhM3xeRq7IIkT0jTFcWyEFMRhhL3a4fLf/kdMTEyhlEH28hfIhuuITKClRkcx4+GQUq2GOX0HxsGP5PdisEZ0/LM7zufWR//+216Lf9XLt/2DMVF/jSf+9A/4/Cd/nZ+e+RQT/7XDq1/e4M6jR4h0xtpKB8t2+PMv/glzkz77ZsoUvAwhMgwDMpGi0zzjKoQmI0RnZYJY4hZcFpcV89NTrG+8gomJoQJcx0NIzTga5iyATCJSQRDFXLzcoz8ucvL0AgcOHuDo0Tuo12tEUcDa2iqNqQkGm5uksSaMQopmHyvdZBz2cSyBlHmrsVEQkiUhAgfpz6HNGnEYUa63SFONbbsIFJcuXaE9O81ofYVHv/EwwXiNH/jwgZxNYUhKJZdg3Mcw8v7NcRxfX1/fYjwJwjghy8B2HIQQ2P4kSysB9UYV0i6DzTXC0OXspavsmqnRrKSkKqPfDXAce6tXuEMSR4hUkJoZqU4xUwNl+yRJtNXGSyKUgRYKnUlsK2A8GiC0i1coEWVD0kCTkZImNqNRgluwCXojrqx1wZ7i1Jsr/PAPPUiUxJw5c4aJiUls22HX8lH6zTUeaX2O3/qd32X/zC5Ov/QQH72vTZg5lOaO8Q//2f+J9HykKZHZrUrlbnptB9/22vbo31x7Fkc7Pr+3A4Q7+cw3C1UK9dY+NwLX24z3XdqNQPo731Xjffv2zDCM93RT37+D79L+fWUud7Kbaa3/MZr5W7/4nkDre7EdabS3qCP9ds+5U5Dk5qzme4oI7gCAb3e9dzPmW51j+1hvBK1wLZest34TWYSMA/6/X/s1Fhc3mN+1F9f1YRTirHVIyqWcuptlXLl4Ke8pWi5xdWkJKSWmldfzWLaFZdmMRiMsy+L8wgVaEy1Mx2Y0GpNtvX/LNq8LGGVkdDsbCC3IkgQBDAdDlJRYpkG73URnGRubGwwGeZ/Kmdkp3jx7hlRrTCMHTONxeL3lzLWMdLVSpdNZwzRyERfXcbDtXDFVZxla52qXnu9TrzWpVmoEwZj2RBvf97HMvF7Mcz1GozGjcYjjlajVGzhODmqTOCYHjynpVpb7ypWrjEcRrdYUy8vreJ5Pp9vFNK3r1/Z9f2uBzzCEYGNtDdd2sSybMIqJohi2BJ8ajSau5zE9NUWWZezePU+9XiGOc1BpWRZJkmKaBuPRKFfeRmGojCgcYygD08gj7YZh4no+zlY9rlCKSqOGMhSmlVN2q7UKtmUxHo0wDAPP83BdD9N2uHDhIqfPvPnWs0eWtwIBlMzpA/VGg2QLIKhraslbgEkphRiOkaMxOk2IoxFkEd3NVZJ4TJrEVKs1qtU6yrRzB1pIMgSlco1MazbWVpDkGYO89j1/rtqVCpUwZanX4+cP10g+eAin6LJ3924c2+all15kaXmZVGsyrci0pFgscfyF5xiPh0xNTVEqlTnz5ht50FKYZJkmvngFf2GR+L7DRMf2k01PgmnSH48pFHw8z0GQoWReh1+rNygWi6Bjrl5dJI4TRqMRWme4roPn+dRrdaRUDAcjyOBaXVoc5+JujuNeF1QR5KyLq4tXMU0XjchpgVJtMUMkWSYBiXQdojt34bfbTP0/D9H6zz6cK6bqBLnF5sh7VsaILVq9EBnovA1YprcCLFl2nZmUphlvvH4agYljO9fnnF6vT5YJNjc7mIaJZTn0ewNmpmc4dOgI1WqdOI5J0y3FU50H37TOVeYH/T5ra8sYJpTLBVqtFkoplDKwbQvDMKjVaggl8Io+QmZ5YCjLSJI0D2IAOs2DN1IpWq0W5VKV/fsPbo1/a568FlSN896/aZKQJDGPPfYEICgVSyglQeQgR24xPK459zO/+zCZzjOY28+XxLmKvGma35nWcyIjEgLlVbjj7gcYhwmObdHvbtBs1ej1u+S1/gOUUiRpwL59exn0Q149cQpDmaRaI4VEStBZQhQlkFlAgmlBr9cHKXjs8SeIY02cQJaZKGkwDgMQBk8+9QYXFgLiJMW0TRKd0u8P+PD3fpSZmRk8z8c0TTY2N5iemSKNE6rlKpZpMjHZZDjuI5QmCvMsv2naRGGEIXOV4igOidMQr+hSb9WI4xSlDM6fP49SiqWlq6wsr/HCi6/g+SXmdx9gablHksHK2hrjYIxlKkwJaisgZigj12tINWmS5qUJVt7qJkkSsiwjDPpMTjYRCobjEZVGjXEy4uQbK2x2BmQyRGQ2paKDaYJtm8RpAkKiVIwhBYaUIEPSbMx43MdQmlSPiZMx6xvrjIMxwXiEpMDi4pDV1SHBaAxpgmWYmIbB08+8iWmaeJZgdqrG1StvMBqsb9WPN9m//wALCxeZmppiVOjij0tUawV+6Zf+L374h3+Yu+66h3KlSKxjomBEZ2MNgwx1q6LQb8P+on3Sf9+MwfftPy77T4IqvJ1yeqttt8o+7fTaTrTed8r+vdsx3Cqze7sF7tv98m7PBr/X87zbY7TWKKXyDNa30X7mnSbC7RnKdzPGa4Dl2vh2vs7bRZLyRV5evzej0QjTMm64TpqmN9y3G2jkN51PKXUDqNz+Xq79vtO4d9p2M8jd/hxdG8PN/VlvzvjrhecBkN/7PyB33YfadT/M3Us0dzdi5k6cQoNnHnuacJTwkR/9OzB1Dz1/H9VPPoe8KIgqhxkuW3zp08/QaNR59eQJHvjgA6R9HzGuM1p16C4qPv07DxOu+3zjoZepebNMTU/R7Xaplhv0Fy2ssIUaV9i4NCbt1hmuKsrGLGmcN55XhiLoSnqLJq8+c5nxmk27cIDxmsPrxxcRQZFWe4JMw8zMDLpXJOoUcNJJdL+EGBXJBkXGaxb9jYA4jkhSTdGtM16TBOsW4zWLZFBh5XzKY19+jXsOfj8IsCyH4XCImdYQoypm0mbzssBK2mTDCmbcZnMlplwpI5REZg5RxyfYdBGjKoya/Oa/+mN85pgqHyEKYizLpVAoYOgyMqhhxy0GqyZm3EYGdWTYZLCuuHJ5kcmpCeI0oubuQw+qRJsFZNjAiBtcemPAv/vNhzi8924MS1Gr1zh18jwNdx9GUGe06SBHVRgUUVETI2lDItFErK0t44o63eURaafOl//kOY7s+QiWnsSImsQji2CU1xCmUUo2LNFblvhyDj0o01sSOGkLFda4dGmd6dkZqpUKpi4jghpnX97ACJtsLkpKap5sWMXO8lrKOInyPqnDCipuY8RNGFfwXg+xVlxEZQ8ytcm2AkCOWcFMWqiohUomyaI2ImohwvzzEgKCcUCxUETFVQiayLCOWHcxTickn3uV52aOMPUP/ym7Ds0jVYJdaKHm7uYrJzo8cz7irh/5mxSPfj/nerP843/5h9z7wQ8zGIz4zKc/zz0P/g3E7DEm7v1BhLsX/zMnKT29Qm2zxEZjDyvhiFKxxMLFSzTKx+iuuahsioq/jzQqI5JZuuse45GgUi1TLLjs2X0PRXcPixcjbDXDS88tUSvfgSVmUMkEYRjw8Ne/zpEjR/CsSRw1j2IKU0xiMoVv7SUe17GMBsVSKQ/UZBaWnMYSUygxgxKzeLSJhyXQLYzaBEmtirPWxXluibQ6S/pSl+4www6bqHERGZTor+icvi1ACgczacOohhW2UeM2Mm5jxdMsndO8+PwpDh06Qr/T5fyZRer+QUrmHpxkinRQ4vlHz7OxAM998yxrG+u0Wi02Nzd45tHXOTL/PYzWbEZrNlbSwEgaqKiFTZXORocgGFMtN7lwskvZ3EPV2stnPvk1ls7FzDfvRQ/LKEy01gwGA3yjRdwpULV2E3d8Nq+CDBvY2SQ6KCGBJI3BNIjWHU6fGlFzDhB2HVw9jRG2yQZl/vSPv8xgNGZmeoqCW+PiawMY1oi6JZJumcGKzepCSvX5TaiU0B/7EEoZdOw27oEPYU59kPXKHMV9H+TZMz3mPvYTWBP7rs/D0vYxd9+Pmv8Aas/9qN33kV7I52K1+z5utrzGNSN9QGObBiUz4bXnHuGI+CG+ufDnTPgHMJSBNEymJqc5/sLxvAwhS4hGXQ4fnscwFEJoDDPPQiplQGaSaRPTMrCcIs3GHMqqoAT4BU3RK+L5BkHU31pPfLqdhN5mwvSkC2iKxSqvvnaOxaV14iSk1WrQ7XZpt1qQCU6fPo1tGoRhRKlSwlQJ0biDJEMIjU5jbNvOV980IQhjlFvFKbVIYsHrr58iCAIWFhaoVCpUKxU+98df4L4772BtdYmFhfPUyy6TE1VMQ+C5FlKyJdSUoQxFHMUoQ2EogyRN0FmuFJ0kKcowsCwLlKA/iAnigI2NZYrFAkm6TqXiMdEqYhsahEcY9JFbdTxxHCOVAZkixUUaLknURyoHpIlhGViWRKoM13PzACoKhMOTT55jaqqO58m8JElAHKdMTJQxTYHUCWEGm92YMDE4ceJlKtU6U1PT7N69m0ce+TqT8xP4S3XOnbqAcUgzPz1DGqywcvVV6u1p/pv/7qcRymU4GlPwXIRh7ehj3Pya3sFXvOZH6Oes/Bm+P7qFz7Wzj7hTWdf2xMJ1H2rb4W/5NDeeZ/u292I3jvd9EPyXzf5K17jeCjS+G3svbWy+1S/Ora5zDVj9RUeVvp1xv5v9btXy5Ttpt6qp2MnyGsiUOI63IvLJLY7Z4bnhLQEp0zQ5c+YM9Ub9hmvfNthw0983A8nb2bXzvhv68M2LwrVx3SqIcm1/vXA8z97M3XvDexJoLASrlxf5lX/1b/lvf/IfkKoxtmtQfPw4/p8/xvi77mYYhCwtLTPodGg1mtxz7z08/czTHDx8GMd1Wbh4kZXVVQaDAUkKH7jnA6RZyuXLl1ldX6VU8kFronBMZ3MV1xE0p6colWq8dvJNpqZnWV67yoULl8mE4oknnmZtfYOPPPh9LC4vYlmKWq2CTuGRRx5nOAg4cOAgzz33PINBj2azTprGhOEYIXMKcqFQwLYsnnnmZSqVMuPxGNsyyNBYrkGxWGBufhdRFJFqjWU6bGyu89JLx3Pqp1eg1xswHodUqlWUYeD4DoYpuZZwSWLNKy+d4PFHH+fwkaP4vs+u+TmyLMIv2CRa8tBDD3H48AGiKGR5eZFme5o0zTh/LnfQ4jih1Z6kPdGmPdFEoFm6cplWq45QBkkcUCwWuOfOuwiDMeVqheeefYajR+9g0O9hWTaW62MqycbaKq7vcXVpGVPBZmeZqck5PLeei0VZFq12i1qjTqJTJBkXzl9gcqJNZ3WVRq3GeDSkWPJJtcBxbAyltpRbHdxCmdFwmGdtHYfFq1dz+rfjsNnt4BcKeJ5HhiATYBh57apIUwzbReuUOAlxN/okaUrSrHL16lWUMiiXK6xubDIYjrEME8t2iIIxUscQB0jDIN1qNZVpEMIg2BiQPvkC5lOvMNo/zea/+Gn8D+6nPd1GZwG1aol4lDEm5siRu7jz2FF+89f/DQ9+3/czMzvJh777bmbnm7QaZT5UbVD9vT/F//qz+J97mOLXnmWoNa/pGOsDh4nQTExMEMcJtuVi2BblapX1zQ1c3yfVGZ/9/c9Sb7SYnZ8nTiNMUxAMQwyVswzq9QaV2gT1uo8SGYtXLhOFEQcOHERIhWUplpaXcR2PpcVFhMj7jdpO7ogqw0DrDCUEIo1BJwgEmZToDEzLIo0jLNMiKxTQZQvj/DLeZoSfGlTHJsbGiOHlZZw4xZ2ocPnyJUrFIqmyQWQotVVWoQTCSInigELRY8+eOTJiht0xr73+Onv37UEZgkwnWK5HkmT4fpFGs8nBI4cwDYXjOBw8uJ/llWWUknntajrG9XxSDaNhQNEvYRiKS5cusXfvHkxTEUUBe/YfYjAY4dgOi1cWcaxc4bZYKCIEFAoeo1GH5cVVVldXWVtfZ3Z2Nn/uJERRQDcKUcUiKysbOHYB08ywLIe1tXWiKAdfBw4dpFIu0uv1SCLNFz7/Z8RpzIkTJ5mdnWdyagJr4SoXgxHj7/4AhmlQLPq53kEMqdJ4lsVrL5/g8N13IXbQHUh+8TfIHjuO+L4PIBrzyKkjCNt/23ytnzNzJsH9GqEjXnvmK3jJOsXF+3m1+ywTxUPs3bsXy/XpdlcZj0POnVnAlJpqSVEsKCxbobOUTGcoaRLHGq0jisUKg3GH/mCMYRQJY4WUGbY9RmQZUdxDSMh0XlvYqBeYmSmi0DhOngWvVqdYXF7huz78ISYnJ/BcjzfeOMOpU2fYs2eecrHE8tIqYZxgyITN1UU8W0IWAymWbZOk+Xi0Fvi1GQy3ycpSF9M02L1rD9MzM0iZc+B3z8+RRUMqlQI6DRHpiHbdhyzBUBKNxrRdsjRFpzpn00hxPQuutnrGK9PAtnPhp9E4I6OAki6jUYBj+/hGRqFsUC0XMTIHw9EYGKSpxjQtkjRFGophYPHNJ05SLtVxTE0UwaXFMb5XwpAiV3NO8myvaQhSkVJrejiOwLRiBCaJzhXTTaUwjIRMQJAYHH/pKr5fo9kssLzaodlsUqlUaDYbGJ7C6LnUS024O+T5p59iY+U1qn5KJi2EUWRzEHD5yhVajSam57/Nn9jJt7jO6BBvL2G6BlzV/fEt/JJb+yrbz3fLcez0Wnajn/yt+sjvA9e/3PZXGri+EzV0p0zqu82ovlvbLvrzXjKct4qGvZfz3Oo93C4bfKv38K0cew207pQNTf6PX0U/+hzyI/fveOz2rOH2cdx8/e0Rup0icNeA27Vto9GIOI5zmuc2JeIbs5b6euDgOujb+kFAkibUG/XrmVMh3lLN22kC3h5NvD7p36Tge/3aO32O2TUVQAEir5Hc3hf2VtHL6/9QaJ3logRZLjwm5Y0LkV54HjKJnP/gFu0SUjRVz2Ow3uVTn/wM3/29D/K//tP/jQc/8hGs51+n9su/Q/J9D+C2GiThiLNvnqbebOIVfQqFEqnOCAZDNrurVMplJhoNyp7kuz/8vcRRSKVcREkDy3bybGKsWVtdp9PpMTU9R2ezhzAEylIUSz4F16PZrtCoV5mYmODw4cMUCj7dbgfb9iiVqqysrLK2vkqnu8GRo3cxN9/GL+QUPZ0I6qUSo2BIseAhScniEKFcTpx4jXZ7mlq9gVIG3bXOVs9GP6c3K4PHn3iaffsPcPnSVRzbpt/vUvAdipUKSmYoAUmUYhoOo9GIYbeLqQTnL1zg7nvv5/z5cxw6dADTNNBb6ruDfoDlpDgFmzSRFPwShu+ztr7B/MwM0bBHPNqk0KhhOzZZmj8jaRpRKnqYVoHV5R6VYhnPt7AdEKaNaSgKvo9XqBBr2Fy6hO9YpGmC5xa5tHCV5mQbv1Ci2+uiLE2SxIyDVSqlGQSKQf8Km6sdUimo1ht4fhmNolQqkaYaYdmMBl2k1rhuha9/4ymQGc1ahSQJMF0bu1gkHPfxfI/JycktZU6HFNBphKmuyZ0ZLC8NPFZEAAAgAElEQVSfo1JtgLQxVtfzOst6TusrVupkKFzbwnctTMumNxijpEWmJVJaxEEvp1pLhe6P4fEXUE8d53LDxfilf4LxiR/DLdqUG/MoYWFbJU68eJrLF68yUa9y6uQbxBH89m//Hv/lPYewfv/z1B9/EeuzX8f//KOo51/j0uISRqNCuKdGfPgQYXOSJ195HmVKZmZm6Gx28LwChmESjrqcOf0Gu+bm6HW6OKbNoTvuoODZjAYdHMcmFSaFkoM08j6+vf4Q3/e26NOSSq2B5xcoV8o5YEw0wTjk1Vdf5eCB/aytLdPvDa7X2L10/GVMYSKNnG5u2g46TRFJhDJsMi0YjQPSOMUQGbroEE7Wib/8JDz4ACKOUVmGnymsIEUECSPbYDRYoVysMuiPSbOEVKZoYRH0NgmCENfzSJG4hQqFokW5Uqbf7/Pss8+xcOkS+/bM0W7XGYx7zO+Zw/EcDKkIgoAgCKhWq5iWxWg8BhySOGVpaZF6o0IQjVheXOXEKycwlMJ1HRYXF/G9vOXUH336c4yCkK99/RGOHr0T03IYj0OkMgnClHG0yeEjh6ls0VQNCeRaVyglCUYhX/iTL7JrbjeVWgmpxFZPcZtKpYlj5QXCnl9CSMk9932AVqtFEkmmp2exLEn25nkeOXmCyb/1CUp+AZlBMBrjuAaO6zAOQ8qVMhuXLlFutd/GzMl+/4tk3QHyRx9E2P6OoBVAzqfYh1J0MUGgEHGfxavPMrP5Ed7ofoXNK4rZXfsYDwfYdpMkTRgNO2ysXOWeY7tQpouSJpIUwxBIJbYUuzMyJRBpil+ooDyflZUuhrJyens2QGYpUvgIFfLS8bN4Th3bC1FWShAoUj0mSjyCxGHh7OsE4xET09O4vsfuvfPYhQpaZ6wur2OZFlXPQI+7WG6KbRtkmUZISaITpFbYhRan37zK3Nw+KtU6cdQnDMcYUrG0eJWlpSvs2jfLsL/E4vIrjEcek9NF+uurVKs1pJKkWYY0TYJRgDLMrfU1X9+CIOTiVYc0KmK7q+hMAwrTqiBtH8cvUylXSIIR4+EIx/TQ6YAw7qAjkyTpYsi8rY1OBUqaDPuai2+uUa86lBsOURxy/PgVymWJ6Sg02ZYoVkaqHUw7oODZWIaDlClSKQzTREpBqpO897fUpKlG6iqXrnQ4cKxOErqceuMUr756kjvvvJMXX3oR5SmanTkefugbFI7EtJsei51NpqZm+Z577+XZJ59kavchvMY0fsG7rQ95fdst/Ap4C7gaDyTXfZrtfs+tAOFOfne25d7oLLsudrmTL3VtSDnezMUptX67f3XtmJ1eu9kHk/JbZwS+b38x9lcauMK7E+p5JwD47QDXnb48/yHsO3H97RPOt1rLcO0c6Sc/D93+DarC222nOsydwLxSimQry7L9/Dfvl2W54M2FCxcYDocUCoUbqL03XmNreXsXmeKbj7+V5XVb32r2+cbFI29T884U6reO3iG7K24MJuRUYYGcvw+BBvLPRiQpP/fPf57//qf+HqZlgyE5UG8y8/P/mteaRaJ6BSEkUkjCIAQBhw4fZnl5hZdefpnJyUnak22azTYbaxtcXbyMkJJet4Nt28zMTBMEAZcXFij4Pm+eOYvl5K1lbNvFLxSxHJtgHHD2zbOUKgU2Njp0NjtMTU0SxyGlcgnLtJBS5i1qej1mZmawzLzNiiEVlmFQLhd4+qkn0aTU6jXW1zZYXlqh1mhy4MB+hABzS0hpbW0dx/XxigUQkmAUkGbw1a9+hY99/8eIk4iZmWk838sFbYB+v8fa+jpxklIs+gwHPZRSXF1c4q677+KrD3+Vu+++i7W1VdqtJlEUUij6tCfbSGHi2kWk1IRhTMH3eO3Vk0xOtgjCkMFwiG2ZRGHEpYsLtCbaBGFIEsd845FHmN81h84SLl6+iG3Z+I5NmiQE44DBYES/28WyHcrVOsNRQL1e58K5S7SaE3huEZEZXLxwBdeVuE6VMIrIsoA4hJldcxhSXa/bu3xlAcsySeIU1zZz0R2/xIsvv8KHHvggmdZ55jRKsByHkl+8nuHwfJfReIQyFMNhH8PYqj8VinLJod8fYVsO5uoGIOg6UCxV0FketBkN+wgyoljj+UUG/SGf/sNPsWvXLiQpYmEZdXkZ9aUnSH/0o8T/6O9R+akfozA9zc/+zC9w9NhBCpUq5sJV/D/4U8qvnWXv+UXqT7zC3OsLtB5/nv/Rb+C9fA4Zp4h6hWG1SHfvHOvVCk9fuojVLFKeamC6RT7/+S+yd+8uXjt5kmPHjtLr9/D9Il/84kPs3bOXs2+ex/N8HMfBskxWV9dYXl6iVq/z7HPHKZVrpHHEoD/kqaeeIk1SWs0GhjIAOH/+PPVGnfW19RzUZRmO4+J53lZmX9NqTRAEAcsryxQLJf7sT7+I67s06nWUlAwGfYSQGKYFaEzTIEljkiTBsGywHNTsFOkfP4z+7jsxNPT0GGSG09cUhyl2ahGUyozHSd7aSOWBoDgKKJcrW7XRijTJ60MLhSKu5/HYNx9jcmKSVqNOqjXlUhnXcdhYXcMy81pLtVUjHQYBnu9juy6WaeJ5LsPBAJ0mFLwC+/fvp1qt4vk+Z988i18soKTBgYMHKFfKHDt2lGq9TKY1pmVgGgZCgO+52FZery2VJIoCEHkrLXswwsoyDt1zN47r4PnWluI7fOYzn2Vycornnn2KMAzRmWZjs8OpU6dYXV7jyJGDeJ5FHAfIKyvsm9tF9Sd/HGVkrKwsUqkW6HX7KMvEMBRJGHLy5ZfZe8cdb1sHbqcqfMO07WeYHsQyI400MhzSXT5P8cKdDKuXODT3EVIMnnr6aWam2rz+xsucv3CGI4f2Uq+Z2E6KZWcE4x6u56JTQRimSCkQykAh6PTGKKdArxuzvLzEzHQDQ0Uo8treMBzSqE8xHA1x/QxDFjGEjzA0Fy916I9iDu4/wGZvQKXWIIxi1tfWKJRKhMNRvppJTTRahbiHbQvQKQhwPI/haESWpFxeWscvNRDKRWuBbUsKhSJXrlzFMAx830XJCo1ynU5nyNqqYOH8ee48Mo3jWCAypCFRItdCME1jS0Vf56JyccTxF87jeQm1ho8QVQzHYDgcYtguUZIyHvVwbYlpZWRbHSYs2yBNE7LMyoPcRFiuQZIlmFbKrt1N6o0CUiUo6TA728LzLUwzI01ipJAkiebU6bOUyy4CgywDIXIdBDKul1hpnWFKA0OCZoTrCApum24/YPfuXdxx9A4M06A9OcHGaB0xMDjYOsxUaYbToycoFWDv/DyPPPIor5++wF//xE/QmJpCyHfXuWK716C2NAhuRRV+OwX4PfjVtwnEv23fmyz/7MTb9rsVcH3ruGwrOfE+cP3LZu8D19sArHfLkX8fuN44mXxHgOvn394OZ6f9bgdar43jncDjtf3SNKVarVKr1a4L9Ox8nbeA6zs9I7fL9t6w33vItr/ddo483vaIdwKuZDeMWS88n4vnzH8AgcZWebuVX/mXv8J/8eM/QbPRZHFlhX1xRvOf/N+Ifbsof/BeLDMXp3ny8Sc4dfo0+/fvx/d9/IJPs9Wg3mgzGg14+pnnMQyL9mSbuZkpOr0uc7NzjMdDVpaXqJRrdDod7r7nLurNOm7Bo1io5hk0JIYyabcncF2LXq/LxEQLIWB5ZYlOZ5M4jjl16hSzs7PMz8+hsxRTZTQbbc6fvYDv23R7K0xOTZORMhqOqVWb6FRhe7lgRxRGubM8HFJvTeIXi2RC0dns8rnPfpYHP/pRLpy/wMzMDEIKVpaXqdfqZFuBhNFgSLVW5+GHv8bBg/vJMk25XGRmdgadZRw4cBAyje+72LZJt9sBkYt6XLy0xuOPPY1paAwhMZVCb9HPytUyjqkYDYc4jkOj2UIoiWlZZEnA9Mw0xWKJ3qBHpV7DMQ1G/QEFzyOKYo4fP86hI3fzh5/6DMfuPIaQkkxkXLpwiYn2JBcvLHDpwmWefvJZGs0ypuWhDMloPKBRa6MMtZXVNnNaaMHHcR0UkiRNtmi/it1797C5ss7K8iqu4zEOQlzbwTQswihESlBKkCQRlmnkipxZhpAGw9EQmY5RcqtP5fomZBDXi5iWQ5zmz2kUBTi2he14aJ1nL44cOEDxygrmwiJqZRP94P0kv/yP0d97X85MOP4yhX/3JX5wDBPfOI7/R1/Geux5RJriRSlmmqLrVUS5yLqCzb2zqDvmSecm6NsmolTAdj083+POu+7Edy2kaZGmMDc3T6PR4N57786Vmy2bpaVlLl26wu5d+7eyghNYpsVwNOaN02+wf+8BLi1c5vLlRZ5+6jn27tpFFIWUiiWkgDSJWVldx7ZtgmCMZVvUanUWF5cYjXIadqlUwjQNEPBvf+03OXT4IJ7vY1oWnW6X3Xt2bakrS9IkYWV5Bcs2sWyT9fU14jjE8xwGgwTP9TFqVbKJKvqzXyV+4CietkDBUA6wTBtnmOCs9yhECdHaGrLqIzKBVCZKSqQUdDfWcExJorMt4C245957qFQqaJ1gSEUYhAy6Pcp+kShNSJKEgu8TRhHKMMi0xrAtyDRxFGEqhWPZDIYDNjY2SJIEz/cRUqIMiVSSUqlIrV7D8z1MQ2yxUXJWilICpUy0ztjsbOJ7HpevXMKw3DzQdWUFcxQQ1H2E0igh8rUBgW05CCGp1St4nke7PUEUhZw9+yblQgUhQzxP0ev1uHT6HBOOR/jxB0nTkFq9yPLKFQp+BcdzCYKAcqHA2VOn2Hf06G2Ba3LqUfT6ArKx6xZze65ov7HSoWI5rFw6i3t2L28Gxzmy62PYXpkDBw9y6vVXuPueY1y+dJlapUixZKKEzsXitgR6TCMXg8uyjDjVCA3K9MDwyMiDX54H6DESSHUMJBjKwvVMoqhPNJZcvrjEYNQhTnyWVoZEUczMzC4Gw5DRaEy73ebZZ55FRxFRFFCpFBj1rlDwNEkcYJrquthXGIZ4votbrFOqTHHh4hKzs/NoYoSQ+H6Raq1CpVJGyJhU91heXeHkqdMc2D9B2U8RMsOyFUJkRFGIaSi0zgF6ptNcLFBKGq0ataYBwueN13u4ZU2lWCJF4ftl0jims7mJNARBILDMAnEcMQ6HxJFFJmJMWxAnGVBAyRDTFETRCK1jHNsjyyJcz8BUAtMyCYIQy7RoT0xBlvegFxlIkfcXjeIIJRVSqjzbrQXjQJIZKdLSJEGL2d2zTE9P0ev32NjcwPMLVGpVHj/xGAeNY7y28CpPrn4WL+vS2dhkc6NHud7mQw9+LFd3V+Z7Bq43+xDq/hh5X3R9/+8EcL2dv3crex+4/qdnf6WB67sBpLf6gtzqC3S78+x0zE6F6Dtd72ZRnXf7Ht7Jbteq573a9jG+l3Ht9Lm8E3B9t9e4gW6yg5DAtXrh7fWs26m7O1/nVj1+305dvnkc2ynA28WRbr7OTs+MEOI6RebGfeXb9922pOwk8rT9GnmiLLuBypNfahtwr88j24eRlgtJShqFXDh9hijSHLnjGIPRkOqZi8z8i9+AY4c4V7QpFoskUcyVK1c4sP8gm5ubTExOUCwVWFlZRmtNuVpFJxF7d+/D84q0Juo8/JUvccexu9BC0tnYZNfcDMsraziujTIkvUGfarVKtKW0GgUhS0t5lmo0HGLZefZqbW2FUqkECCYnJnnhxRdotpooJalWqziexWAwYu+ePTiuiVIZGQaZTikWCjhOgaefeZG9+3bz3LPPE0UJlmVRq1VBGaQZxEmMa1mUi0XqrSZzc7P4vsvy8jLPPvsM+/cfwHYc4uj/Z+/NYi278vO+31prrz2evc98p7pTzRNnsrslqiXbkgzLliwnloEgQJAJCOAHv+UhMYwYERDkwXmIDRlB4CgKLOXBknuk2INaLXaTzebQRXaTLLKKxZpv3fneM0/77DEP+1axqlhkVw+KBIgLOKg6d++99t7nrLP2/1v///d9RTCCkJw5c7bwkJSCwaCPNBRaa/Z297Btm83NdVzXoVTy6A96SGVQKc/w/oVLXLl8gWeefoI8T/E8/yCzpum0d3FdD8O0MAyDJEvQ2mA86GGaNoY2DsChwWgwoNPuYCiDKEpYWT3McDwmCHyyLMXUCtvWzM812dxaY3n5EIHvkmUxUhosLh1ie2eber1JHKVIw+DWrVtsbm6gTU3J94niCEMohFI4B+qh4SQkTzOU1uzs7LKysoLWhbKtUpI4jtDaIE4KjrmhDLIsI5qGlDybSb9FmoDtllD7XRCCbLbGNEpBGsRJSprEGFqSpRL2O4g8R//x1wnzFPu/+k+Y/tN/Qqgk9T/8Gt4Xv433tRcR1zYwTJOu4yBW5hk/cpT81BGi+QYsL5AemiEt+ayP+tizTWrNGqPRCNtxMQyDLE1RhmRj4xaVig95xo/eusDi8hKu5zIajTG1QZIkIAQ727vMNGfp9wfMzDa5cuUyfhBw5fJ1nnzmCYaDISCp1+ssLh1iZeUQjUYDrQ0Mw+DNN3/IyZOnKZfLRPEEz3MZ9EfUanUq5YCXX/4+nucxHA3QWmFoh9nZGfzAp9VqcfToMaSSmKbJdBqSpTkb6xvMzc8ihcQ0NZ7rEk2nnDv3FjPNJratiV2TfLYGX34BPvMYRhgiZMwkj4gdp/DAjBOcUYS50cHcbmHu91DtHnl3wMZ0gOs6hFFypwIiTTOSOOG1V1/F9wt+6+UPLrO/t8fCoQVs26bX7zMZjwnDkJLvo6RgNBiQpSmdTocsy3Aci3K5jOd5CCELe6MspbW/DyInShJurd2iWi2TJAlZmtJutdjb28P3A3Z3tjG1xvd9LMvGdt1CSXu/A0IQN0p4JYc8yxkM+iRJwttvv8OgP+TU6RPUGw3IC6Gq5ZUlDGVSqXpAhuN4rL/1HgtBhek//Dvst/a4du06S0vLdDq9g4yrQWd/n7Vr1zh8+vRH5vjs+ZdAHADX898kH+w/UJwp/a5JdkNiHI1Zu7zG1o1rRGGb0vWjfP38n/CZR/4BYZQxnkyIpwnN5hw/+MGP2N/ZY9Ddp7M7wdQejmUhFaRZhFQ5ShgMRmMcywJlMpjEaB1w5OhhhoM9tErQUjEe9zFNkyxLgBjL0jiOgee6VGs+OzspnZ5E6owjx46ztLJcLJgYgqXFZUqOg+963Fy/Qb1qocUUkWdkaUKepQhZUGHIYWOrR5za9PpTup0+tmeilMlkMiXPC5GjyTgkicZsrHfY3t3j+GqD6XifSiUgSQrla20UivbhZIJUquDAH3yeWkkMK2UwhPfO3+LE6TrRuACpne4E0HhuhYyUl196k2tXb3L0yAqDbsH3tRyFIQ2iyOYbXz+PSBLKQYU8z9CGhVIZaTRFKXFQ4VVwgXNy0lQwDQswneURWZojlLjDFzJNizRNmcQJr7+5yY2NlFvbPbqDKctLCwUIJyeOY3q9Ho3ZGYaTIdX5CoeGRzjSOMqN6Z8zHIw5duYJctOnF0ZYfgk/qD0wNvxI/PoJ2+6Pe+6mxR1s/Uj/H9dyHo6z+uDExIeaMB8XA9197XdbBt6Oj/6qE0uftnvb33jg+pOCtJ9mAP80APmT+vhJQPPPem1/Vf09DHB9mPYgkD+dTu8AxvtB3d0g8m6O6b339dOLej2o/eyf2QMm6x9TKnz7vEKIA17rRzOu9zTTxfQCJuMJIk9pb+/w/nvnOXv6Kewkwf2DL1D6v/4jvc8+gnHqKJVKhSiKaLX2uXDhIlIoHnnkEaZRhOPYVGsVTMvk3XfPU6/4XH7/Mq7jMhj2WD28SpQKLLfE9Rs3KAc+llvim9/6BsvLS8zMzhCFEX7gMZmM2Lh1k9XVZSbTMVo5cOBz2ul0sC0H3w9Is4yFAw7l5StXaDabhFGM7VooLej1ewhhMplEuK6NFJCkOTt7bXq9AUFQZW+vxbFjx4jigh+nlEQKGA16aCEwPQdDa+I4pl6v02w0qdYa5CKn3donSRI8r4SQkuvXb9Jtd1iYnydKCj/QWr1OcpDpcmybfq9LniuCis9wNGB15QiG0iwcquOVfIRQ9PsDOp0OaZ7gl8tMJlO0YSBFhhQZhrY/BI1ZRskpsbO3x/Fjxzl//j1q9RlKQYVJ2CGKphw/dhTSmHg6ZhKl+EHAcDTAD0rYrkVQqiFkju2YGMpiNBzxrW/+BeVyhZMnT+IHJZI0RyoT0zQQUpEkGb12h631WwTlAL9aoT7bJM8TpMwLkZo8u7OAIqVCGpo8l8RRhMgjFDGDXot2q0tQrpIFNonvkxsGlukQxRlxFGNGEebVDdTNHTj3Lur4Ctn//E9J/8u/h3Vli+D3/gTvvet0RYo+fYTJo8fQJxaJGjXeurrGjf1t5uZn2d7ewrFttKnJ8owwTLh69QpzC3MYRpH1sCyHJEkxzWIsaK2wLE273cE0A/yyh1DQ74+JpyF5nnHx4kV6vQGPPPo4+/vbReCaxbz91nkEFl7ZZW93j8uXLnPy5HFsV6GtYmHD0AbK0Fy/fouTJ0+TpjFeyWF3d5c8E1imw2DQ5cyZs4RhSKNeQ0hYPXwC0zLZ2FhneXmJPM8plwOkLKyfzp17gzfOvcHjTz6BMgy63R6u6zIZTTh85DBCZnR7+3glF2umQVgLEF/+NsnhQygKO6c8C5GeRygl7TzEmq0SC4P+eIgnDazhhGZmYOcKPT9DDhhak+cQTkPOnDpDUC4Dgkq1ytLKCp1OG9d1UUrhed6dma63v1+UHWcZnu+jtKbfazMejbEsmxe/+yKmNjm0uFR4BytFlgm++MWv0Gnts7K0gueVMC2LLM0wLQPT1ATlgCwVvP3WBd599y0Orxwm39olSzM20xi/VEJKyXQa4tgOvd6A8WjM8ZPHSeLCp1iInJ3NLRqzdbR22NlpUy5X8JSivL7L3m/+Ml/5yvMYhsP2ZpvDRxbJpWBzc4P5mRlkliGcotT7Hp7rXcD1k1SF069b5PsG6uk+JoJhbwdJj/KNE2SNLrZcpFSucevWGtq0qdSq3Fy7ScWzOH1ikWazQhyNsG1wHI2Q4sCPN8Z0bAwpCp9RZZJlDkoB+RitUkQGhgGmUZQLW5ZBmuQkSYbAwDBjtrYH3Npo0Zirsry6dADgQOQJr7z8KoNelyAIqFSrODqjtX2Liu+QxBGObcGBjVOWSzx/jr39kDNnnyTLoBSUsG2PXndAp9MlSRL291I2bq3zwfu7zM25VC1BrVGU5ju2XVgb5RBNY7QubM6kVIRhhDY0aRxjWi5ZnrIwOwf5PqZZZjSOqNVniOOMVruL52ogZXW5gWXGNKt1TEdjSEEcxQgMwukY37Op1V20CVJYRPEUJSRKGKRJWgA8JUHmRFHKn339MseO1bGswhdZiA8BbhgWvFzL9BmGEf0xCOHz9GdOMhiMcF2Hufl5QNBoNBmPJlSCCmaQs7l+jfnkJAv1w1wYvMLJJ56lvLDKU8/+Mo3ZedL03kX1u2OGj4sSHhST3t3HRxfof4K4Rzx8ouJBB9+fVPm4LOvta773bz+fWPvT9vNrnwLXv+bA9UEZ2U+B68O3+61g0jTFcZw7mVb48JrvVmu+PTZu8zbu6/Uj53nQfT/s2PrrAlzvzRp/9HglJONBn+ef+yqeaXH88GHKL72D9y/+d/Jun/aTJ9GzDdIsY3d3lziOOTS/wHA4IJxMWVw8RBRPSdOEJI1RSlEOfMLRgKWFJcrlCr1+m5n5BbTjYdouge/jmAZWKWBubobllUUuXrjA4sIiyiyyXbVypfgulWB3u40f+AyHff70+ec4ffoscZziByVG4xHzC/N31Eq15YFMCKcj8hxKpSqGYZGlU5QsyhxLQZVOe8Cpk2dI04ydnS3KlYOgXymUhGG/i6UkmBbdbgfTspBSUqlUizGVZ+xt71CtVguVScNkMJhQCQKuXbvOocVFlCq4s3mWEU4mGIYiKPu4boWMiGkUUik3GA9DUBGGNgADx3KQQlCqldHaIk9zpITJuI8kI8kNkigmKJUwlEE8jZC64B4dWljkxe+9zIWLH7CyUse1bUxDoQ1Jp7NPrbmCYRRiRrZjI6XAtQP2WttU6xV2d9rs7ewiMDl79gy9fhfbtjG0SZrm7O1ukyEK3840xRCC+kwTqQ2EktiOheA2aC0Aa54L8iwnFWBoA9MwGPU7JNGQZBrSnFlAGSbjNMbxy7RabWxtwo1NjFYH6ztvEC/UkL/9q+S/+8/If/0X0FmC+6/+X8wr60TPPkZy+jDW8gKUXOK4yApJofBLVd584xzHjq5Sb9RRSpKRk5OhpMns7CzWQTmtUgqBIklul1XmGFoRTicEpYByeRahMpI0wtIeeZagtWYwGHDixEkCv0yjEeB6Nmma8MM33+Ls2ScYxyNOHDuBYxfZmHLFYzgZ4noOhmGSpDmNxhyOZbG3vwui8MZUUrO2tk458CiXK0WlgchJkpiNjV2SNGY6DSmVSoUKdpoecDwlSZzya7/6a0RJTDSN2NrcptPuHJRk2mgt0VqytrZGOajiNBfIl6rkf3GOPGji+iUmkzZal5BCI6XCsj2k5WL5LhMloeIjkhSj00f0hkSNysE1aLa3tjFUkSXtdLsE1QoJGe29PbTWxEnCzs4OtVoNbZq0t7eL35ZWKK2Js5RRv0utVqfklSh5Ps3mDGkGjmtj2w5CGJw98yi1aoUwnFIq+dy4fpMwnFKrBygl0FrT6w0JJymPnDlONI3QrQLEW0tLpElCLjI6nQ4gcN0SJ0+cIoxCsixlOOhjaU2SxFiuxZ8+92c89dRnsSyT3JbYF64j/rv/jG//+Qt87flv849++3dYWKyhzEJsx3ddKqUSf/bdF3niiSdI0/TDOfkhgWt2rlgMkJ/p88Yrr1DzLWxnyvT6iKzXZJgkHD12kuZMkziLcUsWb/3oDQwiHD1hZs6kFChgipCC0TAkzw1s2yBOM0xDEiUwmqaYZhXbNmm31rE0JNMI8hQpNFkWYRjF8Ru32gR+lUwMcS+j+30AACAASURBVLwqoyhidn6BUlDCtDRbW7cYDrqcOnmWcX8AQrK5tQXphJIlSOIRjmXeseaJ05Qoybl8eQtlVhhNUoKgQqVRobXfQSpNrV6n0+vS7uzSaGouvPc+Tz3VZKYcM52mlEolkjjGkJJpGGHbDlIokiRFiqIE9/YTMIoEhpljKoGWY6R2CcoVtO2SA7V6DUNOCXyLak2Sxj3yOAOhiKYhSuVoK2dm3icomeSiT5aFJJFCSo2W8iCrJwtOtxTkZBjS4uiRJRAJcTrC1A65yO7EKVIqhJCYuYcbpMRZxP7ugMcfPUK1Po9pFgszN26skSQJg8GQ986/S7e9Rzu8yoK3hDU4RN1bxnvUYPXsk7jlGtpxuPLBFSqVys8EXJM/ccgvasTp6E51230RyMcHJ/e3T4Hrp+2u9jcauMLDgdefFSg+qIz0Yfv8ac754+7nx/EtH1ii+pDtQQD7J7ne2/s/LMf1fmB/v4WNlJIwDO+UmRiGcV9J7IcANU3TO9zW++/l3usFbqv4IhBCcpsT+nHf8YNWL+8+hxQf5Vv82HF58KKIm+95SflwYy7P89t0JoQQhSCLYSDznFwUpckyh/z975LtvM+//f3/wNOPPc3sMKX6z38Pfe4d4mceobsyQy8M+d6L3+e9C5eo1WrMzzVp7e/Q6bR55Mxp2u1dms0qV69+wMzMLLbpMhr0KAdNXvjui0CM55o4nk8WTdlcu04ynZCT4ziSerVCemBGH6c5WRKxt7uLMhSO6zAeDJmfrxFNp+zs7EEusR0bx7ORponjuozHI8rlAK010WSIVgbhaELZD+j12milCIIqCAOtTYb9LkHNJIpCVg4fod5oorREG1NyBGlm8IUvPofUJiuLq9y8vsah+QVu3LjB7u4utVoNQUZ7f49K0GBzexOvZOA4GsMymV04RBKn/OiNNyiXA7rdQq1YKc1+q0OUJoCkGlRZv7XG66+/xrHDxygHFdrtPcaTEVvb2zQqdXa2tynXKhiGxHVsNtc3SOKMbq+HoTVCKRJSDCTDYYcsnzI7W+fJxx/DdSy04dHpthmMRsRxEYBHUYQyFEpput0+hhJIaZDGRcnrqdNniOOYza1NFheXybL8Tna37JdxLJssS2l3O5RrVQzDZdDroEWCbWTsbt+i5NcYhz0cxyPLBKajkNiIHNI4xjAUjuNglueQVokkh9FoijY19o1dxDdf5sKFC6Sfe4Lg//yfKP+3/4jk2BKJADmc4v3uvyOvV5g8cpJBXPBM8xwKBe4IoTRhnGIoWFqYw3Ztdna2qZQrRJOQLEkJxx20Ufz4d7d3cCxFlph89ctf4f0LF1hZWmbUH+NaHp3OHrarCcOQeDImKGm06yKkIooT5hfmCaMJSsFoMuTLX/4aWvv82t/9FZSh2N7ZYv7QAkG1ijYdfM8nSTJGo8KiaTDsFaWX1SpJkvMnf/wFzp49y8LCHCXPLsrLhWB9fZOvfuV5/t5v/H1c16FSLvPGuR8yPzePMk0m4wlbG+vMzzWI0ymWZTAcjpibWaBRn2U8DnFKPtp06HQGzM8vIpVBSkxa8uDUYXjxdTLH4lKtzP75C1QqJpYpi2x5npFlMZZpkucJiZHRjyK8aYq130MmCRPP4vVXXuXYyWOYlonveYz6A/a2tlhYXMS2XQxDU63W6HZ7vPPOuywsHcJ2PaRUpHFCGicEnltwV6Vgr9XG9kpobbB+8ybb67fotVuYpmantcXRo0fJ8hzPc2g0K0ipuXnzFqVSgB/4aA2jSUilVqU0nDAZD5nWXFzXQQjJdJxw8cIHNOtNxqMhjUaZJM4YDUaE0yGWJVDK4syZ4wwHXS5d+oDXv/cmj0pN63d+nb/9S7/EP/md32YSjcnyKa5lI7Icx3HZ7XTp7+1y/NhxEglogxwJ3T5yeR712EmSA+CqV5+52/0DuO3jKgg+l9He6iMtn8NnTrL+/fcJCJBacm1tH63BtxzOv30ez6lQLvmsLDcoWSAxyISB1jaWNiFLyJVxIJCkGYcJttakSNZvrTM720AbsL+3RzSd4LgmQoBSJmmSoe0GrpOQZTHjScr7l1sMBiG7W21qlSquZzI3t4rp2kVpsW1h2QrbmJBOW3iuSZIkSKXIySDPECjKtTqHlk8SJQnr25f50Q/fo16r4jhGoZruetjmgLlGk8loj/Eg5/U3diAN8TwTy4IsE2jbRCpFnEUYurBnytIUKSRZHkMWk8QxUuW4Xg3LqWIYAZ1uj6AcoIRFa6dLFHdwbJc8c9HulDxX5ORo02Q6jdGq4LEmKYRJwPNf/4DZBU2WJximJs1SyHNMpSHNSLIIwbDQlLA8UpGSJQUgTskYT2K2NkfsdHps7Ybs7kc887lnWVvvcHNtjZn5OZRWlMtltja2qVUC+p1Nji752DqiLdaomyeZEWeou6ewf6FMLiBOQg41m2RKkJKR50UMwAPiISnEXZHQve+TFy0YC/Rn4yIsuS+e+fjQ8AE0rLzouyjLOYhzUHDP2YtF+PtfP2k8+5FyZ3nbelIAEnIFIvvEPj5tf7ntbzxwhYcACA8J3D7JXub29p8WCP5lCDj9Zawi/ax93rnfTh+xsoB84tQD94vjwhtMqULNNEkKyfX7AWIURZim+bH8iPuzrQ+j6vvg8XIvZ/Vua57bwPWTPpsH7fMg0PnAY/mo16+46zZ+7Ji7z/sMikcCUiDzjEGrTfTuNxhsXsVZeZzG65eY/70/ITt+mPQXnySv+cRRxDScMp2EzC4c4nsvf59Di4dYXFqmVquTxBGVapm1tZucOXuWnZ1dpFK4rs/Fi5eo16oIkRFFIdVaE32wwBAEASXP58baGlEYsb/X4lvf+jbPPPNZJuGIcrlMGIZkeU6SJoxGA7RlEk0jDh85TL1ZJ06mxWdETp7lGIai024Vj7oDMY84SZECfD9gNByTZjmm5WDZDkEQkCTwzW9+i/F4xNLSEtPBPqZpoQ3N4088Sb1aBwPm5udJkpg3zp3D0haWNosS28DHMm3yPCWcDvEsA8sxydOMvZ1tjh89TJoLXNfFdVxsy8ZzPSbjEMNQ5HlGySvx+GOPMxz0SZMY09QMBkOu37hJuexTbxbZbtt2GPXHTEZTfL/E/MIC7U4byzYZjUZMxgN838P3fUajENt2MCyLfm9MueJjmwZ+KaDdH2E5NmkSMw3H2FrhuiXCMCwWBBwHIQRhOOXChQsYhkGlUkEphWVaDAeFUFA4iRAo0iTn9e+/Tq1WxXYtpJY4JQcDnyQbEcVjHLtEngqkMMnzmCSbkmQCbdVI0og0zZmMY9Zeeh3vyjr2fpf43/xLJv/1P8b5pacwA4dOp4dh6CKL9uUXUNstJmePE05j/uD//n0azTrVapkompLnkjSFaRiTZzmVWoVet894MqFSLRfiR6ZRBJSmRafToVops7W1TSYMzp49g5CSRrPBcDgqsnb9Ia5X4oUXXqBaqZKkGdIQ2JamXA4QQpAmKcNBl92dHRbnl5mbWWA0atNo1qnXqmRpjFSQpQlpktNudfijP/wjatU60TS+U0q6tbXFs88+i2VZZFnGNJ7ieT7vvvsecZzwK7/yKwhtkGUJvU6b/d09TGVi+y6mZaKEwbvvXqBWn8F1SmhtIaXBiy++xFtvvc2RpUNEkymB7xdxYZ5hmDaj0YjBZIw4tYw49x6zG20mj56hkmdkSYxpWkhtoJUkTVKSpFgAsVyP3A+QvQEg2CLi7NnTGFIh8rzgfmtNyQ9ot7oFrw/B9vYmtWqFZrOOZdnkec7GxgZhGGKaFuFkTJQkjMcT6vVGMe87blFZYdrMLy7il8sM+yPKQRnLMlBKMhwPcWwP07QQQhDHyYGPcIrjOhi7HRCQNipMp1MGvSGGNjl67Hhh61UpkctiwTSaTiFNybIUbXlowwQEhlYcXV3Gv7nFvw1bPPb4k9iuzSTsUq3X2NndpVqrEicJJd+nUioRTkNK5QChVAHUHjmBeuIkwB3ganwCcFXPjFlb32J1ZZkk67PzvW3k1EQHFtXmEvX6HJubezzx1OPs7W9y7fL72KZEpFNs1wYRoxTEUYJtukjTJEliTK0L6sE4pDNI8f0KjmMQjrv4nodtFmJ8w1EPyLBsE8eBKB4jsJgmNu3+tKA8LCwWc9WoTzmocPnqDbqtFpVymf3WFoohjhmRJgm9fg/btgtedJbRHwwRhsskUoRRxpEjq8zMHmJufhbHsZFSEccJnjNDd7CFbblcvLjOJAt57OQStVoJKVOEMMlziRAJaRqjlATEQTVFiu3YhNOQICjT748LjYDRFKkDWt0+lmVz8/ot0mxCvV4hmkK/PyKlh2V4mKZmPB5hmoUAWJI2SMjoDHd45OxhaqU6hs4OeMFZoS4dx8XvzNKAcSCWl0EmSdIppnaQyqDd7iFxcCtl3nnvJnHicvX6Or/5W7+BpQVJGuMHZZIkRSuDc698g889fRqRT9CmxilVcY5VMfMSXHTIr0rEnsF0scv/9rv/C0899TSGaSNzgcwkuXywneA9schd79PbdjifickeEBt/fEzy4O0f2V/8+Fjtk8/zcK1Yv5fcA5A/Ba5/pe1T4HpX+0nA4ceBoAeBBCHEA7N8D9Pn7b//PAWZ7gdTD1uC8dOXany0fdxiwZ1J7fFTDwStUkriOKbT6XzIe3rAvdz+9zawvafvjwGJnyRU9aDv9O7ylyxL73l/e5+Pepd9tA9xsJL4Sfvc//nc8VfNMu4uhflw/4fLqmdZVvi33r89z8jzFEsp3njl+8zEW+R5zuL5hObXXiP6laeJVw9BniEl7O3t0ml3sLRFkmecOHGcxYVFhoMBo+GAZrNRcItFTrlSwTBNNre2WLu5zuOPP04UhZw//w7aNDm0uEKrtYfnOTiOy8WLlzhy9ChRFFOrVFk9vEouctIsxTtQSh2Px1QrFSzbZGdnD79cRiiFkALPK7IzcTQljqYkcUQ0nZKTIYRiMokYDoc4rkMcjUjzhDiNsWyLOI1IE7BMi4VDh3jppRd57PHH6Lf3sR2PXCqkUuzv7+N6Dt1OmziKePut8/zyL32e4WDI2++8zZFjR8lzSRiOsU1VKL6iEFIi8hzTNEjSYiFmOBwymYSE4ZQ//dOv0W63WVleYndvj6vXrmEaBrVatcg4ug7Hjh3HcQo/zm6/h205jEcT2vsdvJJDFEc4BwrCSikqQZk4jhgMRjQaTTY3NvHLflGKlqdcv36NWnUGy3FwHYdK4DMcdKmUyyAEtmWyv7/PYDCgUqmgDZPRaMgjjzxKmiYIWYyvVqtFvz8gDEOGgxFra+ucOnMI17MxDBtpuEjpYSpJkg6LoC0RxaKUTJBGhlA52jLJcoUhM6TQTIYRJ7pD/GqFG//Df0On5lKt+lQqAWmS0drvYpoG5miI+398ifizjyIsG0HG3NwMc7OzWKYJFFzcLM2ZDCcYqqicGA+HzM42uXrlCgsLc0zDEMMwGQ6GlHyP9Y11VpZXSbIUy9IIBL7vEycRlXKAX6khgGoQUK/VGA6HtLsF1xEgiqbYloVScPHiRba29vFLZY4cXaDT6RD4PkkSk6YJ/X4PJQ2GgyGNRgO/5LO2dhMhwPNctre3WFxcJE0TXnnlFba2drlx4yZnH3mExaVlwnCCtm2EyNFKFdlr28H2PaaTEK0KwadypcLajVu8//5Fms0mWZrgBwG+J/GDEpPJmLW1G/i+Q687IokionBKfbZBdmYVhSD4/jvok4tEJ2cJb2wjRIyhHTgQ6cpyDtSfJVu7u9RyiadNorLD+s11vJKHZZukWcp0kpAmCV/8whd4/LHHmIxHxaJBrcrGxjqWZVGplPH94E45fhBUkMpEa5NSyWMUhpja4rmv/intTpvl1WUGnQ7hZIRpabI8LQArhUiU1uaBkjXF9izDavUBuDzoUKvWkcpgMBzx9jtvs7C0QOEtWViDlYMApRTj0aQo+VTGHQVc3/cw3rnMrXcvwOc/y/LKMo6nUaZJKQhAyjuvwNS89vqrHDl+DITEkEUW6/YTM73xJgBq9ek7aavbC6XpD3QRWn92TG8wpuS5TCctbr74PivyVxgYu+x2pqyuHuODS5eYRGMqlQoz9TquLbi1dplarYLlOEilIMuZhiG5UoyHg4PyZUWn2+fFl65zaGEV1zGwrBSRR6RJjGWbCJFhHohOpUmMZXpEkcVL33uXOLVZXp3Hc30q1Trz8zNs7+zhuD77u7soKanWy8hsiMpHSCkLRWitDxZPcpTU5MokFx5z8yu0Oh2CoFrMn6MBeQ6D/hCEyzQac/XKLfr9lJnZGoeaJZJ4jJIZSQzKUAdWOBn5wfM6zyBNMtSBsF2eFwsonusjtWaa2tSa86RZxng4wrJzJuGAfifk1e+/z+rKIrZVCM7lByVNSkmUu8+gm/O9F3aZDCzmF/rYdmG9R56jVEEXkQdc4jgxUYYkzyNIFFIJkqTQXyiX6yhpI0TG8tJhms1Z0mTC6kqN4SAiKJexbJc8y9hcX+fMiVmyZEy7vY2QCm0HzCwcRtRTqEdw2STZjNk6f5XTv1pneWmOdqvFpYsXWVlYIFX3iyvdGx/dH4PdDVzvLyl+UDzyYZ/3OjZ8bBwj7o21PinW+Vna7UTvPeD1U+D6V9o+Ba78dAP7Jz3mbtD0k/7Aft7A9efdz8+zz086XkpJkhRcMcdx7uGjQjGJGkah3nm/gfv9oPbnlcH+8NzZR77bH3een+b8t/srBEfuLmG5d5zc3fWPs3zKs48u2ohcICW88YPXMPOU8dUfUB7EeF+4SPQbn0fWqpBmhJMRo+EQz3HJspTZ2TnefvtHTEZjNtZuMT8zg6Gg3e1Rb9QYDPpYjkOWU1h4bG+T5wXor1SqnDv3Jk899TSuZ5OT0e30yTJBuRrQbrXwHBvLtgjKflEWfuDNSp4XQcRoQr0+w/b2HhcuXOTo0WPF5yUlk8m48Ap1HPI8p96oIoXmC//xSweLIBn1WhWEJJzGCKmRSrN24waDYSFQ9PTTT6IMSVCu0+kPcDyPKIrwSz5aFqXoeZZz9pFHiZKU9y5c5ObNNU6dOYWhTFzbIY2nOKUacZIX4hq2RZ6njEYR3/zmN1ldXSVNU5IkYX1tnV989hcxTIPnnnuOf/Bbv0mepGzvbOO6DlIqtDbJspROt4vrebiuQ6/T5sUXv8PTz3yGq1ev43oF9zGOEy5dvMzS0iqGYTAejZiZnWFvf4eyX2WvtUe5UqUU1CCLGA762JaF53mMw0JgSMhCQMf3fcaTMbubu5RKJfwggDzjyuXL1Ot1qrUyJc9jMgkhh6NHjmLagjSDkh8ABad10N8ly2K04aGUSU6IVDnRNEYJEyU0ChiOu4hM4Lz0Jr00ITtzFPEPf5VGo4ppKcbjYQFsxzGOY8EXv4U9msKxVZIkR4qYSqWMYzvEcVZUPgoYtHsMu71C4VhBmkzxPJeS55FnkGU5WQ6TyZhKtYxSknASYdmyyESbJoKckudgWwapMAgnQ9I4RIiceqOO7zfYWN84sFSyGQz6OK5FtVbnwoXLPPvs5xmFbTynzM7OTsFHjmO63R7xdEqlHDDTbGKZJs1mk9n5WTqdNkuLiyglGU9GnDp1ivWNLbIs59jxYwgpQHDA4xvjui7aMrFdl2kY0Wm1iKYhUuaMxwMuXbrKo48+Qqlks7Awz8LCAt1Bj5m5BbrdES/8xXeZm52h7Ppcv3aNa1evoS2bSq2JWJzDWJ0j/vNzGOt9Jk8dRe/vE6fFfJIkMZZpoZQBEly/hMxzdHeEmYF//DDhdEK7vU+ewv5el9defYm//xu/QZLETCYT9vdbVMo1XM8hy3LG4xGQ47oOORSZ2Axs22R3dwukJJpEPPboozSadfySw60bN5hMhjRnmtiOAxhkabH4V6gsR2xtbeOVXAyliWplxn6Jr3zpOR559HFMx+KF73yXxx59DNsykQJMQyMPAFWcpjSac3Q6O/h+mU6nS+E/asP6DqHn8p//wb/j5OlTLC7MglII+eEry3LEdMTz3/gajz3xOKZlIpFwfYO8P0RUfLLWTYTlohbOfKTeMj1X2AyJXwgp+RU6+3tIxty88g1OjP4LwvI+uQrY29vhqWceBwF7Oz3ePHeOuabLsaMzgEE4yZBoTFMgiBBCQZ5iGCYIq6BzCJelpUP0ettMwy55mqKNHEhJs5g8E6RpThzGSGUgDItcukwTk5XDC5w4cYZ+f4i2ChE3xy1x9fIVnnziSW7cvEZr9yYVz8SxTdI0+fAe0wQhFFI7XLm+TaO5hFSSHFnYnGmD7a0dkiShMmcjc5Nb19eZbVa5cuk609Ees7N1XNckTYtnaDhJMbVdxA9xgmFoJpMxmzsDytWASTiErMiMTuMMVJnBKEJrTcX3i0WcmkPg25RLDs1mCa0EWZ5hGMYBBQlsWQcUR481KFcjPNMnI8W2bfI8I4oikjjBNDW7+yN+8No1Vg7PQh6ihU2SpYRhxtWr17Btm9Z+h5dfvYEwLI6dOsHqkVWUlLz2ytucPv0IL7/8KuQZvW6Lzv46cTRhfq6JUgba8kjijO2NNeKsQ0u+j9x38fpVNi/e5N3On5FnIWdOHuHa5ffxmwsPjGcelDAoxqIGIX5i4PpJ7+9dnP/4zO8n9fWTtuLw25SwT4HrX4f2KXDlLx+43q1g+9cRuP48y5B/XsA1v7EB3QGiEtyz7fZnkWXZnWzq3ee8/fe7288DuP74MvD/f4DrbUCepumH7/MHANe7kqifxGm+m+N6N9i3lSZLYxQw6Xc5tHMFqz1gsvA0iWWyu7NDybYwtMGLL72IbZnYlsPG+iaPP/Yo7Vab+dk5JuMRg16bF7/3MjMzTUxT8875d/CDQkyoXquRJjHzc/M4jsvy0iqG1kynY6JpiBCKarXB+ffeodmoMRmPkUoglaQ/GOKVPMaTCY7rFDxIbYFQjMcT3nzjh0glaTabtFq7eK5bKMAaBv1uh3Aasrfb4eTJM7TaLS59cJFD80sow8IrVRDCJE0lZd+lUa8xjUIc12Zzc4NKbRapNUJKNtbX+c4LL3D8yBFMrZlOI5Sh6fUHLK2u4rs+1XqNOM7I04Q0maIMj7WNLUpBQJYlhOGYSrnO7Owctu1gWRbXrl3jc5/9BSzbxNCKM4+cRSmFlgZRNOWrz32V3d09vJKP57lEcUxQDkjThE57n89+5hnG4xjnwNrDNAtVzjTOAYGhDDrdNmkaUyn7pEnOcDTEL5dJc0USDkmTmOFwSJrnaMum3+sgD5Qyb2f6A6+MEOJARbrFzEwTAEMrWq19mo0ZlDKwbRshTUzTIk4ihCgsM+LpCMMwMHWJwXCI7RSqobYOULjkqUQriTQz1EvvkMzPcb7fYa+1i/V3n6Xd2aM5U8W2bAQGfqmCvbdH5Y++QfK5M2RKo6RmOGyhtUmr1abX6+O5Phsbt2hUajRqdfIsRhqCUslhPJkwDadcuPA+Uihs20VIQRwXQiOG0ownPfxSCcPQmIZmY/0m7fY+tZm5oqzaNtnZ3cFxXcIJReZ5OKBerxJFk0J8yrRZWjzMdBpju4JzP/gRC/OHcBwXv+QfeLRWGA4GaFNj2SZ/+O//Pa7rsTC/AEC70yZLM3zfpzmz8KEibZ7juR5SCKbTCaPJEGloNjY2IYelQ4dwLZNqtYw2Jbs7HRaX5lEKDEOxvb3D7MISQljYVsBoNGVpcQmVZ5SDMsvLK0RpRmNmDpRBbkumj59FbrRwLtxkcNrHjzVpkhJHUwxDIg/4eeQ5wrHB1OhWH8IpScOnWgkghQ8uXOGXPv9ZtGlQrVaxLIdatc5wNKZaK9+Zp0yzEO2RhmJ3Z49yucKNG9exHbOwEJKF5ypZyjgccmh+7k5WUCmLJCt+v4ahiaKYixff59VXX+XUqVMH1T0ZrVaLkydOA5JLVy/z+c9/Hs9xabf3kSLn4sWL1Bt1tKnZ3t3DME0sS2CaNq5TwnVchoMB1toW1soiz/7Lf863vv0CZ04dxwu8j9ixlW2Dk6dO0er1qNSqBV/wf/zX5C//CPlbfwu1cKYArcWkfu98fl0hPYF8dIqhbS6cP0979wbDtfdYHv2nvLX5fXY7U44eWyEnQps2pA7rN6/TqCvqFZPROOK11y5Rr1WwbUEupphGkbWfTCNst4wyHUxXHvD/Ymwt8ewSOeODkluFFAaGYSLJiJMp+50Wu+1h4TmqEuIESkEFbapiUaJSIw5DlFDYtkUcdim7BkoXz67bvsTFc0qQS5PhSLC0fJx2p4M2bYyD7GmeQalU4v3LGwy7gqefPMUPf/RNHnt8kYXGIkql5PkUbWh6gy7jQbFQKBBYVpFhnU5DhhPwfQfbUoW/q6GJUkFj7hiOF5ClMYNum/M/vEC1ZiBVSKlkYDsho2GEbVuF/dKBDR7JACHAtA0MnaJl4Y8bhiFCgGVZGEoxCSeYVp1KeQbHlSgVQaxQpolpulSqFaJoSrlcQ1jHGE0TmgsLSNPG9epsr+8wGIxYPXyEtZs3aDaqlEsmzUYdIVJKnk+aS0gl5ZLNqNciHLRoTS9QShbxkyXWL23y+3/2v/LuO2/z6JlT+HOrH4kT7gWS98Yg2Rvmzx243k3Byj8Frn9j26fA9aDdL6zzce1BwPNhxI7u3353qekngdn79/84EPtJpbcP0/eD7uf2ttvlrg/T94PKSD7pnLdB/f33lvz3/4rspTfuEWd6kEfq/cDwfm7pw1zn/e1B3NLb5/l4DuwnfycPM1nffT8PGjP3H3tnH+7l7xb/fzA/9vY4v/MgBRAm4qAcDZGByImThO88/y3cWp1qN6J06TU6hkQks9imwrVMzp9/j8pMk4XmPJff+4DFxRVsr8TLL71Gpz/kyMlj1OdmaXf7lDyfhYUlbly/yRtvvskjp88wGQ2JphO0UViI5FlOyfd550c/ZDgaMbswT5qllMslSqZkc3ub2uw8tlPiua88x9zi6Hd9TQAAIABJREFUISrVAK2g3+2ggJ3WNuWghJSCZ556ErII0xDUGjMow6DdGiKVwPIUEp/nnn+ep556mmZzBik0i0tNMlmUNhoCrn9wkblDh5hMCgscwzDxyxWGozaO5TIdxVy/fAORCzIyyuUq2nZxXBclBFky5Rtf/wbzMzPkaUS322V27hAxMa2tDaquW6jaOhbD/hDklLffep+337pAq7vFk089xebWJiXPw7VthoM++7v7lMsVDG1SrddZObzKzRsbjIYh16/eolJukAvJ7//B/0OjPktzpkq16pPEMZsb61RqZYKyS6u9z9zcLEoZpMkUqQRBUEVIwf7+Dn4lwDQ1lSBgNBpiuw6e6zA84ABbTglpmGhX45ZcpJYMB33m5uZYu3mTmdlZ4iRBWxqlC6XM737nOxw+eoQ4jnBsB7KUcNzGUBJlZKRJiOt4TEbTQiRMCVKRkpCibuySv/0B03/9L0h/8CNOnTqO/sVleu19yn6dTCiUZZDKiOTf/AdipRCrK4W1z6hDFOVcvfgujXKJRqNOq9uh5CikNOj2OyTZhGmY4Hol0lRy7dotXn75FVZXV4gmKS+9+CKLiwuY2kArA0d7TMIIu+SQC4njVBgNEmQ+JstiwihmZm6R8STmvfcu0O8MOHP6GNpSSNPFME2kMnBcC8fR9LtjTh07yu7uNiXfxTAU4WjM1uYW/f6YL33xqwwGE57+zGeYmZ3B9TykUVgyWY5JnEyJ44ivfe1rXHjvfcrlgJmZJmE0wdQON66tUa/VCSo+nmPRH/TZ2t6h1miQJHDs6BHWN29Rn20W2doMpvGIOAnRWjAa9Tn3xg84dmIZoQQpOTPzc2QkhYJyLrBtC3F8kfzWNoPvX2J9rkRdOliWwTgcYdoeaRIhhUQqxTiJyZXC7gygMySfnQNhsHxkhTyXqAK1sLO7g+WaVKsBnU6Hvb1dZmdnyPMM2zbpt1qUXJckiZASqtUaaSqI4zHXr14iSjKCYIZ3L15DacXsbJ3hsMfm2hrzC8dwgphcSKrBIvu765w8eQRtKAxDMxqNac43kDqnWa+TpzHaLAThtDZpNJuILKXTKmx6giCgtTfg6pWrVKtlrl+/QZZJ6u0Bam6WtSNzfOkLf8zf+fW/BfGUcrWMMAxELsmjlF7u0WvvouIQtz5PJhTi+e+QI1G//bfvzONSyvulaVBnE4xHp2SZiUBiKMGJ42e5+dYPOdL5x3yp/8+YVZ9lZXWJV7//DtWyzwt/8W0cx2U06TNfUzhKUimbVGerhNEImaQMR/H/x96bxkp2n2d+v//Z19qrbt196X0jmxIXiVosyXImsWwPBpkkmCATwAEMDxKMg8DAOAgSBMin5NMk+TLODBJ7xuOxLMvWSmsXRVIUSbHJbnY3e9/vfm/t29nPyYdzm2yR3WSTXvSFL1C491adreqec+p93vd5nwdJZJRKRbq9AVGYIssOWVxgNGpTK0soWYIkC7JUQCZI947xruXQKLL42Wvr6JpJrbaANwmYnW0SBrkCsWtp9AcDkjTmzvWzNCoShpYShx5CCJI0Q1F0JhMfTVZIZZUw1mm1J6SZglMyyFKBIuvs7uziOha1egnL1FBVmAQ+Z99YZX11F91UsG0JTQVdlykWLXTdQNEUJDlBIGHpRXQtwbRUkjhG1QzCOAZ0+iNBqVKm09tA01QWlmfRdRVFSogiD0V2iOIRimzuqf/mTDEhLO6srlIpF5AliSSFOM51FxRVJopDVC1XchdZRMHV0TVyixxFJglCgjBla3fMG2/eQSgWVqnA4UMHqZYqTEY9NC1iZnaBar1OEE4IvAH1sk3BDBgMuhSqNYSsMh4NmAy6dHfX6Hc3kaUM1TAIrBbl9BBFs4R26Cpbqzf4+l/8B65dPMeRlWPcuHoZPxqiaS6KInL19TTZA3h5UVQIQXJKB3Kq8L3n6F0Bp/cCs/fmcO9sTLy9UPbWI2/AZkjiF5sW98ub7uZADw1os7ebE3nNJOHebu9H8fcfHwHXh4gPAi4fNu4Fyh/4QvoA+/zb6IA+6Njud9wPu7+7NNcHAcH0m2+rCr9fx/B+BYG/rXinl+uDt/3eIPVhP6sHAfL3jvssJx7e5ikDRJYiiwyRZkhpwu0L17lz+RrX79zisZcvkbh9fFnBSBeIkoid3V2WV1ZYW9/EMkxarRa9fo+pmWkykbFv/z5ee+0UmxubLC4uMNWoMz09RRxHnHz0ESqVIuVyiSTNP5ckTfjWM9/mwMH9NBo16lOzDAZjVEWQphNM02FqeobBYMz29i7Hj5yg3qgyGgy4dvUKjVqN1m6HwWhMpVKj1+uhKgqdTpsszdB0lZ3tHQI/wvc9KuUi4/GYT33qaaIo4PKVSziuS+B72K4LIiPwJ1QqBSQlr5rrus5kMsEwDNI0Q5Zk0iyh3qhw4ODKXlc2QFZkIEWQ4E9GHDiwH1XVKBRKuE4hn6vbKxR4nkcm5SbngRcQJxEHDhxiaqrG4SMrgKDVapNl+XzVcDjh5o1rLK8sU65UKJfLXL16lQMry5SKBS5dvMBMs0mahDSn6szOz2KaOmtrq7iuQ7FYfGv2znVdbt68TalYZmt7DVk26XY8VEXBMOXcwkZWkRSVTneI5RTQZIXQD1lfX8e2LbrdXRRZpd1uY1sWtuNgGAaO4xCkKRPPJ4kiXNtkNOix/0CTJAG3UCIMxwRhD1nqkhLhBSmGVUZSndwjV1YQSMRJnCcNPz2N9M/+CcnHjmK+dp5isQBfeJJiZYoMmSyKUaIA/S9/QPHsDbInTyBrCnEYMBwMEJKEYWh5UUJT0S2TQa/LjRu3UZS801KvNdnZ2cQyDXRV5fq1axQLJZaW5njj7Bnm5mYQAtqdNqEXcf78OaLQz/13DQ3D0NDMfLZLNy0kSUFRVVzHYbo5i2FqdLoter0Bppzu+TyG+Xy4YWBbBi++9BKXr1zlkROPcOvmTepTU5SrZbr9Pu1uh8c+/hiObRNFEXGcYNtWLkAnJG7dusXW1jaHDh7iwIH9nD9/jiDO+MqXv8Kv/uoXUQyVTIAsK0w8D900QZIRksL29iZzc7NkWYIkBKPxGCKfUqGIIue2NHfurLK0sIBlu0iygq5rpGlMHOf+wenenKByZD/xbpfy69cZH6/jChPdcAkjD0U1EHvAVVFVMlUl0FTMkYcymBBWS291jG/fuU21WsGy8vcoKzKmYVCt1RBIyIpMq90i8D2SLKVQLOB5E3Rd5/rV67R2d6hUq7z881dZXtnH2BvT7w2o12dBEliOjoRDEE6w7QJhELG2eoPllQVUVUW/tYkbhviOQRzHOJb9tgdtmhJGEZ1OB13TMA0DxymQIVhbXSeOI9yCy4ULF9jZ2WVfsUzU6vCcq/L1r3+N//af/S71WpkoTVAVjauXr/LVL3+FVKisTFX4zjPf5OOPP50XEb79ExAS8m9+7j2/P/LnM1Kk3O+TlOtXLtHZPsPM8AnWwtep2Sex3RInTj6CU3SpNxpcv3yJY4f27QHEgFJFJ4wDkjDCUlWErCLJECcRim4gyTLDkYJhFNG1DEn4aDKkWYSQIE0SLNsiCsO82y5Ubt4estuOaNYbHDh8kGazSYZgNJrQ7w5J05BCoYQ3mVApWkRBB9dSkUVGBmi6jpBkojBEQiJOM0ZezOz8CvVGFX88QZZzgbhMpEiaRK/bx5t41KpVNja2kFEpWSrTzSIlV0cSGkKoIFLiRCUIc3iVpAFR5GFZds4OkfZoz1GMpBbY2h1SbUyTJhG2qSHEkMDrIIsIWc4Lv3lPUEXXdeI0JI4SfC+gUMxnWtMkQVFU0ljbG9fJrx0hcq9WRdYIgpg0TQjCAEkySRSL85dWafclnMIiF6/s8NjHTlKrTdHtdhEiy1WVdZOLFy8w06wReS1MbZzP4uoasgTdzi5pFBDFI6I4QTMqbLd81re6VKemOX35DMfsz6HEZZ67/aeUChqvvfQGz3z1m9y+cYGXnv0uT554lGItn4eXJIUsk0iFgmAPXI4EopYgFuP75j3vB1wfFG/lYeLdy2d7XrfvnJG933b/Joy3j4DrLzc+Aq57cb9u5kNs/xfWfVDcT/jnQeu88/m/C4rwg47xQXG/yte9z9/9/WHf4/22/86/k2/8GCFA/ObnH7jcO0HlXerw27Of948HCTEBD1z3/QsE968SPkz3FN62w7l3fw9/Lr4/cL23UvnODnUS5wmOkgnSMODKhQt8+U/+nK9/9WtsXL/Bf3p2jcGxCpkw+NZfvMDRI4epVCuMRhNOvfoa586d5fO/8jlUTc2tU1SFhfk5wiBAU1RUReXChfPYjg2C3Ouy4NLtdimWyiRpTKFYYG5+lkq1zKDfY3V1izCMWVyYQZYi1jc7FNwiaZKwsb5FEIRATKVcYqreQFZULl+6wrXrtyiXSrgFlyzLeO3V13jiySdIsxhVkVm9s8GNG9ep1cooSi7GY9kWUZyg6hqz03NIskwSRwgBURiiaTY/e/FnTE01cV2XNMvYWt9GVVW8yQjDyjvW165coVZv0G612d7epOBaqEoOvEzDwjAs2u02aZKiqAphEJJmKYZhYO51M+MItre3mJ6pIysyWZpRq9WQhIymmfzxH/07ZuemmJpuYlkmuzu7VMplVBV2drZ5/PHHuXz5Igvzc+iGxsSbYFsOnuehKCqDQQ/fD3FdF4HE1tY2YRhTqZUI/JTVO1vs27dMloXsbrfwgxBF0bl5+zbT0zNEXsDa6hqzszMMBl1My8C2HBzHYXVtjUKxSJqlyIpCkCT8yb/9d3z+s59FVSR63RZu0cX3QJEMJGJIfdJIwbKqGHYJRTeJsyy3okgzPC/ANA1Etwc/P0/yv/53ZKZG5fwNhJDwPvUYWSbnj4lH4Q//EuXsdfwnjhNKGZHvkcQRtuPguDaO6+RiJZtbRGFI0XFpNqcZj/ukWYw3iREiI/A9JCE4euQolmXRam2xvLyEpmlsbW7lisOTkJmZJhLg2BZJknL9xjVK5RKmaRFFKWvrG0iSRKHgcOPmbTx/gm2ZNGp1stjD9zxAoGo6ruty7dpVDh0+glssoakaM9NN+sMRg8GAY8eP8vHHP44kK3jjEa7r0u/3EELeo7XGGLrG+XNvUq83KLguSRKxsu8Q9WoF284pxLKiMhoOKJUrqIrGYDCgVCqjqUo+W7e9hW072LZDGgUEfkBrt8X09CxHjh2BLKPd7pCmGePJGLJcWEbXNMbjCZZtk2ZgHT1I4mgY33uNaKpCFIGsQpbJuWcvYk/0RCApCoMkxhyNUTyfvqUyGo3xfI9ypbzXtRIMhgNUVUMIQRCFRFFMsVhESALdMImiCFVVWV1dw9INpmemKVXKHD5ylCDwsWydfSsH0XULJAlZzQgmGX/1tb/i+InjyJKg0ajQ6baRZRm7M0bEMX6lgOM4bKxvMBwOMU2T0WjEoN9nqjmNrqmMx2Ms2+HK1WssLy0zNVVH1RT2reyj2ZxGRCHS9TtU/vlv84/+0W9Rq5eJAh/DNPG8XB35//3X/4ar12/zxc9+gldf+imPPfU0juuSfPtZsgzk3/wcwXP/D8nt11CWHr/v/T0jJUXKxwpkgT8ZMV13kc43kZbuMFt6ikptClkX9PpDiq5Lr72FKgleP32VgwcWCIMeimITeyAjods6kgSqquVdwiQmk2w2tzZpTpchG6LIAUmakMR5R0rXDXw/JJP2AFpmoZkV5heblKoFhJRSKDrYjolbsOh1O8iyQq1Wo+gaxEGXOBihyIIkTUmSFFmSURSFKIxQVAVZtpj4McVykW5niGlaKKpGKlLcgo1pFKiUS6RJQr83otNuE6Q9yjWX7d02ly5vs9MKqVZkhqOQl1++SmPKQZJiVEXk9z811xHQNAMyCVkrUZteYOInlAou/qRN6Pex9LyYoUgauu4QBGNUxcT3A4SU5vPBCHRdI45D4jhGllU21lqYloUQuYBTkiSoqkqWSVy8eIVao4aq6ly+fJtLN8bcWu3jhQqa6fK5L36RSqXE2XPnOPfmOWZmp8lI6XY9Fmdn8fpdFMakcR/bKWDbJsNhLwfNkoJu6siqy83VPrfWetiFGnaxTKxIGMLECGvUnGWmn9Jolme4dvka/c461YLJqz99hZCYqUoVy7ZIMkGaydyd1JKWctD6IC/Y98g4H9gsuBeQivs0lO4rNPkQDLyHiV9soHwEXH+Z8RFwfUd8ELXfD6rK+zDxXtv7uwSu7xcP09n9sMf3zipYlmWk38yBq/RbX3iglQ3kdjeqqubV5XfMXjzsPu/G+wkPvHc8fMHjQcfz4WeN3x+4PmjbecFBoEkKwWjEP//d32W6XucLv/4POXHkOP/YqmJv7iKWPkY8dpibnSbLEt44c4bXT51mNBzzhc9/Adu1uX79GltbG5iOjWWb6KrG7m6LI8eOcv7cedZW1/j0pz+Nqmp5l0LX8SYTLMskjgKKhQLeZIymaRiWQRSHbG9s0u8NQTHzroauoioC27WoNxr4gYcfhpi2zfziMktL+zF0A9PSWV9f4+CBgwR+QLfTolKu4NgFlpbmyMir9qqmIckqpmVhmhanXn2dmZlpoiBk0Bvwk+d+ysbGFp/5zGcRe4rWURTzox/8mEMHD+C4NnGSIoRCtVgmSTIkSWZnZ5tGvUIcBpiWxWjk0+n0uHPnFpuba0xNTRNGEUmaUHALbG9uYTk6zz37MpKUz4Q98+0f0O60WFpaIgxDJCGo1qqMJwMWFhf2qN1QdF2C2M8/Ty9g4vkYloGQ8iTItgr0egOyNMOybHrdHtVqjVarQ7VSY31tg7mFeUzD4vXXf87cbJN2q0OpUqNcqYEMjmViqjK9/pBTr72GWyjS7fWoVuskSW4jFYQhbrGArCrIikK/26ZcqlCv1UFkFIsuQlioqk6WBSRBn8jr45b2I8kmYy8gzVIyEhQpt/VQVJU0juDcFYTtkPzXv0WaRag3N8gsm+DoEiITyFFK6V9/FWljl9bBaYZpTKXo0mntYJgWumFy69oVBBCFEfVaDUNT6XW7DAdDZDml4LqcOX2B82fPcuTw4dy/M5gwGY8oV0qkSYah576iW5ubNJpTxEmMBPR7A5BkiqUKlWKBJM6QhMK3vvFNlhYX0AyFN89f4vqN65w4cYR+p8doMkZSNNxCkcFgiKKoVGtlDNPGshwGwyGGoSIh54JgjsNkMubyxSvouvKWgNfm5ha1WgNJyFimxsEDh3Bth/F4RMF1sCwTspiCY/PlP/tzCm6Jeq2MLAlGgwHVSq6CLMkKg8EAQ9MhE9y4dYdarUJ/OKJSq7OxuYGuK+y2diiXSkwmHs2pKW7euMF0s4k3CbFtO7fvyFKEBGqzjlhqwHNnkPyA4BOPYPQ90r1zJs3SnOZHhm4adHs9nAw2FPiTf/+nfOELX0DVVISANMuVarMURqMRtp2fy6ZpIkkKlmntFWeGLC+toKgCRdMIwghv4tPa2cY0NBQlVxsPAj/3HM5SDh0+TEaKYSgYuka5UiMIQrTOIGdHTE+RpQLTNJhMJhQLBUwrF/CSZZXQ91ldXcUtFKhUa+iayubWOpVKhcAP0DSdQEpxLt7GEILKlz5PGHmIJKU3GJBk4FoOn3j8CSoz8xxanmV7Z4OFg0dAleFbz77Vcb3XDudu3NV1CP6VRfKqhvxkDmRVWTAZDVCEhnK2Std6le1bGopuYVkKumYRBB6jUYtuu0vBrVEuShRdhdEQTp++ytSUg2GpkMGdOxvIqolhONxa3WXfwX1Ypk4wGSAyjz0rUjTNIIkzwigGxSUJQ/ojj6u3tnjyk0/hFsqsra0RhRFZlqBpCsVCEc8LuXTpEqYuMJSI0B9g6AoZIO8puAdBgCxJjEYjJNnCj2QU3WJjq0MUp2xvb2NZJoos8/pr57AdneFgSOjHaFqC7Rzl1Gvn8b0Rn/zkcWw3wNRkTNNiabGBYYClq4hMRpJBN3Q830OgkGUCw53GcApEsYI3HqLKPuF4mNNfk1z0zQ8iNFXg+zlTR5LYu0/m381pmuK4LmQyYZRgWTq6oQAZQkgYhkUYxjRnZhEC4kSwervFzQ2f6ZkFjp04TqNZoT5V4tSrpzh67ChHjx4hzaC126VWqSMlE5JwF3/SxtB0NEMljgLiKCaOBQkWI0/GsBsU6nOEqcRwNKFSbbC4uMSNnSvsk4/TnF3if/6L/4Xf/xd/wMSPsQsq2ztb3Li2wbC7Tq+1xczMLMVSNWfVirdzi3t/3ptz5Ff8e+cz92uY3JsnCel+udLfPQPxI+D6y4+PgOs74iPgev/4+wKuwB5wffYt4Ppecdcz9RcqcR/y//FBOuPvjrfPmw9yHPfu55cFXNM05dK5s3z/r/+a3/6n/xUHllfY8kMcw6T+b75CdmgfUqGArktkxOiqQmu7RWunw5e+9BskSUK312FhYY652RnMgsV4mCsN12s1BsMhJx99jEKhwGQ8QdcN6rUaYRThT7xcrVFVGQ371GtVNN1AM1UEKQWniEg0fvLiz5hqVHEsHURCo1knRdDpdimWSgRRjBAq66ubnD17hulmA1kWTDdnaLfbWLbFeDxGVTUsWyeMxsiSiqYaCElmMBhjuwWef+4FXMeh3+tRLtd55JGPY5oGjuMihISm6aRZxomjJ2h3Wrz00s9YXF4hTWVuXLnK+voGlWqNU6deJYkjGo06imrwza8/A2Q8/fRT2E5uB/PTF1/k2LFjyGpuUZJkAVli8PwLz/GpT32SM69f5Ne/9Gs5qNizhBiNhszMT2OaJlmaEXgeSZJguRaD4YhSqbrXxU6pVnM65fmzF/j+93/Io48+SkZGwXWRFYU///O/4MKbl+gPhszOLSCkmMZUkW6ny89fPs3C8gq6qQMpcRTQb+0w9GMWlxZZWFqiXK3jBWEOnMMQx3EQkgRS/sVuajK1SgNF0QginzhLCRMJIQdkSY9e+w66FDNMZTRDw7RMhJCRhUK6J4YhEDn/64XXSf7F7yKW5pCUlOTRg4THj+INWvjbbWp//G3E2jaTTxwnUWQcy6azu82wP2Ay8ZFllcgbc+vWbcrlMlma0m23sEwby7SIkwDfm9BuDRgPPeqNGpKUIUkZcRxBBoqsEocpw/4Q27ZQ9tROu50Olu0iFANFN/EGXUI/5vKlK6wsL+e2ILrM4tIB9u3fx3PP/oipWgOzVMR2ikwmHoqiQJpye/U2puWgaAau4yBEQmenA2mKZRrs7Gzz3e/8gEOHD1CpVLBtl3K5wgvP/5Rmc5rJZMDm5haVShXbtrhy5TLz89OoErR3dxkMRvR7Y6ZnqsRRzkLodbsoskySSiRRQholOG6Bm7fvUK5XsZwCpmlh2ya6IeeeyxLYlkOW5UJxmxub2HYBTdfxAx9ERpSEue9loiE/sQQbu8jffxVxZBmiaI9lku6xPkIgwyq4qL0RpqHz+D/4tT0xNZk0y5Bl+S2AfbeYqRm5AIwQCv3+EF0z2VjfRBIyI2+AqmskScKbZ8/R2dllYWEWx9bx/TGypGAYLoqaUCiWQaSkiU/gh8iyzs7uDrU4yxWe6xUkFHx/TKmUU5nFnsr9eOzx3e/8NY8//nEyITBMiyjMZ8Y9bwwIJFnGLhUQtzdYG/Vx//F/jO7ofO3P/4JPffozeTdVyFRKZeYPH6Hf2uDwkf1cvrPG9Nws0jPPAeKBwPVuxzU9peWzhE/kKrxpHEIa0+94WBcr3PZfoLOlU59eQFPgzGvn2b9/H0IKiaKUra0bHNhXQuCj6iWasxVkbQSZwDJtVM3GdspIkkYiXGyrwI9/9ALEKY1aAURGlgqiKEGWNW7cuMXpc1vUq2VSoTKOVGyngqoUIVOolOv0ugMuXLiIpspkGezfv5+drTukUR9dzVAUAULs/d9lEII0idB1DUlxCWKNYnWK+cUDZJkgjhKm6jW6nQ4LiwdYW7/B/Ow8xWKJckXj0qXLNGsmJ44s4MgpaubjujaTyRjH1YjjIWmUEgcSlpPT/j3fJ00lPM8nwsYplml3JpRcF1kaEQUDsjQiTUIsWyOVEpI4ZjwKc6V5YsjyInGc5Oe+7wd5wcUyCWMfWc6vpSwVeeFLkYnjjDiJaLf7NBtLWOUSlm0xNTXF7OwsN65dZ25hHsM0kGSJ8WiCZRcwlJTbt05jaH0kKURTTZBya6Mozuj2Q2bmj3LzVp/u0Ger0+HRj51k/8p+NFWn19vl9tptZk/OYm/UOen+R9TMZbRjEo89+Qivn3mD3iCmYQWsra5y7ux5ZuYWqFTrpNIe+25XJpsIJOfdOQf8/QHXvwsryY+A6y83PgKu74h7L4z3AxLvx8t/L0rqe8W9+/1Q69+9ru55vN9l9k6a64Pe23stl98gUvJb0r2PB1OiHwSmkm/cnXH9VTzPyz3c7rPch/l8Pkxh4J1+rPdSefP/19uKc0JIexS4++zjAY/32/+9x3j38RZVWmRIUp4EpnsCGUmSIMvynu/enlhCmvuWCiGRpgIJmSTOYNCltd1B123scplB6PO//U//O8d3+yycuUz88aNsbK3T67UJ/RBd15mdneP27ZtcvXmLE8ePoJAwmQxzsZhUZ3t7l2KpwvrWFt/53veYblZYX1+j1+8xHIzp9UecOX2Omekp3LKLrEpEQcikN0Q3DWzDotvq4hYL6I7GvqUlSgWXtbU7VMpVWu0uEj6d3TYFuwBJyqjfQlFlDh5eQVYEYRTz+usXUNUCvf4OhUIFy3LZ3NyiXG6wu9OlVKiQJh6R18Hv91nZv0S1VsEpFEnIGIyHWIaJpqm0Wrs4rk1GiqIZXHjzIteu3qDf7lFwbC5dv8jTn/0MqmFQm5rCMC2qtTrd7phjx48wvzBLFEe5DYckc+jQCoap0W63cZwCkmoQJz6feOopVlfXWFmezxPqLFcjTpOIOIshy3BdF0kSSKqCbpqIVEY3DCRd5+bNDXRNJssm+OMJcRQyNVUniWN+9uI6oYivAAAgAElEQVTPKFRqlEouuqFw/PhhHj1xjF63RdF1ME0Ty3IQUka1WiSNY6IgJAxiTKfA5tYWS8sLRLFHEmc89+xLrOxrEgYBjuMiSTJhEOb2IJKMoRXQ9ZhW6xZJNKZQmgO/hdfbxNB1hFnEKs0hJCX3UMwS0iRCUWSyRCIjIbx1C+XWNt4f/A7DcRvHllF++DLWV76P8/NLVL79U8I05fmwj5DAHw0Y9frIss6V6zeJ04SZuRm67TYvvvgS+/cfJIwCJCVD1l0yUlRZZbfdY3n/CgvzM/jBmDhJmExCXKdCt9XBMBIUJSaNFRQ5Q1U1RsMhsiwoFYtsrt4hmowJ4wDHqXDmzAUmgZf7k0oShqXu+f46nD17lWaziGHZSLKOppsoqkqhYNPa6fD1v/wGjXoNyzKIkgzL0un1WhQclySVmZqaxTRNtrc3KBZcdN2gWqkxHg5pzsww9kZUyi66niE0FU13sOwiXhDw1KceR5YE3W4X13XRNYPJxCOIQiqVIikJqqpRrVTZ2VzH0DR0XWNtbZ1CqUqUZggkrl+/SqVS5fQb53BLNUKvS7lSRVJV0jjGkCUQoCgqb164zqhRo35sP/GPXkL0h/DoItLIByHnBD8hkUkyIk5Qg4hJo0q/28HUFMgSkiQDoTDud7lx+QK2rjIaDrFtm1G/hyJlRKGPJCl8+St/xWc+/UnGowHFokOpVGTfgf1oVpEUlQyF119/g4JbJE5iZEVCVjWyTAJkJmOf5nQTrdPPwXktB/qGodHptPbEaCROn36DglPnY49/nExkxGkuYhQJH92wUDWTyWSCaRtkZCTtPk6cIX7915Alg+OPrdDpjPm//uUfUq1VMV3ByA+olMsYyFw+c4ZDR4+QfPt5BALpN36F5NYpQKAsP05CPv+JlIO79NSeBcmTEZIkQJJJZY2JNyC40SPagkajDIpNvVyi0agTJQrPPf9zJkFA6reZmd6juntjXEdFViRAJYsyMiKG4wmSbAIFul2fVmcDWYyZnZrGn4zZ3GrntHA5Y6pRYN9ik1AMuHwtZdBNqNV0kkwmTRPK5SLjyYDl5UWiGKrVCsNRC01LuHPjKgW7iG6Qz5bKCoqqI/YEn5IkxbYdZNVitzVCM2QKlkundQdVi5mMBaQpW5u7zMzNcuvmNWZn5phpFEhCnyz28bwuga8hmwqGriKSCOIMkBGKDElIksb4QYhbrKMaDqqmk2QZGxub1Osuk0kbLYuIogjTtAjDkDSOUWSFcrFKFPkgQoRIUFFJwgQyCU3VSdMEWSsgywpxHJFlgiBRiNCJxmMyYXLu4i7nr3RpjWWmpmc4eOgwkiwxmoxY2b+CZmkQZ5x66RSd1i5J6hEMr6FJEaokoUgKGQmTcRsh6QwnKtMLx8g0G9W0KRRdGrUyZ0+fZnZmlpdeeoWTxx9hfXUVLxxwx7vNonYAZcOhlM7zP/yr/5FPPv1FNrY3OPbIIq2NXcJByKVL13jsySewCmWIIP3TAukFFfXxESnvFk1KM/bypV/Mht5v1Oqt/OcdedHbGdZ7508Pev798v1f1B/54HnnR/G3Fx8B1/vEwwLXd8aDQNiHiQfRLB5u5Yd66kMdz/vH/epoH3zvbwPXL6Bp2t9Kt/muku6927pXJOphVZDvBY534y6I/MVz5z7b+Ru+h3v3c68ic5Zlb9Gl7x7Du8G2TBzHkGb510gS8dff+Do7t68z3Zznxp1NZueXkQ0LR7N4+jsvkB3Zj2/r1I4NseoRb/58i2azSbu9S7VWhjSjVHSJ4hDTsZBVjd2ddRqNGpJIicOQpcVFDMPG0E1UTWUyGbFv3xLT0w1qtQa2bRMGHrIEmRDYjsNo0KdeLTPo9dA0Fduu8IMffJ+TJ08yGnu88vNTLC0fpdGcojdoYdkmUQyGKpMlMYNeG11TKBUdDF1iYWGR8aSLqmWcO38Oy7RzMaFCgSDykTQVoejIikGSgmU67Gzv8vqp1zh3/jQnThzFLbi5QTwpz//kx3z8Y49x9NgxFFnh+ed/yqFDhyiXqrQ7bSzLoFoqQBbzgx/8iPX1dQ4fPoKsyOiazqmXX2E4GjI1NYVhWcRJQuT5VMsVZEWhXK1SrdcY9n3+9N//GZ986mna7R5JIiiXHaIo71B12i0qlTK5O1LelcpSQcG1mXhDysV8PrBWq1OtVnnyyafQDZ04DpAlgWVaRFGM7bgoe5RMw7QxDYsslVi9s4aq6rhuAVXVUGVwLIMoDOi2O+xsb9OYqmDbTg48smzPakRGkxRG4y6KqmCaJWy7ghy0OfvaKwghUWrMo5glEOpb10oQhCAkRuMhipyL+MhnLvNGs8I/+b//D37zN7+ENZpQ+j+/SuLaDHodRs0y5yKP114/g6Ha7Fs5TL/fotFocvvWOgf2HyKNMzRVYnZ2lmazSRSFhGHIhYvXuXn9GmkcosoC2zQ5dep1GvUG49EYVdFyaqJqMvFDCqVqDgZI8fyUVrvDxUtXqNenGAw9xqMJtVqJ7a1tCo5NsehQcC3iIGJra5NKqYBtqAwHPeZmZ3MvWUlClmB7axXTNLAsh5OPPYZpmuiagWFbuaiKIqMZBsv7D5AmMd/97ndYWVnmx8/+OKeB2xaFkotQZXTTwA88qpUqAkF7p0UaxrQ7bWZnZonjCE3TWVtbo1atI4TEYDDAcW0kSRBGEX/0//0xJ04coVaroyq5yBQIFCVXWS2XSkzGE2ZmZ3Fch1qlTBBGSCKfHU+ShDjLkFWVqeYUtak6UcGCR1dIOj343ikgQzxyCGk4ISNDSIJMV1G6Q5Qw4c3dXXZ3dphuzpCkKX/25S9z8PBBpmdmGE08qvU6GxublGtVLNvG8wNa7Q5PPfUUw2GXSqVMp9PF3fMNTtIQWZaQJZmpxjTPPfcCP/nRDzh58jFUWUaRZDRZQdN1PG+M2urmXVXX4atf/UsG3TaHDx8iDAIuX7zEKy+/gqordLu7NBoNdM1EVQ2UDNIg4c6NW8R+QOR5GLZFNPbQb67jdbtcLdlUKgUEGvtWDrC4uEipVES3HOQ0YdjvcvHSJY6dOIH88WPw9EmkcuEXgOvdb6C79/j01bzAKz8R/ULxu1SqMTq3zaQ9xC6VmFk8ystvXGIcJAhSKrZGMumyON+ktbOLazus3dmgUCijqhoQkyYJcRrhFPJ59E5/yMJik+mmTrWcYRoxAnAcm0LRQZYz4shHSBqJEAxHLoblYJoKjeY05XKBs2fPsry8zO5OC9PM8IOA7Y0O67fXcIyMmekSQTDK7XVk+a0ud5ompGlCuzNka2dIo7nI2I+4dPEi+/fvo1SuYTklZEnCKThYjkWWJmRZyp3tbZ578XXGnoxhm0RpiKmoeQdfV8kkiQhIJEGS6SiajmFahHFCmma4lTkGwzEz03OEwRBVDhBJRBiFewXjXFhMVU3W11t7n6FKEKSkqssPn3uTuaUmmmXlQnFqiOeNSDMJz5c4feY6rjPNS2e3uLPps9UOOPboJ/nsr/wDqpV8pEXXdNxCgVdeeYXY9zHtCrNL+5mZaaClPWwtxlAFhpZT4oMwZhS4bGyNqTf3U67NopoOnVaHRr2O69ocPnIIspTjxw+TyBKzc3NUKjVeePlFjnzhEEEYUGvNcsB8hPFGyj/8/d9gayulMdPk4qVXGYx22d3cZf+xo9iuTfK6AQKyJ3yke4DrvR3X92qScM/r92Wxifut8+4M6/3EVYXYE8NSlIfKAfPfPwKuv8z4CLg+IN6LWvler93v7w9CP36Ydd83xLuP8/0A08Pu590d1ne+fr+b0YM/qwftV3r0ENKvPPELPq73xl0Qei9QlGWZMAzfBTLvd7zv7Pg+6LW7QPBute29PMzufV3s0eDe9b7v+27eO+4Fo/fu90HLvXMm+O0ERoU0Rc5S/OGAKxffpLu7yyeeeIqfvvhzjh5/DLdQZnN7m32tHtUfvcTG8gytdhurESDLCjOF42xubrC2tkazOcW502c5fOQQTiGnieqGhW3pyLJgOBgwGg5YWlzke99/ljRNOXzkEI2pGmHoU61VuHVzlTD0gRRV1xCKTBBERFHAeDRACFBVlZ32gCuXL1EqFbEsi7n5Rb7yla/zyKNHSbMQ27FRZAt3b99RFJLEMXEUMTXVwA9jEDGqKtOoN6hW67gFl42NbQzLQNU1VNUhyyRu316jWCxSLpbYt7Kf5X1z6LrB1vYWGaBqGqosKJVKDAZ9nnnmr/nP/vP/AlnKCMKQUrmEbVuMRwPGoxFHjhwny6BSKZOlMB57LM3PoWk6mpFTvAajAZqQ2G23sB2bOEvo9rvUa1WmmzVsWyeKfCq1MrqmIUsy3mTC5UuXyNKMUrlGv98hjRO+/a1nUGTBzFyTKAgpV6okccLZs+d44+xZZmea6LqKpml02h12d9ssLC0hy7mQ1J07qzz33PMsLKxw+fIlfN+n0ahjmDqqItC0nD7nOA7lUpn6VJ0kzrh8+QqWZaLpKooi4Y19hBIjywZkgvGwx+7t8wyHQxb3H0V3KqBYkKQosgJZLv6SIdA1hZ+/8jprN26zcG2d6Pd/h//yv/9darUKRpyhP3uKFPjDn5/GqjdxLYtf++LncFyVNPPQDQnLMimXi0zGA/q9FhfevMT+/fvwvAkgkCSZOIabN67z+GMnMU2D4XBEfzCmUq0hZJlmcxpEhuU4mKaD47iomoxbcLl5e5NLV65QKBQ4cvQosqxQKJYRIsGyLApFFz+Y4Hseb5w+T7PZ4PbNG1RKRdI0QlV0Xn31VarVCq3dHerVEkgKrVYbXdPx/QDfDzAdiyzL6fSSLJFkecHi5MmTJEnK0aPH0DSNJI1xiwX80EfVFGRJwpv4CCTUvdlAIQSmbaFrGlEYMegPqdXqtFptavUKdxkzhmGytLKCJDJOvfoaK/v27Xnxmnhjjzu3VykXXC5fucz09AxhELKzvUW1UkWW5ZzWK+dCOkISCPku9UdgmDosNMke3U/WHZI+8wLoKtLTj8BOJ58Z13W0To9qqcRzZ88yPz9PkqU8+thJJFlG1w3kPW2DIAyxHYcMSOKUSrmCaRloqsRkMqZYLOJ5Adtbu8Shj67pIKQ9y5YUbzRmqtnMj1uROH/2DRzXRVEVjN6IIAgYFxzCICEMxsxMT6MoCi+99DL79x3g05/+JPVGjSSKiaKEa9duUK7X6Q+HVGo1nKKLWyzlYjKuhX7uGpN6iS+v32J2eoZWq4eqqFSqFXL/0JAo8HFci96gz9T0NHqjRlZ08iT71msAyEsfv+vUcV/geu/9P0llvLNdhtsdtlotEuFQNBXePHuaxcVFxp7PG+cvIOI+C4tTmHpKrVYGYtIsBFJ0TcvtYBSL9Y0ell3n5vVrNGoWqhTiTyaoikwQhTnzRgJFlnLRHqFy5o1Ntne3ESKjOd1E1zQs06DfH1AslvCCDqpiYptFdAV2t65TLChADipkWcmLJkmCLHIhI0U1kVUX3Spx6dJ1LFtjZmaG23c2yCSZ8WiPLp4mmIZB6AfE0YTdrQ47O23KLizPlpFVD00XCDKiWDCaZDz/wnUa0yVMU0OIFFUzGY0D3NIsYz+gVCoTh2Mir4Mi57PzmqbmPtdxSBTB2toWtXqdjARdt0jjmIX5MoqcIUgIvYAscRE4JJnB9m6fheUlrl6/wsz8UXRNY2lxnhPHDvLG6ZfzeW5ZZjKZcOPmTY4fO06tXCZMYG1jg9hrYYkBUThCErnAIEJlOE44d6nH0spRdjtD5pf2MRxP2Fpf586d20hCoGkKw2EPw1QJ4oxOp8vqnTUUWWZ+YR65ItOSdliM9nGgeATDK7L/1x/jh89+j0NHF7ANlXNnzrK0vMTc/BzZuWKeEH4s9+Z9Zz7yfsD1QRTft3Kw+wDXB6Wx78XM+3CNKvEh1vko/rbiI+D6IeLDUE0/6LJ/o4vhQwDX96LufpDjuv/LH7wTLUqFB4LWd27j7s/19XVqtVqeNL3P/+hh3uu969z7eb4fzfntuA+wf6g9vjse9gZ5PyGrt5KaOEORBCJJefG5nzBo7XD00EE0a4obN9coFyu5B2LBpvwv/4igVkKenYYso7ooEUcRfssgyzI8P+CNN85y+PBhFC1PphVJ5tkf/piF5SV2dls0Z2ZI0phSqUgUJxw4uB9VldENjYLrcvXqFWzbpVYt4XkTbLfAyAtwCyUsU0fXVeIkxfNDnvnu9/nSr/8nTDVqmLaF47osLMygKPnsVa/bJ0kSNE1iMBhimDaqZnDp8jXW1jdZWlxCUXS2t1p750dGu9Mh8CPOnjvHTHMGVbb4t3/8x1iWyf79+wnjkK9942ucPHkCRVGwbAdV1XOLgiif6VRVleWVZYqlApKIEZLAsW2SOOHHP/oRtmFTqdVxHBdZUrhx8yY72y2mGlWEkFEUDUkSKELknrWlItvb2xQLBcLARzc0BoMuUeRTLLr4YcDqrVUUWUHTDObnF5BlhUwobG2u4U1GfPrpz1Cr15AUgaGb9Pt9NF3HcV1mZ+do725hmjqmaSIrKmEcUyrlKsuj0RhJknj88ScZDEY88sgJBoM+xaLLcNRnOBqRZhBGCZ7v8+OfPMvi4iKGYbK1tUOzOYUkSwiRIasaQoU01tBExHh0i8mgz9zyIezyNOx1VEkS4iRBSDJpBpIko6oy3/nOj1mJMqaKLuof/FOKxRJpmjHaalH82Rukus78Jz+DJASnX3uJ5aVZhEjQDJUwiBgOh4yHQxQZyBIuXLiWJ83NBsPhiDDMrWRcx8RxHdq9PsVqnUq9TrlWo1JrYBcdnIJDsezgFstIioqsgaIaIOnIisyxE8dwiy6tdovp2RlG42Fu9aKpxHGMZds0Z+YIfZ/p5hSbW5vMLyyRJBEHDhyg3+9Tr9VYX72D7VYZjyckaUyaJRSLLhcuXEQWgk6rjaoqSJKgVCzgeT6KonHt2nUMMz9PLMPKRZFUhWFvgISMF4R4/oQwCilXKkiKwng8ZDAc0pyeRlU0RqMRyt54cn8wwLQtVE1HV1UWFhby+0eakaQp5868ya2bN5mZblKplHEcBz/wqDem0BSFKAoJoijvtIUBskSukE1ODxQIgiAiTEE9sEz22CG4tkbyw1dIDy+iphmZpkGcYEw85hoNNjyPeqNBt9fDtV3CKCFLQcoyDFVFqApplLK7vcsz3/omrmOSkTIY9KlUaoRBzPT0LFmcMByOcd0CYRyxs7vN/Nw8dsHlO9/7DktLC8zOzaIoMqqqIicpsutwvdXmxPFHmWrWMO0cPKzs28fC4hKddotOp81oOMT3PH74/R9y+MQj7LR2KZQKRHFCkubfB5IsSHY7eO0Ov/Otv+L066f57d/+b/i93/s9Vlb28fzzL+L7E6anp+j1Oxw6fIjV1TVqlSrsaTncO+N6F7i+5c/9at45vBe4AqSKRHZpzOa12yBLZEqBqbKLY5vYhQIvvvQy40lAsywzM1NCVSPIIoSUIispWSrndF1FJUoNbLdJqzNhPOhRcGSkLEJBI8siJEVCN0zSJIUU/CBkuz3mypUu0/NNlpdXaNQbdDqdvXuozBtnzrC8uMhgMMJxDGQ80qhLtWSh7M2+ynIu0hSEAVKWEoYhSSZz/eYWhXITWTU4dGgRSKnU55C1fCbasEw0XUNRc8uiy2+eo7Xd4fjRIyzN2RSNFN1WiOKQLElQZQ1Dd4nDCQuLU0T+CEPX8EMF06ogtCKjyZhSsUASjPGGu6RJ/JaXqarIRFGIkGVmZuaALJ9xFRJZHGAaKmQJYZQxGCakkk9/PGGrFXDx8i4bWzGzsyc48eh+Go0qjmPyyss/o1C0mZlZwPd9JhOP/5+9N4u17DzP9J7//9e81p6HM081s4pVLJKiKEuW6KEVd9p2220YSYCGOwiCxIGBxH2RoBud5CaXSS664wCNIOgg7nbbaVuybFm2REm0RHEQxaGKRbLImqvOPO599rzXvHKxTpHFYlWxKMtCBn7Axjl77zXtNX7v/73f+87NzhFFMYP+kOe++ywbyxcxRZ+Km6AZ+TMuiFP8QCeMPSZnj1Gu1piZnWV5dYXr169y9vQjTE1O5OwO02Qw6FEuF4nClGF/xOLCIvV6HdM2eemlF1lZX6Z4wmWwN2QhPIocCb769v/F2uoGh5YO8847b9JeXeaZn/sFjGvTJEmK/TP3BqGfpOJ6z+/vVXHNfoxc8yFz3w/P80Ge9Slw/enHp8D1E8aD+lb/vwJcH5Yuce/v77NBn3A5Hxd3g0mAcrlMmqZEUfSRKuWd89z9/4PizuN9L+B697762wSuH13+/ae9V8VV121IM1o7W6wt32Bvc4M48OlEFuVSjT//2p/xp3/8b5lZX+fQK+/xnXSI67k0G03GagPd0NHDBo6TU0mPHD5GFIfUGjVMy6S91yIaR8wsHaJSrbOzs02xWGAw7LKwsMR4PKLb7VCrVZFSUq3UiOIQshTDMIniDK9YRSqdJAlzuqim43pFzj7xBFtbG/T6ndzWQ1N09zdI45RSsYJt2iiZMfTHSKXR7/tYdpFCoczE5CyXLr2FY1d46cVXaU7UMK1cAXbQH/P6a6/SrDV46flXeOTEUc6ePYvSNRISTp0+hWWYBH7IYDDEsj1G44Dnvv0sS0uHkFJiOibD8ZAkHqGbOt1un9HI59DiYSYnpnnj/Dnq9TppmrGyssbc/Bwjv8/W5g57O3t4ro2mBNI08o61NEPTNGzTQioLzyngOS5S6eiGA2kOIjyvwO7uHjvbuxRKZSYn6ni2zaA/4tbKMoap0ev2iKIYx3ExTQvLtrANhRDQH/QpV6p4Xolev4dhGJiWgWU5BEHI1/70T3n00VMoTVCvV3Aci2K5gm27GIaFYVrMzs7iWDa6YVCvN3IachqByEiFBCXRMptovEmve4lSeQa3MoUwCmSpJEtihABNfSDIlCHJkoizZz5D7a1LRP/lbzCa99Ckg64bRPt9Ci+eY5glOCdn6HW3KXoWg/6Azv6Q3d0+r792gc8+9QX22x0UEsu0mJ1bxHYslJJsbm6yurrO0qE5ypUy42DM0vETFKp1KtVyDtosOz8PsohM+iSxIM3AD3s4TpFSqcbM3AzFoodhapiGgWHoFEtl3EIBw9BzKyOlMRzm575pmBimw3DkI0WC53kkacZoMKS1s4fQHCYnm3iei+c5rKwsMzkxTaVUpuh53Lpxi+ZEg36/y+ZGriZcrVapVspIBZ7lYTsWQTDmxvUblItVdNsiSWOmpiZzVoRtE/kh1UqVbrdLt5tbzOxs5UrJYRRgmPmghi4lW1tbSKXw/QBN19GVSZbEzM1Os7G5DkChWCCOEwaDPq29HZRusra5xVStyjvvvIVXcNF0AzJBnApWltd49ls5RVcYBuZjj0DJJf2rF1EnD0OckZgZchTgKJ2q4xCXirz48kscO3SEnZ09vvKVrzAzOUGzUUdIyXgU5ErhUrAwP4NbyAeW0jRB1y2Wl9fotDsH4koCzVA0JxtUK03a3Q5Pf+6zGKYBpBi6QRxFZEWPyLbx3BIv/OBFqo0Smq6hGzoISZJm6ErHcW0a9drBIF3Ej158nSceO8Pbb57nuWe/S6VQJogjXMdGCPCWt/m1X/p7VL/88xw/fhzbtnj55Vf4wz/8d/z2f/6fUi4XKZRcMjK+9Zff4sy7G3DxGursCdBtZG0BWWh8qOIqhCB9zUAIPgJcgzSk/dIK2liQyITrKzvY5UkKlRrdThvPkOhJSK1SpFEvoWsZWZJhmRZxnCCFjq4bdHoDtls+xeI0N5ZvMDddR1dj/GEHQxlIlR1cwxD6IZo0UIaOW2gQJxVsz0QpycbqFlNTUygpCIIxGxsrlEsNtre2ePXV57HMiKlGkSwKQBxoOcic4p2kCTJNDir7Jmgurf0x4yCiWrVyVoxZpD/q4loOYRSRZSlKSt547XXiRDI9f4i3371AvarhOQbdXoylO+iaQlMJQdCh0XDzZ5PKcgszs4YySxh2EaHBrZs3KLkGCh9d095vkbjdxqEZAik0sixhNM4HszJAGQaR0Igym+d/+B6GrDIY6rzx1g3mDz9Coexy5OgCL/7wVY6dOEWUSDZ22nzms19AZCnr6+tcu36dxcVFwijkvctX0fF59HCTZlmBDFG6QZzGJKniyrUtRoGDVymTpgmaLigWPZrNOknis7y8zK1by1y+fIXZ2VkGgwE/+uGPWF9ZZ7+1z8TkBIZt0Gm3CMMQyzCYPF5jf79Fca/KoD3kS7/18/zg+R/w733582xduQK6xmTvCZTS0R4PQH00H/lpAdfbWh8Pyts/Ba7/74pPgetd8bAXzb0uggdV+e4FeO7k3t8978f1XD4wsixXXxQSsgeBpXsJKd1bTOnO3/Lg38XB/He+7reZ2X0ricnv/xnZhUvIsyfe31+WZeH7/kf24e1tue3hetvP9e7tvfOz29PeCUofVK288/87e0xvv7/zGH5w3A6UUe8UbrqPlt7HDRbc2ct65zz3Ow/1NCVDkAgJaFipyWDQZfXmGis3NpiZXCAMfQ4dPUylVkeqjG9/9zt85rM/w9977Tq9ose7e7ukcczS0hxaqUeWpeyvZIxHQ4TkwLImxTAsQj/Gdl1m5ucQaUIwHlEqFdja2UI3TIb7eyiZH0PHKxClGYkQ2GbGfqdLqVTC0CX+qMvO+hq6UriOh6ZpxHGMriSObVKtVOj19hn2OzSbM8RpRJRmmHYJoSuMpAcZ/PCH51jf2GRxfhpNRfR7Pb73g+f5td/4VUxdQ6QQx4JWa5/1tS2+8MUv8sipY9Rnm5i2SRT47LfbFB2HsR/y6mvnGQ4CRsMxqyvLPPPMz2PaDkGam6unUYypu4R+TLlcxvfHvHPxbSamJtje3mFmZh6pFH/1zb9gYWGaqdlFlG6w395nbm6GLIsJoxQlFJZlIzSF1DTiOEUqRZjEhFGM0iUaEbqlIUyXty5c5qUXnuf4iUNYjnNpMFYAACAASURBVEsqDCzHwbZMdBTlSj56bpk2UsFw2AWR4Rbr6JaHpgRR0Mc0IQoD4jDB0CU3b17GdT2mmg2GwyGj8RjLKyDSjCAIaLfaWJaBbRlIwA8CDNvNj4VukiUwHvRQRhFLdFi58gamNKhPHUcYFVIBUmXITMJBNY4kyUV60gQ/HGIOhsi3r5L9j/8MwyujhEUcJmxdukb9jXfZ6w8YFDUAFg4d5sbKKuvb2xTLJaSMaDYnefa5v2Zta5uZhUVMLcU0dASSJE7p7ncoui6m5WA4HqViBYUkFRlKCTKivIoiDeIoRSqN/U6bamUSKU2kiJAH1UQhFEo3kZqO1CVKaRimTaZpGE5O9W1OTaAMje3tHSqlCuurO/S7feIopFAssN/tUyq5KAmba2uYhsH+Xpteb5eNzTal+iRuWScJoN8bsLK6zWA0ZnquCYBtlhmHg7yaHIQsLS2xvHqT3d0Oq8sbkCik0hBSstfuMxwM0KSgWq3w7uWrXL50lWPHj+F6Tq6enUjSJMZ1PIaDIcViAZFl3LhyjUKhiO0WcApFbM8kIabd6mBYBkJKLN3i6qWrWJ5Ha79NlkK5WCEKYzRdp1Qs0261OLQ4j0gDxqGPOVtDHJon/up3iRabGChGGRjDMVocw3DA/GfO4I96FIoe05NNomAEaZx7epo6w9DnyPFjaLqJ7/uAYNgNee+td7GMhOOnDpORU/r7vQHj0QjTcSgWiygpiMIo7zkWCqVpjEf+gYIwWLbO7MwsUmkgJRtr6wx7fWpNDyEyLNsBIWg2J2jUiuzvt2k0Jzlx8iTzi/NYpmI0GmBWJhDnL9ItFXn8d36dNBviFnTOPnmKL3/5GZx6fp7omkJXOlmmM/WNH5KtbCB+5UvIQgNZaOTPgLsencLJEAsJovFhP/IkidECF+3cDLe6r/K5Z34JIXUmJxvsbu8xGow4emQGRw8wrRQhkgNGiI4fjNnd7qO7BuWDQTS3aBD4AUIEeJ6Jbkp0W+SDUZlAUxpC5J6yMksI/ZRbyzfY3tmnUqmztHQE1/O4fOUaMYI4E5gm1Kp1Yj8mHA6plS3ieIhu5AN4qVVBahoyzgWTwiBjdXOfuaXTlCfmaUzUWVvdoVLLWR9xAudePUejXibw+zi2xXgccvnSVaqVArWSS8EycC0TJSOUAqVL0ixDKoMkAd3ILXBSkZFKmyjWELqDabp4rgP4JGlIluXWY37goymFpgyUMsiyhCAOsB0XhCQNFHHko0lBFFi8fWmDIHWJ0djvdvnyL/0ihw4vEacJR0+cJIkiFBlHDi/RHXQoFgv0xgFTc3M4ro0/7mEGe0xUMyxrhNQiDLOYDzZoGntdkMY0p588i0ZEu9tlp9VnYmKG6+9eYmPrGvu9lNX1bdJ4j+2tDd69vMnsTI21rV2m5hYwLJvW7h6L84tsbKyj64rDR5ZI3Ai3VWViaYoXW9/lRy9/n1/8O5/n6o3r7G5f5kj4pVy5/3NJLnR1Vz4lhTjIijKkyN+TpTkr44586rbV00fy5HuklrcB5YPyuDvzp/vFvXKrD30mklxpXtPJ3ldD/ZtZIn4aDx+fAte74pPQR3/ceR9m+o+rfD7Msj9+e+63/IcDrj+puCdw/b0/IFveQP3aL7y/L7Ise7+H9U7wehuA3gmCb/fA3nnz8X0/7wU7UNp9GN/Xh6l0PmjAIk1T4ji+Y32f/JgmSUKapu8LST1ovbe3N5WSnJ2WoZEgwjHhaMDKzVvMTs/yyo9+xHZ7n5NnHkdqJq+/9ga/+Ru/yROJxPvas4w+dxahoFYrMej3KM+Cpuvs3oxYXllhYXGJvb02165fZn097wnt7HeplCtsbGywtbVFvd7gO995jjhOmJmZRWk6bqFAkkQHgMlnZ7tPvTYJaZ4gZKmgWCmjNB1N11G6QRQnDMcBtuORIXHdEpphI6UgTRPG44A4zrAsSbe9w852m/nFQ2i6wczMJJnIqFRrZAhmZmbJgAsX3mJ3t8Vjj519v4dzv9PC8wqQ5eSuMAoxTIuN9Q0cx6Neq/OtZ7/Fr//63+fm9RsUygUsy2RjfZ3r165y+NAxup0+/f6QZnOShcWlPGEvl9F1nW63y9NPP02pVETTNRzLoVqrsra2gh/4eG4BqRRS5X6xIgOylDiO0DXtwDYkxTYN9lp7uF6ZNIGJRo1qvYShGyg9p2oO+l0MQ6PT7ZBl4BXyQYAoCjF0E4QiCiP88Ygsi7FMmzhO6fb6aErDNG2OnDiGYWgYuoY/HuG6DqPhkDhKckuZLMX3x7iujW7mNkFBEKBpCilAt3QyIWivXyPyuziOi+5OoHSHceAjREqWZKSEBMGIOAoYjvo4toGuW6SvvI345Z9D/OxnQGZEQe75eO4HL3D8xjZWtcy46lDwCgwHA8rlElOTE1TKRaYmJwjDENswSJOQ2elJLEOjUCgwHA1QusbioSWkrtGcnMQpeqTpBwOSfjDGMAyyA+qyoedWHLnIj+C9d9/DMHPaOweiQuJA2VsKhUQQRn6uyCrIlZoFgMTziiAUcRpjWAfU2jAkCiLiKETJfMDRcz2C0RjP8zh/7s2cCaBg1B/y8ssvc+nyNSYmJ6nUSnQ7XUzTwbQMdN3AMC0sOxdyEUqw32oRBj5vXniLy1euIshYmJ9DZPl9ZW5+/gCUgaZrxHEOXFp7u/T7fYqFwvv3MK/g0pxoYNk5jfPmzVvUqzW6nRG1Wg1/PKbdbqPrOoPBkDNnHqVSKZNleZ9kbpeUcujQEu32Hl7BQRMpnf09nHoDcWgJ/uL7yJOH0YRkdzzGkRpmd4i228FJIalWKBSKdPc71A6u7SiMcGyLteVl4iDAcW3SNEIgEAIKBZuhP6a936U5MYVpmYzGIwzNRArJysotqtUKuq6xt7eLpimsLCMYDImFQKn8fmPaFmmS4jou5VIJqQRRmJJlcO3aDYrFEltbmxw+egTLttB0HcM0SVNBt9thY2uLYiqpi5RLJ+ZyVsjENJpusLC0iOsa2JokjgM67S7/7T/57/lNtwkS5K8+8+H7/d3AtZkimh8W5QNQugYqQH9hkr9O/jus8CTHjj7C2++8iW5YLC+vsr2zRRbsU664aBromk4URWiapFCyyWRKkgSgm1xf3WBmaolBv0uxYGEY+SBHlqRomnpfGBBEfl1pDrOLR7FcF9NS7OzuU6vXaE40KFeKTM9Ms7O9SaVcxbVtBt1dWnsrVMouhq6hGybKKuTK0ePck1oIQZRkhKngwlsXGY8TlpYOsbK6TrVWxbZySykpBXGcoGs2ly9f5/SZ07x5/lVmZyqU3ATH4WAASqI0QZolIASmZSLlQSU7A6F5NCYWiZNc6C2NhqhsTDDuHlj5xBi6giwH8GRpnmsgSFNJEgmUHRMkIaNA8oOXLnLy9NNMz8wwNz/H7PwslUoFx7XZ2NigUnbRDirSSLi1egtD11lZvoFBwuUL51i/fpXp6QglQ0xNwzK9A6G+lP1uQBS5TM8dp1gtEfgZteYUk1OT3Lp1hVJRkQYJ62s7tPd2ObowQRyEdDo99vZ2ieOUxcUFWrvbHFma49nvPMfhw4c5fvw4cRwTJxFBGuLtlbl5ZZXm0zWqjQa3rl1Bkwkn1d+lWm2gPx2hDgQ275e/3JnPZfdQFr6XBsm9ZUAfvqD0cd8/KMfPSPO1ScUH+fKnwPWnFZ8C17viU+AK/08ArunXP1AVvr0vRqMRWZah6/pHgKumae9XW++khdy57Dxxj9B1/UMV07tpv/er0n6S7Yc8Cb4NXG97zf44N7c7vWrvXu/9BKgSqYAMlabsb23yJ3/wf3L5nStMNpokaczpJ57g0LGTpFKj3+2SpSkyDJj5H/5Xtmca7KuMfn+fSrnE/MI8id1GCslf/skrVKo1dMNECMHZs49y6NAS/f6Av/zmX1GvNxmPh0xPz6JpBhOTkwyHI+YWFvGKRTbW19GVJPBHpHFIqdzAcz3+1f/xr1hYmMk9Tg0TyIV6oijCsix2tndJEvjKV/6ULJU8//2XePzxR4GMcqmC0jSSOCCJIqr1JkJIFhbmEUoQRLl4U61eJwhCUgQz8wvUq3X2Wm2OHD2KZZkkaULkh7zxxhvMzMxSLJdJgFKxQLlUwbEdnnj8caQUVMpFxv4YqWkEfkClXMGxPVaWl5lfWERKyXvvvcfzzz/P44+fQdcVQeBTKuV923Ec5Q8/kTH2fcZjH8fOLVE63Q660kjjhMFokPsLegVarTbraxvYpoFu6gyHY7Y2tun32jxy8gTD4YhbN5eZaDSIAp+i51IoljBNi8FgQL/fz/tEs9wadX19nULBQwhJq9XB84r0BwNcr4DrFBC6JEtThoMhlmXR2mtRqVQwLYv33rvE7MwMvj9GUxKEQDOM/BqUkjRLCGIf21T0tm/S63aZmJ7H9CaJEolhavj+CEMzkEqhawaa0tF1M0/8hiHyhTeI/uv/BBplyCANR9iWznBri8XL62CbDEoOju2QpSmakhQ8h0Gvi5KKNElwbZNysUCv08lTDSlxPJf6RAOhCerNCaShIzUNPwgP6HzZ+wqTaZKSHfQnGoaJlJJBf0CpVKZQsJAy76f3/TFKy3t7u50BWZpbpwjJgVWVwjAMpKbwvCJuoUitXkLpCj/wcy5GAouLc1y+coUTx46zcusWumaQZBlTU1OsLt+i4LqMRiM8r8jp049hOQ71RiUHyn7M8toqjWYzT7SlYjgaU6kUmJ6aoF6rUW80efvt93j8sUcRZHS6XTzPRQjw/YDnv/99CsUiWQaGaVJwPVwnt4Da2NygVCod9M8J/CBkc3OTaq1GkqS88drbTE1N8t5773JoaYmpqWnqjZzW7LoOaZr3JeqmDmTEcYDt2CRJQmd3C8e20HSTyHDQjs8TfeU7ZI8exVE6saFzaX2Nku1gD33C3RZqZpLnn3+BYrHC9Ws3adar9LsdFuZncVyHVruFbgiEUPR6fTJiLM9ldnaeKIpJM/AKBXrdPi+99BKvvPJDnnjicZIkplj0CMMQ79YW1nBMNlklSxNGo1Guriyg1+tScF2k0lCazqA/RNctSqUy9WaDKA5Req7GHCcZb114m9m5KaamJkgsDfPCFeJRjP3FL+AVcx0AzbRIhh3arT1u3VxlojHJv/if/zn/sDafe1v/yjOkm++R9Xc/RBX+uOdSSoquS4LXfIZsEPQ9Ovs9dEMxO7fEj147h1f0OLFQww/6WJZGHMUoTUOI7KBH2UIpgWYU8ROTYS+gUi6gRMp41McwdLIsJiNDSkWW5Wqt/kgSxiZvvXuLyel5jj9yjGKxRqu1R7FYZL/TxtRzWr2mFFsba2TJiMlmEcfU84EwpciUSRqHJMEQIRRh4FOt1xkFCZPT8wgsRn5OkxVC4lgmmqaxvr7O/PwSQmi4TonvP/8C+61ddBkyPemhZIpuaAe+oAKEyIX94pAUiabpRElGKj3WNzsADLp7RON9lAhIwjFS5DZe49GYLBNIaSBURhyNMQ1FHKeMxjHvXNkipcD5Cyu09jOOPnKUeqNOuVICyMWXkFiWze7WNqSSXn9IoVjCMmxiP2V9+SqeHqCl+5w80iCjT6lQIEsgyxISfFJMWu2E5tRxrt5apzHVJAxiDNOk1+tz6eK7XDh/nmPzTW7evMpEw+H40gSNqkOl5rC9vYftWPQ6Hfq9FqYuOHr8Ud66cIGJiQlarRa9Xhe3YVPcbaAmJN/b/gHP/MK/z19/+5tUSjo3e69yOXqLY585hlOqfGLgeifr8G7gKqW8bQT14XP+pwRcIbcE+4BNl3/2afx04lPgep94UAXufjTeTwrq7rY2uRcA+XHiXpTXe6//A9XbD4O3e1+wD/v7Ps6/9oPR2A+We/c+vRO43v5c13V0Xf/I77uf8u/d1N4713P3Mu4GsvfeL58sbq/zTrGo+1GFf5y485y58zcKIQh9n2AwYv36Ta6+8y4zUzM89eTP5lQmUxGlMZphojSdOEgZjUYsffU7+DdXCE4eYeSPOXv2DI5tsbq6Rnt3iCkqbK7tU65U2dndZXZ2DrJcdKLb6aLrBqdOnWRvb4tXX32NyckZKtU6WZZSrVZywQqRUS4VcV0Hx7bZ77ZZXVvmyScfA5kgREK/P6LT6VAuV9jb3WM0GmHoJq+88gpPf/ZpkiRhNBoyMztNluUUxTiM8DyTfn+M6xXQdY0oiQiiCNvz2G/vYmgKy7IIw5g//KN/xxc+/3mU0rjw1gUWFuawHYPhyKdez6mXUim2NjYpeA5rq2tcuXqVtbU1JiaafOMv/pxTj55CKkWSpFRKFdbW1tC0vMpZLBWRSmIYBp7nMRoNqDdqjMc+e3stSqXcWieKI8qlMkoz+OELL3D4+FEsy+LWjZs0a3X6gwFf//Ovc+rUo6ytrXP+/HkePXWSLIspFYtEYcTxE0cgE7z+2jlmZ+dI4jjvpctShmOf0WiIbdsYusmgP0I3DFaWV3j+e9/jscfO4noepmnmtjWWRZwkmKbFcDRAlzp7O7tUq1VMOxfmCoKQUqmEZZpYtkEYBBimCQej4LqmyNKUOA5RacCNi2+SYDAxf5JUGQih5bQ8pUBoZJmGFDoSDSE0Bv0R7/7Ft5gqVej8o19G0xRJnFK2dG5eu8pSvYHzwgVwLLpFj299+9ssLC4SBSFjf0y9ViOJI6LQJ0kzNrd2KVfqaJZJsVzGNM33f4dumkRJQhTFaErPqcIHHsxBGOZgUx5Uu5OULM0O9pUiiaOD+0jeeycO/r/49kXarR3q9fJBtU8dUCdziywpFXGSkKbhgfJxhUKxSLlcJ4hGzC/Ms7q6RhDmljXN6TmSxD845jWUqejstzl89BiVWpk0C7FtkzCImJqeRErBysoynuviB2Mc22E0HDAaDXLAe+YxLl+8wKHDRyiVK6ws36JaLrC71+Ktt97i7Nmz2LaDVJLVlRU8z8OyrJz1kaT4UYRlOxiGxXg0pljwUJrg/PkLTE41kRIc2wYgSVKkgOGwR6/fo1YtE8U5QyaKQnTDQNNNip7L7l6LW8trzMwsEGigJuuk33iezRMLVBJoNBtgW2SOhdMbQhDiFxx+8OKL/MIv/jy+P6JaLdPpdEkygaFp6LpEKR3bdpmcnsCxHMgEl69cY7/dQdMUYRjz0ksv8Y9+67cwDR11kBRrmobR6gEQN6rYtoPrOuimkYs3KYWmFNlBO4hUiv6gj+3YXL1yhSQJ8Dw3V1ZGUbA1DB32223GQHFjj46UqC9/Ed3SERpohqS7u0O12aQ5M8s49Pnd3/ltRl97FttzEb/yDNG5r5G2Vj4kznQ70osa2a5ETX748yRLCMYBN390nnnOcuSxI1SqE9RqZQbDMd1ujygcMVXRcT0D29bRNT0f0JQwDnT2WhG2KVG6i+NNM+wPKBYdkniMZUqSJCSNg/ePe5bmKs/Lyy2CyKTViRmME2y3gK4btPf32W+32d3dZb+9T7lUodfrkiYBi/OT7G4to2uga3nLjWYX8Ed9En+AVDpSZaQZbO/1UZqHQHD4yFEq9QYCWF9ZxvEKXLl6FdvxcB2P6zeuMzW1xNNPPs7mymVqFQvX8QhDnyRJSRJQQiNJE5SmEYQKsrzv3io0qdXnsVwXkfmIdMTO5jKSjCyNyNIUwzBwHI/AjxhHGbqhkSYRQhkovcC580Msp8npx36GIMrIGDEzN4dhGBiGges4BEHArZu3WFw8RJxKlDKJ/ABTSd678CZzUy6VQkSpmJIxwDSqWKZDnESEkU+mBGhNwsihWGlQb+R2ZVmWsbm5wc1rV7ly8V1MzWSmCfMLNeYWajhagtIiNDPm2KHD7O3uMhgMOX7iEV579TW2ttv0el1M02RqagLDMCkUS/j7IXpioH9OMr+wxNe+9lWeeuwYFy++SHvUYv7oYSYXj3Db+eF+edbtv+Igf7udJ96vjevuHtf8+/uz0O5FH75XNfde0370swyyO1vBDj77NH4q8Slw/THik4zQ/CSW+7e3nHvQLx4AXH9S23A/0aT7Add7TXdPenHOkfnY43OnB+qd67x9c7zbaudvGnfedH+SwBU++ltvb7dnmTz/7HNcefsSx46cpDYxx7vvXOef/97/ws9+6fO59UWacvP6Df7q2ef43/6bf8ZvtwL6T52hWKswGI1ZXV9B0xS97oip6mGWb24RJymf+cxneO313CLDc13CMKJUKnHixDF2dreo1ctMT03z/edfpNFo8r3vPcdjZx5le3uT0A8YDAdIpdhttXBdj2qlxmjkM9GcQFM6Bc/FsS3arT0ajRqObREFMQtzs1QrJVzX5OjRpTzpVZJGvUGWQeAPcLycwtrttFC6RiYlyjBpba1SLnj0u12k1Dhz5gxKanzta1+j3W5z8tQJhEwxLIdBv893v/Nd5mfn8FwX09LRlMbs7AKTkxP0+z1OPnICoXI6tmM7SCTb25tUqmXKlTKWbTIcDWk06limgePaKHUAbC6+R7VcxLJM/MDHtCzCKGFuchLDsRFKEUcRrmkThCnlcoXBoE+5XOSJJx5DSsFw0KFULDAaDlEaGLpLtdZkZWWVl1/6IY+fOc2tmzdzH011e9DHYDwODnr4BI+dOcM48LEcF01Jxv6QjJSx7xNFCYbUkUIyGIxwvQKW46Kk5Nq1a8zMzBInEZqmaLdbOK6LkAohFUkck2UJjqkz6u6yev0y5eYSxYkjCJUhhSI96A1OEoUQMUJkBP6YnZ0trly5xOmxYO2Lj1P50lOQZbz6+jn2blxGJgnhXovye6vs1Wx83ePVc69z8pFT1OtVhIQ4SRj1ugzGI6IU2t0haxu7PPn0UximiZSKJIp458LbZFJQKpVy4JFJOq19lJHT1HOaYN6zJ7id0Nz2fs6tF/q9IaZpI6UGSOI4Y3X5BqdPn0CSIYSOP47RpSBN45xuekD9t3TFYNhH13U03UBoOrohiOKY9c1NHjn5KFvbO9QmJrEdDc9z8P0UyzWJIx/LspG6QmopURigKw0JREGAaeiYus6z3/wmJ0+fQWQphpHb1GiGwcbKMkEQcP7CBU4/eorNtVWKlQpf/NKXyDKJZVtEUfT+YIDv+2iahlfwQBns7bWxLBtdVwgSDF1RqVap1yukaYyuGZiGxXAwwLQ0DCMXqVFSkWb5vtUNHSEUKXkvt+25BGHKG2+c59jRQ1BxYRQQvv4O3vw0Wc6dR+g6IgrJsozyI8c4ceoUlm2QZSFxHGM7BZThohDohgKh0HWbd965yKCzz3A4ZnNtkxdeeoGCW+C55/6a3/gH/4BvfOPrQIauq5zajUTtdvL2lMkJojA/fp1ulzAMcCyb4XCIbpoH512MkGCYOu2dNosLs7Rbe0RBghQa8XiHIBiSpgrDLqOUpLrVJv6PfpkwHeMWbVrtXSaqk0jTIRQCy7UQ6Zidf/1VKrUm4le+RLKc2+HcC7jGX7HJljW0z8Yffk4ogalZ2FYL69UneLX5v7PyWoiuK1rtfZIoYndrmWjYZmKyklOCyc/VjJTNdsArr17nkeM1EAlBIPD9CNtSmEaGplLi2EfKnPU0GAzRNTNnOBQ9+qOYKDWo1Cc5evwYq+vrFItl5ubmIMloNBrcunWL4WDA4sIM71x4DU1GOJaBrguE0EAzEWlMGo5IswxDVyQJlMozXL22SWOyxOVr15iYmqHdanNkaQllGBSKRZI0wTB1qrUyFy9e5Mb1t3jysSVMLUApkQuR6Rag5TT+JGdJnTt3BdNwMS2bRFisru9SrjcIx11sI0NkMbbjQJJ7xIZhQJpl9Pp9vv3cNQ4fOoRSOhtbXfojxc3lfYSecvXmJc48doZDC4tkMmNjc4M4illbXWNleZm5mVm6wy6O56ApuHb5Aq2tmxw/XCSLdzCtnM5s2JUDMb0hQegjNZc4LtMawiOnniQlxivqxAF859s/YHd7C5GMiIJ9nnryMJ4lMF0dKWK0LGek2a6FJVPq9Qat/SHXbqwSRjDyAw4tLaHpGmmaMDU1RZxlhCKk0Z7Gs2z+/K0/5dXXXuOXnnmCzRuX0DUb6ZgcfvTJvJp8n/asD+UxHwMa3wep4l7ff3Teu8U1HxSfLHcWB4ybT4HrTzs+Ba4fEw9WjeW+393Pg+pe8zxsNfNhlWXvPd1HhZiEUHxEPOhjjJUfZjsf5uZwd1X2buGk7C++l1cn/v4vkKbpgTrkR31R74x72eDcWdH+EIC8AwA/sKqaZpBlZGmGFAIp7g09syzh3kJXH7zSNMkFCP4mkX1wrMjyl0pz8YhMZpjCQB9Jrr93mfWVDZ586nNst7v4IdzcvUmzUqTkWngTNUzDpmGXME34D350nV7BJpyqYFkuhmNy9cotXn/9PLOzTTQrRGaSo0cPoWkZhw7N0+910ZSObZsUizbXr1+jWCxTLZXx3ALdbo+JZoOf/dLnica7aErn4jtXmZk5TJJCpV7HMkwQEbajEYYB+/t9hNQxPRtkhmXotHd2uXzpOi+9/CqnHnsCy3ZxHAsjHTEOI0ajXm627lbQHUGcxSjDQjftnHqaglcskmISxKAb5kEfZkyp5HH6sUcxbZswTNCEwNRtXnnlVZ566jN0OvsoTefCm5eplKvYjiLLIorFWl7JNE00ZZBlklK9iGYe9I8mGVJpmJZ5QH9rMR6FFEse5UoBy3YOkjsDyzBJkwgk2KbJeDDAdV1SIGZMpVIjQ2HZNmkWIoSWA3Ty3rko8jEtF6liksTn0ZNnuX5jldmFRcbjMdeu36BQ8HAci93WFtVik2HQp9wo0t1v4+gmSRoxGo4oFHP7DuvALmd1bRXD0BkM+jiuQxQGFEteXu0QglQYuE4RkYaEQR9paGgK3jn3CrMzc3Q3L2B500wuHMN2MqI4Icvyvi+RScLAR0oTQcrQ7xP4Ma33bnGkN2bzd/8hQjf59je+w+/8Z/8FP/P5sxi2w/rVVZa2uviHG4z7XR49cYxiwc4p1Y7H1tYWXekWwQAAIABJREFUg2Gf4Shk6ehxZhfmmJmfwrENgjBEKY23L77H5Ws36Q19jp94JK8EIHjue99nfmYOKTS2NrbJ0hTPs4jGQzSpEJoGAtI0BmkilGJtdZVK+TYVTjI/P42UNlGSYFomgR/T7exTKVeI0xSUQGoghIGUBuNxmPdza5CZOmmqMTM9yXDQ4ZUXX+HkYydJM0kYZ2iGhqYbuK6ReyV39xn1RhTcIoZhMPQjDEvHciyCKGJqegbb1tF0jRu3VrlxcxXPKzO9sMRoNGJhZoJ6vYjmaNh2AV1TbGyukyYxy8vLTE3OgwDDlAiZMRyOMY0i/+b3f5+JZoVGrXjgTVvFsgsopVGt1eiP+qQipdfrYRoW3e6AWr1JmoIyNDqtNgUrH8xJ0wMVeKEoVSpE4RhdCcJoiDE/jfWji4hTx5BhxGg8ggSMKCZVEjFdxTQUUTTG9wOk0hFC0t7b4dK7F0nTlF63Q7FQYDwKUKbELXg0mk103eLUqdMUyjZzczNI4PSZ06RSEiYCTTcw2x2UlHQci15vgCZzT1zP8cgShW2VyEQAUYwmJY7jABAO+hQ8i3a7xZ/92dd55PgprHIZyy0jNYPW7jblpTnEG++S3lwl+9JTkIJlW4QjHzKFoZmoJEWGY/w//z6lSgX5q18gunUOIQT60tPcdhC4/Upf1/Pn5l2qwnGk8ITPG6tXMS8YUB4yWTpJJjKOHD1Go1pFZD7HF6cwDYUiyxVhTZ0gCZisVZia0FGaxaAXoMuU5fV9er5PteIihU9ADpaTTNDeC7EtDyEDZDpmvye5vtZBmZL5+Rq6MqnX6mSJYHllhY3tNSYn877pbmefTvsWSzNVHF0jlZJYgG0XCEYDkClJqkiFYHOnTak6yd5+h2p9kolmk+VbNylVq1x4+12KBY2CV+D8G28xNbnAqz96g3anTdBb55FDFYSSxKnAcgRRXOSb33wbZE6XlSKkWnQpFxzeurxGc/YE87OzhOGYqmcy7C0jsog4KIBTRuk6lqVI4xDTcKjXCvR6feK0yHN//Q4TUxPUJyZ56umnmZ6eZW5+ltFwRLc94uiRI1y+epGjRw/hmmUSX9DqDVi/fovdm1fQ0x1mmim2FSM0A8Mqoesmiox0lFvBBbHBbldgFhaZnp5HKTAtk37fR7dsGs1prl89j6Pt88wXjuHYipdfvszcXAWla1y52sbzyhhmjBKCOI3Z3NzCsTQW5ops7/bRNZVrOExNUKoWSCMNp2qj75r4yueP3/kKj549zM9+7ss0N89i9qtc617kmZ//OTzHJSXvCZUiA/HR1ich8n7iO9/fmat9OIdTOV2XD3Ki+zEh78yx7849HzYH//B0t7crPWDSPFjU9NP4ycanwPUnGD9OJfbHqeg9LHj8CLXho1N94nV/0u24X9xv9Ov2TSr9+veAvOIahuHH0o/vtz13Kjc/7Dwfmv9g3tsUlyzL7jki+HGjbQ+ioMDDD0rc7uH48A06O+j3yMiijH/5e/+S1u4+N27cOqBwSuqNKl7B5fSxoywtLeCT4A98emvbzPyLf0O008L4wmeoNcqMhkO2dnZ5/OwTHD9+nKWlRYbpFtVmgZXrm9QbdXzfp1QuE0cJ129cw/Ncsgxsy0bTDQZDn+3tbQoFF9s2icYRYZSwtb3Fpcvv8cSTjxNFMVEYsNfaySsyKVSrdaJ4jK5ZaJpBHMVAQqnk8tTTTzLy+7iuRRSN2FzfIBEK1/MY9nsYdpE4EUAuLpRTUvWcrgh0On0CP8QwDWzbAjIc10XXdAzDpD8cYBkGaZpx7NixA9pXbp8ShhnPPvstzpw5eaBuHbG5uYHjuly7do2r165RLnlkSa6q+87bb/OX3/gGT3/2s6RJSrlcJoojkiTBMg3iOMaybYIgICPvJwz8cd7Ta9pIoUDA9vYuUhiYpsX58+eYnp7AcwskScq//YM/ZGFhjmKhCCh0XVIoFLhxfYVz585x9folSqUyTz6Zj3b3en0a9Sbb29s0JyYZj0NMw8I2cwsb0zTRbotiqbxy6nku5kFPuVfwWF5eptlsoJQizTI0qZGlCf6oT3/Qx7A90jDCsyxMI2N77RqoItXJ+bzHVEiUlERRDJkg8EOQKZoGQgoKdoGlizdJf/c/Zr1W4p/+k3/KzWvX+cf/1T/m0OIivW6XV773bb5sNdmxFI5tMxwOsCyLJI4ZDAYUPI9CoYjSTaZn5tB0Ha/gIbKcuj0YDpmYmODUyUdYOnQkT/QFxEnK4cNHsN28Knvu/Hl2d3cplYq4tpH7XwIImVNEs3ywrFgqHlAqBWkSgwCldExTPxDDst/vbfYDH0PXIM2vWiHyarg4EGSCDEXuwWgaOmtrW8zOL+bq8ELgOjaGqTEe5bZPmm5gWjZIxZtvvkm5Uj2wwwkxTQPHzi1VBoMBzWaD+fl5sjTFti0qpRJZlrcJpFmG53rs77cxDZM4jrBMi8uXb3Ds2FF0XdHpdCgVK6RkRJHP6UdPQgabG1vEcUoYx1i2lduVyLxH8it/8hXOnj1LpVImSRJc1yWKU/xRcCBakyFUPoARBGF+Hfb6bG9uMr84R5CkaEIja3fBMjBNAyUVKghyQNMo0e/3MYxclOq2CrBl2czOz+EV8kEiw7SwbY+JiSaeV8B2XCanJvE8j+bEBJqmMzM9C0JiWhaW4SAFGK39/J48WaXgOcTJmDjx0XVJnEQgEtr7exi6TuD7ZGQMR0PePH+ecrVMY2KSbm/M/MJhNtZXqVbqGLqBZdv0BiP6G9sUCwWGzzyJ7dh0eh1c28a0DKIkZjTqsXzzCsmFy5Tn5+CLT5KsnEcIgbb41EEV+oNIX9OBj9rh5IyCANP1uPqdZ5kzvoDdKLG+uU7gh/zw5Ze5desmlZKPV9CQMmE4CNne2sdzS6RZfED/luiaSRhFHDnxM8zNH0JmEeGogwCUSMnilMuXViiViwiR4jgNXnn9Gk6xiVSKmYlpev0BO9vblEplOp02cRwxvzjLxvo2/W6PuZk6tpkgRe7vnElQykKKjDTxUSJnSynNJpM2M/NH0S2PNJP4QcjM1Az1Wh3dkOQ9zkMmJ6YYDkekmU7BUpRcndZ+F113sKyIQX9MRkqlquHYoClIkxhNatQmFyg3FhgMRqRJQDzu4I9bpGnGOxdvsLG9xfRElSQJEAegv1Cs0h0MWd3cZxCAXa5x8sTxXCjP0BiNBmysrXPi+CJ77W0ycip+r99hMOzSqNus3rjAqRNTTEy6IELSNEPTjdwrPAoYD/skiaDTj2n3Ug4dPct+38d2LLZ39rAdl85+n1a7zde++kc8emKBpfkqpp6SJgkTzSa2KzEMnfZeD6VSNC1ExBmmaVOrVGnWylQKGlJp2LZNlgnW1jd55JGTjAY+6+srlKwSVuhQ+js67W6Hr/7RH/N3C/8hM+4R/vXr/xNepc78wgJOsUyeQt0fuGZ3vL/X9x98cO9+1run+3ja78PFg3LI+9GUP42/nfgUuP4E4/8PwPVhK8kPs5wHAtc3LyFKBeTPffZ94Phxca/l3W1dc/d0Hw9cc+B7pxLxfQxtHryc2323D/j+YSyQxMED+0P7L8sQ/zd7bx5k6XWe9/3OOd++3K1v7z3d0z0bZgAQIHaAokxFCinZsiVFVS6HcZWjcqUqzh/+IylFcayoHCXlcqVccZVKSiWWRCmWZVIkRcmkSAoESILYiH2ZGQxmA2bt6b1v3/1+2zn547sYDMEBQIEUFVfhneqa7tt9z/fde79zvvO87/M+jzFY2vDZf/cf+I1f/xcs7TvMpz71t9m3uMDcwgxh7DHRmMQ28M1vPEIu4PmvfZM7/s2/x8k1g3vuwHINFy+dZ6IxSVSrcPr0GbIk58zpc8wcK/DrEJpZbMem1+8zGiXMTM8yNTXNzs4uyrJwXIf+KKU36BP4LtPTTXa2Njh9+hqT01M4Hhy79RDD4ZAXnn+RMPDxfY9arY5tO+SFZmfrKtXKJLu7Awyw12tj20Vp8WJZCATDUUIU1vErEzi2Q7u1i+X4JQgARsMhaTokzxO2tzYQxuFPv/CnHFg5QKNRRSkBwuC6HmmalZthIdlr7dLv9fnmN7/JrbcdxbIk7U6bwK9w/PgJjt16GBBYlku9XkcKw9T0FCdPnGRhdorQDynynG88/DA//3f+NtU4xnEdzp49y7lzZ9nY2GRhYR+Oa2NZFqPRCM/36XW7VCoV1q6t43oer7zyKqur19g3f4DXTp5iojFBr9dmfn6WVmsPrTXL+xeRUrK708L3PdqdPYSQTE/Ps395kYOHluh0+kxMNBkNEwSKXm9AXHVJRvDoN55genKKIHLR2rC5uUkYReztdVBK4fseAoFj2xRak+uCqelplGXBuLooJVi2xOgcxympdpZUxK7N+rWT+H7A1P7bMMpHG4kUBiUt8qwAIzj9+mmqjRApoLfXo/ulb9DdN4v4p7+C7dgUWc5v/ovfAJ2ysbaH40ruOLyP2dfXkWFM4UiqcYXhcIhjO+y1WuR5juWHrG9sU5uYxHadMvElxlYtfinaIqS4Xn0XAtRYIVLIHKkU+/YtsrR/P0EQYUxClucYJNubO/iuhxqLxhR5jmVJJBmKHCPKvjipGCtfC4zUaKNRQpQ+vIXGCI2QUOQ5Ulj0+xkWBUo6JZA2OcsHjvDKKyeZmpoe94RK2p1djPRwvKC03JEKLwiYnp0tX5d4SxCq7KdFiLGtVEKSjvA8B0vBaDTAsixcL6LfS0hHXaYmJ2nv7ZUey2nG17/+TVZWVsAIisLw8MOPYETKT/zExxBC0B+MUMplZnqOIHLp9roIIXj2uReYmppldnqK6elpNjc2uHz5ErZtsbvb5YXnnmdnd5fllRVK+xSBZZfWEpVqjempaZRV+r6Ka1vQ6SMrEVLKkpKaZEigmG7Sau2ipF0CTs+7vpZatos9FlJKkpzPfOYPaNSbrK1tIAT0e13SMVth9eo1Pv/5L/CRO+7Esm2eeOwxJIKJrEAAV0Z71KoBudYlhVhZWLbEti0sy2LQ7/HUk0+CgOmZaQ4cvoUgikjSgpXlQ2zvtLABJSVJmiIti3avi7yyTtiok/z0/Xi+SxgHYAqSdESrtYkQBc3pKfxPPoD78YfAstFX3gKud39/j+u7AFcjNJKCdj/l0okvcnDnH/LV+LOoNZ/DR46ic0Ol4jJRdQkjD0OG7/n4vk8Y+aALpKBsa0hLkZ9rWz3OvPEmjiwIrBxLZJBrLKUIggrnz1+gOd3k2lobbUoWgKCAXJLpAqMNk5NNrly9zNGjx1C+ZHZmEZ1qzp95hfm5GG1GFLlB2hauFyNMQTLqYwmBVA5bO31S47Nv+SitdoLrhdRrE0gheOnFF9i3vB+jJbOz87z88suEocely1fJkz0OH5zDizy2NjbwHAm6YH62QrUqKbIc32lgKEpPX+FhrBhLuWxde5MwKEAnKMuh2qjj2Ba+Z+HZpc9soQ3D7h5RFLG502ffyjHuffAhBt09vMBFKPB9D8dS9Pu72I6PEhH1+gQb6xexrBF1d0CjmhN4I4zJKLQ1rvQX9Dpt0Jo8N1zcGKGcWTa2YfHAbTQmGwgh2NxuEUU1Xjt5gldfepaP37tCNtpmaaGO0COUNEipESIjTRNmpyepVTx8T9EdKdrdhFojwnNzQt+mWgmoVmI2NnfY2m7TbM5x6cJ5Dh06iBNauJdjBt09nGMxf/bFL/Mr9/w3FMWI8+oR+sPy3jEzN3edtfJOdt+PGri+VzHgQ+D6n3Z8CFzfI26cKD8onff9xnuvx35UoPBm490MWN24cPyg4kM3y2i9ReG92ULzQfpEhRCoT9yH/MR9Nx333c7HmFJQI0mS60D3ZovXzfxz39nren38G47zfQ9+T5j3fL03esa+2+t4Pyp0eWj5fUAcIbC04fWTJ+nv9bj//oe45+57iOKQ5mSTLM+4urqKMIp/86/+Dz7x8Y/j7Xb4yd/5EkPfY+PwAoPRkKJI6XS71GrT7HX2WFpcJElG6KKgsShwHAs5qJeAQmsmJibZ3Nxib6/NY499h3q9gW0p4kpMHIU0JxuMRkMee+w7RHGd1WuXmZqeZLI5QbdT9onG1RqjJEWMEwLD0ZC4WgUjefQbj3L+jTeI4wqzU7MM+wm+6yOxcNyA4SDF8QJMkWELw9e+/jDzCzMINJYlGQ4HuJ5LFIX8uz/8Yx588EG0yYjjgE6nhev7GANr19awrRJwSQmNRoNbbrmF4WCA49h4vsugnzEzM8vCvlksZbHX6nDp0kWq1QpSCW6//XZsx2Z7exvPL30hF5cWseySjh/FIUeOHKZSqRCGFbI8Ic9zdFFw8sQJZmdn6XX7jJKE06fPcN+999OcaJKlOVmeEsch1Vo8Fidz8YNg7KPqEkchfuAjBCRJRrvdZ/XaZaZn6iwsLDEajZBKsrW5Ra1WQyjDn3/pyyzMzbKwb46CDNfxAIHvh2UCwnawLFlS5BFs72zjeC7SkqRjIaNklIApe+CKLCUMQwoD0qT025sIhrjeJJkdI4SFyEurDCUVg/4Iz/Wp1+oYYchGGfXnTuPfepjgd/5XUCAoOLA8T2tnjX6/xdFjh2m3W7x54hR3bSQ4Gs6nfS5evszU9Ay9QXnthHGFialpao2J0hNXQKFzxHhN0NdpZ2qcLCpIktEY9ImxaN3bdllCaBCQ5QXKtkmTBHvsgmAo19GiSOi2toh8RWYspLTJiwQpBVKWaqvJaITv+YCg2+2VNHbAtksAfO7cBZ74zre59dbb0bpga3uLZ595kTvuuIM/+7MvcffdH0UArutiO/7YrkcjMGO1WwsM42NKkvG8unTxMrV6DSkV3U4PzwvotHY4fuIkBw4fBqH43d/9fT5yxzGQkrhSQymHtfVNsizH933anTZSSmZnZlk+uK/0l1Q2nhcQV2K++vW/YHZ2BjW2DJqZmyUMQjqdPTzPo1avlVVcz6dWqTNMhtz3wH30ul0c20GKgl5vgJCK1u4eju2QpHmp5Gwr9LOvIhZmwBh2t3cY9IY4hWbLU8RxSJ6V70un3WY4GuG6LnvtPbI8pdcrK/L33HMPtWqNOI5RlqQ5WYLe0SilOTHBLbccIYxCNJqDKwdQSqG2drAsi37k4jgWtl3l6aee4/VTZ2lOTGFbDptbW4R+yK3HbqcxMYmQijQv6HS6pWiXgEG/Q7/fG/v1tgjCgFq1grvbZbi+SfeTDxLFIUjIs4IwjPA9hziqkBqBli5njp9lfmmR4vILJXBdvhvzjpvRjcD1xnuckCCFRnkxD3/2f+eY9Q+IHggp1gQIxYnjx1lfu8LWaoswCKlUPFxPIVTOINnFtUPyPEVIRZbm2JbN7NIi1cYEigyTtpAyRUkHhEGgWFiYB5HieIqo0kAoxUfv+SjdXg8hXGzbolKNSkZDGGK7Hq3tFutX3mCyofDdHNA4tosRAiFdBv0uUpQVfW0shgnsthNcv4I2pfjehQtvYtkW07MzBGHEiROnSk/qmWk67T1effVZbj+6gOuM8AOLWsXFsnwc20NKQ56nmMIjy106gwG27eDFdXoDTb0SEwQWyWALRzFODpVieL6rKIocXZR0aVsFaBS12gyDQcbERI1Ou1Pe6wwkScKgN2D16gbGKAa9Ab4NF8+9SjpsIbIeUWCD0UhpE0UNhv0eeZ4BCqyYU2dWqU6ssLbZwUiHar2OF3q0traQ0saxFc8+/U2aNcXRA5NMTkQkwx6WJSnyAte1y/VQlgmYZDSgyHO2e4YXX36TpQMLFCah18vLe0tnSLefEARVlGWzuDjLoD/ADV3cVohTVfgPhJw6eZoDg4PUqiGnsofp9kf8vV/6RcJqHSFtEG8LZb5zP/nWNf1+wPXGa//d9tY/KtD6XvH2HvO9GYEfxo8uPgSuP8b4q0yiH/Xkej/g+kONfJPF5+1j/PVmod6pytxqtXBd93uUhd/59X7n9z0V2fHieKNgk+F71aDLY78/UH8/AP6DJA/eEoL+nr+XgiJJ+M6jj3LsyDEWFvdz6tQJjh9/mdFoRFHAr/3aP2c4HLGysI87Lm+x/3c+R/fWQ+zOTVObqFJoQ6NZZ3evy8MPP8HVqxep1SosLe0DDPFsRpqk+MUM3V6XOI555NFHCYKAer1Bo9HE932azQZb66u4jkWWpwyGQ/qDlI//5P1YlsXM9AKdTpeZmSY7u+vUJ6ZxPQ/HKYWK+v0+jcYs7b1dVpYXSNOMl19+jYWFGUyR02m3kBIGyZC97Q7rG1vU4oB+t0UYRTheSK3SQEqHvd0+r504TbUyyQsvPst9997D/qUFtE4IQwfLCSgKXfat2Q6ObY8BZcEz332WAwdXsG2b9Y01arVJhsMhu7tbVCo1XNfDmILhcAAYiqKgMDnKtrEdl3pzAstWpd3JIMFxLZI04dlnnmNpcT/DUb9M0EjJvsVF0iwbf1aaZrOJbTv0en0eeeQvmZmZZH5+GtuySJOUNFWcOnWKpcU5Ot29MVCx2NraYHJyhsCPuXz5DSo1HykslKXI0pQsy7GdkkZ96OB+4tihMVGlPxwiTOmD6bguq9euUalU2drcxmgQKPr9AUmaoaXGshxs5WBbkiwbYTkO0mhGw8G4StohH7VwXBfHn4EgRgkgSVGOzeNPPEkURGRJyuOPP86pF08wfeINojtvRf2f/4xCFiiRY1uGQXeXYX+P3d01tnYvc+TIMZ742jN8bGQgcLmgc149cZKDh44wMTmF5bjE1RrSUfh+gCZHWQLbVrzF8rcse+x1WFJyC50zGg1xPa+k5Kqyd6qc1AYhDVpLLMtDCEkQelCk5EVJ2yupwYZs0MHkQ+xgolQiNcXYw9miyEYEQUih9fUkzTPffY7llf1IJciznGZzipUDpW0HwpTeqUbRaNZoTNSYbDbfThKa0jdTFwWlD69DnqVgJEJyXcFTSkmtVi/XCiP5yle+ztFbbqdIR0xOTeGHEQbBfffeQ1yLsB2fUpzG8OxzL+I6FkePHWVmZoYwDGhONrBthVI2w1GGsiy0yQnjAKEtms0mJ06eKKnBOmOqOYWQgp3tbTzPHYu9tVlaXgIJnufwxvmzjPp9pmdmOXvuTb76ta9x4MBBPC9glIzIRkPUifOIX/4kYm2LbqeHb9kEysJe2TdmVpQgolar4bmlVZcwOZU4xHMdlJR4joPj2nQ6bS5fulyKwY0Fp4zWrK9doznVBAnD4aAU4arV6Do2QaXCKMnGG27F5OQEjYnquKrucfHNS+zs7NLvD+n1B9TrDXzXpdtpEwUOUWBTn2yytrHG9PQkSo7Vt5G0j79G5b/9NFIJLEchpQ9al/oKSLACzl9a51M//Ql+7Z/9z+SXni+v4+V73he4Xr9vUKAkpDhEe2/Cm7dQWWmyeWmb2dl54qjC9tY1KkFMu7PJzEwNxyrbLPI0L0GOVypXS2kxHIzItUJYIUVWIIpSmKnQIKQeJ7w0nmuwbSgKj9XVDgcOHaXamCBLDcsrS7Rau4RhwNbmNp4XU6QjTLZNPc6Q5AhTqnWjJLYdgM7RRYJyAgaDDMepEFcm6XT6LC0tc+XyJeYX5qk26kin9Aa3bYdapcrzzz6DklCPA7q71ziwNI0RBbYp0HY5rxy71FoojMU3v/0ye72Ehfk5NBaOG9Ld3UZLgzAdZFGQjRJsO0NIQZ6NwEBeQJJozq9lPPXCKW6/80HCuEGSDZmfW+TK1VWGw4Rut8/s9Cwzc3NYNsxOR1y7coLF2ZDFmRqOL8izBNdxMUbT77XLPnsp0cLj7JvbhLX9VOuzRJWYqOIzNz9NUWh2NzZpNBp86U8/z9J8lcMrdXwH2u3dsi9CSDACy1ZI6WE5AUZojNbYto9AsLG2zcr+GQQJQvs8+d0zBFHMXrtHu9Pl6pWr+IHD1PQMSjn0W0PyXXjOeoLJ5hQP+g+RZyPeMI+To1lf3+Shn/wptFQg5A8NXHkf4PrjDCHeXx/mw/jRxYfA9QeIm1Xl3g8QvcsZ8f2iPT/4hLvZMX/wY4ubfP1w8Vc/h5s/9/3inQvcO59zI3D1PO97RJre2Rt7s6rmuykIl5lqMc5ISoQsf5YIMKVY01v/pJDX/2esQiqEefvd/gFe57uB6htBsyUEUkDZ6mrQRjNsd3jtyW9Q8T2a+w7TbXeY3T/PbXfcyeXLm1Qrdb775Ld48tGv8Isy4vYnj9N96B52XItWa48k7TAx0cB1fDY2dnEch5/7uU/SqDV56snvIiXMHvKwXZfddYuoOsHzLx7H9WIcZUjShH5/wMGDKyRpgnJKcR9L2Uhls3LwIJYss9G9Xot6PWaUDKjWqnzxC3/BwUOH2Ni4Rj3yCSxBUiSsXt2k28uYmZvj2K2H8Cyb+sQEyvEojKLWmObcuTd54onHabVaVOtNZufmCFSdHM3mzjqx77Gzu8fs0n7uuvMYnm8xHA2oVBpgXLI8xxKKwAtpt/s4foi0PWzHLfveHJs0S3GskD/6oz/k3vvuZJT08TyL9fUdpqanqNSqCFkql/p2wLA74urFK8xOz5FrCcLGFBptSvGZxeX9WK6DJUtl2n6/RxgGuK6D74HjVvi9z/whd955Bzvbq0xNT1Kr1/G8CD8IGKVDLl1c58zpUxw+uEStXmWn3SGKG/heTKu1B6JgsjFBHDVQqrQxsT0by1EMRqU1zrDfwnEkjhOjRMzGtSvMzM+Qm5woqhB4FWxHsXptFT/2CaKAuBISeQHO2NpFKcnOzg4qnsPqXMXzfTJtKHavkKYpll/DDioIPAySQgqGwwFXLl7Fd0OaU3PsnDrLQ6nB+om78P71f8+bFy7Q2+zjRyHr69cY9drs7bRoRBPY9jQIi9lGzL4zq2RKMKj4RIHP7NwMtmNheza2a2FESdFVykFrSqA6zvqUU1RjRIEwoJSFM/YlNqZAi3LuonOSQRcHTZKXXo+lpZNESAvH9sbrwNhL2g0wykcIhaFASsb+kBpp2cAcNqIcAAAgAElEQVRbKsUKKUt/T8/3GA1HY5q1Gm8kDZqCbr/PRHMCqaDRqDAcDrAdC98LePhrDzM/N0e30yHwfXa3t4nCkG6/g+MIpOVihIOWBZZwSjsfU3D7R24FUVqS+H4IRpeqwK7E6NKHtygy0iThkW88wtbOFpPNGTzPIwgEadInzRKMNte9d4UQRFHIMBniuR7NiUlGgxRHeSjbRkpI0hG27RHHdSqxR14kKGlI0pS42iDwqnzlK19nYX4R1w65dHmNve41Hnn4Ue574EHMd19CHlkh22wRRQGepbALTX+yiefG7Oxu4fkO62traJ3h+z4awZUrV0iShJ3tLTqdPVavXCQMA/KiwFYee3sjvvgnf8TBlUWmZhplv21hMLoUfOkM+9SbdZRlsCyDZXnUmw1qjSpSFkiTE/pVkiTHSJvJ6VmqtTpXLp+hUW9QaOj2ejieg7J8wjDGjK9LhEV/bZPJ3MCn/x5Ga1zLw4si+sMUx6+QaUOeD2j+L7/FP5qYZ/LTn0Qs34tYfgAtLTDfq6R/I3C9MbHqix4dOUWYDnj6L7+IbvnsP7KCL+apVD1qtZiz504ThXD77ctIeviOhZISx3PHtkWSoshR0sJ1HVAhFy9s0O91sKwM3wKkYTjIsKSLNgnaZOxsaS5cTLlwucfr595kfn6GyYk6Os9JxkyfjY1VoiiGYkTW75COBlSrPqkeIF0fYSTKaLQpEMJCFwaNi3KrXLq6ztLKQWQQcvb8JebmFsnSnLWrV9FG4/kuthNRrc7w4nPPs375PPffdwzPN0ityY3BE2X7QlFI8gxsZbDEHnEQ4kTQ6aXElSksV+C7Bp22SYZdDLpMdEkHz/MZjhKCqMorJ05z/OQWE1PzTO1bpjk9TVypkukBjieYaARYMmfQ61Otz9BtrZH3L+OpLrbMyYscU+Q4SmBZEm106SkrBJmOuHi1z/z+Y0zOzVJpVtDa4No+UaVCUiRsbba5dPYcZrDJR2+bIQ4VWib4flDeS7y4BPVegFQWw0EPR0okgn6vQxzHzE43sKyCPM2xlYtnZ8xN1Jmd8dEkDIYOc/NLgOHipTewIov5wTLd1T2+9ca3+ampn2Nnt83njv8+tjD4bkStUWd6dhZsF6P1TQU1Ed9vfSOEur5+vtv+9f00UN5vv/VB4+296YfA9ccVHwLXDxgf7KL/4fpM/6azSu+Mv87zyf7xr6O//K3rdjg/SBXzRmBbFAVFUdzUr/WdY6VpWvZCvcv432ffc5Nxbnp+4v0rqO8VN02YAPrGQxmDLW1OvvAMUjqsbnXwHIeoGlGr1nn0kW8xOdnk6ace51/e/5/xsVcvcubALP7sJIUumJqexFKKqekput0eWmsOHzlErVbl4sVL2LZNFPpUZktfu62LORP1CS5dvIhjOdx+21F2d1tsb++wtLREnqdIKXEdH8uyS/qfEKRj78/hcEiaZdi2TZbn+H4Fx7WxLUmRpYyGQxw/5MyZ8ziOx9RUk89+9o9p1KtUa1VsxyYIIwoNZ86cYWdnm5npKe684yOcfO0Enc6Qi1cvccvRg0SeS3OigRGGKAxKiqXtAIKdnV3CKEJJyWBM4Tv/5llc2+HEyeNIDNVKTL/XIwwr3HbbbRSFplKp4ro+SrkYDLZjozXs7XWwVIHWpX9oGAVIBUZq3jh3hpMnTxIEQUnxUwopDLZV2s2kWYbWmm67RRjVuf3WO7AswdRknbhao9/rUavX2Npcx/cssgwwBXOz0/QGA6r1JkWejhMl5Xvtuj5ZmmNZkGcldT4IApyxEFC/N6DT7pFmmt3dFkuL86RFhu04FJm+LjZUqVRwXIc8L8WbWq2dsQVOC8/1SJMMtxKiu9fY6/dwAw+TtMiRuOEUthOyud1iNOwTBj6u69GoNWg06rSee5Hbegnpf/cPCf+HX0ELTeTF/PZv/Tbn3nyDb37jL7n/nnsI/Yjf/q3/h1dOnOGpp57kzoOHWDq3yma3y6YtOHjoMK5fJhxc1ysFf96qTBQFyirfL8tSSCUptMYwtsPS43lsIMsylLLe0ldHSUm33cP1A4QqacSWZZVgVSmMfpvuprVBSVX2odoOYBgOB+RFPu7LLiu+UIoyKSmpVmukaUIUBWgzTmq+1fs1Zo/UarXSR3M4IggCirGVzkSjwWDQp9lsgjFEUVyes3LJ8hTL8soEmijQeVk8BkNeFCglUbLshTWm7L0tN30lcBfCYFmKgwcOcN/997GwsDj2AnbGia6U0SilEldIs5TW7i6DQY+pqRkYC1b1el3WN9bo9fpICXGlglIW/f6AIk/p9fs4YyG0NMlxXUGtFvP000/w4EP38dTT32F5eT9333UvUVzBvHYGcWgJ1RuB0AhLYrd75IuzvPLqKyyvLONYDnEUEscVkiQpQXSzWfYSOg7NZpPJyWWef+5FDhw8hO0qNCmdzoBz585y5PChMRVfoZTA90rfYqkkg9GArChIRxk7OzvEcYQlJVevXMULIrK84NKli3z7sW9y8NABGvUKQkg838fzSkp4UYBtOyil6Pd6OLZNf2ODuDMk/fs/QxSFdHt7pEnK9uYWz333WeZmZyjyBO9bz2Mphf65B8fVMVlu8M33tumoe7Pr/a033g+VyMlEgNIpcrBB8Uadtb1NrlzaRjOgUZ/i1Mmz7G1vUok9qpGLRIzXaoUuBHmeI6UgzwuCwKM3KJDKRypFGNoYk2K0ocgFq6trzM7Ok+c5jqfQQjK3tMB9D95Jf7CHUjbPPf8cblCK8M0v7OP066dBFwx6e4z6baLQxfNchCgr/G/NHWPKtena2g5pLpiYnMP1Q2zHZ3F+HwLB0088zuLiAntbbeLARwlYvXSegytN0EPStM30VK2sJQBCuFi2xHI1uR5hKYdKPEG9WccPYxqNJS5fWaMxEZe+rGZEOhoQRRXSIkNJm+FggO9H9PopaW4xMb2fw0eOsri4yE5rhygIcJ2Qixcu05yYZH1tk+2tXS5eOMOFN04yM+njqoIkTXAcp1QFdl2STNMf5nSHBbmsstMxzO4/ihPWWN3YIvB9wqC0kMMIOt0R33rkG0S+4K479hMFUFCCRKUssjSnKDQIgy7S673u4+3E2M+2IAi9UnBLSfI8w3ZK1WsUWH6Fc29uUOSG8+fPcfc9dzEx10R0LWarc5yPT+GeC/A9hzfsx9ncWMVIyYHDR1g8eAgtSsB6U7B5073ezauwN9sv/U3Eh8D1xxsfAtcPGB8C17/e87nRx/W9FIXfjU7ylkDHjX/zrlXV96j8/v8NuL6zXiy04enHv8sXP/vH/PLf/6+Ymj/Al//8T7n9jjuwlU1rd4uNtav817U5bn/sZV6erXDLffdw/vwZCp0jZek1mWWaMAzJi5TXT59kenqOZDRiZWUZS0n8yYQ8y3GSJqbQ1KpVbEuRZQnJKOHee++j3+8zGg3w/Zh+b0in3cF1HHZ3tvD8AM/3cFwXz/ewLBulHKampglDD9ex8H2XQhsKAwcPHGJiYgJjNEWRMz87i5ACx3XodHroolQ2vXjpAj/zn/80Rhc0Jhr4Uczy4RWkNJClCKPRJgdssizHshwsyyEIAtI0A1OUNkWWwQtcbGkxPzNDrVal120TeC5ZXuC6Lko57Gzv8ewzL3HhwgXyPKNWraI17OzsYcixlEUUBqXPoGPT7XaYnpyg0Si9WKcnp8jSFEtZGAM7Oy0818dzfVzHYrfVoVqtsre3Q5qOCOIKtXoNgUYKTToaMDe/H8tWPPXUExw6dJQk0TzxxKMsLu4rQVQBrhfw6vGTRIEky1I8z6O916bdarO+uUa/k/LcMy/zwIMP4ngWWZbg+T4XL18iDiOurV4lCkN6vQ5plpR0SgOBb6FUCXIsy2FzcxvlO3gkpCjiKODapfPU51Zw/UnyQjJKRkhT4FiSTm+EZynaTzzDdGcAf/CbbC/Nl0DEsqEwPHDvfbzy0nF+//d/D1tahEGN2267i9vuvJfjr7xC0W3xYF+wl4x45OxJ7n/wAbwgGCcSHPqDAY7jjPvBc4TQSKlLXDhW7tVjwJrnxfV1QutSjM1kOZYsgakXRPzxZz/PkVsOYyn1dkJMCIocMILBcFhu/IRAKWv83lhYlj3uQwWMNZ7PZYU2yxIEcqymrcvK2bg3MElTLFWKdylLoXVWvh4hAYlS5fOiKCwTJwaEVLz00iucOPk6Bw8dGtONQYqENCkTReW6KEqRKKkwaPI8p98fAGXFQpuitKowBt/32dreIApjhChpvTrXhJUKjuNhtBlrCRiqlQqjNOPK5cs06jWurl6m3ij9cZvNJqdeO4XjeNRqNQx6LALWxrJsqpUKSkG/32V2bpYgDPjoXXdQqdQZDVKuXrnMxNVNklqAJ8Z+sJaF6vQRRUb14H6urW5iKcX21haVOGZzc3NMvS+uC411Oh16/bykvBvNKBnieIoDB2/nueee5e677iyp/wag7DGud0fIQYJo1BkmKSbPqVaqWJaNLgyBH5TJniIjzVI+/vGPEYU+xuiSRg5sbm6xtraOUjaBH5CMEoaDAWHgE/ge8qVT7P3CTxBUfJJkSKNa46UXX2Lf/AKOZWNJcL/9PMYYBp+4hyCKxwkOc31L8V49fm9ddxqFMDmb1y7yxsunOWR+hg5tlg5O4fsRb567gmPb9Lp7VCOPLEmxXRttcmzbJxml131qsyyh103wwypbOx1830eIFCU1juOW1eYiL8XBjMu3Hz/N5s4O+xYPoHOfnc4Gd91zD0IqKtUaw8GI9t4eURhi8pxBr01jolLax0mJUnbZtz0a4jgW2miqtSZ+WMfxIsKoQrvdYXd3G8912GvtMDk5QbvVY3pmkiQZ4ViK9bULxKGkWnHwPYXRkiTNMDqlQNAdpCi7TH4FgcNg1KVSW0DYDUajEfVaTKFzhv0dbEsxHCZ4vofQkuEoQSqHV145y+TMERaXD1Gp1uh0u2AMrufw2okzHDl8lJ2dXRzHplGPCb2Unc2LhK7BsQV+ENIfJkgVsNMakhMxzFzeuLiDHc7T7mnm9x1kt9Viamqa9bXNUjei12Znp8VXv/wo1cDi8KE6jVpBlvXKRJ4omR5SCJQSpYpxNsDoMpmlAeXY2J6LEjmYgiIvMIVBqgLLdTAIhknBmfMb9EdlEvYjH/kI+xaX0NqQ+TnBlSoPJT/FUrhMRVV5SX2O7l6Lq6tXGWY5D338E9hB+DcOXD+I/sp7HftD4Prjiw+B648hbrx53OS3H2i8t+ItUPNefaY3nsN79Xp+EMrvB40bwejNgOWNwPVmAO6d1OF3jvFuinLvBl7f+fNbXzdd3MbnLqV8T9GlsnDy3mO98/GbglWtEWIs3iTfBuYUGp0XfOkLX2ayXkPLgMmF/SiT02xOIgUsLszxzGc/zy88doLeTz1Abd8CTz/9NMvL++l0OkRRhJAWUiguXLxIe2+Xe+/5KJevrLG0uI80TahVqxDuIQS0rwlcx0YXOUoKwjCk0Zig1+sTxzFCGNqdAZ7v4XsuvmfTbNZwXJs0HdHtdsjSnL29DqbQpEmKFLpUPB2N8MMYy3YRoqyAua5Do1Gn0aix1y6FXpIkxbIsKtUKDzzwAABpliNE2c+EMtiWhckydnd3CcavcTgc4QcBWZ69xd/m4ptvcvzVV5mYnKDWqJfeomlKu7NHtVJB6wLkWxXGgM997gssLu7nlsMrtDt7XLp0kQMrB6nXGqSZJgwqPPLwt2jUmvT6QyYmJpFjRdlKXPpkOrbNKEkYDAal4bvvMRolbG5u8PR3n2FycrKkQ7oO7XaHKAowpsB1bPbaXVwvIIp8apUKnh9gOz4b65eYmpwcUzdL2xff97GVRiqF63p4fqkS2un2qFXq3Hrrrbiey/rmNXzPww+CsiprWSgJWZZzbW2VRqNOv9fDdR263Tau62JKbEMUxTieT9pt4wZ1TJpy4cxZpg/ejdGSwpR9Y4Hvko4SCqOwnnieyiBB/Nt/TmsiJvA8hFJYlsuVS5ewpMGxPT720AOsLC9TaNje2mOr3eOf/JN/zLG5KSovniVoNph54G6iKMIaV5KzPMPzPHReUBQaJUt646DfG2/Y3vKuLun+2mgsZV0HhWfOnKffblOpVrFsB20MR44exXXKDZ+QsvRzVgpjFN/4xiM89ti3KXTB3OzcGMi9JbRmGA5LiyOdm7F3sGA46KOkRCpRbgqloNftMej3cFwPgeLE8dc4c+YM8wtzSGnIsoIiN+NKqUGq8lyg7LnM84IrV1c5fPAwYSXCshwkBTrtcOXaBo7jjZ9bblq1LsZKy3IsaFf2qwpRVlgc20YgyPIMy3I4deoU09MTbG9t0+kOieO4FISSgvNnz7Gz3WJmbq78LJQiCkOyPCeOI9I0xxjBoD9AF5og8hmNEuK4ys72No7rkKYaJV1s26VSqWHbHq7nEocVNjfW6a5eoemH2EGA1mOF9zQHBJ3Q5aUXXiVNEw4eWEHKUkiuPxggRNmv6nserVaL/nCbxkSd106+zunXz3HvPQ+A8tjd2WR2ZgrXcXBslzQfoZRFdaeHlWRkkw1830chSlEtQ2kLVOTX59dkcxIhDL1emyiqsr29TRhGuI5PNa5z7do14riCLnJauyVzwa3XEMfP4v6jXySVhlqtxtbmBkv7F4miGM9zyxaRR58hzXKq/+AXyF/9M/TaKdTcsfe951//HoVAYyxJvTnFk1/+C2aGd3Hw7luwgoIsz1hemufCm1fwfIljaaLQx3UtpCwp0q+//jq1Wh0hDGma4noxl65dY2p6GYkirlgokaBNTqFTLAuyYoRUsLC0yOLKQabmZqnX6riBB6K8zv7yaw+zuLCIZSlarRazszNUKgF50gOTj83eSp9lTAY6Iys0UvkMRoYgbPDyK69RqzXo97rMzpXK59vbOxw4eoBBNqQ7yPnq177F2to207WCqakaOk85f/4CjYkJ4kpOvy95/PELbKwNmZ4OcN0BWtvY/jQ7rT5B5JOORgyGLSJfovOsbAkatw9prbHsgEFqY3kzHD91iuXl/Zw5fYpDhw/QbrfxHcW5N86ysLQPz7fp7q0RuBlTExU8SyKERVoorlzb4fKVHm9c2KXdl3jhDNKqsLy0wsLCAoKCLBnQrFeQyi3twApNo9bg9GsnOXJwgdlpSRjk2JaHUBaWtChr1nqc+BBAOZcKrSm0IS/0WCVdkOUJrlulKBRZ0UXIgCI3jIYWrxy/yuT0Iq5nceTILShls7m1RUZKK97gW5ceJasPmVFzPJv+IbVqhVGaMj2/wP0f+0mcIEbI79/HCvFuqsI32d/dUKT4IPGjBK3luX1vW9uH8dcXf1Xg+mFK4cP4TyJutJd5p4DT+8XNLHTe7+9/2Hiv490IfrUoN0xFUSARdHZbfOFPvsQXv/gVZhdX+Lef+X+ZnJogDGKe/M7jqO0t/um5XTaPLPH17z5Fq93m4x//WzQnZzl27A463RGGgv5gwMz0LOvrmygpWVk5AJSVoTRNOPHoAL2+RKVaBQnVepVqvaTkQamQeOHCBVqtFpPTDWxH0e3tMRz02FpfJx318F3F1ESdyPdwlOLLf/4fUZYkS0YMBz1cz8Nc/3wMoNncXMdxLAqjaTQbDIcDhoMBlpRUqjX6Yz9Lx/HwgxiLnGw0xGhDr5dw7o1L7LZ7aAqCKCDXOUiDsssN+tWrq9x9971YyqfIBUgLNwxBKDa3dxDKwnVcNjY22G3tsG9xjhMnXqHd3eHYscM0m3W0zri6eoXf/4PPkOU5Dz30IFPTTfq9NjrPyI3CC2MKo+n2O2gy2p1doshnerpJEHpEkY/vB/z8z/88tVoFKQXb29skgyG7W9tsb2/TH2X4cYOXXnqJVmuXyakGeTFCm5QH7/sYglI1N8sThNS4vsVwVFCploqeSIERhpWVQ0zPTjActej195iZnsdybAylcFF/0KPd3sFSkumpKXShCcOAosgY9BOMkWPPzD5CaCw9IkuHhIHHtQvnmZlsMkw1tg2WbRCWBGGRZBCtbuHs9VCf+Q3Yv0i9OkcQeONqSsb8/Dy+73JoeYG/+3c+hR84/Oqv/iovvPQi/+pf/0u++8wT5Hm/BKFSMjs3X/aPCok2lAqkukz2KKl46cVXSEc5SrgMB30Gg34J2rRGSjWuiBqEkGgNW1vbPPb4E6V6apaiJHiuuu63K4A8z0sRE0vxsz/7ST796U9z10c/ilTlNTXuegcEruuSZSm9fptOe6+kJiMxWpImw7J6rSUYi7/48l+OFUNhc3Mb1/ExxtDv95BSkqY5r732egkAdVlBMUC330XZkgcevIf5hUksW5R9qEVBv9thcWmBOI7K12jMWDW5rJYqS2HbDlmao6RNUZiyf7AoK9CVuE6306e1u0en0yFJh0xNzSGFolKJSUYj4jDiO996rKSF2i6gSFPNaFhQ6AytS5Xcq6urVKtVhGURhDFS2ExOTdPttBEo0jSjUqmUn4eEdqeFsgTLy8scPHIEPUwpihK8J0mGdh3EKMV1fD71qU+yuLgPKaHTbZEXCY1GgziOiaKYdrtNGIYEroPQOc16jV/6hZ/nyuXzrF29SrVSKVugjSIvBErZVOIqWmvyLIM0wYxG5Lnm+WeeY2drm/X1azi+g5T2mM6q0HmBKYqS9eC6dDsd3nzjAmla8PLLr5QJCyGoVGJ8z6O91wEgzQp0oeh2BlQmQrQs+9KTPMPxPfKi4NSpM3SHKaa3g+ltg/h+vYb88x75573ve7zAxjYpGoGJJrj3vgdohBV+79SvI6TLyeNnGPQH3PvgXViOYmd3B9/3kQKMyRmN+hw9egzH8fG9CGMEluOwfGA/lbhGMioYDnoUmY3jxNiOR6E1ruNhOSnbOxu88MIL7O5u0umtYysPSzpQCJqNOvloyKA/QgiFUA5RpcIw6SNkjmPZOK6PGKuA6yIHUyaaklGO0YogqNLu9FCWDVISVipMzc0jhWRt9RqVMGBhbgbHkYwGfTCl8vzhw4fJ84Te3hBLSqanqvR6e+RpxrCbIoxDlhmCiksU+YRBnShw6XfbKDQKEDpHiAIhDQWGdm/EldUdPvlzP0ue58zPzzLs94ijkH0Lc3zkIx8hSTWDfoYUFiZPwUBRWIxSGyNrxPX9CLfO0Y8+yO33PMSBI0e55ehReoMu27ub2I5idmEOoSxq1YCnn36Ofq/gc5/7Ew6uNNhev4QkZdBNGA0ERpcCXXmRkufJODnlYoSFRpXJYgSupbClQCqXTGu2d/q09hIKBHHgY8mCLEmZqFXpdjcZDgfs7Ozy5a98hSiKS/G1bo/BYEi9WqPIC66tXmXQ7+A5kslGne9869uoD6HEh/FjjA8rrh8gxPdsxr/vtz/EeN//+A+Sff0gv//riHejN8H3Vlzf6/nvNkaWZde9V9/vmO+M97UlMm8f+729wr5/3HeruN5snJt9X4gyZyq0YdQf8D/9j7/GL/8X/yV33vERrmxs83//7h/wdz/5t/jKf/wLPnrbLbj/2/+FsC3O+zb1iUbZXzUYkueGtbUNnnryGbJiwNEjt3Ll8lVuv+020mRIq9NnOOzjOg6ddodDh46w3drGD/yyxy0ZEcUxWZLx1a9+jVqtQRgG7FvcR3/Qxfdd6vUqg16XRr3GxuYqnuvS7XaxpIXONVcuXcZyXCYna1SrEZeuXMUPY5S0xn3HCtd1iOMqnU6bvMjQhcb3fQaDEVmhsWwLx3b543//Hzh69BjnzpykOTlJEEQooQjCGDsIcJ2y0mbbFptbGziOwrIcFubnEUjiuIYxglNnzlCtVHFcl+2dHWq1Outrmywvr+B5PocOHWS3tctEI6Y52SCKYza3trh86QoP/sT9NBoVosBDSI3nO3iBjbAi9lp7hGGA75fV5EqlAgL29loopRgM+lTjOo7r8txzz7C8vL+0y7DsMTXSxvNjHDdic32VpaVFlNQMhgOEklhCMeiXlW7P82h394jiEEv52K7DYDgg1zlBGNJu9XBszW5rg3q9wc52h1o9ojACtMG1LSqhT+DHDIdDLPttT1fXDbBth36/T6USI5XAsXO6exvYnseZ489SCV2KeArLpEglyHLNSy+d4JWHv83tm23yP/hNWJhEqpAkFVy5fBbbDVlf26Qax1hS0+t0eO2149iOxS/80i+ycuAwt995B4Er2L14msWtlPxjd1KIkh4Mb9lcSWy7fM9KS45FpCyruZatcV0P6/9j782DJLnuO7/Py5d3VtZ99Tnd09Nz4CYHIAkSpASSkihSkrW2tCs5dsNHyGGHHRtyrP/ZsOy/HLYjNuxY+VJIsTosakUtaQnUSqRIggdOYnANgMHMYGYw99VndXfdlffzH9kzGAwGBEgutP/gF1HRM91VWZlVmS/f730vqee0cWmQTzUFk/EE07SYnZnjEw9/PKfT6hoqTYiiAMO0bmrmo924rTwGJyFTCWEUYFnGrnmTpLPVIUuzXQ1rAZWl2JbNZBJgWS7f/tZ3qDeKuRY5VqAkQRAyPdtG1ywajTYzs7OYliRNI1y3gGE42JbNlasXaTTaOQ0ThWHk7shxEpPEAZZr8/h3vodKIhoVD8Mp5IibkCRJhGXnRlFRFOUa0yiPy6rVGruOyylZqpDSRGp5tE+71WJnZ4NyyUfqHn/0R3/I3sUFNjfXadaaLC/tw/YLZJliMBjxp3/yZ3z20c9j2oLJJOLNM+c4evQV9u9fpj/soUsT0zRJogghUrrdLu2pBgjFYNjDdgwMQycKY777+OPs3TOLPH6Bs/0e1Vol14enCoKQv3n1Faam25RLPpqEMBgzHPbx/QrbW1ugFGEYYNs2pnAol2r4hQKToIfUQxr1BVzH5NzZM1iOjV+scvrMG5T8MvZOrvvv6oKVa1cJIzhx/ATLy/uoNSpIU5LEuVvelcuXESJfxMuUhm3nudRZBsdePcFDDx1mY2Mdv+Dl8Sm2Rbc3pnDuCoc5IdUAACAASURBVFqQkn78fnrdAX7dQdMNkkwRxgmaIZHf+SG1epP1w4coD8+BALn4EeDt+ebpUyaMxR1chXUMJkTSQLd9ou0TVE49zKHfkLjjJSZjwdM/eJrV9YuUSxb7FqYwJEhNIWSG1CVBEO0uyJDLLAwHu1BA6mVMIRkPrxGMNZ568jXmZpsIkefdhmOLOGoRJ02uX+8zmWQcP3Gc6fYUx187xlSryaDbpTk9w85Ol+2dTXQRIbURlpmhCQtkHsGWRiOyJCTJdFZXu1y+usVwnFAs1qg1GlTrVaIkZm19g0azjZEIPMcmDia8eeo1Du1v0ajk94MsTRBCkhLhGxWErlFu2Szua2CiYQmXMBH41SnMgoWG5PSJC7hOhGOkpGHeAGYq29XymownCasbI2x3mlK1QMkvMBkPsCwL07aZDCZ8/wfPEgQZtu3R66zT711DFzq97pBiucnR105Trk+xsG8f9VYbzdQxTQ1DZlTqLWzX4ZkjzzO/sESQZsThAF0vcOSHLzMcbLF/fx0VJVSrOkmYYJtluqNt4ih3wBcCdF1nOApxfR+FyGOndqUU49GQSGlkpGxuBmzvjGhN+6yvXsdxJLZZQkgHt2jQbu/Bshz2LCwyHI04f/4czeYUi4t7Ge2McEc+4cHXGY0GXL56lX2H7uaLv/JreOUamXg7S/DmnOqOtOA7zIv+nlmC713iHSzCD+uDqQ+pwu+zbiJed8gsff8Xj7j5yPuU9/e6H6XxvHUfflTdml16Y3u3I3w3ju+DvOh+FGX21t/drnG9vW4cz+3fx42ft2tcbzz3hgkBvNWgvle+6h1+CWLXE3rXaTjPerwhorsppnvX47t1H5RSu1Su3JGYG4iNuIU+s7uvdpL/WgG6Epx84Shf/JVfZhyEPPqZz3DvgQPsXbyLf/WHX4Yv/yWPGgV6Hz2EW/FZ3LtMvVZnZ6dD0fcY9Ha46+BBDhw8yHAypFwr8dqrRzE0g7mFeXrdAS+++ApLy8vYjomSOm+8dgI9zdCFQEkN1y9z7/33sbG5zuLiAhcuXsB1DK5euoRlWOimA5aL77h0hwGFcg3dsXE8h73LC0xPT9Mf9LDtEpVyHnmTpCm+X0CpDMu22Ops8nd/+22mpmdptqdY39jm6R/8kI8e/ghpEoFKmJ5uUa3WaE8vYBgmG2trjCdjSsUyOnlGnSY0drZ3KDgF0ljR29nm+PGT9HoDSiWfKBpx9dJ1kiih1+2zcnWNudkFDD1me2sH3y/Q3dmgWfOQQidRgkK5yubaOrVige7mNuVSGaHrJBl4ns/p02epVstMRiMm4zGDfh/btkHTWV/fplFrMezv0Ott4HgllIJOZ4tGs7G7AOATpxm+XwSVsdPZYGlpD1ubm6SZoLvd5/zZ8yws7cWyTYbDMU8/9QKWYYAIsO0Ck2BMlubZi7oAqeeuuKNRQLlcxbJ0pG4ghSQKU0bjANstEoYThNCwLBdNMwGJJnNqqm4KJkEPlWkYmc4kHbF1fYvrl68xv7yPVn2JOI3RMEgjxYUTp/lSZjL57X/MxZZFoVxgEqUM+gF/+fXHOHjgbv7pf/3fsLOzRbFUYBJE7Fvcw/XL56n4NrYjCLsjjjzzHJ//9Odpnl0hmKowGIwwDGM3MiK/VpIsReoaiIwwHDAedbFMwbmza5TKFTRdRxq5xjhL1U3kFZHrphF59mZ+PQukbgLZLpqqkEKAygiDCZapEccTTENiSBOhJCtXV/nbv/47qlWfou9BJpG2g1AZnc4mnudz7uIVmrV6jlIYkkwodvp9KuUSpmnhuBZJOkHKlGKhxGgwpNPpkGYpM3Oz6HI3m3NXOqCyXLfrORbjfp/lhTmScES5UiNOQdc1omhMmsRoQkNqGlmWIjWBZWpUyj7BaEwUBggBhmWQZjHs0pIt26JcqeVuz9dXaDWbNFsNavU6uqUTphHj0RjHtphMRkxNN6hUi4wnAbqRUa81KLgFhsMdauUSF8+fp1Iq0+/3qJQrecRKMMFxLTRNcvncZdLYoNfr0mzXKVgO8twV2g/ck2uBhUaKwOoPmX/0UbIsICVDN01cx8UxXPrbq1RKdc6evczJU29SazQot5rEaYjt6JiWiWn7CBHhuEV0s8D/97WvU/E9Wu0piiWfdGUdIUCbaxMmKfVmhaXlvRimAUpje7OL79mMR2Mq1QqO52J7DrYu0XVBGIVsdrZ44aUX2d7p025NgYKdXh/H99lYWaE4iVAiZefwPJahMZiMce0CpuGhS4mUoH37GUypONUImHMiMqWh7TnM7bq6d4vDQaS5NwMSkcZ0O9cwX53hX3znn3F48VdYu3aBww8/zHZnxOVrndxFWIwxLUmMQRaHGIaeZwUjKJbKhOEE0y5hWgXGwRDLNtFdh+EoouCb6HqE1HRIU1Jtgl8zOHBoH2dOneEzP/M5tjrblCt5w+j4HpZlUCiUeO2VVyg4CdWihiUFcZLmjuVxiEpiDE0gTJNCeYrzlzbYf/AeKtUy65tb1Gol1lfXuXblOgVHYjplrq5cZWNzk+3NTZYWZyi6AYgU3ZBAgmWYpCrXdGZRxLjfR9cFuikQtovU24wmEWEYMtXeQxZvoLIY1/FJM4EiJVMKMHnj9BqnTm3wq//o14jGQ5599hn2Le9DaALLlAwnikKhQNGz0UVKFE+4fr2L49eZXz7A+vYQpXmMhrmL+erqCr2dHS5cvEZ7ei+97XUM0+bC+Yt4tsNga5vRuI+u2bz+2vP8g19+iKI9YnrGxZQFPN8nzIZMJgbXLq3Rbk3huA5JHGJIHSkUwWSELjXQNJTQiNOUgmujaQIpbUajEZVaMc/yjRTjIKPTG7Cyuclsu017qkmj1SSMQpr1Olk84fVjJzhsfRIrdXiar7K9dh6FjuPXOfzJn8EqFoEb7BRxM2RD0+QdqcJC5A9Ny8/iXaXH30u93/nwjWvxw6b1g68PG9cfs95NH/rj1u1ut+/nfX+aup3+emszdOt7fND8/Pd6jxt/z/7mCeDdEdc7aULfD6p8K2X41u/g3Rr29z1o3RFNf6vei6os7kSduYO5UyozMgQond/7v/6Q/+V//11+7Vd/nck4xDQNlvcvYlqCT+87wGe//zxPGinL99/HeBdRMkxJtVbl+vXrlCoVnnr2WYJxiKZpTLWbzM3PUPAd+sMua6tdhoOAa9cusfRxHcOf4Gh1ytUK5UoVoRt0ux2CyYRms0Gv22N2eg6lUpqtNoPhCE3TefPsWTBMqvUmumEilEZ3u8tkHKLrDpZp8c1vfofFxQWkkeYRhlkeFyOlxLIsatU87iZL8+/p+PHjLO8/iAK8gkex6DMc9bh8eY0zZ84QRSGzMzOYls54PMD2igRBACrF0DUsQ1LwfdqtNtPTU5w992beRPcHnDx5gjAM6A96fOvxv6PX2+EjH/kYIBmPIpr1JqVKEaHnaEe1UmI46LJ0cD+2Z+cOsVlKv7vDTKvFOAqZTMa4tsNX/81f0m7PUiy6HDnyHNVaBaEJ/JJPFIdYlommQZpGlMsl+r0eQTDBMHRMU8dxbTRhMZoECKFTKleo1es4jpkfp20zNTWL7ZgUix5KaFi2jeU4aLpEaRrBeMhkEtBsthmPJmSZII5DgiDk1VeP0Ww2icKQ9bUOtu2gm3lWp5CKYDLGMg3iSRddS7F0i7W1HWr1AmdPncbWFc25FplWwLLN3QUkyeLVTV4m4jd/8Dj/yX/6n+WZu1aODhdcA8/x+f7jz/Cdb32XN46f4ee/8Ek0Epr1KqNhQJLqVKo1HvrYQxx58gkOjxXBVBVDuvz+7/8BMzMzWJaJYUo0DVSm5ZEzuonj+gihU29U0I3cpibXv+o3aRFxHOeLG1LmDaEUjIZDDNNGpRobG2tYpkUSp6ByxMl1fKIoRZcmaZJTiA3DIIpDHvrYx3I6qFMgSw2Gg21eevFFXNelWquyb98SxWKJJMnoD8b0un2W9i6SZgknTpygWivvThxzbeKN/StVSkgpGI/HmIaRx9fsxkpomkYYBzieiwLsgoduWpAm6LqGJhRhMMY0JKmSxElKEEY3s2gFGa7nYOjmbvNusLGxTtEv3jSxEgJsx2J6bgrDNAiikCiJqNbruG6e0zoYDJmfX+SJJ55med8ig0GP8Sjk8e9+n7vuPki3t8XepSXSNGE0GuTItoJUZTi2Q5qmVEplLEejVC7ki0FxAkeOob70KOGVFTKlMEwdvT9CZTGxZ6JJDUUeg6QbNpbnkSiB7dhMtZuE4YgsjkiiiPEkQOgmumFj7sa86Lri8IP30myXsLwqSZbh9ccIoTGuVHALJWzTZGtri2KpiGUZSAlCWhx7/Th//fXHOLB/H+FkyHAckCmwrDwb+NXXXuWhBx/i8qWLJHHEzOwsumVQqVbQN7bQSh7Gf/hzTKKM1bVNSsUa6+tr6HoekZR6DvLevZwdrrNQSBECzIV7QbzdDf9dc1yFhiQGJJkSzMy12f7uOuWGhy0XKBRK9LrruAWPza0eqysdSp5LpeoiDIWrOygESRxjmLvIvZ5TwkfjFN10cDwPPd5gql3Gc3QGgwGGYTEOUp555gznzofsdFMsT7K4d5bTp95gemaKRqNJrztgbW2dyTDANQVlX2EbKUIJdMMiUwKpyZxpFEQ5qyrVqbfnUbpBp7vFntkFvvHNv+GTD3+a2dl9eb60lnD50hXWV7YpeQWicJNSIR8bLNtGkHsaZCQIobAtA89zc424bjCMTTLh4JdLRGGPJB6QhV3QxmTkjIUkzfKILRI8r0y51mJmfg+WpbNv3xJCCEzDYjgcQxpw9s1TLO5dZDgesXRgP5WSTxhBphzq9Snm9kzjlwyur27kxkdzeyiXK4yGIxzPo7O1w/7l/Wgorl45x8mjxxn119m/5NOoKWxd3/2eY9JkgpQC27bwPBup57pWpTImwQSy3PgqjhMUECfJTYZIliSUii6lokkcDbCMIpatEcaCM29u0O8L+v0x1VoLJQTtdgPb1igW6whNp562ELHG//b0b7G8OEu11mLv/ntY3H83hUqVG8DNreeptptxDXdmnL2dRfD3g7j+KFbdrXXDO+HDxvWDrw8b1x+z7tTw/bTbe6+T/XYqxbu9/r2owj/qOXcaGD6ouhX5vf39biKoZR/t/gOIhZkf6xhvryzLaTy6rt/xGLMs241A0N6G3t6OTt9p/9/+eCd9+E6vedfPInsn8qt4J7qfkRsyrV9e4fL5y+jC4tFHP8Pi4gKGKXcNLrYZ/s+/i4hi+jNNTp0+w3AwYDweUq9VybIEy7YpFIosLx+gUikzMz3F2TdP02w1SHeDyKfacywsLlKuFPCnJ0hDIYIqvW6XcqVCFEUUCm6uf4wT/uzLf4ZjOzlSkWZ5s7Rr1CKkxDAMgvEYx8ypq6++8iqvHzvBwuIeLl26imFIgnBArdZgOBrumsVI4jihUqtx5fJVvv/9J1hcWOTue++m4BfyyYcQRHEeB5NlgiPPPcdHP3oYXUq2Ohv4vkemNDY31kmSmMlkgut5ualNGmMY+bnh+0U8z+X69WtsbW3xpS99ifvuvRddN3Bcn6NHjzHoD2g0GoRphNQNsiQjigKq1QqTICSKI6I4ouAV2N7awjQMojSjXC7lNGfb5Y2Tp9l/YIFi0UfXNdIsdz4VmYFj+/R7Q77z7e+ztHcZ09Tp9Xqsra3ddKjVdYvXXz/OeDxmenoa3dDRgCyLc3TMcin4PqPJANu06Q8GCCEwLJPJJKS7vYNpWozHY3zfp9PpYJkGnutRrzUYj0eYpsGzzx7BcR0qlRLS0FBkBFGCaeSNKypmPI4plZsk6ZBTx07gmALDNSnWFlFkaFIn2+ggXz7Jf99I6Y0C/uN//Ju0Wi0GoxGZSqhXSvzDX/8N4jClVW/w3/2z3+bq9XNUSyU6G+tYps2zzz3P7/wP/yOHH3yQj959N+2jb2LEKbRb3H///RSLPpZlIrScAiuISdIopwKLDCUUg94Ax7WJ4jhv1pQgTRJQipMnT9JoNEjTFF1KkiTBdV36vT627fLkU09x99335tdlBs/98AhTUzMcee55Ll28zGQ84dz58+zZM8tOd4c/+7OvcPjwYYajMV/72mOUSxXqjSm+8Y1vc+jgXRz54XNUahVcx+PEiTc4c+oNDh1aRjcMZqangGyX8ixQaZ79apoFwjDl29/+LtPTLUzLyhd4gDTLTbgMaaOUBGEiNBOESSp0lDBBs5CmS6p0pJToUr859uWmUzAaT3JnZJWPOTs7Ozi2y3AwwjANhsMhjpu/73A4xPMKRFHuWpwmMesbm9SqdbJU8Z3HH2f//n2US0Um45A0VRw8tEwSCYIgwbF9DMPGtj2SJKDT6eQurP0+fqGA1DWCIMQwTFa2tylcuI5+aC/heodTp05Rq1YxwghMnaFj4vk+mRJoUt81T8rjZ0xDJ01jVJbRqNXoD8cUiqVcTiAlUlicOX2WuZk5TMtCaAZokiAK0dY6GIZB0mxw+vRZapUilWqF8WhEFIV4nkcYJbTb09x3771YpoVpmLgFD9OyGQ8nlIolplpNao0mx157hY31dfYs7MErFACQ11bBc1n96DJPPvUc/9V/+dt86Zd+iVqtwngyzFlC81M4y/NsrF5lSh+jaRrG/H1ku43rzQXYWxrXt90HhY6pYhCCBJ10MmL9mTfpdDvM7bkPzXSIoyHTtQrrq2v4tsne2TKOEZBGQwzDyZ20s9xVG3Je0CgIMQyfOJUgJXqyRZKMiKII07ARQhGECa7XQEofISVL+xeQEhYW5jFNkyAIEQh0aXD54gVIh7QbNhohUtNQQqBJDUPmjUEUxQjhcuXaDqXaPMVSk0ZzGttSzM41GU9GOK6HNBRxMub1Y6+ysbZKrWwyN2Pie/auyV9IHEdkWYplW6g0RWUpcZxgOj7DIMZ0W7iFKgoN35UIEUEyzvWiiUKRLyhmsYHQJONxzA+PvMHC4gGUyhBCo9vt5aZ3Zh77trS0hKbrZCjQBNeuXqNYqrG93c/p88kEzzOZmtmDEDqTccjKygpn3zzDwtIiW51tXnjuh3TWr2LrKQf3V0miLfYtNjA0waAn0S2JriscWyeJMpRKKfhuHm2U5RFdg0EfywHDyPXCpl5ge2uMY5fJshBdGgRBH0GMxECTGVEypj+IGI4Us/MLfOxjj2C7LpcvX2bl+lXicMLW9pBavY6xaWFhc7X9LUaDLqtrHVY2unzyZz6PV67umsu9xSi8OSd8F1DndpbgrWyDDxpseT/b1zT5vtiRH9ZPXx82rj9B/btuXH+a575/GsO7N00/6UX/oxx138/+vBsCKYRALMwgFmZ+7G3eXpqmIXdjLG78/9aSUuYTXfHuetX39/n8+OfE2/NZ7/Q5vt1FWSmFLnW6qxt866//mk8c/gj33X8XU7NNHMdC0zSeeeZZalc2mPu7p7i0p0l1ahrX81icnyONAjRNYJsm21vb7Ox0OXniFJ5nsXLtWv4ZaYJCqUw0SbBsg83NVTzPRfP7JHGKq2ZyeiIpVy9folpvkcQJYRDyyYc/waVLFygVy2SKnGYpJbZp0utu093apOTZDPo76KZBnCbsmZ+l2axz4MBd6LrEKxgYpk2WZZiGzXA4xLYdUgGeU2D1+ir1eh2v6GKY+fe6srLKZBJQqVUoFgo88JEHkFLHdT1QijTLcEwLv1igVC7jl0ugaUzGY2zbRAhFkmSgBL1+D8ex+exnH83jSKSk0WjT6+WOr3fffYgkmaAZNrpu8Y2/+SZz83MEQcBkOMHUTTwv1/oFYYhtO6yub1GrlkEomo021UoViKhWq9iOjWGaFAo+UkAwCUiSlEsXLzEzPYVfLJJlGbbtwo0AdpFrTvfsmSdJQgxTR2QZhpHrrSyrkOuHNA0tzXWdUkp63T627WAbDqZp4hd8pK7huhau7aIyRRhGOcKr6xw4dIh6o4Y0JKPREMdxMZwCGhBNuvR6W3iFKlGiUIzYXFmhUSkxv28JYbXIVIwUAu37L5L9o1/g07/z2/wX//k/wTB0JkHA6yeOI6WkWHC5dOESn/jYg/zzf/7f8vW//iqHD38MQ2qMBgPSLKbWqFEoVDj62qsstNrsO7cGukQszKJpAl2XN10qc3dHhWnZJEmG1E0mQci//tOvcODAQRw3RyRv5KWiFO12G03kcgKlcqqwQN08B/bt25e7WUuda9euceS5IzeziN88e5ZHHvkUCwuzIDJK5QbT0/N5vJJp4PtlWvUylmPxyU89jGXpVMse1VYt3welOHz4ATQtAaGjSbEbOQRpkotL+r0B/++ffpm777mHuflZqrXybsZijrQiRL7/aY7MpjfCW4W4mTcbRXlOrVIipzbeWDQTALlO2rJs4jjGMA3SLEUTOkmS8JW/+Cq9bpd9y/sY9Po4tsP1q6tUy1U21ztIYeC4DlEYIYRGkiYUi3nWaRhOmJ6ZQymN6ZkW49GIol/ij/74j/Lz0PewbIOC72OaubGQ1ASjUYDjeAhh4DgOHD2Bds8+1E6fZNc92laAYZA1GzePSQpBHAQopdjudDANg0F/SHtqhkwp3EKRSZC7mIssYTQO8oYlihCaJA/+zbBNC20wROk653Z2ePrJZ7jvvgNITbt5bYdBiGno6FISxSmO4zAYjREiI0sFa2trOLaJ45iMJgEPPfgQ7VaTZrOJ0DR0qSGvrpGkCfHPP8I9hx7gF7/4D5ifn2Uw2KFU8pFSZ9AfkaWCuXaD8aVjOT1+z4NkWs76eM/GVcvNmRCQaSa61BifXcfZWKS6XEbZHu1qlZUr19nY2mIcdplpubjWjXFcy70VhIYQEtO08iY2U1y5sk5nq8/U1BSWTImTCQINxy4QJ2M0dLyiotxQhOmQPQsHcF2P8+fPE0URnptnbINia3OdaNxhqmliGSA1DWFKVJaQxDHBZIKm6wwmMZrpMzO3j35/xMbGBhfPn6dcLlGp1EkywU53i+efOUGl6tBqWkw1PeolH0W46wyejxtSSpTIiauWbhAnIHQX26sQZQ5oJkIYbK5ewzJApGM06RCEkiwF2xEIbIJ4gOcXyDIDhYXvl3nxxZeYnp7CcfIMbK9QJMsE/cEI3TBwHBvfL4MQeAWbJA05eeI4C3sW2dzewi8UuXr1OvVajeV9S2Qq4/y584SjIVnY48DSDJYzYna6BSq/vt88d50gDPELErIMgYHQUjKVYtsWQTghjiI8z0NqJpqWM0bCMGZtfY1iyUcJRRimmFYev2VoRZJkwmiSglbm+MlLjIZ9nIJPs9Xm/LmLjEcTbMOmXG2xurZGPW5iKpNTha+x3dmk1Z5lan6J+x58mFK98bYZ09vmWNqd51vvmIfdIX7m3y/a+cEzFj+svD5sXH+C+rBx/fHe+91e+360rj/t/miadtNU5Qaqeuvz4jh+B237vRrXO3//P13jqgl5h8/jraijG49oEvAH/8f/zX/whS9Q8j3OnXuDsxfPMT8/TxwnLOxZov57f85qMOCpC2exbBfbtqlXKxiaIEsSADqdDt1uH01oGKZGrVKl6BdpT00jdJ3Va2tYjnbT7TaUGyiVsXE+xC94TMYj4nCMwiCKI7IsIY5C2u0mx4+fYmpmBsOyQEAchhQLDq5tQBbheQ5hEjO3MJ+jMZM8uF3XJY4nAZnTOBG7easJ4zDAsRz2LixRqpQwbGMXjTDwCyWKpSJ5ML0ijmLW1zdJktyc6803z+DaFrphkCrFOAzRdJ3JcARCsbOzg2GYbG/vMD8/R6lU2s1/1PKoA2ny+OPfy52X2w3ieEwmDAxp0N3pous6s3PTZEHKiZMnmZ2bz/WKlSq93oCTb5xheqbJcDggDCI0TadUdNENycrqCp7nkWYZk/EOjmPT3dni4594iOGoj2U5VCrV3YYioVDwUUCaJiRpjO2YnDhxjCce/wFz89O5k+koNxNCU3RWVqlUKnQ62xRLZaSUvPDcy3lDn8Zsb3co+C6dzS0KBZ8kyRejBoM+7ek2ppnnf1q2RZKkoFukcUw43sLzHNxCBU2aBGGHK+cuUK+UULqB0mtYtoQL19EuryL+n98BDVQ6IgwjXj9+nP/o136dL37xi8y2p3n44U8yNzOFacJ4tI1l15hqNknjAMvWQSp+4Rd/lYcffpiZShX/yHEy2ySdbSA1jY2NTdI0xTStm3rxTGlomoUQOr3emIvnLnHw0EFsx8rzWrNst5HLXbpvNLHnz19mY2ODWq0CAqI4RBM5OpmlGc1mk6W9e5mZmWZ6agbLtpmemmIcDNA00KWTR7qYOo7jUK3UKBV1pJnrbg1TMRpsYXk+mtDymBVNMZn0MEyXKAp33boFWQorKxcplXwW9+5BkVEqebvmULsMklsW4wa9DdIsR5JsxyDLYvRMIwlDbMNAJQk7nU0ykWfOpmmKynJNvra7MBJFEbqR57wWvBJf+9pf8otf+ALrG+vsW96LaznsbHU5c/oM7dYU66ub1Gt1EIrRaMTW1hbtqRatVgMUBMEY03Sp1xvEaYhfcDhx8nXKpRKeZ1Op+hQKHv3h6GZep6FLTMuj2x3wxA+eZnl5GXXiDLLiQ5xSqVZyo61JSColabPO+mYHy9A5e+Y0tq5jGgZF30dKjYsXLzMcjInThPEkpOCXOH/2TQqOybW1q1TKPv3eDseOH6NYreBaNkJTbGYx1vQUpm5y3333ocmENMtYXVlldWWNubk9pMmEzuY2YRizub3DxcuXmZubQtdNCp6fazNVSr3ZxtB1in6Rbq9HGMWQpUTjMdb1DoXf+odowqSzPaTZrGHZWs5CCULco2ewNoc8d/4E586d4+DhT2PV95DcxiJ698ZVxyBEoREqDZFl1MwC/aOCuDoi0izicUizOcc4TnnzwkmadRfHMSkUqyTRkDhJiKKUTIGh52O7Zdn0+hF7l3LZhkojkmycX3+pQhMJhi4Z9BRHnj2H60zTak+TpAlZF3NxSQAAIABJREFUlus933jjJLNzM0hNY+XqZSq+TskHXabouk6mqTx6ZlcK6dg2iQC0nIbc6/dY3r8X2yhTrdXIlERgIqRgeqrByy+eYPVKn1qxhOd28zlBlgA5Epk35BINQRonaNJkFGQI3SaIdU6cPMO+pYP0ttbxPZ0kHJAqi+9970Uc26JY0lGZwrTz+/ckVFhOEcuuMD09xYsvvsjMzBSWbdAbBARhhFJiN1t7hzDOF3kKvoUmMqbaM+jSwnJtskxQKVV55umn2dhY59rKVc6cOsPC3DStus/lC2+wsDiFFDpC5W75jl9AUxaWpVBZilA6QstQmropOVBZRpLE6KLG6dPnqVaqROkE0wLHlaRKQxMG43EflaWo1EU3BJpe5Ic/fINabZal5UUO3H0X29vbLC8f4Pq1FdrNKfqjCVEc4vY8XOnxzfX/FQFsd4c0pxf4xKc/i1Uovk2j+tM2ru+XzvvB1ltz2g+b1w+2Pmxcf4K6kzb0xz1Rb7wmQ93QpXOLd9NND7X321ze3njd/pq/DyrFj9uE36lxVSoFFNlTL6IuX0csTPPWp/HOutGI3kr1fWtbb23/RvOqlCIMQ4QQNyd/t1Oxbzevul0bLNTbvqo831Hc+Ty43SDqTp/DDaqxItd13jB50oROKnLESKAjIsHJI8/xqU//LGaxil70KVVKzEzVca0CZ06dZ/7po1jPvUzhFx5haf8yexcWWVu5Tre7xb677yKMY1bXVnnhhZfZf/BuLl65xp7ZKYIooj0zjRKCcxfO027VsVwXp1BEkzqJsUG3u0PVXkIIE8OwMW2bzkaHUtHPM/vimCRJqZTL+CWfbm+bV195hQMHDjIa5PS2IBwjDRNNWqSpxub6Go1mmySLMSyNySQkSwWZSlhdW6Hglbhw7hoqzuNV0BRSGqRpmGdTSn134iEQ6Jw/e4ntrS779u3FNA1++NxzfOqRT2NYBk89/TTBJGBuepbJcITvu0jNIEkgjjIM3cIuWGRJRBROSBXEqaK71eHwRx9k0B0wGY+pVIqsrVyn1apSLHrUmzXSTMPyPGYX5pkEEzzXQzd0pKHxysuvcGj/fvo7PXZ6A1557TVmZ6awbQfLNNnudHLDEc3CdnS8gkO/P6JcbjIeDUnihCSJsUyTnZ0tNrevUy1NUXBMBsN1pFZhqj1Da6qBpgnSOGO706FeLWO5HmEU0e/3KDguKk2p1mqApLOxzf7lZUajHsP+BK9cRssy+lsdvIpLvNu8h8EIiWI87KOyhIIjIYkxLJ8o07FMje76BmtXzjA9P0+xsRe3VEWQIk5eQHz241ysFxBZShT0qdemqVVmcL0q9z/wEKWqT2+ny+//3u+zs9ll7foWVT+DaEBnfYVavUFne8TC0gJrnQ1mGg3sH7wEjkUy2yJTGWfOnCFNFY1GAxCkKiKKxhhGvijl2g4PfPQ+TPuGZEBDCIMsCUiSCNPIUSgyWF/bJokTWq32rhlITuVWKiKY9JBSYEiXxx77OsdPHONnfvYRkiQABI7tIzSV0+riYHfxIyVMAsDAMByEMHEKJTTyXEVNgpAid341LKSeu6/p0iZTEZVqDd008P0ilmXejJzRdg2WcpqvRCkNy3EwTCun2WOAMlBSIXWRI+mmznNHnuPE8bMsL+8lzSIMI1/U06Si2+viei5ZClLmVOX7H7gfy7ZYXt6XG1qJFNvzsJ0CcZrxV//2r+hsd7j70F0E4xGVSgmhG4SJyumNi3vQdUWvt8OgN8ZxPCZBwOLeBZb3L+dGR5qR09p7Per1Gt3hCF3LF00KBYdyuUi2tUMynCBtA1Se0auNQzANgpLPqy8dpd1s02610U2JSkOGgx6Dbg+pwexMi3K1RZb00TOFLlyeee5pHn7o4xi2R6U2xfzCXmzTIokHgIZhekhNxzQ0ICBLdM6fu0iSKL7//R/w0IMPMYkzHKfAeDTh3JmzdDvb7N03zbUr1wmCYNd93EGqhFdefhm/WOR7332C14+dZHqqwSRLKV9aIztyDPH8USqvvYbx1HPo33+R+BvPYj/1Gtm//huMl16n+k9/k6u9kAOf/iUS3UOQ3LyPADASiEaGtpC+7b4sVUqGjkIiVX7P1Kkin2pw9OIzxHFMrV7j1Ok3uPuuQxhC0ah6yGyCkUZEWYw0TM6c7lApVxFaHjkWhBHNVosLl68gpIMuEkxdw5AhcTTOHWhN6I90Lq5sc9d9dzE93SJfP1WMRwMW9izQ741Y31xn5cpFphsupULOmsgyjTROkBgIkRBFGVeubGJYFVJRZ3bhAMVKGZWAU3IIohClMi5dOo8Arly5wtrVi3zi8BzNeoJtGvl202z3/ry7YGxIUPmiibQUSjhUKnsp15uUPIvzZ19nen4OZfpYekzQzc/TnX6fZq1BRoipeyShojuIOPLiNWr1Mq1WnWqtjGU7qMzC8U08z+XpJ55kpjWF1AUFxyCK+2haxqXL6zz/wquUajUs3UCIlNWVda5cuoZlaeysXebeA3UW5z2ybEKW6bSaJaJ4gm4KkjRBE0nub5BF2JZFolI0Mx/bpKblMV9SotBICTl3do1ay0PqFi8cuYw0TdIMXn/1EouLc6TZgDTOMCyDYBIwGA6Znl8kyRyEJnAcD1DMzc3x0tGjaFJx6tQZ7qndh4XFX5z/F9x7cI6tfg+9UOGRz38BoecmbLeaaN6c03FnQOPGz5vN4S7b4NZm8fY5798nAnqjLbiV+vxhfTD1YeP6E9SdGtcft2685t1wOnHb897v9n7Sv/809ZMe/50HlfwTSf6n30cdO7NrzvTe+t9bB68bTeedmsYb6Ipt2+9odO806N3+d3Fj2ff2193BSOnWbeYUxPc2pXobGkyuaRUqwYjHnD/xMtevbdKenUcaBp2NDpVSEYkFyqC2ukPxX/4h/Uc+yuqgS5YqSsU8i7BQLPDMMy/R3+kDgkcffRTHdehsdZibbTHVbvPKyy+ztbnJweVlMiFA09A1SRyEjLhGo1Fj62qK67pcuHCRI88/zyOf+iSWrdPtdnPqnm1TrdbJAN0wmZ6aJpxMMFyTMIwo+hU6G1t0dzroMqFeLtPZWEcKwc7WFqgUt1AkTuJdB+QeZ8+eo1RwqVaLBMGYOEpwXYskZRcZlWRpxng8Yma6ndPrdEkUR+zdu5hTHjWJ5xYolcq59b+mo0gRaLz22jFOnT7NAw88kEcoaRLbcgmCCE0aBJNBjkwB+5b2kmYZpVIRyHI3WkBISW+niwBMw0AA49EonzjEKdeuXuHee+8limNmZqaxTYFpmkwmAVPtGfr9Ia7nkSQxYRBiGBYKeObppymXyxRLRcIgoFqtMhoHrK9tYZsGk2BCsznPzs421VqF9Y11SuUqQmg5hXiXgl6r1rhy9QrlchndMDh9+jRXrl7BL7p5o5EpNF0nTTLWNzaptpqsr+Zora4bbG1t49g2umkgNej3exTLVYajENuSbKxdxtSSnKrXnCXKcudann+d+Dd+gT9/6ntcuXKVhaV9jIYxTz3zLI9+7meZmq5z4sVjGJrB008/y1f+4qvcdc99PPrZz7G2sU2agbRtDt53D089+SSHH3qQbDTBffIVElOiLc4hNUmrPUWtWnlrAoNCN4y3xgSh5Yj8rlPw7jQIlSvNMAwzzzDNFO2pFs1WPV9MynI0Jo6yXXTUzrNgVUbBL7C4uIdS2cdxLQzTzCNc4twYx9rVoKLyxtQwjJy6u+uKeerUG1SrVQQaQuSxM+NxSJJEaFoeP5KmN9BekyiOUJnapYanaBoIstyJO4owdAloRHFCmmQIkUf2CClAaAgpUZlicXGB++6/L6dTmwaa0MgyAUpw8cIlXn3tGPuW95OmKUmSEgQTlMpdlaWUZFGOODq2w/VrV9i3d4GdnQ71eg2/6OUsiTDksa//FXPTczSadQzDYjSakCYZrmdTKpVwbJsgDIijPE6o293Gsgx002A8GWGbdo647Rq1DTtbZCfP4sxP746TAjkJyHQD1a6xZ24PR18+SrlSzB1wTdD03CW10W7mC3BhwHDQo98fstnZ5o0zZwjGARcvXWVufg8b6xu88vLLLC4tEycZf/GVrxIFEyrFAromWN3YoN1qsWfPHPfcczdS19BNLUfeih4Li3toNuvYusSxizzz7PMIaeCXqqRRQqoEKtNY39zgl3/llyiXfEr1GulsE/3yCqLTRWz18sd2D6M/JOtso+/0kVHCpc8c4KUXnudzP/dzpGnGrc7zANpCiraQvuN+dqf7mGYahE/GvFH/Wz5+6BfJFGRJQhBEXLm0whsnTlKr2LiewrIcFNCeamFaGWk6xHaLWIbNcDRBGg61epNgNCFNAqRMcByLJEsJRxPiJKNcLjI3P8vGxg6vvPo6hqFTKpXQNJ1LFy9RKVcpegVWr52n1XTRZPbWvVVBqmJ0w2U8ydDsGhtbE6bmZpGG5NixY6yvrTHVbhMEAWEQkiQJ40GEaQRUKyHVqsTUXeI4xLbt/P6+ixqYpkaWJKRZgpI2pltnkujousZ4PKRarefXY5IhidBFhm4JHE/guilJmCKFnjuxazAeJUziBIRJqz1HmmUcO/HyLqU3TzewXRvdtrBMgzAOyDJBudzazQVWHH/peTbXr3HkmSPYesb8TIW9iyXKRZDaGMeBYslAFxmmIVBZiq5p+YJ3lrsGR2GIZeoolZJlGVGUYhrurlN6glIwPz+HbWsoUkzLpNEo4joenc0dalUfKQWm4RFHEQob06lz9uIa19a3kBI2NzdxHI8wDOl2eyRxQrlUZkafw9YconuepbvdwfFLPPSpz7J06H6Ebt3Usr4DvBDvznq7dZ50w0X+1sb332fjqmlvASEfoq4fbH3YuP47qJ/m4hDanU9y7Uec+LdfHD8J2vtef/9xtn971M6PqvfKSL2BXKb/9tYc1/fe3xuNobHrtHnzRr7bxN66CvZuutxbB8cbP289rpv/ztQ7jvfWQ3n778U7VgRv7Kt228B9Yz+zLMsfCCQaKg5Zv3yOJ771dT7z+V/FdDxWV9dYW11lrj1Flhm89MdfYfn//FNeKZlUD+2l0WpjmhZxFNHpdKg2Gqxd20TXde66+xB+0SNJEhr1Kp3NddI0wfcL7GxtM92ewnQ91tbXWL1+nWuXLzG97CANnbqzj7W1NYIwZGnvMnESUfA93ILLJJhQKBTY3NgizRTFYinX3qGwCi6mZWEbLpoQWLaOZWkgXQy7gG552K6PZlhYpsna6hpCaHhegaWlvdSqZSaTAYViEdOw2dre5PyFK8xMz+zSeQVpGrOzs0WaJmxublDwPM6dO0+j3uTK5SvMzs5h2w4rKysUCoVdI6sdFhYWMUwz13s6HsPRmDSDztY2lXKFJBkTJzGj0Qjf93d1hYLNzgau66EbBlkGf/LHf0Ichezdu5c4iuj1exQ8j2q1SpwklCtVSqUiAsiyiLW1dYqlMkpBEEQ59VHPMzZ1XfLYY49x/333UyqVMHSdKArRpIbjFFAKDKnzwgsvMxyFPP30swTRGIRiamoWy7IIowkqE/QHfaI4ol6vk6QJLx19Bddx+dQjn8RzHcIwIJpETKKIcqmSm2E16xQcExDEcT4Rdgseui4ZDga5g6/lABKVBUwGO6TRAE3qmIUKul2AcYR48XWu/MajfP0b3+TQoXu55yMfoVStY1o2Fy6+SZJO+K1/8ls8+cQT/Mvf/V0+9/M/x0uvHOWzP/s5vvzlP+cP/uCPKNcb7L/nEBKF4xWwlMB54ijCdRg2Kjcjrm5c60Lk9FlNk4RhBEohRG6UkmUpiLfcKzUtdytNb17TkkxFOdKq8lX0s2fPsrGxmS9WqAzDyCeCtUaTcrVElISMx2MM09yNyNLQdZ3JZIKhGwxHQwzDvDk2KaWIogjf90EIbDtfJBkNx/ybv/gqp06d4K5Dd2GaNo5ropTk4qWLlEpFbNvKG+csQwjFeDzEMHIdrtQkSmjo0ripFRUiI0lC5G7THIYBpi7JSEl2o3GU2r3fICmVyuxdWro5zmlS8Nhjj/GRjzywOzbDGydPc/rUGer1Oq1WnemZFnfffRDHc3EthygKydOmM8rFKuVyhU6ng+f6dDrblCs+p0+dolKpYJkWW9tb1GqV/HuIE9Y31mk0cwq4UhnFYun/Z++9gya70vO+3zn3nJs7d3/95W++SZhBxgIL7GJ3SYpJjJIskqJUJbssl1e2Sy7/bcsuuxRcxSrZrqKsIsWSuCSLS4oUuaRJapcbsIslsMAucpjBAJicvpw633yv/7g9gzSITPoDb9VX09N9Q3ffe06f533f53kIw5ivfetR7joI0IeWKIQgDEOsJCNTBnGjCgWcOn2KY0cPo5SBlIowTAnDFIFJHGfs7ayhlUUSZ8zOdXnwoYfJ0xRDaSzL4uUXXyScTFg8tIrr+XzWqXLY9Xlp/SrNRoPu3CzudMxYtnmTnpCmCWme0e/3aLTqDPcH7O/32dza5vWz57nz7nvRWlGp1vArPseOHkVrRZJEXL16lZAC4/gh5PFDJCvzbPkW/n13wNEViiNLGNe2IAzp/51P0XYlSwtzZNrjhjTCR0lcF0ozOrXN/sE1LDVDZ3aOyXBEnmUEk4T+wRjHzmm0LYpUc/bsVWr1CiJPEJRJkjRNyQuo1prs7R0gMLC0RBCR5mVlz1QlrzoMQxqtFp3uCq1WlyzNSZIyEVqvV0ni0qIsS0e0WjaySEjikpcbRxHKVKS5xvXaaL9Lp7sEsuwYtR2fOAq5cOECy0vLtJotdnd2uXThDKPeEFc7eK6J1gVFQXnvS0meFzfHeppOFbaNCrlRRTk+aRKS5wVZXuD5FTbX15GiT5FPyPMUx/XI4xQlDUBgKIG2DHp7B+zsj9na2OGVU2eJk4Tbbz+GljY7W3vs7xwwOzuP7VZJJiGmMjn98hmeevJ5zr1+lnNnX+P7P30MW4UsLza44+QyljnGcxS2FlhaUuQJlqVJk4hSKXjqvyw1hgnkU3oHMUmYIAwDConrVksROgVCaNJiQpalCMC2BY5lk+UBS0szGCorhc0okELz0ulLnH71OoNxgut7tFp1HnzwIfr9AWdeeQXX9bC0SbvTYe3aNeb8eQZHvsXW5hb7gzH1mSWO3n4PpuOXCcRbrTXf5V5+Y36/sV56p1vDuwHev4p4uzXVx8D1Ly8+Bq5/QfGRb9J3A6fvA9b+PPHXOaDeHwiXgO+DAte3c1bf69hvr86+2+vvG8Vb24rLx+99zjf//934GG9/X1oZ5Ansrm/z67/yy9x2eIkzFzdZXjnMP/yv/mv+u89/ntMvPMfc4y9w4ne+zPrxVZ7ZvM721ha5kFR8H0sbjCcj/FqdYDThkw/dj+mU4i3j8YjtzU2+971nePCTD5EVgv1ejzjLcG0XyzKxLZvDhw5x/uLrjPs54cDAdW0WFubY2Fjnq1/9GrfffvvNSnYcpaWnJoIoTrFth/G4j+l4CCAMRpjaYDgcU6+3WdvcZWNjlz/6k69gux6OVyFLQjyvUoorUdqMAOwP9nG9KkKaeBWf7myX0XiIFAZSGuQ5nD9/ljhKWF45RJFLsixHGSa1Wo3BYMDa9TWefvppjh0/fpODqLVmZmYG0zTJ0wTLcckL+M3f+I1SIKlSoVFv4PsuhiGQsrRD8TyPgmLahq5wLJvRcMjKoWXyLKdS8en3e1MOoWRvf58wmBBOxrQ6HZqtNlBWjU2rrA4ahsF4PMZ1PebmulQrtVKNOQpLu5M4wq/UgYKd7W0MqTl8ZJX77vsktZrH6uoKeVZMK3spprZwbAdplC1Zk/GE6+vbnH7lNLfffnK6iMuwLIfMMCjSjPFoiO07pOEYMPjlX/p3fOITDxDHYSkmo4xpm5YkS3NM08CzFVqk9PsD6p0lpHbh0jpFr0/7f/5HPPyp7+eeux9AuII4TPnib36Rf/q//lN+8Pu+n3/5f/4zVo8eIksjDq8u86X/+B9I04CHH/o0i/NLrK6usnL4EBXPJSsE0f6IxvdOUzgWYXdmytkqyItsOoYKikKQxBlRGGHZ5vS6GWR5ipSCJE2hEFMbC8jz4mbrWRyFhGGIIQ2SNKZeqzPTbaOUQRAGbG5sUK/XyTFuJsssyyrVbCmruyXf1qQoiqmCr2Y4HCBEMeUNS9I0w5DGtJIpMZSgVmvyifvvwfcrZBlkaYrWFrV6DSFuiMnIqeicIgxDtGmSJCnaMm8u5spPlZFmMcloD0NpCnkD4ErSrORaS0MhpSAvslLIypDT7y+b+sQaHL/tNpSa+isWBc1Gk9XDqziug+95SAmTYIRlOUzGEaPBmMFwyOLiAuPRmGq1iqlNrl69wm23HePS5fMcO3YMaRhcv75Gt9tlMOiTpRnhZMLyygpplrG1ucloPMY0TYQQ3HbX3aQvvEJw/BDONPEnxyHCtginvF+lFK5ns7GxRrMxg23ZVCpViiLFdW2iZEI0Kfj2tx/FtASTIKLb7TCeBHz9a1/jh37w+5mf7dBoNej19qlOIvIsI59pUZmKOo3HE/r9AVubWziOS6/XI8/hYP+ASq3Ozs4eShpMwoC77rmTNI1ZmJ/DtBVFkTMaDZFSYFkmk/GY2dlZbNfBtsoq1DNPP8/jjz/OfffeR5anREmMdeE6Ikro/C+fp7b2JMnG65jHPgtvU54vtmXZLuy9f1dYIiF6dUJ4JcKs18ilwe76FsgUbVlcvnANxzbozlYxMJidXUapFEmBgUmUxWit0KZJnku0ZVGrtsiyiCKPMOTUfi5PSBODM69eotGew6t1sG2Py5evUKvWkYZAa4M4jGi3muzurGPbGa5jYmCQ5zme55HmOeNA8Nzzr2NX24yGEwpS1tfW6HTmsLSiXqvjOC5ra+tcuXSZVlvTrLa58PpZlpe7OJ5BMJ7gOG45ZrQmTVOk4U4pOoosq1Kpz7Oxs00ahtQbLfZ7PYo0YXZ2pqwmm5BmGYZhUiQFwsiRhibNM2xb0W62yNKQQ0tzvP7qKyiZo4yCy5e3yJKUVrPBd598kq3NTdYvn6XIAtauXCJPAu46eQjfTZibUbSaDo4lUDJFqYjxcAx5qSyfJgVSaSxdjv+8yFFGqW4cRCkbGxPqzTbKzIijjIJSzDDLSnpAFKUkqUTphDzTFGmGNhPINHkRYBgFQRCgDBMhIMkMesMCZdVZWFzioQfvpdFqY1sWnucx252jWq0ihOSVV19lbn6Getbi2eI32N3cwvIq7A1jHvzs38D2qsA7k/lFmUW75TrqHffwm+xn/nNozf2rUjn+OD4Grn9h8TFw/eDn/osGrm+v+L4fKP0owPUtoJf3Bq7vBZA/DHA1ipw4yPnKH/8pP/UTP8bZ117lgc/8MK7r87M/9/f57h99GfcX/i2Hz13n6bpN37a4ePESx48d49jJE+VCoF7jyuUrzCws4tua/vCAQpZZ5qpfYWtjE6VMRuMJzXYbp1Jhc2cHi7LNsFL1KcgxUo+o7/Ktb32Tu+6+neFwgFIGD3zyYQbDAX6lgtIma2ubPPP0U8zNLfHbv/O7HD68imNr0lSQpxHKyNje2cSrtNjdm7C62GZ2pkPN9/Edm3a9imVbRFHpS3vlyhVMU2E5HlJJCmFgGDaFgCAYlkIuWnPQG2CZNvPzc3iuy/5+n1q1zp/8yZeZnZ1nZ2eTU6deYWlxiVOnTrO0tEStXiPLM371176AlBKv4mFIQZrlICWHV1fY3d7C8yqYpqbXP2Bj4zr1eo0kSanVqhiqBA9Km3RabXzfo1avUVBwsL9Pu90uF9hK43keB/u7vHbmNIcOHy851lIgZEGvd4DnVFhbW2e2O0ecxEgJWpVeqGEQIKTEti2koSmKBNu06HTmsVyNlBbSKBiO+gwGY9I0xnHLypI0JFK8wSVaXjnO3PwcSZIQBhHNZhvb83nyqac5srJCOB5i2hpbGyhl0Wp1aTabuL7DaNTHsi0MrdDT6nAUTujvb1Ov2AwHY6qtRUy3hnjqNMlsg/BH7sdUHp5Xox/tI4Ti2LHbuPvknTzwyU+SiAjXc1icnyMNAx64516O37ZIf++AX/2VL7C+vsFnP/cZKlWn9GQNU/ynTpMvzSI7rXKsGBIo7+s4idHK5NVXX2M4HNHuNIF8KtiUTatxBnleTNvN3tT5ICRaKbQyyfOMa9evkiQR1aqHkGCaFspQ9Ps9/MrU0kFAkqQYUpHnkGXJTf68lJIgCLh+bX0KfkuLFyEkjzzyTY4fO0aaJmR5gm0rWq0Olm1QIHjxhVO8cuYVTpw4ObX1mlo3yYIkLZCGxLRMDKVQ2iTNCpI4RGuTnd0dPN+mP9hj7+p5Gu0OxTTBw5RDlueUQlaiIM2iUnCHUrQrDAOSJERrizTLbs6xJTcu58LFizzx5BOcOHmSMA5xPY8CgzhKePLxJ5mbnaXdbtFsNNjZ2UEpfROgx0mI53kkccp4POall16m2WiRpzmmthgMxlSrdUbjAcvLyzz91NP4fhXLtLj83ItUlcbyPfI0RU9CosUuoVG2Zm9tbdHv9ajWfHa3t0pePDF7exu4rqTWmKHit8jSGMeVtBodDvoHHDl6hFqtgiAniycobVCvVTD3BuX9tTzLJAyJo4RKtUqtWsMwDLRpIguF43jU600EBr/5xd/m4Yc/xUy3hec5aC3oNBsklHZZo9EAz3XZ293HdR12d3cxptZEW1tbLC2ucM89d5fH1wphgHH2CiKMOfiZv4G1d47hZIJ5/Acw5FvbgtPfcMjPqHeIM92y4mop3NBidGrAbjIgTFLuvO0OKjWNVAXra7sk0YTFpRm0CkjSjCwfQJFiGja5LCjy0vIqywuSOGNnt0ccjmk2fOI4QilNmo2JQ5NJoBiGGXatwXgwod3qsLm5RZ5ldDotDvb3iOKI2W6DwcE69YqLKASGUsRRAlIipA/4LCwfYmF+AVNL1tc3GPZDGo3S2ms8HrOzvU0QhGyuXaHYJM8ZAAAgAElEQVTdsrjz7g6Om5GEAlMZU0VnVXq4FiB0lSgJSFOwrC7arrHX26Hu19jv9anUamRJyNbWddau9vAdxSQYltznLECoEs4XQFHkJU2nkuB5OSvLbZaWZnjtzBnOnL3M5sY1BgfbSBEShyPaDYWSEUvzdcLJHidum2FpwcE0TPI8RkmTKIhxnPK6GNIok5OGwWgyAQR6mtyRhgIhCWLJI998ncNHl1A6IgpiikxhWpJChOWYjyXXr+9SqRkY3Ej8RChZLX2uDYMsVeztjrFtjyDLuLrWY21tn1azzspyh29863EuXrzI8vIKFy9epNVqc/7iRQ56fWZbXfxxlZf0l4gnQ5JC0lk4zN0PPIxpe7zd9/S9Kq63WjeK/4yB6xvPfQxg/zLiY+D6EeIdA+1D7PeOfYo3/krWDjeB0Tsjf+sOZWPaBz7nh32/7+VH+lHblN8/ym+gBK4C42//0Pvv8aas3a1ee3PcaMW9VTvwrY9dUBT5tCVMAEX5QydLSwkhp5y1Qky5amXrXZ6X1gGl10Sp1lnkNwSYbnG+LC+PJ8rjFkWBoxS/8M/+D374+z5Hc3aJ7pE7mZ+ZhSyl+OLvc/ev/gGG63J5tYvbaRNOAj7zuc/i1xrsb26ys7WB5/skaU4ew1e++sd4vkeaxlQqVUzLwfErNOoWhcyp1avYyuKJb3+HvMhpdVtYnsXO7ha1WpV+b4Dr+zz/wkvEUcChhRmyOMa2PBzPpj/epd6qs7KyiuNoTKNgca5LlgukLNDawjR9HLfJ1atrPPvss7RmOwRRSHumSbXVYBzFOE4FbWmEFFRqNRClZcHBXp+K52MaOcFwB8v1CcYxaQRVv0qchxhSYFs2jmOxf7DLbSeOUq25bGxs0qhXmJ9r8cD9d2LIhDwtEx+z3Tlmu/PYloNpKrI0Jpz0qVV9ZmfncCul/6BlO7RnZkAKDPWGKJjWJlEQYXk2UoEhy8qV7XmMgwSyGNc1oYAXX3yNi5e3OHnbMnkeEwRDbG0ThQkXzp4nTccII8NxXAzpIAQMBgP8Sg2lLSzbJUtywiCmwODRRx9lc2OH/u5VVlaWsV2P7d1tujOtkpscZHh+hZzSXN60bNavXkTJnHa7TqNZJ8thMulhSkmr0WZ9c5eXX36N1duOUQhBZ6aNkJSAT4EWEqV90kKg8wG93avkScjOdp/ccJlZXCVLcsSjzzD8V/8TebWK9kwKlaKEiTYEpgEnTh7F1BLLUlx45RRiMuHX/v1vcO7iVTrdNjPdWVozDZ58+rs89NnP4s50ibMQNxKYz7xKdt8JIIe8IJhEGMIo/Ql7fWzTot3s0O60KUSBocrFnpoKDuVZwbPPPsvC3DzBZEISx1imWY7v6fwgEPQP+owGY5qtWa5dW6NSrYKQWLaD1mV74Y3FoigygsmQfr+s6GRpRqm0O+Tc+UssLy+VbblSA4ql+UWyLME0DRBT3lYmCYIYpRXzCzN052YwLaNsYzQVaZYjRcm9k1JOE5ziZpU1zUs1YtdxkFKgtaLRWQHDxJAGCEmBmHYB5EijmLYK2yCym9Vox3FQSmMpTZ5lnH75FN1Ot5znpEGjWiOPI9qNOmEwoVKtQFFyvvf2d7EdTZGnOJUqG5ubNDstXN8DITmY+rWalo3nVfnek9/l5N130Gw3ychwHU0YjJBWDdM2sGzBwd4+u5vrLM62MC+tY3Q7ZGmOPQ4IDs9TpBmj4ZCD/X0unL/MkcO3UanWsB2f/YM+nuMzGow52NvD0hlzs208r47pVtlcX8fQJp2ZLs1WE21pLKeCoRz0br+cqzt1xoMDTp05x0svvMDK8hJ+3acwQDkK7aipqi54bpV6x0bkkoO9XgnqRcm5nkzGtFst+r0Bnlvl2rWrNBoNHNvj8uWrDPsjOnMz5EWBtkqF4CRJkK9dRsYp+ef/C9TWK+ztbLPyye8jKd66YH83VeFb/SaqbEIycrBfnCGtXKbiVbhw5RTDSUh3bhmtBBfPnsWSNQx61OqzGLYoOeFmyceXZGRJhAQsrfHdGpvbY/zaASJ1iWWKEQEqoz/JOH9+yLGjd3L56kV2dnaYX1hEqdJ/fP36NdrNButrF9A6p+LX2dkZY9sFmUgJIpPR2GY0FDieS5xmKNNldmGFVrfNoNenECnz8212dw44feocdxxrcGjJx7clwSjEshRSKUQhyNII0zIYTySSIdqukptd3OY8luNiGpokjdEafM9kMBjR64954YXXOX7HITzPgqJUnS+TOmXCLEkkwgmRhVvalRkpIgtYmGly+GgF16yzdm2fmRnFHccbzDRsPEfiOQbz8w2yJKDIctI4J8sj+sMx3/z6Pkc/IRCJi1aCrBBMUovHnz7H4cUapmUxiaIpNScDLVmYdXGMBLKcIMzQFlPFbou8gIKUmWYbUg1EZPkYQ5WevEoUFBSMxxGOY6PMhNG44GBisL8/4tix22jNLuE5TbrdWapVn/WNNXZ2tul25qhXffyRR8uY4WLz99jc79EfxrTaS9x51/0o10eUvcrv/Hvbuq4Es2Uy78Za6kZ3zIeND7pu/TDqwG9s98Za8cZ68VZg9uP488fHwPWvMD4syH1n3Io/+leb0fmryiC9teL63vHWyuc7eak3Is/zt/i5frBJ6VZS6+/kyd6okN8Az+9e0b01BzjnnVXYcW/Ic089y9e//gi333kXaZoyevkMjX/5SzjPnGL/obv47ee/y35/yIMPPsjW5gbHjh/nmWee4emnvsuP/djf5PnnnyeKYpIkpQA6nTbd7iy1WoP19c0pb2eDzswMfsUnikYszHcQSBYXF9Fas7O5S3umgldxcO0qd955B3u7u7RaDZQrGU8iilzgu3XCscA0Sx/MQyvLDId94jThO088xeLiElJK/tN/+hMefOgBOp0m3W6LYb9Pu92mKCTadkmjgDCcEAZj8qxspxRKU6vXpz9iBZNwQoGk6tf44z/6ExzXpjPTxpAGw+EQISW+75cCQcDy8grNVhttWmzv7GN5Pi+/eIrZ2XnCKOLUqdMgBGkS0Gg00FoTBDFZJtg/OMCxbbTWCGTJ/ZNAITg46JHECY8//h0WFhYZ9no0alWkgO2tLao1H2UoorBUyDx2/DD33Xc7ypDYtkMQJAg0/f6Yp556ks9+7mF8v0oQhPT6A4oiQmmJZWtG4yGIAq0lBwc7aFOycmiRatXj2JGTpGmBVCYgsUyXNIFqvUIcBhRZyqDXwzFNRuMR3bkZpJSkSSlupbTB5cuXabfKtriFhXkqVR9LaQxZQJ6QZynZ9N4sCokgIx7vIvOIne1tNrd2WT16O5O4QK/tYQxG8D/+A4Q0GI5G05ZkFykMRoPSymg8GiOETZHlpdhUNOHipYvce989RGGElJKf+MmfYvXoUYRUNOs+f/CF32TmteuYx1ZRSpAmCV/8zd8q7UpkQRAGjIMIx/OQoiDPIpQUpMl0bE6TTe12G8NQPP7Y4yyvLKOmbbNCSNIkwZACx7boznaYBDHb21u0Wi1My0QZBlmeoU0LISBPY4YHu1gG/NbvfImTJ09gWhoKsG2bQ4eOlJVvwyCKEvI854/+8CsopejOzKK1hRAlSPz6I19n9fAqWimULhdoWZajlXrT/EZZ6Z9W/G/MG6ZpI6UqF3cIpGFMW6JLr9c4iVHqhnhdWUHN8/xm5TUvCrTSRFGEZdtAUYqeLS2gtSaKI5AlN7jVahLFMX6tThinKFH6EHdn53A9F9f3ydOcVquFoLxOtm1jmYq8KPmzURTxifvuw/VcKMprFycxvV4fx3KwdKkqnGcC2/Wpdlrw6LOsiQxladw4YzzXQCoLhGBxaYmV1RXWN9fY2dlkbq5LpVpBmyaO51NkOQcHPYIgwKtUUFrRbs7w+BNP8vLLL7GwOMdw0KfR6lAIMPd6IGCdBK01s3MLHDq0QrVeI44THMcFCtI4wTQMijyn4nvYrkcUpIzHEdvbe2jHwdQa1y0/p2WW4kDNepvNrU0MQ9Bq1alUXZI8Y3Nzk3a7BaLA1Cbi9UuIKEb99z+PWHuJPM/wD99PpqyPDFyFyKBpwR87XAyfYXN7lxMnPkW7vcCpU6ep1RyuXHmVxcUWFcdAmZqiCBAF5GmBZQlAYkgT03bIZY5haJqdOfIs5YVnLmDoOr4lkVpg2R6DcUhrxuPI0RMsLpaJG99zCYIRs3Nd0jRnttvhYH+HKEwpcpusKBiOJa+8uk6ttUCGwKzUGAdhmYgpCgxDkueK3sGQ82evcP7cWWxLsDzv4TkGFBnK0EgDCqMgCpOSYmKkGEbZIlxgYnt1Ll68ymDQp1WvMRjtYNs2uzt9lhaOU+QWc3MN2u0aUqjSQkomjEeCQT/GNCVJkvLcUxMazQLf9zC1gVJ6uubISZOM++49wcyMiSgKtCkxJGRZTJanJRXAEJhmjXAiUGaGFJLOjMI1zKkQm0IBDd+mVnPIcov1tR7acLEtC2VosiTAdhRJWoC0aTYrNyup5e8oJMkuSRZimlZJPYjGaDPDsX2CMMCyKmjtEARjXnr5Gnu9AlNXMLXF5SvXOXn7CZI0IkkSFhYW6c7M841vfINjx46ynB7DLlyeiP8tuzs9hLL5gR/+CY7deS/a8Sjet2jw5ja2t7bh3qqT7S86PgxwfbeQHxFgfxzvHR8D148Yb24H/aj7vxu4eXcBo3ee64Oc/t3EiMr93/AIffv5P2h19VbbfdSJ5Ma58z++NXB983t98/a3Aq1v9jq8IYYkp8Ipb973fd7RWz5P+e8tOLVvu2Zv597ePNfb1IffLC5gTA3QRZIhsoLHHn2MTz38A1zf2OGee+4meeppFv75r1DMtsk+80k2Dg6YjMf88I/+KGEYMBmPsUyT2247ztEjh8iylOXlJYbDAb5vc/c999JqtYiTGMd1KXLY3t5BGZqZ7ixSgqVzJuNtXN8mz0KkyGk26xTt6wh3xFPffIXz587SbDZpz8xhuS0ef+wpXj51ik67xmuvvEK93cSyTA56+wgpUJbJ7SfvnnrmwvzCLK5rMRoP8Ty3FGHJC6IowbIcvvX1r3Ps6BEMKfEcl3ASYNk+eZ5z9fpVavU6luMhhCAYTzh0aJlud1oJRWBZNnu7e1i2TRAEmKZJkmR869E/Y2nlMLVmB0M5FGlCu92m1Wzh2A77+z2OHFm+qVR8sD9ka2uXdrvJ1StXyyq1VkRhSBTFZYVWm2R5wcryMpZpoZXi+rVrJHGM0hKlBKbpYiqfr/zpn9JouMCEXm/Mo996jJWlwzz7zPO8euY1fuzHf4RKtcokCHD9kuPruxVOnTqD41bIM8nv/u7vc/LkCaqVOt/77tNYlsvu7j6VigMiQ2mwbY1SGtt2ieMJF86fo91sYlsmwWSMV/MxpGJzY6sUKMlSLMuhWqni2BatdoNCZNimNeVl5phaEkyGYBhTRVsDwxAkkwPS8QH9/oj27ArdpSNo28d4/gzyZ38Uef8dKK1xHBetTaTUDPoDHMthe3uHf/I//BN+6Af+FqPxhN39DZI44sEH7gchuHzpMnEcc/qVM0RpytLCCutrF3nwxAnqL1xiV+Q4NQeB4N777i0FRpTAcR0s28MwBEoJRNkCgaFNhBTlPaHNm5zs+fkFPM9DTLlVpZxYmZxI4hjLUmjTLYGuMqbzaYE0ysdFnhFPhnQaVbQouOv+B7EdG600eZFP25FLLvENDupg0Ofw6hKrhxeRRg6iNEYzlcGxY8dQegpSpYEUoJUiSRLygtICKs+mImGlQE5RFFMVYwFFCUhL49zyGIhyjlLKKL2cxbQjhLL6LGXZJp1POz8s25429OTlZzbK78RQBvnUD0xKgzjJUNoCITHylCCIcF0fqU36wwGmoegdHJCmKUEQMhoNabVq9Pp9Kn61FNAKI9bWrjMajahWqriuh+f5GAVQJBwc7FOvl/ZcwrHgwhrDZpU8iqgjSVdmwbAQyijnAC1pdVoszM+SxiEH+3vEaYbjV/Ecl0q1Ti5E6TXpaIpc0el2uefee7EsizRJsW2LggJrf0hRgHloEdcrefraLO8dZZhIDKQQGEICOVEY4rkuhgZDgO0oGu0apmMRBym9Xp8iL9VbR6MRly9dp1Gv4/suBQlZEWNaHjPdDkzB/Xgyxuy0YH+A/C9/mvjSMyRxzNW4Smt+8aNXXEkphEv2XMol8xuIoU21NUsQBiwuLiCEYG+3x6XL60iRMzNTQaTx1K4MDCXIUoEUmlzmoHK0cBgEY5SwaDZN1tavYaoCxzOYjFNOn7rCvZ/4DP1hjziKphxmo6yEGoqt7R1q9RbbW7sc9EL6/ZSVo3dx+tUtHv6+nyTKcuqdFjPzh6jW6lQqFXzX5uzrr7G712fUD7h0/hLHj85Q8yNW5utQxCWHPwNERlZotjb6XLqwwfz8PDkFOwcBjVYpdOg6XunpmibUG12KXHL50mU832I03ufQ6jJKmaSxAUKhtGAw7PO1r7zG8uIyfg2CIKZaNTG1psgzIMcwQJDjmDm+G5NEPfb3BlSrNlmeTjnl4qa42dVrO1y9vMfyis/MjEIVNv0gotA+e70ApQ3aTZ+4GJLniv29CY1GHeQEEoHllImo0STnldNnaTXdUodhNCQKI+rVOnGYY1t1trdzvvKVs9QqVRo1nzQNSdKUSxfXWF/bZKbbZm8/AFVhb2+fmZkGn3r4QWzb5plnnqUoCtrtLnt7PWZnuzz33LMcdo9hC4dHh7+ENlwyFA983w8zt3qEXJTdH+8GQm8894YzxK23fcc67G1rq3d77b3GxgfZ/v0qsm+sF+Ut14Mfx58vPgauf03xXjf8u6ukfbSK6wcdMG8fiH+dA8342z/4DtD67lXMd3/9za/leZltjOP4fbd/Y79bPnvz0U3gybtPvm994V3AsiiNS0ypUIbi937rP3DnHXdjuTVOnLyT2le/zdwv/0eyhz9BdGiRV06fpt1qsXp4FWVZ/H9/8Ie0W03OnTtLd7ZLFE7o9fpsbm5yxx13sH+wTbfbZW9/hySNEUIQxzGO4xLFMbV6gyuXL7O3s8Xy0gJJVrC7u8dsd5aLVy5TnYM8S1lunWR+rsvyyjKW65EkBa1mh+efe4rFpQ533XUCoUzyPKdRq3P16nXy3KBSccmLDM91cF2XMIqo1+rkScbWxgaOVVqtZHnGwsIy2jIZjkZly6yyePnF09h26YFnmhYgKYoMrTS7O9t4vl/+yBU3fHgNTNO8CRYsy2FnexvfdfnWN76JFIJ2s1pmwacCPRcvnefw6iqbW5t4nofvV6j4FSCj2axj25qDg30qFR/b8RgOh5iWRZam2I6D0grLsvmD3/9DBsMhnW4Xz/eJ45TRaMDC/CxZGtNoNLl44RqnT59Ba4u777mLmW4LqUoxKcfxGA1HaLPkNlWrDaIooVZrsLJyiGajgZSS48dP0Gw2WLu+TrNTw6s47O9uY0iJ0ha94YhTL77EXXfdhdKaJMvIpaRSqVDkpcH8oD/AsjTSUFy/fo2ZdpvheIBfdUEaOI5FGAYIIZBKYaqCLA5R2kYYkiweMT7YYRxmtOdXcSst0jjE+LNnOf13Poc728VQetoGL0mTAsuy6e33uHbtOv/3//X/8NzTp2h1mzz46QdYmF8kD1NymTMajrl44QL/+t/8G/6bz3+e2aUVJkGP5OCA5hNnCLd2kMttkjjGUCVHUBoleFFSEMfhVMhIkWYQRRGT8QTLtlBKkWUZr5x+nVfPvMqRI0eQQpCmpZWNUop+b8Crr77ONx/5M44eP3azS6OsUN6gEZR0Da1NhJQlyHB9BGIq+FSq/O7v7/KFL/way8srVKs1XNfE1II0i5hMRhi6bIdP01LBs+Tul9XQNIkRQk69ZG8shphuXwrMlEAVSpnVvOxZFWVFLAfE1IInSWKKPGU0HmGaFgIDrTVJEk2TEcZUabWs2OZFubdhKPJCIKWCwiCNUq5fvcbG+jq7u7u0Wi2kKLAsl62tbV544UWuXr7C8tIiB/sHTCYTZmdnUUpx5fIVFpdXSNOMNMmRwmAyHkytuwAh2djcQmJQiJxmu0GBgRSSSTDEHidUopjKbBs9Cgnm2jeVvkt15HLeDcOIQW8fLQqUNMrrPxmT5hlJmlHxXfZ2d7Bsi9F4QrVa47HHn+D5Z5+n4pi0Gk3M/SEUBRt5yu7uLo888ii3nbyNvMiRFJBnFIZBmqWsr20SBDHSsIiDAf2DXYQoUFMesmM7+H4pOJdnBQJFMAlIkpjhaEi1WsVxXJQ2yYucIJzc5LkyHMHaDunP/zhy4yUcx+H8yGTl+ImPDFyNPCEtLDiXcvbqd/GNKkvHTlKt+uzv7RJHGSdP3kOvN6E/OGBxvkaRphimQ0qBNusURY6hS1VlUUiicYhbcyFXTEaXWVicwbJs0myMlDYXL+6DcBmFQ6RUuI5LFMZQ5PRHIxYWVrhw8RIFBbNzC+QY9EcTTNuhPx7hV6q0OjMYUhBOJhzs77J2/RpRGHDXnXdi6YIrF09x520dluZ8yEIsR9MfjFm7tk6j7mFqF4lBteIjtSTHojazjOs3sCyfNC0YDkc0W23SrLTKandaZPmEStUiCuHypUtsrG8jhUmcFFhmxImjRzGVQMiAaj2m4jfJsjJJVIoXJphaT3mrBQID23NLWyshp9ZPpU+5bbtYtmZxoUteRBiyIE0MtG0xCiRf+8ZrrCy3MFWG0oo0E9iOTbXqIEQKGEhdkOUmvt2h03bQOp/+ZqppJ1kORUAmAixfs7Q8R6VSYOg+WVJqR1i2S6PRwFAZaa44e3GDdrtDFE5YWFxEGQ5BEGBZNqZpEYURFy9e4NMPf5r8OjiGxzd6/y8GmvnVo/zEz/48mC7FDauu96me3nicF+8sNHyYtd9fRnwQ4FpSQ+Rbnvs4/vzxMXD9a4qPgeuHj1tVjt9cUX37e397NfbNx/ng38ktn33nsd50ad7sIfvOXd8buKZRzBe/8OscO3qUmZkFcjSv/8IvcuRPHyP58U+zNd3u7KuvkWcZru/z4ssvMx6N+NxnPsPMTGdqu+AShiGXL13myJEjtFr1qVm4RZrHxHGM53m4rk2r1eLihcusrh5BGwbBeIxfn+fxb38X267gVxr43QRlCA6uRRR5Ka2fC4M43Kdeq9CdbbO0vMholCCVwLYstja2cJwKly+vM7fQwrL0m747SZELDKnpHxzQmSnb4tY31nnuuVOsHj6MaVkwzczO1NsM+n0q04Xfi8+/xPziHFkal0qiros0DPoHJSfNcRxGoxG+70/9DgUrKyvYpsnjf/Zn3HZ4lTgNSkVLUxOFAQsL8wgUvuexublBrVZDKYU2Jb3+AY5jI0RBmsYUhcGZM2eYne2SpGV7V380QEiDaqXByqEjaMdGm1apHjrpU6tVqFbqjEcJnufj+zUeeOATpciHJXFsF9erMB6PsV2HIJiQxQHnzr3O/OIc2jQIgjFB0J+qwsJBb49Wu0G12iZLMrY2NqlUGhjK58tfeQTP0tRbTVAGpmODVtNqAhhSc/3adZaXlkFK6vUaFClREmJZGmEohCw520laVllFMoI0Jc3L9u0oHEIcIE0Pp9KhEArj0hrZfp+///gf8Xd/5mewXYc4KdtjLdODQjAajDhz5lUOrx6m05rloYcfwFAGu5u77G3uY1hQ8StUq1V+8qd/mkkU0Zybp9nx8PIc61sv47SbTJoW1WoVpTSFlKUHoBSQpGRZTJymIDUIjWWqUszIMAgmAVJKtjb3iKKIlZVlpHGjBXcyTXw41CpNqpUGlZqPNhVpllLkJZdJTdV94zRHTIVeDG0hjVL8RUgJxY1FS1HywlptLKu0XhoPJvh+FdtykbIUMNOaEhTJUlCrBI3iZrdIaZNWAtfJZEKaplNAO60ASAlkJUAtCkq/4jLyLCntfJSB4znEcVqqohZ5+dlleZwsz8mngkw37HLSLJ+KwkCeAnnBV7/8Zea6s0wmY+bnZ8GA0WjCk098F9d2OXniBDt722V3RrtNEAQUeYFlWmxt7049lE/xzW98k89+5iGq1RrrGxs0mi0c1yUKYvxKydW9fn2NJIlot+qEskA89jxqdQ41CtmtekhZkKcZylAUmaC338OrVqnYJkkwJk8T8izH9CzyoqDWaJY83zwnigMq1RqGspifW+Kxxx5nabZNluUUSiPrdfaDCUsL88zNL07vIcnG+hoVzyWhTMp4XoVKpclv/fbvceX8eWY6XWrVOkVusL6+Q6XisL+/h2mafOFXf525uSW++cg3KYqC+fl5lFJYpk1GzoXzF+jMdKa/JzlZf4Ta2IN/+NMU118gz3LWiyarJ07c/M2BDwdcTVmQFBbGbkqzP0N/ssEgcJFSEYWlIFm/v8+FS+fY3N5had6j6rpEScEoCvnGIy+xcqhDkQdQFGhpk6cBhqMw8gayGKDwSXOB7ysEBZ3uAm7DZXHpGOfOnadeb5ImydSyrY1Ao5RJEI5oNhucOn2G+z/5AMoEbUq0aXH16hpV12I8GhAEE44dP0a73WY42GV78wJzXYumn6NEjDbKRJPjVmnUmmiVkxcprqMQRozpmeTSY/sgxHaqhGGM0tbUNzlFqjLZMRkH1GpNojDjYG+M0gX1eoO16zskiaDbskHsYOqALJYYwiYnxVCy9FON41JAThhkaQK5IM9NlK3Is4woKpNTpQWXJJgECGK0jiE3EYaJ1hb5uEeWmyiVszTXwjZiktxDGpqsyMjyDNepkGURGRnDQcHpF16n29VImWPIUpk8SxPyvMBRswRxSGFYPPXkGRzbwbYktu2SZgnKMNGmIklHBJFir5/iuQ1uP3kXllNhY2OHwWDAaDTk6NHDvPDiC7TaLbTSVCdNdGES3nmKa1fWMP06D//I3yTT5nQeM96xNnvz/fmWx1OQ+27diH9RwPXDVGk/KHAV4t0tGD+OjxYfA9ePGO/WmvDmG/Ttg+BWbbS3aq99+2OV86gAACAASURBVP/fOG7ZpvpG1l3e8hgfpmX3zdu92Sfrg7ZLvNt38VHjvc799knr7d/XjcdvGFQXU9PtEtzcKmP3lr+pQFbZzwcUIKdcsfL/ZRvejWbh8u+NDP87vnMxNYgXN9S3porJ00UhvGHnU+QCQUEchDz/9FM8dP/96GqF8QsvcfxXfpe1O47izi9RIHnlzKulCMLcDHOzHWxdZvO7c/MgJdV6jcvnznPo8CpCKdrdLnlh8Porr2Jqzf7eLtVaBcuyCYIQrR20aWBpgziJMQzN9as7HD1+mIWlbql86/WJo4CWfQTXbzIchdTrdUzt0O/tkqchFb/Oa2cvs7i0BBg4ToU4TvjuE98plYOrZeWkNxySxDGmNsjSlCeefJpWu43rezhWlX5/n/m5OfZ2dqhUXCChEAq3ZoNSSCw2rl6mM1PHtiyyPGcSjJGGRFDc9FccjyPOnb2KbVfpDQdkSYahM+7/xD1Mgoinv3eKQ4dWoSgX6teuXifOBOvr62Xlutuk39/Fq9ZQykRpG2lYXLx0jWZ9hosXLtJut7FtTa93QJYl1PySl3ewv0Wn0yQIxjimj9aKMAwIoxDLsUpxqyNLKOVw/txlqr6HUhCnKZ7nkwQBphR87+kX2N3YptlqUW03sG2LKCi5n75XJU3LDP1otItt21y5uk6t1sC2NEcOL7C0vIhlafa2tqg5LhtXrlKtuSAytDZwHIcwKv1hhZTEaVKKyRQFeaKRhiDJQyQpIs2JRpsgJYbhoYuC4eA6MoVImNTbsziWhidfJvwHP8WJn/lpfvZn/h7/7T/6x3z7kcfIooJW0yPPYn7xF/81/+Kf/yt+4Pt/kk/cfYSdzXW+/KU/JBiPaLVrBKN9Njd3+N/+93+BX6vysz/3t0ApdGHxpX/329yzM0a4NuLoEaS2yQrIs7ItVyKI0xTb8UAopJDTCmbJ0I2i8Obc2W77tOo2WTREGRrHqvLE49/D911sW5XWP0IShgnfefwJTNOhWq2wv9/D9SzSJMfUGvKcghxtGghsEKWVjZAZiBTDENi2WQoxUZAlGbZnIZUkzbPSykIJhFQYhoXARBoGRZFNxT6KaeWbqVprubhW2kTKUrhEyJJjWQrG6BJ0kpNlEdooDS+FLCunNzxqhaBMTlCKNiEo+XZ5TJHHFIWa8gfT0jInSzEtTRRPWFqeZ2llkbmFeQzTREgD09RcOP86h1eXmZ3tUG+08afdELu7OyRpSrNVdi8MBj2OHz/C8duO4lQbFEJOz5ERRhFPPv4YlUqNNMvpdGexXZ8czZe+/DVOhgWTY4fweiOyw4tIaZIX5Ryb5jGFyMnjSSmq5tcR2kKZNoUsbZEkOaN+j0rFJ40LbEuhNSRpRHdunqWjR6k2m8i6T25bNFszRHGBV7EY9Ie4ro/ne2TkONqBrODypUsoBXfcfpxUCI7ffjtBEmO7Fo5jcunsVVr1GkWWIoXC0g533XsXx47fhql1WcGXKUJY5GlC1XNQUlAIifHUK4j9Hvzjn2M3NXEP3c13nn6OT973ydLOqbx05E/r8hp+AOCaYmCIlHRiYZ5r8/rVxyFXuLUm3ZVDWKbBc88+Q5JkHF3u4lkay5qAyBBYrM7XsUywTD0V+BJl4ijLuXhhnWpzicwcQS7J04I8g9deu8Sli7scP3k7q4cOESUJ3blZGrU6RSZ5/rlnOXb0CNevr3Po8BEO+n18u1S79twqvl9jeWmFjIRr1zc5tHwC01Rs7Z7nq19+it7uGk0vY6ZTIc0AAwQSg4ycEKElRVyOuSQHVAtDt5iZPY5tVVDKJEkTlGOVib5cEkYZliuREnyvTTDao9pooB2LuYWZcjwEEQf9jN1+RGd2Bq3LjqY0i0mzAolGGgVpOh27locQIEUBRYZhSJQyMbRFmhecPXeRje2MWrWO40ikURBlCVIVaA3LizMoUxJkGTIbI2SD3/+D5/9/9t4zxrIzvfP7veHEe26+t+6tXJ0TM4czGmmk0a4saWVDwQZsaAHDBhb+Yn+yBcOAd2QvsDa8gC3ABhbrD2sttJZGYSBLK400M5pETmAQh6lJNkN3s1N1Vw43h5Pe4w/ndrNJNsNwRgFYPkAB1VUn9a1z3vOEf2Cu0aLgRZCFSFXk8DChN+zRXiijTBmlBSabks1E2kinaCcBZRPHPu1WE6kmKGERJjZhDIgEiOl3IZVFDjsjkiimvbCE6ylWVxcpFPyZtVDMkaPH2d89pJnOoY3Fn6z/r9gFn0c+99McP/cpjPLzxl72znvydg56+/vbaLbcc/u9OdZHQeC9e5t7Fb7vl1e+37E/6Pfvze8/GOL8SXy8+KRw/ZjxUW7uOI7fU1T9OM53u8P+frYuP8o5Ps4x/yYeyuSf/9+Y7z6H/PxjP/S13F1QK6WI4xitNWEY3uG33jOyt4/xURebD9zmfaardzc4bl+jyAxKSEycsLSwRKlS4dalayz+D79F/KkH8E8c4Zmnn6ZYKnK4v8fS0iLz7TZa52JEW9u7PPPMM6yurpKYhEazSWoyHNeHDLZubdGYa6K0ptlszrh5BtexeeXlV1iYb3NwcEC1VkPbDs889ddYtmRursXGxg52ZYTj2JhhmShOmE4nKJ0nLYcHezTqDZLU0F5YnJmb58IytqVYWGyz1F7iwoULfP3r36DbOeT06RNMRn08z6NWb1Is++zu7RAEJZaXFkBAMQgYjcYzeKmiN9jLBW9MyvxCHcsOSJPc085ziwwGYzzXAUAqSbd7yFNPPcnm5i1OnzqC41gMxl0QgkJQ4srV64zHI6q1Kkprwiji2LEjNJt1VldW2NneYa7ZwrJtNm5tUCwWWV9f5/nnnuPY0TXm5poUiwHDwZDJeMr+/g5aKXyvQBwn1Oq1XNhj/wDL0jkvKjZ4XkAYjhiM+liWw7e++U2OrC2iVUoQFAjjCM/zyAQsLyxj4pj2fJu9zgGVQhFjTA5D5Ta8zKAtTZpkqJnAUBD4dLqH+IXcp1YKRafT5dkfPMe5++/DpPlUz/M90iSm3+tSrZaRIiOOQgSglU1qDEpoLK3IzJhweIjBxa8vMw1HEPcQ0kJYPq5fJN7cRb16lfj//AJf/vN/x3A04Jf+w1/ixvo6zbk5mu0FDIZHHn2EX/xHv8Ajjz7MyuI8p06dJAynnDt7ljPnzrC7c0AYGoJikeMnjrG41KI3CikVAo7PLxI8/TKZ52BW5u80f65cuYJlWViWlXvyzoTStra2cpVuL/c5tW0bpTTa0iht4bgOUZTgBSUuX7nOqxdeRSqYX5wHBL/7u1/k4HCPxz79KKVSkZu31jn/0oucPn1yVjSCkpLJZJRPL8VMJViKWWPIJkkMWluzv1c665Dla4ylrXw9J+e4kWWMJ5OZYjGkSToTT1FEYW6lc3sfcXu9yheTnBd5Z9qbzSDR8WwSK3I+eZYxnYzxPA/1jobeLJEzaX5PaU0883bN7YaYQYbB1pqg4BOFEbab+zYrkTcNVtfWKJXLTMMQx7Ho9bqMx1OGgzFvvnkxhygiCIIiUmi+8pWvcfLEcaJoQvE2dDITrK2scuvWOsePH2U4HKCEYndnl0a9Rkkq2N6joDRkhmu9Dllm8DyfyTgkjhIuX7pMpVzjwmsXmGu20DrnUQoE/V6fw4NDdrZ3QRjCKGQ0nrK/30VJmzjqYWuB40iENEzDMUiDZdlY2ubSpUu0Wk0s24IsQQioVCqkaUYQFFldWcwbn4ClbLSyKNYrSEtgFxxqzSaVep1C4LJ+/Qadw0PS1FCqVBAioVIpsru7g1SSKElx3rwOk5Dkn/wKhXIdYbn4hQLz84tkUmBmqb1aTZHnkvf4uN7rnZWJHEhu6pD+ocd3gn/GmncfraUlIiPApCy06whluPDKNbY2Nji2NkfB9xFG4fk6n8bFEcyg6CCYTEY0Wm329g4IikV8B9J0hBIxc/N15loN9g5DqrUa0zBEKc36+g18L8DzXKrVCr7nkWWG+fl5tKXZ2NzCDwIsx80bLlJSa9g889ff4XtPPM3N64eUCxMeOrtMq+Fh27nybN4IEMjMQqsCSazJRIxB4xbmKFQWkZbLcNxDyhQpIJzEuHaJcJIxHg9ozgVMxxm2VWIaDbA1hGFKMajlTSQFnYOIZnuJpeU1Or0uUTJFk/s1DwcRo1FMsVgmE2k+aVQKQ4qyJKQZyYxbLmfPWalUYm6uju0IwOTvcttHShdlaYbjES+89CqLC0ewrJgwnlJv+iwt1RiPumA0g9EW9aZFo1Zn1BVIOUJqEEKDcdCWTZh0sJ0q6zf3WVlpIMUQaQxaF5hOMp5//g1azRZJLEhlRqFahyzlZz7/E/hFh/39fV5++WWOHTvO1avX6fcG7O3voyWUJ3VsHL62/1uk2IzCjEc/97NIy2XmIvaBg5Z3DCPugSz8sML1w+Lj7P/h4pvv+eknhevfQHxSuH7M+HCIQJ40fFQ4ww9zvjRN/0bgB3+fCtf0d/8ceoOPpCr87mu5u1OXJAm2bWNZ1p0k/32v9x6F64dNlX+UwjVN07enwyYhi2KefeZZqvUGsTHU/+UfkIURPHyWJE7o9bo0Gw1ef/21HNYpBKlJUdriyNFjnD17jps3b1KrVOn0uhRLZTzfR0uNMoJyo4a2bbq9Hllq0EoRTicUPB+DIU4TlGWxfvMmZ8+c5MbNG6wsr0KmSZw9oihkcpBbtFSrZaSEyWhIEBTzKZzWRNGULINwOkVKkEpgSJFJxrcff5xf+7Vf44EHzjEa9CgUXMI4BaHw/Rw+6Xp5JzqO8yaDbbvYlosh5+dIFGGYEicRWWY47Bxi2xZvXXmLVruFYzv0uh0832U4GvDIIw9x/MRRvvynf8na0eMUCj6//4d/TKnS5DOf+RTNZpMb6zdYXlmmXq+RpFP63S6O6/DlL3+F5eU1LNvG931Sk1Cv17jvvvuQMsUvePR7fSqVKq5bYGGxRcEPMJkgDKNcLEgInnvueWzLJQwTrl9fZ3Nzk4X5JuVKGa0tzp07C1mEEil6dp96hQAD3Lh2Hd92qNbr/MEf/hHH1o6idC4goi1NZjK6vQ6VSo3Dgw6XLl2m0ayjtUQpGPR7uK5HrzekOdfm9JmzIASTmSBOpVLGL3i4tkWaxCgJt27dpFQqgTBYykEaSfdgFyGnJOEUr9gmtQNcKyYd7ZPi0VpcYxqlZM+9hvPznyX9uc/xk489wq/8yi9TLlc5evQIv/Hf/QZXrt/iwYfux/Nt1o4sE6dT/vyP/x1Xr13h85//GbIs5eWXz7O4dIJKNf97HDu2RrlUYPXYacI4Qk6meN99gcx1GM9VsC1rVoT7eJ6XP5Mit5WK44QnHv8O99//ALn7gpihMGJsxyZDoi0L1y/wxHe+x+tvvMF/8mu/Rrvdmq0BkhMnTnLuvtNUqxWEzJW5lVKUyyWSOMVxnNl6n08ckySZCXxJLG2Tp2gz5IbIiOOI8XiItpw7FjXmzro7gyFbEsvO1yvHcTGpQZBzb7XKbXGEEKTGwO19Z++EMAzvCDcNBgNc10YgUFIxHo+xHQfXsYmT5G3brnxhulOwKilRUmFZ+bRrPB7l59Z5Mh5OJygpcVyHLMsTSzXbP4wihFQExRIiS/E8jyee+A61Wp3nn3uR48eO0m7Nc+Wtq1Srdc6cOc3e9iaeY88aJ1FevI/GHDt2FKUk6zduEE6mlEtlKpUSquhjff8lrPkmaIWzusBoNCIoFLEsh62tHVqNNsPhiFKxjF/wSdNcPEorTZqktNvzufp40UNbNoPhhHZrkW6nzxPf+Cvm2/M0hYOOUkTgY9kOaZywfnOdtbU1hJTEcUqvm8N/tcoFtK5fv4Gt8yZBEidMJyFXr1yjWi1haUk0neJ77kzQKaFcqmApC4SkUCoRTjuE4YRytYplu3kz6s3rEEZs/8pPUSgWMWnGZDLF93yUbd2ZuMpCBsEHiw6+/c6SqMzkHN3zMLfSQE+n3Nzao1JbxbFcBBna1mxudmjN1YkmuxQDC8eWTKMxlmURhdFMwCu3gVNaIbVCSJs0dUjDEVqCkCkmjdAS3ry4yTQcs7y8imVbBEWf7a1dGo0GN2/exLJ1vh4nCX5QoFavc/XaDdrtNpPpmLeuXMexNJ7lsr+zgedEPHSmQsFNKfgWiTGkGWjLJg5jRAapSdG2xkgBqkBkiiT4jMKQclBja3MTJQz7u9tkWUKaRFhakIkeO7cGPPX956hWJUFB8+orr/PsXz/HsWMruJ5gMBwzHE/RdoBUHo36IqNJiNAeV6/v89b1fepzS0ihcLwyll0gijO0XUAKSZpJEJqrV6/h+TMvcBMyGo1w3ADQmEyyudXBDzyUJWm3lxgNDVqBZUlKJZvMJNhWkTDs4rkFstjGdwL8QowQOWoiSy02Nw7RlkJ7gkHPYX93jOsNKfmKLHYxIhcQ01JQqdbY2dnl9TcPeetah+ko48Sx+zCZR8aUEydOYNsujuPhugWkZTjY3WXVPoLObJ4Tv0djfo1f/o//U1qrxzFC5ZNm3lu03p1P3d3c//tQuN6+nvfLuz8pXP/24pPC9UeM95umfhSI7g97jo+z7wfFvWATP+x1fdD2P8oD+247nDAMARiNRhQKhXt6tt593ttxNyT37mt6d2EK3FkaP8rnffd+ty123r1txr2v8e7i+raoShSNuPDiK3T3Dzl66gzZky/i/eFXGP/Up4izjDiOsbTm1VdeIQgCGo0GS0vLPP/8CzSaDcJpyFNPPcNwMOTs6dMUAg/Pd9nY2MDSmnA6oT/qzSBp+dThhRdeQmubSrVKEAREYUixWKRULGLbmiNHV9na3KI9v8Te+CJgcJI2SRJxcLBPOImIphOKxQqTaYLr+wwHPQqFAoNBn0IhoNPtopSFiaaUqyWCUhFlWVhWPgFX2sH3iygtkVoTRYYojPB9jyxLZwm7RkqH3a1dLl+6Sq3SplAqM512aTRq7B/ssrK6hFCAySGJnu8iBPh+YZaAB6RpbuGxunqUVnMB39fYtk27PY/Wim63g62h0+0ilebTn/4MGbC7s4vr5lA+y9L0uj22tzcpl8tIqdjcyvmw/e4+aWK4fOUqmZBEYYhJYra390lTOHXqDL7vUa1WyLKUvYNdisUKaZpgzJThcEyv36NUKhHHCXGaUatWuPj6G0yjkPsfepAszSiXq+zu7lEqljDG5NM3k8NJd3d3OXJkDc9zse2Z/YbIhTYsxwZxu6hOmV+YnwlM2Qz6vTsNnlKpzGQyYXtni0qxxKjXY3v7FpYj6Q7GNNvH0FowGdyEaEosA4rVOuO9AwrPvsn0n/0TJl4R1515hop8An7qzGkefPBhKtUS2gJj8sn8XL3NpcuXWF5eJE4ibly/xq3NPU6cOoplCQ739/m3v/O7/Nwv/iOkUtiA+61nwXOJF5p3poZxHN9RElczyJnWmhMnTuZc1GhKp9OlXC7nyrxkiHz4hwHm2/M8cN99OK6NtvQdGK7jONh2DsHUKi9M55otlJa5hc4MkiulIIxCbNshSVKEYGZnk5GmKcPBEM/3sCw7F0a67U2YZSSzZqRJDVLJ2RQLLG0zDSOSmS1URg51TeI459LO1qLbE9bb64uZfR7FICCKwxlPOcF13NmkNiOKYyzbfqemwl3J4rA/xHYc5IwXobUmiRMQEtvSs8ZXiCGf9A8HfVy/gG05iEyyu3tAr7s/U7eOePLJJzl37hxnzp4kSRLq9To/+MEPeOqpp3nssUdzLvhkdEfsZb9ziOu5DEdDGo16zjk1Bm3bDDC4b1xFLswRm5RxKaBULJOmhm9/+9ucOXMWS+diU9/85jc5dfIUxWKRyXiEMSm+5zGdTihXSozHE+IEBv0xhwcdzpw9xfLSMeLY0O5PEYMxSbMJKOJ4SqlURIq8aJ2Mpti2xdWr16hV6yilqderDAYDXr1wgXK5guu6SCmJJxOmowmNShUTJaRRiLA0URhjWQ79wYBiuUjBURwcdgmKFeIkBZOhLq/DNKT43/4XZFefJjlcRzaPsbu1lXPY5dsUluwjvnIzmReuRiiIBf6bi1zdeIrYuBw98QA3b9yi1+ujtMutjXWicMrZM4vIbIogQeqc86y1QxxHOK6FEIJwakiMQEqLF198nUa1ickylJR4joeWmoPDDnE4IQhK2K7PtatXaNTbXL9+jTRNabXmuHlzHd/3cRyXW7e2WFpY5PDggGajRikoc/HCZS689DIPnGvx4IMFrCzF9x0c12U8iXNEinJJkxQ38JnEEeMkAxHgFhoUKvOEccbh/h5z9RXGwwFKRPg+eB70elvUykVMOiSNE/Z2tzh5YgGTjmlUS8y3ahQDhziZ4DopB4cHjCcxJpEEQZmbmxs4hYDB2HDi9MMc9IYsthcwxqLTHeH7dTyvgbJdbLfMaJowP7+K4xZIUonruCgrQEifG+ubuK5Hqz1PmiYoKZEIwuk0h/6b3I4qChOur+9x7cqAEydXkGpEFA/zPCXJCKMQKTWdTh+lFY7ncOGVG8zV25SKApMmxKHGDgQmjSgWPeIkYmdvD+wyiyvLzDVLXLnyGtdu3WB5aRljBJblcOHVC8zNtQiKPntbW0T6gJJp8CfX/g+izMYtNTh13yM5X1dkcI9C8P2cHm6LHL0fle2Dcs17QYE/ziDihz1OPlzKBfZ+3OjIf9/jk8L17yj+vt3Ef5fXc/vBvvvLfPkJIC9c77ay2d/fp1Qqve8C98PG3ce5nex+lH3utuV5t4fsXVt+6LFuT4DiaMzTj3+Pz3/u82C7eL/5fxGtrfDVF56jUinhex7dXgclBCsrKzMrDsWF119nMpmwuLjMcDCiGATUqlVGww5gcuivY+EXPAb9DrVqjSQ2rN/a5Kmnn0FIzTSaUq/XcVyb6WSISWLiJMayNUIKjIHebsb3vvki8+1F5poNLr5xkdOnzuUw02HErc1dXn/tdU6eOIrr5uIlJgPPLTCZJAQlhVfwsTwHbTsIJMPRCG15JHGG0ILMZFjaJw5jLK3YP9jl2vXrOI7DZBLSqJU5/+JL9AZD5hbmCDyf8XhKrdZEoABFlhpMljcSfK9AEmdo7TA33yQouCgdMx73CHyXbucAkxh2tnYIJxParWaeEAiJ7/vESUyxVMKSNnt7OzTnaqRJwmg4Znl5hfF4gmVpXNdlPB5SLQVkCFrzSxiT0ahVCHwXqX2SxNBsNjn/8vMUCi7lYgXX8+h1h3mxRUK1OU+5VGIyHGLPIHGRSXBtm8bcHM12m/3dPZ79wfM89dSTnDt3H1qrfLJnC/qDASdPneLwoMO1a9epN5q5YqfI1WEt1yZNY5I0RetcodZxPbJMkGYp1sxORUiFUBrLUmiVcbi/zc3rV1lZOYpdruHaJVTSYdS/zngYglcjqNQQ5y/B2hz613+RzC4Sx6MZHFVhOy7lSpmgXMQPHExmEFIzmSS42mZhcYFGrUoUhVy6fIm/+sY3WFyeY/PWOkePHMfRJZSn8YMAHSd43/4B+C6sLQI5v86yLMajEZZ9W/wjf7ZsOy9A0zSiUinnz1sc5+z0LCWO8yQ8SxN8x8FISE0OpQ6jaDZVzJVgjYEnvv0d0iSjVi+BECRJOuPCgm1pyPLnRggYjwekJsG27DtWXJnJrWSyGck0h2UrJpMJWrt5kq9u+wXbGPP2VNcYk9uvaM10ZvUEOZ/WzH6/u7OD57r55FQphGTmUSvvKAZDXuzeaeDB2/DlmVKyYzuMxhMs27pLbTkXWEviCJPkkGLH9fKJq53/37RUyEzyF3/2ZR791KMcHBxQKpVot9scP36MIPDodA8xacr8QpvVtRUcx2Vnd4dSpUxQLDEcjXGDAq7n4DgWnpfbNU0mU65dW2d9/Rar9Sb2OCTzHL735iXm5xdQSnH69ElSkxCFQ4pBgWq1ymHnkEq5ihQprmcTRVM2tjZmcHGXYlChUq4STqfs7W0zt7hMuVbG6XTzyfZcFciI4ynGGFzXJTOSN9+4xIvPn+fhhx9Fa4s0jZFSkEmL1bU1DIagWMAvehSCIo7ngVSEaYx2NEiNa7v55+25IDOmwyGpEdiOj1I5TJ83r0EYEf+XvwyXn8AM9xGrj3Ht8iUWV5YROm9ipN+xMTcUci3lQ0NoVJbmheuaJvuSzwX3f6NmP4zRkiSZ5M2t0YQTx44Rh4Y0GuG5Gi1t0izCpJorb12fIZoE0+mYw/2YrZ0DKpUKQZAjg0qVIlIZjElI4ohGtYhWkv2DHt/4xnf5mZ/+GTJygbgwDKnVa/i+R7FYJJyEaGVBagh8Hy0Ff/DF32NlKcBVIwIno172CaMYpV2GoxAl80lwakIczyNOLfpjl8e/d5FisUalMY+wNNPxhEqhBDIEJlg6xFIZWZoReCWypItCYlshi/NlHKWRMsZWMbaVEIUTpNBoYbC0w8H+Pu35CpubF1mZbzLo7JElOe98vt0gEwakwAsKTKYx27tdgtIc01jguCVcr8SNm9sExRrhJGFjs0ecadoLS7P3czf3BjU5F12rOLcAcxRZHGPbDlv7B/SHExrNEo7lMBklSGXjuyUyUvyCJggCPM9HCkNmYqplF8uCTGR4gUWaKcgyMmOwLBehHF6+sIGyHY4dWeH+++7HK1bR0mZ7e4cgCBgOh1y7fhXLsdm4sU4yGLPkn+TZ8P+jtXyUX/iPfoVivU0YxziWIvuQoc87hwDv1X35qGjGu3mzH/pIfMQ8+KMOpoT44XRjPomPFp8Urj+muJtz+uN8QN5v348KZX2/a70bhvFRO1V/U/Huok8IQfYXjyMEqF/9uXds80FF6738Xe+1aL3f/kKYGf9sJqaUGxm+Zx+TJdwWW5KzBDX3RZzRzMiPkxdTeR88uy3uhJ37LBqDFBkSUFIw6o3oTVOWj58k++KfYj/9EvFn7ufV869w5uRJbEsw7B/QarfZ29shKBRo1OsEBT+38pAC29FcvnKJVy68QqM5R7lcxbYcuodd5Sri4AAAIABJREFUrl+7TrXaAAS+76Gk4MTxYxw/dpRmcw7HcRgPxzPBphCpMrqdDmQGz9VE4xH16jK+o4GY5aVlJlP41je+xdlzpxgMD3nxpZc4ffZhyKoMhxuYaA8rc/nek0+xurqS+0UiUGSkSYQSgsAv8M2vf50TR04gsoynnnyCG+ubrCwfp9+fsrqyQhZPuPjac7QX2qwcPcb8/CLPPfUcC8sL+K5PEiUcHHTx/TKpzJDCYjqOsC2HJI7p9jq4LmjHEMVgO0WiZMqlN69x8eJb/PVf/4BTp0/gFzwgxbJ9pHZm1irQ6x7QXpjLE9g0I4pTNm+uY0xCsVQkzVKUttndPkArC8eymYyGmDTj4qUr+AUnt4Dp9fnmt77D2dMPUWsXcW2bgmfjexaO7+dyrcJnOrMiCKcjLKFRrg8zA3vHUayuLfHgg/fj+y67uzu4rsPuzi5pnBD4HkkSUpurYrkWW9evU2+10LZLagzTcEoUTSgEPkpLTBKSpVNst0iaJESTCUJIlGWRKUHgeSgB0zBkcXUZk6Voy2c66tA93MGrLNJsncKcfxNxa5vOF34dSgEqjhknW0TJPq5VI44yHMdAKnj6+8+xtHAUIRWWo/B0RL834rd/+484cuQ0Dz/yaWw7oxA0eO3iTR7+zE/y5PNPct+5R0iNwDMZhRdeI3nwOJFM0VoiRb5GWJaNMRkgUSIjS2NAgpRolT/DcRznFALHBqGYTEf5MaRkMJrgOwFSxbnfpnYhSzGZQlkZYThmZ6fL0tIiQamCyASWhHA6IiUlShO0dIniiDgOcT13ttbmUEqtRT5NFbnoTpYZBIY0SbEsi83tfa69dYVWo4ZlWxghkNqQZsms8Mz5zdPRFN+1ESJX0iW1MYlmONjjpRdeIIwimnMtEIJ4OETZLonJBaCyNMTIlHT2OZnMIESKwEZlCkkK2QSBRtuSNEmwLJs4imdT3bywRirOv3KBSqWG63ozyx1JFMcMJyOa7Sau51Aqlhn2h9TKRaLpGDfI7ZyiOKJcLCOMhVMwlMtFwjDMPZJdD98tMewPCAoew16XzMT5l8i4776zyGmI2OsgfI/GuVM5N1tk+f3tO+wfHlKtVJACfMdh2O/yV1/5OiY1uLbDyuoa/f4EkyVsb2zhOx6FIPfz1Z6LLQV6Zx/IOLQElucx6YV0Oz1qlSpaZbTnm5w+cwzPs5FSsLuzm3sCCwdbZziOZjKzj3rjtauMJkPK1SJSaSxdYDwZ4Wro7m3z+7/3RQ47E5baizn3XMQoPVOKfuM6IowR//V/BjdfQktFNvcInc23WFldA6HJhCD9qkO2Lz9UnEkIgcCQiVzQzqRTsg2NVTzBcOcm4WCfxrH7GY4TalZKqjIWFtf4i688wcbWIe3Fo9gqQtsx1WoJW9topVDaohBoVpYXEBnsbm+yuSewrBRh+jg2mBScgqZzuE8c9onjIYNeyJNPvoEQCWfOHslfwWnGE49/i9Wl4wSu5Plnvk7/4Ab9vRsoMyYZh5w43qBagyRO8ZyAGM03vr1Ja9GlWPAQMsTYFXRhhU7fsLOzw6c++zkcp8j+1iELzTKdw2uUgox4so2Z9uns9NndWccLJphpjJQ5fF2L/EtkubDgdDKmFLhMBvsMR/u42uL5py9gMWRpwSFNpxSLNraOcZ0QS0xxtMRShl7nAMe2KAQOk+QAxyly5doOpXIRz5W5MJqwaMwdw/Y1jpuhcBEYBCkQI4RhOh3jWooommJMQpqllMoF5ueKlKyYcVTgz77+OnPNIloNkFIwneQ0niiaYOFRLpURVoqyckRGNM2Iwwy0RIuMySglZo6r61uMBhPOnHmE8TRj2B/Qnl+mVK4SxyFhNGGhPUdjY5WyqnK8eh/daJur5b/i+H0/yWd/6icRFjz9zFPU601sx3lHHvt2npbz8fPmXl78cVdu+EHw4ttUsB/GN/XDpqf3jrfFUt8WSr2368e9EICfxI8WnxSuP8b4UfH1H/ecH+dYH7W4/rvqFJkv34YK/9yPdJyP0hl7+0V+L8Gre+wv3jthvdd5lMyFoN7RAJApMjOzJU6QCkEmBNcuXWZ17RiTZ89T/d//DYePnsGuFjl56hS9fh+BYHtrB6UtLly4gO/7tNtNslnRFIYhpVKJs2fPMj8/z+LiAq7rMp1OybKMlZUV9vb2sW2b8XhMo9FASsne3h6NuQaWVmglZ5M4g+8FgERLG8f2MAk0Wi0QCZYWufpiKpiMhpQrJeqNOqdOncayHS6+cZFGo8D+3hZCODz86KMcdrtUqzUm05AkSdna2qbVarO5vcOp06cZTcbYrs3B4QFHj64hFQyHPWq1IradUas1yQDHddk/2Gc0HNJo1YmikNFwwNWrV0mSmGLJQUmD41h0e4dUaxW0YyElpEmExEIJycH+DrbtcHjYIQgCTp8+RRRGjMZjPM/PC4ssF2WplMszTrLhxo1b3Fzf5NatLR577NMkSYzresRhhBQJ03BMseTz7LNPc/LUcUqlAu3WAq7nIaXkoQcfoFYrI6QgiWKuX7tOrV4nihJ63S62E/Db/89v8+qrr7K6ssxf/uVXeejhh0mNwbYUvmcRTnOvT6UVrusSJzHNRhPP8xgM+rieS7lSASFyf1zLzSf0CLSUKCmwHY/xaAxZxnQ8xnI9yFLCcJL7nFp2fk+nKZaUHBwe0Gy2mIQprusRDreRIsTIAP/6IdmVdcy//u+Z1HIPR8v2cAo+t25t4LtzuK7DJOwjjeaffuF/4ud/4edxPZc0DbEdi8xAFEbcd/Ykb75+nkcefYzTJ8+xuLhCtVrmwYce4gv/42/yr3/73/Drv/qrlF58nfTYEsZI0sTMbF9uw+9zYZZep3Pnb5k/iDkuOEmSvEEzDoHcHiLfRKKVDWlMv7eP0hohNFGSQ2qFyKewiwtLeL6DlBlKitxTMgzxCwWUslAy9xSNogjLsnLFcCGJoxCTGTJDLpglFUmaksQJSuc2RUGxSKNeRYqMNMvtbGSmCCcJStqYRPDmG2/x1JPf5djxoxiT8vTTz/CVr3yNRx/5FK5vc+ToUVrtNkoKyExu+zIrKowxRGFIHIeYJMWxHTKTT8IQGSJL2d27RWomeTE6s9O5A32bcWfzAtpw8eIlisVSLnilJdFM2Oupp57igQceRCqBY9u8+cYbHB7u51N8beM4FgXfAwS/9/tf5NzZB1DK4fKlq7Tm5jnY7+D7PqPREN936PU6SJkL7VUrNTJjEJ0B1mGfqRbEtQrnz7/EiRPH7whdlcoVcn9Mm529PQ4Pu5w4cYpGs44f+Liug+M4WI5Fvz9iZ3cXPyggtcJyXG5cu0JrhrsVC3NkQrK3vcvBwT6tVitPqsnfBbs7OzhODv/2PI/X3niDXu+QZrPBwUGHJM04/8J5GrUK9VqFfq/P+ZdeZnFlgWGvT7/XYzyJqDXmaM812NzeynmOWYaSb3NczX/1q2Q3z5OmBr36KN/62pf57E//DAkzXvdzH11V+D0/M4LypSUG4ia1UoFiY4Hd/S61ahXH9YiTjAuvnGexXWcwOqRVmyMzuUK+SVMsW8yg7LmdS5IaSuUi+z1DOBkw16yhlUDI/DktFSsUg4C5VpP9ww5x1GV//y20mPLEtx/n8puXsW2bi288y3S0w+pKjfFwj8XFOu2FEnE0xnEkhYJLltkk6Qhha+LEwnITAr9IUF5CWjWkLlMsVjh57Di93ibFQJPEXfrdDQq+II1jyKZoleF7Pn7Bx6QJttY5FUFkZGlCFE1BCqIoRyBEYURGhut6WNqm2SzSatdxXY0QhjSNc9VgKSEzRMkUSLAsSNMxSiY4MoUkoVYqIGVIFoVkqWQyHjDoDxEkeI4insakJmJ7Zye3KxMCKVTenMtyGgvkAm+W1GgVk6GJkoS5qkO5XCCOYrRt57Y/2gIxumPbk2EQmY0SPtLKiBMwqeTG+g5PP/8WtuuyuLiM7wcAXL16hWkYU61VmIxHNBt1quM57KHPv9r4AmvFZTrJOq9Ov0Nz6RSPfuYnEJZmYWkF3w9yBep35VD59++8P3NV4ffeu++X2/3t+Kbe6zreW7je0Q/gR6POfRLvjE8K1x9jvB+M4YO2/ThxdyH0w3iS/rDn//etcOUjFq5CvHcRur1Y3j3Nnk7DO52/29tqMSEjI0ViZi8z0oQXn36KY16Vyn/zz+k8dIrg5DGESMgyw/b2Lvt7h7RbS3zrW9/iJ37iszTn6ly9egXbUVy5coPXX3+dkydP0u/3mZubw7Yt3nzzTVqt1p1rnEwmtFqt2eQwvcNpHE/6jIZ9fN9lOp3g2JooCvF9D8tS9Hod3LkRbjXjYGtI4PsMRmP8QsBrF17nyNE1MlIc12PQH2Lbkjga0Wq1cL0iw/EQ1y+hbQfH8xFKE0YJyrIpV8tILfF9D6kk7fl5MpPDLwE8N/dYFcqnUAyYTEfUaiUazRpeuYggw3NtquUytWqFOA6ZjAZcufIW1VqDH7xwnkp9DiUTwkmISCWHu7s4WrC0ukpqEj7z6U9j2w5vXb7CrY0tlpaWSdOEm+vXadRqCJH7fmYGNjZ2uHb1Jlu7e2xtb7O2tsL+7h7Nep2vfvVrHD9xCmNgZXkVy3b57ne/T6lURipBUPSwHAEiYW+3Q6VYxnN9wijBdh1c2yOMEh779Gd48P4H2Nvb57FPf4Ysyyj4DqNRn82NWzSbLVzHxXGcXC17GpIJcgGvbpdSuUSSJrkHreuBkHQOOhzs7uI5ds5Ji1KyTJAkOXdaaIlWEs+xSbOMXr+HYzn0+z2mk3EuCBWUsK3STF34GpaQODcirFt7WL/3L9BH5rl1a4NisUQhCEhTn3a7jVa54Ja2Emzp8uu//o+ZTKYUfBcpUsYzgaP7z5xg99Z1qoHL5nafl8+/yp//2Z/xD/7hz/GlL32JP/3Sn1AslvjcI4+ydPkm2eoK3c6If/s7v8uDDz7IYNAnKOYiWgKZKwdrawahTZEyh7lKkUNaL116izROKRVLOW95a5cv/dEfc3SxiesISuUySSpIjMHSGpPFTKYjgmIJpSFNpkglIJN4XoHReIJWmjCczOyPpti2ixASKVQOvRcyV4U3gjRNyIzg8KCDpSziJERbIoe6C7CURklQzDxjgcPDQzzX5/jxoziOjdYWCwuLnD5zBsvS7OzvERQDlAQyw3jQxy0UAWaTVYnUNo6SaKXyYjpN6Rx0cQs5TL9UKjAY9AiCCmbmQ3ibx3+bonAbZnzs+FE8z0FbuRWPtjQIwZnTp3NebTTBdRzmF9rYjmZpdZFxv8/BQc5Dl1rx4CMPgrHY3Nzk1KmTKAWT6RCJ4mtf/SrLy4s06g0c1yOKU26t38yLZcdCvXkDakVMs8rC4sJsXXPQ2mJndw/H9ekNhtQbLV5+5QJXr1/j7Ln7CMMJ+3u7TMd9pONRq1VZXl7Gsi0Oeh08x6NULCC29gnDiF7BxnM9atUytp2rVqdpwuFhB21J0iRlc2ubdLZulUoBxcDLYa+1OaRyqQYFbEtT8DyUyD9/qSSuY+O5Pt1eH4TA0orFpaVcSVooBr0+znCCHE9I//NfQGxeQEiBXHsAB3CDErZX+JEK1yzLUG2I/tjD/8f7XPjay8y3WzRaK4wSxfWLl7l46RIPPHgWrQ2ubdPv7xAECi3zd55ladLUkCYxlqMwJkRpgXLL7O8dUqu1sR0bY6ZE0RRb2ziORqopc40iqy2f+061qZQEq0tNVldqLC8VWahZFNwYxwopBRa2zrDsDNvOCEo+cZISlALiNCNMJUdOHKdUmsfzm0ySIv1hRBB4mGRIlnSxzIQs6ZAl+xTcvJEsMaRJiBAJggSRZUijsd2ZNDQZjq1IkgghNLbtEMdxzpf2fTCCOB7iuAZBBEZBNiWNJogsITMRtiUwieGV8y+wvNxCZFOmk0McJYmnA4ScEMcDrl7bYTCQ1CuGStFm0Nkj8Fx6nUOk1ni+i+fOqAOZoN85oFwsgsmIogikQqYxUZLguIp62cKzBVFikErj+wFCKMIoQiobIXziRCIymVNtEkNqxSirQq+XMBgZVk6eoVAosri4lAvRWRYnTh5j/cYN0jShWCxi2Q7eepXhz+6jj+0jXy5SsMvst69w8sGfZPnoUTJtI7UNaQ6Z/qDC9XYudpvb+u579/0aMH87U81PCte/y/ikcP0xxN0F693//qj73kto6IOO8aMWlB/nwb4bznGv38E7uZ93f33Qdd6LqyCEgO4AsbqIfOj0O7Z99znf/f/KsuyOb+vdMJS7F793X/vt7fOJzHu2eO813yW69O6/w+3vjcknK1rrd8CVpYhJ0RihcITiue9+k3/5L/4XfqrUZuGf/is2KgWCxx7OLXwsC21pGvU6rVaLcrmE67ksLS6gtGJpaZFBf8B4EhKGIadPn6ZQKLC9vY1SkmazeSfp7PV6NBpNwjDkrbfeQghBuVzm4sWLHDt+BG1p9nZ3SZOEjIw4mTKdjrG0JElj7Lk+yknxWcKxHYqlMtMo4fkfvIDjaGq1CpbWVKs1MhMhlYXjBKTG4Bd8hLTo9XpsbGywv7/P5cuXOXPmTO7bmEQcHu4ThTG2bfPCc6/w+OPf49FHH8sVVKMIyy8hZO57NxmPKQQBcSoxSUISxbnVkWUTJQLfL7K0uMxkHPLS+Qu0W8tUSj7j0ZhwmtJqtXA8xWAYUamWc16ayD+vSq2G57mMhn2+/Bd/wdLCMo8//h0eeOABhFA0m00WFxaZb8/z4AP3IWWGtjS9fp+z5x4ljjPiOOOb33yC48dO0e+NKBRcGo0Go/EQIWVuy9Md8fRTT3H61GkyCUoroukUx8utAtI0puD7JCYhmo7RSpAkESZjNv0T7O/vo6TKYYVkJElCwfdzP0VgPBqBsBAyt1FpNRtsbdzCtR2iJAHAshQCg2U7jIfDvJjKoFAIyJKMJIkpBAFBuYwQmjiM8H3DYP86/mtj9OEE9cXfgpU2WQae72PSlIyMQqHK7t4mrlMiDMdE8QhlFJcvvcXGxgatdhMhUrJMsblxi+loyPkXXsJ2ioxHIWuri6wdWeLKW5dpteb5pV/4D/jN//kL1Aoepe8/TxTF6Lkm29tbHD9xjFI5IEkiyEw+xbRyMSqRZSjB20q8Scp0OuXrX/86QaHAwvw8hULOpzt39hyWBCNS4iQjNbfVfQUIg21bmBSSNMzBYkKD0KTGoCUomSFVXiDbtk0cR3mjaybSMZ1OUUojhJqt/fD//s7v8sD9D+C5NkLlKsdSzuDPWUIa9xgOuwhh8HyHoORjOy627YCQSKVwXAelFUEQkCZxXhQJieM5ZALGwz6OZeWiUVKDyW17JtMJvd6ATmeAH1TwnQJKzSx6jE130MOx7VylWKm3haTIp423V8TxeDTzcUxRShFOpyil0FoiyLm1lp2vZ4WCT7lcIUkzbt68hTvjXnuujckiuv1D+oMO1VKTI2urjEYDiuUSSloobdGs1+n3+8SWwr90E1UvY1r1nK+qNAhJnCb4nkMSRXheAaU0J06e5PjxI1ha89qF11hcmKfRqGE5HqP+gM7hPmlq2NnbY9QfUiqWKI1DsixjXCrguQ5SCdwZf1iI3NLHti0A5uZaSJk3JoKgTBROcGwby3IwGWglQIDreQgp7vA5fb+Q3y+Oy/ETx+l1e1RrNZI0JQonVEoFpIZ055Dtf/gIxcENEIJraYmSbROmhnK9QSb40SauCqJ1m8CpcP3iRSytiFLFtfUd7CyjPT+HEIbNjU263T5nzrUx6QBHKcajKF9/wymua2NSg2XnSIqC71KvlXPRvYJPBmhLEIWGOIqQIkZriYVHOB3iuhZKZWg1RVsjXJXznB3XQymbyTRGCRev4JJJC9sNiLMYoRvYziJGKPZ2QxxXs7V5Hd8DSw6JpjukUQdbSDAxWkIap2ipScwErXyiWKBtTTgZ49gOaZb7sMZxkltRIbi1sYXneRSLAUpJkiRGS4FWAikMjm3PGq95c9gvFHIBvswghUe93kBkYOIEKSCbPcPa0kRxzKUrm5x/+Sr3n54jTXqMR32iMOKwu02pUkFLQ6ezR5amOfKokd9HSWKQ2mEagSAGu8E0jHF1vtabmSp5kiS4rosQAiUbXLq0xSuvXGduroznSrSGxGRop8iT33uR+cUVvv+DV9ne3KHT6TCZTDl15hT9QRfHsllbW+UHzz3PQm0JZyPgN1/+De4/MU9r7yhZJnjDfpGHf+JnaS0ukTJr7iPgrrzonXnUuwtZ8nX8rjzzg3LY264bHzU+HiXugwvX95se/3Dn+CTeLz4pXP+O4/0Kwr/Jm/vjTmjfrwi9W6Too57vbqW1exahD51+R9EKH06yv/sa7+7ifZiQ022/XXnPw96rQP7gxsHta1BSv6eZkRfzFplR3HjjdcKtG9RfeI3PfvU14p96GHPqeC7ggSCcZqyv38B2NJPpMIcFyxzC+sYbr9/hfywuLXP06FEGgwHdbpdWq4VSEtd1OTw8RClFtVqdqaPavPbaa7huXkxVq1WmYW6rIAQz+yAH1w0oFEps3NyiXKqhyiMywE3mEUIhhea1Ny6ytLTE2XOnKZcCjDH0e33iJEQKG8ct4fkek8mITrdLtVJmMh5x5Mgaa2urZJnhYGePZqPGtatXaLfmcS2XQtHn9JnT1KplIGY87uIENaQAS4JlOQyHUwpeCS0VO1tbNFstLMfF9nykgm5vjzgac/ToEXz3/2fvzYIsv+77vs8553/+291v792z9OyDATAgCYCkuZiinFikZFqVWHmIyqmyU0lceYhdqVSqUsmDypW8yLEfkihaXqIKXZIpUVIkixYICgQJEgSIjQABDDAbZu2e6f327bv893PycO4MBuBgJWmVq3CqujDou517+///39/v990CNja22Nrq8VfffIzj9xwnLcdsbzrkp9Vq4HmKZ595loOHllGeYDwcceqe+3njwlXuve9+hBRoLRHCEscBvifxtaC/16c7NYWx0Gg0HO0Vw9FjR/ADj+mZLttbm9QbjYmmR6K9gCgIWD54kP5gl1q9hh/6FFlKf9BHKUdBCwPXpBR5Qm97i+npWaJai5s3bzBOxiwuLDq95iTGaDDYY2Zqmhurq1gsrVaL9fVt6o0mnucQP+1rBv0+rXaLWi2mKDKGoz3qjQ5SCOIwxtM+/b0B9YlBFQLXJCExJsFUA+QrN/B3KzZ/87+gdt8D7ty0kKQONYyigN5uj063Rp65/E8/EFAJTAVTU9PcuHGderOOj6ZIx2xv9phbPMzm5hhbJgzHPaZn24Sx5mv/5mvMz7ZJ0iEHZmaIH38GhSBb7HLy5AkqU5DnmTtHlEIycTRGkKVj8izDDwOXczrJSjx58h5mpjvkeYo7PZ1DcxA3MMJSazRR0p9kHiuEmAzAjMDTzoDI83xK4xySsTnYAqliksShrkJawKCEBmEnJku4ptuTZGlJp93lySefpNNtUKs3EcLpTvN8zKi/RZGnk3gbj6Ko0F7ommMx0VkJQExQZYz7XymprEEqja0yqiJHYSdmTgIhtSuklaIyMBznTM808T3FeLSLVBV7gyHd6ZnbzWqWpvi+T5JmLkrIWtI0wfMUUkI5YXHcee31pIexAqU8lKdACLIsZTROWV1dY/++A2TpmIsXrrBv335WV29SrzVYmF/CEx4bG+vMzs1y48ZN0iwjDGuAxVhDGGr8169S1kOSdp00SR29Wimsgd7GDaQQXL16lXarjQU211YQwLFjxxGeIi0yhFWYMkdJuHr1GvecdPFj29vbzJhJsT/dZjwa4WmPjY0NsjynyAuyzOlQy6Lk9dfP8vLLr3DixHGe+O6TtJquYakm+bKe7xHXakjPwwiDUIIf/+glFhYXqSoziS4KWLl+g7IsOXfuLNMzLbJ0l9HaTeJ+zuw//S8prv0IC0THPks7Cljb2mZ2Yemnalxvr7GkuqDRU5I3zp3lwIHDNJod9no9OtNtPE8xP7PI6so6V69cZ67bJg4CpBCgLL7nUZUlntZUJUipUdUIKUrq7QZ5UbG3l9Ls1ChLCUYQhhqQWCmJ6gFFWWIrga3sRLtuSfMEL/DxozpGKDcckwbpddjaseigjQxrXLvm8sVffekMy0ec07At9jD5Lr6syLMRYeCGLp7ysdZQ2ZTKlqyvJ7z22gqtdpO4JsnzhCAIKCuL1i7uKNABjVYb39dkmZPhVFWJqVIECoEmTTN8X1BahbHuOxUhHe3fc7nAlpLKlHhKUlYJ0giUgWG/x+HlQ+TpiJmZOlpnBFpjLNSaejJQymjVI6wpCHwPq1wdcO7cG3SnFvj+U6+zf3mKp390g53tMcv7OpQY7ETqICQUZY5UEuEZgiikXo9pt2tgC6qiQHkxSZayb98slVHc2Mz4yt/7Evfcc4pWy0ldfN/D9zRCCnZ2ehwOTzJMR/xfL/zvnH3xSb44+/epjKX1CyEPfvaLIBXCcxnTCrDvCMDcBcj4AMfwB3Xw/SDmTXfb45sAzd3295N1/UeN60+/Pmpcf0brzoPxzmblndDRO9HA9+Lqv5/1QaZGb6dmvN9J1rs9752U2Dt/7jRJekvswodAjW893+3s03do+O/2Ht7N0OnW9NzYiXvdJFvRFYYGhMtWvGXY9E7N+9vft8G4ulI4xIeqQgQjkjyjLAV/8H//Hp945Hk+fn6X6oufxuxbJI4ikmTM95/4PpgCrQKE9WjUmwyHA9rdLsZI5hcOcuXqCrNzi6TZHoNhxtrGOsuH92NRqCBgu7dLlhcTHYylsglbWxscP3mc2blZ8rJglCRUpaNWDgYjmq0Oa+ubTM/MkuUZ7XabmzfW8DsJWTqCQQOpKrZ3XUP74vPPsX/pKKNhSq0RYjFUWcVef4QxOY1OSFqUNJr7EEqhfUkQeGjPR+ARNmucP3uB0AupRTUGo6H7smt08byM8WiHvV5Jq9XCmAKpQozxKKqURi1k5dphnt+/AAAgAElEQVQVZmZnJwVEhe9ZbFkgraDVbKOkoqxy8DSzc7Pce+8JWs062gvwtGZx/wGMlbxx7jKvvvga3ekuzYbLvxUS/FDRbLSJIx/PFwyHfbQnubl6nfmlRfwwoKwqtOexs7XB9tYWo9GYP/rjr/PwJx9idXWFTrdDb2sL7WmyPMcLfG6uXGd6Zo69wZAiS5GmZDxOqbc6SOUQGoWit7PNq6+9zvGTpxikCVEtpFlv0elM0dsdYIUEodgb9KnVGmzv9ulMzzIYpwRRA09AFIQk4z3W16/TbMXoyENpgcHgaR8/qCGpoaR0rsOlQIgAz7fk6RilA6xS2GrAeGOd+Moq5ZUB/f/ti9jZiPbsCSDASijLLUSZ0wqmsNUYaX2yDIKwQ15EFNkarU4DHQesrm0QNzpYmyJMSTEY80//u/+eCxfe4NOfe5CyrNjZ3GHfgWX+7t/7MsdO3osOfP7lb/xzviTq2NBHHt7vNF1a4+sATwdIoakqwRsXL3Ht2lWWDx5CeRohDOPx2OU5VxVhFJImQ6rSZY2C5Oy5s7Q7IVEYTzSopSukMRN6rERJMNZSGokRwrn2SuNogaYCHeD7HgJLkaYUWYoKQoR0TttCCpQnSZMxQahpd5rowGNuboFAethKgS2R2uBHdcKgTpY5LfU4S/Fin6qULs6HkjxP8D0f7fkYpUB5KCWwRYpnc4pKosMYdAgW0uEIFbhrnvI8PO0xMzuFRmNFifYlVQV+4IYYVWXQ2neZs0Dga6w1E5dkjUCgPd9Rz4sSId1gSwiNESVWgqWEKiPpbxHXOly5dJnjR45QZCnD3T7SD+l2uxN2Bvihj9SOwr5y4wZT0zPMzc2RFxk6CBgnY8oip3ZhFdOqIWbnUFKjlYewgizJKIWg2Zzhz/7kLwj9gIW5WZI0QSiJDpxuMcsyYr/Gj557nk67yYED+ynLHN+f5uVXXqXn+4jZObQoaMaG0big2WoQxxFVXqClJAgjtO8ztzDPiZMnkJ5i+fAB1ta2eOKJp6nFNaY6LYq8pN/vIUTl0GHpMT+3QFFUkzxdxerKGmQDnnzyB6xv7LB85DiNdpfGqIK1bfL//CvQX8HqAP/AKdLCcua5Jzh56n6MCrHPCRDiQzeuutan+HqL+J+krDz2BsN+n+29AXML+1mYn+fxxx5nenYOqUPOnbvAsX2zRLJA6oDKa5IWu44tgMIaicADBcJaqrwk1DHXrq+zsrJDFLUZjhPqjRplmThKf16ihURSIT1FVhjiyDEY0tTpvLXnkxDSS2t05++h1ZmjyiH2Slo1kGXKM0+9xPK+KYJ4QCwaIPpITxPriCzPEAKKIkEIQ1mVBKHBEw3OnbnO0r4GQhZoXUNpn0BXKCx5PqawQ5QXkOcpkhrrawOs8GjVQrJijO+HSAI8LDrwqEqDsGoSm2URGBQKiUJ7mrxI8IX7bilMDigoBiwvhgSRN3G519iioBZapPCxlXXnmXBmb9IWlGXB/MI8g70+U52IKAxZmG0yGm8zPTNNVaZErRpZajGlcxsvjUHHIWWV0Kop9ET2gPRBajQxZTVifWuTm9cNaxvXWF3dpkIwuzBDkhqmulMT13XL1M4io8YeLw2+S2BTPtX6EkJpOl9uMD+36BhT1iVaGyEQ4k3zSnFrCHcHj+N2XXrH8fl2adzba9Zbt314urDbxy1Q4M593flzZ838VnT17ve7dd+37/Oj9eHWR43rz3G9Fzr4fh7/QV/rp33eD4vG3u2xb29UP8gkzF5ZdXThdvOue3un13w/+/wgS9yF/vFuqDO4Jv7t1GQrwAioyjYKH/UHf84nfu8vMEWK/qWPwew+JM70ZDgYAAJhDd/57ne4//77eO65Z2h3mrzw/Atsb+2wb3GJbz7yCOfPv869995DFNWRAup1p5l8+ZUfs3zwII16Da01/f4uUijCMMJWhmQ8YjTcQ2DodqcZJ2O63e7tCI1AazY3nQnE3Pw8stEnCEIYT4EUFHlGo9Hh2IkTGCP4gz/8A/btm0d7mspKnnji+xw5egQ/UCSjMU/+4AX2LS6wsXmTWhxhjHW0RU8x3enS6XbcNFpJkmRMvV6nLFMX3SJjxtkYIeHrX/8zisIQhs6e0tMaz9NYIElTgsAhIs8/8zxhGJMVFUVpaDabJOMxjVrMOBkTBgHad5Q/KWB7a4PPfOZT4EGz2QDclN1auHD+HLV6RBBofO1jjKBeq5OXpdMUCcG1a1dZWFjg6tVrHFw+zPETx/F9TRBo2q0WvvYRQKvTYZyM6W1uMzs/T55nVKakt71FvdFCegoshH7gHJg9SRAErqiPYvr9PoH2qKqCPE+p1SLCMMCTijAIqddqzmRLScJQs3ZjjbIseeXllzlx4jjj8YhGo8Xq6k1qccM1elIBJZCztbVKq9MEYbCmBFOi/QAn6szZffE16hd6rP3Pv0zn9H52d1PqU4fxPB8hFNa6rMqL564Q1CKCsOa0nbZA2Jwo8kiyAqk03e40ca1OkY8ZDwZQGf6/P/9L3rh0mfvuO0kcRfzu7/wOn/385+hMTxGEIX7g0/YURy6uQeRT7pu/7cjr4mVATAqhVrtJu9Xm3LnzxLWYOA4nOa8SY2A0Sujt9Ol2uxSFcwqvNxrEUTjRpzt0P8sLrJlIDpRCionx0iSKBgF5lhH4Hr7WjNPi9p6kUPhBjOGtkgUhBJ6SjtaGYHpqmu2dbXzf0YqlUri85QArNDqoYVF4OqQoJfloQOApl38s3LDNWsEtZ3QlFQInm5CeBqUmQzTp9LqTa9atCLAsTZFSoTyBoaK32yeO62RphtaaJEnwtTN36vf7RFGExcUQ3crQ1RM01xp45ZWXmepOozw3DJRCsbO1BQYGo5TFpUV2dnacOViWceDQMisr125nGPd39/B9n2vXrnHixAlnQlYUjMdjlPIIfM1oNKRx6Sa7R+YRocLakjRLuHT5DZQSdDpucPXQgw+yubXFjbWbLB9Zvm1IlWcZZVHgxw2CMKA0htIKtneHPPLInzM712ZhaZG1tR1+/OLL1OI6M4uLjNOMJMk4f/4iURRNdJvGZQNPWCtlXiClx+n770drFy1VGsmzzz3L4uIS/d4e21vbRLWANEtotmqUxZjFhSmyJOfgocN8/MGHmJ2bRUqL/P6LiMEI/qt/gFg4hZ07igWUkPz4uac4/eCnMdKHy0AN5L3lh/oeFIGhfDXGhgXpxh4319ZQvk9U67C9vcUnHnoQayxbO1scOnCQ9fUVWs0ahpKbN1cwRlOL6mTZGD+UVGRoL0BJSVlWlKZianqGMAppNuukyYhmvUZZ5iRZQRTHlGVFZcGqWwNkjcWnVp8iL2Fze5comiYIImo1nyLZhGqHIt9jc/MGzWbIoUMtOp2YskrxZIUVGaM0xJiKMNS3B+2VqdDaIy9yPFljYWGOuO6GM6srW2xvjwlDn7Io8XQMeA6hF2M3mK032d7aIYqdN4CxFiENZZlQVtVtinyeZw59rypnzFeUGFuhfXlboWSFi8XS2sPairJ00W5FUbo4L1swHKYIIdjp7VCrxfT3dvGVxy0t5WAwoNvtIEyOUpKFhQXKIiOOA9I0JfRDqrJAKshyGCUWLRVSGPIswQ9Cirzi5kYfHeZUpc/qjQwZSlqdaZaWlmk0YuqNmFajTZ5nrK9vUuaGmd4Svx//H7z26g+Y6cZ8qvllao0GB351Fk+Hb9J9hZgYM/1kw/lex+l7/e6D1pl3OQPe8lzvp37/IPX0hwFsPlo/uT5qXH+O66PG9a2xOx/kglL+D7+J+d5zbzFn+htpXMWbj323z/ftOmVr7e1LoHUMSSos482S6Df+FYP/54+5eqBG/On7iKZnMJWi1+tR5AV5nnPzxk0Gwz6nTt2LBaZmOggh2N3Z5vT9p9Fas7Awy6c//TBFmdPvDahMRZKMaDY7DAd7mLJkbW0NAYxGI9rdOf7dNx5h+eABbJkT+ZIyHRG3uoCL9tkb7FEUBVkypNVysTFpliAbA1fwD6c5d/Ys7U6T2I8xWhGEdRr1Gnk2JtQBjekZ+oMxvla0GjFRGPHKyxd48cUX+NznP4vWHlIq9gYDwqjGYDig3qgzSkYYDO1Wi+FwjzcuXeKRv/oW9973AO1OHc+ThEGNOGwQRxFPPPE4Fy+8wYHlg8RxDa19hLQIFM8/9wKLSwfY3R0wPTOPkrCxvkY9rhFHEYO9AWFYI8sSoGBmpk0y3nVaOuU0oSvXV/jaH/4Rf/eXvnh7z57nkyYZX/+jP+FjH/84ylNcvHieQ4cO8fqZs4RhRJpmjJOEmdkpoihgPB6DEPT39vADnzLP6XamEFISRiHRRG8URjWUkozHI0LfJ8tzjDVMTU0xGAyc26/yEMay0+shhED7AZcuXabf6xOFIWk6BlsxGvXxtSLPSy5fvszS/iWKwrnpah3SqLeQysMYizVQVgmeB2kynBTxJVpLijQhLw2eH8HmNrVnL7L5397HgV/5VbIqYa8/ICl8ptqzICVVlZEMB3SbM9SnZrHAzuYqWuaYasBmb8jM9ByVmaB0laFWCwm1x/rqKr/4d/4Ov/RLX+bo0cO0Wy1OHD/O9dVVTpy6B8+PkEJwoNsmeuIFSq2o9s8jcBrhNxtXQICcZOhNT8+gpGKU7OF5PlJ6DIdjXn/tLN/9zvc5euQYUezigZQUGGNRSuPrEGMFg8GIR7/5KAcOHKQW16mqyqGbpnBu02VFlmeoSVGmvQDf01gkVrr/KgFMrglSCMqJsYvvByjPI8syOp0OUirG45LReITvazwvAGEYDfpUZc7ezjaPP/ZdnvzOY3ziY6cn1D9JllWkaY60OWmW4gchQjonYak9biEAVWWRnkc+oTlq7cyrXNata3wtFikVQRA6Z2VuuSA7LV4URZgJw6GsqslnUCKlRzJOqaqKpaUlhLQoJSbJYYKdrV2E0DS6bezkNRvNJvVGnb1Bn/m5OdI0ZTgYMTMzi1KSRr1OnrnmeTQcEkUxu7s9pwfMMhorm+hGnaEvSNOEKIqI45idnR1mpjrkhaNE1hp12t0uSjtX5H6vR7vVIvQ0lbTU685FVuuAVruDp+ChTz1EVItpNacwxnDk2BGslM4ICUkQhDSbzUlutaNBS+k8BaRUk2YtJ00SPO0R1Fo89dRTDAcDDi8fZrg7wAsjiiLHmpKtzZsk4z1m5/e7Bkgp6vUYTyuqVy+g8gr5T35t0hw5zbStKrZuXOXYqQcw0se/J4X73z3D9d2+B6WoUY5Ang/RHUO/v80Dp0/hx20uXrrMvn376e32mJud5vHHvoeO62wPBjRizWwnoqh8Aq3xfYu1FSAoS0ftLouM4XAPoRyJ31LSabZIkjHDYYLwIqQMQIYkuSXLDY1Wl8GgYm1jl1q9S1EJavUW9biGFBVFsoPJtxBmh6os8D2oigRPlVTlGFMqhB2SliVPPX0Tz9e06h7WMvG1sJjKmcN5ShNGgsqMkcJnY63Pys1d9h+YRilBGLXIS4vvqUkGtTtPup2YcWLY3hnR6U6TF2OiSGGMO8adLMBDSOcdUFXlhND15mfkIrwsiJLKGJRypm5FOabRbGKRFFVO4Ef4WjPV7VIWBc1G3eWtAkhoNGpUtsJX7lro4sDccMiTHgqBMTlIwWAE3/7WWQ4tzyFlThBIykpQGcX3nnqD5UNTJKnm/BsbNLotLryxwsmT97K4OEuaDGnWGgglsRbGV3I68RTNL4HJr3Ph/Mt8tvsPaHW61L4QoJT+qHHlvevIj9b7Wx81rj+ndSel4b00lu+0PsgJ+GEauLvt6+35V7eot+/1Ht7tgvJh7Mmrv3CuwvLv/+JdT3QpJUVRuILhba/59jzXOzUMb7/9najNb97+5vPcbb39QvQWyvAkNgILRZbjDcbof/a/sPXCS9w8PsPCiXtodPcxGDtqVBzXSJOEC+fOs3xwmUazQaPeYHZujhs3Vlnat8Tc3DxnXnudvChod9r4oSKKY+ZmF9nubdNo1dndHZAlI3ytOXToEHEcMx6PieMGtVrE7MwUSsJ4OKDbaSN0QJblpGkKOEdMrZRrAoUl9AN0K8EAMp1hY3OdQ4cOUlWWzBRgFVEYMD8/TRzXkH6ANZbhcEC9FnJz5SY6qPOpT32S8+fOIZQkiiMeffRRDh06RBD4b3EY9JQCUeEHEWlWsf/gfnZ727TbDeK4xvVrq3Q6TY4fP0YYhkxNTbO7u8vVq9dotpuURcnywUP4fsDS/iXGaUK9HtKoN1hdWeH8+Yu8/trr+H5Iu9PEmJzxYJdWM6YwljRJXdE+iTVZXJojilxDKqVy7yuuMz07TVlWNOpNlFTs9vpMTU3TaDZ5/Dvf5vDhZfxAk4xS/MAnimO053Ht6lVeefV1mu0Wnu9ialZXblIZQSMOybPEIathRBTHVMaQ5S7b8o2Lb/DcMy+ytHiAwI+JwgY72312d7fZf2AfSkpWb6zSbDXxPI+4Vmd2bpaFhUWskTz55NMEvkZ6CiU9504qJUr55GlBHDYm8Tk+tspJRyOanS7jcUL07ed56d4Wgy/MsXz4b9HrXyUZrJNkAUuLh6mMRmtHj/X9mNJCv79LHPpk6RilJFkVoP3AIaSlocxztntbnD1zho2bN1hYXCKKY55//nlazSbDwYDPfv7zrG1uILVHEPr4WUnwnWcRtZhicfo2muEQRYGQk2ZJCq5cuUYYhgRByM7ONqZy2cxKaS6cv0BVGh544DT9/i7KcwhoLa45qr8RFGVJkmb0d3c5fPiQQ0OMkw0UeYryPCpjqcqKyhiqauLcO6EFIyTGuticLMvQnnaDoSxzERS3KGkIR2vPFG9cvMI3vvHnHDu+RJr2Ie9TJD3KZAtpE0It+fjHP02tVqMyhrW1dYIwxvN8NtauEUY1l88ppaN/WwvWmVJJIciy3DkSK3U76gagrPLJOahc1rTSgHU5ondINLI0nWR2vmmAl6YpVWX4/d//f5mbXaDdbmIp3WOMwVQVnc4UfhijtEdZVZOGT5AXKWmS0mo1GQ2GzMzMUOQFUgiKsqDZbJImKVprer0es7OzZGnGeDSmvd5jM8/YtoK52UX+7E//LQf2H2Zhfh8XLrxOq92mqlwOrVIexpRsbmzy6CPfZKrTYWd7i/7uBsoUDHs7bK7foMhSPK9Lb6fH0jDDH+xxZbDB3HwL7dcoK0uvt8vi4jwr16/iaxdNojz3XaQ8D600YIjCgHqjRhhEGARxFHD/vad48ntPsLG+ztNP/wglNWdefR0pNAeXj7DT79NsNSemWMLFEJ+7BllG+g9/GaUlu/094rjBxtoNDsxPIfwYqwKUrTB3MWt4v01AaQNUu6L804D2PyspL1rOvvwsly5d4RMPfZKXXz3LPfecYDDoszR/gI2dPa6vriOxNGsxnakGQSCwxlIWEs9rIrWjyAa+h1SuuYqiECXh+rWreErTbDVQKmZ7Z4/nX3iFbneWer1BGISsb20xO7PA5sYWrWYdbEFR7jAabBN4liIdoaUCJHEYIZFgLL72kEQISpSOeOWVHZLxiH2LDcqichpP4QY6vhcwHO1RFGP3nW89Wq0280uzSDlCe642yooETMloWON73znL0aOHkWqT4dDj3NlVgiCm3vSpCkdB1p4PSJRytUCauDg4bOXYXEJM0FVLEPiUJgURsrHhtK2eD9Yax/jAOk1sUTAajTGmclr7STNYlsUk6zukqpRjJoQ+2nNuz6F2yLFUkKZjgrCF7wk67Rq+Z1FKUVkAxaGjy9y4NiTNR+AJrl4riOKAhx56GCkrRqMhoV9DBR7aC2hsdClbOb/3g9/k9Kkuo2FKxBRLH99P+xNdMBYr3nLwIcSbdeXdjE3fXrfdWZ+9G3Dx9vr23erOn6wPP1hKx7s1tnerNd/rcR+t97c+alx/huvncWD+PA7w9zO1uvPfd2voft7rVuOqfvUX77rfdxLU3735/Ekk+P3c5m7/4Hu/tSoJ1hiUgTCrsF/4R6xurlF95j4WD58grE9hUFjcFPfG6g0atTo//OEPWT54iO7UNM888zyvvvoaC4sLdDpd/DBinGZcvb7C0v4lPF877Z3SxLUa61vreDrgiW8/xicffpgwCMjyjCRNGQ52mZnpcu36NTrdLp4fcGN9a+J0G7C7u4Pva6IodMYJUjAeDhkP9ijkkDCIqEbOFbGoMqfWUQKF5qv/+qt0p9pEtQZSWtqtDrMz0654kJpXXjnL6soKhw4ts7CwgBVw7MRRKBxCZAFPaC6eu8jO9i5WljQaHQ4sH2GU7NKIY7J0zCsvv8rFCxc4ffo4o2HK9LRrlldXb3Lo0CF29/p0Ox1nUjU/g/TAD52OT2tNvd7E0z7NpstI3N3dIQwDGnFElqYEUZ0wDNhYX2N2ZpqDy/vJi4LAj0lTp41qt+u0mnWsEMRxnUuXrjIcJHS7Xb7xjW+wb/9+HnzwQfzAQwg7MabxGI1H5FmOEpITJ0/h+R5JlhCFMT98+lmiKGZ9bYXZma5DYuM6eVm5vy+ClesrLC0uoT0XoXHl6mWmZ6YIQp99B5ZcMTDRHTabbbQfYCY8NGssOzt73Fhd58EHTxNGEZ5WrG+sUa/XEEIQaJ+qqrAW0jxlPBxQFQVRVCd/+TzBeo9/np7lb33u40xPn2J97RXIb9DsHmequ4RSEaXJ2N7eROGhREmn1aEyirLSWGKiehODxRYVWZKSpSnD8ZgD+xaZnWoT1+pUpuLEiXto1BssLS7SH+wxTMZ0ZzpEcQzDhODxZxBRRDLXJo7j2zp1cFTNNEvxPI9H/uqb3Fi9yeEjR+l2upw58zphFBLHIQcO7ufkieMEoUcQaMIodE7MmEmMToXWPlEcsX9pgSQdE/iuIZHSOTKDy4z1fdccB34Iyv0dwDLcc427se6aVZYlnnJ0fOW5XFLPcwhQWZVk6S4L87Ocvv8kRTbEloYizQFDrRZRbzbQYYPZhcPsjcYgJe1Ol0ceeZQ8y1leXiKMa3jaR2JJkzFaB1AZfvziSywsLE4aa4EUYoKUSoo8d5E2TLJalXYo0C2kWMrbbp1CitvOwdrzbl040dpHCp+d3g6HDy+TpgNnSCMsUlgXDxRHYCzCWrSS7PV7ZGlCEESMBiNHY65KpIRvfeuvmZ2ZoRbHbKyvs3bzJt1OBz8IXBOQZbRWNqHdIptQ5k+cOEE2yYoepzkzc9NkaUoYBmxvbtHv9VhaXGRhfh6LZW5+DoGHqQxzs7NIpQijiJ3NPpcun+P+9jSqsvzg4gWajTqttnPX1p5CCkscaKK4hjdpXsuqmtCvJUWRIYR1maalIQo9Zmc6BL5iZrbL/MIcx48dI9CaqelZpBcwv3SAuBkTBD6+ViglQUo4exmRFgx//Rfxf/RHeGuvIvZ9inYrpre+wvnLKywfPeka158CvSqFRkcJ5rKizCKy/i5eNkBScOXqKr/wH/8yRVlQFDl7/T5HjhzD90P6/RE3bvZoNTRlkWFNhqc0QngYcowp3eeCpSgqLBXWGjyliKIQRIUnS9J0xPETR2k0fGw1QtqUuBZhq4KZqQamGuDJHIEhHQ+pRyGWCqFu6RIFRZFN3H5zDDkUHnmVUG916O+ss3xg1g0ZrEPI0zSlKgxSCsIgRsqAsiyIIoHSBk9AlQO2wpLieyGVVVy/cZOpqTq+V+AHmtGgpF6PqNUMpnC04aqEZJxhrTtHlPInSQPus1dSU1ZjwqCBQFDZjCTVfPPRi8wvdojqiiJP8aTCqdotvh+QJAmtVoOyKimLfCKZ8cnziiI3bPQhjGKwpXPNly4dwFqJxEP7HsqTxA1FFCm0FyCFT5oVWGkRCPLUZcPvDQrKKuCB0/fx3LPPsbg4x/WVVdbWd2l3G2AVzZUpXq9+jHd8yGxLMR7Dwc8e5viXTiJ8l51+azg9OfhgogF9J3+UD1Knvtt6r/u99fafX93+UeP6s1sftHH99xGQ9B/s+pukAdwZP/Nh1s9z7z/t3u62buUK/k2vu72vW78zt973KCX/b36Dq2VC+LmH2b90DOk3yRAYmREEOdYYZmZmyPKMqe4U62tr5EXF9MwsCMnCwhLD0ZiyMhw6cpTTH/sYne402teMs5RHvvlNvvO977K0fx+NVpN//I//EdvbW0jptHRB6HPg4AK93hYnTh7HSsUoyVnYt8yFCxcmephFut0phBAMxwlBEDpHxAo2Xi5ZP5c6F0MMSmvCWg1PSsbjMb/+67/OwpJDyzwF25sbrkjXAUJqyqLg4YcfJk0zpyecfGGNh3tYUxH4PlVp0CpgenoOX2uUUmitieshWZoyGg/5+MdP86Uv/0f093ZYWFiYUK8qrl69glKKqe4U1sLS0uKEjlUxGOxQWUtpDdJTzC/Mc+DgQbqdDieOn6Ae14jiGgJFmubkuUN5rl677Jwl/YjV1RsEfshgsMfK6jX29nbZ3t5iY2ODTrvL1laPJEmIwoh6vcFjjz3Gysp1iiLHVIYkS6k3Gpw5c4btzU2sFbzwwgvU686NOQhCrLV0O22iMCSKInZ7PdfwDkeoSYGXpSlJ0qOsRjzwsZOsrV9Da4MONEmWglTUm22QmiSruLG6iu87pCoKY5rNNsYYqtIVNHNzM+R5ghAlvd0toEIqg/YFAsXOdg8xTKi9consX/w6e709Qj9iNBoBOVqMGQ32uPLGJarSQAVBEKC0ZOPmCmWe8cR3n+Z//J/+V964toPwnHGPUoqvfe1rRKHPwsICAGfOnOHSpYuUZcHZs2e5efMmr732Gqurq8zPz5OVGcaUVBaysiT1NHEcOURiYp7meZNjJo4RQvCVr3yFz372s9y8cYOnn36WkydPMTU1hee5qJZa3Qdh0BPkYmFpiSjyKYrUOQVjJ0ZOAUJYjK1wBBJDnqYT19PJcM+4yJ1iEn2RjAe0WzUkJS4URoCxSCH41qOPOtR1EltTVc4N2dJjPF4nGe5iC0s6qPjjP3mUS5c3yfGHMfgAACAASURBVE0AXovG9EEeffy7fO+pHzJOc7Z2djh44ACnT9+PH8YT1+Icaw2hP6H6Kk0jbuAJReD72Imr+y02jKMrpyglqUqDte534FzXk/HYMSHAITPGTOjFcoJAQxTVeOjhh/jUJz9NZSqCMMCfRKRICUHsY+ybUT2O6mowZcVgb0Sz2cJYF6NSVjnLy8sT/XFBrVbj8OHDdDod9vb2+Na3/hpTOQTY6dUtlgLlWfxAsDfYIq61WFvbIgxDsiRhqtNm3/wir716BiklC4uLxPUaufVpTy3RG+VEzSlU2ODeew/y4IOnyHMXgfKVX/k1fvTcOTbX1+htb/O7v/07XLtyGVPlbG1tTRB644y/jItjeumll/jBD568zQqyRcZwsMtg0EMHijD20TJHypyFhWmee+E5Nra2XTNiKowxJElCkoze4lBj7ERPay1JkjA/P8/58+epqor0d+sUv1370N9nRhiEKJCfyjBP+cz8mmF6qkszknzqwY+RjEbkecFwPCKqBfzlv/1z3rhwibLy6Y0V16/08LVzaReyIC12qExFVVWMx2OMAaU01rion1rsGs9xOsJTI6anNFW5g2CANbtU1Q7YBK0q0tEO+biHLQfYUjHTnaUoc0qbkVUjjM3JqwQrKoRnQFb4YYGnPMJAsLCg+OQnTyGlJJ9IcrIsJ4oier0e1oCwCmG1i1KqRlRFQpEWeERgHDumLA0q6PO5XzhCXAMlGmg/4b77j9BsBVRmDLbE16Fzk/Y0g70hUnoIPPK8dMMj5eF5Ptr3GI/HDg2VEs+LWJifprIay8RIqSiwZYUxJUWWUYtjirxAIEBYBoMBeV4ghSbLKr79xDnOnL1MWUEYhO56ICx+EILwyLIcQUq9YTDGsSWKwkkChLAIUbHvYIgnA1au9tm3v87h5QPEUYgFrq+scuLkKc6ePcuN19YwnuEvkz9k/eZNLp6/zHCQEYQNpBeCku9YX946xu9c74ei++8bSPlo/Ye9PkJc32PdQvx+VifWB5kqvdvPez3mnZ7n/bzmB3nOW+s9s7jeA3G9Ewl+O1X3nfb2Xnu/k5p9mx5tBdgJhWRSft4tr0taEJbb1DsLmFJgswLxG7/Fzgs/hi98gvbCPkZZiqc9qCrScUlZKM689hr1uMbe3oDl5QMMhkNeO/MqSlnuu+8erl29Qp7leFJQ5s4IpjIlWZqzvnqDo0cO8+KPXuKe46fIkhFhrUmr28UgubmxQafbZXN9m337DpJlGWmSMBrs0WzU6HQ6eMJy9fIFhJSkeUE23KHWmsKP2kitMDYnjltIGxIGEdeuXqZZbyGQeJ7kmR8+w4nj9zg9kzEoTxEGAdZK4lrM7HyHqKZBVHS6TbIsIwwj4maHsiwRFv7dX36DxbkFvvXYX3Pk8HFMVVEWCeloTGUlrVYH7Sma7Qb11hRFkXP9+jU6nTZxFGJMifYEWZaQ5zmjJCEvKqrSolGMhkMC7TMc7PHamTMcObrMD55+CiEVUa1J1GgjvAAvjNA6IB2njIdj6s0JmhaEhHHMcDRkbmYOhaIsSsbjAc2mz+zMHA88cJq9QZ8HPnaaTmeKPKvQvsIPahSFZWtzk1arxcbmFsO9IfsXZ1jfWOHI0eNEvs/swiJWKK5cuU6n1Z5oLh3FLE0L/vTP/oLPfPbzdKZmMEYyNT2D5/n0dnap12JMlZOmY0LfRwpBo950mcFRhK8lB/cvYmTFY489zvLBI2hPIxGuQZeGwrq9Zv0+lorVm2vMnL9B+clDrJyoOHvhdb70q/+Q2sJBrl7dIpB1Kq/BzHRIasbI1hzFoA87V2nPTyFExMH9J/hX//JfYMuUz3zm01hTIj3BwcP7aHaaKKVRgabeaDM3v5+1tV2ycYalYDjq88ADD9DbGPD4I4+zOL+fjWvXmb+0SvXp+zC2RCnJYODQvds0XWPAKv7P3/otvvCFv40fKGamWwRx4IpDqSjGCTtbazRbbayU7lQ3FUZYlOcjhEdZWl47c44odgOJsqrwtE+aZVjlwe3rhEVJRWUsnidJEzf4GSUj/CBgnGX4noeSguFoxJFjx6jynKIApUM8pejvrBF6PulwjyzZotmJEH6NRuQzPVOj2W4gVQOpQr772F9RCwKOLx/hlZde5ez5C5y8734CHSDExItJKIz1gJLxuM/sXJdxOkJqj73e+iRyKeZWpqznaYR11HHB5D2JktFwMGl+PYosw0pH9fWUcu7CQlDkKUgXjxMEAWBR0kMKD0/HWFyjVRZuSCeUwipNEERO61rvuM9cKdbWN2g3O0zPzLO2tobnadI0QSqJMRVlNqQWNUiTjNntPXrpiPrhg0gpuXDhIouLiyRpRqMR4wdOxiCkYjROKYuMAwf2UWvESM8jzQ2qStjd22Zufp7ezi7PPvUseB4Cn042oYUvdDl86hjba7t0u1NMTU3RanXo741pNOsEvkY4Vi/JeEia7LGxtk2rOc1ub4+p6Q5SWYKogZU+YVRHWOFM65WPH9d46KEHCbUkGYyJw5hxkhDV6khPI89dRqQZ8r/+NeTNVxFY+vE8ZSYIw2me/9H3efhTJymed8iderj4QMPoW/fxKLFCIeYt5js+wb5pxkkbW+6y07tKMq6Ia22a3Q71uM6+hQWOHTtMvdnk0rWrHD16mCQdc/3yTbqdOaLQSQ7KqkJ5Pn7gjPnGowytxcQzTCOFQSrp2Cl42ArCsIaUPllSEATOQCmKGihVYzTcYzzeIwwDAu1jCgNC4SlNVVmHvkqFqTQo67TiZYGnDHme4fuayhQIwPM0Ukv8MCYvDZeuXGY4yvCDJlEQugxnJVCBojCWUMcUqSHWPtbkhFFAVSkgQ4oSX7tjCzySvE9WaJ586goL+5e5evkiU9NTE1q+ZTx0CK7FID2JKQWClLlZaDclyho8pZ2GX4CpwA+D27p0p431iOMYKS1pOsYa6LabSHKiyKeqSjzpIT1FmqboIEAq351XQ4EQUJkC7YcUZYXnQaDrrF7fw/N99i3PI2ToZDnTU3Tasxw5dIztrQ2OHDxKc6/FkD2++upXadQEK5fP8Ytf/hU+ceqLNMMuRBVGOcQVKTCTZAYpnd781gDs3Si+dx7HH+SYfqfa8Z2jGN/6Gh/kHLobC/Buz/F+KMwfrXdfH1GFf8brZ02r/TAH98+KQvE3+fj307jCm/rZWxeicuL0qrX+qfd2p8HSW/fwk39fK978rbUWawzaKvje84x++w/YeeAE04sLlJVrQm5drFdWrvONb3yD/UtLrK6u0u/vUuQFSwvzWODIkSNcuXKVY8eOsrCwSKs7RRRFBL5Pb3uLqixo1WOKPOeB++7F9yTDfo/hcMTKtWu0mo7W6ilBWVbUajUC3ycZj2m3O9RqNUDQ33VmP0kyZmZ2hlpcx+Jx7tx5Zqa7SGGwCAZ7I/7kT77OPadO0Gp32e1vozzFkWNHqYzLJlTCkmVjZ0RbpZRVhh82CKKIer0OxiAxeBIXXZE6Wmer3WZtc5O//bc/T1yLCOOQKI7o7e6ysLCEJz22NrdJsxKlNIPegG9/5wkOHT5Ka2qasF5H+x6e74w2Aj/k6R88QzrOaLc7BH7AV//1V1k+tMyJE8dRnmJ1ZYXDhw+7jNXbf2v34ymFpxSDQUqep2ztrBEEPq3mFEJprl5b5ZUzZ7j/9H34WuOHgqoqqNVDPO1xfeW6M7IxFuV5bKyvc/jQIdqdNlBxePkwYaQZjMZMzSww2NskjKPJ5F1hK0O92cCfHMvWWk6duofhaIDneTTqDdbW1iZGUz6Br0mSkTOImbjamqrAYsBUjEdDlJII5UxJ5uZmUMqyu7uFmOjvlB8BkI/22O3vcGRmHv+Z83zvl+axOqNKFQ984jME7f3MLB5hd1iy79DHaTQ65DmoWot6vcZwbxtEi7juk2R9/pP/9D9j+eAxZue7KCUmWiznQiuloihzQu2z2+tTqzWZ7sxz7uwFWq0OeZYTRSHNVguUYLHTpvHcq3BwETsxHQqCECEso9HQRdcgKYqSBz/xidvGQrUoQnmOfmkqg6c1jUaNojRIrV3GK5bBcOCclgVsbm474y/fNaS33GO1DpBCoYQrvphEaVWmQqBQSuF5zk3WWpcZORpukYx6NJsNknFJ3G6gPB8D/PVff4sg8CnyEQvzi675RuFHbb773adRvubgoYMI4XH92mVOf+wBTp++HyEMUag5efwwG2vXmZpZdGZV0rlTl3mB0i7TuSxLqtKglML3FFEUT4yYBIgKrLiNHN7pS6CU00MjBb4f3qb8maoky3LyIkcp5+6tJ5RZYcFUhqLMnMOxkEihWFtbp1aPnVOqUEip2Fjb5KUXX2Rxacll3wrJXr/P1tY6T//wKaYnTeLa2jpzc4usrKxw6MhRutP/P3tvFmtZdt73/dbaa89nHu65Uw235up5piTKkU3KhmVFsixFgQEhMAIrDzHyIAjJg5+CGEGAIEESCYGAIFEUi6Is05RIUbKaZJNNsjl2N3vurq7qGu+9defxjHveKw/rVLG7VD2SDAKjP6C6q845ezjDXnv91/cfWrC5TTUried6rK6ucfz4cYqyNLpmS+G5JhdUKoUTBKTRhOHYXCOD/oAgCJmM+ghpEUUxg/6AWrVCo9HAthXF+hZlWZJ2GoxGI2Zn2uR5QrvdYGtrg/n5WbwgMLElUiItQ8N2bJv5+QVGozEvvfQiJ0+cIIojPD+g1JpoPGEymaABxzOMjvFoxC1pwd7eHt2ZLv3BAM9xKV6/jMoK9G//Bqy9CgiCM59kNMx58smvMDvb4szZsxQvVABuA9cPc797x78l4JXkTzro3+oTbjXZWLnBpddep9HqkOUFWrikSUJYqXD16kV+5Vd+CVdaXL92hVajga0UyhXIHHynThwVQAkywbFDlBIUhTH10tq4epvsc9PVL8uSg4MDNrcHdDsdpCigzNFFavwCbCPFyPLUSCSkh+uFpEluOp2WIs2y6cLfBN/3KIvydgSUlMZwL88zAs94I+gCapUqjXoVx1FE49zc05QgiVOUcCl0SqkNowAtDIsozbBt+0dMMLNyjVIgpcl/9VzJzdU1ut0mjqOmFF7QaON0Pc0ndl3XGMvBbZ23ABzXIU0Mg6csS7LMuBRLy+hkDbD3KcqCVtOj1aibMUrZSGV06q7rkWWGtp1lGVIaSYSQCl06jMcpIDnsp1y7vk5W+jz34iVu3NyiWW8zjhJqtTovvfIiQehSbdSR113Kbs66/xrJ8ApLJ8/S7M1x5s1PkV9UqMdzyjvmTAbImTHmzgaGyax+p6/KTxLkvR243uXZj3y8tzMLPwhV+GPg+tHrY+D6U6gPAl7vtqJzpwvvh73xfNju6t0efy8xuVkle2+2+J3GSHfu5277vtv2+q+eNp2Df/zpv9VFvfNc3z5g3KKX3pmr+vbjvX1l7N2Mmm4f8y7nKOSPXnvLTbgUP9qHhYCiJN/aoP9b/w0v5BFpq41GEPghrutx49p1fN+lXq/Tm+mycuMGWZYyGg5xlDEFyvKCY8eOsbq6wsxMD9tWXL22zGg0Yn9/H9exabUaqEqb1bVtOr0FCi3Y3t3n2OIi1UqFvd0dwiDkYH+far3K2s1VgjBEKZsojsjSgtGwj6VMCPzs7ByubZOXsLOzS6PeIAgDrLl1VH1COazSajeYX+wxHMboMqNSrTIajUiSBK1LtjcG/Jt/8zlOnjxFGFZxbJ80n4J1bQGaeDJkONjncK9Pp9smTiLqzSZHji/h2pI0TVBTsxPP89k/2MN1PCxh8/TT3+TY0hKWFjzw0AO4vo+QgjTPsaT53oaDISA53DvEkoonv/wk99xzL+fPnafb6ZBnGf3BgNOnTlEUBcPR6Da90rIk+wf7VCshSRzz5JNfY35hlm63ZaJKpAM6p15v0Go1sW1FWA3pH+4hhSCKExCCarXOYNCn1epQFjmNWhWpjBbLD3zKokDrgmqtSpZopJVgOz6u47Ozs0On02J5ZZkojqhWK3iujaZktjfDwf4+eZFR5Dn1hjFy2dndwvMcqtUqAPu7+xz2D/FdRf9wH62hUq1jKZtOp2nijhybOEmoVCsoS5FjIbQm7m+T5YrWW5vsP3iS8Jc/xevPvszcYsnsYo8xFm69gfZ8HH8Wu8yZ9Hdx/IAMDVIiC5vtvTWiZMzMzDyVsI5y9W0tmj3VZH3zm9/g1KkTuMqe0j8VezsbeL7RU9+4sUIQ+LQaVebnZ/B0jvrOS8S9BrZtKNZpkt4Gw5Y0k1LbNtESaZpyywCJMkfr3HT8hKEHa2lNs0dBoPE8f+qwa2KP6vUaUpnOjFI2usR0CzAGK1IISl0ipEBYkizNSZLEOAhL00UqcxgNDyjLHNfx0QjGg31CWzLY2yAe7NJrVfDCAD9oEKUljl/F8eqcv+dB5hfmyLIMzw2oVX3CoGrcvpUgCF2ajSqtRo1RMiRNx5RFwv7+Jo26CxhnY2Eps0CjNdgB0nbJNZRSUgoLywxg7xxj0UipQEiMF6wgT1OEoZbgOC7OrbiksiBJYnRR0O8PKAtNkqbTzlBJkmRcv7bCl/76rwj9kFa9yRe/8EUeevgx0mQMQmA7ZpHGVg6dmTZLS0s4tkMQhFiWQkrJ3v4+jaZxWY+uLeMVmu3QZW5ujj/6oz/i5MmTKGXzrW98CxBUanVsxzNUSds29PyC6cKCYjQ8oFpvcHDQZ3aux/zcDNK2jDHU2OiLnaNzxgRH59OOnWu+bymmMUIW+/vGI0AIwcH+gEo1JAg87r/vPmq1OnFSkCQptqVQSlGp1hHKOJXXaw26nQ62YxEEFaq1KmjY2dqmEgbkaNQ4Iv2tf0Sx8qKhj84/wMbmHp7j84nHH+SZ73yLpcOH0JSoJ949Dududdf78VxB+ZKNO/JRv24TrtYpswPSeESeJCwcXcJxbC5fvsQ995xh1N+jUq3SnZvhldfeJEozHN8ljQRajrHcCVpY7O9YXL9+hZneDFmWoUsT3aVLTZ7n2LahrevSsAYQhqkjRYEUmjzP0EKgKaeuvSm61CA1moIsz8iLZOra6+J5gaEn62kElHLIshJLukyiBEspyjLCthVlmREEDkIUQIbAYnt/D79SuZ3NbDqGklILrCnd13Ed8jzHcVyUsinyAsoMBDjKotkI8FxJrRZSrQYIoZECyqLAUoosyyjK4rYTuhCCaqVKOX3MnJtxq5aWRVn8KEfZdqYsk8Kcl1IWZT7AdVyj39Z6mjVtMpelJU2MmxbYtsd4MsJxfNbWDlheXmd2bp6yTGj1OsSFwygW/IN/9PfotOZ5+eXX6M7McOnyRbQu6FR61Hfb/G+H/zVH5wtk0acyd5Jf/if/CdabLbMI8URKedd51jtdhU1UmWGr3Tl/+3G6lHeb470fcL1b3W3++X7z4Q/f8f24Pkh9DFx/SvVRXHhvPf5R7Lw/6gXwfmD3xznOj3NhygfPIX/h8XfNcb3zGHc+N5lMcG7lLP4Y53vXoU1wuzNxa7tcTAdWDeQlSki+9S9+l5nSZv4ffprdwz5zcz1812dne5svf/nLzHQ6VCsVkiQmCALOnz/HkYUF8jzj6JFF1tY32N3do9vt0mw22Nra4qUXXqBer/P6a69RrTdottqUWjIYDHjt1VcZHB5wz/mzrK1vEAQVDg4O6fV6AAShTyUMSZIE13X5whe+yPnz96CsgkqtQb3ZYnd7j93tXUpZUhbgewGHh0NUbYiyBE7WNUDJVUjhUaQJUkiSOOX73/seP3zuBR544FEef/wRgsBHKcUrL19gONgmHsc4tsuLL77E0sklwmqFLCt4/oc/5PjSErZSTEYTLNvYUFhqmq9n29i2QCJ5/rkXiJKYU6dP4XkKpQSjYR/fc6Z6vpz+wT5JklKvN7BsmyAMWF/bZH9/j/vvvw8poSgLkiShWqtxcHBAo9HADwJ2trao1WtYShJHMZPJiHPnzlKvNbh8+Tq+X8H1bKwyJp6MsZWDHwaMowlpVOB5IU899XXuve8BtIYsM5ON/v4ucTTB8UyeHZYiS3Im40Mmo+GU4pajVMDW5g6NRh3blsb5uN4gy9Np3IeH1pAkCY16A9uxydKM/b0D+od92i0zWdje2qXbmcGvVKefk02l1kAqhySJcRxltIZSEU1SyjLDdV0TSaFLtpav0A5r2M9fRP7e7zB7dIbnv/kUwp0wu3CUVucEtlMhywW2Z7G9eoHJ3grKC6g3O1hYHOyvElaazHSPMBiOiJJDPN+Y6MRRwrVrN7Btl8XFeaMbLUqksHCdAGkdsHpzmTTJiGPTcb1x/S06vQ75aETzmy8i9/oMWiGOYyNvu+gquGVjMh2Dd3f2+bM/+xxh4BvmgC6m2bQOWpem26A1eqofs5RttMmlngLfZNrRvTXWgJCa4eE2u3tbhJXQZMdKCcKY9migKEqksClLY3jkezUcp0KcpORlQqXapMxzksmAdquK51vYXgWpQoJKnayEIpcMByYn0nEco0NzbfZ39mh12sRZhu16lAiEtCl0SehXcJRDo1Zn2O/juCElgLSMxlYKyCM8B+JJH1uCpSXaDGy3eyN5UaBLs9BgRkKLfn+AJbXpZGY5ynYotel6K6AochzHxpIWf/PXX2Y4mnD82DGzECDBsV32D4YcP7ZE4LmcO3eOKE7Is4hmq4W0LLa3d1DCwnFcJlFkKI1JhBSCa9evcPrEEnmWsbG+wc6LbzDjeAy7AZXAp9vpUuQl25s7PPjIg/hBhYP9QyZjkxdalgWjcWTczwUkydjkIVcaNJttJuMxaTrGCwOKPKcR5Uan26ywubXJH//rP+H8ufvY3t7jr770N2xt7XHu/BmUZSiPW5tbOI6NLiWOo8gyYxRVlCV5Kfncv/0zXNvoHP/wj/6YWrPG4cGAyxcv0WzWkUqyv3c4dX02iy27OzuMdvdoJDmHv/p3CfYume9n7kGa3Q7dZpO9vRWe+fbTPGJ9ylwHPwngKkCeLMg/EyDvE+Qbirn5Gq5VMtzf5+bNFRzbptVuoyyLGzeu84MfXODcvQ8zv3CeLPfY34944ZU3iXPFeAJJamE7IdF4aCjWrsfyyjphJcDzXHMdUlAWJQiJ7bhUQnPdRlFkFqqYUmdLyNICW7noUiAsB7ARwkZKmzTNmUxKhoMxRV4YZ+eyJC9LilywuzPA90OEFGgK0qwgywVSuhSlQGPywW2/y/rmGGUpSp2DVmhtHME1xnk8y5LbmcxRHN3WOoOkKDOQpgNu20bKYisLSnBsmyRNQYCy1G3du9aaJEnMghimM12Uxe1OtLLM/uM4wVIWRQFSOliWPQXFhk6MKFDKyADStERNM2JBIy2bySQ1OcOOh+dV2djYotGqEbgWUZbw7POXyXKbxx6/l2iSEyVmXGy1Whw5cpT6Rpfd2VX88yscHrzBzZuH3P+zn+LMffejX66YbNrHY7Nw9rb51d2A692aKh/od/oBftt3HvujAtcPez7v9fzHwPWj18fA9adUP058zNupWh+0/kMDrqJZewdofa/zubMTrLVGTVcx1S3Xy7fVu303d6N5vBtwLcvyHW54OWbCJzVIBH/9pS9x4kvfYebkEmp+nkarjaBEaMn29jZnz5xmYXEBKY35iesa2pXrusx021y9eo3ZuXkTVt/vc+3aNRYWFnjogQdIk4SlkydJsww/rODbkjxJsKXm/OkTZPEQ6VYIwpCXX3mFufkFkjRjb2+TPC+mdEebq1evsba2xomlBbZ39qjXmsRRgtTQmW3hOh6O7fLGhUuIygFB4BGW86RpxM7uDs1mjzJNmUwiDvYOSJOM++9/kDRPaDQrCJkTRRM6nRl2tlY4c+o0RQFKOVSqIYdD041sd1qkScwrr7yGo1xqjRCtwXFurWI7FKVZVd/Z2WN5ZYUz506TxEMC36MoM3a3twh9j2g8pNGo4/k+rnvLhdXDUy6LCwu4nsPW9iZCQLvdBsCbgsnXXn2VE0tLZMX02xTQabexlUAKh053niia4HqKw80VQj8kL0v8sILl2AwPJ9RqDW7cWOH48SXTibEkQVAh8F2kBVle4Po+Jcbo462LrzM70+EvPv8FZmbn2N7t8+Unv8KJE8cRFEb/qaSh/ZaG/pvECV/72lOcOHkS1zUUs7neAp1uZzp2WGgt0Frghj7bW+smC1AqSiRSaMCAxCwt+epXv8EDD5w33bRSEk1G5ON97JUt7LNHSf7Jg7zw7DdQ6SHPfPd7jEaasL5Es7lILeiQyTGMt7HSIblQ1NtzZGnKcHgTKSqEwQyur7CdAtcNKApNlubs7R2ysbHBsWNHSLMEJYwx0F//9ZNk+Rrnz99LGDSo11rMzHRpN6u02i1kEhM88woi9BBL86RpxrXr16jXm1jSRmtBUWb0+wdUKgGu6/HYo8Zhu9mo4gUeWkrzWTCl+AuJJaEsMpI0m1J9pxRXKUBbgGFYpGlMFI1pVG3q9RpJmqFsGy0MzXFj4yZhGPL0179BrzdvJttSU+aKP/3sv2Njc4177j8LqkZZltTrVaJ0Qik0jhtiOyFJVlJqzbPPvcDTX/0bHnzwHspSI6RLlmeEvm+cv5VNnGfYjsvy8iqddg9RKizhcuH1C5SFRguB6wVEcUqRZ1gShjvXGOxtQp5gGVcptHLMWDqd2N0yFTKxFQawSymxLTPmKdvBECONuRTTHGnXdbBthyNHj3P8+EnyKSUyz3JqtRoLR07QrNX4k8/8MY5jc/T4cZr1Ktu7O1SrNV544UVOLp3k8pUrKMum0WiwsnyD/YNder0urqXY3NzE90MW5xfxtvf4+imX2s6YwA9Ik4J2s40bmvGrUW/iujaT8Qg38BiPJiaL17YYDQeEgU9eChzHwXVtlBIIS+F5LpODPokl2EkmzM3Pc/rUOXwvxFYu9957P8eOLVGSmSiTPKdaq2JZEl1aCKHZ3dsly3Ne+OGLzC4cwZICoTXzCwv83M/9PI1upYfr+QAAIABJREFUizLPadTqdLsdsjwlSXKGwwFJklCvVrEsi8VGk+LmFs4//w30qum4Wsce46C/Ty0MaTVdtE5Z3HsAhPjJAFdAhBrRKCk/65P/ckG8vEez6hD3hyjHIS81N9c36PcHzM/PEdQdDse7zB1ZZDDYxwvh9JlHsaxZ8qTB7u4+fjVmce4IyrZYW19jdnYB27HIktiAyNJE1SjloCzbaGTzjFqtzniSomyfPDUMC+P0btE/7GO7NXZ2+gwHE1599SKVSp2tzT3q9QYrKysMBv3p9Ztxc3WTq1d36PXarKwu02x22NzcJ/AbTKKcl16+QLM5g5Ca/QP47vcuMD87Q5rEOMomjo1OFow8yffcKVW4nEZHga0UQipKcixLUxSGmGBJYa7LEsq8xLJNB/SWfOjWXEQpM+bfAqsGoBZY0pqac03nipZEWQ6O7ZHnBUIA2kPZgiwbUxYFQkuEVBSloWsbSrNE2UZiYSK7PLozHdI0okhzxnFMlITce+8TtNoBhwcjlpZO0G53eOvyFc7Uz+Pu+/y3r/4LavUDLr31fWba9/JP//l/iVepkT1vG0D+eALiY+D6buf1cX34+hi4/pTqw3QH76wPA1rfvr9bHcC3163HbmkG3o+K/EHO8UcAz4Rmm5fqqbPnT+ZCfAd4fI9zffs53flaM/GSQAEinbZDrXd9j8ZNj9sOpbfeF+KdfwwZ2EQeoIX5e5YhsBHYRAf7fOlf/9/8w6sj5BMPkitDV/Q9j+s3rrGwOM/G5gau4+D7AV976mvs7O9y5OgxPN8nCBwuXHyNhbkjTMZjNjY32NvbJ6iEXLlyg4XFRd588wKB71CremRRinIltVYVx/cZj1P29vap1aq8+spL9HpterNthIAw9EmSDMd2mOnO0W53sGTJTG+GskjJ0zHdbp1JlJuOk+My25slluuEYQU9bjIcjpBINm7epNnt0mq3EcrizLmzVOs1Wp2GuUEKiR8ECAtm5o+TFjm2LYgmI6IoRlkerufx2qtvEPgVrl9ZIQxqRo9mKywB/b0DNlZv8rWvfxdpedxz3/0cPbpIoxIgBDhOgJQOnhcwicaosEahLYbDMUWW4to5mxvXeOqrX6fSarF49AjVwKVMJkRJhrRtbM9DCk2328b2XHzbYn15mTzNQFiGTlnmZGlEUPFxXEON9MIQ17WJohitBVJrNtZX2d7Z4Nz5M9iW6VAF1RC0wrIt1lc3UNoli4YMDvdJkpx2Z5Yjx44xu7BAr9fj0UcfAVEaMx5KykIbSvdobBY5vCYLi8cIwgpSSWzHZjjcJI9jPD+gcEApSdUJ2NndZDiIqNfbJtaEgjI3TqlG35Vz9NgilbBOGk0QCpJoTH9rk9mLO7j/8nd4fedVjs2cplFp8Zd//gyLx4/xS7/+jymlz+bOCr67RLNecOPyt7FLB7fWI6t6NKrzJMUA180ZHowpI5tJFuP7PoNhn9m5Dt1uk8PBDvVGG6188jTjxNEFonFGENQZTSa8/PLL1FtdVq+v0WzPYmuL8JkfUvoeg0abIodvffMZlLLozXSRUhOlY2qVOhSa/v42k+EurZkFssLouaS0oMgNUCsEFjlFmaCcKnlhDJUMsM/J8xTbtaeUO4ElbVaurxEXmkq9i7QcynLacdUljUaLPIPl68vMz83guTZ7u+sMBgcsLPQ4feYkoR9AmSBEQZxMiMcRzbBKaRk3bQFQmEzjRx45R1ipYNsOAo1yXEpRoAsLnZUociwpCCt1hM7M+x0PGI0n1NuzUPbJk5z+QZ9KNUTaAtutgO3iVytYtm1MU8rEmMpIx0w0dU4pb9EQDRCStiSLEpRtU0rNJI5Mjqk22kzHc9DA/sEBQlrEkx3TgbUUyrEodIbvGiA8Gse8dfkyjz32EFmpqVfrbK6u0mm1qLdq5LmZYA+GhyRpwrGjJ4njDC8IcIMAaVkcFDGd3QEztR6WbzOKB1i2xczcHGme868/8/9wz73nTRyWY1MK46a8s71Nu9FkPB5SbfVIswQ9dTjNsgzb8ih1juo2kM0uYa2BFgW1ShXLEUTxiG6vg+u75FmGsgSWKEwObJqwtbVJo1mjVmuyszfga9/8Ns26x2OPPUqz06HaaHBjeYXly29xcukEeZ4Shh55lvDcD14iz1J6vQ6O7zCKJriXV2HnAP2f/yqZsEmCLm5rjsD1KVRJLm08t4rzRt2YOT2efqBJ9Z33wbvRKuWREh0UqD8LGTxxHXXYZJjGBDIinQzozXRZ3djm1Jn76bTnaLe6ROMxrWaTeFzQ6XVoz1aZJEPyPKPTanHYH3LhzZv4QQ8hc8oix7Yk25sD0B4lmvX1PnlWww8leVEyGEaUhWRra5dvfP8Gpaywsr7PjdVtjp86z2gU8fQzF1nZyolzh8NDzcXre/i1WVbWIrb3BPujkmFss72vwa6zsnnAynpMd77KSy9MwIVBpLn8lkZVc9I05LULK7RnFjkYJWzsDFnbGHPx+i6VsMUPX3yDSDbY3o1I8gLHN4Zt0agkLT0EAtdxyTMotKDIEpTlMBrFuLaHsDQFGktJlK2YRAlFYTEZZ1OwZ2FJy9B+NVODMpMLbztGOqIFCCmZTCJKbWJ9bFuxtbVNrd4hyzRS2eRFgtYF0lLEsclyzrMM27YodYZjC3RhKP1vXt1hMHa5fH2VWi1AYOJzKrWANIk5UjmKe63C/7D+LxkVhyT9Q8Zxn4VT53n4Z/++GQtfdM3v6PEcMdWzw9TocqrhFeIWU0X8LeeQd5OI3a3u1oy42+tvvc7MgyVMPRJ+9Oe9r5f32/8H3f7tIPrj+vD1MXD9/7B+Gj/SO286dx5DTice7/b8j3fsdx5XTvPr3q4j+KhV/vFfol+5iHzo3Ec8t1sD3S3x6a3/vNeiwAc7X3HHPgzN0FBCdZbzv/xP/zP/qdOhXgrSI3OgFMqx0bqk2WgS+D7Ly8ssLiyyu7uL7/vMz80y0+1iKwm6wHEc2p02b12+wvnz5zm+dIJeb5bxZMz3v/89tC647777cB2XSZwQVisEQUCSptQbDYLArKTOzc3S6XZA/8gMx3U9o6eRJsdudm4GLUzERZTECDSW8qZ6YUmWxXjtiDTJ+Pef/x6PPPwwaZrTPxzg+x62bdwNLVsBgvFkbCJRLGNSs7W1Ra1WZzgYUGQ5T33166xv7HDffQ9hKUkSR1SqIbOzM2hdsLu9w8yMofxJ5VBvdkjThGPHjxGEgVndVhaTSYEQGktp4iTh2888y+L8LL7jYkmJowSj4YB2s8m9DzxMrzeH73lYwsJWDo6nyLOMSTRB64wiS4nTmNFwSKvVpl5rYdsu40mfWrVCGhsaqZYWynZI04RoPGE4OKTfH9BqtfB8l+NLx9jbNzEcGo1r+xzs90FoNtY3CYIajWaDy1cuc+nSRVzPoVoLkRZEkwjXdQj8wGi8KBmPI/qDoYmNkQLPtfA9GyFKdGEy9yg8Vm9eotOtgaizemMNW8U0WjO0212TMyn1tGsGeV4YvaOQCCmwPRclQSoHz7bZffYlKpnG+p3fZHv3JjJPuHbxDS68+Rb7gx3uf+QRbGmjsyGOFbB29RU2Vi7j2R6TuGB+dhYpQsaDAXmWMxpH9Ho9Mp2jlMJxHCxLkaYZHjGO6xBlOUJKpG3jCouXXnqZ+Zl5ykyztrxK6IdUqlUqlo3/zHOUrkvUbfGFL36Rs2dPc+TIETY216nXa1OnUoWgxPVcPN9D49I/HGBZiiQ27IayNPQ+y4LxZIhte0YjX0gsy5yjoe5NJ13adEy63RZSWbf18nI67pVlSZKaWJnZmR7VWggUeK5Ho9mk0ajj+x55YQy4ZJkw2tswWvWwja1CdFlw2N8FAfV6i3qtihSK4XCE57tTqp+Y/j4kaRqbSaxW7O9NGI4mzMzOUm82DVAVgiyLUEozHg7QeQFhC88PSJOIIhqwffMqk6SgEhpt5a0cZ0tAGkdYaIosNYtFtoWwBHlZTGmxGUoJypKp2Y7EdT0qlRDH81DKJUkNPVtIwWg4xLYVR44c4fz5s0yiIZYSoAuiaGKu/bLAtl16vR61aoU4ifH9kL29PXw/IM8Kvv/9HxC4AXPDiPLZV7j+u7/J4vYYx3YpS/AcY65Wq1aYjEeUeY7n+1O37Srj8Ygw9OkP+tRrVfb2d6amPDb9gwFlkRNNIuIoJ45iPM/m2Wefo9vt4Af+7cm4Y7tEkxHj4Rg/qIBUNJrm89WYrOczp8/R6VSphCFCmDzOwaBPrerTajWp1euMxxGWpVhduUmcTDhx8gQawwiRL76JnESUv/3rWLUZ7MYsUkqKAkpMRm7VD7m+dpmZn+kgZsofqxt05/PiWImsSKw/n6fzWyXrrwywijE6i1m+doWZuQUGSYbOI4ocvKBBHCccOTJ3Oxva92tYymNzZ4t44tDq1rADh5deuInvexRFTl4aejDC4lvfukq9HmL7BY5fA9lke1+zcOxBLl3d4xf/wX9Mpd6i3moxMzeP61ZozRzjyLFT3PfAvQhh8zM/+wnm5mYoNRw9ssRDDz+I7bs8+tjPMje/yNLJJU6fvZdrK9c5eeYJFo4v4odN/Noc9zx0hmplwSxcipJuu0Oz3kZKn62dQ3wnYGPjgP3DnM31PgeHOW9eWCVJoBSa9Y0hK8srzM/O4LoKXRYIN0XIgGQS8OaFVboz9am5myTPQVkeUrhceOMy/UGF69fWCMOQsswoi4i8sJCWoNC50eYWmqIEgTXV7VoIpowJpbCVmu7/1v2ZKdvAIc8LtM6xLAeTpGbcjdM84uVXNqjUZqhUOhwcjHBsHz9wcZRNdadNsF7n6idf58gnFyDdYTK4RK3d4MjSE5x74CEspdAvGsND6wmzCH5n1/PW/39aXcn3YhK+Y274Aev9zJc+yvl8DFw/Wn0MXH9K9UF/kLcmOx9mm/c6zp0X1WAwmMYT/GQuknfu426id/7WY3er9zOByn//M+jlddSv/eI7tnv7Z/VuK2Bv/wyM2Y5FUWgsy5466cm7bnM34Pp2EP7293hnNm2WF5RpxtNf+Sqf+tSnWPzCt6AaUHZalNP9WEKTJsYhcH5+Hkta7O7usLq6yoP338fe7i5al6zevEm1WuPmzTUuXLjAmxcv8eCDD5FlOe12g6NHj3DixAn29w/QWtCemZ120wU3b96kUq2xtblhgJRnVn03Njao1WpEk4gsTalWK7iug+cbLUyS5iZColIhzzIcJyBNU6QFe3vbVLoZynY40ryfSRwZx97vP093pk2j2WRvf58wNAYqxrHxnfb2Gk0lDFGW4vTJs8zNLVKrN9EU1OtVbKXwPA/Pc+l2ejz33LMcPXaMWyu0i/M9/vJLX2LxyFGq1Qqj0YAiE9iORalzLr91ldmZo7Q7dWOiQsH29jZSSEajiChOqVZrPPfc88x0Zxj0R0hpjDEqlYBBv09ZZFQqNexppuze3j5hEJBkE/IsIwxCDg8HDMcGmCdxTK1SAQQzMzPkec7BwR5plhBWQra2tmk2mxRZyvb2Jo2Gz/xij6LM0VpQrVVotZqcOXuavMxAC0ajEZZlcbB/iBQWQhRYUlGrN8gLYwYUxSOkAFvZLN9YphLWKEuP8WiD0fgApdp8/s//AsuKOXr0NIeHJjai1AVJEqGm2m9pGaMPMJPfIksRUrG2vMzsxXV+cEqw8OnHef31K9x/3xJf/PznOXXmIf79V56m0PAL/9GneOviC1TDnGS8RTzZxbIn1Ooe40GfsDJrDKiEptlqkxUFeZEBAtt20KUxB4kGOxSlwAlMl83zHDzLxVYO49GEleUVnn7669xz7h5+7/d/j9XLV/n5ccGoyPnT7z7DcDDg6NEj9HozzPZ6ZFnKZz7zZ5w4cYIwDMjLAks6jEcJX/zCF3nggfvxPDOpkpZEaEEcj42BifIMAMs1QlhkWTbNV5VIIYyWVWiiaEIQhmRpZiaJ0iz8CCGMflgaqnFZZuSFYTiYCCij48vSjDhNqLgWRTLG8UIGqYWlLYoypVL1sR0b23an1OeSMAxRlul+llqQRBlXr16jN2tcXqW02djY5dXXXufkqVNIBVtba7SaHeJ4jOdapFGEEhaeqyiyhCRKKLFo9+apVmuU2lD5dWmkD9FoROB7oE3ur+t6xPGEvCjw/QCBNiY0ZUZZWozHY2zbuR1JpIVEC4njuBTFtLNmSxzXQWuN6xk9sWUZ46d2u22iU6TFaDQBYDDo49gOUhr5RxAEKKVYWFigEgRUN3bYEgWdzHRtRsOxcUvX+TRSSrK6usobr7/BiRNLRFFMVhQ06jU2N9YJAhNHFPjGFC3PC1zbI01i6o5HMox4+Y036PU67O8fcOLEEspSbO/u8tyzzzPT7eLaNjs7O/Rm5xHKxvMCkjTG83zTwbUd9nbXkVISBD6g8XyXRi1kMBgxHIxZX9+kWq1h22bR4FYmtAbExetYaU70n/2yycdWip2dHRNnJC1jEqU1O+kaC08s3paxvFe9F2PpzoXnUoJcyHn9rZeof+08ld/I8dIFhNaoMsMmI08GDIfGZCtJNa+++iqaku2tLVzH5eBgQG92ke5sj07zKMLO8Soh42GA5SqOHOlge4o4j2h2upw4uUC9VUeqFvXWIhevrfHAw59AOh4PPfYwBSWNVhs/qLO51ScvNY3mHLVGE9t1iKKUI0cX6A8OsZXNqZNnee31Nzh6/CgIm7zU1Bs1nn76GX72E4+zMLdIvV5BI9je2KLdqeP7PXYPtvnEzzxOrdbEc0OUo3C9gGNHF3Fcl3pnFqFilk6cYnO7z8HhhIXF47iBjxY5fmAhZEFJyWG/Rl4osnKE6+eEoUepM0wGtUQI42bvex6jKOPUyaNUKj6OMppvx/UZJymOFxLHKbY0hmu6FFiWTb8/oFIJSafyo6I0Lsq35gdloXFcF98LSNMMx7HIc1hf20PZHmsb60hlsXugmSQpDz36KEpZPProIwRBQP6WBZng94t/xXPXn0XHCTq7wd7OZfYOM/7pP/tdZuZ6CEtS/NDMO60nTG7tnYZEd+tAvv03+H71btvcaqK83zZ3A67vZyj6kwbSH0fjfLT6GLj+lOrDANcfx2Hs/VZxbnW9flJ1N+D6foPBh9unqVtxOOrXPv2Ox9/rs7o7FUNTlgJLuhR5CeK99MN3Aa53P+Pbf7uldbUsmxd+8AOa9RqzmYX7h58n/8SDTLIc13VRlsVkcEhYqd6e1F25fAXf9zl79izRJCaKJ3iBT29ugRvLa6AFn3jiE2YSaoFUgiyLqdVq08iEA8ajMUo59A8PsC1pAKnnsbuzx/LyyvS1kk63QxKnWJbFc88/R7vdJI4nRNGINMrZ2t7GDwJ0UaLzHMfzcV2HoihpNpvE1rZx4cy71OtVBoMh9913P71ex+h5bMfQfbRG2YrRaITjmMmpbU8n4GWJBJSyGI3HuJ6Lsk1mpJSS1dV1XnvtAseXTrCwME+aTKZZe8ZMolKpcOnSWya+ZmrYBJo803zzm99G2TZLx09QlCWTyQTbcbh2Y5WlE6fx3BABfPc73+bUqVMIKSmLhCTLUZYiDH3SJDHdGi1RjmMMixyLKE3ptNpceesys3Oz1Bt1dFkS+i5ZmpKkOZMoNROOIJjS/io0mx1u3rzJeDSi1Wpy2N+jVq9OJxmCNI1pNBpsbW/SaDRJJim1WoXA9wy1vyxJ0ogsL/A8H601eZETTyaEoTG2Go8nNOoNLEcxGfSphhXqzTbz8/OcPHGGODHAy3FsECW2oxgMhrieRxTFJsfVstjb3sK1FZbtMXjlTSq7fT5/Eu5/4j7+j//zL3jo0ZO89eY1Kq3TFAIG44K53hHKYshovMbG5i5nz59HeRkHe7uIVNFePIKyJUlaIJWNcabNybMc23aZjBMmk5hGvUWmHaTycaRguL9HKhTCUqSZ0fV+8uc+ie8IvNCjphwe3hkSC0Ht/nt44oknyLKM+fk544IrJAeHh5w6c4IkiRFSsXpzg3/3uc9z+vRJ5uZ60yiOjLIESkkcRwSBh5Tmd5qmxkxFKQuEodclSWxMhjAdVgQGUAmB0cjekmNAluXT600yGg3xgwppGlOWBQgxjY9RIOBwMMKvGofkUsdT/ZqRORwc7uO6HnmRoXV5u0OsbJeNjW2+8+3vcvLkMUNfx6Ia+swvzqEcC0tCs16lKEsTe1FCvd4gzRIOd7YYjyK2dw9pdxcQXsVQqC2H/mHfsAWEMXVBwP7eDkEQoJFYlqBEYkmbOI4pi5RoPMT2QqQwDsTWNHO1KI3mf2drC8+xSaIJtuORJAmObVPqEl1CUWTYrkNWlownMbvbe4xGE1ZWVqhUQjY3N5mdneezn/1TFhZnqVYraF0QRSOaW4ds/fav0fzfP0f6r/4r/KtrpmuOZhLFOI6HlDZfe/ppzp86jeP6BGGFNE9JogjfdUDD7u4+gR9SaEG10sDxbZwrN1H9MfuuIoonLB1fotQFtmMjLcWFC29y+tQJAt+jVquaWCVpMjdd12gUtTZmVtUgMN1Tae7Hjm2jy5KyFFTC2lRzr+l0GzSbTXZ396jVG0jLQl1ehiRF/xe/jrV7BT3apTa3xNbmHkGlYu6LhWZ7Y4PO/Oxth9b3qg/TAZICLK15+o0nqcz4NL9yHvsXK/hlw4BknaLKmMmkoFLxCCvGCGlzfZsHH3kAy9KIUnNweIgfuHz/O9/j7LnTVGotHMclzVLm5x+k2uhRqc1SqSxx4cI6m9sjhF2l1Z3lwsWL+EFAUK0QpyPyPGEwGCKFoshKqo0Wnl8DStbXV9na2qPb7bGzu8mxY8fI85LFo/NoSsbjmFq1Tl6mzHRncSzFcNBnZWWVTrvL4uIsgR+wcuM6c/OzSKXY292nWqvRmWlxOBxwYmkByxacve8ejh2bA6F57LHHGI4mLK9scLBvcXN1D9tpMBwKfvjiDVZWxlx66wadXsDcfMs4lKMoS41S1lSmZOYp3U6FILAQFBRlQV5ASY7jtvj2t1/i2LHjCG3ieoqiMKwny6j2XcehyA293+QnZyRJSqlLHNslnS64KaFI4hTPD5HKpdQOWjts7I6Is5SHH3mIShiws71NU3epbDd55e98jfOP3sMTjz/BV//qT5ibAVFqKrVTPPx3PkWjUQMhEMcK5D05hLcM3u4Ape8BXD9IvX9H9X338GNs++Hrxz/fj+tWfQxcf0r1/xfgejdzoh+n3gu4mvfx4Uyl/vY+Tf2kgGtRpggUcZzzh3/4hzzyyIMfCbi+4z3ytzu2h4dD/sf//r/j0YceYO7rLyIGE/TJozi2QxTFLF+/DnlGUK2TT28oq6srnD51mtFoxNWr1zl99gwayAtBs93ljVdfZ25ujlq9ymF/j6IwuiXP83jrrSumeysUTz31FO1GA1GW7O3uUKlUsZXP66+/jhCCRqNKniesrq7TbDZNhIujcFwLz3XY3drnG9/6Fo1anW9945v0Oh0q9TqXLl1iNBrjuR5S28g8II0gTRNs20ZZioODPTzXw3Fd40I61eE4jkMcx/T7fZQy8ST9Q9PVlFJQqQZkecLG5ga+56O14KUXX2X5xhr3PnA/nqfQOoUyZW11mVajTbPVYvHYUQ4HfTzPJU0HrN3cZK53hOPHl7CsEj+o8eKLLxKEAfVGk0ary8bGNmmSYduKe+87j+t52LYCbRYckjTDner0xupJ8G4QlxewwlUi/QZOZZ1YX6ISthgeGtdLN9hmWH6D0rmGCJZxa+sMkleQ/g1U5SbJYJH9/QOOHDlOLL5NLF8lk5fxalvk1hWEfw0VrhAnh3Qa9xijm7LPTvIF3No6mfUWeNeQwQravY7wrrOzoWk15wiDKoP0eVL1PLXOLpm8SGa9QbWzjxVscDB5k3rlXmxR58byZWqLPyC3LpFwkVxeRrrLlOoKONeRwkMXVSxd4tf2mYhnCIIVyk/53Ltk4S5/lU8f2cdb+w4PzSQsWZf49OmCv3/0gNbohwTxTdy9S5yppBQ3X6Nce4OkP8GpPsLm+CZVMSH9zv9Kce0bFNe+Tnn9afKrT1Nefxp94+tE/hJvXtvnc3/xV3yivkr+8v9FfuWrqK3vsf/y52lHr9JJXkONr2J176fWqOEJaNpPMqkvI4LrBOEyjeYGWfYqef46QvosHX8QZUt0eZ00fQrHuU63/fM8/PCDKDUFX2VOnGjeeP0iOztb9Ho9pPTQ5EbjKuUUHA2Rlomk0FqbbESpEFKDIWpPc1y5vShlSXU7FqMShiCEyWzUJUJIysKAtf54QrM3T4mkTCbsHW7QbHRBe2gt8Hzr9oKQbSnyrCBLjTa7GtY5d/YcYGjfRSkQRLiei60USRQxPDwky2MCv4nrVpkkMV7oMJzAjdVNDvcHnFg6jtI5mfIRSFzHwfilGoBqJAXcNqCyLInWEmk5OMrGtS2SaIzjV4ijlDTNjHOqrUwmMYLnfvAD5ntdAt9BKuPQLC3jAp0XJQJQjmuid7Sk255BKUWvN4O0YDQeMR5NaLc7nDt3GgTYjk2jVkNdXeWlx07TenOZ3fGYlm3OP05TXM8nzQuq1QZnzpznYHsboRTVZgNbWYSuhy4KDg/6zM7OI5XCcwOG4xGTaIx/OKEoSl5YX2Ph6MKUkZKSZhlKOZw+fYbJuI9jWyjHphQwSWJsx2STxnGE75pus0QyHkeMxmMGgyG+7yOlxe6OWZzY2NggrHjkRWzyrlH4foClJPLiNYgTkn/2K9iXvgIHqyTd86ytbtOb6+H7HkoIqmsdRmsptRPhj2UQeWcpLZC64I3XX+KTv/EITktQfD7A/k0Ioh7K9RiNhqhSEid9qs2ANCnpH0ywHEmrWUMXBZcvXebsuRNk2YhXX7nE8eMn6c2HuI6PU6lTypgoGzOeZBz0+5w+d4wCyTga02y0iSYpve48UviUOdjKwnfNvaJSa3HxwltYUtNs1jh58hyjUQSywHFtLl++ih8Yqr25Hzh5r/QYAAAgAElEQVQM+vuAoNacQ3k2G9sHdHrzSEexud3Hsyb4foXBMKI32+PgcA/fr9JoNgkDB8sCt1JDJz6rq2tUKi7nz5/h4LDPJE6wXUleplxfvQnK4eTJOQ77fXynQzyWbKyv4loVsqycMis0eV4aY6pSoIucOI4JKj7CAsjIixqXL29x/OhRlDIO5VKa3Og0iXFcm7woieIYx3EQQFGW+H6A53okSUqeG1s1oQ3tv9qoMJ4kXHhzmeXlXQ4GOY898TNsrG8zN7eIOwrxl+s8d/4pzv/CKT77J5/lD/7gD7DLbaQ+ZKF3lqB2mp//pb+LkmbMEhUgKI2GlbtQgz8Grj/1Y/6HWh8D159y3Um5ebfX3K0+KJf+Th3r23NK322/73XcdzvHt78X8++pQdHbxO0fZtB5+z7vfK+3gKv81b/3oWgkd+7LtkLSJMP3XU6dOsXG+hatVuMdr7+137e/D0MHBomkLPU7HqNMKdDkQuD9v+y9Z4xl6Znf93vDiTfHytVV1d3VaTpMZN5lWmm9QdxdS/IuDBiCDAmGbQkCjIUh7ycbkNewtLC/2ZJX1hd7zV1yhsvMYZgZksMhJ4fu6Z7OXV3VlW/dfO/Jxx/O7eZwdoYzJEXagOYBLtDVJ7236pzzvv/n+T//v5lDJYpv/tW/5sGz53jw5IMY/+J/Izp3jNjJeknDwOfOnQ0WllZQ0iSNY3q9DocW53n5pZcQQjAeR1QrNQ5aLRxLQhKwsLTEyBsRRRHeyKff66OlxDJtcvkchUKefMFla6uFYRq0DlpUajVur22wf7DPBz/0YRzHoVDIc9DZZXpmioSYbq9LtVafiMpITEdz7NgpZucWqdSqlOslpNQ0ajUcy8Y0HERcgNTGMgRxMCIKY55/8SLPPPM8J0/dh5ATKwzDIIqGBMEIgebRz32VwytH0DJhZ2uXcrnE0GtjaIWhLYTURL6HPx6Rc3PU63VmphukSVZlbHcG9PoetZk6GSsx5rHPP8a5+x8g8kdIYRNGEcWKS6VWRyhBmiR85ctf4dSpk4z7PZRIub2xzg9+8CPOnDlNp7tPrqCRVhFlKCzLQIqUwbBPat26Z38CIJTK+k5tG5nOoGQT2ymSyDap2s/uEamJopCD1gG2bWPaFkZyjFy+hGFY6PwWpplg29a9fqMMGCQkgYOZTuGNDrByArtwkNkd6B8LWWid2TLoZJnQNyBJCdNNLMfD88bESYTWRvYsKok3FqTBAk7eIueaRPoacpKJT5PM4kRA1k+azqBCG9PKk9AmHF1HeiHhkRmUiJF+B2kXSaWFmv8goT3D3lBR1kNIAtqBSalaZzQeYhqK0A9p+YqTv/Yb9Ia79DfXcPp3SKVPnBiIRKB1Vq2UUmIc+hiRVMzN1GioHdL+HYTKRM/GwzHXr93ANk0SZZHMfJB8qUzVtHHWv8uABNO1J5V9JrZMPoZaxLSnM+CVHBDHG2T93h8mJkIoiTRMUmkwHvh8+ctfZHllmVK5jGGKTGhJkPlAAobhTJR6BWnkIUVKnAgQKUkcIaXA8zy0yvrLJDGSBCkELz3/Mteu3GJ+6VAGApVCJDHd1g6ff/SrXL18hWatijce0phqYDpl/CDAMCSj4QCZZtXVKApR2kBqgzjJ3vdSR2gLLLOIECZaT75XGhOFPiIV3Ly5QbO5OOlBz4S8ojil4NpUygVWV1eyvtc4QcgUJTSIFKGg3/dRUqEn15XSII5TPO9ufzQkKURJirbzRFHC+u07fPVrj/PQg48QhQm2bWMoTaPRxHbzKMvJWC933+FJghJgWG7mrao03W4HbRrs7+1Sq9XwvIAwjCmVSiwsLKCVot8b4bpZQs66tcmlk9PMrCxT/Ow3iP77/5LeUz8ijDPGDUlEEkUoBPWpKkkaYZmKJE3YPdhDY/Hq+QssHT7M3t4eMk3Z2NjlO995ko8cPooSgsaJFdo7+1TrDeIYvvKVrzM9M02hmGM48CgUCwgpGQ994iA7f7/bxnVcwiDi9todDEthOzbFYp4wDBmNhlhmLutpz5kYBkiZEkuNadsYZuYtPOwNSd+4iY4T/qo44kQhRAmNOfsx3JomDHqk4RDSBPn1GuKmovxrBsFEUEshSN9lWr43X4ocUZCiVdZuIYhIEp9I2CipufLMKzz4wQ8zWIxRgSR52kTWBaZbIjKKzByaJ5Um3nCIJXz84SYqHnKwcxvHTlm7dZFa2aVelBxaKCMY4o08TMvm2tWLjAc9eu0OhiHJFavstoY0Kg0KpTylcpndO/tsr++ibEG70yJTyE3I5/IgDQQBkT/AdVwsy+TK1QssLy1x49oNyuUSEoVhOZQrJYLIo9NtU6vXiJOQ0TAiiVMqlRzj4ZgkErj5PLblZvcFknKpCigunn+VqakpxkHEzs4O1WqR8XjEwuIhUgSlcoliucR9951maeko5VKZkydWmZ6pMTU9T5zavHL+Flv7EaVqjR8+ewUhHRyngFLg2JpYRJmafJwleFI5JvVlxqCxEkplBYyJg8yvWsmsUBFHCaaZ58rlTcrlMjFDTCOHn3hZL60PaaKwrRy3d9oUSyah3yOODV6/tsMoNdGmxbkzD1Ar10m9hPr2LK8tP0Xxg2X++otfIQk8PvGRB/G6F9ltp9RW7ucf/tN/gmnZxEpOfHYFTHRP7q5R30znfaeizVv3ebv1308Dge89fvlg8d3Ge3e9+rO6iPyHHu8D119B/LwiRT8P1//tfv55z/vzxC9y3rcDruozn3zP53w7ZWHP87Bti/WN2zhu1kOZiRS9xzHxN79TEoekQiKlIh77vPbiy+xt3eb4idOUvvEsXF0jOnsCSNBaEkUJdzbu0Do4II4TvvDYo3S6baanp5idnePSpUssLC7w8isv0u0e0Gw2KJYKIBT5vIuhM09Ax7EwTZu9vT0ALNshTlJq9TqLh+bodA6Iopg7d+6wvrHO/fffz87ODs899zzLy8vkXIfBYMBUswmpII4i0jTBkILxeECn22Jmbp5Oe0i54nJwsIdlKRJClCHQGPR7HXI5F6VtFpePcOLYMfKFHPv7O7iOi5SSIIywbQclNSdPniFfcLh9+waNZjPrg9UglUG7NaBUyuPaNo7t8Bef/UvO3P8gWsH6xm0K+TxxlGTiQqaCNCXwfBYWFiiUigT+iK9/7dtcuXKFhcV5XnnlNWwzE9c5ceI4WhmUSuWJBRBYpkOpVEIpwe7uLoa2SKKQ7a0tLMME0cXRR8ipRxDBUeLRMmZ6nGSwAv4KSlaAlJs3r+GaU1jiJH5/nt5uHUfeR819AJ0cRYYr+IGP1ppur0feWgX/KDpeZnfdZbr8EWx1EhUtodPpiV/lAMssY6SruPokOlllb6NANf8QB9sVcvo0vc6Yer3BF7/4FeKgxlzj10iDZUrOOXR8DBWtIoIj5MxjuK5Lp91BihgjPY4tTmEmq1jJMV5/xcdODlPKP4IUNUQSglToKIfxuQ0K/9k/xfrdf4RVOUR/4xL60McQtVVUro6TK/PSKxeYmaoTRCml3/s/YPlv4dU/QO7wx8kf+zTNE79OdxAxPbeKU6wQTR0jnf4k4dRZpj7wh4jlj2Ec/TSD+odwy7P0+wMOHTqEap5CHf4U4+YHKN73d0lmP8GNYInpB/4eonmO9sGI1y+8QUGazD0TkC79BqXSQ4xHS3zvu3tUyh9GcIJicRGh1MSHtUEQvDZhKpxDSkUSpwipkEgMQ+HmHFaWVzBME4FGKkVKghB3lckFCQG+N2A87jMc9XHyLplPb0iSpPesLISAG1cvTfyZQ1rtLnY+T7OeUT6V1PiBTy7n0pyaY3pmmkZzir29FlpbWX91HBNHEflCDgQkaZbAUPfGldlqQVZ9FSgMU5IkYwRmRmNOMwD+hS98icNHVlBKYtkWqUhRUhKFEf3+AMd1SdIkowGnil5ngOOYpGnIoD/CzblEUTTpQU0zuw8yUbc0zYomKSDFROBqOOThhx/GMBSGqUBAGmeeydrIhGXSSWtAmiQMB8Ns+SizfuL9/V3q9TpxHGWAdtIvPxwOMvpyGjMajxmNxjiOw2gwJL+xg/VHv0+rYFN58kV2vD5Ny8E0LWzLwrQslFaYEzEuJTVhlIlIVSpV3rh4kVRI6s0mn/vco3S7Aw6vLDA3N03Zi1BKMSrlcHJZP3uSpGzvbHP46GFcxyHn5iZJjIy6v7W5zde//jjnzp6DNEWSqcLeTVwlSYLv+SRJyl5rj0azAWQJMKk0hrKzREKasr+zwwsvvMD8IEDHCcf+1T9HbLyKlJJRdRWpDXKOQ697gB8E6PNFut025U8q4kkiWaJIxXtLno8HMY994TFAUKtVEUikzCy5UhJ++J3v4EVjpg7Nog8J4sdcjL/nkW4qXDeHEprNrT2OHT9LuT6Dk68x07SpVPN0u7tMNfMMettIERD4PWQ6RjOmvbvGwtwijiEJRkOIU9ZurWNIjaVj7tzZYmuzxaHlFUb+iO2dPeZm5zlotYmimNdfv8T0/CzVShGpBd3+gEKpQr1UJ/Aidrf3OLJyFCEUr7/2BguzC2xubBIHKZ1Wn8Z0GddxUEoQR2OiOMAbj9k7aNGYysTCEiLcvMPu/iYLiwskieSgNabfi6hUi5RKFZAapbLkULVcwrJsvvWtb3L6zBnK1SpBGFEu19FGjqWVFU6fO0O3O8K083R7AecvXKPVHmA5VfYOerg5ByklppnZiCEiEAn5goMUGksXsJzsnRGEIUkKhmEThD7z87OkhORyDmGQcPVSm0qlgdIJhhkzCoY4Vgl/PEAKxXBssLnrkwqXDzzyEAsLi7z0wxc55p3hevk8L1g/5MH7P8Sl185z+/oL3Ln5I5zUw7CL/O3f/gPK9Wks10FMAGryXRPWNGr5HRR/3wW4vnX/f/9r1l8NcH0v8T5w/dnifeD6K4j3UnX9acf+tLh73jcr+76T8NHdeOs+bz7+3aq0P03E4d2oEO/0ebtjky89kS0cP/OptzvlO477rWPKaG0JxWKmFmnb1k9k+t5pvPf+fXc8b/LWlUIQhCFREBCPRrTu3OboyVOIWFH+0z9ndPY4QwnakBNxF838wgLtdpfLb1ymWinzgQ8+QqvVon3QZmZmFs8fY5qaU6dOYlom3W4HqTWddpuUhBs3rrO4uMDt2xssHlrCsm2+8Ndf5NSp+wjCMaPRgNOn78O2bWqVOh/+aNb3VyyWaTab1GsN9ve2Mo+5BNrtNr7nY9sO3nBAuZojJabT6bOzc0DezVEpV/DGY/KFIgfj25hWQntnRKFUwY9ibMfGMg1G4wHFYgHP97LsqnYJohBSkEJx4fyrHFrJ/Cxfv3iJeqNOGMS4boHxqEfgB0hlYNoOR4+vYlkmQgo63R43b96i1x9Rr1XY39ulUa9QyOdIgc2tbe47dT8PPfQQvj9iaWmJNE147NHHOHv2LBcvXiJOUm6t3WZlZYlvfes7rK2tcf/95ygU8uRsmziOae8fcNA6IMo9jV1o43Xm2N9vUa3W2NnZo9sd8uqrr1Gv1bAsg2LRxbZdAt/HMExsy2Ew6DMaZYt+P/AIgoB8Pj/xog2wLBvDgGIhT5ykjAZjtrc2IVXYtotbyGiDQRAQRzGWbVPI5+/dj0kcU6lUWN/Y4PiJEzSnplBaYRgGUZQwHPTZ29+nXCoRRzEHB21qtRqmISb2Qha+F/PUE9/nwx/9IFqC6eSI44TxsI/QAvWj84ijh0j+2T8gCQKGX/9jnEINVT6EVCZ+GKPThEI+R2t/j2qyyfDSlwl3LnPn9WeoHvst+uOYdi+m0lyi21MUKi4XX3ucpdpZVHSDAYJ2p02xWMV2cgBUSnX6gz62beM4DoZh4fs+YeBBGqOl5NqV63z7209zeOUo1145z8qdXdKFefLFHJblcOL4CXI5F8OQWJbB5z7/1/zo2Wc5c+YsYXgeAMM8B2QJpwzcpUiZZHRUqfjuU0/zxqUrHD6yPPFwzYBpRmdNaR90cJw8xWIVqUwgyXq7U4mSiiSNGXtD5qebSGWhTYfG9DSNqQbheECSgBeEk2oz1OtVbNtCawPHyeE6mf2RlJkQ1HA0YOyNsKxsMRgEEUHg4zgGEkkcZ8+YadiMvT4pPnEkAEXgx+y3Ovz6xz9Br7tPaeKJLaVAKo3WJoViESkFSitGoxHPPP0DfvjMM1TKeSCgXCoTp5CmMULC9vYOve6Ay1euMDc3OwH1mUVQEsf4/pBGs5GJAYoEIVK0UigBtpMtpk3TQE1smJRUE7qsxDQMpBCYhjH5aCxTMxqPyOdzlMol8nkXx7HpdLq88MLzuDmH6WYTfX2dg099lChN0STULtzgiY8tk7+0ThRFGXtCCAzbJInAcXOAoNvpI4ViZrbJ/KFFoiRhZfkIq0eOQTqgWiljtoeYpkkyU8ct5EmihMuXr/DQww9hO3bm8UuSWeJozXgcsLfX4iMf/iivvvwa33vq+4zHIwxDYzkOlm1jmlmCQmlNpV7LGABKZwrBqcTVNuu3b3PQ2qNYLLC8vIS500YFEXd+4xGKg1uEcYS1+jCWcJE6zdgTSmNdyjyx3Y8moDWQiY+92xr97ryplcXJkycplcp8+1tPsriwhKEdpI7wwhGuFFy/fpXDx49gujmSNzSpmZB6kwsoQX1qilRpYqlxSlUMe55YlIlFgfnFk5hOjUK1iVOoo0yLTqeDY1uk0QGGCkkSn1LJIQn7OGaIbQhuXrtOo97AsqDWyHHx1de4+sYFWrubLM42OdjfZnFhgZdffC5jMHgeuXyRWxvX2dnfYvnoIUbhiM6wy+zsDJevX2Lp8DzKUPhhxLVb6zhODcMsst/u0JyexXGLDPojrly5xlRzGjWhvFpmAdt2iAKf4XjIzHwmtPj008+QzxXQ2uTFF19Gpgn1Wo3V48dQ2iBOBaaRR0iLXn+AHwYIJTh8/CgrR4+xfOQ4S4eP05hZ5Mb6Hhde32V6dpEnn3yRlCJXru4zGCY4rkWSepCGGUhOEjzfJ4qyOTUMU8beGMuRIBJ8L2E4CtGqwPrt6+TzctKS5DAejTO/1xhev3yHvc6YWrPJ4aVDWGOHw+OT3KxeYufsTb751JM89tm/4L7D05xZLdM/uMx4EPOp3/w9Tp37EJWZWdB3mXiC+OsW6Z5EPhy+LTBNJl7RP2vh5afdvz/jUT/zdd4cP61S+k7r3Lfb7+7a8n3w+t7jfeD6K4pfFnB98z5vBW3vdPybQdhbz/Ner/fL5uSnr7yBKBWQH3/kvR/ztr/jzJP1Jz9/M9P3jirHbzl3kiSkyYQimCY8/a1v09raZOHYKRrffJ7k8nUe39tCG4patT6x08j6wkxT0+326fe6zC/MUSzkyefy3Lh+g9Nnz1Cr1wnCCDeXI0lS8vkCAFEYMj+/gGmYhFGSiSgh2N9vMTs3h+M4aCXJ5bN+qNFogGHpewbpYRRg2yak2dgr5QoAtWqN0XBIlEaEUUSapNiGZn62gZMrYBqawAswLBujsU+s+xjRNKad9eyZSpKm4PsZXdV1c/zg6R9waPko2pCsr69x0Ory+oULLC0vkHNL1KoNDEMRxRm9dXNrE28cYGgD2zaxbIVIFa7rsru7yze/9R0q5So516ZSLjIe9Wm1WmjDpFavIDGI4gDblpAkmb1HEnHixHHG3phOr8eDDzyAYUCj3uSRDzyM7ZikaUSn08EwTPKFIpaTwyhsIIXkhWdaLC8vobTCcVx8P+T8hdfQhkIpSbGQR8hsm+f5+J5Po9Fg/fZtpqdnUFqRyxcmar7uZHKCTucgs8Mgo3Plcg6FQok4Sen02qRJimGaBEGAoTVxnGT9Ta6LaZh0u12KxSK5nEuaJrRa+5MqgcIyMyVY27ZpH7SpVCoMBkMMLUnIDOb9cYBAUqwUsE2DKDMAxFQgt1qIFy/j/dk/QXVeYvCl/wpVnkcvPExrf4/CRABmNA4wTQthFqB6gjtr16jGt2moPXZvvMx6NM/i0hEM18Ut2ERJTLFQpLW3jiklsVXBdSuYZp6x5xNGHpZRyKykSImiiDiO0FpRLLhEoUe/00NJm//uT/6E69evMdjZ4betIr6S6EqRXq+Pm8tNRJE8bMfEzRfY3t7kvvvuIwxfA8B27kdISNIYKVOy2h+MRx6maTEzPcvu7i6LhxZQWtHrdrCdTBRLSIVjuyih0cokFRIhUkajMb4XEsURQkQgYvoDj9EoIghTTDOzITK0BjRra+vkXBNB5istSAlDD9ex8P0RWkt8PxuPkArHzd/riw39mMtvXKXeqGUOhAIEkh898yJPPPEdVlYWszFKjdQmj33hMY6urlIp57AsC6klQRBktGbTJk6SrCKapkRxSMExEKScOX2MQe8g+662i5SCKAoJw4ipqVlmZqYnAkN3PREFSqkMFAuFEGrymwXPC+h1+hNrLROhsm3xBLhGYYg3HuNP+uY9L7MSMgxNmgg21u8Q+AG3b2+QJEzaNmA47LMwP49IwVrbZPuj93Nw0MJcXabwv3+O6n/yGXJbezhujjSFVmsfxzIQE2ViQ2uuXb3K9tYWrmOjJlUiy9QkcYTtOkht4vbGhFHEgSnY3d2mWqlz6NASWutJJVpm/b9KZ5VnNJcuXmZmocH07CwnT53CDwKKpQLlcoUoihgMsuqxaVqkcab0SpLijcaMhgPSJMFxbSzbBClx8wVkIQ97B7j/+A8RW68hpEStfJjIG+D7Y6I4QRsO8tU8Eknx11zie/NZ8hP9hG8X99YQgFJgGArbNonCmGKxSOCNkaZJ2B2ysXGH+86eBWWRdgXphka4k7lUZPeUuDvTipRYBkQEFKt5MAR+GpEvLpMIm0SYlKtNhHaJUg/TyWO6eZI0oVy0MXUEUlGr5nG0Txr1CL0DckbCsaMzTNUsiHtM1WwOdtYpWBH+cBd/1KW9t8Wt65tsrm9yZGmVjbVtXLtEOIpYu36L6WaTQddn0A4wTA+Rpgy6HbQMqFVctIzxBz1WlhbY390i8j0qxQJRAj/6wfdIk5BCwaFWL7G3s0ujXsWxLQaDHs1mnYuXr9GcnmI4GnLQbtHaa9Go1xmPRlTrVQTgOC65gqR1sM/VK9dYXFxAm4pms8GxE+eYmZ3nzuYB2ijRHnisrbeZX1igWikRJzFCSZI4nSj5K5Q02N/vIoQNIkBIBYmN1g5KpTSaZRAJcaxA5PnBs69RqNTpjRJMp87M3BKD8YDmeJb6YJbt09fZPnqLo8ePMBoM0fEOt6/+gEFnF38scBuH+I3P/CG1ucNo2waZvasAkucNANTD0dsC17uaAG+NX8Ry5meLX/z8vyhl+e73/EV0bv5DjPeB668o/v8EXO+O5+0yXT8LcP1FfFrfLeTHH+G9gNY3A8+3/d4iBpH+5IcfS7PfrT6/+ffxdsD17jWSJCEJo8wHNU35f/7dv+M3P/lJ1FiQ/5/+NeFDZ1k5c4ZGo0YcSba3tikUCwSBxzPPfI9bNzcYj4Y0mnW63Q7TU9PMzMxy0O0QBCHNqSkuXrzIzOw8SZLSah3wta98nYWFRQzDpFKpcPHSGzSbUyweWmQwGFAsFPG8MWkas7Z2k6WlQwRhiO9noMeyDHr9AwydTSRra2s88cSTrBw+jOM4pDKmlK+ihcn25m0kY1IFhiHY3dtiOBpgVXwQgv6eDVLx/LPPodKIQrmEZRkMBn0s02ZhYYEIQRz7VCsVLMOhc9Bl+egyQpgEYYzUWT+dYRpUqg1KhTKDfo9CwcUPBqRSo7SiVmuwtHSYZnMGQwuKORfTUhSLBdqdHqZjZoqhCqJolPVvpjFLS4sMx0OaU9PUajWUqTEMQbFYJk0TgsBD6WyxbdsOQipyhSKxvgJpipmu0pyqIQT0en1KlTLnzp2lXqtSq1TptrskpJOFgiKOEwxDM+gPqFSqjD0frQ1y+SI7O3vkcjnSRJJzM2GMq1dv8N0nnmJ2fgYvCCkUSigtiONosqA1CfxM5GbsefcE1vK5DDwqEpI4QgDt1kGm1GwahEFIp9PF8z2GgyHf+973WF09hmFpBILhYMTezh7zi7OZhYnK+mLDgwP41g+J/9lJ/LX/k+jW9zAOfwpRPQxpQjAeZoJcWvGd7z7D0SOrhL6Padq0A5vHX1jjvtNnKfZfozl+hbB3G3PpY4R0CWLIWbNsbH6f6eYpcpVZhsMIqSycnE1/cEDoK/78z/8thUKWsFlfX6dWqzIe96iUC7z4/IsYyuUP/+jv8zu/89uUtOKhvT5hr0c42yCfzxOGEUKAaWY9mvlCmVOnTiAkmWCTEBjWaSBBCuh22limgRAGhpEleFJSZmZmMhubNMGxrYmtiCIVAUqBFClSQRh7mSxTKnn99YtUq1WUAYYp0UaBTmfIeORRLuUhDUiEIk4kj37+8zimYrpRIgpCtBKYWtHt7GMaIqOzpgl+kLEQQKF0ynAwJoklzz33IrOzs2gVZwkqw6HZmKNUKtNs1rEsk/HYx7QcTp46idQSx8royaQCbRiYZpYA09rIRJF0BsJdK6VarTD2+jiOiePkSYRGa4Xv+xQLZSADrFJmlZVs3Zn5KJtGBgzTNAOYaZJy48YtHv3c5zl27ATFYpakgeTe/DEejbi1toZtmVimiRAwHo8YjUdoZfLiiy9RqVRpNJoUi0W63T6G1hxaWqA/6LOztctMd8Twdz6MkJKZpWX01TWMcYQ2UpIE+t0e5VIJSYLQBlGUAddCLsfM9DSW1vds49I0JhgNsXIFpDKxO326nS7mwjSubfLMD59jfn4BoSTP/PAHWd+khCtXr9CoNwijBNctUKq72K6LNixq9RrFcokwjIiS+B7NOSHFH8X81V9+jmajxmDQp1BwCUOPKAkpVcoYtk0Ug7ffQW3v0vpbHyC+8ypJKkjmH2HU3cnopNrk0Ue/yrHRWbTUpGeTTOFYxAgSeBfRxHtzXppRUZM4olwu0+kcoLXkYL9DrlLGSRVPf/8HfODDHyhw0/IAACAASURBVCWREoyU+Js2xn/hkV5VCAwEKqMYTxSlZSoxpJFRoBMDgYMWCq0yD+JBr42QEitXxXCqWE4F34swtcAyJflKDckQU/SRyQhTxDhWiGNEGGJMMQ9KjDHlENfyMMQQ04gwjIB6wePocpHY3+X2zVco5xKC4W2W5m2K+TFef4PYbzHu38YixJIehPukwS6j7h2C0GP99mUW55vs7Wxw8cJLHF5dxBv3KBeKbGzsMOwHmDphe2uTqWadzTsbTDXrVOrzFIv5ibJ0zHSjiZKCg3aLra1NlJQ0m9NIGbO7tUfOLZLEKXt7e8zPzpKvZn3kg0HEgx/4IPXZCleuXKNWqXLp4hXGo4ixl5AkmY9zr9cnDBPiCAb9BLdgTO7/iIN2ByWyxLnrFgijBGVobm6kJFhceuMWGxttPrj6Cc4WH8CIDb6a/79p/nqNazevIVTKTLnCwnRIoxqzs3lAuXiC3/kH/4jDJx/EKFRApEgRMVGR+rmB67tVKd8ufj5bmV8+cH23tfjdqu07MSbfj7eP94Hrryjey81492G9WxH9WUHrT9v+dtd5p/9/JwD8dpmhnzVDlCTJr+TB/PE41WQizT5pkvkwQjqRnp8I5WSMrwm9VWQ+hm/xwrv7/ZPYxzM0YhBjjhXFM8dp/Om/Aa0Ij8zh+QNMU3Nn8w5f/sqXmZudw3WyRdLsdJMjh1cACMKYMIpxCwW0kSLTmNbuHtV6g+F4xNrNNRbnF8nlc6ysHiXRAtKEaq3GlctXefmVlzl58hhxNKKQcwlGGfVXGxqhDKRUWcY7ClBC0e3t02hMIaTLfmvAytGjGLaDSCKQFtIMsRwFaRHHCNhev0UpX6BQapDmBwip6O6YVMslRBIT+gHFah3P62dUWKnpdndwHYedzS38sY9l29SbDVy3wKDfJ59ziYKEne0WprZRRMRpRKFYJIwS8rkqWiqSaIgSMVcuXGLt+hrtTpdGs8r2zj6F4hS7u3sYpoM/8li7fgulbCr1KbRUjEY++UKJfn+EMiyiKKLbHmCZNuPRkDQNEKTkCyWCUZcoGOD7fZS7DkDJegDDsCBNabW2qJeL7O3dQRswGvskiUH3IKN9TzWnuH7tKkpKqo0G6xvrXL18BcfOcfPmbb7xjW9x7vQxup0229vb2JZFGI556AMfJIqhUsn6ZqXQE7GqTFzK0AZpLLBsa+IDqfH9gCDI7ELG4zG5Qo5CsYjt5NjZ2WFqpok2BPlcDtMw2Nneptkokyu69EYDLNtm/tAig8GYy5cvknc1poqJ9h4n+MQusbGPrB1BLjyCla8QxzaGkvj+AMc2GI7HlAtFKpUyQgieff4F7rvvFIdWj2BXZ5G1VXp7G7gHL9K68DjxwSbm/CcwxZAiIw42niHVVbRtIw2BTCNkGNAdtTk42OfQ4hEWFxeoVitYtkLrHFFksrCyQnW6jKsi4jBksH3A0ds7eAJG9QJamezttSmWSqQyIZExUkgmxjUE4fmsmmacJgpDACzbnjRoZr2gL77wCt/93lM8/PADTFxqMpuNOFMIzmiCMqNkykyEKQgjDEMzOzeDZZkobUGqiVLJ6+ev8I3Hv87qyhzlokWcQhwFnD5zH42pBnYujzIKJGnM3t4O9XoD0y4QKwulNJaWeOMBaRqjjEkyIxyxsrxAuVxEJAlxFOPkXKSZUmlWQGukUBiWJk1DtBYIYlKV2TtlVdKsR1OrjI5MCkJIlDQzOqOQVKpNwhBy+Tzd9j67O20ajQUSEqRMUSKD+UkcEkU+hpborJ2VOM58KQUBRprDzrssLCzSnG4Sk4GifrdFmiZYloXSBo3mDFlxUTMY+vxff/FZzj3wEIZpsryyRLFcxHIzH2K34LK7s0WhUMAwDCqlAs7aNq+sTvP9p37E9tod5mfrJJ//Ogd5B8MwKZZKIDXt7gAlMn/UVIDp2EhDE8cSz8/8Ybu9HtV6HUXMaDBg3/ehVuHO7hZSqYlHs4uSitnpWbqdPqNBn/mFRTq9DpZlUCrZxGFmw5PEKRLotbtoEsZ+Srfd4erl8zRnpom1YDjsU682sO08caIplBz29vfJ5fKMhkPSJGa0tU2h5/FHX36U//hDy2ilMOfux8qXQJgMhx7/8l/+z/z+8t9HKclzvc+ydGyVGAczznxYf1r8GEzcFdURJCR0e12a001uXbyB1x0htEl35LF67CSpihFuSvItC3k2JN2U/ATDKXu8Mv/QNLNrEVKASElNhRcGuI7DqN/DtS2EqJLLFxn0WpCOCCOfKE0JgwjTdpFOGbtQR9klDMskERKUQigDy8mhlCJKAKkxDI2WKZYBSsQoETLTLOKYMa4jUDIkDsZoFVIuKSoliWPFmGaASMZIEaJUiMmYnJUQjfapOgHNIgwGmxSdCFMMyJk+lhoQDrch7iKSEcN+By0t2u3b2FrRb/dZv7lB4AXs7G0RRDFzC4fIFYoMem28YcT67TvMzszQau0x1WxiGCZxmHL9ynU27qxx7MRRMBTHV49nYoCpyeXrW+y2AnrDCNsqkrddTC0QKkYbcO3qLkLmsWyNaUjW1kOMXMqNWz3euLpFolK2djw6B0M+fvS3ONN4iHJcpXtmn+fnvsLY1VQbS2yu76IRtLZeRQfr3HrjVYqlZc48/Nuc/fSvY0x64oVMEVL/mCr8fJZw1Y/EE3qI+InK/1tFRN8Ltfan3b8/+zF3h/NWRt7fZOi90zXfbgzvVNR5pzX3zzv+/5DjfeD6K4r3Atbeqer3XuIXpSy8236/6PnfvP8v6wF9txffPeCZxPeyWz+xnR8nDu5uvwu035xB0xKSKObFp3/ImTNnyD31HOYXnyD9zY+jrUxAaX//gNFozFRjGttysmpBp82tGzc4ceIEe/v7GJPqx9bWNjMzc7z26gXm5+ZQhqZQKFBvlBEipdfrZHYYhubG9avk3Bxaa155+SWWVxYZ+/5EwGQIUmLnciRxTK/Xw7ZtBFmvWfaiVgRByPETqyATlJqIhxguiGyR0Gn18SOPaqXKXmufWr2OKAwQQqC9CqZpYNo2jakp0hTiOKDb7WNZeWzLRsiMFmgYBt/4xjc4d+4sEOA6BkkSImWCFDGmKQmDhE6nh9KaQj7H2B8SeiG+P2I4HPLSK+c5duIUq8cOEydjcrk816+vMdWc4pVXXqFSrvD66xdpNBrkcnm2trYZex5Sap5/7gW+9/3vc3jlMLVaBdM0s+qxZU48aqHdblEqldCmjcdVkjTFUadJgTiNqdXqiCTAtlzOv3oF18nhuia5XJ4nn3yC6elprl+/xpkzZ7DtHJ43xvNG1Bs1pqan2G/tMtVsIoVmd2cXISXzc/NYtkU+n+PKlcv0+z3K5TJSaba3tyagNZ1Uk7Os9XA4RE7AxtbWNusbt5mbm8Wybbyxj2Goyd9Y4tg5trb2iRNBFPlU6lWUUmgp0VIiDU2xkMMfj8D/GnHJJ145R1I7gV2eYTQcI1JBFB0w6O1DKjHNInGcwzAVtm0TBhHtdoep5jShNyZn24BE5acZpnnc8S1k0EEFbUT9OHfWztPr7lIol7NqtXLY3u1SLs+SLxZp7XdZXlnGdU2EDEHEJElCGKR87q8epVqps3bjKoViicPT81RfvAiOTXciUpICBwctSpUiqUgJ/QBtaALfx7bPYZqnUcrIxij1vXtEa00cx0xNTXHf6dOEkY+UAq0MkiRhNBxNPIp/rNZ+902utb73rgmCgHDS54gULMzPc+zIEYpFm9GoT5QotNI4tkMYBiilkdIkCgIsM2MO3Lx1h1K5SOh7dLt9ur0BpWIVqQRRFGGaJp12B601jm0RxkkmCqUUaZoS+ME9ZeMoirLqvFIYwmQ8GKOVgUShhAEyIgz9iXhcSBSHDIeDCSMhxLJt0jRhNB5Sq0+TphIhYzLaqUZIQRj4GcAeDui2W4zGAYZpkKQB3e4+htbkisWJr7GNkBl11B9ldHNtGMRJnPUTK8V4nFEbTxw7RrVSAiLSJEaSUYYlaqIarYijGG0YjPpDilv7GP/p73LuzMNcu7HOf/0//g/8Q8+Cf/6PsdZ32N/fJ19wMU2D8WiMbVkk8SQpKQQSST6fAzKfZNdxuHbtMlpplGWRrxTJ51xKpQKFfIWcm+OrX/sqJ04cp1DI4TgmURxTKBYRqcDUNkHgcdDpY9sunXaXTrtDvVGn7wV896nv4g8H3Hf6DKSSw4dWGA+GfOGxL9DttalWKsxMz+KNfVw3j2laqKeexxyO+V/66xz5tT9g6SO/SxQHKENzNwn7+7//e+gLeaQQtOeuML+8SiIMFCGJ/Pnm95s3bzIzM8PG1m2m55o4lsHe9ib1ShGrkEMakviSQpiA//bniIUxqfjGhMGI0B+gohEGCVoput0+0rCQ0mNvdx1BgKkV3sjHNvOYTo40FSAU2nAJghRNiJISY3IPRXGEFALDtNDKwjQdlMqSMaaZAzRITZIKkB5SpSBiDFODiJHSwbJcpLIoFCsobWDZLlJCoVJGGSZSS0zHwlTgOCaGoXFcF6U1rh1TKhoYpkexGJMmexRMiaSP6yZ4YY+1jVs0qkukqaJYquG4LhdeP49WirnFBS68fp5Tp09hORZ+4DP2Ii5deoMHH3gI3w8QCK5dv8nLL71Et9/j5KnTOPkib9zYZGOzxa07eyQyz6VrW5TyJVKR48WXL9GcmmJ7p8ONtV0s1+LK1TtMzcyT01Xusz/Ep2b+I9w5i8cHX+Krxuc5/ukjeGOPkyfPcGdjjeefe4JXnn+SQ/WEa1eu0R8bLJ3+CGc++gkK1VI2t2j9pnVSdh/cBa7qkegnAOvbgdX/L+K9X/eXu4Z+8/b3wet7i/eB668o3itwfa+V1rfGvy/g+k7jfCug/nk5+W8Fgu8U4X/+JyRfeuJdxZneOsa7nzdTgN+8PVvM/U16MGT9YkJkFNIkSYjj+G/8PdI0JY5jNm/c5F/96b/gd+5/hPx/+2eEn/k0kWWgdLaIdlwXS1vkcjm++fg3OXniBBvrt6lWyzSadeI4Zm5+nm6vx9Vr10iilOWVlWxR6liMvSFaC7a3NigVc5nKaC5Ps1EjjiKCIOCRhx/CtgycQhHDMJAiEx4RyqDT2afRqAOS4XBELmczHo2Io5i93T1K5SLagL3WLuV8AS8Y4gcejm1RLhdw8iUSUhzHJQx9UrdHksTYSZMkTbO8upBoqfCDEaVimetX13jiye9y6r772N/fp9FoZibpAogTtje3sUyLbqdHPlfgYP+AZ599iSNHjqB1lokXEgadAYZlUCyXKVdqlCs1XFcjZIKSCjBoTk1hmgZf+9rX+PRvfJp6vY5SkqtXr7G0tEy/P+CBBx+g2WhgaAPXtQl8n0Ihj2VZjMc+o5FHvpAnSVOGIw/tbqC0Rqcn6PZ7uK6LFwS0dm5TKjZ44tvf59DiIQwTSuU6Z8+exXVdqrVqJsZUKOJ5PsvLhzAMyWA4YH5hDsuw0MrgO995guWVZXKFHHv7e+TzOZxJrxuAtixyOZcgCNCGyf7+AV/58uP0BwNWV4+iDcV4PKLX7aOkYKrZJAxDhJDkcy7dThttGICm1eoyHHkcPrqE5dj0+z1EkqCVIIhjTEOje98kyQfIj/wBmA6+HyCFxM0V2N7epeBogiCiUKigzRz7rS4/ePp7LC4ssrm5yfnzF1haWkImCRtrtzPfzjhCOyWefWOPlWqKt3cD99TfYeT1mJ6fY+3aa8zOzDMeRzSbSwQ4eKMe1WqNSqVMis/Y62VVmkQQBilf+uLX+LM/+1/54z/+bwjjhOHuLjPnr4PrkMw2uXjpEs8+9zy3126zemwVrfSEXi3QhmY0yqyW4jjzJg3DiDhK8cY+tmMRBkEmKETKN77xOLZtUyyViOKIJ596ksGgz9RUM/MjTNN7plly8p4QQmAYxr33i1SC8WhItVJgb3+HUqmEZeeyxIMSmGamah4nEtuyGA/HaG1jOXlEGjMeeaSp5LOf/RzHjp3EyVkopYjjmEK+gJQSrXUGrEdjEDIDwgi0UvfedZ7voZQiDIbYtoEUWQ/4cNjDtLMKbBxn6rpKabRhks/lMQ0DrTWdTpfhoEer1SWOQRmgRIoybdIkIY58kjDAH/VpH7T4y899FVMbzEzPYGgTaWal6zSJME3jngCJZVgYZiaSJ6QkigNSqbPnIAXTUCRxSKfTIue6SCGxbRvbctDaoFgqYE9EvJQ2sG5tsvvGFf7NS8/zt3/rMzz61a/yd1aPYYxCZAqFYiGjX/seBTdPGAYARFFWfV+7dYswzMB0Pp8njie9z96IRrNBkkZILUnSlPOvvcH58+f56Mc+gpKCW2s3GfR7NKaamKbNtas3efnlV1k5vIJh2Fy/doNOu8NUs4G2FLZbZvXIKpfOn2dubp6tjW3arTavX7jA6TOnuP/sGV56+RUazSae53PQauPYLvbaJow9/u7jf8HC4nzG6LmzTrVep90+QGtFv9+j8kmH4WqbtcvnOXriFJHQSCLSn2NRHYYh09PTxHFMc66JYWpkkrC1vs7+3i6HVo9mnuQtBT0J72AZL1JQImJ38yY765eRUZ9w0GZnawPLstGWRbFYQidjFBGGjJBpgGmkjEc9Bp1diEZ4ow5JnHkEB907BOM+gddDpD5RMIA4xBsNSNOQ8XBAEofEcUQQeECU3btEiMREY6FSjYgVoZcS+j3kPWA9whsN8IYD4jCi1++RJjGBNyRNQ9IwJAx9wiggDAMs20TpCqZZxDSrSFlAigJJGtHr7xH4HQwZcWi6RhAOMNSYvCMYdFvUyxWSVFMtVzAtG9vJEcUJfhiRy+VZXlomjmNuXLuBY7q0+wM+8fFPsLy8wtzCIpV6g2ZjhiBKGQ4jvABGI2j/v+y9Z5Bl53nf+Xvf9+Rzz8238+QeTM9gAAwGJEBSFCmLoqhESdbKqSxbksu7dq1t1VZZa++n3drwZYPKZa12ZdleyZJWwZTMJSlQzCBBgACIRAKT80zndHM86T374fQMh+CAAChS4m7hqbo10903nNt97nve//P8Q6dHGFuYjs/Fy9cJI8kwTFjYf5TtrSZHzId4R+FHMB5MufnuMwwfaHPsfUd55J2PEAQBv/kb/5ZHH3sHBVfT2b7MQt1k49pLbOzGvPfH/x4Pv+9DzB9bxNjbH91Nd30j4HqvWJy/inobuP5/t94Grn9J9WboEHdPAL8zzv7rv67W+k0935vl7H+nk+E3+xj9idtxOG/sKnz7Oe8Gqa8FrHcvrDlF+B5UD8Q3gd27f3434E7ihC994uO8s9pg6X/7I/S7T6NnG6Rpmrv27t2ee/ZZDh48yPGlY2xvb/L1r71IsRQwMzMNQLfbpVAoEEYhx+47ius5uL7DlcuX6bbbmE5O1bRtg2qlQn8wxPc8ms02aaKplMv0ej0M0yKc5JtT27ZASMrlAmmSEYYR66trOegTilq1xmCYR+IkexMb25T0hk2KxSKj0QipIjJsxpMQ1yugDBsVDEmSFDNusLvbIiiW+M3f/C0cZRLFI6rVKvXGTB4rUa/x6qtn2L9/H6Zp0mo16XVDvvCFJzl16p2srW3y2c88we5um9nZGXZ3d1BK4Hlu3uEOyggpieOE3/2936c/GOI5Fp5v4zo+vheQpDGlwOfBUw/hFTzCcMzLL73EQ6dPY1kmQVBgfW2NublpXMdia2sLpQSTyZjd7d3cKTbRCENi2BYKg8y8RqpTWpslatUKcRyTximObbK+sc273/MDGLZBr9/BMB2ef/6rzM7Nkeo01wpngitXrrC5scZUYwrX9fL4EJERJwm1eo3GVB3TMvFcD6UUnU6P4XCMaTp3sjFty2Y4nACCs2cvsG/fAlNTdYQU2JZDoRDQ6XaYnskpZUoabG9uANBstSiXKwSlEoVCQLnsIUSu5Q0n41y3mWmyKxeIjl5ktXAMv1HHdWz6wxEZeQaflPmGThoOhuNimJJr1y/yrsceYzKZ0Gw2WVlZwXUcDhzYR2/QZ2H/PtbXN6nWapw5d56ld/4konuZ4blP4Nz/81SnD7C9do04TCiVymSZxPYsPM8hTTXdbodiqUCr3cR1C8QRfOYzX+Bnfvqvc+DAAU48cD+lUomNa5fYd36ZSAmWdUKpWGJ2bpal48fzCTmKOE5p7rYQQuSsA5kbE+W5uAbPPPMs585fxDIN6vUaYTjOI1PM/PcTBEVsy2Zh3zwz0zNEUYRlmnv04nwd0FmGFHvTTcjP2STBNEwsy0CnMZ7nY5g2Wt8GkgKlDFqtDn4h17TpveiPxx//c2wDZucW8AtFHjp1Ct9zCaMJpmliKGNPk5pvCBOd4ro+hmGSxClCyL2815y3q2Tu2DkZtzEMQbO1g+2Y2LaBYTnEcW64ZBgmaZrm4Hdvmin2jJZG/QF/9olP47g+nu+Q6RRhmCglMYw84xUEOpMsLBzFthVTU3MYpocwJWQa07JI4oR8WZXoNEFnaa5xnUwwLZs4CjENE4Hg0qVLXL1yhfuOHc3XYSmxLJvBYEizuYsycjriaDQiThPEbgu7UeWX/o//nR/70I/zD375FzAMKD/zdcJ6mSSJGQwHlEpFosmEnd0dKpUKSkjCMGRqappCwafX6+WO01KytbXL3NwC6a1VeqvrZIGPEJJKucr169c5et8inXaHufk5atUaUhnESUq9Xufo4mK+T5eKV159BdNQWJbKTX6FSZpowtGAI0cXadTrrKytUKtXGY9GDPt9Xj13lpmZGaanpvcikDKs6yvIKMb4R3+HKA4RQjI3N8s4TEnTjCTRKGWilEmaxewuX6Fan0Z6PjqLkPJ1UOW3qdxw63b+Zv61bZpcvHyJSRhyYHExn7RFkD5tIWb0vZ8oCem1tolGHQ7M15FZhG17aCDWmmLBZtTbIGy3GPZaTIZNhv0dhv0ddDpARGPSSRcdj1FSECcTVJobmQlASoWhLOIkyyOljPwznKYpk0SQpposy5lUZBlh1CYjJEnHIBKSJCRNJVEU7zGINFIYRFEKsoDAJJyEFH2XJAyxHJ/ReLzniJ0bhY31GAyBNF0Mp4jlVbEKVfxiFd8NMIFo1MOwRxiMSCYdhu1tbCXY2d3l5vXLxOEEz3VJ4oQ4SoGUF158gVKpjF8ocPniZR5717vu6I6jNOHPP/1pHjp+jHqlwtKxJUb9AZZUrG3tML9/kVura1iOjRQ2buAy7Gt++sjfpDRV5NUHnyNaajO9r8G/+bf/hstXLuO4Ds3mLj/6Iz9OOG5y4ewz1P2Msy98EWG4fOjnfpkP/vVfoDw9Q6r3GB63G3Z7+9fbVGF9QyG8DHl/8k0Mt7v3Zt8Pms7XHs9r9+i3388b0Zhfj+V3L/rwt9sDvw1e37jeBq7fR/XtOPB/0ed8KxPSO5S4N/FB+159yN4scH2junux/Maxvs5Cmd3btAruphlrUq15/H/8n/n7rzYZnzxCcmABspQwHONYFhKI45B6rYrrOmRpihAZRxcPMb0HWgGGoxGlUonp6Wlu3bpKpV5BqjxaY256hl5/wuOPf5yTJ48ThmMGvQHbO03m5/bxqU99hsXFo0glcvfHaEy7uYWhJJkGZe4tuCiKQUCv18T3fDqdDpaVa4KkMFlZ3mTY7bPb3KJaW8A2A9Y2bmGZHpbtYloehuExFmt5bEUyS5ZJDMOkXCqBhkajjGEqTNPBL/iYhnEnBsi2TaSS+IUy7U6bWr1OqVJmOB7iFwocPLDAJz/1SfYfOEClUmY8DjFsk62dbUqlMjPTs/iOy5Eji2RZsrep3MFxTZJ4gjQE7W6LoOgzNzOdR0CIDKUEo+EAz3PJdEIhKOE4Zu6qOg4Z9Ed8/BOfxCu4zMzNsbG+iZ40KLpLBF6FXqeJ6zj0ul08v0SlVkEYGsu1CIplTGXxxBef4PjxJcrlMsowME0zN8ixbFzXp9XuUyhUcFzJzZs3OXjwQG4KZUrarS627TKZRDz91LM8+aWnOHL0CL6fb5DTNOXcufN8+Kc/jOva2E6++Rcip6dOTTWAfPp/5cpVpmt1fN9DCLBcE2lIUp0Qj3qYlpOf8VKSCRAbTVL9FNn+Kcy5RSxLokwXy3GIkgQ/CDAtG9szSaXEdHKtXrEQMBr0KZUCKuUSB/bvY2ZmmsySFCsVMgS24xDHKSeOn2B9fZ3SvpNknSuY68+ijv89CqbgzNdfwbagWHHY2rqJlgb9fp9abWqP8WBgGj7hJOOnfvJnOHfuLP/lP/lHGI6HYUo8nVB65izCcxiUixRLpXzqaVn0ewN6vT6mmR/Hn/7pf+LY0jpJfBUpD+zlMkvmFxbodDo899wznDx5AkSGaZrUag3KpTJKGegszWNalEAZ5rc0snJQ8Q2mzO1JqCAHbBqNkhaTSYxpm5imoj/o5+eH45MJDRmYyuLpr3yF4yeOM+p3OHzkKInOz2HDyPOaBYCAdquVu07bdu7gKyXRJCLTYBomhrnnzhwnd2jQUiiktCgGFZSykNK8kw1rmtYdHW+qNWEY4rgOWudrXTgac/XqMotHj7N//zymITH3HKyzLM+YNWwXNyjRqJVotVao1+s5LVNFyEzuvf5eNAsSKfJ4jCiOcRyPJMkQWYxEkCQa1/MpV6t4BR8pFcPxGKEEtmsRlAq0Wh2azRblchnf9zHXdzCm6rz3n/8zrl++hG9mhNtr+OduYh3ZtxeJ4+bNIJ1QrVQQAnSmcWz7znXCdVzCMKTfH/DRj/4Zp06dotzqUpAm5v55pDSwTIMji4dZXVlnenoGKQx2t3dYXlmj1qgRhSFapzkFW6ccOXKE/fvmc6deleK4ZdbW1jENmF6YIUsTgnKR2fmF/Nwrljm0eJA4jigEBX7nP/wO3W6bo6lERjHLH3wvjZ1nWfv6F7HmHwZh0+30+eM/+hPe9dh7kMJgp7PBsfkpbq1uUZ/bh5AauWeY852WyiQikzRbHeb37efUO95BJiBJEkQiSb9iYf7jEdmVP+x1bwAAIABJREFUewBkw0KZJrbnEyUZlhswimKcQpFyucSwtcxw5wqj/jpZ2kfHIwwyVGaQJYJme0zBDxCGS3ug8cuzbO/0iVIXYdfpTyzGsUdv7LG6NaZYO4A2igS1fWDNc/7qJkkWoOwqYeqSSAuvNEd7CG6wwPJmH2XPopwGWGX88n60rHLxWpORDqhOH8IpVBmPJ4RhhpZ5AyvfWmgkYEuFZeSNgyiOSIlIwjGZNrCcCsotYhWLFIr7SVOTOIxwHIUyErKky8x0gGVoomhEr9NkplHlyuUrLJ04TlAq4vk+ly9dplIus7O1QbHoM55MqNZqhOM+XlCkUqtRqVZQMsO0bTIUj73nUd756CNIYfHOkw+zNH6EG+l5rj36JDutkFfPv8ixY/extbPN8uoyH/zgBzly5DCOZfGpT/0nlO4iwzZxr0350Dv40Z//2xjlACUFTpaR3mX69Y1hRv49dTJFndR3fV/c475/9SDttVrbb603d4zZXUOLN3p/3+773w+/k+/3ehu4/iXWa0HkW3nM69W3y5K6u+5FQX69TtdrKbZ53TtW5s3UvUye3qjuBq76NSZJd9dru2Cv9/xCiLuMobJveVyW3XYd5s6/Qu7d9pwR0ywDYfDir/86P/PsMuqh4+ijhwnDhCyLWVu+CVrjez6ZNMhMg06/C0pTLBcplqroOGE4HNHp9gmTBMtzUKaJqyw67SYCzWAwQhomZBmnT78DqWxs28cvFPN4FQmmZVAoemw3tzFTjecVCIpVOp0B3XYHaeaUU8sArVP+6E8+zonjJ4kTTbFYQghFNEn46rMvMIpDHnrgAUjHSKlJYkE5KGGbeSSHUAojnSds7WmEspxm57qKmZkGhWLAJAwxbYkhNBvbtzh0aCHXZUqJTlJMw+bgwQM4jkGGZv/+/UxNT2OaigdOPUytUcNxFJmeYEqTS5euUCxXmZqaolwuYNuS0TjmwsXrnDt/iQfuP0Wkx9hODiwMwyRJJUpqlDIAE6cQEGeAKbEQtJodbMsnjvOOehpF7Nu3gE4SKuUKgVfnt37zd5hEETOzcwwHQxr1BllGrv1t5Vq1YqHAJA1ZmJ3DsxyUIcHICHs9dne3KVdKbG6u8fwzT2FkCZbrcfDgQYTItZMCxWgyRqlcW3fygRM8fPohSoUik3GH0aiLkhLLdGjtLlOvlWntbqHTBNc2yHSI57psbzSxDJdiocjaSjOfrm+uMjs7QxTG3Ly5zPzcQbI9cxR0gmj3kV95hvADHTjwCIYXkGUBW6trVGoBUZyRRBmmEvR6Q0QGpjTQSUacaOLJAL/gk6mMOI2I0xDH8hAorl+9SaVUQYkMy1KYpkucJoTWDO5klfDSJ1kzj/LEK5cQY5if6WM3HsJ1qpR8D0dmDEZD7GIR03S5duElfuHnP8D1a+f58M//Z0gjwRQx4cYmxa9eILVstjwH1yswHoy5cfU6Z8+c4YWXXmDx2CK1UhHfMShWbpCJEQX3EYw9eq+Ugvn5OR5+5AFMM6fN5lrLjIwYKfdYFwgyDUKZhOMJphSYSqAFiDsOu5CmyR6Yk0gREocjBr1+bjSWphjKQApJvzfEcQoo5aCzlF5vzKg/xnNNji5OM1VxSXWC7VhIkZElEdIwIBN0Wm2CQoDt2UhtIAxBFGv+4A8/SrlUpDEVIIV5J65L6xTHstCGIk0gy0DKDClTJIo4HhPHI9JMI5SHktmeo3WMkDKf1HtlTtx/P4WCh6EMbDNv/oRRhGHapJlGoVFCg5L4QQVlWSA0CpNUR6Q6QSoQMkPreA8c+wihaDbb6FQjlYXOchq1lDI3X1IZaRKCjnEdB6ElOpGUSgHFYkAcx3k0VqePkWperZV492PvQrmKmsqwX7pE01GMRkOGgx6NepVJkpAkCY7tEA4npFFCpmNazRaO6xKlKX/wh3/Ez/30T2DbJl5vjFSSUaWAkLC2usG1y1e5fu0GynDIpIHQmpmFWSzHYndnly9/6SnK5Qoi06ys3KJQ8LAdC2H7aJ1y5dJFLl68yPH77iNTJr1+D0kuUbl1a4W5+Vkq5RogOHbfcY4sHsW6sUo2nvBbow61yWX2zdVYt+oEdgnDMPizxx/nfT/0ftzPVQhuVUlOSG6cu8yJg/fR1wpDvblpz+teW/dujuviuC7pHmtJSgleRvpZG3kqIVvPp/13vRoii1GmQKoM2zIQCQyHG1hExO0NOutXSOIOrhT4jkOSClpdTX9i0+opvPoCkVGl0DiKX5pBSJdmDxpzx/FK8xSKDfqDEfsOn+TWWhu7UKY+dwBhTOO5VbZ3+lTq88zvX2KrNSJKXerT91GuHaI7lEzPHyNMbGy3xszCIpu7HWpT03T6PU6dfgdxCo4XMJlo+sMUxyujlE2appimwDTyJk6WpqRhhE5BGh5JYmLYBsoGdAKJQIsSjl/BLzdQjo+wLJRw6A96FAOT8bCFRcIrLz5HpWaSjNuMhj38oExj32HKZQMn8KhUahRsB08oyvUK5VJANB6RaRgOE46fPMyRxcM4lks6zkiuw/zoMNcWXqD77k32HVlkel+RudkaYZIwN3+Qz37had71nvfxO7/7+wyHVxmtvES6e4tWe0Sw/xQ/9LN/l7n9BzGFQqeaRMpce4zYA6u3/38PPetr2W2vw+C7u97s3vaN6xvHdvtY87VQ5TFsGd/082+9vbm610T2O2E4vg1c37jeKnB9OyH3+6xeOxn9/2N9t97jd9LNyrL8tSfhCIlm99wFTv7uF4gW9xEenGVnZ4fxaEQcp1i2Q7fby/ViSuHZLjNT05SCIkkUc+P6dba3d3nllTOYhsWRw4tUihUs08a0TPq9AbbtoLXGcV3KlRLdbhfLsrh16xaDwYBet8/y8gqNqSnGk5D5uQXGYcRgNEILgWHbzC3sw/U8isUiWmdsbW3yt//Gz0M2YXa2Shz1GfSbGEbKAyePcvr0aba3d9BpxurqKr7v0x+0GYy6tNpbJOmE0aiDY+d6M6VMlpdXKQZlkiQiDEOiKMFQDkKYLMzvQ6AwDQuQmJZNb9BjNB5x6dJltNZsbm6ys721R9HM/y6dTg+tJdvbO5w+/Qiu6+UXLiGI4iHjSZdjS4dYPHqAKM5dgjudPqPhOJ+YeBZpEhNOxpw/d4ZrVy5jWwqZZfT7fYqlgJ2dTYLAxTAzHnvXIywszCKVoN8f0Ol2OXjwAKdOnSIolPD9IhcvXMnp2MrAtEymp6dgz+wq1ZoMyebGDr3uMKdTFgIM06ZcrfHe972fcqWWZ6u226yurrK6usrO9g7TUw0KBY/d3W1Gw9xtOY5jkkQTFIqkqaZcLlMqV1GGydT0LBmCVGecv3iZONUIZZDohDPnXsX2DJCap55+il6vj2FYPP3lp1lbWyZNYwQZKowx/vxZhn+ngZ57DOWUcrMax6HX69HvD3BdjzNnziClpFQq4boezWaLZquJTjWTcIIQ5PEopTKVch2pFHEcc/ToIlqnDIYDVldXGY2HZJmmNxiwmh0k697kQPPz/LN/8i/5uZ/7B3z95ctEnT5RFLHbbNNp97BNi3g4pN3uMjM3j2kV+NX/+r9Bayh4bm7GkqVErsXg1DEq1TIryzc5c+YVFhbmGI0GHDl8KGc+SMl99y0BOe01TjWJ1igpkSLDkLl5UW5kJO7o2ifjCVmWZ8pCvjnXqeCZrzxLp9tlEoZ7+7Bv1m0pI9fTxnGCadkUi0VW19b4yEc+glSCyWREuexjiIRRfwe1B0yfevpJDh85jO34xHHueB2GY3Sm6fT7uSNxllGpVpFG7qJqmAIlc6fi0w+folopE8cR6+urIDKsPQOyJI3RaXonvibLJP3+OI/DMEziZE/vLDIMZdDv9cnY81qQgjBsotQEv6AwzIzRZICUci9jWuQzVGkwHIzp9caYpgtZTuHMsnRv8mvuRQfljQDfL9But0nSlOee+yr/7t//X6RpksscyE3otE6R0kBKA8fxaLfbNFu7QMJgmOfCjsZjSqUK7vwsKtXcf/9x2u02ruOjhE08DpmbnUcKRa3ayOmXOiMIiiRJSqxTMBTXb65g2fmUOYkifuonfpxqo4Emd8FN0xRSTRxG1BsVarUyp049SFB0OX/+VYQQ9Hs9pJBMT0/TmJqiUCgihMHBAwdRykQKA5Fq+p0uGxsbPPrYYxi2heNYNOp5jNG1a1c5c+YV4mREs72JbQuQEYUg118D3HfifmZnZ5FSUSznXgm3bt3iy1/+cn6cLYnsKPyCw9lzr9Bqb+O4b50m/FZKGCAqGdnq3dO327eMTEh0ZgA2K8vr9HptVDyis7PG5sYtkkyQySJDUWV7ZNFPCuwOQNhV2iPN/PwR9i0skiaSQT/mla9f4PDhQyyv3GI4HOxpTPMItWqlzPzcHJPxmO3tLV566aucuP8+JpMRV69eoVIp43sFms0mWZYbuoVhxI2bK7R7fbr9IbX6NCurm5SrU0zClOe++iJCWTSm56lPzaGljVYeplsnU2UGExthVgiTjEk0Qqdjxt0mlkoQOmEyHJOmGYZlYBh9dNpBpxMs06NaOcjc/ofZf/gRDLdBpT6DW/S5/+QDlL0Cvgky6rC7fBY1WkFluWnVKJyQjCVRT2KulxjHIZZnYdiS3dYmtp03tbfWtwguNlCeYOsDr3CzcZHFo0vMzx1kpjHPvkMnUKZHISjxYx/8ISqB4rmnP8Wn/uT3kDphbWOHiTb48N/8uzmzSCl0liGM3JApjxJ7M1PLt+vt+qurtyeu36X6bk1cb4O6v6gw/I3rXsDxe6NvhW+euL7Z9/hmXvu2xvXNLrJZBhkZypBkkxD5L/5Xet0ezntOY1g2Yi8qw3VdavUaruuQas3ly1fRcUJrZ5dSEHD1yhWmp2a4fPkqSZJyePEoH/vYx7jv2BIryytcuXiRY0tLxEmKMs3cdVMpHMdGSsF4PMJ2bErFSu4yaRi4rku326PgF4h1hjItTMvm7NnzZHua0eFwwMz0FKahiKIhcTTBcWzSNGYyDikWi5i2i++5ZFrTaNSZhBFKSoKgyPbODsViiX6/h2W6gGJnZ4fHH3+cgwcPU60UUYaJ6/jEUUq31ecrz3yFoFDGdQt85tOf48iRRV7+2tdwHBvHtSgVi7TbbXyvQGOqhOt7jMYTBr0h1XKNQb+PHxTJkGidT47G4z6Vag0hFaVikbXVFUqlKkJILMPK75cmTEYjPNejXqsy3ajR3NnGd529nE9BpVJkOOxRLPnYlmRtY5V6o87169fZ7DzBD7x/Ec8+yGAw5rnnnufF51/mnY8+QpzkcRmu63LhwgUqlTKe43Ht+k0+9vE/o1ysUCgWCEqVHBwZeUaqlIqgGLC9tY1lWZSKJeqNOuiY8WhEwffyaYsU6EzsnT8pg+EI3y8ghaTZbOO6PkqZ3Lhxi2p9Gs/LDWpSnbCwb5ZKpUKxWOCdj76DNNE4jr83rU9xfYc0DlFPvMTkPdNks5cwygdo9sZ0uwOiCFzbolgJSNIM13ERpHtutVAolAgnEeVyCduSIAXjcYhjexiGxflz51lY2Ee/3+Xs2TNMTzWwHYe5+Rl2m1s0puqUK3V2Bhqn9XVUPITaowz6l/CliXBLe5m/DqN+n4JvI8wA17So1xoUggrnLl5l0G+RxCFVy8F+9izxfBllmJRLRUrFAlE0Yen4fRw/scQzzz7DM1/5ClPTs3S6z6FTjV98bC/mRhCFI6LJGMOyeOHFl3EcD9/3UOob9FnbtpmMJ0gleOYrL2CZJqPRkKBYwHYs0iQ3erttcAQCy7RQUjKZjHEcF8/zqVXruL6DFCmKmEF3F8+WeQSSUhw/sYRUkjQDkxAhFaPxBKkMCqUyYZRimmauL1UCpCSNxuw2t3E8n3KpShSNKPg23W4fQymkFERRiGEoskxgKoMkTiCTeG5AJiWQkSQRWaqxlEEmBDrTd7SmWZaB7qOUoNvtYTu5gdfNazdYXl5hZmYO07CIooiPfexjrG/ssm//fpSSSJXrIg3TzGPFbhtbCUEYhnheLlU4dGgRy3RY2DcLIt8Ap2ma63S13HMe1riui2VZuT47yzBNi6BQQkozZxH0ujzpJqzcXOZP/vSjLG9s8Z6XrrLTqFCpNxBCMpmEjAZ9gqCQx0kVCiAFlXoDx3FRSjIeDZmeqqNl7p5t7bbROkXNTZGlmigZUywGDEdDGlMNDh3aRxCUKRS8vNEhJNNTs4wGQ4IguHNOrK1tEIcT0lTTaExz4PBBpBIgNKPRiCuXL3Py/hMsHj1ERppLHLK8mdDtdnFuriOjhPUP/wgzepUbN26Q7X8X436XmdlpfuAHfyDXz5/1ybKU0bF1wn6X4yeOoz0zjy+/6zr4Zq+Xb7ayHQmRAH0X84l8h6CFII0yRCqxjBTPSxlvXEVHIyzLYHmtjTDrbAwksfA5dPQU0/NHqDfm6fVHlMsVdKb46vMvs3hkkVKxhF90SNKUeqPOZDzEVIp+v8/CvgMs37qJ5VhYpk2rvcHi4mHiOKZYDCiVyni+R7FcZnt7h9m5eQzToNUdMTs3z/kLF7Adl/5wxPTMHMu31lCmw+zsAkIIdnZbjCPwgjJrGy0KxVkmic1glGG7LrYjmQx7iDihP2znDBSVu1gnOmI86uB5LqkWZJmFUD6ZWcb0AizHR+5WcHcOU9g9jj86hBlWKYTzeKMyqbhB50ZKpTOHvOlg9lxEbJLMx0jHIE4SlJToVOM5RYbXI2p2negndvi1r/63PPLuR3n17BW0sPlXv/avKfkljGKZWn2aF557mie/8GfcuPICP/mhdzNtRLR2d7m2tsOH/tYvcfI9H6RYLJCR/4mllERJTJrka9O9IhzD37BJXjDyOJw3OLe+t1K0b32tu6Vz38vBz9sT1+9NvU0V/j6tt9K9+k5O9G8I6V8rRH+958o/3N+slX39D92304p+u7q9kKQfz4Gr/OkffsuZtq9diO52a86P65sfczfN+PZx36EVa4kWCaARv/v/oP/8KdqPnqQ2NQNSEccJvuth2m4OcE2DKApJwghSIMtYvnWTWr3Bk08+xbGlJWr1BlevXmF9bY2pvRiX2blZDMNCKoswinB9l8l4BOSb4xz0uUzCEevrq8zMzGDZNkFQRJEhDXXn2M+ePctso4yhFEEQoBFkOsWyAgpBhW5vxFNPPcfCwmG+/ORzfPnpJ6lWylTKZaSUxEnM+nqHYrFGHIGhLMz6FpHcYbArmZ5u8PDDp3JXTwlRnOTRFKMxaZzwwIMnieOUTrvL0tISlmVw4PAhgmJAwfdotprUKzWee+ZZDh85zDjMA9SVNIgmCWEYYjseCEGv18V1bBwrQEqHNFXYtodne6RpRJZl2JZDs9nCsiz8QokoDEmSCZPxiMl4ROD7KGWQpglpmjIaDbEsi0xHKMNCa6hUykwf2gDVx8yO4TouL7/0Eg8/fIpisYAQAs/zuHHjOrOzM3lMimXTG4z4wff+IEcXF/kPv/e7HDu+RLvbIygEmMqg1+1hGIpCUKBRb+A4DoPhgG63Q61W48aNW9SqVba2dzBMM8+2VCY7O7uUK2W2trcpVyoo00RnGY3paYKgyMrKKpZp5Y0NBZFOiOJoL/7ByrNgTYVOIsgyzM+/QHy8QHTsBcTsaWSwD8/zuHjxCocOnWDQ64DQBKUStu3Qbm8TBEW6nQErK+tsbe1w/sJZauUaV65c5/CRRZI0pdVsUatPoZSg1drm6NEjOQthPKFUKeE6Doah2Nzcoj57EGlJ9Moz6OFNsoMHmWycQ0qDOBwzDDVe4OcZo0beyY9JUaZNY7pOo2wznowRYULw6edpF21sZbLiCkqJplqr5LTQ8ZBqpcZ7f/C9VKplkuQMg36Pgv9OpBDESZxrsm0bwzCZnZmn1WoTBAFSCsgUShlkOjdCUkoyVZ1h/4F9zMxNY7sOMlOYVm4CE8fRHRfjLIMwSjAti/Eoj28qVyoombK7u5mDTwS97oCnvvwM+/fPMwmHuL6L1nlOaFAoMh5NCIplhDSwbAeRJUiREkcTQKJIc/08kquXb/LFLzzBAw+cwPMDrD3dZr6ZVJhKkWUplmWiDEmqdU4dJweAju3QajdxXG/v/eZ06iiMME2PwTDB96p0O0P+4x9/hHq1QK1axXJyt+P+YMCBA/uZm5vPXYCV2JvwCtJEI4Sk3eniuh6IXB+vdUaaJhiGZG5ueg9gZ2ToPcMdSa/fp93tcPPGCo7rYds2WmtMw0FnkOmMV155ldrMFO6VW8z9yi/yK//0n3Li/gd49wd/lPJnnuLxC2dpzM3iek5O/fULIBQZeXSKBuIoROu8UZEBUkg+/bnPE/gufm9IpjX9gs1gPMFzLTy/TKXaoLW7Q5YmWI7Lzs42hlREYcK5C5coFT18v4BpGqRpxqVLl9m/fwHP9SmWyty4cZ3hcIDnewwGY6Ybs/T7PdrtJq5TotcdcvXqTaSwWFlepx6UGW1u8RMf+W0+sFSkVCzRso7wtZef4cFTDzA7P4NlG2QvmYyGA6ofsCi5Hjdv3aQ0N40Sxjdd877dNfQ7mZzpZUW2IpGB2IuVyxNhM63J4gkiHjFqrtHcvML6rfMk4YAkU7QGkpOnf4SzF9c4+dAjTDXmSeKMV7/2CoKE+dk6dsEjTEIWFw+RJGO67R2KlSqO6+1FhBk4tofnSQxpUq/XsCwD23IpFDw67Q5BMWB5eZmtrS3CKKJUKuF5Pmtr61y6eIUji4u8eubrPPboOwmCQg6IJxOG/QH9/oD5hQUmkwnFYgllupQqDfyghulW8cszaJ1Rm54jimE8iWhub1Mo+PS7TSQJlpN/jg1zNs86RpEi2G5uUvCLZFdNuORhKB/jBzLEzw5pnrhK4wMOV71nmJSWiScSFdxga/ZPWS0/xbXpp/jvPvpf8YP/8H14SxlXkrPIRcm1bJk/fvb/5t3/+cM8M/gCN1vXaDa7HD58lP1HDvPFL32RX/qlX+SpJz+HoEM82OXa+ReZKQmmiqBHO7zw/Nfxpw7yX/zL/4mH3/+jaGVhiIxMChKdgsxjwdIkT15wHOeOAejtSp83QAiMR9N77jPf6Fz7bgG4nBb8mujD19krvvn98FuT/L2ZejP06bcrr7eB6/dpfa9P2rf+/PfSqX57YPoXAa6iXEA+dAxxcP67Nm2F24vCN7+Xux2D7xbYZ1mGQJFKjby5Qvar/4qL0x6NQ0eJkgSNRoo8WzPVoMnIRIbMQ0B5/PFP4Xke8/sW0MCFi5dJ0ojjJ5aYjEccP75EsRQQhyGdTodPfvLTLC7ex8XLFxgM+sxMT5HqhO2tLWq1KpNwgu87yD2N6+7uLo7rsLm6giFVbuxDRjkIKPmKVmuXSr3BJEoI4wjHcdjc2sRyLE49fBqdCc5dOE+aJhw5dATHsWl32hTLAdVqnY3NdarVMpapaMWXGIcDau5hhMyYTMYoZdDtdCiVyzm9UAlMU+45lRoUCgGWZXL58gWm5uZB5BMenST0u31q1RpBscTWzialcjmnFSoD3/dRpsVwNMSyDBzbJIomKDOPE8myFMOAdnuHYlDiD//gjzl88AhSCPqjkEIQYFoGlm2RRAmWZedxMEKwubHF9laTbneA69j4hRKFoAhosK+TpimecZJJOGJ+fpbRsMfcwkI+/TAMSqUig8EQneYmMo2pKTISknjEQw89hGNbFIsB4WSMpRTheIRhmZimSZIkDIYDer0elXoNaZgUiyVSDaVyBcu2yTKBUPnfMs001WqFyWSCYRo5IM0Fxrz04otUyhWyVHP50iUaM7PYjsPZM2epViuApt3aZTKa4N/YJGrcJH7gEh37GN7CCZQy6bbbTM/MceniDS5eOMODpx4g1flnw/dshDCwbZdGbZp2u02aRpT8Ku1uj8bMNFKA1gkbG/lU9eaNa7iOQ71WZ3enSalUJgwnuI5HEBRZXd2gPLNAikm2/iLG9lWyQZt2lDA1PU1iBAjLJslSlJSkWYo0DYTMSHVEMmmjEbiNOczLK9i9CV3LYPGlK3zpQI2ZMMPzChimRaVYZjgZ4hdcEBdxHJub18xcb+g6SGWAUoxHY7TOc3KLxVLuOJ6JPWCVkqHvaEWlghSNEIpPfPRxglJAoeDvRffka0GWCchy0OX5Ljs7u7iOR7u9wdTUFFqDUC5JanDw4GH8gkN/0KEYBIhMkgqFMiwCv8BoNME0beIwpN9tY1uSOBrjOD5CC5qtFkKYBH6NRr1OEk0olWrEcUwUJdi2Q5YJNtfW8DyHMBoxiUZ5dBYpEkk4CfdiODwy8rig21NNnWm0sBgMx2Ra89STT3Bo/wwH9s1RrVUx9zJkpRIUgwKOZ+duyplGihzA3DawKvj+Ha8CJYycOiw0himQKiWOUgwzNx67nZ/teBaTSYjWgnptGiElo9GY8TDCdT20Tpmbn+bqtSvMdMesPHo/vmcyMzvND/21H8b5yJ8z9753kZkC17GJojGWX0AqSRzHucPsaMzO1hrlUhkA07TIhOLokaMUXAer2UYZCj1TQ5gWjmHT7Y2R0iIKIz79qU9x7PgSpGluFGXZ3FpZI5x0mZ6ZJo4ilJLMzMwgzdw0YWdnl7NnzvDYo+8EqdhY3+VLX/wyW1tbnD79ILZjMp4MKZeLFIs+U1MNPv+5z7JUqdP4lb/P+xcLSASNpR/hwJEZCoFHmiV0ex28S9V8AvZgH1PDs8++yNLp08g3qbv7jq+zZkb6eQf7H6ZkV/PGBWRsbKyRjrroSYvuzhWGzRUsNCooUmocYqsJYeowOz/LuYtXOHr0GKbtUJ9qUKqW6I8HmKafR68pgzROuHD+PIvHjpOb2Gm67T6dVhfXg9XVTQqFIju7WwwGI6rVBoaRx09duHCBdzzyDupTU0RRjGGarKyscfqR0xR8i/375un32rnLeRKTZQnT9Tqj8ZBiMcB1LNApBb/A8s1beL6P43t5PN7KNTyvwm5zhOuX8QKXaBKPE819AAAgAElEQVRjGCk67TMZj7HMgMyt4fgFbNfHtguUtufhrIvaH2P8rSHmT0WIIxEy0FRma0SeydTRQ0yfnGXXv8V1rmDXJdrYJQ63mZ912br5NdJwk4X5GqZtcO3mMg+dfJDDRw7gujaDwZhH3/E+4mxEomNeOfMyDz24xHNf+Sxp9xKvvPhlvv7cUxyYq7N26yrxeIA/d5Jf/R9+jcq+oyjLRhKBEGSCfP1QipQM27AwDINwL0sevkEbTp/PmyXGo+m3aFz/cuu7PwS6e9jx3ap7aoPfrnvW28D1L7leO+G718/u/v4bOfu+Farwt+sifXPn6V5GTDkV7rUi/G+1M88fK/Y0Lnn0zFv7AAohEAfmEQfn73x9r/p23bLbDsB33/cb98/jPiDfoGZZ3pXLj/c1tBEl0bKA+hf/C5MsRR89jBf4OK7FaDhkZXkTnVl4rkTHMSoTmIbJYDjA96uUK2WEhPnZOe4/cT+zs1NE4RjPMWnUS4TJiGLJpVyqsrR0H9euXuH61eucevA0rW4H2zYpl0vEUcL2VovAL+L5BdY3NpmZm81pTq0mpVKJXq/Hyy+9QqMxg3RdUCae52EpSRpOcFwbwwBLagwFSgluXL9BvVzi0KFDmJZDuVKHzERYBv1BF8e2UEphFgdYjkMyrOdaVi148onPsW//QVqtIZcvXaJaCcgygxe/dokXnv8qxcDCslLKtQqGVHk0jDSxbBev4FEsB6wtL/PyC69y7Ngihqk4e+4Cs3OHuXDpVT75yU/zwMmH87iMWBNOEmDPLTeJkFgoU/LgQyeYhGN8v8xLL71MuVTGti3anQ7FciXfxDsFMuXiF8vMzk4xO1Mj0SlhlFOAEx2DdR0pDcLuHK7tESUxjdlZBp0m1XKNF57/GoIM2xKUS9P0egNM08R2HDKp6LXbWJbJzRvXqNZyEFSp1Wi1OkRhRBhN8H2fSqWEadiA3otiiImikElvgOfZkMXEyQTTksjMZntzjaJvMxmPMJTD8soqi4tHCQoOjmcTVAM804Mso1GrkWWajY01ZuZmuPbJJyg+dJl0aYx9/MM4tX2E8RiEotMZUa1NMRh0eO/7H0VIg/WVDZq7W7i2Tb8HjiORQqOTlPWVZRbvP85kPKFWLCOQmI5Lu7VLMShSrdYZDsbUG1O4np9rz0wrp7YKKFXKZNrAKM5iTh9H9NYxR9tUCiVu9SRH5ysYVomJmAY9Yn11h0rRxncTJr0Y6cySZhKkxn7hAtJ1eeX0PIOtHR6bSKKSRxyN0eEE5XgQpbi2S5SdRxgGN5cDlm/eYvHwETKZkWYpQktu3brB1vYm+/cvYBi33Vf3GBpaYxiCKAWUwJQSiWbfwgJ+4O6B1hTTMBiNBkDC+TNXePH5F1lavI9CUGIcTcjQ2I5LnGiarT4bG7vM7ZtHpxHt3S2qlSJJpjGtfCMMkuF4iGmaNLsDqtUKg34fz/NBSUZRhFsoYDk2QmkK5QCUkWfpJvCHf/gf2X/gIIXAxysFSMNAZ+C5LnEcMhxHCCXzbE4JWZYwmUSYhnnHkVhJRZakmErR3G3y0Kn72b+/wajXQicjBBOyLMa0faTpEQ+2CaMEy/RzB+ssJYkm2KZEkKLTECkSEvJoHFNlbKxeZdjtUao28kxiKUl1imkaCHKdbsF3kSJDYXD21Ys88cTnuf/EIqZM6bZ2mKvVMJe3Gf/ED3NkcYlJmDA1NYX8g4+jF/cT1ErYTr7uRFFENBnjux67O22SVDAehnnTzVIkiWZ1dZtBZ4zjZOjuLjExzlydXnvEsNvio3/6ERbmZxHAgw89dEdjqcmnUfvm5yh4Hp5fIIxinIKLVgkyyYG549kUi0Eer6ShFBSoVsuMJ2Nm5/YTRxMqlSqOk1PxNYKDtSms3Q6H/vt/jr3zKpNJny3T5tDh42hCxuGAYqmCeiUgE4LuXBvTDFjb3WFx8WBu8HXXdfK7WVmWIUuC9NMWySN92HDJ9rJbo2GLZNykv3uTqLuZ03cHmvWmYnmtwzvf/YM4vs/O9g69doelpWOgM4RURJHG88qcOX+OemU/16+cp+CWKPn7GMUdNtbWqBSmuHVjlaDoYIVNbNNibX0LLVKCQDHqxcRxxJkL55hfmEEpzSCcMOppCnaXQbPPi189j7YG+IFBq7lDrTJPkio++/kvsLT0MLYxS5xu4vkGzz19E9PKCPwCUihM5bC2ukWz3WJmbo5qvU6aCGyzwiQZYjsxMh2jtETECaPROoaIMYSPPltGuBrrl/uY75tglPP0gUxIMmEghEbJvd2WsqlMH2R+6RSzhx7D9g8zSix2e32mjHUm/W2KpuRjf/T71CywC5KrV6/zf/7Gb9NtdnCMiH//2/+On/vZH+Nzn/x99k9pblz8Eu86Ns+ks8WJpWNsbHWY2X8/f+1Df4MP/eI/xvR8TEMi0HtTdLXnCi4RmcAQud5VZxlCynwccHtAACS3getjrxOT9Jpz6Pae7S8CCu/F+LvdRLm9J/3G7VuZfN9rsPhaw6nbIP/u9313A+Dtune9DVy/j+o71am+Oa3mt1p1vz63/83pWe+tEfhWMPmdamHfatfptYD/tYD+tYD2tW7Ft4HrN1E1hESfu4r89d9j9dAUyv1/2XuzYDmuNL/vd87JPbOy9rr7BS4uFgIkuIFkt1ut1myasUYzljSyvI7CazjkF9t6t1/sB4fDT7Ij7AiHRxFWz0RPd49aMyP2Qk5Ps9nd3BdsBHCx414AF3epW3tVVuXqhyyAIAiQ7EXT9gS/IAOIQi6nsjJPfv/z/b//38H1S4STkB/96EdcPL/GJAhY3rdEHEX3jr2zs0O12pgKjqRkZOzuNPNkUdNYv3Gdufl5+oM+luMyCUJc12Nmdg7dMBgO+qwcWGE47BOOx1y/cYPFxSXa/Q4IqJQrU3XfGMc2iOII3y9Rr9UolYqMx0Oqlcr0YqQMhkMsy2YcBJDFDIdDlGYwN7/AvuV9hGGI49qMRgGaroNIcR0n92lD0hxdoVgssH11zK2bt/jg7DmEkBw8eJBBP+D999/jsaMHiaOE1YOHaNSrVCs+nufltN9UkaUZl69cZX39OvOzM/kLUSg8r0Ch4NLttfnhD37M6uoqS0szPPvMMxialvfmRjF/8M//gI31DY4ffyKn/ukmg2GfnZ2dqWCMT71eZzDoUywVcFwHJRWmZZLEE9566x3eevNN6rUKpq5jWCau4xEEE5Smk2iXIcvobFfwXI9Lly4xOzc3FZDKfW2rtQZhFBJMQi5eWmN+YQ5NCZJogu/5aJqiXC4ikPT7AyzTIo5ylVjHsel2O3lFJIPd3W10XcvFa4Si1+nS7XaYhCGu59Hc3QGhYzsWUTTBclzGk4hyucRec5discily5dxPRfbtojCcFoZzq+pbHfwl94lnvcxnvodMmmglJYDec1C1w1u37pJcy9XQtaURq/XZ/++ZYajEY5bZDjskMQRhYLPvn2LaKZJtVahubODrmsYmobvl2juNgGBY9skScrZM2exbBPXcYjCCCUVmpKkcUwKCKWQxSXGwQi5c4bu5jV2qVGqz6NMC11XVCoNwsmAGzcu4TkVMmniuDb9fp/CyUtkqeCUnXL4H/4uzndfIzp+BG0c0mw2QdPptFr0+33cgoZSVZaWnsc2LQpT6rdUkjROKZXKLMzPfWS+kkIRhRH9wZDxeIJp2dM+5JjRYMjOzi66YaIpfaoumtO8kySjXKrQ2tslCIbUGjWklPgFH0S+YOZ5PgsLOQNBUxLXtdlutnDdEqDI0hTD0IGUIBhgu0WyKTiWSiFkXrG8y/bQNMlkHKBrOcU5CiMGwyFLi/M4no2QguFggGWZ+ZxKhm37+bNhWoRhRJrm/sEA0dQLdjweY+h5xTSYjPELHmQJUZzktkpC4boFgnGIkho3rl1kbmEfQmmQpWRpTiOM45h0qiswHk9AGCisaa+qjmsXyUTugWuZ5t2JGBAIeZd2CnGc8Prrr3Hi2ReoVKtIpWM5BXa32xR3WmS/929jGAa6rtPr9ah851XkkQMMwwmW5XDt2o1cOTgYI6VCSY0Pzl8giRNs26Tf72OYJl7B59233+OJxx/nwvYGxf3LXLx4g1Kphm3rHDv2eF6FJaPT7TIaDRkFY0ajEX6xSJpmBMEQy3JyD9s4JI5D2nstJpMxBd/Hcz3iMGF7Z4t2u0Vxup9XKBCFE/q9Pq7n0tzbRdMUzp1d5O4e4X/0d4mHbZz6EoV9T2OZNjvNbcrVSq74ftIhSzP+1dU/Zm5mlnfff4sTJ55BTkV0HnxP/iJCTvulkx8bqMMJYk+yuXEVlQwJ+rtkcZ/eXq6Krpk+zX7E0Se/gOUUMG0X23bw/QLIhGLJZxQM6fd7JGnC5uYmRw89xys/eIW5RYfBaJsLl96nWpzl/ffe5urlNXa3b3Dx0ikMLSYVKafPniKNUtavbBBObrN2/jLXr25z5+YWuoy5ePE6J98+iWdP2Ni4jGGkyLTGGz96k/2Li9y8ucFe6w6GlTAzU0czAwqeTxxqNGYqFIoetuNw8fJlZmZmuXDuHIiUublZsizjzuYm589+wPz8AWzbobm7l9tBqYg4TIiiCfLKAiLR4J+2kOW8Ep8JSYYg/+/jeVSWZQgFtmHhFQqsHFihXK8TBwLDrXLq/FmKZYtUtBnu3eZ7f/51Tjx5kHh4GyPdRUR92ptXGO7dpOrpPH3sMd49uwa6x62dPr/+O/+QJ579IseffQFjykD4qOjSh3nj/fnVg8WYu3+/V3H9wsd7XB8WDwLWnwe4frbj/NX3lz4sJ33Y579oGvJft/gcuP5/KH4W4PpZJcMfVnF9dDX3FwNc747tZ+l9T199h2x9E7my+Jn3+TTgev82D5vU7geu966TEIj/4Z8hHJMP2lsMg5BSpUGapOxs7/Dk48cwlaTT7yGFwPd9giBgPJ5Qq9W4evUKuq7x4x//mMefeJxJnFCpVPD9EusbN5lbWMS0HEQmuHTpEvPz8wgBN29ukKYZBa9AEIwpl8sU/SKma6MpjTtbW2RJxrUrVzEtDU3L+9JMQ0cpCWlMp92m0+kQJQnVap3d7T0sy2Q0HOB5LmEU4zgOg0GfcrmMUArHdUizhCQJgQwpJJNxRHEuRYqMYDdXEO33Ruzfv4Kua+zs7PHcc8/ieibD0ZA0ySiWPC6snafemCWKMjSh0d5rU66UKRV9wmAIWUKpVqdcqSFFyo3r1/nSF/8Ga2vnCMYdCp6HkoJ2Z4dqtc6xo8fQNZ3Z2RnSJCEIBgCEYTRVDfbpdHp0Oi0aM3WicEIYhogMuu1dapUqzz79DJZh5BUfQ0dpOq1WB123SNWlfFHAOUEcR8RxRKVaQWmKDMlus4Xrehimjed7eJ6HYSjarZ1cvVgZNJu793rxXNdje2eXSrWMFJJWu029XkcphRAKwzSmC9SCKIwoV6rESUytnt9flmmjmfliQxTHmJaNadsMB92cstzroem54vBw2EWpXAlW03QMoTPa+RrZ/iI8+asopRgMh8RJQrc54Py58ziuTbfT4oknjqHbOWjxfR+mdNF+b0Sl6rF+4zrlUpnXXvsR9fkZwkmAbZvcurlBHIXYtoeUim6vi6byZMW2HTSZU0TX1taoVMrT6qUijiOkUmhSECsPvbKK1ztL2NvFXngCJRMyzSVLJULE6DpYRoEk1YjjGEM3sN8+R5ZB8bd/nUmSoT92hNJX/4zb/+g30W9s4lfKJHFEpVTCNJY5fXKLufl5CoUctGZMBUbCmHPnzrK4uDjtrcxVZCeTCE032dra5i+/n/ePKinJSNGUwrQc3n7nXVZWDuSKwiq3iEjSFNPU2be8iGVZ2J6NbmgkqSKKk2lfZYqQAkRGMA5IEXiFCr3eGNvUSZOEJImZTIaMBh1cr4KUOZNjFARkKZCkKCGYBGOUgjQJ0XWJptkkacLCwhyu5+TqvmQYuoEAkiSazskad/2ClcytehD5fNjtdHFcB0M3IIuJ4wjHcTFti0F/iGnb1OqzmKZFs7mH63pE4RhN09FNGyFl3s6gKVKRqy2nmUAqHcOw8sqN0FBCohsKJQ1Q+TVk+rtkaZrbTJESR7lA216zyfHjTzAzM8vlK5ex3QJCMzhz6gz7JjH93/wyu7u7WJbFcDhEfPVfMVmaodyo0++NmJtbRCqFbdpEYci16ze4cOEiTz5xnFd++ApHHjuE7diYlsHy0iKD4Ygb1zeJIjh05Ah+0WG3tUepXEYzDQqFAv3BgOvXb7C0tMQPXvkhGVkuypSlbGzc5NsvvsjRxx5DCoFjWURRSEYubvbW62+xtLyA5+Xgrd6ogxA4toVpGLQ7LRAJpm2gvX0O+kP+rKoxf/zL2MtPEyYSlcXT51UwHI4wIovID9jSbrK8tETBdzEthVssPvQ9+YuIu6yrbF2hhIJJxN7ty4TDbWTUZTTYy9sclM0Ej/YQKtVFkAZrFy+xuLzIxvp1bmzcZGl5H3utNs1mm+G0z3v92ntEYZ933znJ7m6Xem2BYesWJD1qFZdSweSJx5eRZpduO6W9k3H88WVmZgNUEmObBkXP4diRFcJxm+vXbnD00DwLcy4zDYfZuSK2njHs32R+tsqlC9cJRhkbN7Zot7d4/72fYBkFRsOQ90++xtL+ZZAKwzDQNMmBlSUWFxeJ4jjXuVAak/GEamMfGze3qNeW0S0XaaYYqSQKexR2TrBbeR//3yqQ6TqZUGQiF0iTWYYi5W6d8v48SwhBnGSkQpFqNlaxzvzK03j1ZcJU0B+0GY/6WOmEQwf3o6kE35EE/R3m60WkGGOaGjfWb3NjY5vZo89z8MkX+L3f/y85dPx5jFKddpDg+e49xeAHgevD+kDvH9/PA1zvZ/D9dQOu97ekPTi2RwHXz8Hrw+Nz4PpLigcpvo+qfj44MTzs3z/r+R48zqOrmp8duH48Pi6M9LNUXOP/6f8gO72G/Hd+7ZHbPGzivBsferZ+dCyfdJ2zqTfdRyaVC9cQ/+xf0Dy2RHOvyTPPfZEUSZZmlIslatUyg0GX9Vu3WVxYwC/49xYSRqMRrudimCanT53i4KFVZufnubVxEykEpmniuB5pBmmcCxg4jk2v12F7e4tmq8Xi4mKuEmi7OI7JIBhiGiaGnlcLX375+9QbZWq1Ot1ul1KpSLO5x3g0olgskaYptuOg6Rqu4xJFYyqlIt1ej1a7x2gUMjszQ7PVYnNzk3a7Q6Mxg6ZJ4igiQ6BpBhN5B0gw4waO43Ls6DGarSbVapXvfud7XLlykULBYWFhESUkZGA7LuEk4tbNTer1MpDlSp6AbVsYhoZmmkyCCbohqdUqZKlg/8o+KlUfw8z7ZyxbR1MmaZrw4ovf4bkTJxiNhnhervLb7/fZWL/J6uoKEo0wDAmCIb1uB8dx0TQNx7WwLYdOp0Oh4COUIstSxkFO35VSA/MqUgj0eJV+rzdVHnWmvrCQJCnVahVN05FTT8pwPMY0dIRgSpOtE0Uhpmlz+/YdatUG/X6X9fX1e+JMJ98/zdbWDgsL83kiEiUMBgMcz8NxXCaTkNEwQNMMdNNgPA5wbAddN0FIgmFOUb516xbz8/MoXcPQFaPRCCklQW+IfOtHTF7YRn/qdxC6jqbpKGUQBCGn3jtDqVRCNzQ0Q6PWaCCEIhOQxFHel5iCZbmMRl1c18bzfKrVMo6dV3ellFTrNfq9Pp1OB8PQ0TUNXVOYhj699jaWZSHV1Nsxy4AEIXKF2Wg8ptNqY1cW837Z7Q8IB03i0j4wq4CGocPVqxeYn93HeDzGtixOvneKpRvbJEnM9X01GvUZXj11BtZvM7fXw5tt5IsDkC9cCEG9WsOyp2OR+TVPk7yyOT+fK9pGccT2zjbj0Zhvf/vb7FveT6VS4djRoxj6tKqUxChNRzdMlpaWmEwm2JZ1b4rTDT2nskcRXsFDKJnLDd3zOxSEkzHjScB4mCtgJ5lgMon57ovfY7ZeAilptfYoFT0MmaGbDmSQZjCZ5J6mYTjJVZ+nAE/X9bz6qltkJFh2viiSpRlJkmLoOtlUSIqM3LZmOsclSUIwDu7Nka7rfvh+yhLiJMG0zHwuUDqm4zAOJvS6PQzdRNM1bMfGdgoIJVGaQglyG56pMrWmtCnDRYHMmQFRHDAOB7mHrm6QZRmjUd6DK4Sg2dzGdV2C0RgyUEpimgaDUZt6o4ZUYJiK2UYZe2OHlzzJ0tISuq5TLpexv/ld1GOrOMUCSZySJim9XhclclBt2xZzc3MsLs5z8OAqk3BCGIXTZz5CaYL9K6uUa2Va7W0ME4QyMCyTXq/HeDzGcR32L69i2Tb7969Qr9cxTRPXdfHcAq7r4vsFCp5HFIUUfB/dMBmPJ+w1WxT9HLRajoUQAk3XubWxQbFUxDRNTCuf9/Qrt2Ac4v63/ynlSoNRkDIOYhwTdN0iilMM08Y8JDjXfocTz7+A57nMzTdobt2m1Ji5Bww+azwKoDxsERwg/paF+RsZYjvmg/feIBy2SKL8vlKGx8VrO0SZy9L+x3C9MhcuXuDIY4dxHAvLMGi1Rxi6TTAK2d3a5Z233+Hy2iVmqza+a1ItV9m6vcnxxw8xUw9ZXqpgGzqD3hCRZpx8p8PBQ1WOHE0x1RhCl907HQ4dmqNci9G0PrONMgdW6izMaUgR5zT0THLt6nmOHllAioBgOGA47NGY8YmClNZOgKbFrKw2WFk+iFAxQmrols3u9hamkYt9vf7GG+xb2U+vO8C2bPyyQ284YHb+AF6hgaY7ZFFEnAbIREMfldko/CXK0HI/ct1AIFHkwDW5DyjezVskuT0cUpCiQNmkusTxKuxfeZIDK1+gXnkS7DJHn/sNnvrSb5KZNcaZi12rIbwaT7zwazz3K7/D3/rd/4DHn/8Sx57+Al51FmV5GI6HVfDRxMfzJCnVJ4LVB0U07wJX9UL80FzxwdxXCPFTUYU/Cdw9mOc+fP8Hv9/DQfNnvf8/Le6/Rg8WnD6twPJ5fDQ+B66/xHgUbeD++FmqsD/PdtORPewIfwX7fhj32+F86hk/AZA+LD4LYL+3Ova//AFYBncYUywU6AwnFEs+r/3kNZaW9+H5Hn6lhFI6szN5JfCDDz6gUCjgFz36vT5KaVy8dImVlSVc18bQFM2dXW5cv87i4gJbW1u0mi2WlpeI4wiv4LByYD8Li8t87Y++hhS5sqluaJi6wXA4RArF17/xTf7df+/fp1zOaWYgsCyHIBhz+/Y2P/rxT3jm6WeIojGmrrh5e4NKpUSn3cJ1C+zsdHjttbexHIuFhWXefuddHLdAuVwlTeJpMh9jmAbS7aI0DSOdx3E9RkGfarWApms89tgxKpUyftFDSYu33niLMIqp1Wc4dfoMhw8dYjTuUigWEJpGkiQMBwMGgxFkKVJoZFkEAmynQJZJ0iwijjPCMEGqHOhoSufgwUMIIXjnnbcolQr0en1mGnMsLi2yu7vDH/3hH/PU8eO4joVf8LAtmyzNQGrs7bWo1+ucW7tAqVzBMiwMQyeYDHP/XLHDaBAy6VcIxxNqjRqTMKTb6lHwPDzXIUtTpBQ0tzexDAPXcbFMm+2dPeI4f0FrmmIyDvmLl39Ac7fF4SMHaDTqGIZJFOWiOaVyBc9zGY2GNJtN5ucXyJRgEkbomompW5w7dx5d1yg4Lr1Of3qfp7kKbKuFAOozDZDkCrgqr8gVTl0ieG4LFufJiss5vVQoohj+9E//NWmc8De+/CXK1TJ+uUIYJR9aPmXJ9IUuMTSbKApQStJp93Fdh1G3z8n3TzK7uIDUcsEoQ5O8++47lMtFSiWfra071OtVrq2vM7cwz6XLl1lazsfRbe3eW8lP04RoMsEtFtGtEjcunsLL+sTLX8GrLpHEIERMmk7wnApCJsRRxPzcHPobp0nSGOfvfwXXsqiVK/zBT37A373Z4+ZvPI252WI8DnJbmHgXpUUMhzGFok8UJ7z80sscPLCKZhh5QiHA0HVcz0VJnVqtTjAeU6mU0A1BOA4QQBCMcip9pkizCF3TQKQIkREn8b1qrqEbSJFX6tMMSEMkEk0pyBKUzHAtmzhOCYIJURgSTybsW6oTpwn1xgyDfg/ftRiNJ5iWQSpy260siVG6RgYoTcv7AaMEKXO7GF3PLXrCcIIQCinVVC05p+aSZShNZxQM0DUNpYnck1H70Nbi7hw47PWRSkMoyXgyRtctbm9s8MYbb3BgZRXfLyG0fNEjjkBISUrCZBIQT8LcdzeJydKMOIpRUhFFAbph53OwFAipMw7G6LqeLwLkkzqWZUIm0TQTTRmcP3+eRmMmFzjrDKhX60hSCEOM9S28/+QfkaYphUKBtbU15n98kg9OrNA880EuTjUeUW/UiOOQQa+DVIJqvcLtWzcxLSOn8HoeIDA0Hd3Q0c9dwe72kQszkAmGozGaUkyCMbZl0tzeYWenTZpmlMolkiRB0xUCwYXza8zOzCAymAQjDNPKtRSUQkrYv7xMwfe4dPHiVHgNLNuiWCwwDsZ0ez0Kno+mW4i164hJhPgn/yHrH5zk5T/9Fm+9/QG6EROMIxqNBaSU9Ptt5uoNTNcjISMMhnzrG1/jxJe+/FMnwz9t0pz8pYn26zHZjYTb61e5ubFBGCUUq7O89tZ5bH+eUmkWkcFwNOTxx49iOTpZHLNxfZ1Wp8e5s2e4s7nB+vUrNOoefsHEElCrGmxcW+NXf+Uo5dKQkucSx0M0TU39iscce2IeW5OYwgEi/FIu1iY1jdEoIssEUqV4loWmD1HCptncQZDR3E1ZmJ/HdgTlssv+Aw1cL8J3LPYv1/Acg8uX11AqpF4pMApiut2As2fOcuTwKsFoAlLSmJnNFas1M2eKOAZxmvH66++yvLyP7b025WqJibhNYfcE0XabDfETbEvD8csgDGSWIbKM9CG/VyY0EAmCJO8zzSS6jPKFPwRmoUhxbomZxYOUlw7i1mZpLK+yvPo4Tw4Va8cAACAASURBVH3hb3LsxJdZOHiMyuwifm0Wy7ZzoToppsyiFCnSfPGZBwHcxxc90k/Iu4STIfenyMZnc5h4sJjzWe6/TwKPnw4up5XhJCFJkk8Ekv8m4rN+v8/j4/E5cP0lxv/fgevDV7R+OcD1QSn2T9v+4VTifOxKTa1lugOy//5/J/7icS5dWaNRr9NY2EeaxqysHEApHQTopo5ru0iR95KVyiWuXr2ClILbtzbp9fo888wzjMcjPM/h4toapq5z+NAhXvz2t7m4tkYcJywtLXLr1k1cx6bTbtMfjFhZWaVaqVGvV8myBLKUYDTGMC2WlveRItClwLbtaVUj4fLly9iOz7Vr1yiViniujaYy/FKJLE1wHYfhIKBUbrB/3yozszNkWcahg4eZm18gSVNc08qrMCLL++1kQpY4JBMXsozBoI0UMUkGSuqUSqXc71CZDLo9Vg8dRmkab7z5Os+deBZpxAyDAE03UcrAtGxAkMUxju2RiYSNm+uUyjX2Wh2EAk0zsB2XNEtp7u4QBGMc12U8nnD02FFcNxdt6rS7FP0iYRjw9FMnGA4GLCzm9hJCKsjgj/74m8w0GtiOzfm1NZYP7GPj+jqmpTMc9nFcF5Uu4+mrDPp9DN0gimP8YhHHctna3MRxLNqtJqPRgCSaoCmd8SREKh3bLmCaOqPRAKUUpmFz7NhxbtzYwHZ0bNtha2ubUrGM4zqYps1eq0mh4OH7PkmSInRFHMbousGdzTtcvXKN2dk6mzc38wplGKIbBr1eH7/g88HZM8zNz9Lq7pGEYNk22emLZOYt4idHGCtfIgiTHEykAiUN9u9f5cypkxx74ihS15Cazqkz5yiXfTRNkmXp1HPW4r13T9EftllaXMIwbDrtPTzDJs0ySrUaKdDr96mWfLq9LrOzDQq+R6fTRkmBaTkYloXruQyDEUIKXFvHtGyC8ZjtO3cY9Hr4lTLdvV3eff8Cs4UEq3eVePnXcRwfTcuAkG47wPMNdN2g0+lROH0ZSOg9fxhdaYgYnnjuGbSyR+Uv3uadI/MU93q52rX5CqgNuu1Z/FKJNMto1GfQZF5xVkoSJzFS5mqocZyLIy0szJEkIVJmhJMwpwYaOlkGYZzRam1j2SZJEiNERhiGQIrSDMhAkPetIQRJFOTK0lEMWYppGoSjCVvb27z55ts8duQIpYLLn/zJH7J66AiGYRNHE9q7Oxi2mT8vQpGmCeF4RCoEcZJMrW8UhmmTpKBJSZyETCY5k0Ap/V7CedcLOpxMpj6rH/aQBsEwr3qSqwmLaXXY0k2UrqMZ+pQCLLl84QLnPviA9es3aMzOYjo2wyDAc4qkJHQ6LcgyCp5Hf9DPzycVmqaRxAlhnKKkjZQ6eRXaxNDzft1gPL43J9+t0MZRyl6zjV8ooJRiHCS89N3vs7r/ILpURMMR9mYT6z/+B3zta1/j+eefz8d+c5swHtPwC0DKYNDD83yC0QDD0KhUy9xYv0G5UsS28yqzYVhcvX4d3y3RG47wh2NA0PcKRJOMYrGARBCFE6LJBEPX2Nntsra2xl5rj1OnT1Es+gyHI1zb49133+P2rZvMztSx7AKdbnfq0ZrS3NkhiiYAjIKAcrnMX/zl9/E9D2dasb1Lq+bCVcQkRP7Xv4925o+Jbp/ias/nb/+dX+Hi2lWSVGA7JsGtMSXlk7oZu60mRcdBJCFzK6v/5oHr903CE0PETWhu3WFnZ4eF5f3cvL3DyqHjPHPib1IqVbA0SZhElEoF0iQiGI4YdYdcW7+GaSpcR2NpscLcbAmyEcefLOM4Yw6vHCYKJqgsIQhSdF0wDseYlkal6mBbAk2F6CpFCpM4NpFWCyjz7tubKFnAdjIKZpUgbCMyG8fTQcQ05mdJsj5pEhGHimhs8ObrZ3nyqTKG3cK157l4fp3lFZssEgyGCbXGEo7tUPRd2p0OjUYDENi2k7OilIXpGGiGRqlYpN/dQ3N9TFMnSwYk8RCvf4Sz4v8BFI3FA6DbiAxkCql82O+gTRXBY7QMVAoySVAKpJExEX1SK8BSNqmICNMhSqUUfZdMOEhNQxMCTUkEYS6wp0mYWmQJEqS4u5j8YH76EOD6kLzr7j6ykSEbj656/lUB10/Y+952uq5/qhDqLzo+B64/e3wOXH+J8eCD8rAVok+jLHyW4/70IT72/yfRLj762cf3/VnoFQ8Drg9SSx6MjwoJ3N3u4wrJd1Xm7irNffh3Nf2u+ffIvvkyXFlnsFxjb3eP2aVVdNubroybeVWSDFLQdJ04CXE9iySa8M6bbxInOrdvb7K0tMTBQwdwXZfJOGBxaYn6zAypkPjFCnMLizx25Aidzh5ZllCp1IjjjFqtSH/YZ3HfMkka51UI2wQyBv0+Rb/A5YsXWFiYpdVpY7l2TpPzfPxyjZWV/SzMzzIeD9GlxnA0IE1SkBrD8QS/5DMYdvmL77xIuexiuzq6IdGmCpkiTafCOgZZ5JONFLoSTEZDHMtmEoT4xdwuoFj0p793hl+0sG2Xzc1NvvCFZ8mE4Malq9imw7DfRWQxtq0Tx2Ns1ydOUqRMcW0LJRS2ZZBGOr1OB8fW6bR6OLbB1mYHyzIoVU2yTNLr7dHrjJifnweRksUaBb9CoWSSiZAsAyk1Or09yqUGs/OLhMMe7737NrZbIBqHGIZACRtSnSwLkNKCzOSll34ICGxTpzdoUatX0ZRBuVxjb6+NX6lQKJYZT2JMywQRYdo+rleg2+tMK5WCpeV5XNfn+vV19u3fj9QlKTFSKZRSGEYuRtNs7aErsE2b0WDEN7/+dZ544hirK8sMRz1c36PWmOHSpRu8+car+L6HZugszC9iKAOlQXjmIuLUJaJ/rBi7s+jVfUihSKIxpqGRIbixvk6tWuXWrVtUylXSKKHs+/hegW6rx8bNTQp+Cc8vMjtTx7Hc/J4RCY5fwLANvKJLq7lNv9OjUqoxGfcJxiGN2QWElOg69Pu7uJaNZzvT7YoMeh0yJErPe1X9QhnLcLEdC98zmV9ZJTMrmO1zZO0N+uUlpF/GVi7nXvsmSwefIYpNzEKB8e4mp+/s8F/9z/8b//j3/wsiQHd00kOL6BdvMNeZMJKCP//zFzn2RO6xaorHOXnyJIuLSzieizQ0onCEUjloygRTOmzGYNjDMnPf2CjMcDyHTAh+8P1X6La7FByL65cu8eNXfsjqygr2VIgnTUGh5YBDCrIkIgqDvLIrQSpBkqVIJck0hVAWW9t7LMwv4Xgm+1ZWEeT9n4KMcrWEVA5JHDEJhhhKoWsOZ86eZnZmFtMwiOMopwxLSa7+npElCdEkxNR0hKaxdWedLMtFv4RukgmZg1cykmiCIoNMIUXGOBiihERKRabrtLs9LMPM7Z1GI2YXlxBS58jhwxSLuR+yZ/kkaUoSZThuEdN2SKXE0A1M00ZqGnGckaT5PGvbBogkX+ySGZoUpEmCaZgICWmWIGWuwqs0DcM0mUQx3/jmt3j+hec4ceJpkiwCkWLoGtqNTbZ/7TgHDh0miVK2bu3iX7jIxHUomR5SGriej+U6aLoFIu9vH/R73L59hYXZfdN+XQPX8Wju3oIsoxQkOaewUaLd2sF2PSzbxLJsTMdGagb1epVyuY6UGoNeh6OHDuAWLAqFIn6xyIHVVQrFMkiNc+fPMTc/h1Iarlfk9HvnOHjwILNzM+w091hZOczXv/YNNm5u8NjRwwSTEXGaoF/ZgPGE4Pd/G7V5kqWFBTYCh8PHjvN//19/SDSGF557lugPDcybZaInAqqlIoaI2d68iW06uXCUFCAEKpNkD6GDflrc/+7OJQenb88dSfpDE6Wn7Kxv8v7pNxgFOodXZ+kN4Mjh45w6e57F5f1cvnGdQ4dWQUIUJ6ydPUc03uHQUoWD+8rsm3PJog77F0oszhfQMghGCZousH0ToetkMiGONSZj2N1t4ReKaGi0O32cUpGUjHAyRimTJA7Zv6+K4yQ4jkEqR5Cp3LopTjGUAjFBEwopwLQlYZKxtd1lZmaWJLTo9/Z47PAiKlV0+zHvvnOWvb0dajMlnILP+bMf0GrtMtuoIUjoDzqEaYKm6XTbXYJgRLU+g64Uze2t/L0WXqfUe44yBeTqBl7jCTCrCJUgVADoHwd3JPl7VmhkQpJKiKVGgiJNFQoLEelkQuQKwOiITCNJBXLKMmbKCslQ+aJmJkBI5HSRRAiNlNxmQdzdSdzN56aU3g9tGFBKcfr0afb29qjX6x9hbTxKg+V+kHp/IeH+PO5heeyn5ZAP0pjzzxSflJfeHef9+/+iIrvvlGL67CHEvVLOZ6VDfx4fjc+B6y8xHmbn8mD8vDftz7P/Xbrsp62CfZaH71FiSY8890OA693r9ajjPHieBz1bHzbej4Pu++J//ecwW6GvMjp7LRozM/T6PYJhMFUQTVBKgMiYTKJc+VNJgtGIxswskySlUq/y2ONH8yRBgswy0jQjimLiJKVer1OpVLAtDSkFxWKZO3d2+N53X+KpZ55E0/L+xM3btygVi9zZukm9UePqtSvU6hVmZhu0m9sMRwPqjToZMBiNcBwHxzWJwhGQYVk2UssrHJPJhDhJ8VyPvb09Lq5d5ld+9ddy9V8h2d5p4no+Ukk0TRFlKVJToAykbiANA6Hp2J6fU5YQdLsdCr6HpilsyyYMUxAZli0xDMl4FON5Pt/85rewHR/fr5Cmgmgy4u233uH999/j8NGj6LqDkCmjQYBuCrIsolAosLm5yaFDh9lrN2m1WjiOh2XodDp9DEMnjCaMxxO+/vVvUG8U0XSJrlmAQgqJ43nYnsXpU2/z9/7e71BtNJip1HAch/WNTb730suceP45mtu3cV2XwWhAs9Xk6WeexvWKKN0gSkKu3bhOmiU06g1Go4AkSdjb22E0GuEVSjSbTb7z7e/w5PGnkFIjSwVKSbrdHgW/wN131+7OHr7vozTFJJzgOi7hJFc/HQdjZmYaHD58EJSGaTsM+wMKnseg3+WFLzxPY2aGmUYDpSk0XSfc2sX4yUn+7ESLA/sN2voypmnkwDhL0TSdMMoVdOvVKguLC4ThJO9p9BziKCQMJzRm6piWiZKCixduMBi2ieMBt2/folqbZ+3COcbBhIXF3KoqSWIM3WRrexevUETXDEzDwHU9pG4wGAUMRyOGoxG1ehUlJErlSsrvvvMuc7N1Wr0+vudiuwUMt0TrzjpJb4Og9jieuwiRhmMG7Oz1qNXmkMokPVSn9sLz/Pbv/iauZxBGAaZpk2WSO2WPmZdeR/7WV6hJDctZRwhBa7fGyoFV7mxtMx5Pch9GQ8/pu3effZGr9Rq6iVI6b7/9LmsXLnJodT9xGFGtVTEMk2q9wYHVI/ilCpVqLqoVRxGOlVekNQVZGrPXbuJPF3VGoyDv07Vzyuh4EmAYBgdXV3Ecg53dOxT8EmuXrvDSSz/gxHMvEIYRkyiY9tHm9/SpUx/wxus/5uhjj6Frin6vi+85kMakIhda0k0Dw7SIkpQkTigUPAqFAoPBKPe1zCSked+2rumMRhMGgyG2nffr6oaBpjTCKML3vClNOkAogW5ozDVmqVVKBEGP0XDEOAh5573TDIdjbNvJ7zuy3C9V5t89S1I67TZxnORWO2me1AokUTxiFAxydofIhZyyNBexiqIIwzTRNZ07W7eplCoUS0WUVJw+fYaL5y5wEJ3o7/8WFy9eptvu8E//u/+G32ssU15ZIhkN0A2FZeu5KJeQ7OzsEowCpFAs79vPzm6fcrlKd9CmUCziWCZ+sYja7ZJlGW1DUalW6PdaGLqOFFMGhJYn/hfWLjI/N4dtmznDZerd7LkOpmmw19olnsQMB30sQ2McDDENjX3793Nj/SoF30XXdEzTouiXmZ2dpdGok6QxpmEgL95ATEKS//wfYDbXkJriqd/7J2RJwPe++zKe53Ls8ccwL/ropk70xBCpKRSCXqeNU/Dxy+Uc9giBzMTPDVw/Ism4J8muKdL5DDUeEo/uYBhVrt28xdLiYbZ2dnn8+DEEGZMgZNAZUikWuPjBe2yvX+DQ/jLVmoOQLaQcEQUaumYAfdIY/IJLHE9QApJoAiQEoyGeY1MqusTRiNffucXqgRUMEZEK6IcZ496YjARdzzAtDTLY2cpVpaVK0FRu1yd1icgUmtJJkwmOrbG0XKPgGpi6y5kza8zNz3H67GkKjo+uCWZmK3z32z9gbzvAtlMOHzmE7VgkacxoNKDbCygVS3S7PS6uXWJl5QDBOMaybLY2b6FrKUIOcQdPsLX4CqHwKNZmQUiEVIjs0bnSR3+Hj+YznzU/evA4D/ttH5YfPXiOKIqYnZ3l5MmTzMzMYJq5enl8VpDtSNTMo8d/91gPFh3g44WIR32HR12XDz/76fq6f6Fx3+E+MnY+fv3/ysb01yA+B66/xHjUqtKD29yNT6p6fpLo0IP//tM8CJ9UAb4b908wjxKQ+qwrWXf3T/4sB64PE2f6rA97Prl9eNyPr8R9eG2UUqRp9qGoU7uL+B//T9RvfYkkSdi6c4darUacxGxvblIuFzGN3OO02+sxiRLGoxGGptHv95mdXyAMxgx6XbIk4c6t28w1GuzttXAdl9u3NymVymxt3UHTFMNhD8iparVqDdtxQECv26NcLpEmKa7n0usMMQ2bmZl5yCTDYUAw6LCyukoYhfcS7zAcE04ClKYoFHx6vQHDYIxhWFiWi2M7KKkRRxHPPvcFvvu9l2nutVhcWMT1clqrbhhohpH3PoohUTTAFAYkMboSbN7awC/6rF1cY2FhgatXrmDZNmkGUuqMxwGalpGRUik10JTBkaPHsCyHCxcu8b3vvcyJZ49Dqvjil76Aoet0uyP6/TZ+oYzSMoJxTr2dnZkjTWPWLl7k0KHHUErR73UoeEWUJonjCf3egL1Wm6eefpzhsIfnltE1k36vxx9/489YWTnA44cPsbW1ze5um2tXLmPbHpVqiWeefYrY+S7Cvk5vp8yBQwexHZtC0SdLNUajEaaZr4DXG3UEGrdv36JcKTEeB8zOzqI0HU3TOHb0GP3+kG6nR61WQyqJaVlYpokQuWhNGMYoTXHz5k3K5TJZlmGaBqPhiBvXbxCGY6q1CmEU4zouSlNcOH+ew4cPEia5sq7SNdqdNqO9FoWX3mT8n/0dVg+fQ849h1uq4ToWmZTIjA9tjqQknoT5/Z6lXLp4Eb/o02w2qdSqmIbOZBzQ73W4eHGdWq3I3FyFgl/AdkoYuqJUKtPt9lBKEcchnc6A5X37uXX7DnEcMZmE2KaD0HQ0PRcg0zWFVJJBf4BpWpAJzn5whkOr+4lSiMMJysgrc0KzsIfXsdIhSfUE9UoD18totpqUSg2EstAMgULHKxoMhwNsx2E8DomihDdPnkE3dGrvnCOulVDaZXRdR1PHOX9hjR//5CdIIVlcWCSOIjQtr8giBEkcoykNKRVhGLG0tI8DB1aJxiO2t3foD4YcPHiYTOTUa8Mw+eq/+CqWabG4uEASxyhdEUcTet02xXKJdErwsG0bwzCQUtLr9XA9DzldfQ+CIUXfJRU6hmGztdXkyJGjuT9iGhKMx/f6PYUQnHjmmZzlkOa9oIN+l16/g+MWcrshxD1/RVM3mIRhXuXX8ipTLuyUMR6PEUgcx8E0TZp7uSpvluZWW1makqUpTNWqoyhGKsGwP0BTinZ7BykU//rPv0MYpVSqdX7y+musrKygtFyoSSBxHYc0SXjxxRd5+623efaZZ7Bt6179I00nBMGIPMcU02oQ90SZkjRBKcXS0iJZkuJ5DrquM55MOFCq4nYHDH7rKzRmZigVfL7y5S+zcGMTfIdo0MdxbVp7TaSWAyLfK+LYLq6b95n/6NU32W3usv/AMkmaq6BOxhPs7jB/d8zVefudd6lWCkihaO21sW2LvVaTTCgOHFglTVMMQ5FEE0zbodNpY1s2o2BEo17HtT0qlSKGofA8F9M0iZKEWqNKlmXcvn2bSrlEvT5LrVolI/2wQrN2HTEJufyVJykOb5Bm8H5bR8sSvvKVv8mrr77C3/7NX2fwWoRt26gvwiSMkIDSNXZ3d5mZn0czjbwi9hmBqxAfCjp97L17f8WqK8nOasSNmK0rF9jdvEBj7iiV2QXubO7xzIlnGY4G2JZBpVTinZPnOHP2feZmiqhszPJylTQbk4YOk5GiVFXoeoyhChimSRRPyJII0gxDN8myBNdzSNMYw1DommK7E7J16zIzNZ9hIHj5Bxd4/PAiui5AROhG7kG/tTkkTkLKFQchE6QwCNMJZBoyk6TJhDge54ra0ZAkjqlWK5iORqXm4Tk6taqNJgM0CUmssdNs0qjP88GZNRqNOa5fu45hOhRLZfxCkdFwRKlYQjdt4jih2+uhS4FyW3itp2GkKDw9xHGK6JZHmuW98I/Kdx4FXO/Pfe72bd6f93wS8+1hwPUj4DH7eB6Y23HlwmuLi4tsbm5SrdUQQhB90yS7IT/Vx/XBcXySU8ZPky9/mOs9ujp798/PwmD8mQDkfbt85Np/wnd41Dg/jw/jc+D6S46f5kH8pM8eFb/oKu5f1UP0YcX10arCnxQPAtdPPFeaTqun2oeT3b/8C7h+C/H4YbIMHNfLq0a1KoaM2dm+Q7fbw9DtaUVOx9ENkiikudeiXK9jahol36dULFIq+ty6dZtSqUwUxTT3mhQKBV566XscPHiQLE0pFErs7OxQLHqUKz5bW03KRT/vp9Q1xmHIrfXbnD59hrnZOYqlIpqmaHeGhHFCoeCTxDGGJnMPQV1H1012my0Gg4hXX32VxswsRb/I+voGw+GIfrdLdXaOWq2O47q4jgXExOEY23EIw5R/+Y1vMX90jFuOWXtvC89xMJSi09ojm/qwappBrdpAIEEpvv71P2FpcRHfd/MkOAlpdfZwXIvxZMyRo4/x9DNPo2k6nc6AH736CkePHuHdt99j374VTp48y+zsDJousUyHwWDIcNhmeXkFXXls3rmFYxtYpkMYTkAmVCpVjj/xHKapKPgu43GY9x2PeuxfXqFRr9K8s45lKDRNsXr0KI5bRNMTdravo7t3ULqBoz+JYepYpkkSRfS7I6JwzF1rDjKNNIG5uQaIDN8v0O31MS0NKQRKaSRxSq1aZa+1C0piWzbXr1/Dc/ME3nTyPqhSsfShMESW0yjnZmcpV4oolVMoW60WhYJPrV7HsPRpv2OeXOjjCOf6Jjx3jMlj74Puoc8cZXdrk6LnEGeQxClRFHNn6w6lSglD07h96xaTyZhDhw/lAkuGy1e/+occWl1lNBhQKZc5ePgw165eoeAW/l/23jRYkis9z3vOknvtVbfu3vf27R1oLDODATgLhxySY5GmZNGSyDBpmww7wpbDtn6Y/uEIRzgcZjjC4S0ctmT9kGRKpER6SM5wmV1DzgxAbDMAGlujG7337b599632qqzMk8c/8najB2iggZkxRUr4IvJHbZmnsrJOfu/53u99yTJBoRiRZSO0Vvh+gXarTRzHuZ2RElRqFRCCWq1GrzfEC0JeeuEMw8GAiUYDsoywUMir0Nph6fACgpRyuULc77G926ZRr9Jt72KGQ0xvk8oTP8vOzjaFIODCm2dYOnyScaIQW1vEe20oBAfJtcL3XaIw5NixJViao/yN51g/dYgoOU+WZcTDJQqlIoWoyMcff5ytjS0KhZB+f8DnP/97PPLwIwgpicdD3ANbKaUko9GQ73znWT7y0Y/x1FNPkWUZkxN14nhEkoyYnZthcekwSIlVCpAIa4hCH6FdjJVIKzBZdkdd13MP2ABKARnugaCPRTEe5v2Ti4uzuK6l2x0AisAvAlAoBvhRwDhJUFojlcZxc1VfrTJEZg9UiA2QL6gpJ1d27vc6d44lhMX1cjXf25XIMAy4zdAQQuA4CtdxcuGpA1qhchVRlAvCjUZDpmcPsXT0FCdOHMfzPfr9HidOHsNxFMicSZIZQzwccvzoET716U8zige4jkRpyXDQx3ULeL6PyRK0dhFCA7kYmRAgJYxGAxxXIa3F9TQmMwRRQMnzULc26P7cYyAs7f0WnVYHublF/OT3GEQBUVhEaQchHJLEkGUZOztb+IHDaNDj2JGTGDMmijx8L7hT8VVbe2ilGNcraNenVC4ihA/C5crVZSyCUqnIxQuX+fJXvszjH/8Y21vrNCbmKBQL2Cyj1W6zt9fGL7hIJen2eqTGkhrJOB3huh4CxfbWFtPT05gsQQhz0G+d4XkRJiqQ7exQ/89/hfH1Mzz37PO09RGOHT1OvV7mE5/6GEqn+BcqKKVIHh6itIt0HJTSPPWdb/HAQw8RpylKqQ8EXN/1nn93NWlXYs9pdDPhytlXqdRcegOHI0eWqDSqLN9YZWb6EEk84Oknv8zmxi1Cb8TMhMt0s4zFIDScO7vKxkabQ0sVtGOJY82z332NyckmvudhM0WWSTIsWh30ZGcZJrWEnsf0bBXtS/wg5PTxIwShwdoMR3tkNgNSKtUiUeSSJGN8LyTLDJnNfZKNGWMwSKfCzZU+1WoJqTJcN4PM4CiN9gATE4WasOBRqkRcvLTGtavLFAsVbty4yeOPf4wbt1ao16tYm1GrVVi9tYKjLI52WV3dZjAc43qWIK2QDGJe3v6/KZeK9AYpUXECIb7f5eDtv8udc/8uwOxeFcv70WzvenAnF3qrSvhOMCnFW0rAxhhmZmbyBTMh7rLD+X7g+n6A4P1ee7fvcS8Q/G4V1w+ay/6wwPVeT78ftuIPfOx/jeND4PqvOD4ErvcO9Td/6gcGrXBv4Ppuk0CeoOU02ju9Fv/Lb8J0AznZJBnnqpiNiQZKaxQxFsv8ocN0u0POnj1PpVrm2pVLbG9u0Wq1OLS0RJIlpCIjsQblupSqVQLXZzQaMjs3S6FYZGNznampSV743ou0Wx0WFxZ5441XmZ5uonSA72qG/T6jOKY5PU25GHHy1DFa7T12djeRKuNLDgiV/gAAIABJREFUX/4mDzx4GgQEvse1yxcJCkWyzLK6tkqxUKFenyQ1CUeWjtJutQg8j4sXLnD69EMk1lIqlXOBJy1wPYmWgvHYMBol7GxuM3vMJ8vgjZd2mJtfZHN7l+nZebRW9HoDClHxjpVFhuXhhx+l3+szTkZEYcTKretUqhU836dYKuZemeMY7bhUyjW0hkqpwOz0LGdefo0oKtGYqKIdgef6uI5Hp7tDEBRYW91hcmoCm43R2sdxJJ3uPoPBCAgwWczGxio2ExRLRZSCxkQN31NUIsWg32ZqpsnQSGwmwQ4oRhrrrGKFxOWBPFlPxoxHMf/v73yeE8ePUCkXCf0Cf/TFLzE9M4vrOwhhcRxNGBYQKmN3dw9HO6zcXKFWqxJFId9+8jvMzc6RGUMhCtFaIpSDMebOtWiMYWt7kzCI6PW7uYqthH63y872LpVqHe26pNbQabfzqtj2Pupb3yX++APYX6iTrTyNnf9MnriOh6ytrFCqNQ4ASZTbIml9oG6bKwI7jkNrv0UQFBkOhyTjMcUowpqMta0N5ucP4WqfcqVMu7eP5+R+m2trW0RRkU67zeRUk73WPq7vYm3GeDRmb3ePMIyQQnL21dc5srQAWcbm9hb9QUylXEGIjMzEjMcJ165eYe7QIkiLibtEtWPo1lk62zdwFz6CFh71eoDnV2n3DKV/9iX889exn3kM1/XZ2dmhVCoxGg1QWuJHITRrTPzhd+icTrC9ARMTnyGOx4xGI773wos8+sijFAoR7XaHBx88jed5KKVRTg6YpMy9kTOTcfzkQyAEcTzC9x2q5QKe6+A6mkKpiBUCe4CwBBKTjJBAJmQO3rCIA49YpRQWe+BTmwu6aa3Z293Fc3yiMKJSKaGkodfbo1ppkiQZTz7556ytrTI51UBonSsLW0gNCKmRymF95Sovn3mF+YUFxvEIqSBJxrh+3kstsbg6XwTTSqEO/J8Hwz5Zmt0RqjKpYXNriyj0GY9z393hIMaPQgajEY7jIYXED1z6gxG9/phqtYDreUxNT+M4GjAgcsCspaTd2mf5+nVq9SqFQoSQ0Ot1cT0H1ynS7XVysIvAcX1sZkCIO+DE83KGy0EXL9eXr2FMSqFaxblwHccanupsUC6Uae93GO3vMX9zG3dpgdFozHCQt0j0+0PSNGVne5Nms8HG2k2++pVv8MjDj+A4kjAIsQKS8ZjyMGE4HKJmZ4iTBK0U3c6I5esr1OsNzp0/z9EjixSLZSanJnFdRXOizmgMvudy4+YNmhNTONojLAVYYfH8ANcL2dra48LFc4RhAUe51Gt1lq9fp1IrkaQJOzu7BGGB4XBM69Y6hVab+N/9aUbXX2R2Zo6zq4pas0mtVmZ7d5Vz519lfvcUQijU4xZrbzOKMs6+eoaPPf44Xhh84Irr+wGu2SVNdtYhrXdIB30KZcXExBGyNEYFDlmmOX/uEtevXkCpHo89dJwjCzUqBUvBc+l32wSlImHBoTldRcsAkCg3I4wmEMKilGBvb5/hIMEPfZC5HoV2XNqdLgWnxK31W1SbVdJxF4cxhjFSaATuwQL1CC+QaEchhUs8SpDSYrJcEdxkCVI7DIYuzz1/gUdOP0SaxTjaglE4IiSxCRoXm1n8MCI2GVPTS1QqZZRSHD+2RLkaMju/SJIk9Hu9A49iixYp1UoV5QRMz0wjGEHcIRoew7Mub7afpDFznPrEHNkPAVxvV8rfTgt+v8A1F20T71pxvR1SSrIsu+PBnDN5/v8Drh/kO9w+1l914Pp+2Yr/JsWHwPVfcdyPhvuj2v/df/j36wd7v5Wt243n3990/u49Fnfv816iSfl2L2rzO993ezK6n2iUEPKOVYwQ8uBzb+377r5Za0FYEK0O/MY/JPvcJ3FExotPP8XkdBPheohMo9wCw9iyt9+h1+likvFB75tPfzDkox/9CPGwx42btzh/9hxFP0LaHJxElRDX9fEch72ddXwvFwM6unSUa8vXWTxyGEdpbGLBZozimG99+zvMzMzgey47e3t5b57n5nQyk/HAyRPEcZ9Go0KcjJianWPQ2SQq1dhtDdlcvUlmYxaPLCGwJMmYQqnIG2+c4/iJE7z40qucO3eW+UMz9Ad9giBgNBwTx2PKxQInTpzAeFtgLd/84xeYmmhy6eIFmhMNpHIIw5BLl95ECIXjeFy/eol6tcrv/ovf4eMff4JxMj5I6nyUVGxtb1OICmAzlq9fo1gMaE5OoFwXN9BMTk3RbFTo9XoUijUSK+h3hlQqddJsTKVS4LVXz1KrVtnd3cmrpFEZVK6Y2N7bYWFuitb+Dkr7jGKB7wekQhLjEpYaDAYZa6vrRJ7EJAbXLxHLy7ntkD1JMk7Y3t7Oaa9hET8MSFJDEEXMH5pHSkOpHNLtthmORjiuhzXgOhopM2q1Mn4QYIylEoXEo5ROd0CS5v16q7fWqJQr7O/uEQa5T+f1K1eRQvLGuXMcO3GKOM1w/RDhaAql27RSwWjQwesMUE+9TPzrv8bmJw/jvfK/I+c/g/IjyAzFQoUMzbXL12g2p3Izeylpd7ooIVlZXqYYhmztbNGcmkBJRaNeZX1tlSNHj7CysoJIcxGhVq9NqVpmPBpjjGB/d0ijWifLxnS6Q9rbWxhjaDQnMSYjGQ0p+D4rN9eYnJ4iKhWZmJzG8wOKhYBvP/k0h48ey6VdBIgszanIvsv66i0K5QZuuQgmxna2COZ/jK2RZD8uUKo3Qcb4z5/DZhb1mdMMem2KxQImAyEdLIph3CVrNhlfWCYbn0U6mni4gCKnzs7OzlAqh/zJl77K+uYGx08cRzsCY8a5ErGUZJkhHo3wPY3UGfF4xMLCYcJCCTcIMXaEQSClg5IOSgqEzVAix2tWSZTUZInJZUKFxKT2ICmENB0wHg+x1uJ6IVFUptfts7u7QbGUK8+Oxxm3bq2zubHN4cWjVKo1lLL4ns94lEAm8VzNoL8PjCmUG8zNH0Fr/4CWbNHSRQqJScekxqBczSge5TYYVgPyjmeychyS1OAHPn7goaXOLbFc98BWCdLxEEdLbJYxGia09ro0mxMgLEoLXDe331FCI8Rtqq9ld7/F2fMXOHb8JFLdrhS75AVig+M5GGNxXB9zoCicV3kObjSZQAoFMrd3qlTq+F5AYizu9h4mKvFiIvi//s9/wKXLF/lrf/1zVH/rK6SnlkArvCBgZ2OLve0dNtc3OXH8OGDZ2dunXK5grGWiOZkrKAudK5orBeUisZYoDf/8tz/P3Ow0ly+d5+TxJZrN3Dor8EK2N3fpdFo0mvW8Wq81YRCy396i3ogwRmMSg1YSMsGoP+LqlTd5+PRpBv0e586d44XvfY+jJ0/RaXdI4hHlYgHHUUTW0r1wlfiX/xph6yKOq7lhQw6fWKJcrmBTl1ppjgu/d4NiuUjwCXKrIJsvjtWlRWpJWC1hMovKDhZa3iZYk3t13r5P3v3aO3MGJSWZMTjaIe6PEVc8nBnD3o3XCPwy+0ODHxZ4+cwbtNfe5IGjE2Bjji42KfkglQFpGVuDFxaRNsF3Nb4rECQoKRnHY8oFiVIpru9j8YjHUAhzCyopAWFxtMKKhOmpJvs7+xSjMlkmcJAYI0jMEESM74YIqzBpCmRIR+IGPsLk4kU2S7EmxVOWU8emc5Eka1DSIUljhnEXT2uEq7Hap91KuHx+mYU5h8j1GfSGdAY9CpUp0vGYNEnwPI3n+iwv32J28QitvV363Q69QZ+b1y9Qqg8p9E4zkBt4D+9x4rHPMpAhWr43gLuTw7wHFfYHt3iRbykL2XuDVngLWFne8kG9DXbTFxQIgX7CvGNc9xrL/bxN7/We+4W4c41//7HvzoPvd17uBxzfE0i/y/b947vf+D+suL49Pihwff9XzIfxr3V8EPuZu+P9eq7KA+uFDzJJ/SjCCrD/9A+xxw4hHMUrLz1HMfJzlU0hsMaQmoyoUGIwjAmjIo6bVyNd16PVbnF9+SppOiYMA3zf58yZM9xYXqbb7RLHMaNhzN5eC2MM+/stPM/HDxweeOAkaRJTKESk1rCzs029XucXf/EXmZ8/xHAYMzXZJInHKKnoD4ZYKymWC/i+y+7uLq7jkYwN3fYQx3VZPDzN8eMLFKMSf/D7v0cc5xY3QsCnP/1Jbt26yZEjR0kTg+t6VKs10tQShSWKhTIXL14iSWKiKCAqRCwuHKFYKvPYY09QrtRwXS+X//d8nnnmWaTM+9CUlvzd/+w/xXE0uzv7fPMb34ZMYdKM6anpA0Vmw+72JuN4iO/7CKkwVjIc9Lhx8wZWZKytrwAJzz3zXdZXNxGZZW93ncOHm0SFgHqjgjFJfh51wD/5zf+HTEoGsUFonzAqUq5W6HY79Hs9yDJ63T5WCP70z76FQbK6vnVQtZIkcUKv3WLQ7zI3P8f84QWe+MQTHDt+jInJCSDDcR1KpRJ7u/uUSlV8P8wrecOEeJRw8cJlpNCkieXs2fOUqhUazSKz8zUmJ6fodmIOLy7huT6NRiOnsjmao0dOMBjGrKysYlJDv9tHSJErrQqR9xxaSzERyG88T/xf/yrbDy/S2HsGoilUYZK11fWcwhmPeOnMiywenkNpATZDAKWoiJSWI8eW6A36GGN58/wlRvGAq9cu88CDJ1levoaQllq9wuWrl5mcbCIRlIsVwrBEvV5lZfUSSqcsLCzSHw3x/IDNjS3Gw5hBf5DTaWdn0K7D4cVZht099rbW6HX7FMMQScbuzha+H+C4IaVynUF/xPT0HKEfIgihfgxntM3w9d9luhIwP7lEMlQ4soYQOd273e7y5puXiUcZWCcHYlbje4p2t8WZh49SvXyEPf9n2d/fp9vrYm1GGAZkNuOnf/qnOf3gg3hu3r98u981F83MVZ+1yv1Nfd/DYghDLz+naATyIKmwB2tqIgfjQhKPkjyxkwcLegdCXQJLmiYIoWm18up5liVYxmSZ4PN/8Iesr2/R6w8pFYu8ee4Ko2HMYLBPuRSwvzPkzJmX0Vrj+y5YS7FQRqByqwtpwYwRWUqv3T4AIwpH+5jUInEI/AitvXwuFhlxnNORB/0RUuRU+DTN5+rci9XcSVLDMKLb7SGEwPO8vHolBQ4pnswY9bv5fw3BOBnl9jgiY2Zmir/x7/w8QiZIlYMOKSRaO1gk1sqcCmosIiP3q1WgtULJvF82sxZrHLa2Wkjh4Do+vh9iQg/V6vCRJz7GGMkv/+p/zFeffZ1UK5JxipL5eZ87tECxUmNuYYEUg3Ak5VKZj3zkUY4cOcIzzzxLZg2ZHWMxdD3FVmZwXA/XCfmZn/kshWLAiZNHKRRD0nRMsVzA8Rxc3+XQwmG0jojHQ9Ik97GtV5vcWtkizSzD0Zj9doeMjMmZBp/9iZ/M+6odhwcefJBf+Nt/C0c7NJuTzM0fAiRxPIazlwnTjLVbe7iP/ns4D/0iP/GZzzHRrLK1tYZ2LF/+6hd48MFTFEvFdyS65UqFfj/v1xS8Kw7JGQYH2/3idovDF77wBTJrsGPoPnGR3f0WN9f2mJheoFhu0Cg3aNQjgjCmPqHQzpjt/T4Wj8wqHKXQGJTKLUniOM5tj0ZDtM57PV0taO1u4bsWRyV3rkkpZe4NnCZoLciyhGIxJI4HKA29cUJvJNnZM1gbkmWWYTzAZCZfcLeCXmdAajKMyVs15IHNnckSBv0OEkM6HuZzqIV4nDKOUwSK69eusnR4jkLocmV5mYvLN3nz0hVcYdne3MdzI27eXEdIlYttWYPjuTiex9zCEWbnjyMcy8C/RmV8grWbb3Ll4ms48gfLr36YuF/O9X6viw/jw/jLFh9WXP8SxL0qoXeDwXdTY7vX5++1vZfA0t2P77nQZ997dej2xPfub8lfSH/jH5I99SLyJz7OvVZ7b7/vLUrwW4/fLibxzvG8i50OkixN4b/9P5CPnkAWQnY3bmEzKFRqIDTtvX38IEQpxeqtNZ597jkGgwFr6+ucfvA009NTjIZDev02C4eP0pyYYGlxEaUUL555iRMnT+A4Hkkcs7a+wvLyCu12j2LRJ/A99nZztVntOPieg9KaJEnodHtIpVECXNfl9dfPkqaG68s3QGZIIRiNRoyGMVFYoBSFjJKE/fYuhdChGFWZmGjcOXOj0ZBKrUqn26FQqPDAg6fQSpOmCcYYkpHBWmi19qnVK6TuNkppdlcsZ14+w+nTp/njP/4TpJK4rmJqaoparcZwMOJ3f+d3WL21yvETx7BZnvhmmaVcLjMcDRn0+/i+h5KK2Zkp/CC8U2GxVtBrt5iZncP1PCq1MloLDh9qMhy2icIAzw0JvAJKy5xq6DhEQYF/+pu/xac++QmiQoEoKhJGRYy1DAZ9JBlREOA6LlIorIWZ6UkcxyU1GeVShVReRCBwzFGEyhVXO93egb9kj42N9Zzu7Llkxhz04in6vQN/zFFKEPjU63WSJOMf/aN/wkce/Rj1RplWZ5tyuYijAwKvxNb2JnE8xvNctre36Xa7bGxsU6tVeeSRR7ixvMzk5AS+7yOVxNEOw+EQTynk15/B/Je/gve3f4bla9eo3foisTfLhauruK5Lvz+g1qizeHgR7eT/09XVNaKomPtpqhyka9fD83yCIOTCm+dYXFzE81yCwGdysonSmtm5WRzHQUrJ2ddeI0lSkiRmONhnZnaara0Ws/MzRIUSpVIZLRXJKOb57z6HXyxSKESYNEZaw+UL51hYOobv+ZjUEEUh2tHs77cJwohBv4+SeQ+g50VYx8G0bjLq7iEmHyNzFYNBBy/0cJ5/hXHcJfvUI2A1SoUEQW7JkmUp166dZ3b6EL/+3/z3PH/pJr+aVvhi0+WjxSpZlgu7xPEYKRTlcgnfd5ECkjTJQeuBXUJOux7n3qwC0nSMVHnFdDRMsDanDyudU+akkKRpQpKmeJ7HoD/EZtkdaxdrIctShBSkSd4b5jgO3V6bfr9LoVCnWCxRq9YIwwhjUk4cP4bjGmbmqoShZm11k4uXL3Hq1CmkFCRpSqfdQSkXYQ1pknLr1spBb10VkwlG8QjlaLTjIoQ8qMBmB8J0EkTGKy+f5cknv8NDDz10oCiusVlKPIrRjoNyDkB9ZnHdfD9Yy6uvvkq73UIzJo5jtNaEUSH/f0iIohCT5hZQWimktPT6PXq9HkEQYDOBMRlYSWu/TegHSGkRZIgDX9ksy0iNwUqJ5youXTqP0gI/cEjTGJ0aVK+P/Bs/xc/+3L/N62fPc/3KCieuLPO9yTILYUS326FcrjIcjqjXa6xvrNGoV/E8jziOuXLlKrV6lXI5p+qmaUoUFXKKtVBIqcCmxPGIcqlAv9ehVCrm6r3aYTiIKZWqfOc7T3F4aZbUpAyHI5RyKBTKBIGP6zq5T6cSCGlpt1oMh0OCMCSMQvwgwNEaJRUmyxiOYsbxmPDyTdQ44RuzDRpTh3j2hVeYnp4FbXC0Ih4NePih01xLzlP+RAlVlHfom0mSkPbbPP3885x++BGEVGRvuwXev6XonfdMay2tVovXXnuNh594CL4WUfx0h/VnN7Bumb3emK3VFfZ3bjI75eI6Gd/97gUckbcUXLp8kaNHj5KZJPcRzSzacXMlaiAIfLLM5KrTSUIYBAhhcV2F5zpIKRjFMeNkjKMdrDUoKTAmJQgDjElRXsDVq+u8fvYWhxcnsVk+50ql8yTE5pVlz3OxgFKaNDVoN28dcqQ4sGYSaJXfO9wIjM3odFrMzjcJw5ypNTYuy7c2OXHiGBfPnaM3NNRrdSCfv2v1KhkQeh6XrlxmZm6R5StX2N9ZIapAuftxdBKw9DOHSUUFqd/JXLtXjpbdRy34Xr/n/aqNt3f/9pzv/ThD3H49fSG//t5ecb17DHfnlff6rmmaviM/vf3a3dvtau+7jOgdY7t7H+82tnt95kcV7/fYdz/3F13E+cscH1KF/wrG/Wi973di+WGPeS/ger89vzVZveuRADC//SfQ7h70ub47cL17n7fHef/vd+8JTllN+sWvYy/fQD50lKsXL5GORjSbM5QmmqAVge8d9LFBrVaj027TmGjw4IMnActTTz1FvVal0+lgrMX3fQLPp9fv88ijj3L1+jW++pWvUywUWDq8QBAWOHrsJJaENDE8+/SznH74EVrtDvVaGc/zyDLLM88+R2u/BVlCvVan1e5QrlR55dXX+fjjj1EulygUIsIwt1Np76/iF4qMxxmFwKff61Gr5cBVO7kv4igeMzk1hXMgRHObdhXHI1zHw3EUk5NNOp02QX2EtZbZ6kNMTk4QBHk1eWFhFrC5iNKBMMvuToelpSOUigUsGVEY4DoO6+tr+J7P+to6ly5eolFv4AUBVghManC1or23hxSKl199HaQkCDw6rT1GcY9CMfdjdN2Q1147z+b2NvPz87Tb+7hKs3prnaNLhwijiK3tHSrVGp7WYBLiJGbQG7C9tUOhWEQqTbmQ0ymNyfKeVnmBjY11kt4MxUKE63q42mM46LO2tsKxY0fodTuM45g0TXEcD9AUiyUsluefe469vV0OLRxCCMFjj32cdqtNoRLhui6D/oi93Q67O3t8+zvfYW1tjVqtThgGFEsFmpNTWGsolwoUIp80HZPZ3IbEcz0crZFffxr5yUdp//LncH0fGbfQl36f5V4JpIPJcvXaYikiNSnjsQEkaZLS7XQoFYokyRjtemjXwfNcTDrm6LETbGxsUogiNtc3D6x6PHr9PkHk5x6hNiGIPGwm8ByfeDxmdm4e4ThsbGzSaXV45czL1Gs1wiDg+MlT9HsdgsBnZ3ObWqUGSlOMQpJxnNvuaAc/COn3+/n3NSndThvfzXK/5GIFufUm41EHf/FkPuagiPf863Q7+7ife4xSqYLrFnI/QpkSJ10alTprt7b5hb/1S8w8/lGqrQ6ndYAKPJIkJklTpNJYk3HjxnVqtSpplqKVRMi3RNrs7Qxf5gm142rG45hBf8jNm+t88YtfZHZuhkIhYjxOyKu12R0rJN/3kEqwt9dmOBgRRiGWDKUEWnp4rgdAFEb4fkCSjpmensL3w/yaGfTJ0iH7rR2UNLiuJo6HfOKTn8FkBu1o2u02pVIVpVwSkyCk4MUzZ5ibnycIIsZJTBD6JMn4YFFTwoEfpD6wyBIiF9WanplCaZUL4dgMdTCXKq2wGQdz34G/I3nFdGZmmrW1NQLfw2Jz8HVQEVNOLobk6HxBxXX9vEqmNGEY5crmJkG7DiY1fOtPv8X83Ay3Vq4yGo0IowAhVa7OdDB2Y4YopQjDgL3dvbwqrl2cyzcY//yPkyUp/+Gv/Aq/9Eu/xEeCAuW5acpKsba6SlTI7WmyLGNjfYMwyL2lPc+j0ZxgcrKJENAfDAn8CK87QI8Txk5ejQ/DECGgVq2yvb2NEFAoVhj0h6SJYTSKmZmZZX39FtPTU6yurvL0088wP7/IsL/PoD/g6T9/hqWlIzhaM+z3iOMYx/PQrouVAmEMFsHO7j5Rocj1a9do7nUR4zG/fu5Fvva1r/PQQw9y/PgxlOsQBSGDfg/H0bgVTTiZi3gtLy8ThiE7OzvMTFR46qmn+YnPfhZjLMa+M4l/xx32PsAVwPd9Tp06hRe6mD934eEN2mf77LRyQbBaYPC8EfWSQlrJzMxhGtUaUQFmZybRKl/wQUo8PyBNEqTMabtgMSZlnAggt2ZznZyya1JzR1jMOejVx4LWzoEzQD4+k46pVuscOtRA6xTP95HKIU2yfJEdi7AZ4yQ9qMKqg9wkFy9L0/RAtT5FCDcX5rMRSezx8pkLzM8sotDE2RiBw6C9zwOnTuAHNT72+MdRWlMslEhNyu7ODmvrm0xO1KmUK+zut5mdmqRU9NneWaVkJxkPM3YmL1CemEM46s7iw3v+Tu8iwvTev+c7n7sX/fjtn/kgloZv9bjeG7je3v/96NDvN6f9oMD1/caPCri+3/z83eJD4PpWfAhc/wrG/YDrD/L5+9F3/6KB6/erCv/FAFeRWLK/9z8iHzzCfjLka1/6EtVKHccLKU40STFYkzAaxTieQ2ZSmpNN6vU62oHr167zyMOP8PprZ5mZnmVuYZ4rV67Qabfp9/vMzs0xTnKAOjs9Q7Va4uzZN9jeabFw+BCtvRaf/uSnQGoc12M4aHP9+jL1eoNyuUoQhMxMTSC1ptPpsLBwmJOnTpEkSZ7AdtqEgc/a6i3KJYnjF1A6wsRjhDQMB4bLl64yMzOH6/oHK8suWZYwGPRwHIc4HubJ2YENxXg8Jk0zVLEDwpK0QyqVClEUUm80UCrDcRSWDCnz5Hdx4RSZMRSLEcVSSH/QY2N9nSNHlwjDiLm5ecrlKsVimQSL1ppOq0W/26FRLSOES38wJiqUKJcKeK4ijiW9/phiqcwoHlCqhOxsdwgCD89zCHyfarlGv7uH7wd50hdF7O1u4TmS1FqycUq5VOblV19jemaWi+deYWp6hpWbK1TLJbqtIaNhhanmEQrFkCwx3LqxCjZlYX6ezCR5RVbn5u/f/OafUSnX6fV7hGGAAJrNBoVChCXDdTyiQsR+e59CoUqawM7ODosLhzh06DAnTpygUAhZWblJsVQkSVPC0GdvbxswdDttqo0mAoHruthX3kT0hwz+57+b9xEqF7P8baxJaC6cZqIxwcrKal5NdTSO5+C7eZV1f2+fubk5kiRmZ3efoBBhMsN4PMLTmk5ngBSSKCxQLpUZDoZ0ukOU1vSHPcZxn2LkE5Y8uu2Yleub1Bt19vZ36Q+H+H7Ajes38LTLG2+c5ZOf/ERuKZMkODq3+Wk2p7l56ybxcEir1SIqFDAWMpFTd0PfIwp9kiTGxDt0uiM8v44e75LEPdKpj+F4Fayqo/78ZQLf5cWoTxynRGEJqTUZI6RK8WSJ5Ztr/P1/8Pf5Ox8RmMmYySfX+N5sRNQbgJB0uj1urdxiaWkRAKnA0ZosI1fslSoXMgsCxmOZV+tl7nHquQGbGztMTDRYWDyEkhIRTtMYAAAgAElEQVStHHZ3dxkMe4zjFGMMWiuszXjppVeRKq/uSgnGJAhULlIWjzHG4jo+GXnF0qQGm1muXrvG1EST+blD5JaoDs1mA2Tuk6qkwA8C+v0hr7z8GvMLh9COy+GlpdzHNbF02jv4gYc4ELMRUpKko1zh2MDtfkbX0wS+T5alB/9nyFKDdhxGoxGpMfh+kANYBGmaMI5jtFYcOnSIUrlKWCiQpobBYEixUCS1gsyAtQLHcfN520oc7R30r+ZtC5nNyIzl1KlTCJtSLHhU6zWkkmQ2w+YQg8xaMAbPjTh37jLPP3eGBx/8CMu3bjG512K0vsn6ZIH/6Nd+jZOnTxLd2sCcvYAthkw2m2ys32Jne4eJ+gSvv3qWarXG9MwEjnYZjkb5/0xYAj8XtwtvrqH6A5JGifF4RL87wvd8up0O1kK93kCqnLVhraVULrF84wZPPfkUD5w6RWOizqmTD+Tq6XsbNCeazEzP0+/1kVKxs7VJZjNq9UYugBXH5D+0QjkuWWYZxyOqm3uIeMzoP/gF/v1PzfPjD89zaavH9Owio+GQSrkKFoqFAlblgKdard5J6F1h6HZ7KKWxUuIeqEbfuff9AMBVCHFwjWu01qQvS3Z768iBpVitMTVZo71+kanZJpoYKSWjZIhlDy1TtMorphZBbzAiS3MRMCkFWWZIkjGZzegPBfv7baKoQDweIaUAazFZThWWB3ZJAnGH0eU4DtZC5Du5IFkAUdEjTUDKvHIqlSAzCY6jcLwAEPS6PTrdLp7v4PkuSjoYmxKEIYOhod0Z4IUZVsDs7BSIAa47phNDyQuYbVS5fu0qr55foVIvcn15mYmJybwlwlGkicFzFK3WPpVajeWrl9jfXyX0NDYZULUnecX750wtLeL41fcFSO/+Zd5vxfVez/2ogOvtXFI9nuL82P2tcN5rf7fZg/eLvwrA9V5MyA/6+Q8jjw+B61+CuJv+8V6UgPei8r7XvgG4S0Dpdoe4eNv73s+f6u7xHezmjmiMuC9svXuierctj+8Hru/+vu/f511iAW87R3e/fvdUf/f3Hn/xa4hLy8iPHOfpJ59hZXWd0499kum5+TyRTAxSarCWJB7T2tvDERnXr1xmojFDISoCliAIQAo6+zs4rosbRBxaPMLO1haDdgdXScqVAv3hkFOnjlMq536Qa2sr1GoVrl6+SL1cJJWSZqNBv9tm0G/jhxohM4IwV7P1PY8/+uIfs7O7x9LSQm7j4YUEUQVPR/Q6A4bdHl/56ld5+JFH6PcsX//6Nzj98IOcO/8Gc3OHcLVHu9tm1B8S+SEgGaeGNE3Z291m0GtRKQbsb/QpBIuQKkRmiPtt0lELPyriOA79/gDt6IN+N4XJEkyW4Lm5tcXUTBOl9J0k1PM9TJbhuxn7nSG9/T20Aq9Ypj/YZ+nwAnu7myhp6fd6+F5AuRxh0jGj0RDP9Zmdm80T/qCAdj0cR1AoNVhZWcN1XCqlCN9TtNq7TExPk6Qpjtb0Oy2qxYjS5CSZNZRLEaNhD4cyjlPDpKC1z2DYo9YsIrWHH4asrm0QRkV29/cpFUoM+2Nee/V1pLDMzU5QqVYIw4BxMiJNU1Zu3sT3ffZ3b1OMC7hakpkBQji8dOYM7XaL5swklWqJQWeIVpqrV68zMTHFzu4+pUoVISXy5jrypXMM/vFvQNVja6dDFDaQV/6Qzt4655fbNCcnOfvGWfqDPv1en6WFIwx7McPxiEq1hM0Sbt24ztbqNnNzU/R6HfZ39qmVJ8ik4sL5N6jXK3hByNrWDt3ONocW5klSQ38Qs7PTxTG5ZUq1WcUPIt48f4lqwWVyYhIlHJaOHuXU6ZOgMs6/8QaukytUR2GElJp2q0WpUqPenKRULjPotrHjEY5WjOKY1m6bQWfIyuoWh2ZniYcdhqkl6F6lt30NXX2IUmUK88xz+F6B8Of+OsVqARUoTObS7/bwXIv2QiqVBjs7bR4ULyLNLurkv8XMn79O8F/8HUavX+fCG5c59+abHDo0TxC4aDcgky7WxmjpYAx0On2kFISRRogUIbPcfgnBRLPCxEQD3wsYjVKCoMDrr73Bt/7lt7hy5TKPPf4x2p0+rhsxPz9Ls9lASItJk9x6I5a8+MJLPP/cMxw9uohWGcoJITVk6ZhOp8tTTz+PJGNqahKpMnq9NqVigW4So12XJEnJTMp41OXk8UUMmlE8yJPkNEFISVQoMBiMcBw3pyyT29Ro5eQLiCZhOGijVA4sXc9Fypy+6/klwCJVhslSXO0zGHRxHI2SGtdxMJnJlX9NzLDfR0qNdkNGRoIBKzKSLEUIRTrKsGJEZlOsNWQ2Y3d3h4IDG+srFEsRmZBov4hWTt73Sr5BTt3ODHz3ue+RjBOWr19jemqCZ55/jo/OztEfj6n8wk/hBT6kijNPP8f8Vgs9NcGtlRtMTDWp1qooR3LixFG0YzHSJYmHODLDZgnKc7Fjw4Xz52nanDJtmnWk0vTa23Tau0xOTkHm8YXf/yqHF+awFl566QyZFbieh+9pDi8dQTtuLvak80pqv9enUisjHEmaJVTrTar1Rn6uXY9ep4MhY3V1k1q5Smb6WGGJVnbIBkO+XI/4uSMptr9JWl+g241xXYHnu2SZpPUNgbPq4i1KHOFy7rXz/A//3W9w9JGfpKZ3mZ6eRdROoGwXpZz3VfHK4x70RSRCpJjUQQiPbC1l9doLZKbI3v4eO+s38IIio36Hfj9m0O8SuIIoKiCUCyi0dvF9H0jwdJ7Ym0wQx4YoDFEINrYSnnnuFsePz+BKg7AGoRRIgeO5JHFKNrZgMmyWoiQgHKxwidMYKxwcp0hmFcoV2AyUFGQHC75CqVz7wWYUi9GdNpZOp4u2Wb7WIjxubfTYayU0KgFZGlMIXSSWLBN02glhVbA/HPO9l9ao1ZvMTk9z7MRJMpvhOJJedx/X93D9EEf7tPfbzM3NMtFwEGqMVS2KnY+hBw4vD7/Gq09e5cjSIjpwsBJMlsPJd1BqrXgrF7udhd0NQt9TLFNxr/xK3uO6sPc49tsjzw1zZsTdAl/3rHu8B1X27Tnw2/O7D8I6zMdyj+9zX2HPt/Ltt4/nXlTitx//7dv3WQt9QPD6doXof9PjQ+D6lyju13fwQ60W/QDV0fvu810e/yjih/FxfS9wfy/gCmC39+Dv/U/w6EmyMGA0GPPYRz9Otd7AcR3SNL3jV8aBN6bv+wgkV65cYTCIuXbtKmEUsrq2Sq1aQzuSCxcvIaTC81w8JwdwjWaDWr1OoVhklCSkKXiuS61W4+KlS0gpaU5OYoXFUbkwSa1Rp1wuEQRFTAImhdHIcPPmOkeOLR54bKYUi0VsJtjb3eG557/LkaPH+e4LL3LygVMoIVk8fIgg8AgCH8/36PW6hGFIqVBkb28P7To5BcvkVjK1WpX91i5pnCLxkVJx7o3zuSAV4EfFHIi6PsP+kI3VDYqlEkHgUKmUkEKyvbON73vc7onrdNq516nJsDbFCyKa9Sph6CO0g6MVWQZhGBKGAf1+D6xzoJIqMcYwGIxo77cplcuIg+qPEqC0yx/90R8yf2iemdlp0nSMEDAcGcqlEtZmVKpltre3OXfuAo16A60ctnZ2mTt0CNd1KBbLdDt9bt68hRQOqTGEQUS706Zaq1CpVNnf22VyaopqtUqpXMBag+P5OFrT7XYpFct4XoBSDr7v4LgOw8GQNB1RroRcvbbCuXPnKRYLHD2yxHg8Ik0z/CCgMdHA9VzKlTJSCTwB8k+eRP2v/xXiwcPEoyHxcEygBckL/xu98CgLS6eQUjIxMcHs3CyzMzMIIXj1ldeZm5+jcyDSMz01TbVeBunhuBFRWOCVV88wOzvLcDDg0KFZMmuoVMvUq1WUdnAcl263i+947OzssrG1xWg0ptfrs7i4yJXLV/F9nyQdMU5HnD17jpnZBfqDHrV6nWK5wvLNW3h+wBe+8Ps8/mOfQEjBzs4WvW4bz89FtIwx7O3uIaWkcegohUodv1BglGkClZK0NxDzTxBUJsiOz5GcOo6qV0nNCEGGtB6BH5LZMZevXGFycpJTp07CjW9ijMH9+f8EdfE65vIKW50uYVjg+InjuK7LfmuPQrGI1prhYMDzz3+PWq1BpVI5sMjJbV2stWQmOxCSSTCZwXHzHuA0HVOtVjlx/BinH34A7ShKpSJCWLR2ENxWbc29frPMUiwXmZufo1gq4bguQgj0AZXW9wLqExMIBI3JJqNRTDxOuLWyQalcREuVV7uUxg9D+sMBvldAigNmrciplRZDllmU0sSjMdrRSJGL62SZvUPNTFOJ53m5N6PNUAqEcBAyl1u3Bz7DuYDVwTybZXdssIzNe3z7/T693oAv/P4fcPr0aRzPYziM+e1/9tucfuAhrEhIkgTX9TDGUCwWSY1BOy5hVEAAWuV9jWmagpCkScZwMAYrkcLSaEwQhQFHjy2hFPQHI47Pz+NnFvPZJ9jd3adQLPLl3/oXPHFzG/XgUfwowPOcvNK5s8vO9jZSSqJCCSlge2OTxGS4QYjWKp8X+zHWWnqFCK1yBoPru+y3dhiMuhw5eojNjS22NjeZnpnhm3/6L/nxT3+amelZer0uQeAzGPXJspRKpcRoHKNcB+14SJW3aBhj2N7eJgiDXGFcws72HsLCKO4zNTWFffM6pjdg52/+JCdLfVzHpXTyJ9naaTM1OYlUgm6nz+irgioN0kcHjE1KsVzmT7/1ZzRLIUdnI/7oy1/hiR//HIi8v/t+99G77pz3eD1XUF+5doOCK+i+3sJvRdzcWKVWm6AY+px77XWmpytMNqsEvoMfeCDz+VrAQQvFAN9zwNEY4XFztc3Va2uUa9XcH70QMj/fIIgESluMychSc9CnKxGZZXNzg0pjgjSzGCGR2sFYiNwCjusitUNqBI5XQTDCmFzoTiByFW0/FyrLbPZ9IMdx3Nz/wGYEvsdEo4znCoIg76G9I5jnp2QjTcErMtkMqFYkey3DYPj/sfeesZak95nf7w2Vq068OfW9fTtPT3dPD+NwSJGipJXXXsuyIe86fZDhdQC8+0VeYA1joQ+2PxjrhYMMGFpbu0pMkihyRI9EShxOEifnmc453HxuOLly+UPd7unp6Z5pyrJA7M4LFPp2nYrnPfXW+/yf//95QsIo5tKly4yPjaOMEgA9++yzeJ6DZSrWlldpNJskcZd8x0FLi5GvCB77uV/CrHjkQiAkiCK/DcLu6okP99ldwPXD/Xlrs5/cKuajSI73SYm719/3cA90/ruZ4Z9kznm/e7zfuX7Sbf46Wdzbc8z7bP8JcC3bJ8D1p6h9Alzfb3/jwPV//pew1UGeOMzSzSXGxiZxPJ92p4ttWUgpuXDhAs899xwL83vpdrt4nlsqQI6MYXsOCwsLNJpNOu0OK6vrzM3P4jhuKb7S7fDdJ77LkaOHuHL1CrVGlWvXrxPFGaNjk6yvLFGvN7Ftl+mZKQxTY1nlyzTNMgxDI6SiyHPyImXQ71OQcf3aNb70M19kGPYJAr98+eaQ5xkvvfQyBw8/xMTkNJcuX2bf4jye56DNUvBJaonnlUqLvV4XilKcRijJv/yt3+PE8eOkaVyq9zabaFGqqJ46fQ6hDPbs3YdUJgJJt9Pn3Jnz+G5ArREglWBlZQnbLn0poyi+HYG95clYOhNlCGWwub6GoKAQBkkcMxgMME2DOE5YWloiCJporRjs2vVobZCEES+9/AqTU1Ncu1aKGaVpzqc//SlqjSo721sAOK5HtxdiWRZJEqNUmYr2xmtvUq1UqdRq+EGFRF4H0aHX0QihGBudxDJdiqJgfX2d8fFR8rxMjQujIUorRsdGcT2H6zeuU6nWCYdDOp02hi5r+xzHJYpDtCHpdnqYliYXKVo6LC7uZXFxkTAaEg6GxGlOUPHZ3N7Csi20YZSppk+/Sv7IQbJf/Tt0Om0G/YgXXniRhfhVhusXGTrzuyAgZXtnm+npKd586w2UkrQ2tvjBD77P449/gcuXLpMXBUHdp9/P+P6fPcVLL7/EV3/uZzANjevapGnC0s0bWLZGYZDlJeNgGiZZktCojzA2MUlQqfDNb36LRx85Sb0+QrfbZu/+eYbDPpbt0WxM4Hll7W4YRti2S73ewDQVk9NTXLp4EUNLRpsNCiS9fh/TMmnvtGk26gQjt5Snc5QoyNBYncvIYsCObuKMz3F1rUVlZJw07mBJKBJFnORo28B3Dfq9Dpalya88hQDSPV9G7J2m+ns/wP61/xR7ZZMgKP2Hl28uYdomlUqFPBM89cOnuH79OidOnMAwDJIkJttl7G9ZhkCGlOp2Sr1pGdhWWRvu+m6pICxKQael68vUqtVSeLgorbkyEhzXptFsoA2TLCugyOj1+wgESis8z6VSrSGEQGqNUAZf/+YfUq14jI6M0NrYxLQspFZYtk2a5KU/8G6tbVEUSKVI04IsLUpmLktJswTTMEuF7aL0ItbK2mVPy/T/JIkAtVtvKJC7z28polaKYPW6HXw/QApFRsFgMKBaKYNJ1UqFsfFx8ry0Grt08TKLexdQWuB5HiAwdMkaK7MMbEmpdtV4FWmegyhTjd995xTPPfscx44ewzRLteeg4qMUTM1MMD42idntQZqyfmw/09OzpEWMmp5kz7efIj16AMM22dnewnU8hFDU6jVarQ1q9QZLN5ao1ZpobaINk83NdRrNBnJ9q/TzHRuBArr9NvV6DcO0qQQ1LMuhVq2Wz3E4ZH5+D/1ej7fefJt2p02z2UBpxWDYxzBKC6C8EJimTY5EFDl5nmEYxm7qdBl0qFcb2LZDFA/QhkFx9ipmlnP9q59iRrXQhsEry7B3YR/PPPsMQcXDsiwaN6ZBQXa8S0GBkPDYY48x7SuQCU888ST/zi/9CuiPTzv8WOAqNUJknHrrHQ7NT/Demz+ieeU4p/Z8g/CKy+R4wMLsGJ5fevpmWUwYhRSA73qlom+3X77n8hShUpIEtlpDLl9sMTVZLb2BVYTr2GiRUOQJjmGTpAZC2eS5wPV8bNsmTRK0YZHn4FgWRZLQ7Q9IsghhCLJCoo2ALOkQRRHkMByGSG0iyIjjMqgjRCkKpLVGm86t8mpMDVrltwMqYVim9RuGSZp0scwAZSYI3ePKhTZXb6whhGB0bII4TpiYmCTLE9bX1zly+DCOYxEENis3t+j0QgaDDmQxtWw/Y78YokfGSIUgRyKRiCIFoX5i4HoLDP11Adc7U17vndlW7ht/S5Odkqij+SfA9QH3+QS4Plj7BLj+FLV7pRzc7/O70wayLCtrHXej4Xe3e8K4B884/tA1wL1TUB4k5fh+D+cHtvkY4PrB1F8+8PfHmTYL8cHBL33iR4jf/APEz32eM2fOoITAq9UJs4w/+c53OX7iOFIKRkdHWFhYwLFtKOD69eucP3sWx7EYmxzHME02Wi3+4oc/wvN9avUa4+NjZEmMFJLPff6L2KaFlpKVlSXm5/dQrVR3X+BtPDfga1//Fov792JYmqjfIyPHcVzSLCeKIpJkSBgNgIxms870zCQ7W22q1YDt7RZ5mlPk0N7e5MSxY4RhyNTUFAt7F8iysEzp1SZnzpxjdnaGLMuwbBtLmziOg+U4bLRa5FmO1opOt0sQVBmoJRLZQRVV5hcWGZ8YL2vm4oz1tXWGwyHNZpPxyQmyFH77t3+HT3/601y4eIF6rY5p2Fy5cpUnnvgun/vsZxiGQzqdnRI4A5IUCWjLQwmJ1qU6q9YGruNTFClh1Mf3PUzTRghF1A957vnnmZiaYv+B/Ugl2dpqI0RBQUa706bRGKEoRPnip2Rxl5ZXmJiYZM/8HFPTkyitMC2TRP8lKWt4xsO7Ai4FVy5f5drVJQ4eOsBg0GVjY43BIKRWbxCFEf1hyTZVKjU8z0MpRRBUkFJhGDaGNpEapBT4Xg1EqUBarVaJo7i0ghACx7ao1WsIwFAKKUTp99jpw3NvkP/GP0Z4HsP+kJpXI7A13nv/K9bcY7R2Qi5fuUy9XmNqcpLVlRXqjRpjY6OMjY8zMT6KoRXTs9MgYGu7y+Z6i2Gvy5HD+6nVK6TRoGS83IAgqPLuW+9gGg5nz50jTZJSTZcCpCLJUkzHZHZmikajSqfXYc/8XJk6KDWNkSZZnrF08xqViken3abb6VKv1fArPpZlkaYJ1cBne2ODC5dvsLhvH0IKqrUqSRLhmAaGzEnjIXkaI00b0VshjmOWUhvXmaY5WkV5NUwZ88yf/yl/66v/FgcOPsy+Qw9x9p23mZubIYlDkgs/xDAsBuOP4zRGWbt6HfUXL7KSDFleWSGOYgb9IbVqDd9zKFAcO3aUAwcXMc2yNAChdtV3BVpprly+zte//g0eOflo2dfaoL3TxnEdDMtACokSCvKMVmuNYb9Ho15HaYWQ5dBraLkrDgPZLgOVJSGu51Ps1vlJMgyjVP3NsoSXXniRLz7+ZeYXF8hzCCpV0jRBiozhoIsSBt//sx9w/doN9u3bSxIP2d7p8KdP/oDnnn2eEyeOI2RWJt8qhZK6ZHGUpCgyhLyVlgYg0LqswxVCMhyEpQiOKOsQhSywbZMiL61+wjAhixPiKEQZirn5ObIkLu0/DIPDBw/geSaWY5dMV5KgbtVHJiVQyLJd0Z0SupOmGVJArVLhyOEDaAVKlnWxUpXptkIKXvjxS9i9PjU/QP7ClxgOYq5fPM3xh48h/u8/Ivpn/y28cwbfcdnc2mI4KANZlWqFaNinPxhQrdWJk4T1tTXm5ufJ8gJ7q0OSJDxz9h1MUzE2VqXd7mJql421HcJhythYnSgKydKYKBxgm5pjJ44zMTGG53lobZZjWF7Q6/bZWG8RhSGeYxPGw1L0yzBpbWzS7fZoNGpsbe7wza9/g5nZScbHxxFbXUR/wOXHH2Z/MGAYhgxGDzAzuRelBCOj9VIt953Sx1ke7xH2Bzzxx3/M3Mwkrm1Q2bPAwQOHqFkGwizLWR603etVWuQ5uSiYnlmkCLv8i6/9DzyW/SrfO/Mv+PKnfhklBnS2b2JohaSsHzctG206JFlGmoFpuShtUgiBRlJkBY1Gjb0LY7i2QZGmhLEiyUwKDBynQZzYvHdhnRdfPcf0noOsb3YI6qMUmWRjO8bxx9jZ6RGHEZWRUYS2gJLlLvIMJRWmLgMlhqGRWgBZ+WyW4VMo2E1LTym9z8vns9vrIHWZfeG5HnmeE4YhQtmkRPTDNoOBwDLHaXfb9Hpdjh0/ge24DPoDXnn1VZqN0d1sHEmSRFy/foP1zZBqbRLLyPCHs2zcWCVZ6OPYAVJaQI6QGUJ8eH53z1TYuzrs/uVn76//uHnTxynbvj8/LbdJn1YwEBifLcmCB5n33XmtH3U99ysFu/d1fXTp3ce1j0slvvOa7lY3/jgS6u5t7wwK3O8cn4DXT4DrT1376HqE+/+AS6VGdf+B5a+Rcb3fNd3r//dqD/Tw7XQQe6aQJw490HlvrXuwwegOKfkL1xC/9k8pvvQoiW/SWltlenoK0/VJyTm0/+Au81lGDU3TRCmJYUh832NyfJTWxjqFKqO0juth2TYXL1zi0U89imWabKytUq1WWFpZIxkk1Os1qhUPKAiHIasrq4yNjrC10+W9987w2cc+wzDssbm2RmNkhLTI2d7a5vlnn2dsdJKJ8Uksy+XypWusrW1y8OBBer02UpSqir5fwTLKND4KQafTobWxTlBxybMcz6syMzuLkArHtomThG6nU6YyKoXn+yzsmWd8fBw/COj2BrjjHYQZE265LC8v43kOvd4Oy1dvcvXKZWZmZ6iPNEjJ+f3f+QMmxifYt3+RkdEmUJCmBdPT0zz00BGgQApBksb4nk93MKC9uUG1UgFpEYVDbNskTROiKMb3qyBi6o0qW1tbKKXptPuE/R4PHT3K9OwsQgmGwz6DfohlWyRJSK1WBSGJhjGWqYnimF5vwGBYAs/t9saugqpJHCVk+jy93oCoM01RZIRhyJNPPsnCnv1MTo3hejb9fo9KpUZegOf7mKaFkBqtbYSAJEl3xUPg/PkLuK6H6Rj02jvkqeTV19+mMTLKoN/G0CZnz55jemqa9dVVEBJzV7XWsW3WVpbxf/wu/Movkv7MZ1HCgELyh9/6A46PD9Ctt5ATJ+m0++zbv0glqJTeh4bi/PlzTE1NUZDT67TJshQ/8JBaoZVLng7xHcnoaB3DMLly6SyOUzLTp989zd49C8RxwqFDh6nUKmxttui02zRGmrh+6f/QqFe4ce0K1ZpPlkO3M8RxfKQSFMQ4hmar1SLwXa5cusz46ChOxaXb7VKtVHBMEyWgOTZFlueYtkkcDul3uzheUKboKY0yHbTjkw+6yN4Sz1zp84XhFMmFS+QHD7LduoGjCmr+GE9+/xl++Vf+fZoVD1GAaVgMz/2AogDnwL/JlYuXqT16gpH/51lena5y7oWXOHzoCLPTs2RZQqe7g+V4+IGDYQjCaFiykbpU9xa76cKdTo+DBw9RqzVuyZiU1kVCklOglUmeFSwv3aASVKj6LrZjESUxWqtyGxR5VvrrdneF1YQoGAwjLNtBSkEc9ilIiaMhWgrm5+cIByF+vUEYJayurpCnCXkakacR2nDRyigF0CoVtCEwLJe52QU+9/nHMEzFYNjDd8osCBAkWYrSmoLSCitNSk9NgSYv0hI8ylspwgVFIcmyhDgekmcZ/d6Q9bUW3/zaN3Bsi9k9M6R5jjAUw36nzLCwbbIsZqu1huV4SPW+KnGapIgsK99fSpEjyBCQl6JkSRLtsqyCrc01bNdBKVUKyOyytHNzc7j9EENKTk/VefvN99g71cTQNjz3Gj8+e5pmUTK9eVYywEEQkGUJrY0VZub20G53qFSr+L5DkpXvVLO1Q1EU6OkmU9PjRMMSpKdJhOcZ5HmfTqdP4HucOX2KudkZfM+h0+/QHwxIkhTbdlHSIE0yHNulXq+xs7VJEHgYlrXrj43zaKoAACAASURBVFmws92mXmugDYFjuZx85CR+4CCVoh+nqM0d5N/7t6kOL6MMyYXY5tvffJJjxx9iYnKUKBqSvWljaMXW5GWSMGJrY5MDi4sEI+N0pY3n2Nw8dYqZfQdJeXBPznu9UhWQSkUUS2SRMTpisL7+Bj8vfh35H3bIrxRsb6wgyVFSEicJtu2xudVBSEmBQBulsniWF3T7EOVgeTa5BMNyMO2AH795k8PHH8dvThMVHqmsMjE1T1IYuEGTxYMHEUrTjw2kO0pldJ4Mg0ZjnDDN0arC9maIoW2isIe4VQmaZ6VImSHI07TMNhKCwWBwG5RKUkCSJBlKW5hmOS7kWXG735RUmBLIMrbXC9KhwdjUFv2hx9LyGm+8/Rat1hY5ObOzC6wsr/Heu+9x4MABOp0tDhycx/UnCPwx6hWJtT7F1d5rGIdixkdnyYUu/eVliuQewPVeqbl3saL3n1N+uJb0vsCVB2Uny2Nmr5QAX382v539cescH73/+6Du/wu4vPt6/iba3Sz0T5I9+aCA9BPg+glw/als5Q8/55bi4q3lFtT84EBUbndrKbe9hzz6HcstMaX7tw+f+161FfdiiO9c7seAflzahRACeeIw8sThBxrk7sdO3yqE//C63W9kMIR/8D/CaAOOLrK+toHl+FQbI4gCbK13o9K3UmnLiFo82EELA9NQrG8s4/s1rlxaZmF+Hq0KpMgZHx8hDkPCYR/bNWmO1BgbbWA6CssxuXr9OrbtYts2tVqV1kabZqPK9PQ41UYdy/bI0hTXcuht7xD2BrTW1th7YIEkCSmKFEMLzp49zcL+wzz55PdZX99m795FTFOitGJpZY2xyRmCap3uoIcSKfWxSeI8Ixm2sWyDpAApM0zLphCCNEuI4z6CgjRJsC2bPMvA3URrkwuvt3ANi2ZzBO06jDbHGJsYxfVs4iRGoji4f4GDhxbLY6QJWksMDWmesLG5ieP5nD93iRtXbrJn3zzZMENJjRsECGnw0ouvYpsaJQqiOCFDEAQBUZThugHbrS163TZ/8cyLHDl6DMPQdDtttra2+O63n2R0ZJzZmTnSXZXegoSlG2vUG00My6Y51iQtUqIowbXrrK5sUak45OYFkiTFLI5QqTVxHY9Op8PoxAiDfpsiSWg0xogThdKKJA7pd3Y4e/oMW1tdxsZrQIECVpeWmJ+dYdBrY3kOhvZBSF595SWmJiZoNseQQtPr9hCAbTs4lSpCKkzLIs1T1EoL88oy4f/yjzAdA0OClAn1iiB785/jjO5F12YJGnUunDrL6MhIWW9sORRCglQ4roFpu6XgjaEoKPv65tIycQaW7bPV2qE5uodqdYTLly7x9HNPc+DAARzPxDANwsGQKIxZurnC9MwMWgpMKVlf3cAwHOr1EcJhiGEqhCyZASnAciuk2ZBq0KTeHGGzvY7rBmRZxJXL50mimJHRCYQy6XW6tFZXuXj+YpmiaSjyJKHfbuM5LkoqiiCgWD3F4vQB3Ld3CPqa5HNH8P0GrjfO0Uce5Rf/1s/z5qsvsXhoH8qwiZKC9rvf4dz5c4x97lf5jf/9N1jd2GDv/B68F9/hP3jhKf7BV36ejc3V0p7JcDAsD4RAaQPTcMgLk0F/Z5d9LceSeq2G6wsQu0zN7hiZ5/ltKw+lNKdOn2d8Yhrb8xHSBFEGwERhkiRdpChKkTLbpUCRojFNmyLP6O5sEwQ+SSaQyqA/iJBKlynV28uMNkaxVUCeCDrdbSoVB9v18So+pmOhTQ2qZIxt2yz7RwgswwWpSl9oZZT1urmA3bKEvMjQumSDtDDY2WqzvrqO59hsb23gejZSCpQykNIkTlIMy+TA4YOMjc+wsbGDZdm4jkEx7GM4HoUsmVXf94iz0gu32E0F1lojVcmylmAgIxoOSDPBhfOXqNebmIaBMgRbOy2qjTpISVFItDIRhUaqAqszQOQ5/r/7C6R5hC8FTz3zLIudmInjB6lI6Hb7eL6LYWqWlm4SBBU2NzbIkpR6o0Fe5GjLIo9Tup0dgn5IkRcMq3UM7RNGPQzHxHId1tbXAUmtUuXKlUvU6zXqjVG63YhOu8VwYPLWu28QBAbVoM6g3yeOB/T72yhNaTWk1O37SJOM1bVVLKPK0vIVbCvHUBYb61v4FMiVFk9P1zhSjxAIzOnPolSGUoKx8QmUZRO9LDBtE/loH4qMw8dOYAYNwu4qlnbwpOS555/i4LHj5W/jgd+t5XKn4E4mckSu0OQoU+LUJnjjva/R6J8k3Ehpt1qkwz654VNt+ChdlrA4rkaZAseusrbexvUCwggyIyWoTBOFLu+eusDk9BGC6gFqTQ9tOnQ7MdqwMAxNIgWzM1NEwx6b6xt4TkCtOUueavq9NpYjUKaPsGpYXpO80Dh+DWU4ELXRWpYqzmGEYZhoKyEvXLY6Nj9+4TTz8xMYakia69JDOE3RWpbZU1KjlCKOI5QSxHGI1DZSm2RFSLVuYeoKzdqQmdEms1M1piZrBN4ems0R5udn6XZ3aHd2aNTH0cLGMCTd/iavvPYCC/ZhdvK3yCbWaM4+RGRJkBFmapXj+h19IXfHnDvnN7v/+VB/3slkvt+/9wau9yq1UurDacp3/kbeZxvLbbJXyxpq9ZmstNbatfZ5UOB6v3ndR2Uj3tnevwfxkdvduu77McLFnZPnW8t9xJnuvsYP7vv+hPrWWX4ScH7nfX1cQOJf9fYJcP2pbR+OTt27bPP97d4fkN4fjB70If+4c38UP/ugEbG/6kP2V9n3XoPvB8D0IIT/4tdhEMIXTgBw4b1zzEzPsra2Udo65GW6bJEXOJaNkiVDsrO9xWarTbfbZ2pygjSFU6fOMAwHpeJqvU4QVLBMm1q9Tq26y/yFMTduLNGoN/nWN/+A+fkFtDZYWlpGak2jXkUbpbiP7Tj0ux1832dnZ4c0LT3oZmbnkVKQJjFJGjM/P49tOQwGfZr1Oo5t0lpfJcsLpqamUVpz/cZV5hfmsLQB0sQwTJLhAJAU0sRQEopSEKZUCO7hOj4gyfOC3/293+H452eQUjDmLeL7HkJp4rRgY3WN4WAAFKWdThwhEdi7TEKWlSmAm5vbVGs1XM8jSVLGR8eYnZ4hTiIkGs+3iNMIkERRRCVwqdWqrG+0GB+fpL3TJhyGhMMBtmVhOzZHHjpKpeJjmhrTtKhWqhw/dgLXdbhx4xrjE2NsbW1iGAaNeh0QXL12lYnJSeIoJvBqPPPM0zzz3A85sH8RK1jGsi0q7gmiMEIJhW04vPjyi3z+85/FsR1ee/11nviTJ9mzZw7T1LuiWk2GUYzvOezs7JSWFlLQ6fdpjI3cvqc0TfA8m/GJUbK8VINtNhvkRYGQgv4wLMVjFORZivn8m/Bf/l3ko0eQUjAY9FlaWmJuah717m8iph4nywVJFFOtV3jm+eeYn9+DoTWXL12kXq0RDodUggDHtsiz7PbL2fc9JifHsW2LWr2K7/ssr9zE9VwO7NvH9Mw0UTggiWKSJGF0dJTtnW2U1mxvtWg0Gjiux8bGJq3WGo1GHcMwMEyTbrdPZ6eH63s4lkag0UbJnCllEYUhE+MTKKm4fv0GP3rmWWZnZ0vgaDq0NrYZn5jANE0uXbyE7/sUIsewXYqdFfzmFMWlcqI0/PRB1paXmZgYwzJNtrd22LdvkdXWCkVeYFkWZu8SuXKpPvRzfOXLj3Po4CJLNhy8ss7f/Xv/CZdPn+LI4UN0O10c10XKhK3NLSp+razrLMpUzls1mFIqkiQtPVCLUj0zjmKUkigld9mFcpI+MTmJUpJvfe1bBF4Fx9H0em20NOi0O7iej1KakjwskEVMZ2cTU6tdQKd31YAVjuOUAL4oMAyHrc1tLMvkiSf+mH2Li1RrjVIwzbKwLIter7e7rbnr6Vuyx0oV5EkpZhZHIVmaUuQZ/X6I71ewrTIIlecZUgqeeeZprl+7wdzcHsbGxhhGEcPhEMMwUEphmRZxElOp+igp+d4T30YWEd32OqapkVqjzLLfLdPCsAy2t7ZxHHfXN1NQkFNQoKRke3uTSiUgiiK+973v8ciJ42itEQjiJMELqrDrb2yaBlmeIqRAbrbJ44Tky59mfHycOI05euIR1NoWg+dfZagleU7JrAYVtNaYpglFGXxQqqzdlUIQDRO+//3vw0STfmAzNjZaAo1m4/bE1bZsPNclTSIsqxTwC4chtmMz0qyztNzCCzzmZqdLlk8pLl2+xOTUJADd3oAitzCUw+rKBu+9e4pHT57kzNnzvPjic8xMT3H27AX2HziEudVGrLX406bk5OIIuTJ56p1r/OzP/hwLe/fSHwyQWmGfrpAXOfZnUgbDsAwuaINKYHHq3CXqlQo3rlzk4MPH4T5lRXe+L+9uUsrbfS8kCKGgKMp0djJee+oJsgWDh878Gzzt/F+MptOMjdi4jiSNCy6eW6XXF1QCkyTOcF2LgpTVpRYXLnRorQ9oNMe5fvMyk1MTvHfqXerNJkkqWF/fgt3JulJ6N8XaYnR8kivXl2i3t3ZVik36gx6OHRAnKXlaZvjEUYRlWkRpznY3xHb80v6oKBCFwLZ8hmFI4Fl4pkGRFDiee3vM7HW7WKZ5m5ktgzeq1FvIQuJ4gGFKhMyRKicdOkhdMIwzXnntAkvrLaZn9pS10At7br87Wq0NtGnS7/eZmZ7C3Rohr3d5Y+cvOPLolxBWWYOrck1xBxt5q90L/BQfMV26E2DdEou7Ewjdd671wMznLnB9RZUp15/JKImQjycuHuTzn2SfO6/nr3zue+1yx9TyI495v6/yQc99v8M+4Hf5r2r7BLj+1Lb7A9cP/ljLlXfm1t8LuD5I+sJHnftBgev9RJF+4qjS1SXY6SJqlY+MAn7UNd0XuOYF/Gf/BDo9+OpnSjY5L1C5JAiqaNNAGZoCwdLNm/ieR1EUDHZFU65dvc5mq8PM7AxlxpFibs8cQeDz7DPPsmd+nvL7KpUpV1dXGA6GXLp0pTy+Njiw/2CpLOwHaG1gWha+7xJFQzzfKyebYUin26Faq+F5PusbG3h+DYqS1bGtUgE4L8D3XHzPRSvJyEgDy/YQQrC5tUm1FhAnIbLQxFlOlqSYCl56+VX8SrOU/1eKKIrI8gzH9lBCsLHRwrIsPvWpkwhvhySLSDsOvd6AN958h6efeZ5hr8PevaU/a5ZmOI5DmpQqmXEc47kueZ4RBBVarU08P0AgWF5aohJUGIYDnn/+x0xNjZGmMZblYJqaYTikUq0yMjLK8tIKp947Q5rELC7Oow1ZTuBFRqu1TpIkLC0tEwRVhIAzZ85w6NBBlJS02ztsbW1j2QbDYcQPn/oRR48cpdPu8Aff/CNOnjzKl7/8BUZGRwiLs4Dk6nkDP3BJoh6+qzl24lGUlFy6fIkTjzxCGIY0R5rUalX63R6O6+FXKqwsLTE+MUGSZoyMjeJVKhRSkqUZg34f33cZGx3ZDQzYRHGEYRogBY7rEdRKO6UsSzFWN+H8NcQ/+zXiNEFKieN5bKy3qDdc4tPfZeDuwTIkWRqCYTA+MY6hFMvLy+xfXGT55k36/R6e66KV4sL5cyghMU2DdrtNEHjkWUaaJViWRRD4LC3dYP+BA0RRSLVSKUFZnHD+wkUOHzlCteJTq9cZhkPCKEFIgz//wZ8yPz+PkBLLdkiSgpdfep19B/YiioytzTa247G6uoKhHc6dPc/8nnkuXbxEEsccPX6CzdYmtuXw1ltvY9se03MzdHa6KKl3lUhzkCYMd0gH2xTXKyhR0HtkHj9wWF1ZLdVytcT1HDq9LiOjTfI8x1n4GepHfpE066OVQElBfaTJpfYmEz94kf8tavGl6TmEVPT7A4piiGP5rK1s4nsuSdZH6feB660UwXfeOc342CRClLWgpeJ1sSuxU9bJSVkqhh/Ye4grly8zNTVWevCWFd30egOSJCIMhyBzirDH0tINJienkFqTZYI4jm6raX/9a19jz545HKeGlBJtCqZnJmnUm+S5ZGu7VTqfFQVKKQzbQRSizHowNGvry0BGFqeYumSOtJSceu8dvv2dJ/GDgFqthtaS4bBHnqUcO3aMYw8fB8r3jGGaZW28aSGEIM1STNMgivrYpsa1FQt7pvAcA8OyaTRH6fb6+L7PYDhESonvB0RxQpFT1g+KAikkBSVISNMEwzQ4efKRkumRCik1tuMglUFeFJhm6aUtlUAUAmOnS7/dpvPph3BsmzBL2ey2aWYgz15lIw4Zm5hGSrkbVEuI45havUq73abRaLC1uUklCOj3Ql555RVOnjzJzMw0SRIRBD5xnIAQGIZBa30DSxtE8QDLsvE8D8d16HY7DPoDpmfmmJicIo1Ter02Qa3KxMQkhmndtoHp9gZoLfnjP/42UzNjTM+M0xydpN3Z4uGjDzExNk0hQL3wBrLTx/uH/xGzJ79CGMziBy5BUOfS5cucPXeWyakp5E2TPj30kYSN9RaNkRFQBqrIsCtNAtvm/Jl3OHLyU7vs3Ue/Q+9uaZpi7va/VAKQaKWhSOn32vzln/4h20XG0cUvMp89zPkr7zA9HpAmw/KRKBSmYyN2rdJu3LhCterTrE8gDY/NrTWqVZvDRw4ilaQoUvygwrVrNxkbG+fdd96m2agR+D5RFON6FQqpqDdG8T2NlAZQUKvVWFluUa/XdzMOLIaDAZcvX6UfSxYWD7G10wVAKwPT0PQGfTxP4Vg5Ik+xTZv+cEiSxLdLhJSSpGm6yz5SsvGDAY7rkqdZ+YwIiakNTOVSyC45NmfPd/BroyzuXUQpgVSCRqNOfzDEcS0sy94VJsswhzZpqnh2/bfZf+SzVEbKchuBug0e7zW3+cA87D79eDdILQo+kJn2IPO0+33+fg3sHcAVkJ9Od4nGv1ng+sFsgY8/9v0B+z3W/TUBV3FHf34CXB+8fQJcf4ravQDpBz+/V+E2HxiI7k7/uNM36u5B6cPH+uAx72x3gua7l7vv4X7LT9LSX/ufyJ97FfVLX73n5/cThro1KbnzWm79/9Y6fucJij97nvyXvoyQAlNIXnv5ZRzbxnVdlC4np4Yu0+wMrXn77XewTJNoGHLu/Dls2yfPM37w59/H92vE8ZBqpcahQ0coCnj3nXfo9soIbX/QpVqtMDU1heuWVgtq126htWsVU6lXybKEa1cvMzE5RVHkWIaJaZo4rothWaysrWJoiySJaDTqDAdDdnZ2qDebCAQ3l0rl0ouXLvLDp56mXqsxMzdTTjYNG8s00YZBFA7I4wH7DxzCrTTI04SCjCxLsS2bKI7RSlKpVGi3OyilSc11TMPAiMfwK1VGRsc4fOgwexemCIKAXndAu91jeXmFIAg4deo0Ozs7jIyOlEyctrBslyTLEFLyJ0/8CRcvXmD/vgWSJGVsYowkjsnigkrNxw98+sOQOE4wpKJaqVCrBwzDPqZl0+uHaAUXLlygWq3gui5bW5v86KmnOX36FIuLi3iei9YGE+MTbLTWWVle45FHTuI4FkIU+I6L1hrX81BaE+ZnuHFzmZmRr2LZCiEToqhDmiiiJGZ8Ypw4iZmanKA/CMvaJsNiMBxg2iZpllOr1YniGNu2GQyGWKZFnqU4jkW7vYOpTbQ2WF5apVavlayTEkgtyYu8FJxJYvQzr5H9/V+mu2eCeq1GlqQUAiq1BnTOkV1+msSf5u233mB6ahxlOCgpcWwLz/fo9br0+j3279+P7VgUosC2XWq1BlcuXkLrspa5VGwOaO+0AUE4jHAdjzhJKbKEjbUNmqOjbG3vMDE1yc3rV0ufSsehKBQbm9tY2iTL8jJIUq2yurpBXghGx+oM+l2iQUaa5/iBz+///tep1erM79nDSLOBbWm6/ZCnfvhDPve5z7Gxsc7c3ByVeoAUkuWlFSYmJxCqKC2ZsgGD1jUa4VHisM/a/iq2oRmfHCVNMxzPZRgOS8CQpihlkGWlldXa+lLpH5zlbO3skE2OsPr8G5g3V7CCsqat0Wjw1ltvMDE2xbvvncZxLeqNOnnBroVNjlKa559/nka9iefbKFWAgCIX7Gx3URLyLMM0NBRl1kGvN+Tpp3/E3sU9pU+qMHnm6ec4e+4cR48+hG3vqkJvbDPoR/jVGnJXtMa2DKAEePv37ScIAuIkY2V5hdOnz+K6fhloqFZKa54iw7FMhFTkSLY2N/Hcsi7ZdT1My8QyLMIoRmuD/mBQqkejePTRR9BaMRwOSuXfAvIsJ4qScvyU5fegtCaOIqAUHsvzfFdgzmZ0pI7nuLQ2WkRpQZJkBJUqUmm0NkvP17xAK4M4jhgMhrviTAZJnCBu1wuXQn5am+SIXVZakGXZbc2BOIowTYPV5VUqcYYpFf/dD7/HZz/9GbxaDcd12HzlDdJTF0k8n/HJGc6ePUsQBCilsG0TITUjI6MUecGgP8BzHFqbWyzuWyRJEur1OlmeopQs2WOl6Oy0CTyP9vY29UaVwSBiaWkFwzDJshTP9bm5fJ2trR5raxtcu36R2bkZlFLcvHGDfq9POBxQqTqsra1w+MgB9u9fwDAEllNlfn6WLE3JC0l7Z4dgaY1iGDL6j/8r1tfW0EqzsrLC+lqL8YkJ9u3fj+06XFSnqT5WxVSSWq1CdzDA8lzIUoThYSDodTaZWtj/seJM92Ncb/1bihjtKo2REcdD2pfe5He/+T2++B//bcZfOMRv3/xvmLWO3A4+OZ5FY8wvVaOTnHp9BKkEYRRz+szrnHx0Edcr6Hf7tLfbpV2WAdVKwM72JpPjDbRIyAtBEkcoJQnDCMsyuXDuNNVqg3q9xrnzZ9m39yBRGLK12aJa9ZFK0WiOMDYxzebmFvV6E8Mw2N4pg3uFgCwNybIQQwuKIuP8xSvMTJcWYYICqSSGLtneW9+DkhIpTCjK+mfbchj0h0gVo4yCPDfo92B5ZZM4TdjYWGNx7zwbrQ3SJMGybdbW1rEsu1QJD22qzQY74y+hrVGm98wjtQRKUH7n3ObOfrlznnf37PGW6M/dfXv3nPJjfhD3/V3cub4oyr9v1bjeEme6e9/7Mbx3X+tHkSEP8vn90OOd4O+j7j+/oz739jU+8Hf20at/koDBna3YDUz+69o+Aa4/Re3jgOutn/uDANyPPvbHtQ8f81ZKyd9Ue19V+N7A9e56jVvtXgPAnYNDceUm+T/6p/ALj1NUXCgKwl6fLIoZnxqntdUqPQSjiGG/hx9USZKEifFxtFQEQYAXuOzdux/D1EhZsL3dZt/iXl577XW2t9uMjIzy3PPPcfDgPpojdZQCz3eBMnUxDIdYlgkUDIeDMn3P1CRRSJrEmKZBUUDYHzAYDBiEQ4qiYGZulnq1Sm9XrdD3fWzLo1CSNCt4+ulnGR0fx7YdHvvCF/A8j2E42K1FsymKuGT3LEW/vcnZCxdpTkyRpSHdXhvL0rdVPgeDNkJItLaJogSrMUAgaF2XGKbFmbNnqdcqUAxwHBfL9FlaWuXVV15neXmJRx55hDNnTnPoUClulUQ5v/27v8PRow8jBETDkOmpKWamR4njjOZoEyUUf/iN77B3/yzKMEv/PcAyjDJF2DFI0xjDtPk/f/O3OHb0MHOze9jY2GByYhxTlyz50aNHGR0dQRsGg8GANE2pVKolc+26aC0YDLqMjtR5+eXXOXjwKNowwL5ExffZXqsyGEZUgiZRKOm0t3E9F9Oyy3qmIscLqriOi2PbJElMpRrgBhXW1teoVioYSjPo9jGkQhkF4bCPoQ2uX1ui348oCsX62gb1ZgNkQSGK2y8zeeoSaZoi/sl/TqNRodPpEMUJ2iotNNJLfwmFxPRGuHZtieWldSzLREmF7disrKwwMjZKY2QEIQVxGlEIsB2HpeU1Kq7LtWvXmZudQxsmURSzs9Phx3/5ArOze7h48TLPPvs8rqUxTJPLV67w8PFjSCVpVKuE4RDH9SiExLI9Lpy5RF7kWLbJ6OgIIJid2YM2oLWxyvTkHt586x1qtRpfePwx6rU6nuewdPMq2zstwqhgYWGBajXg1Htvs7g4j2ErpFC8+cbbHDp0mKzIMSUkSMzORfzhSfI0Yv2Aj+c7peVRf4AyDBzPY2lpCc/zS+XrAqCgXq/hOD5CaLygRqXahLkFvnj+OtHf+QoTwuCN19/g7LnL1Op1Fg/sZXxyAikNcsp0bkE5QTx16gyf/uxJLEsBGVEUYWibb3z9W7TW15iZnsK0jLJPRYEyTI4dP45XcZFKEkY5qyvL/OzPfgU/8MtxCjh96ipXbyzz0NHy+0aI26n4lmlhGEZp4WEUVKp1PKfOKy+/yjDqMT09guN4bG+uY2hJlguEYRG47i6zAkmcYRg2/WEf23HJC+j2+nh+hX37FxACtJa7AFVhKJOikJimhdaKNA0RUkMhMEzjNkMKBRXfI4oibtxcolpr8O7pczz1o+cYGZlgbHwcoSRZaQJTjsdAGMa89dZbXL96gz3zC1hWyUZSCJRUGNqkKETZj2RkZKUoUJKilEYrAyEknuOSrm0g85yj//DvU61USTIwLIW8uoQ8d520UkFpkxdfeBGtFRMTY0DB8soGtmVz6dKVsqwDqDUCfN+jsrpFuLSKMTlOv9/H8VwQAiUlYX+AloqsyNHK4o/+6LsszM+X96AM/KpLszlFNagzNlaj398h8AN67S6zM9MYWlJQCuqZhkMlqJV+tUnK8vJNvvud7zA1OcsT33uCTwV1RJjQ/vf+NnkGr73+Op/77GOl2FSeU2/USbK0PLflYmgJFNi+S5IVaFGQ5AZkCaJISZSF6zkf+Q7++El5AbtCR4IMipQXvvtb+LUZnnvjbT418SiH544wiFKUJbl86Sq12hhxnBFGW+S5gVYVOr0uQkMygLk9Y0iRoIXFCz9+hSOHZvFcjWVqAt/BscAycpLc4Nq1KwS+Q5aErCxdB6EJgjpKSVyvVJ5fWbqJZSpW15aoVisUhUSIFCV35wVC4fk1Nja6rK7s4LsV8tRjIgAAIABJREFU8iwvLbCyhMCv4boucRJhGIoiz8izlCLPMbQiS5Nd3+MUpQqkzMmymDxPAEmReSgpsZwEQyn2HT7JkSOHCaMhUOD7PtowqVar2LaN47nYAw/tGKw2nmF9I+GhY49QaEEuNB+GpB/sq9tg7gH78uOEiz5gfbO77hYZcj+WUMoSUBU9kKMgF27pr9yf6Liz3Xn8BxUrvR/juvvXR+7/cecS8h7X/aDSpv8/pQrD/ZWi/3VonwDXn8J2izUtI1fyjuVeD/kH2cVb6R8fPNa9gdz9z/++AMD7ywdFoEp1yXtf+8ff272Pt6tbB9wNXD8sFnV3isutY98pCFUu2e19oKD49f8DtIAj+xGFRIuEaxfOYaDwRycxbQfDtsiKnEwUrC+tYZkGly9dIs8LojDl+R+/xPT0FINBj0MH9pNEffYs7uXGjasIkTE2MY62XEYnRvA9H9dxUEKhLJdBu4tlm6RFQrfbYziIsZSN5ZT9ZpgWruuRJDFp0scNalSrTVzXIRz0iFLJ6dPv0Wu3sSybWm2UYTgkSzIsw8T3XWq1GsIQ2I6FaWl6nS6e45GjSNOUnZ1tKo06kpyab2EaHqIwcCyf1kYLpSDOBDeur/DSi68gUVRGBN1OiErrOK5BteqhDYWZdTBNm51uj/GpCbbbLb70hcfxfJf9B/djWAaCjBs3b/KFxx/D0JJ2e5tDhw/iBh5GnvHnP/hzbMujWm9QH61g2y5vvvI6c9PTZEUBtoFlWFieheXaFEXO4f370VlKpz9gbGaGJM/Z2mxhSptet4tpaPq9DrZtIEWB41hIqRkMI0zTx/PqpEpy5OGHsGyDLE6JdqZpb4+yZ26Ozs4258+eZW56imp9fFcpOMUwNP1hhEgLsjQhK4qS2Sog6g8IXJ/1tXUc2yUaRhR5gXZchDYwbGfXM9bHUBlzc+MMB23CQbnfsLdF2OthP/s26X//X6MOH6IzyNFkqKxP0h/8v+y9aYxl53nn93vf9+znnnP3qrq1dHdV702yqZUa0bKsOFosx+MNmBkPgiQTJIENGAgQJMDASQaeBJkPmWCCfEgGwSRjy5En9siOxpYoi5JoiTIXSRSbZC/sbvZW1V37duvu9+wnH87tJtlsLrI8gjHmC1yg6tbZbp1zz3me93n+vz8Sh6R3jXx8wK3lPcbjkI9/4uO4lsW5cy9RqzULPaTrcGvlJo1qtaCvImnv7OG7Dk998zv89Cc/gdIVcRBz8eWLnDp7kuPHjjLu93Ech6Wji+zt9bAcG9s1aTTq9Pt9UqmDkEhyTL3Q+AbRmIceOoMAhoMe060mpi1ASJJcYdgms7MNep1dKtUWw+GQJM1pTs9iWD5JHjLTmiLLUh46cxpNKeIkIc3G9AY9DMvDcBxGQReVCmTnKnJwis2tHumpMoP2baa8Mr0dmxSB7Y8wrVm6nT4yh+Q7v0W+/BQsfo4oiFF5jsgTRBJCyWDt1jKHbm6y2u/QmpnCdEocPnz4DW3BKWkYoGShMcuBb//5Nzl79ixJmqGkiWUWfr+nTp/k6KmjGJZFmuRF0oU28byc3P+kRNMF84cOoxkFMbRIsHNqtRLHjy8iRMpBew/PdSbUagOELCrIeY6ILHRTgAavvHIdU7OYma4hTRNdEwTBCM/zIZfESUCep+Sk6KZBEMboUp+QhIsJDdMyMUxjYkMV0u8cYGoKaejkIkPInJyMJM0wdI0wHBftyFKiyBkOBiRRnygKMG2TMI04fHSJI4dnyZOc6al5gEKyoANI8qxIAOvVCoNhyOzsNFIVMogcUfhW5wlR1IcsRhcmJJIoGSHEXTiUjhAaQdglWN9CixJGn/oIdslDyIzxoEd5q8vgpcuUFxcZDAYcO3aI1myFjfU7lCwHREYYjLj86iXq9TqWZTMc9oskcGuPLApR8zNYlk0UDrlze5VmYwbHKXFw0KHXS6k3Gzz6wYd55fx5Zmfn6YwGzNZbfO/7L/LyhRexjITD802CcYzvTxPFGaalgbRBKC5fvkJzqkGapRhu0ZVx5MhRyHJ6+21OSxMRx2z/4sdorf8Zh602O5UmVW8Or1zYb5m6jq5pWOiMGZNKQf8goGZMIbI+SiRolk67N2bc6VOdqt57rt7//H0vz3JETqQkicxwVMrOzatceOmPaVXh9lrMzEPHOLHySf6HC3+XX/jQrzI/VyYXgj9/6gJHDjcpOy5JnPHShVc5sThNuWqTRDGkObpKObY0hSETNMMgjXO+9sRTnDxxkus3bqI0QbNp47mSWqWEriSV2jzlikUQBbhuleGwy+21TY4sHuXmzRVarXk0XScOx5BpWLrF9uYdlFRsHewzM3sIx/XwPJM4HpGl4JgSVMJwOCJNQ3LGSN0lzRIQE0umNCXNiiReaTopOcpQSM0lzTK6wx28sodtzvHcuascObLE8s0bTM9MY7gmCp2VlTvUq40CZjjU0SKdq8ZXeOn7T/O3fvazhJqDYyVkmXxrHCaLCZDiPiLJ3jhRfx/J963x4IPPd8FdKCbO0jR9E1H4/oTp/m0WMWmOXMxQS3fjvNfj2Lsx5bsXeN+5CimEess23/iSUk1i6PtBo3fjwXdKdt/45oPeevc4t5gYeYfMVfDmA3qP1OW7430403sf7yeuP8Hx3i7Md9aj/mUu7Aev8/YV4Hdf9w1buZdovl3y/KDE9e33/cYZwbfZ4+s/3Vwl/5/+T/j8T4FuFNsXGXdWVqhXm0jLvucpiKCAomSCZ599htXVVY4fO0GaZrxy/jymZXDq5Elu3rzBqVOnuPraVRYPH+LY0SU0TefChUucffSRQo9KARLRTQvXcrh95w450Kg3SZOMYX/Ezt42bql0T0ejaRq+XyZJcp588pscO3qE8bCL0g2OLR6mVqvgl8sozcIyCtuOmdYMCLBsi16ni5KCQX9QPDaUzubWNuWKz2AwwCt5lEoeUlMEQcQPfvBD5uZmUUpg6DqmZeOXfFZur3BwsMfLz9/gg6d/Ftu2CpsI3SRNckaDNjt7XQyr8P9szbQQmSADTMsiGI8ZDoc0p5qQ52R5husU4Cdd02nv7/D4459AahqaqVOr18jTjJLr4rguGYVuJk1iUIW3ZZwklMsVttbXyaWiMT2DpmmUSx4l36berFLyHNI8wS25jIMxhm7Q6fapVutcunSJnZ09pltTiFxAmpOmhf1NueKj6zq2ZeH5Ho7rIqVGEIyIkwLaU63USJOQ/qCHbdsEQeEJmWUBSgn6gy5hOKbRrBUEVqXY3t7GcVw0KdGVotvvFlpms6gsp1mO67nIH76GWJwn+I9/lSRK0QXYRs7VSy8x6PUwDAN9+1lM0wGhUy77JGlEnCYsLR0ly3LKlfK9qoBt2QUtOk7Z29mj0+7y4Y98GMu16fX7XLlylY//rccJ0whTN3jy609y6tRp1jc2OH36NK+8co7HPvZRkGDbNkJpWKbB+toqlUqFlZUVjh8/wc2bN6jXq5RKblGB0jT6/RG7e22a9QbkGU989Qn8chXPc7FtC6UKKI+uKQzDYGV5BYSgUq2SpAXZ1jYdTL2gwJqmwf5uGzneRmiLWJU56p98lDur1zEdndbcEUZRgmGbZJlJqeSiKcXgyhNomoZ58ucRCKRgAm+x0HSNxkfPYv/Rt9j9xFn8cUxrdoZOp40U0O12SdOiyuK4JZK0uP4WjxzG84trRUwIn3cTU6UUaZKyubHF7vYOrdnCXqnf7/Ptb/85rdkZbNtCCI08B23S8hVGEQJwJi3stuUghZwkcMV97K7f6Zf+9R+TpCFeuUyeSUaDHnPz0xiGhWkZkOVFq7rpkGcJwXiMbVtkaQFRE3nGcDScAKaKSbM4DhmPR5CD5/vEcYRuWoxGo3vPIk3TkEiGgwFRHGHoiiAYYVlmYQGUSzy/imWVkNJAioxur0urNU2SpuTIIvDNZVG9zkCTitbsHErdlakUAfNdur6URUynpFbY8hgFME9T2r37vqYpTNvBur6KyhLi04cgU/QODlh98WWmf3AF/fRRTMvmuef+gjAYYds2bsmn2+tRKVeYn5+nXm8U9j2mjpIKbxQVQKJyqYA3ZTFuySOJC92649hcvPgq+/u7zM3NsLh4BNu2sB2P9du3aM3P05qdgzQjTTO8cp1MCLa2Njk4OKDkFQyH1mwBI7t16xZlv0Y0jvj2t77DkSOFlGJhFCLjhOGvfQ7r4BpCKOSRj/DMUz9gOBgwPdUkyyL4vQrJywr14QyBouSY7O6uIHLojQYgNWzL5vlnnuPMow+950TmwY/qnJzi3qyylCwIYLhMxXNpDz0+/POfwrvtc2PtBg23Sa3qI/KMpcUFLBPSCdRqYXGRNBohlMRxLMgzEAXJ19A14jRCCkGpZGE7gnPnLjDVrFAu2wRBnyyJ6fc6GKZGmgzpHuyRJQFZMqZaKWMZCinA971isjEL0DSNPE8p+RaGaeH7ZSQ6WZoTRWHBksAmyTXyJMXUzQJYqBR5miOEThLlZDkgMgxNIUQ+kSqlSCGJowzygvxrmi7XXlshSgTPPvsX/Oynf64gjWcpeQ4ry8vs7u5iWTYZKdmGonv8IndurzK/9DDNhSV0DbLsre2t+X3nLP8rSFx5w/I/iivE/cf2xv289b33zix58H7eXaNdHPvbLvHAdd7DYu+p4iqEeNuK6wPHAxk272EffwPH+4nrX+Px73Li+m43k/eauL77eEPi+o//OTgm4tgCRYtTThQMSOOUK1eus3DkCFmWvV6tTXNWV24XetLxmPm5BZ5//nv80i//InNzs+RZytbWFoZh0JqZYjwa4joOg0GfSrWG4zisLN9id3eHmZkZNje3C4iIYRJGRStR96DLxvoajzz6KJZtF0GlKIzOd/e6+OUqaRLR6+xhahLLttBUTr/fIU4yDKdEe3uNkmuj6arwynMcqq5Hp90p6Ma2g24YVCpl4iRF0wwGwzG265KmOXEc0Ww2GY/HEx9Qia4soihkPB6ytHSYD3/0gxi6JI7GdDttNKnoHHSpTzXIhM7+QQ8lNZSQXL5yFcRdjWy3CMbdwo9Q1wx63T625dLt9Cj5Lv3RCL9SIc1zLMtm0O8jpcRxXYSSBMG4mDVVklxKNN1AINGkYHaugJcICp1dLlJW11ZxSx5KU4zGIeVKFSbdC7puUCp57Oxs43le4WMbhnQ6HV588UWOHFogjmN6vR4l3yeh0Dqnkza8wiLFwLQ1cpHT6/WZmp5CSsne/jblSplqtQKiSNzXN9bQlY7v+eRpxt72NpahoVkG/UEf1/MKCxJyWN5CXr2N+j/+Mas7bSxlQdwhDga0ZpoEwZCVW5dp3PkygSohzRJ+2SMIx7i+h9J1OgcdRqMRaRwzGgzwK1WiKOXciy9x/uUL2JbL/OE5pFZYJs3OzbOyslIkocvLnH3kUTY2Njh18iSGaXDo8AJFSyAF7TiXKCFwrIJaW63WyfIU3dBwHWdSkS4SHdMqUa1U2N3eIU1SPviBD+J6LuPxkN3dbTzPJUliDGnS7/UJo4RKrY7STWzbIgoDttY3CQYhWRqhdJM7t1bJhtv4S4r/+rtX+MWf/1VykdAdrRPEPRrNOXq9DLfksbG+huO7DC4/wXg0pvTwLxUtfkphWSadgwPcskeYJkSDEeVXb5H6Lq6j4zoWo8EAQzPI0wzPL6E0nfWNTS5dusQjDz+E0tS9e1qheRNsb29jWzambvKNJ7+BpnSmpqYpuudyjh5bwvO8yX1QQ6miWiCEwNANkjhE6RpCTgjFFJZQw8EQXS9gbIPhgMOHDjE7O4umdPIs5YUXvsdDDz+MaVromo5tFRMuQkj2djYxdANDN4nCEE0Jev0OfrmAb2UZhFGKzJMi2de0icbfIIhCDMO4955SBVnddixcxy40vFlE4Xuc4rglsgwyiuqwpmloKiUnYRxEgDmRnWiEYcTqnVUMwyjaqiV0Oh1My0RwF4SVIqSYtG8aZGlhoSNloQkvunGyYhLA0NFWNkh9m+HZw/TbAZal0/dNWl/8OjdrhYbw/PlXOHHiOItHlpBSJwqLiSfTtDg46GDbNrqu6PZ6ON0RQkrk3HRxnqOQUqlMkiSsLN8iCgMOHT5MFAd4Xont7S0qlTKmVeLWjUtMzc4U/p/SYnNrj8ZUk43tNWbn56j4NXRN8dRT36JSLmOZJrVaHZXnWLrB6dOnGQcBC4fnyK/eRM9SRr/285j7ryGEJJ35ECoy+Iunn+bIoXmC4QAu2IyDMdZHNLIUdC1CaB1sq06n28N2XTQh2N7c4OipEz9W4ioQ5CKHvNAW25bNs1//f9nbuMPTz73KZjdlafEQH4g/w+Wti4wGI2oVB0mXPJcoYtI8JMnBVAbIgrOQZylCFpW7JIkmdmoSy5QIAo4da6IpgallmDpIYjSRIsWIaNzD0DIsI2E86FCyDXqdPSplh83NVfyyi2Ub7GzvEycpcRrhezWydEzJLbTjnV6fSr3FcCy4eHWZkqXY29wgyXNyTUNkGUmis7y8hVMqYTkmMk8KYBVFJTAMis+gREHYJ885dHgWWzOxHJfVnR7N6XmC7j5ZnlCpVCiVfJ78+jf40Ec+hLXmEYx0Xt5+iub8EeYXT6EmEzrw4Bbeu+fsryJxvbvu/drZ+5d7EPTz3nHtSvIhCJd797i/KYnrvf/dOy51/0rvcAxvM95PXN/beD9x/QmO90LRvTvLf9+7b/j7g7+c79yCIR6w/zffDIsv5uso9Xfb5lu3/+NXXN9pf1LKyc19cvQ37pD/k38Bn/9ppKFP2oRhc2MV07Dx/Sa6oTMejTF0nX63j1I6tUqZWq3GxYsXaTamqFbrVKt+McusisA/y3MMXWfQ77O6ege/XKZWb3D9tetMTzeZbk2zu7tLHCYctNsoTWem1cJ1XbY215mebqJ0nSzLGUzIxXGUoDQTz3NxXRvylFrFRxkm3e5BAXbabyOUQR5HIATD0ZA0z3FLHpurG7QPOthOoaHJRdEeOR6Psa0SUmogBEIpNAkguXjxEnkuqNfrxHHC3u4++/v7PPzIQ9iOSa+3T63qI1VOlseMRkP8Sh3TKdE+6FCpVBn1hywvrxCGAY2pJq+9dpVBv09rbo4oLIL7NE35wfd/QLVcIc1TdEMnS1PSNCMMIzy/RA4MBgN0TUPkIEjJMjBNmzQtquFpkhLGEaPBkF6nA7lgNIpoNmaw7RKm7iKFxmgUEY4HjEYBlu1gOw5JklCrVkiTooKFgKWz20Rimf0tm9bsLEiB0nWUyBFCoZROlmZEUYzUC21XtVp4P0oh8UplpDDo9cYYhs329i6WVWLQ6xRa6ShCkOHYJrlUlEoe/f4AwzBRgxHyq88Q/V//I8tpxD/6b/8Rn/7Up+js3ebci+dYPHqSSq0B3RtYOy+izT9GRoaSEl0z0E2DKIrJs5z1tXXmZ1sMhwN0w8C0beq1BgJJvVrHdBRSFYRKISAYD/FLZQb9IeMw4NCheXrdDiXP4+bNm3Q6BXF1NJqAsfp9kijAsW0s2yZOIvr9HmkS0263GY0Dms0GGxu7eCWXfq+HoeuUPJ84DnEdF9PU2d7ZxvdKhEHM8soKx44fJ0lTDNMAJFEw4tKFV1lf28I0derTM3z/ue+ji4SGHfL4f/RPOH/+NR46+whShozDPaJEolPB9iw2tzaZac2RLX8bpWnYp38BKSTDQZ8wChj0+2RSctDp4CwuUP43TxNM14izBCZqsiiM0DSN4WiI55cpV6rMtGZQUpBkKWKSRGmaQbu9zzPPPMvJY0dJ4oTjx47huC6VWhUhC2stXdcmRNsUISbUzUn8JeREN5rnBSwsDEEIDKOwf5ITQrVhGgiVY9suIhc4rs7i0hKaZmFbRgEzyikmfIjxvRJZmnPlylUGgwH1RrWo+EoFQkEu+PrXv0Ew6tFqzTIejRgOxxhG0T58tzUwCAKSJCFNCjjScDCY2FPZBOMASEGAULKoioqiVbpUsukPBsRhzmAYYtmF3n847HPu3Dkc26Y5VSdJEgaDEY7jcrcNMk3TwrczignDoGh61wvgFnmhOx6Nx+i6QRRFqDxDre+i/cq/h63b7O9vUyq7lL74JNXP/DQHnS4PPXSG2dYc3e6Azc0tZlrTDIYD4ihmf7/NwcEBlWoZEGj7XTRNEdXLCCEKuUgU0ev18L0Ss7Mz+H6ZeqOOYZgkSYJlGWxu7TI7VSOXkteu3uLalat84qd/CqVJ/ErR2ksu6B7ss7R0BPKcy5cv88ILL9CaKtNu75JmEeVqCaFl2CubiDCh96uf4+az/x/Vap2o+Sh/9qd/xrFjS/wv//SfUqvVWRo8hG4YdA5tkwRj9tubdPptppqLoMkJNyDnwosv8dCHP3jfM/n15++Dn9kPegpnKCEmlUCNdNBm6/ZFPv3Zv82v/P3f4Nz2Szy69wme6PxrtL7DVKOMyMZYlodhaIRxxDDMcS2HNI8o7Jv0IgmctE9KYRUVdinQpJxUNzOSOEDJnCyNECQoLUZhIPMUIYZoEqLxAJFHRMGA0bCDruUkocC2PPK0+G5JaRFFW3QODiiXywzHA8ZBiF+p05hpIQkxdEUmchzPIU8yxuOUH/5wg4XDDSzHReUZWZoWzwvNIEll8d1RCXEUkKQZaRaiAatrm9xc2aRenyGLRoRxiO24OE6JNMtozc8Q72aUKzX+7Pq/5PyFi3zwY48zVW8WGvH7tY1vkJE9iPlx//l7Y0HkbSVovLnaWtyn5FuS4fv/djfRzfOc6HdNslcV+seye/u5u/9i/QdeUvfG/aDNt1x74vV9ve31+R5izXeLX/P7gFhCvN7W+9Z9vfnnnLcm9vB6Yvvmo3nwOXxQa/bdbfwocfe/S+P9xPWv8XgviWs+IZ79uBXX99py++Yv548jDv+raRV+u/H6cRbrZv/bF4EccexQoQNJUuJwzN7uNo5bod6cAwqLhye/8Q1u3bzNkcOLbKyvEQQjlpYWMUwLxynRbu9iO4V1h18pE4YRuVATn9UFojTDtF3yKMH3S0hNoukatm7RaFS4uXyL2dk5+oMOJdek191jpjVLluWsr28SRzkvv3yJaDygXi+IltVahcEwwPFrhGGEEhBHCZ7r8erlZaZnpqg3qghg1B+xtbdPECUcOrTEt775LU6fPE6nvYlr2ShZUGDTJC4sIcKYUqnC5uYO/d6I9bVNKmWPfn/IiROnGQxG6DO30fyA4Z6HrlsYpkO5UqffG5KkCbVGFcspNKhHFhb4/g++x9FjizSbdZrNGu1OwB/84ZdYX1vj7MMP0ahX2N3dZKrZ4uIrr3D48AKD/oDBQZ9S2WMUjClXKsRBiMhy0nDMsD+CXGIbDrvb25SrVSzLIs8SpFSsr21xeGGWLI2JwjGDwQG93i5l36bfH1OtVhkOR5S8UlEd2biDXy7Rbu9h2QaZ8SqamVMvfwyEQJOKlVvLpGlUtNxmktt37lCv19DNEkoZtNsHWJZBMB5iWDoXLp5nerqJpilsx8b3S3i+i5hoCh3XJAzHaFLn4vlL1Cp1rCiBr34X/sv/EO0zjzMY9vm1v//3EBrYesiX//QpznzgZ/jvf/t/5vMPuQjNZ2NviOs5mLrF7tYet25eJw5jpprTzM3Ps9/Zx6/4dHttyuUKcRTTqDXY2txiNDqg7FcwdfOejrfXHRLEEYtHFzF0xdb6BmvrW+xs7yOVwWg0ot6os7fXxnMd8iTm1s2b1Kp1Nnc2qNdq9LpdXLdEEAaUPI9qrQFpxHjQZTQeEScphm4yHAzRlMbe3j61Wo04Tyj5JXzPxdAk7b1dXLdMTopp2Xzspz6BV/dJ4pRGpUL7YMiC26b+sV+nMT+DY09z6/oalpmwubFGsz7P9u4uS0eXSHJJfPMplK6hFj9TkMKzrPD/TBKU5bG9tcdTzzzHcdNlEEWMkpThKMAvV4pOhVqF0XhMkqSYto1u6Kws38IwCxspNdGvmqbJ8eMn0GTG3u4O5YpPuVomigOSJEbKoqU4jgv7oTRL0RQkSUQ+aYlFqIknrEKqYnIpT3OUVKRZilTFhFxGjK4sJII0HeKVy2xv99hcX2ZqehahJErmHOxvEMYRrldmdn6BkueSZhFK2qRZjlIaURQxN9+i7Dp4nld41k4saDRNMhqNMAwD0zQJwxDbMkEI0jjl6tUbrN7ewPfqaLqB63ogNRA6OUVVP091dOViGja/+4X/m/X1LU6ePIZhSk6fPkGz0aQ/6ACC3/md3yNJUubn55Cq0K/lGWhKYlk6QhZyg3tgJgqydxgOiomYWgXj8jLR7W1u12G61aTWaJL/8z9i9PApKhWfkudDLugPRoRhhG0V9lAg+Na3vsXs7Cy1erU4B9ttTNNkMy8muKQoOmbyPCMMx+RZSrvT5c7tNV556QInT57C0A2kpjCVgdI8WnMznDg2ixRjsjSHXOdgv4OpCYTIyLKMbqfD3OwcS4tLBGHI9PQs2ztt/vTLX6XslanPTBFt7/NkxWFObeOXfdTCWY6dOkYuYPHYCY4sneTGl1dp1Ke4pj8DaZ9vfPNZ+l0H09PxfJ/xeISpNNaWb3H87CMPeF7+CIlrLlGkSDJyFGluIpXJuWf+hJuvXebchRU+/wu/zFNPfJdP13+FZ5pfZvfFiGqlRW9wgGX6hKHJsz+4xJEjLYTIMXSTJE4QQmIaJmmSkcm80FmLfOI5nGNaViHzyEHJgt2Q5Yrvfuc8UmqUqzqastFVwnjYoeTq+K5OHvW5vXqHF773LAvzM6zcucbO9hZ5llIq1bnx2jIL8/NsrK9zsN9F5DlBIilV53BMhyyMEAjcksWRo3XiVPLVJy6weKRJtz9EN02E0giijB/+cJ1aw0PTdXo9we2VA+pTFtVqmUatzksvvkSzdYgTx0+ytrrBxYsXOXHiOEKkpN2c8TDhsX8wRbe3x/ziUaammuTqrZDM7EcEGb3x9x8lhntHgJF4s3sDQPrDwidY+1jc44YRAAAgAElEQVTKg6ub77y/B1WM33w83EuW3279yZJvt4d3PoD71n7jMcgHTBY88BgfeDxv8/vbHeX9kwqTc3D3c7+fuL77eD9x/QmOB82+3D+KqqecTAAJ7r/8362y+k7J6pv/XrzeCIv6y4z7t/fW1+RzPXoK+TMfRVT8d1zu/orvW2ceBXl/RPYP/xl8/AOIkkuaSbIsYdA9YNAbMTUzXxh7y4Qsz5mbneX69RucPn0Gr1zi1q015uYP0+13qDUdojDF932mpqdYvXOHeq1KHEVAzsFBm+GwTxyOqDemuXFzmanGNCXX5/r1G2SZRq3ewLEt1tbXmJ6Zwys3MZyCcLy9tUGSZZy/cJGf+w8+j24IoqDP/t4mUqTYThnLkATjPlNTM2S5ieVqWI7BcDzCdUuYtovnmMzNTaMUKE3S7fVpzswjBIyHB+i6oN3t4pRq9PsHGJrJoN/HsjQ++tijjMcJ5y+cp1otU634bPUuo2saf/LF7/Cxxz7KeDiAPMZ0y4DC0G3IQdMV29urfPSxD7O+foder4vne5imxbHFY1TcGoZuMQqHzM7PsLu1i+eViaKEH77wEidPnSYOepRrNfKwz6C9xd7uHtJ2KU9PEcUJ3b19qs0qSThkfWMDw7KxLAddKTS9eLCHcUzJ8zGdEk7JxzYcRqMxvu/T6RxgGSambbOxuVEQg3WT3FiGPMPKTtDtHpCkRUIVDIZYVkYwCjG1MkHQR5948cVZgm3aRKMQ3bJxXAelJJZtkyWwt3OAaVq093exTJONjU003SZHoOsWnsrQvv4s3b/3aez/7O+Qaja6XUI3NUhHWHYT11DMNWw+85nH4dLvkuPg1hvYpgWpzbXrVzn70CkMw0FoEqlF6OQkQcLe7i61apPhYMjO7jpnHjmB5ZQwTJMwDNjf32dqpsU4DtB1yd7uNt2DNseOH6VUbpDmMSdOLWEYCtdyUabF/u4+5VIFv1KhNxwwMz1beDtmOdPTs8SxZH11l7LvMOgNSeOU+dYUV159iUajgVQ5W9ubXL78GuVyk4pfYTQYoWnapNWygtItDMMgDMZILUfTNZAZo3Efv1KhMthi9MQtxM9+GpROffoQuj5DHAssW1Epe2xu9/Er86Q3vw459J3j6HJEv7eDZ1fIYwfygD/8V1/il/7238E5cYLmn36Ll9v7HD99ks7BPu29faIgIU4kURgTxxGObUMu8F0NJfK7pDhAoCsNIU3+7OvfYOHQYRzbnSShECcpuqajlAYINKmTZxlSZozHg+JnVVhIaLpGnmdEUYiu6eQUyetd3adp6PR6HYSU6KaDEGAYOdeu3MLzSpBFxPGQWqOCbZXJsoThoIdrl7DNMqMwRpOCPI4Zj0b4fh3LKyOUQRjFWKY1iQxjpNRIY0kUJ0gtJewF7O3s89WvfI00zpiaalFvTJFkY2y3DFJDkGEKSDMJIkWporXXL1c4fHiWSqWMoRfAKSkFmlZQsaenp5iaamLbNqkyMXQNmY2xDEWOThALzElVWkjBYNDDMHU0LJRmInSD3FBYl29RMUuMl5aIRjnGF77MxkyJ4aCHMbnOHNvBNC0cxyUYB/i+x8z0FHOtFit3bhFEATMYBSNgfpooDLBcn36vx43r1zi6uARCUvEdvIrHTGuK9v4upBGma5OmijSO2d9aJQoHCF3Dth10Xcc0LVbX10nSHM/zqVSrtNv7NKfqCGUitYLYfPLUcaQmsaRCbLf5sjvP6XKH9sEBgX+W+fkGWZZSKhVSgTPxB9ANnd7JDuMoo9cf88MfnOPzn/0cQip0w0AJxd5Om0PHj74BYCO5P3Z492d4oXHN8rsBdEbQ32JrZZlHj7usbqyysqmx9KkFjqw8zNIH5jDChDgcYpkRlmNgWJJ6xWNvu0PJNDEsSZgFCKXIiIGAaOhiai5xEqK0lEyMEZlGp9/D9hyyPEHkCRKL8bjN/FwTQ1ek6ZhCIy1Yu3MH23TY3z2gXDc4enQKkXdIwoBji4uUqi2kppNJSZJIDGEx6A44tDhHkkoGQYJVahLlJYLxCNIU0jG+r1hc8tENiakbkBUk/r32Hnt7ByzMNdBk4VN89bU1Dh9qUPbLDEdDRmFMZpRozVWQSjK3sIBhWuiGjqHrOL0y0eMx3/7alzjcqtE68RiOYcCk8n8Pe5S/ITLKQQn5loSpSHKKuK2g/r63WPFBMeLbJ8FvXiZ9oUhc1WMJb4RJFV2C736dvVtFUcrJNTixxroLDH1rQvlgeNO77fteQvw2Fem7r3sf6AG7uMvcFkyqtJOVim6CBx/Nu3UxvlsC/DdhvJ+4/jUf704Afq+Vxx9v/KRbEkTFnyStP/7IvvZd8tUtxEPHgCLZV+RcvniBZrOJ7RQPfSkE/V4fx3ZYWjpCksTcuPEa3//eCxxdOkq9XmVjY52F+UPs7e0xHA4n9g0ajUYNw9DxvFLhrVopErTZuVl293aRQhAnMVevXKJRL+O6TmFAPhzhOiVGowGSjEatRrVa5YMf/CC3Vm5S9l2ULIAt/d4Qz68SjAesrd3B98t85+lnuHXrJouLiygpMA0LJTX6/S6DwYCS52OYBrVanYP2AZqmimBQU3heBaEUjmWRpikzMzNUyj43b9zA88ucOXMG13WKqpLXAWC++gilkksUR2xubuP5DsNhD9vSGQ07QESeSSzLplarU6vV0TS90O0BX/3KV8mylEuvXmRxcZEvf/lPeeTsWTRdIwgDjiweJkljhGaga5JgHGC7ZRzHRbdsVC4hTYniCMs0qVQrZGnOzs4O/V6f/qBHpVLFcRykppBSEkcxo+Fg0loI5XJReZC6gVdyUROiq7RWyHMYH8zglEpAAdoplXwOuh1KXpUv/N7vc/rhE6Rpgm5OqlDjMft7e4UuT0C/38N2Cg/ZXAgG/T5hGGJZFhsbW8zOziFVTkU3UV/7Lt1f+xkqv/mfIKTOOIrQZQ7hiLUbV+kPMl67eoW9vV2aZR3t8hdRhz5JnI3IshhDN3FcHce1WL59h3EQYNk6juOilInlWiils766yvz8PNbEasm2bfb29zl27BhCSsajEdVKFV3TGAdFxVRIRa1WJghGmKaJEBLdsHBdh/XVNdJJwLyzvYPneZw/f556vYFjO2xtbSHymM2tbebm54jTlLmFeWynRLfbxbIdhFIsLh4hDMeMx0MEYNsua2vraKaBZRZEaLfkIpRiefkmjVqderVBfvsWthSszD5CvVZD5jmSlCAc8vtf/H84vlRnbm6GMAnJ7zxNnEZkc59C6pLBaIzj1lhb3+P8hRfwvDK//Mu/ym/+1n/D+LkXuKbDXK2GZRoFSTaK0ZTO8vItzp17EUROa24Oy7ZIkgyhJIhJdVHkE7rwab7yla9w5syZ4jrSBEpphS4wLxrIskyQ5glJkuI49j1N6hsrF1laBN5KKcIoLNqF04w8zxgMRnhemTTJGAwGOI7N7Ow8jm3xgxd+wMz01GQyyUFIgVsqsbm1QxCE9PoddE3S6x/geS5CQZJkJEnMKy+9zMzMNJqmSLPiuJXM0WSKLqHd7rDf3uP26m0+9JEPMtNq4pVtdnf3KHnlAnyTpWRpOiFup0BOkqQ0GlNUqkXbbX9QALKgaJOTShbAK00vPGQRaGSEoz7Lt27hV2oYplm0kU6CSk3TSdMMWegJCMMArV4h39hBDEbsPLxEvzek8qUn8T71cSrlMpquMxgMaTQaCCHY3tlhanqGV145z8LCIUzLpFyu02zMkEcx569dQ6s3cF2POI7RlCro65rGaDhiZ2eH1tw8ul60CishSbOEkuvT7XR55cIrzM21Ji2wxf95PB7TarUo2QZKkyhZdGjst9tomo5t29i2RcnzCu1+r0+pO+LRf/Zf0WKVZqNKvnCWg/0dqtU6tlNir73H1MYcUglq/75Fterj+2U++5nPYjs2mqEhlWB/Z4eb165z6tGH7wX4P6qu7u2Wd1yDm5deYX/jEvudEa25hynVa2zLLU5e+ThbS+cwx1XQXC5fvgPY1OsV0nyIX04JRgb9DrglyXgYovIG/dEWulHsUwpFmopCO2o7xElOnio0ZTEc92g2mwUcSQJkjEeFfrlSrrC3t83cXIs887nwyqvMTM2gaZIsj3n++StcvHCRY8eOEQZD/LKDZSqSLMcvV9jf26deq/LqpQskcUSrNUV/0EHTtAmoMETJAmyYZQmWY7OwMI9SWaFjFxrlagXb0WnvtxFS4/btNWynzNRUiywrnt1SSpI0Jo9y0lUJiWQ5+h7t9j61uaMT+xy9qLJOTsH9Z0KIt5rm3C0WvFuh4r2e//eyzN3EVXssfeD6D9LH/ijjwcn0uyfaP/L2f4yw971WUX+c8X7i+u7j/cT1Jzz+piauf5Uj+1+/AEoiWs3ijRzyJKbXaTM70wKpCoP7rNCqSgm3bt2gWa/S2d/n0UfOcuXVKxiaged6IATNRhPTKIAeXslje3uNOI6J45R6rUmv18d1LVZWlpmba7Gzs0W1WuHIoWlykRBGY4LxmM2NTarVGgftPZQEkadoSuE6NuWKV2gCXZcoTLAtF03XGY8GWFZRGTl15gxHDi9imQW9djgYkaYprm3j+X5B49Q0kiSdEFBzRuMA1y0xGo/RlI6UgvE4YGtzi2f+4i94/PHHkQqCcIySgvX1DapzObquUVILhGFIkmTUag3yLCTPC91mHEVomkBJiyiKGQxGaJpRQGeykHA85uGHHmZubpZur8s3v/ktHv+pTzC/MI/jWky3GkgFu7v7GE6J5Rs3mG3NYvtV+p0Opmnzx1/6Y84cP0GaJUhVtGePRiMajTpRFHBkaYkwiuh0CsiKJhWj0RBdU3heCcPQiaJCS6VZDnEcEUchWRIjnTvkeY4lzxQgmkkLmtJswjCh3e5w5qHT1OoVTMtC1yeG8FnG9s42ppKsra4xPdNC1022drYp16rEQUS32+XP//w7fPKTP1OAbkZ95FeeJv5Pf5Hk1z6DJktsH+xjK8noYJfrl17mpe8/y7e/+xIf/shHWdtc56H6CE0KIuUhBFy/fo2p6SniOKbbP6DXG7G4tIimS5TSyDKF1CXD/oDrr13DtWz2d/dpzkwDxXd6PBoxGAxoNWe4cP48UzPTeGUflMQyTITI0DRJGIbcXrlNpVpHkHPt+jWOHl1Ck5Lnnv8ex08cZ252vrjelOLGjevYtlF4czoOdzbWsUs+umaw3z5gNB5x5uEz9EcDovGQXr9Ha6bF1tY2Rw4fwS7ZCDL29wrSppAK2zIp+2Veevk880Od1OxR/9xvkIQRSsHa+m2SOCLNcizRp1atYLsee0FO5fjjuK0zSN2g1pwhQ1Gu1plplTl27Dg/9/M/x/xCC1kyeejWDm1bJ4yCYgJC6ZN9KK5eu4breSwdP0o6SVql0shEEUgKRaGOFTmnTp3iXqeKzCeXSgE4StOUK5df48knn+Rjjz1GmuTFyhMNW5IkhXZW14Ei8VNqktimIJWi5Prs7u7z9NPf4fiJ42iaQlMaWZYzM9MqJq10i0xIut0+hmlRKvlEScwf/sGXOHH0OFEQohsaSpfomonIM0ajAZWKhwRSTITMyNI+4fCAaDCg04uo1mt8+EMfwrQMdKOAXfl+9fUAmdftKBAZSitI6XcTVCUlpmEglSJLixbou/fmKCr+16ahII2xTVXU9lRB+s2EIE0zQCCFJIpjdD0nm0CyNKWR+yXMCzewhUZ29jTW7/0b0g+dZnl5mXa7zeEjh7n06iUW5ucplQv43traGpVqFdOy2NnZQwiBXiuTeyUEgsFwzBd+51/y6KMfYGlpiTyHVy9fwTILovK1azeIo4RarYZl6ezv7+M4LlGccOjIIoahMxiMyDLBzu4uzWaTzfVb9LpdnJKLppvYpRLj4Zjnn3+ep59+mtFoxNFjR5Gv3kTsHTD4ux/C8D3S8gI7kUF7e4NavYZuGBx0ukytLyAUpGf72JbJcNinVLJRyiCXkOUZlq4TByGzi4f+yhPXkZCkowG7t17CdS3SOOe1lRXmHz6EvpRw8uLneKr/RxDNcXN5j+EwZzjoMzNTRTc14tDl8qvLeL5JpeIhcp1yxbyn+y7uLzqagjRJkUKj2xmwtrbD1ExB5c+yFF3TUEpxsH+AbugkSYjnOwgSwkARB2MadR+lUpI0YNhLaE3XqNd9gglxWmoaa6sbVKpVojjENBSVqkezdRjNMArOQppiGjZZFpClKUkcAmCaFrkMUFIVPtBZjlTFcXl+iSyJOXzoEBXPJ0wd6rUm3/n2d4jjiOmpBomKcDYqfOPVr7FnXWM86PKpz36e+lSLcRggpPyJJK5vB196L9fI+4nr+4nrv63xfuL613y88cHyl00e34tR8bu1ZdzVMPzb+JK88UZ29+f09/6E/PxV5AdO/aW2ec/PtTcg++3/HT75UTB0ABSCzfVVZJ7hui5xmiOUhpi0nHS7B7Smp4Gcil9jc3OrqPzZDkpp3Fq+xdzcHL1ej6tXrzK/sIBpKUbDgFptCk1pEyLvCN/3yfOcJEmwbRvL1NA0RRzHKE2n5JWx7IJEXKv6bG5uECcxuqFz0OmS5Rndgw7lShVDt8mAdnufSrmMVBqGaZPEEaPRiDCI0JTi9soy127cZGHhEJ1ud4LYB1Ppk4qcjdINlFJoUpIjCYIRvl/i6MRSZRwOsUwT23Y4OOjgzcTk5OyuZNiOw7lz57h8+QqzrXkq5QaXLl5lpjXL3l4b36+wvr5OrVaj3+/z7LPPMTXTQAlJMB4RBGOmZ6ZZXFzi+Ilj5HkKImU8HjEaDalUahiGjWMaBaU2SsmCiBRBvVZsZ3t3G9O0cF0XwzCKdjm3hJCK4XBEo9Fgc32DJElx3RK9bhfPK5Fl+aRSbrC5uYlj2diWhW07ROIqSZJS0s+ipIamady8fpMwivnaE08yPz9Po1khTROkpkGWk2c57f02tuuQxRGNRpM4LsjNjuuCANe2qdVqHD9+nP39/QIw8v3z8Ogp9H/4DwpyprJJBNQ8h63V2/z2b/13/Bf/+a9TbhziX/3hH/Drv/kbGJf+BZnUEPY0F165yokTpzENE8NwUIakWq5jaAZROCSMIiy7COQO2m3OPvwwhmEwHocIJej1+pTcEqPhECkVvW6PSqVCGEfFRIRbYjgcFBq+gzau4zI9NcN4HJKT02rNEEURURhy6sxpQNDe75AmKeNgTKs1U0yckJHlObV6E90wiYIRSmlMT80QRAG2Y2Nq2r3K+MKhQxi6Ti4zNCUo+z47u7uYtgNpSprmPPf88zymHmLcuEw89xl+/w+/xKOPPkwYDDEth4Nun6AbY1sevl9HVE8ztg6RJAGIomV3HETkIsM0NUzLwS+XkVrOgZnS+NZLbD7+CMn6FjvbO2xsbNKanSGIQqrVJpVKFcPQ7tF29UkFzzBMdF0niWKyPMM0DfIsRamijSxJEsIwmlSvBTMzc8zOtbBsi7uehIXOVd6rziKKFrM4LsBqmqahlIYURUu8rhuUyz6mVUy4qYk21bbtwn8xz9D0IsjOcxASdF1x+uRZ8gRGw4BvfuMpTp06PZmkUJQchzRJSJMQTdMxVE6/V/iZhqOAJ558DsN0ObSwiGHa6LqNlDqjcVBA66QkT3MGwzG6rhgO++h60d6ra8Vkj7ibnE8gYcW1FN2roJ4/fwHTUAhygiDA8ysIpSNkQU5fvnWLer0+uW4i2vtbQEFIFgg29/YoC0m0d8BTecCJ77xI8oFTlEpuUWmlCCpLnstoHLG3u4sQFB7YQuL5JpapiII+/z97bxpj2Xne+f3es2933+rW3lW9sbu5NSkuEiVSEiVrxotiOGOMHXgygxgOknEwQZAFgyADJPGHDBAkwGRmPJgNHtmIPRpLsWWJokiRFCmym2Q32QubvVfX1rUvd79nPycfTnWLbC6iRCWWbD3ARV3cOue959yzvc/z/Jd83kQzVWRVplQokyQJuXyOdqfFgQP7KZfLOHYOQzcIo5BiucTm+hrtTiZKVq5W2N3dZWNjjUK+hGHaVCo1er0OtXIRw7TY2t4hjlM03SAOEw4cPMj8/AJjY2NUKxXUt64hBi7/wRGkVp3m7MOI1GCk7lAul1lYXAIhUx4rwpQL5RQSkOUMBZLEEu1uGyfnYGoa/U4Xq5S/fS6+U0H2zufy+z2r7/zs1ivUDWq5POdf+RafOH6YlaUbeLHC1avzlPeXqR03eeD6r+H+0hbBIsiSQa/rMhjGXLq4y9hkDacoce7MVZrjNRJ1nV7bQZYNhv6QKA73PJ6zJFxRxF6XMsJxVMIwys4xAZBgmQ4pKbquEQQekiSIkzbFoooge6YZhkmtYZLLSbR2NlAlDTAw9DzdXov+YEC90WDu+rXsWvcSCsUiaZqiqQaypBLFEYqsIEsCSexRqqSQNM06xJlKtyBJ2UM9yZi6we52m6X1IfM3bvCpTz5MoZBHlmV63R5Ou0yYj7ievoGppFiFPPlKE900bvu2wruTo9tzKOnd88V0j8rwnuV+hGP7zviwOeXtOdwHJK63lrnzXPtxiih3bncGg75TgOq9SewHfc/78lU/4ua873X0Q2Rq3vk9H8aV/bD46+jn+qMmrh9Hjefn8ZcQd94gfhrjFjRO3vMzBEheOkXy0qmPPXb6/KtwaBqRs38wdhixs7lFbs83NVPyTIhjn36/S97JoakaJ155lWEQU6rUOP6JB5ienaZULXP8/vtBCMIw5PU3XqfT6RCGCW++cY5v/sVTpCkUCg67ux3SRGJjfRtVNeh2ByToJOjYuQqmk8cpFLly9Rq1RmaboGoaqq4TJQm2aeNYDo7jsLO7w+LNRa5evcb3XzqBaeTw3IA4jnG9Po5jkqYxW1sb1OsV7r33XpIkwTBMojhGlmWG/SHDgQdCIUmh3WoxP38dIQS5XI4kTUhJURQVXdORJJV+36XfGxIG4R6VT6CoKvfedy+z+/eRL5YYuh5Xrl3n4sUreH6mtlyr1QgCn1qtyoED+3GcIsVSCcexqNcruF6f5miN3Z11+r02K8s3SeOEvJNDImZjdYXQd5GEQFEVvv3Md9Ati0ZzhOe/9wIjo2NUKlVcz8f1XNqdDu12izCOM2udOKHRGGF5aZnFGwsIIeF5Aa3dNpubWwRBhJQEbK6v0+0NWF5ZR1aUbCJN1tFZW1ljrDlKu7VBv9tHV1Uggwqqhs7q6ir+0KU5MkK9VqPebGA7DkGwBxcMQq68fYEw8kmSEElKaI7WMS9dZ8sb4v73/zlpGuP6XRQ1ZXN9ldb2FpcvX+Xhxz6HLxfotlv89u/8PUT3ClF7kTQ/gySl3H33vaQpdHs7yLKMpeV46+wFtte3EEmCqcmINKC906JWqxAmIZppsb65lXWk4pjlpSVUWSHvONRHmsQpaOoeB259E9MwURSNOErwvJDd3Q7rq2t85StfodPr4eQcrl27tnf9CjY2Nmm3O9xcXsIwVTw/ZmFhCU2RUNIUwojN9VXSOGZpYZmcmSf2I/r9AeVymW6vy8WLb922VxkOB7jukFqtlvmwqibD4ZBf+fKvIAIVKbSIz/wznvjMp4kjj9HxJs2xcY4/8Aif+oVfIxIy6+tLkPqYhkrBtgiGLlKSoskJppYSJ4IoFsiKhqKqFJsNwsce4PB2n5HmCLMH9nP8geOU6iUm900RRBHff+llLp6/QK/bInBdQj/A1C0CN8AfhiAyn2NIkdWUrZ1VABRFwbLt27yoOA2p1sqZ9QeZzUuKIE1SkiTN/BlTEGhoqolt5TKBJym+LcqnqjLNZsZlV7WMHyvJkBDhB0O2tteJowBFkhApKBLcXJ7HtCQQEYamsm96CkWWyDynUzy3h6HJRFGI27tJd3eNyE/QjRL9MMX1+2xsrBCnEXGSkKSCFBnTstBUjY31Nf74j/8Y3bBI04RcLsfu7g6yLBEnMUKSiOPM1zb7KUTW4ZKy/7uuy6lTr9Nut5FlBdW0SWWNVFaJUoGm6szMZB1v3w8xDItmY4xiIUsgFUWlWq0STTXRBi7f/PZTAERJkhWo/ADXc7Edi16vgypLPPvM0+yfnUGVJXJ2xkHXNI3h9i7bi8uQZvZWx47exdhYAyEljE+OkkoJfhRw7dpVdFVlcnKcVIJyrcn+AweQZEHONinlcszOHmR1dZ033zxDkiQ4jsOlK/MgNFZXNlhdWSNwPTY3tzj1+mlarRazswdwXe+24qgqVcjpTS68cZ5KTsfzhqyvr3Hhwnlcb0C83yOcGdBuDTl39jKmUSCKYgaDAb7v79k2weTk5G3V1jvVYj9ORFGAZRdZWtlmYXmBfTNVjh+exmtvEfk9LgxO0b57ibuf/gyf/+XHWJp9g6mDhyiPHqY1EPSDBKeQ5/DR+4iSIuubCt/6zpucubDATjvl/NsbnH1rjdfOrtIZKuy2MopBo14hCkCWMkVyyPxY4yTOJvZIKLJKGMRYto6syghpDxVACsInTQeUCwrEHZbmL7C+cg3LVJAk6HY61CoN3L6PSAWdzpCd9pAIHS+QCCOb3hDCWEYoGpKsoEgWQsikQuB5ARIqqqKSJDFB6BNFIZ4fcPXqRQaDDn4wxLaN7JknqySFkKJa5dOffpLl5WWe+843MjuqO0SQ3hk/S8i4j9OM+XHjx00Ofx4/2/HzjutfQnycispPCgL041bDPkrcqt5lFhHZ+O9WFf7R49YNKvk//927YcJAGmbqo5ahZxA1SUEoCqE3zHh2hsn8/CICwZ996ynuOnwXi0uLmV+nLHHt6nV6vT5Xr17l8597EiEkTMNgZt8BxscniJOInd1NxkcnsayM77e+vkG5VMIPUiRFzZQGe31yhUzkJoxiet0Otm2TCDj31lvk7QKIFE3T8HyP0dEmpWIdy7Sz3ykFy3Ho9XYwTZtut8fMzD6iyCNfqux1WKQ9T0gVohjdMFB0HSSwTAPHtlFUA0lK6XTaFAtFhJCRFYnBIE+iGd0AACAASURBVFPB/Oqf/ikPPDaNqmq0V1VWVm/iugN2d7cRisC0DA4eOkCjWcO0dUgShAS5fI40TSiXS0RR1p009AxamKQxtmMThwHFQoFCPo+hGwz6A9xhn2q1jmPobG1todkOx++7n0QISAWVUol8ucCN69dpjDT2JicxlXKJIE7pdbtcuXyZa1evcfniJR566CFUTctK1EKQz2VK0IqIyOWL2E6eXKFIKjxUqYKIawz6ffL5POsbG4yNVhkbnWZ8vEkUDfHdEFnTKORyGKqGkCSGnkt/2AUhWFvdYHFhiV63nXEvFQnTNDJI9s019Ncu0Pm9f0DlwCFUPcHzuxiGjWk73LhyBdvO8/VvPMOXf/3vULB1UiVh4Vv/M2PNES6t9CgUTJ555jlOnT6B67eYnTlApzNg0BkyWq9z/vxpCsUc2zu7FPNl5udvYBgGkqISxcke1Nyg0Wjw/AsvsG96mlSSWVpaJI5i3jp3jnKxiJPPqv+5XJ4oTHj2mecZHx/jkUcfwbAMSBIa1RqdXpd2u8OB/Qcpl8uMNBvIsoTrJszNXaVczPPaiZPsm5pCUVLyuQKkMjdu3EDXM5Xhfq/P6GiTYimzzJFVlcDzWFxcRDdMJFkj8gJ2Wrtohkp+IcSP+7SjZSY/8zvcXF3AMAy2t9oYps2//MN/y8OfOMTNlctUkjXorzBIbEqFEpIQxLFHHHn0+jG2nUeSFOYX5sjlbCSzgPb/PEs82aDfHzAcuqxur6IoGt974ftEQcS9dx9lMOigKkp2biUC3w/5/ksvY9sWjmMjySlh5FEs5YnCW1BfcZvnmqTZdZLsqQUnKZDu+ZTudVqFECSxILm1vEjZ2FhF0wySOFtfliGMfIRIkfYUw6MgYDDo0GhU8QYe7CnzDgddigUH01bxhj1yOQfD0jBtjSiMMtVcNetYxWHEsLeKSAWSZLK50+XmxjpfePJxpvZNIMmCOA5xcjbseRqbus7u9g7n3rrAvfcfJ01CJFlg2yZRlBXQkr2uhGGaQPZsiYIQTdO4ZZvx4IMPUimXiElRNIMgipEkFSQp68i/y05CsLW+iWHYRFHM66+9xuhIA6IIfXmDY//jf0f+j79BfPwIoR/Q6bZxbBvHsdne3qLT7jE1OYE77AMJge+zuLyGIsuMtwNKqUY60iRKZIJhD0mWUFQJSZbo9brYjgNJypUrl6k16ux2WoRhgmNZGLrKsNej2+mw22pjGBZD16NQyGcdQy3jUHe6XaanpikXiyiKxokTJ6jXaywszBMEPmNdD3yffb/3P/GNf/2/MVuXGT8wDbKCqunUGyMEYYjjOOiGhibbyEJlMOhz+fLb/K3/+G/zxS99kVK5xKDbpdfuIAwVy7JuH4MPslL5YZ+9MwIi9DBle/Esw8EahWKOmwttdls+07OznHj9BNNPTHJ5Z47ahSk+U3uS0n+kMKLOkCvIzM4epLXT5saNazjWOK+8tMI9901QLFUYDBIWF3eRRJHl1RaWYTLodsjnnIxXnWY2aVEUkRJlz7BehlIQe8mgqmhEoULggaHngBRJFaToWVIZByRJSJz41BolUqFRrdXZ2W1TKlbwhh7VSgUnZ2OYBvM3biAJQZJInDz5KocPzZIkEQkgpQp+GCLkzHanszPAcgzCIIMTDwYByDkWVnYolfPMzExnxYQY2u0uas9kZWuFjco1lm+c5wtffJKpw8dRNS3jyb9Px/V2Uiu933F6d6L4UTquHxQftuyt/0nTCfLReM/H9b3L3Jm4/iTmmO8UDX2//fyoFjIfp+P6zmvph63641xjH3Wcv8rxc6jwz0j8KNXQH6eS9VF5Cz+pEOKd6nLZ+0wl7qMlrrfWf6e+2zt/IiEESRiR/t6/QDx4N8I09pTdYGN+nW53mdWVDSQhsbo6hymVcApZRyMKsyp+GEZcv3aJYq7I3Xffgxe4xElErVIiClNOnHiVT33qURI8NM1kfWNtz48wpFgsgwDXcymWyjz33POYlk2jUSWJE3rdPkuLi4zUq2xtrqLJEXHoo6gKgRdgaBppKigUciiKhCLLuK7L9tZN9u/fR991yZfLxKnM2s11Wq0O3376GSb3zVAs1ei02iiKxs72DmfeOEO92kBWVc6eO0shn0NTVC68dRl3GKEZKoNeL+PNRhGxJJCAlZvLKKqCLAsatVESTyFvNhj0+ywtLTJS28crz7/I0aOH8TwPkQo0JUZRHZIkYWdnC11TcPtDTM0kiSLCKGB7e5NKpYIiS3sdr4hUpOiGSRDGlMpl1la3WVq5SXO8uQdx7pFEIY5jkpCgyAqN0TqdbhtZAsex6XY6qEImiQIO7J9mbKzJffffl/HlDJMg8JEViTDyKZULmJbFdquNk89x8fw50r5DrXiMQb9Fu7OFaZiUyzWCICSXs+j2OxSrI+iWhYKCLEkEkY+syHS7XXZ3OyiSgmObeH7A0999ni/+jS8TRVkipmoq6ndO0vn1z1H7jV9ENQTtbg8hZdDtNE04d+Y8n37scX7lV7+MaoCQh6wsLnC//yzS+Kdx8mV8N2HfzAwrNzd58slfpNVp0/M6TE/vI4k8NC3mzXMXuPueT+H5A8qVBtevz1Mo5BhpVskXCtxcWSGfz/Pcd5+n2RzDcGws26ZUKFOt1vG8gJiQzY0NyuUynudy6NABDNsiiiMiz8exLDrdDqpqUas1GPoDFFVGFhKX3nqbN984zWc/+wRLS8s88NCDRGlMLFJUWcYd9ml3u1i5AvV6GSFUvvXtZxifnMbO5el3uxQKeUrFMoZuIlKZ3c4WcRLhD1zyCzG6auKacywpj5Ozi2xvbuIOWzi2TOzH7J+doZQv47/2b9Dbc5jHfgPigD/6yh8wMzOLpJrkchUQIYgAVTXQtQJhzkZ59QzDI9PIro+ua+R0i8ALGWmOsnxzmUOzs+RyDlEiWFhexw9Cco5FpVjgG3/xTR544H6CMEBRDQQKQih7apIScZLcTkxBIEtyxrtPE7q7W8iKgpCyQouUpii6SZKmfOub36JarjBSayApMq47zCx9ZBlF1pBlDbGnY+n7AX/wB3/E/fc/hOk4KJpJkmY6sEkc4/YD7HwRIUu4wz5SEqI5BXY3N8jnSuy2hog4xLYcZE1H0lX8IOLky6e5555jqLJCGEbknBwk2bZfunSZeqNJsVyh2WyiKhKWY2X7jowQKa7XR5FVZEkiCsJM5ExR2Nm4iSSBaerImoKsqggREccRsiRl9l++hyQSojDjC8dxRJIGaLqEYeX2kvuYOE0olMsopo52dZHoi8fR/ugpugenMY2MlxhFEXGS4gcR5ZyDmXOwcwVKlQqqrjLaHM0U+7daAETVPMN+m3yxTCpkoiiBJMEfZtZOTqFIpVZHEgmEQ0qlEp7nEQQBL7/8MjnHodJosrvbIk0SWu1dRiebmLqFacnohpw9z4SMrmvce/99NCfGOXzsKKZlo8/fRPJDhr/5SxxTr1E3Q9Lxh4klhTQM6e620TSb3GoD0ZJISxFJFPDW+VPMTo9x7vRVHnn00ximQ7GcR9cTllaWqNbLqHpmO6MkvAdi+uHP8HcnBmmaYskSyIL55WWkaMiIE5IfL6GkPf75//7P+U9+4+9RGtvHQO+Sezxic2GDkVeO8ezFp6hXKmxt7VCtT3L46IP0XI9Dx2aZmJjkldfexMoV+ORjj6AbEpX6BJaZo1p1cPI2ly/exLY0vCBi4Abs7LTxhiEbmy6ba11qNYMojNFsQeQNUVSJREpRNZ1hr0/gJpiWhqQrmHYRx3TodzYo5HS217eolIssrywwNjFBZ7eFaqpIUg7fS5AlF812mJwYJQyGZMCxBGQ549yGIZJI0E2JOI5QFBVVNXBsB9NM6fVcOjtDblzfwM7nkTRBc7SBtK2y1V7BftTjtVdfYv94han7HsuK0ULchrsnSXL7des4pPzAy/7WMcocKO44Zu8+oD/0mN+KO2G+d9LIhBBIjkDYHzxvzXyss724LcyOuL0Z74b1vlMJ+f1ft3xd37nuR3n/QXPr2/Dl99nn7C777i3I0DHi9l/xIWnr+11jH6f7fAs58dcFNvzzxPWvYPxsnLg/io/rR13/3fudXl0g/eaLiAeOZr+JyPgwG4uL+FGb4w88Qq0xSqVWY+7aJpqlIfbshZIErlyb4/577mNtfZ2zZ89SLBWJwgBVkhkOXKamp3GDIX4UUMznSElxhxkXNggiXDfgqW99m0KhhGFY2LbD5NQ4hp5Zx0h73VBFUTEtk063T6FQQjcscvkC+VyebreNYWb+iblcAT/wSBIolcoEYUQYhPzZ1/+cAwcO8vhnH89UchWBrpv0en0qlTLDocuNG3NYlsX3vvc8jzzyCEmScPHtS1y8dJGJ8QbVahl36GbwYl0nTRLCIKBcrtBoNAiGMrEPxUIF27YxDY1GY5T9hw4w8PoUiwV0XWN9dRE7V0KWxd5DWiYMA0zDIk1Ttrc2GW2OkpKws7OLJCm47hDf83FdL1MDxuK5515idXWRw3fNoGoKEhqel4ldeJ6LbZtsrq+Rz+VZWVkjny+hGTZpmom/BEFAEIYMBy6dXpdcLo9uZLxeyzQzSxKRicdomspIo46mqwRRhGHpuK5LHCfMzc0zOj6OYRrIikwShwhiJCFYW1tBN3SSFOauL3D69Td46KGHuXFjjiNH7mJsfIxiuYhl6BiWSXphDsn1+a/aV/j8538BCRlFUpGQSaIUbzBkemySZ576NlevXuOpbz3N41/6PI3u64RuH7V+GM3Q0VUIAp8jR45kHC3TpJwvogiJubnrjE2Mse/AIZAUdE1GUVTKpVJWAFEUUiCfy9Futbnv3vvI5XJYjoUsCRRF4urVK1RrZer1EZaWlsnlcpBmFiwbqzdJk4hcPk+310c3DebmMr6hkGSuXLpEmiRUyiUOHTuKImcWJ1sbGxi6jkgFYRCyu7uL5/mUimUuXb5Ca7eNYRqMNGtouorbHxCGIb4fIEkSu7ttNF1npDGCncuR6BJxJQ/xVb72ept9B++iVC6yubnFxsYWs7PHkCVBFAdIq6+SJAnWwcdQkiEzU+PcvHmT0dExhGzS63cIAg/HyZPEoOsqV69dZfL1yyRjTYbDgIE/oFavY1oWx44dQVFlBgOX7zz9DPPz8zz66MMkSUi+kOOuI4eIkwghCZRb3FIh8DzvtipthoSAKAxIkhjP99BUheHA56lvP83k5BRCZN6uvZ5Hv9fn7QsXEEIwMTHB0Oti21nXBwSSUCEVBKHL0B3QbreYmp5CViR2d1rkHQtdTklCl0GvjSQEum4QhAlhBGEksJ0iIs44yYgU1+2QSDJCMdGNEnGUcvToIcIgRtNNUsCyLMIoyAp6tREUJZscO07WBVP27H+yDqmccXT3bH0URbk969P1zOdYVlXSJM3sUKIYWVIJoxiBjKrqSJLC5uYmX/nDf8fRo0fJvD9VJASKJBBpJiL32skTVGpF7OVtNj99APNrL6H+o99BmV/FDwI83yfwfSzLIk4SVlbXKVcqqIqKNxywdHORXM7B6mR88V1NIecU8EOfOEkwdZ2FuTks3UTWVJJ4r+OSZF3rIIzptHaRhWB6ahpN13FKJWzb5ubyTeq1KkHggxSgaSYnT7zBCy+8yNTUBCkhsprZBEVRROgH+GfeRokTpN/+DTbOPkWxWMQrH+L7L7/JP/jd3+W+e++m3e0w/fZRpGWV0/4JAi/h1KkzPPTQp3jwoeP86q/9Gr/5m79FzsphGDY7m13Gx6eJM0okktiDp3/EeN/OnVCIkTh0cIb11UVuLi9RsHXcwSr3HK1Sr+X5Z//X73Py9Eme/MJn+fobX6fxuQqTy4cZ9WfYqS8T9zPrp52dXer1BqdPn+Uzn/sC1eoIum5x/tzbjE5NUK/XCOOE9a0uZ99eQJbrnDm/Qt9VkKSEeiMPOJSKFWQ5QddlvOGAINBIU5XBMKLd6mZq6rKE5/XQdRXfC1FVGVWT0BQZxzFAuCiSjqnl6Qx6lMtVZFXPCmylPJoKw36PwHNxLBuRClKxJyC1pzbs+z6qYRPFCXEc4/semipTLZu0Ox16QcLkzD5Cd4AURai9HEZe5ytv/lNqZYdfePIJilNH3pOcvDOhkvd8XhPe21n8YRaGHwfVd+c2vZOz+kFjf9D23Jm4ftiyt+LDGjsfhiL8sLgzcX3X/z6OYtNH+O4fJ/46+br+PHH9KY87bwAfZ5yfrngvLCm7+WXVxPjPnwPenbi+Ex6WeXfdWbG6wxR6u0X64imk/ZO314+ThMWrl1CNhFJ1HEm12d7ZpttJaHV3KJfLrK6ucubsOW7cmKdWrZIkKXfddZjR5gilUo6LFy7y1oW36Pb73Hf/fai6gSJnN44wjPna177O/tn9aJrEwuINZBkOHprd46LaXL12lf5gyEsvvsT+A5lFj2ma5PIFJFnGHQ4RQuD7HoapoShZtVGRM6VERdP2HnyZJczc1RvMzOyjUMiTipiNzTXyTokwDNF1A9PU2bdvGsexOHToEEmSsLS0zEMPPcTk5DiGJqGqGrphsrS0RDFfxA98HMeh0+nSarU5ffoNPG/IhQuXaTRq1OoV2q0uTj6HbqpYtk233SOfM4nTjGtnGHrmRemHnD1zlsZInX6vh6IoDPpDKtUqqmqByPbfsiwuvPU2+aJDvVbn7nuOoqomka+QxCGD/oC11VXy+RyyJHBMmyiMGGmO4QUhQlJQZY2FxSVGRhqwJ24jywqapr7rfNnc3EIzLEzDII5CPN9D1obstFdxrAq5XJ40EYyOjhMlMVGcqT1LEgiyCrCQoNPpUClXUWSNcqVGPpfbg4olaIZGrmDT7XTRU4F4+mXS/+N/4It/9+8wHGT7UiwW8X2fTrvN3LU5Trz4fbY3d/j8k19kbHySvNqFk/8YqbSf3sDHMTW6/Q6WaXHq9Bs0m6OomsaLz73AzMw0Q3eIohm02j3yhTyqJLG+tsba2iqFfI5+v4+iqBm/MM3sREzDJCVCVRU63Q6TUxNs72zjOAVGRkZ46aUX2Tc9nRUiJJHBxFstJFnm5soqhw8doNPtIkkKKysrvPS953nwweNImobnu+iqwtkzb9Ko1/nus89jWiaTU1OYhsV/+OpX+eIX/yb1eo2RZo1UpFimhef2KZerSFKW/CwvL9EcHctguUIg1SyCvIxoXSMablO/55cI/JBarUaj3uSf/pPf54nHP8vcjesUB2+TJAkXdgRjIxVePfkKzdFJ7HwBJBNFkdB1lSQhE1qJQvSj+7HOXyOybZA1gtjFsEwMXYM0E/gSqUKcxBw9cpjJiTF0XSMhQVUVIEugZCkbN4pCFhcXKRSLGSQWSPf4npIQe0mcQJI0VFWlWMhhGhpDb8j5M+dRZImHH3mIcqWKJMuomkBRss5fmkIcJaQJRLGHvQeDbTQayLJMuVQjDl3iYLjHHXbJ5/IEUYyQVJ5++jnGx/chCZW1lSUQKYVKCVlKiCUVhIrvZirHtq3S6QxYXV3FdhxUTSGMM5gvqSAMgz01ZDlTD5alDCIsKSS3JrciJQiCDM0hyZnSsKIg9lSIU25Zn0ggBGkiOH/+fHYvM0xyeYvj9z+AaRpoWvZbh0FIHEUkSYyQBFOTkxhGDnVuCflv/SJcXUY0msTrmxiGuWc3Y6JpGnbOoVKts7W1zcbaGqokUSjnM5XmrQ6qptE1dQzDZGN7nWKxTBInuIMhzZERXN9HlmRuzM1hmxZD10XXTRQZVEUmiCKqtRGQZcIg5KXvvcjE+BgjIw26vRa+l2DoDo2REUaaNXTN5OLbV/DdgHq1yYsvvsJE38NRFOTf+Q1y/atZF3riE/zDf/i/kkYRB/bv4xOPPIh1vYIEmA/J/P3f/a955NFPMTd/g6N3H2Tf1DQP3PcgqqIxdD26ux1GRkbQDD2zIEvTzM/8Q+LD0FwZfSUTB0ullLHRMVqtPpOjVVo7N6hVBOOjVUYbY2zsrBG5gwwRIXvwQJvnzn2H+7Y/i5E6nHdeZp99kOFwyL7ZSZxCnouXLlJv1CmVC+iGQb/fZXrfYVLZ4Z4HHqbTbdPqefQGIfVGjaXlZdY3e+TyZc6cfZt9s5OksYLra6ystQhjBUlSGfT7dHuDjCYgZ57CKTFxEiCSFESELIeIVOX6lXnK9Qrb220E4Psu7VaPXtsnjWVUVWNrawVF9pHkTHROlmQ67Ta27YCUFZrSNMUwDNxhiKFGdLoeq5t9DCtHwS5w+tUzjOemUVSZ+dw53j57mvvvu5vS1OHbQmd3HodbSasQ4jaM+FZk86YfAR77Ec+BD4IdA4TPy6QLMvLMe+d62Rztg8Z/7/e9c9kfzAHfPUCapu+aI/6wDuZHTnbfkUjffr3POB90TXxQd/WjxA/j5N5ZNPjpm+f/fxM/T1x/yuOHwRl+1HF+euKDE1fgfRPXW8vdWv+9+3RHFXJ1i/S7JxGzP0hcBbB4+TKVRhHdrjJwIzRdYWO9w87WOhMTY5w98yb3HjvG3LVrbO20ePzxJ1AVmaWleXRVYegF3P/AcY4cOcKf/MlXuffu+5Bkgaro9Pv9rEMZ+ti2xbFjxxifGCMIXHI5myTxGWk2aDQaVKoVqtUypqVzY26O0ZERep02hYJDu71LvVbbg09nanmSpOxNjDVc18XQM//VmX2T2LaJbhr4vk8+X0CQQc4kiQx+HPgoasYr872IWq2aiaXEQcalU3TCRFAqVjl54gTVahnHcXBsh1zOYWw2R2O0wOH9x9nZ2aJczqHrJlsb6xTLBUBBkkxWVzeQJBXDMCFNieMEQ7NoNhskaYKqZmrJTi5HmqQsL6+Spinz83OUSkUajZHbfrhB5LK9tUkUCYbDNr1el2ZzFNMwGQ48JD3jly4tLtLrdijkHKJYJk0Fqqaytb1FPp/HNC2ElGZJs6qys71LvT5CKmVdhl6nQ6fTx2ycwczvIsJD/Ivf/zekyOzudDh/5g0kMgN3RTdRdYvFhWVqtRqGbiAkMAwTL/CoVIoUCjmEEBTKJdJUsLy0iHr+Ov5Ihb9/+iX+xi9/GUuPGW3W2dhYoVhwcGyDfHUEzw947dRpHnv8Ca4tLlDdeh5lsMLTp1ZoNpq8df4cQtJ59eQpnnjic1lCLkHOKaFbCqmUMndtlRtzi5QKGcfuwoW3mZiYoFwqEgY+mmFmUO7tXRbm59ne3oUkxsnlsB2HFChXKsSRz872FgcPHiSOE1RZpTvwePnEqzz6yKOoioqhaTg5mzffPMP2TovJiUlKxTyWqaHrBrqmghBMTI4jZEGxVGNqdh+xAFlVOHToLsIgwLT0PWsVnShMMU2VIAjpdvukiaBaq7K9uU6SxMRxZmgvyQLJa1Mq2OgHvsSZN8/z7DMv8MD9j3D3PQf5V//yDxib3M9Yeg1V1TD3fY6l5VUefvQxnFKVhdV1+r2AUqlAkkSEYQyphKLrKKpMcngC6yvf4M/UIfc0moS+j9vtELhDCsUSlmVmQj5xyKDfo9Mb8LWv/Rlz1xY4euQYkixlPqZJpiRaq9Vu3cSAzMc1TQCywlQSg6TK1KslNFVGUTUkWadRL1OtltF1LVMglrKCw3DooSgqSZyQJDGKKqFrBmnm0IQkyXhugKHpuL1dWq0tStUGer6cJegJDL2A2ZlpiANeOXEKXU2ZnJ4kFhKkKZpQIQ7506/+IZ7bY6Q5tdch1SiWSsiqiqJoKIpGkmSwXnUvmYyiEEUVtxNWIVKCMMhscCQpg/smMZ7rISkZ2gXEbfGmNImy7quUTVZd18W0TFy3j2VaCJF1JDVdR5bVLFFQFBRVg73niDa3ROyHxOvbxLPTKK0OYRhlPMhUsLa2zs7mJhcvXqZSqeD5AX7g7/m81tHbXaIwJKrm6Q+6FBwHISQWlpaw8w6arhNEIWkUMz83h2FaXLl6nUqljNvrUK2UsJwckRD0Ol1UWWH/zCz1Zh1Zk/EGgldeeYVjd99FPm+haTrbOy0mJiawTRMh4K4jB1HWt/B322z+0mMkN0+jqSrq1MMYZp7QG/Irv/yLeEEE5ywUSaY7s8V/+nd/iyP3HmR8uo5u6diGydrSMvVGGaukcuK73+ETn7iPMA0zUbAfAR78QaElEUJAkMYYukWvGyIbeXZaPcqlMkgpTl7l4FiT7z37Ve69t4Ykhpx74xS7ashD/8VRNha2OD7/BfyRHsPj67AsoWk6jcYIVy9fYXZmFtWQ8d02hmaTxALdgksXL/ClX/wSh48cptGcZN++u5k5cJBWN2L+5oD9dx1hdR0GfowXKrx18QYzs/tRNIXXzi0wc+AuAj+k1x5iqCqSnGSonEQAKYoiIckppmmxvdEiiT067R0a9SkWllYZGZvCtIt4foCuikyd3bRuW1tJkowEuMM+iqIQxDKvnHybyekRTMMhDQOG/TaWU2Bs3yF0RSHvlwgfavHsU9/iniN3MXv/w3fwuz/g2LxvYvmTS1w/SkTfUkm3pfdVFd4b6QPGf+9nafrejuI7k8IwDIn3RCh/Ep3HH8Zxfb+Rf9LUvI+y/I+SqP9Vip8nrj/l8dc1cU3OXEIUckhPPPSe5W6t/8MS1/Trz2SfFvM/+EYh6K5uUh+roJllwgQkOebUq+d5/PFPomsKk+PNbMINfPKxzxDHEctLS+zfv4+VlSWmZvZj2xaSEFSKFQa9AUma7HUNTZycTbVaYXlpg7m5BZIYrl+fJ00hlzOAFNdzeeH5Fzh67Ai7uzvUq1VIEpI4Zjjosbpyc89OQsluylFCnCQM3awbm1lvKFy/ehXXGyJEplra7w8wLRtF/oH9hQAUVUZVFfq9Pq4b0G51MC2dXq+bdeCGHn/8J3/K2Ng4x44cRTfUzJcuionjBHtsF8l0kb0GFy9ewMlZ7O62yVkWuqERRnBzdYu/+OY3OX7/cVRFwfcD3KGLJClEsU+320ORM7ig4zicP3+e69cXWVtb4ciRu/B9n2Kxky/EJAAAIABJREFUSOBLyLKMqsVYtgIiYdjvU6/XMU2T7a0dSqVqJtyiyNRqWQEgCj2e/e736fd75PO5PX6wkilHJgmqphFHKcVikSRJSaQYkhiBwDJzxMo1kiRG5xj1epOpqX00Gg3WV5bQVI3pmVlkRSNGwtYzzuzCwg1kRcIPPErVCkJkaq+arhEjCMKIqqxinbrI8L/9z9j/2KcoVCqkUQfPG9LptvF9F0mCfLlBGsH8/CKfeOQRZvdPopz+x8hjj5KrTrO126FSG2F8dIJDh+7KBDw0lVZ7l/XNHUbHa5imSbU8jm2YFIsmURRRLpURQnDu/Dk2Nzcy39EkYWJ8gtHRMcZGx3j99dfZf+BQ5o8pJCQho96ymtgT1dE1C8Oy8f2A5eVlGvUaly++zb79s+i6yfj4FIahY1s65VKOKExYXl7GdhxW1lZx8jnSRMYu5IjTOOvyKxorKzdJkjAT64oFApnhYBdZVjEMh8FgwKlTrzE9MY6maXQ7HcSNHkYftvxNClKfPzrZ5ZFHPsnlS9ewLJty2eJTn/4cqm7D8nMoqsZv/6M/4NChI7S7PXQnz/zKGvVKkySN8H0Xy3IyOxVFQZAQGSDShHvXe/Bf/m1y82skUUixUOD63DyFYhHHtlAVCUlILC2vEoQJ991zHN0wOP/WOSqVcibKJGWWL5n3L7RaLbY2d8kXCqRJiut6ewlegixB6AfZeSsUSAKSJLOqifc4nEmUohsGpHDu/FnKlRJRFJCm0p43s4wkJNbXNjj12mvMTI9TrVVx44RUMjKbHkVD13U0VcYyFA4fvpdqJU+SxqiGhaaoRK5PIWdSLBgcPHQIwyqhGwqFQoHMu0fKuqkIJNJ3ca38wMf1eui6kVnkkAlECSGI42wyK4mMhyftWZgkcULmWZt1ayUpW9YyLQrFArquo+sKCAkhJIbDASkJQtbYw0JklhiSjCSFiLVtUk0iGQxIcjqtlU3eeONNzp8/T6lUZnR0jKKTo1ZvZN1sRaZWrbKxscnIyAjK1m5mZTI5QqfTQpMVNNPCyecxTAsvCOj3ekR+wNy1Oe69936mpvdxc3kZS1dYWVnGyReJkDBUlSuXLmNZFn4YEKUxplrh5s0FwqjP+voqMzP7sXM6w0GXhflr5HI6qiETGwrB8hbSb32Z4vAGkiRxdlPiwKGj/M0vPUmv08Wyc5SWm3Q7bexHFExbJ8FDKCFhkFCvVpkcHSNMXDRLsLG0wOhYA8nIUAykMoiP5xuvxQmJnCIpChcvXKCYK3Li9dN84oFPMOh26PZ2QYswE4Ujh8eQlR6yLLOyvEsolZlfmuerr/4hzSeL2GdHyF1tcqNxmnIywfZmmyRMydl5bixcZqRRIQ7ANA1gwPT4PcQJzM3PEccxqmqSpgn5cpPeQFAZKeENdY4eO8jQixh6EaoqqFXzvHV5nfX1NSxNRUZgmioZm0QhijLLJiGBpmvsbHfwhgmGoaLrGtvbA44/epQb84tomsXG2iZxEJIvZNZPmqrcvi7iwN8T99JIMHj99AIz+ytYhkElbyNJMbLlUKiO0F1vkUsKvJp+l/WVRRRiHvzcL7wrOftA+6J3cJV/0JH7/zdxjV/PUCR3Jq4/6CJ+OFT43eu8F5r+zsRV2fPtvTOR+3HjZyVxvaUM/mFIiL+K8fPE9WckPi4U4C/jhL7zYno3pIH3+ewHN1f5iYeQn3ho77NsMpMtlu69fz+y/g/gIgDJK2cQpQKpSEmlzNdOk3UWFy5RHplGUhW6W6vIiUyuWMDQBf3BkChK0A2LUrlC3lbY2rhBuWiiSBprax1K5TLb21u02zsoqsLo+CiSnHLyxKuMjY2zsbGJEFAuFgn8AdNTE6yu3OTC+Yuoqs3k5CRJEmMauawKTcTC4ipx4pEvOPT7PpJsIcsp1UoNkFFUlfW1DerNEbx+i8BtEQYBV66vkLcqjI6PICQJ0FFUg263ha6rtNu7GLaFULIuWxwLOu0ep0+/zl2HZoEQ3bBZujFPr7XL9NQEJ06eYGuzzanTp5iensQ0dYTdIkWghlXyjkO+UMQpFchbGQfN90NUBQ7sm0Q3Ixbn1znx8hv4YY9iySaOtayLlySYlslg4KIoGscfuBeElPF3fRchJwhZIY591ta2UBSbVFKxTYs0VTh16hyXLl9h/+F9aJpJuFfN3m210A2T7a0NCgWHcrmEaZr4nk+/189EgfYg1kIWuN4QS5PptlvsbG9SKpdItLlMKMefpVYrEYY+kpTSHG0wNj6enVdSiud20fXsIdlqdZiZ2Y+ha/ihhySryIqaQSbTkCQeor16keQLn+TmQ3cxOzvNyZe/x59/83s8/rlfYH19g3//77/K/ffdC7JGKadSrZhMTI+Snv+3xO1F0uox5m9c5/jd93Dj2jWCMGBtdQVVldlc38DQDOrNcpawCIU0CQlDnzfeOM/MzCw7uy1yhQJjE5PUG6Ooio7vDXHdAd1+n2KxRK1aQtUzAakTL7/MWKOB77l47oDd3S1sK4PUJmnIyEidZnMcSdZ56unnOXr0KNfnrjM+VscwMv6mqpu0Wy0uv32R2X37SFKBF4QUHHMvsck6eteuXmFm/0GGQ4+c7eAPe/hul27bJVcoYjoWKSljzVFarQEbG9vYtsXEhRR9M2I4YyC7m9zz5d9jfeMmU/tKdDuLHDr2ABtb6zRHR9g9/3UcJ8ev/jf/ihee/T4TYxaHD09Syx0kVzSwdYnN5RtESUShWiSNIpLEYzjsEc+MY79whhhB7HqkQmLgupQKeYLAp9PtoGgqQ9dlpNHgyOEDNEaraKrOjeuLTE42IQ1QVI23zr9No1EnTWM0XaZULmfJaBLz4ksvUSqVAQ9N1/CCEFXTIU1RsvwUcUt8SUAaZZDcVEiUqzWSOCKOIqJwSBJ5eIMumpywcP0Sdj5PbXSUVDGQUJDihCQM8NwOmqagyDp+MCCRIoQkYxgWJBG725tohkYYhximgWFadPo9TCePrCqEoY+QMi/NwB+gyDqyLAijIJtMqhqGYZPEyZ6KcgoiUyKWJBlEJtjkh5lfbBRlnPg4jm8LyQRBuFfEUvF8D0mCJEmJ4hhJFuj6LY/aIIMcSzK9bnuPuqEi7XbBMAnuOsD2d76PUi5QLhWpVCoU8gUM3aA17ODkHXZ3t8nnbDY3N5jZN0Ov3yXv7omvWSqIlHypSntnl167Tbu1i2UY/MWf/QWNkVEWl29iOzZpEjE2VkVRLUqVJtvbO+xubeAPXM6ePcONhXmO3X0Ptp1n/sZlms0GumbSbE7gui6aJiNSk63tPtVaHYFEd3mT4sBj8OufRt28ksFUyyPU6nlUVec7zz7P4uIiB9yj2JaO8SlBLGRURUZEMa6X0O0PQFXRjBzddsDYyAxmvgq6SSpSEPGPxN17vzlFrMikQiJNoFxpUKw3GQZ9yqUpyhOHGUZD1s+fpNtdo1Q0sU2LC2fPs3+qjhyssbV4mt/69Sf5v7/6T9hpnifx4PjGL/F0+3+hHNfQ1ITd3XU0xaDT6eLkdV45+SIjI+Ocf+tNpibHaG1vkXMshsMem6s7LC/N8eCDhzOYecHkxMnXcAp57nvgfiYnJ0hTiW47oV53GBmt0+0keL6L6YBINCQp3ituhUDKmbeXuXR5nnxRIYlMVGWIqQnKlRqabuM4Dp7XpZAvkCYRspSAJEgSlTQpkooQEpckTBkZyWOoCnEUsNPzefWtFbodODpzkP+XvfcM0iy7z/t+55yb75tj557u6enJYSOwCEuCAMEgmLJFlhgk0iapsq0SbVlZLtNlS/IXf1AVXZYs2SrZIItEEkUQWBBYbE7A5jQ7uSd2T+fw5nCzP9yewYaZ3VkQRRqu/Ve9NT333Htuet97z3P+z/95MnqO7sqQyV+Z5Ozr3yend6lO7MfNZJCmQSJkygRSaUlMIna9XeU7Aczb1bc/7P38YddLkoT4lXSS7t3A9YOPJx3PpcA2/fuGZdPbx4q3SuYItTtTL8TNYaF8H7ru7T7vPZp3jzTf28+HiRvj1Fttdyfq3rdr/0ic6dbxEXD9MY2/LOB6u2U3alTfS3m51XF+sBDTrSJ54c1dhJxShDWpuHrpCq2ddcamZghCaGztUK+Pops2S4tLVCsVEOls6sLF8xRyGaRMBX96vQEvvfIKtdoY+Xwe183g+wFbW1sMhn1eeeU1ZmZmyWazCJF6Yrquja4rBsMu+/bNMju3n6HXY2Njgz3TM2i6pNXewbFsMhkHy3FwnQz5fIFsPkeCotXq8+bJM+zZM4emCXRNEHhDBgOPo8fvwdBN2t0my8vLPPXUs8RxQCFfulkDZirF9atX8YI+mYxLoVBAU4o4jshksiRCcfnKZZaWljhx110MAx/XyHD3XSeQQnLtyiJavoNlm0ivnAq+NHawHYt2u4kfRPhRQKfTYXJqgmZzi1q9Tr0+wtjoKFJqmKZBGAQYhs61a9coFEtUyjWkFPiej5KSWr2GN/RZW92iWCygJLgZ++b1t12biYlJDh6cZ9BtY5oGmpJ4vk+32yOTzTE9Nkq9VkVpGp1enyBKsF2XbruF6zhpnaqQdDsdGs0WtUqNUqnM2XMXKNR26Pe7LJyOKBVLbG5s8+1vP8z+/XNIKTEMiygM0Q2NKAwxDYt8PgW4mq6hGzqaUmxublHIFYijBLPtwatn0P7Vf0th1KWx0+DokRPc+7F7MZTCMk2mJ6aYnpolY9m8/vLLlIpFbE3De/Zf0M4exMkWWby2hGU7jIyN87WvfZX5+Xk83yOfz7Nw8SKz0xPomk4UBSTEKEPHzTpcuHAB27KpV2tEYci1K1ep14pcunQJhCCbzWO7WRqbq4RhiG6aGKbN6toGlUoOXXP4s289yvXrK+ydm8bYndW2XYeYhCDyGB8fZdDvMzo2ShQmrCxvEIYJGddiZXWVMIqojdTptFssXr7O+OQIUTxEoSjkakiZsLm5QcZ1Ui9dKXHcDFIqlJRoUrG+vsbjTzzDA5/8BMsry0y3svT6feQRBzVY53x8jLm9cywvrbJv32FKlSpvnTrF7Ows1vrzRFFIq/oAx44eIp8xWDh/itFqme3+FkJEVEcqhAICBIo0C6gbJpppERfyOF95mOHf/ALdt84jZSowlZCg6zq+79Pv93Ecl2w2SyITpNT4zsMPc/zYCTSlEyUBY2PjRBFImdZ2xlGC56Ugb8+eaRzHwbZsBPKm36OmK+JQpCCMXeVZYpSmE8ZpZksIiWkYWKaBY+Ux9LQOOop9yrUC09P70uyoSOu9B70+huHQ63exTZded0Amm0HJBD8IiKKYRAqyhSKO7NLYWicIPBA6+UIFKRS9Tg/HdgmDCITAMCyCwEdpctdrEpJI4PsRSmlpDS8JCQkiDtPzjyVhLHbtuLiZhQV2awPT94PveShNQ9d1pFKpiJNS73i/eL6X2gMJge3YaQ2tplBrW2BoDOsFMtttnPFUkblUruC4DkjB9s4WpWIJ0zDY2dkhiiLOn13g+edfYPrYEfyMw0Zjh15vQKlUot/r02q1GAwGVKpVRurjTE5OsXfvDIiIUrlAt9dFSMVgGLC8ssqpU2fZf3gvx04cxzBMivkSlmHz1JNPc+HCBR78iU9j2zZCpvW/puGws7NDsZTFsix0L0asrCJ//fMMFl5BCkn98Gdo9zwymTyWZfPgTzyIPGnRbrcQd/nESToR0Gq2kEonl8sxHHoIJEppuLqGHwWYjrn7jkzu6L168w38Pu/3G/cwjmOyzhjf+A/f5vg99zC9fw9r62vkLYMoiem1t6gXNHLGgFIZyvmAXvcqRw+VOXKoRC/7MkrG7N/662wf/fc4zTEaW9c5f+Y8moyRccT83D6uXbqCZSTohmThwiWCUDI5vY9qtcxwOGTh4iX8YYBtORw6cpxMLs/jjz/BgQMH2dzcZmbvfq4vr3D58gqhbxBEPnbGJPQGWHaqyK0pnThOmBirMz1VoVozKZUKhFFMHEo0XePlV19kcnKM5k4bS9MQMiBhwGDgESc2Tzz2PUZHaxiGQtMlhi3QNQsRS86fX2Flo8/effOcOf0ak7UZskmBp4cPc3h+H9975ml+63f+HomUJDJlHKRMhuQmsLvVffnB//9iM67xy7cGrh+UAX77uXzYfd4qXZvEyS2BYhzHf2lA71bneLv4UWVn//8UHwHXH6O43SzTnW57Iz6o4Pt2NRS3i3fIhMt3CSTd5hhu/9t6LzVaiHfOaiXJrV+w7y7Oj7/2HZKFazCeCvUkQcTilSvYlqQ2OokfCNZXV6lUyvhhwLce+hYnThzHtq2UuujanD93hkq1RrlUQ9MMtjY3yRfKdNpdqpUqzVaDiYlxisUChm5SLpfR9bRGc3NjE8d1UAqKpTxuxkVKA8NUu/RQHU2T2I7BsNclRqK0VJxlZ3uLKPEYDPtIBW+9dZK5uRmkUim9NYF8oUh/6PPQt77FPfeeIApiXnn5NQQRhw4eIY5DLi4sEAYe5WIR3UyBwHA4xHEd+v0BbiZLo9VmtF5n3/w+gjDGsjPsnZnAzZgMBm02NtfIjaQesEmvwGAwQEjB1sYm5Uo1FThxHfKFHOKmsqeOVILTp8+zfH2FbNbGdWyiOKRSraCUhu+HNHd2CEOfbDZDNptjeWmZZ599gV63TRwHWLZJFEcMPI9Bf4hSirWVZVzHodVsMuj3SRKwHIcwSvB6bVrtFm42yyuvvc4LL73M0WMnCP1Bqpa8K9BlmSaZbIEkjtna2KRWqxOqBWzbYnr0M0RhTDaTY2RkhEq1yMWLl6hUq0gBSRzjOA6NnSaOk2Fzc4NcNpsO+4TAssxUdCYR8GfPkPzO32B5XKfT2WJibIrQT3jppZdYvHY1VUMVCk1p/Nv/41/zhS/8Ar3+kM23voPRvcpSRyOXzVGt1VGawcDzU0rh3CyappHL59g7N4vcFQy6dvUalm1hWgZuxmF8fAJv6NFutxn0+lTLZaQWUyqVyebymKZDnMS89drLjIyPoZsmmWyeQqHI6bdep1Ss09jpcuDAPLoBtu2gNIkfhHS6HfbO7UVXWmoFVU2FzFJBrxaGpXHw4BEKxSKXLi8wUquSz5axHMVLL79Axs3x5munGB2toimFZVskQBCGKKXx+OOPs3fvLAsLC5w/f57NzSa9bpf77r8Pe6FHq9UmPmAiB+s8t16jUqmwd3aOUqmG0hSnT51mft8+tD2fZTGeIV+poUSIZZo89Cd/Qr1iUh+dI4kVG1s9csVJokBiGbsiQYnANCwajoHuR9iPvUD8t38FTl3E2AWsKc3cTkG22q1VTWIGA49Lly5x14l7+MpXvsb0zASGYaVq1rviLHGc8PWvf539++dRSkPXVZoxZ9feQKV1oK1Gh+8+/F0OHjwASUwYptThIIrQNAOSGEFEFPrEsc92Y5tiqYJhuoSRxnA4xHYdEkhBaRTTbA1ZuHCGsdExLNNlEAyRcYDnDcnu1m4Ohh7tjYvohoGQBo5b3LX3AUNPxc6E1JBSAySQEMe75QVhwpf+6MuUKzWyuexuNjVdR8mEOJEEfsTZc+fJZfNo+q69hJTI3ckRQUKv28W2bbq9HiRJaqMTpareUZyqs0ql0HU9LQsQaU2trqU0zbjTQ1/bpj1axr6yQlIpgEjvkabpJMR0O93UR3dX8E4KgeNkufuue1i4eplsqZhSupOEra1tNjc2OXDgANVaDU3X8QY+jz/+BFNTqdZAkkRp5tq0yGZzOI7D/PwBTp+9RKVSZXxslDgaEAUdlle22dhc5+jRYyhNMOj3sCyLKIJGs0G9Xk6p5o8/j+x04be/QC9znOfOd9lcX+XayiqTUxNkMi79fh/9TDa1RTneo7mzAwnYmQyGYdLv9xkOPR74+CeYn9/PvqkRzpw/y8T0BAiBTN4r6vOet/MtslLv540phMBwAy6dPskDP/U5VteaHDv+02BE+CK1WYrjHkKEJEGPUsFBJh5ZRxF7TVTSJTO5irV6P0Uti4iHZB3B9J4RiHvEYY/Tb77M6EieYsHC0ARvnXqLe+77OLlcgbX1ZV577TXy2Tz75/ezs7nNybPnaLVa3H333fT6A4ZBxMjoGE6mwIsvvInvx/iRz+j4JI6ZEEYJIkmBqa5rEIQ4joZlppMxtl6i3enx2huvMDk5hiDBcfKp3kTept9vks3mCHyJZoeUynn6u+9QpVkEYUTgRfT7CRs7AyzH4Sd/8tNYzTz9fp9LpTP8b7/3L5menqI5GDB/8CBS1xFCpiJv4jZ04XeNjaRU77hft7pXdxJ3sp4QgugldZMqfKuStxusittlO+/Uc/XG/sSNLOu7Qoof2MTcsAz681Jr334e7wd+303lvtU5vr393ev9ODEs/yLjI+D6YxY/CuD6fsvupO1W6374H9r72+EEv/0/EH/zCdRf/extQO4HH3v0e38AB/aA6yKQ9Npt4sBn0N8iV6yxs9Pj8UcfYWpqHGUo7r/vXqIo5OTJNxkZHSWJEyzToNcPWLh0Dd8L2Tszy/LaOk8/+xTHjhylVivT67cRSL75zYeYmBinUCjQ7rRYXFwml88jpMIwLMIw9fYyTI1er0MuVySKQrq9JjIKyeQLSN2i1dxBEOO6Fp12C5KIY8cO4g177DS6iCSm1+2g6QZbjSYPPPAAEJPLFamUq5RKWUbHRri+eI2DB+exbJul6yvYloNtpfYPQsh0FlkzyOXzuI5Jo7FDrT5CtlDm+tIClm1guzblcgW74hHHCWJQBSmRUuOVF19h//79GJoiiSPiKNy1sZBEsYcQYJoZHn3sMSK/Tybrks/niOKEjc0dCqUitqkBEY5jceniRZQyaDQb9Lotjh87CgjiWKCEopDPIxBsbW2RzebI5vO42WyqNJskmIaG0lIxIMO02DMzw/79+9ENjZzr0O/1EVKwvbWNYztI3aDZ2KaYz7O2voZdXAMBBgc5feY09XqVXC5Hb9All8uzvLyCYRhknNTj17JsHvrmt5if30+v18N2Mtyoz5MyJj61gFzbIvhf/z6uY1MsVPF6Pm+8+hq//bf+DsQJH7/vPibGRzhz9iSf/+nP4yeK3//DL/Op8jU0TZCtzeP7IbphEfghpVKZw4cPEEYhhXwepaWDEaV0zpw5h2VZWJaFkoIoCPH9ENd1kUKSzeexbJu+16fRbLF4bRHPG1Au5hgfn8DNZGh3e5iGQbfTJgoi8vkilWoRCBkMuphuFqU0VlZWKRWKGEpPJytEgmUZXL5ymb1zs5TKRVzXQekmSlcYusDQ0+yabhqMjU9iWjaDQR/T0EiSmO2dHUqlMtcWFymWSriOQ6/TxbFtDh87yvzcfqamJjBNA+N8B8s02RnxMYMtxj7zX/PIo9/G8waUyiUcN0sQhKxcv4aIY7765S9xz10f47uPfIv5+bspF8p8/U//b+Ym58jlSmSyVbodD9fKMBg2kFLH0HefG/0O1r0n0F56i+SlkyS/+Z8Rn17A9zyyuRybG6lSrZSKwWBIGEEhX2Dv3F56vR5+4DMzO4MU2u7EXvr4Ukrn4MGDCJEQxyFCJERxBKSDzCiKCcMYx7YZGx9Baal9jmHYJKQ2G0kSk0Q+vVaDQa8NSmBaFlKllh+67mIagihJEFIS+Kkdz/mLizzz7GPcd/fdSKWhWQYyCnAdk1arwaDXRZHQ77YwrCx2poJuuvR6PbY21shkXCAhiEKEEHi+j0DH9zykFGhK0ev1qNWrZLMZNE2RpAaHRFGqggywcP4MGcdI/SuVQgBhFDEYDNA1DcM0U/BjGChNA0DXNMIwRMg040SS7G7Tu5l9ShKZVt26NsapBTwhUY89D8fniYIQQ9PptNv0ez1q9Tre0MN1XVzXJQpDkkTieUMcx05FtZKYfr/H+fMXOX7s+G4Nr49hmGQzGS5evMDRo0cxDYMoCjE0A11XbG2uMuj10DTJzOwBHNtCKui0G/jBgNnZA4zU63S6rXQCMJNhe2uHldV1KpUy/X6bwcBj+MZZbAGLP/cxLKvM66+/xekzb/Krf+M/p9frkMnamKZFf1+L/v4G1XKBra0NTp46yfieOfrd7m5tpGLQH/Lrv/4bqLDP2fPnmDswjxQKkXBHwPV2y2/X5sdbvPDYdxjPW7S6TfpdnyDpoVkG+WKGKOij6xq1Yp3hMEhr3w0dkhglBLGMGZqXKV/4O/iHvkgumSOKexRyDoaWsGdmBCU9Vq9fJfB72JaG4xj0Otssr6zyiQceoNcb0O10cTMOR04cp1TIs3D+LKtrq+ybP0in06HXHaDrkqHXwQ9CLl9ZYd/MKFLo9Hp9Wq0dLMvAMtPnVRQoEtGn2/AxHBPHcbEMm8nJaZSh0Rt4ZDIuSgriMJ1sUVaMbefRlUsc+Uil0+4OyLnp8+PClVWU7jDoB0zGs0Qln+KnTDY2VthqbvFXfuEXqI2Ogpba9knELYHruwHR21WF3+8e3knc6Xq3qnF951jxg5MjHwa4pn/coo332vW8Y5sfQXyoY/xz9HGnx/IRcH1nfARc/5Lj/+vA9c7j/YHr21WFf1jgGv/hQyQTdXBtBIL15RV0kRCGLSr1STa3u3zs3nvI5x2kLojCkI3NdTY3t1hcvM7k5BTraytMTM4ipM7M9B62NjbIZDPcdeIuXNdBM8Dzezh2lgMHDtLr9TBNM23TbDLZLN/+9nfIZPJcu7pKu9OgXCli2ya+H5IQYVkGkT/EcvMIpacWD3FIHEhOnXyLfXP76LY7mIaOmy1hGwZhkPqUjk1OgJSEoZ/agVTqjI5WU9qXSIjiENO2KVbrqESn3e5yfXmZbrdHtVojAQzDRMgUeGxs7RAECbVqhdW1dUqlKptbDcxiP6WwhWP0BkMefeQxxkZG8bwhUeAThz6aphElEAcaw2GHYjGPxGRiYoK7TxwkDIOUcj0YUB8ZI0Hi9VvEcUCj2SCfL2DbLocOH+TIoYNsbW3h2C69/hARp3ZAYRiUbBt0AAAgAElEQVSRKxTQTBOEAmTarwCikEGYkCsUiaIoNWUPffzhgHiXhthqtqhUKylpUUlsQ2dleYl6tUqgLSCVQov3U61WWFtdSdWaHRvf86lVa1y6eJF+v4tpWbRaXa5dW2Rubo5M1kFqOkJAHPv0mw2MR15i9X/+TTKH5hGxiwgNzp89xd0nDvPqqwsEQcADD9xDpZLnT/74Kxw8fhfnryzy+Z/9aXj5X6KN3oNmlegPPKRUPP30M+yfnycIPfwgYGlpifHxcS5eusTi0gozM7NcuLBAuVBidXmFdqPJSy++vAsg6mi6RpjE2BkH286QRBGd5g6d5g5oFlJphGFALuPSaTYZH5+l1d6m3dmkPlIlm80jTAuE5JHvfJdjh49w6s23dlWIi/T6XcbG6zSaO+iaJIgSgjCm2WxyZeE8E2N1Tp87R6U+BugEUZTWJsYJG+vrTE1PE0QRlWqNMAzY3toin8lh2inY1ZXOQ9/8U/ZMT5K94rOxsUUyr6G8DfyZn+XjD9zN6voS8/MzvPTiSba3Njly8ACPP/oIx48c5rsPP8HP/ZXPk8mMUyhWmN6TY3vlDHbGwosj8sUsGgGxgMBPWF5e5Ytf/H1+8ic/zfp2C/mp+8h866lUzGxzG9PQabfblEolut0uSulsbGzw+hunyeVynDlzmigOOHbsKJpu8tbJ01RrVRCpCBNJOnDTdA1NU0gpUjsXIWg2WnQ6fc6cOUep6NLttshmnd2sooYgJAwDdE1BEuIPuuRdG80oIWU6meBHHokMkIkkThI03biZpSmWRzg4P4OuCXr9IcpUBINuWrevEoJhD9c0QFnYmTJeIIligWlqZF2LMAxYur5EqVzCD0POnDnN448+g2Ho5PIZlBJMTI7hOBZqN9N6o0Jsc7u565erYRkSlXhk8uVU3VyIlK0hU3Em3p2R2K2VDYIAXdNSP1x2acYiSb0ydRPBrniNUtDpoaKY5OI1OD7P4uK1tA5xMKBYKBLEIVEcoWs6165eo1QssrOzjZSCQqdPe3mZKGORz+eYmZmj1+3xzW88xOGjRxFCcOqtN3bFycYRQtLr9fF6Q7Y21zANybDfJY4CEuGxurpIsVDEcbIomXrgNlsNvvvdR/jYxz6OEIpWq0Wv10cpmfoa6ya5lW1kEHD58/fzf/27P+Lc2bP8T//sd/GGEf/gH/5d7r77BIZh4NhZdNsk8Qe89urLPPiZnyJWOvoubdeybA7sP5j6Wkufp55+ko996lPALtD/IcWZ3u/9LxObuVKJ5x7/j5RqMVG0gu4P2Fy6iB51SPo76HHMdrtJJp/Fi3wMS+FmbZSW0B1IBnIVZfjkLv4m63P/gmz/7lRITSqkTNA1QS7rUMi5lMt5+t0mSvicP7/IubPn2LdvP+fOn2PfgX0sLy9BHODYBhPjY5iWzdWr15icHKdWz5MvmOxstxj2BZNjeaII1tc3GB+rIogI6aGUThzqIFtowiBWCk2ZaMohCCOkEVOqjZEkMOj0iPwBUnjsdCIunLlOc6dLpeIQiz6+rwj9HrouuXJ9k95Qct+9n6KwWaA72uIKp3n4kW/xE5/5FA8++JM42SzxLvC7E+AahuFum3zf+/QjpwpfUQg3QR2J35E9/cExfIhM6p0e0wcA17dfn4+A649vfARcf4ziVlSCt7e93+dWlIUP2s+7l91qxuq9lOBUSOmGmFK6ya36u/Ux3wq43kqB+N0P4bc/iG6KM/3RQ2gjY8QZjZCQzStb9PqbFGtTKGVSKhWxbIM48vH6bdxsmSAMGRsbZe/cLAsXzhMFGpPjkwz7fcIowPN8CkWbIPAwDZOV6ytIoRHpJrZlk3EsomBIY2eL0YkpvEGf119+kXq1wqUrVxj0+kyMTRCGAUpFbGyskc/lMW2bTquFKQUyCdCUINFNLl+5juPkqFTLeH6Ptc0Gzzz7AsfuuhvHtXji0aeYmU69YC1bQ2iCZttnGAywXBvdNAFJFCXEyZAoCanVU1plksATjz9B3rEwNYOdrW2CMObVV1/lwMF9ZPMOYeTjZjIIp5kKuQzLeIPUt7DT6xMMB0zNzmFmsihdJwl9PK+PadpEsWC72aBar/LlP/wyx47dTa5QwtBNBALPG2C6NkoaGLqFYWbwY8HWxjL5fB7Hduh2OlimTrZQRNP11OfTsdKBoC5IEg1TN9BkxPrKKoVCZdfLEdrNLaJBn36jQalUJYwjitUy7HrhqlRmGj+I0C0bQ46ThBN4Q0EQRWRzeYRSRH6wq1wJpVIR18mQBAnf+MY3+NSDn8RyHSIhsMy0Bgok2rNvIj5xAuO3fjH199OGDLqbLF5ZoFap8bkv/Dxz+6aJ4oAkiTl24jjf+bNHuOv4Qcytl6CxwMCaJopidhrboOCee+5ieXGRQjFPq9Vk34H9XLl6jT2Ts1y/conJ8XGmpqfI5LPkd6/X5cVVZmb3pNRWz8MyUu/CKAgxLZtGo8v3nn+Z2ak9LJy7QNZ10ZWisbNNtpBhY2OTqakZgiDGD0JMXUEYY1s2SumsrK5TqJZJEkW5WCEhQDMNhj7kHIutjW2+/+zz7D+wn51mi5HqCLblcOXqFUqVIhExAhvTkjz9xAs4doF81SaJU//f2sgocRxw+eJZBl7AocOHcDMZnEsDHMdmyzyDnS3RK30aw3CY3rOX7VaHl55/iX/yT3+X/+4f/GMm2t8mF17mvl/4L/GGHpYlCEOf+uhBSm6fpZUumWIRmSRsL3VRrsXq9XX63SH1So1qucxnPvEZPvMTP0X+vuM4/+6raAdnSaTEzbj0h32klDQbTXZ2miwuXadYynPsxFFq9dqueFDCM888zdzevVjWLrDazbDeeO7FUcz160sU8iWk0HnkkcdYvr7C0tIi9doYhUIZhAYShNBRykgnb4SOaedIlJ16s6ZcYzSlULoGqLTOKwwRSYznDZFKkXFTaxfd0DFMG9MyGPSHJBHkCxVi3UTZLolweeP1C4yO1lF6AlGUiiIZOghJFEqGw4jDhw4zOjaC4zipHY8wkUpDkNrbaCr1vZVJzKmTr1GvVyBJJ5hst5CqgsYRYRSQJlIjpII4CYijlD4exSmFWIiUci2kYDAcoGkWi9eWeeSRx9mzZxbDMEhkOjmw2e1SvHiNcG2Lzd/9u9RWd/D9gCAIaLWaZDMOgpjA9ynkC1y8eIU3T57m6LEjFBotCoZFVC2wvLSKm82yubXB+OQ45XKVMIgYnZymsd2hVMoRhUO213dIFNRG6zhuDi+IqNbHCYY9yuUy3W4Xw9DxvD5Dv0elMsqJ4/di2y5Cxjz15NNYls6RI4cBgabpcP4yYuiR/Uf/BQ/YG3z2yBha5QC/8dt/n/vv+hj33XOIvtdmY2vI5XNnGZ8eY3Z+H1KzcPQcOxttyuUcftghSgJMu4DSJAMv5MDBwwRJTCST904UvE/caH97vV7yg8abHyUCtIzLyuYmM+MVrp56iUvPP4RpdGluXWXt/CKvXlhmarTA2vIGIrFJEosoEhiWjZ2rUyjXCWvXMJbux0xmESJMKfJJhExAxKTCPHGAiIYYukJpAtsyqJYz2JZGFEaceWuBjOuwvraGbdv0BkOuXbtGuTKOrhtcu7bEnpk59uyZAuWztNLh4sVLzMxUcByQSkcTFmCQSB+pmShDQ4qEbrtF1nUQcWqxp2sm3cGQ7e11VDzEclw0I88bbyyystGhOpbDkpKM42JokmA4xPc8NrY7TNTnqXgl/vnSP+G5Jx9m2Nzk1/+r32Fk7x5ieSODulszfsv7lKrBx3FqSRfH7wRuN8dut7if7x1rfXhGnRACcShEO5rsfkc03i629O4x4a36/2HqQMUtPu8+txv7iVMOyO73NF35TuHeB12Tm2NiKd72W+A9+7lVH7dViv4Q8RFwfWd8BFz/EuO9IPGdbR+mnx9m33fWz61+dLcGrrfZE/D+wPX2fb5zWfwH30CM1yGTDhT9zoA48aiNjqFpOqnzQkKSpDTXGPCHHkpIkhCGgyFRnA7Srly9zGuvvcroWJ12q0O9PoplmZimTn/QxTRtdKXR2N4CAaValV6nT5JETOwq0iZIRuo18oUstm2g6YpisUgYRsg4IpvNIaVOs9PBdjPoyqBUKFEuVVjbXKdYruxSVF0cx6bR2OL4sbsRmqTb6xDFAe1Gm3arTSaTwzQthBCpn6LSuX59iUq5iucHrK1tIoRiZmYvpi1Jkj5S+RSLBTKZPJlMBhIwDAspFHG3SGMxQmkSy7Iolgo8+dST6JrGxOQEYeijlKDbbpPJF3n5pZfYMz3NoN+lVMiSy2fRjTSztLm1ga5rLC5eo1Kp0u/18D2f7e0ml69cpVIqMhgMub6yyiOPP87A89kzvQchoN1q0e60EQJ0XaJJg+ZOg0Zzm5HRCbZ3Glh2avOzvrZOqVjANC2kZbK+sUE2k0UJQRgE9Lttdra3KBRyrK2uUMzX8HyFbdkMh0PiKMa0zJtiLJubmyngMw2Wri8yOzdLrpCjUMyD2LXw0ASDsxfRz18l/N//IZGpMA0NmYSEfsiePfuwjCyRlJRKZerVcb76pT/m4x97EK8T8tRTj7M3fBXLNBiQYdAfMj2zh1a7CUmMN+yRyWTZaeyQzWaREnRNUq9ViYnRDI12p00242LbJntm9nKDvpwkEcViCc8b0O12yObyVKs1wjAi46bWEaNjI7z40otcuHCBPbMzGIaJ7/u4rkOn00XXU6GtfL5Ao9Gk1WozMTmGZdi8+fprjNQrSKVh6A6DfodctkCtVmdpaZG5fXsJgoiNjU0syyKzSyEVSYwUMa+/9iazc7OEsU/Gtmm3Whi6gWHo2JZDoVDg3NmzdLttppou3W4PMd1mKZln5p4vcH15BcdxMTSDw4cOc+7cBY4ePYyz+gi2imjk76E+OsqXvvJlDh05BBK6Xo9rlxYpuxI3b2Hla2QdCLwh09PTZEsFQgGf+vh9lMoFMtMj6G+eJTi2j53FZSzDJNz1D3TsLJcvXSHwhpy46xiGpSF1HT9M/U0PHzmIaaSiS4iUrn+jRjP1PI747sOPUS5XcDMup8+c5hd/6a8xNjLKc997jvn9B9J1hSBOopu1/EEQpOyCJKbfDzh/9hzFYgHf94jiCEM3aTZbaEqxvb29q1RsolSMpmKUTAjDIUozsSwb3dDxwpgYSRgarK82ePLJJzly5ACaMkkSjTASaEY6KaY0jeeefZar166yb98sUgoMI1XhvfGsT+t/Y6QApRlMT+9B1w3cTJZsPo+QGjfmLeMoRNd12q0OumEwGKR+tVJq+F6wa3GloZRGEkf0+j1syyWTcel2u0xMTGLbNoHXT2txHRuz2SGKQi6GA66+/BqVSplCoUAUxQR+RL/vMeh7rK2tMzOzJ/VlHg4YQRGGATu6YHp6Oq2NVYJqpUwUhDi2zWDQZGpqAi9oc/XaBWZmpxFSx3VdLl5cwLZdTMPCMBWdTgfP83Bth063Ry7rYpk2QRDiewPCwKNarVKt1tB364jjOIFzl4h6fbZ/6XOYy69y8tXvE5Rn+dn/5K9SyGaZmqqRy5e49HsNjprHYP+Qs+fOkcsUieKY5599mmolB4lHtVJBRAAxzz33HEePHwclSUSad/2wWa4PWtdLdcFYvnSO8WqGjaVLSL+FsF280ODMWxt8/q/9JoXRCc5f2WDu0AmeePoZlKkx8HwiP2LYa+GaMcPiixRf/cd07vpDrOE8UlfEKiEUIYOen2oLSBBKIDWQQsM0FMNBj5F6nWZjm7n5w2xsbHHw4GGUMpic2oNhKK5du0oum6FYLqEZJtVajdXr22xvbjA/O4ZMfEQiieMApQSD/gDLdEhiQaPh0Wq2MG0dqen0h9Dp9Bh6HpWCi2PA0B+yvHSW+X17iKIutZES1xf7SEL0XSZFrljn+mqTeyY+iT8YMPM3J9g7Pc6br7/MkXvvY2rvnlsmLd7+d5Iku6A1vrn8xsT+u9V57wS4fth4e/8/AJ8/mjHnj2Ldt2303mTMh+/lfeN21/fDAOQfJj4Cru+Mj4DrX2J8BFzfu97tjidZ2yL513+Euu8IsVJEQczZk28yOjGGk8mRJALDNBASNCmxrFSJcmd7G5FIiEEKxeT0JP1BWqsFMX7gs2/uAEpptDtd4iSgUi3jmhkuXbyAZdl0el0q9RpJlKApRRilFK2lxUUGgz6TUxMsXLxAoZCn0WgSRRGBNyROJK1OHyebT+03hgOCIOT/+f0/IJfLMzExjetaFPIlNtbXePGl5zl8+DjrO+sUijmkEHhDn1dffoVLlxeZmJjc9W/VWb6+zOT4BGEYkyQQ+BFf/vJXmZqaIl8sYlmSwB+ws9Ui8BSdfodz5y5Qq6bCVkEQpLY4QmBaJkHgM7t3D3v2zJDLusRJSt0zDItms4VlW7i2ha4JRBKhdAPDTAftpVKRS5cvUatVsc0MupbWwhTyReq1OlsbG+w0W0zPzHDsxAmm9uxBJKmYg+3YCAGu4xL4A0g0er0eQoFuugSBTxgG5PN5hoMBrXaHkbExEl2Ry+WIwpCtjU3a7RYZx8axbeIoopDPEwYBfhRj6AZSSQQCJRW+71MqllJRK8cil82CEjiOTaFYAJEgpaCxs42lJPqTr8Df+xWae6skSciwP0BTkjAUJJHO7/6P/wvZYg7XyREGoAmHP/36t/n8Zz9PPqNTWfkKqn6czjBVrF5bX6dSqZJxbYqFLDvbDeojIwgl0XWFEjHDwRCpKbL5HM1mA88bYhgGQ9/nhedfYGVlhQP752m1mji2he976HpaNzg5NYnrmGxub2HbNnP75gmjmFqtxuXLl5mamsLzPE6efBNNT9VJhVRsbm3huhm+//3vEXhp3WC706BYqNDtDDEMhe8FZHNZCoVUCGtnp8H4xASum6HVapBxXcJhjzdef5NCscS++b1Ypkmn3UjpjIbJhQsLjI5N4g/77JmeSsHP8QrenInaepXk4G/x/OsL1Gsj/Jt/828ZqY9hmha/9Eu/SK1WYfuNP8Y0LXLHf5EoiThw6CDPv/R9ZvbOYOVHmBufonH9LF2vyVAYdLZXqFTTWu5EaQhNMjNRR9clhqUTWQbOnz6NvW+G1bW1VEl6Y4skhrGxCYr5DMgE0zTpDgYUikW8YR9NpYNqKdlV4DXeM+N+5NAJVtdWGB2tMTZWJ5N1iMKQQ4cOYZomSSIARZKEeL6HUmq337SPXjfkkYcfZt++fTiujW6m3sXra+sUi0UymQyGrjPwI65cvIQAmo0dMpks3Z5/04pHCB2EhhI6X/+Tr/OzP/dT5ApWCkCVQ7c/RDfS54EUgrm5Webn92GYOsPhEHO37cYnDH2EgJ1GA8t2kUoRxTFKS7OoCHZZKGrXdznBMC00pSEQ6LpBHIGumUS7EwXpvxqObREEIUpJpqamESJl+ySRnwICpVAJqO0m+Z95EL3Zplyu0Ol0CIKQQrHMwoXLPPLIY8RJvDvgj7l0+TIzloOmNAZ5F93QEQmsrixTq1bQNYU3HKJkqjhv2QaGqZHNF2k1OnR7bXK5HMVikeHAo91tI4XANk2kVBimzcUL59CkRhQG9LpdotCnUCxhGCbNZpvvPfd95vbNIReuoIUx8d/6ZZzt81TKRUbv+TTScMjaGRw7FdAaPKkoaBmaU+ssX1/HslzKxRJ7p0YQhLzy8ovsbO9QqZQxTYtSqUSlVrtppXI765BbvqnvELhiZ5HxkLC9ztrVc7z0vSeZGp9gZyiYOfhpBsMqhz7+M6y1bDaaJvsO3M+xex7ED0zeeGuJ5uYmIyNjLC9dIxIttKCIWjmAL7YIgxDTMDF0CyFU6o+aJAiVIEREPptjOOzg2BpR6JHP2TSaQxavXcUwbHL5Its7DRxLw9TTyQala0SJYKfRwnWyTI7V0MSAbMZACY1EgJAJSazotocoKbh8dY3LV69z//2HQUhOn17CNBSTk1NcX7qMIgBNUnBMIGRsvIxmSJ5//gLloiSfcxEK/CBkeWWdee1uNsUywaEhzz35GFcvX+C//2f/HGHcEIG79bjnhpLzzYTfrqfy29tvmSG/zX38YcaKb+//ToHr7USK7jR+qDGt/IsArrfOnn4EXP988RFw/TGL24HX231R364g/GGoHrfb5oOXvVdt7e203psUlSR+x/Zv2yvwA+Cq/aef41bA9d2X4D3ntblD8sSLyEMzhIkk8EOuLJwlky/zzLPfY9/8PFEc0e/3aLWaCCTNRoPh0KNUKnLq1Gmee/Y5yrUqZ8+e5Yknn+Szn/0sQRhy6fJlnnnm2fQFIqFQLBAGId1ul9HRUUqVCmEcs3jpEgiJFwQMPZ+52VmqtQrLy0scPnwQTVMYuolp2hiGxtb2Ds997/vM7p3FdRy2tzfI5XKMjY5w8OBBNje3kET0ex5uxqFSLWHbWRIiDN0gDhMyboZiqYQfRly6tMD09CRSCnK5Akkc0el2WVq6zpNPPcWv/sqv0mg2+P73XmS0PkIhXyGbLWGYLoVShvGxcTY3tzh75jSFQp5zZ84QBAGFYgGlKTRdw3FcOp0mceQDoJRBQoJlmXS6HbLZTKr6adm4jkuj2SRJwDYtLMNMKan5LDuNLXRdQ1dqV1xGkM/n0JWGJgWNRgPTtOh2O5imiaYUGxubfOlL/4Hjx4/jug5hFONkbEzDQJMK3TAoV6t0+31Mx0YASipy+Ty2baPd2JdU6LrBgDewsz1kXEfKVEVSCEESC6IowrEtOp02URQgNEWhVML3PeIkSa1kNA39tXN4eZf4H/4a+XyOwPd54tFnOLB/P+fOXuDb33mUX/u136BQKnH87ruYmdrL/ffez/HjJ/j2d/6MYnwBx19iR1QplSrksnnq9TG+9Wd/xtjoCHHkY5omYRiRJJK11TWUhEHfI5PNEO2qJvu+jxASy7aIwoROu8Ps7DSFQo5ECLa3d7AtAyVhZ3uTnWaD6T3Tu4quMDk5ha6nYkKu69BsNsjlclRr1V0FXQ03k6VUKnPo8AHGRsfY3t5ies8UumlxfXmDZmOTIIzI5/Ppb8vzqVYrvPnGSdrtNo3tbaqVMnHgE4Yad997AkTIzlYDSWrzsL6+zvz8fhrNFuurK2xubpHNZnHdDJ31BcRwi9yn/ylPPvUkP/Hgp1levMr66gr33v9xIGJx6TKl3ls0my3U5OfYXN+gWimTdR3W15bxE0UtX2PQbbK5dY2xsXHCUFAoVgEDpSmkJlm6fJl8Po+ma3SLOZxHXqD/uU8Sr6bZY8dx0DUjBdkjddrtJqNjY6lgVyJRQhAEIdqusJDatWVKEVbqb+oHAbpmUSrnGQw75PNZ4jgh6zroRjq5kwCXL1+mVM7f7CvtIn0garrJ0cOHGHp9cvlcCkhiwVe/+hUO7D+Abdvp8zHW+dM/+TprK6t88hMPIjULyzSI4gil6WxubrFw4TLFgsXxY0dwXYs4HtLrtWi1OvzB73+R++65NwWuSiI1gaYkSSKIwrTW1PO8NDuqUm6cpilM00DtirIkcUyUgFAKkUR43nD3uuwKt+yCWal2a4GVRpykQlZRmKApjYQorWdPYgzDSJkYRmrDYWg6QeQDMbEAc3GN4Yn95Lw0Q/21r/0xjuNQKhfRNB2ldI4ePUalUiJfyHPq1CmO10ZRStLP2XQ6TQbDEMs2sV2H9Y0NGs0GuWyFh7/zOPsPzKNpOkuLG9RqFQaDPpmMk9ZEd3vk8gVC3yfjOvR6PV57/SQ7OzvkC3nK5QpPPfUUx46fQOmKra0dXnzhZR544BNYlo66cAXhBVz56QcYLnyfzY11VpIcy+s7/Pv/84uM1msMAw/5Vhbb0rhonmFu7wGiKCRVco7w/ICpmb1UqnXa3S7dTg/HcXAy7s2M6weUuL7/Ozdd+J5FfhSRdHc4/fyjbC6eZjDcYu7wJ/nEz/wyMjPHF3//IY4/8ElGxu/GsCoEkYmTGeHMwg4Xr/T43M//PMoq89rrF1he7eGMx0xd+9tcmvxvKAzvJ/ISYh/yxWKq9xAnECc3a6Y1ldZTKxkTxx7Fch5v0KFaqdJodpBCEkYB7U6HTDZLFEYEQYBlWhiGYtBvohsxQio6/YgkFoTJkI31JrZZQDcU4+OjzM5U8b0e7XaXSmUMXQJSkMu5mJrg6tIKnaZHsVBEiAAlE0bGipSLLoiIfr+N4zhUK6OMDY/zj07+Bna5wCfuu5vXX3mBX/jrv4w0tZvX/gdjqXeWSaWf9NrfDrh+0P18v7Hi7ais76b2ev/KJHxR7Yozvf+481aU5A+izN7pmPZ2/fxwJou37//GMac+1PLGDm997B+g0XIr+vCdOn38MMD/xy0+Aq4/hvFhgOudtv+otrlVPeqtHwe3eyj98BnXd0SzTfLNJ2H/BEJYLF9bplbOEKJzz733EUYhMXFK7xQS07DI5kvYrovjunQHHT75qQe4sHCFQ4cOc+KuuygUiqxvbDIzM8n4xCT1+ij12ghCKpSuKBQKbG5s0um0yWVzGCoVRXnoW99mY2OTifEx3IxNq90kn0/VWZeuL2PZNsrUyeZyHDl6BF0lBEEfqRuYlkEmYwExMonwfZ9HH30C0zKZnZvliSeeYXJ0BGKJrlt4QUQ2n2dqeoTp6TGkEruKnhJBiG1b1OpVDh48QDabJZvNMDFa4ev/8SHyuRLZQgbNiTCUhud5xFHE5OQ45sgG9eksGW2clZX/l703j5bkLM88f1/sEblvd99rL9UmqSQkARKSJYwaIQHe2rLwzBl6jM05uA193HbjduOth2nPHI+nx203jdttMJjFgCSEQAsSVaVSSWgvVZVqvXXvrbsvuWdGZuzzR9wqSaXSAo1p2817T/xxMzO++CLjy4h3ed7nWYy1aiUJP/BRFbE+N5+O42MZarxvFGEm0kSyui4vAt2Ow8ryCmfPnKWn1EerWQU5JJlO4LldKqsrpLIZDF3nS1/4G6QgQJdkcj09ABiGThVPfGIAACAASURBVKfTwTQMFN1k795rWVtdQ1ZCCAIMy4QIGrU6lpUEWcJIJiEICKMIx3MRsoSQBK12B7vTpdW28YMQNf0Srr+GKe/g6LGj2G2biAjTsFAUmcXFBVRVpaengKybROsVWVlRkYSE1nbge09j/+lvElomqqJTr9V54uCzcXCdSvDAgw+x96orSVg5GtU673//bZw8eZRiKYWa1NnMM2iqjNW3Jda3ROLs1Dmmzs5w2fbtdLstNFVGIHPq9DSaalLI55maOkc6m0fRNHTDIpXKQCQQckhvaYBisYSiSLEGqYirproq4TttVDmkp38QP/BJJtMoisbCwiKmoaHrGrVanSAIKJV6cDwXSZGJIkGj2eDZZ5+nf6iPCIl8Lk+5skoyncNKZhns7+HFFw8zMjKCqqi0WjbtTouNExvp7enFbrfwPIeZyVm2bbsCoUY43RqWkeTY0Ul6e3sp9RRp2U38MGRoaIRiqQckBbvrYNVfhC0fZK6b4LrrrsZu19k0McbmzRtIpovUm2UMQyOa2YeiKPzv/+YL7Nq2nb5ijm989cu8/W1XU8il6DgmRqaf7377a0zkUlgju3E9CVk1CBwfVQTIksKn/t0f8Nd//QXe/8FfwJlb4sVvfoeJrVtimL4fUKs2OHHyJLt270LVNOx2h0OPPcnkibMMjgzFjLVBhKKoL9/z1h0URZYJg4BarUqEv67zqCIJFVmOg7ooCgnCgJ7eXly3ixAilucgruCqqkqEj64pqIoay6hIClEY0dvTS6GQR5YV2m0bu7FM0lJ5+9uvIZQgkGTwXFqtFoZpYJkJWrUWuinQ1RTVsoNpxKzghtLlij078L1YF/N89TQmQFNZXSmztlqmf2AASV7nOyDC9+OAUQpDKuVV0ul03O8lBFHkIysKiqJi2x0kScbzuwgR0em0Y+gx0Gq1aLXa/N1Xv8a27duQJBlJki4kA2q1Wix7FYaEIg6aFSmibjdJzKwSLa7gpi26HYetW7cyOjqG4zWwEglGhscxTRPd1NE0mXy+QE8YX6ewJ0c2mwIlgZGwQJJIpJIkUhnOzc3Q09tLMqEii5Dl+UWy+Ty6rtFo1LHtDpaVRFI03K7N6tIChplgYuNWhkZGkGSVMIJt23fQbNkQxWzeExObOHToCdbKq/jtNllJwfi1DxHMPINlmqQ3X8eGzTvZvnk3X/rS57nt9n9Gfm4Qz+nwbPdJ9n3vMfr6+xgeHmRhdZnVcp1MvpdASJipFJlEgiiKSKbTBEQXIOtv1d5q4JoQEs3Z06zNHMZpz7N1xzi1cAyRGcPXB9i64TJ6h3J0uqv09CWIZIcz585xzfW3sGHrXlyjhyOnarztHT/DyWmXG277RTiZ5lzoELbSJFIWttuk2+0SRALTSiEjI4UQRAFBFMQ904SYhkbgr9FTylApV6iuNQnDEGGY5HJ5hBAsLy2RSSYxNIUHHvgeu3ftZf/+J1gpe6xWBCdPHGVkvJdctp8nv/88ihpgGi6WoeI7HoQRQvJxHRfHDwg9D1kIJNXCdlskkgbL84ukzSxJE1xXRZZ1BCpEKnq7H9lJMrfxJYRq8fj+R5iZOs2v/sbH8aLgdQsHr6qkRq+VPZRl+TX6x693Pd/I93sl3Phi6PErzX8qrgwrb3vzwPVS83ijsX9Ye9VYl1q+P6LxL5yD/DpJgr9H6PRPAtfX2k8C138A9uZBauwsvHKTJPktZ20uzuLF9jLp0svbpbJg0qu2iz/z8s304s9cFOBmUohdmxFjg1wqcL0UOdOr5l+NA1d/8yb0KGLypSMkC4W4EtCqoioS9XoVXTeRZR3XC/C8kH0PPUwhozM0Msjk9DxPPvlY7HBFMDU1w9zsIklVQzV0IgUs0+CFp59GlhUymSSdbhMhQkzDIIxiVt/RkWEMQ2NoZBjdMjCTKQwziSIrtBs1AqdDMpWh2ajTbjcx02n8SMZUDQQSTrdLp90mm0nTanVBFiRSaYqFEk8cPMDYhmHOzSygSCb7v7ePwYEC3Y5Ns2mTThXw3YCF2dPksnkCP6JcrhGGEZIUUikvUejp47Id2wgjiUatReB1MZMZTEOn2y3TaZdJ9oVEkke7rJHL9+AHIv7uhIKsWriBRCKZxtAUFqbKLK+uMjQxgh/5tOtdnj70FKauUyhmsRIapd4iiXQCM5FFEgJVUjCtBEJW8Vx45ukXuOaat9M3OEAqmwQ5wrbbBGGA43gYRszIqcg+CSt20jUrgQh8arUKuUIa5Ih6o4VlJmlVK1hGAlXR40w80GrVSadTSALajTpmdhHX6SK8EWTVwvOgv6+XWnkNIYFhxIy6qm4hIaFI63BFIdGq1TEeeYr67deT+JmbEKpGFBmIMEEQttm8ZTNCSOzes5tv3f9NHvzmt/ngB+5gZW0Z2+twxTVXU0pYBE//XwSFnQShBAE0Gg1cz+Oa667DMk3m5xYwEzrpdIZ6rcngwABCSJw5c4pnn3ueDeObmZ+dp7y0TLfdIgh8fK9Lt9uiUimTz+cJwhDHtomiiJeOvER//yCLC0u0mg1UTabVaiApCoYVawqvlcsMD48QhoJTJ0+Qz2YJAg9N09ANk3w2RavZQFHUOFkQhdRqy2imhWEmKZfrLCwuYHfa5LM55hcWSWXSKIpOqbcfocgkcxZr5VXSiQytegPDNAlEzIDsdBzqq1WC0CHwXKLApXhsET+aZKb/Q/zSnR/m5htv5ciR4+SKOZp2k2PPHyQIPcbGN9A58wCyInPX73wOoYZMzpxm284dSKqJ6NocPPgYuqGzdec4k/NHsKKIfCFHzbbREjoID8/3MRMJrrn2nYyOjrFaL1N89gTayCC+7yLJgkIpx8ZNEzSbdWRJYm2tjK6r7Ll8J7IqiKKAmEkmIhIRkggI/GAdGhviejamadHpOmiaGUuUiBhupmo6YRSiqiqB7yMkFdt2UBQNWVaBuO9TkTUiAbIiaNkNNF2gCp1cJoOqSLSaVXRNIpUvUejtRzUSSLKKKikgSWj6utasgHwhSygbCCHxxKH9TE2eYuuWjVTbHbKFIkKRUDRpXZonltuRIg/DlOjpKRDJYNer6LqFpOhIkkrkh6haXMWWlFj+JoxCRKQSRTYCCQULRQrRFQUJOW7dQF5v79CxzATbt29fRwREQICqGkCAEBGKGgfSEEuQ+EGEZlhI0wuEzRbh0CCypLC0tEgqmaBebTE1eZaeUpbV1XlMQ0WWJQxdI1pcQVU1VmUF2/bxnBaGomK3WrGkTr2OrikoMpRKvcwvLDI6Pka77ZBIpHjxxWMMDo6gaTpzU1MkkgmypSI+kEwnkTWTruNx7z3fZMdl2+k6LVLJxHqfr8z4+BgvvniURq3BgKyjfegOzOpRVFVBGb2e0GtjJhSuv/EmFpZXyJ0rQRixWDrGzj2byRezJBJplpdn2DQ2yNlTxzhy+BiZbB+BpqCFEpaqEWggwgB4Y//gUtWg81U9IcQlyXF82lS6CQzdYPr447huxIGDa0z0b+Cp/Y+T6ymRyuSoOjrJdInayipOu0Z/b4p6fY6HH9jHyPA46aLCxKYNFPvHOfC1Z8gqGxncsBEhWyzMV1FDkEQXCZcoVBCqHiNQAo8gcoGI0I+QZIUo8jF0ECKgUMyxtLxMOplEEgZ2x6XY20MgImRJJV/o48ixM+QyaWR8xjeU6CllCBwfTYGBgQySpOJ5AUEYEyLpqobQQ3KZDHazjZA8VLlGOhcSegGO7WNZGiGCamUZy0iTsBK03SqZ9k46eouxXxpk154xpo8+z949V7Dl8suRDe3CdbjYXhmoSpJYzyGc9/8Esqy8CioshLiQOLvUeK/1FaV17dWXfbdoneAQxDpw5GV/zn9qHSnxttcyCr+RD/tm5/Z6+1z83qXQhq86fhRD49dVun7ooPXic3pV1TiMLowvCcH5vx/mGD+onff3/ykGsD8JXP8J2qUTodIlgtE3GuPiG8GPCljx8vhvZNLYIIwOcDH8+K0e+3zgquzYCJ7H0RdfZGhsjK9//R6uvHI3jUaHXL6fc+fmeeLQY2zcOEIQCMqrK6TTJmenZ9i16wp2bN/O+MQ42UyG7373QXbsugwCHytp0dfXQ6teY7CvF8NK4LoulmmiKmrMgEuEZVmAYGRkmMD3WFldoafUw/Hjx2k26/SVSrhuF0W3CIKAfD6P58csgF63jec6MUsnoGgaENJquSiyQTKZIJNWGBzaQF9/H5NnTzM2MUJPbx+GrpJIpIgiQaVSxnM6yFosdh5rygaYlonnB6QSSSqVMtNTc7TtLkPDsYZtp9OlUilTKJWIrCZRFGH4/dxzz70cOnSQXXt24HstZDkiinxE5NOoluktZUkkTSIho6omnueyODfHtm2baTRqZHM5dN3izOlJSsUCqirHlc+mTTZTYGFhgQMHDjAyOkwiYdF1HCDuF7ZMi4RloSgSCAXCiEa9QSqVxfUC9u/fhxCCMIhotWLSFgH4Xpd2u0OlUqG7rs+oKbHsxtLyMtlcjkg7i6LIWOplGGaCfDaP69oxRFRRCMOI5ZVlenp6QPKw7TZADHF+9jgUs5h//AmIYHlunq/89RdprFYYHOynkC3x7fse4PH9T/CeW27lPbfeyr//P/8Pdu3ZxZatm9FUlcpD/wbTUJhvW8zNLmAYCRBQLJZ4+LsPsWnTRgr5GKa9ulbB80OarTaTZ89SrVTJ54u4rsvQ0ACLC3OkUgn6BgaoVKr09fVhWSZRFFGt18lkMhDB1NQU2WwOWVXIZNI0Wi1SyTTpVAZJxJAzRVaoVeusrZXp7++NdWGl2IlJptLs3/ddNm3chK7FWsBh6FEo5IiETK1aJ5/LYZkGmUyGw4efY2x8FEM3aNutGGaKvM46KVBljVarRQQMDg0iSXF2embmHP2DA5iGSaVSIV2dQxZ9/M3RJv/xP/5/9PX38Z//819w663vJpvJML5pC4VSL91Oh/knvkjHbnPWG6FYjPs8V5YrDA2Os7w6i26lmVtYZdPmjWRzBcpLVTpuSL5QolyuYugWhqFTKJQYH9sYE6RZBoOPPU84NoikxsRBpmFRqzUI/YC5uUUGBoYIgpBcLk+z1aa8VqXd7qDpJoqsANF6z+rL0DhZUWM477rTIckyYejTatkIIcUVEwRCAlWNJXQionWyJhChjIgEiqTGzN0dF9VQiERA12njeS7JZBLXDxFISOtjhmEUk9qszyOKIlqtFulsFlkIhgcH6evrQTc0dMO4sC6I4iqoHwTomg5hiOO6qKqGtH6OsqriByGR72NoKl2nsy5jI2LiJVUFIcf6x0KBSCKSYoKZSBKxzJQkIyR53dEO0XUdLshcxE605zkxZF9V8f24/7Ver8fjI1Cn5vFdj6OtOkePHmVsdBTf9ygWCxQK+fVEjI7juKytVWi3bAqqTsdz8dImxVKeQ4cOMT09zfj4OOVymWKhSDqTQtN0bNuOx9B1PM8nikIef/wgV1xxOSsrS1SrNYrFIs1Wi1q1GpPehXGP5sT4OHbbptt1yKTTTE1Ps7qyiiwrbNy4iYmeXqSlFdyfvYXpQ3cThiH5nTfRqFdx3YBGo8WDD32PDc1tsQzUXeMUe/Nks2mmz01iahlWV6o8/f3D/Mvf/CR33HYnVk6ghBG6qoChxE78W4B0Xuq1N/ItwtAjaeVIKzbPPX4f6UyRo2dbrJTLvPs9t/KZ//oZbr7lp8hlCjx8//3s2bkDVVFwQ8Hg8Ab2XrYVvxsyNDjE//unn+Wqq2/BFw4bzu1h6eYXUefzOE5IJGTypQKdTpfAc1BlH1lX4+SOpBGFcdU1CkMUScbQVHTdoNPpYHcD0qkUc7PzgMA0TabOTjIxsYFqvYpttzg3fYZKdZWkmYCoQ9KSyWWT+H4XiFETXacbM65LMrVmQMfuYhoKAg9NU1GjFI4d0tdXJKBDu+siaTKKpq8jDkyslct4xPwrrr39FibPzaBJCldd/TZKG0YvOHdvVjW9uCKqKMprkv1vZq+tqL55Je+V770cuIY/UPD0RrDgH+U+P277HzGXtwov/sdmPwlc/wnaf2/geunK7I83cD0/jx86cJ1bJnrgMcLNI5QXlymvrjIwMkat2mRosI9kKk8Uajz04HepVpcolXL09gzQbDQplvL09w+wtLBKsZCnUiljmDpXXnk5uqGSz2ZZWVkmnU5hGTrzc7Ocm1+ip6eParVO2+6QyWQJgohup4th6qwsLxL4Dvl8/gJkp7+vDwhRVQXDymAaBna7g6bpqKqBCB0M06TruoQIhKyQSJg8cfBpspkSLzz/DDt2TyDJaRzXplDKUCwVkRUjrkyFEd/bv5+J8XGy6TSKmUQ3TOrVGo888gg7d+/GSqVZmp+l0WxSKPSxf/9BLr9yN616g1qlSd9AH6pmICXiwFXulhgeGmTT5g1omozvOhiGSRiC3bJJpzIcf+kZHM8jl+ul63hkMilGhwdYXlnC9TzCMEJVdfL5Eq1mmUarxcpqma9/7R727Loc33O47h3Xks1lSCSSWMkkodeN5Q8AQUR5bRVJ0Tl96gypZAZZUnnp+Aku27aNRCKFpuoU8kU0VYvJVTotHnzwYWRZZmBggGq1QrvZwjQtcvl87BgbZxFCYm0hgWlYdDpdwsjjzMkzuOv9mYVikSiKpYV0XUMSgu5KGe3xF1j8/X8B2SS6rlNfrfLgPfdhyDIPf+8xZmfmmRjbxI7LdkIks1xZYc8Ve8jnc6QSGp2H/xVpZ4paYifpTBFVjftYRRRxdmqSG258F+XyGqEfkEimMA2Lc7PnKPWUGB4ZwTQtpqenaTbq9JaKFIp5enpKyLJKtVqLycccF8tMxFquuk4EjIyOoRnxsVKZNGEQks3lcRyPytoKpmlimhYRYFoWURjD1U3TwHFdFhaWaNWq9Pb0IksyCctEREFcuZYUWo1WDCFeWyOXz9HbU8TzPDRdo1gs0GzUWVhY4f7772f3rt10u12mpmfIFguYpoEsC5qNJiMjY2iaRqtt43S7WO5JTO8yRn7uf0PVNPzA5xfv/OeEYcjy6gpfv+9bjA6PUF5eQgtaDG26gjC/Gc936Sn18uUvfZ23XX09SiJCN9L09A6TSGRotDw++a8+wdjICMVigZ6eXgJPwvUdBBJhKGLyE0sjcfBZ5m68nEzT48XDRzl06AmKhQIzMzMsLCwxPj6Orus88t1HcVyX3t5evvGNu5mfn2fjxk0IIdZZUGPHX5FjUjDXdQmDAF3XCfyYdEiWZRQlloCRhEQY+oRhSLPZwFjv+XZdB0lEyFJEt2sjKwLDUAmRkSUFWdYxzCS+D5quIUtxPzNRfD+OIeEhvhdLzxiGie/FlapOp0OhUCAIPbR1x7zRaCKkeG66ruO6IXa7DRGxBJCQCYl1JBVJomvbGJoWM75KcswULMdQ+/PVnzCCGLEagqzih2Hcd038XAujEKfbiuV21mHCIHAcB01T0A0diHvZ42Mo1Op1VEVFm14k8D0ePH6UqbNTXHvtNZTLZexOi1q9RiqdIgwiJs9MUir2UyyWqIiApibh+Q6pVAKQUBWV/r5+FhcXKRQKdDodNE3DMHQMw1jXlIWO3ebyy/cQRSGKqpC0knQ6Nr29PWQyGaIIZCVC1zRkWSGZTK8Tw4GmxgzPnU6X5eVlVp58mkFV56W9m/n6l7/Alde/mzA9SLvVJV/IUyiUyGZ70F5K0m43WSyd5lc/8Ql+47c+iW4ovPunb8aydLZs2kA+k+enbrkZIy3wWm1WV5fJ9BRfXg/r9p73/DM+8qu/BlHE9de/83Wf228WuKqqzLNPPYvqrnLihceYWagzuu0abrjpJgZHRjh1+gw7dm4nlyyQSSZQBTz3/Ivc+Ssf5Xd+74/AWaE/n2V2bpq33/BOfud3P8Vv/dlv8ycvfJo7dv8CI4ltnJ6cxUikKfT2cXZqhmzSQJU7hJKCJGlEoUoYhEhSSBiAokhEgYesSAgRsrS4QippMXX2LGNj44RhRD5XoNFskstl6XZthof7GZ8YY/7cClFoU8jrSMJHECeTIgIMXScMAjqdDn9wz1/y6/f8AU9OPcc/v/oWnK5LZbVCKmkhyT4o4PpJ6q0QSdGBCD3Mo9UH+FbtU1ilLWy8bDubNm4iVyzQ1QWqpL7udXjl66+s+p2HB58PXN+qXfzZt+JD/kMPXF+DzPsR67m+kf0kcP3R2Q8auP7T/Bb+kdnFkIeLe15fbtB/+fXz1Ogx41z0mn0uHv+N3r/4OD/M3N/Mgn1PER145k0/ezEc5Pxr4ePPwe4tSELl6aefJQgiLNPkpptuot6016sZIe+59Wbe997biXyJcnmVU6fPoCgxHE1EAs/tUq/XYimJSoVsJksyl2NkfAJJkul2uoQINm7ajCSpPPHk05w+dRa7E7O2CllGlRVy2RSKHKEICRG9TBxhGDqraytEUoTd7eC4XQ7s30+zXsN2XCIhsCwLz3OpViv4fsTmLZt47MCjsa6iYiJLYFkWhm7hdB2CwKW8VkGWFfbuvRJVVeKHqySvB30r6LpCvR4TJZV6epnYMEFPT5Grr7ocQodCqYdSbz+yrMdVym6HxYUFut02xWKWgf4eVEUhkcgShjKyZDBzbiGGxo2OMzA0TOC5pBMWdrPF9598ikQiST6XQ1UVut0Ott0iCiNSqQxbtu3grl/6EHMz5yjkc5i6huN0+PJXvkwQElcfkXAclwiQZIFp6ezevRvXcfnCF77Izl07UbUY2ipJMlEQEgUeldVFWs0W73vf+7juureTSCTI5XKkMhlkRWFxcWmd7CheU6EfMjs9i6kbuG6Xy3ZcxvDI8IX13u128by4byfyQsx9zxL+ys9T3LWBtl1HUVSKPb387u//LrV2hd/6nU+yffdOXjp1kv2PH+TJZ57muSOHGd0wwehQkeDAv0ULmszpV1BpuKTScQKiVMpxz93f4MzpU4BPsZQnW8jhuh5z83NcceVurISOrAjGxkd572238vbrrkaWBZ7rc9/9D+B5cdb/6JGXWFpaIQwFyaRFGIacOHGSerNJ142DYd8PSCZTLC4sMT05xeLCAmEQs6xquo6iqWSzWSRJ0Ol0kGWZ4eEhrtz7NhzHZ22tQhhGKGoMMdY1jd6eHmZmppEVmZnpqQu/1UQiievEEPxavcrQwADNRoNkOsnOy3dxbm4Wz/eYmZ6hXq/HcFJZJZcrgL1MJHn4tRwDgyNouoHj2dQaZf7rf/srUuk8d/3yL1Pq68U0Lcrp63jwhMbAwAif+nd/wLe+9W3e/e5386d/+idUGk3uvvtu/vBTv0ez0WV2ocq73nkjS/PTBM4aTmsNWT5fsYgDpN/8zd9k3759eBMD9K41cTyPU6dPU15bpdttce1113DDDe/EcTrYtk3/QB9X791LLpvl9ve9jxtvuAFJxE6FLEsIEV34XwCqomBaVsyOus4SKsvKBScriiJcx0EScVCvSBKB76MpCrZdxQ86dN0Wmi6wOw0CT8LpRjSbXc6cnoJIxvd9gjAgIk5SLi0tYVkWk5OTnD595gLkT5MEiiTIF/IIOYbq+kFIhCCdzlyorNYbTSbPnCWdzpJMpgGJTsdBkVVUWYn1NiXw47IXROIV5wVB0CXyQRYQBjZ2ux5X4FUFAQS+i0SIJsf3Q03XCMOQIPCZn59jaWmRCGKG8fXrFIURsqxyz933Uqs18H0PEYT83M//PO/+6Z9GyDJDw0MMDQ0yNjZKx+6gGzrj4xMkkgleeOF5VE0hl89iGBpdx2Z8bJwNGzcQETEyOhL/NjQNx3Go1+t0uzHTs6pqMZJBVlBVjSAIkVWBpsmcOzfF2soSpqpgNxuxUxWFzExPce999/L4wSeYm5unWq3iug65XIadySzC7qLIJv/6z+5n/5RgamoWXUvy53/+Z/yHP/4jzs1O0hlq8ZJ3mK7rI0TcYxhEEl2vQ9drcHb6KB/8uZsIw1XqjQptu0GjUX8NiQ+8nC5+5atv5Ftc6j0A1/HZuW0z3/nW3SSTSXoGNnHjT9/KxOZtVOttbLvL4vwyzz37Il/9ytf4znce5PixY7iOA0AiZfCZ//LnVKrLqGqXj3zkF172E45LuJ7H5u076R8ex/Y0EtlxrOwIvkhh2x6u6xMByVQaRYnZh4MgWu/L9lBk2DRRwtIcxkfyLC9O0m5VWZqfw3c8gsBn67bNSIrM7Nw8HdenUvEQUgLPD+l0PLqdTpyEIkLTZGQpltmLL+35hCukMhJWUsLxOrhuyMJ8hYOPnWJ1qYbT7RJWk3halb1vz7I0c5LAdynXGyRyeTRDf0sB3KWCtVdel4vfv/fee7n99vczOjpOPl9k+/YdfOxjv86ZM2deM/75dXLxeK+8N50/JhHMVKb5xCc+wc6dO8lms5RKJa6++mo+/elP0263XzPvV85NCMHU1BQf//jH2bFjB5lM5nX3v9S6i6KI48eP87GPfYzdu3fHz/xUirGxMW6//Xa++MUv/sD+6+vZK/3qi4Pji/30H2cAe35e/7PbTyqu/wDsUjemHwbW+2Y/oLc65t/HD9H/g/9EdPjED03OFD11BFQVL5RYXVwml0ojVAVZlkmnswgZQuFgWhppK0u90iHEZfu2nRw4GFcpa5UGrmuzvLTE8vIaQwPDrK1W0JIJIsB1XVRFpVKtcc+997FlyzaKxR7W1tYoFPMEQYiua5TLK5SKOULfIQwFKysrDPQP0Lbbcf+h00HSdCxDRddVioUiqVQKzTJp2W1kWULTVHzHwUrlaNTL+F6czUcyCNwmqmwgC43AC+jYNdLpXDw/XUPXdA7uP8TQ6DC+06GQTlLI5+I+RtMikgUry0txj0/kI+gQKQmiUOLJJw8yNjZIoK+RTqeRuznKlRU0TYdIptVu4ocBuqmSL6RIpnSS6X4kSebw4efwPQdd0Xnk0X0IBCOjw5QrZTKZDJqu4DkeRjKNH4QEvk+tsoauqzGpiqayscxYRAAAIABJREFUfcdOIgSSLDO3sICQZZKpFIaVwPNdOnYHWcgMDg6SSFtYpkYyleTs5FlSqQS16iq+7zA8PIYQMsvLyyyvLNPtdsn3lOIgKpmkvLaGmVlASIJ84krsVjeGxCoSiqRSKVdipl5JWoeAJwn9COWJI7RTJvIffgxN9nEcj0QqS6jIBJHP2975NsqNJpu3b2V84wauvu4aIjni2ne+A7W7RHT/XRhmEgauo932+P73n2H79suYOTeJZWm4tk+pt0CukMOwTKrVGknDhMhH1yVkSeC7LqvVNUxDZW5mGkUoVGpNnnvuRfL5HMlkCiEEjz76KMPDw2SyaTw/1g8tFkosLC2Ty+ewbRtJCI4eOcbw0Agjo4OsLK+QycbwZCQZEQaUy2t0OjHcutv1kGWNVDrLmcmzdByXZDoBUlxNPHnyJCPDI2iqiq5rJBMpVtcqyLJKhKDVstm8ZRO6opBOJdB0lUiOGBoeRVMVkpaFuY46WFhcJpVOYdWP0DqdpWBu5l9/+37eddP1pLMWLbvJgcceZ+u2HUhhlxPHjrG4uMaGDVv50pe/xrXX3cjNN99MrV5h586dCAEbNm/gqj17OXP8JJdfvodGu8GN1+5CkrrIoosfhpiJIo1WkzCI8L2YXOnue77BbTe8A/PkOUQhT19fiUp1mWuvvZLV1VU6HRtNVbDtNoOD/bTtNqlUkmQyQRgGWJYZB6pSRKNRWYfpyhdua2EYxrBYwPPiYChmEBYEfoBlWsiSHCcWIlCUGPaoGgZ+ALqZQAgFVbXo2B1EFFCvrtCordLTk8X1g5iV2PNxXZfDh19kfGwC3w8oFkuYRgwrn52eJJFKghQTezndLqoeVzXFeqAdQ/E9nnv+MCPDwwRBSK1a59Hv7WfLpk3IIgJCNNMgkEScvJPW++A8HyHJNKorJIw0gd9lauoYyUQSRTfXNX4jPOc8/FPgemFMcEVE17HJFzJkMjkiQjRNjVk9hUQQhERRyIYNG8jl8mjLZYKzs3jbNpDP55HEOnmP79DpdKnXG2QyWaIIWu0G/X29aJqKEJDL5RBCcOyl4/T29tJsNjENEyEJ6vUaum7EjMmyRKvV4vhLpxgeHiEIItrtNpaVjBMJdhNJRAwN9lOtVJEkGd8LqVRqRIRc9/ZryKSzZDJZTNMgm82STCWQT88guR4f+f7jXHvN9Zw8eZodO3bQbHRotMpcf+M1DI8N0Lu3RO+eHPlinnvuv4+5+XlueMeNDPRvpVTow9Q10skkHbuDljXoy+d56ehLbNi+Ne7He8Vz9cD+Aziuw/XXX8/evVe+9gn8FitgURQTcp15YR++vcaG7e8kUZqgXG7w3Yf387arr6VSqXP89DSLS3N88PZb6e/N8bX7vxMT53VDbrrhZ/nyV77Mnj27OHb0OA8deByA39r8++Q/7KOspJg6cYxMNk82P4jddrGdLoaqEEUBnW5zXStVi3ur1yGwETIRMgStWF6NCMtKcXZyBstK4jgh9Uadnt4eOnaHbDZPKp9kenKeQi6N3WmQsDKoCpimTrvdRAiQJYnp5goL9VXGC4O8b8+7EAQECMJARgiVMAowkwaDpUGyWZmEKWE1tuCZDWaT+8lkRqk7HTZt3IamaHgiQr6E3/NKOO/5QOXS1+bVwWEURfzqr32UT33q95iamlqXe7NYWVnh+edf4HOf+zy7d+9i48aN69f09dmIL2Y2FkLwzf92P+//L+/m0JOHKJfLGIZBGIbMzs6yb98+vvrVr3LbbbeRzWYvOd/77ruPW2+9lUOHLr3/V77yFd73vveRzWYvOa/Pf/7z3HHHHTz99NOsra0RRRGmGbeaTE5Ocu+993LgwAE+8IEPrLce/PB28Xd+PoB9bdX6xwtf/ocGl/5R2U8qrv8I7VKZrlebhBDyev+UtP7/W2+Of+VxXs4gSRe2MIQo+sHldV5v7NfL1J43IeT17LH0iu38e5fOaMXQM9BChdrqPPsfexgzlcFI6CDFBB6KrLK0uMxarcahZ79P5Hoszk5jqRLzs2chdOgf6qd3OEe91aBcaZLNWDyxbx9PHTpEq9mgWasx3NvLzs3j2I0VTA1WV+ao1pZRJZ92o0qn06Xd8Wl1wCokGRwfZXZxjjByEJLCyNBlJFQdu92lUqniel0kyYcQLD0BkUS93qJQ6qFdm2FooMBt730fhm7y1KFDPPHkc3TXs8q6qWEmLE6fPsXc3DyVlSqe49PTX2RxeoFv3/cAsq4RipDHH9tHp16h22yB4zM/NYmVtEjkhgjdLvNzZ3nuuReoVJro6w8NJI1icRi7G6CaGolEgXSiSOTKKKGG8MHuNEDAxIYtLCxW+P5Tz+NLMuVGA1nT6C310Go0kMII00xBGKLJkEzqTGyaIJVLoGgyTtfBsdvIhDz0wD4atTaaphMEflxhUg10XcHx6ihaiCxDp+Pz4uGj7D9wgNVyld6BcXr6J/jKV76K47gEfsjAQB9DI4NE+CiyQAoiJCEhiRwESVZXKlhJC0URKEKm0qigGArJTBLNUNE0hbAbEh56niCM+IvxIlHksFAJsLJFut0auDaaSKNGg4z1FXAaSxiigxp0MQUkZRd538dZddO4uas4c3Ka/r4+Lr/8MjQtJJfJ0ah1mdg6QTafQ4oEjbUqCV1jbXUZK5mk40aoRgIzmWSwdwhDS7B95x6K/b3Mzp/ltttvJp9JoqsKC/Oz3HjzOyn0pPDcEAmF3t5+FF1jcHgIr9PlzMnTBJ7P3r2Xo+oCH4nB0TEczwNAlQFZZ3BknMGREYJQwjRTCE3GJ6B/oJ9CPkerVufFZ59HQWfTxEZkVeB4XSJZMDM3z/jEBNVaBSFCCoUMiIiR8SFazQqBH9Bte3h2k+nJaQQqs+cW8LsutXqToNtC2MsM5d5B1/UoFVR0xUWVPOQw4td/7V+SSxYwkhl2bLucdCJJwqjw+3/0L7j3219Fy5jsvf4GzGyed97wLj73mS8yeWaKXE+Wb93/DYppi+nVKl1RpDR8NaurbQy5hqVlMM0Ekhrwjndexf/9h39EMDiBWIrPo9hb4L133AGqTu9AH2MT41iJBMViT5zMyGeRVYPKaoPKSp2u7eM5Nl63SyqRQVfjCisEiPX7oywkOp0WkqwRIaFpBiAhKwqO59G0bZ567jkarRZClvGjCD8EWdMJIwnHi/BDQTKTwUqlGRgaY2xiK42GS+i7LC7MAD66oXH99TchJIXBoUGSSZNqrUa12uSebz7EieOTyEIQhgGGlSAMIAoh8AP89QSIaZnccP07aLQbqIaC63ewLInV1SZuEGG7DmEUgh+zvEaRQJLUdfkbj1S2QChHRIrB4MhOEtkSmhRhN5uEfoSQZGzHJZBAUg0IFVRJxZShsnQOQ4tQEOBLSJG8XiWPYZWmacWQOVmGiLh6LsGxE8fZt/9xTpx6Dkn2MS2DdqvN6TOnSCZSNBotzBMzZM4uMTk5xdmzM2zctJnVtTUURaZSXmNhbhbTsoile3xEBJ2WzdjEBF4kWFqr8rm/+VuIoN1oks0V6ekbYXmtwWp5jUbLxjANstk0PaUStUqdr/7d3/G9fd/DMC3CCEDCdT0c1+M//PG/RfHOcecH38W5pQU+8a9/l28/uA/TylIqFQlpkcsPse/Rg5xXnDs3v8AvfPCDnJmdoyUbiGyBRC5HWinSsgNWK2Vk97XETJ/97Gd4/rln+dWP/Moln7eXfK6vb2EUvbx5aU4dP8Hq/CKtukQgUtitDs88/TTbt23lL//qL7nqmj0UsnXu/MXrWVh6ka9/7W+plqsALK/Mcfi5Z9k0uJNTh5/kc//pKxeOF5TqaAcFwmsxMzuPLGS+f+ggR45PoqU24TBIKDKEvk+3uYLXqRGpChEqoQO6AlbCBNnAMA0alSWSJlx17ZUMTIzQ9Zr0Fgs8+8RTJK0EUeiyYWIrmzckaTRqnJ5coeNXQYpot1sISeAHIWEk+F+v/in2f+Iz/Pkv/g5Ox8X3Q5JWEkmGIPAxNIukIdPTq7GwOEez5SF3Mpzu+1vq1YCv3/stNg2NYlg6nhyiRi/7e68MEqNIXNgu5Sudfw8hLlybCPiT/+dP+Zu/+QIAn/zkJ1lcXGRpaYnDhw9zzTXXYNs2d931y0xPn1sf52Uf7WLG34uZho8dO8aHv3wnbbfNnj17OHjwIGtra6ytrfHII4+wZcsWpqen+cAHPoDv+69eQ1HEkSNHuOuuu2i34/0ff/xxyuUy5XKZRx999ML+73//+/HWn08vfx8RJ0+e5KMf/Sie57Fz504eeeQRGo0Ga2trzM/P89u//dsAPPbYY3zqU5+65Fr+QexiSO6lZIdeec1+1HapWOB8IuM8IuJ/ZvtJxfUfmL1+sPfqhfzfm3W5OJv0953JebUczluzV34X0dNHiVyXwJOoV5e4bMcmMoVBJCnu4Qp8nzAKMU2LL3/pK9x4401k0wkGBoYZHRvGME3W1mp0ujbDI8OMjm4kDATdTgtNMzh56hR7916J2+2SSadQdYPevgGmz81xw403UigWMM24WpROp6hWKxQLOZrtkMCNiRySKRVJCilXVvA9weMHD7JlyyZUVcbz3HXChpghc3FxkWwmR8duYphJImSCUHDoiSdYXlrF90Ny2QJRKGHbDtlMikKxSCqVZnp6mo0bN5BMpNiydROuF/fajo6OkE5nkRUVXVGwOzaGZeEGIaqskkymuWz7ZeRyOWQ1At+gtuxz9uwUqVQKM2HiOC2iyMf3HVy3jZXQCSMFVdXp2B0sK0F/fx8jQ8Ns2bKJxaVFNF1nZuYc+UIPQsQPUlVV8DwP13HQdBXH8bHMGB5cq9aZmZljfmGWXTu30+l26NhdlldXkIUgn81hWhayohH4PsViia1btyLLMtVqhXw+y7mZc4yMjKIbGoZhoMgykRCISLBWLlMqlZDDcdbmJUqlEq7jkkwlkCQwrUTcbxgEaJoWr/+5NdxnjlD+vY9y7W3vxTRAN0wMWYLQpVlt8Juf+C0sI8laeZ5arcLdd99Dea1KpVIjXX0cM6jx/LyEYRgkEglatk06m6JWr6ObJqlUmkIht06GJPA8N+4nXCeCyeRy63DJAEVWWFicO7/6GRkZISLk8PNHKRRK9A8M0tNbYm5unny+QBB4LMzPkUkl8b2YFVdIAsM0UVSVtt3GMI11uKYKRNh2Jw4+RKylKSQJRZZBxMRZuq5TXl1FCCiVikhKSNdpoZsaQeCTSaewrBSSLNPpdNb7sRWmJifRdY3enl5cL+DM6TMMDvZjmha6rpPNZKlUyqiaSrr2faQtP4d2RkVTVTb8L7+ILEs88J0H6O3tpafUg27oPPnUAQzVoNVsU5z+HPLyYSZu+AiSotJ1PLyuiyarJCyLTsfm6quvIplMoOsao+MbaDTblFfXSKdNzk2dIpEpkU4nCEUIhLi2zaLbZfDRp/CGevGiCF3XkYRMu92hvFrm8AsvkkhYFApFgsBjcWGRb913H4ouMzI6jO+7aJpKGMLS0hKZbBaxToglCQU/8LmgyRhF+EGwTuCkXIAul3p6yOVyKEr8+5FERBTG0OMwjCuPUeSxuDRPwjRQVYlut42q6ZRKvciyRBQSS6EQItaTepZpoagaV16+h2wuQxTFa5/1Pjnf91BUBUkCSQLPdVE1hXQ6jUBgGCYPPfQwe3ZfSSJpIKQIz/XQdTOWHxEycXUvwnG6IKR15nviqmkYEPoBshyT66iaBuv3CSFk2i0bWZZQNQXfD+LjqwZ2p8uJEyfIrXMJvFIuR5tfJlhaw986jqJI9Pf2ks/lKOZ7ODezRE9piPu/9QDbtl5GFAUcOnSIHcUeEILExCjZTIZqrUahkAciJCHo7e3B9WOCJUmKA2Mv8Nch9RK6prFl40YMTaFrN1E1A8f10DSdUrFEIpkkDEM836dSrnDw4OP09vWxfft2lpeX4nWvaiRml5A9n9mbr6FvdT9y9QxTfp6f+eAHee9tP83Y+CjNpk3W6+Xc8TmOT7/Is4efZXl1hZt/6hY+82efIZEy6OkrIUugIAgjgSzBC889yxV79xJJ8ps+Y3+YZ74QHhJVlqe/z+kTzzBx2S4GNlzOzOw8Y6MT3P31r/NT73oXPcUJjh+b5uEH9/P2d1zLPQ8+RBBGvOeGG7nxumvYvauPK6/uYWWhwTOnJgG47YOXM3T4Bh5If56r+2+k03HYvHkzqVQCQ9cJopByeZXeYmGdaTpCiChmdpUkvMDD92O5GkFAMpGg03XwQ4n5hXls20FVNEZGx5EViXQ2y6mTJ9m0cQP1ZsjU1CLbNozjui1M04yZ54kDRcPSiSHzXarVCroR93LHKAOB3YlblhzXZ6C/HyVMYbXHOTPwBRrNJj/7oY8xumETkawQiVd+n6/uY30zNN3LifyXX6tWq9x55y/hui4f/vCH+fSnP72ugywoFosXoLTVapVKpcIdd9zxA62D3/iN3+DI0SMkEgn279/Pli1bLuw3MjLCLbfcwmc/+1mWl2Oyw6uuuuq1+x+J9z9w4MBr9r/55pvfcP+/+Iu/YN++fUAcnO7atetCIGlZFjfeeCNnz57lyJEjzM7O8vGPf/wNz+cHtR93lfP1Atcfh6/+P8J+UnH9if2Ttq5jE4Q+vb0ljp94iSgS66yTPpqqYhgGd911J/l8Ft1KcPDQkzz86D4cP8JMZhgYGCHwVSShMTt7Dk0zSSZT/MzP/CymaWFYCY6+dBzVTOAFMDu3iOuF1OstHNfD8TyCKIYMd7s2IhR88557yWYzEIbrLLsZTCvJWrkS663KAkmR6HSadOwW1UqZ0eFRFuYXcQMJRTWRVRVV1/mFO+/iQ790J1devuf/Z++9wyQ5y3PvX+XOuSfvzOzO5hykVWKVUBZB0QhkQGDABAeMBSYYf8Zg8MFwAB/jYz4hgxVAEggEEhJGKK0QWlbSptmcZ3byTE/nyuH7o3pnJSQh4GBfHH96rmuumemut6q6qrrqud/nfu6bg/v3852778ZsWiRSSRwnBBejY6NYjs10aYonn3oSTQuFdWzH48TICSzLIpaIUygWSaZSTIyN8+STP0OSRDKZDJFIjOZkiqkjIvv3H6Sjo4vybAUxkAh8F1URkaUA3/epVushDcoPFUPb2guYZgNFgmwqRSwSQRQl+voXosWSYXKnqXi+S7PRwDLNsPdnbBzbdhEFifb2Ds4660zWrl1LJBolnc6Qz+fp7OxCEEUQBJpNPbQsiUZIJhNks2na2or09vbg+x7nnncemqbOCd+AgICIadmUK1UOHjxE4Ieqzp7nks6kKJWm8H0Xx3EQBGGOTuQ1dMQntyJ++k8ZDmyOHjzI6LEjBEYD39IpTUwR1yL09nTT3pZh/foNrFm9jj/+4/exePFSjhw+hjbxFK6Son/BAvLFIg29SWdPJ5lclkQqhRpRiSWj7N+/PwREokgikQSYUzgOgoChoSFc1wNCQZBcPouqKchKaKO0ZOkytu/YFVK3dwySTKbwAgdNU5iZmsSzLaKyhKwpdHZ3Um82QRTIFYqIgsiJoeHQqsW0WtYBLpIEEBBa1PkQ+Pieiwj09vbR1t5BNpdHN5qk0mlKM7NoamjjoKgqgRDgeA5e4NHQGyQSCSJalImJaVzXZeWKlVimSbk0y8T4BA8+9BCFtiJ9RQnBqhJd+3a+d3Q/4+1FVDWCbflcdNGllEolEBwsu8KZp6/myScfo2/+AAQijuXxkx8/TK3SIBlLsPmxzdz7nfvo6+ujUChw1113sXLlSqrVKg4q0XiORDLDN75+G67lMnJ0B7Y+jeCZ1OqzdPZ2IsdFjO4CRnsWQRApz9bxPDB1j1yuncWLl+L7ASdOnGB2egpFDNh07tlsOG0dSuTk+RTxW2riEOA4Lr4fYNsOtWooiKYoytz1pygKtComfhCQTIbfIc/3w/Pju4iEJVFVEpGE0Pqpq7OTmdlZRFFG1aI8/JPH0Jsmnue3FIl9JBk81wECRAlkGSJRmVhcIxJVW3dUEQS/VTVyECWBpt7AtAxc10aSTgrCyNx449vIZJMIQiikpCgqlmUjCBK+74eAlQBVjSCJEvgBlmHiuT74AYbp8sP7HwytykwXSRQJPB/PNEjEI3i+TyAqJLIFZFVBEEEUBfrnDyBLIYAQWpXio0ePtnrYA8qlKUR8HMtAJGB8rEK9biNJCqIkM1MqkUymuOSSS0P7DwTqjTpT09MUCgUsy2J4aLjVIwypVArTsjAMA9O2cD2PmelJAs+hUavQqJVpVMvgBej1Bnt270NVo0hyBF3XCbUOIuTzec455xzOOedsuru76evrZ8mSpWHCLYTf+y9+8YvU63VUReGsszaiaC7FtgzHjx9HEmI07hQYu2WaKy69FNcLK1myBMlUlB/+8D6uvOJyFi5awvxlK7jkyiv4wQM/olQqhdeQ573g2XnZZVcQT6T4+7//7Iueq0uXrSAWT3L77Xdg2zZf+tKXOeOMsygW2+ns7Obyy6/kJz95OLxiZAdB9vBEj9VrltKsT6HEYsxfOMBd37uHQ6NH2XjReVx87ZX8479+lYcf2c7ePaMkk+H9bmJsGFEco1bbwcTwDtKxU0n4gcYeHpi6h3u+9hjnfuFsTvu7tWz4+Fo+9+BnGZ4eRo4lKHQuQXdz2F4aT9B4at82uj96FfM+cQ2BFGHwxH7+7O4vccbn38/iT7+Nd931aaZGDpBPBAws6+ap0Sd5/7+/l3P/7lyW/uVSLv/qZZz5qcv5mx99kcOlUZrVJoZhEQRgmhaO4yBJIv/w4O3M+9jrefudf0NXdzu2beC31Po/et9XWfm5G/nI9/8ZWRZ5YPBx3nbHX7Ho2x286aN38KlbHuV7Dz2MT0DLSvhFyffJ6uYrxUsBlx/+8H7q9ToAN99884vGZLNZ3vWudwFw3333vaCf9JXC8zx+8pOfAPCmN72Jrq6uFy2zcOFC3vCGNwAhpfc3Hb9o0aKXHQ/hRCBAPp+nv7//JffztNNOA0JV9Ffjv3e8Clx/z+Llblwvx7l/JVruy8VL0UROxsvRh341/ffXpxr/8szRi6kyL//ZfN8jGtOo1qqsXLkSUQyFViKRKK7rUq2WicUjRGMRXM8hlohz8MghDNPm6S1bMU2LsdEZyuUypdlJTMNiZjpMsBtNnWq9TrGjg1y+gA8cPXqE2ZlZ0qlMSwUUyuUKoqTQ1C0MY4JLLjkHApdGw0RTc4yNNLjt9tu49vrr8LywGqEoGslEHIKAXDaD3myybdtzxKMpdN2g2WxiOxaO7WKYVZp6ifWnLeX8C8+iXJmcE7SRJIlNm87FNE3a2vMEgUe1VkOSFBLJJMW2IpIkYTkOlufg+h4DCxZw3nmb8DwXQQTDMNi1cxBBEjnrnLM5dOhwKE5jO9gG7NtzGMv0EUWNRLJIIp7A8zyy2RyWaZLJpDBNgyNHDqK0esaSqTieFybJTb3B4OAg0ViEQrFANBKjt7cPVVWZmppEEALyhSzLli2BIKBaqYZ0LC8gGo2FliOZLBMTkxw4cADLsnj22WeZmpqcq1hJsoxuNEinEgR+gKlbBH5YJV24aDEDCwfAD3Bdn0ZDJ/ADXNdltlyiUqlgmiZBEL4m7TiA31HA3rQGXde59prrGBkZRW82efzRx9CUOKXZGu981x8xf2A+9373+zSbBmNj4+zff5A/uu58ZGMcrWMF3d3dRKIaY2MnOHr0EIZhtuw0HDzPYWBgoAVMBer1OgcOHAgnJAQBvWmgaRFsy8YwTFRVRW8ajI6MoSoabW3tSIrCmnVruffee5k3bx6ZVKhmKooiHR3tTE1NYRomQeBjWibt7e1zrQClmZkQrAcBkUgESRRxHZvx0TEsw8YybGzToFGrgh9aOE1MhsrRluNi2wKPPbqF6ckapu5Rr+pomoJtWUSjEarVChFNIxGPY1o2qUyep5/eymxphhNDw+zevZtdu3axbt1aPN/HGdtJkF9GpVaj86Y384tcgkplFk3T2LF9F1/+8v9C13W0iETg2Lz2ogvJZHNMTEzQqDfo7emmu6OD6ckpbvvmN3h26xaefvppisUiN954I0NDQ2SzWQJPYOsvnsPzFZasWMO6ja8hsEuIfpPAtXFsD0+ABQO9iCsHiB8fxzIttm/fQaOus3v3HsbHJ0in0kxNTdHTM498Lk9Ei5BKJonHojiOSb3WxPeg0dApl0NapCTJEAjMzMwwOLgbWVKeZ4sT9oGfvB8qioIkivC8+7LvB1QqVZqNxql7ZaAg+Ao/euBhKhWTctngxPAYjuMhifKcnY3vuwSENjm2ZYdVUsfGsa05Mbkg8Oe2KUuhN7imaWFPviqj6w0EAWRZIptN4wd2WOESwn1zXQ+9aYUiXrIcqhcEAgRgGhZ33H4nO7bvIAggGk9w5eteh6pqWLaJIsmICPi+i+c5CCJ4ng+CjOP4NJoNtKhGMhX25Pq+h+97WJbF4OAuXMcBwmS/2WygRTSaeoNsPsWqNUvxMVixeoAFC3vwfZ/Dhw/jBwGO66A3DbLZXNhD6Pt0dHbgOi6TExM0dYNAENAiUXQ9XE6WQ+GtYrFAX38viWQCSdVAlKhUypRmZqjXq6RSKSqVCrIks3v3bp544gm2bdtGEIQTgUrLpkpp0Z6/9KWv0N7eEZ4n0WGmNIYgenR0dGFZHoO799DT00UsqiG1ehJdz+Jt73k7H/3kRxncPQiEIlY7d+3k3e//AFue2966dn5zSmGj2eTiSy7lE3/9SfYfOIAoitRqNTZv3sw111zLbbfdDl4CRWtDi3ZhGiq7t+9n/+A+3vsn7+Mr//srTJWm8YOAhl5n9/5BDpcO8PPtO6g3dACWr+6hpz/Bovm9yIHKsz/bPrf9Rx7dyTsfeDsPHb2fZl1HQGCyNskdT93BG7/8Bg5OHiSRLmK4USbLPicmDfxAmRv/4z3PcvXXPsV9u56mYZnh5Ijv0duTJRs8pFKFAAAgAElEQVQP+Itb/pIP3vYhHtr5I4ZnhyAIla0nm5P8bPgx/vXQLTw1vpVMOovr+iiygqa1RJRa2wifQS6aphGNREMV/uBkbiPymR/fwp/d83meGd2Bj4/teEyUDT71+S/z7j/54Km+1eBULjQ0NEw8kSEWT/P3n/3cC3KlXyenevTRxwBYtmwZvb29c2NP7W/ApZdeCoTP/6eeeuoF43+V6E+pVJoDg0syy152H05WUbdt28bMzMzc67Ozs3Pjly17+fFLly6dG18qlV6QG86fP39uX44fP/6S45999lkANmx4cf/2bxK/Se578vz9Z6gZ/zIW+K9UTP59j1eB66vxong5MPy7pii8ci/si8GwqsnozQbpVBJJktB1A88NAZ1tW6TSSQJ8ZFlkemoS33PZsHY9vuexeuUqJEngpz99nOPHj2NaDY4fP8aqlatDNU1RpL2jg2J7O4LgYzQbbDztNBLxCILvYzabnBg6QTZTwDA9MoVuBF/AsRymJyfxXJeR0RG6e7q44MJz0Y0miWQS35cIApmZqRKyJOPYFqIYkM0kwA8QgwBNlSnPTPHU5ifI5dvIF4s0jSad3e30zp9HKpMmnkjg+h6iLJHN5ag3a2w671ziiSS241GuVBAlkWazGS6TzyEIArZlYzsGATaeb6KqEktW9qPEXWRFYu261Vx55eWIgs/w0AixaAzwiUQVZFXE9WwOHNiHKAaYpoGiqHT3zWPe/D4CXBJJDV2v4LtNDEOHIAiFpgh7f6amJ6nXa3i+Q0dnkXqjgmWFthAnBSTGxyaQJJnJiUkmJibw/VAdta29Dd93Wbt2DcW2Io4bJriTU5OYVkjZKs/OMnx8mMAXMEyLoNWf1pS/T5B8hOGhUQRBJh5PEY8laGtrQ2ol6f74NNKREYJ//DCTo0OsXbOGf/zSP7Fk5QYUNUKh2MX0bJPh0Vli6Tz/dMvXSKVSVKs1DN3i3E3n4x+7HyHZRYDErt27ESWRM848g+7ODmKRCM16E1WWEQkol8t4nodlmczOzrJ23Vpc1yObzROJRJEkhWgszuxsja6uXp57djudnd3Ytocsq6RzadKZJKvXrKLZqKFpKpoSIQgEJqdLdHT3oMbjuLbF5NgEgecxMnSCWiW0ECkWigiAoRvUa3WklqDT4YPHmJyYIRKJkojHUBSZo0cPk8lk0SJRduzYSRCInH7aGSxbtoxjxw4hCjb79+xFDHyiisaJ40NIAlRmZ3Fdj4mpac4662zKs7M06nXOP+88Nm3aRC6fZ2ZyGNGY4kejAwwdO84Tmx9lydIBfJo09TKaFuVr/3or9brOd+75PsPHRkAQGR0bwTQNAs9j02tOZ3DwWaKaSP/8bjaesY6+vj5838e2bTo7O6lWq3z1i5/n9VdcQU9PH8XOBYxMNdFEn2MH9pOKp1k4sAxflBFQqK1aiLZtH6lEgtNOW8+377oTx9XZtWs7wyeG2bZtB2Oj4wiSQrlcJaJFcC0LvdbANG1EUebb3/52eH35PoEfgrxEIsHy5cuRZBmvRREWWxWWIAhaAkStvv7Wb9/3UVSNdCZHPJUmEEQCQcR1DVzP4u1v/0PyxSxdPV28731/TDKZxPd9MpnsnNKwImu4ro/nBdi2jesGaFoMz/dxPQdBDPA88H0Bx/VxHQ/PCxAQgVZ/nRDg+Tb1egVVC6uFruPjefDcc8/y86e3tISmTiqQQmlmlpmZEle98Y2sXLkKoSXgpKgKnu8QjWrYto6h19C0KEHQomzbFmIA0UgKRY2AEHp1gk8QhNWbSCTC9df/wZzEXyafJxqP4/o+PfN6KbYXkVURQQro7OpElBUqlRqbN/8M3w+FoNrbOxg5MYrv+yQSCZLJJPl8Htd1CQSBRDyJpChokSiKohFPJPGCcE+qtQYT09PIWgTX9zj3vHOJRRUalWkqlTKu5zI9M000GmXFipVs2LCBoaEhvvvd78wBQdsObYlmZmZaxw6Gho+ydMlyVCXCkSNHsG0TRZZJJuKUpqZDajdw2+13smXrFv78vX/Cnp8/x4fe/Sc89dhTXHZJCEz+47En2H/wYKsl4DeLz3zm7xkdHePuu7/NzPQkk5PjbN/+HBs3biQIAj784Y9Qq9WIRJNokTj1WgNNknjfn7yfo8ePIUsyn/7rv+fpx5/m+3fewfe/dSerly3j0a2P43ohkP7W3f/Btm2jPPzw0/g0eN+fn1IV/umWn1PM57j1//kke940wv/7h7dy23vvoBArUNErvOd/v4NSdQIlolLo6Kd3/gZE5ZSYz19+53+yadFafvqB/8HeT97KsU/fxj9e+x5kwSdwDZZ0dvPOs27gvg/eyxM3P8HRfzrIlr/eyb9efSuXLL0I13f58H3/womZKTQtim07uI6L73tI8snjKYQWYEoEx/HmqOsAjx54hnu2PcxfX/4eDr95jJ985m/56keu47Jzwufht+76Do9v3jy3v7+rnsW9e/cCsHz58pddZsWKFXN/79u377fajn3w5Qskz6/w7969e+7v5+dvv8wCeLnxg4ODL8gLb7zxRuLxOADXXXcdTz311NzyMzMz/O3f/i3f+ta3iMVifPazL2YUvBr/veJV4Pp7Fr8uXYTWw/yFP6filaW6Xzz+5aqdLwaXv3rbryj48DLV1l+OF1WCEYim48STBSQiiEGTuBbBQ8Y0PVQ5wsSJMUQ/IPBc+vp7yWSjLByYT3dHO9lsDE0Tufqay8jls1xwwSWc8ZrTMB2DWrXM2PAIUSWCGEgIkkQylyeazhKNJqiUpmgaNm3t3VSrOg//5FFu++Y3+f4PHycaz1GariF6Ctlkglp1nFxWJZuO4DkGlmHgOS65fBuRmIoaUYjGYpx55vk4Xqjqqagabe3tnH/RJmwilGs+WrSIKKj4noUgmPi+GT4kPQ8nMEgmNB55+KccOXQCTU2RSWdpNOukk1k826NRa+K5HvFYhHgsgijI6E2LqclJIh3jFBfoiNgkkwIdnWmq9TK7dg3S3dOL64XWHdPTE3iBy5o1qxFFBVFUKc3UmJ6YInChva0bx4FUOguiSCqbJRaP43o+R46NgpTENBu0tbUjK1GalsNMtYqHR7GtECbuQHdPF5oM+VyGjvZ2TMOgkM4QS8WIxJNUyhaBp6KICp5t0tszQL7QTbaYQ4uplCtl7rztDqQgwGxWEQQPx3VwHIe1a9dgmgaiKGLbHo7lIkmh4I28bT/CH72RKVGjp7iYWCzCG649j3xHikQihm3bdHX1E4mkePqZbdz84b9ifGqaXGEBzzx3iLe//c2IE5uR25YgBA7r1qxmz+BeAl9m6zM7aeoGjmMhywKG3iSZTSGqIvF0Eh8fENg3OEi1PMvU9CTtxQKyHxCPZSAQ6OvtoVmvIOJTr1TQVBFJU1i4dBm5Yge64TB2fIgDBw6wav06bNelNDWLXm9QyGWwjAbFXAJbryCh4Zgu46NjHDy0j0hMxkfC9jy6ejupNMrYnovggdVskE1HeOLxHzE+epQN61eTSiYYnxzBNBu0t7fjOj698/tomhayFmHFqjUcHx6hp38JT/1sK2MnxpAVjf6FS+nt6+LRRx9HlEQOHdyNPL2LYN4FrNt0EStXL+dj77qJgVSU+YuWYPsBR44d5amnnqQ8O81rLzyXXNsAyWQbt3z9G4iCRCqVZWLWYcHAEgrZHH/+vj+nPdtNOp/kuR27ULQUjz7xM7r7enjPe/+Ubdu2oSgiG9av5a8+/AlyS6/g7vue4MDWR0g44+EkWL2BvGQAL6pR7e0inkryzne/i9M2vobLrnwD/QsW8d73f4CO7m5GDx9lcNduRFmh2gz9JSVFJBAc3vPed6CoEoZughAgiB7RmEKxLYuiSGE/fithlVqeprIkUKvVqFbqOJZLWMLxqVZqiIKM54Q9pUHgIioKkiLhBw623USSPXzJw7ANkKTWpE8AgYnvGSiSQGW2jGM5aNEoXuBh2gaKKtLQawRCgKIqYV+zGkFVNAIPEER0Q8cwDURJIZ3J43sigS+gqiqKIrF+/To2bFjboqYS2nQJIrl8EVlWeOa5Z7FsC1FUCGwXCbBNHUH0USMavihiujZu4IXK47IAggdiELJVEFqtfC6yEqAoKrKsAgKapoLn4r3lMgIkHNsF32H0+AmGj45wYO9RNDWJ74vcc/d3kaVQoTjwfTzPIZmKUZ4t43kBgS9SqTZoa+9mYniC6mwFIQiIROPolstPH36CRrWJ2TCxLY+u7n727zlMPlPkyIEj+K5IOtNOIp+lraOIazdZ0N/NyhVLeOCBB1ixYhnveMdN4aRL4GOvWwbZNAPLliDKMoIoMX9gKYloigCXYlsnX7v132jryJHJ5lFTWUQpBE6VapU7b7mFD/7ZB5ix6tz4zhtZPL+Tf/3K/6KjvZ0gCLj33u8j/haaMbqu88ADP+R1r3sdcgv4LlmyhO98524ikQiNRoMHfvx9lFiMM1/3h8zb8BqmKic4PnYCgA9/8GbGxyZIRJMsX7SctUs28vH3fYZ0NIXnh0DjknPP4d/ueJpLL1hOd3cav+2UGI8o+Fx9Wo6li6o8mP4E57qXszy2lo9/9F2oksrI7Ch3PXUXyVgc1/OIJ3PUrFP50uJiN//+7k8zUOxBFCUs02FBtgM8l8Cz+MC5V3Blx2kU3TgLevpwXIdjR3dywVkb+caf38prFp2D4Vjcue0JqmaDaExC8ANwAk6qY3meh6rFcDwHAR/XsVFabKyq2eAzb/gz3rHyraTUNG7+EIIIb73qItasCquN3/vuDxEDEXwTUZQRxdDP+XkJUpjvPJ9h97yfkyJZz4+JiXEAurq65nKqk/eYsAddIBqNzin2jo+Pz419vhDmS0U+nyeRSACwb2LPSy4TBMEceP7l9edyubnxe/a89Phffm90dPQF73V2dnLffffR1tbG4OAgF154IalUimKxSHd3N1/4whd4wxvewJNPPjlHGX65CISX+HneMX9+BfWV8tTnL/e7FGl6paLO/99tcV4Frq/Gf0mo//ZZ1H/7P58Jcz2fYns7o+MTiJLSotwF4Uy37ZLPF3Bdn8AH3xdR5AjZbIEdO3ciiQLDQ8M4lh3OGmsaB/YdYGJigmg0ih94NJo1avVZfNfm2a1bEH2PerWMpqjEYiqaJpHPZ7jqqtdz5RWX8gc3XI8kS+w7sB9BEsnkcuTyOfSmgygoCILI0SOH524yU1PTeJ6Hrust/9PQGsPzfBzHRZZldm5/jh/d/wMmx8fw/IBkKovvOsiSQOC5CH6AiEizadPV3U0yFUUQXDwvwLF8vvnN27Ash6mpKWRZ4eDBI4yPTxKJREgmknR1dRGLxRAEEdO0CHwBx/YQUejq7oKWF6RtO7R3dGDoOpZlEY2GPXmTU1NEIqFdRK1axfdalRJRYmpqgnqtgSxILOjrAU+nvb0dw9CxLJNMOsO87h7ikdA+pN5oIikq5VqNcqWCrKhMzpRQtAiBILDzuZ1MT05QbM+gaiKu73HwyDFMU6dWraIoKhEtiqHbXHLJxdi2haaFPXbRSBRVVZmeniYWiyFJMrbltAzcQZgqIUyUKF9xJlOz05RqFRzH4fv33sf2Z7bjuBZ1vUE0pnL02EHO2Lge3ai3qGMBW7Y+zZ9eqOJrOSZnzdBeRxBa/nJxkokkmhqhXK6EFS/HJapFsQwLCZHenj5c26WjoxNVVcnlQhrs3n17EUSfffv3Eo3HiURjyLLKiRNjGLqJKEAkohD4Ns1mhXyhSF//fGRJol6vEYupuKKKFE3y6OafU27auILK3r27mClNMzo2xsoVq1DVCFFVY2xkFDyf/t4+JAQEIeyJTKUSXHLJpdiWw+7de1u08wEEQUSSJGLxBNFolGw2y9jYGJ4XUCi04dgm69avoa+/l7GxEXbt3I5l2SxaspgdO3eweH4nRa0By26gv78/FN36wr+h3fEAx44d48EHf8yVV16JrussXboU27Z54IEHQPCJxcKe54mJMQqZNI5l88UvfpGJmWm6F/TS3T0P0zSZnp7m4osvBgTi8Tg7duzgBz/4AZ7n8Z73vIfZmTIdHV386KGH2bNnH77rkBANZoYP4rzpEnL//j1+NDWEGvjs2bOL++//AbYTAlFFlRA1hdde/FrGx8dRZAW9XkcUJEzTRpY1EvEkruMhIBIEhH7FPji226r6hZXXk4mlbdvIstwChCFgsCyLRCLBzl07aTQac72xkihi23ZIL1ZVAj+k+2qahiSKOK4bMg4aTWjRETs6OhCkk0qhIpoWxXV9VFl7AaXw5HZt20YSVTLpHJGWAFMQBK3+cIAASZJbYnUpJEkKhaGeR0EuFHNcfPFFRKMaBw8eYGR8BAQB1/dAEGkaJpFoDE2LoKoaruudoiB7HrKizCXokhh6Pp+c0xUEQhWpbIpgz7EQrEsSIyOj5HN5JiYm2Lr1F1iGgSxJnHPO2WzYsB5VUUAIj0khX6ReK3Po0AH8wCdXyCFIInv37aFSncW0DILAQ1Ek5s/vb1kaBaha2B6xcPE8RseOoag+kuzgBybT45M063V6e3txXJdAFLjqqjeGlGrdYHx8AllWiMVi4ecSPGQ5rGLXyrPUKmWa1QoxReMtf/AmGo0GlmVx7bXXc2IkBIerli9nxeJlCILEwgX9JJNJIlqUSqXCa88/H4Dde/f9Vuyoq666ao7yeTKCIKBQKLBx40YA9u7ZS+CH4oErVq9jzwkDgLZCgbe95Sauuuo6Bgd3sHP3Id781j9ktj7BBWeeM7e+7s40f3zTa4mLNrXhadT6qYnvGy4/jXe987VEoxW6Fyt8cMsbKR+scWXpfVx+4WUAfGvznTSaDRzXw7Qcsunc3Ph3n3M1jh62XHge+IFAUzfwA0Jxr8BnYEEHQVDH9W1qTZPXnHMRlbKB3nB4w8arANi85zmiUgbLDEGfh/k8Fz+BwA+/e7rtIWuxubc6knmuWn0h0dp86pHDVJs2uXwnfiBy5WWhMOXu3bsIgqA1ARNGX18fjXqVRr3Kxz/+sd/4vNXrIRU3Go3OvfZSgOvk+79JH6gkSVxyySUA3LvjLo4ePfqiZQYHB3nwwQfn/q/Vai85/p577vm1xr/U/m3atImHH36Y9evXAyGr6uR2PM+j0Wi8gKL8avz3jVeB66vxf1UEgkiu0IYWjeF6PuVqg1q5wg9/cD/Hjh1ncPdeJElBkGR8T2RkZILRkTGWLF7M+MQYzVoDgYB53V0IAdimhW05DA0NsXDhAjzfRhBdRk+coL+nC88xEHCRZPA9C1nymZ4aQZY80qkoiXQCSZO48OILUCMqiGBYFoV8J4YeCoQsX7Ec8BAEKBSKKIpGOp1GEAOKxSLVSp1mw2R0dIIgCFi1bAmZVIzOjnYEQcDxoFadZfj4MSqzM9RrVWRBQVESrF69hkJbGs83OXb0OLt27uf8884nEonS3zfArp17aG/rpFBso15vYJgW4xPjCKKIbVtEIhGmp8oEvkKl0uCCC85j+/Zt1Bt1DMOkUq6gKgqiECoXNpsNnn3uGUqlGUzTQItoIAicODGKbTukMwkkQWJkaBQFn9rsSCvpDe1t9HqDymyFY0cP4ToemVwBQVLI5wv4gkAgiHR19yJICrKqMT4yydFDh2g0pvEFHd3S6V+wiFg8QjwRx3U9DMNmamqGXD70LvV9H7mV5Hueh2408YOwepPJhn64nuchPbsH9z3X4WsK3Yt6SGTj7D94gLNPP5NfbN4CssD8gX4Gd2/HsnViEQlV9Dh945kIUsANlyzijPYydnYlXd3zEJCYmS4xr3cetm2jNw0UWUFRIszMlEkks+DD4YOHMZsGU+OTmLqB44c0M01V6ezqoqu7m1QqRrU2y/79+yEQ+c53v0e90cSzbGanp1HEgEp5hkMH93B8eCSkypsGRrNBLKGRSmdavbMShmGSSqVZsXIpPT2dLFm8GM8LMHWX0swMhVyeVDLF5PgEvudx+Mh+gsAFAkzTpL9/AZFIFFUJexgdz8PzCUXBLDtUFC7kEQWR3YP72Ld3FwIekgKbn3gU02igqBGSiRTJZIpgdAvuohvQsr2Ioozn+RSLbYiiRGdHN6tWrcL3oFhs5/ChI0QiMTzP4YEHHuDjn/grEokEpmnwrX//Bk8+9jjXXHs9q9atItOepV5t8OOHHqRaKfHkE49z6MBhLMvipptuYsWKFXz3u99FURSMWoOrr7qepiPgIqNgY1s68/u6kV+zHufis1n35G529LZx/gWbeP3rLyeViuG4Bp5v09XXQyKdIp1JUatUiKkao6Nj7N61F1N3EVEwDBM/CJieDinYAdDUdRRFCen8rWorgKIoyLLMXXfdxczMDKIkIssy5UqZQqHQEvAKwaNl2XhegOcFuI43B/TEFmiNaBqCKJJK5ZAVlZnSDKIskkymcH0fQZSQJBVJVFAVbY6qKIgijuNgGAa33noretMGZALCaoIoCqiq0ioInUyGBWQ5BK0nxZPCDN/FcS1kRUCSBRYs6KWzo5NarUo8Fsf3AyRRhkAMK6BuKNbk2PYL+m0FTlWeNLUl4BT4BL6HoBvoMQ3LdBDFsG2ks6OLSDxGvpDnuuuuwzB1BHwWLhxAURXMYo6ZiIpuGJQrFVRFpL2tAHg0dZ2GrnPu+eeQyaRRFIVoVEXEDT1W63VM00IQRBzHZXpmimwuTSabQpDAsg1iikZEjeC4HrKmgSiiqhqOY1Ov16jX69x//w+p12v4vk+tMY2AjwAMDZ1A9FwEzyUZi5FPp1i4YAGSLPMXH7qZzs5Q1OasjWcja6lwMqxpoMoihhX2xHe0twMwM1v6NZlbL4zTT39xtepk5aezsxOAcnkW3wNBiTKvbynHJkKQ8Zoz1lEtlTmw5yBLl87ntDPO5a7v3sNrrziHaOwUe+rhR7dQnjlEVa8hyxHs2cm5bZ23MU88WkXGoCvrsuYska+M/DFiymdj5XwAhsvHCaSAXC5HuVpFFE5Rolf1nIZea9DQLQJEFEVFUTREWcL1AzRZZLR5nP+5+atc8g+Xc/rfnEbX+9s543MbWfThhXzkzg8D0PSbNKpVRMJzHQhBS8U47Pe2HQvf85mtChw8OoXX+iKvmbcI0VNQjXaODHyLiZLD2FSDzp4BspkQYJcrFQQh/P7+Z8ZvojvySvHRj34UTdawXIvXv/71PPTQQ+i6TqPR4L777uOaa655wfX2y9fexz72MTRNw7IsXve61/Hggw++YPzVV1/9gjGS9GJF7C9+8YusW7eO8fFxvv71r3P48GFKpRJPP/001113HY8++ihXXHEFd9555//x5301fr/jVeD6exYnZ71fmer7663rlfonXoqS8Nvc8H4TH9dfte1fpmyc/PtkSJJIMpkk3bIySKVTKIrEmlUrkWSBRqOBIIlYjsOePXvo7+8jl89RrlTo6+uje948UukkggiyIrFs+UompyZZtmwZO3fuJBGPY1kW3d3dJJMJ2gpZIlENPwBNU3E9l2wuF1qAmAa6USMSUdA0BddzWtXUJvF4gkgkimmE6pyiKDA9XUJvmpiGiee5GEYDSQqpQvfcfS+7B/ciCALxWJTVq1YiSgG+74EP+Vw7PT29pNIphoaGaNR1EEWauk4Q+BiGweTEBMePHCMWjyDLEqVSiZ/97CkOHT7a6tNKEU/EyWSzCICsyNSqdUDC96G3txdRFOjobGd4eLilQBzH91xs25rztdt07iZ65nWjqgp6U0eWJLq7uyEIrQHisQhdne34nsvE+CSqFiUWi+B7DpbRQFMk2gtFZmfLIVXSs/HsJrlcBlVTGRwcpFQqUa2VuezSS1m3fi3RWBSB8BwoikytVkWWZcZGx3Bdh9dd+TqOHTtGW1sBgtDqJUzwXTo7Ols2MwH79x2kWq3iTpZgcgbn+kuIRqMMnziCH9jcd999OHbAhvVn4ng+oqQgySo3vvkGXMegVp2lraMdsXmI04zvIPVuIp7vxDDCinMimcRxHBRVYfnSJejNJp7nkUylaRoGlmUyMzODrCjk8jkeeeQR+hbMZ2xyAs/18FyXZDpFIPisW7+ejWecgRqJcvU119Df38tseZa2tnYURcFzXWLRGJZj0ajX2P7cc3R1hhXyZmkSDZdiKkZ3IYNZLTE6NsKBAwdIplLUa43QckiSkGUJTVPp6uokCALi8QSu42PbLs2GztGjR5nfP4CsqoiSSDQap6OjG88PrRt0o0kikSAIBLq6elnY308qnSBXyHLNtVexavlSQGR6ukR7EnyjjLzser5+y63MlsqMjIwBUKvVmZ4u0dHRhShKjIyMUSi0cfTocS699FIuvfS1HDt2iAdHOlh+/ecZGOjj4osv5u67v8Px48f5iw/9Kd/77ve46W1vZ/26VTTqdZLxFFu2bGH37t1s3bqVCy+8kDVr1iAFIEoRLrrsWn78yGbMeonpZkDZltlxcJjGlZcz/+yzOP3pfdQvOxNVk5FkEds2CQKPRDrJ8IlhfvGLLVRrFUzDYGZqmi1btrJv7wEsyyHww97VfC6PJIZiTJFIpPUdj+G0KvRhf75Ns9nkjDPOIJlM4tgOsiyTzWRpK7YRiUTm7oeSpPDYY4+xZ89eBCH0dlRkuQUuRSzLCu+ZgoznBWRyGfwgBLiyIoWNHUHo3200m0gnPQqDAEEUSMQTrFy5EkVRT/XjiiKh1Y2F21Iqrlar+L6H54WTckLLVsn3fSRZIhqNIEmhAFgQ+MiqTCweVqcEQUTVoiFNUggBhiCIaJFoqPzbsmYKIOwVDgJEUW7RHn0IPIS6jhaPE4slMAyL0sws9XqTpq4zsHAh6Uwa0zCYGB9F1WSWLFmMGY/iZ9Ps2b2PXTsHSaezZHO5sH808MmkQl9ORVUQEJidKeF5Dr7vM29eD4lEjHQ6iSgKFArdPPLIU+Tz3ahqkmy2A0WSOTEyiijLxGJxAi/0Aw2r6RptbW0sXLiQxDh4VLsAACAASURBVPFxhFqTRq3MTNtpyKuuIZ0ocODAgdYz0WP79ucozZZACDj3gtfMnf9Kpcozzw7y3DPbcGyTyuwsCFLLsid8Vuq6/ms/u58fJymdz4+TuYAsh2DCse3W9aCiJNow7JaYmN/kyIFnueqqK8jn2nn8iUcYHj6GKAa89a1vIRkP110zc9RMiUakHy/TRm5eZG5bmYRDVEkhuXkKWZ3rr1vBX3z4Cr4+/hFGxJ0AuL5L3ZhFkgTS6RTbd52imJanA9RoDtcFywmQ1SiSqqGbNpZt840tP+H1X/sk3xt8nENTR2haDeJKnEKyQC6eIxkJlY8DySeWklE0BVFWEcQosnQSIJ+cWAGCCDu3D2MaId05psSQJnswI5MMNUe5+/tPcOvt9/Ho5mdIJrPh/rdU7QP/pfOrX2ZAvFw8X6wnmQyPra7rL8qrnp8/GYbxovP8cqI/z++/Xb16NV9/y53ElBhHjhzh6quvJpfLUSgUuOGGG5iamuIf/uEf5sZms9kXrGv16tXcfvvtxGKnxmezWfL5PG9605uYnJx8wfhMJvOCHPDee+/lE5/4BIqi8NBDD/HWt76VefPmkUwm2bBhA3fccQc33ngjnufxoQ99KFSk/w3i1z3mv856fN/HcZy5Y/dK+fBvI7D6u9rf/1vjVeD6exq/zYX52yoM/1eE86l/xvnUP7/icq/4uX2fZr3K+OgIHW0FAtdGEj3Wr1+NbRls2nQ2pm0iKSILF/Xj+TbpdApBEKhW6+QKBSKJGPn2ArbngiSzevUqgiBgxYpV1Go6jg0nRieIRKIhdS0IiGcySGoEw3LRTRsfETUaJ5WMYzYbJONRUokEtmWRTWfwfIumXkNWJBRFodGoE4lEiEbjIciRRCYnx5mdnWVo6ATNhsGqVWvChwUCHV2dSGKASMDU+Di1ug2CiqxEmC7NYrs+WlRAViQmJyvs23OYYiHPm264imIxVBvOZFO85S1vZmJ8DNN2OHT4CPVGKNwUEPpDPrF5M5FIhEhUxfNDYNXd1U1/fz+KrFCtVtEbTRKxGMVigY6OdpavWE6tWiEgIJlKhuIyro+iqDRqOjOlCdQIVJtNsoU+CGRKpTKaJuG4Bq6tE9GiJOJxHMukWppkevQIzUYF1zJpKxSJqArZdAJfcmmaBqIQwWi6lGdKHD96kO/d+wN27RqkUMxTqcyiahIrViwjCELF3NlSeY56aVoGnudRrVaRZYVcLod29ATuZa9BzabDPtili8kkYnziYx8lmkzx080/53s/+DGRWJqFA0sxTZdDB45iNQ0Szf24P/4AYsdqhGw/jmNzYP9BRFEK6WiCSKVSwdDrxBNRYvEoyVQSVVNRtAgDixYxW66gahHOPOtsbNelf/58HNvmyJEjGKYZTpREYuzff4jBwUEkCerNCt2986g1mxi2RzpbYOXqDaxet4pUKkFfbx9Tk1O4boCiaoyMjDGvt4/JySl0w0SRVeLxOI5tI8kikiiQzmQQJYl6o0EilSISi3FiaBLPEzEMB9v2GB4eDQEMPggC5dkK1Wod3TBDanQmw9ZnfoHjuDzx+JPs37ufZkMnCEBVNMqlMj9/eguZTJrY7DPIZ98MskJXVw/5fJFKuYYoSsTjMTo6uijk2xgfHyefK3DkyDHO2Hgm8URISS225fijP/sYSqaT1aevZd+hg3zk5g8z0N9HVyHHnp37WDywELPZ4Av/4/OUJsusXbsWTdO49tpr+cY3voFlWczv6SeTLtC/aAVvvemP2L19K92dPaiSxMCCeYiqxYkbNiE2qsR+/BSSKIdq3abd+m3Q1lagWq/hei6yppBMxujrnUcxX2T/3j20FXP4fkCpNEuzqYf+qkKY/LuuG7ICCIGZqoZ+xIsXL0aSpDkhnpO0YkVRECWxRYUL+z/b29vmQKrQAqyicMrmSRQUdNNEkmV8/NCKI3AQxJDyCgGmoeO6Lo7rYphmC/DC+eefj6wEiFLQqqiGiXokEplTrE2nUy0dgiDsXzxJIZbD6qvvByFVWQw9XoMgCOm9gkCAgCBIBIiIggitKiaE74XiRSFFuNFotASswgS7XJnFc93WukQsy+UXW55h1649RCJRjh0fQlYUgsAnlYojy+H+1us17r//fiqVCvF4AsfxkLU4e/YcoFarUSnN4FkWWiRKEAhMjE8jywqOZbcAoU+lEvpgzs7OEIvFWbVqNUEgIAoyx4eGOTE6yoKBAbwAREFkbHiEwcFBbNshGo1QLBZYu3Ydgm6C5zE5MQGxNly1SHfbAEpc49Cxw2hxjXPOO5fsTTJcVaXQliYWD2meXV0dTM7U+MqX/xnR92k2alTqtRb9WGgdN+nXEv35bfKFcAsiASqSmpqjvI6NnmDePI1abYy/+evPMTA/z6EDg5SnqmQS6ZASDVhmlfntRT72ydvZe7hJ4J8S5ZHEKDW9gRJzCTwVx65g1CboySRp23AKjM8u2IVnG+C7zF98itosySli+X7S2QKCqNBomqhalGg0xrHKNH/342/hBwGXLT2dr177OYb+ZYhj/3KURz/yUx79yE/5+Bs/Hn7vEJgqWQyNzOL5MoqqhJ7XrWPmek7Yy50U2HT2IpTWZws8kZS5mIOLbuE/HvkFW3cOUehYwJ13/YD9ew897yAGc0fydxEdHWE1/Pm9pb8cuq5TqVQA5qrn8PKFil9+7fWrrmLrR/Zw8803c/rppzNv3jyWLVvGTTfdxNNPP/2C3tJFixa9aPtvfOMb2bVr19z43t5eli1bxjve8Q62bNnyK8d/6UtfAuDyyy9/WWXiD33oQwBUKhUee+yxlz0O/5nh+z4TExPUarU5ZflX43cfrwLX39P47wZcg6ExgqGxV1zulT63gI+hN9EbNUxDRxJF4vEoQeCyatUKQkUKH89zSaaipFJxRDGg0Whw/PgQwyMjYe+REGBYFidGR7Btm+HhYQREFFkjn+/AR8ALArSIhqyo2J6PZbt4iCRSGar1JrKiYTQaNOo1GrUaE+PjKKKEoevU61Vi8Qie72BZFrlcnkQijud5TExM4tg283p7SCTizOuZx03veCfdXT1Uq1Wq9SambVOt1qhVy8xOTzE+MYvnidz3wx9RbGsnk8sSCA6iLNHR3sOG9WdQyGdxHZ1qtYwfeKiqQjSqsX7DepoNnYGBhSSToRqz37I7GR+bYHR0FF1v4PsOpdkZqrUK+Xwe3TAoFotEoxFmZmYwDAPP93Bdl0IxT7lcxnVd6vUGnufjeR6yqNLeXmB49DjxVJpMthPb9kgkklTKZXq6OlAUkbGxMSqVCr7vkU0liEoB8aiKIgu4tommSBjNOnJEJBaPIwoatgXZdIYFfT2cccZZrFixgng8Tj6f4/77fxCuL/Dxg4CurlMPZgKYLc2Sy+Xp75+P0WgiHjzOsU1rmZ6eptFoUJoc55tfvwXHcUhl0tz8Vx/l6quuRzdc/j/23jtMkqu8//1UDp27J+eZzTlLqywBCqsEGAzGP0AYhDH8bIONuThcg8lc29j3ZxuMjEg2IBAILJTRKkuglTZKG2dmdyennp7p3NUV7x/Vu1pJCxICPzbP1fs8/WxtVZ1Tp6umu8973m+wLIfBY8cxVIO53d/D2vlh6L2EaqQXP/CQZIn+/iUIgsDhQ0dQGn7CCwtZHLuGLIvUrCoIAZKs0N8/QCqTwQsCmlvbwsSxFCr89vX1YUajBIjMzWZpbm5hybKlBILPylXLkRWFSDSKLKu0tHYiiCqCFH5WWluaaW9rZ3RkDGSd7iXLSbd20tG7BNVM0N8/QFtbO4NDQwwNDYZ87kqZxWKBSDxGoVTEJ2DzpnMYPHaCiBmjva2D9evXMzg4GHrm+j4PPPQgoiTyk5/cj+97zM7OsmHDBkRRpFqxqFt1Dh06xMjIKIODg5i6yfbt55NklqLlIy25nGgsxpVXXkmpVML3/YZHpcDdd9+N67rcccddtLW1MTs7y09/+lMURWFyapxI1GD3nqewHYuSVeZnu56kVCqTm5nj9Tt2sHnzZkqlEjOzU3zjG1/j9ttvJxKJsGrVKiRJ4rOf/SyapnHTTTdx8uQIY1MznByZQCZg/xMPkp86SYQqepDn4L6d1G68EO2RPQTJOAIipmmiqTqB52NGTG541w0sX7kCSVXo6+vh0ksuZnx8lJ6eHjzPQRJlnnrqab72ta/jeaEyLo1EU5blUMW28X03MzNz+nuvVquFiWgDPneq8pnJZPD9gB07dtDe3oGiKKHVUsPH+tS5kiiCIDVswhyCBsfPxzudtOL7JBJRRElCFEUMXUcURIKGorcoBUgNf1ev4ZVcrdYQBPF0ZbdYLIbwXd8PraVkmUKhAIGAKEh4HoiCjCSppyf+p7/JgwDHDXm+lUoltNNpwIPFBo/XdV0SiQQIQkN0SiCTySCGHk+AQMQwOe+889i+fTtBAHv27gmtrxYWQlh2ObT0CQKfq889j3QgsHTpErZv344g6yxfsQrP8dAVBVkIEEQJzTCRZQVFUTEaVmu53AJNTU1Eo9EwSRQ8+ga6ESQPzZDp7Gpj1Zo1+AJYdYux8XE6Wts599xzsawa8/Pzp/n1hUYC8YmPfQIhEJBFjYceeIxkOsmmc7ZgeQ5Vp4adtnDSJXzqCI1q6vTMFB3t3bz5zW8GP6Czs/O0IvKp8HzvZSGmfpX5go/Art37aWpqDneIMqvWdJNbmKIp3caRg7sp5xf528/8PffccS/FBg9z28Z2Iu48spNk6niNk4fGTvc5mbUQlDr1YByrFmExZ2FqSe7+4X1MTcwBIAsyyZNtDB47jCSAajxXsdW1KHqsGVEKYfCu6+F6HoIkct+R3XiBz9KmDv7PG/+Y9R3LefzhBzl6ZIhEPA2BQrEe+ps6ts/BQ3McOjSG40KhuBD6EZ9x33w/QBAKtDRraFq4IKV6CSxtioo2xbVv+G0uv2IHJ0amuOy1l7Ns2fJXdJ9fTpxSEz5TIOmFcab40ZnJ38tNXAG6kt18+tOf5rHHHmNoaIh9+/bx5S9/mTVr1vD4448DoQ/y2rVrzzqG7u5uPvOZz/D4448zNDTE/v37z9p+3bp1z2t3SgV5YGDg576/pUuXnt7+eZY5/9UhyzKtra0YhvGyEI+vxiuLVxPX/6Hx0nBd8UWvs6mg/TLtT133bHDf5/fzXJsgEAiCV7ZyeOYYXwhVPjVhe96HXwDHc7GqAS3NGrVyFT8A25Go2QFOIOAHEkKgcfOXv8X99z7CU0/tpV53SaWbaWpupznTxMEDh6mVbExVp1ZYZHQ8S3NrCz5VTFNncnSapKFRKhSIp9IYRoTcxDSHn32GhBkhcFwyiSR4HpqsocgKju+Tbm7CTMQpVSoosopve9jVIrnsLE/tOsDQ0HH2PL2HeCSOIKgIiklhoUgsplAqjSHJVZ56cheTExPceusPqTuQSLexav0m2tvb8D2b116yndUr+/EDn8DWuPmmr1MoLFCpFdAMg0g8TTKVQJBFnMDD8erMzY5x3513o8gCCC71WqUxOZV4z42/z8CSfiYmJiiXKiTjcXRVRsBDIEASZBTNIJ5IEYsnyGZzlCtVVCNDPJ3CcqpopomsaFStKlUrz/TISZpSbWhmDMcv4bkeB/YfIh5vJZevISomiaZmzKiK67ggJ0h0rsQTFBxPpLW9hbpdYX6uwPCBY3g1m8GhY5QqJcYmZqjbAsuW9yIEZQoL89h1nw0bz0EzFRRFwXU9HNthfrwZsbqaWrVMU0sKDw9ZM/Bn5nAVkXse+xYTT9/Nzlu/wc3/9l1am/sYHZ1k797dPP7EA4yNHSWTMNAUmYceeJhHb/82K5zHsDsuYSJXRxFEcFwkzyMaNVjMzdGaSVBYnGc+m6WjqwfPF8hlc0xPTCL5YNeKjI8dx3frTIyPUijkKeQX0DSZybGTDB49gu8F+K5I3bJwnQqy6KOqBh46MzOzCJLP1OgwAja+7OI6IrnFIqOT0zhBwPJVK3EdC1XwsGsFqlaZWCbF8eEhrKrFgX3PEvgC87NZBg8cxK3V0VQFVZURPBcpKrNq0xosz8X2XMYmxlD1UICoXMzR2pyEwGfblnMIPIiZTWiSydNP/ZStW9YjREx6ewfwyjW62jswU4nQX7hygmLXddx75wOcOJ7D0GFybJxbvnUblVIFSYQrrn4Toihy3bWXkE4qlHJzdM08zOyd/0hTqpV6zcKYfYza4D3888c/T3smQr5UoKmzh1hLjK9+46ukMi2cODlLsWzhCz6K6nPg2f3Mzue4/Z57cESHbeevZmbmOC3RKN/48nd44NFx2ttbiSSSlFwRX47S3taJ2Z6i+CfvQvv2nbjb12DGokiqgh6JMj4xjuPUw+qypzAznWVybJx41MRxLARZBi9g1Yo1aFoEQZQaCQUQhFxNQRSQRIHjw6P09vQ3EBoiqiajaRoBAn7gULcLiFIo4hTyQQXAI/Ad8vkstu02KpggnUJUBD6CAKIoIBDCa1VRQRZEgsCl7taRNB0hCJAa37mu72HVLQIx9GINgtAWx/c8JAkMU2tUH0UK+Qp79jyDYBUpzE2QnTqJVckTj5pA6Ll66rs8wMWu1hB9HwmBmYlpThwbRhFkRElGUdTQ7icA23GRJRVVlQk8cOs+VqWE59VwnXpIv5iYxU3H8DqbcJ94AlX1SSZNJFVgxxVXEtZ8QVFVlq1Yjigq6LpBslShyapTrZXQdYVqMU+pWKDueCSaWnElhenxCWqlHLGohGHq1FEQRBcEl5pVDSvudQchEPC9gFxuEcu2UXQd1wtYnM8zfnKCUqFI2SqRyy3y1FN7KBQqjI/PYlk+qm6EClNCM9k9O8nu+wGXXLmO5WtWMT9nMTeTJaYJGEiogoHsJfEbiWlnRwdLlid409veyGypxt5nhyiVahwfHQur3IQVV8t+LpF9qd/g50UQPPc6SwRCWGWXBZvNWzexqVEpOzw8zb5HH6SCTmtrhni0g/Xrz+Xiyy5HzzTjNuxL9GQ/O/ca/MmfXU60VeOzXxk83ffff/FBAiGCIi7BkeaIxVZwy3d+zAf//DqGpycA6Io3szhkUbdVhobHqDUWAQCi6SieIzA84RMoCWzHol6tYtcDZsoFAFa29hAxRVrTsKo3Q1STQdJpbmpl54H7wvsny0Sb0tTcOJW6hSFHERtQaVEQEXwR3/OYnLEoln38htUPnoSbzuHYdXQ7x7ZV3fzZhz/KtvOvQVKe4206HngNJeKf90yep3ALL34JUmPuJfKa17wGgKNHjzI+Pn7Wfnfu3AmEAk3nn3/+GY/7zPmed/r1QrcJ7Q8d9D9yXzRGCBfLvvnNbwLwO7/zO6dtvl6u5aHv+89rf4rjeqr/U/PBsbGx580Xz+x/bm7udL9ng7z/OuLMwsqp7Rfa/UiShGmaNDc3NxaqXvw8f5Xrn+3e/jp4zL9J8Wri+mr8RoUsKJRKC+QWy8SSKQIhIJ8vcuv3vk+1GkLdbMfi7W9/C+ees538YhHLsrAdi5aWNJ4rsWHDRhZyMwRCjd6BVrZuWQuBgIDB4OAw6eY484sFmlpaEUSRcqVC1Xbo7epFFkXyizlkMUBVQk5ttVojZsaoFCv4tk1XezuIEogKri/Q3TdA/5IldLX3QCCysFgkCER8ByJRk0JhkY6OToJA5Korr6Gnt5uBgX7i8TiiKOD7HqVSlZplM7+QRxBE5Abcb8eOHTQ3N5FMJEkmU4iiSK1mMT83H3LsfJ916zfw+je+gdmZOYRAYHR0DGeuGaHYTalUpFyu0NXZQzSSRIsYmLEYtueh6BrlWg3HsVBUiezcHI888gjDQ8fxXAdVUYlGouiqhl23iJg6nd296JE4mmbgux7xiEEsFqGvr5eTIyexbTsUrfF9NFVvcLEa4i8C1K1QaMkwI7S1t9Pe1YWiaszOzBCNmAwMDFCt1fBcEASZarXG4cMHaWvLNARaqiwsLDA1NUVX67nMzxnEEgkefugh7rnrLqTAx6j7iMk4V179en7wvW9TzY4R+BK5+QJtrV1Eo0n6+5Yx0DtAU7qZnTt3ousar185x0gOJhc8+noHIBB5/LEnyc0X2Pf0HnIzc5TyBZ545HF0ObQLAY+OzjZWrFiG5zvouoFdD/lQMzOz2LYVJh0ICKJEa2srxWKB+3feR19fH7qhN3xfbURBpKOjE98LMM0ItZqF47rgeUR0HU2WEP2A0RMnkAWRkZMjTE1OETUMRN+jqaUFX4Ad117DuvXraWptYWDJMlqa2ygXaxTzZQRBRtd1TMMkk0kTiUZZvnw5AwMDOLUakgDnX7AdPWKQbEqiyAqu4zM1NUUqmaZUqtDZ1s7IyAg9S5YSS6cw4hHqCyME9SKZTW/mg3/0x1x26YXULYfOzk62nbOFarWKbdts2byRxcVFgon96E/9K6+PHSDqZOnUS2iDd7Jv70HahRnk3EF2vOkqrrj2CroH+lDNGMtXb+DDH/kD/uz/ej/JlIFhGHR0dHD8+BDHhwdJJhKsXrGSO358F+s29qKbHk/uepyLL34Nm9ZfxLe/9R/MTk4QNxTms7Os3rCNupLAamum9J43o3/mawS2h4+ALCuhaJkoYtfr3H77fxIQIMoSmUyaSqWM69ggurS1ZXjXO/8Xkiic5pIGEHJKAateZ+XKZQS4QAjJDhfr/Mbn30dRNDw3CAWDTB2rbuE6Prlcnvvvexgx8HDrNZxaFdeyEHwXwa9SK+exKhVEhJBD7fmUS2VEQUQSJTw3TC5PWWyIYug563sN7iphpVaSZeq2fboa6nke6UyKiy++CNmIo0cTdPUOIMoaPjIg4boBluWEnq8uRKKx0+ZpqaYUsqpgO/XTSZKIEPbfSKxd125UmkUURUcUVGTJQJF1VFVFMHTsJV2IU9kGhz2EK0cjEbLZeTKZJvL5AqVSBUGQGDk5iiSFSu4RM4YgyAhCgKqqzM/Pk53LMTE2TSQaI5FMMZ8LPVkVScC2XeKxJLWqxYkTI/h+qBLueR6GYTAzNUNuPkeAQzIZo7e3m9Wr16BpBrValf7+PpYs6adcKnDLLd9uQMEDbvq3f2JJvIaaH8aM6FQWa6SjTUiOzI+/fycLP3aoPyhz7733MTUVIpZ8PyAejzd45QE7d+48rbB6CmLuuu7p7f/K8DyPd7zj7QDkyxbfuW0nuaE9LJYWMKNxevqWcNlrr+C2u358us3s9AKx5iqppjrdmQw9mc7TxxY8hZnJGriL7LznISTyXHvtWmaygzyxfwSAN267jHrV4vixw4yeHCRqRk63t22L2blpurpXEIl3oOgZpmfy1K06CT1Ucj42N0HNsnHrZXBLnDh+mFJpgQcO3c/TJ58GQFFlNmzchuPoHD+RxRcUBEIIfgDIqoqqJ9n/zATHT8xzam3d9+Cppw8zMyex9+AE6eYeLrzwQqbHT7KwsHB6nC+0+vtV4/rrrycWC2k7X/jCF150vFAocPPNNwOhcnQsFjt97EzbHLHBd3+h0NIL970wPv/5z4foGtPkQx/60C89/s997nO/sP2mTZsAuO+++xgdHT1rHzfddNPp7e3bt//SY3g5caqI8sLk8aXOfzV+vfFq4vo/NH6dinC/zDV/3r4XCii90pWjX/R+XljtPfMe+L6HgIAqSFSri6xet6XBcQqIRk16enqYn8+FxuCqRCxuohsGW7dtwfNd2tpayDSlqVp55mbH6Whrxao6qFqCajVPpVTG90TSmSZ0U2PJsuUEgc+hQ88SBB4jY2MoihaKPwlQty2Gh47jOC6pVIbJqRlkRcWxHWamJ/C8AEXRMYwYkqyQTKZYzM+wcvUAK1cPIMse9Voex7ExTZN8vsBXb/4anhsQi8XYunUrmq7ieS6TkxP86LbbUBSVtvZOBEmkWi5CEJBKJ6lbFrfddltou+L65AtFZmZmwYdELIGkKAwND9La0oKAwMrlqziwb4h6BXRdQxRFdN2kUrYQJBk3CKha4XalZlGvOziOSywW47d/+7dZv2EdkiAwPDhEdi6LgIgg+HieRS63yGK+xGx2kWK+yNz0NCdOHEdRFKLRKIZhEo8l0TUD23GQJIU9e/biuT6+61EpV7jzjrvZtespJFUm1dRMqVph27bNaJqK7diUylVGR0eQRJmWlha2bN2Epiv4fsDMzCyBH1aaLKtGJGoiyaH41CUXXUSxmEcuVQk6W4m3dTE4MkF2LseqVatYtmxZKKaTyaBpGs/uO8ixI4MM9C3hmhUlDMki1r+daDTG4mIBWdYoFsqUSjVOTk0wXyoiGjqXXXkFStQMBZQ8PxTbcULl03rdpamphWq1xrZtW9F1nfb2DqLRWGjJ5HskEnHWrl2D6zkkEnEmp6YYPDaI64Z8R1mWyeUWQmEvQSSXm+fhhx4kv7DI7Mw0M9NTEARMTc/Q0dGFiMD4yeMIokhuYQFVU5EUGUGScNyA7373Vor5IrnsAl++6SuUikWq1SqFfIHxsTFkSUYSRfbt24MkiXiBh6xImNEInueza9cudu/eTVtbG+effz7JeIzzz7+Ayelp5nI5fM/Gn3iMo/HraW7r46abbuL88845rQZ9xRWXo777eqqvbWffP76VtoM30Vd4moKvU0xvZD66BrllOc7EXrZIJ5AkGc9zWbNxDflqnpnsDLVaDQmRK696DZ/+zCfILcyRTMX50z/9U5x6lbWrVhJ4PqVCmR1X7KBcMOnr3cQ551zEjmtfy/mXrmDLORfw6KOPcnD3LpriMaazi1R8DcuyKG5Yg9feQj2TIAh8PM+npaUVSZSIRiOsWbMKM2LS2dVJIhGns6ODQj5P3aqgKBK+7xH4oRer16g8uY3VeVVVWcznCG2oBCoNQS/XDauWsqQgikqowouA57pYtTqiKKOpBitXrSGbnUMQQsE1hNAerLA4j6EqxKPR0EYJAVEQMRuqvrKiIkny6YQ1m82GsOMGLJlG1db33HAcsoQoyaf367pGDfSO6AAAIABJREFUvV7DF2T0aALHFwjEUIXYcTxKxQq3fu/75BYWqdftEBrsuARBgG07yIqMIILn+ciygm3XG0rYoXdrsVjAsurcfffdCAg89NBj1KoWQoMnTADy9s2I+46evje53AIzMzOk02kKhQJ23UVTDXzPZ3wi9IaMmBF+/OM7GB4+TiIRI5mMs2bNGtKZDPfeex/5fAHXg2QqjYCIJkvs37cfTdNIpTIsXbKUUrHMYr7A4NAwhmHS1dVFMp6kXrfI5/NoukYul8P3A2rVCl2dHeQXF4jFIlx5xeuQZQkBgWhMR9UUVFXh0Ucep15z2f3UPsZOjjEzNYd7REE7GUIvE4nQgzN8r6FtUX9/Px/5yEcwDIMNGzY0hLN+TiX1Zcap395T1aJfFIqisGXLFq6+5joAvnXfAZ588jFuuOGN9A30Mj41xp/81R+zd/8eDD3k6J5/8UZueNcHUIUVGJrEH7z/0tP9eZ7H//7M/Ty9d5prr9yB4NeYmi/yF//4U2zHozWj864Lrqa9KUk8ErByeTdHjzwHjy2Xy0QiEQJJZ3QihxnroHdgPQgKFy4J4adD2Qk+cd+3qbkVDMWlf6CZW574d9731RtJRZ4TUNJ0k6rlU3dDZf/JqdnGGF1s12ZhoUg0bqKbCoLUuE+CgKJG2PnoUUSjg/a+ldxxxx1s27L+OcEi4cV+oSMjI0RjCaKxBJ/+9Geeh3T7ec/gzLlSOp3mox/9KAA333wzn/vc504LdA0ODvKmN72J6elpIpEIH/vYx57XjyAIjI2NhTQIzeCTn/zUWed7H/nIR3jggQcoFAqn9x05coT3v//9fOpTnwLgb//2b+nv7z/reF/YXhAEjhw5wvve9z4++clPnm4/MDDwovnlBz7wAQBKpRLXXHMN999/P/V6HQg9Xz/84Q+fTtgvvfRSNm7ceNYx/Kpx5nz4zDnq2eLU8RdWZ38eJPvlQvtfmAz/T6UH/lfG2bEKr8ar8T8sQn8/n1rBQhAcZDWKHYAqS2g6bNu2mVg8TqiwW0VVYWZqhp33/4QdV19JIpFganKKRDqGKegs5hZpbm3HqrvImk2tYjM1NYbjBfhZDz9wSSYirF6xFFFSuPiiC/E8F0kSiSZjVMoVunuXoxoS2dksTz69h9dcejGRiIzru8TjEXw7AB9818X3wdBlNF1GkmFmZpKmdAY7EAmC0KriPTe+B9/zWFxcCJO0eh1Vkenp6ebt73wbmq4gNQRdcrOzxDMK0YiJY4ceZnNzWdLpFM0trUTNKIIPoiwxl8vR29cHQcDcdBbdNDh48DB9fQMMDQ6zYcN6yuUy3/3e93j9m19PW1sLsiSzuLDA3j17ODE0yHtufA+KolIo5DFMkwCBpUuXhsbnQUDE1LGdIoLvk0iksBEZG58kKgcsW7Uax3WoVgOKxRKF/ASTUzNs2ryeSqWC63g4roskuEQjUTZt2koyZSLLMk4AqUyaerXKIw8/zKbNWzl0+CgXnncOCCCKMvW6w0Rhku6+bgzDJBaLomsakjGNoftoSoqLL74YzwtFcKSpWcofez+uluT//foPiIoiQ+MLHDiwm41b13L46BHa2tvp6+7jrjvvw4zE2aE8BJnVdKZ78QOB/fv3EovG2Lx5M5lMM5vkLXS0tqKqoRXTg/ffT19bG/1LljAxPk1Pbw+KopDL5sik01hWDVUN7QGKhRL1epVkPMbw8DCJdJqOznYUWaRYKJDJZDDNBKOj46xY2ofnheq01WqVVLyZSMShXCmTW8jR29vD2rVrUDSVlrY2jFicwsI8zU1pZFEME1FZpbu7C1+SiKfi+IFPMZ9n6dIlrFi9HJGAYjEUezE0jZmpKfKFApde9lpM02RqZpb5uTySrCFLIIoB11xzNQEe995zF9vP3UDKMBkfnyQeM2gOppG0GObK6/mHL/wfLjzvXD732Y+TMg2cyiDmoQcQ8yMERpJAT+FFWqFzI2lJRQrgwIMP0Xf5FQweP0m/dwivMgSSRibTxNzQUVKpZjTR55l9u3BcmUqlwsUXXcaxY8eIRk2qlRJzs4u4joisaczPLdLV3scDDzzAhg3r+KuP/RXvvvHNdK/YxKZzLuQ/vvYlVq5YhqEqOLbHjtdcypVXXM/nLr6K6L5nEVb2UKuFFiYBIQ++r7+XdKaZSrGIFwTYdh3LqaPICrf/8Ids3rKVrp4uIlETQQLP96lWq4jRKFKD72rbdYIAImYUWVEaAkUhZ5tAChNMQcInYHh4iNWr1xCNmaxYsQRZEhAlucFD9ognUuTnJpibmyeeEjDMKIEQQkg93wdBhADchgdsqH6cxvW80C+WcIKuqGFVuZLPE43FCBqTJkWV8QMXXVeoWTa6riIQ4Hs+shgmNKqqEIlGEAUBXdfxAyEUPgJiiTjReBTPcxAFgcmpScbGxti4YSOGruN4Dql0hsCVmJqaoFDMc8klF5xOqB3bQQaCWBScUMlY03QMwyRIhxPFW275HgMDA7S2tjE+Mca2bZthPo/ne2QyaaJRE88LqNUsisUikUiM99z4e/iBj+36GGYM3/OoWRbtHW14nsuJEyMkEgli8QiSoiJIIcJlbrZAqVSiq6cTBLDrdRRFYmpqjKZMmtGRE7S1tbN37z7OO+88yj97hjihxZhsWUiywrlbL8aqllAMhVx2gTvvu4v3veUjiKJE6o4OzGJYJfOPhT6ww8PDZDIZUv/ZgyaEFTx/b0OYK6th/YuCdImPuCZcKAmqDVjn0wrOl57z+wQISs9NmgVBwLlVJcg+v67hHw0XDPzp58715wTcW1W+uPVmrtt7OQenn+FfvnMPN313J6YaoWDlEQSBd771Bu7/yf3UrEnaj69kVexKTp5YhiI52PnjwBcB+NP3XMbff+Vh3vHJh4koT+EHPjXXAiChxfjG1V+kPCzSlmjn0k1pxFoTy+XK6fEsWVxPfCiF6/mka31oKx3mZyeJR5dzqXweb1xymB8d/yHf2r2Tb+3eSUJNUHbKeIHHmra1vHXT2/jYPX+F5CkYBzO8fc3bEUUHcRI6lceBnyD6Bkq1mSBfZsfy1yPXonyn9iAAcqCyMXMRnqOSH8mTbu2mqyNHbnYK/0mjca9F3H81T4/ZA/xlz03Fg6yI8yXj5yYyygdCZWBRFHG+pxBkw/P+t/JRjmwd5tu7v8GnP/1pPvfZzxGNRUPOOaHi8dffcgvtdy7DekGf/nlnbJ8Usf75xdX6b/zbN/mnf/onIOShnrLOglC07e/+7u+48cYbf24S9c1vvnT79773vWdt+4Y3vIG//Mu/PF2Zve666xDFUHPgTM/XtWvX8u///u9n7ePXHf9/V/b974xXK66vxm9MCILA3t37WL58AD+QQBTxAw9NE2lrb0ZVFXwvYGpqllqtjqzAb73pDSSTSUZHxmhpaefQs5PcesvtRCImY+NDuEGRStGiXq/S1dPK7t1P09zcxerVK2lKJ5gcO4ldKyOLICgyhXKJQrlMoWzxnz++j2KlTCLTxOVXXYVmmhSr5ZCjWa3iux7F/CK57Cz33n0HXl0gv1DFtgUSsSby82VGTkzw1K7d1GoWkiRSqZaQZQld10/zPBzHRpJ8ZFVElCRc16etpS2EywkC0WiUN77xt+jp6aVeDwVNzIjJ4sIii4t5EskkIyMjfOUrX2Fudo5azeJdf3Qt7ctUzj/vAvbs3ku9XufGG99Ne0sbgRfgOS6JaJyN6zbwrhvew3y20VciHtpFKDKOY5NKpalWq7iuje3UaUrEMXSN5uY2evuXEk9mQAio1aq0tLQQjcRYunQZr33N64hFo7Q0t7J161bK5Qp2vc7MzCwb1m8klc6E6rpCKALiuA5bt24hEo1yyaWX4vsOvudTKlZobmqjVKogSTLpdJr5+Xl0Q0cwjmIF+/j+d2/l2YOHiMRjBJKAULehr4NM1xKGsjZjlooguoiSx/ETR0mmIsSTBvmFAh1tHZy7RMPzfO54aDfZXJZqrYyqyiTicQQBvv71r9GWbOLogYOcOHwMxQ0wRIXOzh4WFwp0d/cyNjpJbn6RWtXCdT0EUUJRZJLJJIVCkba2diKmSVt7K3Nzc1SrFY4PD6OpGs3NzTz11NP4ns9dd93dqMSFyrKu4xKJRnjjm36Lc8/bzhM/e4Javc4DDz1EuqWFQAw9Hm3bQhZFzj/nXGqlMoNHj1IplpAVmTe84XqWDPQxNzOF1FBgjUQiHDt6DM/1ME2TFcuXY8YT5Isl4rEkXe3dmGoofnbtdTvwA4d4PMrrLn8NJ04ep1AoYlVqLOnupj65D2fbhzl0+DCjg8dYGy3SMXwLzs5PEM/tR5BVKq2boXMLXqwLJdNL3RcYHBzi4Ycfob2tlUrZonf9ZVQzm0CUkOwSzgNfoj17gM98/ONMjgyRiiisW7OddWvPYXYmRy6XJTs/gyqLbNq0iXg8zo033shffPQv+NneH3Hexct55tBurrnmTWRSazCbenFFnT/4/d/n+NGDKPjEoyZ/99lP8pEPfogTSRPp2Cj1/CKCIDA/P49hGMiyRG9PD67nUijkue222yiWikiiyKFnh7jwwkspl2sYhsnhQwfJFwqIgoDR+Iz7QYBhhNUOVdVxHJ9atc49d9/P8PAgBAKypGDbDkEQUKtarFi5Ak2XWcxnicY09EgUNxBQdAPNjFCuWQiCxu23383Q4ElszyeQQtixJIqIgoDbqKwGPAcHlGUZURBCOKQiEwQ+9bp1ett1feq23dh2kGQRwzAgCK1/xAZfFsHHMHWuuvIKmlsyqKqM7wchKtj3IfDx/bDi7Ng2bS2tbN28BUPX8T2v4e8qUK1W+b3fexeZTAJVCwWjIGgsohXZ+fTTBKqCe8E2BEHEth0OHjzI6Ogo73jHO9i2dRtTU9NkMkkcxwYBarUq55yzhc6udiRJxfMCJicnkWRwXAtJlAkEkblsllwuRymfp7k5Q92ukUhEWVzMYVk1alaNn/zkfu66627qVvgeCETi8WT4nKwKXd1tRKImXd2daJrK+vXr8DwXsTWDr8j865e+gqJoBL7A17/2bRKtSTr7OjETBt/7z1sRZYFisYRpmlQaFTRJlnAch/7+flKpFIEfkF9cxHFsxMZvRqgq7J39h/Rl/M7+stFkxvnJHz7BR1/31yxJ9YeQbwTWLlvNt7/2Lf7vv/jL01Y95bLF9NwY7V0tKFqScvm5pO1nD8zzpU+cz5tXX0tMi+D6Hm2RFn537Rt54IbvsCq1mmi3jSbL6LaJ6hno8nNJeMxIEDgCki+iiTreokJS7qY2ryER5csXf5XPnPv/sDq1Fk3S8AKfVanVfHTbX/Gjt96NVA0FzkRBRHAFdFkFV0BBQ2moJ0uBglxL0qR3oXoqUqCAH06lfVzmhCniiSRLV6wknmri2muu5/FHH31Fz+IXxSlf5wbxAEEQ+OJbb+ab77iVy5a9jmQ0hWVZ9PT08K63vZvH/2QvV6y6+hVf76+v+hQ7Vl9Hb28vjhPada1evZoPfvCD7N+/n9///d//he0/8YlPcO21176o/Yc+9CEOHDjA+973vl9Yefz4xz/Oo48+yg033MCyZcvQdR3Lsmhubuayyy7jn//5n/npT39Ka8PL+L86Xk1c//tC+E266a7r/uYM9tcYZ8fJn23fc+sQZ374zyawdHbRpRfH2dqcCZF4aa+x8MfT++btAMjvesOL+jtz7Gfu8yUP3RawBQH3pluxxmc4MvwMq9esR1A1BEFCCAJsH4TAR/QDFhdyGBETJJHqokWxlCPTlEY3E9RrLkLg89DDP+G887dSqVRob+9kMTtLItHEzOwcXf291O0qkUiM2YlxbLtGU0sbi6UamiSC6JJpaaZcsqlXyxgauG6AYcYQZQlZFZnLzpBJNIXvV1bIZueIxxPUXYHAd2jKpLFqVe695ycIgsKll1zGPffdx8pVy1mxahmyGmF+ZhYCn7aOVnwxoF618b1w/AFQrtoYZljVqNdsfC9gaHCYRx99jA984P1UKiUMUyUAXNdDDCRs1yaVDD0dg8xxbNuhdLyF8bExegd6aepoI7BdfM+jVCohy3LIm/F8AgHqto2qqniBD56PpmmhWIzvk19cpKW1FUEQcetl8ouhaJJiRFBkBUUViUZNbNthbGySjo5uJMkjvziPrplEzBS1Wh7PF5EVg1rdBjEgGjVQNQ2rUg2TeUFkdGSEppYmVNVAlCQEEep2jdHjk7S3t6GqCocOH2TFtjHqdZuFkW1E4zFaWlvxsjnkux6m8uNvkO5Ik69NsbhYI63FmJ2dZdfTe9DNCEuWLuPg4UGuvfoqnrnlj9m4tBVXyWDVa0iKxsJ8LoQaplKsXbcWSXQ5fOwo69ZvwHc8xkfH6enrCatankt2Lku64RcpySICAZ7nUq9bKKrGnt17OP/8C4BQTbVcrrO4mCVqyLS2trGQL4eLNW6NdFsLfuAjBDA1MUl3VyuuF1Cv23zvu9/n0stew+T4OBddcgGIULMcLMvFjKgszC/S2tqK59j4voODTzQSw3E8FhfzNDU14xMgSlAtFxEBWVLRNR038MFzEQWo1h1Uw8R1bFRVZ+TkKNVykdWrV3L48FH6+5ZQKVkwtws/CGh/y3+w5/Z/YK2aQ1BjiKkOjFQnuw8cYO36NfDTURZzefaaRVauWImuKmTSSZ7Zv5++nl7ypQLpTIbW1nYmnvgXohETvXkrFCapyXEqajMj4nLOuWw7smSw68l9bNu2BQSX8bFRZqZnWdK3jMGjQ9RqdW76yr/w5S/fzP0/eZhrr72asfEhhKpLDY+2Jd20tqUpzo6RNBSCaCdVy0bTNGKf/yrWBesRZ4qIkotdr4Q0hgCUSBNWrc7TT+5i+UAfhi6hGWnqtkWpXKCjs5tKtY5pKo3vBglBFPA9D19QEMUABBfHcREFjZmZecqVIsuWLsWpWzz7zAE2btjArif3kM4k6e7p4mc/3cW6teupWRaPPPwI7/q9G7DqJRDq+J7J3OwckiQRiZrEYgaaHqFSraBHw4qPEIDfmESe+ozLSmj9IQsSkgiea1MsLqJpCqqZQggErHodXdPBD/AFH98TmM/mqFSqdHa1o6oCc3NztLS04HmnuKAxgsDDsqqoqoYoSvheKAcQBCFkWNG0UK018HEcl1qt2uDjCfi+jYCEJClwYhQpu8jUn7+P+Ac/zbftIm/auhVNlzn0zDNsWL+Fr3zla6SSaa644nK+9vWvsnnzJi5vCdXGR1Ohh3Ey3USlUiUSiQAB8/M5PMeitbWVqakpOto7sOoWnudz5MhR0uk0vu9h2zayEsLIy6USZiRCf18fVj1PKpmiXK6STGTYt28/8XiM5pYMsiwgyxqT4/MMPfIzdrS24N1+M9L+b7CQW+Drz0T4kw+/l6OHZjh09Al6+prR5Q5+8IMfcOON7+Od7/xffOxvPsyyFT20NPUi6j6CFOfu2x/i/nt+wD/c9C+Upoe59967ee+HP47nWqEo1y8Zz/vNf7mNgoAAkUCA0sQhbvni51HsaYTkMlrWXMXEXJkrL9rI8DNP8vCDu3ndjut5et8BTg4Po2sK7T1LefLRhynkJti6sY/BY0+zbkU/11/XjFrtwGzOUvNi/OsXvssffvht7N1dId2UZeOabhzHQ1S72HukTFv/ufR0rmdwYoLt559HNpvl7z//aV5/xWUcemYPF2+2aImplOxmirW9xJwUWTvgvkfmeNPb/5pnj4ygqD5r1m1EVEUMPcEH3/u7XH9ZgovOWYMbzAPg2DJmREEy44yNjNCUyFCuOmQXHAqlCOdc9Aa0TD/J5iS7f/okD971CJ/4xz8HSURRVZ6zcH1OFPO5W/liCKp/hgDmz+OanuJdntnPC5/pqX9P8VlfeO1XEi9M4F4KQnu2ti/n+Jn9/6L2LzknPcslhbM0eanzXmrsZxvHmff9F7V53rN/iTZAw67sNzc9kmX5l/ojlP7mb/7mv2gov/7wff9v/rvH8N8RZ/+DPNu+58N9XnT0Ze57OcdfPoemoXK4aRXixpW/6EovbiloyL6AJwTYT+1lYWIC1dAwozEEUcaxPWRRbJjUB9hWnamJKUzTwNA1Dh8d5KGHH0QUBUzNZP/efUQiAu3tXZw4MUUy3UQsEUOSZRbyeQJBwNAUFhcWyU2PI+sm0WQLhhklFTWZm12gpa2Fer2GaUTRdYXFhRJNzRkKpRyiBIu5PNFoCsPQmJ6eJhqNoOk6phlyHjVNoVarMDebZWBgGUEQEE8kMc0YumHS0twKQsDM9CQPPvggK5YvQ5TEcLIWBAgCLOQW+d53b2XpQB+qrCIrCqIosf+ZZ7lqx9UEnkckGkFWVSTNQNEMIqaKGTGpuw6IEoKZR1YVNDppaW5G1VTmpqeplCvYjkMimcRxnFDZNBCYmJzk5IkROru6mBifIJFIIwgS1WoFQ9eIxkLbIdf1qFQrGLqBYUQpFiscP36Srq4uBEHEqtkkE2kUUSI3P09bexeaHkUUdXK5WVpb2xgZHWPvvr0US0W6OzvRFBVZlqlbFrlcyGNubm6hWqtRqVZQVRVZkYnHYszMTBOJRMlkmvGVIUxTx5BWk85kQIBgsYg/Oc2x89aRTMWo1Qqk0y1ENJn5XBYzYrJh4wa6ejq46447GejrY4lynD0nLNx6keaWFvKFAgTQ2trC4088RmtrK83NTTS1tKEoKrWqxcTEBMXiIslUgkjExKrXSKYSKJqOANiOw0Iuh2O71G2XeDxJpVxFkmSGBod59tlnGejvY34+y9xclkQqTHrHJqZIJFLg+8zNzuK7DgsLi+i6geO5tLS1E0sm0VWd0fExWlpbUWQZhFCRNhFLIEsyhw49SzKRQFV1JEkEPyBihpUzWdYRAyGEezZ4kNVqHUPXmJ6eYveePQz0D6BpBqIY2p6Mnhylu6sLURTo6GwnCALGDj9Bm55nvvUtpIa+T0dMwk/2oXasR44lCfwA0wzHndg9R9JTYG07PV3dRCMRRFlGVmSMWJSOzm5kWaFQzKPVTuI4DpHlV5NzZKKig1GdRFocRnWKKO3rSKeb0DSdfH6RSNREVmQOHT7IQw89yJVXvpbNm84jlUxz3333MjY2yrIVfUyOZzk+Os7adZsggMJigXKxQiKTwnVqHHz2IG2ZVpTdR3jq5HGKpTItra2IkoyqRRBFBwGHVDKCpoLnWciqjhnR8PxQxMfzvYYol00sFsNr+LQihHz9et1CkmSEhpWNrutoikoQBDx78CCiKBMEAv0D/dTrDnPZeYrFCp2d7fQP9BGJGAhigFWvYpoJYrE42WyWvfv2sWzZUhDkhn+sD56NLgmUCllcp46qqAhiqCKsKDquHVr1hLBfFUVWCZARRRFFDnnGBAGCFFAoFJienuHRRx9j/foNoTKyquL7PqqqAUIDIeCcVt6URJkggMWFRQzDRBRDldSwKusxNRn6B0ciEXzfQ5FVhAYkVh4exY2byK+7iPrYJOZ8HjVqIkkihqqhKBq+DyMnT9LX18N5F1xAb28fwdQMsiKj93eg6QoP7HwIRZaJRMzTfOXpqUlGR8fo7u5iYWERCCkOuq5x4MABIpEopVIRfA/T0DF0jVQiTrlUpKm5mXK5ilWz2bXrKVKpNEEAyWSK2dk54rE0kqhi+gKZukXxuguRZp8lCHw2X/tuZEVmfHyc7PwUl112GREzQbFYYsmSft7xzrfhOHWWLOlnZmaWqdlxIrEES5csY8dVFxFICqmIQrVaoXf5Wnzf5ZXkJK8kkZEFQJQIRIkAgZVr1zExNsLM9CyrB/rQEGjvXMYju47Qt3QpzZ09FAp5tm3ZwPZtG1m9ZjN7du9iy5ZVXHD+FkbHhvjR3YdYtaaHTFpHVsoQuGzZuh7PMRk+WMB1aihygcBKUigXqToVipbO7n3j/N2nvsBVr7uW4yeneetbb+Cmf/s68WQrCX0G3y4QS7TjMotvyYiaietFCDCJJdK0t3cgywJ6xOD3bvwAjq1y5NgRtm5uJhLLMD7mkM+LiIqAqUWxynVUKYJXVzlybJbHn36Gq1//uxQrEAQuf/nnf0F+scRb3v5GJFlGEMUzkqIXK9Oe+v+Z+wRResk51wuPnRKAOnP/C9V6X+nzfqnrvlSi9XKv/VLKua9o7GdLSF/Bea/k2i9XAfhsCxm/6NzfdGVhURQ/8cuc/2ri+hsQZ/+D/NUS119lReyX+YAIwksnv+Fx4UX7/EBE9sATPKyf7WXy2BCZtlZisQRuw9y+mC9C4CMJYmMSLnHo4LN0trdiOS7FYoEN69cjENoIVKoLlEoW2fli6D1KqBJqmCbVWgU8D0WSiegKkUQa1YwDMD0+SkdPP4LgMzY6SmtLG37gIkk6ZsQgEtGplEuIgoauRihXKkiygOPZaJpOqVRGxMexQ96bqur88Ie3Mz4xwfLlK/nBbT+ivb2DlrZ2nHqJpkyG/oF+zEgE3/PxCOF9VrXGnt17WLt2AwN9PfheyO06ePAwy1euJJaI49p1DFPHF6BYKmOaUXLz00SiERAEVN3AVWaBANFuRlFU6rUagVuns6cX0zSoVMosLOSIx2OIkorjuPT29iKJEhEzgqbpfPOb36CnpwfTNBAlgVqtiqaZWJaFZkS48857WLVqNc3NrRi6ThAE1OuhSNHE2DAtLRn8wDtd4fN9n1rdQpZE1q5by5KBAaxaFdd1mZudxTAMIpFIQ7wGdEMnGo2cXpGURIFMpolcLkcykUTQTxDgEdfXk53PEo1GEY+NIBk6HX/0bhYWs2TSEcZHJ1AkgcOHD7Np8ybiiTi2XWfLhk0IBAiHvkIxn2PF+m38bNeTdHZ2c2D/ftauXUP/QD9t7a1MTc7w7MGDJFMpfC+EY3Z0tqHrIczYtm1kOVRnLeQLlEplapUaE+NTdPX0EI/HGRkZBQTi8TiPPvYI8f+PvfeOtus8z/x+3+719HJ7QcdFY6coUqRINUvEFipZAAAgAElEQVRWt2yPvezYiZOZNctr4thxsvLPJLYSZzz2jDUjT8bOWPHIcpFVrE5JVGERC8ACEI3ouLi9l9PP2T1/7AtWgITKjJterL0A7HN2Oefb++zved/nfZ6sw649uylXK1tgRuKrD36D2ZkphgYH6e+r4LgucZxQKBZotjvYjoNlmRSKRSqVKoqisLKyjONYCAS+73H48JFUDCf0KZfKBH5AvV5H0zRWV1doN3tIAmqbm6hqSvFc39jg+WNH2b17L4ZuMj83TyGfS22ZogTTNLfGXyMIA+SoR7F1FKN0G+Vwlai4E6mym0szCxiWhiLJzExP4WYyGIaJeT5V3Az3lDEMAyFLKKqKbhogSVyenCKXz3Hq1EkGcgJFt6jHpRSgmHmmVxoMlVyUjUskc8dozLxAkBkFYaQ2SZrGwMAA99xzN71ehz/8+P+LEHDbbbdy4uRRLl28xP1vfTt/8O8+TrcXMDgwyJGnDm95AC9T6SvjZjNoAyOYf/U1KnffTiZfwDAtIB2bVrOBbdrUa01cJ4PjpMC0VquhqRqdbpdsLsP585d44YXTTEzsI45e6pVNqbrqVqpfcOzYUS6dv8C27dtQFJWxsXGyuRyKopLLZTG27qlHHnmU8W1j9A/0gYhJSNLrRZJRNY1sLk+xVExVaOMUIAehT+j3CHsdfD/tpe953lYyQiUMwxcFekiu/oZLxMjEYURCQhj4KIpEGAXYtkvGzbJvYl/qYUi45cuaKoUbpkWSJGiaiqarWxWClA3yF5/6FLt37yaOkxeVcEWS/s5+7atfZe/evWl1l9RjFkCeXyTMu4R37kfZaLL56S+RO7QfSRKoiowQMpVKlV27dpLLZ/F9H9uxOTx5GX10iJXVJQxDI5ctUCwWabfbaJqa2oTJEiOjI6k/LSmNuN3uUKvVUBSVKEp7agOviyJLZDIuSRKTz2V55tmj7Nmzl2w2R6lUJpfLMTQ0kiZdanW6HY/NzTrezCz9kmD1J27HDjdQDJe6Xsa2cnR66+TzOcqlAdbXN3CdLP/+4x+jWMxx6KaDeF7I8ePPs2P3NtxMniSCVmMV3clSX10gjiPKQ9uA+LrA9fVEYl6RKN96z1Ul6VcDkhef11tMoBgJTTfRM3ls26G2vsmZZ59gfXmRPQfuoDS4i836OobjsmfPLl44fZLxkUF+9/c+xrZtQ7z5rts4f+EM7373+zh0+13IaoiQ25gMkHVL1JshfQMlDGeRHTuHUUQFzaxjmCbNWoY/+NhX2X/bGIOlMrOzV3jsiUeJpYR733oPR489w97tGVw1IIwUFKNNRu8jlsEwLFTVQDEdbLdIqa+EpMJjjx5heGQvQSTYuz2mUh3lsUdP8fE//ApvffshSFr0um0yToYwUbFzg9z/3p/CyQyiGTmuXLnEkcNPcdeb7uH+d9yNpKQ95smL86KX7E1ePiavGR8hvfY7f5Woz6sLHNdTtH25Iq4kSS9Rjl8Ffl6PlXctQaGXA+UfRbX1ese53jFeLWh13f3/iIDrq8/z5edwvbiRQtG17ssbiR8D17+j8Y8VuF47Xh+4Xit+kAv7h78Z0vOMp+ZJak1ELnO9I71mTSwSlDgiEpAcO0PUaKNaBpqu0+n6nD93gazrksQRUQwIiY2NTZYW5hka6EfTdfbu2cOnP/1pdu/ZTUyEaTr4QchNt9zEufPnOHH8JMeOHWdmeoq77rqDbq9Lq9VhaHSUubl5LEOn1+3Q8wKyuSyICJEkhD50vC6aquAHPs89d5TxsR006g2Wl5eo1dsMDPQTRhGGbqLrNu3GOpIktiZsCXEioWoKjpOqsGbzWRRVYOtq2t9JgkBw8dx5ZN1AUzUWFxZ59plnueXm27BdCz8IkWWFbrfL6VMvsG1sHMs10FQFkrTH1rFMNtbXkCWJZqORVsnsTZIEaosS3/7Od5FkQSmfRVJVut0OJKm6ca/XIxECy7GI4wjP63Jl8jKFYoHdu3fhui5xHLJZq2EaFkIWxInADyI21jeREon+gX5WVpc4d/YM1b5qClRsnTCKtrwqI7rdFradZ3V1Bcs2CQKfVqtFu9FEVRTy+TyXJycplUrous6TTz7N6NgwuqmxsLiIY7u0mi+JdPQ8D8Wewvc9THkfpmkThAHK2UmS991HuH8vpiEzNX2Bmak5SsUyhXyZTDaH54U0W10ef/RbzE1Psit4ktL+d5FIMgP9g8zOzjE4MMDs7BSDwwMoqkwUxAyNDGEYOmHg0ajXkGQJSUr7lVMqoiDo+rRaHSrlKraTYWBwGFUVyLJgY2Od7du2MT8/z+6d2xkeGcXOZEgQtFstvG6Xs+fOIEuCXCZDtpDHjwJy+SJhnGCbNs8fe55KuYyiyQR+wOLCEk8+8QSlYhHXtaht1tmxYxeDg0MYpoGmGoRBiGmm1VMhQJVVXNdhdnaKUqlIq93GzWQoFwokSIRhzPjYKIoQzC8skMlkiaOYr375S2lVz++izj+GrBZZ8wpcaDhUR3cwOTnP8OgI09OXWV/ZQJYTTMvCMGykkwsIITjOMqqu42ZTQC6ExNr6Bn2VEkkSEYURpW2301P7uXz5CqNjIyBBJ4jJDOyknjhoiozZmUedepTg8mOotSnCmROsnD+GM3yQTK7Awf0HWVyaZ+fOMQYGBhnoH8MPfW6//Ta+8bVvks/lmJmZ4oG3v435qWkSfPoGqyS2jXzyMq3tVRyhEEfg93y0LYAvhIbj5PD9iLX1Der1OrpuAzJXrkyzurbGTYduYWx8jDCMXpw8Cjm1ORGp5CgCKJVK7Ng+RhLHqJoKQtDr9SgW8sRJSEJMFEds376NwcERFFWm1+tiGAaSUJBkaat/VU6TNrLMU08cptFqMjA4gKzIdHs93HwJWTPQDWurZy4CIpBeorQLSaSgUSjIsoQQoMhS2ssoKyQxCCGjqjJekIJhy7LwvADLtmk2WmiaCiT0et000SQrhGHE0EAf5Ur5xaSHJMH83DylUondu3eTy+WQZZlWp4Uiq2liaH6ZwDIR99zMYs9j7Gvfo/vRX6f55LNoiszCwiKZjMvCwjylUoGVtUWiMKZYLANQLBaxLZtOu0M+n0OWJY4+9xwjI8O02u2tKm9Mr5fK2DQbTcIwoNFo0Go1SanLMZZtp1VpXSOOE8IooFwqoWoKzWY9ZTMgocgKj33vceqNBpIksX1xFSeM0f75LyBV9vLwqXk8z+ORR57k5lu3Mza6A1k41JtrRKFgcLDCPW+5i8OHn2Z8bCejo+PYWYv5xXWyboGpyXNUBkcQQZuRkWHQXd4IuN7IOl42IX+9bZJEBgSCCEQKggy7xO69E1y6dJYTJ57DdW2OPvcE+yZuQhIKjp1hYu8e/vXv/j7/7S//Mu9//3v49F//Nceee4E33/0uLlx5no/+n/+Z0dEKn/2zw9z55gnWmwp/9ud/xc23F2jWTJ46ssLRk4eZOLCfXLaflSWF+x64iZtuuYnRbSNUB/q56+67qG1u8vC3v83tN+9ADjeJQwnVjGitS0h6j8DrMDgySJCoPPbks+zae5BGc5W77riTgfIAb73/bsx4GiFCqpUyBw6Msm17P5ZrEEWwutZmrRby8U98ntvufQDLrnL86DkkKaZUKrGwuMID77ib+Or3+LKE/esBw5dWXLsN7PXiegDu5YD21UD5h2Hqfb9V3P9SQOsN9/tfELj+bcbfhXP4QePHwPUfTbw+cH29/obvJ35UwDX4jd8jfuw55A88cL0jvWZNLHyUOK02cuwMy1dmKVTTybMsq0R+yGOPPMLmxiqGbnLm7AU2Nza5+013EAUec3PzFAsFojihr78fzdA4euws23eMo+owNjrKzu276KsOsL6xxu7dO0AIypUKvVAgIh8pSu1qJN1idn4akoD5uTlazS4jo2NIqo+umbSaPpbhYGgya+uLdHsSlWoJ27bodj1AJg7aKcXRdtF1CyEUnIzL6uoao2MjZPMuXtBhcWYWLwwolcvEUczayiqRJJHP59lcX2N0ZJSvffVBdk7sxHHdVNhJUthYXaO/2o9uGUhSTLfVJA562JpKtxtSyOVotppkMg6YKQXOYJCh4VEq5RKOpdLzUxAjKzJxEtNqt4iTmHanjSrLJEnM0uICbsbBdiw2NzawbYdu18e2HTzPQ1ZVVM1kdHicw08+xbYdYwSBR7WvgmVZJHFMjMbaao1crojf8xBJgqbbWJZBp9uiVCxi6iaB53P58iSdTodiqUSv16PZajE8OEq9sUk2m9lSO024dPEKlycn2bFzB6alE8nnEUIi7o0jK2kPiPzcGVq/8l70vkEkETM3e4mVxVU21lvMzy/xR3/8Cd7xznfR7XrccnCC5tRhCmIFrbwXISTm5ufodbvkshlGRoboeh0UTWZ1ZZ0oDnFcG0WWyGZccrkSjUYLSciEQcTs7BytWp0oCDl34QKqbiCpCmsrC2SyGTRVIwh9isUChUIe23EIoxghScRhakeyb98ehgcG6B8coN5uods2UQK6pjN56RKVUom15RVy5SyappHEgozrIoRImQiDw0hSSsFdWFrC1AxWV1fJ53N0Om1sx6a2tomsiNSHVgJNV2m0mmyurLNRr1MuV4jDgNmZKSzXxTBMTp88xcTuneidGk7rPHEc4418iFbi4jg5YhIee+xpRsdH6e8rsDC9yPYdIximharpJMfnUBUZ/c3byWazbGzRRy9fukxfXx9x1KPVahNEMbabRdXNFPhEAaZtYlo2YZLQbvZwK4Po1e18++hlllZqqLFH3pTJhKuo048TTR3BqZ9mR9ZDbc2RG57gox/9D+gODA8N8fThI2mypJjh5AunkEOJ0bFBjIzGRq2B1fLRF1eIdZ1Oq0MYBCiKTCJFSIpEnMSEUYhhGTiWi9cNefbZ45w+fYb+gQEMw8A00v7sc+fOUS6XiIkRQkJIKcgRQkqFi7x2quwrC4IwRNUUEmJkRSKMQhzXwcm4HD/+AvoWZT8ME8JIoKgi9f+VZATpeclIjI2PkQiQZAlV1wkTAyGrRElCEHg065uYhgqyTEJanZUkiYQYIdQtFg1IAlqtJppmARJhmPrQ6rq85cgqkCWFSxcvMz+/yMBgP0Hgv0gh9vyUjdLrNrAdGyEgClNA/r1HH2ffxD4yboYwCNBUFUTC+QsXaDZaZOttVnyP5O4D5PoH4BvfYzLn8tB/+gS33nozJ0+cYs+ePXQ6bTIZh2wuZYJsrtfZ3KiTzWRodzp0e10M3aDT7aAbOs1Gk4HhIXo9j5iEKI5YWFhElmRarRabm5vIcipM52YyaLpOu9Mhm8uRyWYZHOgnDALiOMR1HeqNGq6TZXZ2BsuyabeaHDgwQWFlE+EHdH/+A4RhiKpqjI2N8r/+L/+Sf/IL7yKbKdNsRHzxS58liWXqjXUGB/vYs2eCVqvH3OwS2UIWy86RRBJ9lRyKYbEwdZFOp022MsSPGri+vDL46m1iZBAJchIhESIkUPUSuuMwum2EoeEKatzlypln2awn7Nixm7/49GcYHR6jVK5SrRQIAo+JvQd417t+it/49d/iQx96L7/yC/8bx04cYXO1y/7bYWqxzZVzMoXsAB/7/W9hZCroyj7y1YiF1UfYMXYHv/d/f5Iri/Ns27mPKDF45LuHuXJhhrtuvZtK2WDqhcOMDG9HMQOCtoNQ1lE06HkBh587w/6b76E0sJPPf+5T2JrMxK6dfPov/z/2jdo4TojtRJSLGcDjynSLkycnmZ5uMrMQ8Paf/O+YuH0/Ei7/8Q//E999+Ft0u21++6P/F6YtUir+NYDryyt21wSRPyRwvTofvFo5T9kQrzzW6zHjvt91Pwau//Xj78I5/KDxY+D6DzSESDO8L12c4hpLTAoUkxcnF+kivYYCdOMX+Uv7fL3lleyil/Z9tWoSffm7AEjvf9t1HqavpVpooU6ghgQkdL/7NPWlacp9g/h+gEgE+UKOkbERirks+XyFtY1NZmYvMzQ8QOBDsVTEtHQK+Rz5bIFO0+Py5BV0TaFYyFPb2EQAGdfl1PFjjAwNkiQCw3TotFq42Ty65XLm3HlMXUe3sxTyJZ45chhVScjmsyRBSgut9pVIRIxqmeQKZbJZHVXVOH/uMmdPnmWor58o6aIbNkLRiERCpuBSKheo9lXS7zBKkIVCvdFjaHCIXqeFkCUqg0NkHQdVkXEyOXLFEgNDI2QdB8M0EXI6ybUtE0USIGQ6zQ6mbhALQaykFNowEThuDiSZQF0BJESngKYlyFJCGEnEYYAfRGzW27iZApZtI6K0CmdbDrpmcvz4KUp9/ZimiarLdDtthBDIQiEB5qfnaK5v4GQctu/ZhSJLbG7UefThx5i6fJEd20aIQrAsmaWlRSYvz3J5cpL+/iGCICLj5giCCMM0SBSFUl+V/oFBJFnBMh103aTXbVDt70NS5FQYR0gsLS8zODxENpvF7/bohS8gaypyvAdJyND1kZ4/C//sZyFjIAnB6nKN0EvtMYaGhhgdGaFcLPD7/+pf8+Z738JQdI5EdRBaBlVXsR2TbC6D1+2haxZRCKbu4PltSuUiCAlNNViYW0ZxDGzDYfrKRUxdglihUK5gOhm+8MUvsWPbOOdOH2d6doEdO7ZjWQazs7PYlouiGqiqgiAiDj00XcUwTSTFoNNp8vj3HqNUqJDL5Fmdv4Jl6DhuhmyuRKPlUcinCR7D1EGWyBfy9Fcq6KrGiePHyWazlEsFJCm1YWk0akCSAhHd4cL5cwRel3y2wOpKi89+9muMj1bJ513A59yF8+zctYfTp89RrVQYyRnkgwYSMXH3Cs3i/VjFnWyub1DIueRLBUrFLI5poGsWbs6h10tSEC1LqGeWkWWZ9T4LQzPwvB6SpFAu9xHHEr1OgyiM6O8b4qFvfovdO3fTatbQVBnbstAVnYW5JaKoheuYRGHaS92LFJT8AJmBceTSOBu+ytxKi0zGQRMRcnMedf4Z3r1fY0yr4W0uMX77u8jmTUbHBqlWitzx1ns4efIZ4qBH/+Agc4lH3+efYOPnHuDydx7nyJFnyWVLKeU3StAUhYX5WSzDYGOjjqLK9PWXGR8f3mJoBDi2S6PRYurKDIV8ESElyLJEHIVEUYAQSbrIMoqqEkWpp6skwOt2UBUVSUjIkkzoBwwM92HbKRX4/Nlz9FVLLyYoVFUmDH1kWWBlMymoUGSSKNUIEIRbasAyrXaH544eY2BwEE2VaTbq2KaLJBSSWAZCUoue6KXHThSRECEJkfbbC5XGRote1yeKEqp9VcqVMqqx5b8aCSShIKsqiRAYpoGkKCAJ4iQijEJ27NyLrKaAXVFT4agojPnc5z7Hnt17KLS7iFyGpe2D5PMZ+MbjTHkNukvrHLzlJkZHRwiDgHyxALKEoup0Oh761CyduVky46MsLi5x+Kmn2TuxCyHH6KaOH3iEvo/r2KwsL0Ec4/W61Os1PN8j8D10Q8eyTBzHxvO6VColCvkczdompm6n7BZZorZZo7ZZxzEcTp86iWao3H3vW5ieW0K/MocWxqx/4J3ohkWj00PRLX7+F38G1xzh4vk53v62t7J37y5GRrbxx//+9/jpD78PVdfRnCxzM1fIZXNcuXyWcp9DJ2hj6RmOfO8R7r7vAQJFQ8bnjYwjXgFuXlr50vKqZ/pVyvjVwRdC2vo7BcmJkIhJ+6RFEhFKKkq2n/HdB4l9n6X5aWy6ZKtVmj04+vRzfOA97ybJZcm6Dt9+6BvEScD7P/IBPvO57/B7H/81/odf+U0+9/lvsvPAdv7g355GUpa5/4F7uDy7xGpH4cyFM6jWEF988Dl+8sMfpudDX2UC21XZc2AnleoYlWo/l2cucOrcLJbeIV8VmHaRTneduNfDMkDVVe64+920A4Ow43Ho5ruod2OePvoct996M3HtDFEgaNQ6JBEQqTzz/Axf+sYpHnxqGiVbJez65J0RciWV4Z2D/PIv/zpf/vKnuf9to9j5ISQprUxLW3+QXlvxfPU87eWtVK8eu+uN6VXa7mv385K40xv1oX4/YPZ6tN1Xr/t+qMQ3Em8sDvoSYH/xuMlrZ87JNabTL0/WXN0+AYR0NQHBi/fJVW1nIYmrM+Kt1165zx/kU7/8M15rzF79Hfx9BLA/Bq7/gOONG7CvfRML8dqL/cYv7htVKrt2tu3qOV8FrvIHXh+4vnKNRCLClIb27Fkmz5wmEDKGbjE5OUWxWEZRFBQ5xgsiMpkca+srDA0Mce7sJdwtX0zXdVKPwTikOlAkm7XY3FyjVCqQEDO3sEIURwwND/Pwo4+yc89eXjh1kpWVZfr6qgwM9LO5ucmDX38QxzI5sG+Cal8qyqKoCqvLq1iWSRyF6IpEs1Ejm8tv9ZnBxN7dtNs1NFVH0UxUVWNleZVMJkPkh6wsLaPICrqmIQmJdqdHxrURIu1fBYkojFJwKAskGSxLo1HbQIhUPEWRVXodD10z6XpdPv+5z3Lw0AFUTUE3DZJEsLa6hqlrqIqgG60RBwlK4NJqtzAdl54XQRySICgUS6ysLNNuNnBcJ+3Vq9fRdI18oUC1WqHTaRGHIaqipX1shomqaUxdnuLw4SMcvOkmzp49x0D/AIZmsblRxzQdhobGiKIQw1QpFoo4dgZZTlA1nUuXLtLf30+jUSeOolQURlYQSLRaLR5/4nE67S6ZjEMml01tJ9pt4jgml89vUSJTSvQzj60xsfv9yJKESKA1t4i2vEHzl96HrZvEcYzruJT7quw/cIgwjugfHOI//Mc/4hf+m19CkWW8819kc3kKqzQCQhDHCZZpkkQRV6Yu02zVUXWFJBLohoVAIgwC1tdWUyXY509g6DL5Yp5MtkCr3cZxHHbv3k1/Xx991Qo7du1BlmWiOLW2qdU3sS0X3/dQlPTelWUlFa8RkEQRExMT5AtFJElGMyy6PY+zZ85QyGcoFlzCKKJW22RmZoZisUgSJ8zNziFJKhubNTRNoVDMc/bsGcbHR0gSgetm6HZ7ZDJZ+ger1BsNKn19WLaLYZrs37cbVVNRVDVlGwjBsKuj1uYQfofldgMrY5K0Zskf+Hm+/uDXabebzM1OMzo+jmGYeL5PFEV0e21y+RyKqhBGIfalekphOzTAw498h2zepVjKEcU+jcYGxXyeTq+L7dgMBkeg9gK+tZ1M1kUSgmazxcLCAt/51qNs27adTqeLpquQRMhSal104sQJipV+dCeHmR8ksUrE2SFqSZZzU6ts77Oxw1X67/gIaxs1Dh26mSBIKJdHMDUXTbHJF6rYxTLy+gbmlWWElQpAqarC6NgIPc9DVmSy2SxRFOE4NkmSpN6sisr8/BLlchlJkmm32qyvr6FpCvliHoFAlpVUrIktNcmtZJAQEu12BxKBaVogJISkAAJF1ZAkaDZbRGGE1+umYkaahpAEzWaTtfU1LNOi22ltgdaYmDSxmMQJQsgEQUrdn5+fZ3homCgKME2LKI7xemmlNBERvV4q5BTFqY+yLBR8PyQMI2RZJUlg6soUK6urDAz0kxCj6SpxkpCEMfVaDSFA07Wtfty031UgkCQl3aekbFHXxRZNOaU3Dg0PUalUyJydZOkXPojVn1J/velZttlZdk7sSz1mw5CzL5xhYKAfhETgB1iWRbHjUc7mEH19ZDNZ9u7dw+LSItlcHlUxsEwXz+uiqCpra2tomobnefS6Pdqt1ot2Qo7jYFkWQ0NDaQV9q8c7jmB0bBjf91JhKlWj04uwXIfVtVUWFxfYv28Ce3YRJYxY+sl7KE9/id6lx/HL+6j2FalvbvL000/xwQ++h7fefw99/aP881/9p8SSxJGjJ9iod6gWsxw99hz7D0wgqxLtTgdDdzj29JMcuOkmYtVAIuRGgOv3H9d61r92niAFPRDpBN73PSxTp1Qp89SzX2dhepL9O/ZTLm8nVxxH6AlKInjom9/kwz/9s/TCgDtuu5UH3nYn9c0u73vPhxjdVuHi1Cp9A3mILJZWI05euMDBfT/BV776OJ5v0+75TC9McttN9/FXn/srHnjnO1BkG01RuDL5Aj/3Mx+gtfwCkhSQzeSRoohuu4aqqrxwfoFEGeXSdA83k8VyXAYG+tm+fZzN9XUeffgpzlycYW2zxp69EzTqTczsKIZd5djJy9z71rfw/vd8mL6+QT7xp59A0yzOn7vM6EiVd7zjPlDMVyj5XqUMX2scXgvu3rjC+Wra7xuO4g8BcF49x7vR/f0oQeuNxA0D5ddhJrx83n0jParX+vcbHOaG4/WO/6NOCvzXjB8D13/A8Y8NuKarI4gk4iOn6GyuMbJtF5qqs7iwjKqoXLx4CdVIUFUDx84giFHktM+s022h6yqWbaKpClemLjM0PAIIcpkC7VZa1VndqCFLMtVqH4VikXJfHwPVMpKU0t8M08AwDAr5LLlcBkhwXAdFUfCDVFxIliQ6rSZCxKytLNP1QizbJpNxiOMe62vLzMwu0dc/iCxrmJZJq9lASuCpp55icGCQdquNoes89N3vMj4+giyLVIVQbNEHAYjpdtpASD6fBQGKonDmhbOcP3eRHbt2kcm5DA72p8IvsoSsKsSJhGkYKJKgXa+hRy7CM6nVNikUS0SRIEokjC0BoTCKyWZcTEPHi1Jf2NTbUeVvvvAFbjm0n16vg23Z9Lo9hJDQDZ2Z6Vm279jBxL599Hpdvva1B3nTm25ls7ZGoVhgx46dhFHC/Mw0ceyzsb5Jvd5kfGyEMIkZGx9DSALbdgjCkPnZWVrtFpOXJ+nr62dsfIwojikV8qiaSq/Xw3Fd6o06mVyOXreLLKWVnVwuh+vaJHHMxsY6+baHXGvSfO+9GLpOq9kkW8gjFJl2s0u312NqaobV1TVUTWNzvUFh7i+J87txcuXUVkhSWF1ZIopCSuUimqHgZGy+98hhNC0VRZKATruBKmB0ZBTDkHGzGSRFR1NVVlZXKFcqPPTQNxkeHKLVbhMnpCJXqqNhhXQAACAASURBVIybcanX6mxsrmEYOt1u6gHq+yHdXpfVpRUcxwUhmJq+Qr5QJu2jE0xduUClnMWwXDRNxbIsdE1HSIKMm8eybaIo5uSpEyRJwMS+CTqdNtPTswghcJwsiBBN18jm8whZZn5xgXwhy+ryCtlsSo9sNprorQ3kdo2a1ybWZFRdJ6jPoqoalG7FMk36qxUq1TKOmyGKE7qdDrlcDts2UQ2VIApQVRV1sU2oSXgjBXK5AsViASDtYx0d5eGHv0OxVCKMQ9T2JSRJwuy/hW63i6pq6IbG8vIi7WbM+sYGpVKRUrmAH/hkbJd6vc7uPXtQNA3d0Dn5/AlmZ+cYGR5C13WKlX5w+6C9hlh+nsy+d/ONh77DnXe+BT/sEgSpTdTK4hS5jI4/2I/x6YdovuMODvYNki/lkCTlRSXubrdDs9mkUdugUirTarSRhIwsqaxvrHPyxAnm5+a56013pjYpmpbSByVpC8RJWwq/0ov+p1/72oPs27cfochIskycQJxAFKeyOIqi8ewzzxInMX19VYIoRJZkNF1DINANnaDXxe/2sOyU3iskGVVRCYII30+TUMPDQ3S7XdyMmwLRGFRNJQojoihEUTWEkAEJScj4W1ZBjUaTK5NTFIolZqdmKJYKFAtFJDmtpEqSSrfdJp/PIstpP7UkS4g4LUeEYYQsqUgi9SlNklR0LfC9Ld9HlVKxyNrCAvnFdVY/9E4KhQKyIqO2O/if+TrqrnGSJGZ1eYVarZZa6WzpCmiahrK6jkBwvl5DNwyCoEcmk0NVDDTNIghCVFXC8zyEEHS7PRqNBiRJ2u8PtFstLNvGcVxURWV5ZRnTMHAdB9u28QMPx7HpdrtMXp6kMjhCvlDk6SOHueXmm6ltrGLPLqOGMd2ffzcsPE8ul+VSx2JgcBCSiKHhCrfcvB/bNnHdIt3Qp9Fqc+7SFP/Tr/3PvOdd97N957aUlSFJFEtFGvUOUxfPcusddxBI6t86cDXkBFJ5O3TDQDctzEye2267k2cf+y4XTx9jcXWRm++8mU/+yZ+wf99ebrn9NkzLIoojAr/Nwvws+/beRL3eo6+vn3vf+VZuveVN/M6/+hNGt9/C0LYhPvTT7+YDP/XT7D9wF0urNQZHBzl+9CyHbjnErbffCbHGpQunGRnOcuLZx1i+8hw7d21DERL4XfykQxBCEBeQje189aHjFEo5kjjmzz/1KW655WYuXrzMX3/+EeaWa9RbXeYXFmg2W3zyz7/O7HyDSt8o7//g+5m5ssAL517gIz/1s4wMjfLR3/6XfOxjv4uq6aAorwWX1wBE1wYgNwZcf5RWNDe67d8H4PrGb7z+9tcCrjeicvxj4Hrj8WPg+g84Xu3T9dp4feD6g13Y3z9wfXlczTC+HLjeqLBUIgRCBIhI4crnvk4p4xIkCZquU6lU8QOfx5/4Hvtv2odtZYmDGEWkku+rq+uMjQ9gGKlfHyKmv7+KH0gcffYE/X1DfPlLX6VarWLZFuVyBUWSWF1bIZfPEvpp5aRYLLK8tESSxCSRz/DgIBu1GqZlvai4KoSUCo8IcDMZ8vkC8ZbIiizLdFpNZBkUzeWzn/k8+w/sQ9VkgqCH5wUcOHgwtTQxTUzTZNfEXnRdwet1iKKInucjCYEgIfADFFnGsiziJCYKQwSp6X2lv4qTdZEksE2TtbU1nIyDphs06k1sy2FjfYN2u52ad/s9yuX+lIrpB3i+x+zUFSrVKkmSsLqyTNjroug6mqYiSzJRFHHrLbcgEZDEEYEfIMsqrU4bRZFpNmoUSwW6XpelpSVuOniAVnsDTZfxgx6arpHJZigWC4SxT6lSYWFhCdM2KJZKxEkML1aeVFzToFou02y1UmNxAXNzc+RzWTrtNjMzM5QrFcIoIopjbNNmZXmZJ594knKlTBKHtFupMIy5sEbsmJj/5L3IskyYxMRxzPTUNKVCmeePnWBwcIh77rkX23b47J/+MfcNzqP130Kr3eHBrz/ExN79eL02YeAzPT3N9p070S2LHaPbWNvYoNPusrK8SBwFrK2tUSqUuXj5HF7gY9oZFBkkWUbTDYYGBllaXCAMeqytrlCpVrc+ewomZFmwublBqVRGkhQa9Vbaw+iHJHGCaRmYlgEJPPfcczzxxBPceedt+GEP3w8xTYNmo0Wj0eTwU0coVcr4fkBfXx+9XjelEydpNbdareI4LpOTl4mDLvl8kZ4X4Ps+xXwWIUIOP/kMBw4eYGlpGddvErU28WSwXIcEUtuT9hyxVkAu7iPjOLiuTbfXZbNW59LFS7RaLYaG0v67q4BsenqGzrBDe9Dm2HOniGMYHBqm1/WpbzQol/oolQvkC4UUAK+dJkkSQmc3Fy9eotFoEMchpVIeWTa47babKZULeL5HuVzF83qcOn2a8fHtW+0WCQPVfgr5HEkSMTszy+XLV1JJIqOE1FzAm3ycHff/Imsb65hmRLPdxs04nHz+YcaGMkiZMpEkUTx8hrZroRs6cZKq4kZhWjknSZCEwpmz55GVVKk3k82iqgqPP/E42WwW17Xp76/ghzGGYaa+yFt2MXGcbIm5pVS1Xbt2bVUnUyViiVQw6cSJ4ywvL1GpVPF6Ho5t85WvfImDBw+h6zqSJGGYBl7Po91qYRpWarElyURxKqazurrGQ9/8Jjt37kBRZEzTIAi22C4ife5MXpkkjiQMw3wFFbHXTUXRFEUhjCIcx2Ggv0y5UiaOQyRJSntthYqmyCn9PQkhEfQ8nzgK8D0Py7SIo1Th9Fvf/hatVpNsNoNl22n1GIGQYpy1GqEf8MC//V0+8pGPpM+Xkov5p1+k8xu/hDo5x6njJzh08CCrq6vpmEsgyxLaep16vU7NVJmevsK2bWPEccK5c+eZX5wnikLCMO3XTxVXE8IgpNPt0OmkonWO65LLZjEMizhKrx9FkalUyhw7doxCIUcQ+Agh2L59B5JuoOsaXrfH3r17KBXzKJdnwfNI/vufRVo8QRiEjN35IfwQJi9fpFLOc+rUyS1RKI9EAtO2qZarjA2P0l/NsX3HNoQQBGGEqhkIIbO+NMeOXbsJZRVFRNd9Lr/41P0hgetL+3nlPoUQpALQgkSIVH2cBEU3EaLEwf2HOH36aeYXz5DNhnzo3e+k027wnYe/w6FDh5BIWF9b5df+xW/iukXuvvc+fvVf/CbFYoF8ocT42H4++KGf5fzFk7zrfQf47Of/kr0T+3jg/p9gYuIQ5WIfAyODrK1vEvgxe3YNEUWbdNbOcWBPFT8MkEVE3KsRJDGtVsD5iysIcxi0EpX+Kq5tcd89b0bTVD728f+H8fHd7N27h8NHnuK2295EvRGyY9/NxLHB//hrv853H/kW7/3ATzG+fZBvPfQofrvDF7/4CX711/4ZppkjIn7xXn5pjnN9yu4rAZP0os3MteZwb1RtfTnd9er/rxXX2/9rx/vGgeu1Xn890Pfyz32t9rbrrXu1qvGradev/4Guseo6VdarCsxXX3tlC99rP98rzjt5Y4r2i+992fZvRNu++llffX39fYkfA9d/4PHDANcf8Ig3+L7r31TwgwHXWCRIRMihzPyXv4sU+ghVwjB0ZFlB01T27t2DUGWIVdaX11lbW8KyDHTDwM0YbKyvI8sKnpdmzm0nw/DQEF6vw8BgmWpfnoyb5fLFS8zNzDI8MoSuy/ien4oUyXJqVJ/LQewzMztLdWAA3TBJ4jDtiTUMgjDEcjOEiSCRFQxNI44SZEXF1A00VUfIOkPDQ6RdECGqKlB1izCOyBXyzMzNkSvkEbJCHPooMnieh+O4zM7MkHFd2u02tu0QR4K19bX0yRcnJEmMrMrotgFxTBLHFIqFVIwBUCWFVrtHLl/EyWb58oMPUqkM4mYKCElBFmBoEtlcgTCK6LTbFAs5JGIsy6ZZrxOHEe1mC13V6HXrNBstPD8kShIMXSeOIzRVpud3KRQL2JZJo15jZGRbWiUtl9F0izACIWISEaEbOoViBSdjE4QhsiIjpNQyII6htblBFEVU+/toNJvohkGpXOZvPv95br7pJmzLQlYVJE1NwZ4QzE7PMDwyQnHkIrq9gibGkRUF5dhZ4n/6YeK924glUGWFyPPpK1WorzaYn5lj7669/Pb//n9w84Gb+d6Df8Wdu2zMvj3ohkEcC9odjyRM6bSaZiKrOhcuXkZKPC5cvEwQBOzauQNVkTCcDIVCmUqlRJwkZDIlFuamKRSKhGGqkNtptRkeKAEJk5emsJ0MqqyiqDLtdovuFsD0/ZBOp4duKqwurdJstnAzNpCwOD/N2OgYExP7SISgUCpQ29wkDEIc28WxHYSQ6Busoihaas0kyQwMDGDoFpqus7CwkFavHZs46GEaFnMLSxTyBVQVpCRk956DKa28s4mV+NR9n0QIJEmk9FFNI6mf56x/iHJlgMjvsbi8iKbrZDJZLMumWCym4CuOOH7sBCNDIxTzeWQJuu0WQ6NDFAoZ6vV1NtbXqNfqZDJZEpH6gm5sbCJqZ0niBHf4TsrlCoZhUC4XUVRBt9elWMrhhx6XLl3BtrOYloZhOmiqxvraGksLc+iaQhh5mIaJHwTIkoYXRJSr/YRmmZLWxdw8TS23i2eOHOXwk6fJuiXUuMPq/CyD20bZyBm4L8whJxBb1laiTXBl6grFYoG11VUKxSrf+e7D6KbJ+PZx/NBnbmaWYr7EpUuXsGyDbNYhkytQb9Q5cvgIq6urDA0Pbf1+pnoFqbLwFusiCrcSViCSBF3TyOayKIqGYzsUCwWq1SqFUhFJSGn/VZygGzqallJ/wzBCiIRep42qpz6tBw4eRJIlEDGSDEIoW5OgBD/wOXr0KKdOnmf//oNbr8dAhKGpaeVUQL6QR9dVZCmmVksFtuJY4PkBcQSappBEPZIkQtpik5i6ytzsHJaV/t4KITE4NIRtO2QybuoVK0lIQiJOQpQL0yTVMqO/+HNUKlUMQyWUIqKvPIJ28wTqWp2+ahWv16Ovry+1FEtC1tdXKfoxpmlCfwnTSp8Pf/OFL6b2WzvGkFUwt5Kd7XaH48efR1EU4ijC87z0yZUkZLJZZDn1OS4UCgwNDnHu7Fn27tlNnET0vC5hGOL5PqqqIoDlpWXW1tYwTB1zepGk5/Orx55gr9shk8lyZk1H0V0sS0MQE4URo6PjLE1f4NKVSXbu2oMuK5QzGXbsHqfb7aBpOlEco2kmKyur+O06u/ZO4CUS8t8ScL0agdBJkBDESMQgEgQgKxJatsRPvPsDbO/vZ/LE82ysnCGTdfibL3yJN73pzfzNZz5DtW+MXTsOcvdb7qbTrXP/W3+Sz/7lF9h/cC933HkLmxs1+sp5cplRTp24yKGDB/mLv/gk9917L7V6h3pzk3anx5PfO8zMldPIcpuS3SSfEaiGQRi0UcMWqptFVW1iXLZPvInb734b80urPHvkKQ7s28UnP/kp7njzvdx1226q1Rxf/tKXuP2O+/jGN4/g5gx+67d+h69//Rt8+Gfex9T8MvMLlxmojvFHH/93VPoFH/zp96MbOWKR4Pt+ahen61sJFel1x+BF0LP1nfu+n4q2BcE1rYled9ReB1xdjTfyTb3Wtm8EdF/db3u9Y98osH31+QohfniwdoO3wetVuW9oG77/e+77ff+PgevfsfgxcH1lJMnV/qCrQFBcZ7l+vHHm7Fr7u9aP2/WOk4o7xV95BAD5A/fzcnGHq8s1fyzjmFjRiLs+8194kGKuQGFLyMgPukgCkhiQBUkSoqkKzzzzPKpuEyOxsryC42bJZfPU6i0M3SaJI1RVsLq6zMjIOBvrTS5eOsvEvt0MjwzSarZwTBfdMDFMjfn5ORCwublB1izgOi62o3HmzGlKlWF0yWNlaQldsVAlBRKPTmsT3/Px/Q5RmNJoG80W6+sNstkMmaxLEGwpavZqWLpJEgquXJ5kcKBM6HfZ3KjzZ//509x225tIYsjl80iKgheEeH6IoqoYQqXXaWHZKq1WnaybY/bKLLZlML+wgKbpxACxQAiZVquZ9nNls+y8A5yKT2NR4bFHHmF0dHjLF7fN5MWLDA32EfhdEpGgywqKqtL1fNxcBlWTmb40x8MPP8bevfvodD0ef/wpZmcWGewr42YyzMzNkXFzLC6u4Hkh+WJKZ5UBv9N6UZJ/bmYaU9dYXlgmkyvi+wFez8PQNWRFQnczxEJmdnqJpw8/w/DIML7fY2JiF0JK6Hpdkhgs3WZuepr52TnGt41jZxyEdY5EeGjiILJQkY6dpvXz70LvH0BTBL1eBySZbz30KEM7tlEol0CCO+64nfm5GdB0DtnnkMbfwYkjjzE+to0Tx48zPNRHtxcgKQqZTIZcPkcSyXieRxD6DAwMICkqpqXS83s8e/Qo+/cfoNdtEQYJzXoDkcQsLi6wa9dOLk3NMzQ6ShgHWLZJo9HEcjOcOn2Wndt3poIeESzMz1OpDmC7FpVqCU1TUGQZVZaRFY21zU0sx0XVDEzTBSGhKSqtVoNyqUC73ePppw+zbds2JEnCcTNMTl3ANE2KhTKGYbGyuk6hPMSRZ46ysLhAX385pSmHIb12DSfx0HpNQl3Gsk0kJaWLWqZFffEMuiqTP/BeTMtmanoOx3RZmJmnb6CfOAnI5108r4UQEfmMjh90iKOYnufjeR4D1SqyJHH65GkKhWJK0U0SFEmwsrRCr9Mlm8ynE4b8fiQlIQg6RGGEIukYW+JdcZSQzeUwDJXVhXkyrsOxY8e4eGmSyakZdM1BN0xMyySOAyp9eXLlEqZlYuoGXWGhbl5k5dwzzNUT3vvOt/Nnf/qn3HvfO+gf2sW50w+zbfdtzG3fQe7oWdS1Gu2fvJtP/86/od3qsmv3HkzH5PzZ89x771vQFJko8NA1Gdd1cRwn9QDu609ttmSJsy+cp93wGBkZRyLGtQ2CKEjbBbZEXTw/oL7ZRtMUVF0BScU0M9i2hSRDlAQoqkanF/DNb3yD3bv3oCoKCGi3W+iaA5Ba53g9dMNE///Ze89gyc77vPN3cuwc7+2b0yQAg0AiEQQYAJkSLVFhV2m9XlepLG2VP7mk/WDvh12vP2ztylW7VWurJJWKlkgFkrJpShRBAkQi4hAYDDAzwOSbc+zcffLZD+fewWB4BxyQkixZ+E+dqrnd7+nT/fbb532f9//8n0dRUCQF33fpdDooikan00OWZUQRgtBHllR8L+aBh+5BlmMkOWGaRCEgKETEdHsdZElmfm4B1RASOx1BRBIVXnnpVXLZPLKicP7dC8iqjmlmiEIBUVBIZyyWluavq3JLqoJp6SBAGAcgCom6cSSinb2C+y/+R0bvPY6qS/i+i+/0MdZ3UDo9trc2SaVTCCJs72wRExIGLuViBWW3TQxIY0OIqszVi3Pcdedd1GqDSJLItSvXKJWLCKKA67mkM2nCKGR1LfFyFUjo9IZhoRoKvtPD0mUymTT5UolMLoXnOGRSaXa2dtBUE9NMIYkipXKJkdFhJEUmAKi3KP/mrzOuN5Kyl2aK3/53/yef/8mfIQzAD3xifDKDaUbH7sDpCSCAnTdw/B6ipLC9W2dnZxtRCuiurbBV32byjkkgJI51BA738uQGmuoHz/+HzdUhEO9b/RwIQf7gAl6Efbq3BIIEsUgci0m2XxLxEckMTRJna8xeuMapl7/H1KBGVH+HE0Pw9IunCPu7uJ0249P3cebdOYp5lSNHptne3qI2VEEUDWavXOKRRx7kzJlXyabSjFRH+f0v/gG/8Es/Q6WSY7CS5cR0ho3FNwhaTbLVQUQ5pt/eo91xUBWTRlPh1dPL1I58DL1cZHJ4jLvv/jgvv3qGn/7Zn0WWQ5771nd4+8xZ7v/4A5w8eSefffwxfvrnf53Tb53hc59/nN3dPQbLA2y1ZE5MD/D8X/weOG1+8gu/hJ4vISkJxV/TdRAFRCnpkwOBq+uHKIKwf1wXwRKuz5n9fh9Jkq5nYK/39608doX3zv8wPqO3C8Zu9fzNgPZ2GX8/7JybxYoOy4h+UBwmxCQcIth06Er6ejvhhr+F2wK+gnD9rNtr+yPSfv8+Zl0/Aq7/wOKH04c/OG53Z+v98WE8ZPdV3U4eQXzsY/s+rrd7QxSTrKvvsf3tZ6mW8oRCsoiLo4hOp8fmxnYCGPoeuqowPTXJ0uI8k1NjDA4M0O60mZ+bY3x8jFa7RamUR5KSG76um5x58yxzc7PMzBwliiJ0XcP3PZaXVyiVS1iWiSSJaJrB8soCiCDJCradQpZCBEHB9z1MS0VVYXNzkyiEUqmMJIromkYcg2FY5HKJ5L+qqMiKwt5eUoPlezGSqGIYJulMmhgR3w+ZnJrEMHUkGSRFotVqIgoSV69eY21tk9deeZWpI9PJAiubw3F9QGRpcYlWq0W1WkXVFCQ5oRRGUUi5VCIMA7a7l5JaxG6OI0cTCqLruizOL5LJZFheXqZcriIIAmtr6yiKyu5eA8u2EQUBRZbIZDMM1gZRFJl8PsfRYzPEcYimJ7Wekihx5fIlpifGEOVEeU+QRFqtNv1en1w2Qy6XZ3Nrm5HRUZbmrqIqMnbK2vdzFPHDAN9zKeTzzExPsbm9kQgYNdrk8wVAQJYVBFEkk07TbrVpt1sUikVC+SpxFNPcLmE6HlxdQP1ffwMRgW6rQRy6yAKsr65iWmmiKGR+dpaR0RHeOP0GO40uW32NyfrXST/xf7F37RWGh4fI5LJcu3aNwA/I5dK88PwzNBptjh8/RrFU5J1330FRFDTTRJRkypUq3V4i+JLJZDDMpF44X8gjSTKFQpEoCjFMHV03UFUt8cyMYzLpLGtr6ywtL3HnXXciCAIXLl7Adfo4joOqqmxsbFCpVul0egwODtDv9xEQ0DWDy5evoMoqi4tLlCsVVFUll8vzzjvvIEoSpVKebreLaSbjXFVUPNdjZmaa1159jZGRUWRRRZV1vE4Lo9sk0mW8IGBvr57U/G7vkErZiK3LKNM/i2KW8R2PYqGApus889xzjI6OIokyq6urlEslJEkmZdssLiyTL5TJf2ue7EIP52iB+bkFjh49RrPZQNN0RkZGabbaVAcGyOYyeNvnkvdc+xitZoNsJovnBaytb1AslojjiDAMSKdszp59G9uyURSFbDaHadoMDg4yPT2JbZs0m3VS6UQ199qVSzj9Hpqms7m5Td0TmbQdyjmD77y1xF333ouoKrz06qucvPNunMChMlKmfdc00nYT60+/Q/a//zy5WKZYKhITMXttgaeefop+v8/eXp1ioYhpGiiKgmXZSLLM1772VcYnRqlWqkxPzTA3O8vW1hbNZovqQDWhlwkCEHHq1KvMzc4xNjacAFcOFEQTACGJiXewJEmMDNfQDY0wDPF8L6H8RjJPPf00MzPTSJKCICSqxFEUJ/WyQcTXv/5faLbaDA3VEKXk3hHHAt/85l9x8uQ96IaG6zrIskSv10USZeIoQhQFdvd2ef65F7j33vvQVANRlIljgZdefpmFxUWOHj1CJpPGsi22t7dZXl6mUq4giDGGaSAIEn2njywn9cLXF+iCiCTG9FZX0df3eGYIRicqRJFGGPrMz81iXVsmAlqtJivLywwO1ggC2N7awUqlEWUFbbfF8vIya6GDpsqsLq8zWKuSzWZw+n3K5VJSp6zrrK6u8taZM2QyGaIoxOk7yLKMZVlJTW+zSaVSolQsISsqpmWxsrqKKAi0mi2CMKTT7bO1vcPg4CBhlPj2RlGE5AdIm7tUf/M30Hbfpd/roY08yE98/lO0Wh2KhSIXL15ifGycIHZQlYQ5EUY+ghgTxUmJiCjKVCplms06za0NrHSK4YkxwlgC5A8Grrc1Bx/W7j2l1hvP+cHMk/ADbZKx+t7/IfHUve9j9/PQI5/g1PdPsbqc1MnnM2kun/s+E0NZMjYMlhXOvfM6/f4Wi4vnKJcsaoM5fvf3f5djx6c5cdcdjM8cox8J1FfX2F5f4tRLL/Lk17+BGPQZLGUwjIhqtYTjtJGIsEwdRbNptkV22zJ2foTxqRO4vcSPvVgoEPguiixw5sw7TB85xj33fZzJmSNopkWn7fPWW29h2ymee/YFTCPDy688x+biuzS3FqgMlPipX/hFJNO8Tvd9P6A8JOP6AWuyg35LmAkfTpDpZursj5L1vJ3nfpy2H+Y1f+R6zkNO+bHf4e1mbH/c69xmfARc/w7FR8D1B+PvCnC9NR15fxc3m94HrXD7wFUgJEKJAma/+hdkLAPVyiEIAru7dSwrjW2leOP114mjGNs0WVyYZWCgRL6Yod3p0e12UTWVfr9PvV7H9xND+WazjSxrnH7jDEeOzFCtDmDbNpIk4Hp9isUyAtBo1HFcF8tKUahkEWSFZqNLNp3Gcxt4nkwun6HV3sZxuuSyOSwjxdrGOrZts72zg2HYtFotgjDgL7/5Taamp4gikEQ5oZupBoqiAeAHAaKoYFs2siIhiuC6fSRZRFGURMlYViiVqmxtb2LbKYqlMqKkIKsaiCJry2uMjIxwbfYaqbSNLIsIiNfpSZIkYZVcNFVB8UtIkki328UwTSRRwDAtXnrlNe666ySiILCxtU06k+WFF15E11R8301AvW2hairtdotyuYhlGfsqtwbdTo92q0kxn0OWIIwSamAsiBimhSbJXLl8mWw+TyaXxXV9uo0dUraN47qYlsXy6jqplIWqyERhQKvVJF8ooigKsSAjSgoIIoqqIIjg9B0URaZYKCZ05+gdNE3nhadXmIolRFlG/NWfob69jSREZLM2Vy9fRJVlqoPDVMolXnrpRY4emaHZanL82B089MQv0Nu6CGuvEkgGA4NVXn71NcZHx0ilLKLQZ7BawQ9j8vkcm1ubHD9+jEajgWkn9Yy6oROFcPr0GYrFIqIoUm80IAZFVfE9Hz/wElokArKk8P1XXqFcqiCIMo7rUh0cIBZjvJ5DNpMhk81g2TY9x4EYDMNkaWkZQYSt0A1BYAAAIABJREFUzXUa9SYp2yaOYnL5AtXqAKtrq/trIoEwjBgcGAQhRlW16/5+iqqgqjILiwv4vs9dd57EcXya6yuUoi6RKiNpakKBN01EUU5q/NwNDDuLMvoZ3j37Lmk7xdLyAuWBKiMTE3z9P32dfC5HGEZ0e30sy8bzXJZX1qlWa4RvLSV1xyfKqPt1mWEUUalU6Tt90tksqqrS7XWRWpcxDB25eAe6bkCcfJ4oinBdl2vXrjI0VCMIfLKZLDHQaDRZW99kamqaYqGAromsra9SLBTY2txCknSK+cTmqNlqMzo2gZUrIskCul9n7NO/ihsGdHoug8NjHD96D+s7C8Rxm2KpSGt4FHNqlPxXn8KcmaL5jx9FvbrA6PA4M9PTDA8PMzNzBEVR2Npax7ZT7O7sYRgG3V6XbMYkk80QhTGLi8uMjia1l+VKGVEQEoAoieRyGe44cQd+4L+PLpgs4vbFjgB5v0ZaUWQkUbpOtRUFhYWFeeZmZxkeHiEMY776lT9jamqaK5evUiqVESWZ++77GJqmcpBiiKOY2uAQhmEhy9I+VZh9VXcVQQRVVbBMi5GRUQzNxvNC3L6LruvUhgYZGx0l3FcKT6czKIpCJpOI3bEvSKXI8vW63MQOSsBz/URVO5YxV7aJDBX9C49x7co1GvU2xUIeVVXZ/fYLZHI5Wo0GQ0OjaKrB+sYm33vhZXYbdcbHxpGjiHboYVWK2IaJZWfY2tokCD3yhRyqkvjZdrtdMuk0pVIJBIEwStSUdd1gZ2cXy7JBiBgYrGHZNpqmE8cxsqyiaRrPP/cscSRw/MQdvHvhEiMjw6iahqLILK8sY0Yx8uYu4a/8FOHSaaIwpJeapuPuMj11BEGQWVtdY2p6CkkR2dneY35+IRFrc7r0nR6mkUJVDAQhqYX32nWO33kCUTVgX3FaOHSTmb8V4JrUz0vvy+Qmmb/wOsPqoBRHTheQNYNjx07ghxGLK5uYskclrxP7dTbXLkKwQyEFxZRL7KxRycY0ty4zMTTIS8/9FbYBZ8++jiR6LFw6w/REliOTJbz2HrrSZ3gkxeBAnjBwcPodZBEEUWRpaYdGV+Gdy9tcmdvmwYceIYp7vPH6m9h2ClVVuXjxAo8/8TNYdobywABvnT3Hd595gWNHT7CwsMTo6DijIxN874UXOf/m06wvXUIIu2SKeX7mF38FdGvfn/n9WVDhMPGsW6zJDo4D4Hpjf9+OTcrNoPmHffc/DnD90awXby9+LNAKHwHXv4PxEXD9bzwOmyx+WHwY1bfbi/dPRMnrfnDG9f1x6/dx8PmSm7JISASuywt/+KecrPswMkwYJQbaiXqsiGlaPPWdpxgeqjExMUYqYyNKAr2uiyzJlMtlcrkcoihSKpWwLAvD0Gm1Wpw8eRf5fA7DMHjz9JsoqgoxOI6Prmt4nku5XGF+fhFFlVEUFV3TCQIf33Po9D0s28L3XCRRxHVcLNNAMSw8zwUBTMvGNC0CP6Tb61IsFOl2O6TTaVTNSEC/kDiBGYaRKIsS0Wo3yGQzKKpGHMHC4iK5XIFMJoskiWRSKRQlUdZNp9PEMTz99NNMT03Tajd55rvPcP/999Ptdul1umiaRqfTwXVd1EwHx3HobCYLRcOyiIFWfYvSwACaYaHICjvbW4yMT2DbKcaHxxgYGCCVshIlU1EgCiN0PfHdXF5eplQqEcdJFnR3Z5tquUAYgueHxEAYBKiqwsriMgiQzqQRJRlJUSEMyOXzyKqKKMtkszmiOObypYsU8wV838cPYhzHQxQFej2Hbz/5bY7MTHPgJWwaJqsrK4maqD6P67pMj34O9dxlgl/4HNuVEnEUk8mk6LRbZHIZWq0WA9Vh1lZX+cTDD9N3+4xNTdBrO6iqhlC6G2X2K0ilY+iaiG1Z+H5AKmWRyaQQJCiVBhLf2Tjx25ybm2NyYoqNjRVsy2BzfYOnv/sM9d06k5OThEGygbC0tMyZN99kfGyMmAjHcajXG0xNT+L5ASDwX77+DVJpm2wmhdPtIkgCnW4X07ZpNltsbW1TLJTY2dlhbGyEYiFPJmXj+y65fIGNzc19VVWFgYEqe3t1RkZG2VjfQBAkHNfj9e+/weTkFJcuX6K+t0MmnWJycpJ2q427vUpNC9jutGh0WtiWRbfbxfc9REFEwSMrbeLVvoCkW1TKQxCHCESYKRtZ19AVFT/wGRkZ4dzZc/R6ffKFLCMjY7zy6ilq24noWnRnlZWVlesbSe1Oh0uXLjM5MYEfeMiyQrPrYRWn2GkF7O7sYafSvPTyy2xsbjE0OEin08a2LebmZjENA02z+PIf/wlj4+NUKhXOnz+P5/aJ45h6o06pXGF7e5dCPks2l+fN02cSpdZSgVA2UOrzbCxc4cJOyBM/8Xmef/5Fpo8dZ3ioyO72CmKcbPbE1TKtE1PYL53BWFgjMhSCMMJOWSiKjO+7QIQsiViWyebmNq+/cZoHH3yAxt4eKcum2+tRrVZQNY3a4CAQ0u/3sG2LMAwgjpHE5DcryTIXLl5icHCQKI7wPBdJOlicSiiquG+ppNDpdpmfWySTTtNqNcjls5TLZdbXNymXcgwMVMnu/xampif3Qal0PTvW6XR56cWXOXbsGI7bQ1WVfRCSWOkIAkRxiCAm92NJVHjxxe9Rqw0iKxKnTp0ilU7Ev7Y2t6lUysiyhKyIxLHApctXqFYHCfYF3wThwKZH3LfIkSCUUM5ewP+1X4VyjSf/4inGxobI53MIgkj68hLbjQaRn2x4XL50mSe//W0GBgaZnb3GnSdO0FcE8mPDSXmBaeM4yWbX0HCNVquZAClZxnNdGs0msizT7XaJo5DAD5BlBV3XKBQKVKolBElG0Qza7TZCHBOj0Go2k7mmXMFOpZiensFx+mxtbWJZVmLZde4qwk6d+J/9LM2eTyNMMXXn/ZQHC7x5+m0KhSKarpDJWoRxorL+2qnXsFOJMNbm5ibVam1fDdonn8/x6veeIl8qU6jUiNmn8d5ino0Oqcs7HAz84Csc2BQdzNMHm+c3gqjkcekQMPsetfjG63rCPolSUMjnBxkeO0ooRqxu7NLp9dirN0jlCrRWVxBDl5yl0qlv4bQarC0tkrc1auUSkd/m3JvP89knHgB2keM6Q4N5CiWDYs2g2dhDDEOiwCOKfBzPwUzlmTnxCXpRmm8++TyaqjM+XsP3YHBghJdefIVSoYxpZdja2mJqcoqZmRnuvvseioUshWKBlJ1BkRWOnzjCneMZ1havEEUBj33mJ5i5+0EiUUeWpet9cPC5E97q+9dSqqYShska56D/bgUEBUF43+bAYZ6eN4OYD6phvV3geqtzDuIwkae/STB7c9ws1vS+MXrz5oEg3L6Uy63ibwG4Hs5quHXbv+k+/uuMj4Drf+Nxu2D1xjisDuDHiw9PFQ7/6BvEZy8h3n30A9q+/4YmigIhMTghrVaPkXNzRNOjEEdIUnKzEcSkvq9arZJOpXj6u08jKgrZbJ50Ko2ua1y4eIFqtUKj2UBA5cLFdymXSxiGhuP00A0dz3MZGh5mc3Mbp+9y9uw5hkeGcdw+qqaSzeSQBAXfc/HcLjExX/nKNzh+51FURUORDfpdh8B3AB/dzqEoyn4NXZJNIJYYGRlG19VkESqEuH6E5zn4oYdlm+zV99ANE8/vo2kqjWaLdCqHJCqYps1/+Pf/gWPHjxDHIYoo8O4758nn8vT7fWRRYHCgjCQllirtdpup6RkM3cI2DbY2N8lmMonnrL6LLEmELZsgipIaVs9Dk0NkVaNQqdJpd/CcHulCkWajycryCvXdXeyUhajoqKqOKAoEgY/juJi6Rt9xCSOBbrtLyjYR4oBv/NUz3HPffZiWhYTA7vY2nXaPpaUlxsfHkTWVWBBpt7somoEoK9TrDXRdIwgiMukMIgJPfedphobG+bM//XPuOXkUt++yurzCxNgYvudiZ9JIQrKHrWs6W+1TaJqBzXGk196i8y//Gf/L//ZveeChRyiUS0iqRK/fp1YbpdvsIisKiqLwxltnyBXyDJSqbG3tslvv8/1liWPes8SCwLkLc9x5151IsoLr+7zz7ru8+cabjI4OE0UxlmWxt7dL2kpD7NHrtsll8xAKHJmeQZUVVFlhfXWNoVqNoZFhfN/DdZ1kU0KUicSQTDZLmIi+IomgyAKVUpnZ2Vmy+RyKqmGYJrlsMtaqlQqLC/NARKfdoN6os7a2xsTUJIIoJN6bYUi71cY0LZ555hkWFlaJIrj33vsQRQnLtEinLERBwDJ1zF6dtOiz22+jGQbOvpeqLCUZMUWRkFsXUIY/x5ZjUigV2K232dneYGiwjKKqiJJMoZCAI8MyGB0bIyYmnTLxfJ/R0TEyi10URaY1mSKbzSFJEs+/8DxHjx4jnU7j9FtcunCJq5evMjR+J5u7PgMDJb71rW9z8uS9DAzWmJyeQJOlRLBLFLAsk163i2paTE5NUSwW2dlJaJt7u7uMjo6xtblJPp9nYGAQPwjxvKTfa0M12q067XYLKXCxNQF7+lH+03/+Sxq7HcaOD5MxLZRYYXV1lVI1RxSpnL50mfYdR6i+fRnRNpBNnYgQURIS5oMYE4chYRDx5um30FQNTdeplgbY26vjeS6KqpDLZ4nFGGIPTVNxegktXJZVZFmj0+kjySrlcgXfDxK/XyEpBxBEkTCMCAIHWVaoNxoYusXFC5coV4rUhgaoVMs4rpP8rlfmGR0bISYml88SkdB+oygGIUYSJTRN5+ixE/i+SxxH7OzuYFvpRHjJ9YijKFHOdd39xXjExOQ4kiQiyzLj4xMYpk6z0SRfKFEoFJO+iCMcz6NWS2zKEGI0TaXZ2MP1fDRVS3xsERFiH/nSHDs//xhPP/NdapUqghAiiALdbp/01WVS2RzFXJFWq0mxVOCOO45TKhf52N13E0cB2zubhGGE4wZous0bb7xOp9NhYCBR2rZtm4XFRVRVJZvN0u/3icLwutKzrhukUik0TcfQVURJwbRtrFQKkZj5+RUsw2B0ZGS/XGOQIAi4ePEihWIhYV/EEfLZS0h9l/jXfh67MoaeqzE/O0s6l2VkeJxWq06+kEoU2fUMcRwxOTlGuVxCVTVKpTJxJPK1r32NI0eOoKoSF94+xYMPP4JipIkFEYTwljV1MbcLHg4DN7eesw/+Pth4Piyu+/PeONfjIwKmmSWVLVOsjmNWRqmNHcNIDTBx9GN0PIPJmQdo+zqZ6jgbjRAlNcjA2AyRYhOKBsVKmcnpcVKpDL3WDrNXLjExdpRMoUAsSaiih+d00SWJjtNF0jQcx8XKjvL6W3Pcdc/9iMCRmRme+vazZOwi333qeR775KfptBr85z//Glsba9xx/CinXn2F8kAW3w/44hf/iNHREV479T28nSvs7WzTaLb47E9+gRP3PowXycgy7wNSN/bvjX3R6/dYXFykVCpdr2s9rL9v3OS/5bd3m9nVwx77cYDrrcBsGIZ/a9nAmz/Le8A1eeyg5jeO49uuPb31xf5amx1+7ocArjee8/chPgKu/wDidsHre+0SgaT3H4cN6MPavXfEcXTopJVc470jaXPwdyIwEP5/f0y8uI70hcdv+V5v/FyCIOAHPeLIIOh0CVaXyJ+5SjAyiO95SKIMcSJwEIshGdtib3ePtZV1Uqk8jhtR390iZSgUsomqpJ2yMG2TbCqLQIisCMRCAlYkBVZX55kcn6Gx1+PalTlMS0KWIJcpsL6+xEsvvsTc7Dz5XBFDN4mimFwpjx+E7Ozs8eyzz3Lk6FE0TUcWJMRYwnEDXC9EkGT80EEkQBYTeqaVyiEiEPgB333qu8xMz+A5HpapI4sqs1fmKReLSGJEGLioisL46ASaqmNZKpqqMzY+iWHZSIqCG/p0+l0GyhXi2GNmZoJ33znPQGWQIIxp1DvMzS5CBEaxTxRHWMIQgiihqgabG9t4wRb5Qh4Q0RQNy7AJPJ+tzU12d3eZPjJFp9fENnO4fYeV5SVy+Sy6obDb2CVXyKEoBk89/TSe36dYynDHyfuQBIHAdYEY0zQolAepDtZQdY12o0mzvkd5sJLYVohiUtOXrJuJwoi+63L8rjsICRgZr+F0WwwN15icmkRSNVTNgNAnjEI63Q6u75IqbqGoKupqge61efq/9qv88Zf/jF/+lS+QtnSW5laIPRO/b7Mb1gn2R+zM+BRex8H1uvzBF7/IQ49+gkc+9Unsox+n99rv0ht8lIwpcea10xSyOV4//To/9ZOfo9Pus7q2TnWgSrFcQLGSurdMJoMsiaysLnJk6ghXrl5iaHiAa/NXGZ8YZf7aPE7fwU5lWFxYolgq0m53UBSV7Z1NqoNlhoarhJFP7DXRUiVS6QKaEuN2d1ldmKdRr1MslrHSaWTNQDEUMvk85XIVVVW5fOkK+WKibJkvFVEkGUWQmJ27zN7uNifvOEFjdwsp9tlp1kmbGlpjCxEfTB1BlOn2++SKJTbXN1BVJfHmdFsIQRt/4HFMWyX0VLLpNBcunqM2MkDkw+5GA7fjEIVNDEVBCDQIPQxNpr7bwPdAu7iFJEs0aibpVArP8RAEmdNvnGZoeJiUnUPXbYIQLl++xuTUNJolMz05AZFPEHgYtpFkyPo9DNPEtGyWllcoFtKYhsr25jqWrqIrMrXhGhcvXmJkbJx0Jsu12VkuXbiEoSdsCl3X6HY6hGFI35PI+Ou0dncZPPEYP/HEp/GdgBdffJ67jt/Ln3z597jjmAlhQOBX+dNvPMX4Lz1C+c9foP3p+9FaXcIwICZOaO2xQN9xOHpkinwhy9rKEoIcUiwWUVUdyzTZXF9BlSGKQlqtNoZpIiAShjG+10WRTWRZAyLCyEFUEtqh53posoKAjyDruK5HNptFEGJGRofxQxdNU/atvEJyhSzDIyMomo4sq/T6fYLAR9MVJNnAc/zEdoeYSAhR9gGybduEYcDm5gZPP/USd9xxB4Hvo0gyvusjqwqQqKAeZI4MQ6dQKHL27XMEYUg6nd6nL3tIgki0rzyLECMpJpqhIivifmZfIuz3UWeXcX7qEaaOT2HmTQwxQyGfAzmk/+KbaKaFRMTS4iKFQgFVUdA0la2dHeJYJO76vPTci9z3wIOcf+csu7ubPPDQfUShgKaZyLKEmc7Ta/bZ2VzDMhU8P0A3NFRVQ9eM5P4uKximhmXbKLLM+soqTreL02+RK+TRzBSLC8tcOPcOm5vb3H3yLubmrmCaOoqiIl9bRnBdlv/RJxBiAddxeOHFFzl58h4QPEQpxDTTOH2R2NfY2tzF8wNUTaHTa3PmjWfJ5cb5J//0l/nUp44zkB1i+cJZqmOjaOkMWiwSiB+wIBd+EDAdtqa40UrvPY/Q94sJJXWa7x3xvg3OjaDr/UyxH5z3iRP2VCLGFRKLMXYqTaFaY/zYXVTGjzJ1531kysOMHruHhc0eg5P3cN8jP8WV1T3Gj3+M2vSdLK7XubbcYKuRYa+nkK8NYdkSpiIQtFy2VmbRVJVYAEVSkJAQlRJzSz3OvbvKZ5/4HNVqgYHCGOvrG0wemaTnd8lXC7h+wPdff51f++e/zr/77f+Hxx79NBuzdX7n975MH4Unn/4LMtouNGZp9xzStRke/fwvYuUKqLqYZPpE8b1+2c/+cZDwEwQEMcmg5vP599msHEaPvTGjeDMd++bv9SDjeEDPvvGcw2xkPgjs3nwclsE9bFwd5of6o0QQBNfH00Ef3Uph+UZmwHtviOuiSgf/DovDRJxurdr0g3GY4NOPG4f12w/buPj7EB8B138g8WGA6+Fj97AHf7ji3GE3qBtNr29FNYr+8jngwA7ndiPEcUGNI771h/+RO7f6XBUiLMtGkRXCKEAQQJFlWo0moiAwMTlOOpNiYLDCysrafvZGodHqI8kGEHP18izN5h52KoWmmezubtNqtWg1u6RSaTRdIZtJE8UeV65codnsYJkmpcoAoiTx7HPPcfTYcWpDQygKpGybbDaHbdmYlgmCSKfVIogSqqedStHpdiEOIQoJgggEhW7XxU5ZSLJEbaiGaZqIoojnebz91jlarRaTkxM4Tg9V02k2W0RxnGTzUjb1egPHcVhfX2NgoAyxj21qEIOmKYiiTDaTh1jki3/4H5mYGGd4eIhKpYivbqIoCm49ySAEgY9pmqTsMnGkM7+wRLGQRxASylIqlQIgX8ghCuC5AYos8c7581iWiaEbCIjoqk2/H/DC8y+yt7PD/ffdR6/XJwgDwjCR/+87HteuXaNcKhIFAVEYkLZNeo6DIAg0m00ymQyu47C2ukYhn8e2LCRRSnxg7RSplJ14vSoqa2vr5HJZmvU6cQz5XB7TtIjiPq2miH2xx5XREqO//AVkWWF0rEYU+pQrJf73f/NvOHp0mouX3ubj992Lqsq0202eff4Z8pkiDz/ySTRdxfPaeJ5Dp7VLMVxHsqpk0xlazToPPPwAURBz9tw57r7nbur1PWzbggga9QaiKNFqd5iYnGRpeZ5KpYSma6QzGVzPo1Qo4fteQkuvlFE1Fcu0EAUJwzAwDY1up4Vp6sROi0yugihL+3ZMIYqsIskJSL569SrFYg5F0yAWkASRTqeNZRmYhkW/7yArCghJpuxj99+HLMvk8nlS6RTrG6sMZ2zMbp2W06Hl9dE1jV63SzabIQbmrs5SKZeoN+po7jpK5SHE9CCCkIiMuV5iQ/Laa68nYCuKiGK4ePE8mXSeK1fmuHDxIrl8mjCC+YVFpnrJb7M+YuB5PotLS1QHBthr1Emn01gpFUmGbC7FWCFAjhrMr9cJ/TDxMj1/lqGhIfx9/9qlpWU0TSedTrG+tp54nLou1YFBZEWl3WkzMDiILCXeo6qqkc1kSWdSZLMZmo0G6XQ6EeoxM8ixT1p2WBFG+K3f+i0+9ZnHef75Z/nEQ5+k32tTr6+Sy1dIZ4Z45NFHsYoWUqmE9adPEtZKSEpS37a9tY2uq8hyojReKpYQBJFUKsPOzi7b27ssLS1z9NgRGo06uWwOUZKJ46Se1PU8/vxrX+PkPXcRRgERIVEEQRgSeD6maSEgsLKyimnbGIZBeLDQEwQM3UCSkvpHRU1sxaIopN/r79dih+iGjiAIhCE8+a1v4ToOg0OD+IFP6Adomobv+8iSTLvdZmt7h5mZKWRFpNNuJ5nuXjLONF2h1+8iyyJRHEMssLyygus4jI6OAEk9qaGbScKVRJRMlhUct48k7oOkGJROH6HT5XkbTNMkFgWq1QGQYs6dP4t+fo5sLouuaLRaLQzTIAxDDMPAMBLhs8p2nQFV40vf/Q5jY6MUC3lqtQEUxaDT6RBGHgICnWYHxIhMNoMfCrTbrURUT5aQJDERM5NlYkROnz7D0GAN0zAQBREEGd2wWFxIMreaplMo5Eln00iyhCwriFcWET2fdx48jtFeoLO1yB33PwaCwPrGGtlsFt8PEZB59+3znH/nLe44cZR0yiQMPI5MnUQS85y85x4GKmUK6SFef+UpPvPT/xgUDTESiD4IuN4wf3/w84cB1x8EKLeT1XsP4Bza8n3XufncA5EuyzTRDZ3hkREy2QzZXJbp6Uky2SyaqnL33XczPDTEpz/7KU6cOEq1MkA+k+LSu6exbZFuM2EMHaCXfr9P39d4+rk3SWVHKVaHiWKJ1998C8SELXD8xHFajSZHjx7ngfsf4N133+Xxzz7OKy+/TLOzwT33n+Tn/7uf4+N338WX/v3vMFjR2G25/Owv/U889NgTiLJILEQcLNluVWJ12PrpwwCPAzGzm1/vZnB7c7nZh7neBz3/YbK1f12A6odRYn+s6/ztJGH/xuLvE134I+D6DyT+awDXm2tZbrzGrY2rf3TgKsQhiDqzly7QnJtj6NIqr+3sJAuBYhFZEuj3OohCIljUajXZ3d0mDD0MQ2OwVkMQRPwwQtVMllfWyOezZDKJkqpmaGiqze72GoPVYWZnl5idu8bQcBFBEClXcmxubqPrKURJYnhsFFlRKBZL1GpD6LqBiEvgeciKsi9YYycm64TYtoUfhjiOQxzFOL0OsqSyvVNnfn4ZP4hIZ+2E2hdHiKKIrCioskoul2VsbAwARZVpNbt86Utf4sEHHyCTSSdWFVJiLUAUIgoRxB6GJrGxvY1lWgRBRKfdwzBsiqXE09F1eyhKjKpo4JhsrOxhmAaKKlNv7JBNVRBEkWw2Qxj7iBKsr6+zu7fDX33zmxw7eoxUOkPkuxBHFItFlheXaTU6lIplREGi3e4hClAtl9jd3kA3NHLZHPVGk3S2QIjA3JXLVCtl9vZ2EAUwDY0QEVmSsAyTubnZRABKs1hfWyPwA0QpySi5jpMsjvsOvh9QLBbp9/rYlo3rutftAlp7GnlzBumF7yP+9r8kU6syNTWFbuqIkkjKNjh58jjDo1UmR8d44/Xvk8tlSeezTBydppyt0u11+YPf/11GRgbxfBc1P4x24SsIuTF03UZRBFRDJfAidvfq1Gq1fc9NlZ2NPUzTwjAtVF1LxKFiF1XT9q1YLARBRNd0NE0limNm566RLxTYXN1kYX4RSRDRVIVUyqDXbeH3d1E0C1lWWVxeQZYVgjAmm83x1ltvkc3YFAt5ggDmZufQNBVRELAtk8uXriZWLFYqqTeOQ1RVolypIoQBsdulIvoITpdQEUCRSKfTeK5LHAfIiowoyeiahu95ZFI6Um8Zv/oEV67NUhusISsyiq4gCTpPfecFdE1n+sg4a6ubjI6NEYRQq41w9OhxTr3+KkePHqPd6VLZ8JBlib0hDTtls7K6Sq1WI5VOk8vnaDS30DWNZrOBvvcaQWuZ7OjD5HI5UukUhq6TzqSRBIlup4vT75PNZpONIDcARPLFIhHw1jvnmZmaIghDut0eqpLUa4qShK7rvPbaa/v1n+tcuniBwYEaZy7MMZl22TWm2dpt8PAjjzE5MYYkKly+dJV777ubenOHgcEaYRCAIBAMDaJR+rEgAAAgAElEQVRcnkt43rqGIAhJrXuQCBZpqkq71aHd7nHhncvIksq12VkkSaJSKdPr9vYzexbE4PshURyxub7J8EgV1+uiaQYCKt1OD01PBILiCLKZQpK5iuOEwbBfBycKScan30+ox5DMJbZlEYT+dTEnEAijiPGxMUrFUqKmrihIYuLbe2DFkc6kOHL0CImqcYyha7RbTX7/D/6IkZERMpkUkgSN5i6KovPKK6/w0EMPMjw8hCgl2Q5ZUXBdF0GIaDXrGIYOCMiSxAFhKAgChPUt/Fab0d/4J6iaQspOMbc6TyptUavVyF1eYXZuFl230HSdjY2khlsQRWQ5EaoyW10Mw+RKu8Gjn3wU2zZRVJX5uSXS6WTTstNq4Xk+dtpCMwwEScM2zcQ/XJYQRQHdUMmk82iawblz5wHI57IEkcDzz7+AbdpJHysy09PTuK7LW2+/zbFjxxFFCfHyPILrU/7X/4Lu6T8j2J3nzHrE8RPHefHFFxkfm+SPv/wn3H333Vy7cIFnn/kOR2YmSaUsJFGA2ESUJYZGhijli4R+wJuvf4+HH/8MsaQjhgKh8MMXz38dwPVW9MUbQdTBOLtxPfL+cz4YuF7PqkXRvk1TIjYYxzGypnLh0iXSqVQi4iUKaFKX+bll0qlBtja2aO7NIYlNJEFEUVViQFZkOt0el2Z3mDxyP1uNgHfenWd0bIZIiikUCjz33HPUt3a4cO48iqHjOg6NRh1VVXjz9GmuzM2xsrrM459+hP/73/4rijqoaYWjd93HL/3T/xlBM0CWCEMf8RBxphuXcT8OcD34Pd7cZze+5s3A9Uba8u2CnL8LwFWSpOuZ1h92zY+A63/td3F78RFw/QcStzsgk8F7WPsPD1xvp6D/kHcAvAdclZ974lDQfVBvcONrabJIECtsLi8hNeqMX9tk5InP7FvZaERRgCSKdFpdLMtM/DSJaTUb9LtdVE2g7zqIskgmkyIMHBQlUUR1PIdMNs3eToOUrbOyss7AQA3dVKkOllAVjSB08fyQyckj1IYGiQkRBBgeHkoUL0WIQhdVVel02nS7fUwjhecFnD33JgsLSxSLZVRFxTQseu0Omm6RyxepDg6QSqWQ5IRSdTAZ+77P2uoGuVyOmMQvLwxDtrf2qFar1GpJzVQcCywsLFAqlcmk07iuQxj6iZ2HbqIoGpKo8JWvfJUH7r+fVCZFPp8jl88Q+C5irCBFGVRNxfM9VFUBIUJVHaKwiyRE+5nMMqahYdtWonAqSXTafVyvT6/fw7ZsdnfruJ5Pt9tnr77OQK3C3PwVPvHwxygVMziuTyqdQTfMRDREECjkstgpG6LEusTzXHQzjaYmSqaWaeA6feIQTMvE931arTaFYqIqHEYRiqLSarYRRSGpvbQs9H2A0Ov10XUNdauJuLlF75//HKZhJvZ4SpI16XS6mKbO5vYyu9st7rzrJJqm4wUBkqzwO//v72CZOifvPMJefYfJqSN4pFi8/C7ZlEy7FxDFEaqhs7q0zsVLF9ANDcMw8IOQ0IuxUykWFhfJF/IIQkwUOKytb5LLl3C9gO3tbfrdHnOzs0xMTuC4LplslnYzse0YHx+n0dij7/QAcHodwljCtNJIsoplpWk1G6TSKWRFQjd0DNNkfX2LgYEB+r0exDFOu4Xb7bK+tITq97H6Oxj9Fmq3gdKto/RbSF6XUIyJJAHHdQmCCHVfiGxhfp5ypUwsCBDG2LaF4O4A0EsdZ3RknIX5FXRdQZQlPC9mbHQKx+2iaSLlShVFNZibm2N4dIhuz6E2PJhY/xCjZi2aKTCHiyiqQqlcTixjbCtJuIXw9tvn2NttUFZ2kSSZtjiEaVns7u6iGxqO49Dt9pifn2difBzX81hbW+Obf/ltJiYmkt+ZIpMr5ICYKIxZWlrC931OvXoKw7IQRZFqtcLu7g5jIyP7IFRir96g325wxNzj0f/hX1EsFVhdm+fcucs89PAn8aMQO63Rbm8ltfP9CFkXaQ0XyXz1GbqP34+019wHjV2azTa6bmJZNqqi0qi3mJqeIJfLMD4+xsb6BqOjEywvr2IYJrt7e2xvb1Eql5kYn0w8jJ0+sqwR+jHffvI7bG1uJnWlsgIkyr8HtLqD4pDr5R4CyJIEAiiSiigJ+L67P1ck9fhRFBDsZ3FkWSaMIxRJJI4jJEkk3i8fCcMAUZIQBRHf85EVmQvvXsJOWZQridWTaWpIosbVa1cZGKyiaxqCmKidi5KEqspIgkjgB5iGRavTRpJkGnuJ0JHj9LF3W/i2Se/uo2xsbJJO5Wj3Wxi6iRCLRKfOI8kymm7u+2j7VKoVNFVDkmPmZmcZINmkmPzEQ2xtbbOxscbG+gZXrsyTSlls72wSBxG1oRFkVaLX7xEFicWOaRpoqppsMkUhqpJkXWtDQ1QrJdbXVjDsFJl0Bsu0KRVyVAcqXL58GdtOgSBh2Tae7yFdXUD0fLq/8nmKzhK2ZTHy4BeQZIlyeYAoFHjooYcJAp/zb7/J4088QRgFDNRqOH03UY9We/hhmyjw2dy8Rr/f58g99xCiIEciocitVYVvmLs/iG56YNdyM2X1YD1w8NgHUVVvBkcH65H3g94PzjwegF5RlIji+Dq1FkEgFgRyuSyGaSWe4FvbvHXqBRxPIJWuAhHd1jKEbfrdPp7vkcqk8YMARdXIZKtk8lX++Ct/yScf/QmOzJzACx0K+TwCsLq0jOs4VGsDXLp0gbfffotKucTRmRnOvznLpfNneeO1Jzk6aRO6yxjVCX7zX/8f6JkSkaQAIbIYEwvSIeDyB2m6N/bBzf16Y5Lg5o2E2wWLN4skHUY5vlX7w8SiDvvODtr8aGvGD46bGX4fNH5/nBAOqcV+3/M/5Dri3xJwPKwvbndM/F2Jj4DrR/EDcfjY/fDA9Ue8OgDhXzyHIHxwxvXmH5kkxriBSHNvB63boXjqIuIdM1iWkWjtRzFbG1t8/9RrTE1P4QchQRDi9T3efP0Madsmmylip9I0dndweh1KlQqIEum8jdPrYhkWqizT7baoDlYolitIok4YepimyZPfeoooEqgOFBGFiPW1VUxTp9/v0mm3EOWEvqqqKsQCX/qjL1MulhkYrFIdGMS2UnzvhZdYXVlFlSSee+FFxiYnkgW+FBD4Ea7jIIsSnVYb13GJQtjd2yFlm4iCwPr6JlEoMj4+DsQoisRTT32XgWp1XyBJ5slvP/3/s/fmQZKc53nn78v7qMq6q7v6nvuewQAYgAAhiIdAyqRoUpK9IetY2avQSuE9ImRvKBzhjXXE7sqyQo7d2F16FbYlckVdpNYUxQM3QQAEQBwDYIC5756+po/qus+894/sGQwGcxEkJXqFN6Kiqyszv8zKyvzye77nfZ+HI28f455D9xOGIWEI69U6vu9RKuVZXlkm42SJoxhVVVhcWOKxR7/N8WMnue/++0DEiXfioMnSwhxxGJJxsiBkPDdkbW2NXq/L5OQk3U6Pi5cusWfvPoQkMzE5RTqTxslmKBbzCFlitFLBdQeYho6QEwXU4dDFHQ4wdQ1JKPhBQCabJZVKo2oa/YGb+K42G+i6RqfdYugFnD5zlrHxcRrNBqZtMRgM0DSDbrdLr9tFVVTSdorB0GVxcZFWq4PjOAilgzj6Ft3PfJp43/YN2xcFSYUokggDUFSVXq/D8lqH8sgY7U6ftOkQDEN27txDLmMxHDSJooBUbpSnn/0ezuR+yvN/gbX9p7HiHmgWpUKJHTu2JSJLw8Qz88+//BXuPXQP2Wyao28foZjPoaoGjp2h3R7iZBxsx2LY7TEyMrKhShwjKzIxIVu3b8WwTI4eSwbkY+MTaEaaxaU1nEyGRrPF009/m/vuvRvXG5DNZVE1kyiWqM1fQOrUKIoBptvBCofkDIlSSietS/hRhFBlOm4P1TKJFJlIlYllibW1FbL5ArKi0Wq1SW34jZqWSSRAV1V8b0jcm2d+MEGgZsjnRlm+vAYEWCmHIIwIQ59szqHX7ZIv56nV2jjZNFZKpd/3qTXWKZaKpFMWcjnNaxeOEcYRqXQKRZGJhSCMI4IwQFc1KpVKMnkhr0EcU/VKOFkHJ+sQhQFx4KNIKpMTk9RrdTRVo1goUB6tsF5dYzgYkMtlWF9eJpV1UFWNQr6AIsuMlkbQLBPPcykUCjipNEffegtZlpiYnGZpaYkte+/F6i8wd+YIzvZD1OrLbNm6E4TOa6+/iq4oBEENhZhcdoxB1MHM5YkLGaw/e4LeL/8M2kIVSVZJ2Q4C0FQVREyhkMWyDWQ5qSdtNFpcOH+JV159lc2bt/DXX/86mUyGkdERfM9F121OnjjH0tIK4xNjTE9Ns337ZoQUgwQRMkJKVGWFEFfFhRCJ8JKqykCM77sosrZh99JF01RkWUMIiSDysE0LJVGVwfMCmo3aVbuaK+2qqrIBdiXarQ4LC3N89OMfY2JiDElOBsau6yOEzI4d21BVOZlAEhJRGCMUQRQFhEHAmVPn0RWDbMFBxBKNehPHSWzK1PUWgSQRfugAsqQQxiDFEaaaZmFuldYzL1GZnMD3Q1RNI5VOoWnJdwvDIQKJdM9DSILnz5zmueef46EPP0ilMk6xMApxhJBCxidmkFWdMPbptOqkzBRr68uMjo4QhckEazrt4HkecwvzlMslFAVsSyOIBZ7rsrp0eaMG1gRkXn31NVIphzNnzhKEPs5SFTWK6f7Cp9DXTzB0XarKBEPXpZAfYW2tRhQGCBGya9ceUpksY5Mz1BttnEyeKJCJ5R7NVotKaYbF+TMoqkZ5ZgahmKihRCQAcRMf12siCAKCILjKkN6KCb0Vy3W7Qf4779+9LMnkuvEY4D1tC3FVPeNK4WAYgaqqEEd0Ox3On7/A7PHTrFab7LxrD1Hc5+XnnsCUVXQjRkgSQRigaTqyKtNp1ZBkndLoBEQyu3bs4ejRt/naX/0VD3zoAe69/z6COOKBB+9npFzi4MG70DWVEyeOcf+BMcr5GBEto9Kl33X5zK/+N2zZsQfZzBIhECJCEiExyi0JhJsxrteCkCtg8HqQdqdxM4Dz/cSd/cY/Qib0byrucCLgpsv/1jnX/0zOMx8A17+TcfsO6M5UgK+IK4BI7AeuKy1/R4DhvR3gFREmuJL+cmWbdzOu0t//2C2/w7UvSdYYhgMunDrN5pltaF9+DDE9jgd0OgMee/wJ9h7Yy7ZNm/GDmE53wDe/+SjlUpFNM5OMTUygGRZvvvk2USgwdJtabY1ivkCzvs7s+QsU82N8+/nnOHn6DOMTY9i2Ra/X58lHn2Nyusg99x1kYmY7KDIiCslmM5hmItDR7/cwdROQmJ9fQpZV7jp4EE3TGB2t0G2tk0mbfOubT3Lfhx5iZvMM6YxNJpNCURMPVzkW9HptnLRFt9PhL7/8VVRTY2R0FN+L6HYHnDt7gTAMGAwGZDIZavUa+/bvJG1nWL68jJ1ykGSJPfv2kc44qLKNLMuYlsbExBiapjHs91ANBU1X6PW7FMZVKtNl9u89RHV9HU3VkCWFoRdRHJlBtbOEMXQ7LRACTUvqKE3DIl8oUCym8bw+zfoaIT6pXAYvDtAVJQHiikS70yGTy6GoBqqiIoBet4eTTiWAW1WJJYluf0AcCVaW13nzjVcxLIWMk6PfA81QmZ5JlKQzjoMcx3TbTZBitA0FWd9zWViYozJRJpvJ0W11OXniBIWJt5GdKmv3/wpTu3aj6Cpu3EMOBbZpUF9bwTYNitkSOUvj+Mm3yOXTrK2toAnBiaOLPPPE41w4cYQPHTjAybfOIFyZLVt3UI9z+Gf/Gq32Bu7qGVoDjyA7SemBf4hUP0Mm42BbGSzbxDBNarUWTqqAuzKLM2xieC2iQY2hmqaYTXHixAkKhSLptE0Q9DFTTpIyGQXkMhkGA5+MU0BoGrIkU11ZZfPkJPl0CknTsa0My0tV1i+epeDVKFk6shQSyxAbGoMo5vSFiwz8IbImoxkqfhwRSxHtbhvLNHA9F0WRcdJZIEZWwHWH6IZFFEk06zUa6w1kRYPYRRmu8ty5LDt37+XU6aOYlsrkzDRyGOMO+qTTKS4vXcZKOaQsC02TyWWzrK/VkETMxNg4nXYdTYUwjMk4I/hun+HApT/wMAyLgTug2WrQaXY3LEjKhNVjxMSM7PsY6ysr9Jodcpk89UaH6nqVMPTRdBXX9QEVJ58i46SJg5DXX3+TvQcOEuPRbjZw+z0kAcvLl0mnLExD4+KFM9i2Ri6XQlcFs0vL7Nq1F4RGr9elpPX58pMvkZFddNEhX8nRCEP2H/oJNNnGH/TxwgGaU0JCZjgygrrSIHjuVeR8BklRiRAggR8F+JGPLpnUa3ViIZHJFUhn8ly4NM+99xwknU6siZ5//rvMzGwiZWsIoVIuVahURlFk0A0TJAlN1wmid8CAkECSYmQJ4giCMLjKwgZBUq9aa7SwjOQeVeXEwicSAlVSrqrPRlGIJMUIDHTdZDh0kz5MkQhcD0kkqbi6JlMq5wncOp47RNcshEiUkGVJhhgkkhrbpPZWJBM1oSCOFb799LPcdfBeXLdJt9vHyeSortcSm53L66zv3Uw4OU7oRnzxP3yBhz78EX7/d/93/vAPv8THMkWKoyXajToihueefY5nnv4Od991NwsLc4xUKpjtPkISMJqj126we88BlpdXGZ8YQcghtm2hKganTh6jXCyQTmep1RuMjIwhCzY0DFRWqk2KpdKG96tO5Mesrc5SrmzCcRyOHX+bzTPTuIMBk1MTbN22lUKxSLVa5Y3Dr/PAxDT0B8T/5LMoaydQdZ3Unk8SxkOazXW++tUv89RTj3PPwXsRQufEydNMbirSHfTpdUzcwToSGoVciWG/zeXZy6i2zczEZsI4IlYDZIZEKDd53srvetbLsvKu5/87r40RxHWs27WCP1ee39c+y6/9e604zztqw+K6/b13kH0rBumKwNAVBjdZKCGrOmMTk+w6dD9TM5t54cknsRlSqaQ5e+kU8sBnMOyj6Qq6brF0uUqxaKLpGvlsngvnz/Pv//3n6TZ6BEGEH0g8+NDDjG2Z5M/+6D/x1DMvYNsm506+gR6uU1/4BhN5UNwBlj1KWNjOz/3Kb6KaacIoRJY3xKyEihDydeOom9ea3sjO5UrcyCXiB2YXxTtiWjdj8N4P0L3RxMa1n92s5O1W+7mZrc4NxZRuKDh2h9/jGs3Rq3fDNZvdro3rJ1hu9rrdkVy9x2TpnSyD27Qrrt/2xxzAfgBc/w7G7S/KOwWudzpLduv2bthBvXUakUkjfeS+2xzruyOWBG++8hop0yZ7+ASMFBlKAt/3EZJgZKQEocdgOCCXy+G6LtXqGtlsFsvSUTWNiclJUraFaeqYpkG3008YrW3bGPR9er0un/70pzANHc/z6fd67N29l3a3imWn6PcSgZp2s4ZtJwI3rVaTkZERgijEMAz6/T6nT52ikMuRz2cQAgaDIZ1Wjwceegghg2XoFIqFpA5QVa/WbSqKQhAGpNMOlbFxtm3djKaqxHGMk3HI53OMT4xhGDqWZSZiJpbJxQsXkRWF48ePc2H2Io7jgIAnHn2C6voquWwGJ5NBEjLZTBpFUxFCYjh0kfOr2DmIezmy2SyykqQN+p6PqhkbDI2ENxxgWQnjFvgB2VwW3/MY9l3cgUuhUCKdyhJFEpKkIsUyZ8+cT9RsVYO5uQXKIyVcd0jgB5iGxfLyCpquo2kqYRxBHKFrGsPhgC1bZ8gXspimxTe+/i3slLlRqyjzzLe/Q7fTIwxgfGI8EYhRVWzLplgs4gY+nU6PXr+PpqsUM8sMFZni5/45Fy/NIhQJ07QI/QjfD0nZJp47oN1uMHdxlsmZGSRJIYpAiqEyNcql+RP8wi9+BqGG2Jk0X/qzP+HS/AJKdpTdP/1PCbf8LKvhCGPlHNLCc0SH/wNaqsAiWxlNSbRaDXrdLhIxg7lTjDg6rgjxRYweCbR+k+bqPLYS0vYl7JRNLGJUWaFRq+F7LtVqlc3bttFstbBtM6nJJEaSZRRNxUrZRN0Wmf4qKTmi1uuipm3qrSZW2sL3go3a7CJxGF295lRNS1IrNS2pu5MSEaCkDjKk1WqSy2URIklhlyXQ9aT+UPMus+5nMEv7GZ+okErZjI1NEAQRrx9+jaeffppt27fjOBlM00BT1UQoKAyvioicPXOW8+fOMTU1xfr3znLp8Ekq+7eQL5Q4ffo0lcooqiK4cP4cWzZv3RhcxUSNE0iSTEcaRyL5bL1Ww8k6DAYDpqYmGQwHGIZFGEZYaYuUZaPICpqm0ep0KJbyqIrG6dNniGMIwggnm+PY0WMcOnSI4dBF03ROnznLvYce5Pix42QcBzSLVNxk12SBt1Y95hYus+/u+0kXKpiGwO3W6TZWUVVBppBDxCqW6dDeNEX0R1/hTM4mbPdIp9IQgzf00DWdywuXefGlFxkbr/DXf/01RitJWYBtGQwGfQr5PLt376Lf63HyxCnK5RKul0wOCCERRzGSkgDVRAF+Y75fRIRhSLPZQpbkREFdTuo+hRCJjY1hQRQRh0ltbiwEQnrHw1XARjqwRBQJFEVGVZNawjiOUaSkFjWOk21DYjRNIyZRK4/ihEW+ElH8zkhQkiSCcEM9NQzZuWMH7XaLbC7N8uVVqtUa01MJ4z26Ukf6Jz/HYqvJhYsX+dADD/B//J//jtcPH2HgDvjHe/eztLzASGmEbrfLpk2bGRurUFuvMTMzhRAy0moNSZJYV2MO3nWAM2fOs7C4yPT0DP1+H03TmZtbYLQygixLVzMNZFkm8F1iknsgm88jSxJCxARBSH29jmWomLZDGAZsnpnBMk0WF+YxTJMjR94ily9gGCbj46NkR0eg1uDUwW0UvSUUWeZrhxeQhMzshUv8zKc/w749exmtlPHckJFKifMXz2AYGb7+tcf46n/6Uz7x9z7J8toK2YxDdXWNMHbZtGUzKImic6IGfWPrkRtZ1bwfUHIrq72bjSF+kDTGO93WNAxMXWd6YpylhXP0u+sUimncThMnY9HpthkOB1RGR+k0Vfr9kMHQJRYBP/mR+zh+dJ5SoUCj2WAw7BH6Aw6/+gqDXg0RtTl34gWmRgyC/iphEFFvdDlxYYnPf+n/xUhlEUJcBdfXHP0tz8utPrvZxMAPIyX2Slvvl8W9WXt38tn3s/2NVa+vRZI3aOiHnUT4fQDX99HkD2nFd6/6w7pGfpTxAXD9Oxj/OQBX6SP38f2CVlmWGfoe+ZRDq1qj+MIRotESkmWjqirj4xUURabTXieVTtPv99B1nXqtgWlYNFs17FQKy7TotJu4wx52yuHU6TMoSsJIXLq0xL79ewhCH93QqNVqZDJZAs/lzdcPs3PHDurr68zNzW7UvtUxDINUyqbRaGLbqUTcxDIpFrJIImZxbpah7xIFCqdPX2Dbjk2E0RBFlvFcDxDMzc2TcRyCOEIzdMI4JkYincmiELKyuoxm6Gimhm7qaEpScxYTcvzEccbHprDT1gYbs5W9e/eSyTiEgc/U1DSVSplcLkcUxZw9ex7DUNB0jcAPE0XgTDcRqHDLiTVGHLG+vk6pOEqr3abRbOA4KVK2gRAKvu8RxTGqqjE3P0e5UEISAkWSWF1dZTgcYhoJqDp9+hT5fB7TMCkUCgzdfiLmk8ny+GNPcOTIW2zaPIOmqcRRkt6lqiqmqdPttVBUmXq9wd33HGJ0tEwQhOi6Qa83ZPOmbVhWCt3UEmXpIOTihYuUSmUUXUVRVdJOmkI2hxi8hTRVoV76EI888vf4pV/6ZRRFxR8mM8uaKpi9dI5+v8lzz3wX28mQy+f5nd/511RXquy/dz9btk+jWTIr1TVCofITD3+UfXfdxY6dO2k0mzzx+JMY2THenPUwdn0Oc/fPcvil77J9+CxS5yIX4r3k/DVmjBBNl4gUkViFSIJ6r4OmqtiqTko1UBmg50dpd9rYhkHKNBHE2E4K3bKIZYkXnnmWqalJrJSNpKnIIiJankPtt4hUmcagS6FUQJIVTFNHUzUWF5dIp9IIIeG6AyzTTJR0dQ1iCIKQXreHaZhIsrzhjSwTRSFBEECcpJd7np8oe+oxcecS/cLHefX1N7n/Q/chKyqNRpvl5VXiKLF2KZVKrK6tMlIuX63fXl5eZmJiAk3TmJ9f4P777yfwY8berFPyFMQ90xiWha7ppFMpAndIqZhHVQ2OHj1KpTJGf+kNFEWlK02wtlYlXyhg2hbpjJNsE4Y06g0kSWJxcYlsJsN6tYokyxSKxUQQSNNQFJWjbx9nZmYLI+PjaKpGZWycWIBhWHh+SDqTo98Z0u10NjySY2IhoQ9W2bJlK4c+/V+CZGGZGbzhCrNnj7N1ZhR30CLyBxhGmdALuHBxjvwnPsqWx1/k9chj9vhJFheWGCmNEHgh6XSGufl5CsUc+w/sI52yGAx66IpEo7aOrir0Oh1y2QxPP/U8lUoeJD9hACOFufmL5HIZ4jggDION+iyJOIyQJQlD1wmCZMJAluUNS7EroENK+vQootvtYhhWAmCjCIFI6lijAE3TNkoTJMIo2U9SKxziBxFCVmDj+gEZIRTiBJ0m9bAIImKiOCIWbLyP6fb6xFHI6vIyEhErlxeIIvBcn28//W3GRiuMpjNYiyt0Pv0wkqEzPbOJVrdNyshjmgaVsTI/XRolV8oz7A05fvwExWKR0dEKL7zwXWwrzXDokxl6yLJEVM4xHA4SISfN5PLSMlOTM/h+hO+7FIt5ut0O3W6Xt468zeSmCTzPZ31tDSebRUgQeAGSHOP7EZqS9H0hMd7Q5fy5c8RRjGXbXLx4gR07d3L+wkVkWUbXNFbOXWA0lrB//ZdZO/IEnuex95F/RMou8X9//g946cUX+fCDD7JeXefk0bNMzZRQFYuR0gSV0RKzl86zZetmJqcm8YYDTE3n9Pkj7D+wHzeIkSQNKZaIxc0YrR8OcL1R3Ei99pwQWRgAACAASURBVHZpxt/vPm+3re/7rK5WOXfmDG+/+RpyPOT40SPk0zq1xhrjY2U8d4ih68yfr/LE40+hyDK5fBpFDogjk4VL59mxYzOPfeurmFpE4LVo1S4yVZbZs8VBo06jXkdSTbqe4Od/9TeZ2HsIRVZvAug/AK4/yPa3YveTf27Q0A0u/x+IhfxbBK7XfpXbpym/e90PgOvfYnwAXN8dVy7I2ysMvzfN52bm4FfavX4f777w352qcaW9Oz+eWxzp9dvKErHrc+bYCWaOnCceKREZKpL8jspxs9FA1VQsy6LZaOH7IflCkayT4vSZsxSKBTRVptVsUCiNkM3ksFImQ9el3Rqgaclsuu+7pFMpJCFRW18jlcqi6xrZbBrTMOn2+miatuFLGAECVddYW1vFME1SqUQB13HSxEJhbGKSiclphAgZDLr4vk/KTgZQS0uLZLMZdMvA9yOkjZotVVOprSwnwM+yUFQVP/RRZRVJFjQaNbZt20K/N0RWSHzfFBXP9Xj99cNs2bwFx7ExzaSu1PcDXn75NbZv24SQFdyhRxTFCKtBbb2G5o+g6TphHKGbBt997gWef/67VMYqFAp5VlcuI0kyuq5hGia9XpdiqUSv30ZRBGtry+RyadKZFIuLl9B1ibHxERQF1taWieOQTq+HpiYgyQ98NE1j6/at6JqON3RRVW2DkYlIOykkSZB2stTrDVZWlikUCsQROGmHV15+lcOHD3P2/Gl27dwJAhYXFpP6rA0GaDgcYC/XCKxLxFumWDX28/LLr/Ebv/Hr/PEXv8jU9Ay5XBZZijAMFVWR2LV9H91Bn2w2z+TkNJ/8+Ce5NHeZ0sg4mpGmWu3x9a8+zYE9H+KLf/EFDh26jz/54y+xZfMM6ZTJpk3beeml1zh430epMUb2/t9A1WzGlv8MRwkYShYrtRpekIjX+J5HJpshRCA0jf6wjy1piHYNAxdhZoiiiCgOWVldI+1kWauus3lyGsMykQMXeXUWpd0EKSI2FNYbDfL5HH7gI0tywporCr1eorIbC8hkMleZVklK2Erf9wmDkDAMkzTKjXtYliWiMGJtbY2M4zAYuomSZ/M0cfFDXKprZLM2Y+MTvPTSy0xNzVAeKSeK2Js2cfz4MbZv20qtXsM0LWRZ5vjx45TLZZ577jkeeuhBms02j37rcXb5aSzLYm1cRdd1dE1HAJLERkZCRLvdxrbT1C68iG7oqLkDfOWv/pItW7dQLBaSGkUEbx15m/HxSXK5LIahcvnyMtlcjmazCQg0VcP1XPq9HkfeeIuDBw+CLKOpKr1+nyiMOXP+HOXyCOv1BrW1GktLCziOTbFQ4MzsAkXHQAqGPH68TSFf5rVXDjM24TA9MUa9XsXUZLxhl9VqAgS/8IX/h/KWLZgP38++597AyRf4V+ePEZ44x8jIKJlMlumZSVqtJpZpcvbsOUrFMvaGpUuxWKTZbNDv94kjwe4928jm0vT6Q0zDJpNNEwY+g0EfIUCWE7Gjfr+Ppmzce56LqunEV0o4hEjYdQQijomjEF3XiWKSVOY4xt+YrLiSgRHHCQSVxIZqbAxCklldq5LN5kBAHIUISUGWZfr9HpqaeG7HUQJyozBM0oQ32NyEF4zRNBXT0FFVhXgjxdWyTOxWh6nZJVqf+zgrZQeimF6vDSLiu8++zJNPPcpv/4t/RvbCPBEw6A3Yvn0HhpGA7G3btrE4v8DYxARkMrx28TyVqSkEMD+/SD5f5MKFi5TLZc6cOcOOHVtRFZlUykIIKZloMTRkIaGpRmIjpMjIQiaOAyRZJQwihASaprBeXaNUKnP+/HksO8W2rZsJo4hCvsjZs2c5sH8fDgJ1vcng5z9FfnARSYA6fQAkkzffOMx99x0im82gaRon3j5NaVTnheffpLraY2wiw9333EMqk0ZWZUxdx3c93j5+mAN33YNqpIhjgUR8W+B6O/BzK7Bws5TNG40D3jWJfY2n6LVpx9dvc/2+b/T3+vdJ/z9EU1RsO4WRShMFHvXVBSLXY2KijKZp1NfXEFFMr9XBsDymp8bIZwu88tIb+H3Bps0jjIw4aJLPXfu2EPsNdmwZZdOYQ7d2iS3ToygqzC51WFnv0yPFP/7N/wHZySPx3nO18d9Nfot3f+9rQe/Nfptr07SvnKv3m9J7fc3s9W3eaVy779uNAe8UfN9sLHqjbRKxuOtEo25xnO8rfgT473ZNXj3e7+O3/QC4/hjFB8D1xnGnwPXdncCdAddbtffu9X9Is0/X3Zx+FGIpGiffOsrmoxcQv/5LiKVlXG+YAMhI0OkOsC2bxbkFnHQaSVY5evwEhqaw/8BBxIaX5ehICSEp1OtNLl26iKqqCKHie30qY6NUV1fJZBx8z0czdHq9AM/z0AzBwvwS0zMzSFLiramqKmEYoBsahmmhadqGUb2NYadJp/KEBETCp9PukElniSOfw6+9Sa83ZM+ePURxiKLISEJGEgn7qCoykiIn6r29PrpmEPoRnpsM9mQlRpJImDGFq8zEl//iK3S7XcqlEiknhSxLXLp0CXfoc+H8LNmMQ9rJJArF1Sp2ycXQDeRhkbXqGnY6RRRHmLrBgx/+cMJMCYFt2ggpEb9otVtYG8qrQtKJgWajwcjoGEEYo+kmlxfnEUDKTtNqthkbHUPVLFqtFo6TxrYttm/fjLZRI9zvdIijCMMy0Q2TKI4ZDl18LySTzZPP52g0GqRSNpeXFrn77gMcOLCf8ckJ1tbWSKccJCHRbncYLZdZXJwnlUqhv3IM/6EUgWVg7/o55mZnOXTobvbu3UG2kEVWJBRJ4A5dLl64RGO9xc49e9B0g9WVKuurVbxhF8vS0UydrJPj9ZcOU19d57/97f8OTTP48AMPUV27zI4dWxGSxPj4Jg6//iaSDN7KMYqN4whjjFZzEUMekB2ZxnYcVEUhCgMG/X7CisWgmQaBFCW/vRci2g3iYZtIT+P7EU46m9SeDrpo9XmkThNkidBQ8KMAIUmoqs7a2hrZTIbQDzAMnSAMsKzk+jQMHUVRqVbXNwR3oNfrY5kmhq6jaEoCaGXpqiWKKmvJ9SklqcXhsI7i16inPwIo7N61FVnWOXz4DbZv34ZlaQgpsV5ZXFygVCxQKuSRlMTyZHw8SfEeHR1FN2Qs22ZmejOZuTZRFLBcDnHSaebn5nGcLGvrNeYXljAMncnJabqdLkNzK/bY/VTX1/nQAw8wWhkj9D0USaLRbPHUk09TqYyRL+Todts4KYd0xsHJ5hgOh+iqhmloLFya45Gf+jjf+95LbNqyGTmOOHHiOLZts3nTJs6cPcvWrVvRNINdu3chawrf/MZjZLMliuPTyI3z0FykZc6wfccWDMtAVg0WF5ZoNZsQuIxUJonjiIcf/gh22kYtO0Sf/EnsY2f5xVBn7Nd/haKQmZ2dxfM9Xnn5FYqFMs898wK6apEvZ3GyGaq1dXL5PAjB5GQZgWA49FlbraJqMsQSw36irK2qOkLIBIGHKqt86Ut/yqaZGUxTR0gKkpA2WNEETCZANkbeKMFQdZ1arc7FixeojFa4kvYYRSHSBni90tu7roskq4nwWxhA6OENOxsp5SG+O0SVZRYuLTA/N5+o8moaJ44fJ5/L43sebq/Dem2dtOOwsrKKF0SUyyMYpsaMZlBZrvP2P3gE5cF7yaQdGrUahqKSTad4/PEnmJs/x8d+6mGy55eJei5C1aiurTE7e3GDfYZCPpdkEcgqX3/scWYvXmLY97jn3nuSfrNcwslYbNo0SafTRlVl4jjCsszEekNRaNW7KJKKpuvUa3UkIdEbtlF1FUVWAR+Iqa3XWatWqVTGsW2bTruBZdmomsbmTZsJAh/7laOIdpd/U10kKO1j28Ofpd9dR7N0HnjgfjKOw1NPfBvDsDh98hwpx+cTH/+H/Lv/64sURgSuGzExPUlETK/XZdgfYJkWU9NbccOkrlkSwfeVKny75/Kt3t+WAboOcNyqtvHada4fdN9urCNJEqqqoiATRKCZJpausnDuNG6nw/r6Kq1mkzgMkIHAC3EyBmHgYxoapUIaRbiUJxzq64tUSmmCYR1N7mPpMY4h2DI9xezcCucX26z3dQrjO/jcf/Ffs3XPvRhWiij0b3iurmVcbwTA7gRg3A7kvV8W+0bb3ulve/36d7L8h9XmtXHlynjXfu546zuMvwXg+n72/QFw/TGKD4DrjeNOgeu1qTu3ugu+H+B6Zbb0dneV/2v/kugb37mtj+v1nWgkoFNr8MzjT7I3lUVZruFGPpKIiaKIMIiprbfodXtMT01y7ux5rFQaLwhJmVbCLgrBwtwc+VyeIIpZWlrm1dde5t57D9Htuhx9+w10TWW0MoLneol3ZRhSKk6SyToEUZ+R8hjrtRqlUhHP8xBC4PtBMhA2dIIwwg8idNNGM21UodLq1VE0gW2m6LaHOGkDz4vRNQtVU9A1Fddz0VWDy4srXLp0KRGI2WBaPddDUzVUWUVVDF555WUMQ0mUKmOBbmrohoFAIvBDlhYXefCBB2k06zSaTXq9HlNT0+zdu59SsYisKLjuENPUsYpD+r0+/XUDWVG4MHuBialJFBJfxShOWBtFSAzdAd1ul0wmi+u6CZMylHjhhZfRNBNds8hkCkSxTLlYoNsZ4Dg5VMXk4sU5RivjpOwUkhQTxyFRFDDwPBrr6+SzOTRN3UgbhP5ggGlaWFbCGvi+hyRJRGFizVFbXyObS6NqJoPB8OpscbFQQiIZaCJAe+U47mcqfO/llzk33MRLL77AI498FMuSMW2LMPRxB0N0Tce2UuzavpNGu8Pq2ip79uzlK3/+ZbJOhKrFIIU06mvs3LKZ7zz1GFsO7uEL//GP2bFtK2EwxNBl/CBiYmKa5eUVdspzbOq+QU8foalMcLFhkw7nsPMTyZ0TR8RRiOd52Kk0UQz1eh1FlZFUBU+ApCpIfojS72CEQ0S/gTLoovYbeHEIlg6qtCEckaR7KopCFEXMzs4iCwijGFXTiIgJfC8ZuMdg2ymarSaOk06Ag+eR+HAK+oNewoBvZFH0un36vSFRGLFer5FV25DdTXXgcPTt49Tra+QLRTRdp1IZYTDsUavVefnl79Fpt9i0aWaDQZN4++23KRQK1Go1VFXF8/sMBi6dTp/i0oDhcIBysMJwOGR0dIzTZ86wddt2coUCYeBteJqmKOSL1Go1yuUykiITxyFnT53m8vwC5UqFe+85xGAwIGWbWLaRgAohWLx8GSedQVNULp4/S8qy8F2PPbt3I2SJk8eOsXXLFprNBoqqosgy586fR9MNHCednN9YZjgMyOcL+EqKEaVFvncWuqtc8tKEMRw7epxHPvZRCpk0r7/1JmOVMSRZxUzZIIEbB/Tv2QOFHPkvP4qnKfxpt8aFp75NKmWzZ/c+RooVJKGQydnYdgrf98lkswRhSLN+mVKxgq7bLC4tUshn6PU8Hnv8MXbv2k0URciyShSHqIrGrp27sEwDSRZEidrS1d5aEslnSQ8eb/hbm/T6A15/7TC79+xGEiLZNkqsdIQQeL4PImGvo1gk7GkcIWIPf9ij73ookkCWIPBDbDOpxa1V17Esi2wmg6YqRGHiPz0YDsnnC9jpDEEUY1sWcbdN+s0znPnVT6Lt3o4qqczPzvIHn/88E5UyKdviYz/1MXbs3MKefXvouyHZL30D73/5bRYefZJCIU+/32N8bAzTTGzQBkMPy0qzOL/ER3/yo7S7TeIoJptLE8U+rjfAcbIsLMwTBD7pdBpJkgmBftel2+5RKpY5evwo7mAIUphkUAQhQoTEYUSv32dm0yYuXrzI9u3bEYS4nodumLzxxhuJ1sLcMsLz2fq7/xMAhZxJLp9mpb7KhfPn6LR7fPYzP0uz2eXg7oPkyoJmXfCXX/kmP/PZB9i++wDRRj2zqsoceeMN7r/v/sQmS9eJYh+J4Cpz/d7n7N8scL3eK/RmY5brrVmuH3TLsnzVs/RaMaFrI45jQj9EyAqxLCEijz/5j39ApZjDc4dJXxeFVJdXaNaapK0SzVaTeuMylu2jal3W6i2mJ8a5vLTAeKWIIjzymQzrK8ucPnmORjfi/o/8ff7pb/2PfPpzv8DU1n1Imkm8Uc5zo3N1ZYx0/bm4la/q9az19efm2vhRANfvh3X9ALj+iJv8ALhejQ+A6/8P4vapGe9NFYb3rxp3rWowiA1hjlv7e4VffwZI7HDudD+B8FFiGUu26PaHhCKm9Oh3Wcmk+M4zzzNaHqHZWEVWdRYWFxmtjHPs+AkMw+Duuw7gZPJoikSnXWfLzh30gxApCiiPVCiVxqmurCJFQx56+OOYloWQJQzLIBaClctNXvzed5iequC5flKLqCsQR/R7LVrtOtlcGr/ToN1ooigauqZTq61haoLhoEe/61JdbZDJZtF0BUkWGJaJaZt875XXePOt46QtndLoKKm0zbPffoLRjEkoJTWdppVicXGZ0ydPMj4xQqlUpFgsQyzheR6qpNBqtDB0nSiMOHjwHjzPx3GyLK9WiWKR+AcGAaGIaKzXMDQdy04TmXV0Q8eMxzl16gwTYxNYuo477LG2ukK1mtQmIiQkFLrtFqoiYdsmkaShiZDRkQLFYgEvcFENFUWVqFbXKJdHkCSZxcVLbNoyQbvVoNvrYtqphCUPAgxDw8kVGQSCRx9/gh3btqAIUBUZz3U5efI4+XwGRVbxvWQG2zAMRkZHQcgosoTjpOj1uxSLBfqDPrV6g06vkzCMxy8y+EmTeq3KirGD//lf/w6yJuGkE6/XVqNFEEM6k0PIOrHf4/ipY4xPTfHk00/xcz//D8goMo8++jTffPRZ7r7nAeyMTSpjceTF19mzdzdjYxVeO/wGd+0/RLfdp1DIk+mewKgexS3voS8Uxsrj1NaX0TOj6LWXGEQp1qo1hq5HvlhCVmR8b0A2m0EWMoN+D1OXQFbw4ohB4GJoOlIU4wcevioQqsrs7CXS6SStutls0e20MU0D205t1AAnasbDwQBNUWnU68QxdDptiELiGHTdQlNV2q0WTiaHEFKidC0lKaaddmsjo8DATtuYuo7oXORyuIVNO/YyOz/LfffsZ319je07ttFu1Mg5NkKS2b1rD6OjE0iyyquHX2dqehOnT50nlXIoFgqoioSspjYEkk6yua0kk0D370fVJAK/j6YYdDptBD6qpuH5IS997yUq4yOcOXeKqclx5hZmGSmXSJkpmo0eY5NjmKbBK6++QrfXp1Ao02q1EQi67Ta2ZbG6ukoYxYxWxklnMvhByOWly2TyGRbm53FSKc6fPUun3ebDDz1Iv92ntr6GIKYyOsL4WAXFMum7LnJ2jOrqZbLeCvnORWrnjnLXJ36JDjaBmmV0JMPqahUCsMw0IRr/7L//F5w8foK9n/oIZyoOhfUOu948zdsHt/OpnbsYKeVBBEShi2Hp6LpEt9eACJqNLoEXEgURiiqjGRaZ/Aie22H//gPIsoGQZWISqy2SDDPCKEJRdZqt9URYacOKptvpo6oykgDXH2LaFpKQMTSd3Xv2AiQK8+JasCOhyAqCDWVUKdp4FkhEgKxrhEMfy0qjajZRDNXqCoE3oFwu0u0OsFIpFF1jbmkeEJRLYwgUVFXij7/wR6yv1jlYH7D2sfv58oXjPPDAPciWQyAGfOazP41uWWiqyVK1ys5d+/E8uNgdwDefxthS4a+/+EXuu+9DNOpNqtV1RsfGuDQ3T2ngMmLoXGrWsVIm42MVJCkkjgJStoPnhsSxhmFq6IZKGIEQCp1mg0Ixx8raMraTojwyghy59HtDTNOh3WyRMi2COMJ1A5qNLmkng6LIpFLZjbRlyGYzKIrK8K1TWELiz/SAnTt3cvLUWfqDJANHjWNSpsqpMyfZvW8P8/U5Vtdi5ueW+fRnHqbbbjO6aZLA9bBVg7XFVeqrDcZ3bkY1DaIoTGqTbwBarwCjd0mmXn2995l8p2mcyXUivWf5zba/2djjyhji2vThK3EFqF6b2nqlrevTjkMpRsggRxG15XXue/DjuKTZd89DfPfFN6hWG4yU8uQKeZZrbS6v1CmVKnR7IfnsOCo662t1spk8rhezuFTn8OHTvPzmObYd+hi/9lv/ins+8kmwMvhCEMsxiDCp5H6XarC45vXO8SaTQO9lW68H97cClbdbdqu06zuNa8HrjX6T69e92fHdjM39QcrK3rN/kknc957xO9j2Bsd5rUrxlRKaH0XEG4VSybBavPuSufYY4psues/r2u91o/c/bvEBcP07GncCXK90QEnn884s3w8rbvaAAt4DXO8sImRJIY4FSwtztJSQmRePEf/6P8KsNhkbGydlpzFMnVKpgCxBoZBHUQSyIqHrCqdOHWdqeiphEIXE2VPHyOeLAMzNz7Nl21bWVlfI5zN0ui0y2SwIaNYSa5Dx8VEMUyGKPYbDAUN3iJVKYVspavUmiqZTKI5y7twsxUIRU5PpddpJjZmyYfsQ+liWSafZwh24rFfrnDxxik9+4hHK+TTV9RqaZlAsliiVSwShSMRhgoBsxsE0NFRNToSoul0s06bd7iFETDaTIyZJzVVVNUkHVRXKpRJDd0i/12N2dpbp6Slcd8hffe1r7N69C9lpIQmJoJ0hm8uRL+SRFIGiqBRLJbrdHoVikUuXZrFSWf78L/6CQiFPoZAn9ANkTcMLfHRdxzJNfM/D0nR0U6fT6WCZJoN+j5XVFbK5AkKSCIOQfq9LGIQM+l1sO40/9Ng8M52IzwwTgKJpGpXKGMPeEEkGRU2UPVVNZa26hiQltWmqqmHbKRYW5hkbGyOXyzN0E8ZWPXoO6bf/JeW7f567H3oEVZeQQo/W+jKBYaFZBu1mDU3EfONrX2FlbpGh67J501aefeZZ7t1/N889/yj33H8fe/buo1goszh/GVUx+cTPfobyeAXDNNm6aTP/2+//W5ZXV1B0jczCtwnNIpGaIpu2ePml1zh48ADfe/M4myoOIuzj5EfRNB1FVhkMXHzXJ4rDxH8zBsNy8H0XXUvSbkMJGt0OmmXiui6GYSQsZhwRRzG2ZWLoGkN3iK4n9ZuaIhGGAXY6RbfXI4xi4ihm0B/iOA6arhFFEUHgk0qlNnw8B0mqnSzT7XTRNI1+vw9xjKFrSGGbeFjnRL3EyGiFHTt2EMUxo2MTPPv8d9F1AzuVxrRsYhJBIEWRGR+rgIChO2BkpMzqxv0mhIRu6IkP5vEVLMvmz0++yL69uzeUkxVsO4WkCFRZhUiwsrzMGCcZMbocnRuwc9cuBBFvHXmDXrvJ5MwMnudRKBSYnp7m1VdfZeu2LdRr60xNTRLHIZ7nMjk5TRgGKIqKEALbtvH8kFTK4bVXD7Nn7z4uzM5SqYxTXV1DURMbMM/zWVtbxU6nefXlVygWR1huuYztPkQw6JAOmsgXnkVeOUn/4puYWx9G1cELm6BKDAcKjUaP3/u93+O/+rVfZfOe7Xj7tmFZDh996wLST/8EYbNFFAvSToZMOosf+MSRwDQthkOfJx9/ipmZaaIoxPVdUukUpq7T6/Y3lH8jVFVFVaVEQE2RkCQBROi6kUw8CoEsK/i+z+OPP8727dvQNBVpQyFYkmRct4+iqhvPCgnipC+Lo+hdIEWIiDAIkTdYMH/DHqfb7W3UvmZJ2zZCUoiR+da3HmXb1m2oikpjvU65PEIQhNgpk8uXl1i6vMhPGDnE1Biv7ZniroP7kwmW7pBhb8iFc7OMjU1y5MgxOr0emzdt5rnnnufc2TNkslnGj5ziwKc+jmUaeL7Lpq2bGXYHuIMhmVobM455c3GebMZhenqKfr/H2XNnSacdDMPg6ScfJ5dNk89l0GSFXrdHTEw6lSaVTiPJMmEYkSvkSGVzyIpKyk5xeXEJSUr8bsvlMvML89iWjaIkZRZXFJ2bzTbSuXksSab22UdY/s7nuXfGpq1X0LUU46NjvPry6xRL48Rxojj/b/7X38fQLT7y0Yd54snH2DwzSiaVorpWo1geJZ3Nky06yLJ8U5bsWluaGz+D3/9Y4AoD+oMOlN8Ps/susBHHCSsrb3SmMWSzWbLZLDt27qQ8NcUnP/05Aslgpdan2VWYPbWMkNL0exFEOopk0+pprKz1aXUiFpc7eJ7KP//dP+QXf+23ePiTP4+VrRBEGkK6Met7s3N0PSi92Xe4Mk671bjuRvu8cl++H5uZW+3nCti+0bG/n7Z/3EDUDY9H3Gb539RxXFn2A7b343bOr40PgOvf0bgT4HqjtJXbXcw3kyC/fnbq+nSX62f9rvi4Kp/7qXepDt4qFUXEEEXJut1WnbSlkRmCWa2TLRaRhAQCWu0m2WwG3/MJgiCp8QtDLMtg4LoEYch6tYplWpiGThzHqIrC1u1bkTWFfC7LyVPHmZycRAiBrCg4KYUwSiwxXDfEMNLo1kYdq2EiSSpOyqE76PP/sffmQZZc15nfL/ftZb61Xu1VXV1dve/YQRIkQXABKHCXRFKrFZJG8jA88tjjfzzjkRWWQ+FQyBEjiZKGtiSLlExCJEGQAAmQALEDJIil0d0Aeqvu6tq3ty+5Z/qPV91qNqsbDZASGRbOi4yql3nfzZuZNzPvd88535ekAggSitTzTBqqjKRq+F7AeqVCLu8AEHk+X//GN5ElhTiK6B8ok7V1stkCsqIjSjKmZaFrJpIsIUgCSRIhSyKqqhGEIZX1CrpuoCgavucxM3OexaUlctksvu8zNzdLnMY8+uh32btnN6VSkYGhQVrNFrZjs3ffPubm56FTIGzafPFL9yCKIkNDAwhigqLoNFs9AqbFxUUG+vsRJI19+/eRLxSQZYn11WUUtSdxUllfxzYt2q0WURCytLLSI8ohwTJ7ciRWxkFEwDD0nidAEKjX69hWhlaj2cvtVRVU3UKWRJI04bHvPspA/yCLywvYmQzNZoMkTshme5q1CCKmZV4k5ZJkmVq13gP+YYxy7BRrAt/LOQAAIABJREFUH/sEvlZANzVSIWRteYGMoZPqGZI4RldkVAmkNObWG27lhZdeYueuPRw6eJg/+9M/51d/69OYlkWjVufv/vbvuO3t7+aP/uiP+eAn7uaJJ5/k+eeeo5QvcNutb+PwzTfxwAP3c4O1hDiwm06ni+e2OX3yLFM7tjG1cztpbjfp+sskQYe2lzI/v0CtWkeUJABUTSFOEkRBQVF65Ep+EF4kBGs2Gzi2QxzHxFGIaVmkSUK324EUVlfXMAyDJE1ot5q0220A7IyDlbGwzAySKGKYvfBwURZ7s7hCj4XTtm2SOKbb7RL4PqZh4m8QMvluF5pnoP9m+iYOoqsqpqmjKDpIIoNDQxRLJdIEnn/xRQYHhzhz5gykMVnHJkojTNNAEERKpQJHj77M6NgYSRIjyRLiseUeU/hdN6NpMgsLC5iGg+t71GrrrCwuUe7rx9B01NZxYr+D1Lcf13WRRIH+UomTr73CwMho7/zEMaZp0t/fT+B7F2V40jTlxIkTSJJEp9slk7F6LLdpgp3NoWsaju1QrVbZtXs3tUaD48eOUSzmse0MIFCrVSkPDBL4AfOzc9x0y80EccypmQWefnUBV85RX1+hrHpw6rtIS6+SLJ2iJZsMje1mamonv/O7v41lmciSRIJLPLWTcGqE3F/fS9KXRzRNkjRleWkZQRCYm5vDsbN4nsvA4BCGrmIY2sXrFkYRbqeLQMrc3By5Qgmv00bXNILAJ01T3G4XRe3lOV9QpFEUhW1T25AliVar1Zu4kBWSNCUl7j3XBWHD/QCyLAEJkCIIEkkCSZwipOlFsqUkTkmTCFGW6e8foNNp43sulVqTJElxXZcwCKhV6niuj6breJ5LoZAjDEIOFgco1buc/a2fR5AlRkdHOXLkKGdOT3PLzbfQ6Xo8/fSz3H7HHURRSH+5zOTkVtbXVrnpQ3dh/Nd/JP4P/wZxeg5NM9ENB+KQ9bV1hiSZVrPF3ve8E9u2kRWFOE5YXFhkeGQIz3PZMj6OtCEZderUaUrFIunG+0qWe8zlbtdFUiVEWQZB4tsPPsTBAwdQVA3f92i2mkxNTSGJMl23i67rSJKELCtMnznLQKODlqR4v/RRDuSbKIR4hZ24XsSpV0+SdfLs2LmXxaV1WvU6d7znDvYd2MfM+XPcfMutlEsObrcX1iwrCqpukMkaV32nv/4g9spjgX9KCfrROi8P6b2al3UzxuEr7efSejeL6Nqs7IX/041xgwAgCr13hiQSyiqppDIysZ0b3/5+br795xjetgsl10dpfBv1SMBTLDLD28n0T3D7R36Rwam9fPK3P4NcHATDIBYSYmIEKbl4xi7Vtb2S5/Hyc3G17xfq3Kye1/OybjYWu/T75edrMw/vZtsvD3G+VvtJAabLtW3/2YHYmwCub6Zt1/qbS7deifhss7ovnXB4vfI/LXsLuP4rtWsNFf4nuzbgupldDlhf78YRhB8OFb5029WAqwSkgkAqpuiaxIkjL9B/+Dq0//NvEHZO0vW7KIqAaTkEfkC1WmVtbQ3bdojjhCDo6XouLi6zc/sUa8tLfPW+rzPQ3w9JjGHqPdkZRcVxHAzDBASCIGZldZpioYidyaFqFksraximjqwodDouq6urOI5Du92kkC/SdQOSGL7yj19maGiYfDGHrGjYto1u6AhCiu/5bN+xm8eeeJK33/YODFOh63Y4NzPHyy8fY2LrBM98/xlUWUVWJAQRwjDA1Cw03aTd7lCrNchmHWZmzpPLZZmePsv2qe1YGQtZkYnCEESB0PdpN5vk8nkWV5a498tf4fqbbgABSsUicdTTje0rlXsDV1nC87ogKOhGj5BE01QEAbyu1wt1kyREUaJRq0PSYwGtrK9jO5ke+2fGIpsrIEsi9XqVKIrIOjm6ro+myJybnkZWVCRFw8xYkAr4nocfhGRzPV1E3+8gCglWJoOVccgXchi6juu6PTItBJrNFoVC8eIsfxRFKIoCqUSlUiEIQjKnZvhcHJDJZekfLhHGLlYm0yPBEgVUSSYKeyHZqmbRqFQ5OX2G7bv3oJsm9957H7lyH5aZIW87fPAD7+fhh7/Lx3/xF5g+eYJCocDt73wX87Nz+K5Hob+PPUMW/sJxltsi58/PMDw6yujIFnRD3hCil+gIQ0jt0xhCh6WGSCGrMTwygqZpSKKAJIAkpkQxtFodVFUjTRNkSca0zI2wzZQgCnuDYVlB13VApFAskQoCmqaiKCq6brAwv0Aun2N1ZaUH8Dc8MqIoEScpIgK+7xNGEWEYkqQprVaTbC5HtVYnCAJsJ4NKB9FfR5n6BIIoo+sKzXqdxx5/ksltW1EUkdALOHN6mgOHD5PECfd/4xtsGR/FMnXabgcnm0NVdKIwolKpYJgakiiiGRq1LTbJ/mGmz0xjWSa+F/DykeNousb4xAj5fJEz02d5/PHHKUor2I5NbvwG0jQlDCMyGQs/8BkeGQPAsqyLzxFF0Xn++ReYmtoOCGzZMokkCSwuLmBaJkeOHMFxHBrNFqZhks1lUTUVQRQxTBOv06FUKmKaBvV6jcnJbTQ7bUaGhhgdHQMhJUpCjr18hB079lDsG2Gh0kV0ytRTG0jIKgL67BGC176N1F1C3XIYWe7JZnheB8NyCB2D2qHtdL/ybc6+cITWnXfw8lfuxXYchoaGEEXour1c84cf/jZTU1MYhsnS8ip95TJet4OuKBRLRURZQRFFmo0mqqoiIBBFEVGc9LzMF57/orBxH8UoSs8DK8sKpEIv51oQewzqQi+YLY4TRAniJCKMYjwvRETG81zcbpsw8Jifm8Uwes8LPwhptZpomoLX8Qh8nxtvvA5BErFsG8OyaDRqbJva2mNM7gZkXzlL/Td/HnlsiMcee4ypqe0MD42Qz5sIoszqWoX3vO+9yKrAyVdP099fZnFxntHRIc7MnUfohCSPPk1iqmRshxSRv/3bv+HmW24h6/qomkpcLtB1u0xPn2Vubp69e/diGBrdjX564sRJJia30Wp10HSDVruJpusbXkURXTdIk7CnIpSmDA0NYho6ktTTKzaMnme7Wq1RqVR55JFHyOWyGIZBoVDCnF1CDAL+zK0wrqxRLBYwJm8hilLmZmZYWlzi0cef4Njx13jve97J0MgAlq3TP1gmiALy+RIIMpqu0mo28LpNJF3p6edeQ17im/G4XgmMXg1QXV72WgbPmwG/q5W9HGD9UFuEXuhlurGIgoAggCgriIoKikpxfIidhw6x8+BhDtzyDt5+x53sv+Ht7D58A7nBEcrj4wiWiSyKiGJP5FsQYgQhYSPReFPAd6Xj3CyH9c1drzde9mptu/T8bQZc36z9JIHSvyjo+il4XK9mV2rBtdxzrzep9NO2t4Drv1L7aQHXf5LXufIs75sFrjIisdib37c0hRe/9yTO7v3YJ2dh51ZUImq1NVTV5plnnmV0ZBRJlFldWWV4eATfj5hfWCZJ4diRF8jaFre//+fQVYXAd3ntxHGKhRytpovreSAICKJMp+OjShKG4bC0tEKrVaM8kCWMBGRFBcA0DGRJIGPqtNsuzzz9PcrlAZYWFzl86DrC2Me0MsRxTL1e25hxl1EUnb379mNYOk7eJowSFhdX2DK2FcsyGBkdpFQo4nodUiFFlhVePX6Se770ZSa2TjIyMoyqaqiqhKYZjI2Nk6QJkigRhkFPAsQwSaIYz3UZ2zKOadvs270HL/ARpZ5nWFNUBEkmYztoukaaxszMnsXOFnuhgoKIJArU6zWW5hYo9/cRJyldt0s+l6PbbBKHIbl8DkSBWr2OYVkkMaTEGLpOHMV4ro+Ty1OrVpBlkWJfmWa7yz988R4URaWQL/Dc8y8wumWCe/7+C5T7ChSKOcyMQYzA9OlpyuUBOp0u2WweSVJRFA1JkYmi6KI3st5oEIcJtm3zja9/g/2RyPp+F909w/CBdyHrEnEMomJiKSIriyvYTo7jx0+jWVnytkHfyBCnz81gWhmuO3w9Q+MTdNttjr/0Ao88/G0UTWNufoH1uQUsO8PgwCDTZ87w4osvsuvAPsywjuTV0LL9eK5LeXiEL/2/93Do4F6azQqrq6ucm57l2Vcr7Ny5HTtZIC8sEyUxgpZFiDyarRaB30TVHM5MT1OprDM4OES73cEwTJINENELh5Pw/YAojlBUjTCMen1YElldXSeXy/d0PtMU0zDwAo8oDOl0OtiOQ5oKNOp1RFGi3epQLPWhyAqyLKAKPo4hY+kiaWcRyV2E4fdwdrmLIIk9Yp3IZ8f2XTSbdTRVQQAC18cpFhAQmJyYwHM7rCwt0D8yioBIGERIoszg4BC6JiGIAkvLy5TL/SCKdNtd0jTm+89+nxtvfBsZx0LVJM7PzTO5bYpde/ZgBecBiI0xXjtxkvGJrayur7N1coI4Smi1WliWxalTp2i1WsycPY+TzVKr1gmCkK98+ascuu4AwyPDaKpK/0A/mqaxuLxMsVhgfW2NY8eOMjm1DcM0sAwd6Hm2M7bd0zKenyHn5CBNSYhIhYg9O3fxxJPfY3FhFcPUiUOPxbVVxiZ3s9wIKEzsopukyOvT0Fqibm7BdT1s20KRNJLAox34KG+/gVPfeYLbj56hb2wU41c/hr1aQZYFut0WGduhkM9uaBu7vPTSMbbv3I6YJCRxxJEjR8iVykRBiCBIuF2Pe+/9Gtu370RRNQRBpFqr9iSHxF5USxD4KIpMs9lEVnoeWUnskX1Jski320HXVeIIkiREFAXCIObxx57iO99+lKHBAfI5m2azhqqqFAtFwjhGUVTCMCDnOCzNL6HrCn7o4gUeiq7zveee4/rDB2k0aqiqjnrkJI3JLWgfew+tZptSqcTv//4f8NGPfoznf/AomUyWia1TpEJCnPoMD4ximcaGzrCLY1vYtx0g/1++xOInryc6eZZsMU/WyVMq92E0Wr2+U86jmxp9pX7WVtcoFPJ0Om0URSKKE0yrRw5n2Q6CKCKSYpomiqqC2Mukk5OQIAiQZRlJluh2W0yfnsFxbFZXl8nlciwsLLEwv8idd30Az/PI5XJUKlW0c/OIQcDIf/4PWM0TyJJEWN7Lo489xo3XXcd//I//MxNbJ/ndf/sZzp15DSdrUamvks07GJZBIptomkHk++QyOp/7qz9lx/4DZDKZf3Hgeq1esH8u4Hqph/Hiuo3kbkEQfihXUaUHOAUxJpVSBDHBVGVkocfMbao2hDKmKKNKCqogIqcimiQjxDJCIiLEMhIqAipJGl3Rk/l6x3mlY34z26+17GZt28xj/hZw5U0B12v1hP6Yzfnh9W8B159tewu4XtkufSlssvVHlmvtwJvPqPZCxS5delVtRviwMVN/Xy9UWPrwu7mg+Xqh/itZKgU9ApBYQE0l5s/OknGy5PIFxL//OutZm1y2QNcNMAyTXD5P1rEplAq4Xpd7v3ofgd/mne+8lSSBbL5EGHRQVRnLsolDgee/f5Trbz2MIAr0WFQ7FHJZJBHa7TaqrpLNF0gFGUtT8T0PUmi121jZLH4QI8syO3dtp9mqsO/AHtygS65voOdpNExMQ8P3uz12Tlw0RaFeqRJFPt/65sPcedf7MA2RMGxD5CGovXxOVVEREhGQuOnG6ygUCyAJPPLd7zLYP0i9WSfBx7J0ZEnnr//vv0ZVBYqlLMVyP+WhUXwv5NSrJ8jmTFRZRVd02q02M40nEc02qWuRxgFCkvLasVOU+/IEnouqKhthcSp9A/20Ox08t4NjW0RhwMzsLOWBQVw34atfuZ8t45N43QBVEeh0urRbXXQ9g2llqFQW6esv9TR5kdB0g4P7DzDY34ehyYyODGEYBjt2b8W0bCTRwO0E+F6XoeE+Go0apJCmCWHkYZgqrZZLGES023V0TcN3I5585lm2bh2nry9P7uwi5vtTRnMxhd0fwnUDhDRClyNiQcLOZlFkmb5Cjk6jgRi7vHbiNDdcfxNp5PPw/ffyV3/1N3z6U7/Kw999BtXM8Ymf/3mKpSzveu+7eOLRJ9AUjaGBPg7u382Xv/R5DhQSfMWg0lhnfHwcVVKZ2DqKphssLlZx7GLPO52x6dtyAH3kJoTy9bxy/DSW2EbpnEINKyiqged5ZEoTDG/dzflmhpLp9+RIRIE4igj8AF3VqdfrWLZFGoc9zU1EBFKyOZsoDFAVhSgKkMWAdmAheGtYukjktaiuzqPLCXo4h5mukbZmSduziO4SQhKQigpJFICew9jxMRJzFMs0kUWBKAxJohTNNAFpgzDMZ2h4AGFD31LTJEqlPo4dO8GWLeOcm5nl/OwsfX1F6pU1Ou2VnjSN6iCKCuuVZYZHh1A1A0XTGB4po2oQhi62kaHTaqOqGuunn8CyLCpxmamdu3joO4+gKRr95UHSJCGOQ6yMgaSo6HqG8bF+cjkH3/eQRIHrrjvM6TPTlMv9pKSEYUwUgqnrVCsV2u0OhUIB3+tCGpHJZFlaWSJXKNJsuzTbLmG3i5kxkXWZyvoqMiKdRGLH9u2cPX2SQj7HweuupzxQwrBMMo6DIEsIqkooGIgrrzH7/W9SmZtm9Lr30GyuY1g6lm2gWA5/8b3vo939IbonTjH10FO4778V0/Xpdn3yhQJRnFAolkiElGKpQBD4dLoebhDxre88zNLsAssrcxRyJV584QjLS0vs2r2NWnUJTZHQZI12s43f9dAtC2XDCxsGAYHnocoiktyLTkgSEJFIQgiCJpKUIqQaIhpDg2X279mB57ZYX18nny3SbnpIqkjo+fjdLrqqIqsqg8PD/O3ffYHhkXGKxTIZy+Ds9Gm2Te1B101IIfvaNI++/xCuHzAy1o+dNXn/+z9ApdJgZHQrsqKxtLSMYzo888Rz9BX6mJ+fRxQEul2X5194kal9tyDUa1jH5vENE03ViCMwdA2t1sQPAr7y5BPs3rmHWrNJ/2A/Ts5B03V00yQKEnJOnuXlFRYX5xkcLLO6snZRjmhtfQ3V0JAEGUlVSRB6914qk8k4yAq9/q9qrK6sc/TlFzh88Dp81yOMukRhQNIJUTwP/Xc+hbx6lCiMePRonVSS+Pinf5k/+ZM/42233YpugO1YPP30D+i2Q3K2A0lAt+vx5FOPMTg0iCAqLC2vs2vfXjRVh1RAFHpyR4J4JaKgC+OAf1p/NVB5tYnpTd/daXoxRPHSdRf+XjqgvjyC61KipUvXXfj/0rKX1nuhPWm6kf9wYd0lnwRxQyJIREwFxFQgTS4hmBQFBAlCEuINfmBBkkhTYYOgBxBSBDEF4YeP7414n9+MXQj7vBLgvGBvdHLgct3Yy7df6zjxzWx7I/Z69aQ/2r2vugiisDE67YWWXx4Of2nxC0PZ16tWFERIU9IkQdgstD69UF96CSfajx7Xpil6lxF8XViuxK59admrff9ZsLeA679ieyMMbT9e59087/Wqls0gHtiBuGWY15vZ/ac6AXoSHrIosrQwj6SGFG48iPjFB1HvvoN4vYauG9h2BoGE1dUVBFLa7TaD/QMsLy+zbds2wihhYGCIJA6pNerESYobBAyPjSLKCbqmYVsWykbI7PzCIrIkUSjkadSrtOpVNM3aCKmM+cY37mf7jp1IgoQk9tgbK+sVBgcGyVg2brvd8/yYFl4QoBtWj6Jf8Jmbm8EwHDJ2nm1TE0iShKJqrK6uk8k4SLKBgIAoQOB7qJpMvVFDNzRkRaJSWWNycoJcroBl6YiiSOAnXHf4MGOjw8hKL3S01x8SBgfKyIrC5//uCwwPjZCxLYrjMYouUlkUCKMAVdXoK/fjdj1KpT7iJGZ+YZZCsUAUJiiKSqvRO54ojLn//vvZs2cvcRSzfft2JFniy1/+R0qlAoV8gWw2x+rqKqqq4thZQEBReqHHge+h6jInT7yC73VRVAnd1KiurGOoBqdPnaZQLIIIzWaNvr4yAEkSY9sZOt0W1dU1REnE9TqIskyj7TIyOECxkCeTMRBOnCMda6IP97NuH0CUFZI0otvuolg5ECWCMAZEzEyGdrPC2nqDcnkYS3dQVYuP3HUrQbfO6Ogw73nv+1hcWcLK5Wi11tmz5wDDA6OEQcRv/MZv8ju/+e8wGtO0V+fI9Y3x2vHTKKrC/fd/nS3j4+RyeU6ePEmxWGZsfIIf/OB5XNenWBrk+0fOUp56O3V9F86225AUE9Vw0MIl4voZcp3noD0LccjS4jyGkqCKMWnYxlRS0rBN7DeR0oBYNFFFn8St47erxM0ZVPc8qVvB1FW81MAXC1iFEWSrD9XqRx2+GWHkNpSBwzTMvWS3fYCVaIS+7e/kXN1AKexC0bO4nkuapAiINOoNyv0DLK+ukMnY1Go1VFXBtEza7S5RGOJ5XeK4lwvp+x0GBgap1ZqMjYxz/zceIEFhcHgMRZOwHj2HsxTgbbERANu2qdfqxGHM/NwipWIfx195hYHBIfzVl9BVHWfsJgRJYfrsGaa2b0PXZUh7ucLnz59neGSEV46/Sj5nkyKgqCpLS8s8++yzXH/9YYLQQ1NV6vUmvhfR11fk5MlT7N27lzRN6XZ7+p7tdgeBlFwuh6YZZLNZsk4GRVXpdDqYhsnJEycZGh1neXGJHdu3k6Y9giRN1wiCmIxlbxAeBVg5B1/PUxRd+hyNZOQGVD0mCLpIssDa2iof/OBd2H05OHyI+YzM5D3fYUURUE0TVesRoMmyjJ2xMS0Tr+tiZ2wqlXXWV9cYGR5mZXmWwYEBHNvh0KEDaKpCqa8ECGiqgSTJvfzlwCeOImRZQlM1um4XQzd6D2BB2MiHFXjomw+yc+c2VldX0RSTarWKYaiICNRqFfrKZTRN56EHH0JRdXRNR5EVdFMnjHyCICSMfAYHyj2WdVGkv9xPGIR85+Fvs73QRzy/hPrpj3Lu3AxjY2OIYk+jWdM1zp6dYWx0C3/5l5/jpptu5amnnuZ7338U121z/vxZJibGGBoaRNJUhN1bMf/4b4n+x99k7ZmXUBQVURTR6r3Q6aMri2zZsgXTMDdYlsH3PCRRYmVpDU0zyOcLlPvKKIpMLpft5Z9LIgICqqYSBSGi3BuoSqJEkiQkccLjTzzKtm3b0A2DUqmPwYF+dM0giiIkGaqVOv19QzTPTPP89i3ssJvUG3Xo38/Ujt188hOfZOvEBH2lAu1Wi8HBQdqtNisrK0xNbeOJJx5nYHiUHTu3k9nIc5/YMk6hXLooFXPZS/Qq79hrB6nXWs/lrMCXe2Wv5gG6lJjoUk/qZmDsSm1/IxIul9ZztTzeKx3jZuV6clTSj5BVXUsbXq/Mpce2WX7vG6nzSsf7Ztv24/z+J2JvcDc/1K6NS3kt5+Nq9kP9dLNrsnlDrqlu4QoHeKUJjCvW8xZw/Ze1t4Dr1e31WOgutZ8UcH29G+biTOnEyAZoBUHYfAb1R9qYiBcnpKrVKo9857t4boWBoSHU/n6kz91DMjaEIIq02y3Oz5yjXC4ThQG6ppF1skRhSC6Xp1goIEqwvr7G6Og4ViZDsa9EeaBMGge0W+2LOV5BGFAs9fPAAw8gpCm+56LJIopq0ml3WF5exrZtRkdGMDSd5557jmefeYYbbrgeVVFI4hhZknE2SFNq9SbVWhMnYxPFbYqFAtlsH7JiEEUuGcvh3Lk5Rke3oOo6Z8/OkMvm8D2fhflZDKNHvuF5HoIsMTg0hJCmSKLK8soSjm0T+L1Zt/OzM8iSTqPZxHYykMQoskin66FpBl3XpVwukxhrCIKALY/jZB0ESULTTXzX4/jx44RhwODgAFEcIUk9Btp2q40gCARByPDICKura4yMDmPbNooiMzm5jb5yCVXtDRKtjEUURywsLGOZGebn5nHsDIoi4noxA/3DPPXEM4yMbEFSVMQkJQgjvvOdRzhw8BCK0htYLywu0m53KRTytJp15udmGR8dxTAsnJyDounYdgFTU/CDLnEUI1dbRGN1VpKQ4uGfx3QsWs02n/ndf8t777wbTdV6HkwhRVNlrIzZO2/1Nl/4/D+w//ABZG+ObqeJbTusVWu8cPQoE1u3kXVM4kjAdX0euP8B3n/nBzDVlOLKIwiFccIkwvcD1tbXufmWm1FkGV03KJVKOPkMgphSKOZIk5B8zsZ1PSYmJhAlCc3MIVhDaM4wQm4Xob2blnmALz8+z57Dt2CXxtBzo7ipyVItJpCyZPsn6UQaXmxhim0EWUPM70B1hvHkYZ6YcRi78dMYffuohzbl8T2o2RGM/BivnFwiVXNIMtSrFTpugGVm0HQd1/WIowjDMDF0kziJ0TQNkBgcGOLpZ56lr1wik7FRVRXP66KoCgIiDz74Lfbt34eumaiqQV8pi6pq5PIlBAS279hBsTSEKEkIUozx0jKCG/NiskJ/fz8iPWKiMIjYsWM3jUadjO1gOw5S8ySiJJFktjM/v8DeffvQNQVD16jXaxiGwfp6hVw+z+jYCL7vUa3WEAQRRVW59W1vQ9UUNE1jfn6e/v5BBCSCwGNpaQnLsjh+/Bh79+1hbW2VKIwYGhpAkmWSJCUKY/zAxe10KeQLuF2X0bHxXn5hEtNsNcjmsiwvL5Ev5FhdWcW0Mr2QU0lCVkTCKMKXDAy/CgsvEQ3fSBiIxJFKFIjouoVl2uRyDuZ4GfedBzAeepZsvcuX4wYzzzzH2OgYruviOA61arVH/iNJ7N+/l3w+y8BAkXK5jGn0yI8qlQqGZZEmAqur61iWRaPRQBQFHMfpDcaBRqOBlclQq1ZRNRVRkonDiF07dxHHIYos9ljP/ZDpMycZ6C+Tz+dQFYUgDGk0mhRLZUZGRmg2GlSq6z1JMFVlZGQYRe2Rkfl+iKYZPPTQg9xwww0YzQ6aLPO4lnLdddfTbLVZXVkjm3XQDQVVi8gVLG666TCCGJIvWDz4rQf4zGf+WyRJZGRkhEKhQJSm1P0uSsvFevEEtSQlDAPa7Sbr0+ewC3nGDx9EURS6roskQqVawXNdgiDivvu+jqGb5HI5qrWnF0v+AAAgAElEQVQKpqnjhwGLS0tkc1kUSSYMAjpul0wmQxInVKtVqvU6uaxDmiQMDQ9tePEgm80we36OIAgQRXjppaOInYByFPOD7SMc6AtYmJ/Hdab41rceIQg8stkMg4NlOu0eR8OBg/sZHR3GcWzGxyaQNQ3D0EnimKXFRb70pS9y09tvuZj3fxHUXOndeoX39o87cL+0/gvA6FKAdSWpm0t/d7ldiSDyUpBwecjwpWD09erfDOxe7jXdTILnciC+Wajt5ZI2bwYEXno9L9/v5eWvZT8XxomXXutLveOXevGupT9cem6u5nV+vbZdPoFwJa/8Fe0ah7SbnT/xsuv3ZsfHP3R9Nrv70msst1ndVzjA1zun/9yRAD8Je6PA9SfzlHrL3rJ/BhNTBRBJhYR8sciv/Te/RXW5yanXZghufwfpUD8EPqIgYWccojChul7FNCxWllZYXl0hjGPmZs9z8tUjVNfmyOVyzJybQZYUxDSlvr6GqVvoqo6uGayvVnjmqWfxPJ/3f+Autm7bzp59BxgenSDrZMhlbcbGhjl8eD+ddpMkiTBNDdPskessLy/SaFT57F98juWVVRqNOk89/jgPP/gQnU6DNBXRdJsEaHVqSJLC0tIqoyNbCIKYIAqRJWg1G1RrVXzfR5IkDNPEyWUvPtB7eWgphXyBer2B63p87d6v8czTT1OtVCgV80DCgw8+SBymLC2tsHPnLk6fOo0ggrQhT1NdWyfweqQpQeBTLObYtm0rk5OTeF6AJMn4fhdNkxkc6r/4sL//G9/kxImTCILA8vI8zz//PJIk8s0HHuTVV17DdV0C3ydJIkp9JT7/+S9g6BateovjR49D2iMrCoMU349QZBWnWMB0bO7+yEdAEKjUagiSzrlz8zzy8GMsLaygyBoT4xMEYcLi4jJe1yUNI4JuF7fbJgh8JFnaANwypb4yKBI/95GPMLlrF0NjExiKhBgHpF4XKQ5oVJeoNtsEYUgx73DL2w5THsn1pA7iiPu/9jViP2C0PMj56TNISob7H3iQVqeFpAlM7Zxg+9Y8sVXm9Ox5/KDN1qkt5HIFfM9HEEXCMKDVaoAYgxjjei0EMWZlZYEDh/bh+x1USWB9ZQlRTHnpyIv4gUetViVJEsa2TGINHEQr78bXxxHzuylM3IQzeohGWibQR/GNrcRDd3IynKT/E/87/b/wR7w8H3D33XeTyfT0S23bZm1tDc91cV0XTVU29CXzZKwMgwPDnDs7y6OPPMrc+VmGh4YQBVBksZd3nMRYmQzzC0tMbd9BX18fkiQhSRIrqysb1z3oeYJSCOOE733/Bzz5xJNEUYiqiCAktNo1TEtG00TOnDpDu93pybiIOkdfOkYSp4yOjmDoOp12m1q9wekzp0FIkQpTSLlJkjQkX8giSSKzc/PUa3VUVaZeqzI62mMs7nbb2LaNJEsUi0VGRkZoNBosLqySxD1v4unTp1hYmOXImVk+9J//kh2f/O85ePAQa2trFItFLMvkG48+S+H2X2fort/ipZdeJGNnsDM2Lzz3PLOz88iyxuLcHLZtUx7sJ18qMDo6QrvVZGh4gDRNiROQFJ0oFjBNC8PUCIujpF4T4cnPYmgOpp7nkYef4g/+1/+NVrvB0eMvYFkG2aEB/P/0b/BvOcQvnKwgFHMoioyTdWi1WsydnyHwPCzLQNMUbNskm+sjSlKmZ86SzefIFwtU1qsIgkQcpSRJSqNRJ01jAt8j8D3SNMXJ5hAlhWKxiKIoREEIacrq6grtVqsnsSNKREHA7l076XTaIAicmT5Du93m8OHDOE6GpaVFZmZmEJCIwgRR7EnL+L5HNpvjleMnkEQNWRIwDR2n1aV93X5uufFmTp+e5vSpGZaXKqRpypkzJ8nYBufOncYPOkSxz9j4MH/4h39IksDw8CiGYfPqK2doN0NA5tefvB/xu9/jSL/DysoKg4NDHHFbHPXaPcZu30fXNHRNpa9UQBQkWo02v/Irv4xuqPzXz/0l/f19BKGHrCpkMhncThff92k2mlgZC7fb5YXnnyeXzTEyOoIoQjabJU0E5ucWWF5eot1u9VIHVJVcLseNN9zIhO1gyhIf+egHaWj9RLmtDA8Pc/rEKZr1Kp1WnW6rzdlTM5w8eZpms863v/1NlpaWMM0Mtm1veKObNJtN7r77bqQNdnJZ/lH91p+GXQ08/iT0Oy8Nlbx8udQugOfXA2E/zYH9lfZ9AZBfCvo3O8Z/rja9mfJXuraXh4Bfza613Fv2r9N+Np5wb9n/7y1+7DkApHfdeO0/Si88OBMSRDL5HPt23cTA4ChhJBL/L/8d1od/m/n/9O+xXn6Fudl5Mrt2sra6ThQmDE8MMTg0SHV1BSJYX55lcvcg+VyeZrXOq68cwzRVdu7duyEvE9GoN9mzaw+yrOA4DudnZ1ivVikWi6RRDdtxkBWNmfPnmdg6Qb1eYdu2rQwOlllbX+nNuKcpppUlDCNszeS6gwfxXJ9cwSEMXLrdCEmSEOSYVt3l/vsfotjXz8TWcaZ2jtHXV+DIS0cp9/WzdeskC/MzGHae8kA/kiSDAK12B0PL4Ps+iqyyvrLOwUOHGRwqYmeyNBp1VF3jzvffSavl0j8whKSoHL7uOjpuFz1NaDWb1NYlMpaBquk0mx3UnImVMYjjGNt2iOIEw9RoNGs4tkOShDjZLO+5470EgYeiiJTLffT1DbC2ts5dd92Fosj4vkfHbW8wIM+yf/9+8rk81co6O7btQNBTIODDH7mLerNKnLokgkYiimQLeSRRJGNmSFOJTCbPBz/4YXy3wzfvf5C7774LUVZ7RFAJ1CtVZs8vc/j6/XTdDq7XJSOKCKJA1/XQo572JIAsK6zOz5OxNLK2yfLCLLomo+RH0bSANI0Z3zLAublXCJfWef7F4ywuNCg6OUr5En/653/O1+57iL27diMIAr/ya5+i06ly5sRphlKRrZNTODmHEyfOIaKQz+c5euxltm/fThD4RJGI57pYRo6MIfC9Z57hne8d6GluptCqr+M4Bjt37sRzPYaGhqhUarz7Xe+CFE6ePMnU1G6OvnyMHTsmSdIYIe2FsbbbIXNzc1h5++ItpBs6lco6GcdmYWGBYrHIxNat1JsNpqenObxvD+vNJu12C7frU8zozM0tkM3m2blzF88++wwTW8exbZNUFDh5+gwTY1s5OzPDjqkdBEHA8vIqQ0NDbJvchqxISMjcdtttHD/+CpPbdhKEIQOlLOtr6xRKJQQJjIxCpTpLLltiaGCYwDuKLMkUi2OYpsrx48c5dHA/9XqNbqfD6MRWRkfHSAFl6EZAIKwsY1oOqqaxdWIbsijgenV83yeXV+l6LoahEicxpVIJQRSpVCpks1nmZpfp6yszODjE6uoyo2NjfPb/uefieXMch7NnT9HXV2RtZQVVVS9uG+jvRxJFpmfO0d/Xj57JUG82EVKoViqUBwd6bL2SRBh5iEIWRddYXV3r5amnMs1mDRkXVRURx3YSzbxK8sT/QfCO3+PDH72DD37obahawK5dO1hdW2ZwoA9V0xA+dDu14SKfvuc7JKt16p+6hea932bXrt003Q6f/e63uO/oC8zWKsiizGg2z8/t2c9ntm2jf3CAtZV1KpUqD3zzAW57x22Mjg1haCr1Wq1H3KbGxGmK63mErouddVhcWMD3fF5eXeQfXnyaI4uz1LodsprBvqERfvWm2/jY4RsplYosL60wPDyOrAgsL63hyQL7/8vvX/kZf89ne38f/xoA75u+jV+SApbWqpw6eYaBwTI33nSI7Tu28aV7HuCr37iXF156Edd1yWQy7Nu9i9/4lV/nwx/8MGdOn0eRTf7+C/fwyU99nHd//ON0lz32vnyS/NQUs7Oz3HXXnQiCwOrqCrlcjrm5OQYGS/Q0bjVMw8Z1WxQKOd75zneAECMI6Qagd5BFCUkUMXWDWBJwWz1d6jRNEejJBQVBb8Kv0+kyOjrCyso8fSWZXC7H0WNHWV9rckdXQPA8zIyIv+PdWOYS/eVBbn/3HezYtYXBoRKPPvoosmRy++13cN/X7+HOu96LnSkSRQlhHIKQoOt67z01c5bBraPk8/mfGDD8ce1SIPN6Ib4/Tv2vBzjfTBTav/T5u9K+L3hbLwWqPymv+LW06Y30pQtlrxS6/EaIi34W+u9b9rNrb4UKv2UXbbMZM0HYjGxpc6KHzZYLxBDRH3yW9OWTSB++4+K+XvfhJcZAL6cuTVNSIeH8a7O44TwDQwYxA3RNkfCP/4I5Em689Ra63V64Yi6fh1RgZWWJ/sEygqwiqRlUvSd5I6sKg8MjqIZFZW2Jvr4+ZmfnGBjsrVtdXaZcLvLUM0+wf/91zJxf5bWXnsGxHQzLoVAqI4jgRRGGmSFFIp8v4AceCAn7DhzEVASWVtZJkpRywcYwVVy329MzFUWWFyo8/ezTvOPtN9NpVZk5f469+w6haQrlci8v1cnmESQFVTbIWBrdziqKmHDylVke+vYD7N9/gCAMOf7KUQ4ePkDX9XqMiaQoskLgezz7zJPMnJ9l68Q4pVKBNI4RzN4AP6tOYmV6kh0IPnGUkCQpsiwT+iH1Wh07Y1Gv1slY2Y2XUkI2X2B4ZAhBEBFFgSgKsCyNiJh6rYqqqBiGjRtERN0GuWKWTN5B1Hoakc2Kx7333sf2HTsoFAtIgkR1bY1sJkMU9Lw/+azDyvwsuiLiduqUy0XGt4yhmzq1Wp2z02epVVaY2jZBp90GUSIMQwzNwH/tDOKUi9ifx5q6g7/7wj+wuLTMrTcdJmz77Nm9m6bbJRJSyqMjNCordGOB3MAIiSwzMFDGyEzy9ts/hJnvZ2ZhhVrTo9Q/zCc/fhfnzp3jpptvotlqEScpLzzyMFtsH7M0RhyBk7Hxuj5np89dZHOt1hsU8kVUTUY3VSRFIFsoYKoGK6trqLpBNlfYAON1Xjl2nHJfmU6n541sNOq4jQ7DYyPYWRsjY2GaFrNzi+QLg3zvuac4fGgvp07M8A8Pfw+A3/vljxJ0u3jtDiOT2+gfLJEKHoomMTw6ymuvTTMyPIimKZiZHLVaG1FJGJ/o5RdWa1UG+8soqkS1UmV4eBDD0hkcLmNYOggShiqhqSKCKJJKMrV6A1O3aNYaSHLK7v078LoBIODYNiISrUaLQr4fUVDpuiGZc3V0w0C5cQTX75LL53uSSHYGO5dFFBOOHjtCub+EIAhUqxVq6w1sO4ei6r2JiTTFMBwM0yQh5PzMOUqFMmtr68iSgqZqVNarVCs1Tpx6jfGxUYjhzOlzBGHC2fllvnvkJAD/wy/dDYBtO+RKOWodn+8fP4Wpyvz6ne8gV+qj0NeHk89iZUyy2SwrS6u4rkfWyZKmEWHQxs4V6bo+oihQqfTCURfnFhgYGEFVsyiaSeC3iPQsansNYeZp5B3vhjDCb7Yxsxa6oRIlIEoZ1isuXi7Dw0GbcHqGye88x+KQSc2NuPtzf8I3X3mZSqeNIklEScxyq8HTM2d4+MQxbin3Mz4yjtvtbmiAZpBEyGRsBHEjioOUjKFTXVuj02kRBwlhN+R/+vrf88dPPsh0ZZVuGODoBk3P5WxljfuOvcDJ+Xk+9fY7KJVLBLHHyy8d45Xjr7J1124eeO0lTFUlo+mYqoalqliqjiZKmIqKLEkEcQTAL378o7z7hvfyng++m6HhIq7f60O/++/+PX/xf/0V587PEEU94qNmq8n5uTnue+B+giBgdXmBQ4f3oKkqXtfj4P7rsYbH6fv813jfqeP83rvfR7PVAhJMS0NVZUQhRVFNTNNBszREBUwjS7ihk2zZNrKsIacyi0uL6KYKhNSqK1hWHklSQBA2nqEpqST1+rHS0ws/fWqaVrvL2NgErU6XHzx3hNHRLQzUm0hRRPdTH+W1107ya7/ya7z80hGee+EoiAlONsvwyBZWVurce989jAxNcvzoKXbsnCSljZmxEAWJNAUnl6VYzvUmhYQfJvC5Uvjkm8mJvLzc5Wy+17qPq6YHXcFrd8GbvFmo7OXkQpuF0f4I8c5VQn2v1K4rAa9rCdW8kof0Qr1Xatulx7XZvt+IXeq5vfB9M9B/tfZc7RhfD2xeq0f7TYe1blJURNjgZRCuSrS0mSUbQbxpr1G9gm8AfAubfDbV+r3kkyY90iZhM83c9I2HMW82IXJp6PnPir2V4/qWvWnb/EWzack3XPdmcjhvxC7cdLae4bnnnyKXL2AZJZ5Ym6NvrcZELk8tjXn8iSc5eOgQYRDz8MOPcOLEq2Qsm9GRMarVOrZtY2zkfOm6iu+5qIpEu91GllQ0XWdubg5D60nE7Ni+nYWFeQYH+kkjD80wQejpO7aaTWxHZX1tmTQJSZOYOApQFQkrk+OrX/5HVtcr9A8MUsg7uF4XRIEo6pEdSZLM4UM3kM06bNkyzuS2SQRJJIkjJFlGVVTq9QbtdhtJAl3XWVpcJZftEcZsndiGnXFoNloEfkh/eQBN1dF0DbfrUanUKOSLZDIOe/ft63lnFRlFUUj09Z6up1+mXq+jagppGrO2WiWKY7JOlrm5WQYH+0EAK2MjChKC0CNzkmQBSRIgTem0O6yvrZOxbARS1lbWaDVafPFLX2RsdAxdVf8/9t47Tq6rvP9/3zZz7/SyM9urtFpJqy5LsmRLtgyuuGBsXDAGTDPEEEqAAEkIIYRAMCSYGgI22CbGxkW4yQ1LbpKLrN7b9jq7Ozt9bv/9MdJ6EbKxCeQL+fnzeu1LunPOuefcfp7zfJ7PQ7wqiaQoiKLEWGqcYiFLa2sTqupFliVs28ExDYqFPIFgEEkWMSyDeDJZMV5CIVJjqUpKiXAIVQuiyB4Ms0g0GiIQCJLJZohXxRkeHqEqW8aqMRnwapQDc/n1+vUMDg2z+vTTef/7rqV3oJfW1lY0zU9ZtxBtB9cSmZycRFMkjHyG//rhz1iyaBG/uutXNNU38cRjj7Fg3gLuvusurr76Wp566hl6e/t47rnNtAdN6uM+xgsmjuOyedNmLFvAH/TR0FCH1yNRFY8wNj6BY5u4biVe1OvxUCyWKRYL5AsFfH4flm1Tlagmm80xMpqiqbEe17Ho7+2mpa0dySNz5MghopEwEi4DfSNUJ+voaG8H10XX4ScPVJ636995Hu2tTeSyGSLROI6pk52cpLenF58vSCIex7QMisX8sdyULtFYjFAwfCz2thnHMVCO3dOZbA7XBY9Hw9ANjHKJ9MQ4AgK5XA7bslEULy+/vJU5s2fT19dPNBJGU1W6u7toaGzk4YcfJhaN4fP7ESWZvt5eGsZdXNvGml9LNpslHothmCalYhHHdfGpGoZpEgpHEIwMIiY+fxjZ48F2HO6/fx2zO9qZHE9jmgbd3T1U1zaCqCCLLprPR29PH16vl2AwwLbtL9PU1MjBgwdZtuwUAqEAB7p6efSlPQD83QevxOfXUBQFXddJxCLMCHu49LSFSKJIOBZHEiWGh4YJ+AIYhgmuTTyRZP/+A0QiMcpFHVULMJZKURVPEgqEUL0akuzi82lISkWJ2auqmOUCBBNIhQncvq1IM05H8WiIkgK4lEolZFnC7/fhuhaJ6lre960bCSzpZFnXBJfcezOHJ1LUhKL8/Nq/5prGxXztyvegGTZbR/roz6Q5PDHB2W2z0HwaLS0thCMhXNcmPTEJAiiKQnpignKphE/V8GleAv4AX//N/dyxq8KY+fCqtXzl9HP59rUf4q/XnodfktnUfYg9o4MUs3mavX4MXWfhwnnMXzCPYibD1971Pi6fPZ+/vfgK/ubcS7iweS5XdS5ndayRi2bMRw752T7QjSorXH/tezANkerGOD6fj/b2WXz1mzey/rFHEUWRf/j8F7j+2uv4mxs+zsZHnuCii9/O9l072PziC5x37rl0zukkEonT1XWU3t5exgQHz679BAp5sA3mlExCpTI5vw9/IIhpGiiKF1lWKJVLTByjUm/fvo19+/bRMbsDSZI4evQQ1bXVqJpKLpslFAojSh5cHILBANu3b6O+oR7XcdFLJTRNxaPISJJIU1MTAmA7DlVVCZqbW1B7+pAsi+w7z2fbs78B3SCbc/irj93AjJmtdHbOZXwsjSzLbH5+M6tXr2HJ0kXYtoEkCSheraJ0Kwjs37+PurpqPKr2u8bkGzBcXy9OZky9kT5eT99vJC7vjRrcr9bmjYzrZHgtcafXkzLw9eIPvXYnGpev5R39n3rF/xT7/P2dnuynNy7W9Urjk9x77vTiP/w6/N7yk50//mfxt9Pxl264/nmN/k28iVfB8Ti6WG2U+qZ2jhzoRXBzdM6bi/r3H0HuGyQS8lNTXY1pWPT29qHrBjPa2imVdEpFg2ikit6eblzHZqC/l1Ixhyg4RKIxJiezqKpKNpdl27Zt9PX1Yxo2jm3T1tJEf+8RwrEEhVIZvawj4qKqKkbZxKf6kUUZwRHAltE8YcrlEhde+DbWnrWWuvpawpEQvkCAUDCK11tR9AwE/eiGga4bFIuV2C+vtyKw4vF4KBYLlWOOxYlVRchkcjz00G+wLJkZ7W3EozGK+QKhYIjenl4OHThIuVRGkr0cPtLF6Og4pbJBbW0DjuPQ1dVNuawzNjaGWwqiZzxksxkEQUCWFfL5AuFIHFFUGBgapK6+FkkRGR0dYWhwgEwmg207KLKHQiGP49iUykVUVUPT/ICEa8OeXbtRPR4uuegiRkeHiFXVgCBilHUkoSLs09RUS1tbE7JERQTGozAyNEzA78O2LWzXwuNTKFsmrixSNMqEIxFsy8a2KpPtaDROXV09vmCA8ck0jU31U2I1juviHGln5oX/QltLG7KsHLuRFHwhHw4uumkgyiqWIaMqGqGAn5qqGFdfdhmULC5/+yX0d3cxb/Zsdm59mU/c8DFc02Dx4lP4yle+xpzZ85k/fxHzOhewYEYtSs0cYrEY4XCYNWvOoL6xnnC4YhzopSL7du8kmawiFAowPj6GZZmIgoAv6Kemvo7x9ASBcIhoVQxHEFiweDHxeEXMKBoJ0dRYy8hYipHUKG1tM/DIEpmJCRYv6SSfG2doqIdsdoxUamDquRFwsWyLcCSCiEMhl0cSJBrrm8hlcqg+D4Ggj1hVHEmWcLGZnMxh2y6joylSqcoCh2EY9PX249P8GIbJr399P6Ioo3pkaqor19exXLa88CKhUIiVK1exd99+Xn55K3t27sbr9dDU3ES5XGbhgkXE4xXlassyKBTyiEC5XEKAiuCN45DP55lIpyuCZ45LVVUS0zAxuh5BHNxIvpBFPraAcs65Z2NZlcWjF55/no6OOWRzRUZGJhgaHESRJUxTJ5GoYt++/cfiMIPMmzebgwf3AhYz2mZMnbdyuTTFFkmnM4iCRHt7O2eccQbts2YiiSKOZeP3+dm1e3eFPupT2bTpOeLxKkZHxhnoH0FA4rlnnyeXy1HWdURRJBqLgOigmzr+YBBEFY8sYRlFipF60LPw9E04QiVnccWD5mKYBQwry+HDB3noofX8109+zinveT/fagiyZ2IUgJuvvZ4VDY2EIiqIDp+/8hr+453vAWDD4f0833sEv19DlAS2bt2CYZTRVC+yKKGqXpLJBLZpMTExjiyKpAsZfvri0wCcN3cBXzrnMhZ2zMV1XUaHh/jEuRdw9byVAPxky9P4YhFmtLaRzRaQZS/t7bMZGhxlYnwSQZQREAkFg2zc8CT1dbWcddaZrNtRMYovOOssmltbULwik5kJfD4fL2/byd333QPA5ZdcysVvPY9F8zqx9SKf+8zHOfP01Vx52TsB+Ma/f4uh4VHed917Wbp0KXPmdHDVtVewXoPrahqIBXwUiwUs02JocJhstgBIiKKIaZkVfQTVT6lUYv78BXR2diKJEgigah68qqdCVVd8SFJFKbmSUMOho6Mdx7EYHhzAMg1Mo4wsiQRDPkZHR3h56xZSqVE2btzIjh3bMcxK3PCDDz7MXA7ynuUBbv35HYiSS0tLC709/ezdu5dEMsY3vv5N5nbOJh4P4/Uq4IoUi8UKI2Ji4nWrw/4l4NVEfv4c8MeiJJ/Y5s/l+F4NbyQ29f8S/hT33++73n+K/v4vXrs3Y1z/j+H3UVNeCye7uU+u6PcHDe1Y25NTSn5fTMRxUQJbMli1ai03ffObnLZqOYZeJlKfYPCfb6Dhyz/ijLPOxLZsauqqcVybHdu3cv7557Fnz16ikRj5bJHHHn2cVatWYhoGPp9GPpentbWN4ZERXnjxJdauPYNkspp8Pks2W0BRKqIaji1gGEWKhQLpiXE0fwDXVQmHNLLZLC+9tIU5HXORRA2sHLZtEYtX4boC2UIGw7II+L2oqo/JTIZcIUchq1Mu5mlvb0X2qDiOS7FUQnXB7/fjugKyLJPLZYhEY7z/Ax+gVCqAblE2LFRVxR/0E4lFaWhuwqt6cVyXpctOQXAFtm/bjihKzO7oYO7cOWQyk9x77z1cccUVBEN+HE0HV6BcKhMKRrAdgXAkAbgIIkym00QiETTNj2k4FQGTXI5QKIxt2xWCiyjg9/sQRYFssRJPmy8UaJvZRrQqiurzUS7m8HokcCtU5O6uHmqqawhHI1i2jQDU1tajan4sx8Lr9VAoFlEUPxIi4WCIQjbLrl27qKutAdfh+RdfYPGSuRimS7wqydBgJW7RshzGevtJrVrAnrvvoWzZHF+OFVyJsgOPPLmRD/zVx+nq7kaRFRYvXMilF1/CFZddzq0/u5mnNmxk0bKVZCdzrDlzNaZt8bkv/S3D4yPs3b+PyVyGW+75CXW1daxccSqlNpGk5tC56hwc28Y0DUrFPG1treSyGb7xg5+yczDD0ZGfMp7J4fUoRAI+GhJRzl+9jMvOWsHyZcsq1KRjuUh/8+Ju7nx4AwcGRhjL5JjMFwn6NBa0t3DN+at528oFvLRlG2efeybBkEp5bJz0ZJaWtsap52ZiYoJ4SGVkcIhkbQ0+v5/Nmx9/P8UAACAASURBVDaxYsVKNE3EcR3K5RI+nx9cAVeohAcMj0/yzV8+wqObt1K2HOKhAGcs7eSGd56DInv44E33wE338Ni3P0UyGqGxqZWurh401cdTL+/g0U3beWrLTlLpLJP/vYGAT6UpGeHC05by/kvOwTBMJBcyhRIer0KfVmTSC8vWVoysbXd8C5+q8p8PPMNjm7czMj6JT/Wycv4sPrNWY05DhHy+QE2djGm76GUdXyRMLJFA0AJ86ts389jm7aRzBaqiIdYsnsM71ywibzpc/I8/AuCJm75AW12FUTCZSVPSy1PnzXFdEAUc16EqnuSBjc/zoa//GID9v/gGiZo6HAEkSeTpp5/mhZ37eOlQD3t7RxnL3kOmUELzeuhoqqMppPC2t9mYjo5HkRgeHCZZnURTPZTLZVwq6umyLOHg4iRbkVM9iM98m/LajyPLIpKsIgoy/X0jtLW1MaN5Ns8+8wILFy7kjvvvBmDJnE5OSZcJlQew17QTmhQZHO7l3I4OWuIJusdT3Ld7OzO1MLF4Fb09vSxcOB9ZkPAe8ySapokguKheD7LHy11PP0nZMgH40KlnEQoHGBkZQQtU0gJlszm+dPl7uH3ncxRNgwf37uAja89HllUM3UYQYOfOvSQSUcpGGUXzUS4XaairwbUN7nphI5PlIgBXXHkVXk2lrW0GE7kMt9x8O7f98hdT1+TdV16DR/Xxwotb8CoeLnn7FUh+lcbWRu6851eMplJs3bmT22+/FU3TyHVnOf+t5/LWf/h7pI/9I/XvfBvhex4HF2bNasWyLMbGM2i+CtMABzZveoFzzjsH3dCZNWsWgiBgWRY1tbUgioiChKr5kGQZU7dxBBfbcvB6VVwHCtki+Uwev+bDlV2GR0aorakjGAySy+YJR0KkUqOIoozruiQSCWaGZ1IsFtjw1COYGIyNTTAxMUlHRzuhsEY+X+Lh9fexes0qWlubKZcNVFWtxN2GQgwNDeL1eqdiISVJ+qNNVF/LS3h8En4y6uH03JLT6bqvh056vO50vFZu0pNReE+sd+L274u3PH580w2N6UrBJ8PJaKDTy07sfzpF+Q+J/zy+YPF6jN+TeX2nU0dPVvf1jue1xggnP/b/yb7f6Dj+0D5OnH8CiH8ET/RrPQNTZa+xOPJGjunV6h0PJ/hzXzR5NbxpuL6JvwhMPWBeAZUgkUCcX9z6X3hDLbyl+gJCLa2kv/pJotd9ntTff5SwrRMKzsI0i1iWwezZs9mxfSexWBRJVBgfm2B8IsX8+fNQVT8DA4NUVVVx1llr0Q0DWZUJe2KMDA2xa/cB2lqb6erpw7EMqpNxNK+XcqmEogZwBBePJrNg8VzS45NkCj5ESazkhC2VUX0aquYlIIfIF8qIkodAKIjq8yCLWWqrY4iigKr5cAUJRZZxHAdZkvnBD35YWf2fvwhRklF9DprfB66EJBdQPB5cCdasXQ2CgGPbCIIDApi6QbI6weDAEJZtISteotEYH/zgh7Bti2KxgMejsem551m6dDE+v4brWJT0IorsQUQiEqtibHSQXK6Aabh0d/ewc8dO3vuB93A8QkTXy9i2hWA5hGMxOufPw7ZMFK+C6JXRTYNcPkN6PEVtfT2yx49fDaPrNocPH6W2rubYQkCYkm5VVIxNBUWRkR3o6+0mGAoSDAZobGxkPD1BMlnHvM5ORFHCdkUOH+1n3uyKxyw7OkCdIONeeAZLZIdwMMZ3b74ZgEP7DnHhRe/ghReeR5blqZQgG595mo3PPE1XXzdf/PSnefChhznn0ktpnNHKd77zHXbs3cO6B++fuh81VUU3DLq6u+jq7uIeWeJHn7sOrauLgYFBamvqqK+rZcf2HdyzaRc/emL7VFuvUrm+/aMT9I9O8PyeI1QHvCyZ1UzHrFnsP3iIVNHgXf/w71NtPLKMR5ZJ5wo8tXUPT23dw8VrlvPVD15GUXdQJBVVC9HY1MKOvd1T7WJVMfz+AG0zZ5Ar5vBoKstWrMSjaSg+H5ZtVCiProQgigRDEbYdOMq7/+EH5EsVQ071KGQLJe58fBMPb9rGN264emr/yZpqGmtrcRGZ0zmPl3fs4qJPf32qXJZEVI9COlcgnSuw48gAT247wI8/9yEUxaY6WU1tbT0TTWnIF6faHewd4mNf/zGpdBZN9eC4LulcgYc3beOZrTL3fHIZOWmQRLKBcCxGIlFDJj3Bjq7DfPDG28gXXxl7rljiric2s37Tdr70voun+rBt2L17L6edtpKiUUDTClNliseDYRooskJqbIyBwcGpskDAj2GUyGazRMJhlixfwcVfvGmqXJJEfF4v2UKJl/Yd4SWg7+++zbf+6jIapVomxyapqUpiGxYTE2Pcsv5Fvv6z+wB4+nvXM6OxFifWimeiC/ep71E49Vqi0Ti2JRKP1eJVJCxHYM/+3Vz3oXdjigYAF17ydrrOPofY5l3UPXEAr2mhLe8kmMlxxswOusdTbDy4l+9dfh3j4+O84x2XI8kChWwGx628M7weBUUUkCUZRfVRVl6ZIngLBl6vTDQeIZ1OI8kKyWQNg8Mj1ATDDGYneWT3Nj5y9iVkcykCgRCmYTGRHmT1GacgaR5sxyCZiHHRxRfQd/Qov3zkcQBqInHamloRZJHHfvMYX/3qv/PrX69j/ZOPwWEIBYPky0Wq6+r5+e2fJZsp0jn/VKoaYdv27ciyjGVZbNm+lXdfdQW6btLR0cE111xDXUMdbkMtXq9amTjiMjJSSXv07HObWH36KjyKh0QiSWpkI8VSCb/fx9DQIFWJOH6/n3w2h9fvwcZBlAR0vYQgyBQLJURRZHR0lEAgwMjgKNFYlPHxSfKFHM0tzRw4cIBIJEprWwuxeJxSUcd48jlUQaCxsR5yR3Acg/F0N8tOXcPzm7dxwQUXcvToQVTVQ0/3OKFQgNraBJZloZcNZE3Bp2mk02ny+TyqqmL/zlfz/3842YL97/NGnyz1y/GJ/fQUg9P/PT4fOVlKmZMZPK9nHP8bODHtDZz8GP5UfU7v9028iT8Ubxqu/0dxYiD+H4rX++J9vatolXqvrMaemKT7t1c6pak6U5QH20PZyfOuD17D5z71WdRAmdPPOQ9BEVCamzC//GkavvFDfmVmWXveW1mwaBGy7EVAJJKoYsaMRmbMamR8YowlM5aSmcxRFfeh+TyMT6TIZQtUJaooTE4QCARxTJNkVYKnn9pEU3MNyWSCbL7M1u07OePMlaRSk7S01GDoZYL+CKqs4rolDMuDLIsEVZnBnh6SyWpKRg6vEkASPTg4mFaJeCyJ41S8HP39/QQDGlooiGM7ZPI5PvzR65EkEdGVyecm8XgEHMfGq/oI+r04jotjmezfc4Ddu/ZwxRVXks+VGBwYoLmpCde20VQPsiwhSSKmZSBLIq5kYOsWQ4Mp3vLWs8F16evvIxKN8+tf38e555yNIgmUSkUiVXEkSUFAIlYVZ+myxZRLRXw+lYGBPhSPjCjJVNfUYOoOqdQEhw4foKm5gfaZMxDR8Qd8xKpmMzQwREBzOXT0CCtPX0FVbYx8voji9TOZHsd2LMLhMLYNAhIDg714PB5Unw/Ddli6YjnFcgkbk2g8wrp1v2b1mlXMmtVA2TDx+VRqRjIYb1lOcOA/CTiQm/dZktVVHOk5ykOPP4Agitz4jRu5/B0XEg2F2LjhGW657TbWPfQg/3HTd5nR2MpHPvkZsC2eenIDLQ1t9A0O8ZbVZ/APX/hbvB6VzY9voL6+nmiVlx/f9DXufv4QH/v323jhlq9x+unNuK7DWCrDRL7Mj9ZVJucfvOQs3rFqDlapTOe8hfQNjpB1XG6+5xHaWlppam6mUNRpamxhfN9h1i6cxTXnn8GqJXMRbINQOEQmV+KeDRVD5/6nX2RuUzU3XH4WulQiXFXFwMAIjvHKFFawHaxyCcsy8UoOPUePUJ1ooJwv41UlXCz27NrHKaesoK+nF69f4/p//Sn5UpmW2gSfecdaVp/SSX1zE9sP9fCJb/yEL/7wzmnPq8T46CheVQMEfH4f561czKVrl3PaoploCtiWjWWF+OK/fZvN3Sk27zrAd+99lC994DJAYN/e3TQ2NiJPew98+J9/wKymWu7810/TnAwzODDEYNbm4zf+hNF0hs/evp2ff+1SDMumXCpWFmoEgeu+9B3yxTIttUm+9ldXcdqCmfjDEV7ee5hP3Xgz/3Lbg1N9bHt5K5e//W2kJibQ/Cqi8Mp504sGHo+Ea5nUJhNEgq8oNXv9KrgysgLDo/00tTRy/solXHr2Kua31INRoq6milKpwEOb9vDNXzzAi3sPc/Mjm/nyhy9jzrwF2I5NsVDCdZXfej+GIs3IkoxRTmOqGtrkIMqOuzFWfhLR9eK6LyMLrYxM9nPDX1/PnDmzefcHrwKgY04HDzx0P/fefR83/+fPKL+8i86jg/j6RzilKPBzYDSfo6chSrJcIJtJo6leHEEgEApRLusYhomLzPDoOFHTQ7HwymKC4hXI5vNIHpWauiZGB/t54O5f8ZZzzoNj34YDoyO4poVHVYlEYzgDI1z5hU9TLE8yPlYgGAyjzWzCeXQTYv8oTw/1AXD9X32YGXPacSSJI/1DfOFzHyKT7sG2dQBs22HJ8jOYLBn84s5fUi7mmBhPkUoVWLP6LTjOFwHYt38PI0PjuBhYlsGMtlZ2bt7B8p0HyD+2CUU3UDwK8XiEkZFh3n7JxZiui6GX0Hxw8SVn4BEtBnp7mEhP0tTYgFEuYrkGYlnAtmye/M1Gli9fjtfrIZUapqa6iZC/irHUICvWnIrjVBTb2+tngeAyf/48bNumq+sogUCIWCyCK8vopTymoSOJIn5fkLeccwXPPvsbVpy6hK6e3dTUJdh/YCfts+aSKVbhSBKC14tVKjNWKlEtSUhWHiM3VvlWik5FPwZ7Wrzfb4vsHMcbydP5WjjRa3gi1fd4nelj+EO8YK/mxZzuBX0jara/77fp52W6mNHJRJ+OQ5KkqbnKycZ93DM9nb453UP8+0Rzjp9T27antt/ouXw9KYFOhumGPLx6bt1Xa/tq/f4xva/C65zqOpwk/+1J2v7Wb8f//ypDdKf9PnUtX6cWzPS2xz2t0/ueyt/6R7L3T2QQ/CXi//0S0Jv4s8br5fn/qeNRjucuc10XSZHxBwPM7pzL2rVrSVbFCfg0NK+CefpinNZG1p6xhlA4iObzIggOrmszY2Yr5ZKOx6PSUN/Mgf2HEEWZI0e6yGWLmIbNyGgKSVI4dOgQPT09pNNpXNehrq4G0zQJBoP4fX5qamrwelWq4nGsYzkBESBXzKJbRbyKiCi4lEplTFdEUYMUdQckAINCfhKvpJIaG6W3tw9JkohGo2iaDwEJkMhM5iiXTERBZmCgH031YjuVVDiZyQyFfBldtxAFiY6OduZ2zsbFxOuVaWmp5LH0+4PMmjUbcMlkMpiGieOIEBkg1DzBjBmNGHoeXS+wZ/dOJibGuOyyy6g6FvOYrE6iyDKSUEnSLQkik+kJAv4wPd39xGJJaqsb8HoD2JbIL267hZdf3sTppy1nZlsTxUIWx3GwbAcBEU3zYVgmCxfNR5EkPIoX27Lw+TSS1QnqauuYGE8jChLZbAbL1glHg9i2hdejYlkumXSOclGnkM8jSyIeRab7aBdDg4PomRz2roP0X3A6lmmDC7quUyxWJuCmZfFv/3oj1733fcRiMQYHh1ix7FQ+94lPsuKUUwD43o9/yAP334tpmqxZs4b29naue9d7+crff4m777oLHIWVy09lttLLkuyTfOsjb+f0+e0USjq33L+BHdt3UyyYVFcnGCtVxJpqo0G++N63s2LJEubPn08wGGJ+52xm1ye45cufYn5bAwf270PySHh9XpbMbee6sxZx+oIORvp6sU0LWZCpTUa47sLVfP/zHwbg1vXP8OKWbWhqENsRmMzmiCcSU89NZjJDanSMbVt3kBodo6G+AU3T6OvrJZ2e4LlnNxEOBTF0nXR6gu//8mFGxjOoHoXbvvRRFrTVTeUMXtjewr03/g2S+MozPpmeRJZlgqEg+UKBJQvm8ouvfprV82bQkExSyOtEwkmCQZW3LpvNLf/0cQBuX/80+w4cRNd1qqurKfWPIWZeoerGgn5+8ZWPsaijhXKpRFNTIzGPzReuraj97ugvMZ7JE4mEGRsbI5/LcfO6J0jni3g9Crf/8ydYu2wBgiRhlnXmtTRw01+/67eoXp3z5pLNZgiHw/i0ILb1iuEqCtDT00OxWEKUZJqbm6bKstlJjhw9iGE4NNS30Vid5Lt/cy2XrllGRPOQzWYJBMPEE1Wct7yTX/zzJwG464kXkDxeLFtHkiue266uLmz7FY+Ebjqo/gi24MUUvBixOsThw9j3fgzjiS/h2fkUxo67qa6OY9oGxfIrXuKAP8D5F1zAkxue4v6H1jOajHHdzudYvXcD2uXnT9Xz3nIvdYcGqHMlRvUSexvCpMfT2JZNIBAgl82SzWR47tmNtFfXTrUzNA+a5sO1HQTXxXZc3nrOOQyOjzE0mQZgKDMB3QN4x/JoDz1DaX83k+s2oDxzkOr9fUR3HCb0nTvwDYzxH7kBXCoK5nPaO8hkMjiWzdozzuJtb7+MlpkdRCIxAArFAqcvXUj3vr0M9vbw4vNbCARjJKK1HDxwcMoQO3LkCPv37yMeS3DrrbcTCoVI7dyOoUgIfg1RquSvdh2X6mQNtm1j6jrhUIhSqVxRqVY1ovEYczrnYjoWjggBfxivqqJpGqvXnEZVVYSRkTFGRkYxTYOXXnqBGTNbUGSZHdu3EQj4GR0dpVgoousmxWKZlpY20uk0E+kJpJVLEeMxJMkFwcV2HDZv3szoyBixWJxoJMHRI/3UVDcRi8VYvnw5mqYhyzLxeJxIKIyiKIyOjnL22WdPGTOvF6/1rf5jfcun51U90Vj7c5wwv9pxnxhvO91QPtnfa+1/uuErSdLvGN3HQ6Kme3dP3Of/yzjIP8QZ8vvosW/iTbxRvGm4vonXxB/LcPXc/DU8N3/tDx7H8QTiqseDKIrYArz3/dehKAo7tm3FtS0cx8YX9JP93AeIP/YcwiVvQZJEKsImZVzX4qWXXmZgYIgNGzYyc0Y7fl+A1pY2jhw5QiaTZUbbDAL+EFVVCeLxOJ3z5pJOTxCNhmlpaWVgYADLNuns7MSxBfr6uikXC5SKRQQEktUJREkAx8SvafgDAUZHx7nrV/cRCMYwLJ18Mc3LLz3P+Og4gYCfqqoYhWKRYrHIxHgaXbfJZgpkMnn27duP60LAX4lp8ni9+PwhXAcsExy74vVSFInOzg5cLGRFYnR0BEXxEA5HeeLxDRw5ehiPR+HgwSMcPdKNYZhYps7RI/s4sH83gmtz/jlnk6iKIwouruvg8XqxbQfTMI59UG10o0xVVRVl3cDjUXng/ocYH8/g00LcftsvWbN6BatOXUYxP0l312ECPi8joymy2RwlvUzfwACWaREK+hkeHiabyeD3+Snks+h6ibHxFM0tLfT29RII+giEKnRW13XIZioiOYVcid6ubrZu2cK8uXMIB0NEQhESVVVI3UOMy1CsrsbQLQrFAqIoohzLw1lXW8s1V1/Frt07KOR1aqobSKVSzF0wl7WrTwfgwKFDzOpo44477kBRFObOncvk5CTNzc28653voNncT/vYnfj0AYbVDuTq2Vy89lQAth7oJhAI09s7gGkZxMIVT53lQm/fANu272QineXo0SO4jk0wEMQ2dTY/9wzJZBWZbBrDNhAkkTVnriWRTDC7Yw6JeILuI0col4sUiwVWL5wFwOD4JDPmLELxauCKJKtrpyi+x5FIVLN8+SriVdXYrotulikZJRLJJEuXLKW1tRUBi9rqBE9s2QvAOSvm0dHaTK5QIlFVhWWaFAoFyrks15yzcmrfpmWSLxYq934ygeU4pNMTCIJAoVCmrqaJgf5RhlMDXHHVFSyeO5NENESxrFMWPNi2jaIoNO/KoW7qm9pv11CKH97zOAKVCZ5jOyxevIh3nrcGj1z5bA1ncgiCSyo1SjgS4d4nNwMQ8muc/sG/45/+8w4QRBRZQZFlFnbO4cq3rJjqo7aumn379pLN5tmxbReOM817Igu0trYQCAQ5cPAgo6nUVJlt6kSjIULBKPlcJWdnsZRDwCYWDbNwwYJKrLIgEQqHaEqGSURDFMo6W/cdRfN5wHUolQp0dHRwyYpO9vzyRkae+DmRYABXVAlX1ROuaiSvGxTibTiNCxA8KuTHoXcLzj1fQvvNVylsuX1qXHWFfTTV1+LVVDL5EtnJNHt27+Yzn/0cPZNjU/V2Xnk2T7YnGa2JMs+QuGDdy1Qd6sc50otzuJf2dJnTR0tcroS4OGWiipVUJDfdfRfK3i7sA0fx9g1RU9DxDI5z84ZHjyWOAMtxKGRyBOe00fWpK/mY3se+i9Zgf/pD7L1wOcWPXUX3v32GPZ94D3dtfQGAt5y5liWLF3Pnnb/iuaefwzZMJFlFtx0+9enPTI17dmc76+9fhyLLJBIJvvfdH7Bv30HuuPuOqTqlcpne3m5SqRSrVp6ObZvMsmwKCzrweBVkScbFZWh4GFmRKRSL+DWNfCaH6wj0D4wgygquAF6ft0KfVlVAxHUqxpimeSmXS9TXNbJixUrCkRBLly5CFOHo0SPMnt1BuaxTKpZYv/4RhodHGB4ewXFsGhoaCAYDlEpFZFkEwULXdTxeDytXLePUU1fxyzvuYvOmF/FpQcKhKhzHQVEUFEXBtu3Kd1BW6Ovu4cXnX8B2XRRNPclX89Xxv2G4vpqhd7zszw3TDe3pOJnhenw+Mv3vjRqu08/NdG/sm4brm3gTr403qcJv4jXxxijAr/77q1F4Xk004WSCCIIgYJtWhVqhSCg+lXQ6zbJZM8Fx8Qf8FMslfLNnYF1wBvr3/huhuop8Pk9XVxf9/f0s6FxIKjXK4sWLQHDJ5bL09XYzq2MWu3fvYfbs2Wial8bGRmzbJpUapbauBkEQSCSqSSQSlMsl0ukJwuEos2a2YDsGgUAYUfLiuhaK109v9zDRaISamjry+RwLF3ZSyGcJBFSK5TKLFi/FdSRU1YOi+DENg8l0GhH4/vd/wNVXvotwKEQw4AfBRZYEJtITRKoSiLIHxyoSjPo5dOggM2fOwHasisiOVkmJUFdXT7FQRBIVYvEYXo+P5557nqVLT0FARNf3EwioNDe3MDQ0jK7rqKoPRRLYsWsHCxcurJx/UcCxbIqFPMFgGFEQ6Ovrpbq6jsbGetauPQNZlvB4FK5+19UYpTShUAjbtglFotgO1NbVM5pKYdsuc+d2IiEwPNSH6vWiqT4c16aULRCNhojFYhiGQcesDkTJQfEmsUyLgD9INpNn3549RMIRVG+SQrFMS2szR48eoW1GG2LZwN22h8yH30lzUwP6ERnTdEjWVCPLlVfdksULcYUyCxbMQy9ZOA4MDQ0Rq4ly/nnncON3v4dlWViOhaIo3H///axauYZH1j/Mrt/8jEOH9vFC1wS9YzkKZeN37vve4RQdHe0MDQ2zdesWNEckFgqQmszxkW/fzurOVj5wxcXUVyfIZDMIroguuBWqdXUNDi6264LjMjSc4j+f28ajz2+jZ3iMTL6IdZIYpIlckTrDOibila14/48hGAwiiiIej4xCkFK5jNfjZeGi+TjHcv12HT1KW1sz4UiYfV39AKzorHiQd+7ey+zOOSSTcWTdQgxHWL2og5t+VaE/B4IhotFoJb7adZEEgWgszs8eeIL7n3qRvUf7yBZK6Kb1O+PuG07RFA9SX19PsVjEtn+7jsfjoayXGRsbo33mLIaGBkgkE8QDCkOTOtlCAduxmTdvHoODgxzpryjrhgM+UuksPp8Pvy8AjkOpVALgtEVz+OF9lVRBikfhlGXLcB0HyzA51NU91bfXq+C6Ao7jkhofI5l8xYtdKhWob2xDFDzYHkilUmhagFse2MiDz2xhf/cgk7n8SY95LFPCth26e3qQRInaujpmz55FejINtsPo8BiRcBTF48VBIhyrp1goUyqX0cJxJKkNFwXH0immhhnLHXzl3dm7BV9pP5Ya5upOB3nRAr590014PB4amtqm6pV1g9ja0ygHfGzNTVL1nvOR93eTCEfp6ellXPUxVBWisbGW4ZEBzlNGWLf+ER4fH+DC5x5gabyGz3/ikzy3dRv3b9nEj7c+gyJJmMe8frdVa7x9zWy8qoe//bsbqKttRDfT9PUOYug2Pi3E5774RcYnKsb0e655N7F4ghXLTuXw4aNseX4LkiJS39BEx8x2fKqPYrnIs1teYMHChWSyk8TiEZafuoRLLr+YvJ5HkRVMy0TTNFacuozh4WHOPPMscrkM/to4WiaP7ZoMyg7+cIgZ9TUUC0UikQhGuYyul/B6IziuxNMbnmbJKYsRcJBlEddxkSSJfK6AJAqUSiX27d2DgI8lp3QiCqDrZVw3RGNDHbpuYNkWQ4NDzJs7n9qaOrK5DNlsjmAwyMBAH3HRxTRNbvvFnQwdeomXD/Uzkf8yiaoEK5edyrlrzyWRSOA40NfXR3VtDZPjE4QjMRzHoVgsIwkiwWAQ1adRNnRk6beFd0ZHU3z/Bz9k/fr19PT04DgOjY2NXHDBBXziE58gMY2ZMR3H32mjo6N8//vfZ/369XR3d+M4Dk1NTa+rvd/vP2nZdFx11VXccsstJy2bHkb0avOOE2NPf1+9V6v7au2nix8d3z6REn0iptef3uZk8aQnGrHT6bjH93Myau7Jxvlq86vp+zhxPyfbfrXzcuI4TlbvtfBaVOETKdgnLhwcFx17tdCyN4o/dZup6+G+sv3HGMOfQtTqL1Wk6U3D9U38SfHHfiBEUcQVwEFEVGQuueQS9u7bhT+gYXhlFEXCcG2M911C4IpPM/LDfyH5wnYc26WhvpFoOEQyGcVxbDwehbJeYmZ7G+FweedPpAAAIABJREFUGFX14uKwc9cOwuEgDQ31qKqK11vxDOVzOUZGh2lubiQYDGJbLqnJISRJRDfgzl/+jAsvOh/VLxAKV+MP+NB1nWVL5xPwByjoBTKTWfy+MIpXwcWiVCiA6+LxeJhMTxIOhTnzjDO59757uOZd7yabm0QUXWLRMGXTQfKqWKaNonjI5TLU1tYwOjpKdXUSUZDIZLLEFJWJiTQ/+9ktfOTDH0EUHZKJOhxbYGRklEDAT3VrAFwX21WIJ+owTRPTcdDLJRYtXIBpmhi2hdfrxTLNSrqcXA7NpxEOBdF8EqMjA0SiAcbHxwlHw9i2geUIlPSKEeXxeOnp6aG+oZ5HH3+M5pZWVq1YiesKBAN+Mpk8Bw8epLo6iSxJTGbSCHhwHYkdO7ezcuUyegeGaGlqJpfLY9km7e1tFAoFwrE4dY31DA4NEI5HyeRzBLYfQFw5j+B5Kxkc6KFe9eI49hQlC6C5pQVRdJBlmbLjYNoO0Wgcr6qSrE0SjYRJjY2ze89OPvPJzzM6MobV9xKN9h6+ePPmitrssfs66FPxehQEoFg2yJfK6KaJrheIRP0sqVpEsWDybzdczWe/99/s7xlgf88A//XwswR9KktntbCktZYbrr0cBwFBkDDLZfL5PKPjOd7++W+SmsxN3fua14MmCng8lbjI8UwegKGREUKSjeZTObBnNzM7F/zW85LLZ4hGIoiKl0BAplQukZnIEI6EK6I2x7ypu/Yfxj42aahNxlB9lZzFhXyeclCjUDIruSmdVwxjURDw+XyU9TIlXSc3nubqL/4He4++4j1VPQrxcMWANk2DbLFcic1GYGxsjMOHD3ORP4loGr/1rLsueL1eZs2ahetANFahR8oeP6BTNnQUWaJU1hkaHZ8ae9SvkQz5EC2L0aEREnVJvD4NQRRobniF+qobJolEjHyuSEfHTArStM+h4CAKMoIgcsqyZTz27EuvHDMukugFwWZooIdUusD13/gZhwdGp+p4PQqxkB9ZqngrxzI5HMclXyzjugJNjc3IioRj2yBYZCbGCQdCRMNhnnxyI2eetRZZVjjcM0nQqxD0G5Qmh/DIFmo8hFHKouMwd8FCuOcpAMq1i3EaE1DOM6O4k66dtyI1XUTZENh/uHfafeSjpbkNRJej/b3IsgdtZiNSMMKE5GKaFcqwqgZIJJJ898ZvUSqbPLrhNzy+cwuPA1/f8EqssCTKXHzRW7hn3aMA+AMWmqeWgN+L4Ko4tkihUKStbSaxWIxSqUS2lAEgmUiwatUqBEFizpxOFsxbRD6TpVSeJBL1c+cdt3PD+z/MS7u3sfHpp/jBT3/MD37649+6TxZ0zmNGWwv3PfAg0UiEtrYWnnj8aQqFIs9teoYztu3FbWvCMk0OjI9wavtKsscUlEOaRj6XxadpCIJES+sMEvEkgmtjG0bFUEFEEC00nxcREdcF15WJRoMUi1k8isq6des4//zzkaVKHmPV6+Po0aPMavfQ3dPD4cOHOOecsymXy5Uwk6e38PWBfdx8TEhNEAQCgQBDw0Pc+8B9rHvo13zli1/mlIVLmdHejKIo1NTU0N3TR21tXUUcUDyWf1yWsWUJZ9rCz4svvsgVV17N2FhlcUDTKjmJDxw4wIEDB7jttttYt24dixcv5mR44YUXuOKKK0gdYxocb79//37279/Prbfeyrp161iyZMlJ2x9HNBpFUZTfMXQEQSAcDv9O/ZPFjv4x8efs8f1LwslEnt7Em/jfwpuG6/9hTF/Je606x3Hyj8X0lbLXekGd/EXmHos8N//pewAo//ixk7Y+Xu+16EuvdOUiuBYeVWLr3v1s276HW374Xb7+pc/RNzJCbOYC8ol6jJWLCN/1IGJrI4JkEQx4KRaLFIo5eru7Wb5sBaJT8Trt3rXrWM5MkYP7D7Pq9FMZGRmiKhHDshyOHOllx9atnHbaaWx5aRuLliyiu/8oyapGPKqCrFrMXzyHYDREwB/kl7f+HFmTuPCiC3nyN8+wds1aglUR/AEYGBykrr4eUfIiODa6bmDbNu2zOnAdSNbUUBUL4fcLJBINuA7ojkw2m4ZsDp9PQ/K4CI6Lz+cjENCQZInhkSFsy8If8HP06CHOP+9sUqlBVFXA6xXRNJHnnnuRhoYmajqrKJYK+GwLr+zFI1fob2pAQ0SiXM4jijKyKyMFo+TzWQIBH+Cg+TQKBZtoXKWQTdNQM4PsZAbDHScRa8G2BQaHhqmqitLQ3MBQXz9XXXY55bKBpngxTZOB0QKRSJBEKMR9993LxRddhIBMKBzCtl3a22cxOVmivWU2E+lxFEVgIj1OXV0dHq8XXS/i2DZ11XUIQDmdxXt0GOfrf0uoJoniK2IfrRit+fwYslwxIDLjJhO9E9hujkAwgutRiCST7N/eQ3VVDuuY8VTKmtjdG5k9sZedXcP83S8rRuvFa5bx0cvOYXZzPT5N48UXX2TFilP5zm338S+3ravELnk8uJaLIIpkMv0smdnALZ++mqd2HKA/Z7P1wBGO9I+wcft+Nm7fz0NbD/KTv7sey9FxXYN4PMzlX/gWqckcdVUR3n/uKq659ALisQiH9u6jra0NVfURPeuYuq8r0NI8A8ljk6yt4omNW6YelclMnupYE0e6B2ior8XjkdBLJaKRCIVCifT4GPFEAjUQIllXP9WumMvi80pcdOG5KB4ZQRQJh6OYZhnJ45uqZ+oV1W5JUdDTZb78w7vYe7SPaCjAFact4FPvfze1iRiWAw8++Gv6e3v53oY9DI1PYtk2NbW1lMp6haZ7wrNfKhYwDZOJiQmGB1MsWDAP17KxjsWiGrpNPl9mYmKc2tq6qXZXvXU5Zy5dQG1tNQg2oiAiSQqSJCPLnql6iuJFkTW8XhdFlRCmvepsS0Dx2PT2HqW+rpF4PDpVlqidi+2UkCQJ23L5zq+e5PDAKOGAj0uXzyMqmnziox9m07NPc+Y5p5PPFznjo19jaCyN4EIuU6JQyFNdnUDXdUrlIlXJSroVxSNRLubIToyRSCTonNXBRCaN5hMpZQZQhFH0yRKmECBU3UB0Ij81rsHUBHNbG7B9Gv1OAzPUXmqcfexw21h33yuCWvMWtDKa3sPk5CRB1Ut9ywz6+/uJ+Xz0jQyxevXqykLa8CFGU8PU1NTw+U9dz3XXvosf/dfNdPV1UyyVaKpvZsncU3nwkQ0c2Ffx1Dc3NLNw+XKqogHy+SyO5VA084xNpOg/0MPkuIWsquzYvQuAK99xKX5FobfrIJFIFQ8+9gznn38RIZ8EIrzr3VdTLFjgePnmf3yNvf8fe+8dZ1dV9f+/T7u9z8yd3jIzmWRID0kIEJJAMHSIdFCKYPmqiAoq0hURH0AQ1CgPFqSJdKUkINJCiZCQTNpkMplM7+X2du4pvz/uZDIJCQREf/rIJ6/zR+4+e5+zz5yy1l6f9Vk7mmjraCOdTlFcVMKsQxYg6iYbmnO1YKsqKmlr62DRUfNQs6NksiPYVJUmIUG97OCQhpl0tPcRLCxEUmCwv5viklI03UCSLAgCiDYTSVQQZEtOOWUsciXLEqlEAkWRmDt3BqJiBcMkHosDBv39/cycWUU4nMDtC3L8SSfw3nsbKKmoJFhUQndPF+VlpQwNjrC2dxe3RtoBOPfMsznvzPN4btVqzvrsKdx2192semkVN/z4B/zlsT9ideSBJJDVEhQX+7AoBum4xjMvvMC0WfMwJAeGmosKA/QPDHDmmWczMjpKZWUlv/jFL1iyZAmiKLJ582a++c1vsnbtWlasWMGGDRtyjIkJ6Ovr44wzzmBkZITKykp++ctfsmTJEgRB2Kv/Zz/72fH+B7IxHnnkERYtWvQ+O2PfyOTEtolRoIlRTni/fbA/9d998WE2zgfZHBOjq/sKUe3v3GHv6KKu6/uN3E48xv6u3YcJNU3c50Dz218kbeIcJpYsmtjnQGNNjHp+UgrJ+453IBbe/iLW+85n30j3vpHc8VzijyOa9DHwSS/CfLpAsAef5rj+l+Oj5Df8Q8fp6MXs6D1g+8ehK2iaxowZM7j4K19m2Ykn0tK2i9HQIApZ7LKO5bILsL/8Fmosic+bj9XiBETyAgVMmdJAJBwjGk8wPDxCXd1kslmVnS0tlJSUUBgMYrPb6O7uQkBg5owZnHDCcZSUlTBz1gwEQWBSdQ3dnR30dHcxOjLEgnlzscgSA329zJ4zlxnT55JKaRxz7NGYUhZVVRkaHKKsrAzTMBgZGkIUZdRMFsxcWRmHw4bVaiU/Px9JkjHN3HKBaZpYLDacTg9DwyNIkoLNZiebzTI8PExnZweVFZU0HDINi0Vh/vx5TKquobS0DFmy0tPTi8/v58STTmLBgsMwMXE4nMSTKda9t4FkOonFbiEajdPd043d7sDtctPW1kYynqC7s4sXVq0iGU8gSzJuh51MSsXj9iHKEorVitfnR5QkFItCwO9jZGQYLa1SVFRId3cXogDbmrYwMNjP5sYNCJhYZJnly4/D7nQxPDyM3Z6LjJWXl2GxWnj8icdJp1O43C7cbjcCIqIkYbPbULO5/LDW1lbszW1oR81lTe+uMWPKiyAKGLrJ0OAo2WyuFmU0NkIqlUIZExwyNA1D0ykuKuOlF/9OJJpzBMrNLnyDjSQsAR7ZOIpumNSVF/PbGy9j1uQqtmzeRDabpba2lp6eHpJj4wMIokg6nUJTswiCQFdXFzU11Zz1mSP4+ZWXsu6Bn7Lmnuu58UtnY7UoNHf08MPfPI4gCMiywrqNW2gci5Dde/VXmF6Rh4iGYWqoaor33ltPe0/P+PESiTiCKBBPJEilUkydOnW8rSBYgM1uxem0Y+gm0Wg8J3KVzYldFReXkE5nEAWJkoICpDHDQDVzRrDf76egoIB4PEE6HScSDtPStieaahgwOhJCliQCeQFWvb0BgP/5xoX86NtfpjDPg2nqJOIRJtfVcfIpJxOKjQkKmSaFBfnU1daAwLiA1m44nE50TcfpdGGxWUEUSasq0liJFrvdjsvlorCwkGCef/zcTclCYWEQVc3Vu9xd21LTNHqHRsbHN00DWRJzyrqGgSTt+RyGw+ExZWuZzo5OtAm0X1EUyKoaWlansKiIF/7eCMCKQ+v5xvmnsvjw+YQiIRYccTiGLmIaIqGx+yqbzaLICnl5efT09KBmNRwOJ4qi0N7ejiiKHH/88djtdgzDYCDcj8VlR7K6CAQnEYormGIayUxgE7PMqqtBHBPL2t7RSzgSRpJFCiomkfVW4o61MNvayaHz5wO5sjKCICOLdqyKi5qaeuyKSJ7XhV0ROerwBaTjERKRUew2D9OnzcJhd1NRXkvQX8jjj/6Jpx99nNdefJlf/mwlJ5x0PNlMlN6B3Ls9FopSU1PLmjVvsnPnLjo6uhgeCiGJVqbPnMWtd9xJa28HWU1DEARmTp9JS0sz1ZOq2LFjG+HIEKl0hGQyidPpxOl0YhgG9/3hd1z0+c9x2Ze+ynOPPYdb8nHpeV/hmEXHsq1pCzt25ijTs2fOYtvW7ZimhCTamDV9AeKufoq39ZFMpPAbJtVeD1abjMUikpeXTywWG3MwdAzDxGF34HA6xxgC2T3UTQNsNgdvvPH2WJ1alc7OTpKpFEctXsyU+nqsFidWiwNRkPF6vMyfPw+fz8u0adMoLS0DBOwOBzf053LJK8squPqK7/Pe+g00bWmirKSSH1/3E6orqtENnetvuhmTLOHwKGpGw9BFopE0ogTVkyo56qgjURQJYYIM6d13383I6CiiKPLwww+zdOnS8W/r9OnTeeyxx/D7/QwNDXHbbbexL+6++25GRkYO2P/xxx/H7/czODi43/4T8VHEi+CfL/L4j+BgHZEPm+v+5jjxt911eCcKbu2vz+70l49SwubD5vBh534gWvKneD/+FXb1fys+jbj+l+OfwZv/OPg4q1O7V9+yBtTPnIGYGKRlww7mKDrr313DtGkL0Q+pR3e7EdMZRkOjvLXmDY5afCRWm4NMSiWTzuJyOYhGY0QiEYpLirDbXESiYXp7e5kydQqZtIpu6MSSMdw+DxaLBTWTxeawUzOpElE0SaspwqERTFOgpDhIfn4ekUgSv9dPMjVEUg1jdThxu90YYyrEHo8HLQvbt7dQUlKMrIi5aKok43K56Ontoay0jGg8ytYtzfT19nHKqSdTWlJGLBbD680Vuff5BGRZRhQVtKyBbmTRNZ2RkVG2bm5i3vz5+Pw+hoeHUBQZh10klkxhs1uRZRtz581DEA3iqSgetxe3y4OiKAz0DeDzeXE73TRMbaAwP49MKo2gC3QNd1BWlk94NIasSCCLyLKNZCaNIimIkoCp6eza2Yo/z0sg4CcSDREIePF6fRy/fBlDIwMkkwI+fwDFaqewqJCsmsFuszEwOEQgL5/ly4/F6XQwONiP3+cnm9VwOl1ggqHnvHpD02FnJ6mvnk7D1Gr8gXxUNY1l6qm0b+8gGY2P31/rNryDaupsefcdLIqdw488Aq/LTTqdoaq6ZpwKfOTMWrrFEmrL6oikXwfgkJoKDHIrxPPnzyeRSKLrOv39/by9OWc4q2qWWCyndptNqkiiyIyZM3G4nRSJJbTuaKOysoJD6mqZWlPDjtZ2Hv7b33mjsQlMATWbpW9kDz1YzESZO3cOgQI/mmEQLCyguLiEh1a9Pr6P1WZjdHQEU1Tx+72k+vcI8fR0d1Mc8KBls/T09OH3ezCsApsbt3DoofNp3LCeiqpKMhmVRCLO5Ipimtp7eGtTM+cceyR2h5PW1hbKy0sJR0MEC4J0hVLj43s8fgoL89nSuJlEViet5hz42VMqMcws0VgMr9eLJAvE4hF6o8nxfYaHBlBkidbWnVTiwWHfE8kFyGY1EESeev1d/vDsK+wYW/hSx6Li7R3tbNzoZerUKUiiyJTqMra2dvI/9/+ZK+96gO9ccBrfvehUBEFE07K07Wrnwut/Nj5+Ip3mhnse4vm3NtA9MIwyFpUH8Ad86JpJYbCMdDpOd3gPDTh47Of4401fZ2p1Gbc+8CyZsfk8va6ZvuQfueqi03nz7Tc56+yz0VSN7V1d43PWdY2UmmHlA8+wZstOdnT2klGz5PvczJtaw2XnnESDy4XT6RyrM2zHYslRloeHoxQUV/HG+td49OWtvLWlk76R6Ph5/fJPq6kszOeko/zY7DKyox5zWGTL2hf483OvABBPJJi35GgURaG6spLDDp3PnOmHcMbpp6OrGfq6uygvL8+lDmQlJs85nIHBQW669nrOP+sCvv397/PGm2/R1d2F3+dj2rR6rrnhW3zrqu8A8KVLv8RV19zIX19+ieHREdwuF8uPOZarvnMlsqLwv7/7PZd84yIADl+4kDffXc+lX/8aRy48jKcfeYjtO3dyzhfOZeeuVjKZXDmbz5/zOS677GuMhrvweKaSiGeorJjEjTfcTPmUIO9tzjEMZEni8+d+nrVvrkWW7DS3tHDrzbcwfcc2fvJeFwtKKnntiBVoukbGUYpikdE0g9Wtzfxx0zo2DXQTTiVxKBbyHC7qC4pYMqmeC+cuwipL49GaJYuPpr9/AG/AQ3llBbqq09fbh81uZ2Q0whtvrOXII48inUkBOoG8IHaHk107WxgcHOCtzl10ZXPP0NVXXE0gup1gYgfxaILRkQSXXvJFLr3wi1zzo6tZv7GR1rYdTKmvRdMMtje1omVFtmx+m/Mv+DyKRSKrZfaKRK1evQqAJUuWjGsVTEQgEODCCy/kZz/7GQ8//DA33XTTeLQ213/1eP9Zs2btt/9FF13EnXfeud/+E3EgcaEDYV/Rok8a/0ikcK+o3cfQ+5g4zr77Tvxtf6WK9tdH1/W98k8/6hz2lz97ME75v0M92v8EfOq0/vPw6R34X4IDrcrtpprsm7PwYdvBrrwd7H771j/7IOx+WY+vUCowecoUommNNW/+nR3NLRx9ZE4hdvDYI9CeeJZNjY243W4OW7gQp9OJy+Wiu6ebbU3bsFkd7NjRQmVlFYIAg4P9eL1uZsyYiShIuZwmw8AwBQwTdu3aRSqdpK+3h472NgxDx2634fV68XjdJFMJnnzyMQb6uzENFbfbidfnwdB0BgcGMHWDZCKBruu88MKL+P0B8vML8Hp8uZVuSSIajVNUWMrAwBBut5v8vDxOPuVEBAGi0TiDg0MkkxnS6QyankWWZUZGRhgZCaGqOtmshsvloba2DpvVTjQaIRKJkk6rJBIJureYKIkaXGPiPaYJimJBECQU2UokHCUUCmG32+nr60PXDEwT0ukM7e0d1NRUkk5nsVod2GwKLrcTRXYgihKh8ChqJo3X66W7qxe7PWeEFxUVoesaiiJhmjo2m43i4kK8Pg+CKCAIJiYG4UiIvLwAYOJ0OjDJUYmGhoeQJBkQUVWNZDKFLClM0kWSgkm4OIAi2xkcCOdKChXOZtbyS2hoaBhXjO3t6+Wtd97hlytX4vZ6SCdTmIZBsu11br7xCgAqg35KqyooLCqls7MbtyOn2Lm5pR3TNLHZbGiaRiwWo7i4mJGsyNqtLWM3J+xsaSGTyaCqKlaHA5fbjaZrCJJIWVkJr7/+ek5cRZKpLM/RcxVZzuUVZzQyEyKPEVXEZrWiaTq6rhFPxAnHYtx2/9Pj+/gDfvwBP16PG13Lkk7vcSw7OjrQslmCBQV43B7y8vKRJYmqqmq6u7vp6enh8ccfJ5PJIMsyi2fWAfDsGxsYCOXUgnMiEwJut5uRcJwHV78xPn46naazo4PCwkIa6uvGn/VNLe2558Jmpb+/Dy2bpaGhgR///onxvsHCQtJqhuKSYgxDYzQ0utdz3tvXx8U3reTy23/LppaOXFQ5lUbVcu+qDa09eL1uVFXl2Wee47iFuXy7kfG84FwUVTANFEmkuWUXidSe/NzPX/sz7v7T83T2DSHLErHkHjXmh1a9Nhb5gHRafV+5kaFwimVf+xEPv7DnWoTjSV54ZwvHXX4zjsJyMpkUHZ2d3Pz7x/Zcr6zOSd/+MXc+9gLrmlpJZVSsikLPUIinX1/HsV/7Afc9+yrJZJKhoSEyoSRyNoueGCWbHuaOh5/g5Kse4A+r19PSPURW18cd7qFQlIt/sJJ4KoMomZgmDBteLrzntXFn3zAMbDZbLqd561bu/cPv+eHtt7PuvY3s2tXOpEm1bN3aRCQSw2J1jjskgihzxLFHcf+DD9Dd04WuaQwODfLyK2u48pqrAGiYMpkHH3+I+x66n5HQKKZhMjwywkOPPsKpZ54JGPzk9h/T3tkGwLlnnY3Pm6OpaprG9T+6mcu/9z3ea9wICKhZla1NTVx1wzWc8bnT2d7cjNVqpaWlhZ6eHkpLS5mYonLMkqW8seYN+vsG0bIG27fvoGYwQnpMcdc0c+WwTBOGh4cRMLli9RN88ekHeXnXdoYTcWyygmYYtIWGWb1jC1etfoLBeJRsVmN0NIQkipimwZT//SHFP7mSy575I1ldo7yiAkmW0HWToaERVq9azaaNjax5fQ2ilGNFvPX2WmxWB/223DV1CxJHHbmYSOta5lU5+c6V3+Tdd9/ld7//LUsXLR2f1+tr3kDXTUxToK62noH+3CKKw+EYY2nk4g+7v4edXTlGxNQpUzgQ6uvrc/fM0BCNjY17tXV25tgeUyb03/fbP3lyTtV8cHCQjRs37tV/X4dr3233fbi/6N7+ftu3bum+7ftSifdHNZ24HcgeOZio8L6O4v7mtu/++9pX+4tA728O+zqz+5YW2t9i/8FErCdSqz9srhOP8VGd5A/CxDnsKx71UQIo+16D3f/fH3V4Yvu/AhOv376U7n8U+4pUwcef4256/n8SPnVc/wtwMNSbA62YTsQ/k/pwoJf+7uN+4HllVExdZ/6CI1m2fAVVNdPYvGUXsiwTnlaLOxKnxGXHZhMpCOZhYoCQi14tPWYpg4ND5AXy6O/vx+fzUje5DtM0GBkZYevWbaTTGXRDo3pSHZ1dPWzd1oTH4yaTitPR3UMknsQwBdKqmlPWFCSOW/4Z8nxWIqOdREIhEtEsyURiLOcyjizJ6FmNww8/jNraGhRFobd3gKxqkkomUFUNELHZcgJPRcX5mKaGIOTKMZSWFpPJZLFa7ZimiaqqqGqWp5/6C1aLk6GhUQYHh3jpby+R1VTcbhfRaJT2tg66u3uYWjeT8FCcWCSMms4QjybJpnX6+weJRmMkk0lKy0rp6+slkF+AYrHiDQSw2GzUTpmMLug43R5i0RSiCAO9vYQGw+xq2YXL4cTtcSFZZKwOB4lEmmgkTmtrG06nm8HBIVzeAB6fn0xGpbN9F/09OWMpkUhgsVgYHhmmo6Mdm91Ke3sbwWAQp8OFoljY2bKTwcFhVFUlo2YQt7Wy49QjCOQVkknBZ1ecS3fXEFnVIBwdwOGwjee1uN1uvnfdtZy44mRmzJhBXl6A1//4U6664Qe80dwPwPWXnkpJSSVbN21GTaWZVVUIQGvPAFfefi/DoQiSJJHMqPzh2Zf54s0r8brsAFgUC3PmzEXNqlicdu79yyucc/UdPP7iW/QNjBCNRli27FgMU+SR1a/xy8dy0ZEjZkweoywaVATzKPR7ALjxd0+xvWMQUZAQBInhtMBxX7+JaGKPczo4NMjg4CCh0CiZdIbQaGi8rbyshKHBQTLpNG6Pg76+bkLhUfx+N+XlZQSDhdTXT8Hv9yOKEl86bTkFPjdpNctnv/s/PPvq24iihCRKrNu6i9O/czvaBBGYcDSE1WIhnUjidjiZOzWnXnvtyj/yxoZmTBOCBUGe+evrnH/d3Wxp7cJhs+aeb0kha0JFRQUjC4Loiyr3eq5Xv9vE25uaufu7X6T9+V/R/tw9bHn859iU3Gfr1fe2YVocuN0e6uomc+ysKXjs1vGoedfACFpWR9NU1m3ZwW1PvLLX+COROL++6hL6XriXtmfv4Zff++J427fv+AMbmluRJBGPx8fISGivvlevfBA3TBO6AAAgAElEQVSrxcKjt3ybeWNzzve5qSjMJ5PVuPyO+3jh9Xf43j1/onFHGw5rLrf2nideoLmzF5fdym1fO4+/3fE9Lj1t2fi4hmny/V8+yGOrX8VisaBYJIYG+0ml0jz7Tis/+O3zGIbJiUfO4cWff4udf/o+m377Neorc6JTNquFtzbtQJYUDMPkgWdfJpLKOa2HHzKJjpY2WrY2s/ovz/PzO++mfnI9ff39HH/6CuYtXczf1zWimwoOVwC7c08E/Ae33EQ4HOKWq2/isf+9n1eefpavfeGLuTzfsZJGmm5gtViZV38oW95+hcFdTay883bsdju72ttY+euVSJacgeTzelkwezbKGD172/ZmVt77Oy487zzu/NHNrLxtJY/e9zDf+npOE+GVNa/y69/eRzKZpqKigi995RLO+fwKtjRtAcDv8/HDa65n5oxZTJo0iVg8giBqVOV7sBbn1G+j0Vx0WlEUgsESXmnewR83r0MUBL5z+DKavvVDOq++lb7r7qTz2jt46sJvcNb0eaxft5533lmXK8tkasST4fHrIokiTpcTfyCAoih4fC4u+sIFzF8wj2QyweyZsxBEA0kWmD9vAYFAPmtbcjThyYoDBB2vx00wmM+0KbUcd9wyduzYxrvv/B2/L+fUNzZuYdXzL2GxWHC5HSRTMVasOBVFkdD1LJqmYpjvV7CeWB94X0w0VLds2fKh+3xQ29atW/dqm/i9/t73vkdVVRVer3dckfjXv/41iUSCTwoflY78ccf/MOymlH8UHCwt+l+V0vWvwj+DDr6/Ukb/VyFJ0nj602580jm1/874lCr8X4CDWYGDg6OJTNz/k8T+qEEHS81xWBRMQ0DQDJYcczzvvvMexaVlGIZJec0kzFOOIZCOY5gqisVJLB5GUUScLjuGnnvhlZRWYLGIdHf3UFRUhCCZuFwuJk+uJ5vN0t/fjyg5cbt8nHTSSYiCQX6Bn6Xlk+jv70O2WOjt72VXWwdz58zFKos4811EQsN4nEEQ7URjYeyCjdGRUbx+H7IkYbUp7GxtobKiivz8Any+AKl0mBdffIGGhulMn34IqVQcn9+Lpml0dHTg9/tR1SwOm2c8sifLMl6PjzPOOINUUqW9rZPDDpvPBRd8HgGB4ZEhAoEAJSVljIwMEY1ESMZiKIpKR1sHzS07WbHiNHCL/ObeeznzrDOJRCK0trYi21zY7BZ8XjeIAps2baZiUhCvKw+Hy42aSZMfyCOVNkjGE+i6RjiSIJ3KMG/BYcTCYYLBAtraW3N1YbMao6EwPp+LuJbB7XLh83pByJVAiSfS2G02fD4/LTt2UFVVia5rFBQUEI0msNnsuF1uHAUFpAf7ERMpZn75cyRNmb+99AqrnnuJRHQIS2grkdggSu2xSGNRiUsuuoS3//4W19xwDTfcdAMum0I4vscJvPzspUwt9rJtayuzZ81EU7MssVg5ddFc/rxmPQ+uWsODq9bgdthIpjPohkl9eRHnLj+MG3/z9O4bl+3bmygoLMHA5G/vbOJv72wCcgq7FkUmlkyP3++TK0q4ePlh5OcXYOrgnunj1m9cwiU/uovtHT0s+/qN2Mccn1RGxW61cP8Pv8mZ37sVgMKiIopLSxge6iaVTmG37anpWFCQT0lpMZIkEYnEcLmdaFqWXW278Hr9zJgxk8HhYeKxBMPDo1RXVHLr187m63c8QFvvAJ//4UrsVgVRFEmkMrjsVq46/ziu/c2fAXA57RQXF6GmVUxT4MeXXcCKb/2YvqEQZ37/DqyKjCxJJNIZJFHgzisu5ZbfP0YyncFEQFasJFIpGruaCRaX7/Vch+NJfvWdi7BrMaySRDKeoCTPT57LQk8ojWnCn197h6+feQKdXZ0cc8wy7r32G5x73e0YhskjL7zJX15bhyBAIpXB63LgcznGc2zv+PZFfGbeFAQxRwEtmKByqukGN//2MX5xxQWYusDGDRv2Ord0Jss3T5jGollT6O2azda2HobDMSAX7Y0l01z6P79FlkTu+NYF/OS+P5PMqHQP5aLKN3/xTBbPbmD16tWomn183KlVpTS19/C/z63h6HnTQUhSWlrBSDTNjf+bu79OW7qA39x0GRgqqeFeXIKd31xzIeddfy9d/SOcf/UdOGwWDMMcpyhPn1TC/V88DFf7iwjTVzBz5kwOPfRQlh+7jBmHzh2P0v/k9jto3NjIs88+S2fXrvH3bjabJUuWa35yAx6Pm1gsvlcUOpvNEgqHefvlv9PX1sP25s3MtM2mOOjj61++lNt+9nMeffrPjIzmnL6TjzsOu9VCZqzmcDQW4/RTT+Xm62/k4osv4ZZb7iKVDnPheefz6po1bGhs5LkXVrH6pRexWa0kU6m9vhenn3Yqb731FtOnzWHRUUeg6xpHH3Mk7nXbua0n51jpuo5FsWKYBqYh8W53LjJ5RHkNVx1zMoJoosgy0WgCj9PJsrpDWFRRx9tvv43b7cHjcQMGXq9r/LiGaWKxWOkd6sVhdyBIBqqaZtKkaspKSxgaHGDTpkbqaqeMGdUCgscF6QjFkpX+/l5cpkEsFiUaGyHSN0hPbyf3/f4BioLFhMIh1GyW4487EdM06Oxqo6y8iKLiIIJokkgmEAQBq2PPPVRZUcn25u1s27aNA2Gis9nf379XW2VlJdu3H3z/vr6+vdom/l0aGxtxOp3YbDaGh4d59dVXefXVV/nVr37Fn/70p72iuh8XH0Vw6ePgYJ3R3Y7TR40YHqxTvBv/FxyTf4YNuTuq+X/h+nwYBgcHkSQJv9//vijzf0Me8qcR1/8KGPvZcjhYug7scYB3Pxh7t4vjm2kK49ue/QRgN40lFz3au8/7a7LtL9djInb/rppZsoKJqgh4S/I5+pRl2AJWBKuCLkLiuCWIf11LNi2jaRpOpxvDlHG6/dhdbiZPm0JKhdfefIfymgosDhdN21sIRWKEozGi8TglZaVUVpVTUlqIIAl09vTgCRQhixJejw09k0DURLwOH5s2NqLYnXT3Rkhl7Ziyne7+PhAs+P0Bsmoav89DVtdQsyo1tTUYpsEDD91PPBFlcDDEitPPYMbs6YiSQH9vH4NDUUxTprK8ElmS8Pp8PPHE42zZ3MRTT6xm1XOv0ti4hZHRYUwzy6KjDiccGUHVVGwOB3n5QSorq8mk0wwNDmLPj1NQZyGvsJDq2iqWLjmCluYthEIDLFlyOGXFBeR5PUytn0xhgQfR0MimNbrbB5hc28Arz/8NQddRrBZ6B8Ns3bqTv/31b5SUl7LqudV4nR6CwXyyepz8oBvNyCDJCqKi4PS4cbtstLbsQsSKINoYDoXZ8N4G0hkNQZSx2lxIWBFEmUxGo7Orh3AkiiCI+Px+Vj3/POHwCK72PtTFh6I73JiSyehQN6MDu4iO9pFtegKl7WVCz3wLfXRn7qbpfImVn/XyvW98lboiL6qaxWNXWFjr5YH/N4fvHAFF6rvUKJuIbH2I1MA7lFaUcsIhBXz79EU0lLqxyiKmnqW+2MnVp9Xz7Dcb8KRyVGHD0DEMjWlFOoGRlzirdphbz2vghBkB6otd2BVIptL4XA4WTKvla6ct5flv1nNEfhuprQ8y8M4vMTseYVlwG49fPpdj59bhslvRdQO/y8rZh5XwyJcmc6hlj3JwaPMTpLb+AQMFn78QYcJyZLbteTLNjxLb+hByz5+x9DyPO72LSVW19HR1Y2ZD+MIvIXY8SVFqDfFtf2CRt4nVV87mrAXFFOV50XUTl93KigWVvPjdecwN7DFU/SOv0bv2HtKdL5FOZ/ArBo//5NucPKeIgMuCYei4rCYnzy7kmSsP44zqHsSx9088FsUY2YHR8hgzvJ0wsHdEdF6Nn3lTaznhpJPJZHWkgddJb39or4/y1p0d2Kwyxy1fgkXROeaImcyaXA2A025D03W8TgfnLj+CV+/5AfIEAaZDa0qwKS527ujANE3CoaG9jv/qe00Y5BZTjl62dK+2UxfP58xTjkOWrZx10vE8/7NrOXruIQQ8LsSx87PIMk/c/l0+M2/6XvTtupICgk4LDqeLJUuXoBt7HMALjsulOGxv76E3liKVFAmH0jz10lriqTSKLPHjyz6HmdWIhcI4PT68ZaXUFAV55tb/xzfPO5aGSaUICMiyxOSyIDd84TRe/PnV+EuqoW8z2pa/sOr5F0nEVEKhESor9iwYXHXFlbyy+jmm11cii8oY8wOKCguZd+gc8gJ5xOMJfF4vs2bM4rvf+v6ecz/vfBwOid89eD/lFQ1EE1HqauuZPW0eAL39g2TUsejv/CU0bt6J1bnH4Tp3xed48413ueuuu2jatoktjTtQZJ0fXPPdcUaQxWIho6oE/AGOWXw01ZVVQE50auaMacyY3oDTo/DW2jdJZ0wysRR4c+yFvPy8XJkjEUbDgxSM/R5R04iyjKxYyWoGPr8LBJ1IdBRRMpk3bzYzZjSQVpO5OsuGxNC1dzFw9W2sPO18IuEQXo8LRRZJJ9KMDg+iZuOMhofIDxYgmCYOm5W8PB8ej5NoKpcKYJNkVv78NyTiSQxDwOnIx+v3cPY55/P8Cy9hG6M4x+Mh2jtbMAyDpm3NfOaYYxCsDnRkRNmGw+XDNHLiY4ZhsHz5ZwB4fc3rrF279n0L1/39/TzwwAPj/98did6N5cuX5/q/vqf/RAwMDOzVPxaL7dUuCALnn38+TzzxBN3d3QwPDzMwMMCOHTu46qqrUBSFlpYWTjnlFCKRyH7zOyfaAR/kOE5MGTpQCtPEMT7Isdkf7fdgbKGDFWL6oMjwxEWgD0ub2j3exDlNbNt93geLA9GLP0o6mGmaOQHu/WwHSjU70PX4R2qL7ku//qD5HsxYE/cXBAGRPZtgMr59ED6Myj5xnIMZDyAYDBIIBA54vh8H/0kO76cR10/xT8VuB1RaPO9j9d2Ng30Ra1rO0KqsrCQTzdDR20lwai02USITj2NavYiixOjoCOm0SjAYpGNXF7ousLOllZqaMiTJRmVFIVaLHbvNQzIVJxIeJj9oZ2BoAIfTTml5OemMjpaK0dvVSW1tDWVl5RQUl6PYFQRM8vKDjI4MkYhGaGluorSsFr+/lvLKKtSshtVux+F0kUlnkC0il15yEcl4lCf//GfOP/88bHY7Q0ODmIKMw2lH07JYFBFN0zDFLGeddRYWm8TkKRVkswZtrb047F7eXb+BRYuOoKikjFQqzUg4wub3NuD2esnPz6OiqhLB1YckSmx4q5GpU6YgSgp19Q0gaOTn5zEaGqGwsHAsf9eFKFjJZLIcckgDyVSCw49YjN3uRhegqqqc9tY2jj5mESYGnzl2Gdubt1NdW4fd6ScRTxCJRPHn5ePyOMlqWYYHojz//Iscc8xSauuqSI1GaOvsZ/pshUQyDkaapk1bqZlSh8ViobqqCkEQ0TVoamqmurqW0EiYYHsv+uXns3HDBkZDw5x9zllEQhG++vVv8NgVkxEAj9fL09cejwmk0ilCPW18pyHG5Yd9mawjH7H/dcJDXQiIOYVdSSQcjWG1WohH48Tauli8aBnK6y9wxdVH0tPTTVFRIbKcKxNj6DpnLSzniMOWUVJzCMOjIfyihEVRKMuT+OwckTMODWKz2kAAU/GQ8s8fL7+UanqIVDIFgoQiKyQTSRSrhQWTC5h/2LFkraWMjIxQ6s6gD64DBFRVpecXy3NGDjmjp6CgAEMzmF5XQ9vK07CYSQRBBASGBoZxux3YbPbch9E0mdIwlWxyBHPsH2aunrCWzVLqk7nrotlQfDSRFGjZLNb4VpzmEPe/nsuxq8izY5EEhkdidPY3UeKYS3V1FfGNTay8aAYIEI1GcLvdSJI0lp8s8M7Ky+gNS1TW1JAdbkaxWJAiaaoVmb5fn8Bnf/o2b7eEmFPto7SsmGw2gyyLCJJI1tB598dL+cnTzdy1upWhUAQwUVUDl9OJZhrj0enzj13ID772OSxKTh02EU/kqPyA1+WguKgQRVGoqq5GFEXOOvFYzj5pOTs6upl3wXcxDJOtbX0sPXQm890uOp+7h4oTvwzA4TNrKCktRFVTZNJZwn1dnDy9kvtuuIz123ey4ru3o2oaJcEC/P4Ar628kSVf+yEjsSSnHH0EM2dMxzANamtr+VHdJL5/yWnYbXY6O3q49n9FdMNgw9ZWjqiv4Kknn2bDUC43d3pNBT6nBVHIKdyOjoaxWyUUZx7ldivfOGU+l5+6AKc3H8nqQZEkkskkL69r4tGX3mbDlu0Mxe4hmdmbZgZw4fkX0NvdTZ7PRyYNg6EEpplzJGY1NPDoQ/fQ0ylw6RcvIZFI8OT9TzIyPMqtd94CwORJNaQTca675rusfvE5Kqvzyc8roXl76/gxXlr9Mi+t/hszZ85AFDQ2bsnVxy0MFuJ02CgqqmJnSztTp05FEKCosIjNm3bQUH8Im7dt4uQTT+TWH/2Qvu5BSorKOfsL59HW0Y4oKhQEi9AMnbVvrKO7q4+jFh2La2cXkiPnKApjC6fm2LOyVBGxyQqb+rtZ/pvb+fzcw1lUVUeV34/FYsVuM5AlmfbediZNqsFut8PY9di5cyd1dbWAgN3uYHhoBKdjd1pHMYZuYLVaGR4eYt68+RiGic/nYefOnePXFFli1qw5JBMd9Pb2Mn9ZNZo9hW6IyBYr0ljusikIzJ4+mxdWP8vyYxcjWDUMLfd9tFgs46rZu8uKXHbZN3jgwQcZHR3l3HPP5dZbb2X58uVYLBbeeustrrrqKmKxWK6Gs6a9zzG87LLLeOCBBz5S/32jPffee+/7DOGysjKuv/56ZsyYwXnnnUd3dzd3330311133UEbzPvmc35c/LuN80nhozgv+9v349hcu/sYn+C12F+pnn8HfFLR3E/qvvlH/3b/qfjUcf0vgSiK/7/w/3d/vKQLT9vr//D+h+6DVnx2O8D7Ppz7rqBO/AhbLBbC4RCR0RCB6hLad2yntLwMj9dLR0cno6MjFBYGqa6uZHtTK5PrJpOfl09WFejrbaW2Jg9RFLEoCpGoiq6p6NkMFtmFTZHRBIgmU9hsNnRdZ/N771FUVkkg6Cc8OkpRfgCb1QIINEw9BLevgEgkQiIeIVhciIlANpslo2Zwu5woooymqnzpK1/CIiuICNisNvIm1aCjE42EUSSRTZs3cej8w8mqGQRVwmpVGB0dZPPmRqZPm8XiRYsQJQFD19nV2ooi58rhfGb6NAwji9WqIAqQTqeIRSNYrVY2NjYyY/oM0moUr9eLxWalqakJRVEosXsYGhqmv2+AUHiURUcdTldHnO6eXopKiwGD0tJC7FYrkViSjJrG5XIhCBK6LjA6EqasvJTevl7sDgeGDqFohIWHL2RSzSQwdNR0htlz5hFPJHE4nWzasJFNmzdRPXkSiiKjqhnC4QimIVJUVITT5camZWBdE68MD2CxWmmYUo/LYQcDFh21mMTML+BwWGhsbWVKw1RcLhd6+zoqjKcQyuajWFwM9nQSKDoa0Z1g++Yd7NrcyuKlRxGcVIkgZgi3tOLIGmDKFFdOw6icQWlVbnFk3XvrmX/YArZv3UIinmH+/NmMhkbIy8tDkuaTdNSjazpWWWb9+vVUVlUSiUQozS+iIL+Ars4uysorGbAsoLS6HEWxk8mqJJIJEloGfyBAd0cnVZUOwuEwsr+Ov61to35KPS6/g41N25k5cyaCYiDac/TFtl07KSzIxyhahOLxomVBkS34i2LE4mFktxfRYkMSRdLJNClVo7DhDAzDIBaLoSgKWzftZMH8eaiZNB3tHdTW1fLuu+uYN28JugD3/jgXZVs4aw49ykIq5lfR/s7fKRNziyqhUIjN9snMmzeXnVs2kVc3lebmZqY3zCKZzqBmVAqCOqZhgGcSgrcW15NbsFgsRA+bCvadQAhn4VReWL2KE085FcHUMSuXIWu5fEpb0dNA6/i7QVUztPT2UlVdPZ77k0rnhLdisSTJRBK3z0c8mXMAp9WUY+g6hgKpTAYbMu1dfZSWllBelD/+DhkcjZJOJRAtVpxO5/jv5UX5dHV1IssKsWgSh9PBzFnTsVoVgn73+H4tu9qxGlkC/gDRMWGooN+F2+PC0A0GBgYIBn047I4cG8TjIuBxMRSO8tbf13HRScdQUVnJY9/P0cL9TjvZTAZBEOnr7QfDwOUoQFFE9IxAXiBINDJMPNyD4tJxOL189fY/8ORLa8fPSZYEfC4HhqBgYqKqGTKZDL193fzil3fxrcuv4P4/PMi5F38BRVEAWHzUUXR19uLzl/LIo7+lqamJeLKPwhLP+LibGjdSW1VNaDRBR3uYKVOns71pgNtu//X4PmveXMvFF1+CZGpEQ4MYY/nShQUFVFdX8pvf/J7zzv0cXq8Xl0eheXsHkuChrKSYzds2MTIyjM1ioaiwgGg0PP5NU1Udry+fd9evY+qUyRQVluYWSyJxMotmwHuvgwCapiPJEpIkUZ0X5K6Tz+Hbzz3KO11tvNOVE43Kd7g4qqaeZWW1HDd5GuvXb6CgIIjX6yKrGYiCgN/vQ5YlTFMgo6Zxu900btxIUVE+oiAzPDqI2+PC7XIRCaV5/PHHOf30z2JRnAjZ3DknxwTenNVOAoEAPT09BGu8iJJBWk2TGovS22w2YtEwO5qbOPm0E0hmUiiyY/ze3/dbWFxUxKOP/Ilzzj2HoaEhLr744vd9S3/0ox9xyy23oGnaeB3W3d/OkpISHnvsMc4++2wGBwe56KKLPrC/z+d7nxN0IPEggBUrVrBw4ULefvttnnnmGW644YaDsk0OZB+Iovg+8bSJ4+0WIvoww35/7R9GPd2fPbKvXbObQry/COnu89xdAsc096/2u2+ffee0P7GlD4tcfpjDtC+77kDXf6LI0v72M42Du36fFHYvpOxvUWb3+e577A+6H/b6O3xC5/hRItn7m8O+Yqq79/+ox94f0/I/AZ9ShT/FvwX+GQ+MYJM4bNFCsujsWNDA/OYu+rt7kESRqVOnsnTpUgxTI5OJ0dBQh8UikU5lcLs8eLxFPLd6FW2dLXT3deN05rN1YyOpWIx4eJRdLdvJJMPYnR6KS8tQs1kqKir46+rnGR0cYEvjRlLJJK+8/ArxZIZgcRnh0X4S8TABnw8MiIaiJGIx4tEYalrDQMTrD+JwWEgnY7z0wmqyqTTbm5oQRMjLC+ByuZh2yHQsFisWi0QsFkeRXZSX1fC5z5+HIGUIj4zwxwcfQDB0SgqD+D1uzjr3HAqCARxOC6lkjKyqYrVYOPLIw9B1lSOOWIgv4MPnD5DN6jgcLkrLKvAH8ujt7UYUBTQtS1VVNYpsRZREnG4nmq4RDoVIxhNIooRmCgiiREVFOX09Pdz/u/vA1IhHQwimgZ7V+MtTz1JTV0FBYR6maZBMJhEQyA94sNssiLLE/IWH8bmLL6SgoABVVRFFkYKCAl5f83oup0rMYmYzIIksP+EkYnEVn8dNPBplw8ZNXPLFL7HyV79GM3Tq6iezfVsTme6tSNv+TCY4Dd3uxpQkLHYHNocLX14etfVTmTJlCk6nBVFIkU5naG5uoa93ALvdxowZDVisAhaLQm9fH339A/T2DjBt2mwWLzoSSTCJR0Ns27wJwdCxKDKRSAxFtjFt2gyKiwqprKgmFIrStK0Zp8tDNBLH5nDQM9DP4MgwpiCgmzqJRBJRlKisrCKVSuN2eVi//j0qamooKCzAl+dje3MTm7dsxuvNw2K1g2lSXV1JKhWjv7efdCpLKqMiKxKxaIjSsnK2bN3Gs88+hyiJaLqGx+0jHk8higrRaAJBkOlNC9zyh6fY2tpBWVkxFovM5CmTeW3DFg47/9u09gxhsyh89ezjKCrKo629laOPXkIwGGRwcIja+hpmz52NpChMmToNSbExfcZ0VDWDzWbD6XLg8/mQFSUnVDYWuTFNA1GUx1SMAVPguONOwKJYQZQQBBlBktF0c0+ygyAgihL+gJfConyeenktPUM5IaWCgiCRcITh4VF2DUZZccWtaGMG7uJZU7Fac/exw+mgo6MDm8NJPJlEn2AUWKx2kqkkVotln7qKEoWFxQSDhZSWljBnzixmzW5AkiCV3qMK7fV5yWTSdHZ2jP8mySKCaNLUtA2r1UoiEcXQIZFMEwjkjVtHs2ZMx2a34PG4cDhyjko0GiWTVhERcbt92OwOMlmNvs4mFIsF0RFAcfiQzQy9ze9y5Q9+wpMvrUWSRK68aAXrH/opffd/h52/+jI7Hr+DxncaOeXEUwAIBgt47vmnmL9gNqefcRpBnwd5jKLr8fsxRCcJNYohGMyZdyhpLY2vYI+TvvDIhZRWVJJIGXzzysupnTKJE085nm9cftn4PrOnNtDUuJV0Mkvz9laGBnJ1da02K13dbXzlK1/hpz+9k8bGRjY2vsuDDzxGNJLBastF0WPRGJIo0tPVQTQcJhTK/a0fe/xJVr3wEnnBAvwBN3aHhaGhAdJTapC7ctT2bDbLcFkhyfrq3CU2Tc6euYANX7+OO086h1MbZlHq9TOcjPPk5vV8ddWfOO+p+zjy6KXYbHYSY0rwiWSSgoICNE1FFE0yahqLRSI/Pw+/z8/Q0DCaZmAaJoJoYrfbOfYzy4hEQpSWFlPs8QHQk0ly4onHE8rApEPmoFh1Wpt3kIqE8dhk+vtz511eWUoqGaa+phZdM1Ese+jVB8LChQt5b/17XHvttSxcuJCKigomT57MGWecwV//+lfOOeeccYGk2tra9xnHCxcuZMOGDVx33XUcfvjh4/3PPPPM9/Wvq6vbq++HUTFN02TBggUAtLW1/cPf/t39D6T2uz98WPvHwYHotrvbPikq5v6c6Q+iM/+jlNmDxe73479DuZzdpYL+k+iv/yr8XxD6+jTi+in+JTDaewAQq0r32/7PeMGYgoEpyEybNZNQeQXCpjbm1k/GUCQkWUBRFHRDQ7BIZNIZpk8/BLfbSTSSpK93lGg0xtt/X8OZZ8ES/kAAACAASURBVJyLmpZx2Bw47Q4USaQgP8DI8AAFpfWERiO4HTYUWeGcs8/C5bVTHCxgdGSYoxYvIZpMk1Y18gJuLLKCltWIhdNoGtisItl0BkWxMDISJq+gkGQ8istp54jDFiBKMqZQgCCAms2gqSrxeBzNEPH5bJimyI7m9hytriSAYWbo7Gjj1JNPYmiwn2gkhsft4zf3/ZbysiAnn7AcwXCgWkZRMxn0dApRkskmNERJQZb25Cg/v2o1n1l2LBUVZSSSKaY4puD1+NB0ldrJNTnaqQSZlBW3w0HLjh3klU7C4/eAoVFWWsIpJ56A0yGTSCUoDOZjGCaTa+tB0CksysNpc2CRBQxdxe9xE03EkRQJSbHj9HiQTJO2tm7CkRANUw/h0EMPpbKymmQmjK1vAC3fRywaY8mSoxns3UYgUMKCBQtwuJzMmDWHssoKMskU+fn5bHruLhbMbCDjcSNbTbSsRrAon4G+XjwBN4ECH4WFc4hGeolEe+jvz7Bg/gJ6e/pBMOnobKNm8iRUVaOktJiSsnIGB4eJRGLsGuglFBpiwYJ5pNMZUokYFpuNvLw87A4HoiQQjYWwWdwEAvns2rWLmhoPsmQBIUugwIks2RgcHsLjdePzB3J5fSK0t2+norwcp9NFdW0dimwQj0U557zzaNrWDII8Vs5GQJYEPB4HTqcXRBm30w6Y6LqKrhmUlZXj8XjRdQOfz4ea0rBaJExDpqx0EhaLhf7Rtdz58DPc+fAzCAJ4nY5cpFTLGSYWWebOKy7EyITxV9bR2dVFIhnHZrNRUlKCqqmIkpCr4+n28v+x995helXXvf/n9PL2eeedXiWNCip0RBPFBjfAuBfiEjtO4sR57JvYMSbhxnZ+xolz40JsYsdOcZxgYtww4AKI3iVAAvUymt7n7fX03x9nNBJihADjdi/reSQ9Ou/Z++yzz25rre/6Ls8PGB0Zoq9/GZIsIwoQBB6uF7Bv3366uro4aYFQKvBBWDj4WLaNquqAgCjIBEKALIaeCYKFtSIAx7HJ53MYhs5MrsDEAgHSl268lX+/9W6q9QaO+2yPTLlSYWJyEtWIEE8k8T2fRx55lCuvvJw9hw4t3teaTpJOp7FsG1lWFq9PzZeJmDHGxkbp7u7Ctm0KuQKGplGq2Yv3pRMxetpaKOaLtKQSTMzlmJzLIUsiXV1d7NjxDGeetR7Pg1gsSdVqkC+FCkHCVPF8B98LSC6wVhdqFr4XoKo6pulhpJOIgYcu5qjW69gIRPQoEVulr1ln30yoRF/1mo1c8743EGAgCq0EE08izewgoYjMzoV5f33fx4xoKJJMT08PN1z/9RBCDliOx+7BEW750c38wQc/zMCKNfQuO4mDQ0OL7yooEj+78y4u3HQZT+94iDVre3EDgXPO3wDXh/c8+sADzE5lecfb38VXvvJVzr7obADGxsb42c9+xrvemSGTaWXlypX82cfeR61kcPGFr2d8YhyAoaFD7NjxNGtXr2N2KsvQcPj8DRs2cPHFr0YzQNNldEMmFk0zf/YGqt/5VjhuFRXDMMIDrQAEAfv27WNg5QAfOPN8Pnj2hXiuy3Bulu88+RjXP7yZx0YH+erW+/jCZe/AcUJIvef61Gp1/MAmEgFVlSmXS7iuTTQaRZIURFFCFEE3JECiq7uVfH6eW35yM7EFmPagW+PGG/+LdWsHGJuL0KnOMrB8GYHo8shDD5HNhkp9b18n3//Bzbz7ze9EUTRKtoMmnzgLQDqd5lOf+hSf+lSYrujo/fUHP/jB4rUzzzxzSWUonU5zzTXXcM011zzrehAEfP/7318sf1gJXRwHJ/BSLsWp8cvIUrDSF+JNfLmef2ydS73bYSXxaM/rL/OcpdBnx56hjva4LtUfJ+IQebEiy/JzvMu/KTkMn/9dVs5+VfLbBm9/KfKbN428Ir8GCQmQRFHmCCnSC5WliJ2OT/YESwfju397A+7f3gA81+JzdMD+877FwmLoed5z4MFLTUA5PCGTTKaQZJP8Jz+C9oPboVygVi2H8YGCRCCY+IJE3baxXZe6VUDTRF7/2stYt/p0tj6+naeffpJd+3aimAaepKFF08hqAkPVmJ3O47kis/PTIAfkimUe3/oMZqyJhm0TuA0iasDU1ByuJ5EvVilVitRq88iqSldvH4EgYBoq8xNDSAjIsoKgqkTiKZ56agcP3P0QhhpH1+OhJzQZZ//BEVKpJly3TkdHC6YZIdnUxqlnnM6WJ7eTznTQ0t5OojnO5ZdexEXnX0S1HrBjzyABAophEEml0cwIAiJjQ0N897v/g+c6VGtF3vzmy7DsMpblUa9Z7Ny5HccN80v+5Pa7+cWd91GrOuzdvZ/sXJFkqh1N8XHdkFV4YnKKTGsaPZbER6JhOdQbZTq7UuCHeQhr9Qq1Rg1V1/EkGTMWp16rUq+W8DyLhmPR2dVNZ3sPgiDSvawLT7WJR5JkZ3MIpokcCNRKeTQzgaIrOE6RWmWOd73tMjyrxvandpCIxDmjJ0oQbUYTTOrFMuXcDKXcLN0d3ciuwaOPPIKkqSSbO1CVCC3pFlLNaTaccTK50jw9Pd08ct9DPHjvQ9SKVbxGDaeWJxEJWD4wQHd3L+VKDc2IIJsRcF0ODQ1iOQ1c38X3PXRTJpefxw9cVE1GlH3cwEcQRHbv2sngvt1ook+lUGHk0BBTk2Ok08kwz3BPP75TxLEaxBMpIvEEp5xxOvNzk2hygBB41Gp1LFckmkygRXQ8z+XQoUP09fWDCC2tzaxasxJEAUkKvXnVaoVqtcb0zBTFUpaL1y3nD994IWetG6A1laDWsMLcr21p3n3pOTz0b9cxkDE5ZcM6pibmyKTTOFaNQ4P78V2focFDyIJMMVdAlUEUbLp6OwkED8+z8DwPH5l61aa/fznt7R0LhywRz/UW49QjkQiB3wCvhoBP4Lv4roMkgHh4ugtCCP+UZFzb5ewNy+lsCUkroqZOvWGjyjIDPe184I2voi0dphjZum+Ejo4u0qkkrl2jvTXDqy8+D0WCbftHFtYVgZMHupAkhUJuHlk6suY8uG0Hk5OjtLQ04wceAQG6qhH4Avdv2wtAMhahNj+LLEsk0knWLe8B4IGn9uI6AZlUE7qqoxtNDA8PIRLw4Jbti17hZV2tFHI5JsanUZ2QfXdoJsuhsXFcx8IwdARRYmI2i5lcS0AFwZ7CtzzqcgTaepkqhHDT1W0SuamdVPIj4FcROk9BlBUqu+/jySceXehLn1rVoVazCWjwkf/1p4vr6vxslhu/eRMP3bsNAhfdsBDwsapHFKjcpM09P7+flnTAyaeeQrUgMDWURTjKg/2GKy8nkoqx/sxT+MFPbgUpNAZMz86y4bQzufSS13Py6rMx0x1856Y7uPHm/2DdaS3s3LMHgLdc+XZWrd0IRoxUTyurVoT5RGVZJKprRFSdSk2iua2dYn2ep/qTPDk3ubBRgKjIOI6L51jMTI+zfFk3rt0gCFx8r0EuP0VfKs3Vm17NW9aeAsDd+3cxl53FC0Q8V0ASZWy7hiopTIyO4zkuiiwRNQ0EyScWjzI9PUOjYQMKvtOgUa3RqHnoWoL3X/gGACqBx+bNm+ns6OOs819F39pTsBQdyUgzPlVc7LMrzruImcFtNPc1USMgIh6BijYaR3IPHy0n8qZ9+9vfBuDSSy+lra3tuMrW0fUdff073/nOYvnW1tZn7fVLGaGP3eu3bg1jm3t7e5+z7x/LDruUQnr0GeKlKIVLeZ2OvRYEwbNSrCxVZqn2wBGCpaXOQse+6+Ewruf7Zs8hPJLEZz3z2Ly4x8KWlyJNWip9z5IESyeIm118hucjBDyHuOho6PNSbXs55fC4OTa941L9fyLP47PeYYGQ6bjPXYJg6XhkVcf+WUpONPZP5E0/tp+PredExozfdnlFcX1FfmfkeJPqRJZDWRY4cHAPem8HjauuQNs/gi6F8MR6vY7j2AwOHsS2bUzDJJ3O0NPbxf0P3Mv6DWs588xT0XWVs88+h0QyQSKRZMuWrdiWzd59O2lvz1CvV0kkkniegGHEWLVqBfV6jex8LkxfYzWIxZNYtkuqKUNbWxe9fSuImFHK5QoAhmHgBy66bjA8MoLrObieRTyh0dbeSq1eZXZulsFDg0iyyMDAANVahXXr1hKNRhAEEath4zgwsGIlpVKRm276LtVaGdOMoOk6QRCwZ88epqemcSwHz3LxLAd8l472DK973aVouoLnOTiuvbCpemRamli3/iQ836WpKUEyptHd2YIo+Kw/ZQP5SploKsnU5CySqBCLJejt7adQKHFg/wEMw6Raq6LrOrIkoUoi1VIBq16lKRVChGuVIo1alWqpxMzUFPVKGaQAURFJppLkcznqpTJBwyGbzRKNRvB9n0jUpKe3G83QicZjZFpb8AKfe++/j8HBIdasWYVmz+NLGq6kk8tnaTQsEMTQ2+w6VKtlTj75ZHxfQJFNctkq87l5DENn/8H9dHb3oMgK552/ia6eHgIhYHxinJ6+XkbHxrn7rrtQFQURkaGhUTxHwLJcfC9gdm4OcEk3h7FgHR2hV7hUKpHNZolFYlQqVfqX9XPWxo3M5/LMzs0gSiItLa14ns8pp56MYepMT89j2x5Dh4bxvYCJ8Qly2QJBIFKrNohGE0xOTDM8NELg+ogCmKZGuVJElgTGx0bRFJlyscDc7DS+7zE4eIipqSmy8zkMw2TV8j7+4c8/xM/+6Vq2/c+Xeeybn2Xrv13HA//yaf7uT9/NQE87KwdWEgShlb2rpxvLselb1o9uGCxfNoBl2fT29lKvNQj8MKekKEoQEJLOCAGlcon9+/YBAfWF9CaSBIoSAoEEIPAFgkBcjPezLAvbsY+JYRNoakpjRiL0ZdL0tIYxqn/6ttcx/rNv8ug3/zd3fPlq/vxtlyAtaLyP7TzAfU88jSRLyLJKLJ4inU5juy433PwLAC4+fS2peIyZ6SyVUgNR0Bafeev9TzBbrKHrOkEQxhGbZpSq7fLfP38IgDecswEkEcfzyGezvOM1IWPwE7sP8tiug5QqFUbHRikWiqxatZKAgK/efCcAy9oznHHSOjQtSiwe502v2kjM1HE9nxtueYCJyQlqtSqO49DU1ETDs/F8iViyGSMSRzWaqZc1kvEwBnXXWAFNthGZplQ4gOvkkDrX8493D1NZSElTK+Rw89Psf+p+6nMHyQ5tgyBUonv7evnAB9/H17/xNU499VQEQUTTFEZGjxAvPbPjaQaHDjI4NMR3b7yTt7/tnZTr03R1H2G/VCIG1/39Zxke3s3k6B6ixpED5o9+egvX/O+rec0VlyLLNaBGLG7w7//93zQaDWRZ5vfe+3YqlXHuveMOtj2ylxXLVwFw/8P3UbdrjE4M4vs+luUgoGDjs8UOWXNFQcDbuRf10Ah+EJDMNKNpJoqiQyBhWy6SqC6sxSaVQqg8SqIAAciixEMPPszdm+8makapVut0tHfxwP0PcWhwmGSyiWqlxubNdxNPxBAEgXvuuY/xiRmGhkY5cOAAF164ifN6l9ElhwgDT/UZGBhAVXX+67/+m6hh4rkuX/1GaOTdeOZZOIHAitVrECSNQBTwhZCEUBAEZPnFg+ZuvPFG7r33XkRR5JOf/ORLKn/PPfcct/yJDNC33347jzzyCABXXHHFi/LOvdxewpdTXkoe0V9l7tHftj46rCj/trXrd0Veytg/PL5+VxTSFyqvjKBXZFF+FVaw57VoHcdaeWzZY61Hsiw/J57l8P3PtvwKCEKA67ls2nQutlPF+qN34asKKgK2ZaFpGpIs0NvXQzKZoFgscfDAIGbU4IKLNmE7Fqqq0JpJ43k+lXIV23Y47bTTkWWFvv5u4okoggDRaIx8LiQQGh45hCRJNDdnwjx2hsbevfu444472btvP5KkYlke+/YdIJvNMTIywi23/BjTMAj8gLbWdiRRBjzOOPNUlg8MIMoSjusQjcdAEJAkCdM02LdvD9nsPAIiO3bsZmx0goZlEYtF+cAHP4AsySAKzMzOcPDAAd505ZVEtSYO7hllbnqGwPfI57NEIgatbS3IsoRhGOTzBQwjgu1YVKsV5uZC75Hj2px56inEoxFEAWRJJNPayj333RfCZOsNZmZmCYKARCLFmpPWMDh4cDGfn6qqjA4Po8oKtmWRy+bI5XOosoBrNRACgUQ0TsQwyM7NEPgulVoZVdNIxBI4NYumpiSe6yJJIpIkMDMzRTSWoFKtky+UcL2As885j9WrTkLXVcy5J5AiKYqFEuVqlUg0RlM6Q6qpGUVVmZqYwIxECBDwEelfsYqT1q5hy9YtLF++nCAIqNUbPPrY46xavZpINEJ7RzuNhkVvbz+vfe1rSDc18dCDD7H18a3IssKhoRE0Q0fVVMxohHK5RKNhkcvl8TwfwzAZHR2jVrWIRWNMTk2w/+BBmtIZ2jpaqdVr+AF0dnXhBwE+Pp0dPei6SVtrB5Is09PbR1NTM0EgkM3mqdctdN0kohsUCwVGR0dpSjdhOzaiIJJKJREFgaamFK2trRSLBTZuPINMJkO5XCafL+CLInXLggBmp6fp6u1GVCWKhSLZ7DyW3UCSZVzHw/VcBFFE13UMw6DeqON5AfPz8wgCi0qEKErYto0gCNRqVSCgs6ODDSevR5ZlFEUJ560YHBVLKjA5OYXVsBf+J6DrOsVCEWHR5RogKwqu7yEqCiKhcgvguS71aoW21tZw7CQSixt4PGLwh5//Jrfc+ziaZuC6Ptt2H+Rtf/l/ODA6hSSKfOr9b6FSrqIbMm0dGWq1I2k/dE3lvZ/5Z+56bDvFQgkQ2LJjP5d/9PNki2WihsaH33IJ69dvQJIkWloybFzZyamr+gD44Gf/idsfeYrXX3YZge8zOj3HVX/1RbbuDtM2vemstQwPjTI9PU0ileCiC87l41eFnrqfPrKNT3zte+w4OIIgihiGQaFa4cEdY7z7U/9MrlJDluOY0QivPiv0Gt58727+555hAl8FX2IuV+Car36br/74fppiIemUUZnE3Hkjp7nbELZ8F2PnzdAI39l+4kbOrd7C2YXvE/z0GoSffQbnlk9yifT4Yp+87rLXcvMPb2bZipVccOFr+Icv/iPJVATXsxbvUXUd26+xbt0KujrbqCykYknEE9x2++1s37udydkRnnz8IVy3wZe/dj1fvP6fAPjQH/wxa9etxLJrPPPMTv7kjz7GB9//xwiCQKVS4UN/9iH2HjyAYRjMz+W4c/M9fOzjf0EyFsbh1iI6hh+g+6GH6i9/+iPe+m//xD/+5AfMV2tYlkssGqfm2Pzbloe4d3oUgEsG1mDoJiNDI5x+2mks719O69//JStu+Cx/dvtNbDzrbHTdxHN9RFFh06ZNqKqC4zrs27sfIxJlYOVq0ulmHMfG0BX+piVUuIfGh/j8X7+f+c1fIhZN8eSWrfz+hz7I7j27kSSJa6/5a+556DF+/4N/DKJEQOiNjCXiRGJR/vQjH1lyb73u89dx2223kc/nF/fDkZERrr32Wv7kT/4EgI9//OOcc845zykrCALXXXcdt956K7lcbnFvHR0d5dprr+XDH/4wAJ/4xCc499xzn7NPX3XVVVx77bVs2bJl0SMsCAITExN87nOf4z3veQ8QkkB99KMfXdy3j/73cJnDzz66bUt5aI++/1jv41LyQjxWR993bNqdY+s6rJAdfqYkSc/xtB7tyV3Kc/tCYa0v5r2OfvbLAZt9oc8+1hv8q5KlvOTHtunY8Xmitj+fHO87vdhQt5fSnqXmw7HPPnoeHTuXlhqLS8mxRGe/jfJKjOsrsigvVzzAi1mAD8uvFmvvoxsyrW1p5mcKTP3F+2i9+kso77oCay6L7zqYZgQBAUmUqNcayIpKOt3M3j27WLNqDZ7jMTI2TEdXF22azsT4KJmmZkqlMvVqlc72dvwgjFvL5gv09XdjGAaaqmI1GhRLOfqX9bFy5Wri8QSFQgE/cHnwwQeJJ1NsuuB8rnjjFcxPj6NGIsiShizJNBoO9UaNeDKCJIm0d7QjSSKIICEjBB7LlvczNjaOrJgYWpREIkE8EaFer6MoMpoaRdN90ppJe1snnuugVHqJWCZGk8rExDi9vT1IigKCxHyuiCSHDKV2w0HXTILAY2DFKhqNBkEg4AcShhHDskPmvkQ8zsUXX4iIx92b76G/fxn33bcHWVY49/zzAIiYEcrlMrOzM3R2dGDZDoEgEonH0b0IogSCJGFG4sQTCVzPIqZrCIGPJApIkoxl23ieh+s6mJEIQqWGIATs3LmT0844ne9972be+MY3kkiEBCiPPvo4552/kUJ+HBLdJCNNJCUWCHAkfB8832H5ihWohk4ggB/4SIqEGAicfsbpKJoGCDQsm4GBlUxOTmJGVFKp0IPquT7lapGIodPWmmHN2pMQRY/OrnbMeAJEAdf1UTUDVTaxLJsgAEmS2bDhZHbt3MP6DetYtmwZiKHBRdMUCoUiuVwex3Fobc3gOBa25S0SHLmey/z8HILvUyoVaW9vw7IadHV1Mjl2iExbB6mmXgLfD8dRzaa5qYVCvoQkyTiOzR13/pzzzj2f1tYuNm48m1qtjKoqZGfnqFUqdHS2E7gWmUwKhWYmpiaQJDEkzBIkxIU4okgsiuf72K5LIVfiBz/4IX/4hx+kWCyxa9duLrh4E6FrEibGx+np6UFRDEzTYGpqir50BFsU8f2QbAnAsi1kRUSWRWRJplKpEIlESDWlFuHEge+Tzc2TSqWxHQc/8FDV0GtmOzayIiNKEoYk4/kB8oI39xPveSP/ces9fPCzN6B+/l9CL3TtyCH7r99/JaeuXs7w8DCZTArXC40kh+VvP/xOPvdvP+RtV38RQ1MRRYHqAmuwpsh87S8/xOr+FbiWjSCA7YXf8O//+M185Evf5eD4DH/+lf/k6htuRFcVStXQoyyKAp/+0Nt5x0Vns3nzPZx9zhkIUoDveXzkqstpOC7/8F+3sXnrTjZv3YmhqUiSSKV2BDJaqZZIRjqQDZ2P/t6V/OT+rRwYneST//JzPvWtXxAzdUrVBkEQ8L7Xn4HliHxv8xZcLcqc2kNTcxOOW0PXoyD/AKgQNPUj923ER0SUBALfo1jIkZSPpNWRdv4P7bGzETreTntvjP6+s/Gt8PsflsB1qJYLRM0Iu/cfYv/BEJa99qT1rF+/mn/51r/y/R/+AF3TsWxr8RB1waZNvPMtb0ISNNral/He932AjRtfxWlnnMFH/+xjXP/Vr3Dvffdx7333EYvFqFar+L7PBedv4tRT1nP91/6Z0vgU6joNBJAkBcfzuXNkP3eO7Oe6px8gqmqIgkDJOtKX5/Qu5+qLX4Nnu9x+++186A8+hGGYi7/blo2m6aGhzvNp7+xkrjCPYWg0Gg3S6QyqFnIp9C/rxfd8BODN8XYGKwW+UBrhu/dv56YHtiPLKo4TGmlkWeZv/vpvWLVqNc1t3YiGicvCwhWc2N9w6223cd3nPx+uuwts2IfJlCRJ4uqrr+Zv/uZvjl/+1lu57rrrjlv+U5/6FJ/+9KeX3Ouz2Sy33HILX/ziF8O9IZHA87xn5YtduXIl3/ve90in0+G4+CXOHkcbtl+sAvFC5LAifCz8dCk5HkT6l5UT1fNiFN//m+S3JUbzxfb/s9r9S342QRAWCSxlWV5MjXX4t18VLPs3KdJnPvOZ33QbXrD4vv+Z33Qb/m+WpXH1L7T00mQHh+vyfnI3ANKVr17yvhcKf3hxE1AEAgQhwPNcRFGgUq6jRA3Uk1ejfeFb+FdeiloqL1pU67UwXYeiafiBj2s77N65m57uPuKJOB2dnUhyeGB/4L776eruprW1lUq5jCRJOJ6LpmuYhhIyQCoatl3Hthu0d3YgiiJ7du+hvaMdTdfo7e6jWC7R29tDPGaSjMdAFKnXHbZv20F7WzuyLKLqGvV6AwiwbAtNU/F9aNRrNOo1EvEE1WqDhx9+jJZME44b3jM8PEpLSweC6JMvllAUFbvR4JntT7NyzQC6oRMAZiRCoVRC00w0XSNiRhgaGuHQwWHy+SK1Wo1YLIaiqowMj/HMM3vp6+tnaGiYRqOOaZgQwNjYEOvWryPdlCKRiLNq9UoUWSWTSWM1Gtx1151s3LgRx/VIJJKIioysqoiyTKGQJZnMMDubR1F1hkeGmBg6hKZpqIaOYUYQBQFVUxFFEXtkAikI2DXQwUknrUHRI7S0ttHa1g6CSLFURhIkDm2/j7baQfxUL5KsE+CjyOqRxR1QBJnZ+TmiiSiiBI1GDfwAXwBZURBEEduymZ2Zo62tlVKlEHoKVZWRkVEef/Rx2loz9PR2IssSuXyWTEszgSAgyhK+5xMA5WKFSrVKNBpFkWXq9QbDQyMgBNieHSrF0RiqKtHW3kEhX2J0bIzuni5ECUrFMpGoiSgKCALk8znaWlo4dGiQdDpNNBoJ08H4dcyIie14zM9naW5uYeeOXXR0dLJr1250zSAWjdPZ1Uom04LvC2zb9hSmaSJKEDMNirkssWhILCUpIrVyHU1XqdWquJ5PLJYglUohCCBKIoIoIgoihhbFthssX95HKtVEZ2c3mqHhez6iJCKKEI1G8b0ARVEwTYNqVwSnP4miGNz8nZ8xUi5xiZHhTV4GaecM+p55zAM5MBWE5hiPPr2Ph7fvoU80+IjSi/D0BNEDRZIjVf77yacYrZRY3dXMq889BVVREX+6B23bJDc8uZWSY/POaBf/eNaFgMCkVaNQbxA1dC5cv5p/3XgJ70r2ouyeoWXKQduTIz5Uxdkywhd3PgnAH735Eq5ZfxZ2rsZUpUyxbpHWDS7vX8G3X305bVNlJiICnt1AFKD1jhH0fTn68iLvbO2jNRqj5NgUGw0ajkNLOsnl55/B13/vHbyjkSR+qMhpcjNtMy7qrlnM/Xn0PTk2XvUqXnXaagKgmi1TbliIPvTFE1zS3c+n1sXc6gAAIABJREFUN57HWXkZsebg9bSjSRrvPGM97sFZZuo1qo6DKcic1drOZzeex9V96/n+yB72TsyzpqeF97WsxHx8EvGZGSIHinz1yS0UbYs36x2sb+j4q1rxAhFBVsn8Yhx12OZzWx4G4L0D/fTKZYL9d6IMboG2HqbnAn742S/w8Mg+AD4hNdO9Zwzh4adp2j3K4OgwD08OkU6l+c9vfYPufRNMzc5SskPlcUUsxdXnXspXzryENk1GWbmGel2E2SwnP/g45tbtXCLHWNGUZrpSptCog+uRjCX46J99nD//6EcZ/MVmHty7i3WRJO9bsR7fD5h0XU7pXMbydBOmFsJ2a45NzbFJmxE29izjLy94Pf/fJW9EEaFYqDI9Oc26tevRdY0vPhJCulelWrls1ckcGjxEZ0cXI6OjiBLceutPOO+881m16iRUPTS+1Gs1yqUyI8OjZPIVLpJjeO9+C6YzS7nu0LBdWjMtXHj+Jq7/8vVcftnlNBwbWY+TSZq4ooInSCi+x+f+Lsydu2H9Bq644orn7HzxeMgIbS+Q+UEYT/qWt7yFG264gXe84x3Pu8cmEgmk45T/+te//rzl29raSKfTix7IcrmM67q0tLRw3nnn8Rd/8Rdcf/31tLe3P6vci1E6n09BPPYs8cse2pdKY3Oidh3PO3aiONHjScBzz1RHlziR0h4cdd9imSUb8oIuLfmcF+KtfLnl5VLMXkzbl+rnJfv/eap8VrtfBnvD0YiAY8/fS/XPiebarxvOLYriZ1/M/cLvkpXGdd3fncb+lsvREI7DG8xhOXaSHiuCsNRneP6Bbn/wrwBQ//3zz4L0HJls3hIT6UidL3WcHgtTadQ9yuUq1XKFxK6DGH/3ddzLL8K2HUzTxLUdAs9n1679qKpMV3cHtWqNSCTGgV17Sbcm0KIaviuiKQFarAlJFAlcj/HREVqa05RLZZrbW6jWasRiUer1ColEHNCwGhaVcolUMsng4CAPPPAYl13+BlpaMuzc9TTdXV1Eozozs/M0Z9oQJBHLahCNRpAlOVSmXRcBAc9W2L17B6ecspZyucSPf/Rj1qw6iZ7+fiyrQSbTTKGQJxqNYpjiwgFExDSiKKqKJMHgoUNkMhlq9Qbp5mYCx8LzwDRjbN36FFufeIpLLn41RkQlGjOJRk0cx0WQDMrlAp5Tp1Ypk4wliZgxyk7A/PwM/T0d6JqIKAbUGzVyuQKlYoW9ewc595xNpFvSVCpF4okYc3PzaKrO7PQULS1tTE7NsnrNajzPAXwQBHw/wPfCcWBZNmZMR/rpA0y/6QLkt16G54Kua1hOjuZ0J4ODQ0TjAS0tfXg7N1ObGSZfdWhubmImm6evrx+Aer2KHzjEkylKpQqxWAICn4ZVR9UiTE1Nkk6lsBp1ZCmEtD58/8NEIglOP/MMZudnsW0LVXBpyqRBAkFSsRyXwT0jnHraSWGMsRHl3nseRNEM2tvbSKYSeF7Ynlq5QaVWYf+BvZx7/kbAp1JuEIslCNzQ8KIqAqVSnnw2ixFLokciRKMRXNdFCkJY2vTMDM2ZFgRBpFGrEI3GOXTwIPgOs7NTDKxZi2lGmZiaprevH1mRadgNdEWlMJvj5z//OW9661vxPGsBKp7H87yFvLQS48MHybS2ouomgSgSAFIgkMsVkGQXSZIw9CSSEuZzdV0X3TCO5NNbIPo47LnwvcM56kJilcPGpfgPD3vogsW/PdcL14vz+qh0R1FVhfJjQ7QeqoCwsEEj4roOlmVhmib/4e/myiuvpFot0Lo1j5Crs+a732KsWuFfLnod71+7AQEBp7+JxmmdVMo5jGqAee9wONd8n9nZWQKgrbUVQQDjG/8IwA//z9VcGsQRD85jWVbolRJE8IOQ3EwH+4rVeBZomkbqJyFhk+s62LYVxnxXapimSXFtkmBVGwI+9s4JWgarCIg0Gg10LTSwCKIIQYD1rlMYHxsnEjFofnwaIVdb8CKH/Rj4oZFOWJXBOq2d0bEhMoJO+tH58Hdh4YDD4T3A4155nJ5Tl5FM6cT3VBAGK4QhGUrIzikr+D4cyE4zcnKMM04LWWhTP90ffpzF/SDMHR3EXBorRHyhEF71UpiTSbAUAi9AVhbeSZD47AM/5/OP3MW5Z57KT7/1BYR7HgN3lsCtY9s2iqKg2Dqy1Yuzqp/qJWcjyiazW3dR+OI3WLVmgHg8Rrg9BLiui6oplN/5WuTuTuo1i8RDTyFt2YGw9RmCc06F8RnKAz3IskwQOLiugyiK1Gp1EvEktXoFTdNxHZ9crkBrSxu208DzPURBXPQE79y+h/Ub1uLYFpKk8vS2Z7AdmzVrVvPUtqe46MILKBSLpDNJCGDzXZvZsG49qqKSeGArhu3xzDc+zerqQyiqzJ7E+aTScQwjgqroKIpOtVJHj0qkUiGp2CIcFW8xf+ki+Q3PDZ95MXK0snXsmeBEshQ88cXUcyJF6HD9LxR2+kIO3kfnQz1R246XQ36pOg+XOd43OEzGdPjfo+s7VvF4vj5cqv7jnuOEI+1bVGaC55ZZSpY6D/6qFcVfps6l+m8peSnv/WJkKeKlJY/OJ5Clxt8vI0f3x1Lz6fAY/HUqr7Isv6iXe0Vx/X9UfpOK61IWoV+X4mrbDfbvP0REj6GIBkNbtrP2K99CWtGH/5mPIn/vpziOw/DBEYLAo7e3h2w2TzrdzI6ndpJpTSGpIoVcmeZ0HFeAXbt2cdEFF2JbDUaHh+js7CLRlKaQLzAyMsJJa9cjSTKaLmI1GsiyuKgIBYSxqo4bHqBisSiKomBZNoIQQmMFIUDRFFzXQZZlqtUqpmkiCQrFYoFkMkGj3sBzYXhoGF2PkMmkqdYqzM/PsH7DOubm5kin08iSim07eE37kBQJubQKIfBxrAb5XJZksgnH9qg3bA4NjbJq9RrMaIxSMY9tVWhpTiIAkhLniW1PcMrJp+D7AZvvupu+/uUMDLSgyBIzU5NEIya6rgEm09OTiKIYEphUGzSl09hOA11XsW2XcrlKS3OaoZFRstkwNnPlqgGamlKkUikc20FRVBRFwfcDRsZG6X5yL+qX/ooPf+MbfOxjH6dvWSuK6jM8OE+muYOp2UHSzSba4/+JoMbJ2Rq+59HW2QaEi3OpXMA0VVTdRBLlhcNfgCD41KslFEWjWq0TicWRFYVioYRdraCpJpKicPc9d6MoEm2t3XR2tS/ElY5xwQUX8djjjxOLG6xeM0CjbvPUk9tZt2E9iUQCQQgQJQHLahCPxiAQ8HwPRBHP95gcn+KuO+/ive99H4MHDpDNzdPW2sLI0CFedenrsD0P33OYnZnB9yyWLV8RjnfAth0UUWZ0ZIx6tUZffy+aJhPIYRyp73o4tsPExCTdfd0U8gViZoyZmRk23303mzady4oVK/A8D8Mw8DyPQ4cOIQsilWqZkzasIyDAdmx02cD3wXFryLJEvRYgiD6maWLbFj/5ya289a1vXYBAB8zMzpBMJsO0JITrjkBAvdEgYkYolUvMz87S2tIKAqiGjiCKjA4O0dnViSiHUGLHtbGqNvFEDKvR4ODBQfr7l2NZFvV6nZaWFizLxrIsfFySyWYIBE696mOMz2b54kffw1Wvu4BisYQoSmiaTiIZw7ZtXNdD0zSKxRKmaWLZLrIsoqkKzZe8H4Bbv/LXnLt+JY7t0KhXmZqapNxw6GrroJjL0ZROkcg0Iwki99//AGvXriUej6EoKqMjB4lFkwwNjbF82TIQXJKpFrK5OZKpOLnsPC2tbVSrNexGFVVVMXQDy7bCNVIMY30bjQaaphEEICAyOjbO/Ow8Z5x+Kr7vICqH01N4eJ6Prpv4QQiz9z0fEYm5uXlEQaA5HadaK6BpEvgQBEKYP5cAVdcJEPHcAFkxEWiw/8Ae+patQpKjiEKAgECjXkfXNERJwhVdAtfDreTw85Mo9TBWEiOF4DtQD/OvfuG2p/mHn+7g3JWt3PK/3x2+n5mkYcP42ASFUonT++IERoI7thxEOf3NnHP+eTQqZVLROJIWxfO8MEYaCcdx8IU62Wye5uYWZCnMv5vLz9L62W8inL4WwXEXD4K+56Eo0gJEVwq5Q8WAIADbdnnwgYc47bTTcFybcrlMa2srxgIPQSU/japrCKKEj4TjBJhqCOG3rEaIhmhrQzd0qpUKvh9g1S1UVcXZM4iy/xDWT75JbP/3CISAsY7X0tvfQ7lUXRh/ZXp7e5HUI168w3u1H7g0Go0QuXBY+fkdU1yPPhgfL27w6LYdq7j+sgfr35TiulT5X1ZxPVFKoJdLcT2eJ/nFyiuK6wuXl1txfSHP+21XXF+BCv8/LEcvrscuTs9v2VxKyT0B1OLk1YgXnoWQDFkunwvneXZ94ULxy0/U52wggk0qmWLf3oPEo0lu+tEtfO7xzbyxdwWpr3yb0nveiDqXI93UTDqdomE30DSdm276Hps2XcwzO7ejqRotzW3ccsuPOO+88+jr7cU0IxSLBXp6uhElEV+QkRDYfNdmTDOOYcYJAgddU6lWK8zPzRGNmRhmCIk1TQPX8ahUatRqNTRNR0CkUinheTaGaVAul9F1Hc8LD9a200BciDdUFY3sfJbpmRmGhkcRRYGOzg5aW1sYGx+js7OTqckZarU6jzzyGJ0rDSRZQbSbEQjw3ZBZWJQ0Jien0HWdgZUDIey1UCQajRCNGoyNDqMpMvsHh+jp7kHVdGzbZcXK1TQ3NzM/Ow6+QCLehKZFIZCRZZ1SqUhrWxvVWoVCoYgkitTrNQr5HJIohFBaQaBcLiPLGrFYnOUDy4maESRJJp/PEQThxquqKoIooh4ap3Heabzu938f04ySSJpUqkUO7Bvjhq99k4cffpC3XXEh4p478JrX8ONbbiPd3Ew0Fgn7VxDQdQ1VlXE9n0bDQtcNgiDAthvIIshKyDosywoIIn4Au3Y9QyKZxDRMenu7MU2dnv5+nnjyUU4//RRyczOYusrQyDBnn30m9WoV3dDo6+/FMHR27dpJa1sLoigwMjJMIhZj27anKBXLpFMh0VIilmDNqtXMzszQ29/H3Ow8oqyQSqYwo3F0w8BzXVLJBJVqgUQiETLvCgKe55Kfz9Le3km5UuHBhx9mxcAAiBK5XJYgcBEJ+fplJYwfjcZiGKZJqVik0ajT29sLwNzcHPl8nv7+fgwzgh+AGTFAgGKhgK7pjI2OU69V0A2T3bv2Y5o6uWyOO35xB6961asol8qYURNhwSNoRsIYQUmQCXyPQiEHgY+AyDPbt7Nu7Tos26Jar2OaJr7nkUgmURSFIPARERa9qo4TEj8ZhoFl1XFcj2gshuO4zEzP0pROY0ai+H64an3rx3dQqta4YtOZrOntAMDQDGZnZxkbH0MURQqFArVajXS6Cdd1yOZzaKqK73l86bu3A/C2V5/Dso4OPC8gEjHJtGRobW1HADKZDNFYnGKxhCxLdPd0k89lac5kKBTydHe2L7ARB2iaGsbgGlFKpSKRiEF0gSzJsix0VUUQQ3i8aZjIioxmKBSKRTRNxw8gly1gmiaGYdDR3oFAwPj4GNF4aGwRkBBFBUGQwHfBX4jxdDxSqTSRaAxJUdANE0XVUfWQaVfVTeqWg227aKqC49oEPszPTxKPmeiGSaXaQBY9BMFDlgMIbAhsrIaALMlIqklDSvKftz3CdNGid+Ak5FgaOk6iEe/k8UNZHt6+j57ubt71zrciJNqQYhm0eIpEWzfNnb0QbUWuzbKi2SBlqkRXnIKuSszNTKLpcQRBwLZc7rzzLh584BFOOW0toijRaFiMjYX5X2MxA18UkX98N+WmKKIkQuAjCiIBPpIk06hbTM/MHEF1GCbd3T2UyxUODh5gw/oNCIKA4zg4jkN2Zo49u/eiqAaPPv4EfcsGcG2L4eEhenq60XUdx7XxXZcDBw7Q3d2NLMv8+Ec/JpNM0uLBgbNOwizsxYyYRFdfsBDfrhGJRDAMHUkSEWXxOXumILIwH44+CS+ttLyQ/fH5DqtLwSLhuaQwz1fuhUI6jwdzPDqO9cVCQ5dSQI6u69h7j4YGLwkBZekUfMf2x9H1H+7b4/XXsb8d27al2nts+p+j23p0233fXzxgPavdx1GGj/3zUuRE5X+ViutS1070vJfy3kvNg2ffcPxLJyx7nGf9OuVXES9+PHmxUOFXFNdX5DlyvMX6iLwExTUZX1Ran11uocbgSN6zI5vUy2/xURSZIADH8aiWK7Rkmvmj//UR1Ndswl3WQ+LaL+N3tyPKEsgioiRh2S6FQoXZ+RyDB/cxMzlJpilDUyqBF/g0NTUhALIsMTEVstPOZfPks7Ocs/FMtj3zNMsGBhYgmzPEYlHS6ST5fG5BSehBVQ2CQKBcrpFuTkMATz35FI5toWsKdcshHkssJLYPSTpkWUEUZSRRDWGXkkhXdzstmQyzc7NomkY0GiedzmBbDTRdQ9cMHnroIdafHcbbju2tMTY6TirVhGFEmZudIR5PICsKiqrSaNSJx+I89shDtLW2kEo1UavbtHV0oOkGhXyBm276Lr3dHSRiBrFYEtsOqNVd/EAin68gSpAv5ENPs+XS3t7B/NwsTU1JopGQsCkWi+MFPoEf0NraTktbK7ZjYWgRgiBgdnY2JChyHTRVRjd0hH3DRN50EVlNolDIU69X2b9/Nxs2nMprX/s6LrjodIThJ2hkJ5Cbl1Eqlzn51JNRZAnLCmGIuXwWz3OJxmKoiorvB0CAJIvIsoLnBdSqdRoNC9MwEYXQIKDrBjt37iKfy9Pe0Y5haLS0ZKjVSjQ1pVBVhd6eLuxGHQIXw1DxPYcAiZaWFiRJDr1eoozvOLS1tJJMpmg0GlSrNX7x85+haQpe4JBMJmnv7CSXK1AulyhXKzQ3p7HqVRRZpKkphSiKOI6Doqo4jsP05DRBALoR4YknnyTd3Ex2Nks+P08kouO6LpFojMBx2bt3D5093QiiiGmYdHV1IssyExMTQAh1FQQB1dDIFwukkk1IooShhwpoIpHC8xxisTjzcyUiZmj8MA1z4aAkkmxKIggChmEgLszrRr2B57koisjExATN6QxtmRZ0Q6fWaKAbBgQBpUKBSCyKKIRxvUEQ4NgOkigwNzeP47g4jk26uYloNIplWUxPzVAqlWltaaNYyDIzNc0z25/mzm17KVXrbNowwKreDhzXQ5RlEokk0gIpVEdHJ9FoJGybKhGPx1FkhbGxUb512/0AvOPSc0kaBo26FXp1AwdNVykV85imgR/4RKMRIEAQQwOJpqkoqoIoCtTroWKs6wbFYgld1zFNg2KpgCLLSLLK/FyWZCIJgYAkKVQqVWRZDfMBqzoEAoEXkEomcV0H1/PwXQ9d10KlRxYQBYliroSqqNRrNSRRZmRknKFDw3R194Tx+qIYzgdZxXODEJYdCHiAKCroukGhUCAgQFVkZqam0bUImmZQb1QxTQ1JEnAcm2Ixh+3UiUWacF0Ly6ojChIDK06ib+UqzFQGQYsgSCKKIvPgU7t55Ol9dLekueq1mxAFGc/2cZwajmVh6hqu61FwdHQpwKxPI6y8EBERRVRQdQNRlHBdn3rNoV63WX1SP57nE48naGttX4CpC2htLYhfuwnxy9cg7RwE4TALrI9lWaiqTjKRQlFCD/fhA6xhGKSbmpCVcE4ICGi6hiZHiSeSxBNJstkcXR3dlIslOru6EEWJarVKNBKjUQ85AArFIppugCjSYkaIlWvE/vg9xCoHQACndT1+ICKKEkNDh4gnoui6grAwLp9tgF3KdfPCFdfj5T5/IdeO59V7PjmaRXWpMkv9tpTi+1Lk+ZSn43nVXow37vl+eyltPravjobnHtve5+RhPV67l1Lglrj15VJUXoii+HLLC/0mL+X3E5V5qYrrS332r0t+WxXXV9LhvCK/FXKsZfVXBmEPZDTNoLu7k5bWFGvWLiPZ0owWMQkuOJO5f70Od3AUtu8isB0kSULXdC7YdAHLB5az5qQ1dHV1MDM1RUtLhnQqxfbt2wmCgIbVIJNpIRqNkogn6Ohoo1icY93Jq5HVAFVR6erqQlUVAOKJGJFohL1793Fg/wGshsOhwREadQvP89l41lmsHBigKZXE82DLlifxPQHPBQEZ24Fa1SYIJH5xx100rDqyLBGPR0gkYzQ3N3Ng/yA7d+6lYdVxXZtqrczll1+GrhuIgkDg+Zy84VTm5gp4gcLM7BzZ+fnQ69CoE+Dz89tu49STTw5ZJQWJiYk5cvkcnu+hKSpXvOH1NMUjFOen8RGo2w3cwEU1VBLNCSRZxDBDciXHcQkCkVg0RiQSQVGVhe/uUyqXaUqn8QKfbC63GB9pWRbLli0jCALKpTC3YrGQhVKFvFVGkj1aWlPcdefdrFo1gCC6eEGF5pYI/sQO6koK3w84b9O5KKqEJElomkatFpJaaQtxhNlsdjE2s1QqEwgakmIgqwapZBOVYompsTFsx0UQZVatWkM8nmB8dJydTx+gXnHZ9tQuIpEUoqQR0SV8p87I4EGK87OMDx9k//79FEtlXNdjz559GLpJIpZkx47daJoWKj2ew5VvvJzWljQDA8sJ8Ni1excrBlaQ+v/Ze9MYS670TO+JiBN73Btx95t7Zu0btya7yZZEST2GLYwMWeMRLGgkQ9JgAMPGjOF1LAH+Ydg/DQwwHhjwPy2QNBJaavV0q1eS3ezmzmKRVcXa16zct7vvcWPzj8gii8msYnFryTC/xAUi7z1x4pzYznnP933vm/c4dPggvj+kXt9ma3MNkEniNGc0jhIMw2Z6ahLLslhf3+C3fvt3mF84wI0r13nikccoFgoUSwUMU8cydKanp4iTCFmWyGQdFCWddBeLRaampnaBtoKkwMzMNDEQBDESKYNhGEYUiyWGgxFxnHDx4iUmJyfJ5XIoiiCfz0MCsiQjyVJKNCKBlEjcunmDsT9ifm4WWZIZ+z6rq6sYpoluGkiwGzYsMQ4ClpeXGY/H6JoGEu8dJ+tmGY2GhHGMYZo42QzLK6uMgxDbNOl1O4z9IXenDsPRCDfnkS8WsDMOKDKlUplOp8tgMGBnZ5ter8tuHC6SLFOpVN57jQRhSLPZ4urV66iqihCCbqdJoZRLibtUGd8foghBp91+zzsWxzG9XpcwCHYX61JPfyJFSHKM62bZ2NgkiSQ8r4AQGrpu8r3vfh9/NGY49FldWiUKIsIgoNtpE4z9XfIwH3+cstLW63WkJKLbbuPYDsQJ4dhn0BszN7vAsWMn6HTaJCQMBgM2NzYIgogwjJFkBUVWkIVA0VTanR7rG1uYhkUY+QRjyHkTdFo9XNciwWQcCGTFJF+YwDQ8+v0dJGnIaNxiHLQJoy6el2Fra4Od2jZBEDIc+tydgsRxzLvn3uVv/uobJIFEHIZoQmZrfY1L777Ld771baTiUZAgfOHfsXR7E0PP0Wg03vO+R1HC5UvX6Ha7OI6zq9Ed8M1vfpOxHxNmPZIjC0gvnU090MiEQUSSgGXZBGHI66+/ztl3zjEeByRJwssvvwzAaDQiCAI818P1XAzd4Pkf/4ibizdBCnnsseNsbdxhdXWdfm9As9nm5o1b+H6Am83Q7/WwzBQMHzhwAGenSdzro6oq/dITRDPPpPm8qoqiKBw6dAjHsVBV9fMZBvcZY+8FSZ+13c+LuNeT+lH7f552b3s+zTzkg1FjH67/o4691/P3cUO297b9HzIw+sK+sE9iX3hc/39q+70Q9w+NiUmX5u79pEQgIO16RT8cZrS3nvBPvkl87iry48c/EL7xfpn9GI33W1f5cHuSZP+Bbb/+3RVjVjWBqqv0hn2iUCOM/DTk1qvwb6/c5Gi/i7tRY+QYGJZBv9/m3QuXeOSRR1laXsXM2vzkpZeYKM9g6gb9QQ/Pc7FshySRMS0tlXrJeNS26gw7fWzbYXOrhpcrEckKyILxaMDGxjYHDhzCtiyQA3qdLsVykf54RLvTAUnG77aZnZlmp17HMEwa9W1yrgVJgiI0pqYnyTomspKwvdFgYmKKwcjHzefIuFlee+l1DM1C0w1cz0XONInjCMUvpaGprsfYH2DbJrZlI0sylmmyfGeJYrlKuVLGdix836fXG1Atl+h1OilhkaajGw7bOy1s2yTwx2QzGZI4od/toasq7VaPt956B0mSqFTLRGGMphmMxxFBFCMpCl4+x2g4wB8NKORcZEUiiCKCOEYzTOIkwXEsovEISxLIF27CH/xz/EHMyuI6Z0+f5ZETT6KoGrppEkUJyoVvoM8/tctcLKe5lrJEjEQUSRi6xebmFpZhM+gPUgIcfwRxjKYL4jgiDMbEcYTtWEhSgm3aREmMqiq89tprOHaGyekqbt6hOlnhxtUbXLtwFTuXw7RzrG3UcPNltrYb9HsjDh08hCSlZEqyomA5OWSh4BVdojjCMC1+/PwLHD52DFnV2d6uMzs1jaEI3KKHIklsrq+zvZneN+1OB8PQCcKAYDwmHIfoqs3a6hqT05MIVUFTFSYmykiqCqpOGEuAAlHM7cXb2JaJoRks3l5G10DXTWzHQ5IlOp0ashwgK+mkWpZkxmFATEwQRsSESIpMq9lhcfEOlXKVQiHH1HQFdzevU1YhkdKQVeIYwiGJIpHL51E1kziRUTWVra1aytYsFFRV4PshnW4fJYmIoxBVVZGFknICyYLhwEcogjAYp2BQSj3ZURhy7MhhBr0OimoxNVNFqCr/8+/9Jv/6936VuWoZwzBS7+doiK4JJEnBMk22d3Y4d+48ExNTmIZNq9tD0w0Cf8w/feYI/+1v/CNmJyoUCjkqpSKKkjDs9ZBVDVM3GQ366EJh0Gtj2hl0w0pDzZHZ2NhAJKnHS6gKg/GQ6tQ0STBk0O9jWzaGZaOoAlVT6XZ6+IHP/MIcTiZLFIFXyqexorLMcDBElmRkIdBUmZ3NDTRdx7Q9JEUiShKQY4aDDuGwQzafo9tpcv36VaamJoCExsahRvJZAAAgAElEQVQK1XIeoUSMg8GupEKaS04sePnl01y9eptTp76Eahh4+TyJIqGaJv44QZHj3QgCmbffOcf8gQWiQEKSNXTLxbBczEzqOU6lnDK7/Rd89dHD/C+/++v85n/yCwR+iOu6lEpF4niEZtjYmTzlySmOP3oSoWvI2WmijYuMN6/TzR3g9BsXeOSRkyQETE2X+Lmff5p8IcP2Vh1ZUhgOhzz62DEyaojf6xB3R/DSW0iVAr4/4MLZdzA0FdMw2N7a5rkfPo+XtSmX8+i6oFBK2XE1XaBIAhmZtZUVMo5FqTLNxsYWSQxhEOJmM9Qbm0R+zM5mg+npaRrtLSRJ4OVyKIrM5sYqspzgXFtCDyJav/WrmKVZdoZJKuMkyViWRb+fEmQpikCWJJBT2S0kFX8coQqFKIxTre9kdyyWHy7EdO84u9fux3ex1x7Wi3U/j+Hd3M2984aHBan7hRU/rL1HaLVPeO/9+rEfIL3bh71zmnvL791+0H77AdaPA+r3ln3v/31AsLxPvVGSst8jvT/Dkj6DlK1727Jf+z6NN/1BdT6o7k9y7Pvts+99s89n91F97xwjSfsW/FktNdy9H5RdWbv97GeR6/pFqPAX9tC2H7Dbp9Q+390/nOfe7Q8A13/3ZyRL6x+Qw/lkwHX/9nzcF1BK8hOztLSEoggsyyQYBwR+xKA/Yu1QmantBur6NoOMhWGYVCem2Vhf4/z589iGxeOPPca758/wyGOnyOVd4jim0WwjFBWhSEhIaKqKaVkUi0XCKJUoCaMIRZGI4wjLsFBkdTecUMPLZcjYWVRNRRMqmhD8+IUfEYUhlpMh62YxdEEuYyFJAc1mg3a7iarKKHLCxtoqupFBEQobmxtomookJRw/cQxZkTHMFIgnZh0kCcUv8vxzLxAEAYVCIZVOKZXo9Yds79Q4eOgwW1s1Lrx7gYmJCSRZIpNxkGWJZrNFuVJGKCqbmxtcuXKFg4cOYRgm586e5+WXX2ZhYQFD1xCqYGZmhmzWRVYUuu0mzWYTy7bRNYNms4NjW6lnwjCJ42iX2TXB0HUg9Xr0Oi0URUGTFeJLNwl/758gSxqjoc/8gTnurNymXC2jG4LetVcRoxayN4kkJyiSRBKH6SCOhBAycZySHMWJRLfXRxEq+XweTdcZDPrcuXWbnOsSRxHDfp9rV66imxmEEMiywpHDhyjkc7z22hscPHCQ06fPcPDAQY4fO4GqSgz6QyzHoVQuUyzlMXSB52WJ44j1tTVmp2ZpNerkvCy1nS1WlpcZ9Ps8+aWn0HSNTreLKjTOvvNO6ik2dS5euMiRw4cxTYN3L17EcbKsrq5SrVQxDAshNNY3NihVSmQ9F93QiJOE5s42tdoO+XwORZYJ/RHjMCSKI/KFPP1en6mpaYQikyCR7D5T9XqNOAxwsh5hGBFGAVEUkCQRN28uUsgXuXThMoV8kZXlVY6fPMrVq1eYm59NJXKEQrfdQKgqYZiSsMmyTH/QR5ZkDMPE98fESUIhX0CWJUb+AEUILMtG13WGvS5rG+vMzMyiKIJut8f2Zo3trRo//vGLPPnUk+iGThwmrK+tIYTA9/3UE+v7JIRUKhUkSaCqIg2HFwpJElPf2UGW0txCXdcwDJ2jR4+QzWYIwoAzp09zcOEgvh8gVJWslydXyCPJaTRGt9dDUmQyhTyxJKHZDgESvVFAu9Umm8kgSRJnzpzh6tWrHDl2hKznIkkp+7KUyMgSu2kAMppuIEmwvraGqgqCwEfTxO47wkAoKSDThGB5aZmJyUniJEJRFCzLwrJsRuMxuq4iVJ0wiDENi43VdWLSMPm3zrzNyROnkCSFt06/zeTUDIkk0ev30XQDRSgkSUQUBUxPT3Ds2AFkJWQ8GtNst3EyKSmQYRgkcUwcxQghqE5UGQ6H6Ia5m5sZ448GKFK63KnIEiQJvV4fGQFxKheVSDJXr1zj0pUrHDt6HMMUxHEK3BJAkVPStChKkA0Xd7SMpyVMfuk/RhExcTJGkhNarQZ/9ed/yVNPPMOf/tGf84f/+g/4uWeeYTjq0Wx1+af/zX/Nv2hLDP6Pf4V65TbXrl7j5KlT+OOArJvn1KlHmZ6ewbJMxkFIu9PFtjL44yEkErqmowoVVVUYDUdMTVSxbAvTsgnjmJdefpmv/txX8DwLzdBQNZNCPsfa2hqyLDNRnaLV7JCvdZDHY7R/+btIEsRJylsQRjGqKlheXqJUKqbjFCCUVEs6jmJUobK0vIjnebta3erdAfPDI+MDJu33s08LJu5X38O049OGbH6SfR4WgN9vn/t5rh9EqLN3fhRFEUKIPUoLH02Y+bCgNtln3rQfIL27+HH3ONLuWPlZ22d5b/0sbb/r8LHa8JBFf9Y+8gcRgP0szvEXwPULe2j7WQLX/XRc/z6BaxSlE71SqYRl2fR6Pe4sLlPMl5menuLAgVmMrz2D+VffQX3iJEoikSRw+vSbZB2Hxx9/jBeef4FjJw9QLBbp9wdEUYKm6XS7PTbXVsnn8vQHA27euknW9QjDPq7nIUtSKqETx4xHKeNnLueyubmBEDJC6HQ7Xa5du0a9VuPxxx9nZm6G4chHEQpCgsVbqS5isVjG90PcbIEoiLl04TInTj1KksTkcjl6vR6ObRHHIaZjomoCSSgkRo1gHKDHE9RqO7veTJtyuUqymz9LIqFqGm4mR73e4OChgzSbdeI4QtNMcrk8cRxz69ZNyuUSR44cJoklXn7lFZaXlum0O2ScDBvra0xOTqCbGoZuIkuCdrtGPpen10s9zivLqxTyOeIgJA4jVKExHI7o97sM+gNM00KIdIHBH40Y7TQwV7YQ/9Vvs7KyyuzcHItLNzlw+OAuiI/Qrn2fRGgoTh4pjhmPUk3N0WiMIkukC4nxLmCx2dzaYmt7k1wuj6wIJCS8bAZDU2k16gTjgJ1ag7m5Q6xtrJPJOCgy3L51k0ceeSIlwUigXK5gWBbNnR1eeeU15hcOpOBRAqIhpqGjSAqV6gR37iyT9xyuXbnM9OQUQlZSNmbLZjAYpKRfzRYzMzNkslnCcMzS0hL5XJ7hcEgmkyGfL1KtVul2e8iyYGNji/JEBTvjECUpMJUATZLxgzFuNsON69cI/RGqY1Msluj3BmkYa6eN57lIssLS8grFYpGc5yKESn8wQlVVwihE0wSyAjeuLTE7M4fjZHj7zDt87Wu/jFAl3Fw2JXMiAUWGaEy300XTdKIoRhYCXVdJkFKP4V1piDjGNI00d1sRRHGURgbIMtlMliAM6Q+HCFUlny2kOZi2RblSZTj26Tc7FAtFFCHIl4pESYJpGETRiCAMIVEQQgAJCQlSAhnHSfNl6zuEQUC9XkNVBe1OC8symdsl6Gm1OuTyBVzPI5FiwigmTsAwTYSm0typYxk2cSTRqLdxc0VyroNEwmDYp1KtcuzYCRQ1JWRqd1o4ls3ayhqaruP7YxQhUiAYR0CCZZmYVgqoG40mlmmyeOsWpWKJMAwpFAq7776E0WiEZTksLt6hWCiQRCBLCpKsEoUx/f6AYqnM4uIiy8vLHDtxHCEEtu2SyxdpNFu4ngdSQpxEXDh/BctyGAz6KXlcGGKZNqoQyIqSLi4JgT/y0VQVIRSiKEqB6WCAaZmEoU8cBiRxyHg8ZjgYUq/VMHWLtbX1VB/a85CQmZiY5IkvfQkhBINRH0mSdz38ElEYpe9NIROgkIQBUncLDvw8igJCBVmW0DSNi2cuUi1N4mVyNGo1fuHnfp6FQ/NYtsP00RMcvL6K/ktfJrl5h/mFgyhCRVIEsQSqpqHKKrpusL2zw5XL19BUg0zWJgoi/uiP/phyuYSqCnQhOHf2HNOzM9xcvMN3v/cD/rNf+zWyWQ1FxNxeXCSXn6RZ36ZcqhAGIbduLXLr1h2q7S5anND9rV/F6NwibK2j5qrourUrQZXn/PlzzM3NkUgxo1HID77zHLNT01w4fw5lN/c6SZKHAq4Pyh/db5/PYsK6H5nSve1IklQaK4reVxT4JMfcz3v6UfZ5ANf3FunDcN96HzQ/SlMuwvekwu7+vh842uuJfZhrGe/nBd4HHsnKB5meZVn+zEDUfkD8Yb3797O/b+D6sZ+TL4Dr/Y7/BXD9wj7a9oaW7F3he9/2u5nlfW/ovS/Ze3+/F7jee7z3y+4XZvNwQPp+JE73C+nYO4DISky/N6RcmkCRZRYXbxEnEXYuC88+gf6//lvCAzMousrBgwvMz8+RzWSQJYkwCSmXKwhhMBr67GxvMz87kzL/GnrKAhymnlUna3D96g0Mw2J7ewshZAzdxh+nEjn1eg3PK4AsowiBaRhMT09jOSmBUaFUwrIskCSKhRyWXSROBOMwwTQder0hw2FAZbJKp9NhZWUJSMjnPHRdQ1EURv4YQzcJxqDj0W+NmV+YZ2p6Cl23kBWJW7ducvr0aZ566knCMEDXNfqDHpqqoesGV65eZnp6FlmRkWQZ13MRqkIYBSiyysRElaNHjvDII6ewHYu11TUSInJ5lxde+BFBGFMqFnCcLLaT4bXXXkdVNQ4eOoAQ6aRRVhQGoxFZy8IwDFrtNqqmsb62TrvTpnRnm+GXThI88yXOnHmbgwcXKE9NoqoaSXMN4+p3kHo7UD5OEqf35vbWduqFczzqtRqKIu3mHkqMR2NKhQKGrpNEMWEQoJsmQsiMR8M013Jikum5eS5dusSNm9c5fPggpqkzHAxoNFvUdmpEYUyUxDRaDRzTxB+nHl5FVVNAJsUEQYhQNRRFUCyVUIWEZVrYdobBYIjt2KAoXL9+HUPTuXnzJqZpYmccWvU6c3PzZLJZnEyGzG6+XRxHOI7N+voGGxsb9EZ9stkMQpZRJFAUmdEoIF8sEJPQ7/fQNRU7k0WSZNysh66paIZKu9lGESrdXjcFqkFEMA5xsl4aZq9qvPLKq0xMTKceM0lhY2ODRqPGoN8lScaUSqXdfMnUU2boRjopixM0XWO4Kwv1ntdRkvm773wHL5vFMExWV1YRqorv+5iWgRSDpumoqoaxK0fS7fVTcBzHZNwsSAm17RqD4RBJllhaXiKJE1ShE8U+mqbuhqePCcZjVKGwvLSEqqoEvk+hWEJVNVzXw3Ecer0+mqajGzpCEWi6hpMxYTc3lURmMBwBEpphwMhHiqGxvUN9Z4epchU/HCPLScpcHUaAzNrqeqr96tgINQ0H9vL5FAALhdu3buG6Lm4mw3CUyqeMfB/bdgjGERnLRlMFS0tLtDsdFEVBFRJCVUFWMAwToUjUtmv86MWfEIxDdM3gpz/5KdWJCrOzcxw5eoSs6xJFEY6TZXN7i/XVdcqlIt1OC10VlAqzmIaBm/XY2W5Qr7U5d/4dfvTCjzhy5Aj9fh/btNB1nShOPfGyLKOqGlEQkcQRSRyj6waqpqOqOrph4nk5ZEVJPeq2lUY+RCGddptb16/z05+8yKnHHyMYj5EVicFgyPLSCqOhj2WaLC0usrjeYFK02FldxFp4gl6viyTJtFs9nv2FX2Aw9CmWSsREPPr4I/zdc9/h2NETnHrkUfjr71N7fAGxvJE+m4oAQBUyV69e5oc/fIGFhTkcx2ZjfRMJibWNVaqVCTY3tqhUKgRBQLffY21jjUOHDlOtTvD4E0+Q8zz6/S5RGDA7f4DNrRrn3nmbmZlZNjY2ee2114iimFOaiZ4kRP/iN5AufQt9tI008wTDUYAkpUR/1WolBXaEPPfdF/k3/+f/xbvvnOXsmTf4zf/yn6HrOqZp3iOH877dJV/6KK/QpwELe9l34f5hwXvDaz/k1dtnrN4r8fIwuad7CY0+qo/3lr237rttvBdA3g9c39v2D8jNSO/LmOyV/vmo/OK727Isf+A8P+h83duWD83v7gkjf++zzz7xnusEHw2i7teOu/3YjzH5fu19GPu0Cyt7555327m37ffb91PZ5wxc9yPseuBxHjj3/2C5z9O+AK5f2EPZw9ysqT08ULy37r12L3Ddn0Fw35oeqj2fdn0qjHxMI8OtG0toqsrNG1eZP7CAUBXirElraQ1zdQt1ugRAEI7p9Tp4nktlYpowSLhx/TYg4WadlKXWzbC2to6h6YTjgFvXbzA5PY3r5lNZC1miXttG001arQb5gke/PyTj5Gj22mn4mZGG7AVJjBRFxElCECXIWpo/W2+0GIyHuLksKDGaoVKpFEFWsHf3n5yscPniBTY3tnj3/AWWFlco5kuoZBh0xqnXN/BxbJulpRWC0YDpyUnmZmbYWF/j1o0bVKpFJicnMAyL0chndmYWPxi/L08iZIRQkCRYW13HNA0cJw0nNk2DhfkDWI5Oq9Xk9q1FnnryK6yurGEYFkmSkMt7nDh5PGVyBnZ2tml3Othuhq21VWRFodNJiZuy2QyeaaO88ja/feFVvIOHuHTpAseOHWYUSmib59Avfp3+KGTsHuLll1/Dzbhomo5p2TTbbaRIYX1jA6QEWVbpdPu8+tJPefvMWxw5fBBDV5EB1XaI4xApjlJCLaEiqTqFnMPBwwtpTlqcQJLg5Vwc0+HKlSssHJynOl0hSSQuXrzM3Ow8npulWW9gZzI0mm1UzUARIs0pSiLiGG4vrtDt9YmiBMM2qZQrrCwt88TjT+Dl84RRyHg4ZGNzE9OyCOMIwzAIx2NarQaGoRPHEfPz83iehyLJCCnVDh4PB2xsN8h6OSRZwct5qELFH6VkPiN/TCzFaS7dOGZjc5OFAwsEQcB/+Nv/QBJJTM5MkSSQxAr+KGQ4CMjnsqxvbFCv16iU8wgVZiervPHGm+m9bplIMoRJmg8vJTFJGCILmWazhaZqdDpdHCfDiRMnGAy6KLLAsjIEYYTrZfFHAzbXN8lkszSbjTSkLklQNA3LtlKPrJSQRCHVyUmGoxHZTAYv6/L9736XKBZMT1fQ9DSPVagKipSyMBuGTr1Wo1QsIisakpSyutbrDcbjAF03QE0Xkuo7Wzi2xmjY2V3sCOi0e7RaLVzXY2t7k6E/xMtlyXkZLl44m+avJhHtThPLtDnz1ju89tNXefrpr9Bo1HGyDlbGSZljJQkhK+RyLhIJ/miU5iJLEqqqIRSVq1euMeh20HUN27aJkzgFtP4A3bCRZIV6vY6paUCCbTtMTc1Qq9V46qmn8DyHJIkwLROIkWSJRn2biWqVTqtNqVAgDsf0ux2crE29sYWTsZAkiUzGpVwu8Ohjj+HYNqZhoqiCTqdLFIcoSqpJvbKyyq2r16hWK3S7PYRmIMkaMfKulzolvNIMFdsxIYr40z/+Y4QMs7PTfOnxx4hlFWWXeTjwx+iagVB1NCEYDUcMh2Mqnkm3P6CmL5DNZnCcLNlsnnp7Gyvj0O51eeSJU6DEHDt+gvPvXmRqYorhn34D/R8/S/2td/DcLG+feTsdQpKIYiHHzMwCGdeh024zPz/P22+9xc//4rMYusmxo8c5d/Ydjh0/hmbbVKoT2I6NPxyxubGO67poqsFwGNDtDgjjkCSIcZzM7nvR5uixQ5QaXfDHhP/8nyBvnMf3RyzHOSRJQwhBJuOkUkmyTEREtTRPpTDB6Tde53/67/8VlbkpNC3VqN1vGNxvjN3PPs2E9K5ncT9v7t567wWCD2pHHMcfAI/31n9vHR8F3j5JH+/XxvsB1v3sflFs956je49zd/suSL8LVPcuBuwHMPZrz3s6v3sA9IMYbj/Q/v36/RF93q8d916zu9f0Ya7Vw9inBVH7AdeHrf8fOnCFzx5kfppFgoe1L4DrF/bQ9uGb8cFETHc/+7+AEiTpLgC9lzgprTP+9osAKL/+Ne56bPfUsM9nv/a8b++/xN+v697B7qEtAUXIFEsFao0mM/MHcT2XTreHnAjkJx8h8/Xv85rSRY1CTMvAcmwy2SzBqE693qZUmaLdraNICesr6+R3J+3btW1G4z6SSCgXq7x95gz+eEQuV6RcnmJp9QZTU/MkiYZlZegO6rhWjsAfMBz2CPwAVdJR9AQJiSgI0FWNZrNG3q2QsRz84QBVlqnvNKjXmxSKeeI4QhUqcZRwZ3GJo8ePki+WOPHoSUxTIgq7aKqGadqoisloFLG1ucnzz73CiZOPYVo2pmUxOzvL6TdPp6FucYRlW7Q6Hb79zW+R8/K0mz2ajQ5rK+sE45DpuXk0TSMMfFaW7pCEAVbeozvokfU8Tpw6hapreFmXCxfeJZf3cN1UMsJQLIJgxOLSbVqdDkmiUp0u4XoenXYPRSholkp84zb0RvzK89/g+CPHmJmfQeku4V74M8TOZb53Zo3EmaJQKnPm7QuceuIkuq3T6w558YevcPzRY0xOTZLJuAR+QqvR5/W33iJXLFGuVun0ewhNYKk67WYb03KoN1ts72yRsU1UAb1el4xdZBxCokg0mttcvHiRJIrwRz0yGYswgCAeM3dgFkVJtWHX17fIFyqYlo2EzPrSGoW8RxzFFCsFJqYnSSQwTRNFCDKeR73VRNU0JEkh6zqUyhMgycRRKhmlYvDmG2eYnZklDMdE4RghNMa+TxynmpQ3bt7iyuWrvPrSSxycm0cTGv2RTximucT+YEgURqiaiZOxcN0sSZxKo7z00kscP3GMyxcvMVGt8uorL/PoI6fY3tqkMlEliAKEqnHgwDxZKyEYDogSCdvLE8cJQpbYWFnDzbgoskoQRui6imnaKEJlc3OTKIowTYOsXWTp9i3Ov/0GE2WPbMZG0zV2ak28fAbNNBj6CZ3OmJxjIOSEen0LyzSJohAhJAxNJ4lBCMGBgwcIRn1My8E0MyAltFs1kBQ0XSOIIhRVRWg6kTwmJiKMQ/yRTz5XwNQMajvbyFLqnR8HEYbpsL6xScEr861vfIso9JmcLpHJOng5D0XT0HSd0kQVRRaoQsPQbQb9IRMTVRYWZnEyNoapQ5QQ+EM0KUrz4mUFJIXxKOL29UVkOcI2nVTzNorY2V7n6tXrHD5yEFXX+Pd/+XXmF46gWgJTM7n87mXefOM0h06coFGr4XkumYyFZapomkyj0cX1PEb+gLE/wjJNVMXkxo3r5AsutmMSJRKuV6K+s516RR2LIAwRmoqha9iOjiypCFmDJEDVjDQPXYIwiHAyWSaqUyDLuLlcKlczGiNFcPP6NRQlIZvRCcI+UTxCkS2OHT+Bk/Vwsh6KMICAhN2wfhSuX7lGvdbA9wPm5xeoTpbxh21yWgxTT+B3uriOzdDv8+7Zs0xUqjTrTf67f/k/UilO41o2o94Qqdsn95ffQ5g2hpdHUgzyhSphANtbNTK2y/M/+AEnjh/FdAwSOWF2YYFRv8fVq1ewHYs3T7/J5OQkxBETlQqqUHjuuR+ycGAW2xIsLS+hqQajUYguLOrNBidOnqDbalCplFF1HXN5A3kcMPid/xy9dglZUrCP/DLFsottG4z8AUEwJkliFm/eIWflsDWNZmebX/m1X0EYOnEcfyDMdr/V3wdNzu/328N6bfYDenu39wMIDwOm9/Pm3rvvJyWSedD+9wPG+5VVFAVJkt5bOLi3r3fDfT9O+x4EwpMkIZF4n41dTj2j0n32u3v+PgD4d/92q/gAMPoQYdP7pdP1nI8Iid37+8MsZNz7295y9/vuYcH73rY9rDbxR7XzowDth+713esUJ6lUIZKEtHv+7z3P916T9z77nMuHuQ579/ks7Atypk9pXwDXz9sezpu5/0PxYKD4PnD9R/vW+fDt2c/2Hzgf1hQl9bIMBz5/8Id/yInjx9E0DUkCGQk7m6FRdDn69Z/yF1kHrzVCUy38UYSihFQqM3S6fWQpplgskM8VuXrjGm+deZunvvw07U4P34+RJQjDgOpElXffvUCj3uDggQUa9Sbf/e73OHL4ILdv3cSxPYRQaLWbqGqqWYoskBUVfxTw1uk3OXzgAC+9/DqlUpFev4tl22QzWbLZDMgSK8vLqEKQxAlCpBJAuUKewWCIIsvEWgfNBDl2aDabvPjij5mcqvDkk0/g+33u3FnEcdLc30zGRVEEy8sr6LqBblgcPXqAbNYll88zGvosHFjAthyuXb9KzsvR7XTxXI92u00262LqOqoQBH6IjILv+xR2Q3MXb99mYnKCxcUbZDIelpnFth3m5iZQhECWBNeuXqfX66FqGpm3rrD5679E7heeQiRjnNVXsG7+EPIL3Ok73Li9TLGUY3KqwhNfehRZEqiKgSoLDF2QzWUY+0OEkGk0GsRRyLFjCzz26EkyjoObzWIZFr3BMGXL7XTIFwsMhkOcbBZ/PCQMI577wY8oF0skUYDrlfAyBWan51laWmV+4RDf/94P+OrP/xyKIhgNfDw3R6FQ5LXXXychodVooApBTJpzbdsp4c04GNPvtqjv7OBmMinbdJKgKjJJEuKPRmxvb9JoNCgWC6xvrlMoFzjzzjvMzc8zGgcs3VlidXX1PZKihYUFpmemOXzoINtbm1y8+C6Hjx7CNA3Gvs9oOCQhwbRNGjspc3UUxXQ6XZ599llyuTyZXYmRer2OaZr0+33y+RwZN4dumDhZG8vJICs6Wa/E6dPvkM952KaObZvcunULL+ehaYIgHCMrqURMIZ9HKGnu6fbONrZtc+z4URJJxrSy9EdjCvkCipCQkFFklb/4i3/PmdOvcurUKWzLIUkSHNtBkiAIwpRxVQiazQbzc1NYtsXIT2V0hKKiGQYj38c00rB0VVW5+M5tsnaeOIyxMwYRIzqDBjkvjbSQZRnLMkGCrOMwHLY4cWKBUqnA+toW5VIxlZGRSBcBhCBGot/vs7Ozk2oFaxqmYaXh4orKysoqnpuj2WihaQZIMlubG2QcmySJkGSZxcU7mKZFvV6nUi1z8uTJVA9WSDz99FewbANdMwj8kCRO+OpXn6bZrnPn5jJBELG1tU0266Fpepq7LYEqlF1iH43trbReIRTanQ7DwYAoitENgyiJ0fQ0RDsYh5w/d45cziWOJdbXN+h0m/S7A3Rdp9tpk3GyCEXwkxd/wjg2p/UAACAASURBVPTMFMjp9eh3B6m+82DE337jW6jCRNMcxqN0Qr69tZ3mPstyGk0QRghVTSWzhMzkRJliuYCqqiyvLHP9+g1KlSpGdxnCMX/y7ZcIwhAr42BbNq1Wm1Kpwvz8Ai+++CJzc9Ooqsr//b/97zwbaUiPHEm9mVHMa6++xu1bt1heXmJmdoZsNkvWzaKqAqFqaGoqnVOplJFlmePHTqDrBlk3S7PZpNVqcvjwYYIgRNdtrl29wbFjJ9F1gygK0XQNRZEZ9nt0uh0SwOv6MBwR/f5vIK29zWA4IHfqP2J1dZNuZ0AYJJAo9LpDNFVh0Omxs73FU09/mfJkGe4Jv7wLovYdvT+hx/WzmPh+FHC9H1j4KIDyIG/yJ+3vJ7H7gaK7iwn75Q1+3OO/dw73DfV9cP/vbt8F15/GA/8wwO3uMT7LXOPP4np+3t7C+x7nnnv4vfsk+Xhtut+zcb+yn4d39LMGwvvZF8D1C/sU9vkB1+T8NSQvg/LLX963zodvz3726YBrkqRhT7Ii43ke1WqZJJZwHBtd01heuoM+M0ksGXzl7GV+8NQJHkHmO9/9NgcOHSBJBBtrG8xMp/ISQRAxCsY89eWvsLm5zeUr17l85RpPPP4InucyGo1wXY9cLk/gj6ntbHPyxHFIEp774fNEEeTzOUrlAisrKwwGfRJJSyenYcDM9BRRGDExMc1g2CchZaKMwhBFUVHkVFJBlhVqtRrVagVNMzh//jyvvvwKR48dA3eFsdSmv2PS6/WYm5tlarpKEA7Z2dliemYaIVSef/4FhsMRALdvL7K9vUO1MoGmgqpqnDv3LrKsEMcJvX6PXM6l2WhAApubWwhVYzjysS2TOE7otLvsbO+gKDJhGIAElUol1YQ1FAzDQVEMbNtiHHQYjhJ2dmocPXKEUqmE4Ucob18i+jf/A731y4jX/x+Sbg0/fwSzOIcqNPq9LqVynkLJQ1aARLC8uIosQy5ng5SkzKe6ga5r3LmzSM6ziIKAjfUNNFWjXquTzefRdR3XcxmHAcVSkTiJ0XUVQzcYDQNuXr9BuZTDzmbIOBbBeJTK+IQBnpfn7LlzlCtVyqUyN6/f5M033uQXf+lZcrkc+VyOC+fPMxoH+P44JdqRpVT+Ig7xXJfLly+RRBFLdxaZnJigP+in0hyyTLlcQlEUbNfCMA0WDhxEERq6YaFIsLq6SiaToVwupxqRmkCWJaJgTKlUwMo4aJqGIhTCIMDNuQhVxdAMOp0uQRCiqhqrK6vkvBzf+MY3OHHiBIcOHcIwDK5du0a5XELXbHx/kIYZJwoJKnEi8fwPfsixo0coF/M02y0mqlUUkV53ISSE0NO4ijjelV0AVVOxbQtJUYhiCSSZMEwJtFJQHxL4Y44dPcrjj59EFVoqsUPKCjwY9tFUPZXEiSNyORd/1EMRgm6vl5bT0hBMIQQrKytEUYRl26zeWeb0W2/gZGxcLwcoaIZFEqahbrdu3U7ZwcOYOByztnYdTUuoVCfwR5B1s6yuLmNZJrIikyRpCIoQIgXWTgqwozCiXq+jaTrFQolOp0vWTcPZlV1yFFmRMKw0L7Tb7XP16jVOnTyJZZloms5oNERVBb1eB0VOUBWTn/7kJY4ePYqmqwgBzUafN998k2PHjhOGEZqW5mOblkkQ+mQymd03oIymqQhVYFoG/f6AXL6ApurvMZ0qioIsK8zOzDEOfCRJYOgGmYyF7bhsbW0yDsZkMll836e2U6c/GFCulCFJuHnjFrlcFss0OXHqBFGUXsubN26xcCAl90qSBNu22dmpcfnSNeYX5omikNGwR21nE0VJz6Xn5pBlQXlimqS3iWZlyBx8Bt3QmZieolIu4zgZdE2nOlHlz//8z/hPf/VXGQ6HHCyVmbl0G+nIgd1rlPDWW2cYDYfEccSpU6fQNBXfH2E7DmPfR5YlLNNhefkOmqbTarU5e/Y88/PzCFUgSTKOY5PNZmk1B7z99lkKhQKObbO2uoKTyRIEYxr1Gvm8h6KqGLkcUqNN9M9+DWXjbJrLWn0Mw8igaQZRlGCaNrIsEBK8/uorhFHIL37tWSRdI44/TGj0cYDr55H7ul8dDwtc92PKvR+Zzz8E4Hq3Dft5V+9Ki9yP7Obj2PvA9YPe7XuB6/3yb++GC99d2Pg0IO9hPY57w7w/zvH+vwxc9+3zpwCu9/Ou/n0A1ziOP3ev6xfA9Qv7WHbvgHAvs+/7D8CDXybvD4B86Lt7Tfnlr+yCVtgvVHi/kJCPAq7vl/0gkcInMVmWURSZhYUFJBmiMGWpVCSZnOfij0bw+GGUMxd4NAhJbI2FA3OoukkUwkR1guGok4aGoJB1XRr1Bs8/9wLPPP0MXjZDsZQjDEOKpQKjoc/62jpbW9ucPHUSWUnzUsqVSSYmKrhuFl3XyTgZDENHKCqGrqYMmkJBERrj8RjXzWA7VrqiPxjQbLYY+2MURU5X9nMeG5ub5PM5Ws0as7MzmIaJluszGg7ZuOnzyiuv8uSTT2IYabhfLpfDcTI0Gk0WF+9wZ2WJU4+c5Pjx49RrNd588w1OnXoEfzRGU3V+8MPvs3BgjunpKWq1HWZmZmk2m9h2huvXbzA5NYnj2GnOXhghK4LhcECttsPExASyLNFoNHBzLp1Ol2vXryFEwng8QLfdFKDJEkJR4NINsA3qkw1Kay8RZyYxZp9AUnTCOOTWzZusra5w5NgRDFOn1++jC41Oq4FlaliOjqYZ6IZJ4Ae0222cjE2xmEeoGrbj0On0EYrK2fPvUK1WU9AnBCQQRSHtVoswCCjmK/jjEVnXoTfo4Lom/V4rDbeMQ+bnFkBOGVEt02Q0HFEpV3A9D13T6HU75D2XytQslUqFMAiQJYk7t28RJwleLs/ExCSWZTM9M8toNGI8HlOrbWOaJqowuH79FrIC2UyGMIq4euUqkgSmYTA7O0u1WuXChQsMBgN836e+UyfnpYsmCVLq5ZIUVKEShjFC1ZC5m1MpiKKIdy9cJAwj2u0Wk5OTvPHGG3ieR7PZZH5+jk5rwLf/7q959NFjCMVEqCkgzblZZmamGfo+hqEjITMeB5iGwXA4QFY0giBAESKVF5Ik4iggCFPtXtt2kIjRVYWR70MMjVod27KQSHAyJhICfxTS63ZT0C8rdLs9DNNE11VkJSHwfYSWkjpFcQRJRJRAq9WiUq1iW2mudansML8wg5fLsbGxg5st8md/8lc8+thJVE0jny8QBAGaphEnYSpdlXFI0NC01NuragpCSMRR8v47RFHQdJ0witja3iaXy5LNZhEiBYPXb9yk1tiiUMgz9sc4lk2r3cGyHYJxyN/+7Td5+ulnUHe1XRMpYTAY0m51yOfybKyvM+qPmJyaSpmJFYVRv0ehWOWNt95gbm6OnZ0dyuUymUyGtfU1ZDkNfR6NfH7y01cIooBs1mE4THVcs65Ho9XEsgzG4xFRGCCEwmAY0Om2cDMe29vbmLZGGMTYVir7EscxrVYbRRFMTU+Ry3usr6+jKiquZ6IbCp6Xwc1lKJbyzC/M0Ol0CcOQ4XCEpmm0Wm0mJqYYhymhVqfdpJDPISkpiZkkKwRhgGWbhIM2QbfO5Fd+ncmpKW7cvoWEwtLSEtWJClvbG8zPz2HoJoZhkBuFZE5fhKPzDAYDNF0lWwl48mtlTh34pTSXXZawTJskSRCKDElMrdYkX/AYDvpcvXodRdaYmppia2uLSxcvMr8wz3A4wjAtTp06xdbWFmdOv8nsTMoGf/PGdYQs4TgOlWoVekOkjW38/+Ifo+5cQCgK0cTjBEHMeDze5QhI87DHwyHf/Juv87u//zsoukaYyEi8T1z03ph3z5D6SSawe8vvJQLar8695Dt7J+r37nO37N2cx7vf3c+z+lEe2Y/Tr726qfv180G2l1zpLiDcD3Dfb/vu//uxID/IuyxJH/Smv1fvPt/t7fdeQPlJgODD7nP3eB8VDv1xANan1fp9UJmPCr29e+7ux7i7t50fqp8P36t3tz7Oddg7r33QfbxXgunenPFPCmolSfrcwesXwPUL+xS23yrs/g/Ih5n2HlzzB1/GH3747q3z/boftt2fboVJltPwufQBDbAsA1PP0mjUUWQZVSjomsbtpRtoz34Z5+s/RJ6cpNMfMY4iZFml1WiiqRJezsOyswQjn9XlFb70xGPoqkw+l0UzDIRIJ12Lt++Q83JMTM9iOQb9YQcnm2U8TiiWXMIg4M7iEoVCiTCM2FpfZjTsIVSZ5dU1Mm4eUzfodNpIUkK73UKINLQu8FPPh6wotDpt8vk8kgTDQZdiIZeyiRp1VKFQsg6TzbrEUcLW1jaaruPYLnGcUKvV+OpXn+HUoyfwci6DQZ/Z2VnePX+OcnmKN954k6mpKUrFAjOzkwThCDebYzgccfHiZfKFIrNz8+TLxZSkRIIoBi+XQwZM08D1stTrdeI4JusWUBQoV3JkHRNTN9DsLHESosgJw3Yb5fY54t+fxEl6vL2tsrTTY2Z6GiEUhCYT+AFfeerL+P4IVdPZ2WkhJwHBuIedSQleFKERR6BrJutraxw6fJAwBllRMa0MWc/FsCxuXrvBiz/6MQcXFiABfzQi8APynosiKzRabSanpwmTgFqtRblYRFM1Njd3yOVKBOMhpUqJTDaDKgR3FhdRZJWr164iS+C5WbY3Nzj77mVmZ+bo93ss3bnDqZMn0C2bwWiEJCnUGi26vT5IMrZps7m5TiFfoFFv06h1OHBglksXLzFZrWJbJqNBH6GqqKrK1tYWMzMz5PN5hNApFYtsbmySzbgYlkkSy1y9eh0v63H23HmmZ2ZJdj1sw+GQr//13/D4Y48jyzIHD6bST2+++Sa1Wo2pqSkKxQJbazs4FqhKQM4tMwp8ojDANDSEpiJrKkkYs729kzLMqirBeIyiaumzfndQTBJGvQGSJBMnCeb/y96bBel1nnd+v7Pv3770vjcAAiAJEqQoS5atkWTHmRrH1kxNksq4kkrNJE65JhPnIs5V7nOVqVQlFylPpWbsVCzblEayZFGkKErcBK4iCKJBrA2g9+Xb17OfXJwG2YQaQAMkVZoKnqpT/fX3nfMuZ3vf//s8z/+vq/S6DYh9lm+sc/bsWRYXjyAJ0Ot2MSyVKIRmo80HH5xHVkQMw6DVaqNpGoKQAo92s4Xnh5iWhShBELhIkkq73cbcyyVO4hgkGd2wUFSVwHexDJVLl86zcOQYum6QJDEffHCekdFRFE0mjkEQNIJYIkwSkjCk3W5iGhphEJLEIu1uB1mWU3bmMEyBWbOGtrdIJEkSzUaDo8cXcYcDsrbD5uYWuXyab2/ZKeFSfzCgWCyiaiqKJhFH0O8OyecKtBotRCEhl88TJTHra+v0Ol1K1QrTU9OUykXKlRIIoKka2WwG0zLY3d0ll8szM7tApVpBUWUM08S0LJIEVE0BIUKWEkQhQZFF3vvFEpub68xMz+JkMuzWtlBlneGwj6ZrCIJAs9GiVqulBGCqgjt0KRWKuK7H7m4dQUgXMDRdIwwDwjAm42SxrBQs7mzvUiwWUs3rMEBIQJFlfN8jSQRW19awMxaGoaFbDlL9Kt1WjU3fIhEFup0eR48e3Zt0wqOPnaBeS9skvvAqO60mpbkZwtBHzG6Qnewh6yGxPKC7LZIv5kkSOP/BeRzHptWooSgmqiaTzWZ47733yWTyjE+MkgBzc3NIUgqWwzggTkJ2trfY2dqmXqvhZHOYe8A+n8+jqCq7yzfIdAeE//k/Qt5+H8/zUOe+SEKC6w6QZPEjreRhs4NpSpw6fYpIgEiQPgKudxoGDwPE7uUJ3f/97RPgg467/buDjvm8vEJ3s/0A7qB6DzMhv9Wf/cDsQfuwP/f0TnX9UtsP+P1ewPWgnMfPwoP5oPagoOnzClW9l4zS/rrvBVwPbN9dvrrfhZf7CTm/2+LPpzmPD4HrA9pD4Pr52Mc3ZKpVyifSxH/ZDh58Dv9gpyDx1jG3toPCh25vS+pdvfX549/vXOcvrxCn+oi32iAIEMchyZ7Exa0BXZLBsk16wy5hknDl+nVmZo+QmBrh159B/z/+H9wvfpFn/82/4eLSOa5dXULRFcqjYyQStGp1qtVRNrdXmVucRRRVrt9Ypt1qQZwwNT1FqVKi123yl3/x1zz+2BPUa6ne39rNm2muZS5LGIfIqopj59B1C001qZZHiIKAOInRDRGIEQUdRZERxBDXddncXEeURLKOTRIlEAZkMhlU3SBJQLRbqZfZK7G5uUWxVEzJaCyLdrfLteVlRFkmXyggi0Ai0u+5OE6W6kiVrJNlbX2VY8cWqVQqBH7C22+eZbfWYGpqgsmpMSzLYDgcUtvZQtdMVEVD1xUkJZUKsjMWfuBjmBayqlLbWkMSBTRdo9ZooBg6/WYdMYFOp4WiXEP4DZNhdgZp9CS9gc/E5AT9QQfT1hATsG2DmJRASxIFbMdBFBWCSKTfSz1/SaKSxAH12gbFUontnTaXL10i5zgYqoIkSvh+iGVleOqpp+gPOkCEZZmYpkEiKgiihGFp6LqKYRqUi1kQYhqtFufPX8KxC1i2BknC+fNLvPbqaxw7fpztrR2CIGBktIqsSCzfWOa3f+u3uXbtGteuXufRxx4DAVRN5a233qJULtNqtcnl8gR+hGkbZLIFFNXAsi3sjIkmi6m+pqLx1lvvsLB4FCPj0B30sEyDZrNFLptHt2QSYgbeED8M0HUDIVJ55ZWfcfzkAp1ui9HqGI1mi5/97GdUyhVOn34SxzbxvCH5bA5BiBCEhC8+8xvUay1GR0fwXI+JqQkMO48fSiiCwne/83d4XsjE+ARCktDttsnmMnTaLWzbJghCht12CnZkCUlUWLu5TqZYptlpU8jn6XU6KLKCgIRpO6iaQr6YRzdtNndqZEwLRdEZDAd02rssLkwACo16Pc3DFMD1faxMliAM01BcUUEQVIJQJOtkkOUEEp8gTBCQ8FyPwPfJZbMAzM3OYlgmQgJJGFEu5hCFGEGSSIAoSZDkVPM3DodYjg2yjiiqLJ1b4vKlq+SyeVQlZaAO/IBsNgOJwPbWDpZlUyhmEZIYx3aIophms8PqyhqyJJMv5rBNiyML8+zubFIq5hj0O0RhiOM4xEmEaeuouoOkKLz5xpsEYcDA8xgfq2A7Fq43xDIM6js7tNt9NjY2KBRKe2G9Putrq8iSiCjC5sYqiiwgSTFiErG5vkW+MIIgGdTbQybHqvT7fXRdRxBAEmUkSWNre4tMxsH3AxRZpdPtMT09DTEEfoCsyAwHHUaq1TSP1UhlwiRRQUhXMun3eiiyjCxJ/O23/paby6uYhoqqyShKSuCWzWb3dJAFhEQiSEDy2oRxAhOnmJ2Z4dlnv41uSHh+H9u22N2pkagao5NTFJY3yFeLiFqEXLmJqPWJe1mCoYTsdNneXSUrjzLoDZiYmEIQJHTLQVNFREHnxz9+hS9/6Su8/PJPMcw0d9UybV577XVef+0MT59+gm6nS6lYJFfIUR0dYdhtUyjk6PV6jI6NMnQHlN6/jNjpEfzXf4gweZqo+hQkGqIcIYsyYpxw6cNLjFdHee2NNzn66GPkSyUQIwQxIEHaNyymA9mnBYX38rYdVPbtZIh38zTu/3u7Z2i/p/Ygz9xhw0/v1P/bQ6Nv9+Dt9/zeyTP4IADgIE/h/sX523/bD5b21yHd0lPdN2W6/docdC4OKvuwv9/e/k9r9wvWHhRs3S6jdK867rifKKRa36Lw0XOWxHcghtrbZ/+U9RYR00Gz6buBS4DkEwfub8etbV89t5UD904FeNBc5M9rYeMhcH1o9213eqHdn90duAb//H8h+t5Le+RMB7biUHXf78vvl+3gB/qXV5lTiZdMJkuv26dcLhOFIUHgYxXz+POzFP71n7PxjS8xo+p85be+wuTkVOqtCQI0WWdrc5tLly9y8uRJkkRC01WmJiZTwqJsluEewHzk2ElKpSKbW+vYdh7LsegPhsiyzLlz57BMC01XkGWJMAwQJYH19TUMw6Y/6OJ5Hr4fo+s6rjtA1w0qlQqiJAECu7u7JIAip0L1YRgg2W0S4MrZBuVymVwuh+u6JMRYlkWlWiGfy+EHHrIs0ul0yOUKJIBpGmxv7XDy5EkGgz6DwYAwDJmanKTeaHBt+QrVapVLly5z5swbPP3UUwz6g9T74g1pt1PQPBikbfW9AEmWGHQ9CoUyy9dWUFUDWVKxcybN4DL5xTZS2wVpEeZnabWa5HI5EBKyOYcoChgOXPq9HrZlM+gP6Ha6dHt9ctkcpmlhmibusI9u2pBEDPt9+n0XBJFXXn2V5WvXWFiYp9Vukc1mcRwHRRVpNHYpl8uIkkS73UHRtL17BDqd1LsXBak0hKbqDIcepmlj2uoeqcso75/9AN8LePTRk3xw/gMef/wxdF3j/PnzzM0v0ml3WF6+zvETxxkM+kiyRD5fYHenRqlUSnNRJRHf91AUmVptl263Sz6fp7ZTY209zWc9v7TE0aNHIAFd1wjCgCiMUqKYJEQSJSzTIpfLgyDgDgLm5mbo9loM+gOCIMLJZDAMg2KhSBxHNBp1RkdHMSwT13eZmplGVjSa7TbNZpNyuYxhKEgiPPfc88zPz3H+/Aesr68zPTOB6/ZRVOWj9akgDLBtG0EETdNJhJR06cqlSzhOltAPcd0hURTS6aQsuLKiUijkEASRfm+AYzsoUoKiGQiCyMTEOCICmmZimiYrKzcZnxhnY2MDTdOQ9mRUAK5fv04ul2c47OF7A5IkRlY1kijNoWw1W2iamuqQEiNKMpIgMRgMCEI/XSBCQhQFAj8g9CPiMME0ddqdDradIUmgWqpQKObZ2FjnwwsXmJmZZmNjE1GUME0Ly7K5ceM6lmkgCAJhGNHrD2i3O9RrdRYWF1ENhaXzF8hkc6nHWtURRFhb3aRYLCOKIr7n43oeOzs7hFGIJEl84Qtf+ChqQlc13nnnXR5//BRDt4eqpuG6URQgKxKW6RCGIYZhYJgmmqZTrzUYDNPwYz/wGQz6FPI5At9nYmKCZrOJ4zgIgki32+O73/33ZLNZRkfH0pB7y6LZbBDHMc1mE13XIYkZukMUVcMPArrdfsrU7AW0262UyTqJ2drepDoyiiQrTEyMkctlEBMJUZLwfReElJPANHRkRSXwPcLmBtvGApZl8+jJJyiV0nzxG9dXOHrkBLXdHV7+6U858fJZWvN5zNI1RClBGOYQEol2q4+hWeRHJaJ2kTBM6PV69Ps92q0mQRBg2xlef/11HMfm8ccfZ2p6gmzWYTAc0qg3qNdrXLp0iS996UuYpkm/3+eFF17gq1/9KpDgZBz8IM3rV5fXEf2A5L/5xwiCQBQlSJLMzdUbZByHOIyYn59nY32Djc0tvvE7XydKQhIhQRASkuTOzLUPavcCroc95jD13Il59iBQdz913W97b2/LpwH+96rvbosA95qP3M3j96Dn5bM4n/djn37udvhjP5O+HXSf3qn8g87vp6r7k/veDWR+mnoedDHhs7aHwPWh3bf9KoDrJ1mFD2zFoer+PIDrQStetxa24jgmm83S7w+IopAoipAkGWFsFP/YIo//5Xdx/ugfY3k+pmWSkCAJImd+/iZTU7MsLs4jKypJIvPuu2+iygrvnz2HaduEYcToaJVioYoogGFqeF5Eu9ehVCxx7do1ji4cRRZFBCkNVUVICAIf3dDpdlzK5RKSJPOTF19hemqalZUb5PJ5FFVjbXWdYrHI7m4NJ5tHlmXarSaWoRNpNRRFJa8tYNsWgiCiaSpB4OF7Hqqi8OMXXuDokSNsbW2Sz+XZ3t7GHbqs3LzJ0cWj1Bu7GIbOxsYak5OTGIZGd5/GZKVS5dixo/R7Pa5fv4Ef+JQrZQzTRJFldM2AJGEwGGAaJu+fvYBumORyeS5eusDsCQdKVzEdBeoq0r+9Tvwn30BSZWq7O+TyDrZt4HtD4jgkjkk1LcMQBIFOp0N1dBRFUrh29RqmaeL7aR4aSYxAgucHVEdHGR2f5PjxY9i2mRL6hD7Neg3L0rFsM2UGFRVsO0Ov30tz4fbuWllWiKOAKIqJ44RisUQum0HRJM6fv4CuGnQ6fYYDn1zOQRQFxsfH6fW6xEmCrqVhm6dPP42mKoRRQJJAbbdGsVgk4zh4rsuHH15AlmQsw+TG9Rtks1muXLqMquosLS0xOzfL1PQksibTrrdwbBtVVTAtG0GSCHwPVdUIw4hWu82gP+CtN97i8pUPyWQcqiOje/eBTqPR4PryMkkClUqZjY1NMvmU7VkQJTa3tqhUKgiyhJBEkHhsbqzwxWee4fLVazz91GmOHlvENDUQIoZDD1mSyWaysPdcaXuSHkmc4PsB2UyGXqtPv9vjJy/+mMdPnULRVDRDJ0liJCnNQ5ellFTJsjQQRDzfp9fp0mq2GQwG5HI5CsUiQRRiO/beoo28x64ppMQ9hookwaDfod8fYNsZolDkrTffxnEsDEMnCDy2treIYgHLshj0B2iagiAI9Lr9lEQrga3NbbY3dxm6ffL5Ipsbm7RbbQzTwMlYjI+PMz4xQbPR4Ic/fI7lazc4sngESRapVEr0el0GgzSaIUkgX0gXiErFImHsUS5VeevNd+h2enQ6ParVKoVCCdf1ME2TOE4QJYl+v49lWUxPT6eh0qKAZVp02h1GRkao1etcuHCeI0eO7LGmC7iuh+f5eJ4PCOiqwbvvvMfMzAJOLoMfBGl+qyQSeANeffUMY2NjXLlyFdf1yOVy6IbG2NhYmqYQhJiGSaPewPc9JFmiUqkgyzK6ptHr9jBNmzBMtU0HA5d/9+/+kieffALbtvZyUqdwckXmZuZpNnfw3QGRH6ObFq12A11XSZIozclHYhiANVynnHMQK8e5sHR5T1daZHJyiiCAKHD503/1P/DPZvMIiw2SgYzo5+j300UV3/dRRB3RcEHrc+NCj5WbN5mZnsDUjMeI3wAAIABJREFUVcIkRlFU5ufnKJaKPPvtZ8nnM5TLZSBBUVXmF+Y4ceIEL730U+I4QpZlTpw4wXAwRJIlVldXGBsfA0FAu76B4Pos/eYxVFVFUXTiOMF2bHZ3dinupXd873vfoTRSYeHIPFESIwgJCCIkn33Y3q8DcN3/+UEYeQ/b3v1ezf35e78K4HrwfOPuwPUgL+L95C3+/wm4Pggx1B12OAC43sFL+xC4fip7CFwf2gPZYV9id97vcMBV/E/+wZ1KP3Q77tf2J9ingPQQdQgxJMJH4NWyLJI4/kjGQhQlpMkK8SPzZP73fwvzU4QJ9Hs9JAE6vQFjYxNYtkGvP+Dvf/Acp544SaNWZ2JiknyhSDZXoLa7zfZWjcuXU4ZWAZn+cIBhmLzw/AtIgsjzz7/A3NwskpyyBBfyhT3ipjxxHDAYDDh37gILi/MUi3kcJ8OgP6RYLCKKEqqq0el2sG0LWZK4fOkyuXEQJYmwk2F3dwfTNNne3sQ0DCDNvZufX8BzXbJOho2NdWzbQtc18rk8KytrqKpCqVygUMjR7XaQJJFsLsPIyAhn33ufbq/LyMgIjpOhUMxTLBQJowhikatXLpPNZKjt1slms3Q7PaojJTRdxBnvMX5qAFoXwSswaInoP93Ae3wC8fQMly5fYn1tlYmJMZIkQlMVWs0WhmmjajqCKKKoKraTgqw4TjAMg263k0payBJJHCEKIqblpHqefogkgGnq9Ptddms1LNPG8zzWVlepVqsISLRaHXxvgKpoNOr1VHZFlOn3u8hyKlcky6nci2po2LaDrmp4nk+lVCJfzLK6ukKhkOfKlWscOXKEIAy5ubLC2Ng4tdoOjUadXDaPk8ngukO2t7Zw3ZT1VBRFKpUKpVIJWZIoFovk8wVmZqZRNQUnkzKhWoZNs9VE1RTCKEZWFERBoD8YYpgmuqajKCrlUoGdnR0mJyYZDNKcSVXXiOOIbreLZZp8+9vPph5iU0cQJJIEcrksURySL+QJfB9NE0niiGy2gGU7GKaBYWi43oBs1iaOUtmTTCbD6uoqJKAaOnECoR8S+B6GZSLGIrlclkzGQdNVMtkMJDGXL16kXCogCmmKQDaTSevVdURRZG11naWlJebm5tja2koldhSFOI4Jw2BPkqaGbTtkMhkQIiRRSJlzJQXNMCER+cEPvs+jJ08SRRGarnP27Pv84r2znDzxKKIgsrOzTT6fQ1FSGaGbN1fY2trlrbfewclalIpldE3DtixUVQUhQhQFtre3WV3bQBBkvva1r6X3XOCSJDE///mbLB45CgioqsbKyipnz75HZaSKrAgYusno6Bie73Pi+HHCKNyTIsqRJDE7Oztouk6pVMRxMui6RrvdQtFUiGKEBIqFApZtMTu7yKDv0Wi02N6us7VVY219Fcdx+MlPXuLEiZPpPatptLtdNjc2qFYreO6QTrvFyZOn6PW6FAoFJibGkWWJRnOXSqVKPl9M5Xe2tikUi7z44o8ZGR0hiiIymQzNRoPNzW3OnHkDXTMoFIoIgkg2k6FSKaeEXaJAGIYMXA9ZUlBkeP3VV5iZmePDS5dYPDKPrqsMhwMkSWJrawdVMxCCPrWtNcTJL1AsVkiIyOWzbG9v47khYeDyB6dHKRfrROIozbUuSQJB5COKMqZpIUkS/jBBdvrEBOzcdLEsA0GEfKGIrilEcUyv1+WJJ55EUzVcz6PX61GpVJEkkW5nwIWlJb76D76KosiYlk4QhFRHqui6jmlZyIqMfGUFvADtX/4R/rvfxujeZDsp4/k+lXIJkoTtnU3efedtTj/zBXLFXDqGkaqbC3w2wPXAMMV9gGh/nuT+Y+5WzkHzhFshwLdChO+07+3f3fq8H1gexI9xr3Lu1vdPk7N6mHruVvatecntJFd3quf2Y299t//zQef3oDDoe/Xn8wIpt+o5jB0m5PX2Mm8nMnrgujlAk/a2cj46vwcRm95lSnzrWbhje34JF9/lPr5D+Ye59+/HPg3B073sIXB9aJ+b3f2G/dV4XB/UPh7wDntAvNckYW9L0FSVJBEIgj3SCTyUsREGv/sVlD//G4Q4Rs9l2a3tsHDsaBpiqAgoqsLk5Ay5nIVjZwj8kKHrsbO7S6/bZnenjm7ojI1V+av/92947NHHMA2T44+cYGR0jGKpTBD4lEoVcrkCgiCyublNGMbohkIQ+Bw5cizN56ptIQofh5H5fsiZn5+hkHdQJJkPzp1nbGwS0avwzivL2LZNGKZ5d76fsnhGYZqD2u/12N7ZZqQywubmOo69l+MZw+raOuPjY2iajOsOMIwU8ImigKbpTExMoagKsizy9tvvMD0zRRiFRGHCSy+9wuz0BI6TYXV1Dc9N5VmSzDrG5CaR3EMYZIiGGkKioEQg/3gZ8U9/l0AWiIKIkcoI9dpuKuMhK2ScLKKcypyEYYgkywRBmLIKqzrNRoN8Po8f+MiKyLA/RNcM4iQhikMylkXgDdlcW2Vzc5NqZYQolFBVnZGREXq9Xir50+tTrZSo1WsMBx6SJJPNZhGEBBIRRVHTMFMiElGkWa+Ty2aRRWg0diiVKwwGA2RZYmZmhg8/vEin06Hb7XH0yDEMU0cU4Z23f4EoiCwvL+N7HkePHsU0dLKZ3J7Gro0oSrSaTTRN4ebKDcqVCqKUsgOrmoZlmyRJzNL5JaIg4o0332Rubo4oTD2Pw4GLY+scOXKEOI7p9wecO3eO6ekZev0eE2PjaJrGM888w9bWFpZlsLa6QW2njm1bRGFAHEUQJwhEZHJZ4kQhCAIEQUJVVfr9LpIkEicQR2k4u6rtLSrISvp0JeB7KdB3hy6WY1IuF1PvvzvANHSKhRK+56LICqIgIYkSUZzmmGpGSjh09OjRvbDTNmfeeIO5+TkUReUWCZIiK+Ryefr9PrIiMegNCbyQIIiJEUiSiMUjCyiyzOrqGr1un4mxad75xbvYlk02myWfy+IHPq4XYFk2nh9w6fIV/uk//c+YmJ6k1+nguy5BEGA6Nttbq1iWhSwrbG3tsrtb5/jxo1iWTrfbIp8vsLa6TaFYwPcDev0+fuBj2TZjY2Opx5q0/eVyHkEI8dyAodvDMDUSYmzLRpJT5mJpD/h5nodu60gCDLtdBBFkTUbe0wKOopCRkSoZx6beaNJoNHns0ZM4mZT8K5vLkEQJzz33IxYWjmLZDlGcYJk6rXaTfr9HGAb4vpcuMmg6UQT1eoP19TUC3+f80hJjY2PMzc2RJDFCkjKxHj32CGPjE4RhtKfXmqZl+H5AsVCk1Wrz3N8/x0h1lDgOeOTEMVqtLmPjo2i6ynA4pNfr4w49hq5PqVRGlBUcf4c48NjwdKojBTa3VtOIGdumtPESudYF5P97A2WiQKyK2LZNp9Nh6Ppks2naQRKLCFKEqsNc5QuYtoOspPJT7XYLw9RRFY0wjPnOd77HxMQkvV6fZqOJ7/tsb+/uEUPFbG1tsru7DewtxmTTaIMojkg+XEYKQuT/7r9E23wH/CH/27fOcG15mcWFBUQBvv+D7/Inf/LHjEyPpWOQKJAIAjHSZwRb7zze3i8QvNe4fViCoDuFxN4OSm73qt2tbfvLPAjg3W++30HtelDbDyrv5ik8jJf2sPX9Othn5el7EJB96H2FuwPX/XbrDvtE2fcArncFgvdxmX6VV/TXBbh+vuI8D+2h/QdtCQgxiiJ99JLJZrNUq6MoioLnD1M5j2Ie///6X2mHIeKrb1P4va+SJBGCmKR/BfaAoU+j0aBUKnHhwoe4rsfCwgLFYonFhQVc1+PYsUdo7NS4cW2Zmzdu0h8MmJ2fZ3JiinfefpebN1ZYX9sgm8nR7rTY2dlGkkW63Q6iJDA6OoJlWRhGquO6urLKU089RamQY9Dv8eTp03vMqQZf/vJvks3kmJ6eIUli8vl8Cooci93dHURRoFqtsLm5yezMLJZt7gmhw/Hjx/cG2oRer8vm5gZLS0sIInieTxRFlEqlj/Q3f/Sj54njmI3NLb7+9W9QKBYYDl1eeuknRMY2YeU99MIAhjn8Rga3H6dkOd6A+MouQUHj3OoVuu02lVIZ0zCpVKtkszkkSWF1ZR0/CIhvsQDGceqNEwQ8z8PzPDY2Nuj3+4RhSBAErKyspPqJUci1q5fxhn3yuRyLcwvYpsPFD6/xnW9/j0F/iCjKKIqKZaXSKbdCyPP5PKIogSAwHA7Z2tomDEM0VQUEqqMjhJGPogjMzk5w8+YNRkZG8H2f9l4I54njx0nimAsXlnjzzTfJZDJ88Yu/QaFQwDRN5ufn2K3tEEYRr732GgsLC7z22usMhwPW1tYRpCTNawWGwzSH0AuDPc+MwPjYON7QTaVszrzBjRs3EQSBza1NEmJq9Rq5XJ56rcHiwiKSLLG+vo66d+2uX19mdnaWZqOBY9k4to2YQNZxMHWd2s4utVodP4jx98CLpmlEUZzmCSsKSZLgui6e55EkyUesxVEU02m3KRTyCAIUygVkRSSMAhRJ4Ma1q/Q7bQQx7ZvnuVy+fInt7S3iWGBlZRXXdZEVGUjIF/LIcipfJEkyYZjK15iGQSaTIQiC1MsRQ5yAadiYpk2z2abdblAs5clkMxxZPMLVK8vkcgW+9rWvcfHiJUjSvp17/30QJRIRhr5HdzAgFQxOw8ZHqiNUqyOIkkC89/xrmsbx48f55je/iWWbyLJIsZQy7dZrLfwgwHYcZFlmfHyCJ598EkVJw5LTEOeIWm2bOAnI5rKMj4+RJAGCkOB6A1ZWV+m029TrdSRJSnOIhQTXHRL4HvV6DYSEgdtAlAJKZZsED1WDRx99jGNHj6Zh1UlEpVpC09NFkT/6Z3+EaVj4YYJmZri5cgNFkSiVCuTzWSzLIElChsNhupgQRkRRhOM4fPMP/5BcLke32+W1115DEEXOnHmDeq2RXvdOl7/4i78kjkNkWcZxMoRhTLFYYaRS5cKFJZ7/8fMoqsLE1CSWZSBLIpqmkcvlqdWavP32O2xsbNL2FWJBYbh1lemZcYLQZWSkguQ1sd/9P/FrN2gk0wieiG+JZLIOCQkj1THqtTpxnCCQLnoFXQXVjkhyKwiCSEzKch0nEZIk0Om0sW2biYlpLly4xE9efIlcroDjZPnwwocIgkChUGBhYZ5Tpx5nfn4eRVVSKSbSyZ8sywDEkUASg+v6tJo9fu/3fg9ZlllaWuLUqVP4vpsCKyFOCVs+hxDhw9in9cIdBpzd2u9OOa77y7mfdoii+NF2UB/uVt+vi93r/P+H0IfPw34V3uGH9utnDz2uD+0jOyjUJA1MSm7bDgoVEj/aPvZSfrzFf/cSANIffIM7SKUfqo0Hhywd1MaPt3S3O3tbk+SX2wvS3iamkxpBIJLFPXKMkF6zzhs/e43RsQqB56JZOslXnyFUJKx//Rc0/tE30HYbJImAKIkEoYcQJ4iiwsrqGs888zSiGPP2z99mYrxKGLgM+wMuLJ1nbHSKhaNHKJZznHv/XbJOmuM3Mz2DKErk8nmG/oBizsYwDMIoJiFClkRuLN+gVB1BkUS2tzaQFAVRkdF1MwU0vocfuMiyAJKAIEESR5w/d45sxsF1QzrtLggyMSK2k0OURFwvQFFNBFFBUVUiWUBSJcIoRECiUe8yPbmAKEkMh2kIZOAHXLx0mS88/UV8zyOfz3Hj+nXGx6qEYYRZ7XL6P7bJlCUamwFylCXyBfq9Po6TQZKU1FP24g2Gv3eSid86jWlb7NS3KZWLCLLCYJAQRxH9foNsNsfFix+SyWT2zklCHIRYpoFh6jgZhyBIWU8lSaZQyiMICYoikzFt2r0ulfEJZN2g1e6gKiKPnjxBo9nc0w4Nabfr2GaGwA8QRAFNU9mt7aSEPYKAk3GIY2h3egwHLrou4XoD7GyOS1du0qi1OfbIMQxDw7ZNer0+dkZHFAXOv/c+v/ml32BlbY233nib1ZWrjFZtCnmHbLbEu+8uMTs7QbZQZWJqGkOXKZcy1HZT9t0oCLl+7SaRl0DYJwq69HsNojChVBzl2tUrnHr8FMVCnksXLzI7PcPOzi6Ok8EPfGZmp3n/3FlGR0fRNQMBkXfeeZdTTz6BJAsYZgbd0MlkHRRNIYgCYlGgWMiRzedBEFNNVlGh1+9gWDoJElGsEBOQL5SJY4ndnRrusI+hmbRabfL5Qkp6JSmkwQIykqIhKGDncniBiGUYSJJKp9WnVCrSajfI2A6aJmJaFpIACH0kRSdfslk4coTQj0gSF89Lw3WTJGJ3t4bnRiiSgmEaeOGQOPIgCLEyWRRVQRATev0Ojz7+GGEcUS4UefSx4/zd979Hs9nlt77ydVxviGNriELMU088yasvv8rk1ASqruL5Q/xgQBL5OEaBZruHrKpoukLou0RCRCIIdLtDJEnl+IljiIlPHMWYhoWmKUSJix92UCVzTz84ptvt4zi59JkVEgRRJoxEJFFDFqCQK0IMw0EfRU5QBYlGrY0kG1y+fIWMZWKYDppmIIkqoiCztVVDEEGSwckYdLttxCTV8R26HrKskCSgKBKbG6tMjE/z1pvv8MaZt5mfP4ooKCiazm69TqvVYHx8lJFqlVIpT6PRJJfN4XkDFo/M4UUiY+OjiEKIqsgIogKiSrmYT+WcRqtEkYthSswtLBIT02i0OXrscdbWNun1umRsGxGBd959l5+98gqGYnHq9CnsnAmygj7Y4kNXY3xsimT9ErmLf0uLDEL5JG+/+CoL6yG9BYfA9xGSGAH2yLaSVPdXFOj3PAxTJaSHFo7QaTdTtmNZZn19nWKhwvVrNyiWMszPz/DYYydxHAeSBD8IKJXKrJw/T+XqGteXb5BFgHYXsd1H7PSg2UW8sU4gQPRf/ROkrfeQFYmn/8m/wBs0cTttbly7xj/8/d9HsR0EIUEU0uBgUUiQ7jAGP4gdNOG/m1TOg5S9X1LkTtI4t8Z1SZJ+6djDhNMeFrzcrb8PEgp5Oxje35f9/9/Lo7t/v7uV/4n9901XbrHZCvdQgvhV2l3zMg/RloO86vdrB89pD3ksIArCJ2aFB3nv07Dg5JdYn++nbfstSZI0l5ZPzkjv+MgfNH19gAWeu9ntKQP7n5fPwh6GCj+0z9gOBzIP0nbdbx8D168fusyD7OAX+addaTxs6MheZlECTibDiRMnECWdcx9cII5FRESuiiLvD/uc/PO/YXeshKYZJImCJBgoWjoAV8dGkBSRVqfFpcvLFMpFYhJGx8YYHZvAsTXeP38WQRQ4fvwEqyvrLF9f5oPz53n99TM02y3Gx8eQUOj2+iiqimnpCEJCLmsjSCqN2i7lUpFMNkut3uClF37M4vwChq6n3sDsCoFUQ42KAOiGQZIkhMgUiyXOnTvHzNQkiiSg6caeBy2i1+tx+fIVbM0h9EIc00YzDHLFHLKm8P577zE/P49h6EiSRLVSZW19GSdj7nkoCyRaB3niEoncQ3QLBH0V28wTRzFhFJLNZkmShO3tbdSbbdTlLsp//zuEiYAgpuG7N64vM3RdVMWk02qzunqTsfFx8vk8gR+i6TpJnGAY2keeOk1T01BVVUVVVTrdDv1BP2U47g/RTQcEkW6niySK2I6Nbhjk8vmP7jIn49Bqthm6LsViiUazSaVaRVAkNMNA1VQQBCRZot3sp5MtQeTalRsszB9jdnYS1x2gqhL9QZ9Ou42TsWk325SrVcbHJ+j2Ojz91JOUK0WK5SLNVgfbTj3LA7fDmZ+/SaVURpEVbq6sE/g+V69eZWdnmyeffJLhcIggeEhBByXsUmu08ASNR44tYpgm29vbVMoVlpaWeOSRk1y9usyrr7xGvz/k2LHjuO4A3/fIZh2KxTznz5+jUMhTr23S6bTI53IM+gN01SARREI/TAnLBJEoghdfeIGZ2RmCwEcUBaLYhwREUeLC0hKvv/Yaxx45gpXJo+sazVYDQ9cgDpFUhSgSWFvdpF6vUSpW6PdcNFNFkmV000TRFEzLII5DVF1DlgziAGRJQJQUBCGh1+kReAGqKiIkEh+cO0+33ee5v3+ehbkF6vVdctksqqagaAqdVifVApZEkjhJyZqCCEWWUVWFOIqYmJwil83jeS7lSgnf96nXa+RzBcbGxpFVmbXVVTRNpdvtkcvk2dreJZPJoKkqopiygmuamd5jsogoCXS7PRJBBVHir7/1La5du8qxIwskUYwoKoiiSLfbxXEc+v1+6u2NY2RFZWtzi9dff51XX3mVY8eOIYoClm3g+S7tVpdsNs/QdTlz5gwjI1UMw6LXTeVsgiDk5ZdfJp8pYGgGf/Wtb/HY449jO1kSQcTOZLhy5TrP/u2znP3Fe3zly19GlESq1SonTpzgW9/6KxzHIZPN8+GHlxj2XUZGxlhf20DTBfL5PJKUhuwbuompZ+h02ni+R5xEFIo5JsaqJHvMw6Io4jgOqqpxY3kVx7B4+vRpBr0WLz7/QyamZpCllOE8k8tx5OgjPPX00+i6ws7ONoadQ+ptUdZSsirp/b8mHnucDhaOrZG/XEPf6NL+gyfIDgKGrouspItjpmXS7fbodrtsrG/jDWLyowJB5OG2VAZ9j62tXUZHJtja3OHmzRUeffwYuqEhSiL1Wg3Pc5mamiErikx/cAXpy6cpffM/Ip6bRJifolPKIi7OksxNMsw6XF8Yw37qUdSdc+n1nH6asF3nO997lj/9s/+RWBMIxBApOWh8+vyA62G/u5+yD/p8kHf1lvbrvY49qK7DtPFOc5SD5HwOYwfNe+4Eku52Xu8kA3RQPbf2P3gW9evhedx/HQ/q92HB/GflUf0MAdZH7dmvU/xZte2u7byPLojCnfOlP63dvlDzWdhD4PrQHtj2Dygf2+FA5t1e1kmSIGQdxMePIcyMH7rMw9v9vzg+2ddPDhAHDSCfyI+9dawoIKsalmXR6/So7e4yPzfPlV6PP3vtXf5bL0ZMQsSMQaKkjLOmmQJMQUxI4pgjR49TKhcp5FPW3vSFEzA1O00QhPiuTxQmLC4u0Gg0qY6M8cSpJ8jmMhBDrVZnfHwcUUxDVfu9HlYmi20aqVSLrqFoGhNjY0A6oFy8eJHshI8gRYhuAVmWMU0TVdXRjZTAaXxsjOvLy1TKZTw/QFFkkgS63Q6lUokrly7x7ttvUygUsGwTRBDEhEK2kHqBw5AoTJk1O702+UKeJIlQq9uIhQ0YZBnUJSQx9X7Gcer5lCSZwaBPksQUl7qoZ2uE//PvIlZyJKREGp1Oh3K5gGna/OD7P2J5+RrtVoPjJ48TeH5KYrVbQ9M1fC8NtbMdG13TUjkOWQVST4vveRiGgWnY+EHI1nYNyzQJ/SFBGCEIIj//+RlarRajo6NEUcqGatsOkpwSHxmmSRinrLehn+b9Ece0W2k+bBqyvQ6I5PM2EBFGIbquUy5VcYdDiqUyzVYbWZGpVEtEoUujUcd2MuSLFTwvYHdnl7n5Oc6dPYdp2nxwfom5uXnq9TqnTz9BoVhInwUBgtDD1hUUEXQnS3lkklarwYUPP2RsfDwF1JJMJpPj5s2bVCojHD1yhB/84AcMh0MmJydJkohM1qZcKmMYFvX6LsViCcMwkRUFQRRTKZsk2QtrFQmjmELBwXEcXM/HNE0URUpzIMOIdqfN0SMLVKsVojii1WqSz2bRdQ3P89B0mdBP2N1t8Hc/+C7Tk1PomoFupKHXN67fxLJNFFVJz3cU0+/6rN5cQRIiVDP1vkqigjf0yeXtjyRodnbqVCtVjh07Rr1eQ9UUNFNHlEQMw8SyNPq9Pu12l+9//+8ZH5/gwtIS4xPjbG5t02p2yGaz9HodMrkM9VqNTCZLc08+5xYZ1HM/fI7RkTE+OPcBR44ewTQMhoMhrWYT3dBJEikl7jE0BoMeq6vrjI9Poqoqhq6RJBFTk5M06g0y2dxH7ytFUZBlmbfffpeZmRniKETTdCQpfTbHJ8bRdIUkiUgS0PWUYdu2LIqlIqVyGUEQabc72LaD6w4pl8v4rk++kGdqehJVUzEME2FPSksSJaqVCvX6LidPPMLAa5HNWXR7Lb7wzGkyWYtBP+SVl18hm80yOzPL9evXsSwV07LxXJ9f/OIXVCplJEnmgw/OIcki84tztFt1FFViOBgyPT2LbaUyQv1eH0VRsW0T1+3TbNSQBAgigcnxcdrtFo6TIZPN4nousiSiquk5iAOXuLODtPkBw9JJBqjEcQJJhF8yyb62grg4ihT5LC19SKGQRxTThaZU4xka9Sa6ZuDkNBASFH8EzwvIZnKceePNVBtaSPa0pRVuXL+B53k8//wLbF6/wWPXN+EffpVnZ7OUvvQE8eIYvZE89hMnCKbHiOem0X77GfrjeXJZh3j1nfT6Tp/m7779LH/8r/4lkmUQJTFxknyU0foJ0qR7jJe3e/72f3/oifLe7/er5XkQG/Dt4+qd9rn1+ZbnFT4mMNq/734d2P1e2AcJJd5f7r1+P6gPB/Xp9sn97Xqu+9v6IG1KkoT4gL7eCbgedF5u94g/KAg5CIDeTsJ1q767gdGD9r/XOboXadh+j/3t+91prvcgdlDb7+fYu/3/8Q/30aBPgaXv9qzd+m7/38/CHgLXh/bA9mmA693KTJIEcXaCFLR++jJ/2R4cuB5U9x1XRm87JBZSL0862VN57913uXblMiOVIv/Fv/hjXlC6THcHmC+eofef/j6tDy4iijGKIiIJqZi1qmkYugJJRL22y+zUNN1uGyeTJZvNcvHiJQqFPOfPn+fEiZNcvHgJ00zJawQS1tbX0tDYMCQKInTNJIhCOu1WGt6myERJguf5DF2XQrFApVpBdNrp716ZOElotzvIqsbG6iqDQZoH2h8OOXv2febn5xFFkSAIcJwMiiIzMlrAtHREUWJlZRVTVxGAjJN6S3/0ox/xs5/+jLm5eTJOFiXXRhxZBtGnsSqhiDaGaeC6HuvrGwz6QyzbSieQLqg/WwE3If6z38Ev2yRJOrlCO9BSAAAgAElEQVREBF1X8H2PoeuhyiaDXp/f/q3fxPdc/CAgl8vjui6aqrG7u4NhGLiui+u6e3qoMnEcMxwOUmCvKIRBzGDo8/LLr3Dm9dd5+vQpMoU8nhewvbvLU089DQi0O+l5u3r1KnYmg2GmIF0URYQEiGM6rRZnXnuVn595m9OnT3H16mU2N7e4fOkqj5xYoD9IiW0Mw8D3Q3a2d/B8n7nFeWzHgjii32ul4FBWMCyH0A/5xS/epVQZJWPbuMMBUzNTbO5s8+SpJ1haOs/ISIWr166ys73DyMQEsmYgKDqabiKJICkak1OTxAlEcUy90WJ3Z4typYwowOjYKJNTk0xNzvDyKy+TyaQ5l4Zhsb21y/TcHCASRBGSIiOIAgnQqO0gSSLCHgAAL2V1tnOIkoSAyGCYep9HR6vYlpWGxWoypq4RxiGSrCCpGo36OhknhyLrzM3OknFsFFlBU2UkIc1B7Pe6ZBybIIqJI3j3nQ/YWF+nVLSwMzncYZ9B302lVwwVwzKwHYcoSmg0m8wtzKAqKrIiYTomCak3WCRIvW6dPsOBx/zcPKqioOkqa2sbXL1yFd3QqI5UkWSRixcv0qw3eeWVVxgfH+PGygqTk5MMBy62ZVMqlckV87iDIbWdHQRBoNPv8eKPf8YjjzyCoqYe13yuiCyCQESpVGByagIv8EkEiVariWWljLeSlGrJvv32eywsLqQkP3HCyMgII6PjaJqKYWppyKAo7YUCb1GplPf6H/PKy68SJ3Dxww/RdZ3Z2RkSAQxTx3YsdE1ld2eH4WDA2spNyqUSTsZhYXE+9Uy32wyHQ0qlMp7rU280UVWdxSMLXL50kfm5WXRdo1wqsrx8gx/+8Id885vfZOj20RSF+YU5VEPFNE3arRaKJNJqd3GcLJ7rs7mxhSCIOAUbXVcRBcg6GeI4ptboMlKtcOP6dTLZPLpukggxkgih77O6tk6USOSjXfrGBEZpHEPXqe3UOf/+EtPziwgC6C9dJjpSIF/IA8negkAK1H0/RBSgVttlZKxMhMvZ17bIZmzyhRLtVots1mFqZpxKuUoSCzhOBlVVWZxfZGF1G+XUcdz/6Z8zMTtNsZRju75FpVohjhNkSaXfH/LtZ/89jx5fJIpCzNZlRAHe244w7SyPnHqcWJQQEhElkT4x7hwWuN5tHLsf4Pogdhhv40Fg4U4ETncCiXcKaT6MF++w7b1XuOudwNLd7BYQkCTpgbx1H4VtHjDvuV+P64N6mj9R5yHPz2EWBg5T7kF13Oua3wngfpp+317H/r+3g+XDHHvvHe+jPYff9e7lCL8cEvxpQf5B9hC4PrQHts8TuH7yJv/1B64H5ZrsTy2KgUSAJA6J45CMbfPY8RME7hBREPGTOv8fe28eZNl13/d9zrn79vbXe0/PvgMgCHADSVEkLFqKLEu2FCmlckmRnFTipEop2ZXNKstOxU6V40q5kkrZqizUFsniEnERdwoLCZAgCBAggJnBbJite7pf9+u3r3fPH7d70NPsnukBQMp25jf1qqbvO9u979x77vf8fr/vd/bwNDO/+vP4c8ex//G/4JVXfkDxP/4lrHoDZaM93TTpdVpIkTIc9Fm6cYOlmzeZmZsjCAL6/QG2aWE7DlIoHD6chXvquoahKSiawue/8HlOnDhJGESYholhm3iujaYqWa6nEHTaHWZmZuj2eliWhXCapGmKGlS5ceMGz3z725w8eRJDkUxUKziuS6U6wf6Dh1AE1Ot1er2MIdY0LfrDBjMz09i2Q2O9gePYSFLGfoCUkoMHD3Ls6FFyVYGYuoiwe0i/QDJy8dwcQiqEYSbl4zoO5VI5yxU+s47y5UtEx6Z5/fEZnJkKuqbTbLaxHYc4CRiPR5i6gW6YOHaeC+cvMD1VpT/sZiGZikqaphTyeVw3AyaWZaGoCmEQ0O32ME2TQb+Poev0ul2SFGqrDSYmpnj0kXezVlvCK5QwTYvJqSkWF5ewHYucl8kHTU5PZ7q9KSDkRmpJCmlKp9ng9KmTjP0Yx7UoV0rkcgUefPAhVC3FdR1czyEKM8mVV15+hf0HDlCr18nlPOIwoNVYJQgj/ChBUTRI4eobb9Af+NRrqxQKOQ4cOoBpW5iazmDQp1DI4XoekDI5u48olfhRBtBlEpFIlaWby3hujpXlGgcPHKJYzLO2usq+hX18+Utf4vDhw4RhysULF5mbnyWfz0MqUFUdzbQyICoFQgqQEPg++ZzHaDxA13WiOGFt7QaVSpXxOKLfG6CqGpZlECcRhpHph+qazsrSNQxDRzdMUqGAomEaMYOBT7eThVO7XnaNQ39MFMUM+0OSOMI0dYSigVB56cVXWF25Sa9X59DhYyBSdC2Tbep2W6SKwM3l8HIF5ubnkKrAUHVQQCiCIApIkxRNJkipkKYKOa+Al/MA0HSFc2fP02i0+OhHfxLbMkEIJicmmahWefjhh7lw4Tztbpf5+X0bOqtlLMPCD8foqkbey2E7Lt1+j3ZrQKGYw/eHeDkPTTPpt9dZW6uhGxq2YyMUFd20GfZ7uK7LeDymXq/Tbrc5f/Eyp06dQFEltVptQ/7KRzdVdF3JNpmCiPpqI4tiUFWiMKTVanP02HHYIMo6dvwYUkr8OAvd1VRJo14nn/MIxmMK+TxhGKKbOoNxH9M2KeaqSKlDqmCYLhIV3dTJ5/McPHiA69evAym6biClwgc+8BhpGpHPu/R7XaQisV2HKI6xTZM0jilXKgwHY5544il6vT7HT5xAtbIsL3/sIzfkrb729Sc5deIEUkranQ6ViSqIFMsw6He7VCYmML0iF5cDMHLk8y615RUUqWBoNhcuXGL6PQ+g/cXLNI9MYRkCVVFISEjiBD8IcV0PTZVMz8ygSA2MAU9+9gJzc9MYukGhUKBcLmabDlLfiCxJ+PQnP82HxuCeOs7wd38LO+/y+vkzTExU8YoutVqNOE7QdYvBYMiL//L3eGxujm7eQoQj1Nwk//L3P8V/9w//CammEcUpEgUtUUhkfNvatBfgupOnaWv9ndfBndvZS7k79bG1/tZQ162hllvB6PY+fxTAdTem4a3Htoez7pZ/uvndTuV2GssmYI3j+C1d/1v9CnGLdOpWuT3Mi61j2+51fCt2H7jePr/vdTPiPnC9D1zv2ztkb07OnW7unSbs7gRJQkDy9PdIr91E7J/Zpced6u60Y5x9l6Zb+3uTEGorOdTOZFE7LeQ/nDe79ebcXGSFeDNhXgIyBSkyoXukxE9C5o8cQPVMmtcbJKOAYq7I6MA09Z/5KPPSoPx/fZJUUWk+/kGs5gAhIE5SGutNqpUqruOy79BRBr0hwTjglR+8wsGjRygVPfr9AZcvX2Z9fZ2JqQmklqJpFpXSNGdePcf0VJXVtZsYukOKJE5hpbZKuVLBsR0UIRkNMs9XO7yKpmnIcRXbdmmut6hWJlBtjXq9jhSweO0qo2GP0WhErzdgdmYO07KQUiCFju8nGfFPtUou5yIUSa22zo0bi0zNFjFmlyC/QmstoLMCjr0hBxFHmadECBQh0GtD9JdWML99E1CJf+uniH7yOM9+57scPXkS1dDRTQ0hya58qtwKk4rigOMnj1OqTFAqFYnihDiOcRyHTqeDqlsoQL/bw7Y9VtZaGFpKArj5IqBkrKIIypUiqiaYmZ0ERcHzHK5eu8HnP/s5PvCBh3Etg6XFFXKlKqPhCMdxCKMATVUIRmPGQYBmmjiuh25YzC3MoWo6rpfHME2EAt2+j22b+KMIw/BIRMzM/DTIFM91M29wKrHdDDSJNCT0R+QKBUoTk+Q9h7Pnz7O6vs6xI0e4ev4iU/umKE1U8cOEb3ztCa5evs7Bw/uxDJ1hr4uqaPSHY/JuBsbkhudu0Oty49oinmeQJBGFfJX1eoMzZ3/AT3zkJyCVNJotXM8ml7OBKLuXkxiZgiJUQCGMfTRdI0kU1utd4igh5xUIopAwDjLpnDCi1Wyi6xr9QQ9ESqEyTbs3JEpSVFUlCnwuvX6DJBJMTFbI5XKkSYpp6mimQX/Up1gpIRSVIEwZ9dbQTBuvWGRqZpbTJ98FIsJzC/QHI4SEXD6PrQlCf0wcR7TbbaIwwc67aKpKOB7RabbI54sIEhAKpmkhBNhOlivab3UpV6u8+73vAZkRPYVRiGYIhJLw2c99nkcefYzZmVksUyGKBigiobayxne/822q1QqW6yINjUKxxIF9s6zX60xNztBpdjAMjUuXr7K6uk4YpeTzRfr9AZqqYloOpmkSRTHNRptvPvUsH/nwh7Etg9AP6PcGFLwiTt5AVRXCMCaJs/zX8+deZ2pqEtM0GA4HTE5WUXSJl8sxv28hk06KI2xTw3NcRuMxmmFguy5CShTdwnFy3Fxc5lOf+hTve/S9+MEQ18kDkvX1VV5+5QVkEuE6Nv3eAE0zeeHFl2m1apw4eYokFSzdXKZQKKHqGoPBgPFwhK7qCKGgaib9wYhLFy5x7OgxpmensDyLYafH6soammqiahqmZfC+970HRVWpTlQplXPUVq+zcrNFuVJGMzTGwQjD1JmeLjMY9jBNizCMKRQKTM1OMzUzie6aXG/XmXn2Bi89kKcavbmpJaUKCKIozECmqoPZo1TNEfUcbt5cYWpqimazzuLidQrlSXRdJ4kiHlrrYhw/SPt3/3PMgguKpFCqYFguS4vrzM0ewHHyRFGMZVl86LmzxK+cR/3Zx/HmTvDHn/kq/+S//28ZKgJFEaRJBCQkMiFJubVBliLY7b14J5Cwk2dzN9upzqbtpr+69XOnkNPNY5tsytvX2Z3Gv9uavL1skiS7yuPcCQxt/3630Ortx7eGMW8ttwnEdwLfW207wc1u5W4bo8yAKiLTDL3NtbAVfO7Yyp2v516B5/axb/59R3B9h/FsbW8nuy2f9y75sHfrZ6cc4ttC7+8CNjfLbdVevdsc3fGcNl4gxQ6/5+2fFCEzNvNbb8Nplru6kQ10x8/drseOY9u2OXTbvbZtvJsd3auHfze7D1zv2ztqSRLvkEi/02S9840f/Y+/R/rqhTvouO5kOz30k1tg8s0b7M4097cfv3dv7067Tlv72FywNE0jjmNGoxG64RLGMX4wZnqiSkpC+t5HGP38x7DaXbz/9Q8RUjJ+/APo6y3yhTxhHKEbBq++doZDBw/g+z66qeN5Hos3lqivNygUipw8fZKLl16n3+5SW15lPPaZnZulVCnh5jxU3aDTbjMY9CFJydkOUlGI44SrV68yNzeHVR4RxTFBywFSpmcnqa0sIVEZD8coQiFXKJAvlch5HpVKlh/X7/dZXLxBHGdhla+8+gpHjhwGkfLySy9x4sEDFA60UCrLJLFC/XqMZZQoFovZS0uagXS1NcY810D/Xo309TXSdx9k9LcfJP2bDyMreerrTd718CNEwRhNUUiTGNIUTdGIwxgpBP1un0sXL2HbJmHoY5kGZ8+eZWFh4dZvMRyOabfbxEkm0aGqCu12k3K5SpqCpqpZnq5toyoKjmPj+2Mcx0ZRVYrFMt1Ol5Mnj9HtdnnllTM88cQTtJtNNEWiKyqdRpN2t0O5UkEqkvW1OmEQ4rguURQxGo0JgoAkiQl9H9KItZVV8rlSNkdFimEY6JpGnCREUci5M+colUq4TuadUlQTRdU5f/bsRj6kwYFDB5iYmkBVJUkCSZpQr63x0x//6wgl3ZCEyTzbtZUaiqqy3mhimCa2ZWFZFimCUimP63lcuPAGDz70AEePHWU0GvP1b3yDxx77AHEcMhj2WVq8Qd7LZbnGqk4QRShSoG7IRWmawTPfeoYkDpmbn9u4XwSaqhLHEZquo+sGlpVJCpEELN64zmS1Sr/bo9ftI4TGl7/8FaZnpkAkxGmIaRkgsxdCTdUxDJsvf+lrvPc9D4FQcF2HiWqFtdUVkiRGVbUsn3kjFDwhBqHQWG/iOi6GbiBUgaJk67GUAsM0icKQSxffwPPy5PI5EDGIhFwhT7Fc4tq1NzA0lSj0MS0HIVOSJKVSnchygFdXcVyLbq/HymqNw0eOsW/fPKqmoes6/f4AXTdQkAjSDWIfweLiInNz87z88sscP34cQzf4xO9/gunpaV5+4SUOHjyAH/gUSgVm5+eZmprk2Wef4cCB/VQrVW4ur+A4FlEUo+s6tVrtFpAsl0uYpommaSwuLmKaOlEYMhqNuXDhPPXVNSrT06QpRGHEaq2GkkK/26FYyBGGAbm8R7lSoTo5AQlIJUFTBbpucubVizg5i8pEFdu28DyHUyePsX//AkIIGo0Glmly7fp1KuUqQZBpzAoBmq4SBgGf+MSfUK1M8sqrr3Lo8CGGwwGkEWkieOWVV5ibm2c0HBInEWtrGYO3pmmYhpUR5bkWaRJhGTppktBuDVlaWkHXDfwgoFQqgUyJo4gkicmd2ofx5EWmTxxAaBGKlCwvr3D+/AWmp2cYDIcbckKSWIzJ5z0Uf4q/+OKXeN9738e3v/0d1tebVCcm+ZM/+iMeXu9jHD3I6H/6+5x9/QaW5TEejcnlPF577Qf4fnjr+be5hihfewZD19H+gw/y1BNfR6qSR97/GJFUOHfuHIVC4c1QUvHmOnS3dert2E6gcOs6d9eX8juU2Wvo5Fbv627ERzuNe/safScwtpttjnEnILzXc9kLiN/e1p5+t7uU2bxO8i7lNjcg9pK3vNu1TtM000rfAPA7ncNOv91e2t5tHG8VuO6lv720vR2gv+Wx7PFe3ixzm6d4j/Xu1uZbKiN+uEy2UXIfuN7V7gPXH49tehhhc5NlLx7Xu+R1fOEpgLcNXKW8PSdme7ntO2qbx+48zt0Xw7s9NLeC6M2/HcfByZfwCvksJzIJSEY9nHIZYerE736Q+Jd/hnR5FeMTn0G5sog8fQTZ7RNpCrqisba2RqlcQtN0ioUCmm5y7foNmo0mlUqZyYkyhVyRxRuLHD58mEKpyJVrV7EcBykyIpfRcEi33aZaroDMchDLlQopEGmrKIok7uZJifH9EVPTk7h2nhvXb9BstKhOTqLqOkrm6mQ88ul0OszOTuP7PoVCgatXr2aeSrfP9KmINLdMtzNEDSZQUwfHcTO5CSlgrYd8aQXrhTWs8y2YqxJ+/DRPL8TM/eyHkCUb3w9QVI18IZNouX71KpVKmV63S7PRBARXrlwlCmKuXb3K8vJNHjh9ijgON7QgPQzDuLU7qus6+UJhIzdXQYiM8MQyHeIwZjwaZ3qnAl599RWq1QqkCUkac+3adcajgMmJSXI5h3q9jqYYPPTQg5w4dpxWo4GmKIgUNNOg3emg6waGrmNshM3qepZLGUYBioTxcIyhK6zV6vjjmEKxgKLJW/qio+FwI3y5h+e5CBI0XUcqGn4Q0mqsE8cJa2trHDtxDKEKVDXTiEyShKOHDqNrKu1eB90w8Ec+o+GImdk5eoMuaZKibISXuZ6Homi4nk0UpdRqa0xMVRCA57qcPHGCOMnmRqlcxNKysF6pqLd2YCUCTVNpt9pEUcz09CSTU5NEGy9/upqFOQ9HfVzHJZOXgjgOieOAqalJojjBsV2iKKZYqnDy1EniJCSXdzFMjSD0MQxz406V9Psj9s3vxzAVkjQiikJM00DTNXRVZzQaMhwONsiqBHESoakaw9GYTqeLaRjEIsHQVUbDfvaMkwqKyDZ3bNsmSWLWG2sUi3miJKG+VmNmeorxaIRpmly9do1yuUwcp4xHY6IwolwsYNkWV69d4cixYwhVwdB0DNNkPM7OIU1Tvvvc8+zfv0AcB1x+4yJTUzMIIRkOhxw8dAjd0Dl69Cjtdpul64u0201K5SKGZeG4DjcXF5mcmsT1XPqDAWdeO8PM7BymaWQMuZZJr99lsjrNYJCFcG9GIWiaoNVqUyyUMQ2Tw4cOkcpsg2EwHHLj6jWqlSrlcpm1ei27dprGxOQUKYIzr76GaapcvnyJQqFMoVBl/6F9WfSGImi1GsRxgGHYtzbzVE3j/PkLzM7OcvnyJaampnBdl9Eo08Gur7UBwY3FGxw5cphyqUiv22FiYoqDBw/RbDaZmZlhOOozOTmBoijU6+tYloNpaEiZ5bkOhwPGwzFr9RbT0zNoukGlOgFCcPPmIrl8LgODgDqVR/mD51AemCASm3rDOq1Wa4NEzyZOYsbBAM2CJz5/hl/5lV9GbGhbnzhxGts0ebQ5IN03S/hP/wGBTLl4/ga/+Zu/wW/+5m+g6QoTkxUmp2YwDIPl5WXy+TxBEKB/4zsoUtJ7dD9f/OQn+Nmf/RnMiXkQgkqlcrsszB5flO/mPdyp7E7r5d3a3q38di/cbt7O3Tw7u41rs6/NebxTna3euZ36vZdz3AmYbAWrW89tJw/cbm1sP6d78fRt9bHuNr4MSLxpURTt6CHdXj/Tib79GuxlTFvL3+lcd2tjL+U2x7zVdvPA3sl7vdOxewXxexnr3epuPZOd+t1pHt06fgfirXslULvTOHcMqxb88LGNw+9E3/eB631723b75N2rh/LHA1x3fmb88MK329/3AlzflskY03ZASC6dOcORgweIdAVVNQjDhFRTGZw+iPHrv4RfLhA8+wLWN19ENjuY0xM4gxGqrmGXClx4/XXyxQIHDh5A03SWl5eZmpykPxwgpCCXz/FHf/iHnDxxgolKldpKDVVR6LTbFAr5jTDOBGS2AC4tLmI5Gob0UBMPQzey/NEoQTV1qpVy5qmxTIajAe1mE5AYTsogXCM3HWFOr6Pkmxx8t4450QSzh0wNGBbRhIeqqEghkaOI5LUVxBNX0F5dI54p4/+1U5x7X5nK33g/yXQBVAWZShISVmo1KtUSUknRVJicnMk0Mz030whVNSqVKm9cusrRI0c4fvwow2Eve7kvlTEMg2azyerqKoVCgeWbKxiWTUrKyvISnmuhGTaD/hDLyLxUUpUsL93km996mnK5RKGQZ/HGDaZn53Acj9FwREqEoelMTEzT73YYDAc4ro2bz5ErFLDtLBcWsheB9bU6QZixMUtFsKkXa1k5kiTi6pXrXLu+yIFDC2iaTqPRwDT0jL2ZlIlKBds2Wa0tUyyVkKqKVFRc1+bggYOoqkKwock76A/wcjnSNCHwfZYWF6lOTaBrGpqq0e32MHST/qjH7OwMcRCxvHyTYrlIo9FkPB5RLlVJU4VC0UORkla7zWg0orayQrlSQgDtTh/dMEiSzBOp6yrBOCSK4kxvV1NxXGcjnFwS+pmX2R+PkUqa6XYmCkEQkCYxpmERx2lWX9XRdB1FkeiGius6G9dMIwgCNM0gSRMM3QAEL730Er1uD9d18HIOAJqWeXN1XSPcALurtTWa63V0w8Rzc/hBgOM6REkmU9Tv9VBVDVUzMi+ioWcbAXGCuxG6naaCfrfLcDjAyeczvVBdwzItLl9+g8nJKVzPpdlqki/kmZqaykLZ05QgyHK+19bWbpH4fP+Fl8jlXXRdMjFRwTBswjBienr6loxTEAYA5PMF1hvrzO+bpdloUMjl0DWd6kRlg63ZYGFhgZVajWKxSJzEtNpNSqUS6/UmFy9exLZtPvvZP+fkyZPYjkHgB+i6wfp6g5s3lykUc/S7XXJOpkGsaSbnzp7n0NHDeJ5Ht9tDVRREKuj3+pRKFSzTxnFsLEsj8EfYls147IME18sxHIwyQqmNjZVabY2JiSL5fJ4kSVhbW6e+1uDpp77FT338Yxw/eZyJySpTk1WG/S5PPPlNhkOfcrlMGPrZRkYu011uNNZZXFpkamoa3dBIBQxHQzRdx8sVKJfLt6SKcrk8Uip4rkez2ULXM+bglgXe9S4IlbSkEydZCK/rONiOgz/Ocqot20Gxhhw9dhg1yZOmMVJRIEoxnvkuLMxR++3fIEhjvGKe77/4Ar/wt36Ohf1zqBvar2mavSS3Wm8SbalffxZSeNHq8rHZkEltRHTwsQ2N1m3rzzvj1LjNdgMcux3b/v2dQNduoO1OtlVLdScLgmDHEN3tbb9TXrmdxr9bXuxewcxbGdstwLnDsR2B/7Zymzmwm7abJ/jtALKtY7qXum/VdnMm7AUo/5XbLgDwTsd2qLrnOm/XdgKut33PO5Preh+43re3bf++ANedH2Q/HuCqagEJCo6T49knvwlxjDdZIIpSpFAJAp9mq4GRKhhHD5J87H0ov/4LJJNljGaPeHEZ67uvkDY7JDmX4fXrTOxfIBWS0WiMbVr4ccTCwn5qtRUcx+bg/gNcv3aNYDgiDAN832dmbpblWkZQMhyNsFyHYr5A8+aIKxdrOI5DmgpqK3Uq5UlCQhRFophDQq2GMVHDneugVeqI3BqKPUQaIaN+iCoN+g0QQQ4tzhGOBXGc4rd6BC/dwHqhhvL0NUJFovzSe/F/7THWDpUIKnkKRQ/LdkiEwDIt4ijCznlMTFRI0pBup07g99EMj5XaCoqmYFoWum5SbzR47tnnOX7iKJ7nZHqYEtJUEMdZuGS5XGZlZYVqtYJp2YRRiG3paAr0hz6e43Hzxk2eePJJTj9wGn885PSpk0xMTJAmMflCPvPypQorKyuYZhZ+WqvV6XVa2I5DeaKK5Xm0eh3iIEA3jSw3JU0xdJ1Op4/jOJDGIFKWlhZ5+unnefDB0yws7Gdufh+KLrOX6STBtq03s13SBFWBJAmQEnqDAaqu4eRyDLo9DE2n220zPTWFYVpIVUFRJMP+gCSO0AwDKSWddpfvPvddBoMhQexTKZVYXanR6XXJ5fNUq1MMRn1s28WyHDRDEPoBlmVjGiaWbVEs5klJMKzcRih8D0NXEWmMlDphGBKGEUKCriu3QKGqqOialoWqGpI0EQiR6b0qikCqJkKqhFFMkiakpAxGfQxDYzAaApkep6YZRBEMh0N0XWewkac9GAS4jontmCiKRpzITeEQUmIEkh+88hoH5uf4/vdf4vsvvcQjjz5KKjPtVMswyefy6JoBQiFNxtm9q+isLNfI5QpEUUyv1WWiWkVKMJyXUaAAACAASURBVFyPREgsXSVFYlmZJz6X83AKHoPhEE3T6LQ75FwHoSgkSZLJ1kiFOIrI5woIkW4QTyUIFAb9AVevXqXZaFAul7FsG03T8PJFTpw8loWl6xq6ohAjqa+vkc/nURSF0djnzGtnOXzkMBlLrsp4PEJTDA4fPoymqczMTFMqlWi318nnCwyHPs1Gi6ef+iaPPvpQRpqFQFEMHMdjabnG9OxsFuKtqeiqhkgFzVaLnFfiU5/6fymVc5QqNpbusFqr4eXzKLoBUsVQNdI0YTjos7q6xgOnH8QP+riui64ZOLZHGCYsLa0wM5t5qkvlEqoU1FdXAZ1zZ89x8OCBDfblhDhSUDRJsZhjenoK0pRUSpI0wbQs/CDCMGxqq0tUqxVK5RKLizcZDkZ0u12uXr22sUnUZG5uHnF0Gv7gWdJHDyEJUVUtiw4RgmvXrmHbNqZmI4w+SaiRjl10Q0WmAu2bz/O9tRXs//2fsv/QIWzbIiLhwYeO4Ho25UqRMAwZjUZAtp5u/l5RFKF949vEccyT4RLvXsih2w7JkQ+jxtEPrz97XIruRgq01f5tAK73Ml5N027zLO0WFvxXCVz36uV+K2N6K8B1pz7fKeC63Wv87yJwvXVt32YY8t3stnlxl7n6VoHrj+oc7gPXd8DuA9cfn20uEDsTHO1kuz20s7rJF57M/vqbj+/QntggW9p+4+5E2PTDdbc/RDdt5wf8nYHrO7V7miYSkSqoUqU4Mc8zL7zCTMHCVj3Go5R2o8t//V/9Aw4cPUJ1chJNNUEodAsew/cc4tqJfTw1m+PwYx/ADWKKq23Uv/wO6tinXfEQnSHn3nidA/vmqS3eZP/cAotLN6lMTaLrCqZlYrsetu1iWk7mRWuuUy7mSeIEa2LA9MkQo9xDLbRwJgfE1jLSXSPNLSHsNmgh/gA0iohxjvrSGEMU0WUOEZmMehGaZmIMUuRiF/lyDe1KD+ep6xilIvGHjqD+vZ8k+evvomlBq9PBtgwMXeEvvvhFPM/DMnSe+863GY2HzE5Pc+3SGdJxh5nJKZrtIZZho6sazfUGhXyeQb+H59g8+MgDDIc9Fq9dRReCXrOFky8S+D6j0QjPdbl27RpSgOOYaNoGC2isoeuCOIlx8i4nTp1A11RUXcNyLcIoJEmy36/V6aGoCoW8hyJVHNulWMhTnZ7Fzbnoup5ptsYRipaRjihSUl+v47gOrmMx7I+RQmM8GpAmATk3RxgEKIqg12uT81yEzHL2kiTB930s08rCcYXCOEjQTBfTtDMyoVHI2VdfJ40j+r0GuprgFoukSUIUxqiagWE7eBtyI5m0UchjH/wAk1NTqJqOk/OQqkK5XEaqKY7rZvnAow5JGqGrFlEU8vq5TMM0RRAngq984eu4jkOpXEYzTMI4IfCHRGGI67ikcUwcBKAoG+HLEf1eF11XiRIdieD61cs4joFu6oSRDyKl1WhgqAb9zoCbS9cpFcskUUoYhAhiDEPSbg5QpERRdVTN4uZSjZtLV3joXafx/QBNUWk1WxCPUE0Dw3FRVclEKcfa2jIXLlxjMEw4eeo0Z159kXOvX2NuZhZ/NCJNUq7fuEm5VCEK01ugMknDLH9YCISmkgi54XlMUNAJ/RBD0wiDANMwUFVJuqGTHMcJjpsnDgLW63UMY0PSRxXouoZpWthWHlWzCeKAYqFAbaWG7wfMz88DCWE4xtKzPq9eu06pXM3C2mVKIV8AoXBzaQXPzXHt0nnm5koYmkIYpBiGjqJLhAKGqdPpdUlFgm4UUHULw7IolIocP3kKy3KQUqXd6eLlMnA2MzuJSASqIkniGCEF42CM61lYlsmJEydIU4lpuERJiO3YaIpKMBzTb3VYqa0ipcKf/dknOXbsKI5jMRz42YaGlnndozChUq6ysH8/43iAa4REwz5S6szNewxHAZPTC7hOjmtXrqJqGrmcAyLLA0+SCLEBIKRQuXjxMq7nUSqUqNVuEsUhuUKeUqXKqB/TaDTQDcHUdBkpU7SiTaCqaF98jcaEmm0gxSntdov5+Xk0TSWOIqJ0yGg0wAznWbp6E/d7rxFbOv/PQydwCgX++E8+wdz+KvmcSiRsisUcjfUG0Shi+fo6dsFlPOpjG3DjjQt87fNfYN/Z66hKzHNWh/cdW0BIDX32AVIpN5Y1ccfldifQshlCuRMRzfbPndq8G6DcLLM1PPde1sbdzuHNd46dQ2q3Mv1u10W927q9U67s3frefm7bx7OdQXav13wrYLrTtbltvLf925gWW16LNo/tFja6/bw37W75vHeze2HQ3e09bfsY71R/r7nD92Jvta2tc+puv+WtD1tu6zSFFKQif+g32PH63KH97cA13drRxmfPZ7mFiOlW3V0IoTb7f7t2H7jet3fENm+GTeKhu0/O3W7crN6bwPVjO7a1NXf1LiPbcaw7ltzx+L2TM+3W9p2vSwaywyDC81xUVeWTv/8HTE3nKFVNUkXhp3/ulynkbaIoxB/7CFJ0XSNKEnJOgd/5R7/Lr/0P/wj//e9C/PzHSX7tb9FIfMJnXuTQheugqjinj2OlguXVVSoTFZaXV1hdrXH23OtMT01z6eJFnnr6aR5996PYjkO73eHG9SUmTvSII4FMTESqE4UpEh2ZGLRrMXpaZtyTJIHCeBxhKTqG0AhfX0EZ64gf1DCefAPrxRrKuTojRaIfmSV9eB/jX/sg6k+/i898/xmmFxZod9vZS0eSMFGdQFVVTpw8QaFQQNd1NE3j+PHjBHGI57kEYcg4iChUJkGqmfdQVTAsE103GI5HaOikCZRKFaRmkEqVIMrybqMoRCiCuflZwjDmypUrTE5OkSbZzn2jUcc0DAzDQCoKfhAwGAw28mN1pFAzr5DroG14zJaWFhmNR3Q6Ha5dv0qlXIaULJ/VyBhdNU1DSoltWQxHIxavLfGFL3yJBx98CMexMU2T2Zk58vk8Qgh0Xef69Rt4uRyQsri4SLVazSRIdJ00zUibpJSZZ200QqpQKGahw/v2H8B2cyhq1i8bbWbXOuba9WvsW1hgcnKS4WhIGEWMRiMs08QwDGDzvpM01lvk3AJCKJnepKaRKxYwN3L9hNwgRlME1Wp1gwhEAUVgu7mM9XBDtkQkmde5026jGiq6aUAqUKSgUCigaipCKoz6XRzLwjJt4lTwiT/4I2ZmppmYmMJxPZI45saNRfK5IlEUZAzOhoaiSEqlIgIFy3RZr7coFqsEQUiv1yafLxLHKZqUkKSYhsvcvmkOHduH45qkieDA/iMbUj45VE1SKLqMx8ON8NIcIFmvN1FklhubxAnf+94LHDhwkPFozHDQ5+tf/zoL+w9Qr6/zla98jXy+xOrqGt1uj9OnH0AICPyYl77/MsvLtczLJyRBEOC6HikpjeY6rueSJjGNRpOTJ05mT480JfD9jAAqTSiVqgyGIz79qT/n4YcfZnHxJoV8Dte10TTJ4eMnUXSFVEjWVpt4rgtCEMcJ/tjHtCw810OKmE57nTAYUl+rUch71OtNDNPgc5/7HPPz8/j+mE99+tMM+kMKhRyWbdJsNrEsm/6gges61FZXmJubIk58VN1ivdHMcqoDn89+7nO8//2P4XkuDz30EJ1OeyOHVEPKTL+61WrTajbp9XpMzRbRI0Ht2lXQI/SSThpJiuUqZ868hmlqzM3P4PsCx8mRpgqDfsC3vvk8+/bPoGka9fo6pVKZOI7RdIv+YEClWmU4GJBs5EDX1m7yyCOPYBgm43GIqhqsOzHu9Q52H5JpneGwh+vmQAiEkj2zDEPH8FL+9P94mvkbK9iTFVb+s18gMnUmygWeeuIv+Q9/8Vd48bsvUazMowiBpiuoiuBb33qafQcPk8/lSNKY+bk55ub3U3rhLCD4pujxkQcXQCgo+96fUdXvunbdvv7c+5p09zVtL8c2+9gN8LyT/e/U7/ay24mcdiN22lpvJ2/dbmPaax7qXm2vG+Nvl0n3bsd+FCDwTvZWCJt2KvPjGu9e7e2OZzN/+W6/9z15XHcovOdR3mPdvwrgKu5lx+Sv2qIo+ndnsP+e2FYyhDvPlWSX49niFv7d3wFA+7//2S5J9Dt5XN+0zZ3EJNl5Z3jvltxq702K/51zZ7b2/dYtC5FM05Sls5d4/ntfZWZhhgce+Ulev9ziz//N7/Mbv/HrzExN88Lzz+HYFguHDhEOx/jjEVOzM3T8IbZmgogJxyPGQ59kpcu1T36G9yw10C5cYfzIacY/9zi9J5+lVKnS7/W5fuMGqaZw4cJ5fvqn/wauaxGGAZ/61Gf4td85hUw0xk2XJE2wrSxMVQgF4YfI1phQtZHnasj1HspiCxRBPF8ins6RnJpjXLFI5su0Wk2KxQKe5xGGEUEQ8MYbVzJN0VRw8PD+DRr3FIEgDANa7Tau6+L7Pr1ej+npaRKZEIxGOLaNomokCMIokz0SUiBlJlWxvLzMay+8wsnTp5iZnWVtrc7s7CyDUZsgCBgOh9mVF4JCoUSSpLcIq0zTYOiPqK/VyeXyCCEpFAoMhiPiOCSX8wjGIUkMqpr9bsqGduloNELTNASCKIpum6u6Zd7mgRiPRizdWKaQL9Hr9ZifnwGRkhLR6/ZptzssLOzP8jTzWf5uFEUEvo+qqvT6XRzbznIeN/IlhRCMgxGm4dJoNGm1Wuzfvx9Vk7f2Y4QU9Pt9cl4O0pRWu41t2+iaRn/QR5Dtso/HY6rVKo3GGoV8iZe+f4ZCocS3vvVNfvXv/EfESYKiaTi2RRwM6XVaaJaLqhgb7NARaRoTCUkUxmiqRuD7JHFIu97AtExyxTyakeUPphEsLd9k/8ICaZrSbrUp5m3CjfzWKFEYDn0cU8O0TM6dO8fMzEzmPUIiZYhumiSpwDRNUlL63V4Glnwf27bp9bqM+2O8fB7DtLl+7Qq6qhD6CfsOTtMfd7AtFyKdm0s1zpx9jY9//KdI0ojAH+J5HnGcoCgq/f4Q389CPQ3T5Nzr53j00UfRVA0/8HnpxRd48MGHiKIYVVXp9wdYtgWAqinkcjl836e13sFxHExTx7RM6murILKw0bHv0+l2mJ2bQxUpYRiTJoLaap35uRnOnD3D5GSJUrmCFBqtTpdWs0O32+bkqRMYRubVVhTB0I9R1RiSlF57jK4pWK7D2uoqlY2NBt/3cUyXK1feYG5uJguXNh2eeOopTp0+yf79+5FSMhz2M2Z01cSytI37IkcQhkgBo1FImmYM457rIHQVqUhIkgyYxglf/MKXOHDwACdOHAcyzcowDMjl8sRxAmT3UxzHeAWHZLBMr76IUZol0Iu4qiSOUnTdRFVUWu0Wz33nRR7/ax9DCFBVnStvXGX/4TnSNN2INsg2wcI4ZTQa4loWgT9iPBpi2A6KVIiiGNPMctuTJEEKlZVzF9n3fz5P8yMLONMmqqqTChgMBpCmJGlAbiag9r9cpxxJrv/j/5S2LlAVg6ee+ibvfuQ9nL90GU03mFk4wvETh7BzGvl8Ht8PUVUXy9botOu0G+vousnczAIy8fmjf/U/83c+ME0qFLSP/JcIZbd19O62Hcztteydjt2t7lZyou22VUZuNw/b5rq+SRC03cO53cO6Wztb5Xo2/7/TeO9E4LO17e1hwZvnuv3d415e2rd6jX/cttfxbgWzb2ecW3+L3frZfi3eLgC612t7L31v9fbvtc09m7z7/EyS5BZJ5l76SXcCn3sc2ta6t+69ZOfKWyM83o6pqnpPDdz3uN63d8ju7HFVfv5xlJ9/PDuy467Z3R+s2cP07e663b44ZW29fVa0O/eXAAmul2dmYpqrF64zGIZMTU/z8LsewrYt4iimWinT7XQY+wnD/oB+v0epUkYxdFZrNWzXJIoCDF1nkEDh4Yf4325c5Oh/81/w4jPPcOQb3yV/YwX9yiK8fpmF9S5TrsfJ6hR2t4e+3qRx5nU+fPgo8miEaIaMv3ADLjWRb7RJLzTQL7RRnnwDsdRDGirJXInFAy7Wb/0M9Y8coPeeOeJ378M8Ns/KuEulUsFxHL73/PcI/ADTsYnDkPm5OYqlEqVylTiOaNTrOI5Ds9HYyPt6M2+p1+tRLBYZDvokMYQhWX6oZfPaq6/RabcpFooZG66Q5LwclUqZarWKVJRMAzSMyOVySKlQrU5iWQ7lDTZl23JIU2i1Gvj+CM0wKBZL9Ht98oVClnOmGZimydrqKp1Wh5e+/zKuY6KoCo1Gg9FomGmgSkmjvoZhGLSabdbW1sh5eVRNJwwCojBCVVSazRb5nEev12VmdporV96gXCojJXR7XUBg25nkhmYopEmCkBJV1XnqqaeZ3zeHbVkkcQwiA8qj8RhLz2RzdF0nny+g6TpxFGehxmmMgEwGxjAZ+eNbLKZSVWg2mwRhiBAC0zAQMvNcJnHKjcVFDFPn3NnX+OBj72EcjLEsi8AfIGIfwiGanSNNsnDoOPaJ4jGqYqIqGoPegDAIsC0LVVVwXBfTNEmiCJIETVPxwwDbywiP4jBGNwx03UTKTAs5iUNURSGOI2xbp9lsUiyWUFUdKRN03eTmzRqWbTEaD0nSEEVVsGwTREoU+6SRZDgcQypotzNQmM/nUDQF3bCQQiVJgGTM4SOHMG2LS5cuk3MdOp0BjuMCgjAMGQwGlIoFdFPn4MEDxHGMoirUajWefvIZTp48ies62LaJ45jkSy5h6GPb1i0JpPFozFe/+hUeeujBLKLC0FFVlatXr6IbCtMzk5mUURzi+wFRnJLECZ/93Od45N3vJo4SkgSkkoX/C5EyOTWB74/xgwApFeIoQVcURoM2pmHy7We/y8EDC6iajpAKuqahKiqD4RDLdCiVSihqdh2iCIQERZFUKhVGoyGXLl0kSVNs08ZxbcZ+xv4bhCG6bhEEMRcvXObihUtMTEwhpKReWyOJIs6+doaJiQqVyiSHDh0kSWKiKEJKiR+MMQwTTdMz4q/aMlPTVVqNLo31RUJ/iGkX0fQiqq4TRyGhP6Y/GKCoG1EZ4QhVgyAYUSwViOKYKIoxTJMgCAFQBAz6Q1qtNp/77Oc5eOgQlm0jpUqaCP703/wZN5eX2LcwjxQq6902zYLK/JcvEzz+MONmHV030A09ay9VUUSf/FBn8M/+IUEpz6FDJ5iZmSaIE04+cJqffPyjHD9xgiRJOXBwHkNX8cOIwdAnHCeomoqXcylPVBBSRWo64+GAy+d/wOkZE4RAOfDI23oBfCtev61hxW+1n7t5K/fy/V7Yfu/0/XbAtRtwvZc2t372Mra7gcN/GzyFPy6v5l7A717n0b30+aOqmyTJD22IvGO2h/mZpum9xQW+gx5XIcQdKWzeiflyP1T4vv1I7O5hK3cGrrcd+f8FcJW8CVqzRJSbjTqvPn+e+mIHRUo0I6ZYmkDTMn1TQ9d47bVX+bv/yd/jJz70IaYmJrEcizANkYok57kMBl2iOEbXTK5cvMKHP/Jh0oJD+ac+yNX3HueD/+qf89E/+WP+9bDB0d/5bf75Z/4U90PvZWW2wgVP8Jzf4tiv/iJacpnEtBDHT5Ecm0Z7YAHtoQNweo7+3z5N5/EF9A8eIzo0QfHkITq9Lq7j4HmZh9awzEx71g/otDvsX9iPrutYOQfPMXn99bNUq1UUzUCKDKQqUhIGAa7r8vnPf56ZmRksy9rQV1VZXVkm5xV54YWXuXlzZSPcEY4cPgJJQpokXLxwgZznIVVBq9Xk289+m/W1OsePHycVEEUxIJBSYTQakyQJqqrRbXfo9btYpkauUEAKiWFanH/9PIqiYFk2cRyRz+UwDYv9+w+QJhGCNHuJtzNd1ziOURWZaa7GMY7j4nkeYmNXXlGUW94DQUKn08TzXArFDCAnSbgRGgrj0RjDtJFqSn8wQAiZ5cjW61Sr5Y2XbcnS4iLKRqj1oDu4ReIUxRFSiA3m2zTzem1I+ViWAyKLmEiSBN3Q8VwX27KwbZt2p5NpvPo+qqKRzxeoVIp86EPvJxwPsG0787AR0VxdwrM0homGqhoZ2RQhihLTbPRJE0iihJXlZUzdwPIcDEOn02qhKQrN9XVSAfliAaRCGidYpoVQdeIkJU0g9EfUV1eQmoJl64z9EeVKGVCI4phWa5319TZSUTMSH01FkTqaalGvtzdkiExM06bZaPHyyz9AURQKpQK9bod2p4ftFInihEajTiFnYJgGfhhTLldI44QkhsFghOvY6IaOaWZSRoqmMhwO6A/6mIbOpz/zaT7y4Y9hWxaXL19kemaCOA5IZQCCW+Cs1+mTc10eeOAUYRQQhgGaprK6uoZhaDiOBUKgqjpxFCCk5Gtf/Tq9Xp+JyUnmZmcZDQN6/R6qpmK7FoauMvbHfO2rX0XXda5evY6mGtiaQFFSkiiiUp3A9WziOGMzLhQKxHGK4zgINWHsD4hTH8PU0E2NYqFMfb3OV77yFU6dOk25XGI4GqEIBduxsnxZVUFTNWqrS5RLJYrFPFPTE6gqrK6s85d/+Zc89OAD9DptCrkctuMyHo8Zj0dcvnyZr33ta8zvm8N1PRqNJkEQkC+4+P4I23SJQodWY4CmplhegtRKpHHm4XVdj+8+/wKeW0ZTdfzAzzRafR/TMjOGbT+4dX/2O82MKd12OXn6ATTToN/r4/shumFx7Ngxjh49zHg8wDAVhr0OTUZ4h+fwfv85lF/8IHQ7AAQjH/vJ66AkRB9b4Lm+wThMUXWP3/7tv8/RkydAEfjRmOee/w4feN/7aHfWsWwLy8nxr3/vD2iur3P40AGiJPv9o1QgpMK418bWI6qyB1KgHHoYkd45+udO9k6Hq+6l7p3W4rsB1zuFjW5v/06g8EcNXLfXuVPI8p3avtv1+HHYfeD61uq+E17FO3R+1/GkG/mwu33/ww3s6dCe6t4Hrm/T7gPXH7/tfUKKHT87PcB2Cud5s/xW8qWdiJZ2AplvgsO7fdJ069g2iaf+P/beK9iy67zz+62w894n35w7I4MkAAZJI1HD8WjkkuzSSK6yy1XjUo3GVpX9ogd7PH5yld/8pAc/ePwiiTMiFUhRgSIJgBQBkgCI1OhG7pxuDienHf2wz23cbtzbfdEASHncX9epPvecvcI+e+291n993/f/71f+w5PzYXZgP7Ddvn/QTuBbHH3gOJ/9xacoTy5w7sIqO2vLzEyNcfnC25iey0AYxGHEV37ty5TGPZSpGPZjtFXCMk2yqEeWhSTaIXAVU9Nj3Lh8BZ0oSm6ZE0cf5Py5t/ilL32B81cu8Vv/4+/z8o2rzH7+CS72e7zfanA1GvC5aot+nLLulPjBW6/y4K98kbYnSYo2wyTivffOMzc3j5AwGCZoQyN1RiZTvvf0sywtHGVjYwPDNCmUChiWgRt4ua6XMqjWxkY5bZCkERJotZrYjk0qM+bnxhmvjbG93cDzA7a3t5ieniUjpVgM6HTbnHzgAeI4xrEd4jhG65xAxTRNwnhApTLB9nadkw8ex/UtkjBlY22NTquJZSo67RY79Xoetloq5Dmrto2SJpATIkxMTLC1tYlpJJimTZoohDRG0iwpjufgB17uJZE2F85do9FoUB2r4HgOhuuSIoEhOzs7dLs9dnaaPP29Z1Ha5ejiEqahQUAqQJuS4TBkdWWVJI4YqxbZWn8fUyt8rwpCMjVZpdXu4ftBri+qNEGhiGlaDPpDBmEXxzGJowH9XhvHsYgBIY08z1QIkiwjTWNMpYjCCIUmltBsthj0esTDASKJSdMYz7Op13dwfR+pDWzTIkPk0jS2g+kWCJWN49i8efoNbNMlisF0ihhaEQ97dDsN5udn0dogMwykVNiWxTCK8UtVtG0jVR5mjZDEWYolNNFwyOVL5zFNA61tBlFEUCiRxgk723W00HRbXWqT4zn4DnyEgDTNUBoyEhzHRCpJs9Wktd2nXClTq5U5cnQJx8uvnRKSfr/FtSsXmZ2dQhoWQmqyJCUaDmk0GoRxyrPff5Yjx46iDU2z1WJjc4vKWI2oH/Odv/0epx58kBOnTjEzM40SAtd2KRQrbOw0Wbu6wtTEDFkqSRFo2+bqlUucu3COI8eOkpKSZilq5OkWIgfllmXSbPb4i7/8Jt1en1/+8q9w9OgxXn3tdV4/fZrHHnsM27EwtCIjobm5xZGjxynXaswvziNURjxMcNwiYZSy02igtD3SdRX0+10sO2cNjgZD0jij1+ljmy5KKFqtLsVCAcMQVKtlbMemXCrTaDQolQoMhj201rnkkemTIRmGIU8/8wyPPPoYluuxuDSHbZtMz02jXAfbCuj2uiNganPp4mW+8KXH2dreQmqby1euMTs7QxSHeK5HueDiBRHNxjolp8zVGxtEYUytNoGUgk6nhTY1UkAcpQhl4BQK9DodBCGkPRzbpNXu43klkILBMI/s+NFzP2GsWsWzXcLhEMe2uXblGs/94DlmZ+cpVQpMz01zPRtQziyS776B+K3P03jnPMEPbyC6Cdf+yRwFN+RMq8w//dVfZm3tGtVKgQeOL3D29Rc5/+6bPPHE53B8H8PSDKIhUhqcOvEgx45WWd9coVAoIIQGFPr//H9o/M13ePh/+n3U+FHE9MMIs4QYeVb2vu6BgmH/GemQYaB3Anq3l7vTXLhfKOZ+oO9uJE93C+nMbmOiiaIYIW4FG3tB5X6AaW+fDvp99ub2HrQO2Ft+P5B6e91ZtrsZv/+6Z6+laUocf8A6va9X7oD2DrtuOeymxO22X9uHGWMfbU11d9tvrXmnYw/6He9Wdu+xH3sz4i7A9eb5iJzI6YCl9m0Pjf3aOeRrv34ccKzYU+DjkHzdB6737R+V7Q78+H//v8ieewX1K0/dcefx1s8+GSmeeyv/ye+u7T4k0xS0kTE7P8GVS5d4+acv8ou/+AvYtoNXKPL5J57k/XPvsrS0QBzHuVSJpel3G2hSdjbr/G//7v/g13/tX9Dp9LEdh3//7/9v/smv/BKlSpFKtUoc/64LqQAAIABJREFUx1y4cIGFhQUKhQKtVp80FTz80CM8+OCDlLZfJRUKZ+wYc/PzaNMgzeDGtSvUajVm5mZZXV3D8wO0lkiVT6iGYeF7BYpBAVNrRAbhcEgUhgz6OXmR6zgIKXOZlDhGKUU4GNJsNqlU8zBFLQRxmhKFMb7vk5KyvraGZVmsrq7RarcRQtKo1+l0OwRBQKfTuUn0EscJUpg8++z3OXHiOIHvEw4jXNeh3W4jlaJWqxIUi9iWhZQCpTX9fo/t7W08z8XQBlEYUygUIS3QbQ24euUSE+MBSdyg349HOqIRQih26g3OnTvHztYm1Vo1J40SMgcEYYTvFfL81HaT06df4/HHPkujvk04GNLu9omiPJzVtV08zyMIHNIsxNACbTiYljfKC4txHO/meLEs62auUOC7KJ1LInlegGnakAn6/RAhJOEgJEszlDbJyAFKHKd0uwMc28a1Lba3cz3LcrWKZdt0uj2CQgFDaZr1HZZXbpAkMTvbOyilME2LOErIspTJiSmkVJw+c5rp2WlMQ2NbVu5ttW0GwwjLskmiEClgeXUNr1BAZnnOsUQisox+r08cx5iWSZxElCtVXM8jHAzRIzIqy3EwTIsoSXA9Gyllnns5IqDqdnoY2qTdzr3VZAJhRLhuzqJt2zDob2IaAsdxOX/+CnMLixhWHjorRtdubW0dkLz62uuYpsHDDz9MluX5mrVaFSFTLMNkaXERL3BJsxjLlHiuxeb2GsWSz9bWOguLRxBS0O312drcZPn6DU4cO8Z3v/MdTp48iW2ZWKaF45i0Oy3CMMyBPnn4++TkJE899WQ+5qIhjWader3O2TNnOH78GFLJ3Etvmli2i+t5uQatlPQHAyzLIopjqpUqO1tbeIFPu92mWCyilSaMQp7/hxdZmF/ipRdfZn5+kXq9yZ9+/U+Zn5/l1AOnME0TJXM1Uccyczkc04RMsLPdJCgGJGnC+voajz32KJCxubHB4twcWombOcl5iHDOljwYDHn88c/R7USYhs8Pnv0hjz76CK5r4jgmUTxg0B8wCPuUKhM02gOCYpVCoYBhaKI4olwuEwQFHMfh9BunmV9cQEqBVgaSXO83ClM8v8T6xhqOY2MaJhsbm4yPTbGxtsJ7779HmsQM+j1+9OMf8Ru/+ZvYlkYpwaDfx9Am+vElzLdW4XoTc7mJ3h7w0j9fpJGFzHtDJj//2whljjZOLAqFgCMLSwhh8MqrZ3jv/SsMhwMmJsYwLZMkjfEdNx/HUYJh2gzDCPuvnsHs9qh/8WGCsRkyyye7ZRn46UxFB3kRbz/mTuUPe+xBx93JI3m3uvdd0N+2yZzn3d2a7/pRwdHtQPswAPAgUHyXlvap5+A+7QLng+q+E3D9qPZRy/ws2rhbXR8FuB6mvp+J3eU6Hube+XnZbm8+7ubDfeB63/5R2e5gTv7kW9Bso//LrwAHhx7/pwxcd5+ntqNBhAgZMz+3xOnXXmd5eZVjx46TCjC0plQuYuicbEQpiUyGZEnE1sYWQhh87T98kye++AXGxyYRCi5fvYjUECYDOt0B3V4PvxBw/cYNtGmwtdnkxMmTnDx5khs3bjATvkuYwObAxLRMet0enXaHEyeOUN/ZwXV9tGGSpJAS5mGNCLJUcP36Cn/zrW8xOT6BZVrEUUSr2WCsVqNQKtJo5CzCYRTheR7dbg+RQalUptFo5nzLQmAYJsPhgDCOKJZKNHbqnDlzhlMPPMjS0hEsy8Y0NIVCAa0Vg0Gf4XDA+Pg47U6XbmdAlgkWFxaJ4ohet4NlWVSqVYIg4OzZN28Cv93JXkqJ1grI6PWHKKXzsOtLN/j23/0N/V4bLVNElmDYHlIobNtBSo3jOMzNzTI7M4PruQgEWmsEGUpZJHGCUoIgcKlUSgSFEmPVKq1miytXrxMnGZ5nUyqWSJMIpTOisEsUJrhuYRQ6m2LZBiBvTsKdTuemxyuJwzzEN4ywbR+QbO80cGyHlevL+UKNPB8yjhOUlJw+fYZiUOLa5YtYVs4oXK5WieIU03YxTQvSjDSJSeOYSrWEH3hYlk0cxVimRRRGOI5Js9miWK4wNT2FaRjEcUy33WZmehrTskBKlFBI8rDpSrVGgiDuh1y5fJliISeNunb1CrWxfIPFHnnUXdfl0vkLzM5O53qaSiKVQb3RwDLycGjDMJFCsr6+ThJlOLbLuXPnuHDhPMePHcNyDbJM89U//jrFwEKpkCjs41g+4+OzaNNGGTnrspB5iKnruAz6fd5+5x0efuRhxsfHRiHfMWmakkTDXJNz0CcIPNI4JMsgSbJcYsV2qFZrxGkGQnD2zFl++IMfYCjFkSNHmJubIwgCdna2MU0DIXOg5boejusTxxlxHBGGQ4bDXLdXG4rx8RqPPPII29ubLC0tIoWg2WxgmibvvPseE5NTSJGDnaCU5+auLK9SCApkcUhQKlBvNLEsByklcRRy/Nhx0izh5MnjDAZdtJY88eQTlMu5tmyWZQipiKOEzY1Vzp0/h2M7eF6Bb33rb3nw4ZOQpSO90zw3NhqGBIHH1uY6169eR0hJIfDodNrEccRYbZydepOtnSbFQoGTxxexrBRtJPQHLVqtFl4QoLSHsjxK1fHRhkQT09RIpWi3OrRbbUzLZHFxEcM0cqKxOCMchoRRjKFtLl28xsRkDdtxePvtt/nhD5/nc597iomJMcbHx6hUy1SrFRYXFsky6Hfa+K7L9tYWWxsbNJoNsopP8NdnEMstXlhQNGsO2pLMBxlX5DxvnHmHc+fO88RTn6fX7fHWm2/z3I9e5J/989/gjdff4p9+5Vfp9JpARH/QxrVKJCl5/rQQCCUwn/kJvU6Lyd/9HTKpSBFkiL08LZ/KVHSvwPUg0PaPAbjujcLa/V6pDwiVwjC8ycx+kCd1vz7uJePZJef5eQHXvSQ4e/uyXx9u//s+cL33+n4WZQ4DXO+FDOxnYfeB6yHsPnD9+djencs7HXOnB3fy198HuIWgCT7MInirfZjlT+zDrHa3++XWyepwwDUP7z34vO/lRhVCIQQkSQwin4ikNjiyeJSXX3wF27LwfBvXc3EdHzk6Ps0izr72KjOzc/jlKkmmeOvsWaYW51g6soRhao6dOMHi4iKe6+G6AX/wB3/A888/z8TkJMvLy/zxH32VmZkpkiTiq1/9Kv/5Aya9QcJO4nL27JscPXacsbFxNjdy/UWE5Lnnn2dqaorNrTW01tTrLTzPp1arsrS4RLFUxPM9/u7b3+YLX/wi2tAsr64wNT2NoTVpmmLoXPqk02rn3p9CEctx6HZ6ZFmG7dp4vgdC4pg2J06cyAmHkoSzb77Jd77zbU6eOIFtWziOje97GIZBnKRIaYxkXVJsxyJJIhzXJU5ylttqbQw/yBl7GS1CwnCIZdkoZWAaJpcvXwGg0dqiXt/gi1/6PEtLRyE1CYp+ziiMotPtEcUhtm0ilSIK4zykNku4ce0qCM1gMGB7ZwvHsSkUiwz6IYZWCDK0oSlVSkxOjtOoN7Ftk+3NTRAJrh2QIkilGpHmJCNgdCvTphCCK1euU6qUcT2fKIqJwgTDNIiGA/76W9+kUW/geQHFUg724ygn/ZmemqXV2qHdaREUCjiux2A4GIWfwnvvvkdQCBiGIRkZjuOQZdDttBkJ26KkQBsWKEV+G6YgBForlFKkWYZSmtXVNYaDAVEcoka5zcN+SL1eJwpDSuUirusgVL65AXluqe1YVKtVhsMByAwpJFkGz/3whziWTeAHdLtdTJ1r3vpegGka1CoVxserGFohlUWWKCqlGrPT0wRBgV4vREiTOM548acvMTc3my9i04yNjQ20MigVS3z2ic8xOTk5WvRmKJ2zSUsyDNMizTJ2tja5eP4COzsdJqamcd0A3ytAKkhIMQyTUrHI5sYGTz31JLZlj65fxvbWFuVSGcM0aLc6WLbDTr1BmmYIAfV6g9m5aQytMC2NNhRxkrK4uIjt2AyGQwI/wHVcauOTGIZFmiSsLq/g+Q5KGZSLFbIsJUqGxGlCpTKGVnkodRgNaDS2KZUDNjZX0BqkTpEyJyLKyAjDiLffeodSsYwg49ixY3S7PUzT4pFHHgOZ0Wq1UVJx/fp1CsUSpmVimoo4jpidn8d2cnkfQ2sazXoO0n2f2lgJ284IB3W6rU2UztBaUqlOIKWm201QykKqjO3NOkHBRYiMbreH5/r0el0K5RJCCnr9HmEYYhsW5y+ex3JcDMOkVh1jfWMTx7EplUpMTEwSRRF/9c2/4tSpExiGxLQ0UZTQbLY5/frrHD12HNd1mJyaplItIcd9jLfXkGFM9nu/wNh4iaWjS5jdVWpP/BZeUGVqagbHt1levs7DDz7E1naDqZkl3n/nHT73xGP4gYXvOxiGRqsg97YamnikiSv+/jl2Njco/ze/QXLpJ2Tb15BjRz7Y3bx14vhI88xB89MHET8fZt290/z9Uee5vSzA+/Vrv3DjvYBs7+d767y9Hx+E7N4aupu38QHb8e5xBzHc3smjuve7/fIc93pm96tzv77f+nt/mC1Z7rN7cbdrcDdA/XHsMB7rg36Xe/Fy32vf9mP9PUydhxnz+wHH28PP7/V3vmV1ug/4vlPbB9md+nI3YH/QuN23nY/Q7p3sPnC9b5+K3W0Q7z40DiJGuB243v797e9HtX6onf1yXD/avXJ44AqHu3kPb7vtKMgMyDRCZ9imw0R1ktXlFRAxlVqNLJM50JUgZUKlOI62HYRpY3suX3jqs0wvTmE6JrbjYFs2SlogDaamJjl+4ji/92/+DX4QMDs3y7/+3d9lbLxCt9vmc088Trl7nrS4iB3UIIPnn3ue8bHxPIcmk3S6HQzToDZWZWZmFqXMkc4nxEmI43iEcUSUxBRLJUqVEhlZziSbJDkD6wjMrKys4Jg2rVaL6lgNISWXL19hZnYGqQTK0GRpLmH42muvY9s2lm1Tq42xuDhPtVYlTROUyuUVDFOjtEGr1WZjY5OLF89x7PgRLNskzVI6nRwULC8v554kKRkMBwBEUUiaQIYgSVNc1+Ha9ascP3KCz37uM/gFD8M02G40WVm5TqFQIs1ASo1lG6RZTsOqhCYKQ1ZXbuA4FrWxcbShcRwX23YIw4jALxGFPVzPotmqMzc/gzZM+r1+nv856OO5HlmWexbFCOwLKSATJEmCaZoIIW6SPv3oRy+xuLiAUpJev4/t2ETRgDSJmJ+boVgqcuTYcaJ4QJolN8NTlZJoM6NYLNDtdvF9H9MwicI+4UgaRymNYdq59Mkw4saN61imJvBd1teXIRV4QYA0jJuLQyElMstI4pg4TsiERGpNpVKiVa8z7IfYps2NGyscO3aMoBDQH/QwTAMkOI6LUgYZGYap0YYmJc2jDIB+t08cxSwsLCKEpNvpYhgmN65dp17fplIpo5RAKcFw2EdLA0GC4xgM44g4EWxtDbh4+RJKZxw9sohreXS6eTg5mUBLxVtvvc30zBSdTpednW2EIJfdSRO21zfwC0UyBN1Ol4Lvs7A0h9CgTUWWRgwHPVqtHkpKLMvk1KmTXL9xlWeefpZCIWB+fg7LtoiiiOEwB02e57OyusL4eA0lFWPjNdqtJkKC1pIkiTAMMx/3SYplWaN8OGh3evkGTxTzH7/6J0xPjRMPY+IkAwFS508arUzIJDeWb1AsBbh2ESk1tuVARp5D7vqEwwH9fh6+XalU8f0CvuezurqaM2oHAWmaEMUJYZjf/75fwLIsTNdECkFGhlQaaRi0thqsrK0wOztDt9/jxvL1XAonHhJ2W2ysraG1R7+XYNoeSZyipcczT3+X48dm2dxoMDZeJYqGeK7P2bNvY9sWQRCQKYllmCghuHDuHMic+EtpTX17hx//5CUeeuhhOr02lUqJcxfOYRsu09OTNBrbWKbJN77xV0xNTlMoVrAdjzhJGUYhQimiQcLa0YDCb3+BYRrS6baZmJxANm/Qa2zhLjzJe++eAz2kWPB47bVXmJ6e5cFHHqPXqVMp+2xurREUAho7LSyzzCuvvc6LL7zAiZPH8+fk91/k8sULLP7+f0v4ztNknS3k0lOI/aJ/PkHPz34euDstuu81h+8wx+/NFd0LGg/qz8HezA8+39Wd3wtc77zGuPUcbwf3e8H0QWV3j9vP9oKp/cvf6k3NX/tWdYt90lIyd7J7BmR3AVefRDuHAfQH2UEbGR+nvXuyPVV+UvUftp57GdO3lL+trvvAdR+7D1x/fnY3jazbJ53bB/F+wPXWCWU/MqUPCAs+IFL6cJu7xxz02iU+2O3+h0kg5J76d8t8oOH5cc57P8sn1fyVZjHIlEotYGlxhm/9+V/Qu/Q6pck5dG2OXpSgh22wXeKRHmkUhoRJQi2wcAxJ1O+TJTH9bo9Bv8dw6DA2PolQkoWleb7z3e+QDoYUioK//7tn+NJTX6HcfYvX313Ddh16/QarayscPXqSou9TbzU4cnyJsclxlDIYhrmnZtBvYqqU1WtXcMtlXMvm7Ok3eOjUw3mOpTZRGWxurBEUPdIsY2u7yezsDJZrUCoXaXe6GNpmbGyc/DJkJHFCEsdk0qU2UaXX75CJFM/zMG0L07LQSuf5gEnGmdNnmZqa4sqVSzz44EmUFLi2AwwRaCAHQJVqmTSOaXZaWLaNY9kkUYIQKYZp5ERNSjMzNcPq6jZvvfkekxM1BDGN7S7TUzMs31gmjmLC4QDf9RAp/MkffY3JSpGdzXUK5TK2X6SzUyeJE9IsxTBN+oMBb505w+TkFNqwKFYqSKUJkyGOE5CmgmLBp9ev0xsmVKpVomFIlsRoqchEDAKUNCDLWZLbnTZXr13m6NGjaG1gaAsQSKlptZtMzsxQLJZ5+eVXWViYRykNQuYyO4bG80tYtosfFOh0e3nO76CLMhRIcn1WMlKpCZOEUqmMbTtsbm4RBEUKlTGUNpBKIWUup6KATqebA5o4xrFtHFMz6A8IChV6/SHbWzvUJqqYVk4uFMcZUpkoZeT3owBDKogF3UEzD6cVijSFJM1ZkqtjNZAZpqmxLYNypYSSBmnSxzQgihOcoIxQeZkoiuh1+mxublOujPPMM99ncWGRcqnE9vYGtm2RpRGWo0lFyuTMDL1unqM9Nl7FcmySVJBmAsOysRyXMBxSLrkEvoUwHJRQKARxGOayRUpjWgptZkiV4fk+s3NLVEoVpJC0222EKbGUhcgkruvT63bxPQtFjJRgWCYIQZZCHOVSSOfPvz8iu3LzzalUYVgGQqWk6ZDjx49SrU2DUBiWOdrsynDdgDCO0FrjBz5RlNJqN/ALHkJCvzdga7PBhfcvYZsu5967yCs/fY3FhUV814MspVQq4no2QiYMwg7Pfu9HXL50kYnxcZ55+mmWFo4AKUqZKGVhGBZJNEAozU69ge+XKBbLCBRhf8DG+hZTc4uEqaQ6MYUXFNhcr+O5AVpDqVTAtn3cgodUkiRN0YbN2PgEmzs7BIVi/owWkkxIKhM1Wu0O1VKVzdVN/vzP/oKlo0cplX0KxTySo1qe5MjJI2hDo7XCDwo88tijRFlCNBjywk+ew/VylnTLcUllBtpAOS62G1AsV1m9sYGrYpR2eHenxFf/5Ot87tGnuHDuIk88+RiXLp3nL77+p/zw2e/z5S//KrMzc2htUiwUiLKUl195EUg5euQIpUIR9b0fUd/eYeK//6+Jr75GJgQsPYEUIgeqe1+HtNu9T/vNTwd9tvv5h+rEHHVhNJ9mGsQHC/6Dwmw/qt2LZwx2tWKTUU66gkwiRX6d4zi5Oa9LqUbz//6b67f/Nre3e7sH9fbv9oKg28tLKe8AArJ7vdwf6uMnYYddwyilcm3RO6yP9vNaHpbA5+Ocz37nsF8f7zZmU7KbK9G78GZxGz9Y/oi6Q99u+WzPax9u0H3P4ZaNlnyvcpQ2kv87qPx+Y/P254bczbXPGO2ssFvrgTxOHwXs7mf3get9+9TssDto+z0EDvK47ql9v5oO2bPD26736marB+wm7xd28qmYyB8KEoGhNL7vs7q6wrW1dZYWlyAJydKUerNFqVQiGoVWtlotICZOEsIoxnEDvv333+F/+P3f51//3u+idZaHqWnFQw89zES1huMaKGnzwk9e4YFgA39sjsrYGLXxKuVyGSFy1s7puZmcATVNuXDuAo4dUC5XcF2POM4YDhOCYpFep4uWOgcJ/T5JmuLYFv6IFMY07ZGkC0A2Ivqx6fUHXL96naAQkJHrVub5tBnNZoNKpYznebz39rsUSkWkkKRJwtraGr7vMTE+ztr6OkIIisUiQRDkpDI6B3GO65Flef9zTxAjrVCR91nlOaRSCHrdDu+/+x4Li0tkWUax6BEnQy6ev8yZs6c5efIEtm3j+z5RFPHTn77MsWMncGyTarWMFwRkEjqtFrbj5JIjMvcMl4ISg+EAL/AZDIZ5jptMUdJACTVabEEmFHEcY9k2UsmRhzcjiVN2N2+SNMU0DRYW5smyNM9LJSMj44Ufv8DxE8cRQtDt9qhWq9iOdXP8xnHMxYsX8Twvz8kVuU6pZVlkaZ7TaJomYRSysrJMqVzOwaRW9HpdMjJM08C03XxyEqBIkSK7GdLseR5SKdY3NvA97+ZkNwwj6vUGr772ChMT43iey9raBp7rowyJlOJm3m6cxLQ7bWzbHXkDU9I0o1YbIwyHaJX3czgMWV9fJ00y0jTC9VwsxyVJgSwFctIe13WRQmDZNpVKiUo1z+Mc9LtIqRgOh0ghaTU7dDsDyoUCSZqgdS64fu3adbTWlIKA4XCINgx2trewbIcwylBSsXxjmbXVdeIk5pWXz3L06LH8eiWgpEkSJbz15ps4to3t2pTKJXqdHp1uBxA8/fQzI13iAmmW5tdeKQR5rrDWJuVyGddxePXVV5menuG1V3/KzNwMvX4PJTWv/PRlpmdn8hD6OCJOIjzPBgT9/gCtNVLmC81CISCOI3a2t9FKE8cJq2tr2LbFiy+9gOc5LB1Z4vTrr9HtdqjWqmglUSpf2NTGJnnwwQfwA5+TJx9AKoNBmOsGp2lGs9kkikJMU1OulDBMSZKGeJ6NbZo0W7nWbBAURhJZGsuycRyHnZ0d2u02lUol/x1Ezmy9tbWN7/kUfS8fd2lCNOgx6DYxLZtSscjO9g7Vag2lNYuLi1SqRSzbZGenyde//mc8+ugjRMMhaRzR6XSQQnHhwgWKxQKB7zM9PcXy8iqFYpkszXjxxZdot9r4vkev1+bsmdeYKdukykDNPsbG5g3On3ufL37pSZSSLC0eYXHhOM1Wg+npaYJCwNVrV9GmieMVWFhY4MSJE3ieRxRFJH/3fUhTxn/3twkvvYxAoJaePIie6XBTySG8lB+1fN6dPaz7N1e0ud2LTMi9embu5BXOF92QJCmDwZAwGt5k4N1dTO+SNt1pcX0Y7/PeNcN+YOyjgPiP46U6qM2fRT37ee4/6frv1T6psfWRVqQH3TqHaOew9e1XlxDiZkdvqfuA8ndq/+Y13Tfv+tMdx/eB63371Ow/BeAax/HNyXZ3EtpvIrudCOHTMilGv5cQaENTrlaZOP4o1y6+xzs//T5Lc9PowhiWaYx2l1Pa7TbVahXPDTAMB8PIQcqx48f47d/5bTJa2I4esZaaJLGgsbWNUvAfvvrn/Kt/9d9Ra7/CoN8lNjyiOOLosWNEUcT5cxeRSpKJjAsXLnJk8Qiu49PtdjEsC9O28QpFJBKpFEma4HgOhUKA69pIRc4krA1Mw0BrRZbGkOUeHqVywPDWW+8wOTmBUopeb4DWFmkSs76+RqVcIQljbDsPW5UiD/WtVapsb+8gpMRxHKojVtw4jtne3qZcLuWblZKb+ZYb62v4QZCDgjhm0B/QqnfY3tzCNDRZmjA5UaM36DM+MYFWGYNBB4CTp45TKBUQQqK0Safdp1Ao0et3eP+995icmsINfKSUVCtVrl+/DlmeH2oZJnEcs7yyQqVSpdPp8r2nn2GsVsHQJufPXeSNN84yPT2HX/DQhoGSRu71F4JOJwf+b775FkpJgsAny1K01li2SU4u1UEryfT0NKaRe19zMi+FVB/kdQ2HQ4IgQEqFlPKW3FnH8lFKs7xyAzVijnZsj36/RxzmupNKSTzfBWWSJTE7m2tsrq1QLQUk5JtAYRhiWRaOk2vjOq4LQmIYmvGJMRYW5+n3eziuSxAE1OsNtMq1aW/cuIZU+S6+6xUYDEKyVPDue+/z/nvnmJtbwDDzfF0yQbvVxrZsNjY3WVw6QhSnxHGK1gqtDXq9HvX6DoKUcrmM0lCrVTAMnW8UEFMrj/GNv/wG83MLlIoVfvD9H7EwP41j21hmHmf7ve98j26ny0StxM5OnUKphGHZrK6to6TFztYOlUoVNWLSXVxawrINet0urpdv2Gxv7LC6usIjjz6C7ToMBj2EgMFgyGAQ4Xk+lUqV7e21XNNXaZQyIZUs31jl+ed/zNzCHO1Wk8WlRTqdFjMzk6QZZJlASc2xo0dxXBsEeRi9kvR6XaTQeJ7HcDjgypUrhIM4l5/xXCzLwrZsCoUiR44sEBR8HnjgJJ/5zGPEcYgfeCwtHqHZbJCmKdtb25RKJYJykUxmCKXIhORPv/bnLC3NYVsuSZzyta9/jYnJCVw34NVXX2Nhfn50zw8wlGJ8fAytDer1Jq7r89675xgbG6PfH5BlGePj40RRzJXLV9jYWGd8fAzHduj3+/T7KUoZXLt2FdM0sAyTKIqIw4hSqYQyTMYmJigWfIQU7GxvE8UJlXKFarnM+toKWZIzY7eaHS5fusKJk0eoVis4jsff/M23CYIiz//wOTrtLr/4S79AqegDMSeOPYDobiIMhzfWM2ZnZ3j88RNcuniRTmfAWG2Ks2ff5tq169i2w+Of+yzVsRqmZdNsdVhZWcH3fbTW3Lhxg+HGFvbxWcwvPEZ27TQg0AtP3rvLjU8LuIbk87ACEhDR6H1u9xJLM5p/AAAgAElEQVRK/EkB1725ulprkiRFitzT6vnuBx6kPcA1TZM7tn+n7/aTwdnrabqT9/lOZEr/XwSukG9Y3geuB3/x/zfgethj97P7wPW+fWq2d5ftoAf47jEfskYbsTCDeOzUAQP78I+Je93tA256Ww/Sdbs9bOjTsFtZAT847zRL8/AUw+Thk8fYWV9jbXWNQqGM4Tg3J0jHyVlCozBGa4MkSREjkBCGIcNhB98vkCQQDiOefvpZvvTUU5w7f45XfnqGp556imrzpygFoVXFsT22tupsbW5RLJWZnJ7Csi1mp2cI+0PiNMJyTJIkBBK2tjbQwqDf7zEIQ8rVMhLIsoRMgGlYxGHM008/zeT4GINBj52dOss3VpianMLQgiNHj9Hv98jIKAQFtrfqZESMj40jyRcf9Z0dCn6BYZgzv77z3nuMjY/THw7xfJ8kTciAdqfDMBwSDiO6vQ5BIUCqvA5DKYTKw8XC4RDXcbFdl/HxcZI4xjQNMiEJ4xDTsEdMsiG25bC1s0OtNnYT8NXrdaampwkKDvOLixTLZeI4xjA1aZZhmSadTgfHtul2OnieSbVWwbRMzp0/j2M7zM5No6Sm3eliWxaFYoBh5jmHN8PaRE52hBDMzszhui5pmmDZBiLTdLs9pBQYOgepSmuiKObixUt4nkuafuBp2AWvjuPkXs04Joqi3Bst86CgOImo7+xQq1ZzaaIkB0RCCF586SVq1SqGYSGlpl7foRAURkzPBnEmWF1dpVgqoQ2Dfq+HYebh3Z7noQ1No5GDn6AQIKVgZ7tOuVTh+pVlSsUiU1NT7OxsMwzDPB/z+g2kUkxNTSOlpFwukxIxHITEUcKVK1exLJfJiTGUYfPNv/5bLl2+xImTx9jV563X65SKBbTKpZzW1nLSsUajzsTEGG+cfotyuUKpXCJNU7RhUKmU2N7ezkPMs5RHHvsMc3Nz2JaJFwR5yLUWhMM+puHwjb/8Cz7/1JN4nott29iugiymXt+mELj0ew3ee/sicRqzeHSJMBqys73F2Pg4SZJy7vx5Ll2+xGc/9zhKSrQ2ieIUbZqQ5vdFoVigNlZFCHLpJakwlGKn3qJQKI1SB/oImd/7aZqOHGMGhjJIkpAsTdjc2KJRbzG3MDMKXRRsrG9imhYXLpynWCziuu5N9mrP89jY2KRcLpMkCYVCEW0YgCCJYwytAUG5VGZza52pySnSNGOsNsbs7Cy9boiSmkKhTJJAFGaYhiJNM4bDkK2tLWq1Gt1uj3K5PCJOC1FKk2WwvrbB5uYGlmlgGJpr167RbMfEacbkzAyW6yFNC9vSZOTApdls4nkecTzEMDSe52NZdk64JQVxElMpl3nhJy/S6vTo9YecOnUc13FoNBocOXKU8YkJbNPADwJKhQKNRp3r165SKkzS3lom7GxT9x/nySc+T7ns8L3vPssv/sIv8/rrp3n88Ud56ZWX+bVf//WcgK7f4/rKDRzbY35+HmOUG6615sXODg/9zr/ACXzSq68hMoGx+CT7Zd3dCfDcHuZ3+/cfxfaCrF1zHIvhMMUynZylXAty3dQP9+P2snttL+jbCzj3/r/feuJ24LnfAnk3XDVNM65cuYpt25hW/mys1+skSYJt2yRJQr/fw7btm3XvrgcO6sd+v89B573fNdk93712+9rjMLmW+fmlNzevb2/j49hBY+hudifP9X75t4f12h3Uj33B5W2EWvfqZLh97AE5idrtv+9BecXi1rL5Rx/juuwHhPcZW7vtfOi32ac/u3Y38jRx+9+HGF/3gesd7D5w/fnbQYDxoMnl5vePn0I+fgo4aGD/bIDrx92V/iTslg2AvczJIs+rsHXGII6ZP3KKtbUN3nzlRY4+9NiInCU/XimFUjZxkuTetZGXVGlJOIixbR/LdNjY2OAP//APScOItbU10lTxy7/8T7DWniPDwKoucenyVSYnZvjLb36TVrPNqVMnUVpBmvGT539MsTKGZdqQZHRbPbZWcx1UPyiABMsyiKIhzfoOjh8wHEbcuH6Dt958k0cfeQjLNvBcn7m5BYaDfs60qyRh2KdSKefhzmFIFA/wHA+B5JWXX0FJSb/XZ21tHdu2KZcrGJZFq9VGG4rl5WVcz8UPfPwgwHc9fN8jTnP9WNO00UqSkCKVotfp4rku2tGkSUKv18eyHQzbxjQN2s0eWZqSxBHFYpmx8WkGw/DmtfJ8D6UF2tSYlkO31+Pa9WtMjOVSKNow6HY69LrdPO9E5ezRQggmJiaYmZ0hiWJWVlaZX5ijUAywbQOhVB5enGUIKYnjPDRP7MnxjqIhSRoTRxKlNGoEpqXMw6ijMOHq1WvMzEzjejkI3iXIMow8lzTLGIWNSobD4YiROUFrNdL67RAERS5fvM7lS1eYmZ5lZmaWoFDCME1SUuI4wXQckJruYJiz/RYKCCEIwxDTsjAME8d1ycg933ESkSQJhmEgpcC2HKIw5sfPvUCz2aRYLGK7Lp4fYBgGhYKPaZq4jkOpXMqJmlS+ISKFwjAszp59k2PHjqBMB23aFAKfyfEqSZITs3ieS7/XwbZMpNaEwxglDcbHxknTmHZnyPTMNLXxKtoyGJuokaVguQ6WbRAlCULr3KOfpGQil9OIB11IY/xCiempSWw71wju93sIJHGYkkQpjpN7fCzDY3FpEWkoHNfBUAqpDRzXY3JqgkcefZhB2GZ7vcnrp89QbzRYWFhACtja2iATOfOuaRj8+McvcnTpOFE45JVXTnP12nVmZsbJsiFae+zsbGOYJpcuXeHMG2/j2BZhNGBlZZnFxUWuXb3B+OTYaDxkGNpgY2OTsbFxXNdDSkWv1+fatet4ns/29jau67K6ukK1WkUpTZpkGFoz6PXI0gQlBbNz85AJ0iTjJy/8hCNHFrFsqI1VkFJw7do1lldW8FwPJTX1eoO5udmbHlWQmKZFMtJ8zrIMQ5tMT0+hDYVtWZSKJZ5/5hluXL3EqVPH0aMw84w0J1SKIho7dXzX4/ryVcrlCmtrayMGcUkmJa7r0Gq1mZyaplCq8NAjj9Fq1Hnn7beZmp7MibImxqmWi2itGQ7ye79aqeUSWllEwYg5FxapjZWQKJS0KRRK+L7LMGryq7/669QbTRzPRSjF+Pg4lmXfBCj9fh/btjl79ixPPfUZlGmSXHkNgcCaf5Jkn/Xk7vy0n8dvr93t+8PMS7fXEw5jSG1ee/VdHMfBda1Dg4q9tjfMdu/xewHHXiB5UN37tbObbwniZl6+kLlH0HXdEZlYvtlrGHk0RavVuimRs0vodDcgeLd+3H4utzIFf8AMf3tbhwFb+21MfFJ2t/F0L2DwXsbiYYDtQZ9/XOC0b5n91rHigPPa1+P6yQLXj3ToXcrfafzeS6/vA9c72H3g+o/D9n+QjRbbAvYSLO2lqr/zg2y/naEUIbitznvzhh60G/ppTQiHIbMavbv5Eog8nzM1SQ1NZgjGqkXefOElDBUzPlYjynKvS9JtM5Q+JhnWsImdhWysb2HZJUzPo9cbIDIwlea/+pf/kpdOv8KDDz/K5uY27XaXk+ZVpGGz0lXMzs7TaDbQSnDs2ByTE+OEg5AshfHxKWxDIxG8ceYMlWqNdrdDJna9fXkuZKfbH8lgCE6/dprz77/PP/vKlykUfbTpMQgjpFIobYBUIHLG3DTLc1wt20TJnCkUkTE7N4swTIKSi18M+NrX/oyV5WUWF+bwXDvXwHQcCoUCWZbx7jvvMhh0cB0XU1tkCfS7uUdXy1xXNE1yTT9LOSAESiu0aeQkQ4bB2dNv8g/Pfo9TJ5dQQhJFKUkcMxwMMA2D1ZUVXMchA/qdLoNeG1ODbSkMbXPh/Hl6vT5HjhzF9TziTOL5eahxHOehy1kMYRjT6Q5Ik4zA8dEYxGFKHMYkUUK72UTbdr7jKwESpIBur8v3v/0PxPGQiclxwmhAnOTgsdHYZGZmDNe26LTaOF6u6ynJyRXazQaGqSFLGfT7bG/toJTGdnMZFMMwUFrlerj9PoiM8YnxvA4pcy+LSLGt3HOxSwIhtSDLJIzAsFCQxEMMU4/kbmJsx+X6latYhoUSipUby/i+h+XZTEyNUawUGIZdLMsgAyzHQmpFJjKSNCFJYqKwh2WbaG1iO7uhriY7mxvMTo0RuC69bj/3ohugpMRQLtqQJPHgJovyMBwgpUDpDMNwSFGYpkAh2dnZwbFtBLnXWyKIwwiyPNOYNBnlGtskSZ9qrUoYDTG0SZKk9PoJtuviej794YB2p8fpM29y6sFT2JZJf9DFdi3CYcKFC+cYnxij0WxAZuD6HteuX2VycoIkjvE8lytXr7KxcoWFuVMoZTI5MwFKoZVgMBjQbNQ5dvQYcZJiGDZZJhj0h1SqVX784x+htaJYKDM3t8TqyjorKyscWTo6IgFLGAz7rCwvUyqVWFlZpdPu0m61OXnyBGE45D/+6dc5dvQ4tVp1FDKc0A9DHMsiI/ec2q5Lu1mHNOPZZ37AzPQMZ06f5dixExiGyeXLl5ienqJcLkAyxAsCwlgglY0UEkNJ0ixhGPY5f/4cL7/4ImOVSg4MpebCxctMzc4QxiEnHzjB4599iJXVyxQLNnHUQxo+QiiiYUSj3qDgB1QqFp1Wl2a9i2f7rK+tUK4UCIcD2u38s2f+/nuoVOCXbIIgoN8bUvSKaKG4cX2ZqekpEBlTUxN4joMyDXwzY9Bcp/rYb3L98gbH549SrJZIFPTiIe+fu0Sr2cA0NO12l/nZJcIQ3nv7PP/z//Lv+PJ/9hXSNKRW8vnRH/0xTz72BLpaJdu6jLBcmHnoFi/PR/WqHbQYPewm777HZAZSwTe++XWOHl3C94tAcsfQ173vd18Hyd7ten8O8qbu/ex2IpndcrseSyEgI0HIfB0ipUAIciK2LB39nb+UUjfz/XfbOShf9/Z5/KBzPOizvf9/+Pi9xJHiQ6+cm0Gi1Acgcu+65fa2PwoB0mHtMID+MOPro5Iz3Wmdtve4/d7fqb7Dts0obFbefH+HMjdfH/zbz/Yjcboj6xEfjL9d0qQ7HHprh9j/vG95n93e9/3b/ijr4ntxKt0Hrvft52QHMcuNhMCvLJM12ohS4YAH0H5l9xv8n6539Gexk3k3kwlARiYz+u0289MzbKxvUG+2GZ+cRShFq91A2xJTDbCMkO9896+JRcb0/BRJJlldXWFtbZV2s4nt2Bw5eoL/4jd/k//13/5bZmemKddfJhOaM5e38rC4UonZ2Wks2yZLYWVllQvnL3Lu3HlWlpdJ05STp05i2xYTUxOUShXMUT5dBpimidZ5Hu7MzDS1ag0hJKZpoC2D4XCAbVv5RkQeV4xUOdNjp92hXq9TLFRGYyMPiXJ9b5RjqfnM45+lWCxy+fIlSqUiFy9dIopyxtQ4jvF9n2JQpNvtIoTAsky2tjYplIpkWUa336dYKo5kVhRXr16hUi0jZE7ks13fxNIW83PTRFGPDEGhWGF7e5vBIJcKsSwL3/fp9rtkGYTDkKmpqdHCwsS2bSYmxun3+5x7/xyFYoFwOCRNIYoihID1tWWefvZp6s0dHnroJN1ugzhOSZI4D9ksFTEtA8MyyW6GhuXe13AYUa83OfXAyVxOJstIk4w4TQkCn16vP1qMaZD5YkerXVkVjTYsOu3e/8veez1Zltx3fp/MPP5cb8pXdVW1NzM9BpgBCXBJkCAYFLlLkSClFQk9MBRSSIqVxFXoL9AL9aBQxK6WeljELsnlglwYigDBHQAzGIyfwXjb3kxXd3l//b3HpR7OrZ7qnqrq6p4BjbZ/HTei+t5zMo/NzO/PfL/4foYf//gZms0W4xOjdLtdDGXQaDZAQKFQoFgsIJVEGSrlVkzn7r7maKqvapoWCE271UFKhWkZmKZBEoa4jkO73U1Bn5TkszmUTCOHS0vLxHHM9PRBmq0mURTiem767Evj5piR+qn6ZGqJxjAslpdX+pq+LmjNysoK1WoFrTVRFOF7PqaZMouiJVEcEAQBK8urWJZ9M+26tlnjT//s3/PoI49i2SkZUiaT5fXXX6dYLNJoNDAMg5dffplGvc7g0CBXr16lUimjtabZ7CCFot3qEgQhYRhSb9Z56qkf8uDpB+h2O9y4cYNjx47ieR4IsK2UMdgwLHJ9YrJXXn6FCxcuMTw8zKlTJykWi7iui2WZDA8NMTYygMZAiyT19wiBoVL5nqHBIcrlErZtIaWBaZh87WtfQwrJl7/8ZcbHR3EcB8NQnDl7hsuXLzM5OUmjUafXSyWZhoaGCIKAkZFRrs9cp16vowyF57k8/tnPUSwVieMIw1BIKcgVCjRqNcIoJJPJYpgWnmvTaLY4deoU1WqFQ4enmVuY59y5cxw7dixdfEvB5sY6+XwJaZg8+eSTrK8t02w2qAyUSRAMDAwwNDhEJpPh3MULGKZJtVrF89xUEigUmKaN7+VQysGQHlGfhE0pxfefeIIwCBgaHgCtCMMYpQRXr15iZOgAOhHYts1mbZ1COUN5oEAuV2BpaYl2q8Vrr7/G9PQUa2trDAwNskVEtLmxgWnbEDYJaqususd56cVXWFie5YWXX2JxeZ6TJ44zOjjE8ePHmJ9fYHJyEsOUaDRP/uBJJg6Mc/TEEfK5LDoOmf6T71M4exX7t76MHjyGHDm5NWl8avPI1r6fBLgayiQMAx577DFy/cwKSHbdfuv723/bC2DsBsLudHx7gZnbwdxOC/C7JZb6pGuDnUHx3umtH+2zM3j+NKKNd+7709nup9HmT+vc4d7Tjve0TxSE/aRh2L03u5t3747t3geuH9l94Pr32fYGruH/+n+QPPc66jd+6a6B660T7z8M4Lrdk3y3pkJIg1gCz3epDA6iuzFvvvUOnW6b0YkxDMdBiQhFzML8HIVigekjR9FCQqzIZbNks1mKpRJagKFcfu93/ylnPniXTqfOVHKVSBgYxQnqjSYDg4Osra+ipCQIQl544QVy+RzdbodDBw+ysbFBrV5jcHCAK1eukM9l6QVdjH7doOt4zN64kUa0hCSOEwr5PLIvxbK14E5TYNNo+paPT2vNBx98gGl69DodLl26QK22QSbvYygTncDa6jovvfgSKysrHD9+nMWlJZrNJoVCAcMw6Ha7JLFAKonT13Ot1TbIF0oYhkESpxIppmWlEVgl0jTPfi1poiPKpQoZ3yXRIUIqPC/H8soKvu9TLBaxLIv5hQVKpQJJrPE8nzjSdLpdNjc3MU0Tw0gBRL5QwHWdmxI+lmmmuq8Lc5x64EEeevghLMsAHfPe+2eoVCuUKyVcz06vl5QILUCLNPonFEoZHDg4wdLSElcuXWHuxgJDA8Moy0AZ6XPb6wVpSrCd6symDgLJxvoatp3BME3a7Q6Tk1OMjIzQajfI+CmZje+lbMBax1iWgVT0CaEUiIQ4FsxcmyFJdBq97AUIofFcP41iSEGn02JlYZFcLk+30+XP//wvOHnsBKZp8ewzzyKVZHxiPL1vZgqQDMNM04xNE9O02dzYhH7NcNDroZSg2wnRWlNv1HFsE9tOtX8b9Tqu67JZq5PL5Wi2OoRRD9t2WVxcxnVMlFSUSmW63S6WZZMkGt/3ePyxn8UwTYKog47Td39sbIzNWi2tiUsSZmZmKBaLlMtlgj4J0OXLV6jXuuRyBUzTIuP7WLaN65scPDiN6zq4rs/g4BC2bWCYKaN1EIQkCamusZvWUz//wgtUygM8/MjDzM/P4XkeQoBSkjAM0UQsL6+TzbpImSCEgdZp/evQ4BCbmxtksj5JrEFoxsfHmJqeYml5iR98//tMTU7iOg6VSoWTJ0+Sz+fZ2FinUi2RzWYJwhAhZV9jNuLy1cscOnwI0zS5euUqP/jhDzl9+jRWv35bKIXnOvS6XZaXV8lkM0gjfRdMy6QbdJhduI5lpBkDpmnwF3/x55x64BSlUpEkSQHDoelptI7TmlLfQhmphrBhmJiWzcBghXqtgedn+ozSgqXFFfxMBst0aDUDZq4tgIrxXY8kSXjn7XcYGR0lk8nx1I+e4dix4/gZn5GRIZr1Bq+88hKlUqo5XSgXiHVMHAqiKGLywAS2a+O4Nqtr6wwODrK2vkYhn2d1ZYVMLkvYrKF6GzzxQYt/8S//BZ//4uMcOX6Un/nCz3L+/Q849/b7ZIo+nmfzjW/+B44dP4bjOmS8DCdPncDLeJiGSRKEdL/zFPlCAf1rP3/r4P8JgOtudYWfBLgmKY8blpWSzZlmX8t6j+O6F+C6dfyfFLju1PdOaat3Aq13iibfi+3c5t4RyNuB6+3Rx53OK47jTyXq+v8n4Ho3WXVb294Hrvv77dPY/j5wvW8/VdvNy7kduN6a3pF+F3/3xwDIf/LFXVr++KS106CURnt2n+B2So2406C1n1SYe2FO3Ou37eQTW3az1ob+ICUkCRBrweDgEFJJnnv+WSYnJ7Edn9Z6C8v0yWRKlEoTaOURJw6dVg10QqNRx3ZsTNfGUiZxFLC+vszx40fIrrxBrdnhBy+/z8/93M/15VEs5ucXyOcLnD9/noPTBzl9+jSe5zJz7RqHDqcRsk63Q8Z3OXv2DAMDQ0RhjJJpdKFYKvHDHzyJY6XpWaYpMR0HSNmGBf30Lh2jDKNf12Rw4MABZq7d4IXnn+Xhhx+kWq30Aa8iiTVf//qf89hjj3HkyBHarSaHjxxhcHCQ5eXlvkRKj2eeeS4lQbFMgqCXEjAl/WcGcBw39XD3pWXS6G9KNtLuNHAtn0TH2K6F7fjEGvKFAgiQSmI7DkopHMdhY73G+to6cRyzvrbG4NAAYRgSBAGO6/bBdIelxVVeeukVDh86CEJjmTmKpSrvvX8Wy7SxTJPx8QkQAss2McxUSzXVSU1oNRu4jo0SaY2cVALXdTENk+eff4GTJ0/heE4acYwjMn4OqVLgK6VEJzGmaaU1ppZLHMUpuO6DxjAM8DN+GrWSKRtxr9fFNA2EgHa7lUrEKIMk6afnJUl6XQBDyX7+k05lj3RMu9HCsixc18N1PUZGR5AoOt0u+Xwe2zb7wFjQbLZYWlyhVq/jZ7zUIeB6GMpACI2Saah3fb1GHMcMDlaJ4hCpBEZfpzaTzbK5USOONX/zvSdwXYtqdRDHdlEG2LZHHMfU6w0ajSaO47Gxsc73v/8k0wcPkeiQoBMQxBGmZWLZFn7Gx7QsDkxOYpkmzWYT23YIg5BXXnmVyclphBA88cT3MS0zdWzYBgJBGEbMzc2ntaQilXVJF5OKVqtJqVRKdSbjiIcffpjRkXE0mqeffppDhw5hWSZKSZ577jmmpycxTRfbMdjcWKfXjajXahSLJd58400uX7nM+MRY/7xs8vkckLI8n37wATKZDKaVOlQajTrdbo9qtUIchwRhkN5z00AZBnGScPz4CZQSKEMyODDE8PAQKysrlIolgjAiQWNbaZlAvpDWpyslCaOIei29h7lcloyfZ2RkGKUkJ06cwHZsmq02WmsMpThz5gOyuQzVwSpCSoIwxDJtTCVZWV7B9VxKpTKu4xIEPWzbIlfwiOMenW6HF154gStXrvKZzz6CAKIwZGJ8nKHhYRKtOXz4MI1mC9dz0next87xk0fI5vIIafHOO+c5cOAo3/yLr1MsFqgOVCmXSywtLfHss89z5NhRKtUqSkniKCHRCa1eQjFcYOhzX+V7f/M9/ud//s84cvQISIN2vUO1VMXNOly8eJFf/vKv4GcyaAQz164yOj6K7TmYyqDT7KC//xz5Qh5+/RdunX/2SPHbzW4HMbvNo3u1uRdZi5TiZqrtR+U7d7/IvT1VdKdj2SIg2l4Teqe5+fbz2On8t4PjOzH8bs3Lt293p7rN/d6vW/f5aD1z+7lu7397s1up0Uqpj/W3H/C/U187/b69za1+dzvWvc/x1rTpT1Op4U79336Mez2bt++39bxuJxPbbZ993/f9bnbbMyDErbD1jn3v0c8t907f+v1u2wLbUvLvzQm2l90tcP10k+Hv2337FO1e8ut3srsZZP8ubesYQ8lNkg6hJWiDwDA4ePIYv/d7/5TXXnyeTq1JOe/j2gqtDAIBCRJpCEwpmJ29zuBQFT/nIw2BMgMQPb70pV/kzTffRCPJFiv81m9/hTCKkEph2ja5bJ4rV65SKBS4fmOGldVlZm/M8jM/+7k+uYXJ9PQUSmoG+7Wwc7PzRFGEY9t861t/xeDAMIcOHSKX87h46RxhkNDthAgUnU4PUCRxQhzFKKmI45gkSThx8ij/1e/+l+TzOZIkwTTT6JhpmjiOQ6PRYHZ2lkKxRBzHzM7O3qxTSpIEoUALTaPZIoohCDXSUMQ6wXJsgiiE/oTUbrfY3Nyg3W7TbrewTYdOp8fi4gqOm8FyUuCCgEw2i+04/b8zXLhwhXa7w/p6WveXL+RQSuG6DrZt0et12dzcYHFhgcuXLnP82Aneffc9wiDgueee4+qVKxw+fIh2p4ntmARBxMZGDWWYaCSJTiPRlmnhug5SJoRRkyhqomNotVoUikX+u//xv8fJeqxvbPQjxBniJJXMSRJBFGlmZmZpNjtkMnkSHWOYijgJMUwJRDej0Uqm0kZSSDzfZ7NWI44S4ihJyZTCiCSJyOUyFEsF3njjNbSO6fUC1tfXCYKAKAqo1TaxXIdYJ2gBJx98gBh47bXXsS0n1XgF5ufnSHSI73v4fpYfPfVjlFQoabK6skattpkuHknBerVaSYlWwgjTsLAsl0SnAFpKxfDIaPq3MPD9LGEYEUUR7Xabbjeg1Wpj9hmOwzBCCMnmxmaqn2s5/Omf/juWlpfQgGlZfVklgUanDMWFAtlsDpAsLq6gdUSr1eCxxz7D2Og4K8trdDsx167NIoXBgQMTaYqrNIGUfGtlZRHXtW4uzLeIshYXFxEIjh8/fnMMSJ0UCjCJ4oQoishmsni2l5J4CcG5c+fQWhOGYZqSb6QkRTMz16hWK7RaTUCzsDCPEFAul+h1uz525HQAACAASURBVAAYymBtbQ3LttJ6ZAHFUil1FilBEKXR9Hw+x/DwMP/m3/4xruuRyWSYn5/n0uVLzM/PIYREaEl9o0HOz6GjBNs0txHJCTKZLJsbG3h+jiRJnRG+5zA0NEBCgsLENmw6zQZJFCCSHtJQRFHIW2+9RRAEtFstkljTbndo1Os8+OApvvKV/xwSzdLiEnGSMDI6iut75Ao5PN+jMlABIen2YkwnT5QYBGHCwsIib73xGmvLC0xPTQKa5eUVOt0Ay3b5rd/+CvlCAWUa/bFR9h0Nab7I4sIyX/nKV3jl2Zc4/8FlLOny6uvv8fTzr5LLlnjo9GNkMyXQCiUtHn30EYrFAlEU0e12aTZaN1nDoygiePaPCJ79o088b9zLPneeG5MdPp+s7/0c1xZIup3k6E620/Y7tXM3bd8OZn8qkbi7sJ/m8ezWppSSZrN5TxI4t7e/HxblT8u2n0+SJPvqe/fgzN+ebUnW7URWdt/uR1zv2z3YfiKuH1n691bEVf3GL+7Y5k5e3J3qXvYTcd3pu086wd4ri/FOtlsEd+v/kdQgZFqMr9OU0dg2cF2TYi5P0gto1Dq0uwsUy1kSkYCRkNAjTrqoSJDP59GpSGxapxh3cB2XK5cv4zlZhpM5kvJBDMtjdm6OF198kYMHpwi6AdVqlanpKarVKvl8Hss0qdfr2I5Du9NK0yuDDoVCiatXrrGwuITv+ViWxezsEl/8hV/g7bffYHhkgGq1iBYOcZxw9sw5avUGruvhOEbKXIwgJS+KCMMAz7UIgyAFCULdrPE8dfIBBqoDjI6OYJkG3V4X3/epVCoIkUYhx8ZHcRyb7/zVd7h+/QZT0wdTTctWJ01J7ntOdRwzv5AyElu2TRyn92J+brmv6WijhUKQThxpfWoaNYuiiF4n5tt/9ZfUNzd57LFHcF2HIOjRbLVwXY+1tTWy2Sxrq2sMVIfJ+FkKhTxJElGuFKkOlEiIqFQLtJobhJHB5ctXmDgwQZwkaCCOEqSAJIno9VqEUZcgaJNxS1i2DRKUaZCQ4Ps+6BR8drtdoihGCMXa+gbf++73eOihhxBAp9fG8xw63TZSamw7Bc3KSGVy0BDFEXGUkPGzaUqwlaaQhmGE41hondDrdSmXSylbcJimpfmehxAadIxppeRKYRynGqtxxKXzl3n00YdTZmYlyOWyqdtUK3w/y2c+8yhxHFLfrKe1uYaRStkIAE2caBzHBq0JghDTSOulNZrXXnudYrEEWnDi+EkcJ43knz13nv/4N99hbPQAq2srlMpF8vkiGT/H5csXefCBh3jxxZc5dHiSXjfg5KmTrK+v30Lc0m63KeRzWKZNq9ViY6PO6dOnqQ6UMC2TKIr78hqK9Y0ay8srlEplDNNgdvYGF85foVgqYpkmjpOCxHYrJYhK5atCnnnmWUqlIgcOHMCyrP44oJmemiKKEwxpolRaOnDx/FXGJsaQQnJg4gBHjx3l0qWLWKZFNptjeXmZTieNbCsp+5q2G/26WQvbTh0wvaBDLpvFcV26vc5NgqmUBAaiKMA2HXq9HjPXrnNtZiZNgS/mKeRyGIaB6/m8/c67lApFXnv1dV555Sc8+sgj1GubLCyu8O677zAxMYGU6ftZazTIZTIszs9RqZbRpM/w1//kL5ienqLbbeFYinargZfLI4Qkm8liWyZRGJDJVjAMC60lG+s1er0IZaRjnVSKleVlekFAt9vG9Vyuz1wnk8mxsLCM41U4c+YSlUoV3zP5zGcfxHMVE2MTCCnI5fIsLCzT7QaMjoywvrlBL+jR6XTIZjIAlAplkrVL/G//6gf88pd/mcFilTNnz/H+mfP8n//Xv+Tzn/8Fjh2dxvM8ur0QIQxefPknFIsevbCHUAa5TA4dxpRefQ+pJPIffxF9/Q0A1ORjt0Rc72Y+udsoyO373GsUbKfI5H6jsbtFfreDsv20ead+9pNxtddv24Hiftq5u+PcH4nj9qb3ezx7tbeb7dam1qk+uWmau0Yg99PnXhHve7H9ns9WBH8/KdS3P6P7Od5PO+K6xa6+3VGw2673EnG9aXeIuG63/dSh77et2+1+qvB9+6nbTiyAe9W4CiGIv/s0sAVcUwbiW1mDU3a9tOajnyy747O/fwC6cyrMR/1uZz++0yc9zr0lf+7Gtk+Wt3+kJmWDRSOkRouYKAmJopg4geGRMVqNGhfeepazH5whXx7C98voRLIyt0i2UiHUOo3gadCJxrE9umGHRCQMjg5izb1J4haJtKDVapDP5zCUlcqO2CZxEuP7Pp7v0W13mJ2bZXRkBIHgxvUZOommXBlgYGCI4aEhVpYWKRXznHrkQRrNBgenp7FNk2ajxuZGg+bGBkcOHSIMQzzPpduNkEIShgECWFxYQccJpmXj+xm0gDAKsAwJJGgdY1oWFy9d5uvf+AYL83McPHjw5mTabrexlMUbr71Fs97ks595iGLeQymrv+jXaWppApiKfLGIZdoIIXGsVHc2TkKyGR/DtImiEInFU0/+iLGRUZRIaDXXMI2ETLZIpVzi8Z85jRRgmi6dIEAqA9O2cTwXwzSpVIdQpqAbthkcGqLdidH99G/TMEiiCNf1kJhoHXNj5hqtRgPf8RAEdDotZmfnyBcrCOmQyZaJ+/VlUkiSKEbEoJMQoA8uHbrdDq5tYSpJsZinVCpi2Ra2m0Z0TdPGshykFIDE6ct1KKVusihuRW5v1ktpzZM//DHHj51IayJtO31WVSrz0mq3MMw0xXp9ZZZsNofl+Eigtr7CoaMHsV2LMOzRbLdwPQ+l7L6Gahp9Wlvf5PKF8xw5coRet4PvuTRbTQyVMmknSdxPqbaI4xASjY5gcWGJ0ZFR4qjL0tISnu+yudHi/NlL/PIv/xKVgWGESkGi67o0GjUqlSGCsIdOQoYHh8hkXJrNiLNnznPw4KGUkMcwWN9YI5vPoNF0gx5CCpAaz/bpdjtIocnnPWauX+alF35Cs9HgxvXrFAtFSsUSQwNV5mZnqZTL6H7AqtPtYpoWluUAguPHjyGTGCUEURTQaTfwfZckCUmSiGarjud6aBSe72M7dj/6n5KXjY6OIYTCMDXdbg+BzZmz7zIxMYLjpIB2c6PG6uo6b73zPktLK0wcmEwjyzoBoYjimCgKEVrTbrbxHA+tBbVanVK5xNTUJKtrK4yMjBL0AnzPodnYwLUl5cogUwenePChB9AiQirBtUuzdNpNjhw5hBYgpIFIOn3HhoHRl2kSCTz4yENpWYQWuJksWimaG03iuIvrGZi2g+8XWF5dIeg2yWY8fvLqG6ys1jh6/BDdTtx3fnXIZwt0mk0810UgcB2bjfVVsp7NxXNnGRkexbZdYkAYqTSR5biEUczzL7zIY489jm0q1lZWqBRLrK2splrZYYSl24jmIhuVh/jVX/vPGBgeYHLqADnf4/OPf4bPPfYw5y6epxsGrG+sMX14GmUJKgMDaAS2YeKaFi+//BIHL8+hTAP1T36R+NrroMGYfnxnUbg7AKqdgMzt2+3WzpbtRmC09dt+F6t7Rau2pz/ead/bU4X3Ov7t1yDaJql0p20/7hTfHdjfvu+dzm/n7T5a23z0+fhaZPv/hUh5Bna6N7tdz08Ctva61ttrP+81QLD9Pt8OIu8GGO3W9vbj3MnuBjjfLmG0n75v6ev2W71Ll7cy+/Y3u23bdA6+tb89n0W5z/T6HYDrTs6L7ZHq/Vy7reu8XwK0+6nC9+0fpAmxPyHu/xRsK5Vwe02NEhJjq/ZHCg4dP8rU2ARhq8XK9RtYWkMMg0PjmP1UvSRJqNfrqSZhr4dOUsZY1/XTgSWOcF2H8fFxDh06RJxEbGxuYtk2uXwe0zRZW1sjIWFqehr6QMW0HAYrA6ATBIKFhSVy+TzSMGnXNlmYvUGv12NpZY1uKPjLv/wu585fZH5hnlarjuOZ5LI+lmnhWDaGUiglePmll9jc2KDVapHEaV1lGEC73ePZZ59jY3ONw0emOXn8CI8//lks26TTadHptCgUcliOyee/8Dl+4zd/nYkDExiWmZI2JZowiIkCzZXLMxDGmMLAUCl4iIWm2+1SLBRwPY+0XlMSJ13+0c9/nvc/eI/19RqmcrGtDJZlcvTIUeIoxvMy1OtNom7I4twiUkuINJfPX+K9dz/Ath2KxQJh1OP5F55mZWWJbDZDNpvt13MZhGGTYqFAPlvBMl0MU7O+sUGvF3LgwAEEAtuyiaO0TrLZbLK0tMj7779HL+gQRQndTpdup0u9ntZwCiOtXTx64jimYxOj0RqCoMdWRC+OE1qtFpubm2xFlJVSSKlQUtHr9njpxZcRCFZX10AkhFFw8121LBtI6ykNwyAMQ5IkIZPJ02p2EP1U38rAILZl3VwweK6LFIIoCtP73WyCjhmsVqhUCyRJmLLuapDCYObaPFIYmKaDbbkkMalDwpDYjsnphx4gTnpYtsnBgwfJZn0KBR8hEzQxUiUMDVUZGhyk2WwwM3OND69dYnCwwsMPP4hlGZTLJTrtOl/4wuO0W3UGqiUc22B4sIpAcfXqDJ6boZAvks8VefKpp/jGN79NrxeAMDhy5ARf+tKX2KxtUigW6HY7CCFYWV3m0KFput0uH179kE67x3e/8x/ZWG9wfWYWKSW2bWLbDi+8+AKGMpiZuZ5G3pP0/C3TBJEAEZYNYdhlZWWZMAyRUqETge97/Ui1olQqsrLaB1yRxnU9KtUqo6OjnDp1gitXLrG0tMjc/HwKoE0L27aJooRGo0kmk0EIQavdJJfPIiSMjo0wNX2AxdlZXnv1NaSy8DIlRsamUYaBVJJup0XYC2i22px++ATThyaBpE+dCkoa2JZNNptNtTYRbGxsIhE06nU67Tbddpv65iZP/ugZPC+LaTisLCzSrG8SBu10xSKhVlunWi1w/uwZfM9F6ARTSaKgh+NYLC0t0u31qNebTExOk8l6WI7ixRefY2VlhfW1GkkomZuZI+wGZD0PQ2gsBRuba0xOTWCYkkRHBEGHhYUlamsrREaG/+a//X2eefaHACwvLzM7O8upU6f42te+xsjICIZhMDQ0xKuvvsrIyAjtdhvDMG5qhs7MzGAaxqc2X+wnBXI/kabt8872+Wc/ttX+fubw7TWs+7X9AhqrP878Q7ata3ivuryfZB21H/C51cd+U2//odqdznH7e/L3zT7te/P37VzvR1zv2z3brRPEHeRw/vpphAD1G790c9stcoF0kBQ7eOCSHbxjd++Nu9VbeW/R0i2B8612Poln8G773R7hFv3030gnTIyOEmvBO2+9TdDrMTYyRq8TECRpVK7X61EoFFLPFwampVBSIoSBPPcEoltD50ewLCtl47UdPM9L0xWlpN6ok83l6fVSHcxavU4QRNRqDWq1DarlAebm5slkMvz133wPjWZiZJhSsUQURUhlUa93sCyTz3zmURzHZnhshDAOScKIixcv9hlqTTY21shkc4yNjyGloNNpY9t2unC3rFSGpt0k4zuMjg1TqQ7g2HZfhsfoK6dIlClwPacvtSNZmJ+jXKmwtLiEQPH0088yWC3QaXdxHJ+11TWUIbEMk1qt1q+jDFhcWsK0JFIIbNvFtl1efvEVCoVSGi2UBkkSszC/SBIrMhmfYqGYLvhbbRYXFzl+4jjdbrfPuptw+PBBMtkMpmlgmRZowYU+oL8+M0u5OMjAYJk46eBl86kzQBkkYcz5c+cZHhxCC41pGmSzGTJZH7RmcWmZXC6tH7x27Rqu6+K67s2JZsvzKaVK5YAkJElMGKZRdaXUTdCqtabb6SGE5MaNG+RyOQqFArlcjoGhCr7n0ev16PZrJVdXV/F9H7t/L6I+AZcQKYu0lAqkot5n/0367+Lm5ia+6+F5Lpap0DrGMCR+xiPqEwdtbtTIZdMa1jfffhvLtOh0Oviez/LyMu+/9z5h2KNcLiIE2LbN4sIKQdjm/PmzCCk5dvwQpmXQafc4d/YCY6Oj+L5LuZLKyIRhQBSl9bCGIXEcm0aj1q/papDNZun1ElaWV8jn8kiVktVcvHiJX/mVL1MdGKDRaLC2vk4+l+WRRx5hYmKcgYEq6+urnDt3nrGxMTqdTvpsC0GxVEkJjDI+cRLRbje5cvkSDz/yCMo0GBgcZnZuHruvV2uYJlEUsbKygmWlWrf5Qh6tBWfOnKNYKNJuN9FE2LaDaTgcO3YQQQqCX/3Jq4yMjtJo1BkcrnL6oQeJ44hisYBhmjSadQxlgpY0ak2azQamqVCGwnYd5uZmMSyTQrHQl80ao1ark8nn0EIhDUnQabG+uoLretiOz8ryPBcvXcIyHQwjjf5rHRPHCfNzCyhlsLq6hmXZzMzMkPEyvP76G4yPj1EsFUCk6eRzc3PYlp2+h45NohNcz+PQ4YOMjQyTzeeJQk0YdHE9m0uXrjJx4AD1RpNiqQxCYFo2jWaNyelp6s06Zz84y7Wr1zg4dZjrMx+yurJKGAYcO3aMOAwRhsYwFWEYYDsW2UyGeq1FyWyDkHxQszl2/CjFfJkLFy7QbqVSWYcPH6FYLvFrv/5r/MEf/AHlSgUNdLuddJxSafnBD3/wA770v/wP8AufQRSyacRVgJr8LBp9C2DZbY7ZiZBptyjsbtHD7VGv3aKtd0oL3SlquVPkda/o3k5Acz8kQFt1sDsd7+3Rz7363CnKuFu/t0eSdjrf3dvZ6Rp8PPtqJ9v6fns0eWv7nYistp/nXhHSnWyna7a9zduP914ivzsBoHtZT93tWmyn84DdytI+3vZ21ubt9bM7XoM9nrVbjmmH49za45bjvcO53UKetMs1+dg4wN7jx37t9vrx3a7zbnY/Vfi+/R3Z3sBVPHgU+fOfRRRyNwfrOwPSnSbTe08j2QKu92Lpy7iziPrfhiXbBwYgEdDDZmhsDK1j3n7zVaYmD2A7Bpg2SikajcZN54BlWDSb6f+DXoz54bNgmIjCKFL0yY2kQEgJfRDQbLXIF/IpWAkC6rUGr/zkVQYGhzhy+DDXPvyQq1eu0u31GBoaZGpqiiTSvPfeuynolBJDmYyMDXF9Ziatk/F9lGnSazXI5wtsbmziOi7lUoGBweE+YQ39+sGoP1FEBGEPx3FStlrHRaAIwwjDMOl2exiGCULefLZ6vZAkEf36tIR8PodlmRw4MIGUGqUsFheWmZ+bwzYVhUIRy7Y5d+4c5XKFbDaLIGU8Rku6nR7XZ2YYHhkim8+nJDMKCvkSjXoH2zewbAtpSEzbIpvPEUTtvtap5OrVq2kkS4HneTQaTWzLQgqDzVqL+YUFHnz4FK5vYdoWUln9ulxoNBp4jpdGQ00DtMYwJJalaNRrKJUCe8uyqFarmKbJ2TNnyPo+Qa+XRtOCAGkYSClIkogk0X0gq25OvkEQpDW9fTmkkydPUqlUbhJEmKZMWZMdF9O0iKIYw1C4rosQ4mbEVQiDxYUFSsUCQRTRbHcxpLiZXqxJn68oTOuae70u3U4bKUiBVx/UC0E/tbfOwUOHcFyHrfVfHMdcPH+FqalJbNvi3Lnz5PNFGvUeTz71fR577LMMVIdwXQehBIayiEL48Y+fYXl5ibGxMWw7rb3+8MMZKuUBWn1NWcdxWF/bJAxifC9DGEcYpiKT9bEdCyHhyLEjOK6bOj1sG4Rgfm6ewcEBhIBOp42Ukg/ev8CFCxeZnJzEdW0WFmcplks8+9zTHDo8jVKCTCZDsVDA9/3U+WKYZLK51IEEBGFIGCT81f/7XR5++FEMw0QIRaNRZ2xslPfee5d2u8XgYBnLtEm0YGl5gVKhgp/JcvbsWaamp+gFAYalbtacAugkwXFsrl+f5cc/fo43Xn+TQiFHqVSgG8TYtks+XySOUx1dpSRz83MMDFYxlCIKA5ACy1BYRuocsb0M+VyBYqFCp9Pj/ffex3EsLMvEcR20hkwmS7FYxDBMrl65glIGR44cwXHSWuJiwaNYSCWVHM9jeXWV4eFh2t0A07SRQlLf3MDLFen1EjLZTHqfDRtlOxQKRQzDgCRheWEex8+itWZ0dATbsrl86SqjI2PkixmuXLnCsRMnMUwLIQza7QZxlLJx+75Po95Ia227y9yQByhNPkSxWKbdbHPw4EG2ylsajSaO5/Czn/881WoVoWSqE20YN0nQojDkx08/zZe+8ptQSUndog9fA9Ia19QBd/eL8L22+ST736mNvba/m5rQuwFWe22zV0rtndq803a3A8b92J3WLndqZj8OgLs/jju3td9rttfvewHXT2v9dDv4/KRt3em47up89nt9d9xgX1/teGwpcN27z/22ea92t/f3PnC9b39HtjdwpZBFFHL973Z6sO8D151sa/DXib556glp/YR2PRIEo4MVClmXP/7jf8MDp05guHmEEGSz2ZuDWbPeApEghMS2HcSlH4EyqZNJF/dS9tlJLc6ePUsmk6azCiGIozSCq5Ti0MHDvPH6G2SzPvl8kePHT1ApV7Adm2vXrzE8OEJ1oML58+e4dPESayurHD52iGqlSrU6AFLSDUI21pZIEnBdn3w+izIkM9duYNs2tuOQ6IQojnnt9Vcpl4tkslnyuRxRmGoJChTdbo/NWo1CvoAQgvc/OEOlUkYpRbvd4yevvMbY2DBSCtrtBq7joAxJGIXkskXmZxc4OD1NPutx9do1up0OA9Vq6hjQSR84GwS9kEq5zMBAleHhIZrtNlrD+fNn0AloLcmVfSzbIgxD2t02XsZDSY1teXQ6XQr5Ao5jowxJt9tlfm6eoaFhFheWCCLFz/2jn8NyNM1WA8fNIBA0m01Mw6BeqwOCfC5PIjRSpfIfUZSyyWazRZ784VNUKhVMw2Jjc5OJsTGazSbZbJbZ2dk0fdx1iOIgJVWKY1zHp9PpAPDd736XwcFBfN9Hotis1aiUq9i2k9ahGgaJTkFdHCckSfpcmWaa8ihlSrB19epVBgaGEGjW1pbJ5wtYrotlGCAErWaTubk55ubmGB4aTtlys9m07rnXpd3q4jruTYKkbrdDqVRCyFSGqNdLpVE8z+XA+EEsy8C0TEqlMlIaXL54ncOHDzA8PIyQRirrIyFJJKbhYCiTgYEKlUoZy7IRQlEqVbh48TK9XgfP81heXsYwTLKZXCoXY0heeeUlhkeGECKh2azj2DZCCnq9Lp1uFyGgUipjmSZCCM6ePcP16zMMD01w+vRp8vks7U6TwaEqURJy5MghbNvEcdz+OdkkSUwvCPsR1oRvfuvbbG6sMzU1jZQGN67PMTQ0elO+yDQNTMtgYKBKqVRmeXmBXC5PHIFlCYJewttvvc0XvvB5lJSp48PQ2JZNGAS8/trrjI6Osrq+ysDAMMNDYywtLvLFL/48rmdj2d5HmQ8yTXPFkGRzWYTQCJ1gGAKUSdBrQxyhDAstTXQMjuORJHD06BGyGZfl1WWKhSJxnKA1tNsd4jgmn89RqVRZWFjA931y2QzobpoiLQ1sx6VYLnPpwmXGxieQSqGEIOh1ufjhDZ5//iUuXrrI0eNHuHDhMo1OQLFURCnB3PUZRoYHCRPF2++8zeSBCQr5PO+++x4HJg4wOFxhYXGJI0eO0W53ePa55xkdHcZxXHw/Q7fTY2NjE8tUuI0P+er//nVagSCOodWs895777G2ts4f/uEfcvjwEU4+cIrBoSGEELzz3rsMDKYyWfV6nYyfwXUczp49yxe/+EW06qf0zbyejq8/ReB6+4J7rxrDnSJnd2M/DeC6VzRzu21Ps91vP7tJ6Nxut0eB92OfBnDdrb7wbgDtf0rAdb9t7/Sc7we47jtafAfnx83Nduro7wC47lZ7fi92tw6X+8D1vv2t2NYL8tHDKXb57Lj3xz47TyiKlHVvCwDvf7JIX+KPkx3sTJCwE5j9aLuP+r+1D7gzocCd0i92+l7piEQmxFKikchEpqCzfxqSlMDJDlMKp8gQlMsVNq/P8u6zLzB67EgajTQthFCY0kDaCsOyUaaJNA3E+afQysQcmAKg3e7i2B5hGDM8NIxtO/17q6lvtEBr1lZXyOeznH7oNMpU5Is5tI5YWVnGczx++P0nyRVc4jhiYnyKA5PTXLn6YcpwTEKiQ6SQGEJRr3fI5YqYpkUvCIljTa/XI1/IsFlbw3E9hLAZKJdI4ghDaTY2Vsl4GeIoJo7hG9/8BhMT42QyHlprhobLGFIS9iKUUFiGSamcR+t0ET03N08QhujYIgpC3nrzNU4/dArDsfE9K5UDMVL5EdfL8vprb/Lss89hOybFSoEw6uJlHS5dvEom65HN5ckXSjSaDWzDYObqDBk3w42ZOTJeFseyUZaBNCWmbabpRaGmVW+R8bMolcqhVAfzXLx4lmqlik5SncvaZpP11XXK5RKWY2JaEmUJdNQj7EWEcdInnrIhiZmfXWRi/ACObTE/N8vA0GDKJo0ml8+nabxxQBzFaC3w/QxxHKGUhdaChflFnnrqRxw5cgzLMhkfH8O0DBAaiPuaq21sz0NKg+ZmjaDVxc26gEYKiRCSUqlMFPWQhsTzs9y4vgCJws/5tFodvvav/y2el+Fzjz8OEsI4RimTKIYwAmE5SBOUIZCYGFKwtjqHlynS6XaobaxjmmYKEA2NNGxiHRFGASsrm/i+xdT0JCiBbVlYhouhFIgEx7colvMMVAfQiUATE8sOzdYGqwtrBLEmk81jWi6lcpVaY5N8MYuQBstLyxycnCbshTQbTXL5IoiYhblVPDdHL2gjSCPhzUaTfL6I62QpVQsEvQ5rK6vk8gWkYWM7HmGY8PzzLzI+Pp5mQYQBcaKxLRcpJDoJmJ6eYGxsnGeeeR4lLTQJBw9NQhKSxCmxlI5iwl6I7Vn4mTy9TsS1D68wPDiIYVuMHRhGKo1Sgl4vwPFzIARJEnLk8CEatTq5TA7bsvAzLsdPHGNlbR0hFYYhUUqysbFOs1HD910MLRFaMzNzjWJlgKXldWzTptPp4mVzzM0vsL66rh2YeAAAIABJREFUSiGXxTAl737wNvliDtO22VhbplQqEScxvSjCy2awXYfF+QVmZm9w7sxVNjeWmJ4qY7oDRAkIKTENhU4icsX0midJxOzsHMXyAJ4Zs768TNgLmTpwEK1DFq4vcnByjCjq0Au6OE6GG9euMT87h2u7uI7NiRNHiePUUTI2OoZpKJ577llcx2ZzfZXq4ACmZaa1uUJgmw5W6zrPfFjkf/pn/5x3336DVlczOjrBo5/5LL/7e1/l/MVznHzos6A6/Nm//3P+n3/1p/wXv/Pb+PkMOd8n7gX88AdP8NXf/yri20+QvHse9dBxsDxkeRKZHUgzXm6znRa7t6f43snuBMx2AoTb56V7Ic7ZL8jbmq/3SpHeax7dfowfpW6mjPUfrS/S8SlJ4lsA+m4A907ntNdvO5NXbjns4Vbix4+fw87XR7CduJI+eeXtx7NTmuZ+rv/t+9yr3Q7qdnuu7pXBeqc2d+rv9vu7mwNnt3Z2s7u6Nv1bLIXgo3/c9vduHe3rq7Qbwc0SMvqgdcdrtRMJ1G3nttdadbe+08Y+6l/297sbJuf7wPW+/a3afgeg+E+/g373PPKhYzv+fi8e2d3sI+C64687fLcjl+Md+4BPjwlvu0lA94c2qQXoBL3DJKeI0CImEQmm7ZAvVaiMjOO6BYaHhgmCAKEMEiVJIo2UBlqnabTGlacRhonOjhDFEZZlo7UgCELOnjlDoVBIo1VCYNsWjmvj+Q6OaxOGIWEUYds23W6XjO9imlAoZTh48DCmZZPL5VhYXCRJNJMTY2Q8j+XFZYJuQKvZolAosrqyzPz8HBrN9evXOXr0KHPzs1SrVZJYEwQx3/7GdxkaHKXbiYhCgWNn6HZjkDHlcolSqYTjOGldZBD0pWvSGrVszkmdH1KytrpKpVJhcWmJ4aFRTEPh2BaFYoGEGEO5LC+tIqXiiSe+z9TUJFqnEdDp6SkK+RyO66ITTSabJeh1KZer9LoR3/nOX+N7LktLS0wcmMDzHGzHIgxCjH5NogCajQb1zU0Gh4aQMpXnKRTybG7WGR0dB8AyLUzDYm5ulkzOJ5vxsSwDSLVn4yCkVqthmSZSCsIgIEoSDh89jGEZREnEwNAAQqZSQu1Wg6uXL1ApFVCWhWlZOLZN0K9TtSyLJEkYGBjg8OFDDA0NkSRptDkleIiRSpH0pYAs26LXDfBcl+vXr9PutikVS/0U4dTJZBhp+rFSilw+zwcfnGF4eIDNzU1WVlb5tV/9VQSazfomhXweIaDT6abRPeWwsbZCEkUEgcbxPRzfJU4k3U4X0zQxjbRWVyjJ66++QbVaxjQVhUKZrO+jTEUYRURBSK/bI4zCfhRdg9b0Om0MMyEMAyzbw7F9BqtFhsdGsW2bb3/7W4yNjTA+PnbT+TU2OooUiiCIKOSLCCXpBR1qtQbvv/8Bpx86RRjEtHs9LMfG8z3iuIdhmmQzGRYWFhgbHSeMIkypCHo9Jg8cQGhN2OthOSZhEPAnf/LvOHbsKMpQGIZCSoO33noLy7IYHhkin88DMUIKXnv1dSanpgjDAMMyUdLANMxUIgqN0JKFuXmymSwISa5Q6Es/gW2n991xXDq9ANOxEEKTJBGCGElCs9nFc10yvk+z2SRJEsJehGWZ5PI5hFRpjbQhsSyLOIqJIk2nHdJqbeB7HqVimWKxTBQllApFhFAkWmCaFhJBkmhyxSKjY6Pk83niOMD3fJTh0esFREGIkpKlpSUMZSCAXjdic6PJ9Zl5LMfi8NETHD18DPqEc9mch+MaKENiGhaGYeN6BsdPHGVtbYVavUYcx4yOjuP5FvVajSRJGB4eYXx8nNGRUc6eO48UBrblcOP6LEM5CUGLP3riPG7W4zd/53fwfZOp6XFcz2BufoZHH30QZXoI1WNwYJT/+qu/j+9bJELj2jZKCGZmrnH46GHkv/4W3FhA/uNfRGSryOzA1uD+8fngDhHB/UYR72R32ueTzHP7sX0tlHeoK9xuH4HGjwOodF2Q1sUmSXKzTOJuANvdAPG7XbPs/fvHFQ122+VeHAyflu03ivtp9XGnaC/sXud8r+RXd2v3BJTvArhuAdU7rqH37vHebI/jvJv36j5wvW9/Ly3+v/8MPTOP+o1f2tWjupvdy8CS7rOT91LeMrGkn50G+/0B109qO3kkQRJHCbZK0yC1Tkj0xxniVBKS6ARlGAQRZApFikMjvPjMC0RBm0oxh5aCRqeHY1iYhpnKqMQJ6vLTCGWR5IcJgh5SKASSZqvF0z9+msnJSRzHIUnSOkZEQqNV79ea2riuTxwnhEFIvV6j02mQL2QwTa+f6qv58NqHlEolsp7L/Nw8Asmrr74GGgqFPJmMz8BAlTiOef+9d5mamqJYLLG4sIjrZmi32rz6k5exHYvR0TG+9a1vopTAMAT5Yp5yuYzneSBSvbO09k3Q63ZpNDbROkLINEU1XWAbFItFFheXefutNykWCvSCHpmsT9BNWF5eplwuU6mWKZWLFAupDEi9XieXSwHWh9dmKBRyCEApg8WFZZQyefD0Kaamp1nfWE9Jk4Rmc2OTbC6HZVooBEkQMTe3QKlYolavc+HiBeqNOrl8kVdffY3Dhw8RBCHz83NMTo2jk5g4CftkEIJer4dCks3mbpJIWZaJsiykFBh9Qp04jgl6EasrK5SKeXIZn9W1ZTw/Bxpmrt/AMi0yfoYoSiMQnuf1aw4VQZC2G8dpWnYYBqysrDA0kKZ6/3/svWlwZtd55/c7y93f/X0BdKMBNNAL2dwpktolS5Qsy/aMM94UV6Y89jiOK5Oa1ExSybdJlSufUs6HfMgkcVI1ds2MLMuSbcmSLNmWN7JFUiTFfemF7L0bjQbwAnjx7nc9+XBfgGgQ6EY3KUsz1U/VLQAX96z33HPO/zzP838YkS/lhwYOjpv7HG6ccGdZChiyLMVxHApBgOvbOLbHww89hJSCXq9LmiUEvs/S0jLnz1+gVqtScArMz1/kwNQBtG2TGkEGnHzjBN/+1ndIkpS52YNorRiGA7q9Pu12i1q9iskk3c462tLMX73GubNncRyb9XaLQqGE1Dk4dG2LMO4g0EiZE4D1uiuEcYzne/i+T6NRJzMpjmMjpWLQH2Ay+PrX/ox9+yaxbIs0S7h08TJ33XUXhpjVlRVeefU17rrn3lGfWnhekMeGFYrXX3+D8Yl9vPLKy0xPT7G8vIxSitXVVaq1MlIqet0eUirGx8eRUiGF4v7776cxVs9jp3oeQuVWIFMzM7Ra61SqVdIk91sGSau1mpNdSZ2budoug3CYH6CkgjiOuHTpIn4QIIRAO/n7k1Ky0lym3VrDtjRSOTiOS6fTpjE2xunTp0nihKDg5/OCZTMchhiTjsKQaFprbS5fXqC9vozneVQqVdIko93u8tzzzzE3d4gsy3j2+9/H93yKhQIpsLh4jZmDB6g3GvQHCa+//iZZmlIpl1FKEgQBnutiOzbN5VWefOJ7XLx4hY9+4qMMBiF/8sd/zOlTJ7jn7rsIig6ZSUdzuOTc2fM4rsJ18wO1DdeCVmsdpXPf68FgSBTFrLfWKZeqtDtdOp0uC1cXuHJ5npqXYaI+ncYDzBycpdcP8T3FK6++hOd5LC1dw/ddjHAZhi0qlRqOHeD6GiMgGg6RwMpKk6mZKfRfPwMIxD/+9HVz+lZSlttdPzbWtxuBp43nthK6bKTZntfG3zuRAN1IbseU9WbmnruVvbXdeV3VJjjdKnkIsHdYUt95fvd4qjttwPfanr3KTv19/b3r323+LvZu2rkbodRu/Xi7+5v3m9F5N+IuuHFbd/NHfq/7tp3MxW92SPEPAVy357fjYdeNS7yh7KqguQlw3av59h3gekd+LCX75t8BbALX7fLDOfXaGbjC9g/x9jWu71V2zkfzg2e+T299nWqlRJSG5KZP29IagZKaYT8amYImCG0xfXCateV53nrjJeq1CpVag2E/J79JkxjbUoi3/gajLIZ2Dd/3Ns2yLdvmgfvvpxAESCU3fRgRAq0VrVYrD7cCnD1zjkZjnCAIiKIh4+MNmivruG4eF3RiYoKJifHcrzOMQWgmD0xRKpeJ4yGOYxP4AY5jc8+xY5w7f55GvUGxWEZrC8txODQ7mceCNBnFYsDcoRnGxqsYcqIgKSFJE5QUCKnAQK/bQUpJuVzeDP2jlGLQ7yOEYGlpmeefe47PfPrTdLrrFCtltFJUqiU83x0x2+bxAFutFsViYaSRhiRJKRYLWLadH4IgmJubxbLzjUScxCwtLVOp1uj3e1RrtZyFt9dnbWUFPyjz9ttnmJqaAsj9/TB0Om0OHJik1+tSLAYIAbaTx1vNh2eunbK0jeP6DMM8rq/tOEhgMOiSpjHhcIiSChMmdNrrtNsdVltrHDp8F9lomKuRpiwPrdNB65H/IoZ+v785FpSSdEbMuibL8nA8Ktdgb2o0hBltDgUrKyt4nofW1ggAD5FSjUiMcqKpjeHu2Ba+7xHHEX4QoLWiUCigpEWh6JCkQ4TQYPL4svVqlcuX5sEIfNfGcTSO77JvYpJ6o8pw2Ofs2fM0lxap1RuUyhXq1Rq2ZVEsubmp6uo6Tz7xJPfdew+O7bDcXMNyHAaDPu21dYqVEkppGo0xFheXcB2XKEpQUnPmzFlqtRoPPfggw3DIYBBSrZUJggLlUhnHVbSay6x3OkwfnMVSmvZqDoaHgyHjY+MUCvlBkmNbNMYaOI6D73uUSiVSE9PvD6hW69TrDbTSDPp9tLYRIiNJ88MEy7JAGOI4RWsbz3MxJh2BEMNKc5WvfOUrfOLjH0MqhRSaE6dOkyYpk/v3kSVw+dIlZmamcT2P8+cv0OvkjM/hcEipWKJSrfG1r/8Zy801bNvi1VdfY252lu9//1ksbVGv10hNtknQpZRidW0Vz3MpFgscOnSI6cn9aGURhiHPP/88hw8dYm52lk63i+PYFAs+lpI0l5e4fGWB7z3xBHffO4eyXBA+nfUmUggq5SJrK8tE4ZAkSblw4SJzs7M58ZKBWq1IpVzipZde4HM/9TkKxSLFQoDn+lxbWGRlZY3pqenRd6EZDIakmcF1XU6cPEGpVKFQKDEcDikWi9RqFXrdPtV6jVqtyuSBSWZnZqioHon2mP3oz/Ov/vX/wM/+9D9mYWGJxx79KFfnF2m12hw+dBeDKMJxDVrZKOmSJEMWFheZGBujubTECy/8gE9/9nGS0Xoof+5x0qtvYjrLudZV3Ghd2PtasleN6wZo225SuX2Tupv/69Z8dgIJ70X7d7tr7AZw3Vrvd+R6DeteNKP/EPuVm9fh3drBW63CXnyX32/g+V7lRuPqVtL8MOq0/d6Nnt/Lvesf2NOtm/zjth7bPf1tAte9vIs7wPWO/FjKHeC693yE0Hz5D/6Q737n29xzzzEyafC84N2JE0WWCS5fuIilFZYSKAm4irGKw0vf/x5P/P3f8NCDj9BcXaJQ8LBtSau1gnP1JWJ/HLcyPjqF3gAWef/k8fA2tLxq07yqXK6MNtOGem2MfnfI+XMXqJTL+L6H4xaQSqEtnYekAZ588kmyTBAUSjz73HM0xhqEgx7a0qRpQrfbodVa5cDUFAZoNle5fOUKlUoZz3XIMtDKZTAImZgYR2tNFOd+jY7rcPbsmZFmxiKOYmzLIfCLhIOIlAzbssiMyVl8pWR8bB+HZmdJkpjGWB3LsUjTiIWFeTzPwQiwbE0cRZRKRWzbptlc2YxV6nkBJksxJsWyLKQAoQytVgvfL2Cy3Gd4YrxBPCK2unLpEiffOMHKWpflpSYzMwdZWlrmyNGjOK7N4cNzGJOyuraC6zoUi2UEgiiMRiDSIsvAtl3CKKbT61IoFknSDJMkrDQXsbSiWCyRpYbL5y+QxDEzB2cplmugNM3lJk8+eZwjR46ilCIMQ86dP0cQBARBQLvdHoUXyrWt6+vrlErFTeKlOAyRWoOQSCXz0EpyFNYKMWIZzhlUhYDMpDmINoYwCpFSkcQpURjy8ksvEhQDlpvLxFHE+Pg4lmWRGdCOIc1CXDf3ue51u3iOy9TULK7jEichQmQExeLI9NWgtSLwSuzfN0G70yGMYv7wS3/AgQP78AsK1yvgekVKxTKOZREOU3w/wHGtnO3WCrBdK7c8EJpyqUoYhpw9e5ZKpU44DFlvtXBdOw8nhMBzLXw/4OLFC9TqJbqrTQ4dvQvL9kmTlH6rhR14NGoNkijh4qVLRHHC3OE5kjShudJEaY22dU7k5eTjNk0zLl26xMrKCmONCRAp/UE3Z2VGYMjQyiZNM6IoJIxyE+owjCgWS8zNzuL7LpmUCCl57dU3kUC5WGA4jFldW6VcKaEtTbXeoOh7tNfbeegsFFFiuPvYfRyam6NUKjI3N4eUimq1wli9TrVeJUkT0syglUYpTaHgE8VD1tdbBAUfUsGVy1fYPzlJGOUhixKT0et28H0XiWF5eZFGvcbkxAyB5zKxr0ImLFqdlIIDhYLP2mqTA5P7sSxJfxBh2RrfdxHCMDk5SaXk4QcuDzxwP9V6jSQzLC0u49gehUKZQqFAkib4XpELFy9z4MA0gR8gpaAQ+Dz5xPeZGJ8gy1LKlRLN5hJSSLwg993+2p/+CUHgU2MNjvwkT/zgTX75F36Zf/Uv/nuO3fMo4+P7ePvtC9x7z4P0ukPK9QL9QYtyqUKWWqRpSH1sjDgMeeapp5idPcj0wWmy7zwJ5MA1efGPMSsXULMfet+A681kN1/K3TabNyNu2qrN201reyttuFVT2+1t2DhQ2Z6HMdl1IH0vQO3HEbju7gq1u2wPbXQz4PrDAn63IlvH0EbdtmvRb5Tmh1mn7fdu9Pxe7l3/wJ5u7fqPPZNA3YLcAa63KXeA64+f7HXy3wm4vtcJZrcJ5J3rHWInIeTmKeyGbICxraQHG89ur9v1+d4eucBOddxJelnERz/5SX7i8c/y9NPPMrv/MLZ2yFJD2A9z01El0RKMzFCWjRMEWE6AMQptJFJ53PuBD3P0nof53vGnmN03g6sMlhbowIcLP0DWZkE7ZFkOLISAOA6RMj/NFUKQpikiE2QmN1c1JkNIiRSKzBhOv3Wa4987zkc//jEWl5qYJI9LKUgZDrtImVEtj6O1xPNsTr35JoNenwcefIhur0tmUpqrTWr1MZI4xbEVjqMIfJcsSbAsj8EwZDDoU6qUsByXXn9IsVTIFzChqFZrGCEJu336nSFLS00WFq6hLYtKpUhmUpIkpD/oYduaKEmQWhCUfDIjiMKUsBvheyW6nQGlUoko7LHBdwDkICmTKMtG24o4DtFCkkYJUX9IFIY8+8xzTIzvo98Pef21Exw+fAghcubZKMqYnjuE7Sjm5+dxLQ+lFb1+j2otN13MMqhUKiRJNtp4aaIoJkki0izBtjRRmCAENJeXcR03DxcSePh+Ga09QCIUFMtlGpP7SCU5I3Cc4PoBljL02k3Gx+pIZVMu1Xj66ac5eDAndlJagRZIrbAdByU0rdUWvh+gnJzpV0uNQNBaW8eyNL1+D8vKtay2beWs15nBtV2G/SG2dmitdOl322ipkVh0OusUSmV6vQG1egPLssmMwSiDpRws6WIygdAKYWksrdC2pDFepVqtUCgWSVOBZcmRP25uPqssTXu9Q7FYYmo618b6jp37s5FRKBVA5kRjvV4XiWCluUK726ZSbdDvD0nTlO8/8wwrzSbPPfscDz3wMGtrK7z+xqtoS9FoNPjON/8MJS1q1VruX6o1zeY6JpO4tscbr7/GgYNTICyUVsQmwvUsGuMNpBC02x26nQ6NegMlNcicUMYYuHjxEhfOX+Tee+/HcvN5yXH8nMlZCUyaoS1Bt9vhq1/5Ew5O34XvuyNWZIeg4GNETmiktGTywAT1egUjwcRtPE9TrVURShGnKW+dPkO5VII0o9fr4AUeQktazWU8z0JbDlJZ+IFGZNDrDnnzjbd4662zRGFKo14kioc5gVK5zMZBV6Hi5HFQS3WEUiwvXmHfxDj9wYAwSnnjjdNUqg2K9SpSWWSJ5om//Tt8yzA9MwlGIoTN3//90yw3Wxw5Oo3vV2i1+pTKZbyijTEOQlloyx7NrQZtaS5fyhnKl69dI8siXnvzDEeP3s3i4iKt1iqlQkB7fZ1CoUyjUaNcLpCmMY5j4flFlpavUSwGPPLIY3Q7A6o0ec3MoYIK/8f/+f/w8Ac/yj3H7uNb3/4W/+yf/1dUJwoYe0ihUENZBQwWURbR7vWpZH2efeYp1to9fvbn/wmJNvDnf59zGPzc43kcV3JWYSF3X9P2QnKyNc122Stxz418arevgxvPbwc8two89wJ2d+uXrSQ87+STX/mhrNn8O59n3wFwW/0gt5e/G8nSjep0u7IToLy+bHPdtXGo/M4eRrwrn62y29jZ6I+N33OynY3OAsTOgGen9/QOUc/114166FbGyvZxuVuam+eVWxddf+3tPd4OCP1hANfr9qI7Jd8kYroxCdSemYRl/iLNRkU23u0OhE8b4yB/djQAbmIyfKvAde8z4R25I/8ZyQ/7VO69iCUVWgnK5RKPP/44Tz3zDM8++yzNZhPf9/F9P687NivNNuVyFctSGML8GpkOCqHo94dMTc1w6dobLC1f5uTrb+CmNtLInMAFQIDreUilsG17sx6DwQClcjBijOHylSukae47lv80jE80+LVf/1WEgCRJKJWrVKt1ECoH0ZZDoVRgMBzSWmvxyKMf4AOPPERv0GU47OO4eWzVarVMqVQiSTKef/550jRleXkZrRUvv/wSX/3qV1hvtZACPN8jjkNsS2FpiRQCx7KIkx6VWsDYRI177rubxlidzOSxWD3XJwgKQD4HWzo3gbYsC9d1kZbBL7pMTI6jLAVCY7seqYHV1iqSDCViPFugpMS2XaIo48LFeZ48/gxnz53lwYceRErJCy+8gDEZg0GIMTlL8PhEg2q1xPTMAT728Y8wd/ggExNjjE008vA+Ig9XkiQpg0Gffr9Pt9slDIckScJwmPsouoGLti0Ozs3iF3yCYoDJMhYWFuj3+7kf7CiUjBQC27LpdjoIQCvF3KE5iuUKIFBKMhj0qVQqZFlKlmW5XyWQJsmIPCehP+jzxutvsNJskaW572qSxPiBm8fq1ZrMZMRJDEC71dokeHrr7bcJoyFBscC5C+dwfY+FxWu89MorVCoVDh06lMcrHX2HSgo6nXYO4jJor7XRaPr9HvPzV8iSZPNQSkjD6tpKTsJjaRzHJgxDnnjiCXq9DrOzB/H8HPClaYYRYuSLqTgwNUW5UkFrTalUYv/+/Zw6dZIkiRECFq5dZe7QLF/4L3+ZkyfepFatIsnjIcdRyAc/9GEaY2NcvbaQ19/A4aN3Ux8fx3ZtHv3Qo9heHou32VxhZWUFy7LodjpARrVWZubgNFrnjOFSKPr9AQZDtVrl4Ows1xavEUfp6NBNIoRiOIjo9nosLCyQZRmHDh0ijvNxVq1WRt9lHuc2ikPiOMSyFEHBp1DwKTcmmJyexRhBlqZoDNVqOSccixOCoJD7b0tBoVAkTvJQLv/v7/4uQkg6nTaFoo8xMf1+F9vWHD/+BFIKXMcnTQzhMCYKU4bDiE47j41rTMLk5H6SNMbSmiDwMaTYjkUcDXj55RdpNhf57GcfZzDsMxwMcF2PKIxoNOrUalXOnblAr7fO6bfexAjJ2bPXaDYX0UpgW4rW2gqWVtTKRWamD9BcXubA9DT7JqeZnZ3kwsUzDAZ9Wq11+oOIb37zOygvQDg+iXRoD2KWW3263U7uC79wjfn5eZoLFxAm48H7HyGwLP7lb/0W/+hzn+O3f/t/odVapd/vsrq6ymAQEiYhtp3Hoi74HuViAbTN/NUlyuVybqEh5XVkezeTH4d16kehxdou2zfZW30Zd8pvpzQbkiTJu/wVtxI/baS7lcOC9yI7lb3X/tjLO9kJHG6UtaHB3Bp251bq++MmP851+4eS2/lWfxzmmb3KHY3rHXnPshcNZPqNkU/Pf/GZHReV7QvIXj6gm51k3cxMYfvp8dZ27PUD/mEs6IJ084QsCAocPXYUhcT1XIIgQFt5mJKl+RYvvvQys7MzCGkwIkGIFIxCADlHjiKJMg7NPsRgmHDpwhlEskaw/DpSa6RbJktzFsbUJKRJugkk8tiSeRieVrtFo1FnU4s9qqHnO0TREMuywQjOnjuPbTsUCkVef+NNDh7MzQzjKGYwHHJwdgZtCyrVKsWSh+d7ZGnKsD+g2xng+S5TUwfo9QYcmJxmfb3F9Mw0r776Cp1uh2P33E0cx2RZhK01cTRgOGiTxUOMiCiWiiitEVKgtCRLDQsLC9iOQxiGeJ7P1ctX8F0nZ9RNU4RUeL5Ft99F22rEQJurnYXMY0b2+10Cz0GSIJWDSQVvvH6CYrHC7ME5lAWVaoVC4LN//z4OHzrIYJhi2woEWJZiMBwgpKQQeFxbvEqlVsJxHTD5pqHfH6C1xh3VzbZzQOv5Ho7jEA6HWLZNRkaaJjiesxlv1rYdtM7NXpWSeTgTKZGAFJL1TjsH6FoTFIpESYoUOTvv+HiDNE1J05SVlVV8z6a73qFUDJBa43ku+w9MUi5VRuE6Mixb0e91cRwPteEfrS2yzNDrtDGp4bXX3+Thhx/GdhRSayb211HKwvUDDkztx/O8EfGUHIFmSZbG9Ht9Trx5klKhRHNpiVq5QMF3Kfg+cZKiRnFO0ywcMV9L0sSQZeA4Dg8+9CDaUrkZs1SkWUaSGpSyEICtFEmaobTCsm2UtrBsi3K5jNY5AD58+DAAYRgydWA/p0+9xUc/8lH2799Hq7XCzKFD+EGA63porXnq6e9hkFRr1XwMiYwojnAsDyEMlUoJz/cpBAUMOeFZkuSxeLMsITMjzZFQXLx4iQMHJpmYGGdlaQVhDK5rc/H8RaIwoVqvUCpVECjq9RpPPvkEMzPTKJ1rn6MowrKcUTib3H/06hmJAAAgAElEQVT58uXLuQ+x5ZEZSRiF2CrXynq+D0LQ6fUZDIeQpTiWyjXeKiMoFPnABx7BkNJea2HbmvGJMY7de4xGo8HU1CRa26ytdTj91ln27dvP//e7/45C0Wff/n3YtkeWJaytrDAYDCmVSmitOHLkSM5IrCXVSoWxsTEuXDzP/fffh5SKC+cv4vse3/3rv8QPXD746Adpd1a569hREJq//buneOyRe3MrijDEdvJ5K4sGRFHCa6+/SZIaKrUqSTxkYnycfq+LlJq/+Mvv8ou/9AUCVxANeogsplzwqZYLKKVR0mJ5eYVisUjRzlDpgE7xQdqtVcZrDXrtNv/dv/4X/NRPfxbLllRrNYKgyDAaIqRAS4lCoA0c/95zZFLxC1/4JdAj7dhrbyHKRcRPPLapcdVzH97V7G8vG/Gd1rPt/9/+7E7pbxYmZrtG8EZmx1v/3qrBvFE9b9S+jXK3anm3a6S3/r4TSY8QAq31de3c2u5bZRq+VdkoY7umdHu5URTtaO68tV1b5WZ7na3a5a39cl0fyXe/E7nLe9qqqc1/2bm9N+vBm2m0t5a9HVzfjIRsZ9ndhWyncbVb3u9q/y5ptqff02HIliSb43S3z3+j+7d+l+y8x97p3p6+wW3/3hyve7RpFtx4fN4xFb4jPxK52aJqXj2FqBTRj394x/9vHdS369+ykc9e7t1OPu/luVsSY9gwADGAEIqiH3D5ymWefvppjtx1BITh63/yp3i+w113Hc1tNnJdSZ4qk/T7QzrrfRYXlumsp+ybPMDkzH6CkkSceYZk2EOUJvMwOQi6vTau421OrL1eD9d1SZMYx7FJswzbdnK/wtz+AyEzPN8jTQyWZZOmCeMT4yAEB6amiOOYpeYi589d5InjT/DYox9AqgyhLMLhMPd/7Ef0On2ktkiShHPnzhPHCd1uj8XlRaSUfPwTH+eee46hR2FgHMtGioxOZxUpIlxH4BfqCGlx8eIVHNfDcR1MBqVSTr6ktSaKIvrtDoVCQBSFm7FtsyghiRMGgwGO7aKE5vlnn6NRq2FpC9dxR4AWBoOQOEmZn7/K+ESDxniVSrVEluXa0kLg5xpA12cw7LGy0kQIzfHj32NqegbHcXBdBxBo282B+zCkUAgwBixLk6YZWmssK/cZTZOYIAjottexlMK2FCZNUSJnN9baotPuYNkWa2srFApFhoMBr736KvV6nVK5zKA/yP2OpURpC5OkREmEY9u4rkeSpAgkWhmyNGV9fR2TGYJCQHO5CSIn6BJCkCYZjEzrGRFHLS4u4boetpb0egN8v4jrOSAztNL0ui2iYYSWDsViASFyf6WlpSVWV1cpl8uIkaY6CAokccjF86ewZIJlO6yurhIEBaSyco2VyfLxmcKgF3H8yac5MLUfrSVCZpsLvmXbgMSybKJhiJKCKEl4++23qdZqIODFF19k374JtFZ0e718jDk2cZKbah85ehfXri1Sa1QpVQpk5KRRZ8+cZW1tlXvuvpt6rcpKcxHPtbGUJk0E3W4PIfPwMznoF2ht0ev2cVwPKVTu+5tkeK4HQKNR37RyOH/2HHOHp0nTiHK5TLVSJ0kjMIK//du/Y3ZulmPHjmIQ6FFYGsvKY/OakRuEkIpSqUx7vY3j+nlcW5Nr1RcWFlAqHw+uX+Sb3/wWhZEPquMVUHq0mc8kvV6POEzQWlAsF1FSI4Ri2B/SXFmjVKzy5PHjHL3rMHMH55iZncSxXZJkRDSmbVZW1lheXskJ3kTO7GuyhGKhRJJmo/eriKOQfr9Pq9XiM599nLnZGbRtUSiUGAyGtNfX+fAHH2Ew6NFudzh/7hxZarC0i9SKoFCiWqlRb9RJk5g//IM/wHU9XnjhRT7ykY/wwIMPIqSkXLBYXVmiWPCRwtButZi/tshwEPLnf/5tSsUyByuCTNjEEw9z6q0T3H3sbg7OzZDJjFq9kvuEG4MQGrdgkyYJZCkqM7zy4ov8b//7v+V//J//J2r1EhkJCIn81IcRn3wUYAtw/dCOm769yo02yzd69nbS7+W5nQDv+7W23+ywfDdQfqO6bAW8O6X5YchuwBVuDMreC3C94fM7pd+hm3cE9rcJXG8k2+u3W3+8H8D1dszbbwZSd7q3pzJ2AIp7Ba75rb310Z7bewe43r7cAa4/vnIz4Co/9SHkpz4E7P4B3Spw3dEB/T8D4JprXEfAUAgQgjRMSNKEUqmEH/hIJfjwBx/l8NG5nFTHdQFN7l+WMOyHzM8v0O+FVMo1er0rYCuCcoP1dox/5RmktliJbRzHR1sWlqNQQm++i404dyZLMWycrgteefUNBFAuFxEiRSmJZbkIFKVKTnwSReEIsEGhUKBSqXHfvffjehYZMZbl58RCqWHQHVCrNkjSLNeeRBGHDx9mZWWVMBoyPT29SRp07do1AALPx5gEsiFp0idNB1jeBCZT+H4Bz/NI0oQsyVheXiIoBIRhhBCCoufTbC4jLYkf+CRJxqWzV6hWKzn5TxTR7w6ZqNdJ4zzMh9I2QlrESYYlFZ7rMzV1AMfTpCYEJAsLCzTqNa5cuYzvufT6A5IkYnJyP0KonMG0VEZgsC0Lx821X5gMpfKFc3l5aRNgz89fGQGOFmma4HoetpR0223CMKS1ukrB90kMRGFEq7WO67m0O+v4QYAlFd12h2azSa3RYLXZJCiWUDo3VxTGIOTGOiOI4wStbchiLEvjex5Ka3r9PqVKmU53PWevjlPOnj1HsVghDEMcx8GYjYOLFFsLtLYplirYjkWSRsjMIKXB9wKeeepZHNuiWq8hhMC2bWq1/PcsjimXKwS+j21LXCtFy5hTp8+z3Fzm0OGjdLpdBoMhCNDaAiNpLq/RbLaoVIo4rkUUh1y5cpl6bQwQIHLmY5MlrK+uYHs+Y2NjmxqNyclJhMhP0Q3guS5KaxzHodooMxhGNMYmEBriNEIpi3a7y/j4OPVaFWNSHEdTKgVYWpElMH95kW99+1scOnQIqTY2ppLhMGIwGCKEYH5+gUZjDGPykE7D4RClFGmWcOXyZQ7OzCBEyuK1qxSLJS5euERQ8FlcXKZYLBEOB5TKBVzXR0poNpsIIbhw/iL1+hiDwZAsMyMGYp+1EflXp9PB8zzK1RqOo1lbb+O6OUnX0rWriCzh0pVrpNmQICiCyDXvaystFq5dpVItY1CYVPK940+xvLTKiROn+MnPfYZSyadaqZNmISaDLJOstzsEno9WmvX1NhMTE8RJgtYWvutw5fICnU6P+fmr9AZDxhs1XNen2+0xGPYAAxYkMUg0WmZIMSTwy5jM5ARaYUy5VGG13UIIxUqzSTEIWFqcJ0sFtUqVD374QyMma58oiXB9n/VuD69QwnICbCc3qfa8gLm5Q0xPT2O1zyGKU8xnNcbGq1xdWOCFF19kcnoC1/VGppb53JCYURxaIUiGEf/h936ff/Ir/5wHHrwfZRkggxGPwobf1x3gujfZDbjuxU9vL8B1qwZ5z5qo9yC71WcDsG6Q4u3kc/wPC1zfrbXbzkKd/7Fj0f9JAFdj3p33zYiq7gDXO8B1T3IHuP74y60sTFsXh519O3Z2ot96Mro1j5stVnuV3U9z36nPCE+y9Su9vcXu3W0U0hrlu5GPQbuaoBRQqVf4829/i4cffpgwiUmNITEpQoJUIKRBK4/VpTYv/+A1bN9jkA3ozfd58JG7WF3v0u8YKs1nMNKik0hM3MN1LHoRKAsMEjHS3AqR5jeFRCmdg9KwT71RRSmFUjZ5qB6DIaXXb2M7ucmqbTn54puGFAoefsElTlKCoEJrbZU4DBkbG+f8hQukJsMYQX8woNEYZzAc4vo+k/unRot4SpqEFAKfYlAkMRmSmDRJSDNFtT6NkRZCgVQi10CPurTdbuN7PibLzUW7wwFBqUwU5354tmVRKAd5mZ7PmbPn8IOAq/NLPPXU01QrVbSl6A46IMG2NRkpaZYSDmMsbSOkxvd8Lpy/QK1Wo9lcoVAuUC5VAInWEtezwKTEUUIUJwg0lrbzDT65T3GWguv5hHGPIPBx3DyWZrvdHfnoSmzXQun8fYzsYUdaNINC0lptMzbeoNPrMb+wyCuvvcED9z+M1iOCLXIm3uGgS9xr0e92CIIiQko6/TZeUERaNkbkWkqpNNEwQumcUddxHE6fPksSG8bHq/T6bXzfRSlFr9vHcjxWWy20pXIfWOUgREi/H+amt9OTADi+RmlFEmcoqciyFCMM66NYrLbjUSiPo9war712gmqtzr79+xAjf9D+6mpOBqQUxVKBqel9pGmE73sIOTrAcL3RvsuMYhJrLs9fHR26CCzLwrIc+r0BruvS7fbwfC83NVfkPq9GkcQR2srDH6VxhpY2UTjghRdeYO7QYfq9CCNAaQeDYjAMKVdLjNUq7JsYp91ax7Fsrs7Pg0rJTIbWFtVqBanyee3q/FW+9B+/xNTkAerVCsVCAJZFr9en1x3gFyoYoXAtQ7lcJAh8gkIRpV3SOJ+LkiSkWCzguS6WrXEcn298/duceOMEM9MzFAollpYW8XwbbWm0shj0Da++9gr1eoVGbZyZuRm0Jzh66G6KfpFep5fHfFWaUrnIWKNOlhqGgxDt2Bw7egwpU8bHy0xPT7K2so4baOJUEGea8+cv8PLzP6BQLBJGHZRliGPD5UtXmJhoMAwzgkKJpeWcDOrI4YMMk4wrVy7x7Pdf4vTJc9x3/zEWLl9EGnJGa60RUrPWGqLUkMB16HVD/LLFN77xVzz44EM5w3aW8dbbZ3jkQ48xjKNRrGKJ5zn0uu08lvEorJZtS/r9DoLczaDbbhH11ymnTU7591Mo7afXEVyZX6Xe2M9av0uxXGUQhtiuxfz8JVy/hCUkNopnnv4+lxfm+a1/+WtoK0NKgUDms7oxmyQm2cUXAJBzH3zXOrR9U3yjK6csyTN9h3Dw9vz8djOXvJGZ4VbAtX0N3a5Z3KmN29PvtrZvuBZsz3un+u9Uzm4H5Nv3FFtlN0bem7kj7VW21nfDbSNnZ9+ZlCsvN3fR2CCeFEKSkcccE1JcT6Rjbg7m84zfuZTMD1eykUe2AcQmSY9hg4DHjP4vtxABbb22lyeE2Bz7YoMBUWzQCF3fp1vL3iD7kbfR99ePo3dfN9o/3ugw4EZ71Q2Sz5uZ6241a9/Mb+t5wMa43a1uI4KkjZ9bweRObdi+775RGzfngW3vFnN9Odf1y+hSUr7z7E3A/R3gekd+JHK7APHG93bkS9txEfphyjvl7Vyf9ya7+1tc99SWie7w4cOb7ZZywzzQQoicNGk4iPj6V76G5wVkJmOltcKxIwf5myf/gnpjgldfepO59CRGaBaHNoHv0x30KJXLpMMEYSQYgdI2iNxXUAhBHMWYLMP3/XdIebKMMAy3TIBsMsTGUYzv+7gj3zNMDnrCMKTZbLJv/37CYYjnusRxTGutRRzHOK6L53l4vo/v+bTWVnFdB0vncSzjOEZKQZpExFGC7RbIjEQoTRiGxHGMQCCVRJKboqZpSrVaZX29hW1ZeL6/We7S0hJra2tUqhWkEFSrNWzb4eWXX2FmZpqZ6Sk838P1czNqKSRaaUCMNlEGKSCJIsbGGkgpKFVKeL498hE2KA3tdovAL7DWWmN5aZlGY4wojrDtHOC12x0aY43R+9S4rjcyI839QPv9fm4uW/Bz4qbhkDhOiOMUz/M4feo01VqV8bExpM5Nox3X4pFHHgKRMui2iMIoD10yGBAO+wig3hij1w/RlkUQBCilNhdTKQSZMXzv+HEOHz6axxHFMDExzthYA6Xy70IIgVIWjuuglMTzXCwrHx/GZEgl8/iZno+2HAw527FAgRGcO3eBYqFAu90mSzNcN2dIlqP4xUoonn7mGR577IP0egMuXLiUx96t1+gNOkhh0MIQJzkZl+8FbCyhYRgTxwlpmps3l0tlpM7Ndw0ZcRzlPp+Wzfnz56lWq5tEWQKBGJkby23zjpAwObkvPxCREtvRIw1u3rbhcEgaW/S6A1bX1hmfmKDRGMPzPbSyefPNk0xOTo7GM9i2xdSBKYrFAn7gkiQRWjtcuXiRmZkZ4ijBdT3On3ubeqPBYJibVL/wwg+4enWB48ef5NHHHgPAcT02WIrn5g5y5fIlSiWfUqVCu92hVqvR6w9yUG8Eg0GHN0+cYHJyGsiolAsIaaOtXEttj/zqldII8tA9CIllW7TWWpRKRRqNOnEck8TpqD02/V6fSxcvcO89x3A9h0ajwjAc4vtllpdXmRgfx/Ncvv2db3PkyCEcxyIoBAwHPWzbolyu8slPfpJ2e4XZg3NYjofvFzEIhsMhvldgcXGBLAPfL2E5miAoYFkaYzJc12bQ7xKUCkxO7scehcT6y7/4K1ZXWkxNzeEHRf7i23+Ja/mQCSzHyn3fhaAeKAg7/GC1wsK1FT7ysY8zOzvFkbvmOHn6bQ4fOkIYxvR6AxzHw3Ydrl25wje+/nVcz+Of/uo/xS8V3qU1S//b38Z86wnEzz2OnvsQau5DNwUWN1/rdvr/eyOo2brB3fh7N0B6o3ruFC5na/7b89oJKO4GfvfShg3Z3o699u9u5Ebb63a7sh1MbMzBG8B1e3s3rDe2133DMupdY2nbc9vT7VYnkxNa3BTE5WXcuA+uew873Nsx9Y7au1v5Jm7tuduXve0Nb7bn3Qm47pTb+9mevYPzW8/3Zr9vyB1W4TvyI5GbTWzxb/4b4t/8Nz+UMt9v2ZNJzT+wbASJ3ziF3W7WlGXZCCQY/uhLf8jJkyfprLeJhyGPPfIo1YkiP/m5n2CsWuEzn/o0cuTn+NIrbzKMMsJBSHNhHpkO0SLGUimQgHynPyzLwnYcXM/Ddd3NxdXzPCzLyk+JLXsE5CSOa5MkEa1WCyFyQowN8+O5uTksrUcnt4JypUKlUmJ8Ygzfd/nud7/L7//e77O6ukqpVMYYybVrS6Rphm1bJHFEmhiiBLQTICyXLEvpdjrYloXrOJg0JzE6cuQItVqd4XDI1atXuXr1Kr1eD2MMge8zPTXF3Nws7xxdQrfb4cMf+RBrrTUs22ZtbY2V5RWU0COWWoOUim63x3AQcvbMGQbDPmBwPAchIAxTlhZXOH/+MoN+TCEoo7SiEPjMzh7kj7/6Vb74xf/IMIxIkgTL1vQHPeI4yrWp5PEI882LIsugMTaWM/8qxb79kzn4DWMwggcfeohCECC1HGkuoFYroy3BenuFwHPxXIs0jkmTiPXVJr1hyFqrjecHRFGcM6IqiZC5NjI3B4LHHnt0pHHPrQFsW2PZuWYqCApIoTfHqTEpYThASIOQhjSLMSiU5WCkQlma5194EWMgSzMwguNPHieOE8qlCpVKLScGQhHFCWfPnqdWq/Mbv/EbOfO141AsllgfDGitr1MMAhQZJg1z0CktBoOIpcUmcRyPSKscXNfjxImTZJmhvd7GGEMchlhaUqkUSdOU/fv352Riccr6ehdGwHq9tU6Wmdwn00AURURRiOfZCJnx5snXR+PHECcRWZby+huv8eqrr1CulDg4O4WUGWk2JIkzssywvNRk4eoiWtsoJfA9l0OHDqJ0zubsBy5xGCEMrK+tsba6ihCCu48dYzAMczboNOHtt95idnaGL3zhCyRxSpZBr9cfjdMYy5b89M98lmqtRLfboVQqcvbsBfq9IV/84hexbMV999/HZz/7WTzXw9K5j2x/2CdJY9I0Jhx2ScIBuUWIyBmLk4het8sTT/wtQsDSUpPFa8tIKYniGCUEvqO579hdjI81+NrXvkav18s35AiWlpb59//hi8TxkJ/52c8xNlajVM61pIHrMRx0uO++u8myiCRLGIQRg0HISy++TBTFFEtVkiSm0w4pVyfQjsVwGLN/ch/VagnbVnR76xw4sJ9SqUwUhcTxEK0V99xzLwcmp4nSIf1Bl09+4mNoJQgHg9x14NIlgsAjWl+kHVs88MCHefzxz6AtAyrByJTPf/5nsCwHIRS//dv/K/3+EN/16He6nDt3js9//vM09k1sahJ3Y229VULAvcheyJxuNT9gE0htXBtys/V/Y326EXPt1jy31/1maW8kW7Vc71efvN/9u7V/NvoxjuP3Lf8N2QsAfT/SvFd5P/v2RyXv9xj5UciPw953J7kDXO/I+yIbH+mt+IdsTbNX2X5yvdNi9l79aLanvdGiuVsbtvbBTqYZG2l3y3N7Hhug1Jhc27FbEHUpJa3VNVZXVnjk4Q+QJSmOtnJglxjOnDrD6nITOSIj+MKv/AqNiUn2HziI5xW4cP4sS4tXiKIOmAHGRHnbzQiUZBnZiAl2a32FyFmIc6ZavQl4tFYEQa753QjV4TgOQkr6gwGO61KqlHEch7HxBpcvXSKMImZmZhBCsrAwT6/X48rlecJhxLlz5+gPemjLprm6ju+XyFKTM9uS+7GFw3CT+ClN09wfkrzvisUirudt9uFrr73GyVOnMBhaa6soKdCWolIpU6yUODB1gGE4IEtSfNdDbFgEASdOnCBLDZVKldmZWYSRRHGKGWl/Le0x6Cf4XhnbClAqB9eFYgFtaX75C7/Ef/Obv5kDT6BaqeB7LpCMNJgjYqY0RWuLSrmCGIFWzw8wCNZaLf76r76bhwqSEm1rhBKE4YAwCjdDHBUKxRHbrEW7vU6SJDQaDar1MYJiiThJsEfhZPr9PlEYEYYhwzAkzTIKhZwNN2etjckyMwrJkps+i5FmNIqHpGmG5/kkSZqTE4mcEXHYH+S+f3HE45/+JEpAliYMhz3mZg9y6uSb9Ps9tFa8+NIL9PpdlMzNoNvddWzXIc0SCqUAZSneeutM7tO4vMrrr75BGCeEYR9DxvLSMk899T2EzP0KbVshhOHo0cP4gUetUqff7edMyKkhjWNMRh6OqB+yuLhMc3mNJDFcu3ZtM6SOlIpTp07TbK4ihCRNDbZt89ijj5BmSW6urSRRFPLYo4/yM//oM9ieoFByuXD5DFJndLudXBvZ7zE2PsaGWVmSZsRxwskTpwjD3JpAaYURMD4+jh8EZFnGlYVrBEEBk2YM+n1+/Z/9KrVaZTQfaP70j79Ot9sliiKEANfNtYyFQhHHdbh2bZFDc4cJhxGf/vTjozBKQ+IoN+Veb7VH79BGyXyuUtqmubpGGsdkZAitKBQCAs/j53/+51BKEQTF3B8W6PZCkiTlwvnz9PtdOr0uv/5r/zWlUhXX8bh69SpCwOd/6iexbAvHtnniySdYb3XIUkUcRniOQ6u1SqfbZd/EPrTWlCsV2p0OYRSNTAdjri2tstpqY2SKVhJL602rjA2f5ZXmOr/3e/+eKAoR0jA7O8PRo0cQImY4aFOtFamPVfB8C9f1KVcqrK+vE4gh0q8TxoYXX3mJKAlZWVul3e2ztraWHzhZFr/zO79Dv9/HRAkmzTh6+AjFUokoTW66Hm5dD7Y/eytr483W070C5O1rylZf0q3r0NZr4/7Wemxty9Z1e2sdtwL6rWvsVjbdm5kz7gU076yxvLmp5NZnt+azU5vei+zUV1sPqXeqz9a2bX0vG/c38t2afqcDhN3asPHMTuNq+35v+72NOm0tZ7c94ta90da+2K1P0zS95UOM29lrvl+y0/jcrd17reP2vrzddu1lL3q7ee80J7xfh3R3gOsd+U9K9nJy+17lhx27baPu72c5uYYt9/05sG8/x+66m/FGg3q9zv/9b/8vVlsRcSQJuyFf/fIfgQBjMlZXmmRI+oOUJ48/h6BAlthEw5QkzBCJQApJu9PenGy0Ze3Yno04oGma5mysaUxmUqTKNcWIPH4eQGYyHNfd7AfbybWUnu9y8cIFpg5M8/GPf4J9+yZYX28zPr6PxtgEk5MHGPQHxEZSrY5xdX6Bs2+fIY1ChMn9Wm1tcfnSZYTJzZabzWWOHz+OZdkcOHCAUrGYa9vimMbYGMeOHQMM4xMTLC4tbZJRGTLuvucuHMdhMBwSDiOyNMO2beI45t577qNQLHLh4gWuXV3i+edfBCOJkwypLCzbcPjIFEJGCBmBCBkM+sRRNNIE5vFPC4UA23bRWiGlwLLzEC9JkrC6usqXvvRlhsMQy7bRWpOkKa6bsxyfOnkax3YQCAaDPlEcYzAolcebBYnJNGkiyYxAKItisYwfBBTLFRzPJyUHyXEcY9IUrXLfU60158+fz8GjtpAy9+0+eeI0zeYK1WqdLEtH7zw3w9VKYYxACEWvOwAjUdJCZBm+Y3P+zNtIUpJoQJKExNEA33P4xCc+ygcefhDPs+n1u9x77zFOnz4FImXu0EGmD06hdMbS0gLGpBw6PMvswVlWm2uceOMUDzz0CEZYrLfXkBIqlQq//IVfRIgsN3c1KYiUUilASkMSG8gk85cXeO3V10mTbPQuCrx95m2++Y0/Z3x8AtfxqdcbPPv95xgOQizL5u23ziBQSDQgCYchQkhsKwf+Wms8f0TaI3Kiqk63z9jYJCazKZUKIDJ+8Zd+Aa0lhjQfN1HC+nqHSqWGEJozb59DWppDRw4TJgmFUhGhFNPTBxEj88E0jVlZaaKUIEsNWltMHpiiVq3jOA7aUqRpglI2WarxXJejR4/y5T/6CmlqOHz4MK6Xm3dLpThx4iRPPf00URQz6LbpdTo0V9Y4c/YSjpezcyMgjCLSLGHx2gKIlKtX50mTlLffeptLly4jbY+/e+I4B2fn2Ld/knK1xh99+U85ffosaWZYXVvF8x0m9jW4fGme5WaTj3/skyQJvP7aSU6dOE0SJ8RRxL79+3G8ArZjsbKyzKce/xT1Rh2poFwOePDBh5nYvx9lCyBDCMVgEBGGCcVCmfZ6h0E/4Rd+/gu0/n/23jzKjqu69//UfOd7e541tGbJsmbJtmw8yHhiMLYDD2ObEBuS9174JS8QEn7kgROSFR4riSEhhBAIJgwGjLGDbWw8S7Zlyxoso9kaWq2ep9t951u3hnN+f1R3u9VuDZ6Al9uBLgoAACAASURBVJ++a92lVlWdoapOnbP32Xt/dybL2NgI2dwY6dFBdMUkZEXZt/8whZJLplDB9/wgvY6uIJ0iD+zT+PrXv8bGSy7gaMcR6hqasMwEVkhlLDOEkBVicYsFC+cgfZ9cLse1116Lj0Qz9DPO3e6On+Du+MmbnvunWkCn/34b8dvct982nK2sc7YKxkxj463KI6dS/M/mPZ9KnvuvMEbezD38V7jvXwfOPKuewzmcJaZaB09/3ck5zCbKBpg6+c70AYspedC88WPaSS42p9uBmql/U/uxe/duHnzwQVKpFH/0R38U9EhO5Hd7fX+mztdT21QU+bpjcLK1ODj35iYpIQS+Nh7zIwkUBj+IN922Yzvvv+4GOk4cY8nC2Xzqj3/MQNcAn/3inTQsWcA636Ew1kenn+Lb9/2c53bvZzCdwTJ0mlJRfu/9V/J717+b4YE+kokwsUQtiXACKUMIXHq7DtHSthgNH9WvYNslKiiEolGK5YDkRkiFHz76PPc/9SKHjvdSsivUVye5ZNVS/uCD17BsbhOqaiAlSOnjeRXC8SoaG5sxdZ10ZoxnDx7m0X//KYeO91CuONSm4rxrzTI+ccOVtPgBS+/hYx0sWjQPTzjoihUo45lR6hobuPvhp/jZU9s5cKyLkm3T+K2HedfqpXzid65m6bw4tm3T3NYSuOHaPj093TQ1NSF9EShkmk/F9ohEYtTW11IqlunvH6C2vooTnV3MnjOXkBUhEUsSjYeoaazBlz69XYE7cmtLA3Pb51BTk8IXgeXFDMXRFRVLKgyNjOD5gubmWjzXoVIRKGjkCwUi0cAqnEwmue22W1BVFdetkE4PU99QQ/9AH8lEFfMXLWLV2nUoisRxgneRSCYIGXHK5RLC89FNLYhRtOoQgG6qCN+jIiTFXJZ4LMYzzzzNRRddhJQ6QvgYuoHvw+LFSwAPV5TQtTClUp6Fi9rH41MlSH1cOVNBEaiagqkoSASWaQHQcew4bS31eMKnuaUlyKlqmAjPIxQJIQQYloWqCjRUDBm4na9YuQxVB5AojsCzfZobG1GEh6GpLFt+Hi9sfZ5YNILtOIRDkXF3dB1VcUD4eI6LbTskEkk0DFzHQ/igGjFOdB7ixa3PcdmlG9FUBTvvEE9GmTOrgY5jcYrFDJFoGB+PkdEhyuUCnqvTefwIdXV1rN+wDs91cRwb09JxPQ8hfDzXQxvfqClXPAxdxTQsFMVHCA9VCcieinaesGUifY+yCuWyTTQeoaZ2EblckebWdvAcyraN6zqEDItKsYRe24CUAkWBWDIZCDqeilR90kMjtDU3oqsS162geoEFx/cdxnIZquviCFSuue4akokqPCExLB27HKSsWb5qISvXLsNzA2IWI6TR0bkHTYOqmgRCGOiqjmVYCKGwbddusk8Oc/PNH8EwTdZVr0VKhbGRMfq6etDfZeALH92Aq95zFaqm8JOf/JSrr76CpsZaBga7aWqci+f5vPTSNi67/BJ0w+eFrS+RamwEz6XcfZx5c1opeBJP+Hi+g6Ho2HYFp2xT1xBFyjwhzcRVBXY5j2WE2LvvACtWrcbxIaS7NNQ3glaDVGCwb4CWphZGRwaoqaln8aIFSHyScQtfSA4e6mDjmmVgRNhw3RUs2riO4WyeZStWI4TA81xirsX2A0fYvvcV/vwzf8bAiW58xWbB8vnMnt+OL33w/ZOC06YL+IqiIPPDZzXnn7y+vN7raOrm5aksGtOtZK9fj0626L0Za8vUNXYmq9L0a0/X16llZrKSnkrWmDg3tf3p5c+E6c9qqkIxnSDqbDBTmzM9l+myzKnqEeLk96go4xQ6Qk4h0ZETdGAnlVcUBU/4+HJcnuI1wqXXtXeGmNJJK+8U2W2izuDEyXl3Z7qX4LIpVuCJenj9+FTehGJ38vP1XnfsVLLm6zFz2xMeRzN5KrxR6+Lpvt+Z8EbG82+D2+/bYfU+R850Dm87ZhqY4sGnAdCu38QEmctUzPxBzXRsprInJzZ/o5ha5vHHH+dP//RPefXVVycV11P373R4J4icxmuZWMhVJSDPHXfLZWJhrvggJK0tbWx+5iluvfXDLF6yipxdIJmKkwrH2Pn8w9z8pe/x8qEOsoUSYUunaDuM5Es8uXM/PUNpVs6uBwTF4hDgBjGrrkciXkO5nMOxi1ScEroRMN0GuS8jDI1mufFT/4cf/GILPYNpfCGIhkMMj+XYe/QEP3xkC8lIhBUL20EGgnUmMxawy2oa+w4c4g/+4Tvc9/RL9A6lETKw1qVzBfYd7eJHv3yOhpokKxe2M29+O6ZljOc+Ddw2jxw/wW1f+Gd++Mhz9A6lkVISC4cZyQbt3/PoFppra1ixYA6qoqIpKq7j88Mf3kN1TS0NjQ14vsfYaIZUqhrP8xF+sMAbhkF1bTXJVGo8rYzOc889T119DVJKHMfhgQce4IpNV9DU2DgemyrRx8mzNF1DCkmhkCebzdDS2ooifcbfYOCKW3GIRMM4TuWkWGIpBdFoBN/3iEQjoChU7CAdja5ruK6DaZpkc0EcpqppOK6DL3wM00BVwXEqGHoQp6qqKpZpkM/naWlpo1goIQUYphZYCwMDNqoWuGdpioauaeN9rFAsFkGZiIUFlCD/q6ro+F7g9nro4KssWLgQQ1dRVR1jnJhJUTSCtKYqmhqwVY+k05imSblcHi/voygapmGRz2bRDANNMyjZNlpAoc389nZq62rYtu0lkvEkJ7q6qK6uxi7bDA8PUFtbjaqpCD9QNqyQRaVSBkVF1xQOHjpAIZ8jk82iagaZzCiRaIiVq1YSjSXGYxglK1asIBwKIYRg1qzZLFm6BNM00A0D0zBR1cCtTzcMhADXcTFNC03TENIHKQLSMAmViks2m8VzPXr7+jANixe2vcTixYvQdXXczVXHtsuYpkEoHCYaib42rYy7UZZKJXRDR/iC7FiWBx54AN8XLF9+HlIKdMNA04KNEFVVSSaTqIqBqmiYpoamSnK5LOFQCOkraKqGrgXC7/DACA//4mHOP385iUQiIA0zArZwX0iEDPIHt7S2sG7NejwvYIYOnn8VmgoNDQ04boVINELZtolF4liGwZJFC0glExzYv5/6ugYMS6dUKrNgwQJOnDiBrmtUVVfR3NJGKpUiEgpz7OhRahsaA3ZjJUjVVSqVgphuLRjL5VIZUzcwQyFGxzLU1tUhhCART6CpFo8//gQokvqaahR8DA1GR7NkMhmOdxzHNC327N3D4ECao0c7aE5APJHgmNfMgoULUFU18HQYd4M0dJ1kXTUbNmxg/949NNfVc8+993DtddcipJxRwJ6cux96BgD1/ZfjH98OgDZ3/RteA2Y6PqHATnfFnDg/84bx24czue7OdO3Z1jv9/6cSxk/lBjyTwn6m9k+n5L9VzKTczNTvmds7/cb/me5L8vbHVs/47uUMbZxm/E4vO/nnW3AzPbnMTGNmZllzhprOov6zPzfTte+kgvnboLjO9M2fI2c6h996/CZ3fn5dcQ7vZDsTH/7EbqQiJYoE4fmoKMxqncXRo0dx3BLzFs6jdc48Hnz453zwxpvwyhXSY8Pc8S+/pFRxWbNsCQ99/cs8/s2v8qc3XMftH7gagB8/sZWHdh7GDIfRFcFAbweePYKm2niux+ann8apOCQSVfgCfD8Q1Fynwh13fo1fHe4kbJl89TO30/nItzn68DfZ/7N/5pb3XIrr+fzFN37EI1u2c+xYJ54rSKVq0DWVcMjiL7//IIe6+glbJn/1iZt4/B8+zbP//Bc89y//m/dvXInr+Xz+mz/msa0voqoSyzIDBcEXdPf08P9+46fsPdpF2DL5hz/5PZ7/xl/xyj1/z0t3f5GPXHMRrufzqX/4d57c+jIdRzsoF4sYVoRVa9dTW1eP4/kYlkV9XRP5fJm9e/aTy+dJJOMkUwk8IZCKAqpKvlRkybKlRCJB/Gp1dRV3fPwODF2np6cP3wus6kKAphn4vouULtFomDlzZiGkh11xGBvNMMkSqUh6enpwXRfHcfD9CYKmwH1Y0wLlSFU0qqurcV0HVVWIRqOoqkYikSRkWZSKRRQliD1WAE1TAqZfKRgdzVCp+AG5UiyCZVl0dp7gvvvuf81CokhUNdi7N3Qr+NcwCVkhorE4yWQKTdXwHD9Y46USEGQVythlF9MI0dvXz+joGJpmMDKcZnh4BF2zJgmEpAgU3MOHjwT1aQbRaIJwOEoyWYVtO+zcuYt4Ikk4FEEAiXgCu+Kg6SCkRzgcYdWq1XR2drFnz37yuUChbm5uBoLNDBQwLQMpPCxLxzIhmYxw2WWXEE/EWbFiFfUNdbS0tlBbW4ei6oFCThBH2nn8OIqqEo5EmNs+F1WVVCo2xUKBwcFh7JLDyMgommJg6CaeI/AcHylFkKREURgdGcH3faLRGL4vSKWqaW+fTygcZeHChYGCLQQ7d+1i69bnCIfDQJBft1gu8+yzz2HbFYaHhlFQCIdCVMo2CpBMJaitrWHevHl4fhBb7Ps+UgaMx5qmUbFtVD+MXazgVgpAGUODQwf2c+TVV+nv6ce1HbqOd1JbU83FGy9C01RqaqtJpVLjmygBQZuhB5b5ZCyG58IjjzxGsVgOPEGET7GUpb6hmlQqgWGYRKMxujqOUCnlScSj+K7HvPaF2EWXUEinsakOXddobm6mobGRuXNmY+hgGhrlikN1TSO2XaGj4zhynNSrkC8ESqQvyWZz6JpGZ2cHr+zdR219A7qho6kK3SdOcP/9D1JTUw9CBd+jmBmhmBmkoaGemppadMMknyswd848kqkktbV11IShP+OybOmqSQI613XJZDLYtk3GLZOsqcYyDM5bsJi9L7/CrFmzGBoawnGcd2TuP1tMV1pnUmLfSbyd8Z8TOFtF+Nexvr+ZUKWZYoPfTEzjTGXO9p2+1VjP05V9q+NrpvJv5lmdbTvn8H8vzimu5/C242wnsDNNVKfCRND39J3ks5ngJhSAqThVmbMJfp9OKHAqIeGNTLgz7SxOrWdCkfFdF1VI3IqDpqj0dncjfZ+uY93EoiHCUYtt21+i4krmzJ/Lls1PYqrw11/+GyqOQ20yzle++m3a11/HP927mf9x5ze46SN/yE1XXQ7AP9//FIoZoa7hPBYuWM9A3zBD/V0MDr7Ke979Hh76z0epVFQMqxrPNfBdnc279rNt72EAvvAHH+LDV12IZQUxsQ01Kf7xzz7BxpVLEELy9/c8RDKRRFFUnIqLrio8uXMPOw91AHD7tZfwkasvJhWPUsjnSYZD/Mtn/wfrl85DCMk/3fc4Qrq4rj2ZvuRXHf28tO8IAP/74x/kY++5ilwmS3dXP3Na5vDX//0WLh5v/+9++DCPPfYkw+k0QnpceMF6UlUpyuUy2WyO9OgIlmWwes0qqqtT2HaZI0cO4/kemqbhOA4vvvgi999/P1IKrJCFED6WFcRp1tfVoWoK6fQIpVIxYIlUVCQKQkhKpXKQ4ke3qK2tRdc1QiGLuroa2ufNIRaPoBsqqhq4N0np093dje/LSUVSVSEUNifHqK4biHE9MpEMSK+ECHL7eb5A100UgjQpBw4cwHMFUgRl16xdxe9+7FY0TaNcLuL7DooikUJhaHAUIcBxXPL5An29fUFcq4CHH3qY7FgW3/XJjGYxDGvcZVflumuvobGxjr6+PkLhECMjI/jCY3hoiCNHjuJ5AkVRqautx3N9HDcgFDLG46hjsSjnn78CFJVSpcLx4504no85bvmCII1MIhFn3fo1fOQjHyaRTNDT3cvTT21h754D9HT3oWkGruthV8qggIJHxS6xYP5crth0OZF4FCE8XM/BGbf0oiq4voNdKtM+dy6qqjIymsYTAsf1KJXLRKJRLMsERVJTVYXwPTzHCTYyfJ+KXQhyg0qfttY2DN0glxujtaU5YG4OWZjhMLNmteJ7QUz46tUrefdV7yYUtlA0Hd2w0DST81es5qUduwhZFpoS5DMsFgrjOXA91qxdQzaXYWBgkHyuQD6XQwhBLpfDLpcDVu3+Xn5670/HmYx1kskEqVScJUuX0tnZhWmGaGlpwXFsGpvqGEkPs3v3y1RsG003sF2XbC4PUqKrCrnsGLqu8t73XAcEngSqAvl8gaGh4fFQAInvexw5cgTHsfE8m9FsmvTYKOFYHM8T9Pb2ks/nGR4eDjZndAPPcynkc0TiUWI11Tz88C+oranFMi2kVGhoaAQgmyugqSae7zNnbhtLF59PX18vuq6yecszPPvcs5imQioVp6GhAYlKPJlAKgIhPVQV2lpbxxnPYd68uTQ3NxIxJCdCq9G1wHJuWRaKohAOh4M5WFMoZrNU8gUO7N9H2atw4403Ul9fPzl+p64NQrxGUKfe+j6UW993Wsvf9LXqTOvqVGvN1DVtJpKdM9XzRi2m09fBN+uW+0YUs5namO7aO/HcZ1rbp9c7U/szWT0nXDlPJ2PMdG9nuv+p4+N0mEnGONtY2KllzhRPOZNM9WbHzfS+TX0mM72f093r9LE9/V2dafy+VcV9alunq/ONKMhT7+t0z3dqH84GM7md/zo3sGbC1DnpzeKc4noObzsmJsOTWAJvux7ttutPuq67u5vPfvZzrF27ntraehKJFIsXL+Wmmz7ID37wQ2zbfl3dvu/z3e9+l6uuuprGxmai0TizZ8/mwx/+MFu2bDllnzZt2oRhGHzxi1/EdV2+8pWvcMEFF1BXV4dpmmzZsgXTNPn4xz8OwIkTJ7AsC8uyME0T0zT54he/+Lp6s9ksX/rSl7jooouor68nFovR3t7Obbd9lJdeeul111cqFdavX49lWWzcuPGUlPe33HILpmkyZ84cRkZGTjo3Mclp4xa657Y8i/R95syazT0/+CH79u4F4SGkw7oN66ltaOD6D7wPDYXHH3uMF7a/CMBtm1axaOEiVFXlj//4j0mn0yxdupQ/+dPgPvOFIg8/uwsbF6EbtLQsIBmvx9Atjh3by6YrL0YzJJohicRMVM3nly/sBiBimdx27UZM3WB6supPfvg9AOzv6GYwV0TTFKyQAVLy+Lbx8iGLP7r5BizToipVhef45HNFBvuH+N1rLwPglVc72fPqUSKRCEL4mKbFEy/9arL87ddvAmxWr1nGwsVz0U2NZKqKP7z5OgD2HO1k2boLqa2rwy5lSA/3oUqBqRk88egTuF4RiUNPbycg8TyPBQsWoggJQuBVHC5Yv57/5w8/CQqBdVIJSK+ampqQ+AwODhAKW+NusT5SKCBVOo4d51vf+neOHTuO63rcc8+P8H2B53uUyiVGRkYQvkCKoF3HdRBSMHv2bDTVQNPMcTfQPCHLQlVfW/hUVaXiOri+h1RA0VQUVcUuuRw90gEo1NXVMnt2G56r0Hm8O2DOlT6mpeG6HqZp0tffO87MCpYVkA2NjWWIRmNs376D3t4+hgaH8D2BrhlIEfgWb9v2It/97t1IfDQdPK9CLBbGNDWWLl0UEEfpCkePdmAYBrqm4zgBC6zj2BQKOXzhIKSLxMeydFAVDF2nra0NIYNoKk01MAwT3/cQ0kMIF02TqKqkpqaGa655D40NbUTCifH0OgFRFBKkL7HLZTKZDBKBwKO6pop4IhEwN6saEonnu8SiMSp2kB84mUqxc9cuDh54NUgBJCXJZJxiKUcuN4bvO+RyGZCCJ574JaVSEVUBu1wGKRno70chIIoyLQ1FlbjCQx3P/xoKhYhGo0gpyOfzqKpO8FgVkskUG9ZfwNjoGH19fbiOS0N9AwcPHKBSsamrq2X+/Pl0HDvOU08/gznOnF1VVUUoFCISiVDbmGLNhrVIxcIXIQQqNQ21VDyH1lmzQdMIxcLEU3HCkRCxWITzzjuPihOkaDIMi2g0SJ3kVCp0nTgBaoV8MY2i+OTzOVzPI5sp8cLWlxACxsZGAXjvez+AJwS2a9PS1sTseXM4duI4CgZ22SMUihCOhDh65Ai5bAm34hIOW6iaRDVVrr/+A0SjMVzXY2RkBCmDtEThUIRIJErFruD7Hs88uZmIFcYyDS64cD3vv+EDfOCGqxka7sUKW9iuR8UDK16F65ZRFJ9sbhTT0mlqaqBcLlDMDSM9Bz3VhOPYKEqQnkSIIJwhmUwGZGNHDjMyNEhjcwPnrV1BPB4/SWk9FZRL16G8a+0Zr/ttwZkIn6au+dMJd95pAflM8aZn6vvbTfboed5kndM3D94oJuqZeg/vNDnl2fTnjZBkni3h0NtFvPlOEnjOJNv+uvBOkHq+VfymxuJvzxM4h/8ymGlXSr1sPepl6yeP/+AHP2TZsuXcdddd7NmzB9u2sSyL48eP8/DDD3PHHR/n0KFDJ+1kZbNZrrnmWn7/9/87mzdvIZPJEIlE6O/v5/777+eqq67is5/97IxW3AmUy2U2bdrEn//5n7Nnz56TJoGGhgYSiUTQX1WloaHhpF8sFpu8VlEUXnrpJZYvX86dd97Jjh07yOfzWJZFT08P9977Uy699HK+/OW/IyBlCoL3Lcvi+9//PtFolJ07d/KFL3zhdX28++67ue+++1BVle985zvU1tZOtqmqKldddRXhcJglS5aiSNh09SaEriJVi/OWrmPDJZu4+LJriURqWb/2En758FN8556HkEQwzDCVSgWADfMbqORGaaitA1R279nNoYOv0lBXz9zZcwHYsv1X2IUsSEnPQJruvjS19c3U1FWjSYfBjoOYXhlFgZLr09UfEI20tzUG8YGahqYGNAdCDZ7BotkNk/f67Cv7UNQgXk41NE70DwEwt7mekKWTy9kc7ehhYGQEM2zS2FzLuvPaJ8s/t/s4CiFsx+XgwQN0dPUF7bc0YJcrOELgCxXTCCGlj/DLLJr1Wvt7OjqxDA2kpKGlmaJbAV3FCumMpPOoWpj6hlascBQrHAFVwfN9MtkM+WKW0bEhdFOi6QamaaJIQW93F75jMzTs8sLWbYR1DVM3yWQqSM9F11WaWhq57aO30NbSiKkr3HTD9fR2d+PZLl3He4iEqzDMCLphIBWJppuAEVhUpYcQDkJ47N+/H9cN8spqWqAISXwioRAKElUJJnkpfSwzRktrM55fZnRsiHA4wuZnt9Dc0kx3T09AOuMHZEKaqtLS3Eo2mwEqJJImruOTTKSQCK6++kpSVQlSdTVki1l+/tD9COFSU5Ni7tzZwXclVfKFAoap4WvBc5MCctk8kViCm37n/Sgq5DJZtm55niP7XyUcChEKRVCkgfQlqiKw7SyeX6Li5pEyyGuqCR1Vqviei+s6GLpFejSHXbHJZPNkcgV8RVD2C3iOy3NbNlPMZzB0UBUFoUvqmhtI1dYjVQuJQbGYp5jP0dlxhEqpgFMsUspk0cMWoWgEu1RGcTx6jnawcOFCkqk4QvrohsGO7bsolyXbd/wKTQ8jUNl05dXEk1VYpkUkHMJxHZraZmGYSYolD4mCqoDvVvAR+EIiPcgMj5FNj6EIQW5shMP7DvHz+x5keGgYI6Iwb94cWtvqMUyo2C4D/dmAOKtYpLv7GBdcuJoPXP8BwmaIwf5+FEWiGyqKJtDRmNM6G7tUAUXF9UFVIlhhg4OHd1OuFMjlc0jFR1PAscuYmoIqffAdHCePgopuROgbGMF2A4U+lUphhSzWrl2LruksX7mc991wPWgKcjz3q6eWaWxtwDRDGLrF2MgQa1YupVQu0NBQj2mY4EmWLl6CFD6RcBRdM9EUDYRLPhfkg/alwpNPP0937wiaAYZmcOzIUUKWiWFFqa6JUVVVhaoa5LIF6mpTKKrOqhUr8MsFMkOD+K7AqbzmpdBQ30QuW+D48U5UPUwyHsVHpW1uE7pVomxnUVQf09QD13PA9QQLFi8inx2jp/s4rS0NOMIPCNB0HSXwtp+Epo3Hjk9ZQ6bO+1M9iSbWhKkWk+mYyTozYX2bUJ6mWwmnrzXTrWlv1mo005p/JuvhqTyLzmRlm37ddKvSmTydpltiZ7rH03lPnckKPsFJMPGTUr7uvU/0bboFNCirj8sLgdygaQagImWwiago2vhPTv5UFVT17D3Wgj8kCIn0xeRv+vuZ/lympuGb6O/k9b4IxruQk2NfkQFp08RvghBqJm8AFWXyN1l+hvd4pvc8fdy8fvyovCaTBc915uemnnStomintLjO1PbbjZm8Ck5ppVUVUBXU8XRqctrpmTZT3ky/T7cpcaaxeKZnedp233CJcziHt4hHH/0ld9zxcWzb5qKLLuTpp58kl8sxPDzM8PAwTz31FLfffvukgDCB3//932fLlmcxTZOvfOUu0ulhhoYGOHHiBB/72McAuOuuu/jmN795yrb/9V//lb179/Ltb3+bdDrN4OAg/f39LF++nO7ubu666y4A2tra6O7upru7m66uLrq6uvjUpz41WU9nZyfve9/7GBwc5MYbb2Tbtm3kcjlGRkbo7u7mc5/7HJqm8fnPf56f//znJ/Vh0aJFk+185Stf4Yknnpg8d+jQIT796U8D8OlPf5orrrjilPei8Npk4zkuPV1dmJpOMhXlhRefxfMcevtOMDjYx89+8i00tcyhI/smy5/f3soTTzzBnXfeSWtrM5dfcSkA/f39NDc2AfBqVz/RSIyRkTTJRJLu7l76egepqWuls2sARTMZHR1DRRA2A0ZXAN8XaLqG67p4vgdIVCSqoiLEaxPZgWNdk39bljW5ENoVh3Q6TVVVklw+w6uHX8UZZ4Q9ePDwa8/rRDdHjx0ExWXWrDaM8fQTvhBomkpf7wCe69PfP0CpVEb4kkrlNSv3rgNHKRTLmEaI4cERopEowve5+OJ3sWTJknFL5jixj2Wi6wHJUjKZJBQKkUwm8X0fVVVQNXVyQfeFIJmKUijkUHUdywrT29OH63m4nkc0GiWVSqFq2uTC09LSQm9vL2Ojo/zysccYGRnBrlTG33EgnEyQQziOg0SybOky5HiOXNd18TwPXdPJ5/NoWpCaJ1SFmwAAIABJREFUyPcDcilUQSQSplKxqa6uJhwOsWH9OkKhEOvXr8MwjCAfrqJTqbhUbIdoNE6pWEYIeOLJx9n6wvNoqo5lhUgkEkQjYT760dv48Ic/jGVZ5AsF6uvrufXWW5FSBjl8hSCRqCKRSFGpVEilEsSiEfxxVsx8qcCmd29i/sKFZLM5PM8LrJZKEN+p6Tq6ZmGZYSwrhFNx8fyAXVYIj87OY7y8eye1tTXouk5NTTU7dmyns/M4TU1NJKuSLD9/ObFEAtcTZLNZkCA8gec4OOUiuhrE84bDIea1txMad/uub6jDMA2E75NIJLArNpuuvJKRkRG0cQHYdRxSqRS6obJq5UpisShbt77AgQOHGBsL8ut6vsC0ApblWCw2Oc6nClWGGXgd/Od//iflcplYLEY0EqHiVCgUcmRzGTRNp7u7GymgVAo8UhobGkBKwuEIiUSSXDYHSNLpURKJJLpm4rk+oOILyS9+8QtCIZOB3h4MRQS5WV2fq668EsswiYajSF9QKpdJpVKUymWqa2qwKxV0LcilK6VLW1sL5y9fNZ5zU2VwcIhIOILreQFxlK4Rj8eJRGMoKBSLZVzX5+WXX8EuV0glq3BdH9MMMTg4hG2XqG+o53jHMVJVqSAPcLGI5wZjOhGPgxSoCG695b9x5Mh+PKeCoWvMm9uOZhikRzOsWbOaXD5HT08Pzc3N2LaNogbCmy8kv/zlE7z44k58oZBOZzlxohcJzJ07lzlz5hCPx1mzeDZmqonq6urxFEcmoVAIzwvYwS0rRMS0yAynQVO5+rprwXhNiD8T5JYdyC07AFCbl6E2L3tbhd23W3A+G4XoVH04k0vt6QTb6W1OF9jfqMvn6Vx8z9T2m7luYm6fKZ/pqeqZXudM7rAzlZk4f7YKyKkU85nuYXrbbwa/aRfVczg9fpOW/DeKc4rrOfxaIDZvR2zejud5/K//9SdIKdm48SIee+yXbNy4cXLXJpFIcPHFF/ONb3yDJUuWTJbfsWMHDzzwAABf/epd/OEf/k8ikQgAjY2N/Nu//Rs33HADAH/5l385o5sxQKFQ4Hvf+x4f/ehHx8lPoKamhurq6jd0P5/97GfJZDLccsst/OhHP2LVqlVBrlKgvr6eO++8k7/9278F4G/+5m9eV/5jH/sYH/rQh5BScscddzA0NESlUuG2226jVCqxbt067rzzztP2QQKowUJgl8q8+OzzPPPkU7Q0N3DhBetwnTIhS+d9772G733zX2iqryNXyAOQiobRVYW21tl88pOfZHBwkIGBPr75zW/S399P+9zAqtmXsaHzReILL2NgYJDVq9cQjyXpODHEkvPW0jeQCSxc6REMxaO1PniOx3sHGR3LTipDSAHj7Kr7jr6mrA6kxyb/LpVKVMWC3K69w6PkCkVKpTznL1/G79x0I8l4gsGBIfrShcky/cOjtLfPRR9374yZgfDY0TNIX/8gXV3deL7g0Uceo2I7KIrG4a6hyfK5koOKjqpZ45KtREPjp/fez+DgIGNjGfbt24/juLiuR6VSQdM0bNsmkUiQSqXI5XI4FZdCrkBPXz+z58zBCoWIRnU+cMP1OG5QdsG8hQGhjm0zNDw8uRPvC4EvBIqqsn3HDna+vIu+nl6SiRSKVEAEG6i6drLAU8gXCHLj+pPWjUK+QNkuI5HYZXtSSBBSoKoCX7iTCm6pXCSZSlIql8a/PwXPC2Jeh4dGeeQXj+G5gni8CikU1q1bS6VSwXEcenp6URQVBYGha5TtMqqmYVoWpqmj6SqHDh0KFEShoKKhagahSDjYfRcOmm7i+j5VNSnCsTBWLERtbR2mYZDNZhG+j+N4BPseKo4jGRvNs3nzFrZv346UHoap0T5vDmvWrAS8wEItBRdddAGWZSIl6KZO/+Agqm5gWmGSVdWoUsWxbaTvUciN4doFOo53UCwVKZVLOK6DGTLJZDIoMthZ7h/oD0ipqlLMm9eO67r4noeQsHjRUsYyo/T0djE4OIiuGSxevJTa6hpAQUiJLwRSwtatWykUigghGB4eJhQKYaj6+AaB5OaP3EJjUzOO5yGBlSuWk0wmglCEaIxkqooT3d2Ypolu6Ixl0+zZtweJpKqqmt6+fioVm0g4ghBw709+imGGUBUDFMk1111DPpclbGoUc2N0HuukXCijSBVDNZCewC7amFaEgaE04WgCX6pY4RiuA5qmguKh6xqWGUVKSI+kicVi5PJ5xsYyKEjG0mmGB4co5PLksnnsshvESw+lKZcdQEdVDKSvYujBs/alR1VtCsd12PXyLgb7B3BdF7tcplQs89STT6KrINwSl168HlWROJVKwOKrqEhFRSKJRCLEYjGkhHAogmbo5Ip5CqUSLbPmcKyzm4OHOnhl9wFGx3KYZpju3h4KpWJgcS4N42hR/PGcyZ7nIYWCpgUM2q7r8vQjjxEyLdZdsIGy9FCsM7sIT0D84CHEDx4CwFhyBcaSK952xfXtrO+c4vrmrpsI3Zh6foI07VT1nFNcz+E3gf+b3s05xfUc3hFMWJ4m4H//5/jf/zmbN2+ms7MTgL//+7+bJLyYafKfOtHde++9ALS2tnD77bfP2OZEaqeRkRGeeOKJGetctmwZ733ve9/wvUz9oEdHRyeV6M985jOnXABuvfVWAPbs2cPAwMDr6v3617/OnDlzGBwc5OMf//ik+3I8Hud73/veKWOlHn/8cSqVCkdePQYEbMJupcL9P72P73/7O7y49QXKxRJ2qUwxX+DI4cP8asdBMqMOE2SXpq4SiUQpl23K5TKe73K88yhf+9rX2LBhA8lEEoCyXWGwZgPWK99iXnsroZDF0aMd9HT30d3TT31TK7lCKchnWS5x1YWrALAdl7sf2kyxWBx3AxIUsxk8z+FrP3508l7yJXtyl880LT5wxUWT5e99Zjv5XI6nnnyKjmMdhMNhBgYG+MFT2ybLZ/IlhKujYBGLxbjhio0AVFyX+5/bzYYNG7Asi/e85z3EYjGEEPzjPQ+/1n6xxImuLoaGhqmtqcFQA/fTyy6/jFQqRTKZwPNcent7KBYL6Hrg7lepVEin05Mxb2EzRCKWoLmpOUgVohtYpoYZMjFDYRRV5b57fxKwEycS1NXWks/lcBwHTdewwiF84XPDTTfyO7/zQa6//r2Ui8VA3xfBOy6VSmiaFmwGaBrhcBhd0wmFLKQM2HMjkQiGYRCNRDEMA4UgBY+CgiQg9UolqwGVcChCV1dnkNZF18dJmcq4rkddXT2arlOpOJTLgUKVSCS48spNqKrK1q0vjMeMgqpIotEYQgpC4QhSCnRdo66+DilBUVRyY1mklPjjbqNOxaFSDkjFIuEQmqHiCZ9SsQyKQlNzI74QhMNRFAIF1NBNXti6jUULF5HNjlIql5BSUC4HruqaHijfruvQPm8OLS3NqIqGpiksXrwYTTUolysByZTnIoTENEykL3DKZRYtXkwilcQKB8q1aVnUjKdUURSFaDyObhoYlolEMDqa5ujRo5RLNplMlgXzF9La2kYoHKJ/oI9cLoNwfRRVI1cogKKiSoWRkREOHz6MlEEsru/7lEtl7GIZ35cUCiV8KdENk46ODjzf5b3vu46a2upg00H4NLe04XgCVFizbhXDI4Nks1ny+SKu5xFLRCdjqy9517tQUBgZSVMo5InH4/i+h6KqeJ5kLJPD8wXdXT309vRRLlcIh6NkMhlqa2snN0V0XccyQ2QyOZ55egu2XaFsFymXysTjcRKJJK7j4lQcotEwsWiE4aEhhC9Ij6TJZDLousGVV15JdVU1qqpy4MABfM/noYceJhyJ4gtBLJ5ANwxUTaO+vg4hfHRNo7unh4svvhgUyZEjr1Is5Mlk8xSKxSB+eKCfkGWSTg9jGEF6Itu2OXq0g4pTobamBlXVuOjCi7jyynfT2trKsuXLmTVrNtlcjsamZgzDZP++fXjFLGLe1ZNeC7FoAssKUyyWUNDo6x0gOzrG8FgaaeoIBfDfurViulvj6RSn6UrYxLqjjadLmjh2KnfbqWVO5XI4tcx0RXPqtTO182Ywvb2J+XXq+entnaqe6X2cOD7d5XcmhfFs7me6a/d0q+rUWMupstCEK/FUV9aZ+j9B1jT1XiYU4TM9u4kyM/V9ejzymTAxnib6OnV8TR9Lp3vvU+91qnv0xP9PVWbq9dOvm3p8JpKn0/Vpprqnj+mJPs80Lmbqx9liej2nGgenwvS+n2oj5FR9nHj27+Rmwtl8o292rjinuJ7DrxXbtgVKR2NjI2vWrDnrcrt27QLg0ksvPeXEvWTJElpaWk66fjouvPDCN9LdGbFt27bJCf/qq6+mra3tdb9Zs2axatWqyTLd3d2vqyeRSPD9738fXdd5/PHH+cY3vgHA1772Ndrb2193/QS08VyaZduetNpVp6porKnj0o2X8Nzm59HQ+cWDj3Dzhz5CMVtm0ZKFDGcGsJ0SEEwag4NDtLbOIh6P09zcyKZNlzM6OsoLL7zwmsVagfjSS0krVSiFPqR0Wb16FfPntVBTk6CmtpqGxmbMUATPh8vWLGPdsgUA/N1//Jyv3/sY/SNjuE6Fw129fOzOf2bXwWMYeiCMaOrJeQevvmg1a5fNB+CbDz7NX//bTyi70NY2m8efe4Gv/HwL+zt70TV1ont4notj2wwNDbJ+8VzOn9cGwF0/fJB//NGDHDh8hO7eLnYdeJXf+6uv8fKh19oHqKpKouoanluhYheo2CXmz5+Ppun4vmDFipXMndtOJBLkkPQ8j1gsRl1dHaqqjpPpSNLp9DipD7i+j/ADwigBVCo211xzJZqqksvn0XWdaHRcuRwfz5quY1oW9Q311NTE6e07EeSZVU1cV+J5kkwmE1h/pJwkDvM8L6hHUTDM4F9f+AgpcBwHz33tvOsIPA+2b9vFoYOHaW5uAibijSSlYpmf3ncvhqFx1VXvJhSyCIUCBUhRJa7nYhgGH/rQf8P3BEL4nDhxAiG8IEZTgVK5gBx3VRW+REElmYwxkdDdrjiYeoiDew+yc9t2SoU8wndRZODuqioKuqZh6DoKKr4PQviAwlVXXcXsOa1ccMFaYrE4juNh6CZByiEF4QsMU0fTFFAknu/hVMpIXzA2kuHA3oNIT6DoKqFoBE8IdCPE9u27KRRsXFeiKDqaZo3HDgcMx0JKkskkmVwWqQRpf5KpJEuXLRu3fBq8snsvR450IAWUy0UiUZNXXvkVni+oqqlBUVReeeUV7IrNsmVLURTG0xtpaIrK0SNHePSRR4L4RClBVWhsbKRSsQGB73tUHJdkMollhQmFwgGpkya57PLLUHWdbS/tYOWq1RimQamcp1DMUVUVR0pBVVUKu1ykXCqiGyap6np+fO/9JJIpNj/7HA1Nzdiui2FZSEUhGY9gaOMesNKjUi7geDZuReHY0V6OHDmGL0ocO9YBiko2k0XTdJqamikVCyQSCRYsWEAkHMXQDdrb5yKET7FYZNfLu3Bdl3g8TqVS5tJ3vQtNM9i9ew9Sqji+x6pVq9A0ncxYBukLFi1bimYaeL5A002i0QTxVA1C0Xj4kUfIZcZQPIfq6ipc1yEajfLcc8+TTo8SMiyEJ9j63LNoiqChNkV1KkpdfTWFUo7tO7azd98+DMOi2nSC55psY3h4mJ07d9Lb2x9820IhnU5TLJZZe9EFrFi/Fj0UhLTob1JvFbkhRG7opGPvlEA5oXi8kzhTv98IA+6EF9NvA6YrtqdTIOFk5WAqJhS/N8IgPL3+UylbU/s4sU5MPf5W8XbV82Zwttbyc5gZv8l393bjt2dWOIf/X2DC8jhrVtsbKjc0FCzsQW7GU2MiTnB4eHjG8/X19W+o3ZnQ398/+ffg4OBZlSmXyzMeX79+PZ/85Cf56le/CsAHP/hBbr755tPWJaUMyD9QMAyFSqWMLuAPPvEJdm7dyYbL3s2TTz3K+eevJJctkcnkSTWYpOpqSVUF7tWOgJbzr2TEstB1A01TSafTJJNVJBIJsrkcAJFwhGg0RE/zJRj9m4lWRRkczpOImYQiMTTNxAwZ6LqkXCpSKhT49uf/J7d9/h/Zc6STL939AF+6+4GT+n/dxWso2RU279xHMhaZXHhd18WwTO7+qz/m5j//O/Yd6+KBl/bzwEv74d8fnCx/+arFFEoldrzaRSxsMjjYg2YIfvazX/CJ2z/OF3/3er7wvYfYc/QEX/6PB/jyf5zc/rUbV1EqV9jy8gGqk3EaGxspFIo4js1AbzeLl5xHx4keUCWbNz/DZZddRkNDY+AiSWCBmcjpqOt6sNPrCvr6+qmqqUFIgecLrHH35bBlUSmWiEZDRGKBVWlCYRG+j6brlMtlTNNC1wPCiKhhsXjRfEaGR0kkUhi6iWkYlGx7fBdeIKXAMAwcx0fTVFzXxfUcBvoHqK2rxdANTMsM2H4BZCAspUfSrF9/ITt37gQFrJCJFAqqolFbW8cNN1yPRKDrKkJ4OK4/aWkGhUKhQLls09XVzey2WtraWtCMIO2OJ9wgFrTs0nGsg7lz5qCooGgCqaigBGQYoFAp2ex6eTupVIz6pgaSyarx1D0SKQPXTM/zA3dSPDRVQdcNXM+muiaFlIGC6vs+nuuhagYo8Mgjv+C6a68Nnn0ojCJ9KnZA9tNQ38B3776b5euWs/y88zG1EKFQlPnzFxOJxBgZCeaNffv2sXLlKuLxGKqqkM1mcRyHVFUVFdfB1JVJa5yu67S1zqLjWBcHDuzl9js+xk033YiiCOa1tzM2OkosGUfRFebOmUsiWRXEA+fz1NRU4zguErDtCsvPWz45ThVFpVwqUbJLzJs/D88XhEJBblfHcRBCks/n0XWVUDhMLGbS0NhALpujtr4Ky1RIphJ0dfWgqCqhSIRIJEy5XArel6Ly/hs/SDQapbm1FcfzeGHbSyxffh4LFszn1f17mTd/Pol4HLtcxnEcYokE5ZJDa0s71dXV6IZk9erVjI5l2P3KK2xYfwGKovD8889zySXvQlF0RkfTtLfPx5Uujuvwq1+9QjaToSqVRAiPZCIekJsZJitXrAEVQqaOBuz71R7i8SimaZIplghZFnbFBUVHUXRCkQiGqeK5HnPnzKKYyyLLZRzHpaqqho0bN+JUXAzdJO/kue7aaxgZGQxyMeMSjUeYPXsWFduhtbWVkGmytMGgMOtqTN0glUqxYcMGVC2M4zjouk42m6e6upo5c1uQukKulCduWWgiSBP7RuHuDLyJrCs+OeXdvzMue6ey0LzdbcCZXYTPhAlPh4BD4DdvY5luXTzVczyTxXYiTnpi7TgdTmWNnQjtmN63qZsSk2vTNFfit4K3q55z+PXjv9K7O6e4nsM7ilNN7sqkADuBmajzZyo300c3dfKf+DhnLjPzAihm+FtOOw4TDgoTO6XhcJhMJjNjO1MniQlXISlfv8OayeS4//77J/+/e/duCoXcSQzG0zFRtyolvq+h6SF8KSBskC6NocUMPvy7H6Kv+wRtbXUsWTib2tZ2uo4dIRENFPdsoUSPNZ9ELMQL255l0xVX8LN7fsbiRStYueo80uMCfCKWYCznUtc0D7NtLtr2r1NXPR+pRtjzq33U19dTLBaJx+NUV1ejSZuEafL41z/HDx99nkdf2Muxnl6EEMxtrudDV13EzdddytqPfAaA9pZ6FEUCCrqpUyoXaapJ8vjXv8C37nuUp3cdpLN/CCEksxtruWLlIt57wQqu/4tA0Z/TWIMiBYlIDbfc9ruga6xbt5IHzlvKn/2ff2LEVTgxmEZKSXtLAx+68iIuWTSP933u7wFY0NaMVDSi0ShdXSd45vkXaWydx+jIKHPnz2P16rW4noNhKKiajhCSsbEM9fW1WJaF50m2bHmepuoqlp9/HsMjQ5RKRVqamimWMoRj1QgvSGcSiVko6JRKGeLxCLbt4Do+iVgMy7RA01B0FUPVqFQ09u4/wJFDR1m2dBlNTbVkM2la58xDInE8H9fxUTQDVZEgBb4nyGeLFPIlqqoUcqNjKBKsSJiahjo0BPglTN3Hd4usXXU+wpOgKRQLeeKJOKomGcuMErJCVFVV09fbz49/ei+rV65m4wXrCUcssFQsM8KgoVLb2IIUMmCgdRw810WLmIyOjHH82HG43EcDAuZG8Fyfxx/9JecvW8ryVSsYLWQwwhHiiWo8oWKaAlU3qDgKjufy6oFDjKZHSSXjzJ7bRm1dbZAiRigoqoLvaezfe5C21maSyRgCeN97rx+nUZRI6eOrCppl4HuShuZGbr71FjQEhqLjOjaGpdI8twU0SW1tCq9i09ZQy6MPPcjlm64knkzw/7H33lGWXdW572+tHc/ZJ9epU7lTdVDnbqlbCSQUkBAgCdkgogEbbIIfxmBjP9vX9sU44Msd79rjedgXjMDigkwWIkgChAjKUktCQmp1TpXzyWnH98c+VV1dququloTg3tezxhnj1Nkr7bXX3nt+c871zVQyjes0URWXAA9kDFVRcF0HAvCweeXlO3jFZTuQIsD3oV63SaXbqDeqqIR7le/50b1cfe1r0A0Dw9RwHTfcT2rG2LB5YyufrwQCPLdBJB6nZtvYtocfBOiawuT0BG6zSS6bJZWwcAkIvNALXC4Xee65Mtv1HSRSBhKFXGcXqqIhhWRqOk8mk0I3JZ5bpSuXJBDgexKBypvfeDPHTxxGYJNJdzA9mSdiWiEwTsRxHUGlNs2VV++mXq+BH0FXdRrVGpvP20izXiM/PcXWLbvwXEkqHYPuAJcGdq2Jpqi84pJX8OADDzM8NMnw8DDZXBbTtFA1QT4/SSSq03QEdsPnqWf3cvPNN1OpNvnet77Ha17zWr79nW9TKEzz9re/mcqxKmvXreB1r70aU09waOw4lpWit6+TgRPHyOVyTE6MYZoK3//BD7n+9TeiGhbxiInnuehGjKbdZP15a1EUBWfsOVTVwFh7KT4uhVIxZHXXBI1ijcANKEyNE1vdiyschCeI6SYgsJdyZC4Smht+b/0/zys2/xl/enD0/Pfg/Hfe/DDYhb/Nl/nAabF36/zQwoVlFgs5Xlh3Ppvx6couJvNDehfuE50d+3yG4PnjWsxLuVgbyxnXUvtLFyu3FHvzfD1g9prOZ9Q9VfzW2gi/z9af1R/CJeM9L6wVCPWAuQHNHuSUdHSnO1+xyPQEYpFr6Z9+fZ6pzZONh2zCC1W9xa7XYtf1xYCwM13v+WHCZ1P/10Fm5/wUbVq2QtrnTfZpr83LIC/UC3wOuJ6Tl1W6ukK22tl9rgtl/gto/os2l2vn4MGDDA0Nnbb94eFhANrb2xdt86WQjo4wnUq9Xufw4cOsXbv2ef0s96H2wQ9+kIGBAXp6elr7sQ7zkY98lFtu+ewZ60oDXNemWW8wfPgET9x/P7pnowqbyYk8iqaTznXz7e//lN98Y4RvfO1LfOWrd87V//E9d7Nm1QpMw+DnTz3LW9/5Xn7+2MM8/vijHBs8DsCWTZtxmzbRaBTVNPEv/gOUPbdQdhXaMmkSyeRc2Krn+8RjFs89+yyWpfDu113Ce95wHR421VIJXdcIAsHIxAxHBkPP+8Xbz2vlCvWQigz3PAMEAb//lut5703X4HkelUoFz3EYGR5haGKS0XxIMrW+q41qqUw2leHosWNs2rwRqQikpfMPf/pBYmYUM2JQrZaIWhHAYzJvc6yVtueirf2ouPhCJz9ToFptMDBwgh07t+IL2LjxPITwWgpHgFAEqVRyLhSrVm3guS6r1/XTdEOPXCqZpDA9Tbq9Dc8Dz3FwGg6GahIIn0gkguN4+L5PLGZh2x5SlS1m6FFSiTi6rtHe1kbQH5JW1esNelesYGxolLHxMbZt306lXkFTNAwj3Iv67LPPsnHjJuLxBJqq4DablIpFmp5NPBUncFzGxsbI5doxTRPPC1MpBL4fEtA4oSdYU3X27t3Ltm3b6ejM8fa3vpW77rwLwzS46KJdKLqBFApbd+zA910IgpCoyHM5duwYvStXkMqked/734tuCOr1MtFoClAQwqdSrvHsM/u48qpexscmuOqqK4AAIT1UTafZtFs5bH127NxOvVJjbHyUIADfD/fIBj407TKGHmHHji0Ui0WEAMPQcR0HKVUCfGyngaobuI6D5wa4jotp6kgRUKvXwhzAhClyPMdB11R8V6Wju5trX9OObYflq7UKcStKPj9DKp0AXwERjlFKQX5mklgsFqZ0EQLDMADBTGGaWq1KV1cH5UqZm37zJhRVhmmL/ADP9XEcj4npQTo7O1u5bMO5NCMm9XqdVStXImTofVVMk2xbima9iaLqeF6Yo1fIkDjsoot289hjjyGlj+95SFVgGhquEyq6K1atZGJ8lHSmK/QiCwepQL3WJJlsIxKN0NPbhW030XWdTFsX993/ABs3nUdXVxdS+qxY0YOmKahaDEWR1OsVEskYlXKttQ/5x/zGzTehqioz+Sl830URAYYVQYjQK3nRKy5k797nuOGm65kcGyaxwqJaL5Jub0cIlcBzMfWAG2+8Hk1X8APB617/WhSpcc2rr+G5555D1+LMTA0zaLjohqQqSmzZtBXX99i791ksy6RUqtC3og/fl/i+pF63yba1c/jIATZu3MC+g4fo7u5GUVQaxQms8jDOq/6aQrHE0PAAGzee1/KsNzl6/Ah2w2HT9k109rTT9NxlKe/z32MvlafzzAbYF9PO8mX2nffLDj9ervwywcRSusn83xYD16eT/11CN08a31tG89b3xQwTL/e4ZuXXGUj+/0lejnyzv/r4i3Pyf7QsfJhcfPHFQBhiu3Af6sJ9G/P3a8zuh/3Zz342R1iw0Fqzf/8BhofDPJ7z98+e3ab551uqZ2W2v4svvniuza9//evPG/dCy+xSis3nPvd5br/99rl8rZ/+9KcB+OIXv8RXv/rVU8oullTbxkeqkohUefyhR6iUiuw8/3wybXFKpQKarnPgyHF2eSi1AAAgAElEQVRWrF5Pd18nH/3jj/CXf/GXIcsv8Pie++nrXUmxUGZ0bBJFM4nFomTa0xw7cRyA3s5uJsbHmZqcJD8zwze++0MmVt6IY9v0pVVisShmJCQf0jSNar3J6lV9NGtF6tUCQri4rkc8nkBVNVRN4z/vfgCAdCLGNRdvAxHg++F+HM/1cF2XycmJuVQ6Vswi19FOvligs6eLH//iEACJqMnudavIZts4dvQIfd1dOI065VIR126iSsnQ0BDVapVoNEqzWafeqPOFu37a6t9i55oODh/cTxB4nLdxI+9+1++wb99+pmcm8X2fRqOO64Lvg+O4NBpVVDXMlypkQCxucfXVV2JETXRTR1ElmqbS3tGOVE2qtQaHDxzhM5/9DNOTk7huE9d1mRifxNAj+L5Ho15n33PPoSqCro4shclx6tUi8ahB/5rV4Rg8jwceeBBVSjRF5eCBA5iGQa1SpdGwGR0dY23/OsbGxvH9gBNHj6FrGqtWr6Izlws9foShxaYZensPHz6ElIJCocDTT/+CIAApVaLRKNu2bSeZTGDbTTo623nHO9/GJZdcHBoZPA8hodlsIqUKKNz3swfQ9Qi+D5FoDKlIUALy+TyKqqJpYaojVdV5w003sXv3bsYnhnnr226e86hoqoptuyiKxiMPPMTY0BCu44BCi3gqQqNh43uwZ8+TaIqkWJiiWM6TSMVB0cLcvbbD0aNHGRsbwTBVJDL0ijoOt33pC0xPjaPoGlY8ztTMDNVyhcD1EJ6L73ph/mFVoz2Xo7e3m+HBaQ4fGOLEsQli0U40mcJzXQSgazr1Wp22tgyK1BBChSAEk6ZpkG5LkuvIIRWNRDLJ5PQ4UgZIEYZBj46OEwQ+fSt60PWQjM113RB4+wIrGqFUKtJs1AkCH8/38FwndCgrCgMDw9z2v75MuVTGNENG5+3btxJPRBgbGcVzXOyGw8EDB9i397lw32xXF6PDI0gEiWQSwzDJtGUAl0ajgus6WFYMVddwPZeLL7mE9lwHri/w/JB4Szc0fN9rrQFBoZCnra2NPXv2sHnLVsqVIo1GDV3XScSTjI2Mkc/P0Gg0URSJGdHZsWMrhqlQrdRxbLuljUhcF8rlOoqikEonKZUKHD16BMPUqTcqdPd0snHjJu6+64f4YbAGfuCRyWZoNJuUitNs2byJFStW057rREgF3YDLLrsQx61w4NAvWL9hJZNTg/T39zM6OoIIPKzSUdwNNyCiGSzLore3F1VVCYKA/OgYU1OT7Lz4Ajq6cniec4pn7XSeg+WSkCyHzGS23Oz/C713C/ucLb+QuGexfpb72/y+53tDFyMHmu9hnN/ecghz5stixDvzFeP5e0kXI6qZbWOxtpcrpyMSmj3nhXOxlD4z2858T/b8z0Kl/3Q6xtkcX2zMp8sVDCfnbTGynzN5sc9GFtP/Fo73dOe93N8WC99e6pqdbl7mj2mxa3s6We4z4cXIwnti4br7ZQH92T3cZ1qL83Mdn62cA67n5GWVK664gtWrVwMhI689S3N7Bnnzm28GYHh4hM9//j8WLfM3f/MJALLZLFdfvXT+09NJIpEAoFAoLlkml8txww03AGHe2IMHDy5ZFkIW4oWyf/8BPvaxMFz2Yx/7GFdccQU33ngj73//+wH40Ic+zLFjx+fKLwqKhUrgSxRpoEfivOq117Phwt00hGTtpk3EU0mue/XVbN24gYYP6Dpv/623c/mlVwLw44d+hh6N86pXXcWunTv4iz/5Yzas38on/vGTAJimyU2veyOrV67iwL79SAQX7DyfQtXjh8UVIBXExF7adryGaMzi/gcfwIqnSCRSqJqKrqs0bRtV0VpkT4LDgxP8821hGogPveW16Kqk2WwiwuhIIpEIhmnS17cCXdeJROO4XkCxWGXz5m0cG5nmP1rA902X7SBi6nh+QKlepVqroygqzVqDseExSlN5DNNE03SCQGAYFsdHivzLl0NW4f/r5uvo7upi7fp1OG6N6elJSqUy+XyRb93+bRzHoVZrMjgwgusKxkYnQnAWhHlRhwZD77/v+7jNJr7n4xPQdG1s3yVoheR093Sy+/wLKBcLSCnQNR0pw1yrxWIB22lg6Cr1SgmnUcX3mtSrIYCoVcs88cQT5PN5duzYyfDoEFu2bWbd+n6kCsMjgzSbTeLxBIqqMjE+iW07tLdlOHr0CD7hnlHXcdANje7uHlzXp5AvEI/H5oxAmzZtplatM3BicI7pW1EUTFMH/DDBPT6NWhnfs3HtJuOjwy3Fx2PX7t1MT0+zfv36cL1KSblcIUBB12I4TpPZ0N1KuUR7Lku6zSKdieE4DgQSzwuwHQ/XdkknU3z/ru/jOE2kIunoyGFZcTzP5+tf/yYPPfQIM9N5MpkMhmEwPV3A9cB1A4JA0tXVQzQaxfN8KuUyAkG9XuOtb30LpqnjEyocHbkckYiJFJJqqUR+epqhkVEsKwZSUK9XyXW04fk2uq5Sq1VwPRffd3G9MB9wPJ6kXrcpFStUylXy+TzNRgMhQMgwHY9QJFJV6OruQlG1VpqfgKGhYWKxSDg3eCiKgmGYeJ7PU0893SJZquG4TljCc1GlhmFG8IKAWMxibX8/pmnRqDv4gUDXdcrlMt1dvQS+pFgo09nRw8DxIWgpWZ25Dhzbxvd9jhw+huf5FIpFhJTErBigkEhYqLqCYerM5PNomorvBfiBwHX8FkFUFNv2SMTTVKtVtm7bytq1q4lFLEzNYGYmj+dDz4pVtKXaiehRjh85hl1vIoIwVG3lmlUoShS3IZiZnET4dRKJOAE+jUYNRVFZt25jyH6tSWynTq1e4qbfuIELLjqf7r5VZLJ9zBRqVOoVDF3BdWxOnBhEUTU0w6BaqZDOtPHQQ48SMeO4jqQj14eUkrVrVmNMPUsttopG5wVzTLazjM/j4+M8+fDDXHLpRcSScdzAZaF382wVQeWzn0D57N8ueXwpELZU2ZdCCV1MkT6Tcv1SK8CznttfRT7J5Rgg4PmgZHbr0Jk878sJq10oi5E7vRBZDPQtVxZbi78M4HWmNl/I/J1OXNed6/elkrO5b19uebk90rM55D3POytjwHLkHHA9Jy+LaJ/7e7TP/T2KovDP//zPCCF48MEHue6663jwwQfnXlSlUomf/ew+fvu3f4d9+/bN1d+9e/dcntaPfvSP+Ld/+5/UaiFD7tjYGB/4wAf55je/CcDHP/5fMU3zBY1z8+bNc+P4+te/sWS5T33qU7S1tVEqlbjyyiu59dZbKRZPgt2pqSnuuOMO3vzmN/POd77zlLphvtZ3UavVuPDCC0/J1/qpT32KzZs3UyqVeNe73jX3cJ1/w19zzWswzSib+88j8BUUadDdt5JkRztBJILrC+q2Q74wTaVU5Pih/QjVQIuY2J7NX/3ff03U0Jgq1XjPh97LI3se5ZN/93fYlSJve8/bePSpPQDkEu006w6WZXHttddiGAaHDx/mT/76z/jwn36EnR/6F455HcgH/xk10cHFF19Mvelw2w8e5O4njvDsoWMIKbFth4btccu3fsT1f/j3VOsNLt1+Hn/w1utR1TDvpu/7FEtFpCL5yvfv54t3/pSxmSKI0NNZazrc8q17eO8/3kK13uTCjav50JuupVwpMzYxzroN67FdD9tx+NJd93H3o3uZmC6gKBLbtimU63zyM1/h+o98kmq9wSVbN/CHb7seISU+oBsqPT09dHd38/rXXY8iQ0bbmBXngQceYnJiCikUGvUGilTwA4+enm48zw29YI6D69gIAYEEVdcIREA6kyKRTHD5Za9kw3nrCQhZoHt6eojFYiSTCbLZNvrXrqbRrOJ7DhFDQ5GC6ckJGvU6173mNazoC9OsbN+5jabTwHGb1Jt1+tetQVN1BgcHOX7sOOPj43iux8CJEy024JC0SQqYmZ7Gtm2Gh4Z46KGHSCTjLTKkkHBsamqae+/9CT/84Q/DENogVOAD30fTFBr1KqZp4NgNAt+lt7cbKRWECEO8PddDkUordFWQybRhRRMgdIQIAW4QeHR0tmNZJqapUm9UicdjCKnguqHlv9lssm3rVn773e/GNE0c10YI0QqtjvGGN9zEBefvIpVMEfhhGiVdNzhw4DCPPPIYI8NjBL5AVQ0c28WyrDCVi2FgWVEgQFVUZgp5BgYGCIIWu68UCASmaVKp1RAEJBJxzKjgvE39tLUnKJWnmZoepV6rEPgezUYDz3HJTxV49NHH0HSNdDpNuVwGIajVqqFXwgfP9bDtJo26jet6TE1O84pXvAI/cHEcm1KxhOuFhF+xWIw1a/pRFElPTzfRqIllRfA8l+mZPFIoBAGomsL+/XspFIpUq1U81yefL1AolDhw4BAEgj2PPY6um1z7mtfiBX6L8XmaiGFiOzbpdBaltQc2CGAmX8RzA1RdoVwugvBJpZNhyqxjx/mPz9+K5wU4tkuz6TAzUyQIQqNfIhHju9/9NrgBTtOmkC8RoOB4AbVKjfxUnqGBYfbt3YemaEyOj+OLAFUxSSWzlIpFyqUZFEUQBD7FYpHR0TF8L+DY0aNEoyZB4NLT04nvu9SaVQqlMpWqSySaJJFKYLSYttVWOqd8Po9lpRCBTjrVwcx0lZmpKnZToV4to44/TZDpR7ngHXj+STZWTdOYnJykXq9z+WWX0dXVhet5BGJx79NLqRieLXB9KeTXAbjOvu9+FWRMLwS4zj6XZr+/1MB1YX8vVKSUL9gY8H8acPU8b45Y76UGc+eA60lRVXXu81ID13N7XM/JL10WPjSvu+46brnlFn7/93+fBx98kKuuugrDMJ5HdvSRj/whcPKG+/d//zTT01Pcd9/9fPSjf8Sf/MmfEo/HKRQKcw+KP/qjP+J973v/Kf2f6SEyn+hi7dp1XHXVVfz4xz/mHe/4LT7wgQ+SyaQB+IM/+DAf/vCHAVi9ejV33XUXb37LWzhx/Djve9/7eP/7308qlcJxHCqVylybV111qvf3z/7sz+fytX7hC7e2yFjC+TFNnS996UtceumlPPbYHj7xib/jE5/4BIvtXxJBgI6Nowo2bt/Aj+78IW94/fWUfYEjJJW6jYPKTLGBW6mTTKV58tkn6O7s4n/87uv56Gfv5OdPP8Hb3vsOrKhFo9HA80Pr8euvfR0f+O33cffdd6GlLLact47bb7+dlSv7mJ2ucqlMKX4+k9Zm0vvuoJG7lMkTh3l83yH+48774NYfoqkKUdOgWKnNjfvai7fz2b/+IJ7XRAgVXTNoNBpYkRi+6/PkvsP8++33AKCpChFDp1Q9ycp8zcXb+dc/+T2KMzP09K3kxPHjJBN1xkdHqRTLHBic4JsPPAmE6XYMTaXWdOb1v4O/+703MTw8RjwewzAU6o0GiWQKFMi0p7j29a8hED71ms2rLruMaMTAshQMPcD1BcODE3R05DAMjWhEx9VDwqCJ0SkeffhBdu3aSWfPSvzAQVF8bMehWffRtRDE1WolNE1DSoXJ6VFSyQzF6SozbgPLUmlvayfTprD3uQOsXbcORICqCoaHJ4jHY2iaJGLoSClwPYcjBw8yM13CtptUt5VYuW4dgR/guwFDQyOsX7+eWDTKkWNHiUTjHD8xQGGqSDqbJpNM4zsB/3nbV7nssssolovk80USicScEm+aJpopEFLBcW2eePJJ1q/fQC6roGgqCEE6m8b1HJr1CpYVZXBwiL6+Xjy3hmJFaVZrRAwTn4C662BFUgRS4hNgOzUMKfHRUAyBS4ARi1KtN7n11tu45tVXsmZtL5qIYURULr5sJ4pQGB4Zpau7O8xpKz0UVOxmg8OH93Pepk38521f5YbXX8uhQyfo7ukgEmsjmckhfZ/AdiiXimQzGZqeQzSdYWoy/D8IGni+g+tq+F4diYOiCFLpNIYZxXN8Dh08znkbNiAVSa4jyyUXX4wUIQ1KqVgk25bBbypMV2dIt6VB+Bia0QKFGlbcpOnY3HrrN/itd78DK55seSF9jh05TG9PD1IoOLbLxOQU7dkshhFByZoESEozU8SiUW5+029gpZIEvo+QEikVeru6wfOZnJxm0+YtuK6HYzcoVcqkUkl8RUWNRhAioC0dpV4rku3IYtsuvuNhqBqesIkn4ggBrmMjBfT0dvHGN94Egcf42DjDw8Oct2kbDz/8SGsfbCc7zt9FtTqFGbXYuHEd37vzTl597XUYEZ0Al8svv4Rqpcb42DhPPfkUOy7YgR0LoyUGBkap1zuolo6RTMbJxNPYNZeBYyeoVhsc3HeY/v5VOI0GgQ+FmQLRqEYinUDXHDxXMjw2RV9fHz1mhCeffIrhkUkue+WlzMzMcPjIQTo7O4laOu3tKZSxp5kwukiedzOariEVjUBAxFTAbeBU6zx474O85b0346mgEkAAgTg1x/YLUVTn6iwRehoeWpxY8CQ5z2wu0dP387xonUXGO1/pPl35+cdm9z7OAoHZ40uFLiuKsmTI58Kwy6VCchfK/PDc+eNbrJ3F2l1OCPfC+Znft6Zpp/S1MPR29reF9RbuBVwI2s4GvC8G6uaf52Kg9UzzMjcOBAEhf9Icmc8vAwTJeW3Ozt0LwH8L1+pCmV2Dpmku2xO9VJn563Z+30uBs8X2BM+/3+aD99lxLve8TmlTLCDqEiD8AMGphE2I0z8Tlmy/FRa/1Lo63dp9KUC9+HW0DCwlruv+7zPYc3KK+L6P+zf/SjAwMvfbiUqRf9v/JPeOHmewUSFQFDo7O9mypp8baxo3rViHqZ6qIHi+z5c3t/PlH97NL37xDJVSiTbd5KL2bt6/fieXd66YKytWdqP91w8RBAHXXHMN9913H3++9RL+y/ZXPG98yjvfgLziQoIgYObOe/mH//LX/GD4KIO1Mg0vtALP1tU//w9zN1/5r/6JL/zkHr43eJhn8hMU7Ca6lHRH41ywcRM3fPiDXHfddcSmS7h/+298f+gIb/ppmJ7llktfx1vXbAJA/asPIFaFOWi9L3yHz9zyWT762I+QQvDdq2/mVa3zEiu6uO7+O7j//vtZsXIFey+7GVohd0cOHiKdShFPt+EFHs2br6O0eR3jQxOsGh4lftd9EIRkPI1N0xydKvHJ257gWb/GmNvA0HVW9q3i/dk13Gi20Ww0SSaT6IaJ5zmoUlDYsJq3/ehrPPL4o2TiKfZd+XaajQbRdgN2V2Ba5b47DvKV4aM87Jcpux61pkO7GeGCaJK39a7hdV19BP7J/TV+Lob6u1fMKT5P/uVt3DZ4lD2FKUYadWqeS7tusivVxs2vfxVXvflKPMfBe+IokfuO0Gw0sawojXod04zws9FBvjk1zP1ukZlqg6btkjNMLoileVvvGl7b0UupVKZSqdDR0UGwrYfSrjTxRBwtbxN8cU/4MpEqQUDLwxrm0fR/6yLcXBu3/setvKf7fIKnQs9mGIIJgR8wNjZGkEuS+7PfQIhQAVH++10EARAEYd7WIMDzfRQpcV69AXtTD/uf3Y/92H7On5pVhMJwbSEElWoVXdc4cMNa1qxZw9TkFJ33HMYenMKKWdhNm2KpRDQaJWJGKK5KEL/5FdRqVaaePULfj0+gGzqO66KpGp7rhYDEc1HfcwUFUzAxMUnbnmG054YxDIN6o0HENEGE4c2NtMHgq1exauVKDh48zKqvPEMkYqIbBgCB77fCfoHrttHYkCMajaI8MwT3PEuz0ZiLhAhEaHgBgfunrw/ZJWVA8PkH8Udm0DQVREi4OjOTRxAQv+w8guvOB6EiJmZQbn2g9QIXYViuEPgezOSniXzgGrSVWer1BvH7D+M8fhzbtrFiUUAgRSstRVcK/52X4LkeDaeE9f8+SrlcIRaz0LQw/U8QhARM7qvPo7Gxm4hpUX1oL+o9z6EbOlJIECCFAgT4gc/Ee3aTSacZHhrB/OrjdBCBFqgNWl5uIQTBtl6Gt7aT62xHjBVRv/jwKaAAIZHhyeG8/ULU3jYCIRF3/wLx9CAQUClXsGIWs+yhfi5G/a27EL7k05/+dz5UXUXTDq+l7TgYhhGmntI1pnd14m9ZgRmJED08RXD306iKgqqoBK0/IUJPtPux61CVMGJEvW0PYqKM53mMjY7j+z59fX1AwM+Kx9n04ZtQNQ0xWcH6xlPhdxF675vNBpFIBNdxuX+NQuf2teiGQv+hGvxiKAzRb+1L94MAgaBgwj3dDpdffim6rqL9j3uIx2O4jheSXYnZ90yAe+VGCqviJNMpgp8PErn/CJVyiVK5jO/7pFNprISFeKWKvfl8qutu5OFHHuHVPz+CMT4Trg8paTTqlEtlurq7CV65k+L1l5FOpwlOjOD/w2eWfNeJ//J+xMowbVvwxe8Q3L94TnGxsgv5lx8kKIdEcTJx+lRtiwGNs/FCLVfxXQz0LVV3VoEVQjwPuC5WbimgML/P5Yxx/vGl6p4OAJ+NzIKIpTyWs/0sJOGaPzcL52NW6Z8PAGav55n2nC4mc+e7VBV/6b2XZ1pLL+Vcnk7mj33u2i4YztmSQb3cXsbl9L2YgWH+/M6/HvNTQZ0tcH3eeObsZMsb12nbX7DeT+nnBcy5qqpnVemcx/WcvCwihDiF8TwIYGUsyX/bFe63lJdfgPLum8Jjx4dx//bTi7ajSMlvv+lmfudjHwHA+8Id+PctrhjM7/tHP/oR9nv+YlnjTMcS/OOuK/nH1tjC8Z76Ep/9bmo679uwk/dt2HlqO4C8fDfKza1zmg7zol7X20/ltz52xnH83vod/N76HYseu+eeHwDgSfDe81cthRXa27MEno8gQJESRZHEklHSqVWcePpJZK2CZVnUa3UihsHGnhz/ftmN1Ot1fvC6C9l5/jZ+990fZFM2gut6pDOZMMx2YhzLiqIpCg888ACf/u+f5acP3U+mWqfx+HMYhoHSNBCP6bi7Z7j8jRt41UN9jF7dh9Pms2LNJoK796LuHYXZFzNhOhNVqgSqhuuFlnvHddmdzLIrkT35Qm9ZYj3XRWzdiC0EiipoOE0iQYBlRalWK3O5MXdEk1y4NsvxN25gbHyG9lwb/Q+OoExVCYIwFFDXdUBQrVapT0+TTKxBaBqFcoFYa4+bELOkWOAHASMjoyTrDs88+SSxWIwgCKjVaiGBlBUNFTOgo7MD2Zmi6TkoSpjLdXZtIQTNRgMpJaqq4jhOCApsm1yugz1j9+GJLpQWw3K5XCYeT+DYNoqU9Pb0cOTwERSpUK3WSJgRfM9H13XSqRSKGtIwqarG0NAAqVSSjo4cUg5SrdXQFBXUIAzBdl0MXWdoZJgxmqztX0s0WUbGinPhPbZtY0UtaO2v7O3tRdN1Nm/eiJoaCG/klngt8jDX9fBqdaxIlM/d8jnec8Gr0QSt9EEumqoSAsLQU+Q1QxClqiquFKiaOmfUUKRCJpMm8H1qzSaqG4D0qRaKZKUMgYprI6REbZFC6LqOpqlIRRCLh15FXdcxDJ0AHwJB4Psoiorr+QycGKStrQ3NUFCkRCAZHx+np6e7pTz4BIFAynD/aUAQAvJoNASiBOFeYYKQlIowbNYnoKu7A9JpyDdDA5MUoeECwjBz16WzM4cAisUiGSnwXA+pKEhFUq3WiUYiCMDQdZqeh6qB5zqh9w+wLOvks4kAKZVwbdV9XnPta5HfPkCxWMR1HJKpFJVKJTQgBJBIpihIDctKUK8NEZWSWr1GPB7HscP1K2TrARP4uI6LF24mxhASoUri8Tiu67SULrjkkkt4ZnCc7Tu245bDkNvZ57+QYs5DJRSFlStXUvM8Oru6cfYdQBMBrucyPTND1IriOS4gyGRyXHXVZlQVBgeOsykaQVU1mk0HRYTh6VIQ5vWVCsViGVXXiBKEUReGiVZvhAYJXcffBbIaUFl7A7Zts2XrJuoPPoMe+CAUPN+jVq8TsSI4bhMVSKfTZ3xuw0mAcMZInxNhPnCZyJ3irZt7Viwis4r7LzOUdqmQ2MVkoZdottx8kDr/vJYi83khxEmn8zDOP4elxrFUO4ud4+nCbOeHPy70/M62v5gHe7HfTgcITifLPYeljAana2PhXM4n3FoIpk6X/mix9k/xUiuLXJN5VZa77hfzUr5UAHax67acOvPX/VIe/8U8+/PP94UA9sUiJV4sE/PCaIJfhZzzuJ6Tl0VmFdGFVsWTsrxE3Iuv17O3/Jx53Z96c4fjfT7l/1IWzsVDXJa7x+T0qQ5Ojl0lED6+8NGB8sQ0n/nXf+VVl72KtZu3IzQdx3eQvoPQTIQf4LfIRrKH70BVNGqb3kWlUsH1bIrFIl/7z29w4YUX0tXVhWEYrFmzBidoMjo0yJ6HHuH227+DL3S27NjM2rVrufDCXVixCLFYlPHxcXKZKMljd+P5YCSzzEyPEE1miSczuIHA8z2cZjP0qLXmVlVDwNGouyiKSkgGFLI1SSUsN5+Ov9FoYGgKQ0ND1CpVVvT14boeiUScfc8dJBqN8+ijjyKlYOvmrUSjBpNT4+iaQXsuR9Nx+N537+TGG99ANpuh0ayixWIYhokgTBHjug7HDx0jHk/Qls0ihOS7d36Pa6+9lmqlhuu6pNNpGs0G+Zk8vStymKZBsVCgXKzS3d1Hw61iGCb1eoOIGUVKhcD3qFSr+J6HqmkoUmJFdJoNh3rdRdc1isUpXNtGSpX77nuQRCrFtm3buPOu73HRhZeQiCcoFPN0dXXNsZ6WygVURVIqVejp6aNRbzA9Pc6a/pUoUqdcqhNLxhgbGaRQyLNx03lohkkhXyYWi1Gv14lEIkxOTiKEpKOjA9/3mZ6eZmRkhC1btqBoGhDQtENmWE1VWnlgQ+Ihz3bwHJd6NWzLNAzy+Ty6YRBNWigIpiYnSaXT+AQoqoprewydGGJyaoLdF+8G0fKeCS8EcDIMpxaezYnBo+Ryq/ja125n/YZ+dp+/jVKpRFs2y+DgIJqqks21AQqapuP6HkIE+F4DgYkQ0HTqqGqU/Xv3YpomTz/9NEAHJfAAACAASURBVNdffz1BEFAojKOqUQZODPLMMz/n5pvfhu8pRGI6RkTHdR08P9xaEJKJhUB1lmVZCIHn+i3PqsRxHXQJtguO66PrKoHfxHUkhqEiZUC1Vg09tT4cPXqU9RvWoenanEfW8wI810XTNGzbRlVVPN+hXmuiGyaqovHlL3+Fyy57JStXrmDPnsfZvXs3qqpw7w9/yuDgEFdddRX1RpVk0mqFLAs0NSRO03UDzw8oF4ukEgnq9RqmFUHRFKrFCpGIEZ6j7yGloFiskElnKJbKxBNJCAR202kZG8J71PNdGnWXr331qyiqoKuznauvvpJA0RFBgOc5HNh3AM8L6F+zDtPUKJXzpNJpPD/0sJdmZujt60EqEiE0hFTIz0yjqRLLMqlXayFg10wa9TrT09Os6OtjfHyMRCxJsTiDqmlouommRajXKoyNj7Nq1Sr0xiQif4RPPmzw6NPP8OWv3NYC14DwadQ8pmbyqIbK2g2rUFSXwF3es38x79VSAHAxQHA6ALeUN+6lVs5fqJzOU/hCPMTLlcXmYjlll1tnuTKr4ywFNparj7yY67hwTc6CS7VlPH2x57oYsJ6//l4q4DpXdwFwXe4Yn9fOrxFwXez4Sy7y+XMuOXP0xFKy3HX8QuVsPa7Kxz/+8Zd8EL8s8X3/47/qMZyTFy4LX16n3gBn/8KZd/QF1DmTPD/saDZVDpx+f9LSI1ruA2qx2s+vq/jqXHFFk5gRg9Xr1nDb//w3hobH2LhxG7VSlfGRYaKpDCCRQiGZSCGGn2QmP43WfzFt2SwTk3my2U7i0SjJZBLf96lUKjzzzDOsWLuKWrPOhg0byGRz5Cs2f/rnH6Ozq4tVq1ehGzpP/PwJOjo7SWVzDAVx2sYfphrJ4Tdq+EGAj0SLRFE1DV0Lwamuhyk1hAjDD3U9TrPZYGJiAisWxbYbKEronanX65imGXoALSvMaSkVent6iZgRbNuh1mjS3d0HQuX4iUFm8gW6OztQVImqKigtgh7Pd1vpksIYa02TSMPAbTbQFMHkyAiVfJ50qoN4PM7o2CipdJL1G9bjOA7pdJJoNIqmKUgpiFoRitNlVEWlWWuSSiSpVWoILbxmnuejaaGHV1EkpmEgpCTSSiNUyU8xPDTMzHSBeMyiUJjBilrE4wmCQNDR0Ykf+GiaSm/vGnRD48mnniTXkWXf/ucwdJNsWxrDNMJ9elIh8KGnp5MjRw5SrzUx9Ai6oZKKR/GdOkIEIehFpdls4nkeg4MDrFy5gmq9QTwRRyqSSNSis6uTEwMniEQiIXhSJI7dJBI1qVcbjI6NIVqeZCtqMTkxSrNZZ9++vXR05nBdBzMSwXNdRlrpiTRNRzdMZqamUaTC4OBgi11WwfNdbLuJpmqUSmWkVKjXwlyhtapDd3cvP/nJT9i5cyt+4NNoNAgCHzNiIhSnRbGv4bgeIPCcOroexXEcAnw8T3DvPT9i587zKZfLtLfniEYtdE0nHo+TyVjkOtKUSw3uvedhEmkLKxpBqgpBy/hiN100Tcf3fKSihBpjEDqgPS/gsccep7Ojm2Ihj217fPFLt7F23WoImkxNljl27Bjd3aFH1zAiaIpGW1uWgJCcSqoaQpEEnk+tVsN2HCKRCJqqMj01GXpEHY/jx09QLJZYt3YdilTZt28/0UgUKxajLZ3FisbCMNhrriYWi+J4odFoeHiYYrFIzIriBjbJRJzAc2k26ljxGF7go8kQsO7Z8wipVALPc4jGMjiuh+e4DA4cJ51KghDsP7CPVDpJvVENr51mcv75O9m+fRv9/WshIEyl5DqAR9Q0kUKhkM+TSMZRNQ1QEChErASpZIxCMY9lWQQIGvUmyWQc26kjldC4ZNtNbNdB0VRUqaIqGr4XEAQ2hqFjux4z0wUGTgxTqRZZt3YtU2NDpOpHeaixiU/+yy1kcz3cdNMbGRsdx9ANFKkzPj6OH0j6169D0QMcmijBIsFpSxktFyi287/PeqvmAzjvwE/wp46jtK85LQhd/L25fOA63zP4y5CFSv1CwHK6vl/MuM4E4pfyPr3Ustg5LFfhf8muzSLA1fd9atXaXOTDi5WFXuzFvNsLyy+rPbnImj+Lds7Ux0slL+Q6vexGpcX6W0T9XO645j+3fhnPESnl35xN+XPA9Zy8LHK6l3nrl2V+FgN/wdxHhNGYCAFB4M/9drLMyZfqyc/JeifLPX/88x+jc3WXGGXoIQ0WfFqjPeUFqszVCn9e6oFwsnUhJEJIAhmGfAoEgQ8+EtWIsuWC8xk4PkBU1+lduQojnUai4fsuSPBwqRhpEit3EUiDSqmEBAZOHCUa1Vmzup8v/q/bqNaqIGyc0gQbVq3lIx/6YwaODnLlKy5lzdp+Bk4cI5dtQ1OhUirQ0Z5FNSOomoGju0SOPUTV6CDb04dTrxBVA/A9KtUmqqpTrVYxTBOEgpQ6BC4zM3nuvPNuCvki/f39OE4VTQsJnHwfXKeBooCqGq2cnyqjo8PEkzGMaIpaaYak5SGos2v3RbSlLIQIkEIyODBEPp9nzdp+mrbNwInj2I0KivBwPId0MoPdcLEdn8GRERqOTXdvF6lMHM/3UBUdTTFoNOrohkBRVDQ1wtjoDLXiFJqikWrLoJkmDc8mZqXCvJeaih9AuFsvvJau5xIEPo5rk7IS1Go1zIiOqilks1nq1QaRaIxkKoNummQ7c6xYvQoCB6dZJz8xhRooHDt4lEKpQP+aVaiKgq7pHNp/GE94aFqM8fEJ2toyNOuh167aqJNqb0NIFU01qDZc0pk0hw4c4L77HmDd+s0EXoNYNEq92kCVEs+1KRVnwIfA8zCNCEMDQ0SMKKpqcPs37iCTyOC7Lrqm4nuSwcEhelesJBpN4KNRrVQxTRMrZvH0L57h0KEjrFu/DtfzSLdl6FvVi+/baJoJBHPhxI4d4HkCqWqMDI6RSMSJxgxWr1tNxIygG1FGRyZ49NHH2LxlM6oaBSEJ8JBCIlGRuta6uQWF6SKWqbPl/J2Ypk5nZzuGrhEoGqoW4ONiuzbJVI5azaPeaKKrDu3ZbMhS6zQplQp86davkUqmaGtvA+njBS7CF2E4rW1z749+zPjIDOm2HLou2bJpNaX8NOl4G6ppsHJlH1JCvpBnbGycTDaJokqq1SoI0FSJFD71Wh4rFqFcqRCNxgiESsSKA4KhwSHu/+n9bNqwBV2XaJqkqytHd3eOIHBQdZV0NokZVUmmYggZoOjhg86KxNEUHfyA4YEBdFVFN1RK5TJWxEIGkmazRrlWI9PeQSQSo1au43o+Rw4f5aGHHmbbjh1ELRPRsuXfcfsd7Ny2A6fpIIXAMCQi8CiXCqiqxtT4BJMT40SjYejzxMQUUipEDYUTAyeIxyzcRoOg2WBsbIR4MopuxDh84DjC90PCq2wa3dARioZtCyqlGs16k0wmA4Cmq0xN5km3tTM9VUTXLe772QNc+sqLiFgWidoxgkiazBW/y3XXX8/lr7wM3VTxcbBSJhPTYwwdOcSFu7ZjRJTWG0Nd+AheErTOT1+ymHK3WMip+4s7CcqTyFW75+rMeq7mh+AulRrlTIDpdDKftf50stDTttAzvJxQ2rOV+YBz4ZyeTpeY78FerL3l9r3Qg7hU38v9vFRyWgPAoh8xl+LsTEaOM53jQlkIVJcLzhfrIyS2C/8IlrzFntfm2fRzpnNdjiwE7EuNYznHXsw4ZmWxa+rPMyyc1FWX18diIPWXLeeA6zn5tZcXdzOcvWf21N+W581covVlllt+m/O9uCd/O/u5mX3BqqpKNBGlv38td915F77vk23LItUwlM91HSBAj6UZm5winUlTqpTQDZWZ/AxP/fwpVq5YzRVXXMXk1CR3f/973PAbN/D9e35MPJXh4cf28LobrmflmhztuSz/9E//D2vXrqWrs4eYFefwgWOkc1nK5QrPHjjBecY0aqoDqajs37cfzYgQTyRbHjI9NBiEO4JDY4MP/Wv6iURMEskEmqYjhEK5UsE0NHRDA3z8QGDoBrqmEo9bTEyMYyVNBDal8jiKFhBLJmi6Ej8ImJmZIZttQ1UVmrbNgw88hKabDAwO09XbR1dHF3see4JKuY7n+qxevZpEIkW9VsNxHJTWHrpGo46mKwT4CAFjY+N89zvfYcuWDbR15HA8DzNqgRCMj4xSmJmho72darWGoZstZchD1VTspk0kEqXp1EAKIhGTmakppiYn8D2PWrWK4zpk2tJMTY5jGjpRI/RcSkUhnU6jmRqZTAZFldhNm6mpGeKJBLF4BM/1saIGhfw0J46dQCDJZNuoNxooiorvBuTzJSwzQrVcolqptryAHrbtMDQ0zGOPPUYu106uvR3Hcclm25mcnAzTFxWLmBGTbDbLocMHWb9uLZOTE3R0dPKje++ls6uDbDbHE088ybPP/IL+/jWoqsLKlasolcp0dfUwM1NgamqaTDqNlKExIAgCpqanMM0Inu/zlS9/hVWrV2G08pPGEvGQ7dZzCfyASMRkzZpV5GemMaIRxsZGSKdTOLYThhmrEgJQVQXTNFB0HQhaQF9FSKUF5FUajSa6rqFIFcdxiUajrFmzEqkouL6P73uYhoGha2w4bx1ChPtb8X2atQau49JoNFm1YhXPPbeftWtXoxsqihREoxYTE9PEEnEURaIognwhj2lGScQMfNcjYkZo1BvErBi1Wo2IFUdRdKLROIqQKIRhyrVahWxbJmTjtixW9a/Gdh2SyTCfb4CPDCS6pjI9NUUmnUZTQ7Ixx/YYHZ0g8GFycoqRkWFyHblW3l6zReAVGpYSyTSxWAJd00PDjaaRybQRj8eJxyxq9RoEAlXXWdHXR7Np4zgux44O8OyzzxKLR5GKRNNUxsYmUDWVbFsbIOjq6mV6aobOrhyGZWFGI5imSaFQIJPJEE/GkKg88fjPcZ0GHbksvu8wNjqCZcXRVR3LihEQkM/nSSQSqGqYd/bEiQHSqTSZTIa+FX2Ypkp5coBYcwLn8o9RrFQxDJ32znaiEYNU0qJWypOfGKetLUdXTzdIEYZeiuU/+ZejpC4U79hjACirLzzl+CzwWgyYLUcpX47MV1LPJPPLLBYyeWbj9JnlbMI8z7Qf9MUo3AvB8mJtvxwK/enkhXiQ5xP9nElXeiHr4sWUW7i+zrbO2coLMWQEiwHCX/E6mJVT5o9FnhtL1Pl1OJ9zwPWc/NrL/M39Zy/ngOticgpjo6qhqCq7du1i/3PPUZ6epq0jhyIluqYxNTlFzIoRjxl4noNj26RSKVLpFF2dPXzz9m+RTKXZsmULv/nGN+AGPt09fSRTWa6/8QZWrVlFIqlx+NAhdu7cScS0UBQDXTdJxDIMjI3Q291PXeawjSTp/DOYmU6EZuC4Pqqmo2kKjmPjey7NZgikwnyhGrquE4vFiETC1CEQgjqpQNOu02jWkSIM05UCHKeJYWqYERO70UTVJIlUEtNMoEeSxGIxolaUQn6GXEc7XR1dZNvaCYTCk794miOHj7N102byMwUsy2Jyaore3hV861t3sHfvXs4/fye2HbY7PT2JoilEIibFYgFNVbnggp0kM0mkphFIQbUWeqbK+TwrVvSF1mQpUaTSWkICVVFRNTU8byXAikWpVqu4TuitCvww11yj0aBQyBOPW4DP2PAI9XoTP/DpXdFN021SrYSht/F4AsdxmJqa5NCh5zhv/SaajSqTE6Ps33cQQ9fRDYNqtY6m6hw6eJhMWzsHDuwjm0mxZfMWUukUCJ9m08bQTXw/YGhoiI6OHLFYnKNHj4bGkGwb7e3tWLEoiUQCTVOplIt0dLQzky+yZcsm2nPtBH7AD35wD1dddSVWzOL/Y+9Ngyw7zjO9JzPPfu6+1F7VVb1jaTQIiCAoUdJQG6UZrbYjxrKtseSZiAn/sOWwxxGeCIf/6+9YEbYj7LDlGWlEUKIEkhpSIgmCIDYCBLEQSwO9VHV3VXett+5+71nTP86tRqFQVV2NhSLk/iJu3+qzZObJe06efPP7vvc1DEWaajzPpz8YsrJ8g2eefpbTZ07jehnRlJJZSK6SCrRmfv4YFy68xbWlJR599DNZTrSS9Dtt2q0Ww8GQfN4nl/NwPIdisUgcx0RxwvLKMp6XQwpBEA4yfV0EEk1/0L8Vwg2QJpogCG9pz3l+jnq9wurNNRAS23JGBFCSyal6po3b2MKQiiROiOOQixcvUigUWVxa5OTJE3g5j52c7SAI+LtvfpNCsZRJ0qQx+XyOfK6AJKLZbBIEIc3tFvl8ka3NbdxcHkOZDHoD0iTBVJmGsGkplCEZGxvDMAyUaeD7HoZlAFnY3ZV3LoIGyzRxHYftxja26/Pd7z7FqVOnqdZqNLdbLCws4Hs+vu8hhBhFN2ikNDBMCy0EW5sN4jCLTPA8n1arxcrKMrZt4ucKtzw6X/va1/j0pz9Nq9mn2dzm+PEFfN+j1Wwyd2yBXq/Hl//qyzz00E8RBCFXlq5SKBcolIpZxImQ6FTz/Re+z8LCHINBwKA35MSpBUyVkVJ1ux2KhRKN7SZpCsVCHtuxCYKARqNBu9OkWqnj+3na7TZPPfUkJ08dJ9dbIrQr9OrnsRwbwzSIdYRjG/iWwY9++ENEGvPoz38eaRrEO+zPdzAOH3WivRs47Adcd8aM3WP7zva9nw+T07dz7lEYYw8Drgd50e7U9oZS7y1zP7D2YcH7frabhGi/uveSUf04bacdd7LosNsyAr0Ypd6ft/2TAlw/6ro/7Lm756w/CUBvP/sgwPXvw7u6n90FrnftJ9Z2Hoy9mmZ7jzkoTyLb9mET2fcDtvvVc/i5t3/I350Q7D7n/XW/l8hh98TmTtkFb5WfSISUaAXHT8xz5fI7fPs7T3L27BnSRFMpV9GXv4fsrtCx6lTrE3T7A1w/R7lUZnu7zT/7L3+fhx5+iNNnTiClgRCKSqXG9evX0ERcfPsqr736NuNjM0yMT5MkmjfeeIuv/83X+flf+RkuvLbEv/gXf8i//uP/FcNxiN95ivwDv4pNSLu5TbvdxHFMLFNlk/rhEMM0sEwLgLX1NRzHQkoD2zZJdTRimTWwDAchYWtzE6kkcRQghMaQPobyMG2PMEwZDgSmBZ32NtuNTY4dm0NIQbfdQgjBtaUlHnn4YXzXwrddSqU8b7z5I/ycT7fX59M/dZ7jCws88/QzuI5LIZ9HpwmulyNJNblcjigKcV0bMBFCYhoGhiGwTIWpTFzPRSpFFMco0ySKEvr9HoPBEMfOPLAaCIMQ07LJ5QsUyxWG4ZA40Xh+nrGxcRqNLeIkplSuEIXxSE5kQK1SwPVyrCzfoFQqMzk5QbfXplavUyrXEFLT7XWp1cbIexarq6scm19g5cYNxsZq1MYm2dzYoNNrMTE1yc21m1QqhQz8RSkzMzOMjY1x6dIVZmamabfbTE5OMBgMRuyw0Gg0KRaKKKVu5ctOTk4ilMCybO6//xxffOyLlMslgmA4yg+2WF9fZ2p6inq9BiQUi3mSOCVNNGhI4oR2u0m9XmZ2dp4TCwtIKUjSmFSnOLZNqVyjXK4QpwmW42TsvlqipJXlcxfzfP2r/4EoGjI7MwVZtDqCLHQ6FYp2t8fNlWVKIy3UVAuCIMo0VKOI1994mzCI+Orjj/PwQw8RBQEpKcPBkOEwQCcppjKIoyGkEAYR42N1XNck1SlagDIyEHjfuXNMjI/jOBbKyJi/gzBku7lNuVrD9XzK1QpCCfLFHMEgzFh8hWb15k02NjeplsuAJopj4iQlXyjhuM6IRGlEDiOgUiqh0VSqVTa3Mk+8AOZmZzDNbOGk2+0itOI733mSmdkZwjAALbh8+UrmFTYMTCuT/FlaXKRYKWGZFpVKhfpYHcsyMCx7lFcsuefeexkOhqAlV69mZFNCCHK5AsMgolIpc/r0mUxeRAveevMC99x3NmPuTjVJnBAMAsYnJhA6ptvqUiyVQKYMgiETk1MgTGw3h+fnWFleod/v4fs+Ukosy8RQRhZejsljjz3GMOjz0MkxrKiF/tk/xHJclKHQOuXyW5eJ+iFhELK4eIVf+ZUvEFsmQRTtm3N35DF4l90OWCZLL4IQGMc/A7xfl3Tn+MMA2kGTz73v08MA12FtP/h9/N5jb+epvJ29h6zngDYeBGZ3b9vtrd4PAO+Att3EObuJlXb/Bjvn7SVduhPAdqfger/ff295O9d20O+532LH7rDzvdd0UHt2h4Xvdy0/LrBzu/Dv3ff4fvsPuz/3e4YOep4+LFje+3sd1YFzWP+/r037XePo+4MueHycdhe43rWfeLsde9nhCf4fL3A99ExxJw/80VbB9/O4Hnb8Qbb75WIkWf5rrFOE0pw4vsAD957jT/6fP2FibJJup0dx/XnobbJuHsP38zi2z/VryxSKBepjE/zWb/9HPPLoI6zcvM7m6hrDXsjfff2b/OoXvoBjK/7P/+Mx1te3+O6TT3PvPffx2Jf+nD/6oz/imaef5h//zi9CYPDrX/h1Zk4UMGsLyFyd8MU/Q7lFitUaSRKzubnOcDgg5+czj9VITgUknucipcZxXKI4HAFdlyhKMQybIOxTLBQRQmOaCtNSkEp6gyHIdASCHeKgjWtboFPskY6laQiSJMZzHUoFH6IhjpMjTkJm56aZP358RKiUTXC2thocP35y5BlWuH6eKEyI4zjzdinFoJ8QRRFJFGJI2NxYo1SpZb9DmqAMEy0EOknpdLo8//xznD59OvvNUpDSQEmFNE0QCtdzUYaF4/p0ul3y+QKDYYDjOYTDmCgI8FyDcNjFtD08N8d2Y0RmoxOEYVAsVtnYXGdyaoqJiVna22uUyxXGJyaZmp7M5EMsh2eefZpHHvkpkjRGmhLShEZjGyVNtrYahGFIqVTm9ddf5/Tp0ywtLTI5OUWj0aBYqnDhrbeZmZnlhy+9NCKQmuXy5YsUSsUsV0lKJicnb0nz3Lhxk0qlSm2shmWZFEsFUh3jeQ7tZpvFy4s88cSTjI+PY1kZi6xhOnQ7bbrdDoZloAwDqSySNMsmV6aZhXamGtNwiKKUa1evkc/nOXviFMGwT7lcQEpFvzckDHrYjgfCIAhCOq0WlVoJreHixUu8/MNXmJ6a4ebqKpcuLzE3N4tpGExNTdLr9gjiTNLJNEziKCRNU8JwgG07+H4OpSRhNCCKIi5dvMTY+AS262LbDpZpEEbBSKNPIKWBl8+BVGiy8FShNHEasbW6SqGYR2tNuVKlVK2QhDG9fo/19Q0q1TrKsIAUrdNbXv0wDDFMRX8wwPN9ur0exVIZQ0k2NtaJkxDbsfByebY3W5w9e5ZiqYBhGJimST5fIJf3COMwy6HXmonxcdbX1wnDiFwuh5IC0zIRykCPdCKVUgyGQ6rlCt1eh1qtRppqLrz1Do7ncePGDSqVMr1+n+3tFlIpXDsjjRFISKHb7jA1M8Xa6gq1Sg3LdrA9m5yfI4hTBsMIw7JotTtcevsdSqUSrufSbDaJogjbdmg1u5iGw/T0DGdOzFEeXCJ8+A8QuXpGEGfbDAYDbly+wT333MNfP/44v/Hbv4U0LLSpRoRbo3H4XWqE29qdeJV2LFl6EQBzBFwPWry8k9DQ3aBmvwXQ3ZP3o7zTDppoHwaAPyhwPSiX96D23u7Y/bxke2WF9vbVfuXv7sfDWGIPasfua9x7zbfrq/3AxlH6YG8bbrcYchhwPWj/7er+KFl+D2vvUdv2Ye7Poz4vh52/X17wUcrcj9jt4Ir2afMRc1z/PuxOgevHJwZ21+7aAbb/YJIxRWqdSVhk09F3P1onaJ18oPrey3r3/vJ3Xlq3e2nuLfOo2m4HrdodVs+RBqddtrvdsYqBFFPIjJRJ2Sgvx3/9h/+cxaUf8i//+X9KOOijhWDy2CzDOERagsmpMUSqcSzJyRPTrFy/jELQWNvg3/2//xcpfQbDBqat+LXf+mX+89//p/zr//lf8diX/oxHH/kM/+P/8K/47/6n/4bZ8QW+//L3EPkAI/Ux0FjHzuP95v9CMmgRXnuFwvxDWKaPxKLX7uCYAmk4RIlGSvBdh06zTRwNaLW2KZdraK2wbDcDgspGGCZCWaBsUmzCsEevu0XQD0hiCVJiuDn6YUK5NobtODiug+PalEp5PNfg2tIVkjhGGQYYkK/m6HYbDDpNbDuH7XhUa1U830VIRalco7Gxxas/eIV+J+C5535AbxiBlgx7HdJoiBCC+tgMUmakWYY0iKMQHQeEScL01CSf++yj9PttUpmRAYFGGAqEJNZgWi5+PofnW+g04trSNSbrU6ytbuH4Ll6pgFOo4RSmMGwHyzaYn5/l0pVLVCcmKRaq3Fi5RrlQIgw0nf4At1giTgVpKhkOAqQh6LbWqJY8Gps3ublyBc/UDNsRX/mrvyGMI2YX5kjJABZCYdkWUzNjJPSwvZTN9WtMTdcJwyG9YcDrF94mTiNmj80SBkMMJQn6AZVKAdsw2FzbIBgO0Com1RFBEPDYF/8K186zubmJ73uZRqySrCwvEwYROhXoOMFxXBYXr6JjwcrSCmk4RIiYJA0hTdBhAsIgSTN632ZzCyVBuDGzJ+bQ0iSIYvy8jeU6tFrbSGKqpQKnTp/N7hfT4uyZs/zqF34JGDA7U+E3fuOXmZkZ5777zkKa4nsOb7/1Fk899QxJIrBcF5TG9QqYjoe0LFIpUY5DoiWXLi+RxCmGNDBVFjWyvrqObTjEw5jWxgZpEDDstiCNkEKDFghhMjE7Rxj2WL76DsRDiFJ6w4BeP2ByagbTkAgdonW2YAIJ6BRDKYb9PjpNCYYh+XyRd965TCoEhUqFfKHGxYtXcR0frAjLFayt3WDQ75GKBCyIkpS11XVWb9zENCyGYcTmZpNXXn2ZOAnQZN7xeLiNSEMspbi+dI1qqUQsI87cewbDdGg1+3z3yWdxbZuFuXmUMGk22nz18a8wXq/j+y6mkWJbkCYJjWaXfq9PtTZNIKo80QAAIABJREFUq9dDKpAahBL0O9u4lsQQiuvL67z02svYnoswJNV6jUuXrzIcxETJEMMOsT3NmFglmflpjPpZLNMljlPa7TYrKyv8zC/8NO1eTJDYWLkKwrFQWiASjdAcIGt2sO1+l9yp7ZyzE5G0G3zeaXn7sb4Ct8DaYWXu57k6rJ69x+31Bu797Ld/x3a3bT9P6n7l7Vf3zrE77+idv/d6n3dv2wtad7bt7ccd4Lu3PUfty73v/4PA1U4Uw0GRV/v1z+769ptDvKdMKUjRGSH6zmdPn+2dE6U7i8uj/O8UfauMNE1HES8Hswzv7ue9fXG7edHt5kS7I/n21nPQtju1D/N875x/FPC5X5/srXvvGLHblJC3PhJxx+PYT7rd9bjetZ8I+7gXgo66Srb7pfT+fXciBv1x5M1+cJOGgTQEs3Mz/Pbv/MfceOlv8f08g+K9xMGQq0tXKBdybGxtU6qUQQryhQIvv/IKD9z3AL/0S7/C8ROn8PNFLrx9kV4/5PjxBZI44E//9P/mv/3Df8nUTJX6+CTFYpFz585hWRZaa3zfIdUabViYJx5BGzbJS49RqtWJZj/Lhe9/GwEUK1VMQyEFpDrBtiyCMMD1PAzDBLKwWsMwSdKQ4WCAZZsImQ3ipmFQKBYxbRutQSpFr9PBMi1cx6XTbCOFZNDrcvPmzcwTODVNlMTkC3VSTaa72gvotAYUSwWEEJRKWWjmd7/7XZxR2YYyqFQqXLpyiRMnT7C+toEQKZ1OO5OjAWzHIo4C2u0WUmbkQAgBWuPYNo6T5RLapiJJ4tEEYfQsaEb9kJLL5UgSTa5QwFCSfq9Lr9tjOBhgGgaO67I98owWS0Vc18NxbBpb65RLRZqtFrZt0+20cF2PMIxGQFQTBnD69FmkMJEYGMqm09pmamoCw1T4roNpKIJ+j3Ipj2ObKMPEMh0s2ycOIn740qtsN1s89NBDnDx5gsZWE5BsbW3iujlMyySJA65fv45SipnZOaQyUcKgsbVFGA2YnBjnyqWrvPnGm8zNHWNh/gRjY2NEYYTruQghMQyDfD6PZVm4rps9PTIj35JC8srLr1AsFYnjhBdf/D4PP3wew9AMRyRYQijCMCKKMv1Sx/Gy8NQ0C982LRMl1SgkXd7KudYa4iii3W7TbLbI+UWiOGE4DOj1+lQq5YwRU8RoNBqy3GV0ph1cHyOKY1zXwXEtGE00lpeXyeeL/Pmff4nznzqPkgadbgfHdkDoTCqKTHO1Ui4TxSl/+Zd/xeraGp/61ENIkV0/gFQZAVUcJ4RRhE7hxvIynu/j2A5SKpZXVijkPMLhECUFtmXR63SYnJkBnRGjGaYFKIRQGMqgXKrgOB6DwZAnnngC2/L4uZ/7HHGchecnaYwQKstF1xLbdtAI0ClKGQgp0EJwafEK05MTdLpd/JzPlStXiJOYhx96GKk0WkMwDLl0aRGlDBYXrzA9PZ2F/poKrTX9fp9er0+xmPVFkmgePHc/tVoV2zJptdrMzx9n0OtjmgbFYgFvsIqZDEgf/H3a/T5CCJShUKZiYWGBYW/Af/a7v8fv/bPfY25+GsvOFpveZx9gmD6qByjdWkLYPmr6/tuW92G8PR+mjUcp507bdtQF3KN4E/f7+yjlHeT9up3tBZ6Hga2/D9sLYPdtxyGbDrseIQTJHo/17nN3gHGapkRRdCjT9oftn9u184Oc++Ow/UD93v1HLWfn+yjg/yfV7oYK37VPpP24gOvtBozDy3gvcD1sxUzrg4Xk95R6x+34ICZMRZzGGJaJ4+fIb18mjTV//OXn+NxP/zS1cpkLb/6IqWMLGTg0DWzHzthbU8F3nnyS+eMnKJVrePkCW5ublMp56rUiv/8Hv8tgsI1pJdTHjo1yzSwsyyKKIizLAiEwTAupJKI8gz71KDSWsd76KhNnP01raxvLtbFti2Qk0dDtdPE8D2WYxFEEQsLoZRkEfXI5nySJ6XTa2LZNvzckTTWW5SBVBkBIU7Y2NnFth163y+VLl0DD2Ng4qQY/lyOMI5Ik5dLFCyzMz3H16hL9fo9Op8uli5eYnJggjhNmpqap1eoZQCyWEUpy7NgcnmPjei6ObRGFYZafpxSQESy5roNtWwyGPZQULF1dpFyqIIWEVKOEvhWOGYdhxlxs2oRhgFSSMIgoFEtIqYjCHq5rUyoV8D0HITRvXXiLifFx2t0O9XqdlRvLBMMB42N11tZWqVQqhFGE0NmK9MbmJq++9ipJErOwcJw4jigVC3Q7Hb7xjW9w5vRJTNNg7eYNCjmfcDjEskzGx2u0O208r8BWo0WxWEZqxfPff57l5WU+++ijbG81sCyH9bV1pqamCcMAyzZxfQfLMsn5HtevLeN5ea5fX6FUznNsfhLDUBSLNdbX15idmUNKgz//4he5dOkix48f5+KlS0xMTLC5uYmUknw+n2n7ui4aQRwmFAsFEALbtnj9Rz9ibm4CiFGGm4WhakGSZAsiUhrsqGMpJQijANO0ieOYZrNJp9ulVCwTx1kIrpDgOi5JCo7jY7tZPu2zzzzDwsICpmljmiNSK9tBKQOpBL6b4/XXXmd8fBzf97IFAzRRFLPdbFEp17l6bYVypUKuUCCXy9PptLP8bpGBqOFggO26GIbJ9Nwcp0+fwXFsoihEyEz3dXt7m1w+TxAENLebFEtFhM4mkbbtADA9M4NtWggEP/rRj6jX6+RyPiB56aWXuHz5ClevXmdqeprG1jau45AkKWmqef6573P+/KcYH5/AMASIlOXlZTzPwzI8ut0+QRDi+zm+8vhXmZqaIF/I8+3vPMGp06e5//z95H0f0LiOw9PPPM3Zs/dQq1WJogAlM7Bcr41TKJRoNLZwXAfLsmi2mqRpSjAYUq3WkTIj+KqUS7iejW1nObZXl65z/doy01NTfPvb32JmLI/XXeLmyX/K0y+8TqvTQmtNsVTEcbM+WbpylVqtxq//xq8RpUOUGrme3jeAfoAx94ig0Ji+/7agFT6e3LSjtvEo4cG7vblHsaNcz8cFXHd7qj4JwPWoYeJ7gerHBVylUu/rPzE6ewe07uexvQtc3637owKun3TQCneB6137BNj+oO/OYxn2e0j3Dti7t+095s7tvSu1B7VHjFxmR6vn8GP2Cwc6rA0HTRy0jpFkjJ1SmSSLL2AYBg/8kz9gY3MD13GZmJjmxR/+kJMnTxKGIUmSYJomG+urdPsdHvvSl3B8j1p1jJOnFjAtQaOxgWUKtjY3CIKAr//tk0xOTrKysoKUkuXlZQaDgGqtjpCjyxUpwnKxps9hT91HeuVpSmZAozNAGi5hGGFZDv3BEM93CMKQVGeTfcM0iaIY0ChpkKQptu0CAtv1bsmpIAThcIhpmPi5HJcvX0ZIyZNPfheN5NtPfIdypcLY+Bie56IJkCRsb29y+uQJEh1w6dI10jRlbm4O13Xp9/t0Oh3azRa9wYAnnniC48cXCAZD/JyLRDPoDymWSwyGA4aDIfqWtrBgOByS8z1cNwdCYSpJHAzQAprNLIdXC5F5AuME0zCIkxjTtrAsBy0FpinxvCzvtVguEUQh3U6HYqlItV5la3OTQj5PqsFxbBzb4ebNNepj43TbHYQQTExMcOXKJR599LP0+k2iaADEtJoN7rn3dKZDOxiS931s0wY0q2urXFm6xszMHJcuXqTb6eBaNp1unxPHF5iemiAY9mk3G7z+5husrKyMWI4DSuUiQhlIkXku4zjmmWeew7YsFhbm6XY72LZNu9VmamoK0zSJoohHP/MZhIATJxbI5fMYhsHy8jIbGxtMTExgmkamlqwhTVKe+d7T1Ko1XMelWCggRObZtmwfUERhwo62MwLSEXOzEJI4TjClidaaQt7H93N0ewOSBB7788dYWJjH8Wxs26Xb72OailIpz9l7z2BbNiCI4xDXzWEYdpb7bEjSWOP7Plubm4zV60gJOs0kdGr1OtIwuP/8OXJ5H6kUgowFGATBYIipTAzHQgtJGMYjDVTJcJjdW7ZlIqXEdX3SVPPGG29Sq9VxHBfPcfE87xagiJOYbrvPs88+T7vd5p577sE0LbYbmRzRxtYm9517gIKf59//6b/n/IPnsG2br3/9Gxw/cZxup8va2hq1eoVev0cu5+O6PmGYZgs3bkaadvbsPZiGQKA5efIkhpIZS7YUOJ6LNBTj4xOMT4xjmiamYfDOOxexbRffz2GaJqVSiVSnuK5Lp93OWMYdB2VapFpimCY6jUmShCSJSVNNMIxYXd3g2We+x7Df4pFphbr3H2MvPILQgpm5GSYnJwlHgF8IwV//xVf4L37vd7EchTR3UkjknrFT33o73Q5s3W7y+EE8nIe9A3b272UHPSg0dS/gul0b9/PoHNbG3cceBGCPmpKze/9BvBeHTdj3hibvBXT7lXFQXUexjxNAHLXMw+YJ79sn3nuO1vo9eZCHXU+6X//x/v41DOPQtt3Obten+y063Ano27FDAT63fwaParufi/36+bB84L0h9Xuf+U+y3QWud+0TYR8VcD1s20f/MN/JS+OjDRW+3bVsbm6Sz+cPDHM2dJLVlWbhqPGVF5BKUHjgH1Grj9Nsdlld2+b+B++n1+8jZMYoihAUfEmtXuWXf+WXcTyXar2GlAmvvfYqZ8+chhR0KpmZniNMoFrNpFJs2+Y73/kOp0/dS0qCn/MRUgMaM9UgJMIvIU/8DM3GJoXNN2jGLhLJSy//CJ0KavWMMEcImQE7DUrJXZIdKiOkQaC1INWjEEsNQmjCOCOSKZVL5AsF7j93P+uNzKN27tw5et1Opp/pemxvbWNg0m51KFdrTEzMMD8/TxiGPP/888zNzfHGG29Qr9WwXY+tRoOc7xEM+piuQSGfsbYGYYBlWcRxFtZsWTZpkhAEGTOy42RersGgS3NrFdP1KZTKaKEQygApaTa2yeX8UVijSToSlJRKohG4vk+cpFi2QzHvk5CBB2MU4ur5edZX19ja2OT06Xvwc3mkznRo84UcMzNzhHFEp9PCdVx8L8dwGFAu13DzOaSUNBvNLKTW87iyuERtfJbl5RVOnzxOu7lFGgfUxqdQSlOtleh1WigpOXPvKa5fv8anP/3IiKlT0O5mXlt0jGPZTE/NsLxyjenpGSQWaRpTrrigDX70+muUykUGgx5KgVRkup2WxXA4ZH5+njfeeAPP8zAsC6kMdKJZvn6dF174PmfPnGX5+g2Ozc4RxwlxKrhyeYnHH3+cB84/gGkqhEhobDdGJEY2lukgyTR2pYRut4fj+rz44sssXVri7L2nSXWMaVm02m2SNMRxTMJwiOO4bG5sEQYp3/r2k9x33/2YpoGQmqe+8xSzM3OjJ12jRyG0tm0DoOUor1+Nwn1TjRAStGRjfRMpwLBsUsC0TOI4ptvpMRj02djcQBkK13UzuSWlqNfreJ7HcDik0+5gWhb9fn/0LGviWPK1v/k6+UKRXKFAqVxic2OV8YlxZubmiKIYnWjWVlc5e99p+r0uCwvzjI+PMzE5Qaud6a5KIXAcny899mXGxsZxPRvDlEiV3afmSDs3DoYMe11ajS2cnEd/MMBxHPycj1KKMAyRAkzT5urSNd65eImr165SqVZxHYc4iRFCYBgKnaYIadEPAizTJBj2+cpXv8bs7BymaeI6PoZhc33xHX7nkUnsM79AfOLz2I5LtZQxNfu+j2VbJDqh0+kgteK++8+Q6hAtdsbO9zOuiiNyH+x3zFHA7mF2pyBv5/97wdjePNODbHcO3VFB3G6So93fh7X3Tt/Ph4GKvXl+u8mXduo6LFd097V+2DzIn0TbF5jtAa7ZpsPnT7fySPeZZ+ldXtbd+47KG7KffRCg/kHLPuye/DDXsLeOvc/U7vtvP6nInWN/EtmAPyq7C1zv2ifC3r+6tN8KaOYNEe+66jgqIPwwA+VO3VIqsibu1L3f8TsetZ3wYD367G7zwZ+MLIr3fNjz8jhswrPzydhk37u6vNv0qA8ziQdBurEElo85ew6pwM3ZaBUhhiEyBVMa2JZFmmj6qYVhOayuXqdSLdCPOoQtcG2bLBxWEoQxTz/9Ag/+1Hlsx+W1115nY7OFnytS8LOcvUq5hCbJ5E5kpqeZAVGFP3cfcu5BnK0LGM3LhBMPMz+WI4ojGs02XqGMFgJBgiE1yWiOmaYJ1ig3UeuUNI2xTIOUhE6vQz5fJhnl7mmpMG2bY3PTPPDQeRzfAyEJBgGWbeF4Nm7ORinJ+toGpeIYr//odW6urjE9M8Pyygr33nc/qTIIoiFSSS5eXqRQqjJ/bAotBLbnE2uBkBaWpd69NwDHtVHSAKEYDCK6nS5j9TpIkyQdTY41iCTF8j1SLZFCkUYx0bCNZ0lSaZNpS2o67RZ536PZzdhZTdPBtD2U4XDl0iLbzTZjE1PcWF0jjhOkIwmTgE67j5I2hkywpEU+V2Bjaws3l0eYBqbhEYQRru8QpxFr6+u8+uqrHJub58bKCq6Tha0Gw0xTs9PdAJ0ilaBYsYm6Q2aPHUPaNrZrs752k1deeoWF+QVWVtaYmJxGSIk0bTY3N/jrLz/G9PgYApN+OKBSrRCGWf5ovTYBWtFuNdjcXKNWq2DbLsViBSkFS1euUMznaDQ2yRdyTE6M881v/i0PPXyelARNSrfZxS/keOfyRSYnpwl7EaYFvudjmRa2aZLEIbFO2Go0scw8SayJoz7z8xPUx+q4vkc+XyTVWV6nazgYyhjltgpMW5Ar5Tk2N4NOQ4q+w7DTQMsccZxwbP4433v6WVZurDE7u4DjeETxkDgaYlsWcQhKiBHw00RRhOfnkMhM+1ZrtBSkShD2Q65cucKJE8dHudOShITmdotgGOI6LugUL5dDSMl2s4mUEsMwMU2ThfljFIo5pqenUEpSLFWQyiCOIvJ5H9OW5Ao+1eoYjusilcxkiHREqVhByAxEp6lmYmKCqakJGI09plJICeGwQavZQmDS6XRxXIv2doeJ8UkSLUlSTavRQOkkK8+06LS7vPLya/zar/0TXNckDGO6nS7DQQ/TVDiuzeVLi9SrY2gNGs3bF5boD/rU6jXa7RbVcokHq13ss7/MM1sVZmaOEUUxjlugOxwwTIeUCg52POS5v/s6D37u81iOnS2iiWyBTI/EW3fyle8kTHhnDD5IzmU/C5/4Y5LFF96j47rbdmRadr4P8zrttYM8UocRH+3s35lIQzZpzliwDwd1t/NY7ZS1e9tB7dlb7k579kYVJYl+37tayv09sAeVvZ/37aOwgzy+H1XZu+2ghfy9AP4WQCJjYX93NiLed4/s7WspJVEUZaH9o/NulbHnOo+yIHO7yIDbR7Z9cNvv/J36Ps7Fi4Oua6f+/SIo/iGC1d12F7jetU+MHQRc37X9HtaPlx7t3foPD3d69/gD9xyxxv1Y5j7+QcqYuR9j5t28KqUU+XyeYBjwwksvUq5UESl0Wm20AEuCShOUgDSFx/7syxnbp9R0ux1M08J1fYqVMu12i0qlRr1eZ37+GDlvpDGpEyzbzth2d11jmqYopdC2Tzz5AL1IMrHyLSIzRzAYUKuPYZrWrTWBXrdHEEajME+I4ohBf4BSiiiKM0IIJXFdF6EFSiniOKHf6+K67sirluXLeq6LqQxEmuU+JknCysoN8vkCnV4mP7O8vIwUkgtvvMVYvc5bb7/Fs888zacePE+33WHxyhLHT8zjeT7J6FqE0EiR5VSmaUqSZoLvOoXhMKLT6fJv/92/ZX5ujqe++xTzCwtZXmw2Z0ZJkDKbAJuGQhqKOInRwkBoPfJSmaRpiu14OI6HoTIioSgKeevNN1m+fo2HHvoU5XKJOAqp1CsUCnlMw8K1XbYbG/hegThOUabNxkaTcqWObWVhrt1uBykgiRJsy0ZIA9/3WV29yYULb2VedWfE0OzlKBbLtJotBn2BaboMBlHGbIjilVd/yNr6Gg8+eB6tU5IkplytkiYxM9OTjI2PZb+fTqjX6zi2w/b2NsVCgcXFRdrtFlGUyfL0+gP6/QHlcoFiqUAUh+QLOVzPwfNcTp0+Rc73MU2LbreP43k4nsf0zDTj4+PkczneeecS/W6mN2qYDo998S944Px50iTBcQyCcMj16yt8/T98k4c+9SA5zyeJE5I4pt1s0em0yefzGQCXGbAUSHzfRymJFJrBoM3Y1AylcgFNzMLCLF7OYfnaGoVCEddxCYKY1RubFEt5tE6J4wDDUMRJihSC69eXWV3fYGysTpLEKCFwTJdavcbTT3+PM2dOZ5I0QiGVQc7PIdAYBiAFSkpc18nknzwXKQxyuRxXFheZnZ3JgIDKPM3KkLcW36SSOLaT5dEKQZKkrK9vsLi4ONIK7uK5/q0IiF63y1ZjC9/zabc72K6NbeV48Qev4OfyOI5LrV5BKskgzK5x2O+BTkah4TGmafPggw+ytdVApymFQgGtUyzLxPMdbty4wdTUNMNhwPr6GoVigYWF48zNzZLPZzqubucSGrhS/zynTp8EoUf5wAG2Y2JZJlEw5OIbb/P2W2/z6D/6BUzTuMVJgNDvGZs+iO3nVTnMksUXsjH4AOC6u8wPrO3NwcBmv217J8tJkmAYxh0B8oPK3Dn/qO3Zz94LptR75OCy7ztu4scGFH5cwOModey9N+8UpCul3ncP7u37o9pBnsWjnPdR2FEXfD5u2w+w/0MHqnvtLnC9a58YuwtcYT/gepi268dpQgjcgs/E1BSddovGxiZPfvsJJicnGXTbtBtbkKbUquNMTs0xOTVOkkbMzE6zurZOpVIDJSgUCvQHfYJggGUb6Djm6vUl2u02q2vr1Gv1kef3vXUjMpCWmz6Jd88v0HrrKdLGIhtbLSwnx6A3RKBQhoXtWCilRkLyO7k5EtPMdFURIiO3QRCFAbZt0mq1UEJiGPIWfX8wHOI6Dp1mi62tTdJUMz07RxDEVMfGiOKIhYV58r6HEoJSPo+Qml63xckTC0xOTHB8YQGNYm19HUNJlCFREpJYo5TCtmykEIRBgGlYiJHH9eTCCXK5HCeOHUOnKa7nkegUhCAadhn0+5iGiTQMUrHjx5doUiADJUJKEAZSZOA880gIJibqnDp9Cj/nMQwGFEtFtBbEyRDHdtCpRCrNjRvLSClZXd3g299+gpnpOXr9dgYEBAz7QwzDxHV93rpwgfvuuxeBZnNjgzAMiJIEITUbm9uYpo+Qil4/plqtkyYRjp3lIn7qoQcpl4qUS0Xa7RZBGKCBfN6nXCrQ6/UolsvYjp0tRoQhUglWlpdRSmI7HtPTs+TzeXq9LimafN4bLVZESAG2Y+PYJpZlcf36MrXqOGmq8Qo+KSme52ceUqkJBjG+n8PL+ZimwZkzZ1HKwrAEiAjQdDsRV5fWmBwrZSAujgiDAN/zyOVyOE6Wf61FFjmQ83MokbE+W6bEdkzCOOXixYvU6zWazQaFQo5vfOPvOHnqBFJKWq02nufjuiZJGuE4NkkSMxwOcRyHQrnK2FidYBgQDgY0NjZptTsUiwVOnT6FTjMWYSFMTJVpAaNjUiLSNFvEMEyFZZuEUYBlOaQ6pVgs4Dg2QkKaRqNFkjgLBUz1aJElyZjBU83qzTXGxsZpbm9TrVZGjNYmUmSeG9vKCMqkkWkQIwzCKKU+NsWzzz3PA+cfJNUBAhgMhqOFF0WUhPS6AwzDxPc82p0u/X6fxcUrlIpFlCFptbYRUlCt1rBtF8d18XM+juNgGJl3TUqB6KxidG/Q/+n/nnK1DmSLO6ZpYtkQhQOEBh0Lbt7YIEkM7nv4ftI0IcttBUbM5R92HP0ogetuz9SPE7jurfeDgtbdZe7XnqPmvO629wIeSRAEt3S1sz764JwZHzVo+CQB19vNd/bzuu/cKx+kvXeBK/+/867uZ3eB6137xJgQYtdq3b5H7LPt8NCRD/vwvzug334Qz44/cM8R69tv24cDrnEc3woru1NLZSYrE0UxpAmnTpwCBcvXrjLsd4iiBD9fwnR8Up2QK/o4nkOxVObK4hKzc7M0Gg2KxSKWZRAEQ1zHxPNzjI2P4/o5ms12RkazS6Mu+80y9lYpANNELTxMTinyzbe5shUgteBb33qCJE6p1Mq3QGswmuRnpE5W1gdJ1geGYZLqCCUFnuMitASyvgmjCMMwiMKQUrHMxsYG260mvpe1sVyt4HkulmkQDAckccRw2KdQLHD61EmkEGxtbVEqlmi0uvi+z7WrV/FcB0NK0Ip45Bnu9wdonWJIQaKh2xvw2F98ic98+hGeffopzj1wnnjULiElUse3PGlxEmcAQydIBFKq0X0qb3mHdgCrHuX4GobC8zLvsuu5JEmMZTrE0YA333yLmdk5TMvA8ySmozAMwfKNZcrlIpNT40RRSLFQIA4j8vkirVaHm6s3GRurMz5WZ3pqkmqtijIthEwRGDSbXer1OqVSniDs0u838TyTza11iqUyAMowuHnzJqVSCdd1WbxyeZSTGYAycRwPraHd6lDIF6hUyuQLBRw3k3URSuH5LpZtIIAoinAcB4QYgaI+cZxQqVQJwygLHzQ03XYb17FxLAsNXL22xOTUGFIlJDrEtBRSWiBStM4kXgzDYWV5lfljkxkbthAUi0XiOMbz3SzMPIywbQfXy6NE5l1fWV5mcmqSKA7pdTXlchXHyki5LMPl7L3z+DkHTcyVxUvMzk2SpgJj5HHXGqRQKMMkSVLiKObZp58miRLefusC33/hBzz62UdHkQM7wE0RBhFROCQKA8JwQJykOI6DUpIwzO71OE7p9TJiJa1TsrzXADEKk5VSkiaaMArRCQwHWb52IZ9HSoFjO7RbTXSasrJyA9/z6bY7LF9fxnEygiYNJIlg5cYqi0tLPPxTD4MAw8zu1f5IysnzPSzHxjJs2u0upWKJNE25efMGY/VxgnDA5uY6rueSy+XZbjQxTAVCY1omw+EQIxOvpbW9jd94Ex75r+jgkx/laRsK16EOAAAgAElEQVSGQilJnAwhhauXr9Ht9NnaavKFX/9NtBqiSd7LJDz6c2+I5EFew736n++OZ3cOXHdsd8ju7jL3Eg4dTMan94ytB5e1t+0H2V6Ac5Sw4cP64Xbe5YOO3w2+sjlEdmymA+2P9qf7lnUYQN67fS/I2w32dsq6nX2cIOSg+/F2995hixm3m0N9EC/5YfOzo9wjHxeo2+953V3HBwHVR8nthn/Y+aofxO4C17v2ibJ3X5z77T06cP2obLfH9WjHv/v3e/NIjlrjfi/VD3c9h4mW79jwW/+G+Mr3MY5/5j3bRRpjSIXruNQnxijWKjg5lzP3nKZer+Hl8/yb/+1/51MPfRplSITUhFGAEJJiqYxlWTiOg2UZ3Fy9TqVaYntzk0KxyNr6BkIa5PMFPN9538RAkrKTOJMKjeVYJPX78U98Gn3xOxTidbb7KSc++5u4ogujCUoW6qcxDOvW/WSamTcIIYjjgH6vw/K1Zb782Jcpl0sUS0UM00QZGTNxKhW5Qh7LtEjCmBtXbzAIesRRSBxHeJ7HxNQEyjRYXLrOyo0VwigmlyswPjFFvlSEVLN4+TLH5uZpbjVZXLrK+NgYGxsbt0gvdBqglEEuX+AzjzyCVJrTZ08zjEKUoWi3WiRBhO26iBFrMjpBpyHt5hb5XHF0x0gSDUJKNAMajY1RSGSMYZgYhomQWfioRqAME6klytCUqiWkMLFsG8/1GAwiPNfj2OwsSgoKxQJpmhAMB2xvbZOm0O8POPfA/WxubhAEQ4JgmMkEaUm+4JKmmuMnTnD16mWiQYjSKTdXbpArVHn19bcZDIaUShXSRFOt1onCmH5/SBTG5HN5/FyJMNaYps3Fty+zuLiI0IIoiqlV6ywuXeXChYtMTk2BTLEsA6kzWRQ5yoUPgoh2u4sUisUri1SrFSAlTWIqxQKtzS0am5nMSqU6zZf+4i85c+YUpmWgtUG7vY1pmCjpAIokDbn3/hMkSUqpUma71SJfKmLZdnbvIVDKYOXGKoZpEYctguGASqWKUiaNRotStYTjWEDCjRvXybCpxHVyCGFQq9eBCClcWq02SZLy6muvMz42SRJpvvwXf8kD584xNTFFLp9janqaM2fPZmydOkUZKss/TQJcx6bdbOM6Tnb/GxamYZEkmm6vh2059Ho9PM8FNINhH0MpVtdWqVRqBEFEvzfEdX3+7Z/8KbNT8+RzOZQSNLY38H2LJAbPc+l02limDSkMB0O6nR6T05Mo0wQBUgvyOZc4DpgYrxJHAZbjEAYxqytrbDeaWag4mu3NJhMTE9kiptZsN7eJwoRc3mVubhrTyq7Dthz6gx5+3iPV2b2SASgTd7AGaQwP/CckSeZBNk2DTqdNmiZcX1lna72Ba9pcW7rG+UceIlfJA8PRwLfzjwTxLjA5bHK5O1fzg0zod2w/4Lr7/MPKOSxvc2f/XsKcnf27weduAHu769pbx0exf+/fRwWukGkXp6PQ8mwxE3ZHMu22wwinDgKue/N9j3p9fx92t01Htztp14e5hr0EYT+p/fH3aXeB6137RNm7D/F+L2C9z+e95+54nnYQz26Chh1ip92f/Uig9m/PUVfPBbvr3vkctlK4N8xpdxkfFrTu2I4ne2dFfm/74yvfB3gfcEWoLPBWSlKdotEZMBQCy/PIlYr87M9/jq/81deYGJug2WhRzhcxhMAQGolJSkCShrh+GdMs4PkuhungOC6D/gBSQb7ks3sCIqVEIwEFKIRWIwZkSSwsSvd+nudeu8y4EzPeew3Vu4kqjiOTkBhFogVhHGBZGdGKJvMmoVNMZSKEJE1SfvbzP0uxVERZLqlIEMSkASBidBzjOS5BkCANi5iU7WaLiWqdVquJaZp0el3O3XcvtdrYiN21R6/XxvMd/u5v/5af/dzPgZCsra0zPXmcdqeLZdmYtpkBpEQilMR0MgKprcYWuWIRLRVpqvjB8y9gosmXygwHMWgzC2E1DYQUSGmSphFax0ihIdVoLXHsHAKFYapMF9PMdESFzEhmEJCSEEQRCJ15rjAQSqEsC8t1sDwHr+DjewWUFCRBj1IhR5Sm9IYBhldiYmqSVMeUSyUuXrxMbxAhUkk4DOgPhpSrEwwGbaI45vipkyjTZn1tk7xrUci5bDXWaLWa1MbrBL0hF9+5gGEqHn/8K5w/9yn63U0GvTaGEAwHQ4b9AJ1oxsemmJ8/RhwFrK9uUClVCOMhb799ka3NBrVKjRvLN5iYnuHq0jXq1QphHON4HkrZaAxyhdLodxAIQ3Hu3D2YhqLZaFIsFInCkG63Sy6XAyEYBgGul8fL2Qhp0mp10EmMTmNUnLDd3MJ1q3zriedxcwUmx8ewXR/TzliAm60enmNDEtNvtfA9D9v2MOwcQmUh1lGo0anEMCWbG5tYpsc3vv5Nmq0ms3MztLe2GA561GpVVm+u89xzLzE5NYFtW2idolNI4+z8MMx0VN+5eIlafRLDEBjCIOiFNJtt/EIBYnj5pZcpFYp4jkcUhhRKZQQSJQ08z+PFF3/AL/7SL+IXfBjlzubzRRpbDV5+6XVOnDmFV8zh5fPEaUqpVGJ8cpzNzQ0KhTxCpyAjBkEb3zfxPZ8oSAmCmOXrK9THxnn2meeIw4TJsWl8z6XdabO8fA3fd5icHMcSCfm8BUi6/T4xA3L/H3vv9WRJcp15/txDi6sz86auyqou1aJaoEEJAiTImdnh7NDWjLMEOfuwu0YbWz37sH/J7sva2j4MCYolgOEQhGqAUIRqtu6u1l1apM68Wob0fYibVdlZKaurSTQmv7ZrlR03wt3DI667f+cc/46TBymQuoGUoKGy9pHA0uuET/93pFaFWmOVUrmIYehIKbh8+QNKUyWq1QqLt65jWjqPPnGeVMSgJLA1PwiEuJfqY2v8PAhH9SjuxG7E9UFI32EihHYrYzdP7s45a3sdD+Ip2i7ytJ+o0HbSul9d28/bMlIIcU8gcbdrdqq2Hsa7mEWw3B8ifRChP2yo+F5rkN36Xyl1KIGs/cqB+9MEHXSN2rk8EWRbfYQYGfBGxw7Rnv2wm4dzPwPGx4XDeoO3Y7vh55ikHh1HJa6/eLrfxzjGf+Z4mKqIOyGlxDRN/viP/3ts1+LGzWvEcSaINBxm3ovhMEQIbdSWhGazyWAwyIhfp3OkBZZKYwzDQOga009/lsGZz/Nm6Td5z3oM1avBypsYq5cwDQtLJKg0sxykaUqtViOOFL3+AE3KkUaoIklDlFLEEcQpWK6JYVm4uTzd/pBKZYxhMMQ0LIqFEssraxQLZW7euIXreKRpluZG0ySPPnaBanUcoeCZp57CNHRWV5aZn5tjs7bGX/3VX/DlL3+JJElwnGwPKEjW19ZRacJsdQKDBE3FSJHyyNkzePkiSimGwZDFxTv0BwPCMGvzcBgTxyoLgU5ThsNBRjpGQlWoFKkrolAwHMQMBzFxpFCpII5jLMvCtr27zydJEww9S7NiGMbdlEO9fo9Gs02j2WJ5eZnvf/8HLN6+wdLtW3TbLVAKz3UYDHoUCjksy2R9fY1vfesbuCMhpK0k9Wma4jgug+GQzc06ruvT7w6J45ixsTF8P4fn+XzjG19HkyaFfAnLsgmCIWfOPoLUBG++9RpJEtLr9ZienmJzsz7yuhn0ej2Wl5dxXBuA2dlZWu1WtrfRtNC0FCkSkiTANCWN+iZhGN5d6HqeRxRFOJaJUgmtRh3SBNu0kCg6nS4CRaFQwPd8LMui0x9QrzdoNGoMuh2uvv8OrXoTlaSQpsRhxHR1Et00GYYBKXD9xm06nQH9fm/0bqfYloVlGsRRyHPPPcfS8iL/5t/8Pp///G/RaNS59PZbzM7PkaJISfnMZ38d09RxHAvbsdANneWVJQQS07Cp1eucOfMIaRrTarXo9Xq88NILJGk82rNq0Gw1+Iu//EuiOCJOEqTI0kkJIej3+ywsLGBZFoZp8M47b9EfdEnSGNPUeeaZp1AqgTTF1DVytjMSBVNMT8+QJglJkoIy8d0ytlUgGKa8/dYHJAnMzM5hGAaPPf4ocRyyurbMO+++i6EblIoVbNsnTSVoAZ1uE920CAPIeROsrq2Qy+cylWOhMRwGpComrV0HK4c5dRZNV8zOztJoNIjjGIALFy4wUZ4mCgW1epsLjz06igzePXXYcQjf/XgYC/HdPL8H1bl13V7f70W8tmOLeG7PKXoUfJT34Sjk5zBl/SKm6nnYOOp79jCwn6PiGA8fxx7XY/yc4MHEFEZ/HfD9/fUcbCXfex/I0dr2cM47CrbL2O9l/d3T43qIsvv9PrphkCvkmKxWuXXnJrZlsbS8zMT4BKZlo+k6KaNUN66NpumEYchgMKRQKOLmPhwqvFc/GJpBkkQkIqU6N8347CzdOOK9t6/Q0Kq0SxcpTsxitK4jVt5CBF3S3CQy7GHaDrrhYJnmiKA49PpdoniAJh2E0EhVSBgOQepEcYLt+GiaTrlUpFSq0Ov16XS6bGxuohuZsFKr1cU0TDY3N2g267ieRaPRQ6GI4ohSscjK6gqtVo2Z2RlyOR/TsFhdWeOVV17Hz+UZH6vQazfp1OvEQRuhUgw92wucKxYRQrC2usb3vv99Lpw/h2WbxHHMT370EqdOnSRJIjRNR9czIgyQqpgoDkhVhC5dvvOdv+Pc2UfQdIEgRdf0TMQq2ynL9nd8K7w8jmPCYTQSI4qZqE4ShglKQTDoMzU5hiRFAL1ul7PnznD9+jX8vI/rOrz15huMjY2Ry+W4ceNGpjRdLBMGfUqVMq+//gbdzoBGvc309ASlUgkpdYSQ5HJ5fN9H13T8XI6XXn6RubkZTEtjdm6aIBjyve99nzNnztJqtaiMVVhcXKbVatFptykW8ximTZrETFWr9AcDTMtmbXkFKSTra2u8/fbbnD51ClO3USh0XUeXkkFvyOrKEpVKGcswMA0DgUKTIguv9XwsQycYDrEsi+s37zA3P4dje1w4fxZJRKVcZnVlCdexicKQYBhiORamZRFGMZev3qA/iJidm2Y47I0MLBKIUGmm3Hz2zFl8zyOOQyzLwsv5VMbHsBwnC60VKYW8R6oyASmUolAoEQTRSF01IQyDbN9mqrBth8rYGBPViSy/sGUwMzvDU08/hWEZ6IZxN+pDCND1TDk6TROiOGJqcjLLA6sJLMug3c6Eu8JgSDQIaNVrDKOEmzdvcvv2barVKlupxFKlGAwCVAqXP7hKo9nkZz/7GU8+eZFiPs9EdYzhsE/Oz9MfBHz7299lenqOXm+IZSuiOCYKYWxsCqUScr5DojLzk0Ciazpp0EauvkP6mf+R1HBGz8dmc6NGoVBEIImjhDTUWVtaZbw6kRkChBrtCc/e/w+NP9vGo48yPh/6WtNFjp1E5iceqOz9wl8PW9ZOj9FObBmgHrSew7ZxPy/vbufunN/2i6LaWc5BBOPDXt3DhwnvjCTa3s797vegsj+KMNde3x/Kk7zbod3a/RHbc9hzDypnyyv9UX4PD3LNMXF9cByHCh/jE4V7g/GDE9edobn3f7+/evHu1x484TzIRLxfmNR+ghcPkgohSZL77mGrvp3EdT+Rjp39aBgGQioECtu1yPk54iRmcnqKYBBgjMJ1O71uFsI4DAjDiEajged5+F4O2zPvK3u3kKZ0pLKLlMQo0HTGJ6f59BNPEKeQpDFf/ubfM/XU76BO/hJWvgobV5Arl5DxkHj8POmgkSnzpilRHGNYBqZm0e/WEWkflUTYloluWAihkyYpvV4fpcDzfPrDAbl8ntnpGSSCZrNJp9tjdnaGanWcK1eucP7c4wz6HTQN+v0+/V4f17WYmpqkWp0kihKGg4CLT1zEtE3yeT9TuFWKlaWb3Lh+HaFSXNchCIaApFAs8uij58nlcwwHQ964dAlNWszMTGLZJllInByJk2TPOQgCLNsCUvr9FqVSDtPQ6Pc7o/2v+ojvKHRNkqhMkVmhQGUhYJZho+kajp+FivpeDoBTJ+fJeR7dbhtNSizbxnEcavU64+MTrK+tce7cGeIoe++mpqYYDELee+99qtUqnU4Hx7bJ5wu8deltTp2eZzgM2NjYZKI6iRCCN996E4VifGKcJI2RWiailfN9dF1HKXj77Xc4d+4cuqFTyBWYnZ2l1+syNlbGcX0s06DTaWFYFrpusLK0juvk6fciXnv1Eo88co7V1RXa7Rae76JQXL98jUqlRLPZJOfn2KzVWVtbw3U9PM8nDAaEQUCtVqNZbyJ0A00qVArXrlyhWHABwczsNKlKUErRaLQwTTP7vWiScnkMoQTLK4uUigVs2yaJFKapCMMITZPkc3k2NjZYWrzD1GSV2bk5hkGIZdsIqTAMia5nv+f19XWcUUqaxcVFxsfHkQJc16Ver5H3PXQjiyZAZPlepcyUhm3HGuW+VMRRytWrV6lUxlAkaJoApUiSlG6nS7FYpFbbRNcl+VwOXTd589JbVMoVGvU6pfEqnufzt1/9W5799LMMhwNMSyNJQmzbYDjsUyj4lMrjzM3Nks/5dDotLMsgjiO6vSFzs/M0Gk1sy+HKlavMzZ3ODEf9PsWiT7e/jqHbGKZx10sslECtv09i+qizn0eNRL1AMhgM0TQdTdNJU0XQarG+vsrpc49g2CZCZDmgBfcLK22twPcicLth5zi/3zi+8xqZnzgSad2rbQ+C/QjfdmyfH7bv+zwKaT4USdpRx/a+3Nn3O42ee83pe5GKwxCMvc457Ly/s492m+P2Izw71wz7nbdf/+63PjoQ207b7f2/+3zS++/lKETuoHN3W49tf1d2tmfr+8Nge90H7a8+JqkPH8fE9RifKNwbKD6ax/XQ1sMDPK7brj6w7qMSV7h/4D/sZH7Qd7tBSrlNrOLD1+/lcT2o/rv9LBMQmefNsl1cx+e1V17DsU1ct0Cvn3l34nhIv9fH93MEQYCmaUxPzWT7y3Ypf/ueIqVUJjG8tZBEIJWGVJJYCKbn5yiOjfG5z/8WX/3a13jtxef51o9eo+Ge5tQ/+2N6QYSx+CJ6Z5mk+ih6NMS2c2iGQxR02Vy9AnGLeBgSdNtYtgPSJE7hZz/9Gd/99nc4deok8wsnyOV97ty5Q6tRZ2HhFFEcs7qyimXZVCoVVCyo1dbQJNRrdZI4pVAss7q8Rq3WYHZmjiRJKBYzAZEoiRG6htQ0/JyfqbwmAeGwS722Rnl8BsiMBACapjM3O8fJk3NIDYbDPmmqsEwLJRSa1Ol2+nheDil04jikUhnD9wuEYYomLYKwm/Wj1IjjiP6gi6ZlKVGkFJlyLnKUd0eihAZCEocRg8GAn/30JxhmlivUcjx6/SGdVhs/V0RqBmIUPlwoFXEdBykli0vLvPTiy0xOTnHmzGl0TVKvrXPxyccI48yzq+smYRjTajVZXl7kyScvUi6XaLXamYBTlPLtb/8dSgnOn7/AD3/4A0qlMvl8gaWlZTQpMXSNXr/Du+9fzlLutJokSUoun8PzPRzH5vad2/zm53+TZqvBRHkMx3NAz0II1xdXmJyZpj8YkM8XUQi6/SF+LsfGxjqlUpH1tVXiMGJivEoURUDCxMQkUmYCVa6fw7R0NF2j2+/juB4//uGPmZyazBR5TYN2s86Zs2fRDY1uu8P62ialkotSKtsLGkasLK+wcOoEH3zwHhMTkywtLVEulxFCoYghzYShkjilVmvy2qtv8sTF8yDu/X4N0yYO+li2jdQNFGT7lqMQKUAlCZqUdDtdpGbxxhuXOHVqASGyVESaLgnDlD/74p/z9NPPjIRvJMPhECEN+sOIWqPO6UfOkKYCwzCZmp7CdVy+8pWv8MTFi+i6SRwlmQp4uYztOnh+9l7EUUQul8N1PTY3Gnzta1/lX/yLf45mSJrNGidPniYI+yglRmrIQyzLISXNIh8QiGCA2Hyf9Df+d8JUR9csPC+HUirLsTsaq3Rd5+Wf/R3jEwWmF2ZRMjNMZnvodxn3HmAdunPcPEzqmI+y4H3YxPUw5+1G+nZbvB9Wqfgg4rq9nv3acdS27zz+IHiQ6/a73/1wkDf8QdpzpPM/FIywt0ce9dH6dDccpOx7EBF/2L+TY5L68eCYuB7jE4Vj4vrxEdet9m2lxnlQ4rqbVVhoIwVglREdU7fQdJ2NtWXqjQ6abuB6DoapYRkW6Sg3pKbpuK6Hksl9dW61dau9SimUpkZZWkGmEk2BVJLUMhiEIakSoEk+9cu/zJVLr/Pct77L//A//a9Up2ZxZs6gHnmWXgjW0qvQuAPFk0RhjKEnJOE6loiwdY+8bzMME5RmkirJ3OwckxMVkiTBz/tEcURtY4O5mRmuXLuK63jEcUK318f3fDrtLoYhqNU3KRSKjI9P0Gn26fb62I5Lu9Om0+6QL/ggoNVpE0YxUjfwfC9LrxIP6bYb+K7Nu1fvoGka+XzubhhvGMboOnQ6TXzfJ45HHiMBAskXv/gXnJhfwHV9HMsBJQkHipdeeJ2NtSZzJ8qMdJoIggBUgml5o3y3o2eNQmayNyRKEccx9VoN13ZI4pjTp0+BELQ6XXTdorFZ48y583R7fTQEuhR0+33SJGF1fQ3DsJmdnaMyPo5haJRKOSAhDIeUKxU0qYPQqNUbnDt3hmIpR7lSwjAMXDcLsZ6cnMI0HF588SVOLpzg/PnzxHHE5NQUruvTbrfwfZc0SXjvvcusriwzMT5GoTRKmaRFIFJm56aRusL1TBzDxbAMBuEQ0zAwhEE4CjF79/0PmJqZQTdMPD9HzvVAJViWSRjEJHHCxHgFw9AwLYdUCdycTRhHKKHoD/qYloXjuVx55zL9QY/J6Qk0qSjkPJTQSeIslLhSGUfTYxr1Br7vY5oWlbEKa6urGZFEUi6Ws98vKttfSpYKyHF81tdrpKlgemaMJIkQQnLt2nUq5TEcS0dJme2PTRKkgn6vQ7PRxPN8dM0AJLbtsnDyJNoodcwwyPajD4cxjXqTc2fPsb6+jmlkOXKlNHH9PKXKGINgwOLtJXzfp1AsYFkmpxZOI6WJFAZXr1yn3xtSLo+xWV8bhZBfZ2pyil6vj64btNtdBsMBnu+Sz/u4nk2zW6NcKWAZHgIDx/YYDrsYppXlgZU6cvN9lF0gmv8NDMMiTQS6bt0Ns87Io6TfH/CDb/0l//W//QIRmYK4xAAlEGKX+eAjEte9VGj3uiZZehvVWX/gUOGPgodFXLfj4ySuO0NvD9P+vTzDv+jE9Sh7g/fFIYmreJCyD6p6j3ds+/e7/b3fsd1wWIJ8TFw/HhwT12N84pANBof7fFgheOvYwZa4e58PT4x7t+nD4SZ71SGEuCucc3Aobzqq/95n+6ywvzU7U0v88GfvwfygAR3TQ44t3F0s7Zwg9gphuttvqRwpcopMhEcqpC7ob/S5duUqru+SL5UQ0kChCMMUhaBUyeP4Okm6d/j1V7/6VR5//PFs4ZluaUYLEAolFEqkiDRFE5k3RQiJUpArzPBnX/qP/P4ffIEgikb5KGO8qbNw4pdRbhGW30Auv8LAmUJTOkorsNlskooEN1fGMj1WV1fJ5TyE1KlWp+h3A/qdPvlcgUEwZHNtk9nZOVzfQdMT1jeWKI/lSVMTx80xMTlJlEgMw6TX6zI1NUkYDEmSiFpjg5PzJxh0eqwtL6ELge0VSNFIkXTaLYo5B0PG1NdXGB+bQJMmiRLESUIUD/H8PEroSN0EKdGkhCTm3OkFcr6FkCmxUiAVupbgeRqlokU+X8EwTOI45M033gKlUyjlRlLYgEoIgg5S04jjAEmKROF6Dm7OxXcNSuUKYRjT7XTxPBtd1xkMR+TPttAdg2EnC6udnKiyvHgH37UplUsYpqTeqDM+XqXd6eGXipiOg2NbuI6NRHD79jJhEGJbOi+/8hInT55ACIFrKRzb4eTpGWzXptsN8ByNTrtJuVRACEG/N+TsI49y+f33mZ2boVIpEYUBuu6yurrOxsYacRhCmpJokmA4RCpBr9UjSdNROieb1954k5mZadZXlyjmXcIkxLIc3nj9TRYW5vBzFkJqpEoiNQ3TNhkOQwwJju3gWA6LtxfxXY8LTzyJ1DVKxSICMco/2scybTTNYHl5Cc/NYdkWcRwxDAIWF5eYmp6l1x3g5fLEaUiaZl5vTVqkpCAlURixtrbGhQvnRvudLTRNz0KbwxDdspCahkCyurqGblisrjYZhjET1SrDYIASClPXUSJFjqIbpKYjhIah65w5cxohFLZjZ6RxGJCqhCQa4joW7WaTS5feYXy8ysbaGlOTY4RBG8dzQSnefutdPN+lVMlh6BaaNAiDmCAYMhz2kDIdpexJmKxWM5ExBIbQiWM1GmJSrl6+wvjUNCCxLRsZ9VFr7xL++v9BLCyGQYDtWiBTLl/6CTPz8yRKI0klL/3kBT73X/4udq6MQEdDjsbiFCVGER13/z1gCN9lnN1trtlrLtjtmviVL6NqN+9Lh/NRsJd670FE4GGI/+w+f+1+3mHK2P7/O9u6fV46StsflHg+DLJ7mL45TL3bj++marvXOVs4yMBwtxy17adxd/mhsnRzKhOZE9z/O3gY2P589zJUbNf0uK/tR6hnPyPJwybkx/gwjonrMX6h8dEHj8N5drcT1/3PE1nOxENNmrvVfVgr4eGuPSz22le1c1/RYZAkmffUsiymZ+Zo9zoE4ZD33nmHsycXqDWb9PsBjuOSL+RQKt617VviH48//vjdZPJHSb/wwvMvUK6UOX/hPFevXeXNt97EEAbjlXEuv3+Z0sw5jJO/ihp/DKt+BXPjXaRmMvBmMIlxvCKJkpRKFdI0vbuncjgY8MEHH1AsFTPxmnyel195GdMw0KXk0XMX6Pb7FIoV1tfX8DyX1dUNet0Wuq5h2zZxnDA/fwLP94Bsn+HUdBXft+j1BmiahmU7JKliGMZMz56gUKpw+/ZtlIoQKqDg2+imixTayGyRLSeSNCFVYNk2SmRphbJw4DmGTWgAACAASURBVARN0zA0HdtxSFJIkhjDMBkfn6BYLKMZGtoodFjK7Fnquomu68jRPu+tcHNN09F0A80w8HMehVIRy89hOS6aYWDbNlEQImUWmjo2MQFSMD07RbNeIwgGSAHLi8vMzy6wtLxCuVhmMBhg6pJhOGBmeookDtjYWOPUqQV0XafbaVOvbfLuux8wNT3OysoKp0+fJYi6lEol4jjFshzqjRZROEA3YHx8jG6vz7Wrt3A9n1KxBCn4nscwCHBdn16vRxIn+H6OK1ev4jo6+UKe6alpXviHF3ni8SdIwgQvnyeNFWkSo+mSwaDPB5evMTszPVJOhjCKSJLw7jNxHJfhMCBKQgxdw7Yskjih3xvg+3larQ5vvPEm58+dZ2Njg2KxhKFbNJsdisUSGxs1arUamqHfzdWq6zp//dd/w2OPP0Gn2eE//ce/odfp8sH7l5mdniWfyyEAXQqGgy6apo9+x4J8Po+UAs93yOU8LMvIPKzSZNDvcfv2LQqFAlLKLK9xkmIaZlaerrO4uEg+nyeOY/q9HqZp3g3JnZ6epNNts7K8zPz8HCsrK+RyeaIw4bnnvkOv3+XixcdBwPr6OoPBABTkfG+k/CuYn5/H0LP9qLdu3WZmeo5WpwsI3n77XSzToTyW5YkOwxC58hrx6d8hzJ3jz//sz/nJj3/M4489gambrK7eZmx8mjhOIYnZXF/hwsULaJp2N5rjHh7ck/KwFrJ75XH9KNiNqGxv715E4GEuzg/aA/tR69pZ9n5k/FDG3I8Z/xh17lfHTnJ7kIDRQe3dz6jwsInrQeXufN+PSjSPSeo/LY6J6zH+s8Fe1rf9vt8eKryfFfMAh+yHrHyHl16/v+7tIlDby75/wj86cd3N8r1FDqMo+tD+1+3X7HXsIGESpRQxUCgVGR+rcPbUab7z7eeYP3Uax3FHi8Ys5x57eCm2JiDP83a1Gm/VsxU+u5WvVgjBI2fO8JnPfobqVJWTp05SKBV467W3uHXzFpZp4bs+lmkxUDb/cKPHxLO/h2VIvLXXsfs1YiOHSAKE4SA1jXqjju04RFHCK6+8ytzcHFIKxiarVCplhoMBjuOxuLiMn8vRaLTJFzyiJKbXDbh06ZVsf6Xtsrq6Sq1WIwiHVMpj5HI+jmvRaNQojUJBldSwPR/L8dH0rXDMIrXaGmkSUq9tYNu5rP/UyOOuFL1eB8tx6Pb7CKGRpln/hEGQKQlLQRhFaJpJnCTopo4YLd41TUOplMGgj2ka6HoWQtnr9bBtGyEFKlV0Oh0sJ8tvqul6JvgjJZphYBgGg/4Qx7ZYW1/D83P4fp5hEKCEIooDqmNj9HodVJriuj5KScIwottps7a6loXdmgbN5gZRFOI4DrZls7S4iGmaJHHMxMQk1WoFx7EZ9AZ0ug0s285S3ug6zz//PJVKnpmZaXzfo9lscfLkKaSusXhnkbfefJuFkwvkcx69/oBisYRlZ95T0zLptuugFKbpsHByge9+53s8cuoRpKahSYHnuximQavVppgvEgZDpJZ5+w3dottpkaYKwzARQmKaFkE4JOf7NOp1wiAkGAZYls1z3/o2Gxs1Hn3sMQxDJ01hc7OGZVq0Wm3u3LnDSy++xI1bN3nm6aeI44iNzU0KhQL9fkghX+T0qQVWlpe5efMGp06dxrIsPnj/PRAK27HQDAMhBGEY3RVi0g3QdY1hMEAbeVb/5j/9Jx5/4gl0wwQE3W4PEGhCotI0e/7tNoV8HgDf94nimDRJCIMAP+fgODaO7VAqFbFtG6nr6LrJ2uo6aZpw6vRJpBQkSYJl2pTL5ZHBL6tP0zTW1zcIghDbcUkTRa1ep9FsMhwMePPSmzzz7NPZGNRcRA42kb/y7wjDLKXTzMz0XTXkhXMLJBGEw5DV5TtMTpaoVKt7GOQOR1y3vt/au/owF7bbiet+c8lh2ribBw7uF7/brpa700N30By6U/xmu7dze7l7lbN1fPs8t9/9bJW/n8fxqCRqr7XDbtc/iDf3o5C5w3gZ96pzv3K2jiml7mon7Gbg2I7dPPc772V7zvjtz+xh/E4OXs/tfXz7Gm2v9/iYpP584Ji4HuMTiY/D4n14z+Vu1xxusjgadgvN2X1SvX/yu7/daXo0VcetsqWUqJV3Sdsbh9pXdZT7zDw0GrZt4bgOZy+co9Hs0qi3QQk0XdIf9HA9d8/y95pM9vIY3CW+mkRqAt3Q0HRJsVTgySef4sSpEwRRgO3aDMMhw2EfiSIVOn/5recJp3+F6hP/HBF30DavwOZVkiTGmz6FmLmIOagzNzeP5/tIKXFcB02XFEpFkhSENCFVOK7H6uoijWYTw3D59LOfwrQsoihgYnyMfr/LiZMnqdUa/OQnP2NifJJCoczq2jLlSgXLdtA1nfW1NYRhYTlZWqE4SfHcIo5fptOucfv2LcJwgG2ZCFLynkOqUgzTJI5ivvm1LB+qYdo4jo1CoOkGQhhomkajUceyLORIcTVVCYYp6Q8G6JqF1ASmaTIYDEbCODGGbtBuDzEsAyEBJVBKIJIQXWqZB8+Q5Ao+UdBndWWdv/vOD5BCo1gsUW+2EFKSLxRAgJf3EGkMKiVNIvKFAhu1GpVyjk67w/jYJM1Gm/GxccIgQApJPl8kCLroUiMOY9556x1u3bhFu9lAl/DEY+dxPZ8wHNLtdjAME9PQkbogjmJ0qZGmMbdvX2O8WsUwdSBlGAYUykU818V2PXTL5vrNW1QnxgnjkCgOyOd9bt26Sbk0ydLyBvMzM3R77SzEWer86Z/8Oc986ilc10UIyZe//BWCICSXL+K6HkIo1jdWqVYnME2TfCHP5OQkvV6XQiGHEJJCoYDjOHS7HaamJnnmmad45lPPAookifH9HJXKGC+//ArTU5N0Oy3OnDnNxYuPkZCSL+QolcvohoFpZTlt+/0++Vyey5evZKrBKgWhME1jVG7CzNQMzVYbpRSu52FaFrphkEYR3W6XWq2G4zjZYldk3mXHcdB0nSAMiaIhvu9nxzQIwz7rm3WCQcjFi08xMzON61poWjb2OI5DbaPG6uoKvW6PqalJDMPA0A1effU1rl29zskTc3h5j5m5Gaanp3jq4hMoAWnQw9h4h/DZPya1Sywv3WZubppHL5zl2vX3mZ+fIjJMXN3GFPD//t//J7/7r38HzXLvG0/ujViHn0tu3LjB+Pj4EYyVB2M7cd1vIf1g89297w4zzu5FAHczHu4noLTbNbuVtd/9PkhKk/s96ocnrgf132HxoM9vr/MeBrHa3s/bDb5Hact+nvPDvl//2NhpyIFjwvrziGPieoxPJLZPiEe95mjff7KI685rP3ze0QfgrRQ5wUtfQm3eOFQe1yPdZwpSZBNjgkLoGmksaNSbLC0t8fbbl3jyyYvoxv1qx7tZaffyGGwtTj5EXHdYfKWUpCSgQWW8TLFSZLOxyfzkFHPzs0zNTFGtTvLU00+z0ZGk1fPEZz6Dqp4HqSGat9Hf+xZiUOfG4hr/4Rsv86sXTxGGEbZjYtkOQtNBajQ2NzAMk9W1RcbGxqlOzBIGQ1SasrGxztLSHcYnKliWQ6lU5uqV61iWTRTFOK6JZdu02x1u37zJ5MQEhpMRD03TGAQR/UFCqVSlVLTQRmGjmi4JggHdZpNmq4Vhmggk3Vabmdl5XM/DMHSkJkhUikglURRgOzZSSnRdH6XI0UjSBMd2CIIIIUZGAbI+DYYBAH/2xf+Pxx69gGnqaFJHCo04yPKR6rpGGIdIDaLhANtyOX/2caIoJooiZubmUCrFMHWarSbtdptKsUCtXkPTNGzHYzAY4rmZwrDr5un3h3Q7PXL5HLm8z3AQsLa2yER1HCl0cl6eJI6plMu8+spLGZl3fMbGKrieQ7vdptVq4jgWtp31uxQpSRoQhBF+zqfZaiI0gdAEG2ub5AtF4lRRqZQplork8zkMDTrdDsViGcv2+fu//ymba8u89PIL9PpdxserPPP0p9F0iOMsFc74+ASVSoWvf+NbTE1OYZompVKBdrtOkqSUKxVyuTyFQp4oHrK2toHv+/T7Pfr9Hu12C8s2sa2M9CJgcyMT/vrxj37Eo49doFIp02o16PV7TM7OoIRCNw0++OAyxVImHhWGIWEYMjExsS3kW47GAYllmnS7fd59911WVlY5ubCApumAoNtu4TgOruuOvJkp3/v+97EsC9/z0DSN69eu8c477zA7O4cmodmsY1s6hUIFpQRf/OKfc/bsWVrtBrlc5kk1NJNcLo+Uks3NTSaq46yvb1AslHBdn7Nnz+F7Nu1OGz/no2kamxvrmdFj6XWY/RSc+DUAijmPYNhndWWRJx6/wMbGCsr2cE2LtTuLBMMuz/7ykyTC3Gt0O9QYt6XQvhUunW0jeDjkdTfiepCXazccxYu4n3Fwt/ln59i6nbjuJIpbXq69CMJhievWFpTtCs173eP2sncTYdrtPvc69lFDqH/eiaumaXfXAYe9bj8D+UH7uf+psRWdtfX5eWnXMe7hmLge4xOJByGu9669J1gkpbj79+77VPcXMbhX5v57Hu5dpxCCXT73X69Uel/oze4iUClJEiNlds0oPwncJ1Z1dGy1O9lDVfigaw9ciMhMmVZIQXaawnUtJqolxsYLPHLmFL7v3df8/Sy7uz2n7SF7O9u0PRQN7lmYpZRZWhFTQ+mCRKQUx0sIUzJeLWEY0G01sXIV1kKLNTWFPPXbNFSBoLXKv7xgkRvewbQdKJ6itngDTTfY3FhnY3Ud27Lw/QI5L4emgVAJAp1mvY1t2tRrdQzTIlWKxx6/QHmsRJhGaJqBYVhZ7sw4wbAswjAmCkN03aTRbDI/P4vUFZGAVAnqm3WiIOLm1eu4roOpGQy6fVQUcfbMafphP/MGajpJmpAkKSQhS4urxDF4To4kikDTiZIEQzNII8U3/vabTE5WcRwX3TRI4gShFK1anVOPnMN1LcJoiK5nXm3NsFBSEidplmtUaDhuEcfLITXJ5HQVRYquG+RyBVaXV/A9jzgMSZRJsVQiiEJ8z+dnP3uRO0tLPPnU03xw+QM838XLeXTabYJY8fWvf5Nnn/1Vrl69ju3Y2LZJrz9AIdlsdLGsPNNz03S6HXr9HrbjYZg2Qa9DFA3w/cyTmC+MoZQYiVDF2IZFfb1FZSxPmkZ4jkmjvo4g5data0xOVqnVmxiGxTDocebMPJ1OhKbbeF6eM6dPkyRDmptdvvH1v2V+bppev5OlADp9Cs91iaOYKEzI+T6b9Q5+Ls8wGLC8skKlMsUw6JHzPcQod3ChUsbNFaivr6MbFkpJHMumVd/g9OnT+L7HYDAgDCOmp2cwdGv0O1BMVidpN9uEwwFeLofQJKZpIFLF6to6uZxPksQkSYJSAstyefHFl1lYeISJiQkgRqmIJI3RdJtWqwdSMQg61DZavPfeezz+xEWkZtHvR7zw4vOcP/copmnhunmiWPD97/4UwzC5fv0q165f4dOf/jRC6CSJYmOzxrvvvsf8iQVKlbEsL6sS1DbWSdMYP+eClqUyMgwDqWnkiwVUYxF9WCP69L9D042MHGkW/8u//9/4L373XxHGionqFJ7nErVqfPWv/pRf/8yvMTG7QMK9wXn7DLM1Th8Epe6l6dorfPJBsdse18OSu4NwULjuXkbC3cJLt/+71Q87sb2929OaHeY+djNGbu/z/cb73fprL0PoXm3Yq6+O2vd7Ef7t9ezsu+3z2X7P5qjY7f73ml/3e+f2egZHIek736H9cNjf127rOE3T7iOqx/j5xjFxPcYnEh+NuN5fTvb33sT1IOGIwxLDvcfE3Qbu+3P77dZGKXezuj/cwXevdDgPgt0WOlt7aZXKFGullNi2PQon1FDcC1XamsSPag09yoSU7eW8/3nfXVylCsuyuH79OqVSiTRNmZ+b54233kTLV4hLjxBM/wrXonHKpQL62uvke9dRwI2+y/rtq3R7HaQmufTmJTZrm7huntW1VYbBAN0Q5IseMyfmGZ8Yw8/7WK5FvpAjn/MxTQPLMilXSjiujWHomGamNFsql0iSJAuFlpkybXlsDD+fZ2Z+HqFL+sMB3W6HTrsBJEgZ0+8MsKwCmq5huwZC6Hfz6YJCM3VUApqQCLI0RHEckqZQGauAkEgJuqbhex5erohh6DiunRFaMVoYyGyxkG6935pEyExxVzc0HNdGpQqpSVzXwXU9NF3DMGxqtQYvv/was3PzzM2dJApCLDN7TyarExi6RqfTolZvU6ttUiwW7u5nrNc3GBsfwzRNJqrjnDx5glu3rpPP+2hS4ytf+mue/dSv4Dk2tdomURxlKW2ikGFvSBJGuI6F63lI08BzPKSmM+gPuXr1GhMTVfL5zAObz5cJhhGX37/MxPg4syfneeTMKVzPBgmXLl1ifKrK0soG9UaHhYVT9PsNECmFQh7X9TEMnU6nzY/+/nnGx8YolUpUymWGgx6tZptWq81wGBCEAY7rkqYJP/ju9xgOQwrFAmEQEAz6fPs7f8fJkyfJ5XIUCgV6vV4mmqVlIlsoSGLFoD/EME2kJtCEQJFgWw66ptFutzAMgyiMcWwXP+eP2mkjhKLValIolFhf3+DK5SsUCjkKxQIn5k9w9uxppCbp9/sU8jlmZmayPLm3bzM+PkGaJly+fJkkjegP+vzuv/xXJInivXffodFoUKlU+No3voZEUq/VmZmeZDgYcOfOHcYmJsjl89i2RZbKZpiFKEcDtLU36V/8b0nsIkJk40673SWXy0L4q9UqQkAcCaJBwHvvvs/v/f4fEMQjafJt4829ceafflH7cYgzbeEg0niYMXQ7ST1KftqdBsbD1LNf+/c6Zy+iddR9lh/VG7dV5875cK91RjJKv7VVd7/fxzR3jwz4qORru37Ewy77sPgofbtfmVs4Flj65OKoxFU8TMvhx404jj85jT3GA2ErhGWvQXZ37LVfYzeL8OFChZU67KC3f93bJ7Otuj9s2b0XMnuP+Ck2NjYolUp3rYaHb8/BUEox+N7/hRAC53f+/X1tepDydmL7HhpTtwiCAMuyCMMwI5HicHts9sJhJ6XdrNdbxw/ynKgkZes5SqmTxClpCoNhF9M00aIuye1Xid95DpmfRj75Bbof/D26LknSBBKD999/h1K5wMLCCXRDYyt7rRLctXpouxo57veOZPehUOLDgeNCpZAmdNstSBK67TaDQZt6I+BTz34OoUEqA+JYIJTi0uuvE0YRTz7zDGmQAClKxti2hVKQhAqpawhdoJIYXWTL+xh91I+KOInQZCbyk/NzxEnMVgL6WKUIkaVhEUIRhwGb6zWmp6dJ0yx0WEqBodsMhwFf+tKX+exnP4dpmNimSb1eQ9cljm3Q6TSzfaFOMfO8DvvUazVs22b+xCTXrl6n3x9QGRsjCEJMS6dQKNBqtXnj9XeIY8VvfObT5HIuUTRkdW0Nz/WYqp5gOOyztrrM1Nw0uuvT7wzJ5bK8uc1mk1IpMxj0hkMEGq++9DLLi3f4oz/6AlgGqDhTadYtBBqdQRcNk3qtRbHg4nuKOFV0O30sy2NjfZNCIceNG0vk8z7VyTEMQ2NjY5O/+euv8+ynn+XU6VP0B31mZqfZ2NxkY2WdQrnM5NQUtfU1KqUCmmEipaTb7ZLL5Wg2m6RKUC4VQaSkqUKg8/a777G2uszTTz1JoeijmzokGkkaoxtylAVGJ44SlpeXmZmdQdME3W4Xz/Pp9roIofGTn/yUxx9/lOrkBMNeiOvZCAlRnCKlhiZ0bty8jue5GIaOZdtYpkmaKsIwJo5SbNvmB9/7Dr/6a79Go95gcXGJbrfH4uIS//a/+QM21taxTJtGu80PfvhDfvu3Pse58+eJ05her0upc4Vb8Tgv9ab53G/+Bq7rjIh3ysrqEqdOLYy8ojEqtnjp+R/x65/5JfKVEonQQUZ7/MrvnyMOMzb8U2A3j+le2Pp+ixztJsS3dd72Rf5OYrrd47lf3YcV0dlez9ax3fal7lbmznK3ythSi97LW3kQDnvNzn7ZLs645ZHXNO1AT+lBfXWYvtz67rAaF1tRR4ctey/sR3z/sX43D8MTfYyfL+i6fqQHeexxPcYvAPYaKHezzh62zMOeuH/dHx5kuXtsf4u/wnEcYPv+kYfvcRVCYDwEj+te2LrHV15+BSEEruveSzNz6LRE+4cwHfb6vb7bghKZaM32j5RZ6LOQMmutzNpsuwaaLtBsB33iFMa5z5J06yQv/QecC7+BRohpW5iWxfTsJLkRaciy3clRTtp7z1/skq9YiWRbRPhWmOO9d+FD/41IsGlaGJZDsVSh3mwzNj7Bn37xT4ijkGKhgNRMtDTlxOwsg/4Ay3LodVrkch5KZeHEmmawvLjKV77yFR5/4nGEUPR7HQb9Hrbr0e32ME2LKIrQdQ3LNEnSzNiUJgm6roEETWTZMoVSIFJ8z8siDqREM3QQknA4oNvtMjc7x+TUFJoGmi4Zr05g2TaVsQr9wYAgjOn1A9bXVynkcxi6weZGHbRMdKrdajE7M0sYBGysb+I4LlEYUixkwkhxHJEkMf1+F9e2MHSN9VqTZrNOGoWkSYLlWLTbWZqXewtQaDTqrK9toEudS2+8zu/9V/+a7qCD5/tEUUAwGKIJg2uXb0Ea4NgmpWKOleVFLNtlfW2Dyeo0q6sbhGGIYWhMTU1TqZTo9bvkfJ/BIGB6co4XXnyRpz71NBPVCVSSEIchmtSZmZ1F0zQ67TY5z2Vjc5OXX36Z6elppJTUajVarQ6lcokoCqjXG+RyecqVEr7rEoUBg8GAfD5PMAzp9buEYTAK7Rb0+n1s2yCKhyAUpmETRRG27WBZJvPzcwgpcRyXl194lZnZGdbX1ymVSoAgCmN838c0TaQU2LaJGh3f2h5hGAaObWGaJrbtEIYRJ08ucOvmLS6cP0swDKjV6sSp4s7SEpVKhWq1im4YOL07iHjA/3NJ54tf/CJ/+EdfwLYzI5gQGoVC/m66IE2TqGHCP7z0PI899TiGY5OK/QyWhw91/CRh+7h3mLQn+0U8HWbMPczYvLOeLaPsUcrcjbzvFn76IM/vqPPKduPsVjsPKwx10Lx02D4/bNs/Tk/rPxaR/CjrgGP8fOM4VPgYvxA4ilLuwySu9ybDw8rfP3ziKsSHz8n64qMnht+Oj5u4bm//ZHWSF198kfX1dWZnZ7P7PuSjPcq+mv3asdd3W0hlghLqQx+xlW1dbZ2/ZUhIPryXWtPQph9Dm79I+PyfIPwKSpNougEiO1eloGkmUm1lYN1GWu++B9uI63ZPviAjrWLkXR0dkiOOrUZZXRMlEJpJgqBcmcTN2Tz51Hlu37yFpiw6vR7NzU3eufQGSZzwta9/gwvnT9PptsnlfQzTBiFxLJf5+Xn8vI+UCte20TWJ0HRs2yWOEnQjyy2a7XfVR9b8FASkSYJQQKrod7uoNCYMI1zPJVGKJE2Ruo5j6yRJeldEyvVthnHAMAhIUei6Qb3RYmysSr83QIgEIRQry6vMTM9iOzZRGPPaq68hEExWq7hegevXrzNRnWBiYpxqdYJOp8vszAxxEmCbOq5jozl+lo9Uk+R9j1anzfTsPINBH93QR8JVEY7rMFas8MHlD1hcWuSJpx6jUMqjoWMaGt1Ol3CQ8OrLb1ApOnQ7dUplD8u26HYibCsTvEqTzCPzox//kDNnH6HTaeH7LrXNOpubDVQCjz72GIVyiSAM6XXaLC8tUSgUcF2fer3GWKXMzRvXmT9xgpmZGeI4ptlsous6t27eYnp6iigKGQ6GLC0ucWflNtcuXyYchiycPIXQdCzTRNMkg34f3/cIg4hBv0+xkMeyDISAJE755je+lb0LroOua3iuR6834OUXXuPcubMoMuLR7/WxbIfl5WUcx8ayTVCKNBW0Wi2klERRiOs61Gs1KpXKSO3ZolgosryyzKlT8+RyeWzbZXp2jumZWUhSSuUSWm8V2V6k90v/M3ML5/nDP/wCQmTK5YZhkCaZMJhlZSrYoDBSeP6ln/CZz38GtOyHuw+dOnBs+HnBUbxl24nUYc/dqmMnyfm4iOv2UNrDELyd521v506v6cdBXHerb7d2HlTmPwVx3S3E+5NGXI9DgX9xcUxcj/GJxlEmyHuD117kcUukiZHlX7AlciREln8xI4T3CEMm1nEUkriNbKh7/78lGCW2nGWCu3V/+HP/vW1vy71/Hw62LN1be1zN079yYGjPzoXDvuG1u1l2JSycWmB2buaeeNMBz3lnGNZhwo+2hyodlHdvZ/1Syfs+2fPaemZ3a+H+ZyhAxQg7h3biGZLrL6CW30N/9LdR3dooZFaQheRm76vazt0FoNSIDAjqtU1cx93mUc1CfNnRb0qMQo5HbZBCIEbvHKQIIdENh/mTC/hFH0PX6XYaFPM+jdoGE+UxnrhYZWPpBr1ag7HKOJGmo2vgeFkuWyGzxW+v18Gyc9mzYCvMLyMlkGaeViRCaIg0wtB1BkGAYdroloNtOyTpaL+zkEghiFW2NzaJAyzHIk4FtuVjWAaWpRFGQ9bW6piGS2l6jEK+SBIrpubmKIxV6PYHlMfGOXvhcdAsWr0hE9NTvPTSa5RL4wiV0O3UMQ2LJA2zEGTDBXySfgvHstmst6nOnGR1fZ3KWJkwHmK7Dp1uj2/+7XOoUBIkCUkCJ+bnmZocY215kUI5T6IU3d4QL59nan6GaDigPDaNYeZo1DZJgzaDSKeQz9NpNrAsi0azyyOnJ0kTRasdEIQpp84ssNnYYH5hDqUCVBJjOz43bt6h3WrjOj53bi8hBOTyPkHYplgpZXlalcbzP32R6ZkqpiGIkwjXcfn615/jwrkzLC6u0O0OOX32EUzbZGl5EaUUlbExFIJhEBBEEQiJ1A3QdBKVMFYd48a1JfrdkPGJKkqlbGyucObMWXRDx/d80kTR+//Ze9MgybLrvu93l7flVllZe1XvMWHXCQAAIABJREFUPT37YAYDgIOdIACCoh3UB1KwbEtBhxZSkmVqsUOUJVK2QyE7FKGww3ZYUoiUREqMsMxFDi6QRWLHYGaIwQDEMlv39Ax6X2rfcnnrvf7wMquzszOzsnoZYBr5j6ioqvfeXd99957/Peee02xw/q2zTE/V8jiyr59hanoGz/eJw4jrl68SBAWazYjP/uFnmapNEUUt/MBnZXUN1/HwAx8v8HA8FyEEpWKRmblZktU38HbPs3rqT7OeCI4cPkSx6GNtRhJHWJPhFUq4jiaJEj7/H/+QQ3OLiDQjNgkPP/oQQii00SC75/Zb599+pPDtEpCTl34Tc/VV5OJjIxG/7vr1eu8dVbAfZB7bTyPaL5/OnLxffNXOs70bsd1z9EH6t1fL2q+8Drpjyw7bCB/1Hfcjqwdx/nOvxtEo+XaPmW6z4WHr5Kgm1Hv9ItuOz3qWxttpdW//jknq/Y0xcR3jvkb/CWx/4nVj4RJ9rt29ug0j0524q9/vSVgIgT7xDM6JZ/Ylop3n71a5++1O9wpmB6lH577rum0zQjHwbNfdR3uRdwt5WAuvRPzCb6DmH8Sm8Y3Nh+7d6RsV37uWpil+ECC729ovzX5o75Z0+kQqhef5zM7OsL2zTWWiyuLhQ1y++D3WV65TLmrK1SLSccHkgk2zFe1pHiUCoTRZlu2d47LWopUijiOEkGRZfr4yiRLiOEFpD6Uc0iQjTWOklJw+fZqZmZn83WiNMSm+5xJFMUprhNBIAcakYDOmZ6apVMpYIIkiCoUCQbGAxaLbcUE9z2OyVgVhCcMW73nP09QbdQ4tLXL16lX8cgFrFVoFrK1uYrIE19UsL6+ysbnNd17+Lk+9+0kq5Qqbm1uUigFaShwlKQQ+11Y2Ofe9c0ghmapN4jgOruflDr38ANlu+9b6daq1CcKwydkzZwC4dGWFiYky6+urXLh4gSefeopSuUCzFeP7RQqFEn7gMVObRknFlStX8PyAN86+hRWKC+cucOrUgzz77LO89b23OH78GNVKlZ16E60crDU8//xzaO1w6tSpvXc/OVllZmaahYVFnvmRH8F1HVKT4mqN53porbAWNtbXmZubJklitM5DHAmZO/EyacLqygomy6hWJpBCYk1GuVQkjqPcgZijc9PiOCUzlt3dOnGSkiYJtcm8rxr1JkbAN7/1DTDw0MMPcfnyZWam54jjmJWVldwsvFmnUCzgKItceZnW9hrfCZ7h6NMfpVKp0Gy0KBaL+L5PluXncm2aUSwVcVyHucUFUiXwpSYjY/bwPCAQVmL28W1w86fz9s7P2ZkvQ9zcC4czKoatYbe3AXwDw0hlPw3bftrg3jOyt0NGetPsl8edaBh7ifagvA+a5/cb/cbLQTS7Q58ZtDGwT306GGtUf3gxJq5j3Nd4pxHXfp6Bv98Tcu/ifxDiejt91iGP+y1I/eKwHtQ8ruMkQ0rJzs5OLozvo329O7i5nrJ2GLX0BOmrnyW7+jpq8RFsEiFkV/zaGwluuXanxFWI3DzSGINUCmyuiTVY/EKBOMuIkpjrF1e5fPkK2rHEUUrgVdDaQUrJ5z7/BWZn5/Bdj1Yrj/+apulNAeyzrOOYJI8Da23ujEtrnyiKuXb1OoWggOvl4UtmZ2f33keSJghrMVlKnMR4nt9uoSWOW7TCBpVKCWtTBDI34XUdTNt6Igj8/EwjBqUESksmJqoAOI5DoVgijBKqMxNUJ2bAuqyvrTNZKyGVzvtFSI4fP0ZmDBcvXOXFr/0x1coErlYEgUeh4LO6sQY24aknH0Urwfr6GnEUI5VCCtkOdRPhe7n5sKMl8wsLVCen2NppYNKEE8eP4XseK6urLC4usbKyTpoYvvTlLyOFYLI8wTe/+U2OnzhBdbJGdaLG/Pwix44c4cyZ03z84x/n6NEj/O7v/i7ViUmk1ASFAr7rUggCvvvyK7z73U/zxhtvcvjwEtZmaNdjolJmY32den0H7Th4nkcUxcj2OGw2myRJE9/3aTVCgiDAmty0PYmaHDl8mAsXLiKlIk0zfvs3/x3zc3PEUci1q1dZmJ9nZ6eOxXLp8mWefPJJzp0/z5XLlzh86DBhGCK1Jksz3jxzFtdzOHXqAXZ2dvCDAjvbu3zjpZdwPZe5+VlEtIWz8jLXoiL6A3+VycOnyDILVuB7uZM3Y8zemdqZqWruKMoaEmOYmp9l+dxFpuan8Ype+3uTN5nejyqo36kjm1HRG8d1VNxt4tptutvxwr4fCd3bGNtHM9ar/bydOblXizvK2d1h/w/DftY+72Ti2t1vo6zn95K4doeu2W8zZYz7F2PiOsY7GoPMUYftfnaThl6zpFsXmLsrlAyeZG81Yxo1ZuCdYhQTn05f9ppb9T7T+/8ou9yD+r9b0OpndtUrKAwyCxsUT7GbuHa0go7j3KQl7BV87gTdnjH7bZ6IoIw+9WFk7TDp6S9jrp1GLTyKjZsIpW99vp2X7AgBnZ/cpr3nYTH0Z2+0S7mXXkoBUqAcL4+R6WoOH3mQx554kjNn3qRQrKJUgJApQgiOHT+O1nlYHiFEW0tnSdMUYwzr6+sEfjEnRK7bNgtTCJl7+dzd2eGP/ugPeeDkSfzAv+k9ZFmG1LLt09UQBAWQYo9QOY7CdVwEgmazyYtfe5GFpUWkVmilMCbDmtzdVRTl2j8hBNevrXHu/DmKpYDSRJlSuQIIGs0Qz/MolwtcvHyRB048xIVLl6jWqlQqZYrFEtu7DQqFAgXPw3EcWmFEbXoGRMbDD51ga2uV5evXqE5UmKhM0mq1+PKXvoIxGWffOEshKLO2usxktUIrjPjOy6c5duw4MzM1lq9fY6Ja5cixY2TGUilXOPPGGT72ox9lqjbJxUuXeO7553jkkYcxmeHSxUv8+9/+HRYW5/F8h5mZSer1XWqTk8zNzDK/uMCbZ88yOzPD7s42Tz71ZK65rM1w4cIFKpUy1doU6+urRGETKSRaO0RRjDWWixcuEgQFVpZXWFxcYGNjk1defoVqtZZ7601iorDJxESVRrNFsVCgXC4D0Gy2aDRbHD9+giRJ2dzcolwuox2Hcrmca8mLRbTr8Nrp01Qnquxsb7O0tIgQgqmpGtZarl65RhhGPPLowzSauyy4TYLd88gnfobL5XcTZ1CtToIVCKFx3VzITdOUer1OtVrljddfZndnl0q5jJKaglfgtW9/h4fe9QhOwc3N05H5+eu9T2d/a49+9/vhbswjHeKqTzwzsnlm97w6LM1B2tWdV7fjpH7zee/GYu/m5qCyB/09rG4H0RIOau8o6TvldOb1fibGnXVnVGLVb2Ngv/SDZJiDYpT+P2je/db3vXwGZGUHnK8dk9MxOhgT1zHe8RhEXAfjIM4kDr47PQyD0/Yj2G/vJN2vbh1hJPzavyO78gr60OMDn71bi0qvUNO7+PfbjOgVfjqCUnfohH5jpFuQ1Donh51wCb2CyJ2272bBavBzsjyD8+BHkLXDJG88S3bxW5C0sEmILM+A0ojSNHZnBbL8vGG3ZrZdWKdjhgoPt4z9rr8VBovEIrACfFdjCgYdeJx44DFqU9PUw20uX3gT13NwfY+gUEQIibEZjuMQRdFeyKovfvGLbG83OXT4EJBrUKWQZNZisgxrMh579BE8z0VqfYvmnbamVAqI4xjTPj6cn4FVKOkAEoFmqjaJ0hrdJshZmuJon+XlFcqlEqLtSisM4ctf/hI/8sx7c+9VEkg0W9uraDelVC2yeOgYO9tNCsUA3/fQOj+bqwoB5XKFQuCzsbHN4qFjZEZy/eoKly5e5lt/8h3e+/QHkXhYm5M/JSVLS0s88MADXDq/yuVLF7l+/TK1qSkaYcaZ06fRSlAIfCqVMpmxbGxtEhQLuI6i0dihGAQEEyXe98x7SZOQJAxpbO1w/PAR/JLP5GSJNAuRUjA3N8f165d58esvcuLEccqlEnEYsbm9ztzcAkmcIaUmimIMhiQKCRt1CkFAlhl2d+vtcZRvvLz55ptIqZmZnmVhYYGvPPtlfN9lslbFLxRxXJfnnnuOdz31BI3WLhOVGVZW17l85RoLi4cIowRIqNWqeL5LFEdYm+FKzebWFutbWzz77LM8+sijzMxMMz8/h+e5LC+vsLW9w6FDh1moORxz1lCOS/qB/w45/TjV2gSFQoEoSviN3/i/eeqpp5HyRmiX3IOxRKqEiXKFrbUNRGi4ePpNrq+v8si7HiXOYqyUCCv3YmPfCQm4nXujoFvjOuqZye5nhqXZL6/uzcJecjVqHbo3Gg9qITPq/VH7eL/zrPvl172B2k8T2Clj1Prst652yhtE7O4E94IUDs1zwC3Vpx8PcjZ4jPsfY+I6xjsavaSil9z07vjm/w9aLLudGwm6Z9ZRdvwGLSo3w9BxAtX9059M3N3Ft7tsIbodUO2/6CWnvwRxE+fk+2/p32GEsoN+ROkgAkOvwDQo/950+5HOW6/nfSS6FJKj9E8vunfjO1rdmzXC/WMRQtd5sdI0zqkPoR/4IGruAZASG+5CGpOdfwmzeQW7cx2z/Aa2tY3ZvoYNdxClKUAgp45hNy7lRPemsga8p8747dSxTe6ENXv9oIxEWgHCIh1NuTpFdWKe7d2Q5eVlMCmeJ2jubuL7pfxbEhpjJMdPPsiRpQWsMRhrUEqTZimOdgnDiOeee4HFpSU8z8FKg7WQxAme56CkIW7VcZSDSdvvwsRtB1X5mJZSEMUxQgqCYgEpJRqBSRMcLUgzwyuvvMrczFxuMpylaE9w9OhRKuUqUiiyNMHzFdXqBL7rE4cxvqtJMkFtegqURXkOjhdQCIqUSmUc12d6Zg6lNL7vUygWqUxOApKFpUUmahN4Rc30zAyNVgvX9yhPVXG8gOMnjzE7O0OlVEGiOLI0y5nTZ3jiiSdZ39xkZfUaWSukGJTY3KyzvV1n7dpFpAJpBFkCvlfEL/gkJiIDXnj+RR544FFKhRL1xhZrq9tUK1MkUcrU9BTXV66ysrrB2bNnOXnyBN/+1p/gakkSN9na2eX4yYdwfZ96fYv5+SUunD9PlkWUSgWKQYntrXU21ldZXJyn2Why8cIlFuYXEQLCVswrr7zGY48+TtgKWbm2ghSWYhBwaOkw66sbvPLqdzl69Ait5g5JHNJqNKnWatTrdbI45tDSIRaXlvjmN7/J1NQ0165dY25+jnLRYV4s47au0zrxST67UmZmcYkkCfF9j+3tLcJmi7/7i79I4AcsHZ7H8/3cokBK0iyjMjENeKxcWyM1GRtb13n/pz6Gdt188wN5y6bSqORqVK1QP4+tB0F2/iUQud+BYfXovTYqujf6uolDr2avX1m983v3fN0dO3VQmn4YVUPca3Gz30Zdv/Z0lzPIvLjfhuZ+dRsVo/TLQd/toPEwSgzVfmv1oDS9RLNXI33L83u+8mk7ChR7zgXHGGMYDkpcb7VXG2OMMd5xuHnHfLxQ3EsMOvc0CFmW7e3eW2uRxUkoTiKnj7fzu1kgMrur2CTM/147h6lvQBqRfPt3IWrkzp68ImruQURQRs0/SHr+TyCo3CokWIsVou2VeDhycgtbzV0OHT2Mlkc4e+Y0Jkup79bJjEMQFLFIpMy1Xs3mLlJJXNdBSUmzEWIRZJmh0WiQJPmZWKU9sswQBA7GZLSaO7iuT2YsQiq0ECRJbn5crU4S+AGZMSiVe4IVUpImCXESE3hBW5gyPPXUUzQaDaQq4XkO0nqomkucJDiORsrcuVSz2STwPbTjIISgOjlBHIcUS2UElp3dBpUJlywzhGED1y1gLWxtbSC1j+NI3vu+92BMSpKEICAKQx599JFcQ+5oNpbfRNgUz1OEzYj/7w+/wKc+/iGmpya5dOkC0zPTKJlx8fxlvvLV5/nRj32CF//4j/mxH30/xWKJra1NGvWQxcUloijizJmznHr4UaanZ3Edj/X1NRAWx3GwFsKwRZIkLC0dwi+UOX/uHFEY8oEPvB/HcVhZuYpQHteuXWVxYZ5Go0l9t85kbZJGYxffDyiVJnjrrTc4efIkV6+uUC5XOXr0JEFQILUpQho+8pGPIKVkcnKSF579Yz760Y/geR5vvvk9Xn31NEoblpdXWFqaa5+nlntxY2u1KZI4wVrLxESFlZXl3HS8cRHMFaLJx2g+9JOs13d55pkSz37leT78oY9xrXmRMIxpNkJ+6Zf/Lu9617vwPI80TdFa4zhObrKeZWRZxtHjx7h+7SooSblc3vvm7jVGJQx3q6y7hVG1hv2OdNxOPt24nXYclDAOO5fa79m77e/ihwn9NpPHfTnGvcRY4zrGOwr9J8fRY6ketKz9F7TBu5WD6nOQ8ofj5rO9Sqm2Gef+AlsnHE5vHNc7XXBuVyi5d2nunsl2Zzz0I665Nrd/vlrrocJRd1ZCiJyUFqrIwgRq+hhq4WH00mM4D30M9cgn0EefRi89hk1a2LhJevZ5zMYlzOpb2K0rICUoB1U7QrZ+Ie8C7dzc6j7fUcchi3ZcpJIIKZicmCBNM1zt0miGNBpNPvOZz/DAyZO0GnXKkxWkEjhaE4UhnuOhHI3ruJx64BRaK9IkansYVu09eEuWJWjlEYZx+0xlSpKkFIolPM+n1QpzkuJoMpMhZO58KfB8oihBCI2Ugq2tbS5fvMTi0gJaKaI4QyCIo4jz588xPzeP1IrAz8P7OFq1HVY5CGHZ2dlBSkWSJPhBgDWQpRlxlGINTExMotycpLuug9YSpSSrq5tMTk5irWFtfR2/UMQFpAAlNSura2zu7HL40Cy+5+X9KyHwXOIk10pnWcrC/DxCKfzAJwwjlg4t5WdKS0Wef/4FZucXmJmeQirJtavXCMOQmZlpvvbiixw+cpjp6RpbWxtUKrXcFNtmrK+u0WiFWCyLCwtkWR4+xhhLsxWyurLC/MIc29tbVCq59+FWK6JRbyGk4stf+jKPP/4YUkt2t+tMTU0jZX5GujZZQ2pJoRDgBwFf//pLvO9978P12mechSSOEtY31mk0GgB4nscbb5zl5IljzHoJ3ubrxLJE/eSf46P/xf/Az/3CX2B5eZmJiSq/+iv/hscfe5JDh6dJkogHTp3kyJHDTNXyPtjc3KRcLu9pfdZWV1FSc/r117l85TI//hOfIBX5NzcKeb0b891+1in7Im4gyzN7G1n9yugu63aJYrdGctSzub2WOP1Iem8+t6Mx3C/tqO0epEUclr7jcG6Ueh8U94LADdMGj6pxHaVuvc92b4533xsWjmlMYMcYBWON6xj3DbqJQgf9HPbcq7KBA+2m322HTx10n+vsLac7Te9zBy1zUN77oZ/pV6c+3ddu5/xTb316z2LdjYVx1AW/20S4W/DL0w7Wwt7sxOnmPPPftz4/1Ox4Yg6YQ82e7KTAGoNtbuZmx9dex0ZNktNfwpoUs34R3ADhBMj5h8EvQX0j1xQWa3vUPjMGAfi+m9fLgnR9pufn8zORmeXa1asIARfOn+Phhx+mGHgIBDu7daRSWCURNifjruviOBqTKcCQprmxslYSxwnY3mlSqVSIkgitHZavXOXqtWt88IMfzJ01kfd3Tn5TtCNI0xaOlmRJiHQcJicnqU5M5N5mM4lWmixLcbTlwVMn87O2SoCxSNV+X1kGIkE7Gs8LWF1dZ35hjjQGrT3iuE4SJczOVKnXI4KyD8KSZikSwdk33+SlF7/Nxz72ISZrVaanp5BSMzU7Q/NCE6008/MLHD5+glqtQLPRIokztrY22NndoTo5SalUIWyFlCsVdhsN/KCIdlyEgkZzF2Mtn/qJP0VtepqC7yElNBsTzM8vEMUh73763SwsLpCZDD/wMUIwNTXFpXNvUalU+MwffYGf+qn/lO2tHTxXs7m5xeTUNHEYs/jEAuvrK1gLjUYDIQyVSgkhQi5cusTM7DQIg5IOExMTxHHCpevXOH7iKOVKmXpjh8xmrKyuUCgVsAh8P0AIRVAocub0WZaW5vcce2ntcHRuguLan4BXoXniT/OV07t8sDzHz/yZn8IYWFpawvN8/vE//l945ZXTwDzVao0kySgVK6RphrSSWq1GGIYYYwjDkFJQwPU8Jqen8EoBmSP35p7ORky/b3kYeh0P7ffsna5D6qEf28tr1Pp0k9Dua71/95p2ds9do9S7N/9eItvPbLRz7XbWomFmq4P6unv+HrYudKft+EvojJNRPdh31oAOiR/0TCe/zlzem/edrNX9+uAg47D3/Y/yPfT23X51fzssEMb44cWYuI4xxl3CvTRNux8Wgv3Idzfervbebjl3810PcjZ1EAgp22dhQVYXMAacJ38KABM1sWkMW5cxu6uYtXPY1ja2vo5tbIAboBYfRbgFTBKhS1N7DpyMBSskyFxTunjkMH/x5/4Sly9e4Fvf/ibFwOPJp5/GDzyE0kRJCsZgjSVJU6SwWGswJiZJMlztIZRLfXeX7373VT76ox/GUx7GWE6ceID19U2SJMV1HSB32hQEPo6UtBpbhOEOxaCIEBohXJSSXFte5qWXvs4nP/ExCgWFlYag4JAmCY52SJCgLFII4jjGcVziOERKQ5qmbKxvUqtNEhQChDAEBZfaZAVH5xpca0VbKy6Jk5hKpcby2iqenzt3EkJiTEZsDOWpaXzHQWvF5vYGzSgmExLtaly/wPTUJFGcgmcpBAHNZov5xSUcJdCOotlqcPTYUa5cvs7U1Aye72BsAsYShnXSNCEoBMzNz5OmKc1WSmWiRCtSrC1fpVQqoJTkJ37iT6GUQ5I0sVlbSBWS6elpHEeTpilKSba2tpibq7CxsYHvV3j/+5/BmIg4CXGkBCH49V//df7SX/6LSCkJigFJFhMnMUJJojimWCpz+sxZjh0/TLVWY25+gd/8zf+Hj3/84ywuLmF3rjIVfo+vbszwK//xVX7lV/8OS/XX+dwX/oC/+bf/CpvrdSanSlibUZ4o8vR7Hgcr0MrFZooMUNJDarhy5Qpzc3NcuHCBw4cP42uHrc1d1jc3+NBHP4zSJg+f80OOfnPK2xMW7O0rp4NuYtVxALffXNpNru+HtfVeol/4ozHG+H5ibCo8xg8s+pu/9HOG1O18qfvnRj7DcWue3ea2w02b5N5Pd9l5lfs7htqv7O5nezWMN7enX5tvdQbRr+69psL9nDMNwqjnge72Itdr8jZaGTe/D/o4iziIoDWoPClVO5TLre+jd2z0/nTvgO/X9/3Pmd1oW28brbUox0M4PrIyi5o+jj7ybtSJ96Me/hj6kY+jFh8H5ULcxFx5mfTyy1jtomYfwIY7uaMN2+U5WQomJic5euI4k9VpLp/7HpvLy0wUSxT9IpHrgBBIBNJKtta28b0ArRwEijjJuL6yzvzsBIXAR2BZX1ujWMydIrluTmStyc1us8xilQJcKqUq29ubZElIwc0gC3EcxU4jolJbAAxKu8SJxfOLhFEMSYxte0KO4ogwjnBUyuVL56lNTbCwOIfruQiRh/pxPQchJUmWIpRCyjz0Tn5WV6IcWFo6xPTMLEK6SKUwJiEzFs8PSNIE19XYNKJYmcD1XFzPw1hLUCzQiupUpyYJk5Q4y5iYqLCxuk2pWKLZqqNdh3KljNSKK5fPUS6XUcpnZnaRODMksSGOE8rVPASNlYKslWGMpd6KqE5NIaXF8xwKpSLFShnHcwnDJr7rkZqM1EAYJrz6+hkef+JdbGzuMDs3j+u7GAx+4BPFTRxH8cSTj5EkEV6bpHteAa1dJmuTzC9Mo5A8/9xXKRdL7O7usrAwx+zMLFI4TMZXEPWr7D7+l3AW30uhUGR+fprtnTUee/wBPN+QZA6Fok9qUqR02a3X8TRkNuO3fue3cQsFipUK2ITpqSm0kJQKBaJGizhyuHrlKrVqmbmZMlpkZOLGfvwopov9nAvdK3TXY09LuLuCjZpIv3STKWYvYei28hhmUtubrv+cMbq2bb/yDop+1jT9zKH71b3ftV4T6GF16nhE7zV1HVSfbvRazozSJ/s9M6r2vzftqO3dr36dMvrd62cCPMYY9wJjr8Jj3Dfoby568DOL+0+4/cyPRiMzwxam0Sb60dpztxcPG9aR5VnUzIlbyhkF3Sazt5O+b532ERz6CQR3IjgN+n/YDvwgAWsY+R2V5N8rByGDzK6FEAjlIApV5NQR9NLj6Ec+gTz5QUhj0rf+GHP+6+B46KNPYxobt9TPcRw2NzbwAp+r15YJ45isvk3BUXiBi5GgAg+TpihHgxCkWUapXGJiYgKEwFgolSr5lo1MEcJgsoSt7Q2CgovWAmssUuZhcPLzrpqVlTVWVzcQ0uH4iVP4QQFH3wi1kCQJm5ubpInht37rtzl58iR+IaC+W6dc8qlWayipAZU7kRK5CVyaZGitCaMwN0E2ls3NbaTUaEehlUOpVMHRLhcuXGSyVkPJPIRR5wzv1uZGTsq1w872Do7j5FppKUniFN8rEAQFAr+AdhQbaxu0wiZT0zWkEqysrFGtVsmSGN/32W00cFyXZrNFEkdInYeFWV9fx2SWZr3Biy++iKM1x48fw/M8Wq0WzWZujl0oFAiCAMfVbGysUyqVKFVKHDt+HKVgdXWViYkJtKNx/Vzb7bo+JsuFdcfV7O7u5CbgjovjOFy6fIH5+TnCZsSxY8cpFAIWFhYQWJI4YcZe53uXVzm/8GkWjj/IhfMXefSxh7l69SpxHLO1ucOJ4w/y2S9+kUcffRjf98gyi+sEKGFwPZ8jR49y6PBRjMm4cvkige9DW5h/9itfoRh4nD7zCp/88R8DLUgFWA6uIXq7hPJ+c0/y/K9jrr6KOv4jNz3T+3vUc5gHacvb1T/9Ypf2u3bQut+6sb3/fD6szP3W2btN5G5nA7gfab/TOuy3YTDGGPcSY+I6xn2DMXG9Nb+DLCbDiKCaOXELae333DD0ExzuZ+La3f/9iOsgIeJuEtfbOdvb7zsaVE8hBDg+avYBnAc/gn7wo5DGxN/4bWxzEznZLWmMAAAgAElEQVR9HJtGe9+HBaZmpqhNT6Ndl91GnebqNdZWVrAIDBLlOGgp8QsB2nFQjkRIsKlFSEmWGur1Bo52ETJjfX0jNw92HBqNOkopwkaLRqNBnKSUyhO4XgGDYmt7l6naNIVCCSxoLcmybC+Gr+d5aOnyta+9SFAosLR4iEKxgFaC7a0dgkIJKR2EUGSZwZjcay9YXMdFKUWaGv7g9z/DwsIipVIJKSVZZtDa5fnnX6A6WaVUKuafrRU5uRaCJI1xPJ+gEKC0JI5iXMdDSo8oTFDSaWtxIQojWq0mU9PTKMehUq1iLVQnJrAIKuUKSmkshnKlQLFQZHNzm8999gu42qNQ9Gk0G5w4eRwQOK5LuVzKnSYhkEohlaTe2GFiYgLP99CuQ6EQ0GrW2dnZZmZmFu1oOqbPUroYY5EKPM+lUAzQ2uHa9euUykXK5RJpFlMqTmCMYWp6inKlRBxHlJvnSWTAP/+65XsXLvChD32QxUNzaEdTKJRoNhN8v0KaKh55/EFcT5GlFqUcQNHY2WVtfQPP91ldW8X3PSYqEzjKoVlv4rk+lXKFKxdfZXV9mQcfewirFZlUeXinIeN82Ddyr9GPJGXnXwJAHntf/rtHq9qZG7pDcd35unNrfe7Gc3eKe01c+/VPvzl9WHk/LMR1jDHeLhyUuIp3kn1/mqbvnMqOcVdxwwnErc4ghFB7i3nvpJ7f328S7heX7Fbi2i/vzvV+C2jvc52/bz7rmY1Udrc51KA4asPKHnUh6q1vvzNAwxxB9CtnkPOmTj69Alp3P93O/HSQMbDfOxvU/n6L+yjxHAcRxn5OPLrL63dvPwG2ty37jcVhsFlKdunbpKe/iNm6in78J7FxE6FkruEyueMlgSWOYtZX19lY2WJzbQuTWo49dhSlFMrRLCzMY4GwHkLnu7G2vYUjSOKYoFDg6pUrZMZw6NAhICEMQ1zPR0rdJoYZ0hqUsCAUVoBSkjRNSZIEx8mJ4e52i//wHz7Dp/+znwFr8H2HJGkRhhHFYhmkxlrB5uY2p0+/xjPPPIMQkJmUKAwJghJRGCOVxnEkzWaDUqlEllmkkBibkZkErT2SJOOrX3mWhYV5HnnkFFI5WJuSmRSTGZTyECj+xa/8Ku99z3t58skncDxBfTcPT6NUbqac711ZbJabACulQEiSNEFKizUCk8ELX30Bz/V5+LFTBEGAtRatHHZ2dihVCjhO7k26M75ef+1VHnroodyRFiKPvRvXiaME1yvmZ6WlAGH58he/yvt+5L34votU0GzWKRYrxFGG6+ZekREGYb29s8hR2EKvvYbwylyZ+0ncoMDy8iqPPvo4kWnRarVIYsPGxg5SOHz603+Wb3z7S7TCBo16i9rkAs1GxGTFoxG2uHLtCoeOHkFrCZnAc1zeeP00Dz30EF//2otYs8YHPvQRStMzhJnFKo3umh4PYhI7bB7vfKP3QqCPv/h/AeB94hf28u9dzwbN+Uqpvve659TueKv9TE876NdX3fNzv/SD0nTXQwjR10R3v3l60FzYb+7tXZM6Tpd68+nUvfM9dL/T290E7beOddejd1wNWyP75d/9zN10Fvl2n0UeY4xB0Fof6OMbE9cx3hG4H4hr/wVrNOLaS+pGwbCyzc5yXlJlbmCaYfkehLgO0vjdT8R11HoOElqGnW+9F8R1VCGtWyjuaJaTK6+RfucPMNvXcB//FGkSIYSDxKBsRqokWJBWErUivvOtb+E5Ra4vX2N2bpbp6RpIwaEjh7DWEkZhri11NCY1bGxsMDU1RdaO0QkgHBetwKYpAolJLZm0hM06lUoFqTWpAZGlADSbTQqFQm76mwmwWZ7epFiTol1BqxVSKJSI4gxjBZvrDV559RWeeupdTE1VsTYXttMsRaBykpfG+IHL7u42xWKZMIzIuzIjTSSuF2CNoBk2KRYDtFAgU+r1rZwkW4c0C/nud19mfm6J+fkFpAREHuLHGJUTVwwWi7QiD9eh215Krck1oplFWUkURnzujz7Lj/8nn0RrBykV1gqSOCHNQsrlMmma7v3YzOIHPmmWsbm5jbEwNxOQpRbPK5JmFsd1MMaQZVlb+5yfo+4QkDTJz9hKJXAchbVtr6wmQzeuIja/R+uZXyJKY1xPkCQZG+sNtlqbPPzww1y4cIFDhw5hbe58y9iISqVEmkiiEP7lr/4al86f4Rf/3i9ihWV+aZ44DiF1mChX2NnaYmdnh6uXr1CdL/LEE0+SZBlSK6TUdM/no64B/eaj3vtvB3Htnfs6334vOe0lXf3q21vv2yGu3dreQYSxN02/NvQr/3aIa791sLuc3j6Cm+ewt4O4DjJN7lzv9EH3e70XxHXQJsEYY/yg4aDEdWwqPMY7AjcmftHnZx/Tx/1zv+Wnn8lMt7Zz0H241XnQjef6OYFS9Dp3EiK/Z61pC8U3HDYNI883YNp5s/dDj/lx+NV/TXbl1VviuO7bU30W5/2cVuy3w9zbpu7+6w090K/Ph+3k9x8DN95Ddx91fnIzydypUrdA1C2ADCOZnbit3XXoCH+D2j1MeOq+1hvGoLdO/fLr3FNKDRQ8u9P025Tpbq8oTaMf+BBy6ijpG89irr6GmjuFzSKQCmE7o80iHcXioUWKlYDMJEzVJij4Pl977jnm56fBZLi+i3I9hOuilaJYLiK1xPVctKdwXIUSGiUNSudmuq0wpBDk8VFdx8nPpDYbCCRaO/lJU2PbWk6w1oAQRHGCdnySxjbXr68yWZvHcXzIIoqVgKNHD1MoFG+0Webfo7Wq/a1mNJo7eG4BgcBYi0DhOgWEhI2NNcqlAp6bEygr2t+ucIhjkzvxEpq5uXnK5RJKKZLYghC5tlWAMTnJ1Epjhc3rQH5mt9VsIW2bWJqEzCQcO3kUxy0ilQASsjTmn/+zf44fFKlUKgSBj9YKpQVpBo7jorWm1WrwB3/we7znfR9ESIekPT61q7FYtHawkBN3mfeFzeDzn/88rutQm5ri+vVlPve5/8ji4iJvvPQVFt0d4mf+OrsZfO6Ln8UNAorlKr5fYX5xBq01k5M10vSGBk7g4ujc4VOSRBw+vMCP/tgncJyAYqECJg+hFKUpZ15+hVq5xBunv0OhpDj1+LtwPBelO2N7+HnGQeinRex1mNb7jd3ORlA/ZOe+DoA6/iN7ZQ3SavbbJO1dd7rr0mvJMYis9T4zaJ7trUe/tvf2V+/cPeyddJPcfnn20y4PIri9afvVeb/6DMKgdzCovA4GbTb0pumXtt//gzZaoP97HGOMH0SMz7iOcd/ioNq325mwh030+5GW/csd9Txrv7yGL3YHLafXq/CoGFWY6Yduh06DiGYH3Y5I+hGqYWn3b8Moz+TE9dZrw8fAsGujCG6jtKefAN2PkHYLgf2Ewd469bvW3fe9706W2wS2dpTs7LOYa68jJ5fQpz6M3bx8UzmO6zI7N0dQCFhZXuHxJx5ne22TrfVNbGqwaYrMLEprZIeACPK/pUBJ1R4TuafhoJA7NdJat50+QaPZwHHcG0SrTdbTNN0Tnj3PIwxDPFdRqdbIrCLNDFmWsL2zSxAEYEUeN1Tm52WFhDQ1uI5LZhI8zwEr9+I/StkmTSI36dU6N2U2mclNb4VAK733fJrEaJ3/nSQpYZjg+Q5hFKK1RgqJ0grb9R3btrlwmqZcu7pCo9GgVCriuhohLVr7KCUIW00cx2VuZo6HH3kYYwye59FsNnNHUFqjVH6GtVgscvToUYIgQGmFUgrHcdqkVWPa48XY/LtVSmGN5cjRw0xPT6O1pFwu0Wo1OOrWKWRbqI/+HajMsbqyxmOPPsbs3AxYwb/8l7/GU0+/C9fNzw1HUYTj5ATc9z2MyQCLUpKZmWmyzFIoFPnZn/1ZarUqR48ewtU+U9UqV69c5Pc+83v89M/8NIWJaj4W75LZY++32ku+9vt2bge9xLWDfprFzvV+de6uU3cevff7Wbn0trs7/UHRvUE36nw/qD23izuZX0fNfxhpHCX9ndal39ze6wl4jDHeCTgocR0buY8xRhfuZMIf3TT57uD7uUAN2iHuV5deU9hR6juMOO0nTPU+e5C0g9p2EHTMW3vzvBtCRb829BOgBu32D9JkjEJcB9VbLTyM96d+EfcjP4dt7RD+3v9Idv0M+GVsEuZ5SokV4AUBx089QKU2yYkHHwapOffWOa5fvsLFt87S2N5hd2sbk2YkcUJmsp53JxFKgszJXMcJkxSSWq3Gzs4OWZYRhuFNZKOjbQ7DkCAI2G3GWKEwFoRUOF6RUrFEmubl7e7scvr0aRqNBrbtsKnR3CXLMpIkw2KJoggp8neaZRlYcuLbRrfmPcuyvb8dRwOWrK1Zfe655wDw3PysaBRHNzRLFgQCqXIS/fzzz7O6usYXv/CF/Ayv6mjKMqyxeJ6PlIqlQwskaUipFJBlGb4fYLIbgm2HRM/OzrbNi9sCMBYsbG1t5fkK0EqjlW6fG5Rtk+T8fKyMG7xvJkX6Rdyf+J9IizXSNOW733mN3/zN3+LVV14nCAJKpRK///u/T6PRYHNzE9/3u0wfU5QCrQVZFmNMQhRFhGHIr/3arzExMcHa2hpauyyvXOfzX/o8v/QPfplKbWrv3fb75g6CflrNbgy7di/m337z1bANvNvJXwhxy2Zivw2wUerWjU4+nTF2kPoMu3832v39xL1cqzumx2PSOsYPA8ZnXMd4R6B7kd3vudvJu/f/fhqm/fLeXyPYz8zp1p3oUc+99is/r2+/Pro5fevz/ycAwSf/xi15HBTdQtB+MfH67cCPenan+7305ttbn45JXOf3zYLZzec2+6XPf99sott7v59mol8butP2nhnt18aD4nbeWed9deo3yPlLd326329v2Tf1RVgnu/gt0vPfwKycRR1+CjF3CrO7inIDLBZhwQhFmiRILI3dHVZXlonDjHK5xMbmBtXaJGtrqzz19FNoJEJqUmMQSpCZFC30niGBQICALDNEUQRAHMW5BtEYHMchiqI2ifOREtIkw3E8EJLMZlgTo6RDsxnxO7/z76lWJ/jUpz6JsQnFQplWq4Xnu4Rhi2KhiLWWOE5w3Ty+qeUGOZVCYrFY2x5zQmCyfOymcYJ2NNZmSKlIU3BcgbEG2dHyi7xNaZriOA6ZyRAINjY38JwiJkvxfKe9ISJIjUFrjZaKLEuRGGxb64yVWAtSatI02nNaY4whDEMKxTJZlrbfoUXKPN6t47g35iSTx7h1dK4lFUkTs3kRp7mGefBTrFcfpzZVI8sy6vUmm6tNfvkf/D3+7H/+M3zyk5/E0QFXly9x6tQpfvZnf5Zf+IVf4LHHHmuPodx8Mvci3SCOY9JEcO3aMp7ncfjwAkKmZKnLFz77e3z4Q+/j0LHjCC/AmLTvWB003vvN9YNwkE0uY0zf76Pf8735d/wNiPLs0DK669NPE7tfG5RSN82fg87ODtPo9uZ5J5u1+2l2e+eefuS2t77d77nf2ddR69nbxrtJBg/S7mFpxs6VxrhfMHbONMZ9iXtJXHvTdwv1B8lz/wXy/ieuwxbdQXkPI679hKbbEZa6hY/u/h1GXNknHuQomt+D1vMHmbgOI+yD6m12V8kufYfs8suY5TOIYg059yBy6hjZ6lkQEoIqxgqSJEULhVISm6WcP3cez3FYXrlOwS8wUZ1kZm4e7WsQFiE1baPinL8KAV0bI9eXl6lNTiK5oRXtEEGsIUtSXNfNHQ25LvX6Nq7jY63MCZrNcBxFmsV7nopLxRLGGFphk3KpTL3RoBAUc+JqM5I0P4c6MTEBQGYtSiqMsVibC+AmVSgl0I7FmBTtaDLTdlyzF2bIIhC0whaBH5CkCVrlRN2kaU5CkwzInR9pF6RULF9bZnKyitYWxy1grcWYvN2e52ExJHGSe3huE1ipHJI0yetpM6w1+fna9jtMkgTiJiraQbY2IdqFNCSePIXzxE+RFeZoNndxXMHuboPdnRZFd54LF8/y6GOn2qbaGjdQe+bXHWdRhUIB1ylw5coVKpUKxWIR3/fZ2Nig0WgxPz/P7u4mUVxnay3i85//f/kbf+uv4BTLpMJHmqTvWB003kchrt0bX/uhm1SOSnS7y+n+PQj7EadR54xeZ0mjYhQt7H7otzbuR+BGKXPYhufdIq79Ng7uBLdDXPvdH2tVx7hfMHbONMZ9iVEXjjsV/LuJa7fZzUHz7R8sfvjZ0xvPj3YWdhD6V/Xmi7d7xnVwmcOdVcBwAWyY9nSQsDUoTUc47gguvc5BrB1tU0KI/s4thm1udI+XQdrXuyGE3im66zfs2+p9j4OE3kHXpFdEzZ7EP/5+9COfQNcOg1CYq68h0xDb3Mac/wZsnEdtnEM6LtKmRLub1OaP4UXrLE1PELguzVbGmbNnaTbrTExUUNppR43JnRsJbjY59DwPKeWemWunTtvb27iOptVsUHBdms0GUjsoJXGcPHYpIo/HmqQJUgg8z0G1350xFs9198yD836BJI3RWuN5Hkor0ixFSkWSJmRZR/tv+dwffZn5hXm0o7A2JYpbSKGxxmKxxHGMox2stWhH52VIAbbTvvbGixVsbu7wwvMvcvLUUYSQVCeqZFmKyRKEdInjCLA4jqbZrCOExPNyp1bW5o6fjMm11WmaErZaODZFhhuweQkbt1BX/gS1fQWCKiw8QXLso8QP/iQr7iEq0wuAxHEFloRisUSlPInNXH7pl/57WmGDxx9/HBAoR9JoNKhUKtTrdVzXZWpqilYz5c/9l38ezwuoVmtEUYKU8Mu//A84f/4873nPu/EDl29982U+9rEPsLg0R2wtmdWofawn9hu7/dKMSlo76Q9CJG7n++7eYOotdxSS0+/Z7rmxd846iFZ61LVxkMOnYdhP8ztK3Q7y/CD0Oh+8U4xKTLtx4zz9rR6ZxxjjnY5xHNcx7msMMpfq4OYJfbQwN/3RTyAaHiKnG/120/tpQkf9/jqa2f3KGxUdjWvhx/8mcLMZ6Cjag24tQz9Cul/6jnA4inndneBeLfDdpG+Qprlb4On2UHovMKgf+4Wx6JD6zrVez6PDNnK6r3eHcuho73rTdz/fe39vQyNNAIuNGpjlN8AabJqQXXsdslyjll07DWm4l8f1uEgwMcnG+jp+oYCafYAlr4URCpwAEVRIogSLZWdzF2MN2lEoKSmVSqRRmnsEVgojQGiNNoKd3R3KpRJCdYinQChFq9XInRdpD1AImXukNmkGbU2pEZY4ifF9Px/bmUFJBWQgDCaTJLEkDFtUKkXipIXrabLUtAnzjXdojKHVapGZlHKpDCIPHeO5Htjc5DPLsjweqzEIecN8sPs9CiGI4wQhcidSSlqkEHkM1tYGwqRILDQ3MIUp5OZ5bNSA2YegNIOpHCYsHmV5O2Lp0DEQMee+d4m///f/Pv/0n/1vTM+W2d0JmaxOYa1gd7eO6/jEYcY/+kf/kGIx4C/8xf+KSqVMKvKzwpOTk1y8eJFyuUyxWCSNYqTMnV01m02azSZWaGxq8ZXD6spVtnfW2N7a4qc//WfI8pCuWAGyZ0NulA3OQVrW3vsHnVN7tX/DLBS6/05PfwkA9dDHBjpg6teG7m+z99vv/j6HaSV769Zd5+6+7M6/NyZrL8nvJvL9Nh37EeTePAbNIcPWv978OkTvXsq4/ebGYRZEveg3Rno3GMYY437H2FR4jPsaP2jEdZj5a299boe43iAH+ztAOgjMznJOqNpxXN9u4rpv/fpoGW4H95q4jiKkdD9zvxHXfkRhP03HMPPiXuFzr45SQWZQmcWEu9jrZ2ju7LKyco3zr/0J5WyTKAoJShWOT1gckbVtiHNt6JW6ACGYmZ4mikNi66BnH6aSXEdpnWtslUvmTaIcTRhHOF5AkqQEfoE0i7HW5JpRa3NNrJQ4WhOFIdaC6zp9YkcqlIIkiVHKpdVI+LVf/9d8+tM/TbEUICV4ng+Im76/zlnPWq3a7pj819bmFlo7lEolsizbc0zUbNQpFYIb72t3BYHFpBnZ7jJvXd/h1AOnUFvfQ7TNgSlOkxZn2NnapnLkQSI9QXF6iWTiMBYJGezu1vn2t77LX/trf42XXvomUhlWlte4ePEiR44ucfzEYRr1FqVSiSTJaDSahGHI/NwiGxsb/Nvf+HV+/ud/jpmZGZpRiDGGJEn2YsRub28zPzPXPhtbx/d9tre3kZ6Ppz2cDL777W9w8Xtv8Of/8l9AaIXB9iWuo35fP2jENfnSPwXA/fh/07eOo5jx32vi2o3e+X4Qcb35eMbN+ewXE7f33qA4sp1nO2XdjuntneBOiWs/bf1YmzrGDxvGxHWM+x7DiFU/4nqzUKIYBd0k88ZiroYuoJ16dZuqdqPz735maP3bdnCnH3fy3KD7w0jHfmkH7cB3L/Td9/s53ujNf5j58b3EKEJyt/DYfe1eoptM9uuXjpZ7mMDU++66za2HEdh+wlrvubpBZe+HrP2osLljJ4BUaBQpMosId7bYWF8lEwWUUkxMTNBqtfKQKytXEK11zp17iyiOwFqOzk0SrZ0jSWImq1UcR6PDDWx9DYSELCYtLyEdH0c5ZALE7IOw+gZZmiFKM1ihcFx3zxlUmqYEQUCaWUTbPDmJDa7noJQijhPqu02+/e1vcejwEktL87iuQ5IYPM+hUa9TLnjESYK1lrfefJPHHnsUgCRqoeOdPNKzABtuE1udO3kyFrVzGURb+yoElGbJinMYY2moKv/wf/0X/PzP/1VOPP5uvJkTXLp8jpmZabQDUWMHrxBgjWB7t05QLOI4HiLTxElIq9XiwoULHD16lEKhQKPRQEqJ7xXyNqYRpVKR7e1ttNZsbW2xdOTwnql2q9XaC8kDEIYhk5OTeyFxXOmxsrLCCy+8wNNPP8309DQq8Dh7+ix/+Lt/wAMnjvDh97+XpYdP5mPBWjquAQ4yD3UsA7q/jWFmoL1zz35kqxf7EeBe4ur82F8fmv+gubCD23EMNajd3XPHfuvJoH4ZVN9uS43e+/tpVA8y3/fONYOIbb80+63vo5LT3iNHnXw66LZUGWOMH1aMiesY9z3eDuLaT1u7H3G91Xttb/rRnXHcih8M4joqDkJcB6UdpMHo5NW59v0grqPg+0lcu4W8Dro3BnrrNGxcDCOu3biXxLXf9xjlPprI4gRHSxQCI/LyurXIKi1ibIq1GZ7nsrOzw0R5gqjV5J/+H/87hxZmMXHIwuGjzM4t0IpiGpvrzHiGV197nYWpKgsVS5GdvC/SEK+1fIuWO2+6xZqMlprIQ74ASkqMtXuxWMMwJE1TiqViHibHWKSSiHgXGTewMo8DG0URrpt79jXWIKYeQPhlhLDEOGzpGuVyhTCKqMweJXarJEmSx2VViiTJWFtbR0kHKTW+7+P5kjiOCYICWMnm5iblgkJohVIOxgqittMqk4C1Wds5VYIQAt8rEsVN0jTD90o0GwnayfJzulIgJczOzoLTCf+kwObxapM4IggCwjDci+fabDYxca5hvnbtGlEUUavV8ByXq1ev80/+yT/hN/7Nv6I6WcR4+pbxud8Y6lgWvPjii3zgAx/IHU1xsyXBoHzebuLarXG9HeyntduPuN6OtnLUfuk8N4oDv34k851KXPu1Z0xWxxjjZhyUuOp7VZExxngn4yDCUQda65sE5lHO7Xy/EL/2Bay1uI9+4kDpRtmFPyi6hZ+O5q5fXMZ+IWm+XxhFCPp+op+A2C2s9tNY3057DmIWdyfQ1mABK9vjT0AlzTBIrPDAOKTG4svcEZIQEmEFQkhi0UJJ0/YgXKdcVrz47Vd49JGH+K//1n9LQUtWr14gqje5eOUqcWL54xe+xcLSUf71v/0j/udf+tv8q//wu/zYxz9IEARYLVhpTvHEk+/izfPnuHTl8v/P3puHSVWcff/f0326p2cfQHYEVEQENIqiRk2EqIkxmICGEDUmatRsKvg+yWvyaDTGuOVHfB+XPFFjTHBBkShqQFxwwQUVRSWAGxJgkH0YYGaYme4+y++Ppk7Xqa46Sy+z3p/r6ouhz6nl1Klzur5133UXhg0fjvv/9iR+85vfoF9ZGm+8/DwmT56MeEUM0GPYs2cPyssTiJfFoFsJpNtb0KLZ0KMx7GrYi9q6SpSVJRDrPwqt7RnBapsmDD0TDbmyshKpVAqpVAptba2oq6tDrWFkjuk69rY0oW6/hZO9e1r27UFdn0oYaQuJREVm6x2zGdu2b8HIEaMR0cqwaOESzPjut2AbOiLQAS2CivIqNDQ0INXejmHDhsBGZgugaFSDkbZQU1ODffv2IZlM49lFL+CoCYdh9OhRaE+2YsiQgYiX6Uha7UinMtsDte5LYcuWrRjQ/wAAQCKRgLG/7rZtI5lMY9WqNbBtGzfffDPuv/9+rHp3BXbtbcJTTz0FK2oiGU3DGdrs72qaDfjFrDNNE5Zl4ZhjjkEymXQsrl0KTlwVMumYz2+WLD0/wSgPMhgM/h1use2adN35Xia0xYm37g5vbfXbKo4giGCQxZXoVvA/qv5uq1mLa/YcmeUyKzCz1j7d0zqosmh5I7PiytLLty0Qf9D93GhlsPNaX7wDQHY7HC9BGmZ7Htk9kblGy0So6MLXkwJTeLlAFwsvawEARyhEo1HXPZEN5oNYxhni2uggbn9exwtJE3RwLz47tm1D13VEbeCtV19HZWUlRo0bg1h5AquWr0C/fv3Qv3//zLrWWAypSArGvja8sPBZGK3tOGT4SOw1M5bSlStX4oEHHsDs2bMxfMRBaNi1FcMOHIDW1lZUVFShvLYalqnDSEexZ3czFi58BtO/NxXxeBxV1RXQ9ShMM73/HkVQWVWGZLINMb0cth1BayrpXCebLDPNjJW0vb0dsVgMLS0tqK7KbIfDtp9Jp9MoQwS79uzGkMHD0JbMrOO1I2mUxTIuz5aRQlksjvWfr8OaNWtwytdORUVlNVJGJiBPm9WOmJaAHsQLd1AAACAASURBVIkhURaFZSdhmWWIxYGIbiIa02HaGhIRHem0iVTKQHtbEh9//CmOOnK8syZ3165dqKurw5YtW1BbXYOdO3ZhUP9B2Lp1B1avXo19TY248v9ciaSVhBmxYGsWNNs7omo+/crL0hru3a7OW/abxR9PvXw3AH+Lq6o+Mq8K9p24hzT/rKsmtlRlBkV8xngPGv73K5/nP5+6hRGKqt9dVZ4yC7AY/ZkgCG/I4kr0OvhBuErsyDZalxFULIV1G/PKh+GVH29JKcWPYbFD/vMEbVOVpbonwVsWii3M+faT5c0GjT25ff2QWT2YZckwDHz++TpMOH4idF1H2jRgWRaOOn4iksmMWIzFYgCAaBr4/Iv1+M6M8xCJRLBz23bYX2zD8OHDsbetBX/+6z2wbRsbPvoYlVVx1H+yFo2NjSiLV6KsTxwRrQwtzSnMfWQelr/7Nob2r8LBBx8MPRaBaabRt28d4vE4du7cibb2JkSiAGwdFeW1GHXkEc69NI10xoKZjsMyLFRVVKGlpQV7d+9FZVn5fnfcTPAkzWpHXUUZyqIx7GnYiageR0tTM/qaW/H68ncR0aIor67D9m0NGHHwIdhXvxo71vZHrKY/+g49GLHKOlSlDcCKoj1poqWlDVU1VYjZJiKRGDTbRgRRGIaNtJYJHNXU1IjyRAUOPHCoM2GyZ88emKaJDRs2YPjw4TAsCwePOgSp1ja8985bOOigg3D6j74HK2Jyc33+z0rQiLwdlQ9Dtqazo+Cfdf7ZL9SaGoaevIULb1HNbwkEQRBhIYsr0W2RWU/cBIsqzAdiys4IBxMVhVpcZXmxrW94iv2csu1wmMVVRUYoy2a7vbc/8ZshF4WDeFxmrWD/V7mR8aJQVmZQZOu2gs7457MWjod3vZVZUL2sFXwaVYRhvm65wcMizjptL4LWJ0h6Wfl+lmORMO7OMndIVnZUi2Dt2rU49NBDYRiGk8aKuNMCgI545jsApm3BjmjQYaO1tRVNTU3o169fJs+kDWgpQLPwxaYtWLduI8xkI4YfeDCa9rbBNG00N+9GfX09ampqMHjIQEQiGnbv3o3KyozwHDpsIFavXgVNi+Cw0UegYesOrFu3Dscccww2bdoETdNQUaFjwIAB2LFjBwDgkEMOwYYNG9DY2IgDDzwQmzZtQktLC6xIORKJCjTuacKw4QdiwMDBePqh/4cvHT0Bhh3F2CMnoL5+G6rr+mD79q1o2tOI1qY9GDZ0MA495GCk41UYNGgkNm/bDU2PQY9HMbhfHSIxoLquEoZhoWVfCgf07QMbFl599VVMnDgRe/bsAcyM9bdfv37YunUrGhoaMHDgQAwcPBhNjbuxeuW/UabHcPzxxyNem2lfC3ACMaksodFoFIZhOMKY9X9RtDHEfqXqZ2If8UL1LgD8g/Gl350HAIhNnBHYAiweF59lWT/nvVlkIiusZVF2Hv9/v7z98PPaKSRP1T3lXaRlx/i/2d6qBEEUBgVnInoNpRCuLL/g0YeLJ1yz+ZR+xrYzhGsYVIMoL4FSLFc3P/HpNZAsVLjyhBVwfmlEi714TlDhKqMYwpW3CIe97qB4CVfNtGABMPa/InQr87YwJdWIIOoIKpPVF5Zz/1meBmxAy4jgiBaHZUZRrmW2z4GtI5VKIV6mIZ1ibr8GoroGTctEKTYNIJlqha5HUFZWgdZ9KZh7mrBlyxbU1dXhrbfeQl1dHTTsQ0VFBZYtW4ahQ4eiqqoKNjQYhoHRo0cjkUhgy5YtiNX0x5AhQ1Bb1xdlFZXQNA3RmAVNj6GtNYlYrAx79jShrT2Jitq+qIpHUGa14f03X8bm9Z/Crh2B15a+jdffeAuJRByvvPIyWlvbsLtpDw4Y0A+GpeEff5+L7Ts242c/+wmg2aioSCCZTKKirBLvvfcexo4di0Qigc8++wwjRozAjs3bsXPndmzZvhXfmvJN1PXpAyPSDkAD7AgydyHiLFnw6j+icPUTKl75yVDl45VHmOepWMKVz0/s534BkmRlq4Sr6p0rfl+Iy7GKUr0fRNHNL/Hgy+6Itf0E0Rsg4Ur0GkohXLMzrsG86IspXLPXE2xQUQidIVxVVg/Z4JL/TrQU+FnWwqxpkiETn7LZ/1IIVz69TMB5DcSDlC0KVz6foMJV1r6FCld+sBhWuIpWJS+8hGuZFkXSNpG0M+s5dSsjXp2tePg+EAE0O/OBZSECDVYka8k2DCMzuI0CznNv6zANHXZZCtFIDLYdRTqdRFlCg22VwTBSsCwL8bgOaBnLs5GKIapbACyYpgY9Gkc0ksaLL76Ir3zlK1nruQWUl5cjlUo57deway/69+/v9FfDMFBZlrnetvYUENEz2/ZEbESigG5rMI0UotAQ0zPWS8sG7EgUKQMor6pAa0MDbEPDvEcexRuvvYwRIwbjqImTMWrUIWhqbcL48RPw1789iH4H1OGrXz0ZgwcPRNpox44d21BVXutYqaLRKLZt24b6+npsXL0WSTuNn878GUzdBqKAbbYDiECzopl/7QgsyIP68K7xonBVuYaL/UfVV8R+GGRPVVU5QSiWcBWfcZXF1e9d6SdcZe9CPpK4V95hKNakZJC2FMti/VV2binEM0H0Nki4Er2KzEDbVAgatRtPPtY0XniqRAIbRMjFjXpW3C0Y3C5uKpdO9fXJt/Jh+QHBhCtvPfKCn5H2Ws8VVFTw5/LuoyqrAu9eq0LlPhzUUuJnAeajSYdFJryCDPr4vqFybfYTs15pZNcjDoK9rsFvUodP01Eudyp3U1UdxXP57/ys8qr+wL+r/NaWy9K3t7cDAMrKylx58WXy+fL3ip3n5Q4pvktloi+dzgSPevHFFxFLlmHDxo045riJGHnoIYhEo/hk9RqsX78OU6edhTVrVmH8EWNhtQNtbW2o37AJ27c2oGlvM/r3H4jjv340amtrfd1BZdckm8wq1sSVqh5iWwQ5zn8XZFJGnFgRy5DlIxNc4jsqyLMWNJgef8w0zUDXxacP8nsQZKKSnctfG/8seLWh2I7iRB65AhNE6QkrXOmpJIheSKS6PyLV/YuSF/vhl21hw44/9NBDSCQSGD16dKi8gw5ygtZR/ARNozrO17GY+JWdSCRQXl6OpUuXFn3mn+UnE62apuGMM85ARUUFbrzxxpy03/jGN1BeXo4//OEPgcoBwq0lDEPYPIP2i6B5ycq+9NJLkUgkMGPGjLyDZJWVlaGsrMz5/2GHHYaKigo89NBDzneihYgXrKx+qmNe8G1UXV2Nb3/725hy9rdx9oxz8Pl/1uK9d97GirfegplsxZfGjcXiZxZja/12fLxyLT54dyVef+VNrFmzBn361+L0Kafh6985DZWVlcpy/L4rBbyYKaTMoKIn+fLdSO6PLMzXASi8T4a5twy/96R4rJjPbT71DfMbIXsORLHKtu3pqOBVBEGEg6IKE0QvpOz4c52/H3zwQWzcuBFf/epXccopp+SVHxOuup77Sil04MXyKASVldVrgBTGYlhsgtaRHS/meiu25yKzopQK0RoEFNclPmzfCdPmQfLysshWV1fnPeHARKlqoki2D7KXy2cYCyU7zvZi1TQNad3GgAMH4bwLzoOZTOGdZW/h+ecW4YADBmDE8INRFq/E668vwzPPPon1m9Zjb/Ne9O3TF8edcBwuv/JynHTCSTnt7eV5IJ7b3NyMe++9F08//TTWrl2LVCqFIUOG4LTTTsOsWbMwcuRIz2tqbm7GPffcg2eeecaV/vTTT3fSq/rDp59+irfffhsffvghPvzwQ6xatQptbW0AgNbWVmf7n7AEsagGzScsQfsAo5hRyvOxlge1Ysvy1zQN0WgUmpb1GBI9DEi8EkTXgoQr0e3hBzTuH3p1mjBuXqrjsu+DzECr3JUA5vKZm5/KZU5WX1U5Kh566CG89tpruPbaa13CVWV5E7HtTLRQ3sojupap6ucVLKiY5JN3kOvm8w46SJQJTS93R7+8+D4itrVXPxUHafz94AfbfiKMr++BBx6I0aNHo1+/fsptqkRrBxs0qq6Nbxf+Gvl+I37HvufLE/PmXSnFdpO5GXrVTXQ7VLX7oEGDMHr0aAwcODAn2IuYDw9/3DRNqTVIbAfV/ZK1X1D495TTDsgIWDtiIVIWwSmnnYJJp52CluZW2DZw/wN/w+/+eK0Tqbm2thbbd2zHM08/g2eefgb//d//jWuvvda5JtU6a7Getm1j7dq1mDZtGtavXw8gY40uLy/Hf/7zH9x333145JFH8NBDD+Gb3/ym67rZ3+vWrcPUqVOl6e+99148/PDDeOihh3DGGWdI6zNz5ky8/vrryvbi24n1OfZ/5/5Lnnmx7+azbl61lrXQrbhkkwz59CERr0juXu9Dr62/ADjRpmWWdL/fVYIguh7kKkz0WDpzttRrfQxbsxlkprq7rrMJc41Ex8MLxmL2sb/97W9YuXIlfvazn7m+l/UHP4sov363lJRqb2QZN954I1atWuXrSt3e3l6SOvndb77NZX1ENpGl2wYiMAAYMHUTrVoS6UgEibpKrFq7Er/+7f+FYRj41pQz8cnnH2Hz1nps3LgRP/7xJQCAm2++GU888UToa2lra8M555yD9evXo2/fvpg7dy527tyJrVu3Ys2aNTjzzDOxb98+/OAHP8Dnn3+e0wbJZBJnn312TvotW7Z4pnddu65jzJgxOPfcc3HbbbfhyiuzMQNYW/FRpqVoGqCYvAmC1wQLf++K/ayXmmI9/8xzhHcBZpOs9PtEEN2P7vEGIwgFmcFUFJlIvBHXR9NsZLZQsLhPLrZtOh/Zefm4g9q2llMnv3yY25I7TW4+Yn6qPNmPshiYSNM0tC25E20v3hHo2niBobLeicf472wNADukwbUvo8xqpfp4tZufZSxIPsUgqMVdZRULa70Q0zChobIs5HoluNtFTCtLwxP0Pnn1EVHMsk9uwDLLeUYzz3b2PDF6rCoyMZ/GNE3H8iUOYGWiWrxvvBWNF3Yq5NcFp758mYlEQmlx9uvvMoL2K74cUTjwEw/8/TS1CCxbg6ZFEYOOOHTYVgqWmcavr/4NTNPE+PHj8ejcxzB8yEhoto4DDjgAd911J0477TQAwDXXXAPDMHyFBD/JMGfOHKxbtw4A8Je//AVTp06FruuwbRsHHXQQHn30UYwaNQqtra247rrrXBZry7I8048cORJz58510l9//fU5FjsAeOaZZ/D+++/jb3/7G6644gqMGzfOVVcArn7hei8qvCNk70O/51n1CfPey+f9GOR9p0rDX4Psvgf53eHbVmahZWtWZd4NfB8nCKL7QE8t0aPoKIFSSmSD/FLwyJL3kEgkHFe3P/zhD07gF/bZsGGDa2Bg2zY++OADXHbZZTj88MPRp08f9OvXDxMnTsT111+PhoaGvOvT1taGP//5zzj99NMxbNgw1NTUYOTIkZg+fTpeeOEFZbpEIoFEIoGlS5eiubkZ119/PY488kjU1dVh6NChmDp1KpYvX+6cr+ojL774Ii644AIceuihqKurw+DBg3Hsscfiqquuwttvvy0t2zRNPPjgg5gyZQqGDx+OqqoqHHjggZgyZQoef/xxZT8cPXo0ysrK8OCDD6K5uRnXXnstxo8fj9raWgwZMgTTp0931dmLpqYmXHfddTjiiCNQW1uLwYMHY9q0aZ7pP/vsM9x+++0488wzMXbsWPTp0wcDBgzACSecgN/97nd530c+OJOqH3/yySeYNWsWjj76aPTv3x8HHHAAjjjiCFxwwQVYsGBBYCvIHXfcgfLycowYMQJbt26VikEmCEePHo3y8nLcdtttOfUxTRMPPfQQzjrrLIwYMQI1NTU48MADcdZZZ3neQ8MwcP/99+O0007D0KFDUV1djaFDh+LII4/ED37wA8yZMyenr1122WUoLy/HpZdeqryuL774Atdccw2OP/54DBw4EH369MG4ceMwffp0PPLII05U4TB8+OGH+MlPfoJx48ahX79+6N+/P0444QTccMMN2LVrl/J9k69FStM0bNiwAcuWLQMAzJo1C7FYLOe8X/3qVwCA+vp6vPHGGznHZQKOsXjxYgDAqFGjcNZZZ+WkjcVi+MUvfgEAWLhwIRobG13H80kv3k9ZEKyuSlf7bQwizFXn89fAT/qwCaRYLOasXSUIomdBa1yJHgX/g9Zdf7NU63yKTXlZDAMHDkRjYyPS6TQqKytRVVXlOof9+LPBwo033ohbbrnFqVdFRQXS6TRWrVqFVatW4cEHH8SCBQtw1FFHharL559/jmnTpjkueZqmoaamBtu3b8fChQuxcOFCXHbZZbjzzjuVeWzbtg0nnHAC1q1bh0QigUgkgsbGRixevBhLlizBk08+idNPP13oIxpaW1tx6aWXutwVq6ur0draitWrV2P16tV48803c4Tg9u3bcwRmbW0tGhoasGTJEixZsgSPP/445s6di3g8Lq3z7t27ceKJJ+Kzzz5DPB5HIpHArl278K9//QuLFi3C//7v/+LCCy8s+JpFzjrrLNTX1zttUFtbi71792LlypVYuXIlHnroISxevDh0FGge2RrX2bNn4/rrr3eOJRIJxGIxrF27FmvXrsX8+fOxdetW1NXV+eb//e9/H9dccw127NiBd955J0d8sOfo9ddfx6ZNm6BpGs4991zX87V9+3Z873vf87yH8+fPxyOPPOKK5GuaJqZNm4aXXnrJlW7fvn1obGzE2rVr8cQTT7juXRAROHfuXFx++eWOOI3H4ygvL8f69euxfv16LFq0COPHj8eXvvQl37wYN954I2699dZAzyz/bJimibFjx6K+vh5f+cpX8NxzzwUu07IsLFmyxPm/rA8CwIknnojq6mo0NzfjpZdeygkOJ77/eAvZpk2bAABjxoxR1oMdS6fTWLp0KaZOnRoq/WGHHeZKP23aNOdYdxNF4nuvs+FFKLuvXr99tm1L91NVeYmIeRME0TOgJ5ro9qhcsbysljJXwELJZ0Y7qIulHypXTJVrKACc/dWjUF9fjy9/+csAgKuuugr19fWuz4EHHuikveuuu3DzzTejqqoKN954IzZs2IDGxkbs3r0by5Ytw6RJk7B161acc845aG5u9rwu/rp3796NKVOm4PPPP8ekSZOwZMkS7NmzB9u3b8e2bdtw2223oaqqCvfddx/uuuuunHwYs2bNQjwex3PPPYfGxkbs2rULb7zxBkaPHo10Oo1f/OIXLhdS1i6XXXYZnnjiCUQiEfzyl7/EunXr0NDQgD179mDdunX4xz/+geOPP96VJpVK4ZxzzsHy5ctx9NFH46mnnkJjYyO2b9+OXbt24f7778eAAQOwcOFCXHPNNcr7dtNNN2Hnzp2YO3cudu/ejR07duDDDz/EV77yFViWhcsvvxwffPCBMn3Qaway1gjbtnHcccfh9ttvx+rVq7Fnzx5s27YNe/fuxbPPPotjjz0WW7ZswYUXXuj0IRasSba/pco6wrezZVm499578dvf/haWZWHKlCl4++23nWvesmULFi5ciOnTpzuTJX7P8KBBgxxXU5lllKWdO3cuAOCkk07CyJEjHQtNOp127uFRRx2FJ598Ert27cL27dvR0NCQcw/ZNdm2jcceewwvvfQSEokE/vKXv6ChoQHbtm3D7t27sXHjRsybNw9Tp051re0Vr0N8VhcvXoxLL70U7e3t+PKXv4wlS5agsbERW7duxbZt2/Diiy/ioosuciZBZO0iukTefffduOWWW1BVVYXf//73WLduHXbu3ImGhga88cYbmDRpErZt24bvfve7zjOrWpMpC2blZf366KOPAAADBgxA//79c/LVtMzSCCYO2fn8vYtGoy5hwvqiKLBV7xm+v65Zs8aVl5hetP6xY7L0DFU78Pj1Y/2wSdAPmyQ9xqdX5Sm+4/l6qdyG+Y/M/Tvob5is7DBpRHddlRWW73d8OtFFn78P5ApMED0TeqoJgvBl165d+N3vfgdN0zB//nz86le/wqBBgwBkrLITJkzAwoULMWHCBGzevBl///vfA+d92223YePGjZg0aRIWLlyIk08+2bFu1dbW4sorr8T999/vnMuik4rouo7nn38ekyZNcgYzxx57rCNc6uvrc1x+X375Zfzzn/8EAPzP//wPbrrpJgwbNgxAZuAzdOhQfP/738fdd7v3WXzggQfw3nvvYezYsXjhhRecvU0BoLKyEj/4wQ/w1FNPQdM03HvvvdixY4e0znv37sXcuXNxzjnnOFsJjRkzBs888wxGjRoFwzBwww03KNsun2sGMpGkf/azn2HUqFGIx+POFjiTJ0/G4sWLMXDgQHzwwQeO+2ahA8Ddu3fjt7/9LQBg+vTpePzxx11Ww759++K0007DnDlzUFVVFdhF9fzzzweQceVsbm52HbMsC62trViwYIHrXMYDDzyAFStW4PDDD8fzzz+fcw/PP/98LFiwAJqm4b777nPdQ9am5513Hi688ELHU0HTNAwYMADf+c53nHsQBMMw8F//9V+wbRsnnngiFi9ejBNPPNFp95qaGpx00kn485//jMMPPzxQng0NDc4z+9hjj+GXv/wlhgwZ4rhSTpgwAc888wyOPvpobN68Gf/4xz9c6f2itfLf8UKCpd26dSsAYPDgwdJ82IcdZ+f7wcoYPnw4AODjjz9WCq3Vq1c7f4v5+6WPRCL4+OOPlelF4ceuKyzRoeMRHTo+dLog8BMn3S04Ew+/VpV9yBWYIHon3e8NRhACqllfedCmDH7bXbgDOrHAMN7Bg1Qz69nBjfeHDxIlBoviZ8VZWbKZ5lK5Fj/66KNobW3FMcccg0mTJrlmtZlFLR6P43vf+x4AYMmSJdnZctOCbe2vlw1o7M/9ecyZMwdAxnrIb13At+l3vvMd1NTUoKGhAe+//75TL76tL774YgwYMCCn7uPHj8fI/Xs58gNZvuyxY8fisssuk66nkw3UmTD/yU9+gpqaGmmbTZgwAWPHjkUqlcLSpUul53z5y1/G1772tZzvy8vLcdVVVwEAXnjhBezZsyfHGuR1zUcccYRzzatWrcqxRLC8ZFviVFdX4+STTwYALFu2zGXtCDNQjEajjqveU089hebmZsRiMek6U94qKbdO5QYnA4BvfetbqKmpQXt7O5544okcC9Kzzz6LvXv3IpFIuNw8I5FIzj3k7zerwzHHHOO6hyx/5sq8fft2J03YZ5A/b+nSpdiwYQOAzOSMyrXcKw+x3R577DG0trZiwoQJmDx5slSwRKNR55l98cUXc6xUn3zyCdrb2/HCCy9InwPxHcSnb2lpAZBxTeaPiR4ybLKAnc/yEvus2DfYFjUbNmzA448/7qoXkNlHlZ9wam5uduXxzW9+05VetO61tra6PDxaWlpyniG+PBHew0F1DSr8zhPfU6r+p+qTqveB+JyX8jdFbA+ZVZkJVNZn+L6j2jaJIIieDa1xJXos7EdNHNx1J1jddV13De7FgUqpZ9FZkJU1a9ZgxIgRyvPa2toAwFk/Cahd3YDMwJgFTbn00ktd7ogibGBbX1+P4447Lue47DvG4MGDHddmHmY5O/PMM3PSqAamzc3NWLVqFQDghhtuwM0336wsl5XHtwfPpEmTlGnZMcuy8OGHH+KUU07JGagFuebdu3dLjz/77LN45JFHsGLFCuzYsQOtra0552zevFmZP+C9BptZeWzbdtr56KOPdixsxRh0lpeXY9q0aZgzZw4effRRXHzxxa66MavnlClTUFtb6/St5uZmZxLj97//PW655RZlGbJ7eMYZZ2D27NlYtGgRvvOd7+C8887DySefjCFDhjhle7lcit+z9hk4cCCOOeaYsM0gzZc9sx999BFGjhwpnVAD4KynZWs+S4Gmac5EBtueJCzi8/jDH/4Qd911F9avX48rrrgCzc3NmDZtGmpqavDhhx/immuuwaZNmxCLxZBOp3Mmoi644ALceeedOemrq6uxcuVKafowvyVifVXvNXNzph+Wwuoa5nehM/cxZW0luroTBEGIkHAleiyy2ebu9mPI6s4Ge/wWFWwgmI8AiI2ZHOp85ibX1tbmiFMveBEkt4ZrrnwBYOfOnYHqIhNYAHICS/EwN9x0Ou36nlnMZGJcZuEEMgGR2CBPFMJh68yEjoyhQ4c6fzM3VfFe53PNlmXhwgsvdFmpdF1Hnz59HEvf3r170d7ejn379inz5+sju8dsQsWyLKedmXumeC2FPJfnn38+5syZgzfeeAMbNmxw7uXOnTudaNTMTZjVaceOHaHvId/vTzrpJPzhD3/ADTfcgBdeeMEpZ+jQoZg8eTLOP/98TJ48OZCwByBtn3zgyyvkmS0GrG+2tbVB0zQYhuGy6onlevVlILevVVRU4Mknn8S0adOwYcMGzJw5EzNnznSl+elPf4qlS5fi448/Rp8+fVz5lJeXh0rPJj4Y4tpMVX157x5ZPzc+fRVAaYRrmGesM38beRdzBj9BSxAEwSDhSvQIeJdVHnGw4PdDrnIPDYI7Ta5bnfhdsHzk9ZJdaxj0YUeEOp8FKbn00ktzAiTxsHoFtUbw61U3btyIgQMHOvnw5wGl2Szeq54qawUfsOW1117DcccdJ62vnyshK0PV1/h0sgG/F17n/f3vf8fjjz+OaDSKq6++Gueffz4OOuigHBfkRx991KmjV/297ovMiiOzrvCI12qapue5J598MoYPH476+no89thjuPrqqwEA8+fPh2EYGDhwoBPEieXL97ulS5d6Wq7Fa2D/XnXVVZgxYwaefPJJvPHGG3j77bexefNmPPzww3j44Ydx9tlnY86cOc7eoOK7R3ZN4nde7yOZEOL/z/rpJZdc4kTjDvp88tctW8MZ5FlklvUtW7YAcPcVXpSw47K1sLJr4y22hx56KN5++23MmTMHzz33HNavX49oNIrDDz8cP/7xj3Hqqac6a/EPPfRQpx6Mww47DMuXL8ffyVZF7wAAIABJREFU//73nPQXXXQRvv71rzvvJJae75/smrzuE3NpZRON4vXIrtHvOfdb6qIKsOVVNn+M9+QJ+s5h7SC2CZ8v/7slixAse38SBEHw0BpXgiB8YYM3cY1osfIV85YNyoKuD8un/I0bN4ZOA3i3R5C6ernifvHFF87f/fv3D1w/P+bPnw8AuOiii3DdddfhkEMOyRngMgugF2HuA2szlcs0f7/ZOtKgroualtnmBoArIBL7e/r06Y71mcGvC16zZo2yPn6D5yFDhuCKK67A448/jg0bNmD58uXOFjhPPvkk7rvvPs/0DCau2DrXYsDaXHZ9+cJbDmX9m79v48aNA5DxFti5c6dzPt/XTNPEZ599BiCzzjwIYlCeqqoqXHnllXj22Wfx8ccfY/Xq1Zg/fz7OOOMMvP/++45F94QTTgCQ+x6pqqrCFVdcgUWLFuGjjz7Cv//9b8ybNw9nnHEGVqxY4aRn0dcZ4npQEVYGW6NZTMSlIqp3pYqg71HVhInXsyFrE3FZS3cMEEUQRNeA3h5Ej8K9H5yFSATQNJv7eP9gZ3+Q5cFgJCUqPrIATEGvQYemRYuWnwzji1VIb1qVE4hDBRu0LV++HBs3bsxZtyUL7BGEcePGOcGNmKBi+Xq51wUVFn6wweyzzz7reR5fXp8+fZzIrvPnz3cChoht4fcBgFdffVVZJgvoFIlEnH1xxf4btK3585ggFvcCZXm3tLTg3XffdV27zMLmdX/Ea2X95/3335dGj+UD2fD5eokkHuYK/Nlnn+Hdd9/FJ598ghUrVgDIRP4VBVffvn1d91B1bWygze9nrGmas4UKaxf2/RFHHIG//OUvzvUuWbJEaXnn+y7rh9u3b8eKFSsCCSIvcWDbtuuZFdecF/r8BEl/6qmnOn+z4E6sbNZu77zzjhMNmj9f9bwAWQsmL4JU9WGRkseMGYNjjz3WNSkiWkplVnExvbgdjtgesmNiXxHT+H0nwy8wkVf7sfTsw/Lh+zLLQ4YsOjGfln2i0ajz0XU9Z2sjgiCIfCDhShBdDH5QUSrSn7wC45OXAcARjnv27JGea9s2zjvvPJSXl8M0TcyaNcvlLisO+izLUuYlous6fvSjHwEAHn74Ybz55pue5wddjxgUZh376KOPAlvHAODHP/4xAOCVV17BvHnzPM/1qvOyZcukEYfb29txxx13AABOP/10J4ptMaitrQXgjjbMD4JvueWWnK1lwiIOqs8++2zU1NTAMAz8+te/VoqufDn00EMxceJEABlLK3NzHjdunCP6+XJs23YCOb3yyiuu9b5ArjgU72EqlXIdF+teXl4OQO4OycPqcsopp+Cggw4CAFx99dVIpVK+afw499xzc55ZwzBg27Yrgi8Q7plV1Ues00EHHYQTTzwRAHDHHXfkrLUGgNmzZwPIrO1lkaz9COp5sXTpUjz44IMAgN/85jeedZe9c/n0v/71r/Pun6XwFAmaZ7Em+ILkyazpuq7neDgQBEEUCxKuBNHFKMVAxwvmovfcc89JXVdt28bAgQNx4403AgAWL16MM888E8uWLXNZEz755BPccccdmDBhgq8Fk+c3v/kNDj74YBiGgW9/+9u44447XIGa9u7dixdeeAGXXHKJs1axWEyaNAnTp08HkNmO59prr3UskradWX/3wAMP4Cc/+Ykr3WWXXeasi2Qut3xU1tbWVixduhQzZ8703HeztrYW5557Lp588kln3eWnn36KqVOn4tNPP0U0GsV1111X1Gs+/fTTAWT2Mb3//vuRTCZh2za2bduGX/3qV7j99tvRr1+/opZZW1uLm266CUDGwjl9+nSsXLnSOd7Y2Ihnn30W06dPR1NTU15lnHfeeQCAf/7zn3jssccAwHEhZvCD7ksuucQRuz/+8Y/xu9/9zrmHmqahra0Nr7/+OmbNmpXjxjpjxgz89Kc/dW1VxK7j1ltvxSuvvAIA+MY3vuFZZ946dfvtt0PTNCxbtgzf+ta38OabbzpCqqmpCa+99houvvhifPTRR4GEyKBBg5xn9rnnnsOUKVOwfPly2LbtbFHz6aef4s4778Sxxx6LxYsX5+QxZswYVFRUeF6Hlzi66aabEI1GsWrVKlxwwQXO+6WxsREzZ87E888/7zpP5LDDDkN5eTm+/vWvO9/x78c///nPmDdvnsu1fdu2bZg9ezbOPvtsWJaFGTNmOM+4yN1334158+Zhx44dTp7btm3Dn/70J5xzzjlO+hkzZkjdW5PJJBoaGtDY2IjGxkbXhEBDQwMaGhqwa9cu7Nq1q6jisasJV+aVQIKVIIhSQ28ZosfB3NFUx4BwgR+yaQqvmxdZFy3vYDzMRa7g+uwv44ILLsAdd9yBdevWYdSoUejfvz8SiQQA4OWXX3ai215++eVIJpO47rrr8Oqrr+LVV19FPB5HdXU1mpqaXBYVcUAlDvr4qMh9+/bFokWLMGPGDPz73//G1Vdfjauvvhp1dXWwLMslZA455BBXu4R1lZWdf++99yKdTuOpp57C7NmzMXv2bNTU1CCZTCKZTAIAjjzySFfasrIyLFiwAOeffz5effVV3Hrrrbj11ltRU1ODSCSCvXv3OnXkB3PsO/bvNddcg/vvvx/nnXceysrKkEgksHfvXqeud955p+f2KKJro+yaRWbNmoUFCxbg008/xRVXXIGZM2eipqbGqfMll1yC9vZ2PPzwwwAy9463sPvlL6sbkBGHjY2NuOGGG7Bw4UIsXLgQ5eXl0HXdZeFVuSXLyuet/N/97ndx9dVXo6Ghwan3jBkzpHXTNA3xeBxPPPEEfvjDH+LVV1/Fbbfdhttuu015D3lX17a2Njz44IOORY55LfB9ddq0abjooos824h/H33jG9/Afffdh8svvxzLli3DaaedhrKyMpSXl7usoTNnzvR8x/HPxs9//nPnmV26dClOPfVU5TPLt6nX+1O2pzRfNv+sn3DCCbjzzjsxc+ZMPP3003j66adRV1fnattrrrkG06dPdwkilfu52Ddee+01/Otf/wIAJBIJxONx1z340Y9+lBNMjr+21157DQsXLvRNzz+3vGCcP38+LrvsMmlbiRGiP/74Y8+txPjr5q+TtaffbxZfN692ZHnyUa0B799N1ZpUcbKhmAKZIAhCBglXgugiqAZrGUozIGhbcieGIbMG7Y9//CPeffdd7GpogLFfqLQsvR/tA/o451955tGYOvXfuOeee/DqS0uwccN67Nm9G9UVZTh45CB85chD8K0TxmHiATtgNW1HpCYTICa9ORMgxm5vRvuSOwE2uLIsRGsH4aDjv48333wTjz/+OB6/ZzZWrvsCu5qaEY1oGDGwL444eAjOOO5wTDk/a/k0N6+G8ckrzv9TK55EezprxUucdqXzt9WUscik//NOpnyO2NDxeOyxx7B48WL8/a/34N2338Kupn2oqijDqMGDcfIRB+N7kyegbcmdKDtuhnNNNTtWYsEvz8Tir4zEvJffx4rP6rFzT8biMuSAPhg/YSK++c1v4tvf/jbaWJlsANyeEWqVW97Dq/Puw+2PLMRTTz2FLzZtQp/qChx/+Aj8n+lfw3Ej9rnqy19TzjVz/Sc6ZJzzt50U8gDw/A3n4rZHl2DR22uwtbEFuq7jq1/9Kn50xvGYdsQB+Pn/y7g/m1s/RvuSOzOD4JoBiE/MCkHjP+8g+fLdrvpYuzMWNbt5h/s+7d/y48pjynHanbNw37/ewOv/Xoetu5pgR6MYPXo0jjrqKJx1xACUvfcgkpKBcnTIOMQO/9r++7kDqXfnwYnVbduo0jScPuFQLHo709cmT56MoUOHwvjkZZhbPsrJD7aNmpoBWLRoERYtWoRHH30Uy994BQ377+HgfjUYO2IQvj7xcHzrhHEwN692tiz5/67+GZ47pBpvrv4P/rOlATt2N6M9bWBw3xocdegwXDDzWkydOjVzj96dB7t5p9Oe7N/ky3cjOmQs9DHZa/ru4N047n+vwj3PvIFXPliLTTt2I9W2DwcN7ofxRx2LadNnYMyYMa5rYn3J+PglJF/eC63qAMS4+/TzL8Vwxl/+C39b9BaWrvwc9Tt2Z5/ZMYfilNO+gbPOOgvHDK1A+0t3OW0DTXPyZveVkX53HuyWhtw2BRAdMhaxw091rum8EfswbvbPcfeC17Bs9Xo07G1G/9pKTBwzAr/41TWYfOY02LaN1EcvwdqyP5AUE/SsfK4/AXD63QXH9EflvmPw/mf12NrYhFR7K0YOG4KTTpmMiy66CMePqIHx2j0wFYLq4osvRk1NDVasWIGtX9Qj1d6KEQP74svjDsIPv3EcvjzuIJiv3QMI9yn9Xsa1PP3Re9J8ZaSWzUFyXV/n/1p1f8QnzkDZ1y7PEeX5eNvwkyCqdbjiueKkg1eeDNlEHEEQREehdacXj2EY3aeyRKeRtRjkWm4yQY/EH1zZWtLcjdBtO9fqpPa2D78+NVtObvAdvuysxVU1uPG+HgBZIbWfck4QJd95FFYzt6cq11bRoeMRH3tqpo2bdyC5fJ7SFB3nRF7qoyWwOPFgs2uzbWjVA1B2/Pede9L+0l2OIBGvUB/zNejDxsO27RzhKsKLvNTyx7LXJNQ3OnQ8J4i2I7VcsmZ1/30oc13TSzC3yCO2Rqr7o+z4rJuqKFyPuPgWbNqxG3+e9T386PL/C31YRhAZX6x21h77XVPyncdcAlEUruw+Ka9pP+w+2baN9Mcvu67JmTbhhCsbGIuilUc/bJIj8njhmoNtI75/4A64RZ6In3CFpjn1jR83A6jKRGL2Eq68GLdtGyl2TZKBf5hrKjv1Cue/3tckF0SyPPVjv4dIzQBomqa+JsARrqxNXfeJ7/uaBv2wSYjsn+QwN6+G+dnS7HlCG/ACy0u4RgaPRXxsVrim3vXoexNnQKt23yeZ5U+r7o+y477vBFRSXhOAKHefrC1rMvdJ9Y762uWZOkcimXdE0w7pvWf3KfPe25lzn/jNzvRjpkOvGwTbtp1rkolJJlyBYNsUeXlXsO9413PRcs7/HY1Gc6zXsjxl+6sSBEEUE13XQ83UkXAleixM7HnNJKuOF47sh169pyWP6I4m5uflIsgGGLmDIH8xq8JvwJROpxGNRmEYBjRNQ1NTkxNMiA2gRLc0vzzZNagGTOz6/CwTQQaEXnUoBZZl4bDDDkN9fT3++te/4oc//KFzrFh9UTanobk0S7B9Z1nb8fciqBujyu3Uq61l7s582TJ3UlV++bSlysVStZ8l/6zKXDSD1qEY1+DVLmFd61V18PYKce8f6vfsie0VxMVVVrcgbc7nF9QaKUsf5L0lInteVGUHTROU7CSn+x0sXo/YZzo6zgJBEL2XsMKVXIUJogvTUetrvVAJThHDMBCJRFBbW4toNIrm5mZUVVWBRZvMJ8+eRiECoph47ZGqimbNi5KgZcjuvdf9Vg3Yg+7pWoi7JV/f7tYnu0rdg/YN1ZpRL5gQ5q9PNoElq4PfZKHf+yho/5ORj/AshYWT7x/89fBb/PBtydbBEgRBdCVIuBI9FlkwD4Zq5txr0BfUeueV3us7UdS46xJsYFeoMJLVx8+axtY8sS1AWJqqqipX+nQ6Ddu2kUgkAg2IvAZvYSwyMisef7wj8Rukh7XUhYEXCcz6ohrEi1YsmbVVVc9CvpNZxlhwKL6+qkAy/PXxebDBusxFkg3QVW0vswKq8hfzZWlFEc5bGFl62f1g+fsJcr9+42Vl9LKIFvK+E/ubKC69yhfbDHDv38pg++sWKrBY32CTb/z3qmfW7xkV+5UqvayPFNr2PJZluZ4fvhyvKMAkWgmC6IqQcCWILkx2cNex5ZUCNpArRhmdbbEsFaVsf17c+A2qvShURAVFFslYVo4f7DpZZOCw+E04qb6TCWD+vDB1KUV/98szjMuuF16TJGJ5fL3CiHCv74PAJhHEiROviaZ8xKxXPqrJmEIQr8G2bZimiVgsVtRyCIIgOgoSrgTRhelM4VrswXIsFkM6nS6KJaGUlsmO4LPPPpN+X0pXYt5KXogo8UtXrHvjZxkPWg4TTczqlE89VFZ71fPitaWPzKIdpA5iPoXi134qK3A+5QTJQ3Qblln3S+mtIApsXvT5eQfwdQxLKYUr36bMOk0uwARBdGcoOBPRo8n9gQ76gx10gKvKzx0Egz/XPdh174MnIhMyWdcy75q5n21ZfVTnyo/L3PfYsWK4tqncpovhnl1KQR4Gv3r43QdZe7ABr2ma0n0VRYuL6MKZzzXw4itsOiCYG6KXGz3/t2maOSKDFzn8d7K8gwo48TsxH96tVGZlzKcvet0jv+UOQS2qqmcsqBAU2zJItFoG67OiKJUtU5DdAzFvVUA3vz7Pi0Yv12WxzcW+xpej6iOyPL0mCcRyVAKXP87WrfZUzxSCIHoOFJyJIHo42cFIz5rHKXQfw+5ARwelkkUULRTeItaZ9ymo6C5F4CJZNGUx8E13p1gBifzavKmpCbW1tS7XcFamrM8Weh9lefLrZ8XJHxWyfsX3gWI9G0G3yWEWVT9LMUEQRHeGLK5Ej8c9kAxucRVnweUz3t4WVx5Nk3XfYNsjyK0A8jWAcktJ/qJFZllw1yNbDrOgpFIpxONxtLe3I5FI5AyiZFaIMBZImTVN5mLoF2HUq5xiDTzDuFyy62H/GoYReCDtlZ+XRctrvavfvQ+6fpEnaFv7ud761ZchBr0R68C7TrJ2EOvoJfr9vBG86hvUmlkMd10+OJX4vKjcob36BYMFzxK/90oDZNvNKwCS7Lug5YXBzyrvZT1lFmM+ncotPZ/7aJomdF13ymP3LhKJOB+CIIjuCllcCYLoNOLxOPbu3YvKykq0tbUhFothx44d6Nevn1KAFTL4lAkavpzuNDEHZAfzbAIg34BCqryLTT5WnaD3Ox8LvJ+brKyuMhEkE1nd2QuA1Z9FzQ0aLEnlPiyeB/hbQsVjovtr2HvcW+AjYUciEef9RlZVgiB6IzRVRxBE0TAMA5WVlbBtG3v27EEkEsGgQYM8rYaFrMWSRSlmA+LuOKCTrZkrdt7FzDNf4Sp+gp7nl4YXrrLzVNcvWq16mssl61PsOQzizqwSrrJ1peyYX36yTz73uLs+3/kSjUYRi8Wg67qrbXpTGxAEQQDkKkz0ElgAF7lrb/hATNlBlXwtl5dlQuaCxn8vD9aRW7Ztl8ICVEj7wLHotLW1QdM0VFRUSAe2qjbwwi8gCZ930DVmfmvHirEuUuW2yrvreqUppqVP5v7uRVB3XdnkgXhPeLdk/hx2v8TyglwL4O3Gy5/LyubXp4a1pIpuwX73iXeD5d3bvVxdvdy7i7lWmc9XJhZlfUR2v2VLKPzy4WGBhMQ6ifmIx0TEMoNaglWEeTYYrI+p1lXL2pLdU9Yv+GeFrVslCILoqZCrMEEQnYau62hvb0dNTQ2SyWS3cbEslVD0KseLrtJmxXRT9rKSyYSgH4UIOD+X4qBp8pmM8RNUXuWUej2jSmR5fcfjZQnsKn26EFSTCgzR4h+kP4sB1Hix2hOs/QRBEMWEhCtBEEWDWZJaWloQj8eV1qmuRmcIV69y8rFIl4KOEq4dfY0yK2GYNAyVRdrr3vLWZT8vAnacj3pbSvEqE66yvhjELZjBi7DuDi9cZeQzIQJkJvxkExld+Z1JEATRGZCrMNEryA428neFDRoVmJWXSeMtQIK7Clo50TdFV2FxUOtXnvzZD98+LE/TNGFZFpLJJMrKyhCLxVwuuyrR1lXfQcUaaIdxOSzEpVEmqLzEFB/wRXRBVbmqBkF0k/SyTnmJR96NWCZ+gj5jYplBXYuDILpe89ceJh+xXFW78PdMTMfXRfUuULnkBoXdDxZJV3QDlt1rv+fI634EdV0OgtiPeBf1MJ4Qsj4dZBJKlkaMSEwQBNHbIFdhgiAAuAeEHbW3ZCwWA5Ad4KrcIXvDnq2diUzg9NQBcmf2JX4yiW/fsPt48s8Jy4vPgx3n1wj75Re03HzeDbzg4wWZ11pZVZ1UYpw/xvIOUzcePm/ZfrtB35X57AnMW9hlEw4EQRBEcMjiSvQq2N6nfgE+5Me99wQt1N00O3ANbtkNkh9fH/d3tsvqICuHDaKDWL4YpmmivLwc6XQayWQSmqY50TD96hkc2X6bxXWhLHT9YxBLaxCB49evRMEjc2mVHWeIEwyqevm5QXpZV9lxlVDyE1qqa+SvLd/1gEE9AsI8397vEXl9xXvHCzo/F14elfsxy0t2XWKZqvxlbSHmKYvQ7EVYl+T83t3ZdmR7rIoTAwCU+6/65c23L38OBVciCILwhiyuBFEA3Wkip6OQCSFVOzER1NDQgJqaGrS3tyMejyORSDjrX73Sh61XVyNMnbxEXiFld/WBcj5re7vCOsmOch0vBV51Z/uEihMKXvXsKvch34mKIM9emHJ4sUvBlQiCIEoHCVeC4Ogug/+OIBKJwDTNHGsXoLY+MYHLLA/V1dXQNA3pdFrptppvWxdb+BWDMNclro8sRtmFWB47Cq92UVn8glj6S02xyi5G3w+LVzlsCyvRGq5ad+yXX6kphnA1TRO6rvu6BXuVzcPebfwkQFCBTBAEQQSHXIWJXoVlGQUMJoK7ogbNXz6IDRYgyc+10W+Ax7skZ49ny9F1HfX19YjFYujfvz90XYdhGF6X48ovyB6GquvxJzeoiqZFneir0Wg0J++gos5vTV7Q+vpNgvi5HxYbVRv4ufjK8mF43UdVcCbZcb6/qOqoWh+Yj+tyUDftMLA68wJQdMlW1TfIJIaqHVV5isHcZGn4NmJ/eyFbKxrGHVq8Fpk7umqCS+baLGsDWXni/qqqPsbnz18j+57fc5VN0BVz8okgCKK3Qa7CBNGNKGXwHN41V2Yp8VvPFolEMHz4cGfAl0wmcwRhR+IOppJ73LZttLW1IZFIFFROqffKJDKEjejKpwG6n1dEIfXNx/VU3B9UhcyLgqXPF5kIDFI30errlzboxAC/Xpi1oRjx3Guig30fj8edPPLpvwRBEERhkMWV6FVomu1Y5byRBeiQB02SWTbkVtMMopWQtzipyeaXHYTJ551s24ZhGNA0DU1NTaipqXGsA6o8vQk/gDVNE/F43KmrKugJq68K3hIV1MWyUJdZP2tcWGuxaNkKCxvc84N6vrxC9smV1c2rzVXtwrZICVIP3lLKnkV2DWHaRxRzYrlebS6LIhvGMu7XB2Rp8o3gK6uPeL2ysmX3Vib0TNN07p0sjWyLnXzcnVVWZfassr5lGIarPmKfC+MqHMarQbxu1i5egeUIgiCIwghrcSXTAkHkQRC3ulIRZBAViURgGAb+9Kc/IR6Pd0Ct3PBuxcWwNPFitLsNIv1cWv3Q9cwEhWEYSrfLYvRF3uqkEoLFbHvmEVAqK758siaD6hq7K0GfDdl1i6JQ5V5cqudOdFfuLI8H3vU3EomgvLwc8Xi8271vCIIgejJkcSV6FcWyuPJWz462uHrVkS/Dtm2kUilEo1FnMOafp4z8tuJh4tlLQLBzVYjWjyBpuprFtRj1Ya6Ntp1ZvyvLJ58BNm9h4907+fWm/HV47csb1uIa1pIuq7t4DeJxTdNcLvNB8lN935UtriqhKbOmy+rNnk9x3TGff5j1tTJU/Yd/PkTPjI6yuPLrVsW8SbgSBEGUjrAWVxKuRC8jM3D0H0BGcgZNsmBGtp193tziTBY8SPZsygVd7qDeW7iqnmNRFLsHZrkDevmgMJJzPIg44V0A2fks6qZYlljfQkRYd0Y1WOb7gmoSgLkU+61pVMHfFz/x7oXXfS3UohakPn59iD/Or1XMt15ekxJ+LrxekwEqZIJS/C7I1jZBrLOy82QC3KsN2LleE0+8xZX9LQvu5tVWoisz3wfEvHmRqpoIIgiCIEoPBWciiA7Eb/CXz8C/mG6MsgFgRyAKXFYPfpsIuaU6fwoRvT0B1q6FXj8/uO+JiBbIjr5OURCGfTZlkxpe5RSTfCaHgq7BVll7862bbBKOeZ7wgrYnTHgRBEH0FmiNK0EUgN/asnzWZRZbuHaGAOEH5aZpor293RGq7e3tSKVSiMViRR8w9uYBKD8xUAg92UVSDLbTGSKdb998RJP4TvHztijmM1FIff3qw6KX5+tOLbpQ8/eU3Xd27/kJvWK4bxMEQRAdA7kKE70SfhAljxYcDE0LE1gm6z6ctYK63X29toPgRUkxrKjFWh8mIxKJoK2tDbFYDNCiWL16NXRdx/jx49Ha2opEWSx0fVid/MRZvmsmi0G+a/+80gS9T4B8706vMtmaQpYuiLtsmPr69VOxvl7uvUEIs/7RC5mgzcfdVswzbNmqMnnPBVW+srrxaQt5vr3q7reenS/Pz02X3zc1SD1t23aCmQGFRdwmCIIgSg+5ChMEkTf5CC9x/RiQGXBWVFTAMAy8+94HmDhxIuJxDdu3N6KqqqokdQ9bx2Ln35GWm3yuQVY/JgpK4U7unhwqTpuzdi5FfYslejsKsX3F/UW72/XIYMI2yP690WhUKnC767UTBEEQuZBwJXol7sFPxw5s+EBJsjGVamDGWzK8Bmf5WO1kZQTFKxiMbdtYtWoVWltbcfLJJ6OsrAypVArxWPgteoK6PXpdv2p9oF+bBbFgBll7qLKCecEiKvtZnTRNcwLg8Ba5IOXw1jd+raFffWUWcH6tLd8PZOnF/uZ3fWK++eLX5rLnIKx1VTw/qIXT7xmUCVPZxIzMuipD5cWQj8u4l4WTd3GWWYzFvXX5tahinVg63vWXL0c8nyAIgugZkKsw0WvJDpryt5Tl4yrsHlh1jCurbBAaVFgFddFjgU8sy0I6nYZt2zAMA4nySjQ1NaFPnz5Ip9PQdR22ZYQupxQuwMUSrl55qwjrSswLNr+0hax19bNOi9/JLLleVtZ8+1iQ6wkqWkrtQu4VqTjMb67fMyq7TzLhKtZNFHvFWBvNl+1Xbz9BLXM55gVuqbwECIKQUDt/AAAdfUlEQVQgiI6FXIUJopsSZP2mV1pG0AF7sQZ90WgUhmHANE2sW7cOI0eOdAIvxWIxRHQbiXId0agN07JgIw2g5wX+CUK+rthiWr+887GWBT2XF6oqC1tY9+BiCdeuQiFb/sjuoyzvUou2UqyB9SrHawKECVXeHZrtHRzUE4MgCILo/pDFleiV8FalIIJAnN3PDqIt13nZc90WkLBBZ8QygwaLEeuURTbYddc9MyDODrhbWlpQXV2NvXv3oqKiArFYTDq4NE0T+/btQ1lZGSKRCOLxuJMnbznhy66vr8egQYNcEV7DiOqwwswvgI3KQiQLWiQ718+iHdQCKbPUBbG6qQiztjeMUJH1T7E+bpd4dZt5lRHk2QniAt1R8G0dxHXc75jMjVaVhpUZ9H6zNKVYmy2zAKsEucyCLHMBJgiCIHoeZHEliA4gKzC8z5NtuZCPNYbPpxBrThgqKipgmiZqamoAeIu/6upqVyAVvo6pVAoAMhGG99OnTx9UVlbCMIy8Bs4dHS00SHAYFbwwD1pfv/IKqU8p8BLaxXJDVZXp1aYd+byIkxyq+y3r76r28aq7uCZUPNZVJqVZ3fy8DZg1NZ/nhSAIgugdkMWVIBA88I+IeiudYINlP0uqyuLiJQZYndzX4xYWmXJzB5KFrrktlnthZ76XglpzxfukEhle1qUw9VHVKUx9/foauwavYD08vEjz2qKFL1vWR/zc5L2uMaglWXUNQfGzfKvKFi2gfhM1YV3Ig9StkOtmItgwDKl3RNA1y3wfYNswRSIRJ6AYQRAE0fsgiytB9CBULoJdwcrW01EFkOloUR1GmHU0MndoLxElilVe5HpdR74WdtEVtrNch/l6y7wvuvLzXAxXYrFfxGIxcgUmCIIgQkPClSC6MKq1k13JFbCn4rclR0cNuoNa1krdH3hrrKw+zE1cNrEis8Ty2+7w/5eR77WVShwFFdIy4epnNe5qzzWzjuYLc59mWzrxkwk0CUcQBEGEgVyFCQLhXYWzYsHM+c4Ltl0M940kvWwNXNRlARTdKlVBl4Bw6/zkLn7ht57wq2PYiLP5DHC90njlyQ+s+YA3/PFChJSsLl7n+QU28moX3j0zyJ6esjR+9ZXt4yq2kShSRVTt4uXa7JWWfS9zWfZKUyz87pn4PIV5NopVd74tZM9DPq7srC9Eo9GcNasEQRAEIUKuwgTRyxED5XRUcJquBLP+lWL9XL5Cupj4RR3mzxODgwXJ2yuNV1AgQC5cZZim6bRhPvfJb12s7Fgpg3r5uSTLLNbisVLVrdSwe66KEk4QBEEQxYAsrkSvh7c4hH8e5INV1Zo+9m92UC0TlZZkUJ4rFpgLXq4rYm5wpkLcSTUt/F6JMmsZb/ET66ZpGlKpFOLxOEwzY8WORqM5bqmmaeYtRr0CDvGBg1j5zEVSLC9oO8iElZ8F2CvAk8rqnU/QIFV9xfy8XHe9LNbsX9l5Xq6nXu0jpvGznno9g7J82HHm7hyLxWCapnOceS7kek3I81Ehc/v3m1iQPU9e5/J58+3Pv+dkIp63tLNzDMNANBpFNBp1ng3+XAquRBAEQeQLWVwJogvgJTAKtUR0B0uGSrCLx8T/swEz2yaHHxQzi44sj3zxEl5MpPQWOmoSk93TQlyggxyXEfQaW1tbnS2emFjTdR2WZcEwjMBBlYK4OXdEuwd99/Cil8HEbzqdlroBd6fJb4IgCKJ7Q8KVIEqAbKBYbLHVlQeMsoGt11o6wzAcUSoLiARkLV6FBovh8bLK9TZLUkeu/1RZa/MRrmE9AVT58FRUVAAAksmkq68x4ebXVkGff9U64mLDyvZ7bnjhyk84Me+Ojt4/mSAIgiB4yFWYIDiye1GakqNyt15GIe6ZPPxeqsyNMIgA5t3/mMhj/8rTZN0Bs+7HuWJNbIvMoLYUok4WrTbiDO7b29vR3t6Ourq6gsRVWOtTEFhevJWYd+kudjl+sLJLYTEOEnhIdZ4fYn9l/TPM/RbdqvlnwUto+rl0y4Jb5TMxxU/gqOriVY9iW5q9LMHMukoQBEEQpYBchQmiQEohJPKlI6wxQPdwP9Z1HX369PEUIEEoZWAlXsB2Zpt2dNl+AqvQCdKwVlVeGDIRJlr/+fODiDPe0loIYr1EOqPf8GtbebFKrsAEQRBEV4KEK0EIZAa5wc4thSswT5itbAoh63ZZ8qLyhgVuKlRA6LoOwzBgmqbjnlwseGtjZ7pV9jThGtR6zcrihStzL9d1XbqGkwUB84vsWywXfT7Qkp9w7ai+w1yB2bMlCn2CIAiC6AqQqzBBcGQHvDJLZyTHDZFF8GVpGfwg189NUUzDuyR7uWV6RaCVfZfrMiyLjCqro9sdOmOZkRbtXCtfTjKZRCKRUA7Is39bOZFL5e7ZhcFbsb0mBZgFShQ1XgImX3dxUWzJzik070LTq46LBJ1sUeUpc8kNs2aUF11i/bwEdtB9br3qHpZ88gl6H8VnTAySFjTAFEEQBEGUCnIVJohuite6xK6yz2NWlHi/Z/j6VlZWwjAM1wBZ3FqEiSPDMBCLxWAYRqkuIbAFm78fpWx/Vo4o+BniJEhXpxRCSGa99pt0YP92hgWzq8EsqqJ4JQiCIIjuBFlcCUIgI6LyC87EBFhHCwwWSIUJxNw9L70tqXwwJBF+kGuaZiCrFDsnY7U0hDIAy3KLCsuyEI0BphHDtq07ceDwQUilW6FHYtC07N6qootlZ7y/ZBbMfAPm8PvwBrG4hi0nTJRev/SqeqnOU4l9/p4HRRSfQZ4xXqSJbVvKNc6q62LHxAkcQC3CZS7SKqsxf41i+/S2CNkEQRBE9yCsxbXrT98TRDchaLTaUsAGxaJY8BJD+RA0wqtf2eJekBnLa0YYL3vrDaRSBiIR3VlzJ4qBYl9XoTCX4jB0xBrCfAVvMdKr+kAh964zn7FCUbkue12L7Lisr/HWek3TEI/HEY1GnQ9BEARB9ATIVZggigQfdKWjYVZJXdcd66TbwlSccngLoRdBjjNBquv6/vpHEI1qOOSQkdA0G/FYHEY6LRXLXU3A5GNhl1ngik2hbrKFpFdZOAsR6535jBWKbJ150HXvfi7S7BkRLfhByyEIgiCI7gC5ChOEBObe6sbbVdiPQgeP/JYVYn7+z3GwustcigsXHbL6StpCi8G2TdjY746MGGCnPcvujPWLqgi3qv1yxSiyuQG+3K6jXq6mqjWKquBLQYIZ8WV7ueB6CW0xkJVoTfYLtORVR1lZxbRWl1LUFVpH3vVXFOyFWtMJgiAIorOh4EwEUQRY0KCO2o4mSH1El1n+754weLUtDTZs2EgDyARoikYsl2W2KyCLxlrIfrt+UY5VYpA/Lq6tZPn49ZFi9SHZWs2uElCsJ8CLVD4qcCERowmCIAiiu0EWV4KQYknd7YIOFL2OF+rCJ3MfdNct/Jo27/dArihTDZrl+YQX/rZtI51OwzRNlJWV5RyXWR4tZMq2LAvpdBpVVVUwUumctIUT0IIsQbZeUXZcFJReVkY/S6rsPCaG/VxQ/e+tfNsodn4Y6yhfJ1m/yg04Vhx3cf55ktVXbCOV1TlIICte4MvyVQX96gqTZwRBEARRbMjiShAloqutq+Tp6LqVujxN03KCy8jEhEssaNm0mqaVdEudfBHFjar9Sn0fVS7HHUlXW4MpmxDqKPh16XwwJdk2QARBEATRWyHhShABCWtB6kjcdevo8opfID+A93LDdQvXrHWKbQ2kR7pWRFWxrYJYEUvRvl1hbWRXFK6d5XrLW9XJxZogCIIg5JCrMEFI0LRMV2OWkPzzca+D9IoqKooV3j1S5SIqDwgUzErjFzAnm957/abfIN80M/nwA3I/kRCk7mztq9MGkVwhrUmyKUawqdzgSLkWTKlVWFGPYiH2G/FYMcp2T1oE2+/Yr2y+/8n6hco9vhgEzTufsv3SdAXLN0EQBEF0FrSPK0F0U8Q1tT2FUu4lyVuqkslkoHL4PS/zRWUFlm1FoqpvRxOJRJxPV6MrejEEwe9+y84VAy2RaCUIgiCIYJCrMEF0EbryGtquChOQtm2jvLwc6XTat/34KL35ohJ/QS1s4rkdQVcWhl0lendYwlhhZZMqnbmuliAIgiC6G+QqTBA+eLt8yrcTkUeZzbXShdnfUrVPaL7I6ihfuxreVdhdz+z2MbKIrMwSpes6kskk4vG4r5stgwlVTdOk2+Xk016yPTNlgaGCuji7I9Hm9pegfWV/bjnf5ONqXQjFcpkN45obtrx8UOXN+oNfm8r6jepvgiAIgiAoqjBBdBruLUzk1hXVVhpdBX6/2I6qJ7/OT9f1UKKLF6sy9918r8E0zZw1uUHojlbDsOQTPChomjD7zna1tpa5YXemhZ0gCIIgehpkcSWIAKjWNGqaao2bW/SoA9nI8vS2hMqCPInnqvJR1dHrPcBfoyroD183r3K86utKIQgdsY39rNJ8cB8vN9Sg1tN8BLDcsui9z212ckN1P8KJtTDv92K7qov3Q6RQS3ExgzN5RRLmrf9kUSUIgiCI4kEWV4LoQvTUNWwy19lS5B9GGPACpBh16m1CpKOvt6tth6OC74tewpUgCIIgiNJCwpUgSoh7e4/Ork3x6GzhqrLgWZblfDRNKyiacW9z8+zoSZbuIlxZH/KzuPaGPkIQBEEQnQm5ChNEANRbXngHLioUrwG9auAf/JkO6nZa6DXKysnNU7bfK4+3O/L+XPcLVvavnyBibeW3BjOItVeVdxBRFjaqbn6iL9tu2fRhXI/Du4Hng9f66jAC16v9RRdm0zRd0aaj0SjtsUoQBEEQJYZchQmC6JbwQqGQCbUw+2N2tQA/vRU2GdFR94NfN80s9EysMvGaG12bIAiCIIjOhIQrQQRA0zSYphlYEAUliOUsSIRfPyshfzxrjSxeHb3TeB/PnhdxjsncVkWrt7j20DTNnPQy8rGeFpJPEOtvGMGWTqcRi8UCn19s3P2qOHlGo1FYluVEc+bXK/P9X/ZdGOssn49pmk55ZWVlHb6tEEEQBEEQ4SDhShABKbZoZXkSufgJBlHk+N2bntLOlmV1qmgtNbquu9YoFwPZFjps32AmWNVLAQiCIAiC6CqQcCWIgESj0aIPcCm4ixy/9aG2bTuunaJLZxjrc3ejp7s2M68Gr+2ewsLfe9Z+nbFfMUEQBEEQhUHBmQgiBLnCNUzgomBBioqfttA9OnMDF4XJR3YubwWTBVzi0zBxEYlEkEqlEIlE0NLSgrq6OrS2tqK8vDx0cKPCsHLqKKeQ4FfutKJ7rB9B71O493/uddu2O8KuyoU3n98ZWRpxz2Dx+mRBtgqJLE0QBEEQROkIG5ypZ0/fEwQBIDOgL4aw46OtBoXfooZ9gsIEK7OQxeNxfPHFF6iurkYymUR5eTk0TUM8Hg97KT2aYt3vrgwTsOxaxevVdR26Tk5FBEEQBNFTIIsrQYSgu1pcC0G0qmW/tx0LmIhfoBuZNY4/rus6ksmkr/AQy/HbLidf3PU1pWXnUjyLaxDCBNHK572vaTILqDsStF9gLFXd2D0Tj4nPGy9OTdNENBoliypBEARBdFNoOxyCIDqNQtYL8mkNw0AsFgstsLrTRFxvJeg9krk782ljsRitTyUIgiCIXkTP9iUjCKJDKSTyMh9oaffu3aHT27YNwzDyKpvoOPg9VL2CnYnbHWma5rj/6rpOopUgCIIgehlkcSWIEPARbDPBYcKkVUe9FctgqM7N1EGVRlYpb/fZ7P6WMrdfsVw7R1T41Veso+p75upbUVHhrGvlXVDZ36r1m2Hq404nDwTEncGdK3NNLcQ9Ofz8oewaw7gHy/bJ9Se3nqzIMEG7vCJFi/Vha1hJpBIEQRAEQRZXguggwliaghzvTILsnRoUZj0zTRPbtm1DNBpFRUUF0um06zzLsnxFa0cEJOoK7d/TYBMTfKClWCwGXdd7fJApgiAIgiCCQSMCguggiilcO5tiCle2lc3mzZsxYMAAWJaFVCqVc53RaBQtLS2e7sAdYZkj4Vo6xAjB1NYEQRAEQTAoqjBB5EkmEmru/qN++23mE/01EtElUVvde6Fm0wRzFZZH/u14l8xIJALLshCNRpFKpVxRYtn1sqizhmGgvLwcpmk6x3mYOzH/f9l5uQRzpc7kJXOnluWf/7ygGKWXWZoLeV8X612fT8RiWbRh3pJKrsAEQRAE0fugqMIE0cXhB+x+YqI3uEnyolTXdaRSKcTjcWfPV7Z3LBNworhlqARTkC1aiNIis9DTPSEIgiAIIgxkcSWIPGEBmpiF1S0yi7uXqF8wHt4yKQ8eJM+TCbtoNJr3/qf+wZCC7lOae55qD1l2rru8TJ6RSAR79uxBTU2NS/iGdztVtUdEUh9WX9slsr0IapUvBJWl1m+rGRle3gRi4CyZmzdBEARBEAQPWVwJogMp5lrPziRf0dqRMNHk19aWZaGqqqpH3JfuBGtv0zQRiURIrBIEQRAEUVR6vh8iQZQQEq4dSyqVQktLi+c5mqY5oonEU8fBvA4SiQR0Pbsmuzt59RAEQRAE0XUhV2GCKAC14JO5vQbf6zII6v0ww+dvGIYrmmtxyd9VOB5PYN++fYhGo44IzVj0Msf595dtZycQmPszO57fey68qzBPkEBdXmlle9YW+30dJpAVq5NsnWp3n7ghCIIgCKLjCesqTBZXguggSicMCy+7o/ZADUs6ncbWrVudNbjMDVUG+76hoSHQGtOeBrv+UlrP+e1qxK1rCIIgCIIgSglZXAmiQNjWLP5WJ2/LY9biZTruxzIRki1HLhhs21SmkQUz4r/nt3XJpnFfV9jAQ7JzNc1WXp8bubXRyzooC+LEw19PIVbwIAGzguSdT9mlem+L94S2rCEIgiAIolRQcCaC6EB6wvpWICtQZKKXJ2jEXD9s20Y6nUYsFutwy2hH3a/u1i9k0bG72zUQBEEQBNFzIeFKEAXAC9fu5L0gErTuhmEUxa1Y0zToeue8flTb2JSqnO7SL/j9cmV0l+sgCIIgCKJnQsKVIAqAuVUG2SfTD3egITsnEI4IH/xH5kargu2zKdMhLC/ZXpwsrV+d+Hzc+8vmutGGFUNtbW3QdR26rkvrYpqmbyRhsZ3zIYjVOWjeYe6dV55h9pCVldXdhDZBEARBEL0LiqpBECWgp7gQiwQRVvwWKMVsAyZKq6qqYJpmTt6WZfXqQEF+wpO/N6x/UoAlgiAIgiC6CzRaIYgSQMK1+MLVsizEYjEsWLDAcWvl6e17tvoJV7alEGsn3ipOVlaCIAiCILo6FFWYIIpEfi6o2Qiu3tGC5fvCylx68xWN6jqHn9/yF7iyyMfRHBdpWzP2lx+BhijSaRONjY0YMnggUqn2/SLMAjQLppFZN2tZFnRdx3/+8x8MHToUuq53qDArRgArv6jMsnN592v2HVlSCYIgCILoqtA+rgRBhKbLuo5qNgALsCPQo1H88bY7UF3ZH+3t7Z4WVsMwMGzYMACZvWB7MpZlOWutNU1DNBrtWveQIAiCIAiiCJDFlSCKiBgsyT9gTjCLK2+h7HgX5Ny9VL0COAFBLIbee9o6QZ2QRiSiw7Y12FYURtpGPK4DMLg8MhZX2PJYc62traioqPC4PncdI5GIdH9ZZg0OKwjD7OOaz/uYBCpBEARBEN0RsrgSRBeCIrXmj2mayL6iLEBrR7w8BRPNofKorKwsuC6lWLObbz34yZDOrg9BEARBEERHQcKVIEoICdf8cPZ5tXVkXlMWtIgBy25DVE8FzicSiewXwIXRVYQrC65EwpUgCIIgiN4GuQoTRJHJbNUi66rueaKM+7AsSFGu66hMoKjddINF15XVUZ6nd7Aod5rI/rwLc3+VlSPWKUwApPb2dmiahkQiIXUD9nNdViHbo9bv/LCQKzBBEARBED2RsK7C8kVhBEEUHV4wFcNSphI0HT0XxddDqgm7ABUVFTAMo8tbvkmkEgRBEARByCHhShBFJhqNwrIM5//ZvTKzW5TwW5aExV98hc9XlWemnpk6G4YhFVZ8Wk3LPV4sd2kxIJS4/yi/BYxpmohEMlZZ0zRhWVZJRGHY+6iqL0EQBEEQBOENCVeC6CCKJVA6cl1jJsKu7QjBroasLQzDgK7r2LdvH2KxmCNguwJ8PbpKnQji/2/vXpYUhQEogAaxpqv6//+1N9rMgo4EiYAPIOI5m+5RXrqYmjtJbgDgHZT3L1HYqesRwketVcrTjhz/hp+fnyJDawghW1J0PB7D+XwO39/f4evrq6iAmD6vciUAgPmMuMICYkFSVVXhdDqFdPrunNHLWPrzjKk9ZKdCdFsyVYV//45/RU5Ntiyqf53fwWvpd3HrOeeI31n7eeJ9eke0T5DspRs/QyotpRq/d/77j1O+x0Jn+l6poR8A4J0IrrCgNOjF35+durp2wVAceWVauubVaCoAwOsIrrCAdm3o76VQKIT5QSY3pThX6jM1onqrFKnbwmX+Z8k9Y3q9pml6BUhT2/c8EurmBva6rpNCrPFzHi2Ouv7Oj0d/lQIALMm/toCnxKm5x+OxiJHZdmp2a4lRz/ifBXU9b79cAACeZ/EV8JQ4yno+nzd+kr6lpurWdS20AgCszIgrLCBO452egprb9zR3Tu64eK8QQuhaauOoZz+4daVJTdOeO3/qcu64YcFRe71D77X29d/MObn/M8uN1nbHxe/zei/X7v34e/ozd5/ute784WccK1hae50xAMCnE1yBtzB33eqraAMGACiH4Aq8hTS4LtnYG4uW0vW6GoIBALYluMKC6roe7CU6NWL4aPvuPS2699wnfS9t4Y2lTFPnxKm7/XuPPmbP6XQKdV1fpkJfP3t3zdsXvfVZcy3Iub1qAQDYluAKzNatn13vnq/Yaiad9iuQAgC8H8EVFjS/pCmVlge1P9Os1Y0I5kcRY0FTest8WEvXcMb3u+mxcV/W3D6wbcFTrll3vGAp+RTdb5fPM13Y1O2LOyyByhdYVb2fAAC8J8EVPtTcMHfPNOcln+OR6wmsAAD7ILjCh5obSNcKrq+69q01uQAAvC/BFRZ2vb/qVCnS1Chh9353nViUFKclzxlpnApz6brQe9t8+59x1imTcuVMU6OrAisAwD4IrrCy60BYulzg3tpYGzAAAPsjuMJKDofDX2nS1HY458vv965DbUdF68FWNbHIqT8Sel+RUloyNX9UOIR8YdP4SHMshgqhzr5/eTJhFQDgIwiuwGxxpPOVgXFs2q9yJQAAQhBcgTssMcJ5K7ima1qXujcAAO9BcIXC5KbMThU6pXIlSrlwmBY63brOrWd7ZYjMrVcdewYAAD6P4Ao7tUSz76vYaxUAgHsIrrBT/fbi88iR67PXKgAA9xBcYUWxWTiKbb9jx7fHDdd6VlWdPacLqePhMJ7fNPNHPa/biofXHJY3pQE6/7wCKwAA4wRX2Jlc828My89Oy71ebzv1DAAA8AqCK6ysrutwPrejos+MNt4+93ap0thr19fLXT/3mpAKAMDSBFcgNE2TbSO+pkgJAIAtCK5ACCG/jc41wRUAgC0IrrCyGBCfLyXqSp76DcLdfaJ8c2///nH9atzbNR5rKjAAAFsTXGEH+k3Ft0dFcwF3zrEAALAlwRU2EEc108D5iDhKmo6kdtvlVKNrV+e+BgAAWzOkAjuVBlgAAHhngivslOAKAMBemCoMGzocjoOpviH8hqZpLtOAR84O7UzjKlRVunY1Btb4Z+tVAQB4b4Ir7IwRVgAA9kZwhZ0RXAEA2BvBFQo0ts9rF0yrzGsAALA/giu8mVxwBQCAPRNcYWPDPV2HRUrKlQAA+GSCKxTGtF8AAOgTXKEwgisAAPRV4/tEAgAAwLYsnAMAAKBogisAAABFE1wBAAAomuAKAABA0QRXAAAAiia4AgAAUDTBFQAAgKIJrgAAABRNcAUAAKBogisAAABFE1wBAAAomuAKAABA0QRXAAAAiia4AgAAUDTBFQAAgKIJrgAAABRNcAUAAKBogisAAABFE1wBAAAomuAKAABA0QRXAAAAiia4AgAAUDTBFQAAgKIJrgAAABRNcAUAAKBogisAAABFE1wBAAAo2n8s/ENIVGVXPgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Run object detection\n", - "image = skimage.io.imread(image_list[0])\n", - "results = model.detect([image], verbose=1)\n", - "\n", - "# Display results\n", - "ax = get_ax(1)\n", - "r = results[0]\n", - "visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], \n", - " dataset.class_names, r['scores'], ax=ax,\n", - " title=\"Predictions\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing 1 images\n", - "image shape: (3111, 3780, 3) min: 0.00000 max: 255.00000\n", - "molded_images shape: (1, 384, 384, 3) min: -123.70000 max: 149.10000\n", - "image_metas shape: (1, 17) min: 0.00000 max: 3780.00000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAAMPCAYAAADVRog5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXm4LFdd7/1dVdXde+8zn5ycMeecJCQEklwMCZGZi8D7IggX7r0OV33hFUFBvb6P19dHxGs0Ioiv76vo86ovCqIigxdEvUwqIlMgEoaETATIdOYk5yRn3EPv7qq13j+qV/Wq1WvV0N177957fz/PE87urlVrqlVN/er7+/2WUEqBEEIIIYQQQgiZVIKV7gAhhBBCCCGEEFIEDVdCCCGEEEIIIRMNDVdCCCGEEEIIIRMNDVdCCCGEEEIIIRMNDVdCCCGEEEIIIRMNDVdCCCGEEEIIIRMNDVdCCCFkGRBCXCqEUEKIqPf5H4UQ//sQ9RwQQswKIcLx95IQQgiZTGi4EkIIIQZCiENCiIWecfiYEOIvhBAbx92OUuplSqm/qtiflxjnHVFKbVRKJePuEyGEEDKp0HAlhBBCBnmlUmojgOsB3Ajg18yDIoX/H0oIIYQsE/w/XUIIIcSDUuo4gH8EcK0Q4vNCiLcLIb4MYB7A5UKILUKIPxdCPCKEOC6EeJt24RVChEKI/0cI8bgQ4iEAP2DW3avvDcbnnxJC3CeEuCCE+JYQ4nohxF8DOADg4z0F+JcdLsd7hRAfE0KcFkI8IIT4KaPOm4UQHxZCvK9X771CiGcYx9/c6/cFIcR3hBAvXsLpJIQQQoaGhishhBDiQQixH8DLAdzR++o1AH4awCYAhwH8FYAYwBUAng7gfwWgjdGfAvCK3vfPAPCDBe38EICbAbwWwGYA/wHAE0qp1wA4gp4CrJT6XcfpHwJwDMDeXhu/bRmg/wHA3wDYCuBjAP6o1+ZVAP4rgBuVUpsAvBTAofJZIYQQQpYfGq6EEELIIP8ghDgL4EsAvgDgt3vf/6VS6l6lVAxgO4CXAfgFpdScUuokgHcC+C+9sj8M4A+UUkeVUqcBvKOgvTcA+F2l1NdUygNKqcNlnewZ1s8D8GalVFsp9U0A70FqYGu+pJT6VC8m9q8BfE/v+wRAC8DVQoiGUuqQUurBsjYJIYSQlSBa6Q4QQgghE8irlVKfMb8QQgDAUeOrgwAaAB7pHQPSF8K6zF6rfJEhuh/AMEbjXgCnlVIXrHaeYXx+1Ph7HsCUECJSSj0ghPgFpErvNUKIfwbwi0qpE0P0gxBCCFlSqLgSQggh1VHG30cBLALYoZTa2vtvs1Lqmt7xR5AapJoDBfUeBfCkCm3anACwXQixyWrneME5/YqV+qBS6nlIjXAF4P+qch4hhBCy3NBwJYQQQoZAKfUIgE8D+D0hxGYhRCCEeJIQ4t/3inwYwP8hhLhECLENwK8UVPceAL8khLihl7H4CiHEwd6xxwBc7unDUQC3AniHEGJKCPE0AK8H8IGy/gshrhJCvEgI0QLQBrCA1H2YEEIImThouBJCCCHD81oATQDfAnAGwN8C2NM79m4A/wzgTgC3A/g7XyVKqY8AeDuADwK4AOAfkMbQAmls7K8JIc4KIX7JcfqPArgUqfr69wB+Qyn1LxX63gLwOwAeR+pOvBPAr1Y4jxBCCFl2hFJFHkiEEEIIIYQQQsjKQsWVEEIIIYQQQshEQ8OVEEIIIYQQQshEQ8OVEEIIIYQQQshEQ8OVEEIIIYQQQshEQ8OVEEIIIYQQQshEQ8OVEEIIIYQQQshEQ8OVEEIIIYQQQshEE610B6qSJAk3nCWrAoUuAAWB5kp3hRBCCCGEkIklDENRteyqMVwJWW1IGQMAgsDn2ECHB0IIIYQQQqpAw5WQMaKUAnrvjUSQOgkoJOlnIXL/Krn8/SOEEEIIIWQ1QsOVkCXD7d0uZWqxCoTL2RlCCCGEEEJWLTRcCRkTCt1MbTX+6B9X+WMKXQghoJSCQMMqbbsRU54lhBBCCCHrFxquhKwwSinAcicmhBBCCCGE9KHhSsiYUUohCIKeQVpeFujHwepTtBtx35BlIidCCCGEELJ+oeFKyESgrE9J769eQicaroQQQgghZB1Dw5WQkZGGoYksbrUqaXn3sb4i28nKAnDExBJCCCGEELJ2oeFKyIiYW+CYZNveWFZpHaPW2RYApWIopRCGIehGTAghhBBC1jo0XAlZIkYxUEsREoBCIiUC0Uy/YmInQgghhBCyRqHhSshIyMyIzLa56Rms4zQkbSNYCJHVL1XqRqxkmhRKG7JL0Q9CCCGEEEJWAhquhIyAz014qZEy3dc1CPpuwjqTcSKTgWOEEEIIIYSsZmi4EjImymJZs8RKntjXKnXadSmlBuoTQWq4ShWnnyEQBEFfeVVR5fYJIYQQQgiZBGi4ErLmUNa/QJLERkbiVImlCzEhhBBCCFkt0HAlZEiUUuk2OB7hcpSswkIISCm9capKqcw12C7Tb1f2/gVSf+Z8TKyAQBi0aveNEEIIIYSQ5YaGKyHLhI5LraN06jjVOgalbqcMpRTiuJNrZ7BvjJMlhBBCCCErDw1XQoYgUzoLbFBfjGvV+l3lze/GkjVYpEau7KmzUMjiYYUQUNVsYEIIIYQQQpYUGq6ErGsGlVylJKRMDfMonF6BPhFCCCGEEJKHhishtZFQiKEgs0RHReh41aKswvZ3RbGtVdorqiN/fFCtVaofF5vIxax8EARZRuI+5vgpzxJCCCGEkKWBhishI+LaU3XYOiYt06+UMksCBQBKdgEAYRiuZLcIIYQQQsg6g4YrITVJkgQiGMzi68OOV3WpplJKhGFYOwOxEGJAWR1FrbUxkzalMb1pHYk21kVkGLZM5EQIIYQQQpYGPmkSMgG0222cOnVqpbtRAZX9p5REIrvodNtIekosIYQQQgghS4FYLfs2JkmyOjpK1jQKqYFm3jfDZvc16+h0OgjDsLILbpmCW7cPo7go+2JoBRpD10kIIYQQQtY+YRhWfgilqzAhNbBjUasYjVWMw2azmfvsc/MtcweuS1k9ZrKoshheO7EUlB0PSwcPQgghhBAyHDRcCZlAygzKcSVxGiWhlMZrvPf2iO3Hw6bG+aQloCKEEEIIIZMPDVdCSpGAkJAyyZIUubaysfElWqpjuFV1Aw6CIFODh2nPpegGQZB9llJm465r7GZ1qE76GdqVODTKMEsxIYQQQgjxQ8OVkDWKNjBHiYG1jeFxorfaIYQQQgghpAwaroRUQCuOQoiBxEh1DcMq5ctchO06fAamlLKWwmvG8Jp12gpsHYq258naEDEA9NtQ0cA2QoQQQgghZP1Cw5WQVYSdHGrcjEOlHY60vTjupvvZSlE5wzIhhBBCCFn70E+PkIoUqaDmMftzFbRyO4yi62tvGMXS7IfdJ18/dLmzZ896y7j6IQKVJnASElAhoEIIRJCJgFIJpIyRJF0Acqg5JYQQQgghawcqroRMAKs51lP3fePGjUO799pKsk42JYRAHMdQxtY6YRhCKRqxhBBCCCHrCbH8LoHDkSTJ6ugoWXNIGfe2dlEA6u+j6opHNeNFh4mRtQ28cWGOy2zHt4+s+V1VXHUoWVyHQpI7PxDN9N8Vc20mhBBCCCGjEoZh5QdJKq6ErBBLHa86CkuZ8Xe4cfcNUylT92KtxkZRNJFzSAghhBBCxgcVV0IKUOjWzsw7ioJatk9qkfKpqarkulRT+xxz3OY86KzD5ue6/TAzF8ukH6vrG5Pdni6nv1dKodlsOupZvW7YhBBCCCFrmTqKK5/oCFlhVnN8KzB8/00XZ18dPkPe3ErHzD4cxzE6nQ7iOB6qT4QQQgghZDKh4kqIA63YSdUpLVu0T2nd9qqU03VXTYRUJR7XbrvdbmNmZiYzDqvG9AZBUEvp7X8ZZPW79o/V5xQpzHb9eo6iqIkoigbqIoQQQgghKwtjXAkhIzE1NYUkSZyuwLbBPGwm4Spo49NOQuVLEuUyepMkQRzHEEIgiiLuD0sIIYQQsgqh4kqIAxEkSJIYOotwEVXiTosYJRHSqEajL6a1yt6xOra0avt1FeVcbLEKMuO1bMxV5z+KokyB7de3ut22CSGEEEJWE1RcCRkRbSBpfIbSOFx1TffVukagrXxWqaMsKZMvCZOdpMp2u3W170ps5Srn6oe5ZZBM8tmIXcZp3a1x0v1hU6O10Wj06vb3hxBCCCGErBw0XAkpYBwusFXqmJTtXGw1U6vBRQaoz7jzKaOu74rq6J1Vqe/D0u12e67FEZrNJgC30U0IIYQQQlYGugoTkiPdI1TKJP0b9eMhR7mnqiZpGkdbALIY0KLEUqYBqvtXpO7aW/u4YlTtegfaVXmXXRGo3DlK1punMlx1RVGEKIoyAzYdw9iaJIQQQghZ99BVmBBSiarZiW03XJebrwut2MZxXCmOt2/0Dn5vG75LSRAE6HQ6mVEfhmGvb1RgCSGEEEJWAiquhOSQkCoGoLASiusoVG3XFa+q0cqoNhK1sWkbjqaqqlVYV312Pb5yZj1BEEAmdqf78a0AoGQ+BlfXUbTdTdG4Xf1xEQRpVuIwDBn/SgghhBAyIlRcCSEjMWyWYxfaYKxSZ9/wrPYbZhrTy7FHq1IKcRxjcXERADA9Pb2k7RFCCCGEkBQqroQYKHTTfwtUu6LjzjrHWFfdNupSt0/mPqv2ub5ET3Z7UkoEIsrO0RmdgyAYcFG2+1Vnix3dh6Iydcatz9OuxNqduJ/9mPvFEkIIIYQUQcWVEDIU5pYzo55rx8MWKa++drVhXHe7oKXGNqjjOEa320UYhsb+sCvZQ0IIIYSQtQUVV0J6KKUyxdXGNr7K6jHPKTO6lio7blnMp4lrP1hX37TBZse7mtvmFO2n6lVn5WAmYl8dZWPwzb9rTGXXqGybnmJDOkCr1crF1lZJhEUIIYQQsl6g4krIBGMbvuMyZLTROIwhXDVWdJTMvtooNeuxx153O6BJp91uA4ClxK6d8RFCCCGELBdUXAkBIIRCIvtqax21si51FFCfWuhTSH3fucbi2p/VbN+MNTXPKUu0VCVeVEqJMOzHgOqyrv1e7bqllBC9bM/ajTiX5VdY56viOoehiuLqWkM6brfRaFh9Gl8yLEIIIYSQ1QIVV0JWOaPEmuqEQWXG2jCGuRBi5IzDun/rDaUUkiSBlBJxHEMIgWazudLdIoQQQghZFVBxJQSAUsmgUpc7vjRxqEvJMMqunYG3zMAsasO3r6u9p6tWTU2DViu72lA2y5iKq7Md0d/XNf3DbWhXmR+f8l6kfJfNmWsPXL0/7Ho16gkhhBCyPqHiSsgysNbiMV243H59417KzL9mgqMyxnlN6rQ7DLpuKWWmkOt4WEIIIYQQ0oeKK1n3KJVABApSJgiCMBf7WZZVtlr99TLWjsq42zNVUju+tWiu7PhYXz9NbBfnLAYXoft7I6PxMHu8DlO2Lr75cRnDZjblMAwRBAGiKIJSzEhMCCGEkLUHFVdCyERjugjrzy76xzFQzjx/teNy2dbJseI4ht5ahxBCCCFkvULFlRBIKCQAFIB6itaocaCaIlVOK411kymNQ2Etq9vuk2sfWd+5Ppdjc06zGFPZV1hNzPkpU5h9Cq/vWNVzfWV9x+0Y1yp1KJUv12g0Rk6SRQghhBCy0tRRXGm4knVIAECm/wlZarTorVuSJBkwForOrZLQZynQhqdtVNdNvFSFothXn5Fp/pslZeq5Alc1JHMGfdjvSxAE3u1vqmRaLhqfOaaicVZxCba/L10b9lpCeg0bjQYajYbVJg1aQgghhKwO6CpMyJgpi9eswkrHJy614eyLNS1i1L6k57v3p13pl3JLfb31yxS9tU4URQiCACu8zAghhBBClgQqrmQdkiquSiVQSAa2IKmSMbfqVirD4lMHqxhD2oDU49L9sJMbFamuriRM+jwzgVBRf+yETq75CIIgjeH0bFnjI9d/exujXl22wmyeW0d9rZPNuMrLjTprKDvHbquw/hDNZjO3lY9W4AkhhBBCJgkqroSsMcy9T6uU1fugagM2SRKvITds+2Xqqhl76jP+xtGPsvaDIEAYhjmDey2jlEK73c4+t1qtNT9mQgghhKx9qLiSdcpwCZns+6UokdFy3Vs+F2AhBB599FG0Wi1s3bo1Z7i5YmDNunSZoq1uzHa0Euuq0966xvzsUoPTBqxYYiQAPIarR611qeRmm7Y7sUuVtBM/VdliyDXOMoZRYX34klVFUYRmswk9RG6vQwghhJCVhoorIcvEJL/40UZ1o9HIfa8NzKp1AMXGV5UsxL7zqs7fSmXQraPwasaV+GpYfH1OkgTtdhtSpkZsFPHnnxBCCCGrByquZF2iVNKLjVS5hK1VDQ5725cqGWKLMvCOA91e2fYwZv98/bC/s40hV1ZdXzZdu1+6PtNwHajDjlPtxbE656xEcV1K9F6yrnUzDuO1LBbZ1V6ZS7S5tU4QBGg2m9n18CnxhBBCCCFLARVXQobEjIusSt1MukvFUibfsY1hM/FS3X6Nu5/DXLNxMmnXv6rRqRNjaeM7DMNsf9hJGA8hhBBCiAkVV7LukKqDIAiQJP24STvusUhFNF1jq+zjamexHWc8Y1Efy+JUAXdcZ5027SzDRfNizoGZ8dbZp6R+X4ahTC2vcq204ecznE3Fucwo9CnQrrhhv6Ja7XtfjK9SClEU9ZI6UXklhBBCyNJBxZWQCoyi0NVRt1b65VBRX4dVP8sM1DrbzawkPkOyLCmTXUfRWJdiHpbKnde8dnNzcwjDBsIwZDwsIYQQQlYcKq5k3SFVB8CgMeLLsuvaz1Sfb8e6mlRVVqvEu1aJmzXrs/ctrYodU2nvATqMseTLSFy4d27FfV3H/ftVtb4qMc2+OqskujKzLZuqeZX+uq6hWd7et9hVX/94/wWFUgrNZpNGLCGEEELGBhVXQtYYZcZR1TJL0R/f/rCTluCnjgFZ5aXDuF2+XYRhmHM1NvscBAG63e6SxPb2x4as7SAI0Ol0sLi4CCEEZmZmxt4uIYQQQogPKq5knSABISFlgjr7tmrqGCl176lRMgzb+4WamWGL4i6L+gKM3xiTUkIgHPje144IrAzICLOxVs2EXIVRx2nGyFbdOsdW7V17vlZ9CSGlRGCr8I52TOpkDtYlsjhmu+3edkupgR1yb1hCCCGE1KKO4royaTgJWUG02+MkUuTGuRLtrlR/Jg2fsWy+GNAZeovqKHLRHdeaHOVFSJ1+hGH6IqLb7aLdbqPdbk/sfUUIIYSQ1Q8VV7JOkJAqhlISQtR/X2O7w44jKVNhjGdFitS6YVyH68RSmsd85+XmSlVTJIMggEKSL2vFvFbZR7YqRddz2LpNtbuoDq/i7FFeXdmc7Z77emrHK1dSXq2M0bJwHvLXqNFooNlsrookXYQQQghZGeoorjRcyTohNVwBBdeSH1ZVHMWAsl18h23fTLhTZIj4tvwx+1LUju9711Ytuh92f1zzBQBKWnVYrsKDDfeN4LJxF41Bz7tWD+2ydbbHcRmXput2FZdi+5yyNlxUnQ8Tn4E8ULdVXp+jlBowmANjzprNJsIoyvqVnk+HH0IIIWS9w+RMhJAB6hiq6wWfwaoZxvgbpZw2xM0XEnWpsl+szSjroUpMb7vdRtBLNNVsNntjHLpJQgghhKxDqLiSdUGSdAEhAajMVbhOpl5NnbI+XHUM44rqq69MPXMpvVUMF1vFK4ulrKPSDrgRi2IFWiu0deI5ffOgDb2iPpvnuNRM19y4zk2SJNeWVsp1+SRJsvJBEAwor1UMWnMMRQasb+6K5sOluPavWb5PRUmjlFKYnt6AMAyz88v2wyWEEELI2oOKKyHrCPth3zTIzM/LjTZ+XP1bi0aKb7wapVTOUNPYRq9WgZVSSJJkRa5fnbWTvSCp2cbCwkK2FprNZt0uEkIIIWSdQcWVrHkUurlsqT6F0qSqsVAU42oqV2V1Dqu4mqpZ1WRMwxhCdv+KFF8Tcw5MY6hMybZjXovGNg4X3bJkSL5+2mWK5sV+oeCrD+gbwUmSZImR6sQy107CZPW/ysuPgXVnHwec2zFl/eqtgyAIsvrDMEQURYDoG+90ayeEEELWLlRcCTFYqe1v9AP5crVd1d11nG1VUU210mh+9p2fGUqOPV8nHXP/XBdFc2UamfZn04iucm21kVt3D9+qfR2VrF+OPsZxnG4rhFSFXe57iBBCCCGTCw1XsuYpUgvrnlsnc7AvE20Vxbdq3a56bEXO166UMueWWrc9/X2RAugyUG1jRdeRc4u1ujOOuGBXXWWKap1rZauTRUq4bYz5YlG1sWob+3Z5sz7b6CzaUsdsw1XG1R97LD7KDGe9bsIwzMbUr1eg2+1m4w7DMNtax1SgCSGEELJ+oOFK1ixBEOSS3aw0y6WI2oaN3a7tQgosbxysrS4uN8vdftF1r+I2XIZ+aeDbbqfOOIdRWrP9aq3v66xyn7Kq16iUEt1uN0tYFUURXYgJIYSQdQZjXMnaRcSQMsm23aijFrkwXV6L9tisW2fdcnXj/my1zlaCzfq18VCWqXjYftlbvbjO98Uc51RdMwuxnYG4d0wbOjoBkK2AmgZdmbLeb7ffx4EEUwVxsa71YiuuZnmXWlslNlifY/bfd82q7vnrGxOs75R5rAJmqbL4b123OedhGKLRaAAIaMQSQgghqxTGuBLiYBTF02mojIjp9jgpVNluZRT0djA+V8+qSYSqEEWR83qNOt+6Tld87jj6bm6Zoynahkejz7ETMy3Fy0kp5cB2N0uB6yUL0B9Xp9OBUsIwYgkhhBCyVqHiStYsCl1ImWDQiXFpKIsptRnWgAbyiYBsda0optI+7utDlb4Pk3nZ7u+wsZS5rMOW4mru8epSmH3GufkSwTsv8M+bqQoCfaPSF+vq6kPdNeQqa9ZR5A7uim2169S46hjombXGStVc6zszgdeAgV6gAAsjA3EQBGg0Gplhy6zEhBBCyGRDxZWQdYhPES5S60Z5qE+SJGdslGEn1VnubLFl8bxVY37L5s2+BrYxXCfB0zAsRdxyFW8FbSgmSZJuabPM6PYXFxczg7XZbNJwJYQQQtYIVFzJGkRCIYFSMv1bLa0rbtV4UJuimE5XWbPOOvdtUX98x8rUMrOcL7ut+Z3puqpdYYsUV9jXzKOqVqHKXHljOQvKpfG17kzKuQzJFXEZxLaxv7CwgKmpKYRmfK7VtyKF1RfX682E7ChbdH6uroJx2q7QPpd5O7Y4Kw//fafbMI/rhE5pG/09cQkhhBCyslBxJYRkLOf+rpPEMEa+jzquu1WV7KJteXztT09Pp0q3w8irEn/tciVXSg1kWl5Na6XoOutrkSQJ4jhGkiSYmpphPCwhhBCyCqHiStYgEonsItVlJIBid9ZRXFZ9MaUuRrnXlvI+reIiWxQLWWaA2UpgUf39L/IGlAisDLZjUFx9Rpz5b1kCIgWUq8eO/hQlTapi+OaOegw323Xcpaprd29z3Dn1084cbMUr2+3lylrliuJ3i+J0gf51yM5xlKuyf236XdpPndBJZ2wmhBBCyPJTR3Gl4UrWHIlczH1OXYbNB+X8A/NSPrS63CLrUOf+1EZImdJoGk5lCXw0RRmVywx/0yjKGUmy70JsG6YDrsKO+qpSNQHVgNGGQVfZAXdcaxsbc44GDDTbkIKxPZC1t65twBUnJxK5dab/tq+Zvb9v0VyU4Runa53Y48/m2Jgvn1uz3WdzXsy/9XHTRbss8ZRtOLdaLcd+spOT8ZsQQghZi9BVmBCDImNMq05L1e5ybnUzytYnZYbLOLYBCoIAcRwbc2IqXavrvdS4X3aMoz7TCHQpkEX41FP7+0wBdeyLWxfXSyNX/XXOreuibX63uJi+8NJKbNqH0uoIIYQQskxQcSVrBv3gaiuutlEkhOWGuszZbYvwudV6kwcVJENyZfEta9eFWZedodg0FuwkTPY4TKMk/SJwKq5SykxxrbMdTF1c6uCAAVeSLElZx1xo1dAeiTQNLeMaFSmuRRStkaL+VaFsXZq41FEp5cD4zQRLtsG6sLCAVqs1MA8ardwPugH7cd0HOlGYb47CsIFms5nzFrCVdUIIIYQMDxVXQlYp4zCgtRvluJIS6fqklIXb39iGhO6LT7Uz5Szb4F1KRlUKl5JRXNeLXMNHxX7pUFSnVwmt0A+lFOI4xvT0dGX381FoNBrebM5Aui7n5+cRBEFmSE/iuiGEEELWA1RcyRpCJ2WaDMqS8FTFVjiBvJqlVSP7AdyO1yxSXn2Kk2mwaOWwLHlQpkgZqqlSKtvSpm+4Fhip1vY3AmHWrq1I1kmKZPez7jmBPU/GSwKXolpSeWn8pUvZ9fXRVm8z1dsy8qoaxkXX2XSD1+V8yr/dV11n7t4wzjX3BzbjgfVnVyxyrmzPTTpbI1bfT546he3bt2d7zfrG6FNVlVJoNpvZ+f15rb6nMSGEEEJSqLgSQgYYZqsTnwJaRyHVhsZgkqz1jWseRrlG9jlVt+VxUZTIySwD9BV+38sPs3+2e3aSJEiSBM3e9jQ6uVhRu3qf3GETn+3ZswftdrvWOfZ6j+MYnU4HURRlmYkJIYQQsrRQcSVrBinjAaXOpM5ar6qWjuLa6aqjaibUKm6UGlccYVkdVevW9TuNJEtRVUgGjntVQPs6etTZKmOoqzS60IaLvX+qMuvvfVc5LrXG2qkS46oxMyEHQeA8V6853/z51p8+Zn/O4ngNt3KzHbNOZ5uONdtoNNDpdNI6evdiGIZZMrUio1V7IQB5xTVV/kUuZts3TnNsVbwMoihVYcMwzHknEEIIIcRPHcWVuf4JmQD0w/G4yi11HesNl5EzjjrXElpZ18m8UmOu79Rjr7ui8SulcOjQITSbzaHm3Ve3/t50c65yL2jXaPM/u844jjE/P4+5uTlIKZcsWzkhhBCyXqHiStYA6YNyqugp2FFtk7bGy1TVovNcMaa+LKc+1bhKduGy5Dd2fGPV/nuVu4pZhF2qsdnXUY3L0ljfouzL9jxbx804zV6llfulS/oU77JjvuPDrEUzYVdh2d73ZkIv83qZsa7d3DZJ6bE4jrMyrqRgZf2wjFdwAAAgAElEQVRwZTMWQkAaMbIC1hpG9a1+7Oub2K7LvXaazSZarRaSgXt0bb24IIQQQoaBMa6ETDDDuOqaRus4Ej75MF08gfqJa6owiquy3f44jNUq9LfwmayXIEA+1tTEfqFRZZ58dZlUXX/2lkiuzNT2VktmNt+lULlNpJSZ67eOm8WY2wvDMIuHDXvxsGtNaSeEEEKWCyquZNUjZZz+ISRciqumTpzoOKmjatWNxyyKU/QZueaenHpvSrP9ojq18exSPn1qbSU1ryDDcNUkQ2XXtYry7BpDTgn01CWlhLCz3Fp1lymyZl2HDh3CpZde2p9fT7v6O99YigzXUWKcfdcjty6Mv10vOkzDdFCNzPe5qF3zO+f+xVY5rbgKIRDYa92Kx/X1O82abc2fpW77FPcwDBEEARoNbq9DCCGEUHElZJ1QJ3OsrXS6zlPGQ32Vuuy++OpdDsrat/s8iQaDNrouv/zyVWfU2C81yjDXrq3OuuoG8tfMvt7abbiqGqzjcV3rpWgrHN8xsz9F91CSJD0VNkYYhmg0GoX7IxNCCCEkhYorWfVI1XF+X6YwDbP2h1Fry7L8moZkmaJlZ/D1xb1WwRcba/fJ/t52Wa4cQyvzyi5EPvYxd26dPV/tOqx+2FfKZ7ADaQxrp9PJtjhxXWWXcSSlHIh/HWjXaqtKWfu4a63YYyhdBTXWcF0PgCoEQYDYEdOq29PrqjA+2/QSMI6b7r/ZubYLtVG2zDXYHr/rGg77gsEV69tsNtNxI1g2N3hCCCFkJaHiStYly+0CPAlUebB1GR/2Q/GwBspqnOsyxXlxcRFBEKQq2DIZDsOs3VENpmHbHZU4jhFFkdONWRu1GtO4NbMVB4616/tsM6nGoJQSi4uLqdEeNtBsNle6S4QQQshEQcWVrGqUUlDoFpaxVcqq9VYtVzUTrtmfovq1mlmXurG0Rf2uqqLWMrSsoqooq6pHca1iaJXFltrxuUXnoud+qtfQ/Pw8NmzYkIsF9imdvphWM34ycyu13bgd/ShLiGWeW/RSIpH1Eny54pfN+ux5GOx6/fhk24tAKZXFY5uqKgCIXmIlX7bmIjVbFYzJlTF7GJPXVb95zHRx7sfh9ttvtVq5bYUIIYSQtQT3cSVkgnHtHWkbM8Ngbg1itzcqRYbJctYxDvQ+nLo/Zp/svTe1MaHVviiKkCTJ2McyigpoX3chhNso96yP1YB5rTI3buM7PbZh3OXN+svaN8+x6xgGX7tmVuVut4u5uTnMz8+P3B4hhBCymqHiSlYxElLF5cVqUFW1HMXF0mzDNlTLXHbN47ZyW6YsFym/ZapZv5K+8plm0q3n2prrnxm3KopjbavEuOry9ugrqbRWPKyOsdR1mYmHcvNrKqEVVexxeACYnwZieq3YaeU57sKO4XSdmxmK9jHrXFecbs7A9ozH1VeXAm2WdXkp+OYjV8b6bKrkZjZk88WSfulRx3zU19u85+z5MNvxXQe9LnPxsIqGLCGEkNULFVey5ilKLFRGmVtj1bhRXx22G6n9n13O1b7Pnbisf3VcjEdRd6u4SNtjWIpkMy43TDMDrWve7T6adbkyw5przd5btGp8pblW68xdnThW3zjN9WQaUGXt2+O0X5pobJW6rI8mdhZis69lCqj5t+1qq/tlXtMwDLPsva7rZtdpu/Ga6rvZ/ypjNo3oovk39ye2lWStpOs+dDodzM/PY3FxMZs7DfeKJYQQshZh4AwhY6aOseFjKYy8ARXLeCAfxYidFMyxAO4tVGx0oqCiOquy2uevDkmS5OJMgXpx4UBxdudR+mUbba5toHx7y46DYRT1YdowabfbAIAoitBoNJZsbIQQQshKQldhsipR6A4Yd/YDsX9tF6Vr8ZzhqbvISK3eH/e5RduBmMqg7Sppu0a6XCaVSpPdjPqAq2Q/nlKhRHmr6O7rPNXouz0v5jjjOM4yzvriPE13UNPdtUpSrMyV03FNi/qocV0n33hde5v6VE+7DbOPA8dNd9heGZfBBwzeKfrFgO1GHcexV8109V2TreeSFzXmMb31kG/dO05G0EvgZF6XIAiyRE5ZcifL6NStJkmCZrOZy3hc1TCtYqjrec1eopTcKyIw5sv6TdDXtNVqQQiBRPbvhXG8VCOEEELGCbfDIeuSKgbBaqHI8KmLXU+djLJVyAylCfBODMNwqMyvVbGNQpcxorPfVq2jDku1xsv6XFQ2SZLcS5ClUBptFb0upjuzq44wDHOZiTP34l5Ze5uecSOEQKPRqHVds98Cz3x3Op3UXRppPCwzExNCCFntUHElqxKpOqUGmE/pUMo2/oZ3WXS5HBYpLGV1+1RkG1fdZqbcsnNtI2NYN08Bw4jxJFjqn1zN6BjVzVJ46uj304gFdCjornOLlFa7TNH1t/curWvs2Uq7ry92P3LKsNnnkvYKV4VRv6nY+sZf2N8K4zfV1aBAORy47o7j+l6RhkGrlEJgq8YlSr++/12/RbaC75oX71pR7hcU2ToMlHM9A6mxnVvDIsy102w2K60fQgghZDmg4krIMjHuWLJR1FBn1tslamuSGFWNG6atIqN0FKO7bCzDKq5LGdPpYlg3dO3S6zJ6zTkZ9eWGbkO7N+u+2tdQt1knAZXZ52H3ZB6GrO9wJx3Ta2BhYQEA0Gw2Uw+FdRSbTQghZHVDxZWsIiQgJKRMIBx+qWVJUWwlMrCVCYxHffArvf66fX33KS5Fqt6AwuZQ3nyxbrXHX2FLm1rVZUpX8cO+VpZN49uOg7TjFF1GfVm0c53yhccc82oak0XqoZ2VtqiMOe4q11K7wNrGlW/ducrY7rX6uzr9sOuXjmuaW7MOBbnIQLQzA5ufdR/N7L398fRfFKRxvYPXq+z3w3sPG8dcyr/+V0qZ3Q9mPLkQAvPz85iZmfGO224zjXmVhoGeqrGNRgPNZrO0HkIIIWTcUHElpIBJ2ypCSpkpP+Oqz6Wm2srLalda6l7H5VbANGaiJaD6Fiq6bFl/9XW11cMq11fHp7rioF39qUJR4qiquJTlsjXrU6t9fbfrM1XY/ksR4VSAXe3qtkd5+VWmqHe73VQl7Q3RZbQWqfaDx1IDPo7jLIaX8bCEEEImFSquZBUhe5lrFYqi82ylp8qDvE+FrfvAXiXm1u5nUTsuVculQrn6W2UMuQyrPVyGlVdFlv0xB0PY3rYLa5niWiVDq/058JQVQmRqXXbtyuIzrc8u5S87p6TvZdc8NwaHQWPGWLooakef54rdLKLK/Nvrs8xQt5Vw87p4yznmvcj7oMp6cRPkXh4EQg38ntjqbZnHh6246gzNhf1R1jUSMte+JudpYFx/82VCYlyPJFG5vYlN1T4Mwywe1qyHEEIIGSdUXMm6xhenVvRguJQq3FJmWwX6Ko9Paa3CKLGV/XPquQovV8xlnRjYqjGk9tYj48I0KF3tjWsNLcfcK6W82+yY/bANryAIBhIO1TWw9Tnmv8PMnVlHmrF6cPsdPYZJy2ruSxpnYhqtdtlut5tmJVYKrVardtZjQgghZNxQcSWrhDS+Nc0ILKFUf1/Cuoxi2I3SXpESU1TGNLzGeb/64vSGcSN2qr72NRKWsqoC5zG7bwAgjCyrSqm8YWPH1lpqrR0/mCtq/C2lzLY/sakSr1yk7pWd61NrM+PIXh+GEptYBoptTC/Vb3zZWAcUcAzGqfrm1aUAavRnWwX3oc/U50jHuvfGGBfUO5DFu6CsUmkGY5+66VX4Hep72i/DvUEM/jaZarp9P+j4WF8/czG+A/1K252enh5okxBCCBmGOorrZAX7ETIhmA+ko1Il5s9Xpk5M5jhiC5eScc7pcuPq+zjn2jc3ZsIg253W/m4YV85JvyZ2/8bR33HUIaVEkiRZXKh9HUz3XG2sh2FYO5Z9qeOx7RAEnwJrEscxFhYWsLCwMFS2ZUIIIWRYqLiSVYKEVHFPAOgrrkC5GmarF3XjV5c6kVGVGNQyZcpVj0+l8qk4dfpa1G4WJ4z8Q3oan2x+USMjsczH7ZmqWZniWhRrWhaXOiqmSu5af7Zal7mcWufo41kd8MyFMYYq13YUN1qXGlrUhjkGIUQurrPqPam32cmtYfjjy825NDo+0DdzTLnPBX1xKcpZm45yQe/aamOv6KWUPbdC9JNECSGgpPHSwuOtkM2pce9IKSGC4izV5podzO6c/93VY2k2m2i1WhP9EoQQQshkQsWVkHVIHXVqkpXZOhSplEXnDKu6jUuhLHLV1IaZ/rssVnE9GAvmNTNfBKyUG7Srbxp9zex1KKVEp9Op5BnRbrdLkzxVxR5LlXujCvoli95SaXZ2FvPz87X6RgghhNSBiitZFSh0038rrFeXwlqmDA17H/iUniJGVcLKVNMiNcUZizpmvPXamYJ7mVGVUnkFycJUprK6TZXJOrdMRfXNCwCIIB+XW6ReDlyHknYH2jTqrlNWZ6F1ZYntFSqsyzmfus/G2jDVQJfiP6wngmvt+ra/MftRJc5Ynwcgc8u1x2KelVPfPdfY1ZYQwjvP+vdGn6f7Ybrl2n2yKVpLPqO6r2xb8yVtxdnImi7zKnBufACUFT+rlMKxY8ewf/9+b+y47p9CatROTU0N9TtJCCFkfVBHcaXhSiYa/RCoDVcb30Ocy0WziLr3wSjGX9EDsvnAm0tAU+LSaO7j6Ru3z6Aflcpz4DBc7WM+NdF0mQQst2PLcLVdZ4uSM2Vd8bjdlmUNzr0IsOoy3X31ejTnPOi5vQKAKnuxYtWtTOPTOJa6aFtjkoPGh/mv+bfZBzPe0c7MrA1X+/wiY8zVvm0o+9yqbbdas++mUWS715rn2ddJ11NFXXVlpg5KjDHTvdccmz1m+x50JdzSbtVV1Fqp8scDw+xVSkGhn+nZ3M7K2Tfbvd+oJzTWgtOQNgxoKWXmTrxc2cQJIYSsDrgdDlnXjKIGrRTjeIFUlvnYZ8CsRvSD97gegkdR3H11la2+brc7oMYNg+9Fhf25aH2Utb/c99Io7VWJB6/bjqtcHMeIosi7dkzD1PWSII5jtFqtzLA1Vc8BBdoyzKu8IOg3WDwulxqafeeZnqK59M1Ht9tFp9NBGIaYmZkBsHxbYhFCCFkbUHElE40IEkiZlHk/us+tmDzGpCwmdCnuF596ZLfvesizFTKt8Jj1Frlj6odr87xR+l+1fBAEWdIYAAOJmwTCXJ98fXPN14BK6/k+c2ksUsA9dVXpi60i2riUqjpz6RpPrq/WmnEZ+3EcZ4aQqVDqf826wzCEApAkCcIwRNLLqGv321YYddvagCs09iso3L5ytieB3Sed2AnW9dfHtfpaBe0q7FLcAWTKd9kWVlkiM0NZNjMPu+5l+5xSt2NprY/AcMd2KM75dWLX21eeQxFl+7wKITK34qzvvv4olV2DZrPZM/5Fbt2tlucSQggho0PFlawZ+g+gq0c9XQ5cRqg29PTDr/3QO8petMtN1RcOq01ZNxnXA7p9Xc3PtjuuTRiGToPN3hbFNoziOB7rHemLuR0HdmypOS7TIKziMqxJkiRzlc3cve02hxiLvm+L5sF+yWTvJ1tnCx2Xq3IVhBCI4zjXT6kG3anLiOMYnU4HQIBms1l7uyBCCCHrCyquZKJR6ELKBNpwrfJgaSsQw6hYPsahkJVhugPaCkSRquaLF8zFf3oy1FZVvEYZl41AP8ZTq0B918i8qqSvp3anNGNG7X7YY9CfXHGSZUaCsAwqZSiRvhcBtiLm6595neoaD3Xjk11br2hjx1TY9HzobLEDarZxrrDOsQ0n1/jtden6uy620uojc4t1nOvzOnC5+Oryga3s2i8IjLm157LMg8O8BkA+9t2c30phEQWx5Xbrg2vUii1XSb/tnpNEGKbeEUEksLi4iCiKBrYhGvAMGfgdyt/nfSWW/7dPCCFrHSquZM3Qd41bPw8wZpKlKu7OtlplPySbBpZPYVlKxWscuJLj1EWri8O0a8+/dpF09cd3vYoy544yvqrxvi63YY3rZU9d1XuUazOMcu5Sml3Ji6oY+FWyjpvrx3Q5Xgpsd2ffiyp93eq+yBgnSZKg0+mgGTTQbDZrrUONqXgrpdDtdtFutxFFEZrN5qr1qiCEEDJeqLiSCUVCIYFSMv3bUg3G/SAzDqXVjhGsGq9Xx0VxGOz4ON1XM16u6kOvbUjX+f0QVlEJvxurGf9qt58r53CFLVOeTQV2wJ3aPqfCuDLDseQ62kcSs/0yN27bOHMUKboWrmMuhbqOu6ntDSDEYBbdqjG+rnVVdq7ZD9tDoegcs42qqzebF9N7wXLBN8cMDMZWK8C7tureTy4X7yp1aIM7m6OSsgJ5190Bz4gS7JcaPq8IMzGVfnFnzlUiJaanp/uqee5e43b0hBCymqHiSsgEM0mxpqsxq+ewcXnZvLu+G+FaZH2pWYf5YL5SiretUtaNjzSz4WpV0oy5jOPYG7dYZJhWffljj2UU1bdqG4C1Lc4Y2qy7Ds14Xd/aMb9PkgRRlP7fvTQV/hHWfZ3M3nEcD8RNVz0XAKIoQhzHuT16G41GzR4TQghZ7VBxJROKRJx0eraAhBDpQ9cosZiaIqXJxtdO3WQurvZd7Qwoj56+Fn22sQ0AbajYD40uNbPs92FUxXWgjHaRlOX7VVZu166nQOm2e6SPuhIfDdRd0l/7aG7P2DL13VaVC9opUilNRdAVv+kcF/KusraCX6aKuuqSUiKKIm9sa1md5jy5rok5VntMLnffsn5k3hQV1Fpbcc3qsuq1jUZ7D9qquO5trXybCmVm7BqGdlkrtueDqbgW/Tba/bPVeTNrtbmmzJcA9r3lukZBEKDRaGUZo5fae4UQQsj4oeJKyIhUiS0dJ3UUF9dWI0UGZBU1z2XcruRLrUndEmOpldFhlMblwIy5HEff9Di1Gls3xtdO9gMMZgi2GYe6bhqFK43PYNeqty4zSWvKNFhd11BT9QWlUqqXlTitQ6vKhBBC1iZUXMlEIlX6MFI39jT9zo5fRK6uojhJjXZxLIuXq0OVWD/7s6vPpntmFdXDLGOrOmWueqWxvUbSLGV1xVZYzeNKqYHjufpF6MwCbPdLKeVVtuyY1irXzDzXVfeAQW88gPtedvT7kc51f/sUw3WyQN22VVK7D2XeAkUqvh0rqr/3rSu7TjOu08wwXISt/Oq2qyTPcvXd16ZpDBcpqnVekmjj3bUui+bNxLzvMtXYVhId952ZSbvIa8P+ztxDt/dlYT0u+uXMjNH2b0faTkMECEWAdjIPISJvv/L1Wt/bNVtKdO730iiXemtItFqtLCuxQjBwzQghhEwOVFwJcVBHLWs0GhMZ/6ld/orG4nMFXs2YxtFy4FPnbNXRnGdfLGc/tnaw72asoWt8rgfupVDPTKPINHJcbQODrutla9JEG1NmuaoZn+vcw7Zbah2CIEAcx4V9cH2uskb1/BaN2VXHsDG/3W43v7VOr217XsalJCdJgsefOIVN23YgjBIAElARzG14lpo4jtHtdtPY3kYLrVZr2domhBCydPAVJJkotBpTJb7SLm9+53oA89Xpe1gb9g19nTHY7o32Z9MItbOuaoPBHodL0fKNyVSJfOPVD9plc1dVcbLPK+qP2a6ZSMjVH1+Mrq/v9prxrSVb6TVdHe1rZNfvU5vs/4B8ZlWNmQXaF/9oZ4r29d1u3/zbFwdtz4l5rlIqZ+yYa9Rcv645ttdtVZXWvhbmufY1tOfFNR4fPpfWojmSUmbbJBWp5y7D3cblOutTKc0y9vyY49bXx95ORx/T/TLHbf/X7XZLx5YkCV70ohfhnb/3J0hfoivY78jtTMxl2NdWj8O89nadekxSSrTbbSwuLnpfRhBCCFkdUHElZBXgMyqrGNc+18ZJiXtz4XPhLHt4X62YsYimaudSfKMoyhl++iFeK7515qjOPCZJkttj2LfFiTZ8bHf2cVyzYepwvQyqi/3SwPcixDSaTMO5rF54xmUruPZc10WPv9PpIAiC3PUEBmON7XFWUcallPi3f/s3HDl2AfPz85iaaqVxAo4ul10T3/zouY7jGKF1P+hz4jhGs9lEYtwbSqUxsc1ms3AMhBBCJhPGuJIJQyKRHZTnuyxnHA/MrgeqqglPzIdM14NV0TlFZevEppn9dbVh12WqZ0BxnGpa0CgQ5B/upS0g9lwFs/ZkUWbSvOvswGiVqnQNXPjcqOu4IrtUuEH3YXdd/XURDqjK/WNupbRfLq+autRal5Ja1J8yJdKl9BYl9bITL5W1r/+upsL59xIWIszmQ8eDK6XQaDSwuLiIRqORU8pztRZkjbYVf7t9X51VKBqvTzU3+1A0Z+Y97XrRpddJEARIStyqzXUmMKjAa4aJWTb7osfkxVLyc4fsNqy6bC+AKIqMDNeT+SKPEELWMnViXGm4kolCyhgQiU+AyBhVeTAfsIsMFpf7qf6+zCjwGUi+B9E6uMr7+mYbA2Y5uy8DD4EewzWrQw0e639hKU6i76aolELgeDnRbz9/rrKOV5mtItXWd+2q/h7ac6vJvyDo72+a63v2kN6PMxxst9joNefHNhjsvpiGZBzHTmPMvC4+Y8Qeu+ve8MXj6phKoJ/4LAxDCCEQxzGUSuMuu91ullTHVbdp2PuvVX5/UXMeylx1zXhl18sm15Y1vt8i1/e2a7P/xU3+muprYm5zkxtxb4z2b1kdV9wgCLIkUXqOTEN1cXERrVarbwCXjNuH73fH/o0qMlwVBuff/G3I3Yeo5pmSjivC1NRUqfJMCCFkfDA5E1nzjNPFdakeSsz4MhejKMJFxqfNJG2HUZdsbEO6dy7ltdWYKl3RPNeZ/yqqU1U1S2Mbra7zq66VOi632nVWt6fVLW2E2Vu3uBjmWrqMDn2NzBhW+xzTwLWNIn3OsEnCXN4NRWgjVc9XkSGq59k8t+p975pf83qYsbHaBXcUo85luE7Cb5SUErOzsxBCYGpqigYrIYRMGFRcyUSgFRSpYgAJlKXWDapm/b/LlvAoBuIoiivgjiMtcke0GUZZth+sfQ+YzvmQVhmr2TpzONB3aY/FcAUWVkynHOcDbL5u7Q44igFi1p3F2llZhW1l08zcmzKozpqYMa+6z1qJyrlsirwRLYQ7u3GSJFl8rG2Q9fvhdlU3v+9vgTM4zqK67O/NfuoxZAajAFQiIaRCFIaIkV875toKrDWb2F4Bhlqqv9exwoN9d8ft6vNNF13bndtcV7p83hAf3D7GJJeZ2SoprPZzx6wx+JTwOr8lWVnrt0OvHyll7ofXZVBLuz1jzfkUV99YCtVrZV2zYND92FUnMOjJYf8e6JIbNmxIjwkzIRhzWxJCyDig4kpWHa6HmbVKFYPVxnQXLMNWi3yJfpaaMoNGCNONuPiBdRz058Ft2I1Sr0sprKuuuehfx7wBla+zwgsJ9A3hojkNw9AbL1tUdx3K3Ovtz1LKLH7a1X5SMrX2OUEQDCS4Gieu7NJANaeB7NoW7B9t3t9LfU/bLzh0VmHzJU2ZR4mrPpdButJqK4CcwmwyPz+PJEnQbLXQaDRWomuEEELAV4ZkQtAPYrYBW2bQVo3fGvaB2+yT3a9RjJEid1KfC2eRIeg6ZroZ6v/ssdjflT1ADvuAaapdZr9916ZOf8pwKaFlamtdV1iz3qI1U7XvvvvA/N4u4zKYfPeS2U89F0qpzGg1x69djM3r4XKj9WFfQ/Oz+be9nUxOJUwkVDdGIFX2bzMIM7VVl9Xn6/51u92Bvuty5hyU9Vm3YR7znWtm6y174WS+SHBtv6Mx59q8Bvo7O/ma6z+zTR+u3wv72pn9No1Yu++uc+17xb7+dj+K5rDst8MVt11Wh7n29PUwv+t0OpidncXc3FwWm63PI4QQsvTQVZhMBEol6cNkoAAkAIpVMf380Xndr3vLhK99JYIX3ggAkJ//GpL3fdxbtvHetwJIHx4Xf/2PgSOPOMsFL7gB4U+8Ku3zoeOI3/qn3jqjX38j1IE9EEIg+auPQX7xG+6xHNiD6Dfe1BuXQOd1N/UHqO/P3ufwNa9E8MJn9Mb0dSR//XFAP6jbY/rz38z+jn/zXcCRRwZUQAVAPP96BK99ZdrcQ8ch3/5ub/aj4Nd+GuLSvemD4fs+DnXL7d4xBTf9dPY5ecPNrlLp//74D0C88Ia0/S98A+r9n4DoHbPHFPzpb2R/y7f/GXDkBFydFc+7HuI16Zhw5Djk21xjEmkLb/kpiIN70/be/3HgS7f3j5ns3wPx3/tjUm/qzW9eEE35sZdDvCAdE265HeoDn+xXl5XtXdM/uxnaVVi+/d3utacAGGNSh08A73h3/5jNW94AdWBPb0yfgPjyHQMjBwC1fzfkr7y+78b8s2/LN6sU4m43VZl+/Aegnnd9WvaLXwc++Mn0OjnWinjXTf219tvvAY4+Ojh+BajnPR348VcgCAD58HGI33kvFPqGgtTJiBTQuulNmN22Mf3+g59EdNs9ED0DQ98nUkpEVxyA/JWfzBI9yTe+tW+8QECZE/ZjLweef31q0NxyO/CBTzkms8e7fr1veL3jPcDRR/Lzr8f13PQ6KaWAwyeAd7zHX+db3gBx6b607Ps/AXz59t68W+X274Z6yxv6xuTPvs2ZPbc/Jr32vgF88FP5smaYxZ/cBKBn+L/9z/prz/r5wfOuB/63V6QvOR4+BvE7f+6oM/0m+O8/DXFwLxIpof764xBfvt0opPqdPbAH6i1vSI8IAbzprYN91PfWj70iu5/UF78BfPAT/YL2XL3rpv7f73gPcOQR58+ZeP4NgHE/qbf/maNUbxJ+Nf2NUEB6nb70DQCiNz89410IBAf3onnzz2entl/3FnedABqvfTXC73smACD53G3ovu8fvGWn/uId2d+dm/9fyMMnnMcIIWQ1QldhskoIkG5roZDIGCLQb/QHs4pqzDfmndfd5CwzCunbfbctUBelStwiod/U91vL3DTt8Re9YHIYrcBgbAmcjrEAACAASURBVJvqlYX5OauiZygGbkMkezZX6X/o/Zurw+qE/lxJkVNaMRJQRgf6j7q6DiMLr/IpRwpKSQhoxUVU89O06rB66a7DZbT6GCjXN7aE6Kl52fjtyQTSInrMMncs+0Op1DBT/e14zG7rmrPrKdCLVZW9crYqDDSa2jVSIYKCULJXhzCuChAGAZJYIoBAGEskrfQ+llAIhEB+C5ueEpa0EYQCwfwsDt13Hw50Y5w9dw6z7UXMPnEaU1MSO3YegEy6wCPH0O1uwfGHD2Pf6VPYsLCIR44cwoYNU2hMTSMMI5w+dRJy9gi23/9czF5o44uf/1u8+OhJCCQIowhxojA93USzEUIqBXX6NDZ3YjQ3bsDZOMZUKCDjXj+FghQSoWwASkIG5xB0N/UvnaEeQqk0hLt3nkKCJBIIA1W4PNJ1rLLfAfMeMs/rXy8x+JJKG7NG2ewe0WXNJeVYs3bMKtTgctVtBEEw+F5H9XuZxDECKREIASVEFjbfjwnun+xNNjXwkseH0VH7ltFrzXWa8/fAnBj3hUh7bqisvTmWSZIeTBJAJb0MzcJ1JxNCCBkBKq5kBekbrnHSAVAeS2cagsnnvwYACHuq6lKs5WFi+6rGlJruqlXdSOu46dqGq/m9WZe9dY7ZN/t7vYVNZgybD3WeKfLPXXnG3L57Yb4v+f7ZSW5iyy3Q3U6dLKb2nPW/TwbK2PGu/XP9XgSD9Q9uk2PPYz8er39cz1WefvKawToT5xyYsX45t02Y++f2rrmUmAob6HZjJLHCsaOH8LWv3YIXPP/FOHPmDPbu3YutW7fi2IOH8a53/RF+9ufeiGPHjmDxzAmcOHIIl1x6NbYcuAY7duzE3OwCZmfnEUw1cf74Izhw5Q48eKyNPdsCNLdshEgkIglsvGgHzp+Zw6Hv3o6nX/9czLa7OHrsBH71l/9P/PHv/x66YRubNm3A+cfPYvPWi3H/t+/F/gOX44lzF3Dhsftw9vHjeMrTnoYtUxtx9sJ5xAo4+shJbLhoB176sv+MRRlBig7icAOawSKisIn5doBQdLL5iYXpnivQSBZzc5WEPb8BqRAoV76xfrIu1/3nc2HVn+3rZv7u2MmYfL8BPnTyKmn1IXD01YW51nSf495LuVT5TtHbDlX5vS/D5/Ltqidb18a9KrWxXfG3Xrsjm2Ecptt9szWdbR+0FGg1l4orIWS1w31cySohNVwBiUR2AbgfsvT3LpZq/fqMvrJzgOGMXbu8z1Cq8iA3ypyUnRsgHxtax3AdnJfihEb5c5LcZ7MuNbCBbP7FQZXnRlcfq13/4mRHefzjHXzAHswg64s3VMq+Z+xY17zBnzf6rSyqvWNmPKc+NwxDCKnQ6XTQarWQtOcxd2EWs+fO47avfAXXXPNU7LvkMjxx5gw2b5tBGKdGycLCAl7wghfgli98ARs2TKPRaEAIgYVE4cSRo1joSlx2+eX4oz/6E0xPb8BTrnoq/u5vPoxf+KU3YXahhWhG4smX7MNs0sF0o4nFC3M4Mz8PIRXOnj+DLdv24cMfej9++g2vx3ceOIT77vgmXv1fXolWq4GZaAqnTh7CqdNzuOzg5XjoO/fjxOwCnv+cG9CRCoFYRCAinDt3Ho2ohS24gMfnA9x973ewrdXGxz/yt3j2992Ayy67HKHciA988jO46aabsGnTJrz3nW/F5m3bcWF+ETt27cWDx07hec97Hk6cOIFrr70WB550GYIwRKz6WxvlMgcrfwypHdPqWgNlvzdVjT7Xi7aclwaMOHHH75L/njU9ClKPhWydO/qv/zbjTl1xvFWMbp1kzLe9kp29OZuDgjrr/hZL43cpiiK0Wq3C8nWh4UoIWSvQcCWrhNRwTZIuYGyHstoNV5/RWfX8ojrWmuFq71daZri6DD2f4VpkIFfp40oYrv26ZG7bmzAMcw/0eUUtrGS4aqM1vx/ooFXvM0riOIa8sIDPfe5z2LBhAxafOIUrrnoy9l96EPPdRUSRwFwbCBqbIcIAG2ZamJ+fz+p59Oxh7N61H3EnwgMPPIxd01P47Kf/GU+74Vpc8/Tr8MiJx7B581bMzs5jOtmAP/2Ld+DqJ/97vPRl1+AjH/o0XvGD/wmqG+P+e+/D1Tc8BXd+9S48dPwJfPW2L+CyS3ZhQ6uBl736h/Ghj/w5XvUffwb/9I//gtf/xKvw0AN3ItqwA2dOnsXZRx/Bl267AxdvncHLXvUq7LlyH7Zs3IS7vnkXrrn6ezB75hRe9zO/jJ98zY9hZv5BiM078eJX/CiUiPHosbux/+Ir8PWvfx3tdhvXX38dEoSY2boD5+Y72NCUePzxxyGEwJYtW3Dn3Xfhxuc8C1MbN0AJIBSDhqv9e+cyQs0ygy8e3B4U9nXMVoYjA7Y29HL3tWW46roCS821+1o0BmkY3ZnLMZBb16aBmuuHcT8W7fery+o17ipXtu2QXRZwuzRXNVyzuOTedZuamkIUjR6lRcOVELJWoOFKVhGp2lr2EOB6aEg+/zVAKegETEuBz7AofWgpcEMdRcXVf9vGhe/hMwgCqCSfrTMN+ew9DNfYtzUXL6v7pQwDyvCElVJmbsVm23bm0LpudK6HYt8DsFneNZ7e2dbxvLJrn5dXet2Zh8vWiMtQsfuvx1WkGvnaHnDvVvnyMhSQcYKGCBAgQdhoQSpgMZHY2NqEOJ5FILu49ZavYn7uDE4cewI7d+3A/gM7sREh9l1+JdoQmJMdiE6CznyMqS3bIOQ8wjDEd759P8IwxM7dB9AIFWTSxoaZKRx/5Cz+4J1/jLe//a1I1BwaYYSuitAE8N2778alV12Fr9z2DcydnsUdd96KW2+9FW984xtx8OBBvPnn34znvOAZePkrX41dO/fh0Scew5H77sQlT74Of/OB9+B3/++344EHHsDDDz2K//H3H8Nv/eZv4NYvfg6HHn4Qj59ZwLVXX4EzT5zHhqkt2LxlGs0t2/H5f/0nfOUrd+ED73s3Op1z2HTxxdi5+2KEjYtx7Og3sL0hMLN5F2a2bcHhw4fxwT//S7z01T+Egwcvw9vf9jv4nd/9dQRBiDiWmJ9r4zd+47fwazfdhFNnHsPByw6gffoMHnrwu3j4wW9j187tSIIpvPyV/xHRzDQQBuguLEAELSCUQGJ5CYjBteKjiieDvTZcx1z1SsfvriZwuN8Wvexx3ReZS3rJOUHB76/LDdg2bgdi/fW5jvZ8W0KZuF442CNQBdtkxXGM6elpTE1NQUqJOFED2c/L6P7l3wEAGj/xn2qdRwghk0YdwzW8+eabl7Ar40MpdfNK94EsBb1EOjXVSSEE4t98F9Sd30X4qu9bor7l2yv6bGMqBHXHVta+6U5XphAKITL3vuyzMOorkxysunT8Vl85Ef0YL0NyVUpBOAzXIqXGHIcPl8FoG6xCiIHtSPSxwRcKA4+uWV99c1D0ueqxsjLardRXxrWuvEaJUOkLCZG+mAhiASECdAOB2bkOwkYDc+fP4fC378Xdt34dH/iLP8OD930Lz7rhe3HJU56CJ1/zFKgowIYtm7Hl4n04fWEeQjVxYXYRoWrg3nvvxp492xAvChw5fBR79+5GEneweeM2fOveu9Fqhtg4PY2vff2reNmznomphVncd9tXsRkhPvzuv0RwfhbbkhD3fvVruHD0BM4fOoQf+f6X46lt4GliGt/49Gfx8//t5/DIg/fhpc9/Pj778U/gM3//Kbzm1T+Eb9zyNXz7a1/B+eOP4eoDV+CGK6/B0XvuwEN33ImnXnolDn/nEK7afhFe9Kxn4J6Hv43X//zP4JMf/yj+5P/7Q/z+7/8uLt6xD4Hs4FP/8++wccMMPvT+92Pvjotw4cz9+NJnP4svffleXHb5k/HWm9+GV73sVXj2c5+DhblZPPtZz8T8YozDh4/hzJk5fPwT/4Qf/eEfQbu9iD17diNqNHDL52/DH7zznfi5//omBEGCqLER7/ur9+DKg3tx6+c+jc3NBqamNkKKBlSYXiMV9F4sGevA54Xiv+7+dWevmziOvfebUgooWGP6vnO59hbhvHdLzssUX8e2YHY/7Bd7Rf1yfau3Sqo6Bm/9FX772+12eg3CyNnvIsLrnorwuqdWLk8IIZNKEAS/WbUsFVeyoiRJt7cFTjEug0xnFW7+xW85yywltjJWlOBIlzFjvnzudkWKoq1WVu2jdu/Nzgn6bdjuvUWKq9lupmiYGWeC/Lh13faYyozXrDrDeCsao57LMvdq0/A2WrHKqtoqsNlOnYRPRYqza670Oa6/Ndo9UvdDSoko7mJubg7Hjx/H3XffjXvvuAO/8Iv/DcePH8eD9zyIl7/85fjCZz+HSy7Zh/d+9GN408//JDZv3YhERYhOz6F59jSkVOh2geDCE2gdPYkL5y/gvm8dwlX79qF55Dgah44jCEOEQQh56jQQJ4aC1N83NezGiJuNTNkSEJibn8P01HSvfO/lQhBANiIEWzdDnDmHpNNJj6v01UK320EjSmNlFxcX0Ww2kUiJMLuvBGTvhVjcjdGMQqjFLtBKMyTHcZxu8SME2gsLmGq1IAOB7uYZRFGIxcV5hNE0HnvsJDZdtB0nrrsSG6dmcDxuY/u1V0G1Qnzj9Bls3LgZn/vs5wEEeN1PvgEJEvzNhz+EX/6VX8Zjjz2GvXsuxuyFc9g4M4UoEth60Vacn72AOO6gGU1DRRtx5sJ5XH5wD+bm5rJ5ac5MZ9c0SRK0Wq1MqStfX8Wu8S7XXK9Kaqy1AQPauo9NN3YAXvdjk+y3wdG2do+329LnmfWZ912Zd4wyjtlKro/cyzrfCyKjrO5z4UsBs6zoz9X0dHov1A1VIYSQ1QpdhcmqYVjDFQC6P5nu4brShqudWbKq4eoyWnyGq31OFeNIl9WxdUttuNquwittuNrtRVGExcVFK75sOMPV57I4quFqxynaxkDZGg+CAHEc45ZbbsEVV1yBj370o3j+tddi//792LJlC6IoQjeZxXSjhU9+9O+xac9+zBw+iSsbm9A5eRZT95/A1KEjCM9eSN1XkwTYugkQAp1ON91SZssmBM0GOp1FNKenoLZvwflz5yERo9GcwgPHHsFZCWy7aBOuvOJJuOfuO3HFFZfj7Lk2HjzyILZcvBN33XkvXv+G12CxkwBJDIUA7W4bW7ZuxoWzZ/D442fwpCc9CbfeeisOHz6MV/7AK7Bh0zROnzmHMGpASIETJx7F5ZdfhoceugtPvvJqACG+eec38D3XPxuf+ZdP46UveREgJS50BGamI9x165fx6PFH8ZIXvxgnHzuOTdt2YMPWrThx9BC2b96EDYnA6eNHIbsdNKdCbN12GdrzZyHPXsDiuQuYPX8eM+0utm/dinBhEYFSSBKJZPMGiKkpHDl1Cvfs2ordV12OK1/2YhztnsPWpzwVYTSFEBHC5gVs27kHorUBc+1FTDWmkMQS586fxsITJ7Fx48Y0jlhKbLtkN44ePYqDBw+i0WggjmMcP34cT3rSkwo9EnqroHDNac8DvZ7M3xd7fWXOx73ft9x6te5je/3rtlxrd2BdF/QXSJVRU5G0PS9cL/XsezQrayqhnhdEZl267iRJEEVRqeFqJnqyszvbben5CsJGNiZ9PZRS2Lhxo2dmAPnwMQBAcNkl3jKEELIaoOFKVgUKaSZhn8uoC/P//LXh2njvW51lx0X2cOGI8XRhPpSZ24kMPBRa7q2uYz6KYiuLsNsqM1zr1D3QJ+l/YLPnsVT5KXj4cxmfxX02yxcrnmVUceH0Kj/KnyE2DXkMjOsRp5+VgECIULWx0O1gQ6OBKGlBoYPbbv0ybvvK7di59yLs2bYNz37292I2aePhQ8dx5cGnIzxzBo277kZyz8MIvvMQgvsegOgmSDbPQGzehHseeQSXX3MVpvfuQjLdwHwUYGZmExAqCBHg7Onz2LJtK86fO4OtW7bj3e/9SwRQ+IGXfz+ajQBKhuh2Y8zOzmLfvj347ne+jfPnL+DGG5+RXt9GA1EYYG5uFs1mA3E3hhQC8UIHJ08/jl27duGOb96BG59xIzbOTANK4F8/8xlcffWTsfvAQRx78Bju+/a9uOHG63HnN+/Evn37IESATZtmcPe99wEixHX/7mrs3nMJTjx2Eu32PB49fgQ791yC3bt34ejRo9i2bTs++uGP4kd/7D+jGUZ46NAR7NixAxcunMfBSy/FHXfcjcv2bMWGi3bh/m/fj9u/eTd+/Md/OL1RVIAHHnwIW7ZuwVQYYrrZgIoTbE2A9sIConMLWJybQ3OujcePH8fFQQMNCCQXbUX34q2Qv/gGPLp7OzZvmkFn7gwSKXDy1HF869778YJnPg3tdhvbtm3Dpk2bML1pC9oX5jC1ZQvCTRvxiXf/IZBEWGzN4PoXvhCX796HIGyiuzAHsTFCszmFTieGQDCw7Y59T1fZX7m/HvNxl6aqqKvNjDtrLYcFBrYZ7mCue1c5s12Na9uaohddpgtxUbvmC0LXllA5A99nwFpqbva92Rfnme7fCCklmq0WGo1Gr+20DJMzEULWCjRcyaogkYv+t9erxHB1GZ2mAlvk3kvD1W+42urNOA1XMwuxfrb2vVQoYxjD1VSJwl4kcAf57MoiBgQkhFbGwg6AEEqmD9D/+tF/QGvzZtx9x1343hufjZ17dmP77h1QYYRIRIiiAAu334vzn/ocLnr4MQR3fxcRBNTO7ZC7tkNetB3zoouNV1yBuNNBp72A6WYL5+c7mJmZQqMpoFQMyAYuXDiL6alpLMwt4tz5OWza0MK9d34T4fQG7Nu3Fzsu2o4zZ07jicfPYOeui7Blyxbc/90H8eSrrkR7oY2jR49BKYXFbgfXP/06LCzM49FHH8G5s+dx9bX/Dg/f/yB27d4JKSUOHz6Mq656MkQYAkqg2RDodGYhGtNALDG9YQaJkmjPdbDQXkAUhdiycQpnL8yi0ZjBB973Abzi+1+CdiKxc+8uNCOBj3z473HdDTfimqufgsdPPYpNW3agvbCADTPTOHv2NM6eOYvZ2QXs27sf//hPH8PLXvQczCUB4jh1211YWMDMzAx27doFmUi0pqfxsX/4n3jxi16Ixx8/hcsuO4gv3vJ5XHrpVZifX8CVV16BkydP4qH7H8CjR47ixoOXYbcMsPHkWcwvtjF1zZPx+Gu/H/cGXXzv9z4Xz3zmc/Hpf/04du7cidOnT6cuzFEIGSs0IomokaBz8iQau/ejfa6LQ3d/G5ccuBi3ff0OHNi3E7fdcwee+9zn4enX3QAhQojWVO53J7GeB0zDteg3KV2rbsNVSpkzXIMgyBIs+Qw3131h3xt22IWrXV23S8nVSersMen/7Ozcvt9unZzJNGJtw1V4vCDGabhmLzx7402SBDMzqQpLw5UQslag4UpWBVJ1SssUqVVlrsJuI6cexQZTNaOzyDh3udi5sF1Si5TfsvrMsfgM12HmzGe4uqiiXLvKVzFc7X1cdVkpJaIoyu3rqlSSPXiX9cuV4dc3/74+m66TQghMiRDdhUWErQaklPj0pz+N5zznOTh06GF89CMfwK6tW3Dh3BO4/oYb0V6IIaXCFVdcge3bNmJ6x27EXeDx8+ewbesuzM8uYO7B72L/A48i+NxtiO55EIt7duC+s6dx2bOfgendOyGCNCb0m3fdg0sv2Ykdu/bgzOlz2HHxLkjZwdx8O42nhESz2UDSSbCwMIsnTj6BQES46+67sO+S/di0cQo7tu/A9PQM/vGf/xkzGzfgOc96JqamA8zOXsD8XBePP3EKl1xyAPfe823Mzs7hadddiyTuotVsIGpEOHLkOJ761KuxMN+GFDEu3nExOt0Ojh49il279mB+bgFTrSYCITE3O4fHHjuOy6+4Ehu3bMPf/o+P4kd+5Afx3e/ehycduAxz7TlEzQbOnDqLSw7ux0InRhgCx48cwvYtF6G5cQuUbOPMyePYufcy3HXnPfiep12Dx049jiRJcP78OVx+2WV48P7vYNe2aWzYcQnOnpvD7IUzmJ/rYG5uHk95ypWIgghfvPVWbN26DQf27YGUCaRU6HS6mF+Yx8GDB3Hy5EmcO3ceR48+jJe8+CXodhPccfs3cfGOi3HN7r1oHnsE4aETQKuJ87t3oPHm12N+/y5sv+giLC4upm6iYRO//3t/iCsu2YZXvPA6fP6OB/C/vPTVOHH8YezbfxG+ee/9uOqp16IhFKK4gyhs4pFHHsOxY8dxyYEDuO222yCEwKlTp3Dm3Fm8+c1vxoYNGyClxGzSyfbSda3dvGppGWfmWrZeytmGnM9wHQrbDRl5JVT3IdfXHmEYZuMaNMyLf7uLFGFd0tduFcPVFxoy0A/j3CCI0vl/480IAvH/s/fewZGe953n583v2zmigUbGYPIwzwyTGERT0ZRFJ1l7vt21z3d1tte79t7e1Xl9u3WSt9ZVV75y2bpbex1lWcGiRZESJUqkxcwhxeEMyeEETgIGgxwaoXP3m+8PDMBGTwODIeld+ra/VaiZfvsJv/cF3t/zfJ9fwvjK/3WVbG200UYb/5hwPcT1/RcTa6ON64KHj4vve7TO6bgRm20sGq9vRmq2QzpbJUlqJonbxRqhvJYcG4hjA2naTKZm2a9F9q5pVW1wvNvMwrpZ3y3nZaPsa2Ovy+JdbWXdLrYi4YIArVwEt3IlbN70Nvdvjptt1V4URUT/3XlMtY5IANEVEIQaHiFUD3zRxVNcvIJLNKRRK1bJL5WZvfwOb558A8/TueOBB4jH4xw+eDv1qoloFvk3//rfUajV8CQHp14jGUtRLddQFR2nNoOqiIhli8DxC3DsuyRfeJ3OWp1aNMSkLtHzuU+yXKsQqzpomTSe76CICoLnUS1WEVWD2vIUnu0jCCnqtTqvvHaMT3z0IywvLTJyeRZNlti3dw9LizluvPEGVlYyDO7oYXF5iWBUR9NUPvmpj/H226fJLa/Q19dLJBZA0at0dXVSLFc5dPhWLp57h2g0xksvvkoiGWffvt2kO7Joqs7C/ALxuIFj2UxNzuH5CsFIiKmpCexaDddxUPUwqhJAUzTeOXmSvft2UiyuMDi8m9zCLJlMhvm5OUqVPGNjArIC6XQPme4ucjkTpzjFYH8/i4UV4vEsPX0ZkD3qpo1uaAwND6MaGj0dUWwthK/qxKMeAUMhEIggCAKzc5Pk83W6MmluPrAPSdeoVmpMTEyRTMZISJ1Ybh1JNLjtliGGelJMTlwmk+1jx969nD19ip17d7Mkg9uTpnb6IjvrJuKv/S66KEI6wfLHbid0+Ca8/gF+/Zd+hXJpBFOIcPTN09z94M+Tzg6iqR779uzDd31sD0ZGx/iLP32UBx/8GH/yp7/P1776VT778KeZnZuiWjE5cWYW1xI5feY4/8+X/pB//ss/zU0P/TyCA3galmMjYKPLLr4bQPI9wETExWKjzlo/FGNjCRtBENbLv2w3Nn2r97uVDm18/2jQqc0HSoIgXDmg8tYtp41JrRpjSK/Xs6Wxtd90ONisoRrvwXXfTVa2Zq3dLMdB42HmWvvGw653S3atym+aNWA1hl+W5XWPks3WkjbaaKONf8xoW1zb+C+M6yOuzbge4rqG90NcN5u/VfvmONbN5GhOsNQq/vVa814PtusO3Gq+6yKuQmtrwTreB3HdVL6G2LPrwZrb3bUOJjb7na27DzZYlQVcRE9B8EUEwaaiyiiWjSbLuKLHS88coVJZIaQFGRzYRT4/QzqToli2yPT0sbKygmEYq+6i5hLlqkRH1yCCIlBbnCPsQmgmh3nqAsHxWdwT5xHzZbxUnAmzSsdtN6P0dSEqCqVyCSMQQJBEfMdnenqKhYUcqqKyd/9efE/E92toisRyvkggFMO1LN45e5F0Igy4zC/kKZYKJBNxhocGKRYLgIiiqUiSRLlSZHBgEMtyGBm5RG9vL6Zp8uqrR/iZn/1pivkC45PTDPT3MXn5Ej2DO3jh+SN0dXVx7tw77BweIh6PEY9EiCXiVCoWjgfffuxRfvEXP0cwGEDwfRYXc7ieSDAUIBAwWFlZwbFtrFoZPRAike5gamqa2ak5BgcGiScivHb0VUQhyHxugoc+8zDl8gqKqOF6VWRRRw/qmNUy+BqPPf4YP/fzP4dmqFQWLiOGExjBBPMT45x65xyCIHLw4K28c/YkshIlHArgOSYjo6McPnQnxWIJQViN8RREn/Nnx0F06EwnSCbTxBMJfvSj5zh0+OC61f+JJ57gsw89hON5mLZDnxFk/tRZMqZDsFIHy6agSDgRjfiD9+Cn4lQ6MxghDWV/D8tli3hvL7//B3/Ib/6rX6dU8KiUTUIRAUkU8fwai4sLZDLdLJdMMqkkXCE8jz36bX7lf/jvcD0dVapjuh6+auDJKrJr4wOusBpfLXhX67C1v33HcTa8T43/Xgvb9UpZb9/crsF7odFzZW3sNb3QSGAb52jsdz16aIOfxzX09maeFo1xtJsR9sbn3NxufcZf/SIgIP35Fzf0FwQJVVXfbf+PZI/XRhtt/LeLtqtwGx9ieHi+gyCsH5pvwHbdexuJS6tN0Hb+rrc6kd6MDG8We9nqHprHeq/38l6IWeO4YtMBQSvi2kgmN2w+t4hTbYa3SQ3U9c3Yla5Xl6TZXJ7NvtuqzETj/NeT5Xer+TdzRxQ8H0VZzQhaF8B3LfB8ZFFGFkT+w+/8r9xz9310dg8RiUSQZA9RUlCVIPnyAq4vEo3FUCSV4tQM0bKJe+4S4uIi6vNvYi0XEKt11LqFL0t48QhiPIIV1pCzHXjxBHXHQ5ZWLV6nT51h3/594EOpVGL88mWWlxb46AMPIqsagiiRX1mhXCoRCRnUHQHfczh39h00TWPkwihDOwYIBQOcfOskP/v5n0cSBZYXF7k8PoZuhKnXapw9e45PfOpBwqEwqqqhqipjo2NIkoimqbx98gT33/9Rjrz6Gjcc2M+ZkyfIdPdRq9eQRJndF9JakgAAIABJREFUu/cQCeo4noPnu4DCs8++wOBAP7ohI0sysiwRiYUpFkukkknGJmfQVJlULEq9aqJKApKmMz6zwEBfP57n8/3vPcmnPnE/uaUFMh1DzM6P47o1UqkkgmAgyg6GHmJlpYiCx+TENPFEDEVTSXekKSxOE4wlkeUAT37n+xy84zD1ehXD0AiHI+SWi/T2dHP27Bn27dpLsVTm0tg4mWwHEUMF0UfTkswvztLRkcKqm1y6MEKtWiPV2UE2m+XRRx/l05/+NJMTY1QqdWRZ5dLlMT7/+c/zl3/+Z3z8Yw9y8eRZbt2xA6WwQq1ikxAFFEGESg0vX0RCAFnCVxUEWcZLxiiUSihdaYSPfQQ1ajAZULk0Nc+hn7ofLRDA9UCSFArLo5gzY1yeXaEr3cezzzzF//Y7/54FU+DHz/2QT//UZylaLpJu4FtVJElqyMitrRPBVrGka9e2ckNutHxudojV7DrrNb3XQot2m+nzNZLdKFurNo3kdqssy+vXN9FR2wn9uJbMjWM1Y83SLfza7wICwp/+nxv0oevZ6/cqiiKypG87K3kbbbTRxn8NtIlrGx9i/MMT1+26SH1YiKskSdi23XKTsh23u83wYSGuray31yLjHzbiupm7tyyI63PWC0XGL7/Dl//yr/j4Az/J+TPnefjhjxJKduGpKY699Bx33HMY03GRCybqidOUzlzGfvsM6cvzUDfxDB0/HgFdx09FsPDRst3kq0tcnJ6lf3CYZCqDXZlDlBXyhQrTEzmGhnoZHbmIgEIklaCvt5e33ngDSRDp6uzi0vglbj18ENu1Kc0vUSpXuThymYGBXgxNob+/l0vTc3Rns5w5d5bbbr2F86dPE4nHyGTSuJaNLEsIioJjWlw4f4FoPEEqlWRxcZFMpgPH9cjlFugf6Gd+fo5spotzF0fA8xge7OeRbz/Ovffdg+8LqEoAXZcJR8MgwezULNnOLhzHRFXAkzQc00SVJRbm5kkmYwhalD/+0h/x8w8/RLFcpbd/kJnFPH//gyc5eNstpNNxEvEoZ8+OYVoVDh26Bz0IVtVGUkUUNUi5tkxhscD5kXHuv+9uZEFkcmqSzmwnnu/iWKAbOmNjY2iyRiRioBsagiAji0Gee+5J9u7bS0cmQ7lQolyp8vQzz3L/T9xHX3c/tVqJ8bFZRkbO8OAnHkCWVE6eOIMoytxwwwEAnnnmGe677z40TWFpaQmrXkMPRInHYoxevIAoCmS6+1iYn6GrM065KDC/ME4sleD1H7/OZx/6KWzfwlkuIooiuuPiFoqorg/5EoIoIpYr+OUafrWOoKnU4iGqD93JdFeY4ECYeP/dCL7NQtGlM+Bz+fSr1HyZQ3fdzw9/+AMGh3q56867qEir71C9Xl/Naito6wdPrd7zRjLb6gDrvRBX318NbmgMq2iMcW0cfzN93OwZ0+xJ0bwWNFtx12A7DqIoXqkp3FpHXY+L7vsjrqu5HaQ//+KGexeljeWO8FcP1mRZXk381UYbbbTxIUObuLbxIcaqqzD4m63724b9hT8BQPnCrwHXdhm+HrRySW41ZquT++shmmsbl8ZsltvZ9Gx1j9eSvdmlrvG7a22kNhsbQERqyqK89bPaSvZrodnNutVzfy+//6sIanOCKcFFECQ8BBzPZWl6it/7t7/Nv/gX/zOdQ8OcPPYSPX29JHsPoCBSqZYQBQ0DA+elV9HeOoP03DEolVcz/CZi2JEAdjKEEEwh6iKVchUtaKAq4NouIgqea2PbNoZhUCwWse0i0UQa14FQQOf0qfNcHpti775dRENB5nPzxFIpUh1pqsU8K/klVCWA54nEIgFyC3Nku/u4PD5BIpHEdW2CoSCPf+dpHv7sJ5HF1ZqVjiDhmQ6iLGD6daLBBACOabG0vEwkEkFRFObn58mkEihBA9OxETyfC2cv0z/QjRHQEUSZ2ZkJstlupiZzIJikkx0EonEEfFZy8yTSKUqlElFDxxFELMtarZ0pyUxeHqG/txdflJEUHWQPz4Fiocj582e59dbbwPfRNJ/LY3MMDvWyMD+LZXmMT+a4/fCNPPKNRzh0253s3Lcb0zbx7QqeqFEs5OnKZFjMzZFMdfDI332HbHcvh26/jfzCLIauo+ga4XiUSqWGICkonocvKJTLJSrVCumOFJIsABKWafN3X/8av/jP/gm27WKZNqFQhEJhBd2QefXIUQ7sv41jbx0jHo1w+PAhcrlldF3l8tg4iUSKN99+k4G+XtLJBMdef414Ikk6laJ/oI8Tp05w5+G7KBQqlMslBMmnXrdIpzpQFBXZ0LAdG8u0CAeDiIvLKLllhLlFhNlFiISYkCHwx/+R3/69L/Jbv/VbzM3NEYvFSA300JPOUJge5dG//UtuOnQ3h26/gzdOnuUjH7mHfN0iHTOoeQ6Vch0lEMbzPAzHw5V1RN9DwEEWfWxxKz38bizsKqF1mvTOxlI0je6/zTrgWnqlmbA2ktLmWPbm978xU7IgCBsSLnnX0tEN86+R7/Wx1u5yk2Rvm1msfb8hXnZiFgCpqY7rVfGzvr8hM7IgCOuuxD4b14GtagC30UYbbfxD4XqIq/SFL3zhH1CUDw6+73/hv7YMbXwQ8NkYKfTe4X7lCSiUkB5+YMP192Jh2wzXO9Z23ZQ3ZMhs2pht96S+lUWgWZZrXd9sg7QZ1jY/LcelOV64dQKUzSw214Nmy+d2n9t1j980pCvISPg41QKPfuOr6NUCv/Rrv4XYuYOZ8WUOHTxMOBBjZmKegKGhvXQC/ctPoPzu/4t04hwCPvWdvTh334y4bwgr20FVVxBDBiOXJliYnyEejZKbzxHQdMbHJpBEiUtjlxgbGyObzTI6OopfN5kZn0IWVS5cvEgoFKZ/sAfbqRGJxIjGokSiERzHwbE9EskEqioTjUU4evQ4vd3dxJNpjh57i96+PpKJBBNjI2Q7O0kmoxihEJWayeSlERbmckSiMeYXFggbQer1OpquMzMzQyqVIp/PI0kSkxOT1OsWqWQaSZB48YUXCYYNItEokiSjazqCIDIycpnBwT7qhSVq1RL5pXlS6S483wHfZuzSRWKJGLKs8jd/8zUOHbqTYEhnaWmRSDyBqMjkVwpYNZ9H/vbb9HYnGOwbAElCkDXeOv4G3d3dlMplujq7ECSdcDTE0PAgmWyGlZUCkUiYc2fPoEoyHR0djIyMEghFiUTCRCMR+vv78DyHeDKOAMxOz/Ctbz1KRzrLykqBhdlZbMvm4oULnHr7LW44sB9JEFhaXiEYCLKwMI8gqJw4cZJdu3bh+x6KomKZdcKhGIqsUikX2bd7D4u5HOFIiGgsTD6/QjgSRRFFBgcHePXHr/ITH/84hhEgqOskUykSyRSSKHLxwggLCwsMD+9m5OIIfX09XB6/RDKexHc9Xj3yCvg+K5ZNYKgXqz+DevAAfjBApFQj9Od/x2f0OMY9hzm/OE9nVxcP3vsgn3zwUxihEPc8eD9LiysUihUSySRPPf0Ufd39FHILPP7YE3zkjsM4ZhVJlvAFHXDwRBdP9PAk4Uqhp03fMATh3cRKqx44/obvm9/HViRvO3qklaW1Md60Ec36TbjyudmaDNdexRqJq+u661mXYbXG7fXq7kayLQgCQiyMEAtf5YGyWcjJ2hjA+qHQ2jN5d74Pbu1so4022tguRFH84rVbraJNXNv4LwrPW7W2rv5sJB/XC/e7zwMgfvaj19WvccPzfuJRtyJ9zeSwkZQ29m3cZDTO3UxiW7ndbWVR3c6maKsNznuBf5WheXP3t61kb7UZbczqu9Wmrnms93Lw0OhGuOZmvTa+VavwyvPP8uR3v8Mv/fefJ9RzE4gucnmRUmUBLSSweOw4xuPPEv2PX0E8dgY/GODNgIq1p5/I7kEIB/E8H9dyKJdqCL7PqZMniQRj3HhgN5VykcnxSc6fu8ip02fYtXsnb799kptuvJliscQLz7/I0J6d6CGNzr5+RAQ0TaG7p5NSqcSp0+/Q19eHZVp4nofnegSDBivLy0yMT3LLLbcxNzcHokg8FqVSLhKNRrg4OkJXV5J4PIkoypSrZXq7s5y7OEI0EiESCCBdcTUURIFEPIpp1kmlksQTcaLJJLqq4jsOqqoyNDxAJtOBbTvMzS0wOTFOpjNDJtOJbohIephoIo4ejvDo3z3KgQO7wXPJZHuoVmocP/YGDz30Wf76r79COpXAMquouoYeNMA3kUXYubOfgf5+cos5jGCQt948zV13HWZhPoemaeQLy3Rnu1FUmXKlgmaoWKaJWSsxMDCAqkgosshKfoXe3l48H1RVwHNNoqEgludj1uoEQkHuufcebNMim+2ipzuLEQwwNDxIZyYDrkulXMYwgtiORyhg0Nc7wOnTpwiHQ+QWc8QSSS5fnmRwaBhFVRga6KNeryEpEiAQMAzK5TLhcJSLF84RjUbp6urmmWeepaenm0gkSm5xiXiyg5mpSaLRGNFolHA4wpkzp5mdnUFRZHp7+pianKRYKFDMF9i5YweF/CIvv3iEqck5tEwHT547Ter+OzDqFsZXHmfnfIHA3Qf55//qN5iYnEINBJB1FVHS6e7pwazX2b9vD6pmoIgi6UwfM1NzPPKNr3LnwZvwkBGdKqLgo2oaluOsvzutPDwEYWMyJ/8q5fEuwdzsPd7KWtlKV7Q67GqUq/GQbY0gek36V2wcc4s1oFnnNxPLRh3T6v6u50CxOX7VbUhG1axLm+VxXHf1cMtxrtTAlZEk6QM5XGyjjTba2C7axLWNDy1832swY30wxFW6TuK6hvdCbBpP5Fst7I2fW1knt7sZWNtEbWXhhNYxnNu1QHzguCp49votoJsR180OGpr7Nvd5P5sv3/fXN9+SJFGv1/m9f/e/8/nPfY5Dt99JbqVIrbzM9EKeyz94nfiTL5L4/W8R+eGb6Ba4N+2huG8Arb+PkYkp9u7fzfz8HLn5eVRRYWZ2lsce+w6xaATbtsiksywtz6MqEumOToxAmBtvuRkjqDM/u8CpU6fYv38/u3buRJcFFN9B03Qi0SgzszOYdQtFDjAxOUEoFGIxl6O/t5dytQi4SKJKOp3F832CQQPPFzBLK/T19pIvlujuH0QzVEBibHQUQxORgxEGduzA0FQiuoqo63i+h2s7lEoFVFVB0zQuXRollkrg1GoszM4SDAcwLRPbsQkEghw58mM++tF78DwXSRK5PHER0XEoLMwQMDQ6u3vRZYlqtYYeTFAqlujs6kJVVFKpBNmODtLJOIoik88XeP21k+wc3kUgYICokkynqFWrnDpxkq6uzBWr7gCWXUf0HeZm51FkDUXRqFbzpOIRRi6NEonGKJWLiIJLpbhMte5QNysYukKtUsV2XELBEHowQMWqU1heZG5mlmg8jC/L+L6H57qUKyWCusGZc+fI5RbJZruYnB7jxhsPUCqV2DG0EwSBo68fx7QswpEwlmUSjAQJxSPgrSZAqtctVEVn594d2JYNHuzdtRc9qCGJCs8+9wLDu3YT0FQKhSKarpHLzSGIIjt37mZwcAfTszOYlsUtt95CKp3Gdy0MQwYEPAesWp2AYZDtycJgL5VsCqZmCX31ewSffpnu8VnUO27C00QiqTSO6xIOaIg+WIpMpVLmm9/+Hr0De/nYA/fyzPcfpVoucv7tt6mVKwQCIWRVp/G1u7rmarNLarOueFfHNv40vsubvdvN19Z06Fa6tJHMNc4nXqkBe63Y11bzb2lv3oQ8b3YPLWX+2vfg5AW4YdeG9q7nrdeuvZbXjd/wWRAEbNtZLx3UbGFuo4022viHQpu4tvHhhODgs9Fy1riAX28inTXiKj/8wFVjbjVOY028NVzrtL4ZjRudxrbNVtPG769FdJuvv1fC9UESV5ErLn/+lY1Yi64bN2p+w8/Wc19PQpL3YpFYe4biFdl9z1tNqCI2bhAlEF18wQFEPF8F20Q2LZ57+lkkB956+Tm++42/obiU43/69d+gWpEw33wb97EnyfzgTTq+9E26T17AcOBIaYnOzz2EurMXPxlFkXTyyysszE2R6khTWinyzjujSGqIgYFefN9h167deI6GGlTp6s6wvLhMpW4SiQQpriySisewLIebbzrI8vICsuIRDMTQ5CU84izNL3D67Hn23HAjruPy0pFXuPfe+5AViUDAQA+GsOomJ0+9gx4IYlYKhBNhAsEAi0s5lvIrZDozlPNFIuE4nucRigQJhyNomo7g+8zNzxFLpliYm2FuZo6OjiTlSpVQJIKDT34lTzKZILewwkq+guu4qKpKPB4nX1hiaLgXBBlV05FlEdtyCQaDJDs6ESUFRTNwsYlGw5QLZZ544vscOLCHarWIKAogeGihAIgqrx87QbFQYveuXoorS0jSqt6QRIXBHf28cfwUmc4UguiRSqWxTIsfHz1GOhFB9R1ULUSpYtHT148sCMiSzkq+TDyRwNAUPAQC4Qi+5+IAwVCQ/EqBkGYQDkdJJJNUylWmLl0gGgquxgJ7LoFgjO898ST3P/BR4sko5VKFSxPT7D+wn1olj+d6DA7tZGCgm1J+lkgsje/7lIoFArEYpXKJR775TYIBg56+bp5//gVuuOkmHvvOdyjkCySSSUbHxsh2Z/E9l2QmBb5HpVxicMdOjGCQ8+fPEDIinDt3Gsu2iSc6uHRphKnpcW69+RbEQAc7dg7gORbvnL3A0VdeItPdh9vdzeWwDKpKeKWM8eXH0R97Fv/Jl3HMKoousygLOLZFRA/y+Le/zWc+8xBWvURnNoHsuoT0MgtTk9QqJp0Du/Ft8HBwXRddCWA7Jj4KvryqJ3zBXz3EFPyr1IUgvOuiu/rZv0KEV//1/c3f96tiXq98t9HP59p6490B/A2W1vW421ZtN7kGTdbaprmb14pmtNSUf/xNmJhF/MxHr4jZQKqvPANxEz25IUmWsBq7u/p4PURRwPc9HMfGcWwkac2V20MU22S2jTba+ODRJq5tfDghbO5+9F4sY+sW16YY12uKsQmJXPvuesbZCs3Wgs3afNAW0A+SuF4Vp3ZN4nqN8T6ge93sb6hVYimhoY9wZYO29uP4MuAh+iIgodsVTrzyPEdffobOZJQgKqFcnk/E+hm4uIT1pa8T+MOvoL34FoGqiBcxWNndj37nLZjZNEO33IzjWNhmDc+Gs2feobsrQyoZ5e+feZ4D+/eSSqV56umnCeo6e/cN49gmoXCUZDJOqVThyMuvcfDO27Bsk0xXBtu2sJwakWiUcqVM3ayTSXViOyvE4wMoukR/fz+6oTM1McHefftwXZtIOMLx48dJpjrwXJeF3BL799+IIgvIikguN0dPd5ZYPA6ixAvPvcTw8BCCICBLMj/+8VGymU5qtRqu5yJIIm+fOEsi2YGi6STCYepmHSMYIJ5KYtZNwpEI6Y4U45Pj9PX2UiwVcH2XZCKBa1q4nocgKWiBEPmlRQxDx3FcZEVBlkRc10GWJaLxNB0daUKhCEePHSeV6cAIhEAQ6O3rpS+bQjcCOL6ApmnMzc0jSTLTkxMcvv0OEokonu/heR7nL1xk/759rJIegbHxabLZHnzgqR/+kO7ubizLJJ5I4LoOkixh1W2KhTqO66HIEqoqUK0WCBghXNdBURR0RSUUDCGJIpIocmn8Ag88cB9mtYjvmCh6kOEdQ1iWSTgSwvNWM7vaZg3TrOO4PqVyka6uThzLQpZEbrjpAJ1dGUzT48hLL5NJJdkzPMTNtx7mG3/7Df7pP/snmGYFWZIJhoLgeZTLJRKpNL4PA309vP32cQ7ceIChoR089cOnOHRoH+FQN2atRjQd4ehrR8H3ue3QIXIzE+iaxtTkBEZAR8p0MC77CLfuwUtE0QWQj7+D8tgLRL/6Q4y/f53x0xexQhF233sQUZb43Od/iX/5m/8HM4slDt95H+PjlzDLi8SjKV5/8VnmxifwLJlIUCegGuB4COK77+DqqVLz+73xUFAUNyZWui4C1UQGr0cDNR5IrumVZmvmWuKjRrfm7XrCvC99+P0XV2X7yXvXY3BbHQhvdl+tQirWZF+7L0mSsCyroYTZez9QbaONNtrYDG3i2saHCu8ukptbVJtPmrdjcWwmrteTnOeDWHwbY6PWPrdKknGtzUOzG9v1PofmtltZMrdrHXj3JpsH2aSZ38pqsnk86qbTNcWUNZPRzTZ/jdlH/YYsmo0ir4/R0M93bWoLOcpzM1SrFf7TH3yJzqklDl5YIfvlZ4k++hyh196B0SkE28EM6fh33oB6xy1YvVnEdBw1GEYQfWrlCqZZR1MVVhYXEESRaqVC3awzMTHBvfd9lOWlHBNTkzz48Qc5evQYQ8NDSLLK+Qvn6exIYegqasAgFAijazoz0zMoskLdskilUoTCQZLJFI7tgmTiuDp1t0o0EkZwPRRFoqs7i67rCIiMXBxleNcQkiSgKArBUBDXc5kcG6Mzk8V2PEzbJhAK0d3dRcAwWFpaRhRlbMvh7Pl32LNnD6IgIksS+fwSRkBFlCwS6Qy5XA75yob52CtHURWBeDxMKpWkUilRrVVJJJKIknzl9wiKqiIIPrFoBMuysB0b1xNQZA3bdjAMjUqliGVXcR2Hwf4BorEwvush+i6FlRyuY7K0VCASjaHpOrWaxfTEJN3ZTnKLOVRNJhIJk1tYZHj3bvAcPN+jVKuT6egkEgmDCH29/QSCAWzXJBAIYTkuuiohSyKqHmRhfg5VlQgaOgvzs+hGEFGSqFaruEAgFKJSLZNbmGfH8CCCIFGp1qhUK6Q6sgiew2JugXAsTiFfQBEF9ICBahjYtkksFqNWMwkoKmMXR0lGYizNzRNOJZmbm+WGm27EA7735Pf5uZ95mFKhiCorTM1M09nVyfTUFL3dPTiez5kz75CIR+nu78f3BFzbJh4PYpllHn/iRwR0FVGSeeXll7n37jspFUvEO7oo12yMUIzxmVkk30PXNMqVMkLI4MTMBGeqFUYMideW5wjFYohvn+MnLucwHvkhPHuUB37tVxG6UsQTXfiqSt/AEJMXR/na3/5nhrMBFuem6RnaQ7VY5l/+xv/Ci88/TyRg0N3ZhShJeMJGa+Tqe7vRg8Xz3q2xuurC2trDpjGkoBUhW7NGrumU7dY3bZ6jMZTjXZmvbi/L8lXrQLNs7xX+915cHeOh+7ZVHqzVc2p2n25u35w7wHFcbNvG87z1zMRttNFGG+8XbeLaxocK62RK2H6ZmO0s6n6+hDCQRbx5z/uQ7v1hs0V/7btWrsPN32+1ifkgLcDvZaN0VY+thtiCXF4LWyWJarYONPdrtTGUJGm9j9i0Ca4USzz7zDO8cuQIjz7ydYKSQIcsU/+Lx3nwyZN0X5hH03Q4uJ/lfbu5HFVJ3X4jdKYQM2kKhSqe5+BRJb9cY2Ehh6ooWPUqgVCIwsoKZq1MujON7Xh0ZLqIJ1M8/vh32b9vD4lUgmAwyFsnT9OV7WalUKGQX6a3u4v5+Wn6hvrJL5ZYWlwkk+rg0qUxBnbsQpJWXfgUVcE2XQSphixFMUIaeB5jF0YIR6OIikKtVmNhPsfwjmFExcfQFRBEJFlGkhVSsQTz88t4/qrLoxE0EHDxPQFdN/j6177BHXfcyeBQP6qiIAKeZRONpPjed77Hxx58kKpr41g23/rmN7nl1ltRfBGzXkXXFAKBwKpVUjewbAdRkiiWq+iaSm5+Dl2TryQiClOr18GXefqpH7Fn926Wl5cIBRWS8SgBQ8esWVQqRUr5AuXiCvFogFgyhYCEJIIvigiIBAMG0VCAum0hyyK6rqMbQc5dvEi1VCCZSpHpzBIM6Hh4mFYNfAnPdwhHgkxOThOLJRBx8DyLUrVKTzZLwNDBd7HqFoFgmFqtQiAQIBRPYDs2uqETioQQfYF8vsSly5MkM53oWgBFEggEA5iWi6ooeK6DrErMLeRIxKPIskKpVEaNR4kk4vz46FE6uroIhg2GhofxBRE9FKYjFaWYL9DV2cVrP36du+65k7m5WSzTxDItAqEQTz31NMXCCoNDuxGROXHiDfr6u4hHYtxy6BC4Lul0DzsGe6mVStRqdXIz43SmU6RTCYb6uzl3foRoNMzszDSCADPzi9x++93s3rUT2VB58/Ioys4B8jt6uLi8gFSsMvDMUdRHn8J75RiX9/ag6GHCWpLd+27Er5oUS+CIXeza08cdd36Ee3/ifhTf5eSpUwzsGMIVNrq0rr7HzTpk4/vdShG9a51tdjO+Wpe8S4i3tya1In9rOmbNGik1xcMC2LaNKIrIsrzlIeZWB3Ob4vvvEtet+jUT7lb30qrP6pq98XtRlNYPBS3LwnEcZFnevsxttNFGGy1wPcS1Xce1jX94CA6e564vepuRj1Zo9fe5unA2thc2bbtdbEacrjXmmuzN5W2ud8xGAnu9dWCvV+at0DxGczmY5vxLgn/1fFu5RV8LrSyurT5vJbPMu/FnrusiugK1eoVvPvJ1bLNOb6aLj3/iUziImFUT+YnnUf/kEfxEFHPvEGI2garp1Ko2ouSvjiiA61kIggSCj6IoeA4cf+01OjNZTLNKZ7YP1RAJ6CF8p0zVspF8mXPnzjG0a4hK1aJeqbKyvIKqqIQjETRDRzcCFFZW6O1dLWciIBEKB9GCISyzTiwcwLZgITdDd28vExNTXLx4ibsO78Ws1hG1GG+9eYq777kV24KTJ09x4MA+TNsiYIQpFVfwBJ90Ogmux/jENJFoiHAowdzcLLqhkMmk8VxA8KhWTXxv1Z1YViVsy8Z3PQzN4LXXX+fG/XvxRRHHd4iG45x46wQ337yfWsXDsosoqgAohGIJHNNC1xSq5RK24xOLx8nnl4lEg1TrJrpugOfhWT4rhSUi8SiiqKxaXzFRJAmv5iCoEr4rIYgwMTFOKBrF92VUwcGy69RrLumuBBfPT3LDDfuYX5iho6ODr3/tET778E8SDMZABF/wUAUR27awLQd6ol1iAAAgAElEQVSrVkMPBECSrhBgm1q+zMjFEXbdeANz4+P0DvRRNy0s2+bUyVMMDAww0D/I+Yvn2DW8m2KhiOuaGJqOi0fACHLx7Dk6+/pQVQlFUZieniMWixKPJZmdmyYWDyMKCqqqcvnyOD3ZLlaKFarVKp5tossqiY4UuaVFOpJpBNGjVqsTjcYZn5jAdTy6e7L4nojv2iBJzM3P0pFOUa9XsR2ZuCFgSRLTo6N09e/G830EbBAElheX8WyXkZFLHL7rDoyADq6Lh4SEw+jIKKblgCize/dOPM/mxIk3ue22O1henGdhbpHswCCyJHLu9BmSlTp9JZNAqcpKb4Y/6tb41S/+NvF4ctWibIRwvBJLMwt09mSp2wJjZy/wlb/6Mz750Kf45MOfAECUFBwPaPRc8VtnoN9MNzTXdPb9zfteLzaQwObvGsZeI6qN8201/7X0Xst+v/q7IIDwp19oKUcrnSkIwgYyusH7pEleWHWi2Sz3ROMV3/eRZHndwrzavl0Tto022tge2nVc2/hwYT22VXzfsaWWZbU44f3gYm6a3X2b0cp9qpXFb7O+zXM1Xr+Wq2/zWNey6L4XXGUVvqrBlh+B92g9uJYc27AorMETBRTfRXZtlnMrfPUv/xNdmQ5uv/NOdu07wN49+6jWTLyxKYx/+0dILx7Hu/8w5r4h1ESIxcVFZFlBUWQqlQqyIiJJ4mq2TSTmZ2ZQZJXjb77F3l27QRSIJZMYuobtW3i+zOnTp3BdF0lWSaZSjI6O0N87hOs5RCIhuroz5EtlZEUmHA1RLVeZnBwnHo+RTKYYHRllbGycTDpFsZAnGo0xOTVFJBpBVRV6B3fhezbRaARJURkaGsbzTRRZJxCKoGgyuflZgrpGpVTn7597jlsOHULWNJKJFKqqky/kyXZlyeXmicWimKaFoqjMzMyyslIgm+1CFMGxXep1E1lRCUUCxONRJEUmGAojCD6qKhEJh6hVbRzXwvNsNFVCNiI4toPgi5QKJV546RUKhTLRaBRBFFFVBR8BfAFRAt93WMzlSMTjeKJMpVxGUTRsx8esV0CQcGyHhYV5erKdzM0uEoiEiYbCzMzkCIZU0pk0oiji2A7BUJjde3YRCgUxTRNJFPFdj/zKMqqu4ksSoUCISqWE5VhYdZtIOESxUMAIBIgn4gRD2qoFz5cYuTjG4NAgASNMtVahs6sTz/UplUoEgwa53BLxZAJJEohGwsiqTrFYIBqNEo3GWM7NUi6VOPbaG4godHVnMM36akKqYoFwNEwqFce2TGKxOAtLS6Q70jiOw+XxCYr5Iku5BQTPBUElFAoyP7+AIEKtXiMWj1LOF5gcn0dWavh2CVmNsLJcRRAEzpw5SblSIRVPkE4lqVsWPT3dLCwtkEolcG0bX3Sx7TqO45Lt7qWzq5PZ2Vmi0SixWJxKqYRuBHnpyKvccfsdPPfMMxw8dJCC78LOIX5w7hS7ZZ2Pj+bQjryFOdCBmE4gS+BYPisrSyTTMRYLFrFEgkqlzk17b+Cxv/oS3/ra1xjoG6In24fju6zmhBPwBenKUdRGXdlIVLfSoWv/3Q7pvZa+2UoPiQ3rwIbkR03rideQ9XezeZvXlJb4/ourxPUz928cYwtZNyOua2S/VZ/NSHfjs1vr7zirybgAJKltiW2jjTa2h7arcBsfKvi462vl+yGtwHqNOUEQ8C5P4+dLEA1vT45tnGJvR5btWIzXFvNmN7XmzUHz3K02Mx9UAqfGjV5zfO6mG7VrXfCvTjzV7ILWKgnIB4m1e3FdF0mSEE2Pr//ZH1POLxPO9HDboXtxkZAVGckHxhaQ/uiraH/wN3iZBMu37eGlN47R39NLrV4nGkkiIFMoFAgEQ/ieS7lcRhAUHvv2Y+waGkJRdWZzCxw7doybb76RV195jWphhXQ6Sa3qcuSlIxw4sJdAOIqm69imSb1WxTAMfEBRNWZnF6jXy4R0jUqlhqJKeJ5LOBKlo6OLqdl5du/dhwC89dab7Nt3A7qhUizlicXCGIrI8mIOx/fRNB3bqeO5IgIuhcIyHZkMRjDMN77xDX7yJz+NoWlU8gVGR8d4840T7N+/GxCJx6PIsowsK/i+T7lU4/jxN9izZw9mvYqm6wRCQWr1OpFIDMexQZB47NvfZe/evaiqRLlUpVSt8dprr7Fv9z7Map1QUEeSZEzbAkli957d9PT2IisSdbOGpmooio5t2ziejxEwiMfilPJlRMGnsJhDU1TqjkMwoOM6cOSVI9x2223YvoiCjK7JCIJLIpbGciwq1TKKLAMioihRKKygKCq+b/P2m2+RiKUIR0JUK2UUQSJfrKAZCoLg8dij36MjnaIzk8F2bQQ8aqaNoqh4rovguVwen2JoaJhSeQVBFCnkC3R0dAAewWCE144epX+wj9zCPL4gEY1GsG0b1/UJRyOIskhPby/pjk6KpTyGYSAIEtMT06TSCer1GhfPj5DNdiOpCsFgkMXFHOFIiL6BAXxJJhCOUi4V6OxKU6kWCYUj6AEdXVUQPA9ZV+jM9mBWykQSnYiyQjSskO3KIqsGK4vLOF6dVDpDvWpx/I032LFjmPm5OSxXIBwM4dgO84s5QsEA0WiUqakpNM0g2dHJ008/w9133UGxWCKfXyEajmCadULRMJ0D/Zy1ioRu2INSrhP85t/jf/lxCt96isCObiI7Bzh3YYTBnj4EWSDeGSPblaajq5vPPPyzOK7PSj7P2DsnOXH8BGbdJhnrQFI2r83aHNe6dn1NN4iitCVBXHN9bY6nb9QtjX3W5234vyBcSfrWwg23mWCvEdmrSwRt1Jmt9OWGzycvQDSMcO/BjW1a3OOGeN6G76SG+21cs5rbrv1syMjftMY1jut5Hp7nr8fDrt1/G2200UYrtIlrGx8KCIKPj8NqcXkPEFpnfRWEK23WSh7AVlbU1cVRwP7Xv4/34hvr5XCuLc/Vm55mItm4QG/X8nm91xs3Cq3attqEtSKdm93XdrCZZVdorGbjgyCJsLZJEzbKtrp5W611uOqGuFGea1kxmi3XW8G/klVU9LiyQXTxfRVBFAjoKq7toCNy4egRHv/Bd4l3dBGKZ7DrPu+cvsgePYTwrWfQfudLSI/+EFFV8X7iI/jZNLqu0pXtIBiJoEkK09PTlIoFHv3Wtzhw0340NYhrORw7+ipDfb309fWxmFukWihzafQCB2+9gWg8Rs2qYJsiZrVOOKSR6oizkMtTLZUpLM7Rt2snoiwRjsQYHb2MJMDw8CCSIhBKdBBPxFEViTePH8exTeKpMKGgRqVQpn/PMPViAcEzUVWB/FIJURLQAjrBQArHtZiZmSUWizM/M0d3Ty+mbaIFVPbt24eqqJh1m3y+SCqZJhjU8T0bQ5eoWw6er/Licy/Q3ZmkUq0SCodJxQOo4QCCKCL4UCsssbycJxmL4bg2u4d3oasa9bqJYcgYqsMNB/ZTqdi88OLr7NozxOjFC2QynSzmljHNCoYRoGbVsD2LWrmOrGoo8qprcaU4j6GFcQSwrDLxWD+nT59hx440khLCF2xEXyWVjFOrmuSW5kmnU9iWhSS4zE5O0Z3txvU88vki0WgUz3NQFJVcLkexWKKruwffqyGqKpK8mnBKFGVkWad/cIBoMoboC1y6eAlR0UhlktRqFq7nks7E6e7N4uOh6yGsmkkymUSQBGRVRdIUstksEhKqoiOpQRRJ4+8eeYTB/m5QNDRVZ3Zqmh+/8jKDA71EwxF8z0NQNFQliGVaZDsTOIJIOKCxvLRIZ08fuqJRK1eo1qrki3nCQQNf8EmmEuiKztLKCpFYgmrFJNOZRkBED0ZZXl5CD2gYRgTPr+E5FlMzs3R29SDgIakKrx97nXgsRiAURHDKVGpVwtEEVs0hloxQqZUZGOyjVCng2QJnT58hnUyD4HPjLbdw4uRJ+vr6qVUrXBob4dZbbsEWFeju4geToxiD/bjFErHn30T7i8eIPH8c8ZXjKAeGqGkqti/Q3b2LslVHDQVAMbAtkd/8rX/Dr/zy/0ilVEYNSiiajuCVCIgVbAxUX8DBQxDEq5IkNRJab5VRbdBBjQSrUWc166nGNWLNPXi9rE6jHtxmGESj7l9bZ1zXvUo3NnsVrfVt1JnifYcQ7j24IUu6QIv64YKA63nrenzDGrQ2/pV2zfp4w3O8YkltfDbNMjY+s7Un5fsenueul9eRZelKlujVmVfL71zz8bXRRhv/P0Y7xrWNDwUEwcfzG4mrdFX80Wq7NeLauBhem9BYv/zvAVC//B+u2XZzGTfGlDYuxtutK3u9827VfrPNQHP8VuMGY9vkbzvxos2XxK3vf4O1U9iYoXO78cHbaiusyrZWk9UVQPRlJN/mr//qP/PAg5+mWKiQigQwIlEYn8f78SmqLx8neWYE0fdxOtO4wwOI/UnKtRqxaArLMhFEHwQfWdGolaq4noumGlQqVVRFZHp6DiNgIAgeydRqhtyR0Utku7sJyDL4NlOz82S7M9gm5FcKrCzn6OxMkkj3MDU1SSYdJRCKMTIywsDgAC+88Dx3Hr6TufkZBMEn2zuIokiY9Trz84v09/axUl4hEUvimB51q8z89Bx79+/BtGu8/OJr3Hf/RxgfH+PJJ5/loc98iq6uTlbLiMh885tf5xd+4WcolvIs5vL09vaiKhojo6Ps2bWHWq2Cbig4jgWigm37LC0sEDRkYokMM3Nz9Hd34Eoini8yMzlFKhbmuedf5a67DiJpCrqqEgyGMOsWPi5mrQaChKYFqJsOkrT6+x25OEoikaQjE8dHQpJFcovzPP/sET77Mz+NLPoIaEhilVrVxrRNwsE4y8vL5Asr7No5jOf6uLiMjy+gBRQqhTo9vRkCAQ3btfBsl4BhUKpWCAaD4Iscff11RkbO8/lf+KersoiwuLjMwuwMO/fsY3p6is5sN57rUquUSSVjuILE0nwO2zRJZjoQJJAEhcXFHMlEFAQRx3ERRZFTJ04xODhI3Tbp6EgjXqk9Wq1WEUWRQqFAPl+gK9uFqq6SWXyoWybLy8t0dXaQy+VIpzNY9TqlUoVgOMTs7DQ7hndSq5RQZAVflJgYH8dQNFRdY2p2hp5MH5IiggiJaILcyiLlSpFYKIwRXK0t67ouqqpg2RYn3zpFd3eSdDqL78HFS2Pg2ShqgP7+fmzHxrIswloYT3SRFA/XqTM7U2R5eYk9e3dhmRaVmoVtWQQNgx89/SPi6RR79+1F8CAajTAxcYnh4WFM0+HFF1/mvvvu49VXX6W/vw9ZURjo6kKcmsWfmkWbXcKXRLyuDnL338TLSpWP/OxnyS/X6EwnKJfLLC8vc+jQIWbOvomUHiTWM4SDQJASAmD73joB3MybxWsOzG/yNmnMQN7ct/n7Ri3VTHSFFn1boVnHr3kRNfd1XXe9zE4jaW114LnBotqwVqze/+bW5maILfRx4/27jWtlU1+vhVybQRRFFEVZjwX2m39HbbTRxn9TaMe4tvEhgb9OSFeX/HethY2LW3MJmSv/23pk38d74gXg3XI427U8Ni/yvu9fKbFw/W7DzZuUa8XHtrKmXo+1dCvX3q3ilFrN1fL/TZbdq2Jam6zAG6wADY9isyRcm8l+Lfieh+ivurYJno/jOFw4fZ6Z8Ut0p1LEExkiShjt0WfQ/u+/Qf3r7+CMTiAHgvgH9yPcfQvfOfUmQ7fcTLm8TCQcpl4zKdUq/H/svVmQXNl55/c7d19zz8rK2lGoQjWAAtCN7mazSTYpSiIleURpFPOgGDNCEfaLrQiHn/RqR3hsh6WQwx6/jDRjiRpSpLgvvbEX9sJuovduAN1oAI299r0yK/flbn7IKnRWorA0JZtkuP6IjKq8955zz80snO/8z/d9/88ybaJIEAYhhc0CrhNjZmaW2dlZYraD67oIWea551/gwNAQr7z8c6YmJ/GaTXRDY2l5meGhESS1Q1qEECSScRLxJAIJIUvIhk6rViceTxD6PuPjI9RqTRLJJNlMH1EUsraygmYYnDr1JvnhQZLxBM1mmx/++HGGB3MMjx6gVKkiKwpzMwuMjY2QSCS4fn0Ox3bI5foIAo8gEhw6NIEsRUS+R//AAAJBuVJmYCBPvV5D01RarRbrhQ2iKMD32+T6c2yureK4cZ5//mfk+zPousHK2hr9uX7W11ZQFINGo8LA0ADtVoMrV66iKCq6ofPkE8+SyfbhxFyCyGNtZZ3Hn3yG4tYWDz1wgnKlTKvZoNVokIwnScRTXL70EdlsDgJBsbhBOpuj3a7hOP2UKqtoukarLfH4j37IsRMnWFktcP7iedZWNpg+doQgbCOpGpqqUa5WMWwbWZKYnZ3n8OHDjI2NoCgG9XoFWRF4Xpt8boAgEGi6gapr+J6HoSu0G1VUzeH6jRsoqkJ5q0g8ESfwA3RNo7BZwom5tJotVE0h2t5L7c/3U280qBSKRMDq2hqJdIrQa3D92nWmDh+mXC1hGza1eq0jyGVbaLqGkBWELNGqVclk0rTabZpeSMyxiSLQDYNKuUJff452o0kqnSKdTNFs1SkW18nlMvihzPVr10jEY8STMXTNQIiOsvb8/AKpZJznn3+RTz/6CAiFZqOBpmsMDQ7QanVUkdvtdieP2yuj6gqFYoVioUq9UufDDz/ENAz6czkM18S2LWzbIp/L0/Y9cv05VpdXqFTKHJw4SLlUwvMChoeGuH7tGpMTB1lbXSUM26ysbVCUBMumROZLnyPI51haXGTw2hLTr1zAfvwXpN69iORYeLbO8H2TLC4uYGeSXPjgTTRvnZhUxnQy+GFIhHRTqK/bO7pr/hEfqwz3eje7CWNv2a3eOToIgl35oVEU7TnP9aoa323O21El7k0v6Y6u2fk+d+6783Mve9rtBRZC0Euje59rr7F1z+/d2EXcb21027SZvY4FQXAzL1bT9JvH90OK97GP//9hP1R4H78miIjYTVxht8Hdef8xb9o5d3fj1UtcPwm6DaksyzcFJf652Fk07WV8fxnCdqf79OJePcR37G97ZXLze5BuXXDczqMqeq77pGHUd4IipI6nxA/5wfd/wIFsglSqDzc1gNYSLP9vf8vQX38NZb1AODGM/5mTbCRdrlXLDE0epF6vcHR6mnK5imrqaIaJZthoisTSwjIz12aZuXqVzfVN3n37HRQhYxkWG6USlmMQej4ikpEVmenj0zhxF1WTiaKAVDpLrVJBSCrxeILVlTWKxTJmIo6p62iKShQJNEum1ZL4x299h9n5Raanj4AQlMo1dCuGbpmIMCCbSpPKJGlWyvjtNkePTRNLxvCiAEUEKHj05QbYLKximjp9fYPkcv0dD5suUCSoVssUS2US6QyKpCGExDe+/i0mJ6ZoNRs0Gy3S6T7WC1v09+VQZQkvjHBtnbbnc+zYcVQZarUG/flBAOJxF8PQ0DQV3XB44/V3ODA2yeOPP8FDD51kcvI+vvmtb3Hi/vuxLItWtcIXv/xlpqYmaNYLxLM5LMdEUTRqtTrJtEXcjRGi8e1vfo2jx48iJJMPP3ifwZE86+ubZPsySHLAxOQRJCkkk04yOpLrhMgaKm2vhaJoFDcKmLoBAnzPo1jYwnYcHMfi+vXr5PqzLC+v0p8bRFYEfrONHXPAD1haWKBRb5JM9VEslsnl+4knYqgCNEMhClsossLGWgHT0Tp5qcgYus7W1hZ+4BOLx9FNk7bn4ToOaysrJDN5sn15fL9Ns14hEjLVapXrV6/Rl8nwys9/wWA+T7NZx0lmCKKAeq1KfrtNudbCNC0K62sIVebGtetk02kUWcaJxxEIVFnFiwLirkMiniASHRExz/cRQurUEq6UeOTTn6PRatD2OkJX2b4sXruJoqkYhkGptIXjOBC0WVxeIZfL8fJLL3Hy4QfJ5jIMDA2gmzrL88usLq2wtrKGrEi4sRjxRILi5gbLyytMTx/hxo3rZDM5RBQSRSGu6+L7Prn8AJqhMzA0xHPPPsvU1H08/vzPmP6dLyIfnqB6aBC5P4Pk+aivvIfz7edQvv8z3DNX8D77MKMTI0RhyKk3TzM5cYi2LKFIBmHo3UI4d88/HxM1SZI+VmviY5LZOyf1vr8pqNRFSm/ZhOya++6WJnE79NrGnTF3k+Sbz/rn/zPi6VdvFWfqIbF3I667znW368n17Wxkiluu7cbtSOednj+KIjzPp9Vq3bSd/5K2ch/72MevP/aJ6z5+LRBG3vZvgl5p/L0NXPdCYCeT6ONzt/T/+Mudvv74izf7vJd8o97wVN8LuXTxGsl0/KbaY/e1tzOidyvt09t2rwVNbz+3Lro6kBC7/hFFEHVCu7qOdj6lO9j8W+4fRtv9bTeTRGdxIkSHtIbR9jnRycXbvk+0fXzXqwt77eZ3LyrvBomAEI2wExBIUPM59cJP2VxZ4KEH7yfUYnhhgHz6HM5f/DXh7CKlk8eYT9pkDg7S9j3ceJxMfx/Xr82QTMWolsuUtiokEzb1aot6rU2psI7XDjj3wXkmJicYnxolm8oyN7fI7NI8pdIWB8cPUqlUOHr0MLLUwkrnmJudYzCTwUfB0EyiMMAwLTbW1nFdF9s2WZ5fo7S1jm1b+D4Yro0atjh8eILzF+eYmhzk5Z+/yejoQYJWi2JxA8cxqdWbxBMOYRTiug7F9VVUzSBsNdjYLKJbcUzdYGZmDk3VuXbxYkctNt+PIEJSZBzHwdANVMmg7bU4deoX/N7vfQnXtZENBUWB4lqBcx98yOTEJPVmC03XIApZW98glUoTyRKG7bKxvowqS1QrDc6ePcvo2Bgx10aRdGRZ4qFPPUSz1cbUNTJ9aVRVxjR1IgQriwu0Wi2CQGBZOgESgR/gtZs4bgKkCMuyOXb8KO1WgNf20XUHx9BotmvEHBddMoGAudlFDF2j3WojRW0USaJYKGJaDrqhIEkRhmqyMj9PhAayhybbGKaNYWqASsurUq+22SpV0DUNEfrU63WyfX1Iskplq0gs7qCoCiLSqbU6G1qSAF3XUA2NtdU1FBFx9sxFyrUao2NjRGEAohOea5gmzXaLSmmLtbV1+vr7sWMuqqphGCqZdI7r1+YYPzCCablslbawTJuN5SXS8RTPPvMzGo0KB8ZGabU9Ll29QTbdxwsvvcjho4dRTQ3aKqom2CisYjtZ5mdvkE4maAcRpcIqmm5haAbNcpW1SpV4zKW0uYYIm3ihwNBNDMPG0DVWlpcJgwDTNNgsbHLwwDiFjU1GD46jmzrtZp1UMkOzFWJbCvF0gmQyiddqdMivJKhWymSSWd58/XXSqRS1aomnnn2ZI9OHcVyHVstHUzUkAd/99j9xePowiWSCfC6H32qztblMqxURuXGUg3lKA1mkE5P4cQdlfQv9b75H8NIZWp//LFYiwysvPElMUlm5cp5rl2foGx7EVzp5mKoSQSQhRZ15JBKi8/9CQOB7zMzMkkqlbutp7J2zbrcJKUvSrtzScDsHdofcdRPNnZ+9pKzXw7jXHCm25+Nb5s1tVWH+1Rf2nFd3NlHl7Uicjq3Y3kK+i1cz2n6e3k9ICNHp5zafXbfQVbedjbr6kiRpl7mIos53IwmIopBgOxcWImRZ2v44O9Fb4m4Gbh/72MdvJPaJ6z5+LRBxey/mJ99RvT1xlbeJ6+2I4V17bodc/OACk5PjBFG4t9HdY7x38iru1fZ2O8k7i6PdHui9d8L3anvrwdsOaY9B7t7Vv1U1+ONfP2kI150+u7u2FRFyBDIRUejzf/7l/8pnHnkEK9GHle4n9DzEOx9i/bu/hYeOUpk6QGpwkEw2hZAUZFlBIsJr1glaPqahs7m2jqnpyFLExkYBXTNwYxau42LbDqdPn+bY8UkMwyDblyOKIo4cOcz62hqu66JqGrFEivL6FqoMpmOyubmFaZhUKiWSqRiaruH5ATMz80iKSiabxHY7pVFWFhcgColkwczCMqlUiuWVNQ5NjPHWW2/h+23i8RiKoqAbGoqs0mg08XyfeDJJo1ZDkmWiSGBZBu1Wi4GBQdqhz8DQIKau0axV8cNOzrgsKbz6yi9YnZ/nc49+hssXP8JUdWZn5xgdHkXVDQzDwHEcfvSTH3HixHEqlS0GBoZBSLRaTbx2G9PQabXaJOIJ8oODrK2vISTBR1du8OJLL3L06GE0RaJUrzMwMICuauCHGLZN22vT19eH53s4doKFhTU01cBvB8Qci2ajQRgIZmZnGB4aBgG1Wg2v3SKd6SMM4czps9iuRSbTh2HoxOIxBAq2m2B9cwvTtAmjkMWlBdKpBIZjkkxlkITP3PU5FFXBNHVKxSqxuIWh21QqVRzXZm1jnVgygROLgSxRKG7hxF2q5TJrS8uw7Q168ulniITK8NAQ6ysbyEj0D2YZGOpHVmTqtQatRpkw8JGEwLYs4qkkqVQGVZZZX1lBM3QUWRAEHrZtohoqIpI4e/osBydHabca1OpVZEXigYc/1QkhDX2uXv6IyYMTHD82zebmBjHHIYjaSJKEpml8+/s/5sTx42wW1gkDj77hESKhcPnaNfryOeKOwfzcIl4QMjg8ShCEKLLC4tISpVKJkdFRhCTQdR1FUVhbXSeeSOLE4yzdmCWfzbC8ON9Rdg4DKtUqQRDg+YKr12Z478z7DA6NMjqSx3ZsMuksH3xwgd/58m9j2xalYpnLl69SrRRQFJnjJ45hWzan3zuNLMtcuXyFgZEhXn/tLQzdIpvOdLz6mkrkWARjw8yIELfRwv27H2N+eI2Lw3Fee/t1+odSRO0Gf/ef/gNf+b0/wFJNmn4TITQi5F11p3fmuVgs/ok8oHuJJ+2c20VCu+7Te00nleLupeD2mjN7va83ye1Tr3Qu+MMv7Ep36W6305cs71ZWvpe5uZdsdo9jT/SQ9Dt5dndwU0xrj76CIKDdbu/K9WXvq/exj338hmOfuO7jV44wDEGEe5775cKAdnsk4WPieq+qwt337xbm+OjDi3a4YLAAACAASURBVMjI5Ab6EPKtJWzuNeR1rx3vT/qstzXwt/HE9j5P58Defd+SrxRFN8U4bgpU9S66un6/Xa5S9zi6ha7uJXT5dnmv9XYLUwgKS8v8+CdP8NWvfpVsJkMgyQSSjv3+Rxj/09/Q/tQ0DPZDJPjZz37GoamDVKt1JEkwe/06i3OzSJJENp2lWa/RatZIpZLEXJsXX3iZodFBEIKXX36FL//+l3BMg7mFOTRNJ+bGsUydTDaDppv84tQp8vlBCutrOI5NQMBbb71DPj9ALBmj2WzQbvtIQiaXy3PqjTc4NDmOaZlEQiZmWZw69RpDo4OcOHESwzSYnDyAhI9lmwwPDWFZNrICiqywurYGSPzoJ48zMTFBu9mgL5dDUTTqtRKDg0PMzc5RrtewLR3TUJGEQNUdarUqhmEwNDhE/sAIsqFybW6GySOHOXfmHIODQ5z94Cx92Sy6oTI9PY2QQSKiUq2jazqSLJAFNOpN4vEUCMErr76Koij09fXRl8szOXmQVCrB22++yeThoyiSzJnTp8n351kvbJDNZEEICoUiTkzDdi00FVQVJCFTLle5fmOWXH8fW1tbxGIxFFWmUCgQCIm52QUWFxY58cAJlpZWaLYauK7D1WuzZPqyfHj+PJlMCsd2O/VXDZVQkqlXW2gKzM0tMjY2QhC0icVS+H6TdtsnEU+iKDLNlsfCwhKZTIYIiMWTIIFl6vitForUUYFOZfo4eGgCv+2hKQZXr16jP59CM3RAwmsFpJIJDMMgCAK2trYwDJMP3v+QwPPI9WVAlqlWqmiaimlrhKFgc6NAzHFQVQPXzXDmzIeMDo8j1AhN04iCgHarieu6bG5uMJDPYxg668U1zpw+h6GbHDl6mEQqQSqVRNMU5FACL0QOQxrVCl67hapbNFoes/MLDPTnaDaaZLN9uPEYUdSpRSvJCh98cI6+bB+lcgUvCDFdB9Mx0WwT2dSpFLeQVZVatcbYgWEGh/JM3TdBXy5Ns9EgkUjy1FNPc/TIUUYPjrKyvEY6laZYLHD4yBRvvPkWfbk+Wo0m4wcPAmA5DluFIl/87d/h/PnzfPD+B8zMzLK5vk48FueHP/gxDz/2OeSJUdSpceSPrjP12hVeuDTP7//5f8eB8Rz5bI7Tb7/L+toK7759ivuPntz2/gnCW/JX9w4Pvh12iTN1eUh7Ce3tIkx6Cd9epPR2fXQTtpse3J05dpu4Sn/0xV3Xd/exZ1pHD8Hs9gTvqBzvNbZeiF7bwW5bdAuB77lm17V7PH/3M+zUh+0QdOW299nHPvbxm4l94rqPXzk63ru9iesvh1uJq3TiENIXHkIkY5+sp66wLYBsfz/5oWFQ/wWHyy9nUG8XSiu4M3Htufie0Mn3uqWzPbu6l7yjO4Wr9Xqxd87drl8fePPF5ymvr/GFL36ZtmJTr5aRfA/9P34P9f/4Bv4XHkIM5qhVapw5fZbHHvssrVaNrbVV/HabUqnK9IkHqDaqtD2fXH8fmWyKUrlEvVknkUyTy2epVKo8/PAjaLrK++9eZOTAGLGES2FtA0mCSqWKaTu8/ubb3H9kAjsXx7BMikvrHD46Tdv3kWWBrlpIsoSuaXh+k/smj1DcXCXmOMiSSihCBodHSLg2izNzZJIOqgr1eplms00ikWR5eZlYzCHwPeLxFJphcfKhT+F5TRq1KrF4glK5Qirl4rV8DNPEtkzScRffbyJ0nRvXFolCH1VVeeanzzBx4ACarDIyNEwUBIxPHSTwA+TIQ9V0HNcBqfMda6rM+vomQkiomkrgNRGSShhBKEJGhkeJxWNoqobfqhBzbYSkMDA4wtriCqqqEkYRiXQKwzRptTueQcu28LwASTGQhYIsFLzQQzcd+gcGWV9bYXBwkEq1wsLCHAcnxnFjSdKZdIfcyzK6buC6DpGIMDUZVYkYHOzDsFWKhSKOHesoC5drePWAnz73Uz77W1+i3SxTLm+hyAa1ahlZ1mg0msiKxPf/6ft85tOPUiwWaDeb/OC7P+LosSMIWWDZNo1Gk/MXLnJwfARZaROITumnkICtQpls3wCra+uUSxU+vHCNsQPjKKqEpEKjVCPww04JpHgMWTb4p299hwcffIAb169y6eINjp+YJplx0dUQSZNIpOJ47QqWoeL7PoqmY9guQg7J5voIwogwitB0nfHR+3j7rbdJ2BKmbSPpJqEQhHInxDIUAXbKxDYT6LpJzHEYGR5AkkSnNm0Y8e3vfIcDBw6QSqUJgpD8wADXr91gcWmFo8eOU1hdpVzYIu6mwVeJojZhFFGr1nnlxVNMjh9iYW6JZq3F2kaB/MAAl69cIp50cd0EMzdmSSRizM5dxjBjDA+No+s6900c5M033iSeSDI8OsrS9Rt4XpOBoQEefvQRRodGSLguP3/pZU4cv5+fPvss2Vwfqm3zTnGNgfsO8lvLZczvPUvzrUtoX/4C+fFhMqMZrHqBueszfP3v/4F6tcTVuXmGhoa6Ssx8sk3O7kiT7vI5vWklvXPnLX1t/7yTp7ObeO5KH+lqt7PZyJM/7/T3rz5/k+Dupay8K6Kma5x7bUJ2i1XdzSN7S4TQ3SKLutpF7L5/r53Z0wZuXx8EHUGnvYSp9rGPffxmYp+47uNXigiPKPI/UTgW9BpS0fPqOrNjeBOxzuseCNVeO9sf/4wQcnSzgHz36152dffKUdqrn+7Fxd5Kyrs/i13t2RbGuPmRiJuvaCdBdfslop5PTvSMbSciONr9OQixk78aQhQhiVvHeKdQ7HsJDevuRxbQGX1EFLRAqISBikLA1/7qL/n8Y7/F4MQUQtPxNpcxLi9h/i9/h/rhNaqffxBSSS6c+5BUMkMYBqSTSaLAR9I0ms0aibiNomvE3AS20xHOaTR8ioUNZElHVSV0VdBotXFjMVYWFzkwOYYiSciyRDybxI25vPHGOyRiNkfvG8NN9rE8N4+pWhQKFWKuSbNZx7RsFAmCSFCr1Viau0G91iYIQ5KpJEvLc6ytbLCyvEhfNoema/iRQMgKqm6i6gaqKhGPx5A0k3qtgmEYAHz3O9/m2PEHkCQJRVXRLQtZ0ogiQbGwQSLpIiSNdlsgCCgWShSKBRKJOKl0gng6RbNcpNmsoVsG1WoV23aJp5O4rkWr3UBTFWRJ47vf/REnT57Edm0kWUdWFAzTpFIuE/gBgVfDUFQUVUNTTUI6ZS2+++1vc+LkcVZWOuG1qgJ+EEIoeOXnr2IZOk899QKTEyMYuszKcglV1bh2dQ7b0rAcjbXVMqYl09+fIfACJFmwvrxCq1LDjNnUakVs26Hd8lFllcCXUQyzEzpt22iKQqvVpum1SKZizMzMM3VkCtO2sUwDzZApN5q8/OLLTB+bQlUVDkxMYCcsLNdkc3WToaEc6b4MURTRrNaIJeIUN7dYXd3ATqTYWt1AImBwMIedSiABr778c0ZGhjgwOUZ5q0y1UiOZTqGZNslMjMJWEV13kETI9H2HqNdqhJHEwOAgp8++y9BwHj+UCQKBJCmk+7KEkYyiGLzx+ptMjE/w0gsvMzSUo1SqEnOyXL92lXq9yutvnuJTDz9IFIa06w00RUOTJNpeGy8IMXQbn+3cyyjaVlZuUdpYxrAdTtz/MJ7XplTeorRVQ9UkUvEYo8NDyIrAcU1WVzZxE3EiBTaXVykVSoyNDhKPxUmmXYqlDfrzA2xtrRGPW4yPjxEGEk3fY/LgQULfQ1d0DENFVSUymRQrqytM3TfF5uYmy0vLTJ98kPdOn0VXVFZm5zBtg1qtSqNeZ3lxgXQySRgExBIJLMclNjqEd2gckY7Bpes4X/8p3kvvsmnHGfvcF7hx+eccPjRAIpYjER+gWCySSiZAgBf6KJqBLEMUBggRIYuok5Yg6MqljAjDHrEkqSN4FQEhAYhOmaWdifZOhKvrwJ61YemZN3fEkIQQEAUd+QEiIraJ7I7HdVucqZfI7dicnRFJsnwLYUSEnWcQdAxHdKs9uB12hUbvMd/fvH93Hu9tSHN3mx3v7C57LIMki667flwfducj3wmV3iez+9jHbx72ies+fsUI77pb24tfVgL/Xtrdyzh6r9nxEt6rp3EvdOfc7vTTvWN/p/b/HMN7S8ueA1JXeYg7hf/2LqLulj/cKzTS6z3Yef4dD4AXgJBkQCL0YeH6HH/+Z1+luLLM7/7hn+Am+wiEgvL+Fay/+hrqN58mGuknfPQ4LSEolUq4toNp2ZRKW6iKzNraKpn+HLFYnOXlDWTV5sa1GximhiBCVWVimX4UTcHQVXTdwnFcZEnCti3WN1awzI7wUTqdZXN9g2PTx2g06mSyaVRNIx6P8/rrb3L+wgWGhvIEgYfjmtRqTS5fuUwqmSARj2O7cU69/gvy+XwnLNNNEIZg2y6KqqFoCrVqFUvXaDVbWLrO+toajh3Dti3q9TqGbpBMJLBtCyKPIAhQVIVWrUoQgRuLE9GmXmtg6DbLyysMDvaTy+UIfFBVEyF8quUKmWyeWsPDMgzCwKdc3GKrVCII/O0QwQhdN0ilk1SrFcIANEWlUW8gpIhEwkVVDBRJo9XyqJZLtFotNNNgYmISQzdJJjOdmqtBgOO6PPfs8xw/dpz+XB8HxyfZKm0CEZYVQ9U0Tp89w9TUBLoUYJoOhq2jaBZhFICQ0TWbzWKZyxcuMHloglASCEXG1C0Qgna7cfNvrVwuE4vFEJKEKsncd98hAi+AqE25WERTTbaKFe4/9iCbhQ0cx+mUtlHVznI4jDh99hz9/f347RZIEZKiMtCfx2s1kCWB57cxTRtVNbl0+RJ96QwD+RzJdJxWo817b71Drq8P2zYpl+uoik6z0YQoIvRaSFKE6bq8c+Z9JsfH6c/1IUsykiSzuVFgfm6eRCKGLMmEYYRlWRiGRT6fR5FjFIpFPL/G4OAgG5ub/O7v/C7zswsMDY3h+SBJCjeuX8X3fTLpDNVqFUvTqJWq1KoVZAlqjQapZApJNVCUiGazzsryGqWtKiMjw1y9chVVUzu1k1UZQ7eoV2tIgGmZeF6bWCKOZZosLi6R68/TKTkToGk6YShz+r0PGBsbBkLeeP11Hnz4QZ57/nkOHBinVqvTbDWwLKvz95ZKc+nyZU6efIAoCklnUpz94DyVSo0HH3yYwA9RFYVMOs37Z88ydWiStt/CMHQWqwViDx1lw42RCAKST79G9LUnyF1poY8fZuCRKdpNAyPyePp73+L0qZfJOi598X7Onn6fvoF8Z/5BIpCkDjHclZ95q5jSx3NYb0jrbfQJbkPquo/31ube+Zvead/RzNvZAO14eqNtj2u3qvCOfdnZHJUk6SZZ7LZpHw+uZ67vqaf6z6V/3WHB3WPszbndwe02iiNuVYn+uE2HwAaBv01kw+3vZmdLYJ/E7mMfv+7YJ677+JUiigKE+LjqwJ2IXS/xvN1uaa9BE0IQfP0JwrMfIU5M3XE8d/ME3s07eDv4/p29yr15Ubcrk3One9+Lx7f3ue5GXOn6XnaFo/V4e7uPd3uOu/Om9ion0eut7l6g7OzAd46FqGGIjuDll16kvrHGn/3pn3L8oU9jtAQL//vf0vd//xDt+88R9mfwvvhpyoZOo1an1qizub7BhfMXOHL0CK1Wg3arwcTEAVpeQLNeZ25unoGBYX7ykx9y+PAUqVQKz/c5f/ES2UwaRVEQssaVy5fpy2RYWV0l7rqIqKNOarsOtXINTddZ21gjnkgiixAiGdOy6evvY3RkGEkWKJKM6STw2000Veks5CWYmpqi3mhy5co1MtkE3/zmd7l48SLTx49C0CQMJQqFTTRdJ4oCDMNAUjSQBLqmQxDQbjV44413icdcEokkQRAhiRBF1ZFlQavZAiQ0Xef1195gs7jK0OAwb77xFoqikog7OG6MM++f5/z5y5SKRRLJOKZhoqgGm5sFEsk46+sbuE4cx7UxTRNNNyAMWF1d7SjqKgptP+TF53+G47pcPH+eobERZFVBkWVUVeX99z9AliXSqQSra5uMj02wtrZGJpPm8SeepFKt0J/PYtsuLa+T56jICoQ+5UqDiIBKucXC/BwrS8v09+dQTY3IDzBMjXqjjizLtNt1Gq0aihywvlrAdV2uXLlCbiBPFAhmrl8hFXe5cX2GdF8G09C5MTPHyOgYURRSrZZxHJfV5UXceJyrV66Rz2Y4fGyaxfl50uk0qm7yzNPPkE0nqddrDA0NE0/E+d73v08mm2Ugn+uIN7V9DMuh1WqxvLyKKsvEUwkURWV1dY2RkSGE8HFsmyBsoes2iUQWQ5eJwpBmrY5mGCwtLnHhwgUOTU50lF+FYHZ2FkmS8fw2P/jBj/nib38By9aIEMRjcYSQefPNd5iYmOQfvv51Hn7kU8RsF8u0kISMaVqoQvDOO+9w/Pg0uqljmDavv/k2b77xNo6tEXPjNJstYq5DLOaSHxzAdmNUy3Vcx6TtBczNzaNKEqlsFsu12CgUiYKQZqvN/MISQRiQSCYgUvD8kL5cFjdm06g3GB0b49q168RjcdKZLFeuXEOIiCiMcNwY9VqNZ597ls9+9jNksmm2SltMHzuOrmt4XpviVpEHHzrJ5SuXqFbLDA3mmdnOfZ6aOkS1WiWey1OKK2gPnuCpd9/lUC6P9cLbSH/7JPIv3qI5FufhrzzG0FCGD86d4+Kli0wdHifyQtqNOpqpEYmwE42yi6juPc92COHuPE24N/uyl93rPrezsdfdNgw/zjuNdjy7MQdx/BBidOCWe90uQmaHMO48iyTt9tBGPc9/OwXhe0F36PJeYk17KRB3P8cumyR1j6OX1AYdoio6RNX3PfzAI4wCFFVGIO95j33sYx+/PvgkxFXczYvy64IgCH4zBroPwqhNJ5Sn8/5uxLVX4GfnXO+1vX21/6v/AQD1a//ujuO5nUfxTrjXa3YvXG493/t8O8b8bmPtfd579XjCzU30j4/3Rqr1nt9+jr3G1e0lBXblq/YS097F1l7Etfs+6wvXeP3Fn/P7v/27tJSQyuoaGzc2OP8Xf81XzTStdJy1lEn/g8epez66ZvPaq7/ggePTbFRKjAwPc+XSZaaOHKbRqFOrlmk2qowdOEKjVsLQVArlCpZtU2/UAFhd3iSKAgaHBshk+/mP/+nv+eOv/D6puIOsGywtrBB4LfL5HKEMLzzzMtPHp9EtnUy2j1atiCRbvP7m25x88H4a1TK1WgMZmUhXGcplkAgRis7qxgqJRIooVPjWN/+Jr/7ZnyALh83NddyYjuzXMJwBGoGPY+uUt4oAOIkUxUIRS1PRZInN9XV0M83SwizXb1xn7OAEQ6P9yAhkERBh4fvt7X5jrCwvM3XfFL4XdELJ/QDN0qlU66QSadqeR0SbVquFpbsEYQuxvQjXNAvPayGrEtVqC8dUWF1Zw3Fj2JZLvV0Hz8M0DHwEkSRQFQU5BA8fQsHKygqJuI3lpPjowmU0TcOxDWRFI5vNoqg+1WoL1VRAaIRtQbGwzuM/eYp/+1/+a2wjSa1WwjJUCqVN0vksVy/Ok8k4eF4bEYGqZxGyIG5rzMxdZ3RsjDCKkFUFrxlSK68Rt20++ug6Q/dNIUVtnJhDtd7EVOTOohmDV195AT8UHDt2glatjK9EJJ0kiViaZ196mS9/4THm5q4yMTXB4uoGlmlgmmbHw+P5hF5IpdIkns7xsxef4g//4CvMzc0gaYJaqUw6laUvl2J9cwnbTaJJAaGv4XsashEgRwIpiggkQblUxbJsLEvn2vXrjIyMoSgqs7Oz6JaGZWu4Thzf66RjXL8+w4Xzl/jXX/kj/KATELy2voYhybixGKVKBUmSSCbsTmisprK8skDoCWLxFLZloUoBS0urLC4u8cDJaSCiFcKVy7N4VQ/D8Jg8cgxZUSmsr5NIpQijFkQyUhRwfWaeiYn7iPA5c/osumZxcGKMmdlLDA8Momoaa+sF8vkBVCHx5FM/5bHPf55z585wbPoYQpLZKpZIZ9J8+OE5Jg9NdiIKWi1c16VWrbI4v0C2f4D1tVXGRocplUvE3RyvvfYazWaNhx55AMNwiCcNokBFklRaUQXbsNm6vMzs8y9yzHAgnaT10DHK//1/w5d+63d59pknsJQNllaWqUc+Jz/9KWTF7Zkbd2/IRV1zoKz02Kro3mqY7pXv32sjujc9AQQfeykjpF324G50THT11RE3+rhuuZB26w1E4W47sCMEtRfRvpuF7LYdvXay22bs5W2We+ykkLtI/Haxgp3Q4DDydo3P9/3dY45UhOioZu9jH/v49YQsy/e8s7Tvcd3HvyA6BeejKABCemu33ksIVS/2EvvZQdBTDud2+CQ7rXcioTt93c4Y92JPY3+b6/fyWt7p2Xdhu6bqTk3XnVqsnbwpbsl5jQSEUcjNon536f92IW27duZv40GQiJCiAEkE+AG88fIpfvCPX0f1atQ3VvnUo4/RDFXqFY0f/bd/wR89d46jExMUHz6GmJ6EhIOqaxS3tliYmePkgyd468ybbKyXyQ0Nohs6kSTz+muvMzI0SKG01SldY+kEgCZ0JFWgGSZnz5zjoftP4sTjXPjgfdpei1wqjqppnLtwCUvXKRQKXJ25zoHJCSrlCi+/8gse+/znsE2NRq2EZlh4geDK5cvk0imWl1cYGBhE0lQyqSSarlGqNPjFq29xYHwYJ+ayuDALfpvhoUFMyyAKfGxVw4glKBcK6JqGQmeB6bgOW+urlDfXsIw477x7uqN8LIXcmFlAUTUajTox2yWZzVJY3yCRSRKFPs1mk9Onz/HQAw8CIYqmouoGiiJhmCqK1vkcVxfneeft95mYGMd0TQobG8TcGC3fR5YiZEWi3fIwTJ1KuUoQRaTTGcrlCooCqCptL2JpaQHXcVAVmVq9htdsIcsSuqljOQ4CGUNTef/9Mxy7/wSWZfHSCy+STCVwEyb4IYsLCyQSMRzLYHp6mmtXbxBPOtiuhRe02NpqosgSITKOaxP4HrF4HMMy+NY3/zMnThzHr/sEgY/pGFRKZdrtJsWtOm4qQ2YgR22rxPlzl4nHTNqNJqqi8dZb75LPD5DO5Ojvz2NbNvFUmu9/+0d8+rHP4gVtJg+MI+SQYDusPe7EIPCp1JogJFzHRdZ0FF2luLmBaeq8985pRoaG6M/E+NkLpzAtB8t2MUwbXTFRFBOEzNe+9vccGDuI7bq0o4iAkFjMwffbbGxs0D80iKopRCJE0QTvvHkGRzfQNANdNxBRSDLRR8wxWVtdYX5ujpjrQhiSzWURqopjxXj68afZLBQ4MDFK6PsEzZBUuo+LH35Ipi9DGIGu6wwODuKJiNAPmb0+j2s7tNo1jp04yXvvvkdfNkW9VcbSDdrtkFOnTjE0epBkKsFWaZPZG/PkMiny/TlmZ24wkO/HcVyWl5YYGhzg6pXLxFNpXnjxJY4dn6ZaKZNIpzBdG0FEeavK1WsfMTo6zJOPP8vk1CGuXLrCu2+/w8MPPYysqiwvLjOQH6LZaPPee++Qy/fxwP3387PnnmV6+iibm2VMyyaUQzRZgwg8FVInphHHDyF7HtqpdzHPvM+//c5/QDEVYqk0mXQaR1H4yY+e4L4HDiOhIlBBBOyEmwoBvu/dzPvvCNsJiPaoo90zb+/UT90LN4nrdr3VmwSydw5GEEXczLmlKxf0bvN377luj68kJMR2lXAibubA3sxN3cMu3Q29ETu9m6LdqSM33/MxARfsYSejjgp5JxShKyeXCAkZIkHHpElEkdh+JonOGqRznee1O9+hJBBiJ4J63wu7j338OmA/VHgfvxJE2zVQO6Q14m7E9ZfB/9vE9V7uf69hR/d63zt5pO/Wh+iKyb55ba+H9ZZGXUIee9zzlxnTXsdCISERgdfEr1WQI40nfvICkWTw6c9/mQMH72OzVEMNJNz/6x949PomxU/dhzQ9SSireK0mczM3tstsuDSbDWr1JkenT9CXzbK2uko6k0YQYhg6jhPjnbfP0G63MC0TEQkef/Ippo8eQdd1hICYYxNu52sODA1R3CowODBAPt+HkATJTJbxg+OsrS4jBT4PP/I5XnnlFe6bmqLZaKGoMhubm/T1ZRjMd3JlHcflzHvvk0jFUSSF4sYmtq5juzaKKpNKJxgZyhMQEkYSW4UtDMPAR+b63Dz9+QEunL+0HfopUGSNWMohiMB0HFLZPnRNIZVKMjk5zsjIEGsrC8TjCZYW5rCdOPFYAllSWV5Z5cDEAcrVMjHbZn5mDidmIoRErVbD0DUMw2R4eKhTOkUVmIaB1/IIhYykKsiyiq4ZzFydIR6PcfHCJSRZZWFphcHBHKqmIwBVMbBtFyFkbtyYZXZ2HttxkSUFgUJEwKWLF/nUIw8TEmIaNq5jImTQdZUoklhfW8e0bJYXZomCAMIAVemEQxqGhiKbaJpKQB3XTiFLEbYjIys2Y2NjCCF49/QHHBg/gO83abbqyFKH3KmqjB+2MHSTVCpFMu0QRTKKAsPDoxQLJWRd4ZlnnmFkZARVUejL9GPZJpIUsbm+Trm0RiaTwTQsShtFluaXcWMJXNem0fB4+913yPf388TjP+ZLX/wCy8vLDI+NoZk2hw8fIpVKY1n2tufbB9FZQD9w/0mEFKAoCuc++JB0KoOuGVy/NsPY2DiyAqVSGVUxWVna4Pixo6STCRRVpVAsImSV2ZkbjA0PEE+kyOfz2LbDqVOvMzQ8QL3RxDRNbNPk+InjyIoKCIqbG8iyhW7o6IbCwtwqYRCiahKB1+CjcxfJZXLEYzHazRqJVIpkMoUf+CQSCeZn52nW2+RzOYQSYRgagechIhlZlvjpM8/y2OcfQ5IFba+FZbksLa4iSQobq8scGB1FU2UOTBwCWUZCMHPtGqqqMTQ0SDKVJIpCsn39WKbF8NAI62vrpLMZ8rkc3/zHbzAwkAchWFhcYPrIfRwYH+Xc6bOceeddUok4kgyaqtFq+SiShh8KdEMnzMRprWPNoAAAIABJREFUDqTQryxgfv3HqBevUv/SZwgkBVmVeezRz/DOm29zYHiEDiESdMegdDx8t6ad9M6Z3XoG96KRAKBse1Nvelp75tWdHnZ5LV99D+aWboYK3/Y+e4T73tRa2H5/U823677dxHWvNJvuzdvbiQ3eHGtP1M2dIov26mNXlI9g1zU7Vqw3Kmmv8UqSdEtpnX3sYx+/euwT1338SiDEtkfuph7EPZCufwZ+2Tque+GThMzfSVjiTuPoFXvaazEA7MoL6s4J7Tbeu3bB6ckp7elP9PS9y/Dv4dW9mye5F905WTvvoygC30MTChcvXOXf//u/4ZFHH+XQ5BGm7ptCV1WCKGL57bMM/9V/Rl4vUP+dhxGuS71aY25+geeee4aHHjxJJpPG93ziMQcnEadSr7I8P8+1K1fpzw+gawqVaoVcPkezVuX4iWmkKMRxbcr1GoamEYu7xGIO1XIJRdM74jOhhGrZhCKkVqtiu3Fa1TJuzAYEcTeBF/osLs4Tc11sy8Lz26TSSWzLpN1qYLsxfN8n19fX8SJGkEwnMGyF555+keP3nyTwQddsNEPD8wMSCZdSaZNLl2c5/sAJapUKqyvrpJIxiDwMy8H3PIIgJJPNbC8gZWq1MqqqISsqmUwSCYlsLoeiqfznr32dfH+eY/cf3XZZBJS2tsjl+qk2G0ShTOCFHe+uriKI+OjCBTK5Pvy2R6FQIJ1NI6KAxcUFJCFIpJIE7QaZbAbLifHk009zbPootXodyzKxLJvVtTWiKCI/MMDwyBC2ZbG6usJWoUA6k6XVbNGXzbFVKhMETVzHxA9CTNNldW2F4eERauUqmWway3aJJxIISXDlygzpTBJNNbh2/RL5gSECP2Bzo4gsmQhVwWu10TSNWDqN61qUiptksjkMw+C73/1eJ1906hAiBMsykJUQSXTCBRWlo3CrmibTx4+hayrf+uY3+fxjn6XR7NTAfeInT3P8/mMYtku71aJebyDJEZKqEIu5yLJgcXGBA+PjjI+NY5gGhmUSi8c6QRBhSBBEaJpChI8kBLIs0DSVMOwIhSmShO+1WF1ZxffbDA4NgtwZn++HlEtVnnzqpzzyqYcoFjcQskDTNObn5onFHJrNJpKiUKs1aLU8UqkMntei5bdZX19DEYJSuYxpOVQqZX7y4x9y9eoMDzx8EhFJiDBCyAJJgpXFBY5O38/M7By2Y1GqlKhWa9vhowG6biArCo1Gi0q5gqZrFIsFbNMgm8myvrnB5OQU5UqZeCLGZqHIiy+8yiOPfJri1jrj4wfJ9PVhmBY/+eETuG6MdCZNIu5imDr1Wp16vc7wyDBXr18lCDxqlTLJZJxYPM7m+gYnH3iAWrXKq6+/zr/5N3/CR+fPke7PELY9LENHVhXq9RalrTKpVBrP9/nHb3yDkeFhJCEjDIPNXBw7l0M+exHtu8/QViVao+P47ZBGocCli+e4fPkShyaP4BOiKEpXpMnunP+dua87JWQvPYa7zZ/dfXXm6LtHv4i//HvEuSuIr/zWngRyBxG32re9iGG3fbppY7qeqTf1JbpNf3uR0HuJJuqOZOq1c93vIz4eh9iOMtrLo9vbf6/djaIIz/Nvtu0Oz/6X3Ozexz72cXfs57ju4/9DSECIEBF+0Aa6jVhv/s4/P1S4G95//T8CH+e47mWM7xW32/nd2TXvFVbqXqTczL3pqaG313i6DX9v+NauY+HusYc9dLQ7T3WvRUD3sb1EobrJ8b0giqJbnm9nXJIIkaIQWYnRatdQNAnPb5Eob/KNH73M/Q89hi5JxHIWW8Ua7777No994dNob32I/Vf/SDUbx3z0ftbXSywurNKXi3HlxgIjA0lijsXmZpVX33iXhx48wehoDtc1mZ3ZxHVt3n//Q+4/9gDpXAahRbRrZRRNQ9cNNtYLtJse5eISoDI8MkbTa5BI5VhbvIYbT/PG66cYGh2nv3+IerVOs17l4NQUjWYNQ1aoVDbQzRjlepNUNo0c+bQDUIRAETA3v0AYNTh75jx/8Id/ypXL5xH4ZJJpLMdBVTU0XaHZquI1PV599TU++9lHsW2Tp556gf/ij/8IRVHwm6WOiIhQqNTKSKFELBVDliO2Chs4bhZFEczOzjE8NEbbq7G5UWJwcAAhBaysrNNseIyODhFFgiDwkOQIopBmq45t9rOxvo4T0xB+E81OU6qWiMcSFIslGrUa+XwWIYXIssLGRpFatc7AQB+SpBEGEbNz15isBmhGh6BHYUS1WkXTVJZXlnEOj6L257h08TKHkhn0QoViscjg4ABBENxcCEuyzNpAiljCxQ8l1Ms3kL2QrWIRx7bRDZ3Aa3bC2ZNZthyVuudz+f1LfDqRwLJNZEkmCDq1HBVJ4Pshm8kYZibBxkYV78ZlDsSTVCp1arU6w8MDCEkgCYnAUCmlbBTLQJF0jI9mtqMQ/h/23ixIsuu88/vdc/clb26VWfte1dV7NwCCJCiJ21AaasQIjUeOmHCMXybCW4Qf/DbzYocdjvDYVngc8yDao+FYpDQSRXEBSRA7CAIggMba2Bq9r9XdtW+5592vH7KqO6u6qtGEJThCU/+Iisq8yznnnlt1vvP/1s7fdBRFKIqM3/YQEwM0DZU0BTdIUReWSJKOO76UJiAJoiihXq1gfukR2l4b27JRr98mbbVpt72OxTVNqNXrZDIZ6Mkzl0Zkiz0ElRrFlQobG2ubtVRjZFlmfW2NbNblbNDm/Ox1/tG3fg9uLpEJOoqndrNTgqmTZVpmqVahNlBgaXGVwwdmcGbnUBSNemWdBBkJMAydIAgI+0t85/Ef861v/SGDto65VEHTdKI4JI5iPM8jl8vRbrd5H48wTjl66ADZhTVkP6LteVi2vbl+dObMcyyqrk6j1WAwX0C/Ng8IgsBHURRkIfB8DxA0BktgO1y9dJFJRcMJEgzb7BD9KAJSqtUamVIviwUDCZMkqlGarwBgGiZxErE+2svbp97i4LEZ8rkiH7z7PmkSQqRw6NgB3j19mplDx7h2/jJuyebw0YeZm99goD+DLMvUqzWySyuIczcIm22uqQnGt/8FF5aaHJw5zqVz73Djwjn+k3/6Txg+cABJsWj5VVA11DAi3cwqnEidH2VHioA03VE/FYjjeA9X4O35D7rPd9yS75U3/DebuR3+9H+8c26rLeiSZbv0tRd2yr+tONKtsadd12yN9x5F6h5yuLvNrRjbvfrdGQMrhCAMw65avNvv2ak4+CQL8N2T219amnSuNU3zDpnubifdmTBiH/vYx98K9mNc9/EZQmIrBihJ72Y+3Pvarm9/SxbXLVfhv00taTeR/KRMwHv1+0kutfc9f2+Iz/br7jOeLZLZnSxpa8PUfc1vOl+73dPZyHQqCyZRjJQkJG2PN195lV+/fIrPf+XrWI7F+UsfIwsBqUJ/Xxn38Zcx//SntI9MIg5PEcUxr7zyGmmSMjQyiCpUzpx5HyeTZXWtwfDIGH19fbzz1jvomk1PTxnXdRgc7OX5559jfHICVVHQFJ2250Ei0HWTZrNNsZhHVg0ybhbDsthYW6OvnKdaqXHs2EPcmlvg3LkLrCwvcfKhE7RaLWq1Bs8/9yIPP/oIYQSqohKHPvVaizQBVZGpVtYxjDylnjL9fcPMzt5gZLgfx9LJ5bLIqoSq6ayurmFZNmkSo6k6pVKJJImZmp5BMzRkSWL25i2eeOIpZg4cJJt1iOMAwzRoNtu4ThbPD5BlgeM4qIqGBLhuDiE68aWW6fDGqbeZPjDDzdlZGvU6tm0RJ50syPVaCy9oknF12q2Y1069xckTh4mSiKefeYZjR44jJFAUg7XVdXL5PLqmIYREpVIlJWVkvdX5f5A7cWN+EHYsbpaJm8mgF3OkukG5bxADCd3zO9lthSCJE6I47sSqCcF8GuA4LvV6C1Y2MFUNRVaIwhBZVjou04pCJQhZTzrW55ydoVdWkISE124jZIEs7tZuVAd6acUhvtdmJJ9Di1NM08TJ2MjylvtmSqrIrKURiq6hmjby0hqtVhNNVUniGEVV2VrTYscgNXWSOIW2h7e0vrmZlYjCYNMyGmOaOhu6wtLSEikpRqNN0GphWRZJkpCkCaqqIIQgUGTePHuGoZFeTEUiWV6j0Whi2xaLi4u4bgZFVVBUFXWgl0MnjlGtrGFFoMXJnWzmYRjR9tqoqo5iWljDY2TdIrJQsJttkiglCiIs28S0rI6VV1ORXJtDD53A0HVo+axeu9GJC1dVFEUh8H1kWUbXdZSBHkbHxmn5AW6Y0NjYwDCMjtVKdMJDJAl8GWLHIl/IE/s+aqVOFIboho4kdUiFLGSq1SppIYPu2pR7CkRrG0heQLvtYeg6fuCjaRpra1XWajW0vgy2rSBLKjk/6niXCIlms4U81Esu56JrgiuXrpLNFTl4+AimZXP56lV6+/rJ5gpcu36ZYrGX+dtznPv4AyQ6CYqiOCYzPcxKqcCS5zOtGhT/6gVGP75GXZd45ty7/PP/+r+gUl3ng/ff49DUAcLAR1YEqQRy2glzRWJbjOaWkkaSds9xsOu6zx6xn3fcYbuu3bp/s44rXeVwdl67ecP9z+/Wdtd4d0u+t9MzZzd34p2K0Z2W1PvJwp193O+encqBne3d1wuKu9bWLYv6lrzcSvIky3JXG/vEdR/7+LvAvqvwPj5DdIhrJ13/Tnq1u6vQPS3sEICwuxXxHqH6wQWkXAb5a5/fkwTudnynhna3fncT1ju1r7uNfafA3dnP/ayuW9ipYQcQ8o7xbv7ezQq6cxOxU+hvixfaZc66N1c7Lcv3jDsFTZIgjpBJaG6s84sfP85vPfoY0w89RpxEWK6J7TqUcj188/f+gP+qKuO88CaLh8ZpOTbXr11HlmUMw6DRaHDr5k0MXeMbX/8KV65e58QjX+TVV1/BzWRQFZ3e3gFy+SyrqyukBBw8cgjbsojCiI1Kg8X5jrVJ1Ux+/OOfcPKhhzBMB0kSrK4sk8tlCPw2iqpQrTbJF3o4f/4ctmXQN1AmiWIK+SKTk9P85ff/msOHj/LM089w+NAM9WqbZ556hunpCZrNOmfPn6d/sA9Eyisv/YpHHj5OnEQoqkIQ+KiqzocfnGFkZATTMLAdF8/3ybgOKaDIgmajjm6YHJw5hOd5pEmEbghUTaNarWNoFoZpIGSJMAyRZZUkTVheWiGTsZGFIAhihoaGURSFMPLJ5/PU63XW1ytknDw3b95kamoYVYPKhseB6RmEFFGt1xgbG8exHMIoQJZ1Xn/9VKcWqWMhyx2LRyZjc21lBa2/CKN9NDIm0sgw83GANtBL3VJYbzVptwMUzaCpSKQlG/oKeDmXpLdAWMwTl/IkvUXy+RxpKlhYXEbv7yEd6kHq7WGZGHNimBVZwpwYoiGbaJZOMZ9DUhVWlBRjYogVkRKX89RtnbqjIg/3kagyly5fZWigTGipSP09VHQZeTiPX7AIizniUgEvY1Kp1nCzWWRVoZ1zuBU0kcoOSW8WMThAO+dytbFKdmCgQzb9kO/81V9Ss22GP/8IqyKlnTeJSwXaroUy0kecJLhZFyfjkBSzLIuYIJ8l6S0iD5ao2QazscfPXvwl01NTrK1VyOR7SHtLKMO9XGnUuNKoYE0OEfcVCXpcvDTCtAwsw0DkXVoZG/p7iEs9tLMOL5x5H3N8hIrSCdH467/+Pg89cpS0L8sHi0vMhw1Kx2a4HQf8+LXXOPqNb3Du2kV6e0tUNqrIjsuHC3P8+tIF8gcPoI8Nog4PsKbJfLQ8T9CqU+rr59XX3qD/2BGkwTJRT452zmFVhnVNht4ynqYhic7CJBs6Xtbmemsdc3KEqFzkcq2GMz7OfOyjWRqqoROFHrGp0HAMrjab0Fem5TpcbdXpOT6NXCqhayqvvvQWg8NDzMU+xugg8uoG7bbHfOTh+21UITExMU0uV0QoKpevXkESgoGBQX75yxc4dvIItQ2P1eVFDh8ap69/kNdff53jx48jqwqmaeEOD5NMjtAYyCNLEsWX3uGr55dQX/sQY3KY8rFDvPPWW7z56us8+ugJYkmgywpe29ue6Gjb2nuvjADuZvTtJnHcK/O2rcs71mgAnnqlc+JbX9312r1kjSzEHcv+Xn3uZbXcqsG6U07AdoK3Rf62Pv8mStKd2ekf1JNqZyjOzrF3X3dnLmSxo6TbvTI8DMM7yggh9kvr7GMffxfYJ677+AzRIa5pupWQ6ZOu3eXoA2hHdyV4X30U8dVHP5UQ6d5M7CaIHoRsP+ixvVx599SuS3f9Fu8IYoldiev9hOheAvy+GyRp99ii7vPd7YoUpDRGSlNee+FZGrUajz72GOutJigWYaPCv/7j/5PPf+HLSCsb/OdX1nE+vkz4e18i0VXCwMf3PN57/0MmJ6eYmBjjwIEDDA4Ps1FdJp/PYJk2h48eRNUEQ0N9SCImTeGDDz7GdTMYtsPK0jLXr1xlcHiInpyLoijohs6ho8fwWk0W5xfpLfXQblWJJYFQFWzHRRYxqUiZOTjD5MQ4lm1CEnPtymWyPVkOTk2xsrKKqmlk83l0VVDbqFAulyiUijhOFtOyUFTB1NQUQhHEpKiGTRqnSMgMDQ9Sra2DJPP0M89y8OAMURzTbjeRZcHGyioi9bEsg1yhiKzrpFGErKoYholEihAy6xtrHbfiKEYSKU7GRhIxfhCgaxovvPAChw8fwrZM1lbXEJsbyYsXL5PNZbAdgySJUESCbtk0W21sJ4ttZyCJaLWqqKrC8MggtmXx+qlTyLJEPu+SpgmyYRFvspNKpYpA5qlfPMGBqQlqzTrZYo5cvoBhmnitJqapkyQJ6+urOI5Jq13DMAxIoVZrgJSwuLTC8GAfCQmV9XV6CkWErLK2skicxFy9fJvTp9+jWa+AlDAyOowQAkVWcBwHz2vjewGkCbKiEEfQqK9jGBZCUlhfr+C6DoqibboBpkiygp1xiOKYNG6xvrrWqXlqafiez0dnLvHMc7/CzdqMjoziewGaZpDN5hgbGcTNOkiyyl/8xZ8zc2AGxzZJZRlFkVE1tWNZliRsy0TTOlbEIPBo1JsUenp4+KGHKeYLNBoteoo9fPd7/57pqSnKpTLjE2MIOSHwfGzLRFVkJFJURSGKIlRVI4oiwiTF0HX6+3tRFBXHtshkHE6efIRbt+cIwjaDfQNkCyZzNxcZGhlhemYazdTo6Snzwou/JJvrYWBwgNHxYY6dOIwkyywvL6HrOo7jUCqVkYBKtc7hmRlq66vYjgtpwi9+/jMefvg4SwsLDA4NEPgeAKZtsby8jK5puPkiqmbgtzxcy+LazeuMT45z9fp1DMPsvEPbJk5SyuUSlmkSJwn5fJFWc4M0gYuXLzI2PsPGxgKSJHj7rdNMuwWiMEAb6sewbdxcjosXrqLIKmkSkcmabKxuMNjfz2B/icGBcW7dvkq71eD4iYcwdINyuZfLly/RrDfJui6nXnud/r4BUE2qloF88hAM9bF2/RbZZ9/E/vmv6fndr3Dwq7/Df/ff/pcs3FqhWMhjWhaaqm5zoe1aTfdcQ7vLwGwR193W7O0t7Tj/1KbFdQ/ieqfvnfd2hcH8prJjS4G7kyRur8+9dzsPgp37gZ0K091qv39Sf3uG8eysDbeLV9iWPOwkdUq2jWsf+9jH3w72ies+PkOkJEl0J1ZkS7BFUdSVhbHbker++CRhsNOq+SD37NbGbq5He7XffTzdSSi5V4jttLDeaSPtno3NzUrKZimC9G5RhS5ZujWfW/eQPthM7kaYuzcWOwnv1vfdBPz2TZeMDKgpyICsyBiKxKkXX2XqxBEMu4QkmwRRE5rrOOUBMrLNxOnzxP/ij8mYGsmXHwJZ4cL5DxgcGCWfzzE+NUTGdlhaXMXJZVhYnCPr5jGtLA2vhWEa/PqV1zl86BBJElOpNjl2/DCSgPpGDTeTY2lpmVzORFdVVN2l0QowdYnV5SVyOZdqrUKz0WZhocLs9SsMj4yAMNE1gRAximGTRBF+EJMvloijCFU3OPvRx4wODnLx3BmGx4cYHp/GtGxIYoIg4N13PmJocBBJEeh6BkU1SOKI9dUamUyGaq1CLpvHb1U5efJRFEVhdeMahmqTJimWYyHJOl7bY2lpHts00E2dKBXEkUfQrqIqOoquk8QhkV9nda1KsVhgdWWdTMYlSmMmD0yhqQpCE0hCIuu6aIpKuVyi2Vwn6xaJI48oTokCkCWVNImRJWi0Gvz0Z89yYGqGZtMjBaamp1FVFaHpeH7Axx+dIZ8tI8kysi6hywbHjh8mFVAu9yPkThKbNIYkEqhCQagCJ+sSBtGmW2mKUHUURefWjVtMTPTRajUwTI1Tr54hk1WQScgX+zAtjZ5SlpkDhxgdG+H5Z3/FyRMnN120MyRpg2plibff/pDDhw+TxCFP/PxnfOELX0M3VMLUw7INqivLvHXqNP39fUhSSBSkyEKiWa9jOxlWVyr4fszAwABBGjA0OE5v2WWwf5jl5VssLC2ztLDG1OgB7JxO0NpACIm828/I8Ahra8tYhqBSWWfu2gqrazcplHqJwghdNxECZFXCsTOoqoaURiwt3MJyLALf58SJKfKFEaKojaoAQkVTZTrlWEDRDBJkiCXCKGb29i1MRWV9dYlsrodXXnyGvr4y1VoV09SpVyoEYUxPuZf19TaSlJIr5InimDiJ0FWd4eFhekpFzrz/JsVCjnarjaoqvPj8Sxw7foLzFz7GbzVJJJX5+RWGRgcxMxqkEZ5fx9QtlpZqjI+PkqYBmiKoNzxsJ4NtOTz58yfp7y9z9dxF+sp9JLJMua9EmkCj6mPYCtlcD7fnVrl1a47e/l40XUfTNEzTIIpTekoldE1noL+HttdCUXWmZg6ibVSxTRNRMknSgMZGDc9v4+RchKbhZrL0lPq4fOk6p0+fYXikxNjoJJmsQ5IG1GoehqHx3nunOTFziNkbVzh67BjvvnuWIGqjqyYv/eplJo8dQp8c5qZrksnn0L/7U5SPLvE7/9u/5Nihwyyv+iyurHP2zBnkdhOrp9TJUpuyucp3lLkdPWRCmu7wfknv1lW9R95wH8m5SUalTeKa/sFXtp/fYWHtbmMvhSTcW9Jsp+UTOqV9SDvZhtNNAnunv22Wy71l6c5xSJK0vexOmkKXkrWbtHYT5juZkfeQV93Pv1WSSIJO7Vop3YW0wlbR8+6xdM+dkCCOQkgTwjAgSeI75XUedI+zj33s417sE9d9fKZI0+SOEJAkiVu3blEqlR448U83HoS4/qb3fNq+urFTm9wdd/PA/e3R725a5O5zf1euSds2JLtsUrr7v/tdkIiUQIqIpISoXuHxHz3OF37rH2DbOoEfoKkKpiIjvXEG5wcvMvadnyBducF5U+OaLWFnsiSJoKe3SCoJdNskiiIEEq12i0JPATvrkiYJugKGqVFvtBgcGCKOQkzDoNFsMT+3yA9//Dhf/spvYdsW4+PjCElQra6j6DqyImg2KtiOheNkSOKEMx+d5Yu//TCOrZKkKY1Gi4xj4/seqqZDFDI3N0++2INhmUh4eEHA0NgIkzNTEEeQQqNWobK+Sjabo1Gv4fsNwsBHImV1eRHL0MjmMkhSytzcHFk3i23ZRLGHoloosgmJYHFxrZM9trHGwEA/YRij6yZxCtVKjYydQdcM6o02IGPbNgBOxkWWFcIwQFM0JFkg0Smrsb5eRZWVjjUy8MnlChimgaJoIMU4mTxCllENmds3V/jggw+YmZnhyJGjXL92jV/84omOG6Us4zdrtNttTM1kOFFR/YCb1Q3K5QKyYSAJAXFCEsUIWWFlZRnXdVlfW+fy5QtkC4VOSZIAwiAm47rcuj2H42R44ZmnOPnwSRTNotVoMdA3SJpGFPIF4iSmUllFCIFpmFSra4yNj6JpCmfPfszoSD+pJGHZeVaXqgwPj5DEsLZWI5fVyWQsNEUljRN0t8TY5AyartH22yRpTK1Wh1TGshzefec0J04cI008VM3i16+8wfT0KPl8FkM3KBQLlEpFzpx5n7GJMWQZhKJRLJc5f/E8/YMDRDE0603GxsbRdRVF0ahs1LFshTSNiUMZ3/f43vf+nCNHDrKxvkpv7xBJ3Ckp4wUBgd/mo48+pLe/j3qthWmZKIpMGAcsLy7xi5/+lImJMXrLJaI4oqenxOLSIhPjByiXBzBNC1XXcNwcrVabNI0JgxaSULFsC11XkWWB16rx7rvvMjQwRMYpgCST0klKdfzYMa5ev8rw8AhnPz7HzIFRKhsVFEVGQkLVNOIoRRYGN27c5vLlq1y8fJmJAzPEYczy2gq2bVMq9mDoNpqmc2v+5qbFuc7Zj88yPDaBpktoqkoUBqiqTD6fp1qt3knc49idUADTMHn7rXc4fOgoQRiQcWzWqlXUfAGt4BKlkKYaly9dYbCvl7XlBSzLYXFxnlzOASImJyYIAp+XXn6Jo0ePASmXLl/kt377MRr1AFXXuHzlEkeOHUMRCYP9vdy+dYPAa5EvFNBUA3NkkPZwD+q75xDPvUXtm1/iO//uu7zx5hv8s3/2n3Hm/feRU0FPsdipky2BRLpjDb2bgXhn5vjfBMkW+b1jcd1OXO/X3tb6vlvCvr3IZTd2Wj67FbpJejfz8G5Jqbba29VFeac83UPedVt2d7oF7xX+cy/x37XpbSfvZ4neSZ6jKNqcT/k3fpf72Mc+Otgnrvv4TLFFXLcW+2w2u02zfD/h/GlJmSRJBP/8fyD5+UvI//jrn+r++xHrvWJsd4tN/SSr7V0N+/3Hs3NMe/X1m7h37RzzXlbq7n67ra73zkOKJCUEfhshwXe//W/5/T/8I5AVglaT5MIVrB8+j/7f/ynm6QtIQqb90EFak4MEhoFt2ThOhuWlZfI9RRRNpu35PPGzJ9A1jXJvkSRNkTUDQ1FYW1kiSSJMO4NjZ5i9cR3f8+jt6+PDD88xNjpGs10ll8uyvLxxC4qJAAAgAElEQVSIYzoIRUYzNFRFwjIMVN3A83w0VcN2HLK5IpbpoBs2lqmzvrqKaZjIikqSBGQ241ANQyMKEsqlIS5cvIrlZDE0mbbnYeo6xUIRP4zo6SlgGDrl3l4azTp9/b2dhDybiT80Tcc0LBbm50lFytmzV3AzWRQh8+67p8llXcbHRxFCYNsZfM/Ddl0c02R5cQVNNwlCDynpJKVpttpkMi6NRh3LslhaWMR1XWSlUyImDCIsu5OM53t//uf0lHooFHMIoeP7LYRQkRWJNI2xzCy3bt1kaHgAzdB45613+eY3/yGO43D27FmG+/sxTJNbN28zGKQ0Vtd46cIZZg5MgCwjSwIpFWiKgqyqZN0McRSRxAk3Zq8zMTVJo9bkw/c/Ymh4CEWRMUwLRdWYGB9FyAr1WoMoSHGzBouLKzhuhiQNMQyDNO2Uv4AEJ2MRxwmFQg+t1gaKYvAf/vyH/N4//ApIAUghjmMgSSn5fJ5ms0mlUsHNOAStKu3GOknYpu0FqKqKqmrohkWxWESSUqrVVZ5//mV+9xvfxPNrpGlErd5CShM2NtYYGB4gDBPa7TaKppGS0ttbxvd8dEPn7bdOMzI2iGm6BL5HLlsgin2WlpbI5zr1hk+cfOgOSbTtLO+8807n3SsCQ9NpNFrk8jl+9ctXOpmQpQ5ZzDgOE2OjuBmnk5BJN5BVlUzGQTMVkCIuXz2PpoLluJiGTRpHhGGLct8QSRKjyFLHpVoWmwqXJk899RwnH3oYIQs0XaPVbNPb348sC6YmJlhemmNoaIjZmzexTBNJyNRrbWzTRlMVgiDg8198jJgUGQnbcYiTGFPvJBZ78eVf8ejnH8VxbLKuS7FYYvbmHL2lEkkco6qC82fPsbq2TrlcxjQtIOXpZ57lyJEZdF1DVTpkfGVlmY2NNQanx/k3//7POHL0KEJINFsxZ8+eY3RkiP7eMosLC7RadSSRUOjJb3qsSIyNjTM/t4hpGWiqSl9fLxsbdW7P3eYLX/wijUYNkSY88fOf8thjX6DdavHOO++ysV6hVO7hRz97HPPhE5RXa5jPv8lX//X/zBcf+yJCV5ianKK2uoKuq536tY5FmuwsX7Z9Td2KM+1er+8nD6Mo6hCmrZI1f/AV+NZX7hzfS0Z0e9J0uyffD7t54+x2fNv1XfKmO4Nw95gkSbpnvN1t7UVct87vLF2z19h3k9V380VI2xS12+dihwzdYz66P2+1laQhURyQJBFCBtK7BP7vQvG8j338fcI+cd3HZ4pui+v24+mu5Ksbn1ZDKUkS8VZW4U9BXD8t7uf2tBfulAy4T4zvbvFBv+ncdGvTt9rbTQP9SbifoE2IUOMYzQt45oeP881//J+i6CbMzmL928exv/0j0rbHymQ/8pc/x5oQfHTuHKal4wVtslkXr91meXkR3w8xDA1V05kcn2Z4eADL0lB0HeKU9dV1VlbXSYWGZZkEfogsJNxshrbvc+3qDb7wxYfo7RtG1zU0VUKQIlQTRdOoVSrU1qvYbgFD15EViVzeQcgqioB6cwMhSaiqxuL8In7oY9gZNFVHSmOCVo1ao4FhqMzNXmOwv4DQHNRN62WUpCh6Z7yGlSFKUuyMzUZlA9NyEalGknQyPCuKjJPJ8MO/+QXf+MbvolkhxDFDQwPYto4k6SwtLRMEbYRIQVEJvSZJFKFoFpatEHgBi0sLlPvLCElC13XW1zfQFHWzvmab0A+AEE3TqTXaPPalr5DPZ1A1hR/+8Kc89PAJNlZXMXUVKVVoNmsMDfejagqkAl3VePa55zhy9AhzC3N8+MHHjE9Nki/mkJfW0DSdt25e5cSJI3jNNmmc8tLLv2Z8aowwjGm1GrRaDfK5POMTEyi6zPztW6wtLzE9M4kf+CiKDgjiNIE4ZWl+jrff/IiR0SL9A2NIcieuU0JGVXSSFHRNJ4pCqtUmi/OrFHuL6JrBiWMnSNK4k4VXlslkssiKSa3eJlfI0vYbeF6A6dholo1uu9iWjetmUHUFP/AxDBVZBjeT5dCRIwhJRdMFoR9iZxyW5peQJIW5+SWiIMa0TRqNOrqic/PGdcrlIkKKKeT6MTIyp157j+raKoqW8vSTv2JyYgpZDVBkiSQVJLFMux1RKGQZGRkCYsIo4dbsPIV8CVVTOXToAH7Qcb0FhThJ0HWTFGi0Wmi6gVA6MZ0tz0OWVWzDxTRc6rUV5ueWKfSUOPXWKQYGxoijTv9pHBGj8NKvX+XoieOcPHEEz2+hajoXLl1mZWGd5dVlCgWXWnUNN9tLTEKpr0TGdbl6+Rr1eh0hR1Tqaxw+cojV5SUsTdBs+dy4NYubcWm1mpshAJPYtsurL72KkTExdIOVpTUWF1e4OTtLMZ+jv2+AweEhdN3A8zyiKKZUKuIHDaIwIJ8r8Cf/17f5+te/jmM5SKnEoYOHyOWzNOsbOJk8cRIzNjGOrOmErRoZN0uSSjhujpzrMj9/m1yuhyQR+L6HbduEUUyltsHRY8cQyERRjJBlBgYHcNwMuVwPg4MDzM8t4Pk+PT0FSsUyS7ZFZm6J8GfPsfw7x1BNE1lSkUREq9XkysWLzExO4W9aGe+WjNm+nm+VdtmyXtbrdRRFua+SF7hTl3Vrjd5Jjvbymvkk6+7OpHz3a7O77fu11004d7oHd0PsPHaf/UKnXJWy6/nuMe1mke0Q7PuNe3fi2v0Md+Zlh6IhSaPN502JopAo2lr7lX3iuo99fAL2ies+PjOkhGyZEveyUu4lsB7E3fZ+2uFkD+L6oC7KO8d3P3THtu7UWneTxG2a3o4Muxu7ej8I6Z7ApjuhUtJdAdodo7rzWR8kMcZusa070X0+ESlSCrqqItKYlx5/nCuXb+GW+ukdH2P51iV6XzyN/i//hMAPaD92nHlLJRCCV196lY/PnePQ0YOMTo6QpNBbKhOlCZlCjtGRMTzPR5EFyGA7NlEQEfkeAkG91mB4dBjbMQjadVq+T//AIJIsWF1apbdcRlMFhmkgIaHpJjFSp6aobeO1fRzHQZZTfvLjJyj19CHLsLa8gmHohKFHu90mQeHSlVkGBwawbROv7WGaFmEYkisWQRJYdgZF6WRCJekQ5Mr6KrpuECcQ+B0rWBR2rE1XL12k5aUsLS6Rz+XwvTZR7HH8+HGEArJQuXr+IqaZwXRsdFWhUquSK/agWw6ETTTNoFKvkc1nCYMU07bI51xsXaPpeSiyyfz8Av0DAyhqh7yajoMfQ5JIRH7E3Owspf4eNlY3eOSRhxCKgm6YJFHARr2CpmcwLJ1UilFVlWwxz6MPf45Wa5WpyUNoqo5pqBiajrJaRQgYf+xzRGGCnXFQVZ3pyWn8VpuXX3qdZrPGzMx0p0wMAZKk4LpZxoaHELJgZW0eVTH5yY+e5OixQwhF46knn+Kf/NM/wrBMFhduISPw6+tIqoVQVIRIaDRr6JrJ1StXsEwD27LQVIknnniSI8eOI0kyG5UqKbA4d4trVy8xOjxM6MeIuIVu2rz88mtMTUySSoIw6sSNx7GP7/s0W200wybFp16r8+1v/zuOHzvaIbl5F1lVcTMFcnkX3VTQNQuRmDTaLTJZG5CIwzpJIhgZG6PcW8YybSampnDcDE8/+Qznzl4hm3Go11cxDJkwigGJMPBJiOkp9YGQSFKPleXVjpImkyGNIQ59kjSl3mjy4UdnyNidxFxJGGA7BZLYI41kzp35EMsxKZeLGIbB5MQ0Zz96j4G+AWRZIklD0lTGUFR0XYe04zL6ve/+BUMDwxw4OM3w8BDV6gb5QgFZU2k228zO3qRYLOHmcpTLRWxDI+MWSOKEbDZH2wup19ukSUo+nyVJI4hDVhaXWV1a4sjRGVTNxHFthocHMA2NAzNTqKpKEAWceu1N+vv7CSIfzexkBDcNh5WVNQo9BcbGxsk4LufOfkQuibElGV+CbKGIJCc0Gm0WF5Zptz2KpRxmNofr5pFJabXrZF2H5YWbJEEdw3EpFgvcvHWTvnIf169fRTc1bszeJGM7XL12lcGhYV548VccOjjN3NwcgR9QLvZy+dIFjj5yktmkTfbiLQq3Vjk3YGDrMU4mx61L59HCBrdunqdWjyn2uKQS+JGEkJJNPnY37rVTpqkTgqFpGpIk7epK2+1+u0XARBdx6nj07FFqR9oeirJbPfI7bXRbPKW7iZ02Rdk2uZd0930fD6Sdsqpb7t4h1JvPLHWRzW1zsHUvoCrKnbwPd8ba1W/37zRNO2XYto2nU39YQpCmkCadz900tVtJkHR9vp/3kyTJSJJMmgCIO+86ikLiOCKKQhRFpvP+781+vI99/MeMfeK6j88QySdfsol7tKy7pK7/pHu29fz/g8UVtrsebW0KdnPzErscu0+j9z/9Kca5G0ndKlHwoONSYoGWpNTmb/PsT37E5x77GgkGs7O3GR0Youff/BDx9CmCr32RxnAPQtd5/rkXKeRK9A+UaTZbHDx4EE1Xee21N0jjlGyuQH//IHHsEYY+c3O3GR4YoFarIikqTz79HMeOHyTfUySVZOIkRZUVsm6eS2c/JmjUyJV6qFbXCaMAVZEREvjtNtXKOk8/9UseOnmSxcUFyr0lFhcXybp5DMMgSRICP8EPfCxbxzItbCfD6OgIiiKIogDTtImRUUwLJMHq2io95SKKIiGlIULI6KrOpQsXKff1omsqadqp+7e6vIxtW+TyeQzD5sb1qwwM9OF5HrauIgsZRZaorK9hWy6FUgFFlfACD9fNcu7sBXqK5U7mXEXDNGxkoZIIiCMf1dSIUkjiBEmkyEqKquosLS3heR6mbSEk+MEPfsDYyCjlUok4TTn97jsoqkYmmyMhQdMtbDuDIklsrK+jyirNeoMk9lEkCVUOAQm3UAABSZqgb9SRhYQ81EvgByhaShJHxHFAEDYQisLBgwcIQh9Vk5HikCgOSaI2vlfrlPSRTAxDZ2ystGlNTRkZGsQwVKqVCr3lPnTDoNWqc/bcBYaGhllZWYFIglTCcjL0lMuEQYt2u82BmYP84olnWFtdYXp6kij0kCUT182i6SqWZaBZDm0v4OD0JCKNiMKAOAzwWi1IJRynUyrJ81rYtoUQGg+dPImmCRJJplarIpPSbjQwHRuJlCiK+f5f/hXjU2NIAjRVIQxSFhaXKRTzyCKh3fY58/FZCoU8QwP9HDl6BN/3GRoaxHWz6IaFaZqsr63QUyzy7tun6e3pQ0pkLl25yPT0dKfubApCgKZpyLJCsVikWChR3Wih6aBKKisrC2TcPMVyHtMyQBLUqnWEELgZDVl0lGeBF6CZJleuXGd1dYOBgQF8L+DAgWnK5SJR0saydDRNp1KpUa83yWQc8vkcSRKjCYijGGQN2zJYXFrCMExWllfw/AaW2bnX0G1M2+H67E2aXoPR8WEUJSUM2siyytztOQqFAmEYYpomxVIeTVO5PbfA0OAIc9cvIQtY39jAzeZ5961TuG6O9z74kC/1DBJvVFlVQDcMUklndvY2rUYdiQTNMPC9kNu3b6PrKpaRpVKpMjAyTKQIamuVzb95mWwxT6GnSKPpIys2ioDZmzfoK/awsbzGyNgEqqoyPjaBoiicv3gBwzQolYqcXl5m8sYi6a1lzH/0TX70kyfoH5ggVXXcngJxbZ2lhVmGBodJJQUhtlv/Osv+lnXwbpmV3bL97uq59K++A6+eRvryI3cO7UVct35/ogz+BJnQraCVNp9hNwX0XhmLuxW73SS8+/gWupNWSdxLSHe6Fe+0KN+Rzzsto1tJpTbbul9ZoO5xf1JMcPfxrZ8tedvtqh1FW4nqtobeiX/exz7+Y8Y+cd3HZ4Y0jXeNoez+/qBWzW7sJcy6sUVcxR9+7VOMfG/LbLfl9EFcpPZ8tnT7c+zmwnVXY3237+7ED3eE9X2e435z1U2qu79/0rvZun72wms8/fPvI6SAUimL7g7xJ3/yf/P7v/cPcP/37yBfvslzsk/v6Ahvvv02G+sbGLrO5MQ46xvrLK+sMTw8gmlZzMzMcP7sOYQsoxsmqiohJIHr5rhxYxaEIF8oEIQhSRywuraOk8mgqDIhCYqh4WRdsoUcaSKRcW1UTePNN97g4MGDHXdcx+Hhhx8iDH0sy0LRNEhTxsbHME2TarVGHKf09fUhBAhJxg/CjiU9TglCn4XFJdxsliQOkSQJ27KJw7BjNxegaiaNepNSTw+KqiARI2sKsiRwMg6S6FjT0iRheGgQSZIIgoAkVqnXfSRJxrYdKtUqSAlRlGBYNmHYif3SFIVKrYbtOIRhSBrHCEVCFTGpJIgQJGGApnXaadZbCElQKpeo1esosmB8fJRST5G5hXleO3WKr33lt/F8nzBKMU2NRr1No7JCxnVpt9oYho0QMqZtoCoaUeTTaoXoZud7s9lAW60gywpBPsvS0iovPP8yJ449QuDHOLZNoZRHVlQ03SBOYiKvjarpNJptMq7Lxto6hmYTxQGmrUEqMAwdXZHRNPD8AF23aPtt3FyWYr6ILARvvPEmxXyRWr0GIsVxLEzTQNMMhKxw4MAkExNjhKGP5/vomkmxJ0+lsk6aJghVQ1F1kihifWUF3dBRNY2V1QqWaaGpGp7vYdsmrVaLJO5YvwxDQVFUZAGWZbG6soZhGWiaiizLHD92hEKxQJJ0rCqaZnLuwgX6+npJ4wiQmJqeZmV1uVOmJePSaDQgTalWqghZZn1tA8vSCaMm/f0lDFOlVl/ngw/O0dtbQlFkZFnezF4qaLc9TMui1Wxy6rXXmJiYQlZk/KCJaVqkaYxpWSwvr6AbGlEcYZoGuqnx0ZkzmFYG27bJFQrUqjUCv02hkEfTVWzH7sR5ChkhFJYWV8gXi9i2jaJuWopSaPs+mmGSJhHNZpO/+Zu/4Rvf+F36B0pcvXqNQr5Aq9kim8tibsYQ1+o1BClSEuJ5PhsbVWQhMze30ClVJFIc22F9bZ3KegXXsZAkwfDQCI1mg7GxMWRZpa+/l4IfoygKp65eZOrADFKacPbMx3zuc59jbGIEzw+Yv71A1nUp95WQtZjGRpOLF2aR1QxL8zc5euwoN27MkngbVFYXWZi7zdFDh7l5e56pyUnef/8DdN1io1rh4MEZZm/eYH1jlVq9gaWbDA8NcPrsRdq6wqGlGs9qEq+/9Q6/ePpFvvjlrzE8UiINYiqVDRYXFhjq7SPZzLrd7cq6FbOZpvdaDHdb47ed//5TSLUG6R98+Z5kS5/k5ruXrH4QdMuSvXJZdMei7uZ51U1eu9vbq4brFnHtfs69ckDcc3yXcJmd76B7/LuNs9vafb853RpXt/zufvY7rtNpRJLExHGEonT+3+5Xnmgf+/j7jn3iuo/PDCnxnc+7EbNP3e4DuBHfsbh+SuJ6P+xFNrtJ5TY3rd3a+IS2trkYi+3Cd6uvO9d29bfbWLfa2znWbqG8EztdnHfeu76+zuu/eJLf//0/wskO4xTGaUcej518iPz/8WfoN+ZpfekEhmESek3OX7zKQydPMDU1Rqtd5Y1Tb3Ps+Amu37hBudyLrssISWJoaJAk7ZSS8f0IRdEpDQx2yroEPh++9x5HDx3h6SefYXJilDjyEEFAFMSkscSl85fo7R9CVRXq9Salci+ZbBY/CFFUncCvsLS0QLm3l1QSpEnCuXNnURSVbDZPvpDvzIckIUsql65cIZcr8NyzL9A/2Edfbx+R16ZZX8cwDFaXV/jg9AeMj06AohAjUHWNjeoGXquFqkrIqozf8hBCplKtoqgaQnTKRvzgBz/g4MGDmJZOJuug6ICc4LoucRyhqgb1pk+aQiHvEoUeuWIR3/Pw2y2ESFlfW0MXKZ4fohoOqkgJwxAhmURhgG7ozM3P09vXh5RE2LZNnCbkCjnKpT4c2yCXy+OHCe16jWw2TyEjEUoyiqYjZB1Jlmg0PXTdJklj6o0QRYaF+QXyuSz6Ro0giKhZFvNzK4yODVAoFDh9+i10XSaTy+N5EUkCkhC0mlVk1cK08ywsrGPrBpLokI40VgjCNqqqMX/7Fqat4rcjDNNGVmS8wKNdbyAhMTl9ADfvks065FybF557lv7BERTF4JlnnmV8vK9TokMozN64hWHI6LqKYeh4ns/C4jzl3j5kWUXIgkarhePmUTSTVq3GR2fOMDExju97xAn8h7/4S1w3g+tatOs1NE1ByBpnzl1gZLifNIGVlRXa7Qa6Yd4hjJKQmDpwgDROaDeaqJpCnKRks1lURSBJAl3XiZOEQqFInCSbCpII0yogFI0kldAMk5npQ3hem3w+iyzLeO02hmHSaDZZW18nTT0ePnmExcUm7bhFoeCgoNKsVZE1E8MwkAQ4rsPNm8u4uQyFniJ2xoE0RTFkTF1BVkBRZOr1JteuzjI5eYClpRVqtRobG+tcuXKdoeFBkiQEEjTNRNd1Wo3GpgVY5ujRo0hC0KjVyWWzqKpCNpvh1q1ZKhtVsm4ex3IwTJN2o0IYJ5TKfaiqiuO4PPfs84xPTdNue4yODGEZGqZbRAjBKy+/TBrHVOpNlpeXGRroQ1paBUnCGBnk1tw8pbyJaZpkci6SJqMpOrqioygC1VAJQh1LCGq1JTaqc0wfOM47777H6PgEmVweN18ik+vh16+/iSoJzl88j1vIMzoxwdjoIKdPv8P0gQl8v8Xxk48wMTbOqdd+jZXtYfTEceK1NUbe/ph/9eGb/E//6x9z9MQxbt84y+jUw/QPltFFyqsvvsD4kePb5MH2NX7vzPLda/y2z5tZhaVvfRXf91FVddv6vdu9f1vYsrjulB07Zd2D9r1FdLvJXpqmd4nqDnK7l9J1t3mSdpxPd37f7Gfr887xd1tqPynvRDdp7v68M+MxUrLpKi534mHDT046tY99/H3GPnHdx98xElIi0rRjVdiLvP1/EZgPogH+TYnrg8S+7tbnlsDqPpem6baMkLs3Rles6r1RrtuE72YQUac+XtoR1Gl653i3MH9QS3D39z3fz2ZsrSJJiDQFWYV2nY/ffhtbtZg4+iiVRpO275GEbfz3zzP4v/w/LJ2/xMLhUZIkBillcXmBRz//MGc+PMepV99geHgQFJ009pmanuTGzdvoikK+kKNaqXLh3EXaXsDAYC+6IbOxuooiOpbJI0ePopgqJx9+BFXTkGUJSVHxfI8wSHn8509y9OghdE3FzThYmQxRHGPqKu1WA01ziOIIVVU5d/YaGcdhoH8EJ+MQhi2EEHheGyEkVlc3cB2Haq3Ko5//HLqm8/FH52m2/I479NgEfhQzPDzK8888z4GZSVYW5/FaHq6Tx3EtZFVjbXmRFA1FNzAtE1VIeE0P03A4dGgGScSomsH3vvt93nrjNI8+/EWWluZx851ss3/2p3/BoUMHMWwDXTNYXVzFtB2SBD7+6Cxz86sU8r38+tU3mJqeQko77oVRFHDt1izDQ/04lkEqCYRsIIgJ/Ca6qWPqOpKQWVvfII4CbEcnlSSWljawHJcwSFhYWKDYU2R9foEoTpBVC1WWMBwT23YQkoBqg0TI/OWzT/M7v/NblPrKeK0WWTdLT28vvp/w5M+eQJEg42YxTQ1VViFJcDMWG/WQn/z0CU6e/Dwb1RbZTMfqqukmkiKjqp1nlyWB7/lkMhni2Gdp8SaJn/Deu+/R1z/A5OQkQrG4ffMWh2ZGO9mHN7ejumYgqzqaZiFJMkIW2HYeSYo68Z2krK5scPH8FSRCZE1mbHyMRqPJ44//jIcfepjpqWn6+no7VthsGaGoxHHC0OAAQlVQZBBC6rioy2onKZdpUV9fwzBNKtUKpWIJSVGp12uQJPy/7L1XlCRZft73uzd8RGakq6ws77raTU/3+BnsAtAugN1ZASAIEQuaQ/KB1FkIPOKLHvQgiiIPCZE6lPQEwgMEFhDMejvrd7E7OzsYP93j29uqLl+VPjP81UN29VRXV/f0DLAiAPV3Tp6qioy490ZkVvzj+7vPcz2ieNDtudNpk6Qxy1eXyBc8LNcjikJUplhfW6NUKqPrg4Ze3W6HRqOOX67QD0Ic26JUKCKkTpiCXyhikiLQaHV6eMUq3VYTXYNOu41r58h5HggdQxMEnUHjMENKbMsiChV+wcNxDKrDIyRRj0LRx8u5mJbOzPQsURhiWxa6pqNIBzWDQtJoNilXirRadVSq+PgffoIPfvCDpFnM5cuLTM3OMDQ0xNbWJufPXaBWGyJDUSwPYQqN1fUtLl5e5Cd+8sdwTJuVq1dYXl5ieHycz3ziU2iaRqlS5uDBQ8RxxHB1mEwJ+hcXyOfzGNNjaJrE8x1K5WHSFNqtOkmYUhryB13CE40vfu4L3PvgvVRqNUrFYRavLPDwow+howiiPnGcUioNMTo2zMjYCFIqHjh6L57jsLp8lZFajThNaTTbFNwc6xur5IpFLCOlVh0hf3gWa3mDf2SX+bUzx/npn/9ZLNehvbGCMvJkmsfs3AFefeElvvfn3+LBRx9FpINOx8jB65rr8ZYvIeTNpOgrTyEE8Hc+cANpfSds26NtE/VuoBg4pbiNM3Qbd2qj4G1CurOx4A0kbgdRvr5pm8BeG3NbqxU5qCF+W6t1h90eLPL6/ukeWrDb5zHIhMqujyPloFxhJ/bqwL8zinzTeNfXLhBCkmXbUV6FIiXNBp2JBQJNk+yoLt7zWt7FXfxtwV3iehc/ZOw0qre+of6w015EIYe87yBiZvwvP9YeqVM3dRHcgTuuXWWHF/YOjM9uI/hujP+2sb/T5lSDcWKE0gCLDMGZV45z6dwF7r/3GHEYsbC8TKUyhOiGLP/Kr3P400+y4tts7JtgeGQURUytNkStVmFro8Ha6gqPPHQ/hgGjEzNUK2We+MpX+NCHH+eb3/g6Bw8ewHFcWq0O+2ZnSOOEzY0Nnn3ueSanpq55oBPSJEVk0O20yec8+lFKzvfRdZO52X0USwWkFDQbm5i2g2HooBTdTg9UhpCCtfVNKuUqhcIgBdLzXExBe3wAACAASURBVDRNY3V1Fd/P0eu3yOc1PNfHMPO8dfJNkiRkbm6OdrtLkiiGayWSNMEyDSbHxxCahm07SKkPUpivNdjRdQ3P0XnllVOYlofUAtLERGpgWRph2MMwLBr1OtMzs2iaQaVSQIpBxGtubopcYaDRuriwSLvVZmN9ndHaCMVikZGxKuVygWKlQM7PE/WahP2ApatLzO2bIU1ihJRIKZBIFArbcYijmK3NVTzPw7RdLNfDtW3isEex4NLrh3z5S09wzz1HuHjhPLVqhS99+QlefOFlpmfmyPkex196lcnJKV5ZuMjVKObxxz/C2vo6Ugg0KSn4PisrK/j5ApNT44xN1Oh067iuy/LSKpZlkWUpOS/Pvn1z6LrGt775Daanx7HtHFGUkKiEOFZ0+300XaKZ9qDO17QoFMtoKubM2eVBaqiRgUq5cOEck5MTJElKv9cnDGNQCtPK8bu/+3s8+tgjCJGhiRShUjSh02x0WFla5v77jhInXYbHpxFC4Ngmk6M1+mGAbdu47iCKGsUxhqbT63bZ3NjEyxUGKdW2hW7pJEmIpgmkANctcPbcGaanJ4nThK2tBsWij64JdF3SbvdYWVlhY2MTyzKpDtcwbYcwjOi22ziOR2GoTLvXwdAAFLl8DtdxOHf2EkOVMkHYQ9dB021sy0QKRdAPMUyTtfV1DN3kxImX2Dc/RxxFNBotgk4P09JZ31pjqFYjCgPSJCPoR7ieQ6YE7XbAhQuXyZI+UhOQpbiOAwKyNLne9VXTTJI4Jcsgy1LCMCCfy7G8vMJHPvIR3nzzTSzLplFvkJFiGgbf/tZ3KJfKTM5MY1sWQZhy8tQZ5ub28eZbbzA9O0W/38NxB7Xh7XqDYqlALu8yPz/H+voaI6MjrKwsk8t5lMKETGVcCjp4nkd9s8XKygZbW5tUykUM02V5ZQ3TNpA6eK6Lpkkcx2FxcYG11U0Kfp7llSXm9s2yeHWJYmmgdRzHMRNjoyRJzKuvvs7M7DSbW1sMV6tcvnQJJQRD1SGSOGBkZISnn3oWJ2eTTY9RaAf8zGoXubDCS07K+PQsrUbAxctLjEyMMzRc5uWv/zmWbjA6OQHXyNP2/fz2Dsm3Sdz1LrVfeXJggnfpuN7ZfX9v4noTYdzjuHeTVny7uXdjdwbTzkjnXjI4u5241+3eTcPfeq23s5QD4rqrCaK6ucHk7nKcdzqvwdi75tk1nlID+aM0Ta9tE9wlsXfxtxl3ietd/JChUOrm1NXdta67yde7IVR3AjEzzl8Fad0Lu9OFdnu7b2e4d5/3dWN/i/e3jfJO7L6Gu9/b6/edHuu9sNcDh6YLNGUgwoTf+dX/gyOHDzOz/xCYBknUZe3J5xl/4hn8//QHDCmN9vuOcrrXYPHqEuNjU5w5cwpdtwijmK2tNlNTkzieTT7nkfPLSDLyfh7Ltpmfm6Pe2CLoB+TzPsVyAcMy6fdDHnjgQZrNFpZlc/z4CWbmptENkz/9kz9huFbFy+Wp1zcH4+ZyPPWDp7m6eIWRkWGya9fQMiws0+bkydeZnpnFNB10Q78meaPR6/Z55ZU3md83R6vdpFgosbR0Fd/3MUyD4eEarpuj1+9SKZcHqbxZhOt5LC8t4+d8ojjm9TfeZHR0mCju4zh5kBIBZGEPTR8QW9fJsbCwSLGUI0kScjkf0NE0OHToIJ7nYRgGukhBgmObaLqBbhiUi3nsXB7XdvjTT3yC+x95CM+xkAiSVGG7DpZhoRsGtuNgaBIhDXTTRmSKKArRDJMkURiahpAm/V7I66+9wck3TjI3O4umIpSISBPJoYOH0DWdkZFhHFcjS2J+7ud+hnOXTlGrjVyvcbx8+SKtRoOZmUlWlq7S6TYZrQ0jxUBjtV6vUygXkJokDAIs0ySf9wFBq9XCdjRUlhEGXWojJc6dO0+xOMRLL7/CK8dfZG52lqee/B4T4zVsx0VKQRondNodTFOjNlojyQap2UkYU6lUiKIM389jWRaGoaPrg8jNffffh6FrhHGAYdgITaIbJrbtUCzncXM2hjWQANKkJI5D4iQkny/xmc98jnsOH0UpheuarK6s4FgWlmWhG3JQHKEydMsk6AUIlYHU0S2TrY1VfD9PKgw+/9kvcc/+AyRBQJTERHHM+PgopZKP7+dBM9CkwYsvPs/k5BiW5bG1UefVEy8xWhvFtl1QsLXVoN6ok8t5GFIjDEKEpnP5wjls2+X8hUuUyyX8fA7bshkfH0ORYZkmWQZewaK+ucHk+BxJahAFXQzDJM0Sev3moJHRwipbWxscOnSAra0t8oUipjmQhWo26xQLRV5//XVMwyCOI15/9VWmZ2aw7YEzxjQtbMfii1/8EmmisG2L/QcPYOg61eEK+/bNkJHRbTVpNzusr2/iWDYrS0vMz8/TbTXxCyXCKMaxLXKeT3WoihCSYqEImsQyLDzbw9xqDiJ0Y7WBgyFNGK4NoUnBm2+dZHpqjCgIEcDa6jLTM7NYpkcUJZTLZaI4o1YtUyz7xEmKaVi89PJxKtUKUgmyLOHVV15lenqGQqnIF7/0ZeqbdfbP7yfNIqSULC4uY5o6IyMTFAp5Xn75ONbhA1y8ssDoyYuUT5zh0uwI/+pf/zv+xcc+xoWFixTzQ/zpJz/Fnz/1DKtrS5w5c4bD99yDoesDaahdNuPGTJ+b6yR5YpAqvJu4bqe+RlF0vcHRThuwszvuzRzvL0dIb2Ub90opfifyu5Pw7Tz33U2dbl7IzRt27redKbW7fnXnut7+HG5c76D78I3nfNNsezjBd2ZLSSmvE+Kd+94oa3RjinKaxWx3oYa72rB38bcPd4nrXfyQoVBst/Z/Z2O0V73ID2VVd0iMbxdF3W0Y3ymKKdT1jODrqb3X/96dtrtj/r2I/e3Oaa+13m777vPdGUHWs4gUSaps8lJH9nv8x//47/nnH/sYnlsgvnQV9XufwfuV32f0hVO0mi2uTNZwHjxGqikcz2T/wf3kfI+R0UlWl9cpFwqcu7zKkaPHsG2LTqeDUiA1HcuyMQ2D5aWr1EbH8Qo5hKEwDJtut8NQucKVK5eplIf4/tM/4L77j+E4GrqmceTIPdi2g+O65HM5Fi5fYHnpCjkvj18ukc/lKBWHMHWDoN/F0BWGaWJYJrZro5k6zc0GubyPrht8/RvfYP/+WUqlYVbW1imXhzAtB01K0iyl1dnCc8v0+jF+0aFTr5Mr+9hmlTdee46p2VlSJJYhyXsmGRpBL8BxHISh4XkeKEWnHXF1dZXa8Ai9TocsTckklMo+9a11Op0mF86eo1wdRUhFHAtQGltbm9iujm0ZOK7LvUePIFSCLgTLSyt0exFursDaylUQOm7eRWqCXrvNpfMXsGwH3bUHzb7TQY1qGEacP3+OA/MHmJ+fp91Y4/U3z1EZmqHfGmiu/tEf/xHH7ruPfr9PsVojShKqhTyWY2ObBllUZ2JkBK9UolgskS/6jI+OEicRW/VNgn6XfLmGpgl0ZdKsr5JmOkJKWq0W+UIBTQ4i0/V6nenpfViGRhb3uXT5HI8//hF0TcO2DIbKBeIwpr25jGWYfPLPvsC9R+7DtHVQORL6aECr1efPPvFZltY2iCONYsHB1Exef+MUuZyNbUHQ7WA5Dr1OiGHoCE3RbDZRSmCZDiKN0E0DJXU0dDRNcv/9D3JlYQHHc8jiNoVilW9862nmj0xhGA5kCRo6vX6AwCAIFPR6yPUG1VCRu1rHWVrnPr+Ev9HC22zjbHXIByk928J0PTRNR9NtfuM3f5Nf+OhHkbqGYdpsrK0yVPZR0uFb3/wO8/PzCJFSKVf5+Mc/zvz+A2QKbEunUPCJkwTLVojM4/yFc5QrPv1uH9f1UChyeRdNmjiuS7/f5flnn2J8Yg7bMgYpqkkGQtANukxPj+I4FsVSCV0z6XZ6tNpNNFKkoRGnGWO1EdIsRgqLVGVkmaJcLg9qeDWdw/ccYHpmiijOOHH8Faampsjn8wRRH9vJYwrFhbOn6fQS0izlyNFDLC9fpViucfrUOSYnprl4/iJf/tKXOXLkHoQUHD9xgizsUxmqEsYJYm2TNI3RxwbzXrhwilptjJXldfbv308c93DzJbqdAFN3kKbN7/72b+KaBkU3R6PXJFOSJ598mmP3HOGtt97g/e97jDQc3EuvXrmEn3cplEsgNKqlKp1en1RotJot/IJHsVjFyhX57Gc/zf1H70VXEYVSmfKBOb587iSVbszh77zMz1o5mi+9zNJ4ka1mg7947gT/+t/+b4Rhh1/86N9na63Od7/9JHMHj5GJBCEUMhtkpN54b9+j5OOr3x+UouwirkKIa13J9ev3/iRJrkcrt1Nq34slFteOv2Zs3k7VvWZ7bhhzl1N7p23ai4DeQPZus75t27ntpJVC3DCOUtvETw6I5rV1bWcNJOmOvhxyEMXUdQ3xdint21ACKbRrKcI3OrKltn2Kg1TiLN27jGdvwj54Sakhrkvn7OjyrMQuh7YgyxRpmpEkMVmWXpdS2l7Xu822uou7+OuEu8T1Ln7IGBDXAe48/fWvGtmTL6IuLbE76rqzcdKt1nOnHst32ue2796CuL4bXDfOd9i04Z0itADpNb+xmSn+5S9/jAcefZRHfuR9uFcaiP/wW9i/8SlkPyK6d4bWsTmysRFOXjiPUimTUxP4hQJpmrG8soYmM4rFIsVKmbl90+iaIAz71Ot1hqvjtJptvvqVrzE6OkaUhExOTCEE5HIOYRijazp/8PE/4EM/9VP88Z/8CR/84E9SrpQI+j0MQ6fVauPYLo1WkygMqJRLDNdq1EZGGaoM4dgmzU6XMI4GDw9K4Xk+7XaHOEoQQsNzXJaXl8nlchy99wiFQgEQKKEo5PPEUYSQkuXlZaqVKgtXFjl77hRjY1VQGkoIVCbJ4j5e3sfL5dGEZH1tFd2wkVInTiLCYFBXGwR9TNNkenyEKOpgmJLX3nwFldnk8h4FP4eUkqGhKkmWAgrTsABIkuiaPIMgSwWdThdDN5C6gWVapGlCmsbkPBcvl6PT7WA7No7t4ed9TMdiEBcQdDtNTAMQBsPDw9cbgbTbbfbt28/i1cu8cOI48wf2Mz09TZqmg6ieaaFpknazjmFZ6LoJUhG9fI5RDL5+/EWmpyYJwh4IKJfKNBotTMNAaopuJ+LSlUtMT81y9uw5ZmZmyTJFfXOLTqeLpgn6/S7FUoUoTpibP4BumAgpGKpWaLVa5AolNrc2WVhcQhoOz7/wEufPn+PwoUMYuiJNJKZlc+DAAe45cgihJJYJG+sbrG82mJwcQ9clm5tbuLnctQ7EkigK0TUdx3HIrtWU6oZBq9XCNCziOGR9fZNOt0etVkXFCVHcZXp6FgFE/QDL0lm4coVCDP3TFxnZaFFo9rDiQedfZRnErkXqWqhCno4uMBwb1Q/JrWxhbDXBNsksgwceeABUOrgnpQrXdXBdB8OS7JufQcoMzVCA5NjRYygE5dIQ585dwLJMdE0jUykFv8ryygKFQp58fqArK6RGkmSE/S7Neh1Dk5QKPoViiTCOaTfbBN2Ybj9mcmoOy7BptwI0zeKpp/6CAwcO0e32Of7yq3hukeHqBJals7a6xokTr3L0vsM4jg0IsjSjXm9TLpXQdQ3TMJgYH6Xf79NqtigVynRaTVqNBlOzM8wf2Ee1WkEIqFarJGmM49hoUpAkAfcc2k+jsUWhUGR1ZY2xyQniOKXT7rGuSdy5aVbW1kiVolSsEMYZw7UatmOxdHUBv1DixZdeZn7fPtZWlpiamuDwkcMYlkHO9yn6RaIwJueXmJyeRGpw4eJlTp05z4GDB1i8epVCuczJt97g2H3HOHX6NAjF4QMHMQ3BxvoammbwwQ98gLNnz1IZrmGaJr1ul+WNTcS+abT9syTrW4xeXKF44iy99z3AR37+5ykWC9xz7z6iOMCyDHI5j1/+H/8lv/jRv4uUCoW+R+BzD+LaaMPUKBw7sMeeN2JnP4a/TLROcDMRu/XONxO4O533dnvd5KzdZe939qPY1nvdOXe2gzBvRz6305F3pmTfaj7YvoZcP3Z71Xud402ZV3teg901se8czX1bWmeQPn6XtN7F32TcJa538UPFdkOeAd45crg7xWmvVJp3g20jlfzK76BePXO9OdPO1J/b3fTvxCu6uxvvboOxM9Vqt8G4Ps/uCpo7sCu7Sepexu52nYJvdd47deQyTOw45C++/wR/75/8M2zXxfi9L6L/779FkncQj/8Y7ZEy/mgV0zDY3NiiUPSpVEpsNerkcj5LK6tMTk3xxBc/y9jEFG4ux9bmMkHQw8/ncVyP8+cucvrMGebn57l86TIPPfowy0srFPw8VxcXkUKhaTrH7ruPNIl46MGH+OrXvg4CKuUKvV4X3/eR0sS0DKSQJHHE1uYmmqZh6AZXFxfIl0qYtkGSJBj6IP3SdTy63R5/8F/+gMfe/yiFgk+aRiRxQJpmGKZOq92m0+4QxzGmYVAsFmk2WuTzOebnZ9ANWLyywnPPPc/8vmk8L8/yygoXL14mSzMmxyaxXBcpNHrdDo7tD9J0NQ2lUp781lNMz8zhF8o0mh1qtQk2NlZwbIckyfC83EB30jDZ2NjAdR2azSaulyeJFc888xyHDh6gH3SRls03v/Z1arXqQLrEHcjG2PZAs7NZb+B6LkpAlmRoQpIkAa5nIaTF2bNnsSwDv5DHdgpEcYhuKO576CGUGDTyqVWrJErR73ZYWV5ibHwcIeSggVWxgN3okyQRoe+xunyVynAVy3aIohTLdJBSkWYhnlcAodPv94mihGKpNJBYERLbtvE8h7yfo93po2saTi5Prx8Rhn10Q2LbLmkKfqlEoVRm//x+pmf28cD9x1BZQBxGPPXUs0xNTVMs5RHXXDFezkTXdUrlISpDJdJrdbVRnLCyskaz2SSKQizHwjAsTNPGtB1MQ6fX7WA7Dp12k8pQFdu20E2NNE5JVUCaKEwMemcvMLTWYaQRYnUDPMchdi2ySoHI0ok1yVqzgef7IDM03QAkvSRGeDaxY2Io0Fc2sRZXsTebaKubGKlCBgFZnKBMizhRhEGCyiRRGGPZxnWZmqWry9Rqo0BGv9dFN3RcJ49fcMjlckgNGs0mAkkYJiRxSKVcIuwHFIsFgihC0y0aW01GRgqcPX+W4dowzcYWr7/+KnP7ZsjlbSxbolTEvvl5PM9jc2N9oBOs6UxMTJDzbVCwdHUZx3Y5d+4cmi7I5dxB5kGWEPYDmo0mmtBoNjYYro3SC0LSNOTS5UskSXx9zXGcsLq6gmObeK7F+Pg46xubPP/8Cxx78CFybp433niD0VqN46+9hu14jI6P89prb5H385i2iSJDF9APYnqdLt/51jf5wI//KNValX4UoqTk7OmzhEHC7Mws7TDi85/7DPceuQfTdRmtTfD//Omf8bM/93OsrCwzMTbK8VeO8+gjj+DYFo5lYxiSKwuXGK2N8Pzzz/LQw49geh4mcPLkKYqFIq1mC2VYdPIOSzkTtbTGoW+/yPmvfpPzcyOMjpfo9XosLCywsbFBGAa89uLzvO/Rx1C6hbhJH30Pe3n0ABw7sGe08nb4y2Q+bR+1bUN3StPs1VCJHfvvlJK51RquO525uTPy7ueIbdzUOHHHeq4dcH3+LBtkGLx9zO4UYXn9vG73XLOT9F5fh9D2tMt7PWvs1q8d6Lq+nU683QRq57pv7bxWpGlCHEeDHgc7NIHv4i7+puAucb2LHyqUym4grtt4J+J6p3/fCYQQe3YVfs8G+Z0iqzu8pjf8vM2+u2nlnazsTq7hu/Ws7iTrSimyQOPbX/wElSFJobgP8z//GcbXn0L9zPs5n4UUq1VQApVkvPXam8RxRhzH1EZHcD2PK1eWkJpOPp/n6LH7sB0XXUqyJEPXDEzHph8GVMoVLl++xGOPPcrI6AiWYxNFCXEYYOgamiYGOqJhiGObhEFMmgkmJibxHBfHMQmCkKe+/wzjk6OYho5AoRsGuiE5d/LMQGcy75GEIZ7jDdK1SAmCPo7tMD87h+FatBp1UAkiS1jfqFMo+YP6LySGrqPpOvWtLSrDVeI0xrAsFDq2lcPP+TiuIk1NqsNVypUKhmZy7vQF/OIgmue4FgKdrc11isUiWSqY3j9PPwhYWV1ltDaO6UgsU8cyLQzduvaFSMlSRbfXRUiwbJtn/+IlbGfQkXZ8YpRWawvPyzE6Morj5XHzBVaXlihXCtekZwYRLqUypC4HxBmJ1E0SJeh3ewwNVfByDkIoXnjpFaanp/HzDv1OD8eycG2HJEuvyQn1KRd9pGERxwme69Hv1nHqfTRNx56bxPc9wkTgOC4b6xtomobjeWi6QiidVr1JpVpESIXr2SAyUPD7v/9feOSRx4iiFMcepHdnqWLxygq14TKWqZMloGsSzTAIwj6WLoijENM06EdNNN1lcmKUdreF4zjEUQ9dM+mHHTTNoFAss76xhhAC181jGCaGYVMdqlAsFomSBCl12p0OhjHQI815Fobl4rkmQRjiuA5pFmOGKblWSmGtQ25pA18ziXRJ09Yxhiokpobh2tfT/zKlyOfzJMlAAziOU1ZWVqnXG1SGKrS7XQw/h8o7xKaJME2EABlEaI029lYbd2mDuJjHKZTY2NgEwPdz1/oKZAxVyygg6HeQQsMwDXTdxLTE4H8oyWi3O+R9H9MyMC0P3TTpBQGO6/HlL32FYw8+TLHg0m5u0QsDRsfGeOH5F3j4kfuBjHq9ju/7NOrr+MUyly9dYXx0hCRTvPjiyxw4NE+v0ydNM1SW0e91mJ2bxM97rK9tIIVJu9fBy+cYGa1huxZKJbS7Ax1jKXQc26NcKoNQxElG3vMpFkoUSwU0w6IfxNiuy0OPPIwUgoXFBYKwx/S+aRqbW/zgqad54P77qVUL2LZOr9fBNGzajQbtbo/5fXMUfG+QWu24uE6eJM5I45iNtQ1eOf4KQyPDXDhzipLv89bJc8xNT/Hwo4+ysrLExOgwrUaLA4cOo5QgiVLyZZ+l5TXmDxzipeef5cEH7uPq4hWqlRL9Xg+ARqPJY489xgsvvMD8/DTT83PoB2a53O9x31YPFpc5OeKzb99+xscmGRqqUS3nOTg9yaVz56nN70eqWxPXPW7we+65kyD+Vdjc3WO/k6Yqt7CZ7ziHEDdFdveK3u71O9xsd3eTxJ3XQ4hdx+8gjHs1VbpxEbsc5WrvNb2Tk3xw7XYTzZv3ueWzgbzW9VgTA23Y5A7Wfhd38dcMd4nrXfzQkKmIt7Np3pmQ3tJbuQPvvhPutcjne5TDeSeP6LvaLrblBRhosV6LtO51Nju91Xeqs7fT4O61/60IrZmCjiASCkc3UColRfH9Z5/iS7/96zzyvkeZnbgf+T//nxgvnyL56R8jyznYlsPnP/kFoqDNxUtXyRfLNJotvHwex3Fp1ht0ux1GR4ZAhQjh0Gp2iZMBWTx+4nVKlSHyxTxXLl9idGyMxcUlWq0OjmNy4fxFWq0uo2PT2K7G+toaQ5UqQZzwzNPP8cDROSzTohe0cfJFDMuhXBrUp4b9Fl6uAMJBk4rSUBWpD5rFJEmCaZo0mx0My6AfBeiWgelYSKFwPR+pmzi5PJomSOMWlumDlmE5Hrp06bUaSEtHN3SEBCEy1tfXKJV8HNfHsnU2NlfwXAsNk2qtTLcXQdZHAVKX6IaBpptkCs6fPcvMdBnfG0e4PUxNx7EKdHoNLMehudmg2wuwPBc/56NLgytXFnBci3JthKGKTxz2KZWHSKMYy3P51J99kn0T04xMjKFJaGxtogsdUKTXUt2eefo5cl4Oz3OJo4AgCPG8HGmi+OY3vs19x+7ju3/+PfbvP4RpZKSZQLMEvWaf9Y0lKkMlkIpOp4GuW7QbWxSLFdRqffDAWi1gmC6em0elGX/0h3/Ijzz2EEoJet0uQS/BsQWrK8tMTY7R63Zpt9oUSkUOHzmE1A1eOn6CQs6mUCgQhB2qQyMI3UJInV6nRbfX5fXX3qBWHSaKQ2xDQzM0NMNFs0w0JIVSHiEkUoWDOmXNod+u0w8iKsUKrdYahpNn8cI5nn/2WVzXxPNMJBbNjVVc20azbKSmgaYRRTFKczGkRu/KItWVFu5aC8KEy+sr2JM1lO8RAL1+gG1pZFmKFIO6OSl1lEoH6Z5pjGnm6HQ6VIbK5P0caZLgOB69ICDNUpTUyHQNLJ1Gr4Ms+KQ5h1Sl5Fe2YLNON2dTGipRrzfQbZssUyRxguvYaJqBY7lEcYrj2NS36jiOzfe++yIHDx1G1wVR1MM2CygEpmWSCcX+/ftQcUS/1yaIAkqlMlkKM/P7sVwTlaQDbWDHolgcplHv8NxzA03mLEuolAqILCFJQy5fXGRmZj+uZ6BbJmki8P0Sy8sLdDs9hErp9QOa3R7D5VHOnLkwiHqlXYZqNb74tW9w78EDIAyeeOIJhqpDSM3gyuWLFEsFer0umi4RUuBZBtVqFfvyKlNujmMf+iCNrU0KeY92u019q4Ff8LEdj6Af4OU8pG5gWC6WZXPl4iXiMMTxbMYnRhmfGGXp8gV+5EceQxga8/tn+aM/+QSVcoHJiRHiJOL8+SUEGUuXLxEHAZou8fIOYDI2NsLi4mVGR6osLSxy9sJF7nvwIQrFIo2NFXLFEuXhCkvnL9Bq13nh1Enuff+PUHjlDBO/9M/4T//Xf+BHf/xRekFIokO+WKVRb6H36vhDI2i6RqpSlMwQajs6uON1eQlabUQxh9iWzblBQodrP9+OSO4kQdvRxxuwg4Bu14TudtLutjnbY94UUb3FMbfDzujpduR0twzOTU0f2bbBt2mKxNt2V147t8F2tWt/rr8U2fVuvgN7ACrbOf+uS0d2w77bEkZ71vGKjCxLrx+DGug876yl3XmONz5zvC3Rszvqe/19MjKVDJo6kSKkQohBycHdaOxd/HXEXeJ6Fz80KNI9iee7uRHuRXDf+WzBCQAAIABJREFUS33GuyWuOzFI57xRd213ncx7iWze9v1b7Hs7Q3In9bo3HSMGL4QgRdGM2pgZfPZ3P05Nufz8P/7viBc32Pqn/4q81Nl46BBvnDrLSLXG8tUV8l6eI/ce4AdPP8Phw/fwyqsnmJ/fR7fbQaFot/r4+SK2nUPTBVEc0uu3mZgYpNN+97vf5dDhQ1RKJQqFAqdPn+bw4cNYlo5h6mRZRrFYoN/vUCwVQQ0e/CfGpvHyDk8/+wL7DxxACp033zhJqVTC81yWFq9gWYNURSEUnU4X3TBwHQspNLJU4ToOSkgM3cbQLXTNIA4jLNMGlbG2vozKFH6uCkLDMCRRlPDEE09QKvhceOsKuowRKsXQ8uQci3arjWNaoEBqEl03aGy1SNKQJ574Jg8/fB9RHNDrD6RBOp0OQb/P1OQ8zdYVHNel2+sT9yI+/7nPc8/hA5i6S7PdwvM8cp6LyiCKIp579jnm5uYolcukUYTv+yD0QQqYJpicnMBxbTIUG+sb5NwSSysrFEslNtbXieOI+X378LwcrVaTfD6HFGpQf9fvUBsZZqRWYHx8ii98+SscOjDL2voWSRpS8Is0m11UJrAtF9v0CKMetuWglMRpDs6r6Uos27rWnEQwMzOFUilRFGDaGm4uj7QEaSrQDB3LcYkS0KTAdR2UEoyOjiMlSN3AdnN4lqTZauJ6HkoKNClwHI9ypYJlmbTb7YFTQJO02+2BXupWnaWFq1iuQxgNJItQCsdzMXQLzQDdcLBMncNH7qVUqbG0vI7pWGi6htQNwrCLY5tkaUwUpbC1ReHKGoVmn8yxSCp5Ag0qozWQ0G13sUwDw9BJkhjbtgmjiHa7g5vLkaYpuq4jdY1Op0N2TVbGNE2kriGlxLQ0NMm1WmIdXdcxbQtN15GaRFk6medh9gJKzS5GFKGqPq12Bz9XIOyHWLaJQLCwuMjx4yfwvBy5nE+SZOw/OI/jWGRZxvr6FgtXlzh96iTjY6M8/+xzzO3bTxjHxElKoVTBsl10TUOolCxWLC0sMTYxhW7ZJFHIyy+f4Gd+5qdRKqXb6yCBfD6HrhtITcM0LTY318gUGIZJFIX0uj0mpybRJFSGKriex6UL5xgaHmJkZAhBhjRM5vfvJ00iSFMOHphHk7C1tcFQpUo/CCiWSggh6bTb9Ps9hCbJ17tkYcS6Luh0WhSKecI4pTYyzslT5+m2u5RKRSAjy2Ly+SKnT51iaWkJhWJmdgrICMKAocoQQRjieh79fsBjjz6KoWucOPEKIyOjSD1larKGZQnOnj/N2NTgPujn8liWyXCtRn2rTrlcYXR0krW1DVrNOlOTNUzLxvVskiDAKbhMj89wtduimCh6X/gWM//Tv+C1108yM3OAnF8m7GVUh0Y4c+YMtfFJdF0Hoa4Rmj1u/v/Lr8LTJxC3kMN5O7X25i75u53KO/VTd5KtvezPTht5u7Tf94JbPRtcd1bv0F3dbbN3Y6/3hRA31MRK7dbr30t6Z9uKb5Pc25/DbSKlYvfabn8Nb/gc9iKr3Pr5Y7uRVZZl1wjy3UjsXfz1w7shrnfW8eUu/n+PneRyN6Hb3THwdmPs5RHdSw7mrxK71yelJN3ZWXCH8d2LxL7XeW6FnfPsnP92Y9zK2Ox+INn+mQlIVIYRZzz3x5/m//43/4aP/MLfZfrHH+LKF77DyP/6uwwfmOfMeAkvX2B+3zynT57k9VdP8MjDD7OyusJ/8xMf4NTpk3z0o79APp+jXClRrQ3T7feIkhTDstB0QbGUp761RZTEIOHDH/4wGoJGvUkURRw9eoT1jRWUSjAMnbl9s0gN/HyJzY0tgqCPzBK++93vEmeCD3zgJ1BAEqd8/3vfpx8EgKI2PM6nPvUZwjAky1J838dxHcKgTxSG/NEf/jHtdgtd07l6dZmV5XUyldHr9fjt3/odGvUmlVIVgSRONU6ePEun2cbUdD784Z9kYmqC+aP3MLl/nny1guZYhFFEuVxGSMkLzz+P63hIoWNZFqVyng996HEuXriMYeoU/DzHjx+n3+uSy3msrK0ipIlSAfX1Fs888xz/4B/8fVqtFr/6q7+O75dwHJter0uapWRZxgd/4oPUajUsw2BjYwOFJE4BIQm7ATnPxfEcgqBHwS/wla98nc994UssLC5TKpUo+QWEhE9+8pPU602SJEPTdFqtgYSIbTsEYR/T0nj8wz+F0DUq5RKWJknTkLyv0+ttsba2QBh1iIKQIEqJ4pQsTWk2mwP5IEOj0agTRQGVSgXHcSgVR3CsIs8/9zpKuYyM1tANg14/ZHV1A5UlBP0+66vr9LoBhmEipSQMYnr9Dr1Om36vhxKDDs/lShmARrNBP4gwTZOg36fo50mSwd+vvPIaq+stojgBkaFbNotXLvHrv/GbCGkS9UOSDFKl+LXf+A3yfoWw38PJ+RiWRcEvkoQRYnmT0tlFhi6tkwL94Qor/S6gI4VBEiu2NtoEYUh2TZbC8zykHOiDlkolhMoGesJCIOWg6U6h4JOpjEyp61kZaZqgXXtgRgyaxQipIaQgjiOEpoGhE1eLJDkbY6NF5c1FRnULTRNEccSpk6fQdJ2p2Rl+9u/8LGPjY9QbTcIoIYz7pGrwmZm2y9T0OAcP7icOI97/2PtQalBjt7q+QZpqpCkEQUCWJhi6SbPVRtcMWu0u/X7IQw8/SBB2SVWE4ziYlsXGxgZJkuD7eRrNTQzDoNFooeuSpaWrOLaLEJCmCe1Om3qjzujYML7vsbBwCaHpgw7U8lqXVJUQhD0MU+L7LidPnsbPF+m0uwNJH8+j2x00KlNAt9Nhc2ON0VqVza0Ghm7QaLWYnJoc1N/mcyg1aHal64Lvfu87PPbYw0xPT9CoN9B1g2KhOPgOCsnrr71Bu9WGLMaxLPbt249hOFQr4ySphl8Y5eTJK7TbXU6ePMdbb77J1ZVVTp0+j2nn0UwLy7IRAooln7feegPT0pGaYHpuFsN2aDaaAwfMBx5lqN2n8DufIedWuHzhMt12RK+b8I//6T/n/kfez6k3T0EmyGIF2d5kc9sTur19J9G6E23RnfZm5/jbx233Rdh24u6Mqu60k7tJ7/Z4mqbd1BTqVj0cdu+z2/bt/P1WtZ7vZK+VUqRpen2MbTK3kwzvdf57XfvdEeDdGVE7+21sj7Ubuz+vW53/9vvv1KBx92ewFzIVkaQBSRqQZuFfuePhLu7i/wvcjbjexR3h7ZvxD5dkvhu814jrbi/uXniv5PW2895iLTt/7rX9HSO5O7zRQghkMqg9spA8+eWvM3dkmp98/HHCToD5659h+I+/xetFh9qPPUzedSAbRIncvMORw/vYWN+gVCnx/R88z/33HcWyTJaWr2LbNo7rYdsW1eEycdIDNJTKsG2Pdq/FUKWCZepcXbzE2toW5VIRv5CjUPCRUsNxXC5euIJju3z/qe9z4MA8tm0TtDcYHZ0gX8hx7swZgqRPyS9w6PAhCmWfVqNBu9lhdGwcL+cRxyHNVhvX8zANUKlkZmof3W4Dv5hHkyaWZYKIcW2TYrHEcHWMT33ys1SrVUpDBZ75wXM8cOwISsD65gau4+L4Oo2tDq7h0d5awfMLA9kQTTI+MU6r1UYIjZdeeImpmRrdbszVxQWGR6roUuLn8xR8n4UrC5SGfTyrzPmzFxifmKZQLmHaJkmWsLi4zr3HjiCEQpChlOAHP/gBteEahmEQRRFBt4tfKPHM8y/g2h4n33iL6ekZMgGGoaFrkunpKfYfPsrli5eYmZ7k4oVzKBT33nuUSmUIKQWddoeCX+Sll46zf/4AMZJ2s4NIA6ShQ5whRQJSYFsOxUIZTerkXJ8L5y+DZvLtb3+DY9UaXs4nKuUxdGMQMZQ6aQqtZpso6bGweJFeq0+3uUmaBkgUju3xxmtvML9vhiRJMXSLJ778Fe49PE+ShHiOy9X1DcZHJjl/9gLVapUw6uO4HkEYYdkmtjWICjabjUEIKVMUikWU0Jjbfw+ebRD0WnR6IWGvzY/9+IdYXl3m29/8DpZhouuCo0ePoGsSQygkOtZmk+D185SWtrB6MZmls5qGnLq8wOj4GJ5rD/R51bX/D8fDzXnohoHQ5CDNUAz+s6UmSeKALE0JghCBvP7QLoQiUylc6/Sr6TppNkjbE9fyDxUCoTKyNEMgybKUJA6RtkXm5xCZwlzexFpcIx9ElGenCIRCMwwUMb2gR6lcHvw/mDbPPPssQ9UKpeLAkZF3PeIg5NyZM9iWTbO5SblcIo0TsiQZRLNNEyUHsiGGlGRpMmicJCVpGpFmMZblYpmD+mu/UGR9fZXh2hCW5Qy6FYd9DEPn/LnL1EaGAEWn06FYLnPm5GkKhRLFYgHH89jYWCcIeggpiZIEN5fDsCxMy8JzCnzta1/jySefYmRkIBk1PjpKt9fDqndwHYfioX30e2021uoMDw2xsnIV29YIg4goiij4BaTUOX32FI9/6EM0G3Vcz+XNN09TqVRZXFzCMi3OnTvHvUePkWUZQaeJJjWWVtZ4463T2KaGZZosraxSLg+hS0WtNsbsvnmELjhx4jX27z9MRoplStqdNkNDFXzPwy+UUVLj9FunmZydo98bNK67dOUKQ+Oj+OcW+HhY56tf+QL5UolPf+5z/NL/8DGGxorUKqM899xzHDh4cNAAkD2cxl99avD9+rm3I643pdHuihLuxu3crEopkiS5gXzuJFi3skvbpHB1dZVCoXCdtO1ZPvMe7OvuiO/O9e7Omtr5/vUIMTueAeSNx+7Uzt1zbWpHY6dbRD6359qued0zI03sdv5zE/m99QW4s0ywvZ8p3k5z3lkPe33Nd3EX/5XwbiKu4r2kaP7XQJqmfzMW+rcS2fWajL3o1+4b5O2+U7fyAr+X72H83/9bAPTf//c3jLHTa7pz+54NJK79fauo762O2WufdyK6u+3NnUZnd8+xG2YqibSUVMSYmUaqW3zmN3+NoiX5wN/7BXqtNsbSFua/+32yVpe3xqrMHZxlq75C3smRKIXt5bBdj7TfQiG5urTC5OQsUZKi64N5oijj1Mk3GRquML9/H8srSxRyeZIsxfOKNDY3yXkecRIiNUGSgGmZGKaJpmmkWYamNLbqDZy8RxT0UWlKv9dlenKCzWYDwzJpbm5RGa2Rxhqp6hEFCpHFREmGJCMJegyPT7GyvoaKUpIMxieqgEFGAmnM1lodwzAojZYJWm2iUNDttsn5AsOqkIUBmmWjm5J+r0/BL/HZT3+ehx95kKmpWTLVQwoLoUt6/YSnnvweP/rYA2imTaIkQqV0mnWGRidIUwFxHzNvg1IkQUSWJJw8dZlyxeP5Z1/hv/3px5FaimGY/Op//h1++Zc+RkZIGPUZqo6QJRlSaKytrzM6OkbY6yMdA0jptZusLG1gWz61kQqmBSBIU4jCmE9/8nMEYZ9/+A9/kXzeo93PkDLGz9skcUoaJyRZRC5XIEnAsg2efuppHn34foRpk6YpEoijmDhpkssViMIMIXSyVCA1nTBoo2/WkaaFNV4jyTI0aSBERkbMwpUFpmcOolSMJOPKpQVqo8NommBpeZXRsUlajSbV4SpKpSRJigCSTGHpkjDJIElZWlzm/KUrfPADj4KUdLs9HNdFZCkZDDpmotClJE1i6ltN3nj9PMWSy6GjB9AMD5nEg/2EJAgCNCnp9bqUK0WCxWUK3QSj3iHTNS5vbDC+f5ZYZOiaSRRFXL58mfHJcSzLAjFwEAzq0DKE1FEqu6ZjPZCBAdA0HQVkSUyWJGhxiooSsiRlvbHFyP79IBT9fgvXLaDU4Lscp9fq4oRC00yE1FBpDEqQpQN5HYQgzQRSghaFiG6I1otQhkbqOfQOTdDrdrBMG91yCYM+Kgnx8gViNfhuxuiYho5UKUmqCIIAIQSNjQ0MQ6NUKoHSeOvUaY4ePcqbb77F7OwspquxfGWZ2mgNaUnSfoxpOkRRQBgHlIp56pv/L3vvHWzJdd/5fc45HW/f/PK8MHkQZoABQQAEAygGiaRISVSW7Cp7g2RL61DlLVV51y5Ja9fa61LtrrTS2pZKWlFaBUqMS4IEJUYADABB5DSIE9+bl9+7+d6O5/iPfnnezIBBqnLt/Kq63u3b3Sd039e/8/2F728VNyjR7wxI0pSh4SG0MTiOR5Yk9LsdOu0WtaGRjRDrFGm5SCGIBgNWV5YYGT9AwXOIBn2U7fLEE09w911vpdls4Pu5l3Vh4TKlUoXR+QaWbZGeOsr85SWGh8qAxAsCEIqzr7zCoSNT9AcDhFS4vofIJNFgQMFzGSQJlm2TasmXHvgalp3xrne/Hcfxmb80C3ZOEPfC0y+QGs3JU7eyuLiIbdt85Ytf4b773slaY43b33SKQT/iK1/5Gu+87524tmFubo6jRw6xvrbGk08/z3ve/V4cV7G6Nk+1NoJSNnGUocwA5zOP0Lp5mvB/+cf84R9+HIngM3/zeT75xQdwA4cPvO1d/NEf/C7veM89RMZG+S4qM3kaCMA/+T9yHfEHv7FHr+zOZ92UTWCykxV/87jWGsuydpSFuTKK53pi9va5Ty7q9hh310ffObadstX/znELsXuM+4xjVxty97og2/y/AnS2u5+d521eu1OvG73jfojtsW6G4e4nW22Laxj9zR6SK7l3sXANUHmtdtn2Uu/0xG4+780+t+/lbi/5jaDMG/L3JUqpN2zFuuFxvSFvQMxWTsYbAa5XE7FH4Xy/oj787qt6W7/bvNCryfebv7vr2BtuZVveiOc3tpZBO8iwxKVXn+MLf/FR7vvg+5k5dYrXv/AIE5/4Os7vfBR97BDpPafp9LoszM8RxyHlah0hBJ7vE0UREsni0iqHDh0iTmMGg4ggCOh0O5RLZQ5MjCGEyHNLC0UEAiElCPA9FykFYRTieTkhSqfTwfM22rYshDQ4ro2R4CkBUlKu1siMoNPNmVCDoEwah3zxb77C2NgQpaBM3O+AMNSHh3ALfu7JC3wKxYBqdYxB2GbQ7xN4Lt3uGvV6HdcvYBAo4bC0OsvMwWmkCLA9m3a7iV/wMUgsaTPoh9RrZSYmJmm3u0RxNw/9QwKSr371a9xy8y15jqtS+L5Hs9miXK3w5a9+jemZSWzLEPVDPMfn5TOvYdslOt0Gb3nL2/MQrQTSNKRWqTM1PY5UGaViQBQlLF6a5cLF8xw+chhpKTIRkyQhOokIez1q9VEajSaf+cynuevuN6MzSOKMz3/uC9z9ltPcc89d1Go1Ls3O8td//TFO3pqPVUqB0QmOa2NZFt1eF9tSFPwCmU7phxFCgNzy/tkYLbFtl+XlZb724IOcOnWKM2fO4NSKFMdGaLWaBEEBS2UsL85TLpYoBxV0Jnn00UcYHR2nWKxiWTbCaCpBgKsUjXaTYhCwtLiEEJLFxUWicICSCq1TPM/j81/4HCdPnaBeHeLRRx+j0+0zOjKO67gsLqzg+QFKOVi2RRzHaK05fstNTE6PE0cDLCHoD7p4vsuFixcZGh6i2WjktW4bXcrzDbQURIGHqJUpDdfoRQO00biuSxiFTEyMY9sOKyurtNsdyuXyxsLZIJCEgz6OY2M6fdL1Fqw00BcXyLo9stcuwcsX0MsNsmYLGm0KzS761QvobhcrygiTBNVqYpBox0FJB8t2QUsUil6vS9jr0msss7qyQnV4jF63i8SAJZDFIlklACGw2n3s5SaMDYOExvoqXiHIGbiFodVYpxD4eSiyACMEllI4jkOSJJSrVUrVMv1wgJGKmelpLly4QLFUxPc94rCLpRyWllYYGx5DCMPaaoNarYblgM5SlLBAOChjiMKQwC/g2A4m03zzm9/kwIFJXM/byv+N4xjfdzFGc/7ceQ4dOYrl2qBTWu11hBTcdMutpFmKV/BIdUY4GDA5eSD39K+3cV2HeKjE+fMXsB2HKI6xLCsPXx8k2JbKf3/CQqe5wTWJQ7q9FpVahSQJEQiOHjvC0HAVY6DV7DE+VmV4uM7C5QUmx6c4MDXF/fd/lsOHZ6hWS5w8dSu1oTrTM5M8/+yzjI+NIgy0m33GxscZHhlleXmVfq/PoYMzvPbqK/iew8tnztDu9KhVy2id0O106Qxihi6v8d8+/Dn+1W/9XywvXeY3fvN/xSs6JGHCL/zsz3P02HG+/dgjFAoB5XIRENvktZse140c1+08yN0hqHvDgvfTU0IIut0ujuPsm37yRvTQ1XT7G9HD10qRAbbKzm0C191g69qyhRt3GLS357dbv+8MI87PY3cpmh1GgZ2W6KutjXbNU+w2Iuw2LOx9Hle0co0Jfvce2J3gfCffh5QCbTI2Gcyl2DDabW03QopvyN+N3CBnuiE/YDEbHoYrQ1evpqjeqLLaef73C2h3gsy9Y9yZx7O3//3msam4Ns97I17lq4X7bo1vnznusubukyez01q6n2itkdkwrvb46hc+xbmLz/ATH/x5nHNLnPtvfp3bvvgE585fIPjJ98GBMV5+8UXK5QKVWoXjJ46jLJckSdAmQ0lBGPap1UdBWAzCPpVKmZfOvMLc3GUmJsY2QgPH6Pb6KGWRpSm27RDFA+IkyklolI0xgrlLl6jVawgp6PV6eJ6DEhnNZoe5uUWKgYvn+wgpWFxawbYkBc9FyrxMyvPPv8Sx44ewbQ/LVpSLRfqDmMXlBpVyAaEsdKaJ+zFKpXi+i1IunqVAWjRaHdZX1whKRfyCQ7fbx3XLZDrh9bMXuDx3mdGxIYRQ9HshwyNDxMkA3w8YDHrMXlpC6xjX95g5eJB+P2RkZIg47GNZNq++fhZLSk6fOgkIzp87y9jYBP1BSD8MqZTrHDw0QZbB4uJlKuUqxZLN6MgEg0Ef37UIo5h2s4vWcOjQQZQSpMkAbRS2tFlbbjA6PonnuTQa6xw7dph2p0O5XCGOU8689BInb72Fbq+L4zoUi0Uuz17k+eef495734JlS1zXJkk3ah9nCUIbnn7mWWYOHtoILXVot9v4nkeaZvzVR/+KkdFhPM/lpptvYnV5lRM330RQLZHEMVLJjTqL+VJGSYulxTU8z2VmZgrLsVlaXuXZZ55manqScJDXzq0NVUmTBN8r0Gw0mZ+f48TxYyjbxlaGXj/mzXfdTaUckGUZR44ew/d8CsUCaRxSKlV49tnnuXhxjvHxMdIsRkhJo9nAthWFQoAxmjTJsB2HoeEREIKg4FFo9vBmVxiUC4RSstZsUPB9lCWxbRvHyZmgXc/FZAajNYHtUkgykkYLFlcxy2tkZy8hLlwme+kcemEVYUDWSqiD4/SGA8yxGUoffi/yvjux7r0d9dY7iG89gLrrFM7oKKYcINst0sUlstfmEC9fgG4b0+qSLl2i31rAhCmR1gzCPlPTM+gsY3FhnsbaCpVqzo4dRxHaUix0W5S8AO/SImoQY02OoMIWWRIRDXq015ZYXmtSKQWwkUurs/zdZtu5x0VJiW07KGWDMKRZytj4GJZtsTA3S6FYoVKp0m13CIo+xWKZy/OXKVeqzF+epxiUSDKIwj6jo6PIDQPJoD9gfGwcbaBUrlIMcgOW5/n0uk20zvLxaEGcJnieg6UElmMjpY0ho9FYoxiUsJRmZfUymY6ohhpjYN5ETE/NECUJWudGoDSO6XW71OoV5uYuMTIyijF5Pd8kSVlaWaY+NESv00FJibItnnjiCR555DvUh4ao1essXJ7Py0CVyzRb65w+fRtBkIPGbqeLlBYXLl3gpmO34Bc8Wu0GxsCXvvxlJiYmmJu7zOHDR5i9PMvNt9zE4tISp++4i3KxwLmzZ3EdF9d1efriLAfbA94zfZRXZ3Iytr/88z/jxz/0IS5dnOWl184xNT3NiWPHePjBBzl+ZArL8TCbeuTzu4Hrth7ZrUOup6c2ZS9o3Xnufjr6Cr21j5d2r779bvT83jzRvcBz8/N2SP5m3vjecW6Pdy+5084SNjvP2QKW7K6vKtjJerzdFrDr2H6ycxz7HN0zhytDiWE3yNy+l1fmBO/drnZsL/mWMTmTshBsRJaYrc+5PeSGB/aG/N3IjVDhG/IDFo0hY6fF7bsJob3e8auByTcq1wsFhv2twVcjVLjeGN/oOPeGQ6GvzD+6GnDdvHansr2a9FeX+Q9/8K/5pX/0y9z/Tz/CBy/PU2z1MCePEx4eRhZrSEuyurxE2O6hZcbMsSOkScpnP3U/P/MzP41Sgm67jVtQDPrwyKNP8pZ77yIouKyvt9FaoyxDliaMjo0zv7BIr9cnHgyoDw8xNTNBs7FOrVbHGEGvN0AaQ7laYWV1laHhYcj6RP0+SpXItINTyMMvO60Glfo4Jh0we+k8YxOH0EpjqwAjQtA2CI1j4NlnX2JxeZ13vfde4jRFZZLHv/Utpg8PM33kBLFxufTSGU6cOgVCkIQ9jNS02yGWsonjAbXaEELki3Qj2ujURuIy6Hdx/BTfq2KMYWmhy8iIjXI9BlFC2IvwXBupM6TjEiYZzcUlkiSmPDxEtV5DKkW31829XAnESYcksvizP/8Tfukf/zLKiWmuxXn+qQh57LEnQLj0o5ilxcu85c0nGR+tkQgLk2RgWQTVMrbxaDTXKZWKeK5HGA3ASLrdAc8+/QKTkxMMwh6nbruFXrtBpiWVWpV2v4mnbKJY4/k+UhmUVpy7MIfreVTqAQBFP+CBBx7ggx98H81Wi1p1iMXFJUbHRpm9MMfBw4cRnRYWhqxapNVoUKoMk2YJWmvWVhscGB8ijEJs1yVJBVG/QyHwsV2fTEtIO/S6Ia+/fp7bb7sdIzSXL13g4NHjZHEb268Tx4Z40MGyDIMwIigWsR2HTnOdcmWIlZUGxkgqtQqDQYuC7xG4BdrdHk7BI9UJQueI2nJd0kyTzl+mPrvOoODQbnVw4oQgCDD9EOIIjMCEMVsVR1bWyCmTQUyMYJTAGqrSSEOqx46gSw4NGTIydXNe+kJCHIVkcR+nUAajSMIB2AWU7eBTwPDMAAAgAElEQVQREiGRuo8BLFkmMwlGC2w02exlkpV5rKWYbLWJ7nQwjTYYQ1wuIOoBtnLAs7GGKwi/TL/bQgrBubPnOXrTzfgGrPU2lAv8xVNf4/0/9QukWJRKASIa8PUHv8q7f/h99MIUx3fpdDqUyyWkkaRZgpSSF194mZtOnsC27a33lEIRZhlJOCAJ+wRBgU5nABiCYoVet8XC5VkOHzuB69pkWUYYx3i+R9qLQCnanR6lcoV+dx1go/xOH60FQWmIs69fJKhUEDrC9xS256CMzdLSfA6mtOLixTnuuvsO2u0mxfUeGs16YFEu1xGWjRKCQb9LwXP56pe/yt333EGlViHTEEV9dOby9DPP8/a3vx0hMl584VmOHz1OmJGHDScZTzz5OJZVpFbyuenmI1i+z+riLLXqMC88/zInTtyEkCCljeUomutdiiUHZEwag2359PpdfM+lsbbG+IEper0W5UqVcJBiy4g0MXz+81/g5C3HKJVGGU0TxNef5MV/9z/zjW9+C8eyMVLgBD7D04eYnp5muFRkpF7kt/71v+Bf/pvfJdvUF7/6L/PntBEqvE1+tB0Cup9cS99eixhp7/5OQAfb8OmqntAdYPON6s8tw+0OwKl36GStNUruLvFidlwPu0OFN3Xpll7eE4K7y7u649qtfdQV7W7p+Z1hxOwT9izNFce37ufeUOA94b+CbXC+E3zvbHfv9/vJTqOClHIrh3n7eewIo9Ya2OMMMPaNXNgb8nci302o8A3gekOuKTmxSEquDjSgdh03Zme+zPVau/oJ38vPMP3ffx8A61/8k125G3uLol/Z15XK2exRhlcDqntB5q5r96al7P031FcC002Fez1wajaMsEIblJSkaKQ2NFaWeeyhz3Lf4dvo/Is/pb7YJL3jBPr4DAhF2OmzvDJHpTzKxQtzrDfWue++e0jTFAR4vkuWZiAVBolrw8LCMu1WD9fzOXhwDIDBIMxzoNKEVruLUg5Dw6NEcR/HdvJQS9umn8TYjgNphus6GzlThvn5eSYnagz6LVy/zMc/8VV+7uc+xPLKKn/zN3/LBz7wXqampllZXqVQKOAXA7IkIUlilBQoy+I//PFf8I/+6/+KteU5SrU6pUqZQSdEKIWyDCZzuLxwiYMHpxFCcPH8AvU6pImiWMtzK/WgjV8eIk1j2s0GrU6HA1P5+cpkxJnBcQssLS4T97tMHTlMEkcIRP4QTIbrORihyDKDyTStdp9LF85z++03YdsO3/nO49x9992kGtrNVarFMnOzC4xNz9DtNCgVC7RbTV47e553vPUu4lSyttaiWq3y9a8/xPs/8G7iRNFqrZAlCVJYDI0Os7Q0z+jIECtLSxSCEkGhxNLSMq4tKNWG0SgsCetr84QDydTBUXJWXI02mmajQ5YKPvmpT/Crv/rLhGEfyLCUg+36xLHhycef4o433cynP/V5fv4XPwzSIY0i0iRi6HIDnWWktx+h2+mTpoZmq8Hk1BQITb/dRSmRM9RqgWXZVOo1up0WywvzHDp8mCwzSGEhlUKbFCkFWRKSlyby6fX7aBJef3mWN735FFE0wLJswrBNuTRCRk6WFIUhruPn4bs6ptVtUygWcTSw1KX58otUKjXUSoOgVCZutkg7vdxNPDGMtC1SDNbUBHNzs4yMjfFyu0XRL3D0rtPIiocrQVgug0GY13M0hjjVJP11bNfD8QParQ5D9TrGQJTFtJs9Gmttvv7w1zly9DDvfOc7UJbIf3vIjQWq3ijDseP/G50virUAJCsry1SkTfv8JSr9CD2/gFjvYlYbEPhQL6OGquj+gIElKA0Psd5sMCZctJQM3nwTSIEyku6gz7OPPcq973wPRoBSgmjQZxDFlMsVskxjtCTL8lzovKytwrE9lIQsy1hYXGZsbBSJotlsUq1WsWVIr2toNNep1Go01lsMDdXRJiOOI4wxvPTKOW695VYUaT5PneD4DqurLTzPo1qpkmYZUdynXKqSJBH9QZtyqUq71ScoFhFC0+v3AUOpWOXZZ15kcnIYy85zDj3PwfMK9PsRRkOxXKDb6yKEwrEDBoMGSWZ4+Cvf4PTtx3nupdf48Z/40RzgCcXs7Czjo2NIBNHGQn4zpDlLEzrtDkW/xJkzZ7j73ruQOuaBv32YD33wPXQ6faSwCaMetaEKj3zrO7zyymu84x1vw7ENo6MHkFIShn2CoEwSxzz04IO89a1vI4rCHMR95dtEWvMjjdd497vu4xd/7Me4+1338ud//DHe8773M3pwlMbcLF+5/35eXzjP7/7Jn+XsuLOLIAVMje/RTdme/d1eyq2oV2O4mtrZaQy+Xs3xqwHXndfkXsQdne3I6cw9mXtkjx7e1eZVvMhXXcvuHfNVxrHTO/lGDPNC7mZe3pTN7/a2IYW1S89fK+Lriu/FNuDeZEbe6X3eL2958/z9+tka00Z7m+HR+97vq4jRaitP9obckO9XbuS43pAfmAixHRKTq6a91rbvn3n3Wvkh15Lszz4Hre6uPNfr5eHsJ1cLK77euXv3jda7rZd7m9ijV7Ms2wpzup4BSQDS5H8tIcmMh5OGPPiZj3FPo0Th1/8Ib3KCzr23I4dGiJMYS1q8/NLrHDl+E47tsbK0RJaEjB8Yw3Ecms0m586fZXpmhiTLeOqppzkwOU65XKbXbXPk8AxCKuIkpdVuUSwW+dxnH2BqeprxA2OkOs4XP5lmfb2Bshx6vQ6e4yCFTRyHZFlGu91icvIAWZIRx6s4js2hmVuwPQvHsjl4cIbRsWEGgz6lchnLtllYWML3PYw2uK6D0Q5Hjx4nSSIq9SqWEmQIklTwqU98ijvuOM3zz79CEARcvjSPtBKGR0Z56umXKZdK3H///dx552nW15cZRD1816NYLlMrVnj8O09QrVYpl0sMBilS2QRBASE0tuNuFMU19HsdnnriOQ4dnkFINiz9GtdxmJqcwrLgi1/8ErfccssGmM8oFApgoFqt8NDDD1Kv1fH9gEIQMD4xTrfTIYxjjIkoFgOOHj1GmmZYtgRjkEpRqVZItSEolpBSEJRKRHGC5xfwCz6lUpler0Op7BOlA7LMMDw8gZB5bp82CUmcEkeaZ555lg9+8P3YjoVlOZgsodfvYVm5V3t4aJh2e503v/ke+oMuhYKLZVn0B338ZhelLLqlnOH35ZfOEAQBAkFQLOPYNo7n0uuH2FaBV196lqHhGt12m6kDkwglCTe8qHEcYbsOUkEYdllba/Hqa69y6PAhPM9jZHgEKcmZoY3Eclz6/T46jZFoskywvrbO008/w5hfQrxykcIL55CPPo/utCnceZzsvnspVosgFfon38GfnznDzM+8n+p9d6NOHUWdPII5MEH95HH0cIWRI4d44sVnqY1UqFUKrK4sUXBdkjjKw4j9ANu2ce0KCEmv3cTzPFAWGRIhLXwvYKhe4/bbb+Xg0cNIS6IBs1GLM00Ns7OXUErhb+SV27a9sRbfXkwGxQBjKUw5YNmGkXfci3nTzVjveBPhzBgr/T6B7WAGIc7iOtkrF3DXO3SjQQ7gLy7QbKzxN1/6Anfe+07Onn2OoVoR26sRxhEmjSjXh7GMQxy20GmHBx/8JkeOHUFKgW3bCCHJDCAknmPhWpJUCPyggBGQpDFKBZTrNRzPY311Hb8Q4PsBq2trkEUcO3ac5YV5XFuwtrrO+PhoXgqrPIpAMnf5ElJqhiolkjQFYeEViqyvtvBcF8dVNBprG3nGikceeYzDhw/T6bYoFWsExYBGo0GpVMnzdtMUZdmYLMaxBGnUx3Y8kiTl5ptu4aGv/S0f+tCHee3Vl7AtBSgC3wdtUFb+Ll5cWCAMB3zsY3/NqZO38fxzL7C8skqxVMbzbFZWlomTlJlDI7TbbYrFYv4s45iZmUNMT89Qq5UJggIrK2s4jpdHShRLNJstnn3qGd76trcQRT3CqE/55qOMXVjm3kqdL0ar/IN/+CvUKjUuX7pIq9di5vhR/vk/+w3++T/7Naanx6nUR3FsG1GvIKrlLSC3rYu2Q2xzfbatq3KQtdPjek21c4U+3C/0d8tYLPYPA95m6d0JmNQW4NsJuLaB2tX73SvXy7+9AlCLnUBOshPE7Tf/vX1tj+lKA/bOSKm91wshr4zCuko/e78Xcmdo8PbnnSB5vzautl7Ze8+v9Zyv2qbJmYm38mHlZsjKjXzYG/Ldy40c1xvyAxSzYbDcfBnJK17e3698r8BXf/bB/PX44z+0y2K49+W+KdcCh5tzeiOW1qtev6fguNmDVOUeq/BOhXHNeWq9BVrJNO1miy98+hO8+soZfmhNU/jTB+j+0J2kh6d4/MmnCMOIarFAt93k4W9+m06rz5e++EWmZka5522naa53GBoewnVdhoZqSCGJk4T19QYjI2O0Wi1GhuusLC0iLAfXdalUqqyurXP0yGEKxSKe75FpjbUBvB//zhNEOmVyfBiERtk27VYbz/MoFAKSJEEoByUlURRSLJaRlsBzLbIkZGm5QbVSQ0qLtdV1zrz8MkcOHcZx8rDFNNU8+q1vUaqUefXsBWYOTpMhiKMEIQTlShHPDSiVi4wfGEUqzepyk5defI6p6Wne/vZ7WVy4zOjYBMWgSJoZpFTEUZf68DCLy2u4boFeu43tuAgl8Qs+g16fLzzwRW47dRLHhonxMYTUZGmGtbHQ/c63H+XcuYtgYGhohJdfehUpbarVQu7tAKQjqJXL1IeG+ff/9//DnXfejetaWMrGDwKKQcCTTzyN5xfQOkOKlDCMMQZSneK5HpgMozVJEiGEZHVtjUE/xPEcpIBwEOL6Ab5f4A9+/yOcuOkQYX+AkBLL8igEPkeOzeB4PlqnZBqa6+uMjo4xCKOcGVdrhoYrWJaL5+Z1Uy3bRyBx11usrTWRG4aPkl/D9wI+8pE/5dSp2zh39jwF36NQ8PELHgcOjCOUoj40gjCSTrdHHEdIKej3eyjbBiFxHJdmo83k1ARCQq8XUvC9PMRTG5I049VXXqFWLeMXAuYuL1CIY9zXZzky38R98XX00UlenCnyxAfu4W+n+5z4pZ9l9MkF1NwiyVtPEWUpb77zHopFB4QkjiKicIDlOFgSPEfx3LPP8N73vxdLGXqdLuXaOJ1en6BY2vpfTXSGsnIyMsf3ULaTAyVjMGnKyy+9TLvboT5cx1ICJRVZokHnRFkXLlzEL/jUazWMAdt2MNqAkFvvD8NmiKTAsW0s20K5DgiNtG2sUony8SPIw5OIWw4h33In4m13YG4/jj1cIxkMEFFCKdQcW42IV5dZrRW59OTjzJw8jaNg0F4nMyBtQauxTLfT4NTtt+G6BSw7BxXaQKfd3jKwSctGSIOSAp0lSAFCumiToY2hXCpjWQohoVwpkSQ9XN/H812kzJB2gcce+zbD42NcPD/HJz/1cW6//Xbq9RqpzrAsl263x9zsLCNDYzzz7FNMTk6QphmuV0AIxczMJEUFFb/I2UsLhGEfx3XRxhBFIY3GOsViCcuSZFrTanc4+9rrzBw8yOryMredOsFrZy9w8tQpBDZLi4uUgoCFxUW+9ci3mBgfp1gMCPwCN990E0HgUyoXGR0dxQjD5MQwyhIcPHiANM3wvALtVpdCwePixTm0JmdCLuR5rPPzS0wcmGRpeZEg8LFtxR13nObc62ep1qq5t7gYMAg8jlxY4QNvuZdXRsf59d/4DW69+SjHDs9QLVYYHh3lyPEjhGmMzmAwGFCpVLawwW7wsVt/KbWRy7xhVN0EXPl2fd2m1DbI3E+uVVd1t/7dzqfU+trpPWbH9Xv18ub+zrI1e43PO/evKJvDTkZiuav/vWlHVwtr3gTiV+O/2Hc85sq5XI/8cQvkit3rhr2f91tLXMvIvt93e0H31WQb7G6s/0Q+vk0Au7leFHui827IDbmW3ACuN+QHKJsvzXzbzJ/ZlO/X2/pGZa8ygu06rvIn3rXLYvi9jEkIkZdpkLsV2XfVxo62Nj7sVjJcCVLfUEiOMeTLWiDT/OZv/iY//b63c/vZJuqPHyB+/z04o0NIJEsLyzz/wvOMDlVZmJ8H6fCm0wc5ffo0/VAzOnoQy4L19XXCQUgh8Flfb1AsltAG6kOjFHwf13GolItouV2v0lJW7qmzLaS0GPRDbCuvV3f06HGqw1WUTPO6pEgKnk8cJ1iWot/vY6SFrYpYniIzeW5kHPUoeA5BaYiHHnqYfi9kcnKaI0ePsLa6hu/7LCwsUCh4HDtyGNcPmDp4CI1GKYsH7v8s9933Tl588VmUtImiHrWxMkpa1ErD3HTiAMVKFcdWaA0Fv0QSpiwuLeVEPHpAsVLFLZRZX+/g24Kz58/z9W8+wokTNyMElIsV6rUKS8tzlCsBYHBdjyiM6fV7HD54kMnpGWrVOkmS8eorr1OvDVMbDuh2B9iujVCGol9gcWmZ06fvpFytIUSKFBaN5hqeU8T3Szz99DMcPXaYOOqiLJdiqYS0JGSapYV5apUiJstINNTrufFBKkjjmCw1WE6JNE24+663EhQsBIIsE3zsYx+nPlTO85S1QFqSJMl4/pnnmTgwhVK5189zLVbXlvG9Equry7i2x8c//p+4447TeI02Ulp87olvMzY2ylNPPE59qMLho1NUqj4TIzP8zQOf49DBSeKwh3JcMiNAKIzJFzpKqZygx3fJtGFxcZVqqU6xGKCU2Cif5OblXTyHXq/H+nqTerlEpVzEvD5H+dlzuC+cw77tGPEv/DDy//w1hn7hXYibJrj99jdz3+AAQ5/+FmJ5hfgdR+h3E4JygJCSJMmJsFzHJtMZ0lak0YBWY5WDM9P04wGurfD9Il/68jc5NzfLzMHD2JYFOiUxGdLKQEOqJUIqMIYkGuAKSblaZWh4FKMkSuee7ocf+gZhP6I+MsTQ0EjeljBYlrUVJql1Dlg3F/cARucgw3NctMhAaISRCHIWZksJJAbLgHAkxpXYI1XkiaPIEzMIR+FaDvpAmYksYPrVVTJboFsdLq3MMjJ2gJfPXmRq4jD16hjCsdA6DyUeDAboTOM7Kg/XtWxSDUnYRknQOqXX69JsdHMwqySWrUjSGIRGm4ygUCWKJUGxiucWkJbD8RMnwFJ0mi1O3noL9aE6/f4ALwgYhBE6yVAS0ixjfHwYpRRpavDcgF6vDyKjcO4ystHlKy+cYWr6AMMjI7iei+/7lMolmqvrFEoFmp0u1ZFRRqp12p02zz/zLMaETMwcZmFhmS9/+WGmJkYplUosLi3x1re/DcexWF9vUK1VAcPi/GUQEBQLjI6P0m4u43oOmJQkVly4MMfExASvv/4qc5cXOXjwIKOjI/i+zYWLl7j11tu4cOEClUoZnUX4BZ8oiWg3OtRr9a177dSqxDqh9Pw5fvnjf8XN972FM88/yZtPnuIPfu8PqY+U8EpFZo4cY6hW5/HHvsPhb5/BPPcq5rbjewDHXh2zXQolN+7u1C3bemivbnqjjPrb4OpKALdTJ+8C1PuAuKsBxL37gt3g8Go6VSmVj41tssUcvO/IBd3JEryPXC1FCHIv6N5x7Fw/XGlI38skvB+78JXz3zQ2XGuce8e737n7eWb3A67Xk+0+8jXhzrEJse2FBfX3tj68If//lxvA9Yb8wMRs5CZtBKte5QUrgDfCDCz23XY2+d0Az03guhkqfD0P5rVCavZacPcqrJ2W3f0srJuz230g38SOYztDiuDKHJTtSyWW0VgGjPDQacRHfvff0Vhe4L/4L3+RwndeQ/zx5+i+7Ta+feZlhoeHQAiGh8b45qPfYGK4zm2nTnH+4jzHjh7DcX2EMBiREEcZ3W6X6alJVpeW6fT6SGVzYGKUxdlLOJ6NsixWV9fxCwV0qgkHA4KihyUNruOxurJEtVLMpygVSmkUAiFsFpdWKQZFWo1VEAplKQpFF8t2SHVKr9Eki5dJYoFtBWijyCw4fuwolhDYrs2DX/sGtVqVQlBAKWcjFyfGdhRGp6RRSBYnTE5N4XmKarVGUC4wfmACtM3a8hKOI8Cy6fUjhATLslhZWqNY8ikVC5ApHL9Atx1SKVaQwuB4LmlisJVkYqSM67tUKmWEFBTLVdbWO/heDvKzLMN1fB799qN4vk+n06RQcDly5AgGzeylBWamD4BOUEha3Q4YyfPPPcvkgVE6nVVeeOFVDh88ThJldDpN/MDDcQKCQpF2p0HBdzl/9iK14TqVSoVOp4U2EZ7to02G57msrjT4j//xL3jzXXch0fzln/05p990G2mWgckY9DucOH6CWm0YjCKJBwSOz0tnzlKuBtTqNZI4Jo0jLGXx2GPP43hFBv0+1WqJsdE6Tz3zNIf8KlmWMXRiikq1wuHDhymWCtSqVWzLodvvcOq2NxGmfYJyBZMJXn/1HGNjI6Bycjfbyhcztm3jOT6u55HqGNd3EbkLL8+PlZJzF+YYGRkhWlqiNt9Afv1pBoMB9j/8Sazf+TXiHz5NND2KVRole2mOyteeo/BHn0EtLmAmhhicmEapAp7rAgopNP1eD7TG8gpYQmNZCsvxaK4uUqyN4Lo+SWrQKGzb4a433YG0FFqAEAqlJFlmY4zC2QiPDKOYy5dmKRRL2J5CCEW3tYrj+HRbTW6++SZc3+OJxx7D9yTt1jq2UvS6TdCaxlobx1ZYSoDOUCh0lmI2DIWR1qSDPNcZIch0bmD75Cf/E8VSmVptBGEM7VaH9XaPwLeRlktcLSHqZdzXFtCTVcTv/TKm0UN89XGGlc2ZV19k9NAMQSkgFWAphUDQ6bQoFAp4rofj+KwszeH7Hp1uF2UMvUGMpWxSLIqFgLOvvMroeJ0wTPD93FiVJhkSwROPf5upqTHCqI/t5UawQT8iqFSoVsu5V9n3kXhYto3rWWQ6zz/vtHoEfpFWaw3HsQgKPkZrnEYHy7I58e5787JIgy5Bocjs7Dy1ao1Ws4nvl4ijmGrgg4I0M5w6fQrLK+AKg1SCt7/jLTSbTYbHaowfGKXVanHu3CVKgY9jK3r9AY8++gS33XaKIPDQWYwfVEhSzcJCg6GRKp6fpwQ8+9xznDx5ipGhoZxIyLKoVWpEYcSFCxexLAeQFLyA5cVl4ijCL9i4Xs4Q7do2/sFJLl6a438yBd5+cIq5mSHWGg2+9dijlAKfd73nPRip+NhffQLXsjF/8NfU+yHyJ94FG0aPTdC621u5VwduAlaxCzjt9apeC+Ds7GMXYNvYjNZbQHYTQCK2o5oMOt+XmyG35KRL1/ESio2T945z13k7gOT+Y90dvns1b+Vmm3tLCm16rqVQO2a8nbO+c82weU3+eRvoSSkQMs/XN+it+7DvtgNLbgLizfu683nsHPfV1lBXe6bXO7ZzHlfvY3ve+b3PAE2WJRiTIcROICt33bsr8qhuyH92coNV+IZ837L1ghTpFcc2FdVmbosxhv4X//328T3nO7e+C2vqFADp3AskZx7ac972J/9H/oetz9G3P4burOw7PjV5EvFv8lBh+dv/Hcnjn9wY227dZ4zBuefnkOVRjDGkLz1ENn9m/zmXRrDv/tmt/fhrv7/veQDqpneiJk8CoOfPkL788JUT33gf2+/6la2xpE9+CtNZ3X8hMHEzzi3vxhiD3V0lfPLTpEkKCGwlWZmfpToySmd5ncqfvkb36HG6gcfQQY0KeuhM0+8P8H2XJI7JsgwdOwyWhqiW67RaTYZuaRKFEb7vk6QJOsutwo7nEq0VWHilg3BcZk7UIFjM8/OMyQkhMNiOBUjM8mE8zyWMEmR9HmFFRFGUL37l5mokQ8Y17HicTreFW7LJChexLUWWDtBmoy1tsD0HmgcYNFPWm+sURkOKwwYl80VPmqUoCQiJ1D6iNUWj0aRarWGGXiNNU7TOS3wYI1BSkGYp6VoB3xkDYzBWl9BexHZsBv0BSaopFQt0u10qlQoXn1QcOnyUXj/Eqs8hVB/b9UCIvOxOHOG6HufOrDBeOokxmka7wdSpFKQgCWNs26LT6eL7BTSaYnoT60tdJBbeWAPjdEEI1AYpxtraOqNjI4jUo385oFav88zTr3Dwrhi/4OW/wzjGth2SJMa2bVR/mMG6oFStkdlNYntpRxhgTo7k2DbKUtitE2ipWV9p4o2sYHkZyhIIoUgzjVIb5CRhmbRZx7cMzUGXtexZ6vUqxWKBzQVJ8amUwSCkOT1Ov5kxNF6HYBW7FBHHMY7tsbq6Rn2oghASEoeV11wqtSp+oUBWeWXDIm/YZBvr9wcUCgXUYBQ9CLBti0y1Mc5lGERk3T4q1ejhCmp6nDTwCN773wOQZj3ER/8c77F5ZCsmnrGIJgWmYuV1S80wrjqCxLDaXMArzuZ1Cjc8Ie3GGkGxiOV66P4B3GACkyYYNU9q1jZiHLYD/oWQCAoIfStL8wscODBOIp7AmAytM8JBhOs5JEmGUoLeepmwbSGExA4igkpza9Gcphk5OVruuW8ujDIzM8Ply5epjDYxYoDjegipGAxCGutrjE+MoxjGloeRStLprGEHFzAGpMwXxFmmSeME23GwxC0IUUR2+jhPPoPRCd33T6ArGn3+MmKhSTpUwlVlZHSUfhjh2RkMzebPKHcp4XUOg3TIsLF0TKPRpFSpIhwbaTTN9XUsx8ZxfKQUtFotarUaJtPoLLfcaa1Rjr0FmrLMYEvJJz7xcX78wz+OsDSO5YFWPPjVh3j7O+6mUPBptVpIqei1u4AhHERMrvUoFgNWDlQoFou5gUaonB04zdAZfP3hh3j3e36IV159mZtvOQlopFAkacrqwizDI0MMwgG2U8RxvJw3X6esLCwyNTWF0YZB2Mf3SwiliJIMpESaZIOdPEFJyf33f54f/dEP0O6sUq7UWF5cZXholG6nhbItyqUKSlnMz89TKheIo5BOq8309EGkFMRJSKO5ysTIOBcuXmRm5gjZd57HWl3D+tzv8NG//DQ333yKrz74IIeOH+Vnfv7n+GhXqGwAACAASURBVOqXHub0m05T/d9+l163Q/Xjv73LELoTOOXEO9aG53pbl1/Nk7ifNxDYIvC5mlF3L6Gh1jrXA+wo4SKuJCba9sDKrX52fr8JUDe/l1JeNXNyaw5b/6/bY8+yDMdx8u/ENoGjzrbP3TmHq5El7vWq7rofexiId66Tdl639x5fr5+d3+0Fl5tETfvJtRwAmxFme8mVrnXNznSqq4Udb963vezMeQPbv6fckHPt9K0b8p+XfDfkTDd4rW/I9yV7Qesbuoa/W/vatkX57192vYivM4a9pBKCXJmkaUqMITMGKQ1Lly/QWF/BK1WIZ5covz5HdvomgiPTjAyP0Wo2MNqQJCmWJdE6IzOGNNMbOZ8TrDebXLx4ESEEnu9hhMk9HK6NZeeLmsEgZObQAQ7OzOSsmhuMvt12mzSJc8WUGbIkpdVYZXFhlqX5WdAabQy246ABIQVRGG5ZhMFQCHyifg8lLfr9GCHzupGWrbAdK39mmWBleZXp6RlKpQJKSi7NXiInfsiBXpLEG/dY0Ol0CQchOsuwlJXnnApBmkS5t0opCkEZnebt9ntdlMpzDZVl4bkuUgrKlTIGg+cF9DvrfO0rX2F1dY0wiomihG63R5ImeL6LwVCpVgkKJQp+hcCHOBqAMTiuCwIKQQGpFJZlEycRtqNIdYwgL+UgN6zvUipqtQpapyRJB6Mjnnz8aY4fn0EqufWb6HZ6+SLDzkGQRlIq1xgMYtI0B+tab5SrEmDbFkrlxFHrjTWWFlaoVup4vg8CjBEkacbc7CWiMETrjCQOkUoQDgYUix6jYyOUSgHa5GHlSZIA4HkutaE6I+N5LrRlOQgkSlkkaZwTae34HygEHsViEaMVWbYJWjSInKClVCxisoRkaRXnxXPoz30DvvQIZrVFpDPM9BjZW24jnBkmKwVIZTGIQtJOH/Hbf03hy5dIDkqa7/Xo32Jhqg5CKpI4QWcJYa+NMQn1ehW5sYDOkhAhJJX6MFLlhg7PLyNR2E5eg3jzd2uMBq0J+32M1ugso7Gyyv2f+iSDfockjuh1uugsw7YssiSl3+1hMo3vuCSDAWG3jZI5AE6zjDjJjSxCCOIoQgiwMKzML1MplMFolKUwOiPs94kGA0ZHR9A6z6vWaQrk5E5bb1OjSaIQiWRlZY0kSZAmw8YgygV67xgjmbSofPIy7lMN4gNjcNdJHKkwr1zALM1RTvok7cuE3Rat9VVMlgCaZrNBr9dDa8Nas0VQCjBKoZEYBI7roiw/Z9vGMDQ8RKYzwnCwEXkwy7mz59F6g5SHvATNiy++zE9++KdxHAfXttFpjM4i3vPu+7BdlzAOEUqQGRgeG6NUKzN95BB+oZCHVGvN7MVZGutthDR0u23iOGEQDnjXD91HmqQcPXorWkM/HJBqTZbBgZlDuIUyQbGGLTWXLpzFsyw822LywAidXpfUGFqNBt1+l0G/x//7e79HY3GJ9dUlBr0+SkKv3+J97/sRpLCYmDjAC089SRQlfOXBhymVywSFgIWFBZrNJg888AD9Xo/R0VFq9SqIjE63i5QOBw4c5MyZl6jXhnjqqadZPzyJ6scs/8q/YmRkjF/7tX/KmVfPUSnXOH/2HGkWYVSCVIJ+v4tlWVvbJkjaSRSktd5Kg7leXujmttne3uP7RgddLafzGrL3nKvlkm7K5ti/F9lkid475v36y1nwr87wv9+Yrwbk3ohcK4f2eqDuev3uHN/etozZTlX4QYHH67Yl9NaWJBFJEm15ZW/IDflu5IbH9YbsLyLNC8SL6yuLTeBaeP//CHz3VrTv5TdojCH9088ihED9g5+44tje8B7YbRHcKfuVv/meRO8meNo5r/2o5ncqPYUgkxDFMQ4SYdkEOuP3/u1v8aGf+jBFp4Lz2x9Fff1xwnfeiRmtIXSCpwJ63QGQsN5cYebgIaI0rykXJxF+wSENV/CKRVbXewTFOmsLl6lUymRZSqlU4PLlRSzLxQ88BoMunlukGJRZW1uhVi1w9txF/KDEzPRhbEuQ6QG2UqytrVOsj3H50jzTk1N0+00KQU7Q0o/aDFoDRsYm8hIoSpCZjKTfw/GKpFhI3UUpmzDqM3tpmYMHp4iTkFp1iPWFRcqjowxizdkzrzI8Vmdsehx0gtSaldUOtWqd+z/zWU7feSujIxNUK0NoYuIoRCBzT5RShEnGay+f5fjxGTw3JTYerqM2rHYecRyidYI2CU8/8SKnTt7OR/7kI/zIj7yHcqnOQw8+SlCy+cmf+mEGcUjgV4njBNtWrDUuUiqPE3ZiLE/j2mVef/08R45Oo9IIjcHxiyQJSKURwhBFA/qDPtX6KCJLuHD2IqNjB3Aci9XlJeIwwQl8JiZGmZud55vffIz3f+A+6kMjZCanvUiTiHhg+OY3vsGPffBHefSxRzl5+ym8gkcSRdhKMxjE2E6FXtShXq+hdcp6Yx1lBLVSkTDqoawyyf/H3pvHWJbd932fc87d79vfq33pru7qvadnXzgiKYkyJVFSIEaWA0tGEEAwIgiBERhWEiSIjdgBYidOYEWrLcuKREmmLFISSXEZcjSc4ZAUZ5oz07NPT+/d1bV0rW9/dz/541Z1V1dX9cyIsiEZ/QMe6r137z3n3PNunXO+5/v7/b5JTJIkpEmKaym0mWGbZTrNZYrlIZShSRLN0mKLas0BBL5v0+ks0271GRoayxPSlHyW5heYnp6m3etiCZfaUJV+v0cWp7z00nf5yEd/gPlzc1x+4QyP7ZtErGxgbLRgapz2+BDBqRnGP/EYz861OHnqOBcvvc2Jk0cwVQHL0fR6PbylLt6vfYY4jYgfnMX1XOJMoyyXfr8PgCVT1lZXGJ6YIu6HNDdWGB4ZZm1jg6GRCaJogGW5JHEOZrMkwLQgSUOUKnBjqcn45BhpEmMpweWLFygVCkiVsrrSJEwiCm4Jx3NoNddROkOojHYz4sUXvssP/+gP0u33cB2HNE0xTJM07GN5FV578x0uXbnM3/7ED+F5HoNen3aQs9+GkbvWZ1nuFi+FTa8bYdkJUlmUKxWk2kxwVnYwVXnTjVmwsbaO4zjYrs25dy/Tbrf5vu/7PoKoRzLoYrtF4mYP/4VXiY8fpPMPfhbDDonPX0P+xmcx/vwMgyNlAiH57sJFHv+7xymWhxGto7msbZYgtCDVGRkCKXIXfmnkWrBKQJakXH37DGuh5tjRIyT9DYrFEUIJ3W5ArVpGZRHSMAgzyJDINEGjwDBI4hDHkCRak6UpShtsrHWo1E2EtHJd47cvo7OM7qFJkigmSyIG/R61ahVDSbSUBImm30/44z/6E37ykz9OpVZlEIV5EqdWizTp5qwx4BSrJMLAlALCLog8flnj4Np6M856nZGREYKojW37GMpBMiCK8tCLgl8hkwbNjRadbpd6vYEBzM1fwLJcysURrl27ysT0OIYBnm+zutLE9yr4vsvCwgWaa2u88soZfuqn/w7h2YsU37iC8bVf5uf/x3/BoLfM//G//2/4hRJevYrGwP6H/xdKpJi/8o9RBZdQpwi9m55nPtLtFpayFfeqlNpkyW59n19j3C61sv3YHnPmTjZ1y1U41cmt45m4ycRuge3ttn0+3s4q3g283vIS29GuHesBsa2MO6RrdtzDdvZWKXVbW+5o807N153nbdNq3Sk/s7PP5I68RttZ260NirsxuTvbscWYb33eq97d1ii7nbdXPdt/y93cr/fqG735PGzdmxDvT23hnv3nY/fkcO7Z927iVgbA97L44mkAzNnH/2O36jYT9x9BPnB092N7uLLstbv5V2L69sF7+ySw207tbZNEpsnQmIaBKw1Wr5zlt/71v+HHP/q3qH7tFZz/6ZcgjuFHvg+rViaJBZ1WzPlzb2KbGbZrIg0Tyy3Ta67j2Rat9VVKBYcEnzDUuFaRhbllJvdPYDk2pm2zurJCpVLDdlw8z0cKaLd6m9lcYxqNIYqlClLaPPXU0xw+Movj2LlOIxqERZLGzM/PMTo6xPKNFfxCEYTCsRRxHGJaJufPn6dRHyJJE77+7HPM7J9BCYOlxWWkNBkfHUEKjcjVLukFCZkA15F4Fpw9d57R0dFc01UpbMdAKc3JE0coFss4jsPnv/B59u+b5tLFOa5fn8cwZR5fk0X0+30WFhepjwzjmhaWYRAFAzQDkniA7zrEUczMgX0sLMxz5Mghjh6bRaguDz38AIIU2zEg0yRRgtBw/do1klgRBinVSoVgkKHMhHLZ4/c/9UdYXolKtcrVq1cZHRnZjFnMGQ/f8wmjBMs0MQ0LoRw+94XP8eBDp7Ack2KpSJom+EWfEydO4DgOgyBiafEGaPD9Et/61jf5xCc+TrPb4cDBAxhK0lxbo1Aos766QrFQQiqFZUAUhHRbfUp+BccpEPQDTNtGKoVtW7z22us0Gg1KpSqtVpNnnnkeNIxPThHFAXGS8Pu//+955JGHEFIiBFi2j1AO0jCxPRvXrlEtDTF/fZmxsX1cv3oVNxP03r2CO7/KZKmGfP4VCpfnmTh1jGtli1cm6+z/9X9C8vc+TuGnf4xwdh+iUuH8pcvMzu7n/IVz+L7PxnqLkdE67gtv4f7SH5JMj2I8dJhUawxrUy84SVCGouj7BP0BpWoDlIkpM3QSkSQx5UoFjZUz12nGv/pXv8zxE0fxPIcsTTCNMlGg8TyXOGoTRwNuLC0QhwOCoE8SRjhOLgEkkoA4zvsRIXGLBYZHxvBLJSb3TVEbGqFSa9AYHqFab1BqNChVqoyNj/DEE4/glSoUq3X8coXl+csM1ctkaUCWDAiCGMeyaW40efmll5mcGkNoQbfVJuh10drEdkx6/S6mnUsuub6PYVkoKahUqtTrdSDddI/W+WLQthHjNcyX38F8+wI8+QRGZRT18R8i+9kfI23O4b5ylQN9C/VQFZFq7KTGd174DlNTUyAlSRwTBwMsSxIM2pg6pruxhOUWMQyLLAqYmpkhimMMQ6C1SZwl+LYgSiNsxySRHirts3rtLG+89hrdjRWkTikVCwidYStBt7NBr9emUivnMf/SQOkUsbiKUoqmZ1EoFjFNh2a7g+24hFFMq7mBUialUonDhw7h+ha+a9PvtHn9lZeZmJygWq0iDQMpTeIopttaRyYByrTYaDVJsxjPM9CZIAhCisUiUkqUNAkGQR7rHMcMgohyqcLGxgZKpvR7bYaHqqRJRJZphoYazF27TrVSo9tfZmJqjLXVFRYXVllbXefSpQs0GhUGvT7j45McnD3EuXPnOPDQQ3BjjegPn2a93eEXPvLDZK+f54v/8td5xCpz5YvPUL94HaE1r++vMzQ+ipbizgSB+aeb885O4LfFrm693/JuuTVn3eka+n6TNu08R29n1rS4K+DaGR/6fuq8Ob/vMfffrHoHC3kboNr8uxczvf36O2NEd69zpyzR9rbuFWeqye5o59bxrY2J3X7PvWy7TN/2e9rZrzuB65a932zDuwHV3a69o/xNoJokyc2++ssy7Pfsb6bdS850z75n06SbA/H7B67WoSf+UnV9UOC4PUnA1ued3293mdp+3W5lbbXhbmB3Z/zObm2XQt5W3s73d8TEbJ8kRC6bkkQxv/XLv0Z9ZYMPvdOk+kt/SHplgeCJ+xAPHAcp6LSaPP3nz/Hma+/w0R/8EO1Ok/rQKPOLqxTLFb7w5a/S6UccOHKMQRQzd+0io6MNLl48z+TEBEIJwjBCCKhVqswvLPHlr3yV4ydO0Nxo8uqrOYiZnBwnjhKUYfHGG28xMjKGbSvCKCaOI0qlAv/mN3+Lx594nFqtRrvdoVqrcPbsu5RKNYJBH89z6Ha7JIlmfn6esfFJpqYmkSIjClM83+a3/93v8vBDD7K+vkaxWKDd6aIsk2Jx0400itg/e5DV5WXQEEQRUmrSLAWdEEYpSRJz4uQxwjBi+cYGhqGYnp5CSrBMxdDIMBvNFo3GMFkasrK8xpkzZ2gMFbFtmyiKSVMwLIFl2ZTLZZQSGIbFG6+/y8z+Q2idJ4bq9rqUSiXOnz/PoUPHeP7Z5xkeHaZaqRInPYTQ3HfyIUYnpjBMQb1WIY6j3PVaGcRxkieo8RykUAgpMB2fqekJECmlSpEwTIjjPDZrMOgRJxm+71OplNFZwre+9R3GRkaQKqVaHwKyfAHebmPYLs899w0Ozh5Cmgb9dpMojGi3OtSqdWLdJwg6pCKm0+pjGAbDw0NUq2WiGCxbMDWxD8f38TwXISRhFPHIow8RxTGLC0tUqmU6vZBWq02lUiVJUwwD2q01qlGMfOs8pYvzmG9cwPRcxJEp+NADDH7mR1n+2R+Cn3ic8Z/6UQ5+/COYZRdVMmk3uzz79W8ye/Qos7P7ME2DmZkZfL9AtVqH517E/sNn6N1/CDk9hE41aZqQSROF5uql81RrDaJBwCCMcDyfcNAnCgN830cZFkJZaAwEijSLGR2dYGxshCjsYRkO//Y3f4f56wsc2DdFv7dK0O8SBwM8zyUKQ5rNFkKZFIoFXMeiOtSgUK5QKJYolKpoIfALPspUmJaLMgyQkiCKEIZBpkGgcWwTabtoBEhFsd6gUGtQrA3h1+pYykAZJpZtUW/Uct3l9SYFz8X3HZ5++nmGh4ZBx7hOAUNKOt02tmPnsluZRirypGlCESaap7/25/iug/Is1NQY5uvnyS5eQHz4GJFOwDfhgccR/9UjmI8fQq/PQ7sLv/MS4/snSJbX6KgMx3MxDJPMKaBMBy0Vhu0idEaYgCQhzTJcv4BhmyjTw7INHMPHMDyiKCXJMkQyQEc9jhw7xbUrlzl67DhRnNBuN+l3OnQ6bYZHR3IXadOGTKOzhPDqAqZpISdHSLI8htNxvRzMtlpY0sDxXNIsdxe3bBM0dFotjswewisUUJZNlmUMgpBS0cezLdIkZb3Volqt4TrWZrK1EmfPnqVWq9FsbmAZFp7rsry8hFsooDWYls3q2jqua1KpVAiCgDAM6PdyRnb//hnefuttXnnlDfZNz6KkTZqkHD48S7HkopTkjVdeZXWjxeGjRyl7FgiLy2EfP9Hs70e0Tp9hvBMy0QmxryxQWVpDLawgltf5s2GTD330wyQ6y1Pd3DGX3Yrb3Mkw3oz1vHlsJ8jbe34WsCdruB203Jx3xbZztgHi7fPpFhjbDhq35vFd4ya3XXOrnjvbu8Uq72zj9lwduwG4nfXsnMtvu19x+/piJ1jeyu6824b29nXLbmVt9eX2cndjqXdbX2w/dy8AurO/d97zXp939g/ceibu1qd3gPrs1vdaazIdk2YxQuSx0QJ117rv2d98uwdc79lfgW1NJu8fuBoHHv1PNrAIIdBX5tHNDlSKt33/l3H93XNy3gFcd+5y3jaoZ3u76tyNgRVCbGXlR795gYlf/SzTX36JOBOc9hS1Dz+E08ilVsRmnN3Mgf0gQlyvwEozZGFpgxdfOM3swUkeOHGc+WtXee6Zp5kYa7BvcoJ2u8vY+DRfffob7JsYY3FhgVq5ClJRqw1RLJapDzcoegV8v8DExASdTgvHc4jimLHJCYaHR3Aci2AQUK2VWV9f5tFHH8PzCrQ7fV568VUOHTpAfSiXafEdn0wntNtdqtVh3nn7TfbNzOYsldQIqel01/noRz+CljalSgWUxHZ90qhDGscI4SJNH0NpSn6RV199lZmDs/S6IZ7rkSUpSaKxbJMsS9BIRoaHuXLlMlIo3nn7HPsO7ifLUmzLpFouo6VESRdlWCjTolCscOXqPK7rEwRdPNcnDBPSNKPTDvnc5z5HtV6kXHap1BpkxPjFAqNjE8RJhwMzB0lTsO2ENIH11Ra+bxP3+/T7bRzHptPtkqYpQRBh2w5aw2DQw3Fy3Ux0xvLyIp7jEA4iCsUaa2stXnzxuxw+Mktv0EOKDENqTFMyPjFFuVzGNBSO5RAMBtiujelaSGmzvLTKvn3TSFNimTYIwSDoE0R9vvHsdzh44BCFSplysXgzQVMURSQakriD67gUyiUQImdtLZPSwhpuN8TbN5XH8MqMer2eJxBLM+S5q7gvvI15dYnk8RO0//b3Yf/T/x79d36A1okqG40ChX37KY8O4ZZ9us0NgrCLaZq8+PKrjJZHOfPid5k9OoNSeXZb3y8QByH+H3wF+/PPEz1xAlmtIGUGWtLcWMctlonDPjoJ8YslhGFhOg79bpNBe5nS8DgagZYmmTCR5Avh/qDJ2Og0mgSdJehM4fmSUydPcv3qNXzHotPawHU9Op0+hjJpjIxQqdVxfB+rUCZTJkIZhGHImZffYHl5mf379+WZjLUmSRNAY23Gk1mmncd5KgOpIRwMePGFF5ia3r+5iE5R0iAjo1SuYXsu5XqJarVBHMdE4YBer4PUNq7tUiz5vPvmm1imyr0RJPT6fUzLYnX1BoiMcBCjTId2q8XUxBhxnOKWy0T1Ms7pd0jWOuhH7sMEpCtwzCHsfUdIRofpjlaRn3yE/toK1vkbuKcvsO4KbLtISoypJO1WB9crgY4RpotjSPrBALdQoNPt4jgloqiHMg0QKYaMmbt4nlpjGLsyQiYthscnEaZLJiVKgF8ZwvMLeX8JiyyL0NLIjzcqJNUi0jJROk90JrRmdeUG42MjpHHK9YXrVKslJCkaE8O2cAsFEgFBf4DtFTGEQGuBEvDM15/Frw7hFx18r0hzrUW5XCYIQiYnp5Ayj6nP0oheb8DctQXqQ0Osr28A0GjU6Q0ilMrHlMXFZfZNTzE/v8gzz3ydUrnEfffdzyDo0WlvMNxo8OUvfYHDhw8x6MdUSh6HT5zAMBRR0MT1Snz16aepnjrKNRVx9GPfT1Av4R6dYTA6hnVkBrHRgo02C594guP330eab4PsNgPtPe9sD1fZlIrZDfTuVerdWEO4BWKEEGhuuQVLcQswby9jC0jC7WBr+99d27LHxvPWsS1gu/V3J6P7Xozg9vq3yrsDBN4FuOaV3c4y79xwv3ma1uwWobWTDd3tuu3Afzfbmy2+VfZ7gdW79fNOML6Xbb+HvB92Mry3PABAozNxx9rrnv3nZfeA6z37HiwDkbOteQrz9x4objKue7gKv9/4iPe7o7Z1bvyP/m+y519G/eQP7jn5bJ+09mrX+60PuClpK4XIs45qfevvLoP/zu+290MsNJIYQ4Q5o/DPfxf9T38Dd2aS8MOP8kcvvsATP/AR/IIHpkRnecbMjY02iwuLTM/sx7UV3VYL2xQUCy7TU/vQOqZSafDwww9TLFvEwsLzinTabS6ef4vpqXFKRZf1tTUMU7G+tkoYBBgYXJq7iu9aFLw8fm11ZRWpBJ7r8Oprb1AsVvArZYQ0cdwC8SDAsUykFrz9xpscOnoYZUr67Q2EUoDNhQvvMDw0wv6D0yRJH8NwMW2LT3/6T3n8sYdZX12nWHSIwgRTWqysXKfaGCVOBL/yq7/GkSOH8VybMOgyvX+KIAq4ePYCo2MNTNsmSvtYto2hLGzLIFOC4dFcjzYKQkZHh9BaYFkO/X6f+cuXaIxM8NnPfpbHnnwStKBarRAMelQbI0hDYNkmUZQhVcZ9959ganqcMA4xlYNlWrnGqa0wTZ9eEGGaKUIqkjSlWq+hLJtnnv461Vodw3bwCj6kfUzT5JvPv0gYakaGR0BLgqBPrz+gWqmAztA6obnRpVItU/A9rly+yuFDBxFCkWnBlavXKFUreJ5PkmQkQtPt9/E8D0MZpFlAqVymXK6xtrpCoeBiWRalSgWvUKRcLKBUhms5LN1YxfUKWJZNq93hj/7wj3n88YfpdjcwlIehBM3mIiQ2amEBlWYMKjZJlGA7Dr1+m/CdK7jPvoSUiu7P/QjO//nfYX3sI0RjDdwyKFXALXlUG/swLBu0wFQ2yrRIlYfvWIyPHqIf93jsw/fjOgkqkxjKRQchpX/5e6grC6Tf/yDCy0G4TgKiMEYIA8czsU2fJI3w/DJvvPEuyUBjmR2G6tNobecSO4ZApyFpGGBaAqUcUJtjhNaE/RbFYpEvfeWrRGFEteigM4NitYEwDab2jWMVqxiWxFAmQgnk5vhimCZj42OMTYwhlCSMI5Rp3Vq0CwFkSLW1iBekgJAGa2statUSSmUkcYRl2ijTJkwG+XNteqRSYDt5MqvmRod+0GW4lmvtdnohyhB0e7lMTKlUR0hJoVggTlMKjpknCE4Fzz79LU49cB/hoIX0XCJl4b5zieijD4OryMKIEGh2myjPo93vUJ6cxX7sOKsfmcD40Djm2WXMp76L/ZEHIIpwLAMhIBUGplCgY4gNlGni2z5zl88y6KxSrg6hNURhSGOoTqZz4Bj2+5imQ5YMSOMA268RR30un79Gb9DGK1URCHq9Hqah0AqUs/kcCMGg1yEIelSrVcIoQ4uUxugYQkrSJMJyC2RZhmHk7ZTSYH11HcdVnH7pVWqNYer1GpWig0gVtuvyuc9/nrGRcYqNOpqM9bUmlXIDTUi5XKbb7eP7DtVag+ef/zbHZo8gDIc0Tbh+bY6CW2JtY5np/fuYnJ7kwOwMrudgKJfFpSX2Hxzn4OwsG2sbbKytUahUkSqj3Vqj6Nd4+aXTHJzdz+jIBEO1SQaDNn/x3ZcoFGv4fpk//pM/5dBjD+MsrdD4xb9Pr9OlUCyixW7z2t6gbPu8lAODXOIl/2qX+XQbsBRS3swgL5W6bQ7cWVcOULbK3OYtlZ9085zNi26rea91wc15dmfsps4T4N0EquRSO2Lz/W6b21vvM61vO2e3OneCrpvl7ACu2xnaPCtynuxNSLi5U32z4OymRI6U70da8E4N2J3X3BE3u4Ox3e3+32uTfWdf3K1vdh6/23ordyPf1IQVW9fecldHZGhSMp2wFbP9fvronv3NsXvA9Z59D6ZvDsD57uv7B67vFeP6XoPMB3UFyb7wHHBLx/Vu9f5VBflvtW6vQX/L3sulRmuNkYFGoVOL7FNPEf7qp0h+/HGikQmkZXJw9gBaHWNGKAAAIABJREFUZ2xsbMAg5KXTL+F6LlevXuHIkcP0+gFSaGq1OtVqheHhIX7v9z7Fw488hJSS+flcf9FxfJ77+jPs2zfN8WMn8IoVHM+n0+8x1BhmMAgoFktcuHiRo4dmUVIjDInh+hRLPu12E6/gMToyzLl33qbRqGCbil67R5ImpCn8yR9/kR/9xMeJ4wgpcp3O06dfYWJimlLJx3GKmEoiBYT9hDAY8OCp40jl4RV8tO7TarX43Oe+RKXcwLYdXNfi5IkTedIGpbBNE8u0MC2Hgm9jWZuAxDKIwgQlDF5//XWqlQoCTavdptlqUiiWMAxJu9XCcRyWFhcpVU2OHD5G0B1w/docy0vLSASWY9Lv9TCUiW3ZXL5wlZGhUd55611WbqwxOjpMmibUqtXc/cwwcD0XU+UyNKVSiThJ6PUHzB45RJalOJbNxsoq77x9kZkDB5mYGKfeqNNqrbO+scb6+hrj4+OYpomhbGzL58tfeYqpySlKpQqNxjA6E7z99tuMT0xRrTRYXlygUPLQIkNkmyySoVheWqJaHicMmnQ6K4wMTdDptEmzjE6vR7FYwjQUhWKJdrvD8PAI/X4P0zBJs5RHHn2UNA4BQZpJbNvCMExM08Beb+dgYaSeM5ZXFiidPou50iT8n38O+b/8PPapw/TjPjEDsjTFMj2Urm0uIjWDQR+lJMvLN4iiiGLRo9/tYoVrWIYiTSyUNUw46LN6+k0mfu0zpFLAh04QRX2SOKbf7+EXywhl4rgeCJPBoIlt2oDG0B10FlAfGifJJBl50pkwiDl37hK9QUipXEEqE6ETwkGf9dVVOq02QatJrVbnzGuvc/joMapDRYr1OoViGS0UUmqiKE+GJqW1I7GNuslcbf8cR7mMkZRim+ulBpm7Oo+M1DFMA8MwMaxc71NIsSkFpYiiEEsJLMtCS5Pa0Ahj4xPcuLHOc89+k/tOnkRJhWFYvP7qW6BSBBm+W0Bg5ot3aVAqFzg4O43r2qyuLJJmmsLkFPQGiM88RfzgMZxqFQTYtmJp7jqTR58kUkVSq0Rp+BDW+AnSJyd5uXiRoV/+Jl+ZP0214FGqjRBuZlle3VigOjREGOWxoKVShVptiFa3S5ppHMcm7ge89fY7jE1OYdommY5JkoAkSTBtmzhJGG40KBRsDMMmGMS89eZZpqamAUiTBMu0iMKIpcUViqUStu2yttpidW2VWq26ubDP+3J5eQXbtgH49l98h8npfUilODA1hWlK/IJPikST8bWvP8NP/pefzD0RkpSNtQ2CfoAUAr/goJRFo1HH9R36gz6T01MsLc7R7UZ8+Utf5JFHHqZYKjB3dZFSuYTn2QiR0W53UEpw4MA0r7zwClEQUypXeOa55xgemWJldZ2Zffu4cX2OY6ceYKPZ5vNf/BKn7n+QhfmrHDh4iNdefZXxkWE818aII0rL63i/8DO8ePpFDhyavQMP3T5r3Tk37eZRtNfctQUS99ok/iBz7HsyfzvvYNt52xnFO3JF5F/edl9brbprbOsuQG2v9u2WwyJ/s3us7tbm+W39pneW+97ro51t3SumdGfddzu+8/0HJRC22/bfdMu1+5aywPuz98PW5v2f3cykn5+qt73ugdm/iXYPuN6z78H07btfOxSTdg76WmvU0H6MyRNIp7Brie+1M/Z+GNntZd2MpdgBXHeLdd05uG8/773q2TmwC5GzrO81Se/marNb2UJDKkGfvUzyD/85/SfvQ42Mcvr0K6ysLDE+MYpf8Flfa9FutigUC4yOjOB5LqVSkfn5ZZIkZHh4CMgXhPv2T+N6DoOgz+TUFEoZ9Ds9RkbqlMpFut0QxzWB3HXLNCz8QhHHdSgWC3i+i+eZZJsudkmc5EyOUsRhRK1aQxoghYESFo5v0Ot3eOTRh8gEOLZNu9nCK/gYhqJSrtIftPjm89/m0OwhgqDPb/3b3+HIkUOkaYTruWgNQc/g8qVrfOjJhxgZK/Ovf/23OXnyOINBl26nx8WL5xmqVwmjMNfjQ5NpQGiUMlHKIokz6rU6lpXHZFaqVYZGhrlw7hKNRgXHtQiCCENAwbfwChUc26RcLiIElCoVLFuhlMXZd85SKhdxPUmh4FKtFimVi3h+rmsaxzFxnPLFL36BmZlpzJsZJ2UOCApFsjTC8zwsy8RxPBbml6jWSriei5RQLhcolwvU60P0+n2e+spTRGHMysoKjz7+GJAnCWp3cpfhx594BEMZnD17HjKFbZvEUYbn2Xiey8bGev4sSIMw7lNr1MkyiWHkjKDreaRphuvmgN92bNIspdlsYtvWpgau5swrL3NjaYV6YwSEZmlhhW53g3qcAzJcC/OFN3HevEjwE48T/T+/iJ4ZpVwqEA0iXNtBiQxlGiwuLPMLP/+P+MSPfx8INrUxHQoFH8cycQzJ6kaLcilgEHUxbEUS9ig88zIjn32WdGac7Oh4DnilxCuWMG0XNLTbuRu2zgT93gKVYp35a+eoVCqUqyUQFTKhWV9v4TgWcRIzNjpJuVrN3YWzlPb6Ko5psra6gkTgeT5+ucTMoVlGxyeQIkGZNhkKoQVCK0zlorWBkNy2MNvyvFBK5aBHb7JYmwvXNEkRUiClIAyDXA7KUChDbgICBVqS656mCKE2x5Fcg1QjiZJ4E4hbVGoNxibGCLptKtUycRSzsrxOqVig016n1qijMBkMOjiuj9Qax5Y0W10KnssgiHE8j3SoigF4n/lz4tfepf/YMQxTUOgsIVvzWJ5LwZK8+9praF9Q9koUytO8reZ57IUui4+N01DDWLaHkg62YyEyB9MyGAz6dHv9zUReEqEUSiq63Q77Zg6CFIT9HmmaYBoWpmkRJjGmZSN1Sjho4jpF3nr7VY4dP4xhauwbqwRLq6SeC1rT7XRxXIdOp0MSZ0zt20en3WRjYwO/WEIqKBSKDAYBShpM75vEtkw2mk0swyZJY9aba8RxRtH3GBsfwzQU7WYLnaa8ePolTt53H67v0uv2OPvOebIsIUk1luPjOg61egWF5NT9J2m1W1i2w0unX+bEyZMoQ9Hr92k1O0gpKBZ9TGVjWRaOayMNiSDixH1HuHz5HKOjFa5cW+Q733mR7/+B76dQ8giDiMnJSXrdDqOjo8xdu8ZEYwh77gbvPnGExaVFjp08QbarBtvtjOaWm+v27MN7MZBbtuW1tFW6Uuq2NcB7heeIHJndARD3YgvljjbdFVju+LxbK7bA4873d4sb3et+dktwBVus4Z3gayt++PasvnJHXe+v7t2O7VyP3K2P0zS9OWbtXKdsd6Pe6vs0TXfd6Ni6r93UG7bXvddztXPNt1tbd7tvIXJW+tbPnrPYOcmSfxZ8MLB8z/562D3ges++B9vatdp6vzvjettgZPv5633uGH4vdjfguvO874Vp3XNH+C9V2u4WS9Aiovl3/wcCT2Hdd5JOD6SRYUjJ8HAdraFUqmF7Nqtra3zrm89z9PAhwijiW39xmuHhWp7ECE2/32NkdJRMZximQZblMiYbq6uMjg/lUjuWS5b1mLs2z/joBFGSYJoWcRzjeg6RToGINI5ZWlznpZfPcPLEcXzXIwpjLMclnxdMfvd3/j1HjpwiDBOkNOkN2qytrOSbGZbFyEid1bU1SmWP48dPEEQxjufw+BMfJtUJpUqFG8sXWZhbJiPE8y16vQFKeDz+2IeAGM93GPRCjh87TLu1BjpleWUFy3JIUo1QKVkmiOOUpYUbvPH6G9SqJQqFAlIZJEnCS989w6FD+wnCAbbl4dqKQT/C8YusrS/ienk8p7JN0iTCdXzq9SFee+0MBw4epj+IMQyPZ5/7Fodm9yM2GWWlDGYPziCUIEsSrs/P4/k+cZK70abhANu2iJIELSUjQ3Vcz0IpSRCGxHHE3NxVSsUqoDh+7Bi2o5iZ2YwhNXItVtu22L9vBsvJs8NWKnXKVYdBsA5phOG5CCXJdIoWGYZrYto+qbaIkhCdJsRxjO04RFEMImNh4UbeTsukUCjkEkb9PhowhKReH0Ij8TyXT3/6s5w8eZDKeoDq9Im/dQbxEx9m/R//1/iffBLPq2IkmrC/Rnu9w6V3L5GGEYVaiUKhzE/91E/R7l+mWKhjWTl7u7GxThIlXLl0DscvYRcmMew68SsXqfyLP4BL14kfOUJUc4jCDuXqEAho9wOEYdNrbVAqFFhduYHvFMmSFS69dR7PySgPzxIkEVla5Nvf+TrLSy0OHJzO9YIzmJ+/jmVI2htruJbB/PXrGIZJpVIl0JL6yBDleoU0S0mDAMv2cvc9ndLtr2BZm2Bj28I018lUSJXrDRuGwlD5RkC6mSlTSoWUgiDInwsw8gV6mhLGIYayQSg0SR63Sa55qkmR0kZrME2BbQnOvnuFSq1GqWgRDbqsb6xSLJUYGRlleXmdw0dmWFleIks1jgWvnXmbou/z1a98GWm4DDUanH33EoalsCyLpFZGTI3BG+cpPPNd9NFp4qvPE67N0azPMEgSJvcfpqTKXLk6z/iBGd659nWcx8bZ/wfnufbYJEZ/gONYDHprxIMQy/aRRr5BZtl2/oymGq1TLM8jAwb9AUXXQRgmSZRhGA6GmWsDC53Q7a4jMJianuX6/BKe5+PMrWLFGXJimDNnznDs2GGkAs91EFIyCCOioM/4+DhhkqJ1tMl+y9yVPu6jZJ7Ze35xg3qjguMo1lfy50GguXblCsuLS0zN7Gd29ghBEiFMQb/d4/Klaxw6fIC5+WUcx8PzCywvLlCvleh02vh+EWm4lAoOhmlw7twFRkcnefn0Kxw7dpQXvvMCpuNw8dIFXMdmuF6hUakjpEljeAzLcQl6XR564CEW568zMT6EX6iSpglLC/MUSlUmpqZxvv0yRneA+w/+HotLi8weOXwTxN1ut8DBlpzLXrGeN6/YhU3LsgwhJUrlut/bz5NSwgeYa+/G/m3Zbrkkdt2M3tYGrfVtXlG7gd+d5W3d393WL9vdcvdkifdgTXdz0c2yHRI94vay7sZ87wVcd7un7TGv75WEajubvPV5p37uzt9h57Gdbdt6Vnb2wV738v4yVu/+nN18LrR8z9/znv31s3vA9Z59QJPkg0G2GUOwNYDcvpt2c8frLhPc3Ww35vGD2vYytoCr+C++/7YBeq/6PohtZ0UFt14f6NodO8ywNRnlbTOEJPx3f4r93CtYP/Yxuv2I3/u9T/HYYw+wb9/UzeyTnfYa3/7GN/F9n6MnT1AoVzCV5uSpUzz7/Lc5deo4rXabMMxZQGUY6FQyd/UajiV498IFpqYOkKQZyIygH1KtVtA6Ieiso0wTaVpIAVE/3NRntKlWK4yNjNJrtXBcl0woLMei3+1DFvHA/UcwLQsloLm+SrlcpVKvMYgCKpUaWggc00BoQbO9gYmm2WzSHwT82Ree4uR9h2mU6tQaVfyiRaFQ5Y/+w+f40JMPImVEGJpEScYbb11gZmY/jmfjeEWKxTrKMjFtC8NwUaQgDZbXWjRqFWr1MkqZ+WIr1Qw1qtgmtFsbFL0iyjKwXZ9Wq4lfmSRLUhbnrtCoVlCGBVqgDMnISJ1UpznQDHqMDQ9jOzamqVlZXsSzTeaXFiiVG/RaLcYmxhl0W4gspTcIMQ0bublYnp+bw3cdoiRhY3WVsNfD9UuMjE2gdUQYhRimIggDLNvJWbdUI6QgjkMcv0gcxgidMnftPL1uzMT4flyvxMLCHKVCGSktgkGIY/ukUUS/vY4lBf0gIU0ElmmipEZKE9t0Ic1wbYNWq40y8iy2hjQZBAF+yaNccui8e4WPjozjnz6HaVukjRLJb/8T9MefxK026LRCDEOhDTDdCr0oxC54VIZGyHSEbXtkOkBrQXd5EacwBsrGMgxMv0IWhMy/c4Yzz3+Hky+ex//CN9HH95M9eIRelmBZNnNzCzhOBaVSXMdFiTzxkeX6VEoe3ZXX6Xf6TM4eoVCfJtECJV2SeMDa6iqXLlzh2LEjSEORZCnlYoGzb73LUH2IJEvotpo4toXletQbwyihSOME08gw3QL9oMfz33iRg7MHcdzCTeZI6xQpFFkKpmGgswQQSGmSppsDhs6zjS8v3qBUKoLIM1UncQqkSJWPsZZlkmV6c4xISZIQIRWZ1igp0UIgEUggjgJGRscwVe6OXB0aRwpBp7VBohMcyyaKI8rlClEUYjgulUady5fmOP/uFX7wb32MVrvN+PgImQa/4GIYAun5iNlJiFPsP/0GarlLNlXAO/YxDCG4sXAFv1ahUhti4focDz/6Y4iDLpWPfhL/n/0O6YOHIAbbLuH47s1n13V8ut0BtqEROkFKA7KMlRuLOLaFMhzCKEaZAk3KlqyYFgrDKmJYNnEc0KiW2VhfpRKkZFqTDJWZmpoEBUmaIaQiiCJcu0qU9rBtk24rwPV94iggDAKCwQDL9RFS0263een0C+zbN8lgEFBvDGOaNt1ej6HhBo7n0G03KXkW3W4XKSxs02B8YpRKpUoW9alXfbrdDWqNYbqDDuVylUG/TzTo8sU/exopFRcvXKBWrTC5b5oLFy/x0MOP8u477/ChJx9nfmGe69eX0EKydGOR0eFhzr57gf0zs6Akr73+BjMHD2FIg5fPvM6lS1d44MFThGGEe20RFYbM/+RHqZTK+I6HcuxdsOud8ifvBVR3fr6ZZAnItmuCwmaeh1tgZjujt1fZggyBzjeE0DexyFYdO0HXzXjVHeuQnXOsEOI2WLPTtVlKiSCDzaQ/SqrbAPfOvtkJ/Harf3s/sxkfnMu77M4m5yxx/r8upUCzC1utZV6ezl/5f/7WKuTOpE53Yyhv3rcQN3+b7dmUd3sWdmOV7+ZCvvP87f20V2zt+wHlu9utfr51zfZXBmRkWZJr6+rdQfM9++tl94DrPfuAtjUYbrkJ3xk/AXv/40dvf5105TJqaOaD1fo9DiRbwNX45Me+p7Lu5ua089ud8S0fxLY08rbMGnQJ/tt/hv3RRxi4FoZh8eijj5Jl+qar4DPPPMPSjSWOHz/K7OFDuWuk1nTbHWwn5b7j94HIKBZ9isXS5mQk6LZbTE1PoZRicmaGfm9Ac32D1aUlxicnN9sDdiFP6CEEBEGA1hrbsQmjMI9R9B3CKF9Eo0ykzvA9jzCMsB0PbRiYlkG1VqUbbOBaZWQKQXcRZZX44uf/jOmpacqVGsISRGGIZxmcOHqQOM3o9QNMy6HdadHvBcRRQqNRw7YlEsn/91u/ySMPPsaVa9fwfZdMJ5imRBr55B8GIUJAvzfgxb94gSuXr3Hk6EEc20NKk1fPvMnUvlFsx0JJRafTxbZ9wiBmZXWZaqHIr//arxIkCQePHqW5vopQGtOQ3FhepFio8bu/+ymOHDlCqVRkfXWJKEkoVYaIEsG5s5eo12tIUmwnl/pwvBKu59FqrvHaa28wNDREo1FFGBm242O7JdxClV4vd2HNMo1GogwD28klUgwpyHSCbVkIFL12G9e1iDONYbmkac7EXp+/zoGZfWids1ee5yCFoLmxgWVb2I5Lmgo+/en/wIEDB/A8D3RGEqcUCj7dNKFUKqFEvvgMkz5DhoHzxmX0d97A3eiiTxwk/fs/iWMYyFqZ7EceR6cZSuWMrCYmSSLSNCTNIuJ4wNBQlXarg235IMCyDGrlCd48+wzlcpE4dBEKCo5H8ZvnefyFi4Rrq6QPTiKmZggGXWwlMUioFFxsB65fPodnWXSaG5imxcbKBeavvo1bnqI+sp9UOKSZSZz0GfQDVlfWODAzw6kHjm9uQBh5NtMs5rVXXoUkxUITxRHV4SFKQ6MIoQmCGNO0QILARinFcGOCKB6gRUqaJkgpiDfljbTOF7UpBgKBFBk6DUEJdJYSR7l0VJ4hKR9XTcNACEmaZiip8jJSuHpljlq1imnaCCRS5HA1y1KUIUnSFNO0yTKNkgK0JpUWru8S9Psszi3gFVxcz6Tf71MqlfF9nywT1Oo1JqfGsRyNZVn0ByFf+fIzpHFKpVLGthXz1xcpzUyRTA8jVxdxX2rx0tPfZmN6nOnJabQCQ5lYhqAZW1ybD6kcmUX+8COI//czxOM1DNMgzTS9XhcEKJXHoKdJhGGaSKUQysH1iyjLIk7zbMiGYaI33auVVJvMde41Mei0icKQ2tAwYnmDlZVV3AMTtDsbdDp9SsUyUioMQ2HamtfPnOPq5Wu4HiSDPo7tYJoub719jkLBxXNdlLA4ceIYaRrT6bR5552zVKsF0jTDsfOEZcVyiTRJWF5Zw/Fcep08Tvz5bzyPU6xQbwyRJgnxICBJJIZSDAYhnlOi1cpjWh999EGGR2pkScJXn/oqNxaX2X9gH47rMhiE7J+ZoTZUYXl5hdHRUcrFKivLS3z1q0/xkQ9/mDiKEEKQpBnT01PYtpnLAV24ihFG1H7xv+Hsq6/y2quvcN+pE2R35KX44JvNu4LNHSBICHGTTdsO9LbsbuyZ4HZQK8Tt5+5MPLSzDdst2wU43f2+boO2t8//e4D67UD6/dYjxC132tvZ1TvLvvO+7rKRIPTu3+96r7dvIGx9tz02f+vY9n7Yzrxuj1vdm22+nTDYi2F9L/vLrKvudo2UctPdOdtcf91a696Lh/3rZfeA6z37gLbFBua7kLuecZfBITzzJbL2CubBx/7jNA/umMRgE7hqjfHJj+Wfdwy8O9u8FwN718FS73Tp2Xu38P3cA+SyI0IInvuF/5VZwyU+eQjX9VCbsW9f/tJT3HffCU6/+F0unL9Aq9nk+3/go0RRBEC71eLa3AJjExN02m2SNOPLX/4qh2YP02y2qZaLGEaetGhtrYVtGTz9ta9x6tR91IZqeSIjlS+coyTDlJJ+p0mpUKTX7+G6DoLcrcy2DdobTaIw5uVXXuPQwf0sLi7hFQrYtkMQDAgGA4JBP094IySWbeJ6Pp1+wLEjh1FKMggDLNNm7tp1xsZHePfc24yNTPCZP/kz7j91P1mag4W569c5euQI3aCP6/o88eQD+J7PO++eRWtNoVDA87zcpVVZKKWwHReylMnxEUrVIiMjY5tZHDOuXrvC+Pg0SlpIYeA4Hp/73Bc4ODtLo1FD6wEPPHQ/R+87mTMAKCzTQCpJsVhBSM0DD9yH59mEUY/G8CjdbheE4A8//Uc8/PADDDWqFAoF+r0utl8AJZBC0+t2mJtbZHhoGMtRWMoiDhL+4i9OMzQ2husogl4fy/EQZNiWSTjoYygJWYppAlqQxoIwTtHEOJbFwvWFHJAU/DzDaaePzhRXr87TqI9gmxDFEZ5fQCPo9wNmZmYYHx8ljkMswyCMImzXRqoUkQxQpGQXl7Cefw39+kU6x6Z49kSDaz/zIxz8uZ8mGS2iWy2i4Qbi0D56nQ3iNMF2DHKKLOPG0hrj45N4XoFWqwNoLNNDkMvptNtNxupV4jijVmuQPfcS/q98muL8DeL7Z7EOVbk2d5lqfYhksIplZCwsznFt7gpZFLCxtMDqjeuUCxZxr023dZWJiXGc6gxCmbTbXTwnd8+0LJtiwUMqDcoE8sRgrY01DJ1QLuZSP5apqI8OY/o+GhNNhmU7m1mAycGj1DiOjzIzDMNGbZaXM6ewttLmN37jN3nrjdd56MEHSNIYyzLQSOIoxrLsnNkR+Q6RFII0ywBxE0zHUYCSinanTblcQAiDMBpgmpvak1mGUDp3jxcmSuYL4067zfXrN6hUy5QrZYqFEutra5RKZSrVOmGQsry8wNlzl5neP0mx5CGlwrV9lGHgWD6GYfGFz3+B+0+dpFKqkKYppufQHV5Ca5heyjB/6EncWolUZGSpZmNtmYnxEv8/e+8Zo9l13nn+zjk33/vmylVd1dW5m90km1GigiVb1siWZXvHlsfjcRobM192sAvvAgsMdgYDLHYWO8Bix+uxZw3L8tiWFU0FKlGixCAGkRRzkJpk52p2deWqN9989sOt6q6urg6UPdpduB/got664dxzbjrP/wn/px7sIcpn8AZ3kv/sPaz8hz8nXl7FGx7B8lzSNMa2XdqdLr1OjF8q0+snKJmByJBCY5lGkaOGKrz/SmCbNqurK0VufZLgOB62rVhZWabaL4wu2VAVy7Twg/K6oU+Q68LVPTY2zkCjgZKSgcFhoiRazxOdZGV5Gcs0SeOMflRc4zguyt50ux2yTOJ6HsvL8/iVGkkc47ou3/jGN3nXvXdz4cJ5xifGCMpVVpaXcR2XKEzxSyXWmstUKxVefuk1jt5xC6at1pm+NVLm3HvvXdQbFfxSiZdeegXDsMi1plqr88wzz5DFCZ5r0WjUGRkeJstSDKnIdMbg4CDN5irdXocnn3iSwdUuZWkw85F7OXr0Dk7NzHDo9tsKZtzLvIbXD4W92lx1rfWbvWqbt28GrJvDU+V6HdViLtVbvHHbh3du9tptB8TWf9zwuKAAzRe9s/qSbrG5VA1sn8u6dazbLRevi7y039b6uZv1iKsB1+3A30bE1tb1V+vfdue6vK1LXtirtbddO1vHuvW4zefYvP5qOth2RoHNrM7X8ihfKy9Wa30xJxZROARynYHYKDl0s7zO/1fkJnC9Ke9Qtlqh3plcZBX+CQNXedt+eN8dyHoFuLIY+t9HaIjOr9/O9bZf6nfx99ixY6RpyqGvPEM2PISul2g1W5imSZ7lHDxwhDRNAMmOHZO85753o0xBHEc4lk2/32Ot3eft80s4jmRgYITDtxyh348Jw5io38YPXDrdLn5QZW52hoP7D2A6BnEWYRk2QgheePEFTNPjew9/h91Tk5w+dYqh0RHiOEKpdS8PkKcZ5JK9e/aTpREaCEplcjSz584xNDCAbRr0ezmLy7O4vku7l2NZAstQWJZBmiXE/ZTV1SaGKdm5e5Kwl3Dg0K0019aI4z6+X2J0dLRQ9G2HZrtFnDSx1/PIRkfGKJcrbASatVtdDMNibW0Nz7ZI4h7D44P0uymmZSJkjialXPXp9du4jkmWhyjponNmB6jtAAAgAElEQVRNuVyUk1GWj84tuq0+cxfmCEp+4U2TFn/1V5/nlkNHeOKJp5ianAbDwHVtHMvhjqNHcTwLKQStThvfs8EwQEKnvUq5VGbvnoMYhgGk5DGkUcrJ02eYmJrC9yws00AZFpIU8ow8S2m3mpimRafbJAwjPvuZ+1lud9m/fwpDCGzTwq9UkKog8nE9RZomDAzUCMM23XYb0zTRSHphSLVSwnUd0iwmTSOifp9ypUqaJaTdZcxTs/DgC8gwwfzv/hnqP/wPWL/wQRq3387ttx0hSUKOvf4SY/fdRnzgABKNIcDxXVqtFnEc0e/3yFMTQ1mYpoNp2CA0QVBhZmaGoOTy1onX2WkNkX/9aZw//RL2S28Qj5c538gJ84gk6VOt14n7HeZmziMw6PUzDh+5E786zLlz51lpNonSlMbQIKWaD24DwyyTZRmOVeQoa1Hksn71a1/i4ME9PPzI08yen8c0JN1uk7zfZX5+ibdOnGR8xyhDoyNgGihMpNJFfuW6tiMExElIHCckaRetrQK4akGatTGMgnn54MGD3HJgH2HYp1yrEaUpgoIV+PjxEwR+iTRL0XlBn6PWyZr0hnKmMwTgey6Li/P4QYkkDTEMSNMMQynSLMEwHcAAcnSeYRoGUS+lVC2hhSZPM3rtLkvLyyhlcf78PJWyx9iOnRiWApHiWAFhPyTNMgxlMD83z0d//qMsLMzT6XRYXV2hUq2QcYGsYeBEg/iP/YDOew5hBT46h8CzWbrwChV3mlScpR97WNUKy+8/QOP0AvLh58h+6acwmh2kUKRJRqniEcYdXM9GkpDEfYTIi/DnNGNtrYXnBTz2vUcxlEHgB/S6PVprTb781W9w4MCuIuKjXbBet1wL23IJo5iVlRV836XTaZMmkiyLsC0TKWwSobEsg+WlJQLPIwxThNCsra5Qb9Tp9joFJ0CW43sl0gReeulFpneN02z3CTwPKQS33HIYSFFKXmRLtm2TV155lTST2I5JvV5mfu4C42OTdHorjI+NY1kOSZyhM8ns+XlqtQblWplz52YBxeTUBGfPznLLoUMMDzVQIqPZalOtVHjjjTcYHhkiTmIs2yEo+ZTLAbt27WFguQO9Hv3f+xVM0+HNt04yuWcvhtoKKK5eKu7HndM2z2tbAeXmaK3NYcOazYQ++ZY+3LhHbzOQFevGoGvN91cAui0eV7gUOrsVCG0HBq8FlDbGuuFxvZ7X8lrA9erj2Xb1NQHk1vFsvVdX5fS4zhi3hlVf65irAcvttl8vlP1G2y/WX/5biKLkUJ5nF4mc/j50xZvyd5ObwPWmvEPR5HkK4sq6ZTciVweuf/cSNBsf2s1FyS9aIqslZK182b4b+/y4H6KtOa1brYybf1/L+1qsu5TTKgSkWmOnCZ/78//EvQencf7wi3TvOggCojgk7EdYpkurs8rZU2c5f/YEO3eOYTsuaRaitcSwHXKtmZ6eIk377JyeIsszms0VLFOBjqkNDCKVic6h1VplaGiCXGts20Yg6LVb2LaF65eoVOrs2X8Qw3GpDw8ipMAxPeYuzGM6Fm8cO43nl6g3qpiWJI5DglKJufklHMcniTOOnzxLY6CGzmLCMOXzn/sSgwPDjDQanDx1mna3R7XaIOqu4fsermdgygrf/Na3GBkewDRMkjhDSkWpUiKMQz73qfsZHhzm2I+OMzQ4QqMxyMMPP8KefbvQpLRW16hUfP72/i9yx+23ooXA9QOkNFG2jRI5vU4Hzy/hOf56nkvOD559gwMH9lCplHj+hZeoVXcwf2GWetVCZyHlagnQuK6LJufobbcUXjijhuHkNFeXENLAtm1WVxYplSoYhoFlK8JeB532SPodpFYIAZbjIE0TYZgoU9JqL3Pwln2YpiKNU+IsQ63nAQspWVhawrZtLK9UEGFJgz379rFr5xR5DtIw8EoltNZ0W22EodCZ4MSJk5RLPoaUJHlOuVzjU5/6NLcdOQIUYcVSaizbwHJcsnYH/fyPsJ48Bl4Z/Qe/S/pvfpOFgSqKDN9SdMM+ppKEtBgcPMTa2tsszR+j1qjiWD5v/vD7VEd3UnFsAs+nXqmTJN0ijzrKCGo1RJ7hmglrTz/N8Nefw/vs46iVFfoTNvK2SVYJGR4ZR0gbhInWBlpIqiO7qDZGKdcHyZRCCptyYDM84DM6VCLNQqoDexHCpd1tYqwz8yrTBqlJ85Rd07uJI03ST1hbW+HYD19lcmyUUrmOkIInn/0BP/PhD4OQpKnGMCWIHJ1vKJQpCIUUCqkEjuNhGIosD0mSGMPwSbMiH9p2LCzHJCgFBRjVmiTskqeCZ59+hsGhCrVaBaELr2Ec93AcCyVyhBRoYZJrhSFtTp08xdj4KLblonOJUgY5IIQq6keLHJ3nPP3084yOjVOpBeRZWjCemwa1coUkjpidncWwbfbs3YUSogjxtTzSNEZKjdCaJA0ZGq6xsDBHFMU8/eyz3Hbb7TieS6LPE/b6ZNV9OM0u7iMvkv/0Xai0jTYC7NIEET2aTY3nGwhhUm4MoT78ftKREYz//c9hqAFSFIRhpokixzRM+lGCbZdAmBimIs0lnutiKknZ85mcmgQlMS0Dz/E4evQODMNiaXmFelQQBVmTDdIsZ3WpS6fdJfAClhfXKJXKWKbi/LnzLC4s8sIPXmLv7l202h1qtTqVksubb52kMTCMEBme66GUTRKn9NqrvPzSa9TrdRoDDV5//nVcr45lQx7nLK80efKpH7B7716EgoUL8+RRwsGD+1leWSNPQnQe45UD4jDl/PlFkCGGIZmfn2fv3j088NUH2D29E8jYt3938X4qQZpEQFG2Kk5i/KDEyOgIK6tNhoZHmT03w9yFJcZHJ3jrzbcYavWQ/ZD8X36cXBtcmF9geKiK47pbANaV5DpXk825pNee2y79vtE66ZcDzsI4pJRBluUIcWme3AAWm0M7hZBXRFFd9GRu9OmibpCv582uH78eJrphmL+sjfWSVXnher0qUN1u/t88zsKzpy958sTlgPV6uoLOxZZc1svvxcW2BZfyXzcWsT1D77Xu2+bc3a3Ldvdxsw62HVDd7Fnf7hpudTxcTZfaeszF3Opt9tlqYNjO8FD0vbheG971jd+FCSMrFp0hxM182P835SZwvSnvWLTO2a4O2fWP06SnngOu73G9npX3Rva5GgnAZivvxv/b5clcTzbOfL1jrmdd3Ny3bJ3Momza/Mn/9Yf83r/45yw88zLOGxdQB3fz6suv06jXsS2XXi/ks5/5DD/3cz9HpWwhpMY0S9iWxeOPP8HefbsQKiNLodFoECcRa6t97r//bzl69Ai2bWOa9sWcjlKphDZM0iznL//LX3H6xBnuuPMuWu0OX7r/K9xz9+3Mzb6NbSrUumJx7Ec/5NGHH+Oeu+9jcKBEuVQmTGJQRaiNZUqUTiDt4bgVHn74IcJ+RFD1GRkd4Y6jtyGE5stf+QZ79uzGcQx830IoSblaI4wEyjJpVKvUqkP8zac+y9T4CE898SQ7dkzx3e8+xsc//iuUKwF79uzBME20yJkYn6C12kQCnu+TZZrDRw4DGd1OizgMyZPCK5UkGa7r4Tr2Re9pkkaUS1XOnT+HUoKJ0Qm+8e0vcuTI7Tz83cc5dGgvmU4BhW37SCHpd1skaYaycpRpIrKMcqlCq7lGniT4paCoZZvmpHGOZRalUnw/4OSpk5RKlUKJylMMoTBMA3LoNLuEUUSlUlnPczRIkoxS4FOQdtgIqYnimCDwsUyJ6ziXch7JCPs9Sp5LpqFRr5NnGUKA6ztkuebgoQNFuQ0lOfbGWzSkQXbsNPqpV1EvvYW68yD5//TPaP/ux4gmBimVPRr+IOfmjzPbXKZW20/aPEWWWeisz0AkqVfGkX6JXislavepDo/zo1eeZaDaII5TwnCVduttaiVBFjskS68j//OXGfrWm1jlgOiWHWQ7hzHrA2CYKAH9bgeluwhipEjJ0j4i60CyQr81T7+1RBrNAgW7b5L1COo7iXMHZToEno/EJk0ESkqkKsJxDWkggFdefIX3vu+9BK6J79loJGdnzvCxX/5FlGkXOZdSE/Y7GIaLRqN1uq48F17tIk9NkGc5hmEihCQK4dFHHmZsbAhngyVYreeyC4Vhmhw/eZxz585x5913giiYdV3PxXIcTEMRRhGanCy2+D//8P/gjrsOM7FjmDwv/EJCiHUynI2c2oJITwrJjslJlGI933U9lFIIvvf495HkjA8PorOYWmMQUylmzpzCNhSm5a7n5hrMzy1QqzdI05TBgQGk4TA6NooiI0pminzaZAhjegdcWML49tOsvvcIrX6HamAzN3uO4aEGSRizMPsGvV6PwLGRO8o4/+QjpA89DU+/hvytX8RYWCRNQ6QyyDJdANYsIYpiLLNg2z596iSNwQZvvPEGQyMjKEMwP3d2/d2xMGwXJ8rANJmLe7huCVNB4JdA57Say+S5yQNf/horyyvceedRDNPC83zKZX8dAAiGB0f40he/zK1Hj7C0vEIUJjz37PPsPbCHiakpRsZHyXTO8NgAzbVllhfmCHsJ9YE6QbmEECZpGpFlGTumd7LWbBL3YyzL5vEnn8RzPBzbZXh4GNOUzM+tMjo6jlCCaqOKbQc0BurMz52n3e5Qq/lF1ERjiIWFFeKwyL/L85zBwUG+/KWvMT4ySpqmaJkwtzDHjl6G6Idkv/VxOq0+p06dZWrnFF7gXBZmejmJzeWyuUwLXM6A+07m6qsBlmsde/nfy4HtlcbnK9u9evrO9kBuuzFl+eU5uVtla77m9sBoo90rgfrm/bdr59L2S57fzbrLxXFcppttua5CX+O6bX+ftuvf5tJe2+Wpbr7um8OMN4/jajnAm8+7XRrX5u1XYzHe+L3BjL3d/dg6ro22NgPgq8klz3Nh5CiiAm6GEv+k5CZwvSnvSDZyTn4c4ArcMHC94oO73R43MFluSPZXXyV/+U3k7Qeu2OdGwOq24S7vkHzp2vtdnkPy53/8R/zTX/tNOpHCeOoN3CRFDNRoNGooJVhcWOSxRx7jgx98P6Wyjc4k8xdWqDWq9MMelUoVy7bQOsd1fUBgWgaVco0jRw4Shh3SBKRSmKZRhBgaBkJrTFUQh/zMh34WoUxs22Lfvn30+j2GhoeRSvG1r32d0ZExJneMMb1zAi9waXc7KMMmzyI6nWX8oEKr3cb1fR5/4ikGhwY5ettBytUalUYFQyna7SbNtRXufde7qFQDLEPSbq5RrQwShhECC9PKaK62OHNmhn37d+HXqtx5z93YloHQGSdOHefs2bNUq1Wef/55hoYHEYCpMkyVc+78AoNDw8RpiDBMTNPGcVzmLyzgBy7KMhFS0GuvgpSYho/WKUmSMjBQxvNsbNfmwP5DeJ7Drl2TKCmwHQclHebn5tAk2H6AYwfYVoajyhiWTZxqzr89x9DQMP2wT5omRV1Ur8xXvvotjtx2B3GWUq2UaTWblAKfleVFPLeCsAw63T6msnnqqSfYt28vcZIgkbTaraIskethmC5C5BimQkpJGhUlVfphl26nRRJGOL5Lr9cjjhKgCDONoghlWUXIbjdGnziHfOU4A3NriGNnUHsmMH77F9D//l/Bh+4iGSmIthwn4LnnfoDO1wgqw4wN7cDJF4njPuXGAVSgsf/vbyBf+CHzk2W8YJixwSqxyBkfcTClQdq/wMr8CdL2Av3VReTsPJU/fBgZZrSPjiEnJ0mVjVceRJgBOZp+exUjT0DZIG2U7YNyQSvCfgfLMtaZshWJMCkFVbJIYPlVhHKLWshZTq8bcf7tCwwMVsnSBKFhYWGBLM2QZCRJgmWavP7Ka7zx5ikmp3YwOrEDYShAkCc5UpikmSpIj4ReL0dTsJwiNnKuJJ1OB9ty+N6j3+Ouu45SrZWQwgStUEojlSDPJVmWMjDY4MDBgyAkhixYdQUCkUs0GqEsTKWIwoT3vPfdGIZJlhtEUR/HcUAXLK0aiWlYsO6pAo1YB9harxPlZBlSCMqlElG/g79ecqZcqTI7N88DX3uQO+95N0uLFyhVKvR6EXGUUApKPPLIw0xNTRL2e4yODHPm7Flq5X0YepwnnnyK8YlJ/vqRhzhqV5h/8Eka/+RjLK0s4AVlHLeEafvE8SrVxgSWGxBHa+jAhw/dhyyX0P/2j+nvmSTu95DKxLadItdQgpIWC/NzeK5LUPJJ85SJsRGkcshz8F2X2blFqtUqppQkJY+oVNRJTrOcOIu4MLfIpz/7WfYf3EMSZziWTbUSUG+UqNarnD51Btv28DyPJEswlGBwoIpXquC6Lp3mKvv2TmOYJq3mGp1uh2q1jiElpDnPvfACM+dXkEC312bn9DQyTgjDsPi+KIPmapPltSaNxgBjI8OAwLIsWq01dGZRrQVEcczA0BCL82ucOnWcXbumiMOIRqOBlKogwgMef/Ix7rnnLtbWmniuh+s4WIagWi1RqjWYmppibXkFp9mj+3u/gG3ZnH7rDZ5+7CHuft99WwDkNUiStgEQ/7Vl8/x6PdB3abk2mNlyhiva2jjvlX3ZDvhe3RO4uY3NNVGLg66tc2xt7zJwyOVG9ivGdR3gunmMN3pPNwwFVyPX2tpXKMDtNUm3tlm/Yby/0T5erY0N2QyWr9eHree87vMtNnm2hWZrDuxP4v34hyo3getNeUeiSa6gZL8Rj+KGXB24bg7LuP4HaTu5FgjN/ujTMDOH+qUPXjV3ZNs2L4YDC8J+v/DSCHlxOthqEX2nfduYEAwzQ2oDFcccf+lppg/dhzQs1pb7dP/0M5SV4oFnvs+ePftxRYIQBgdvuQXf1WBY2K4DElzHRgMjwyPYloMhbTrdNlkS0Wx28K0KS8tniHqaC+cXGBodoNvvYFkmSZIThxmtZgvbNnEdC6UgS0JMx+bCbJNXX/sRUzsn2btvD65vk6YRpVJAP04I/DJpnPLiD55jemIHwnGx3QAMwdSuHXh2QL/XpVKvI1WGzk08r4oyFaYqSngoYdNc7eKXS7RWV3nyqe8zOr4b0wDbsRgbGWNlaZXXXnmRnbsmqNXrpCEcOlTk5U5N78RSBq1WE9P2aHciagNVpDSQErI8pdnsYRgBpm3SXutQLpXptnv4QYUkjmm1LuCYNhV/kH7Uw/UqaAmmFmS5JteaLE/p9PosL/b57ne+xaED+8hlCqQFezEJ8/OLrK2t8eyzLzAyNki55pHnGa7tc/LUaW4/eqQgdfEdDMPEdT2yPMO2HbrtRRAWlilJ0za79xxkbW2NWrXKWmuVgYFhut0QP/DIkqwIccsiDJGDadDvtUnCPr7n0AlDfL8CQuB7dlEvthfizK6gXjsJj/4AfWIGPTkMH76X/odvQ/2vf4D8R7fTGyyYcjvdLkv9OcbKd3LmxFcI0gp7997JN776ZXZMDnPs1NuE589i79hDkju433uaOO3Tu71CMDTEbKvPiJfxxhNfJum+SWe5TeBqgpKNPLPCyB8/A4emyQ7uRCsH0y1hOU4B2IQm7LQwiEl1RI86QXUY0yljOgEYLsKuYvpD5EaJTAS4XgMhUvJMoA2XLMkxDIM8TQn7XcYmhonjGC0Vmc5J44io18d1TJIox5AujYERzr59hvf81PtRhipKzeRF/t2rr73GN77+EAdvObIevh0XpVvWwxc3WIRN00TrjD279uK61jpTcBFy1m4XOZ2GIdHrdS8N0wIEpsiBorarIEMaDmjoRz0M2ySJTRDwiT/7BAf2TuP7HkmSIJWgqO96KVdQkJMDWhTkTkIUXmYpDdI8IQt7mEqRJRotNCiDo3fcSuDZeG4AmcZUCtNS9PpdavUB3joxgyFMuv02EzvGMSyHtaUVDh0+RBilHDh4hGSgxMTMAsax0/gf/Qi27RBFfUzDwfGL3HB0jjLLGIYCJByYRn/oXZh//XXMSkBuGkjLKcIjcwV5TqvTplYuE/dDDNsizwUrK4u8fe4MQalMrV4jjvvkueBr33iIw4f2gvLxXB/T8Xn+hee45647EFoytmOY8bEpXnzxVZaWVtm1a4qHH36EW287iBAJYT9EGpo4SdEyL3LoPZuV5Rn6ocHE+Ciu5XDm7BymsBBWgGN7vO++uyk1KgwNDqMzTSqKcF6dgTJyuv2QPXunGRocJIpTPv2ZL7JjYpihoTE8v8paa548Tnns0ceI+n3uvusO0jimWq7z6BNP8uJLL7N3334GBgeZGh8hzTOkaZBLePb7z9Lt9Wg2W0xM7iDsR2jTxLuwiPzNjyAcl+GJYb7w6U/wsY//KsqxybMMI5cgNwh9LjGpbrDGSrnh7WR9nxtXzDfPfVvDSLfbbzuP2qVcy2KRsjAkFYw6xZLll4e1bhx3NU+fXp/gpSqMQzrXW7x88mKoKBThxJeuz+X9l5v1AK3XayoX+xdYehPIuUYI73ag6TL9YR0wbURKbYQcF0TkW0Kkt9yzzcD7eqBw474XvAuXeyKvFcq79X5dTbYD/3ClF3W7Z2LrfbxaDd4b8Z5u7dO1vLPXvmb5lmXjPbnyWbkpfze5CVxvyjsSTQb8eMASIF86g7B9jInD19zvx7FWXQuA5g88CkJsC1yv2eb6362W3+3Ou3X9drXctsrGxzdLNaYwefyRx9mzZx/SLmqAfv+JJzn4nWdQ+3cxvHuaMOzTXGqy1l7FD2zKpSrKNHBsG98v0Wq38ZyAxcUFPM+m3Wlh2TbonPrAADFQqpcp1eoMjo6gBPieh1IKJU3CfpdarcanP/0Z7r3nXShT0e20cT2fSrnM1OQOsjTlLz75F9xx5x1IBFmmSVIwHYVSitHRUdK88PTGYUzUj/GdgI2Qml7Yx7UDXnrhVSzLolx2UYZJluV0ux16/R62bVEKAoZHxphbWCDqd7lwYZ5KucLzz73A8MgQo6NDmGYRwjg8OkAU9VlcXMAyLYKgzPnz54mikJHhUZQ0yNKMXqeN1Abnz71NlsUMDw9y//1/y+2330ar1cT1bdCFpyzLu7iuS5Ik5DohzyLiNKYf9ul02owMD/Laqz/CciWDwwOY0sNzS5imy+LyGs888zT33vsudu/aR32gghIFQDEMRb3u49oW5VKFudkF2p02rmuDELQ7HaIwJCjVuDA3T5ommKbDwMAAy8tLWJbFAw98lUO3HKLbbfPCiy8yOjZCp9suShdIA8t0sRyPNBMEZR+tBbZlImab8OxryCdfBgvS99+B8T/+Dt6/+xfkP3sE487D2MNVQmnjqZTVlWXKpQFM12a4MkbOIkMD+ynVS6R5yv5D+zBMi+HBCSoDgxgixlAa89ljtFtduOcwpjYJzB5vvfpdPC8kM+pIp4ZyPLqxpP74PEZQJT84jVAGpmVfzCfbUJzD7mrxLhkeQWUAwzA21RuUWJa9Hl3gYLkupiHotxcxhcAuVdat/wWBmuO5F0s86CSj02wT9fs4jk2v1yPPNatry7z0ynP82q//OlJKojgGMoQUKGnQqA8hheD8hVkmJsbJ04gsLwiWtC7qscZJiF4nRhJKkmYx3W4b23UQQuE4l4dpCjRkCUKnICRRpjFNs9B+dKFgK1V4Y7MkJwpb3HJoP5VyGdM0kFKR6xxEQQi08S0MwxDTLEKWN/xVYp30xjQdJLowVjk2lmMzODyKlIKlxUWyHCzXYX5xEce2yXWO67p861sP8f73vYeg5IHWmJaFaZuFVynXoGGltYJ7YDf2i8do37OTnuygRUiv30IIRa8XEkcpvh+wsDBHpVyl3w95feYMZ/Y22PH460jPJ7WKa3BuZoY8yxgaGaa11ixyO0sBSoDrOtSq1WJ8OSTrJEz79h9gdXWWOIkL5m0UkxMTDA4NUi6VyLKMZrPJyOgAO3eOYzsOIyOjuK7PSy++zMryMo16HUMamLaPzhX/5ZN/w333vodqbZCZM6eoN2osLC6R6YhqvcTc7AyVkoswLJIkQUnFm2++iRQGS0vLmKZJGCVYpsHc/ByeGxQs7rUSr7/+Go3BIcolnzzTjIyOUq46eCWbXtSl1VxhbHQc2zJxbIu11RVc18KybbyghGV5jI0M0+/32bt/P2fOnGNiYor24hLGmVny3/lvCBOIeiHNC+d4733vI44ThFJIZAHk2FyeZrMn82qz4w3Mo0JcMQ9eTYe4mkdt69x+EYxu2k+vRx1cSz+5bNuWcjEX4eo24y/SMjZ71a6uBwhxiSl4uz5s5wndfr+ry4ZHc/M5b5So6EaA68b/W/e9lp61WfK8MBZuBYHb1YO9llwNyMP2TpMfVze93rE3es0urmczAL8ZRvz3KTeB6015R6LJtv1oXM16utV6Zkwcxpg4fFUv7XYWvRvu2zWOyR94FAD1Sx+8ofYv9o9LH62NOl9ZlhHH8WUT5NYJ9nrkA3CJnVBrTZ4pXnjq+yht8/0XfsjY0ADomHFl0vjqEzyt++zZu4d+p82D3/4u777vHqK4h+PWIE+Io5hcS8I44/4vfIH77ns3BYFWhuMVOVG265L1eyzPt9BJgtQ5pmXR6bSRUtFp96nUAjSaQ4ePsNZsEYcdgnLhiRQyBXLePjfDB37qp5FScObs23zlK1/jXffcS5onKFORA4bp8Nwzz/LIdx/jxJsnmBibwHJN0izB93yyxMR1HDzfIon7WK6HVJIw7NMYrNNpr4E0cFyHPIsZHGzw5hsn2btnF/VGnbGxMUzTpN1eY8fkJHmekGUZbx47zs6paaSSKCVoDNSRQrC6usrffuGLHD50iDxNCTyHsN+hUiszPjaCZRk4jkWcRHhuBcd16IWrBK6PkArTlLSaK1iOQxCUUEqxvHiByR1T7N23E9v1SKIurdYqtmti2IqD+/eTZRkX5haoVD3yFPJckGQJUbiKznP6vYi52Xl2792J1kXdS7meo2dZNkFQolSpYdkWAEmaUi5XKJcDqtUStuUwOT1Fr1uAbCUN1tbWKFfr9MIEy/FQaKKX38R47B2uoEcAACAASURBVHnymXNEP30Q89//98jf/Q149wHm8xSRRzRXLmCbJq7tok2bmWPPEzSGEcom1wKaXUJm0cY+pNVj9sI8pYrL8TffYGxknMQweemx+xlvBKTffwtbpZwZnOPsiWdYffsVqhWN9BtUR97LwOQ+pN+g3JjG+8RDZEf2ol3noudEbLJSh2GIofs4QQ3THyzCczfJhlKw4YHRAkTWpd9bw3ErpLlaB6qCjKKGrRKSXqfLk48+gdCKNEvxfRu/XMFybKZ37+DwrQcQhoNUch20ZSgl6XS6OK6DowTTuzaeNcUn/+wvEEC5VMJzXTQpQhhIVYQvZjrBdhykMIiiAtCkaVrUSASSKMS1TeKwh7JspGGSpEnB2q1BiCLsrdddxvfKOK7CcWyyLEfKokyLlEUpH51rdF6UkFFm8exIoSGL0UKhhUDqFKElluOyvLrCyMgwSpqYtkM/DKnXajieRxRFVKs1zp+fp1wpEQQu77r3bixL0W63qdZqxPyQXCyRhAEvPv8iP3z9R9x5960oz0WECe6TryM/+hEcu4TnNOh2O9RrDcrlGr1uSK4THMdFCMm5c29z5+1TdO+dxrj/Gb727YfYd/QI9XoVgcA0TSzbwrBMJJBlMXmWg4Z2u8PC3CKVchVDScYW1gjaCXJ8iscefRzPNkizlDzLEVLxyiuvsWv3JOWyS7u9hmV51GpVtJaMDI+TpSlRmNHpdCkFFo5jMDI2jGkaRe1jy6LVbOH6HtXqMHmSMTI8glQ20pQsLy1TCkp4bsCLL77ALYcPYZo2CwsLjI6OUC5XsCwXoTLWVlcZGGjglVz6vQjbsvjmg99k/6FbcGyfNBG0210cU9Go1zANhec65IBUJgvzSyihOP/2WRzPY3hklJGRMeI44cyjTzGmJfr3fo1elNJcWuBHzz3J7t37CGo1EAKhBZrLGWSFkJvmsq3z9eXv4XYES1vnxOvN+9sB3O3a22hTiIvu38vTeLaEeyqlLgvXvbhty5jEFWB8M3C7fEvh9b0yPHRjjLm+3At42YLclCdZeFCvVWrmauPfGrp7PeC6efu16sxu1sO2y6W9Ef1sa8mga41l6xg2X4uNPm8HeK8HUm9Un9zuedsuZHi7Z3rz/5efc1NbpIXTRxTe2A2G4pvy48k7Aa43TQY35f/3kuf5ZTW/3qls5Hl4ngds/wEXQrzjcyRpn9MnjjG9a5z6yAh/+/kvQ6pY+tQD6EaVw7ffzmOPPkK1EvBrv/nL5Dm8dewcSR4zc/YsrushpYnrBfzjX/lFDFNiKAPb8lCGged7dLpdnJKN6ZR45PEnwFQIKSmVyrRabYKgBEKRJCmeb+OXLDzXYebc28WEkmsW5guFy7YVi/Oz7Nq9i1//jd+g3+usl3CJSeIeQubcfe+9/OIvf4yf+fAHqA4EdDodLNdmeXmZ115/kXLFpd1aoRQEiBySMKTkuXTbLRzLIKiUQWhqlYB+2Oanf+anaHVWKFdsLNvAUBa+VyHTmiyHN48dZ2RwnFxrTp8+Ta1eZXFhAXSC5yk++IH343oBju9QrgVM75kmS3OyDKIoRWuJZQdkOkIqhWuPsrS0UjDFCkWjPoppeMRxhus4DI6M4fheEYoXg+2VGBgcIQ4zkm5y0TAxNTVJu93CdWyazTaW5aGMCkmuEKbiltsOEkZ9+v0+7XabXrePF/isriyyuLRAqnMQsNZqUaqUiaOYWq1KHIe02i1a7TZBuYxSJo7rU2o0yPIM3zYwZ2YQn/s23lqH/N/9PsbDf4b1B/+SNd/kWw99kbTbpVGuY9pV7PIoeRzSbHfJ0hjfFFRqdaRh4ngBrxx/CNM8QGS8DalidGIvynAYHKqyvHgKK1xk557dzJz6Iauzp4i6y7hGzM7JHTRGS1ilaRpjH6I8vBNkA8sagBMLaM+BalDkMa4vG+9W8R6tew57XUSeIqW6qNhkWXrFu2Ro6LTWMN2A3Khw6uQMs+cX6PUitBA4nodlmkghGBwf5cHvPMzw4BDdTotypUKt3iDTEmU4SGNdwdAa03Tp9xNK5YA46VLA4Gw9NFzxz3/vt9m/fw+OY5IkIaBQ0sY0CkBumi5SWuTaRElFrsG07AKUktOPYjJpYvpV4rCL0CmGyBF5Qq8bk8SaczNzOH4ZLQySDKRhY1kFWZEQogiHzopSSYaS5FlRq1SIItVB6MJrjJQkcUSWtcCAvQcOkAOLi0ucPHkKJSXnz88yc/pMMfFnOd/81rdRpomUkMQ9Ot016o06IND0yPIuSRxx171383Mf+yhJGrOyskS4fwqxsIL6k0+DiGl3VqlW65w5M0On0+Ff/+v/mVqtRp7npGnKrbfeSj9KGBht0Pvf/lt+fvchMstgfn6WVqvDs08/TZTEKNOg1+2RxjntZheJBZnJzqmdJGGC53nEcYRpGCgF1WoZz3F44nvfw/cDnnvuBVynxHPPvYgUDl/43Nf47Ge+yPz8PG+9dYyl5QVe+eEx6kNjLKyskcawuLDM5NQObNtBEzE3N0sYptiWj9IpOuuTqxQjsDCUQZqmLC8v87nPfZaf/pkPYBgaRM7IyChhGPHUU09fNF70exG9XoRpmJw8eZzl5Xne9a47adR8wl4Hz7IYrFexPR/HDzAdl7V2h0pliF43pN1a49zMCYLAZ3BokIJDN2VhYY5bvRIiSQjDDkHJZvf0GHFvkdEDu4mlLow92+j2G/Pl5vlsYw78SYvWmjS98n3f2r+LYHDT740Ii3cim4HXOzGkb1yfG7lGm/NG/y56yea2blRuBMxt196Gsf3H6dv1+rjd9p/E8/Z31QuvL3rLclN+UnLT4/oPVnIQGVkeb7E+XTR2ApeImzbWbWfB2ipXC/m4mqfyaha2zTkscGVuTP7Vx4DC47pdny62scE9xfaBUFsZ/LaGwVzNorh+tou/lNbkRSAhJoLTz7xEdahEZbjO+MA4t9yyjzMPP8qRrz7N4r4dLLRWWVxYBqkZHh2j1e7x1lvHmZocZ2RkgjNnT2BKh6ee+C4TEztwHZcLF+apVuu0ums4lovKO8RpjOeUmJwawVQuF86fxQtKOL5PpkN0lrOwsEypUkNIQZ6lDA5USZMEA0G/26NSqdFqdzFtiW2bmIbEsizm5uYolQNMywahWJx9E9s0UcLAsnIsy8JUNoZlMjYxhiDDtmyEclhZmScolXjl1deYnJpmaalJloa4jodhWGRZgu3VKAU+tiNprvWYefsszVbI8eMzDA4O4jgmvX4Hz/eo1wf44v0PcNutd7G4eIFGfQjPd+iH8fqzIUhjeO3VY/i+TankkiYCU2k6qwWJ0YWlCziOi192CMMQ2w5YXl6gVPIobPOSuQtz1Os+SwsrnJ9dpTJQxXZMkiSh32limoqV1RVeefmHDA7XWVlZoVKpYDsOlmVjGGaRR6RKeL6DJkMZkubqHLWBUXSWY6NpNdcol4KLltxer4fnuQiR4ZZ80iTCsgyyLEGu9tCvnUI+9gN0p0f++/+Y7N/+GmJ6EtO2CMOIcmmA/fsO8/wPXmZ69yRFHdUBYmHi+BXSXo/GyE7yTJFEK2hDMOzXefv8GaoOvPDgf6bsanzvMMdPv8SAIfjuVz7Jy089SM1P2LlkgVSou3fQVxnSPoDj76Q8MEUE63meAvPbz0C1hPbcy96ZJIqJOkv0e208L6DfaZKGK6RocjxyHSPJQSukIVl3ngCiyFlNIkwZYJg51XqNcqWCUgJTioKkKUporbbwnTLTOyfJyBgcHgHDuhSCh0DIHIRNnqckSYzj2KAFhrR59oVnOfHmDPt27yUTHbI0wfddlDLRKJSSZHmySWkuGH7Dbswn/uyTHDy4vyBYSiSf/8znufOOoyhDkiQpqAxDacAix8G0LHqdNq+//BzTu/YhhUG30ydJuliODwKSNCbLE4QWSKkulv7IdVH/1HFccqUQWiFyjakMNAqkATojifq4pYBqZQDP97Bsk6BaB5FArhgbH8ZbL59irtc9NRybLEtJ9WwReizGsG2ThYVZqiWffr+PaZkYpo1x+jzt97+b5eUOtbLCMiSOpXjfe+7Bcz36YUSSZWRAUB5CuINI36XjKvxPPkBw1xFsx+GpJ7/Hwf17yZKY1199g/HxYVbWlqiUBllpLtJqrtAJQ0zbpdyLybUmH65Rr1Vx7CqDgwFv/OgER+44ysnjJ3jPu+4ljEPufs+7mZqawHVtGvU6Uih27R4nTbrsmBjHD3xM08SQCk1GmmQYpkGcpPhemZwMZUrQmk6zhe36lCsupqW4/c5D9DpdTGETxmDZAiEFu3dNc/r4cWr1AbphE79kF6RZnoUSmvHxCZbml8jyjKBSIs9yTp54nbGx/fzlX32O22/bxV//5d9w5PBhPN8njBOay23CJGJ+bg4vqNLpdqnOryB6Ifyr3ydcWcLKIrpxzO5b70RthJBfJJgRF5fLPYWXSoVc5k26GojZmB+32W/rERfV+Y35kyuJebYCqct+i3Vf6aZcXNZL42yel/P1cP+rTvD60ti1vtRPIQRSbPFEqgLtX9SDLi4bpD1XelsvDUZfzHt9J0SX1/NIb7d9q060lQH4aufZ7u92crXIu+0Yf7f2dbtzXkuupv9dSz+82vluZPu1xr+dt/2y53VTfnGR0yzXw4cLwrzNS5GbvFmnvrHQ5n+octPjelN+otL/zh/T/84f/1c9xyVPzd+/XKvdHye8WQlJr9nm5LkfMja6nwvnW8zO/wiv0+LWT30HfWgXtf278HyXeqPMzp2TSGkSRRF33XUHFy7MEnYTJscn+c5DD3LnHbfieS7N5hoPPvhN8jzDVIo8z7BtH0tqut0FsizEsDQTU9N0OhH/6T/+CUm3CFebGB8nTzOWlpZprnU5/tZp4jjnyadeYHm1Qw4FQLRdol6fxbkFTp84yeOPP04UReRZRhKGDI/sohulBNUGwrAwDIfFxRVMw0EJkzTJ1kuDpNTrdcIwZPeuPehck2YpS0srCATf/OaDvPnmSQQRYT+j1e5RLpeZnhzFNzMe/9536Hc7eEHA9N49uJbB0sIs+/bsJE/7DAwOEUZ9sjzHdS0MQ2CYRQ7S8vISlUoFKRW2XQDfTr+NGzhM75qkMThIFCfYhsHaWpsoLFiBpTSZmZnl/Nvz9Lp9hkYaeL7CMiVRFFEulSkPjKJsF98P+OAHPoBSit17dhOGYcEwCqRpRhynaBKSJEYKA88tE/UFWZJy/PhbaCEQ0uDszHnCMMGwBAMDNcIwwjAcdD/EmV0if/Il+MLDyK99D2OwQu/f/A7pl/4XrH/689TrRd6bFn0MK2a1dQ5ldbnrrj1Io8dCZ5627rJ27hXMvIURlAjNKnHnBOdn3sRGMfvWgwzZ53np4U8zXlZ896v/kYWTn2fSb/LY1/8CS15gevcIQxM7SXOJziRrrRVyAob33UNpYh/JOqDaEPnaCQijK96LNIkwlcZIW4SrJ/HLZZQ3gIhDZLRM1l0l6q0SdhdJon7x/q0H+imdYpCTJTFhr4tSijiO15VPSZamLK+ssNZcAxlj2NBo1DEME8jJsmT9fYaoF5GnTaTO2Kgn2el0yHXKvfe8l3rD5ezbb2KqCpZpE8cp/bCLYeqLSnhx7iJsP4q6aGJ+97d/i+effZY8CVEy4ld/9ZeQKieOQ4QE2wrodyN0niLQSKmxPZef+vBHAI0m5+3z58iySx5pKRW25WA6Fv0kJJcCYZiQK555+nnyVCOylDQJgYxMrteF1TlCKHw/IE76SBWTZT1MS3PyjTfIUotmr0W9VsUyjaJWbKYI+ylJVLAni/Xr5bkBRYkoD6SFF1SQpk2+ZxwRxpQ/cT+OK0mlhVOu088EdqnwtjqOQxAERVkurUmSBCEE/ofugzxnYecQSkre/1MfLMrdmA4TOyZJhUmr3WGtuUCetJic3sPU1C5EBnEYFUDbKHKKDUszNDzAnXcdJU37vO/99yFlEb5nG4qBgTrdboezZ8+RpppatUGlUmd2dp5ur4smp90pcnQty8HzPEaGhzBMyXPP/QAhJL5fQgjF/NwCEgNTWfhOlTBMaXfbzM2fxTEtkjDi1KlT7D60nzSJmRyfplYZ5blnX8d0fDRwbuY01VqJeqNGEqd868Hvsm/vUcKoxa9+/OeRwucfffTnabbb1CoVPMtmevc4+/ZMc8vhW3Bdi6efebJ4RjRk/XlqVYs/+tP/h703j7Lsuso8f+fc+c3xXoyZkfM8SpmaJVsWFpZsecZdLsAGs4xtjKvc1XRBtWmoKqqAXt1Q1dSiMMbGBgwGD1geZCEPQpYlpUYrJaWkVKZSOSqnmN6LePMdz+k/bkRkxMuIVArTq5bL2mu99YZ77znnnnfvPXvvb+9v/wk/84FfetXr1aXkclG1f255NX31ho32jvVHGftCdHqpMi7/VOlFA/85EPDlUOTLaWvOQFuIFi8sJdPb3lLy/z/C+T+2v3+KJEnyYzHOHzd5DXH9iZWURbU3bn+h33Shx+tSLMMpq7C4jHI4r056c1vmfpvPI3nmRSjm4ea9Sx5/Iaf14naX8wwuJF9a2M7yXsGeHAnATDT/8NWv8/pbb6Ubpayd/c0GhU98imiwxPn+AmPnJynk8mzbtgW0oNNVfPuef2BkxSBbt2yhG8ScPf8yV199HWHUpVzuo91usXvXbkzTwPdbmIZBFGuEgk6nRiGfp9OaRhomnuexft06sq6DlIKXjhylUqlw7/e+iyEsVo6u5OVTZ9i9Zy9aaCwzzR+1bTMlxVEa3w+4/oYbcF2LoOtz+tTLFEpFcvkstdoMlmtx9MhR+vsHZoliYkyZks1Uq9NkszlA4jou4+MTaCVotZqMjY+zcsVqtu/YTqNe5Xv3PsDmzeswhI1pKoKgy+tvfh35fIGvfe0b7Nixg267wcBAP7l8BsuSTEzOkOiYUqmPKPKRhiAMY0I/YWh4gFwuk7K/opiuVqkMDRElCktK/E4b28kQBhFRpKhNVynOhus6rkO7FdJqTTM4MIBp2oRRjOu4tBrTeNk8SRJRq9bw/ZC+SpE4Vrieh2lK4jih0/EZH5vCddIQ6nw+z0MPPcyKkVE6nSnWr19HFINpWvSVy5i2jSkBpZGnxjH2H0Y+fhCCkOl1gxQ+9E6s3/3XjO1dwcgNVzAz08RxPEDSbE6joyKe24dtZTGEy/jYDKXSAEKbmDg899A9rFtb4vTxA9THT3Df1/6AvXuvoz5ZQzceY3rsCKWM4vzp42zfup569QCnX3yJwbLL+o0bKa3YxjPPnuXQzBjfPLKfk1NjXPtT78Lq24KWGkRyoWzMTBP7C/eQ7Nk6W2pm4Q0j6XZ9dOyjwg6JdCiUVxK0OwgdoYSZsl1GDaIgwc7kAYlEEQcdpFAgXSzPRYiUvElKUFFMu9li/1P7WbN2HYZt4roututgOTbCSOvxJUpjmhbdbpdabYpsJovr5dFK4zg2CIVleqxePYiXsbAsjyhukvHy2JZDrELQEsM055FP3++CSImETMNk/YYNWKaJMFKUKK3rKpCGRRz6WKZAa4FSoFSAbQnQaZwGWjM42I/npfVG0zBhC60FSRLi2hZBN0ZoG0WblSv7mZmZwHUzaftJAkIThxFamJjS5C8/95fs2H4NjuMwM9Ok3QpxbJtSXwXXs7EMl+mZGqZp8KW/+ypHDh/hhcOH2LvnCjrBCWzbxmQFtWqVUrFIEMTYjouQAmkYKFNiHTqO/9arcNwsSZLMsi5rkiik2WrT7nTp+j4Z18U0TXzfR8UJYmwCfXYSy3XJZD0Mw6FWbaLRuJ5HNuuRz5VwPYuz56YQSL70xS9y3dp1SCmp2QppmEhLgk54+eRZRkeHYZbRudFo8vm/+gJ79uwll80gEGQzGRIVkyIikh8++TjlcolisYDfVSitOHXqJAMDAySJYvWa1VhW6uDy3BzZrMef/PdPcu21V/HiC8e4+55vs33nVqTU9JXLHNj/FLZtMbBiGBXXiKKATquB7QhOnzrLqjWjSKGpVWcoFPs4dOhFpDDoq4xQnTzLwECRWJlUq1OEYUg+mycKI1rdBrHvkysWEYZg9+7dqBeOIf2A7gfejBSSm2+9ncAwkReveBetoQtZgHvXuqVkfn28TAKeS6FoS+VHLvf9gt6x+HzmtqUs2xczGs9tk1LO57j29iuEWJTCkEYyLGYqXhj5dTmo5uIxX7xfL7HjwhzP3vzRS5EdLRe91rvPKx27HHPvRXVklzi3pfKfL4WUXup/X2rOLsdRcKk+lxrDUuzFy7X7itv00vPdi1bP65SzzjQhNEIsTTb2kyyvkTO9JpchF0IZlpLlWOKWN1wvp47rq5e5AukLH3pzDzT5hquRb7j6FdvoHfFShAe93srLOe/eh//c0SqIaExUyVc2YGYTSo/sp/A7f4naMIretZnxsRpP7T/AS0deZPPmTUxNTXPg2UPs2XMF5XIeyzTBkvQPlpGmh+M5yFkCE9f1MAyDwG8TJTHFYj9CuliOJuj6OCJCztahzOQyCEPjmDZ3fu0b7Nq9m00bN+J3u4yMDDM0NEQkQsqVNOQyCgMSNEEU42YyCCmRUtBs1tOwRNvFzWiUCslnS8RxSLGYT8lpDKjPTBCFPo2ZJqW+QYQUHDz4AgP9A/h+yOOPPcFNr7uBjJdl5cpRgrBFp+mzc/dOTp08Rn//EDExmXwJaYFSknymSCGbBUMSxTH1Rp18Ic/+/c+xddsGwjDCdVziOCGJNd/8+j2sHB2cZ3dVOkkRI9PBth3iMMY2YgzLQ5oOuVwG1zXxPAchmVfma9Upzp49R22qSRDE5HIZTENTr04ShwHZXJo32e42cV2PRCmSOKTRaCKFgedlefzxJ9mwfi3NVoP169dRLBUwZYBpORimx0yjiu3amIlCP/4C+tsPI7SiceuVqN/4IPav/QLWLdciN65GmhkyGRuVCFRiznrGDUp9eaZnJsnlbarTZ2m1JxkcGaLVOktG1Jk8fZAVI1tR/sscfeJr6NoRxs6d5OjJCVavWsnM1CmOnzhJvpDHyRcYG1P0D9vM1ASdMODsOLz0cpvaZJNDzz3D2is388Zb30PfqjVk3CIGIRADqTFn7D+EqNVhxeBF94uWBsLMYjsZ4lgDCiEdjEwfmXwBwykipEG7Po5pmBhuDiFNDBJ838ewTBAuGAZSCNACpRNi36fdblMolnBdD7+TcOTIUdZtWIfWijgOMAwTQ5oorTFMh0ymgjQVKpFoVJrjGQXEcYJlpIaXkh1QIZaZwfdjpJTEcZyep2EARloz2TQRQmJaEiEtlE6VEq1SgzkIYkzTIY5miEKfZquL5+aACBV3iLodLDc1qNJwYAM/7KSMwkmKOavQJwq7CGVw5PBxnn32IM16mw3rN5FICZiEQUjGdmZZiA2mqzNs37qV/U/vZ9Pm1cQqJJ/Pku+rUK2eJWPn+OQnP8t1110LxOzadSWjK0bZtmMLQiRE+iwA3WaWUl8RIeHhffsYHhrEMgV+EGIP9iGOn8U7NU5yzRY828RvN/FskyhOyBeKZLI5EqUxhCCOY5IkwXMcGn4L53N38XLWxM24VKca2I7HV77yZa7YvZ18vsDjjx9g/zPPsXf3LoIw4IbXXQ9jkxjSwFo1RJIIMASWNBDa5siRQ5T6B0Brgm5EtxuxYsUolpU65bp+By/j0GzWKZfLbFi/Htez6XQ63PePDzI6uorBoQHmHLhhGDA+Pk4uW+Suu+5m+/aN7LnySlqtGqtWrqF/sEKhVCTj2EjPoZQvMFiu8MLhQ+QzOXK5Mo7jkc1lyGezhCpEI+grDnL69FkGBodYtXIlzzx3gHw2R8bN8OLxQ5jKwO/61OrT7D/wDFfu3guJwsvl6Pg+aIFx9DS61SH52AcpFCqYlgWGQKte43NxOO5yivVS0mu8XA5z7Fybr2YNXe77BQNq4fh6jpGLHdqwuGTKQjLGi4yb+ciG2X4WjL3XwOzVQy51/svN0cLQ3t45Xeq43jzeSznR56LSev+zpeb4lf7PXn2oF4Wd+62XPGup/paSXh1sqdqwl3OtXaq/S83T5VzDr7htGcO19/v8fIvUwaK1Av3qWJh/EuQ1w/U1uaQIoVE6njVaU+VqwVbmckEWLxDp7733mRCC6NgTAFgbrlmmvwvI5CstXr15rcs+DBbmrM5+lnOLlCZVGmeXLK3nQu/mXstTwV88Rr3gXbO45tviRcywbUQM9979LdZvXYk+eor8H38J5877edSNGX391ZiGQ7fTYf26UUZXryRWAUpr8vkK99zzD1x73fXYjodQEY3pJpMT5zCFwrRNGtMNMp6BokurHdNXTsk6pCEBG9NyCGJQcZdEQzaXxW+3MByP7Tt2YZgWpmmQyWb5u7+7k42bN5P3ckgR0m6lJXOQLp1OB60Svv+PP2DPnitTJck0yeZzJLHG9yPC0CfjuTzz1As0Z+oUSlmK+QGCKCKbzyMNC7/b4Vvf+g5X7NlLJpdloL+C6zpoEkxLIIXJn33mL7jxpuvprwxw7swZPMfDsi2efOwpVq0eJQ7bmDqi3mjiODalcokgChkdGiKTyRIEHQwzC8rg6JFjXHvjdRSyeRqNGu1Wi6nJGcLExnNMtApxLINIw+mTJ3Acm1gnuF6GyalaWm7n9HkqgwNM1eps3bIFN5tlYKCM4znESlPIFegGKVoiRepU8Ls+zUYV23FxTItCLovlGGzcuA4hwHGc9BozJbZdYXp6GtfV5J0C+rGnkfc9id65CesP/w3BL96Kde0V2IMFauPjlAolTNMjDDs4rs3MdJu+0iCB0tSrZ8jmbKxYMV6fwB97nsHyRg4fPsgL932R82PTlDJlCiVNrTZN15fc98CTbNtyLcVcwopBh+9/5zkefOCHHD16ljOn2qxZbfP0/lNIp8CZ8WnOne2w/9FHEQqeeO4wpYzJ1muupH/zTbN3gIGYNVoBzHsfQ60YAHHx0F+J+gAAIABJREFUswKpsQyJ0ND2U7bcTLaAZRmIRKJliCHT+pN+t46TLWFZDpDQbc9gWiC0i2UqFAaJjjAFdFodojBKmbJjxeBwiZVrVqW1VGMfIaw0hzWFtZECDAmoBCxJGIXEcYAQCtv0wDARUqO7DQyrAEJguw616TqWBNvJolWEaYBKYsIgwLRMlNJAgtARzLIPCyFn+9MoPKSZEqxppTh7fopiqR8nk0GHrXSKTIdEGliGBCkQUoJhYEgNwsS0LSoDJdatXU15sB9tSISwkWgMA2IBQkhajSZ/8bnPsXnTVnbv2oofKCxLcPTwcQpZl0wmy5lzY/zULTfjBx3arTaObWG4Jm7GS89RjgGQ8zbTanXodkJUEjO6aphWOyCTmy3XY1mYh06h3vU6/DBMS3VJTZQoEsPENjRO0gAjz7ETB+kvj7ByeIR/9fv/F9lv3s/Av/0gxrnzZDMZWo0ZrrnmCpIkoVGfoVIps2JolEw+Qxg0sR2X6cPHyeWyRIP9xFEXw/B4YN/DbN22iUwuSxK0qFWrGFKwY/tWhAyxXJuzp0/jWTZexkYaJo1GExV1icMAw7QZHV1LLmchpaTebGE7Npa0eeihh9i0dSNXXLmLyA9wPJcohjjWVAYqCKnxTJc46hIFbTqdNqVSP2hBbaYGOuHU0ROUKhWSSFEs9iElnDt3hpEVI0jT4vTJs+y68gpqMzXCZsyqNSOU6wnZsxMMdDXNQy8xrE1ah4+SrbUwz0/AuUmkUkS/9DacvEeoE4zkAvPtnGExVxt0bu2aWw/n1rHF69nyyrdSCoGaJ1uTUswfL2avu9RQTNdiuLAu9663c6/lGWUvrNnpTxfydBcem+at96zdSs+v/XLW6J2vj7pgvKAXpL8KSP29s04x0jh50TuuxXMz9/vCMjbz2zHS/Me5ThbkvS40DC/V9uWiqEu1tRQCCVxkfC6lb10KOYULgELv2JZimV74fWHVhUsRay3F/tsrvdsXsiUvt//C98tp89LtXLiOEJq5UjnLtaG1mL0WLuTDzl2Xczr45fT/P6u8GsNV/FNy+P5HSJIkPx4D/TEQITSJikhvHgUYl53LefE9Jeh8L81v9d70sWWOEfP7wsXhSL0PzqXyAXq3L+Q+WBhas2if+Qdnb3vLU6lf/NB45f3m+8fCI+D//Piv8u9XXov6m38g2riKiZESI2vXkKgurUaHarXJsROnWL1qBRs2rEUT022bjI2fYf2GUc6ePU25f5CMl2VmZoaBwT6kkvh+HTtTINE2Lzx7kAPPPs0v/tL78DsJn/vcn/O+9/08cRRS7CuidYIhYkK/RRBafOPrd3P77W/Gy9jkSjlOnnyZjRvXUZ9q0OnWOXt2kl27dqKEwLYNAr+LZTggDV468hK1Wo2+ch+bN24gTuK0lqFhYFg25xqfp9RXTBXW2cd3o94gV8xjJ7tR3WFMIQmMU2jnhVkFh9l8N5mu6ULiBW/n05/+Uz74oV8msh5FmI3ZxVGTJArDkERRiCPXYUS7sCyThBqh9RhhEKSLoWnOknmkC0RnYidjJ6dYtXYVTuUc2jo/G8YYIc1U2UArRJKD1l4cr8hkdZr8yKMoFaeGAynTrWkYKK2xkz1IvYqxibMMDgQ0oydT1NkUREGABmzbTqGA5i1puKVh4BuPklBPr5V2GznTgmKWeNUQ7o5bsXe8Mw2hbI/T2vdHmJYDQBwGaC2xXYsoDDH2fpizzQadRpPt3iTR2adRSnDwiUdYsWoFgyvWEjbHaQuT036Obde/Hm/D2zn/hY9Rybu0I00cR+TzebrdNq7r8GQ1y8EJh/e8+1aiUweoP3sXlXKBqakZwljT6XbZ3F2P5zqcffNbWHPdu8l62Yu89+6v/xFqxQB6dOiiZ8WcWiwQhIGP3xjDtLI4uUpaHsYAoUy6jfPo7iTCGyRfLBN0mvhhQDZXoNns4mW8lBcDAyLNxOmTFIpFOl0fjSaTL5Ap5InjGNswQF4oU2GaJnGiEVrgd5pIy8ayTbSKsAyLRAiCIMBzbKIwwLYNEiXQ2uRP/vuf8Wv/28cR2oekiy88LEMQdNrEYYfMbIhv4LcAldb2jCBfGOLU6fN4pqR/aIDJWh3DcLBsE9dNw50tmdDtdIjCEMs0MLNlhAZDKKKwi+PliZMIIRXdbhfTcGg06vT1VYh1l+/e/QA3Xnczbt7Ati0kgsD3UUrR6QQ88sR+br/tZmJfgQjx3AxHjx1n/eZRmo2Y5599ketv2IPWEUppDMOiHRxBxZq+7HYkmu9897tcc83VlPtLSMMmjCPCMEpzTe9/ks7qYdRvfQDLsmi3Qkg6eF6WIOgyU5smxiKbcygW+pk6c4Kh0fW0f+dTiG6IMVJGKZ1GRcQJKlaEUYdOp8nw8Apm6g0euP9+br31Dr5/5ze4+aarcVYOc+yl42zavhWtE0xDIoVgcmqKQiGPbVs0W01QAmFA1vVIwpCZ5jTHjp9h797rCIMqhmHyve/+gOHhVaxe28/Q8EqiSHDv977Pm2+/mTiB2nSd6ekZrti5mTBUfPFLXwNi3vO//AztTpNuOyBbcEkCn1arybqNWzh+9BgbNm1gcnKcYiaHMByefPJJxsbGePNtbyGOAxIVYZoWtcka5yYmaHZ89oysxjt4FKEV8dtfx6c/9y0+9r/+ApZlYJiSju/jeR7y6/chcxn+6yb4xO/9HpF0QVsImcwbFsuFWy5EFReuZ71Lb6/hmjq6L3b4prLYkOldj03TXDKyaelwVbVon4Vt9yKBqrcOverZPtu+YRjzDMbzhpcUSx4730fP9qWisnq3ze+je0rHiIv1mldCC38UVG45BHPhnPTqQZe6ZhbKfNTbAkOx15hdynAVQpAkybKG64Xr8OLw78s530vlkv4o6O2l9rmQknZphuvLRevT95+80jqGYVz2n/0a4voTKHOex/RGWszS98perrk2LtyE8fEUcbU3XvfP4i26VMju3HaBIP7w76C+9QPk229ZYpwLPY2X99C4qI8eb2Wv17h3P4nNgfu+zU9/dT/WS+dI3nIjyZoR3FwOaUja7QDihJMnT7F5+zZy2Syel+PpZ55mdOUwQ8MVatUJVq9agxAGhmEhpWBqaoIgUrx86gxSGrieyyOPPsq73vUO6jNVBBEbN66l47colYu0uwF+u41tOxh2DhDUpmfw/YChoUHajSrFvIuKuziZAkEU8thjT7N56xbqMzVyWReVxLxw8BDT9Qm2bttEuVxgcKiMZQkMA86PncHzbFwng3CPk6g0ty3wg/QVBnieS6fh4llDfP3rd9MJJzDdaTwvzZFTSqHRBEGI1gpPbmP3rp1Iy0DY5zl95ijFYmGWmXKuFpxERRlsazVKQRjWUeYZpEjLhkRRSL3eIJPJorWmmNmMY+Xoq5RJjCm0bKKSBNOcDecUArRCxRJDj6K1QTafIzaOpG6WudAuIVAqRis4ebSFKcqU+yogZ1ByHMMyEMKYVb5d0vqcipy5iyROsCwbXx1HEMDUDLITILatJx6pYOcztGIHUdmKdHNEzSn0mccQhoVSMZIEy7HRWtNqdShtuZ2BkSux1DSTL36PvATDEOQ9k9LgKJFSBGGX4ug6qt4w63beQZAM4Jx/kG63Tb3VJZ/vQ+nU2RKFirpci1vZS7F/J0MFEy84SbNZZWK8CjJlWd1YW4sbupzdNMDghp04lkcYhheUlY6P/fm7Sa7eAVLO3nfMv899Tm8gC0P6CN2l02lgGWl5GRULLNFF6IhunCKyYdDFcTyUsrA9iWGmZauENKhPT9OYaXLi5EnyhQKZXDYtR0OqKCdh2qecza/95l13sX3bTqamqjz4wP1s2bYJpXwajSqmYaO1xLVmEU7DQGsbgYlK4NqrryFWLWZmzhOrGNsrokXqpHC8DKEwEZaLlh5eroxhpGHRCTHZnEM2k6XT9vn2Pd9mdMUwX/vqnezeuZNDB18gk8vieB6O56b1WKUmDhWWaRBEHcRs+HJ6jTFbDstBhRpwOPzCCzz55BNMVWts2rwJKcGcrXvsuQ4bN20AFdCsN+gbqICWZDwHx3HJeA7FYpZcLke73SEKIpI4wTEHyWdWUa1VyeWzrBxdgeO4dP0AYRiYlsSyHKQwEXkP7+BxTuwYxHEljVqHFcMDBK0658+P0z+yhr6+Aq6bZXJyEoM23TDiyfOTbPzKvZzKWURJRKfd4itf/ipbtmxGGoJCIUe1Ok2hWKQ2VaMyUGHjlbvI9ZfptFqUyhW6fhPbMqnXZ5BoslkXQ0hq1ZQITiUJuVyOyYlz6CQmm80yMjyE0iGFQg7TtFm9epRVo4NEcYJt2TQaDQ6/eJitmzelkR6lArZj8p17vsXatWvJ5bLc9PobCfwO586eYd2mTYRByqiulMbxMlQq/URJjCFNuu0ux06cYmRkJWfOnWPdxg1oCefHxslk89i2zahbYODEGJnjp+m87ae484o1GLfs5saPfQz3pu3Iq7ajrtiCdfV2nGt30X3bjdxjtfnABz+EdDLzAftqgaO2FxXrze+7eH1dGv278L4YNVxsdF6akXVheOjCcSyNuPY6ty+EkvaGqC4MFe49g95Q1rl95uq1p5ESF4y4+cfT3Nh7nW+vKsy0Zz+x2IBbyvnd2/ZSIcqXikZbei4Xf18O/b6c8+udz6X6W8og7h3HUmjtpfq6lCxEWnv12IWv3vYuZaC/GgP2wvxdbKgv/H7pxhTz5S/QKTr7Ksfz4y6vIa6vySUlLVuRzBqwCiHMJfZZDmns3S7mGYUzt/3rSx671KK4lCz0mi118yulkLOGK4Dxmf/4Cv3qRXk8vQvswmMX9jeH9s39vtSDbs5zGEURKnGY+j/+PQNPnyC8/WYMMy03oJOEmekZ2u2IwWIWy3NQpkWjOs2BAwe58cbrcT1Nq9VECoEhPbRStNtd/v7v/56P/MoHme52yRh5TDOiWj9LX2U1hoBWvUGlr59WJ83xC+MEtI+KY77xjbt553t/AZMuYaDw/YBiKUecpHmq0zM1PC9LJuNx6OApRleNUMg6tNp1cp6HIS3CJPVmSylxHAe0pl6vk8tm6XQ6yOxLKUFKshOpEuJY8MMn97Nm7SoGyxma7RbZXIXPf/4rrBhZwU+98UbcjEGjMU0hV8awTPwgxrFNosDHsW3GqxN4Xol9P3iAO972ZhJDE/kpC3CjPk25r0xiOEgg9NscOXqC7Vu28sTjj7P32mtAmezb9zDXXHMlfjhNpW8YwzRIlEZjMjF2jr5CloQEYRcJWzUytkabNraZY7JWo1Tqw5ICZVgIndBpNem2mjiWh+WA7eR58MHHufbaq4nDFlYhj2lJVBhhSIm0LWSSXh9BEOAq0E8dghdPwbveSPzx9zPeaFDOe0w2xtmxboSZrkZkStjEzLx8iNyqTSlqXj3BqZcO8OyBF/i59/4KE+NNMhu38V9+82O8/7130LfiCp45+AC7NlZw1v9LSmGVb37l09zxsx/ADetM2dv43B/9MRPjh/jwr76fhx58jJ951/v56Ec/yl/95Wd5+eXjuJ7F9+97iMhMuGLHbg7t/yE/8/Y38sy++/jN/+eTeE6GT657Pbmcg/7126jseBMqkhiGMa8QmPc9gfndR0mu3r7gXk1rjqYod4KTsUAbaG0Q+w20P4mUNo1unUyxjFA2ncYJTOFg5EbIZku0GjVilZDPDaJlmzh26Xa7ZLIOMkmYqbZoNZv0DZRwXZtWs02hXMD3I+780jf4Fz/7bjKZDHESo5XGMC0EklZzBikdHFeAjhk/V+fky8e46fqr8IMmXrFIlEASRnQ7TQqFPGgXy0hIhE0QBViWjdKaRGtQAY7lgkpDBGMZITCQOjV8kd0U0UkSSF02CJHmKmPkUGiEFMQqQQQNXK+PSCnCuItteaR+Rplq6sRIkfDovh8yNhZw223XYJkaIQsIM4FZBDKOQoROMG0XrX1EYhAIAwMLQyZMnGtQGXBQtGnWFZaTwTIt7r33+9x66610wgDHMYmjLoV8nrGz5xkYGCIhIYg65LIFTNOlOlVl6KkjJBuHaXzkp8m6K5msnWO4UmS65fPiuRojAzn6K8NYlsXpY/upDK3j/HjA+B0fRO1cy+atm/jN639ArTpNsVScR8gBarUaH2rcxJvVTsIk5P89dCdH7tDYjoPWOkWqLQvf7yIFfPbYe2jUO3z5S19h7PfXccKcwvNc4ijCMM15p9mNtVFuf34llXKRM+4Uf7DxAO12G3eWAEwrTW26Rm6wSCQSJpw2CGjKgEAmKRe0UmkN31nEydSSXGBhGCZCwJTZvmCwsXgV9CKTXDWhEpp0LcW5gYTYkah5RfiCoTdg98+vP9PhNJFO863pWZNc6ZAzcgDEOmYmri/aXrEqbM5uAuC3N/4mazNr0Frz12f/lodqD8+veamkY1jjrea3N/4WWqfrwUee/9i8Q2rxvvD+lT/PG8o3I4TggeqD/M3Zv12yTSEEf77r0/Pr6O8d/X1e9k/Pf19oKN9cvpkPrPpFtNac6p7id1/6/d5u57uYOyeAvz7zBR6s7WOxpP/CGm81v7XpN+fn9yPP/uqFJsWiJvmF0ffxhsrNaK15sPYQf3Pmb1lO/nLvZ1MdRkv+85Hf5VTnFH+++zPziOtyRtpy25bSOXodEHMyh5gu19al2lyITM9Jb1sLHQ/LjeFSIbuXMhQX7p8kyfw4lgpLvpz+lkLCew3X5dr9J6GzPQj7UnO2fGPJoq8qWRx6/mrrFf84yqtBXF8rh/MTKKnROoe0porB3IOoN5TnomP13GJ1wcNkbbsFa9stizyq6UsuevXKpdDd2bJpqaK34KWTNEw4TXBPB7NwzOlnteh1MYOivuglxNxideF7evzieZGAmH1/ZN8+rr/6Ghwkf/WpzxCHDYb+8VnE9XsxLYlp2miVotv5nMcLzz/LkWOHieKQ6WqNbqfJG15/HYoQrSw8L0O12uGJHz5FIuCBh/fxoY9+mEjFiCAhkzMZn5xgqLwSFYW4ToZ8sUAQxVRrVdrdJlEcEXRjms2At77tHXTqVbqdBpYJgogo6JJEATrxKbgpKQoYOK4g9Jt0u03yuRwdPyCIYxzXw3EtVBISBxFBGHD8+CmQFm4mi7LOEYmTJEGXKPIxHYPrb7yOR/c9RNdP6PogpMn7f/Fn2bJ1E/mCiykMpsbqCEPQbQXc+517MUhRsVarzcjACFnP5U1vuh10DN0Yz/aYnpzAdVwipWhPTyE1dNs+a9auxQ+6DAyWAXj8sYd43Q17UGGLQq6MSiLiJGGm2iZojTPQX2FyYhqpDRzho1SMYeeRuERxxEB/CdtUNJoNgnaDKGjTbNbJF8rkSyUsJ4MGbrrpOrIFm1wpT9YxiBoTZFwTwzIwAd0J4MhJnPt/iP7CP8CalXQ+/xtM/+pteOUMa9auoFqfYdXoStpWhUC7nD7zFLG0sLMm/+Zf3EZWBVi5FWy58mauuP7dfOZL9/PJv/0edqx434d/jaeONcgNrmbfvqM8caCN7Exw9NhB9vzUO+kEJg89c5LTRw7wy7/yPn79138bFRZ565v/Jfd+/x/58Ic/yPjYJKMr13Pu3AzX3nQz73nz24maMbfd9h58VcAqJvzOv/soe7esQBqaYl8f9TCHGXvI+bIroF46if3F76BWDS2+l6SJSmIa1QmCdpVmbQq/NU0STGM4LlZ+BYEW2FaWsNXCb9cwzX6EO0guX0LpGMOUOLYNhAilOXHkKLXxKUgUR148iuVaOLZgZnISadiUKmW0kuhEgAFBGKR1Tw0DaRoEfg0hArKFLNk8+H6bWAmKlQIrRwZodUMsL0/U6WBqE3RMX18JKRwUmkibhFGX2PcJ2k26jRqWDkiiBKFt4qSLIoIkIfQbBMEMCB8pTBAJMzNTxLGPdPpQiQHCRiUhQkUYKBI/wLTzhDEYSOJWG600WsUEYRNBgECBsLj6mqu47U3XYVsOpuUCLQyhZg0zibRdhFUgSkDhERs2EpGOX8HAqjzStrHtCn2lMlGYsmLf+tNv5K67v8Rd3/g76tU6d3/zuxjCY3hklOMnTjJTa9BXGMBvBZw+cZJMLoNaNQTj0/y7T/wRkYyItUI5JoZtsnF4mHu+eR8uikcffJT7f3CCu+/cx5H9z7Hyk/+J607U+OM7JvCDiEIxj9Iay7ZAQKfTRUiJaQka0w1qB09xx7o92LZNEPjoWSM0jiMsy8JyPVqdJmfOnWTT1i0kcUDg+wTddN6Cbpc4TI8jgVLBJZfJE8aaKA7IZj2SOMIwJIYpyefzdETAhN1i11SFXRN9rOoUyIcWhdCmrLLkQouS8igmHgNRjuv8dVzTGuWq5kqKsUtJZSgmHqXEpRC7lAOH0SmLn/9+jt/49jBvaG0nv2oztpsnbxYpGkVyOkPJLFI08vSZZa7PX8se+0pWNoaoGBVKVomiWaRolCgaxfSzWWSVt4q95avYW9zL7vzO+d+LZpFEJ0Q6ml9k02Vzrg7lYkR1Tlu48K4wDIs5tfFiNWF2PdUXDKG5qK7ZDhf1ke4Tk4YFL+ahuLAWp8fMtbdkvwu7YOH5zJ1Tr6RIqhY9pENzwxMXNylYIt8ULp4uLhh7moRT3VNo9DxL+Nx5LxUyvZwu1Lt/L2K5FKq40Ljs3W9haO+iWeshjFqurbn3hSzIvf0sZ7Qup2cu1t8WG6IXcrWX1k2X62+p/XtLDv0octG5CLXoddGcCZVeB3KJi0Ybi17SUGgihExmQ/9jkiSaL+v2ky6vIa4/QTKHGiodzn+/XFnuOlnsxer1NNHz/ZX/wnnP3yV2TT2DkHz4P6EB+en/0NPG3AK3/Jhh8YO3V5bLYzAWhIcAnDlxinKpj26zRfLle+g/fIJg83oUqYErhKTr+ziOQ9juMDFxjlwmy8jwCs5OTHLg6ae55advxTZM4qQD2FiWQRhHRGFCJpPh9JlTDFZGsDMOYdBF6Nl8IQWWbdLxu3huhtp0g0cfe4Kr9mwhl+tDCDvNB1Qhx4+dIZ/PsmK0n6mpJqWCiyFCGh1BYTYfECGRIiYIUqM4DCNs26DdaWJZDiqRPPrIU5w4cZQP/NLPIWRC17yX8+fPs2ngw1RrVUDx8MMPc9tttzHT1NRrUwwPDuC5NtJNKTNqk3UCP6HYZ5DN9YGQCFEjDCwmxhrkCpJjR6ts3z2ART8zzZfoL6/FtC1ajSYTExNs2LCB8+OTvPTii2zZvhOhE/pKKUJmmAYqCrAdm3Y3wtABjmMxOd6mXCmQCEkcxZiOjYpCMpksUZgwPV2nr5LHNK0UQVcJliEJI8W99/4jd7z1bYyNn2N4eGRWeSAt+dFpUSr1gVLobow4fgZ95BR6cppk72bM119N/M43UouaDBQLGI6DMl1atQmcfBEtHVTY5LN/8B+4YovLT7/3t5msn4dTT/LEgcNc9c6P0poSZLIujz/6GDMzNVavHOL619/M/fv2cc3eNRjYHHz2MI899Cj/6tc+TKIFjpcBIel2FE88+jTPPvVDvvHNv+d97/8Ib3rDzeQqRb7wV3/Bxz/+cZ559gBrNqyHOOGLX/4a73jnO3n24FPY7ZgDz97NIw/cx39b/y7crEnxDz9KtryNZO4mVQrvt/4Unc+gNq1mTlkUQqK1Iuo0iTp1An+arGehpE2jFVDMlwiiBNPyyBSLxFGMEKmn2TRNFIKg28LQMUooXCdDlKT3bLfbRiWCsBsShQFozV133cU7fubdZPN5PC8NYzYNE6RCzip7Iv3TUj8YYJkmSZJgmybNRoP9zzzPDTfekKq8UqBUghAJSoNp2KhkVkFBEcUJhmGCBiENBBFSePhBHdfNIYRBogKUijFNC6U0QiTEUYhp2AjDImrN4HpZYstExxqBIom6OK5Loi3iOCLo1HHsgXQ+DYVhaLTSdNoNsrkiSscEfpAyKvshGc9Jx2aaaAT7HnyYa66+HsOUJCoi4xgkicYwTEK/RRRFONkssdbYVhrJcOzIS/SPjqM1jJ8aYcWKFYDGyzizZbhipDSZHJ/gmWee4fa33kEwcZ78w8/R/dwfIm2IpCaOFO9//wf4xCc+wVBfGUXEo4/8kG3bdlLIWQyWC5iZLMFnv86vWP+VKgl/PfY+8tkSWqfzJjCQUhFpsAwb67mjTEyMU3nTdWit6TY7dPxxktgn6BisWj3M8ZNnWLFqHWGYIFSIZZg4jsfU1EkcK4ObKdJqdclkPLyMpN2KUDrGD308x6RWm6GvMoibS1HmYxsafHbFU+yo9pPxPLSQqCSh0WxS6ivNGj5pDqVpmGg0UhigEzQpUWBxUrHusM/Ggz79kwkv3TTAi29aycndJfwwYWZmmqGhAaTUSOngd7rYpqTZqBFGU8QKhkZG0RQxJNzymcM06k0e/pXNPP/8c5w4cZxSqcjRoye46cbr2bZ9OwefP8yuPdvotH0K+SLfnPoOu4vb+eMd/40glCgdYprmfP6nlK+kF8gFynjSE2Z6cXijlJJkQdRO2odECH2BpfsVwltTw+VCW3Oo4sLvvccsRNN6HddzObGL279gzC0MO301qGEvOqaU4pef+QgAf777z5bUgxZGcl0Oa/GlDNxXGufcfC1ESi8HpVyKkXrhtoUG9XKsxkvlni5F5DRX99SyrEuO75W2vZIsF0H3Sm0tvCYuNTcAWvX8pwtznJdBZy901DNfenlEuTcf9sc1rPi1HNfXZEmZ93j1khn8iG1eYus/qR+t9ZJ+0kXbBehvPZC2//Y39O5xyfZ7mfSWkqUe+nDBfzu3PVsuYVomjuvi/u9/hLlrE9NxgmXb+O1mStojDaRh0ml3mG60KPf10ZqpUxkeoq/Uh+t5GMLCtCS+n3rUGs0GhXyJOFb09ZUZH5/gwPPPsnHjegzTIIoTECaGaaCVotuNyGT7OHtujC2bVxPHcPr0aSqDecbHqpx+eYwdO3bgBw2KWYdOu0uz3ebbd3+X/v66NS1YAAAgAElEQVQy+UIWw7Ro1NtMTU3hZVyi0CeJFblcnk434NHHnuTaa66m0l8mm3URQoF7ilwux+mjkgf3PcrWTRvYuGEdtekZ9j30MHv37kHphDu/dicbN28gSWKEUPSVM5iGJEoUCg2JgeO42I6J52YYGimjYgvHVXhumVptEtfLU61Os3J4BI0gkymwanQVCIkhBXEY4no5hCGpzzTwvCyNlk+SaLrtOpadQRsGplBksw4a8FyXMAwQUnLo0OF0HgybIIgQQuN3pslm82zctBlhCvKFHFIaqdImNUJpvEweVW/DI8+iH9hPPFyi9dY9hP/xw7Tech3WtTuJDcmKoQHOvjyG7eVQpkQSUMiZVMfGGclYdFohpYESRa+M5ZSpK4/dN7yVJx8/yMZNm7j7m1/jLbe/kV3bNzN2foqVI4OsWzmM1ia1uk+t2mT89Emuef2tEEfYboZYZlFxl8cfeYZSMc8vf+h9rFq9jicf2UeunGPT+o1UKhX2P/UUm7Zs4Qffvptbbn4Dff1lbA+OvHCGO978DkZHVrNt/DyeqZi5eiOlytr0fwPsz9+NbHVSo1VeQDmEIFXwtU7nM24jtE+77ZPNV+i0p5EiSSMATBvXzWKaNvOU4WhsU4AKCILubB3WXMo+bJhYlk232UAnCUGYcO31N1As5vnkJz/F1q3byBdyKJVgWgaGaaRAixBInRqw0kjLs2gdE0dpfdnRtetwLQEkIIw0KhcDQ1okiUYToWZzoiM/JOj6WKZBHAUoNIa0Uy+5kHS7HUzTIAoTpLTmlRgpLaJYoxGoOESaFn63hSEchLCQhkGn2aBaa5DN5bBtiz/70z+lNt1g0+ZNIMBA4NgGCAMpLUzLRmvSGqoqTsnETBMNDAz08fxzh1mzdg3fu/ce+vtKZLwspmFSrU5Trgzg+xGO5SGUQidpXWJhT1Gt1lgxeCWdTgfHcTANQavdptvtYNkmlmmwbt1aMMDJ5JFnxjjwzXsoveVG3v7Wd/Oed/4coyOr+be/9nHe+Y47yJWLTFenyGWLnDxxiI0bV3LsxCkGbr+R77z0ZbKVMu8Nb8A209q1WikOH36RWGmK5T7ioEv88nnyhSydgonnFWh3ZigW+rAsj0QnSBQvvnSajRs2U5s4R1+lnziOabe7GJYm6AY8+/wRTBP6ymWm61XCIEUf+wcqnD93mpGRYcanpjnV3+S+0Zf5/PAztB3F1miQdqdNPPv/ZbM54jhJnW9AEASp4yxJIElYeyJk26Mtbr27xe79AVE+w+eHpzj4f9/CsTeO0liRQRiCOOxSzOexTINms0pjehK/28XJuGTyGQr5YQqlUSQZbBFSPX+aDV95CVnz+a1j32brlq3Yls32bdvZtWsvJBHnzpwligUHDzxLGIQ8eP8POGuM05ipU3jCYP3qlWSKJXzfnzcYhEgNr+WV+oW/9TK/Lh3munSo5uJSKAvX2aUQRK3p+b74vXe8l0Qcl9APlgrrnDOyl5OljOze3+4a+xYA7xh625Lz2YuSvpL8KIZr71xcrryakOOlnBCvhMAuHFtvqPKPMpalZGE/vaHDl9PWUue7rB6pe/6rRWjMK7R/EXKzYF7lbETCXFiivrjE0o+jvFYO5zVZQhRCKjQxLBH28kpyqQdmfOZ5VGMCWRhiUbzNq2gbFnv5FjUjmIdvFz3s7n4w/e3tNy9qrzfEZE6VTmnu9YUQY6XSmqmzhnLvy5By/rMUYp7Wf47YQQiB0KRe469/H/nyGKcKDplskSBQFEt9aAUCjU4SHMtmaqbBqtUr8cM29RmfbrdNNpMhCH3CMMTLeghp4eQKGKbBw/vup1TK0TcwyKoVwwhp0fEjMtkcwtBoJalO1HjkwYdYt2aUDVu2YVk2CMFAf4Wp8SmyNvzwmSdZtXYUS0O9ExAmMflSibWr15MvpIhBqz5Fqa8fL2PRaTUp5svM1Du0Wm3OnR/jqqv2Yjom5UofQktM6RDJw2g0FXcvW3ZuohspLC9Df7mPgYEKpVIOpWOuvmYvyk9QSZckbuG5Jlo6JFGCTMBxPZROGB8/h+O4YJucfnmSfNZAaB/byaGV5LlnXuTs2SlsQ2NYDt0gxMtYKdOqZdJtNuh02piOh+14WIbmBw88TGVghPvuf5hdu7eAaREnCSrWBL7GtBRRApNTDfr7MgRBRDaXBSnwMkUkmkTFYKb1MqUAyxC0Wy2IA+SjzyEeeApxy1VYf/wbqPfejrHnCgwnS7fdophzCbszTLTqVNZuIazXqZ78AUFnjJcOH6GYW42QK9Fmga17Xsd3H3qI0aENvHhqnIHKMA/f+11Wr9vBTLfK5o3rqU9NMbhlCy8ePMqXv/DXXLFjN1/94pfIeSZ3vP0tGNkc518+TyGbAzMm6hg89/RTDFUqvHDgEDuv2MGadRs48MPn2bRrC0rGNDt1isUyw6u38IWvfBZLF9i+bieJ6nJ2rE0pL1lz4jieY9HZuZZyXxFlZpBjVZw/u5Pk6u1oy5q9L1KjVQBCREjDQJguXT/GtHPkyiuRmT4st0QmP0C3PU3GiEi0gTAdJBotLEAQ+Q3C9iSel8PMlkFoTEHquFExjWaLYrFE1+9Q7CsQxzGbN2+jry+P7ViAie+3AEmSxGgSDAnVc2l4axDGWGY+Vda1ielAtTqB63lomf7XSeinzw5pUBs/Rz6fI1YWf/qpTzFTr7Nx4zoSFZIkAs9zAEkYhri2ixAmWkgSRUq0JU1UorFNC6FjLDvN0TQsgzhOMEyDMAywTI8vf/lvGSgMkrFaXH/dTfSVHAy6eDYomSeKTISRgIqQIs2mMEwLIY0091YpVBKT8TKcPn2cVaMjDA0MYjs2Z86cpVgo4joGpiFTMi0pmK5NkslksCyLhHNIIcgYoxw9/hIjK4axTYNucwYpDRw7S9fv4IdNdKxAxHRrPuU4Jr71Js6dOcPU5BnWrB7lu9/5Hkkk/j/23jvIrvM88/x95zv53ND3ds6NRs4gQTCJQVk2LWlta8oae0fjmnWS7Vl7bNllex3K3plZ21JpZI+lXVlWomRLokRREkkzijkTzAEEiNBooHP37ZvDyfvH6QYuGg2QtOQtVy1fVNfFved84aTvvM/7vIHdOzazbcs2Ur1ZIino6MwwMNDBsUOzPJZ9GXl0kg9c+5/xDp9AYFIszdLbmyefz6Mp4LkNrEoTRVFodTjomk554RSqbqFbaVSpU67U2LV7D7OzM6TtFGEgcF0Py06hW5IQlfHxcZAS3cmQTmUJgiYdPd1UyxVSHVm+kX+Z3736Qb7ffZjTThVzOuDqaBtqHGPaaTTdwDQkQeCtlFkKUWUK34vQpGTrCxU+9J06Y5OCyvZeDn54gPt/azuvv3uQpTGHTGcnRBFSBIT+MnGY9KMQoakxltXAd2t0pDMcfvkwqnsEjQLLM8coFmocPPgMN8x1YadSVH7+CkbGRujq7UZIjaVCjZdeeY3LrriCer3Chk1bEYrO8OhGsqKDk5lT3F14mKf+z4P0aiU+89efIt85yBe/+l16+zqTcj2qQGoRkTQI4gChgR97SOSZsjrng7qzrr5RFK54K5z7e7sT7lpAu1pSZj3WLhYxMUkCG0F7DfqYeMXQFa/EiEdxhFipZX7uSz0mjEKUlVI5As6oKe2usavjXgi0tjON68VJnvEaEyIBrjF8qPenzgPja8HTWk+w9WQ9YLiWtVtPV2s3ErQbBy4UD9u+z3rHvt7+5zGOa87nhY5jve8XkvWA4nrM78Xat/fxRuO+JaAcny3ZBGLFJTg+CzDPbX3OfM7re0VrjWPOAOAzcxdrNNWVUldrQ+RWn4/2xGb/luVt4Pq2rCOrsZ+rcSM/PnGf+jbR0km0jZf/yH1d0AoWn91+ZuG6bRW4Xn9mW7uceTFwftvVwt5rXVjWezFcaPtqn4sLCzif/BrNnE0zZfHyK68wMNCPUMQZcFwul2k1XZ5/4QVKpRJSKNx22x3s2Lmdw4ePYJoWd999F7t27wIEleVFAr9FV2cnmY4OhJC4zQYAluVQr9fwPR9d1ZASTk6cQEjB/NISPfkskydPkunoIJ3JkUo5bNu1G8MwOXVyksGhERzHwXM96rUWrx87Sr6rm1JxmQhQVYnn+qTTGUzLJI4jVFUjjgVx5OG7Pl//x2/Q09uPnZ9HCIUnH1hAUSRd3d3YpkGluERnVy+nTp0inc4wNzeHUFSQMU46Q6FQJpvL4bVa6IZGvVEncR8TaJqO6zYY6B1B0xWKpQphkCgSnV05BgZ6iSKXbGcnhqkzMzNDV3fPClunYhkaUiZlQUTo09vfhamnGB4cw0kLfD9hpqTQefbZZ8lkbUCysLjEpo2jhGGEaVooUkEQ4HsBpmUnCVOi5H6KohBjsYK44wm8oW7c//FbLF+9BdmRoVxpYFtpVBnjuQ1yuSye26QjleXQY3ezeXwjU+VFJl86xIEDH2RqYR7TFDzw4N30DfQxMDiAYWXoHexFlYIXXngB0zK59pprefbgs5QLZY4cOsL9997Hxz72C5w4dory3ATjqQrd+Q5CBB25Hmq1Oq4XcPzEBNdedy3lWpV3vfs9PHr/vdz/4AO894af4Pbb7mR4cDhxvZ5ZhNhg797NDPaPcNNNNzI+PsKp6RlMzWOsOEXVrbM40oNrBKQ6RtG/8D2QCvFI3xlGs+1pSf5igRQS0wBCL2FYowCERJM6ghgldomRKFJHyCQWFAREiWutInVCksy6cZi4kFYrFbKZHKViiTiOaTQbqJpGtiOH57cQQiGKWFFTlTPPuyI10ikHpEYcgyoNWq06AkEQRdimjVQ0IlQC3yWOQlRVI4wFtuMQhD5BEOK3PPbs2o0qFZYWFjA1jYXZWXzXpVQoMDc/j2WaTE6eJNfRga7rSRkmJUaImBiJUBTCKEZRVEASBhG6roEiueTS/WQyHcR4CM1E1UxMO40fgKrGSCVACpE8V4okQsBK3dgwDM+6USomo0PDaIog8D0sxwYEQRAiVI1avQFxlGQhVlSiCBr1FpEyj2EZmOoo3X09LCwtUigU6O7qolAsAWDbBo6dhBVkMimePzHJ5kqLU2NdvPtDP0l3dw+pVIYDBy7j8JGXecc1B5J4cTvFUH8fQeQjFImlmdzZfAARx3zwcxPoY/2USmWclIGhOxDHNOo13FaDdD1ASpWGkyR56x0YYPJ0AsSLS4touspysYJjpxK3bD1h3ReXltBNhVxnP4rUMC0HoWiEQYiq6YDCK90VfmfLP/NAzyTvLW3luvo4W5tdjFv9qKsuecoqYNCQqoFQNIRQiaIm9lKLD99SZ3xa48lf3soD/2U3k/s7aY1mgJA4dLFNlagxT728SK1UIPZaREGVenkZr1WhVJjGqxo8+tAj5DIm2YyK1NKUikViLYvu9PHIY0/x7hM6mWyWrxmT+H4CzC0zhaar1GtVHCfFY48+TkdHjnK5TDab5bXnX+OKgf0UuksU31Hm5B3HMBoZ7rr3Ee5/8DGOvzzBH/zuH/LTN/wsWbsTNWohIvA8H1UYKOc94+e+G9sV8bfKDraDq7UAo11lEawBfJybobgdGK7LAJ7b2XnzeLPzXTVir7dtdT63zt0GAj7c96E31C3e6rb1GOsLtb8QgHyj8S42h7XX+q24Vf8owPWNfv9xMtdv7dysvZku5vn31gDzucztmp3jN5rnv33QCm8D17dlXYk5W8/0/Bv5jeIF2i1Ua7etlsNZBa5vdlFYz3K21nVkNWtpu3fPmb6zKdi9GUb7z2xrtyCemXNbf+vFl6wX8/FGriTtfTi1FvH//W3U919FR66DaqnE4GD/SmoJwc3f+S79fQP4vks+l6Wvt4+OXDfbt28jjiJyuS6OHHmd666/lmqtjO3YyDiEKKLleSsg00VTlSS+Ko6RUmBoBsVigUzWZPO2reS6uslns0gish0daIaJkBot16fluhiajmnalEtlnJRJtVol05FleGSEWEA2ncYwDXTNZOr0DJVyiY58Dl3TUaRCKp1CEjA9M4tlOezddymt+CWkoqAzykD/KAiF6anTGJqgWm8xMNCPqmpks1nCOKZSqaJrNqpm02zU0U0DRZUIRRDGEZpmoKomBCGlYhVpqDRdhaceO8jIaD+GqRCGHplcFj8MWS4U6OvtwfdD4kgyM7tMcXGedDZFFHk063V0Q8XQbG6/7U527x6n1UxiBCOSUiGIEMtOMzQ8SBS4qJqx4kqqEPo1NMPG8wNUIYijlWzcR04TP/gMwe//R6w/+EXSfXmMTIrCcglN6Dimw4njLzEyNEipsETGSbMwt8Q9N3+eXfuuxOwe5qXHXmH77ndyZOIVFOEzvzDD5q07MIwUfqzy/FOP8vqLj3P5tkHStZeZeuVJ7r3rHnKWwqWXXMOBfVtoHb+Vkdr97OBxHG8adeYBOHIz0ZGbUaYfovzKnYxd+i7MXC9WOkPd9YgaVU6eOo3QNG543wd56MH72btnNwefeoGvf/Er9Pc6DAwOcOllO/GDkD379wMBQfQAje4SFa2PgfFLMWYb6N++l/Ad+0CeX9pi1QItoohmvYLbqiDiiChw0ZUI3cmjSI0YhXqlSKvVQCgSqZooSgRCSRLvxDFBrCTGkzBElSpe4JNyHIrFMm6riVAEXV1dGKaOoialkZ579kXK5TJhCHfecRdbt23GtHWiCKI4YY2kquK5IV/96pe44oorEFKHKEaRKigKntvEWqlPHEaAIlmcnydt6jiGTq1c5PTJCbKpFFMTJ/CaDUQUUiuX6O3pZm52Gl1KVAXiMMZzW5imQRRHxCSZroWQlJbrVKtVUk5SxkkREj+CCB9V2nghGKYDioGQJoIWS4UZTD2NHyernFQUAs9NshSvrJ2KIlCUCNet4HoVPK+Gk8qh6waariM1HcM0CIMA29QBjVazxVe/8jXGt6awHAvoQwiBaZp0ZDtQdZOF+QX6+7tXrreyElPcItfVg95qkjp8isesJmNjW/jEJ36P933gOg4c2INtW+iGoFJYplGrYhoOXgCBV+Xu2kPUJPy7hw2Ckf4kQ7eMEZGGqgpqtQKqKrArAcRQsWKkCFGdHI5loUlJsVgkij1ynf088ugTjG4YI5XOUyjUGRzciJ1K44UBYSRouT661Hj51ddY6o35g2138Pd9j7HBy/O+8hYykUUUhmcYxliQsBeKRMTxSqxkBArICPY/VOenbmty8vp+7vijLSxvSBNGIW6zRtCqEQctdDw0CbVWg9ePnuTgc69SbcRUGiqDo9vwIxOh5jCyWTZv30+hAq3A4d4fPsq27btI5UfQ7S5qTZcbpiykIrlRn2Djxo0szC+yXKhwzz3/zNjICMdef52ufCdBGDEwOMALLzzPxk3jbBjZwEBrmJnFGU5cuUhjf0SwI+QLv/559m8b49d+9aO8+vJBPvuZv+PP/48/5qEfPoBX99i3YzeRuv57ux08rb6D20Ny1r5L24Flu76wVgc48z5uY/nagatYde1oW3vWY03PAVu0eW2tzGdtMqCLydo+17opt89t1VX4p/s/fL5Ow/m60hsZBdZrs3afi7GK7Uzx2rZrj7+91u/qtbgYE9t+H1yMrV3vONuv/8WY7vXOxVuRf4lRZXXsN97/3GMQ4mLt3hrgb98vXrOPuAAwXb0mcXw2dvutHvf/l/I2cH1b1pEVVxvgzVhg3qylDM4Hruu9qH4UuVDMqxgdQIwlSUPa9137udo2iqIzQHV18W6v4dY+77Uv0vY25wXkFyvEdz6GsmczcRwx0NdHsbCIblocff0ofb0DDA+PIoRPPuvgOCnKtTqmYeA4Do8++iSmYbJz5w6CyAdiNDO9ktFXR1FAKiqtepX5hQWaLRfHsQmDiKXFeZy0jdQtwliyNDdHKwhIpdLMTE9jaJJXXjlEX3cOt1kn5aQolwtoWoSqSBzHol6rokoFVcL0zCxS0VClSm9vN2Eo0A2dUmkJ29ZwPZ+ObAeD/X0oUcSJqeeIfI3+zv0gQUiFVCbL4sIC/QMD1Gp1dF1PEsDoKh3ZLF/58o309Q5w/MQEQ8PDKKqK6/pJTUhFo1Jpceed92BaaTo7s0xNzjI5McUl+3dj6BqqahIrImHnUFDxWZxfQJU63/zGzczPLzC+ZRzDMrAtB0WmqTaKjG0Yp+n6pB0bRYKQkpRj02wlDGkYeUhiPD9x4fQDn8BtoZsOilQol+ZRI4l87CXE1ALixv+GcuVWoshlYuIwdscwpmGTSVu0GkXAJ/RdpJBoiobsSLP9iuuZOFFi8fgxNu6/lo4uiy5HZfrVJxlRCzSnnsE/fg+1Rz7JeONhhupPoS48g2zM4DSOsSc7xQivok5+F3XyB9hRkQY2c4yR33w5Ws9OClEnTv82YqEjvSK89i0aL36L2tEHOemPIoTO0aMnec917+eP/+T3+NjHPsoTTzzMpZdcylWX7iGdUzD1LKemZ/js//w8B665nomJU1RevhVVtTg0Az0DOTq++wKyI0Pc13n2mWx75iNCojCiWSvjuzV810M3bbwgJooVrFSeKIYg9JGqjogDDE0S+IkbuBAS120gRIBuppOkZFIiFInrtlAVBd/zUVUV27JQVAVVUxMXrUhy8OCz7LtkD45js2fv7iS+0a1hqiZxFFOrFjFMC0Vo7Ny5lVqlhp1KAVES96xKdE3F91yiFUOHFoYsLy5h6gaFhWk0BUQcUquU0HUNyzKYm5um2Wzg2BZes8Hy0hKtRgPiALHiNuz7EYausTg/j22ZEKtEsYthKMQxiChKkkFRJ3AF8wtLpJwUQomREoJQwUnliOIYRYBCDJFPubBEw/VJpVKEYZI8p1VuoSgahp1BNzOIOEpqJ0cx1XKRZqOO7aSotzx0TUOqEikluW4Pw9DR4gFUoRD5AX4YoFkpcpl0kj05Epw+NU0u30Gj0eShBx+lb+sYmdencX72eqYWKtx111388q/+AqbhoKkWpmlgZk1iBIbqcNt37qB/sIsH3CeZnp3jA9f+CtlP30Tmj36V1pHXmJ1ZYLm4RCadxNim60nsdNXWCYMIaRiYmqRSq9MzOAphEyfVxaYt29ENFd+PEqOYoROKJoQxxBGObXFaL/KFS17gLzf/kH4/zU8WdzAS5hBxkhVfUZQkk70iSJIPJfe3FIIwaCKI2fpsnQ99o4SDxvd+Z5DD78qBInDrZaQSJnHd5QVCJG69zje++V2GhjaxXKhy2WVXMbphjOGRjTSaDQ4dOkRf3zCWrSGlQrFYYGh4kLm5eYY3bSVyAw6/9irDQwNc/YqbzOXj76XlNpicPMGu3TvYu3svcRwzPNhHd3eezu5+CssFxjaMMDw8yPJyASl1ovmAfZ17mS7M0Ops8XX/a9wbPMgr1hE+MPoBrtr1ft7x7vdyxz/fxsSRV6gsTLH/uuvOPOcXA1zrZb1tB7IXAj5r37tnlHOlbaw1jGs7qD1HP2gzTLf/KeJ8JnctU3sxebOsXxRFlIIyo/Yo+7J7z/S9XvzwG8Unvhlwu57hf+3+F3KRXQ/ornVpbt9vPbfqtdd87blvdwO/GKP4RudhPT3tzcqF7q+30vYie5y7r7jYGG8duK4d5ixwfcOZA+fqsv8WwevbwPVtWSMRURzASkr7tVWQzl0EVheo1a1vfIP/SxnX9vHPY3zP5mc5B3i2tTrTVonis14ZQhDFXpIdUYlxvSYyVpOMpUkgDNVyk4NPP88t37md//mZz7Nr6w50obIwOY2um0xPnkJXJI1qDV3RCKLEVTYMQqKWx+L8LKdOvM5wbzd+qCOeepF4YhqGukFAHIQUC8uoukpPX8IC1eqNpDaoKanWqvzgez9g3yV7karC9u0bsawUmg5Li7NYeprpqVky2Sz1Zh3TdojjkGqjRirVSS6fRhGSOI7I5fNomsPM1CxpJ42i6JQKZXK5PLl8jqnZWYb6e6hUq+imjWWnkCo4TgYpDaamC3iui2FqSZZiLY1tSVpeDcPKUClXOH1qlvm5Rbq6ulB1HcO0qDWbKKpGztlGYVYj392N13Q5fOgIXV1dZDvzKHGMYSbsZRCFRHGIUCSXXnopUgqyGYdWs0q6owNdtZg8OYGl62RzHcgwoncgh2HraFKwbe9uVEXguk1iGeI2mpi6RFUUiqUpBvpHaNSrbBgZJ9+XZ7B/lHqtgKaqCEVD11UMXcFv+fhuFamCrhmgaoSBh2FqqKpF4HtIw0zYlchFIVHim9UGzsQSyj1PEW4fIfjcJxDDIxgKBGGDXOcwp48dZ3Qgx8kjz9KqT9EKY3rSOe6+4z6OT81iyF66hoZJZUw6cnnc44/gP/P3iOc/S7Z1DFk/RYoqWtgktHuhYzOy/zJa9igytwE1N8aThwuUxAATRR1nw1WkNuwllRsilUmvvChVJqdn6OwZpBZolOIsDWMTjUjSpZXpW7iVdPM1Ore+k56BQd71k9eRyuQRioPhGLT8mB98/z68VosoqPATH7yB09NTjI+PYy8fZGlumrteqDGs9LP5xdOEV2wnVjVELNqWirMvZa9WJnAbhCKmo2sYP1KwUh2YTscKgwWqqqJaNpEf06hUUUSAaupEqEi/ThBDHKvoWpIVN4otBDECSa1cxWvWKCyVqdZadPXkqFZKGIZJb18fpmVi6hKpRLitBpZhoigGkSIwDBVFaESRz9JSgc6uLiRJlmDdUHGbVUIE1WoN27KZPH6CWmkJt1nh6JHXCFyPIKij6SFz8zMIFUqFZXRVRTUkXquBHyrEcYgmXIRiEjRdJo8fwzYk1ZqPG4Blq2gyRCoCy7JptpropkkY+ajSJIxDHrrvATZv3kjLS2K5lZUay6oa49abKIoAqWGl8hDHqEpSSsdrLhEpGn4EoCT3iFBRtWQ9rVSa9PYN4AcRUtUJwgCpqgwODiKNpWRdDnqp1apEkU/acZCAH3o0W2A7aXRdJYp8VOmQ78pg5TJolSb2a9NkPvpOPvRTH6qCl/oAACAASURBVCWlxiyXarheg2JpiVZUIfRVLCNLV7eKECbH515ke2YzvVEfLyzOM/IPt+KO9WFm8nR0ONRdl0yuC7lQQyCQQ31ohkFIjKpbqLqDlAaoJkJKWq0mQlEJwxLZdBdCChRFEPhNNMvhWfUEH9v6LSIRcc3kINsYRArlTD6FOHnBrCTDi4ljgVAEMg4QQcDOgxXed1uLDadj7vmYyWP/6xDNvEJxucDMzAyF5QLZbAfVaovZuSJPPPk8I5t2cNnV12BYaWIpefXwqwyPDFMo1SgsLrFl81aK1Rpx4NJslpg6fZrQFzxz8DmuuuJK7rjrLirLZUI/5IqXWqiaystX5RJvA8PgpZdfIt/RwfTMNMPDYxhmCiFgcnIS21LIp3M0mnXmZubp7u7n1ZdfZczehDhtsNPeiV9rUtbq3Nj8Jvcqd7OgzPJ/feQv+No/focfPvg0lfkprn/3NaBYQIgWxahxhKcEiPhsaZn1wFK70rwWJK1lCtvBbuJxlfwpoq18zZnVJuGc4ijZHoXRSj6LlZVoDcCKE99KEGJNGGySuGktiFqd03ps4XoAsf1zX3YvezN7zmvX/v1CNUgvBubWa3shpnW947nQvu2eZ2v3W3WLbgfg67Gja8dby9Sul0V5vXPbru+1n483W8bmYufwjXTUtedp3THXxLQmZXCScCfEG4DDM3GvK6UYeWPDxZm/M/8urp2fbXPmdk+8xc6EDbbHwSafb0bf/9eSt4Hr27JG2tnWmPXK9559aNZa5N46cP2XyFrr3HruD+e5KD38LPHkLNFYP5E424+MJIQCESkQCWqlBjd+5WvEIVx1xdV8+f/5e957/XX88R9+gnplke/e8l2eevxJvn/LrVyyIcfRF5/la5//LIefe5qbb/oG3/7GN/mHL36Z3/nEJ7jxy1/hvTv6SNs6PaOb+P53v8tmTChWoCMNCMIgxHEcdCNJOCQVlZMTpykWipimiYgVdu7YjWlaNJstqtUaitDxPJd02kZKheXCIvlcloWFOWzLpNUM8DyPf/zat9m2bQtRFGNZ9gqrInFsm1q9ilRjfL+B7dgAOLaDaehkshlUTSA1qFbKSQKkSPLFL93Iu975ziRJVQRf+sqXufzAfoRQCMKYL3/pq1x++RU8/vjj7Ny1E9PUmZ2dJZvOYpkmCwuL9PX2JzF2scrs3AK9Pd1EXpNm00WqCYOjSGWlzI5JpVzh0UcfZfuO3WiahiIkrVaLYrFAb283zz3/PP39OTKZbmam5unr7cSxTZr1BEDU602yaZNatUKjViPTkcdzodFqku3ooCOXQVMNNB10zWTy1DSmqScsi+NgpTIoQlAuFZG6SeC3sEyDKGIlNsyh0aijqzqUGojnjyAffAaRS6H991+n+MFLyHT1oWJwcuppvFYZw05RX3iG5aVTNJo+nV2j9PVt5dOf/Fs+/LM/y9//wxf4wLtu4Pabv8l2XsF/7C8xF58gEDZBz5XI7h2UwjRGfoS5akz/2HZaoaBWb5DL5ZCqiqFr9PX1oao6u/buQmoGvuei6xp+4BOFMUEQsrS4TKVcJZVKk06nue++e9iyaz/2wG4asgfRWKC/fB+tiXuYKMZkMnleP/Qy+ZRGV6fO5m272LFrCyOjfbxw8EXK5Rr7du2m+9vPMljv597GMleVDCzHwt44SiyUdksXq2uG53kErQae72I5KUwrjW6sumEnWX7jFR1SSolUBKoQuF4dVbeQmoZbLyOkjmnZhIGLVAVekLi/+p6LbVkQQbPlsWHjRoQiUFUFqWgYhomqqahSwfV8pDQSYCMiUBQCz0NRdOI4JpVyiAlRcSkuL+J6PnYqiwzBbzY4fuQwSuwT+SFuq45j2RRmZujrzrM4P4ME5qcX0aSPqUdIQIsNKqUimYyF1CIMwyAMWihKhKIpVKtNXnnlEJqq09nThaYblMtVDMshjiN0PUmwFAQB27ZsSeK2TQPf9/iHL3yZffv2EXg+upVG0RSiwEdTBLrqUyzPoxoGAR6WmUbVDKSqImVSoigKQ3TdwLKtJLty6KNrklq5hEKceDYoeRS6kMJcMQAJKuUSmqajqJJyuYRtm6hSwdBNXLdKKmWjGyZBykF76Qje9AyLwz2cPPU6dsrAtmx6ewYoTFVQhMf07HHy+Q189R9v5b985NcZiTey+9I9DFy1k+bMHOmXTmHlcpTDFl25HoKmQs1I4XaplMtFDN1A1R2EkEipEAReUgar3mRmeh7LSqGrAkUxSfRggaKofKXnGf505C6uKY2ztzZA2kytvPNUhFBWQKsgCnyIQyaOHUNEEd1uyCUPVHn/LXWydY0nPzrMf9s1z1EnIJ9TabZ8nn7mCPVmil279+EHKg8++ARXXPlOdu/dzXKxzMJiAVNXyKRSREFE4IX09vTw/Vu+zXJhMVlnDQvLthkZGePYsZMMDfWzVFjkuuuuobe/j3xnDqcR8ejiMYJ3bGBhYZ7l5QKXHzhAo17FcWz8wOfwa4fo7e2jp7cPt1VDSh07labRbBAEPtu3jZHNOIxtGMLSVcqnyuzvO8AudScRIc/yPM8tv8Q11rt457vfz733/ZDjTxxk07YxrN6elUQxKqDSXoauHehcLAzpQsxfO+hqBz5na7men/gnjuMzXgYXYqjWsq+resaZPtbM6Rx35TXjrXWlXXssqzrNhQDkWhbzQufoYt/fDHu73v/P1tg922Y9udjxvRE50X7N2kGr67poK4n8zvGMW9Pfhc7dm2UM3+p833rbNb+J8++T9djUC4z4lubz45K1LL0QP1pt2x9F3gpwfbuO6/8PJI7DlRI4q4zruS+Ucx+KtfErnLPPevdL897PAmC97z+/wTzWv4SrLrur40RRhLLOg3zuIh0T/dp/BUB+4c8IfR9dSAgjZmfm+Kd/+ic+9alPoSgKhqZhGAa1Wi3p34vZf+kl7Nmzi4//+q9Rrja44QPvZ/OmjWzaOsrc7AJDgxuYnp6lK23SPdBHZ1cPKILLr3sXBzZ28cP77kGx02Qyaa5o5eHxF2A0qe/ZXCkdEUfJi7RarXPktWNsGh/nuWcPsnP7duI4xknbmKbFM888y759l1CplOjt62Rufpruzq6E2Ww0SKczhIGgXClSWm6SyZrk8jniKGEDFuYTNvSzn/07fvlXfgnD1PG9gGajhapIvvWtW/jJG36CqelpDlx+GYsLp0ml0xx+7Si5fA99fd2kHINWs4VQBbNTswz0D7JQWKanqxdVFVSqFdLpNKVyAcdOEcdgmgZhEHNqcpLu3h50U9AKAjQlplFc4sjRRS67fD+6oeF6LoahE/ghzVoT13Xp7O6jXCnSkbHwQigtL5FybKxUlkplGsewEzdNAjS9AyUWhAgMx8av+yiK5KmnnuHSy3ciFRvDFPh+yOzUKfr7N2BYglOn5rnpppv4xf/4MRqNMrmcgxA2AjBNiS8sDDXCcxuouoXreSi1BsbxGZhfJq7UEO87gPrz72OpyyLf2U1hdh4nmwOpI4IGUeAjZB49XqLVUvjM//gy1173kxw58TQ//7H/QKPR4Ohrh7lsvIPmw39Go9kkM341nprhnnsewrIsrrr6EsIgxnFSNBo1DNMmCAKmpqbYuHEjJyZOsnnjBirlKm7Lx3J0olhB1ZQV92mdyckpJidPsnfvHqIoYnp6mtHRUaQqWJidY3zjRurNBoEbcOv3vse7L+2jS6vAShwMxBAHKNlReM/f4LfKTE1MIc002XSG0c/eSNBo8k/zx/hP6a1M9Nl0bt1ER0//igLbvoYI4jCiUV4gJsZI5dFN81yGov3hFglj0qoXCZpFdDNHpGpIv4EwMvhBhKknjOvCYgsl9tEUSbGwTIzC4088wYd/5qdJd2TwmjVM00FIhZgwydAYC1zXXykf5SF1EyUOCMKkJnKytsQszZwm05Fjfm4RRdFYnp/FbdbJd2QoFQsYhkkUtSgsLZFyVKQaMTLaR7PhkXLSCKlQLBfpyDjMz8/jtjyiQCfCxvcjOvM57Eyew0dPkElZbN++m+VqnZ6BXmIEDz70EO993/uR6ppYsTCpsxyuhiz4MbqqEsYxXpTcy4HXSOLRhY4X1JBKmpgAIXwUxSAWSWZjomglEdYKuxJGhH6A13IJwiBJPGYYmKZFYalAFCelgzq78+giotlqgWIQxdBo1kk7Nq1mgzByqdddurp7EYrAOHoaZaHA8p//BnOlJXJZnVqtQalYpTs1zKf/5k/5xB/9Jn/xF5/jvfsv4fJrN+F5KnPzU3QPjJKyulj+4s1suu9VjmQNrB6H4X0bMS2DkFQClGKdhaUiff09QITnu0ipowhJGEbMzy/SlU+hqhZf/urXuOHnf5q/3nEPB9NTvKe0md4wQ7zieqqIGOIQ102yFnveStiGEIydjNn1rMfGiZiTl3Xy5IcGeNqpc2ziBO9693tYnJsjbDbYsHmMWMChI68zNjqWKO+KoFQs0dPTSxxDGMX4rRrT0zMMDw3TbLZ49dBruM06+/dfQoRKuVQhikI8z2V0bIzTp04zODhAEPjohoppmEyePMXyUpFcd5aFhUWiEAzdZMuWDUkWZcuhWqly6PARFFXnwIG93H/vI0yePMGOndu46qrLef3wSYrFZfJdnUxPz3Pd9Zdz+vQsR4++zjXXXMXTJ59nonsCp2HzxZGvYDRiXn3iMW78zhf5my99gU3btuPHEhmphPjnxG9eqC5pOwC9kEK+6lba3mb1c6077Fq2rl2viaKIWFwY7Ig1+s1q4q0L6Tvtx3Qht9v27ScbkwghGLNH1z22taCwPT74YmOs17a93YXibleNAOtdl/Vcg1dl7bzeiqw9hjAMzzNqCCHOGB3Wq426FnxfrAbrWll7Htb+9laO4xyGmzWJudbWXn2Dvs6ZR3zudTtvrAvcY+tte6MxLy7nxsH+awHm9eTtOq5vyxqJOQtIz2dc/yXWq3b5URjXtZa/M1bR6GxM6ernWosptz+cqMjvvxqCiBeeeIq/+atP8alP/yU9XXn+/M/+hN/+rd/k61/9Igf27+Pff/QjGLpCsdJidn6JX/+N3+HP/+Kv+MY/fZO9u7dx/fUHuP2Wm/jt3/jf2LZpDCUM+e0//SS7du3l9ltv4ec/8tOM77yUademtyvPoSd+yNjYEN0vzMKxU4iRfmJiWp6XZAsNVrJ6xgrPPPMc+/Zsp6+3lyOHX6O3tws7ZeJ5HqNjo5iWhiDGtGws00YzNEqVKtmOTlw/oFwq0tWVw7LSBGEL1/XRDQOpSEzTQFEUduzYje/HzMwu0tnZTRgEmKbOrt2biAnQDRVNl+Q6ughDn6GhIQzTJJt1WFicRVUFhmUiYoFlpXjl0CG6ujpQtZhUyqZeryUGAk3DMlfiBOUPyHQvorGF2IvQTAdNtTFUi2effYnevl6clI2iCKIoRpUqczNz5PI5gigkm8tQKS0BCfNl6iaK1LDNXlqNEnHokUr1giLRdJ1qs4ZuG0hVoVqvIKQglbHRVBNFCsIoJt+RYWmxSLPVIJXKs3HjBro6uwkCl44Oi9t/cAdbt+4giCKEYhOHIVIKpA/qEy8iH38JZec44a/+e5Y+dgnRNbuY9RukOrL4kU0mnacRuGiOxKsuk04rGJbCi68XqbsBigx5z3uvxDCgf2yUp595ns3xUcTznyLIbOV4vZPOoY3EccjOnTsYGe1Psg535BNle2GGExMTbBgb49ixo/T29ZLJZJGKQNd0qtUaC4uLxFGIY2tITQMkqVSGgYE+DF0yMzPNhrFRlhYXsGyH2akpMlkHocYsLCxzzbXvItQ6OFlR6d/5bubcPNONFN0730E89yLxwisYG29gbmmWLTt3MzM3x4b7XkGi0qs6zHhNCjqksx2kOnJE8VpGIsZruritahKrbWfPN1C3/T8mIhYSz20StKpoK3HMke8i9RSqNFEE+H7Aw48cRBWCrs5ujh05zoZNG0ln0vT296/ETaorjG5MHIckJWliFBkjlAhD1wnCGFVKYuESxSFRGKMoBkeOnETECtlUiuryAtV6Cc9rEQQh5WIFz6sS+nXyHSnmi0327LsEVTdx0p20vCbHJ2rMzDTp6+/m7ntfZHx0FMfSadTLWJZkuTiNk7KJiEjZJrVqmYiAXEeOOAwYGRnG0A38MDhnbQwDL0m0JFXCMKJWLhL4LWqNJrf/4Afs2LEVVddAqkQoKDIgCuMkk3DoJ1lzRVIygShEVU0iYqJopexCCJZpoWgamm7SdD2EkFRKJf75jju58uqrUaTAbzUQCjSbAV5Lcs+9P2Tn9u1oukAqJlIamKaNFzRRe3oRr53guZu+z4b/9B9oVMv09najyICQiIHBQbaMb0QVNTbt2EOts4WfyrBz27XUKxUsLUP2wGaObxOMRXl6X5gEYRPLLJGpIhQJsY7lGERRSBjGGHpSjihx2YuwU0myLc/3CN7Rya/su4mmDPlgcTvZOIVCkn0ZYqLAI/BaOK6gZzai54THxoMNPnIXdB5t8fpVw/zwEzt58f2DTEZLDG7YxIZNYyhqRMbWkZZNrdngvnvv48r9V1FvtGg1PZaXi/R29xKKpL7u6dOTOE6Gru5uohWw3TswjGWa6IZOpKhUKyWGh4aQqsBxTKanFtA1ndmZOUxdsLxcwLQdhkfHsAyDqdMz7Nq5h5deeIWDB59G0wwsyyEMIzaOj3PXvfdRKpfYsWM3u3Zsx3YsJk5MEAGXXLaHkJBao0F3Z4577r6XUqlEHIcMZfvZk9nBtD/Njd7XeJVX2d97Hadefp37brmJvXt24eRzhFFEUt/6fNDaDgLfCJC1s4UXc8Ntl/NZozUgV5ybEGm9NeiMXgHr9tU+1lth8n7/0B/y8PIjfLjvQ+f0sba/1fHXsqUXi31tP59r53KxeV4IBK+2u1DbfymIaT+G1ftivf7bt70ZtvrNzvHN/vZmjuOc44nXZ1zfipydx7nnZ3Xbm6nN+uMEl0km/uiCz9S/prztKvy2nCNJ7VZgpSzEqqz/oItz/tbus/q9/Xdt4+UXBa0XsvS0L9oiXkmitPpJ4o+/qgQHSgwxKBGooUKsh8S3PoIC3Fs7wTe+8kUIAm75zs18/Lf+kF/4xV8jVHXCwOWO2+/hizd+ndHxTWzduI0ffO+7EKrcf98dbNrUzfiGIYRlMDq8gxdePc3v/f7/zl13/TP3PvQCH/rIR5Ai5qor9/LJT/0J3/z697jjB7fy6U/+DWObd5PPSTbMReAHiN4uRAyRF6HESarJMIwQkcLTTz7F7n27aLktNm7ZiJ1Koao6lm0jJChSQ9cNhBC0mk18v0k6lSMIImI80qZKrKrcdfv9bBjKke/sRNcjmo0GUagQRh6GIYkjWF5aJtOVxdI1UFVUzSbjWJw8cYowNMhmM5imgVCSWL5arUYul0dKk1q5gq4ZCEUwPNyLomoIRSGKFXw/5MEHHmf79t1UqiX8sIWemsH1PI4+79LTm+eL//BVdu7aQ9OtMzAygq6pPHPwICOjIzTrTSzTRjdNpNRoNiuYuoGuOUg9TBjcOKReXcbQTAzDJCAijIIEyMQxhmGhxJJWo4ZlmWTTHfhunVarialbhEGLMLZ5/oXnEUJg6ALH6qBcWaC7q49iscTY6AacXJ5aeRnbUlENjfC1Eyi3P0R4yWZqf/3rmB99L2GfTa5nFD09ysDgIJOvH0QIE8fJ0GqdxIhMGuUlFk7M8uLr8+Qcm6Hxcbbv20m5PEN5oUJzeZnRwvcxpu+h3nstnpJlYHAQqWkoQqHlVqhVKpQqPpl0Gs+tgx/RkevEyuYYGR5GeB6qYaBqOpquUywX2bh5C/VahdALmZk+hWmZSE1FRB6l5RI93T3ohkEUxwRBQC6fp1qtkcvmsU0TKSV+FGMaNlPTM/T399LZlcetlnllYoq+cJIT5h6E8Dj+8gny2Sz9j7+KJ6ChhrSCFnWtyPDITlTHwQ9ddKkRrRjIQtenujyPYZto1krsYVKwpS02p23tiSUQ4TVrEAUoQkc1LSQxqplCRH7SbxixcXwYw7IJApfu7jzLS4sMDQ2CAE1V8eIWqjRoNgpIEoNHGHkIBFEgkDKmWl5GKKAELYIwQtF1lDji4JMHMZSIE0dfI4w8vEYNt14n8kr0dEsG+zvxvSYDG7fx2okCl1x2Nc1WgOs1Uc1eNm3ZQVdvjieffpmrrr4KYZjcdf9BJmerbN+6CUlA5LsogKI4FEsVCoUCjp64rjvpFPVWE01TUVeSpIW+i9QMkElsb6kwx/FjJzh+bIoNIyNsGB/Fcawkri9SiKMV5UqJUVSNpEROEhPvBy5+EBHHAlVRqFULLMwvkU7nUHRB5Hk06y10VSfgBHYqYMe2S1EVSRwqoEqEohHHEaZusHF8mEazgkASBi1sW6dWLWGbJmqjinJshkfftZ+t28d58KHnuOzSnWjUmDtV4c//7E/4mX/3vxCgIlSPTze+wcOlJ7lW7GBs0y5mCzPkuzuxe4eY37iV9Md/Fm1qAfPJl1DmyzTqDbSeNHEYUSw3SGfSEDWIvBpoBkLoyVphKfzt0EN8ZvRhrmiMsX+5FxFBHPgMTAVsOhKw+/kW7/hhnXf+0Ofyx306KzoDrkF1pIOHfm6Ap39zL3dGpxFpnVw2w/Mvvkwuk+XO225nZHAIROJ06ocBQ7kBAjVx1fcaVWzLRGomuqqixCGaqpGyLWq1KoVCgc6uHqZOTTFzeoY4EtiOzf33PkA6Y/PYo08RxS3iSEM3dIZHhkBxiEKfk7c/webOASqGwA9CWq06u3ZtA2HS8hrMzxfYtHUEzdDp7epj04YhbDvge7fczmWX7qN/aIiHHn6ctG3z1ONPEUVJbfN8Po/bckmlspycOMqLLx3hHRuuYcweYiKc5BZuoXmZwsShIl/6ky+g1QscuOpKFEuDWEUICJUWIjobE9muO7QzexfSCdZmvV3rKrxWF7kQgBNCJLEIbfufw+bGa/pSzo9pvZCsx7y2K/wAty3cDiTlcM4B4itcgliZg1DWj6O82BzagVT7Ma/Oaa3etvbzQoDuxw1S1l7TdkZ3Pf3yzfz/YmB0rY56jv7Zdj+sJ2/myM+CezgTq/omQOs5QByJIEnERyyShILtMa8XcdltB/gXu1YXYtUvfl/HZ06RWL052347S4L9+ONh3waub8s5krgJ/9uVMAzPScDUDmhXf9NjBUFMEEeESgBBSONbd/HMUwf51FP3UCk3+Pq3vsM1730fn/v8jXR29hA0W3zurz7Fxz/+a3z2c5/jnddez+f/7nNcdeBSfu6j72Zhdo65UxV+6Vd/kc/+7d/R1ztIuVrhhg9+gPGtW1kolfCrAdOTs/ze73yCwf5hfu5n3s/09AT/9U9/n+2bBpifmmRH0yIulKGvC4h59JFHGRkeQVGThaVer7OwsMiW8RG8VhPb0vHdJpOnpkhnkpIJqzVMFxYWefLxp9m1aydhGFNYWqKzM0cUxSgSejst4qDMkePTaIaGaaYQQmVpqZDEkJoGA339eKGHjGOkrlOrl2i2mrzy6mG2bdtFuVzAdpL4WB0Xt1kjjgXfuflWdu26lG/ddDOVapWR0SE0Vcd3A5aWljENnf7+Pr75zW+yb99eDN3A5TCKotDfdT1+0GDn7j04TgpVStLZpETF8PAYEQqvHzlMGEWkUincVotnn3mOvv5eVB0aNfjBrTczOjpIvmOIQ68dQqoKmq4iFJVYJDU8dVVJAGcqDcDS4iK5jjyGYdFsNpLsnyJmbHQEqSTs1MMPPcjmLWMcfPp5evu6cCwHqak4jkkYeShPvISYmCX8zO/Cxz6G0ZlB1WJ84bO8VEJRF5ifPkZHqg/LtiiXjhFEOkHQSU/PEL7TxxMP3s3173sP5XIZiYpppEnZKs4Lf0lUW8AduJ6HHnmaznwey1CJ/CbHJ44zPDTKSy8dot5yGRoeZrlYZHG5zIaN4/hRmGTTVEiSg62U5tA0FYhJp9K89OKLbNu6i1NTs+S6OhGaxqGXXkbTNCrVKtV6jXwux8mJCfr7+lhaWCSdyXD48GGymTRhEDI42I8QCrOzs3T3biDV0YMsH+PLd85y7ZVXsmVLJ4vFZbpPFpGmjvGOvQxPlDlJjY6ePuxMx8r8ojPup6Ef4PsNLKubWGgoWrRO3Hrbd7FSKD0CEcXExEjDIPRcQjQCz0XTVJrNBoaho0gVQ9OoV2vYtkWz1SLb0cnEydPcfee97N55CaoGQQCKTOLvNE1DKiq+72HbDiASA4Ki4TV9pKowNt6P1yzh18tErSaB2yCVVegf6gPh8MATr3Dg6vfQ2beBTDZPGAbku7pJpfLoqsGh116lb2gj0wvL7N67hWxHhqHBQcZHN/LII48wNjpKvVrFa9RoeQFSKtipFF7LRao684sF0qks5VIFRUp02yaSktD3UKVKHIdYlkkmlWVpYY56rciGLZsJ4wg/ClE1A0VZrVOtrtRz9SFOFGNVlUipJbG0pkm9UaB/YIBbbrmFHdu3o8iYWr2O57WwsgsI6ZGxN1NvVHG9BkIoSFWlXKmQy9tJ3LzUcJwM9UYV07IwLYtypYJ25BQ1TWHol27g5ecfobuzl2xHCp+QZ595gp/64PtoNFvo2v/L3ptHyXWeZ36/7+5L7Uvvjd4AdGNpAAS4iLsoihIlS56RLdmJR86xfGJnZM+STDKTcWJnZpz4JM5J7OM5GVvjeGTLI8nWQonUZlESSZDiAnHHQmJrNIDe16qu/dZd88ftBhuNBghSdv4xX54+YFXd+y237v3qfb7nfZ83RbbQwdPeT1BkmU/1fZKG06Srs4+XXnyDr/z19zj6/Is88PAH0D9wG9KlBS5fuExypYZ8+jLRw3fz2Of/kv0Hx+Pw2jDO3w0J+PPii3x26K+ZVyo8uDTEAEWsis9dP3b56DdrDEwGRKZBpdPksY5FXvxn+3juV3dz9hMj/ORWnfk7+5nXgt/nmAAAIABJREFUAxRZ48kfPEUik8O2k4wMDbOwMMfo6G5c143XJjNBw6nhOVVqDY1M2mRpaYlisRtDT1BtVHj2mZfIFvKsLi1hmiaGYfH008+wf3wvbadFo1Gjs6uDhG0yMNjP7MwSpVKJ8fH96LrKD37wOKmUTb2+xr94UqfnJwu8eW8ORZHp6uzh/LlJ5ubnuPPO23jpxVfZv2+MSqXBubMTzM/N0NXdyZ6xPRQKBT73p/8JIeJKVvfecw+pdIaenm56e/sYHh7GthPkikVuu+1WirkMmitRcHLst/dSaa2xdnud8GMGXIyYOvoUwYrD0P7dOIqG7qtE4lpRppuN7trqdG8GhG/HQl3D5m4lxjYDp03vAYRbxrqdKvF2LPFWELth3158C7heNYYtYw5vcH22Xo+N+W8G81sVfd8OdP//GQK6ub/tGOybYfRu5h66qbbejr284adbm9r+6K2RgdsD8LcY1g1y5mZHcj3G+acd99udc+183gOub2vvAdd3Z2EYvqPY+7ezm4uTv/Hxmx+AK7twXM3Abj5WCIFAJgoDDCWkUlrkj37nd+g9NcP+8XE+9ie/j5nO8fSzLzBxaZpPfPQ+nnrycbqLCb7xta/wc//go1RrZR595KssTV/m13/zs6ysVrANnf/uNz7NxPmTfOTDD5FIp5h841keevhjRHKKY8/+hJ//hYcoVVb51V//DN/5wXf5x5/9pxx5330kc3lyhQLPPvcCtq5QeOkCYu8QQpbJ57LrYibxomToGjt3DjM7fZl0Kk3bbaNpGiCztLyMaZkoioYkYgGjVrPBxPmLdHZ1EUURQRhRrwdcvrjIwGAfi0suM3PL9PcP8sjXvkuzWWdiYpJKpUahmMFvt7FSFt/86tcpdnSTL+RQdJORncPoiiCZTlEqldA1nZWVMk3HJZsvkEikSGeS7N+/l5Gdw0ShjyBAQuX8ubP09naiajK33HKY559/gV27dhEo5xEINMZotVyS6QRtt0nk+7iug4hAUlUkVaGj0IFt2yiKTETA8PAwshzn7uZynezatZNWq4HjNMnm8iDCOL83AN/3CAKfttvGTiaJQg1FNkkmE3iuYGlpAVmGarVGMpVFliXW1kpkMmn6e4uslpbZu+8gZsKO1YSJNwvEqYswu8L0v/klzMMHQW8gB3UunrlAvriHdqtG2HDIpzqxEh0sLrzB5OnT7Bi8Ezmt4rV9FFWitrrGl7/+OHccPszK0hITx59Beva3SWQ6Ob4Yhyvu23eAfL7A6vI0hbSBotuYVprOzk6SCRvDUAnCgFdeeY3yaplCIYOmqzSaDooU/7i1Wk2EgJWlJSqVKnv27OXCpVlee+VlxsZGMG0LXVZZXV3F833SmQxzM3M4LQfXcRgaGqTZbDF9+TK6JmNYJkePPk13dzepVAZJFlycfINcuIQ89jOoySIdXR2kc93w5N8gaR61X/sV5B++wFS9RgsHXUthJzNIIrqyDxv5Ae1GLQaMmoKqamz80IVhnFN71e9nJEBEBK6D59SRZYkAQcIwEYqFKsdKiEISaJpKGAlmpqawbQtDt/ACH93UyObTHBwf58TxN8kVspw7d5m20yaTTcfrjBBIkozTdlFUjZYbEAUSJ18/Tv+OHlQtT8K2kZUQzZa4OFMhkC2Gdh8kke3mjnvej5BNVFUmkcyg6iqKplFrBDz2zUcZ2z+MoXXQ2VlE8UOc5hqFnIVpwvjhI2iWzXMvvMiR2/bTbruslVYhcDEMk1qtRiaVplGrU8jlKZdWgDh83mm3kTecVUVB03QGhwfI5nPrObxhvOYImQg3zr9aZ1klKUKSVTa47lazSSqVQwgJy7QBGB3dRRAERBEkE2lM06LSOIdh6Dj1DIZhYCdMvHYb3TAx7CQtp46sGIBGEEbYlk6tVqPRaJKTNLQ3LjH533yUMJsmlS2yf3wPz/74GLoekstm19lfj3SmQDpb4GtzjxIR8vPdn0CzbSJkioUeOjt6+NBH7yWdNpElhejpVymM9OP84T9BHexG/PHXOdAICR+4DaXcRLEyhMLn1/r/iu+nT/NwfS+3NvvoL2vc+lSNDz9ao9ab4qu/kOLHv5Dg66kFgp+7F+mucUhbaKaFIAJJxml4GIbOV7/yFT704Q+hyT6JhMXc/CIdxQySLPPyyy8zMDDI9x/7NvtG9xM6U2SzSYJARzcNHKfNM0ePsmvXMLt29mFZFoHv0KzX0XWV3r5udN2GCBYXlhgcHkaRBMlkgnqtxcrqIkNDQzz11NOMje7l1InXGRwe4rbXHOr1Gucf6KdcrmAYBvVanWpllTDwOHL4Nl5+6RiO6zE6tpvLly8wNjZKq+kQRQG7Rneza+du/LaDZRqcO38eRVWZmZ5heWUFQzfxfJ+kpfOd732P3h1DNBst3JZPJsjinhX0dHTz5thFfiJdovnoCrlkgl1DA3iSFCufbonOup7/sB1buPXcm7WtYa9b/evNYkEbY9x08rZjvdFYbuQTfXshBq4f7/zY1WPc0u7WMb5dmPLNXJftruF2bPbWc64Htt4uP3S70HC4Nqd3w25U83W78bzdnK/H3r6T++jtjtiOyb0Rc711PFcYz7cNM77xxsw7uQ83s6w/zYbFtffG9psR79beA67v2RWLF+6/PeC6nbWPfYVg5g2Uvv3X9H2jJPrND/9GbbXND8Zm9jVAQOQxefYMf/Xnn+fhO46gv3CaucUl/u+JV7j7vvcTeBHtpsvM6Vn+1b/6X/jd//X/4JOf/AQLs+dpOXXuuOMIH3zgPnp6OkiXL/CR/jqZ9jR7rBrFcIW9e3bywQfvYnKuwtGjr1FdqfGRf/iz9PSMcezFN/jQRz9BvrOPR773JK+feJN0tpOnn3qS/kP97Jr3CA+NIbkenuth6AZhFG5axAPK5Qp2IoGdsFktlSh2dBIRh+sqsoHnekDI7t0jDA+OIskSiaQVO4UJE9NKEMk+ut1Jb28KIQeMjx+gq7OHc+cm6OrqYsdAT5zDpqvsHh7BTqRjEZV2iyj0MXUZkLEsi5bj8PSzr7B//CCIEF1XsQ2Zeq3K3Mw0lqlTb1QRQiGfz9NsraHpOoqiY+gWYRgh9MlYEdYbQtcTKJqCZWqI0MdxYpYoLlkRUqs00E0dSZZoOU1kWeA4DpZlsVZZw3V9yuUSmu6RSndgJ2KBIk3VCVwHVVVRdRNZ1RDCxfcdhOxSr/gEoUcqZZNOp2k5Ab7nYdsG1WqZbCYZg3fFIlz3EYSIYHoRnjtJ83P/ko4DO/FlCSXsIiVFtNsLqAmfSCpRTGap1Uo8/vTX8ZpVTrx4nr3j9yNSdZqVCuePv0CjKfOLn/5NlMjj7Lf+Dftb34P0LsyeI3QVO9DVWM3T930IWkhhm+WSQyKRRsgRntsi8Fzy+TydXV0MDQwxeeE8XZ0dKIqGLAs8z8M0zXXmWeXMmbN0dfdQbzrsHBkgaWrUqlVSiSTd3T2YlsVqaZV9e/YyPzdHIZ+nXC6TTKcpFvIkbQvTtjFNk1arxcpKCVmo9HdmCCpT/MvPn+ehT/wMrqNy4cIUvaffgChk6ZZbMM5coFGpESYEA0NjKLqFEHGgsCQEmqwQOA5B2CAIA0JfxfXb1Ot1oigkCHwURXnLuZBkfN8jDByIWvFGlaSgCIEbyMgioNlqrTuboGoGCcui1Wxg6DaXpy6TK6ZRNfDabRYWlujsKpJKF2g2m6RTSYS0vlkWgSTLNJtNECrtloupqVgJg1D2UVSZZLJApjDM6PhhUpkdlCttMoU0vtdAkgT16hJtX0HXFbzARdVMujq6McwAU80Rek2aYZN0oQNfStEK0qQSFoqWYcfgIJGQcRpVMqkkqhRRazbRDQPP9ymXy6iqSrm0jOs6OE2HXLGIRCzGFiKIpFiITJI1Is+j1WrRajaxDDvOL5UNJDlm5ttuC1XREcQOpKIo+H6ILAuiUAEEsV8TADK+H1Gr1THsNYLQx9ZH8DwfTdfx2y18P0Q1TNy2hyxpLC+XsG2TKPJQNR1N09BePkP7gT1ot++gujRLbybHq2cnGd+7n+X5CWTF4vnnn2dk5056ensQisqTradBRNzi7CeZzsWh37Igk02RyQjOnTlNR74L+dmTeIGPdP+9nKw5FP7pLxHdvg/ly98jevplvIzCr+98hDmrzicqexi6oPDgt2vc9USDxeEUj/1Gnjc/MkDU18dqK6AVKOSyGZbnJklkCuv3Z4gsS9TXalgJnX0H9rO0ukJWD2k0mrx28g327xtlZWWFxcUl+vp2cGH2FG3fImEb2Ol+Lpy7yPFTJxgb201HPodp6KyuXGKtVGFi4hz7xvdSr9cJggDTTBH6IcMjI4RRhKEbLC4tMDgwQmd3nlbT5fAtR7DtJFMXL7Nn315Gn1lCNzSO7pRJpVJcuniRycnzfOxjP0O77dDd1UehkCORTlKrrtHd3YGuqyTsDGHokUgl0DSTv/nut7nvvvuYnZtnYX6Bffv2ceb0acbG9qAq8MPHv0//4AiancIyDBKJJO22R9YusHBulqUTi6h7bKp3RZz/vef5wH13I3VkEMHbM3+bfYHtXm8X7vmOHeXrAAu4GkBG1+ymvWVbc2+3Au3rzeUtxvVjV527lenlBvPcCn5uFoht9/lGvdXrgZ8bAdfrtfl2/W4Fnxvv3Uh86Hrj2boJcqP762bHetX8buL4d9PPNcf/FMD13dg72fC43vmbv4v4e9v+mX239h5wfc9iE/56fuv1F4V389BtXTi900eJ3OY1ea7XLAoRRGF4JbcjCqMrOa0bUvqbLWRdLIEIQ7T4q3//h/zkiad47LHvoWaKFE9MIxA8snqO7z72HVaXK0iqzOFbD/D68Vf5xV/8FB/88MM8/JH76O0q0ph8jfcPqmSWXgbfIcwN8KPXZtl55C5CJMzWEonyBXqlEuPjY+y583ZyxU68lsPO4T56utJcvHCa++6+k86ObiYuXOTIbXcSuEsYQ30kv/BDGO4nCEOELNFs1dF1bf1aKGTTCTRNo1JroKgamqbTqDdYXFqio6PI4tIKR598mkIhi6xKeIGLLKmcOzNJs1ahoyOLJDRkImanF0knC0BAqbTM+PheMrkUXhhhp7OIUBASoWsSTtth+sIkbsvFzuSoVOuoqoxp6AyPjBCFLmtrJcqlMrqpIckyhc6uGIxEUK01yWQzsbMr6czNzZLNJdE1mUi/iO974AywWi5hGHoMaGUFSQnx2zHzqqkRTqOOaScJQ4j8kDDwkDQZgYImRVi6Eqslo4KiIYUBsoBW20HTbVRDA0kiCCDyI2rVBkJopDI2QgrRVIXLl6bIdxRQVJmW0yaXL4KsAgaTk5Okkwkk4dOavIxy9Djic7/N2o4uNDuLrttowiGUJbxIQ0LHsPtwMPFDCS3QWCtFHD12insefD9yZJJN5jCtIvOXJpEm/hLj1B/Qo1dQhz+Ekh3B9dY4f3aCxcVZHv/RUcYPjKHrOm+cvcjwrl0EUYAsZIQQGKZFrRaXFAlCn1w+z/JymTdOnqK3fweSJBGEPp7vogiVZMoik0mQsEx8L8Cw02imBiKiUatj6CZz84tIikJXsYDrtcn39vDG8dPs3L2b10+9gSxBIpHgxIkT3HLoAE23Sb1awvJXmE3cRXc+QyqRIZm0UMrP4WYD3NG7qZ04S9Ovo1s2uq2iqjJIAgkZIkEoItq+R+B6SIQIPJz6Crpo06yVCD0HVUsgqwobTKAIQ/x2E6IQoecgaBEKCVUzEUJG0XRkEWEoAjcAPwgI/RBZxOJFqVQGRbLQdI18MUcUgaIIsqkEsiwTRhCti080a23+/M/+AsuwGBgYIJlJrguqeSiKRiTJ8b2GT9KUUWUwjRQhIZpqoGopaquLmFYCRTPRRIgfOGQyPTTbDXxCstkMjUYdVVGQCXAcB8MwkZUIy9R59cRFosijvy9Du1VlYWEJTbPIFwpMTl4glUzTdnxCzyebz8fqt0JGkeS49rAmIxAEkuAnx16i2WhR7O5CUy0ifFy3hSwrKJqB79QRUhxSODExgalZ6IZKKHyEBESChbklVNXAMJW4DFcyZr59N41pmoRhREicgxmFAZoEIHjhhRfIJCwUSVBaXUS/vIBabXHmY0f41//T73Pv/Xdz+uwiLzz3LC+++DKLK1XKyzLHjj3OJ3/+k7jYLK25PNV6hsAP+NPP/DH/xSd/Dt1MEEQhjVoZxUyTzWcorzQ5+2dfoaenE+3Dd+AEPp3pgCU3ZO2+fvwHDvHPO76GvljlP/9ekb3nZA680uT8gx08+pu9/G+zTzDwvruRDQtVlXHcFjt6hliYuUw604EsQgIvIgoDwtBHSD4JO43vemSSCY4++xMO3HIb87PTRGFIf38fvX29RJHC2O4D2Bp869vfp9ZsMz8/xy2HDpJMJDk3cZHO7iKNukOt6bJrZC/Hjr3Cq68cJ5sukEpotN06iaSFImscffIo83NzDA7s4JWXTrBnfIyFhXlazSZ3338vbtvl0ItrKIrK5Q/203YchADHcWg4bXbvHqZaLWGns6gi5PXXXieTypPLp1haWiWVLUIk8eSTP+KTv/BLLK+WyeYyrCxVWFha4s6776JRrZIp5ih29nLu3Dl6u/I0m3VkfObnl8hkbTLpDLKv0jxbxdqb4Pztqzz1+z9iX7GXTDqJpttEQkINQ4IrGO1a0BcJENJ6GSKxSU5SbGTTXat0ugFcQiKEtF6SS8QnbAZK0aYSf7GeBlfqYEbirT42wOPmeqXXA0fbzUEifh6jECQRC4RtBq5XAdN1ljWMojgdhE0CUdFbIk1bQ2RvxO5tfb1VXOdmxXY2WNnt+t/uGmwHTDfbdvmsW0U5Nx+7mey4Hot6M/PY7nOx5W/r+zeT23xdu2YsV9d5FZtrBG/Ojd02P3Z7oL7x3vbdvzNxqs3XeWso+na2efMm/vet/NfNua9vvX5n2OI94PqexSY2Fofr3+h/G3Y9VeFrdiK3vLdVyOCqc4mFhiQkauUqP/rSn5PP5bjzwY9w38c/xe13PED4ofuZHx/li1/4a+65+/2cOnmcX/+vP0O9VeG3/vV/y8rCReZOPYW9NsGgc57RrgShahDl9zJdbmMkkszPLdE7MESopTg3V6O4cy8tN8BsTJFdeRV38iX0bCdt3UbWNbo7s6yWVunr72bf+ChZO0W1PM3Zxhx7oyKhqRNoWly/VBIIIROFglJ5hWZ1jcD3sS0T27KYWVigvNrm0uQ5Oru7yOezZLNpOjo6QJKplMoYukGuUEBXFRRVQtNUnHaLudklvv3t77Jv/36efeYZ+vt3MD8/H6sM6+qVXb1Gq4lpJ9B1nUI+z8LsDNlCDoiVdGvNFqZtYds2qXQKiRBNU5FlmUajTrPl0NnZRYTE3NwCdsKi2FFEUWV0Q6flv4EsK9jqAcIoxLYtarUqiqqg6wnK5Vk830VWEoReHcs0cRpN2o0miWQKWVZw3YAgAiErBGGIaVsomgVETE1dwrYNmrUGrVYdISJUWUFVdBRFo932gABD11BUBUnS1lV2BaZhIYSEkMB123R0ZGk217BKDeQnX0P8+3+Oc2gnhq6gqRK1ahlTM1lYmKdQyCMEhIpKsHCatZVl5M5R6ktrfPrTn8FpVXjiR98l4y9gz36Hntm/ICmqVNQOzKF7iXQVU9eI8DGNDJZlsf/AHhIJAyLoKHbhNNZIJdNMTc9gWykajSaqqhEEoCjxj4TrenFIdiSu1L6TZZXAbzM3N0+77RP4EZZl0fba6LqORMDK0gpLCyVMM8mlC2cYGRognckwOXmRkZ3DlEplJCR29A9x6dIlRnfvpFKtYhkatibjrk5w6yf/Lbl0kpXFRVaXFjGjV5HzCs9MBtya60WurlH1HSzDIHJ91ioVJFlB0TQkQLdsNN3AbQexSnjQpt1sYloWhmkRCS1WwgXCCLx2nTBwUVQDM5nDa9fQVRnP8ZBVFYGELCLAww9lNE1jdWmZ0PfjOsFuXALEbbvomoYkx9+9IoMfuESRTxi4CCnOCb/7rjvp7OpASDH7WKtXSNqZOFdXErhuG0WKnVFdVXnzjRNkUllqlTpvnjrJ2J4xVktrWJaJ4zTRDBOiWPHVtuJ6tbIs02y0CEOB58fF312vhdtuUat57B4dRtUlcqkE2axBq17Ca3mk0llWlpeo16qYhkbke1Qqaywtr5DNF4gCjyAASdJRVJmhgUEK+RxCFkhCXhd7EUgyEEhU1qYxdRPfVbFsC9vU8EKX2N8XRIHga199hETSJpVKkEyZCHWZKAJbHwIEnufyJ//hz9i3bx+aLhOEPu12m3arhWUmeOPMGcZyRayzM0z9o7vwzZClhTJ33/N+Pvmpz/Lvfvd3Ofy+YQ4dup0LF0p85td+gWxHnnLD5b/69C+T+XAaQcSXfuP/JZvpIBQCRY1Ip1QQCVRVwvebDM+sYdo654oBCTmitHiRkeExWlGd/775J6Q6+9m55z7OP9zL1G6dH/yjDHOHk0QJi5Gde7DsBEKKNztWymXmZhfJpG1OnzxFsauDer3Byy+/RG9vD4888ihdnT08/fTTyIrE6O59qJqGLEf09XVTWl3F8yGRSPLFL36BXSM7GRnZxeLKMg+8/z5KpWVmZ2cQCOykha5qfP/xH3DH+95HZ3cnY3tG6erpwHFrKKqK7wYIScJtuxw+cgvT05c5cushhES87ioyzz7zDOfOneP2Ew6SkHj5iIUfuHR0Fhkd241uqLSatfi5CgWmoTMxMc/ZM+cZHe1jdmYp3txTJBJ2EsPQ0fV4zV9YXODw4Vtw2g6nTp2ir68X09QZGR5i6vJlnnrqaeYXF4kiyOVyPPPMs3z0ow+zf+8eekU37SBk4vYZTs2eZvnRNzl06CCqncYXGmJda2M7kIW4MZt1DUPJW6xduAWgCK52yoW0pa7ppnY2g9rNPsvbMZvbziG6+r0bAdfrgTFFUbYN69yOfd3u/K3HbmXJ3q3Pd73zNvJrtwWJWwD0VhC2FYRuBuvXa+vt7HoiXdv1uZ1tZYLfiW2c8VYfW0HzzbcZRTeurfvTmu/716g93+w9cr377drX7wHX94Dru7CI4NpNoE32dwVcr5vHwrXAdcM2fmg2ciE0PAwiHn/kEVamprBNjUQ2y3f/5gfsHhxjrVFmcLCfrs4CX/zin9Pbm+NDD97Ht77xGL/ySx+nK1pkp3OSsRyYpsn5kk/P/jsJNItqvUVHdxe6qTE6tg/NUNE0jUw2S+grtEKJwC4SJnvQFZBmfoI+/wqeSDK96tDT10cQhri+QzKdotg1yOLiCtX+LD1fforAVFEyKfwg4Jvf+Db9O/rJ5ZJEASRTaWqNFqqmk06lSKUM7ESCrmIRp9UgmUkiSTpBGPGdRx9jz54xFkurXDg3iWXH+WiWbaOqgjvuuA1FlRjY0YumKRiGTjqTQl134hGCZ378HGkzSSKVpNVukE4l0U0r3nGOhZpZK5VJJdJEoU+92mB6agZdj5Vnc9ksvu/SbNZJJuI8QWc9z7LZaCJFBprch9MyMFQFz21j6DrNRh1ZNbDNFJaVRFZ1JCFTb1XJZpKIMCIQEW2niZAlLNMk8D3cdgtDlaiXppEViXy+CxFJGHYCK2EhJJlIktfDJkWc99psoKoqEQJFNZGUCFmJQUvMmoAsyUiSgnZ6iuCpV5D/n9/Cv/12EkqDyxNnMBSwVIGqp9aZixaSLBFWZ5memWbHrn0YqTRLUxO0nRZzM5cYUy6QPv9nCAKivvfh23tQEileeP4V6pUqxXwnzVaVVDpPKpNCoMRlAiOBYZi0PB+n0aKrp4eZmRk6OoqcOnUKx2mRL+RZWFhkZWWFZDLJ7PzcOhProaoyU1PT9PXH+XJLiyVkWdB2W1h2Etf1mZmaodjRgaKrLC8tkMpl0awE6XQeTTd57tln0XWFtgOZbApNl9E1i0QqjYh8lMYsf/rjBkeO3EWhq4CkaiQrJzh+4g3qidvpTBdIvTGBm1RZXVli6vJlert6SOdz8fcjJAh9hKKjWRZmwka3smhWGtVIEUommrqeBw5EkUTkVgh9F8dTsHSZVrOM7/sYdhokgRAaihRB5BDJZvzji6BSLiPJErKq4DhuvAFhmVQqNSwzQRQJfD/CqTvMTM2SymRIJJIEgYthqkSRj9NuoWsqfhAgywrNhsM3vvkYmiyTTmdYmJsll7aQdBVdT2DZNoqqkkqlCNYVXQ1Nplwuk8nmMCyLZrOJaRooiooia+i6iqKrhD6kEwW6+nqIIp0v/fW32XdgiHKlhabpaHqAwKPdbtDX0029VmNltYTrOPjtJvMzU0iSgp0wkFWZMJKQiQhCD0WTkeQwDrVGQgiJSIBp2Lh+iKIrSJKg7TTiWrfSei3CMOKWWw6RzaVQZHW9pM00kiSj0LsuDCZx+MjBWDBNSAhh8Fdf/hIPf+gDWAkTeWmN4sQ87m/8Q6bTCXpH9nD49ntoeRU+9jMfR9IEVsImVygwOtzHytKb6KpKKt3Dp3/5l/he6ftAyMOpezAtg3qrFef+rlVQDY1W06GytkbhzSlq1VW6PvUgyUw3yd4hKi2VfzHzO0w78xxJ7MVzfaYri/h9OmgpGi0fRUnTasX5wEgSmqLgNZvk80WSGZ18PoNhWPzwh0/wgQ88QLPZYM++Qzz3/DE++NBDKJpMs9HghWMvEoURq8ur9PTs4NHHvsXAYC+HDx/CdyMuXLjI+x+8H11VSCYtXK/Nnj17MCwL1/W59977WVm4AKGLZZuUymVS6RyS0Ll8eQrTkJmfXyCRSNLZWaTZWoNIpd32WCmVaVYq7Nq1iw9MqqiqytzHRwHB4tIi2VwO0zRZWV6ikO/kuedeoqe3yPDoCAKZZrVBvpDA9QPWqjUCP8BOGASBj2lYJFIWhWyGCxcuoGga+XyOE6+/wsryMkNDI+TyHew7cJBcNsObp4/z4IMf4IXnXySRSCH8gPZ8G1maaTZTAAAgAElEQVRRmM+u8Cv2z/L5z/0HPvjQg8harG69mcW8ykkWV/sE1/gm0fVL7LDJ+V5/82q2dGvb601ufLYdQLxRLu71/ZstjDAR48lx7svfS0bNXPls89i29v12OcDbgb3Nx9wQ/N8EMNkKLqX1zbft2NqbCfXdOufrzX1zmaSNY7Yy3283/q2pZjcCsTeydwNat+/n3QNXwc2HQL+b8W5c2+u1vXXj5mau3dZNibeCC27uur8HXP+emxDReohwBITrTsbNhRC8vV37kGwAV2X4tmvav2oxFuthOyJe1KMr4SIRqgAICQA3iggjnz/+/f8Tp7RG/9he/uOffY4vP/IYE5PnWJg9zQfu/TAtN8Jz2px85rt85L47ONIj8av39zLIHMJrshqlkQp7+E9f/z4PffghlpeXUPQkqqZj2OtsXBTSaNZiZybwuHRxkqDdIp1Ksrhaxcj1EKV2gJDRF14iuXockSrQVlK4rQhVk2k0Vtg1vJenXnmO/R96EOnRp2GkG6HYDA7twDRkZCEQSizSIysyQpGJnBbzczPkCjYRIaaewHUbqDKEkeDI4QMoqoRh23R3dxN4CnbKJETB1GRWV1YxkklkxSeMJCw7jWZISLJCpewShi67d+9CVUFSQEgqip6iUlrETCQRIkIWEbYZC4M0mk3sTBJZNhEoJGydZquFIusoso6ua6iqjqIoAEiSQJaKNKs6j37zUfYfOIysRNQbdVQlQaVSplKpo8gGhm6BLAjbLkLSUCwblJAoauM7VTQzhRcJlkolNEUnkepmdamKiKp4TgtFsWnUqkhI+G0XP2hTrjUJwwbFrm6q9RoICd0wCP2IuJZ1BOhIUZwTGL0+AROXEH/8W6h37kEOKrRxyXQNsdYUWLaOX5ljzXEJVQPJrYOw8SWLVMKivTJFtrebldU246kFjOnvsJIYx+zei2amOH32HCsLi+SzGSrVFgODXZi6zfTUFJl0llC4yLrGymoZVdUwkyl0Q47L1RRSVMplDFVjYHgYL3BBEG80aCqWoWFoOq1GC03RUTUZxTDx2j6BD0efPsqBA3swdIGqqSwtr9Ko1xgZ7GVgeFfMVnkeZ8+cJZ/PYZsWAwNDSKLFm2+cZHh4J5cuXaa0WqXZmMfyV+n56P/OhddeJ12MsM0ujJd/SDJI8nIzzy0HxykcO8XxRg1dkanVmvT292Ens6zHnrKhIxx/EyJmIFWVEFA1FUWWYiBPLB4UNCqgxqCw5dTQ7Q50PQFBG4RAImR5ZR7D1EEyUYSgVluiWOiJhajSaRK2hR+EKIpMo9HANHWCMCAKAoIwJFPMIROiqTIQ0G65aIaFohlx7qyiUq+0WFla4cD+XXQXCqyuLpMtdKCYaWxdplapkkyYlMuriMhjfnaKrp5e/MgllYxzfcMIWjUPFVAkhUjW8LwAVYkIQ4EkG8hKhZXlGd73vgeIjATJpIatSRiSgdP0qFQb1MslJC2FJgW0Wi59vf3UahUGdvSjGgZ+4KPKWryGKhKELm7QQpHSOH4ZSTKQCQmEQFUNpFBCVmQ0Q4UorusqBLScJkIGRZGRpHgTyAuWkWQdQXG9rI6MqsjrqRAysiTYPz5Go75Gc2GJ/olFVh6+Ff3D9/LNb/4New7chZk0sBJpch0dyLJC0rBoNEvkDZPS2hSRbiHMBH4A+5N7uSd7H3l7LyK3giKyKO0kYVMmrL7I3NTL1OsLdCfzSH29iD37qTguftPl8bXH+ebiY3w0cx9+y0e3bUzbRlPidAwRqYgoZGlpmlbDQZUFiixx4rUJlpcW2NHfQxQ51Ct1DozvpFFvoxsKpqXTUSzSajr0dHejaXGJtT17xpienWVoeDdC8unp7cKpexx//SSFYp5CzqbV9rDsHIaVRqgKBCGKbHDshReRgzqFrh386NmXKOR6EO0KARKyZhEEsHNkmNJaiXQ+h2IkWF0q89WvPMLePaOMHtyHlTTY/+wKAsET/R4gOHr0KLtHBlmdv4isaNjJFDuG+3BaIYFXZ8dAN8lkhlNvnkZXLbLpFM1WDTNhMj21zNFnfsDhO45w8uRZCtk8Mj4vvvAkt956GzsGh6jUalTrFWYvT7N3zy4KhSKJRBIhZM6fn+C5nzzP/rERBux+znkXeDOxwI9/7xn68iZ7+jtoprKovoG8HkF5FXARG2vFehBvFO+qSiIWedocQhqJzYGJICGQNzbAwggkEYPZjeO2gJ4IYvV5IArCTX3Hf7IkXel/w9vZykhtB6LCKCCMglhZXcT9ppUUOT17rRe1BWTdiGHc7rPNAlM3yrF9p7YVfGxtX1GUa0oSvZO2N9qSZfnq+UXrN8V67LYkiWvmuWFXiWsJQRSuR5mIeKOOK3fS1aG68U3304HSG86Pt8iZ+J6Krvq7YZ52tHWsN+hny+bKjTYs3um98E7O2Xrs1vs1Wg+D3u4/omvDit8Drn/PTYjYbYwtXtq3P+5vl3FVhq9fy3Wjv6sW2asW3PjB9rwARUjUFmdplUtYdor/4bd/l9XZOnayi97uYS6en8K0DFZ/5w8YXFghO27z8d0SaS0itLJE+d2UfJWuHcMgIm69/TbcdhPbSqIbSdrtJoqqosoKvuuxulKiUW8SBXH4k6KqtJw2lp1kcW4OWZJR7BwXVn0MK4k+9zLRxefI5IpEyRyKKhFGIU88/iTdd44gL6xinZgm6syh2gaSkFBkldJqCQmB47qYpokkQbZQREgyumERoaGosWLq3OwsURhgWTZt1yP0A5p1B9NW8QOQCLBNE0mRkQXIksKTTxyls6MAEXztq9/ktttuoVGvYycyeF5Ao+bQqLaQJFA1HafpUKs2+NrXHmH3rt2xaqjfxmm2KJdXyWWTrK3VkCTBa6+9iqpopFI2QeAhyxKu66NrOm7bY9/+vWiGjqoIVE3j3Jnz9PZ1Y5oGmqrwhb/8C8YPjNOo1ZAkCVXTIJBQZAtZsVlcWiKXy2KZBp7r8tSPnmR0dC9t3yGVKSKQEVIc4mIYBqZlYhg2UQhCltA1A98P8H0fXdcIiR0SgKhWgx8dg+Uy2pf+R6o9BRQ5QoQBly9cJJftxEhkaTRaaIrMxMmXkNpV7FwXrx1/joHhPtYq8yjCQVKS9IdTNF/5j1x0OhFalmw2i+u1SadSdHV2kMlmMQyTldUVVFWjUMizVilz5vQEuUKRVDIZ1y0W0GzUqNcbTE9PkUllWFkpkc5kUFQZWZYplVavpItEYVyTtVarxjVIhYymalQqZXbtGqHVasVsx+w8Q4PDzMzOki3kYkeMCFXVKRY6keSI+fk5KmtrRFFAT3cvlmWTyWaplErsKGSIGot89v96jk9+4gO8euo4u0cOkP3eMYw1lbF/8ll+8ubrjJ2do+PALuysyerKMogASVFQDTN2IK7zIyivl8yJEOssjEwQ+AjfwYsEmqbhtxuomkkYRciKCpJEs+GQzeRw2wGSotOqN0mnMnHeqoioVao4zZgpD/yARq1Oq9lCURTq1Rp2MkF5rYxtJXAcFyJIJpOEQUjgtXGqJeprK9SqVebnZunoKlCvV2k5DoWODkrlVYIgwLAsVsslunu6aDSbFIqFWAhJSqMqFs26z4mT55HlNplcknKtjGYqnDt3gUwmA2Eb363gOT7pVAFJEehqiosX5shlC7hhjXJ9Dd2W6cgreF6NtXIDzwtxPJdMJku92cRKptANiw2dgHa7vQ7aFaJIQdMVCCWatdX4OLGhNBytbyLK8bcgBIoSh9fH9V/j91W5A13uIgw8RBQgSSFBGJdkQsQAw3UdEqpO4qXzND9xN+2HbqNUWuPAwYOcePMs3d0FhIB22yOTklCiZRbmXmVxfgYrkSHwBvnC5/+GPXt30JMoUJQtmmvLaKs5SrMvsbT8A1T9LNmOg8iySl9vP5Oiiduj0qyvIROxWJvkn136n7lFP0BOjRWRiSTCICQKQ5J2jhPH3+TixWkK+SL5QhaIWFtbQ9UCdu0a4ZGvPUat6rNWWSaXS6EoFp7fJpnOoioasog4deI1FhaWuOWWW3Ach87ODi5fmiGdtikUCoBM344drFUqpDNZLl46QyGf45VXX6S7u8haqczq6ioDg32oeLz2+kluv+NuJicm6O/tAkklnc4yMzNLtV6hf8cO2q02p0+dwg88uro6GR3biRRKqIrKRI9g9rZOFoMaXT3dHDx0ALfdoNjdh23HaRjl8iqEIal0gjAUfOtb3+Oeu+4BIlpOnaWVGoNDXXQUO+ju6UdWFLKpWMTt3Lnz9Pd3kcrkSGdyrFWqPPfc8xw6dAjbNPnu975LIpHk2LFj6LrO6Oge6vUqnZ1dKG2dN/U3+S8/82kqR6eYPPcGd937EG0FJLYPBY1dghsDC7EOSK96jy0huFs+305F94qTfb0+3mr8GtsAsZuZyI3zNjNZW19v18/meW8HZK8HSLbLxbwGOFwnLPnt2NHt/n/DfiqRrC3tXH3+1W1J0tV1X280TqLt1Xu3ZWf/DoHrdcd3U5+/sw2Am+nr3Xw/73Qj4obn3qCpK5z0Jnb6PeD699yiKNz0gL4FXLdS/zcT5rHVtttp9CdfAq4FrluB6uYFJYpixnUj3ERSVXw/RBchn/vDPyCjaCRtGyuZ5o2zF/jUJ36WduDx7e8/ys6BXrxWk0+kbQr3CPIZQc3uZ7Gt4EQammVQKBSo1avrDlaEYZooqg4h2AkDROzYCCQ0VefVl19jdaWE7/usVaqcPXsO2zIRAbz80svksjnWymsslOvoxZ1IsoJWPoM49wSR5+GZeQ4evg8RLNHenyKnDhD96HlEbwGh6wghSNgmszNT5PJZlleWCQVUak1sO0GIoFpt0Wq3UFQdW5fRdB2EhCQkSqsl5man6enrBBRkOaJeryCI+OJffolDB25hcGAATVUhgvF940AbRai4tBGErJVLdBYzmFYCSVWpVeoIJA4eOIQf+LTbDZJ2CsMw4tqY7RZO0yNfyGLbFqlUhpA2IPD9ENtO4nKRmfk3UUiRSqdot1vIkozneXHpGtumXC4xMjKIZdq01ksv1GsViEKsRILllZW49E/gYegqsiTT378DUDCTFn6ksTA7i2VbOI6D5/qousY3v/4o4+OHQIDjrOd3ShJCinfg/WqN4NhxpKOv4D14C8rn/g11USKdzhMEHpValWKyg1AoKJpJ6AcgCbyVGS6eOcnQ+F381Ze/wQMP/iyKpGPrScpLs/Dsv+WVaYlnXjzJ4UO3sbS0SDadQlPjckYnTp7kwsQ5Wi2PwYFBPM/Fti2efOLH7B8fJwoDfNfDaTZoNlpIQpDNZkhnc7GAUBiuC+CETJ6foLenh0Qqiet5WHYCWVHQdY3ZmTksK8FaeYVcLkc2m8f3IgrZHJcuTbJjeBBJViiXV5DlOFz1qaeeZMdgL8lkgu6uHiQhIysqqqbR9lxq1RnypkSzXmdRH2Lf+BiDQ+NYSZ3ohdPIdhb3jlFsU8U4N4OqqzSVgGajQldXEcPQ8YMQw06u5+lsv7Yo73sNqW8eqW8BuueIuqeQB1fRR6pIoUZUloiEhNxTRTk4gehbRB9aRfQuogyWkHcsEPbM8uQXLzC8ewhFUUjdNYc6tkBirI41WsUerZDa38TcWcZKK0SlFHYiwXJjGmfvi9ijVeidQ/TNow8tow6soO9cQ6kk6CkO0nRqWPvX6LivhTq4jLVrDWt3DWNnmcz+FuTr6NVeIiJUzUC753XovYw6OE/hUIvceBtlsIS5s0rkQFHvwtRkpM4F9CNTaMNrSDvW8DpmkXZMoQ5VMEfbuJM5jh07TWm5wfv+8QDFuw067zIYuD9J520y2YM+uUMBelImWIlDw0OjinX3BNrwGq3MJayd8bUSvXPxdavmCGLUgDQ8hTw6idS/gNy3sP7vIsqOJUS2ijebRpFlhCQj3f4qysAyUt8CUc8s2mAJeccSUt88fkugtNI0n3kZsbdI+IurpBNTJO2LXJr8BjsHVkgZZ1Cj4xw/oRG6EX59mXz2JN19ddKpBXz3GP/ud/+UX/3ML6NGATMXzzM/dR4zu0hkNMh13IYiP0jTb6LpGdbWaiiyQuiVMTQJr+ny+frX0COLYXMYtx2gqiq1ShMRRQSBT61WJl/IUSxmSaUtvv71Rzhy5AjNZpPFxRqyonPf++8hV0ixZ3SEMHJ55plj7B7dBULhwvkJioUMpqEyOLQTgcTi0jyZbJZkMothatTrDSrVGj964ofcf//9zM8v8tzTz9HT08uunbuRhIyiKHR0dPDSyy+QzaQYHhnl1KnT3HJoHISMrCg0Gw18P6B/cAeNeg1Fkujr6UHIMDwygKzInHz9FN1d3QT5JM2kRrNeptBRJAKqa2UUK02t2sRxmjTrVdbWSiSTaVTVIp/r4PXXXmN0bITy2iqVqk86JbG6soqmJ1EVFUkSnD83QbVa5/bbb8VpeywsLtFutzlw8CCtZosg8BkcHObJJ57EthOUyiX27R0nlU4TETLUMchctIgvIj6iP8DFyQkunznL+J2HiULpKtC1AQQ3+wvbVSO4Arq2LinRWyVXoii6oua/OdR0g73bAJtXGNR1H2RrSOSVMFjx1hg3pzNtMMAQs4db29iYxxem/zPHqyc4mDpwQ9b2erVpN7e7NTR3K1i7Xm7mFfGobcKKt/5tXPvrqShvFYrazo/cGla8da5b+1sf0VXnCnH1HCVJIgiC64DYa3NsN5979UbE3yHjuu28bu7zrTmtQRBciWzbeu22tne91+/GrvLPbyKsfLNtPFtXUgG2Of6tcP23vpv4OXoPuL5nbFYquz7jumHvDLhus1vmNhDJDuTi4DXtbgdc3xrmWyE8TuAjRRFOuURp+jIrJZ9CZ4E/+qM/IKrV+Ma3vsW5ifMcGt/PrpEd/IPDfew5JBO+6bA8PEamkCdfzHL27EU6e7po1ZtcOD9JR28vp0+eptjdzfLyIpahcmnqMlbCxnV8pi9N89prL7M4P0/geTRbLS7PzBGGEb7T5NTpNxGSzKvHX2dmZoblpUWW/z/23jPIsvO88/u9J59zz82xc5junpwADEACIMAgQaJIiiYprWSl1daWtF9ka71lyy5btS5b8rq8ZVetwm7ZS0tMorQqSxRJkAAIEHGQZhAmYXJ3T+fp3Dffe7I/3O5BT6NnMPBu+Qv5VN26957wvu8J7znP//k/YXmNmZtr9B24n3VHxVu6RmLxbfTaDXIjJ6g3ffSf/ThSoCKeeY2qrSAZMlEQ4rseiXgc3dAxrTjxWIxmowyRz42JSZqNMoVcGt9popkxQmQ0RcHQNcavXaW7r0Sr5WNZKtXyCpIkc/joAyAJAkI03UAoAj8IkNQQIenMTM6wtlpjZHQvkRxBFBASYGgmN2/O8frrr3Ng/0FMK0a74TAzM0sqk0bRDBJ2pxSMrEjYsQSSUHFdD4gIQx9fewPF2EByB9FMlXqtgWGYJJNxNNWm2Wjh+x6lUhe+HxBPpihvrFLMJWkHMoHnYhkKXgC6rlDbWEHTTTTD4sknf8CB/cNEXsDFi1coFjuuaXYsQRiFDA30oeoyUajwve99n/3796GqCs1yGfmdq0ivvIt8aAD++PdwP/cxdC1BFNRYXqqTjOcIAhkrWUDSVXy3zDN/99cIV6Ulpxk+9DhxK85DDz/MpavXSSWTtBs17OkfUF6cYc+Jz1Ovtrjv+EEC32d5aZlUymSjVmf/gYOUCjky2QyJRALfj2jW2+zbO8Ts3Ay5bB4JwfLiHJpqsry8SG9PDwERhhXj7LtnsAwdp9Wi1WyRSac760wTWe4owLKkICJBEAlWlldYWlohl83iBx6SqlEo5jj50stIoUQ8nuLmzWUKpTTFUgYhVKIQLl64huu6aIaJbnRcarO5btZWFol7s3z6d/+El14+xf/wh3/CQ4/uoXB1hVg8ydxghpMvvIpVDRAtF5FIYBk689MLhF5AiCCWTtNx24LdTK9S702iCMLAIwqDjqs+IGSVYC1GUOu4ljvKBnq+tckQhkjy+y88RVXo1z6GTNjJbF1co+lV0DW189LfpkhtzLZZveZSqVbJ9SRJjLjIiryZPXbT9UyWQEjUJyyqq200TSK1x2SlPo1hGEgCZmfmSSTjnWdgYBCuZNEUjSAMkXsXIPAIvE7CIgmfaqWK67Tw51s0ZpaoV6fB8lhnCdfrGJQcp+O6apo6G+trLL66xMG9WXQN0gcUfNVHkWUCP7ylNEdRRFA1YCPD6kqDSGthDdY7Bjk/IIo8ZElFkjquWd5CCtlXEGELKVVDstudmCshsU0/J/I05PVC5zkfCqT+m53zLUkISbnl/B2Fgqk3l8leb2Oslvm7/T6H70sThgrj41OMjo6iaXLHHVyS+eZfXWVsIEE8LRNL1FAVnTBsYZoyv/qlP2Tqxht8e/UZzrVnCacTvPrqDR55+B/hhQFCWWXmxir/51f/hp/5/FdQqgHehobR1c2V6hL/8+Kfccw+QjKWR9NNPNejulGjVW8RClhdXqNea1PIl9B1g6GhAd599wwLC4t87OETqJqEpimYlkmjvoplaezff4zTb71JMZ2mq6ubtudhp1K89MJLCBR6ertQFIWZmQVMy0ASKtOT0zz88RNUysv09/URIrHvwChu4CKrGoHvcf78BfbuPUAym2d9o8Hg0Ahtv41QJAK3RRS6pLNZXnzuRUqlIplcmkCExO04p958g97eQaykSdv1OP3maX787DN84vHH8AMIQrAsC3yXZr3O9NQUqVSCTDLTSfa1sUYiZbO2ssTa2iqLi6scOL4Xp94iZRdI5RM4zSZzc1MMDQ9w7PhxLl68TFdPL7KQOXXqFPsPHOLtt97hwP79TE/P8NjjjzMw0M/169c4dvQQF69eRdctdFln/voMU8lplEIG9UaKxRtnee+Fl/jU538Rf0cio51ZZrcr+Vvx1VvLP8i48oFkTFsgbnub20HrLTC3Q9nfzmR2lO/3Qdm9xFfuBOF/PvXvmG3P8sWuX7zt2G4b/4eAHbg7a7x9fHca44eNf+ex3I1N2wkI7wSgdoKt3cDlth527N/5vd1IsB3E3qZLRuIW2N5N/v8ErtvHfC/g75bswhoDt93D/7Gg9F5kNyPOnWTn+p0eA7sB11vtbot/7ewn/RS4/sRJJG8qaZ2Y1q26rWJLKfkQC9DO3x/S2QcAqFIY2gStu1v7blnvwqiTXTQMb8WitCUQviAdNTn5o2c4f/49CoU0gayTTJZ45qlnseMGVxdW+PUvfYb7x3r53FDAnriLeK5F5UqZ9BeOo+s6YSS48N55jh49im4aLC4t09fbg5BU7JiFoWvMzEzz5mvvYOhxFhfmEKHH9Mw8jtNAVzViVoyN1RVGhodIZ7LMzc1QLOTxXQdDVzBMi2PHj7K0vE6l3Eaz43haAZHIoUUNwvFXMTZm8JCQfuaz4LiYL76D1F1AsnQ2NlaIxWL4Ycj4tRmWVxYQtMnk+iiWiuRyWZqteud6oKHJaifu1YrR09VLFIToBkyMz5HJFTougKqCoulE4aYdS5aQFIkwFGiaxLmzF1hYmGP/gYM4rk+1VidmJQlDn1TKZmCoD0Xt1Ld0o5BMJoYsReiqxXM/fo6R0b1YMZsAn2987dv09BTIpJK0my3q/kVM0yAV/xiBEyCEjCLrBEFEvV7lueee5WMPPUS5vEHMNhChgx2PU2u6WKaOkARCklHkiFq1TiKVww88Ii8EGYrFbpq1Ol4AXd15FhemSSUtarUWrXaLRDyJwGNsdBhV03DP3UB/9nXEwVGi/+V3ib7yKGr/MKpqohqCetunkOlmtXqFtfIktibhNNapl6tYsTz9Y0fIJNKceedt2n5njHLbRQoF3uI7uBf+A07uQSJknFaL6fl5entLyJJMve1jWbFOcqx2GzueQFFUbkxOUK9V6errZXm5Qr6Uo9pwefett+nu7qVYzBOpCopq4Ts+2bhBq9XGiidJZjqlkTrzSOHSuQsEjTptzyeMIhLxBKl0gnKlghWzSMRNJEVQrtQZ3buPcq3MRrnMnpFh2m0XWdbRYzHWNjaIXJe+oWGWl29Sq64QeR6maeMEKnp9nIlmDDOVRWMJLdAZWfFptVrEfvELDI4O8uOLF3liao1mMYnjuVy/PkuARyqbwo5lEdvimABEFIEIkA9fBU/DeW2EcDJG7aJMNF9AWRsjWughqAgQIVGooDpZvJk8YqHI4mkXa2OIYL5ENNdPeyKJqiiEYUQUwfoViXRzP/5ckqUzCuryCN50gcYVhWAlQyqVQYiQdjWA+W7U5SGipV7c6QwLrzs0L9hsXDSQoyT5ri5UOaQyoTD9moO81Ic/nSdZ20fjmglzJYKlLBIy9eo6leVrlE8vM3dylY0zPlMvr3DjhQ2mT1aZfmkdpSozOT5NZa1OdarBxukWi+9GrJ6t89I3xtEXu3n9r94jtqihRh61qoNpWFx/dY21d2HmZIPxF+o0rsTZuKCirw9jRAMIOSAV17CUNOFcD+F8EaaTRAu9iMUeqpcstI29uK2I5voUul8mqJYIlvcQznYRTKUR832Im31E8wWi5TQi8PBaLRzxLs5MgLrwIK2JGGK+n2C2CHMF3Neh+O4q0lAvTx4e5MTP/gYt7SHatW6efWqC3PCvkjT2cXN9ACc4SCIm2DdWZLUREbgFXn37OiODGmEo8e/+77e4/8jj/NnSN1jXNhi5OcZv/7NfwVN0ZMUicgIS6RIDg3tJ5zW0P/0uiYkZLmdsfu/GH/Kw9ji92R78dovvfee7jI4Mo+k6N5eWOP3m2+w7eAg7rmCZMcavz2CZCtVak6P3HyMKBKmUgQglzp49R09vH34oaLUbjI6N0HQ8GvUK9UaTwIeR0RFSuQRXL1xko9JkcKgbw1BwXI/x8XEOHNqHnegkBJNVn3ajSsy0CQKZUISUevpQdI3q+jrNRgPLNHHbLZLxBAsL81TrNbpK3WRzebFva+AAACAASURBVGIxnbbTQpU12u0WhUIBWYnwvRZhAJ87K/isPcjyWAwRKSiKRtOpIUkRi0tLHDxwAF1V8UVHPVCEwFA1eocGKRWLBL6PYemsr7bI52wqK8s8++yrfPyRj3P58mWatTp+CKZtYMdNBgb6eO/ce/T39XL+/AUcp43TbuO0HU488ABXr17FadVo1MqkUik038JRXN5rXOCf9vw2P/jRa7g3L7GwvMbRjz+OqmpsRapuZ8126iE7s59GYYRAoMhyR4/4gGJzu5F8J6jc0neiKLot3nUrJlZIopOYb5uOsxtw3CnyLS+uTfOOJG5lFf5C8f2swneLTdyNzdwCbVvj35nIaAv47wQdt7zZdslSfCe5E7O3nbXdCf6377t9+VYc64cBarGlu4po2ze3GRC22t85xs417MTpd5qPNuNjeX+ZiAhC/47eP/cid9OVb40lFB0AinTbpxOU3TnGO14DwWb+l85HcDs43/l7N9nNS+GjyG7A/26u4TvPx/Y5Ctw2f6ATi07UCRwXmzHJHXxy677+KXD9yZKtzHnbUxZ8NCvbf4zcuf3bXYMFtz+4QyRUv01t+gr/6r//Y/p7xzj+wGNYZoa//NZfkckW+drXv8mXfumX+OUvPsFjRY9P9bg4wua7pycYmYVsPkvjaAHf94nHE+zbf5B6vYplWei6gaZq2LZJ4PuISCaVTHP40AHKG2UqlRqGbrG+toQqS8RiFnPLS0gyRJFHIZ9maa1CLJ6g7Tr09Pazf99Bro9f48SJ+zl79gy5XIbpqWlKvV1cnVkhO3IfjcoSscoMXH2RqAt8rZfo3eso/T3Ua3XCEAzTxo7HSSaSVMpV0kkbEYV4QYhm2WiKTK3a5Ny5s/T191KrbOB7HgtLSyQzWW7OL5FIxjtB/U4dp1Hj9ZMv09dfQhIWM9MzpFNJwsinp7uL4T3DOG6bi5feo1Zuoaoqtm0iy2IznsSnUqkQT6XQVZVGrU2rFdBVKmBZBhvlMo7rceKhB7FindjaWqOOmVpCkmWCZj9XL1+jt6+HIHABH8Ow6OvrRdM6ZVwkWUKWJNptFz8EVdFQlU6MrKopyLJCFEGr1UQg0d3dTb1ep7yxwfraKsVSgUiS0a0EqqyQiMcJowCQkYUEz7+Fu7DIf60usfeP/jn5/SNUW210RbCyvEQUQiZVoNZuYUhpkjGDRqNJpdzk7LvXKeaHeO3Uq7z8wvOYpsXBI0d4842XOPnKS+w1ptGvfAs3e4xUvp9qpUKhWMSyDObm5kkmUpimweryCguzs7x1+jTdvd1MToyz/8A+/MDHjlsUC0UQPs1mk1wyx8LCHLl8mgvn3qG/r4+JiUn6Bvspr5eZW1jAMAyIAjTdoNV0yGbSOE6bUm8frVYb0zS5dOE8hw8eJGZaLC8vkkik8b2Ieq1JrVZjZKif8+fP0azXaDbqZNJprJhBGAUUsjmq1QqDw3swrAS16jqpdAa3WSEf3mT4U7+HHbN47JOfQH7xJaSwRfn+YygyVJwWXZJKKpXCl2Fhfpq+vi6QZVLZAkJWbmcz6Ly3lOE5hBrQHE/g+z5ICqadpNXyMHQDz2mjyCqqqndc/QVUKnUK2RxtxwMhISKBqsm3GebseBxps0/bTqGqBo1GC0vXkWWNRrNKubKGqVp8/3vfI5fNoEoyrUaDfCGHZhjEEwk0w8JxHGrVCpIiiCcSdJW6URQdRZEx9CRu4KBFDpW1Ff6fb3+bRrnM2kqTRh0UJUng65h2Ck2PoagKCIlWYIBiUW35oMbYWFsjZmbQdQ1DDanXGhRLBeZvVqg0Wrhe5wXveR6ybBJFCvl8HlmW0A2LdDqD02oShAFtp43ne2iagtNqoMfinbI+AjSpE8O6vrpOFEnUqjUS8QSR2yKgjaJECOHQbG6gipC11VWSmRxtfw6JEDUqEIkARdFpr89inBlHXd5A+v2vsPDYMKGyzoGxGEsTr9BavETelMnFbKYX38HxW6STNlMTV3jnrQlKPSOkUwkKXT3EtAWCIODYA7/DP3znKd4xz5NKp/n14S+TyydptpsszE6RSaf44fdeZHZujoGBHmLvXIYo4g/mvsPcyCIP5u+j2W6h6Br79u9HklVcL+CVk6/yC5/7PGvrSzRqHslkjHRWJ5lKoWoqlmVgmkmECKlWm/T291Eur6HrJrpuEwQCVdWR6JS7qdRqqKrM7Nwsew8cIJfJYhgGr7xykqHBIfr6u3Hc1mb+AoEsmdSqDRACSVUwNA0RSSwtLJBOZzj5ymuk0xmWlpeQFSiVioQBzMzcpKenhOM6JOIJwhBkRWJiYoJSsYSs6aiaxZGvX6ZUjrjy6ADXxi8Rs1Uy2QKeGzE/t0ixVGB1bZlWswMMFVXQduoszd9EklRuTE3T05UlkyoQ4qNbNoVsmlBEZHJ5ensHuHrlCsViN4ZhUFkvEwQBb7zxBg8+eIJG02F0dAzX9VlaWqGQzzE2NkqhUOLatXH6BwaoXW9Qzm9wMXOFP/3lP+eP/vWf8YkHDqHliuRyGSIZAiGQorvHt97NwP4B5mfrexfAtBMI7AR7O0HjltzJlff2jqPbwFVExPeXfoAQgv9sG+N6p3FvH9f2dXcCrDu33+287BY3ey9yJ+PBFkDezipub387eNrJgu7W/842droofxiLutMgcbd+7rTuXuRu7b+v335I/Vdx77q44M7hfHdr4/+rvn8v5+fD5t3O5ULaMZ9uq8/7wfjsnwLXnzh5H7jeHt967xN1+wP3bvvt9nIJq8tETgOhx3as2fEC2Pra/K9LgteeeZq/+9Zf8MUvfY5QDXnuxR8xM3WFf/juk/z2b/9TZq9d4FcfyPAxcwZJCE5eXsaRbXLZLEMLPstLSxS+9DBhCH4QYBgmstIp12CZMcKoo7xNXJ9gfn6ermIXvu9QrZSZmZrh8uVrlAppmm2H7p4ePv7oZ9i39yDTM/O4TsDI3hHy+Rz3P3A/hUKeqRvTjI2NcPbsWXzf58LF8zTqVQqFDMODo7z17jkOHN5PVeio6X6kxioiNoOIe4SRTBRJqKpEEProus3Jk6+yf9/+TsKW0EdRNcJIRpIEMdOkq6sbWdMQYUAUBSTSGVTdIJNKEIuZaJqOads02gEHjhwDVWVtYYXJyUm6ukuomk4U+pimgSQJCoUC585c4K1Tpzl69AiO4wKgqirxeAIkGYKI53/8AiOjYzhOk3iiE/facVUF3/NptzqlPiJtCllIKMEIxUIRSZKo16t4nofnhphWJx5TCBnXD1AUmTASmGYMVZFxXXfTquzTbrvomkGtXiNCoCoKruOSTKcoFoqomoqsGjhuSOC2eeqpH9E/0IuqKARPv4YY6IE//+/4/O/8OvlCliAMQBG06lUgIm53ShIhtTEkGzkUGMkEppmjv/8AtUadllfhi5//Aisrqzz97I85fGCEzwzU0Waf5WrZoo1NLpdlYekmpe4SN+dv0t3dKY90+dIlKuUy+VyOY0ePoGsajWaTdCZDrVFnYWGGfK5AiItlxjANk0wui6LKBK6DoenE40mEIpNMpSh2d2NZJrZlIWSFykaVyRuTDI4MU693kmwpssTsjUk8z6darVNvNkglk0xOTPL2W2/xsYcepNWsk81k6evrJZfNMr9wk3gyjqYptBo1wjDCtOI02w5EHhsbFSShIpcv883TPh9/8CGef+F5DszPIuPzp5cvcfzIEUxdJnH0ANY3f0g0VCKbsZidmaWnf4hYKnfLVXfrURIEASISSH2LEIU0r1kQgRlPoxgmuqohEXYy3KIgK51aoY1mi2QyRa1cxrQsEBKy3DG2gLQtodCmx0Ek4fsR/+bf/AmPPPIIjUYdTVex4x0Q6bRcDh86hGXq1KpVosgnigJUo5NITdU0gihElVQMUyWTzXbqDAtBEPqd5FKhy+TFc0xOjGOZFjEjjqxbJLM56i0HK5FAt9PE4ykkWcOw0yTsBLqiks/m8X0f07IRkonreYiwTSZboun4qGYOw4qxvtHAjqfRDZsIla7eAdquT1dvL5lcjjCKMAwTSVFRdQ1D03DbHusbaySSaZqtNoZp4DRbBGFEKlNA1mOY6QJC1RGKiiYpNOp1RBShyyqe1ySVKdByQ5CXQUio+iihJCN8GePld/FKcdw/+DW8oREM3cZtOUhhSK77UVK5blzVQ7bbSEGWZ545xf79j9CqRHz/6ZP84AfP8zM/+zOkUiXwz/PW26eJJR+lu28Pb2tnmJub5fcf+F3q9QaWppLJZam22vw3v//f8uUvf57v/sNTfFLWcdpN/uWDT+Nf9BnODhFPJokI0CXB3NwyyWQSSQhKpSLpTJKV5TWWFufoHyh1ygLJasdNVFJot+uceecC/UP9HQ8LRcN1A578/lOomkYqlUI3TSanpunr6yYZtxGyyuVLl8nnChQKRa5cvUp/fxe6buD7IUQRi4vr1KsNDNNEM1U0RWH6xgz1ahU7HmPf/gOcfPVVVFVhYGAASZIwTYtcrkgQ+JQrG0xPzdDd3U+r2aBSraDrOqpusbS4RN9TE8Rtm/FPDxJGDrGYQXm9gmnZuK5Dq9Wkr7+HS5euEN/0zJAVMDWLAImB/j5kKeKdd87TN9iPpKpcu/wepm0zOzNHGPgUC1leevkkY3tGefedt0gk4h1XYF1l7779vPjiixw8eJAfPvVDuru7qDfqJFMpXn7lVdKpDKurq3xy9HEm3Um+vvpNvvov/oH/61/9r1QaNR579BFkVcELI6QdasUWMNpeNme7LrG9fuhOEdLtIHenTrOdvdyp62yBr+3/d/ZxJ+80sbMtSfDk0g+BTh3X7azlToB8N2C+fRw7GdWdx3k3Vmw3uZN79t1Y4a3lu4H53QwAW7IdhO5sf7ur+J3GfKe27zbGnX1/2D73IncaFzvcnT+4zb0D6O0xoDuv/W7345363S53Y2R3nvPdWPWd5+5Dj2VbW7CZIfzWvtzWD/y0HM5PoOxgXP8T+PHfeQJ8sO32K18nmL/0gXI4HRe+22Naw/D9OK3vfPVPiZtJPvWlf0zL1ai1ZJ5/5nn6Uxa/95VHKVbO8uVDGhvrK5yaqDK5Uufg4f3sGe6iZ2AUXh8nk0mzMJji2rXrjIzswfPb+EFnmJLciQV0Wg5TN6boKuVZXJxnY73GO6fepO226R3oZXBoiD2j+3n33HkySYGqCw4fP0L/6DB4Dul0Al1X8Nw2QRhgxywkScU04sRMjRMP3kdvTzfzczcJhCCVMHGdgGZkYhYHkVJFHNFEUZdw7DFirskLL7zKnpE95HJpwEXSDVRNQ1M0ZAGhLOG12uiahi8JPD9EkYHQR9dUwsglinxkSUZIPpIEIvCprS3TqJfp6iqgmybVWgPbMlleXsU0O4l9ErbGJz7xKBHwja/9DceP3Y8kyzQbbSIhKK+vMzDQQ625htN20DSdWr2BacZYW7kJoUCVJQQBkTFNFIFX6wYRoekGhm5z8pVTCAGxuIZh6HhuCLKC02qhGyZ+EBEFDn7gYRgaitKpHbl4c4l0Jo1mmJTX1jusqiSQdYtKtUzctDAUDUmR6OsdRFMFPPcG0mg/+p/9AeX2PIpVYL1cxjQgaG7QrHcSlsViOrLiErZvsl6ZIvCTSJrB7Mwa0zPTXJt8i5/9uZ+hUa1xc2GZd959h8/YZ1BuvkIjfQIn0EmnkpiWSTKVZGZuhvEr17DtJJlchuGRPSRSSeJxu1NyRDF4/Y03yeTy5AoF8tk0imrQbDZQFINafQPfj4jFkiB0Qj9iamKcbDZLvd1C0wzmZmdRJIlKvUEmkeaV117l4PEjNOptbi7M0qhVyebSFEtduFFE//AQtfIKi4uL7Ns3hhUzqDXbWLZN2/UIIlANGwANgRt6aKrO5PXr5NM2qmZi6DGuTMxTVJY58tl/ghHvxo6nSZ89A8Dhf/Ff8cwPnyKR0Pj3f/23PNY7Qhg3qawtEKGQTJewEjneD1l4/6UZhSF0zxIELsFEDM8LSCRzuFJE4LYJ3BZCilBli1a7jqIpGLqJ73s0G1XsuE1IhCQiHNdBVfUOqJQ6ioOQBIHvoSoaDzxwPwifWEwHIhRFJxbLYMQMkCAIPWKJBKqmEEY+jVodO57Cj0JUVUWWdEJChCQIo4BIBEiywuS101w/dxbHlcjkCwzv3YtpJ9l35AHyXb30Du0h39NHKpskEY/T2z9ErjgImk6pf4hAUomn86SzCZpOg7G9R6mUq4SRhp20Maw4CTuOYSU4fOwh+vfsx/GbdPcP870f/ogTDz2KHtM6Fm1ZIYpUVEVhdnqOb3/zb3n8k48gqXrH0CRJyHqn/rGQFYSio8sgAod2swaRiiILnGaVyA8JFRVJi6PKBq43hZAEapCjNnsd49XzLB3bw+oXH6SBhmJGeL5HKt/DakPmwrlX6B3cy/j4BqP9J3j1rfN8+rNfpu2HZPIZfu7nf550ssDzL76EHwQM9Jfo7h3FCfOU6zVeD04Tjyd5hI9RWWvQ2FhHM+LUPIWvfP5RUhmTseEHiZ87xzJLnDoW8YW9T/Dd7/2Iw0eOYKkS1cUbVOoeqiKwTA0iH1XXyRdiJOJpfFdDM3UkFC6cO0+prwQE7N17EC9sAgphEKJqMqNjwywtr7N0c550NkN3Xy+IEOEFLM+vMDDUx9tvn+Hixavs3z9GEPnoms3FC1cplbrQTJXlpVUM0ySWjEEQcvnKVY7edwxN68yLwcEB8oUMP3jyx6RSCUxTp16v8MYbb3L8+HHy+SIXzl8inUmSTCZRFAVd7dSDfvg9D0kIrj+RpdX0MfUEb755ktH9e0gm4rhup6RWLquRSuX47nd/SFd3H2+dOc/w3jGkyCEUMtlcNzFbxfNa9AwOYZpxEjGTyKlj2Bq+D5II6eku0Gy1Eajs2TNIY9N42Ww1eOTRhykWS7xy8hXGRseYmZnrgOu+fgqZHO6NNoEa8vfBf+C+z36aF/6nv+byhQs88vDjWGYcId+uDEubcaq7xS5ubfeBWrDvb3BXnWbL/Xbr9/b2ti/r6DAf7P9Orq8f6FW87yr8i6UvfGAc29vfnvzpbmP/KGDto8pHbe9e+toJqnzf3xX07gSi22UrqdZugPpObO1u7dwrwPsox7RjzR23iaKI7STjvQLXe+n3o5BTH9rvjnN0J+B6L/2HOxl53jdQbGdct12/nwLXnyjZjA2IouCWsvhRZDer2851uz8wO9+3ZxXeVng46pRpkDYV1iiK8COor9zkvVMvMT0+ySe/8BVuTl7it37jH/PPfukzPDEic9xeJKotcuXGAqdv1Lg6u8J6tcmXv/g53LbLhQvjlLqSRLUGam8a49gAigKWZdL2XHRd3WQvBa16BT8MGRwcZnW1TE93DzOz02xUN+jt7ccybIbGhkkkbfL5Et1dQ9Q3NrANlY3VFd4+dQZVCZmcXKDU30simUCWdcIgADw2anWO33eEd8+cYW11kY9/7CHWKnXS6TTf+sbXOfbQw+iqjJzvg5U6uncVUU8wuG8fhD7nzp2jUMxTr9UwdBtJ0REyOLVOWQ8/9BEhnZp6p89R6upBN1RW1yrEbHszC22E60Ssr1XJF1OoioSqGmiKztLiTUxTQdMM2q02siz4wQ+fZv/+g6iqzOBAHz/60VMcPrQfSQqQJAXD0lF1g0QihxWPcencefr7+kCT8LyI6ekFevt6kGVB1TmPoqjo0kE0w6JVr7K4MM+RY/dR7ClQWauiqjqapSOCkMAPUGQJVZbwPA9JbLp7ytBqt0gl08gSBEA81mHXGk2fd06d4sD+AwRE1Jt1dFXuZN69NoeYXcT9xh8RSAI7ngPhkoylCTxwXIdUoYgvPGKGjuaELK1XsTSDJ7//FD2jo7z8wo/J2DEuXRjn6IMfR1gqST1gdP7rFO2AoPfTmPEU9XYLVZKIx+O0nRobaw1UWabdbKDJIVYiiRCd0h/Vao2ZG+Ps23uQVqtBLCajminqGxsEvoekRlh2Ar/lcOnSJSzdYvbmNQ4fO04UKeiajCyBpikYpoFl2whZpre3G1WSGL92nSNHjmAnUyiWjSTJWIaBkDqsvq6blMtlfC8kl80xeWMCWdEJAgk5CpmfnSaRttGNLOcvXOT1116nv7cfOxnn5vwcpqETtzWC2df4y6fn6Onuo6n+mPnYMtP+GImExerUAg+eeJBayqT/6be4ITtMTt6g2NWFT0DMit3++o0iapUV9KF1iCJaV6TOvWMnkZAIW3UC30c2koShhywbbGxUME0d33eIxdN4vk+zVUHXNBTFxPE6pZmIAmQREXoBQlEhdBFRiKzpSEIlEgI/dJHkAFlRCQkx9RhR6OG6OoqhcfqNd0nELBKJDJKsoSgCQYSkK0QYyLLExs1pblyZ6DzvNI2j951Aj6XIF4rIMmiqSrO90ilRJWuohkkoSbiBSyzWYXwt2yKeShBPJMjmuzGsOKW+bko9/eSK3WTzaYRm0z88jGxooAjSuSIRCg8+9BCKKqGrAqHohEGILEMYShimxeOfeoS5mSnS6TRIMgHyZukl6dYTW0g+rXoVIVSQBYpuYVhxFFVBNSyiSCYMXBx/mjAMKc8HFC6tUH34BMEvfZ7/43/739kzdpBcqUQYCdq1NsILGR47DqHCb/3abzA9OcEXf/m3sNJxzJjNu2+c46nv/C12IuIf/cqvUalFpPIHcMMeLp6f54nPfI7B/3wAiPhi7vNcnb7B0L5RXC/kb775bT778z9Lw4loOHUKV2eZ82ZJ3P8JnnvzeR5/9FHaXh1Vl3GCgGKpyKWL43R19ZJM2Z3M2ZKKpimoGsgCHLfN+fMXKOQK1OtNwKWytoaq6Oiahue2abebZFIpuru7qVWriCgi9DwiIWPFTBQzhiLJdHd3kcpkePnFkwwNDRGFPoapo2kGN5fmGNs7QhRFeEGDoeE9VMtNLDuBqshMjI+TK5TYOzbCmTPvMrJnmHazzt59h3jllZfp6+vCtrVOvVRJRlJUlEjD91vsO7lMEIScOqaQTmbRVJliyUZWY0ShQiKeRiAwzCTTU3MMDAwgooix0T2IyOPc+fcYGdrD4s1Zokhg2wlWFtaQpAA7HiOeyhKGEo16gxs3ZhgcGiWTy5FMxKlUK6hKwKk330TXLVLpFJcvXqa/bwDdMDiwfx/5fJEbN8bp6urh4oVrjGbGmJueYzI9Sd2yOE6RuSvXOfqJTyLJPmoEUgi+JG7Z3u/EMsmyfFu5lNvWi7uzmLvpONuZv53LtmQnsBQR78ezwlYJ0lsfIW6Pcd2NxdrJKO+U3ZbvNvY7/b8X2c0l906M2vbx7GSAdzuvO+OLd+77gXO6C2jdOke3rjfyrfjRTqjI7f1t7+eWwfQO5+WjMq+3bbuz9qrY9HbcitXdCWS33yDRjs9m/dkoAknazFkjNmsNs5k9T4jNG+2eh/v+UO/idn23fXY77nsxngixNS+2vKB2tvV+Gz9lXH/i5T8N27qb3G1y36kcDtsefFEUEQqBFjj8/Vf/lMbyPF/8zd/h2rUrJNbf41ePxSm40wjV4J0bG7x4ZgJXWNh2glJXkc986lHWV28Si1mMjo0ST6QJhzKI0Rxh1FGSIyFjGBYba+VNBZ7NDJvQbjm89OKLTE5OoCgqD5w4geM6jI2NYNs2bcchk0py/tybpNJx5uYXiFk2AgnPb3Po4DFcp4HwQmamZpmfnSWVSjA42E/M1FheXOb+B07wwo9/TBS4TE9d5YknPokRS0IY4fgRolBAvjxNlFhHDjO0GgFDQ3uI23FiVhxZkelkV+0oo5XqOrYdQ5ZkQkWjf2AY328jyxGmblOplFldXiORjHPqzdOMjuwj9EHICm+fOY8fhgyNDOP4Ppad2KwR67NneAjTtHC9Nqap0tVVwPUcYrE4a+tlTFNHiM4LQ5YVkvE4y6srxGybmKHRVephfm6BCIGRutmpy8phlhfnkGSJRDKOkCIUWd10UZY7LuyRT6NRI4oCGs06sqLjthqsLS1Qb7UwzRiBH1ApbzA9PUch3xmXqgi6u0pIikBIoKoy6+srWDGT6O2L+L/+C4jje2k1OoBW0y0iv1NGqFot06hXyCX7mZ+ZYmbhHd565V0Ge/t44OGHabV9xi9dZWRgCEJ4/eWTHDywD+31f0kqlaadOd5xoSWiVCzQbDS5dm0cy7YYGtqDaioMDg+zuLxCNl9EVRROnzrN2Ogo3T0FolCgGyaqorG2uEClUsEwbaBTU1NWVHTLorrRwLJ1bDuOogqQVIIwQla1jvt2FBL4IRvra/ieS76Qo9lscf36dfr7B3Fdj0QiQRg4yLKCHYvhui6ZTIYgCimWimysbxCGAblMinwxgxCCb/3l1/jszz/B2N4RMoU8M9MzdBWLGLpO03HRG9Mc+IX/kfMXLlEIrlAq5lk2R6iUVymXKxw6cojccC/G+Cynp8cxNZ1iVzeF7v4PWGgDz6VZK2ON1QmDCPd6gkg20Kw4bruJ77vom66vrttElhUsy8D3XVTVwg/qKLKKoadx3SaSrCJLElHgoGkGbiAIJRlF1RGSTLVSxtQ2E4ARQgTNRrPjWqvpaKpCGIZUalXSuSy9vT1k8mkiWQJJdOaAIojwKa+sc+X823j1OfoGhxg5eIzu3hKRiPBDFz9w6Xi+SOiGhueBUHVarSa6qhC4Dqqu32IcgiAgDAPCIMLzXU698RZDQ0MgAlRNwbTiSLJ0S1kJQ4+ICFkRaLqMG3YMg4oQVOtlECGO28QwNRJ2EknWeF9tuP2d4LUrSKGPLMt4oegkyYkimrUanucDAk0zaDpTqLJK5rJPcHiMmZ97CM3U+YUvfgFhGGhKDFlWSdgxWq0qmpZgYX6a3/zNX+fgocMEcoSqCNy2T3mtTi6bZmTfIGHoUSj18s1vfYPjx49x4fxlfuef/AJnY1doNB2Wn/T59//2L/jYQw+SSccZGuyjstFEkgTplMny3/+QVWOdk0cqE+7U4wAAIABJREFUdGd7SSRTnbhSFDTVREgRa+sbFAoFmq0G5XKZmG0hZEEQ+DSbNUwrztjoflZuzmIYOrFEEkU1kMQm2y6rOI5Pq9Xm7NmzJJMpxscnkGWdwO+EXjz33Cusra5z+NABGq0qMSOF47SZmLxGX183a6uL5DJpJBEiSwGgIUKJWCzGs888i6rK9PX3MT4xiWkqjO3bjxNEqEYC3ZCIJ5OYVgxJVvE9j1OnT9PT08P3v/e3RKHMI5c6AO7MsTimDu12Ga8d0Wy7mIaJEPDC8y8gqxq5QgnP98kV8tSqFWRZpq9vgLW1dbL5HGEYsba+Rld3gYnxcU6efB3H6Rh/0+kU+/aNMTMzRSqVZm5ulnwux9ziKiMj+5ianKKyvkomm9t8vodcvnyJXC5PvV7DdT1y+QJr60vcN3SMdtNjY3iVRRoMLCSwdIXsyBBhBKG4pereenbcqTTO9vCm29xQ2T3RzN1kCxjdCURtgact5k8IcatO+Ps77PgrBOeq50iqSR7PPvaBNrf/vxOwuBsLeisb+h0Yx3uRuyVuuifwfhfgd6fyP9v3/TCgvZNR3dxzB+N6e3/b75kPi/H9qOfrduC684J/II/uR2n4tj7eZyZ3uR/vUcXf3sZHnQ8fHN69s9U7PRK2GPOtfTtz6YNt/xS4/sTK3YHrnXzS73Yj3omB3S5bwFUeOoEQgpWVlU5NzR37+WGI4bd59ZmnOXrgIKmoQmbqOSx3gyBRIkiP8uSzr7G4to5mmLTaLseOHWVy4jqWpROzbBKpNA3HpVprUKk02NioYmgSViwBQkaIiLW1DTS9o7j5rke93uT61XFUVaFWK2PFEqTT2U4iociFMMKwLK5fucip105jWCl8X2bi2g0y6RjVeo1XT75BIqYzMT7O1NQMh48cwrZtunt7uH79KjPTc6yU6+wdPUDaTrOyskYhb2LEs/iuB4pC5HlEuQLSygzhRgMzMcBXv/oXHD5ykNWldV5/7TWKpXwnSVEoY8cSBL7E9NRNcrk0X//aN1FkmUQyga7rJBI2sVgMz/cZHByiXqvz4osv0z/YR6nUQzyR6jy8PYer770HfhtTCdGsBJVKjVQqSaVcplgsoKoqnueyvLyGbVsIsWUplRGSRDKZRJUVGvUlPK9JOptE01U0sR+v0Q9R2Km7a8VZL5dpt+romkm1UUdVFJx2i2arTiIRJyJC13T+/jvf58EHT5DL5VE1A1nIyAI0Taa7uxshSaytrXfKaqgaX/vLv+TQoSPIsoppaPiOi/TqOcL/4ldQi1ksQ2NteRFJVVAVlaWlBbKZRMcV2ffIZROs1qsM9JYICFirLZPKDzC6ZxRDN9Ati6mJSQbWv4fmrkH/x3FcH9vuxHRFQcj58++xZ2Qv9UYFKxYnnrSJCEil0vzDd5/kwIH9PPPMUzz88EPUGi0azSaKrLCyssb6+gp7RseQFZX52XkymTR+5BNPxDANi0Ixg6RoeIGHJKkEQeeBL0sKkgjRVI1ms04mlUSzLEQUUipkcZ02qqoxMTGF57Q2jTYRiqIQBAGpXArfCzB0DVWWWN9YQ9dVhKRx//FjTE5OkM3nEbJM3E4yfv0y2VyGSE0iV67wo7cucvSRxygG46yurND98V+mv6+flbV1xkaHuHzxPfy4xYFLK6xZIV093dip3O3PEaC2sYaqhBijDVTdoDWRI1Mo4ThNCDyE1AFqkixRq9WxLBshBPV6teONIIHndQwiQpaQN2kOWe7UFZZkmQgXJewkVorZFlLkIySJMAhQVa2T/MnzOvUqIxdJCBJJgyiUMA1o1VZxmjV0CRrry0TBBoG7TtDYwFRqFEvdxDLdqFYSSbERQkWRNDQthhc4CElDCNjYaGFZOqqqIsSm0iUEW8ynJIGidMr2qLpGT28/qqF0yhnJagdySgLHdVBUBSFAVXXCMKTttJCIMFQFz/PQ9WQnwZNhIVCRb9X/kzY9Xjqu8p7nQhRh6ArtVpN6vU0ilQUhb2a41YgiNpUMCT9awHzPRTRVFn/vl0kXkji1Bm+ePUehWGJtZZVCocjaygqyJHPjxhLLSzMM7unl+08+z3/5z3+fh0/cT0+pSCwRZ2h4iD/+439FKpkinc/wyccOIHAZGDhIJj7EV1/8KsfHDvPiv/17jh38GGN7+xne00sYetjxNJap0GpUabzwKo1Yi5UTXVhWCiR49plnGRoc4vKVq2RzGbq6ukBEaJpOPJGg1W4RRgGO46BIKhGCwPd58fkXWKtUGNu7l9dfe51MJoMsK7iuS6vVJpVKk81kyWayNFttenu7MEwDXdfo7ukhm06ytDhPqavA+nqVvv5ehoaGOiWOVIV4PI2ua0hyxI+fe41UKk6Eg9MKSGfSqJrWiXePmZv3gkJEQL1exzTiTE5OEbN1JFmlt7cHRZI5dGiUVDLD2MsrVKtVvt/tUOrtzDnVTBH6bVqtOisrK/T29JHN55AlmWTKpl4vY5kWTz/9DOtrFQrd3QhJYBg6hqESBgHZbIFMJkNPTxeJeBLDMKhWK6iqwka50in1E3QSgllWJxHg4cOH0E2Dy5cvcf/997Gysky9Xmds7wjZTBbHcVEUiXwhw7U3xxnoG2S+6yarXQ3MV6o8/OinEYpCJARyJDYNR7cDju3gbicjeAtMbtbx7syx3WNgt8udYjl3Y/4+AIB2ti3e33fr83juMR7LfuID7Wzv707g78PcND8MqO6mt+3sczdwtH2b7a7UO9vcvt1WCNhOZnW3trcDs51xr9uv9dYx7nJkt9Z1trsz67zz/HxYHO2Hye3ge4ceLe1s797b3n4nfdg9K207j3czImw/11uloHb2cS/n4W7GhTsZW+7E1r7f964x0D8Frj+Zcm+M60edrB8m7zOuHeBqmiZbrgK3RhZF+KHP2ydf5sRIHz3180RrNxDpIWpmH1emJnnrjVM0Gi0a7RaFUg+pZAo7ZvHAfUcJEdy4Mce+g0eJFIVUIoY/X+Pm9TnGju3rJO3xAxQ5xI7FkWSBJMH66jIJO825c+dZW13h2NFD9PQPkEqlWV1dJpmKMX1jFllVEIFLLKaz//BBwsgnEVcob6yTKxTp7Rlk5eYMQyNjrK6vM7ZvL5Iqc+nyVUbH9tJ2fI4+fBBdl/nR0z/kic8+wcS18yRzfWiKjGzIVNertKIAuypBdp2okeX+Bx4C4fPuW+c5evQwqXQcAFnxQXioqoSsSOgS7Bs7iBWzsRNxCF1arTq+7yFJOlEUousyI3uGCH2Ha1fHmZ9b5uyZ8/iySTyVp9TVg/r/svfeQXbd153n5/5uTi+/1xndaACNDBBgkqhAyYqWFUcre73jGUveHc/M2jWhamer7PVW7ZZrXDue5BmPJ9jjlceygiWZEk3SokSKEYwAE4jYaKDROffL4eb943VTzWYDBGVX7W5Jp+tVvXffvb97fr973+1zzvec79F1fC9CQuHpp58mn+1lZmYex3VRFJlstohhaDTqVRzXxvdChCKzvr6OLMvoss0TT5xiz94DNOodNFVGkyVCr0GnFRJL3dY8KdukvF5FNfVu71EhME2TlZVVUm6GRqPJ8RMnCWKIUJCBK+MTaKqCbem02lWEomEYNqqsEEYxY2MHWFpew7FT6KqCslYjmVpA/a1fgThClsBxbBLZZ2lxgUzGxvMrJF6C15nCsiwM8yjpnlFsawhFziAyOrbjsrq6Su/QELPPfJndyiTang/jdzo8/uRTDPT3EQUBtm0hiW66dDaXRttgCY1CD02VGR7ex8ULF/i5T3ycJImQZRvd0BBSQjqVojTQj6SpRIHH7OQkqiKQFIkk9jENnemZSdLpHtbL6+hCEAU+09cnyWXSzM7N4LopbMtkbnYGN5PvOhqxx9rKIulMDsNIIRIwna4RXKlUsUwTWZNRFQ2/00HXVSauXKO/fwAJnfXKGppuYJk2C7NLGIZBJuNw9uyr7N5zECkOGdOmqTcSek6XyTfzPCNMkkiw1ihj6gqFbIr88duwn3qZ4GQvFnKXnGlbRLrdqCKSANnVkLwcmjeIJASdxhqSJHDcNGGSIEtgGA5JLLppnoqCUGJEYqNpKmvleSw7iyK6afKe7xEGMaYiU12dIajOYzsWMQlB0KHV7hCGEWEQoqk6ihTTqNUor82hCpkgqGJoNtXyPHa2F81OE6NgGA6KmiGWNaxUETebRbPTqFaBGIWQGCHHeJ0GQRyi6BpCaLS9DvPza9SrS6TTKYSiIckaYegjJKhUyhvIq0zH82g2GxiWThj5yIpGkuh47TphFGIYBnESE0UgJAU2e3b4NZq1KsgqmiFodSp4fgPPayMrFmEYdZm26bYfK5fLWJbZNTCRUVWDVKZL8CRJAkUWeK0WsiQjVIUwhniyhjXZ4g/39XP0zuOEfo3mWo1O1E1Zz+ZMhEgwNIeUU+A//sEf8sGP3oObtjh6/G7+53/wT/lPv/evOHniCGZW56Mf+xR/8sff4D/8uz/i/oe+zX//OQ9NXOEHj5Up7LL5+f2f5173gxzfdxdHjo/y1a/+EZ/4xMdo1Bvc992/4MDYGPlUjhe0Bf7bvrOk9UE6foCm64zt2UO1so6TtrFtl4XFeRYWFyiVekFKurW6qoqsyFTXGyiqjBAJx47fTf/gIMQRuwf7EYrFU089zZ49oziOSRzDq6+8Qr5QIJ1K4QU14jhCURTqzVWK+Qy+10YzDGzLptVqdonpghjLdbhyZYZcoURMxJ7hfVi2RrO1xkDPKLGUgBBU1soIRcc0NIg71MpzOEaRv3rgYXpLBQoFhxiNdquJrqv4nQ6LS3P0X21hDPQwc1yhJ1eiVWuwtjJHodCDokgYmkar2WFleZGV5UVSjoGuSVwev8rKyioDA7t49PHHOHnyBLIMnXaL+779XXp7+kmSCNvRWF9vsra2Rj6fRwhBb38vszMz9PX1ks9Y1Ou1bgAvm2F5YZGRkWHCKECSQJFVLMukXmugqhrNVptiKcvhQwexA43eeIhr5iRnx+b41oNf52cLH8TOZklu4MhtZ6iNougtBrwsy2+wmW7aHbciOxnXW1/bEcMu4rqtn6j05rF2qoW91dY02526rfPbijTfzKnYqsd2dPZGx2wfs8toLt9U1801UDYCZlu3byW62il1eHMum0j2jeawKd15vHldNgODW53dWwVj/lqI63bH9S1DvRPE9Z3sevPrvV12qp/e3m/4RvXVb3e/3uw+unkg6K1o/k8d1580kUKQ4m46Jje/yd4usrc9D+GNZ/INf+AS4bUXAdBG73wjn11iI+IfJ0hCEMYR3uoClcf/G4PRdeJUDx13mGqtysPf/z6+L3BTKSrVNQrZAh/9xM9x9NBerl29yIMPP8p73/de8sUsr772MrsGB3nm2Rc5/OQSxYU29dtKLC8tkXZdapUGzz77AqMjIzzz9DMQy1y7doH1tTK2ZTA41MPAwC7q1VWSJKTU00cYJsRhxMuvvIasGcR+TLtewzV1vE6NoOMRRiFCtSgUcoDgmVPPcvzYCUxDZ3FpjYH+PO1KHREJ0pksiZBwdJl8vkAkC0hkbENHkRVaGQPtyiyRUkFEJe7/7v18+CPvJZ1N0/FDNEWi43WQhEar6UEYUG34ZAoZDFODKETVbOIwxrBsJBmiKECSIoQs82d/+lV+9mc/SW9vCRKffaOjmJpErVamUmlQLOZpNWoUSj1omkqhmOfxJx6np7eXZr3MC8+/Sqm30GVnBjrtBkkcIySVOIFr1xbZs3cURYsIw4RavYpuGTgpA1kyiKM2qqpj2RaabiAEVCtrNBseqmKTJCG5vINAwe+0EYrC177yDRIkdo+OUGs0sB0Hog6yZIAKuqaj6YKFhXky6SyqLkguT8HRvaweGSSdzrC8WEbXU2hEPPvkGfYOjwEtKpUKc9PLvH5+kv/z//rnvPueu6hUV8nmM9h6G78JubzN+Ms/5Lbmg9i738fc6hq2Y7N//xHW19cpVyqEUYSjm1TWlzBNC1UzOfPyGfoHhpi5NsXkxCU0EWPbFpqdIiDi9KlnaTdbOJkMsiSzMj/H8tIChw8foNHskMukURWTySuT7B4ZJU58TN1CMSxa9Tq9ff0kio5tWd3fqSQTJQkpWyVRVEI/Il/KE4RJF4l2Tbx2E9M0aTTapFJZfD9AkmV0zWBifIJKpcrU9DyOa+I4NqmUg6xIGIaFrguEpHDx/Dhh0MTK9OC16hSNOs4VCd83MT70M8xMT+H5grbnc+DQUYIgZn51Cef5q1yvreGkspimTSJkkBLazSqJ3wLZwPAHSSpZVBHTqq2iqQaalSHc6Mea0K33kUQCxN1INiCJmIQEQ3doNKrIApIkwuvUqdfWabbqpDI5fMkEYQIKkpBRdQfTclB1vYu+bjAWu6ksQndR9TRRAqaTIwq7da0Qg1CpNqroukUYJ+hmmiixiOOQsNNGE4L56atYOkShR7ctU4IsCQr5DIVcphsdJyGOA4SibZCT2ciqhaqqnH3tNVaXV+gp5ZEFrK+2kGVwHK1LrCQkwsAjCuuoIsRrVoi9Fqg6dipLrdogihWCdoitmeAHvH72HJbjEkYhayuLyFKEoQkCr0XgtfHaZVqdEE23iZGQRczK0jyZTJZENmFhHf25s+jLTWr/+BcZ++gHWF5ZotjTy0q5SiFbIuUKVmbGSZkmnudRrlV593uOUyoUmZtfJApDlteu8OnPfx4/VmnWQ1qVJo/+4IcM7urln/6Tv08uM8X4+BUM4ziFYpHlxSrpTImPfOKj/P1f/3X+1mc+T3m9ieYUGBnaRbvjodkGr/VcZ0Gp0W/30mlWQMgIIaPpGrapEwUetp1BRiL2W5iWgbzRT3FhbolcMY9pWkRxAooMEsiyyve+/yi9vQVGdvciy13yNN00GR7sAwRtP0ZEHk7KJpFVpFhB0yzMjRrz7z/0PdxMilwhg2WqSJKGZSkoisTElSlymdxGmrKK4WaQJIGhq1iWQqcdMHl9ikKhQOR5CN3k2G1HyReLNJoBVy5eRpUSHnjgLzl27C7cVJqnig3W7x0mXeyh5XXo+B6madFo1DHdPFEi0ek0SWRBT2mAr331mzQaHe644w6OHjtEPp+lmE0RBRHPP/c8+/btY2TPHhQhkS/kkTUViRBNszAMje89/AClUh/9/UNUa1XCOKJQLCABuqoRRQl+ENBudygUeliYnebSxcsMj+xmYmKS2bk5xvbuI4gi7rvvfj7w3vezWwzT8dtc65nj1Lkf8EsnfxWZDtEG2RpssIVvMT/e5KRKEpL8o0yNTZt+a/3r9tet2EQ7bX9L/WQSd9OS5S7Ku72W82aI2M2QzJt93omM6EZjbD32naYRb0dTd0Jhb6bvpmx1Vremi26OcyNUfGvt71uRXOlN1xfpzSSg253vN12PjfpYNiswt6Hkt7ousImw/uj11nnc2nhdvTZS5DfLWbe/xJZ03+3nEV0FJPGGIjfVe6u8KRCzDT3ddHhv5fgdzyekjSyqt05IYsfz/dRx/YkS6UeEAvA3j6i+3ZjB1a7jqm6wCr8RRRMeIQJVUqkuLrH06H9lxPIJ+26jlej4fkSj3mRleZ0Pfui9JEkEsYShmwwODREHHa5OjHP06DGEZBMnHQ4eHKPVDNl/YAyeuYqqKGgfPIhl2aytVxi/cpXDB4+iyDJzMzNcGZ8gSQL27N2HqmuM7t3HC8+fZnR0lJmZOa5Pz5KxDU498wxHjh1jenIOkphKpZsy66ZTVGoNgiDCtGxef/0VLNtieXmZ0d0jLC2tkMtmKJfXGB4ao1Zf4fSZZzl5+3tRpBDdNpBkB5IILwxwXafL4ImEqlR47Oun+dinP02rtkwQhmiGgef7GIpMEITYlkGrXqVSbnTZeYMmmpxwbXqBbD7bbVCvqN1/nHGCLBT27N3N4tIStVqD/oFBKpUKhWKeZrPJd79zP8eOnqBcmaO3rxfN6LKTDo+MUKs1cFI2Fy9c5uixQzQbbcI4wnYsDNPu9hNUZU498xyHjh7sMriqp1DtFWRGWV9dplH3abXrWJZFtVJHUTWE6KLf5fVuqrBpakgiYWVlHVlK0HWdw8cPs3vPCKqm4aaztJpVFpeWsK0itWoZ3ekamtlcAVXXkJBJTp8j/uR7ce55N2vlCmvL88xcuUDo1Tly6DAtr82l8QlUf4ldIyMcOnE7gyOjXD1zgX/06/+Id7/7HlKGztLsKp21y6infhu97wivXl9jbO9eVpdXcLJ5HNukkEsTbxiGhqmj6TpBGFLMF7k6PkF/3yCZUolSXx8xMYbarbEe2TXC8vIKfQODJEJmbbXMzOwsmWwRSZLQTR0hKyzMl7ttV8KAixfOkyuk0TSVjufTbnpIisrCUpdx2XZdWq0mqmoQRwKv5VOrNYjjEN2QOfX4Y2QyaZYW5qlVy2/0Jz139iwz09Nk0i5j+/aSyudQFZn5uTkq62UEMYYhszA/z4njJ1henEex0yzUEhK7l/z1Jr67l6nhAo899jhBJ2R4aICFxQVSmRyFE/spfe80DUeg5fJYbgokgZDA77TwvCa5Uj8IFUUSxFFM4HWwbIeOF6OpKlEUEMUBiqwRRTHtdgtN76awCtHt0bq2vkoqnSYMfAzDQFZN3HQOzbC7PWFNiyCM0bVuH9jV5WU0VSGJI4Qk4QcBQRB0EQIJyuV1wjDEMEySJEYSMa1WkzAMsSwbWVaQ5S7zZxLHeF4HWSiYxiZKJgECTbUor68RRR1IfAga+J0aiuQTenXC0EeTBcuLy6ScNLoa49oOA339aKogjkO+/tX7KBUL+J0KrWaMQCaMaqiKTqXWIpXtwU8ULDtNq91li45DH8tx8IKERDEp5HsQkiCJEwzDwnRchKIRRmA6LppqIKEhSQqKFFEpr5MTOlxdQHv+VeRqndbf/jTP3nWAvhMH0FQTISBOIhQ1JJNNU61WeOwHL3Pk6Ak0XUXRDVRT0GxEfP/BJ5HibtprNpchCNooasIHP/A+Tp48znveezeWI7D0K6ytlpmdHSJfyJDLFDn19Cn+/b/7N/zL3/l9Tj//Assrq8yvrrP34AiyLhNLCV9f/Ca9foEoTnj4r37A4K5eNF2jUW/gulkW56eYX1ylp78fJ92tmxdy9/c4MzNDGHdT+xOAWEIWgqWlBU7cfhumYYAUocg6SBFxDLpuEoYRS0vz9Pb3srZWxtFdqrUG514/z+vnztPb28Phg/u6baYMk2q5jqZrCFkQ+AHpVI6lpXkKxRyybCGEzIULF7FMA99r8dJLZ3jX3e/qGsNJRBdZj5mbnSWJQ0rFAqqucvLkSRYWlmk0agwODmIYJoGfdDNVHJUkaWJZWaLQR0gCr5WQzrhYls6x40fQdZUg8EiSGEVVSaUy2LZLKp3GcmwCr8arL12kv7eXRnMJy85TrtS4cPEi77v3/Uxfv046lUGWJTQhcfniOFGYMDszRSqbI5croioK83Mz9PUXOHjwCG4qxZmXXuTe978P4pBms83RI0cIwqBb01+WcIXEZXee8Wtn+ZnRj6NucttsOCY7WR+bSJGiKm9xpnYyqLejpjvJdtTuVvbdiRRoc/vfe+0f8MDSg3y695Nv6LD53c0QqZ103/5+O6r8TlGxWzmfEIIoit6Sov12AYFN2YmYaXP7VuKl7U7m5j47O8rbetduyzK8uUP/5rV7p0vzTq7ZrTqut3jiH+37Fv/4R+uVJDv/Vm7tFG+e29agwo/lU9zs/kjeuu2dOK5/vYrdn8r/J2SzvmBTtqe5bJft22/28Hm7SFSSJOh3fwH97i+8KTqXJAkiEsSJoOM1qZ9/hEK4jLzvfZQrNSTFpt3scOqZ59g3NgpJwnPPPo8sZFZXF7jvW9/iO/fdx1133UH/QD+KFtLbO0ir5WO7GmEYsLiwQBzHRHGMH0QUikVuv/0OHnjgO1Qqa0hSl+SoUMgRxQEHDx9GqAazs1NomoJt2xw8eJDr165xz7vu4trlixw5PMbY/hHSWYerk1N4geDEyXfh+zFzM/O86867EAiKhQKB51OtValV1tk1vIt2p8ri0gIf//gnMEwdL0jwwzZJqJLEAaam0G61CSMJZXQUUPnQBw+gqArF3gFUzURVNUxdJ0ZGN2w6no+m6xR7Shi2iW5aSEJl99Bu4qRr+IPYqJdTCYKIdCbD/PwC/YN9tDsNHnjgAc6ePUsmk+VLv/IlpqcnyWz02YwjifJ6GSFJuI5NArz/A++j1Wzw0osvU1mv0Kg3icOY8+fOI6SIL33pF7FMFZIQSWmRiDpSDLZtMzExwdzcLL7vI0mCufkuIZEiKxSLOXRDoVyusjC/Rr5YxLYt1tZWaNRqqLLA9zziwMexihQKw3znOw8S+yFJHBL6IVcuX4Y4gNBHWlpDec/tKFJMKZdh795RDp04itHfj5y1QAvRFFipeMh2D9VmzO6hXVyZvM6Ro8dZWVzh3/7rr/LUwz9Ae/FfglnkBy/OcfTwbbx29jxRIlian6VSLvPkk89y6fLkRmsfn1q9ShiF+J0a7UYZ2zXQhaBWrbO6UmZ1eQUZiaXlFeJE4o/+8I+Zn51hZGSEQ4eO0Gy0uj1JhUwiBIeO7OeVV8+wsDBPOpUi9BISIRORkEQR33vwIVKOQxz5JJGPkBXiOEA3NM6cPoMsSQgJ4hCOHrsb3084cHg/vQO5blsMuhHvD33oQ6yslZm8NoGuyURAb/8uVtdrrKysolkmA0Pdno7lapN2u0N/qYip6QDUag1Mt498aYh333kX2XSaII5AEUS6zGWzTaIkqJoCkkRCQhh0W82omg2yRmLVCbVVgqBJEPhEiYSiyiRJhMg0UY1uZF4IqZueDTQaLWq1KkHgUyh0iaVUVaNSqWzUAwMIZEUnkWS0lIKnNRCKQm9fP0JWaLU7CFlBV1X0DdIrSUrI5/M4jkMUxoBEo9HCtuw3nNYoiuh0PBqNFgJQhEDVdVqhRKITEX8dAAAgAElEQVSmkbQcr12cJpEUnHQON51HM1wUO4Vi2tRbHYIoJmw38JsVIq9OZXWWZnUdVYqpVtcQskGcCL70P34RTZdR1AxPP/MCsmZh2X2oeoFMrpdIimn5dcIgeiMVWygRCQGKIqGqgm/9xX1oikCVZVTdIIokPD9C1y06nYAoFgS+z/ili1SrVTLLNZSnXiEpZlj+X77A+r/9xzRO7GFPxiNevMTExASXLl3iiSeeIJPuwTB0Ll0a56++930arTqduMV//eMvoxg6qmbyqU99hrnpy4zsHqLZ7AZULMug3W4yPj7OtckJrl2dpdlooSoa3/j6txAx/Nrkr/NvpH/Fy2ee5R/+6i/wpV/+PO++5y4+8IEPQBiQcRwsTeXwsyvsO7PId77zF3z285/FNl2ef/ZZMrkMfhhSKA2w/8BBVFXgtRsbAYeERqPB/v1jDA4MMT09wwvPv0gctnn8sR9soB2CZiPENnOcfvEssjARRCytLiHJIfmsSZIkFHJ5Tj37DNevX2d5ZZmPfuTDnD59mvn5efwgQFUUyuUyYegjy12Cu3K5wsjuIfygRbvpMzM93WWS13Q0VeOD976HZrNGnCS0OgGapjM9NY1lmpSKJV559Sym7eAFMY888gjPPPMMQRDQarV46snH8X2Pp598mtCHTsenUVvF1CReOP08lmURhiEL80ucP3eFJFGwLBvo2g1tz+Pxx58ijrtp33e8+06cjMvU5DxRFFMq5Tl58gQSMgcOHNiwCQTNdsC+saPMzi4TxaBrMp12k1zK5uK5l/C8NqdPnyaOIz7z2Z8jk3HJpFxeOnMGx7JIuylAwk1lSa27HFCGeVQ8y+//+e9iyjKakBBSTHKD8idZlt9gF96smYy6D4K32DA72T1bbZjtsjnmTs7rdkRvOxHNm9FA2GQYvhH6ejPddvp+8/3WeW+e+2Zjb0clt6/LjZzvrSnAOx13ozlsdzy3ftclfpTfcr0257PVnt0+9qYjvTUQcaO07K0tjt5uXbeu3c2u19vdTz+O7KTH9rXcibBp67E72epvF1jY/G6nlk9bU/G33nvvZE6bOm8/7q9LFvVTxPX/1xKDFL0pKnKr6Q43jk5uplDcnNjgR+cEYdhIugXJJp1396bsRN26Q+/y82iXHqaV2otiOlimSbuyzqVzZ5lamKPR9pm/Noei2qysV7jj5GFSjoFETF//ECEquhZz8eJlQCaJE+rNNqXxKrKQ4P0HUIWCiBNm56YQSUJ/7xDLSyt4fpOe/iESoVFer1HMZhga7KdSqVIoFPHaLVJpF9/vUF5eptmqUeofxDAtqpUV8vk8U9eucOzYURaXV6hWKqRTKZaXl6lVy5y7cI67776H+dkFUoU0KoK56SnctI1jKqwtL6Klc/iNGCEnyLKGkGz+83/5U26/8yDSwiyUTSJDox2o/Nkff5mD+3cTxgmKLEMCqm7w1HOn2TM8TLtVJ0piOs2AKIyxHJdOo8PS/DqmboNooQsZ104jKyaWm+LA/lGGh4dQVQ1dsyj05BGyjAh9Wn5ADFiOjW6aRHFIKu2iKBqDgwOEsQdIrK6t0D/QR8drYTs2C4vLuG6GWBlnYX6JrHknkkjYtWsXpZ5+hAxWykQgkXIt/KCJ4zrdPriOSxiGyEmAqjvIhkGtvo7jplE1lSBq44VNdM1haGgQocnokoaiJpR6CkhCIC+VYWYR74sfQVXWWFm8TtAJ8VqCXYUcS/PLdDxwcn3UygG//Hf+Gb/8d79IIqocOX6Ce95zB3/2J1/nV3/x44yt/xGSM4A5dAcH9u+jUl5n98huZCGIkwRNVpBIOHT0MFMzM5SKfTTabTKFLKZhMLJ3L62Ox+raMtlMAcu06HTa+H4AScKuXYPcddcdxFHI9Mw0URxTLJWorK+RNjPdlkZqguuYlIoFKo0WqhTjt2NIJDI5l0LaYmJ8CtMULC0t01/soRMGgMzgYB9r1RqPPPok/QP9mJZONp+iVq2zuFDGTef4xle/heN2CXKKxTSddoOFhTl6+4eZXZglk8qzvjJN39A+ZmfnUYSCZVikUia2m0YSEs7ldYTTz++deoi73/VuDt9+F5lSiihpk0uVqK2vEkgVhi/7BH05TDeHSGQalWXSZgrVySIrMtLxV5BKyzQncph2GkmS0UqrSHe8hn50Gnl4DqnVIGn00Gy2UBQNWeh0vBZWT4S0Zw55dA7ZXUAtyYR2mUT1UAbWkXfPox67gHJoEn10EWVsCrLzCGMVy8xT9lfx9CXi4jLGrhph/1XU7AKJqiDJgtpKG9dJ0Wy20XWd9fU1TEuj0+nQqLWxbIs4BkVREBupyrICA4O9BFGEJGzOvPAqxayNbtkI2QXNBdXCCwRWpoSbL2FlsgSJjmqmSDvdvrqyrLG+vko6ncbNpDg4Nkqlso7p2F0kTiRIiUBXLYTcDQpIksBrVlAUGVVTCCKfkeFdlCsNzp49R19fX9f4lCWC0CeOIyRJ0IkCdg0VUdfWUc9P4f32r9F+322IwQGqVx8GKUNq5kmClQlG7/4wff199PT1EXcEiwtLHD52jE9+5sOsVZfJZtMcv+0ASZLCEBKvvfYc93z8XjrtJrquMDcRk862afkxlqsxNbNA367jXD33x2TzeerhUXLZOt+Y+j4jI/v43c/8Nr/xv/9vNDyZX/l7v8aHP/IzxAh0vcNL7ZcYeOgSh5oFGp8aRdEUlhZq5HMlOh0f27QJpAQkFVUNkSWNOJZ4+unnGR3dgyxL+K0y45evdfkFYh3NMOjtK3Hq8afYu3+o6xAkkE7lmZqaoVgsIusaQlNRZYmW59PX20e1vIbXqW2kz+ZJ5/PYjk7ge2SyhQ2Uv0smpsgSC0sLJF6EoQsMx6CQz3Nl/CqNWo3iwCCyKuN5TWRNoKgGmmYCoGkwfnGCoCNz+cIVPvv5j3Dw4EG+8C+ucODpZbwv3o4h+6hShJXO8+gjT3D8xDEq1QpD/YM8/dTT9Pb0UKmu47omL7/0KgcPH8IPE2bmFrAth2NHjhF2fJZXVnBdlThUuXhxgqHBQZr1OkISvPzSy/T39yKEjNdp4rppLl++yOBQL/l8llyxh6kLL1FZWSQQFkdvO8nuXSM0Wx7r1TpLCwu88tpr3POee1hcKfO1b3yZvbv3cvXqJH279hDMBIyO7uHb4q/4+tU/5570+3HsUTqGQA47XZKZTaODLaypW5yYndrL7FSnd6NU3a3HbSdSuhFaujWlcusYkiTxl4sPQNJth7PdBtsca2uf0p1stO2I5Pa57IRobtdjJ0ds+1rsNO6tOCo7rd1W2ak/7k7z3Lr/1vXc6uR0ndFuiq8kdUnndtrvRjq+qV2NdOM2RNv123qf3DA9djMN+Y22N28vW+/Rrev4FkR+y+ut593YvjGtzdMnG38SN76Wm4j42+m30/3x9pPbNkayqeeb+7huyk9ThX9iJCHhzQ/MW5FbdW5v7aG15T3bIjOShJh9jc4zf8pcYJPq2UWchLz4/HOcfvEFghA+9999gePHT5BJa9QbFTpenSNH9jI4NMrw8DC6aWO5aUhiSqVecrkM7U6TIEzInl/pRobeM0KlXGZpYZEwjJm4Mo5hGIyPX2ZwqJ+e3n7G9u/HTZlcPP8au/ft5frkNa6Oj7M0v0CSdMgX8rQ7HaJEYWZ2jr6BQfr7+9ENl5XlBa5dHScKfYaHdxMEAe12m8XFRX7p73yR5eUVcvkMuiFjGTrXr15j1+691KsVHMekHcosLcyTz+dZXV3DMHReeuk0B48dQbdriMsQp1RU3eKOk7eRiIRmo42uG0iShNfx2bN3D0HHI05A0y3ipEWzVUdRuwjS/fd/F0M3GRjoY3l1oVvvZRuEYRPDMN5gogtCj9XVZdxUutuaxXBxbBtIqNerBO0age/T6XjoholpWBi6QRREpNNpFFmh3fZwnRSLi8sY6Vkcx0XjAEkCX/7yn3Ds6BHCyENRNHzPx+u0CcOAMIiZX1jAcWxUVUXRtG6rnDjAsR2SKKFRryMkUDUDrxNx/18+QE9PCdvWKZfXsd0UzUYbcXUGYeio/8PHQXEw7RyGlcZJZ3n19bP0Dw4RhzFXx8cZHhrjH/76F3nuhadpt+DKlUkK+Rz3jnSQX/ldAmuYOL2HF198kb17923cwxITExP0DwwT+hGaZmCYNum0zdWJa0iywHZsZEmQICErCpl0msnJ6wSBT39/HwuLiwwM9HPmzGny+RwvvPA8t99+J5Zp4Qc+ihBIkkytUcdNOxhGtz+wYZjUa01sx6VcXsVxLcKgQ6XSYHhkiJSb5YXnn2dg1xAA7WaTbDrD3tG9+H6HXC5LkkQ0m012796NoqkcOXykSxKVcbh+bZE4SLDdHLbtYDsWpm4TBi3S2RyuY+N7HeZmp8nm01y/Pk2p1It5YRk57tD3t3+efQf2c2n8KqVihlw2xcunX6G/1M+3H/xPvH89Tc1VsUtZkrBD4JfxOg0MK92tQ+uf7Tp+K4OouxdRbr+AGFkgmbCJnushaajIx9aR90+iK01kUycemCL9vhnkfdNI7QBpTQErQFIbKNk68uASsuhAPSYez5KcyxCcSyMtWd0atEIbaWgee3cFraeKqQO0UJsGkhWhDC0jj01jn5xD6Z/D3L2CNDSFc2AVZXgOo1ghTCQ0YRH7EkEQIIku4tNN0e/2JV5eXuX6tUl6S7kuWZOsdDsOColmrYHt2N3noiTQNIUkDllfW0E3TOIkxrIsJCERRhGaqmOZFokEURQipK7DLAuFVruJ7/uoqoZlZYhjGeJu2njKdXGdVPf5pam0Og1M0+Th7z3M2NgBFEVG0zSSSh3jxSt0/tnfxRsdpOW1kNUUA3mF5YaKvPAaqq7zH+57mkymQL63hKEKZFUiIkIWErJQSBIJVdHxg4g4Chka6gchkXJTKELmt37z/+Bvff7jRIFMyknTV9rFd777PT77iSyGaTC8++fpKQzzVHgKSYp48De+y9TUHL/5G7/Fn3/zq2RzFpqasLa6xG9O/Q6/dHU/cRLx0gHB4uIytWqNffv2ECchpmUQhh7tRo0obCIQSLJgZGQ3iiJoNpuoqkJv3zCyqvK9hx7gjjtPIgu4cO48jmuj6yZzc/NMT02zb9++jfoyqVv2LIGsqjTrDXaPjFLqyZPEEqm0gxAa586fp6+3n2qljmmaeF7At7/1bWr1BoePHsZxHBIkFEXGdVLkchny+TRxrPDsqefZs2cMQ7W7hjkyX/nKVzh48BCZbIrhkSEKRZco8fA8nyPP1vA8jys/s4tGvUq+2IOs2hzYv58kCRkfH+f69RmOHz/G2toae/bswbJtDh06uIHqK7imjqZodDyPs+fOsn9sH6ouEUeCkZEh4ijGME1azSaDAwPcf/93yWQKZLN5nn36adqtNkPDQ+imQb3ZJJN2WVxe5va7383ExFUy6QxT091+wLqmoWs658+f58jhE9x91x1UKnWWl5dJEp/dQwOIFgw1c6xEy/zHlS/zJ9f/M48vPACSTL/RjyE7b9gcbxj7Wxy8v469s9PnmyFVb/c5SRIeWOz2cd1MFd4uW1HBtxvvRjbZrehyM7mR43qr6NrbjX8jh//t9r/RNbgRGvqOnKpt5/qb2F/6MRJYfxyd337QH40tSV0qp0309Ebnv9X7/MfVY8vHjW0/dVx/giV5U8Tpb1pu7aZNaN//O/hn7iO49Djh+R8SnH+U4MIPiS78EG/iBdblHH3DozQ7HZIoZHCgn7n5OVo+pFIpHMfCMgyefPJpQi/g+LHjmHaK9fU1Op022VyOc2dfJ5VKc33qGu1Og31jh4ifukwURsT37KbdbGLqOstL60RhgOe38bwOQRCQKxSxHBtVFRi6TCxkVEVm+tpVHKvr3FUqNQ4c3E9P3yDDu4Zo1hs0W20kZBZmpyiV8vT0FNm1axfTU9fJ57IEgU8qU+TRRx/l+PHDdNo16rUaxUKJhcUVOu06pWIJxU6TdkwSBNPTU2SzLnfeeTvNtofSKaO9Po+hu7Q1BV0VtIOA+bkFSqUehNhMv45RNRPfj9BVjVqjSjqV45Uz56jUVvnIRz/adSxVDdtJsbJSZmpyht6eHsI4II7B8zwMs4ukhXGMrGqsLK1xZWKcnlIBVRXg+6TTaeIEDMPi+rXr5PM5bNvuGm1CxjQtnnvuBSrlGj27akhCwpQO02l73H7HSYTo/kPWdKvLOqyqWKaNrhu0Wy2CsMvQ++prF+gpFamWV1hf7bbnqVWrpN00CBlFVjlwYP8GIt4klysgSwqqoiDOTZD8wsdZ7THI5EcIQoGmG3SCDv0DQySxhK2bPPHID/F8iZAyhVKOleUOcWOZvatfR8w+hjzwfqbLCb09veiagWFbvPTyy4xfucLx227DslU6nQaFQpaXXn2RTrOFrGkM9A+iqiqtRoNarYZpWABcuXKF/r5e2q02A7uGeO3sWW6/4w6mZ2Y4dPAAXuARxTFuymVhbpZsvsi58+dodZq4bgpd04CY1ZU6EjEQEYchtWqV3t4BfL/DxQsT3HnXHaiKgiIrSEJw6fwFRoaGeOyJJxDE6LqJ46S6KbhxjK6pvPbqSwSBh5tKs3tkCMuxicNuv2DXTbO6soKqdVuvmKZBs9lgYGAA03KZvDbJwFJIhMK5Yolas8nJO45TKa9RyOboK/UhVJOevIS6XiXSLJx8H4nv0Wiso+kOluvSqFYxbptF5BvIB6aQjDrJuEv8UoFoVe02X28YJFccqBqIwSbsnkMJY4KLJuGZDGIpTbyuwZIFSxbhdRUxnYUFm2hZRfI04jBCSDKxl5CsWbTHFeJrLv6Eg5hJIy27SMs29RkfedVBmnIJzhvEV7MEaxKiakPZgnWDpKIi2SHOWA3txHXU4Xn0whqSDZIZIEUKJAIRg213UW3bMkiEgu97SMTIQiaJYjrtTrcuVwgq5VUq5S6rs7nRdzcBdF0nCSOQFBYWF3FsC1XTCQIPSRLEcff6aJreZf3UZWRFIoo9PK+BJCnIQmXq+jUsU8NJ2YBgbN9+JElGVgSaAO3U6zQ/9T467z7Jtcnr5EsZpq7NYYgWRn4/0uxpFFnj9k/9TzipFHPLS7TrayTECEVlaXGRYrGHTsdHU200NUG3us66Jit0Oh71WoMvfOHnSCKZj3/sU3zg/R/m+uQMzz73Er25C/T29XH2nM61iTr/5dy/plDI8LmBz7K6tA4SHD06RpQ0mZ2c4JJ8jYcaj/Kp13sxDI1Xj2j09Q9RKGaYnZ2lp6eEH7QwdYPLF86Tz7lYTppms4aQui1uvvnNb3Ls5EmEUFA0mf1juxFC0Gq16CmWyOXzJAnksjl0XafRaDM9NUV/Xx/l9TKWaSHJCrZpU6nUcdMWkiQIo5BWvY1pOximhYhjNF3j1KlTfOxjH2PXrl0AREmConUd3ygKESKh2qhi6BqyAo7dfY6cfvE0A4MDnDhxBy+/+joHxo7w59/8FredOI6mydi2y+ij8ywuLrLyueM88tgjFEu9aHqKMy+cIpvN0tvXT6mnl1w+i+O6fO3rX2dwaIgoDtA0mXarRb1SZvL6FKXeXkZGh/HaLSDB8yLanSq24xJFIaqmohs6hm6ytLhMqdTDhQvnuftd76LttVE0Fcu2iYF9+w8iZJkojJi4dpUr41fYPzZGksDM7Cwf/OAH+f5Dj5BOWTz44ENous6dtx9l+upVSgN9pG2XfrmXO+zj1GdrBEnAk9VT/PvZP+Br81/nyfWneFf+LlJyqkv4I+1sq+yUiSZJ0g2R1BvZPjdyuG5m7G+mRz6w3HVcP9XzyR0duLdz5m6UArvTthvNZWtK7uax21HQnZDFG8l2BHQnnXeqX91pv63vt1+nrfWxm/PYXha3Uy3yrTrHb4e0bnfot6/V9rE2VbgRuv12yPf2NXmn8oYe2+eYvPU8b5equ12Pd+LAbl63t1JVbV3DnzquP8HyZsT1/y3xn/saGA7KwBGkVAnJLSJSJWbXWlQjDT1dINEdVEVw9uVXeenMKywtr/Lpz34e19B4/tmnOPXMKd515x1U1lYxHRs37TI3NUlPMYeuafT0lrAdB8Mw6e/rJ4oheOIimqpxIRujKTJeu8nlS5cRQrC4OE+hkKOnp5e+/gHmF5eYnp6hUWvQqdcpry7TbtXp7ytRb7bo7xvk4vnXqNWrELZYmL1OHEWsLc3iOCYdP2JhpUoc+siyTMp1SJIY203TarVpNpsUMhmazSaXL18mDiMyOYNUKk2iplAkCVWTKRRybxC9mKbNxMXXyY8WiF6p4vcWMHUVRagIGRzHAimh3qjh2hZ+FOO4FkgBhpmCRMLUNfoGBzdaPUgIWWbu+jWCIKbZ8sgVSqiKjCz0jTpCn0QYxEioskDXVfp6e1BVmcAPMO3sRs2hSsdrocoK01OTFEtZfK/FmdNn0FSNvXv30tvfSyguISsycriPKA66dZe6ThgI2h2fZrOGosi0Wh2SRMJ1XWQhoSoyPb19kCSYptFtb6LL2K6NJGR83yMhQtNloEvgFPgRJDGR10R+6jWS//WXqLaXQQJNTkgin3ajht+uIiUS5y5c5T3v/zhnzjzB2NhRSqV+0mKe4vgfIAkFMfphUGSWFheYmp7BdW3ipEtUJUlSlwAo8llaWKJer3PoyGFymTSG7fIXf/EdBnr6iOOIIIhYXV1jdXWdQ4f2Mz09RRTGpHMZHNclAYqlErVqmdm5WQYHh1hbWyXtpvn+I4/ygXvvpVopk8nmSBLotOrUGm06nSbltXUcO80rL5+lXFknm08xMrIHocgszE7jOA6xrJBJu4SBz9ihwzSr6/h+QCaXo9qo0qg1aDXbuI7N4EA/tuvQbNbQDZ3KWoO1tSWyhSK5XJ4kijB0o1sXKwRJIvOHf/R/8zMf+gDqyhXifIrJ9D56+gZIpXW+99CDjO3dz+L8DAuNFZaur9M/6lA4vYS0p49GeR1VBmSr2+6FAPXwEmFVI3poAGk6TVyRkZHw/Q6KonTTWQGaCq1xgXa9SLLoIFpmN03RayPLyhu1i5IEklCIE6nbp1PpOimqohMnIULIRFGIYejd+qgtbSwMXd0wfGUkoUIskD2D9mqIXNdgPkaENvGSCdMuwTkXqW4gqSByZeSeFeT915EPTKIMLSDbIUEYUl7oYFkuSeyjyAIiaLVaG6RSAX4QYFsWsiRj2ilkufuPPkkSmq0WSeyhWRqZQy04dB710DWU7ApxqBO1FPxO2O37qWoIKSJKIhRFRTUMIj9mfW2d3p4S9XoFTTe7NWUCJAFJFJGcOY8UJfi/9kmmrk0w1DfE1UuXGR1MsbY4ztSiTLp8nkSSuVRzKPaUqDSq9BeLOE6W5194lcHBPur1BjPTSzz15LOQNEnlc8QStMpNVF3H1G06/iyqVOLEbQeYm12iUlnniSdeYGWmyeDox/jSl/4Jn/uFz/OK9iK5XJaPZD/AQKnA2NgYmUyGarXM3uERfnPin/O5gc9w5PU2YRgyfncOSYLlxUUaDQ/XTRMEbb7/8JPcdfvthHGIamWRkpDFhTVq1Sa27dLXV2RifJwo7PYh9f0QRTZp1uqIjbrJIAh4/PHH2bN3D5OT19g7OsKpp56k2NOLbnR7lAdBgqqBoshIkuDq+BWGdo8gyQJNxLQ6TUZHR1BUmSjyOfP8C+waGUJRZULP67LxmiaKYrEwt4DrdkmUIObi+fPs278HLwzoHxym3Wxw+vSL3HnXnchCIQgShh6+Tjab5ZFhj7vuOoFlm0xPzpDL2DhuGkXVQUgIuUs0evTYcVw3zdLyIpl0mvnZeRJh0Gi0yWUyvPbqywzvGuXxx54gl+2l3ljHcdI0m010Xcf3fR78y7/iE5/8KKdOPcW9H/kwummQch0unb+A6zqYVoqVlXUWZqbQdYNcIUc+n2difBxZUZiemeHq1WuoIiKMW4zsHmV1tQKSz8jIbrK9faiqiZHKksgyB0cOobV0uFTl88c+i6ulmenM8XvXfp8n15/mU8WfQ5XVHe2SGzHp3gryt1O6JvAmhtubHbspDyw/BMCnt6UK36wucftY252MHVNJbzLGrbACb+r0TlNCb+a83+xcW/fbqe3PVn22BgK2jr11/3eq+49z/d82gJHcGkL8TvT4sWQb0vkWD5KdAyLb9XqnyP32fXdyXH809k8d159g+fEc17eLNsKbGfNg5yjfxmgErz4EhouW34OkyyRSlpnrl6FTpX/PUWQR40cd8GPsVJZCscDly+OcO3eWerPJSF8W0zVxnCxHjh+kv7+Pr3zl27z33nsQSsL01Oz/w96bB8mRnuedv+/LO7Pu6u6qvu9u3BgAgzk5w6GGpkRSFGXZluTw2tZGyJQshaR/NsKO0Ho37FiHtLuODStkSauwVivbokVSohjkDjmcg8TcMwAGGNzAoIEGGn13Vx91V977R3VjGj3AcCjrL5NfREd3Z1V++VVWVtb7vM/zvg+F7kGazSaGabRvdrGHnOghPjRIri9L4HtomoEUknyuk2a9yqFDh1Etm87ONLZt4Zgqkdfk6pVLjA33Ud4o0Ww1kHqCGJ/+vhGU2GJ5bYVGq46h6NSbLn7oMzw8QnehQLWxjm3luHX7Nr0DBW7fnGducYXx8UmCSOPW7SkUodKRs+jtziPNPBEacRyxuVnHsnTiQOHE905SLCTJd3ehxOuoL66g57PUdIliW1iaghfUUaSDqknCSGAaJtXKBorSbut+5sw5JvdOsLRSIZ1OIGKFZrNEKpUkkXIwLR0n4dBsNHj/6hUEMQoajVYdKUJct4WqtM3nq5UqcQyVapOrV6/R19dLs7GJaVhkc1m8IARFpb/YZq9jAVJVCeUNfM/HrxawLBVVM/CDJq4b8Ud/9H/z9FNPI4iREgw7gaJCGHoEoY/XCmg0qtQaNZKZdLtRT+DRrFcJwwhdN0Eq+LGPoVhb8tcqZiuAqVnEv/hlMlPeDM8AACAASURBVE6GSB/Cl5vMzMyQS/dg5Xvw4xA/aNCob3Li+eeZmDxA2nAJvv0lPDWL0nMEhE4kQwqFkS1ZpUq1vMZaaYMTr7xK/2Bb2p7LZXnhhe8y1DfIpXOX6enrI9/ZxZ2ZO3R2dbCwuEAqlcKt14jDdjMW122QSOcoLS3Rkcszt7DaZu/nF+nI5bhy6RKtlsuTTz/FydOn6e3rI5l0UDWFCJXOYgeWpuG2PIrd/RSKBYLQIwyho6ODpudhOQl0zQDRroNG0Vicnaenb5BsLsfy0hKFzk5UTSMKAwIvYnV1Dd8LmZtboqe7m0q9RGd+gNdefRXTaH9GbtyYotXysC2LtdI6x489TLNeRdPOM6dD1/H/gULfINVyjf7eQTbW1wkRjI4NkojyrEcrFM4s42oqmCEhAVKXmMS4fox5YBVCDTGTuPsFKnc0WlEUSRAESKGi6RpRHMHdoKXdtCkKIxAKUpFEtNvuC0DTNIhj4jBCVWVb3qm0bZ38IETXdCCm7baxjeTaVgT1Wh1D14jCEH3ORT25inKzCtMVAiKUcohIGuAaxKsm8ayNN2XCzRzRdIqwLBGZMuaBFVLHlxG5eYxUmTgbEGRWSXWYYClgNvGjEkoqQh8oYxQbyNwmZDeJ0xskRxqYhxfRjl5HpjaJ7ljEtxywA7SJZbRDt9ELqwhrhcgOCAKfVl1BSoNGpUIUS15/4x3qDZdUOgOEW6xLhKbq6HPLKLfmOfdLzxAmexCaSq3R5PKlWS6ceofjz3we09KZee1bKDLmJ7/0v/DSt1/BCR2KQ30kk50UCnme+8Z3ePGVV/niP/gifUWHiZFJ/NgmCnUSqo6MA+qNKosrVaQl6B4c5Q/+4I/4zE98hpVynZdPvIuuOPQOdPN3PvNZvr3+Haanb/NPJ/8xv/+H/4Wnn36S1197mUI+Q72p8r+t/y4H7QPse68GCK4dtgGXlcUN+vsGePnlF9m3d4LT752jf2CCs+fP0FcsEOFT3vBxEjbdPRlMyyHfkWvXf8VtRcjFixfp7R/ADQOcpIGqQFehQL4zz+LcPF2FAkMTY+0EpKYQxwGh32RpcZ5UOoGu2WTyafyaR21zFSeVQ6gmURCgqhI3DBkaHqJRW0fTNO7M3sFJtmXjvh9gOBlMwyAMQEiTsYkh3CAmdH2CeoWLF87z7Kc+SblaRk8kiNE49NYKgog/DM6yf+8R1tZW6O3r49Tp9xga6GNx/gJGbFJv+WyWSiwsLJPKdjJ19Qr9AwVee/VNDh44QKNRJ+EYdHVk0XWTjq4cTsLENNPMLy1Sr1XI5Nv+qk88fhw/dBkZHyWOBN/5znMMj46SyXXipB3WV0t093QjdI3vfOf/49FHHgVcGvWAkbExxscnGBudIJFOMzg0wtj4CAcPHiSbyxH6DcLmJvX6Bn6jTiKZJ5YBtpmgWOxnaX6Jm6evcSC/H3E7YNlc5c+W/gvzrTmezX8S3TRpBT6aoiKjAIWQ2GsSSZUojokVSbXZQN9OesUxcjucjmOIwQ+Ce+sBo/hu7aBgy3JkVyy1M0baDTK3gesXuj5/d9vOmtuPC7Z2x2v3A6276zB3M33wAfDe6e35UXPuPv7ubbvH/eb8OPLmndt3NsW631zbtaSKVIkjtu7fEiFk+7fk3tcr1A9qT7fqWj9Oc6CPC9zuro8PEqK7uzADW/Ywgihul5bsZt53jo8rq4YdJbVbP9u1pAJBvNufddsyR7TXIrgXC3xoro9xXu67pjjeNvjZsoQTxLFASuW+oBV+DFx/hMbfHLh+3LEzu/igD5N/7ttg2Cj5PoSAW9evszp3Azudx0xmqawvo2s6d6anefF7J+jq7uHppz/JnZkZSqUSA71F7GSaZDJHImHzzjunePj4MfoHepBSpavQh6KqzC/Mk81lqTfqNOoNjFySOh6+51Kt1nBbARfeu8StW++Ty2exHIu+wX50VXDxwiVELLly6TITkyOsrS7jJBMgJN3FIa5PXcb3W8wt3GHvgaPoRopao4xtxJhGhmq9yXp5lbWlFroBR48cY3ZmBaFExEKwsDBHRMjhh/by0EPHcH0Pz6uS6eym5Ua8+fpb9PZ1oasJ1tfWMcy2nCaZ7idcu4l4/Cnk8++h7xlGCgG0ZYbEOq7bYH5+Gbflk83miOOIOPApFop4rksuKwnDOgId11OIQrdtg2E7+EGAbVtksilsR0MqIVEQE3geumqiGhpRFOEHAeVyhXQ2zfDQIIEfIJCYjkm1WkNVDWwrgRdFKKpOGAY06jUQHl7LJJUYwXUb1KouiAjLTPDII8dYX18jmUrg+R6NRh3bclAVHU0zUA0DoSqk0mka5U2IIlqu165jrVZRhEoQBIh4C4TEEs/1UW/ME6qCymePEkqN//1f/UuOHhpkoG+MiYlj/MIvfBFHs4iCNhgp9PTx8LEjVJ77EjI3gtF/HInCtatXyGXTBF5IaWWORnOTZLKDSqVGKpVlfGIct+WRzeQYGBjENDVmZ2dY21hnz+QkxWIXXsslk0mTTjsYjkm5WqWnr59sPo9lqCwtzmFZJpqmUd7Y4OChgywvLTE0MgxSI/ADEk6CfC6DEO1mE7pq4PotLEOCCLl5+zqW5VAsdpFMpkkkUuiazvLyEulMErHjS29pcQlVBddt4TgJ1kobmJpKIpHEchwyuRzZbBIIcd0m+XwnlpmiVFpmz94JNFXB8336BwZwEinS2RROwuHO7Cz5eAGR6OXlaz493TlKq4uomsq1qSmOPnSM6soi//XL/46HPzGKZnQQLcwSOAny+QEaDR8/jLDsJOrkPCJUiW85dw3ut+8rQRAAAkXRtsCoJKZdc6xISbVSxtR1/DBCVbV2J+U43go8Y0QMnudhmm0rnDBqS+Q838M0bIIgancqjSPK5SqmaRKGIWEQsLCwQEp10E6tEbsB4a/sIfzn+wkfL0AUI5eaqK8vI9bc9nf/+5toqx6UWoi5FnIO5DWdeCpJa8FEEQoyGRErVfSki9K3ilJcRO9dwR6uovWWUOwGgV8mVipIvYGR8JCyRbiowqUOWhdtlLKNdA1EyaZ5RUfMp5GxJLY8lM519PEV7GN30AZnMRM1ZKOb0aEJCoVOEDGXLl5hdGQYXVehUkY5eYm5f/bT3Go2MJ0s6USKN15/g2ef+RSFrk4KPQVUTZKt38Y0DT71T36DX/zFn0UoHp3FAr/927/NE088yrFjx3ns8YfRNEkmk2K9VCKRsGk1q7z4wnP0DRS3VBYZEk6WP//TP+M3fvM3OXvhHF/42c9y/NhePvPpp3ny6Sf5/T/4Q87qZzh06BAHa0f43Ge/wPmzl+jvG6dWjRndP8Hv3f49xlqDPHQpRFEVTk9E6LpOKpvn/anrfOLpT9BwG+zdux9iGBrqwbIdFGmgKCGZTBpdS1Jv1jANA1Vr32OlkOTzOWzbRNNVpJBUy00y6TxBFGBbJulMmouXr5BJpZBCEEYBlmWhGwau57Xt0hwLy0qgWxpeEKOq7Thxo1xBEQaaKolCH1XTyHX1oKo6qlD43osnKBRyJG2D0Gvy+uuvMTg4hJAalXKVTDpNsbuLeqNJMp2FMODWjRkeudBA1TSCX3qS8+cus7KyxNDQCNPTNxgaGSKf62RurkRXTw/PPfccgwND1Gp1Bgf6ieKQffv2Y5o2USQwTYvFpXnW19eJ4ph6vYmq6aTTaXp7ineD/dAP0VQT1/exDIvh4UE21jc4ffJduvJdJB2LVquG7ZgcOngU4phk0qAj34nl2GyW243EqtUKt27dJJfL8q1vfYu9+/ZSLm+iKJIoCuko9OF5PpW1BWQQoJgmmWyOgaFhNkprPLT3MGNygCtTlzkZneU/nfx/+NqXfp+/98lnSeTyhKgE0iLQkih+s50giyJMTQN2sIG77FGksotN3SH/bMsfPyyh/Ch5Z1pNcyh5kEF78IMpf0CzpfuNj8Pw7gR692Npd/69LR3+b2ECH8TaboPij2L1Puq4u5nVD7GeOwDi7p92vMo9+7fznlvrEA922/hhx4eZ9x/Aau9gj+WDnrPjdW7P9QPH7sNs/d6dRNhew0fseh+W9D6H+5j44cPX9kerC34MXH8ERvvDF7HTfPnjfggelOV50Lbtsfvmt/3/XeCa6yYKJKXlGbryGRL5HhRdJ6krLJcqVDY2EJrOY08+hapqZFMJ4iggmUyQyeaZmZkn35FlcnIPyaSFVFWkohMhcb0G2Wxmq75BMDe3QCadwnNbbSZrYZF3T5/G9zzGx/tJZTNM7ttHHEZcOPceExN7OPvuuzx08ABXr1zEtk1W1tZ47IlPcP7cJUxTkk7ZpNIJFM2ms9BNb38RTYnxvBiIKBY78VyPSnUeVZWYps3axjqmabC+WebTz/4Ei0uzpNM5lpeXMXSFRCaPlDpD/QMYlooidGxbA+GSSGYIQoXK6ixmh0Rb0KnogjgK0MwUUeizsVbGsXRMK4Fp2uiGzubmBoHvAfDWmye5fOEG/f191Os1LFtBVx003eCll75HOpUmkUy0gR8RiIhGwyMIQ1pNn83KJnKrHk3XTRRNZbO8iVQkmm6g6hqK1Jidn8MyLRRNw7ZMarUayWQSGRUQYQdBECKISCRySCnQdQOpAEKgqTqaZmJYBlEYE/ghruuhaArNRgtdM7FNnWq1Sky7VtUwdDY2NtFVDUFErV6jUfeIY4F15SbeLz5N4rGH0Mwkjx/ay1ppDsfK8c9//dd585VvcubUOQYHxjAMg/6BQbyzv4/n+yidB4hiQRhAOmVz4d0LzM8u47YaTEzspbS+weDQMJZhkEyYmIbOq6+8gZNwsGwDwzSpbJYJo4hMJktlcx1db8uZ7VSKTLYDP/AxLZ3Aa1Ds7kUzdErLiywvLXHx0gWKPT1cv36d3t4BioUCUeyzuLhIsVjg9u3bZDM55mZXSKfS2E6Sru4+LMtgY71ELpvhyqVLRFFbkprKZFhdWEDVVHTDoCOfR9dVLl28zPDwMHdm7pDPpllaWsYwLeYW5rFMkxMnXuLQ4cOU1lapVhpYto7j2NyYuoHtOMzOLSCEJCai2ahT6Cqgzt1E07sZ+NQ/ZqO0whuvfp9rN2/zmc/+DCL2+Oof/zljkx1IPU/PI0+R+MobtAo5MCSK2sIwcyiKihi7gwxVoml7qzuvxPN8VFVBSgVFKiDaGdqY+G6Njuu5GIbRzqwrbbudeq3dBGdnXZWq6RBzVxaMiNE0Fb/pUfv+DRRDRdnwMZI2UldAQq1apSdIop4uET3bi/9r+4g6NaSmExqCRp+O8qkBvJ/uR45lcQOfyJCI8Swib0FKxe8yUCJgqoxxqko8rxCXbMRlBeZswrkkzKbxp0z8GxbiTo5gxkKWksTLJrKUhJW2LDneUJGhiq5pW0Fg+/WoqgK+IChp7efPJfGvJQivJgnXVZQBF+3INIqyzsYdjXQizeDAMIoqiBp1tLcvsfjUETq++Az9fYMouiSVTDLU38/y0m1cP0RXJaalU596hziO0Qf305HPcOHSFfbu28+xhw/R0dFF020hcamXS0SxhmMnqW6WcOtVJvZOIlQV20kQBzHn33sPXVcYGBpifGycKDbRozfIpZr81m/9v9yavcaRkUM8WXyc733lFZ599iDF7gymrZHvzLJSXudPVv+Eg8o+emdD4pzJ4uE09XqLpZU19uybREjByuoapqFh2SZh1EKVBgiViBZRCH/5tW+wd9/kXXZf14x2w6stwFRr1DB1k/XSJremp+kqdpHLpWg2XboKRRK2RRRFbYArQdMNwhA0XaeyuY7lpAnjAF2xaHl1hCJJOEmuXXmfzs4O1kpr7fut2y6RWFpYZGVpmf2HDlCrlGk1a0zsmaBarhJFcOLECXp6CjTdFulsHt8Lee5bX6en2Mfxcw1UVWPqmR421itMTo6iqiqj46NUKpu8c/I8R44dAakwMjpMZ0eeXDrNq6+/xp4947z1zjt093Rz6tQZioUimg69vT2k0lkCP2Jq6gZ9fb289N3nGR4ept5osDA3z4kTr9PT04umqrz99lv0dHczObmXs2fOMD4yiNuqEwQhlUoDx7ZZXprDcVIgBKlkog2slBjTMDEti0Kxg9WVVfr6B7Esk/LGGl6kUd/cJPTLVDfKWNk8YRSjGiZ2OkUgBGgaB7oPMuEMUzI3ufn0Gl9d+zZf/9M/5tyJ15jsHsZRVM6dOkVnLoeMIwxNI/ACRAyKkETsAkm7uq8KPgCB7YaT7e275bd3ge8uwDhoDzLkDN0DJu8HyP4mwPVBirlt1vLjSJF37rOTOd45dtqifJRSb7e0F9p1qTtB5e7j3Qs47z2fD173h1nibWukbXB6z2va4Rm6TfR83ITBDzfufT8/FEvv3PYDYvaPy3BDm76659xub4/bFnj3zCc+eGxr53uPIXex8+LBr+mHWXt7+0dL7H8MXH9kRsxO8+UHXRS7M0N/ux/WD4AruTyacCiXV9CtDKZp4botlhcXsDJ9mKbGkWOPEPke0zeu8+qJV+gudmE5Dv2D/Vy8dIWxiRESSQcpVBpNF8O28WMfPY5ZW1mlWW+iopDN54m+c4X1U1NMBWWWl5aoVkr09XcwPjrG8OgkESqEMalkFlVVaTWrpBIGiwsrpFIZ6g2fpheRTjrsmRwh9AMcM0HLr5JMmmyuNyhXQlS9iWMpzFyfZWLPOIGnYJlprl65QmdXkUJXF/2Do1x49yyHDuxldaXE7Zkb7N17mFBIFFVBFSEROo1GCU1TsMwMiiaIRZOUabE8c4P/8/I8n7u2RvjIHmQAihJjmzavvvIi+w4cpFzexHEMdEPBttPMLSzgOHn2HthLriOJROPimSu8+dbb5PIdjI6MkM5kQCpIoSGlwbe++V0OHj2KnXTQTINsJgNCkkylCYKA23eWGBkZRFFjWm6T+YUNcvk8CcdEELK6MEO1UkHRdOxEkjgO0Q0dRdFptep89/kTjI2PIJW2JEZKnZWVTdZKZWzHaTf6UEGIGN/1IRaYuknTC7HtBHOzd4h8DzubxjQsgjAkJsYwHF5++RUO6RaslND+p19GprOosSDSU6TyaaRUKG9cJ2G6PHzkUaqVFrH0ef/sq3TO/GduV23W1qqsrKyytLhKd08R22iyZ3KUar1ErV6n2NfL3Owdenu7WVq8g5AeAwPDpNNZpKYQR4JcKkur5ZNIpBA0aTZdUsks167c4vq16wwN9hEEDRRNI1J0Irib7e/o6trqMHqQjfIGqZRFaWWRgYEhLl26yNjoKBvrmxR7MrSaVTTTJFYUVpZK9PZ2EYUuqhIjZcSZsxcYGdnLudPvMDQ0xPzCIpl0mo31Ko7jYFkGpq2zXCqRz+fxWi5es8Ubb7zNT/3UZ6hUGmxWF+jvG8JxktyYus3o2DCKqqNqGnYiQdAKUVV449Xvc2RhCH3J4i0tybdfeIVHDx0nW+jjuRdf4JknD7C8eJqDD08wPvZJbs29i1PyiAtt/1dTzYKUBGGM2l0hnC/CejvrH0fxloRIIEW7o24chzuy5xGxH6BqKrFQiIWGlO2gUlW2JUiizc6zJYMS201CQlRFIw4jtPObGF1Jgn4TYyNCvbCJvFVF6gpmUxLfrrDyi51YnxsjlgooGlHUXkez0SDwfVRDJ86b1Hs11Me6CfbkWMz7JJ/swZtMIJ/oZvVhm/DZfqpFiRaDVo+Rt6ooFzYQ6y4iitFqESERMoS4GaGEEVEzALdt74ECLddFU9vMcxT7CBQURWVleQUnkdg6VwGqphMHIaKhwXwab1agjbikHl9ElWXipQzyxjzaqct4zz6G+Us/DcKnXF7DC6ukEw5zszfR9AYT+/cyM/U+oFPtPEJUHMdSIzbLPocf/jRRVCOXT+B5IZqhkzAF6yvzVOoxv/M7/56f/vSnsTUVxU4g1BRR4PPlP/8TPvXMI0w8dAQRRjiaiaes0ZV6h6XF8/zk5/8lzzzzed742sv8w2f/Lj/1+Z9CjxzqjQArkeLKtfd5ffoFpozbOOtJqp8sMncwTaNZxzSTGKpOs17B0DQ0aSDVCNPQKZWW8N2Ym9NT9PUMIQTs3z+Gbth3gzrTSDI3t9BOqAhBwrG4fesOgwM9GEaMk8rittpesJphEwU+1Vpl67oARTEIIwESNpaWePvt0yQch5e+830WFhcYnRwDERF6HtlcjqSTxHJsvKbPW2++zv4De0hmUjRaETdu3GB4ZJQwBomPk0oyMNyPpkkSTo4IeOXE9/nEJx+jr3+Y1ajB5oECX71wgscefRzNiNjYWAckES579hwhklXCSOAkDQh9VhfmOfro47TcJqNjIwRhk+HhMXRdw3LaEvw/+7Mvs3ffQUbHRliYm6dRr1Hs6caybFQVDh48Qr1RQ1dVarUqzWYLy7KZ3DtKpba21STQwTBUwiAkmUhw88Y8mWwGRaq89tqbjE8Ok8lkIRY4jkk2k6fl+ZTWSvQVOhBGhpRt4bo1evrHaTYjVE1DUQSqC62WS4TgzLtnGOgep8vt4ljyEKqisDrscW7wFn9W+SpfWfxrrhrXUG+H3Lk4zVf/4i/oHRgkkUi0k0LcCyCiXSxhHN0LdBAf03blPts+Kgb7QTHZ/djL3WzjzuPslg1vPy6lvKfD7IP22X3sjwuAd871UUDnLvP4A+qF7zf3NhDdDc7vnguiu3O32U3l7v5SfsBI/23HwffnJ+9Z/Iee+UO/9vuMeNdjO4Hrh6ygHsDO7l7j3eTBzuPcJ/nww4wfA9cfDxAB7a7CP9xN5UHjfoXvD3jmh/a7y7im+3n/6hV6igOEMTSaTVRpoCg6t6Yu8Pqrb7K5ssxbb5/kxvQsxx56iN6ebsIoxPObHDt2BLflgxLTqK6TSWdxvQDTtClXq6TTaVqNBnN3bpG0dFp/8Q5pV/CmXMF1q3TmUzz5iU+SLfQSx4Iv//l/pb+3n1e+f4JKeQ1LE6wszNIKWgxN7GP/weOUSrepbC4zc2eNbFcf6ZQGkcrGWpk7Mzc4tP8A71+7Qk9PP0LRqTcr5Do6uD1zE98XZNIGvt8knc5xY/p9+gZHsBM2qYSBGys4miSQNo1qC00T3Jy6TT6bIY5d6nUXoghN00hEVY7/6v9K+fAgiT/4BkrSJjYlUrXI5LNYiSyWbdPyPDTdJIpiUokMqYSJaUZUqnVUw+LWrTlCGTE6PoZh6KiKJI49pIyRCvT0dqPrbeZT0zRW5++QSDiEUUQURlhWhGM5bb9IXWd1cYlWq4mQElXXsUydZCqH5SRoNGtoWp319WU2V1psVKp84hOP47qtLWuXmLk7d3jxhRc4dvQhDKUd7AmpgdDx3RrVaoVsJsPq8jK2bWGZGqlUErfpoikapmnSajWJItiPgjI9h/Kf/g1KbxfTNy+TdDqoNjZYK63Slbeoba5gOkMIxcK0NdIZBWPqG1Q315D5feSzHSwuzPLoY8eYX1yioziC0ATpTIJcOo2mmyRsh1bLJZPNs7y8gW07xHHI3OwstmEzt7DAyOgwZ86eIZ3O09lRZHF5gWw+xa1b0+zdt7edrFAVVKEgoogw8jj97nmOHjvClStXmBgfxzR0bty8xeDoOLqmoqjaXenhzHS78ZKiaEg0hAxRNYHnBuhGklPvnOLpZ36C5eUVxveMEkYRS4sL2LaFnc5w5p23SDg2TjbL0vwCoeeysDjH6OQEhw7tp+G2CFyf3t4hmo0Gb7z6Ko8+cZxISFZX1ujId0LoEoZNFufmuXJ1hke1LkgO0PWPfg7dMHn7jddYWljki1/4HI6lkVRUNsrzgILQJGZ/L6m/OkM80k0zjJAKyDhA9KwRbaSQVb99D9lKvnme2/Z5FaLNiMVb36NRRLNZR6gGUgoU2Xani8IQVVGJhaDRaGAaBn7gIWLRrukNPEzdAhEj5xvI2Tqt//kw6sPdzA35JH5hnPChPEiJ0FVq/6hA+vAYM3fukEolqZTrpJMOt6fv0NnZgaaJdlMoBWzbxvd9VEVgmwabmxUsM0EsdEzLRnMkZn8Hcl+e+NEuWp/sRHxuiGgsgayEiJUWcq6BemEDKi6y5CGWmijLTZSL6+36oBBEUt8KTCSarhNH7c+tphu0w46AmA/8K4ljlMiG2STxHQO5uoH64ixRyiH8lZ+n+fQ+mq0Gum4jpMmFczdJGGlkqJHpHKI6O0O2r0DC7uOt57/GoSOHeO31N9m7Zy/NaonOra67iq4S1D1sx0GqBgN9Azx0YJC626TuR7x37iqKXyVh61imiW2lSGlBu+lbHJHQIXLPsVYq8yu/+p8ZG87wd3/uFzl58jyTkyNMv3+aQjHLZmWNgeEeSt4GV6LrTKbGsEyLKAKv6dNq1PGCCE3T0QwNRYtwXZ96o0U63YnlOOS7OhEyptVsIAQYuopUdVr1Os3WMgkng6qr6KbK0vwCvb29NDyPZDpH4DXQNJNauUyrXsY2FVQrianrxEIghIKmWkzfvEWhp8jAQC9hEHDk4UN0FbqxEw4tt0U2nSIWOi997wTFYgE7qdPdWyQSEs1IQujRPzDI4lIJ34+xE0kUzWBzbZWoVePFF79Hf2+B/Yf3ktRThL7HQjYm3NuFEIJ8LoHv+eiWg2YmUBCoWowXKmiqRrNex9B17KRNtbqJk0yyMLdI4IWkE1nuyhwVhaPHjmIZJlcvX2FhZYnHn3iChflFGtUmUzdm6O4ukOvIEAU10pkOsvlu5mZvkXM0hPD4+tdfoLevl1qljBDQdH16+3uIghBNUxkZHUSRCo16jTiO0TSDSDdJGgrN2iaJfJHAbeH7Lk03QNEEM7fnuXzuAt3dPayuLJJIJKhXa9SqddZXl+nu7UHTLE781Ss8NfQED6eO0hMUIYhZVzb5Ji/xsvkmHYe6cd6TfO+553jyJ57GwqDut5C6ggpE3Av2djNOiAer0u4nAX5t7XVmmncY2pIKP4jp+yi13P0YyfvFaruVdDsf+yiv1+3f99vvXDnDMwAAIABJREFUo+LLBwHd3XNt/0QhRGF8tw51e46P8nm9ryqQttJQtHOUbNdM3u3DInef5w+ArkASR9yteY2JPla9627Qdt+x7REr4l3r2/rhg20PauT0wKnvx+BuP4bYqsGmXS4j7mWs7znG3drT7QrUD+YXol33es/1dp/3eBv4737/d9fHxttFPlJu1fV+kEC43/gxcP0RGFEU/K2B1p3jh50rjsE//21EspOWSLO2sorXbJFOZ3A9n7ffepuTp07SbHooikoQBtTqdfbv309/f57S6jJeELK+vk4mnUNIiVQlURSzsrpOtVrHtAwsO4nneW2T+WQKVUjkydvU6nVuFwWjw8Ps3bePzZrL7elbdBcLFLvyZNI2mxtrPPb4I9SrmwS+i6prJBIJ7tyewbGddmdIRWGov4f1tRXiKGJhcQHHsVldWyCTLlJaLYFsslbapL+/j83yKt3FbjY2Nkmn01y5co2OTB5FA9MxEcLh63/1dR575CherHHi5e/T11+ku6cPaZigaizNLVEodiHiAKoryIlPkBvu5Y1sxODFBcLTV1AsG70rS+A2kCIiDFw8t4nvt+u7VNtExALPCzANE9syGe4fYnOjTL6jk2qjiS4h3gKRnfk8EOA2W8zOzJHPJZGKRNU1DEOn2WoRRe2awjiOKOS7sEwd01BRFYFhpgjDCFVKTE2jpryI5qyQSx9HU9vssmFYECt4nkc6neLAwb3kckki2e7W+ZUvf5UD+w7S8pr4QYhpmSTTnbz2+hv09AyiGRa6ZgKCSnUd0/fQXjmL6vrwx/+K23HbUiSVSaJpFr7YpKOrC7dpMPV+HTuR4cLF6xSKfXir05jXv4zofQLDdqjXqoxOjrO+tk61XOH2jWk68x0Yhs30rQVmZu4wODjE7Ows2WyWTCaFVBR8L6Qj38Xbb7/N6FjbD7Gzs5Op61MUC0VKa6sUu7tJJtKsra7iec273Vx93ycMAvbvO0BpbaXd8TeTJ/DbQYlhGG0mp1ql1WyRy7YbmOm6hqKonDt3gcG+PtyWTyKZ4dy5Czzy8DGqtRqdXV34XoBtOUip4bk+QRBimwZ9fX0IKenI5YnikIHBYc6fu8h7p0+SS2cI/ZjTZ98lk84wPjrG6lqJZqOK7/vksx24rotl2Vy9eo1Dh45RXGiwHqRZH+3h6vkL/NKXvkSy08BIxayt1viD/+t3ePqZT6ObKRTNwU8Kkrc2kD3dKKpJJCCOQB/cJKw4BOs1FKlssV3txkpBEOyQN0EUhjQbDZKpdLspx9Z3aRS1s+eImDAIt2yE2j6n7S/LD+6L9UoV6/QG/q/tQ45kWFteoqenB1SdKG0RjCRpTSYwU207D8exiYlx7CQzt2/R29PHtrpFSIVarYqUCo1yCcfaYpQtp53E8z20LcmzJCAMI5AKiqETKwqiyyI8kGfzoTTi80NEPz9C9Jlu1h/LoH5uiNpTOdTPjxHWW+hn1lDeW8N9toi/WEGVEsKAuN5CbHhEdypoN+tQ9xGqRJtpEK80iKoe4vom6ukqBEniv28h/2GDBfkImma0fYcVjampaY7sP8bv/NvfZXVtnY58Jz/12Z/nV37zV7HsFH2DHSwvlRgZGUdVDHRNR2hQ3lhnafoaXd1DtNwGjmOzvLSKbjpksx2oahv0PPzEQyyXNpjYu4/1yhqmYRIJBYTKqy+fIpeeJpVOc/pswM/+/X/K//HSv8bP13BWM7x84g1SmTyDw8MsLCxQEVW+Mf0t9uUnadTr2I6D7/lomoppSUxDo1KpEAUxumGiKAqtVrPtgxs0iaMQCfieh1QV4gg0VSMIA9wmnHjl+3R0dtGRa1uQeW7be9rQdcIwxLBVTEvh9u01nn/hJSzToFarYBjthoBXr1ymp7ub6enb9A0OUmu1+OZf/zWHDh0kDtusPUIwOjpCvVFDVc22ZDWKWbwzw2ppla6uTjKZFDemrtPf30eMwHZSqKbD/v0HiaMAQ9cIJKiagmHotP3NC9TrNd577z36+gcIfQ+ptOsYNVWjVauiKCpIFdcPUWSMquvYVgLbcvja177OnslxNislZATVSp2V0jqj4xP09xWBgEw2w/zCAg8dOsI3v/UNhkeGsK0Mrhvy2htvcPToQ7x37j1ynR3k8r2oukqj6RMGMeWNda5evsgbb77F0aNHCH2X559/gf3797f7K/geYSj40z/5Ew4dOsz1G7fo7u7Bd1socUBtc43+4XG6ujopV8o4qRRu4NNqtRgaGaazs4Mojttdmg2DbC5DEATEXsxofpQJe5IJuRev4vJufJbvXHqJfdVePvHUF1irLqGbJghJFMt7ZKbwASMVRdHWveWjayO3AUaw1eTp3978XS5UL/IzhZ++W87ww8hA7/f4R0k07/f/7kabcH8V3keVnH3U+n4QcP0AfO+UrX74+R+3IdH298Pd/fkA+LbB5e7X8cF5+DCY+/hNkP5WGdq/AXD9gVPuAJy7pewPmutDzLO4V8K9kxnenTz50PXygCXeZdfFj4Hrj/QIwxAh781Uwf0v0I97we+UW+x+7EFeXdvH8M9/FzH0MJEnSDgmigwRUuHC+SvEccTi8grpTAd79u1DCujv72dsfAJViVClwsZGlT1796IqGkKo2I6DadsYpk0mk0WKmOvX3scwTKanb7G4tMLK4jKZa+sIIVkcdqg3avQP9jMyOkYqk6HRqDM99T6ObbCxtojv+1y7dpV02kFIk+GBPqK4yfTNO4yO9WFoOqWVVUxDIwg9Ojs76O7uRQgYGRmlUllnbGwYxzSZmrpOZ0eWSrlKO98VMjQ4jJOwuHL1fe7MLjI6PEqrWafYmUFLpJgY34OUMDMzh+NYSCloNV0URRBGEWplDmXsMW7eusWxRx+Bzz+D54DyjdeIWx5RZ3IL5JhIqaLrGqomiIIARVUwDZNGvUGz5ZLP26hqjOs1sC2dMAgIw5BEIkEcw+uvv4VpWty6dZuD+48gVIswEkihYdsGumoSRRHVapVbt6axbZtmy8W0bFqtFlJu1QwGMYGcIkYQNsep1Sr4fkgymeKNN94kn8ugqRqWZVEuV/D8mGajwcTEJIlEqv0+WxYIQbVa4+WXX+KhI0eo1xuEUZ1r713CvLpI8sz7XBztJPMf/w2iM0M2m2nLKHWLGIEaZjG1FOfPnyXfaXHx3BTHjx/h9/79v+Mx/V1qrRC7ew+rKyV6it34vks2m+P555/n8EOHeO3110gkkgR+uOXjGLOysrLF9raYnp5mcWEJKQWHHzqMbhicPHWK4dGRtl+olAgRs7i8TE93L535PJvrJRAqQkQYhoGq6MS0LVn6evvxvIAojtF1FU2RVMoVUqkkQkharSbr6+vYtkUsBNlsB6HncvXq+3R3d5PJpbl65RqDgwMsL8+ztrbJxsYmyWQCx0nQarkUuwu4rgsxbfZX12k1fWwrwcT+CVLZFKnOPCNDo9y4PoXv+fT2D6ArkmQiyfWpKRIph1azRWexi1bDpWexhdUzSfh3juMLj460SXd/DzMzdzh4YJJcKubQ4aeYX55jYuIQi4sLmAcPYH75JcqPHcRotNBUFWVyBqHFKCsGgR9sdRHeCu5p34OiGJStAEc3DJotF13T2CxvYpoGipT4QYCQEkW2g/R2tl1BStHukg1ErkfyvRrhE0UWjphIqaAqoh2oCgWhSAQxmiIIgnbfgDAKUBUVKRUSjkO4ZbmjKG3wsd1ZNJVKUGs00U0LpCSMAgxVIQoDPD8AAsIQVFUjCF10zSAMA+r1OmfOnmVsbJwoDvG3GNDAa9JoVJGWiba/A++ZAhRstG/dwTxfRkyVETdraAsemApRRid+uof6uI0SxoiCjUgZRKtN5J4crf9xFPHFURodSTSlTCbxPoF4FEXVIFbo7x9EFRUee+oIj37iCMmE5Gd/5p+wsnoL27CQV78Nq7f4jX/9hxQKPTQbPumMQSpfpCuXZXWtgqIKVldX6OnuI5SwsrxMRz5LKmmxVFqi0DlAvd4gl0+wWWlgO0mEUFiaLdNdmOHipQu8czKit7ebd/e8y5y+iHpS4dd+6zfJd3bSarr82q//Bj/58z/DqdYpumUfv/zNgJ5X5rnzVAGEQNe3EwUK6+sbJFNparV24y0/8NFku1Z6tbRGR1dXu6babbFZrpKwk6ysbHD4yH4sy0EqKhubq1udqQWWmeSVV96kf2AUz4dMNsvhwwfpyOfJZrNtNl/G9PX1YdsOXYUutiO4o8cO06q1kzNIgeu1UFXRvrYQWIaF53lk0ikKxS4UReB7Lv39PfhBzEaphBQKMQquW8W2TKSigypBQN+pVdTrq7SG83itFrlsDqFoOLZOo+niOAm8RoOFxWU6u7qYX1ggmUyiawpBGKLI9ucrl81Tq9UpFttrv3Nnjs3NKnEUs7FWIptLt715DYu//Opf8g9+4e8hVYku4N13TzI42MeZ0yd59LFPcuXqdUaG9vPmG69z/PgRNtbK9Pf1Uix2Mj6xhzDwEbGP67W7Nl+4cA7Tapes7N+/n1Q6Q2dXF3EMpVIJXdWIkczMLiGkSj7fieu7pJMpbt6cIpNOEQtYmJunWW+QyqTp7u5GVVXm5+dJp9OUVkqoms76rTWG7X7m+hdpDkD2Qorf/w//gc9/5icxZVslEu1mALfine2a6HALENyPcdpZz7kdT+20w9kdY92PBd39nPv9/6Cxm4ndHcv9IPD7UczqRz1/p6/q9vb790/ZAZ53lLjtPmcPWvPubR8ANXn3PWkDtt0Hvhds7QS+Uj6Yvf44yYIfdnww73874fRRa9x5Dew8Xz/omDtlx1LKBzKu98UMuxIlu1lf+YBuwtvjx8D1v/PRvmjiux05t8f9ZBYfN4v1w2TUdj2Kf/47KIURrl+dQtdiHFthfn6e8bF9OAmbYrGXyT0H6OjIU+jq5IXvPo/n+Vy5fJXhoWEWl5aIiVEVnXqjSTqTJpYCRNvEPAwD+otFiGNsy8LQdM6fv8jEmiQIfDYO9/Dkk48hRMDG+horm5uk0ykG+oe4MzNPZ97g6tUpLMvEMlVMK8vs7etIpYVlp8mmHM6+d55EMkcqYaMbKvV6jevXbyClRTIlWd9cY3RkL6urs4yOjqEoCvl8kWTaxm1WWV5aIted4/bMCgf3HWPq/TM8/dTTxHGdQNHQVR0hBI5tEbSqyNgjkUxh2Rb1uofRWGHZ7kEoBiKW1BotxGSBxtGjGC++hdbbgzQt3n77XQqFXoRoIWMfr95ktVKCKOat199G0WzynXk01aS8ViNohsws3KbY3YOiacTA4PAeUukcg0ODxGGLMPbRDIkXNFCEQrVa5ytf+SrHHz5OZ7EDO5FC1Wzm51cpdNjUmjUMyyFEwY8vEYYBuL0sLWzJagnp7+9F1VSIBdevT9Nd6OeF579LKpsmlgoXLl+m0FFAVVWC0KdZ3eDAvj2cfucd9nYV0d97n+6peZKHRin/i5+j79f/Gc3AJZFIsLq6guWY1GoulmWRNpdp1Fcp5ou8/N2TOFrI9NR5vvBIJ9bC97m8ZtEzMMgL332J0I9oNas0Wj4PP3qcfCHLxOQ42XSSenWNbL4Hx0mgqgqpVBLHTpFMJuntKxJGPqZp8+KLL/Kpn/gUCEGtUkHXNEzLIJ3NYBompeUV3EaDbEdboqhpGkK0PXQrlQqmZeP7IaapUamsY+oKM7dnMQ2Ty5cuYVkWqVSKMArw/YBUOoOIPZaWVsl35ZAqJJ1UuwOw28R2HLq7i+iGxtSN63Tluzhz9l0M0yCVSOF5Hoqp0Wx4BK2QGxcv05lJo2oQxwq9PT0knARSlcR+RK1aJ5vLoOpQq1dJpB26OrowLi8jtAQ3Mwlyqort+Dz/rdcZ6jvAyXf+muHhDHGcIZIt1jbrFDsH2DAT6If3kPmP34D+TlaXl0k8UkIqIfHtBO2Md7ubtKbpH2R1haDVqON7HgiJYRpEYYBp6Li+Rxj6qKpOjESV7Zb7zZaLpuv4rovn+6SkhfHuOo0DKda+WCCTzVKr1bBtB8/3MXQNRER1cw1TEUip0nRbOI5No9lAkSqBF3Lq5Gn6+nqpVitoho7rtojCCF+qaKYDtMGvqipEvoffaoHUiSUEQYypKURhgyCKaTZrIGLGxsaoN2pouoaCRKDge3VSyQSqZrKxvo5UFbTxHNGne4k/08fSwzrWLx8j/MIYPNVFdb+NHMtiDuUIJ1L8/+y9eZAm6V3f+cnMJ+9876Peuqurqrur7+meU+iYGSQkYwshCWQwizZsRkaGNccG3mXNLhGEceBYr9cLGLAxsBIQWBIyEoIZIdCMZkYzPWf39N3Td3V3XW8db733lef+kdXTNdXd0z14idgFPREdXZX55JNPZj6Z9fv+ju+3v81EHCrSe98A/V0J9KwdsyHLCn6YRZWuoUTnqHd2cf36HEuLK2i+SiTplFdqSJ5gtbxEFKzSa3o466fRZVDHH+LXfvU3eeKJz6AbPj2R5M+e+iZDxQJXrlxkZmYnFy9cxs7oaLqgvHSdQi5BMVPk/Q99kO/+wKOMDmaJdBtN1VBkCYFFZfVJHnzwAUzrw3zty/+J/oMakqzyc4//cxZXrvHFL32B977vAzzywHvp2mW+XT9MSU4z/VoDt+/y5iEHZBlDtfiPv/Xb7Ni+k2KxiKQIqtUqzWadQiFHBCiagekkCJFxex1URUKoOrqm89zzL1BrLDNQGkRWJFy3g64ZPP2XzzMxnWf7jmkiSSKIQnpuA01ICEWjvFQmmXTo9pqYRqy53em0aFVryIFPq9cmm0qxvLyMk0oCIWEUr1uZAEmSaXdddMei06yjabGDQ1EA2cDWFPqdJrqq0u/WMS2b9XoXx3botHt86PPXmZjzeHKwSSGfx7IsJEWhVl3GclLISHSbTZxMAc/t89zTf8Xe3TOsV5sYlka7XafbaZLLFdE0E93QaXaa5HNFjh05jibFUlSJRIJqrYFpOuzbu4cwCogIaaxdZ3ysRCGXYbQ0TK29wtTkCN/8y2/wnu/ax+ryEo6VxE4kqLZq5DI5+t02gdtldb1JsVhgcKiEaepUVpfJF/KcOnuGVDoZG72yIERFUk3mry+SSGd49pnnmJ6cIIpCSsUizVoVJ5Mm5STIZbMomkqj3qDX6+E4Dr7vYxqx8/T61SukVJs9Awc4JZ/lqP0Gwwcn2FOf5hf/5b/gQ3/vvUiq9XZDf5MNFEURilDeZrQHN6Lpm/psjkzdScf1TrbVDZvtTvvvxU67k923ObL51vXdg214txTZrQDpxjG3AujNRFfh2465k9zi5nPfLkocg6u3A9NbL+nmhlvleu58TX8T7WYk8+7pyXdr9xKl33pP73pdWyLhdwKudzjhO87vO8D172wLifBjog5J3tDmC255oW/n8Xj7At6cOhKnhW711t1oty7Sm96i+MUI8U78BWpxO/1mjWajimaYJBJ5QlR0OeTF55/FSWQYKOVRhcLp0yfJphL0uz22TY0xUMyjqwJV05FErLOoaQKhxNETWYno9F0kSebbzz3P7JUrPPjA/ZgnFnFsG/27RrGTadL5YSorK2QSDkKR6DRdygsX6fX6uH7Ijh3TlAayhGFAqVTi+twqkiwYGduO45isriwyPDlFwnGoV6sQyezZO8PV2VlGR0Y5fuwYa2sd+m6PUmmIaq3KufNvEoYyzWaP5eUlTNPmgQcfxHZMyutLSIEAv4ofGGiGQFGl2DjyPVTdou/J/OlXvsre8QwdYTG+ay/X564yNDSF36tiD22j/cH70D7/FH1HYduOaWTVpO/6qKpDpdJAIOh3XSYmJzly5AjXZ+cplgrkBjIYpoGqqOiGiVBUFq/NY9sqqirRc7uEoUyv5yGjoCoK9VqFRr1LubzGQGmAZDJDEMBLh19hdvYqw6NDRKGCiAVZ6YZnEUJDC7dTLAyQTFrIEly/Nksi7aCqKtlslvJymYGBAuMjg1imSaPRIOnETMMRIQkng9r3SJyZJXHhOsFjD3Lxie+h+JM/BLkismmgaQKJEE3IpCyTXreGqhn4cgqUBKdOneeBBx+gND1JMZdDPf7riPw0C6s9CDwK+RyO4zA8PEqnVadaXSeRHQBZIgwjvA35HMtWMQyVs2cv0O23MS2D0ydPMjI8gmpY6IpgaXGBdCqBpmk4CQfXi2sNvX6XdDrJSrXB5cuzTIwOc/XKApopISSFjuui6zrdVpNvv/Aifq/H8Og2jrz+GhPj28gVBmh3WwwODFCr17FMHSFAUVRKgyVUTcf3QlRNRjNtWo0emUwa3w9ZuL5AFAYUh0oMDw+TTqXo9XsoCjTX6wwUiqi6YGxqjACVP/7Sl9k1s4OIENXQWK9WSKQSzC/OURgoIEsmmUwOVRX0+m0S56qEvkfjvY+RzJj0Qp9iRkEtFvn2X36Nj37/p7l+/SSGpaKaCfJDk+iqhpfUUT54H9LXXyK11kYa7hGlFaSrNq7roSixRIWqKgRBXAIRhSArUgzsFAWv30eSBLJQN4xRM67SaXrIi21Y66E1I1jtIBo+Zi1EOraG/6Fhqh/OxlrEvS4qEpZl0e+2MXST9dUVMtk8kawRSQJN1fE8H03XEIqGH/mk0ilsy0IICVUzEEJGU1VkQI5ijeI46hARIqFbDm6/j25YqHJIp9Oi70a02m3S6Qy6brCyskI2l6XTbMZp8SJOQe73PaxEAtMyUYRMs11H1QWSrqI4Oq7rouuxg8+2HVQhEYbQabY4f+4cpaEhNEVBKCFL5TJCWAgRM3w32ia2dhVTXcFJ3M+1K2VOXbnC4NAIr3z7JYaGRvinP/4Z/ulnf4LSUIFo6Qzl8grfPN/k137r3+JGdRLJQaSey7f+4pu0m32i0GOglMUyDVTFpLZeJpVK0u2qgM4HHn+EbVMTaHqWvttGKBqdbhuve5XpaZ++69JsbyMURV5XnmetWuW+2n4OPXiQiYkJDFMnkXI4MnuE16ITlIIx3nM1rts8tlOn221hWDoDAyMkEik0TaLVqpNMZJCI6LstFuYq+EGA41j0ez0II1Rdp9PuI6s6O2dmmJtfolDIYuoCGZkokti9Z4YLF+fIptN0O22cZIp2tQGRgizL+JEXg00vIAw8ZFXD7/UJPB8rm8Lvh3ztz57ioYffw8uHX6GQG8A0TNyeR7PZwLaTeH0PTY2IpADDsGm1ehimRd/tohkOoeTR7YXkinlcz8Pt9RAKaKog99WzKIrMtY9MICsRqi6IooBuu0fgdwl8H9NI88orh5mYnGD/ffuQJej3faqVBqZhkU6nkBSQlAhkGVMTNJsNdu3eRaFUpDSYh0jg+wFf++pX0DQDO5lAEwqWYxKhUl6tkx3Ik3BSIBlM79hFGCi0u30UoaGIkNXlBdKpHL1uh2eeO8zevXtpd5pxHbqRjDW+ZUGxUMDQNNrdHmtL82QSVpyW3e2QTadpNCrs3LmDMPKRFGmjhCAkImRhYQGFCCnySaeTLC7Ok85m+N3f/RwPPfQQ23dOkc2nCJshyVqSE/MnuZy5zLO8QLnU4CDfRb2yRiqZBECoAl+KnWJEoCDdsJbYIDu/rezMZvtrs47rZiAnI7017kaY65Zx7hRtvFMkdTOg3moP3k47duuxcDuJlzvZgdxyjs3n3xyFvTkn4tpW6WbfzSRKd4r2bp335m2xrE9c13pDZePW+d05Erg1rfh2927r/ntukcwNe/ktuzl+8rf2lTbmfuMft66He3U0bD3u3QBXWZJissSNtXmndQi3qT/eClS5qeMag9a7nPs7wPVva4u/clEUcqMgfWu+/+Z2p5fxNj3/2h6mKIrwjj1J0Kmx3ALTMnAci6XFZSRZxbYMnn/pMAfvfxhTV3nppcN0Ox1GRkapri4yNbWNeqvFubMX2TEzjZnQefHbR9m+Yzu+H0eUPddHVVU812NsLCZ26Ha7JE+vEgQ++Y8/hGEYdNpt+v0uvU6LkydPUqt2IYqQpZBmq4WuCzKpBNVqBQjJZXO4ns+Fy5eRJIltE9swkllWVitcvXqdfXv3cOzEKZAi0pkc6UyOoeEh0rkcumFTqTU4uH8nrVaT9zzyMFIo0e+7PP3sc4yODVMaGiKXz3Hl4kW2jRXxZIc4rSVO1avXq9i2zYF9e/Aay1iju/DNHFEkkEQfRe7R76X45f/z1zn0v3wW6w++QTufQtV1NCFQhQApotnokU5ncByLye3j7Nw5g24aIEnIUUAimaTVbnH27FkK+QKu5yOEShBGhD7Iik8Q9vnKn3ydPXu2ky/kmdm1E6QQ1+3GhszMdvK5NCnbQtMNhGqwslbDSi8ShiH9xjCyrPPSy4fRdUE6kyRhJXH7LqdPnsTQNJLpDO12G8txyA+UUOSATqeLqVvw5iXEM6+hPHaI9i88wWE7YOrATi5cPEMqlUE1LKQoRJEipCikVa/jJC0URYtlDfyAZqPBUrlMMpMg415EXnyZZQbZufsgmXwGO2GjmSqWlaTb6aBpOn3PwzYNNKHi+wGVyjIDAwU67Q5u30eSA7LpDLlsnmajjek42I5DJpdHNUzOnH6T1bUKK2sVHFug6zrNVo+XXnyVj3zvR6iuLZNO5dBMQeirhIGPKlQ03SCdSjBYKnL06FFKpUEsy+bc+QtMTk3gmBoREVYyBbJKFPgcP34KoeqkUlmEqhJ4HulkhqOvvoCh6Vh2EkkSrJbnMQ0DRWi0un2Ov3aMZqONbhisVdZwnBS9bhchVFJpB893sUwDXdNYKi8zMTnB5UtXKBZLNBs1yuUFBooDqCeXkVWDhV0H+PKfPMmD929HTQyTywzgGAHtTgVVclCVBNm8QxBZNOpNFpcWKIyXaD80g2FayL9/HuoCZAthaPi+G4O3KML3vJgJWMgbdWUqEnIsk6PEhnnUcZFnW4g3KsjXW4SDNn7RjImMEhKeJRGmVaQf2kHw2Bi2ZSDLMoYeyxmtrq7S6XRQVQ3bSnLp8hXLB8vuAAAgAElEQVSy2RwRAUjgut2YCGmjLss0TILAw7Q0IhRq1RqWaSErMtENZks5ZmS9kRKlaTq9boswDDEMG9OycWyHIAhj/WbHodvtYydMer0uiqqTtO1YRkqoRFEs5RNr1Sqsry2RTpWIFAWUAFURhGHMDlprtikvLTEzswOhKoRRRK/Xx7IS/M7v/B4PPPBAnI7tgSzyaMppQun96EoWt+dTKuaZ2bWNRFLw8MPvo1Zfp1AYIJw7QSKR4Hv++59F1wSGbuAFAVEQcujgQQaHS+zasxtFUdFNA83yMMxR/uef/zc8+pFH+Ol/9rP843/yaZ555hmGh0bwgoAL56/S6XQobRuh07yMUEyOn6jz2IfexzPNZ8gXB/nU8N8nkSzFBFnNdWThYbgq/6H2u7wv+172nGih6RrnHnQwHZsw9Mlk0pimRqNRRTdUWo0uqVSawA/IpPNEhJimiVDjevWjR94gDGRkReXq1VkO3X8AVYv3abpOrV5HqIJsPk+n3SOTyeH5AXEQImJlZY3BwUE8z6Pb6WJZFuu1OrYV1zprhoFjGezavQM/8CgWS7iuh4TE5ctXGNhIKT59+hRjY2MI3SCKJBRVIMuCl196mcnxKTyvx+EXXqGQL+L6LVKpNKomaDQaPHzCIwxD5j82hVBj9ul2t40iS6QySaIowjB0JqemiEIPz/eJkEmnsui6RkSAEBK+7xGFEpKs4PUj2q0OV69epVDIEYQeqqrR6fS478AhhIiwTJWlhUUsMwuRIJVOUV5ZxjZTKIrKF7/0BQ4c3E1lrcbgYAld15i9co1EKk8mnWV65zRWMkUymcI0DIQcwgahTqfT4ZWXXyOfyyOESq1WjyWgiNCEQjrpYNoOS+VYDi+MoNeL+R2ajTr5Qpby0jy2bXN19jr5bJEHHnqIbqfNUnmJVCqLbpoYisFgUGRSHSeQAqrpOp/v/gHHwxM8+2+/zoff+8G4Vl1SkDbsnFvCc1t/vQ34fAu4bkkVlrbaXHeJVm0Glu82Bfh2abh3Ard3sgPvBbhu3nanfTfmH0t7iXdMQ94aed4K0IMgeCs9+53nd3PfZs3weNe7k6W5nWPgzu32c7r9sVtTq//fAa43jr3dz3fq+9c9zy1rmJtrIR7vO8D172iLQetmL9+dUkLuZeHd+wv4zs07/hShoqPnt2HZBjIhmVSWdrPOiRPHqazXWF1d5fLFc9RqNVrtNolUioOHDqGoCiurqzz00EO0uj0MK8nOme10Wl20G1p5wiAi4szpM2RSaWzb5uLFy+TrAX0Vwv2xLubQUIkoiuh3WgwMDjB7ZY4oclFFiJN06HV7aEJnYmqG69evY1g2Q6OjZLNJpiZnKK/UWF28zo4du0gkU1y/fp2hoVEmJsYBidnZ6/hei7NnzlMcGCCRTBB6La7OzqEIGQnB9M4Z0ukkbq9Hu9FG0QStpovXX8VKDRAFAYQRr778CjPbJ6jX15CCPqrfg1YDbdv70fUk/b7LtdkLFIvbeN/jj5AfKtLfN4nz7/4IaSSPrwhkWaLTa1EaGGK9VsG0TYQq8HwPoWm4/R4KAb1+F0XEhn82k0PVYsCrCJmlxQUMw8T3Inbv3oNlqqytVTZIKGRsy0SWYm+m41hARBi6dDttXnv5NbbNBMiyhBFsQ+g6w0NDdLpdCoUBur0+pmWRSCZJpZMkHAdDj+cRRiGKkFGR8L/1KmKpwpV/8SmCT36A9NgoL75wmOJAgYMHD9HveximRbtZp9NucPXKFRxTY7m8SK3eYrW8QhSEpHNZBoYHkUMf/8VfQU6OMbdcJ1caQgiZ+bk51pZXyRdLOJbBwsI8oyPjLC7Mo+kqr7z6Kvcd2EWv28PQbU6cOMFAsYhpmqwtr6CpAl0XdNutmHxDKBCGJJMJUqkkhUyWtUodVTMgCrBsG7ff4ersHCPjQ4SRTNDvsLBYxrSSdHsdIiK275ghmUySTKVJZ7NksmlWlpc4fvwkY6PjBL6P53Uo5PPYTmLj5Y3w+22uXr/Grt0zCKHh+/AXX3+K0fFRcrk8sizRbbcI3R47dmznj77wRXLZPKXhErISMTw8jGHEpDvrlXXW1yoUilkWF+bYPj3F1596ipmdM/R6XTqtNopygvqQRf67fghblxnOglXcyZnXXuPV578WX4cj6HZq5IrDyGoSy7QpFPO0WjWqzT7yzDb0R48gH4mQXqzGf+yWOkhhRGRIIEsokhLXkUaxd7rbbqOFEqz0UE5XUd9swFiS4OMT1H9kBPmxMaJ9eWpjCuYjw0j3l5APFGlo7gaQC4mCEEUoBBKYuk4qlWF1dZlEMk4FBwnXC1CEhq7rtFptVM1861ur64L16gqGkYhTPSWQZCX+pmgaykZtraIIOp0O5XKZXNomklUUVSf0N7SLFYXl5WWOHDnK+NgoQggkWUEInXq1SrfbAUmh12ujKAqdTjcm3lJi0hHX66NpKgD9fqyBrBs6brdD4HYxdAGSgqrqKIrKzM4ZTFMjimLZHFm2kWgh5FNIxmO89uKz/Mq//iU+9UM/wLX5a0xP78RJ2tTrHeZefRLHNglL07i9HlIoCOWIKAyxDJNQ9mPWa9lA1QRPfPpH+J7v/giJVJrJ6e106l22TY4yOjaEZZmohsbIyAif+MT386P/5EcJg7243ij5wTH+3f/+W6xMzXHl6lVe/JXX+b5P/gPq9SrpdIJms85QusBvlj9P5/UmH20WQJJ48z4T3/dRhUatVkMocU1WFAmuXy8zMFCi02mhaxGWZROGEd12rFc9NjZCqTSAH7goCiSSDr2ux5WrV1GEIF8o4Ic+ipCwDJPV1TUs20QIDUlWMMzYyaCImPn86aefYfeevQghCAFV1VBkmdW1MslEivX1Jk7CwPddSqUYzLXbbYaHh2MN7EiCyEeRIfA8hodGOPL6GyQck1ajy/i2UZ55+lmmp3cgYSBLKjMvLCMBh/fEsjBDg8NIUuwo8dz4eSOF9D0fOfLRVAM3kJCieC3GmsguilCRJUEUSUhShCxLlEol2u0Wtp3AD/qkUkn6/R6LSwvMX5tlx87dPPfsi4xPjKGoMpbl8Kd/+qdMbJtk584deJ5Ls9lB19WNSOoQ7VadF59/gXQ6hWUbrFfW0XWDSIqQZZWlxUUy6TTDQ4PYhkUQSTiOQ3lxnuGxcWRFYFrGRjlREk1Tabfa+IGPYRgEQYjn+qyuVYkihcHhEV559VWGh4pUa2sMDw1TXiyTSqVoNdsUB4oYmsp0Zhp9QTDsDlLVGpzYfYHn1l5k9FKR7ZPTsTFPnJH6lqNKkt6yw29Nib25/XbAFUDZEmWMePtYN9rtIqGbwdO9gJKtoO92JEX3mkJ8Y/tm8p+twPhu0eLNdabvdE03IrdbJVg275dl+a17cyfwfLME8zbzkrYCxttf71+vvf1e3a7u9+b+2x+7uf23Svjc67Hvpt/bHClbnqUsba0p/g5w/TvYQsIolsCJSdtvTTfY6i25+SLf0vNt/96+ULd+fLe+LFvJmwK8439BN5BoBgJFFXTcADuRZPbyCfbuvY+zZy+w/8BuCGChvEJhoMj3fu9HkBWNMydOkcpaZLIpnGQaoapEXg1dkxGKQRgpBFKffq/L8NAInVaT+voyFy5cYXlAwZ3JoVkJZnbtwPe6VNcqnD13BaHoJB2VlKPR7rVZKrcRqoEQPuvVGu1OH9tKsrpcQdUEPbdDr+8zf+0KYeBRX68ghEFpbIRmo07gtbEtaDR67Nm/hwsXLiGEgWlYOGmDKAhYWumwvlbBVHUa9Q49v8np47O895EHUQ0fQ1GRRBpPD5koDdP3+yQTKSRJRY46hP0+rXwBt93k0//op/nYx36QZnMZXZaJdBNruER7bRlxZYFO0kA3VPqdPkLEz143DKq1NWzbIQrB95oEQYTp2MiSTCqZJAh8ej0X07Lx3B6mE5FIpDEMhW63TrvdI58bRCgGQpaRxU1SEV1VCRAoik6302J8YgDJWKDvdnG7w1i6ToRPJpWltt5GVT0kYaNqEjIxI+PS2gKGbSMJnca1BaxvHUEazCL9/q+Q2LMT08kiaxaDhRTjE1PUm32cVAE5CtCEgVAMxse3IxkGyWwG14PUiMCQRvnS5/+MmQN7Ofvkb2FUjvLaFZ8HHjhEELpIikw6W0QYNpfOn6VYHOTsubOYSZtup8lAYYhC3qHdctG0OCqXSCSxrSwnT5zCsi06vQ5KJJNOZ7hydZZCPo+mxm9is1HnzKkzzOyaYfbqFVIJG9/3QVKY2jFFubxCImVRrTbJpdMo+Kimgq5Z1NfrmLbDk089RT6bw7Ydwm6PbGkYSVUxLQ2hxhE+TRFEAXS6bRTTIZdNg6Lz0uHD7Nu3i1Qmw/mz5xkfHWRlZRmhJej3WuSKWfbdt4viUBY/COh3O3Q7a/huAtMSgMzz3z7M5MQISStDqBjUl1ZQDZlavc7w2ChR7ThiaBJj+iMMl1LMVTtIUUjKHmRsepZk6gDNOti5Pq2uRaToCMXi0qWrJJIZFsuLeC7kB07iHrII37+XyJCIQgXlYh35VA1ZFoSrHaQQxHwX5VwV43QDaamL5AV4jxTwP7ub6NFB6o6E7WRQIo+1tRWyuQyBFG18IUMUIREFHqAhRRFB1MePXJYXV0mkEghDQeg6shTXmQop5M+f/HN27thJ4MdSO54Xs8sqQqCqFkQeqm4ShhGr5SWymTRXLl8klXRod3yiSEJVVFRVQ1N1UGQUCSorK6TShY0IXZ2ZHbuRZBlJUlhbraAICcNKoGoalh5uMChLhL6HRIRuWYQR6JpJt+PS6/WwTDsmS1NihtlUKkkY+ESyskF2JWGYOlEUIYTG2loF0zKp1cHRryDUBoXRx/jkP/xhjr52nNDzyJfSaCJBu9VnMJqHSGLN3o/sllFSBvQM3K7JzO4Jfuon/kdajR6f+bEf4/u+71HGR2SGpwaQ1SGEZGFmQ8ZLSVZafa6eeomR0QkWO/BjTzyBVxdcOX+Of/PLv8QPfO/HWKp0uDZyjYFCkZ868FnsnM/6yiz5bAInlWFpeZXfb3yRT+z9++w77SMj8X+VX2ZichpZlkmkbFzfBUmFEIZHBpDlkCCIU1EBolDhuedeIp83kEKBFEVUa2uMDA/TaXVQhSCXyaAqInauBXFKbiT7MYu9B6EU12qZpsGpNy7y8uGXGRoeYOfMBJIU0e02UdVYwmruykUSKQehmQShRqu+RDqbpdn2WK+ukMkXcYOQuWuzZLI2nuciCx0UFUXRkZQAw7YZnhjDNgy2TQ5RrbVwbJtXXzvMB6/EzstrHx5k29R2wijC73Yxk8m4dCGQeeGFl5iemqbZ7OD7Aaah4XkRHT/Esi3cbgtFMmk3+2gqoEjoqqDdapFIpmm1+oQ0kWXBynKD0YlRxse3MXt9nv37dhOGoMgKjXoFTY64dPEi6UyGRDKJaWmYpsbiwipCSaAKj7HxcWxbw+37zF2/RjaTxrYclhYXGRuNnY6f/73fZ3ysSK/r8idf+SrvfexRoijk2b/6Fo5jkS0UQIpiXedIwjAc+l4bIh/HShBKDl/68h9TW6+TsBJksil818VxDGrVFRYXazz55FcZGxlgdWGB4kARSVVwDJtMO8+4lOdM/xJPKy/ylb/6Gj+8/4dBBcMShGGEHEX4qoQUvjNgk5H48+WNGtfiR98mWxJLh2wQvW0csxWg3Q7o/LdE3G5HqHO3aOLtQPk7AdOtQHPzOTYD17umBqMQhnHJyFvyNUgbTu/gtuD7rfkTs4ZHEW8xGb/VT4pLOuIAYHTreW8TBNo6v63Xc1M65u2pwZudDncf74YtvpFKvDV1WJZvysvcctdubVtTw98NGN38zN/pGW2e/2ZHzo0WBsRs5m/dk7vO+TvA9W9fi4WVb/x8O+B6o9368t3S457PercFH0Uh3vG/IBIGlZ5ErpCPpQr6LgnLYm2tjlAN9uzexbapKfbdt589M9M0qqscPXKCSqXCgUMHSSbSHDt+moFiiTD0NwxPnXqjia7reP0eQlJ58uvfQDdslpYW8TyPTDbN/Q+/J44+trucOnWGhx5+BEWWqa5X6Pba5FJpTEvD8/okE1kMXWd4eIRKrcHy2hqGpnHh/HnuP3QI3wtZXJhneGSYMAwoDAxQr1aQZSiVStRqDYQQmIZJv9cnRMH1XSKg1qyxtHiVIHDxQpfJyV3Mz19jYfEa7XYXXaqQTqUIIgMRqATAKy+/Quh5SGEfrV+nW9iFHEUslit838e+h0zW4cqVS2SzFjIexqHdhP/+i8i5NK4mKC+WsRyb5eUVnEQCVVNw+z5f/KM/Zv/+3YShjCTHNUrnzp1HV2N2W2sjeur7Hqaeot1qYegmfiCxulrhueefZe/eGXr9HhIS/Z6L6/Y32F01FhYWSDgJfNfBEjuwtGEWFubi9EUZrs9dZ7A0QKvtYRgahDJXLlxifLhEr97CuTCP+cJxlH/8MXo//wSSkGk3WgihUJ5fYGhkhGazRTrlIGRoNuvYjk2tWieTSRNFAeXyAsODI6zMr/PNrz/Nj/x338vV2WsUlr5CIJvYuQmC0EM3HCRkFCGj64LZS5dRhcbefXtZXV5HVaHd7iFUB8s0mZubY3x8lE6nhSSH2LbJ+MQYhmERRCGnz5xmsDSIbVo0Gk263R6SJDE+Nsbq2hqlUomF+QXanTZCVWl32uTzeRQJlstrFEuDaIZJFPoYukWj1URRFDRVY2x8DFmWEZrg5JkzTIyPE7gusiLwfY9Wu41l2pw/d45CIY/vdgGFocES1fV1SoNDTE5Mc/LEMWZ2z6CbOr1OwPnzl7h0aZbdu/azslIjYWcQiolh2Fy9dhEhVLZNTOAJCdNyCARMbBsliiKSyWTM1ls5i5wY4anjDZyMQ7vdwTQdhgpjnL/wVRKJMQYKWVACUrkdaI6DF4QMDA4Q4DFQLCKEjqO/CqiE5gDKVJbuDo3KQxb64xO4uoRIm7hDBv6kQ/ixCTrfP8zCwwbmx2eQ9uQJdAWkANVQkJSQKIiQJBndNPG9gCiMiIIAv+9RXV/HSSaRiFAUlTCUMDQVTdNBUlDCAKK4Rmq9VqFcXmFychKQECLWbGXjD7OixKmDfhgiy5BKOgR+SD5XpFKpk8gm8f0+YdCDsEeEgqIo9Pt9Ws0WtmmiKDIdt4udyCI20twSCQdNxEaPJmRCr4uk6EQRccoy0Hf7aJpGvd7Askz6/T6GEcu+uJ6HIsvxV10CRRhx+mcU0uk0sSwHAMeJ/1eEhqxEyJTphw+zuLACAVy8eJ6dO8Z448jrjAyXcK++hmkZJPY8yuuHnyY/NMEffu6/sGfvFJ/85Kf4wz/8HJlsmp/+mZ+g0VrFlCZpdQMMM8n84uvsnn6EeqXGwQc+xP/2c/8T9VaXgZRKu7nGZ5/4Z1ybu8LP/8K/5NLVeQZHUhzT30BR4COp91EYGCVppZifW8YNFAbyI/zGwn/kPuMQB8/FoLz9sZ0EvksQRrEG8IaRFIXQbDYxTA1VqEiKT7vTQNdUpqbHkYWEbthIskwy5eB5Proeyxp1O30M06TvdjEsHdft02y1MA2TRr2JMATdThvD0MhlM+imwDTjZxWEYNk2MRGbQrfbwbTM2BmLhGWbLC/VIIxIpOzYGSLU2PkE6LqJtCGb02nWSKUcVFWj3/Po1pfRdEEyW6Db7iJUmf2v1FAUhfOPDqCqOkgQ+C66YRFFEWEQsGP7dpqtKrZjo2oq3W6PKPQIowBNkWnWqgS+xGtHjpDLZ1E1wepKmSgKUVQVCQ9VNVGFgWFoCCXk8sULDA2OINRYyiaKYLlcxkql2HfgPtbW1rAtHUPTIPJ57lvfZnFxkR0zk/R7fXRdQ9V0MpkMmqbT6XTI5bP4oc/i0hKPPf5BrszOky0M8MCDDyELgSYUivkUfdfDD0KSSQdJig3jWrWMZSTo9XyWV5dRNYFlqQwM5Eg4Np7vUl4u0+/1SKZSZDM5UqkEpqkzPDTGWrWK54WkUxnWVtZpVWtcfWERbUSjPlrnuTee44f3/RCKIvACHzm6STTzTvaRhMTHBj76FjHT2wDkJjbb29lafxPA9Z1+vtO224HyO83hbunGW5mY7wSKNrPLb43Exinbt2Ms3rQtutn3FlmYe0gNfqf2zs/o7mPe+/hb60c3gd93HOHeznMvx98tZfiWZ7g1mL2JjOte2neA69/CFkWxp2jjN6Lb6EDd2bOyRSg4evtLd6cPWNxn6zy2jIWPd/wbeJFCR9LRdA1kicDzmJ8r0++7TGybJJlIomhyLGPRbXH0tVcIQoV8sYCqakjCJJfJ0e22WS5XSOVS+H6E7wcokqBRrZBIJnCcNLaTIfR6eJ7H/v0HEIaG5wYIVWd8fBsnTxxDkhSEolBZW8Ht9gnwcD2fhJ2nXJ5HETpTO3diJxKsLq3GhC+mxtTUTkbHRuh226yvrxNFEqVSDl3XOXbsFDMzezh75hSDpWG6nS6nzpzn/oceRhEaw0NjuG6cuvbQI+/l1Ik3sR2NAwcPMDq6Ay8IaLXqiHQRL3K5cP4yDz7wAP1eh/zwOFLlGldqAk9WePxDj2M5CrV6hbHRUdaXrpJKGVybK5MZGkUcOw9jA2TSGVBkbCeBkBUgJPDh1VePcvDQAXTdJvADlA0JBkWWKQ7kabaahGGIImvIkkYYujzz9PMsLsbkF9u3T9Jq1zFNC1CwbAvDUDfSGjWee/Y5JrdNYegpmrWYpGVpcZWpqUnCyKNQyNHt9rh46RrZbBJV0UgXMsjrdbRvvUHguki/8TP0HnsYSSTp1JZZnJ8jlyvwxS9+kd3795JOJVguL5FMWAihoOs69UYdVdV49lvPsGf3DBIKpXSJ3/wPv4qRaBM1O4xUvsap9TT54gC6oSEUE9My8NwuigIT4xO8/OprZLJZDNlEEgFzS0t02z62pbG6VmF0bAShReSKGZyEw+kzb9J3XQxLR9d1sukUR15/nZ0zu2k1W+RzBXRNZb1apThQJGE7jE9MkM1mSSQSdDodQs9laHicY8dOkEynMTUNPww3mJJXmZ6eotuN00ytdJJWo0631SaTShOEAUJVkBWFufkFxodH6XfbmLoOKAhVRlYkWs025eVV8vkckhSxXq0wMjLE4GCJUmkAXVNptxtk0jleOvwSE+MTBKGLKnTOnX+T8dFt/OF//h1y+Qy6JGPZSfr9Po5tYxyr0LgWsuvTP8lKpcL27dtx+wFuJ6LZfJV+RyOKqhj2IHZygn4UEkQQRB6KFhK4IZbpoPIK3b5BtycwNQPfa5PKFohslWjcYa0Qom3PIk+kUJI6CJlEMk0QgSTHYE/IGpIMsizobbAJ+37I8mIZXdPotjvYloWhaSiqhBcEyLLK6vIayZTFcnkZTegEnoskhUgy6JbJzh07N75tN7QY46wTTdOYm5sjlUwTSdDtNLl8+TLZXJ6+G+B5EZJiICPj9npYpkUoycgb3uZ0Jku9WsG0bSIJwlCwurIYA0+3T7sV10c26jV67RrtfojtOEiyTBAEGJrOeqUSsw4rMrphUq/XMU0zZmQXKs1WK86mMG0URSaKAkzTwHU96vUapmnGOrOqSrdvoMmzqPIquvU+fu8//y6PP/4oS/OXOHhgP6mERXV5iYVGh8zUA1SW5pldWGXPzt0IvUet4vLiK8/xqR/+BMtrCxtp8xG5Uo5//j/8Io8ceg/jY0na9WU++zM/S2d9kSe/8W3MoIIX9PjABz7MR//eAkOlZer+XiYGx7j2X67x+q8f5b77HmZmZi//9Ut/zJ7d96EbaZrN6/xe7QvsM3cQOBrXhxRqeRmhgCJ0zp+/QKk0SLlcZrm8wuBgidXVVTzfo9Xokk7lcN1gQ5M1fmckWaK/Ues9OzuLZVmcPXuO9fU1SoMFJCUicD2SqTQry6tUa1WS6QSZTIZur4OuKWiaSiKRwPMiNN0ktt5kXC/g9dePMDw6jFBkVE3BD0GRDBK2gelYRIFP6Ht4rkurE1CvN2NG63YDyxBAiISEquhoUhtFUwlkHU3R6LTbPHi8h+8HnHw4h1Dj6/H6fbp9jzCINV9lRSLCx3VdDN1kaalMqZSnsb6OoWs0mi0s22H33j0IXWdtdZV8LolhmBiGgyx82s0Qw9RRtQDf62NoOldmZykNF6g3mihCI5FMkCkUefa557nvwD7a7QZr5RVkJA7ed5B0Kkm1XieVSdHqtFgpVygUC0gSmJZOGPn4fogsVHqeSz47yOc+9zn27t2LHwTIUYhmyVimw1qlSjqTolarYdsOctSh14uYX1ihNFzAtjKMDA9TLA5y4thp9h/cy8joKAMDAwRhiCpUhKpgOzbNRhvNMJFlBduySadSWKbGrp0HWD65wvTUJMelk/zW//2bPPHAExh27KSQI4i2gKqtttNWq2pzRPItS25Lhtyt2XL3Tq5zL5G1u4HPu0Uct46xVQrndjW4W9vmaOBmYHljrBtMwZvHuXFMGMaRyK2Rz7fP8/aR2BgUv7Ps4+0izFvH2nzM27e9/dndmO87RVy3tpvP/+a9iNfLpnX2zrf3ljn8dUHs1rW9mUjrduNGW3CGLCnv6tzfAa5/C1sUxcx58Tq4mTDw1/PmvHvP283tW15eArzj3yBUNPrCIiLC9VxkIJXOUqvXMA2dlw+/hO+7dLt9NNWgWBxietcuRsdHWJy7zMuvnmDPnp1IkcfA0CgoGooi0DSBrsfMrbXaOvPXr5NNp0mlE0z96WVSZ9a4OhjQ63RoNtusri6zbXKCbruL57kosszY1A5a3bjudmlhlv2HHuDK7DV0zaBea5AvFZjevoN6o8b84hyu16M4UMJJpCjm8ywvL7BWqaKqNlfnl3j4PY9w+vRZysurTE+O8+JLr7Nnzz6E0EklUpw8eZrVtSo7d0wSBBKF4hBnz51jeudeAreKZhaRJI/hYglJBieVot+HoFdn5dwbHPj4Z1iYv4quq1Xyp7gAACAASURBVGQyWSqVBo5h0+zUiFQT58B98NtfxrMVmvg4qTT9fh/f9dBUhauzV7jvwP1kcwmOHT+DY5sce+MoO3ZO4nl9XnrpCFNT03heh0QiQxCEgE8qmWFwcARZibAcHdtyiKQITcS6s67bQTccvvXMs+zfu4cw8jCNBLIEvtuiNDSK7/eJCIlCiWp1lemdu1CUCLndQ375GBw9j/vjn0D5lZ9BLhZRJEEU9PilX/5F3vuB91EaHubgAw/QX5+j2ayTGRwmVA06jXU0VUXXddar6+SzOZIJm1ajw1L5NB//wR9lYsdutJVjqEGL0vSDFPJ55hevU6vWSaXTKEKhUqlgGDq2ncBJpNBERD/w2LlrH5mUQs/tMDW1gzfPnadQzMXRLKFi2RaDg0PMXr7EwMAAQtcIJej3umi6RrPZYH2tQjqTobxcZqW8TC6f4+LFS+TyOQ4ffolEIsvLL7+C63Yp5rOYySTz1+bAD1DUWJvXNA0URY6N4A3j89TZcyQcB8e2QJJwUilq62uosoQfCb78pS+wZ9+eOHUuiMgN5Ein01TXa5RKg3ihT3W9ygvPv4AiK4yMjjA3N8/xk28wOjLK/Pw1VNVi167tIEXkHJvJqUnOv3mJXLHE0aNHGSwNkDjaxo4yzE6Nkc8UuTx7hWtX52hW+2j6ZdLWBK3OHOnsDlzZQA0VXn7hBTIJk9BrYdkZatUGpraIMO8ncitU15dIpgogqbheD6Eo2HaCG5lH7XabIAho1Kq4/R6WZSAR4XaayLJP6EWxjM8GeUsqmUBSBIlkMgZ2lkWz0UTaIDNL2BZhFJFOpSEKUA0TRY3JX+RI4Ac+QRjQbDXfehZCqPT7fRKJJN1OCyQZVWjk83mCKAaNkgy//Zv/icmJCRKpNI12m0plHVVRaTVbRLKEECqariLJQRwJlCGZTKDpGpqhg6yhKDKmqWE5aTzPp9vtoqoavU6bbCZDu9MiDP23anGDIEDXNNbWK2SzOXTToNOub3yrFRRFIwx9EgmHIAxpNZvouoGqaoShhuA8H/3Eb7C6XOHXf+1X+T/+/W/w87/wv/Ke9z3OL/3qF5jY9zh+qGOrAbvuO0Q2bZFJDaNpKh94/IO4fp/R8WFUNUk2L3j1jVcZH97HT/34T/KZz/wAodtjudom6xgcePi7yA1PomkaFy8uEXmvkk6l8b3tJK0kXhDw6KPfTRDJtDrLPPzgAUxT48tf+a88/uj7+cvKc3x68B/xprPMSjLiypWrmLaDaZmsr9dJJFLYtkU2k0eoKi+88AJ79+5FkiTare6GtItFGPg8/VfPsrSwyNj4KFEYYdsOvh+QTjuMjY8ShCGyrBC6LkgCw7I4c/okU1M7CML4mRPJRBGcOXOOUydPs21y8i120zCKmJzaRqVSJZPOEIYRqizRd2vYCQcvCNCEQqO2jmnZHDt5kSAIKBQySPjohoMfhqi6hiQEiiwhC4tQ0ZGCiDAMuPj4IP+q/AL3H3pwYw3HtbIhcYp4EHi0Ww2ErMfZIkGIaRqohobX7+EHEfnSELVGg7WVVaQgIpXKUl6ao9XscurUBYSiYlkGEKAoMqpq4QcuiXQSTXMwDIc3jh1neGSYXrtBLp3FsRMYpollOZh2goXFJbzAj7OxLB3DjImTMtkstVpMprW+WkYoGq1mh8raKoQuQ0N5GtV11lcqKCLETmRYX68zODiIJEWEQUzetl5rEYQh2yZGUSQZ13eRpIjy0hLnzp1j/3178FwPdYPsyTRiXXFZVanXawwOD+H7Lgtz8/R6bXq9NoXCIEOjRVJeio7coZFrcvRfHeXj/+AjeOJmynhsm90eSdwOuG6tj72bLfbubLO7g4StfW6X2nu3drs62XcDiDf3vRNwvxFx3XrO+Lh4252ju7few7f6vUNN692cAnfqsxW4vtMx92yjS2+PNkebx74H4Hr7+b379k4R+Nt0fvu18u5qct8NcJXu5h35/0oLguD/HxP9G2ph5N7WE7S53RINvcdne6eUjRv7NnvCNhfwAxCotP7gCVq+xLWmS2l0L9nSFAQNKrUqcgjzc4u8cuQon/qHP4jXa/HaS68R+hHvef9DnDt3mk67w56ZPbx4+GU++v2fpOe7aLpOKpUiinx6vR66qdOs15FChQtvXqLVqjHz1HUymQzhz30YaYOhzu+1QQ7wPZVv/uVfcXD/NOns/8Pee0dbcp5lvr/Kaed0cujTfU7nVrckywo2yEbYwsYjYQw2GHxtBhjgMsBwJ3DvZIZ1Ga5hcZkLmGiwBxvLCQfJtmwrWZYty2qpW51z98lh51C7dqXv/lGnW61WS7IxTGD8rtXrnK5dp75dX+1d9T7f+7zPM8LFi+dw+x1SKZOBJyELiVzOQFUM/KjDzMxWarUGG9UWI2NjDNweXqfB+NYdnDj5NJl0mcVLHXbtHqIfyWTTGQ4+9STjYyMIEdDuxGSKBebmZrhwepHjx5/hzfe+jUa9xeHDR5FllVtv240IuuTK4/QCDXWzoi3iPopiINwmLDxD77Z3kx2eJQo82vVl3G6dbCaDnd1Fyhlw5uRDlP7mPPK5NfQD+2jWu9z3kb/mF37+Z2jUVzDNEpqugRwTixhESBj4mzc8iUhSUUVEr9Oi1hpQLudwHI3V5VUMPU2u4CRKr7qJpJsMXJdPf/KTvOmNd2Nn8xB5IIdIks3SxoOUymP47a0YWQNLNvG6dY4fv8S2nTPkvB69J49jVbu0btuP+563U9o1gh83UfQsuogQQUJ73KjWwXRIF0v068vYTgE/FqiGjOSHLK9WGR2dIQxjdD1C+F2EJIi6PX7oHb/AFx59kGO/dw8i7FGYuQW371IamyB0PY4eeprp6S1IeiIkY9kpQEFWYHlxgZnJrfT7K8hKQgXM5Sv0Qwnd1Oh2mqRTeVoNF39QZxD6mEYZSfXIO1kefuSr7Nm3g3TGYXlpg23btrOxsUZlqESz0ULXFQxLZWlhg1yugG0n6tJuv0cw6JNOZblw4Sxzs9t57rkjzGzdip3JUqutk89niUKfTrtHKp3CSafx+h4yEV984Et839138bUnHue2225D03Vq9TrF0jBet02n1cIbRExOj1Ot1ZAlBdM06XTqxHFMrxMwP3+RXq/HgQMHUBQFTVewLJVUNkuAwRMPPoKWddi2dYKZzy+wLm/hoVu2sWV6jj/+nT/nJ37uXl5zx508+di/ZeuON6CKgExujL42ihT65HMVotgjiJroegHP1zH5C4S6i6B9CsMugKYhSckKLcgk5BIfVZGJQp96vU7KMTGtPIvLy4yODXPp3AJT06PIio6IIwbI6LELska72yWbyRFFEWEYEQwG2LZNq90gl80SyzoDz0ORwkTEzI8wDYdur4GmGpu+u0m/Ub2+Qb6Qv+ILKSQlYQsI6LldrHQaJBkplmjUGxQKWbyBSxQFiFgnl88mAMLtEgUSuVwGb9DFtDS8foyiKIRhiK5bhGFiryJEwoSIogCJiI31VQqlEUBGliVUVSIIw0S4ybbx/eT7c/me7A/6mEbikRuGA1RVxvd7xFGMZTmEQkWWNeI4RudJgniClvsDLF6q81u/+7vcffdd3HLL7aws1ZmdmeC+++5jYmKC/fv3g+7zsfvu513/24+zvrzA9u1z2I5Ju93ETpcY9Lu84XXv4Md+7Ad5x4+9jb/+8MfYtnUns9t2MTZVYm39Erm8xaGvr7Nj96eYn1/FD3+OdMrj3PlVmu0Bb337DyMUHzFwMeSYjG3y1ccf4e1n/znv+4H3czh8lsbGMtlcGl2zadWXGAQGPbfJzz39a0gSSe+lqiS5ZJxQM78x+yCtvTX6nsfM4i72Hr6VIEwU6yXAD3w0VSGO4f5770PVZUQseM2jd5Np5BPhpzgijiJUXScKA86PneQLpc8yOT1BoZPl1ofuBgGyktDE4zhO6L8C/mrsD0ndkEa3DPY9exPj52e4YoUiYH19neGRITaMRb58x6fRteQavvUL70IgJ97FikoUC9bXNigUijy57WHa+zcYDAZsWdjOzSdfQxxH9L0Ay0iouiurGwyPDPG5e/4riuQQST3ueOTN5NvlhOIchrRaLfKFAhKwMHmaLw19kkI5T6k/ye0PvwERk/R3yhKKphEMPDzP55t3PUInX+ObBw/xj42fYcviDsIwQlW1pLVJSMiyxJq5wDfe+BhIKkHo88P3v4vBYICuG3R7PRzLYuB7WKbD12Ye5NTQYXLZIc5/YJH/PferGKZJ4PuoqoJARpYkojjic/d+iKefOkImY/LuhV8g0yohSxLeIKmka7pJ4Hs80Po4/tsaNBttxtjKDx59B0lKmVCq4zhG01QG/S7/n/XrMKOybc9eDjyzn6nFnSx4S2S0LIUNh5m5OYQMUjFGeZsLikwsgfh953L2dCWPOtM7C8DON08h700q/pzQiR/VX5hv8Tzs0X6xf+W7HH7URGxcnyYq7w5RXhckf78uEX7Mupy8vSifU3/UQ6okYCh8WCM+rl55Tf/F/recM76ItvsS+0ACiq8VY7p6n8uvvVyV9mrAei3Avp5acvKC/IJKLlL8HYG3q8/p2m0vGEe8cCHjRRXJa6i31wpcvdQ4l7d/J/m9JL3Qc/jq9/Ry417vPbzYC/fF5wkJG+rbCUVRvuWL9J274H43/pvE1V/g/x5xPVoIgCQn/qoiVaI3MEgXcjS760RCJQ4jLl2a5+tPfh2ZmKe+fgRJ0pnZNs7YZJ5Op8vu3XvYs2cPxZExbrzlVmRZ4viRQ1imeUWl0zQNRAzZbI5qNXlIK4qW9Lc0Wxw98g00NURWQoQScfTwc6yvLpFL21w4e5qBX8W2NcZHp9g6vZcgCtm1dweyErEwf4HqRo9zZ5c5fXKeXXv2YtkpvCDCj6Hbq/Oqm1/L6OgYM3NFLDOLKhlIQmdsfJbR0TFGRsbJ5XLUVzc4c/IUs3M7ePNbfpjqRoP19Q1uvvlGzpw5Cahouk2308JQIz7w/g8gyT4rqwmQkO0coZFGOfwAn/zIh1m5tEQxM8aXPv8UquqgKBucOPEs27ffgfYT34/+zDmipVUKWYO33vsD+GEfO5PlxMmj9L0OsiyQFQj9kL7rY9tp4lhgaCbLS2soqsnk5CSZdJZGo025XEHXVY4dPY6q6Aw8n3gwIA5j3vajb8fJ5ej1erSa7QQ8yTKpkocbnSGTNyCO8Pod2t0m04aJ9fDTxA8eRP++W6m+7/9k731/RmabhaIKHnv4CM889iSKbLDe6l6Rtvc9DzkSxIqDaWV57uAhTAGBZDA6Osb5k4cwRNITurS0RK1WQ1IlPvWpT9FpNqjIS+QmdrO8so6smJw9eYGjJ04wt2sfXiQoDw0nNByR+G8KEbJlZpJHHnsM08zTaSV0zL7noeoGIlZJpRIfxyDokctVSFsOGRv6zXViYP+B/ciKhoTCxPgEJ44fwzQNAn/AV77yOKZl02n1GBsbwTQ1ZDnGMBRURSaVclAVmXqtTSwkJBmclM6F82eoVWv4XkSt3iOVcmjUG6wuryS+q7rOrbffhmGYvOaO11KvNRK1zWwO3/dx3T66blIo5EGS6HVdisUSqVQGQ89gmRnm5ma58847ectb3sLy8jLFYhHXG1CrNej3PWRJpjJeYrJUQhok331NlbnnzXfxhfs/wb/5d/+MG/bvwPd9KuUJIrdO2F1FDDYopxI7Gdft4HkefTfCi0FXfAxNJnQ7WE4KXddQZZmw70I4IPZdVCnEDxIBoigWpFJpNN1CkiWGhoYIgpDJLROEJJUPRZZRZYX19XXiKCJ3hVqtoaoqqVSKKApJpzOJZUijhmOYSfUoSCqWFy6cwzJtBgOfXq9HEASEYUChWKTZaGFbieesiBJhkEvzl7CsDMRSop9BRD6fTjxe9UT9VFcU1ldWIIoZ9DxSKSdRFpZVvP6ARrWGgoSp6Wysr226RArW19aI4nDToxBSqTTV6joQ02hWiUXidavrOr1enyiKXpBQqqpGs9UiFoJB4HPx0hqSZGFZeRAGYThAkkIgwh2UCbxTdHststk0v/Hv38u+3fuZGCtzYDZHc+UYP/8L72HrtjHe81M/xtDQED/7T36KfD6PYehIsmB9fRXf94hin1p9hY9/4q9ZWbtIJpfiXe95B3fcuY+nn/sii+vLXFxeBS3N+LRGvpBl957t7N0/wWK1wTf3PMvJWw6zcP4QhhzQ63W5sLhCO4DXfP+buPHGG4lEm+kjNW5YstAUhziUKBbKrCyv83MHfw1JkpEVlSiOEXGcKKKTVOcURaPZ7KCqiTdwQrFWCaPEgklTE1AoyTK6phD6AevLqxAJ6tUqS0tLIMk02x2CILySkG+ZSVTndSWDrpn0ei7KpiiMtNl7LEkS07PTqGqM3+8SBjFra+uJkFgcIUREZbhCLATKpk2T74d0uy5xLEBESZuNH9Bq1LAtA01VNp+DCpZlYRgGXt9LgEscgZRUX0dGhjefpYKlpXkQJiIWRHGAJAtUTSabSyNJMYIE5JcrQxhGQmeWgCDw8Qce3W4HNqt06YyNogVIyoADN+1A03SCIESWEz/mq6t5YnPRVANit43vD64AFhELlpZX0A0TIYGdcpDl5LxuPHAA3dA3q6s6URQnHpMkolB+XzA9OcnE+CTtTo/19XUGQYBtO4RRTM91qdfr7L/hAOvrG6ytr3Hm5CkatRq9boeFhQVWV1av9OMZZho7XWJkdIx+p0W93iQMI4bNYdqihVsYUF2rIsfPg0gRx0mD8/NZ0WYyL9GP+/TjPvA8kHup+IdSmYnj+AW54vUqo9crhlwdly1zLu9z7bEv/7sMpK6Xm77U9v8R4zIl+O8j/r7n4b/HPH+34vo/QSS8/vAlX3+lVZO/j2t8pfIaD+h98FdZ10ew85MgBwgpRlNs8F1OnjxDPp/jgQfupzJSQZV1+r1B4l2nSuzes43Tp06wbecBOq0OY6OjCAKizTUVVZNxez08LyKTdui02hx+5ghra+t878E+pWKR6J+9HlUzELJE6Ht06nWeO3qUndtnIXRZr7msry9TruQZGiqRyQ9R3Vhjbm6as6cXWVqexzCTRHtmyyyaaROGIeGgz8DvcuzoOYqlPDfevJNeJ3ngNlpdVlbW6TZrDLwBd7z29Tzx+JNMbRlh6+wennzqG3S7fe6++w189auPc9vtt1NvNhkq5+h1q+TzGQahgyCkWuuRy6dwez3iTpW8t8xXot0EssmXv/QYb3rzPey5YZRMSkJg0mj4mKpM+W8eZ+2xg4hd0wyNVBgEAyKhoiARRfGmKAi0NjZ48MGHmZia5M7vey2NxgaWboAkmF9o8vhXHudtb7uXbMYhjiM8z+fw4ecYGiqzdcsWGq0WTjpLo9Ui8kNGKgV6/RYCizj1ILKscuLJcbZtnyYla8jfOAwrDeR338P5G7eRm6jgdqqEUZryuErKGeHs6QZu9Qw33X478xurhL0GoyPjHD5ykltefTvdXgPHztHpdFDUGMXJ0a2vU1+5yOzWLbhSmpQh0Ww3iYWH76W577/8C942vYAy8wZ6roc/CFEkidJQkTCMaLVaLCzMM7d1BttxkqpJFFKtrvHUN44wPTnBjQe20uv1MO0sATp9t082k8Z12/i+S9apcOzoISYnixRLZbxAxffDxB90dRXT1PngBz/IT//0T/PYYw/z/W96C/VqjUoxTyQk4jihoqqqiqoarK4sYmgWmXSBj3/io9x6682k0jaddpdSeRhNtzlx8jQzU0N0Oh5O2kLXFSzbJhYyy0uLpG0H3/cZBD7FUokwijj+3BG2z86haCqSLGPbDisrq6iqTqfdZmpymk984qPsv3E/jUaDHTt2omkaK+sblAtpMtk0ERprK5e4eOI8xWKJG5/zkIdexaG7dvPhD32EH37rO0gPG9SrIe///XfxW7/xXtzWJQaRzrYbfohASSHLsLKyRqU8CpqEI3WJg/+CquboelOJ/2WtSRT6mFZSVSmWigwEdFodMqk0CwsLjE1MIOIYXTdxey66KSfiR6qK5IcEskpz9QLF8ggRSV+qJEm0212yqQySDJIkqNcb6Cp0OwOKQ8OomszGxjq5XA5d14FkZdrzBsRxhOPYV4BhGEUYusrS8mriSxrEuN0O6bSDosoEkY+iyHQ6HSRJQlcSiw5VVRPl1PVlyuUhwihAlgVSLF956A8GPqm0g+u6WLaJJKubFb54U4VUwvdDkASdTpNcrghC4TOfuZ/vu+t7yOVyV5K4ZOFaRYgYWQERR0BI3+1jWTZBJJAkQRjAIw8/yvfeoaMoBZ48+Co6LYOllVPsvWGG3e5h+n2Pb0Rz3H777biuy+jUJPPz8wy8iF/8uZ/hfe97H74/YHJqHFSdtKPj9yyWV45RGh7mj//4j/mRH/lhhocreIG6Ocfw7/7Fr/A7772JjWoVzfwlekGfnzz4LmzL4I9n/m8ypSF00yQSSSW+22nyby79J3amZ7nnA2sIEfOn90qUSkX8vscDn3+cP4zeT6Pe5In3fBFFiggDj0Hfw84WQIDrNnHsApISI0kC1+0nC0xBSKtRI5vJIKsWSAJVUQj8AEUotDstUimbft/FyRURsYwsx0jCp1ark8nlCUNwbH2zl9hEUeDipTVGR4fwg5A4AietoxAx6Af4UbIgO/D7SV+r20XIKrpmIIsIRdHxvESQK9r8vOiaRhQKeu110pkit/7haRRN52P3ZCiVSomKOWBoybllcwW8MKTf6WAYGpIUochpQnookoGqmhDHNNstcrkcvU6XZrdNyrT57Gc+zTt/8ieIggFuv4dhWpw9c4G57XOoioRAEPjg9Xs4tgWySqfdIp/Ps7yyzMjICAe/+XVyuQKzO7aDBELI1KtVROCSrwyBkOi7Ax588Mv0eh7/6J43YtpZ/LCLFKo4jsPy8iKFYo4vfvExNtY3eOMbXs/k9Die5xOFgg9+4K+49543k85kaDZbRHHE0HAFYkEkZFbWNpAjn0KxwGDgIUlQq9aZmpygUW9w8LmTqJIgZZuMjI1y/OQ5bn7VjZTyWU6eOM7oxDTVjSqVoQqPe19FjiTM/6Axt32K9/7B72KaJoGIERKb/ewvzMd+5sjPA/Bn+/6ImOerjyK6JtGXv/U2r283rk/FBf/3kwqt8U+9FzHpnl9weP5crlUlfrnq4NUWMLL8fAX06qrd9cZ5pbiemvDVr8myTBS+8FjyC4u9L5qT6x3r5eJ671kIcaXieu0Y1xvnlf5/bVyvZ/VbqY5/K8d+ufGurvReXmR4qfGvrp4nc/TtAfFvp+L63R7X/wkiUVJ75RWN75QO8beKWCJ47vOcWe1RGRvDNFIYmsnAaxG4LqfPnEfXNSbHy6yt1hkMQuy0xdlzJ9lYr7Jnz06KhTwpJ8Wg7/HFhx9h5969SCRiVIqioKoy6VSBSxcvIuIICYm1tTWml0OEiDDeuJ92r5vQ6pYv0mwNGBsfZ2VtGSEifN/DsS18PyIMBCuL82zfuZN+CLGSZnnxApqmk06nyaZtwiAgjiLWVpZYXFxj1+6dKIrC008dYWbbLIsX55nZup1m2yVlamys1zh3/iLf8/q7GRotEIcBaccgVyzy8CMPc8urbmNpaZWHH/sK27bOQtSl214jky8jSTaGY6BIMqZpYTh5os4GWzIxlVveyJ6bb2DfzXvRNUHsGvzSL/9LZnfPMjQ6R7x7isxHHkI1HIyxCnHko8tJ39tDDz2KppmUSkM0q8uMjk5w480H6LoN0k4eScjIikk2V2BibJLAD9F1BU2TkVCIQoFtWzgZh2azTaPRIpvJY1k2/sAljHxsO0uknSWOI2y2UPQU5Ae+ir99DPlP/gOfWTjEP/7lf84/+fmfotu+iGapGFqROFZIZTSqq+fo9DqMjAzTaDbQdAO30+fCmfPEg2U0RaIvZGTbxgh9Ll44w+SWCVAkXE8QBR6lcokAn27TZ39mhdit4gxvx7ASMSkR9gDwwyjxtRURhUIREKytrQIGmq6yvlZHN0w6fY/h4TFWl9cIBhGaqeK5AxzbSSiZuk2741IaKdPva/TcLktLy2zUGqio9Ptdbrr5xkQ0BEG2WMKybE4fO86Z8xexbQfbdvD6Hv1+n3w+i4hBVgSlUgHLsvjmUwfZNjNNOp3GDweEsU8xl+Xo0VMMDQ+RzthJxUdWSDsOqqygqhrZTfCCFJNL5/H6HqmMzZNPPpVQ8rou9Vqd2blJOp0e+VyOIApRFIXJyUkkSSKbK2EaGmsry6ScNGsLizTcLvv278M6vpGIp+3Zg5POcObkOe648zYmxqcoZhuAzqC/QaEyhFCHUY0UnW6DdCqLP5CIvDWi6BlsaxkkUI1xkGJsxyS1qaAaC0EQBuimgWkkVO5cPouuK6gayFKEpkn4fQ9NtfD6HlHUx3E0nJRFEAVYto6iSqiahKZpNBsd2u02mWwaO6VhpSyyhQySFKKqEumMjW7IhIFACKjX69iOgWUqKCrohoqmyQgRYpoqqZQDUtKr6g88bEdFUSU0PfFytUwDx7GRVYFhmkiKBrKMkzJQ1RhZFqiqTCwCdFNF1SRsW6fbdgGBZZlIStJ3rmoysQhpNmtARCbjYFsObt8DIVOt1tg2O4amJRU1RQGkCEUWyIogDGOQdEScAGhNS+6nqgK6rrJ9+zbCKEPKvsT4qI4k7edXfuXn+c+/eS9mUSI1kWdmZ5lMukMu20NmkSCCcnkWx8jxmU//Oe961wH8wQUcq0l14zkWFr7G1q0akTTJtm276XZiXnfnP+Kn3/1ObFPiucNP8upbZynlGsSEBPEcSxdW+dDFD1MslvmRmXcg2xkG/gBDjllduoiuyfzRxgf4wfwPUH56gSiKmL9jmFqtiut22LPvANtP70HXNBZ2H6daW0PVNBTNxA8DdN1C01SiQCIWyWc+isOksierHD92PLG/yhRYX19BRlCv1gkjQa6QZ+D3vR94LQAAIABJREFUsVMmzXqHD//Vh5mZHsUbJIrpQeCjahbddpNcLk8YChTFRNU0DOOyVoOJKkl4/R7Vap1B4JNOpzB0k+XlNSI/oFgsoakyIhqAlCigB2Hi/Vutd/mTP/1z9t6wh7MXVqgMj3LjF1bQWh7r9+4k3ry+uq4TSaCpgl6nlVijRRKmaRLHAtNIIysyqqaCFCHFEq1Om0EQ4HZ7PP61r7Fz+w4EMrl8gThKRMsCAZWRUTRFQRIBAglV0fCDAaZhsLC0xGOPfJV0JkOv2yGTyTDo9dg2uxVkBUlO/K/TqRxOOpPY+qTSyLJEJmVyyy0HqNfW6HUHZDNZPviBD7Fz1w6C0CeVSnHixCnGxsaY3TaDLMlUN6oYusarXnWAZmMFgcTI6Ci2Y7G0cAlNVuh1O+TzOdx+H4FMr9elWC7gpBxWV9cQImLr7HYmRsuMjw8nCtC4DI8OoaoajWqD5dUNiqUiURRw6qmT1Cab3PCGA7xz7kf4s/f/Ga+/83VJ7nVVwn41jfIza/cjSYm6sLxJlxXiBR2LV6r/Lxd/V32KV/8ePaUlzKNXBVe2v1Tf6LVg8ZWA67UA52pBpsvbrv75UnG5qvpSPbJXj3d5/xf1ml4HP73S+b5cXNvje+X/vDRwfalt30pP8ysd41vd79sF5y/4rGwy4l7pOC+8Nt/evH5XnOkfUAgChAhf8cPy3w60ihf8lGQJ/9n7GcgamcooUeTT7/fQNQOh6BimxvjIMKdPnqfnRdz7o2/DNlVefWAfmVyaVqNJLlukVasiqzrZfJFczmFleYVsLoekaMSSioQg4+hks1kkzWZsZAjr0BJxHPOUtMFIpcLxo0dotTrsuekmHNvAkG0WLp4hlmUsJ0Wz2aJSGWF0tMzKcpUoikg5KrKqsGV6BuKYVDpDrV6jXKngZLK02y6WkabbrZOyM8wvLLJn3w0sLi1y8cI5gkGEP3BxUjaddgu3F9AfRAyNjZLPF9iyZQuO4/Dcc0fYPjVKaaiClS5gORUa6+fRTYcgGGDoNooCgpinDp9iXO/ilXYwPFqhub5M5Cn82Z//Fb/8y79Ks9omNzJKOlck2JJF/9CXkGankEybCAkFn22zMxSKBYQEG9UeIxNlzp49w1B5G1Hs841vHKRUKtHYWOEbTz2FrBosrywzNTlOFMETTzxJo9GiUi5i22ls28KwVAwFDLvI6VPHGB8pMZDO4Ps+hQt5pGdOcukn7mTprn2Uxqf59ANf5t//29+k0V5gy9b96JrKIw8/y9Ydw/T7BuWRLcSRRyqXp1ye4dTJE8zNbkV3yiytXGTL3M20Ohfx1qpUKkUyQ8NokkNr/QSdtovwuiysNLAMlQ9/4FNsHXydQDXo+BqZVBYkGd220Q2bKAjJZg0W56vImpasopcraLbGoN9jY2WBHXNzuF6I63ocO3KElKlSqQwhJNB0jUajxurqIsVChdPHzzAxViaOQrKZLCeOnWB8cpRsrkQuX+CJr32VXbtmqa3V8PsBQ6NjjE+MoqlQr1VRJQXdsNBNnb4XJOqhmo5pGuRyOZYWl8nkLNbW1rHNHIZtJIsfX36ETDqH7VjomgaSQr1exx94uJ0uA19w6rlTZLN5as0mVirN7OwMZipLPp+mUk7jxwprq6sMjwwzMlYmm03z8COPMrVlBiELThw5wsz0FL1+m1QqS2WogogC0qebCEnlKUtj187tjIxPYw6nsGKdfucYI8M76Q/aKCKLP9ggXZxC03N02zUyVoelU49SHMuhKYuAjpCHNqtEgjCKEpqkamAYWWQEsQhQFBVJkhOLrChJgPp9j5WVDVKpFLquoptaUmWUZDQ9sR65TEH0BwGpdIFUxkFIEhAnoioi6S9N+n6SB3K/67K6vMTQyDCyIqFICX0w8H0AVEW5IkAhCUEYiaRyr20mQVJyX5RlmVgkFObGRo2+66KoBnEUoijPr9grspxQHzcXmmMUPC/ANNPEcSJUJckKkiSjG/pm723SP4mQcbsNdu+cQ9WV5+01ZGlTNOYyI0am1W5g26lNRc3N+zbJPpIEumERxRaafIpMZoPved0vkC/0kAdd+n0PuzCG57moqkQYBGhagUPPneHAvht461vvQlDDMHTq1TrZbI5+36VYKrOwbPN//Or/xatuneXX/+NvQdRFQ6JcGaFQ2IIknkbEEfXmHKqtcSxzCssyuWfoTdi6Qq85T6O+jmGXCGOX/2f1D5hMTbLncKIof2y/w6FDR5nbsQdVVZg9uRshCU5t/yaWk0LICppuMPD6qKqEEBG1+hoPf/kRtkyNYlipZKFk0GV4qIii2UjhgPn5BSamtpDK5lD0kGAwABRkzcQ0DaanJ8hmUlimzbOHDzM2MY0C2GaaWBYIKabdqvPEY19nfGyKiJCvP3GIbCqFbdt0uz2yuRzBQOHMqcOEvkd5eAxFToDtYNDHsBzcnotpJcJITz7xdd754+9gY73B1NQ4URgx98gyIgo5fdcIn/v0/UyMTvGRT3yayeESnifIl7L4vsAf9JClmG5/gG7bKCKxQYvDkGa7TiGXgWCAKglGR6bw/T5916Pb9igWcyzOL6BJMrlUim7PZXF+iXQmQxwpNOp1VjeWGR8fY8+e3fT7HtlMjs/e/3le8713EosQb+AmNHghs7aWOA2USjk21tYwNA3f91F1E1VRaWysEPs9Xn377ZimkiwM+D7TUxOMjY5gWjpBKOGk0ywtLZMvFsjl8/i+jwhDAq9PcXiY/sClWMizsrRELlvi6JFj7N23A0UyUAwNwzQYHhliaWmBQj7N2sY6ZjpDtjhKfWWJMAi4sLRCuVzAMmROHT/JHTe/lgvHLnE6e5pDC8f49Tf9O/7yT/+S226/lUCXUK7kRcn3SkiC+9cfQAA/WHkTiqQk/dGKSoxAVmQkWXpJyHo1/f96cTX1+Frl2pcDepcjekoDSUJ99Uuz+a7tab38+wt6Ozfj2qrg9Sq01wLRa6nC12qrXBdYikR1OCnjS1ytMixJm9s2Q5blTbbN83Pwt608Xh5bkmTiaBOoik3v1euh42vmEFm64sUqXzUvf5v39XLjXO/6v1R1+up9rj3W1X8bhuGL+pSvN/4Lf/8ucP1fFrjCi1ec/keIyzeUIIwIDz+AgsAenaFWrSYCJ7qJJASO7RDHIMsGu/Zux8lkCENBpTJKQOIxKoTAD/rkC6XEC8+0yRSKKLKKiEOIw0TESIhNHzrBA5/9LAf6GVy3z9KUwpYtW7Asm6mprQz8AcGgy8L8JUrlHJVigeXFhQQwyBKr6zVuuukmjh4+TK/TYmwoT6fdxQ8SgYZKZYjTp08zPDSMaaqcOX2G3btmkIDFxSUWFudpNVoMVYbw/R5ez2VsfJpOt0uz1WRuxyy6qUOs8eyzhxkeKVEZzlGtNnjuyAmGh0eIo4Cw18C0QgwjjyyrxHFEEPhMbd2BHLoYGycYlG8mGMjUGy1++7d/l517tpEtGPz2e99LoZDhYlBjOlVGHD1HVMklVQYluS6+HyBLMhI9sqkiQ+URNjYWyOTSjI2NYZgaigyz27czOjFKqZhHVSQ6nR59t4+TsgmFgqpoeP0eIvY5ceIcggFbZqaRSBFIJ4g3GshHNdzf/CVOOzqNVp8zZ8/xsz/14wzcLoW8iteOiP0eu/ftoNFropgSJ547wqc+/Qn27t2DaRQ4cfwQlUqa4lCBscn9BKKNpbVhkEdOOYSyRCwU8kWHVGHrJo0woFzawrbpItaZ/4ox/hqq9TorK2sMDw8DoMQxIvRZWzrP7h07WK/VUBUVTdfpdNsoisL01DQbG1UsXaWQz2FYJqlsnjPn56m3OgxVKjimRTZf4Jmnn2HX7h0IEaJpOocOH+a2224DCRbmF0mlU5TKRVqNFq12l3anSb6Q4tK5sxSKBfxQ8LFPfppKucLGxgpDw2VQVAzbRJEkDFXFckIGfRVdsYhjl3Q2QxD4jIxUGB6ucOHCMiPDibqmokqEQUJT1QyDhcUlOr0O/V6XSrEIscz66gaKLLO+ukZl05uYTQpxGMZsndlGq96i1+6wbesMiysrqLpGJBTypRJ9b4A9vwTpFPJrvpfpLTNkUyXa/jrZGJ5+9C8ojM+hKw6zc7fhiy7zl5bIpyVaq0dpzB9iat+duGEFWz9GHDuEQZ5arYltZZEkhW6ni9tzcWyHtY1lDMNBxCoDTyQ0+lAijmQ01US3DDRdp93ukzwgVaIIarUWcSShaRaBH9Npd7EciyBMaIKtZg9VNqjVmvQ6PpaRI4xlIiHwB12sdA5NN4iFjKLohCFEIWiqSRzLDAYxkqywtLScLKwBQihEUeJ13Hd9eq6PohgQS5imtZnMZ1A1lW7HJRaJeJCumLSaXfqun/Qh9xIBLkWGKJbpNNrEoaDd6SPLMoqiJvc/IZDkxPdXUTWiWII4IvAHSJj0egNABVQkScKyUiSerj1UTUdEEkEgiGNI2shUvIGJ2zewzXkqxTOsrAzB8QWe+fJBOqm7OXhwlfGJW5DtSbptmS986rMc+J7XoKhZzp5y8bs5PvE3T7Nt9k6GKn6SuPtFbt5/M8W8ScZO88UvP0TPvcjE+BQXF89QyG3l+DH46/se4q43fj/3LXwcTdX4wdLdSKj0u11GhiZRNJtT0kme3DjIztQOdh3qoSoqR/cbFPKJKrqqKGw7sRsRxZzecQxNNYiiGEXWkGWJvuthGDZhGDMzsw3bSWy+Qj/AMk2qtQbZbB530KdYKqGoSgKopBSf/pvPgiRTGR4iCD0y2QxCyJw8dolnDh2hPFQiCvucOn2C4ZFREBKGbrBjxzQSic7A2PgMx448R7VWZXR0nFw+T6fTJpfLUCqV0U2bOI743Oc+x969+xAiqYp2u10sy2FiagIkmWw+i6rGKKrCzJcWqVZrrP3QDoYrw9z3sY+z78B+CjmLUqmCQPDoI1+jWCziDwJM005U2asbeH2POE7SaMuyieNk8agyNMRg4KHrKoViDl1TWViYZ2xsjE6nTRCEDI8MMxj0WVpcYXJqjCDwyaSzSLLAsS1s22LPnl14bp++6ybK0X5Ird6hVquTL6TptF2KhQKKLGGaBqpp46RSlIeGSGWym+1RMWtra6TSaUzHJowFPdfF9yM+9tGPctNNN9Hv97lw7mKiH2DpeF6fWqNDuVyg0+mQy+WwncROTTeSFoJWvY5tWkRBwOHDxxgbHadUqrBwaZ5SqYCIfWr1Kjt2bCedTuPYNrqmsb6+xs7x3Rz95jHcfS7Pes/R+Xybk6dPcfOrb0FVn6eQCpEAlM+uPwDAW4beDGKzuiqSPmppc2HsutohLwEOr93neqD0W620xRcUJEeg7IledozLP68Gn1eDmJeykbnMArgWnF37Xq8FvNcb4+qQZeWaY1w150KAkJ6fZ0ni6tP/dvPoFwPnV57va+PK61e/j5dQIP5O4ts9xrX7v8jz9qp4JdB6/WN/F7j+LwtchYg2v3jfGVXk7xr8Xr65hEjEhx8gknXU4hS2nULEAiQI/RaanohAhJHP1554PKmA2Ck+ct991OtNbrzxJlKZLNX1Kk4qTb6Qo9tq8aWHHmL79jlkKVmdCgMfRdVYXlpBBCFTU1NsuG3mlR7mdImxsTGCCJrtDrqqkcvaLC+toOsqp04cR8Qx2+e2E4URuXyWU6eOMzw8RLPZYuB1MYwUyyvrzM1t5eAzB9m9ey9BEFCvrbCxWieOB2iaDJLMzu07aDaaTIxP4vsuiJiTp04zNDRG33MZn5wgigUX5o+xdWYWx86hqQaj42OMT2zlIx/5CLe9+mZ0XUKEXcJIQTVsJAnCMEgAu5FmsHSSw8dO8v++/2Ps3DPHv/y1X2N0fAg7ZXHPD7yTf/2v/iPv/Mn3kPrevYj7v4aiKPRVib7n4dgOC/PzpBybTrvJww8/junYjI4PEV62eoiTPlhJloiiEFM3Efjoms7w0DCVconzFy5iGonIj6oqTE9vw+11UDSVE4dPkVHPgGnwe9YIs99zI1/52iHOX1jmjttvJBI9DFNnvbpMubiDEyePMjJWwLHynDp5EEe3uPetb8XUZMJYY/euOTrtGq4XIRHTqm7QbK5hpEYxLZNWax3LdBAMuHD6LJZlE/Y9/ukv/SvuvnmM3qVvMrAmGB4qgZCIIsHZM2cpjY+gOzYtt4ms2iwtzjMxMcHi0hLlYol+f8DC4goT44ndzejYOJfmF9ENk0xKIwxD8vk8vj/AMEyEiPE8D2lTLCVXyDO/cCkRddFNVlZXKeRzCBGxvl5laKiMokqcP3cRx7GJY8hl8wShx+joMKoig6qAECiKRCwidEtHlmxOnTzNyFgZWTVYWrrEvr176fVcVCViEPaQ5BA7lcUwDRzbYeCHxFHM0SPPcfcb38Cx48dYXl3HNg1ct8voxAREISLyyZdKaJpOs9Eg7Ti43Ta5XI5uv082l6PbbFMsDxGJGF3T8YJHOGd5XPLHiFWFscII93/po5RTWTbWD7N1zxvpdFsQ6/TDiLmZ8QSA6iopO41e3IkkO2h8jSCSGPhp0uk0586fo1goom36Yga+TyqdQpLUTWXCGESMpulXVn4VVUEKfUzH2qzKSpsgzUIW0KjXcVIOlmMjNsVvoigm5aQJoxDbtgmjCFXtEMchsmxj6hmQZTqtNrqmEkuCQd9DVhTqzQZ2KoWqJmM5jg2xYHl5mZTjEAYhEjK6YWKaJlEU4Xs9kDVSqRTV9XVUXU0omkLGdT1UJaF2+n6Aqms4jkMUJQI5sqzSbTexTJUw9DHNDIqsoyomIpKBCM0wieLk+VBbv4RMhGnlkRWZIAgIggBVfV7ZUdO0yzdvXLeLLKuEgWBpcZ7HHnuMsdGdCMZZ31hjemIJe6LB+FSKZ840ed8ffZi3v/1thLFPNjXE2OgwVjqDiGMsXefIoWcxHZ39B/bhBUVieQy30+SDf/kJbnn1jQz6Ef/5d36Hd7/rbQReQL44TBgOc/CZFe5+4xtwvQF/ceIvyGazvN66k57bYdAbADJLays81HyUvF3AQGfP4T6SBCdvSmEYBoos8+DnH+R1vbuRFYXTO48k1XdFhThCkFx3ISRkWWXg9Wh3e2SzeRYuXaRQLGFaDrKQQYoxdAMRRpw8cZJUOsdwpcLwyBA9t0suW+HMmTOU8sMsLS2yfecsk1OTOKbB+MQYAoVu10VTIQw8zp46Q7mcp9X1yOcyzGydRlVVgiDGSemsrVQpFArIqoKiqAwPD6MoKrV6C9PUME2TMADPc9E1i57bodNpEIYxN3y9RTaX5fgdJUzLZMfOnYyPj6GpIEkK3qDPttkdHD9xnG6nS9/tEcU+pWKZMIw5ePAZts/N0Wg00Q0TJ51OWEipDIaho6oJy8C0LNKpNJ7n8fAjDzExtYW1lWVmZ7fRajcp5JOF13aniWmaV4CFLEmsr1dR5MSGzO37nDxxmtm5GSwzw2c++ymKxQyZdJZYkkGCdruNblnIgKYp5PM5NFXHD2SiUOGj932SG27YxdjYCH3PpVIpUcwmVO6VlWVK5WEUxcDtu2QyKU6ePEkcJ7ZTvu8iSQr9XpdMOk2722V22xx2KkWtVmWkUkRIMZ43YGJiEn/gsbq2xsryGiMjw5w4eYydu/fhrrmM6COc1c5xYcc875z5MfbM7sEPB3ieh64nehmyovDZ9QeQJIl7ht9CGIRXRHjiF1Bbr18Vu1wReyVv1G8VOF2bAyp7oheB1per/F0PEL/Utsug/Op+1qv3fykhoqv3uZqS+0LQe031VLrGmocX9mJetsD5u8iDhXghzfha2vC1c/CCsa4DXK/d59rrfPVcXAbRLzXeS7/nF/e4Xjv/1wLWb3Xx49pxLl/3y2f57cR3ges/oBBcvrF8Z6Dz7xq4XqZ8hEImPnw/fiyjV+YAGbffxTBVVhdXse0Ua2t1Vlcb7Jid5tDTB1lbW+H2O25lcnSUw4cPM7tzFwQSDz/6CFNbJvjiF+5n146dDA9X8IMQIasoMknfTS5PHPikUmmCgskFt4aIIIoEw2OjlCplOo0+UeTS7fQoFoqYho5p2bTaXYIgxNRjslmHVDaHpOgIYmTZII4lGs0qe/bupdVqk8lkUIjo90LK5RxhGLCyssrk5BTzlxbw/YDJyUnCwCOdTVGruYlIiiSRyeQpl0aRMJAUHyF1iGKdhx56nE6nycT4CKl8jqDXYRD4GE6BMArQNJVarUEqlSXUU0zFC9z22luZuvFmeu4Ay0rR7fb5kz/4HV5312vZf9Muup023LEX/w8+jtrr48xNE8cxlXKZ1ZVlhoen2Tq3BSfrJIDBGyBLSfVG13VUTaPb7dGoNRj4XUzLxnVdbMemUa1x6vRZvnnwGXbs2kMUhTzxlaeY3TJF5dnTxDMq8asO8Iaf/dcI0WPHvtswbYdG/QJWNk2uWCQUgs9+5hv85Yf+gtfcvp/eekC/ucTElmlcP4IgQDMzLC5cxNAc/tNv/B6jwx55c4xQUclNjeJWa2RsCVkorFcX2DGWptroIXwVxZQYEuvIUUB2qMz8pXkGg4Bux6VULnPixClKuRJBf0DKKlOpZMjlC+QLJVRJ4fyleXbv2cuJo0fYc8N+BGDoOinHRo1bTG/ZQgwoqkoU+aQzaTTVZG2lRq26iqapDA1V+MpXnsA0LHbt2kmn28Lttcjm8oyNjRMLwdjEFlRVprq+hmVojI5VCEMffxBimzaqLNMfeKiGgaRkmF+4xPSWKRrNNoEPExOjnD93nigSjI6O4vZ8CvkhgihGkWTm5xcplodZunCRm26+EcXQGBkfY2Jqklptne07t+NFASvzCwyPltB0C8/vk0o7rC4vUi7mabku2XweRVapLq0hq0lFpO/2UBrHMQtTbH/9u+m6HqtnLnLL6/djGxmE0sU09uOHlzZZXEOsrZxEmA5WfguhMkzKOYOh1yA8jaaYhFIZr98ll7bZ2GggSRBFAZqmUa01UGQdTVMQBKiKBiQq40EQoMky7foqUexjOVlc131+tT4MUTUNZAlFVRFx0qOjawaSpIAUMvD7WJaFJhnIsoWkaPTcDTTFwlJ1mrU6TspGRImCs512QJIQiQoLYRihKSrpdDq5H0YRK8trIEnIikIY/v/svXewJed53vnr/jr36ZPPuTnN3Iu5M4OJSByARBYhaUVKXgVyJZdKUllUUdaWtrT2StaWt8ollau0Lq9slXbNlWnLa0uiRIgyKYBIBEEQRCbihDs53pxODp17/+g7wMVgMAREeauk5Vs1Nfd2f939dd8T3ud73vd5Ahzbot3tE4YhOSeT2mZEIMsqMmkPXhQHRFGCZTtsbtaJ47QETdV0MoaK229TLOZpderIMnS6TUxTR1UUJFkhhrQEOOoQ+i6Kmn2nbBggCAJ6vRau56EoGq1WF5IE09KRZYX5i6tUyiXGx0c5fuwEz33nRT525CEkdZTu2wuoWYndh2r83GerqOI8L3+nydzcPLMHZ1EC+N1/8Tvc/8D9DI0NMzE2gm7oSDJs1DYwDIsTxxfZsXOKkdFx7r7/42iJiSLF1JvwzW89wu69Y3TaAX4Y8l3ldRbm5/nHt/wql+fPYKgaS0uLzOye4pGNJylpJSQJ9h31kCSZ13fJSLJMHIZUq1WmTuzBNEwuHzxFEgdEoY/vuyDHRFFIGEQsLy8xPFxBMQxkIOi76KaFohmsr6xRb2yweHkeooSg71EdraApMk42Q7vX4cTRt9m/b5qHv/xn7Nu/i0I5j2Zo9DoerXYLxykSxxG+30RTbUQioxsqdr6Ibel4QWrTsra6SZT0GBmcIAwDUNJyw37Ppd3uYOgWqgZJnNDpuNimztf+6yPsu3k3hmly/PgcD55Xcft93rglg2lZKGraUpPECS+++AqTUyMgyYyODTM0MEg+n8FxDEBB03SGh4bRFJVOr4tp2yRAGET4fkStViObs+l2u1iWnXoSqxqHDx/C9SPGRgdpd1pknQyqphIEEVGcMtyvv/4GQ0Mj+JFHLlfEME3COKRcLjNQHeYb3/gGU5PT7N+3B8/v0ev2yDgZAt/DcTJ4vo+mKHhen42NdVRVJQr7kIRknbSlBiLGx0bo9zuEvs/G5gpj4xMsLdd56qmnGR8bwdA1FEXQ6/n4XoDj2Nh2Ft0QJLLEyvo6mqqgaFrKlsYecSLodT0azSZur8/U9A7W1zYZGhwgDD3sTI5iqUhOybLPOYinefxF9DCLrUXuLt2FbdvvJu6SRDNoMmaMcTC3H7EF6CVJes97NB36Lhi6Ck6u5mzfr7jm34gd/B7bbwRar3fsdgb5agnwteWqwPsYaCHE+8bE8bvsaspsX6vWfC0IS7duZ4z/xgq+yXtZ7uuBwg98xjdgXD8ovh9G/Wpcr9z62tcb3Fj46sPEtf3dPwCu/P8RuMbESUDaMxFzI4Wu7wVK/zZB6/s+Q+OQ+OgTyKrO/OIVDF1NS9P8Hu1en2KxiiwpLC3Ns7i0QBSEBFGYmp6vLKHIGt9+5hnWVpYZHR1ifHycnTN70C0HzVCRBXh9F0XVOH7sOOVSiVqthiIESRLTaNQQEvQ8H1W3uXzpCtVKlgsXLmGYGv1el1OnTzMyPAzEhL6Pk7VQNJPVjSattovX7TM6MkAY9FlbXaFSLlJvbBJ4Pq1Wl2KlgFBNem6EnSmyurRMqeQQRhJJ4tNo1liaXyOfz7Awv8ja+gaGKaOaDrmMiZDZEmhRadcbfOLjBzl14iI7d04SJYLIr9PsujgZhyiSMMwMCAlF0yBTwFw/RXLpTebbKr/26/+Ez/7CP+K+++5DxAERPn6YQXEc6nvHyD/2Ksmt+wi7PdrtDqaZ31rlFWiKQhIFeL0WxAHZXI5YxMSBjNvvoJgqeaeALDRM2yGME5xsjpv37GZifIhM1kAm5jvffI5bLmyS3LqLtV/8FQYO/yiakuHlF5/j+NwcN+/Zw4vffhHfl/npn/of+LVf/Z+m5L41AAAgAElEQVS4adcouyay3LTvDpxSjurIBOu1DoYMhlMgCeHIkdv5lc9/jkMH9uPYJXLlPKVSBUMWyIaG2/W5cOEMkzt2EooCrZ5PMVdgz8xu9JVnqcUOSRSwsbZCPlfGzgj8vkelUqTTa+NkiiwvnsQPJRRTI4lDNjY3cTIWkhRTrZYJQg9JSsjl8hiGSbtVIwk9zpw5Q7E6CklqZK8bBn3fZcfkDq5cWcT3uhw6eBDLMpCFTMbOcezoHBcvXyFfLKGqOt9+9jkmRofTksMk4dL5eWRFp1IpMXfyDMNDA/heH2SBpsrkCkUMw+DKhSs4joEsyRQKBSqVMqfOniYKEoLIx7YNZFlGURQeffSvufOeT9BqdVhZXKDXa9HteczOzNDsrGPoJbrdHo3NTXLlKoqmI0tg6gaKauFkc5w+eQrTNJEUmWw2z+VLl2g3GxTCBQKjTO7Wn8Iycyw0ejz7yLcZLK9jOSXcYINyaYY33zrH4FCGkZ0f48K5Bo5dIJ93IF5AFgI5vkAsmcRRPvVy1A0sx0ZRDRIUJFngZLNomky/18VUVRJJxfX7qV8pMlEc0mzV0z4xxUATMsQRklCIYki2QC6JRBD4aLpCFCVbwFOwfGUe23TodJpEMXi+T9bWkRUZWYCiCoRiIkkpABIShJ6LEAIJUoGYzQaGaYIkIQkJRUiYmQyqptFp1DEsm3anlfbpxQGqapAQoykySRLQ7fdTQTZTR1V0NF1F19VUoTjw6fRdLCeP60W06k0s00JVVCDBD2NkGXyvh+f3CL0A34vIlUr4QR9dN1JVYkIsuwBShKalwF0RWz6uyJw7d45s3qGQz2JbJuVSNe0tliWkyzXChkY8eCvnz61QKUfsmDzHhQvPMjn1EL3uMpNTY+imTSJLLK60+Y3f+G0yZoGXnnuNfQdv4t57Ps6Fi28x99YZ8rk8laECHdcFNeHQgQyt1jxDY/t5/LGnKE0WuGv6Y8yIHTz8F49y7/0/TKYgUEWWPzzxBe52jtDXXCZf3kRTVY7vF6iKwrkLl3nttbeYODDOBecUbqVJu9XGMAyEomwx1SpIUCrm8bwYJQFJyGjmVkl40CaTcTBti0p1CM20qA5XCHwfoapEMeiaycjwIP2+y4GDh8jYBUhi3F4bz/MplgrUass4mSJRHJJIAiuXI4gl3G4PRdV4+hvfZOeOSbI5HRmVzc0aMTGn3n6dgYEhglhibXWNyxcu0mp4tFptBkcK9Hod9t+8j43VDZbnrzA+PsG+V5ooqsJTEzFOxqTTaaDoBo1ml9nZWUAgA3EU4/oBYRwTA7WNDTRNEAQu33n+JSzboNFoUCpVWFicZ+nSRaamxkhUhYyZ5e23jmNnLArFHIuLSzz7zHPs2bOLwHM5c+48QlFoNzYwVBnDyTIwNEjid8hYNt1+h8DvYesKoQQkEhnLplTNI8sq9XqP4ZFRFAmazTq+70MiePmV1ymXTAzNRjc0kDRkOWGwWqXfl7hw4SIDQ4OYVgbPi3EyqTp5ty+xa9cEpVIJRVMIwoiBapluv4umKiRBn6XlGsXqIMVSFlVonJg7jmnaKFqWer2GkzMxjCxmRqdVazAxOcX5S1colYcIvFTocWVlmUo+j9XSaEZt5qVF3C/VuPWOjxErgigB4oiD2f0cyh1ILXxk0rZM3mVbrwUK220Pr5bZXqvmup3Nu5Fi7LWA8UZjrr3Gtfvfzf+S6wKh9+aI7+1TvR47+F4xpfdvv975roYsX2VZ3wWl75mznG5P206T9z2njwLk33duiZTBlVLAfHUekIB89cKAdB3YliRpb+sNAN21bO2HWbi49h6uVQG+UWx/vW2/3vWe0Qcyye+EvKUX8dHLhLfm+wPg+nc/tt4YWz9/L2npv0029aOEIukEbz9CkCg0/ASnUEJSVILAxcxk6bTbxGFAIZ/D8/rcceddHLjlMEMjQ7z4wkt4/T5Hbj/E4OAIURxSrZZRtFTpVRYivXNVRciCgYGB1F9SyHiej/vyGfKu4Hx7Dds2WV9bZXJqJ8889QRRGCJIKBfTFfDqQIXllUXK5QJ9TyJKJMbGJxmbmKLdqHPx4kVyuSL9KAUDUzt2ECZpv+MLz7+I2+8zOTZGGMVEoYemShiGzWtvHkdTBIVCDieXod5ooBsGBw/vx/N8vvPt59g5fRNhnDIDg0NVfM/npl0znD1znvzgOJYWIck+upZBV3PEwkMlRsgSsmYT5ceg36TUPMGn/tE/BatE4jd4/dVXOXTLrSiaj6kLGkGP9r4dOH/0NZQLi4S7pwibfY6fPMHQ4BD1Rh3LNJFkhYxt0+/30VSFbtun2+3g+x6ZXAFJFnS7XXRdR5Fluv11cnmH/moT7eh5DjdDavffgvi9XyNjZXjqqScYGRpheHQvoQ+XL13gp37mpxkdneRXPvfLSDIEgYdVzJExM6wvLJKzsuhqxMryEq+88BxXFlf4nd/5XYQQhFHE+sYGzXabQqlElIAQsL6+jmXa1DbqyEmAJEPOsDh29C28E39KuVSk1nJ59jsvsXv3fjRV4uyZc8zM7mF5eZGByjCrq8sMDU+wtrpBpVRGVWUajRqqKoAY3VCJ4ogkkfC8gIuXLjKQ16lUyggrhxIHBFFEGEO+WKLbbeE4DsVigdW1DQrFIkEQ4PZ7TO+6iZ3T0xiWgVAVBqpFzp+/QLPRxbFyTE7vRJZlDFVQq61SKORRVIOrtoBJEiKETLlSxTRtDMNEFgpCqOiGgmNbmJbJwvIm+WKJyHfJWDrF6iA5J0O5XCCTdchm80gyKEJF3voyHxwYoNfvoSgacRRy8sRRHMvA9X0q1QqSBJcvXWRhYZGlxUVuueUw+WfAWS3AAw/w0vMvkS8VKeVURBRg53QiN6LbE0RKgcLwNGGkUK4OsbbZIIxliBewLIvAXydiJ0mUEIYRshC02i1s22JtbZVcNsfy0iKO4yCEoFarIyuCXq+DpqdleO1GnaGRcRTdQgidMAgQskCWVRTlav+YhOe5mKZGkoDvh+kzkBLK5dQPtud2aXfamLoBQBAlyBJp+XySgKwSxoCsgKySxCFxkmwpuCpcLV2TkNE0FVXVtzwnBZIspwyMEGmvuSSztrZG1nFw+31UXcc0TUgSVleXcTI2kpQmE2EQpH1FSYKiqjiOg6IoNBtNLMtC0zQkQFVUkiRGEQqGmVokKYq5VdOWMo1JnFrKkICqKrhuWiZMIhMGMYVCnlptBcsyMDM52t0WA4MDJPkcfjaHlc9hWnk0Y4xWS2PPrEfPvZlvP/86d915P5aVI44CLl9apd/t8ku/uJ9CoU+ptI9er82Jky/ww5/8EX7l85/nhx96CNPIoNsqhvQk+WyLSD7IoUMHOODsY19mNxub69z/wN0oQscL6iAlHJdPYRk6Qexz6rYcJ27W0FQdkgQ747Br9ib61Q6dUitVbRYKYRjiez6anSVKQNH09O8bg2nZBGGIrujIUszKyln8foiqZ1JGRpBWoygai4tLZLb+NkJK33+LiyscOzrHN55+hiNH7sTOGGiahlBkJEklIUQ30jL21PpKRcgaY2PjCBnOnjqLZVpkbBtd1XB9yOWKfO2rX+Xuu++mUqnw9NPPcOTIHZimimFmiCO4ePECM7tmefPNN5jOVVnMhjzpXmZmehJZyOi6jaGrNJsNDE1P2VtDIUlAVTVIJE4cn2NyagIhBCPDA+QLOeJIYnl5g4GBYrqAFgVoukocxhw7OsfO6SlkkdBpNTny8VsQqoEqVMqVAVRNJpc1CHwXRVOJo4TADZB0HdOyMDVBp7lJvlTl8qUrWHaGkuPwpT//ErV6A9PKEEepynoYRRiGzdh4BV2XkTFIJIEsSfieT6fTZWFxHsexqZSrzF9ZpdVqUK5W6fVdzp45g21aCEnCNg3AJ4qgWChjmxma9SZWtoQkxUS+R+QHFEsF/CDgr/7qa9x1+21EoUfkJbSamxQqg7RbLb77ysvMX7nM5NQkSRKn36e1TeIkxnAN5ozT5EayHFYOkCsVkEgQ27w5JelaJCO9D4xuFyPabiGz/RzXgoqrwON6DOK15742R/T/0CR6VUG5I7zuubefY3tctQeD94Oj7Yzp9c65nVHeHh+0fTugv/r7h2WNr/5/I0XcDwJ9H7T/emPfGXONQNP1jvzoQPmjA9drj/0o17wRcP0QR39fOOQHwPXvQSRJTJLE767m3AC4ftCb78OvlHyY+Vz/zZMkEeHRxwhllZaUZWh8B7HQiBOBbhgkcYgiyywtLNLu9Bib3EUsp30ztc06qq7Tard4/bXX2LNnlna7Sb5QRJJirlyaT1VGDXVLfTT9ALYsC11VqT51EX2hxdB/fw/5vEWhYFEZqLC5UeOee+9BKDKKKpi/coU4DoAIx7HQjFSs4dKFS5w5eYpczmFgoErf9bn58G3kbJN6rU5lcAJkGUVRSRLQVI3V1SWGByrUamusr9fRrSw7d0wRhT7rG2vk82XW1mu4nkvWyTM8PIJhmiRCQkkk2p0axcIACB/TyqIoaSJuqAkSgliChFS91HP76QcJAjIFZFVHnH2GR77+JF0xzv79t3LxyiKG1ES3MgyP70SvFDk2O8QfP/XX3Olq2M9+l5HlBv6bc9hCQdQ7KAsbSAvr0OyQdNtIrT5eFDIyXElLYYSEbepEgYcaR0jnl5FfO4P6xmmkI/tx/7dfwPzMD6WgIZaY3TXD4sIiip1hbKTKn/zJf+Fjd99Pv+3xhf/7C9xyywFy+QyZXAU9Djl69BiPPvEUxUKGPQdvJWub7D94mLm5U5RLVb7x9OM8/Jdf5Z5776NYqdLre8hJiJXNUcyXyVsFFFOj3mzzB7//Bzx43xEyl/8K196JZWW3hLFkStUCrhdRqhTJWBpryxuYGQtN1zFUhSiO8H2fOIoolcssLS2jaRksy0l9+WQJkoi2G2JlCiSRxGuvv4Z61eZCSjANA1VVsSybRqvD6uo6xUIew9CJowhVUzlz5gwD1ZTJGhwa5dTcCaYnx3j6W8+wc3qG+flFZmdmePvYSTbrLUaGBkHo+P02ECOrKhIJvu9x4sQJnKxDkiSoQtBsdVlcWqBUzBHHAeVKgUTWEFLM8vIimVyWc2cuUKoWWJhfo1QwOXvuIqZtEQc+q0sr5PJZLs1foVCosLmxQbFQYOHKPJVyhYnJSUbHRjhz+hTjawlSZpBXFYXN+gY7pvexe7dF2G+gakX+9M+f5KVXz/DCy0cpDlQZHR7nwsXTTE9Pc/nSMsVCA0mKkemQxNPoukcYpUmTbdn4nodtGShCI0lCNtY3cLI5rIyDLKdAUVV1hFDQTZsYQbfVQaiCjbXUQ1fRtuxJlLSvLpvNpiI9QkPTFOZOHqVUyBImKTjVDI1CrkASRbhBgCQreP0+URS8I3QmSSmYlbfUKdO+UQlVUwh8P7XxiRNcz0VKZHzXR1LSPtQkSVhf36DT6aYVDlGYSkkJQbvbRdpiypMkINw2b8MwMQ0DIQRr6+voqoYsC3TdQFFU4iSgXq9hGiaqkImRkYWGkBVczyeOQ1RVRcg6iiIIg3QhTAiZbq+bfp7pGqZhIskRxWKedquD2+8yNjaEkKAfBJj5LGEUYpg29UYLw8igqTW+/W2IVZuR0Sn+9f/++5QLWQ4evAWJkKmpAMdR8bxxTFNhZLTM0Tcu8nM//7NkczpR5HFlYQ1bO0kUxdRau3j88SfZvXs3lmmhaSqddo9nv/UqVkag6zoLwQob3iqarFFvtNCU1GYGEhIJdEMhIUFTDeLIJ07S5NnJOvT6HqqqIkvpQoZlagRECFnaKt3VUFSBJGn88R//GePjI5imvpWIyhSLaRuHrmskccTRoycgidm7bxe333ZbWtEiEsIYJEkmigSqLtPr9nDd9NpsCXK1201MU6HfiymWCmnJqCSRLZaZmzvOwYP7CROJJIk5sP8gcyeOMThQIoxkhFAJw4B8ucjI8BDzExpru4rsvGkWTVV45ulnWVupMbVjFEUodNodaps1CvkcURijCJnLly6we/duPNfnr77yNYLAZWBwgF7XJU5kdEXHyuSQFRUSGa/f5/KlRfbsmUWWQyzLQdd1et0eqmoQBBFxnCbpXdfHyWTp9V1sJ8fS4hW0LU2AMAxpt9Py/Ew2h6pojI4Ns3t2J91Oi6HBATRNI5fL0+u5EIcQJ3S6IYqhowoF340IggDT1hkYrFCvN1heWkXVQmRFxrR0shmVUqVCNleg7/VZ31ihkCtxZWGBOPTRFImV9Qab66t0+x7r6w1a7RYyMbcc2s/C/CILi1fQNBNJTuj1umQyGUwrg6rpDA5WWVtbJeNkcHs9ojhC1wxkS2VNWmP60gTTszehyjIJcKl3mUbQIK/m3kMPbu+V3J7HXQ8wXKvCezWuZVK3CxpdCyivl/tFr6Y978od4QcCyWvzv+3brwXbV8dtZ2+3778RQ3x17I2exfVy2OsB3g9ipreP/aD7S7YWJT9ontdjvt/Zd22JMu+NDwOCrx37YcrEb3TeDwPyr31OH8S8fhCuuLpPlt9f1v1R4gfA9e9FpIzrhwGuHxT/X7CwkhTiv/04saSy2fAolQq0Wy10WSJMJFyviy4EF89dYNeuvTz/8mtM75oljkKOvfUW9933IDt37WJ2x042NzfYsXMHcydPkbUNLl64ws7pGaI43BI8SD8MXDe1Q/C+eQJN09mYKWDbKqYtoeoa2VyRbj8Vbqg1aizN1xgZHsdxctQ3W6haTBT6DFYHMQ0LP3JptZusrq7hRzIDxTxPPP44O6b3EEsCTTdw+33cvku1WqLdbHD69Bx79uyn7fqEfkB/Kxl0vZB8vkKz1Wb3rr3UN2t858Xn2bv/ZlRZkEg+bj9BUjw8X8LRBUGigN9Ny6riAE3PI8lyunofJwhJRqgqsZEhsSvM6g2Go8v0hmYZnCrQXJhHs7JcWm/Q9/pMz+zlgV/8Wfx79/Opv/z3rP/kpzj4m5/HvWmMsJLj6Noqud2TWF5Aa20FKxbYb51BmruE9NZppHPzuOevwPl5eP4oUrGI/OMPsvrL95H76U+zVF+g2+vTdyPCb/5zNt/6r4iJu+lLIedOHeWhBz9JKOn43ZDnn3+OOz52G8vLC/Q7AY6h0Or3+OSnf4JKqUismKiyTLPdZHh4nJXlNW6//TAP/eh/x9jYGH4Yoho6sden5fYxZJP2ZpNu7GM4Obptl5tKLv78q+Snj9BuNIljlySRaHUaTO6cRYiYOOgThaCZOo16jYFyma7bxfdCKpUBzp8/z9TkFEvLNZqtNp1OB1UVCCLygzu4dGWV2tISY1OTjI4MoWsCz+2QyMo7QEBRU2Z2aWGB9bWVFFSoCr1Oh1KxiOf3EYpKv9sk9LocuuU2IgS6YbGxvEGj2UU3LRzbJJYFGSP1BT15+hz5XJaEhOHhIUzLwHMDNtbWGRwcI+cUCL0Y08wiKwZxkiDLMY5jE0ZpMq9bKrZR5NzZt5nZtSftGwsCNlbWsZ0ME9PTqJrN5toqb799lImJybS/zbY5e/YMhw4eQDm6TN8YI/PAney+eQ+mOczxuS9TX59HUyZo9G1+5jO/xMfuPMKOmUEe/crXuf++O1laWGB2Zi/5/Cae28NQevTbORK5ni4uCZlOp0cmY+C6HpadIWOZmHYG5LTqYnl5lWKpRBzFdDouCAWhqNiaSs/vU60UkSSoNxr4nodpGnh++n8UQrfXR5IjJClA01QQCoaugZQgA0KS0cwMiqoS+h79fg/bcZCTiFargW0abG6sYdkZGo3GFnsVE8UxURiztLREtpAj9EIymQzI0O930DQdwzDJZLJblSJeClrbbUqlUso2t1rks9ZWH66Gk8kSRDGqqlJvNCgViyhCoVar4XneFrBV0TUdTdWJ4xBFTYGWkGQUbcseCBlZ0um062SsbKq0GYfouo0fePS9Lqaho6jpcaZhUSo4rK8uk7FtojDC8336/T5RLPHyy6+xtrzB1EQPK/8Qk9MH0FWLHRNTPPvNb7B3/26KxSwrS69QLhf53K/8HnfeeTuaJvOv/uV/5P5PfpxE8lhYuoBlDdFrPsfi4hLDoz9F4EcExYiV9honXj1JqVTiy196jE//xCfpdbtclhY41jpGSS2iaCaGqgOpxy2ShOf12DE/i1Mr0iltsr62TqFQQJZkhKISBgGSlDLOG+vL2NkMxOBHHeJYx3NT66R77n2Q7zz/LDftmqbZaCKExvHjxxkdGSaMQnyvT6VcpTpQJZZcEhKCMEJWJGQp9dD++iNPsmvXDLIs8cUv/gduv+125ubmGBgcpNNtkiQB5coYPbfL8y9+h+mZmwjiAMtQKeQLLC5v8Phjj7Jr1246nVYqNicpnD9/gfHxUXq+i6FpXDx3gRMnzjA2tTNl04WG24/IOCqKotDr9LBtG03T+frXv87MzA4q1SJCEaiKTj5XZnh4ENu2EYrCiy++xIEDe0jkiCBwkUVCFEbUNztUqgVWVhdIUFEVG02Fi5fmKZbLeG7I3IlTDI1NIAmFBBCqwvL8JZxcDllRCKOEhSsLqSdqLLG0vEqhmENTE3JZm+XlNXRdQ9N0Vlc3kLb60p1MCVlL2dannnyaHTt2kM3bCEUmY6cqybpmkMtXEULDUGXsfAbPD0GSsR0TRdLI53Ns1lYplxx0PYciy5w6f5FcscLNe2dxey2UJMbOF6kMlNB0myD0KBcK+EFErd7mhZdfRUpCZmd3pUl7AoODA7z08ivMVHbxOm9ybvUcP7vvZ9K8TZL5n+d+i+dqz/Pjg58i3rLg+n6ElrazmdeO3w7gwjD8QAGeq7EduF4b1xMdgvcC4uvNYfvxwDvicNcDYteCzWuZ2+ud90bgfvuxHwRoPwwLuZ1R/qA5XG9O3wu4/reKGzGu19smSdJ7eodvdI/bn++NFh3SbT9gXN8Xf++BayK2VuQSJCkhfse7NU1APkp8L2b1b8LAXrsq884KVRwSHnuaur0TPZOlPDiEbpjEbK1e6Q6SZpMtlpm/eJra5jrHX3sFEXncc/8nwVDQVY04FiwunadYKFGsDtDtdBnfsTPtU/H6PPXEN5jdNYuQtXRVPfHQX5tH11W6+0ocPXqMTjcklxvgsce+Ra/fxrbtVIUzCWm3N1lbW0OzHCrlIfq9iIWFFRRVpVVvs2NqnEo5T+C7ODmbmZt2Ud/YYOnKBUK3R6vVoNdPbRhUVUNVQVdUyqUyceKxvrZKr+eyvlGjXB1gYmIC13cZGR1i/749xIFLQIzvg6praJqNkCIkkZYey0YW28qgEFPfWMQyDBRMgrBFz22TIBCyxKlTF7iwETKSE+iXX+CV45u8dLJFdaRKOTeIqiqEkeDzv/qr3H3vvXz2H36GsXGD0ErY0HwaFQf99kPk7r8L/74j3PN7/4Kf+/K/w/n1n6X/2R/F/exD2D96hODeQ/zRxZPc9Z9/H/8n70I5PENk5PCjNiMjkwg9i5XNEpz5Ok7GoXDo5/ncL/wyP/9zP42iQa5YJJ+zeODBu9FNhSDysUyHy+fOsXv3NEncxTRTy5J/8wdf5BN33oHbb4ES4eTKmJZKNwjotmvUFy+RcUq0NhsYpo5ma2TzOTqr61QHJtFrbxMFXVbrfQYGhlOLo5FByqUygpgohqWlZZqtBiMTkziZLPXaOpCg6Tp+5DE8Mkyn51LJWai6SaFYoFlbIl+ocHpujiQMyORtVCE4fuIU5eoAim5w+fzrOHaMbQ7yyNe+xuzsDsqVHIVyAWSVVq9Hr9sncANUzcI0DQaqBXRDRrcKhL6LqWq89sYr3HnkY8iSnFp1JDG9rsfy8jpD1UEs26TbqrOyskG/H+O5LqPjI3S7HVRh8a1nn2ZwsIihqaiqiufDqVNnsXRBsVig1/NQtYRSsZj22oi0pLY8NITQFLqNFsePnmDnzp1Uq6mX8sbaGkuLyxw6tJ8oSTCOroAzwuruCSIkMpkSsrRKtyWzY/fd7JjdxdvHX2F4qESrscldd92FF+tkizmCcAWvN49lZyC+jGpaBKGLpluEQYxu2XheKswUBC6SZtBst9G2VGNtxyYOAmob6+SzFkkS4/W7SIqCgky90cQ0LZIgoNtzsU0LRRbIsiCJ+6iKwvLyCsVCKkq1vLSMk8mQRCGdbhfTclhfW0dC4ty5S0xMTNFq14nDgFwuD5KCopsosoyqpWxfHAXIckK73aBYzKBpJrKQiEkTH1M3CMMIXdeJkhiSCNPMoWoahqmBLCMJNZ0nEppmsL65iWXb9Pp9gLS0OgiI4j4gcJwMqi5QVROh6WllgGKkn8cS9L0emqqnVlhCIiHANtMkvNvvYVgmkpSgaRqB66OZBkkiEYYJvhfi9rosLm9Qqg4TXVlEanbRqgWkJGJmZoqR0SqqvEgv/jH++W//LuOTI8zsHufmQ/u5vFjjzNxJbrtlkPMX5rnzrs/w3HOvYOhF7v/kEf7t7/9bTh5fY/e+wwQejA5eYWpygtXmCJO7Rvnt8/+Ml9sv8E/u/B+xcxr3338XLz73Ejfv3sPCWoNvus+grQl+5jswfrLD3GRMFEkksYRhGHz82z9CZWmQuR1vo6gKQtVIJIVEStDVrYRbEWR0DSGllkalYgVZjlNLl3yWWm2dsbFhfD/AcfLIMjiWAchEsYxu6CnDLSdIQkWWBLqQCcKIOOwiC5WZm2YIvB6WaTMyMpwuYCmprVWx4KAqJmuby+ScDLMz07Sam1hmjlqtwflzFxgZrHL7rbcSxT2Ghwc5e+YylqVSKVeQZZlGYw3btpgKLKZyZZKiCbFPxtJBiqgMDqIqaYmpaec4OXeM2267lbfeOk2pVGR1dR07l0VRJUzTotdLLWUO3HwzshLh9jw0RUVVBO1Oi4nJcVRNpVyqomoakghJJCjlq2nFVeRSyGUxdR1VCJIoplGrs75WY2xsELcX8Bdf+ip3fOwOhCqTxBGVSpE4jnG9CEloqeez8AsAACAASURBVG+ynCWKQ3K5LLKmkHEchBLTrG0QhfDyq6+y5+bd2KZNFMLmRp1yqYzndYGYdquGkGOatR5uL6DT8Zm/tEqhkicRkMsX8AKI4gDN1BgoF9A0gdfvIAuZ4sAQupYqEjtZB6GYhHGMppkYusGBffuoDpSRpIQXXnyJsakJZFnl+PFTDFQGCMOA5kCbK//HUe79Bz9O7Ifv2OF8euDHkJBI4iTtcUySdzoBhSy/Y4/zYfKwD5Pv3ah0+GpcBa7i9uB9Y7czpx90jQ/TO7u9l/VaRm/7sdeOv3Yu147ZXkq9XcTq6n1fD1xfz3po+/7tc9se72GvtzxkpasNy1tesrIktn6TPlKH50cpgf4o8UHM5/bncyNF5Ks/32gxYfv+dN/fnG3dOscPgOvfvZC3Xu0JSRIDf3sS3h8UN2rs/zDHQWpVE7z9BGFmgLWVtLzQDyO6vTZZUxCHPoKQ+voST33rZRTN4MEHH+Dk3Byvv32c6Z07qa2v8Sdf+jMO7L+ZRr3FG2++ydTUJJph0Gq30RTB5OQOQCIIQoIgQDMMlJcvIUsyjd1Vzp69iOeFVMoDHL79MDt27gAhaHY6nJo7jW1ZDA8NYGdMFuYvsXv3LBub6/i+y67ZaYRQWFldY2RwEFlSOHXmLDtnpmk3NqlUKgRBQC6bpdlo0GhsYGdUlhZXmJndy+mTx7HtDO1Oi+HhMRIUTp85y8379xMnMYqW9m2qmoahW7z80qvk80XsjE5CjGVlcAMX0BGSCUmLWMQkiYbQTISRS20d4oR8rsjQ0CixkUWSBWPeeZ548Tj3/YPP0HcTTpyco1wucOSOO4CEKIi4cvY8e/YcJkpM8oUR+s014kTwC7/4eR5/4quYho3vCVZXajzx5ONkJ0bIT42jDw6RGxtGVmUSSaDqNk7Gptlp0W7VcTtNzLXvEkcx0sxD/MSnfozHHnkUVdNZWFkjCl0MUyWbzZAv5PEjF0NRcf2QIJZpdducP3ORKIjZu38XQZQwODzG4soKvt+g6/YpF8vkbJMokSmXy++UQ108PcdXHn6EX/+N3+Izh6DdWKfuymyubXDh/BVU1cTr+xTyJR594nEOHz6Equk0Nxv03T5CVfFcH9POkM06BHFAGEU8/82n8CWVwdER/PYmly8vMDAwTGVwkFKljCJLjI+N4fa7NOqb7JzaSRgIPL/G3j0zrK2ukMtXUJQskhqhqgbdZpvGxhqaqrK0eA5FBYTg9KkLNGobnDh2nH37b+bNN99icmpHyrRvvb+KpSJRHCGUBLfnYVpZuh2XwOvS6rTI5vPEYczevbPo+lZJvaamvaFrayiywLQdnn7qGaandxElEIQRnU4HK5NHURM8z0dGMDk5QSKF2LZFq9WiVC4SxxAGfurJfKqGbFfpHNrNyMgQv/mb/5i9e/fR7un82cOP84kfepCR4SH6vRZS5PPCS68zNTaBTIzrBcTRIqZpIJITSLSJyG8lAgndTh+SGEWRCfw+Qggs00gVVyUJEuj1e+Ty2XRBbAs89no9pMjD8110XSNjWtgZB1mWCIOIwA9ZXFigWCyScbKoqoHve6iKhqqqSFKCEAr1Wg3TSHvyqtUSqiZjGCaq6ZBc7UcjIYoiXNcDwHVjFNUkjmV03cLzt0pSt77gfd9LrW5U9V3RioQte7AIIasQp7YZUpyWQeZyOZqtVI1aURTiOGVeXb+NaRRRVYGmS7SavXdsNeQtO6t6vYbjZElImcXV1ZUUBEipiunV8sTUDktBNyyErKSLBb5Pr9uh2+/w3VePoWsm5tIim1cWYbiKndHRdY0w6KLIK4T8GIcP38qnP/0pHvrhB8nYWRAK5YKDoa8hCwWnuJ//9X/5l+ycmiCb8bnn3oe45dYDOHmTxdU1psfXCQKfN45JjFSL/Odzf06z1eazU/8wVSbeWGNqcpyvPPxVPnHrg/yr5d/joYkHuO1VD2p9Tt9a4PXX32ByaoIo9tk5txdJFpzf8zaSLLb+bjFCqASej6rrdLsezz37MqVyCSdj4oceuqEThiFJEqPrBrqu4Th5/vxLD3Po0M0gCSzLJvA9NNXgzKnTlEsVXNdNy+MUCSFBq76BZhjIQuD5ITIRURhw6uQZqpUhEgL8oI1pZNCMHIqqIUuCXi8V/Wq16tw0O4NQdM6ePksYdyiXy5h6ATujE0UJ58+fZ2xsnDCM+ZF/c4bpY21e2BuSz2ZSFkXR0VQFSQjOX7zIQKXKwEAqyNbvuZTLeeIkQdNU+t02iiIRhgHDIyPIIv2+tgwTVVFoNRskckImkwdkwjBC01U8r08YRjz6yBMMDQ+TcUzcfidVH+/3efSRx9i1aw+ObVKrryIUg7ePnuXw4RmQQpxMqmDc7/WpbTZQ1BQgP/HYt9F1jXKlSLvl4vs+mqag6wq6ojIzvZNsNkMQerhuD8exUFQJVZGwM1k0TSeOfFyvxSN//SSlYhnLVijmiri9Bs3NJjmngmYIlhavMDQwjKIKapubqIpG34u2WnR6GKbBxQsXUVQFy7IgkZg7OcfY1Dira5vs3nMzqpDpdDr4rkulmKOiVLisLnCqchFX6vJ66w2Oto+TUWw+PfBj78m3tud06aLT92Zar8d0XS8vE0JwLSC8Xo73LnANrwv0th+//fzXY02/FxFyvZLUa89/vfvavv96DOH2bdeb8/Zrbe8H/rD9vO/fduP5Xr3O9e7j+83jrx579bUghHjHHu56LPSN4nvl/t9LsOnaa71Lsv3N4wfA9e9kvAtc3/2Xxn8L0Lo9vh/gSgzB0SdwjSKWGREn4AWpoqfXqb9TptXY3KRWazA4PMK+/QdZXFqiWV+nXa9DGNPqudiWQbftUSmXGR0bRqg6mq7R6bTfKbWTJBlN03DdNsZ3F/A9n+7BCo6T5dLlS/h+l8nJMV5++SVmd+9CNzR2TO3g9ddeRxEK7XaLYjFLs9lAUVJlYlmEgMr84jLDIyOcPnuO/fv2sbhwkUq5yML8AqVCiYWFJVqdNqadxcnm8SOVZqOBTEC36+I4eTY363S6XSQZ9h04hGEaqKqyVSIks7y8SpIkDA8PIoSMourEsUCTtrQGhSAKEzQzj99tEIUNdC2HkNMSoz/6whcJ/JBjJ04ytfsQIlPkniEXFt5AGTvA8FCJTDbL5uY6jp3ly3/xMAdvuZv/6w//PVcuLvJb//Q3+dyvfo6x0UHuPHKAs6fO8cUvfBFLt8hndW6/404sy2BxcZHR0Un+/E+/RKmQp1KoIEUysSyRyFDbWGFioER4+SVc18OcuZ+vfOUr3Hb4NiqVQUYnJ8hlsiwtrmDbWfq9EEkV5B0Hw9TIFfP0+zKD1RJjI2VOnjnFjp030XdjCqU8vtslVxygVe8S9gOcXJaLFy++A14NK0NtuclPfvqTjNW/ynzXQbNylKvDDI6OMzYxQb2Rqs7u2buXREjEQcx3X3iF0clRTMuhkC/Q7/RZW1ulWMijqiqmlWNkuAyRi2HZVAaqCEWlXqvT6/aIpARJVrEsi8uXL+MHCk6uSuh3iCV5y4JBwet1IWyhyAqaKpHPG2hKAriUK6P4oc7I6Ci2YzE2McbS4hIzMzfRbLWZX7iCIstYto2iCM5dvMBApYoqdDRdp1jKU2vU2DG5A7cXsLh4hWIpTxj5aLqBJAQKUC6X0TMOuq5AlKAbBoZtoRsKC/OXsTL5tN9S1dFVjY2NpbQnsJv2qnW7HfKV6pZo0ialS12k2IdP/hD9boMHPn6Q1189x9ypeX7pl3+Bpx59jDiIefyJp0gkncnJKc4cO8762jqyYlKtDtFsJZjqCWRMun0Tz4uwTBshZHq9HkISdNpdhJxaz2iGBZKMIssIVUkrCpKYOE4IggDDMLENDd00EapGlEi4vQ6Li4uUSlVkOfWCVBQJJBlZVhFCRtN0PM9HkgVC0XCyWeIE/MBD02RqtQ001SQKPISQCIIAIRTCMNiqutCRhUBRFHRDI44jdF1L/Vt9Py2RS+J3PWZlORVIIk77JTVtS3CmS5xEKJqJ0DRiScIwbcLAJwzDd4GrG2zZdsmEUaoUq7zDrnsIIbBtO00wEgVJknEyWUgkwqCPIlRcz0eWBe3GBqpQiZOEOJY4e/YspWIBw9BxnDyTO0bIZnXEWh3TslEnRnHdAF3LEEU9NLFIL76dl154m3/227+JJCVks3mEqrC2NE+p2OPsuXPMXwq4+55DHPnEbYSxQalksVlf5ssPP0I/DDgw20MiQVFv4//8/T+kezjAtCzuM+9ElgXdXgMpkTl08DaW1s7xZ92H2a/vZf+xAFXVmDuYYXR0iDiJUDXBTacPIMsyxyZewLYcQCBJpKyZKkgSkIXC+PgocRJhWyYp/yUQskBTdRYX11AUhXq9zu23347bbSMpGn/1l18hm7HRdYPQ98g4dtpPKElECUReTC47QK3RoNVskDE1HnnkSfbt389AdYAvf/lhZmd3kXVK+H6MkGIkEpAF6lUP2a1FzH/3hf/EJ3/oExhGCpj8oEdCgucFDA5W8fwIy7S46VvLxHHEhftGIIE33nyLyZ3TBL5LkCRUyhUatRqu2yOfL3Dl8gJj48PECeiaghTHfP3rTzE9PYNhmkTEmKZNGMPDf/kVDh46jGVnkGSFJIlIpBi2qglIFPbdvAdFU5BlCUMzcHse/V6fSqWE49jkS3kydhFFCPbv30UQ9Oh22jhOjm6vh23l+MZTzzAxNYKQLS5cOMMDP3QXnivx//yX/8Sddx5JhXVkGUXXCeIQSRYYupb6PQc+UeQTxwmybOD2ApqNGhmnwO69s2zWN1BUg6Nvv4VIVEZGRlhZXyKOQwbKRbp9F8PMIEtgmRZC1eh0e6iawsrSIqpQCKOAjY1NVlZX2b9vP7XNDc6fvczw4PD/y96bR0l2nmWev+/uS+yR+77UklWlkkqbtdmWZWHswTa2m8EsNoYBxt3A9DAwp4Gmz+llBs400zRjGrAbMAYvgNvGtmy8yJIsydZmbSWVSqpSVWVVZlZWrhEZe9y4+50/bpZIpVLljWHgtN9z6lTEjRvf/e69EZHv8z3P+7xoatoWK5vJsL68iGVnmc0fpBu2Ods6xyXWeKFzimlrih8efNvL8q1XAIFvIwfbi0Xb7Uz8nchGdwLXKzGnr/Z8L9b0SrEbcF6Jqb3MkH6rc7jStp1M7OXtu2tUv/P41sD1O53vdxM7GeYgCF7W4udKx/hO5r7ztW8Fuv+hgev3xu1+P/7+QkRATJJEIL51kfp3EzvlAa9Wa/CdjocwIIlRGxfodkLiIEBXAgxLo+3FhAnEImF4eoI3/9AdXH/1frxuk61aHb/nkgQ9cnmb/bNTrFxaY+XSArHfo1ZZ4fTzz+N2AxbPLxF4LWKREIuYOHbRdBPX85AUmXzeZnNzk5GhCaJYotPpcdPNN1GrbaGpJpIEP/Jj7yaWUmkzQmHf/sP0DwxTazRwuh02N9a46vBVXFye5/obXsfpM8uUyzmcdpOD+/axeukSxVyWI0cO48Y6fqiwb2aUttOm56b3pVZdIYldFFXhzje9lW888ACeGxEGCkpiouHzhc/dxdyBSeQkQpIlAj8iiiICt4bbkEhiULJlkEDWZRqVRYLGY0RRQBR7/Nz738str72WH377W/ibz36atq/wzYqGJkuYj/4XbEkiSkAKPSprF3jf+3+OSmOef/3vfoUfe++7efDhR1heWcQNErKFYc6/uMCTjz3B5OgQJ48/S6L12GpvcuDIfjIlDayEkZkZ7n34G5xfW0BBoagpTI7P4WljqTpAgsXzp7jhlpuYOHiUu75yP7Is06gv8IH/+Bf8xZ/8N+bnH6ZVbVOte0RCYqNyEU33UKyQdiBYXtpCSfL8x//zd/CdDTw3pLuxwlDBwsjlePHMCSYGZtmsnCEIVNYXnqVgxxzo7xFrJcrDM0iKTK5oEwVdep06IyOD1FtdZEmhuVmlr6+P297yZmQBzz3zNH7goGVSV2HX8ZGFSq5Qwum6eK6Pphp0OzGJojA2OcKl5QvUq0267TZCQKlURNNUmo0qqlFkcbHHyrpLosh4okW908EPIwyzjKKPkS8PslkL8CPBNx9/hHatiWXmMOwsE0fmsEoFgsDl6qsPUe4fRFag2aqxf2aWZrVLs9HFdwOctsPwwCiLCxcwdJli0UzltbKG4wX4Todmvc65cyfw2l1q1QYblRrVaoPQC+g024yNTdJuVAhcP125laB/YJjqepWMKSByyOb7CdwISU5ZGUjrf37pn/86la0e1QtPcfttV3PzbbfTrfb40z/5C0ZGB3jzD76RP//wxxnpG2Bsej8f/W+fpjRYRIgsQplOQWcUoSpZJAQiiXDbVbJZG9UyKQ30EQUeGTOD1/MhToiTtAVNFMUkCRAlZEwbTVbpJjGOn648e14H08owODxKELmoSki93gGg227jOR6SkgJJVTVB0vHDhDBOkFWJXFZFFiqF/CBIAbqqoMoKuqbjuh7tVpM4ipBEQiIi5KSH29wgSSKcTgdZllE0HT9OkOTU9CcMA4jB85w0ydcNoijGD4LU+bjXIyQmiXySIE3EZUlCkWUMXU97wmZtNE1GVRVURSVTsCEO8HsdVN0iEQphtG3OIhIqlc1tsB4jKYJuu07g+0TIKLKOohpoukUcuZimiqzK+FEAskDTDUwrD6Q1uT0n4pN/fRcvvngBESuEkUVG+iRXHR3inT/8VkwpQ6+5TLNZ55FHHiaMQvoGy9xw3X5qGy1adY8zZ54hkGH/3Cxvf/ObmZsZQ5IgSmLqnTY//4s/jYSMoRgQBrQ7FoPZWaJOxIXFc3iDXfbp0zhtB5IQSQJVRCiSjCxDFKTyvTiKidHxoggk8IMAgYfThThSIUowtusiPT9GVS2SRCaKBWGUMDrcz/LSMrqikUQ+KOli1Dt/5B0MjPbzwgun6B8cIvIDOu02W5tr+E6b+fkLPHH8OM+eOIlhmlQadSamZ3jqyWeQJJmf/Jn3EMfStsuwRCwi1tZXIRFcPL/GenWVfGGQ1UtV3vj6G9B0Hd0qEEsxtmGxtLCK43up0zUBYdQDYgSCj33iMwjN4Iabb6Tr1Pnyl+7BVCwq61s8+ujj5PJ9SIrKkWNHSGSDnuvRbrep1xsYWglTt5FIkBPodR0kkTAyMogipzXSIokg8kn8HiQSQRDz4Q//ObVGk6cee5TI6RCGAc8cfzpdqDUz6NkiSRSzubmKpkvouoxmZMiXh4kjQex3IHF4y1vvpFgsI+HytnfcSaPZIAp7vO7ma7m0tIymZ+j6CfWtVUzbRlF0NhtdFNmEyEVWNYQS0a43eerxZzh9YQnLLJDL57jm6muobtSZnprg5KlThCQMDg+Qs1TqjQ0MTUaTDYQk03K63P/gg3zuC3cjFJX+wWF008Kys0xPTbJvagxNCjFkhUP7D/K5T/81tUqDWq1OeaAPNI2FpVUyocmB4AD2WYub8zem8mBInbl25E07azB3s5rp4hOIBIi3H4u9ZbR7gdm98rydIO5l42xvv1wXeqXYi8Xdi2ndCTwvn+vlWtfLx4+iNO/ZPefdx9o995377jaq2musOI5fkeu+DGwjk8Tipf+vFHvJjPfKxXe7QO/evtcY305en6pCXmkOpappTftOdvRKOf1e5lRXWrjYyVLvhR++F0Om7za+z7j+o4vLv1hpfLsrJP+Q8XLGNSR87sskQqETuIxM7UOYReKeQy5fRJZUFNlCEga+7/LA/Q+ytlblbW97F3NHj/LCC6eYmZ2h2exSyOcwDYWZ2VGymT4uXlrDylpMTY7QaXvYdhZJlllfW6dYLJM8fBZJSPjXj3Pq1Fmq1Rqu26NQyKHrGoZh8eLpM1Q21xkZHWV4cJDKxhpTU1OsrW7guT16PYckjpFkJa1dSzQa7S28sMfU9CEcx8H1ffKlAkKR2VxbQ9d1VDkha6btFQr5Ij23x+zsfqamZjhz7gIzs7OMjQ9iZy1kOaTd3kRVLa6/8VY0XSHwY+p1l3YrdS1UNZXnnp/HD3rkMjqBF2PqefKFUbzQ4pGv30ujGjA8MoGigdAsDh85Si5jMjAyhFIaJey1SM4+gDo0R2F4AtPOglDIWjkee+xxxseHkJWQqalZ2p0Wtm3zyMOPIWSJ+QvzfOAPPsB7fuanGBgYBAQbG5u8/tY3I4uEsZEh+vsKbKxfYm1jmWKxiOe7RAv3oxs6hWveDZLA9Tq8/vZbcHp1fEfh2A0HOXHyaX7gzncQhCGjoyP0eh2iKGJxfpOJ8Wny2UGOXj1FHEfs3zdHqVTGtPvJZWzOzp8mW8piFYp023XGRgo0Gg36yyUmpg6grD9Ec/MC9vB+dE0haxs4bY9uz6XjdBjoL5LEMV/58lcYGx9PWTyRUN9qEIcRbuiQtTMUCwWazSbHnznBkcNzRFGAaZro26yWohsMj4wxf+4M42Nj1GoNTp8+w5EjhzHN1Fk4TlrkczaKZGIoJU48e46JiSn+9MMfYnCwgKSaVDY3GRwYwGl3yOQMNF0jSkBNBLEb4nYDcvkSrtMjSRIM28b1PE4+e4Ig8HnuuRMU8nkefvTrmKbF0uIyR646RqVSo9vpQBKl/QoTiVzOZmlxhQcfvI83vvENGNt9kaMoxLJsojBESOq2kgGSMEG3s/iei+96uI6T1id7EpubWxTkBYKhAjf9/L9Npblqk16s8YE//GNKRZtf/bVf5syZU2i6wh1vfANBGHHx4grXXXstU9MT1KsVglghcL6CaeR56NHTFEtFdEPDcXo4roempn1lE0VFUlQkSSBLCZ1OD9M06PUcZEnC7XlUKhVM08BpNbFNiySKEXFEs9Uhm8sThgGtRp1yXz+tdh1dU9ENHc/3t82LIlQh0diqYlsaXs/BdV00zSSMYjy/RxiEL0lsNU3HMFN30UQSxJFLFPqEUYhp2wihsL66Ss42UEVau+cHXsrMyipxHKEoyrbEVKLnOPi+S7FUQoi0d6ssyQhJZnX1Erquo6mp63itVoNEpI7CUYSckNZYKjq+10ORQJUl1lYvYZgW2WyGruNsi3dikkRg2pntVkoGJCGN2haKqlIoFAjD1ABPCPA8j263BWubKIpM4fAMMzOTZDI6+XyWCBlNXiLS386P/Oh7+N3f+z3e8kNvws5Y3HTjTUgixMz04TkJs/uP8NPv+zne/y9+gdD3+dmf/lXe8953k0gJfnwVinkjtpmnVMzw0bOfIk5gfHGaaqXOb/3Wv+fI0X3smxvj3uZDrNYrDFpjXHsqoF6rc+6GHIkUoygqp069yC3VOxBC8Ozk42Qtk16nRbtewcrkqVZqWJZJkqSSbNhOBNO/aFxWa/qeR1+5nziOU7MgXSVJZF48fZbRkXEMXaPRqHPx4kUmp2dIYoGi6hiGxeT0BPv370OWZQqFPMPDI9TrW4yMDSPLgsceeQzX89Ka5ziir7/MwuICo6MjLC6dZ6B/kFazzszsFELZTqaTkG8++hTHjh3Bsg0UNa2n8zyPo4/WQUj4P3MLtm2RxDGeF5DPlZg/dw7f97nuuhtAEqgKxF4PlQQrm0XXNFpNh+GR4bT3tCQRBCGeG6DrKv39ZRIiwjgg8CPCIMb3Y1TdRNUk5g7NIUsq4xMTaLoBikIuW+SF51+gVdviwXu/yuzcPvoHBun1fHQ9gyprxHGILGRcp4eQNFTdptPqkM1m0Q0bVcnwxx/8c9705tfR7fW4+6t3c+jQHHm7TLfdREradJob9BXz9JwWyBqKnMG0TcYnR/H8hFIhQxC6BKFLJmcxPD7Kobn96Bq4Tounnz3NwYOHkSSNT/7Vpzhy1RGEkBkeGmF4aBBZEuTyWXK5PEIkxFFIu90FIVi4uEIuX+La669FkQS5QoFz8+cYHhwmm7V58cXnOTA3Q5J4lAb6ebr1LFPWJO8YeOtLrOpucCGEIN5Vb7iz16cQ4nsis3aC4sshyzLCBmk6Rh58dfLi28k3X22fKIpecujd2dpnL4Z4LyC1+xhRFL3MoXi3dPZKcRl87ayNBRD8HSBLr/OrX4fLrOK3w9hePs5OJvR7lQrvXlx4NWxwpT67rzb3K+1/ed67Da9eOdb3Gdf/bmPnl2jnD9y3u5pypfhe2Nqd89v5wyFvT0VWNEbHp5m/sIjvh8RRwlZtBS9oEScunt9C003uuONOpqZnEbKCommEiUShr59rrjnG7OwsnW6HrtNla6vB7OwMxWIBXTeIEglJCJIoZHB4mCSJEb/xQ/T+5e2EERw6PEcubyMRUyjkUWWdbtth3759dDodPM9jaWkRp9tFU2XqtQrLy0vYlkFtq4FpWFy6tEI2mydwW2RtjfPnlxgcHkc1dDL5HGsbFSzLZqicI5/N0O26dFotNitVLq1skEgGy6sVXv/61yFLCa4TQ6Ih0IkjGVmR+cY3HiZKYlRNQ1FDBofzNJqrxGiMjA/Sara3mZbUFdePBcLIctuttzM2FaMoLQwpD4mPrMhESYimCEgS5JGriEpTRA/+EdH9f4C+eRp3fZE4MCgVhlEVkyAIePKJ48hygiRDppDntW+4nX/5q/8bf/uVL5PN5LelcyqFfIlfev/78Xt1TD1CikMG+/sYnZim43RRCBEilS36YcKHPvgRyuUSrteiVtvCtDNMzgzzoz/+I7zvfb+Y3gffwbbzBK5GLpuwunaOjrPEysoyCS4Tk0MsXLhEgsJX7r6PweER2t0uhpFhs75AoxVj502eOP4sSxsVGotPUxo7SBilzoiPPPwoqysXWd9Yp1As0mnXOfX8SX7iJ3+SbDaPqQpa20lIJpuj3eowNDjI0sIiURhz7NgxkiTh3LlznD1zhhdeeJ7FCxeobGwSCTh23bVESUKpr8zRa64hDEPW1taQZZm+0jTVSotms8ZmdYHxyT7OnDnFz/5P/4JycYJsLsPUzDSyJHH06FGyhSye57J4/gKBX8fpVmi3N4miDt1um5PPVwlI7wAAIABJREFUPU/kh2iqzNXXXMXE5BgzM1N0ui3e/JY3ceDAQSanJun1PIIgJGObWIZKEIYEQYLrBszMTPMTP/5uNjdWCAMPU9fZ2KxQqWyRzeZxnB5PPfE4chIiyRKSoiAkFU1Pk/zKxhpff/DrjI6O45VqBOMwf/40H//4X9I3dZitdg9JRBw5dgRFTZiYmGRifJrJyTHMjM2NN72G8/PzEEZkMyGFnJu6vUoSN73mNZT7yrh+SHFglEwmh9tzkWQVw7TSnslRhBBQrVRo1hvYppXK8yUFSZJS2a8ksbm2SnUjra0sFApA2rcyl88TJyG5bG57cSEFaPF2PS1EZLIWYRhi2RlsO48QAsfpYlu5tJfxNlsQRRG+5yNIiMMQU9NxnB5+EKdmSJLE6OgoYRgSBQFJkqBuv9f3/ZdqkoBtaa9JJpdDSApR6KEoGkJVEUnM4OAglmmlLXYQlEr9mKaVtm+KIyCtWQ22AWe328V1XfrK5e3zAkVWSBKB03UIIqjXGwRe96U2UIoiUNXUrT2VQUdpTa6iUO4rIaQUJD300DdTmXCo8KEPfoxKJW0PVjY+x6/8yq/wU+97DzEybreGG/isVXLE0RghKrqt8am7PsX7fvZ/JmPlWF3eJE4Ew0NjZLN5VEVna6tOGAgkWRAEPtdddx2L54/zE+/9Ua46dhRJRFxyVzlcOIyh2wghUdiW9kdhSLPZYG5u7qVrm7FtfM9FVVVGRseQZZXRsSGE9Hd/OyuVCrqus3xpCUSCLAviONpmwiOEkNnaqpPEgoceepjZ2Vk8z6VcLjI2Psrho1eRIMjk8uiGRd9AKa01jkN6PRcSiSgMuebaY4RxRLNe55Zbb6avr0wYRsiSThTBxMQIshpzZO4Qa6vLjIwNIakKQRSRRDFREHLdjdfR6TaRiPFcDyFkbCuzXXcN+UKGTsdhfa2GopiMTYzR35fn0KH9XFhaQFEUojCg2+nQaTfpOg5hnDA4Osb45ABRHPJfP/TH6WdKJHzms58lk82iqCq+20OWJD7ykY/xpS/dB4DjOEBCo75FEEaEiUASghMnjnP48BwT4yO85yd/HElK67yFEHzhC18giSNUSeCHIVamkPZvDWPuufur9LwaftAhih1ed/v1mHaGsfFh3vnOtyIR03Iq+F6XjN3PxPg4l1ZWyBUKqDLEcWpm2WhVGSqnhktxHGFnLAYGi4Shj6KJ7e9hwC23vJZavYXvebzrXW9HkWUuLS+TzVqMDvfh+x6BH9DpNKlVK+imydDICJu1Ol//+kNYtoZh6uTyWVzXoVQq4/s+X/z83dx68xuobXUZGZtl6cLi3+VNO3KmvQyKdkpjd4OT3Tnbd5v/7RwvSRKkIyHK0fhl2+GVzOKrHXsvOeluJm63C/LufHb3e/c638vPL9dy7pUb7wRVuxcFdrK/V7our3a+e423cw6v9j4hxEvtia50jMsA91uxpDvH3etztHvOO4+7+9hXusc7jwO87Bxebbx/6Pg+4/qPLJIkBvHtFY7/Y4iVC2sYyw8RywZBYZqMaZH4XSTTRlPSJvFBEKAoMl6QtoK4//4HODB3iI1L59lcr3L42NUokuBLX/wixUKRfDaHbhhUG1v09Q8Qh4JCqUDgO6i6jBeGEIcoiozv9UCSiCIfWYqBkG7X4fz5RebnF9B1laNHr6JSrUIcMTM5gdOrI0jSP1SjQ9iZDBsbW2iahayGdFstuo0mxCHtThfb1llZWadcHOW5555leKSf06fPoJlZQt/FcXz2HzxIs+3SbLUJo4ADB/cRJz6yKqOqMhIJkgKj49MoWkIcxWSyNgjQVAMJCcNQcN2IfCFLo94liSU0XUOQIKkaspzD77XxgwqqnDa6FwoEnoOqGAhJRVgZpOwgQRghqvMYy48hLT5AX2+Re+97iN//nd/j53/pf8HMamlidf3NXHX1UWISLq1dYmhoiCiKAUGr1ebmG+YolSQatQoKJnGiEcsqSSiIvYD1+hbNqEBXlMhmxjBMlXJfnmymiG4GBJ7BV7/6IP/6N/93nn7qaUqlLO1Wj6eefIGB0iC5TD+WlcPzAjRNx7YNJFmAJjE1OZaCGLtERpKRVQfVOoinCCxFZWx6Fp7+IGc3E+xskcpGjaHRKYo5FcePGBodw1Blet0ujVYH287w1OOPMr1/P2GUYNomk+MTLMwvslWto2kmqq7RaTcJwyD9LJYHGezvZ2trk3JfAQmV5eVlMlmLpYuLFPOlbTOjJh3HY2R8FN00WN/YYHhwjGKxyDPPPoWd0QiDFsVigUazTZQILMum10trwsJEwbYLOO0u5+fPMTI1RrlUZnN1BUOBZ088R6lcIpPNMDY6guO4qIqGF3RBilFUgdfrYJk665sV+ssjrK0to+sGCxcuMDIyhKEbOF0PRVExDIsoCgnigJnpcbrtLdpOD1PX+MTHPo6mmYzPzFDMFtANiVqjTilcJjaH+PwzDYIg5o4f+h8Y7B/nh9/2zzg3P49A8NA3nqRUGkBIMQ3HQZU0Khsb1CobjE02UdU2oXeaKBJo+ggIBVk1iFGwdY1er4tp2OD3Utm8qhEDpm5gmSZxFKFrGqpiki9k05ZhRIRxTLl/EEmWkYQEQkoBXhIhhEoUg+Ok7sJBFKKpBiQKQRSgGyZIMggZ4pjNzQ3K5XK6gCNS86oEEJJE0OuxtrKMoSsQg2FlMIxMWtu/bfoVRklatyhJxMk22BVpPf3OBNV3e8iKkhqfSWz370wZ4MtMhaZpbGxuYBo2URSiqgqSLBEnEPoukgiRtLQ3cSoTlojjkDhOtsG0TC5jE8QC0zTQldSAR0gyiZBQVQ0h0gQzrc+NMQ0TkgT3whKyqqKMD1Ms5Xnw6/dTr64xOzuJnckgJZv0D7wTGQ9VAssSCMXGzBSprl7k3/yb3+ad7/xhZF3w1rf9IBfPL/De9/2PvP8Xfpl3/9iPEkUp8/mbv/nveMub3sx9zgMYhsrt+jHmDgyy7/BRhKLR2Kryl9XPMv+pF5k4PMZVJztEUcyL12bS9lJuD9vKcPDs1URRxIW5E6iGSSJrBKgkUQgCgu3a4531wNlsBtMw6PV6JMT4vWDb3VqjVC4RJwmTk5NoOoRRjyiM0v6+qkpCCnBTpiYgDEJqtRqZbBYSgSqpuGGELEsYqo6qqXieT7FQpN32MAzzJcDc6/Yol4pESYCsaIDCxsoGpilh5200VefxRx9nbHySOE5Npw5+Yx2E4IXbiqxcWqdR77C0tMzYRD+WBq7nMDo5yYlnT1Du70c1TFQji6lZSIpEIhLarQqWmSGXKzIwMEA2bzAzMwPIhCFokmB9o8ro2AT5YpG+/gJxnJDEEse/+Qiz+/bRbDUxFMHE5Bi5QhYrmyUSAl2WqFUrGJpCp1VncLBEt1PHzBZRVAmn53L86eNcdegA/QNDBKHAMEzyORPLSllT09C3ezgbeJ6HZmXwY5VCcQQvdHG7TcKgi+dF2IaNJvsouoYQMt1OD1lSkAVsbVUxrBymVWCrukapkKVVr1KpbhD4ARMTEyBCvF6XjJ3Fsiz8wEWWJSw7QxjFGJbN2PAIG+vLaKqg1Wyiahr33/8A1197A9PTwzz33LP0DwzyhS98CVUV1Mot/vjoH1HQCi+xqHvVbia7nu/csPv171SauZOJuxx7yYh377/78e5tO4HulWpHv5Pc9Vvtu9frO0HpbsC217m9nNneZdR0Bcb18v47z/N7ZVEvz3m39PlKc7gSyL/S+y6/d6/7tNc924sw2+t8//9gXL8PXP+RREIAvNxN+PL/u+n53Ss+e32QrvSB/m5XTC7LHl7246BIiBfvAdVCKuRQ0Oh0l9FUg7WzT5Ap9hOSQVcc4jBAkgOuvuoaFuaXCEOP4kCZQilPdbXKxYXzGEqCbmh4gUtf0aS6XqNvsB8JDzfwQFYABU1OZRNREmMYFmfPznPw4BE8P6ZWb1AoFDk8N0cuY5MtFAj8OoODQxhFExGF5At5VLtIo1Ilk8uxunaBvnIfp1+8wC23vp5Wu0tls8pg/wCbmzWWFlZo1Bc5evhqdCNHtVZncKAPVQ2QZZWtap2NtVXyuTxjE5MYtoluZ9B1A5EkkCTEioamyIhIQRYqfuQiS2mCrWgSXadL30CRKA7YWl9HU2UkOUHVxLbJi4GVLeGFMVEUEnabJH4Hwxrisrio1ayhZws89dwFXClHdmwWtTiEUEz2F2PeceMonL2X6NyjsPI8ImoTxg5tt8a+Q5MESYLbkDB1CUmxGShlcWMXKztD23M5+dSzJHGPocFR/EihMH4V5uAcQ+OjBL7F8vIF+oo2bqvOxcUG3W6VW647QOI5dJfmGYkuoG29yLTlkA+qPPS5DzEqN4jrlwg3FnDaFzHVIiunHyOUJCJJUFAVTj7/TUbGZkH4NCoV5k9f4G/+7A+5vlyhcPj1JEmCTMLw6Cidjs/42AS+2wNJIQhlcraJJCWMzsxyafEChp6Qz+YQkkpla4uDh47wqc/8DX2lIrlsjomxEU6dfg7dsNEtg06nSylbZH1zlanJSb76lXuYGB0jEmCYGcyMgakYPPfcSXL5AkPDYwhaOD0PpxswMjqJLDQU3cDK5ZFUledOnGRiahzfT2h3Q/7qLz7CbW+4k+GhIaTYxbQLOD0PXVPZf/gIpmUThjGSkHnmqacZGhmn3XUp9/dhZywy+RxhItGX7+fC4hlmD84RC5X+vr5UHqtoWHaGJ558hAcfeJyj1x4idHu4roudKZLJ5ojCgOFRi7HhSRrtTWRZoVgaoN5sMbDeZuVCjzv+1W9T7LPJ5wrIqozjOQyNDHPXp+9l/75ZhidUVKlIkmjc85XP8aY33UQQtWl3lsjlcphaBUNvosrrnDt7inx+H26nzV2f/yzXXXc9Qkj0Qh9Z1hFA4PeoNzbJ5YqEYYAsC5xeF98P8b2AtY0qpVKZanWTUj6PFwpC34MkQlVV/MAnjHxs20DVZFRZJQmh0dhEkRJkkaAoMlEYIksSmUwWIQRBGECSQAKaltalarqKaZtoupyynXqOTrdD4Lmomoys6SkwlqHnuGlSF8fEcYCy3bZGkgSSJEjNohQkISEkEEKitrVFNpfH0nV8L8D3fIqFHN1eD90w0vY+CUgSJCSEIfScLpap4fQ62LZBp95CNSw0Q8fptklIUpm4BF7go6oWcRKmDHQkOPXCC4yNjrK2uoYua8hyiFASRLOHpGr07x+hUW+yf26Sm259LYaVQaKHLDfxo6uxtJjR2Wkk2UYkBp32GU6fWeDIoVnmDh4hCS00s8tnP3kXv/u7f8wHfv+PKJiCnHU/Eme5/fb30Itcri1exQ36MUyK5As6PSdByApmweR3ln+fa686Rn+uD70TUi8rXJrUQJaQlLTG/8TY49yfuY/+oTKOE+H1PFQ17SXpeSHHjz9Hf/8Q3W4H09RZWVnD0GVEAmura5QKJVqtNsefOU6320OWdSxDIQz8tFbdyG4vLsSIRKbZdjANjSTyQNYIXYdsrsxH/uyjvOb6Y8RCgtjF6zlkrLR3rmmZ1Ot18qUyUhKxtHCeXL6AZuWJY8Hf3nUXhw9MsrHeoFZZIp+1aLd7yEaGu796H4f2z6HqGooqmP3aJWQhmL9znHwxQ7kvR19fAdPQcbyYjuthZwxGh4cIPB9F0lBkFUmOSKIQWVGIUZGEQsYycZ06iqyyVe2gGSamLaMoGpZlUiwUCbyA8/MXGJ8aRxFw8NAB4jjANBQkRUGRTaIwQUgCz+2hagaS0Oi5dUrFfnQrg25kkAXUt9aIo4QDB+bIFk26nXTswaEBUMDt9NAsjThQ2No8RaEwTqdZxXNrZO0+FhfPkMtlyGQLqEYekQjiJEbLZPHaLXRdIwjBskskIsGycrC9aGTbNr4bEPo9Mrk+8n05PK9H5MbEuoKU6KwsPY+pBOQHpuh2unRbbaQ4JgoDcqUSqiRYOn8Rzw25+ZZbiZOQMJC59777ueGGG8jnsnScJrVyi1+b+7dkEocIZc9cDHiphYoAXvqCbwPWy3L2y/t/K8JVJC8fL+GVIEsIQfyCQrIpIQ0k7DZ5gpe3TtnpxLvz325Gdfe57SUt3atO89Vy0iu9vnv8l2S5ibQNSNNLubNLyyvmn0Qg0k4eO/fbDcZfkt+KBCG2L3LySqbzSuDz1UDu5cXMy/Pfi9HdDTJ33s+9pLu7Qedex/tWsfN+7R4/3S7+zi3/76Fr7feB6z/J2Lu/1O74dlaz/r9iZ3d/UQAIZOLTdyM0nYsri5i6RMcJKPdNkBuZIfB7aJJKpEh0axWy2SG8KEKxBP39fbhOFzmWePKpR8jns/ghrG45rF5aZ2ZmmqeeOcG+wwcQsczFixcZHBgi8CJ0XcX9rw+gndrEPdiPbdssLi7SbrWJI5fNSpVrrruOgBglcqhVVrGtDLqakIRNNFWm2ejSqFZIhMnE+IG0xtbKcPz4U2QzNrmszfrGOv2DJQqFIiQ+PbdFqX+AymaVTqtDFEMmm2N5ZYXBsVE2KlVs0+LE8eMcPHgt99//NcYnRjHMtBeg73vIaoKQIqIoQVZkPM9HlW0qm1vk8wWSWCZXLCEUHc0w0k9GAn/7hb9laGiQXDZLEglkRSPRLFSlg+vW2Ny8RH9fGc/zqNe22D93AM3UEFKBP/3YZ7j+jh+iZ2ZR+vchrDJCkogqi4ilpzEWnyQ69Rji7CM4Zx5EXHwE+eKjePOPEs0fJ1o8gVNv4Kyc5sxjT1IQHSytReIHRJUL+GunyQcbTOg1tLUTMP8NtOVHKVafRbrwKGLpcYbkLaTIR1ZNFubPU8rrTE+M0W3UiRsrZMMm0vo8LD9FtrWIcfEJ9KUnCRaeoNhYQLS2SPqvodvyELFKKTzPUF6mnWTRFINmo4umqKysLCDLEouLF1lcvMToSB+yELz44jniIGF8fJJcPkuluomhmQz0D3DyxLO87tbbmN03w9rGOl4YMXvwELoSohsauVwO3+uRLxQ4efIkt9xyK8VikcrmBt1OG1VWiXAZGCiyvDCPFAd0ez6F4gADw8O4gYsqJxiWThREON0eioiQhQBiRBJy9dwMXdfl+RPP0D8ytl0j6ZPN5XA6LTY31gk9h2p1heXVdQb6B2h3OvSV+5DEtrGXrON6PYIwwLaz6KpKs9kkn8/T6/U4f/48c/sPMTU5gOd5jIyMEEUJ7U6HXL5IHMtkrDyaaqMbediWuhbzWXKPOpSTIcIfvJPZiXFU2eJvPnUX+2fnqG40qNe2eOMbf4CV1fN85M8+yqWFdUYnptnYbPCZT3+Gt739elZXVtjqvJPV2g0882w/B2cvMH+hxCMP38exY9dgGArV6iblYh8AC4sL9A8MYJsFKptVcrksnW4HmQSRRHiuS75YxrYyGLrBVnWL2O/Q6bbIlcrUWi0kEizTBMD1UsmuLEuoqoJlmYRhiNNzsSwb33dAxERxmNY3CoGiCohcPKeZtqeSVISQUS2b9bUKxVIOIcv4vRBF0dBUjTCMCKMIyzKJoghNUxFCIoouS3s7CIltAJuywbIso6oquq4RJz6tVotMxsZxOtuLFuH2WBoC6HY7ZOwsUezh+T62lSWOJUzTJEqg3WqRzZjUag2SOO1ZLEkyrVYLSQhA4hsPPcjW1hYjI+Nk7AIf+tAfcPjwHKZpEZdLqCMjBHGAbubQDIUokli4cJGRwQCERcc/Sr5QpNFqEsUOIs5QzJ1nbFhBl6+j7S7QaLYgsbnttlt473vfy6//+r/i4P4JbOsEmhbiRfux7AIlPQ9dQSHfzwf/8KO88Y638vnPf5F907N8fP0T/ObcrzDfOkd1xmZj2kawXd8GJISYhkYmY6PIKiDQdZ1Ws41pmCRJzPT0JLquYBg6kpyaZP3tF77E0auvIZcr8thjTzAwMMCRI3OU+nKYloSkq2iWiSSptDoOzz19guHhYSRJQlVlqpUKtmXzkpuOrHLw0CE0TUaWIAj8FGgIgR943PPVe5mZmeFLX/4yh+YOYucydJ0OugQf/vCf8K53/QiRkDAsg4HhISTZxLZLCDnhhuuO0e400XWNJI5ZGJVZuakfJ5O6XpumjqJIOO0erVaXkeExhBCcev40g4ODVKrr6LqMLCvMz58jXyiiKRqblQ0yhRx2PovTi3n+5PMMD5Zp1jZ59NHHmZgc3zaA0RgaKaBqCksLF8nnU88JEChSQrDd11hR5LRmNvKIoxhNU4gjBc3QqFaraLqCEFl0QyGIOsjCRJZkHnroEQzTor+/H1WTcXs+TtdF17IkipG6iusGiiyTz+fQNY1er4fnJXi9VNVw6vQZivkCXadLJmvRc7tomsB1OzQaW6iqhNvt0O3VKZRGUpfuOKbT7aAqMpaeZX29xuDIAIZdRJElEkAxdKx8HtM00sUryyabz1Ls78fMZnnmmWfY3Njkzh94I41mg5nZaYQUcl5e5hcmfxElCYjFqwPXV+Ra8FJN57ez/8v22WPDXixb+CmDZFFGfk2459ivxlTuBqCXQe1lKe9eYGvn8yvVaX43cRnsvUSqJK8Em5djN9N8pfO9POZ3wjB+N4zxzrl9NyTU7sd73avvZMxXi1dei7/33rPfB67/9GJv4Lqbaf37iO+lRnYneBVCoCARPP8lUHR8ZBRdQjX66TgeimrRbGyhqgaIGE1SaDQ7WNkshqWnfRp7DssX17np5htZXFzkhhtew9LFVY7MHSSKXK4+egzkhDCIEBLomp5KZxUF5WtnEN2A8KYpJCGQJYWLSxeJAh/TtMnlM1y8uMDo5DSFwUE0q4CkKsRuizCMabZ9CELCRGbl0iX6+ko4PQ9VU6jXqpTKeXQtiyRLeG6CaZiMjQ+xWakzMjyKaZh0ey7nF5a45trrOHPmDI7T48Ybb6RYKnDyuTPc+JpjKJoMQsFpd7EzNkEYIGsaAokoitA1HUSMaSl0u/VUxiYpyLKCLEvIUsq4jo6NIssycZxgmBZCRCiaikw/SaKTzWcJo5DY6aFJCefPniRjKvg0eO3rbkOWVVTNoNFskigmWr5MlM0j940RZQcgWyY0DRTDxsiXEFofciYDisGZ51/AjhpMlgyspEletJHWTyOWn0TZPI0adlF6VaL6JWRFoRnKFIZmaKsl2mqJ3NQxgtIIcn6YRMvx1MmzTB04QKAU2Gj0ENk+MsOH6KgWvjVAaE+wWOthj8ygWjlIIqKNsyTjrwF0MlmLUvtp3NoirdCkr3+QXL6A73UpFAtks1lMy2J2dh9bW5souokfhuybmWJ1fZ3l5UtYtk0mV+DJJ59ifGwMTZWRtbSlSalYIIlDbF0nCFQ+9MGPsLqywchwPyOjoyRC4PkBI8ODnHjuWfbvmyNJVKqbdQaHxrjn7vu57rrDOF2XZqtFua+PZq1BGIYosoKhGZimnja3N3Ta7S0i38GPU3fAMIbK+jppb9WEUydfJJvpo5Dvo788wNjUOLlcnkI+j+8HdLttOt0OuqbT6bXo7xvgicefoJDPcvLk86yvbdJsNikWiwwM9NPzHMrlAWq1GrlcjupWjXyxRJx0Ulnik19H0Uw8zyOfy+E4DpnTVeLiPtQfvJXYdxHIHDxwgAcfeJC5gwf5jd/4Nd72tncxNT3E61//BiYGBygPT1Eo9XP+zBmOXl3g/MIFCrlj/Na//23OnzvH629/E9PjL+K6ZVrtBpOTE+RyeSI/ZLO6sd1fUiGJUzl0s1Enly2ASLBsE9PKkCQQhj6SJFAVGSHF9A0M0Gh2yOUKqFKCrCi02520H2fgIW3XxvnbrWRUVSMRkEQRqqohSQpxnOC6LrIQNJsNSqUiUaxss7gOrh+hIqGrMVESYuhp6YAsgaymJkrAtvlVyrKqalofqqoqCGi22piGha4bXLx4kVKpiCSJ7cQ1QVYVTNMkjNI2JK1WC8uyEICspKBhs1JhoH8AEPh+QKvRQsgyhqFBHGLaGWq1OplMFhDohoYsy3TaDoV8gWuuOQaJxCc+8Zf81Ht/jGKpRBDENBpN7rvnHg4ePgQJqEpMHMt84hMf57ab++j4d2AXDhBKSupw7If0uhqqvISma/yzd/6v/PKv/nOefPxFVM0im7VY31zhne94O5trFcbHtwiCENO+FS+I0XWVXLaAJOlMzk5yafU8N990BLdX5XlvgdgLSAyJhLRWuNNqkYQxspy2oAqjkCSMaTa6QMyjjzzK0uIy+XyOTMYCEZIkqRQYEeP5PqOjY+lnIgypNxqMjowAYFupmaCmWmmv3QR67Q4z02N4Xo+u4/Hg1+7l6NGjKbARCa7rIKtpTfTm2iWSOERVdXTTJEoiJCHYt38/uqZz+NBBwjhK2VMJuk6HuYOHUFSFc2fPMDk5Qa3RxLazbKyukclZtLYq5ItFNEXh/PkLmONDhEWTOAmRZQ2BghAxRPDpT3+GG667Dogpl0r4gUepVEx7vcqpbN2ybMIoIZuzURWZOIJ2s4NtmWi6Qi6fZ2pqBiFSRs62Tbywh4zA8yNMQ0UzbbpOF0uTCLdBgyQUavUGuqWj6QaykqpSFFlnq1ojjmMsO0fP7WKbBkkUs7G+gaqptNtthoYGiAFDtXG9Dn/64U+yf980umUQh6DraQuQbtdJQbJscOr5Fzh79izXHDu2vYBhIQR02m2ydglNMcnYOZr1Nvlinna7haZZnHjuBcrlQZqNNt12C90S5ApZWt0amUyR+bPn2NysMDjYD8RsVauEnotumKiawlPHj/PlL99NX6HI0auPUigWKBbzSLKE4zY4FV+gpBe52p4jEcormMa9ciyxzbTuBnh/x3q+0qDoZWPsMdbl5zsjekKFJEF6TbDnODvzxG8lTb28fSdz+2pmPnu9b/f57zzudyKNTo+1+xq/Uq241/FezfX38rivPP9vTxK9W768e9vO1650zXa/d3cP292AfK/57GR094orvbbzuOl9kffc77uN7wPXf5KxN3C9kkPYP2TpWzc8AAAgAElEQVTslk5cfhy5DuGpe3D1EkZ2gG7gUChPIoiQvR6ybaPqGZLeFmamH9UU+F6AjMXG+hIPP/AAy2sVwggqG5v0F/MM9pU4++LziMRl/twCQ8PDFMslGvUquiYRhyGJpCI/tgBCIF67H5KEbrfL0uISc3NHqG3VOHv6BW649ipMXUZVJfyeT+jUydh5HDdkc6vF1MQ4nW6XIGzR3z+C0/MIfI+ZmUkqlQ2EFFHst2g2m9Rr62ys1+n1As6ePcvmxgave8PtdBwPTbNYvnCefDbP3OHD5Mt5ZmemiWOXF5c3+PPPf52vP/EMN111EN3IACph4KHIqcmMSNIaNU3VAIM4CVLQmiREkQ8ibYWhaVpalyYluE4dp10DXUcoMe1OD9+z8YVOplBmbGIC07TR9RIk2rYkxsM0M+iaSZKExGh0uz1y2Qyu10PPjSLpOQI5QcoUEHqJRM2x1ZUojo/SjlTswUGMvjGU8hS9tYdB9IhGX0s3MFnqwm/99f38h4/dzf/xF1/ko3c/xvH5FTRFZXK4hCorqAqMDvdhGCqNlsddd93FnXfewVe+fB8z+ybTGjEUvva1ezh81WH00jA9VSds1vi/P/Z5/sP/81/4v/7zf+IDn36ITz++yWrDQwRd9s+M06ytU602se0MSZKCHSEpZEtlcsUCH/vKN/lPn3yYD37xWT5411P81b3H2XLh4MwI/y975x1lyVVe+985levm23m6W5OjRnFGEQUMAiQQUSIYhMEy2EYEg7H9ZGQMPOz3wAQbk2w/G8tkMEIEISEUEUiTJU3WTE/uNJ1vvpXP+6N6hmEYgeT43lqctWqtvtV16p6K9/vO3t/epgyZrtRwbAuvXmFy+ChSD5C6ybIVy1m8fDHf+elT3Pq57/OXX3yQT379Eb74wy1UI4PFC3q48+u3c9VzryRMIpauXo5qzyKERjZXYHpqmkKuB00TzE5P0Ww0CBNFo+mRzWdRhORch1izOWvRYrKuQ0c+x9jIMSzHpHtBAU2zmZyapO23OHBwiHKxzMGhIQqlPNmcgxQK0zDRTB3TdAn9gHwuy4L+Ae699z4uveQSSh0FJqZG6e1bzGylSke5jGlZ5AqFNFlTEVK56Iai3LGQA3u347guQaQo7J/F6FyGf+lq/FoNXTf4znfu4Jprnocg4frrX8pDDz5GseRiWRbf/toXeXzvEO//4IdYtrCPy58zCAhCf4C+BQO86JpruPvuJ7h4fY1PfWYDtu2zcuUqDN3mxw8+yKo1K9ANg1gJVNwGkVAslBDCmBewCZDSQakAiAkCH8cxEYaLUoJmvYmGJCHk+Phxenv7abXSWkbfb6ESyGRcAGKl0KSOoZsEYQRCQ2o6lpYKbNhOhnYQo2kmiQrxgzoZJ0/UbuO3ZsnksiANjo8ew3FMWm2POFG4rsvc3CyWZTE9M00mk6Xd9hBCYhgWGSeXCvkkMeVyGc9rp3Q0UjVb07SJoggpBZ6XClvFcUwUhUxMTlAslcjnyukxxBG6oeE4WXTDgCSmWatgz9fsCZGWE8RJRBwnxLEgDBRbt2xjcHCAgweH6OwqUip2kCiYnJpi3blno+kSQ9No1iaRpstznrMOnYPE8uXM1Dwy+SIibONmOvi9t/wJa9fq9A/08ltvehcH9o9x/4+e5Lrrr6LeavG5z/4Nl19yKXFgIdiG1DTiZD1oii+Nf42Hj/2E7Xfu4l3v+p/85mteR6lQwNQcdh86wJPGdgYyg9gjbZxmhNVbIokitmx+koGFZ3Hp/S9g0dEVPBzfTyZjU6vUOO+8dWkphgEqCQiCNpaVRTckSaxwXAdQSE2ju6cbieDhhx+ms7MTIXRUNIeKG0T+NIZsESUJhmmQL3ThGJJiqYOWF9CozmGZOlLo1Ko1ivkMtqVjGDZBFCE1gSa1ecumENNM7y8lBSoOsLJZsrk8mlL0dpXxgwA3kyUJfQpZJ6WOxj6JEEglOHDgEIuXLEMzdeI4ZvfO/eRzRXRdo1aZZfny5fOosoHUFHGUAJJarYlhGTiWTZJmR5DEHNy3nx3bdrBm9SryxSy6aaZJuCYJwjaWaYIA03LRhSRXKGCbOtV6k1KpSOI30Ux3XvE44q677uHstWvQhE6jOZsKhSUW//LFL3H11VeiWYIkErh2nsrsKH19fRSLBbq6urBtkzDR2PzYVjIZyexcxILeIlITmNIgjJoIoeHYbuphrBv09XRj2xbFjiJh0MD329iOS8bJMTZ+hOmZCfKFDLoBCSalQjez0+PMVjw6u/uZm51j2dIl6LZFuxljWS6VGZ/u7i4KORcRhzQrs5TLXegK9g8dor+/F103sQybc1efjR/PT57Ne9tOTAxz0BhBCsnLuq+DE/XQ/PIkR6l5ietTmhC/PCH5uW1P9pmP1U7Z96l9480GCIFxacyvaicS0jN999Mp555JJOgXxnraujPVUT6b+Pf0xHV+7S/s55cjqb+47sz02mcfl/+qY/ll5+xX5QTPZqLg6SYEnq6O9czb/Mdq+/46cf3/qiWkHq4/a6fPtP0que9ni8b+W9Hb0x8KpRRmHOLtuo+4aykhCikMZNykVpvBC9o4bgkhT1BkEpAWhqbRbsxi6horzr6EqeNjrFy2GN9rMjoxylmLFhKHMQuXLcawLfK5Bfh+g0Kxgzu+/X3WnnsBSRySPDKEputUVtsYlkUuX+KssxYzMnKQru4uJiYnWbP2HOx8nurMFCIRoCliaZMkiuHDBxjo72PPnj24rotuu9SbTc459zyG9h+gs7MH2zbIZ2wKxQLlnkUYmsRvt+goFkiikGOjxzk+Nk13TxkhIi6+7FJ+9MBDLF+6nJZfx3ZdHti0mz/73NcZm2vw5pf+BkkUYFuChNTLTNN0wihVizQMk0S1gBhIRWaEpqfCVrrAa1XRRYLQDYTm4mQKaFInDH1MzeAfPvdPDI8eZXCgH9fNIDQdJSQTk3Pouo5uaGk9nUxACJJEYukQ+S1sN4OQMqX8YCKFRJtXbu3sKRHHYJoWSgjsTA4hTOKpJ0mSiDi/jM37h7nhTz7Gtr2HqTXauI5Frdnm0Mgk3/3xFobHp7jusgvxAw+pi5SOaumsXbWS0bFhli1bTDabR+iCcG6MdZddjJQRiZZhZrbGq/78n7jz4a1MTk8TxTEZE6YbAbsOHeeuDfvJ6rB+9TLKXR0kiUaxmCp91ht1Hn98O7/zkTv4+gM7GJuupQiCbTFdbbDnyCTfeGA7jgbXXXURBw8e4qxFC8kUs4SJRTZfxEskr/vzL/GVHz3BxFwrRb0NyUytze5DE3zl3s1cf+0L6MnpFPI5jo+McGR4nHyxg5bXJF/IcujwIVQIwyMjlDuKlLu6KHWUiFVCnCjsbIEk8GnWa+SKOYSQDI+M0927gJnjFZqNBuPjo5imiWW6dPV1YFkWM5NzFItFdMsiiBNMQyeOIjLZDJbjMDUxwUUXrUPXJXEU09nTzezkFIVCCc008MMq9UoFx9BRWlpbJaWFIEI3DLZueYIVS5fj7p1AFs6itX4FTs5l/46jfPKv/5ZXvubVuJ15NEOwfPkg+/bsZ8OGLew/OEbQ8vnwB27jOVddRDY3R//CAfKZ3Xi1zfT2PQflVfFih9femOfYsYje3m7q9SqFUgnDlNTnKniNFoVyHil1lNSIkzC1IdEshIDmTIVKtUqpuxshHTQB7XabfD4PQhFHAeWuPqI4QMUeum4hpYnlZKhW2+imQbOVUkpDEkQsadVbqU+rbqLQUShMKxU+Egh8L8a0HVxbT+vUMZieOE5ndy8IjWw2g4Yi8D0KuRyGbmDbGTzPo91u49h2ivDYJnESpzVW86VChmESh21iERCHgla9iuNkEQI0KQhDH8d2KBRLJEASB+n/NB0hNKZmx3DdDApwcllQkkp1joybJQwUQmqEfhspwbaMVMkZjU0bN3DVFVdh2gZ+2Ca37zDB8DjusiUkSYznJziWTtAexzBiWuF1/NYb3sRrbnglUzMzjOzayVtueR2Ll9qoBIJwED2KuGjdIuqNKb7wz1/mDb/5m0h0ihmDMNrE2NgopcHrUHHA34/fzk/3b+Q9l72bV7z8OhYt6cewNQzboCffy8dH/oYLMufzym9XWXEwYud5NrES9PV0YugG5+64GCfKMn7hUTwvoFAoEEYBPX3dSF3DMFzARuoSXTNpNto4dpYH7n2AZUuXoqSC2GdBfy9u1kXTJa3KMHa2CzPbS4iFm8kwNzuFk8mm95BlYBoCz0swtDxf++oXOWtwKQkRmXyZIExF54SQJFECKq25bXqpF7kmDeI49Sj2PQ/dstI3vzRRKgQslITI81BSYtsZRobHAHjehiaF7ceZPbuHp/btR9c1Ojo7cF2HbL6INFKqu0JHCMnc7EwqlKgZPP7EVgI/prOYReoWpY4ulixdSLs9i2G6PPzwTxgYGOCB++6nu6ubOA5RRIg4oR348wrdOkIqwtAD3SX0fcIoxPM9Vq1ZzZPbnpyv3Tbm67MF69dfgFIxcQS2JRk+sp/Onn4SqVGpVCiWcnzqU1+jr7NIT3eWvgWDPL5rOz0dHTz6k42cd94agnabVruFm3MRukOtUqPRaJAvZlMquFsgkQIpoFWrMjw2y/R0k57ePjRdMDc1g2FY1BoNevs6aNUmuf+eh1m9djWz0xVazRa7d+8lk7ER0uTo0QN4YUA7UrQbTZxMjkOHD7Fz1xBr1qxlYGE/TsHFsWwmJyeJohjHcQjDiKc4wCJ3Ea/ofTEI7Rkhlym99bT183WrUgjECZmn+fr7X9hWijTTnX+fnIrInZq4JJvTuExe9DPE9enGdqZk6XRrmzOp3D4dMvyrktMz7fdM/c7UJ2WsJEgpTub/p/d7us8qESnV+MQifmajc3pT6szJ4UnkU8ynzCLVI5Di5+P6ZxKDP5NE8vSJgtMR2KebLHk21OQzJbr/nYnrr+1wft3+Xa0dKRQKy7BA5HDcAu0gpq/vbHr6lqQzVSJAEc2jGgpU6puqNBvbMSnlHfbs20EmW2LqeIvHt20iNiOyhU6klmF4dAjbzVFverz6ta9l/4EhNCFO1nrlMt0cH58jSQQ7d26nq6uX48enMc0MGx7bTKsVUOrqw8oW8UKBSuDBBx4lTlzuuecx2u2I/gULydgOfV0lHt/yGFLFVGZnSWKTQ4dGKBXK/PSRn7Bs9VqsbJ5mEFNteixbuhg3Y7Jt6zYG+gdxXZcrrriSgwcP4bo5dN0kOWUGzXUtcnkXRYxKdOIkQcjU7yxJInzfQ6AjhUmauCYEYRPbslFK4GYK6LY7bxOiCMMIITRsK93n79/yBl7/ulfR15PaYggpCYIWrfYctp3+UHn+PKojFYbwSeIQw87gxwJNJEgJba+N0DT8uEnTqxMlCabjYlkZisUSSkUogvkkR2Oq2uTNH/gULS/g0nNW8KPP3MpT3/gbdnzlo/zJm14OwLce3MInv3wXmpYiE2GimKvNkkhF/0B/GtT7HlJq6K7F5MwsUZAglOLmD36e7YeO45g6H3jfrdz92dvY/b8v4e/fdjWveM4qokTxwX95kA27DmPoGoYJR48dwPNa2JrgI3c8wd7hGWzT4CNvezG7v/he7v5fr2HTP76Dl1yyhDCK+es7t7F55wFEHEMs0bBRiUar4XHTn/8z24fGsE2dP7rhIh771M3s+8r/YNeX/5DXXXMOYZTw3k/fyaGpBiAplbpZt+5SRkdHIQFDc1i6dDF21mT95ZdS7h8kiRVf+uJXefD+R7BMiyRWZHJ5unp6CKKEvfv2s2TZckbHj2MYqdfi6tWr6OwqUSg6tJsxHR0d+FGbqekJlAqxLQ3fa9Jq1XAcA4jIFwu42Qy79uwhVyggsCiXu9ix40mIFbqm093dQ6QUSaQxtHcfetKmOXOIzlKWwcE+1Pzck2qM02y0qdc8St1FnnfNb2DbNn7Dx6/HTE5XuOSqy3hy20Ze/OJr+d3ffyP5ouATn/wLXNsgCQRDex5jcFAjQaLZWYL4QkZHRygU+qlWWsxMN+jqW4DtFujo6SNXLFCpzKGAJAaUjq1LpPKpzo2SySZ0lEsQCeqV0VS0bd7g3jAMPC8gDgNQgnqjjRAKpVKbHTdjAwLTcGm1fFASTdewHQPbNvH9NkkcEEUhraaHphnohkkuXyAME2aqDRLdRrdcOgcGMVwX0zYJwxbScrAyeRJpECGp1+tIKSmXytTqNSx7HuGWCqlHJCpI0VWhYxoGGcugNjdDNptFaqCShJnZOaTQUSpmdGQUFSXEpyAeMzMzdBQ7kEik0BBKMjc7S7lUJI5DdB08r8nMzBxxqPPUnt10lksEfpO33/JWNKfAli3bkSqdMDUti0azQavdIp/PU61Wsd0yQjTRrQbf+Nd/ptGcIVEe/WuXY2fO4tDBUfzQpxG1MDqKGMUeHtuwh3f9wdtptRtcd+1LOTQyge1kWLVqNePHRmg2PYIwYmJigiVLzuKc85ZRrc0Q+Ip2K2GRexaG0Hlpx3WpYFcYoGlp4q1bAj9qEkUhAoXt6Nz7ox9gWQYDAwsQIiEM2yQqRGoKKQRh2KZYdKi3Pa659kUIEnSV0I5CnEyWVjP1wLXdDgzTxfcCTN1h9Ng0XV1nUas2mJ45jpAwO1ND0wy8cI7rrr+GqelJ8oUyYeAT+BFxJKhXQrZt3Y7ntxEySf2HW3U+/befQtcEceLhuCZxFOO1I3Zs24GMJfd8727a1RaCiGwmSyIECxctZPz4GANbJ1m1t4XnN7nqqsvp6CpQq88QJwmariHmFbfjsImmQW9vL8ViGV3XuOSiKygWuvjCF/4F5s/nN7/xLcxsB34YcOml6xCxzwteeA3FUplcvoCUJi3fx8nkiJP0GVIKLNOlWq0gLRs3U6CQy2KIkLVnX0gh10E+n8cwUppss9lE1/WUASANFgwuwTQtvHad/t4FtFsNzj9/KaWuEl29fUxNTfCm176KfFbnhhtfSpBE6JZDd08vSmns3L6be394P9/73t3k3CIikowfGsKrthgfnQbNYuOGraxfdxGbNz3B333udnTdYseOHei6TS5borOzgxtf/RIsR9HRmadQzLJw4SKqlQYqaZKxDfp7F7CgZ4BvfueHPPzIBhYtXEp9bhpNxdRmZ4m8gPGx1FJHEYFUaLZ5MrdEnNl+5IQVyn9FeyaU22cznhPbnhmN/I9rp+77l33PL6Nf/1vHp5Q6eZz/nuv0n3l+/qvaieP/f4EF+mvE9b+9KdQpNOFnQqf4hT08wzrYM83APNN9nzqWE7M5SqWzSPHuexmeaVHuPwulBFEIwtBIgChOa74CP8a0TWpzs/N1eG2yboZEKVzHZnR8hs6ObqLQp7NcZN/+EdrNJn29HaBictkCpiGZmpxg0cIBAs/D3jYGCsYW2ziZDJZl0d3VgRQwOzPL3NwspqWzePAswiRECpNmo4ZjZ1i0cDF7n9rPRRdfSiaTY3z0eOoNl88wN1elu3cBCRqj48MEQZWurhJSExw7Ns45a9eyZ/duLMtibGyYMIywLIdsXiNfKlDqLOG6FpaZIixPHR3nnkefoJBxKCVVFi9ejO95OG4GKQT1RhVDt4njkFarjmVliFU4/7KbV8ebn1ZVQiNRqYWCYWiIeVEeBPieRz6XpVWfQ0rwwgCpGZiGhuM4aJqO54XY1jwCkCgMXWJYDkpqiLRKiiQRmHaWROlouoauWyQKklhx+NABstlMigQLjfD4duIo5s+/sYsn9x2hp1zg3s//OR0Fm9BP6OsqsG7FAHsPHmNodIptew/ymudfTC6bw2sHiNgnk8khpKTU0UmSKHRDQ9c03HwHU2PH2LzvGJ/88g8A+J+/eSXPeeHrWN0nEUGDNedfxAsvWsmG3UcZnqzw1LEprl23BF2XFAoFpqcrPLL9KP/nB9sA+L3rz+dtr7oKUxNkclkK+QzXrFvGpj3DjEzV2D40wvkLLLr7FhCpGNsweGDrEJ//zkYAPviWa3nn655PqVxi7969TI6NcN3Fy9k1XOHY8Qr7jk3x5usvBRJ27NzLylXLEUrw4P0P8/Ajj7B86SIyGSet0xYwODDIiuUrQSVs3LCRwUWLCOOYmakJSrk8YRjQ0VlG1yRSSBzbBSVxMg7DR4aIE1jQP4hpmYBC10x8r0m1UklVDwHTzaAbBn39C0hQJHHAY4/+lHUXrSf0Y4SIiGKFrqc1kQeHhpBCYVs6mWIfuVwRy7axto8hhES//iV84hN/zYuvv47Fy5aQzxWYmpzm5te/m5tveSuaFXHVpWspFHs4cHAvURRz8fqrGD6m+NY3d7JmTYNMLseGjQHFUgdhEJDLree8c3ZwZHghszNDDA4OUJmZY2x0GCkiyuUelBLohkYUBURRjJASpQQKDaEZoClymQxxDJZlMTc3h+M46KYJ8/YwQjfQhMKy0ns6iJpIKTFNK32epIWKA5IkQOoaUkC73cB1XVAa1do0k5PjWJaBFDL1QzXMeQQkodVoYpomupZOkKk4plqtgFLoho5KUugkk8mgSYnn+8SJIooSVCLm/Wk1EDGV2UlymSKaYdBs1rFtm4ybSX1oSS2CDENDM/STibptO1RrUzi2TaUyS6vVoFTopNWuY9smSRxjWg7NRouxkQnuf/Ahunt6MS0bw9Jwsjm6SnlMSyceOY5KEtyli3BsG4HCsrJIkYFkHKGGOXQsR09PD7blsmvPERZ0lSkXaxwbHuPJbU3ypU6EkhzaM8RMtcKaVSu58YZX0vLBaz5CJuOyeUvAgoFFvP8HH+A5z7mc7kNF4kiSy+bQDYFuSCI/5MnmDgxpsHDbFFKT7D7HZmamguPm0TWdVUPnkiQJx87dz5rVZ1OrN5mdqeBmXUzLwPdSAR9QSCUggbHxEYr51E/ZPHGvCIlt2mzeuJn+gUEUGrph851vf5eVK5ZhuS6HDx5h+fLl6fMjdZIk4PjEOAOD/dh2HtMyaDcbFHIFGo06YeBRLOTx/AbZTJ65uRmymRzrL1wHJAgh8b0wpW7qOn29fWgmdPf0YzkGUk/tY9K6WZP+wQHWPjqDAg69YICJiUm6urrRDQ2pGwRBgKEJUKm9W6tZJ1YRiQp58IGHsB2XDRt/wqte8WrCJESphN6eBbTa7XmbKdBN+2TArWkGIEmiAJRidGQY07Yx9NROafz4KK6to2sWU1NTKGKOHh1hy5ZNLFu2ZN4LWeI4NlPTk5imJIjCFNQiTCeyI4PR0WOsPXctjqkh9NQyLIkTojgiX8ijGwZSZmm12sSRR1dXkZVLB7jg/LVEcQCahmloPDV0mIWLloCK6erpwnFMSqUia9eupVzOMzjYz5GjxygWyxh6QiaTY2p6CtO0sW2H+++7n3XrLqSQtcjY6fMlheDstWs5cGCIXC7D2rVpTTKC9F0Up4JsQRyTzedpNCvsjfazxFnE63pegq9+lkCdyqQ7Yxwmfj7eEqcI4ZxeHqn4eTTsTMja6bGbEIJ4sw5CoF8S/UJ893SfT4gwnUnR9tTPJ7Y9HdU7lVZ8pn7Phg14JjT26c7B6fv9BXeMk9Dszx9rito+HcJ75mT0ZHwtT0Of+cV4+vTx/arzf2Jcz+QcPZuE/fRz+KtoxuIEPeg/sP0acf11+09rp3PwnWwGVEKX1iRWAUEI2VwHoWoiNIlpagSeh2W5qcqmbaFUQkdHJ0IlKKHIFotcvP5qent78YM6zYbPQO9KyqUShh6SsWxmJid48L77yGUsNBHjBx5zc7OEYYjrGhQKGWzHZLbh8dGv/ID3/OP3uPWbj/DWz9/FFbd8mLf8xT/y1Xt+zI7tu3jyiR1UajVWr1lFGPtMzY7w06Gj/NVdm3neH/89N3z0Dq699fO89/N3MFoTXH7p1ex76gB9Pf2sWrWCHU8+SUepwF/c8VPe/Pkfcd/uETw/4GsP7uKlf/QZlr7s3Sx6+Xv58bY99L/4bbzrr74AwPDEDG//u3vov+4WBl7yLgpX3MRf3f5dctlC+jKQUCoXmZqZ42O3f4fnvfUDLLz2d+m75q2ce+O7eeuHPs/WPYcQMvUijKKQKIpp+x5X/vZtLLj2Fq76nQ+i6xqWpWPoGlIKoijBtm1+54OfY8EL38LqV/4BUzMNpDCIEkVMuo0uFL5fTdGfpA0iQMU6SmkYukWcxHR2lkiSmO9//weEQYLUJIESfP+RrQD89sufR9axMXQd17WZmT6OrsGH3v56ALww4uEn9qMSwQ++fxfdHR2oOEJoqeCGYZmpMI3SUUKns7ODb9//KACuZfDaF1/DiuVrqQ5vZyYwOXJwiK3btvHaq1cBsOfoJHc/tJlCvkQYRHjtkPu2HjjZ/w/fcA2NRh1NkwTzFhGeF/KOG64CYO/wLIvXXkyhXMDNuwwNPcXXfzj//bbJG168HmHoHJ+cZO1556boV6z43ZddAsCT+0fZfXgcZEKx2EGSJFSrVSzT4bfe+DtUZmfxGlXidpNGo0KxkMW2DXzP44orriAMQxIUPR0lNKE4evgARw8O4TgGfuDRaLQ5dHCYRr3NqtULU9pdDI6TQQqdRx5+hHyuSBwrbMulVm2k5zaK0AwdJSCMmlx55eVIKdm8cRM7d+xE13XCKEKokDVrVrF02UqU7qIwsTN55Dw97QRl6Lb3fQAlUuTo9ttvp7erl7t++LeYjke7CQd2tXAzFrlchhXLz+ED7/84k1Mxo8cPk81lyWSL/NGf/DGvv+mNLFy4kB/cvZNa8xVceN4Orn7u+UgSOkpFVixbQtY1EJgkccL4+AhCJiipMTFdwXJKCC2HMA3aQYMwTH9g4zimVCrNB4catmXRbDYxLAvTNDk+MUEYhZimIFERlblZwsg/+RzqujwZrNqWRRLFGLpJudRHb89CAl9gGRoZ1069VVF4lTnyrkvkh0xNVxAqIYkCDCmwDR3LsojjmCRJmJycZHp6ljCIQUksI4um2fNoqqLdapOZf+cRr2AAACAASURBVI4M0zyJIoMgCCKSGAxDR6mQsbGUOiqEQNd1TC2DVA6RLynmu6hUKliGSRgEGLokDBV3ff8uDh0+yHOuupoly1fy3bvuws3nmJ4cwTLmgyUpT4rERFHE7Nwc1doUbb9KO3SZmdxFT88ChNBRic6l655HEsyhyZjxkQmWLu7Etj1Mq8LqVVk+/9kv0N3djePqvPX33k5Xz28wNdNFvV7HMCyuvPLKtDaXhDiSuG6WSmWOyalhdE1jubWEb977zZRtgsT3AgIvpt2OmZquohJFksQ8/viTKCUolzrxvBAhNKIonZjRNQsVx9xzz49Qic6C3k40Ehw3Q6Od+vW2Wi3iOGb9+vWYZoYwSoijmEsuuRTDhGqjxp49e0FpjI1NMjY6RjZns3zZGmamK0xOT5GQkMvmSJII1zHJZk06uzpwHJswjCiXSghgdnYaXdPRpInrZmi1mggZY7oGTa9FoVzAztrEQmP/0AFUFKBEOjFzgoJ45PBR7rnnXpQStNsBQkhM00zLJOpVgrZBPtuDbeVx3AKXXPRcDC3HResv5+DBQyl1udVk31P7cS0TSLAchzCGRqtJEIbEiSJOFBoxhlT0dqWq361WGyk1BgfPQqqIRq1KvlBGdzIMDvZy3YtfiK7p+F6QJj26RrFQxDJz+L4gCHW8lkIguf++h7jnBz8iCgOmJ4ZTenoYIXSDjq4+qpUazVqdMJkmTCpEcUjoC7REIRKB4xZpe2BmMqw99zwM08C0NPr7uxAyotyRx7INwtDn+MQo5Y4icZQwMTGBShSbNz1BtdLAMExe+aqXU29UqIUaoZ4h1h0CzaJVm+Ll11/LylUrKJSL7Ni1Az8MUQhKhTKdHd3MNavUgxbHjh8DITh6+DBfv/32k5TTfw9a9W8V1jy1/y/bx5kSpdOTmij6mQrx6XWVp37Hqcf7n4XQ/Wft999znZ5N3191Pf4t7Zns85dt8/8DOvz//gh/3Z5x+494CH4Z3eJM6Gs79NK/EdSmp3EdjTBqE/uKwGtQnz2OiJu02xWUX0ktIHSDVqsJUqLFrRR9MmN++ugj9PT2c/Xzr2Fubj+aiJkYm6PVbFKr1bngvHPJZnOMHp+hUCjjXrac+pIiuVIXtXqDb9z7KJf9zp9x+w83cGy6SpQodCk4NjHLvRt38Yd/+2U6Fy7iggvOx9JAk4psqYM/++KP+ci//oQt+0aotzwc02C20WLrwXHe/Xd3cPOH/gFNczl0YB+jRw7SqM+k1Kd5VbVqw+Nj39/IP/xwC7sPj54ijhDRXcqTc1MrDikF3eVCupTydJfz87VuLaYmZ2i3fLbsOsRzbn4/H/nC93l872EabQ/LMBidnOXbD2zkRb//QT75L99CJQpNaiRxzLYtT3D7h95JxrF4/KnDfPj2HxIqA9OyESJGCI1//s793PngRqQUfO5Pf5dCzkoFoKSOTBJe9s6/IH/lm7ngpg+jlIOUJkIpDD0iaY4zeWQ7rhZQ7uxB12zOWbkGUyiiMGLj0BxtPwTg+RedTXVullymgGHpSNMGqdPhmqw4qw+Ah7buwnYkN776lcw12lhOliTSSFSILg2SMEZqJnHg4eSKjE/NAbCkt8ShmSYkNRqzU5huJyJRrFy2jPVrlpy8Lyc8SdNvEaPo7etgfKYGwMLeEk4uR0dHJ0GSUCwX2fjoZjrKeQ7uevxk//sefwo/CmjN1Vm6ZCXtJOXJLihnyNgmx44MkXMdkkhw3rp1dA8uZdWinpP9H9q6H6/doliyyOXy5ApFrn7+FRw9vIdV55yH6eTYt38fcn72ud6qomV0Dh89woGnDiBihTBMsh1dDCw8i77uDmYrdYRmYTkmq89Zxu49u4hEDj8I8aOAZrtJFIesW7+elhdQKHbS8iM0M0NtZorY94i9NroKcewSSI0kTmsldWzatTqmIdGMIvlyhiCOKBQz+O0KSkQpCnzOTqav9DBti0jE5Es5bNvmppveTBBH1BObqYkahIprXv5CHn98D6tWXczhw+P09fcyMFhi+bIB4shn1/YnqFYbXHD+hdhOlpddfy2Tsz3M1C/F1A8Rk4AhiYQAM0u1NgWaRj5TJGwG2JqgmLNBhZi2hSYkGSuHH4ZMz0whtBhdt0mUj1IJ9XZId18Xtu5Sa3qUOzswdIup8Rq6SO2OwCEOUiuRZjvBa4coDJAaTa9FvdkkjHxmZ6coFjLUa415W5mIGIWbL+HFEaGKKeWL+L6PMkzcfAmEgUoErpvFNEx6unvIFQrkC3ksyyCOI8KoRhj6eO0GupUl0cskpkGkAkxdJwqjdBZfk0Rhm5bnoYRJZ6GEJEbXEsLAx87ZJDQpd7n4SYtMxsJ2MkjdIVI6Anjp9TfS09PFheecj9+c48UvvI7IjylmS8zWGvhhPG8rHlOtTDNbmcV2HR768U8wdBPTHKSvRydr+liaQCqPmBmsQgczlSXcecdRSt0D2LrB5LFxfvLjbXz0Yx9kdm6SJ57Yzv/5wkfJFX+DdvM8fnDXA4gwJIxj/FaT2279GANnFZmbm6G7q49yqZt6u8WXPvl1ui7uQ9P1+cl+SWdnBhX5xGELBGi6ydlrz2NiZhzNVBQ7cvi+j0gidE0SJjFRrPCCkFCFJErx1NARlIhwTI1GpYo2/9tWbzaoNuuYpo0Qio7uPJaT4Ztf+wbXveQ6fvLoJnQrYfGyhUxNVxka2ks+V2RwQTeuYSJ1ydTUHEoK/vVb96BQ5EtdSEPHS3T8KCSXcxCaIgrbRIGH32qQsW38ZoOvf/V7JInAazWRwmLV6jWYlovv+0xOjlGvN5BCMtDfy5vf/CbiOMbNZBHxPL1RaLhOCSujEURtdE0jaAc4OUn3gix2xqJvYAGGriAUrF9/Pq5tIYTFk9u2E7fraCLBNARJ7CEIUbpOqxVQqbXnbWEstm7eiKlJ4lDj+3f9iHazhZEEODaEUYzlKIJ2DWlohL5PoiK8uM3WDZsYO/gUuiMRwuCcC9fwxptvxsm49PQvwtJtiCJifOqNGradwXFNQj/B0srcf+8mdu7aSYhFrKBZm6JVG+b42DBBY5qJsRFqdUUSp8gtgCYlhuWSzXWwoKdMxo3oWbCEQCrOOW8dlp2lHXnMVKYwDcnuHTupVNo89OBjjA9P4GQL1Go1anMzHNh3jGyujGmZJJFPPWiwobmZH9uPcPfMXezvPEpey7FkySIuu/Iy3n7zW3n43vuI/WA+HpA/lxSeKXY7kUQkKBIUSAEn3V3TRQhQKjll3S/GbmeqETXf6WG+o/1z2546jlMFl07s59Rxnz7eU+1xni75OR3pPL0u89m0Zxvrno4cn3EbmZZQIRKkBgINlDzjcmLsJ5YT1yhWyanA7S+M4Uw1wHBmmvbT1aE+3T5PP//PFOE99To8neJxmi7KedbKf2/q+OvE9b+5nSph/Wwe3F91kz3d+mdCDT5T39MfqJMPnkppLE42i2s5NGs1/HYDUzOIatPoKhWuyGSyKKGBMJDSIlYaXruCaeepNjyOHhniskvXo4jZvXcP117/SkaPT9PZ2c3ePbvZvmMbuqFTrTRpt5KUDvX8lWRuuJwwjNm6b4RbPvqPeEHI+tVL+de/eA+bPnsbn3zjVXz89b/B/3rTC3nTS66gUZnFbzfY+9R+Ro5N8PpbP87OoxMYmuTW33wR9/7vm/nWn97EF9/9Uq69cBkA9zx5hK/dv41ysYfp6RmCKKLWPBG0wo/3HmO82uTj73gj37jtTTz+xY/yl699EQtKFlv++UN84C2vBKC/q4Oh736afXf+NU/d+UmGvv1R3vX6l2Dn8hTzGrO1Kq/6w48zOVvlFc+9hLv++l0cvesTjNzzT+y+4294z00vRZOSD//DHfzwse1EUYJl2Vxy8TkMdLn85TteC8Bnv/FD7rzvUeI4otVqcGB4jPd95usAvPUVz0NrNwjDeL5GSREEwc9+2FAoYoSQCDSSOMTKlegcXIaysvMvRejqKtNqNdA0jX3jjZP3xcqFfXR2lpmamkBK0A0L3czyvbsfZMVgajVxcGSSVjPAdtIa52arQcNrARFx4KEZJn6rikoS6q0IqZkAxEnCueedy733/oCCViWeeII4AYiZmZk+OYZjU6ktjGEY85Lt8/ezIPX/FALHcZibm2Pd+gs5evQQl12+/mT/vYfGIY5otdocPLgfKed/sOcpUl1d3eTyGYQMqdZmMU3F7Cnfv/fQOCKOOHL4GFJq+L6HYWisWL2andt3cujwYc5avJiR4TFmJqYYPzZM0AxYvHgJK9eczcjoGFEQEQY+XX39uJ19lMudWJaO49q02z7nnr8WU5MMDPajC4Wpm9hOlpm5GeIoIpvNMDIyQr6Qp1gsMjExiWWlfYWAieOjxH6FlWcvZ9nyxbQaFRK/QRjXCIOIiclhJo5XMB0LFUTcece3EYBhSsbHR4kin+rsceLE57bb/pQ4jmlUPL7xla8Sh23+xx/fxh//0fv4s9s+wK233kqpVOCCC0d5xzsXs2RJhssuX8zLXnYdK1et4Kl9e/mj972Pux94kB37B5idg9HhJipOj8syLLxWlSQOCeIIN5+jWquRzeVoeW3a9RqtRpMgUjjZIqV8F1MTh/C8OTQ9j21bmKZOu93CD3wMQ8fQLaQUFMsdIHSEMJAqpRDncjmy2QyZTAYpFVEUk8nkcBwbXdcpFApEUYxh2UhdR6lU6TWJYyxdpsrnmkDqEhMLmUCUNIkTH0REq9UkjAJOmM4LIYiiEMuysKyUnmkaAtPQmJuZJQoipGHguDYkEV6rxtTkFK6TKgV7QQ1FQq3eRAGGzNJqVYlDH9cqYdkGU9OTIBSGIalUZ7Bsg02bNrFx42aGhoZYumwpjz26hTD0yeWy2LaDUgrfC8hmSggMbCvHy66/nnbbQ+ESJzks40ccODqKmetDyTpx4PDQA3t475++BS2pokuNBUvX8Jrf/T16essksWTDozvpKy3mNTe+kUUrFvOH7/1txkcP4Xk+e3bv5V23vAfHLjM70+DgwYNEsYdhwuc/8lnqrQaodMLMsjV0y8TNSLq7O+ffWQJdS6+HimMyjkGiYqQ0SGJFFIUMDR1i/fr1TE9PYFsuK5avJonB90Lu+s49aJgkSKxMhkwmT7XaYHR0nHbLxw9CbrzxVUSRz/LlS+nu6UQ3NDZt2szKNSvQTEm2kCVSEX6YMDI2hlARb7rpRqSuIZIoRaOSGMdyUAq8VgOhUrpuR9cCGm2JUho33fQGhFTYtoVj61imzT/901ewzAy9vX1ks1mCwMeyJL7XZGpqijhSbNq0Fd8PiSPF0NABCoUCINi0aRO+7xHHikajQblcpKOzSBRF+EGbzVseQeiSZq3C2jWrMSyXTCZHkpBS2VWq0P7U/jEeePB+pAKpJAcPHmWu0mDfwcM897lXYBgaLU9Bkqc6M02rXqdYXECsBEeOHsU2dbQEnv+8y1kwWEAqgRQJpgFR2KDZqFKpzhAlEZlsjsZsHdt0ufue+4iVwU8f3kYUJlx99aWsXLGUen0G29Fpt+v0dHfR3bUAIQx6eheQLxUIo4gkDoiDFo6RBr1h5BPEIdVKC4GGJhULB7uJkgBdSIgFTzy5h45SGdd2GDk2zMT4OHY2z9HRMQodnXQv6OKRHz9I6PsoCVvbT3C4dYR7F32bf8l+mi3n3cO5tZUM2AvpWHIOf/PZT3P11VcTG79IUz0RXymliKLoZKwWx/GzTtBOT6hObc80QTw9hjxTwnV6O7UG8tQk7Ezj+K9AY09vp4tHnZowPh1V90S/Z/s9Z1pO/9/Tje308/5vRU9PX3/q59MT1mfS/iuv1a9qv05c/xvbfwZN4L+qnRy3mr+FhCBKUtVPoeuEscRwSziFAQy3i0SYuE4Zxy2QqATd0MgXu5mrt+ks5+kolhgZHqGzo4uOrl7GRkawTJPpuQqZfAdXX/U8tmzeysjICFEUEoYK0AjCmO1P7uLWT38FpRQXn72UOz/2Ts5Z2o3pWLzghS9moL+PvqzFC5aVOWfJIkzHYe2F69my/zBbDowC8JYXXsD6wQJz08fp6Rtk6eIl3PzclVy9dhEA39ywD7fYSTZXpFJp4LoF2p4PQDsI+dCbX8QNz78MpRIMU2OgrxPLMPju9+7Cnp/tRUAUBiRJSKNRxbBcBEZKR8xm+cDf30m10eI1L7iM2z/8Ti678EJy+W6UljAxOsyf3vwqPvi2NDn9y3/8FrpuAGBaWUw7y2tecBmvev5lKKW49TNfY3K2gaa53PyBz9L2Ai5cvYTb3noDcRwSBAGgnaSynngfCQRJDEkSo4iJMfEiHaE56SwjCqlJ2l6TSmUGseQ1HG51AVDIuuzb8xT79x2kXO6CKEEkCe1WkxtveAWOkd4rx2cq2I5NFIU0Gw2klJTyeWKvzbe+9lWidkg7jDAsO/Wv7UztPg4fn+Nb927guVe/iKg+Tc2DbDZDR2eZIxPVk/fmdK3N448/SWbev3LFojRhPjQ6w3fvvAulFLVajVKpxBNPbGHFiuWMV8KT/Sdm6jSrVVzX5bzzLqC/I5f2H5thcrJGsx5w//0PIaWgOltBk4LROf9k//GZOq22z9q157Bp00YKxTye18ZyHBzbYcGCfgzbprOnDyU1BgYGaExPo8IQIRR93d1MTs2iooC5qXGCdgMpE9yMjmVrZDI2hXyJerWBYVip0rXn0Wq16evvQ2gJnt9g2bKFtNo1hoYOUiqWaNSbHDs6TJJIurr7kVYW0zRpez6z1SbCLtL2K5hmBtfN0G5K4lgyNTXNjTekky9xnNDZ0UcSaySRRbHQxR//yXuoN49TLhW45W1votmc4nvf/RZLli7kiisv4TOf/QS3vOO3ESImCCRJ4qBJnS996TW8//03MTU1yi1v/W0+84mP8953/QHf+94I5eI0tUqNY0eHiYKIXLELTTfJOC6xH+BmM8QqIZvNEiPIFws4lo5IAoQIiHwf27RQmiII/ZOTD0kSEQQB9XqTRCXYrk0QBvhtDynTYGt4eCSdQU8Uba+JZdmoRBLHUYreSQmoNHHVUqr4+Ng4ia6RkGDpWur72YpAtQiCGlJz0HWN8fExbMdGINF1/WS9WJIkzM3OppY2up5aYKmEcqkECMJ5el673USQMHjWIPVGHd/3cd0CCItCoZMoifH9Grp0sa0szeYsKEkum4d5Kqmm6Xz1K18nly0yNnaMRYv78fwGK1YsZ/OWjdi2xdTUNEEQYFlpgj88PMLExHFM3UIKnURpSCHwWg3e8OobadYaaJQIoib7hraSyxVIdMl0pYFhGNSqk0gNjk+M8KP7vs8n/+qv+P23vYq9+39CR0eJxx79MWs617Ait4QFAw5h1GRycpJFC1fQaii+/OWv4XkRjXYL0IjjmLm5GkmSnsd2O+DoWQc4unA/0zPDbNywgVbT4/j4JJVKBaVg/9B+NB0WLz6LnTt2pjRnqUhUSBT7WLbB697w+nlksM3/Ze+84+w4y3v/fafPnLbnbN/VSlr1YqtZxd3GNjY2OGBaCITQc3OdhNByyU3uBXIDpECAUBICxmBCjY0NptvG3cYFbMu2JKtYdbV9Tz/TZ977x6wUYSxjCElIwvP5zEfac87MvNPeecrv+f1a9WoW0D3wQ4aGBihXSuiaRnd3N/mCw2233zKvB5xy+eWXI6WCrmfJIYRCEvps2rAe1/dIhCAIfJApmtC4+lP/wPjRcW69/V6e3HuYMDFouxG6rmNqEt3Q0I35alui0m7W0TSF173htUBMksQoQmAaJp22h67p9HSXmZubpL+/Z17fFFasXI6iKExNTbJp0yaEUHjiid3kC4X5NhJ/Hlbfy9DgCB3fpdOuk6YJj2x/DN/LCMuiMOaJXXtAasw1Z7niRS/B0ARSRlzyvOdS6a4gNANVVbAsm3ypl9l6k9tuewDTLuMmMSoppWIRFB2pJKSKQa40jFB12k2XfM6hUu6i4BQpFMpIVSWKQ0o5G1UVnHveuaQS+vt7QAZ0dVnk8w79w8OkQqNvcJQ4tdm19yj1lkcSB8R+i2JXCVQdK18i1iwajSqKKohjwdR0lUa9iYwjxscOUCpX8Doejp2j7bosXDhIq1XlnLO3sXrVMoRMWLxohLmZKUqVIm94w+voqXTzUPgoU3KGj6ofwohKLFiwDK2rnz8e+EP+fNk7kVJi5hxu/uZ3+NFtd/+U73di0HRsTvj39A1/VlDy84zn2RRhflV835+nD/Q/u/2qBJ2/DPvvccV+VU3ECOWZS/QnXfUZfn+yieNkk8WzhQY/dRtCiJ9gy6v05JBpQs4uoWg6Uu9Cqg6WlQMJoYQwDkiSAJWUdidGUzInu2dwgLXrNvHkgXHK/T0UHROv02H37n3s3neA73z/VnoHehkZGWBooBeET64Vok5XufWB+zg8NQfA+/7gt3Ash66uIrZjIFTBxNGjLBhegGEoHDk0xePbdyPDmCOtzBnsLjicvXY5p23eRhTl2bXrMR5/bAf1VsQrzl4OQNMLeWj/GJpuQpLSbtSPV1yXD/fyiudfhGUItmxZj1ByjI1NMDSymBdf8SqkzODUMk1QdA1N08iZClGigIgzJ6zh8807MwKht7/6hfNsvRCGPgKFdevWomsar7g468Xc8eQRpmoN4liSJIAU5J08H3zzq1g02Mt0tcmV77+KP/v4l3h83xEKjsVn3n0lrWqdc87eSqGQo95wkdKh2FXh63/3dmbvuJrHrv0oQkmIYxekgiITdJESBu0MnlifJfCa5AoWw4sGOXBgN63WfMU1iVl36mp6+7qJophqs4GRLxJLjQP7x+nuygPQ9vwM6ScgDkOcnEO7MYVuGKw6dSWpUIiDGCWVqGisGMwCVz9KONSKKS8YpWSl1FwPM5en1g757E2PHb8PWx2foYEB0iRmaGQBi7uyz4Mo4UBQxAsjDCsPisHmradx+MgkH/nnu46v33RDzJxDvqvI9MwEz926BoA4kVz1jbvo7a1w4YXPJY4F/X0DtJsen7j+vuPr15ptcoUunti9g5UrV3Hw4EF0QyGKIxYMDlGbq1OvNugfGMS0beIAxiammJ6aZnpinFSmDA4Mohk5cvluFGFkfX2KSpgkoGvs2bMfiSDyfVTdAVWl2ZhBTSIcq0KxUGJi4gg5y2DJopX4nkc+Z9Js1gnaTb5+ww3oZhemYVGqlFgwshRFxhTsbhJMisVBcvo0mpbS09fN0YlJivuWUXxQZfzJHRx5YjsSnShO2btvHwODI6imQcsLOTQ2w/v/6m+JZMo5555PX3+ZYknOV/cDWu0KXrCYXU9UQTzGy1+uc+4FCd/99ncgTrjw4j+gWJhkenqG3t4e0jQGoWXENIaKF/soqkEaSWQU4+R0oigiCGPCKCGIUvJdi0kUBVXEVKv1TANStzEMlUKhRKGYw3c7832fBq7v03IbpISMLllItVYDoeLkigjVygh7dB1ds9E1jbnaDLoq8Nw2CRFd3UU0RcUPUtpegqJqFIp5pGqgGjk0RSWVOoMDC2jVG2gCms0mYRhmlQkRk89XUBRwvTYygcB3GTtyEE0RmIaBbmRV9WbLw/UCHNtB1zQMK5MFiqMAXU0IgwjDzhHGkCYKqUgRupndnGlM0Snyxje9kiuuuIJavUZP90KaTZcbvn49a1avJowivv/dOwn7+uh06bTqDZYtX0lP3wATtcPEgULQPIDERbEv5aMf/QSGaDAzPcmjP97F/3rHFRi45PQymnQRSkSxdwUiUWnXUz71ua9Q9yXPvcBly7oJzNwwF17wErpvLPGZ517Nti2rKJgGzzn3PKr1Gn3D/Zx/wfl0J90cYD/fucTixvNzkAr27H6MjudiOznuXHQLO097iFLXIGeecy6NdpOFo4sZHhpkamaaZcuX0Wm20DSDdes2Mj09SeiFkEYkIcg4IooCXLcF0mFwcAFux+PMM8/IKkRCQ9N1wthHIvnNV7wQz41QhIqqKugoJGEVx1SJ/RDddJiZGaerUKbtuWiaTihhem6KN/7PN9M3OMDokhFGloxiWBaKqoJMqdXm6Lg1dGJMBDJVcXIF6o1poriDlBFhEDDXq9EcymHaXeiWSrvj0dfbx8iCPjQZE/qzqGqCH0Y4+TyGbaLqgkOHjqAKaDdqCKGhqDn2PbmP3u5h8pZNT+8QumGxbt1qDEPw6ON7ePjhnbTqLTSRcvaZG9FslSACRISpQac2yeqVo5QrJWr1KroiMcyEzadvpO0GKCIm8F1KvT0EoYuiFqhVqyipR326zr69h6k1PTqxJBYqqWqioGMoAtLOPKt3C5l6rN+8DsXISKimpmbo1BtMj48Rem0atWmWLRlmcLgPNAWhaTSbs1iaThzpJFLBzFkEgYsuNExNEKceMRYDC5fzo3tuZbY2h53PcfkLLsE0Nbp7Kqw65RQUIwdSQciQfDFP0OngBR7fnL6JiWSaj5U/w6tf/bsUe4vU2nXMJOCUpYvZ98QeLM0hkAnPu+IS7rvlm9Rmq2hChTRGE8lPERbJJEUmKaQS5QQSHCnn4cKK+BfFFqGQEQU9PWHOyXy56Ksm0VfNn/r86dY/8f8nC/ROrOL9rIAwTdNn9F+fTWD781SPn+l3P/HdPAxYoGYw4ad+/0z7kT+5PNVOhHufeIz/2oDyZBX2p6uqngyafuy3x8Z4bDlRGehnyXL+e9qvA9df27OyY9COE/HzT4UPa1YezbDwfB9F01C1CInHzNwR2p05VNUgjlI01cC2cgiRYts2SQyqaaOZNqap8+N77+TGb3+X7t4+hBCcceYZKAICP6BZrxNGHpZmEl91F861D9NKsx7S3nKB9csWEiUhcZKxPSapYM3atYyMLEIIwcTkBMtXLKJWn+WBHXsA2LZ2GaeecirjE4c5/4JtnPec0zn73K0879ILWFDO0V3Itn/b/Q9j5gqsWH0KQSxJ5h/8Jf1dVOeakApKXSUs9n+tzAAAIABJREFUS6G3L0+73cIwBWlyjGVOIZUaEhMz1wNI4nnI4P2PHyRNs+1d/pa/ZMVvXMnKF/4Ra1/yNla88ErWvPitrHzRH3Dma//X8fN9eGIOIUAoWQJkamqKdqPNR9/xOjRV5Qf3b+fTX7sZgA++/bUsHRlkaHgYQzeRaULesfjm179GGobIMEEXWSUpTZKMYRbJ+ORRpJDIBNJI0uy4WLkihl0ExWbVilHyeQcA27FBEZRKRTQduoo5ArdFKa+jKp2fnPTmJ8qBwUHSNEXT88SJyob1G9A0SVdXicD3gZTXv+wyNq9cCMCH/v5TvPtP/wdTcw2WrtnMj3c8yYvf9nG275tAU4/dlwn9fX2AwvjEUX7vty5jy+ps/Q984Vb+7su3Mjk9R+h5PLzrMG/5+HfZvm8cTTnG/icpFApoukaxq8SAE7B51QIAPn7D/XzkK3fy5OEJXN9j31SdN33gOh7ecxRdy150lm1RLnfR09PDXLXK2rWncPDQIRqNOofGjjA5MU53uUy7VUdVJM12neXLlxGGPk7OptFosn37doQQBEHA7t27CYIQQzfQNQ0FwanrVtFqNVEVnYmjh3ng3jupdJdohx6SgCRNWLRoKWGYUm/MUCrlmZurs3bNBhTD4LnPfS733HEbiCST58gZQILntxAiRqqCysgyVMVE03QWLlyA6tnoYYGhJSvpWzjKF7/4RQBOP/10hBCEoU8hX2TLli1c97Uv83/f9b9ZtWoVl112ObU5lzRNUVWNL3z5Ub77/THuuOMRXLeHZrMXTYsYGNzFhz70If7oLR/AtsDJqYyPT6CqFqZpZJXINCWfKxBFEUmS4HqZvAYCDNMkjiNUVSGXyyElJHFCf38fcRwdJxlKopBqtYplOxh6dp+Xy0VMw0agk6bQ09ONlBGNeoM4DpEy63mKYhehKPT3DXH06BRJLJGJgq5ZICWmYZLEMXEUIefnR8/ziJMERUAYhuTyBVzPQ9c0ms0mcRRhWQamYdDpdEAqqKpOHKcMDY0Qxym+59Nut4njmEp35bjDE0URYZDge8E8I7GJZesEgUuShCiKpNPpHIfvVatVUuESxm1i6XLhc85hx2MP01W0edMbXpNB/GTMS192BblFg9x38DBSETSr0xB7dBcq2I6OU+hHETEoFbZs2cThwwcoFbtZtWoVijpDrfEYr3nT2+muLKE21eLTf/cx0tjl7W//ffIFkz9/97uzntMw4oJzL+Sdf/JWXvzil+LYRd797ndTrdf4q7/+f1TnpmjWmixauIQVPUtI9ZTL1v826ZIyxVKe0dFRLMvJtBtlgud53HzzzRQKBQYHs576JEmoVCrohk40f3/4gcvg4CC6odBo1tB1EyF06tU2luFw1VWfwnWbdHV1oaoqqqriui4yTYmjeF5uSCfn5EhlQhTF+G4LTdOJElBNC0VkPc31RgvHshDz2tEDfRU0VaIqsGR0Ke2WT+D75Jwc1WqVYrFILlfhy1++nms+/yXmqk3iGDTVxrYKNFoRltPFnVeu4fuvXYxMBTJVmBifQkqVKFC4596HCQMVmdqoqkqlUiGOIlzX5Tee/3yCMOTo5CSKkESxx6q1SxGaTxRFeJ7Hjh07MMwsqNmw8RTOOmsrW7dtYmp6Ctty0JRMvzgIMv1xJ19CEGMYCqaZSbD19HSzZvUqdFXB0FR0XUdIgW12QdgkDV3cTotmp83d99yJaZkoMkvAJH6DNPapN9vouRIpJnv3HqQx5+J5DXwv5sihOTqdDoapMTA4AAr09vfRqs1Sm5vKKsJJiEbK3MwMvttCFzG6ZpKzK0RJwPCCYXJOgeuuvZ65mTlWr17L0OAwmq4ShQFRFJMv5Pn0p/6RH957J81GG9PMYVl5PNfnvuQhFFPhw8YHWOXk+drVn0DxauA1uPtHD/K9O25C16rcdtOneeCbn+ddf/wW3vqu93L0icd42WUX05ptIBPrp/obTwz8/q3kcuSMgpz5+UOAk0nDHJtjfhn2H10J/feUKfrX2jP1FP9Xtf9eR/srZk/FtT9TpumZ8OrPlq3uqTf3z9rfieM69hA/U0bNj1NKXUWEDFEVAdIkTXR6uhdgW12EYYCqZTAv1+1g2SZRHNLVVSaKQprtBus3nMpQTw/rN29hybLllMplgsBnw/pTCLyQBx54AF0VhEFIp90mCHxaQQLAgr4yqipIU7Bsm1JXF4VikUp3N/V6i/6BYTpuh/vuu5fR0cW4UXZMBjGzs7NUq3MEXsr0ZI3QF9xz94/RdZPeUgb1jaTGgpFFLB5dyopVq1HnyZmG+/sYOzLB3XfdQxLGIBMuu+xikhj8oEESH6drQpAiJUSpdhwWqKiCybna8fM4XW08w9I8/rsgiJBJTBxnS6FQ4JZbfsCG5SO87vKzj//uiuds5YrzNuF5HppuMD45gaFryCSit6dIFHiQgtvukKQRvh+iCI1Wq0n/4GDmsMkUmaaUusoEQYRhWCAE0ZHbyaVZf6cXRKiagR+EqKogiYMsWEhCFi0aRCoZyVHetvBCn1qtxuzsbEYqUiximA5+kJAmERMTUxlMUQVTS7nm9ZtZt3wRcZzw8auvZfNf7mflqz7Mb73/BnZNupy1Zphtq0cAcEwVmaSMj40z0NvN9PQ0H/nDF3DKkkHiJOXD/3w3W9/0MRa86M95/juv4Y7th7lk60q2rc2C21Leot1uEQYREti8ZROf/OMXs2ZxH0kqed81N7Ptdz/Gkpe+n4vf8iluenAv569bxKblAwAUbR2JZGjBMP39/dx1910MDg1iqCqr1qxk89bNpElMGAboqkqlt5tms8HQ8ACGoTE3W2P/k/t5dPujCAQrlq/AdBxc32dupkocRCRJhG1b7Nj5OP2DA5x55ulEoY9l51B1lShKiGOJZVsYhsLM7BRCKBi6SbvTxLQM1q1fR7vdQtcyJtsoiuaz9zEI0OwKYZRBqFU1u9dlaRGpolEod3HWWWcRxzH1eh3XdVE1iTLPeP03H/xzSl05rrnmGt77F3/Djsf3oygKpmlwxpnbOHT4AC9/2Uu5+667EKgEQS/lckw+D29729uo1krEcT+HDx1BpjLr1/a8+cqCQqvVwDR1bNui1W7RaGRQcdM0M2iwKvA8Hz+IMti7TOm4bXRDw7JMeru7EYoyn+CS+L6HYdjUanXCMAtUhYBCoYCqqghF0uk0MQyVNAHPi+jt7SOfL6AbOrquI9MEZEKxkM+SGELQabfJ53Koqkqn1URVVcIownLyWLadJe7SFEgJoxApBbaTY7ZaRTdNhKqgaBqKqtBsNkllimmYx4PiTB5ER9N0UhmTppmEgzYfKIRhkMGp5zVte3t7EcLGcXqo1VwCv8PSZaPomkIQuDiOg6qq7Nu3lyDwuPxFL0ObZ2dNogBN5JicPoyUglRqdLyQPXv2sHLFKWh6ws5d24mikMHBQa7+pw9yZPIJbDvl8t84i65Ckeuvv55KfzcvfvGlJEnIzp2P06jP8enPfBxN0zh0aIw/evNbcYoF3vKOP6SYtxAx6JoNccz6wqk82P4xiioxLRXHsYmjhCSN6fP66XOHOfXUU7n//vvxfR8pJZqmoRs6gR9gWRatVpO+vgqtdovJyWl6uvvQdSN7r5EiZcTvvPqV1KrT81J1KX7goaoCt9PCNh3SJCXwU5JEEgY+cRzjBgGKahDH0G63mZqcRDcdTMumXp0jjgKiMKRRb+J2OtSqNWQiKeZLTI1PEvoBuXweFIFQdDZv3soFF14EAu6/7wGEyDSJx8aOEkUxmqqiaRpXX/1Zojimr2+ANE2Jcdlw2lpUA4LY4zvf+Q4dN0teZPdCTOAHLF+xEgVJIe+gGwr5Ui4jFJOSrlIXaZIQBClR7NPxmrTbTYYXjHD77XejIPC9ACnBsBxiVMLQJ44jCvk8miaQaUSShBligiypEAf+PONATCGfIwoTFi5eyO+85lWkSaatrIkUmUakEo6OT+EFEtWIOPPsjQg1xMnlKZVKCEWhu7sH3baRQiGMYd/+w3R3l6mUS4SBj22ZRGGEYdl87nNXs2fXYyhCxdR0DMNgfHKMJ3Y/weWXPZ++njK6niVvozBmZqZKlEAch7zh9b/D2JH9KKpg+yPb2f/kQfxcxH73INcs+xSDhX5CO8/CNaeg2iZmTmfziMrfhh/jtQ/9IY9845PM7nkEJWiSpiHbztzGN777He64/XaefGLP8UDpmL/1dIHI01XLnk5a5qkVxmcTgD0TSdIzfX4yn/TEv0/W43oypN/TEQs99dieSij0bGDOzwbR+Ey9rj+vPV2l+0T/+el6Wp/NuI7Zicd04jX+eWDYT73vjtnTXYOnEmv9R9qvA9f/AvZvmR068YE56T4UBWVwFZAiZMyRJ3cjI48w9FBVies1CUMPRU3xvBau2ySMXBShYxomQehC6GKbCqVyCU032bDpNIrlChdceCGNep16o8bGDRtYNLII09SYnqvSVSljWhmMDzLnOvR89u49TJII4jgmSnycnMP0TJViqcyatWtYu3Yjhw8dnRf4gP7+Phw7h+dGHB0/iOe3ESJl6dJRyj2DWHZWcXX9gJu//1327N6VBQmWBYBpWbhuh40b1uP7Hu2my/59h8g5ZWzH5OjRieOnym9XUUWMQNLptPG8DkkckaYZnNg2DRp3fZHZ26+icfcXadz9Rap3fZb63Z9n5rbPUr/7i7R++FWmb72KrauXIGWCplpomoFlWbzylS8nSSXfvvuR4/t8ZPcBxsbHsUwTL/AZHByk2agT+C4bN6/HzjmoupHJX8gUy7JJU0k+n0OmKpaVQ1UgiV06DZecZSJkgO/WkEGLgUJ2/httFy8UKMLCc32CJMJ2SihqnkKxj4nZLDjv7y5lmpS5HIV8HikliYwRiopl5tBUi+HhYZI0odGoER/dwUDJ4S/f86f81Xvfw7Z1yxntcxjqznP66mE+9Psv4EO/fymTtQ4Aa5cMsm/fPrpKJcbGDtE/0M/CwR6+9YE38aG3vIgLNy9n0UCZhf1lzlgzwstO6+F9rzuXibkWAMtHejFNE03XMEyDMPJZtKCbmz76+3zgf17OWWtHWNBbYLi3yLkbRvno267g/W+4iPGZLKmwbKSX6ZkpFFXFzuU457xzsWyHnOMQxiG6rrPjsUepzTX48QMPoWkmExMTdDothIClS5dx5hlnsHjRIp7cu5fpqSniJMW2HUrFUsYui0alu8zSpYvRc3nmanUiL0SkGhMTMyiqgVAEM3NTxHHK6Ogoc3PT+EGHUt5CU1VQDLq7+/C8EE01MAwbVbcRKSSBh0hEprcYBjzyyHYAdFVDJBGaiFmxYgWqqtLV1YVhZP1tx14ptfoUlUqJ97///QwOLORvP/Bx2q02s7OzjCwosHCkyOzMHJdechl7d+8DTHxfJ4zu5Y1vfCPf+e5Bcs4kW7dtQdUlQehj2zYChSRJqXRnya5Go46UklKxRLvVQlFUTFPH9z1yuTw5J59pdBpZkBvHEZ7bmVfPFniuSxLHODmLJJHk8gZRFCClQAidJGP/yth6rawaqyo6hqGSJCGe3yGOQ6amJ1AETE1OEAY+YeBnPYiWRavdnpfWgTRJsJ0cKdn8xLyTGkUhijI/x0pBd3dX1n+ZRkgyCZ1CvoBpmnieR8d1EUJQq9XQNJUg7JCmIQLw/QhVNZBSoVzuwXVdlPnqWDZfqQhFMDDYi2ZamLZDlKYUy2V27tzL1OQcY0eOEk/NER4ZR9UEiq4RpZAKh4Wjw9x7z4Nkrb4a+VwvMrVodsZYvXYxaZoQRymNqRlu+/79XHzxqyj1rubgk0cJA4lQTK697tMIkbJs6Sg7dz6EpksuufliXnzvS0jTlDCVSEK6KwXO3HY6s7M1cnmLTWI98XduY/3dVYRIM91nzSBJIp7345ey7ZYLGBgY4Oyzz2bHjh1omkYq/wXiZswHqPlCDlVVGOhbyJe+dC1hGBCGHcoVkyhqUyw69PVlvaKGoaPrGq7nUijkmJ2p0mq2uf++h9i//+C8fJKOU+pBChNTtyg6OnMzsyiazsMPb8fQdQzbANXAtMp87uovcuTwOA8//DCGrrJo4UJURUHTtYzwi5jRpSP09pcoVWw2b9k0rzesccqapSgipl6dgxRe9vKXEAQe5XIRVQUnV8SxC5hmHtMscOmll2JbNqmU5HI5NFNn3959xH5Ep9UmChPCAAIfbNvGNK2sgikED9z3ML4Xks/lqXT30O50CIOEOIqJwwiZQr3R4p5778fQTJr1Jp22i6Ga1GpztJoNlHnWW9O0cGydVrtKqBhYpW6KlT6SNMS0NfI5B9swiQKXXL5CFEruvus+DMVElQJVUan0DOB1UpLUp1CCYqnIjp27cf2YXL6M66WgarhBhFA1gjjBsPIIw+Zlr3glo0uXUK3O4rpT+EHA6JIhNqw/hZxj4XbqoISMTxwlieH6r3+bKMkSzZ1Ok5e99IWYpsr6DacyumQx93V+xDpjLSWKFEsOlukxe+Qh3MN3ccPH3szfvu8vaLU9qnWf3U+mNJoutgYffPdbqUqVmhdy2eUv4KEH7+aGG2447k/Af66K3zE7ptH6n3Hs/xZ2sgTEL8ueWmn9Rc77yaq1/9Zj/9far+7I/staiiRCEj4jq9ezwas/3TpPt+6J3z9dpuqpPQwn2/6J2aITq7AgEKaDIlIU3aDYO0iz00YzLRKpYZpkGntegK1bmE4ZM9eHUAOarRoitYlT0FXBwSd3YFoKkohaa44gjhjqH8L3Q3bt2snQSA8T401sVSWZh+M5ajb+QxNzHJ2cYdWqZSRJxsznWHn6+4cYHV2MaVp0dw+yd/9RxsfHKeeyF8XBsQkULebUjRuZPDLB6JKl7Ny1H12VLFi4kInZrJqzcHiATRuWEbp1Rhf1zOsqwsT4GBs3r8PMdXN0fBozB3auB8tQSBONxaNDx8+hbhVJkpBW/QiFQlcGT5SCgXIWHHtByBP7dkAa0+7U5zsNFKQQ82LngiiOkEmIbsDYRBUpYwIvwvchRfCWD3+e8dkGA5USlWKeA+Mz/PU/3cTY4aMkXsTsxFHiSKIZOqaeBZlpkmIYGmHHh8Rj7OAR2vUGMvZI/JA0UjDsIpXBMqgSpMzYF0lZOVQ4fnx7Du7H9+Yw7ByakR1TFHgoqmDXgTEAVo8uQCQqzWadFBXfC2nPuaQiJtE0EAqdVpswCGg2mtC7DJxutrkP8LpXv4Ybr3ovP/ybF/CPV57LF9/1m2xeUiFVLZ48mlV+t65ZiJPLMTM7TamcJ2w2CIMQEJy7coBPvPn5PHDVO/iHK8/js3/6Kt75u68gNXLsH68CcPopi4niJIO7KxqqaRBLwS233Mq6EZtr//p3ufOTf8SPPv8nXPtXb+S3Lz0LxbI4MpsFvlvWLqG7d4gnHn0It9Hg8IFDaKqGouo8tv1RGs0mp207k+GFo2zadhqu22bx8oXYuS4U4dB2a0xNzVCtVVm5Zg19AwtIggAhIZYRsQgJgxiJRpom7H30XgYGh6i7Crd97ybydpE0jlFVlXK5H6dUwHNdBoYGsYt5qtUZVEOjXCry+c9cg6kYNDsHSYWKouoZkZFMQSSEno+UAavXrkCQkRu16zOkoUu1fpQ46WQVTqEjUg0hEqSS4BR6kIHONZ+7ikqPyVeuu5p8IU9PTw+V4hOcf45JoVDCDyW33flDfDdh184n2bBhFaOLFjM8eBGF/BitVuacm06BZm2OKPBRFA3f9RGqSVf3ADKOkGmEaeh0Wk3SJJkPAmPSNEbX9ePPqmma6GaeNIVWYw4rX0AzdSBClT4mJiiC5txhkkigiDg7H4pJx4c4jFBESBz6CJEi0NDVPIbuIFOo9A4g1Qx+nCQJ9VqNnONkCSEnn1VXZUoUuKgqmJZGFIYYVpFEQrFUII4TkDqaYmT6yXGMqetouopUBMLQKJUKqLpCuVyhVpvNWI41C8/zMDWTMIpQlJDIncQ0LJIkwTBM0jSlWauiqSpOzmHR6EIs28oSHUKwfuOpHDg0xnMuOA99fJrkwEFiL6C30k2YRiRJHRmrbNi4FaSCFl2LYvVw1jkXcXBnQM5W0FSYGD/A0f1jnPuc87nuW19H0xVecMXreHzfBKnnMjvZII0jcnaOVhgRygpbtm5i48ZT6B1YQxJoWOYQilHmC1/7PMWCRRJJfmvZS1iwp8myJ0OaTReAOIpQ0ECCqkAaxIRRwGlbN6Cq2Xug2awzPTWN1wl5+KGHQMkYqx/d8RgXXXwxY+MTmLaDaeXJdQ3gxh71ZhORSlAMGvUmuhAomka5uwvTMTlt8wZ+eM996EqOB+57AF0DmSoomoJQciwcHaVd7zA9MUMcBySJztEjYyBC3vS7r2VkZIhNmzbTbLb45Kf+iYMHD5NGMbXqXCaPlCakqeDQvsOgauimjVQEmq4Qxwmv/shhrnjvdnQtyu4PVaIKjU7HI5UJQprs2rkTkQi++62biKOUJJUIRWXVyvUcGp/EtnPccvOtSCnI5YskIs5Iy2yJjAPGJ8exLQ2pCGJUgiDg/IvORdOzc/qFz38Zt9PhRw8+RJJadJWHcHIl4lRgGnksy8G288hUI4pC5qptTN3Bq04TelWkBFW3Qc2SZIHXwdBMhKqSJC6vfvXL6fgBYeTjB1mSN/amSZIYNRVouoXXkszOThIFHqtWLqLdqBFHEqHoeG4b1XKwbIVyxcEwi7S9KrpVIk0Smi1JGEcouiQIInL5Pg4dnqbT8bj0oudQ6bJI4pAwCCgWiuiagmHleaKzh07q8ifmq0l9geYU+P6XriWc+jE3f+OTnG/9b65MbuNFM/+Duis545VX8pyXvomuhWuJw4BPvve93H3L3bipzQte9XLWjPTzzjdfSRQERPNz1Yn+mYL4qR5KIcl6YWW2/Is8zk/7dL8Ih8rJqnxP3daxgOnEz1VV/Zexz1dXT2Tv/Xnt5+l5Pdk+flaf67Pql52XykE8u2P5CR9eAqnM/lXET/SQ/iz7iUq2+MkF/qWCfQwZ9Ysc21P3l6bpT475V8h+Hbj+2n5ppgodmaqMLFxCIdeF32wgw4AwjBGKTqqoSEVDJcFvzNCYm6OQz6OaOopiI4XJwiXLMPMOOcMg9QKefOJxpmfGmJ6aYWhkMff88EHiKGZydoY4jkjimIqZPZQztSY1P3vgtPmJM05iOv4MfYNFXL/G5NQhgk6Vyclxli3oA+BHe8coFLvZv2cvi0ZP4aEfP8pA/yAzczXue3QvU7WskrZmZJC+0VM446LLSLQiXeUyALph8b3v38rD2+9gZGQBmmowvMhmdm42c5T1jP1XSomiG6DlcYqDWZ9eLPnadTeybuWy45PLDXfuQNcddC1P4CdZZfgpTfxpCp4f0qjPZlC1yOfGb1zHF79zBzfe8SMURfCJd76WD7z1FQB89eZ7uWfXXiLZoru/D9uxSMIIzwuI4wjf94jCFD9KCWPo7h2kWu8wOTHLHbffzvT0BFHskwY+szOzJFIhVUzSJGHLaBFTz2DAP3hgJ4VSmbEjhzDUMgKBYcKuA3vZczirPJ+zYTmIEMvIo+s6tqPTVcwhQw8lCalXp0nSBMfJ0dc/iNQsxMINSATf++xH2H33jYjSAk4/60yOHB1j0YIRPvfNewHoyltsXT6Iadrs23eActcgOEUM26TVqoIMaXcazFWn2bhpHbmiycKFA3z9zozcqVywOWf9MI6jkyYBaRTTrDbQEFxw9hmUigVUIbDMrE9YEQlp6nL1jXceX3/bqmGUJGH1qacRJTFDA31MjY3RbrfZsmULtm1nsM8067dTVZVyVz8yVbjuuq8xdniCZn0W321lUhkk1GZmOXJgP5HfpqtgoVsKCSn5UplFy1aDqtM30E/f8DAkEXMzk7TrVdqNGobpoFo5DCePomkYZoHdu/cRJz6/+epL8cKAnD2UkR+dABtGSoSioOtmVqEFktkn6B8cwrIq5JwSqqpjWRaKKlGVlHbTY+dj+7j+um8wNn6E/sE+NEOlVC4hpc6BA7MIodBxmzg5iyjyOf30LczNTbNq1QYMI+HP/uz/8jtvfB/dFSh2lTAsByWFYrGLNI3otKsIGSPSCFWkIFRkKjD0rB8XoaAIFUVRSVNJHCWkqSQIQoIgRMqEOInp6iqTBgEiAbcTk6oGncDFcnooVYaRuku71SCNQ5I4wDQ1wjDMGH6FIJUSVRVIkuxfoRCFIUkUoKgaqqrR25v1WmtqFjw7jsP0zDSKouD7Pqqqk8/nkVGMhqBVq2NpGemdUASKqhAGMe1WJtsRBxGGomEYFhPjkyiqoFgsUyyUgQwdEcUerWadubk6qlFEItE0nTiO6XRcbDsLjjVN0ml3iMIYVdGJIzBNndNP38aRI4fxA580kXz5K1/nkYefoGh38dWvfI3JiVk0QyGVZUrFkL/78Af4+g1fYeGgjiZ0wlBlaHgN1ZrPksWj2EaKhstd936L8y7YyI4dj/HWd7yXZscnloJcyUIkbX74wx8iSYnCOTTpcWjfTppzkzRmZvirv/wg5e4BKnEvOTVHUSvh5HLUGzU0y0IqKqmUKKpGnHjouk6rGRCH2TUrFUuMjCygVqtyxhlnIVMNVdE5Ze1Kyl05Fi0cIU0U6vU6qgDHKlLM92cJLCSO41AolQkDUISJodtI6fKa17yCQ4f3sXzFaOa4k+IHLaKkhW1r7Nr1GOeffx5P7jtCELoMDvajGzqu18ZxbGq1GSrdBV7/hlfS21dB1w3K5T6QKc16nSRNGF06yrdv+AYiCZmeOESr1UZTdeKMlY98rptqtYHrtWm155idrdNoNAmCDkuWjhAlbS553oX4vk+r2UbTBChNFi0cRNEFl1x6EbalE/ouijQxdJ2ZySYyTXnpS1+EIhTSJEWSUClXaNbmkFIy16pzxUuvoLs7z1v/8A1YtsT1ZklSFz+sAxLTNIjjiDDM3jPvHVKqAAAgAElEQVSqlrXy5PJl0nQejpjE2EaOOEpQVJExDodN4qBB4NfRNUmr1cS2LVTVQDXLRIlKuVzC78ywddsm+vt7SNIoQ8k4ebrK3WgYHNpzCCWS+A2XG6+7gcSLyBllhKLjFCoU8nlmZmZQFAXbdgilIJezMTTJggV9pELHyZfpGxghliqaoVNrVHnI385ZxU2U7CUoRZXarm+wsPIg8Z4Kl3u3MNC+iObIDK+d+D3+wHkbF59+CVM1Hd0eIo0cVg3EPH7Hl3jf236b2SefoKerwN/8xf/j3X/8Dox5BvFf1H4ZFc9j23i6bR2rrJ7Mni54gp9uVfvvaL8+B78c+/VZ/A+0Z5NF+kUmoJP1AJzs76eu83MztcmUdO4QSiqRQqJoCr7rkiQRntcmDjuUHJ2cbeGHIZKUUilHudxLrVbH9eo4tkHgd3DbbfL5ImNjR+ju6mLHYzvQTRvdMLjpB7cxMjJKHEUsWboEhCBJUp531mmM9GfMs//nH75Cq93m0cceI/ADkiShUOhBUWxyuR40rYiiqhiGzfmnLgVgrtnhxnse5bQtm9EsgzD0MXSdQ4cn+Puv3w5AOW/TbwoeuedO/E4VR9dJ4gx6t3BkIatWLGHb6dvQdQOkQNMMyt1dmRadk1V2G20XpETKrD9V1w0QkrWnrGSwf5DLzt4EwCf++Sbu/fGjhEGM5/l4Xpt0fr1j12um3sHzQlYsX4JlGpiWypI1q3nXP34VgNc//2xGSiaXbFvL71x2HgBv//CXmGtDp+MShj6qmmXuTdPk1lt/wNiRcXbs2ImqakxOTvL44zsYGBhk3fpTGRjsx7Hz+H5IT3cPhmGia3rWN+UYvPD8bQB85hu3UmsF9PYMIEWHemMGmar8wz/fA0Desbjiwq0oikKz1ZwPkASxjGm3mgSuR3d3N8WuImEcoekGaSqyCnqum+eOKvSZHmljnJnpaRQEn/nqDXzhB48D8IZLN7FgaJB6vcr5553HxPg0QtWpV+cY6O3BtGzyuQIc0x92TB7de4i/+2oWeP7eFadTzNt02m2ElCTA9EwVVai4bouVK5YjZcr40TGmJyfxOgmP75nkS7fuBuDKl55LT3eZiYkJ9u55kgMHD6AqKsViBcdxiOMYRVGoVCpYtsHBQwdxHIcwiGh3Wpx73tnousHQ8AKWr1hBpacHPwhwPRc7lyOf7yJJFBRVoGoqge8xV2uATFGVlKHhQRrNBj09Pai6RrFYojo3Q7XeQFNV0ihgfGKaxaOjSCFIERiWjapliYckSYiiTFM0SRJUwwDU+Yp19tz7YUy91UTXMoj64cMHCQIPr1On4BT42ldu5PxzzucLX7oWRXPwQ2i2A9LUYHBwBUfGjrBgeEHWr65njMCShCBUsSyV9RtnuewFz+VHD9WIkwGq1SrTE4cRioKq6ygCNFVDAo1Gk3zeIQi8LOiJQqQE07SJoxhV1fCDAM/1MQ0LRVFxvQ5pkpAmWW/rkSNHsWwHIRJs4ZN0pknaUwi/QaWrKyNUchxkLCnPk/UcY5kNw5AkDSgWi0ihYFsGuqaSAh23hlAiXK9Gx63heR7tTof+/n46bgfLsmk1M0bumblpWq0Onu8Ty4A4io73IhaLXeSLBQQSQxXU5rKKUF/fAL7vksqYqekJwsjPYL2qRjHnUCwUcYMETc0q8xnUVGd2dhZVVZAS+vv78f2Aa675As1mh/3795MkMUNDAxSLRUBy5tnnUCqXaDTm2LZ1G48/vhNFqMRxBZlM8JY/uhLwKVX6GZ8axw/bBMkc991/N57fgSjmwO7dGXlcu8GWrRt53iXPpaurjFBUbF1Blx6nn346qqbjdcbRdHAchySRbNt6Fi9+yYuYOHqQMPQoa13MhHMgNMqVHgQpnu8iEMhUEscpURTjOHm+8IWvoGkGUZzpp46MDBFFPkIoSBJkClEYItOI22+7nUKxiyQMeXz7wyiqim6YyDRC11TiNAURgghRtQhTV3DdFqNLFtM30A8yJQh8VFVkPc9IVqwcpVjKsWzZ0gwKKhQCP8Kx8+i6gW3beJ6HYWqkaczs7AxCCAxNpVIpk8vbdLwOixYtwvN8ent60VSDxx57HCEglSkoCv0Dg+imQaFUoFDIkc/nsCwT0zTQNQNNyxIkqqrid1xURafTapPIFNf1AGi3WnhuSJoGjB2eQtMkqiZR1ayHOgwCpBBUyl0IRbBwZIj+gT50XaXZauJ7EseuYOgFDK1AsVggCHx838OyzHl9YIMoSkhlpp3c7rgoJLSadWSa0Ol0ODI2Qb3q0l0ZotVMmJ7p0NPdj+971GpzPLFzJ6ZpUm9UKRTyIBKCwMXzPBRFyRJpioKqKRwZO0yiWyh2nk1nnIubwJe+eD3NZpOO2yCKY3p7e1AUhUajQRxFDPZVaDSrKKZBOj8f7t27F0UIogjmzCYSeP/A21GETdTYRVx7EmvyQhbsej0T4TQTA4cxhyWf2vghXrvjSm7/Pw+iaD5nnreFZetWMjB6CpVKL7ZMeNNv/yYf+du/4R//4aPcefP3GN+TkUaeyLz7i8jHPNWnO5lfd2I/49P1ZD6dr3gyP/LYuE+0Z+qDfaqd7PunG//PQgs+m37Vk3HMnGx/J9qx6/PzVLNPvJ4/r5/9s3qKf9Z1eep2T4bKfLqY41/b7/vLNvU973nPf/QYnpVJKd/zHz2GX47J+eXZ2Yki9b/wHp/mBj/R/rU3ZfzItwGB2jVwHMOiCUEooJjLMzOxh8Rr02636e4fotnukCQxCBNNEygiJAl8Ar9Nd6VM4McYts59997P6OLlpIqJYxpccNElDA0P0FPuYezwQeyHJzBtm7ERi/Url/Cte7czNj3HgzsPcObm9Swe7keg0PSa3Lv9CT563U2sGR2hv3eA6myVkd4Sk40O+yfmuOOhHXhem4vO2YyhxUzNtbnq5gf5wSNZQPJ/X3M5FUNjcmKMRSuXoxhl/vmWuxmbrnLO+pWct3EJqlaiXq+h6hpf+Kfr2bx1A0kaYxoGn/razYRRzOqFw6xcPICqZr1sqgrFLgtLz7Nx1WKuvfleGi2X7/3wUQ7t38emdSvJ57NAe7bW5Ob7tvPeT13Lt+56iFdcci5R5GIZJp7v8so/+3smZuusWzbCNX/++9imjaKanLa8lx/8eA/jMzUeeHwPv3XRGSRpiJMvoAoNw9R46yeu511X3cBtj+zhTS88j/37DtLXV6FvoBfbMti//yA9vcP/n733DpPsLM+8f+978qncVdV5pifnpJE0kkAiCIFAIIJNMoaPBYOxscEGsywOu2uWtRYvDqwJBgRY2MIkyyAQQYByRCiNpBlN0sTO3dXdFU+d+H5/nJ7RaDQzkrDNt9918V7XXD1Vdeo9qc45z/0893PfRCo1RNeloNlYQNT3gxCsXP8Cvv6Tu6i3Otz76H7ssMvEsWkGhwf51Ndv4NPfvBGA//y2V/CSHVuZnJhhYKjKxMQUjpPhNX/0CT70f77BN2+6l/e84XKiOEI3DCYnpigUe/jmT+7g4Sem6NU7hJ1xpN3DDT++m0fHfT5z414a7S6bRsr8zftew/59e9F1jWariSYNpEq47paHuOOBvfQUCpQLOYSQNLsR37r5Yf7gb6+n0fa5aPMy/voPX4uUoGsGnXYXzbYo9VT51k0Pce+j+yllHSLfo1wuESjBP91wF3/0me/TaPtcsGGYT7z/SoTUMC2b+swMS5cOcejoMYqlXmzboNvt0mg0ME0TpWJc1yGOUr/Q+bkaIyNLqFarzMzOEaqYerMF0mBwsIKQBoaZYWp6HkNqKBVD7JPJ5kiiEFNCFIVUqoM8vmcP1b5+/DAiY2nk80VUHOK1GgwtWYLQDFCg624KFvwFTC0V3EIlqZiPZRMnMSSkYOzYLpJqD+rCy9B0MAyXOI6pVMt4Xhu/0+RLV/8zd97+MxqNeUaWr6frRxSLZT70of/C6pWCSm+FYrZOp+Ozb7/A90M6bQ83Y2HbDmFgkC+0uPTSNTz+2DFWLrfRpI1tgjRshEp7cizHJU4EummRJB6K48BMB1LRJanpSE3HXlQklppGaheRYJomjUaLTLFAPl8g9DsI1SGODYQjCcM2SpbpNJs4bp4kESRxTK02g65pqf+tl6pex0mIZTooNAxNMjE+hhKSjFMCpROFAscpIKVASLHYAxphGia6biIkZPIZbCdLNpelGzQRQlu0WUkTCvMLNTKORRR6CBKknoooJSpAkJDNumhaSt90rDy2oRNEAVY2i1AKhA5KoUmBaWp0Oj62lUHTBFNTs/T3DZMoGBqsIHWDXY/tojeKEZqgsnUDliXotOZZOrKChfk2mYzLPXc/yJrVCRKfQmEjgdXFyRQQUQfXLLNp6/NoN1s0ag3ymRK9fctxCzah73Pj9f/Co3vn2HLu25FBQm36KLeqhwnCkIF9CcOrt4N0eeSxPRRKZSanjrB8xTC5vMXotTfQdNocPqcK6ERhB1PXWb1nC0kS83dP/A12JoObydDf20uiEqRMrZgc28a0NJASr1PH1LOpkFwc0NtbRTcdbr/lp2zcuIZQhRiGDUmE7wcI3eS73/k+y5evTsXLVIJlO2iaQRAldLstbMtGCB2VpFX2bC5DEgcpuyBS+N2Qxx/fh0SjNjdPuaeHI0ePUO3tR5OCQiEHApIwQEqNSIFhmvRW+6jV5jEsC8tKvaBX3zIBKPZfOoCQoOkaYRThOGlCsdP2MAybTstn//6D9PX3AgntVpf7730E07KJk4hsvoQudR556GFWrFyF151l7+NHKVdMlNDT6rJIbw261Ljz9lup9vVjaqCSBM2wMGwXx7aYmBhFSIVtG6lgm6alzKg4WhSNCziw7zDTtRqVShnHstMEathOmUlCp1Co0OnMY2ddWl2fx/ftp7dcxc2YmJZJKW+DJgm6HpGS+H4XJ6NjGDa6nvbgR3GCF3isWLkcr1nDNhJyrkFtaozt57+IXM6g3ZwhSSSJUtTrC+SzGUxDwzJ0eioVNMdN/bwdG9exGT92jDm/wz3qZ7y59AYuWPlCet0yj9/+RZr3V1g7834eCu+jf2uVudkppGrztd5vUY57ucx5Bfp5MXfcs5NizxJGNlxCqTTM+OEneNvbfp3v3fA9vLbHcO8g11z9RS5/wxtP9LyeDF5OGwse92A/S1x3uhhPtQSimiCWxU/TMjm+/LMRPTodUHomYPZcY85nC/KeLSA887xPBYlPO4Ync2bVUwWWznReTvvy7IueZftO992zx/On++2caZvFYhLjxHJPmeM/FrxKKT/6bJfV/yM35Ffj1JFaDaTANQGepFSc6YI77cVzyudnGsdvQqcqhJ2cOXumuU7O9py63Kny50oKlBLoUnL0yG6iYB4x0M/SFRcQh21qU/uZr81SLJYh9gniCF1zsa0szXaHUr6c0oriOpqeI5crMT19hIW5hJbf4JLLXpJmVTUD3TI4eGGZiclpzLbDqy+9mD0Hj/KZ62/n3sf286o//DiWkQat9VbnxDa+53WXks8bbDtnM7feciuvP28Vo1M19ozN8qnrbuHvv3MbjmXQWlRMBHjPay9h+5IKa9Ys49h4iev/+V/YsHkj8njBWSqqA8vZ+chOJsanuPzyl/G2t74OiNGlTV/J4oXnbuC2B3bzjo9+mtwnbApZFyEEv/PrL+b33vwK4iRkxfAA3/6bj/C2P/skRydmufbWh/nqbTspZF2iKKbldU/sxwvP3YBl69h2WtX96NXXs/vQOFnH4uo/eTfdro9l2xw9epS1GzbymQ//J171gb/ioT2H+b2/+Byf/bP3MjczTqU6hJCLUQmgGzqOm2PLto20Wi0mxsbQdFizbiW+v4Cla0jTIUwSsvkyntCJo5BcRvDZ//J2fv8T/8R9j+3jvsf2kbEtun/5ZeJFm583XnYR73/zq/E8n96+Cp12l1gZi1To9HeUJAlKCIRSHD54mMHBYbqdJo/sPcrn//WnQNoL7dr3U2/7J47Hi7ev5Et/+pv47RarV69l1+5d5AsmX//6v/B77/9ddh2e5Wu3PMZVX78HXQoyjkW9/eTxvGTLCH/7vsuxNB0/6OD7XSzLZeroGENDg+zcN8oXrr+X//FPd2PoGq5tUG89+f3LzlvDVb/1YnQ0TMMg1jWWb1hN0g1YtWoF0tSIVEicRMzPzVEqFpmZmaGvdwA/7JIrFFEI6vPz2KbB+g2r6bS7JLFgz+49fO+RnfzGW99AEHSo9paYnhjHazdZuXYdoR+hRAh6jmzRJgg7rFgxQru+gBACJ9fDzNQM5d4SRiZDEkfouiBSAZrMAAopDCLVxWu2Keb7qLWOYhoZBCkd1ve7qKEx5JJh8nqAClNKpqYZBO0AV8shLItiT4G//9wn+ZM/+TPO234eb3jTFezZvZesNFg2MsSBvYcoZqcpl3vYtu0cbrjh+7zoRS+kNj/PkpGVfP7zn8PJaLzvdy9HaFU0bQJpbiSOoDY7Q2+1D9+PkVqAZphIlQoXBWGElrFQwiQO5onjBNuy6bSbxHGI7bgQL4pLWQ4kiqybobMwh2m5mJZLgkEShuiRQDd60oDacJA6PHHwACNLVpLJ5dHMtKIqk8W+VSEYGxunkMuApdPfV0VpJgrFQr1OqeSm22MaRLEkiMITljiuk6HT9snmM0RRQLfTgcTELuYYHT1C/8AAmjToKWaJIkiUieO6HBubIJ8v4LommmYipMTzPIQwQCoifBzXIo40Wp0Omh7Rrs+RsUzsnIuQ0PGaWKbB0HA/cSw4sP8gUhaIwzpbNmyh+7O7iZOEVq3GzT+9mVe98uWESjE03Ith2GzctAM/2I3vT9DRDGampxkaWI2ZuYhQJuR7ApJQYS/RqdfH0I2QZn0G2yzz3/7yL+h6IYmyMVyNJet7mL7xL/C8Dhsv+jAaBtdfdy1Lh1diRAYb168lTkAPAzYuWc293iNcYl/MXcE91OZblIpFpJQEQcirXvcKbr3lLu654y6uuOLl7HxgJ2vXr2JwyQCe38W2HDQSJILJyQluuukWrrjylRRKeQKvzroNG8hke+h0fOIkJIwibDfP4UPHuOwlL2T82GGWLhlGullUEqOEIvBbZHNZvE6HjOsyNTlFT7VKogToGlGiECgMKVi+pIJmSMp2D5alMzgwhB96OJaivjBBpjQEuo1CIaIYUwracZfpmUmqvetToa2gA6jFZ1RaaUYodD31n4xjQTZnI0RCpmSz0lyKIMRrt5C6Sah8+gdK2Lk8hF08P2TthrU0WzUEqXiYYZa5966dbNy4jkqlgKZBs1nnnHOfj1ASpWkYjoGKIlSkGJ08TKU8wk033caOi7YRBxHlvh6+/bXreePrLyPo6limg+1oILN85R+/yquvfCn9vRVMu8CePYdYv3E5AoNcoQev3WHpQD+18VkQMXPzTWzXplDpJ4kha2dptxbQTImuu3Q8D13GRFGM7fbQDTvknCIZJ0urVUOaNgMrVzE/MYFtDqBXltKYb7Fvz36mZ6Z58YsvRUMnSEJswyTyQ7L5DPVWE9fJctOuu5AX6bx34N38mnElSesY3fE2k/d3uKT+h+yxH+SCS7fjeT5T0zXWrToPIeFry7/EOXu3c+B/zPP7P/gANg3O23QBH/zYx3jjb/82BDrnX7KXyfF5pqam2Tc5w3te92r+7p+vZnBkM1FcQ1fF08ZscBKWOh6wHI9LTgjsiNPGfMZLoqfFhKeq/Z4W3Jym8njy+2erbp5pnBpnni02PdM8zwUsnykWPnEIzxiLn36bT6e4K0hO+a7+5Hrj59Yje/K+HT/fJ4SwxCnnnae+RhwHqqfuizjhKXvi/VMsmVJCh+Q/GrQ+1yH+b5E3fqYRx/H/Pzb0rOO5A9fj42wX61nXeBrgeqY5n4nCcfzv8czNcapEcO37IVdBX3EeSgmkUux9dCeucNCtLs1Wjb4BBze3jIPHJhkYXIJQinazQT6bI0kilKYjVOrr5zoWMzM1bM1i1677mJppcvGlL6WnUuaJQwdZsWIFYafNxNgod95+J6/NrUc+Mobj2oyHAZ89tJdba9OM+R4JikqlwOZVI1z5ovN4+R3jFN0cXT8k8AM6nTambfCNiaN8lxa7Z2bw/JCibXGBW+St1WFeOryUVrOFm8lgGCa12gzd91/Euz7+Ve557CAf3rqdPx1eS5Kk59DzuriuTRTFtFdXcV9/Dh1P8b8+/VV+cusDjHodukkqwPCR1Rv54zVb0v6sd76AuDeHH3a55qqvcuPOPTzWmGchDDClZMB22V7o4RVr13DZR36NsNOmVMhz44f+kd948E4APrflAl7fP5z2KQYRc+cNUXnZOdi2wRc/9a986F++hwSuv+DFXJQvEScKwzC48r5buGtuhiV9ZX741x+g/8aDGDUvzf6feDClD7Vo8xDylRtZmK/hTu6Cew9iTvQjpWDPwhyfPXqAW2Ynmex6ZDM229av4O1XXsbl8zHJQ0cXKYAxXS/ADwJKxQKvevhW7pqcYElfmR/97YcY+KdHkFISRwECxR2TE1w3O8H98Rzj9SbtUFHOu2ws5XmHO8TznUwKYIKQ/v4+ur6HlBr1d28kl3G59ts/5uFbJ3hwtsZEt0snjqlaFttzRX5jcAmXX7aN1kVV6vU6g1qO+Cs70TQdTZOEYcTP63N8feIYDzQWGFchTc+nWsywo1LlTW6VK/oHQIlFr1ItVa2tunR+bSWmaTI6Nsby66aIohBD14niiPp8g55KGSEF6iXLqQ3rtFsNtEdnydw9Rb5QQB7v1Q5Si5owCkk+uIMjhw+RRAEbH9aQMz6IVP0SoVLTpSTBX5tHXr6Cq6++lne/+k3o33iMwPexnUxKqyRBJRFCSOqvGsBd3kcnisjdOQE7pxBKkAiBJiVSCFqXPIYMh8l84JsIKRGJj/qd/41AEEUxtdka09MzzMzMsWLlKvLvfCPXTe5n2bIVvEAWKL5kgmSsRXfqHhQwflUdx7Zpd9qIv/l/OHBgP0tHllD5ys+ovGEV3pFp8q+eo/MRn6SdWr2Ii4aw3rader1OoS3xPnYTumGCUqkVjBAnHtTJB85HDWaxXYfOPzyAdt/kiQd4GPrpfukaYkkB849fhNQE7XYH8YEfoy32TCZxfMLCS0qJeONGeN4wumEg7jyI90+PoBtmSuNPovTBv7gO47OvRNcs6o0Z7E89hjbZTkXqFsVXkAIpBPolI2hv2UIURYixJtHH70QsKnyHQZhSpKVECIn2oedzJKkxt9DC/8cH2B5UkCLNlMdxkgpJIRHDLvzReaBZmFLg//6Nx2sJRFGEpuukh0rSumKEzpZyau3z4CTxP+9M1Xi3pnPyYJAqqytF9y8vY3ryKHO1BptvapD7g4Sfv+sIq4trTwQ5UpNoL9iOevMrEIkiPHAU8ddfYXJ6mmq5F01PkFInUQpdMwj/6M387Og4n9Q+izY1yzU/2IFlO6AE9XqdfC6LbpgciXziD76V9d+5nUfbj3NbzzgX3a2Ymp6mUCyysv/jJHHMQvCXPHD5IP9z949461vfwvIH5+m/5gEGBvrT+CvVlqPVbJHL57n+z7aQhG1MHS7+0ijFqTQh1Wo1cRyX8fFxBgYG+a4cQ//Y6yBR2Adn2PGpRxdtWVINArX4fJRCcse7V1NfkgMEm75ziGUPzaNUen8yTZMkiogTxcPdSUavegXSFAgV8JqP7U6r48eDz8XnbhiGPHTFMHs22BQKJZY/VGPL946hgB98bBvJojZPohRh1MIyMyfUlsEApYjCkCRO0C0dkQgUIbPzC5QLhbSHXRiEQQdFwv59x8gXTAYHhuiGCxhaBlPPE0Qe7U6Lnp4iQZj2YvudDj/9yc1s3ryBau8wP/vZPey46BzyuRztVoskSlIKvW3jdXx03SRJJHv27qa/r48nDhxmyUiVjFskk9PRNRvDMGi1Gpi6ll4HYUCr3aVSHUQkdRbmG+TzRebmZzAMhWlWcSybOJ4lji0sJ48ftCE2iVSMaWlpf/viVRD6HkG3QxDq5AsFHt/zOOeedx5KgySKEUkIKiDwFe22x3d3/Yh4g+CqgY/wsiWvxUg8kj0/5KG7bmP5zk+T2+ri5xZoNlvYtoNSitGje/mRfxPDQzr9d6/nBb1vYm9wB5899EasngH+9ceP058f4CN/+VH6Mi7DQ8t53/s+QJIEVK151m9bx8c+9U26ZogInowVnxHsnPRxCqjOHOM9E/321ArvyWqzp851Kgh8Lsy+fw/g+lzGmY6DSs4+t5AnsRfVkz67p+1dFU8FrvIk4Hr8vWe7L2ei9iZJgtDO3vH5lKrwKVMkPBV0P611MAZd10+77n/voWnasz6xv6q4/n84znSRnm0cB4zPdpw2E3SGbNLJn5+NG3/yRWqaJsFplsvlclT6Shw7vI+hJVtoe23mj43TXy7RbdTIZAsUS1XiyEc3HRQhgd8FYhrNBqWeXn5+90O0PVi38RxKpSLN+QVWL1tO2/PIujlGVq6k22kzffsRBiVIEoZti/+9aQexWuw/6M2i3n4RQRLh2A7ioRvToFLXiEKFaep0Ox5vrA5x6TkDzC3LsH7demo3PciqQx5ztTn8bkgunyMIIjqdOvlCEeEW+OKH30a1fxnhF39K0oxRixlwx3UXBVF0TMNCKUUu43LV29/ExxkkikN0TUMhSeKIRIEmJYlKUIlCAr9z4Q5+1x4CIE6i9PPF3I0cLJJYOnPtVDX15X1DTF36WizbTr04SdXlDNdE7+2hNp+q7b7jeefxjmYGVJxS3XQNGadA64YLLiX4wxcRRTHFYpEuh/CDANtK1UbDMMI00z6s1NtQUCwU6dTWkp32SUSaiFlbLPPJQg8CkR6v12+msHYYNIvmN24l77r4fsDkxAR9/f2ErS6IAtddejn2b1/CzOQE1b5BxiZ+zOBg/+JvTrLJzvDCLRcSbw+Jqg2SlRczPj7GUE3HuGZNkLQAACAASURBVHU0rXwkCZpuEscRcZxgmhaOYxN027z0gs28M1wGM22SOH34RFGI62boeh6jRw9Ren4FKTUOHz7MSiulgspIIKXOFifL8zZvRwiN2hVLGI/raBos3ReROZAqIOuGSaIUnWaLfD6fBpNSQzNMbNMmSVIvTZTC0FN7FrEYSB89cpTe1ZuwDB2rT0Mr+CcyqlEUpSK/IsFxbCYbdZYtW4ZQMdEDBzBJfU6lNBYrL+k2G4aFFyT81nveRW33YfrUIqgBjqtQCpEGRNlckf2HjrB27TqS5Ci6NGDxoYaCKI7QPAcZagTNJtJ0kFIhlSIMI7yOR77YQ6HYQxDsojY9xc4776Tv/A185eovsfo1b6Gg1InKvqZpVCplBGAYOkZfPwcPH6a3bwDDdkj21cmcO0QyM09QtlELC1imSaQU9cY8lmUQN2Kk1EApgiDAsizCMFzs3U7wWk0qTgUvCNNexcX7lly8bx0HB1EYosUJiQLb1PAVaS+yJhASkjhZ9GxOiKKQxlyd/v4qCoG+2BssRAoIU+pvaiEkVBom25aJrsnF9giB1NJ7aLx4H/d9HytMe5/DKF4MMNJzqhs6ApEyuJVC0wVL+4cYWe4Q7VZw7+ji/TyttqXnH5JE4VgZmm2PkBhDCKIwQApBEATYWgrGdWmQRAlep83NN/2UN45cRKPdRcoElxJSk3TDEMM0kFLjJzf+hFe/6lJWrliJf/PdyFwIk5LRxjEGh5agaZI4jrn2mq/ymlc8j2NHnmA4srD8mGq1F8sw6LTq6LaN/WKoL8yRkSa6nvBbK96JMf4QltldrFZIOu0mhbxFGMUEgceqZQN0SzYLbYObB0Z5sbOSZSMjBGFIw78mTRipBK/TYWRkKffd9zNWmGtS/9rj4H7xWNZqNUzbIkx8HMdExfFTerxSmrZgyZJhlIJt27byWBKSRArPa1IoFEirWSwmi+IU8C9aKEVxiL6YpDreY2wYOgjQdB2pFGuWrmbGMUAKPC8AoQHqRDAcx3F6LzdSte9CIZ/2hUepx3S73WbP7n2sXLkC3++SyWaJlI4mNJI4QiUhQtNI4pgg8FmYn6enWsaxHBr1Nj3FHJqW0qg1U8NxM9TmJli3bhWJ6pIQ4ljFNBEaN/G8LkIo9uzZR085FfmzHYuXvORSHNckDBMuueRidFMyNT2No1sIGeCHNnf/7G7K5R7WrFmNaQqWjQyQyWXpqZ6LpnzqCx0MzSCJQ0IJpmkTxyHN5gIZJ/Uu/utP/B2///tvoVAqEyeCbKGCJkDqBrW5aTK2oFHvIDsx2ZzNZz7zBd7+zregWfm0EmuYCN1kYW6OSqXM3Nwciepy7vlbiGOPf/3Wd/j1X3sTXifAciQ333E7nKOTrJFcO3AtmweW0/VrzO67iekHb2LDnmsZLxwksfK0a3UWFhp0Oh6PPPIIW9cuZf1EgecPjOBtVbTCu1hfu4Q/3/p9HlvyR2xeeT79laV8+CO/w4fe/xGiSPH617+Wfft301+xefCOGzm8Zz+VtUtTOyBNewod99nEjSnwfKrX64nPptM4T/advhoJT29VOzk2PFOl8eR5Tle9PZ7cPR3t+Uz79Iu0zJ0t7j0dk/Bs758855P7/eS2nW2cqd/05GP5TMfhTNsjpXxa4+Gp+/CUPtxTFhanVFyfnqTQfimg9bmOX1Vcf6njqRVXpZ7kkz/biutzBa7wzFm2k5c504V78ufH13/8odq55r1PqbgaUjJ++CBGbjVSzeE6knpnmpLuMlsbxzQd4kTgFIcIgw5xpAi7AYZpYJs60AVTo12PiGMfw8lx840/prdcYe++fbzjPe8GoSNExGMP/pz1Gy7E1mK+f8N1XHbFK5mbb5LJl3j44Ycp5rJs2LiBiBTIdttdbNvA63TwOg2yWZsbvnMrmzetZa7RZN2GDTxx4CDr1q1CkyH79+7hiQOzbDl3FXO1EM+rs2LtGnryBdqNJvfefz8vf8VLMU2LIO5iGDZJklaplEpoLHiUe13iSEeJOpq0UbGORKcbd7F0mSoty1QpWEoNIWLCKKVvIkDTQMUdolBg6CaTU2P091dJ4iitoFkuSkHb62I5GZrzNXK5HELC/FwNN1ug02lTKJT5zKc+z1t/403kizlMV6ISQeAHtNotTMOkUCgQBOm5iKMYP0gFrrKZAlOTNfIlHTtbYnZ6ht5yNTWpj0IMyyTsahw+sp9Vq1cSBjFfvvpa3vVbb6brtzGdDLYpqddbuG427T3VI/y2R4yGYZmYWoKOotNVhFGCEiHZXOrBG/kBvdVBwon7EPUpdnUsCoU8uVyWQ2PH2Lp+DSr06SqDJx4/QG9fmZ5KDzMzc5SyJvWFDr2DA3STLhkz7XGNooDHdu1i04Y1xKFPInUKhdRepNVq0dc7QJLEoCwgYaY2Ri7by759e/GDDpu3bMB2XYRSJJHAsJ30nM/XUXHM+MQYazdtSMEZkliLaDXbPPLQo5TLFRwTsqUihl0go5vEKiGKQzyvQ65Q5oc33MD2bVsp9/Rw4MABVq9bjpCSJFG4boaJsWO4+QLZjEOsuphGiTiJCeIWutQgSdANgyBJA1kZp0F2ojromoESEYkyUsqq66aCMn5MqztO1h0kjNtIzabrdchlM9hfvh9lZtH+6iqa3QQ7l6HT9siYLo2FJtd+78f8+quu4G2vew1//sf/mbYyObp3N1/5x2u54tfewEc/upEohvHxDqVyib2P15iammLTxo3cfte9rFq9irvvvosLL7yA4YEqIyMe3dYCidDQRD6tVhup52nX72DaeZIgwTRDmu0OmUweoRmpT7KQxFG6/1EiEEIyMzNLtdpLx2viujYzU5P091cIQ0UYCmzHpjE3iWW6JInCMAWGZaNJiyDwGZ84ytKRVSSJYKE+R+R5lCpVhKEhSUi6C0ToCN0kDjxMM0er2aFYcokjjf37d7NsxXIilaQVzEgsshg0It/DdhyiJCYRoKIYqaVKyLpuoaIAzwvI5RwQCZruEoYRQehh2y5SStrtNnGS4DgWYddHJYK5hSZDSweoL9QpZEzajXlMN4vtFgGBlqRKuk8cfIK1a9cg7ISg7fDYY/dgGSWaCzNsO3cTbtZlfqHB7kcPcN65a6jXmzy+f4FXvnSeXQd+nf7+NUzN16j2lsg7++h2Iv7+Sw+ybct6iHVKuSHWn7OKqbH9HHx8HzsufRl4X2D02BiDKz9Kuz5Bz9Ay6s0mY/v301u2KWQHKBUztFpHMQrrueEb3+MVV15BpEVc+Z9ex7H3jvGblTcjooQHHnyQTVs2k83niIMud9/1c170ohcRxwFzcwtEUUy5tzdNtPoepmZw6NBhBkeWkMQBtm0AGkG3jWnaTE3MopD0Dw8SJz5BEJLECscQoASOLZhvxqnSrS7Tfk5dYOg6hm7QabVJRNp6cdwaxECj2VnAtF2iIMFcFP/p+h6ZTJ4oidMkhp6K9k1OTlDuKZHNuHSDCEM3mZuvUSpW8LwWpmUShTGRn2CYOqYpabbqRKFGT0+RjtdAagmGlcXvdslmsqnPbxjQbfvkshk8f4HmwgK2myVX6sVQkkZrGhITzVB4nkfW7UfhIbQ2fjftH//Ha77OW976FnrKRbqdDvWFJj3lDGBgGA5CSqLEhyAmTBqgyjRbTRIVUK4U0nt14OFkHJAGYbtDJlPCD+rYVpYgiUDpdDsd3IyJSjxazRhBCak3cJwsQjMRuiQJFUFUpzY7Ts7IcfDIJKNTk5x77jbuv2cXr3rtZfhhAEHANVdfzctefiVuIUelt0Kn0aZQLBJGEe1Om7jbYmq6RalcYtIZ55HuLs7PbYcvdLnkvBfyhje/HclR7vzqRyjf9wHyg8OMhnNs3zyCH6T316997RtEUcQLz++nXFQYsoBmx3gND+G5FBcuJzYn2Lf8Q3Rp8sUbfe7b+XM++bd/z+DAEkxLUO8EXP/lv2b99pfymx94N8TaCeB6tjgOeJq9ysnA9eQRfDplUZjv656V3nsmwHhqpfF0LWQng+2Te2hPBa7PBEjPth1nGr9I3Hu8inrGtjqRPAlcn6E6e7ziemLbebra8nMBrmcCs08/30+P4U8A/1OBq3b2hIBE+3epcD+b8Vwqrr8SZ/oljkSFwHH2z1PVzp7tj+PfI9Hwi/wQT80anfw32vkDsFxEaRhBWsHIF0t0mnNoWhddZDENg1CZZHJ9KE1Hmga6TIjCCMfNYRk+CwszlMo9RIlkdOwIfZWVIJpY0mHpqlUIDIIgYPXa5UShYvzQAar9FeysSyR1lq9ax55djyCFRsa1WLlyhEKxiNRT9c/JySkmpqfJ5/K0m010S6feSDhn20Ye372LmelZ9u/bTz6XYXBokEyuQLkygGG6rNu4mttuvYtLnr+de+/fzfoNK1Ax9PWXiaKEsbEJfC+hmCvx4P0PMthXwY88SqUCAp0kCdH1LEII7r//EZaM9KOj43U9LMtBRV10KdJykNJIFeVjpBCoJEEpDV1K4iQkEQLTcEhkKu7SajZoeT6Om6PbaYKKmZyeIZfLoROD5qYedZkMQ0MDIHWiMKDZbCGEotls41gZstksXjdECMmRI8eozTbp7e1dFNmQSCmwswU0qZFxHBIVo8IWMgrZtesQhhYzOLyEb37jW2zdvIFNm9bgZGza7Sb5XAbPj3n00b3Mzy1QqfYgdYOfP7CbVSuWprYlKkJh4gctNNMkm83idwN8LzWkt2yDnXd8n6FKL1Oeor+/j2IhR0+pxOjYNDOzDXp7K5RKNtlsnrlanf6+PsYnJskXi+i6gaU76JaB1NJgs5BNQbQfxuTyeR599DGKxR5A0mw2OXzwKD974D76B6oYGhw7NsbaNWuxLINSscDuXY9TLObRdY3Aj5irTVPqKeJ1fYaGqwhpcGD/PrIZixCBa2WRApYtHQLdIOz65PM5Gl4TqWsEfohjW6gkYtXqtWlQlQQMDvWze/c+BgYH8bs+4xMTaJpNp9Umm8uz69Fd9BQzJCrBxEIIA6HpxGFMHCkMQyD1lP5qmtZitU8Dkf7GdE0SBSFCixHSReo6QtdRsYdlWjQadbKPz6P3LKN13lJy+SG6vke9Xmd2tsUb3/gunnfeNs7ZtJF9+/eyeftW/uuf/Tl/+t//Oxc8fwcXX7yDXH4SKSXXf+fn1GoxUeiz/dyt5PI55hbqDPb2EwcRjz32GFLpDA5lME2FlhyhE2SxrJSqHgYRtqljSGNRqMjAdvLESmHr0PUCGo0WjpOj68fYpoEQkMtnERIMw0YAbsYFbObnGpQKGbzWKInfxHTKYBo4Zo6O7yM0RRTHlEp9JCokDIKUVSEMFDGGLmg2W6BihLQxDBfTMFNPXE0RBQqVQG9vGcu2EcJEKQMpFZZpEgQeQtfRdJ3Z2Vkyrku71cR186kSsga+55PJ2alA1aINlZQS07BZmK9hWg6GYWDp6fExbQfDSf1bXcPE0AV+BPliP/WFOrZtI6Sg7XtIGVHIuQhpYDsFFB6OWaBQ0ukfGCCTzaCiAEnE6PgMvdVhnFyeJUMOtjmDxyt4dNc+co5OtdIHyShSJgxXdvDe9/1X/uCDH2blyipS+MQoKkMbsHSFLR+l2tODH67A6lkGQufP/9t/48pXvxrVTfhfn/grzn3eC/Fl6pu6Yu0qhAyJohZr+lbybXkDf9r7x3zznu+ycetm7IxN6PkYlsGSkaXEcUwUxmg6ZDM5Dh8+QrHYgxSKWEI+l+Eb/3wd55yzgcOHx7Bti06rg227HB09yqrVIwR+Nz2upomUIqXuS40EhW7oeN0umtAQRGiaBaT94EkSoesWhqEjpSAME5SQ3H7b/eiaQbFcRCrBzNQ0pZ4yUaLQdIkmJBoaR45M0j9YxbItEqXT8brohoFhWnTb82QzOZJIYVs2Uk+wbBOVCOrzbWw3g2nraIaWCphpGnMz02mlNkn7vC0nVSvWhE4UQU9PBQmEQuBYBr7fxXby6JqZWnZZCil6MCyddrPD8y5+AV6rgYoFDz34KLO1WfLFHK5rs7Awj22ZdDttnIyD0Fw0E0K/hVQR2WwBTReYps38XB3HsrHtHApFECToukmz1cAyTbpeB1SE4RZwnBxxFJDNZoiSDhKNfbv34NgGGTdDLlsgQaent0xvpUS4MMGGHecTBwHdep2vf/3b9A2uZHahxS03305vb4n+wV66voeupUJoUpeorOKu5B7Gwgk+vOz9fHDJ+3n+RZeSzZUp5AT3f/uDzO0cYIf+Po4ZB9mwcQ2jR0axHYMkbHJg9x7Wb+qjWshyu72TUf0Yy/10nyPRJMoewfSW0jf3JnTVS938CY3QYGFeUihoLB9ayf0PPEJPT4bPffav+O23vgNcK62OJeJEn+WpcVy06N399ArcU16d+F98nwFCoO2ITlr2ySLKmQDN2UDuqfHs6eLbX7TS+Fzj1uPbc7Ze0qd9tiguKsTx43bqdwUC+XS0ePrZ039q8TvPYv1PofWehfl48pBCLOqEHF/jolzT4mvEScD3RAfC4jlWp/TaJmrxe+kcmqY/J0rzv2U8F3GmXwHXX9JIkuQpGZhfxg/hdBmnM92ITqV/nG6uk797nCIihCB65AeQraDlqoBgdmaG8cNP0NPTh6ZBlPjEkU0sw5QKJU2kbiKVn3oh6iZSs8jnqyih02o16e9dQrM1i2YIDLOHr/zDNcRxg4sveT5xbNOen0DFIfliEYSFYdhoUvLwQz9j+ZqVIGwMM0MiA/xuF8fNUOqpUOntI2PbzM/VyOZcZmfqjI2OMjjYj5txmJ+bw/M6zM7M4jgu7WaNjtdASItzLzifKJYsXbqcb3z9Os49byt79xxkZNky3KxNuVLm5ttuYfPm9TgZE804LnSgEDJBokhin6HBYcKwhef5ZLJO2iOlSRRpP6XUNAQppUwIRZKESGEDHYTQsO0e4tgjDkOENNCMVLBlfm6O2vwC1b4hesplDN1Ct1IRqGPHjjEzNcX3b7iB1atXU8q7zNZmqPZVmZ2dIZfLYxg2Dz34KIcPp5TRu++5l1Wrl2GZDqZl43W7HBcAIWWd4u/9DnH9AO7QFjJZg0jFbN68mYW5GmHk47pp9UrXLVA+Q0NDFKtlhK4hY8X3vv8j8vkClWqVKAo4eniS/v7+xRuqpNloUC6XqdVmqdXmGcyFaErh9o1ww/e/x9ZtW5ifm2X5smWUigU8r03b6zI9M0vX96n2VXBsm5mZGYLATwV7Ol0mxseo9pRJlE+jsUC12svsbI3eUpHA79Jb7ePI0TFGlo+gmxb9AwPEcczgYC+tVpMoDjjwxD7Wr9nIsdExKn29mIZOFEWYRqoG2Wx3MByTnkoF07RZmJ0jk3Wxsxl279vHQO8AnXaDTC6LShQH9h2gv3+A2doMxUoPUhMkCvbtfYJS2aa3spTJySmyWZtypYrj2pQrFTRNUq1UiMKE2269i3YrJJPRsR0TTc9haKkPYxh4aDIhQRIrUEqii7QnT9NM4gSCwMc0TaJFipkh9BT8OC7GwxPovSsZXVakVOmjVj9EPtuLa/Xyznf9BguNGt/9zncp5qt8+v98kc9f/Umuuup/cuGFF1KpVMnmxhFCp1hYSuB3WLV6BNd1UInGsaNj2KZOfWEOy7IpFLJUe5fiuiFS7SWJh5iZmsbUJV67jeVkCOMQhUDTbYQCTaQqxUhFxnWJgoAo8HEyFikxWkepRXp+EhH6HrO1KfqqFRIFup5Bs3sRpoGig4gNNAOkBN/vLnrEKkzTIIrSvk9D1/H9ANM0MDUd3bRQKrXrmZyaxrFNXMei3W6x0GziZlw0IVmYm0czBF7Hw+v4GJaJrmlYtk19YYFOo4ll6IyPjpLL5EBLe3y73RDbtlEqYXR0lLm5WXp6SgRhhEIRhT5xpFCJwjItHMeh2agRhjGO6yA1UraKSjCkAGFgWg5BqEgi6LZC2q15wjDCcdP+v9nZGjfeeBMXXXgJw8uGadRn6DSb9PX3oonD2JmXcc2Xv8jKdZtY0l9BxcfQTZs47ue9v/seHFsnkQmxgrn5On3lMnbGRKqd+FGMlrkYkhZ31W5l9QUrWWEupW9okFUr19NTKmI5KRUcNEzbZHJmGkPoXLf7u4yMLCNTcUmigPN3X0JlfJg7GreQc23CoItmGjiuCwjuvfse1qxeRUJKnzV1k02b1oEM6OnpRWo6ppNBKSjks4gkxHKytDvttP9YCMI4jWgTJJrUU7VcLX1+aoYkiWNsyyaOFJqu02gsLJ6vVHht7drV2LaJLiVImVY8lMLz0p7rY0eOMTkxy7Jlg0gh0ooHOpZlpiGzEGh6WvVMFAhNkag03tQ0Ddu1MaSO321jm9aJvuNMrkC0KBDW9T1Mw0IIiaaB4zhACnya9RpCRWTdPHv3HeEH3/8hw8NLGJ+oAQldr4WKE2w7y9Vf+ALbtp1DqVRi1arlOI6FJlOPW00XRHFIt9sliSM0ITENjVilHuthmNKyESqlUesGcRLjuC5hGKYVojhNOggZ0m52MDSTB+5/mIGBAY6NHsZ1M0hNI581CPw2rUYdU9cJuy1MXVLsqTJxeD89lQrIiIG+Els2rmLdpnVs3rKJwaEhvE4HwzCIohBEQiy73Ni6jZcXL+VTS69iq7McZVhkXI18RvHEHR/ny5+7k9/d+mN+MPlV1m/agOmYtNp1LL3BD/71+7zsRWupFkJ+fPN+brjkdg5Xx3nl/LlohoHj2qkNj3sAGeWx5zbTVx7iy7f9A51I51WvfS3fuy6lK//4hz8k7EzhsMCy9TtINC0FQWeosJ2I204Ctk8HhvJEvJf8PPWXPxm4nm7eM1F+T44DT17+uI/rMzEITwfYnmm5X2ScXAl+tss+WYH999umk2PrU+c4lXZ9PHFwKoA93qp3cgX71O06dT2c/P4pYF5I8dT5F+dKkmSxDeaXg1XgV8D1/8qR3qT/babQ/9ZxtqzTL9JvezwjFz1yI9rKHWnvkNDwPY+F6XGyBRNNFolViGHZaQ9RAlr6zKbTbpDNFuh0AgwnQxxLEDq+3ySbcRACgkDHtAWrl48QRwnVah/S1BCaxvTkJEKX2G6WKIrodJrEUYveSj+jY4fRpOD++3aycvkAQbe7+GCuY5gGSRSiGxrZXIlGYw7LNOnrGySJAmpzc1QrFZYsGcFyHBbqs/z4R3eybet6BAZzs9M8se8JpqcP8/znX4xmpH1JUtfxA5+lw8NEcYCQGnGkCII4pWhGIUkSYRkOXrfFt775bXbs2EEUQYxCyEU6UBITxeHiAyBVdIsiH7lINRG6QqDRai7guC5BECJJsHRJqdRDGCtIQqYnx0iUoNtt0fU6rF+3ho0b1lOtlBgbO8Lo6BRDQ0spl3uIooAkUfT1D/Lggz+nv78X13Xw/TaOnePQoaNkMhkmxqdRSmA5NomCcHInuiYpLDsfU7fQDRspBSoOsawMuq5jGDpKxVhOlrn5Bn6nTeT7WI7Ltm2b2b93N4ND/QipmJqYJZdzsR0Xr91BSsno6CiuY1EqlTGbe9CEgVEZZv2G9czNzVIq5hgfHcc0DFQS0VOu0G53yOXz6LqgPl9neHiYQ4cO8fjjezAcl5GlS4lV6nG5f99+evuqZHMZnGyeo6OjlCtlkjhEkzF9/f3M12ZwTIN2p0EmkyWbzZLP55iammN+rs7CfA3DFEhh8IXPf5ELLryAdrPNsdGjZByHeq1BJp/FMCRCCQrZIt1um2KxiNRMDh04wPr1G3n44Z2MLBtBSA2v08C1DDqtJkmiYzuCnp4SQlhEKkJqacBar8/j2qkXrGVnWbpskNiP0Q0LpcX4XhNdM9A1jSDw8b0OWcfls5/+LFs2rSIM0iqVkBoyiUkr/TEkAoQiigMMw0B/aIIk20f2lReTJDqmmScMA2w3FdsZGhrkvHO3o0nB2972FjQjYsuWzSxZMsLU5Az5wjhKaVj6LKZeY3xCcf313+PYsVHWb1hHuSdDpZxn67ZzWLZ8hDCMENJG16Zod4eQWoihm2SyeTTTJIwCLNMGTaM2O4VQMaZto0kzDepNA2EYSCS+1ybwFtCSLtIw0DWJpdu4bv5Ev2kUpzRqU3MgiQnjiCiKUSrBMCymp2dx7AxKKRrNJo5joxQEfkSchNimzaEjR3CzWXRp4GYyzM5MUa/P01utkiuU0j5XlQo02a6LaRj4vkdCansSRxGu66ZA2NbJ5lMhOdOwsKwMfuBjWjoTExMMDAxh21n+5ZvfYvu5OzBNO+0RVB2azQaFfJEkEdi2QS5XIlHQaNZTloGuo4REIJienSWby/P3n/0Mfb19WK5keGQ5Yt8h1PQ8DdNgxYoVdDyPwO/8v+y9ebBk51nm+fu+7+zn5Hbz7ktV3doklaq0WZKRF3kB71iysTFgDG7oaXoCGKC7pw1MNzPNRDAxPcAQxDBu6GamcTPYxhjbwhZeJAtJliyXqlRWSVUqlWpf754397Ofb/44t+xSuUqSPZhxdPBGZMS9mXm/892TmSff932e93kwjYLxiQm6nSG+t8CZc5u59ZY7mJ7fxsq505jmKoZlc/JkxNryRYZRD6depdvp0hwZJYkGrCxcpFo5hQZ27vggN153A3/c/zMOdg/yw9adWF7A/v3PMjU5xtLiqRLJlaXtTOP/+EsqTx9j7ifew18sf5JtwQ5sZbDl/l3M6c20714hsCVPHdjPlm3bUbKcQ27UaziOzerqKpVahXZrlSxROJ6F1qU3ctjr4rkOQkoM20JrwXAY4joup06dZt839rFt62YkpYK+JscyJFGYYDv+xkx4Thj2EdLAdW3iOCZNcnzPIYqG+IFHnpVJqef7iKLg8OEX2DQ7jWVJJiZGEUCeldcnKTRxktDv9UsEthAIYWyIgmkQcmN+t5zLTuO4bNxkOU8++RRzm2bJCjCUIhr0ME2bLM8Zhj1c2/nW97jWGsepMhgM0NIgKQQ3797FMOzz6U/ftFyfbgAAIABJREFUx91vvBPHCjj+wvNUagHbtm5HF4I0jUmzCNd3MQ2XUyfPcPjwIbZu34FluTz/3As0G6MoQ+IFdYaDPieOn6TeqJNlKYYpQRcInZMmEXkaY1oWtu2AFlimRZFnLC+t0u0NmZiYYGSkhmXZCAF5VmCaFqbp8KlPfQ7HdlDKwBuZwM477HvqMEG9wdjkFI7nM+yuk6Yhvu/S67fxfQ9dgGXafGntYczM4i3PvpbTJ15g89w0C4vnqNBi4fBDtE6f4sff+1+wvzlGZZtBc7RJt9cljoYM1y9S82wmxiVog53XTfM561FMS/Lu8M0MegPiOMZzfdIccu8CTjyPk9W4433r/PknHqAyPsGHPvAhfut3fpv3f+DDfOULn0VmIff89C8QU2BtjA9dWaC8OKF76XzvW/nbyxSuL1ryGsjo94qIvhzS+v2I72l/1yhcvx97udY5ufw1vhKRfSXr68sw+Cutc67166UC+Tue8H2Mfyxcf9BCZGgyrnwTXK1YvJoy2+Vv0ldCL76SznulxPm1nv9y912Ky+XPtdZkz3wJMbYVIcoEIXAtFi+ep16po5WBsmyKrINAYhkpUmgGgwTHr2xQruwSeVU5WseYpoUSNgUKyzUY9FZBS/Y/uZ9z506yc8ce/MCFPGd8ehZhGRgoXjh0lCwtGB+bpN9fw3MrbNkyQ54M8SpjdPtDqhUHqSRS+bhugDJyyAscw8Z2fU6ePk+v32diagLTMtBaUavXmJ2doLPe5cQLB5me3MTO6xRzE7soBJhugCltltdbbJ7bhKFsUDamhGeePsLoiI+tbDAUyjC573MPsGfPzXSGEa7n4lgCXeRcOH+RSqUstvI82xB7sdGFIiXmkb/bh0YS1D2UNHEsB7IMpQyyJGJ1cbFMjsN1orBPpd7A9evYlqZS9VhtrWJYFoZp47ge9kZCa9s+WSZwXJNu6yI33XwTrhfQnJiiWqsz6KxhmgLL82mONqlUgpJKAxRrz6ERtPQEjldhGHZxbZvVpXUGUZcoGhBUAuI4L0V4TIug0kAaNu1OgmFodu64gVynZFGCJCeoVTAMA8e2N6hqJmkS4Vd89PoJkqQgD5qsrC4xNj5GkUuCShUtJSvrbSpOhYsXzrNpbpI8C8k0WHbAxNQ0m+fneOyhrzEzN4nnBwz6HRBQrVZora2hLAPLspBCMRxGNCcmGYY9et0BTx94jvGpSTzPp9Pu0RyZ4OSp55kYmWTz3A4MkbG8vMzdb7ibrz/6GNtu2IEpffIk5vzFY2ya30Y4DDn0zCHm5zejsXj2madLZKc6yonjL3DjrhtwgipSlUJTQqZozA3fwox+t8eRw4eYGBvn/PkLjDSbWIaNEIpDh5/juut2sn/vPh7bt5+bb7sVkpAgqJHlCXGWY1ketu2SJT1u2LMTyyhROKFzDKEQhkWaFRRaYJoWSTpEqnL+zzx4EeXUiV9/B5ZtYxg+w7BDa+UMozWb9ShE54rf/V9/j0MHn2T71u38+kd+k63z84yOVpmc7jMYRgTuIrWa5G/uP8rb3/lWtu+4HlOY5EWB4/jYtodlCrSIiGMLQ3XwnQXI6ti2SW8wxFB2Oa+YxAjpltT1IsN0XQbdFRyvCigMnZHHffzAIS8knW5MJQg4f/Y0hoRuexGtQSkTy7BAlpT4JMmwbXtDCbIgDAc0R0dI4j5pUVBxqxiWy8riIrahMQ3NcChp1EdwbINjx5+jVmlgWpJms1F2zzGRCLI0RRcZru2Rp0Mq1TqmWc6brbfbhGGI4zso5VLoDTGnjXEHy3IQlCrPlUqNbrfHsWOn2bXres6ePUlQc5AyoBBJ6RsrTDIt0DonixN8DxaW1/A8n6IAIRWOY2GZiu07dzKzeQbPrSJFSH7iIjqJad64DcsyUbZFHsdUag0uLKzz0Ff/lht3jZFlyzSad2MJj0LErK8fw3UtHnnkMLXxLYyMNlg+vY9cB9gVybCzgpWluN4LSGGQ6dv4iQ/9FA8O/g5lWPz3b/ofuefe9/DzP//L/PKv/ArS1KUYUaE5d+YiJ//vTzEzu4mpN9/Lvz/77xm5b5z6nioz35zH9yucuP5petGQ2dkpTJ1QKINep0ejNkI4CDn83CFmN28m8CsYdoZp2CRJilIaLTVJFmNaLmkqETInTwWWrciLIdfv3ApIwign7HUZqddBgFQaQ5qESUJ/2KVIe/h+g1TnWEYDJdoMB32cIEBTsozOnV1BaIesSJieKlkmSZIwjIZIGWBaBlk+ZDBs45gGrg0LSwtUgmaJ8G7MrWlhoDUMh4NSrVgXWG4FISVzM9P0um0qfoU0SZBKcvzoWT758U9x99130R906HQHeF5AkkZooXEdD0t61CuKpIixrSqNesDs9DS6SNg8N0aWZ4w159i37wCBHzA7O0MSJxiGxPVsZmdnERiYQmHZ4AQjJEVIUeRYtkvDN5GGwq026A0ysjgiqFQ3xM0UOlfEcYjjuMQRxOkA07TYvmMrEJPlIe31JQK/huE1UMrCVIpdu7bRnNiEbztIkdLJEgb9jKmJWRzPpRt2qXh1zCAgHHZwgiZRnCKF4ODwEOezC/yb8F/ynnt/kuuvv4H22joNP0KsP8fppx7g9//yFO/Mf4nhrhUse5xnnzuEIdvse3gfK4vn2b1rCiX6GCYUcczX5o6AMHjjynaW1zRBzSaOegSeTS8UtIolJsPXYnZzRl8bcv1tP0Y2LPiRd72af/Nvf4dGvcra+jI/8cGfI8kgl+XrfmX+dwmFu1Ksp8zRynyuKF6MxOVPfmfh+kqQ0MuL5svRu2sJfEopr4rMXi2+l6LwpQSiLv8fXsnaArVB692g+V5lrZcSLr38vLzUXvUl1u7GYS4vKC/l11c2Ja7M/V8Kpb48isvQ2UuPfKumuBKd11eu/YNZuL48dv6P8f85rqYodq14uQ/Y1eZMv9e1vpt4Zf/Dhkqnltx4y6tYWb5INGwj0CAdlDRI04JOp4+1QalL05w0TZDJkKTfpgi7pP11BoM2g0GXfq+PY/t4lSo33/oq3nXPPRw7cYos1SwtLvPU3r1E3R5P79tHNOyR5wndbpdarcY3v/lNFhcXGQwTntq/n9GROsoQRMOIOBySpSFJ3OfU6TPkuuD8+bNs37GF17zmLpI4pbXWYe8Tj3P+7BmWFxcYadTYsmWeL3zhcwjhIpXFoN9CGSkpA4o0wzRSougiOh+gRcFNN+3G8wO+8IUvI4WJFIrVtSX6gw6vf80dZEmCNGws22J2dqa0y9gQPSgFDFKEzLCUw5veeCdbNs8gcqOcOVOCtfU20lQUCGrN0RKpCzOSrEApCTrh/LlF4ihjtDlB4NeIogjbttm0aRPDsM3y6jk0ISurFwka4xiWje3YhP0OkFOp1WiMjGMadknh0gV5npf0vY1r38T4+AbSWr5Pao06oyMT1GsN1tfWcB2T9dYKUpQX5qPPH+Pjf/HHSJWR6QiNwPY8RicmUaZJnuf0+n2yrBSgUqqktkkU0rGxHYuxsTGiMOTEiROsr6+TJDG+7xPFA3bv3sULLxzDMj0mxifI0pgjzx0iz3Le8/57icIhRZYCiunpOY4+f4yTJ05jKptGfQTTtBgbHWc46GMqg3q9zlvf/lbGxidQyqC9vkaS9rnhultAFiT5OjmCzVu3IU2TA888gxKSVmuFSq3KyMhoWZA4DnNzs5w9ew7LNtl+3U5mN2+mUqmwvLyKaTrkac6ZY+dQmGjt0+6mVFwf27ZpjDbZsn0bFxcuUKvVKApNr9cjz3NmZkoV6h07r+O9730vRZ5TFJqTJ0/R7/WRUqAMBeQkaUa91qQQAtsNSAtYW++QJCmmadHt9ikKjRIOhjKBomxU9Mo51QsXLqCLjCAIGB+d42P/5XP0l9vE/YjpmXl6oeS+z32Ff/Frv8Ev/eK/5MM/84sUhcvJE+vEUYzQYBqSyfFxiizliw98nvGpURZWLoDK+drXHt9AujxydoJepVCCTEtMxwU0K8vLpdJwFpLnaanqnGuCakn9pUjJ0yFCGbRabSzLKlVfNUxOTeNWahjKxXF9DNMk1wl5ltNut/F8jyzPyIsI2zbxXB8hJJVKAyEkmpwsDWk2GyRJSpqB6ysMS7CwuMDM9CxCCIaDIb1eeS51UXrO6kLjOC5pmjIchrQ760RRSJal2JaF57nYtl3SFwHLspFS0O11UapMimzLIo0jatUK73vfvSAK/CAgjQvW1lrUqnWSJKbTbWEoRaFzbMeh0ILx8fENlK28ZJtmSXkdHx/DMMBxHJKkTGaLQrOyskaSJkgFSysrKGkyNjrK29/2HorCoOIH6MLg5Mnj1OpVZmamMQyDP/6jv2Z+81bqtQl++7c+RqPSJI8LGo0p2r0hWV6ggTfe/QakESFkKVr4wgsvoJTiV3/1vyvn66WJUgLXtdi0eRLDVHQ661Qcm5+Z/CmiewdIQ1Cv1xFoHnnkYXwvwLaD8jqdK6rVOtI0cfyA17zmhwjDAYXOsQyHQX+AFBK0xDQdPK+CEBrTgjxP+ctPfZwsSwl8/1sskqXli3R6LdbWV4iTFIRJFMdYpkk1aNCoT9HtdLFNqxz1MFxqI1MowyFLC4pCcuL4CdqddRzXwrQkpmXguB71epNz509h2xZ5DpWggWH4DPoazx4lisKy8NiwVZJCEIYhutDkeYHvOuRZAmhOnTpBXgiSNEUogWWXaub33HMvvW5EUUC9Vgc0juNgWzZxEnH8xAl6/T6WUlimYs/Nt9APY9qdFutr62SpBhmy+6Z5tmydoNtfxrZLC5swHKB1TqfT4djx4+VnKYk3mpAWSZQhTBeNRZ5qfMvE3Ljmp2n5njfsENsxNkY/VqnXmrTWuiRJjpIOjl1B65JBIkXOMOwSJyFpmrK+dgrDc1BGQNMZ44YbdnPk8DE+9YnP4dojfPa++zl35izD/gAlBa7jsFSssr9/kI9t+V1ef+ebSIsc07WYGjNQg+d4/Bvf5Hh3hj//Hx7CT6u4uUEtkNx68yyPfukwW7favPENOzDMCKmqrK5Bf1hSoQ0lkAUMBi1sy8RxfPLcxHdrfH3vc/Sd56glr+Orj32T/+m3fos4Xuf0qbPcc889fOQ3/y0LK20e/NLfYm0IfV2KaxWN14pXSpW92lpXK2hf7jkvt+bfV3wvM5iX9lQUxXctdvr9jJfK2a+8/5We1+8Waf5BOh/Xin9EXP8BQuu8TBIuOeld48JwrbjygvFy9IwXcdi/hw/0yz125R6yp+9HDzuoxjR6g0JVDnVnLF04TdX3kMrFMA0MYdDt9anVa0ipUMpESYVWNqbrESU5nt+gyAcE1WopKuR45FLRqDc4fOQwI2MzfPlLX2FleZU9e3Zz9vRpjh19nvktcwyikDTNyfKISlBjy/w8nl/D9Uohl35/SNWv0ums4bgmvW6HbdtvoFKvMRz0cV2HhcVF6vURikIzNdFkfHQSrTW+71CpjeN7YFsNDjzzDEJ4TE9PIZWJa40w7HdBZ/j+CFmelEVYlhAOC+I0olavMj+/jXZ7hcPPPMO27duwbJswGmIYFhpQSiCEIi8yhNCARmKCHmAYFisrfXQeYRoKL/BI4gGF1gyilEPPHsaQBtVaFXTGCy+8QDhI2bJlnoWFZfJcYFmlh2OWpQwGGY7t4zg+nlsnSnMs2yFJY0xTUegCpMWjjz5BkYFf8TdmIjdmvFYOgYbQ3oRlloq3oLAdmxeeP8ns7BTKMDb8KIvS467QNBp1XvNDd2KbPkWuSJMI1/co+eZlcZvneUllXFmhtd5lanqCYuUFpOtw6OQFxsbGAUG1WqFareL5HoZhcPbcKSrVCo3GGFJZ5FnM6uoSW7ZsZmV5hdpIUL6f85wkzUnTnNGxCSrVOo5t02qtYTsWK8tLRGGPJEkZ9AdUqj7t1jqu77G6tECeDAnjPnNb5llYWGMw7FNvjqA1vPau16E37G9a6y1mZuc4duwYkxOTZGnKxYsXGJ8cQwuNNCxEVrB58xaUYSLRrK8uUqlJbLtKULVwTLukpCuJE3hYUmJsJHzo0mvtUmG8uLBCs1nn6JFDjI9NUK3UsCxjw480o9AZUlnEUYblWmQ5WI6P47oURYFpmnz2M5/h9JkzDLoRU1NjCFlgPr2EMF3W7riFRmME13RIs4L1dsjs5t3se+zrjI1NUKlVuee9P8Hm2e1s3jrLr/zav+C++x7ggz99G+fPt3GtRfKi4LZXvR9dFAyHQwyzQhA0ePTRJ1laWmUwCHFck3q1AcLClM8gjCbIGlpLTEPhug5ZniNFgTSMkqaOQItSoru1toxfDRCmi+2WxZjjukgly7lyYWAIE2nYFGguXDhNrd7AML9taaJUgS7UBmqR0233SdIE1zHRGvr9PmmS41VqJEmPOI4I/AqWVc4Nep5DFMWgDTqtNTzXASFJs1L5OMsiTNvGcVwQYNkmQkIYxti2VdqnIAnDPo7tlLQvrYnjkMGgjxAFyiwRWNfxAEW9UaHX65YNpFqVaBgjVY7YKK5M00YIQbfbwfM8FpcWqVQCiqJgbWWJPCvwApfBsbMkaULarNOoN7Adl0a9DkgWFy7gBwaOk2IYcPSEyfzWnay1LuJ5fXSR8cEP/yu0XuOhB7/IP/vnv0q97qMEFFpSbYxiOwsMQ5OvP9Hm+utn+czF+5FS8mMT72T37tv53//g9zEtSbfbI8syLl68SL1eZ9OZlbJBdecuptJRfm/pD/lXs7+KebBUUh+8YRVhGLRaPZ54fB9RFDM5OUWBZmVtBc+zMaVJlufovMBQBkoKWmvrFLnGUqUNS56HWLbNLbfcXCqDWzarS2toCpqjdeojFQzTxLBslGGD0Ax6PT7z6c+ybfsNKFOisNCk3H//w+zYsROpDIosQ0iT4TBkZKSK45jkecJwOMQ0LdCC0dHGhqKvT5YWpHlIfzAg8F2kUhtWTQKlZIlimhamZeF6Pu3WCp4fIBHUgoCLC2tUa6UwWZKmNEdGiOOEgwefZfv27d8S3uv1ByghCKMeAhPPDxBCYppWaYGmNbatSDON71cphMQwbKS0yPICy5Jl08UpKe9xlLLW6jA+MUIWZwgB4SDkC5+/nz237MEwXQ48dYDZiQbCLG2kEJJhWIolGbLCgf2HOHvuAhPjE7TXQ/bufYITJ0+xfcdOXNff+L5USFkqsoPFNx4/SH20jpIhqugjTcXoaIWt2+exbYv5zTvKplYWY1oOcRHxt+sP8pGZX+MO99UICppBwvrCfnoXD/DcoYOsxdNUwrex9dCtqF0xi61TVPyCvY8d4rbbHaZHa5jKQKIxTElcRPjBCA829yIQ/MjaLVQqdqk3UEhyHaGMgm3zdTJrGa9zK5PFdXy9/xBv/ZE72b3ndlZaXdZaHYpC8viDf82dr7ub6sjYd+R+l2YhLxWmhS5eNAcJ32bdXV6UFE8aIMRLUoWvVAS+dNwrUc7L0dfL93dl/nk5Mny1eDnQ5lqF8aU9vRwb8WqI5YsZj9c8/DUbBFfSd1/JsV+Ksfttmu7VmxNXK2CvViN8677LX7sr9vIdgOrG6/3tOeV/OGzzHxHXH5B4pZ2w/1qi2KCkGKLgsYe+xMjUdjZv3szqxRPIYkhRJORFhm0bFEVCnKRkmQYE5CmyyFFCk0ZDhoMQU5k4tkmWRgid4dgmWzbPYhuSN7zh9ZxfXkWbNluu24Xhedi+z9Hnj7OyssLs7Cy24/DAA1+h1V1H6AxDKr7w+Qc4eOhZJmdmMO2AemOaKAmJ0oS5TfMsLKwyv2Ubjmvx6KMP4Vdq/M39X+bk6fNYjsvDDz9ZJjSWz12vvxNpGywvniXqt7H8mPpIg0ptkrRIMU2f4TCkN+hw0y172LR5htXVFRzbx3UrvOqO1xGFEVnSLQsQyovNMAyJ4uHGfJOFwAYFyqiQFYqRsTrCsJBKEQ46BLbE92xq1YA9u67Dq3hUqgFplrNj63ZuumkPa2ur1GpVHn30ERYXF8uOfVEw0qzjuAbdXouFhYt87eG/Iw6HSMNEmA4Xzy2RpoLN81uZn58jiiI+/vFPMOgP0RuqdYNBnzRJCAd9pFAIIQnjkBtvvoE4T5GmTSFMLMOh2+2gdYzjwCDuk+cxSiT0Wm1EDlJI2qutUlDE88r3k1Ls2rOLYThECpP1dpebbtpDq9VCSoNnnnkGwzA5fvw4pmUxOTWDabml96ghWV1ZYXpqnNbaMmmSsLa0gu/VqNRGaIzUieIhrmcjFfT7bXzPJk0GVComaRwR9ofMzMyQ5QlFHm/MCvYZHxllbnYzeZFREDG/eYZhr83ZU8c5+M19XDx/Hts2mJqeZmmlxY27d1MUOY7jUKvV0WmEZZgILTh08CmUASsriywunGXL1hs5feY08SCn21omISfXms76Or1WG8exsS0TTfEtqXvTNFlZWeHQ4ecIvJJ6OhiGnD17njguERgpBVKaSNPBcWzyLEbnKUVaej5aliRJhvzY++7lR3/07czNTYFIaa0t091+nMEdGY1Go0QLBzGGUCA1YzMNnjtxgX3f3MdHPvKLnDl+gLXOBTqDi0TZKoeOHMC0bZpjY4xPTOA4Dn/00T/hE5/6DF/88gNsnZ/i//nYf+a6HVs4/sKzZIVkZKRZqu7GIXnRQAoQhcZAl4qxWYYAXNtHCoM0y2i1loiHLQbdNZqjk2DVQZrkWqIME8MwCbttijTeEDcrC4A0y5md3UIURqX/sm2hpEJg0+1EFIUgjkN836M5OsowjFhdXadeazLSHEWZJkLYeF6VDSCMMAyJkxTP9ZFSMTHeRKkycTPMci9BEABFWSAmCXEcYZoGgR+QZglaF2RZiY6alkGaJgyGA9AFSoJpCAxlMxxGKCWxbMUwbFOpVMhzQZoUxGG4oXgsMW2XMCw9ghsjDdbXW4yNNtEbyW6zMc7f3Pd5EBrLKdHfRqNOlkESi3KeUii+/KUvIoQiijJeOHqMzppDu90iyxM67QZazNGPOrQXBH/4ex8DKyVNeuRRv/wcSYPI+FFy+wO8/e1vxVajKFl6Rg/6Lf7qrz7Nb/zmv+bo0SMsL68yNrqJfi9FFwYCyfp6B8euMB1s4o3xXfzxhT8tPQeBwPVBQ61e5c1veSO7b95DmseE/Q6Tow3QinNnznPgwDMYStJqLRFGXWzLwLIER48eJYlShoOQKIxJswytJXmmaI7WqVYrBH4FcoFt2JDlxOEAaVhUKwF3330Xrm/j+T7dTg9BxtrakM7qOc6cOEqRpyBSbty9k2o1QAgTKS18L0CgyfKo1BGwLKCg1VrBsnxGJ6cxLYVhlBYVCwsXS7aShnZ7vWyEFBrLcDl94hz79h5gcWGVqZlJDEthWS5SekBBYyTgda9/NVIYpVewKJXqDalwHJvR8TEMy2VhuQNCkycDDJ3gugFBtY5hKTQ5tmPR7rTxgwppUtDtDspRGRQT42PMb92OEOWcteNYSKl5z73vJk975OkQz3VYXl0sm5tZzr79+3E9H1MFDMIVbrp1O29+01sQUrC8sszrXncXb/rh1yCNgjAKCaMYgShnZQ2bw88dZ2brdipGRGf5PClVTGWjlGSkUSsbPr0WzWaVmU2bcGyTh7qPMmfPcMvwViojo9R8zeEnPkH76Gd54fA3WCzu4h03/zo/svYu8uv6LCUXqDaafPPppzhy5DmGfYFQIVhgew5ZmhDYFo4dljmRUCjHwlAay7LI8wTX9TcovxnShHDsYV47fi+/MPkrVEYChoOYiYkJUCbDSBH1V7BFDvl35l1KqRchsVfG5cjc5QWj8YEI4wPRVf/mEr330g14cdF72c+XitEr0curoZmXiuy/T1TvyuP/oKGo3+94JUj6dxOGYbyoeP5BjB/cnf1XEFrnaFLY8G196efqF90uxaUP4eWPfa9o6rWOe3lcqxN1zS6SBtCQxejeEqK3SN5ZZmakQbp8nsH6OuObt5P11wlbZxCmiVupEw/76DSh0ElJ6xMZiwsXcF0P4XrYrkOUpmhpgDQQUjAcrKMQNEYCjh45xI3Xb6E+1qBSqfPqO+9kdMTnzW/4IW68cRNfuv8Bhv0hjVpAd7VDsznO6uoSP/nj7+b40eP0Wi3SOCHOC6pBHalNcp2ydecOlJKkUcQb3nA3ioi3veVuAt9CiIKbb9uKMMfYu38/6ysdduyc41OfehDfHSMcxBQUFCKjKBKG4QDXrVFr1BDKJM8yzp9ZJE4ShqHmoYe+CsIE4YD+dsfScyo4doDALmm5OkTolEsa5/EwJHADpFFSu3r9fin8lGW4QYPmWJ31TgvTstBIoniI53lUqxV++IffwPTkGO31FrqQSMNCmRZBtcrk9CRveefbcB2XwXqfsJdiWDb7n/wGq4tLPHf4KJ4pedOb7sJ1LZSQaDR+4FNvjpTeoEXEoN/CEJIwHJbiSO0OhvTJCoHWqrR9UBmBX6fbH6CVoj42TkFOq7VAY7yCMgzyIuXA/r0oLcrEWkjQkG507sdHmywvnePO172GTGvmZubori7Q70ckSQpak6UJjbEx4lTSHJvCrzr4tQZZ3GNt5SK50DTHxlhaWsaxJb12G9f3yLUki2Fi0xxTc1MYpsAQktGpGXSRcfsdd3HwyDmWlluYymasOcmRZ4+wunSRublt7LrlNqa3TCOVhSlNDu7fR55EHHvhGEo5zM3Ng+mgMUnzlO279rC4vIZjuxTaIKPPzPQukCmeV2P5wgJ5FlKpNHErivVOm6jfJ+50ybUm1wVCaKoVj8mxJqtrLWzP4/DhZ5mZHsWyZYn0aEGeCR768sNoNLZyiMJoY/7FgdzBc120TqDQjM1Moq0ajbFpcjck9lLQJgKLILBor3c59vxZSHPyYsi997yfv/jzz7F3714e/MqXmWhu4Xd++/f5+F98DClitmyqcfbMGYbDIf/kw/8NSpqYpsdn//rzjI41GRlp8HM/90/ZsWOSarXOamuFXi8jpfMCAAAgAElEQVQiL5qIYpm8SEDm5EWMkg6GabLWWoQiIY9ibMsHWVAZGUHrHKI2SZShiyHomGgY4tfrDEIQ0kSaiiyNsBREYYjrqZKun2uETFlfaxH4JuiUwKsglCSJYoKgTq1eR4gMKRKGvQ6uV0NIG2EolMUGa8HCME2kghyBYVqEwxAlFN1emzARWLaPlNYGUpWgMxDaxFQecRSTJD1M0yOKypn3IKjiV0cwXBdle+SGQXMkIB62yLKE9uoAcjAkDHrrGKZBngmUAYYRI7iUPEK9Xmc4iCkKQRh1UbbiTT9yN1lcgC5RNkl5rj716fvIo5hep8tPffDnefSRJ3CcJtu2j3Fu4TBefYSCgNGxXfzrX/lj/uyPPsneA/v5wM/8OCMjIxw+fIQoS7GkJMlSjj53gocf+Bve9aPvYKW9QqvdIQxTekPBuD/gI7/0M1SsjJtu3Eo0bNMPC1zXLRVzHZNCx/i+wzuG7+DB1Yeo6RogKKQmS/qYomDp4hqtlRbtVhchwDA1CMXk5CQ37NyK0IJmcxplBpiOhRSQZRG272J5AcqyybOMbrvF+toSyjDJMGi326QkZaHdG2JZCp3FIA0mZzaTpCFSSww/RxgGFceg0agyM78N06sikOU4RKeNKHKUoSgKymJGx0T9kDQTrLcHKFFybvI0oTeINwS+FPXaOHkGg+4Sa0sX2f/Ekxx++iCO52OYgltuvwmz6pT2WjkUecb+/U+QFWA6NoWOKGQCIifLMx568GEeeewxDCyyJOKP/s8/oeb7CJGT6RzbD+i0BxQ6YxjFRFFJrTclRP018izBCzzSLKfIoNNbohI4DKKcWMSkcYzj+eREoMoZ+tnZUSanp7EoGPR69PshybBPWuQ4VoM0GhL31rBNmzMXLuJ4BhW3SjgYYBgFOo/Jky62aSAlbN0+yeQIdKOY8c3XYbgOWimU7ZFmEkN6nDx9kiRNGIQDvrj6MCsrq/yb8JeR4TooQR4vY2Y90l6PoTnPu52fxfirOq2JBbKgR7+zzlP7vk7ePcNPvvt6xoIEnSt0FhJGUXk8S5SsDa1Bp4g8w1ImcdjDMRX93oBet0Ohc0xpEBlnuSie4t2zP4P8m52lfd/xM+zavYX+Qou779jDgSfux1IvLgyvlhcqIaHQl5xdNmbdy9zh8hlMOQFy/OrAyuVrXo1pd3mOeLn67eUFz+VF75U55uXHeCXgzksVu9fKYa+29uVjdlpr0PJFt5diK17+ty9GaV98nGvl8i/ao37x7cq9v9y5uFqNcPnvL1rvKse5FnothEKIUhRUvyLLn/9/4h+pwt/X0CXFZuPn76ZPcCWl4cr7v99x+cXoUlyVJgFkJ/ZCkSOcChQ5FBkjjSrDQZsgWiYuChZXjmMbNloY2KaktXyRkdEGKEWaZKBsAr/CcDAADb5XpdPtYRomtmUQRaWog2kHZFoyNzHG1s1zCCU5fuR5Dj37TUzbYu/+p6HQTIxPsLqyiCZh29Zplpc7TExtAkNw/Q27se1S8CcOh3i+j207nL9wDtd1iMIhtUqNdq/LSGOUc+cu0hhpIoTi6QPPcuLYcZTUzM5MUKmMsW3bZpRREKcJQcUnCkMMZWDbLmhBmkRIqVhaWGBqapYzZ0+RxH1uve2mDc9QQRJn7N27l7m5WYQsKIoMIUEpyi5xP8JxPNCC06dPc+HCAs1mE8s0iFKD9XYP01KsLJ/j/i88xm233llK52sFMiPPNwpfoXEdC8d1ieKILM0Y9PsEgUccJxRFjpIGp06d4cGvPshdr7mL2bkZAt9icrJJmhWMTUwghCTPMlR1FlXbwSAU+EFQqqPaLkKZfOLPP8mNN1yP5zr85V9+kmZzEtsqz4ltuyAkjuN8S6VASsqLZVF6H7ZbbYpCs7y8il/1qNgK3TqFO72DuNBYto1pWyXlHEG7vY7rOFiux+FDz1KpVKgEAUIXPPmNfXTaHebnt5BlBZZl4ng+RZZiKoMoiTEdh+Egxg+q9Pp9HNej3+1SbzRYXl7BqwSIQpCkEdIwmJ3bRBJHLCwuUBQFM1u2UR2p8eADX+PZg88wMzPN8vIya2ur3HHH7SjTAC1Yb63z4INfRecppjJZXlpgbHKEZrMOWrOyvEKapDz6yGNIUc4kBpU6506fxbNMXFOSFwIpFVmeY9omtm0TDkMOHjzE/PwMhm0wOjqG53qsrqxRrdbQuqTxG5bB3m/sR0kLx5HUqjXiNKMoBOcuXMDxHGzHJYwzLCnRG1/o+cUDiNoc8dTt9IctDux7Gs+rcNPNt3H+wjnuvvu1fPmLX6FWrfGn/+k/8gv//L+lXq/z9re/nZGREUzrKJ3OOoZcRynJp+97Dt8zeP/73s0NN+ymWq2gdUGz2aRSqWEYBlEYMdpsIg2BIY6SiS0oKZFCkuYDslRgmQopTJTh4NgmpsyQqhR3K4A8zllb6VNrjBClIevrHYQQmJYgjErFc2WYG6rekjzXZeNDaBzbxbYtoiii1WphWgrbtkBoTNNGSUiTEC+oMBh2SZISTSlnDcs51jAMS1uovBThGAx7WJaB63pIKUAKorCcjzSUYhiG2K5idXWBas3bUHV2cV33W8lgp9Mm8F0GgyHDXhdDgu9XSLWBbUm0ANtyiJOUWs3Hsk20/raZvJCQ5QlyI6Ht9frkaY5hWTTqDXrdLnJxFSEKxMwoWufMzk6QxgMcT5FmA8bGmniewlBDvv4Nn/ltsygES4tLRFHCL/zqP2XLllluu3kPeRwCMDY+ytmz59i5626+8fgBfvPXf4O3vfVd9NqrfL3Yy4EDT/Frr/oFLi5H7LzxFkYmJzh99jz/4aMf5cd+/Cf4u68+wA0rfbKsYPCq6zFNi9HmFAudZfy1KhFDLl5XUpyRBgWSaq3KkeePEacZ1VoDIQrCYZ9qJSAc9hHKAGESDuLSHsYr58lt20KnMVIqHD/A9XyyNMEwSl9g0yitnFzLQ0iFIUza6108x4NCIw2QwkFKg+07NqEsCyEton5IFEdEUUi9VqO11sL13bIpl8QoZZCmGfYGq6LVWmN5eYVarY7veSihGQ76/Ml/+Ci33XYLpl9ldHyKQmuOPHeIuU2T1GpVbNvBsVyGYQ9DGeQ5HH3+GNu2bUNJiMKIQpiAxDAMtsxvpuJXcByXQ4ePgBCMjtTxfRfDKK2+Ou0WrucThSnra30ee/Rx5jbNYFmKOCpZIUJoXMcsadE6ocgF933mi8zOTG7MsmZUvCa9Tsb993+Rbdt3sL6+TrVWY8f2bQitkZaBLsDzXJZW2himxdbtO6hWNjyqEShp4Hk1oqRNUUCeCXyvzpe/+DC33vpqhLCQ0kTnCsMUJMmAKO6ydesOIp1wX/srSA0frf0eCxdWGJscZ8rssXzsjxj0+4TGvWw98ONkCwLzxhR3NOCFg1/FzPqMVgWzsyOgM5QqPX1N5eHaVeIoIwoTPNflnd07ePPyTeS5xnIMpDJIEsGp80P8oEaexmid0RsKvnLgGQpXsJvbcZcb/MEj/xt/8Vef4NYd0xRFD7daZ+dtr94Q4/pOCu/l970ol7tKcXutuBJpu5J2evljl3JEpdR3rPlyaN2Vwk6XH++l9va95L8vueYVOfnV8t7vds1L8XKiqH9f616LHv1yYlhCiO/0/P0HtL+5Mv5RVfgHJLQu0Lr4Vrer7Ga8mAv/cvOo1ypgv32MVz6Y/p18/murCV/Jq7/m32hNsXgU4dWRb/pnyK23o2duxpy/g4cOrTCx6Ub85aexK9MMc6jWR8mSDD/w6XTamKZXimTYHjrPMA1VcvKlxHNtorBPnGUoNMpySLKC4WBALfD50t/eT28wYPHCRd7+znexuLrOG9/8w8zObsGrVFCGKNUai4xhmNIfxPhBDaU0yijFIGqBT5JlSKVxXRfLtGitrmHaVimdP0zxPJdqJWA4jNi2bTtLi4vcdderOXfuDNMzM/gVH9OysV2TJE5wXY9+f4ihTMKwzcMPPcHc5nFMNMdOneX667YzPTGCNCx+93d/nztufxXonK3z80DOoN/DcWoIISkKgal8HMcGDZqC0eYIYxMTnDt9Atf1cKsaZQgcq8L5c+0Nf0xJUYT0+6VQi+M43xKtWm+vY1kOrhfgOV4580o582qZkryA5tgYe3bvBAmmobBtgzxPyDFxg4Aiz0iiAbm0UWbAk3v3UakGgMDzfeI4Y+8T3+D2219Fv9/ntttuxrTAMHP8wEVrTZSkGIZBp9PBth2kpBTQUSbDfp9+P2RmZg7DVExNTpC0lxD9CyR2wCDOkFJhWy6PP/o4UsJIc4SVlXVs12VudoaTJ09RrVRYXVpkx47r6A1CtBC4rkOOYq21TtiP0GiEFFQqVfygxuNf+xrbt23FMBWWaaELTVCpIIWi1+5w/vxZmqMjCAFJkjI2Nlq+VtJASU1rtc3czBRTEzP0B102b9lEkqVcOH+R0dFRpBLccuvNTE5McPi559m16/qyeIkiHMehXq8w0mgSBDZh1Of4sRNMz8zw2b/+PFu3ToNW1OoNhFScu3CesfFxkiRBCsGmTZtJkojGyAit9XUmxyfwXJelpTVGx8Y22q4Fu3fvJvBrxFGI7ZQFkWFK6o0qhjIocoHjBAiRl/N0gLVvCbPfoPKWezAMxcToFL5f5U//rz/j1T90J7Yj+dQn/5o0KXjn29/F7j27efOb38xHP/pRHn74YT70odsIggDfMzBNnxv2vIu52Ql0kXDq1AWKoqDdbrNv3z5u2LULJaHdXsPz7NIWRzxPltZAS5I4I45jpDTwbEUY5whlEA3bFHmMYXlIWTIW0qzD2NgYWRFj2QWVYATDFNi2hZSlWu8lulmW5iRpSuB7LCwuUfFLBW3HtkmShKASbNCUc8IwxlCCXreNUCamWRajnU4XwzCwLZMoKqnHSinYQD/CcIiQkoWFBaq1SqlobFrl94MWOLZVKklrhWl42JZPf1AihmmaIKTAsy3IcpRlMez1qG/YYK2srlKtBhjKpEDjuC5pMkSpEiWPoiG2Xc64ZnmGqSyE1JimwveDb1EO8yxHpBmF7ZD6oxx57gg3Xr+D/iDjK195iJt278H1HJK0g22FbN76szRqJh/66Q/zwQ++hdvvuo6VtS7Visfq6ip5phkfm2R5eZFTp85x6+27+ZM/vJ6Kd4izFx0+81df5h3Vd/C77/1fEDJndG4e07JYXFjizIlTfPhn/wkYmka1ytGzp0nmNxHWA448f4TqWJ3XT7+B9+t7ef/md7JYKS27BALHsYiimFarjR941OtVhCityf7Tf/zPjI5W8fyAxx7fy2hzFGEoqrUKOk+RyBI5FTZplmIYkjwvKPKENCuwLSiyIRcXTuJXbMIwotARcdLD811yLbGUIk1SpClIUoiHIe3WGpVagO/7mEY5X2taNlB6ZCdRTq/f48EHvkKjUSrD+66NNG0MQ5AlKY5jcvsdt+HYDkK5aArq9Qo33LCr9FNVkiJLaLfWqDXqSGWQpTnLyytMTTYxpKbfH1KpVTCkIk8TpMrQGizHxXVtyCNGmiNEUYLv+6XfqhJYlofrefh2wNefeIw9N+3Cr1SwDIMoKen07VYLLSS2ZdNtdzn2/FFuu+02BuGAarWOUiEC2Hn9VmzXwXY9RJFSJGHZPI4yLlxYwAsc0hSqVR9DwsGDh6iOOsRhl/XVZSzXwTKmMEwb04J25wLX7bqBvU/uZevWLQzDNlHUKnOZ3MYxm6zEi3yx81XeZr2Jj9/5BzQnppmfH6dpr3Po6/8z33gk5y3v+3f4j9zB0soawS6D1fUWpsp58MH/l703D7Lruu87P+eec/e39+t+vWNfSIAEF5ACRYnUZlu2lXE8tqRYsizLi+xknKhctqtGGU0qdiUZuyYzVZmpyXhGmthKyrItS5ZNiaIocRH3DSBBgABIECD2Rq9vX+5+5o/bpEEQICl5r9KvqqurX9973unb9733O+e7Pcp1uwqUqhlCCwwjReuUDI0QAWkagohwHJGbYkURAoEyFXEcYtsOWWYwjBXjY0WkDjGtAo88exbDmuA9/+RdxOUm9vkxPrj1Qww2LzDtHSeKY+qVKmOT87jl8Ssiflfr74QhXltgvnpclmUkD5jo0xJj0xvRuisthq6GJL4ZyHIpKny57vby8a/08+X1vbANLz/u1dinS0tnV0aS32zMt/v4W/Xur/7uSj38lR67XFd8qVb48mv6tq+TeP05hnjjJsTfVf1g4foPpnLE9a9oGm+9C3J5vd0X6NuazVV25N7uuVd64aMhPb0/n8eWW3JQTwhAMFx6kSMvPUHphh+nfPF53MlNaKtMnAq0yI0MTMtHCI3QCWkcIpWBViZRPEAZae606RUZthcRUmHZJp5jMhiETDYaDIKI2955O81Ol/mNG0njGEwH0zYpFkscPHiENHXwfUUchZw5uUi5YpIJxeLico62OiZhGBBFEXEc0Wq28p3RNOXRR55gde0iu67dyXPPPsfWa7YxO7cBz/OZn9/AWvM8p08vUi6No6zcJCPTOVKDBsuGxx55lj03bCOJRpxbWGGyMUV3bQ3HL7Nr9y6EkWIqA61T5PpibBi2ieIehvHqB5Jc/75O/ZGCgmthey5pYNDrDLFdh/pUhU6zR22sRhKnFLwy3V6ffn9IrVYnDCNcr8BoFBHFGcoQtFvN9UgMmygMMG0XLSAYdIiSJEcYyBcz5y8ughZ4ro0UGilNlpYW2bBhhqJfwFQCaRgMB0Nu2beXJM3wCj5aCCzl4TgOSSwYjTJMO9dSuI7LysoaShkYMiWKA0RKrquLYhzPRmcZwbCPHbZoxQGLSy1mpme5cG6B8fFxGo1xXjh8mKmpeZQlsW2b4WCAbVmE4YiXTrzCpq1bqYzVGfV7mG6OskexwLItLNPgmSeeYHl5mT27riWLQx546D62X7MbaUhWllYYDYZEacLYWIVOs4WjLLxikSjO0WwTSau5zPZtO1leuYhjFRmrlxES4iRlrFrnyJEXqNfHyLKUzBBMNKY4f/E8nfaIYrHCwsI5ikWPJI5wPUW1UmJ2ZgZDGhT8GnZBUShPQJbSHw6ZnJ5Ga4N+v0/B9wjDIS8eeYWpmVmKpSLNtVUgRSkLZUniZIQhFWka43oOD973KM1mm/p4DWXqPENRKsgEzx14jmK9gjI0WRLhP9VFhR6rN++lWKhjSoPf+73/yKd/5V+A0ARBh1tvuY21lTa/9Iu/xMLF83z605+mXC7zuc99jkZjFTA4e65IsXINTzz6FLNzUySZ5uTLp/ELPouLi9x66y0oUyIV+L5NmkX0OkOKhRaDwRjRqIvtFXDtCmkaYxoJQipSIBw2UY5HFOW0y1G/jVcaB50RDEJsVabTW0VKgc4kWRKhs5QwGGEIMK3cAEkaBqVSmdFwiGma9HpdlKkYDANKpQq97oBisYgUGiUNWu0u5XKV4TBY3xHP6Pf7eK6LaZroLKPX69AfDAhGEeP1BoWij1I5LSvLMqQwkVIyGg1IdUR/0MEvOLnJm5T0+z0KBT93FtYpixcWKFVq2F4BjcFw0Kda9JHKIctS0ixBk+I57roDuIFUmjQRKLWOiKV53E4YDQBNmuULPiUlZr2K3aiytLKG5woM+jh+md27r+HQweeJU021OobBK6TG7SxeOMNHP/qzVCrnMYw23WWXYqlKpx9geWUevO8+brjhep54/Cmu2X0jE9VTSEMx0fhpltaGrDY7/M6/+/f87Kc+BqKHSCOkhumJBpkQBElIuVhGNBpUdu2kWCxy7uw5tm3ZgKVd7j/6IBdLSxSlx9LiMmdPn2F8fIzlxVXiMKA+VkTrgBdfPEV9bIwXj77C7t3bkabJtu3bKBRclOXSaq1Q9D16vQEoiVIOaRximRoME9uU2LbL6nKHUqGIzjLSVHD67BqNxhSGsjEMlwsLi0RRh3KlQK+fYaA5sP8p5uZncD0PqQzSJMZxbDQGhsg/n587cJipmTlmJic59PxR+qOUJOpTG28QDAZoJNJUCIM8yiVLUFITRQFCWfTaXQwBaRLiOgYZDgBBMGTDxnmESNFpQJKB42iaK6tUSmW67TWEFEjTwhAa00gZn5xEawMl5Tpbp4CUipXVRcoFny1b5zEkKNNlMGjhFwuAkSNZAl48cooNc9Ns2dpgMEgplHyUMmmtXaBYrNHtBTx78BgTE2NEQR+d5JribjvkyceeZHa2wYsvHadS8wlHIzZs2E4UJxScIn/xla8zt2EHwgqIkxjXyrWxWmTs2L6bJIZWs8NYrY40BIuLF1gML/Cd8BF+rvgzfKL4YTAka60WnmiyfOwbtBZqvOMjv0L25ety86vJIbZT4cDTz3HohYeYGXPYNOljJBBlGZZS6xE/HlmaoFOBUhbAuutzhiHzDZQ0jInCAAPNxGSVeLCCyGLWmilHz3TwDMkNe3bzwtkLlOYS5OkS3oUSyfifsG3nNbiGSWcomN62+7UFz5XovJcumAzDeJ05z6t+CFJKkrtt9IrxhjicSxenV0JOr4aWXjrGpWO9evzV5nilc69W3y/qetXx9fc23tX+3iuBPG+3d786bfeN1+atFv5vt15bBIvXo/X/WBauP9C4/i2WJn1tEQfyTV/sr9Zb/f5qu11vp/66L/orvYm9TqSfaEQKQguEMLj1jn/KzXd+FOGNM5h/D6ycpnnxbL7osXyEoRiMVjAtC5IYLSSZMEmHfWyrQJrGeG6BwbBNeWKWOBoRjRKGUYyyc4MOz7K5cPYMOo4IBwNMK3ftVAKWLpxjeXGFEy8dpVIeo9VqsXHzFEsXl0mCIdNTU5xfWCIOI5IkwfUKuLZPkmQ015q88Nwhbrv9Fu68/V0MQsE79t3MiRfPcODAEb59/71IKamOz7NwcQ2hNHEscrdQnJyeYwRkFPnEL/wkSkhs1+f6XTuxbIO77v0mvXaPpx5/Atcq8OU/u5s4FaAEGRLHKeC5daThkaZxrtcTl+zEaRDKptNZw1CaUq2MNC2i/ojmWosTL5/EdV2UZVKuVSlVSnS6LaRifRzwPYdUGpTKVYaDiCTNWFhosba6hNAJYWxx6LlDZGkChsG99z3Ew999lHLBJU1CoiQmOPcEdu8Yg0FIs7tIqmE4CimUfOJRyre/dR9okyw16PdbZGjOnHsFx9boVJAmGWura1RLVZIoQ2QmQhtYfoEkSRiNhnjFAspyWOqEAISB5oYbbqDVbuF4LjMzU7x07CW2b9tOGHQRWcSFs2eZakwhgKnpzdx22610WstkYYDtmui4R3NpAU1CMOyzsrTIrbft4/kXDmM6Dt3hGne+631EnTY67uM6Ct+v0Go1WVlaZLzRIDEUcRgSDIakUYRtW0xNztJqrbBl8w6+ec9dRHHCS8dP4Lguqc7YsmUznVYTaWhMKbFsSaVSpVauoNOE+bl5Dhw4jOVVaK8OsaSNITWW0BQLglKhQre9QpQkLC+vYKAYjQIqlSpIg9VWi1tu38toEHLwwFNUajV8v8LYRBlhCiy3RBCMkDJvuHbv2UGjMYtpuqRJhrIlQTwijAO27dyBZzrEUYay8uZXNXZRq4/T7XcRVoHf/OxnkVaGZUOrFSNMm+OnT/DkwQN85jO/wU0338hg2Of48VfIsozmWpsHH3iUJNacO38Gy/T4xl3f4sa9O1lcXGXh4gUMqXjl5VcQWpOlGYawsCyfJPUoFFfxypPoVBOEHZJkyGAQkiUxrilxSw0MYaOkABJsxyVJI7QhcEs+mBrf9jAMl+FggLLKaHJTONNWGEaMKQ3CUUAYDLAtGyFSpGngeC62MllbvojvOkBCRooGqoUSOhWEowDXNnFtm8pYBcO0SDFIhaAyNoYybSanp0iJiYOIdrOFzjSGoej2O6SkZMLANF3K5THQFspwCIZDypV8MyoJA5JUYLoOGSmmUrTba5iWItUSnaUkcZ4TayqHKNaYVn5NWmsDpJHTMA0tQI8AjeOUsU0XKTMMKTl7/iLnFi4ShREzk3UajRmKlRn6wx5SGWzfuZuCV2BtuYOUIITL2MQc0k9I04R0FPH7/98f8cqZk9gW+LbCshT/+l//Dp/77d9lx/wUaRSTxgk6GXDnrXv41Kd+gi988X/jS//1SwQDTaIzhCO42F4jTENc0+LM2VOMTdXojs7QXO5w3c4bWL14HteE35r6DA/HD7Hd3YlXLGOYJkIJ5jZOsGvPbmrVCpYQXHftNZiW5Jf/+ScpVMYpVSoIEZORkYYdSr5DEKTs33+UoDeitdZESofTp5YIh33iGMg0pbEC/VHK3d96AGX7TE6O88gjjwAZQdBhfnaG1eUuBi6mYyGVyZ3vfR+uXwQk3W6XOAlJk4Q4DknTlOEoYO87bkEZBpVqg3fdsY80CJif34gkQgiNV8wdjPvdPpYpGUYBcaxQ0kfoCMe2+X//nz9AmUWkWWD//v2MhjH33/8QhpAEYYZhlqlUK4ShQ31ymu5oSGlsiiiMMEiwTJNKfZI0DvHKBZTjEEQxcRqRZjErS6ssLC3g+QXiKCWNA0rVBq4hicKEgiMpeBX2H9hPmGikWWEYjDCForO2QnFshjA18L0KsxMFbJUh9AhpgVMYwyt4fOiffpBiqcSu3dshM3jggcc5cfIYrm3T6g7Ydv2NrHXWiMOYcsFmdeU8ozBAZIIw7IPQ/PGffI0wTTCMjGZlxP36cf7d1Gf51bmPkmBQGp9iPDvE+Sd/n2E3YP9imeSheeKVGF3poewyUbLKwuIplhZHbNs+TmbYaAsKnkuSRSjpMur2iUcptmdhuRb9XoTjFfhPc3fzn+bvIYwz7HIRqQzCKGEwWGE4iLFsj0gLCn6Fj3zyZ4kNwa4dGxkguPf8XVxf3sfe+HfxvYxCzaZ58TDf+PzvcerI42AmmIZ6rf/SOjeti9M8y1cL8q/X6TpzIEXrV/W3b9SOXtqnXorAXu5M/FYGSJcvfK/UP75djeulvevbPbIaNDQAACAASURBVOdKY+gs/8rzWuUbs1INncdyiQxE9gb08kpsyVfndLW/7WrzfbNFK7zx+l6RBv49mlC9AZld175KYWC8SerJP7T6AeL6t1j6ShZw32O9eqNdzr3/+9oVubx0phGOjzE2jyi+3qo9iiPOnz1NEkaY41txB2dxC1WGo4A4GCGkiev6xBGvLTgNoZDKwjAEw+EQnSlsyyYYBTi2ieuWSHVKGIR4nsfK6ipjtTK9XpdzCxeYmp5CEXP29Ek6nR433/wO2p02x469yJ49ezh27Bibt26hWCxhAAXXpt3poMljF3zPo1qrUa1WmZiYoFh2iYMhrW6fE8ePMDM7x1NP7+fWd9zMWHUcpGZ6ehbbdrBME8Ng3QU0Ik0SDMNCiNw9WZgWSRzjOxbX7tjBF/7LH/Cxj30MyKjUapTLRcIwzOmpOnstMDyn7xmvbo7lb3ho0DK31k9CTMvmyJEjWNJg06bNTEzUCKOAbqeHbwmWli5SH5/I6Y1C8tCDD9MYH0cqm35vwH/94n9j29btjE9Pk2UJaRJR8jzm5jZgGHn25aZNG7n55j0AeWyEacPyk1gMKG+8mWJpklOnzmEqiU5i7JLP9Mws4Sjk7rvu4aabr0dISaVSodft0e0PchqlYYHBJdpBC53FPPnEE5SKPuMTNUylaDbXKEXnqU5MEZs+y8tLDLotMASz87OE4Yj+sMeg32dmZo7nnz/ExESdbq+L41roLMX3i/SHI1zXRwiJ73oIDOrjE6RJxs17b2HYC5icbJBpxdkzpylXK/QHQwypGA5HTE9NI4TCUg7KzBEr13VZOPcKjmtSqJTBsJifb7CyssqOHdeAhnDQJ00zLlxcYHZ+AzpLSZMEz/cIhiGuZxPHIXNz8wwHHVqtJpNTM4yCmE6viRaCNAHXLSGloNGYRAhIsiGdTpNCIacYkwYMeyMmZ6dQdgGpNEmaYkkLnWriJMZUDp///B9yy83X05hokKYBWZIBEst00VrQ6/V56KFH2Lp1G4YhsQ6ex6hM075xiijuEQeSf/lr/4r3vfcD6FTyiU98lI9+9MPs3XsTYTBiol7jwsIpPvzh/56vfOUrfOAD03h+kYcfPorvl9m5cyurq01cp4htW5w4fpab9+6hXq9Rn5hEmhLH9ZDSZjBo4roCU14kyaZIdIJlm5i2gyCP8vD8ApnWREFEFMVEYYxlOdimRTgakUYJWZKiyRgOhpQrFXSWoHWE4xYxhCILOgx7Q7xCkd5wiEDn1zhN111Zc+2hIQw0gjhOiKIUZTlooVGWYhSGKFPl+a5RhkBgCIFhCCzLQak8V1UIcD0PnUCUjPA8mzAI8D2PXquJzjKkbaIN8BybNM3yzNUkxTQtPN8njuN1yrxFp9OmWCiSZSmmZdHt9Wi325QrlTwnNk4YjUIKRYcsS4iiPFIrSTRKmXkjiwRt0Ov2qdkuOgqxfA9lauJ0hOdWECJnanz5q/dgWR4b5jT/y7/7Krt378VzG9jWEqdPnyGKZvDdAhPjDUzT5IEHH+RjH/8Z+r0u++64k7HyKQ4dfgGr/F4euv9bfMn6KvvD5/n0O36Bn/rwT/PLv/RLubazVMOyTSA3k7JfOEl5aKBmxqlUPJTvkCSCua/v5idPfYSfL3+CucIMmyc3c/C5g1QrRUzLRWCglMUXvvBFbrrxRpJU4zg2nXYb23bRQBJH+Xuk6TAzO0sUDlHKJhgNqY+P0e+HuY7Vd4hik3u/+QAf+tAHEUrjWg6bNm7Ina5dm3arj2kJMm1w15/fz7atDSxl0u/1kaqAZVq4jpWzaCSMggGOYxEGAfff9x22bd8OImbD/EaUGNFqtmg2e1iWSbvVpjo2RhwnGEJx3/0P0m53qNfrWJbittv2IZVgbW2V6el5TGWxc+c2DAmmMkninOaeR46BbdsYCCzTxDJt0jRd3/i0CMNch5nrSgWtZpd2q0exaOE4NoWiv27hYTLqdbEKJXrtFkEyYt++W1/Lhi7XKiAyUmDY7QAG937rO2zcsok4SDCkwi+UyLQgSUekWZ7p6ti5F8HmLVNMTkxgytyIbnysim1JymWfcDDIm29DIZWNUor+oMcNt+7m2f4B7ll7hGE64sZvbOGn3vFJZGWcMTUkfvlLrJy5l/rkDGvhbm697sco3bOdV4wj1KZL9LsXWDi+ypYNMTvnNlKsBGRxgVR3yQQcfaFFdVwwGmb4nsMgCFGmnfcsYcBX6o/RFj0+NNxL2OthCAlSkEUxpcI07WGPh5++wNYdO5mZnSEMI8IwIk0FK4tnGC8JCsk8j574bU6+eJiVc8eYnbSReMxvvo2BTDGyy1A44+qa10v7x/RpM48TujV+SzDlcnT3UgT30uMup+Ze3rO+lc72b72v1W/eP1/+8JU0sH8TbruXU7Ivr7ejj/3raGgv31T4K2T87w/L/AFV+B9AZVn22sL1e7m5rupC9ha0jL+puvx5rkSBgEtd2QB/DKM08YY5GUoyPTHF6ROv4DgGg+IG/IWnUYZAehUSLTDNvCmQjksUhITBENN1ScMhQoJSBaJggCGN3LwHk4wM27KJtWY0DHn4u9+lXK6wectWpLI4f/okg1HINdffiOW4FH0fy3QQQjDVqCNEHrGigV6vT7VWQ0qLQtEnXc/elFJiSIM4DiHVpJgEwwHlco3DLxzljjv25Y2l5WAYKUoJomhEmga5KUrYR2SaNNMkOsaxikRhC4wYqQTdfpfdu3fzzNPP4rgWjalGnmcL6xEnEilhNBpiKmf9/wB59mOeAZmlmieeeJJtW7aTZgbtdp+JsfHcOZOEfr9HpVJleWWVaq1OHMXrza/J5OQ0rucy6PdxfY+9t+yl1+3yzP4n2Lp1K75XIE5jhMipTlmWYFqQpppuZ0Cn3aRSKZCuHgEEavx60iSlVvNxXAOtM9IoxLFMXMeiUing+j7KzjchypUKiBjLUjhOAWkKDCURhiTNMnQUMTE5yfT0FP1OBwzFM089zaZihzRWXOiNmJmepjY2Rrvdw7Ryk6aJiQZhOKLd6rB58xba7RatdockSTh8+ChbNu8gDIZ0Wh1sS5KlEY7nIqTiuWefZbxRo9PuEychtl/MKbqFCrZp0e91mZufw/V9FhYWaK2tUq6VaLdXWV1rMTMzzZmzZyiXq0RhhOUqSsU8xiVNR6w211heWmbbth1kaUYSjjCUYnVlldWVVYbDPoWin+9uayhUK6Ra0+322P/sS1x7zTUMBgGHnjvG1Ey+GMiyFIRBsVTm9OnTlEpl2t1VKuUqiAxluoTDLoZQCMNEC/jOt+9ny5at7N59LYP+iHvu+TZbt25gMBjhekUgzxK2bIPTp84xOzuDUhL7+Qvowjzp7e/EsSsUPMGP/ugPkUQJwSjgn33kozzz1H4MLfnFT/0iP/kTP0m9XsNxfN77nh8iCJ5FKcXePUOkOEl1bB+LF5doNls88uiDCG1x4cJZnn3uIOfOnuK6664ljRPAoLm2guvXsORR4nQWaeT3mE4MtDBIUo0yJWmca5/DMFhHBzSWbTIaDWm2mpTKJXSmcSxFnGl6rRajcIQyXYJhF9t2MVSebStETol/zYhJmkiRbxaZlmJtZRHf9eh2+1QqZSAhjiKazSbVSg2dxdivahelAEOQZZCkMVIagJHvdktNkkRIQxKGEbbl5iITDea69ADgwtkzlMol0nVq8TCIcCwFQq7TEW3a7Q6u55GmKYZhUKlUaLfz+CRhGBSLJdIs1we7rospFRm5FGHY7xNHCUpBrVomePo5ZKtLXK+tR7Pkur0TL7+MpTxuuvF6xuplHGuZmS0/RK/d5kc/+Gn+xb/6AL5XYrpxHY898iibN85z8sRhPvCj/4Rarcz733sHd9/7TXbvDJicmgTzRm7es5X/tvI1OmmPfdnNfPxnP0W318E0bf7ia3eza/dO4jjOdcZf/g7psTN4H7yJ8+fOEkcJv/Ubn+XHZ3+aQWvAzHvqfOnCl/jN6V/n20ceoFIsUijlr+ULFy5w9ux5bCWpNybyiCUh+drX/pLx8Tqlgo+SDk899QwbNs1T8As8//whIKVerxEEIfX6OJ1OC9uH3ddcQ7e7iuf7DHptXCffdNRpijIVrldmbaXJ9k3TOAWfIAwwLYsnnnya+flZojDMNeU67xWSJKFQKLFpw0ZeeullGo0acaxJtcD3CziWQ7fbZ2KigdagTItMp4zVq2zdsgUpTU4cP0mWJXn0SpJnt/q+R5qGmKbIc7hFRrfdplBwWVlewbZcRqMBglzjbBiCJElINNhSI0Uen9bv9BgNQ2amxzGkgWXZCBTDQZBTlXWM4TjYtoFtF+j3u+umYgodRwiZoZRNlgmWFpe57rrdVCplorBPsVoj1ZIoGJJmOTJY8MusrbbwfJ9iuUi3N6DfGfK1P/8Gx4+/wu7de7AcD7D4/d//Q2y3RLXqcvbseRbERb41eJB5Y55rHr2Wz7/7D/jQe+5kcqyG0X+Si0e/QNo8x/6D55nd9dOIyh68A9NIS+HMaFaXzvLUUwdpt8+xaWON5tpFxsaKfPeBQ2zZPo3neNimhVIptm2iEZiWSxRnJEmM51nc7T8FCH60cztJqghiiesKSHwG2SIvn9JMbtjCvn37GA4Dmq024+MNwn4LXy5jOU2Kvdt46aLN/Efexebr7uDEof089tjjjEZddu++gcwwX691vEJLeCWjzWx/Hj+l3pG+7vFLe7g0fT34cjlwciUU8NJj3ux3309d6bzvyeeF1+ts39jb6jccf+lxV9oE+H7R3zegn38DFOBL53OlDYOrjf8arfxKN8/fUf1g4foPoPKb5813Vb7X8d7MWvztz+l7n8+bvjD11ecRpzGecjj10ktYjmRsbIyguBH73BOIwgRYuQ7R82yiNMN1TCxTkmiIgy6pTpHSobW2tI4aDAnDDGVJev0BfrHI2TNnqBTKtNsdxsYnefzxJzl/+iy33v4uMkORZCmPfPchWs02tqWwbQOyBEOZnL2wSKVWZ9DrEUYJlmWiTEmz1aJcqdBqtamP11ldXGEYZsxMTuK6PjNz89gOlIo+qTYxLU0UjzCVQOsYoU0s2yQKRpi2h1QCAxuRZaANLLuMVEWqlQJK2tTHqthujhwpZTIKBihpEUUBvu+js3zhGIYRpmnmTqQi/1DZtHGONBugRUp9vEKnvYRl2ViWwnZsWs0O9am5PF4mjSn6PnGaMhiMMJTE91wuLl7EciwKrsvM9ETepBqKJMtQuLx47BSDYUS5XOXgwUMcOXyM66+/lkwHpKsv5UhF8RoOPn0IpRSeVwTDwZOChQvnqFSLlKtFmq0ujucilSSOIhzP4OjRI9THJtHrtBytYTgY8cJzz9Lq9Dj24oukQYRUNqdPnWZzaRXLGWdgKDrdLhNTM3heESkVa80WxWIJyzTotLt885v3sG3bFjZu2oJtO2zatI0oSNHpCJ1qHFvS7bcRhsRQJvVaBYjx3BKlcoHMEHQ6bVzXJUlSLCUxLcVqu0V9rIYyNEmW4vkutcoYq80us3NznDx5Atd2sD0X1y7Sbq1RLFmUqjUKfpF+p8uJ4y8zNz9DFEe4nodhSHI5kqZUrnDh7AJxluEXfDzPYeOmzZw79yIzMxNcXDjL/Pwm1pqrOI7NwsU1fL9IrVYly1Js3yEKUtqtZQQS37F46KHHmd+0mUxkTNQbCJFxcfEctl1hYXGZXdfv5PEnnmTjxo0EQR5jZBiaEy+fotEYxzQl7uHF3EXzx+8EkXDm1EvYlsI0LWrVGg/e/xj/4d//Ho89+iS1yjhbtmwnikJ0BosX1/D8NYSIcKzVdcrcNr7+9a/z3vfeyabNc7xw+CVuf/c72bhhM75nMFGvEYUBjpXTZtPMwFYv0u2bFNwKw0EXtMLxc/feNM1wXJswDKiUSxiGQCoJBli2hWmZpFlKr9uj4HtoDMqFCn7BIxMCQYRhFXIqqBb0ex1c1+bsubNUqjWyTCC0otvtoRT4jqLZbNFoTDEK+7Saa1TKFXyvQBInmJbGEAbD4YBer41lOyRxgmEIlJIEQZ7dKkSMlBb93oBwFOE5BYQykNLEQBIO82zXbmstR6AthyyJUVYeW2KaDouLF/F9D2mYSCWJoojBYIDv+1imyWDYx7EdQJAkKY7r0uv10VmGMm2yTOcmQaai02nS7baw13ogwN28ESFyR2yEoFys8NU/u4vxWp2zZ85RG4upVQ1aLYfx+o3s3qPwXJ+f+8Sv82//7W9jOwYzczXe9yM/wXvvvANlwC17b8bQz2MIwY03fZLb33kD9/QeZRSE/NzWj9HpjpiYGOPMmTO86/Y7MU0D0zSxLAv7ycMkaUb/po0UvRq2lvT7IdtG1zMYDdiwp8GYU+azr/zP/O6e/51FsUCcRWihMZXiuuuuo+jaCEutIyiK8XqDM+dOMTE+QRxnbN68lTgJeXb/AXbuvIZypciFhXOcOvUK4/VxOt0efslBCQdpWLz44jkef/w+duzcgWVZSKVYWr7A8tKQ8+fOsuvaSUapjeO5YAg2b96AJsWUgiTJkKaJ1hme55OlOZNpemqWlZVFjrzwEpNzuVmcayuUMtEaTMskjCOUEniey2A4QEnFU0/s57rrriUMIxYvrlKr19bnlLPAgkGAMDQ605i2wWgUsbS0QhiOqFTHCIKACwsXcgaMociigFEwwvcLaK0plysUy4owzOOJslTQ64744he/TLVYwa80kEKipEUch8RxzPkLF3BNE8PQJJHGLVWIoghpCAqOhesJtKHyeDYDXLtIr9fPJTyOh3JtsszC9TwcG7Zs38KeG/ZgeyZBOiRJI2659RbGGjUef+wAi40Wh8NjfPziJ/ns9Z/ifXt/hFZvkX5wHPovEZ99mLi9SuLUmd34IQrj+yirWeRXxgjne5w+8yLHDh9gstJg2xYouWU8J0KqjKmZDbheSDzSlKopIrURhNhugVQLLNvFMhVhOOS+2vNoLSjfY9OY3sC3vn2ITRs8wrTNmVNw8OgKP/JjP06WxZw5c4aZmTmWV1Y5+/ILNCoDusNl3OhaNuzcgf+eMWYaG1g8d5Hb3rWXv/iLL/JHf/jnzGy/lkaj8Vf94eWo4VX6Pf2MBUK8TuN6OYr3WnTO+vckSV5zEX47rrVXq8sXfW974fnXRmrfnJ77uswY3oi4fn/P+TZmdZUF/ts990r/s7drOPX65/zHsXD9gcb1b6FyPWL8tm+YK9VbIZ+Xcu7fTm7Ulc55/ZyvPMYbKCKXZEIlUcxPvv8D/B//8uNw5iASgU7S195ApTIZpD02XruJMBGYjo/hKfTmD8DaCUSa4Rcs+t12bnyRKgaDPpYyKJYbOHaRKOxSqY4hpI3tjuEXXKROcSQM2qvceuvN3HzLrbzjtn25EYup6PR6hEFIGoY8+uAjjAZdoqCP7djcc9/DrKz2OXd2EceyaTeXeWb/M9iOybPPHiTsB7iWQbe9iuv4xLEmyWDH1nnK9TEsB6any5TLFQZhCCIGaSENh94gRpoFonTAaDTCKhRJ4yFGKsBIkY6N4xdzBMfKGI1CnILL0aMv0VxtEQRhPu9EAAYZA7JMIgydG234HqDRSUKapHQ6bQzDxHMKhMMAqQ0Kfh2hLIJIMxwlWLbLsLtMt7Wc77qj0VkMOqLb6nDh/CqPP/wEllBIwyQIYgQKoTVpNAQ5Ysu2aTZunMKQGeVSkR/+4J0MhkOWl4cYhkGv06XdbDK3aRrLkSgFloRESsbnN9MdpWit8D2H1cXF9VxIwaATcs3OPcRZhJKSJI4JB0MsQ6LMIls3beN977mDXXt2UR+vcNtt+0jTEUJrVpfWwHQZBX2Wls4RBn0mx2ucOfkySZhgAJONCTJtMBj2QGg63TUsV+NXa8Q6o9sL6fZiyqUqUueOlUo5rK4t0my2MNKMWrlCkiSkZLjlEnGcYgqLl4+/grRcTOVz/myLKMoYr1dYvHCONIoolSs4SnLq1HH8ok8mLJSRu8vWGxNMzk4jZN6In3j5JOO1GpNT05QqNQ4fep6pDTNM1MdQGob9Pp6p2bL5WgzD4s47byfWKdWxOkEQMzleJUlCMgFCZmSxZDgc0GjMY9omUSa5ZtcuBr02RpZRrZZw/QKWdHjgO9+i11klHmqSMOHpRx9nNGjzXz7/R2SZgWFIfM9g0F1EAyINSWMHKDPZuIk//tNvkwhJe9jnM7/xm/zfn/8C5xeX+Oy/+Rxh2CKM27gFm6MnX2QYv5OPfuwu2h2Xgm9iiIRrd+2kVC6z1uzz4Q9/CJ2EzM3PUqlO8uxzR+j0BmgjIxFgOg6IGr43Tpgk+KU6sY7QWuO5LoVCgV5vgFvwyYSBVArLyrVMUZib4LiujeN4xKlACk3KiKXFi4g0xbRzjaAQIcLU1Ccn0YbJ/Pwc/V4HLSDNhpRKNkkSkQqHQrlGkqU4ts94fZooTBkOhoRhSJyYhHGK7xco+EWUcEgjjTAM4swkS5I841h6jPoRaTjAcyDTCUoZxPEQQyYoldDr9Zia34Tj+nSaa0hpYJsCQ5iMoiHVcpm1lVUWly+Qxn1cy6FWrjLotcjiLmk0QhiQZjFJOiITkpJXQCi1TgXVaJlzVmvVBpON2fXPCwOhDFrdNosrK6yurNDstPCKHlPzdTZv34Tj1JBCU5m+hY/8/PsBRZRETE5vJMoyukHAcnfAn3zxT5iaHMfyRySxRgBZlnLfdx5kZus+HNujXCpy4dxJTr98Eh2HzDSqtFbPIEUGyuTMqWXCcIhtGpw6cY52p8mTzx3kIz/zMQCmJhvUqx4fHfs4n5n9VT5x9J/xXucmlLTRcUZrbQnTVIQZtFdbnD+ziE4zGhNjXL/rBl46dpaXj79Ef7CKqTQrq2u4jiSONHd9/SFq1QkefPBhGlOTiFgwCjsYFmzfsYnb3/3DKJUjop1exFf+9FvMzdbZe+uNPP70y5hkvHDwMEkYE4wGKCOnmwsJWicolTvoBtGQKB6x1lrkmQPPs+emPTz28IMksSBGoJSi3exy4dwiBoo4MTAMj2KhgpKCH/6xD9DqtLEdm7XWRfYfeI4oChl0+4z6I8Kog2PZeIUKUWYzVp9kdmYejcmp06cRlsvk9DyeU0ATEyUxtuujpUmYppiOyeJSk1q1RLvb5cyFi/iFAj//yZ9i143XUPI0aRYSJxG2kEgUX/vLe4gyQRCmWLaEaES9WkZKQbuzRqo9wiBAkiINl+GwS6VcIA4jglHIqNsmGrVpt1aIU0GW5qZ6aZKiEk00jOl3R6RxyvnZ8wzVgP9s/5/86u2foN8KKJUUmzdMM1keR/dO0e4u8eBzMQdemSEobqZYm2Thfx3BDzUJ4j5RGNLuGUzNSCp+EdMcoqw88ubkyy8z6kqUTBj2YrTSJIbHMHFQts9w2M03BvSrvZZgbHorttnilps2onXMMwcjDh5foz7VwLJMzpxexjI9es0+Olpgph6SxRGVyX2suCt4zSoHH3uG//F/+hz/3S/8FscvumzY8kG2zG/k3/zKT3PuyBPoZEgUxWQahBEjjPR11M83JEbwqulmmjN3ePOsVK01pmm+9vNb9baX54m+WU/616nLkcWrldY69525RMP6xoPW81zXNbCvVpqmV9ScvhX1+UrHXz73q/Xkl5/7vYx7tbHfeNw68+e1/NZ/HPUDxPVvpV5FW7//F+Tb5bdf7Yb969ar417Og3915CRJ6Ha7PHzXN/jEvga9Vw5x70PPc2j/U7Q7PSYmp7CkgzRMOs0Wm2emuefr/5lh9wI9uYma0cPQIUFoY9kKZfqk8QjHMklTSZYmhKMBWRpT9ItkWhAGQ8KgR6YDlLDwCz6GNEi1wpASLQRrzTbBMKRQLNHr9Dh94iSbN8wzMdmg2+1zx7vvYHllmVazS7fTZm52FtfxMU2TcrmMa+fZh8eOHUcpmzjo4Lg+Tx94lqmZKU6feoXxiXGEIbFsB8uySeJ4/ZqEKGUhMpVHWVgyd+Q1RE4JUxZZlhJGQ6QEMkGUJGyY24CQOQrpef5rOYGW6axff4NMxxgip3JIaZI7PHrrLoEprusBBpZlIoTCVPmiyFIqj3SQin5/kCMsQlP0i1jKplAsc+2u3Xz5y3/Gho0beeaZg7TbbaZnpvPMvVgg1l2MkySmWq3gOBbKtBir1UlWn8e2bcob91IsFvH9AmGY0zuFACFMvn3vt5mabOCUy/niOYmBFMsUDPsZcTjEcV2EEIyGI778p1/mlr03Uij6HDl6BMtxuO+b92FZJmOcIpN1ChMzFCtjGDrBKRYxDIMoDBn1Bqw0V6nX60RJTKVaWUcyPHzf59ChQ4zX6mRxQhLHJHFEtVJlbXWVsWoNy7bwXB8B6x/SybozI0hpouME13ZYXV7hxPETxElGGIY89ujjbNqyhVqlSr0+TpxmBMGQ8fGc0meaOV3VcTxWVlaYnJzk2EsnsR2L6dkZdBaBEGSA5zpIy8vdaEWG7diEYT833UgTyFIs26HX63Hq1CkajWmeP3iYSrmKaZkYQmOgkUoSRgGWJSgWSli2xfLy8rqWWOA7PmtrbX78Qz9MEHW4ducNGNLl2QPPg8iYm5lnx45r8VwXx/Ywjp8i9VzCd96BoQxSA3Zeuw3fsXCkxc/87Mf44I/8GN++937+h3/+6/zar/0yo1HMwsJFFhcusGXLNezZs5v5mQWUHPHVvzjGu999J6+ceoWnnnySd7/7Dr78Z19l3759/PEff4lKpczWrVuwHSc3G9EZphpiiqME2SRJNEKQIJWVxzskOT0SDLIU2u0uvu/nOr513VeSpFimnTtrKoMs0xT8Ev1hHyEzbCnptNqUiyV0mpJmGkPAaBQgpMK1BXGc0m51cR0b2zRZXFigVCyw2mxSKBbo9Xo4rkOmc2prHOWo0WA4xPNTTNMgSyxMlVIo+gxHAxy/ymg0pFytYSibLAkhy7BNiZIGGUZOodeaJEnJkhjHWsSzlAAAIABJREFULeZmdlGA53kUiwUq1cp6I6oxLcVwMCAadqnW6kRxgianWJO5aB0ShAFKqnzRIAVivYmJooj0/AJCSvTkOIVCgUKhgOP4KKmYnZvDNKHdaVMuhmhhIIxbWVy4yFQjRkmDDRv24noe1VoFIaHfTXjhyGHidEQwCqiNTbKwKFla1kw26tzb/w5ROOJXb/gFxuuTxMmIQqHIaBjT73coFCvcf+/9XLPSZnlljYXNs8xMz7F5ZjPdbofskIUWEO8IOHP6PHuqG5GmxX/s/F88/pfPIJOMRsPDsj2UNHFdl6NHjqKUQbGYZ+9qMoqlEtVKjThO2LbjWgbDIS+/eJwPvOe9FEoeW7fPI3C5664/5qab3kEw0rx84gW2bt2BTkOkyuNtNm6cYW1tmeFwSKlYJkkyxsfHKJQ8pFSkWcbKymqOoAoLyzTpd1voNMItlEjTlF27tmMqjWN5nD93FkGGUlAslnjo4cc5cOAgN9x4HUkSYSqIkz6mlW/iZFnGzPQMYZAwNT2FaZooZWGZLkJ4RPEQ03JJk4Bed40kjWhMTfHkUwd44fCLbN+6HU3EYBBQKtYIgwjPc7FNG9tyiDOIk4yHHvguY+UCpYpNnCaYZh4zRQYPP/xdqtUxbNthy8Z5bMcminLHbWHIPHbOyVkCvW6eNzsc9rFtE9OUGApsRzIKJFkGlm3nvgRGvjDKUpCGg1IOfrHIo4PHsTzF3bv/iO5iE0NmNGZnKMoCQecsljpFb/ExEn0DX7vnPL/4S5/h4Qe+w5aH76Cw2+Heb3yDZ557gfNnXub979hCEvcoVyRar+d9JyntVsr0zASGjkkzTRRDHMHCchfPc0BHKJniOBbfcJ8hyxI+El+P6UgcJIkS+KXNzG7YwN5bbyNJMpJRD8N2IVzCi87h2ZoIRXXuVv7swbu5tfhOZisb2fvxXTR7Aw4fPcZP/NRHuOvue/mVX/lFfuc3P8PcxBhze27BzDQCxat69UtRxEsXWfq0QvgaY1dyyUL0zfWnl9ONr0S7vZqm9vKxvp96O1rct48u8prm9a2e529Sl3ula3h5VND3c73eTE54dYr21Wndf9f1A6rw31P9FTKZrb9ZfO83wpWyrq72XFfbvbn0mO9l3lfjwL/uDUGvf2CsN4p//rW7uHHaYWV1lUH9Ro6fOMF4CZZfeZblk2eY27oNr5bnTNrJGhs3zGK4c4gNN2C+eC9MX4fMUgxt0O6ezRtGLfO4HGkgZf4GHIw6ecNuSjzHorseT3Hu3BKj0QjXtbBti4n6OI7tsLK2Squ5wk17rufwsaPc8f73U2s0GA0DpmZnmZicotvtMxgMaLdaBGHA9NRkjnj+/+y9Z5Rc53nn+XvDzZWrIzqikZqIJMAcJFHRyvJIlr2OMw6j2WPvsWdsz46jPMEz6/XMmbXXHo8ly+sgi8qyJFtilkgxCiIpkiBAIgOdU3VXrpv3w21QEAQwOIz8Qc85fYCufqv69q2qW8//ff4hThkaGqO2VqPZaGI6RZ595ll2bB2nf3CQXLGANs0XrdQl4AcBrudkuiOlsol7nBIlgjAKcW1Np9cmikK8TSdGQ1sYpiIOUx57/GG2bZ8iSWMMQ4GMEKlNEK2TxBKlLZRI6HbboL6VtyUQmS40zqzNhcoE9r7fo9dtYZqKeqNNzitQ32jS6/h4hRzNVpc7Pv4Ztu4Yx7ZtJrZO4noWA/1VhoYHaDabbKy3ieMQL+/S7fp84QtfZtfOHUiVImSC0hAuP4cUgoYcwrAt2p2ARqNLbX0D25Rs1OscOngNWgpEmmDILIRdCEUqHbQRZ4ZcUrG6skLO9eir9DE0OUFMjCCiWswzNjlFnPi47WMIaxAzTUicPEobNOsbNBoNjj53FC+XY2JiK91ej527dmBaBloIDKVYXV6mXC4ShjGFUhHLscmX8pw+c5qR0VEcz2X23CykKY6dTdXqG2sUCkXWVmvYtsPC4iKFUh7LtpnatpNC3mGgv0yaJmwZH+OFF45iuzba0iRhgu14+EFIu90iSRO0YZArFEiBtaUFhgb6OPH8cRxX4Xg5zp6dJYmizCxFJMRRjzjyiYLgRTOzVqNJs9kgiRMcxwMEWycmMZQklSlSKrTSLC8tUenvR5KZeyklyOUy2rM2TP7kwx/h3e95K1/96tc4/PWnWVpaZtuucaZ3XcXWbQMsz9Xp1c9hzd1PvH4GvzBHsmeC/P630vN9dJrgWIpe0CNGk/M87r7nS7zpzbfzrve8mT//izv4/Oe+RBJFHDqwi//xoT/m7e94C0H7YZQKKZQP0Oul9FUr7No5jmE77JqeZmlhhunpPQRByNjYGIHvE8dRljcsNCKdxQ92YjsJStkgEoLAR2wafF247Lmujd/rgASlFPV6E8d2MxqvYZDEEbZtEMcRjuNhmCbtZhPHzaG0ydz8Il7OgwTiKCFXzFOv1TY3Z3p4+SLdnk+5WkUoRS8MsCwL23GwHBspDbRSWKZBmmS/M40CfL+FZZikUpGmAtO2WVpeoVTIEwUBzWYd2/WyiVKc4AchhmWzvLREoVBACIHjOfi9gDQOCLo9DMcmSuMs29WwiZKEJBHYTg47VwKhWV2pUa1UQCjisINpWDQa6xg6O07XNonSLt1OhyjyUStZfJE5OYrv+2it0YYkSQJsy8S0bQrFCtBB0ubjH5/jaw88wI03fj8PP3yCudlFBgbGsMw8PT8iXxhkZGyCoS0juJbB7HyP9XWDc2dWmd62lU/OfxbXdXm99xZMJTl+/Hm6XZ9OO8A0ItbXa9x68y3Yh7+JlBbhDQfxvDyPHn6Kn/v5D/Bj+38GU1t8df0L/MzPfIC3vu21XJu7jmfPPs/G/jq3b72JvG2DLGaZpBJGRqbwgwDbdvnwhz7C699wG6Zhsba6wfEXjjM/u8hXHvgatmNRrZYxLZO//Zu72bNvmqv3HwQBXb/F2NhW2q0eH/urj3Jg/z5SJCePn2F8YpxczqNYzKaLKSGnTp9BYhIEEYV8CUNbtBtNbDNj1zhuDmS28aeEZPbcDFvGxxkc7sfL57AtSavVZOvUVq45eACtU+ob63RaLYrFPMkmHfy+e+9j+9QODENx7733sH3nDhKRIoRNkHRpNxtYlo1tStIkptUM8FybcnGAndunmD3/AnOzK4yMb+VPP/JhpndOQZoQxj6mbbO+NEe5VGRq+xSuY6G1gVIGd915D0NDI/S6NaZ2bEOQMLV1jGZzHcezEdrEcVy0adFst/Aci3Y74KGHHmNq6zaUzqKskkTR7WSa74XlGp/73JfYu3s3EGNZijD00crm5OkTVKpVPvU3n2ZmYI6/mPg9hnMjDA8PUSrnqC8+yvK5O7HEEjOz38RWN1JXU/zAT/4ED955J29f+XmEEMSVDQa2DFCyfW6+rp/+PgPLkdTWIZ8vAQGWoSlVNGncA20hDROhHYLYYHh0LDPbigK67RZxHHFP5RmiOOH2pYPkCgVWa4pHHj/OqfOLvO4Nb8oiqUIwPBtXK1R0EpEE1BoR3uA0qSyz56opYj/Fbnmc3fIMMkn59Kc+RaVS5cSp0+zfs4f3/sjP8vP/5t8xf/Re3vz2twGKJBUkMsjA62V6OrknQuwOL+kXL8/sE+LbHYYv7RMvXnehX7zUuOnVUFdfikL8cuD1srGNF/5m+S3NarZOfseaVwtQXw3N+eLzdcHo6XKg8h+ThnxxpenfzeTpH6O+B1y/SyVkvGnI9O2g9R+Kx3+lupxD2KupC2+iK1GRL1lMkqYIKTBMg3/9sz/LO64eR2uD/+svv4IWLnt37WZsa5UTzz1AHCb0je8kyuWYe+4ZeuFZxkdfRzuaR5a2Yxz7Aql2SEwHhEMUChoby5iet2lQlOl50qCHVJJGs0UqNIlQGMqitjTHwuIKWsLSwixFL8/M7BlOnjlD/8AWPC/Ptddfh7YMHNem2djAyRdJ0xTbsjh58jRjw6PU1mu0O13aPR+pDO67736Gh4c5c/ocIyNDTEyO0jfYh5PPQZoS+l0swyAmM6EyLROxaa4UxTFSmwRhZrJkWTatdkAchZSKOUgSFIIg8kljQRBkWt5SKU8YpqT0IFFAhFYOApNOexnLshDSYn1jHtcuZU+HAiGyCbjSivXaBo4t2FjvUCwOEBOTBj2S2CeNfUpFF6UNLNth1+5d9FXLKAVaZ3Q1J19EIVheXOK+Bx7gwN6dxMLiE5/8JO968+tB2TQbXaRKMypjdw2hHdyh/fTabdbX56iUqxx7/jmGBvrwPI9Ws0muWII4pd3toLVBp9fDkIpOp4OQYJgmrueCTJGGYGlmhkrJ45knn6a/ugXHMclX+kiWHieSfaRxTCvV1GqrlCoeubzHxMR4piFtdSmVi0glEWiiMKbT61IoVlhfb2GbJuvr65imiTQcKpUB5mbn8FyTnGOhFHiuxfLSAn0D40RRwlptlWq1jJI2luVhOJkuMky7oBNsx0GKhEKhiperIKSk160jtcvi4hKVYh7X9Th/8jRKSXpBL6OQ5koUSxWaHR/XzaFERlMqlVwa9RqW5WLqPMJQxElIiiAVBp5bJIg7mLZJwXJZqS2jHRNDGchUIkTKyuoiOc/CMD18v0foBxjaQBkmSiXsO7Cfc+cW2LNvP8OjI4xOjNFXzGPYGsOyybkx3vo3sfe+F/d1v0JUOwFC4Y/fgmtapEAcK0gdTNMkTFq8813vzoyMdMqXPvVZhgY8fvEXf4pma4EffP9W/O5xFmaexnFM+gZH6PUEX/z8l9gxvZec5xL4AV/84j1YTo6jx55gz+4d5ByPVEviEEwjc+i29VHCqB8hJI12J5ugmQ71jTqOlSeVEVESo7BptDvk3CKOaWaTbW2hTZMESeTXEdKgttGgtrKANk0sx2WjXme4v49WvYlpSrRhEPspCSEgMQyNkBrLtgnDkDAM8btNlFI4loNEsF5bZr22QaFQRIgUqRRxAko7WVxWHKKVQRpH2F4OpTVpmmBZCiltut0A07YRMqXZ7NDXV2VtdZlyMU8SpWysr5PPuUjTwNAWaRTTbNZQpoWlE7RUxKlBHPbo9NpUqv0ESRuV2ggF0rCxvTxaaVaXl7FyLkJqtGkitSKZXUIIiTk+SZomdNoN4jil0wmRSmEbBmmc0GouYeqI/PB7OPyNp7jh2lvpNhL233Q7fYMlen6DZn2DnCuQsonf6dCNNyiW+hkYGmF8aoBERdxdf4AwiHhj+TU4uQEq1T5EktLfV+bu+x/j4MHr6AYdjn3o4wwN9XNyJOKDv/Jf2TLs8su/8cuYRyocfvwJ9v/Ibn78J97DYP8I//6Dv8tv/8hvspKuctfC/Ww/OskT8y/w5FNPcuDA/iwKSQpIFbt37yNKE/IFDy/nMr+wwujoOMVCnrW1Ffbu20ssQibGdqDogTIRSmDoLLJIyDYHD96ANgwi3+bOuz7L/v378TwXrRUbG0263Q7jYyPk8w62YyJETBT7rKxukC/mUIYiSRLCIDP2My0L23JBK9IwYXX+PL04oFgqZd4EloWTc/BbIXPnVnjmmRNs27UVAUyOjyMFWF6eqW2TpEmATBLa3Q55y8Z2chD5NDprJIlJzvNwnAJR1MOyTfww4vljJ9kyPMRNN99AkqR4Xp4oDBAEGG6VVGaffbZrEwWKI88d49qDe/CMHt3QZG1phkIxR5hALpe9xqMIlJ0Shl2KOQ+/44NhMzE1xnp9HdetUFs+x7lz5xjcMoYybcrFEgcPTGeuyI6dmbGZFlES4jp5Qh1wpu8sY+YW/uXkB0gME2lCr12ju3IOL50hb66xOtPi2HmT5Y2AnCyw58l3g0655+xnGBnMcfc9R1HpWcq5EkHSw1SCs2dmwAwoOC5REhEGIbl8DpmClbcQ9giuN0zqN0kISVMf2zAxTckqbYY6I9xWPIDvuxhGD9crkh8YY2x8iiiSLK3WOHX8KJNDIZ2VGlYuIdZbGZrYS7vboFHr0IprlFZGaM+3+an/9k5W51bYNrSVN775EFEr5unnH2d85FrOHnuQTm2Ja649gNAuaZRHyswRmjSTKVwKkC7+uqir5EIfe/GQ5MX8T74FRi82hrp4gngBQMZx/G395LdNfS/pjV8O3F7utsuZEV2J8vwd4F0JUpIX9W+X07T+fbS8L7Xu0iHTpUD/cvf/lvvvy0drXlxXGoYJIf9BXJL/Iep7wPW7VZfjzPO/Zgz/D/H4l+6uXe7FfimFuJzPscPpog3Fn97zFD/1Mx/g+ReOs23bFKY/R31tlVNHnqPfUWhXE2Ow3rRwKiFCjxHlB7Dmn8AI1tEiRVg5UqWIo5BOu0W71cS1s0YTobBchzhJcN0iIFldW2b6qr1U+qqkKZw5c475+XkOHrqO02fOoIRgcHgAqbKLVKlYQGqFbRoUi3nOnjlNGIasN5qcn5lnaWGBHdu3MzYyRrfb5aq9OxgYHqRULaNME5EkdFptNuqNzcmM+rbzp5TaNFCSWQyGzFyAtdbYjkPg+5sTUjAMC4Ag9BkYHAAR8Zd/8TGmp6/CcWyCICBNYWZmnmIhl9GhU43r2vS6PggQUpImWUxG4AccOXKEUqnEl+68mzSN6OsvYFkulm3T7fqkQpCmgrm5BRzbQcoUv9dDawutTNbXa+S9HJVqHweuuRpDZw3MmVMnmRgdotzfzwvPH2dkZAQpJbq8E1naRhD4dJpthrcMopRNta+KYzs0Gg2efOopJicnEJJNB02YOT9LqVzg9OkzVKt9SJEiSLPYECGQ0iCXz+O4DmEUcP8Dj7Bz5w6i+UcwvVGklNh9w/T199ENA5ILDtU9n9pGMzP88nucO3M6i2IoFjl56hTDW0aYOXeW0bHRzLBEZll2juPiuB7SMjEcj1qjQ7E6tEnNy+JGmo0GubyJkDFx2sMwUmZOLdBfHcSx8pBGmKYNQhAnEZ5j4wcxQeCT91wOf+MbjAxvwXKszGlTZE1Au9XOprApxGFMzvPQWtNoNmg2m5imhZSZCZJWFkkMK8vzIAT5XAklBG7OQ5sGK0vL2J5DnKaUyplbthApSkmSOMzOsTY23SIFiwsLFAoFyqUyhmlx7913MTo+nmmOl49Cr87y9C9Q7BsjOn0fvh/i7HkPCI0UMSCp11v0el0gQWCT80qcPXue/fv3cd0NN2J7BRaW1pkYlzz11NNsm8zzwvNn6Rt6J8NDNaJwmL6BEs1mE9f12LJllBdeOMbr3/Ba+gf6qNdbuJ6HQJAmEttOkelpmu1MCx3FmYkVQoCQ1NYXUNpCIAjDFoVieTM2BlrtFq5tkyYxlqFJkwg/jLBsl3KpSBRHJCk4jsvK4kK2eWYolMpMcTzXBhS2Y+OHYWZUIrNrpue5GNogjiLiTSqy5+aRUuD73SxORGvqGxu4noeSknarg5SgdWYqZRiaMAxByM3JcYof9Ag2zeOUkPT8HnGcUCyWsszUJHN3NzbjuAzTotmsY5oOrVYXQYwQKYZhkyQBcZDl0gopgRQJeF4muxBSk8RpJsE4vwCAMTFKt9smn3OxLCcDL1GIlJlO7ulvPsTgYJ6Byhu4+abrWa/VeOKbT7NWO8bE2AifveNOrtnzRp488hATE1P80i/9GtfdcB0D5QZKNuj2CoRRk67wmfImua7/ZoL2CnEYki+VWG80OXToGhARSRqybbaOSCXVd76b//yf/gsf/OBvkS8XCVSPs8FJfudDv0OlL8fBgwe542Of4uZbbufW3I0U8zn+xLqD66cOEYYBaZiQz+eIopg4SfjkJz/B1qlJPM8lDCPCMMR1HNbWVnj9G14HJNi2h2FKgiDMDPVk9ll58sQpXM/G0CZLy7M89NDDvOPt34dtO/i+v/k5mlIsFvD9LobtEUYhUivCMKC/fwClswg4w3CQKiFJYrSUiDQhiQV33PFJpnfvo1Ao0+uFDA4OYRoGQehjmzarK8t4eYvBwX6CoEeSxLTbbdrdLrZtkaZpFndjSRYWZmi0NjB0FnVEojBNE9/vZkZmhoEQmQt1X18505G7Dt1eE9/v0el00YYm9Dv43TbdThupoNpfxXFdGq0OnlemXl/H8/JYtgtK02o1sU2TNLWIw5SN9QZBr4dhWAS9Hq7t8Ddf+CKT4yNs276DKE65+577gJS852DZFgJQQqBEJg/52Nc+yZH889zuvpb/Z/vvIpTOnisZsbF4nh1TA3Q3nmdldYG1VcH2fW9jtd5l/9e/DzXeQ40GTIxtZ319g6C9yP6r+jBNgTYFMgkplT0KpRypH5AIME2TTqdDHAkMs58gsMh5Bt3eeQQSQyuSuEEYwq7mOOVTHsWSg1YWQimi1OKBrz2FoSy00uRzNpNjY7TWT2Jbmo1GxPOnVglTg3w+j2N5rPsBi+fmcFo5Pnzkf5KmIV995Kv89d2H6a/287q3vo3bbr0dES7wiY99jvGtUwxPbCOUGnWx4dAFhuxLaCpfDkBdvO5y/eHl2HsXvldKXbavfKXU2Jebtl56HC93/0uHMy9lxvRKfu/fZ93LTVyvRIV+pfji8mu++xThC/U94PpdqiSNXn7Rq6wr0X+vRNe43H1erl7uYnO5Y7pAF3ZNm9Wn7iWMYu4+Ms9nv/AlfvM3/yOVfJHjc7McvOEWKn19PPboo5SsBs2FRSpuwnNP3cPo5A2Y1Qlm5QDFco5g9hhW/Sy2jHFNhStjNmprNOrrRMpEaoNuL8A0TKTMXHer/VWkUJw+fYYwjFHaoNcL2LtvP2dOn0aLmMltU5i2lbl5SglSAglSSbbt3E6z1WJufonhwRFarRrTu6bx/R4PPvggB2/Yj7YMhJQkCAxgcXGRocEhGs0Wjutc9pwJIdCGRmmFVApElu8ahAGmYW3qQAVJEmOailSkrK4uc/CaG9DaRGsBAlrNDh/7q49z6623ACmf+MTn2L9/H5ZlEIYB2jAJfB+lFN1ul4mJCYQw2bP7KkZGBqlvrGLYOaTSGU01X0AiOX3qFKNbtmC7VjbRTuD8uVnGRofpdn02NpqcOn6cweERLNPkwN7dOLbJwvIyY2NbmZudz6Yxpo1SEm1ItDTQpiRJdHabtul0OmydnIAkAkk2rU9T+vv6iNNsevXYY19n6+QW0jQhCiNM0+Ls+TnK5TJezmNxeYEtW7YR+G2s9gkQLqabR5X6OHP2LH39Q9nkKoGZmRkefPAhDhzYixAxtmVhmjZBGDC8ZZg4TjezEyVCCs6dPkGpWOaLf/NlJrduJ/I3sLTC1AZLcwvUG+skSZYfCQLLcoijBCUk3XaXXrtBt9MhJaLT9rFtk57fQSlFHCabGq7MBXZ8bDRzuDUMjr/wPOVKNctKNBRJKmk1W6yuLpPLuSjDIgpjKtUqiAQpFHGYPUe9bpdyOc/K6hrFYon19Rq5fH5Tu5gizYyKbZoOSlskSUCjUcfzHLJ8YMFX7n+A6emrKBXyaCXp9nrYlkO73aZULBOHAfL8A5S+/48oDu/gC5+/k/33n8Y7r2je+gYM2+D8meMUCiVqtQ3KlSKPPPIY//oX/i2el+f6G66jf7hKo+Vz730Pc+LkArfcPEiawN/87Xnc3D5+7v/4Az720Yf55f/zRs6fb2MYBrbtorXm7NnTXHvdIaTKNnxazQZKKTaadVzPQdJB6BEMbaENRbvVwjSt7D1pJ7heBa0NTDMmClKEzMCnaVs06zXiOMoiQwyDTsffzLk1NiM+bKSQOJYmly8QxcmLALbVamLobBPDtG2iONOHKZlR83qdFpah8cMYrSW2ZWeAYZPCnKYpYRRlm1zawLQsul0f0zBAkOXlWjZSiE1NoqbT7lAqlzebvszJtdfL4myEhCRKWVld2rzGpJjaACFR2iDyQ3KehWkaLMwtUSjmAEiSzKhEpoDKsqLTJKXd7mKaZpb1mXNRwwNox4E0YWOjhusWMmCrM5aHkJL+vhKOtcT83BaiKMJ2zzC9u8xH/+xr3HbLLZhGxCMP3Y1VKFAqDTE9fYCxsXEccSciPs+R53MMDufZJce5tnQIwy6zvnKKQrGMNnMoq0Aad4iiiG63R/OaHVi3v44//sOP8v73v5O11QbD40NEpR7znbOcOD5Lp7vG3r27uemmmxmbnObQwUP83x/4Hd7d/3YebT3C19VTvGn89ZxfnCXveTiOzfj4GIVSAd8P+dxn/5qRkS1EUcCePVcRRT5pGvPE4W9SKFhUqoP4YRfLyjYaKtU+IMk2l8yUHTt24jouAJ1OJ9OVk2CY2WeCUGa26UjmeB0G2caKaZiEQQyEmFb2Onvh6DGKhSpDwyM8e/Q49Y0Ww0NbyFBIgqElpCn9AxUGBkskCRnA29SQel6B9bUGq6srOI5FEEK+WM5o5HYev1vHtV3WNuqbNHD7xRiUgYE+LMtCKUUYhjiOiUCSzxchjUjiiJznQpLiR71N/bxiYWmd9dU1dkzvYn29QT5fIhUK13YIuh18X/P5v/4CO3bsoF5voJXiySeeZHRkhOnpnZTKZeI0c3weG5skDALKZY84jel1Ojzy8MPIsuYr3UcI+yL+YOf/y5P/6TA3X3cd9cYs1bJLd2ORwbLJwvmjpN2TrKzWefJIi8ndtzN2/lrsZo6F8DhezuPM6QXu/PKXuPVQBc8WKB1mmxMqJUl9tM6RBj5qM09YCIFhQxznSUWE351FJgEvPL9AMVclSdpZrFUC1b48gR/wzNOnePyJU0hzgLd83ztoNlr09VWQwidqbxAHy4RJQKn/AKWBCcrlKstLc7hOga8/9hj1cIbr+m7jHdNvxK98gfe8fR+rsw2+dO9XCWKb9cYir7v5WnZPH+K//Nav8c73vJ0k56JT9eKkNL2oV4n/KEdy2ERe9y268Hf2kFcGfxcPMV6q95RSorX+NrD8akDcpbe/kgno5aaTFx/z5W67XBzMdxhavUIN7YW6Em350rp4av1y4PxKw6TLPealvf13Pjf/dAyZvgdcv0t1Ibf1H7Neio9+qVjFV5noAAAgAElEQVT+1dSrvc+F9Z7rcuIrnyaOYx55tkanF1Iq5WjMnWJq5w2U+8qEtNi2cytxoAmjBWr18+ydfiuJDPADRRQKVtKUwZu/H2vrjaQizsj3CPJxnaIO8VqzyPYKRmcZiSDu1EikxPHX8Tfm8Nstzpw4wcz5s9x4yxtIgcWFWZYXZxgZ3UaKRCmT0A/RpkE2rsy+BoYH2bN7Gt9v8ZrXvw4/ipBacei6a8m5hWwtmQtpq9sj55oce/YJRgfLCNO78jl88WLBZlMqSNOMSq61xjDlplmTj23nMLTi1Klz9PeXuZAzFMcJu6/ai2lIpIqz3LYkJgi62LZDmoosQy5NMYwsa/Fjd3yGZqvJyNAwcRDjuDaddhPXsVlbXcF2TAwticIuSXJh4irxXJNmvYHjlTh8+Btcf+gaRBxz//33MDG1lVga5NwcWts89tgj7N4zTRyHSCmJI3Bsl16vjdYOi0vLGKbHRz7yYV57280oCYk0CQMf29IIEYGwyOfzTEyMEkVdLNOg2/HRyqSQc2g3u7iWy/LSEnGUYBtgx0sYKk/PKSNMm1w+R+JHPPbwI5QKOTzLRKYhExNjnJuZpTKwhbOnTjIwOMD6+jq+H9Js1InimE63w+CWEVKhGBsZ5+47v8z2HTupN1oUSyWUofCDLrZto7WRGY4gCIKAc2dOI9IEx3URysQr5ImDhI2NNUrlAq1mi7Nn5qj2ldGGJA4j4ijEcCzarRZjIyMow6S2vka73SAMQ8rlAoWCix+00KaBY+dJkbRaHeobq2xstJiYGEOqlGazTZIKSpU8hXyRIAzQ2mBxbp5HHn6MnONRLLp0WnWUtrAthyROUUrz3NEXGBzYQi7n8uhDh2m32oyMDJGkAUGYMHtujrH+PPH6cWYG3s/gUIWR0QHcrx8BkVJ452vpdbs4nkmaCvr7B4hjn/6BCj/4g+9n//59+EGLVq1NzvF4//vey+ryAv/8X9xOpVLls59fYWXNYHnpPL/6q79NubCVick1FhZC5uYWuOfeu3jv+95Ls9EiiGIM20LEPpbl4bhFpMoj0lUMcQY/qhK0aiiSLFrD89DSBZEQxSFa2LRaDUgzw5yUzI/DzWU6wtpyjSAKKRQLnD19nsGhQXw/QEjotBsIpbEtj1q9juvZmNpkfn6Rvr5+gjBE6wyI1Ot1bCdPp7GeZRz39ZNEEc1GC8uyWKut0uv5mwZHdqZ3RZKkCUoZRGFAFGRA0A8ilEqRwgAktm0RxzG1tRqG1kRRlP09hoGQsDi/zEB/X0bZdPI01mvYXp4wCKmv11AqJgxDisUqYejjmC5JREbh95xM74VAppJet43nOfQ6bQzXQtoOaZIShj6lUoEk0aRJQpKGWXRXt4fjVjDkLF4xQRZuo5hbIUk6XH/r+4nx6Ruo0j+4ha9/41n6BwbZedUolmlD/A3iOGCtPkU+X8HQmdtnlEoKpQEENt1GyDve9HZ++gP/Atcp8vE7/prbbn0DP/De9/Frv/5vcCyX//mh32PfwX0MDg7zSz//q4xumeJf/qsfx3Y0S0vLdOJVbrnlNdRWmzx85xPs86f54evex2fWPs9DnUdxFj1m/Xkef/AwB67eR68bsH//AVzXwrFcPv3pT3P11fup1dYZH9tCqVShF7YxTU2v18O0DKRQaC0RQmcTdOmiZJbD3W63kFLS6XRxnRyGYRL5HSLfp9PsUl9r0u70KBbzmxNPTRKGWd5pKPj6Y09Q6i9TKDpMTo7RbDQ2TedifD+AJCQRAqVN/HaXL37hy+zcOY3SBnEqEKQcO3qC7du2I2TK2lqNYqWKUpCQoKVPrx1x+IljFHIl8oUiQmQb8SsrS0glIQWpFEsLNcqVavY3GRam5dBuBcSxIlesYGuN325SLhbpG6iAztziDSl57shR2u0ulf4qfrfBwYMHsCwDJ+diex7FcjWLYLNAGTZh5KOVwROHn6ZULuB6kpVkg/PJHBvVDl/vPsU/897Nh6/+74wyzA/+wFuIo7M4yRxCdJHKp9GpUXYFjcUnMJw+Rre/E2NpB8XHJ5DTPkEacObMWY4deY5r9o3jWhHrNZ9KxUInmkTD2qrkwQef58D+YaLkW0Y6SSpJKdP15wlbLQxpYtk2jidJ0wDf7zBnbbCWrlLolSlWXM7Otrn6+ltxCy6lahnXc7AtxdK5xyk4eTAtlDeFU6wQRT62BaViidnz5+gFdUa3txlo3cTugZ3kR79G2Whxy237+NhH7+Tn/+3P0Wp7rHVbtOdO8amP/inf/yM/ijZy3wJQ4lu9SnLYBLgicN285WV7xZfrO6/kx3KltUpdGUxdOsR5qentSx3TlYdBL73+1fTXl9J/X6peTf/9aia8lx7vd56rfxo0YfgecP0uVELKt6atF+9wfFsw9D9AXYlCcKUdlZerv6vB04XbDWVQ6Z5nbnaW4qF3MDY6xJ7tw3g5xb5Dh1hcXiaXL9HuhAxvOcC5k7Os1jbACvF7DvNza0zv28vw5Fa0YSOcHGpwJ2JsH3LiGvRVr0NddTti261EI4co7ryJk7MrpG4Z3V0nki5zi8v4tXmGqzmu31bC7c3h9hbIOxYHrtqOabsY7UW6a/N06xtYSkKasBnIgCTbDOgfGECpLLKkWCpmFEGdgNAIAUoLWmvztBeXyDsxPX+RfGmcUBooEZF+61NhE62+uL9JpiXITHICP8IwTfyej5Qx2nSQJChpMjezwP33PML2nVP4fkSxWMAwJEIJEAqlBUoJlOHQ6/awtCCI4oz2JxRJLJmcnOS5p59m27YpnjzyHAQR1WqJlY01lGVjAIZl4eYKbKyvUSwWqW3UkdrEdHNYjsQ0BUoqGq0OlWqFOEr42F99nH17poljuP++e9l31S5mvvaHON2z1JngnvvvZPuOXQiZksu7KCk4dO01BFGINrMJgEglcRQSxz5aG9Rq89imgWO4tLo98qUyhlIcPXIEL5/n6SPPsGfvXpq+T1//APHM/WhzECqDCK3odnsonTA4MMS5s/M4OYOR8a04bo5SuYIQKcWcy5lTZ0hiydnT59m+YwfaUFT6y8hEcd899zE+Pkq1WmH+/AlSDJTlYhiSfKFMHHTRMkZoQZz0SGOfoeERVmsNtoxMsrKyQrlUwPZMHNek0+7SanSYnBxlYXmZpfl5SjmXesvPzmmzhWHZnD51nMFqH9q0GKgO8/XHvsHI2ASWY6FSA9KI++69i6HBfiqVPmZnF2i1m1SqJR577HEOXnstUpucPnUOpSW2Z1KoVLEdl5GRIYTw6fU2kEaeu+76ClNT2whDn0IxTxQHuJbLan2DRmuFvuoglmNTqZQYGs0RYsDSM/z+nU1e+4ZbiOnhPTOHMHKcKCdoqSlWh4njmDRNaLezuBW/k3L7bbfz0z/xU6w11vjLv/oz/uRPP4TSJocOlHniG0/x+//1Ts6ee5JPfPyzHH/+JDNzNXZNBzzyyAuMjm7j+huvx9AGszPzPPjAAxzYtxuhMz2hEJAmCaQGimMIVUFbRcJEoDeBXKfdpN1sY5kmqQix3TxBr4ntGPhRjEoTtITAz86FtUnFrvT3o0VC0GuhRIJp5EjSEKUVUdjF0AlITbu+QBz79Pw2OTeH34uxbQdDQhj7GLbGdTTdTg/PKxAEPsVigSjKJrdk7HTa7Q1Mw8TvdrHtTGKgDZMgCjAtjyDo0Os0M0MzbZDL5TeZEyZ+t5kBCqWxTYllO5t0YhNlm4TdNqY2sFwPK5en4/ewHU3Q08RpjGmbaFO/2KYJAUiQlpv54QuBkpo0TkjQCCVISGjUmjg5l/mZGXKuiTIUnZ6PIQ0ks6TyZpRYyB5PDTE7s0R//ySWXeTgdbs5c/oEwwNlwqSJIY5lk2y5G7dYZoEN1sI2ZV1ECUWSxjg5k1tfdyOPfPUwnmdx4OB1/POf/N/5vd//XYJexG/8xgf547/8Qwq5IU59cYliWuEXfvsn0YbJk08+yw/90A/z67/+n7HdZfbsvIabb9vN+OQUk06FyTPDvHv6XXy98SSz7jwLo4vESUQxLnJk9knMbodSdYhtU1tIEygUqpimJoojWp0uhjQwpE3gh0gVItMYiUeztYLtuBD7pAgsx8XNediOR21hiQcfepR8sYjAIV/K0eo26KtWMI3MHT/0I4QwaHc2EEIwMTnNw488xMTEBKYpGRwq0ayvs762gSFMarUGxWIOP+giLIt2vU7/4ABpkjJz+iyVSoluu01fuUC3lYFeSUIU9DJfhNVVSGLuuec+jj53gj179mZabcfF1Jo4TTG0ZP78DPfc9zC7du7AdTVxnBIFMZZp0Wis4WqL42cfpVjeSapT/E4d07QIox5ae1SqBQaGysShxM1VECok8Bsc+eYpwqDHZz79SW688TqkzjYIm80Ojy8/yVJ+mefUMR5uPkkjaDLqTnB18QC/MfqLvEbtRFpF8Feg+Rzx8mG6c8eguUCSrtJOHGTYIO2cJwr7ePQL61w780N0hzc4sfgCw1u38/xzL5AoRRTWmBwuojQ88cQM/aM5DCNHLi/ZPlWh04kwtCCKIwSSTlgFy8xkGkmDVClE3EEnAXEQYSjFb41/gscKx3lb+wZWVno8e7rJza+5ja/e9RD9g2UajQ4Wi0iaODpPmu8n8vMsLc6jlEOhYHPfvXexurrIvl1DLK8tU+rrUmq8nsjXOFNH8YMVWh2X43Mv0A3Hufrqffz5n3+F0TGXYTtPdcdVKFO9yPh4UQ72CoCrEN+pib24B7x0onlxb/hKdZsXf12438X/vxT8vdJ+9xX1xKnMnNSRL5ptXvp7rzTlvRQYXo61+HLHdnFdDuReAPLfQWm+zP2vdK6+fY3YBKvin9S0Fb4HXL8LdUHIntXFoPXVGiW9XF3pzf+P9fgXUyQuVykgJ6/Fz2/n0391B+9829upt7psm97Ho195lJtvfi12ro9UurSlRXnLGNv2Xc966FIqjrD7mkM4FYck/nZ98HeYCGgbw83R6MYcOb/CI4ePcdcjR/gP/+NT5LZdz9dOBaRbbqRZ3cev/NHn+bO7vklucIr8xDXkPYdQuaRRSMESxGEXsfwCsnYaVk6Thh3STo20tUzSXiVsrqEFgMqyMVFIElaXFliYXWZq/15q6+uszq+wvlajf2iYVGrERUD14nN3cWmlUDLTeShtkEY+Mk1QhiYKQxzb4Zlnn+aag1fjue7mREZhmAZBEGIY2b9aZMYdCRLS+KLfnWCZFrt2TdHptNg6tZVqtZ+e71MtV9HCeFHvF4U++UIBw7BI0hTH8eh1Q0xtUshVeOabL3D3PXdy08034jgeKys1xsYGMW2bq6/el+ne4gXqGxvMdYv09RcZGsr0xEkak6QhcZJpxWzbYX5mhkqlDFJiWBZxauI4OYQws6ZZa/wgoN3pMTY+gel4TIyN8NBX7mPr1q0YSsHak2hrkLaRZ2l5iULBw9AglUEQxriOS7fXJYxCVldXKZVKaNOkv6+PXrdJX7lAxw/odNoUi0VIY6rVMhsbNcZGR1hdXKF/YBjXtamtLVEoVhFkF/xuz8/ocpZDisDz8vR6bUqVAj2/RxQm5Lw8D33tYaZ3XkUQ+lT7+ymXS6yvrVJbW6Wvf5B2x6dUqlKtFDNKZpxwdmaWrz30EIcOXkMU+kRxj3anxfRV0+RyOULfp1wq8vQ3n0KKlOnpvTiOS5pAsVBgbm6WUrmEAEytMU2DZqNFvlBFKsmW4QHOnD7F0NAQShsU8gV6vR59g1vYtWMbX/rbu5jefRUiVYRhF8vyiBef4a0/+x9RnocQGvPRowgp8d71BkyvjO8nWJZLHAksy+PcubNMjE/wYz/6gzhuimXnufWW1xJHKbumd7Aw/zjVviof+Fc/wlvevpejR2f59V/7IA8++BA//TM30t+/l2azyb333cmB/fso5PMcOLCXtdoShWKZOM6mBlJKOu0I2ziCNMaIYkUcJQgpieMQS2fmLY6bQ6vMnMt1PIRQJEnmwGrbVqZHTRKazUxD6/uZBlybJmGcZhtKQlDfaFEuDiCwiNOEUqFIvpjFpQgkhmmilCYK/YxWKTVKZscQhfGmNtkgDnxMy6brB2jLItOdmti2Q5Rk14kw6OLaFlEQoFRG95XafJGSDNButymUyiit0UqyXlvH9TwM0yCKY5SQpGGAIMa0NO1WgGM6KCQiNWi11zEtMwMIMUCmpxVCISXEcUQUBHSPnSRaW8fqq6KUIklTXNckTmIKuXwWMSRkZvilSihxnCTaQKgskqfRyqO1oFzJEUYtNjZ6jI+N02guY+kcmudQSuN6ryWNuvzyid/gsdbjvE5di+MVeOCBByiVSuRyOT71yU/w1re9GctW/HA7ZfXuB3iwsUJ9o87Q6DArSxuMPrWTnc5u1kbPI4Sg1WoRBAFDWwa5+0uP8Ow3j3LTLfuIpUmM4iN/egdvu+61vO+qf8aPjbyPa2a3ctXW/ZyN5jlrzfA4z/La6k00Gl3OnDmDl8tkKAiB67mY2qDT6XD+/Dn6+ipgWEAGukQi6PkdVlfX6O/vww+6SG0iTIvp7WNIW2O7WW5wEoV85rNfZPv2HSgl0IZgeXmJOz72GdJUsH3nGDt2bsOyTLQyUcLGdQucOH6KWm2DqZ1TGRU9BpUKBgYHMwM+y6a2VgOR4Hkep8+cZnRsNMuCNfSLE9mclyOIUqa27WLfgZ20O3Uq1SKNxhobGz0iUmzHxTQtnnjiMONj46ytrjHUl6PXaaF0ZkqYd/P43YSv3PcNtm0bpl7feDG6htSk1+0RRpmOu92uE/RiTCOP1jA6Psz111+fGRwmgrloni9u3EkpLvPmgbfzfvlGfu/6f8//Vno/76u8huvMaxlwhvC8iPDkRzh35C42Fl+g01mho5ssLa2Shg2KpkMUtQnbdY599mreGP47jsWHGdxdYnRsiLgbUdAxfus8V++0QQRoI8Wx8+QKEi1SgiggjGJK1b5NXbImxqQ0Mg1hGzPukEqboNdBiBiRRpiOSa/X496+50hJec3i1UQMsGVykmLBI2jXiIOYtYVFSm4DKR26vTVKAzeATGi0VxgdG+fcyRkc08ZIzzIxVmbm/DLDEzE6quBGW/Env8z2SoFyyeb/+/BTLNSe413vfh+2YWHaMV+9707e8u73kSiNFAp4dcD10qnmlaabF9cF8HRp//tqeteXnhL+3diBV/jpZde+Elrw5YDrK62X0/leHHd5sRPy5dZe6TEu/9wooij6J+MkfHF9D7j+L68MuL4cP/3vU5fbzXkpQHlhzSt5873U95c+1nesFQKpFIuzc/zBf/vvnJuZ5eOf+TzLGy1uvG47UkVEaZPaxjweJfwOiMhloDjM4NQkiQxJRIy4NE/r0l2sTSMby7HZtm0bSwtL3HzrbfzoT/wYu/fvZmjLCOdmz/P7f/j7eK5mYHCYm9/8Hgqje1H9k/zxx+/mzT/+S6x620nGbqK95RbOmLv5s6+e4fp3vA/dvxXlVVCVLcg0IW43SBafJ106gV+bo7Y4Sy7usKW/QhQHFKtD2GaBOOphWRaGnbtw4Fc81xd+qjZNUVIhkALCoIeQGWgrFHIMDfeTyxe599572bZtK5C9wi4YZgghSZLMKVAojRQpQRBkk1gpCXohtmsiZIppmPT8Loa2aDSahEFAruAhhaDTaRPHKZZpZ/mOCLRKCKMeSoPrOdxy0024noNSitGxcZSZuUorLcl5OWaevYdyucT4gTcxtGUAIQSBH5AkCbZjkcQJWhsYhkHY62E7zibEViRpQBxFKCVIUomhJb1OB60tOt0upmXRbjboq5Q4fPgwaQqlZB5l9pEW+0jTlGariW2ZhHGMVywQdIMs31dKBgYGkEoSxcmmlljj2CbLqxvESUyl2g9pSK/XpVQq8vzzx7j6wLWkEs6eO0N/XxWpNEiJaTmcPnmSwcFhVpaXqTeaOI5LGPSYm59lYGAYy3JotTpMjE+wtLRAlERs1Bt4rkttbeX/Z+/No+246jvfz9675jrjnecrXc3z5Ek2HjDGMmbGhKRp0gmJs5oOGYAEMr7wQuet5HXnvUfIRCAECJOhjY0NNoMBBw/ybMmSJcuWNV5J9+qO5565xv3+qCuQZck2vDRJv8VeS+sunXNq1646VXV+39/v+/t+6entodmM6OzoZO+e3ZTLJQ4+d5Du3l46ujoZGhpi5wM7mT49Sf9AXwas0QgBlfkqe/bu5tprr8VxXPxCnn1P7+Pk+AkqlflFn2CDdtDixPGj9Pb3Z4IowkTIlHp9jtHhUZ7e8yyFUgHbsvni529h46ZNSJHQ3z8IAkzTQhmQJpK0doKWXSI3uBEpLdQPHkanMdG1V4BQHDtyDNfx+epXb2fTps0YBihpMj83zfz8FLZb4G8+9glWr1rN0/t2sW5NjlKpgMETLMw/xejSt3DLl27lox/9GMPDFf75s3ex7aKt5It5bNNienqaEyeOs3TpKK12gFISKUUGNF0fQ4yDyCjcUvqkOsWyzKyX3bCQyiQVmqgdoMysPaBamSfn+yRpgqFMUkRWyZSSKAwyG6NUoEwboQRhe4F8wadeXwAh0FJmfsiZ9Bo6XVRYN01q1RqmZWIaJvV6a7HHUZMkKYayidMQIcUiyEiIkxRlGCAg1QrLVjTqVVzbQxkGjXrmb5yS/DA7LqXEcRySJM4sfuYrWcIpaJNqvejnaZNELSzLpLIwj+dbmEoxv3CaOAwwDAkiJWhHVCs1cvk8tVodx3VZqMyQRDGu56GfP4ZotDCHerNnlbIIWnUs22GhUsGwbUjgzjvupH9wGNtOEbQRxnCWQHCXoJTkyJFD9PZ18rXbv8OWzZupLsxSzncRth9FSkVqbmV+dopvVr6H1pp3Lnk7zXbE2NgYzWaTKIrYfsVlhFFAsz5H/v7dlAyHqZVD/P3f/R3vvvlmuns6CR+RTEycxtuuueGGG/jQhz7EW97yFjp7yqxbvY0VK/pR0uTEqQlsq8Crr3sNjirz5S/eRk/vAKuWbmDUG2ZH52sp7ixx6rYJ9q95hvBYyNN797Jl20Y8N4exCNRazSZJklAsFVDSRAsDSLjtK3fS39+TsU6UiZICy5JoYWA6FkFzHq0MHNsjiduYSjAzW6VQKOF6LnHSolgssWH9FoaHhxAya8fQqV70+NYceOZp1q1fQU9PPmMhAPV6nVIuT7VWJ0oSGo0m937/Xi7bfjGmadDV3UuzfUZUK8kSFUKhpcSyHZIoZvz4cZYvX0mj3iYMNZ/73BexXYfu7k5sy2JwsI/77nuA7Ve8ClNEVBYqmaK6MknSFnox8dXVk6Ors4d2s0GaxNSbKZMTp+nt68RQivrCNJaV5/Nf/Crr1o7h+B5xHNNutfnsbZ/jUO8x/rzvjxl5aAj3ZBe/+PqbmKvOUHA9KqqCoWrMHvw+0wfuIDH66R66mCPTHjq/HlttYXIiprvcpjWzm2KyHvt7/5lhZzutlQHdS93Mhi5NiESLJG6ze88+lg4PYRuZyuqjDx9kydIB0qSFRmLaDnEa0263sgqdmWeqElB0NXFjmucOneDggZMsGRkEYVKvg+vCNwu7SLTA/GqeQycXeNU1V2Mo6BocxnJKdHZ6CNHAMj0SJMpfw+6nHuDYkRlsz6a3q0QSHWeg6BFHAWMr+jGEpqYPka9ciWh0cjC9l1OVCk/tT9n86ovZsHIDTx3YxVD/KN/8+i3cdNM7cMs9IMSZsOpFwPVC1cKXqiK+HGC7UI/pK4mRfxwweKGK70vN8cMqL+dX6H2p2Prs2PsnYTieDzS+uDKqXwRaz1eZPqPefO7xnq9KnH1eveDz/57A68+A6099vLDi+lPd88vw+H/cm+ulPns+KW5NJrjz8AMP8oMHHuLo+HH6+jt4ctdj3H7XTt7/gd8jadRozEzRNTxIx8gA+R4Pv6hRpkKqABOT9NzTd846UiFgcf8aWLNxEwPLlpDvylPsLjO6fDmXXnkFv/Kem/m5X/rPvOltN7Fy5Wp+8zffz3/9r39CwfUodnRhl7KqlGE47HpyL3d981/4y//+90xXBFbHKr73xLP0r38Vd+x8moeO1Vlx1TsprLyI0uByIn+YWquKF7dITzyNrRKKg2Mc2fsEfQNDpNJ4+fMLxItqpHGSoLUCy0JqhUCiDEUu55NqSVd3N7Zt84UvfJ6VK1ZhmdYPv59UqEwpNg5JE4lp2EihCIOAg88eJn/GazZKadRmSVJNrljA8kxarTpoSMKEB3fupLu7m1y+wOEjR5mZqFOvtSgUC7g5nyhqEUatRfVkjZQmyjQxDJv9ew/QqU5jGgpnYCOGYRNFi7RJ00Jrk1qtTqFQoNls0Gol2Jag3ajhKoNaLSAJFePHTpLzc5hCc/rkSXbteppT40fo7e3FME0ee+JJtm67mN27d7OsGCGdEqdqNXwvB6nBriefYvma1QhTohZpq6lOieKIVtBCRyk6hVq9SamrBykUPd093H7HHaxYvhyBYr6ywJrVa6kHDZy8S75UwnXyJGkTZdpondDdUURjMTczw8DQIPVGg66OTlKt+cpX72Tr5g2ZtcjMNKWyT2dHN7lCkYlTp+jp7CQxTA4dOAxxQF9XCa9QYmZqmkKpxDNP72XpkjFWrV5N//AQe3cdwLZtNAmpjvHynQwvHWZyaoaOzl5OnjhMzvcYHR7C9VyWLh3je9/9PhdfvAXXdTAtE40GQ6CSjOIscXjuwDG0THj22YPsuH4HwoAwrGMaFnESYJmKVquO55aZOLqfYlIhHXkDpmkj7vgSulWh/eprsJVEGuDnHNauXcnRY4fJFzws5aOEQ20hQJqSz//zrXz6nz7Dh37vt6hX5/jBD3bTXaqRJprp2VUcev44R448z42vH2X//kkeeeRRXnPd9Xzjzm8wMzPP1m3bmJ2boaOzE8PIBGK0hrDdxnZSRDqFNPtIkszzudVuEsbN7D5REoRGEhMlKYYhEPlVEJMAACAASURBVDrG83LU6jXqtSZ+sUiSJEg07VYDIVKUNDClIonbuHYHaaozW65UIcwUy3ExlIGpHAxDIg0NSOIoxXZM6vUK+by3WHGIaAct5ubm8UtlDCmozk1T9B2EkQm7VasLpEGIJrO/SYVNKhRCKGxDQNoEmfW51mqZ5c6pw89QLBSRhoVju9iWTaUyj+c7JOKMl7RBpdrO+l0jE9/PY5gerVaVemOBUqGTOAnQIsW2LaQSOIaRUValIjp+CiGhYsLE5BS5UgcTxyfJF4u0Ww0My8GzXZYtXYrjuygxy/HjpwjjbnI5n9kFA88r4LllqpWIzVtXQ6oo5rs4ceQZDLkP1/dI1EZsL89ds99BSMkb+95MHMUkSUK5XM7Ejfwcf/T7f8Krr76c/O6DICT5113Ne9/7XkpdBeKkQe5gF4Zp8nDze4yMjDA5OcmaNWu465vfYd3GHqJ4ht2PVvnsJ/8Knab09Hu4bsLOh77PRdu2Yuc9kkbIo/f/gMsv38KOa27gMuNyPpH+I3963R8zXpkFEioLFXKFPLbp0G43Fj2fNbXpWZQIyHnd9A6UsT13kYaY0mgsYJgmYfU0rQBOnThFd2c/qU5QlsXI6DC7ntzLyMgSTFMhhYtlJyilEWTiSLNzszz22KOMDq2iu6sHKcG2Daozk+SKBbQUKJGQz3cwOzdPqVTGsRyKZR+kYG6hRr7YSRrWkSImjRMkgjhJMAwDooD+4TL1RpVabYHBwQFcy2PbRZupzE0jdMrgwCDzlQWWjo0S4+IVStQbTTw3h1ZFbM+np7+AqTqJwgZJ0GJmfo4HH9rN5MQJliwZwrFzWGgMx2L9lnW0GnXyxU7Gx0+Qz/mcHJ6ko97JHyx/D632PNe89hos28L2ehDhBFP/8nfs3/k5GrXTLNnyKxyrd2EXVjEwvBEpfbqHB7j3B09y/WsuJfqX7biP/iKxeZopfw/z7XqWuEpSHnl4F53FXk4cOkb/0BDPP7+b0cFOhAoZHR0mFTWE8igVOlE6JY3aKCFIwhBh5OjI54jiJpqAgmewbEU/QgSZQGQoECLhno69xInmza3XsnL9RShVRFoCx3R4/pldKH2Uom0xX6tx6oTFZH2KrZu2smRsAAzY+f3HKfsx5YJCmiYnjk1iqBjbMQCJ3VzJ6Y6v0OkMcNElId/48l7Wb7mI17zx1axddRnTk49w5/+4m9fe9E6U8SNW2PmA6/njwJcvbFwoZjwDqs6u2p7PC/a8cdL/h5j1XGD40mt+5YWan2RtF9r+XNGmn7SCeiHQfb45sr/ihz3EL9VL/G8xfgZcf+rjhcD1paS4fxoZjp80I3T2zfRSVIZzPbLCh75CZf8jLNQ9tm7diOU5bF27hpGBUS67ZBu1Zp2u/gE6R5bguTZSCBDm4hkz0EJklhJSZMH2eZYsUpF5kf1wHTHoLMgUwkIu0m9BIEWCMCSJ1Pz8u36O9WvXc8U11/Lxf/gk/+3P/0/uuftuPv43f8Vdd97KxMmDbFi3igfuu4/HHn2E0bFuXnvtFRx79in2PP4gXcN5PvnXf0v32CbUyCb6tlyJsfwyjDXXIjuXINo14tOHMGYPY1gGQa1BKhXKMFBkh5KpR2bAW6cJURSTxhpEjEQStRrYrk0zqGGagihIsCybe+65h1Ur17Ju/Ua+ffe3Wb5qNYaREAc1DNNCCIji7FgRkKYJpmFQ6ChiGgZSCLSAr3/ju/i+T19PJ5XZGQwhiJOUSqXO+PFTDAx24boepUKJQt6l3FkClVkO1Fp1CoVuvnvPTpYuG2TPY4/T29tNqiUYFvHkLizbxOm7iGZ9ctHKRpEmKYlMMaSFpSzSKOKT//gJLr1sO6bjkgiZ0TiTFl++7TYuvngbQibk8l309HYwNLyUmZlZerp7mJ2dp6uzwNjoGKp6mNTvYv+RSSqVOj19HaxYuYyjR5/HtS0cr0Ch4HL02FFqC1WUMPALOQzbIVcsEKVtbMPiycee5JorX0XUqlOtVukfGGD/gWfo6uzkoQd3snRklOmpSfJ5j/FDxynlC8QkWI5DrtRBs1HHEGD7BWzD49n9Bxgc6kVZFoVyiYW5OZxigZNHTtHbW8Zyc7iuh7Akff39mGZWEe/o7CIIAvr6hhES6vUqB589xOzsDK1Wje7ububnauTKJRZmpvFdG9e1KZQ7UcrDcgws2yXVKStWjJGmCWmcVWiOHj5CZ7GMNAVRO0Qqk+Gloxw7/DxHDh3lwIFn2bBxFbbtY1hG1ncsXZ575jm8nE3BgbQxjb/tpqxK963vZImX667CdhWWsBHSZWq6zl//5Ue5/oYbCaJZwpYgilr8yYc/wq/8yi8zOXmS173u9Vy8ZQcf+cjfELTuY3BogMNHOli/aR2GlWPbVokU3czMzNDf18X6DVu57777Wb9uFZ5ropMWtp1DSBPDtgmDKkr1YoldJPRiGHFGCTZMtM4sSBzHJGwHJInGNAy0hma7zeTkBF3dXZhWjiRsZg2nQqJMmzRuMz09hWXbNJsBlpUpitcbdfychxCC6sI8lmVTa1QWz1u6WK12MEwT03KQShHEcSayIyQpmigICVNNqVzm2PHjlAo+7ahFPudjuT7KMEjjlOmJaQoFHykC0iShOh8QBHV8P4dlOximjV8sZ1XidgNtZPZHmcWSAlSmuhDHlPIlDj53CkmDKA5wfQ/fzSHSlFarTrFUJAxCPNdlYb6ClAZhmD1HwqMn0KlGDg8xNDTMxPgJvnPPtxhbMsbMXJXerm7CqEGzVcEyJKY8wNT8DYwM5wnDFpa7hJ0P7CGfL2PaAYZSLAR1TEfh5cu41jMopRif6KOzQ/K1ibuRQnJT3xv42q23sWn9Vu751ndZs2o1KQmXX3E5Xr6M9ch+ZmZmMK67HC0ls7PzlMsl1J4cU1PTdN1Q4g1vuon1m9ZRaZzmU3//Ka684mrKxSVoUn7+l38ByzMYGBoi0UV6+8eYOV3BknDffY/z6CPP8sXPfYm3vflqusrDXD94Fb/z/B/zGvdqDk4coauvB1uaVBvThKHkK//jVi6+9GJs38WyXPycSRwFpEmEVtmzX+oU086RJpJWK2FweDhLqgjBwnyFUrFAX18HtmuSakGcNABJECSLv5eQzxcYGhxB6watVg3bthgfP0lHTxdJFEGSguFkv6dEWKYg53vEWoM28VyXNAmwLA+0Zn6+gunmCVsNHNvAdF1U3OahBx9hw8ZtpFqRL7jEUUJ3dxe2a2WgdckypNTEQYBOEwzTIBEpUbtGu7mATlIEIV4uT5Qqunr66OsrcfjgYdauXY+U0Ipq5Pwe6tVZOjt7aDYiioUch5MjHGuf4O+838G3clTrsHTleiwWOPLwJ5k/dDe7d53g8ht/HbqvpqNrjLvu+Db5ok0Yt+juG+TB+7/LSH4lHd+/EbvtI0YP0FAHMVQO4fSTpil7n36aK7dfzL4DhyiXFbZr0ZMH3xegBcpIEGKRBdRuI4QGmf2WJ2aBXMdSkuY8cTwDiYWWIVEQ47kuzZbBt76zjxVLS9zTtYe5hSbyG6Os37iW2alT9Pb2EKcJ3f0dqOYUZq4LgWJg1RZ6y91YnolOFLWFkNb8IYZ6Na32Aq7nUCyXsW2IQpup+iE6g1eRZ4jngy9gBIJvP91m2arV3PL5L3Dv9x+kkUQcfvZZfv4//icsO8cZy8YMuGZ2fGcD1xdXR18cW549Xk586GxgdXbP6CvZ7uXeO1NIebl2vBfMpReVg7V4QU/ruePlmIwXev2VAvJXAlR/3PcvxMo8e5zpc/734t169vgZcP2pjxdXXP8tS/A/6b7PBqtnS2mfO/e5WR5x6CF00GBw+89x4NARrn/1a3nw3ge45LoreevPvY1iVwedfd0YpnPuQl+03wtToM89Jv2i9360pkUyqlIkScLSpSOMLBnkTW95Pb/2nnfz7l99J2+5aQfv+91f57/8xs3cdvvX2bB5NX/50T/j+te9lUgINl9+Bde99a10jKznpv/wqwwvW41byKPk4nqVgcx1YAyuJb/ldTz8zFHCMKLQnETVp2nXa7RThTQM2q1WpuKbCEhBqhRNhJQWaaIX7SUkCEkURniuhxYwOjzCxMRJTGWweet6tE6pLjQyw/UkRgiZUccWv6swCLFME8NUWV+R0ARBi7GlyymVCkRRAIBpZLSzQiGPYyvyBRu0REmbmAjX9yHRNGsNyh19JHHC/NwCff2ddHX3Z8GzNDh+5BgD3lzWg9u3Gt8tU1loYpk27bCFbVvUazWOHztMoeixaeulWKaiXq1gSIi0Rqcpl23fjmkpNDFpojEtie3a5PIecRJRLBV49KFHgSZdKiC2O7DyJYaHh0BoFCagyPk54jjCNCRBELBk6VIKhQInjh3GNBSnJydAa/bv28tl2y8higNqzVN4OZuFSpWxsVXoNGVkeITpqWmKhSII6OrySXWM1hZpnGKYJlKm7N+3h7m5GVzbYN3qFdSaLQr5AiJNadTrIAVxGCNFglImCwsL9Pb2ELQDDh48RGd3R6YKKsA2DE5PnqSjo0hfby+jy5ZTLJfwcjnyxRJp1MTzHEzLJUoFSdgiSUGZJo1aFce2QSz6CFsGQkq6uroysNZqcfjQUZ56ag9LlixhdHSQFStW8+yzB1i5egVSqiwpJOD22+9i4uQpNm/ejBCatHIEufbtCCEJjn2HuEvjXPZ6kjhmbmaeiakpOju7eeKRh7nksitRCi6/5DX8xnvfy9HjR3njm17PjTfeQJrAQzsfYNWqVdSr/4LWmn/+3H5uuPFatly0jpw7Tj4/ihAGnu8zMTnJ5ZdfTtBuUioWcFyXmdk5HNclSRJc26ZSaSKlxlKTCKMbpRKCSGIqGyE1QkiUYRMEDWzbQilJq9Wkp7ubKI6wbI+UBNMyEUoilEQqC9/PEYcBnm0hLZs0TVGmSbVaxTJNtCbrdw4j1KLSdBynpElEvV7DMCRhGJLGglazThiFFDvKeE4euUgd9T3vh4JSOomIwhilJHEY09HZxczUFK7rEqUJbqFIo9biW9/5NmvXrKbdrmd96UlCHMUYtsJUkjSJqVXnyPkuUdDEMAyiMKK7t4xhClzXwzAsGs0AnYZYtoGSNpZpU61WKRYLIATNRh3TsojGT2UWQiODLCzM0dvXxaat21CGpKujRJJkrQmmbWPIUxmQFtcQtBv4fj+h6GBwaIzJqSl6+noJWm1yvpVZ8CBpx+tI1RY+/OEPs2PHG/na6bsQUvDGnh30d0e47iD/z9/8E1defzkf++hfc9VVV+H7Lo27f8DszDz+DdfxpS9+hb1PHuPk+HFWNtdSLOZpLJ3iDz/0B7zhxuvJeRbbt19KELS59davUih69A304zg24+PH6RvoIZfzSKKIvr4O8rku7rjjdj76139JnKQ4OZ/GRJXXjVzL/3byz9jWt4WwnhA253ALPoV8J2vXrsmqPFKAFCAhjEI8L0eqs+p3kqYYlo1lGRhW1iqCSLBNhWUZhEGMMjKbN4AwDDAMhWmYpGmSJRCUoNWuY5k2pmUhFz3DlVfGNG2UtAijGFNpTMskTQWuVyAlIYlTDMPIWAtxhE40AhNlKg4/fxDbsrAdFy0MBoeHUSpFJy0c18VxLdpBAyE1tuMipUIqASJT6p6fr2KbHp4vcR0Xx/ERQpIkmX9wFEYkSUy1HlDI+6AjbMfNfImVQWW+wpe+9GV6Bnv4XnA/HzQ+wGWDl6K6Btj7zEN0yRMs7P4cjz18B4kYYeu17yVQPcy1TLoGhthy0Vb6B7tpNyvMTh7nouKNDH3/EuqyQtXaiVNQoJuYFkjHpNw5zJKxZQgB/aOjKOnx9a/fS0cxpVwQhGGUWQpZLnES4bk+cRwRhkHmu6s9pqdqeGZKu9VmdqpNqcNGaUG7GWLZKWMrPIQyuKf4JK7r86EVv4PpOnR0dXHk6BFcu8ipI89g6iq2ZzM3VyffOUK9VidMYo4cPsbjjz2Go6uM9hkYVh4ESJXQjizu+8GzrFk7hIxNZFwmXP8oSSJ46mDARdu3s3nzZt74hpvo7slx8pnHsXyP1Zs2oMVZ/ZKeRi5JED0p5wKqC4Gbl6O4nm+cXQE9W7jplYDTl3vvx6EdL/7vFe3npcDdTwo6X8n4cYDrhWL0lxpSqn9X9OCzx48DXP/9we7/H4yXuhn+tcWazt3vGdD34+znbLB6Zpx7Q5xL+TjzWkYX1rTDgG/fey+/9Vu/TbvR5KrrruN9H/xtEpni5vMIw3nBw/GVmFyfTUs+95jOvJ4kCZOTkxc8D1LKxT5FgeUY5Aoept3J8OgGCqVhiuUR7vzm1/nbT3yc0WXLEWZWtYuFibAKePkuAuETaIkUyYuqzVpr2olkxzvezae+vYsP3jZNvHoHhmlgndpFcHwPZrDA+JHDRFFAHKfUqnWiMEDTptGaxXEFaaqRwkAKk3bQIk3B9WwcS5DzJe2wndnxVOu0Q8gEVbLttNakSbJoIB+cRcfJehZL5QK5nIfWUMgXaLVjkjBBSsmqlSsgTQiCFlJqHMdgamqKf/ynz2aCLEmDOKmyZGkvUdhA2QbSEEDCmjWrFiu9KUEQMDNbwc8VqNYbtMOQZn2BznKRwcEBKpUqrmszPTNFsVjkM//8GUzLRhkSy8ysilKtM1XVKMn69ZIEZRhMTE5y3Wt3kOqs5p6mCV1dXTiOyfjxcWzbZG52mupCjXarSa2yQH9vH/fddx/CUIwtXcr8/CyGMth5/6Ns2bSZJIkwLQtTjeDZQ5jKpzI3zcTEBHIR9FmWhRIuQUtRrUQIbE5PnCQMWihpsHXbxaxbtzazOHFdPD+PZSiOHTmcCaQoidAptdoCc3Oz5P0C7VoV33NZs2EDzVaLXD6P63m0o4DO7k6EkmgB7YXTfP/uO5mfHKdZmUAqiUQxeeo0zz1zkP379kMaZ4q0trHoM5kSJknmEyolYRihAUNZ7H3mIK+5fgemqdi37xna7RZr1q5AikxRMY5TdCp589veypVXX0kUtkmMHLQqWX9yFBEMpASDkCaCiRMT+DmX0dFhhEz5wz/8ffycixDw+c9/jp07H+DI4WOMnzxIs1Xhl37p3XzqUx9hxYocW7dupaOjkz/4g9+jq7uDmZkZ6nWL3bsfZXhkKbt27WHZslF27nyAUqnMl750CxoL0zRJk5gkDFHSwFAmlnsRQs8Qx/6iJ2ZEqqNMDEdlzwDPzVGt1hFC4bo+hqFwHIskiTENSRgGi+AgRWiBROL7OdphkFnPLCYEwigCkYk5dZTL9Pb24rpu1g+apgiZ9csKFFKauI5NV2cXjWYbMDLP1TRmYaGCEBqpTKS0abVDgnaTNNZYjkutWaPU0YE0LEwz62ft7u3l7W9/O+gUQ0riOEYLgeX5NBsLxHGMIRW2rajMz6J1BlRMxyFNIizHJYoSSBIcx8b1fOYrdaIoJYpiDGWCENRrVbq6Omm3Mrp1Jqxm4Xkek5OTSAFap2T+KPDU3n3Zc0aNc/j4FfjuMFpv5iN/eieWsJA6YHigM1PYTRJUFHH44POcOHEcd5E98LGPfRQtsl50IQw0Fl6+hyBu8scf/n1ct8SmjdswTZO5+Vny+RxLly5heuY0f/RHf8jPvf2N/M4HfpugHTA5cZrh4UH+9E8/TL1eY3Z2mjSNufuue7j++h1s2bKZmZkZfN9naGgIrSOiKGDv3n0cOXyCf/7MF/iL//4RnLyL4XSidczw0BjeTJ7Pr/gHHqs+wSPJw1SoZqySJME0M2/P6cnTGIuelX4hT5RobNMgTiKU5aKTmBTB/v37M2CqDObm54iiENOSPPbo40RhnFXGF8XElKGwbBPbcbLKuOdjmhaNRhONwHE9RFgnqM4R1ucoOiZhOyRNskro/MI8UghOnTpFGIZIITgxPk6aphw/Ns7p06dZs2YNjuPQbDWJUiMT/BPZ9R7HCc1mDUOprCe6ViUlyTyLo5BGq8mXb7kFxzI5eeoEIGk2mwRhk1q1itYxWsfk/Hwm6lUs4OfzNOohs3OnQWdCVyMjw5wuTNFjdDFa6wcrplc+y1r9MHr3P/H4sQpR6VdpFK+CUomeJf2sXNmDIWsoBPv37s++09Y64i+XYVUTe01EqdxDnLQR0uHE0XlmTjZwbItGvc18pUJl5jCdBckbdlzF6GCJJEmxLAvHsWm3W6RpShhFi/eBQxQl5As9dJQKSJUQJQsYdkCatolFgOsbhGGEEi5gECaKufkqvudQq1ZJdMKG9Rsp5Hymjx9AmZokaGAom/qibZKhbDo7O3n7299Od3cXCNj79GGCFugEkiRhZEkBTQql01jNEb58yzPcd2+FNcMNfvdDf8S6dWvI+Xl+93d/n+eOzvLpT30aHYUviJHkugi1PrkgO/DlYsjz+YReKJ47Ez+eW/Q4O6Y8e7vzxbBn4pqzt/mxqq28EJif7zjPXt/55j6z7wu9d8b/+ELj7P2e73jPd47O93l4MfPxQms997hfbrv/FcbPKq7/KkOj9SszGv6fOX5a+38B/QNBdPgxyuUOLnvTzfzLt7/DL7zrHVzzxuuwzMxuQQmJFAaaF960Z9/6Z9+458qhA0jxwkzR2b0ajuOew9c/56Ei3IwNqLL+WK0SMEKEEYOKSVKBMjyE8lAixpAaIwUrFri0EVqCTJEiAGm+YB0GKWbSpCF93vjqS/mrj36cG971LvwN16DLyyGoI2eeI0cb3TWISsB2XAxDEkUSz/WQ2mZ+oUIuV0AiCeMGtl1CCghaFXTaRksPJTTj4yeJtc6CgVwus9RR2dmwTDOrwBgOSZwuitYo4iRgoVJhbm6OXC7H8eMTpEHM/EIVyzCBmCgKF+1MGiSxZNnyleSKPqaymJud45Yv3MGqFevIF1xSHZNKTbWxgG3nMfMjtFOffNFDSInreeRyOcLWAqbhEbZTPK9IGjcplzuoNpps3noxlu3gmFlmPowzgZsoBMuy0FrTarVxHJdyuYMTp07Q3zeGmNtNFGmMUh9R1EZKSS4nWVhYIJ8vcuedd9JRKrL/mWfYsGkTKEm91qCrt5vJ0zNs3badyswUnpcpAyszRhkapSQnT0yQK+SJoojZmVnqjTq5gqLVCCkU8pyYfI6lI0NECZw8cYpcrogyLaSyiGOQpsH89GmWjAyTpNAOmrSqLQoFF6VMkligkwBl2jx/5Dj9/d0gxOK1aaKFQJkGQhpEqWbTtsuwvRyW61CtRQSNJq1aC5EKBkZHabfq1BcquI7J0aNHcPwctusgxI8oQYZpIlKDFavXIIA7v3Ybl15yJY1mDT9vkMsVqVSqNOotjh49Rk9fL+VyDsPQmCbEE0/jXPTLBGGEPnIvWgjMZa9l5w8eYMnSYTRZlVLphISEdnuef/yHz7B9+0X8wjt/kVzBoNls8nd/+yne99tX4LotTFXh8OEj7D9g0dXdz2/+xh+weXMvo6Nb+N73vkcu7zM02MvY0jFMw8BzHfKlbhzHQMnMgqsVNMkX8oRRSBJFmOJp0Hmk6aOpEISZmq8QAoHCcTyiKMFQFuiIVqtNHGvCZh3HtknjGNM0SdrhYruCREsjy/4IQZwm+DkfJcH3ckxNTxFGbVzXIQzbNBp1PLeAYVgoabF3z34KeYswCCiVulCmTxI3SEnxPQtIUNImjKEdhnQUcwgUUZQiDYEwDMIoRgmFTDX1Zp1GvUG9WqOYLyJVJhA0eXqKcjmP0AZKGNi2RBkWjXYLy/VJUkkSJCRC4LkOpDGJ0ExNnqazoxfXyTE9M43r2sRx+MNedtu2iI9PonWKMzaUPb9TQbvZJE0giMF1DTo6SlhmBZ3WePrQCoQZMF89yRXXbMSKFYaICJpznDh6iHyhG6WbDA6OkCsVqNYWCKOAfD7H6dlJ7m3cj9aCHcU3I8wB6sEEPZ15jKTA4PAAaRrRDhq4j+wDNE/kEv7szz5CtXqQ97zn3RSPjrB79z4KO2yEZVDoKpDIiLzdiU4c+vr6MS1FoVTk6NEjLFk6SjtIiALBUN9Surt6+Kv/+2+57oYraAQNPvJ//BUbN45QzPdz86+8j/mTdT6w+YPsPf4Y99uP8SrnIpLF8xXFEb5lEwUhhlJZIsOwkCRoDSgL0jA7b5aP57sIIbFth6NHjuK6JkNDozy1Zw99/Z2QSoSAOAmz+ReTC0mcKbYr08QyLeI4WexfrZIrd1OLBd+84+t0d3cjDUmu4BO0AwqFTJ351KmT9Pf3EccBpWKeUkcXX7v9q6zfsG7x2s16xYWymKs0UEJiO5kyt2HYeHkXKSVBEOO4WUVy08Z1KJniezl0KhFCownwnIwynvMyED62dCnKNEmFJOcWCMIKrlskTROkp3gwfIRPrvkLNo4s4+BDH0fN7uTUfB1z66+yat272HTlSpYM99JRXsK+J/ZSsnzSlua6q1/N3qf38Ib178S5ZRlyQ4u03KLVrmFEVZKkjTRSCnmT2coMudwQaINWs4ZTWMLDjzzKoWOTNGtV+rqdRUCWIESaJQ+kQRxHaFJcv4Rh92DbELck0mhTKuURWOzePYvnW7i+QAuLuCU4dLfmzZ3vZCw/SrNRIwwjdt73IEnSZKAUUur2idptqg1FR98otmlh2h6GFDy+6ymC1jw9vS49vWUsSxDHVXI5h66OToKoxd7nn2bUuIZVYyMUt9yJ3VjJA8+O8+ijj1CZC3nHz7+Z7Ve9jc98+tNc/Zrr6BkceEmQ+eNSVS9U8Tu77eyVtK2dLUZ0ofWdO8crWeu5vaQ6fTFd9+UA8/nmfanjeCXrOvczZx/3hRIJ5w6l1CumSv9o+5emKv9bjp9RhX+KQxNxRlH45cb5aLY/9v7Oc5G+kuzMK13bK53jzPup1iRHHkNI8DZezcbLtqJ8B6EUqdAgJVoKtOSsPtYLS1ldONOVZvRXNIhMDCVNdQY+zoDWxSATkdFuM19VgZDZtlkLrMyCQUzE4r9M8CkBEYOEFNBSkChBIdZE6wAAIABJREFUpAwSqdFSkIozgeyP9hUjUKbDkeee5fYvf4HX33AxDlVmJk4xMLaKY00DvfQSQsPDn34OfXI3CGhioEwrk/8XCZ6fAxK0SNBJRieOwyY5z6Nea6CTGGUoOjpL5H2XvGcThi0830InGVUwDNoYykYLhTJgbu40lqmQysSyFfl8kU9+4vMMDgwSBHWGRvpwPIdUg2nZSGGChHw+T7lYpBVkpuqzc1Vefe1VKGIazRqOk0NJRRi0MfO9mH4vlqUIE8HM5Glsy0YYFkGsSdMYKWFqaipTUMXB9TxsOxOK0DohCmKOjR+kkCvy8MOP0Nffi45ivJyP1prHH3qY0aF+jo8fo5wcw3G7OTZbpVFdyBQ9TZdarcXBg4e44YY3cPz4OFu3XUyaxhzav4exZcuoVxp0lgoYok25s4NmGGDbHifGT2GaNo7jkS8UyPu5bH2OTdgOOHniNP2DAzQadXy3gO3maDWa7HpyF2vWrKZRq2S2JabCRJDLFak1AwzTQUcxuXIRP9dBGKTYjoHjG0xOnqKjVGLu1BGk4WBaBrZU6MWe7bjdxrYUraCBqRRROwRDYZlZBU15CXt27WFqZgHfd+ntHcK0bDzfJYrSjAYo5KKNT4pOQ2ZPz9Nuz7BsyTYMJ+Ho4SMsGRtDxPCt79zD1q3buOfbd7Nh4/rFa9sgDIHpvYgl1xDgYO/8AWZdIrbcwPJVK8kVC3ziE59iy6ataJmglMBSZTas20i1WmFgaITfeO/7uHz71Xz2s1/g126+loVKjdnpZ5ifn2P56ndh+R7/11/8Ob/2npsoFw0e3vkEG9avpre3D8s2iaKEe+65j9WrlmAoA6RCGhKhBa1mE9OywRxCiVkEFcBHKget3cUgRRIEbQzDwLJswjBCKoVjOwgkXt7HsCyEzHrZjhw7geXYpDrF91za7QZCZ0GCqQyCIEJKA9NQCGlg286ipY2HjpuZrRUpA/1dJEmA7eRBmmgdk6QJtmVRrzdwXZ96o45jSwQxCMXs/CyWpTCUpFGdBa0xLQuhWFSThVzeJ44zReEwiOnsKKHj7HmFTJmdnsTLFTGlSas5h+/nmZ+fwvdMWkGAYfvoMAPpzVaNXM7BdkycRSq15dhEkSbFQC8skEgDe6ifZrOF7+eRZlblkwoc10ARI9IK7aDF1a/+b1x88SVcsm0tlnRQbg5pG1hejloDDOngd/cThjEQ4cnv4dsnqbf7sQybkWiU14/swCPEMAUiinjDDf+Rn3/3W3j/b32QHTtei+WkGI2UuKPEWz/wR9z87l+gp7MHLBf7CsHKt/RiWnlq06eYm56iq3sIQyh+7/c/QHd3B61Wi7BVY9nyMWbmZkkDPwP7ZgNpw9ve8TaSKKbo+mxavYScX8JyC2zYsJa3velGbAeuG9nBGwYu58+OfIxGUsVUFjmrg09/+nOs27geZWdVyyhoEoYpQioMmRBGKWG7iY5j/FxuUbxGs3fPPkZHxmi3Qu6+625WLl/B6clZevp6icOYhZkZHD+XifGlEYYURGEbCZk4mNC0mzGNWhNLxWzcuBHbglp1BsfqRBBiGgJ0St73GT9+nFq9Sv/gAIa0GB0Zw7FtGvUKQiqq1RpSZOJj//ipz3LV1Vdnmg3KIE0SZqcm0UClUqWQL6CUpN1uYdkWYRRi2U7WKx0lOIv+3a0gQJoGkKIEhGlATYYca55gX/tZHgoe4739v8x10RIO7fw4cSvl+w+1KAxeytaNr+f+nd+it2uAMGkxM/sszx+colaf4dChfYxPJLyj/xdZ9tRlxGNVjGFFrdEkbLaZr0ziGim2pQjDFKnzzLUVPT0dGEohE03fwCClvMHzB/ZRzvs02iClg040Ox89SEe5QKFgEzSrJJgofwlTJ59HxCexLRchJXHQBiEy2nkcEbYbPPd8k9V9y9k2djGGE2MaDvVqnbFly2hNPk2hR2LbPczPV+gY2ohh2ijDpt2sE0Qtnnx4D5dscYkXEsIooVRwaDQT4ljTajVIsbn/kRk2jC7F0DmctXuZrc7xwBOn+c33/x4XXbGedt0hZ4c8+dC95PI5tr/q6jPQhXS/iZ6WiO70h1W4V9J7eqGq4NmfOXeel6Ldvtxc587x48S2LwKIiwWQHxVPEs4o9yN01vv6EuuEF6sWv9TxnA/Ivtw5Pl8B53z7fTmQffaaf/T3358NzpnxM+D6Ux3/9mX3f80L8aUeIOfzkdKLwBXAW3MFWqeLFL30Jee60JpfKjv3gjVowYVU0c5t2n+5rGJWodI/fOC+AMDLl1Fs09mDqG+gnw1bLmdgdDmV+So60jTmDuHZBqXOQdpmF+ayrei+DcipA7AwCaaLNB3CoE2qEgxhI7RBQoBUFqZlI4TCdBwcz0EISRQlJEmKbWeelEEYY5mKrN/VQUoTLWN0mnnCCm2QpC1MpVDCYNmSZSjDZHL6NKViB3Ozszi2x8zMHKVSGdNwSYmYnj1NqdBFmqbcccfXWLN6FfOVCqVSN6dOnaZYKuI4FkEQYVsOX/ny7ZTyneRLDo5nE4WC2ZlZCkWfZrtOoZCn2QgpFksIJYDs+jANgzhOKBRLaK3p6u74oeG2ZZkcO3qUDRs3YNk5ms0mbn0PptnF4ek5+geXIkTC8fFjjIyOUCoXcT2b3t5+Hn3scXzf5eiRA4wtW82x48dxHIeDzz9HZ08Pjudz+OAhDh9+npUrVzA7O4PrOVSqVdy8j2VZTE9NMTI6yMTEBAP9gzz77POkqebWW2/l6quvZHz8OKVyOesljDOl6CeefIL+vj6E1KQSDMPm6KHDzE1O4NoC27ZotSPK5S6CIOtT9T2f8ePj5Ap5hJRMnDqFa/v4vkcShzyz/2n8XJmw3aJY6MDLOXR1dGfetqZBtVqhu7sDrRMqcxVu+dJthGHE4FA/WmcCQUETCgWfOG5gezY93b0kKZiWZvnK5Wil2bJpPfsPHOAbd97Dpo3bEOEkeu4w1vb3k8/lsb74XcxZQePKyzFMCOotli1ZRqvRIuc7BFGIlHDbV29FCknvYIl161fxy7/0q/ynX/w1lo2l1Ot1Zudfy/Do23jPf/l1bnzjjfz6e27m9ju+zJrVZU6enGd8/BhjY2NIJahUKhw6dJhly0axbQukYGFhAcfJKiNSZkmqhAFEvA+EhVQ5SAWtVhOhUzzPJ4kzP2EpBGEYkCwyDAwliaOQdquJFNDbN0Au5zM/P48QUK/XyBcKgGB6ehohJVJAGIb4vk+SJDQaDeI4xrEskJkIlBQCJTPgmeqU+coshUKeeq1Jqxni2JllU+bzaiOEoJAvkqQpUioa9TrlcidxvGibo2wMZZDEIcpIF6mcIaZpMT09hRIC1zLJ5/JoIalWFoiTANv2cd0MSFimxeTkKSzDxLJsioUyx8ePkqbguTlSbTB+5Cj5gkO71cQbWoI93E+cRMxMz+C6HqnOaMqOa9NoVEnTmNrCKVxH8c7/8Nds2rAepXZhO/Mghnhy1+MMDAzQUe4maLWxfYv52Wma7RlK3gEkbTAuRqcwVB7CCk1sy0WnBkoJdtzwFrRuceUl13P//fexbOUQ1d4+7nh6N+//4PsolQz2HdjH2NIxZk7PsVBpUMhLvvn127hy+xXYlk+j1WRs2RiXXHoJ3T3ddJRKKNMkjlP27d5DGAeUuzohSWg2JG9681u5+eZ34+Q8pNREaciH/+SPed0NOxCuT2VmgnBihvv/972svXY5ty18HTNx2LRhI1/69Be56KKLkNIkbNVJ0wTHypICYRiTz/k89uhjuJbH03v2E0Upm7dtBR0RhhEXX3QJhf+XvTePsuMu77w/9fvVXnfve2+v6m619n3zhjfsGGyCITgQIBiY7MlkwkwmkzPZmCznTd6ZMO8AGWYSMgnJCwkGDGaNsTHYxjbC8ibb2iVrs9StVu/dd6+93j+qJcttyRKZJMN7Ds8599zWvVW/369KVXWf7/N8n++Tz1GqlqnXG8RBxJEDR+gbXEacxGiaxPf8tNZUSVsmzczMUK5UyGQyJEmEaqZqxk4uA9IiSTwgbZkWxRHP797PylUrUTWNudkFXjpymFKpQC6bBUVFyrQ/7fT0NNdfszUVjWu3MWwLVTXQTRvTssg6Dq1Wk+mpKbp7uiHRabd9PM9FMyS6YRLHIbECx/yX2bdwkH3tgxxoHObx+i7G3DMUrSI7MlfxkdUfZtvYQWrHH6M8vI3qup9idCpi87ar2LPnZW6+cTO1WptiuQyKzq7Hn+IvPvox3r7mZt46/4v0ByvZ3XyUpCsgiSWqpjIxNkF/bwURNxAiXKxNh76RTezbt4/xM+P0LxtCyrQXerNWY2iwSq0+Q66QwTB0hoa7MXQFz/XQVJ1Y2GhGBk1pQOiDEMRJiCpjbFNF0xUU4RAlNjt3nWJ41TJsx6HdaBGGkjAOURSfjFZHN2KksBg7M0emuAzTzuH5AZ7rUizkqFQqRN4Emkg1hTy/g2ln0TWDIAjJZSzWjBSI4wB/YpBnkk/gx2Wmawpf/NIjvOWtb+GjH/kYPb0l3PoM42Onecf7PghKmjiIvmzDyyrK1T5CiCtSmb0QCF3Kh7uwB+nltr0YZXbpPBfaherEl/N7L1anqrymOnKJj/g6wPVyn11svtcTOX09u1Sf1X9s0utC4PrDaj8Crv+i9r8PXH+QAuuLXbj/FMD1YtGcS8299KEUnngOUBDD2y8AgXAhLeFiUbWln10MtF5yH16Jvp2jTCw9F5faVyivVrhTlFfX077qfF7mXKuJQpTE+FGYPgINi+rASnq7h4gVBdPOMTk5Tn9vF1a+CzXXg776JhJCOL4L2beBoN1ANzK4rXkir4Zp5ohjH99LBWB0w0jFGdA4dOAoe148SG2hSW/vMk6dGqNQSsUwOp0OQo0Bieu2UaWKlBKpmoCk3e6QKAGu69JVLdPbO0C7WSOXK+L7Aa12nYQQIUyymSKKiAnCiOWDA0ipYDlZfK9NsVQiISFJoD1xEIMmdr6PcpeNYeeJYoHvNynkMkiZNq/XDIv5mXmCsEMmZ+K6bZIkRtd0fDfi0OGX6O/vxbJSmjAC3FaLXDbDqTOn6ap0pwqvU8+gGt0YxRLlvgpz8wsMDAzywgsvMjCwjHq9hlAiRkbWsGfPAdatWYEXJVQqVRrNBitXjNButul0AqanZ6hWK9RqdYaHl3P02DHGR89g6AamaTJxZpy+vgGklBw+coihoWVIKdi6dRuGYdDb249uGJwZG2VuZppMLkd/fw8dt4lQElRdJQwTyuUirlujb2gFY2Nn6enpJQoD7FyZmckxOp0mraaL1FQ0XaOQzxMEaZZ177799HT3MXpqnKyTYXpmHtMxkEIwvzjn5NQMtm0TBiFPP/k0zbYPCaxcuYJOx0VqJvkuG92wUVSFyfGZlDpqqCRKSjsUUiWOQ7rL3WzfvpFnnn6SPm0Bt7wDa8UtfPWrX2NjQ0VYJcRtN5EkCl7oMTE1zeDQcsYnxti+9SZ+8Rd+iUatwUf+yyd4ctezvPvdP02hUMS2HWxrCs9tMzT0Ru64/U4++ZefoFytMHlmilWre+muSBy7woZ1m3j44cc4cuQIK1eu4sUX97Jl8xaarTZCqpimjee2saw02yGkTJ87cjlqsg+SDlI1iBMDqanEYUCj0cCxUjVV3TBIkhDT0vH9hI7nkyCwrAxxnICiYJkWqqqmoE+RBEGI4zi4nodpGdh2jiBY7FdsmpimibLIAEnO6Z8nCooiiWMF0zIQSsrsyGYdpEyF00zLTOn8QQpQwzBClSq5bI44jmi0WmiaRafT5Iv3foU1a9aQ1seq6HpK383mMiSBx/TEBIePHKPSXWVmepp8IYOqWWi6sZiJD8llbZJEASLiJCCbL2E7Dq1OC6kq2BmLet3HtHMp+yNOaDUb5HN5Xnj+RaanZ+nt7WXPi4fo6urnhd17Wb92GbX6FFr2Vlptj3xmFkWJiRjAD1w0TePs+DR7XniBfFeBclcey8yhcQCAg0d1HDuPVNO63HYr4bf/w4e56oZrkdKk05jmb//yL7nrrp9AGgIn08uKVVXyXUUc06bSO8zMmSmW9XbTSZrU6glX7diOblvMtZoYlkU2nyOTy3Hm7DjfefDbrFm7Lj2HiUdloJ9Y6LgLNeys4L3v+ykaro8XQ3O2wYnTJ/jgB36O+77wdbbsWEPOVukdHOEdP/kubu25ler+Ckl3zJdmvsRNV13P7478Bvc8fS99/cuQmkzZP4mKEFCr1ZibmWPN+rW0XY+RFSuQImBifJavfPlrVLu7MC2VMOikau2mSV/fAF6YBighJgrdlElBgqbqRAnYGQsUUKRkYW4W07BoNBfQdWuR6SJxvQAUSW93lWKpgB9EGIbF8PAykiSi0/Fxgw6N5gLlcp5iMYPvh5wZm6BcLBAFHo16k9n5eXQVVCExTYNcPk+r00EqkpmZWcqVLkgS5rwmTzV28+j8TqYnZ7kjex0/3nsbvzj8s/ybzE/z66v/I++t3sXwqaN09n4Dz28yG29gUq6hd2CY3sF+qgNZhkfW4voxj3z7Eb58zz1876uPktT28t/e+Fm6T/4YHesg+sqj1Lw5oiTL4GA/naDN8qERXnwhbScjZURCjG0X8UQeQzcZGRnBD12ioI2uwZ59exnsy5J1QkwtJEpCpEgZG3Eco2o67cDBdZuoSR2hhOnvIGkADEXB90LqdY/TJydoehpHbxvjWH6Mm/M30ag36eruYubsGLZRR6DgewFeqNPTv5KFeoOJibMMDvZx+OBBTFOnU59E13x0DWxDw/XaCCUiSiCMEyw9IqRBqXMDvc5y/PJz/O3nnmf5yEbuvPNNvO2tt1GoFLn3059EJj5vv/vn0XQ9LVF5zgAF5DWvqAovrR19LVB9xT+6FLha6m8trUk9l1S4FM319fRPLuYjXmodr/bxXg1MXzmuJXNcArguFS6FV9ftXmytl/rs1fO/FrhfbLzXm+P1MsCvnfdHwPVf1H64gGsMSpS+LmJLb67LZR5/EOB5MeC41K5UmOliYyxd86XWF0XR+cxY4rUQuQqyspxzYPWV90sfg4Jc7HOX9lt81XzJ4uekAkTn/j73uljh/vl62CUqdopIFlUQ01rkc/srQiwCUyW9oZV0HecikqnQqnzVvEsjdBHJ+aysIpTF5u4xsSrwkUxN1+gqZNn1vYfoXXkttkxrnpSejVAZJtn7DYSTJ44NdMMgiEM6rQAnl00VDe0McayhJC6dTotCIcfg4AC2Y1AsZzGdDEKRCKGgaZJGcx5D9bG1AkGwgEgMYiWt4VQ1iWZodNoNdF0BIchnLFrNOpalE0cRhfIAU5MzfObTf8fmjRtQZIThOARRQiafR4gQyzSIAgVDdYhGHyJunKWmDpIkDjt3Ps783DRJIjjy0gl6eweQUtBuNSn3dGOYmfQHPvAxDIcoAamrVLsrSFVFCJNW20NJAjrtGgcP7mdkZDVxFGGYCt7YLmK1gq2qHB0/i+Nk+OpXv8ntt/0YYafJ2OnT9CwbodFYoFgwiaKAnK7RDmMMy2R+doJCpYso8al0l2jUF+itVvC9NqVSnky+DFGIaRg42QJhHJPLZqkvzGKZGplsnoX5BfL5PKDg+U1MM4Pv+hhWjtmZBrZhEoQNEFkaC3UMXWNhfp75mSmkNCiWyghN4+WXj9HbV8U0M3T3d2MYGfbve4FquRsvjnBMk2qlB93K0tdbJApdiuUupOYgRUJjZp5SqUQ+l+WJ7+2k3e6wf88L3Hzrj7F23UpUTZJxspDohGGMItLgxMxUjbm5GgPDywhDkFJFLN4DUklw23VyjkSd2YN61b/DKa8lX1TJ7zlDrAjimzenaqYiQy6fJQw73Hff1/gvH/kDjh8/wsc/+j/4/d/7z/zZn/0JU+M1dj+7mxuu385NNw+iCMnRExFr1q9jw9YVTNfO8Es/95uoYoyt2zZw7xe+husGrFq1mtGxl1m3bi0vPP8iV12zhVy2zPGjR6lWi+imhqIkEIfEccTM7DyGlSdiCJX9KDSIlSJRJEmigGwuiyKg1WogtVRJd2FuDjNjYxgGhqajCpVESRVddV3D8z2EWAySLT6vMplUZC6K0+eflPJ89D9IQFEkUpG0mh0M06TZai+eq1RdXEqJ5zVBCbCsAqnIWkIchSRxQhRGqEJl97PPUK32IlQNzTDQDY1NWzYs1kBraIokjpLz/VrbbkiYKPQNDCKECkqMFDq2ZdNptVESga4baX/WKC0pUHUrrYWXCp7nIxQdXTWZnlvAtiwECaom0XUbzdCp9pTp7esjIeHFPc9z6uQoN7/xOrxgklxGJxDXc+bsGJVymyhJqDWyeG5Aq9mht6+HNatXoWgqCgFus4alH0FRFPTMDdAa5c+PfIaPf+0vaDzf4vSpE9xw7Q4Ct8Ef/cFHeONbb+f//pOPctedbyVfH0fzdYxCT1oqoliESUT78yHuswv03uHgWAVatZgHvv5ttmxaR6ZYJo5aOLKLZjhH98AAjfo0Hd9CV7OcHRunVC0QhgLLSssE1q/eRFevyjvv+iCGYTC8sooMFvAVQRCYfP0b/8C9993DB9/zTu7oeTM/M/hTvNB6iQ8f/0PmDszSV1lGNpshDMM0YKpJbMuhf3AZmhLQaDUxTBNDl8zPL7B3z1FWr16HnYlIsDD1VDl6dm4a08kiAU1VkWgEgcvZ8TF01abjhRiGQBERUtGxnBwkMRomkgZhKKkt1Aj8tB7TdDIkRGmJAxG+3yQRAtWwcTI5TFXH0g3iMAWz3/nOo6iqiWnYPPLII2zbsY3EXaDZnEczdfxYYOsZ9r74FGvXbKSRLPC9+Wf47vwT3Jy5kX+v/hq/OvRObh++gy3dOwhmQsqrYeKkjR7vZuzAF5kJdtAU3SzfeBuHju1h/chWclmNelykSxXMTSzw0T/91/zbX7qWnokM71I/jRJFuAPfxS7PE9OP7QQ8s3uUweEVFIoOs5MLVHscOu2zZIwMcewxP9+h3L2R8ak58jkTU8+B0NA0m91Pv8ipM2OsGykSKaAlkjBskqgVvvTAAfoqZcLQJJeX6FoHEkkYhGhSkkQxmlwgVnopOCr5qsPO3bM8vPW7zOZm6H+miK5nkKrB3heeZFnZRFgZEm8Bs2uY4y8vUK100d1d5fSps1T6lvPwN7/LmdGjjCzv45ldRxgYSgMCYeiSyeZRhEoSQJLYNGdjLFFEHX6M7x2YoqGVedc738wXv/EkW7espqdngF1P7mL7xmF6VmzGEBrRczK9f64JzvdcXer7nfeNzvs/l/ZnLwegLtxvKeg7Z+fWsRSMXknt6SXnTwQki1oSrwGA5/xJIFEuua4ryX5eDFQv3W7p+9JjOpdNXto66ML633OvC33eS63xtUD4fz/J9c9lPwKu/+yWpIpupH1Dl9qlLuB/DvunmONiwPVylgo0eCiKglpdjqwMv2qMKxvnwm2WPJSSpQ+Y1xnlEus/d9OfUxd95QYWF32YpP9YSm9ZMr9yabC/1CzLoKtYJpuxeHb3Myzv6Qa7gNBstNhDzXUR9G5EOfAgWqZE0/PQVEEuW6TjNtEWe0TGcYwCaIutbhzbQtcNUuVQHcMwcV0PKSWmaYHIk6CTqAlBHKetMpI4FVhJBE7GSaP1IgWyfhiQzedQdZ1Ox+eez97D2rVrGB5algrQmBYZJ0Or1eQzf/sFNm1eh2bExEmHePYIAMWRGzl48CDPP/8M77jrJ+jt7eHZ555jZMUwUiqpIy1TeqMQCrqeNlA/HwCJAwTQabd59OFHiCLB8sHl9HQPEEU6pqXh+W2UqefRcoPEUQSZHIV8iWargW3qCBGfb0kRhj5SCgqFEkeOnGBo+QpUVRJ5bWSiokQKIlaQatreRCqSMAbLNjF0jZmZGe7/5re46qqtBKFPudxFGIa0221KpSJzc3NYlkUYCBAqGcfhxLET9PeVaPt1stkStYUFdu7cSV9/H/ligWIpT67QRaxAnMS0Wy2q5XIKVnQdz43pKuYwDRtVMwl8l2eeeZqh5ek5DIOABIFpWiRExFFMs9Nmbn6OlatWMzg4SKmYZ/nKVUhVwbIMkiTh0KE0em9ZFlEQ02x0OHz4MMtHhtC0NOgBCYqAIAwxTQM9apI0p9jNjZSKZXp6C8jv7U1bQtx6FW7HRUqDU6dOUq2WWbt2PY6TYaB/GY6V4aFvPcz73vfTDA+NsGHDajZsWo0QE1iWxcjgJFs2Q6xsJmfnWDPcxcBglq6uIhNnZ9m6dRtCRKxbv4777vsK2WwB27YoFrvI5R0MUxIlgnbHRaoantuhWOpKawmlThD3oorTKLQQojsFn4oCCsRJgqamwka6bqalDYpC4Ae0Wi10w0iVIRUFz+0gpUYQhmlfZAGu7xEEIbqmMzs7i2EYab1ou41pWviei1ASpIzxFmtJgyAgiiISQqIoVXUUiiSKOH9N6Xra11rTNDpues9Zto2mqyTEiHOR8kVGiyYkvu+nSrEyzeimlGBSsKwKisUiZ8fP0nHnyeayaZuW0MfQUppyooCUgiSOmZ+bpVAoEEZ18sUcuqFRf3QnyZlpvvHsi5w6NcaKFavTIKAQrFq1iud3P8/KlauxjXHmG1VUcyvFYhFTn4QEEmWAXC5HLpdDSkmnU0c1LGzDwpAZ/PbT6LqN6dzBzp1PcY/3NbrWV/m59b9Ad1+FDZvXo6iSlatX8+37H2LV6g3c+qZb8D/6GcSeI9S2rOLYsaPkcwamZaE+W8AWJdz1dSYnz5IvZNBUgapHqLbOvr3PYGgWuVwGJ1vhycd2YdoW8/PznDhxnFWrl3Ng38vcc89nuf7663jTm9/MbbfegdeBL9z7ObZv30QURESJRugqrNu0hhtvuh6RwPzsAjJS2eCtxMooHOg6we+v/R2OtI4wPj5BLltC0xTiIH3etVsNKpXe89TzRsPjTW++BSFispkCM7OzZByHRx82V5L2AAAgAElEQVR9lG3bttLquJwdP0O+kMcLfDRDp9jVheuFPPnkM6xZs4og8JmbW8CwdFy3zROPfZ+engq6kQZbMpkccZQGVqM4vabSNj4irW2tNQm8VOys7bqYGQddlSwbHKC3t4ppa2zYvAU/iNA1DaRGIgTT0QzzwTyBHXAkPM4js09wU+EN/Ernlym8qLFj7XUIKyAIBQcPn6CvXMJubiRZeJyDT32S02fzrNx8G07eIZ/tZ8P6jfzJ//VhDu5/gauuu45Hv/E5/uAP/hB7ro/3mn/CkPsu2pUXSXqOIlRIYpNndx/FtgSuZ7NmwyoMQ8UyHYKgTeidxZQqftDCsgvMNQSGlcH3XXbvfg7T0vHcNj2VMs1Wm5VDBYSuYuhp4DOKIA5DeisGfSNbmJ0+jYjbSKlhWgadTjsVRvQFbhhh6pKpGUnGVjiy+WUCL+QXs7+KF0YcOniYa7avRSYtdMMk9AO6+tZR6qpCEqKpkoW5OUqVHO3aFDs2Z3EMl/6BXhARQshU5kM1SdBwm01QPbRcSGb2WiIXPvXI5wmlyU/eeSubNu3AslSe2/k9tq8f4tHHHuEtP/l+FCGJnktbeclrw9f4TBc4PFcE4i70mS6XhYVL16tejG57ubkvv75XwPLSea9EM+ZK7cKE0oVz/KCJqcutb+n2l6v9/RFw/T9oP2zA9RWg9do0/+Uu1CvNiF5sn8tlcc9994Oqm10uirZ0/jiO0TTtVfUMl4o0nYsYvTYidsHNqSyJPHFxlbXXO+60b9yrv09r4JJX3eCvUSi+CHC9cCWv/uflG1OfX0MMCIGiSNZt3sB//d3fZNtNt6MbFkbiEQuJZtrIoe2Ee+9H61tDEgZIIVBkQhjESDXtyWroJvPzc2SzNvMLs0hNR0odBei4nfSMKRIhVNzGGKae0GmFmHoG128sqgxraTZGKKhCIEiFQzzPp9NxMQwTIRKKhQI33HB9mtWK07rEJIkxDYNt2zcjpIIUOlEoYP4QAGbPFur1Om95yx3EcUQY+mzevJE4jliozWNZqfKzqkoEgjiGZJGKJYVCEvuEQcDExFm2b9tGvpAnDDvMzc2iajoo4NgW3uiTJEYFNYFaonHy5AkGhwbQNEGxkEfRVIQCtmWRzeZwvZBcoURtoUazmdKznEIRoaucmThLb/8ypCIxDAtV1xFqwssnTxBHCRs2buXUy8cpFgspJdSyWJifJ5/Pc/zYcbLZLE9+/wWa7TbdPVWqxSKaGRIncZpBFzGzs3OUyl1kcllQFKSaHkuURORzRUZPjdHV1UWj1eQLn78P09So1xoEfkipXEKoCpZp4Hs+puVw+NBhukoFhBTYjk0mlyOfy6MZOo9+97ts2bwRTTfRdYnrdpBC0tffQ5IkGPoiLTWKuWr7VjKOQcdNs4pSLjoLQkVRBNH488TDt3PaK7Js2SC6GSEe/DYibOPedA227fCpT32a695wDVEUoCiSwFdQpYpp6Giq5M8+/j956umdBKHHzTe/kXJXB90wiIOjaKrPXG0jhmLg1w9z9fXLAZeVK7Zy772fY/WaFVSrPZwdnySKYvbs2Yvt2PzDP3yN9RvWo5lO2k9SSHKORRCGREmC53bw/TaGMYRM9hIoN+J2JjBNi1q9jqbr6FLgez6KptFpNTAMg0arRSabBRRUVaPjdshkMkihk8QxcRKxsDCHado4mQxxHGJZ9vl73jAMAALfA0KkSDANG6EohIGPoevohkZtoUFXVwWhyLQdk6YRRVG6v6IghExVXZEYhk673cK2jLTfcxynGTchieMQhQRVS+urFaDeqBHFEUJoZHMOUZT2RS6XuwkDQZiozM83GB+bxPNamLZFHEMQ+hSKOTzPJfRChDAg1glfHuX06Gne8K67GB4exPPT3rDn2r+MjAwThyeIwwlavAcw0+CaOIOiKCzUM0xNTS2yE2BhYQrLyTE3M48QdRzrOIoCc80h/uEfvs/smmk0XeUDK9/H0MplzMzNUe3podCVZ/2KtYRhSO/QAKc/+2V6uqu4167hr//qr9m+eROJVFD2ZGk0XXJvNMkVbCxL5ROf+ATLB7fy7POHUWLJXXd+kJ//+bvx3ATHyNDdX0BVVZ78/lOUyyXmZz0+8YmP8+v//kN0d1cgtrjmmuv42Mc/wsGD+6nNNxlasZp7P/slNmxZmwq7aSa2bTA9LgjDiNuGrubz//0h7uv+Ir+/4ncYF1PUay0sUyWJY4LAx9RTim+CQhJBxikgZUCceOhqnmzeIY4iHMchm82g6hqlri7q9QYt1017bQuB1HS6K70p40ZVyWWzBIFLGPrk82XsTIYzY6OUSiV2fm8XzYZHvphF07RFWmsDUEligaHpfP2rX2Hzxs28uHcv5Z4elCTCMEyazRqWrRMLyYnGaR5uPc6u1m72t4/gxS6q1AgI2JbfxB3zW/l3a3+Nw3uPcssbr6VYqmBmNXQrz6rBZThMcnLfRwkXHmPyhMLgNe9DaGWK5Tz79x0niRSu3rqdHZuv54FvPsZTD32RzniHv7z1ERJjBrfvEC9P7qNYzKNpKgkK2UKGXFZSqQ5i5Zw0G5nEKGiQTJL2NPDoeJDN95EpdDF+ZpytWzfi+R1yWYdjLx3m1OmzFB2fTD6L7/lomoFQQlYN9+HkDE6ONyjlBLqMcF2XMAxQpUCVgiCARKj4HZ9du8cpV/rYveIAUtN4i/82Js5OUMoXmD5zEMsWGKqg5SnkyiuYmpqgVCqyb+9e+vt7iTzBEw8/xLoVFWQiSEQIJAhFEEZgOwU8P0EQ4ocefhwi/CyW0s/p3IMoxiCrBit86Utf48abb6RaKhA1Rjl26BBvv/vnSaQkfi5VXZfXhq/K6MGls5cX+jiXovkupQNfuN/S7OHr+VBLP79Sf/ZSfublRJGuZJ4rWcPSueI4DdpfeL6uRODpUuOds0udy4tlcV95/xFw/Re1/z8AV/jHR2uu1K507H/qjO/FZMrPg9j6FLHbRJiZi+577mHy2ofVDwAYLxjr9db4mmJ8RTk/9iu1FuKix3RF67gC4HrO0uoXjQDQLJs33HAbn/ij32T7lo1EdgVDTx9mQregbzXRrr9HdYq0wxhdtwEtrYtLItqtGlKK9IdUaGimidcJCAMfqaXAQwhJkoClGkxMj5LL9YBM1QzT1iAJjeYCjqGhSoO26+K2WngdlziM0VUd121SqVTQdJ221yHjFIkTOHbiJD19ffielwKpc3TKyb1pxq64higWfPbvP8/aNeuxHQNFEbSabRQESSIRiSDwfOZm65w6Pk6SuGQzGRRAqCq1ZpNcvoimm9RrLZI4dbyPHjuF5RjYZgZ//PtERi8GCcen6wwP9lAudzM/P4eqaViZAnOTUwghcH0f27HRZYSqKoRhTMsP0WSCaRiUikXCJCbwfVBg9MwopWKZUrFIuasLoUrajQXCKOT+bz7A5i1bIVbw3JC+vgEOHjjMug1r6OnvWRQjEUShyvGjp/HaLbqq3axYsRIliWk15shmC7SbbRRiQtdFSJ3nn3uRarXMxOQk1113I12lAo8+8hhXX7MVVLAth7mpeRrNBrlimUpXidjrcGb0DM+/8ALDQ8NMTJwlm8uzfPlyTF3D89MsfavVxjAszk6cxTRNwtDHsgyOH32ZaiUPUcDcQps4BiFVkhh8N0aJY+LR7+Pc8luMrNuSirW4sxjfeRQl8vBvu4UwCOl0ApYvH8IwNDwvYPJsg0OHDrBq5TDr1q7h/R94D2vWruCrX7mfmUmPj/3PexlYdgNZ63AqRCQ2s/O5x8nkyvT2xCjKIPd89u95z0/fRS5XYPdze9h/YB9STbj99tsZXDbA1ddch6LodDoNTF2l3WwuCpWBqqooSYQQOkIWkWIBmewG2Z/2CFZVdF3HDyOiOMJUJbqmpxlU3QApiML0uWkYBnGcEMU+nU4HJ5N9paWOmjIHUkE0lbm5uRSwSYV6vYYUKpaRoVabx/NcdF2jUa/x53/+Ka677npUVSGKA6IofZaoqkoUJ2iaQbJYFwsBURJj6Bb1WgOhKBiahgJptlukJQpJHKObNq7n4dgOKAJDtzh69DClUol2qw16hse++wRnTp1k7PQJtm3bRpJ4GKbN7FSDOE5QVUkYxqhIPv/5L7Ju7Wpm9+0nCCNOtD0qlSqmaaAo52rVIkz1OI7t0VZ+gdCvoJtqeo7lOAkJYdRDLpcjjtPrsZArIHWT6akxLAtMeZR220W3b+H666/ioYX7CYMOd/feSavZwJQ2jmHQqk1jFR3Wrh/B0XT6jo4TJQHKLZuZnp5l5dAODh3ZT/XMAIcPHEK+QSObMWjUfebnYtxOg6vecA2rVw3y1Pefxev4PPG971KpGMzVZ+jqKvOxj/137r77bjZuWsH7P/guoshndmaeUtnhl3/lZzh54hSDgytYvW4l09OTmIqgf7gfKUzmZxpYtuTFvTv59Q/9J2666QZ+7Sffj4/gTw/9V/50zR/zUnyUWEkp5ZECQcdHkWnv2vu//iC+36ZY7ELXdJqtaVTNREpBNpvl2w89xMjKlShSoi3qOZi6RbvVwfNcLAc0Le35evzYcbq7+4gSH1ARmkBVdGzbYGDZIA888C22bNuEruscP3aSUrnMzPQCE+OTfPeRR3j3+99L4AU8/t3H2bRxM889swffi+jvHyAKYxpBgwcaD/AnI3+M9z8Ev1J8P3dX38bqhc3cPXQ315jb2TIwxMx4hzWb15DNKYBJqERMnx5j/PhzzB75e8KkDc5PUNpyK0MDV3Hv393L6nX9DK5cSbG/n6hzlA//h//Irqce5bd/6S3cbX0ckZsj6TlKENQY6C8Thx5JGJIEAbotaNQ7HD/VZtmyIUZH5zBshb17X8IxmhiqThi7mGaRk6dmabkB1e4uMk6GXD7P/Owc05NTzEyPc/WWHlAiZJzGnjVD4rdcQruCJROi9sxiT1cPw9BRpUIQ+ARJA9vpZfzMLBONkE2btvGd/KMoisIdtTfS3duD225SybQRpooatXGqwwi1jOFkaLQC+gaGsBybXY99A8MIUI0YoWVQZUwSKwgpSJQYw8yiGw5RUENVLZ5+5giVIZXM3FWETZ1PPvF5PvRvfpk333kXX7nvi/zWf/pD5ufGyScBV9/+drRcDp41SABxTXBJ3+piAPJiPtaFPV1fj7567vuLqea+3rxXYheCvEv6mUtsqZDUlc7xg2x3jv58Jef3Up9fKjH0egrES8Hvj4Dr/wH74QGuMSjnaMIxXKBSdmG06nJRm0t9f6VUiYtFbC7Hd7+cXewGXhrFupi5T3yaePwQ+sprX/X50vUksbJIAV58KfEiEEzSOoRX1ZK+dm0XO6aLFfi/JmqXvDLva1Xlls4jztfdXnTbHwC4pmtO0rrXGKRus2HrGr7xd/8ZbWo3hco6sLpQCFCsHIpTIjryBHo2jx/FhEGHIHCJowiFBCFUhGoSJQI1CkCYHDi4n2pvN6oiiYKYICJtt5DNEEQeiuKgCEESBUgF4jhB0w3m52fRpIqmKsRRgq5rCBGTyZWYPHuWwwcPkMuV8EKXjJMh9AMylk2z00YzVFRNJ1EUoumDTExMUh55A7oRce0113Di5VGEamOZGnbGwbRtNF0DBR548Dvk80W++a0HuOnmW9JaK1WlUV8gly0hFB1EghKGPPztxyh1VSkUHfoGqpw6dQqndQhX6cKSAqevj7m5JpYTYxgW93zuPgaH+ujq6mZ+oU53tYc4Smh7AS+88Dy9PT109/QwOzeFkykQhQHtZotMvoDnBxSzDnHSodOos2/Pi+iGhqrr9PRVWL1qA1Km7WqSJELTNKq9eSzLRBLTrLXR7AxB5FMoZshm86AkhH6Ns2dGKWQrLMzPki0UETKldzfmpvG9GrZlUS6XkRJsy2bT5o3UW01MzSQOXYT0MM0iE2fHse0exuePsWxgFStGVnLyxDGW9fVT7/jMT51FNfKoeto7+ctf+gqr166hmC9gaA5SFxw4cJI1q9dy35e/wfpNG8jnHPbuPUCpWEUokk/99acwghkqTkhz9VuIkhjLNjC0IvLb3wHA+7Fb0HWLMPApFByCwEVJdD75v/6MO95yB4aVZd+Bo9z72c/y5ne8l0cfe4j3/sS1/NK//lc4jmRwYJ4khiPHe/i93/09PvRvfwtNX0AoLsPL15ArZElkQiGbZ2jZIFt2bMU0szz86KM4to4Stcl3lYmVGNUw8aMYKTUUEsKwQyJipFQJogwahxBqL2EEumGkWabGPJlMhigGVaZ0wASfwPMQSVrvFUYRiUxQkgQ/bCGkYPLsPKamomgSqWqIOKHRaKBpGoZpgiIQKqi6SoJAFTqGaaPpqRLr9TdcjaZqeJ6bZjqUGIUIqWi02h3C0EWIGFUqaLqJlCpRHDM7N0exlEORCSdfPkU2m08DMXGwmCFX8X0f3dCpLcxhOhYZy0kVYG2L44f2US2XqVRK9PZVeO75vSwbWI5u22QsiEIPz3M5dfJlKt1VNm7ewcT0adSpeVShcaw1T7mrwhc+/2mGl6/FdiRK9CJS5mkk7yEJuvng3R/g2jdsQU9iBONouobQlhMmSRpM8FqEdPDdJqVKmZnpNrmsjpA9NDoWJ06f5ql4F0kUc2f5dmq1WXStwLve+R6uvm47y7p7cKMQVXoo33seRajUNq1gx9Yt1IIaKwaWI/c5VHur5G9OqNUXyBRyrN20isHBflrNBVRV8qYfv4HanM+/+sDP8hu/8Vt86Nc/RKPu8oEPfBDbEURxjJLonB1/iX0vnGR4ZAVRpNBVydPqLNBpdyjkC7z/g7/KgYO7edObbgEZoeoGI/0D3HbHNZS7y8zWPH584M18v/U0fz36NwxZ/fiNOvPzbQzdTOusDWh35lg2uJzuvgq2nQFF0mi0EUJH03XOTo6zeesmUDSII+LQR9V0Yr/D/MxZKpUuWrUGViZDkCgUil0QRuiqge+2ydgms3M1TFvH9VyuvuZqlERh1/ef4dmnn2b9urWUugpkcg4bNm8iiSSPf+8xbrv9NizLYnhoEMPyieKQmt/hm41v8X75Dt7Teyc3XruNjRs3MjExQ1eXJJvJYhcSvLiLXG+eqO0yM3aEfHcVxeklE8xhjd9LJ45xy+9j5aar+Mz/+wU2rFvLgw89zp0/cQ27dx7i597z0+i2zQvPHOA3PnALme/8DLmcJOk7jNAEGh6BnyCFRSzB0Eu41PBaBqqZ5+SpMwwOd6OpGiJJ8GuTlAoQJCqaElPo20yxq5uZs+PkixXmFqZwrBzLh/roKwk0vYkuNRAKUQjEHSIpaNYSIlQSv5H6B1pAEiQQQaJGKImDEDDXShh9OWZk9Sq+nXsYVVO5w30LtfoCC7MTFMwIRVVJIp9aHdRMBYTK7MwClpmWiPjuBK2ZCM9NaPktBvvLhF6TRBHoukkQRakiutvBbfqsXV0gUFqcPt1iS/UWjufv54lHHqA4sJwb3nA1CnmarRobB1Rm59usveo2kudSFWF5lZ8GjxXlvOt1IRC9lI9zqZ6rS7OyS5lor8ek+8dkPJf63a8BckrK6EuIX+PTxSzVNHllzIuJQF3IQLwS0Hk5NuLSsZaKVl3cv00TFJyvP37196mrm2quoCjn28L9MAszwY+A6z+znaO1nntduj/VP9Z+kBv3nzKreingejkLT6TtcOTyq173wfYaxbZXgcB/3HG83pqvlNbxep8JIWi1WjiOA7Ao7nTl473KkoicVaWnajN2Zj/rtr0dD1BkWistiv1o3SsI9n8HLVtAtzPompmeJk1HSpVmrYZlakRxAIpCb08VFAmJwpHDLxFGMbliEVWVzM/NkLF0EkXSbtSBtKaz3miQzxeIooiTJ1+mb2AQw0ypsnNzs/T1Vunv66NWr1OuVInjEE2T6LqOZTlEYUwSKUyMT+P4p7BtC9m9hU67Q4JKuVzmK1/5IgN9PViWCUAUhyRRyKpVK+nurrJj+w4MUyNV4FcIgxDdMBdPJAS+S7Wnmwce+Bb9fQPMTE3T19uPMrObZpgho+vE2QL1epNnn93DyPA6JienWb9xHV6rSbOxQMbRqdVmMCyb/t5eTpw4RS7Xhee65PIFhBBYtk2r1V5sbRLgegm5XBEnmyNfLODYecIgwDLzqKrg7MQ4jmMThi4njr9MsZRDiJhms4Fj5hgfG6W3u4qhSRTVJgwjypVeDh4+xuCyPhSpMzp6ilKhQAwUiiXsTA7D0GnUG1iWRbPZopjPMjU5g6qZONkimpQ89NC3yWTyFAoOGTvLzp07Wb1mFWdOnWJ2oUZrYRbXDSiVSyRRzKbNGzFtkyDssH/fIdyWS+JLRsdPMDkxyebNWwijDn39fZw+PUomYzEyMoJ35jmcriH6b/pVVDWl5ELMgnc/neEQseKmlPoUGmQyOZ599kUe/ObD3Pm2tzI4OIyqaiRJxL69z7LQaPELP/tzfOebD9JyY9ptj5GhOocPv8Qv/vJf8ZN3vR1d0zhydB/LByWf/8IDvPTSYTZt3sypk2M88cQT+J7PY498h02bt/LIo4/whutvwOt0SOIY27QQMv0B9z2POA5RVRtV1XA9BVVTkcl+pCyBMOh0PHJZB7lIyQ0CF81QabVdMtkCCAU/CDEMHSUOAZnWaCcCXTPJ5vOoUtKszxOFKZVTN4w0ExLHuK4LKPh+AEmArkuiJKBWnyfwU6dD0wSKkhAnAlXTCaME28qg63qqmqBIwjDE8zzCMKRUKqEAtfoCvT19qZiWqtJotTAXlZKjKMQwDEzTwnUD4iDE0HVioLvSjWHY2I5NNpunXCoxeuo05XIVPxEYdp6FehtFNSnmdL76tfu5+urtaFNpHffeqQlUaXHzG28ilzcw5WGkWuWRndsYGBzCNjLccst1DKxYxejoOGNjbfLdm5geG8VycnSCiFwuh9CKNJsdonZIubtAEC8jZoh2u0Wld4QHZ+4nCAPuWvZu7GwW3bJ453vuolTNEcYaCC3NRH5/D0kM2puvJ5ESIVX++A9/nxtzb0777W6PEGpCu9VG122isEUhXyQKBfUFn4/+P3/KW378VrZu3UD/UJWZmVlKpSqNegepBCShBDVk+/YbCGMfRaStlOIooZArgxKzfcdWntl1gJtvuhXLskDxkGaWYleZJID9zx9mxeo++s728fTCMxzlGFJTeeqZZ9iwcj2aBgoqhp5La+UjD1VVATAtY/H6TMX+TNNCEhLHIWGcYJoO9XoDP4gJQpX9e/cxMDiEUFSCIMbrtEiI0+CBInC9VJzMMAykKtFVjZ6ePnbs2A5xiG2ZNOo18rkMOx9/mB07tpIvFjkzMcXxo4coFKo09CbfnH+Q7ae28kfX/ja2kyGXs+l02ixbNoxt5umpdOF1ajhGjtCbwShIRicV2uNnyHujnDny5xydaFPqeweZwjoa9RaTE6e4esdqrtl0NQ89+Pd87m/uRcR11GCSn9n281w3/Tvkqj7x4KH03pYqnTBEUSN0M4FIEkRznHrZRRUxXmiQUKC7fxmWlSGXL7AwdRTHSkgUhdrsLGPTEbqRRddVdMPGtEwCX/Dggw9SKSgU8gKpaChC4dTpcRzHQup5FLWMZSooYSPNMgaShhsjbQddpDT/sbE6iXBQNINmq8VzQ7tRVZWeXVXWrt1ExtKI3TMYlkHk1XHy3YRY7Nt7gMGBAQ4d2E+pVGDn4wdZNuiyerVNVzFL6LZQZeqP+L6LGyRoRobAa5EoLgoSTWgkziyZxlbMdj/v+N130DVcYPLEcaYnZnn3u+/kpee+jeKU2XHTmxDX+MjFbOs5/yVOXhEnulgCZSnguhIAdzFw+wP7Tpexc4DvwszmeUbgBYJL54DreWGjpS7pBX9frLXNufcrZTRebpuLjXUx4PtqpWWxZN+lky4ZJ3n9ZNkPi/0gwPWHG4L/EFqSJOfV1y5ll5L5vnCMS31/qezm0gvvYhfiP8XNv3TcK1FzU9LAziXHuJxdbNtz8wZBcL6mauk+S+XOL8wOv945vFgW+fXWnP5Y+IRheEXbX0jfWErl8BWNqbrGR//qG+x6ahdqEr46ElYZwb7rDwCITjxHNHua2swUUuiEQYyTcRZbrZioMqbTbqGpJgqSTZu20NffjyI04kRSKVcQ+CRRKrij6TqKVMnm8riLvQDXrF1HrT5PrT5Pp+MvUkpDzoyPkctn8X2fJElwHBvP7zB2egy343Hfl76K56btABRFQRGwZ98hNF1HlQnveufbqFaqqELSbDQRCNqtBgvzs5wZG0UoCcoicyFJEpI4FZsJQh9FUbCzDl3lMmvWrKKnp8zc9AK6mkaIi7kcHT/9v6hWuxgY6KXenOLNd9yEZUkK+Rx9vb2YRqqMaVoGQeizadMmLMuhp7cfr9MC0myWJhVUqeB6AY6dww0iMoUCnY5HnHRQ9YgganL0+H56e/rptD10Q6XTjkkikxPHJohCyUuH9lPI5hl9eZRTp05BAn4AfgRWJoMfxqiaSqfV5uSJYxiWjZ3NEcYJp0dH6SqXmZmZxTRNPLeD42QII4UwgsnJMxRyBXq6S0jFxPc6XH/D9UhVZWBZHytGhqlWu3DdFnGcEMcRzWadJAkx1Rxbtm6nuzfDilV5tm7eSH9fL6oUxHHEiRPH6OmpEMchjzz6MCu7dT78lRqtRoxQTKan5wFQ1ZSOeE6UTUrB6KkJRoY38Fd/9bdYVgbX9di/fx+f/ORf8Gsf+hC33Hg91VKJv/nM51CUQ5S7pkgSqFSqrF+7mhuvv44vfeEL/N7vfgzb9ghDn3e/+z00FhqYtoVumBw/epy33/k2lo8sp1KtoghBvdFgenqaMAhJoog4ihBSw7Cc8/eTYeiEyXpIYhJcpHCxbZM4SYgWHRdVT+utbTubRrGVBMdxUBfrZ2dn59A0iySBMHLxA492q0EcRjiOTRyn6qxhGBCEAceOnQQktm1jGXm+/vVvobHSVqMAACAASURBVEqHjF3izJmzjI2OIUSqRKyqOq4b0G63iJOEhYUFhKL8f+y9d5hdV3X3/zm93Db3Ti8ajbpGxZJsWXJvGOOGDdgGDMEUkwBvMCUQIAQwhIQ3BEJs3hdIIQ5JCCY2BONug7EtG8tFsixZvc+MNH3u3H7uaXu/f1zJlmVJlkPye5L8WM9znrn3lH32OXP3OWvttb7f70vvF8MwSCaTqKpKLCRNTVmCoBGcB0FIOtVgmkWROI6NiAVIEDH84qFfsmnTJrxalUrVI4h8dMNg8+Zt6LrGKacsYteunTz5yIME5Txq6BFVCtS8OpdffgUSSRw37tFll1/aKCdWayTM5wlFF8PT16DrLiKWTE9P09PTTRjGzJkzj4WLzyAWCZKugaZZfPvW71LxSuRLI6TSBtOlA+SnJzDNRmmxZbnkxwsNnL3tsn33bkJhEMQ+9fo0rgWFcol3v/13UDCRaJTLZarVGpWah2NnuPnLX0RTVSQK1VJIvVrBsU00aZNwM4Shzx13/IQn16zjq1/9Co6rsnjxIvx6TF9fL2HoMbD/AN/7v7cShYIwjqkGFYKgRrVWIJVO8usnn+Ob37gFIWLSGYvurtn8/ff/mTAMCcM69SimUq0RS8G8+QsoFqdImjZ3nPNPXNf+Zjwlora8zl3TP+fp4rM8OrmGXZU9+NInmUyQz09z3333N0jYZISiQDKZpFKp4HkVajUPw7CpFKuYlktHdy9bt+7kjLPOgUiBWKACe/fubRB46cZL7NeBHzWw04pkdHSM59evZ3xigp07txMGPtmmxgTdOWedTjabQkEyPjbO0qVL2Rnv5b78w3yu8yb+/prvkchkmJ4ss3vXPgB8v8773/d7PL/+RarlCIKIiZHd1AsWp/bPpjmxjw1P/SV7t6jMP+1/0TL3PEYPDjMxOkZf7wx+/eSjfOebN6H7A5y2OMVnrn0/X5j7I06P3k3QspG4fQuaoaJpOiISPPP0BHGUIwhiVDUGYVGarpNJ6UxP7eTA8E5MSxKLKgMD28jmWhBCoiJpyqRob2vGTaTINbcSxw1Zqr27t2GoAZkmlzgSRFGDrXxGbw9CqGhmEtPJMTk2hKbGxLGPbQtioZDPB4g4wPc9Ar/xXipXJmlubmWONpsZcQ+nnLKcifEppgt5VE0gDvkelXINTddZsngxtmWw9JR+Rg4O093TjZsw0KWJGiYxDBXNtDA0A11VMAwX9Ay6mUI3FFAMVNXAMT0mjOdZllnN9//xdqYKeepeGTdtcvNXvoZUBC+sX4seN6AOR1buHe27nQwx0JF+VBy/rLJxIvKlk/GND8MLjlz/igD0qOVIxt2j2zrWuiMlbY5lRzL2HsvPPhm87JF9PpG/f3Rbx+vT0YH44c/H2v/Ida8lW/Tf0X6bcX3d1si0Nn4Hx864Hq884H+qHc64mnNXn/iaT5RxPY5+VrFYRNf1k3pQHLbXAv4fa93x+h3H8UskVKqqHmKTPrls7au2oxFrJVrbF/HMr6dJJmIymRTplhY44sGmGhZWz2mouR7E9BDW9B5keRIr04JfLqAlmlAwCGplDMNl2469jI9O4Dg2m7duob0l22A3VaFYzuPaKeJDjr2imQjR0IoUQjAyuB9NlYgoZOTgMOmmHFEYkUqkCQLZkN9AEoZ1dF0lnUqj6xrt7Z1kUk1obYsx2xYhwiqz5i8gCAI0VcM0NDY8v5l0uok7//UnLFq0hFTSRVNNNjy/kRkzelG0RuCqqhphXaLpKqgxoKBojdLLGd0dRFGV/HiBwJ8kWd+BmZ5NLCSlWGKaJr29fQ1sr5ukMO1Rq5exHJc9ew/gJFrI5/OoKFRrFSIRMjg4hKkJpCJoyjQzNLC/gbXVTTY8t5aO7k4kCkN7B2lt6yYKAWnh+wG6ZnPfvQ+QyyVJJ3uxbEG1ViHXnCQIKrS2dhBEktbOTkRQxTINgtCjtT2HZTlUax7NuTSIiDCKG2WUikpTJkMUNpxL3/dx00mkEAR1D10RVCpFenvn8NDD93PaijMZ2LedTLYZzTKQsY9q2yQTFs1tHURRzKaNL9Dd3YFmqBTHNqGaDqadQVcz1KpV8lNTdHQ2o+k6rS2daJrJ1GSelGPTKof4u2cEV7zlUh57/HFWrFhBHEuCXQ81xmnfG5jOl4mFRzqV5a++dQt//IXP0N7ewznnnsUHPvBe3vHOa/nkJ76AVy7S1pph9Vmnc/XVy+jqaiaoDzExMc6553+CD3/od/mH227j7e98D0n3IP2LVuHVIu6++yecumoVp512Kiox2dZO/uX2H/HO696KqQqcVJpUNkMkBDIMiKIGiYyiaUBMqThNHEssK43ARBWbiEQG09TRlCpxbDaIqoREUXQ0zcAPqwi/ghCSIJJEUiWVSFL3Glg22zYI61V0NHTbRUEgFUndr2PbNrqm097ehWFYgEDEdRYsnEcQeui6QnOumWyuGU0zkAJKhWkyqRRBUEFRdRJJG9/3MA3jEPHUyxkEVVGIRUQURw1saySIA496uYRmGmiaTrVawzRtykWP3p4eWttacJMOg4ODuEkD3dBpa2vjyaeepW9WJ80dLcycNZdCuUwm10K+UKBWqZNIZDHMCGVkAlXVeXjTJi69ZDapxB627V3Khs3zmTW7l5l9XfhhEVWaTE4UcRzJ+MEhwmqZplyaUFHZtWuUSy8+jxfX/QIlaqE1NxMn2YPtevjeCAgfVU0xsneQp0bX0Jlu54reN2HbWWw1wq9MEFZKKOhc/5ZrGR8dIbt1L7bt8ERco6e9k6GDJVqyKURFUrbq3PCZd/Oe974NTdW55Vt/x9f//Fvc8L7rWLxoCVs2b+OB++5n1erl7No5yK7dB+ns7CCKPVpb21i2eDZSJGnuaiIUMSqSWn0KBYvF/Ss5+5wVTOXHmNk7h5UrT8W0JW3tWVIpB79SwXY0hA5GykWPFWb0zMbzPMxBlWv73sdHZ3+AC5vPgCmHdMpiR30bj0w/yo7CHlRXZ3Iqz7kLz2dzbSN1v05d+ghdUBYBBydGMVyDgQP7+eXjv2Dx/AXs27WdbFs7BwYHiPw6btLBNAxMy8S2LHzfJ5tr5ic/+TcWLphHgxBPR9NNctksHV3dPPiLXzJ3wQKkoqJqDcjOdLVA1a5w78jDlII8fz33FpYGZyOpg20wcTBPa3MfN930Ua648hKuvvoqvMgimW5izeNr6eyyUeu7mdhwKxs3bOO0iz9HPTOHMFCw3SRSjNPZ1cye7bv4zKdu5qvvv5654kyWFT/IzKm3oiZLiK5NKG4d1QwRQYyiaghFpbtTw9ACDNVExgpxmKCjVyB8yaw5C9CMNKZuUypUySQyiKgAotQYRyJmzXM7ae+czcHhA7S0daFpHjZlurMBlmuj4jcY+JUYVVPRDQPFbCKUKUwmcY0IiUJdqZIwNDK2QayKhixTLHhm/S4SiW78IOYdbdfQP7KIUqlOW1sroV9EF9OYyXb8ep3pqk5T+zxiGWLaGn7g0d7VhSaneOaxLcyd04GRLBJFKkGsNDDhmkqkZDDcLp5/ei0tmSRWwiFfKuHYWarhBN3ibLozLcy4YBbpJptfPbmeP/jDL/L0L25jMl9h9sIVNHf0oGpHBXxHZ+tOgsPlyIBK1/VG5vY4mM7j2dFB5rF8uJNhzz1RUNw47pVlyxzl/x1ZKnz4Gl6vH3+0bM3raeNY5devDsBf7nMjSfbKe/2SPONL1/RfP9sKvy0V/s81JT5iALw+2u4TNvsf9MP6j2znRG0duf1w4KrPPv2Y+740GOXRA/n4gevhfRzHOW4G+1glwkeSQB0rS32sB+qJglBVO/xse7kk48gH5MmUwbzUXyQKBrHwueTN55CzY27/h+9y3iVXEcega8ZLguZCEahNbaizVlLtWYmdbccvjGNO70eM7UFJZhskP6pKd2c3xXKR3bv3MnJwjJ4ZPUgBpuFi6gkU3SCWgiAIMTQDKQRIHxmFZJpaSSYbQdL4VBHHtLETFlJVqPuS/OQkTipJEEakkg2iFc1QGszBcYybMImkhlfz0TQYGhjG0A0q1Wn65sxCN1RmzZlJOp1AURXKlRoL++ejWzA1WSCRSDE2OkG2qYlCqYhtOeiKiqGbaKrAq1doymbYvm0fhYkRerMhmtWGcNJIx2qwaZomlUqZfH6SjvZmapUqhXyhEawrId093aAopFMZpqYmqZWrdHS2N7RhrQS5XA4hYwzNwHbTSEViWzbr129mRmczhUKRpuYmFN3Askz6F82lVKjQ19eQsxibmKSzu4dMJgu6gWVbrH1iDa7bKC8PAzDUJKHvYZsaIyMjtLV1YTsuA/sP0tLWimGniEVAsVDFslQsLYUvithOBlULkDFkmlpZunQppdoU6VQWFZOhgb14UUw2kwPFACVCUzSaW9qxHafxW9UTaLqGquhEcUxU92hty2G7Fp4XUSyW8b06tVqZefNnI6b3seSyD9Pdu5BPfvQPec+7309MEfvHa7BGFNQLzyeMBKZlkEw7nHHWabS2NfNvd97HN77+darVPMXiBHGkkc5mmDV3FjP6ZuDaeQYG95PJzMFN9rFvSGXhosXMnjcTJ+Fg6RNIxUJKgwMHJkiYFo89+hhnn3sh9959N1dd+WaeWvsUc+bPRdM1NKlh2CaIGMs8JGODACmxLAfHcal5VQRNGFoeVakgpYuq2wShJAp8DLUhB9SAAGgIqYAqMQyFKAgxbRNJI1gEDU13UQwNXVeZnhpDNy1MyyGse0gUFATVWrEh96RaoEiiOCKKJIYOEFE5xGTsJhJIVaDqFofQZoCKohmHsElRg/FZakRxTLVaIZVKNcpkDQ3dSKM7yUYGN46p17xGVYIUBGFMUy6LVyvT2t5Bwk0hYgXTtJk5s7Oh66yZ5CdGack1EQY+He1tNOWyBIGHYyeJFImfClmxqpHJLEXvItG0ijlzu5kujuHXq7hOkqnpCVracwg/oqWzg0RqEtQyE6OSO//1Ti655E3sGRhh2cqlRCLihhtu4F1vexdK+C/EwTa++/2dLFuxhOsWvZ2L2i7Etm28WpFdu/eSTHcTkSbd1EmsKxSrFdQFs9msBtz245+we+cuvnPrn3PmWWdj9zswK+a9N15PLHWE1Dh99XJOX7kKw9QIo5C+WTO5+bNfZNe2g+Samph3SgvpVDM//pf7aWtvoTBVpLXdwtKaCMIx4lDDMZv5/B99jlVn9GPZScqVMkEQkc2lMAwV17VBUSjVCrhODl21mZo4gGlZRNRIpJIkki0kHIu6V6NJaWdic4kPn/U+LghXIh/Sufnqr9JttqGEkjFznN2FvYypEwzWhhgJxxjxhinqRfaW9uGlPQodJTbWNlNoqbBX7CWZcSlpHkWmOFAdpmr6DFUPMh6MMeKP0zynhYl4ksHSECPeGGEyJIjqDCgHcHssXii9wHS1wPPeJtaW17El2IFj2DjPOXy66RP0pufzsU9/irtu/yFXXHE+2VwL9VrI29/5ZnSllfe//0Z+/etH6GtrYtnq5eTUEqXBp9i+f5J8rQsnkUIoOWbOnEsU5sn0VPjF18qcpWT5YOv/IX3wAtRyO1qmgJyxBZEYIhIBuqETxxqa4SDiEE2pY2gNVm/XaaYa11n77A46WlIIUaNelWzYNsXSU09F0XUcN0E5v4OkZSB1j6Bq0NK5gqGxSZYsns/g8DAtqR6E8LnjZ0+wbccEC/q6iLUIVZGIqKH7vn84xjQ0XCcgCqroRhIjVAkIWbvuIK1tjUlZ1JiW7ExiGbBi1XJMK0mupQU3aSGkwtD2DTSlJLrqU5r26J5zOn4oGdy5m6BeIpft4t577mH7zhESlsasHpBGAsKAKFYoFzwSrovQBH4Y0NVqI0SNwYM1Jqd8mrMqm3aOUa06dKZ6efe3rueiN1zI3h17mdndwr/c9iP6Z7XRNfc0Zm4/C7FVQ138ciXZ0YHcqwK9E/g5LwdSr85yHt3G8RI7xwtOj0wGnQjOpigNvW0F9WVek8P4Tqm8ug/qUX6u8vKiqMqrAGyvoGg5xvUd/n40bvVk7chjjlVR2PjeWBrvrFfuJ6U84hIa/f+vjm09bL8NXP9T7cRlwv9e+6+aoT0e69qRfX05cF11zDZeLpV41WPgiI+/+bUfGbgeaUfTvL+ewPVIRuLjtXmido5lUjYYTpvb5jOnt48Xn3gMTzVIJBJohkGsaKiHZtFUVUXTDUZLHrn+1cQ9p+L0LiacGoTBF9BDj8CvYSXS9M7sZc7s2ax//kUee+xxLNPgqV+vYd6CBei6hmk2mFL9ehVVSbBj+y4sx8B1bepeld6Zs5DSx/dr1Go+GzdsobW9m2q1iq3ryDjCD+pEcdRgZw19Em4WTTW5/74HWLRwHg8//AjJdBPdvX0YRiPYNy3jkA6lxj1330f/okVUK1Wy2SyVSoVMpolfPvwoQki6unvYv3c/TsImCHxcxyY/lWfW7LkQ10iJAxhGK3pzG7HqkEyaFCfzFKanmN3Xh1erEktBe0cHe/fuJ5VKkUpnEFKiqCqZTIZUOnEIZ6gQxTFhFACgaQr5qUlkHJDKJOmdPQvdsEilkqhKTK1SbPA8aArNre28uHUHqUSCtrZWLMNm+46NtLZ1MDmRxzIsktkMjmM18K5E/PD2f6V/cT+55haKxTKmaTYCHIVDGbWQu372AP39/QSBh+W4aKrG3j17MJ0kW7ftpKOrE9M0QbWYnD5AU1MTrW3Nh/yNhiSSVwsxdBNFlQgRoKkW+iGin3K5zE9/+nPQVLpn9GApJs8++ywLFi4klUthGDrxxA66mx3sOW/gfTe+DSFjNm1Zy8yNB1BDnYML+2lOJXBSSaQE7VBZbbXsc+u3v8U555xFc0sz3/vOP/HJP7iJm2/+EldecTUqQ2SaMhRrK5iabqI4PcnOHZtZsexUnn1mI/PnlrjjjkeZO3chheIk/QsXUK+HrH36OX73E9/i2399O5e/6XwW9c8mEjrPr1uHjEMs26FcrWFaDrqpgxT4fkAcx5imiaZoSHUWmtyCIkuAjmlY6IZLFEZMFwqoakOeRlMUdF3H8zwsyyYIQ6645ut86Ka/a0idnH8KcRQCEY6bJowaGXNd00FrMAKrekN2SkSHyNB0A0VRkbEkimIM00JRG/8rCVSrVaRUXio5VhVQVYkkolwqISTopolUZOOzYSJkTKXkseaxx+jsacfQdaIoZt265+md1UcmkyEWAt1sOMxTE3l+/KMfsuyURQipIEWDFK1SqWA7DlJG+H4V0EilXKQoUAk30toZ4MWXUQmvwvNMVE1D0zSSyQR+rUEUk82mqdYKOIk0cSywjf2oioebnM/kZJ5du3YxMTnCov5TURS4+OJzsYwUtrkRKRQ2bnQ488yzeNe73klvbzezZs1AShCxxnvf83v85Tf+L8tWLGJwaB8rV56KknJpntXLxRdfiGFG/OFnP88tt9xKW3sH5597Hh94//vw63UU4OCBA6RSaW699Ruce+55pFJpPvDh93LW+efSN68XN2Hg1Xzmzp1DR2czn/jozbzx8uXYiSSGnsUyDTRd5fzzzyeVbMhiNWXSKKhUa4UGptawUaSF7TbkcGzLJZHIouug6QpCgGUlkISk0jZSSuqBxNI1WrJZFs1fQoud4+YP3My7Tr+eVeZqLtfPpXNzM9940zc5s3wub0u8hYvii1gyMp/39lzDpxd+glXFlUQ/j3nir57mUzd8jJZCK0vNGbBf5fLFl7PE7WexOY/WWhcLrfmc1ryUxISFc9Bh633bOe2M08joOaqDRd46+0rObjmTS7IXcHn5Mi4LL+WTyz/JG7rPYsniBZiG5IMffA9vvvxitu/ahm0nyTRpKHqVKFCZ2dfN7/+vD1MtHUCx6ij+AHf9/G6WLPsgG7Yf4OwLL8R2HbasX0PXuhVYPz6NmV4fijAIWgYQPS8icwcQVoE4qlKq+tiOjaaZxCGUK3VsV6XuRezckyedVRBxROj72E4zuaYGCZoX6sxbei7ThTxD+/c0SKymhsimkgRxBVNLUIsS9C9djCQmYep4tQqjY+MEoQBVMDk2gmrlKOYFuZyGUGzQM7Q1p4iCCWQc4Ac+qh4SxRbbt44ze04bpi5BMdh7IKQmLcrTFdpa0xQLZZTIRNM1wuoollEmjgIQKs++sJuurhm0dXSj2zojI5OctvI0ujpytOYCTLWCaXdjaBG+H9LS0oaCj2bl2LZjgrYWA1tLgCLJpB1s3WXLtoPUsFhkL+MxHuWSN17MvDnzuPeee6l7BbIp2DM0zQWZdyBroJ3+Ms71RIFr4x2pHTcQ0xqEFa+yI32lIzOqx9rnePjRw+Wxx8PdHrXmuNtfdf7XcNletVk5/rZ/rz94rGOOdQ+ORRZ1rOzs0ff6f2Lg+t/jiv4L2tH4xX+Pncws1vHO+5ue7/D3I2vlj3xwHH2+Y5U+vHL26j/3Gl4reD7c7uGs6pHXezTO9OjtJ9PXo2fTjlyORQ9/vIyvcsgxVhSFQC3TMreb4dEXePGpR/ELY2hRiM4r+2kYBq0dPdRqtYb0TKoVufwy1Ld8CTnvfIy4RmJqM1pxP9VKnnq9SqVSor9/Pte9/Tp0TX8Jq6qg4Ad1yuUi7e3tRFHI8MEDWFYjaxkFPrqmoBAzb95sNE3hofvvR1NUItEox0y4aUzTIZttIhy4l9run3LtdVcSCYUrrrqc+QvnoigKlWqZarWCgobvh2iayrXXXYuigOM4FItFXNfloQcf5IILz6SjM4fAY+asjgYDoNL4XbluAsPWGRkZajAfipjh8SlsS6VYKJJMpejs6mFqaho/CMg2N4EC9cCnubWNmlcnDCPK5QqablCpVhg6OIxlNwiZfN/nxRe3MDWVJ9ucpbO9FRH6aLrK3n372bVrD+PjE+iqxp59+/A8D5AsWrwIRQFdE4yPDbN1y1ZEHDM0OEghP00mnaZYbJSB7t6zk7e//Tps20TXNcYnxiiXy1iW3tDFVRrautdedw2JtEsyZRP6GkIK+mbOI5FMsWDhHIYPDrBn5w4ODAygaQaW4xBHKuVyjampKcbH8pRKReI4Jgplg6UZEykbpe6OY/PmN1/K0qVLkbGKVBRsy268hWVILASq24KoF5CqQuhr1Csuy5deRM3owre6ySSb8TyfMAwZGhrCMAyiKGJh/1ze/e530dHRRRxJDg4foFSe4Mtf+TzjY5Ps2bMHpMRxHC6//HKWLplPEPt89vOf59777gYkl116JYausHr1asIwZOGC+XR2tr80hrJNTYyPTSCjkAULFxLU6yBjkgkXU1eJAh9N0wjDENM0UVUVPygQxXUK/nnEShtKtJU4ygM1pJRks9mXxnAUh42S/ggkAsu0Oeyi6JqOV/Pw/SqVcoFypUa5WERDEAtBHHnUvRr79+wn8D2mpwfx/RL1ehnTlDiuiZtw0HUdv97AcodBRCadwnZdwpeCVtEIjiVkmnKYdgNja5rWIVbigEKhhIJKMplGUxtyRLZlsXLlCqKwhqIEDZ1moRJ5Hju37eb3PvQR6n6dsbFJhoYOEIYhre0d+EHQ0JVVTbZt3YrOdiz1BbItl1EIv8S6FxIkk0lyuRyGbpHPF5icmOKrX/0q42OT1L2AOFIIhYqmN+5XfipPFIVcfPFFXH75JTTY1VVMU0VRBcohlnFNU3ng/rsIoxoXXHges2fPplAos+bxX+MHEbm2DFoi4q1vfxvved/7ueDiN/Ivt99OtVZDqgpnnn0OUlP5/Be/QMbPcuMVN9Le0krkBzzx2OO0NbcwNTXB5//4c/i+x8TkKFHsYdsmX/6TP+V3bvgoK888n0XLT2HuwsVs2rWBLTsGAZNQhIyPjxKGdfx6yA9u+zGqBBnH2IbJz+9+kHe/90bmLlxMrqON7p5+zjrnIj7xB59k3759DWxyHDMxMYF2KOAfGR7j8TVPcNVVV3D1NdeyaOUZzF26hJ7Zs9m8Zyc/vPMOhgeHmTlrHu945/VEUYRmWLS0tbD2madpbm3h+XXb+OD7PsL8rn5uvP793HjxDcwq9GJvS1B+rMxnL/4k86oz8NaWiJ6OqT1V4y2zruCc1BnMr87nK2+5mW/f8G2uqF/JtfE7uF5ey3W5t9K0L8vqppUsmrmchNFEFNdpbW9l1/bdpFyL6dG9TBdGcd0kM/u6SafTgMByYMnSOQxs30Rfm0N3s403MYZhJ2juOoWP/MHHqVY0gr0mq9d/kLFnPCZzd+DPuhc6nkN3B5BSoKoxg0NTRMAzawdRSOJ5VeLYo+5FVMsKxYLO3t1TaJqFFCqmFdLRCZommJyMGRiKmcrn6ezqYtGSpYRxzOy5s5BSxTAd4liiaRD5ZaYmJxnYO46TSNDaOgvHcmh1TM5e2c+MLujtqTbKX40UTZk0k+P7MRSBYbrouk4YuZi24Iqr5+I6KcIopF4P0XSTufPmseqMM/ld92PclP0ElqkR+T5hUCXpmMTCQ9NjVq06hSAoY9oGhUKe1pZmZBRx/0Nr2L7nIBjN/NOPn6IeRDi2SYwglhpCwrnnnYeUKjHTGFqAY0Eoplgwr4UxbzeapnLzqV9m3bp1FIrjXHX1lahOE57vM7hnR6Py6hj+yol8oiNxrPDKsthj+XVH+16Hz3e8/Q5P1h9tqqoeUwv1cFvHwpIe2a+jK+1ei6fm6P1O5t4cD097ouOO9POOPOboLOrhz0ef71j342T/l/+d7bcZ19dtJwZOvx77TX5U/xHnO3KG5jAB0WvhCA7bkYNSa+1D7eo/ro7rEWc86uvry7i+nqz0iWbvDm9/reMPnfWY+x8dyAohXhOH+6pzxhBZLZyyZDmtRoypKvzt975LZ2cHiUzTS2RQYRgigW1btlAr5ulozVLxPfx6RJzoQnbPwu6cgxjbi1s5QM+pZ7Hq1KXoho6qNIhddKPhzMeRIJlMMD6xnxk93cRCkEw4RFFAre4TBSH5/BS5XBOGjiTlMQAAIABJREFUYZJwbeb19aGZOm5TBlOzuPWW77Js2Qp830eMP48qQ5SmRUjDxHIsDE1SLkxhOQ6mYaMeIpaayo/iui66rqJpCobRwBku7O+nWg7Zs2eAtrZODM1G0QSGbiDimDgWoCr0piNCr4ymuNx+36OUSwfoaO5iulylVK7gRxEdHd3U6iV03aK9rZPx8XFaO9oxTBPbcRBCNOR9YoGumcRxiGOnUBWDbLYJM+FSKRSJ6iGG4TJ6cJSB/YNkc620tnfS3NGJqko0JCKOqPseiYSBrqlk0i1YtsvoyDAtzWkStsPoSJ5Nm7eydPlyROCRnxrD0DW6Otrx6nWSSRtVN6iVPaq1EolUAkUPiUOfJ9a8wPjEAfbtHiKbTZFOOVSK08yc0Y1XqjA6UqSrt5N7f/4r1q17nnK5xNy5c0mlbXTdoFqpMzoyTjqdZd/evWSzGaSUpFyV4nQR20oSiAg3mSTpWOiqQKoaol5E1ovIuVdQr4/x1rdcz7tvuBbr6U3USmXsiy8knc3gR3UymSaEaGQSJ8anEDJiz549mKZNOp2ipc0iiuuEYUx3p8A0DapVuOn3b6Tu+Xz9r27hngceYFZfL9e9bRFe3cYwVDwvZtfOHaRSLus3rOfeB58F4G1XXcCsvm40GWC6Dql0Br9awDIMqpUyioxA03DdBPqhIA+hYJkpNM1G0XpA60UTz6MQYJgucaxjOw41z0Mhxq+HuG4Sw2iUB//gh48wdGCK889dwkXnLkbXFVRdgGpT9yokHJNQxATeNAk7RWtzK/nJMWwnSSrRkHiKI0G5Onpogk9H10xQJL4fgiKpeY2JEkNXqVVKmLoDiopEZ//+g7imQVCvY+gG46Pj6KqC7aRobmvDMm1GR0aIRYCuS6bGRkBGPPXkr3nmqWfp7mihta2HfYNDZHJZoiA+hH/WkUoDovDoI2vYsW0LF55vEskuNu1ZTaKeQasXCS0H17Xw/QpPPPEsixctJgwDrrzyUixL51Of+ixvueo6VFNtaAdrI6go/OCff8HZZ52D7Zh0dLYgZIxX90inmgiiECV6Bl3TeMs1N6MaIf/Y/CMeqT1OZnMbf/CpT/O9v/9rNmzcQKEwjWVZ1DyPwcEh7rv/QTY9uobFp53FX3/vH7jokgsQsSDzwAzObrmQyZ5BatUqq1evJpvLEYQBEp9kKkkUCqJ6xPXveR8/u+cu9g8MEAQBCdelWCoxXczzo9t/Ss2LeONlK7E0F1UT1Koxne19HBjcTRgFnHrGOdx+x53s2z9AzfOwbZu6HzAxMcG69c9z2z/cxoyebpYu7UfXTXw/5k++8jUUReXad76Let1jZHSUUqmE6ziEYUg+n+fFzS9y510/4Wc/vx9F0+lftohULk29XqCtvYeOjhk8tWYz73vvh/jlIw9z+unLabU0Zs6ZwcRUyKIVK/jWN/6M666/hra2TnTpctGl52I7KkiT/gWncustf8nap9Zzxhlnk2mxcE0TITS+891/4I5//GeeeORZVp+2nJasweNrnuGUxcsJamWq5Un6T+mnZ8YsRsdGqZYU0pkGy3y6yUCtPYtf2UAsxgmmtmMlOxB2J8MTL7Lt3jwrtryBtbseI+7eRc+MFqRVQzEd1m8cYEZbDiF9dK2T5s5mWjsNNKOGZRoo0sVJ+4hYB0yWLmtDyAk00QmahqZaCKEzXfJ5at1OLnjDxYRAzQ9p6+xh2+Zf0NHSglACiHSqoYGbcqmHMW0d7Rwc3850fox0osaMPoFh67y4ZYSU2Ydh+5SqCpadJmn6iLDG7t0DZJuy6G6EKpsOMRuXiEIFBYv8dERvXyea4/CQ80s0TeWCwmpe3PQiM9ptNFEmEi7lkmBsWiedm8Hu3Vvo7WknYSWoVYp05CTtaUkuUWVh/0xUFVzbQig6ppagEniUajVSjoVfhmRSEoZlFNGKptls2DFCb6aPWj1kffQIS5bMBhkTS53poc1MTpW5ZvnHUVT1FczCvMoveuX3o7OqJ+OPvZ7kzOv1aw/7rq9IELwepY/XOt0h/zGO4wbnwBF40sOHHhm8nywU7ej+H6+vR2dRT8Zefb//ewSvv824/meYEiGkf9wM5ImCpMP2m2RLX+rG65hFeT0zREdmAo91zPFmswDUdBtquu2YGdHjBY1Hrz8Z5rNjMccdr/2j/09Hfj6hTq4qUVRJQ2NWgFRBqkhxSIf2qPshhCAIGmWJh/+ezPUCKJqKEZeJrQTtp6zC7u5j5YUX0d07g+9//cs89+DP2PrEw+xf/yRb1j3Jgr5ulvYv4sDQKFKYpBIu5alxQulQsmfhrfw98vOuRB/fw/T256hOT5OfHEEBxkYmGD4wiqoohLGgp2d+g3zGTZEvVgkxcW2H8akaqVQz9VqAeohF1krbOAkHRajU/TofuPEGRFyjKW2jag1NsUiGaOgoAup+QDKTQ1d0gnqAqoFuaWSzLSiqQiwEQqpIAXEkqNerWJZBHHmUy3mCOEAKnb37BkE10Ey7UfKoKHh+AwP4kY98jDlzOsjkOmjOpXAdnb7eLkTsY6sJ4lCQz4/TknU5OLi/QYYU1hEyRIgQ29aRUrJ18w4K5QK5tiy6brNp/UbSmRyG7RJFIQuXLOANb7oIzdSYLhYZPTBAvRISBIJQREg0imXBvfc+yrPr1pFwkiA1+uYsoFjM09Se4ezzz8QrF0jnmumaMRup6EhVI9WUZejgBIoA21CpVRuZXOlr5KdKnHv+Kuq1mNmzekin0jz7zEbaOnop10KsdIbFyxeCgCuuvIjW1iypZBrTVFn33AtoGmhGxMy+HjQjpLmlGSnVhuxO1afq1dm4cSP33/MgCddAM0xCoaEoJlJrZPgs18FwWrj34Z+gajqarpHKZVFchZLnYaitqCTIT09RrZXo6GrHTaRYtmw1V131ThbPX8KerSP84ce+RLVQZ/269SiKRtp+iF1b/xSpZZCyMRZnzJqNlALbTlIul0hnHDZs3M49997HVVdc+dKY2fziZu6+635U08XUTTRVZ3BsCsV0SWVbcFIZVMVCSEkYhWi6gWE7VL0KqirxA59YZvG4nDiWEG/BNMt4Xh3bbJTTW46FpqtIaRx6bjT6GPhV0FRU3UCIRvl1e+tMYqFi6BaZbDeThQL1KKC1s4dkJosfVgnjOlLXiCIH3XBQFA2peOiqimUoGKqCGjfka6JY4rppVMNqkJYFdVRiLMfCTtioOjS3NLF71xC6VieVlIRBgRk9XTy99nmeXruJn9/9ELFMMXfBci69/DKEpmHZMLhvJwnTpK29Gc1oBNMIHykEq1b1cu21LUTqxXjiffR0n4bYs5Zw+2PMnL0IoZi4bpI3XnIhmi6J45BYURGRzze//iU0U/Dwvz3M0489jaZpmI7J6GCeg4MHKZZKJDJNOI6DqafQDQ3hhdimC4oKegpNSSNEhKJELF46l2pYZXp6mvnz5vHEI0+waf1aDu7fyV/87z/DUDUe2fQC//zD2/j8Fz+LpjTmQA8eGOaxx9fgpkwSKZf9Bw6yb+AA1UKNRLoVRVFImAo3ferTPP7k46iqyu+8413s2LiBoYHd7Nu3j49++HeRUnLLrX/J9//mX/mLr/8f4kgnk8mQSFr86Mf38rFP/TEjY2MAfPbTH+fAvt0MDw5xYP9evvn1r7FwwXz8IODjn/oswyOTSEXFdg3+7Gs3YxuNCc4rL72MH/3gb7n5sx/ngZ/ex+MPP86jDz/M4kWLAdi9fwempaMJlVohzy3f+CamFpBwYt77/iuoh4O89W0X8fTatcxcNgfTSjO7r538+DhXv+1qxg5M8p1bv4PhSGxdw9FdvGKdP//qnzM1kWf3jmfJZBVsVaV7Ri9uIsXw4AB/+Jkv86d/8RkWLp3JQw//mmeeeIYPvP+DOJkU49USXqWOkCqJTI5sa5VaNST09yMmtxHWhtGVgOLgDgI1QbplBXNmdrFt/ShvqF3NwfmPUEkM0NEWoVkKilCwNI3hUQ9F1/HqDiPjuyhPDhOUBCYuYb0OsoQuNSyjQmsOdEPBVGcQhRMYSgxBTBAMY9o68+avxA9D1EgyPjTInh0v0tvaTRzXCOoNzelsrovidExxssrO7VuY1b0CQ3XYs91n28YClqHQ39eLkSgwPlogmesEw0XGEV5cZ/3GGvW4Dp5FGE0gFZcw1FBVnVjvZOvAJOlsB5Zmo6oQ+HXyk2Xm9Bi4RkxVVLGtgObOPlLZLK1tGfrnzSeO4eBonnIlYM2aSV7YNEylnkDEBRQZUa2VCfwqPgHJ1AyqFY3QL5NsUskXqlhWE1IpEuNz9qmLcVsserJdzOju5P57n2B4OM/qFXOxHGhPhNQqlVf4M4qiHJY8fXlRXrkc7eOdKHN5ZFB5rGDuRNnBk/GVD/txr9rvkO8miZHEr9j3VX2UgJAvLa++/ldia19RZag0FoFEcGz//3iZ6JP144+F6z183sPLiex/asb1t4Hrb+03ttdbmvAfUcLwn10GcTLtSymJouilJQzD16Q/P575gDRNVp17LsIw+MQffZ4ly1cwr38Rqmkxb84C9uzZz/Ztu0BqJCwNXTbjJgwcx0ZRJLZtsmGoQHjmjTw3HGHnd5K0bGIRkUwl6Oxqw3I0VEVF01Qq5SL1MKQ510wc+fh+nd7eTtyERRj5aJpKterhOA7Vapkw8hCiIZlTr0cUizWiMEYKiaaZTE9PE8UCw7AZH8vz4qYXUYDx4VF2bt2GojSYUqMoQMiARx99lOfWrW9IFWiSU5YtI5nI8pM776JU8NAViyiMMXSdoF4DJMlEEiEEE9MH6Z65CM2CfQNDtHd0oxkWEo39AwMUSyWCICaVaqJcLFDIT+CYGpVSmenpItP5IrZtsOqMM7Ftm4nxMTRN4ZRTTmHb1m14nodhGDz967XEQYDvlcmkLNrbOhjYtxe/HiLihkTD+NgY55x7FsuWn8Kvn1pzSEIhYnBomEwqDVIyNpFn5MAwu3bsRFU1fD+gUqnQ2ppjdPQgNc9nxoxZmKbD8Mg442NjDWzdGy7CbcohhGDb9m2YpkkYBkxNThKGAdDQ8Lz88ks548zT0TSF009fiaIq7Nq5FxGrKAg0FZAq//aTe0kk0nR19TBzVi/VchERhYR1n907dhHHPn4oELUpaqWQ0FfRdROvXiEc3YyY2MqXvvgnDc1LzSCKYqqVAMtIY1kQhR7JhElzNs2suZ0sX7mQW7/zdRYtnc2pp17Fv96xlm1bt9PR3sG7f+ftL03w58cmGR8vMzq6n0wuh5TwzuvfypuvupINz+96aZzkmlu49rpriSKBiCWqopFOZdA0jSgOEUJSruSRQlApV9BUFUUBx7Xx6h6WZSGkQNNSCONNxMp8lOhFXLuMqlaYni4hpUDIsCE9I+OX+miZNkKBWCo4iSZiEYEisR2LUrmAiBWaMi2oqn5IO8/A0E1UDTQd3HQKNJ1YgGYYjE6MYzpJ0FxUNSIK6wS+j6bo1L06d975b+i6SWdXB9++9Xt4NZ84EsSxYPmyfp5d+wSqItCtJKGAju4u1r2wkcsuvRqvXuPue+5i67YtZJvb8eOQc88/n+/+zd8SRwFTExOoioqIJaa6g0w6z2jxGu57SBIEIeWSx6ZNL6KbOrESotsmk4XCoTJ5SKfT+EGVKIoRsUqpVGDHru3M71+AFAJD0/nI79+AZavUyx62TOJVfCrlMrVKjcmRbQR+lTj0+eUD9/DRmz7cqKyQCt//wW1MTExg2zZf/uIX6F+2AK8mSCTSfPADN3DzeZcA8IMf/pDtW3cRCAPNsmlta+Gcs8+gEtj89K4HeeG59SQMhY7ZXQ0HW7PYNXiQu+65F4CP/O6HuflLX0Q3XWSk4WgGH3zvjbzlzW8F4M//9zf4yE0fJUbHFwFuk8nvfeiD/PLRXwJw/XVv4wuf/SPGx/JEUZ1EIsGHP/QhfnrnjwHwPI8HH36EZCKFqur8zV//Pc+u3crFZ7yRO370z1x4wQV87OOfZN6C2fQvmsOCBXP42Z23s3DBQgD+8pZvsW3bDuJI4wt//BVyuRySiInJYVqaW5marLB71wC2lcUyU3z4Q7/P+eddwBlnriKZdPnc5z5DOpPioQcew6tFPPvs81xzzXV89KZPctsP/wmvXgapc9aZ57F3724+/8WP8swzz5DJSTZv2cD9dz/L/PnzmTd/JoZhccqS0/F82LztKZIJhxd3TqJTQRm7j+1rvsX0gScpHNxCUAmYGgnp6FrI+HSVi5zr0G2NHeum6epow9YMJsYnCYOY0K9yxRsW4Qd5mjIZ5s3pB3momiHyUQ0V222i7sdEwqEeSOr1hjSam8wgFI1IKaMpbRzYFzIxNcCO7VvZt38v8+fOYcHsGWhqhJAKQaxycHyKhx76Fal0BhTB4mU9SCpYtk97h6R/4Tx8v4pl1zE0DSeVxU03YxmCiBhLM3jLVXOxVJ1Q1pGKywMPPE0sbPYe8LnnwSc544wzCX2fSqVRalyv+2iaTjrVeM8ZukMQChRVxzAdavWY7Tu34/k+rS1txFHABZd2s/y0blRNw9Bc4ijCMgwUCUKxqQcC07SolsvUah7NzS1EUQxSQcqI/QOD7B7dhaO7rFi+mt7eXrZt24Xrqpx99nLmz+1EVV72Y16P/abJl/+v7OgyXDh+QPxagfOJsL3/fyjN/a9mvw1cT9JOhJs8sgb99QzqE2ECXo8d3ZeTzZoeaa9FX36iQelv+RXB1kdfte+xstPHwwWf7DUf774f68FxspnwE53naDvyOg4HqkIIwjAkiiKCIDhmW8fq15GmKQaaYoBoiJ9XlBRW5zzUlj5mnXY+6dZ2TjvrHFp6ZjA0McnArl3oik8ml6ZYmiaKA0xLZ8mSRRRqFZZe/RE++bePweg26sVpTNPGsmz279+PqkjCwMfQDUzHpVQq4ZgGpmWTSicwTZN0Oo0QEts20PWGLIeuGY2yZSFIpZK4rsvg4BCxaLDbpdMJpIyJDwXxi05Zgp1wSaVTzJkzB11vPG4MwyQMYs46+yz6Fy5CSo2p6SkMu/EijoIahg7Dw4MNzK2qYlsuURBQKE4hpWB6egJNbUPEEe2tbVQqZTasfx7HthkbHcV1EhiGzYGhUTq7Z5BtzlKpebjJDJlMhtaWBm7Sj0J8r04mmaRUKSClpG9WH0899RRCCM44YzUvvLCJcqmGVwsZHh6kOZdicmKMbZu38cD9D9DW1sbkxDhNmRx79w7wq189ysjICLPnLGZseILhoTH27Rv5f+y9d5hdZbn3/1l99zp7WqZlUie9Q0JIDKE3ERCkiaIoKKAesOGxl4MKLyIgHYHQu7SDgUDoLYWEtEmdyfS29+y+V//9sZMhxgTQ8/Oc8/r6va65MjtrPWWt/TzP3OV73zfbtmxld3sHsqyAKNLX04NtmtRUV9LX30/77jaGkknq6usZP74FSXTIZweJhX3ous68efPIZrNEo1EmTByPz+/Ftst1gJ95+lly2QIuAvfcfS+FvM6OHTvKCZpMgWK+gGUYzJ09FwQVy3WJxqOceNIJKIpMNpdlYstkcCBne7Byg6xf8zaOWy6rBOUYI0kU+dnPf0SiMopuZHAxaGqqw+PxkBzsI+jXsM0iE8ePwRFVYolafMEY6ZzJoqVf4513kzQ01PHs8u288tYbvP7mWwDcdf9d1Iz9GuOmn0sgvohAxQLWr9/Gm2+8TXdP+8g+6e8f4K57lnHF93/L7MPPJjH6CBYsvYhTP3cF77z3AZIkEw6GUWWVcCiI6xTI5dJsad3F7254gGNPuoTJM88gUr2YilFLmbP4Wq78VSeDvW8hixaVCS+iuKfGsOAiSQKO6+zZxyALIqosIWAjShbbduzg5juf4yuX3cnUQy+nZtyXiTWcz8RZl3Lh169n89YuPJoXXKmcEMy1kQUXs5Dnez96GCV8Gl+66DqMosGdd6/g+FN/TUXzBdRN+DJ33LuJP7+wmo6O3ZxxxqlIksTNd6zgyJN+yajJX+OULzzIyWf+nvvue5ZiIcuE8c1ccvFFJBIVxONRHLGWpafewLjpF/PAvQ+hF0ymTZrFcDLFpo1bKOY209+9HLXyF3hrrqNnMMDSoxbhD6hEoj6mT5/K5rYuLv/Wt5g3Zy5Tps6kaewYJk6ZwtHHncBvf3sta9du5pSTz2V4OMcXLryAquo4ruvgOg6a14NeKhDwerj0qxdy/91/4svnX0x60KBQTGPbJqomMXV6E1f9+hfl0AFJ5oGHyorfvFmz+cyJJ2MXMjQ1NdCxuwvLcrl41mEEVBXbtjnzrNOwjByK7ODzeekf6COgKvR072bRksMIRIL4PRoeVwTL4ZHH/jSylgqZDKoq89Of/pxiWufEo4+lvrmB+XMXANDb18/KF17iml9ew8o//xlNMPH43BFWTcDvo1iw0NQAiiqOsG9GjaolGo0AkM/lyWbz2LbLRRddxPSp07npD78nr5cQFQ+Kx48WUMnmhlFUgYqKKGefeSYA7bs7QDDI5Pp55NEHKJVK+LwBAv4oN990FzfecCuz50xD0zRc1+WSSy8GUcfv9zEw2EcoFCCbTROJRLBtgyOWLkRWbGJVYToHB/F6oyw9aiF33XUXnZ3dFEs5Dl0wncGBNLNmzmX6zLHMnDmdiy6+kGKxiCz58fhDTBo/C7OUZnx9E9ZQK8nOV/AFoaCPYXuHnx39MZoPOZeO7j6CuVpiG8ZhVGepTjSRTG7FMj1Egh40VUZVNWTZwefTMMxB8sVuJMklFAOPx4coeLEtF0WTefudNgpFAbME6UySop5EkDTefn0AQRKpqJUIBf2Mbqyjrq6O9etW07lzC6JYxDQtBCmAP1TLtBkt7O7cQdOYOgSnil3b82xa1046mSIcK6LJIVxHwqMFqKisZjiVxkj3lLO7WzKKXERwVXw+FVWOMeeQ0ciyy3AqzeJFC6hvqEWSBD5YvwHXdQmHI8TjcfRiFgQRQ7cw3TBDwzqJqkpwDUaPmUA8Xg3YSILB2ysHWPVWF6WigWnnEHDIZdKAjaaAIouIgoCsKgiCg2GWQHAQRAdVEUmls3h8PlzH5lvf+gYzZraQSg1w/BnfYXuPTntPD3qx8PGC0H5yz0f930d5Tz9pTOlefBwD70Ay+IHmuK/Cua8Mv+/c9r12sGfZP8/JvjjYPPalDn9cm/1xoOt753ig2NaDyc//txgZ/lb8S3H9OAgWjrtXGTmw2//j8Le0+XusNv/TFh+7ayNO96a/2mT7b9i/oOAKzp605VKZjvsJn+WTUIX/VvxFHwehBo+Mu+c6rohjg2s72KaFY5Vj40zDLrdz/3Jr7R+Av/8z7r9GRNfEowgoooOEhah6cCWFSHUNhyz+FM1TZvDCiifY+f57xCqiiHjR9QJNjROIBwPUNib4+m9v4rvLVkH3B6iuQalosmH9bvKZHIqikM7lSA0OoMoSsqgiK14GujtwHJBUHwI2Xp+X/r5hwqE4Ig6ObaOoYDsWrivQUF+DIIhoXg8COh5ZQXJFRo2qRRJ0BNfGccDr92PpJRy3nDDo/VUfIEle7vjjbeCKJCoTKIpAOOrl5JNPZDCVY87sOZiGTr5kAApCaZBIUC1TK0UPsmiTSqUomeX4k1HV1dx73yPMmXcow0NF3nztPaIVfqIVNTiuF78vgiIKJFODpLNpQCKdyhCLVaGqQXLDBZI9fTgOzJgzk2xmkL6eXcxcMJeKsEyhqFMo6DQ0NxMMe5kzbwqzpk9DRkB0RR57/DFOO/1kTjn5GOKRILFEkKbmOmIxH7XVASZMGsMRSz7Fjq2t6LkMY5vHkEsXkCQfsUSY+toqYl6FTLIXV3BJDg0S9PmwLYNwOELL9BYC0SiC5GF4qItCOo0iaLiGQyaZZvU776Hnspx8ygloHoVTTzuFVavfJpPLoXk1csUMoxpq6OnpoVDIIYoioXAlHp+fYCTAQLKXQilPvGYUsqIyd3YLAVWDkpehnh7MWjBGCehmkr6eLThCEt3I0bqlHdO0Sad8aJ4Yjmjx+5t+y0B3G70dPTz1+Eo2re/jq185nx/+6Mo9GW9NwsHwCIXL5/MT8HuoqoySqIhQmYiheTQ6u3s58phFI/siOZzl6hseY9lDy+no6kMURFKpDP+5/E2OPekynntuJZJjYdoWjmNSSPWjKR4+ffrl/PQXt/HyK6toa+/Go2nk8kXWrd/GVdc8xcwlT9O6+V1cV0dTHUp5HUlREJCRxHJcl4OA47jYhsFQdxseJcRV1z7PJZffx1PPrmXrtm5wwbIcdrb1c/d9L3Pokit58KHXkRwH27BwXTCsEooniOOU97tpmZx5we+59NvLWP3+LlzXJZvTWfn6Rj77+f/D5q1D+ENhzvj877jiB3ezqbUTx3bIZIv8ecVavnXlw7Ru70FTZRxbJ5UeRBQYoTjLssQXLvgSK15cyZJFhxAJ+VmyOEQ+34dufX7k3aqSjOQR0R0DUVNYuW4HSy6/mbvvvocdO3ZgmmU6c3d3D2vWvs/vrruOW26/jauuuYpYLEbeKCBoGl/++g0okeOobpxALBZhV/sgZ33pbC746lkse+J+apsqqJ+yAMN7Jrr0GeoaRhMPB7FMneT2Qbq7ewA49wvnkSsW8CkJtm3fgiA6lEpFNEFkYV0zAHWN9VR4Xfo7diIK0NA4Gl9Q4oc/vpKCoeOIIpZVoGDqgEt7+y4A/D4/N950A4FAhJ/+/Aoi0SBHLD2c9e9s4qzTz0SWZQAefux+zjv3LKZOnkypmMPQHXw+HwBD6SLX33o7sYoI2aEikmhjOxl27thCKjUMwLTJEwgE5PLfCivP7PkTUCImHq+CP1A2SOm6STQWp1QqkR7uRdeHRr6TUVWVYBlMnTodn8/H0NAQkdrRLDziU5xz/hnMPPRQbrv5Lu68/T6OO+kwUC1eefkdfLJDf98u4qNqmbNgFqovQk7PM5DpIJkapLm2lv6ebla4kongAAAgAElEQVS+tonHnn6GidMnMmbiJOqbaqipreOtd99g1ryJjJ02npq6eryayr1334FlFxFtg7Ytb2EPPk+q7SY0cyofDMzH9H2GsQv/jfGHnoysBtnxQSfiQwmERh1PtECmfz0zZ/rwBbxIYhFBECgZIpLHM1KqKeAPIIkaZr6cMdi0iuh2Dtc2WXxYHbLscO+jPRhSFM0boZB2mTG7iTff24Urj+fwpUfj8XhQFYeWmTOJxCtwHB/9KYsP1nXSP1QknogxfuIYhgeHGBraRaHYypjRCWZMj+M64NoqhmFTKA1iCCLRaBWCXKKQ9yBrAq7rAcnk/XU9FPIpgl72nGGNtG7qJhiQMU2L6lG1CKKI65jo6Y0okhePX8UjaYj+OqrrJ1Eq2pRyefzeOK1btmHaGXzhKMOZVubNr8ejKcjIIAsoarBsiMzlSPZuo7oqzpq1OxBkG8cQ8Knlsndej49RdZV0d/eSS+a49/7fsaNtF889+yIL583jvie3kilF2ZhZidByYJaY6/5l0sl9rx+s3ODBsK/y90nxcd7Nvb9/EogSIDjsOcb/Uib9BOFjB8P+tOK92FfB3F/p/XBSAojCh3Tf/T8faLy9fe0dby/FeT+Uhxf3+fnnwz/nU/0L/2040CFwMA/n/ofh/83Y/wAVBAFJknAcB9u2P9Eh/Um85PvfuxeSJ8ARx59EqHIUa99+g5pEBcPDw+RKOkG/H8FxmdLSwhVX34U6ZhHOcCeKKlJdEyUQDFEslAgG/UQq4giSRKFYQBZtLNslncljOwKq6iWXy+3xuJrYjoXX46FYLCKKQjmGUJLp7uoinzNRVIlMZoh0ZpCu7jZMwyaXyyKINiU9i14qC+62bZDJpgCHr37lq9x9z10UCwbuHoOBIMhUxMOomoTXp+G6No5rIokusieIK4g0jarEsC1My0VTFTyaB8eF00//DLqRpbE5yrxDJ5SpjFYBU8+QGuqivW0rAV+AkN9Hf183iUQAUdTRjQxVNTFat7by7LPPEI1ECYfCJCqrkBAwLZdIJEjLxImkkimqq6vp6e7BxqBnoJMJk8fwxQu+iObxoHq8aF4v+XyewYEBIuEI06ZNo1go0NraimGaaJqGZdtIkoTtOESiNezuGGQ4Y+IKPkRVIxqvQFJUWrftYOfOHQiCi+taCIKL6g2gef0gijz59NNMnzULRwBfMEQ0GsdxoFQyGD9+IqFQiHg8TiwWQxCgrr6WqqpKLMvivvvvxTBNXNclHovj9/lGBBPbtlnz/lqKeoFR9XXkx9kUJpiUihaJ6tGoihevx8eYMWMB2LJlE319vXuEcYOJM+YQiVcQCqj85lc/ZOyYOiTBYMuWVj593GS+8aXLmH/IfACOWnwU1/7ycto23c6OD55k3TsP8vprL3H8cceXPdR78MBjLxONRrj4guNo2/wc7a3PsfzZWxg7ph7Tsrns278jnStR1A1y2dyeuoIwd/Zkrr7qG2xc+wjJnpfo2vmfDPeu5PmnbmTOrBa6ulOc89WXwd6JgEAgUK4Hu++esywLQQAHkVh1HUU9z+jRlXz7W59mxbM/JNVxN0O772ag7VbWvPFrzvjMIeiGxVe/dSvdvUkEUcKxHRwXTNMiny/HmD3/wjreXt3B1790OPffch6dm2/m1ed/zNTJDdi2w7f//V5+8ssHWLNuJzf85nxefPI7vPTUd1n57E8Z3VRJsWTy3R/ejygoDA0NYxg2iqzi9ZYVLFkuU/SnTJlCNruFQGAt2XwdlnAJr76268Pnc8p5DmS5HP/97VuewrBslixezK3X30RXaycbV6/nlz/8Affcehvf+eZ3mDB+AtOmTUNAwq8KKJg4hEb6LJVKxONx5s6dy/DwMKoiYhglNFcFM0FPrwuSiuu6yJJMemdmpO340WNRPRquCmPGjCESiRAKhdBUlUmJ6vKaa91Gb/8gicoqXEDXddLpNKIoUlNTUxYiXQWfN4CilEv9AFi2hS8SIV6TwLIsurq6uPTSS7nmmqv5j6t+MeJVXbd+C7FIA62bOwgFqqmsrMSnaAA8/sRj/PyXP8Gw8gynB+jt7eWNN1Zx9PGnAWXlOBIKoZfMPWElJWKxGH5fFGBPVnGNgYEBXFcgHIpTVVnH2nVbAKiqTBCJ+Bk7tolJkyZiWRbxeAWulWTurBaa62v43hWXc8KJR1GRiDE8PIzrCNTUVpPO5nGQcWyXdDKFbehEQ2GaG5upqqrA4/FwwhlnUFkXorGhkqpohNdWvIKqyqSHc1x7zU3Mnb2I3o6tyJLNzq7dfPa8c7FclVQxh53didG9DssKsboDZsxcRMHeRqJGw+epYPU77SzUT0FrMjEqU5gOjG7xs3tbGJcMLjKKqqAoAsVCDtd10Us6iqoiiAKqV8Lr9SGKPnD9CEK5nJes2Mye6kcmg22VQMohSSqJynq6e7vw+8v1nB1bZqBvEK8XDMukvW0Ax5UQFYndHT0UckVUzU9yQGRM8zw2bexmcNBBFFRMpw9vwCnXSZYCuLaFqRcJhjyUSiVcyh7ESRMbUCQTwbURBZeeoQ8YPb4C07RRlQj19TUICJimgaZIuNgU8jkcFEzLorO7k1RqEK/PQ7bYQXPzaDZ+sIPeniHCwSo2bOjCkQvorg/blHBdA1xQPDKj6ptIDSeZMXMSlu7iChZDmWFktYaS6ZDO5Bgs9hJR4wwOZJnUMpl7lt2JqkBFVKWY7SPdvA5xcemA8sZHKZp7WWb/2/BJ42IPJIP+PV7hf+F/Dv8cWsQ/EAdbzJ/E2nQwKsV/F/bfyP+I8Q8UF/Bf8Zru+/uB3v2BFL2PowTvryAe6Pr+9x6sj32xl4ayr9Vub3bmv+V7P9i1ffve/7ltZAQ1QEXDBCRHZLC3F72YxecRKeTyFPIZLDNPXV0cZdKR5FODKD4/06a3YBgGmqahql6KxRKZXAGv34deyrLhg00sX74CzeOjUNT33OdBFCVcByS5XG+2WCzg8agMW2HEyDg8ngA9XRmKRYdMusiKF9/AtsHnDzCUSiIrEn7/XoHWZcmSxQz09YDj8KlFC2ndso1MOo8gSNxx+52IOCTTQ2heD45p4TgW2CVAwBElhFQ/riRSWVVDsZBDFCUCkTDDqUHCoTgDA/2MHj0aTYlgm9Dd2Vem9cleXKdcjsfnVSnmimUlPhTFcSWCkSBHH7mU1NAQJdNCkjTMbIbGsRMZ6OumY3fbnvqBFtFwjPETpjGqdjSWXTZcWJaN5vcjqh4GBwcJRyKUSiUMw6BxdBPhSJhisUgmm2U4PcxQKsXg0BCWU6SxuRZvyEMgFkQUJXp6+3EFkeYxY4nFYlglnbfeeBNRlPCFYgiKgo3DcSedxITJLSz81CIcQaG3pw9Jknn3nfcIBcOsXbuWTDaDJIpYloVt6limjizKnHnmGXtipAUEQcS2XVyjAI6JpIaZMm0mRaNAKjOES7kUSDiQwLQ9dHcNoCqBkVIFW1o3kqiM49jw8kuvkS0UECRo37mdnt07WXCoQl/vs0TCMUBg5SsrsMxy5uzKygpmz16Kqpo89NCjJJPDnP/58xhKDiAIH2aytC2LP970I445cjEPPvAwO3a0sfrt1zjrlMMA2N3Ry9oN7ciyhs/nw7TL2atvv+kHXPK1s2hqqsXv86FpGj6fl08tnsOfn7mRqsoYa9Z18Po7A7jmRkQhhSplgL/0NEjynoBVyYOqKvzgO6fyqx+dw6L5kzGt4p4axxqTWxpZdsdlHH/0LPIFnT/etxLHdhBFCU3VkESJUDAIQDpT4NqrvsCXzz+Gzs5OEGUmTWzizhsvQRAE2ncPcPMdL/DIPZdy7rlL8fg0mppGs2XTO/z252cB8Na7W3n2uVeJRePEohXk84UPz08BRFGnob6NSCSPLnyFX/x6IwGvRtvuzpF3K0oajmlQzGVZv3YNu3rKnr8b/3A98+bPo2AWeHf1Kk49/XM4joeFhxzCT37471i2wbZt28C2USWJ7s6ukT637diOLxREUmQisTBWMY0gQu+u3ax64108qpd0LrvHwOBSHPpQkB7XPA7HcVD8Iq2trQSDQVzXxXYcavzld5fNZklnSiAq2I6DpEhE9uy5vawfSVQwDItSqURjfQNQVnD3Ip8vUiiUeGXl69x2+00cc/wRI9+5i823Lv8S8xdOZfuOD1BVmXXvr2HpkiUj7RubxzF/yVJaps3mlNPOGVnTtdXVzJ1zCIriQVEUHNdmeDhDLqtTKBTw7TESNTU17aEVujzzzHKeX/4SAOefeyY7d23D59eQFZdA0Isoigz0thHwQT6T5Opf/wZJMRg3vglFURAEmYaGWlqmzULxRbAMG6/mxTTyOJbNUH+KYilLZ+fuEa+yXsygyVAVq8S2TSrio5gzewEXXnghTaMq0DwyYyaMR/Z4yWSGcUsd+MztDOxehU4z1TNPYVdbkmmzPoWkxOlPdTIm1UQo3UDel8FFIpVSGOyvwBN0yOdsHNFDoVhCdE1UVUGW1HL8vmEgCuUETIVikVSuxG+ff4il136HsT+8gEk/Po8rX7mGZW89j2FAIOCldes2LNvL+JbxpFNJAsEwxYJJIl5Jd0cbouQjGKlH8/mZOGkmquLl6aeeI5sr8fSqBznt6hP5t1e/x+F/+DLTfvIFzr/rJh55cxUls4QsR0mnulEkEdvKl2tvK2o5AZlq8eqO9Xz1wZuY+csLueDpn3LMdafzud+dx7IVy3BxOGnoZI7YdgiiUESWJWxbp6QLtLbuoLGxkXA0iO06eJQAycE0y9bfzSH/MZ8LX/gql674DY4b5IlHdmAUHRQFDN1gKJMkWygnH5IEHU314uIgyhJ/fvE90pkipZJJPBHFcWxeXP46kUgFCBZmKUs2uZuWsTFspzhyru2b6Ojj5JW99+8vk+zvadyLvfvw7/HSfpL7/hbsT8HdXy48UHLN/dsdbK779nUguftAP/v3/0mwf9u9HvO9kCTpn8ZBdDD8cz/dPxCfZKH9LVz0f+H/Thzo8LFt+79svfsoy6DruoiUhSOPL8ChS45jKFPCLJUY6txMqZBHcB0sq0Br6zost0Dg8C9QXPssrm5hGIWyEuLIWPkCNZXVSKqPQslkzrw5nHPe2Vi2hT/gY6A/xaaNrRQLFoKgMJxKk8/nUTUZ3ShR8o8mOn4Rll0iOZTGsS0qqyo455yzkRUFFxl/IMbgQA7HMbAsC8dxKeRLbPhgHZqqMW7cGEbV1VIs5bEsk4u/djGlUolwOIZuWKxZtQ5RULBzfbhyAFcUsYwyxWl4aABsm0w2i2FaqKqIaZrEoqPYtbMXRIO29nYEScJFIBgJ4w+FcAQJR1DxaDK5bJZisYgky9SMqsGxbXKZHKWSjm7aFNLD9A2kCQW9BAN+HMfBMi3a23bj2ibdXbsZGugh2d+PUSwx1D+IY7kEAgEUWca2bbK5LIZp4vX5qamtpSKRwBcIMHnKZDxeDx5VYGigB1F0keVyQqWKeITWzRtRZZFQMEIxW8QxXbp6yhlNRcHBMnL4PDKSYKMpAjgO1TUVuFgcceRiJAVmzZpFKBgil89TKukIOIiCwPp160ilhspGAUAQyhmihXwfBGrJFixEWcEf8hCriCHnJcSsxMqV7zLQ2ce3vvldLMvlmaefY+fOnYBFKFSOfV627D7yyT6KhQynnXEmv7vpFgYH+0kk4gRDfgYG+lh27x9HKJWvrHyDC754MWAxadIESkWDdCZFTU01fb39I+v/hGPm01hfR1VVgmg0Qjqd4txzT+fYoxfRUF/2wq1bvwXBtjFM8ISrkEQJRVYxTQtJkslkM+iGPmJg8vk05s2dBMBr72o40iRcO4tor0FmA66rj+xJ07bLNFzbAmRwRQRcLLOAP+hHUmREWcJxBVzg2KNmAPD6W5uRZYXy8V82Elh2+b3X11Xwxc8fwfgJYznq6KXIioKqyvg8Nk0NCQAOO2Q8U6aMAtdmfHMTDzxwH0uPPJJjjpyLppU90jvaBti+fSvRaBhZFrAsfc/36hL2riVfGEsy9xl2bHO49LJvsnl7J8efePTIu82X0hTyOYIBP+PHjS3XjAZ27WgloAT4/dU3MXfefDa3buLkU4/l0PmzeP31lViWQUvLZCxEBlJpnn3mGYYHBxju7ebQwxaAJGLYFrlchqBXRpHBVW2qazYh2S+RH+rHcRw+V3EqszzTPzwDBZENa96nffNGGhsbyeVyBAIBpNpK/InYyH0eXwhXkOHTWcwTkhiGMaIUDg8PI0gGiqKxY3s3xxz1YYbqYDDImOYxVMQrWbN6LbfddgeXX3EJN99++8g9xVKe62+8CkXWaGqYzNYtm9ACHi6+8Et/cS5ns7lychzA3FPGLBgKYhoO6eE8rusS9FcQDEQIh/0oivIXwn86009H5y6u+MG/4zgOoxsb+MbXv8a0qbNJDmVxXJPu7k5KpRINzZNwRS++SBTFK+FSYvqMlrLhzBQZGOwllS+i+kK072zH1A2GUwMMp5JkhvNkMzo1tZU0NdYxuqmBmvp6LFGkcdwYOjq6WLhwEf92+de5695rQY1g6C7Jnj5ky6I6qJNbfx+53q0klQoMcTwl3WTS7Glsb+sjXxLpeblIxaZp5CuTyJKIpoi07xpgw+ZuBofS+Dwqq9ZswaMFsE0TEDEtG9MsJ0IzLR0Xie5MkmOv/ya/e+leNu+Jczdsi3Wdu/jxM3dz/A3fY3A4SV19FZu27MIbCBD0h9m0qRXHKTA00MvwgIHt+LFxmXPoLApFiXyhwPhx4/jFs7/klyt+zVu73iOZH8Yje0gV8ry0dTWXPXEdVzx8B/lCAb00hEeRMYw8UPbWm5bFRctu4Ow7r+b5TasYymXQJI2CWeDF9Su47N6vc+mt32CpcBQnqIfjOmkURcN1bDRfkPHjp1IsWSiqhigqiCi83/ku97x274frXwRZzPKZ0+rKdHNLxOvRED1eFDWG3x9CkcveVlnSUCWZpYtbCPr9VFRUYFg2oiNxzFHH0Nc7gN8XRkGhubaSiFegc30Gd+BDhfWTyqb/FTn2k7b9n5KV/x6F75Oy5g7U5r+CvQzGfY0G/6/gX4rr/nAl9r4W1/1r68vBPH77Xvu4wOt/2NTdv04C9Pdadf4eHMgS9JH37196Zk8KcwTnrzy3+49xIIvZwegt+/bzUc//SQ6tfd/h3vJBI+MAjm3jOg6WaR6g8V/Gz+77s3//H+ctF/bc6wCmoDGmpR69mMUtZgiGKxEFnYBPYuLE+ZSKDkK4ipynGhwHnz+EI8pkMklK1jCCKGAUbDSvF1cskU0lUV2XUjZFwO+jedxYHnn0YbLDw+U6bqKMqgQwilnqx04q015LeZ597kn8/hiuK+E6aVzHxXFyeFSIx+KYjoCtm2SHM2TTaRYvXkI6neHVlW8SCgbxqF7Wrd8IosBTTz6NWTTxqh5mz5uNYxVwjTS2I9HZ3YvkOtgFHcux8YQiaD4fplFC8/oQZQ+9ve0gFDBMm2IpT9Po0dTVN5JM5Sjls5QKObBtOrq6iMZjyBJYRpF4VT3R6loamhqwilnyuQLbdrWhSRZqIIwvGABRYu36DTSPnUDbjo1UJQL4fRr+oMrQ0ED52xEFAn6Z7s5udm7fiaaI5PJpCtk0FYk4juRHdEE3DXx+P4Zu8N4763j4/iexDROzlANXQJY9DPUPIYhgugoz586jujaBILgIooAkSNiuxQcfbMIyBIb6u5AkBVEUcB0XwdUAA8t0+eD9TSiSjKx6MG2XseObqa6J49jCnlrBNi4GTjGFgY/V721EN0Ruvv4mLF0iuArCaxVs28RyS9x26z28svItpkyZQSAQ4OsXn8fy555Gch3uuv0m7rnrCfJZh1hFFZOmTCUWjaEoCoZwOo3jv4+o+fF4ywFiHq+HUqkH25YZSKYoFpOkBjPoxSKRYHxk3Z984jEsu+8JdmzbyvQpc5g9czper5dJExtJxMse/aHhYbZv2cnmdTsQXJUXli9H0RT+vPwtzj3/B8w57HwqRi3FH1+IFpqHN3IYTz/7OgBdXYPozngM+SR08RRcQkhiOceBLOZQxSy2WcCydSRBwrUtPtjQxmXfuYdDFl1JfNT5+OJn442fiSd2Dpd9+04AOruGsBwb0SkyNNSDoMq0te0GYOb00ZiWQC47xKSJTRQLBRRJoq4uQVVl+Zlmz2om4I8gEeKeex7gvM+fTXV1AkURiUX9AERjFUyaPoltO7ciCiKuY+85Kwy27FrAto4FaKFmwlV13HTbo7TMmEEo7h15t7KooGo+kqlh/MEAhy0o07jPv+BibrzjZo44ZhG33nIzc2YuwCjanHXmV8ikSnhkgd6u9YSiVXgCYWTewaus4ek/vUD7tg62ffA2PVu6CIf8yF5vOSmTT2LiOIiE+hnVOIZMIc84Yxy+nH9kPrvaWqmqqyJWOYbOtj68ngD5kk3h/DOwDvlQwX31jTfQPB489TK+eglNDpMcTOE4JSoSXvKWxbp311JKF6mpqufoI8re0mw2S0UsyratbTSNr+Pff/5jJF+Y5198EUUpeyMlucxs6R/O0p9OMnXqFPoHhrji+z8YGf/1la+z7s3ltG5Yzw03XDdybrdu20Yqm2NgoI+tW9eTLeoYtk6xmKSwlx6rm/T1d5IeTnHeFy5k9+4OAgE/9/7xVgQgmUzi8/mQNI28biN7vOzYsgFHlIjX1LH5/dWMbZ6OqPmoGjWF//jZz6isHUvAF6KUyzDn0Olkcnn8gQgen8KU6c107UyiqQHuuOVnrHnrRZYcPg+PBqNHV9EyZS6PPPko7659D9MVEAQFMeAnXltJXh+mfd0fcLM9yJHF5LwzyAohZk89gYceXUZIEul4cjuH95zJNmUrckhm185OOndtpG3TOpqbvdRU16CqLnNmjkEWXRxXRlMldFNHkTQE10HEg1ss8vnbf0lHso+qUJRHv/JjOq56lG0/vYfbPv8dApqXDd27uPj+67B0L1ndQpU0XFGkoa6SXTvb8Ht9eBK14Ekw55BZKLKINxKksXE8D6x7nIfefAiAk8YuYdX3b2fd9//App8s4xcnn4MiyTzx/svc/PId+Dw6ohRGkVwQRAQkrl7+KI+uLZ8Zn512PN+ffgX/eclDbL9hO6e1nIkiKdz36r1c/fgvkOUMouDBMrPYjkkqY9DeMUixmMc2TGRZolBI8t0HrkQWZcbFy6EXjuMi2kFkKYNjGZSMcqZzXzCBJYEqlRkohm4gyi6y7Cc1lGRoeJjBZJJYhR9XhF23ZFn93lv86U9/4vBjjkZPd9I4KsbR6kXwmB/RcZH2kS8+Sm5z3XIixr2iyL6yyr5e273U24MlJ/r/E8J+c/8r2WlvHhX3r73E+7YVRfGv5NH9xxAR/iqm9ZMw+kYYHHt/P0j5HZE9Y3wEK3Hf/gRBYNXb76FIKq4gYgsHKRH0T4Z/Ka5/J/638vz/WXAwj+M/Cn9vjMPBvKJ7S+R8Uvyt62nf9yMKDogysxcuhVgDW1pfI+yNk0taOG4v0VgYSRLoiU7DbXud3dvb6OvuIxj0k6ioJ5cfRlZNgoEwkWgtJdNBkCUy+RyiJBIJ+fnc587AH/ATiQYw9ALZXBrVq2CmO3AK/SgehS9/6cusWbsGEHAdCVECARGPRyOdSeL1KvT09NHV1Y9ugKZ5CIVCTJs+jYcfeRi/38es2bPQNJUzz/k0tlso14y0dFo3bABBZiiZw+8PlmvqFfMkElEqq+KomkxVdQ2uI7H8+eVk01li4Rg9XT3UVtWQz6Rx7BLVVeX4MtcR0FQfouZH1rxkMhk6d7dhFXO4pokgyuiOSFdXJ5OnTC2XAMrnsO2yV6B1y2YEwWX02Cl4/AmyBYfVazcRDMe5/74H2bVtKx5PiIpEFQ1N5XjIYKiGFS+9gmMbtG/bQiAQAMpxgJIW4Iijj2HSlMkgCni9YRRVo6qqgppRlWSLBeIVYQJeBcm1GOjr4LnnViAqMoriMnXaRBRFpCJRVTa+uSKWZYJgIMsq3T09BENBJEVC10sMDPTh8Wq4lGOyvV7vniREEhSTaFPPYOac0XR1dZBIJFBkDSlcS4EQCxccjmU4VEaDVEXD3HL99XzpvPPQPD7OOPMsvvu9KxkYTNLWtpMLLvgiguhy1NFH0tvTzdo1a8gVPfzpmTfI5bJ7SvrA5CmT+PMLKxEEFcGxqBtVx+TJk/H5fDz88IMj637L5g00jY5x7HFLWP7iU3R1pBAlH8lUgYC//D5tCyZNHUM0rjE4OMS8eQs45ws/5PSzvs2jT7xIW1s3pmkRiQSpqoxRVRnD41EByBfKZZAcx0E3/ZjiYbjsUZzdJI7VhaaaaJqLLJe49a5nmb34e9x290o2bOogly8RDHqoSoSpTIQI7cncUiwa2IUUA90dyI6NWyoyprmcYCjg94Ajoqk+8rkSsqSQSmXY3d7N3gRLAb8H1zEZHOzgs2eciGXpuK6N49gjSlYqlaK3s5vGhmY62t8iHBgony1uiEjicKbPaMGyiwT8Et/9zmVgW1jWhwKOpinIsozP5yOVSnHzH37PlCmTGRwc5NrfX8tJnz2RX/+fqzj59BO48Zbf88e7b+L4E46ip6ePUKAawe7CLQ0iuC6FbJGFR80nEA9SP6aZrbt2s2LFCrKZPO1tXcTjcSRZRpYlLMsin8/T2NjMxo1bRuZTEa8km81RLOZRvAKWW8K0ClhmgV3tm0fuW3LEQizbpFQ0sQyFCy/8MtFoFMt06O7qRSw67O7sIFYTJ1wZ5Obrf8u0KVMBeGfVKhYdeSSLjzqKpccey7IH7mfO7Fl89vRynGo0EkUSVCqiVUSCcXRd5/TTP0tb+4eZroPhCFooyqjqas476yzOPbtM387n89x08x9Yt3ojr65YRU/PAAF/FI8W3kPrLRuMAoEAF170Td5ft4GA388df7iGmspavJ4goqDS1zuEgIfamjocVy7Osm4AACAASURBVKdl6jQUrx8ThfFTZzCQ7MG2s2xtXcv5F5wDlOOxI5EIAwMDVNZE8AW9rH1/Izt3dTN+cpCurg4K6Sg+TyUBXzWlggxOAFfIUpEIMmv2DHBFBtIdCG6WQmoX+YHNpHZvZWdfjF/d8A4d7Rb1dWNJDrVzxKKlvH11P81rlrDRfIfnX3+cTdu3svKtlWxr68DEob46SC6bxHZ9gIuLXa5zajgIgkQ2l8Z2C+hOjntWv8rm3rJh59azL+WwMRMxnSK+gJ8TJs/jms9eBMDLW9excXg9Rx0zH69PwnFs3n1nDc3NYxkaTBGLVmKYJo4ropdKdHV2IAUc7n1rGQCHjz2c35z6bTK9aTTJTzzo44uHf5pvHP1FAK599hYy+RT5bD+KCK5VZDBtcvNr/wnAsVNm87tzvsIXPr2U6upRiI7Ird+/jUuPuwSAG166mefdd1EVDw4KqhZGUELUNdTjC/jLSQ0lkX+783vs6m/nmyd8kymNZcVVEgVUXDQiKIqK1+shGI5TykaIhqtRNLCEACBTLOk4mCSqQgQDXvSiTiIexbB08vk8tbUNzJ8/n3y6lyOPXESmUEQ3TFyXEcr4/nLFwXAwOu3+Mszevv67ZLn9kyztZb/9M+BgYXOGYdDS0jKSV+WfnSK8F/9vPOXfiY/z3u3P7f+fxj/asnWwMcVgAjGY+Iv/+1viGQ5Gs/i44tZ/S/8H8mLu+/lv3fB7x94rgOw7373/ftyhub/X/qNiHw4WlzEyNmDJGrFRY4knYuxoayfgDzOcSZUtu46FFIhixcay4rW38agKkighCBI+n0Y6O4gkyZR0i4pEBYVinnhFAn/ATzLZjyxDydDJ5ywE28PuXQPgBnB2v4LV/gqurdDRsYvFixfg9WqoihdJVBBFFctyCYUC2GaJaDQEAiQqq+jp6SObzeL3+xjTPJq+/j7AxTAN/njXg6hqiLad3WxYt5ls7zbSBYhEQuiWjSwK9PX0UirqlEolLMsil83z9tvvkslksR0Hr9eLx+ujs6MTQRDK8Z12ufZmLpdnOD3Mhg2b0HWTUChMfV09Q/19ZDLDZLN5EpW1IDhoe2IiXdPAo2r4vB5OOvF4du3chu3q9PZ1UluXYMFhCxkcHGLu3LmMqq1lw8atiJKI7TgkEtWYusmMOXNQVZWKaJRsNoNtgz/gR5Q0BEGknIfIxnEFBFHCH/KjGwVC4RCmXmT71m2sX72eRLyS4447HkGQKRWKbNq4gXwxD6KIIEKpaOA4Lqapk8sXqKmpJRqLIkrl91BfV49lWsiSgCQJe/7Iu2iqhlsaRq2ZQCTmYcLEsZx44vHluqlqmFTBRRIsAl4vyVQXkmxxzLFHcN111+KKEobtcPEll+IIIj/84Q94ccVytm3biqrKOK7LgsMWoKoK7e1t+ANeurrLMZbhUIB7738M21YYP24e4UiYd95ZxdDQECedfNzIfmhsqOf4444Cx88ZZ56KN2Ahqza1DQlMu6wE5zI5inoBxSMQiwR4+PEXeOSx5UiSyA++ewGb33+EwsBKBjpepG3r02zf9ASnnnLEyJ41TZOhoaE9nx1cyjG2uj0OUVDA3ohlwsaN73P59x/CcVxO//RMVv7nleR77yDZfhMdrdfRs/0aLvpiubSKi4uoGSTqYkQSXmxRoFQqx5gV8gVMo0Dn7jby2W66u1bh8YmsXrOewcHB8v62XUrFIqZZIhoNEgoFKRTTOM6HsZqxaID6USZBz9uEww7pXFkA7u8fortnN4oio+sGjq1z5fevIJ3KIAmekfaWZTE8PDxiyGhoqOfll1bw+COPcvqppzF96jQc1+X9dev5+a9+xbRDZvPCyy+SHs7zzNMvcuW3rqO/M08qOYjH4+IL+HFFl13tO1h6zBLmzz+MUsmku2uI9vZ2crkcpWKJ3t5eVNXDXavvZfpJM0bmM376NB5+9AkCQQ/PPv9nFi85mqbR45jQMpHHn1gOQDAQJBgMMDSU5Jpv/oH5sw/jieeeoH7MGL70la+zY+du7rh5GUcddyzV9Qnad25m9Xtr+NnPPvSYjh0zlob6eqZNncqRS5bywLIH6eoqZzZOpVJMmDKJ6sZqZs+fzZJjj2PTpg+VZgBFERhVV8dD99+LY7lE4x/SmJ946klyxWHuvO9OFixeSE1DI0ccfTx33X0fpmkiCAKnn3EOb771Dl6vh6cevY/H//Q8zVOmcdFl3ySVSnHvgw+y9JjjmDRjBvHqBm6+9WYUCQQJ1mzcyE13LOOEk0/lM6efwezDFlFdX8/Rx5/Ib6+5Fr8/gObzIkgShy06nFhFJYoUIRr3cNKZn0aLRlj20J24Yprtu9YgSg6yLFE1aiyxqnrWr++kmHL5zX/cwBEnfIVPXfwaZ/z8ebptC0WpJRj007rxdd770S4WhRezTnieHd2vc/Zph7Llrbc49agZjE4UOenISjxynqbGBIWiQX/fEI7toKjSnrhRG1VVEYQozz+7k4dXvQbAwrHTmDd6LsgBRFlBNyxUVeaUmQtoiJVljnteWcGK5e9h2wK2YzB33nxcASRVoaOrl3hlDfmCjuu6jB5dz0vrXqFklmOpj2w+EksZJtFQzfa+HorFErI3wRWfuRxRECmaJR5/7xUEdCRRRhIUXt3xLuae8IqLDzuGVMbh4WffQla97GprQ8DmlCknIQoiuq5zS+sTe8ISJIolm0AwgW3bbNy4EUEQeHHVCzy69knGVo9lQfzwfbyZArpSpCAIWI6D49hk8hbRmI+e3u2Yepan/vQ+w8NZFFlF10s4jkU+b1JXX4fj2EiixOTJkwkGIsTjCSoCLvcse5mCbhAOhTEM468qHnwcW3CvorsvVXXfHB/7y1IHk7s+iYf3YH0c7Nq+MrAgfJgwc68ndt8yOx8nE37SuRyM0fdxMa0fxY48UB97sfcZNE0rZyJPpz+yzuw/I/6luP4L/2Voh56JduiZI5//Hm/0/m0+rq7s/xZIkoSiKLiuW65zKUkjB/t/h1fedV0EUUEQZVzTQHZ1msYdxpjJ49m8exP+yAQcxyKTGaalZQKlyimcPCNK0K9SKOQxrDTZbAa/N1rOcuqUcMw8llHE1m1My0BwLRRZRJBEPD6RZLKXceNHY2EgiCJgU8j20tQ8Cssu0NW9C9uxyWVLbPhgGz3dA2WlTHRRVIEJLc34ggrVVdXs3LmTXD7DwsMXEo2EsSyTdeve5/PnXwC4JCrDzJrVQktjGDU8ioGBPmS5vC78qoennvgzvT1DaKoPWZY5fNECPn3aaYiqynAuR2VtDWMnjkNSNURZY+26zSiySiKRoKRnOPGYo1m/Zg3Fgo7qCxKrrGbLlu1ks1m6OztoaZmAA3T39OBaJrpukM1kiO2JI+zr7kVTPOTSGbAL+LwKgaAP3bZomTQBQYR4PEE6XSKX7mHylInkSzouCjt37iSTKWe+tUwLVZOYMK6BQmYQV3BwcXEd2L6jjczgEKIgkqgcRWXNWIq6iG0XyA3neeSBp5ncMh1NU3EFgVw+hcer0dq6HUlS8PmDWI5NVU0VLg6a5qOtrQPTLNcqFQTKmaIFCccsglVCDDTi2hqZbJJoNLrH0yxRX1/L7o5NqKqNIZZonNDAYUsOJ1JVge2A4wqMbh5LvlDixj9cT29vN41N9bz88grGjRvL4OAAr730E77yxTH4/Rrjx5WVK9Ms8dWvX8Zrr+8EtxtBgN3tnbz4wovEK6Ij6z0cDlFIO9x2x42kUzpVlTWkMwUcUf7QOxnwYVkKfn8YQ0+x7IFy7c6zTj+ab178WSIhjcGBAZKDKQqF4v/H3nmHR1Jdaf9XuXOr1WpJozCaII00OQdgGGAIg0ljcgYHHPhs48XsOmAbGwzG9tpejMEJBzLYa8BkE82Qhsk5J41yVueuXN8fLWmCZwi7Drtrn+fRo6er696691b1rXPOe857UBSV7u4BoKgoyLJMIpHA5/MdwmgsyT4c+WRMdwY4e3nsieU4jsvECTEe/eU8Fs0bwCevQnTfwjVWINibCIdSxX4xyQzsxzJ1XHsAzX0Hn1rM7w0FdcK+N6iq3Ec00kVFQqEksJrLL5nMqMpocX1MnXDQpXqUCfZ6XOMVyiI78UnrwS0q4YrcgqSEuOm2PgT1BkS5SEQUiUZoamoATyLgq0BwJP7lc5/ntpv/nUzmABmSLItEo1ECgUARDVzzBKx/khNPOIF7fvoTzlmyhB/9+4+4+84fUlNdQzKV4tPXXUdtbS2jR9fwmS9cTbQsSGtrJwUdWnd1YecMSsMaqpgvplagcPM3v00sFiMUDGJaFrFYDL8vwtv+d9havvmQ/c1xXM4591y+fOPX2LFzN3jQ19fH/pYi4hkOh0mnHOYtWMhtD99Ma08LnueRTCZ54smnuOzKT2AJErrrIDkWNbEwfl8p3kE1J5a/8TJ7dmzirWUv8ZXrv8SWdVtZtWoVAN09PfT09uL3+ejp7WHtug1/tgdXVVeye+tarrz8IlpbO8llDtTy3r1nH5+94Qts2b4ZBA/d0Fm3fj1f+spNnHfBJZx34UW89fY7BPx+HrnvXpomTKBQKDo0CnqWr97yTW669dusWLlqRPE20oOEVQ/RMTjxpJP59nd+wNvvrKS9o7PI+q7rrFm7jptu/hYnnno6nZ39IEq0d+6noiqGPyCiGzkY0nNTyRwifiY1zUTwwrjOgWe+u6+b+YtO4Ic/e4SO7gFcT2AwleW1N97gM1/+Iq//aRkNy09iSmQeze7LjGsQWTBnHD9b9ms+s/xfafzmGdiKgyY6+H0CeDkkQackWoEgSJiWjmFkcWwJ3TAxrBzltRHWthSdAyc1Tqe5tZ1dzUk80Yci+IrpRHgsbpoJwNrurYTCGps2bsW1VVxcBlP9VFZVUDt6NIIo4g+EiEajuJ5NZ/IAWi71efgFl4poDUZGRRA1EMPkk2lGRcsAWLZrK5bjYFoyjiDQNtg30n5Mop6339rMSScswPNEmiY2IokikxomUh4p1grvWNeNqsm4dgHbKiCKIivfXk48WsLqlSv5yiNfwcPj+x/7D0qjFaSTw6RJYBlZNCmGJCt4noMWKEHRAtiGjZVPsvTMRoKBMD4tgGV6SKKflpZBWtr7kHwaol9AzCts2byDdevWMWFcBRddMAVfMILP78c0jUOIyt5L/tKI3vvV8z4IanskI3C4/XvpY+/nOn/raMCjiWma+Hw+ampq3lcq3P8l+fuv/v80ERzALdZuFd47zOBIce3v9UN8v96jv4T8LQynw+X9IKGe5x3I7zyoNurw39Haf5AE+KO1PdIaf9A1H+lDkFA1P5KsIojiIX9/Nq+jzEEQhJGatkeqAXu0ucCQcexYeK49xCYn4eChBOK4rsxg12aSmT6yAwPIElg14wmVlrO1dRAkCVHyE45UoPoiCJJAIFKGqIYQJBVEDxwbEY/uzjbwLAoFgX1t3bhSMW/S9VyCwSD+cCm4MrZjEo9X8+qfluF4OuPH1zKmrgZVEjAsCPiiKJJCS/NubNdg6tQphMN+7EIx7EXWJNauWo8oOEiyiCxKpAbSKG6KbDqNoviQAQeBQCTIueefh57L4FoOK1esAU/As5PIgkA0GieT7Mfn0/j1L39NPpNlzszJeIqKHAxSO7YBy3aYO38O8USUdCqJIin09faiKQoViQSSL4QkaIRCQSR/lPaONkLhAJ7gEo1GSSTK8fv9JNNpdEckXlbCuHG1BEMR+jo6KGSz7NmzB1mR8YeLZCSRUIzOnjaaJk8lWhLCNExymRyG4VCwQAuUYOh5BIrhP5OnzkQLhBFlH6FImNKyMIom4JP9vPzyK5RVjMLxXBzX5vU/vYVP9jPYl2TyxCnFWqGuiyI7yJKALKogeFRUJggEVbIDAyiSjOoLYBTySPl+HCWErPqQlCCa5Md0Be66+xe4uQEEI00hbxAIauTTIXo6TZr3tVMSCw7VvLbRjTzjx4+nbkwNkXCcm752G7puk9d1KioqWHrmOMK+dhRRor+na+j3JNK8czuzZp1M48QQpiNQWVMs25FODYw898uWvYWDyTXXfJxRtQlszyMaLAH7wG9KkkQURURRg+R0ke6eovE4qakGTZZIpUxEJUImXaCvqx89W2DlqqLBZFsOtpFH8QyM1AC27eENafgCEh4gqhPZvncMzR1FxGfcuEk8/2oVW3Yv4nt3ZunPno8tncHulgZefr1Y8sa0wkyb9yjtvefS3HExr76zlPWbigbCS6+0cMOXFVq6vsBjz8xG0K6jK/lZ8uZxuEP578FAL4q0D1mL4cinUfBu5Jk/ncALb3yIzq6i8dnWewL/+q/NfPjC65D8AapHjwGKhp6hg26msPNZBFmiL9nNHXd/mw0blo+srZ4pACKeA/t27cToa0PSBzFNk66eXi7/yEdYcsbZXH7Z1fzwez8EoKe3hy379jD3xIVESuNE46XUjR2Nz6+SSJQRK6umavxkCpqGppRw9x138eD991BZPhbd0JElAdFyefIPz/HGm28RG1dKZWXFyJh++etfsW37dh6671fs2bGevTt28Jvjz2Fk9xTgs9ddi+bz8fuPPkPHt9J0t3fw9JOPUVZWRn9/P/c9dC/XXHQhuUwaSx3NyWecxU1fu23kGplUir7uNnKpJJWJ0Tz57GPkh4zHCRMaWPbKi/R2trFzy0Y+evWBurfDkuwfoHJ0E61dg4Q0j6DvwP7tOA6fuuZT7Nq2ho49O/j01Z/ka1+5EYDXlr3O28uXEwwG+N2jD7Pg2GMIl5YTjJQA8Oprb/LUsy9w6823sGf7Ft554zU69u/l3Is/SlqXUGQfJ514Ij//6Y/YvH41L/zhae647T/Ys3UzD93/AKNrati1aw/XX38DbXv3UlYSp793gL7O/YRDlThDOdCl5RXkLYFkXscx0wj2AZ3hhi/8G4KT4/7bP8SuR0/jyiWNvPjEE4wqL6KG//rFf2dwwCQfW8XUGTH2796OpsDBr2jPdZBUD1Gy0SQZ27HxKQXyhRQICpKkovr9BIMasqQSqpZxveIYmirHUFEZIxKJYNsBDEfHsgxs26YhUQ1Ab3YQ1zEYM76cQDCEJguEAkE8FxChkMvh9/vJGSbJ7n7Mg+Z3zoeqUAMSjtPLuLoAgfhoPLmSSNzBsos8Fds6W5A0gbzu8MwzO5CkA5Mz3CwdAw6K30dJWRRJVEilu0mlMwz50ci057FUH66tI3gigUgJCxYdT+2Y0Ty18yl2de3msoWXsaBuFvv2bMY0hxwfgoemhFm7ah2O66FoEvlcho62PirLQsV1FQxEyaavz0BVInR3deEpGlUVoygrL8fzO/R0dlM3NsLzz/yWx377WyJBg4pECFn1g6XTsXcHtuviCYeyAh9Jr323nNb3I8PI7HBfkiS9ax9H4jMZPn9YDu7P87yRnNZh/fJoCOsRkdChNq7DIdwjB8v7ne+R0NyDx3zwGN5LjoTqOk6xfr0nidiugySIKMI/hkn3jzHLv7H8b0EL/yfJ39OLNfKi+ABy8HglSSIQCKAoCoqijCCvkiT91Z6Dg9Hc4XEMH3McC0mRmTJjJqmMjua4VDTMIqkr1AY18qMX0GBsAdMCN4Dr2thuClGScW0YGBhEVX3IUgBBFJEVlcqKGlTRT3IwRWN9I7KoUFpShjTkxZREkWAwiKoWcwUXLlyIKGuIsopumniSiGFYrFixms6Obmqq69A0ie7ubhxb5Cc/uwt/IIDgQlkijuMaGHqWTCZFqCQM2f1UjG4kVhYnGgrQ0p9m48YNOK6JZTmsX7+eBQvm4mEiIpIeTLNn225WvL4SvVDgyqsuw7KMYuinU2TVRRDYuXM7INDc3Eo2mwXR4fQzTqWyqhzVJ/Hzu+4il0mh+RXCsSijx45DEKOsWLWeYImPbDZLwTCIlyXwLJf2/e3YhsnunVsoG1WBKEtUJMopCUXoaO+lu6eb5v17qa2tRhAEfD4fnucRCMiIoktfXz+qHESSZWzbxjRNLMtCkiU8bLL5QTxBZ9OGjaxeu46JE6cADqJYZKodXz+OTRs3s3r1alKpJLKsYJoGgiCh6wW2bduMbXn4fEFEUSEQjGPbIg/e/wCqX8YyUsjBOLboUjDy2I6J5zksWXIaxkAzTraD5v1tdHcP8s7bb7BqxTuICHi2QD5XZI1WFAXHNThm/onksgbHHXc8s2bNwjCnkcqOR1EU8OC1V99g3Lgi4ooMFbV1uHIZjhflnl/cy9w587j0so+gKAfqgp562mLeXvEKfl+Q++59oBgSLXi4gsCwplgkeANF9tPTPYAkFY+vWbcNUc0TjYUIBjU0TaK6ajTfuPUeMtk8AKZhsXLlRnKGyPa97fR2dlPIFY2YLZu2Yhgmngs11aNH2Hy3bttHIBijorKC888/F0QZxBLWbcmw7M1izqai2KxZs447fvQDysrDjK+vpmFCce4nnHgyX/zit3j66WdZdPwJZFI2n//czdxzz3oGBos1QzP6XDY3n48tX8Y7q0VEqZxjj5vLlGljRww9w0zzmc9fzKiqCgTRo2wIqfY8jyeeeppf/vRXbN+0A0n2aJpYT99AN3fcdffI2vqCAUxsTFzqGhpRNT+ObeK6NtFIGQ8/+BihsIYogqodUMKcfIaAAsFAiELBIByOIMsKsYQfWQZV1hBMkcFUBx//xCWUV8bo7U6zZfMOXAcUVSQSCTNl8lQEJM5YcvZI38lUil//4qcsOe0U2tvbcV2XHbnkMFhIR0cHr/xpGX949Pco3SE8r+gEnDt7Djd/o2gg7m/by/0PPYgajLFo0encftvtfOvWL45cI1w+img8zp6929FCBr/9w+8B0DSNp594mAkN9eRzJps37ua4BSf82V5cUhJB13VKY+Vs37aL5559fuS7iooE3//u90gk4uRdgdfffJPPffLj1FRVjZxz153/wcSJE9B8KrpRwDSLCFg2l+O73/4W//aF60mUlyDJLqLkUFlZieM4dHd387O77+LSi69ibN14Zs6aSt3YBKUlcU5ZfCqvvvQSqqry7Asv0tHVSyZXwLQdJH8pliciScXnt6Otg2i4hF07diEKGvtbDtT2FQWHp39+A4sXHYMhiVx0yeVMnTKNX1wyRDqWbeH+rd+lolLA9TJMnT4eTQPvIIe5ZVk4bgHPdTEdgWCwFNfzEwjE0NRivqtjuziOh8/nZ2dr80jbUdEE4UgpZdEAPn8UX7CcIhm3xJjy6gM3Ieii+f0gWfT2DxIKRUilUwT9AULBML29vQwMJCktSRBwAyPNVu/eStCv4XoCsr8E0V+OKBq0d+6hN1eMiOjJDqJKMj5FZMkpM6gIHSCL29DczfQZk6mursbQbURBIZ8zEFWFrmTRKVcYNHANGU8QiZRWgaRQWZlgc8smfv7KPSQiCW4440soKjQ1TiQUGRqfJ+B6DtOmTUQQwTA9QtEycgUdy7BxLQ/PkxHw8/RL21ixeR+hUJS97X1UVFUQ8AnouQwV5ZV4rsCZZ55N50AOLZhg++5uJFklnc3R2dvPcADCB8mTPFKU3N8jbe6voW//dwCSv5WIosiDDz54SLmhfyKu/6ByOPvX+8mPPFze7wN0pD7eK9b9aOM9Wv9/ix9f4aW7KLx011Gvd0SE8SiMaYfLu+VHDK/z0fII3m3NDj4+bGy9Hzm8htnBxxWlSG4yXEfrYMP1SPfpSM/VsPfwaLkiB8twDsefzdPzcBwXUfVT1zCJ/sEMem4Az80jqWHijbOQy8cTCPjZt38jkmLi2C7Ne3oxCnnipVF8Pg0HsF0P1/Uo5HPg2ZTGVaIlKvl8P9lsP47j4jg2K1espFAokEwmaW1toa+vD8vyePTR/yyWxXE9ent6mTJlMhUV5Wg+H4ODAyQSCSRJ5sSTTyDg92EUdM67YCmyLCG6YOgWtpkGzyOVs4s1/zwHIRihpWU/6XSKgYEkZfEEul40YgV/iEmzZzFp9jTmLZpLIBgkHA5QlojhOB6yKJJKJvFsh4aGejxXoLZmDJWjqujs6sK2bfoHBvCAiy++GE0VikZ0Ok0um8dxiuGNnicSjpZg2w6BQBBZFujq7iUYCJFIJHDx8AX8uHhk8zkmT5pKrCRKTfVoTOPAcyxJEqqm4nkujuNimGYx70tVUTUNSZIoFPJIkkg0EgHPIzmYZNq0qViuwYfOKJY0kSWZyspyCgWDBQvmUhqPsX79Rh555FHwRCRJZNLkCaiagmUVc5sKpk1/7yAV8QoEScYtZCAQRxJFQj6FUCiAIHo0NU0YytkWOGXJGURjFUTDAcaPrePOO+5gsG+Q9vYuOtq7EAQPRRW59tprAZeHH7mX557/AzfffAdbt7bjedDZ1cXxxx9HTU0NAI88+lt+8L1fIjhxtm3X+PxnlyDg8uxzz7F85YoDz7Yrc8riszFNgyuvvIJdu3eiSKApIkPVW7BtB1GUWbFyBbW1dcycXjQQn3zuHe75zUv4/X4GBvpp3t/GNZ/9Gj/66SPESop1QX0+H7msjuvApEkNtLXvJ5MtoqZNTU0osg9RVCgUTI4/rhiquG9/Bzd+4y4GUynKKxLYlsuddz/CRz9xCyVD/QqCS/WotXz/excTCaxibM0GIqFBACRRQ1JyfP4Ll/PG8qcQZYNFixazdOn5GEYR9RGlAFVVo+nrHeC2W79LPl8MvbUsh+FtYf2aPSx7dQOiKOA4NlOnTGbBvLkAfPWmGxnXNJ7R4+vIZnSWLXubS6+4mr6+/pGllRSRULBYK3Tdmo0c//kf87NnlrNy5Socx2bph89GURSeffYlbvz6NwGIhMMsOPY4LLsIb4mizGVXfws1ehqRWDmWaZAb6CfZ3UUkEsIws0WHjV+lJDaB3XuyWCaMGZdAVQVE0eHrX/2XonMD8Pt9REtCGIZBdXU1N918Mz9c/9bIXgmwYO50xo6Jc8yCWeh6mqs/fjWVNXV85nNfAIo1WzfusHppRwAAIABJREFU2IYquUxrqCGdHuCFP742Mu+lSy7hlZc3smvfACd96Ezy+aKj4tOf+CSVlaMwTZNMJsPlV1zKWWd+iCmTpxyyD7d39JDPWdiOTltXO+093SPf3X7rTWQyKVrb9mPkc7z88stccMWVtHV0jJzT0dFJKBRAlsURgqzhtb34gosp6EVSuKqqqpF3j6ZpI++/bDaLaenIikBBT9HS3MraDRspq6hk6pRimafm1nbKEpVESuL4gqUIjo03hGpGw1F+98jv2LtzL817O5GkA++Z886YRrQ0SFbPEw4EkZUgq368nWNZQm2sFgBT8YiGYoiCiGnkEbD50umX0HL7wwzc+RT1o0YXnXGSD0GRQcrhSFl0K0UyPYBluBiGQTAQIpfLY3oHjB9VgbxRwPF0XAFcwUPzqTi2jXiQjSTKoMkleLZEQTfJ5vIEfAFWLF9ONpfFH1Cpra1i+/YdxMwIilhc49+seQXT1HERKK0YjeOGcPQ0P3v5iZH3re06pLMGsiyiqi6zq+tRpWL7u155gsnTJhEIRNmwoZiTnkiU8/UHvn5Al3Q8LKOA68ioWmIoIkvms7+8Dtu1ufb4T1FXVYljhsnkO8nnhkN3veI7wFfUBXz+EpIZi1iihHXrVpPLZhFEEVW0WLqkiXnT6ghpKgumjCekyQhamLRlYQza3H//Q+zcuZuzzl5KZ3eScCSBosr4A0GqRo8FBAQOMAAfjUsD/lxfO1wHez/oKTDyLL8bX8nw9wf/P1q/Rzp+tGjIg88/krE9rIP9d+TddPmjyQeJBhRFkauvvvqvCpD8T5V/Gq5/R/mfEiv/v1n+1ut3NK/isOE6/CfL8iGhNH+JTfBoDMaHizS0kTuuRygao2nWHJo3vUZIzpGWo6BqyHPPxtv7Jg01YzAKMn5flHH1CSLhII6jUzCy2I6DPxAeIhjS6etrpZCzCAaiWKaAZRTDMgVBYM6s2fj9fkKhEBMmNFJZWcnTjz/N+UvPA9vDMS2iJSHCkQAIDqaZJxqNsW7dOgIBjcZJExgYGChSwksSmubDKBgIgoyZS5K2g/j9QRxDx/MgEA1z5ZVXkExmmDdvDoFgiFdfWUZ3Z5LO/Z24BRMznURP9YDn0dXVwd69e+jr7SWTyfD6steRJIme3mKN0KLBJVBTOxpV8xOPJ5BlldLyMmRFRHAdMG30XJ50qoOJjfXoGRvXdenq6qZ/cBDDzTN73mwG0zkqRlWzZ/tOLMNE8WmooQA7d21H1VR6e/qxrOL9tG0bz/OwLRdJUmhoqEcUi6zUvT09OI5DOp0mmRwARCwLLFNg0sSJWHaBKdMn4Lg2ggCeB4oiYprFPOHt27cxZfJUrrrqagRBRhIlkqkBBNFDkgVECWRZIpvN0Nfbj+OIuHoKsfZERMNk5/r1RaXOtRFED2eRSnq2TV9/ks1bdlI1qoLnnnmam7/xTXZs20lN9WhefvnVISIMhwce/DU7dm3m7p/8kHH1o4jHE8yePQcBgUw6y8BAB5dediE+n0ZBz3Pnz79Nea3GolPPZ9Kc68lk93HMsVNRfAdeyqGIgun0IIggySKzZ89C9CxS/T147lAIle0heBJlZXEi0QA//N6XmdAwGtt2uP5Ld1M66iSmz7+SRad/hkd//wrnn3MSS04pkiil0mlsy2Kwt4v+zn3MmD2NsngRYenr72P16jU88MCD5PN5lp59MuctLZI6rVizk8Zp51E34Qyq60/nxm/8hMYJY/jS9UV2UtcVse0cspwlm3PZsCmDZRfD5AqFDK7tB8/PpKZZ9HaZ7Nmzi66uDuJDRD+Fgo4sy5SUlPLggw9y7733cu9vHsHUZXp7i4ZSU1Mj3/3ud0mnk2iagqJI3PatbxAKBujp6eXyj1xJ/YzJNEyexPmXXERz837mzD5uZG1108TI5tEECddw2bq/i6//+nk+fMEFjGscyymnn0R5ZYJLr7yErdu2EQqG+M09DyBqQTxZQ1V9GLqFJxxAyE3TxLHz+FQH07QZP74Bz5GRFYfSUddi2hdxysln8uJza5AlP+l0Dr8vwuSJk0bmfdIpZzFh8gzGTZjOPb/+NabrcOrYCSTKijmI8WgVmUERQZDRtGJY/+Fi2A7ZZBvf+/r/o7wizk/vOVCrddvuNZxz/ul85JqP0drWNnL8xBNOQPB8aJoPVRPYvmMDmt/kJz++Y8SwBpg8bSrzjl1IRd1YPnnd9QwMFh0SkUiEs88+Dde1EUXwy/DEE4/xxltvj+zpAN+67XamTJ/L+AlTqG+cypNPPV2cu66zddtOnnnmGVLJPIbuosgBCoUCjuMQDoepqKjgjy8+y0WXXU7j1Fmcd/k1TD92Hh868zRKSmOsWbsegK6ebizXYeWqVUSDIdr37hp5d+zf18LExkkcM/9Y6kbXEy87QC514nGL6RloxTYHGezoJDbQyHHmErymDOVDOaCDhX76+w0cU0ZTimihaRhsXLePdHqQfK5AOuli2DqiGGHNig5UsZ61azrw+0oRpWJ95YKu49N8IxESAJ6rIgsx0mkJUYojiyFsx0RWBOBAKpfrJBns68Ay0vgDQaLRGNFIlEkTm5AkD59PYjDZx+w5M5GsABfNOBOAN3Zv4rOP3k1LqpfuZIaO3p3c/ofb+dmyx1GGwlgBPE8mV8jhSR7ViVI+cdyHAdjQvZXrH/wiG/dsZfqMqaSsQb71n7fy0DsPIYsH2Ho9O0NqoEA2bSN6Djc/cDObWjZxYtMJfP6C6+jpzvD28rcI+kuLkT/FBwTHsbEtC8s2MU2XWKwSy9ZpbKpHEQHBw9Ak4nENz0zSMlhg9ZYW/KFSettaiZX7GF1Vx/z58zlmwbH89qEHCWl+zFyB1sY/kVzYTCRayl8SpzuaXvuXQGOHjd136+svgfx6nveBqkL8tcbxbjI8xn/ECE/5vU/5xxJBdA5C5A5lATuSHI3N7PDvDrnGe6BwR2pz8PGDH9TDmcr+nvJnni/v0JpSB4ffC4JQzKEcPtX985q4B38eOe8IOQ6HX//d1hcYSdI/eHM9fF3fbY7v9f373UTe9TkYXo8hRtPhN8uB3K5DmQAPFnd4HACegysGGVM/C8NUUT2X/r4MiZJS3GmnY+xcjlQ9g1dfeYPjFx1DTs8RCMRwXQ9/wMF1AFHDF9AI2QKBgMqenRuJl9eiBiVsFyRZwsXgmT+8xtIPLyGvD7J54zauvGopru1Dkj0GB/MIgkw+O4AkaxiWx77d+5g2vYl8Poko+BEQsB0bXIfefdvYvns7i0+9lNxAirymIokCkqmjawEGMwZtnbuIlZawv7WFCQ3jOfvMU9BND88yWLthPXPmz6SuYSZgEY2W4oYd8vkCtuVw7LzZ5HMpqqqq8TyXxKhSLNdGEiVcz0WSi8+IIgvIoQhqIIJl23T1duPTVDKZJP6AhKrKTJw4gUIhh+aLsGX9NsaPGUVqIE1pvBxRFMhlMgR9CcriZWQzJpFYCcFgCNcrFHNQAdfzUBQfeGDbBq5uEwnHkUSZUERicGCQFctX47g2siwyZ848RMkln8vzygvLOG7RcURiQTzLw3ThuFnzaN6/C0F2yGSzBPw+dm7bzcRJY0AQsKxiSK9pZSmrjHPx5RexeuUqZgR1HvnjOi5vPINR9aNRA0H6W3fhuB7+kIeIR3l5nFhJnGXLXuKa/3cNWkjhmEUL0XNdXHnJuaiIZHM5brv1O/zHj7+BXy3HdXNo8nbyqTWYpJk0eSw5/W0mNp3F7x7+HXfcdSdbNq2kfzBHMpUimQIjt57GhgCjSg8oELppEdB0BOcFApqGKBSVGNErIAjF0D6/34co20ycWIede4GgNMiyZy7i1n9fxjMv7KKjK40sO5xwXCOnnnICn732Cq746A0AxEuyLJzfSzRqgCiSzWwGr4hKJhJxZs2exswpoCmbcN0NPHLPQu6er3LvQ+vYsbsPxzEZW1fJheeeyr987kr+8MQdQ7/nPOnetymJxSgJiGh1BYQhDoVQSEcU1+MZy2kap+K6cMvXE/T1PY5AEZnr6+kj3d2NGvQjus9w+YU91FTXYNtPE4/76OjK0jBuJ++8/W0MOYoka3hOD8fP3sbbL32GW77zR159fRfZnEWiPMiis+u54YYfgBRmxuxni+MQHsdPOYIDx8zWeeCHp/HG6k5Wb8nQ3JomnU7j8/moqwly+qmTOO/MMcycsQ3Z2YUkSugFHb84l+RAYeR+lWi/I2dnCQXDCLg4hosiy6ieQFf6FKYfM55X334NTRL5+LaVCKKfX/3iV4QjxdJGkydNopDP0tHVQ8DvZ+LMmZwrRbnu+MWMf+DHACyYP4twxMeufbsZXVuFdwSF07IyBBPzCZapnCr4uO+BB9mxZzcA2VyeiopyGuvHM2/BQv79+98DoKIqgWApPP7okxxz7GxCYT+S6KM6UcndP/wPPvm5YsmT0liMdCaDpmlUjaokFAyyYdNmGhsbkIiyb896pk9vREBmz64D5E7D+7auG+j6nxPkWJaFYeU4efFpbN+xhRnTZ9PZ0cvnPvV5vv+D2xFli499+nOsWrt2pI2iKMRiMRRZxvM8BpNJbNsmk80gug5zJ07mxZef4vhjTh4qfwVNExuoqIyS1wfpamsjkqgZ6U/VVKKJBnz6RtJdfqrXziEf34rm+oZCdsG0dSIhGX9QxvEMFFXC80RmzRiLJ3hYUoT//P1qrrhkKrY1wPwFEzHtfiKJGvKmiU+ScB2X/rTD28s3Emk44PjoHkxTU2pRUTWWgfQgfjGHbcoEAxqFg2qlZ5MeqirhIhAvjZIa6CVQXUViVAWDAykcs1h/M50dYPEJFSy2r6ZAD4+vXc5j697isXVvHbL248pGcdrkufxs2VP4FBXTEskYEiWCh6RKXDj5Mnb39PDC9td5dv1zPLv+uUPbV4zjuDFTeWDFk0iqhIdEoqaJlRtbiOZS/OSlOwn5Qtx57V04nkciGqds4Wyef+ZlSsv80FdkEjftOKJo4BouSjhKW0cvpcEALfubGVtXgm26oDvkZQNBiRBWbcCjt7+fWVMbEQc08skseQFefW0tcsDDL4N/dC0TT5rMK8+9jLs3z6SZ8xEFEecIqsuh+qaI54EoHspi+370rsNR2w+irx5yvicO1ake+k48tJ/hz96wY8M7gOweCUE+kpE9zEb8fuVwfXJ4zIfbBf8V/fJwvRYOR7mPzgnzf1X+abh+QHmvH+c/5YOLMJRvCP9c12F5L6cHwvt3WHiSTMmoMbz67OPMnZkjEqnC9lzcutmonXvQc30sWjSLdGqAWFkZhUKO559/nlNPPQUtECBcEsMxLQqmiCTrgMdbb7zN6WedhlG5AEQJCZUzzjqVdC6L4zrMmDMPnAyIDo5ro2gysiiTSg6yZs0q9u1r5ZxzlrJm9SbmzJnD5s2bmDlrJoJk0d66D8fSWXj8YnQ9iSJJSKJAV0cnY+Nhdvfn0FSVyVMmoSgyjiuzfsNbjEpEKCtt4LXXlzF34QRUKYQrFrB1G1lWcF2Rioowlq1SyA6STiYp5C3KEgl6urqpG1OH6RYwTYuAGkSSFFxvuIi6CILE+IZ6EARMw6JQKKDrORzHoTQewRGhsWkCemEQPZtGEBV03aCQN3ht4xvMmzsT3XDo7uymttaH6leLJTEQsC0bTZVwXBPNp5DPOPh8Kq7ngaBQWVlFoqyY06UoEpu3bGLKlCY0TaO6qgbLMHANEVVVOfHkYxBdlYmTpuOJFqqiUMgbbFi/g6amJjzXRZYUXAdkSUXTNERRpGlCA17zVi694mqy2Tz+gIrrOEhqgHAggCUImIZJQBEBl5NPXYxhGLg4aJrK/n1JmppGoesF+vpTfOKTH8PQXXo7O3FI8sUvXk5ffyuhkI/W1nbKK6bz1a98nR/84Pv0tn2e1i23oJs5JEkmk0kRLy1DN/KEQiZu6k6ef9Fh4bGzUZUOsIp5soZhoyoSuq7zypMfAQRc+VQQRGzLw/OKkRDhiI8fffdsfvQd8CiWRrC8WgyrHgGRe39xI4q7HH/Ah4CA4zjYhkU4HOb15z9F3pmLopZjW3lMw0DExrFtdN3gc584hisuaKS0NMaevX2s2RAhGAyTz+f4+FVzuOrSGYCAJIh0dnZSOaoSVVX5+Z3X8pMf3UQ42M1gfyfbt+1mytRJrFu7lrKyBOPGj+OFxz+JJAo88UID76zbwcw50xgVC7Nx3R5UxUdPTx/bVnwZn19CFAVa21JERwXwPI+BgQGCCYHG+gT3/Og8AsEIiBKWWczndZQakKKkB7uQ3eXI7MK2LGRFpXnfHs7/0AQuPKsRMzQFUV7K6neWM3biNMojv0cQBNasXk8hbxAKyViuVfStCTLfueU7vPjC63z++oXo+quEQmFc18M2CsiKUsyJxqO2uqYY5mqamGoQRBFJEfjMF/6Fp14sGgJLzz6XT37ko4iaQbwkxu4dLUz6w9sg2IhDseFd/b24MkxcOBHX8/jSmV/mzh/8GHApra4EQBRdPEzAY8yYWr7+1a9wxcc+DkB/1wDp1C4kQWbT7v4Rw7Wru0Dc38rFF1+I7eh4nsvLL77DiYvnkyg/YFxtXrWC8sooji1iOx63fe/7bNi0GVEQsR2D6TOmguvgan6++s1buPHm25Eck4uvuJw/vvQqJ52wkGcfe5Kbvvl1zjj7TH557308/MjvOO2Uk2kYM4ZkXw8l0TjpdJqWlmbuvPv71NTUcOM3bmLV2rX4/X5u+vKNzJo+jdH1own4FQZ6exhdM5apsxfQ0d2NZVrYuGglfuYcNxfbyo8gSq7rsn9/M3PmTkNRNHLpA+HjoVFj8QVrkZ39aL2nQamBHUuSHexBU4vvnVHlEVw3jWF6BINx9IKBh4HoUxBdFawkl18wDcsuoKoKppHFLxhUlToEFRfLlZAVCUXWqKqtoaQqNHL9zkyetu4kqd19DCZNjp1bi2CbeJ5CV/oAaZtsawRCYQqGgU/xk8mmKLNKMGyryJKNSyRSwgP3388ZJ8bx+VTuufJfOG/6Ih5f/w5bezrI6XnKwxHGyaO45eKruPWl+wCoL68mXhrAcgwkx6BnQGHd+i1867wf8HFjL4++9VvW7FqL7VpUllRyQtMiPn3SFdz8+2KOdWNZHZLrgBzkhBOO54zbz8K0Tb58/o3YhkBWy7Nn1ya2bd1CbsAglRxyYggeb72znikzgwTEUjzTz+ixdRjJTqZMmUg21Y4gKOTzNuGwiuvqiBJMbhiNLAjsb26nSglhFWy0uEbD7AYG9/0eWVDp7jfYv3+Qt95ey41nnI8nOkNlvz6YMQn/e3S2dxvn4XP5e5e4PJxQ6p9yqPzTcD1MjvbAHg0JfC8E8N3kSMbJkRDGw4sqD4dLHN7P0cb6Xsf/2nJgTu/GpPzfv87wvTsSGj38+fBzDh7D+/FaHc2g/O/Iu6HmR79Xh9YL6+npoby8/M9qsgH4lDymLHHyGSfTvP5NKiJxUEMonsbz3SWcGtyFG5lHSSyA67hIEnz43HNwHcjrOkF/kHQqRVtrC6PrKigrSzA7VMZAfzeBYIxMf45U734i4RCx0hiO52DqOUQEMpkUqt8jGk1gZnUk2c9JJy1m9owkA+ksU6ZMwxfQqK8fx/6WFnx+BZ8k05vPY+oSup2k0NdHwBMoDfroyhp0dg9yyuLF5HJZXFdG0UJMnzYD0c2zc8dajjl+OqnUAPnsVuKVNRgFE0GESCREV1cn5eXVtLftp2nyBDxHxjYNwuEg7e2tJBJl+FUNx7TwPK8YCu16iKLAYF8vsdII7W1dxEvLCfhL8GkS2Wwax7WQJB+BoIameeSSBtl8nt6eFNXVNTTvayedztDR0UW0pAS/T0G3CqiKim3bQyRNDoIAsuTD75cwTR1JljEMF0kWuO/e+/jkpz5FZ2c79fVjAQ9BEJk9fw6vv/Ynpk+fiChrmKZFyA+SDKbj4lNlNFXhnHPPwpNccAU8BLZv30nD+Hosu+ilD4Z8OI6Br7KJVE8nMS2IhEAoWoYsy8jbICj6yRdyuK5LIBxCt3Qcx6FgFtiwZQfBaJTSeIxxEyYhyvtwbIFLLr6CP73+BKKcwR8IknGuQY5kufU7P2POrOng6tz/q++yYWsD9z3yGz5+9RVESkOQjyGKIjnDxMsnWXLaFtLZNDua86xekeb005eye+8O5s+fgj/sontgmCYhSSSTy9PW0opfGU8wEqY8XEpLSwtliXIGBwcJR0p59OGHWDBfYszYOhS1FJfT2b2/nVHVtcW8IdGkL60jSQqPP/YkkWgJS89ZwmC6BmLTsB0XX9iH7olkrV4ichVKqJN4+R7mzZtP877dBILHEo2U8MTjT2MWsmRyHuddsIBMJsO+ffuYM6cCWwviD3rYwif53RM7OO3UO0AU6E3r7Nu3hw0btlBTA7PmHcfaFWt4ZG0rH/v0TwCVX9z/TW668dP0ZboRZYtEVTVt3e0EAgEiJePZ1x0jGlLw+SRyqLiChj/oQ9d1JEEik0oRDodp7R5PaelcBgb7qSivpG6SR3b3W8gyNA9UM7rGRAtHiEbDdA6ehSL7iNecxWPPLWPKlEm8+eabXPOJazHMDJOm5WicdA6eWo0tjceTJDxRRCZH3gFPiLF9/Qoa6nU2btjCvPkzMW2B+W/O5oorrqCQyaIMlSGyLQvFH0TEJdXXgZHvw1g8C9fLID5U3Ddra+qQZAFv6SBGwaUuMIbBZA8l0QNllBzHI58zCAYCREMSwaHcYwDbtAn5IuR1WLP8AHKmSgay4qIbWTRNY8WK1UyYUI8sy7R3HMhjXfbqRs758Cls27mBxkmTyA3lyLa3dwxFcAloSgBHdMh5kE/18eSjz9LXV4wQqKysoru9jRu/dgvJTB7RKyKhgWCAfC7D1IlNrNm8G1VVGV8/llDERzKX4unniyRQX7zh3/jER6/kl7/6BbMXzEFVZEoifgb7Uqiab+ht4eGaBtGgj5dfX8GCWQtHGF2z2TSTJjeRSicJx0bR2dFzYN0sBc9JkswY+PtOY6+ynjJpGqZRijzErqtpCi+83sJZJzdgmgai5OH3Rclk8iiygOWJGJaLTwFV1cCzMXImZeVRsAQEyY9jyoRCLjOmJxDkWkRBxPVc3ti4hotPvBzLEeju7kJwc/g0Gb2QZUd3KwCJcAw7r/OnV15i4aKTMAyTqqpRiKKMpvrYtHEjtTU1pFMekydPQ6QFVQ5gmDkWTZzLkjkXYigJVC+NntoFpoWmCKzYtwOAuXUTwHXAdinoOuvX9XH8CXMoiUeYWHEKx9XPwadpiKJKtmATVG3MTCsr9m0BYHZtPaKvGjUYJ5NN09pfDEe/5bff5JbffvMo73foSPVz+TNfh2fgK6ddxfUfnoPjuTTv30c8phENydimQ6K8DNu2kOQACBYd3XtYcuxiMPKsefMN5kcW09/fz/QpU2gYU44/IHHszJOo657FReOuwx8IYQoujichvYtac6Rc1A/Ko3KwDvZ+zjtYlzvQ7tBjR7v6AX2X96xz+l/RlYev/25r8EF17fdjRxz++R8x3fAfb8Z/A/kg4aL/2+Sv4QH6rxJZ/Vfl/8r9GZ6HbdskEomjnicWJDynBE+sZP26ZkTZwrAsBFROXHo21oIvMLj+JZ5/5c0isY0k4nnFUNJwMIxtGgQCGg31YyiJxiktLSUc8qPIgOvR1dmF57m07m+jpbmVRx56mMGBHtau3UiivIJgKIxlu9x334OsWbeenbt2sHXrJtra2tH8Gtlcir6+bvzBAKOqaijkDGzbZfny1ZimgV/RCAbKifhVBj2Fpvrx9PT0UCgUyGYzGHaBbEaneV8bwYBLS9ceIqFReE4STQzQ1tZBMBjCsiyCwQDZdD81tVUIskRPTyeqKoHnoCoSgiPR29mLkcuTTQ6CY2ObBsmBXspKS5BFkfpx48ll8jz79PN0dXcQDPlJJvvwHNi1ay8eEoP9Sfx+H2VlCXp6+pg+fSYSMjU11QSDfmynmDuaL2TxcBAED2MYCXMEZFmhrb0VQRBY9toydD3HJZdehK5nqagsIxQOIckSgiBi49I4sYlotBRB8eOTwuSz/WTSHYieRy6bBmw0n4Dl5IuIsWkyevQYdN1EEosM2MmeVpAUbMekvLwcQZAwdQNEmf7+QdR2AaW9GI7o86k4joXPp6JpCtlsmgsvuJREIoGiKNiWSywWpbS0jJde/BOuC7bt0t7WwV133sPePe3MnzebYxbMAUxkKcXYcbVc97nr+d2jj7Fl8y5sU2KwP8uy15bT3ZdBN8cRClqUxmMsPfc0tu9cx/SZjViWhaIqCAIEAhr5vEkoFKF+QgN1Y2opLS3FsiwCQT979uymsqySt99azumnnkJ9QwOWZdPX14cgQE11HbZTZEX1aRKyJBIKBDnv3HM5Zt4CdF3Hc13yuRx79+1h9eqVIHjE4zEy6Ty9vQM0NDTw4ot/JB6Ps3fPHkzTZMmS0yiJlXDVVVehaT6i0RLGjh3Hiy++wquvbUfT8jRNGsPpp5+GXrDp6O7AEz0M2yKT0zn5xNmYus4Jx51EWAqh+SSa9+9GlDzu/PE9jKoeSzhahuUKVFRUFEmmcjni8TjhQA2aEkcSIri2H8sy0DQFyzIoi1fR2dFPWbwKRQ4SCoZZvWYVPr9AKjGON/blmNjYQMZwGdM4jZ6eHrZu24imaZSWaZy0eAGTJk/gox/9OIPJXlRNQnB3oil7KRQKhzCf96WzGJ6E4SlMnzIHxxT48R0/p7O9kzdefY2wL0Cyt59H7n8Q1ynu9blCjumzZhAJxSkJBZgzZwrerDEYUyowzWKoqGN5XH35pfz6F3chujq5fJLSeGiENRegtaUTSdT4wxPPsmHjOnTjQDjztZ/+DK4pEAxWccE5ZxUJ0ICXXnqaru52JEnEMAzGjh1L3ZgagsEgL7z06kj7kxYvpKV1F6WJBHrBRDeKLPVt7e0072+Dsl6EAAAgAElEQVTm1VdfLjpmLQNJhJJoiHHj42zZthWA8fXVSGoXLZ3rCESdIWQYgsEgoVCA5W+9yf79rQQCAYLBAD6/QklJCe3t7cX248bjuBZXX305mqaBp6DrJu0d3TQP1bsVJYmBnm6yff1MHj8FUfRhO8VQylisBL/fP8KIXzO6fmRu6d4kJWGdklgMrX8K0XEirmOzt3kDrlg0/l3X5MQFM+lsT6PIMo5j4tgSPsXG8yy6+iSef7EV1wVDt7EdB8EXxxEVbCQ8SSYnSTz8u9Xsa3HxZJdJ5eOK983oIpPJoqoy48bE8fs8JEFAkSVe21EMuz6+fjofWnISo2trUSWVXbt2YVkWO3bsxnMVJk6aSHt7B7pu8MYbbyKpFoZlYpPDREJ3ZHTTQxUdVEnG9TK8tWctu3uLYfoXzjoGo2DgU0rY262TsaNUjK0jXB7DRMEfLEf0+YukeoqKbWVZuedtdvcWDdRFdXP+P3tvHidXWeX/v+9+a6/e9zWddCedhSwkgYQsEHYQFFkFd0D54YiijqO4jAKijguK4jYj6IgjCLIJBMISAiGB7Gsn6fS+Vld31151627fPyoJmUwCweU344zn9arXK6m6z32ee7vuU59zzud8DmrlKdiuSDwR40+DHjKaR0b3eZja0krmkNK541rYrknOSGFaVkEgMQWdXaMIgsrCRfNQVYVVq1Zx1113MXf2VCoritm+cxtWh0LRRC2JVBJROnkH6L9LPfjt7J04cH9pPHkyc79TavT/Boz617K/O65HzMHFPOGnb6WUduzr8IN9rDrbsXZYQfat7FiVtyNrgSOvY+c/0Xx/iYf1HT1QgvOfX/9lQYd6tiL916HH1ECcbH3AWx1z7Gbruu4hpdR3bidSf3tL1btD90GUAMF5y/UKovufXnDMxnyoTxlugR56uG73eOczVQlZSCJrLpfc8Emef/Jh4iMdOG4Wry6jh/JUvudmzp/mY2LfFrKxJJal4doSZi6NpEiImgckHcsVsNDQ/EH27usnO7SDxvAkXlXG79MpKS/mug++n7LSCpacvpBsdgLHdBCB8y+4gJVnLkeSZFRNZ9fObYhAwBvmpbWvUF5egldzGBnsRlVLKC0LUFxcRkBzkEQfgwa0zmjDGwxQHA4TCgZIp3MIVp6xsRiN01qxXQ2fXk00nkBQq8m7WVpntDIyEiGVypFKpdG8Pta/uomRgTFCRcW4okTetNA0Dzk7R0llKSgiWctkNBLFQURUAEnDcSW2bt+BKzhc8u6LUTSVg109FBdVI6BSURZGkiSap0+huLQEF4mAP0A6PUGgKICuqwRDYXJ5F1GUUWQvkdEJXnz+BRxbwHUlBLHQ2qWuth7TzLPsjCXs3LkPX8CL5tFwXQHTMLBsF8e2yKeTBIM+XElEwEHzWpiWg9dbydDwJA899Ed++9vHkBWdvbt7GOwaQAYE20bXtEKbIMsglxgHTwmCmAfBKOxjooJlWQTDYeTKmUjl7aRSKTLpNJKsF9gfls2WDTsZiw5iGGbh+ygbeP0+HFdE8Y+RzVkM9g9RWVlGRZlOTWWAmoZ6QiXlKHoR0eQU0kaCUEjhc7d9isWnLWH9xmf48T0/oKWpnI5tw9z3r+sRhSS65GPTpp0sWbIERdLRNI14fBzLFNm9ez+x2Dj5jEkqMUkub5E1s0SiUTRZRRVFTMvknLNWYFo23Z3dDA+MoCtetr6xk76+QWJjUUAiEssiizL7OvYRj8XYsPE1NN1DbV0t8Vic6qpqysoq+NlPf04uZ5FOpBjs60ERXfbv20PQ72fOrJkIro0sgarpTMRieD0K0ZEe9u7ax7Qp01i88DRcV2R4sJ+rrrqCyOR2vvude/jtAw/T2trOhz70IV7d1M2zq5/nK/98Gz2jQ8yZtZApU5q5/fav8anPXY1px3BcA82TRxJU8tkEYZ+GT1ZwxRQZx8aRbBSl0PPVdvLomkYikSYUDmBaaVLpBKqqs2jh6biOTHFRFUvPXEEileGCVReRGEtTXlnGnFmLGR8bJZfKE59IoIoqE2NR1qx+ids+/VXsvIuZt/jtvz5ASPcguSDYCkXhUnwemaCcxpQlJNXl/l//hFBxNQuXLOH8S86jpKqYD99445G92qfrvLHuRfKuSUYoI573MhxNEAy1Ix8SSIolxvmnL36DCy9+P/u7BlBlBVUM4thvtjmTRJm9u7axYN4UqmvbEI76qf/Kl77AwMAAfX0b+OEPvssZSwtq0b/6ze8JBIJoug9fUQllNVW4qk1Hz15Wr3n+yHjVa1JbV4mKhqprFBe9SSO+887vsfDUpZiuSP/oMFYug1fXeWbdWrK5guDW+676ACXVc5jS2I5f8ZLJFRbX09VNZU0z7YsWceFFZ6NqEqFQCDPn0rF3zxEHu3fgIHnAFy4HRJKJCH5vCd+++3tH1qFIAuGSIJ7iEOHKCjSPiCwf6qGJg6wKFBdXo7gwEhl+82dGgq5uF2J1iK6I2+2hv7+TufOWYFmF+5szVTS/SVVdBbm8jabpZHMxBNmHJAvUVsF7Lq0rKK+rIggCmlciOZHCdjRe3dDL7u3dXHHN5ZSWhchGRrhu2dUAbOjeRGein1hiHBcXM59CkPM8sXMzvROFzPAlpyyhu2c/lplhzeo1NDSU4S3209LWim2OIaEypaWUba9v5IKzpuFVKxCENG7eg66VEyqqwEua9GQ/8YlR8o7AbY8/AMCKabOZ3zAD29Xp788TnRC44F2nosjFdHX0ks/mSMQnGO4fYXC4j3xmhPHx7fzTwz8GoH5mNa+t7MXMpchmTaprq3njrjfovmcP478cZ+cd21h360v84tzv8votv2bP537Je+edAUBtUSnRbz/Ega8/wsfP/RCuUk4+ZdDTe4Ca2mKS8TTpZJbYhMXTz3biOC7+cBWnLpxHKtpPIBgmOhEnnUnz8rrXWLV8KXt3dzAwOklDuYexkX50r4I/4AVbQnTexEKHsYlI4SW4gPMm6hSEkyhROk4m8u0ytEdj2GOx77E46giWOmRHs+kOH3u49vQwHj96nrfLwB7LajwRtns7p/V4merjzXc8DP9WKsP/lynEf3dcj7LjRZGOfmhOhvp7Mg/DWzmzf46903OeTIH8yZxTmb4CZfqKk5736Pnf6p4eb0M41kn/U+az7TcFuCRJOu4xJ3uuk3Guj7cpHa04fKLgx7HzHftdPPzeYWW5w4GQw9d0PFqPLMs0N03DoxkITgnZ8UFk1yQnarirPkHlrIVoo9vZvHkDplnI1IGAIIAouRg5A1wX13aYiI5jThxAy0dIpBK0zZyBIkMuk0CWBAwjg9fjwzDyWFaeAwf249gu5eUV1NY2cNNNN7D6mef4zW/+g8aWKciqQi6bYdac2ZSUhJnS0kwum8MQJGzboFKFN17fWPgRxWLLli3U1tbiuqDrCmY+h8dXRn19E7V1DdTWNdDb249jOVRV1bB9xy4CoSIsy2L5imUUFRfhUlDA9Pv9eL1edN2DKEpIkkxpaSmBUKDQWkgUSSfj5LIG7dPbcWyHbdu24PUFqaqsQXBEhvp7wXXABdtxObC7g7GxKKquMdDXT+f+/XQd6OK+f/01vV0DPP7Yk0iSTFVVBStWns3G9Rvo3LePdevWY9sOL720DtcFn19j1sxWBFsoxH8ck7yVR3RBklVEFTSvhigIiK5IOmkgSl4sR6CsrJT3ve9arr76KizLYEZ7G0VhP9s2byMyGuWZZ1YzMDCIJElUhVWQvUyOjaBJMj7FjybrPPLQIzhWnnQ6CUAoFMBxbHq6B1BULykjy6oLVxEK+ykqChEdGyebyTMaGWJkZJCx6CiBgI+6+hpsx+bKa67GFwwxtWUGV15xDclkktbWKdi2CYJNJpPmxTVbWLb8dD7/T5+loryen/3kfqZOnUlPb4JEUuD00xcxMT6O67gMDAyTNywsy6K5uZlkMkEmk0FRZNaufYnI8BhBfwhF1ZnWOp0XX3iRRCJGY0Mj69a9wv79B9i5YxdNTc1ER6PYtkvH7r28/OLLiLrG1LZpVFVV4NPVI8+RrnvQdZ3Gxkauu+5a+vt7ef751axatQq/P8SH3v8h9u/fj67rhWfQdRkZGcTn95PLWpSU1dDf38v69S8XRHgMm57uJ/jNfQ/QWN3Keeet4qqrruJ7372brVt2Mjoyzq/uu4/PffpTmNkUU6ZMAeDBBx9kbCRLLiPjmD5+/+BqLDtNPJVEUDxk8jKGqaCqMo6ZZ7h/ENMVySQdEtEksuLi93tRVZ1vf+v7uK6NbdtMTiSx4xM46SQvvPwaFbW1+MMh8o5EZ08/fn8VW7fvoX3WXLJ5k9KKUi666CLu/JdvMRwZRdM1Lr/iUnbt2k0+n0eULDKZDKKgIaCy+um1DA5EWLNmDaoGXr/CDyZ+xDf6v0UqM3kk0Jk3M9TUluI4DkNDQ2zatIm6sRT9j64he4iSW11bTmvbVEa+kSJzj4KiqGQyOTo7Dx7Z+8oqSpg5aw4HOvs5a8XZbNu0+8hnHq/GtGnTqK6q46tf+w5f/8rX8fl8TE7GuOoDH2HTli2FAKES5JWX1/Hu91yNx6MfGW+bFpblILgy+/Z0cxj/+7xe/vD4E9z5re8wPhFDdkVy+Sxfv+tfuPcn9wFw4/UfobysjIloFseWME0Txyk4rk1NU+js7MSve0hPRhGtPLu2vk5X936mz5jKypXLAfjmt77L88+/dOh3wKKzq5sP3nATjz2xmnA4DMDE+ASW6ZI3TBxbIG/YZLO5Q1fg4NgWqURBzba+vv7Itfl9JaRS+3EP6jilB3DsKLl0ko7d+5APqf9qnhB/eHwfB3tjKEoAx3b43guPUnbrZVR89ioGoxNosoRlWkiSjqaFyBkGlq2wactBJibylJfWAwnKy0MEiou5ZNaZtNe24bouH/zRjeyJ7CdvZHBdl9+/sZFbHyo4hme2zeW05mVUVjSy4dWNzJlZTcCn8+2HvkvpB0qpuHEKvSMRBnq2E9J0SosEbNNk20APP37lSbrHR5hMTCJJLolkjA0Du3nXvV9lz0gfZf4Q/3LZDZimgSDDxu3bGRlKYectdvTu5PGORzk4dpBwcZCg34eRkVjf+RLvvufz7B7qpswfpuGaGqL+OHbeKdTaCgqaqjIWiZFJO6RiFpvfeB3RyRAOSHh1mcNtilwXUskJZCmHxxsiHpvAdWy8uoiZS4NroygaHm+eiy45DQER3eujrqaMkvJSMrkcwUCIQCBI/0AXz615mnQuSyqTIZNMYeZNPD4vriT+pz6uJ0p+HI0/jvf+sfanYN1jjz3WkTuMcU6E0Y4V3Dy25c7R8xzGSYcD/iea93jCS8eW6x1t7wSjHovlTvT5ia71WPz6f8X+7rj+3f5sk2tnItfOfPsD/4fY/wQaxttt5H/OGk8U1TycYZ572kW8smY3qtRHSVENiZSNaYt4RIlEeSvKOZ/m1IYikp2bMTMZEvEMIyNRPB4PwXAIGxdJVTjvwgsIBoNYts2+fV1EY8nCul0H24ahoXFEQUdRNLLZFNNaG8mbGWy70B6iv3+A005bQi6X4ZxVZ4HtkEoX6go1rwfdF0LSPORMk1x+FFmAKVMaECSZnGEwffoMZAUCwRC1tdVMRKOUljfSNzDI+ESMxx57gqbmqQwNjLB1yw76+wawbBdNVenq6iSTSaMqOnv27COdytLb049lFhx1SZQRRQlREpEkFV3zEpscx+vV2b17O5WVJZxySjux8SgILt39Pbiii8frxTEd7JzFyOBBhof7kBUZn9dLeVU9ldU1vOvdl4Dksnz58kJNmCji4rD09MXUVpUzb94piJJFQ0MjtuVimhZGLsVr61+nv68fUXTx6H5iEzHAQVMUsE2wDFwzhZlPEQgHyeRMxkbHmJgcxbZNBFEsROVDIZpaplJZXcG7LjmPyspSLMsiPhkHJYAihBgdGuf+++4jm5nk6quuQFN0/L4QIOI6GrLko9xXzJ7NO7CyBgIO2WwayzbRNA1V9VJVWU8wUEJ9XTMg4bg2JSXF5PKFbOxEbJDVzz6FpmnoWpB77/05kqijyDpllRqiG+aRh17AsvLc96sfUVtXwcMPb6C0LI1l2rz++kZGRgZwHZFgMIzX60VVFJqnNCNJIj6fl/POP4+gL0gilkQQZQzTYsnSpZimwavr17Nw4QKi4xFmzZrBWDRCz0A3XT0HaWiu54JLLgDHJWfkyOTSJDJxJFnm5ZfXUl1dTW9vHwA+v49p05q54srLGBke4bX1GykrK6elpYV0Js1LL72Epmmce84yEvFxHnvicfyBEBdddCFXXXM5oVAQx9VYfuYCrrj2OmzBQ9v0abzw4hquv/4Gnvrjalqqi7j9a18kj01Fcz33//oX/O53DxKNJInHMoyOTHJgfw+jwxOIjkJjQwum6zAQGQZFIJmKMRlJYKZVMOCssy4kYzn84me/Jm84SJLAV776+TcdbSTMzQ8h7vgD56xYzC/u/SaKEEcwTabWV/PU439E0wMkUwa2A6Is4NM9OJJAU3MT2XSGdCZOa2srjuNgOzn8AR+OLZPL2ixfsZSenm6WLVuGKMogqnSleunO9KF5fUeyqYqmkXMsBEHA5/OxaNEilNUbqN62D6+30HolnU7i9cnMaG/jlLmzGRwYZmhohNKS8iN7n9fvRdE1ZrTP5aMf/jDTp7+pnFtaGmZyMs7AwBA5M4vu1bn/579G01T2dHRw9kUXUtdUR2VdBe+95losy+Jf7rz9zb1a8SB6vaxd+yiZxMShPQRmz5rBpz5xMz/66U+Z0tbCqUvOpnnqbL5+xzdwHIcVy5fxpS/8E9HoGKWlxYwMR0gkUgT8hUxqT28fU5un8MxTfyQyOUwym6Zl6hxKSsqwTPjcpz9PUbjQPuWDH7me8uo66ppaWL7qfB56+Pd8+Uufp611GgCTkzEURSORSKGosGfvdlT1EJXahVw2yfj4ILZtE41Gj1xbMj3E4tPPwh2YAg3dhP0SRjbBlOaGQqAJEASZBQsWkM9ZZNNpBEFjJBJ/8/64LlgasiiQyWQwLRfT9aMHq2luncX55y0nHCrCMnJgaUiaQHlNLb/8+M+pK65heHKYS751NY2fXELrl97HTf9xD0kjy6yaRn505U1kUuOkkpNMm1bLy+vW07l/gFQycWT+noMvUl2sUBQewaM5xCbzDMYSfHP1bznja5fRdPNMpt16OjPv+AAfuP/7dIz0M6Wsmodv+CI1RRWoqkreFimrrmPFyjMwDdjfvYdvPHwHS79wGsXXljDzc6dwxrdO58of3EzHcC8tFQ08eMPtFNeVYdsuQV+Biv3G65vYunUrzc0zePXVV6ivL2H61KlExk22bt+HoorIh5wkQQBXDlBU3g6yH1kSSE5EMHNpHNtAll08PgkVAys3hl/X6O3Zz/PPvsDGDVuIRCdIJRPkcllu+v8+zCWXvIvTl59BcWkJLS0tJBMJEEXyjo0rcMJa0SN/x/9F1NVjHdFjMdOJ6NBHMymPHvvXok7/NRJc/xtM+upXv/rfvYaTMtd1v/rXO7uD7ZgUKBD/tRD6ZB/Yk6EDHBsRekerPJoK6v7XNjx/ir2Ta3urz97JtRyJ6uEALgguuMJxo1h/bTGkP2Xs0eOPjeKdKEsMhWTcYTl53LeOygmI4Aq4LoiCdIgaU6DoHKbqHP7/W0XsChOLgEAhrCqQ1URmTJ9Gx5onCTXMxBEsfAEfOUtm4+sHaJ46jT0TKj5RxjexGytvEa6oxsRAFby4DhjZDL//3ZO0lGaRZIXGU85G93gJhosxbQFBkgiFA+TyOUZGInR19TBz1mzWPLuOmbNm4wv6MfIOHXt38O5LL2QkMs6+PXswszmmTpvO2PAAqVQexxEIaHnseB+yWoQc8JO1VIqKw6geL46VJZsyGR4eora+ke7eHlpbp5LNZtAUiaDPz4ZXXiQY8LF71y6mt7WhegPoXg9508KjyYSLQoCDrmuIgoQLyLJIcjKKpvtRZJndu/fQ0tJEKp2jqrIcWdWwXIHenm5qa+rYsX0Xbe2tGBmLwcER1r32MqcuPZPmpmZ27djJ5OQkI5E4rdPqECWXiqoq/B6dvu4xZNkB20LVvDiujOuAJDsIgkw4HEIAVG+QsvJiDuw7QHVVE7YNsUQCv9+D6wpMTqRIpU1Ujw/N78O24Tf3/wZN81LbUIHu8SK4hb6tE+MxAkUhBvsHcF0Lf8CLZTukB3YSC83hhV1pZs9rom1aG6JmgyCQyThoqx+D7AQdFY2EAn6u/ej1lFVWseDURYCLJukM9UcJBgIkEhHylog/6MNxJFwcVDmOZYuIUh2yrDDYHeHWT/4jdVU1FJdWMP/UNjweledWb2Dp3DnkxSyCZCFkdGxJpby6mNqGRmoqRxHcEkJFpQSLvOiah3XrXqaupo7Nb2wjUBREFAuOVFfnbjTNA8De3XuQRYlg0Ieq+JgYH8dxLEpKirFth9c3bmLlmSuZ3lZQqxbJI0kapplDVTWamtuITaapb25Al1wscmzevJWKimo0j8Lg6Cg11bWk00n2799NZU0jsXicxoZmBvuH0b1+ggGdtrYmVFVm7779lFdW4Loi27e+gccrcsX7vkRYVSiu8NLWMp11L73AxNgBLr3ycr7+zXs55+xzmT1jGiN9nXz5K1/hm9+9E49X5LHHH2TR4nksOPUUJMllfCKOzxtA93jQBQvdU8IP7r2HM89ZzhWXXM4zzz+BHlBYsHA2ppMmk4oT9IQYj0bw6yUoio448gZGOsmYXocjiugenWTcYOPGHYxGYrS1VlBRVoqmaGzdvJHSgI+OXR1U11iouowj1SFJYQ7s78Xv99PXM0CoyMGxZGIDIzz6hydY8/wLzJzZgscf5pmJp5AEifv3/Jq9L+wlPZIhPDfEBUsvYHI8Qc6f5bP7/pGmTeN0ThzkF/u2Y2UsEgtSvOhfy1m956MIEsryDD/Y/Qsecx9j57/tAmB08SjPs4aXsk/RLfVxRvh0HvjdQwB0XrSfZ7Mv81L+VVannuXZyefZpm+hflUD1flKMrEs6UyGcFmIqlWVzLntFDZPbKXnmUL96MBlgzw+/ATvb7qJfb1djIwPsX79a6TDGdJXZKmaUYURM0iOp3BxqZ1WzdzW2Tz5+JP0W4N8feROHh58lNWJ53g2+Twb17xBrDOO0Zzj/PNXMr2hkcraBv595CHuHf4Fa9Mv8B/dD/Jccg3GFBO/5sWO2VhZi2AwyLw5s2n6ZAO5ZQ5bntxMZiSDtcDltZrXecFYh9/SmF+7iHvu/RmpdIqxU2K8UbmT5zIv8tTEap6KPcveX+0H4KPXX0cm66F4/Snc2/oD7gs+zY7p3bxYsp6t6zaTGcuQnJcmMN+Du9lPzsqQqOjhX9MvMNZREJ/qf+84z1dt5snA6zwdeIOpkzVUyCEG+jM8N+VVfuL7BWsr1vN86BUelf/Is8FXeUp/gf5wN9+f8SUURSUSm2DCjOHKLoE6Hy3n19P6sQZeqtzD2vJNlMteSmM+amoa+F38GZ51n2Gio9BP98AFg2xo2cnGxv08HdjJqvEmSgNFqJ4S+sRhTNskk82i+GWKWwJMvaCZ6qsr8JarzMhMYfOWHl6JdPPLxX9gy5RtrC1/hb0lewtaEI6LY9vkMgZFvhDz6lpYdMk8Kj4WZlPtPmTViysINO+YQUlxiJraUior60D1UBlWGY6m2L19My31MvPm1KOqJk/v3sbu4T6CuocPr7gUy6nAVYtQJA+OMYaV7UfTFATBQUBAxMW0LBKxcVRvNRkDsjmD0uIw2USaarmJjz/wIXoPrGPZ6QsRXRfDyBOOLSFYXIa6yEFEwHb/a2YR8ZBHe+j1ZuuVE+OeYzHbsfTfd2JHn+sIjjoBJjzxuU+csTzRmo7HgrNtuyDadwzmO3ptR+OwEyUP3mqtJ8KQR2NjQZAAAbFQc3aCa/7bM1EU//lkj/27qvAhK3xZ/jLqtv/XzBoogAOppv2kx5xs0+SjKbV/63Yi5/Iv3UD6RHTjw+aaNrLkBa0CxBwuVkEgSHRYetoZXH3Vlfz0Z/egKW184vpH+PIFNoarEaqpZ3h4mGAwSCab4fLL34vZ+e/Iskwil6VIDTE5NoGsiGRzaYLhUrL5NNVVtQT8YSJjUc49fwW2kySdTmCk8yxZupxYMk11dTWlRSH279vF2PgwVTWVIGkk0ylykX5kVSedt5AiEUrqZ2KZJslUmqJgEMhRVlFGNpdlSlMTyVTyiDBOb18fF152GWbeZHQ8xtbNO1h+1lJCfi84HgRJQpIVNE0nk86wbdsmFp+2lGQ8yejwOM3BEgzDYMb0GQUHxqeRSiRIDg/h9Qdpn9FOMplk4aJTcZxC79zt27Zy0aUXYeZstm7ZwsKFp2LjMDkxTsfebuoaaxEEC9sRKClXEEQBVQ9w709+yqWXXUpFZQV5I0FRURAXh7xpIEo6uq4zd/5c1r68llPmzuV3v/sdN910PT6/j+KSIrZv20kg2IqZzaOrHq648nICvgAONrguedMgk84gSRKyLBMKhxgdGSMULkFTFYo9NtaMM7iiZiVbtj7Haacu40DXQcbGxmhvbwcrg+04NDaXMTk5xn2//BEej4ZpxPH6PDiuiN/vZ8/u/cyaM5VoNEk6kaSyshJVksma08lms0hSQV26qq6CO75xO4OD3egeGRU/tgUjIyP88Kf38vF/+Bh+v58dO3cwbUY7r6xfw5Klp5I1KpGkSRzXRdUCbN/UQXlZNb19fSQSk6RTSaora9i6bTttbS2se3kDjY0NJJIxqqrnoygKGzZsoqKijGdXP09NdXUh0ygV1JWz2RwdHR3MnDUDR8ji8XgZGR4llcxSXl5MIpnAU15Mkb+cIl+M4b5hBob7OOusM9izp4NZc2Zj2RYb129k3vzZhbpkMcQTj/6Rq655L6oqIwgi8+fPRZJFXnvtVaNNAcIAACAASURBVM44fRrjsWLuv+/fePzh/+ChR59gdOQgy5afyuLFLVxxxZV8/0f3sWnzBiTXZOU55/DB6z6KT/QTMUb44Ac/SCqVwufzMdA7QF1jHYgu2WQMRBmP38dtt91GNpvm4acfRVdFBMthT2cvLVPrkVyHeDKCpErYQo5HHn6EJWoUWZS59rqP8cLaZ0nEo9x44ye48467aG9vp6TMy0QsSzo1Qfus+bz84hpkSUWWi7AdE0EQMK0ciioyHp0kHA5j5CyGBrr47S9/zz/c8inWPP88ujeEqspH6HuhUIgzf7ACBDijeClej5+kkCnUOB5q4aJpKhc/eGFBoIwCY0EQRERRxszK1FU3sHb7C5z+72eQycQJNYfp6uqjrr6SpqYGasUqRg7uQ/UV8fHOj+E6BdExBAFRltBkGU+jwIfuvJZzq1fR09PDbqmDR2OPIyoK3lIPc34+m9bWVkZHRigvr8Cw4py6YBZLz5iP8F6HXmOQdCaFXq9TvawSf8BHIpFkZekKlidXYKbHMI1BcF1s28WxXXRd5dTPz2f+5+aiqhp50yJUWsy6dZswqwrH2Q74g2EEUSC0PIx0pkyjXsX7xcsoq2zEpyl8ZO8nsG2X5d9bAraDpKhkMhmMfB7Hhh3btzB9Si33vngnvxl5jFQqjdfnwXZMRFnimlevwHWhvWQW7oBNLmkSNXMgiSTiMTw+gZVfOwtJoKCuHfOy6vwF/Pb+p1jYWs6MyxuZflnjm73bhUJ8WpIkZMXGyUeoqijDH9DRRQ+CKGFZLpIs4ToOriDgOmAZNh9f8QE+uvxGvtL8VUQni+PYCIKE6xY42aIoYxomM2e0MjQUZf7MKnpLG2k+vw6fX8N1LBxLIJc38Adkgr4yNEHl9vd/Ed1TRKfRiWNn0JTC/m27hd9OKQ2RkUHq6xvY3jlKKOgr0MAFAUcXmHZ5K3O8c3Fsiy8bnyE4mkC28jxcuY514hukMxahomKwDKa3Tcd1s7iOjmXnGBocJqQrZFMxikMKc09pBAySGZErGi7gu+/+KK4rEwg34crl5PKT7D+wh8ZKjZLiCizbQJQFHNtGFGUkWSYY8vDy67uIZYM0tbTRPHUaYtpG6BT5zGe+zMP3f5s9G19A96g0TV+ApnuPuD3vBIMcLbj217Zj8Z/jOEfosX9uwsayrJO+BsuyTnh/DuO6fD6Poij/qzLT/1NN+FtxCGzb/qstVBDcIxnXYyMYhx2Ak+GqH6/VytFjD0dTTiaLeKJjjv17/bkZ12PX/3ZRreNZ9rl7APCcffNJzXXc9bonFhc63nqOpWocbSe6Z8e+f6LWOO/U/hIb1fEidke/f7iZ9rFO6VtF9Q6LEhQyrm++L8sqv7v/37jmyisYjw1jmBaK5kXVNAa7R9F9hVpF1SNi5nMkRwcJHHwROxVle3+G2fMXMzk5hpmXKIo/SzwRp3zRDTz2hyc544wzkGTo6upk5uy5mKbFfffdT1NTM709I9z8iesRRJctmzeB5dA7MMTA0DCnzDuF0xbNJ5eOYzkOdk5BUkVMM4un+z6k4plIchByGSJSAD3oQ5VkFEWlf3CQ+vpaOjr2UFNTj+bV8fn8pBJJ3tj4BsvOWonrWIiuRGwiTSCkoWkSPV1dVNQ2kM/liEYi1NZUEY/HCRWVEhmNILkuZTWVuA6MjY0yPNTH7AWLEG2Lgb4BGhubiU5MEA6HicfjSIqHXCpFZGyU1vY29m7fS/9QP+ecdw6SLOE4JrKjgCRgWDl0zUMmN4mmBMER6Ovro7a+HlEScF2bZ55+hosuvpjt23ZSUV5FcWmw8Ld3BQRXYN3Lr7D4tFPRdBnXFfn1rx7gvZe/B12BRCKHzx+i8+A+2ttnARaGYTI8NEpTQwOW4IBj4VgSL61dy5lnLsPa/m8oH3gOVa6gu2cLJcFavv/9u/nkLTfj8Ur4vvs1LMti7IbPIggC3QMHKSkpob6+kf379zO1pQ0Bjd27OkA0qaqqIpFIUFxcTCQSYUb7LBLJCTweBVmWsUwRx3IRsXBFCVGETCaHLGmMjg1TFi4FGWRVQkLjO9/5Drfccguu6xD278HId6PqFTz8u5c488xTEESdkZEJmppb2LRpG6quMnfubPLZPJqmYlo5RFFkPJqg62A3Pr+HfXs7WXX2WegeFds2MAyXZCLL2NgYqXSCM1acjihI5HIG3d3dTI4l6e7v4cqrryIW6WNsLEpDYxO6R8MyBWRFxHYdEGVWP/kEF196IQ4OmayBJnvRNPkQDc3FxUaWDDRlnGy+iq6DQeqq6nHFPJ///NeIRvv40m2fpbmxjo7OISrqG1EECPm8xNM5fvHjf+Pj138USzWJx+OUl5fzyiuvsHDBPARZRNU1PD4f/Z1dlFU24QgOrmsjqZCJJQj5QoxOGoTCOoKbxKt5Wb9pG7PbZ5JPG+y973M0T2nhZ7s9fObWm9mxZQN33Pl9fvPAr5BkG9sRURSdd138Hv7w6IOIIigyeLUtuI5DzlmIYWS5+eZb+MHdP8bMp/AHvEQiEYy0TTaT52M33cxzLzyNpAmImMiigpmFp55+lHMvOB/d48GwTERXJBlPkUlmcG7/MU1N9XRduZKSylJkvRzVztD1lRjBcBF8OMPHPnoLD/zmh4yP5ZiMxWhoquT1Ddvp6t3OlVdfx6svvczKFUsZnUxSUqaA42fT5tdobqyntr4ey7JwbZux8UlGR0eZM2cOkUiEb/3zHfzT128nWBJgtH+QUCh0ZC+OjE5QUR5EFGQCwSomJocpLgnjODa5XAbLzhPwhxAEGSHrYjjjpHJRQsFGYjEHxzUJhXwgmJimja75yGRTqJqDYag4jkMg4EMQJCYnxyktCRJPRPGqYVAKjrdjgWUZ2I6JRyolnu4mGx2hsnYa8azBZDJGWPGRzWfJGhkaGxvp7u6mqWkqecMlZUVRJA2fNwS2wC03/wO3Lvoi0fVjTD3dIZscR9CbcdVyPD4vkmuC7mfH6+upDLiUlrm4ZhpFlLAEEbDIm3l0TafAbLMRRBHRymJJISTfFFyh0OPbdt1Cpt+FeDJHSbFOPD6JjUDGsKku8xMb2AmOiesaeDw6tiCAa5I3ZDSPiGXaGNkMuifEeDRBUWkQj6yTzo+jqkFcR8S0LSqaTyWZVtBUyE0eIBHtRVdBFhUs0siShIiMKHvZ15UjZYicMn8+liChe4M4Zh5J1ZEkFTMTAzuGlT6IIOlgpEB0ydlV7O+NM33WLA7u62HegnbGxhJ4PCKa6mFgaIyBg7vIxTpYtHgqiiSRMxR27+1n/sxSLEdE9Lejh2uZHO2jZ/9WZk+vIZ2KIskCguBg2y6CK4KqY2YM1m8bpH3uuTzxx2f40Ec+AMk83oMV3NR/Df07n+MfrpqK4YjMXfYexI3nUjtlKuqVxolxl/CfcQi8mTk9GrMcjS9OxAD7c3DSYexs2/Zxz/9WNae4b9bFHh7/Tu0wNn075uHbXcOJ7tmJznX8z9+6zvdv1STprZox/Wf7e40rvKWy7F8yG/ZWWbC/2///Jori32QPrLf7Dh2+rqMFm44ek4ln8XoUEm4aUVDQ1TAerRRZ8tE8tZSiYj+i6sFGIxXL8Olbv4A56wo2RTTaS1yczAQlJSVUVlaSSqUJBoJIssJFl56PP+zFFUQGhiJ0dXciiA433ng95567irIKH8nUBHd//4dMaZ5J07RmysuL+Nj1H2Tu/FkkkgkUxYuuh1m37iUcJ4E/8iSmq2O4PhwkRFxKK4rQNI2OPdvJZuMUlRbjCi5tbW2Irkt3Tw+WZWEYeeobGiBvIIs2tmOwe+8uJFUlnkxT19iMJKpExsapra3DtW22bd2NkTWpKCtnLDKMkTewLIvBwUHmzZuHnbOJjEQpKiknmctjmha7du0iGApgWTA4NMiMGa0YuRzT2mfQ2NhIfDJGLDrB0398kXRujHRmkj17OkmlM6hKGMcFIzOOVwdFcIkMjdDVOcCqVefi2CKuLbN1yzZc18XIG+TNHJOT4ySSCVRVw3FsXNfhfe+7BlVVSCez7Nm1n6eeXE1dfROmlSNvZpEkFdfRMIw8Ls4hUCxhWSZOZhK0EDYijmPR0NBESUkp77r4AhzL5K47vs1wa4zxWVnec+l1CE6IWe3t1FTWYOVs5rQvIJmKs337DmRZZdrU6biWTXEojE/3UFZcwo4dO0mn04hSIRNnkccRTDSfgig65PMWjg0PPPAbKutq2LFjN2bWxJHyPPvc09x666089OBj/P7BJxkereH+B6KkjGouvuR8AqEQxcUqs2Z58OgRqqvCzJ83HUECr1elt+8gsiwiSgUxs1mzZzFz5nTed+3lPPbY77FtE9tykWWVvGnQ0bGLJUsWIMsStu2ybdt2du7cjsej0jqlhTfWb2Dty5vwBUr52jd+RKByJUV1K9jfeZBEfBJVdDnv4nORFJHkZISwL0XQ34sijyJLUSKju8il96PKkzz3YprJTBv3/etv6e8e4jOfuY1FC5dw9/d/RFGolssuvYGpU6diO1n8AZ21a1/ke9+8gw9f/34En0hVQwNts2fz2oYNLFy4EEnJoqgCkqhi5EQ0TTvSx1AQBHySSLioCHSFomIvCBaJeKFv8sz2xQiSxiMPPU5xUSm+gIcPffT9iILMYH+E++67j5yRQpQN4ulxHMHktw/9O65kIqo66XyGyeQ0+vobAHCx+MlP7kFVNXw+HwIaFRXlFJd6aGip5LkXngbZIR6fRBAEotEIguBy3rkX4PMGMAwTQSjQ8zKZDBMTE9TV1iIIAvX1Dciyiim7uOQoLQkT8PsJ+Pxce82V3HjDB3DdJDYuvpDGzDkzueCid/HJT3yeH979S5adcQ6hYBEejxdd97J48WnUVTbjuCo5A7r3D9DZ2cns2bMBqKio4GvfuAtRVvEJGsPDQ5hmntLSEmRZoq6xlXCgCNtMk3ctAkEf4KJpCrpHJRgoQRAkRiMDZIVRfOFyiopnY4kytpPD45WYjEXImxkcF0bHosiKgijL6LpMIFhQ63WdPJokkInFCCk6lmViugKGJaBKMoIqI8sy6199FckVqGicStqwkASRgKYhCAY+j8bYaIwd23pJpXLYtoGiiMhaER5/MZGxEUw7yZ3fvYPS/hb2yutwkFEkm5GRHlyxULpiGDlESWbx0qUUVdfxxo5hHnmig0lDJm/amJaN7vGAIGLbFl6vr+C4E8RxIRqZQMJmMjaB5dpIqsLQ0Ai+gITj5vH6/BimS9DvI5N1EJQwz67tQPMXYbsqsqDgOg6SIIBtIwFen46uqhQXK2iyiWEZ5B2RwcEo2ZTFK5uGMUw/omtAPo2qJAkHg8SSDhYWmurHcSQcRLJ5gfWb9qH7yhgdi6HrfkRRoa9vCFF0cO08meQkI30HECwRW3QQrDSjo3k6Ooc4Zd4i/D4/U1umEo8nKa8MoOte9u3ZyeBwFBmLJYtnks0I2KaLRJLZ7SXkcgapdBJHkEkZMRzXpLTEx8TkKIlkQbwsmzWQRB1BkMEVsR2XUKiYcFDn2muuIpfOkM+apJIJevdt4eKzZzGZTBEqqyI6EWd3xePIl2ePgyDe2v47cNNfqo70T123IJxcy5uTnft/akuhvxX720Ptfw070qrl+Fz3k7ETKZedLA//cATpRDLcb6XcdvQ5/lKCPn/JiM6x7YFONP/xFNKOHnMiVeZjaxGOtZOJlL2TY07m+OOOOdza5pCM+9HneLv7c7h10OEWOEffn2P/fXQ21nXflI8/PLei2sxbtAS/WoSqehmdGMZWUsSifeSzObo69/P0k4/gZCdJjEeY076En/3wp/TnZfYYtbjDu4gNdBIfH0QLlqAFynFtF11TOXiwG4/PywXvOo8ptW3kjQyRSC+y63DRReeiig44NrKqons8nHr6UuLJcYRsHr/m4Y9PrUZVNebNrEY5+B84lgnF7YiCwM7dBUq6goSmysyas4BkwgDbRUQmlTLo6hmgvrGebDqNV9NoaGrEFkV2bO0glciyaMkiXDsHZMlkE+TSSZqbm5FUndc2bmDFmcuRZIHfP/IwpVW1jEcm0TSFefPnE0vmiEQGqKioIRQMIAk5FFVi9pwZ2Ca8vn4DTU3NrF79HIqgYmYT5I0c4XAJkfE4K1eczmOPvozXE6ZtWj1er8JA/xDpVA5bUti+uxMknXBpkKbGFrZu2khvdweSYrNsxeJCHbjggpvD5/dy/vnnsWXLdjIpB9sSWL/+FYxcHm8ozILFC2lpbULTBEaGxunribBt61Y6u3Zi5POIrovHFyKdyXDWqpXs2L4FRIXOjr3ksim2be4kno7R3NZGuKyEL//zF9A9Ki4CN3z8FkbGIyB40Lwe+of7MG2XTHKMGbObaG1vQJUsKuvKCBQHQVYIlZQxd2acusreQyAAdm85wCG2H4qmonlkTCfDspWnkRzLICkar2/ZQGwswoLZMxiNDLFoYRsrl84gXFbEhRddQi4bZvtGlz3bNPr6arnhoy+TSM7E6ytCEifQxGEUpY+2VgmvZwhViVJX5xIImJjWKKYd48qr343XZ1FSrhAqdlC1BO//4EWY1gS3feUHfPLTtxP0l3L2mecwGhmmf7CTWac0c9aq+USjPdTVho88g6IQp6RUR5RTePUsijBAeYXIk89sI545g3t/vgnbXcCDD+3FoZ1PfnINn7vlO2RHDVaeeTa+8mJuvvVTZDMJVMXHunWbKS6r4tS5KykPlmHkLRRfgE/94xeJjEcLwkaHzLQKFEpJ82GZXra80clgzzgWMsnUJJLgYpsmeRvGRvpxzDx2bpzx6CT+ohJ6+zfh8+aw8ylOW3IaFVXlSJKE3yMST0xw+opleItE8qTQfcX4PX4kwcXnkZgYi4KZxsoZ6LoXQRZYs3oTa9euK4iDOTnySYvBnh727NxNKODHyOdBA0020VSbdMrC56vAFJMoHj/rXnkDSZKIxwZJJbKEQ6W0z56OonqwHZtURuTu7/0cycwg6GF0XwDTyhAZG2blqrPoG8zz6sYd5FLDTAxHUMUsPkXhi1/8Ij+89y7Wrvktkf6tpKNxnnj0D+QNi7FEhKceeRjZFGhoaWVKUxlW1mLDuvUITho16MHMxzBsA8E1+OznvkDT1BlUN0yhffY0rvzA+9m8rQdHyhIZ2UcmNUJ8YpSB7l7iiQjbt+3C5ylmYsLGNG3SmVFS8QjBkhAD3f0ojoqshdm2aT933v51zjnvAuobZ1JRU8+sOQv4wue/TOfBfcQzEUwpT05QCXiLUEwDyYzReWAXw13dJCeTPLH6Mc6/9DpqmmdTPaWNaXMWcPn7PsI37/45iWSa+uZ67rzrn2mfcQrDg1GiI8N87647KSquYOr0eZRWT6OqbhqVd/v5+INfo+4zZ9Hw5etYcvdVTP1UCzU3VrG5fw/ZZIq8YeOKCoP9cfzBcp5e04GiqYWgqS1gCxkkScGybAQk8m4A2zJ4/I8vYSQdisJFBHQv2fgkxUU+sJ2CiJPtoMmegvBaqAzJE+aSM0/BcfMk4nEEUURTSlG1NKrswcIkZ5qYjoEkqTi2DVaKoKJQXlGGHAxw0aXvwXVNMslRug7sIBuPgSxSEgRVUXFcG0lVEWQvtgWLF81i1tyZ1Da3sG3zHrDytLVNI5nMYOYy+LUkpaUqoseHbKYxRS/h0hpOW7aS8egwY6OjaB6JyOgglungCC6KXsxk5CDbduzHlA3MfJqsmUAQNSRBRFJEgkV1SHoAO5knl4rg1bMIgkJJUS2m6eDKMo89tYNc3io8z/w/9s47zK6y2v+f3U8vc6b3njZJSCCEkEIXCB1BBARUrg2xo6j4E/BaEEFERKpSFEFERLmAIAZCSQiEQBJSJnX6ZNrpbfffH0OGYUwCWO7V613Ps59nZp93v+3s9z3f9a7vWkumuWkaqayBIILPr5Er5FFVjcrKRrZ27qR15izSOYv61oPwlzS+I2NvfzhnXxgV9m35nIrf/hrZl7/svsq4rjuBlfZeU7HV/sYzGYPvt+4p994NRt6fHrCvsUy+d6C5+lc0uPw95f+CM/EWDfO/W6Yqin8r5fcfSR3Yu/j31Ya162UAlJZD99uvd+yb+w4BhibVdaD//1Hy11BE/uK+MIUC7L71+f5OMfduYO9Y16S/p+Z0nRrOXVYVQtEItusgi3503cUr+wn6wuRNi/KSChpqmshlDX77q3s44dhj2d25ibaWerbsHmTTnhwLSovc+YeVJHMq3QmJuoZaJFekJBIhMRYnFAgwMrabyqpGAv4wO3dtoaysFuvN1DR+rx/d0Onp6qaqsgJBcdGNIuWxGOnuVwklV6BGWhFC7aRSeRRFxB/woUoiuWKRvO2QzWSIRiP4Ah4QXPx+HxWV5RSyBj27u4iEg+SyCTxeD1XVlQwPD+P3e5BECUEU8WheMukskigyMjzE9BnT8GgBevv6KCmJUdR1ZEkkk80QCITYtn0Xre1t7OrpJBSOMtCfpKwsOk77dAVUzaK0NExLazM7dm6nuqaGcCTK9h3baWtt45ln/8zSZcvweFUKxTwuEAgGxi0GokJjQzObt2yirCyGIEIg4COdKrD+9S10zJ6B5WQRXIWhgRyq6CEU8lFRHmVoZAhRcmlqauLeex6goaEORVGoqCzD4/Hg9fro6eli3ry5xGIlqJoHVZMRBREFla1bOmmr8iI4OvVHfx5RFHn66T8xZ85s0kPdJBIJ/CUVZDb9F9s6O1n0wa/jC9roehbDLBAtCSOILqFAiHS2iG07DA30MTo8iOg4CK5JwKciyj3Ytouhz+D8cz7DRR8+i5/85EbmzZuH/KZvkKZplJeXE40GCYfDTJvWjuPYpJMpfnrbnRz3vmN4afWLtM+cid/vH3+v1TFaZ8wlm5c49uTFXHrJFZx82kcpFksxrCosoYVdPTKW2camN2xC0WmMjYzhuDZ+r4mqGsiyF8tR0WSJWEk5rgsej8nyM/4fr2/cwftPb2f2rAgzZpYxZ04VHo+IoSdpba2maMAv7l8BwPXf+zJj8QRenx8IMBqvwnIO4qknN3PHbXdw+eVfA0TKy+spKW2jY/pcTjn5LN7Y9hwzZk7j+9+7ljmzFhAOa1zwoQ/xmc9+FsPUuemmH/OHRx+htW0a//XoH6mprqWsLEZP7w7u+NldAByxZAmu61BT00w2U+DPK55k0eK5BAI+RFFAliVM00CWFXBtJNmD5vXi8Y7nWq0oL8UwJHp6umlsrEYd2YztuGyMq3i9fs4++wNcdP5pqJKEq3t4Zd0ampubEUWRcDjM9s5unvzj0zQ3N1MSC1DXUE19fQ0+b5hD5i+jkM2y/OTlBMMhZMWPpgXGA56IMrpu4PeHUWQFyzJRVQ+NTfVYlo7f70NA5ek/P4Ev6FCycTyas7FoFvPnz8OmALaD6HMwK1OEW8d9iE877VTSmRQLDjkM03TZubObzVu2s2BhG5IqI0sSofLp/PS2X/Dya+s4fvkxiHaIseE4W7duoamtEY/i4/5fPUxNTQOjIwlilWUE/F5+cN0NfOLSL7Jx0yay2SzBQIBEMsG27Tt44DcPYJsGS5ceTyAYI5PPo/oULGN8vXu82sS77vGq+HxeLN2mtDSG7dr09fdz4cUf5tkXnmfP0BCCAB6Ph+GREV7bsJH77n+Q2R3zmDVjDrLkZXfXdlzBJRSO4POH6Nq9h6NPOolnVj7H4NAeDMMkEAiQyWToGxhgzdq13P/Qw5x5+slc+NHziMeHaGyqZuOmdYwlMqx/Ywt+v5+A34+PAD7Fh0f14lM1ApqGads4roMiKXz5hMvo6eqhrDSGpIbpHeiloiqKIousf62LxsZSRFxEQQbXJl8oYNsOL6ztoaY8QsfMafgqooz0D7Jt2zaCwRCq5iGZSlIo6Pj8QYrFIslEAiOdIBgqw7AsHn/6Jdqbq1FkgUKxF0UsQbcyZLIBPJqIpqp4vCq6XkBQfVhiBDXYQCDagGkW8XtszHQ/mprGoxjkihKGKaBKBq4rousCIyNp1m3NU1bRSCQaQ5VlmprqSWfjCAKM7EngGGO4xhiSZCGaaQxdZ/uuFOmCj97+IerqaolEQ3T37KK+oYlCvojX68dy8mx6rZfqihSttbWURMLYdh7XdJBEG1dSkT2lZAwZRTAYGhyiNCohC0VcJ4+qquA4tLaFUD1h4imNJ1ZsZdaCJQwN9pHJZBAFmViwnHxXkdz0J1lycDminSeTy1PTMoOcLVLX0n5ADMNf3H/nA/6peGUvtvl7Bdqc+vxkvOO67nhgyynl342iNxl/vps+vhcs+k4Gq6kU4ndo+X+l4vpegjP9WyuuExRKwXnbvb9G9uWXuC8LLDBB39zfCc4/WhnbVxvv5I9woH69k+J6oH7s9V0QBHGf/geT53LqAt/XJvm3ynu1rO7LSj31JG2ijPB231OBfecY21ddf9nwgS3kk5VW4G1UQZc3v29BwHTTiG4Rn+aSyY+CVs5ln/ki7U2tfOjCjxPQZG6/7XaSySQbN7zBrh3bUULleMobOKlVob5lGoLPj1eTiMczBMNBAkE/fX2DNDbWgqRiGCaZdIZ8vkCsvJRIOIRlFlBVlR1bN1NbX41jWXg9XtTEa6hjq5DKDsbRYmiqPO7n6vURDAYRcdFcl2B1PZqm4jg2tjOenzafy+PxeEmOpWlpb0XzKCiSgCuIZPN5YrEYmqzhSiKJsQSJ+Bjl5ZV4NYVwOEAynSGVTlFTW4MkS1RUlqPICrIs4fUGiIRjIBg4toXX4yOdzuD3egCRm266CY9HpKGhGUmU0TwqkseDLEuUlERxbJNp06ePB+rBQZQkFGUcpPt9fn79wO9obGykrq6GYjHPM8+soHt3L40NLWRzeQJBP5IE+YLBY4/9Ecex2dq5haamRu6779csOvxQisU8B809hHAkjKwIb9JcHQQgFAoiCC4+nw9ZVXFdC9u26e0dpKq6CimzhieL5AAAIABJREFUA6t6ET25Svr6u3nf8UcxNpagrDRItLQMkInd+xy1mTJeDIZobKwnHA6gaX4UWaNQzLB2zXq8/jA1NbXs3tnJzBlzCIWCjIyMUNRzRMMW/f19eAK1nHLGMjyaxrHHHoMkSeNRPRUF1x2n8iIUGR4e5ck/Ps38+QdTVlbCkccdj8ej0tLYiKioZLNZFEUhWxglGIqier3Imsipp52BKLqMDQ9gFArIsoeerj4G+1NEQrUkc6Mkxkxq6peSz4UR5TZyxXLSuRAetYaePouReJCVz2V46JH7ATjrzE/S1HgiXV0m+WIDhtOOX5vNTTc9xqbOJC++tBqALRuzzD/0ZLz+dr52+fWsWrWeZUuO5taf3sZ1P7iGH9/4I5YuXsbal19n+qyZ3HDdj2hva6e0Ikx5aYxoOASOTlNzE5s3b6ajYxavv/46N930Ey6++KOkMwW2bdtNIrGH1tZWurv7+OX99wFw0YXns2zpEgYHhxgdiXP88ccyMNhFWWkpuVwWWZaQZYl0OocqyageH7boguWgChJjyfT4PCoe1r/2OoMFmciMpXhDZdzy09v40Q03IasWlm3h8URpaq6fAKSFQoHm5kYee/RpKsv3UFHmgFSOqnpJp/IcvmgxZ73/LF7fuIHyynIk1YckOAi2TkHXCQYiCMJ4kCVN1XBdC8suYNkmpuFimS7t7a0EAh6Gp7UhHX0IupHH6/Hg0Vw0VSPhDqKUWxQMi0LexLYt/H4FWZIxLZOa2mpipTEG9uyipq6ZsbEkkhrGdlwuPO9cNFXA7wtSURpDUSU0n0Z8NM6SJUu5886fceyxx6P6FdauXcsnL/kstm1z8okn8uAv7uH9p57OV75wGWPJId7YtJXVq9cwu6OD6dPb36Rqy4RDJdiOTjqVJhKJIkkSY/ERwMUne3ElASSB405YTld3N9FolNt/egNXffkSrvzGd7jggovZvXsXm7ds5vd/eJRzzjoXRYVYeRjNE8A0BXKFAiedeSqDg0NEwmFu/uHN3HH7T/jCpZdwzNLFHLHkcFasfJ5UOs3K517k3HMuJhqpJJcxaW6cQVtTFV/75uV85rOXcumyz3Cp/A0O7phOgzWLaz/yBS5echy/WP1fFC2Dgyvmccq8U2hoaCSVjOPzykxracYpJGmsCjCwZw+NdVFkyUUQbRzHRlVVNM1DZYWEX3bRDRlFjhJPxGltn4YvEMZGRlUEotEyRFHGtsef9Xv92K7K6GAn09raiPgsLL2I7ihoqhfHtdjdtYeyWABBBF03UVUfolaG5KnAtGUs08CrOaSGd6CSxXFBdgV27IojCBIBv4Mohdi4qRtZjdA9YHLkMUfS29tNNFpCPD5KLpdB1w30bAFL7ybkEfEGNETHIpExET21NLUdTFNzPbIise7VtbS0tCAr40GodmzbgWUMY2T2sPDgMor5IrYl4vHKyJJKUc/j9UdBjREsqcTMj+D3FVFFA4Hx9HKWJTDQN0zA5wc7hc8XYWwsjeMUKIlWUFVVxcjQCBoa3myQV627Cfks9EScdEYnXNHCjI0fQHg9gLTAnMAl+wA4E5+NY5q3Y7Kp2GMyntkfJpkse+vdKwfCoZPrOxBO3Muc3FcfDmQY2ReG31/bB8Jeb2Hat+ZuMi14sgvX/vDrvnLHvlXf/87cre9Fcf3fp7b/E8s/i0/l35Nf/9/B0/9XTbL8z/J9TxzQvCmW62C5Do4AmlrG8J48elrE1DVsyUsymWaobw+G7nL8SWfhSBqJbJGyqmaWHn0SRUPi9ys38fyASjDfQ3tzLapdIFpahmGb5Io5GlqaKORV8sUsDjaRcCWOY4EkYFp5gkGF7p5dlJdFyOcy5JJZCjufwR5ZzzDt5E2NZCJNIV8kVlKKIIz7Gg4MjeKYBqZl4rgO+XwW2wJRkJFlDdN0SGYSbNm+FcOxGUukKOR0AoEwqurlz39age24RKMxymKldHV3MTY2QioZJxQJEwz7yRcz+IMeJEVgx47tBAIBbMtmaGgExypSXV6HIgmEgqBpGrbt8LGPfYxFhx3JvXf/mlQqx8jI6HioN0lE1VQEEQRRRJIFRFFAlGQkSUJRRBzXZv78BTiOSz6fRfN4WL78ZEAkEolQVlHCjh3b8XlLCfj9nH3OiSxcPJ9lRx5JNm+xfPlpOA74/R7eeGM9mzZvxjB1LNtEFCV0Pf+mVRT2RtAXRQHbtGhob2Z7105sPUeiqLBrVw8bNmygr78HXdcZSmbIFvLYehFBC6OGypFlhbGRIj+64WYSYwUkwY8kahyx7BgCgTCpVIpQKMSmbV3kTfCGI/z64UewHZ36+nocy8srL20HwcEwDIaGhigWi7jueJ5hwzDo7tlBT08XdXV1FAsWluuQK+QxHZtUJk1PTw+apo1b+7RqMvFhcMew8mC6Osl0mquvvJbe3aN88KyPcfONP+fnd95FJByktCxMc0sjxaLOwMDARKTKcDjM7v4cmj+MWcxx0/XfmVgzshrgk5/+AnrBTyblMDQ0hCS7nHra8cyZO22i3Oc+dylrXnqFk5afxVe/+nm+/rUv0duzk2u+95/s2LaTknAFtu5l17YRBvpHSGdSxEoD3HLL/RQLFgfNbaGyctza/q1vXcX1119PVVUF27Ztw+v14boCL61+hQsuPId8roipv7W/2Pa4r3NlVZRNm8Z9jSPhGPlCjmAogIuDoo6DYwC9aGLYDqapk06lMAwBx7HYuHETDXUz+dpVt+P6SgkGg1xwwUVomoYjqNiCiKBZGIZBoTDuI+f1esnkhmltbaW6MsRA/y5sW8Ay4U9PP0nHnBYeevgRFE1DUjR0S0cQDYaGunFcnULeZNeuXciyTE/3ALZjMbinB10vYNsC27Zt49Zbfs7YSIFTlp+L49goqosouTiuQXx0mGg0iq4biG6EXTv6CYVC5PJJPAEZVzIJRDyESnw0N87AcmTGEmky6QHKSvyse+klEgNDxFO72bTlZTKZBPl8npqaKmwnT31DJTDOOvraFd/Etm2qKipprasn4Isw0JunqjTGJZ+6iKOOOAKAK6++itToAC8/vwrJErFMB8MoUl5Rgq7rb35fLoFAgJHhPYiywM/vuYfdXd0A/OTmG3n/6adQUx5lwxurqKgN8ctf3UlLczMAV/3nVQRDHkQZbAd0w2HVS6/Q0zMAwPe/fTWLD+9gZGA3IjoHLzqE0855P1dd8XUAtu/cybU//BaGk8SRciQy/SiKQiaTId+bx30oDE1FDj1sDrPnzqGytoGntqwjUcgCcNERF+D3eslmMxh6EVcT6R0uoviqyBZyLJhXhiLqCIKLIBoIgoBlm+TyuXFFU62mpGU+ks/LzNkHIao+egZHUP1RDMPEdQUymRy6oZNIx9EFhd7eXsoaGiirbyNnK6TdEGvXJchbWTxqmOaGCKoq4tomrguaFkKQYni8MWyzQCbZy/DAbmwjheUUQBKwBYO2aVWUljoIskIiXSSRtijaKm2ttVhmluqaSrZt20YoFKa0tJw9e0aIlYQJB0BTZAoFk2TOQnc8tE6fSzqbJ5UeZePG9Sw87HC8ngDZXA7HgaHBYda9uJ5D5lWiuAFcwUdXzwAF3UZSPageH9lckWzOwDB0ZMlGdgRwHUwKGI4OskFdUxmZtEkiIzMYz5DIFigJ1eC6EvlckVw+QyaTwLQsVjz1Blu2DGEXbPIZHUVQ8Xp8E/jgnWQyZnwn/DgVb7zbet9N2f8pMU3zPT/zt/jl7msO/88n9i35n0fV/2Pi4LgGCG9/ISdbRd+L0nEg69i7uf9e+f/upOu9ynux8L2Tj+3+6K17T5MO9Ozb2sB+E1Q7f3E5rvXfYon+W2R/vh1vuzfJT1VAelu5yX6oey8Xe5/39zIEDhRZeXK/BKSJy3UEZMYv0XGxhBxNM1pxAyG6egb4xY3fYU7HHJ54+lmWH38oz//p95RGg5x6wvGMdm2maOb45Cc/ztJjjqLjpPPIiUXoX4svO4AnvhkywwT8ARyriKGnUVyT+J5h8vkRHv7d47iWRTanYwt+Zk2r49V1r4Agolr9kNyIE52HLxghHA1TVlGGNxAgrxs4rovjOngCAURcsEy2de4kEiklnRmmv28ATZUoFhOMjIwyrX0aiqJSVlmJx6ux6dVXySWSLDvuePb09eCSR1Rk6mqr8PlD9PSOsObFl8mmsxQzeayCjqUblJdXIogOkiJTU1fKHx9/jqJpYdgCkVgdr65bg23Z9PcMMjjYy7kfOhuPz0t9Yxv5RJpCtsD2rTtxdIFC3qC3ZxCQUWSN0aE4lqli2y7trQ1sXL+O9eteR5QkXEwOX7oQxSvT3tbGYYcdzuBgD6ZRIFZSgiyPUx03bdiA16ux+sW1KFKItvZWOmY04/NouM74e7FrZy+2ZaHIKnrRQXBEbFvE4/Mh2CYHzelAER1q26bzvuVL+MAHz6a2to2tnTvQCw6u6fLSqtWIgVp0KUoqk6CsxMvHL/4PFE1GdwwSI8PEM2NoPhVRAlUU+P3vfkdPzzZKogFOOelUBEFCNwwkGb537VWUVtXy3Wuv4ZZbbuHeX/6aRUuXUd/cwvSODj7xqctJpPO0tDWj+SCRTRAJaPzuwYd5fuVaTjr1NEorq7j11jtwUPnEp7/O4YtPoam9mYqySga7dnL9dddQEi3j9rt/TvP0aXQs6OD8T5zDQYcspX5aB3MO6eDyK7/DI48/yvDoGLt39bL99R28sPJhjjvxdF7c8NLEOjr59NO599f3MOfwg+g4dA7LT13Ot77/Q+7+5SPkUm+tt44587jxxlvZsu0NmmbMpaatnaNPPp6rrrmS+uZKjjn2eApGhjnzm/jZbbdx0UXnky8YdG56nW9cfTUnnnUBx5z2Yarbmpi/5FAGk3t4bdMGVq58jP93xWWUhRUu+OBy4sNxSmIRDl04f6LtsZEkjuNgG0FOPmU5ppVhaGiE666/jpNPOZP5hywiVl5D+6x2lh13PJdd/iWyQ7sI+yXe2NpJOFSKXswjIOELafSndlPXXMuvH7qHvr5Bfvjj73PEEccwrf0gWlqnccklH2Xd6qcQXQNXskinHdZueIljT/kKcxd9mhkdHbS0ttJU3YrliLzy6lpmzpyGR3ORRYePX/JZ2mYfxue/8DVUVaW6pI7+XVuIhUPkMmlWPPISN//oLsqrqzjvovP5zBc+RrAkwm/+cC+ipOLzlfDk03/i/PMvYf6ioyipbmTmvKUsOuIwvn7lV7jxxhsJqKV88JTziEkCdlFHF1UMR6Rr9xZaW+cwsHsPjTV1HHfCkYRLI0QDIdo65tJxyAIk10ZVfKx66SVEzUe4tJqend2sXbsOgM9+9nNc+oWvUFJaxrRZIYqOxcGzl3L5F78EQG9fP2vWvcEhixYiajIINq6j4Drj6bdSySyRcBm7du2ipLqC0eERHv39YwA0Nzdx4jHHUCiYiP5qZs9ZgGDLpEaTfPKSTwDwxJNPEo9nGdixE9W1UDDp6d458T7M6ZhGeXUdpRVVZI0ipuGiCUGWLT1sosyxS5YR1nyU+CPkUgUyxTxSSkG7tQ5qbIQaC1Ur5agjD8ERNH677hkAasNlNGilWKZDT3c3tbWNrHj8WTRBp6w+xvBwEUmVMCUZvWAzMhJEEiXSSZtfPriddNGHN1zFYE8fsqoQTyZQJInaynIEK020vIFktkA4FCI1PExDXQPJ+B5aWuqRpDDJRIGuQZNYeQ1LFjehqX5swcDj9WLYDigxPJFpSIE2MoZNKjWKR/NQVlaK6Ohoko1H8+FYOVxXxSOb+PwxXl2XZnuXTaxqGrPmzicaLcF2NTyeAK0tTbiiiWmKzGxrZqRvBRIioqJhFlJk0gVEYiB4icRUgpFyZs2cw6rVa7AEcGyJrZs2U13pG7dc4kHUdCRZpLGtDVVTefWVjegG6HaQQCiKasvk81lcTCRJQbRFZBEEVwBHIBiRCHpFKsIyrmkRLI/R19+LI4i0T+8gpMRAdPE31PPgY5spihK+oE0xl2Zvno7JGM3BHc/duvdi6jUuexWrfVke9zLnJuqcpHBNjgr8XjDzZLrvXhwzgWumsMumWjHfDbbeW//++jPZeGLb9kRA172HT1Op0Xvr3Pvcviywk3HyZNmre7wdW4uMB6n71zTi/L3l31hxPbD8X9Svdy/e4y5916lwJst+/TcPUPafRf4aRXpfNJrJG/J/p0wETLBsRAQkV6a6tJYFC5dwzLHH8qHzz2HTho2MJceYMb2JZccs4phTlvPRiy8GSeS4972PippqVK+G45WQT70KZc5peIpxhJFdmEWTp55agW5YNDY1UVVTzX987AJcx2FocJid23aye1c/hy44DMkxkfaspKDU4/GF8Pn8GEUDkfH0Bq+tex3bdsjn80RjMVxBZMeWN6iqKiedzpFN61RW1LB1ayeOIzE0OIRj29i2iaqIZLM5wiVRCqbOiqf/RE1NHYbhIkkKkiCxrXMbrW2tdMydRTAcRVa9JJJFbDzIqg/HkenZ3ccrq9egaV4yqRTdXTtxrSKzZ89BVgSmTWuhrqGJZCJFNptGxCUSCiJJAq3trbyw+gUGB0eoKK9ieM8eivksT/zhUd7YsA7T0pE0l8VLD+XQhQcjSyqu6xKJhgEbVRMZ2TOMbbkonjAFXcF1RUZHRkmnMwSCXo44cgmZ7HjqmVzWxSjCa+vWo+tFZnXMxLbHUyeIgsSdd/4MSZKwHYtcLo0ggqun0Mrn4bo28fgopqnzvvcdR3VNDR5/CMfxsHlTJ4IoUBErIZfPYDoaixcvxdbHLVPF5BheRcTjCzCczvEfH7uQttbpuI5MY2MjoiDS2bkV28lR0PMAdHZu45nnn+ebV32Dzs5OVEUhlUrz4qrVnHPeB7jtzltJpZNEwiUYhsPyE87g2WdWTxzYmbbOkmOP5NEnHmNX1+5x/01AVlX6B/swHYPevi4efOQBrvjmFby46gUSiQSSKDE8MsKTf3qCiz7ycT716U/T3taEqBY544zzmXtQBxXl5RPrJRIOU15WRnlZOWWlMSLhEOe+/0Ocfeb7iUS9E+VWv/Q8O/s2kysmkZXxwEmJZIJfPfhrDl12JD29A4yOjDFz5hw+//nP4rgWhm3w/Gur+eWDv+L1DesZGh4ep74mk6xas5qf/eJOPnDRhXz/2h+yY9c2jjthMd6gB9d0GR6IT7QdDMRwbIUXn1+HzxtCFEXOPPssrrn2R6x8/nm6urvRNA/ZbI7NW7Zw1z33sOSo03jq6eeYM2cOifgo9//yDwwPjaHIHrAMAIaHx/j6lV/i+huuo6e3F9t2GB4e4YGHHuOCT1xG/+AYXTsHOHzZYm6+5Sf0D47iOA7DI8PE03HOOO90MslhvvCFT5HLxUmMjSIJPhxnL/VOQk+n+f53vo0v4KXgGng1jZlzO6iuqX5zdAIr/vQcXopMe/p5fPc9wXevuZYPfPAC/uuJJxkaGhqPMGtDb18vr6xby3evu4bdvdu5/d776RlLYSDhOirzDjmEufMXctLpx1Pb3Iga8GEKLoNjI7z+2mZg/Pc/HCpl85YNNDXXsvzkY+jp28JvHvzNxHwvP2EZmubwwxt/RKEgIPv9GKLNjLkzCAaDALy4ehUer0wiOTJhtfF6vdiWSyRSgijINDY2IwoK1dW1DI+MADBjevt4ruVgKbmMg6gqSF6NWEU5TS0zgPHckr979HEsB4q6ychonAUL3nLXeezxJ1EUhWBJiGg4yGuvPItfSrN6zRoA/D4fixYdhmGZ9A8OUFFVSSxQgXB7FY7PJBceAxx0PY9eNOkZGeKFbePPnnPIUkIhjd27dyIKEkODeygvjVBZVoqLihyI8dKrHn77cBf+QAxfwMC1HLw+uOD8E6hvXEIybVNWESWfLeDRVLq7duPzecjnsgiyRjRWhmkbzJjZimNDXW0tg309qKoP19WZ1bEAlEoUXwxbDGERxJYCoNWxadsIeV1mLJ4nn07h8YLX5yOeKLJu/UZcXBLxPMkxD4ZlkM667NhtMjDqYVf/EJrPh6ZGKS+PIePy5yefJhnPgCiSHu5l87o/UVqh4lXD5LJ9iIKK7KnFFyojX8wjSSKGnkeUZFRVAcdi25ZN1FTVsuq55zh6WS0eRUfPOchiEUXJYOk2FVVVSKof2VuF6NEomjp9/aO4rsv27duRJIlisYDjSBSK40wj13GQZZFw2Ec8lWHWzFls2vQGuVwK0XJxfBZDw1ned/x8hkdTKIrC6FAf7xG+TIgkSe8Z++wVWZb/7jhuX8ofvF3B3Cv7w5Gmab5NqT6QTPbZlWX5Lz5/N5j2n9kI868g/9aK6/6ih70b38a/p7yTD+U79WOyAvhOEeLeadOYaiXdX/v7ivD7Xvox+fRpX1bZqW3ubzP4W76jv+U7nhql7kCb1eQTuL10yMl92Fef9me1frfpmaZG0psaXGti/pEQBYHEaD+/eehups+az5cv/wqXf/WLRIIB4mMZcukMK1euZNkJy3nuxRfo6eulf88giAKCJCMKAoIoYZa3Ih5/OUQbMHe8yKknHIPfH2B4ZARJEgkF/FiGxcwZM9iw/lVqasZTruR3PU3B9uEN15JMjkfxjcfj2LaFXiwyc8Z0MqkkPq+Kaei4kkxLLEooHGDPngEEUeSee+6mvqEW23I47bQTUWQRvVCkc+t2nn3mObx+P5FolKOPPhLDslFUH2teeZWibTNz9my6u7p57eVXSCQSPPH4Y/h9Gqn4CKGghGUVqaqu4uBD53PU0csoLY1RW1mNa7nIYpCx0TG6e3eSTGcIR8KoikoykaBr9w4EHCRFYNHiw6hrqCKdGmXrls24ls0HP3QRM2bOwOPx4Agy4ps0PVO3yWUNNqzfjCjKmKbFimeepayilIHePob692CaBqomc8iCufgDKpIEsiyg6wW2b9/GY489TjgcRlU1/vCHR3AcgZXPPo+qanz04ovG30MLfL4ARrEAjoWFjeOa1NXVoKgClmXwg+t/hGlZFM0ioqujCBYtjQ3g2HhCKq+8/AKOXsA0JcpqahmLp9kz0Me82bPI5hI8+OBDWBak02lsx2LGtGl438wZDLDi2ZVs2rKFG75/A52vb+HPjz3Ojk0bOP20kwG49rrreOHFF3EcgbGxEUIRjRtu/PbE+3vNtdeRz+W5/ZabGejezjN/XMEfH32S1rZp1DXUUTBznH3emezcuYOFhy7kdw/9lsHePh7/7W/5+uev4HOf+iJ+v58Vzz7Dd7/3PRraqkikTb75zSvYvGHrxHq68bqf8J2rr2D31k1seP4JnvvTY9RWlXP+uWfi8b8FXs778HnUV9fy1c98icce+j33/+xBDp69EL/PTzKV5Ac/voaPfORi7vvFb8nlMsTjo+jFAksPW8Tln/siP7j6Gr5zxXfp37GDZx//E1/53JcpiZTw0isv841vfZsXX3wdBA89fQlECV5b9+xE25FoiK6uXRx59EKKeppcPs2hCw7huu9fx6YNr7Hyzyvo7+qnc9MG/vC7h5nd0UH/wCBXXPUdXMvlqCXLqKioYtr0Nnbu2o5ljNOAf/LTW0ilkvz6/rsY7NnNppc3cv+99xKLxdgzNMxlX/06F374Qhzb5YYf3Ejf9vvp3XYft/34p/h8PlKZNHfccTcfOvc8VNHDfz3yBIViHscZ3weffvpp0nqao449GlyLaDBALpVjzatrccXxMi4uc2fNQxE8OINxdm/p5HvfvxaAE487jo0bXqfzK7089YHn2LVxO/NmdPDhD52PaRa49tprUP0ebr/1Nro3b0WUxvdjURAY7h9EsB2So2OURqLMnDEXXdfJ57N85ctXkMvqgEg0Gqa6upKh0VEAykpLaW1oxiyYnHXWWTS1N5MYTlLMZolFArQ2twKweUsnriNQyOvjh0W2zdjYGJlMjg9/+KMIgoKhWziO+Db/QdO0sUyXVCrF8y88g1HUERyXxMgoovPW78fQYD+x0jIc4M677uaggw5idscsAG6+4y5+89DDrHnheTLJAm1ts/j2D27k/139vfG1862vI0gCDi7haIR0NoPwUAVWeZ583Qh+j4YoSqiaQi6X5b7nfonjOkiixIWHnUpVic1o/2Z8moRhGbiShItIoWDQMfsgpnWEWHREPbl8Px5tPBerpIQIlETIFHMMjo6SShcJ+cMYtkNtQxPZvI4rSOTTA2QzIxSNHANDg8iSguWKNLbPJJUuEg57WffyK+SyOnkjQDytIal1IJcTLW1hxuyDiJUF8QUtSstK6dy8i+HBAfK5IeZMb6OYs/D6giSTOpKosmnjICuef4MFi2Zy2OGHMWPmPExLYtPWTmxHZ9mRi/FHgjgFByPXRXO9H6cYxrZTuIKPVa+MMJwwGE4kUVSZTDpHOhHHcV3mzJmDYBtU1pTy6voNlJVXIDhZZBlkRcXjUTHyeXAcKqojaN4yZK9GoeCwp38PuXQcXddpbGzEsiwUyYMkB1nxbCeG7iLKCgIWkUCQqE+lc+tGFi48hGg4xODAAJlslvkLljEyolNWXsP27Z28sfEV0snkX2CGfWGOfTHJ9mKIfZXdi3cm48eJg/L9sNKm4s33YqjY2++pOGuqX+pUw8FkURRloj+2bWOa5tsMV/vr02T69FS8ta9xwtutr/vCjVMtx/vzrf13ln9rxfWfRf4VLY5/jbwbxXmv7FXS/pXHvT8n/n+07+tU5Xbyj8lUkUUVwXGpq68kEHKRFC/33HMPV3zjawS8PgTRw2mnnM6Lq9ZQ09DO9OnTOfSww2hpa0VVVWzLxnXh6iuv5KU1LyAILm7HcrpC88nuXI1ZyHH3vfcwMjZKLpcnl8uTz2c59rij6O3bQTAkE/CCK0dIpTJ4vR5EESRZfNP3UCAcCRMriSKKoGoKyAqC4zAyMoxlGYRDYRYetgDbHvfrTCZHGB0dQtcNKstrOOOMMymvrMCyLbLpFIrQixJtAAAgAElEQVSiks3mmTfvYBSvl7yu09BQx9LFiwl4vZx95hkIrkFFeQjLSGFZeRRNwcJG88jguhi6yaaNm/nVfb/FHwiQSsWRJJl8sYjP5yUSDhGLxUAYj5bsD/qRFYfKijKWLVlCX08vuuPS1duLoZu8uOpVDNMhEAxy//0PoKk+aqrrsG3I5QqccvqZqKpMU2Md5bEoqiYTDPkoKQmRTifRjQKaptHb20dTUz2nnnYyzc3N2LbLscceiyTK1NU18Kv7f4VtG7iuy8pnnyebLZLu3ojgjeF6fBNrTZIkEBw+cvF/8Mijj9DcWkN7lQzpbqrKypEVCdUjYNpZBnp7UJUgpuAhWlZOKOAnOdRLRWUZ69dvJJctEI/Hsdxadu10GBkZQ9PGrZSZTIbrrrmGE489mnDQB45ATUU9t9/6ExYffjgAV3/ru+DKlJZFGRrZhSBnJqwFxWKRG757I3OmTWN4zy6mtdYw7+BDkBSZvv4e7nvwAUZHRzns0IU8/uijHHnEUnLZAvPmzeXb37mCr152KT++/ioAfnr7rfgDKoW8RSQSwDLfWkPZbJ5TTjkF3c7j86r0dg+wc8cb3H3PbTiuNVFu5rQZ3HLDjXzh85fSNms2P7nlThoq2rnonI8C8NrG1zn5lJNZvepVhoYHOeKIZUyf1sZv7vkF5SVRTj99OR/7+IcYTsbp3TNMS8tc2psPBuAXD9zDjT/+GUNDeY464mTOOedszj77+Im2RdHF45XJF4cQRAO/38s9d/2MCz94Hk11lRxyUAeSaxGLxVh8+OE89odHKS8vY/2GDax6aTUr/vw0jY31BIIaigqyNK6QFwoFHnrgEY47bhmFQgHbsTjq6EP5z6vHFcc/PPp7BgYHeeqx59ALLsFAiFAozPSWGSxdfDQAd997Lz+74+d4VD/lpTW4rontjM/bscccjT8a5shjj6SyooK1q1Zz3nnnce75500EtBNwWfH0CsYSeYZH4vzu5RdxHIe21lbu+dkdVFfVMjaWoCRajm05/O6h33LDtd8FR+eH136PsliYiy84n8UHz2evg43jQte2HTz71NP07+6mxB+iWLT45S9/iSzLxGIVzJ+3EE31EY8nsW2X7v5eAKoqK3no14/QtauXmpoaZI9EVWkFOzu3Ito2+ew4o2B4eBS96NDU2I6qqgQCAWRZxu/3c9WV38J1x9PAWabD6Eichvo6AF5fvwHXFdA8Ciefcjw7t3RiFw1CXj87tm6e+M6HBvsRJBkBic9+/nNkMhnu/tntTG9rJZFM8dGPf5KjT/wA0w9aSNuchVz53etpaW7ggXtv5tgjFiGrKrlCAQcIBsOwxYvpKRAKBXBtG0O3SaWSeH0efrHyFwAcPWsJIU3DJ2ZprY8xONBNtCTMwQsPY8+eYSKhEM8+s4Kezhz5hM1wfwZXj1C0ishyFS+80E0mZ/Pquk4i0XIMexhR1rBcgaJpE4yU4FdkApqPkK+McLiOwcE9BIIRTGRyeZNEYpQZ7S14FIFoWRlVNXUgKYwl0+zq3oFH85NKGGAG6enro6V5FqokEfQ5VFcoKJKDrBSZNqsaxCIdc+fiyA7YFrNmdJDNJ9ACeeobW5BkCcPRkTwyRq6Iz6sjSQaKamLbBfq6gnijlcyZP5+26e0guMiSQqykhK6ubnBcXNfGF9SobWqgf3AEjxaiWDRAAtsWUQQvAjaZ/AiC6MMfVPB5QlSWVRIOqmiahuvsVXKK5ApJDj60HVVzxoM12QbRQIANr6xi7kEd6IU8pmVRUV6FqinU1jRx/PFnIKDQ1tZGMODFtv7Sb3OqErkv+Wvw2N/DQPCPkL3jnBoM6UBxVd6V69u76PN7nZP/U1rfkn9LxVUQxv0HBWH87/F7f71/6t8qBzpp2p/lc8LjYMqzB+rTu/l8ov53sLRO/lxf8yD6mgf/osz+2p98GjVRH9Lb82/B23wO3ovS+05jeKd+vleZfAK5r3annr7tnYO3naa96a+xd/xT/Tgm3598TZ4z1xFwHQFRkN/m0zp5rIIgvK284zhYuOQdl/PPuxTYhGH3MTA8RDwvs3v3bn798EMcOn8Od/zgP4nGSpBEi8TwKKIlgyBg2TYVVW3MaDkECxnZG8CtPJTdTggxM8onPv5pfL4Yum4QDPrZuuUNFFmgproMRAnZX44aChEMB5FlFccyqSgvR5AEPF4vhWIB07bQdYdEIo0NCLZFSawcw9AJBgPMmDmdVNLAo2mARDgcIxAKI2kCBT1DYizOymeeJej3MdTfTSwSwKPK2MUcPp9GwbIZjmfweVTiyRSJVJGtWwfw+svx+yNIooVX8dPb04/p2JhOkdGROGd/YDmb3thCbV0bfl+QSKiUNWvWIakK3kgJmieAImkU8kUEvBT1DAUjRXVdO+mxAVzTZdvWLmrLYwz0DiBKKuedfxaIOmXlYQTRJFoSRNNcQEJUZDp3b8W2LATRQXwzAI+m+ZAEjdamGSAp9PUPIIgClqWjaQqOa6FpKmee8X4kQSKbyjF3zmy8mobfHsZtPxkkD47rxXUUVFlhqL8bwTS47aZ7EEQbwzCxLYttXdvxB4Lk0xZd2/uxRegb2oEiF/FIDpqsoAZjPPfsq3zpss8QjXmpr28GsZaG9iWUV5ZhmToAPp+P8859P+WlHrx+kUhFhJF8GtOGy770ZQA6t21n7dqVFAs2mhYjm39rbR191BGccPJyRpJ5PP5KNu/YjehaDPbsYdP6nTz4298B8KlPXIxjmRgFlztuvQtH8BJPJTEIcvihJxAKBhmLx/nsx7/G9797HT27h8mOdk2007NjG0bc4srLv033iMj2rgHq2puYddChiIJvotxll32JL37ti9x61y3EQgoPPXgbt9/1fS759H8A40pgIjnKpy45j5bmMIV8mrvuu4/7Hn6SwxcvxOtR+P3vV7L6+df4zX0Ps2zRAhoqQ5TGYpimwdnnnsDSpUfw1OP388Bv7yJjTdq/FJe65hbS6Tya5mV4OA7IqH5zPMAWLsg2fr8fj0elpCTE0sVLAFi9dhWSXyUS1giHSqmqbkCUxuf51FNOZVZHA5YpMDyUxBP08vM7H2LpwrkTTZ926hmIWpZPXnI+plFkzepVmFKeT378AgAS6SR+n8rAwAD1zc2EfF5UeTxI1BN//CN20WAsPUxaFzlk8eHc98BjPPr7R7n37vvf3L8EtmzrZuVza8lmi8xoagFgaHiYTCaOnS1QXVlJMh3n9ddewxOKsH3nELNnLGJ4tJdiwUYKaOhqjsd+czeP3PFTIorC0pOOxhutxlIEXtu0mWDMw3FHn4Ii+vn6Nz8DmoHH46F3227eWPsqmeS4Q7MkyZx0xhnMX3gwW7ZsJJfMcc6HzqW0opaB4STTZ04HIJlMIojjQciy6SSS4BL0e+nuXMv09kpk1UXP6wjOGOGQzJLFiwAYHh7muut/hG66pPJpZh5yMIIE/SN9/PinN0/MezyRZGRPgkBIwTRTeL1epjXVcsO1V/CBM8+c2PtT6fTE75RumOzY1kcoUoZqihiZEfTcMNlteWxFR/Q55PUiiseHJAsEAqU8tX4Fo7lxGvPZh52Fv3QaRTFCaaVIQ0WQQsZk49rX8IVDjA4nKKuoJVYdIBowKC0vxRGHcNVGelMCcxZ04OQTnHf++UiijCREcA2TgCdISbgcAQVTkHFccFyDZGqI5tYmsIro2TjREolYaRslVeXk9RR7BhMIoszgnmGam2ZRWVpCtpghUOLHUSxqa6sIhRWi5T58kovpgC06uI6JqWfJJEKksqMsWnA4phVA1zN4PS57BkaoKIvgOA4hxWXrS0+iJ14gqAkUcw7x0SSKtwVfVTkLD1+CaQr0dvVjGxaKIqObNvUN9QiSQk/PCDu29LDttRc4e/kcHEFBwsJyLFzJxMLFdDyEIy0gC2iSD1G0GE10EvAG0RQRUZSQZB+268OnqZRFJLq6BymaRRxTIBg0qa4pZe0rr/Lss8+jahKOC2WlMWIxmd6BBJ1dnUgIjPaPEYmWsD/ZH96ajCEn46fJZf8ijzzvPlDRZJ/RqdhN1/W/6AOwT+y4t/3JfZ06jsl9nGolliRpn8rrgdiYU9maU+dnXzj2QAzP92p5/neSf0vF9a/xXZ36Yu2L2nqgxe66b6Z5+CvlH0GV3VddUxfdOy0cQRBwMyO4mZH31Na+aBiw/2BQe8d/IGvl/ui1/x2yr7YOtClNfWZflJvJY5k8R+PpAfYdoGnqOzrV4jv1nbXftD6IgoAvEqJvV4rGxnZOPuN4br7lW5z5/hPZvXs3iqLwxB8fpZhNsr1zK/F4nKefeRbXcRFFgY989FxC5TEc0wBLZ/qcVuaddwVmIYMcDDHQ30cwHGR4OE4kWoYsayB6saUgxv9n773j7Cqr/f/37qeX6TUzk95IrxCaVAEpSm+CFQWkCqKiKFdsgBcsoFgAASlSRUpAElIgkAQS0kibZHo/c/rZfX//OGQShkkAr96f96fr9dqveZ3Zaz/7eZ6z9zqrfNZaVnGNqqKQy+XxBBVPAEVWMAwDVVGLBZw0jWAgQG//AAKQHhggEAgiSiLNzc1UVlZgWRbVNfUsXbIUx7JQtAD+QAhZUTn44EPI5DKUlZfieB4uLpIaQBQlRM+hrLyU3bs7EZCIhMP09XTR09WBJ0A6l6G9rYX6UfVYtgOChO14pJODlJdXoKgBOls6+O2vf8vo0aMRJGGoBdEeb67nFVsQaf4ItmjgD4ZRZI2KskrqRlUzalQtzc3NtLa2Ay75Qg7X9RAECcGFR//0CPlMjtkzZ+N5xUi341o4uAiSi2lnWLv2NVRZI5/NY+kGiiRi2zbvvvsu5RXluJ5TbAGhSsRLYmAlEAsDeOPOxNA9Wnd2MziQZPu7W/FsBVnSeOjBRxjoT7FJbSY31uJnt30PM2dw4VmfYdrMWdQ3TqC+bjSp/hQILrpdAEXm+BOOIRoP097ZDqKHYRhD7+6eXNSTTjgeSZG55w/309LWTEV5Cd1tXThWnkMWHDwU9du6bTuvrVyFpgYpK61jT6GQhQsWcOONNzJ9+nRkWWb8+PGYuQLV1dVs3rmdweQgAFdfdwNjJ01i6qyp3HP/3dQ01jB6wkTmzJ/M4ccfRSZbrJR6xLGf4FOnnExAC3DDtd8celcmTGlk9erNLJh/MCXhGMcddRypZIFt25px93mn5s2bxbJlS7js8kvYsLWZn975C7RIER65h2bOnMXMWQfx2qpNuF6Y4474NJ845DCWrlzDuZ/7Etd++3K+cNnFPPO3x5k0dwKPPPc4/QMDAFRW1nL//feSLwwiijK5XGFoXNv26B9IUV1djWEYlJeXo+s6z7/4Cl/+6lVMmT6b0qo6fKEowWgJoVgpjz9ZNOz7B/opKdNwHItbbvlBMS/vvWUtmD+LdCYFyCx+8W9Ypsv5532WgLbXYFdEP/GyUkRFRNdjmIU448dNpbFh3BDPQCrB2ElNjJ0wCsMwhmTRiSeeiCC6lJRG0Y0c7R0tvPX2Gl5++SXOPe/s92SZiyC6zJk/j5raGpzWLkpKSkin0xx9wml87epreLd7MzU1VcyfM4ftWzbzwP2/R5VFdmxvJhSM0NvTh2najBozicYp07nzrt/R3dfOrAUzmHLQZOobmuhua6e+tgLHscmbLqtXbcbvC9Pbk6Y03jhURbm9rQNRctH1PNXV9ezY2sUf/vgg1eUVWIUcHsXfelGUkSU/ydQAuYJBIBTBtF3GT51LKl2gu7MHwxEoFAp0dnXwlUsuprGxAYA7f3UH9/zutyx+4VW6u1pYu/YNPv/Fy2jv6ByCNoJAY8MobNOguqIcRZZ4fvGrnHPRFTz9l7/y9Zk38sbJ79Ly3X6WLXmeS798MTubd/Pt//oh3775h1h2lkgkRlfnAGpbFKsyg0+TCIcC2LaNXjCRJHhsVdExXRGt4IhJx+DJZZTVzUdRywn5k2zauJxJE8ay4Z11lJeXM3PWLErLKkilHbRAEMcrobp6HFUlMSKqQyaXxDQzJPraEUUF2yrQ29uGYWXxJAFLdxA8AdcyiYR9WKZDLlcgGAxhGzq6XiBT0DEdj/KqWnRdR9fzIMpYtowoBrFNEZ8WRFNCtHf10jeQxRcoJZt1MA0F11Fx7Qw2BTp7s+i2QP34CgRZwnMUYqESNm/ZiKl7ZBJdhKQEqljA1rN09yTJu3U0txeoqmtEklXSmRxjx09E8wdRNT+7d7XQ3d2LaVj09yfYtrUTxwBBzuBSdC6Zpp/ePhHdllnz9kYcV8B1BTKFPPncIKVxH9GYhm3ncD2TnJ7DccCyigUrm5oa8DyLcFSmqtqHZ3RSUR6ntraOdCZLvpDHtm0WHXo0f3jgz+iOiah6hKMSvY2bEA7Th97Pj6IX76tP7AvN3TflayQY7IH01331nOG63b75pKqqvu/cx9HxRjIKh48xUsBoOO2Z40hIuv2tbc86PkpwaSSU3vD7/Yf+TQ3X/wmJoviBhO+Pc+1/6MD0YVHSj1I06/+PuQAfJvD+XnKFogkgCyKW4JEflCiYEpLmo7V5GwU9x5e+eCl/fvSvnHLyGax9bQ1+TeXqay5nwuQmREnAoyjkV638G37JpmPnOyhCFkUJokw5muSap5AEj0LBwnUlBFFEkFwkXwgsHZ8/iF8p/kCl0ik8wNANXNcll8mC5+H3B3Adh3QqRV1tDa4kE/csRjWOZdWqVUQjUfr7BwgGg/QN9HPYooW4jlGcG+APBgiGAsRiUXp7+wEZUVRQFD+O7RD0+xBEyOoFTNdhR/M2Zs0+iMrKKgRRQ/MFqSwrx8Ujlc7g8wWYMWM2ouIjny8gCfDWmjcIBf34fQEymfxQsQfTNIv9UzFQRAFVDhCJ+ojFo9TWVeLzeaiqjKyIjGqoJxqNIkkKfl+QDe9sJtGf5qknn2b+vAX09vaxdctWZFklmcwiiQpW3iSTTCGrEtNnzSAcVhg7toFkMoEoiBT0PBMmjOOVV14mOTiIKCmIEoiSSLblLYTS8Sxe/CpByWDixAZKS3x0tLdy4w23sOK1Jfj8EtOmT6b24AbsepFvf/d21FCI397z3xT0JFowgFHIIAsayUQfguARCIZB9IGoUVvfiONJaMogjtWBaZpDTry6+nosW+bc8y8hEIqRS+c5+9MXkuhPk8/q+P1FSHFvT4JFiw4jEgmRSvcNKRVlpSVceeWV9PYW26EIgoASCyH6NVxnr6NwYGCAVDpNX38fA4kBDNMgnSl+7u3tHRrPr7gcevBMRo9v4PZf/mzo+srKarJGL0cedTTXXnkNnge19aVMmjzmffLosUcfpaszwfq3djN6VD3nnXU6OHli4b15sNlshiuvvIz6ukmsWbeR7998I2dd/Glu+O43WbZyOYnBopFaUlJCeVk5murbqySKMOWgsVRUVKLnBQK+0qFxVUkk6NPwPA9FUXAchy9e8mXOOe9innzqGVrb2jBNs9hiqbyMivJyfL5irnE+V8C0dMKRIN+96UbAHSoiGo3GCIdKeOC+p5g4cQInnngCsiyxaf3uoXv7NZWnH/0LXS39NO/SWLNORxIDrFj25hDPZ04/l+ZdbRi2RSAQwDSLxZ9c1yUUimDbLj5fgHi8lDHjqvnxT36AJO1VVr/9zet4bvETSIrAsYcdzt13/4rysjJ2tbTw8JOPcvjd85h6+1i+cNUXeWfbRo494VPcdPNPuPXW2zEMC8OwwJMYHBigsq6GWDhMRWkYM5vB1g2627ooj8fo6mwhkeojpztks3kSg71UVVVw8/dvoaqqWLCrvLyMQiGPh0NrazOjx9YymO6irXUnZdE49nslW3PZLC+/tBSfz0d5RSUIIoIokchlyGSTqIqD4leJx6oI+KMYusN9v7+LxoZ6cvk8N9z4bS760pcYP3E2Rx9/Cm+ueYsvXHQhY5oaAagor2TFq0sRBdiyeRPbt23hwi9+mWQqza1z7uKycz7HhCMaCHXHmD5tGt+49nJu+6/rAPjD/X9i2apXMMwsoVAAtqvIM0QUWSU1mECSRECgP9PL4vUvAHD6gjPwyT76evuxHBl/ZBIDGZuY36W/p4sxjQ10dnXw4EMPMXpMA47nJ2HIDOQrKOg6oujg4hKNluA6JoaewnVtJEmmp6sdTXJwciksx8UTJPoHM4hyAMMw30vxyOFXi1V+A8ESKirrcHDJ5dM0NdZjew6ReCmxWDmaGkAWJQRJpq6ukZKyUQhSCarmZ/XqneTzsGrlIBnd4p23E/R0dIHn4joKCBqW6zF29Hi6etrZtWsn5SVleC64nkS8qgmbMKGSSmRZZMO6dQRCPgyzAKKLbuZpaKijrCyOILpUVpYxpl5l7swKfL4Qmj+A7TiosozkmcQjEvPnTsPnCyDJAUTPwTUttr67m1TWw7SLcPJYWEMQHRRFwjAMZFlDk2UQJAzbw7YlykoiNDU2EY5EqKqpQhRFnnr6CS6/+jJOPOkCOjsTeLZFunQ34uS9cOG/Vz/dHypwOH0cg2342B/nmn8mfZwo6EjG8N9D/4m4fpD+PS0pYY+iIQAfrJA2kmG0r1dmjwdopAjsgTwvBxIMHymyuZ/z/4zI4oFgD3vuue/fka794ERF9gcH3h/vHvjrSPMayfP1cfbh4+zbxxHK+z4re6AvB9onQRD4QBug/dC+EON9fyz2Fykf6X/7HrInFOG+eEiCiCUlCeJDJ0DdxHF89uLzWLXmdU465WQeefxJ/nj/o1x/xbf4wjkX0r1tG9qEoxAPOgFZkli0aCFtnQUuv/qHdPX08MxTf8auGkeotIqmg+ZRKJgomkTjmFGoWim2mcUVRApeACffhytAfUMdmfQgmt+HJwhES8sQBJl8LocoiQTDIfK6juG4YNskkhnmH3wIu1tb6OxsJ53MUBJVMB0LWQvR09VHIWfjWAKeIGK5LuWV1aiqgm0XsKwkpmVi2OAaBhMnjOXNN1czfdZcArEwgk9Fz+fwiSI7m7cDHpoUoLsjgeKDXTu307xzB6IgUciZNDSNYXd7G5qq4ff5cByDbCaNaTi41iAuHrbn4Tig6wX8YRUt7MdzPRRZYzCRIBRWsAsZPMllxpwZKJrMJ448lKamGkbVldPUVEEmm6QkFscswGN/fgZV03BdBdXvI6dbFCyTQDSMJylEY2Ugyiw67FBq6muK1ZZVDdez8eXbUeZ/g6qyUkRBIVtI0ZtIM//Qw7nue1cwqroeVbIZ6O5Hkr1iT96yapAV4o1lSH4Nx/QwdI9cNo0qhpCQSaU6EcgjCzpOPoeT0ZHFVnxqJ46nsMcqkiWRXHqAYMRHLF6GGghz6ZWX0dXWgiTq+ANFw3XzlvVkMr3s3LmBTKa72BMYkBWFskofyWQPg70JmrdsQ9MkBNFh0SF7K6yuWrmUVH8PW9et59rPX8ryvy7jod/dT0fHAM07W+nrHOCrF17NPb99losvvIpTjj2D5YtXD11vOC4nnHYCp592EbfeeQv5fD+J3iSOlSWT7RjiO/usc4nHS1m+fAWWUKCitoKcYTCY2RsZTeZauf3nN+HTJOZMm0baGGTbzu0EAyF+c+dvWb74Jd5eupy7f3QnY0sn8/TvllFeWg6APxDBsiN4okAwpLJr5+6hcfu6W9i9ZQeWZSAJEf74x8d44sknkSSJr19zFWvfWMVAdz+tLbvYvmULr7z4Iid/6lQAbEemr1cglcgXUROyPRRx9TxwXZtPnnA0s+fNYNlri1H9Ei++9OLQvefPO4gzTjmNH3zvJ/zgltv5yte+TMgvovn2rvuRh+8h6DNIdHSw7o0OVqx4HYBt7+4g0dNHf5+H60isXb6eurqxlEYlPKcYCRdEAU9JccH5ZyEJCpoq8smjjuGt1W9y53//msbaRsaUjiVjpFn8tyVcetnlXHP91/jq107nppuvBsWgqaKEhx99kZKSiXS1WRx66BEoToB0qov2zh5+8ev76M6kmDh2DFWRAJGQwMGzx7BtyxZKakv57z/8hNFNxR6qvQP9BPxhPFdgypQpxONRKoJ+qqrrsPDR3dkDwKRJ4zn62IUkkwlcw8H2oJDTKQmXUlJaTay0hKDPoq+nG8tVCMcqaayq4ec//S7/9Z1vcdghh9JQ30jDqHpOOO44HnnwQX588820tLUDMGZ8A9MXzsQVQ5RVNHHvA3+iUCgQV0s49ZQTiVSV45TkwQX3d2VowWpOPXkRsVix6vGDj/0F07EJhQKovREy5R0YtoukauRyacIBjT++ej/mexWmP3f0eYgCRMNxBMdCDQWZOv9kJs9eSD7dwUBfJ4prMa46Qk/LekY3lTC6YTTjxpYQCIfxR0sIBP1UVtYQ8AcIlVZi2jq6aTF2wkF09fVh2gH0vIFtSmg+iaC/EiUYwZX9+MNx8rk8imSRS/eh62l8coHSeD15U8fSc1iOhevqeFaWNSuXIpAn2d9JtjdJOt9JPtvPccfPQFVNZswrobaskk+eVMasOQfR3ZWkYAwSDAsIkkcoEiSgqpTFyygYLqYl0q/H8ZeMYfSk8VTXVmPoOerqqkESUWUFx3JxEFH9PgYSOQpGhq6uBIlkGsOWwQZNT4CmovosomEXI5vBNEwsR0RWwniuRyY7iKaW0J/oJRotRZJ95HJZVJ+MbuTxXJVXX21Gt0E3C2ze4ZHJiTz5zBI6OlopZAdo3d1Ce0cncZ+AKsJPbn0GVStHwuC5Z55+n24xUjsYoagewLDmi8MLIu25fs8xkj5SHG9k5OL+9Ks9+tNINFILwuG0P6jwvsUqR0LFHUg3HCn1a6Ro7QcPAUGQ8LwP6qwfRf//D+2lf0/D9X9AI8EZ/r+mf3axn497j4/bSuj/Qtuhv6c90r7C/Z/5/fwjHRfzFx1MX18PPk1BUvxIapSzzv4cS5etpry8nqZxjdSMqmbi1AkoPhG54VDy/rkoToFMapDa6nIef+xP1NfUcdIxJ3HBGRcxEEDiYTIAACAASURBVBhPcs1fqKiKUlIaZiDRhUuehx99ipAvRCRSimNZSKKEZVrE43FwIZVMIoseouAQCPrxPBdN0xAFCdUfQAA8x6aQzjBl4kSmz5xOKBbGsEUktcgfDWp4roHj6HiOhSKL9PX3Ydk2qqoiOS6aLCIpApJPprurk1NOOQlR9BhMJBE8gVQyyaZNm5h20FRUVSKTSVBaFkHX89RU1zF92kxeeeVl/GGHufMmM2nSaHY2b8cwDNKpLJZlk06n6BtIo2p+QECSRPwBX9ExYwssXboC03SpqqpFEn38+YnncB0R13EJBn34wgEM20VQ/HhigGgkhut69Pf3ks/mkUWVlt3t2JbHru3bsQo6gu2xe3sz2WQKz7RZ/doqBNtFFARsyyLf34Yn+wjUH0R5XTk5y8KyLDRNw3Vd6urqGD9xHLZrYdk2wT4NrVNCkUGWBKxsENH20d3ZhaYp+PwCy1csQVUCqHIRGrt7VzuO4/Da668iCgIrV6xAlfa+D7t3txKJRHFdl5aWFjzP45xzzuHe3z7DyuVvkUgU270cevDR/PiWX+BaISTKcOziu2jZBSQ5wuTJM+no6cARCniujYREILg3Grllyy5+dMsdbN/WyqmfOZu29m6OOfoEVM+lNOinkO5nwfyDuPf3dzJr/iQWr3ieBZ86bOh6wzBQZI0XX3kU29OJxsp4/NE/sXzJcvq7MkN8tg2xWIivXHoRfiWCJoUQHA1sZYhn+rSj8Skz6E13cf+j97Bk+d8AOGTeHObNmkVD3QQcn8nqLSu48Kunk3Q7SCSL+5Ds7+bHN99EMBDmpcWv0NTUNDRuLFbCuAljcT0D1zN54qnHAbjgvPO5/rqrmDhxPLquF4sB2TajR4+mu7NodD/79JM8fO89SH6Prr4O/GqQYmNtMM08rmchyR65jItPC6KocONN1w/d23IMnnnmWWpqK/jd738KXg7BJ3PIEZ8Y4gnF4whKmO27+njo4d9y5CcOBaChsY6qMo+SsIcWkFl09JHkMgX6+3PkC+9FzT3wXIXXXnsdb8Yk8uOqAYiWVnDuWZ/jzw//nueX3MeGtzdwzKEnomkaW7ft5PiTPktV+VhEQaatfQcnn3o0M2dM58zTT6W2uobEQJaqynpK4mV896ZvUFlWS1+iwMOPPUsubbC7pYW58+YR9AdQRYnGhiKMt7+/j97eJIOJHE89+Rxfv/Zb3Py929m0cTvBoMb2HVsBmDJlMoZhUVtbX6we/t5vSGv7VmTVwdAtCjmXeGkZJbEogudQUVXNjCnH8/kLvsCtP/gmf7r3VpYvfpo7fvIjPnn8J1j5xrIhyPLsmfPQlBg//enPuOSSy9jyRjMATVVNyCUermshySru+CzuNgmz0EckOo6m99bR1d2PZXto3cVCctF3a/GpQYKhGP5oHNMTeHT5nwGYN3oWmuFD8/vwBVUsO0c63U9BN1H8JYybsYApkxop5HqYddgiykcdRGn9FEzPR99Amt7eAfDAtkVMs4DnuZSX1aApYUzTwe8LEo1GCIRkTKuAP6SjqDamVcDMpzDyaQTHIFJSRXdvsihb8zodnX1oAQ3TEpBUDc+18QQBV/Ezc9GROKZNvqATKY0hqlHKyisxTB0E0BQRVcnQ3wp/efwZamvjiF6YdNLD7w/S3z+AFojQn5PRpRoKUgPBkvGsW99CKjlIZ0c7ms+PLxBgoHcQXTcQRQ9ZsMmmXTRfmhcef4lMbzPTJ5TR2boR2y2gWyLNOwb420sbCUfLkGUZXzBCJm8iKBKaP0I0Xo0gydSPmoRhGuiGASgIrkY4GMYfcJm/aBSqJCGLYOYHGT+2lMPn1tLVvB49k6WhvolIOMJLf1tGMBSmYlQpJVVlaMEg86uPx928Vy59FNpXj9mTBrOH9uhIfy8icSQ6UBeFPYim/8v0UbtE/IfeT/9aFtj/Eo3kXdmXPszIGJ5z+I+g4dHDD8vTHCk/8p9Jwz1je6KJI9GBMP/DvWv7i1wP99yNNOZwL97H/U4OFEUdvqcHWtNwnuER4eFjjSSs9rfOkXI+RprfgXhHypvYM689PzxDhQhkid073yWd6ENWAjSOm8TUmXMRZD/zFx3JmWedhaL62LZ9Jxs2baZ1dwt2NocoeAR8GkuWPE9vTzsiCs/+5Ul6OgcIjjmciA/cbJ6tW9ooK6lDlvxccP4FdHW2k7MkvHw3ycQgmqZiGDqe4xAJh7Fti/a2VizTRJYkDN1AU7WiG9h1KCuLY+gF2jvaaG1tIZFMkM+biIKEbVpYhk6+kMEydUzTQBREamtrEQSBXC6HKCjohQKi4CErCrIskc0kKeSzBP0herp7qSivoL62huTgAP39A9TVVxMM+Sgti7P53e10d/cQCflZdOgRuJZIV1uC/v48oiiyc2cLsVgpFRXllFfWky9YiKKE6zjYtoPnOFi6wWGHHUF/Xx+DiSRvvvk2Z5x9HoWsjiKKSLJIIBTCHwziIrxnUEjIkkw+n6ekJAYeuDbgukyaPIFwOIRpWqxa9SY7tjeTzeU56KDpPPnU0yiSiiyp+JwcYqAcwyxQV1+NomiUllRiW5BJF3jzjbeIxEOEohFGNY1G2yIQ3CZjm3n0fBrFllBFic72ZvoSA3iex9FHH8urS1cSDEYRBYmxYyYRDIaYMWsSeB4LFy7AdYpFngCWr1g5VCSsqqqKzZuLFVOPOPwYtu3YOQQpLisP8v1brqZ2VJjVa5ehqkWIq6r4QBAJRWOMGTuWMePH0N3eQTqZYvu2ZsLhCAAvvfwyRxz+Cfr7kqzbvJnyqhKuu/Z6zj39LC6+4GIymRRqQGH5isV8/gvno/plguHA0Hvj92uAiCfZtHV0c+cvf8XFn7uQY475JNVVo4berdtvv53Ozk58Ph+W7vKjW36CY3rs3tk2xNPSvoU1659j84ZucllpCDJ7zVWXsnrNa/zi53cTD03kM6d8kYPnH8uWzduGeoB6nkNPdwe2bVNSUoHj7oX6qf4Qsk8kGAwzMDBAa2srAFOnTkIQPDo625GVouwwDIP+gQHWrnsbgKamRi7/2lcoq6rh8SeewjYNHLEI09U0P+l0mieffJr16zYT8Mfo6e5H8e+VKaFwDDyBK678KsnEYlxrNQg2u3e1D/FYlksmbTNjxhxOPvUoKsqLjoXOrk62b3sbzQ89/Z2ofh+XXnIJrqjx8pIlQzKrkLeZNXMe9vHz8Z92DLIs49h5tu3YQDDop6qylpqqRs4+8zTmzy5WYjYdg1/98h503aK8vJyeng7uufsuzj3n03z+cxdRVh5hYGCQq678Bul0Fks3WLryDU7+zFkEfX5S+Sye51FZVo6CyMTx44fWs+TVpZx11tmcdtqnuemm73HaqWcydux4Xn7llaGc6WOOOopvfOMGQCBfyNDb24U/oNLYOIoNGzaQSCTYvn07vmAMvybT3d5KTncQ1T4GEp3cdONtyF49ihxA0zR6eru474/FfNMJ48excMFCHEfgyiu/xqN3PIbSXUQotCRaUBSJTGaQbC6PViPieS7hpxrpS3YxkCjmfldV1RCJVCB2hnDGZPE8B9uycL2iAbJ6xwre7Si+k+cecjKjGhqQFQUXj0A0SjQaBddDEFW6+lIMpjP4Qn5QfKD48KQouiVSWzeKN1etwrNNBEnCsg16e/rYsb0ZBIjFwqxbtw5ZlrGsApoSorW1jYCvAkGAQjaFJoMieuT1ArF4lIqKSvy+IEF/GNvKEY+UIgnQvXMjZqqXd1avIN3XSU53qayuoaOrFVWLYbsCrm2jqgp+NYxtZ2hsiHLqqVMZ6N2FZaTx+2UQDdo7unAcl1h5HfjLqR0zmaq6ekoq4lRXllNTU4NpmURjJcSjURA8WnY107xlC71d21n+3FYWLlCZMVWjNOYwf+5YXNsA2aa2Ls5hhx5EXk9TsEQiZQ3Ey+twHId8Lk9XRxc9ve10dySwHYF8oYAgKbhuAcMoYBgiW98dxHZcCjmdKZPHE9As1ry9A9EXJ1ZVjS25+P0BTj7zfLK6xby5k1AkD1O3GN2/EG+Z74ARz5GQdiMhvvblGanF4f6iksOd+sPnoSjKByK4+/LuGWtfEgThgJHaA9GB9M3h9x1Jj/qwMUZCZX5YMOw/hu0H6d/ScB1O/4oPxr6wi5Ee6v+NKOuB6H+jpcvHFTzDS5r/q9I/+3nbIzA/LEq873e4h9cTRPRChlgoiGEJ7Ni1g/7UAFdddzX1o0fxjRtuYvWa9fT0DrJp007aXnuYjtX34klhwqEQM6ZPobamgkwyx3EnH82FX7gINeLDqRiPGvDR29eDZRlkMoNInk4o5EOOViGKIAginlss0iSIxXw+23YZ1TAa8Ojt6SE5mKSvrx8bAUmAQjZNMBYmXlZCKBhAdFw6WluwDRNfIEgqV8AoGASDIQQkUoMZBIShatyOoKD4gsiySsfuTgI+H5n0IJFwEMu0qCirwNBNmnfuIBIJEYnE2bhxI6Zhoal+KiqrsC0HWYbKmmo6O9tZ9urLLDpsPrZjMXnyVFwX3nrrLRA01PcK2kiSiCCICIIN5HnmmafxB1WqqsuZPGkKrmQTiwaRhGLhLEkQcSwTSbSRRAvPE3BcjzVr1nLyySeQzaSxTB1Nk/BEkDSFWEkpx51wArbnYrkusdISGseMITmYIpPOYOUSvNvcy/NP/YV8MoGRLjAwkODVV5dx3333M3HiJBzPRlYlFNWHF27A9FXz1to30fN5+nuaeWvtEiZPbqS8vBRJDPH5z32F2bNnU9BTZDIZensT9PT0IIjFnrwikOjrfS9/Drq6u/nOTd9DURQURWHChAm4rsv4ifU8+Nj9QFFB/8ThxxHwh0gOFhDcEHtgawIqrqDjYqAFgohiAJ+ksX7925x/8Rmcf/65ADzy2MO8vORFTjjxWAxXZ+zEem677cdcfvn1xEqqMT2ZafPmccHFF6DJCpvXvsOj9zxEKBgCYDCRpKu7DVmOMGHCTF5ZsoykXiBjGkTK9lbnvOaaK+jvT7J5YzN+TeKqKy5DElwyqYEhnlRPEiGvMrq+lA1vrxiSB13dSY78xKEcvGgm37z2Om78xteJBiV+9Ztbh66Nl1fy+wceIBqNM2P6bB577LGhc7bt4HgOjiXz0AOPE40Uo95vrl5NQc9RUVGGqsrYtk0gEOCnt91GLpcDYOq06QTjcSDAF798OaLkIIrvySlPJh6t4p5f34/fr9HX189zzy4hrxtD9/Y8hZ6eHkwzT0VlGdFIBFvPU1NRO8Qz2D1IRAswbVIDc+bMYcbMmQCsfXsdGVvGEWRGVddz683f5667bieVT/Lq8mUAGKbJ/ff9ib/9bUmxcJIjU8hlSHQ1UztK45d3Psidtz3OOeecw9HHHctB06YPycKx48agF0xWvb6WcKiMB/74R3p72xnd0EDB6CMc0ThoyhyeeuIFRNnimBOOxXBNXArMmDUTUZZYu2YNnuty5BGHM2fGDAB+cdedLFm6GEl2QbDo6NzNWWedwW9+/zsA6uvqOOKwI/jZ7XeQzeRRVImS0hiyLDI4oFNb00hNbRUzZk4hZ5gkBwcoiYaQNB+hQAW5rM5XL/s8Xc3NPH/9arruNdny13ae/Mtfi8/aGVdhbXBQDRXlbT/Wz4McNHUqAAPZfp5+4ymikSCaT8Z1bPTaBM66MKtfaKG1rRhpX7hgIbYlwtoIvukgBRRMx0ASPLBMHlr6MACxQJST557/XgRXRvWHMIUAnuxHU0R6u1qpiMcpqx1DadU4FM+HmelDEiEUCtHb28mJJx1PKtmP47lEImHKKyqora3BdnJYTo76UXVIkoKm+YmVaNTU1IKnkM7vJl4Sx3E9bMdGlSy6O3cjSgIDqTThQIBCfgCjoNPRtpv6sZMQfAHGT56KqKhEy2pJZXKEQwqSI5LNFVBkCdM0KFhpJDFKKG6xZVMLSxavJRwK4XkeqUGHCROmkkz20t/XTjgWJD2YwTZtmhoaMHWdHdu3EfAHMG2bgF9my5ZNlJWUsmX9Fta9sRLL3EF5SZiQL17sSSw4KJKIImqIFNCkDKoYIljagOlF0A0PzyjQ2baT0miYWTPGoYgSnR39VFZVo6oipm4iiTKiKNK8uxNJ0ZBUPytXvokgiMyaPZamUXWk+7OkB3J4nseWHc0kkml62naQHehHdkUc0/rIOta+RuhwPWt/yLKPoiPuT0fZV//7sAjucAPxf1sPFAQBWZY/nPEA9H9Fd/1XoX+jnXLxsPAwR4xWfZQcxuGY/v3RR8HdD/c+Dcfc73vuXyHieqAotVQ7BbFm8gdyWPfkp7oOxc84CKK3N49zhBLmQ/fbl2+fnM+RPFb7esD+3n34sH0+UJ7qEC/O0CGI3tDfoeNAz9CwPRvu1dz3fqIoguAiSgyNC+9vXD18rvv9vM8eC6KH42hUjp+ELAUwXYWQX2bRkccy9/Dj2dXSz4lnnscTL/yVn/zsbk47/VIaaKHa2M7m9ZtI53QsQcMTRFp3vIWum5xz6uG0bX0TpXEO1q41HHnkQnyaH1HKs3t3O6lknuxgEjyQFRnXcZAlic72NvAENJ+P3r5eVC1EeVU1wZBGKCCC54AgEg76GezpJB4rY8u2dlzbpDfRhyT66GjZTV1tJRU1lbiuhyTItO5qw7NyJBO9qLIPWVIoZPIkunuRNQklFKWiqh7bssnlBtm5u5mtGzZSUVZNMlsgm8wyfdo0NJ+PxGCSt1Yvx3EHmXvwwbiOyNgJE7jw4nMpZLvwKT76elrxHIOayjpMx8JzDcx8EiNj89yzi0EIo4ZKaW/rIRKOYlp5whENVzfp7O6mYFp4rojrCGSzKYxCHhwX2zZwPIdpsw5C8qm4ksy4iY3kcmksUwBXxnYcQmE/1dUVlJeEkEWHyZMmsuqNVbS1tCAbAxz06Zvp6xvENjUUOUDrtnZOP+lMlr20FE+3ENEYzGSxMZFUH46oMW3mwWzYsJPaxlGUVdQRK63DdgTwKfzwhzfz12efQhBVZC2KJ0EgHMLUBVS/H9O2UfzKkFEUDoe55w+/53OfvYbEQJqHHryX7954M9+55b/Yun0bAMcefShr3t5MNuOQTgwwa9qYocJBjm3hl122rN9Arr/Atg3bMAwB0dVY+vwyrvjSFTQ1NeE4Dr/49S+46w+/4LCFUwloPgzJZcqsRk487Xh++JMfc9RRh9O+ayuWWaCzr4dPfuZ0jPeMs+tu+Dbl5eW0N+9AcAo88tgfCIdiiKI81KYBoGXHZubPmcvY8bUUFJc7fnobTzx6F/MPmzHEM3ZSA3lvFwsOm8+PfnortdXF3p1XXX8df/zTM8xeMI8FR87imzdfxwVf+SzpXJpgoOjw0PMG3/nOdxBUcBSd8y44932yoVAokEr3ceFFn+G4444C4Iknn+bPTzyJ69rksha9nYN8+zs38fNf/Yp4LA7Axo3ryWdz+BQXVRIpFCQEoYjCcG0DWRJ48tmnuOc3d/GN66/EtBK0tHcP3dvxslxx3dWkCwVkWcITbNrb2/FUc4jn1ddeQ40IrHlnIz/4/vc4eNYsQqEglmVx2RU/5K31m0nnBS6/6ossXb6UT33qFALvFedSZIVxo2s59ohFDL61hdtv/h7nfPZC/vLiUhL9DpVVMeYPzOG+T/+JF55/kd/fdy8Ac2bNoqQ0QHVliIkHzSIiaby44nnufuBerrjx67Tu7kdA4fIrL+aCi0+gt6sf2R7Ej8HOd3vxzADZpMCO7a309fWxZeM2Fi1YgCRJbNy0ic9+/vP09vUTDPqZuWA2NWPqePHllwH49g1Xk8v2YzsGumlgOia5dB8Tp86kYdw4zr3wYlRJZaCnG9vME4qXIvpD3HXXL3jk6Wd59612Du44lUNXnsXCsiN47s3nOPsbZ+O6Lp+ZcBafzl4MD8fw/iuO80IIscnh9MNPH6r2fNV91/Dbxb8hq6ewZRW73uau3h/xxa9fAkAsGuMzZ5xBeHUdsk/G6ZLxcNG0II4rkLVyPP56ESb8mYPPIBqvRlM0HEEh1deJ7NnIkogrqdQ3TkDSXFzPxDANEqlBRBw828YVA8SqxuCICuGIHyszSMv2ZpJ9vcXnVvYXq1yrHiteXIJpihimi2N75PJ9qFKYVKoV13TJZA3kQDUuYTxHxbbBU/2EApXIUpbKylKy2TyCouGPRLE9kBDw+4IkkgXSeR1RjaOoKprqJ6jWFNFjlsuM6RNxdZeVq17FE5wi1N8vYhgiU6bPQbdNPMWPomj4A360cISGpjGsf2c9hWyaRKqXCePHsGHtW0weH+e4w+o4/vAazGwGw+xHdh0cx8URHHTPxbM8bBwsNGRfHQgqiuynpaOZknicVGIX/W3t1FYI1NeG8VyXgp5D8vkwPQ9ZgeOPasIyMmiqn+OOmoxueISCAite30haT6IYflAcvnTB2by+fBmBgEVJvBJNUzCN/JDc2KODCh7vPwTxfcce3eID7fyGOcpH4tuj434UJNu+CMTh+s9Ieu9I+aoj6YN75vhh+v5w2l/0dA/y8KOlkbn7HB8c9/1jiID4ngz+NzLTPiIJ/2yD5x9FjuP8Dyfq4uFQ9NTvH/L5UYzOD3tIRzKuhp/fN7F8JPjDvrwfRh917v9IGj5n13WL/bRG4NlzXhzeFmsfg3VfXuC972ov7Tv2cKjtSHDcv3c9H7aXw78fURT3zmcfA3vP/99npI5goH/UeQwX0B7O3mipM3IUd98xRvqx8DxvaM57zmuiyuvLFqPJHhOnTUMSq8iZGVzBxLYKqETQc3m++qWvMmbMWL5+SA+O7fL8wGxOP+0wWvsSuLKP5GCKWEkVlaUxSssryOXyCM9/H+pmkMw7xOIqeAGSqQQBv4L79p0ItUejKiqO4yIIEq7nYdsmtmniCwRIJpOEQ0FUWaFg6ARsA7FuLEtXLqduVBMNDWMoZAYIRIK4toqi2OB5uLZIV08P23fuYN78+SiyhCKLZDNpPBFCgRBtu1vJFgqMHj2GXTuaGTdhIobjIqsCO99tpqujmykzplJWGiAxkKa0pIYHH3iUY4+dTzgcBkEhEFJgT7Eru5iz67oOsqywfccOGhqasB2blctXsHDhQpAcDN2jtKwcx7JwXIt0Kk0kXEYm149P8xEI+rEsC0n1Y1sGiqTS3t5FdXUleAKqqmHYOURBBBdEJF5//XWamprQCwadnZ3MmjubXTu2UVpaTnl1FZIo07NjLZH0Orrm/AbJV4QuXnvNDXzrm1/HNE1ECZ599mkaG2ZRMaqCqVPGEL79PnIFncLVF2MbOqaZJp3J0Th6HJYNlpMm4gug6zq2CH5fBMMoIAoCruuAsZx4aSktnfVc9IUvs2LlSk47+QzWrV/LrpbmYp6Xz082uzdn9NCFh3PHrfdQXRtm3fq3GDd6DOXlpUydO4u2tjbu+vnPOenk04iFY2QzKbo6dxCJ1FJVVcUrr7zCnXfeyc9/9XPOPOdMNmzcMDRuKBhEEEQy+9xrdNNoXn9jDYInsPTlv1FdVsFra17n+m8VczllWaa8rAxZUairqeGZJx8hEAixbPlKPvmpUwDYvvkdfvaj3/DcX59i7bY3yHUX2Na8jkWHn4ovUvTKP3L/A5x80olk9SzBoI9XlqzkM2edNWQAq6qKKIrouo4gCPzgph9y56/+m+6ebn7249tZtOAQqhvKCIRiaJJMMB4F4Pln/8L0aVMJhUJ0dnYSDkdYuOgwWtvahmRSJBwpVu72PC6+6EIymRx/fvxxzjrzTH5z192kBk2++KWL+NPDf2D61Em09Sb55R23cf65F5Iu2Bhpk7LyKKad5v77nuDab14JwF+ffoL5C+agKn4C8jp0w+T7P3iJz11yCRMnFnuablq/kdraalzXJR4OMDDQz30PPcg11+1tOxQOhTFMA9M0mT1zJhecdw5XXnsd1dXV7NyxjURfO1W/eZarnnmMn2/cW7HY7/PhE/wk9eSQLBs7egz33v07Zs+ZhK5nUeVSfnfPI3z/tm/Rn+jn4PkLuPXmW4mXVBCORQlGFOxCisce+zNnnnE+69dtJJNNMm7sRFa+tpRI1E9TwxSmTp3KHb+6g+/84KYhKHs0EiWd2dsr9fprr+HSCy8l1FuCu1WCHSpkRERJYPqfxtCWbuHgGQt45q+PgSqjSvJQ1ObTnzybF1YWC1/5ZB+KopIppIfWet5h53PHF+9AkRUc28MTpPdUWw/Htnhu7XN89Z5LyOrZoWsi/gjpfcaI+0q4/4jHWTj6EAQRlOk6eSeNGo6TTaeJhgLcv/ReLv/dFQAsu2Ul0xtnUigkEEQ/miJjWTqappDLZREEmaDPh2HoyIpMOp0iHInR09NKOBQj4I8iUGAwlSYer0NRJXRTR5Y89GQvnuQSilVhmA5WPoGsRMnldB546GEuvvgLBNQUBd1BlgMYjkXQHySVTBGLx3BxsA2PfK6f0pJKUqkcPf0DjB/ThJnLkLVNVFWhq6uTxoZR7N62mVjQQFNsREnHNCR8WoSt23ZR3+Dj4cfaOfPCzxGp8CHZPnKZPvr7EvT3J1lwyCx6u3oIRUoQRYHlK5Yzf+4c1r/9NiE1zPb2Zvo6Ojnrk/XF1A7PwvPAthwEUUIUQFN8OKKLIAbwRSspeJXoZg5TN6iMhUkO9OAaA4hCGlX14VBAFgMUCiaqqmKbWXAjvPS39Rx/8lxEL49pWNi2RyGv093tkTJUps2dh7cpgBWxeUy8m8UvvEii/R1u+OqpDHRs5nDxD4yeOgft0mIF/BEjpCM42ffoIHty5fdNi9pzft90un0Ns+Hj/z3oMwHpfWPtGwkuTvkfb+gdSC88ENR6JNrTmWR4vvC+99ljrP4rokH/WSRJ0kderHTTTTf9E6fyjyPP8276H47A3qpoH8/TMjw6Ovz8/iKAH5jBBx7O/fN/WPT3n0XDPVUHwvkPNx6H7+sHcyHen+c6FPQT9vYB2+tlG+ZpSnG0sgAAIABJREFUY6+QGu6JGzKch0VeP+o+7S9XY3/rHuna4sn379kHPYYf77nbM/6I58W96xQF6UPXu7+ciz1z3kOGbhMJ+ujracPUDdo61rNp3TJmTpmDRDWWk+Seu/9AbU0Nu3fvZnZ5AsMwmHL0l9m0bi2yplDb2MjYxsk079hMw5gJ4LnIgsPut5YTC/nImsXeoggC0WiM9g1LCUgmhhijr6+faCyO7Ti4jkUhn0MQRPyBAAICHiKSoqEoMtgmouanbtxEPIpRY9Ow6e7p4Z31mwiH/SiyRsvuNqprqsnlsjQ2NuDYLhs3bqSpsQHbdYo9gTyoqatHVVT6ensZfC8HLBAKUhIvY+vWbdTV1qDrxT1TNZHJU8YSi8VZsmw5kyZPec9FDYIoIIkKklLMRUWAsvISBE9g88YdzJk7F0Fy8GkKmhZEkmUKhSyJxCCxaBkvvLAYQRCoqakmmUwSDAYACUkqFmtKDg4SjkR47rlnqa+vwefzY1omPtVPa0sLU6dOIhqNIIoSDaMaWL1mDbKgsn79esZPHI/tWGjdK/CmfYHo2EOoqCqjYGY5/pOfYtWKd9i5o5XxY6fy2mtrCIf96GaBcWPGwHPPoGLSPmEMNTVlgIfPH0BRNVxPQNUkZCSSgylCsSiWkcdzPTSfD0GWUYROCrqOIDXwwIMP0dnVxdFHjOEXt3+Z8vIo3T2DJAZTBPwaC+bN5Aff+zFnnnES4ycGsPKvUV/rUllpohe28ZvfP00qleOUkyah+kJo/jiZVIoxoz2i4TZUpYOaGpPzzj2YkliWTxw2munTpzE46JFKJdENA8+zqayMc/iiaVxzxRl8+7oziIf78Std+H1Rrr7iu/zwRz9C8BJ4GCSTWRKDKVKpFJJkc8Ul82jZuYLtO22e+sszAPzo5jM47NAazjxzPmXRHIa5kwkTw6RTG/npfxdzE+OxEspKIowfO4BEF7XVLo31EVQtQFd3P6ZpE4tFOerIY7j9x7dz3lkz+eWv7yedznHGaVNYMNdPWVxHFjox8m38+PYHADjvnHOYNimDJHRQVlJAEjq44NwjsSyH7p5Bcrlie6GZM6dzw9e/xHeuP57nX1zKOxuamTm9mtNP+X/svXe4XVd17v1bc/W1dt+nN52qasmymotcsWW52+CGgx1TDQTiYMgN5BLIx/2SXEhCCxhCyzUkIYRgsMHGhVDcq2xsq9vq0tHpZ/e9+vr+2DrysXwkWST3e+4NjOfR8xytMudcbe7xzneMd/RhaMMsOylJtmkZf3/77ZRqDuvPX8AZpyaxjXE8ZyupxBSGPoaljvH1Ox4E4KLz15PPKyTN7UQRTE1NM7TgPISqcvvttwPwrne8k6Z8M55fBRlkWWfV8tXEkY/nhxwcOYgkSczr6eED738vf3/7l3h5xw5+cs+9ZDJpPvD+91Cv1Uls2M5Qrp079+5h6dIlJJNJXNelXC2TNjL0DfTwgVveR1dzOze89fcoFSuUK9OkU3ma8m189wf/RKlcorurm9WnnMorO3Zz8ztu5u3vuJnQr7B40XJ0zeaWW27h5rffQFtbO/MX9NHb14lmBPhBmbPPOo1FC09GEjHFUvHQolqSNy24gL8+9++40Xs/6mMZ2KUiBVBgAqVPIsoFfP3Rr1ByinTTz9v23Yr0osH4nkkmnitiP9hOcqwJJSXh4lD36vihT2e+i4tWXMRn3/5Z3nfxLXhuo8aqrhsICYSQGBnej+c6nLJwDesWXkDKTuL4DjWnRs2rkTSTLOpcxO+f9/v8/R98DUs1SJpJyu3jlLxphJDRVQ1dk/F8l4/9059yYOoAy+Yt40OXfBhdVanVKqQTZmMeFjrVSpVEwkZVdEZHxnnppY0NgSXbQtcthFAxdYMw8ogiH1VPEYQxrldhcmKCRCKBiGNkJcP2l/dgGklKhSqGncC0bBYMDbJ540bSaRNZ1hkdGaWjvblRHkfTkeIAp9YovWYlTIqFIoapkM+lqNaKjI4dQFVS+H6MZWZIJPI4no9u5/Bch8CL2LZlhHRO0JSTUUkzOJDjrh/+jKAu6OjuIBIK2aYWOjq78J0qpqEQxTGaadHZ0Xm4ZJeq1NDUImeuHsDSwA89hIgRQm7UW5Z1NDWiHtVJ5ZYi2ykmSxLZbJ6pkTHksMTo/g3IooCmBSiKD6GOopo49TKWaQMxCJeYiP6BTupeAd/1AIlkMoUQgmyzwUsv7WTL1h0s7zyPKXeMbz/7Vf7yL/6SM888jy0vPoEsKqxufjeqkUA9LXydovDhv+fwKYJDwoZHy82cy5ea8U+O9POOJk50TN8tfr2fOTOWuc47Mv90Lps55lj+7tH2H23fXOM61rGzt832jX9bTAjxqTd67O8Y1+PY8RjWE2E7jwUG5wLER2v3jQCs39ROlPGN45io1Aj5Ecm2ox4DDU2Z2aEks1nU1zCXcJgJnPl/4M+9WjczCc5WmDsSyB7PZk+kR7veI1f3jhzHXGN+3f4TYFyPNo7D79ChEOEZpvtYwPVIhn+2zTyTw/kkkokRu3jlEk89+Sw//8m9vOdd65ksFmjvW45sZahMh9x3z09ZvXoF4ok/RZZlno3PJ2mmOeeSs5ksFvAqMaXCHpadejZOvQpOGW10O8H0buRUF7t3v0JnZyuKYjH+/Pcw5JB05wo830fVVOLIp1opYydSRJJAIPHs08+wZOlShkdG6GxvxSbG0XSUlh6IXKanxknaOSRJ5sknnmXFyoU8eP8vWHrKcvrm9bBvz256ujtxHA9ZU9F0nTAQ7Nu7l5Z8jmQ2yeatW+lsbUWKQuqeQ76liz179tLT3cm2LS+x+OSlxLFMFKo8+fiznHHmKcQiRpUl4kghxiWKQ0BGSALXCTFMlSh2KU+XOHCgyPxF/QjVQ8QKkqSxdds2+ub1IEkKz214Hl3XkCSFxYsXHGLWAWTAhTjCcz3MRIYg9PB9F0PPEhPjuw4SIYqmAALHCfjhnXdx3bVX49YCfnTXD7nhputhYhPR5HaMG+9DkTRkpdFHFCrc9f0fcNlllzA6dpByuUi5NM3Jq9dgqkmkP/4QCInN7343ceRgGSa5fDOmnSIIJRRVMLr3AIlEAjuXpjy1n1Q+T6nqoqgGupZESCG18jTXXH8Djz3xJH/20bfxiT+9Gc91UDWFUrGMrtu4foK624mq6hCXkcLnyWRzKIqK6/nohgIxhEFAJR5AFk088egGzjoth65PNfKYoSEy44dEcUi5InHNdX/DTddfz/pLz6ajY5hK0WH3nh0sW7YIzw8J3RoxEg/cv5vPfeFH3HP/j4njnSStMUrlagOoyzKvvPwyfX19xHHM/n0DvPvd7+P7P/wWudxeJEKEIvPK1m0MDs0njFyEUAmiZvy4gzAQSLGLiJ9h545dpNN5JEmiUi3Q3z+ParWGoq9CkVv56X33sH5dN3E0CXGIbekICWIUqjWHvXvHaOk+H0XWUVWThPY8SI3veYYNlCQIw4iK04yqd6DINoF3kKQ1giQOqXMKgQQEgUcYRkTiDMJHv0kshRhnrMZ1S5h2gl9veIH+/gEyWZtXtu1m09YCp557I2uXr+L5TY+StnfxyCOPsPaMtdSDk/AlCV3VUQKJqVKVp59+lgsvWosb+GjC5ptf+RaDg91MFHzWnnIyBw7uYMXaUwkiF8dxGuI/gFevMD1RZmK0wNCdD2GYFp+WfYYWdLDuoiupF0YY/qs6g/OHMN9bYXq6xOc/9yVuu+0j/PuDj/DWt13E9u3baWudh1P3+epXv8EH//BdJBIZPD/gBz/6ITfceDWaFPKJj3+a+UNLuOji88nmDKamirS25diy9UUWL1xBpeygaRaRHCMrHgeG9/HFD3+PTy/9WyRXwHwHKReDKojjkEpxGkVIWOkUpWKNRMJEM0xKhRJ2YBOPyYQOCEeGjoB6skytVqG5uYlavYphGNQcF9O2KExMk8uZEKu4Tsi/fv/73HDjW1EVGd/z8FwH3UygSDTmUsskjuBH/3YXl19xMaoBxDoRoMoSEQIpjomikDgKid0K5XqFdK4FSTaJYgcpUgg9nyBwqVbL4JewMq0k7DZGRvaTSJoEQUPxvVAokG/Ko6oqtfI4e3ZNM39RL340jSLr1F0wNAnJqVGqeaSb2vC8ANW0KB7cxf69+xgpw5vOOZ3Yd6iWxqgWp2jpbaMwDrVahXnzmtmybScLlyyjXBhHV1Q0M8fw2C6aMmkEKrt3H6BvcBChyni1KfwgJpHKEQQRmmHi+RHF0c0Ygcvu/S/T05NCDhx8KUAOdFwXUFQc32S6amKnbRTFpVJW0bWATK4JJ9LpaGtjePgAEjF3/+DnnLIg4OSFeYqBQ0rXUVQZ34vQNZuKV8U2UkR6B4rZy8jkTlqb2nGKuykX9pOxZOqVEmGksWnbCMtO6kAWIW5YJmm14tQ9FEVQ82I0TcIwZNx6RBRKGIZxSBBMYmzExcqkeOGlCc7pupwgE7Ft+eMM9PWz/eWtPHLPl7GiYa7O3MW8BSehf7D+Ot/0sD/0Bnyo44GyGf9iRgBytm92ImTOYYvFYX9x5thj+XtRFCHL8nF9wmPlmR4rKvJo2w9HGorXky7Hs5k0jd8m+x3jeoRJIiSOZ9dufQPnvI4tPLoy6xxjPSY4/d+1inIiH8bMOI5cYXujgHg2wPIe/Tbhgc2og2sOLdA1EiQarCCNv2ew3ew+4lm5CISH2L/GsRLyIZa1weQ2gFpjZTkmYvZzPFbe6xu9D8cKDX7Dk82h8c4eN0iNFcJYOpS3Gx8af3z4+meu4Vj9vg58xjOM9bEV8KABcmHW84hffa+jKH61rVhCSD4RMcLQ6R7o49Szz0ZPNVGuOqRSNp///Lc477xzWHzSQppampj89Q/RdJMD0QBr3rSK7//LvWzfvpcrrr0UpxYhawF+5FELZAxDob7lUfYXayxeNEi16hIGNazJR6jK3WimhaGrjI2OoWkalmlSr9cOOdWC5uYWPNdlXncXjucixRE4NZRknmqlTHNTHt/30OwE8zpyFKemSWRa8aqT5HM5tr/8CmYiQSaboVaroRsQRSG5XJZa3WH3rh0kDJVisYqdMXBqNXTdZnJyFF036OmZT7XicHD/PrZv2Ux7azOyGmMYOgiBhM/YWJFkIkcU+4RIqKrAc+rce/e9LFt+KplcEgghAkWVqVWrVCou99/3UxYtXkR3dzctba1YloZu6MiyCshIIkKSdCYmiqQyOWRZQggFIdTGdyE1fhw9322EpgUhhm7S3z/Azp07aGlr5pQVy3Cm9iIOPsVXti7m5DVnoFkGCPBDnzD2WLR0GUJXMRIJ0vkm0tkcklAJwgjl5z8DItJXX86enaNk8waJRAYhm4SxQxyHmAkbWTOQUDDTCepuiCLrmIZFHNQoFaexbZt/+dfvs3ffPtpaT2btWddQdVVgkPvuf5lP/vn/YmBoBSMj43S0d+N5Cr/6xU7au5YRik4iekAaoFBOcmAE0k1tRKFErVonlW4H0cue/Q5C7UZWh3D8FmLRThg3ceONN/K9f/s3zjl3HaVKno9//F9IZhbT1r0MSW3Fk4fYsV2wYtVy1qw9h1xaxkq3MzGZ4e2/92lOXXs1RmIemdxKvvHVh3jgga3cfvuXWXfBJZTLRTp6+vGjXpygmUzLIqanUvzsvq186YvfZ/1lb6VSrqCpGp4X8e1vP8D569+Ooi1EVvr5vZs+zJuv/iCGuYhrrv8IK08eZHJ8lK27QlqzA2RzPVQqGbZsdpC0dmxrOVaiC0VT0A0N162i2/2MHpDZsaMGtGBavfhSG7I2QBAkUYRFpVpAyElCOqhFLShKJ6WyRaQMsnNHDSu5AElSifY+hxTHvDh9Eh/80Be5+IpbyOWXoJm9bHiuRGv7ycybtwpDpPj5Lx/iymveTK2sks0sINKWcOe/3cvJyxqKxmEsGBpcxOc+91kMwyIKAmRZYtkpJ9PTO8Bn//p2fnD3nRTr06xctYREqhW8EpqeoOra+NUi7Z0ZRkZH6R8uIysyS//wZhYuXAI4aJZKamc71arD0/59NDW3ceFFlxMLhaGBeYSRT3NTG6OjE1x68ZV0diVpbsnR3t6FYQhMXePXz2yld3CQgcEhVp+2mtGxSR5/7Cmy+XbSZsj06DayLR0EoUe1Wka3I3btOsDmfxjhfak/wm+uU+oew8hrTE4VME2NSqWC47oIVUHXbYSiIOKQarVGGHgYaYXxYB9+xsEaVJnyJ0mm0ySSSZAkVE2nWK6gyTKaoqLqOrKkEYQ+QeiybNkyNE2FOGoIJ8mgmEnCOAZJoAiZWmGcrp4mhCyQIg3k+JAjHxN6Do5bRdVkFFUlREU1DDzPR1U0JARx7CNUGSGr6JZJJttCEHhEwiKdMtE1Qa3u8tyzm1l8Ui+hD7t27aS5uRXbVoj8KXZt20sqmUSIGE1NI+SQ0bERpEjioV88TmtTHlmV0c0subSGLKnISojnecSSRRCmyeZSaIZD4Pik0mlkTQEiIllBimrosoKeamb3nj3M6+3H9x0cp4Sq6dhm452LfJdCcRTDMIhDsFIyGVsmdCtAiKaZPPHcGHuGxxgazJJISmzbvJ/xiRG2bhpn74Epunuy/PrpjTz7zBZyqXEeffgVpiZeoa8zx/wFOpWKxr6RIpmUiohiYiHYP3qQDS8M0zWwiFjOoqVMlDBA8SdwijuxVYUgrCFkkz27J/FRac4LZFknk22jVJjGNGRkRaBpFoFbJw5DVNXCD2s4joeEgqJI3PPzHaRzGqAwkFlOOaxQ65/ihV8/T8Z2KI3sJJtK0eFfSLa5FWllI0VhTtB2FGZwtr9xZPWHI3NZ547OO7Kbuf23w20gM9sXPBxBKb3WjzqyjSNJpyMZ3xmbS0tkZvts1vR4UW0zdrx0Qs/zGiXWVPV1/TXG+NvFtsKJMa6/HcBVOvH8x+O9NLPj+N/o+ScCgn4TO9HY/uNNJm/Uwl3PAKAOrHnN9qPdo1dB8mww39j3qpT6a4WRXg98///5qE8UAB/rnNdvPnGBgGMyvkc98bViBtIx8idmPwdJktAUDcUwSdgWfr3M8tPOQLc0JAUmpscpvngPiYRF/6lX89yGx7nmhpsYHFyA59TYt3cHg0MLcZ0Iy05SciCx/wn2F0K6e/vxowhl8nkkv46RHyKMQkbHxmhpaUHRdKr1OoHvYWgapUqZZDKJrAhkWaDICpIkoYYBP/rFIyRTCV749UYOHpiks6udjS+9SCKRYN68HgxTZ2pqinQ6SRiEFMslTMOESEZRNR5+6BEee/RxFi5cQNJO09ndQ90tMjUxxabNO1i5YjWPPf4YigKF4iT9A9309HaQa04Txg1mQ5ZlFFnlJ3ffi2FY3H3XvZy0aABN1UDIDCxciCw3JPofefhxBgYXEMeNa8lmMyw7ZQWSLCFLMb5T445v/yPLlp7MP3/3u8wfWoBuNsRyFEU0BG0Cn2q1wcZMTkyxd/d+7r3nQeYPLkJWD6k8yjKFYoGtW15m08ZNDPT14G/7MQfb38r5b/vvmKbNgQPDSLGMKmv4noemGERhhOd4EIFphRw8uI+WliZKwX04vSFex1o6O/vQNAXLskHE+H7I6OgYiUQCw9QIQw9ZyA3n3FCI4wBZVg6H1f3TP3+Xffv3c8H5F3LhBReyd+/LjI5Ms2rlGs570zm0tjVj2wnWr7+IYrHIlZe9BV2zKVddRkfGyTWZ7Ns3zFdu/xY93b0k7CTZZJINzz5PvilLpVInm21ifHyMxx59hubmZt56/e+zauVpXHf9W4iikFQqwbr15+L5VbLZPA//8jl6u3sxpJhEwiGbyVIp1wmlmHrdZdfLe9i0+Xm6O7sZHS7QNdTFFVdfzpXXvJm155xNrVinu7ubSiFg26aNdHa1kkrmmNfXx6rVKzAsHdM0SaaSfOnLX+Qdb38bmq4jyzqFwhTXXXcthmEQhgEXrz8bVVc59fQz+dvPfJpdw8OsOPV0FCOBmcyQyqQ4ODZKNp8nCiM0VWdqqoCiaMTUaW5uI4oUbCuPJAymJqewLJ1avUQkqZhWBj+UsWwVp+Ii0EFWOLD3IJlkCxddsJ7rzuijXqvx/k99nTu+8w0yaRXHCQkCj2wmjyqnuOSSizjtjJP5o9veTTKRpObUyOZbkWKFFasWU6/XmZqaxPc9PvGJj1F3SggRoiohe/bsIp/L89gjT/P2d7yNK666mAvWnUepXCKVTFEpB4SuygVnr+M9t7yNKIro7upBevQFYimkvHw+tUrAOWefxy3veRfGljSGoTHv0l6SKZOaW8JKGNSKIc9ueJL5CwYJgpCTlg1xwQXrkeI0W7Zs58tf+gqDg0Pcdtsfc+1b34wQggfuf4Af/+THrDppJQ8/9gyFskv3vJMQkoUsy5iWzORwjc6fn8TAxGLCZVX0bglJRCiKIIpCHMclmUximiaFwjTpZJKYRm6gUAwMyyKIIizLxrJs4hgMw8DzXKKooepcLJUQQpBMJHA9j9GxMWzbQJYlNF1FUVWQ1IaoXyxh6I3vKzoUgSQkgaopWHYSgdJQbdc14iimVCozPTlFLpclimPiWCBEw6lOJJJATK1WRdN1hGikdyiyBhGMjIzz7NPP0tvbS61eJpXU6e7pIgxraJpOJpvEDQIs20aoMs0tPdS9ACtho6gKnh+TzTcTIfBDCQjJZJNs2PAi2WyG5pZWtm7dSj7fTKlUYfvLO+jqaEFRBIqRx7KSlKYLaLIAIR8KEU4gSSqppIksBJ4XYRopvEBCVlXqbh3N1Eklc1SrNXKZLFMlDyFraJpKFHoISaJ3XhNtrQnkSEYSErmcwcTB/bQ1garZRP4E+VQOU51goFtgaRJ9HTK5rIquOJh6THOzjhLJSJogEgky2T4WnXIBk9Mq6YyFO7WTytR2QncfuqIQeFUU2UDXVVIZaMpbGIpH5Mf4Xg1FNMoZVT2JetVHlkDTBY5fQ5ENZCUiilzCQGbNmkG2bRthfNpnILMEYcX87OBPkBUFOZniqSceorerjcqCKea/c/lhJnROP+IYhMDRSjjOLgN4PN/kaOG9R24Lg9nMZXRE20fvY6b92YD1jYzrNyFCjrwXsiwfEx/ouj7nuY2///dihf8T7XfA9XXn/scKIruu+5pQB5ibEXtdmMUbZFj/bwnXnsskSSLYOTdwPT5Qn834Nra8ei+OXBF7bQ6rxKsT3okC9hMBf7/p5DH3mI7IlY5fq5A3u78jxzh7BfPI1b/jXr/02pXPhkLg62uiSZL0epAbx/iShqFpFEb3YOc70XQDISvYiSSpyWcpFKaZTixGk6do7ekmkiImDuyirbMF31fI5VobD1jVeOjHP+DklWtwfA+nXEAZfpAguYBCpU6xUKSpqRlVU5DiCEkI/CBCFjKJZBIhyYyNjRJFEYZuEBMjeQ5LBvvI9/TR1tZCDGSzaTq7Og+JAnnccce/0ts7iOf4NDe10NyRol6vsPnFLXTP66Wnex6KoiGERKk4TWtbG4oK9UpI/1API6MHWbp0Cdlcmnw+3/gRlBTqTohlW2iqiiIJJClk0aJFbNu6ncH+BYwcPEBbRwexFKIoEp7jous6PfN62L59G8mkjaLOhD15KHJDSXBsbBIpFixYMMjY2H6GhnqIYg6PMYwCyuUy6VQaSZKoVcp0d3WxePFC7v7xnSw5aSmu67Nr5x5yuWb279vLxRecgbT3QbT+87BPfS+OV8R1At585bWce/a5/Pkn/5yz1p5DrVrna3//NXq6eygVy2hqjG0lCLwAae9DIIG15EpkxSTyXUbGhkkkbYRQse0kU1OTGKZKrVbCUG3Gx0eZmDhIPpfi0UefpLW1lRdeeIGf/+JX7N+/nzWr1nDXD3/MZZddSG/vIIXpIgdH9tHf3086neHGG2+iWq0xvH8flpWmpb2ZbM6mVCqgaSYXrruI2/7oj7n6LW8mbZsEToSsQ1dnXyNqQ4T0zhsgkTS46qorGR+fYHRsmJ553RQK09i2RkdnM1EUMjY2SX9XHjkoM7L/RUSU5PkXt9E70Ecmk8OpOjzw039n3ZsuRNdUJDmkOD2BocuMHRzn//3U51i9cg1/9Acf48YbrkXTYwQq1XqdRDqBJHxkWeD7IStWrEDXBKVKGdNKcued32PNmrVUqzUyGZvC2Ch+KLNv3y7eftOVnHbGOYyPjmFbJrIAoepkc1l27dlNW2sbU1PTaJpOtVrDTqZQNJ2DI6PEUmPeNAyLYrFMKpFDV2MI4RMf+wSnnrkKVTJ49qkXaG5rob2jlciPySQUepRREokErcvX8YM77+LMM0/nq1/9B84663R0Q8Mybd524zUoWkAcN8CzYtkEkUAVMmHk87MHH+Hbd3yXdReua4hOSRJRHBI5Kp/9my8iUDl1zWp0O8CydKrVCpZlk0wkuf+Bh3GqVb7/j7dz60duY3xsnEQiQfDLZ4gjUM45C9tMsnnzs1x88fnEzxmN7adEfPJTH+XSyy7F9xX27HyFhYsW8pn/+QUmJypcftVFfPWr30KWLU4+eTGXXrae1rYM1113DSEh7e2tDA3N5/zzL6C1rYN58+exdNEgv3jgZyxespyNG1/CHw1pvuMkJF8QrigyWjqIbSdw3TqGYaDr1mGxpbGxMdLpNEICWdUgBllWGrn/QlAsTDVEeMKZyLDoEJCNcV2HTCZDpVRG13VSmXQj0kJWiOOYuuMThhGe51CtlomigLHRg2QzGaanpzEtG0WViWOJaqWGhESlWkFTNJx6HcOwKBSniaIYw7CAkDhuMD5RFOD5LppqNtirOEBIgiAI2bJpM6euWc6uXbvI5XIcPLCLdDaPrEgIyaBQnMTULXw/JPAjnn56I319nQS+ixRJBFHjN8fQDWRZ5sCB/ZiWQRjKaLpGEDn0zOtB03Qsy6SpWceyEuzZNYWs+VTLU3heBS/wyKTy2HYSSZ5hiCPiOCKdyrB50zZa29qRZYlFfhLhAAAgAElEQVRyuYgqyxRLZaqVEqVyiaamdmJJoVL3iGKBrkt4Xg1DE4CPLKWIRYGergFa2iUSskJPd0jS8ukf6EUKCqQzaRKWj6r7CEwkSSUOwQ8DhNmKlujGzrbw1HOP0d/fiwWUJ19EwUOXBRyKnEEShDGEUaNebRwrIOkgBY30mViiVJTZtn07nR3tKIqMJKn4vguRgqbayDJUKtP4YYq6F9PMPBLNBvuzr9DW0cWD3/8Kb1o5iDu1Fy+QWXTGOmRZnjOM95Bj8Bof4TVuxRy+yuyosBP1g49lQpoNro9s7+ghwkeC1JnQ3SNzWmczxnNFVs62owHfo+GB2X0fi9x4bQTkb5+S8IkA19++uzPL3ggDGscxuq4fTkY/ETvR0N3/qnasUNyj2Wyg9n+L/UcY9SNDU468/jdSE+1493mmzePVdz3SQknGiyI2bdqELEyINaJQoTBdQz7zz0lf8UUGFy8jqeXYt3uShx95gXmdi3lp44s8/PCjeG5EqVTCMHT617+fxPQWaoUxrNEHEMkejFQz2WyGvv5+LMvC933qtQqaqrJ3335U3UAImSCMaGvrwE4kiaIIP/CpBDE4NcbHx9ANFUWNGR0ZoVarU6lWiEKfq6+9kuaWFPMXzEPTQoJAgkinVAjwfY84gsHBQYQkME0dSYoIw4jh4XF03aKvdxH//uBj1KtxA/TLGqWSRxhqIEmEQYjv+0xOjBJHHtu3b2H3rl0sO2V1Y5VbxBD5JBIpwihEkmI6Otvw/BpxHEAcIcUevlun7jps2b6DidE6U+NVLlp3GbaZQFGUw+kOEpBOpQjDRr+ppI2iSCQSKm9+y0XomoXr+Lz88i7iWGLtyvk4W+/C77uceOWtJJIqiaRKS2uOS9ZfQhzErDplFc25Jtpb2vjA+/6Az/zVpxno7efA3hFErGAZCaqVRvmEMAwJgpBnntlAc3MzrlcnDBtzXTKZZGRkmGTSplwo0pTNsmBwACkOWLFiBYqisGzZssPv8pNPPsFf/uX/ZGqqgCyryLLMqlUreP755/F9H8uyOHDgAOsuPJcNzz2DJEJ27d6OZSb55je/iaoKvvOd7/KJj/8Z27Zt46mnNqCqKl/84pd4z3vei+/7RLFDENYpliaYv6CfU045hTAMyWQyxHGI59VQtJDNWzZQEgZKaw9ti9dQ1zrp7e2nVquxdetmhoYGWHvGm2hv6yGbSzBx8CD9Pd3kU2k0IVGs76NY3sdVV53L7t1P4bseYRhi2hbBIZbA931832V8fBxJkkink0RRwBVXXM7IyAi33PI+isUiA719KKrOosXzmRx/mdCtYesalq6gipBSscLk5Djt7e0EQYBpmti2Tb1eb7zbxSodne24XgVJBMiyzLXX/B61aoiKx9uufTMf/fCHkGUZ1w047bQzG2+WFBBFITfdeB3JpIWQIy69bD0XrVtPtRyiaTqO4yAEhJGDooVkcwniSGJqagohq3iRRBAExLHEhesuZ9uW3ehaAt+LiWOZMIBrrnoHL2x4mfkDC+nvnYemS2zbvolcPkM6naVer7Ng0SKWn7KQrZseBSKSiSzlchVNU9my+WXe+54PcGD/fv7kT27lyccfQZrvssl9gY//2cf48IdvxXV9/uS/fZzevk6iKGLL5lf4m8/czkubt/H+D36ASr3Cnr07GT64l6npUTq7m6jVK5TLZSQp5p57f8xzW1+ksyfP5PhuutsTZDIpFvcso/vO1YT5AGVNgKTGtLY1o8gqktSYp6IwZmxsjMnJSbLZLJVqBUkCt14nAmQiKsUiIo5QRaPkhaqqCCGwExZB4COERDabIQwDxicmgIbzG4bgOj5CqGiqiaarWLaJnbSwEhbdXZ1EYUgmncYPfErlCsViGctKoKkq6VSaqclJctkcmWyG7u4eMtkM4xPj1Oo1ZoCAqirIQm6AbEDTVDyvjqIITj3tVIgduns6cByPeT29uJ4DSIyMjJLJZNE1H1lySCQU1qxZhudWMFQFwohKqUy9UmX3zlfIZpIsOekk8k15hobm09vXTzJloSgCTVNQNZmElaZWq9HW3kLohJQLFbraezATeQrT09QdFyEr1Gs14kigazqlcpHWthamp8cpTU+RTqQgAt3QyGaSdHS2UZgcR9UtEtl27EwXhtWObXYjpBRBJCHkKmFU5/77n8FxDFo6E0SSQDeb8AMPRTUII58ojvEdg+FhF80wCKMKbuBjWF2g5tg/Os5J88/gle0vsG/fA1hGhEAQ+jp112Pjph0EccSB4RFGRmp4HkSYvLTxZSIk/Cgmkuq0tQtWrFyEkD2QXIKwjqpLbHzpFQpTHtV6kSgU7N27F0kKsK0E1UqZlpYWcvkm+ofms2vfASQzQ7JrAbquv8Zn+E3qkf4m/t2MHc/Pm2v/bD2UY/lbc/lMR+tvLiLqRNLmjheBOTOeo9nxatX+zl5r/zUZ11ieSeaDmXzCY7d9XMbteC/xGwl3eCN2tJWfox33m7T9n2GzxxjsbJQlmGFc5+pn7slNmrXv0Kpa/GqYxOxzJEkczhWNwuOLKb1RmwltOdq4j7TjPZPZ7R65fSaPdOYaj9fPG31WxxcOOHRPaeSKvk4Ia45jD/8TAkXyieOItt5Bdj39IGFlFFP2KReGqbox1197E6euOJUXN73EYEcLvpLg61+7nZZcE2efdQ7btm8nl2ni+acfoW9eD351ikxtD6FbIEwMoGk6Y6MjaJqGpmnUa1Vs22qUeRAyYdAQbApDF1mR8TwfTZPRNB3NMMGto0YBnmphGTaZpizTU9M053IEgUu+qRlF1RGySuB5uI5LFMbs2vsyQjKwLINtW1+iubkZ3VQRso6qhATOBAdGpmltb8G2LTZv3kJXdzeSIohDD1OVqZRLCFlBUySeevJJ+nqHGB4eYfmKpaTSGnIcU6u5qHqCcrHEow8/wzNPb2DVqhWYh/KsotAligWKquG7IbVyjXPOPw0zqRAREdPI5SIG3/dRFJUojtm3fwRZVhqgIKohhIVQZDy/iud6DA0OYlNA7Psl/tJ3kV91E0QyNcdFFiZRBBOj48gybNz4HGvWLKNUq6DqgsuvvBQvqNPS3krg+4wMT5K/5wmscZ1w7Xp2bn+Fvft2MTjUhyLAMkx+8bN7yac7iaUaQpg4bg1hGfghRJ7E7133Dq647gqErHLJukv4xJ9+lIsvfhOZjEa+OY9mKPz6hQ30DwzR2tSDYsWMjuzn9OWriSSPYnGc1qY8lm4RC4GuG7S1tRO5RdKJBHff9RM+8IH38tkv/B0fvPXDrD3zLOx0inKhwj0/+RlnnnkmSD6qoiKEjCTFRKGLqhiEPixfthItihCqIIoUTCpotk3gB7yw4SXe9Z53MjY1zqVvORc7bfGJ//4/uOLyq/jG17/JueedxWmrVrJ40SIWLO5jcMECbv3IJzn73NNQ1IBapYxpZqjXPcIoxjBNDMPG9yN27tjHtlc2sHjRCs479wLCuIofC4Ts4jg10rk+xifL2GkThIys2A1l6UQKKZYICdAP5TkmLQu3XiaXzxFLGgdHp2nOpfCDKusvuIa/+7vPsnzVWq656nrUlIqpaKhazPf+5XuUpzx6hjoJQ4XJ8SIVz8XoWM4LOwusXLMSL6ix75Vh/uJTf8FF685DMRX27nqO1nQ7ipEgimJKU1O4lSrpdIoojNi8aRN79uzgiivW4/khX7n9ayxbtoLJyT186Ut/RcoSnH7m2STTSTo7u5CimDgKEIpEMqEgawJfMamVS/i+RzqbhvnzGOvOceXNbyGV11C0QZ557ikWnrcUukt0tbaSbulk45YdXHfVWwjiEjf9/h/y1a99mWefe4nv/dN3qIeCm2++nv7BFoQMZiIFskLgNdJSJqdGOe30lfT3dhHUa4wMj7LqtDOYqkyihCHSQxl2nP0ctb118vkmwqAR5q/ICqpQqNWqNDe1EkQhCdvCUlTCWOC51UbYpxSiGwYRMrKqQhyArDaY1DBoiOLEgihqaBNksjmKpSls2yaOaJSTcWpEUUSpMEEikUZRTPxDJbGEJAjCgFJhElWWsW0dXddAgiAMMA0d5JhytYKsaExNFUincjxw789YvGSAIAqQZANVM4gCBz/wQaiEXp0wFiiKjhf4JBIJICCWBJJQUISMokhIQgVJA3w8P0bVTFTNIBYKldoUpqGgKDq5bCv1eqmh0itHVMrjGJaNolgEUUgU6Th+HVOVsVIZ4tgj8CVk2SKSfFRVZrpQJJVIIxFTKIwRC6WhYhw6yEqIZaexkmkKxWnSqQR1bwrLaGW6uAdNsrAsn1KhhCR0vMjATOaRNQOEihfECCVBR2seXSvjhzqqnCIOykjCI4oVVEUmlgSKFCGrAsWyMBNDWPlBQpFEilySesy+PRvoSgeYqo7vhYSRj5m0mJ6u0JTPICsxlm2jqDqK5hFKdcbHXJq7VEJXQhYmU+NVVNUjiOqUyn4jRzIUWMk8suaTspJEksEr++u0t/bSonRSl2qMtO/i1xu28IO7f8CSdouJYoEber6AvCOFsvQYYklvwBedHR48lw8jSa8XT5rL73rN+fGreiHSkfya9Fo14xn3Z65rmIvlnAkdPtHw3xk78twjw5BnX9OR4zk85iPdLOm16Vu/Y1yPbf81gSsCJA4xFI2J/3jg9NXcyrnDGo5WEPk4Y35dP3Ptn/3hHk2k542CquOFORyr7d8U1M4AV6V/9TGPe72y7asf9pH7Zu7FkffmaPfpaHY8Jbmjgezj2Yncq7nY06Ndw8y9mD0ZznXsXCt8c4H5ufo6kUgASZIO/VBIKIrM8HAVw59GT6WwOuejRgZ/98Uvs3rVUh687x9Yu/oklqxewdL53eQ6mmlqayWTa+JXjz7BqpWn8st/v5/+VmDsRRSji+e27qA51wRxhGUn8H0fp15nenIS27axTAPT0CmWythWwzlWFAXPC5EVBYQgEhKKW8NTVcykzfT4GPmmJiaLZdK5JgLRqHUbBxFRFJJMmniex/KTlxHFDQbU9xp1V1XN5pmnN2CaCu2dPShqip07dzA42EtHRwt79hxg985X6O7uolqvMbxvnN079/Dkk89yznlnoxom/YP92CkTmaARBqaoqIqEiCGbsVh+ygLK5Qk0RQVZRdYM4lBGVVXGx8cIw5CmpswhNsxBliUUWcb3A3y/wZ5t3rSZ+fPnYxoqnl9uvC/4xJGM69UxTYvd218iV/417rJbGTWXUyyXmCpOkM3kkCRBrVbnnp/ey4WXnsO5F6zlqWc20N7RhKzIyELB90OI4cDeKdramjEfehw1NtjY2sLQ4oX0zR/CSJhUHIdIEvT0zOPFF7YzNL+f8eFJWttbCImRhUzsB9xw81uIJYEmCVKmTkAj/Pmv//qz9PX1Yxomvb29hKHPP3ztG+Samujr76VUnuCOf7yTLVtfYeXq09HNJF69SndnN2+97npueufVqIbMBReu5zN/83lufu/vo6k6sh/w7/f9BM9XWbnyFLLZPLaVxnGqDB/cTSKRJnB0ioU6V11xLeeccy5//Cd/zimLlmIRccfXv0w214lh2CxYchLvfN/7uPjCS3jk4acJfYntO7bT0t7CuosuZPfePeSaDfLNecoVh4cffpp3vPM9OG4JSUSkUikmJgqN/G1FQQjB2NgYuiHQNJXB/uXopsfY5C4sPY+VSOAHHulMHlDJ5dOYpkkQBoBPOp1F0xrCXNV6FQ5FUhzYv5+m1tZGSFwUYKoCohw/+tFdLJy/nIWL+nnq6WdYuGQBETWIBX/4wQ9x6623cc8999A/MI+WphaGBhfz/o/8Pyi5Tp54/GnK5SIbX3qJ0884jXe+52ZCQkzFZqpYRFaaITL42te+xemnr6W7u5MdO7eTyTSRyWZYtLif8cm9bP71Ac449XRam/MsX3k6l19yJResW8e8gXZM2aJcqOABimExvP8gumZimja1qkOsKaTTCYg8XMXHUTNkMjl03aA4XmTVmsVIko5qCHKZTrLpLC0tOYyETBjbfOqTn+RDt76bs089i2uuezN/+pFPc+mV62myHEQck2ttw48FL73wHNlshlQyTxw1xG4eeegJHvjpr2hv7cXOCJw4QAwbtLa2YWk2k5PjCKFSqZUxTJOaUwdJoMsSsRTjuC6qpiHJGrph4noh5UoRwzABCcepIwsgCigVpgAIw4B6rYxlGRDHxEiYpkW5XMEwFIKgkXYgC5Ug8hvlYRQFQUhhepKYGMsyMQwLRWnMIw3BF4GmmtQdB+IYQ1cJfK8RxixgwaLFCCGo1+roikYUR2hKQ3HacV1AoAoVWcQUp8tICIIwRlE1iDVGD46SSqWoOw6+76KKFIqi4gVVapUyECHHIY4bEsURqqYQxi6ZbJZ6tUoum8ULfFRZolyeImEnmJjYT7UaEcYKimZiGCFCkgkjl1qtjG02ynEpmo7QNEwzjWWrjXlXTqFrgsBzEShEkUCRLWQ5plpxyeSamC5Nk0m3EkUSqq4gC4VaIHBFAiEZFCsByUwTQjGJURgdKaEnEviBjG5nqLgR2eZuQj+JYmYRVh7NGmSqXCFhCurTuwiq47RkFIrFOrKmYOiN/GM/DLFtCxUL3wuQG1VKMfUMgRvS2d4BoYusaKiajKyrSJFNHKvUqyqTkxFWKiJpJVEknyiCvcNVXto+wplnn4VzAMaKB/jh9n9j1dIVDHbU6cib9C8/h4HqhVAXyGv81/zmzwaUSK+mI821wD/jWxxNy2S2PzKXr3L08+cO4Z3xR17TD3MLLs0e5+war2/Uv5vruJlrOTIM+VjEVRzHr2eyDx0+4+eJWX5e4z7/9kVq/g64HgKuh5XHODFH/T+LlZyr7RPZfrx9xzv2hMDJf8BeBa5rjnnc6wHYsa/7aMDsROw/G4SeaLu/SdvHKr1zomP5jzLTMz8UMwJZHT3zicwMIxMlIi/gh3+2jr+49TLS81ex7sK1bNu+kZa+hbS0ZNCEB3GIbdssWbgIL4jIp2LM579AtWkZe8erLJ/XxmTdJZWwKVcqh0VBMpk8ETGy0lC/lEVDAVlRFTzPwdB1hCQRRxGSJPBcFyv0GXMCTMtCyBqTk9Pk8hl8p0rkeDz66EO0dLbgOx5PPPEUXZ1dVOtlMqksTz35NN3dXTS3trN9y1YWLOjBTqdBVunobKdaq2LaFp4b4nt1WttaODByEEJYsng+ddchYVlIh9SjNRVCzznk7Eh4ThVZVTEtHUVT0Q2TGA3fi4nCkHotbOQN2iq5bBOyKvPQrx5lYGAIiAjDkDCMDjm74NTrZLNZisXpRluhiuMV0FQbx3WxTZvExBN4A5dz2xd+Qb3qc8H6dWSb00xNTJFOZygUilxwwcUkUxau59DS3EcQOISBQFMTfONr32Z60mVoQTO12gTNO+sII8P+vlaa2ltRQgm/7mBpOrqs40kunR29eM4ksiRz4OAwTa0t1Gs1FEkQoFCvh4RenS0bN9DZN0QcC1atPoN0KkW9XkfVZJ588jHOOf0U2rrmUSzXMAyddCbHpZddQiKZQNNVZE3GCwKuf+sNqJqJrieRZZ0FC+eTUGX+6n/8JQsWL6Sju5UF809idGwPfuAQRRK/+uWjLF4yH1VO8vnPfpE77/whf/vZz/DP3/0OH//EbXz7W9+gu6OPhctPp2/+IPfeez8/u+9Bnnz0CS686Hx+fPc9GIbOhRdfyND8IQxTx7QMTMvA9yNc32fRkkWUypMghaRTOXxXkEwlGBtrCFhFUYSmNb6xhJ1FVh1qVY/Ah1w+iSSbJJI2kpCJY4VCYQwJGcetEkY1NNWiWq3gOHV0w6BcLDExPo6pG9h2CkXA+MhBRvbv5Z6f/py1Z57O97/3Y84550z6+tsRuk6lWKBWrfM3f/0FFi1cSlt7nnymCdMy+KPb3osb1MlkbT7/+c/zlquvZOnJC2hpbW0wRabBEw9toKOni188/DR/f/un+W8fvRVFiVGUBshqRMkoRKHgjju+w88fvJ9zzz2b+376U17avpH33/J+HMenqa0JM5HA9X3K00VC16e5tZXR0bFD7UikEkkmpgqEkQKyxaf/6nO0tLRimhZvufIqrn/r5bz81H7ydjNj1XEuOv8Cbrnl3fhCENQKfOzjHyESHobdzOOPPcFHP/ZuWrvyaEKnUvdQZY1HfvFL7r77QS699HIURUI3ZCRUknaCTNqiZ14Hpp3ig3/wEdaccQqJ51vYXX2FttZWQJBMJhGiESVimia1Wp3/j733jrLrrO+9P/vZvZx+pjfVkSzLkuVewQbbgI0LphgCxpSEG0gIJiG5afe9K/e9eS8l5EJWGiGhhFwgYHDAGAi4gAuRe5OsLo1G02dOmVN33+8fZ2TL45EsYVJu4LeWlmbO3vM8z9777L2/v/b9qrpOEgfIcYSkaPhBG13XMU19KQiloOsarh/SbtSZmpqiq69/ST4pRNMN6g2XKAqQlrScZVlFVgS1WpUkiVEUFV0zOlz2UrTksBrUajUAVFVDlkWneiVKKJUW0EwNVQgajRaO7XT6YU0ToSpLkKmDm2RZwW83absumUwWCYPDhw6gKQHZVJ5mq4mTdkCW0DWVVrOGpukIRSUMA5KkU62jaSa6oaFoGm7bJZUqYDsOkCwFl2V8L6RSWsROpwjcFlHoIZCZnDyEIizSmTx/+ed/wcaNw1hWBkVRMXQNw8lRq7dRVQ1D14hFgJQYSIlGTAjEEHtIUkQkxUhRioXyGLqaJZEFiqpA3GkFi6M2c5MTzEzPkC/2kKDiZPrQ9TRBYKPbNn7ok8oPYhc34icWdqpIFBmEikm5EhBHTYhqSN4C1bmdaKKJIMR1y8wvhuzZOUNPt04USbRanWoiRBUzZePGMnUvYe+BadpBRCrrkCAT+DJtP6EdCGZmZ7HSMnZKYFkhsrAIXYm2n1BuCB7fcYRGIJM2DPrUEaYrk2y4cYBD+59EajxBrbLIG9/3+yQ7upAkCeX88Ph44gTO57G/nwzPyInw74u3nSBJJC0P4p84AfFyMeRK6z2KTU+WX+VF2PfY5HKSvAAJd9b4C8f1RPaf03GVjlJlh3Q07Y6z2ylmzU5mnxNlPE8UEfr3tpezDrlrFfLAJiTdfuGGZJksDMukhZITZ7BfUFpxggb/lZzco58fb//lWeZTcRL/Na/ZC0tgXnpNx1vLsZHFk/3uHne8RKLTDi+TSD6GbZLKZkCW2RDvIm5XGbj4vYRShY3rz0YKFrCdPI3FGqX5BSKvhaEmqOkCd/39/2R9t47ZfxY9/d3M19p0ixBhaCiqiiRkNM2guaRfGEcR9XqNJBHYpka5NEcm7RCjk8QxipCZXZhDs22U0MeRBdVQxtBVhBQzPjaOWw8J4wZbtpyOjIVqmGTTfR1SCikBIbF+02lEQczjjz7DJa84gyiOiQFD7/T5KYpAFgpOyqJYzCHLEpaVJ5fXAUF3Ty9JEoEq0A0TgYKim3h+EyFJtNsRcRTjthroqkEiKUDETx58lMHhIX74/Tvo7+9GNTQUVcN3A/r6+gAJVTWoVevYjtWJyQmJOJZRDQVTh8hTUZSEp5/aT09/DlO3CacfQTZSZK74Yy551UVcfvnrMcyIZj3GSOmIRKeYKRDGAZVKFVUxueNb32XDaZfQbjRJWTIDxQx/8Ee/z5vefBNBCOajO6kuVtFf/xrslEEQe/hRghA69WYZt7ZAylKREoPDY5OMblmDgoImTGQMNF3F0DQ03aSnfxVh5DM7PU4+k0eTu5FVH0UNGR5cz0P33sfIaaMIo0NmMzjQg2GBH7gEgc/tt91JLtVPd1cvcazx8Y/9Keeedy6WZaAqEU/ueIazLjyPXG83sVcnjFpoio2mpPjsFz7LlZdfSVBvc96F53L2eachlBYXXnQuYeiRSDr7Dk7wyKOPs+2scxhd28e2s05j7eZ1VGar7NjxAHICf/C7/5Vffve7ETH84e/9AVe/4U0g1I42pqLiaAn5bJZ9e3aRzznUmy7dXUUCr4UqJSiqTsst02wvoKfSGKaJqTvIko1qOdRmx1EjD8PslFWGsYeTziJJDrreRsRlpifL5Lt6URMfxzLIdfXQimLi+hzpVIYaNls3DWClbaZmdrJxfTeWk+Vd77iFG9/wJlTN4f0f+ACm5bBp01Y0TadUmumUgM7uJ2yUecPNv4IugalqREhExKBIDIykSdm9HDlY5ro3voG0kyEMPSQRUi5VkGSZqSNltpx5Bt/65pe58cY3ks7rDK0d4qyz1nHdDTfwoQ/eyoH9T5LO9PPWm97OptO3sPPZPWw8fS34Fq3FBj1FjZYvoat5DFNFfO9urhhezxFdp6drhGtuvJxMthv99iLWeBb93BSPPvUAN77lahq1Ek8+vAcnLaEbKYSs8uhjD3PuhWcihESrGfPE40/R16tTX1C44drXcGjvGM3FKl15k4XKOJNHZsjluhgaGaLtN7n6mtfgDCnIdxRIb0qTaBF33v49Nm4+nTD2O4E+JFRZQUIgq4JSrYRtpp8vq4x95kolLDuNIiSSqEUoFAwnTdZxaCzWSDk2SRxjaAaqpqEoAogQoUcsK1iKSas+j53OEidxR6FeKLQaTYIk7mRbhUyM1MlIqhqyomA5JqqmUK3USJkOiiojaxqKbhJ4LSRJQtMNwijBj0O0RKZSbqJqaRQDXN9DN1I0Gy7zpTJS4pK1BI3GAnHQxskWue8nj7FhwzqEiAgjgWaoSET4roum2URIaFLAQrVKyraZnl0gX+xGM4wlSbMsippHaAbZQh5TM5ibneWKV1/FkYkZstkMumEQhEAUIMsRmi46matEdIJlikASICeCputjOimiKCZIAhJJIZ3NYimwd/84pmOjCAlVtQmikCAI6O/pYXq6hKHo7N73NOlcFiuVwi5sJPAEktBQVYdSbY5UtpdwUdA31EVrai/N2hiq5mEpMZLn4asNVPIYBPT392BoWXSCAXAAACAASURBVKREZmqyTCzHIGeZngn54T1z7B1vMbfQotGKmC3DxJzK/oNHkIw+7rtvJ3sOC8anIhquRDZjUG7pTMyHPPjYODv2TeN78M6bb2LVmjXEkyp2r4Z6bsjavm6i+QeRe7fRbOuM1DaDJJDO8Z5/7wup01gnSUu+0/Ezoyv9v7xCbLn8zHL8dGzJ8NHtneqh+HkcvySRiNSRvxGS0lnXS7RcHbuOlXDb8gq/Y3k/joerjj0Hp0IKuryiUEiCJE6ea+IKw/i5oNfPo9MKvyBnepH9WzmI/1Gc0H9rE+luRLr733sZL7L/GwmejtqpPhiPtaMETKdy/Kd6j6iq2skwyIJGs8ns5DTVakwQyBwaO4DvLVIul9B1FcPUmJ+fZdfj27n6rD5i2cKPIiampjBSDk3NIm42abfbSCTEcYRpWvheQOCH5HIFxsfHCfyQVCpNnAiSpEW5PE9lcaFTfqlq4GSh3US4rU4fbwJr165ncKSfbLaXsUOTBH6NJIlIZSzGxw+xd98BZFkjDhKaTZfBwf4lAp2EgwcnnjteIQTtdpswipaYNUNUVUVRVL785S8DYNkqhw5OEIaCGJ8w9JmeLEOikkpZmI6NZTvEQgIhUVtscPHFF6Ao8MY3vQUnnYW40+8tywLbtjl06BB3fuc7PPrIQ3iui+d5RGFIJuOgKirNhs/k9BFaboOtW7dSX2wRtcok87uJz72VKJbIZQY4c+vZHD58GFkWJIFMtVolSlrcd/+P+O53v4tjp9E0jW9/469QlSp+UiHTa/O1r32NqakpisUimq5RLHTT1dVFvV4ijmMOHTpEHMcdUiDJoFyt02g12LBpHUmsEgYJimzw0Y9+giiKUBSFmZlOP7OiKAwODhPHIW++6boOoU+k8dgjzzK8epRqpYmSqBh6mmq1RrPZXpIYkLniysv5zp23E0QNFDXi1g//GqoGqiYh9Cy/+oFfpzefJaUqfO0fb2NocDW2bWOYCjnT4cj4JM/s2cWd372DwYFh4kghk+onCgyuuuJ6tm9/lPf9l1/mM3/zV6iqiiRJjIyswkpbXP7KG5meWeBfHtrOE089iawqfPxPPoHXqBK5DTKWRuK3mJ1fYHp2jtGNp9H2fFKpFAsLC+zYsYNyuUwYJp1+PWHhN0MWS2Uiv0nglvDrZSzLYrHt4iMTBAGmaRLHMYqi0GyEVMtt+noHniNnsiyLOI5xLJudz+6h5foYS33glpPiLW95K5JQCH2NnTv2kMmkGBs7xDe+cRuu2+Lv//4L3Hzz2ykWiyiKYOqBr5LsuQdZSrCzafYdPsT9Dz6IYRgoQgbZJqTJ17/5KV51yTkkSUSxmGdqaoq+vgGkqMlAf54v/cM/ICybZqsMhMxMz1KttLn77h+z69k9nLZxC5II+Mhv/wZnn3MGl7/qYogUnnnmScKkzb6De/CaDT73N5/hO7ffQfzIbrQdB9m6dQuzc+OkUxmSJOkw9wqZT//ZR/nSl76IIpvYZp7h4WFS2RyaoeO6Td5w47Woqoqqqvzz3fdywSWv5sDYLPf9yyOoVpob3/pWvv3971N3Iyy9C8cuMDIygu+76LqBphqUmyXEaJ1ILyNFgtdecxVxEuO6LkEQLhGnuUhSgiJr5LLdz+k2JklCrdGmq6sHsdQf6Xs+KcOgK5fHbblEUUSz2cT3fYIwwGt3SntlIRByZ4wwDNGX5G8URUGWZcrlMs2miywUoihgcbFMHMdUq1Wq1SoA7VYbCYl8oYBsaCw26qiyTOQF+IGPonSkxhRFwZINAtngoccegGiGxXKZQr6A7aQoV0tsOG0DuWI345PTKHoWK5WnUa9y6YXbOiR77RaKLNNuN5ESBU3TgYgwDGg2G+QyWXbu2MM99z5MnIQ0mws4poEqEo6MHeTwgUPoso4QEn19vRw6dICNG0+j7boIIaGpGiEC1bBBKFRrDRRFR9cM5uZnCcI2M7OzNOp1hCShKgqEEbm0Q7u5yPzCPBs3rCflmKiqjKyopDNZ+gcHCcOOAxvFdc4572xU1UHBhrBJFC3QaE/SblVJ6zbCbxBFP2Ji/Ps4qSaIEE1WiYnxwwQo0Ao8zJyNZNXwpBKtpIKd6+Pe+xrc+f0D9A5t4qJXnMX5F2zhrLPO5qrXXI1hOpx/wQVcdOnlDK9aQ8/AIGedvYGhkUFUvYcjkyZPPjHBxEST0Nd4xy+9h2uvu5Zyqcr99z+A5hvoRZ2h7gwf/C830Yx0LnzFFazfMMruXbuBDm/CSsH8l4sRVrLlmGR5JjKKopckjuywb59cMP5UWsqOxVtH8dO/lR2rWPILe2n7T5lxfe4LJx29AVbOxJ0wy7R8rJOY81Rv+JV6XFf6/WStwzgYvcjhOd5DaaUI2cmu/Xj7vTCatiyDyAspyElerK8FJy47OZXs7MmseaX1r3ReTmbeE81zMuW8J1r7Sr26x8swn+g6nyhDe1J2jLSOEILo4F1k0hnCvos5PFFioGeIevUwjUYFwzDIZFKYpo6qygx2F2k+9Y/g9CAbGaIoQlYFhm0jt+q0kJGFWCqHO/qzQqPRoqe7iOd7qKpOIgmElGAa6U52U0C77SHLKkLTMb06s3WXnr4+5ucXUDQVRRikUikWawvohsWuXbuwTAMnlWbvrj3MTs0y0D/A4cNjnLZpDfv2HKLRCujt7UZWOtlrVdEoLSxSLs1TKOYIQvC9BmduPRtZURACNC2FYRgI4SGEzNTkAvlcAUlO8MOkI2UiFGJJ4rZ//AZbz9xMlPgkqAipcx1mp+exbAMhBNlslvXr1pPLWjz80KOsXbuGOAlJ4oRG08W2U6QzOWQlRlMMBDKHt3+dwrYb0dZfzR/994/yox88yG/e+mEcBx564Cm+ffudHB4/zIbTR1i9eoRtW8/jnrvv58xtmxGBYPPmLYCKahRQFZlMJk25XCL3o+8SN+YY33gaQrRJZwr09w9CAmHo0tXVj65bGJbJzOwM6UxHz/Pzn/sc77rlFgy7Q4iUTjtEUUCpXMXQbGqLi7zz3W/p6MiqacbGpthyzhnc/6P7+YPf+0NGRzfS09VNq91AQqHZcLFMHUnAyKpe5kvTqBqYZidbU29IZHMGBC2kEH6y/SHOOecCpqYmqNbmaNVcvnX7d3nrLW9jw7pR2u0W09NzfOFzX2Pz6Wfw2b/5PPPzC1xy6QW84pWXYBkKqqIRJDK5bI44dPjQrR/gpre/BSedYu++fai6hmNrmIbO9NQkvudS6OrGtGwmJqfI5vKUShVSKYd0yqG/r69DtCQLhKRjqWlkSdCqV1BFyMPbH2Jk3QZU3SIKA5I4wfXaaLqB6wboqoYqZISioJk21YU5FhcXsdNZypUKfQNDXHDJK/nQrb+JImRkzeIrX/0KfT093Pobf8TXb/sKYdzCMQw2jq4lZdu855Zb+NvP/x2ZrImiCNKLB1BlGa97A6ppksnlWb1qDdVSCRGEfPPrDxJ6LrmMzaf/5G+xswph5JFOZwh9CSVpoagqQjex03kMIajV6+QLPWQzRdy2zy+/591cc/XrcDJ259ykU1iWycTBScqVCbacdRqGmcJxMgwODpJKZRg4OEsQRngXnI7lyDh2gaefeRprdxbd0Ljg/WcQxT4kCkmkoxgCy7ZBlhGahCZLyEpC4EccnpxgaHANt3/r62zbej69AwO8/ea3cskrLkBWNG56082865Zf5sc//jGFQq6TtZRVLMtifu+D2DMj6F0OftRGU3RURUZZ0pl223V8PwI6UiaS1An4eZ5HnCg4tk0cdfoL280mge9h6gZC1vB8jyDwMU2DJO7wC/i+Txj4zM0toJgGvusTRxBJMYqssLhYI5fLocodSRlJkpifnSObL6DreofYKUkwdI3AdUmQCOMYXVMRkkSj1sB2LOK4E/iUZYXS3G6MdB8bRzdTnl5g+8OPMDq6HklAsZAjERJzC/Pk8nmEsDkyOUM6bRN5DTw/xDE1FFmjWqsgCRVFlYmSBFXXCZoV4igilSpgWWlULSKJ2yhCxnNdcpn0kmSQSrkyhxAyhXyBUmWR3Xt20dfXRxBG6GaKIAiQhUQUxtRrLSzLQtc7+tGSUMnkMlTKZZIkQVcVAq/dIa1K56ktVpAFRMTMTM+RzqZQlt47/f09xHGDWr2BKueQ1RatWg2/2caxVeQI3OoeYm8viq/TanQqPianfSShUK6HGGaR2+/cQWkxpn/4XNpeL/c/MMemMy4hVi02nnUWLU9i89bTSKV6aLUlBof70TSDfLGHielZ8l0FHCdFItlsGF3PwNAQXb3dmI5OT88IjuOwddtmVBXKpTL9A0PEsURfOMQzcw+xt/IV1q82sYe2cdFVN0EsKEyv6hALXhA/X6G1DB4clc47Fkccz47FwMfraz221zRJOhKTK5FLHq9asTPHylhlJZyzvKpupfUdrypv+bzLj/PoZyfjRyzHby9e34mrD38e7BelwkftBI7riX7/ae2nHWelMoyfxoQQK0ZuXq7T9VLmP3sv0fwYctfqF25Ilj8UXqgRKgvlBXpaJxtIeLnn6aj9rJ3O49lLrfmlSszh5feQ/LR/++IdX+hY+3u+jyQkui59BwODg9z+ldtYmNtHPp1neM0QURQyOztDvpCjNF9F7P46UvcmpicmqJSrLFQW6eruY75cpkelAy4VlSSJCYNOBkBTl3rDNBVJCGRFhQSSJekOIToMwxIyTbdF4IcUlYixSpNisYuHHngEzYB0Po1h59FVnfHD42w5YwuaoVItlRkZGmRicpING09jYmIfPT29DAwNoGkGcdzpAQrDiEq5TlcxT0KIJDSi0H1OK/DxR55l1dpBhBIiSwpJrOCkJVRN8H++9A3O3HomceCjKh0gu3XrGUBEgtTJJIqYVrNBLptBVhXCIFj6XEJVYlavGkVIEnv27mL3zn2s27CeIPTYv3eCTMaiUW/QXDhCjzSBeeXH+bsvfpliYYDLXnkuM7NHWKwucPGFr+Gxx/6F3bt38/obX49laESh4M47fkBXT4bTt27BtASzc2MkYYOx8VnCMKCrq4h27z0ISaJ16SUUizma7Q5ZSxInWJaGpCR4no9hprCtPEIB162zes0gfb0FFhs1dEMnTmL8wCeVzhJ6kM87TEwdpFDoIkki1qwdJNESBru7OHPLVtZuWMsD9z3Ahg3riCJwnAz79oyxbdtZPPb4djadvglV0ZBlHVWxeeS++3n6iZ9QrTcYGtnEBRecQ22xTS7v0NObZeOmM3lo+5M4uiAIJe790d1ceNE5jB0+wLazN3Leeedzxhlb+Ou//gwXX3ou8zMzPPHEk6wZPZ1bb/1tXvXqC7js8ssYGO5HVhRWr1lDdbGKmUrjBhGZfBHTSdPBIxKpdJp6o0GhUKRUWqCQz1FaWGBi+jCZrEOpVF5iMtVptXxS6Tw9g0MkioFtaEwd3EGxdwjD1IkTCIKYuZlJMo7J7PwRwkQj61hYloVQdZDAdLK8+72/giwEO555lmJPH2ecsRlT13nb296Gqgl8v0G9ukjKsdm5cwfvfte7WL1uHZ7fwPNdxOTTIBKk4W3c84O7mRmfYnDVCCnL4k8/+jGeffrb/Or73suGjVsR6ZAoCFBUCd+LqC26fOd7d7F23Qa6i1284ryLqZZCVq9ZzSc/9b+55JKLCOM2b3nz9aRSJkLRkWWFdtslSSTai2UGVxcoVetkc2vxpDZ2Nk0qV0B98Ekefng7qWsu568/81ecf/4lHD58mNXVUeI45q75H7Bp00YU9Wj5Y4KqmwhFYmJqgmIuxczMDI6dY3RdEQVwW3NsGl3P//rjj3H5Zefie4uYmsHFl56LadpEYUIUJeSKeXw/ZH5+hnWbe/C/M0T8lgpzj5XRNZMg8Ah8n2gpC37gwGGefXYnPb3dNOp1LNtElmWiKMLSZCK/iee7pHI5As9FM3RCScHSVJqtRqfvVCgsLCwgAbIiKBZ7kFQFXVVRVR1FlfE8b4nhF1qtxSWaDxnbTFOtVbGsTq9wu91GkiAOAmIhYRudXmlV0zAsB4gJw05Gy3VdctleKgvzRHFAoqs06h6KAqYhcFstZElG0w0M3UAREk46g+eHtNtt8vkCtWoZzwvp6i4gZJl6o4ZlpUkQtCqzmIaKbpkoUpNcJo8sWwhdQtNsEinBtA1kVRBHPul0mkqlyoFDY2zYuAHLtjqlrkhLZFElbEPDCwIs00bICm7bQ7NMVFmGBFKOTUxMFCcI2SCKFCzDwG23qDVanSy4kAhCH8dOUa3OkrKLSwELjWq9Qa2yQKFoU194BkVqoIoasRcTKXDbP+1i3XqHxaaGplp89669bD37bHpGNrNl25kYqTzZfJbh0VVsf+xR2k2V/oFV5LMGoR8QhIJif4rATzg8Ns7g4DA9/f384PvfIYlCcrk+ECFRFLOwsIAIE2bmF/ACl02nbUSSJCqVClEkYZgmdjnDWOMxFpW7KNfLXP/eP0Rx+rjrzjsYrJ6GqunI5wbPv/9f5Lgev9XteDjiWLLNlXDNsRwex8NFJ8LoL2IZXrbPiYiTjjfuUcf9pRIWyyV2lo8dRRGSJL3IIV++77HEm51x5Z9rpxV+4bgi5Jg4CV96xyU73o1zKqUCK92AJ2poX35TnWyG76ex40WZllOFv5SDdrzt/pN3ktTn0dad/4LyjOWRsaPU5p0o3vM1/8sZdI/OtzwS91IP0VPNGq8UTTuR87fSv1OxE2U7jz3+EzmpKz0Ml5+75d+h5df6ZMY93vbOS0Na4u6QCPZ+DwBl/VVEieDAoX3EXoDfnKfQrdGsjuFYKi0vYnF2H9rcM0SpNZRKdTTdZHDVGkxL7/QLWTqivgiaShSFKKqCLCtUKxV0VSWJoV5vYpgmlXIFSZLRtA4zJyT4voeh6xhERKZFanCYZq3C+KFxJiam6O7upe21CUOfdCaHnXIwVIVisYtUJs1CaYF9+8cY6pVRjQKZTIYodElihXrDxbRt8lkbSQQomo1ARdEkMrkMiqJh5zLoSoIqCR566CnSmRTzMyXaNZ+LL9zEzHSVw2OT9PZ2Q+Lhei6qaiCEhpAkSBI0TadSabBYFZhZn8hTICyhmk4n0ywLcvkcq9eOUq+VEVLMHXfewbZt55CybbTy44i1VzKrbuMzn/kC733fWxhZNcKWM8/Ctnv5zGf/ltdf8zpedcVF6KZMEks0m00uuvgChkf6SGSZMApZrFaJQp87vv59LMMhm0mjjt1HmEowXnkt9VqLoKYRhwGWI7NYqxN5LTQ1hSSphLjIckLba+CkurjlXbdy0QUXkjY0gigilHSk0CMJXYQqk8p0gSQI4wgkCTlJiJKYweFBAt9n1aphgtAjituoesSRg9PYuQIb1w0xWy4jKQmSkGi7IWuHRlm1tp+u3gKpVJ4g8pG1DrGVqmSoLVbYvGUNhw6PseXMM9m48TRM02bjpo005+e4+4F7Of/SC9hy5laO7DvMTx76Ea+68iqS0MaQBONj+9n97C62nbuNT3z8k1x++atQtBAhOYwd2kVfT4ag6aFoKo3SIlrkkdZC9h+epK87y+JiDXSbgYFhEmFh53oQcR2vLCMps6hGFllSEElCvVFDszIIWSeOFBQlQEJFUQWTs7N0Fdehahqz8/PEcYSlyEzO10g5OqHr82ef/Esef+IZLnvl2czPTZNOZ3CbRzB1ePtN7+Jt73w3MQqZXAYzLaFKCuU5jx9874esNReoVlpkT7+SgVUO69ZvwfdKCCPL6LDBhoGAdH4Naq4bggBV1wjCkDCEr3z5n3jj9a/FsWWSMOaX3noLI8Mp7n/gx/zK+36VC857Lb/1m7+HZlgoukKcRJTK8+QLBTwvJN0zQNh2KebyhCKmWZ/EROah+3cxMnmYoYEB/HMuZHT0fP78kx/jnTe/mehxDSEU1r65iEgSfnzX3axfM4SUAreW4o5vfpMLztlIaW6OQrEfRdOZnx9DEzkWJiIG1xbYdu5FpPIai40amVwfsmOjWzb33HMvV15xBY898gDl+SrDA6sIUhbSThMaMqotUGWFH/zz3WzavAVVV1islsjl04yObkDXHGxLQAzlcgnLzuKFLtVGDd1IkQgDUzOIgwhFUQnCEN3JIkRMZeYA2WI/IBFFfud8uTHNegU/8lEME0MzkeKYdrMMqFimA7JA0hRMy0RIAlnqMJtLikqz7WHZNq7roeo6kiQDyXMAWlVUdE3DjSKmpsrkcgZSHGE7BoVcCkO12L3nMH19fbjtZoeXoFZCVU0M08GyTFzPRTdtVL3DqNpuVEg7GdpuGyQJJ5XBa7aJfRcnlSUKwbRTuH5IFLWJ2jXajRaoNlHURCLB1HIMjPQgCxkFiLwalVIb29axHIcwVgCVRruCaTqEsY+hyAS+2ymzV0OixERTNEgiNF0min0kAYqQQMgkSaeTWyJgcb6CJGnEsY+ggZAV0imTsFEicueQZZkwhChoQxwyPDBMI5R49NEp1o5u5pzzz8UNFXp7e6mUK8zNzmIbCo8/toNVI+s4fctmpmYm6e7p5cGHtpMv9qLqcGTsCCNr1yBkmbEDB9i6+Qy6it1UF6vsP3gIhMHQSC+OYxH4cMbmDezb/yy7d+3Cb7ukbIe9e3YxLK9H6Z2had7LhVe/n/VbL4TI444ffI+Lz7oM0QPKmmMwG9IyVpIX2nIOjpUw74kcxueylHFnBknqSD4dlbh5DptGHfyYxJDES7gjkV6AG4+HXU+0/ahTeywHyEqlySuN+aIsrZCQhERCAhKdntVjjnP5/MdisGipJx1pqac4+fnOtsIvelz/w1scxy/49++5jjA8eQf/ZG0l4eeXa//e5+pf017QtP8iyaAT23+UcyKEQFIkbnzTG3nbO26h0D2EYaym2bRpt00soxu9egjJ6UGTE8rzUxQck7C+QLM8TavpMlVvIa3ajBTGKK5Hu9ZECIFhGB0pkDBC1zUW5ufJ5XLYlkWSJASBhxAScRwitesgK9RUm907d5PNFtl2zmmcf9FZmLbKwtwsuqpRyBeolMq02gHjE1NEyIxuPJ2B/jzpdIFUJk2r7RIho6g65fkK3/jqbUhSvMTQ2SF/kyQF27KBhHSq02M4Nz/PeeedSyadI5PNs+vZvTz51E5q9Ro/+vG9ADSb3hJYhOfhQedl7rptDMMjbCbUq3VazSpCqM+9ABuNFq7XJJ3OEEcS733Pe9FUhUZ5iqQ2QTDyBrqzWX77Qx9kdNUannj8GaIQfus3P8KWLVsoVca55557sK08JBrpVJ6PfOQjlMozGHoCiY/jGDhpG9vR2bBhlFwuh7cpoTUasW/fPlqtFlPTR3j4kX9hfPwwhmHgOGkmJ48QxV4n4hwo2LqDKid88Yuf5lOf+iTNdot9ew+gCgnDMLBthyTmueeQruu4rksSg6GbndJGU8U0dTKZDJlMjtpig1Wrh9i791n8wCWXLqDLHdBvqBr/9Xc/TKlUQhZqp4RQltF1nX37DrFjxy6a9ZBq2eOKK14LtElil8mJCb7zTz8g19XHNVe/gc9/7h8IWzGf/MRfcc3r3kTKyTE1fZgdO57msssv4uZbbsSSNd751l8i8QLwQ2ThYpkqrcYirdYCvldnZn6CWAo5cPgga9asoVarIUkSmUyGZr1G2KxghjViNeLI/A5iOSaSXYRkdPpgIxc/qJPg02hWqTfKKAo0Gy2GBlehGyqKHBCGLYSIGZ8cY6i3QNSu42gyV11+KZdcchELCwv09vShqjpumKfaNJgtxzz1zHYkEfA//9+P024KvKjFPff9kDO2biOMwLIM9u7ejyqlELGFaaT4xMc+SVfPWlaNXsav/fr/w69/4EMokorXMAg9DSkRXHPNldhOBklWmJg+hJGK6B7o421v+yUsQ+H+7V+h2thFEM+CcAmDNn09A3zty98mCVW+8JnPIwsDLwjRVQldTeN5Eueddw6tZkcLd2xsN1/90l/w1a9/gfnyLEkSI4nkuX7PIIxot3zcBRUpnuHyV5yDCC0GB0ZIkoQoijCNYX5831384zc/Q7MhUygUKZfqZNLdPP3kHtISmMLn1VdejBc12brlPD586+9w0YWXIqshlY2TCE/BMtPUalUuvOh8kiTA89rk8z2k01la7QaJ5DM/V+e22+4gl+1Gljvf/2Kxq9MaQUxCRKNdJwg9FBVkkUAi0I0MQdDR7JRlmWarThSHnQqNVp2FuXmSJKZULhEEEWnHwms3aDdqiDhCTqDdalGqVhG6CkA+n+84qKpCEh/Vuk9AipGkpENSlkQoRKxdNcDhg/uxDAND0fD8gHKtQm9vgYQA09LwvDaqbrNj506iyCdOAnTNwPcDWq0WURRjWjau7yLJCrIk43kRViaPsNL4UULb8/E9FzkOEULD9RKcdA4hCXxPUFrw8fwWSRwRBG3iJECWBfv27iKOQiRA0xTSjoplCIg8oqBFEHkIWcEw0rTdBEV0vieSqhEnCbKsQSLIZLLEXoShWHiehKpnkVWJXDGD67rU6y38wGd+9gh+MIsSK3jNGmEUo+gD3LV9iif2lkjMAW54+7vxE0EsKczOl6m3XHoH+hletZrpmSqnn7GJvr4u5uamadTrRJ7PyEAONWmjxQql2VkO7d3Hwb176c7nmSvNs+/QfvYe2M9gfzdrVw2hIGg3PGQ1xAt8BgdGMdQurEyeIxNjrBkudpxzOcbo38TazWfz1IOP8OFf/SDvuOntOK8VyJf5J/V+PxpQPxHeOJlg/qniwpPBki+Fp4/e6yuNd6wz+VLH1uFXeP74lvfBHh37eOfh2HmXj/ULOzX7T5lxPVradyq2UnTkp/l7OLn6+ZUyrsduezmN4S+VFTy2POJU+mGPZ8fK4Swv6TiZLO7xjnf5OlaK5K20/0vZqWRLf5qHy4kyvy8114n+9njn6HjaZMuv30pO8ct5eCZJQuItIueGkXtOBzlClhRUVWN6dp5i/2ayoLufpQAAIABJREFUqRQJgo985A+5dquNV5tHTRWZOHKEVKGfwxNHGFi1jjhIMGyFymKT2bpLrtCF2qqSCBlNUzuAX0gEQUixUOTpp5+mUCiwuFgjDAN0YhS3CYaN6BtBCImeQpEoEezdc4A1q9YzN1vlW7ffweBgD5lMjnK5TCabI5fLU61USRKoLOzD9yScrh48L0DXTWqLDbLZDJs3b6Ij7yCB1IlHxzEduR6508Otqx1pChSJxeoijm3TPzBMOmszODzIRRdfQBDG/Plf/DXDQ6vJ5jLEhEgI9u07QC6XJ5WxsSyFernN+JExVq9fj+dKtFoNDMPEc0Ms20IWCqqqU5ot0Wo2cJq7WcydS+/Wm9B0Bc1I2LdvN6dv3gZSwvBIP1vP3EQmLfPKV17F2JHD2LbG2Ng41117PYap0qiUMU0T006h2ym2bj0dJ52hHfi099yJ7/n0X/gOTNMkm04xvKqPVNpGllV0VSMRAZquIAkFoniJ+TGkWp3ihuuvR9Ztenq62LPjabp6ulksN0gknVqjimEYeJ7XKWtEpt1uY5gK7XYDVRVLQYoIQ7cJgwar162jXp3nkYd2YVkWszPTlMsVXn/NqxGyjKqaIMlUKvPMzs6x45l95DK9tJpN8vluao0Z0raDruo06k3qiw26+4tYmQzbtp7FTW94M5/+9J/xq+9/P089/TTX3XANl158PmHUZmpqijgSrF8/SpIk7Nj5JKtX9TM5PoGp6+hqgh9Df98QsqphODaeF6GpHTmTmfkSvcUc+/ftprowRy6/gbQDjtpPre6hqDFx4qOqCrlcFt8Dy0wzOT1GyilgWSZXvPpq3ve+X6FZnaGrWKRSq6MaJrpmknJM3vmOW3j6yZ382q2/hpMyabVcvviFr3D2hWcg1JA3v+0G6oslurr6MLQMf/vZL3DNtVezdeuZPPXMU4xaDVRV5gP/43Ncd/0VWKaJnzS5+PxXEEsKeqaH113zVq679iru/Ke7edct7+WOb9/Oe97zDv73n36CSq3Bho1bURSdXD7Dvr0H0XUHxxZIwiad6iKJTL5x2/dYt7YXOTH4+Ef/hNHRQbauH6B/eAihqigSuM0Qodvs2fsM/j9vx7Jt8jdcxMiqLj78u78NyChPpwl8D+XCmPn5Mp/69F/ymqtez3///f/GtTe8EsuxkVSL0A8oVRZJpdOYZpbR0VWMjq6hq28V9UaVfN5hbrbEB97/W9xy85uo1maRFY1Dh6ZYmCkxNTXL12/7MpMzE/QGq/DnY2RLEIUBhUKRIAyRRILXjpAVCVVTOprTScDohjUkUseREpJMudzhAvBbHn7oY6UsojAmjALmZ2fJZnM0XY9sutOjqRsqkiwReBFR6JItFJCFQr1WZbFaobdvkJi4I7UjZBRFYWF+Acu2MM0OkZMsK3i+1+lNDzw0TUWWBa7bRtUU4igmCkMUWcZttfB8j4HBfuJE5oH7HqCvrx8nZSJkiTgJl3g1VCRVY6C3D0HSafHQjA6pmGF2MFUSE0YhsmIgiw54F5KCF0lYhozv+YBAUVQ0TcewbNquh6rK6JrFrl37Wbu+j7GD4+QyaYQs4fkh69aOIAloNBrEcUQUBSDFaGpHkqnlupimg+8lHXK7KEI3TNwlgieBgpBUZmam6Co6BFGbVmuRJPHIZruo1WuYhkYUhJhKlcfuewIZhXyXQ9NtYVh5Hn5qP42mwSteeRmVco181qHY02klMA2TdDrN0088SaNRp7JQ4anHd9Lb3cXUxCFWDw6TCJ3Dhw9h6TYPP/QgXUWD005fw/79O5idHqNRnqK9WKI0O4OkJHR1dSPLIUkU8MT2h2iU58jYEeXSDlKihRovUnBCUu5GFpJnGboix/fueYhVo1t4x7tuwU6liZ57j50Aqx7jjC3HC7Isv2Ql13K88Ny4vNDBO1qc9/w8L9SMPZY8aSVsuhw/r4QtV/p5eYnw8Wyl4xeyeGHVIitnW5czJy9teMGcsvgFOdPPfalwQnTK4x+b4v9ZsYmd7A39s85OnoyD9LMc86jjqq5druN66g+0fws7leP/WUbFXs51eSmn9mQ+X2mMl3N8QgiUvtNR+84AIJEiJGSIBdVKFTtfoLE4SRg2ec3rroQjDxP4Lr5w0A2DxdIsxXSK0kKZbC5Ho12hUq2TRDG5vm5KXoglJdCo0QwjLMvCsVNMT07S111ECnxMYmwpJhEK84mKUhygVFng8Ye309/bi2IYCBmC0CWbtRkZ7mP16jXseOZZZFlQzGfZtXMnU1NTzM/NkUnHbNx0DoEsYRk2gdvRXZRkQI5IIgAZWdGIwmiptE50CJOiEBlBGMdIsoQg4q577iYMY0ZW95Mk0HZbyKLDMjo0NIysSMgKtFsumUwOVVHx/RYL5QbdhQKGo3FovIIqq/hBG9t2eOThRxkeWYMkJfh+G0O1qMyN49R34J31O3z49/4Hr7ryMhRTYnBkkDgOaLVrrFs/gpPSyGdzRKFCLNroOhSLRUwjw8xUmWIuSxgmaLpDLGnEUYNYEhimDU/fheSBv/pSMpkMuirxd5//LOecdzaKYhIFPrIKqq4QBBB6dZq1Nk8+/gQD/T2oukIoKYhEophN0/Jctv/kEZ7ZsYd1G1ajKAphGHa+k7GCpssEoUcYeSiKzPx8CdtKIcsqUdTAj8A2VGYm69zxrX/ita95NT1d3ViWgucHPPDgwwwMDuJ6TYrFInd8+y4G+lZx5raN7Nu3n65eA03K0mp6tJpNXLdOtjeN67WRgLX9Q6zbOEAqnSJOoFAs4Fgqnhfw9JP7GJseZ92GDSALgsTFa7YZHlqLkGTarUUUNUWjGdB0A+xUltmZaYTUyTyZTprIbZLOd9MMJbJmwtTEA+RSXWhGQESAEAJNtWnUfKJI4Xd++/e5/vprmZ6qoOuC1732Oj784Q8x3NdLHEv09g1hp4oEicALfK5+/Q1c9ZrrkNUEiJEkhb//4v/h+te9kSSKeOBH2/ne97/H6lUbGB5azVlnbyWd7UUoEv2DXUgTT6AIwV07y5x/0SiGKbFQncM2UwRJgpLSCfyAmcmDfPyP/4o//8uP8cEP/grN5iIXXXgp+e4u5ufq/K//71NcdPGl2GmLOATTiJF1E0lKSAj4x6/9A6951avw3Iibb74JO+2RtQNqrgeyTugGqJqCpKsUChry3jLVoIly4SiKpaMaDraR5x2/8zYue+/ZiIIgDBPedMNbaLsBV193EabTQzuMmZg7jC07CEUQJxGR6FQADA9sRLUk4tjFMDvBhYMHJlh1+jp6BrrwWhEf+Y0/5HWvezU33HAdshIgFAcxafDQDx+hayiLbTp86Utf4cwztyFkgdtqYjsmfhCiKjrjhyZpNT3yhQKS6GRwhJAJw4BvfPWbbN66hShJMHULWcgIAZKU4IYBlm6iaRqaoYBQMHWLylLgzdAMEkK6e7qp1VsIRUbRdCTRcY6tlE0cRlQWFjBVvaNdqih4rsf83Cy6phKGIYosCKKEe+6+l6HBoSUpsA55XiwkEgx6e7t4aPt21q8bQcgaQRDg2CkCP0YxZYhjoiBCEjpTU5Nks1miKCSh058rKwJZMwmCFsQRkR/y7DO7yWc1yuUqTjpH24vQdYEXhiiqTBi42E6WbN7E9RbpK44QJzGyLFMqLSLwl5i1bQLfRzXsjqxOqCAtOe+tlossqximwsxchVwmS61cwbAMGnWX0A8xLY3qokez0aKn2MX05CSpTB8JEV67SWVhASOepZhPsFIqYzMe+/eVGT/c4JwLLuX08y5Fc3SKXYPoloYiZJI4QtcVDh86iJQIbEulsVgh7WhUK0cY7LeQokVqC7uJmnMkrRlWDboUjAC3epiiHdCXhkI2IGeHDPTYZHTB2O4nCZvjCHeWbC4kY4EmfHoLDumM0ZGrM2ysxbXowy5PTn0JPzI5741vpu66KKqOmJOJWxKSfQLOkBM4dKfKNfLCfV/o2B3d9Pw+L8bjp4pVVioVXmnbT23S89w0SZJ0eDeO06b1onN1jL8hhDhu3+7Pk/0cO64xCS/Otp5Mr+m/hh1v7KNRmpXmP1EP40vN81KN7id7vMv1rJZHqpaPsdxxfe4YkmVzSR1trg67cILE8ctifxaZ5+PZqWRlX2p9J5tRXmms40UyV7JTOQ8rXbNjt51q7/aJ53r+Zy1USaSEmITmYh3LsbCcPhQ1g5PL4j/5dSpNiad3HyaTK9LbV0QzjrJshvT3dNPTXSCVK2AZFm23hZLqY++RMQYcCy2OEF6TtK50ZA1UnZlak58cOoQrZzg8Pk5p5gimmSaVSaFoCj/85x+xfsP/z957h1tyVme+v69y3Hnvk2PnKKmVE5JQKyFkWYAEIjgQBDbYYzMGZsaeC9i+gLE9GByGwYAxF4HJGkkYLAkhIQnFbrXUOXef0yeHnVPF+8fuFq1Wt9SSZfvegfU89ZxTe9f+vq/q1K6z3vWutd5l6LKCqqmkuwpUSxWE6EhIKLpJKptF1RVGlo6Qz9rMz05hud1H62wFfqtOq1nFtG3CoM387ByO49DyWuzbvY/uni6QBJJQKFer+EGAaZh4rQbtukZvb4aEmyCOBRMTMyQSLoVCCkkVhITMTM8xNTlJd0+eOO7UCBqGSqvdQtNMCtksmiFABMiSYKCvl3K5yuOPPYlpJLCSNm51K/PmaqbFCL/2m79BFIKEztx0BSOhYVsJpNgg9hWaPqCE/MsPH6R/MM1jj27CNBJ86lOf5IILz0dWVMKgReS3UAyXcrmCLEukvvEQ1qyKdtMbCeOYhdIc519wCWGgIqSQtl/F0B3m5xaJAg83mcFyUgwvGaXebBBFEXNHxrAsHWFpSLJGOpPhjPVref3lt/C1f7idq67ayOzCDMlEL4oeghQShBGyomM5Nl7goeoKXhiTsG12bD/EkhUjnH3+OkIRouomzzz9LFEkk8t0WLzvfOduTFPn6qs20mg0SSRsurpyfPSjf8KVV19F0/OIUBgYXIFuuJy/7mIuu/BSzrhkLYaZZvnKFWw4Zz2aLuFkUkiqydCSpSxf2kccCX71xjfy3ttuI5FNUikvMDk1hixknHQBREi5MotlafTnM6hWkpnZOSxNYDhZgiDC0HVK8yVGR89koTyNH9QpzfkYBlTKMyQdh0a9xo03/Aqh7/PVf/wC5198BU7C4Otfu5vf/t33kUhl6NSEheiqSrNRRtNlkGK++MUvMbpkHZNHxvmbv/oKt779DYSxRzaX5z+//6Pk0mlUJeAjH/oQV752I1Njuxns6yUcvBh19Axec8UldPcuJ4osUkmHIGhjaApBlKQyvZdcby8JV+HZfYdYs2Y1umrg620sJcPtt/8tH/nwu0naKugOquTRaAdIYUQgxURCZuNlG6nWa9SDNqouKE5P4XYvxbIyzM8t4rhZJM2kVW2jyi4/ay5wxrveihA2lmkiYhlFEbzpN29EyUiYqsWKkXO59e03kMuniWOZMAghFGSTeYLjHE1dM3jwwcfoHxrAdhRo+HhHNT8vuPAicqkCtVKDv/vc53nPu96FH3gggW4nqNXmSVXz9NoDPLHlMQr5HgzDxLFtNEUikiSEUGh7HYmZOPbp6e2i0aghFA1Zlikvloj8gDPOOhdV7chgxbFCtTqHaycJgwhdlYnjiEjExMgYqkEURWQyWVqtNn7cRNMsAl8wNz+PqavIQlArFwl9D9vQKC6WWSwtku/K0W7VCQIfx3Fx3AQhEsRQWpjH9wKWjI5i2zZ+4PP4409jKjE7tx0gk3VRZEFffz+yriNLAj/wabWbWK4OUYgkFGr1BUzdxEnYHDw0TiadYX5hDstJAjKKiJEkA6GqIEkszMyT7+6hUfWolKt09eWplBpYhn5UgsikWevoesdCQegGgpgDe3dTKORQTRVNS4JQiPBQJZlmtY3fbDA7OUEURySSSYQUUKkuoqDgeS1MS0MIME2dMAwxDAdFE6QzFp7fxDBdJDzioMrhg5vocSGiRRj7VBsykzM6hpvkNddchZMqsDi/SCqR5Qd334UaxbjJNFu2Po0UqyzOVunr6+PAvr2sGHWwlCo5x0eLF5CoE3mLpFMSrishoREKGU1VkDWdWFFRVAvDcjpNtPSYXM7CdS0M08RN2siKhuf5+FGTRrmJkMNOA7z6Kur2QbQVFR7fMsXFl12LJqsIBN4/WkQ7FOTzft6cKSJGkmViYiT51Gmvx3yDY1lcx3yZk/mgx9jS5/tMnbpWITps64ms6jHN1igKO7/z0g1MT/S3jpcEPLa24/uB/Kt9/5ijvSk6bOuJ5NepGOKjLz5vVzpFp+RfJPtljesv7f/T9nLqFv7/aKdb4/vvfY7/FvOFpTHC0hjQiVPEoiNQn83nePC+B8CPsVST2YkZ5OHXkJUW2HjR2UixhCILXNcmnUmRKVj4YYPADwiDkEqljOO63HXXXfSNLueuzTt4YMc+okIvT0xMsnmyyJaxKfIjSzn/nPOZnZpiemqcdDqNjE690uKxRx7jmquu6Mg9yCoz0wu0ak2CdpvB/jTZlEMUtJmaOMz0xDiNaolGy6O7p4s48pBlgYSGH8g0GiF+u41QbO6++17ajTYygoHBYdotD78V8PBDD+PYDqZhEkcxtu2wsDiLpqlUq1XagU//4CCSIh8FujG6olIp1RnsGyBotSEMqJaKaKqJZdmYpo6QQmLijoZtFPPUk5vQdY1zzj0bRMgzj95DXBljJnM1l1x2Ofv3jvHe974PWYlYKB5BUTSq1TKHDu9j1+6t7Nm2nUZpgde+ZgOO2ctFF1yJ6yT5y7/4DImMQ6VRpNqoIGmdGvhUKtWpO7W6kBJ9z91LQRAgSRLFYpFWq8XCfJmpqSmmpmbR1cxzmnxjY2M4joNhWKxYvupop2b4n3/3JZLJJEeOHGLV+mHu/MF3yeXyBI2YxeI8vh8SxwJds4lCIJYw9E4acUyLIPCYmVqk3YLpqRJHxuaYmSphOjYjS0fYumMrqiFz8MAhFuYqlMqLDI0UUEwN1dL4+Cf+mD3bn0WNQ/DbPHjfPcShxwfe/x7u+P63mJ6Ywg8rLBZnCQNBKtlNpVgh9NvYpkoQRHz2c3/JX3320wgp5sjYOOValYHBEUwniWVZpNNpBvpHqFTq3P/gw4QxaJpGOpkCwLIsWq0WqWySZisimRjE1AeRVQldT1KvKczM1HnooS1cddVNyEqK3/v9P8LQJDRFcPvX/hdCxMzOTvPHf/wxfL/N4kKFhJtFkW18T+Idb38nv3vb+xno7+e73/serVbjKLsdcdaG80il8+iGw5/+359C0VvcfedPCH2NdjBNtbaA7VgossF73v3bNBsRjp1BEhpR7KMogjD0qVZrLB/OEDSmCRqLTO4fQ5H2cuutNxCRpFxNE3gxpm6QSlhopkStVCRqefzwn38MoSCX7kISOkOjq1AUhVarRSaT4dFHHwWpiaTWmFvYz8arz6dWX0BIPnGk0PLKFEuLtJtAmCCOZF5/wzUkUgqqHhGGgrvvvpsgaFGpLKKoIQcO7iYIPaq1RW648WoSSadzzkqMlUlSb0Xc8ubfoF5ro2s26VSOdDpPLtuDYycIoybd3T2UyyVUTebss89GkgX5Qh4hJMIIFFmmVqt2JG2IyGQytL02biKBIkG71SCbz2BaJn67wdTUBAg4ODbOgX3jxLEMyMiy1snqCCIUSdBo1BEiptGso+sa8VFZuUq1TKGQw3JcvCAimc0TSQp+FBHL0Dc4QCxJeGFIq9liZmKSXTu3oikKkqrjpHPcccddaJrG3PwMtXqJM9etwjRNCrkunnr0KY6MT+O1A0I/BEnHMB0cy0H4AqI60xMzRLFKJEPYbjE6MoBmmBR6B1AlicCrEAcBfrOMCBtoakA+b/LAA48gZEEqYxP4dRzXwPNb+H6EiDWatSrVUoVGtY4SBXitBv39fUhEqHICSY6I8QgDmTCEgAqS6tHd00s+nyMIQohVEm6BXE8Bw9ZQdRlZklEVhVargWGqtL0F/HaMLExkKSSMZCbHD5DPRehqmygKqLfyTMw4ZHtTnHPBJUxNNdjy7HaKC0UatTrnnbuBMPKYn92PoRhkMwlK1cM88ciPsNUSUjCJoc2iKC1UzUa3dDLdy3FSgxhmFlWzkWWB57Xw2y3a7RZeu0qpOEelvECr4VEtt1gstphZbDG3KDO7CLGcx3JH2Tc2RbPuEVTKhL5HvThLU3P40Cf+xwv/gYuf164eI1RO9BFeDZ/hpcY4Vsp0osmyfDQzQXrZvVNOPP5YneurbcfPc2y9p6vL+m9Nnv2fav9HMa5xHBHF4StiVo+Plhy//0rsdPPlT2eMl5OO8Wod93LPPZo7iNBtlP61z4uuHWNcf35NeW7/2PsnMpIvlx0+3k6XSTzxb32y+U5cx4nbq2GnYtxP7Nz3UmO82HjHXj+RRT/288T7/fj906lfadzzfxEcfhRt5XWAIJRiZFnC1DRaxSYf+8OPcvs/fgVVkkgsvZJNu46QKz0CksKRsXFixSBCJpkcJfBkdmzfjpA6Tp4f+CxbsoantzzFhRdeSk/vME88+Qzr159NEHj09fXyta/djggjgrbP8HAP69auZ3p6jL7ePOATBDVq9Sq5fFdH2zDwUHUDWdEJwhjTsqnXa4wuGSWRcNE0jXq1gmK4zE3P4dg6C4tNvv6Nb3LRBecgFJW1q9dhuQmEoqAoAWFYR1NkenqHkCSZhYVFDhw4SFc+R1/fIImkgSwpKKoKkUBRJErFRWRJod1okkylufOOH7Jp82aWLF3C3r376R/oI45hamoa07SRJBmv3UJVNXTd4rHHHmVkZJBMNkW+sQ2x6q2MXPh2Gn4NiLn55puI45j+/gGQQJUl6vUKhUKKfL4HN2khywp33vHTjiRLcQJJBjeTIpVJo2gaQlEoF6v4vk8ymcTYvA8Uk+b569A0jVarjuskcJwElUqRnq5RdDPG82pks1mCICAMIZfPUq2WmJ6aw9ItYiSErDA7vcDQwBBJN81V176Ov/27v2bdmlXMTo+z79A4AwN9+H7AX/z557j00ksIwxghZIIgIgwE+/eOkcv0kclmCEOPhx9+iNWr1lKsFrFdl6UrlmC5Bnf+7+9w2Wuu5JktzzI6Osrhsf30dOdpNet0dWWwbJM4jlixciX1apHLLz2XXNZl6dLVqIbCN7/5TQYGejFNFUVSSCRs4jhAoLBmzQp6+wtUylVSCZtsroCimyimgyJBpVJD0wzmZooMLVtGvemhygIpDmh6IbOzs/T399MKygglQiiwWJ6n0N1DFKsomoZuK5hOkvf/zvsRakwQtwnaIaZuEEVthCxwXedoE60UmiYTxQFjYxP841e+zmsuu4iP/5eP8N7ffgcT87O4jo7jOFx0weWUKmU+8emPs2T5ID39Pfz6297HqhXLWXfmMoQmsLRUh72XYq6+5rXYtsXMzCSzc0fQrRyGCPACjd/9rQ/xR//9vxL6FTyvzo7d+xjoPZ+k283k1F5st4xrZTm0by/vu+39XPrajSTNBI888BCSEjE60IVmmsSyRKlcpNVqYho28/OLrFmzjsWFmHarRndhgMg3MWwB+EiSgqrp6JpN6e6QycfmiQfq3HzLzSSSJrWSymc+8xne+ra3sGfvTpKpjq50Jl3A90A3bKIwQNUkBAqSKhBEKLGPCNucdc45hGGTkeEhbMtmfn6O2973bt76jrdRrzaxijZhMUJ1NVRNIYxint22jf6BgY6ygeDnNZ7EqJpGGIWEno9pWESxRKXa4Jmt21i3fg1h4GFoOhNHJrnnnns5++yzmJwcw7YTTE5MYOlqhxGLYzzPo9Vqohs6gR/iODbtdh0ZUJVOmqwkK4wfHCOVTpJIuBQXSzi2i65pqJpKo1HFSbiYuka1OM+GDWdjmDqmaSAQbNnyDCPLl3P3Xf/MeeefSSHXhaopqKqgUlrE0CUmjhxh+/Z9DI0M4zhJPL/B+KEZUulEp8RCgIQCxDz80OMUCgUcO4kQCgiVxYUW5VqdtWtWEkcBvhcQHWWtFEVFllUQAbbjEgQhtWqZRDJNrMhH2bqQiYkJ9u7bSyrpYFpOp3mVEJiWQb3RwPcj7rvvPpYsGeXxRx5laGgJmu5SKy/gtdvomop8NH07ikIUGdrtJu3aPLX5Q+zf1aanV6MZCBqxQ9dgN729y9ANB8exUSSV2K+zsLCAYZo4tsOz2/YxNDDE4w//kKWDGfKJFoV0jCSBYuQwnDyGk6NcbiCF47RqRVrNGu12DZQU5WIDN9XNYqmNkz2fkF4eeOQgay64iracJ9O/lkTXKnzZYt/4AnqymyPzDXK9ZzBXbrN8zRmIqSwTrU207E0oah63u/85PyF8stOo6xjjKoR4rrrrVH7YyTLIXkwe5qV8pmOM7Uv7HS/02U7FwJ4sXff4db4c/+34tZ9K3uf4/RPXcaprczzj2kkV/iV4/YVNFT6WVvBKgMXJwO5/pP1bzv9qj630r0XpXwuc8OWOT3j4ifiEY14of/Pvcd1PBe5e6phjr7+awPXlvP5Sx77Y507Wpv7FPnu6f49jcjjHgGss4k4jkjCgO13gfe/7LXoLBc4+ez1bfvYUZ13xqzw6HjKak+gK9lHzIJXrpdKexnY0sqk8mUyeerOOLEu02zE7dmwjmzdJZ9L0DfUzPj1BTyHPwsICzWaDQ/sPEAYhQdBkYaHI5MQ0XjtEUwwO7D9Eox7QaApKiw0qxTJ20sHzFL77/e+SzmXJ5fPs3rMHTdcxDZNWvYpup5GFhqL6CMnknLPPxVAhjkP+5Uf3MLJ0KUgyUiyjqxqlxTrf/Pa32b17N2eddRZ9fX08cP99DAwMMzl1mFy2QLlU4gd3/YCVy5djGgaaZvLU44/R3dtNd+8okiyxcvUqurp7kOQAr+2Rz3UjhEwUx8zNzeDaCRKJJCMjI4RRQGtyK6I+w188pHLZFdcRyT6e9DYjAAAgAElEQVSZlEkQBhw8ME4200UYh8gSmIaGoat4yMQytDyZyJPo7snS25+iWi2jqA7/6/Nf5Pzzz0ORFRSpI2Whqiriwac6jV0uWH+UcW1jmZ3GTJVqEU1OEERlTBsWFueRhE4ikcYPPCzbQFN1apUqQpZQDZ2hoSHaLY93vO03+fRffpZPfeqTzEwf5vvf/Tq//q7fJgzb2LbDktEVmJb6nDZeHMdEgUGpWOZPPvYJ/vQTH+Xt73gza9euIpPJ0d3bQ6vVREgxO3Zs5a23vpHAk3jop0+wbt0ZdOWSiDjGtU0WGyWshNNpnhRG5NIOH/6D/8ToyCAtXyKTy7Ny5XJSaRdFi6ks1Dh86CCJhM2n/uwvuPiSC9m+/RkGBkao10pYtksQC2JJZW5qAiEkNNUimy1QrJbRDB0pCnF0GUmzSKVSHQcnziAwkdDRdYdWu4GuWRimRMtboKurF0mOabUqKFrE7mcP8da3vI33vOudFCsLKIqMYeidBjs6IEIs0+baa6/n0OHd2ALOvWgtV153HX/0X/8b7bbHm974Vg4c2MNNb7ieam0BVVN43VVvwzBbdPUmUHY8SDS5myC7lC//w+fJZBPYloNlq5iWTKWmc/uX/55HH9vKJedfSVd/H7oRke/OYCbS1LxZXCvPM08eYKR7DaXWFEnLQpIs+oeWkXYSHNizizPPXYsqQnTXYrFcIptNEvgBum5iGCaaavDV27/C6jX9OI6B/Znb4cHN1M4ZxfNaFIttLDNJ+btt0mGG+Kwqqmqwa9duPv3JL/ORj/w+khyTy6VRVZlm0+PIkRnGDk3x+c9/mRUrl+K6Go888giDfcNEfgOvvkg2ZWO4SRIJg6s2Xsk1V1/DsmWjvOXWt6IbDrIsUKY1vHkfX/gomgKxIJPJkUgkiAnRNBWIKZWKCCRUrdPpWkTw1FNPk0plMUyXodGlBGGLwGvSqlUZXbKcM888A0mOSCRt6rU2+VwW09RRVIXJyYmjGq8C3egExoqlRZIpl/LcHIrSaZI3OzOLgkw65RKFEYqsockKzXa7ExTRZIhjVCnGq5VIZDK0Wy2UpoE0adIz2E81rLNqzRocR+H++x5k+YpR6o0KSUenXi+j6iZLlqwlQqVaWyQMaphKBjeTII5DJGIatTqhkMnnhkgkDaKoiRe2WSyXmZqc45zzzqNVr3FkfJxkMo9udNJ3LdOkVqsSRj6abiBkCdd1CY7K+qiqTBzGJOw+Ak8lk0kiyTGqbKOqWidN33SxLJuBwV4UVaDELSzbJohjVAls28L3/Q7YjQwkqUGrVadaaZFPakhRnWyfQrlU4b575nDSSxkaXsbOHQeZmhijuyvF4kKZnrwLksz8fIk4FjSLE/QVYDjnk9Ua6KZAVcCw8nj1OnFcp1mfRGrViKUeJiYCYnmI6QUFT+3FzS6jHefoHjqHxdY0kSIhGTpBoNLTO8TevYeYGJ8k9kJWL19Nd64bQzbo7bEhFuQywwRjOmX9IKXGHRw4VGbVpRtfAFyV844rrzsJcD2Vv3GiDN+Jdjp+TBRFzzV5OmYnZ1VPXQ53uvO/Eh/zxGNPCUTheUD+ZGD3VMBVCPFL4MovKHDt3JQRrwRTHG0E/9w4rxYweQFXdhps7onRrFc078m6mJ1irpdax8u9Hs8/Nn6uVgERI5Cf03LlJF/U05nvxRjxU0UHT9w/Wb3uyw1cnM4D8MS1vlhN64mRxNOxF6uhOMZ8H1/fcfxnTsdO5+/u7f4RINCWX4cQAikWEEGERMtr85UvfYF8ymDv9idJJtKsO/ccHCvNn37mO1Qz69mwPIc8sxkzvRShZ9BUGd+rI4hYnJvm4L6tDA52EbYjnnryMRxbZ3CgB6EYqKrOvn2HCULIFfLYToJCVx4hQoZHh0gkUzz97DbWr13L2PgBNj31KH09PUzPTLPpiUewLI1cto/NTz1Nb3cvPd3dKFqMopuoqowiS0iyShxFjB85TDKTgShgxerVxJFHq15CUQyEHKPoKhknyznnbUA3ZPxWlZ7BYWRVkEh0wImiabhJB1mWUVUVPwrYvWsn/X1DTM2Mk8+ncB0LRVEJwxhV02m2Gx2pnxBU1e50MowD2q0KtYUZnIVNqJf/D/pWXYjlSOiqxbZtO5mZnGLV8lFE1MR0FL7/3bsYHhpFVlUevP8JcskuChkZryEw7RChNHATeSxd5cz1a/DbLaIgoNVqomkqmqKh/ORBpLBFecMqvFadTCZHs+mxuFAml8/RrC2SSWXRZBdZSCRc52ijPEEYKai6glAVhNJJz4vCCFXRuPH11xPEEt//p29w7z0/RjHzjC4pkErpBEGTZMJBVlWE1CKKfBRZQdAmU8hy4/XX8r3v/JDDYxNce/01xLJHFEmYUsyOZ55h7ZozKZWbjB2a5rGf/Ywf/fOdXH7ltZgu7Nm3n5/e8wSrVq6iXFnEdh1K5Ro33PgWhkdXkMs6lIszyMDunXsoZPoQhHR1ZVBVk7PPWkOMyeHxIoN9OZq+h+24xFHE1qefZsmSITRNI6YjWxKFDdQ4RAphYbGC5VoISaJcq2HbIa12pcP8yAKh6J0arzCBpMSIWBCFbUzdQcYhnU2QznYxOLqUdMrlj/7wT9lw1oWk0yluffNv8oY33Mz73vd+ztlwAemUyyUbL2f7rp38wQc+TRjXCcImjpPCSWh0d/WiKCrNdgknqVAo9KMoHhMP3okuR7zuPR/jlpvfxujIKlw3w7e/eScHdh9gaKCbcy44jyuuuAjVarEwPY1jZyiX2vR3DyKiiKCtIus1YqHwsY/9OX//pX9i7RnrOe/8dZQqDZatOgNJ1nAzOYIgJg6hVKyRSLqd5klhiJAi+noGiQIF03Bp3vMQcQzKxkuQJYV0KsP4+H66jixB1QXG5QaqFtPT3cfGjZcRxnUkSaZe98ikukEVWLLF6NIlnHf+GWTSOVq1OpmMzszcJHfd+QDZwgCyKRBRgKYYvOPt7yaVyiMpEsJQaFSPIAgJxlT8eQkzYxPGHS1Q1zYoL86gKiqtRgNd04ijCMNQiCWNyPdo1j1kWULXVVqtCqbRCcoYpo1uOyhqhy2t1otYZopqpYgsd2q7haLhJFyQYmRFRaAgogBdUfDDTt2dqklEcczDP30M3VTp6ukGWWZhsUS1No8cyVSrFSwzSRC2WCw2eXb7bgakZfCsRTypUhRFjFkHuQumpydx3QSr16xAkWW2b9sJQmA7Dk6iAIqPFEI7bOImBrCciFgoR2V8dDTNQFdUoEWzWUeRJbymh4TCz372KJm0i5u0yeZz6KZNtTSL6dg0Gi1EJGEZOkLXEXFISIwiQJc76Z+hF9L0F5BkGcMyiYKQZqva0TW20iwsLGBbOuVSEdvQ0QwX3TQRkddpqEMEIsRv1piZ2Ek210W97kEY0SwfxJDbiLCKIqdoRCrnXHoRTzz5OGeddWYnzdv3yeaSLNY85qZnierj5KwS/fkQQRPZtIlNB8NyCaKIVnURTZXwAyjWVKYrCfzYREv2I8wMqAaJRJp0VxY35bBvz056epbgGgqDw0PkMgkmjoyRy+XI5TN09RoIOaBWrfHgTx5mvliiu7uHMA5hwmQynmFr9W5q7TrnXvdmJKERRzLRU5101uOBq3jORzm2vdAXOOZPHF/XCi9kQE/HfzhxrOcs7ui2xhGIE+o/T/TbXg5wPtWxp+Mzv9T5vHAtEpIkE0Xx0Z8/zwaNow5YlSXll6D1qP1CAtfOMdFzrN4rtX+PW+g/ilX8j1jH8+Y7jZLqk3ZgO9lYr+D8Xmz/lTDuL/f6nfhg/9empXdkCE5+TY8HrCeC9VfLhBB4u48yriuue0E01lZ1Hrj3XioLk7z3PW/n8P6DjI72sG/XY7z3tjcwW65x0U3vxVe7YO8dHDywH9lJMz5+hErFo7vgItHm0IEx+vp6GRkZRNUEkgiei8avXruGJSuXYtoWuqqxZ8duFsuLCNHRcZyanGJ4uJ8oDlm5Yjnbt3bSRYdGhgnjmCXLRsjnc/T19yGEjNeOkKSIOPIIY0G9XMK0TdL5PF4QIhMRHg0KyIrMF7/wFc4590z279+Pppi0Ax/TtKiUqlhOElmSOmmlIiIIIh588CHWrVvfASVRi9GRJYRRzOBAL4mETRh6iBj+5d57WbJkCZqqISRBELYxDAXfa6AoAkXWMCr7iCWFrdIV9Pf3YJoaQsgoqsHAwDC/9d7f4aab3kw7aDM8PILjpNi9ax+rVq/GcQ0EHg3/AOl0AaIcum4ihMfk5BEsy0BVFSYmD6HIFo8/9jSj258i9mtwzZVs2/4Mg4MjRBG85z3v5ZY3vwnZ0okkBRQDSXXZu/sJDMtGUSyE0FCkGEPTIY7x2m3iKEaWBX7kceG5F3DFay/kHb/2NkZGRugfLGCaJsXFOo6dQ8gRYRDRanoIKUbXE0wdGWdhfppbb/kNvn/HHVx/fYf1j2LwG02q5Qaf/dwXuOrqa2m367z++mt4/euv5bUbr+J111+FaUkQJLjk0tfwwQ/+ZyTJYGrqCD++934G+vtYmJ8h09WDptg8s2kTBDUW50pk8l0s1Bq4lkZIRE9/F36rSndPF167jdf2cGyHYmkBwzCRZYUwDHHcBO22R7vVwPNbuK7L/Pw8juPw+JOb6eruQ1IUdu3ZQ3e+iziKqZZ8PK+GboBhGIRRRBz7fPnvv44kqyxZOoof1Lnyyo1kMhmi2GPFirWkUkm6u/pZtnQ1mtGiXKowPbnI5qefJJMpkMkmkKSIrpzL3Mw0mVQS0+jItshCw/fr6HP7CYKQN/3eJ+jtT+MmdALPZ83q9Xzve9/jt377t3jXO99No9GiUOhmfrrKpk1beOThR9hw9gbGxg6SSqfQjZBnt+zknLPX8Zu//nbO3rCWI5PThKHPzbe8gVtvfQuSpBDHIaoGiYSBH9RptzwEGrJkEvgx27ZtQ9M0ctsP4XsB4vILkQ2DIFDYd+AwubEBnt6ymdRr2qgKVKuLqJog9mP27tqDhMSeXbsZGOrh6Sc3k0wk0USDIGxjJdIYThoJn2XLltPfN0yr6dM9OAiyjazrTM5OQiBQDQtDUQn9JsXDdcSjDsaIgSKDLEmEoY9xlA2VpI4zaxgaMYIY0Qm8SDFuysVybAzLQlY0gsCn3WygSDFxJFBkGUOXEcgYpoFpmUfHkxBAs1HHNu2OA6zIHDx0mGymgKqZNL0WhumwZNlqcpkksiIRhBGGYfK1r96O1/YxLYdsoQshQoyWzfDsGkLJR7m5QvvGGb439nWG5lfxd/f/Ff3pfpJOgsOHtpPJ5dDNJN/+1jc5a8MZSJKGJGIUEaFqJkLIyJKKJAniqE0cB53nIB1gJKsqvtdC03U03WDdGetxHRdFVpidncW2DSxVouWHtIOO9Nfc3DSOk2brszuZnpgmldSpVefRNBtFVmh5DX5y/8MMjwxj6haKrCBJEkHgE4YhrpPATSWYnpqg2fZIp1I0aiV27XgWy7ZxXBdD16jUFlDVDOlUhq1bH6OvyyD26ggRMTNdY9v+EktXrmDJ6DKiMKJZbzA1NcXiQhG/LSjObmeo0MKQ61imgazECDmm2WwS1Cr4YUilZiKMbo7MeWR615AfWEO+MMLOPYcZHR2lO58jJGaxuNAJfrR9Dhw4QE9vN/VGG9CQVYtiscKTjz6I5IXs2rqfnTt30NWn4iaH6e4pcPDgPrq9YeKukHv2fYu9u55FSfaxevVqIiERPdnJpnk+4/rSIPB4/+V4f+ZE8PlKCI/nwF98+r7ZywWur0am2+lZZ65jPlqHWDt2ni/e+OoX0X4hgWvnS3RMSLtjJ2OhXhIQveIVvrS91I36ajXOebEv5vHbiTWex9vJ6gROtTXv/RuCA0+8QA7nhfO9cI0nnvOpWNKX04H3VOd0Og+8032YHBOQfp6O1ytgp4//J/ByZZFOdT4ni3oee+1kur0vNv/x0dSTnZu3+0cIAfrK173gvVbUolH3ufdffkypVOemN17L3PQEl15+AbIhGBodpV6doegF1OQMXc1dyIpEMl9gZuIQ42PjtH3BstVrmJ08iG1bOE6S7dt30dfTS620yEP3/wtDy0fJZdOYtsXI0mUoskocQ093D6EfsHP7dlasWImqaPT39lEqLdA3PMjA4DCl4iLJZIrbb/8a69atZX6hxq5tm+jKZyiWA6rVJk7CIQx8oiDCawc8/MAj9A8OI2sa5593NkHg47Ujenp6sRMusqpgmXYHcAY+QkAUhqiagaEnCEMfy9RRhcWXvvhV1pyxHlVTCaIIRVGIYli2YvlzTTMk0Ync+u06lcUS9UqDsQN7SDd2IK75W7r7V/EHH/og1113daeZkaOi6iqvu+56xg6P8eMfP4jtWJRLde6+88esWbcSN6EwPTlGJjWCH4QcmTqMbhgIIJPJoSgqURTjuDYLc01c1yW3+QkEgoVzz2X5snX4gYeum9x4401IEuzbd5iE6xLHHu12jYHuYSTJ5AMf+D1WrFxFNuU+pw95YP9+HrjnUb745a9w1bXXokcqm7c9zYHxcXY+vYP1Z5xHEAbYtkMcSyBFNOohqbSLH7SIopCk4fCxP/kUN95wLd/73je47nVXUSwuouiQci2IBW4iS09/ikJXkn/6xreolls88NBPeN11N/KzhzexdvV6/tPvfwCkkC/8/Re54vLXkM8WsEyDfft2kU6aFBda9A2MUujr4p777mP3rsNossafferPufraa4lEzO7tuzl0YA/DA4NMHjmCbVpEIqZaqQGCRCJBJASWZdBs18jnMxTn5kkkHHTdJG3bJG2TJx79KeecuYZmu4ZhqHzpC19lydJeoliwZ/cYxBK1epn169YzMzvJspUDyBIoikYchzSaFfL5PLoh6O3t4kMf+jAH9k5QLjXIZQa4+LIRFNnlsceeoL+/H6EI8oVu6k0fIcvEocHgwCgf/shtRIe3oWgyybUXY9kWmqZTK82xf+84fiTz4Q9/CEU26Orq48z1F/KH/+Wj7Nu3m19/5y1EoszmJ/fz1JNPsXrtEpYMn0G6kELRdRrtGt3dBTI5m41XX0JMRBhXyOZcDhzcSxAEJBN5xsePkM/lGBs7wMBgH+mMi65LuJt3o2oqxTOGsTQFFY+urMPCfS2GB/vQ1kygywaKgGaziGKkcFMpCj09DA6PUK5McXDXHsI4IN2TRNFlwnbIG294B2+6+U24CYfZuUk0XcXWVabGZnFMBagQRxK6bRN6TRbm5omSPpnxAdQhD4IY3/eJ4gghyTRqDUzTpu35HYZFkYnDECHJmJrM/OwsqqISeD71aplKuYiqaSiqRhyFBF5AsTSLIusouobntSCOEJKKJGIs06DdbCMLgR+H2G6SSrFG26uTTjtUaxU0TUEWEm2vhappVMoVLjz/UoaGurEcHUVzifYJlL0u08u2kv5dAz8REkY+G85ZCcAl8VU8uPWfyabS6HaChGtSrVSRJItDBw+hKw5bNm/CslR27x7HceHhnz7KyMgSoqhJ4LWpVhrMzR6kUa8hCwXLTjK/UEQzTCRZRlcF3/jGNznzjA0EoU8UwJ133cP83DyGBv39A9zx/Tu55OKL6RnsRpJUJMkkimUEMX7QYu3as1AUmXazSBzBM1ueZWio0+hscaGEoasIOUTVTGamJ7F1he6Cix9EtJo+QeBR6BpicvoIigKu5RAHJeKwTRgHmFaWTDpLKjeKH0bs2fksyWSCfXv2MDg4gGVZaLSxtAihSvgRhMQEnkq9ErHrQBn0pTSVPEZugIm5OpKkU5odJ5vPMDjUg2EpSEKgmTqWrtNqeXT19JN0VGqVGrt27OPw3m08/NADiLBBt9umJzWDawckEykefnQvcVAjn08zMDCEMuVSS5e45H0XsufJe3ntVW+ke7CfUFaJnjha43ruz7sKHw9cX6om9PiMrlP5DSf6GSfzJ0+WYSbEz8d+KTD8agDRk/lSJ9te7NiTjHrCcceP+0vgeqL9YgJXfE6SnAs8P1XzpDnyx23HzXfSMV6OiRO3F7lRj2fGXqmu6/EpF8c/EE4WCTvZgwQ6KQydaNex7cWvQxzHL6Lj+nw7Jn9zzCE/1Zgnjn/s56lqKl5tFvF07KVas/9r530lD7VTAejjr9upgjfHA9jjTZKkTrreKdZzDLhqK67jmNzRsTb3iqKyfHSEu+64k7mZRXbsPsKWLdt4+OHHufTSjXz84x/nvHPXkbAiCqtvQetZQ7T7TrwwxLIU0kmLOJCxrYhCdxpL66VaaTAwkOXHP36A3p4k87Nz6JKPIECIkIXpI1TqHo7tUq8vUq8GzFfnqVeb1Osl9h+e5syzV5NI5mhHEVOTU3T3drNm7VrafotU1qGna5RYNLFsk2yhC89royk6qqShmxrNdpMnHtvC6lWrIA6QJbAci1AKUGUQUcTk7CS7d+ynt7cHWVHQDQMpjvnRD++lWinjOAb7Do5z+WsvRVUFkiyh6WrHCfOqNJsNdM0g8EOKxQVUyaTd9nj44SeYmSmyoVBCWXEj/+2v72PZ8l6uuOwqJJFky5ZNdGVlHC0FocrmTZu5/sbXk87Y6IbN01u2QgQr1i2njcqRyTlSToKU64ASUi7WGBs/TDqdwvOaTM4cIWHkiNo+ePdTK7TJX3wrYQgHDm0ikTAI/ABJaIShxcFDe8nl06iKQwjIscfrrr+GRCbD/Owkhu4SBTqf/MRneMubb+X1v/KrhETs2vkEK5aNMjzQhxfUefxnT7B6zQaEqtAMKizOFMnldIhDapUmsmyConDd9dchohRvuPkG/LDC/fc+xvlnnY3vRXz603/O2972ZtyESxAGnHHGuZQrDX73dz7Iw/dvIpfO87MnHuWeH/2Ar37pi7znLb9OqitBKpXh3e9+L7/2zrcTIVMsl/jEJ/+MjRtvoGekixUrlvM777+N2z7wGwwPL8HSUvT09ZAfHCWSdDL5LjTdJAwFhVw/ilBoNys4dpZGrcHiYolEKoWTzRGiMzc7h+t0U6rN0T/UTalSx05madUF5124EtfowknoKIpLIm2jWzGuY5FPWNSLNUxLZ3Gh2ql1VGUkxSGMQtq1Ktdfu5F8YZSJmSmuvGID9eI8upult78LULAMgyBsYlkqluniR21+74PvIQoN4rGtiFhQSaYwLZc4TlKvzdE71M3osrVccvHF/P7vfxhFqXDbu97JxOw05160HD8wWFhs8s93/29+7V1vwrAy7Nk3g6Ip/D9f/QqXXXIxppJEBBKZVA7LSYCRp1yScZMWYagRRB66iGm3F6lVLGTVp1UrYSZ60Z58FqKI+PJzKZYrqJHEs1u+Q/LwUhTNgEtzVJoqETohCm7SRtN0Hn/8Kbp7ejFMQblSZqCvH8tNo2k2sYDzLjqL3kI3sqJimBa6bSNEmwP7qjgpwdTMJF29y6hUirSCFn2ZPh58+BFGXjNI/J0E/GqD1qFOcyVJgKJrHSkcVQVZENPRfQ7DCGJBtVYhmXQwDANVMzDdJJquE7abCEVF1w2iyEfXLIIwIvQVVF3Ha5TRTBs/6sgf+W2Pxfk5bEtHVUMcw6HVqmDoJl5DYmZxijCSKBZrmJaN3/Yo7a/hFHOI3SpIUHrTIXKXJJhv1DlvwxUosU5xbpZvPfQDXtt4HfKbDmFUHSwrw9RUkd27DjI7c4QNG1bQ1etQ6F9O4IdkMym8FixdupygVcbzfYRkYTgaSbeLxWKZXFcKQoN2q83UxBjZTJLFuZD161egqDEP/uRJhpcuYeWqJfT1DGDaKkHosXR0NbVqC12pIcsKimqjGCqSMBAhNOtFtu/YzvDgKH6skisUqNcWcdwEkhQTxGA6aTTDJGnaiEgQKSGunUGWQ1TDQTTbxHKZVquOFFnEooVh+GhmAjXyePTJA/hShoGBPLV6nXwuRTJpU/c6wchYkmmh0ogMmrUmC2UHJbGWzMAGGh6sWL+eQiGDaSfp7y1gmypuqhfdUJAUj1pZouWpmHqdhfkGi/M72P74FjZtPcCmzZuRwhkKbpn+gsxIr0EupaNqGkL4JB2F7qTJvt1T7Nw3Q8/gKKlSmla6yu5wFzu37aC8OEZ25AwymRzaUBvWRM/TcT1WbSk6zkCnjO4U6b8n+j8vJpn4Yv7GSY+NxUuOc6r3j/n5LxjyJfy1U33u+PeO+dWn6hnyfJDbKUKUpGNljMfPLU678/Aviv2CAtdTt7p+qYjN6di/Z2Tklc51DGQck6E4sR34i9VOPjfnC7RXXxrAny5whRemrgLPNV15JfZKHmyvdLx/7dj/Fut4OZ85dt1fze/A84HrC+8VVVHwmy2efeYZwjBE0xWGh/v59re+S6uucv7ZF/PJT3wW1yni5gu4fWcS7/kRXnI5YVynp3eQet1DxILJ6a2USrO06iG1Wo0tW56kvy/P9Phhdm5/Fq/VpFWrUSktUiuXCIMaAsEFF17KkbFJao0qG6++FiFrgMDUNSxTw7YsoijuOHpBgKZphJGPqpm02i10TUGWZEqlEjt372LDhjNZtmw5QdBAVRRmZqaQZAlF1agUOw6jaTkU8jlUVeGb3/w2+XwXhm6QSuZYuXJFJ5Wzp5sw9NF1Dd/3EMiUS1UMzcAwHeJYZmpqmnw+y+LcPLZlsnL1ajLROFpURr3ms9xw3Y3oCYdNmzfT25VlZLgLRXJ58okt3HvvvQRhm6UrhxFSTBCELF++jMHeHKocoysGTiLF97/zXSzToLu/G0O3iOMI13XxfY9yscbG117LLbe8EbP2CG0pwFnzKwRhC9dJM3Z4EkmSMS2dRqnGyGAPP/3JvfQUsqiGhd9qoOo6SCq6YeKHIaVqia7ePH/71/+Tz/3N50imHDZuvALDtAijmEw2R39fho/+949ywXkX0GzUGRkepVorUq83+Oxf/TUXnH0Wlq6iStCO5tF1lft//AiqKrFs+XL8MMCybWzHoVJuIssy1UqDH/3oPhPNajAAACAASURBVFavW0ahK0826/KRD36Yf/jy3zOyZJglK1eyc882enr6uelX3wAiIAh8ojBizdq1ZLM5skmb+YUS77rtnfQP9FCvt5AVCMIWsmIgiZjQa3c606oC32sf7RRaIQojqpUSA/0DTE3M4CYcJFkjYVsAnbRpP8I0EsiKhq7pLBbH8FoeqqaiKCaSApIEtWKZG3/ljXzv7nu55U03sXLVOm6++f9l773jrCqv/f/37qeX6cwMM8zQEZCmAoJBRWyxYEPFWFKuJkbUmJvcGBNjN4nGmKsm1ohdYxcQVERBkKYgTfoM09uZOf2c3X9/DBCcgGK+uSW/m/V67XmdOWc/de/nedZan1Uuwuv3IuAiCwKKqvC7e+8lr5vMOPVEXDuD6Bq4tpdYezvz33iDwUNHoqoqsZ72vcKAFwEQRQea1uO4FlL/SciKD1PXwXHwen1oHo3vX3lVLxooW2Qzea686kece9432bG9kfnz5/Hv1/8Mw9SRZIXHH3+SbDZJUWGEkuJC/IEM6WwnkgqGlcNOJxBsiPU0E40W4fV6yKcy+Pwq4VB/bDdLNBxE04JIy9cgCcCxIwn5vSSTGSqrivB8PgBJ9tBetpP5b7zF0WNHY1sZcnovb1BRWdqr4BYcAp4I//bdqznx5BPI5/NomoYoiph5o9dP0nVAFMhl0/SvKkeU8hRE+uNVHRTRZfeOnZT1r6KqZgCrt66gqqAKNnnxFCmYhonj2KQzGXw+334fNklSwZURUHBsg1AoiGHq6LqB6zjISq9PqONYZLJ5/L4QyVQPPm8Y087jOA6KIiIIIrphIssi+VwaUew1ufX5/WSyWWLdjZimQzAUQpBMwsEQsiTSsHMPdR80Upsbhl8P8/z6PzNyTjHCSSlm/9vFfLZhHaecdionn3Qaby94gwtmncXcJ//CrBPPw2+UEgoVI8kaS5cuZdq0qYw+cig+nw/N0xuNPeD3o6oqr7z6CkeOHk1LWyvBUAAcAa9XIp/ViUQKUDUNxzYRBJd+/fqRzeUIhTUymSRer0ZhUQhvQMV28ggCeDygKCpvvD6fIUOGkk534/OHyWR0EATi8RRPzX2S4cOHUztwMMlkO16fjWHECfr95A0LryIhiS6uZWCaApaVQRBzWKZBPp0lm02geXy0NjUQDBWiagHiPd1EgjL5dDuCINHd3k7NkBrmLVzOmDGDiRaVo6oaoXAEnz/Iuk8/Y0BNLW3tXdTWDMMhQHF5DTvrd1BSFiYaKUCSBXL5JDt31WNbOh5NwXHAtqVes2JcHDfJx8tXU7drD5+v38a4o3zIlkltZZDxI8rwemUKCyOosogs9+YP9/m8pFJpPB4fBcUyrbEe0mmTWmUodmmeS287H40MsgwXfGcOriAi+23cwMEBjP1nuPhFK63DtVr7e3iJPnccdl0Hq/vgKO7BszgcSPsAlYON8+sCJ31R5b6C698LUP3/lf5PC64HmjccCmE9WAqQQyFO/wgB5VBmt3BwU9mv2+6+hWHbNoZh7D38en1F95m0flX5/Z/p4yR/GD7DhyO49vbni/3t+/nLaB9S6Louzz77LBMnTubpp5/hhz+8uo+W69Dmxof6/mBlvgpx72u6/GVlv4oOvP9gprxfdfXt46Hm9lBIrN8f5M4772LKlClUV1f/zXj7ztOBJJUegVw9GcETpi8677gugigyaOgQEEUmHz2RyspKVqxYiSQqlJcW8tu5L7JsUz1mxmbiiOEs/vhTAsOmUdS6mIvu38AND3+E1+dnQNgil3IoiPqx7RjdsRTHHz+Zyn5ByosKiQS96NkkLc2tFERDdLa1U1lZRDoVp6CghEzOYuKUY3AcgcefeIZjjpmAiINpmYiixOZNW1iy5AOOHDcG186jKt7eZPeCg+vYCAikUhlqBw7GtHSy2Qxen4RhWPi9vX5qCBJ+n59P135KcWkZiUQXPq+fyooqLAu2fr51byoLm1h3F+FoeG8AqN7LRcCj+hB6czyAK9LY0EgkEqajrZXyigr07jq0ng0IJ9/P9TfexuwrZtPS0s6ca76PJKVRRJFNG5q54ooreOTRBxg1agQWJnV1Dfj9AQTBYdn78xk4YBCPPvQIxRX9qSjtR3m/MnpScSZOOY477v4NxUVFDBk8ED1tcN655zFk2EDE5g9RNS8fNSpomoKqhOhXVsGKj5fj9ck4pkk43NtGwK/SEUuya/tWXEHAGwhhOS5evwdZFQhH/Rw76VimTp3C8SdMBkHk861bsR2HgsIigkGbb552JqooU79zJwWlxXg8KtmMwTeOm07QJ7B162aKCiOIWpK21h5GjZhIOKqhal527trJ0GFD2bV7F0889jS5fIba2oE8/PCjnHXeGRQU+iko8jNxzCQam/dQVBqloLSU6upKumMJBERUTUQUXUKhEPF4gmi0kDt+9StOO+0MtKCPfEanp6eHYMgD2ICX3Tu2U1ZaTHtrIz3JGJFwiGwmgSRbaKrKnvp6gv4QkXCElrZGEES2btqA7Ri9QWwUb68fr6RiWxYuKaLhKDk9jyTJIEiIooxkw7e/8z1mXfpdYm3NTDhqEo88+hhnnX0momvwpz89QXFJCTPPO5vBgwYhKqCINvFYB3fd9QAvPP8CP/rRDwmEi5FkAVWVqa9vxOcLoUgKqWQCuW0jlm2yeGueI4aMpKlxF3saOygpitDa1IDq1Xj8sWcYMWww69et5dhjT8EXEBEFjXHjRpJNWcy59hpmXXQBRx8znhFHDGPEiKEoskMu2YWDh3ReJOSNsu2z9ymKViBrApIqk0zkKY2WU1e/E9OSePOtl5k4+Vh2fL6Noi07yeXyyNPGous5fP4wikfF2hWiraeVgScX8POf/geXXnIhdTu3EI32Q8BGllwcO4du2kRDRRw35QT8YS/ZbJZIJIKiKHgUDUEUsR0HQRSRBQnbzbBm7XIG9B/Nls0rUBWZAdW1vL5wIYOHDKEkWoBaY2PPD8LYHHJewTR1vH4/hmGgaRqO7aDn4ogi5DJZ4j3deH3aXh5FINHdRTgSQVYUuru68HiDpJJpwuEAes5C9fRaZIgiuK7U61JgGUiKjMcTwnFdEAQEUaQgEsLnLcVxZFKZbqykjdoQprizmuKhYZrGfkbkQpHh5wyl295FcWkZQ4aOYOZ5M/EqCg17dvHd715GOhfnsktnYpgWLAuzqeszOjs7mTr1OHx+CdtOo2oBXFdBcC16c85KDB8+lGw2TTASxR/wIAkSej6Ji4jm8WGaDpoKruMiCDKqopDXs2zZvJOS4koCAS+uI5DLZgl4InR0dODz++lXVoksCxQWl5LPm7S2dtLa0kphNMqAmhoqKvqTz+eRXInu7iaKooXksxKqJtPd2YYmC+QyKVzJwtINAoEImVQ3Ab8fQbDxeELk9RQ9CYuCglJ0I4trpgloDoZhEfJ5EQQHVZEoLqmmtaMb3bDI5nR8Xi8F4SjeYIieeAZJ9BAoKkD1+KiuGoied0j25PH5g3g9GkUlRYi4CK6D1+th7dpVVFVW8tKzr7N102Y62loYUKUwZmQZW9a1MGlSDUVRBUHII+AQCvqwbRPTMbHN3hR0vWeIjUfxsmFzN0eOGUNhpgyrxOBbt13E0nffQJFdZpx7Ka4gIuHgil/kD/+GZ/4KwXQfj9E3UOSBrklfFgn4QGHwwLr+hg/tQ32DTx6s7b4Wh4fqx8H4wH1XX1ewL+On9tHB4okcON5evlw+5Nj+r9LXEVz/JfL/D9C+ZM//yPoAcrkchmHsF2Dz+TyGYRyy3NdN6Hw49NRTT3PbrXfw4YdL/6H17ttEDkYHzufhjOcfMe5/5DM8sC//6Hfj76XD8QcHkCJVSJGqQ9cjgCcU4ORzzqS+qZl58xfS1h5n1JiJaJqCvXeswcIyAtFiRFReXfApr+4qQHR6393urja8/iBllcVYVg6fz49IClG0MfMJ2mItBEIKI0cP4eipE6kYPJq69gzprIUsOfR07aK6ph+Kx0MgHObbl52PZWdxJYmAN8q7ixYzatQRzJ59AYKh09a8jXw6jwSIgoqed3Adiddfm0cymaFudyOS6ANXpTuWoq01zsYN28jmUliWzugxI1FVidLSct566y26Yp0UFEYwDJ2i4iCy4lA9oBJJlBAEGVnygCv1mhE6Bo6rI0g6mVyC1tZWRFFlwJDBrFn6Dsbu90mMuJE/PPrmXp9++Gjxh6Q6OwgXRWnqtnj+xT+zcvU7ZLLdZLNZNDVIVeURXHvNfxDrSjDxuNOxhQCPP/4oQ4aM4J577sV1BVqa2/cnaVdVhVAohE9zGDS4P5oviLZFRt1sMWnSJEqKK0gm42QyGaZO+QaF0XK84SC26KV60AjUoI/S0lLGjBnzVwsQJwNGHtEUifqKKS0vYdToYdh6lkQqw8DBQyksLgVRRheCZGywJYFxE8aQTicxDYtgIMp7i5dy4eVXcsb5lxItH0hNzTTmXPczFrzzMgWRCiRFYcTIkciqyphx47j5Vzdx5JhhrPlkKU/MvZ+87mA6OslUitFTJ+Ar9DNo2EDyqTgdHR388pabGX7kcMqra6isGcr4Yybzx0f+RN2e3Xzn6h/Q3NpOLpbB1oOUldQgCirZjE06kaZ/RSV33nUX58y6hGMmnURpxSCOPf40bvzFb1i1ci0DqisRhBwIKfpXlJFLJSiMRohE/WzdugWPV0BQunFdlwXzFrNzWxv9qkdQVFZDpKiYO+68ExwvYsCPoFr4tCy1g/px/IkTefSxP+DxuchCnu9f+QPK+lWTt0za2jpoa+1GEgLoOZmb77idm269jaKKIgQpRzzRiUcL8+3L5mDZBpMnnsj553yPx99YxSvL6zh60nBWr17K9s3NjBk7ku6uGEE1wIaNn/Dmm2+iqj5GjhrBtu1bCIU9dMYaKC71Y9POvffd2fs+aRKqJqBq0N7RguxAJFKA6JHJ5FuJVNXiiZYhICI5GcKhYs495xKKi8pxMbniiivoSSQpKYqiT6lFmTkdw1UQ1ACS4qW9x8I806Bt3BpsQeKRx58ka1iEokXs2PEZiizw+3vvx6OEkCUvXd3N2PSg6zqlpaXEYrH9+96BjGc80UHD7jxlpTUgpglGK3AVL6JXpLqojBlTpyEqMobPJntBK+5zIYRSG03TkMReRZZt2UiyhJ43cW2JzRu3UVBQgK7rKIrS6xspQToRxzJNQuFwb9ofv4fung5EyUWWVaR9EUoVBVyXzvZu8hmJ//z9fRi5LE319biWSTKVx7SztHW2EDLL0T7rR1bLYM9pxX+dTM30Wjbu2MFREyYyferJJDpzNDR0YLkennr8McaOHkTe6EZRZTZ8uo5l7cvojvcw6pRRDB1WS2NjI6Io4lGiGIaBIDvk0ybLli6jo7Mdr1fD7/fu9TN3kT0+lECYYChKXjcRRMhlHZ788/O8/toCLMtAlryMn3AEqmYjuF5cx0SVJbq6uqgsL8e1VaLRMLKqs/aTdSiqwrBhtQwfNhg9HcOrKjz5xBN0NjdhCQLhUCWWraIFfdimiSjLWIKMJ1SIovpxLIu67VvJGzKdsRRIGs2tPfgCYfrXluEIFmVlA8jkBUxXwROIkLfAsQxGjyjn7UULaarbhUeR8Xt9KCLEWhvp6W5j1OghiIKBmTORcEgnu7CNLKaVxrIM1q/bgJ4z6GrvQZY8PP30XPR0F08//ggRX4oTppYyc8YARlZ7KStQmPqNWgw9geDo2I6ELLpk0ykc28HvCyIrVq9fsONiWkZvAEMZVq5eh6KqeHw+Wts6yOZMotEo6XQaAOMDD9YS5Qvn9eG4qn0Vf3JgHfvOk38UHdj24fIof287+4Tjf2Qb+4T5f9H/G/2Tz6CDi4nj6sABGhFXBFfcG3Ja2v//vutAzcyhfCi/TJvydRG1L0P6/hEv8T6h7kBUEv56CB9qbAcdi+CA4CCIbu/1FcjvF9K4OAJPzX2W22+/k6UffrR/k+kbGOhQKHPf7w6Ffv9Nlw/Qjtm2/YVxHXKcfehAhuVwqO8cHnh9XTpQE9h3Mz5Y/V9lFdBX83ioZ3goLei+zwcz6+7b/hf60ned0WvwoygKAwYM4IZbbuSJF5/ll7ffyqbNm8laIdy951pbUwvr1m7B5ylgSNUAxp10PiWVgxhYrFEc1vCFQyD1asUb6lOMGDoMI5/EEkT6ldfgDQYxLBEsE1XKMHRQAflcnvb2BHrG4pM1S9A0D4aro4WiSJofx3XJ5TIYRgbHEXFcAVSNsC/Aiy++SjbXhSCIyKqIbhnMuuhbrFmxEicvkEmkePWFN4lEC6irq0N0XPxahHlvLSKXM0nGk4iuwUnTT8DQdWRZZsz40aiaTN3uRpYsXsGyJctwXYdsOgWGhWCDYVlIkoQoesjGc/g9fkzLwcokOCLcySbldDa3BXl7/gdEQhoDawdwwUUXUNfQSE43KCnzcdsdv0PzRxEUjYaWdm696SZy6U4e+uP9lJX1o2FXPYZosPKTNbz8zINceMFZrFy9iqqqkv1rS5ZUuuMJyquGYmsasZ4uPK3g79CQZIGVq5dQWFqG6pFIxrsRTC/RogiOmKcn2YOLD0NPkTUMeuJJJNdBkFTyhogrSiCBQJZMrgtXdpFlEVEEzSMgSiaCEwbBQvOI5HM2Xn+QnO7yzAtPc9l3Lmbe/LdpbWvD6/HQ3dPN24sWMfuyb/Pr391FV2MLPZ1dSJKE5dgg2QwbMZxjp0ylrq6Fh+65B9l28PkC4NiMGTMaSZFp6ogx9qiJzH3mKWLdMSzLRtNU6urrefLppzl+xgmsWrGEirICli1bRlvLLlqaGhCQ0bwajU07OHrKsdx2129Zv2EzhmGiaRqNTc3MffYlzpl9BUuWrSKb12nraMXKJiksK6GksgpRUjly7BgMU0AWS/B6Qsw4dQZ3/Pp+4on4/iX2zNzn0HWBfKYbw3TBVXAIEQqF0LM92OkcrhDBEbvIZppxsjJ62qHEX4pj5aioCZLOdCKIeVxHRkDG5w3S1NTCAw88QMPnO3hu7oNUVga58Od/ZLdVxkknnIs/VIwtmyRSLXiCfuJ6nsEDxzD+qCGkUj1cdP7VPPzAQ2hEGTvqCBQ0KisriYYKSCcbkSxoa2jAykJ15WDkYAF6TifgSOzatot+5UfgSjkQVXC86PkuHnv2D0geHwVFUcCHIgUIFhWSP2oCuWE1iK66Nz+oSDzWhMfbzogxYxAch/ZUHPwKgaiXUWOOAcXl/IsvIKHvQRJkikqLqKgeQE7y0t3ZQjzvsGPHLha9/TE3/vx+LFOkffcGNEEiFLKR5RDIKq6jsH5DHaauMnjECN54+3V0I8ttN9/D4q2rEb6bxHwugNutYhs2pmFiGDqGkQbHBUlmR91WZEUkGAgRj/XQ3lxPqLQCyePba3YfwrJtNK9MMFiAP+jBdkVyloUrimDnwHHx+EQgzWWXXoJp5okWBNCNBKFoAXk9R2mmAnetB/XMBPYlnUQHK6xa8irJeCPV1f15+tnnuO+BZ3Ekm5lnH4+GwcyLTuVnN9+HT4vg0QOs+WQrn6xfSuQEF3GjiN/nw3Vcujq6ESQvkuglm8zx9juLGDlsBDu27kCQVGSPn86WejBh7fL3ycfayKZS+FQvOCay5mHUkeP5xvGTEAUBwTaxTRvXFflg6VLyeh5JUWnuaKQnlUP2uLiCg6pEGTV6DLJsk4jHMAyDYGk5896az9Rjx1A9bACyZCCQxTHjJGJ16Jku/OFCFC2CYebIJnrw+f0EowFC/iCa14eiRigpq0Cw8ujJbhwzSzrbRbi4nHwuQC6ZQPHIqAEV285y8sRyhlW5dLfsINmTo621iYraWnyFIVI9OhnTpDsWQxAcfJ4o3gAUFQVY89GH1FYWsGj+Yj5Y/D7zXn6FkQP8jB3m5aSpFRw7sR8hn42pW9hI2IKBIOZQRAlRVhDpPQMdHBw3h2OZCKIMyIiYBGUvuZxJdT8fjmvgODaupRPy+anqN4CutEI04MURXYzNCvZm+YvnudDLVbvCF73G+vIUB/ILB+MVviwmyYHUVzD8awTeg7s09UVBD6S+PHBfgOJQgSkP1a+/V2jdP1d75/Cvc9lrXfFPL3b9L6D/0zP4X4E4/k/QvkW6zyx437j+kdqiA+v8Z5mzAzfPr+rz1x3T/xZk9H+a9M9eQP/shcO6V9AU+tVWc9q5Z/Ps6y9z1uyzCEbCAFiSQlMiw7wPl+MrreDV1z7ByQdZ8uY7/OjcKfhbVpHtTtHR3Ew45KU9kSWesVG8YWTFJW9kcWUXf0GYbCrL1MmTCYf8DBlaTX1jAwWhIjatWcvKxR+Tz2QRkMhm8siyyOmnn4JlGbS3d+DgYDsG37r0QhzXRnR78yN+9uknJOMxpp10PK4s4EpQUlmKLMsUFRXS2dVFPpdlwvjxeDQPsqSSy6cJhjyMGDkEBJNgMEx7excTJkygf//+TJ06BQEZx4Z4uhVBMvBqftqak+QyWbZu30ZLazOJrhak+kVox1xFxbEXYaPz/rJF3HnHrXz0wfvc/POfM3DIUDD97NnVxTfPPInGxj10dXWxes1Krrv+hxQUhPhw6WJE0aV/VRl7du1m+9Y9JBI9bNq0gbFjx5LPKMhyrwmTrhtEI0UgyaiigKKYGMEq0lp/REFl8MDRrFi0kRf+PA9F82JrMRIJmWxWxMzrGOlu8jkdny/A4MFDyecMVLk3eqhXE1BkC0lSKCws7s3xqGkoioLrunR3dyNJJpKwV8mlulh6hm2fr+NHN/wY27Y59eRTWbF0Odu3bOeB+x7kpOnTAfjtvfeydNXHdHR0gOPQ1tJKOh2ntbUZURIYMrSWS751Ad3dPbz4wiv0xNtxMchke7j4WxcRTySIRiI88qcH6GzpoKWhnk+Wf8iME08km81y9fU/paGphW+eeToDB1azdOn7JJI96HmDiy65jLq6eqLRCH+479c0NTXQ1NDIxrWrOeWkE8hmc3znqh/yySfrqSivZk9TM5g2ei5PKpUinU5jmiY+nw/LSbH0o/d4e+ECjprwVxeMU06ZgWFm8HpCKIoEgo7tmEiSgKqq5LIm69evx6MFCQaiSJLEzAtO47U3X8TBpKWljVCwhKr+Q+jsSGGaJrIiUVpazKWXXoqiKKxavZo/PfoIuVyOM848jddff41777mfe+/5T4xsgOOmnEx1dTXRaJhbb70dRVF4/oW5PPvSH9HtHgxLx3FkBEnE6/ejeXzIikZxRX8ETcMSJEQ1TNYEW5IoLq/Csiy2b99OMBjsNaUTVfy+EKbpIoka61Z/zGMP/QkMC8VRsPb6otfX1/P+u+uorjgawerHdT+8jUwmS0lhAR5JweuJoHpsVFWlf+UQouH+SLLDqpVr6GhPUOE1KFLyFAdUAh6V42dMQhRymLpBtKCSZFLHsWUa9zSRTWUJqCq/+Nl/YGYyjB89hOJwgLBX4/LZ53PvfXcjHWGTu3Y3bpuEu1FFykt4vV5yOZ28biDgMHPmmbS3N2M7NoFIAUXl1YgoxLq6AQfbyWPls9iWhdcfQLcFkj1dKAJIgksy2QOCQ2FhEbYFkqYRihYRipQSLagincrgT0Vgpxf3qgbWeT/A51VJJpMMGzUcwxIoKIiwaNFrCILAnGt+zL33PEQmbRJrz3LTjXfiuCI9yU7Gj53CeefO5tcLbkbeEUaenuLdd9/BdQVy+TSmpePxKcw850zCEZUJ40fy8fKlYJkUlfUjk88z4ZhjEZUAsuolk0/w/Asvs2njBny+XgsYVBXdyZFI95BM93DMpCPxeaM4lsioocPwqwKSraFJAm3N25AVDUGQwd1n0q0w+5JLGTCgllRPAseyMA0DRZJRVRXN70UVwcik6GxpxnFNkAxk1YctifiCXjwa5DMtpLM5NI8PVVERRZFQIIAbKEEJlJNLZ9mwrgdJ8OIKOTSvjWXHeP21p3jzjdfIJ5owUxZtLW30719BVXUNHe0GeauVF555m9dfXUisO8naNeswkzs58bh+nHh8KeNGl6NJDuGAB0VwcAwdj+YlnzXwaSFcW8ayLQxDRxAFHExEwYfg9qL2qtwbERlZJm1mqN/dQllRGQGvH3FvDtSm1nrWb/6Utj3bScXace2vh1YeKBQeLn2Z0Pr38k8H8p+HAhu+ToDT/24+7p+Jf/7fTP/0M/j3BvWBLzcxPRR61hex/Lp9PVSZg/kfHm79+8rJsrxfWBVFEUVR9guz/68C7IH92beB7buU4dNQhk/7GySu75we6Pj+VfPYV+N2OGM4GPLYt77D0Rwejqaw77z8PWht3zq+7Ld914Eo9uGgsV/W532fv4wONJfpqwRwXRer4WPMPR8fdHyO42BZ1l+VKS6YloWrykhBH9O/+U0KS0sAmHjc8fzgp79g7qvzOPtb3+End/6MJ1+dy49v/RV3Lc7ww5ctjFSawUUSlUfNoGbwsVTWHMvSj3bgSv0pLB1NIFiLopZi6gbZbBbHdRFVhZFjhtPSUEckkKG6IkIk6EWRZUKhIB6vQlt7b/qDwoJiQERUJFzRRRBlstk0ritw1FHHUFJaiG4aDB42CF9Io6A4REd7B5rWm5tUFKAgWkDjniZWfbwaVfNhO3u1ypJAd3cX27buIJVKMnhIFQ0NdXz22QY0TSMaGUg6DY5r4PPruKbAxMmTOenkEygRW+lImDBoKsX9Ipx70flIiojjePAHoqxYtQJV8bFh7RYe+8+HeP7Fx4lEItTWDuGSSy7E7w/y9tuLOGn6qaxYsRLdNBjUfwB/nvskM6bPxHUlfD4fnR1JbMva+2xBVXy0dLSTSSTJxJN4vF58Ph/tHc1EI8U885fbuOSy0/nzE88Ra5fIpxKMGTGCgkgh7Z1xFEXjl7/8Fbbl8sEHS8mmDHJpg3h3D45lYluwft1GEvE0juOQTqdpb28nGo0iODmwZRQliKz58WgBfnrjTdi2TW1NDSdPn0H/yv5sy9pmDAAAIABJREFU2bKFb54+k4cffJjpJ54AwM233cqTc5/l5ptu5clH5+LzRrBMgVUrPyURz7Hy47Xs2NbIpZddTElJCYqi8MijT7K7rg6Ab83+FmedcWav5YmgUN6vjGeeeJja2lqyuRy33HU7Hd1tJFIdnHfBWXi9Hl78y8vsaWgA4A/33cPMs8/A71FoamhA9fp47JE/Ujugmmwux+NPPY9jaRQW9qO1oY50IkkgEEDfi8w7jsMHS1YwZ851qKrKmWectX9tlZYVEQyruK6Lruuk02lcDFxsWlrasCyXSCTC7p3tfPD+Kjo7Yjz3wnxmnHous86/ljNOuxbbdrjnnnvZtGkzTc17sCwD2zFYvmIpiz9YwkmnnYLm8VAckqgtifKDH1zNb35zN5deejHLli1j1eqPyespHNdgwYIFvPnmArx+l5rBVeTNPF5/EFHx0NEVx0GmrbMLw3aQJAHEHKaVR5F9pNNJHDePJPWaK9bW1uI4DrFYDJ/fi+NYJJNx/vTwQ4wfP4Y5c+bw+ZYddL+3CmXjTpqamigsLOToydXoVifOEwoPTvojDjLprg62b9qKZXnJ5/O4joRjSTQ2dGDbNuPGjUMQBD766CO2bduGoihUV1cjewXuvvsmvCooHh8FZaUEI0GOnjCarRs/IRwJsnDhfJpbGlm1+iMMw0JV/ASCXuYveLk3AntUQrwujjhMx/rIg/W5jFIgUxguxcinCXg1ysL9yXYYJFt1jHqJzHqdwrZ+WMVp5KyCa/amzLAtF1yBcCiIIqvYZq/7hCj2Cm7BYBjHtqnbVE/35jS5teDZUgAbA5gX1dEs7WLs2Enk4zaOKSNqYU459ZuYhsGPr5tDdU0Rc+bM4do5P2bVqlXcetONTDxqMpu3bCVUEuTthfMoLS3m+tuvQ6jUMd4KcOWV3yMeT+I4NpIEtm0iSiB7NJBFjj7qaFzHQRA1/KEADg7BUISWpjoUyeGyb13IqJGDGTNmBLLo4NgWrqvh9xbh10IoArgSLFr8AY7iQfL72Nm4lZ50ksrqkTzz54dJxbtoa27EpzoY6e3YVgum2YFjxsnn8jTU7yGdTpFJpbHNPPlUO0amg6APzHQGyQHXEkmkusFxScQThHwewoWldHT24AKpZIpkMk2ooJD2mIASLGfQiH5YdgpN86IYcaoiOueeUM3U0QWYqS18unQe+Z7PqNu0jA/eeY2ezpW89dxLnD6jlG+M83HK5ChHDZU4e8YYigMWXskgnehBVQUk0UFRZDRVwR8w8QVscvluPJ5eV1NNU9E0lZyexUWkrb0Lj9+LY2u0tUNjk0E0XMLgIaV4lDjhkIWLi+M6iLLEY0++xNjaMB+/Nw8V8aA5OA7GQ/T18/wyvqLv7335kr58Tt/29gmjgiAc1Mx43+/7gJoD6cA6D8ec+cuyJXwdXv1wrBIPHP9/lXnz/yX6pxdc/0W9tG8hq6r6heu/I+S2XDmS595fh9frZ9myZQDcccedaKofTe1lOj1agD179vxN2fXr13PllVcxYsRICgqKKCoq4eijj+FXv7qFrq6uv7tP+Xyehx56iBkzTqZ//yrC4SgDBtRw/vmzeOedd/bf11e49vuD+P1Bli5dSiqV4pZbbmXs2HEUFBRRWVnFOeecx+rVa76y/ffeW8xll13OsGEjKCwsprKyiqOPnsgNN/yYjz/++KAbq23bPPPMs5x55tkMGFBLJFJAdXUNZ511Nn/5y8tf2PQPpOHDj8DvD/L008+QSqX45S9v5sgjx1JYWExVVTWzZl3ImjV/2+eD9eGvYx5PUVEJVVUDOPfc81i9evUhNYU7WxLcd9/vOf30Mxg5cjQFBUWUlvbj2MnHccftd9HV1es/JjsguiAhIIkiEir7AjrZjo0jOJiOiSu6eMJFnHPR5bz09hK0UAnf+/6V/GhuI3XBExF2vofWvAjBEyRaPoCf/Xk5R135NFXn/yeDLnqAWfd+zDV/XManzRYl5TV0xywUMUIilaRm8BDSyRiOYwI2ruvg9ao88sZKSk//OSPOux1RVBAECa83iOYPkM2bGDZs3bGT5oZGxs2+g+ozb+HNlfXU76mnubmFsrIyHNti/foNPPP2Kn77xgaGz/ot5afdwtDz7uT8n/6Z99fVMWXqsYTCPvJ6ipLSKOPGjUWUXEwhxYvvr+GcnzzOhO8+Rs35tzFs1i3MuPZP/Nvv3+Mj7Vx0XScQDLF+wzYE0cOc628gVBBl7rPP4rqQSsQ44/Tj0I0kn3++mRUrVrBq9UpmX/4dbr7zDqoHVnHJFbM5deZZjD56HEdOOIKAvwwjL7B7925WrlyBKPU+42w2x7PPvoBpG2iKh2efegXHkZAkkbaOJq65/mrWbKyjZEAtd957B+ddeCq/u+fnfPThW6geDV+4nFxO59d3/5bt23cyaNBgmuu7GH/kRDIJnXzaRJZljjzySILBIIqi4PV66devHy0tLbz+l1fZub2ZBx96klzeZk9zB2vWrgPgumt/zBVXXIHf72fo0KF899tX094W54br/x2ApqZGps+YwU9+8lMun30pM8++GD0Pk46ZhiT4mXn2hYwbdxSWk8IyRXAVli5bCUAoGOYXP78ZTfMiSQKODR3tXTz//LNcdeV3AZi3YAE2DqWlheRyGWRZZOHC3j2lpmYAY48cRVFREW2t9ZT3K0AQHXxhL5defDEAC99dTHt7F8FwhIrSUgqjBfj9fiorK9E0DdM0+d73rqapuYnCgmKu3NsuQC+A4qCo4PH4CAaKEPd+N3TocFxH4Le/vRc9b/HgA39C0zT61wYR1R6ef/lRlq9+H8PIMWPGiQiCQ1lZCa5rI8syjY172Lz1894+ODb6mufpXPIoLc0dIOqcOfNEph4/is7YbkTJRBTh5BmnMmvWLFLpGK7jp6CgnHQmj+04hCJRHFyqqmsQRBk9Hadu+0YUDKxchoAmYesJikL+/eeXKIpUVVWRzsRA1KmqLuXi2ediijYNbS0MHD6cys178C5ZSygUYtCgQWiaiiwp5PMGhq6zbPlHFEUi+FUf8USefM4hnzd63WCwUWQfLjbJVCdDJ51C9ehjMSQvuu3ioNK4p45sppusmUb2SAiiheNkGDFiAIImkcxlGDRiCIGCQnrSedpiGQrLypGV3ny6qurjh9deTcfEZuRfZeCoHOqmCOKKEOraYswlfuw1fjytUTo+7mbX5h0kAm0Iw7NIHxRgbVVRV5fCOj9ip4ywW8TaI6PvFGGPH19DP6y1Gsm1Js4yL/LyEDXxYfhclXxtB6lT68n8dDPm4DyfrdvFhvU7adzVzs/+41YkOcQn69dw8cUXM2bUBIpKAuzctZXjjptKa1sjv7//Zt57dz6V1VUUl5Qx6+JTUDWhV6lyeRKhzkvrZ534vSFaW9qQJAVJVDANG1fyI6shLFcgncvT0tiGbRjkcwmMfJLykgCS4xKPNdKT6KCubjtGLkWqqwNNtRDJYelxUvEGkg0rmTZ+AG62AyvTSViWsFItbN+wmG+eOo22xp34VId0ooV0awt2JkM8liSXskkmEgwePJhgIEjQH8DWM9hGClk2cYQcfk8SI9eJ35si5FNxLBfLkHniiZcQRIVoYRHZbJ7iomJ8/jBWqoNopBQlUo4/UIIkyL2+vUoJruQnVOhjyMhafKrOsRNrqK3QqYgIeIU4g/uVcfpJVXhMk6JSP66Qx3FtXCkOko1pywga5Awd3bLQDQtXlNHzBpKg4toyEr7eKNv5HKZpoKpeFM2l/4ACLMvGkWBXQyOBUJBsuo1gMIimyPhUP7blkM2kGT5iNIpWipnuItHVhtg3e0QfOhSg8F+NTv6jfUq/qp2vi4Ae7N5/Wd/999M/cWgrZ6/G5CAvnXB4L9G+BeI6wgH+sHt/3Kch4eD+mIejOTmYL+Khfu8rlHwZEnZg2wf6FuxbVPuE1QORsYO1//fQvnb6aqS8Hi+lpSV0d/dgmiZ+v59AwN9bZu8fSZK/oJ265ZZbueuuu/fX4/P5ME2TjRs3sXHjJubOfYpXX32FMWOO/Fp93LVrF+eccx47d+7cP+5QKER7ewfz5s1j3rx5fO973+X++3//N3O5j9ra2pg8eQq7du3C4/EgiiLd3d0sXLiQxYsX8/LLf+Gkk6b/zXPKZrNceeVVvPrqa/u/CwaDZLNZNm/ezObNm1m+fAUrV674QrmOjk5mzZrFmjVr938XDoeJxWIsXvw+ixe/z8svv8wzzzx9yI02Ho9z3HHfYPv2HaiqisfjIRbrZt68+SxY8DYPPvgAl1126RfKHPhOtLW1MWXKNV8Yc09PDwsXLtrb/l+YPv3EPlpUgQvvWkRj1ytfmOtkMsmGDRvZsGEjzzzzHAsWzGPI0EFfeHdcyWaf7kwQxf3pg11clAN2JtnvY8o5l7PgmxfRsHsHQuFscg2f8ch9N/HbeXU4ex+BR5WQJZH69jT17Wne39DOqdMmMHrSUYTCHup27WD0mCyeUAjHgh07dzBwaA3R4hrOPr6QXz32Ll3xNMs3xZh+VBBJCCMgsmj+QoYMGUZPrAcrVEBTZxxBgHOnjsUr5amorEKQRbriOjc98zGf7Wrd3/eQ30MskeGDT3bwwSc7OPmYofz5FxcjCBo7d+xg5MgA8XiC7/zmNT74ZOcXyumGye7WOLtb4a0Nt/Ptq2/gkT8+xpRJ0+juakDA2nu3QzrXzdHHjkYSoTtpI0lxtm37nGv//Yb9h6qiKHg9XppbmgG4+rrr6PqJw4nTpzGgws/gy8/jgUfvA8CrScyadR5mLo0gSBwzcTLCooXcunYld/7mky+sWcuy2Pz5VjZ/vpWX3nybuY+/iKqEGTjQRyzWzDsLFzF54gxmf/ss4sk4s78zm3dfe45sXkXzSCRSGRTZoKsrTkGkHzfM+QUP/O53aB6V999+jSsuPpv335+3f27OOuN0LEdgT/NmBgyo5Y1XHuGFF//CKWecTjAQIJVO897ihRz/jWloXoXTTvoGW9avY2VyCaedfgpXXfNzHn7097iWTC6dQPGp7NnTCMD4saNoa96F67p4fTJFkRKy+Rzfu/oa5i1YCIBpmrw17w3+7fJvU1DUm/ezoakJgBFDh9KvtBTbsKmoGMKu3VsIBqNITogRRwzZW97itbfe4vs/uBYxrCA6DoIYIpFpwqeVsXzVEjq6GqmsqOS9dz7Atv663nt62nD0DI5XQZBkbFsA0UZ0oqSynfhDHs6b+W1CYS/z3n6BxsYmot4yTpx+JvMXvIHmgVHjj+b7F83i8u98m6C/hJf/8hZHT65h2IiB3PCTazCdLAEhRCadxjJzLHnvbQTbwHJyBANhAr4ykul2RDlLIND7/Esqq0ims6iiii8YQtIE9J4OktkYRj5FQSiMnjGprVKId+yiqKiE9myOikGjaW+tx+vtVbrKkoKoaDi5JvAUYqNSUADtDR10xzrRRIuAAKYJsy++nBdeeoJEvI1oQRnIEq4EJ0w7HheTYkXBdnRcy0s8lkQUdT5bs43EEIdoUGPTpzuZoIVRSksxsgm6sxmKwhXcffcfuf+P92ELCVRTQNQ8iARxdJt0d5J3Xn+Fyy+/jLQrEyqMkor1INk2WkDDxkTTFG64/ieoPj9OIEV3bTuhkUWYVp5cIkthv3K0AOR0g8IeieUfbWLT2qX8YPa1KCf1kIt1EymopGt9nOJ8KUaXhZaI4AgGlAK4NAt1eH0KjZ41jJgwAkHzoIkybsZFE1QMwcfi995h8KBSho4ZwdgRo1i2ZAHJli10CBHOPHsWo47cxfTpF3DCN6Yxb948fIV+br3xXn5993B+8pP7ue13v+DF5+fR0raDX918K988/zReee4tyt8oR+hUaBi/Bdny0NCwh8r+FQhGhlzGRPGYSFgURkWa96wnEioED6hyEQ49KGIIRU4SLi1BVlM4hkAq2YXsioik8cgqBArIZWL0tDYT705SUFqMLKqEglF2bE/R0lpPJmGh+WyOHlNLrDuB6vdQ39hIVb8SUrqDIPvIZxpQBB1FdjGyWQQzjqVEcMwMVkZE8fhwhUqCRYVcftUPccwYmlZEW/MuOlo6qKyuJG9rSJJDOpbA4/ciquV0tjZQ2l9DzWex8EMmiyOoWNkORFfD48kwcngp3Z3NyLJKICiRT6d6DzgczLynN3e36qDnZRRNJJeykDQTVfH1oqSOjYNLPJtDlW0QJVxBxtTzqKqKZZpIkoQkikwaX4aqGEAYPZ8hq8PGbfVMHQO67vLWC3+hs20PohZkxar1nPV9d29fvppHPRAZ/bLUhX35qL48susIiGIvb+q4FqIo/hXNdb/Iq8KhfVzhr0Gf9gmgB0OFv4qXPjBv677x7etTX8Dny4J/Hoq/Fvem9Dmw9S/LFfsvOnz6F+K6l/5ZtCZ9TXAP/CxJ0heu/y6ymjYxc/IwGhrrmDRpIgDXX38tDY11vVfDbur37KSionz/PN9//x+48867CAQC3HrrLdTV7SIW6yQW62T58o+YNu0btLW1cf75F+yPgnc4FI/HOeOMs9i5cyfTpn2Dd99dRHd3F62tzbS1tXD33b1tPvroYzz44IPAwbWI119/A6qqMH/+PDo62ujsbOfDD5cwZMhgTNPkmmvmHLTcVVd9n1dffQ1RFPnRj65n+/attLW1EIt1smPHNp544nGOOeaLaYMMw+D88y9gzZq1jBlzJK+88jIdHW00NzfS0dHGI488THFxMfPnL+Cmm355yLHfddfddHZ28tRTc/eXX7NmNVOnTsFxHK65Zg6ffvrp/vv7bsI/+tENKIrC/Plv0dHRRnt7K0uXfvCVYx43uJh7772HjRs/o7u7i6amBmKxTt56600mTJhAS0sLl1/+7YN3en/U/S/3Q5ZVGdXjZ8jQ8cw4+QJOvuIX/PqtXqF1+sgI7955Kp89cjFrf38uK/5wLnNvPJ0zpwxDFEEWJIpL+1NaORhdCGIZBnW7d6JpXuq3NyDaEls+Wc3E4RUAPP/eZxhGhp5EF6tWr+Gcc89h1+7djB03hnseeR2AiSMHUFVZQmVNDd09CZI9ac758QN8tquV0YP68fTNF7Pr1Rupe/0Wmub/kjv+bQYFIS+LVm3j4n9/gEzaoLyiEheBBat28sEnO/GoMnd9/zTq37id1Y9ex/YHTmf9rWN4+sk/ccK06WQyOrmsTklJGfGeLPF477pYueJj9FSGQDiEIYFp6mRyGeb8+Ec4jsP4cUeycP6rrF+9mqbdTdRt20VN6WDGjzyKzVvWE41GCYeK9qJ9+0wRwbIN6nY18M7CRRwzeRz3r1/DHZ+sxe/384uf38i2TTtYt2ojn65ax5L3FjLl2OOIxWJcOHsmTz3xDJrqRVU1Zn/rXCqrfaRSKQAUWeHMs87BK8q07Wlk0Zvz2LmzHkVWcdF5+NHfUVwWJlLo5dkX/ozscdiyZTsAhYWFFBR60RSFwnAZWBK7G7dxxsyTUFSBgbWDAHjppZfIZjM4rsEPfvg9Kqv64/WFaW7u4fbbb0cURXbs2EFXrKU3b+9eRsjr8xEtKqS8soq8YaFbJqNGjcI2LfLZ7P73ccumjQiGjZ7KkOlJ4O5dF7brktNN0tk8+XyetrYuIpEImWwPqse7v3x3Io4guGSyKWRFxLElAv4oet7h2mt7keNHH3mMfuUleH3q/nKRSAGypGEaNqlUClFy9qYsc1AUiXQ6Tf2eHUQjxcS64qxbt46bbvoljzz6EEVFhSiyF68a5jv/NotUag+CaHPWWWcQDofBFSgvG8wPrroByxRx7P+PvfcOs6sq+78/u55+zvTeM5lk0nuAAElooUMEpAgISPFRRFCKgiIiioIVFLDRkRoBkdATkkBISO89mV7OzJk5vez6/nEyYZLMhPjo874/3t/zva59nbJXudfaa++97m5TVV1NMhnlkxUfUV5WgcvlRZRMYvE+nC6Bzs52env6wXJh2zaKopBMJonH4/T3OpBtHzn+fAL5BeQVOunatgxZ0tmyvZOK8lp2bNmMJDgQpQzJVBgbi5aWNlxeH7qRJJOOkEpGKSrzUVZZRHFpCRlNQ3EoPPPCUyBL5JRWIak+ujq6UUSVdCJOKNhDNBEHUaW5ZTexeB+xeIjfPfQgNdUNlJSU4fFktdsAvb29FBcXI4oKf3jspyRjQYy4j2QqQlqLkEz3cMFFp/PO2x9wxeVXk07ruIQU0d5mfB6bRKKbdMJAxkkmaVGcX0aBy8PmdZuRFCey34klQdpKYcsamhFDQMO208yaNZ0f/vgeSgqLSEZjlFSU4851UzIrn+bqzXgv0pG/mcB5o4n0JYP+Y/dQdroP73SLqnEFWA6DtN5Pa8cmRCWKKKlsWruRvTubqBs5ke2btvDhsk9568N15NZOwSnBjMmNjB5RyYfLXueBX/4Qr09l4ZvvsWDBc2i6zCVfmU86Gaeutp7v3HwXa9ds4qmnnmH0pEbEy6Kox+tUvT8BswXcogtZFhAUEZ9PJR3rQTTTpON9FOZW4cupxpTcoAZI2yqSyw+yCyQnkbiGLarIgkwsEifUFyaZtkkaXpyBkYjuSnJLR5JX0Eh/OIpLTdDQ4GBEfRG1taWMHFGJbklIokAk1EFtZT4Bv5vu5i1o0Vb0VC8ZLYWma1iWgCAq2HoSVZYQZQk91UmsZw+Jvma0ZC/RaC/NzbvJLSqgsr6eWDKF2x/An1+M05eDy1uC5KuiouFYHK5KdEc1sqcU3VWI6vDiUL04nB5sW0KSBdJmmpauLnC4sBCRVSeK6sXhAAELM6PjVFQETWTD1g4020OiP4yhZxAEAUkEt1NEklQEIev+lZOTgyxn/Xd1Xcc0TRRF2e8eJiMKTjbt6QU1F1EQicaiLFu2jIaGUaTSGnomiWDqHMq0Dsbg4Eb/XZ/Mf9WFCg4OinQkRcvgc4ZhDFnmX9nTD+yZBUEYcu883DyYpjnsuS8KT/FFxBeWcR2wTz8SjtZPcajIq5/3+79zUx4NPq/doaK8Hlr336FtuDYOtdMfLGXSt32Ivu3DYdsURfEg/9ve3l7uuefHCILACy/8jVtv/S5FRVlfR0mSmDx5Eq+//hqTJ0+mvb2dJ5986qjpf+CBB2lubmbOnNn84x+vM2vWrKwPIuD3+7nppm/xl7/8GYBf/OIBdF0f0ixGliXeemshJ500F0VREASB6dOn8+yzzwDQ0tLCypUrD6qzePGHLFjwdwB+/etf8ZOf3Et5efmBeSorK+Pii7/M737324PqPfHEk6xZs4bGxkbeemsh8+adhsfjQRAEPB4PX/nKZbz66gIEQeDPf/4zwWDPkGOPRCI8/fRTzJ9//oGH7+jRo1iw4BVGjBiBYRj85Cf3DbtGJCk75jlz5hy4VlOnTuXpp586bMyDpal/umkuX//6DdTV1aGq2aAWDoeDuXPnsHDhPykqKmL9+vUs//iTgyJdHwmDXwSGYWAjIEjg8Kos/fgDukJBAMY0jOK3v3uAemcI2eVD0w1K8kqYM7Ge2+aPJx3T2Ne0h/7+EMlkmkUfLEHCgaFpYBrohsETTzxBYWERZx07EoB3P91LZ2cvyaRJRWU18VSKjJFBVBW2B9MA1Hh1MqkEhm4hiDJ/fn05W5t7GVlZyDM/vJw5E0fh93rYs6cZSRC46pwTeOmnVyMIAh/vCmEKTpwOF5m0xoertgMwf/Z4jmso5v13FuIw+pEju6m87E+cfcZ8fvKj+9G0JJdfeSFpLUQmk2Hlyqz594yZM/D5/dlAHYJEVXUJ37ntNmzbpr62gQUv/o0JY2ewaNFSMlqCHG8Od9x+O48//lceeOAnfPDBe6xZvZFPP12NrOxPjyDY2LZJQ30JM4+ZQltnN/esWYMAPPPkE3zn5pvp7OwgLy+PBa+8xpjGCbz8/JOMHzeWeCJGVb0Tj8dDd2eEh373CD6/m9Ky4uy1lST++eYHaKaBpCqcO/98xo4ZR0lJGYYu4nblY4pgYGPLItFk4oCWuKK8jLbWTj5ctBhbd7F08UrefX8V+1o6USUZl8MNQHFxGVs276a5qYtIQqd25CiOO3E2u5v28cgjj3D77bfT0NCAaSWJRsNUV9cAsGXbDjz+PBSXl5r6kbj8XvoiYaL9YVqbWg6syWBPP6vWr8XhdKIZOtVV2ZRQ27bvIJBfiKA4SKUyzJxxPACBXAdbtu86UL+lrRXLNojFwkSjEQTRQhTh7nvuYu/evVx11ZUcf8IMJNnEMD9jmLu7e8ikweFw43K50I000WgYyzaQZHA4ZS67fD6PPfZHBBzs2bOHiy++hBH1VcTjcfbsbuHvrzyBS1Z55HfPY1oakgwulxtRcPKlL13EQw/9HlECURKwLZtArpOpUycSjSbp6W0jrfWTn1eCJLopLi6nsLAYy7IIBALIskxubi4+nw9/SZxUYi+5PjcZI0Bf2IHpnkFB5SmMmzEHRJuA0wQrg9tZhGU4EBDx+lwIcgCH040iSZhJG1Fxk1tYRG+kH0XNeui5nKDKIplECiyL/IICNEPH71IoKirE4fSQ0AxqqutIpzOUl1fy1sJ3kJQ4uhln+vTp/PGPfySZTGKaJuvXr+eDJQsxNZMcr4dVyxfS1hzF5SjA6QjwwvMLOOfcebS27UVWbJyKm+6uXjIZm9yiEmRsLC3Dwn+8jqXrfPTRR3zpvEuQTBUzHsflDHDfvT9j345dWJrNjq07SEQSWJqFZptkkikwLBJamlgsgWGYlJZU4nJ5sK0EgmUjC9l3qWnqxGIx3G43slCIJARYtWIHG1YHCSfC1FQV0t/bw7sffMSI6hHs3rGbn913P/fd81N27m6irqGWhsbRWKayP4WejlMN8Ltf/ZgLLr6ehnElOEUBl1uivLyS+vp6Vq/5mA0bNjFp0lR669vYd/FH6LlJcnZWkgkZ6AmwzQyiKOLNKUV3uNClFFqylVTfbmRDx0iEUO0kRrIPyUxgJPsQzQSyouH1ZAjxoHzgAAAgAElEQVR4krilCF0tu4jGdZ564R1Wb2jloxXvYtopZMnGL8SoyBcY1WAyqlplw/pVpKJBqssLKSouwlVQjD8g41AyuH0uRFukLxQjlQZJ9qM4A8RTBqLoZPP2FK0tYfqCrSTjTeQUVlFaWoVDEDFi/TjtDFq8n96uVkTLQDR09IxGqLsTSxfp6BcQRA+iq4S0Wo+jeCrkjEYpHI/im0JvLJfRE84koZVgSCXI3jIEdzG2swTZU0Fc9xJPC2iCxYxjJqM4JFKWjWEoyO58MpaErls4HR5EQSaTyQrEADKZDE6nM5t/2OkkncmQSqWJZ3Ry/C4kMYNtZwVav/71rzn2mFlMmToDU0uSiXRDvoFQeDBjdagF2uCYH5/HwB76Xh8ubsxg5ctQfR1N3I3B7Q8wnEPtWQf/P5zv7oDG9mj3zIN5gSMpiA7VOP+vb+t/Dl9YxvX/dvy7DOr/mxhIUTPADL344kskk0mmTJnC3LlzDzjKDx6Lqqp8+csXAfDee+8fVT+2bfP001nG8qabbjoQIfVQnHfeufj9fnp7Q6xbt27IMldffTVFRUWHSc3GjRtHTU0NAJs2bT6ozkDfjY2NXHfdtRwtnnrqaQCuu+5afD7fkGUmT55MY2MjmqaxdOnQOXKPOeYYZs+efeD3wAPW5XLx7W/fBGTnMhKJDFn/mmuuprCw4LA1NXbsWGpqqgHYvHnLUY8LwOv1csIJ2c378uWfHF5gmOU7mAZJlrBFAUES0PQIL7zyLPF4HEVWCHUGqa6fiDH1OpxNi1BEC0SNYG8rHp9EXX0ldfU1aOkkejrOqSedyOrV6xk5ciQer4u8ghwuu/wyqqqruPCUmfjcDtKawROvrySZMFmxYiWhUIiLLryIdz/dRjSRxqnK/OhbV9DT1cG6Netwuj28uCi7jq46ayolJV6efe4v9IUipJIZRFHhlZdfpdgLhV4Z3bB45Z2PyGSyabwqy7JCm1Akxcj6Bs6YPQWpfQnmjNvpSfjZt6eXUaPrMMwUgRwn0VgPa9as5JSTT87OlSjgK8wj2h9GtuCDxYtp2u9P3lA5FlXOJZ0UePihP9AdbCcY7OH0s0/FnyfxjzcWUFtXzbp1G5g2bdpnF8S2AAtJ1OkLdfPXJ54iaRhMrCuguKiE3lA3EyaOpq+/B1GUCfXE8TkLuOC8CwFYuuxj7rzzTgoLSrjv3l/h9xXy0ZJ3ePAXD/DqK6+S0QyaO9vJKylC9boRRFi8aBk/++lvuOPWezENAVFUwZbw+3JJJAa0tSrRiEYmmeGXv/g1E8dNYty4Wfi9pUQjcZqbmgDYvn0H55x1Idgq69du48wzziXY08mo0XXMnj2bUaNGYRgGTpeC06kyb94ZADQ3N/PKKwv2578WSGUy+P1+4tEYDz/2x0HrU6ZhTCOiS0Xxupm7PzBUc3Mzf/vb8wfiDUQjSQREdu/ZwWOP/ulA/VQ6TVtbCy6XC7/fi2GkWbHyEx7746OUlBRz9w/vRNc1TNPA4fhM4yoKEm6XH13XUdWsQK2vrxfbNunq6sI0dTweByccP5vHH3+Ca6+9lqrKGrZt28LDDz/Mrbfejs8bIKcgzvfuPgvT1LEsA1mW6enp4cknnyAQ8JFIRNi+39/V63VSWVmJbdvk5DlRFBFDFzF1GV2DRCJBMhU+yGRPEATyfNOoLptAe3srTe2bKKkqoHjCMUQRMAWRnr5uTDNGTsBLMibz9etvoaenH1WVQfCgZWxMAzwOP7bpzGqlvV4g+77IJKJINvgUCSOdQHWoCJJANNLPti1bkVQFp9tDTzDMa68uRJbcdHWGcLh1XG4ZwzC48847kSSJESNGMHr0aI49fiqpBNgmTJ5UQmmFB90M0d61FVPoxUYjv8BHsKcdzVC57/7fsq89RDQj4HLLaHqCy75yIZFoD5OPmc6LL/2d++/5GV5ZZcnSj5k0fhJlxSXEoylqKut56813ue/en4MgsGPHjqzwxe2mqyuIJCr4fD5i0QROxSIVj5BOhCkuKsfj8aNrForsIqOHCPbuZcKkkRQVF+D1OVFkix/dcycFRQUsXPg2WiLOtZdfytknn8jTz76IaYu8t2gJyZjEwjffy/psCgK11eX86lcP09vfSWdHB9OmT8SyDB785c8oq8gnHkuwbt06VqxYwQcfL6Zj4nbU20OIloy1wkvGyJDRBFKmSqFahN+Zh+isxFs0k5Ru4s/PJ5pOITjc6JKM6PaStsA0BCzTwudUiff2MKo6B7dDQFac7NzTTNOuNJhuDEujL93N6nW9PP/CNuK6yWmnjaO4RESQomhmDCMZJs9lIev9iFoYj9cmv8CF4rRIZcLs3NvBtu17icdTlJWJNNb7yVGTWOFOenYupa97JwkrjaO4lJQp4s4txpNXgqV4MFQXOSXl5BWXkEmEqayqIhYOIwgyLmeA9rYg3Z0hdN3GUCTGTZuAJevEUn2o7mI024EluZFcRaRtL77cclz+Ahz+YkQTRENEdJSQX1iJLXlwefIwbSkbaFD6jFEb0LTquk4ymcxaO8hZV6xPVjYRUFxcdeEVSKaK/9zsM/3dd9+nLxIm4PPS39OFOD+GenHm395DDqfkOVp/1aEY4iMFTTpaHMksdzjFzH8neNJwtMqy/IXYn38R8YX1cT10oQji4UzcAQ3hoXUPa8waVEo6qK4g7Jeo2IPLDurDGtSaeORF+p9cxEfjCzsAXc8GQhnq5vq8EOfDzenQhcVB5T6bGwEJ2wJbMECA5cs/BmDr1q3U1tZh29moeYcilcpKFltbWw4/OQQ927Zto6+vD4Drr7/hiBLCAfPj1tZWZsyYcdj56dOnZ2k/dJ0JAqWlpTQ1NdHf33+QtnZAG3nmmWcckdbB0e9isRibN2cZ4Pvuu4+f//wXw9Lc398PZDWfAxjMVM+efeJh/s4D/c2ZM/tA+fXrNzB79omHPbynT582rJ9KdszNB2gYaFcMlIMg8NZbb/H88y+wZs1agsEgyUFmlQNob+84bI0c+M7wkZUFQUC0Bu5lBytWrAeyzPysKZN45tkXOO+8eSSLJ+NOhdizV6NhVAMmJju3b6SsvI7SqgbCMZ1kPExpUQ7Lli3lhBNnohugKBKLFn/AnBNmcO6JY3nu7bWs3JfmGx4P55xzNgg2iVSUF97NajgbS710tnXS2trKKfNOorOrg6aurDDgZ0++z4PPLEaSRH71/u+z4xAELNPkRwu2kEhnTVI379pH79QRlJS7yRUTCAK8++l2LrntF1w81c9x595Aad0M/IrKnx59ltPOOpd7fvRTHvvT76isrcdfWMtHK7MBhWzNYvuaTaR1jWkzj2Hliqw5uEN1EHA7mHfSqVxw0Zk8+ecnyQ94WLl8Oz6/G8PQOO+sc1AUhRnTj+H1Ba8feDZmDBlD14jZKqVV9ezdm424u6Otn3Pnn4ckyRiGiWmaWKbJQ48+iK6bmGbW9DLY08VpN92Klk7yxuvP4fOJpJN+jp96MsFgiECOSkVhBelYCpdbRVQlTj7xWCaMHo2GhCGmcYpuRCTi/THi0fiBNeNRBU6edyKzTz4JySEyxgXnn3cRX5p/CdNmTOcfb75OdU0FH3+4hO6OTh55+Jf8+M7vUVZaiex2UltezUsv72Pz2p2MGz2KRQvfYd5Jx/JoTQ1NTU18++abePjXv+Pvr79Ibm4+a9dv5Ic/+hFd3d3IcpbhEUSb7Tu3MWHcZNyCxNxjxlNZUUFrWxu3fOe7dLe1ceWVl+DNK2fx0iXc/7Of0drWiqIoWfNU26S6ujL73VJAMPnaNd/Gsizuv/9n5Hl89PeFySssRZIdB+4Fv99PKt2MaatIci6GbjGyZjIIOoWFlZiGSDjayajR9RQW5xBP9CNJbsY3zgRT5YbrryHfn0d7Txh/7lQUyQ+ChqWb5AdUDNsJQgYBm2NmHoNpmaB4yWT6+XTpP5h+8vmkdBe2nUAWZJxuFadTRnaoYIqktTROZ9as0ZCTWL4aHBaU51QTiUbo6NzGiJF16OkMsurEUTQSUXHTtnMHl156AYGAh7Sexq9EsGwdxanQHemm0FtNb1cLpeWV2IKARRqXJ8Ca1fuoKs/DIkWeVEA6ZYLDxbgJ4xFNk/7+XlasXIauZ9i9aw81NXWYmk5bZyderxfDMOjtbmLU6DosjxtVVzElkX2d2ynIHcW777zPjJnTEO1cZKUATUvj8PhxegMYRpQZ0ydQWVaImU6xZUszkuBl3CQRX44LvwfKqhQe/P2PEWUPp5w6m2OmjueNN9/g7AvPoH1PD5s3LudHP7uHdCqFoLoJFJcR6m2nr7eHivJikqlkNjCSJx/djiNLMqG+ftwuJ+UVRTQ3t9DdGWXkqHLSkQyV5Tm88Pzr7Ny8mTt/8EPGTRpNX0cn7y3+J88+vYBPVy8mP08hHOxjw+rlfPtb1zBv3jwEXDz7179w7XVXUOtp57VnFlJRWkNTWycnzj6O7978E+obSrBtk2i0g2lTJzK6fgSLPnifmmtL8X7NIr41hvB2Cf5QEfH6tTjC44j3JbDYjiwWISk2iYSKPydAItKOYfajWk6QDBQhgyVYtHaZuH11hKxC8n1+Zk0bR38szL4du8jNUZCFNLLi4PiZPqZNLMAyUgCoDge6ZiNZYWw6sTAIxU1Mw4PLyBBPiSxctJ3GCdPYu7cXLZEhbSTZua+L+fMCSEoOeX4P8Wg3Lo+AlTIxtRQuFSzTQpYEklEN1e4hFm1G0CPITgEzthFTN3n8kfeZPjWHUQ3VSBLEQkEcigIOF+mERllugGBoE7Zpkl+URzyez/JlK5hz4gws2ybWn8LjceFQC9ETGgYZDE1CkTR8znySRhumKREJaxQGRExTR5EFFFnBNg3SqTSCJCMIJifPGcMrr2/FUbiXKUohjnyVjVu2s37jVvLMvUSDGrua9lA0bvKQjNpAJoFDcagv6Wfv8eH3iIPbH9ymbe23ciQrIx1o8tD9x1D73AGm+NB+j+QTe+jvofZIA5+H9jWAwTlij4TBvrL/q3H9n8H/FRrX/44U5f9PkGX5v+3zejQ36nD1hkNHZxcAqVSK7u4gwWCQ7u7Dj2g0CmQjnB6Ndrlzf7uQ9VkKBoPDHgMMXzKZGrItn8875P+2bSPL2bkcMDMeQHd3NwBV+80Gjwbd3d0HaOnr6z8izQP+WKnU0DSXlZUN28/gcz09Q5saezyHj3lg3ge01wM0QPZB7jj+u3zj8W1ceOGXWbDg7zQ1NaFpGrm5uRQVFVFUVITT6QQgkfiMmR1ufQxlkiQcImoaPM833vJtLrnqDhRPLenK05Bi7VTkO7CxCXV3093azvpPltKyZzsBv5tgTzcFRTlMnNqArmvs2LqdTCrNGWecitMjcdHJkwFYs6ubuKZj2zrP/+1vpDICS9buAeC/vnwq1dWV9PQEEQSIpTSs/WszkTYIJzKEoil6I0l6wgl6+uOEoinCiQy6mb3W5VXV1I6sRlVVKnLd3PXlyaiSwNLtYb75XAuTL76LKTNP5oxzLmXVmi0oisp3vnMz9937IDdcewdel5v4fp/Rbds2UltXQW1dJeFIJz3BrBl146hG5p19Ju+9/y5XXHEFTz/9LIYOJ5wwi9qaOt74x0JOP/MM9uzbi2lbjB7TeECY4HK6kGWZpUtW4Ha76ejKBh9KaSa9oT66g0FCfSHCkTDReIye3l7CkX5i+wVC+/buY936zWimwbnnXUQsBjNnzMLtNcjPz0O083B4PCjIiJqOmUkSjvXiCSgUFrpxSNnInaZt4Q34KSkpAaC/L0zT3gjpTAyPT8a2TdxuJ2+//RYzZ07HsrOCAUmScLicFBQXce/Pf4Db62Trhi0sXfQxmpZmzpwTaWwcxVnnzqexcSplJQ288vwCysvLSaZSbNyxmfrRY8kvLuGkU0/j4+WfcP11X2NE3YiBO4P8fBeRWAe2qFFSVsUrzz9NdVUlyWSSu+/7KTUN4ykoyOOcc+ezfMUqLr/sUkbU1QKQk5NDKNhJtL8X28hw70/uY+/efZx11pl8+aKLcPvz8Hhz+NWDD4Lx2T03IDh1uVwIgoAsy6QSItgOBEHCNHVsM0p/qJlF77xDSV4FO3fsZdz4Uezdt4uOjg6isSQBfzlOZw6mHccihWmaSKKKLVsIigOn1w+ijWUZOIQMTc37OPWs+Qi2G1UVcXslFEUhHA4fIM3ExO3yYmomlh7HgY1TUMkvLEO3XPhcAUpznLz+7B8xDSeK6sPr85ExEvgDXi666AJcLhdej59kMk0mo6NpBjk5eVkBsq1gWzLYEoqsoOsWHq9KTr5MSUkRyQl9/PLj+3l/ySoytkIGC29+DiefMpe7f3QnBUU+HE7A1CgpzMM2MoiyTUVVJdFoHNGyaG3fjqyYlJeXEwnHuOP2u7EtgcrKMj5d9RGQFR7ouo4kujnrzPnk5RbidLgZN7GeCZPHEI0l8fvKaGsPUl5RS7AnzK233kUqEUcWBS684Eu4VZXysipuufX7VJRX0t/fR21dJYIgkJ9bzbgJI7HsFD6/k8JiPwoGBQEPkd4uivLyiEeiRCIxpk0/nmNPPBm/M5/6cpVNq9/lzPPO5KobvoluyZhpg/pRxdz7s1uYd/qpXHbJfzFt8mj8hQp/euolmps0bHK57Y4fsKd5F7/8/VO4/WVce83XCPgETj5lFis++ZR7f3w/f1/wKp2dnfj9fn77299imT0cN20iPe0R+rtTxHP76b1gF9KcFO5XpxEtaCKQ50NU/NgCiLKKJInomTiilUKyU5haBFVME4+0ZFMLuUsRHMX4AwGi0TBV5TlMaCjg7DOmYdspLMtA1xJIoo7HI6IqNtgmhpbGIYFkp5AsDUHQEEWVbTuDhOIeFr6/G09OKfklhXzpklOZPquKmSeM5eST5/Hau3t5/rWttLd24vT40ZMhVDtBPNIDsgtRkhAkcHu9pJMRBL0HQe9F1MLIdhKXmuGqy2cyamQxipjB0lIE3A4ErQ9bjyKLaRLJIMXeWt57pwWtT0FKtzJxZBWS1YWdCuGWU2D1kUl2EHBkiPYn91vk6Gh6P0ZaJJ1S2LI5jGGmEMUsI6jrqazwVRKQ0REFEcG2Kch3Y+33Y33iL88S6esnN+CitKgIRJlJ02YhK58JxA4VFh9qaTbU/utQ894jaTH/U1rd/6l9/Oe5Bv4v/s/CF1LjOliScTQ3xNEwXwcWqX3I76Noe4COwyRAQ5T5n8RwDPqApGwofN44h7LTH87H9tB6w8HaHwjluuuu5eGHHzpQfkBK9Xn0HIqB8Q3O+7V37x6K9+cIHQ7/yoPpSOM8NIrdYI3qcP0NrBfD+IzmxYs/GFL7OxiHzs9w1/tIkkNRPJjOQaM5SNN6JI31gCDk8ccf5+WXX0aSJG6//TYuvfQSampqDjIT+trXruOFF15gsO3D4ffKZzQf5r8ucNgahGwk4pLqSohrLHpvJSfNPpaUdQXqumfp1RLkF1aTn1dMb28LOTl5SIqU9d1TnLgchcRiffR072L8+AZSmoBDyWVmYw4VRQHaghHeWL6dq0+fTMOIBn7w4OMYpkWez8kJE+r4ZMVyzjxzHpZp0tP3men127/7OlI6zLjGsQgOSMbS7N21l9q6ahLxOMUlxWAmMSLtRHcuJZm2mFvew0mjSrjk2hd5Y8UuFn24mLXr1tHR2UlHZyewko9Wf8S6VSu58we3sHnTdnbvXo/Pk43aPXbcWN55+33OOucCYpkuujqyEXIVVebsC+fR09ZJVXUptiWwcOE7dHeGqamp4/KvXMNtd912IIK0JQmkM1krh+3btyGKX+L8+Weg61lfKYDrRo/mhj8+jyPgJDegkOdzoGeSWIIfXUwwY+rJvPGP96msrESzErS17KS8chSXfeWrJBMRVq0KUllXhaH0YmdkwCQUSVJSUELGDRZg6xqmZeMNBEhmTGxJpLQ06yseiYWpHlmOZWWtFa677js88oefkEoajGyoZceOrL9wQX4BiCKq101dQyPvvbaQgoIitm1ejaCHKC0torW1nZdee4l4NMMP7rqXmqpiPl6ynIcf+hWfrFxJR3c3ggBjxzRy9VevZO7c2ZRXZRnXqVOmU1M+jki0j4xpoXhyqQsUsXL5cp565hneevttmppbEAWBmuoqLr70Ys4/+2xqR44GoGHkCHILihEEge07dvDQQw/j8Xj4yb33Egz2ICkC6Xic66+/gnCo9cD6skwRQ1OwhQwOxYksZ81TU2mdVCpFTqAQVS3H7YELL72Yb918Bz3BftauX04ymSCTNnD6ZRwOD1lTcAXdiKMbabBsXE6ZeCyDYRj4Jp+BpEuIhsmohkmkUYjHe1ExcIoqGzZsYNSYRkRRZO/evdTU1SKaMslwlI0b3ue4k+ajpRK89upfOf/sy2kKNhNQTc6efyUaNh6fn1Qqiax6yMtXWbVqJY1jx9AfjVCUl0M4HEYSs6HGLTtFbp6XjJZCvON6BDNKe3M3pRVeEokEezo6CWViXPC9M6gfVYNgJPnb088zf/584rEIOTl+XG6RvnA7Tl8uDocTf64DTcig2BIOzUEo2Ikq52JbKoKcIpmK88Y/XyG/IJeenhCzjpuLKEIoFMLr9ZKI67jcDkwrjShniCYz+L2guFUEEcqqK0ilYhSUFnHfL35KKt5HrL+fvIJculpaCUc8rN64kboRlfR0pcik2/H5nQT8BciKTDjShyzLxOMxZEHB6/Xi8eYiGgbfv/02fv/oH1mzfiMfLV/Gzdd8h8f+/C3GTDuLceMn88tf/4FXnr2T6hInd95/H91tFh53Lg8/ehVOr4uNG/bRvG8JAW8+C155iisuP5/vfe/rKB4Xf3jkIb79rRt54sWXuPrKG1i8aDlPP/00ltiJy5lDJpPipptuItS3E3egBCQ3/dEYr7/+OnNOPgmpXiMxM0np69NouextvOtHo0gZTEtCS8fASoCsYFk2qioSS/TgcgVYuzlIfnEB5YVOBNsirZv0hiKU5jsR7R7yc3NJpfvweHxktDTYWYZNUF0oiiPrp2jpSKKKbhi4nBLjxufy/OvrmXfGeThUEVW26O7SmTTxbFLxJEljJ1/+8kWsXrsN2+lkV3MvNSUy0XATGXJxiF5ifd0Ecvyk9ATYKSRJxxBkVCCVNlAcDtKpbkRZRcQBto5lmdiyh3RGQpLBxsCgl/lfmoht9iMh4cnRaG4TKcqTcKsQiors2LmD6VNr2bIpiIXJzBl1CBJIGQ9u0WLW9ApUVSedNrAsG0kWEEUBw9CxcLKnQ6M8P4HTKeHxOCAGoqCRiMZwSh48bieFpeX4CstI/lZFABw3pj57Hx+ylzlU8znUf0OVGcBB5sL2Z+UH54cfjOG0t4P3M4O/D/aZHW6PNtDH4GjBRxKcD9f/oX0Mp80dqDecdvd/8e/jCzabFggGCPoRJT3Y4kHH/iwbB44DxQbq2eKBlDi2YB10cOixHwcWMiY2JggWgi0edAz0P9D2oXT9J/B5N/5/CsMxYwcXGjw/Q5zOZvCkuDgbpGWwv+TAw2ywZO1o+hw4LwjCgXYha4b8eRi8bg6XFv7rph0D/Q+Y8g4OQDAcgzmYuR6K5gG6BjOsQ6UjAujs7Dzw36FBkNrb2w+Uy88vGJL+gdRSA3UH/I6zczw0XS+/nE2Dc9VVX+Wuu+6krq7usGsWDHYP2d8hvR+cluqws9L+dFXiAe1bc/M+JFHE7c2jYWw1uuDCP+ZLdGgleGP7MGwDBxoFOXl0B1uIx8Mk4zqyKPP3F1/H7SngpNO+imGrdHd00dPdSbQ3xPknjAPghfdW4w64qB5RxvKd2TGML/OhZZKMHduIz++jo62L/EGa6h0tPUyYMJG/PvEMkmmhaXHq6qv59JPVbNm+GbNrJfq219i5cS3uwoksWBPDceafUc58lD+/vARF8vGnR//Czu0bWbZ4MZddcmn22na3c+Ell+CUbOpLPIyoKmPAiGL3vnaOOfFMrr/2eor9uTSMbgSgqaUZ00hRWBhg1fJ91NeWc8apx/Lc8y8we+4JyE6D3nA/okMgbcaprK064E/ZOGYkkiSTjKbIaDYBf9b3enM4iqLYFBcECO7bwq49byPIArLkQzYs/vbEX6ko9pFJt+GVTSpLijAzCTZsWIZpWZx4wlSMSD+ZYBjR4aO9O05+USXIIIsSHqebNBLB7nbi8RgIFqYF6v5XVagvhOIRuPv792FrGpl4Dxu37MWXW8D27dto7+gAYNq0KWBpCFYGh6BwxnmnMnbSGK64/CpG1pUzfvwE6hsnEuxtx5/r5Y47v8Mt3/smvoCPO++8m5eff5W1H61jwXNv8qsH7mFs42iWfbDzgLXDcTOPQxecyG4/Hn+AgD8Xhy0jEeGmG77Jbx74DRvXruLTle/z978/w+mnnMa2HXsPmNCXV9YQT8Swsejp6cMwDBKJBFOmTqO2bgRVlXU0NE6gvHoUZbVjDqyv3/3+DxTXVFNQWkGsrxc9lUR2hgj39+BQXLS27EFHxbLCGIbGr/7wU5588RFSsRDllRXUjh6HooqoqpNUKkXGjKIbbmzFRcIU6Q2G8Ppc2KJJR1IjJVkkU1FE2YElOBEMASFpo6BQXlZJ074WBFmhum4EBh5EOUOifxuNJQpunx9PTiEXXn4zYr6HAn8OkrsCzfaR6Gom0duJrdmE+006WyPs3LILVVAo9peiCw48okLnvj0oHhexeBvxVAzBduOQNELBPoqqAsTTnfjcpfhyc5gwbTSF+S5iwXZMXFz+tQsoyHMiB3JpC/YSicXJz89HNdOkDA3ViiHEO4j3hugL99DSFKKouATEBKZmU19bREVJMdFQP70d/cRCKTRbwuHxIQgCHq+D8vJiUukoqXQUn6pgiWniSRE7HcHSUpiGTCgSISGE2Lh1B9vb2pk5Zx4+fx2bNm5k/YpNbN7QwphRZbzz5j8oyCmkoKAANwIeNUo80nMZa7gAACAASURBVISRspAdXgzDItzbR1Ooj0f/+DjvvP5PVix5j027l/DMay/x9wWdPPabR1nw/JOsXvYu6UwvN9xyA1rSz+//8BA9oSZsw4st1lJePYWL5p/GiNE1TJxSw5RJI7n3jp8S6drHdV/9KqfMPZvrv3Y7M+bM5StXXsDPH/gp8WQuwc4WgsEkWzetp6GxAZ9X5pkn/kCh38MJc09hzJgKFEujdG4fdmWUnE1jsEUHksuHaaZxunOwbAlDUkhqBhYZXO4i0qk4tbX1VFTXYqGxe0cbXkWhtrqKhYs+BncRfUkbURJIaCa2LSBLEpYtkUjEiUZ7SKUjmKaNYVi4PCq6JZBK+ygvq6JuRDUlFUUUlFTjdWu0d+6mP9rNiBH17N7XxqzjpmKLBTTviyBIHnL8OZTkZAN8qYoHbA+CkIsoZAAJzbDQdBuXy6CtJYEl5qAobhKGBQ4RLeNAUXOwBQFNN1FVD4l4HKeVxMxoqKoTQ/eybHETuqaQSUcxtRQj6mrQDZ0pU8uYNqUSWTAQMXH5JGSHiSRnUJ0ysiLjDzgQLAFZsVCcLmzbJKDEccoyTo8LWXdjWSaXX/VVTj/zBNKpTuIJja5MjIyWQDxkjzWUj+eh5wcwlILhSBpX0xy0Txbto/Z//Vf3gAOfQykJBlL5DNXWoZGBhys33D7Otm0QJSwEbEHEFkSy7JWIKMp84Vit/8PxhZ/Nf0el/++aA/xPa1C/iBjQ5g01NwMPg2OPPRaATz/9lObmLJN3qOZ6uAfpkTB27Bj8fj8AL7/8yr81DkH416/vzJkzAXjzzYVHTXtubi6NjVktzAATODQ9Qz+8Bz9slyxZOmx/S5cuO1B+4sQJQ5YZaP9owtEPoHVHNijRxImf5dodXDcejx+Um3Y4DO7783DMMdmUS2vXrqOzswvbtPD4fYR6u/npD+4gXXcSv3yvBznRg9b0Pq3tzVRWlKNnDEwT1q1bS0V5IaKZIdTbyfKPllJSWkZ3b5hwOMylp2XNhXe39bJuezuRtEhHJGuuees151JSWszHH3+CbYm4XG52bN1CfXlWGPDK++t57tln+fJFF7Bvbws+bwCn00O+B47J70c3FTZX3s1vPqnCMeMbXHT7H/hw1U5U2cMP7vwhXZ0t5OZ5kEydyuIiVEMhPycfAKdT5eGHHyYcifHpynXo+v4ULqrMPXfdxgmzT6A/pjHruGwwrJ6eHrZu285jjzzEP994kfb2NmLxDB+v/JCcfIlRDSXUllbx9mtv4He4cEsS9n5fYkO3EHBgaCmMdJJT5p4IwKfdXby58E1MAWK9+UR7itiyuQ1LzBBLW/gLCjBFEUSFzs4I3/vevUiSjxEjxuMJ5LF20xY+Xr2OUFxj48aN1NbWomkaO3bsOBBJ2+v1UlpVRyKZItYfAi3OKfM+8xt///3FfOPb3yKWTvLUc88yceJ4wKKrp5NkKssYTp0y9YAgLJGI0dsbQtMMFi1+H9200XUNRZIoKqzANC0ymQy6ZmGToT/cg8st0x1so6llG25nEV5PPvc9mE1TM2JEHRMmjEa2kih2inCwA4UUossmlu6no7+FqpGliKKIodtk0iYFBXk88eTjAIwaNYoz5p1JMNiBTQbb/szq4l9BKhZhy4b16DGDfH8OhqFTVl2JLDjAlvC6/GCJpFMJArk5xKMxdC2JIAhoegJByhAJdyJLGRwKeFxOAjn5tLa04fV6MTWdcDxBLBlj546NhHubyS0uJK+kCIfPQ0FxEVX7g7YJNigYGLpJbukIAtUT0DIZLD1BOtzBkn++QntwK4orgeKKkZdXwRtvvEtraysOVaI73MWxs2fQtG8XP/7BnWSSCd5+eyG6aSNJMqau4vP5UVSIRIOUlLtQJT/5vslYtoHH48HR5Kc4MgLFKeFxq4i2QltbH24lgNeTiz8nj7SWyQYDskSiKZ1kWsPp9uDyuCkpL0EUVbo6+9AyJosXLaO5eR/HH38cLS1NeL1unKSI9wVBlOjrCyFK4HA4yM3NRTMyhPu68bpEook+NNPA73YhpHXWLVmJV1U58ZjpvPjcX+jo2sXU6Q2cf8Fcxk6oJBLpR5JE0pkku3bt4Mf3348/t4hAQTm5BaV0tHWi6zr+gIfS4gISiX6mz5jEGWfM49Tp11CUm8uV153Gjd/7KuU1Iykoq+CB3zxMTkElq9ct4ps3Xs/P7/8lj//1ec6bdwpXf+Ui+ntDFOSW0Dh6IvFEkptu/S8Mw+Kaa65BlkVuuulGxjY0smvrJo4/bhK7t6/itVffQ5ZVCouKsG0PyYzIV666FsGhMnV8LUYmzh133UdrUMN1dj/O1SNQx2cwNQ2Hkgu2QFoPIYkSsqQCKpKkoGkmkXCE3p4QyUSampFFbN+9lZ7uPkoKKon0dvLRohWIthPL1FAUGcMywDZxOFQCgVxkWcGhqggCaFoGp8PF7t27OOfcc/j4408Qkehs68Dt8NG8q43Ojg5kGQRRoK2tA7fHw/FzTsG0ob+vj0S8hd27NuL2yqQy/SDEccgSlp4mEYlgChKGJVJQ6EdCx9TToEmoogNZyrB92zbSqRRZv+B+ZKeCrviRVT+JWAyBHk47vRpF7UCUPDicUFDgwe30YxgaAtngH7ppYGTS6IaOJQhE+1PEkh5Wb45gGCKCkDWbz2TSFBTmodkmrZ1Bduzbig20NO8mnkjxjRu/iyw5GVnfiKIohwmjjxYDTN6hzN2hzN/gfcCRtJND4VBm+mjwefut4dLmDNT9d/fzh/b/n2jzfzE0vnCM62CJymBmZygb+CNJTQ7zoxtGsjRU/4cyVf+T9vDD0TOkafL/B3QAuE69EdepNwLg82UZx8G+T4fO2aWXXoLL5cI0TW6++eaDTEOHkuyFw+FD5ntoGiVJ4oorrgDgueee45NPPjnifAwEVzoaDLe+BuOqq64EskGi/vznvxw27uHyfV199dUAfPjhh7z00stHZNwH5nUoSeQnn3zCsmXLDlrHgiCQTqd56KGHATjllJPJyclBEISDTKv3j+jAtwE6hwvSMAD//hyTmzZtAg4OMQ/w85//4kD+zsHa488LP3+wBQUHjef888/D7/djGAa33Xo7CUunvLqKVDrB/HPPoWZ0Az/8wxtkJtyI7/RbqAzY2MGdtLe2IsoKk6ZMZPToGvbt3UFejocZM6fh8fmRFA8NY8ZSX5bPlFFZ09SX31vHk//IBkEaVVXElMYyFFXi+OOP5+WXFrBr104aG0dx/KhCAJZt2IPhq2TZsg8pyC9k3+5dbPjgbzS4W5DGXMm+sisZOW4Mjz35MC2dO6mqLCY318eunTs5ae4s7v7hraSScRySSPOevZx20slI+wPEuZ0qX7nkYhoaJ2GZ0oG0SF63i9/88j5OnH08BiprVq2jsqISgO//4EfMnXMs373tOn5wz518tHw9mXQfyVQ3m9evZu3q9RwzYxamoWHoaQZsUtavX49tqqz4ZCWKojJz6mRcsoxpW/zjnX8ikKZ2nEb9mCoaRtcTjaVw+4ooKStFEEx6uoPsberkttvv5robbsTjK8AQbBrGTWD2vLMorq1nwoSsAMXhcFBbW4thGKTT6WzqLIeXQF4+Po+LSCjI7FNO4ZhjsoKhRx/5PaVVJfhyc9ixZ99+fy946tmnAKisqOTM08/illu+S18ogtMlUVJchtfjR5ZlOrp7CIY62bNjO+edeR6qIGLrKZySgiRDYVEe3cF2VFVk2vTxbFi3m4d//whr1q0B4NZbvklvqIO9ezdjGjpaOsO6tavAzsefU0t+Xh2SFMC2bbyeXHzeHJYsXcYzzz4LwO233obD4aKktJBUKsnkyePYtGEzO7fvoL8vSLg/SF+wh0R/P12tTezYuuHArXD39++ip6Wdqy+5gLa2VqqrazGTMqrsAMsgHArT19uLbYJDUUnG4vgdCorTha5nkPQ0vV3txPp7ifb14JQNrHQcwcjQ096KZolU19bT3tpGSaKZQGg3eXl5YOtUVBSjeFwYImRsE1MEt8+bDfwH2FqcvXv3ovqKcBSOIRqNoogZwsFmpo4ZSWXNREzbjWU4SKRtZsw8EVV1s3vHTkQJysvL8Ac8fOMb15PrdlPfOIpRY8Zi6JATKMa2JNKZOIGXFyM+vgQjrpOKh7Btg0i0H3Opk9BCg/ZgF+3NTQgWFJWOoGNfE72d3YiihKS4EBUnWCb9sSTFJRUkkmlMLAK5XixTJCcnF2yZWbNOpLaugo+Xf0jjmHpEyaRz3y7yAj4ymQw+vwtRzD5rU0kdUVbI8ThwKRqKU0BV3CTiEexMGiFpEQ/3IVgaDslmZN1kfnjXz5k7+0xWfbqe4pJ8vv5f1+Dzu3G5Vb535/fZvqsNWfbRF03Q2FBLe2sTTq+bno4ugt3t6EaSQH4BZ50xh5NPncSufRvp61N56OHHaG5pITeviOOPP53KsvHccsstFJTADTeeyblnnMJfH/0NCxe+y63fuYNYNE17dy9vLXobyxS4+eabWbJ0MS+99ALrVq2ivWUPyVgPo0dV8qULv4Il2Ywa00i4J0R1ZRWKQ8bhdRHqakaRRM674HJGTjiB9sRGItM/RX61DEOPoRsxVEXH7SkE08Dj9uN0BjA1nUzaoLCokPKKMnICeeza3c6a9ZuprClj1MgiSgpFTpo9iXQ6hYSNbugIogSCjaoq2UCOtoxpWYiijWUJ9PeH/x/23jrMrupq/P8cu27jmsxMdJKJJxMgRkIguIfgUggUKZRCC6EtLmlxK5QWKO4OIWhKEggx4i4zk4zLvXeuy7HvHzczTIYJ8r5tn7e/H+t57jNzzt57bTlb1trLGD16DLKsUzl0KOFQiNzsLJLhDkgFyct2kYxHyPL5qBgwAN002La7lo5AFKfdgSRE6FdYRCicIhJJEOrsJJWMI5gGbrcTyWpBVJzY7BKyLLOjHt7+qIaaFgeLltdS316IpoznjQ/2srXOy+q1Ud75ZAd7mmPISh5OpxeHxY6FfjQ0hXA4rdisEI+ncTpsSJJEJBJDsdhIpFJYrFYEScJmE4km0gQjKkgqmDKypODxeAGTnTV+IjFQLDYM3WTwkIF8+tk/eenV99i5o45FixZ3O878sfRuX+96a8b1hp5pPS/DD0ST98RxIJOxnpLVLhqiJ96+pMVd777vQv6nxFvtiw7szWj/VKb7Z/hp8F/HuP4U6ItBhf97gYG/ry0HYnb+N4Gh/51QVZVRa/voo0+61VN7t7W4uJg77rgdgIULP+KYY45j2bKvuxkp0zTZvn07Dz30MOPHV7Nw4cLusplvd+DNYN686xgwYACapnHiiSfz8MOP7OeMKBQK8cknn3LxxZdwxBGz/ld97b0BHnrooZx2WiYcyDXXXMtNN93cPQamadLY2MjTTz/NZZddsV/ZuXMvorp6AgAXX3wJt956Gw0NDd3p8XicJUuWcs011zJy5GgOBF6vl7PPPpe3336n+3Zx+/YdnHrqbHbs2IEkSfzhD7/vzv/dy5tvn7/rEa/vOmeMzjB4//jHM/zjH89019vS0sp1183jgQceJCcne78yP2buiqIIB6jT6/Vyx523AfDGG29x5lmnsXr9ekZMPJTsQeNYvzbC+Zdcya9vuov1NTL2o++isbWT8dUHYbPLYGq4vHZsLi+7GxtwZfmIxRPk+LJp9kfQBZmjqjMxXd/653oWfJ2xm5w9cwyKotDc3IjTaWP6jMlMnXYwVSOGcONlJzG+shSAG/72Mau376Fp4wdUqGsZVTWQBbFDWdbm5clnnmXslCkoLhHNsCAIAvNuvpF5N1/P1b+9jObmvVhMF03+FEtXr2FD7WbaOzPzd9ZhU9i6dSsqCnZHRsoAYHd72LBzGzabQbSjg4sumsvdd92NIAgsX7GCMy68nA8/fZOEGqOlPU6kpY3PP/mSux99kdrGJrx5ebQEOkgL6W4boCGV5TQ1NXDIoUcTiJmMO+Qw7phyOADLV61g9uzT+HTJPxHMbBCt2F12dm7bwmN/eZBJ06aw8sslDK0qIa/IzmN/uw9TijJ61AiKigo49tij93meFdA0jXQ6jaIoSJKEzWbDNE0CTTXIGOiSFW9BKYYR5483/hFJkti8ZTMXXnA+DbV7eP+N92lqbuD6edfz+aJFABx5xNGsWbOO+Xfdg9ebRXtHAzU1exk1YRS/uPQCfn/r7fiy3BQV5vPww3fjdOk4XRp/uOkGXn/tfdpag+Tn9ufIWSdQV9vGmo1f8sjjD2EYBqedejLnnn0OdpubkrJhWB1FFPcbzahx0zjv3Dn8+c47aWnYhZb0E4vFaG0Nce/9jzD79DMz5Wefwpw5c1BVFUOXcDp82G0eigpLKSoqIRQKoRspbHaJUEdbJi5veUX33E8ZabxFWTz8t6eYOPUICvpX4sovY+vOnXy+cAG/ueCXuJwyVlklnQ7jcsm0tzaQVk2sikJ7Yy3ZWR7yskvwOcto25vgzpsfYN2qb5BIodg87K7dS5bXR+OaxWh7NrNxzRYGjTiEkGpHFkQkBGRBxBAyV126rqMlUiz/cjEDy/shIyDpJolQkHXrV1FRVYWzYCCyPRu7PQtJULA4FfKLCukMxFAMD5H6AKu+XI1ic+Mp6Ud9zS6GVA5Gk0R0LTNPmppaUGQncnsEvbGVTevX0NGxF5tdJjc3B0EQicXiLF++jZL8QmKxICoq6VQtpaXZfPbpIsJhDfQ0bkXD67LiD4TIzS8ikYpjc9rRjQROl4VAsAVJNmhtayS/IJtEMqNe6S0dgiZl1KxVNYmqJUil0iiKDQk3bqsTf3MLuiYimgKdsSDuklymnHAcQ8YMRrDbKa4YTnV1NVu3buWjjxcwfsIoAsFWEHQQVGx2kW0bV9G/sJBQW5Cb513HuvWLGTioHKcrl1XLNpAIpXG5swlHRV794B2mzzgVu1zIs399hOuvuYoNa5YRC/r5bMGnfLHkfV568VVCfguNdSK+7EJ+ddWVTD3yFB5+6HbKKwby4otvc/Xv/kBZ2UByc/N59NFHKCrORXbKPPL3p8grHoDDU4LLK2Fzwpat21Fjm1i3/A3C/lpS0QCGlM+77y/ilFNPAiOKO7uY+rKtyF4LslGAVZEJ+tsxDAeypKEbOinNwDBSZGV7iET9yIpBLB5B1NNcNPdSghGVtet3gWzDMMJYFBeiKWCzupEUFxbFkdk/ZBsWxYaaToOgI8sKsmQlkYjTULcZn9eGzakgOQQkvY5RQ1IIagO7d22horyMuto9IEJZWRGS4CGWiqMbXiQhgtVqpbCwhGxfFhabEx0Jm8OFng6hpQxE2UI0bqOkYjTOnAKShp2jj5/LpJljKB2Yx4hxoxk8bBiDRk9gwviDWb0pyOfLt9ERkQhEdOKkyc4vQhacpGIasmySTmikkgbxuA6CDXdOHqYAgp5GFRX6F1qYMsqLLNkRRJ1UKomhCwgolJSW0a+0jHEThmNRLISCadr9EY475RSikRS6JpEh/f+1TNV/iq7uohN/qqDm+2iOnhfq/6o+/F+l0f+/AP9Fzpm6JlTGUrVrvnbftvRkZvbZWmYmtQlGbwK918QUvpX+fMdmtBdv35X67U3KDzteOhDuLjtXURC7Pad25xXN/Z4PhPNfBV1tM/T9n38M9GzLOeecw4MPPszu3bsZPHgoeXm5+4hRWLToM0pLM8T9r351BalUihtvvInFixdz2GEzsVgsuN1uwuHwft5re3IwfW1WPZ9zcnL44IP3OP30M9m4cSPz5t3AvHk34PP5MAyj21MxwMCBA/fD8WPGtK/bx571P/74Y6TTad599z3uu+9+7rvvfjweD6lUqjtu58iRI/fDY7PZeOON1znvvAtYvHgx99xzL/fccy8ejwdRFAmFQt35u7z79pRQd8ENN8zjqaee5txzz8NqtWKz2bpjtgqCwAMP3M+4ceP67Efvd99ZB2bf+S47dgQfrKhjZ1OIK6+8il//+mo8Hk93my+66EKSySQvvvjSd76dsF/4KHNfSKvM2jR7LdGuOrtsVebOvZBgMMitt9zOBx98wAcffIDdnvGE2yXhBbhj3iXEg0Hyx80hsfsdbEPGY1WspFSNZEqlf3k5qYSJxWIhr18OyUQCm83BmUcezL2vLiUUTxGKpxAFgSlDinj6qZc474IzkWQFm8uLKJoEgyESiQQv3HAcF936LMtqEjy+qInHFzXhcjmRpCbC4Qim+XcgoxnQvCPArTfegyJkvunS5atZujyjUu12uYnFYhg9BuHImdOZNfMI9tYFsQge8or7Y3PaAbBbNSaOnUpN/R5ycxQ+fP9l5pz+G2696SbunP8n6ps7uOhXN2K13o4gCNw8P9WN97zzzseUDXKKipCiOulUOtMGWzYP3f0w5/7yLNLJNGK6kMsHFJGMVXPTmjV8+fU3fPn1N0jinXi8XqLR6H5r1h8P4vL4ADBMAV3TMfcRSoaugh5FUJxY7TqdIT+64ETTYiiKgsPqoLioH+FYhGg8gtVhxyWJTBkzkdtvnMdNd/yJhR9/wsKPP8Hn9XLvo/O758d11/yGX//uCgRDJhVP0tEWw6VYsbltSPvWjsfjJtDWQb+BA1C8JqpgkpXfn03bd3HPQ38BwGazosgy0w6f+u1YnXM+t914NYYh4M7KQxRFYskAdslKOi0RiDTx1gNvcc8Dj2Oz2VAUZb+5eO65Z3D//NtwSCnWbVhLacUYIkELza21eDwusvPy8fmKMqGGUlFkpwts1v3OIEUWqdteQ8WQKlKmDnoCSTSxuPM4+vRfcOLZ59FWs5PX3niOQ6dNJxpRyc3NpaVhHZqmUV5ejiwp7NyxGcntpt/wMdz+0AS0eBhJAJsRJdgeJCu3iuzcIiwWhQnTDkcwTFyCQToep62pkVQsSm1jlJGjqti4eQNTp0+lavQUNMWGrJgs/vxTphx6CL7cCoLBeqKt7WB1IFmseLJzaKhtZM2K5ZQWlWKxFqDJaUaPG0U00YY3y4anIBc9ZeKQDOJxP5FQPRVlg1ANDcOUkUQYNbEai8VCLBIgqkawpt3YHQ5aW0w2797D4KGlWBSDgUOqkGQ7B02qRlQi/O3hJzn/kvNwePJJxnXiiSiJWAohO43NbkNTBUrLB5NIdVBSUUY8bTJs9Fii0U50NYHTYcHrysIggSjIqGoCh+lBcUiEUjEcuaVIkkRUbaKwsJh0zEQRDOyKl4QmIpoJPvv4SYKdaQTJBzjw5Oai6lasuFDkOMPGTEKUNOyizEN/eQjZ8JNUZWyig/FTxmCR7bz5ylusXbWcO+99lF9edgqFBVmMGH458+9+gAUff0Q8lkZL2zjp1Dm8+sonfPDuK8w4bALnnnsBoZCfKy+7kCNPPIaVizfxj6ee4Zs1i9mwagNjx45l7i9nc8acc3jq74/y/j/fYdiwYfhbaygqLWLHtnoWfb4Ej8/NuefNQVZMmpv8lJYNYdasaejJMLqQIpaMMHna0dRYNuN5bRjhw3cjxKyIVgsWSUfV9l3aSxKKOw9bqJFoJIzDZmHQ0EFEQnEkwUZ9YxvpVBGyJGSYN1kmnYhkzgpRQcZBNJXgg3e2c9IpExHVCOgCik3h7be3cuYvzkBSrEQ6QoQCe3BLHTjtTuzWNGNHTeGjDz9k5uFHkNZUVq5aiepvYtLBeUAYARuCTUQ3DfS0iZoMYhcyz7IpIkjw3MurmDRjBi6bwmlnHIea0PEH68nLLiSdNpgwYQJqMoWmKeTnFlHcr4R0KsWCD1eRCu2ietxgdDFO/yINm+DAkEGRTATDwG61oKspEuEoLpcP02FFj8URbAaabEE0LYhyEsHmYNvOGAUFCtt3dZJMKFgVJ6YgsHzVGi46azZPPPkMtpz+nHD0JARFpouONnv58+gr5E3vs7tLevn9NMP+zpQEpExdffiw6Et78EDQdbnaxWB+p54etFGXSnPvtN52sd8ymL15BbNXP79NF0X201oTu5rc5YvK/Nkp078L/osY138vdE0w41/MEP5Y6FqE/y5V3x9b//9ECJ9a8SpmJCMVKgXev+Mi7n/9n3yzfS9+v7/bc67a2Upy2zvdBOzloxSOevxanlywjMXrd1Pvj9LZ2YnH46GiOJcplcUce3AV1XntpBb9pbs+rXb7/vX3SAMoAhbdcSZvLB7Ou2sbWbd1F36/H0kUKSvIZuSAIo6aOIyjJg7fr6xlxuXd/6vbviClbfxuZ00w49+qQRvhNrRvvrWnlYBn5k7m49HZvPDpKr6p7cAfCOJ2uxjcv4jJlSWcNn0s6UWP7YfW685lwYL3+fDDhbz88susXPpPOkKxTH9yPAwvK2RWdSXHHlyF3rgZuTTjQEhv3IyZzBDH7uY1fHrH2Tz4+he8v2wTjR2dZGdncfDBB3PttdcwTtyL+sXjvQSZ351vZqQNbfUb+6WbnRmnN3rtKoxwG6In41TKJ8t8eP2R3P95IwuWb6E5EEYyVKaMHMAFJ87kjHn3ccklv8yUbd7W61uZGMEMXiPS1v1Wb9yMtm1xd5pWs2q/cvbDrwTgd7+7liP6iTzxygKWbthNcyCMqekMLs1jZHkBJx0zk6FVo/ly4ctMOmQGieY1mC0hdCWJaJjYgwFku0xTQxPf1LUybtIkiopyqduwmhyrwozhxXy8PuPRderwYvqLYcqnTGD51yuZMm0ymppAa2/DIwjQGcQtJ3jrxvNZuMnPa4vXs74+QEcwjGmkyPV5qSz2ctiYQQzLs2Hf/gL3nTEI3UzRFu/Po0sHEI6E2LW7lubmJiQR8j0uxgwq5bDh/bj45OkYtR/T3JLi8y8CvPDisxj7Tkq1pQbhm79SbmiYjRrDo9sIfzqfDUuXsuD1BfzlycdZ+fUigpEYmAZlBVkMKszhlEPHcpCxDnl9M/ro4zEtNmRl38XI3mXcdupojPbPsNnsdH7jRzDgmqrhTLr1Kk4//2ra2v1IokA4FMJlUxhQXsKUEYM4YUxjOwAAIABJREFUakIlB1XakPcRN5qmIW96DyGVmc9yPMBx0w/lq001zDvzcH518fnII2bhcnlJB5toW/gXnM5MeBePrCAgEkvGsFqcXDh7NjNmzOD+h5/gyyWf4w+GyPM6GT+4hEtPmMq00XkYK14lrIn4Js1BTySQ7D4cG15DUjP1E26mqHEJatNXuAUBZeihiAXDOf+c83CIaTZs2ESLP4yaTlFWkMUhw8s5a+YYJo8chJRfmnEUZqQx1i3A9DegKjIYApdOG0SBmGTNzgZaO2Ok1TTl5WUcUj2Oc8fnM6mqAta9SSCVolwSCdUu4pvVaxlz7s248ysQRIPE+gXYOmtpbe2goLAQU4DUfn4HFYoHViJpHTQ8Mw9JtmC1OuiXlYtRK6IKkGWYXHnuGVj7j0DXRMyWbYTWfc2ePXtwqgMIbUxAKExWXh7ssiEdeTUmIpII0WWvMDzRibF6NabVimixYFhcCKZGwN9O697tjBw1nqQKOSUaDoeDgw+eSH1tDf0HlIMIsUiCSdWHoFhcNNQHwExS1n84USOOJFswEOk3wIPTMYYXn3+F4044neVrtjNgUDkDBg1EVxVEMc0jDz7E3LlzkRxWKiqq2LlzN+UDBqFraQRTYMfmtYwcOQyrzUmex07aYkMRLUwcNIay8hJEUSKRSGKaAslkAlEUcbu8XHz11ahaHFkRMEmiWCzk5OSRSsA/nn2MCy+ciyKA1WJHEmV0zUBVVZxOJ4mYSiKuYpgxIpFOiouLMcwEskUl0NmC0+FFMK3IkoLLKKVpbw2q3oLVGqOx0c3AISPxuNy8/ekKzjr9PJrrW6kaNoLla74kK8tNIhnGYjVJJlPIiolhJInHNFZ+8SFTp89k9bYFLF0W4siZRzJnzhxOnX0MLo/EvXe/x8knnoJptnHRJaeCKVO3ZxuaHqGtJUVevodIIsDxJx7Ds88/wgVzj+cC4UhefHYZV11+Hls3fcqEMROoHj2a66+7kbvv+z2FhXlc97s/Mv/PN6NrJju27SI7p4QhQyqpqqrC39mMrAiEOhMU5PUnHtpOe3s9Slk2pt3H6pVLSek2HKWtbKpaxPCPLmP1oM8YrlaRVgzsNhter5NoII6pJjEwkEkRjdsIhRoxDQFJMjj97JPYuWUryUgT48fJCIhIooAsyoRjcbxuKxbNYNYRwzD1AIaoIEomBklmzqokEUsioLB5y04qyvohixbSqk4spRFtamTylIOQFFCTKQ6pPgR/wxKsspVUuhNdSmFJW0hqURQlRDopExOi2AULWG10BBWy84YzvKoaNR3F395KdlYJ3uw86vY2kJWXiyIrWGx2OlsD+LK8dHS0k5vj5ezzjiURquX1l9/jmJmjkfUwdqeTusZG8vOcmAiIkommpfB6fKTScQxNRVJkDFNANhUkMYmpu1DTAYIdneTk5LOlrgOXM3sfnWUyYdx41q1bx7AhZdRF99DpD6Cn0n0qNHXRwf+XVVwPJBH9KW3vGZP1p/hR6Rnj9sfGdf0Z/vUg/LcMuqalf3xDe0lUu/T5D5S+X97vvOl1A3OAVvzLx/F72njAIn1I4X5Keiaxb8a1t9S453Pis0d6Ze6qEKTiKpRhM4AMk5de+RomZkbCvM8BUpe0WZ4wG9GTjyiKpLcsQm/ajIDQzeh298Odh6V6Tnc7ejOB32YEeeh0pJIqALSGTeg7Fh+w69bDMiq8hmGgrn69mxnv3TexeDjKsBkZO9FQK+qq17vr26//PfoEoG37AqNpy/7IusCVh1J9WrdEsSejZhr7NtZ9+Hv3qWrKUdS3dfKXX8/mrMMn9Bh+ActhPZjxVa/t69N3GyoWD0caOj3zNtKGtvrNXnm+XUM9+xR7/VcImoFcMOI7/RLceSj7vhPw7XcS9s8HIFceilRSlRnThs2o2zLfSei+vfwWu/3wKzHJ2EUnl7/ao0/7bkcBNaWS8vTDMWwsqbaNxOMani0fE4lEsdoVRAREyY5ssWGYELP4ePPd97ngovOpXbeGfrlZiKLAnj17sdttFBQUEAj4sbt9vPjRF5xy6il8uHABp0+dCJjo0VaCCQndUUogEKCouJigZxgPvLCAW265Ba15I/mJ3ciyhG5oSJJEPBLB5XUQCETJPfwKFIdMY2MzgcWv4bEk8fl8rFu7AYvFxogRlezZs4dh047F7y5Dxo6FFHUfPMzQyiGYKOh6ing4QTjkJ6+wjK9jBTz4+CsMHV7FzedOov6bT7A7HGzbuYupU6Zgd1iIdoZpDiepPO23bKvZiyKIZO14C7fLjSSL6LrJihUrOOTgiQgbtqELKnWHzuKa3z/Jki+X8dvTZjDvrMMRETCFTHgnWbZgGDrylAtJJBIIgoB912fo4RZESSSdTnPKzc/y1aY6rpk9jeuuugJr5bQMQRLtQNi8AEEwSCZT2GxODBN0LY0kKihj54Arh0CnH1fbWoS2HQiiSCwaQksb2F02RGQMmwdn9XG0tTQQM+wU1izENHQM0yCdSOHx+dANE1mSieWNRCgYitvtQm/fhrl7eeaCCo1USs84klFEME30yRdiERTamuvwNX6NmAgjidI+2zoBVU1nCJrCwYj9JmL35ZAKt6CtfB3FYkVAwDD1TPgh3SQcjuCb+gv0rAJkUyO9cSFqw2YcTg+iLH17kWqC4MnHUn0aogQrPnqeio51JFUQRQWrw43L6+teI9LQ6UglIwADvXEL+vYvusNBmKaJoWmIkoggSVhmXI4gZTQVmt59kLI8b2Y5GRmnMrHyaaxcuZIBQ6sYNn48WdmFqMhgmAgYqMkETqsVXTEwTJma7TtxCineXbCIk047F1GOkefuj2lNEgpF0NIaVosdNaoyYWw15180l7FjhzLt0Bks+fIrikqLEEVwW+1kZ2fjyc3O7InpOIaWxvvI6yQSKYQ/XEg8HkWx54IeJ/WEC8ViRT0nSLCzlby8PASstDTuoLi0CMnqIBFPo2MimiKyLKKpSTQ9jc3qQBTsrFi1kurqsbR3NFFSWkRDfRM7d+7hib8/yerVawh2dpKbk8PkyQdx9VVXMHzY4H1japBUI7gceZhGJkQRhsQ5Z/yCZ55+FkWGJCFcdhfRSIqUruH1uGlvbuWRx5/gk0Wf09jUhK7p9OtXwrHHHMUlF59DWf8yTEMm3BzA0GOYSoA//OEpHnjgET5YsID+5fkMGVZJvFPmD/NuYs6Zs5h9/tnd5/OjD8wn6k+xZu3X3Hv/fbhdPhZ9sppJU6ooGjyYH4JTjj+e+26/G8PQmD17Nu8teAfFIuNy2dBJYRoyibiBmtax25tRJBPZMoKElGbnutUMrZyAmujAIsapXxQjf/lBbBAWMXLCcGTRhsNhkAp3oGkpUskomDIxsx8lJaW0d7QjSiZfL/+KvbvqOKR6GP1LDCwKyIKJrqew2GzoaY1UKoYsy1gsIoYgoWkWojEn73/4FWdfeBGi7MDQDHbv3Emxrwan4mb11loOmnoWqVSMQKiToqIyREMkHVkBqoYgg2oK2LMnAzGS4Z1sWVNLS2uEWTMGoIoR3v5gG4Oqjmb4iH74m9vw+Oy4vYVY7AKxYJi6uj1UDByIIEqYekabJZ1W8TmziOoxJCPF88++w2GHeMnN8iJJCTTNRBIFLFYZVVWRZQVd17FYZJJxDSQDXQNTF3F43IQ6/dhsdjQDdteEsOaOYueuBob2L2NYdBxPFt9JUV4WeirAh6+9woNPP4uzuAzLLjc6JvLIHrSm2DcD19OOVBRFdF3v009M5qz+roahIAhgin2m9WYGe4ad6SkZ7S3c6Y2rZ4idnlLj3r5wuv7vK4SOae5fRuhF8BvGtyaIuq7ul1cURTRN6+G8qm/HVD9D3yBJ0o8eqJ8Z117w38y4HlAl+UemZzL9dMa1a0PpfeN1oPp6boI9N5iujaf3pvN9NgffN+591duXGkxvfH1taL03vN43dr3z/Bjona/n+HWlddVzIPfxgiAwdOgw9u7dy1//+jjnnHP2AevvvZF/39h+3yHUE6Lv/RoA1wkPHbDsgXD3NccPpG7UNS+75w56d5qu6yiK0j1/dFFF1GzUbt5IrjeNKqhs++IdRhba2bt2EbbsbAQjTjTtIDsnj9aOEAXFZYQCnRSVVrBt224MJNasW8NJJx2Bw+phx46dlBQXoqpxdu1qRNcFKisrcbrADO5G6txF0YVLeef9V5k8+RDiMR2L4uCoow/ntddfZseObYybOI6dO2oZPmwkpilgmhHssotkrIN/PPk2hg1+c/2VxDr8vPLaJzz7zHO89PKL5Odnk0j4aW4Ms/CjBWRluzhoyjTKK4by5ksvMHn6MMorhhBo30X9Jj8Nezbgj2ZzygWnIQp2YrEYsWgbzfWtjB41AV+enUQyTHNzI1kFYzl/zok8/vBdKA4ZXZUxDYXsHB8rVy9i0vSj2bp5GyOrhtD5wVWkUzHSB/+BU864lE2b11JVOZyn//oEsWiY4cPG8PGijzj6hGPQDYNoR3u32nhrayvjD5pMa2srXq+XK668kpWrVnHpJRdz6aUXYWoZwjMejxMMBsnyFqHYLERiYbLzcomF0mh6gmg0TF5eHgF/JvRFPB6ntP9wJDGMYniIalEECSyKRCIawW6zIqbj1NY3UTJwCKphoiQTBKNxJC2CbHPR3t7K4CEDCIX9yKIbTAWHwwZiEsnmQE1ZEEWZzlAbkc5mikoGgKzgb6kBw4rLmYMoabhzbGiqSTplkk6B3WbB4rQSDTYi6REUVymGaEEzFETZRirSSJYvG1U1EbU0rW0duH1e8vIK0LQ0Bma3VN3ApHHnLlxyikWfvUvlkMEMnjgLi6MASUuiChnmWRZVBFEHI6NGjpgAU+leS6IoogkWFDWNbBX56N03cLk9TJwyHUGSMaJR2vxBkuEQe3dtIre4mGDLXqpnnoDgLUFTQ9gVGdE00UQJQdcwU2kCLS3kVwxETQuo0Q7qdyxm5LgjSIkW2gJ7yLIPJCVEsIoK6ViKQDTAEw89yYfvf8JHn7/PnbfO56qrf83Tzz7OFVefTzRkIRYM8eabb3LXvXfT3tlKltuLv6UD633P4clyY/zhct547X2mzDgUh5BGfD4HUZaxXhYlmYxz2aVXcdj0Y5k6ZQSFJdnoWFHTIslAA+1+uPzqq3nttRcoLsklngiiKFZs1nxMIUpzy17ycou5a/7d/Onu+7v3ni5TFsio+D9w772cd84ZKBYBgzQYDgKBABqt5OQNx9TBNBMIxBFNK4lIGzomuYrEOws/5pfXzifYmcFnt9v2mTpEAcjOzuK1V55i9MgxSEqCSMdeTHMgbruOIDm4aO6v0QWRO26/Fati8PRTT7Hoq2WsWvOtF/fzTruY+bddhifXwa5dfq773Z8ItDYTitayq9kPgNvtJhlP4vV5EATQNQNJzphkHX/0Ydxz++1YrVaSqQjRZAifpwBFsdHaFsDQJWxWBzaHiSmL1OxYx7N/e4db5t+AruscfexZLFuygJXLPqB/yWjc2wcirfQinLqeyFoPkqIimiaK7CGtBTDaa6j1Z1FY1o/snBwMJL5atoLRlUWsX7+Nmm01VI/zUlqcj9NpxcBAlBVE3UBTw0iyE9liIZ4yWLWyhjHjB9IasDF0+FgSCQ0RiLV/hKjZaYuZ9CufSru/AYvVSnZ2McGAn/aGdWR5VWprw4ys9GAtnITD6WPH5jWIeow8bzstrUlCnRoFpZMpGjoEmyzwzy+WM2bMUDau28LkyeNZ9fXXyKaIKUmEEzFGjx6Dz5fN4i+WMm70UBKoSIYTd5aLhppdLHj3Y047qZIspxPT1PfFZ47jdnkRJR3dVHj9rU0cddgAHC4JVTd54Y1djB5sYdzoUbT5a2nryKO2pZ0TTj4LLZ7AuSWf3WcsYf2G1QwtdfL6m+9yz1+fRHV4MU1QzF5+YP5DjGtP2qA3np40WhctJEnSj2Zcu8r0DEfYE1fXu77pPKkX7p/GuO7fh++PGfsz7A8/hXH9r1HAFgRpv1/GkYGOIBqZX08m4gDxUn+MWL93LFbBZL/fdwtk4rvub6/Xu+0/XK8p7P/7Th8O8OtpL3AgY/WeHs5+cBH1ilvbl2e0nsyOiY4gdtkn7p+3qz19tat3e3rbIXSl/2+9vR2IOTxQ+vd9q57xTbvK96y3r/7/GCa258bb1eeeh8MPMdq9+9OX7UlfajR92X70xtXzua9vYR01B+uoOfuNQ1/96/O7/MC87vnrwtPVjt4HUNc3MQwD0VAQ0BhSWUmbX6apOchBx5zF2ladArkTb1Yh7uxs+pUX4cwpoX9ZGTbZJCcnl4a6nVRUlBCNdFJe1I9YKMbLL72K1WbD5rIRjqlMmjyFnGwfb735Gp99ugQltAv7pKup2bOHgw+ZhsdTyEcfLaGptZ7DDj+G/hUVTJk5mdXLtrFzSx0WyYLDakPVNXQljjO7hGhnIz6vi5amPWjxGo49eSIzj5iFbEvSHqxHF10IssYZpx/PkYdPxd/SycvPPcUps08gK6+MYFDnLw+8zfOv/4P+Yw/jkJkzuPziaxFNuP2WW/jHY68wYvQY8Gg889TfMdNxOlvaadjwGc8//xDFg8tIJgysdgeFpcVcOPcyPvtkDeFYlLJB5SRTcRLRKAIyLz73wT4PxHDQxEk88thTVI2bhMXnYeZhRyGlZQxdx+12I1utFPSroGr8waS0FIoiIWLyj7/+lWVffsYF558DpkRS00ilXTi9XiTFg83lJhAMIwpWtKSOaJNRrA4K80oxVJFgZwc52QUMHDiYRGA3kiARTncSbKkDIBaLYBU19uzYgOLOpqS0PwvfeA8lYiLKAr78fPoPrMCTk8eQqtGYkhO3rx8ObxZWp4NgZwetjXXoaYXW+t1EAs2Yop3+FSOwWK1YFfAV9Sc734PNnsKV40M37FhMK+3Nzbhy7fjbaxBSGqFOmSUrmkjH0lhNkXB7E627gwiSh5QpIKOxY/N2wuEwnpwsEmYaTQRDzHj+1nWdj994lRuuu4ZI0uSQ6acwbPzx2KxeDDOJLgmAhiQamEgYWDFEI/MjYyNrIoIgYZgCoqFiKFbMVIpjTz4Vu6ixYcUSdu1soK5uL+3tbZSNGM4hJ82mfNRBHHz8OSguH7Iewy4pCKaIiYRkgKDqtDbUItlTJHWJuu0rCDRvpHDgMDpTISQU8r0DUawp1FgCPaFw358fINszmKoxB7N4+RJaWxqYMnU6RQUVJKMisc4kpUWFjBjVnz/efBORdCf1O7fzyaef4/HkZRgrCZrr/WhJC3u2bgZTJp3WUFMaVmQ+WfAZ999zL3POOBGfJ4uF733Gmy+8zfqvN1JSNozKqlI+++gNTC2Ilo7hdGVjdWZjGBq6JpLly+fNt97sZlqrx46jLK+QbevWsPzLpRx/3PFomsbV117Lsq+XoWoakU6VYOdevO5sWhvjJNsDBNrqkU2Jrz9eR6BZxeMuIScrj5oWg8t+dzfBzjBlZf15+aUn6Gitp3FPLV9/uYjq6gkEAkFOP3MuaV3E0N1k+cYxZ/aZiJKBoMuccMwMzjr5OC69+FLyClwU969g1ZrVjB01snuvHTzUg8VqBd1Fbp6bF165g788ehvvvPlad577b7uTDSvWsnLZEnZuXsfmNWtordvDnu3reeyB+cRJEYh04rC58WSXopomc+acS45PIT9PRNdacFgUxFgAjyuPOx64HUwB0Ujx9utP0+YPMPaQo8gpH4TvREhNbMV8ZgLBOgO7pRibLRerOxdXVjlZFWMocbeT63WyZcNOGuvrGDF0DHkFFRw0YTyFJbl8vTyAxe4gmWhHNJ1gpvH70xgSqHqcVDKJacRBT9NQG2Pdxt1ohkZj/R78bX4sog3ZopGXV4po1fFk5RDsjJNWNb5cupLiAjeaauL0ZNHSISGaCdJJnZySLFLRdhyKm9yigShyBTvra9BTcdau3czwyjKC7R2MH1NFY10DsWALBdlxfI4Uw4YUsmvXDmKRFCX9irB5LHgdPjRVY/eWHeQV9OP4k4/nm41hnnzpGxIqyKjY7B50LYyuO0imwpx0zFisVhFZkhEMnfNOHsaEscPQhU6CERsNgU6OP/kUFv1zIcuXr0KUJKxuL/W1e7n5D/OprJ6JJLmxqSZWExCFzAUZJojfpWEORP99H03SF91jmmZ3HFcEYz+6sCd92psW6clg9qYjup57MrRd+Q5E5/Ws87tRFcA0dUxTRxDMff/3ZnbpThNFGVGUu3mSzGW0gGFkJLcHood+hv89/Ncwrt8FodfvZ/gZvh96e4z7n3h9+095ijMMA0VRup/7OkB6Q+8N+/tw/1TPeQdyNKCUT0Ypn/yTcP2YtvQMmdP7gOoJXX3u3TZTgFgqSTydpLisikhaJnfAGAzZTjwaJ6Va0NIa0YCfeCwOosIXXy5j8NAhxGNhcnM81O6pobCwAJOM+p7LZaOwsJBPP/0Ur89D9cRxVBQ4EU0V64BjWbXqG+KxJBdddBH33XcPqhHjmGOmoyZSdDQGuebaa3nmuWd55NFH+fKrr/Bk59DYsJdPFrzL9GOO4+ijj6bQa6GzdQs+h52OpkYaaxqJtGm88cpzDBk0mJdfeY+GpgjpdJqjjpqFrIDD5kFNqlx73fU8+NCTDK+sZMCAYm655TrC4TZOPHEWJ5x6BLl5Ht5/+x1OO/tM4lqaEePGkNuvAsXqIR43cOcWsPyLVSz68GPuv+9efn/n7chaArQ00VAAW6sFl9/O5VddSnZWxqOxpuncfc980loIw0zg9dkIBNu44frbcPt8SLIFLZ3E397WLbHSNI3m5mZaWzqwWq2YponD4cBisRCPx/F6vZiGgtebhcfrJNjZAakkWiwKWpqF779LSXE56bRGLBZDsTlJxFO899ablPYrxyIrpBNJgqEo2TlFtDfVIoppZh47i5ZYiJZmP1bRRiSURk2nqNm9i1BnkFQyQUcwgCFaycodSEH/ccQSUYpKS3G6neyt2YxppNFUle1bd6DGIgQCAWTFRsgfYNOGrwiG/dz3wKOg2SgZOAANFbfT4PBDR+HLykGQJRSrzM2334RFhFB7O4FAAIvLwYgDxFe2WCwcfNgsnn7lDSqqRhM1RESLgiHsf5natQ5+6LJVkWXCTTWs//pzXvvrwwTbGogH28iS0wwdPpxx1dWYgoAoSLhcrn3fWfsOESZKIMsSe/c04XH2wyIZVFWNIBEHl7sMDDuLFi1B09Ik0yHcXhHNCFE9cTzrln7C0o/ew4LIww//nSOPnkxr+x6amxvxuUuRHWlqataSCDYS2LOdgw4+mOrq8dTU7sJ20FjCA/OxOmOccsZBrFq9ntFjqtk4biWXfHUO777zCV5PHna7G1GU8Xi9nHjySXT4/WzYtJEtW7fS0taKw+WksLQs4xU2GkVNxlCNALKSIVhvvuVPAMyYfijvvf8q67evRHZ5qKwcwhOP3Mvw4VXous6tt9/BEw88R/0eP94u2/8sJ8lUENH0EY/plJRZcHtkkjELkXCKX15xFf5AJhzbXx56kBmTJxJsayIabGfUsAE8cfcfcTkd+P0B5t95H4nOGI8+8GeWLXmfmrq9tAf8vPvBe4RjnVx62WnsrtnKH2+7CVmWuf22W7q/UW5hCdf+7gFuufk+sp3ZqGENURboX1benadsYD/6lXkoLFAgFcYmasy/42ZS8QixOKSjacKhBLt3NxHq0DBUkb898TjxpIEgWfBmZ4EkEldj9C/vRyqm8tUXy7D58ognVErys2ms2crsE05kxdfLkSbFUG6up/+AAZhfZRMNB4i0tKInQvj9HQg2Jyu+fJfKAYUoooTFraEZAnua2pk56xhOP/MkIuEUiuJDElNE4g4+X7weQ7cgixLQid1SxCEzKvHmOzl61hTUlE5RaTHubAWLVSGtisiKm0gkhs/npby8FMNI0OFvJx6P4XUrJCN7ycq2UL9nO+l4O3ZRoKTESwoTh5zE60sTCccxTYmKinzcnhzcHh/btm8jkYqR403jVPxk2TuwmXW49DBLli6iqLiEeFRHkR04HG582fnopkJJ/8HkFQ1gwqRJNLd2oOMhHpORcPLpZ2vRNAdNzREkSUIQRGw2G6KkghTDNH1sr/EzcOQIZNnK+PETMk6MTNi6cRt6SiO3sJTTTp+TMUEQQNssY2z+fjc3Pc/Wn0oz/KcZtx9DI3XBv4OO60nLdDmQ+hn+PfBfy7gKKAgoYMpgyn3eyPSGn2KE/VPgx8Sk/FfV29eN2I8t0/MmrLcE7Ifq6fm+LxXc3n/7ktD1/D77SW3/RWrW39fmnvPjh274+nruOX69+9UX/q73fUli+6qr5/89Pfb1JZnuiWt/Rvzbug8UN623BLwLd9cc7tn2nnX/mE3+QBL3Az33tWa/T2rdddj01bf9pPv7nq0uByPGj6W2pgVRsDNoyHDS9mKspAnHRIIhDZfTi9Xmwp2Vy6xZR9ARCFBSUkBhQTa/vGwuhiFit7lQ02kCwSDxeBy/v4PsbC9VI4Yx2BfFqDyPV199nfq9Tfj9QebdcB2bt2xg9IipVA4exdzzL2P5orWs37iB9xd8wO+uv46OgJ/Lf3EVeVkVSGIu3rwcdMOkM5hAkzzccvN8LvnlXAKBDiwWO2eeNodEIsUVv7qaP950OzNmVZKTk0M4YCEZDVBTs4GOwB627trKLTfexbP/eJrS0nx279zBzk2N3Hr7vSSTdgYWV++zm5KJRaNk5efhtLuQdRGLzUFekYNkYg95OUliyb1YLBYUixV3dgGeWge2bTI2h9J9cmRl+VAUibfeepsjjzyG4rIyRh9czdbtG3j4sSfQNA2LIuG0yfut/VnHH8eocdXccVcmzq+qqoiiiKqqjK0+CHe2i+dfeJ7OYIT77n+UiYdMpbyyivJhVbz89jts3bqTSy+9jDfeeA0dK+FgJxecczbReBpfdhYVgyvZsnUnze1Bbr/7YcZxWYGdAAAgAElEQVQcNIPyQYM57PBp/Pb3N7BrxyZ0QyUa7iQny4tFFlFTCUwtQVtTPROqx/HwY49w8uzT6D+kksLygZx+1jn88rIrWLhgIRbRik0wkJCoqWtAV1OMqByEw+Pl/oceY8vG9Vz6y19z0ORpDB45juJBIxk+bhznXvgLFn72KYXFeUhGimyHkzXr15NE596HHuSYY49jxPCRZGfnUlBQxOTJU7nxxpvQDbBY7ZiI9OtfjimLsG++V1YOx+Xy8NxzzxOLxbjrrvmMGzee3Nx8Bg0czEUXXczevXu71057czMXX3Y5J17wK87/3e2c/9s/89yHy9DsOaiCjGqICCiIKGiaxl13zcfj8TFr1pEYhsHrr7/B4YfPoiC/BG9uAVddfwN/f+pZBENl49pvSKkqhigSj8fpaA8wefoMfDkD+NOfH6Wjo52NGzdSPriME08+joaGvcybN49zfnEBwyaMoDXcypbNOzE1N4MqxhOPWxGELJ594Xl+MfcSZh47i7wrzqTiN1dz0ORZnHXOXJJGggcfeZDHnniMM84+g2lTp+/bFw10I0FzawuiLPHSKy9z7PHHUVrWn9L+/amr34shyqgmuJ0OUskoH3/0TxYtWsJXy1awtz7jmO36665B0zTWr18PpopikXG73fzqsisAWL5yDceddCxDhlZgmhqxWITy8nIKCorJy89GEDWcLjua0ISkpAkHYW9zJtzZ9GlTmXboGDRVJCc7n5ycHBqb9uDy+rj0ogsAeOmVF7A57FxwwQWsWbeGu++9D7vDxcuvvkRWrpujZ53MDX+8l0gkgtWwIgtZ3fvnnppObr7t19z5599ikMBAZ/iYUeg9COtEKkow2EzjnhqWfvEpsiLwm9/9FofPh8PpZefWrSxftoJvNmxly7aldAZ2Y1XiWG1udEPEanfQ7m+nozNCWtPRtSSHHToZU9NZsmQJba0dFJWUMv+OWyjOz8MwRTriTSwtXED98ZuxR4pR1vcj0BrCLefjze3H0KFZBNrXo8aTyIKThoZmKgYOYfU3a9i9p449TTEMIZ9oMorTFeX4E0eBAVraxAA2b6yjoy3Jzq2dtLV2Yrc6WfTpF6gJk5SaIK0pRBPg9XgQBBFN16mtq2PqwVXk5HhwOayMHz2EvGwPqYSBKNlwO8txuYuxKW4S0QQuh44sWhAEk1Q8TUdHB06Xm8GDhxAKR2ltT6JrCg6LHTUepzg3xuBSmXhnlNrd9Xz11VfU1O4it6gAh1Pkw4/eYdzEcbh8HnbW6qxa7ycY09CEJIceOgHFYpCX7wTBJBKOkYilEQQR0nYiwVbyfUUM6jeQ+oYmdAMmT55MMpWkbtdK2prXkVtix+3zohp6RptjiQ39C0v32fpDZ3pvWuX7GMWeKrs/hLfnWd8z/cdCz5jzPaWzPfF+n/Zf73b1pit603O929uTJvxZwvqfgZ+9Cv8v4UC68v8u+J94fftPeYr7IRWS/79Abzvdf+X4994gDcNg69bN3fh/rHrygaCr7T8W1LqvAP5HUtfe6jz/U+hS++m65RTMjMTVME0MWcRtcxHtDFLXtAur5MNrEcnxFuPx+mhsaCCeTiHanATbWvH4fLQ0N5BIJPFk5REOxcnNLcAwRDTdID+/iBNPPBE1HcNtxND1CM3uCeTktvDwg3/nyqsu5a23X0ORreSX5mJxhvjzPZez9J9foWPy2T8XUV09npmzjuCM40dT17abggFZ+ENtYIq0Jk0qRxzJr6+ZSm5OMf2H5JGXM4ATjzyG3867nr1Ne/n48w+p27EXp8dPZ6wZT2oYtTui9Csq5rGHH+KPN1zPkUdPoX9pCV5PPpOnDucXV89m284VjKgagmjEkRCxOxxs2raFPTt3U5xXRE5FOaMOOYKW7VnUbq5D9BXhGZBDoz9CQUEB9uIqBAOikkBaTWTGHpXZp89m8dIlyLKMw24nHo+zavVK/h975x0eR3X27Xtmtvdd9WpLsiw3GfdCs407HRw6gTchtIQQEkJvCYQUeo0JJITeCaEZGxswNgbbuMmWu2Srl11pV9pepnx/rCXLQjKGlDd5P37XNddKu3POnDn16c+XG9bj9Xq5+NyzcTlt6M0WRA1sNhsu14FUOapGS0sTI0aV9EZu7UltFgx1M3P2XGpqa9Dr9ZjNZjr9ft5b8gFLli7jofsf5uyzF2G0ZNDd2UEiFsfpyuydF/WNLfzgsivp6OzoTU/j9XlZ8uGHfLzqU5798x+ZM3MmNpuNpqYmTCYTVkEjkQyiN8Ftt98GcODZJlrbvbzy+hu89ubfuPfuu1l00vFk5RWTkW2iZX8NSgoyCnL4/T1/4Pe/+03vOjIajej1empqa6ipreHNv73Fnt0tNNfvx261MWfuXEZWjqOhoSE9fwUBp9NJd3c3W7duZevWrbzwwot8sOQdKiqGI4kKqqD/SlKJUCjIrFmzqa6uRq/XI4oirW1tvPLKK6xcuZKlS5egqioL5i/E6/NhsVhQVZX29nae+eszrFm1mpWfr8HlcBzU2PZzVbjtttt54IEHEQQBl8tFPJ5ga/UOfn7DdSxZvpTnFt+LLIfoCjfT2dnJiSct4Fd3/xqARFzj1lvuoHRIKfqsbMYedyxvv/4qHoedsWPH8eEnq5CVFAgKOimBP9iGo7CQn99wPS88+3JvG2xWK6lUkubmZpqbm1mydBkfLvmAx594GLfbTTwQY8bM6TjzcgG48Pxzue3m63n+pRcZMWoUsVSA7pCf/MICUoqG0WBAFEFUFE5acAHhcBf3PJDOM263WTl+6kSu/cVNPPTQwySSQTRFR1LQc9yU4t42Lf30Xc496xQsNgGrLYPm5iYsQia+8HpULcXQrFIM+iJafOuxOqC5uQ2A/LxM5LgLZ7YTRdChiRqu3HwMhlwKhq4DwB8IsGv/PkoLChl11GTuvf8+bBY7XcFORoweztvvvcmKT1Zy7PTprPzgVYaPmtDbLn9nM4lggC6Tgb8+8xZnn3spKS2KoDf03qM3pM2sy4ZUYpCsGG0OwrJGoLOLAreLCeOGk5HdRXHZOExinHg0yq7qRkpHecjMdvDm315i3rwFWMwjEUQTdpuKEvUjJs1ccM73SAkSSSFFMhpBdppRFA23Lot5JwzBGwygTEsh7+7Es7EEdaMVdVQTeq0Io62DqM/Lnl2dyAkzTqedyZPGE47G2byxipde+4i5swsx+HV4MmzodAYScheSOJScojAGk0YyWUtHl40hajvz5k6hdmcdJcUSVqsbbNl0B/3oJANbt+5EVURKsuIk4yqiERRVIBFupLxiDKpBIC7oiSpgjvsx2Y1Iipn6+q20e5spzBxGROumrn4/hXmFFBeXoabixNQIkiJhdmagxSNkpny0tG5AIJ/KykoMZiOqoKDEFUaNOIr21m4K88qpKC/jlRfeoLB0KDt2rsFqjJJXaENQDMRiEcxGO+FwklgswYbt9QTDCRacfDofrvyE2TPmsGXLBjyVmegkiTdffp/ibCu/e/TetBvaACTa1zFe/eOY9P3725zdA8VD6c8Y9j3T/1kY6D0GQo+FmaIo6HS6Q9rZH31ppm9KP32Hb4f/Wo1rfxzi/4p4yNXjg9lz9fWl01RhQH/YgxWrh70O0baKGogamqCiDXT/AQyotUQ95BqsHYJ4qK8Agvr1vrD9oKlCOl/rAL/312AN9g5wkFEd1IRTSrdbQ+kNptNf+3u44ED9pVtf53vRv2z/q79m9HAYrI6e3w6H/uM7WFv75yHrX8dAWuLB+mWgjbXn3p7NtL9Z7kDmuP3Lps2SBn/f5LbXSG577Yjet/879NXyDjYm/bXjve/QZ35LktRrcqppGsqB/KeiIKBDoHzkUMJRgZLhU2iJOyDYhN1pBVIkElEsZicmo5lUIkYimiInJwerJZPmxnZefeNVsnOzsNisOB0ZaKh0BQO8t2QZvurlCOOv5K8vvcqwYaP5xbVXc9qpZ3LCCSdgc+jZt2c/v7lrMe6c8Zxxwc9ADJOXl4Unw0pT6w5mLvwxOqmUxQ8/xWP3/ZUH71vMiy++iElvZtnyVSSUBCaLm65wO8+/9izdYT+LFs1HkEXyCzP49OMqAl4Da7es4pzzT6O6eiM7qtdz9tln8/vf/57JkyezYePnVE6YiKBZWPnxWoKhEMl4lObmLtZt3opFSjB+yjhGTBqHHPJjElVsmdlkFuVjohOH1Uh5Xgb7qqvQRAOa3oTOIGEyWQD489N/YfOWLVx1xVW0tbVQV7+f3bt3snDhQgAefuQRwvEYNpcbCYlgMExSVnpzqqqqjMPhQVaMhMKdiJoJ9UAy6Xvvf5COzg6efuqvBLytbFq3mnfefIspk6agqiq/uO7nbN9eRcP+HbizPSRFgUBXe+/cufHWWzBbTPx58WKa9++nua6Wt15/hVGjRhGPJ7jkiqsJRMKEYnEsDjfOjByCkSQXXf4TduzajcPh4M+P3sf6j5fQsn8X2zavY/bMdPTja2+6iartNUTDMWRZpnjYMDTJyX333MNv774TVVU56cSFrPp0Fe1tLdTX76R+dxWvvfAsC+bO5tNlS7C7M7Dl5oDBwJQpk7n//vvYtq0Kv7+D5uZG/P4O3n//XSZNmkRLSwsX/+BHKIiYrHbEvrmtD3ze+eu78La1ceZJJ9LRUE/ttq0seetveDwe2tra+MXVP+XiC87HYTOzeuVyfN0BfL52nn/+WSwWC3tra3n4/vsRNBVBOHCW9VnLW7du44EHHuSKKy6noWk/7c0N/P215/jFTy9DEASWr/iIu+59DFfmEGLdCsW5uUiEcDjSgaIkSWLx08+QlV/Mi0+/QKJbpr0xwAvPvYgmpOdDW3MLS997mz17m7nonBv4aNkHvPDsy4iiyHmLzuaaH/yUh39yJcsee4IvP1vFS88+z9lnnkJHUwfmpS6Sr4m0drUQ7Az09o+iargzXAyrGEos1Y2citKwtx5BlTDrdUTD3bT7vMRkA6FoPUajws4dOwGoGD6ctlY/9977ANFoHPRWNEFETgQZMmI6WZkZAOzcsQdBENCLWSQTGmZjBopepLxsHCOHHYU34GVn7WaSKQcOeyWSLk2QWy1OopF65GiEZCpCV6AVXTyI0l0LyWjvO+zaugOT2UBSjUM8htMp0FDfgtlg4rrbfo3RaOT3dz7EipUb6OxI9pabMnE0eUXj8LV0YrfEuPvuHyLHFFTl4Py5+ba7mTLjZIxZQ5g44zRmn3gKTz3+MJrfj8/Xji2jgJEVpRg1H7v37sFkE8jIseINBNhfW8fsmbMw26w4rUaUeBiDyYjRk4sqmJBVCHiD3HHd3eQWlxBNhohFAwhuJ8FwF/FAM5FQKxmTLXxWvAzdze2k4ibM+6aiyzKSm60j22rFbDbyxdov2Vy9i0CXzMyZx3PiSSewfWeUlD6bcMJCTI6gN7hQkz4CvhB1DTGavBqpqJFITMPfpTBkWB6ibCauqBjNEqLqpqHez7CSEdgNZpZ9uoXmZh+qoqDXi0iShVSwHTXSCUo3FquDBDYSUfB3+jjzpJls3VZLa0cj+/fsorSkiO5QBwazgMORSzCew74GP6lQAovVhdmTT6Y9So6jie0bP6SjzY+/w08sGaGkZAiFRdmY7Cpfrl/PiaeeRt6QAiJaGW3xLF59bz/b69qoaVL4ckcXH61vZkttHIM5k2jCjt6QQVFGNnt2VVOUm0c0EEav1zO81M25559GaUUpiCJaH8uk3j1kgPO3LzPbV5vZ/ywezKKw7++a1o/uHsCyCg6lEfoGZBqo7sHQn1YciM4ZSIvcly7t+exhXg+2Nx0tOO3Lqn6FZkqlUkdEX36Hfwz/ZxjXvvjKxPk6Ru4f1Pb8u7St/w4cqYTrcD4CgzGk/0199XVmr//q5/V97pH22UBmxN/Up7fv5t7DXH4b35Z/1TgP1E+KoiDL8qBlDEYToqRn2fKPqAsa0Eeaqa6qwh/oxOV0YNDpiMaiDBk+nKysTILdYQwGI3aHjR/84Ed4vZ18/NFKXnnlVVLJJMl4gmyLhNtmpEEs5YZfXofF5mby1DH88Yn7ABW3M59F513CHXc/SFc0STAZIRKJMX7CGBQ1waiRlbzw/KtUVVVx92/uYf6COUyePJH58+cjihKnnng6jzz4EJ3tAcIBBX/Ax/z5czEY9aiqjNfr5bQz5rFy1TLmzJ/H2+++g6pp6AwGLr/iB6z9YgP7ahvZu6eWeDyOKOo45+zzQTOwr87PU39+EV+bj3jSxFOLn+HEeafw5JMvEYsG6OxoY+/unYgIbPv8Hb789O/kWAV0mnpAYq/r5ZaisRhPL/4zl/zwR5jNZkwmE4WFhbz88ovk5uaiqirvf7CcaExG0TQcLhexRAKfL51qymwx48nMJJXUMBgMNDTWwoHY7sFgkPvvuYcZx80glRLp6OwiLz+PF557kZKSEmRZ5uZbf01mRi4mo41wKJ52HTmAZDLJg/feydkXLCImx9EZ7cyYtZDFjzyCy+UkHI5w92/+gN/rIxGO0rivjueee42Nm6sAeO7JZ5g1fyFWl4dQoJslr7/GXxY/wsQJ4wG46Vd3U1+7B1GJEQl1k4zGefDhdGqwgtwcnn9uMaNHDEdJKiQiKnZnHlPGj+X5vzzAuHEV5BQVYHWkmdDnnnuWK6+8gtLSUgyGtDbMYDAwa9Yslix5j+ycbLZs3sLna9aS0voLz9L9lUyleOOZZ3nu1VcQrBZs2VlMPf447rw9rfH8eNUampqbefVPdzBl4rEk1Th6vZ5FixZx9dXp3MhvvJFOgzXQGu7u7ub88y/g4fvvx24wktRkpk6fwj1/uJOf/OQyAJ58+jna27pxOwvRmxzoJQM2mx2AVLwTPSHGHjWa4rwsujra2bevhjvuuIMNn6f73GQ0YbdZMEpw1RWXsfKTlQBMGj+Oxx64n1Gjx3KBlsnUXe1ke4YxftxYbr/9Zj78eCVS0IzUZaZm527c2Qc177FoFJ1oJJVIIYkqomBmRMUYFEVDAFIJBZPexo7q7dhsDixWE63t6RzSebk5OF1mNCFCONpGMpUAwGZzoCgKOdlpn1av14ekqaiJBGoqik5IIEkaqZRMa3MXdksBOTk56HQ6/H4/hfkFAGzbvp2c7HxMBjuh7iRORzYdvm4S4QA7aw8KYbZv30Kky0us209Ovpt4XMcVl9/GT35+E4Gubq6+/BJu+PkVTB5fzt/f/UtvuV17a9lU/Q4xrZ1Fp1+CGKmgraGJcKCz954tW6uJRuMYDHo6Ov2sXrOOG27/LfPOPJd9dTV425vxd3ehM5lx52SRUgXsbhdDhxazdu1abFYXaHravPXEEl0gqKRSCRKJBLfcehMvvPhXbr7lWhrqW1FSIi+8+Bwd3lqcLiue7EIclgw2frmC2XOPIWWOIl7UQWJRNeKGWRgthSjhvezbU8WUCePJy83H5bTS4Q+QU1CG2ZrF9j1edu6uJ5mEUERBk0zIokBNbZQTT5/H9OkTsVktOGwefB0tIGhogo5YLIrOGGJkZT4WR5ycQoFzzjqFgsJsdDqRWDyBwWhHI4imRDCIelRM6ExmLHYdNo+eru46yoqGIEp6ysrLaWv34fHkEAwmiakKzrxiMBcRpZC2Ni+KouDJG4rdYGREmQuLvg0tkcRq9tDm89LY3ER9TQtjxlSiKgmMBpHjZh7HCXMXcsZZP2J3XQLRWML2miAJnFicuZSUVVBYNISNmzdQWlpI+fDh1NbVY8VBa7AJr7eO4+efTEI7qGX/puhLB/QViB+Onvh3MXBfR1ce7vevc/P7pugbl+Q7/Ovwf5Jx7cFBAvxQTWx/7dm3WVx9JTP9pUVHWvaboEfq84+YIfTXHg5kHvIVKdkg9fTVFg6kMRtoQxuor/v/31/D1vf7gcbpSLR0R6JpHey3vprK/n4P/+gcGsg3YiDms287Bmr3173D4fpuoP4/kjoP3v/V+vpKLA/H/B+JlnawNveV+vb4vEqShCRJX5l7CgJDSsuYO28BC844DxWJomwXqiZithiJR6PYzBY0RSMU9tPc0sDKlZ8gy1E6O31MnDieoSXFOJ12lJSCzWZi8nAntV7wONzEY2H8/g7uuO0eQMJkMvGzq6/nub/+kTtv+zV7tu/FpJN47q/v4O+MYTHmsfazPdx08/WUlhUQjYXIyc3gh5dczLvvvMeX6zdz8w3XE48G2L51M4sffQKXM4uG+jbq9jdzwfn/gyiY8Pv9/PSqn9HQ2Mhpi85kSMlQbr71Fppb6ujo6GTZ0o8ZMqSMpR98ir8ziNVmYtPmtYwYW4m3o5ujp82mZl87kydN5aLzTuX7PzyTaLyVVKqTZNLP5k2fIahdeFu201S/gWD7buSOGpp2VSMeODqmTpnCtKMnkZtfQCqV6p2jer2eE2bNBKB6xw4sVjeJVJJ4MoHRbCK/IE24C5KIoqno9UZEwYDHlQd96j7l5JNwu91s3FxN5bjxVIyqoKCogGuuuRqAtevXEw7HSKVUrr32ejZtquod95HDK5g2cQot+5oId3SjxiLEuzsZN3oMF51/PgBvv/8BeqMBh8tJXkE+VbvSZveVY0Yya/YMMrIzyMnLw2Z386MrfkpeXh4//+mVAOzYvYekqBBL+NFZ9Xz48ceEwmktx9/feJ3GuhaaG5vwtrUS8PvQJB2anKChrpZJk6Ygo6EOskb6rhWbzcaxR08H4OH77sUgHdx70/eky8+eOYPps2chCBKSpE+ndzFZmDt3dm/9WXY9f7znUW772Y9pqd7TW8/cuXMA2LdvH5FIBFVVaW1t/co6vfWmGxDUBJvXfoykhdFSIer27uTKS76PyWRClmXefu9tJF0K0WzEZNSQ5bQGMNjtJ+BvZOyIbAQ5xsrlH+Btb2PU6Eqi0QgA7gwPv7z1JnR6IxarnZKyMgAaGhqJRsMk5RS1tXXIsszmqs/4+9/foah4KBf/4HyUVJL21jbamlsQDXo6W1upXrueB37/W2KhJBICSirOpk0bCIb8IKTwtu/DYTNis5iYOWMqwWAQRVEIBtMpaaLRMIFAgFRSxeXMQhAUFCWFv7M7PTb2dPCqcDiCzZ5BS5sPRU3Pa1VLIcspBFFF0mkoWhRPphVfZxMnLZwLwBfr1rN6zXoeevCPXHD+/9AViJCZkU9EdvPcc8/09ntKUbC53DjcGdTubyGSCHH51RezbMXHjBk1issuO4fFf3kYi9OKkoj1lhs2vIJ8z1TcmWW0dq1j6swQpcPy2F+/jQvOOY3Xnl3MmpXv09FWS9u+avZsXccvr7kCvV7Pvrp6Lvyfq6jb34LZ7EaQbGR73Jj0FjRV5tRTT2bRokV0+ALIKYG8vDycDhfhUJzmpg4QE9x0y88586w57Nq7no7OVkpLKrBbM5GjUVrbOjBY3OgFidLiMu753X0YTFYsDidyiYr4sxaE1iF4LJXMmzWBQGcL3V1dxONeMjJzqN7RTEFxETa7iYwMJ4qmY8OWFuIpGzt27aO01E4sGEIW0mts64YtqPEOvD4/69ZXo5MMqIoOOWEgGtLR1BAgEfdjNopomoJebyCZTCIKIqoSJxRsQZDsKIKJeDyJ0WAnL1vg80/eo3prFdGIgKqkUy4ZDDZGjiohM9tO+agxJDHiDRrpDHSSiggYsyeQkV8Ech264F4a925GjSeIBBPk5WaRTGnU19URTyRYu/5Ldm6vwtdWT1FeIRPGT+DKy6/govPPI9NpxeIwcsK8GUybNpFUKkoymaKoeCi7d+9GIcHQIUOw5RSgGQ4K9XppGQamoeBQc97+e1LP94eznhvMYm0w9Nd+9mg8+z6rb3v6P2cw2rUvg92/LT1/948w3P+er/RbHzqkL43Wtz++w78O/6cZ1/7oz8j2Ta3Tk1bnKxhEW9vLyPRN4dHv+jpN72AmuANBFHQHn3MgRUivmfPXoU8bVOWgT2Avgd/PdPqQNCQDvEN/hrLXt7DHFHswE+bDNfEbaji/jfDhSJijvkz5QOVVVe3tu8GCNH2bdgz0f98Doy8z1n/z7Xvv4Z43kFCgf7Cj/gfFP6Il/yYM/ZGMy2DMt6qQnteqcIjpf8/3cU1BNILP20IqmiQk5eAX8rDoreyr6yArz017ax2kZOpqGgl2dTFlyjhSSoqC/Czeeu15Ott8VFYew9IPluOwurHIbQw75wk+WfclSS3FpZdeisWWTSymEotF2bZtDY0NbXy5YQ1eXzPV2/YwrLwYUdCjKCpWm5lHFj+MppMIhP10BFuQTDpu+dXtyFKY+x6+m1t/dQ9TjpuN5BIwmmxUbdvKli17uPzHl/DuO09j0OnxdbTjdrlQ4zJPPb4YQacw7fjjefLZxcxeOI/xk4/nt3fdx2P3P0wyHuTYmRPZvnsn2/fsAZPMlDFZjB6Zzbz5k3AbGgj6dlI+rBSbZwglI8dgzRgJXV1Mn3EyghwjFfIS87fT2prWBk2dNhVHhhuHy4hA2jwbTUMUBAqLigAIh0NIBgWbxYrH5caoN9BjqCanFMxmI11tTWipOIFQGPHAfnL0uFEIvv0Y1C6GDxkCkohOr2ESYpwweyaQ3odrandjMhl5/PHHUeSD8+iiC/4HoyGXTV9uJxwUCHTHkAWFUCzO8PIRAPj9Abq7wwfmvcamrdUAnDxvHhtWvImo6vEHwqQEEdFsoa4pwPiJE3v3vE9WbcJkH4pBsPDFho0AVFZWkl1URP6QMoaUlzF0+DBKK0bisOtx5BVRtbuNmBI5hEDTkFmy5H0uuvAiRo0aQ2ZmNhaLrff621tvA1BcXALdOtAZCXWH2f/FR3Qe0F7PnLcARU0C6iFXbmFeb5/c/dCfePBvK7nj0UcoGTmydw1lH9AcAnR3p/OK5uXlHbLmCgsLKSzM5OXH7mfm3Lns2biCaHeY3PxKiorymTBhHADrNm5C1DtIRlM0+Wp69xRXTjmv/P0LahojjJ04k2Ur1jBt4jSSCQd3pjwAACAASURBVI29NVsPLGgdl51/Efv3VnHdz69Br6W1sG0+H6eddw5xoYuU3YROJ9Ha1Eh+ZjZy3IAn34pRErFajZx5zlxiES8oUZpbG/EU5GF2mIjFYrz60utYjLn87p5H8XsDZGaNxKAXUWNhWtqqcNjNxGNJtAPuOlnZeZjtLvQWA6qkYTeb0BtcZLotdPpa0A64JSgpjXhSISPbRTQVwGCykmV3EYsnyMjOprluH06jiN9bR0XZEC75wWU4HQ4Azrnoh2Tmunj2yceo3bWDNV9u5fRzziOeiKM7YFJvNluRlTjBrm7yi8bS3rKb226/AVEUOfuUC7BaLJQOGYGEmfz88b1jFg12YXH4effFT3AIxWS6Mgl3pnB5RvPkH59i2rTjOGrUROJhGUnvoHhoJT//+YVcfP4ZADQ2tfDW0g/oCMQJx5oIdfmJxlSaGtu449q7iHQFeeapN1j21gdsr9rE+39fic+bJDe/EKvZQ35WLiXl4xl79KkcN3sSbd0+vlj1JSb7MNw5eZgsbmqqd2AwZnDUUdMRsZKMamRm5pCwpNAuC2EMjySlayHY/CWNNY0oqpV169dSMbIIk0nHpGOPZXdTEm9XIVlZFWzf6cOodxIKJEjFujAYDVRt2c1RlZm4dAKCwUJ2fiZ6I+zeuw+TJUkkHGH7jmqshiikUiiygqBLYTZJIKskohHQElisYHGXYzFlkUx24rTkcsaZ5QQ797Dpsw10d3XQ5U9h0Uv42rsJBuIIopnCocPJLpuGMXM2H69aR7htFTF/EzZzDjaPCat5K1qkihyHBYPRhZpI0tLmx2C0M23aGIYOHU6n388Jc2YQleOEIhEa6luwOzPJHTqKRExPlz+MoMtj65bN5OUVYrNaMOlFzjrvh6gGK6ruq36l3xgHaMS+dGLPWduf3ut/Lvellw6nQOjvL6ooymFpif600uFooZ70YgfRo8ySDqS26R946lC3Qy19yKU/4Svv9O/QMH+H/88Y1/44yACI8B+eVuefvSh6DsTB8N9k1vvvxEDj0J/5O9I6vi5Ha3/0EMuDMZ/fBv8p4/x1/fBN2tkjee3pF52U1sbmFBSw/JNPSZhzGOKO09XtQ5J0bKuqRlVF/P4uyivKEXUiwWCYDHcGtTX7Oe74GXR0emls3MvxM44l1LwJTTKzP6By4sKTMZutdHX7ueyKC/BkODjvvAv5YMlHHH/cHF555RXGHjWKzCwHL7zwPCeeuJDrr78Oq9XCxx9/jMfjYcSIESxadBatra3s2LGdyjETe02OJEniV7/6FUarRCDkY86CmSw4eQ6X/PAy9tXtp7SsjIzMTG688XquufZnZOZkY7JaCAS7OWHeCTz5lyd4491XufjSi0mpGqLOzKjSbF587i5i3W387Bc3omDk3SUrMZhy0Loa8dZUoY924NQ02lpamXPWpayv2pXOBipKBCNhMjzp4Eo2m603eEV/N4OePUaWU5hMJgDWrVuXvv+AllCSJNrb2wEj4ViSTI+LnqlQkO9i657NrFizicsuu4JoKEXNrv20tfspyR/S+5y2llaS0QgWvZHxlQdTyrR7vdQ3NhKLxXj5lefZX1+H252BxWE/JPVMIBgiGIlQvXMnHR1pJjAzN4fjTl6EIKQDJX3yyScYDAbcHic52bl4PJ6Dc400Ydbelg6443G5iHYFsdlsh5iOJWUFq93B+Rd+H6lPcBxVVfmfiy/le987hzf+9jfq6upIJpO43W6ys7PJyc7u7b9gNIhsChNtr6d6xWs889Tjvc+wH0hd0x9993qbzT7gXtH3HllODVhPQUE+7ds34NI3s+uLd7FabWRkZlLf1IjJZCH/gPlrZ2cnOl0y7XtusNJD5Ymayuqln7F3+06KSx384b6b2LjlE7pCTRx3zNHpduglfvjjK5hy7AzeW76ca669loULTsVqsbBpy1Z+ecPNjHv2IQoeu5O/L12CoNex9J33ERWJmr01aJqK1eJEEnUYjUamHz0VVU4LGvUmI6edcTo7t6/lR5d+H73FhJJSgCjhWAceRymKomAymbBY0n65XV1+ZCVOPJ484Ned1sYpiobblZ32ewUcdgeabGfzxr14nEP5ePkGopEUqWQCWYkh6jT272siO7MIvcFOY42PPy9+gIwMDz6fj0t/8hPKKsdw/PwFnPK9s9mxaxe333R9r9m4w+HAbLKiqirdAS933HU/vo4Al15yMZddOQeHcTwpoRZ/Rwx04T5zLkQ8puDKULE69EydNhsNlfXr1xIKd6NIAookYzRqJCIdxJM+MtxDOe2kUxgzchQAK5avoiArA7PeisViIxQK0thYz+RpZdhdCldedR5DSu1kF5ex+Kknuff3d1FfswtfV4yuUBI1kUKLhlix9HMKcocyZ95s6nbuwaBAd4efB//0OHKyG4/LyNtvvYBIjHA4TCQcxOQwIV6yH9PO2ZSVjSAnM0leThZlpcMQRT3FpeVIqoVkPMmGjavIyzdTUurG6baQSInsr+9GTqmMqxxHfd0uLA4dZlMeIyumE42kGDu6klhIZf++ZqZPm0dNbSuaBImkiiI700IMTcNqMSBocTrbm5FTKqFoEr2USVyuo3FPmGQ4QXZmBB0aWQUKu2q24/F4MBqNyLLMnj170Ek63J4MJk6bya79Br7Y5KMrpJFMRch1TsZts9DduZr9O99k/87POW7KGFoaW+nyJ/H6mykpLyUua5hMRpqa60kqUYaUFBDtqMNmiKLJIQQtyJSpR/Pay88iJyMYDHpCqSSqKqNT/7muT4OdyUdi4Xak+DZ1HI62PZxV2re1ZvyOYf3347uowpCWGh2ANlBgpMHKCUKPlda/1Tygr7lCz//9zRn6agT7/jZYJLi+7T+cxKrvM/uX+zr0lD2cQ3//d/xXYrANrG+U6P59PVCf95cQ9r23v4nxYBjsnv7a7cHKDlR3T2CB/mPe066+YzfQ+31dmwfD/0ZkvZ4xU1UVnU7XK1ntNRGSJDZu2cbFP7qCjqqldH/xW4SsaeRmuMjJsOHOyGT79p2kNIGKESNJxQWCnQFEQaCkfDglw8oQtCRqyxbUVAc1RVeTn21n06atTJgwltvvuIXKCaXoJDMLFpxGuzfA399dyqLvnUpRURGCqPDoYw+nI9t6vTiddubPn4+k0wj4uzCaJH7965t58IHHWb3qU0aPKKekbBRt9W14sh2gE7n08kuJx+Psrd2LXlHxB7pJqQqaKHLjLdeS4Xbz3ocfcfJJp+MPtCF1d3D/Q3+gqCQXFA1/e4BYOMKebZ/S0bWbM8+4nHsf+iMJRWHhqReiM4AvsY+pk6Yg6T3U7Kxl8qQcmsMKeSXZ1FXswZlTiGqwIEoH5/5A5lf9TbtUVcVisTB+/Hg6OzsPmVf5+fkoMYlOvw+dzkA8lmYGIvEwhRXlWN3TufxKPRZBz9mnn8cFF32f759/YW/57du34rLbOOGEOSxbtqT3+zGVlZSVD0PVZEYdNZr84gJ0BhOiCK4MT+99Or0Bm91J5dhxvUyzoDfSreqo27WdvLw8pkxJB4SyWq0EAgcD/0g6A5LOQEenFzmVZvgUWWFoUfFX9xBRh9JLPKY/dTodTz75FK+//jqSJHHDjTdw1nlnUzK0nEQ4gMsksXnDOh5a/DyvvPkm1RvX0lz1KUpSxyfvvMSEo+dh/2w7gWAYgTQT3YO+gq2++DpC63CuBd7OMIWjR2LIGYJeVugKhSkpG872ndtA7ZkTCoKWRNLp0ElWZDm9F2yr2sQ1l/+Ml177K/MXzuFPTzzD7bf+jm6/0msqHImEOGbeLDrbfSz98AMu+ME5HHvcHFpra5ly7CSa2tv58qOVNAa7WPbRRyz76COy3JmsWLqUzIwcrFZbOsChoNDVFaStrYXisgo0TcNkNqMoCmXDctJRrFWRYEcb/sBmjhpzDHHVgyaE0RSNjIx0SpnW9nZsNhvRSBK7TaC+bj8FJcOIRKNogp3WtrTlgdPpYNeezRxz3AQikTDHzZiEz9dJRoYZoyTgys7GKFoIdMfRmSQmV1ZSH4jz2Wdv8fgjL7Jp8zb27avFZrdx1NhRXHjueeTkZHHn7+4BoLAgF1EwYrWqrPliDW++/QE52VncdMN1RMNhomykvb2TIcWZeH3dvWNmMDpw2l0sPO1YHE47Ah5a97eikcBklkgBKTmKKJHOCUoMQcli07qNHHv0OKp37mB/fQON9TsoKiylo8NHVl4Wp59xKrt3N1I4xIErI5e61asoGz2O95e+hxKLsGPbJrJHTyKVjNHpa0FNJnn2L6/ismcye8Fsrr38OirezaewZCQPPPEISncjkyeOpHJUGcm4n121PlaseI8fX34jHQkvsRMCDN80jnK7mw0ffUrCIDN63GTsTjsmg8qsE6ajE0TWfbGOY46eyIRJheiMTvRm2FW9m1hXK+UlFmKJECn07KzeyagxQ6mvr6GwoIS2thoCgUYmjvGQUlKYLHZef/NzTl5QgckkoddrKFoETTRgNFox5g4j6N2KXmejfISZwhI7kgANLSEQgkydOpVwJI7ZbKaurg6bzUZLUxP6IQLZRSOx51RQv6+GzIJc1q/+iGFlGiadTK7HhU5y0GFqpLNlLSk8RFUPBYVj2Ll7B4Gudlz2HHKycolGY6z8dC1dnT7mzltIa0eKlNLCqGFGzGIImwnMBgunnn8h23ftY2T5cDTpIG2j/3EEBtgbDtmz+tMFqjagkLK/WXF/OqhvncBhtah9Na19aYm+bkGHa3OPRnWw+/p/11Nvuo6vmjv3hYZ28N20Q+nff3Ze2O8wOL7raeCQCMR9iLD/dinKt3mHf+V7f5tAP/9N6C+BHMw35EjQ3zz426DvhtxT50D+Gv3L9NVW/qfgcCbcPRjo0AQQDzAJ04+bya59jfilIpLZk3FFt2FoX42hcQmB6nfIFxsQOnfSVl+HgIaSipGXl0nNjvVoretQdr7J2uoGfvGum7iUh8ViIT+vCFmGyZPHI+n1tPsCzJm3kD21O5gz/2haWhs563vnU7evnXfffRuz2Ug0GsZg0KHT6di3bx8ej4dVq1bzyCOPYLFYUFK6Xl+7jIwMdDodKhKKJqIzmLE53KiajgUnnUxKSYIokJWbidffxMKTF1LX0EhOfh4mq5HCoflImoASi3PrtVext2otc045k+9deBOiI4+KcaMZedRRqDozO/Y2U3HUqQiOIUR1NgpGjCMYk+lsaaDd68eTVww6C2MmHttr+p+Ix49g7EQikQipVAq9Xo/dbu+dez2CHVWXJDMng1BXjNAB/8JWn0xTfZI/PfYI044eT8jfwYkL5/Pjq67ktb+93Vv/1GOnsfCMk1H1Amec973e73ft2Y2sqZSUlZKZ5yYzx01K1dBrAo11db33OV0eIrEEiiaQmZEO6tPS3IKkKJSVldHW1obVakVRFGpqaujwdfUyr5nZuZgsVqx2BxkHIsyGoxFE41eDdGiCeMgFkEqlegMiXXzxRfzqxmsZW5jLJy88yofPPcIjd/2S1t3r2VG1FoBsj51YdxtLlixh2hmXctplvwChZ52qaAMc6f8sIWBDQyNLl69gwvEXU1xxPIqqw2K1gyRQVFRGU1N9uk8y3MSjKWQ5idXsIplMB04rHV7GkFKJBx/9HbF4hDvvvJOtW6sxm+1kFqZT13R3+2lpqsMoaUwYN5xUIoDDbOaHP7iEubNmccbJp1D749vZfeVN/OJnP0MQBHyBDh598gkamlpIpDRCwTjxWBJBEBg+fDh2s4VoNEpKVdCZjYyeNA05IVO7vQqbNU5edgFebxJZDJNKpUgkEhw1djQA27buYNkHn6NpAr6OdrKycojFQ2iaQKDLR0dHBwCjR5YxbNiwdN5ig454PE5OoYtwt5f6/XUguogl4mTnZVPfWMeiRePJzcki0zOStSvXsfTtl/lk6dtUrVvDfb/5HbPnnEDVtrS/tSAIjBs7BjQdNpuD5ob9ALR7fQwdNorSMVMoHTOV6bNPJr+8nJlzF/SO2S9uvI3cYaMYMf4EfP4QcS1JTm4mJ5+ykPb2ZizIkEwiiCZ0thyMkoeUHOD6Gy5H7WEAENjfuocOfxKbzUUwFECWU9x6629QFD0/+tFPeeedFTTU7kYnpEgoMt1xiIeakXQaNqcDu8fGT6/6EdVVG8gpzOXlN18mHo8y65hjMIgCeouLWEpEEU1YXdmMnziZC84+m3g0Rm7BMN79/H2kn8QwFZuYYl7IjMmjsBv0bKvaSlIGT0Y2KVWiK6Sg6ZwkZBG7w41OEhlbOQazPojVopBKOiguG43TY0aVFfKKi0nJIvPnT2falHJsVg1RE4gEuzjttMk4nbZ0JF5FJhULEw362LKpigQWzPY8BL2VZELAZDRgkCxUb9vAWy+tIdodpqGhgbq6OoYNG0Y0GmV4eSnBQDPhUDcNdXsoLy9FxkRW8VFI9kqqdhmJk0uNdzcmWy4FuR7cZj9KeCfNtW8R8VZDMEXI30DNzo001+8mGY1z3NEziES7WbvmC8Skny3rVzBhTD6iIGO2OJBTIsOGDkGVjtxqabDz/9vQht/GqmswmumfTT8eToHSE7NhIN/dryv7Hf61+M+hTP9D0N//VRR1iKKOg4xtj1RGo1fdOmhdX8OwfIMUNoPVOdDi6UmZ8xWf08P40/b3Lx20yX02IUEQBvSD7fXHHaTtPUxZX5PXI2XuBvPV7F//N6lroLq/7t7B6uuvbRoMfdvX9+++2tv+jO9gEsOB2n44M+S+mqCBNO8DvUP/dvS0zXbqw9hOfeSQ9z8SBvObHmQ9mvD+6Kv17pHO9tTfK0WV036vZrORvIJsckuG45lxLh+p44nMeJjHaiaxN/MSVnWOJqV3U0gDQvMq3IYYNHxKia4BMW8s3jG34174KNv21zJ23BiuuOKX5GdmEff7WLniC/xNMep27WPE8GGcMGsO+UOymTh9LC+9/gK5RdlcePG5xJMxSsvKQdBTV9PAkPxykEVOPeV0BEGira2NpUuXkDe0lP1N9cQSSULdMrdcdwc7q/YS6oyR4y7AkZGLIgcRlAgCMoqgJyt/GIIgkJ/jSpvnJTW8za2sXr6EndvW8thLzzHh1DNICUY00YimQSylIWsqwytKceRlEUzEiHaH0KJhmvfvYvueeizOLJR4CMnswGgyYrFaEQ5oXDUENEQEUQeCAILQuzMenH8aVqu1N1WYqDsYUKhnPjnNdpKRJPGYjPuAGe66DVUMqxjHvLmzkGMS23bu4sdXXoqUjGAwHzA/FUXGjZ9ENJZARcNoPmiC+/HHy1HlJGJKxWG2g6InEkqgihKrV38GcMAcNx+nIxM5JTFu3FEAfPrpp0gaKJpAWXkFJouNeFImr7CMLds29UaxnjhhLChR7HYzc+amA+5s3rKF5vY2BFRkwQCCHp2WQkklUZR0uoS2tja6fd3oNYna2loApESED19+huVvPc+2zZ+S4RE46qgCjNY4exq8AMiywu0338XZl13N8Weeg4qlzyLpkf7388vS+u4Dh+4Xh1tv/X9vaWnh7Muu5ssvd9K0ezuOvBIUQUKTowhCkqpt2wCYNHESTosNSVNpa65GEpUD5f3sa5SIpLI4fspYAqEGLv7J9ykZWsCevelAURargyx3CYsffZZYHJSEkfPPmsWck2dw1ISjKS0djqrJlDkz+fUtt3P29xYBsPzDFVScUcoDb96DLxBEZzYiGaz89ndP0Vy/DZdFQkhECbb7WPbWUmp2NaATnYjGPGyeMWh6PUpMQNHsSEYLc+acmN5XNJX16z7DIEhYDSYMRjs2gwerw8R7b7/Z2zfHHzMDQWejuyNJKt6NzuCi0xfFmpFLRk4J0cQ+7K5cknKC1cs+ZOTkWbS0KSxe/Cdef/MVanasp6C0CMVgpmVfHYoGr7yRFs7Mmz2HoWXjWbZ8LW+//RFxrc+YHyE0IBQI0ri7iahswixayB0yio6uTmQ1haomEYQUES2KgAtZ8FC1Kz0vs3OymDZ1Lll5ZuyZdlwZHrpiXTzz9O8QtRR/uO9mnnj6j1QMH027txVJUhg/bjRGnUQi2M6GNRvwNaeYMu0YunydLH9vOalUM7fedRcFZcNY+sb7rF21l3AoxR2/vhNRymDzJ6twuQt46qnnifh9XHvDjbz+7vvoLrQQPmclqTobQjUUTtLYt78Dnz9EVdUmzjx5ATpMGM1mIuE4+3e18OXqjyguNNHRFWPbtlY6OrooLS4jIysHhyWTN978O8tWVPHOe58Tj6YQjBJ6swWzUSWejKBpKoKQ1uLbrDaGjSjHaLCjWPJJxON8uLqGlOpEMiice+ZUZh1t5tMVr7F82Ue4XAKbqjaQU5RPoDtMTl4xOlGHKEuEu0O0tbXg8mTQ1NSC0WHEH9UhGSaSkgpJaDnEIgJWnR5B0FM8JIOCnAC5GTI5zijD8roZU5ok6F1HuHUzx0xwkJ8tMXKYi8KiQowWNyoiSVVBk9I0mShKCIJIemkfAZ3XN4YL6dR4kiQNSjf1ped6aNDeVI596IqB6IyB/EX7nuM9zPRgkYCPhO7rX07TFDRNQVVl6GdtqdfrEQQNQdB67wO197v/S0qu/zZ8x7geIQ76MaYX/3+6Tyz8azScfRfpYHX3j9D272jXN8H/9vN72tAXff1ke8xk/hH8o+W/Dj1t7Z+Q/H/bX/brwvPrdDoMBhOymse4yTPJdlk5/8LzGFoxElfZsaxXp7PGfBH7nQvxxfWYJl2F/eKlaBOu4d6n3mHEmDKWf7yMj1eu5uqfXUc0FeDO3/2GKVMmIZPEYjfjD3bi9beRmZmJwWDAYDBgNpuxWhwkEincbjdut5t9DfsIx8Mk1ST1jQ3YnQ78XZ3cefev8Hg8FBYWctVVV+H1ern1jhsZWlaIzWkCScbtclDb2IxqtKFpGvF4nM7OTpqamghFwrT7vPi7AmTn5lA66iiGVU5BUSSMOuOAfSPLMpWVldhtGUiiGZ1kob6ulfIRFRQPGcL4SROxrRexrOsREqRNxcxm8z80Xj2ESUtLB3PmzeW0M09Cp0/XvblqM7X1e6gcN5LswizKK4bx4YrlfLllCw8/8hAAJ5wwm/z8/LQvs053CAGxcfNGNm7aSAoFs9lKKBQi2BWgzdvKX/76NABnfe97eNuaUJUYopDg3LPPAuDLLzewfPlH2O32XmLNYrGgKEkee/yPAJSWljJ69Kje55155hk4HA5kWeb6629E0EmIgoZO1KOpBkRNpq62Bp0osXv3bj5bs4YtW6t6U6p8vmY199/3e7bvruHWe1/n+FOuoXzCubz+USvxZNoM2eTI5MUla8jKyUufPgMIImVZPmx6qH8Ef7jnXiZPnkx2diZerxeTycSmTZv4/T0PEoulgwnNOv4Yuru7mX3c2ZhNeRw9Pe2/uvLTjykbkY3Tqeeu3zxMImok6I/x+J8eZ/OWtHbR195BV3s3I0dVMGnSBKxWMy2tTeRm5eBymCgtyYEfLKR2xijeePMVLOb0fLbazCSObuC8P82jbGgRBkmPQTIwsqKU2295gI6OCGarDZvdxOnnnE7ZqDJKRpSQlEPEEl043SZCkQ40NYxBp3Ls9GMoPhBcrHr3HgRJJCmnIBUh0uWlrbGePz/7AgDTp01l7NhJaEoCh81KKBjA728gGgtjMJhQZSMmfTZmm0jdzihnnTGfKy7/McXFQxlRMZqc7CJWr67C3xnGZrHjyczhicVP8OmnKxFFkZt+cQ0GU4JRY0pYeOJsZhw/jXWrPuSLT97DW1dNe1MVyXAT8e5WooFWVrz9bu94/f7XN5HqbuPL1csoLBmG0ZHJO0vfRlWiJIOtDB1Sgk5nwGAwEY3EkVQ70Vgzb73zKuvWbgDglJMWIkoCeoOIoiRBNWMyZCJanOitNhQ5hRzpIhZP4HA5SSkyqgaxhIKsSIyfNJ7MHBevvP4Ep599KsOHDyceFXjwgccIBoOsWPEJx8+YRm5eBnf/9lcEQ51kDB2K3mZm7oLZ5Hps3HX7NZy2YDb1u2vQjSkgeWUN+lmNZH4yHU+qnc66NkpLpxPVy/iCTeh1Box6PRaLSqYzgd1sQ1ChvHI0sqyydesO3n9vKSm5g4ryTAxiiFEjh+J05COiRydJpOQEomhAUwVisRRGoxWzPkHUW0Us0YnJYMBsKePkkyvp7tiP3mAiKUfwuB0cP6OS8xaNZMtnX7Du401s+OwzrFaRhvp9xGIxcgvzScgpXBkZZORkMXzkKI6aOJlAMErBkKGIFg+tIQFb0XjMRZMIxXJo99voCGfw2Webicf1xOMGYlEdciKJXlDIdhlwGxMocgI1lUBAIZGIYzKZev3g+9Id8msm5FcHPg8OhyMRTPelZY6kXH8rqX8FjoTmOxIt6n8C/fj/O75jXL8pDkieJFGPJOoHlLb8MyQwgy2g/pLwvoT6YFqyb4KBNLp96+yfGmYwyddAdfaVtvVnML6NBqD/b4NpYr/pO37bewfT4B5ujvT/XhTFQ4IwfRv0lWAOltro22qn+/su9r3mzZuPxWLj7rt/e0T53Y7k/frOm4HGtv/c7EF/hhrSzLzT6WTP3h1I1lzGjJvHu2+9CUqUz1YvpWxoAZPHj6esvALNPZwN4TI6bWOIJ0TkRJKbb7sVSQ8Gk56KUeXMP30G5ZXjuPq668gtzMFsNdLZ5cWT6aSwOK+XkY9GowiCQGdHCFURqaurQxA0TpgzC7vTBqJGfmExkViMkZUV5BRkpAPbGI08/fTTeDwe9CY9ol6ks6uTSDxCd6iL4sL/x957x1dV33/8z7PuHhk3e0EIG9kgIggqggpaZ90LcVfR2mqrtu49qrburbW1tXXhxAkIDkCQkbCz981N7h5n/f4ICUlIEK3tz+/v5+vxOI/knnM++5zPee93HoKRAHQSiShFRfkMGzaE/KJC8goL8Gakk9RUVCR0yU44GEFOxvbS6WdTggAAIABJREFUTnfNnWEYaJqBYcD2bTs579zzcXs8mKKAbhrICTtKwtEdgRfYLVHXOo8+69sfli9fgdPp7tZ4dhE3GVkZLL76Csq3b6ampgYAr9fLSaeczLsfvEvSiJNTnM/Bh83mlrvvobK6sjNw1Y03IRomajyBv6mZcHtHd1tWq5VFFy3k/Q/fQ9UgGY1RtWsrx8yfT1tbGy6XmwvOvZCcrFxMXcPQE8yeNZtJEycBsPDC83npry+RSCQwTZO6ujoWXXAua9auBuCee+7q5evl9Xq5/fbbAPjXv/7FySeewvL338ZfWcGVFy1kxcdLeej+P3HiCScwbuwEjjnuFxwwbhxzdqei2VrXyi8uvp7Tr72XmGzSHA1z3+NP89xLf+8OBpWenY/gLsAQRQTDxDR7B1LqYrK7tCLfRYgNZLnSH7xeL3/968ucdMbpNDY1IggCDQ2NfPjxCu7/018AuPTi8ykuLmL79u3MO2Iezzz/CguOPBZRFAkE2ln8mxuoq2rB355g+bJV3HXn3dx67x14PJ25XkuHlCAobXz99ZdUbCnn4MPmcPV1N/L6G2/S0tLI6i/X8OqylahZmfgDHbz8yqsAzJszH0FVKBs+lubmWvwtbWQU5HLOJefx7/eWkl8wmERKw+KwEwq3Y5gqiWQUTUuiaUmSyRiKImK1iKSSMRRJ5uY/3gTAR598wnU33UJdYyO6kSAUjnD1725ly7YdSJLEnbfeyJbtWwiHG1FkEbfdQ35uPmMmTMaTUcDCi84jEokiGRqi/DVtwWpGjhrCQ488xM5dO9i5axdTDpqLYiqs+eJznnj5BW64qfM5WnTWcUycdAApNY7DqdDqb8AqCZQNKWbY0MFoqRhWxUKwo4Pm5lpEQSM9M23P+moR/C2NZGVlIisiufl5zDtiNhf8ajG33/EgH33yOXW1DahqZ/qXutoaHvzLEyy65GoA8vPzOP+8MwkE/PjbmlC1OKmkgChYCIWjCIJEa2sz4m7/aqvNhWJxYHe6kBUXGzZuIxwN4e+o5fDDptMW7MDjdIFp5bLLLkOSDQ4++CDeeWcJ1dWVVFRUYKIzaHAha9Z8TW1VJf7WVq7/3VXU11QiI3D35Tfjc05gQ1qK5tM3ICbyGRYdS2bREqjfSqx5F1tXf0jV5o9RzFpySgoRZDdOmw2rNw3dUBk/fiyDBw3Gbk0jEYuR5vbS5o+wqaISQzcRMZCkzhgRTqcLi6UzNY6WNMhwylhFiVQsDrZsDC1BXr6PWDyOSRw1mURNtZBmszF9WjpHHFpIfqaFnVt20tYUwmnLwO6w4HS62b59F7qu8c7772KYImXDRxJNxAj6Gxg5rAxBtBGNmcjODEaPn8LQsVM4+MhTyS2bzs5mkfqQnRhFrK0IEzXzqW+30dSWora2AVkUsFgUNE3bK66IIAiYfhGzdf/oMNPcE7yop7VcV119jy5GtG/Ggr40R19Xpr5pFvvrV68x7MPyri96nu+vTM9vYS/N8T5op4Hou5/x38XPwZm+N3q/6F3v3U9BAtNtGskP17b1pwmE/8xPqr+5+SnM1/8KfYNk9fwADIQfY977wjQ7gyr8mNrY2LJ7AAHn7Gt+tDp7YqCPx3+CKVPHs2b9WmzyBGbMPowdleWccsbJPHD/i9S1+ll41ml0xDVmzT8eT3o2VotEm7+DvEIfSbWTUQvFAt31yfY0PB4HVfW1zJx9MJIkIkh7PvY+n49QKMTOHTUsvvIyFi/+FYMGF2NVrOi6jiRJJFMGdrsNUTIADUmycd11N7D4iisJBJrIycvCZrNhs3mxWp3IUoJkexXPPfUgl153L960/M5cz5ggSIiShGAYyJJEcVEBmi7gEQ3e/NuLHL/oIjRN253zVu7uQzgcJiPTRTIWZ8TIUhoaq1AlA1XXMAExsxTBFPrZXX6EtZHj5Bdk9Tp13XXX8cwzz3D6GWdhtVqx2WwEg52BZwRB4K7bbmfbum/JSkujpqaG8ePH9wqcdPmlV/Do449w7qLzOjXDJsQTnTkuLRYLD9//MG1NIe6782p+89vFjBw1hHgixGN/fpRTzjiVyqpKLrjwQiwWCw6Hg46Oju62fT4f55xzHpIkUlY2lJNPPonLLruURYvOJxAIcPPNt7BkydssWfI2FkVBEgUe+9s/9syY2ZlSwQSuuOJyXn/jDbZt3caVv76SK399Za9nvrCwkCGlpSxbvny3nY+BIYiIRqfpdc/5f//993n22edZvXo17e3tpKenM378+B7tfvdatba28txzz/PBB0uprq4mFOpMjyOKAoccMpN/v7GE1996B4/HTTgc6d5PDjtsNtf97tfIgkhZWRnnnZ+G6LSxZuUuFl98CX969BHe++A93vtgKDarlWSqM2Lr3MPmsHVLJaFQGFG04MsdzNVXX4ViERkxcjh//+drvPXOBwBIooTD4SQcCXX3d/KkiVyxaBGhbU3E7EmE9BT5uYXd14886gjaOtpwum0IgoLbqhCLxXA7nSR0kVQqRSqlY7e7QJMw1BQWa4p5c6bzu2t/zV13P8Azzz3Ps8+/gMfj7k4XJMsyDz9wD8NLC7B6vURDTSSiMVZ/WUFW/h5C1pvmIsNnoaN+A/7aGDPnHcHmirW8/c47bNxUzu+vvwaH3YEgQDQW2z3XIldeehGXXHAMSUnBJrmQZZP0NBuYLrRUEofdytbN3zJm3EFIqKS57VRXVuF07xGm5OYVkJZbQE3VVkSzheysfKyCQHn5Vl576x0efPRpRFHE43Fj6AahcLi7bFnZYF5+4a8MHz6MgL+e9DQ3gVAIq6xjCkncVpNou5+i4sEYFitWQUYzVExBwGJzkNCTyLKLwpJCUmoQp1JCWoaG1+7g4Qf+xBXX/IpYMsjBMybz0J9fYPZhs3F50nE60mir/JZISxNzZh9LuKMKe5odi91Fdk4m1z50E4HIDgZla6Rl5bBk00MEvkznl1//Bm3U52RbZQSsJFWZ9Jwh4CxBDW5FV+vILipGTUTZsHEDEyZOoKG5g6ysHLJ9aVRsr8PphlQqhkWUQLIAOolkDMPQkSQZZIFoKo4l0oxiSUO16nhcB9DWXoHLZkVNxrDIbnQhQtyIY+oSRfk+/B0tfLy8AqfdzbqN6zj7nHN4/d9vMnhwGaauctyx8/ns0xUYps7hc2aQ7nGimTo5ObkEg0FcToEd2zYzctwY7A4b28urKCgoxu50Ur65gumHziUUCpOekYGhabTXfEsyICIV7h2c8Yfgvx3voqdr1L60r/8LzezP+OnjZ8b1P8Ye+/sudEuNSO2WxnSeN429o7sOhC4/1W5rZLO3ZKrXvT2kSD379GOgr0arP01pd3/E3gyGSO9N6D/ZOPuOub85/CF+k/3V/V3Xvm9bA61Xz7q+e01796m/9nua6va3wfeUmkIn4dVTwtlfPQOhSyJpBOswzb39U7rq2ZeAYp/Pf5/x9/29r/XpOz99x2JICuNHT+SLZSuYMmMOWaVlbP32Mw4cm8/Fcy9j24ZmSocVUburmkEjnJhiGrn5BYRbqlFliezsQeTn7SGMzWSExiaVESOG9fLJMTGRZZlQqB2rzcLocSP41eLLmTl7No3NbSAkKCwsJhZNIMoGpimiayKBQATZjHPX3TeRSKRQrBZEPUltcwOFmSO4YtFpXHXxBbjEdZx39i+RFQVVM+jyyTexIBgqRrSNNV+uRNB1ECWy8wtIyyvkxYfuJYaNlqotFBUUU15eTnNzM3PnzmXHzs0cdPBsdMnOvAUngCJ0Ros1ze7cq5bbn0Kobtw9eAFMCaGxFeW5N3af62SlpBXfdK5HdSNCYytmXm/GlN332O58BgRw11czPDuPnYFWNE0jLc3Ll784j7tWfsTrWzZQG+ogw+5geuFgrj14DgfOPgJz4igqNpYzWXbi+svfSetR96G17Sw69VfcuuID3mmtIRDwk5GWzuElQ7hqxESm1gahZiOzR09EX7IM5YNV5EwYTtb8Q1j7zWqefuAh/v3si2xpayYWDpPn8hBKJoiqKVpbW3HY7SQ1jW+++YZvvvmGfz70CEvPuJTrbGkcs/C33PPpW3ztb6IhGkaUFYaVDKK0tJRFzjyyH/0rstiZFigHWH702Rza9mcq/M3dz6wsSRiGQV1dHXV1dZ1zuWE7ljsfByDx+/N3fxc61+XF2+5hVV1n4B4BgTSbnYDfz9KlS/dMSlsH1jue3vPs7v5rCe4RxBx11Hwikc4AWRZJQgZ0oL29g+XLV/DY3ON5adsGNgVasFgslA0t4xxfMZdPnY30yJusWrma6TOm4FJTtLVFmH/mCUz+9Xlk+jJ55IE/E0pGEUwYlZ3PeQccyMiIwSs2B08DpplCNxKYUgzbK59zU8Zwps45jo93bmFbh5+WWIRILILP7SaS0Ljtlju4aOFxGLpC9N/jsdostB9Vw58eeLZ7PG6PHa9Los3fRGUgQF1DlEMPn4IpilgEGavFRFUTRCIhbJZMAoF67r7tUS6/4mwW/+oCZhx0ME88/Sxfff01HR1B8vNzmT5tOnMPnc6xR5+MI82CiYDXUYy/rYmJB03E48rpbl+Pd9C0aSX27FGMmz4bFRg8YiZXXXUFb7/1NsuWrSSeSmICZUMGM3P6NOYcNo3jjj2eSKwRm2EQbKsnMyuDpKFhsTrRxTi1fj8ZBaPpCKhk+NJpbm1CsmaSiuyJKhxLqGgpiYzcYlyyQHPlLhyZ+dx9z+28t/Qj1q1ZS219PW2BdkAgLy+XcQeM4PBZ0zn71FNx5uRywOApfLluCZGYBauSgcOl4W8N4k3LwO1S0HWdeDyO1+GkpqYZq9WKkYogyQLTZgxj+bIvKMgdTnYBuF12tHgri6++GjXVjp6MUlRSzJVXn483XWP1F1VcddXVLF/1KVPTsxFllXdf/4ammlqys7M5Yu4s8orTEawOkqoBgpU5J/6GwPQ2qqqWMXTlYXinRTBUBQQRURYwZJ1UQkG2QDzQSntEZcSIMgxBQzBTDB05ltbmFpKJJBHDgnNMOmoUgu2NtLQlGTOyEE030fQEWiqBmlARzQYMBCRBQnDlkKGIJEJbwZDQRAMxZSKiIZgiT7z4GaedOJp5s8pwupxUbNlF1L+ZcSMyCMXaefzRJ3G50jju+AVs2foNsTBs37qJMeMn0NDmx+Vy4rRbcXk8CKaBIntobK7jF8fMJWXoVFfVUVG+HU3XESSBNI8XJX0YiTYTf1slxXIRmpbqjEcwQPyUAS3DxN07hNCbThBEEAVpn3SCafSOKtyznZ6/u9sS9r6/i+bsol16ajkHqqtLQN/9W+hRv9G7vwP1bSCLQsEcmDb5Gf87/My4/hfQzdwJ8v8JzeJ3mZPtC/vD5PSXludn7B96Cgp+bL/VYDCI2+3+weUHksJ2fWT6hsz/PvhvPjOmbiBbLcyeczjvLH2HsSPHMWTILEztM7Ys+4CyacdRUVuJ3ZVAkHan1pFkPDmD8Lc2IAjmbs1oJwRJpHTIEIQ+74IoijTvTqdhsVgQkFmwoDPiZ3V1Nfn5hfhbQ2AKhGIt5OUWYLXakWUZm13YzbxYUAQD0yoxwlZCKrSD448YCdoXBP1NNNXWk2MbTHZ2NrFYnEQiwa5vtmDoKi6bhcbKOkaPH0ZRyWDcnjRGjBwGh88hqoNTApMw4XAYu92OzWbDiMao2lVJLBrh1Sfv4YSLf40iy2hG72fvk7N+hT5hBPrRM/eeYKHzA3/jIUdy4yGd4031sw7a9X/q9XtqQQmb/nAPQ+69vttc2GO1ccdhC7jjsGP6riKa3pn8ZcSIEdS+8T6OPoK1eDxBZpaTR+efQuWZCxg1egTJYBDLK6/TvK4c0DHNzojHXq+3a9EwBQG73c7l5y3k12YmqVQK3TA46MWHaIyEyHN5eO7Y05l16+/RczJ57bXXuOyii1nXVM8Zr73Iu6dfzGhfLo8dfQpWqxUhPwsuPhljN9FoueNpDEOnvqGBvLw8AB76elk303rppZdy7bXXkl3bSvLNj3hm/Zf87uMlqIbOsMy9mf/y8k3cduKZ3PXBWwBcPuUQrp8xl0yHk2gqydOtlfz+5WdRVZXV69cx15a/Z6l2v1+D0jJ55YRzOf2NF4lEIpx00olcM+0wJnao3LzsPW5d8QHjcgo4tKSM44eNZtHR8/l6pJXJ0w4mktRJe/hNdF1D01WKiwvQdYNoNI5pmrS2NhFKc3HQ5BmM+5WDki3bGTZ8JJs2bKSooACHy8FUYzyPOc4iePnJmIaFUIeKz2KjyOni0knTuHzqjN1pkkwcdju6YRC4+AwcTpm1a1YydcrM3d8xEVUL8+VXK2mr9aM4dELhGCoW0rMLsboyyMiOEQp34HTa6Qi2kpWVg8VqAbwcOHkWHyz9Bw888CCJZBM6ArNnzWDO4YeRTMaRFBlVVbFa7WhmCkFzIEthwu3tJBMOnE4nDpdAk7+cpsr1KDYTwchBF1JU7SzHbreTisewueH4BcfjlTO566YbafG3kp/vIdvnpbG1HV2VEUwnDnsmimjFnZ1Ga1szdquIFjOx2iSaquuZMP5A4vF22tv9OOwenB4vYVuAtppdeDwe6ps2k0jWoqkKjWGwu4agWJJMnjCKadPGYpeyiKfiWO0OJMXOww9dz8KzzyQaCSEoKuGOVtasX4lqtOOwJDDFTAKBOlJqBC3qpa6pnubmZr799luOmjeDeCzFGx+uYPasOZxz9iJWffkRxbm52KwGLoeNXTt2YpVNHnzsSW74/a8JtMUpX/MZEw+eQyIeYMrUiYwcXUyww88tN97BFVdcgccjUThhEH9+/DlOO/cU1m3ayLSDJpPpSqOxoY2nnnyeyRMm89STf+HJ+3NxvjyaJXV/5xcLjkPQTGKR7TgUiWBEJ9qylYTpo6A4h8aGarwZaSiyTE5uDpKkIGiNvPfONiZO9JLuykIz4sRj0c5I4CQRpM4IwsFghExHG4poQ0vZUPUkCd2Jyy6hYSJICroWw2Z1cdpJh+Cwx7EpSYKhFkYOyyal+ikttBNPKZQWTmbpilV8+N47OJxWXt34PLKp4XbYMAwN1Wlh664msn0ZhDscyA6BadPHoaZ0vvl6AweMH82Kz1cxZ848NpVvoKSkhI5gFEWy0x4OUqClUE0JZAVpABri+5i79k1X85+gr6nvQPV1mRrvr8Lghygx/hM6+Gf8byH8mCZ4/03ouv5/o6MDoJPp2P/8pd2Srt3oyjXbnwbqx9BoDtSP7vYFoV+tWs97TaG3tkukf8nZ/vqM7k//BtLE9sX3NTfd33r3VXagOdyf9doXU9jz7w8xnenrmwKQSHQGcegrrew7pr51RN5aDIDr2Ic48sijWLHic6677vfccMP1+9V+z3P7yp+7r7p6Smr7m4/+fHIAREEgFosQ6UghmQYWKcCHb/yFrJKRZBccid3qI7tQoqG+Fm9aBlZXOkY8jCGkqKyuY9pBnUxbefkmSgYVIfRZTkEQ0DSt+6ObSiWx2WykUikkSSKVNLHZHKRSGnWNO8nNycfl8hCJxNClOE7FjWiYJCIhDF3l6dsuZN78QTgyvPgyxvH15++STPlIWUcQDkeZNetQAm0deAcXkpubi0VRABPVUDARMYTOCMA2M4GBgGAa9JVdpiSQDLBKIju2VFBfXUXZ8GHkFRUSfPMKMDsjSf9Q8+3ly1dw1FGdEVuj0XC/6ztixChqamp4/PHHOPvss3avc19p/J69SBFk1q5dS1lZGYqi4N2do/WDdz9kxsyZCJKBYO5xoRANmW1bK4klE4wdPxRN07qDl/QdkShaaG8L8Pprr3Hp5ZcC8MknnzBt2lR6Wrb84x//4LzzzgNgydtvcvhh80gl4sgWBUQBA5DMvYWYpgCtgTZGlo0gkUhwzDHH8Morr+x132233cqdd96Fw+Fg8+ZNZGdndc+/39/GiBEjSSQSLFiwoN/yt99+O3feeScOh4Py8k1kZ2fvfl86rzc1NTF58mTa29u5/PJfcffdd/Uoewe3334HM2fO5OOlS/h06btMnDQNr9NNe1srGRkZJLEgSHFC7dXoSTdYRdRQHFGyk1eYQ0e4hZ3b2kBPUFCch+zMYtnSd5k+ZQJeXxqB9lo0TSYvbzCSxcLlF1/K3ffcgWGkcLocVGyrpKy0lGg4QkZGBsHYLlZ9tovKHW2cfu5cdMOC4x8FIEDd7FVs3lTPP159hSeeeZht22s4/vjjKS8vZ/PmzYweNYSmplaKiwtIqiEMHdyuLJqb2nA5MnF7VNAtRKK1ONNySSbjWC1O1BSYoo6AiKrFUBQFSfCgSFE62gNkpOUTCrditcnIkpVkIkHKjIJUgCAZtDVUkeXLJRKKsu7btRwy83CqdlUzYlQRhpmJpLWgyBptCZFosI3mxhjDR2URicTw+tKIBENIpoAsZSHJOu0dLbQHwij2ZsqGTCQUTmGxi4TaW6ivTnWazocqSUWz2LZ1AwfPPhDBIpCIhNHUBB63nebWRqw2L0lVI8OXganb0VImUyeN55NP3sfllLE70vnq81WUlCik509CknV0I4FdzOCVV15h3rx5bNu2jYJCg0g4jkVxkZ9XhCK7iCc6iMYD+HwZqLqb2uoafJkFfLH2K0w1xbzDD2PNqi8JJy2UDksjzVOApkcJBAJ8/OEXnHTy8aT7BMJ+P7IlA1daBpppIRrrwOFUME0RIZYgpZqUb9/K2IkTkMIC+qPZmJkqlkKN1tqPSHdnElcDSEkIKSNI9+US7GjBm5lBRXkF48dOZOn7H+KyySRiDuKpLzh40jhMUkSCbeRml2IKBqYZQ9cBQUIQBRKqDa9vBP5QjKwcK+GGb5FkHVFLAmkIioERj2NYE4iaE11TUSQLyaSJ2+MgmYqgGnGCbRYCbXGyci3Y7RIaNl5/Yx2HzS4lM93B60s2kZWVQemwA9i6tZaCojyqarYyYXwZzS1JDjhgAqYgYbUqGIbBtu07yQkMoqq5gkOeyMNMy0OXRJQeEcbVRx2YgPXygVOa9fVJ7RKeS5LUS6M6kDVez/8HygrQJejuqfX9Lournud6ot9+9Lit7ze6b13fRff0/u79tFIG/l+HJEn7Tcj+POv/A3QxA13HvvBTy5/ZF/31r+vcd/V7IO3zf3u8fZnu/wvoCpbT9+jC/s75/kJRlG4p6o8hAEmlUtx33/1MnXogPl82+fmFLFhwDB98sHTAfre0tPDCCy9y6qmnMXHiZPLyCsjI8DFmzFguueQyysvL9yrTs54PP/yQ0047nbKyYXi96eTk5DFq1Bjmz1/AAw/8iUAg0KtsLJlgxYrV3H73Lcw99khGTp7D2b99gRPOvJ5zzzmOT1e+zLaN3+ARVUQ1hmlou3NSGmh68jvnoGeACtM0ESVoaW1CsUgYpkZTcy0XX3IBI0cPY8L4KRxwwDgWLlzIm2++SZs/gtPpxu72sH7DSqq2fUKOK8S29bW01Uzln2/u4K0vHdz23EquvPF2LrrmeqbMmctVN9/Ix+8tRdYNRN3ETJlYjThWM47FjNNUuQW73YnT7qC6ppLmlmp+85vFjBw5jPR0L8OKijjvrNPZUrGJ0qFllBQUsfS991HV3kGAampquOSSSxk6dDjp6ZkMHTqciy66mJ07d1JdXY3T6cbpdFNdXb2fTwwsX74ch8PVrW3tO5dffPEFf/jDH5g1a1b3GhcWFnP43CNY+tGH1NXV9Y6mK6ogJUFQMUUNQwBNBF2OMmRkEePGDUYQTBRFopMR7j9Cr8fj4aWXXwJg+vTpTJw4ca/95OSTT6a4uBiAV/7+d0xTxWm3ImAgmAZiP3Wbu62wP/3kMxK78+FeeeWV/c7N4sVXIIoisViM1157rde1zz77tLv84sVXDFB+cXf5f/3r392CnK538bHHHqO9vZ2CggJuvfWW7nI9iUhBgOXLP6OkpASb1UGlvx5DThAOVqHgx6pk4bCn0d7ejiSJtAfCpGeksXPndtLT0ykbWkR+rpec7DxsdpGSwbnk5mWyZvV6gh0hXE4vtbW1dASbuefe2+noCNDY2AqmQmFRGTaHC7fXhSyD01lIYVEWPp9GUtXJyPABnamYPF47hx46kwcffBBRFDlg+FA+fu8dXBaZ5tpqrFYHu3Y0IokOXI5snPYsEnGNTz75jBdefJZgyE8iGSSlBYmEY5hoxONxbDYHVosNq9WJw2lDjYSJtgdJpMDuLaCheRvBUIC21jj/emUFiaSCzeoi0FTNhjUfEY1LXPObG8nJLOEv97+MgEF+iZNwNEY41UwkUkMwVIXFZZKbl8W6desIhQNk57oJ1DeQ48vDkFxY3R5imkZGbi5lo0eQ5hpKS4NOJChi6DIedwklpXkIskpmZgnudD/Dh2WgmjGiapJkHN5+830i7VHMBGQ4smiqaqOtIUDSCKIbMT5f9THheBN6ymDL1u18uXI90Y42JFlHke1EIymqGis56YwTsXosTJg2nvzCKZQNn86gsrEYkh1VkHClFZFXeAApw00qEUdRJCTJyaHThzFhXCm1tTVMnD6DqQeOJ56IYFGsuF0ZlA4qRjQsZKal09pShSpCJBqgaucmoh0BvlzxGf7GGvyN1Sz5x9N0+LcztDSHSCiAka4hXtOI4FLRvnCSNiYH3ZKJNa0UzRTYVv4tNfUN2Jxe1KSA1eKioaGJw+cczsixY9m461skZRjvf7CFpnoVh81DKOKnqWUnalKnk75WkdCwyCGaWsvJys1H1TNw2PMwNCtayoYpptBMFYekgOFAkCVkm0JKS2D32mgOtKLqJoamkOYTKR3uxWo3aW4O4rIZnHnKFLLSZKxChPlzipk1o4QvvlxGri9GqH0n9fV+li/bQjTYTqg9QDQYpKGmll3bdhBoayUSiYGg88DN16HHQ8jmd3+zBkJP+mN/6Lz9pbf6BnH6KdO+8P+v2Cw/Zfy0n5L/j2CP1EZEECQkSel1CMIeZrZbM9QzdxYS3bkd65cVAAAgAElEQVSwunKz/g/63F/0tH1qSA0TwezUtPbUtvassyd6mon0bW9/+9e3vv7u2R8TkL719Rzn9/XTHGiOevZjfzfAgeajq43OADtir7F+nzp7ErCCsHeOtr7t7b1e7D729DGVUpk/fwF//OONbNmyFYvFQkdHB5988inHH38Ct956W79rdf31N3DJJZfy1ltL2Lp1K9DJOOzatYsXXniBgw+eyRtvvLFXvwDuuONOjj32ON56awkNDQ0oioJpmlRVVfHxx59w/fU3sHnz5l79/PrLrzj2F/N5/Ikn2bS5nFA4jNVqJRRN8E3Fdi689NdccMn5/Otvt/DVe7ez7cPfY7Z+w1ULL0FL7KlHN8EQFHTTwBTMXoemS5jIIIJgcZCRk0dKM/l6zbdMPXAGL7z4Eg0NDUiiRCgU4uWXX+byX13CXx++r7v+uu11FOZPYsFVf+Gka54la+JwLv7dzTz6zDOsXvMNzc0t2O12AoF2Pv98FZdcvpgjjj6GUCyOIQqoyBj95FYu37yVqVNm8OijT9Da6gegpaWVf/3rNWbMnM36bzdQNKIMu8WCU7IhCJ3a2a+++oopUw7kxa6+S519/+tfX2bGjENYu/abAZ68Pf6YXb9NU+h19Mae83V1dcyZM4f777+f1atX09LSNeYAy1es4I833cQFF19MbXXLnmcDEQEF0xC57dY7cTnceOxuaqqaO4VZgoxhChhmpyba7OdzKEkmsUSYr77+CoCjjz56d34/qdd7LooiR+zO4/rRR58iCBKqSWd+W0QEs3du1a5zoi5QX13b3d7w4cP3Mp8DcLu9FBQUAPDhhx/1qqe2tr77vlGjRve7Z7hcru7yH330cY+572zn5ZdfBuC0007tNG/u2k+EHvuqCfl5Q3BZXVTu2Ep+dhbNza2kZeaD1Utd4ybaOxxYXF5GDpvDB599yZpvK0ByEE+IaKkITzz7OBXl5cQj2zlgzATipsiBhxzE5o1+GhvDZOcWoBsyF5x/BbomUlgwmPKNNbQ2VbBpfQVbtjVTF6gn0hGkeNhITjrzbOLxFKaaQFdTmIbJsg+/RbEafLtuCwgWNEHD7vCgqzB1ajGRjhYOO2IiopJCUiQE2UQ14px6xglcdum5OGw+BMWOpBQjygpGUsc0EsS0DhIpg5SeIhLVsdqcIIaxK1C1dR1puaW0NMfRUiZzjpqCaWhUbm9kyZtvc8DwQyktyOKkE48lSYpX334O1RT57W/vBFEmzSZhWl38+fF3cYgmKUzOOP+XZOcPZ2d1K2m5BaimjGiaVFWsw0IC0YwRj7fRHgqiJSPkZnqQDAlFUch0OQnGBHaVb0a2+cgoLMZisaBGQlgVg6OPOh7VkEikkmhCEk+mHcVhQU9pGMkIrY3NFBSMRnYJ+HwuTl94FMXDxiNKOvFECCOaICfbx6aN39LWVEdbYyW7KtehyCbxeBxJFpHFJI3+XbS01kIqQTAYpqiwlN9cvZjK5gi5BWUUFRWjyybJRBNuaz6BYBNtgRRffrGWw46YxIaNq/E4C8kuGE1W4UgyswfjcLs58qj5ZPnyyMsqRHcOwZqRiWZ4MQ0diRROp0Lq2Craj1iPuHwKlqpRKEO82PKHUFJoIcdlIRHVqa6pIj83l20VW4nEEggYLL70fDJ9meSXjaZDFVm/NYGqmmTllWKxQ/mmbezckWRjRQ0COnYjRiKwlah/JxbPMFJyFknZw7vvr0dPCsRkDcWqoCdV9BTYHA4SkWa8LjeiJGJVJHQtiSIJuBweCgrSefX1b/l8RTlWu0k8CW++W0NdfRsnHD2YccO8jB+Wxtzpgxk/Mh3JTPCv196gLRiipraWgpICZsyYxqDBeTjsLjZs2IwgGiQE156dVRAQR2lIo7V+v/dd778oyJiGsIcO3U2XdmlboXcAxS7msydN0lVf171997ee2taeFlcDme/2pUd79qHfmBfmnqNnn/c17r7ovl/cvScK38+8+mf8uPiZcf0J4P/Sw//f9gP4vgzszwBVVZFlGUmSkOXv57Y+0Bz/UBNugKeeeoo1a9by8MMP0dLSRGNjPdu2beX4448DOpnMt99+Z6/6S0pKuPbaa/jii1W0tjbT1NRAR0eANWu+5tRTTyGZTHLBBRfR0NDYq1xNTQ133HEn0BmhdceO7fj9Ld1tf/TRUi688AKcTlevNm02O6eeegqvv/5vKit30t7eht9fR21tLffddz8ej4f1FbUkLNOQpCms/LSd9956k99edg42dY/2VjETSGiIgoaW0hAMBcEUiIfakXQVyVBJhDuINfoJ1QZpbwxw2imnEQ6HyUxP55oLF3H3r6/iposWctuV55KV7ubhZ/7aXf/EmYfiHTQKwVlMTEhDkzwcc+x8XnzpOXbs2E57exuNjfW0tDTxxBOPk5eXx8qVq7jpppv3uU6LFl1AWdkQVqxYht/fQmtrM2+/vYTc3FxCoRBXX301yZTGWRecxyUXLUJPJQlGk5x++pmEw2EGDx7Me++9Q2trM83Njd3auCuuWPyDnpt9QZIkFixYwEsvvcSOHTvo6OigubmZ1tZWHn/8EfLy8li9ZjVPPvfYj9721q1buwVNo0aNGvC+MWPGANDc3LyXdn9/0WVa3h+6zPQ2b948YPl9CcT6K2+aJpWVlTQ2dr5TM2fOYMOGDZx11tkMGjSYNE86Dz/8ZwBCoRCJcBRPRibuNDuYMsWFQwCZcDhGZlomWekZvP/WEt7+5yv88pQTqKndwdKlH9HaHMXry+cPt9wFFhmPDYxkjEBzA+H2OuYeNZXcfCc2u0IqqfLUc4+Qk5/Fhx99QjAUo2RQGbmF2UjI+LzZODMKcDhcJHWTrIwMbr/1NtrbOxARGVQ2BFmWWbhwIXoihUWGyqrtxBMaufnDsNpkJNHKk0+80B2F2m63d+4NsozVYUMwNdJcDhRFwmKRaWysJ5VKEI+GQddw2m0gGeyqqiUWNxhUOpRYPMTQYeNxe30oXhWXx0Hx4AIuvfxCLHaRbdt2MGHiGARRJaXGsdsV7rzzTjo6gqiqjixbOOuss2gLtGKzWMDQkUWBoWWD2VG+GS2hE9M1ykYOxeF0E42kEAyBEcNnYEhhYno1hiTgVETi0QCKzUpeyXASiRQgEo8nAZGmlmYkBVRdQxdEItEgGRlprFu9gcYdVcQiJlt3NaGZMlbZRYe/FfQEwWAz8XAIE4W//fPf1NTUkJ6eTklxKRXlu8jIGc32nQGWf7yaZEeS5qYADruXNG8WkmgjHA4Ti4f500N3YLel8cbr79DRHue6392MZFPILyogM9NNZqaDgw8+GLfbzaBBg1FT0NpUywfvvkvlrhpM02T9+vUEAgEsFgvHnTqf9KwS7Gk2vFnpSKJCW1s7fr+fzIMsRC9aRurgBox/DkasGk5h5lBqdy7H5xUoGz6EdRu+ZezE8VgtIpFogkB7OyNHD6dkcB6FeYXs2lVPfbPAq299RTTkYNjwIgYPNhg2uBA0FausIerNCIkmDEHHkTGYdN9Ijpx/BFabFU01EAyJpB7H6fQQCYdQLA5EUUASTXRBxmZzEo9HSCRDSIrOobOHcOBBI0kmDRSrlROOG0pBrheb4kMTk1gUiHc0UlqokGNr47gjp7Ds06VUV27G5XKwcfVKEpEIGhJbt1eybf06LH2+t/KhKtKhvS1p+kN/qeV+bOwvXdlfwMf/Vs7qn/HTxc/BmX4C6NJ0wcDRzL4L/b3436eO/nwKe/oLiKJIMtlpamK1WvfyX+ivrq40G13St+9qu79+DOR70J+vQ997f8j4+zv/YzHQffu8v34b+zpvGAaKovQK3NQ3/P2+5uG7NMOJRKJbA9Mf5JLpe50LBoM89tijnHPO2d31FRYW8NJLL3LkkUfx+ecrufHGG1mwYH6vctdff91edYmiyKhRo3j22Wfo6Ajy/vvv8+KLL/K7313bfc/q1WswDIOhQ8u48847evXV6/Uyffp0pk/f08+uMU+dOoUpUyb3ak9FJDMznUsvvYicgjzOOu10nnjpadZWrOEgziFdsvPeq3+jfsf67jLL3nqFuXMORRWSvP/OKrweH1XV2/GmucCwEotHiCdC1O1sxZNeyLbGXbS0tGKzWnn75afIz0onJsbBtOCw+fjlmYuZNncORDtTY2hOBVGP4rbIoMUpzUvjH//4OwLSbi1l54fc5XJx1llnMmrUSGbOnMVzzz3PLbfc3O273FcYkZ2dxdtvL+km2iVJ4rDDDuXPf36Yk0/+JStXrqLJ34rd4mPBkUcgqB/xzAflNDU1YbPZePPN1xkyZEh3fZMmTeLtt99i0qQ9c/pdz95Az1U0Gu31u7CwkH/+85+9zhmGgdPp5JxzzmXMmLHMmDGTF158nkAg0GvM/aGnz33Pfva3h3QxdQD5+fn0B8Mwel1raGggPT19n2Pvek9LSkq6z1dUVODz+faal/b29u5+dP3tuqdn+c2bNzNz5sy9xtJf+S5s3769+//Vq9dw9933oKoqNpsNu93enYLo2w0bePHlZ7n8iivIzsqlra0VuwxtbWESKNhcPkxV4NTTT+aow07khttv5eSTT8Lv9yNiIZbw09aS5NOP1lF42kSu/c0fuOSyyyjNyMRmdRJLJGlpaSErKxtBBE1LUFRaSNmQ0cg2g6qNG3n0wRd56a+P4A+3YRUkqnY1MGxYMeeceQ7lN5Tj9jZwwNlj0M0kI4YPx6ZYqNxWyaxDDmbt+grGjCtGluwkEinGjh2D3W7HMAxUVcXpdBJNqNgUkWi4g8rGOnyFw2ltqGHwkFIEqwPFJiEIEI9H6Yi0MGzUaJqaI1isJllpNoKhXXjSPRimDcVuJxlNEU/ptLdHeOaZ5zjl9GMYNXYCk6dMZPOmbQD88Q+38PzTj2OoSbKyvITjlcSjYWJRFUUSqK7ZRtnw0Xzy2SoOP2Iare1+MjNy8Lp8tLbWkXSGSUvP6rQOiGk4bUkC4Xp8vhxcokjcTCMcDuNyuVBkOy67DVG0EEvE8GUPwe2BhvpqDj1kBol4O4ItnaOOnk2wrRrTnkPZ8Kn4WxvIzHIR8LdhMR2cc/ZlSFYTi8WCiJspE+cgCklcdgvlFRXMnDWdUGMQm8uOLjmorWpmyODRhMJtKBYVny+D6dOns3PHDoKhdmIJk1jEj8WSRDQEvty4kUNmziaRSHHkkUfz1tt/57gFv6CmsRpBEJg8eTKioHHf3fdz9oWn09Fqo7jUTTIZxe7MIs3jwaa4iEU68FhAG7GF9qJavBVl8PEYssdsY8vmj/HlTObAyVMIhoM4nCKabpKWnkldXQ12uxt3upvTzjqT2l3VZGSFSZJCRiKV0PE6FWKpCJKoYKQiuN1e2hs2kFlYhiG5cJgu2pqayUrz0drSgdWVTjjajtXaGQBOSyUwMVm/qZpxowtRLDJgoKkGGekKNqtBqN2Kw+FE1ILYrAKRRCs2h5dEMsSQ0mwMJKK6g0wxyqSRGaRljyIY8JORXUK80cBuc3DmWeeydtlyRh94OKY4sKC6a8/o0mR+n2BIXWX70nL9aUsHarcnvdlT29qznp73d50fSFjfVWdPTXBPC5n+hHz7O17TNBHEHxbn4Wf85/hZ4/oTw/fROP43NZIDBbnpyyTB3tq5LlORTpO6/Tel7Q995+NnTex348eYs64Pg91u34vQ7QnbuFOxjTu117nCwsLuoDp967zmms58rxUVW9i0adP36s+RR84DYNWqL3pdS0vrjAgbDkf2Yni+LzTBhgBIhsb8I+cAsGtnFdHqGOlJO3oyzuxjT2Di/LO7y0ydeTir128mXF9OSbqNDEln0tBCct1W8rw2Fp12IhefdQpP/fs57nv+EWr9neasx518CmWHzCNj3FRyhx5B0ejDyBw2iuyxpSy6+Mzu+q1JB0nRioqblOlAxdKjx3tv4RMnTiQrK4toNMqGDRsGHOsVV1zemd+0D+bNm4vF0tnGpo2bEUWRqVMn01hfx5KvqgA46aQTezGtXfD5fCxatGjANn8o9v0Mi0yaNJHs7IHHfP311xGNholGw5SUlHwvzUE4HOn+3+FwDHhfz2td6WT2B7Nnz8ZmswFw77339nvPvffe271nalqnz2V/5e+55569ygqCwH333Tdg+a78tNBpDZGdnc2bb76B399CY3MD69d/w/TpB2GaJg8++iRr16/HH4iQ6fNgsYpk+tJIpiJUVO7g30vepKW9lb+9+jJXX3Uda9euxWqT0I0E99z8JG5bGs2NW3F5c7n/T0/S2hbn5VfepLqqBUwFj8dLLBZDTUE0GmfEyCEgJPAHOhg9ejS/u/ZaIqE4hhqCRIzFFy/mi5WrsFmtDLrYx/r81bg9Hpqbm7nz9juwSDI3Xn87a9eupnRIEdW1OzH0TmFq2dDBaJqG3+/HZrN1MusOOylNw+V2UlSQj9ORzrChozENmZrqRsIdHVRs3oipdzJfpgG33XoXpiGRCkWQzBb8zRsRVSehYIJv15dj6DInn3Q6CxcupKAwl0B7C+vXf4MkdZr13nPPfZhmp3DC4XDgTXOTjCcwdQMRk3gshmjzMHXqgZhaHLvThq4bpFI6pqaT0AMIghO7UoDPl0tczSAjfTDJsMnZvzyf7du343A4qKqqwmKxEIpGCAQDOD1uHI5s4skUDY3VhEMtODOcyHYRCKHGapA9Kh1JP94cN1E1jjdNR7YmsLhUBDlIPNVMde0myrd8RTLcQHuglmtu+C2Kx0E03kJ6poV40s+5C0+mtqaVzz5dSSKRwuG0UliYS35BNg8+eD+ZvnwSCROHw01LUysTpwyhpn4TkhLnxb8+wqLzLiYQCFBZuZ22tjaampoIhUIccsghyGaKYEuYeDCIGo3jD+wiHKtHNdoQlTDOvGF48/LJLMqleco2EhetJr1+PsN9swj7t7Jy2QekEmARfVTX1KDrJggy6RnZhKJhovEw3rR0FEXm44/qCEdAtpkk1SSKYkOSrGiqRiQeQg3X4a/ZSDDUhmkZTs6gSQQ1jaZoG6+9uoZUSsBq8QCddJLD4ULX7XS5UFgUOzarG8FwE4nEcLkVdPwkxASVDRE++sxPPKJjsciYgkrF1iY27opjVUwK0k3Wry9HS6aweQuwO73YZIWlH37M559+gtrjnQcwWgTMlt57ahej14W+rkE/BPsq25M++bEiFPeHfTG3+6JF++v7z7lk/9/Hz4zrTwZ9/J8Eia68jKIoI6AgoIApdx78cO1sf+iWtKFjoiNKnZGNe0q9ul7+/hjanptOX+1Ob5/I/iVwfZmsrvIDOfr39KMYaCzfZ+w/FN+lUeopudyfDfzHwP74b/Rdk77td13XdZ3c3FyAvfxWuurs0QIAhxwyc8B1mTlzRvdz9M036/a6Z8OGjSxefCVTpx5ITk4eTqcbh8OF3e7kyiuvAqC+vr5XmYkTJ+LzZdLU1MSsWYfy2GOPs3Xr1u98L0zTJBwO86c/PcjcufMoKRlEtsuJ3eHC6kojIz27+96q5mqSsoYmKIiCjMu+50OYFDzMPeF8Bk27mEnHXsKaZo16s5gjF93AsZddi2PEJDLGzSJpuolEo1SUbwFg1sHTcIoCkiZglVVEM4GgqiiqyKyDj+iu3xDiiIYOZhJR0BEEk1RS48knn+KYY46mtLSM9PRMHA4XDocLp9NNa2tr91wN9DxMnjyl33mRZRmfzwdAKNBBwrTi8GURTcbYWtfJ5EyfMWPAee3S+PWc5/40vj2v9bc2faXuyWSSp556imOOOYbS0lIyMjJwOBzY7XbsdictLZ1jrqur62PFIPU6evvU9t53+z+/f5Gt+45jX0RRz2uZmZlceumeiMXnn38+W7ZsQVVV6urquPnmm3n44Ye7Ix9Db5O9zMxMLrvssu7yCxcu/F7le+6vhmHw8ssvccQRcxBFEcnQGDpyDO8veY3srEwAfn/9DeRkedHjMorsozUARbnDIdjAxOFlNDc0E4pHuf2Wqxg7fDSrP19NpL2VCy48Hdku8Mc/Xk9Tu0Rl7Qa2Vaxk8rjJzJ03j5amZkw1iWgmiEeaUWMpXFY3XpfCc488T2NjOyVDMkkk23G687FnZPPqG/8i05dHQgjw7NvPcu/Td1JRvoOikhI8mXY64o088vRjDBp6AKedeAYfv7aKj1etJKXGyPRkYFVkREwSsSiKJBLpaEDBjq4ZROIORB0CgU5rCCsikkUhvyifpB7DKrtpa+2gtroKWTKxpKVj9Y4nt+AIwuEgCAZjJhyAKMH5Z5yJIHqorAiw+ZtqdG13fncthmgESSXh11fdTELXMIU8LC4X6el57KzczNgR47CgkZFuxTRkGna1Ihmde7HLm0tHbT2mHqOxeQeCESXSVodmyrhtMvc99md8mTmoqkpRUTEd7XHWrtzAx29/TjIcJNS+BZfVjiJ42LGrGtPIonlnK9GADPbRCOFOgUxLYzu3XHcnKakYJKPTd1uz4nV5yS3w/T/snXeYVOXZ/z+nzJnedndmO0tbliYIgoCIitgrYo3GaPJaYkSJSSwxmqixEkuiMdZoNNHEhi0aFREBQSkivcPusr3v9HLmnPP7Y51lGGYXUPP+8r4v3+vaC86cp9xPu89zl+d+OOb4Y3D5hzB8zGjUVIi2pkaGjhhLR2sbf3z4z7z79gqGVZaxaNEivAV+9JhGNBqlsKwQs6yRihvYbe1YTBY+WfYpVk8xeaV+khKUDRnLC397Brfb4PhpU7DqQVJqHIszn9Gjx2BWyskriYFgxZ3nxekdQnMHbNtSx/rly6mtaaS+QUBXRQod+SjFxVyybBaC7GVg3pmMH1uMHF1MR/UC8hQba9etpKS8EAEBr28giuIgqhu4XIM57pQZvP9RLRs2J4hE4wiIJOLdCJKIqMKuujgmowshtg01sAZNM5FfOJ5BQ45k5kXTUSwySVXDZJKx2BSikTDjx/uRpR6vO1VLoWpJVqzawvwPdxKMNiBrBTisHiTZxPHHDUbVE+jIaIaF0jI/J0wtZNOuVpauiNHa1U53JI7PK9PR3oBslfCVVhCLdGNW5L34Ueo1C6lXLb38KJfwmGmpNAwDBB3dSKEbud1z04JvX940mfuP/r7P2XE7MtP358GXvQ9N058OOpk+n2oIIEg9/D7zm7BPezDQ6TnbiiggGCKSICPyza/6O4Rvj0OC6/8QZDKWzMWZ67dMHIgWqy8X1jQymVFfyJUm2+0jVx37E+TSZaQF2OxNcC5h62C1hLk0jAeDXAw2s4xsC3U2XQc6Rvsbp/3Rl63d7IvmzHeZ9We2I12O1r0bI1i/V319uVNCj5t5Xl7PdSVp4SqNJ554kqOOmsozzzzLhg0bCYfDuN1u/H4/fr8fl6tHUx2NRveiwev18vzzz+PzFbB582Z+/vNfMG7cEZSUlHHeeRfw8st/J5lM7qUMEQSB7du3M378BH71q9v47LOltLW1YzKZ8PkKKCzsqTONSCTc2x89G/09fRMKRlCT8OcXX0U02/npTT/n3EtmYjJ97f4kyBh6zxh3dnb19mNxcXGfc6a0tO8+bG1t5eijpzFnzk9ZsOATmpubEQSBgoL83r5Kz6lIJNrnJsLpdOzzWxpp5UIqlUQyRGSThQb7BLSvL3Av+vr+0VwoKdnz7mBcr/pSthiGQUtLC1OnTmXOnDksWLAgo80F+7Q5Go3uwxe+jXIv867jaDTaZ1mZVkyHw9Fnv+fCr3/9ay66qMdz4ZVXXuGII47A4/FQVVXF3LlzGTp0KFdffTXQcx7TbDb35jUMg9tvv/2g8lsslt71k9m+o46awqRJk3r7TDYERN1AsuZz9dXXALBzZw1frlmDbIrR0roDb55MMNTA0GGjsdnyyXeXs+TjVYwecThXX30No8eMYsDgMnRZ5IrLryEQTGDEbBQWlDNz5lmUV5Sxfut67DYrimBCsbiwOTx48/3ogoCGwC9v+zkDBpcQjARYsnQxsqxgGOBw2BgyuJKKAUO46aabmPfWX3sC0cQ0Bg8cgWKyUjV0EKuXf8nc+x9i+rQTOfuUk7GZFbpDQXY3NpHnL8LuzicQ1rCaRCQjQUPjDuwWA02OEtMDyDYoLPMTiIQRZDsOdwEpBIrKC/nzX//M/IWfce/c36FJKh3hJjpCHXQ0N2OSFEwWE6eefRw33nQ9VSMGMH3GBHSt5zqsSCSK1WpBkESeefpJTILGui+XYrZZ0USdioHlxJIxFFHmjVffIhxLUTWiFFXrYmf1WpxugZJSH4KURJR7Aid5vC4MQ6C9vZn2zt2IZhGb20ooFqWprZ3DDh/HBRdfgCffj64lSSZg5KiJDK4ajUoSi81EMBrA4XUgms0sXfAZHo+XM86ZiZAMQyyIywROp4RiEpBECAZbsVhstLW1YxhQUOAnGgujKDItrU10B7qob6rl4d8/gyhbSSZ0rFYrkUgIk+zAZjdTOnAg0XiKE485mu3bt2K3eTHJNnbvriGZTFK7u51wwsCRV4LfPwBBk9mybQeCycDutmFzOegMBBENKCvxc/jYSvLyFbxeL06XGZPJRKAriski8cpbL7JpzBKiqTbyUkdTWD4NSQrgsuwi0R3GUC0EQp0k41HqGtro6gxxxLhxFPjyOOOCo/hqQwOBSIpd1V3ogogg2DAkiTHDCoE4FiNJKtqImGojmUhgsRXj8pTgLhiIYJJRDZGEqmJ32tBSOknNRFxNIcoCgqAweuxATjljHCajgFi0GdFQyXcncFl1zIqEolhx2O04LRHy3AqDK/KYOnUwo4ZX0NEdJRhOEInEsCgWbrztDjZX17P28/nAge03so0H6d/S+bP3oNl7h/Rv2fwv05ixv/1kOl22MJqL1v48yzL3hdl7tQM1JKSV+LneHcJ/Pw4Jrv9DkblQDyb8+H8HTWkciAB5sC7DufJnR7H7d7m19IVvuzH+Jnm/TZ2ZbczVdwcjIEcX/Y7Ip3u7J36TPtyyZQs33TAr6fIAACAASURBVHQzuq4za9Y5LF68iK6uDhob66mp2UV19U7uv/9eIPeZ6BkzjmfTpo08++wzfP/7lzB06FACgQDvv/8+V1xxJVOmTKWxsRHYI5RdffU1NDQ0UFFRwUsv/ZX6+t10dLSxe3ctNTXV7Nq1Y596MvOnsXNnNTXV9Vx44Zm43SYUk4HNagJB64kGjkg6nEB23/aF/tbzzTffwoYNG8nPz+OJJ/7Erl076exsp7a2hurqnVRX76T4a8Hy23pjGPREYzQMCcfIGRm0961x/i48QLJx8803s3HjRvLz83nyySfZtWsXnZ2d7N69m5qaGmpqar6zNmejOENIb2xs7HPc0vMrO8+BQJZlnn32Wd5++20uuOACRowYQXl5OUceeSR33HEHy5Yt61XYDB06dK+8giBgMpn485///I3yZyqaqqqqessUBIGkKIGQRBDiDKsa1psuFOhA1+IIqAQD7YSCHeiSQWlpKZs2beFPf3iKeKSTm2/8ObG4iiGaEZNmJo8+iulTp/HZogWMHDkYXUzg8eXR3NLFdT+ZzbKlS0gZUUxmCyazhUg0jprSCUUjqCkdb14hp58xi8amOqKxLoLhFpqbmzF0kYbXOxgZHMuQyiJSWpJd1TuIJ0Ms+Gg+E44YTWvLTj5d+DbhYDvJZBKr1Up5YR5mQWPxRwt4+rHHUUUZVRAxRAOb10Yy2obfa6V+1zbioS68NieJbo1/zfuQSGc3Jt2gessm/vr0Xzlu8ol8+uEC2hoaaKqpp7SkiEB3CFEW8PjtfLzwDczWFHaHgtWmEItFuObH17F+3TZCkWasNpG63TWMHjaSaEcnIiZ02UUEFzWN9Zw581REPUI0kkASFRSTla1bdpBKykiCHas5j8b6LgRBw27z8Oor7zJ08Ci6WurRolE+evc9BpeU4ylwoglxOgJtKCaV7Tu20trVhSPPhU6KPJ+HwlIfkgkkWeHlF19C1EWOPGoqVrOF+trddLR1oiYTdLUH2bxhB2oiydq167CYHRi6RENDIwUF+ZgUmdtv/xWrV6/CV+hHJcCb8+YzZ85PaW5pwma3oMhOEFK0dQdxOF1o8ShuZxH1de1omkbZAC+JhEpR8UBEkwNdFrl/7gNIosHgqgoEyYzTXYBumEkkZRJdDbQ11iNKLkaOmUFzQxSXK4+2thYcDgeSIhAI1mP3mDFduJmEOQmbhiBN8ZM/YBDlBQm+WvImTocXWRIoLi1jzNiRQARkA9QKJkw8nI3VCbbsUrHYPQSDMeqa25FIEtGtfLWuAV1LkAjX01S9EiPWiI6ZYNzScy2PZgOsIIjYbFacbguSqKCpBik1iMOmIYohFLMT2SKQQkJLyQiiFU3ViCVCJLQIJsWKonhpbmnF5YxjNgxWL1+KLBhUDqlEECVsriKOnnE6D9/1m30U0N8FcllqDyRPLj6a7ar8XeLbCJupVOqgA18ewr8PhwTX/6HIdH1LX6uzx7UtnUbYr+CYTgdfC0O60BPqPH0dTw7NU/ZzpktGfxqvzOe+XAezNWKZ2r5s4Srbwpou+7u+47Qv9NeO7HTZdGajr37dn/CfTcOB0NNX/myhv6/+28danvXhytzAZ7ctkUj0Rlz1+329ad588y00TWP48CpefPEFJk6csNe1HIIg0NLSule56fmRbqvD4eCSSy7mmWeeZv36tWzfvo277/4tFoul1xILPRbw3bt388UXXwDwwgvPc84555CXl7dX37W0tGS0IdsFac/z8Scfy7DRAygo8CCKX/eLIYLRc32AYWgYhtprFU0HYktbDXPNjaam5r3qS0NVVd5++x0AHnroIX7wg0spLPTvY+Hv6OjIoDW3y2p/8ykjFYago4sCk6dO7x3nlsZ6JEnKua4zae8RcPfmS9k07G9Doaoq77yzp82XXnppr/t6X23O1d5vquypqqrqbXeuu4TTSL8rLCzs9SroD7lomTFjBs899xwrV65k8+bNLFy4kBtvvBGbzcbSpUsBmDJlSp9lnnDCCTz//POsWrWKLVu29Jk/s99HjBjROycFocd9bo/rtNH7PcgcJ5PZS0LOo7B8GJLkJK/kMKKRLto7WunuSPHBJ//A5bWxs7oFi81PS2c7dz5wO+d871he/PvzzLz4TOqaa+hob0TSEliTAS666EKOnXEGf3/uw56IuWKcYLgFRZFRTHaElEpdbSOxuET1jgYQ3MSSJkQJtmzdyRChEn27hbaGADarzsAhFazf2MJPfnELTls+azdu4uJrr+TjRWvYXRvHYbWjqhrhcJSJUyby/N/+glsTiAS6GDJ0CpFABJ+3lHA4iie/jCefeo3Ozg46W+oYPLQUt9VKMplk7PixPPzILQS62/HlF6GIHhYvXMHKVcsw1HocogmrqNDV0YlolkgkVCKhBlqbdvPqq69TNXwEvgIvoUgQj99P2BAQkQgHmtGjBk5FJr+gEFXXyPcXkzK7Wb1uIyUFfup3t5AUZUIxEZfXz4DBJaiAZJL54Y8upmb3Wj5fshaT4ObD95ZQvaMRxWxDkhTyXWXYXV4OGz2WjWvWIGpJrKqFe+94CC2qYtESdDRVM+f6GxF0g5rNa+jqjuDOq8TjG8TO6jDdER2zIw/RVITDLGCW4piEOOWFRdRtb0EXFARzhIkTizEpoJhUZp53Js/87QUc+SUkDBvdahtYHVgUH/V1u2huacVhNuF1F2Ox2Ghv2MbfXn+fZcvmU1+zic8WreDKKy4nlujEaXOS7KrHLNjRUzF8DjOxVJz333iLnZtrkSzF/OPlZ4iEe84PW2xWGnetJc9dhM3ho7GlGddlLUQm7cL+6nGkLFWUVlYyZKBI5/Z32LhqBeFwMypBDD2PSCiOx29l1NgJVFUdj6/YwoKl7Wza0YWMFcNsgXiSkhIXhqARDqjkOTX0+E6ioWZMsoQmezHnj0DxjECxViAqPWdkZUPE0A1UUUdNQiqeQJAiRDUJsPLlyt2EQgEURUISnciyA83QiIc6KS8voDUoYpVTDB9SSFTVCNQFqW3eQSQUpaKiknjKRFtLPSk9iSboYHytmDyA70DvXuzrfWHm1Wp9CcKZ353MPWCu/Uz2Hi6XAaIvC2lm3lwK30w6BOPra8iQENlz9V+fe8Wvr3iUBBFD0/uk4RD+e3FIcP1fhEyB7WCFtu/CYtuf5TcXc8tF54Faj/trY7qMzMutD2nLciNzvvTF9DMj8x0IlixZ0qeAsHTpst7w9ePHj+/9vb6+x934sMMO63NcFy5c2G+92XOnrKyUn/3sBq6//joAPvlkT/50fQBjx47NWd6CBZ9kPO1xWerpjz31GAZYLJYDisKoKAojR44Aevopjez5nPkuE21t7cTj8a/pHpMzzbJln/em+a4gSRJ63ReMGFrRS18ikcg5Z/qiPRcOZL23t2e2OfdYLVu27Dtvcxo2m61XWJw/f37ONIZh8PHHHwM9wud3jc8//7z3buNLLrnkW+fP7HeLxcLRX59Z3rKl5/x1rm/J+vXrgR6eUD6oCofFTjSUIKEmaWuuxWMdzyfzV2Ayp5j/yWu4fYVIsk6wczdisoO7bv8NbZ1tgEFKbaarvRuvcyjNrS3cdPPTPPnEa6RSSaZNH4XFoqBpAi5HIe++/Sl19buQJBGnS0EzQkCKN998jbw8F8ccM5WqquGIgol4LIWv2EsoGkASVMaNHcKPZn2fjavX8V8/+jEms5fDD6tk+JBy4sEAos2JbLOjJqJ8/umHRNUYf3vpRVJJje6gSkN9Kw11HYiChccff5xAl8ZZZ55PRflIwtE4bW1tWGxWvHl+TjjpOI6cPJFf/upWrr/+RsaOnobLXkIiptHU3EhXJIFg8mCyefA6Kxk8eCCG1AGILF++vNca5nA4iEaj2Gw2FEWhubmZuro6LrvsMtra2si3iIyuGorN5eaEU0/HKkk4LSKiFqOptgaTbGbrjhUgqNz9m6c478KTSKTauOLqC0ioHcRCTSRjDYQCW1j+xQra29sZOXI0iYRKLNnEeRecTiQSIdAdwySWsnnzbrq74xQVDeTS83+ExRTEhMbHCz6gqDifgYNKsNpk7A4HoXCc7u4odfX1lA/ykEwGkWUFZAtd4TiqBu/Pe4Wvli2nbXc9PqeTZCBOa/VObJJCLCGyqylCKpXkgbn3EAxE8PsqKMxzM33qZKLdnUw6cioup49wSKWzI0w8FaKldRfbd3xFINiGx+vjlNPOoKCggC1btnDhRZcjmxScHivhaAcFhQPQjCQVA0sZOfJoEnEF9ww7HRdvwLbNhtY0Aod7AhaHREVRNzZdRdF91LduxO1xo2k6nR1dDKx0M3rM4Xg8ZbR1hFEsXrbtqMHhtOD1WtA1mcaGJmTJQiIuICZ2oQe2YXTWI+sGMVWmQ3WTMvJo7ujG5LQgixJ2wYMo8fW90jJmkxU10cXko4fiznfSHddpaOnCYvViM/sQrQahgI2PF2yjotJGoK2J1175B06bG39FCbfddhvP/vlFZFnB43Ai/jcLXgezt+xrXycIe27e6K+eb2qs6MvSm037IaH1PwOHBNf/xchkAmkhri9X2v1dWZONbEtRr0Yro4zMcwq5rEqZwmX2u/5o3R8z6YuWdF/k0uQdKLLb2pd1MtfdZ/tzmc48z5GtdczVxv1Zb3NpTbP7OPO37LMk2cJ/Lpq//s/X5fU87t5dx9/+9lLOfk5HTR0+fDijR4/uTeN290QG3rhxY06aP/zwIxYvXrLX72naksnkXu2GvT9E6WivmRZCl8vdW9a6dev3sTqHQiEeeGDuPvXtaXdmu/YIAZntzXURO8DMmT332b7xxjyqq6v36deOjg6effbPvc+ZeZ1OR+/z+vX7RmXWNI0777xzn99z4UDm/V5W/C1vcMbYnite5s17k7q6ur1okyRpH9q/KTIVJU6nM6PN6/dJm0qluOOOO/b5PXv95PJqSGN/m6uLL74YgMWLF7Ny5cq9ygeYN2/PWKbTHggy510u2g3DIBgMcsMNPYHJZsyYwYQJE3IVtVfezLENhUL75M/mEZde2hMFfNmyZSxfvry3PzRNQ9d1otEof/nLCwCMGzOK0hI/eqybRCyE3emhoqyYRKqN1Ws/YfXqVXy2sJpbb3qEKUfO4I8PP43XVkagq5uikkKam2vpam9GT+nIih27u4D7/ngVZ5w/gaQeZOigKmRZJJVK8fbb7zJ0SBWDBw1lx/ZqXC4HmhFmwsRxnHf+OQiizuovP0SSgqhqBMNIoIsCAmbi8TgmKcXa9R/T3LaGmNqETogB5SWcfsaJLF++ikgkRTymIRoS0VCUUNTge+dfSDwSRhdNvP/+B/zg0isQRIPPly9m2Ag/y1e9j8Ot43B6CcYiJFIJamvb2LZjB8s+/5yfXHstW3dsYvnyL5EEBw/+7jHKykooKixFluyYZAuGrvDVV2vZsmUja9asZuTIkXg8HqBnPvt8PkKhENATfGvw4ME8/fTTOBwO1q5cSXdXmPZghGCom/b2TpJqlPqGWvLze7xYLFYZm93Cg7/7Aw11Abo6ElRVjufvL72Dplpx2guxW324XB5uvPEWbDYHkmiiqWU3w4cPw2Zz4LC7ceWZOP7k8Xh8Ak1tu3jo97fRGdpIUm/gwgsvoLp6J4FAN6lUEpNZwe0pxKQ4GTh4EEktSntzA26nh6KSgdicDjBkxh9xOJOPmAQpleuuuYpF85dQXJDHrb+8mfqmZm6+/bdomsrEI8ehqhoNu0Mk4yotzW2MGzuWn/38enQN3K4CTCYThlEMCTfF7kquvPLXpLSe+1iffu552rrbMZDQDEikNMx2BzaHj2giiq7Fae1oRBW6aOnYQdEYB64bYhjFSeQNQ/COPQyzuQC0jbz35ouIqoPamloS8QQrV37JytVbiERsjD9yAlOPncSSZesoH1CFJIjoWhyzYjBkiI94vAM9FScQVbDaZZLJOtobNqNISQRJwOYoZOjwU9GEYgSThVQqgCBI2J0eNAMUxYRiciBJIpFIio5WkTVrqkmqCcLRFlTNjsMd57xZo9BSOmNGD6ZqSCWKbuH3NQ9w+WWXcufdD5FIqHzwzj+xCBLC158wgb15fF97muwr9nLxm/7irGR7yeUKArU/r7QD8ZjJ5uO5zuLub9+Uma6/fd0h/P/DoVH4PwBJkvarrfo22J+F95u66OVCLqZ3sNbibGvCfxIz6kvzl0gkvrG275ucgU4z8IPpnzTZbreb66+fw3PPPd9rBaurq+cHP7icRYsWA3DHHb/ZK++JJ/ZcPbNp02Z++tMbaG9vR9d1IpEIzz77Zy655Pvk5+d2v3zooYc5++xzePnlv1NfvyficCKR4I033uCRR34P9FzzAj3jP2rUSMrLywG45pprWLNmbW87v/hiOSeffMpe14R8l/jxj6/G7/cTi8U466yZe1moV69ezZlnnt2n+5XD4WDKlMkA3HLLL/n000W9Y7thwwZmzpzF6tVfYbfbge9eQ/yjk0b00n722eewZMlnvbSvWrWKs86a+Z2foeppc4/F85ZbbuHTTz/tbfPGjRs555xzWL16dW+bc+Huu+/GZrNhs9mora0F9uYb++unSy65hFGjRmEYBhdffDELFy5E13VSqRTz5s1j9uzZAJx00klMnz59n/z33HMPdrsdu93eW38mVq5cye9+9zs2b96MqqpAz/z94IMPmDFjBuvXr8fv9/OnP/0pJ3395T/++OP3m/+iiy7qFYgvvfRS5s+fj67ryLLM9u3bOf/8C2hpaUEUBB6463YkrZ2Wxo2k9AiaDomwjhq3cuFF53HJZaexfddK1q/8hDnXfZ8rrv0+uxqquelnN+LNz+Poo6eA6uSrL1cQSzbR0hrE4xnNtGNmEoumCIY6EQQJWYbzLziDgUMKWPjJMtpawiQSPWfNdCOJbiRJaXHWrq7jvTcXoSgWFJMZAxmHwwe6iWBXJw8+9TxHHHUMqaQJi1BAKJ7kH/Pe4ifX3UhL9W5mTD2eT5d8yRerd+BylpOKGyxY8C/8JXnY7GY++eRjkmoYT56EnjJRWFhEd1eEhKpSUlJESk8xfMRYSkuHM3bcJMoHlTJu4kgGDy3kkUce4awzZ9HU2Er1tk08eM/9dLU0gxjE7ytlxLDJTD/+qN7Nst1ux2zuEboLCgqQZbmXB9tsNsLhMP7igazfsgub3YmoRQknBMwONx6/D7Mjj67uDpy2cjrbI+hSE0MrSzFbIKWFmXPDVZhdCkl0FKubkSNGM+aww4lFE+g6FBcOYs1XG3ng/rk0Njbz8B/+gL+4mD8+/gJVw6ZSddgY7PaxxJJOnI48/L4y7DYPAgoOt4u29iBXXzMHXQCHswiPrQA1qSMoMlq0G5OoUDpwKCo6pQNLmH3DbA4bdySbd27nrrvv5LhjJrNr62qsNjOnnXYqwUCUvzz3Gp6CUvKLK/h81Xqu+cnlxOJBTCaJ/AInn69YSXdXO08+8Qcu++HlaIZMQWERg4cOYeToERSV+hFlhVjMQE+ZUXUzNqeF5pZ6BMGJJNkxKXY03UZTpIXkcc2IP+gi9d4oZOskLEoxh1XJxDu3UVCQT1NTM4cffgRVI4dROqCUmrpqiovHktLNtHeGiUVVZJSeyNGAmlQJB+N8umgdgY4OZHQsSgA5sRO1bS2NDTW0dXcRTriRrIPRZScpVSCugqZrQBIkEVEwoUg6A8usnDzjCCQxgdnixKzIOKwSVsnALIk4XHZqtu9GF3RGjSjHbFZQdQl/UQkDikoQtB7310x8F1e8HMz51G96lrW/vciBHDs5hP8d+M/ZsR/Cd4h9r3jIvFon/dd79Y6oI4g6Bql+F39/VrxsC2FmmmyNW2Z56d8zBaX9IZvhZbto7u+sbTYd/QUnyo5m3Ne5i1zt/yaMtC/LqqIofWpGs/vlQK3X/X04st/lslb1jpUgZP7D1Vdfxfjx47n22tn4/UWUlJQxbFgVb7zxBgA333wTZ5115l7tmD59Oueffx4AzzzzLOXlFZSWllNUVML118+hqqqKW2+9dZ/6067M8+fP54orrmTYsCry8gooL68gL6+ASy+9jEAgwPDhVdx33329llPDMHjkkYeQZZlNmzYzderR5Of7yM/3MX368Wzduo0XX/xLzn7p6Ye++25/4+71enn55b/hcDjYuXMnJ598Kj5fIX5/EdOmHUttbS2PPfZob3qz2bJX/rlzH8But9PY2Mjpp59BQYGfoqISJk2awuLFi3n88T+Sn5/fS29f2vCeeZp9/cs+LQZ0dD2FYRh4nRZefvnlXtpPOeVU/P4iCguLM2h/rDd3+n7RXMg1R/embc/7uXPnZrT5dPLz8yksLGTixIksWrSIxx9/vLfNmeXvT8N+oJBlmVdffZWKigoaGxs544wzeqMZX3rppQSDQcaOHctzzz2337Jy8cvGxkbuvPNOJk6cSH5+PmVlZfh8Ps477zw2bdpEZWUlH374IWVlZfv0HfScl77jjjuYMGECXq+X8vJyfD4f5557Lps2bWLYsGF89NFHlJWV9ckDX331VUaMGEF9fT1nn302+fn5+P1FjB07joULP0WWZebedRNjRg+gs2YLHW3rGOAfSKCzhUSiBa/bxCsvv82iBet46633+a/Z1/Dkn59g1IjR1G7r4O1/vYdJN0ik2sj3FzLqyMMprTycmi3r6WjYhN/rwJMvohoS8USEcDgKholETGT+vxYwevQA7FYFRXBy3ZU/QxZktmyqpnRAJflFZQiiTDyZoqO2g/f/uYS2YBuFJUNobN7J0k/XUl42GE0IYUgp9ESAm67/ESlB4+PF85l7332cdtKJoMTJK/Nz/AkzkNQoZ53T42ZrEuNYTRLt3S3UtXUhyTZUI0oiHsWhWHC6ZbbtWIukRFEsKslkkrx8J6ecfCaFRV7sNi92u5eLzp2FpoFGEkGIoaohUpgIx+PohoagJRDUANFECx3dTcS1BCgKoVgQXTKwebw0drQwafJ4DF3FZPMwaFg5gc4W1EgYQ9DxOvOxOm3kFeRTYC9ClxWsFjMlZQoF+YWkomE6W9qortmKIDmYccLpfPTRAqxmE2aLg7KqwVwx+xoE0cTs2dei6xo3/Gw2wXAL27ds4L13PyEWhz8++jC6miLY3U0o2Ep3c4ifXXcD1117JQhJkkYSf8VQXG4rbY0biMXj7Ny2DC0ZIKm1EktGWL1uE8UDffh8Pro6w8w883zQDf70+NNIKRg6YAC1DTtobagjZUBxaQnhdo0Na5bT3PgV8VCA6cdMxVdRwa/uvodXXnqaLas3kO91MGiQGTEeJ9DZiqGFSMSjmBUX0UAt0VAcVe+JzG2SzEi6gskQMNQQviInWlUY+VfdmCI27N3T8Z/iJC8/Smv1ZioGjSIcC+Exm4kmVSorh1JXX8d5556LaM6nO+okkVLRDINAMIHJbMPr83DKjAGoWgGaScahWEglotitGgWuBGJ0N16Pic64CYt3FK1hBVkpwGL2IstukqpKMpVAQ0CUosimGGoyhYhIKBjE0GUQNSxWGyZJ5cQjjiKhRNi5vZ1hI0YR6m7G47Cyvno9SVHDQMJ0bgL5gnjv+heEPbFNeiLh7+uRksmXs/nYgQii2R5RfR1B0jSDzOvJMo9/ZZaVay+W+T57ryQIBoLQ802Dffd1+zwLIjoCiFLP3yH8R+DQwb//w0hbYXUjbSHpP4BTLq3cgZzry0wL/56oowdCS1/192eN/HfT/F0ifU7136111HV9Lwu+7B+59/tdH/PqT8bwxIAE85buorY1hMumcPiwUm74zYOceuqpAATfmr1XvsfOcTLWOomXP93GzuYwmqYxatQozpkxgSvGa7y59G0AjGgn4Xeu7833ox/9kpKSEhYvXsz6FYto6QgQDHThsStUlXk448iB/OCEKhwtC6Go58oQrXs309QPePvXp/D7N9eyYlsLsUQcv8fKWRMrufG3v2fEhGN764gtfYxw9+u9z+HWUM6+Cb19XZ/9Zh5zIaaBUwGYWGKw8N5TeXjeGhaubaAzFKfAZeWs4yq5YdbhJAcN6s2nbHiO8Io9AY8qgX/dcRIPvrGGpVvaCEYSOBwOTjhuKj+ebOJw+zLujPYEwEqueZmIeyVgYD3mF3vRE5l/B2Gfk2yInrK9nsPvzMEwdFQ1haIoTJ06leXLl3P//ffx8ccL6OjowOfzMWvWLG6++ea9LNVpF/D9YX8a+HHjxrFo0SLuu+8+Fi1aRCAQwOFwcNJJJzFnzhwmTJjAXXfddUB1fVNUVFTwxRdf8Ic//IF33nmH2tpaTCYTI0aM4Pzzz+eaa65BUZR98h2IdWHcuHH89Kc/ZenSpdTW1tLV1UVeXh4jR45k5syZ/PCHP+xVXvWV/4YbbmDp0qXU1NTslf+cc87hsssu66WtLx5RVFTEsmXLePLJJ3n99dfZsWMHsViMiooKpk8/jgsuuIAKbxyruxBPQRX2zjKqa7Yi23VM5sFEoyFWrVrBY48+SVNTG5OPORrDZGLVurX8Y948jjnxWCTJRiKaR2dHB1+s/IxJR8pMnDiZeLIej7uAlBbEk+ckpcZJxMPYrU5uvfk27vztbUiKQGd3EJfTy8OP/QaDOIV+F1aXD5fPQ8uHrTQ3NePXNY6dPoGamho6rQKdbTojR4whEVfBItC2u47y8nLOv+xiUGxomsYrr/6Vdeu/pHRICUX+QiwWhXgsSn6+D0OXicfjbNtazaDK4ezYsROrJUlxSR5+nxPDENi5cztjxoznjdfmkUolueii72OyaEiSRHV1NaXlXhwOF3rKwOX20h0TCYRlQl01VAxJYZdERF1AF8zEVBmntYKYmkAUZZJaHAwJPaqSCHUycOAArF8Hhtq9uwaP147DZcdiUQgGO7Ardiw2C4HuNsxiCiOWj92iEFNTBOPN5Hlc2J3gzS9AFnTee/dVvve979FUX8Ntt97Lo08/jsfhIhWJYzULx96lRwAAIABJREFUbN+6Hp/Ph8vpJO50Y1IEFEVm9rVXEAyGEQUzHo+PI2eMZtnnK9EMHTUVx6y4Sek67a3dFA0Ywfx/LmXUsAHYbV4CgSbq6xuZOnUqFquJaChBe0cbv3voLtxemdtuu5X16zdTW9PIfffdw/YdGzGZTLgchbz1z/vxuotY/sUWTjp5GnX1tSxetpZzZ54PKRODhrtIJMx0dsg8s/AvzLnhepKJBIokk0oEiSVDmJUCCvMGklDr2VWziwHlFah6BKvdT31dE3aXlajageMKGWnpMGxvnY/5os3EP1pDw+ZPKSk9DEOA7q5u7DYzbpeCyeXFbzXzzJ+eYdL4Eg4fPoBlX67lmBlDSWrtmK0+Xn95BWfNGogmGkiyiaRqIMQFFIdKd/0yBKEYw1nJoMoJtDTVUeCxEYu1YbVaUdVYT6wBzYSAQDgcwe324nI7UNUEimIilUphCDIt1VEKqjR2ba+hpbWeLVs3seDd93j0gpkookQSoNBAEHPzk1xHX7KReQxNkqSD2iPtb1+Vvd/MPJ71XSK9j8k+LvU/Yb/3fxnC/5QB0npUMIfwb8IeLZp2QMJPpqUxjUxtWi5kMqHsvPtjTP2docimoS+m2x99fVkv0/guD+n3pWVMt7E/+nL1U6YGNBdt2Uz522CP5rLn39Db12E/7iYkzwBEUST21cskapbu8RvOgOguwzH9lt7zxtmCayYyhTy1ZimJda9gGHusuplwnPVoL03hTx9A767fNxFgqpiCeewewTW2+KHe8tLkpp8t036O7O0JRBRf+w9Stctylim6y7Ade1Nv/QcquKbb1BdebR/H7NnXMWjQIFb+6VL0QP1edKYhDzgK89iLeizJ3buJf/ZQjtJ65pv1mF8geQYAkFj7D9SMNmWWK3rKsB1zY+9z+J05e5XmOCttUc2epz3z6/nnn2f27NkMGjSI9evX7zMvc3k+ZM7ZXAqo7Lz9IXut7O/3zN/6WjsHsoHqK23m/yVJ2utcfyZt/fHdb8JvsnlmJp/oizdmI51d0zRUVUXrrkZ2FdHZlaDQlU971wasVivt3SnMokxbS5gfXHolRx99NIFogAcf/i11uxv53oVXceH5J3DK6SfzzzcX8cvf3I4sdPLhPz9m1GFj0PQ4O7Z3cNJpUxEkhe6uJmSTQH5eEW+/+QEzTjkJTY8jChIpVaS1sYH21i6qqqrY1bCDw0YdTuQl+Gr1Gib+thyL00siGSUZ7qatK0gi2E5+oR/BbGb6pLN48W9/paO7ixNPPRpZMrFt41b8BYV0xdoZUF6KhEFXZwceVwlbt26lrKyMm2++mcef/hPhUBTD6LkmSFWTpFJJ6ht2M/awycx74x0mTZpEUXEB2zavodhfySmnnMKadcvoDicxJJENa9fxrw8/5ZzTT+TI8VXE1DihYACny40hiMQSKqGOACXlZQiKjGoYtDbuoKjAS33NLux55Xi9PWfNdV3HJBgoNgfhSITGuhryHA48heUk1TjbNq/G5yukvrqaiVNOoi3cgsviQZIkwuEwotETuFBNJUil4rzx4mIuvmom7R1bkYwgXu8IVqxYQXd3N8cccwzhSBN2txOzxYWkp9i8eStmxUYirjJu3DgMzOyqrsXqNOOyeQlEOikuKUOWzMiGiUh3B5JVwWIWePe9fzLjpBMxW2yQCiFgJplQCYbbKPCWkEzoxKJJVqxYzbPPPs1pZ51GnruYefNe5OGHHgNDJpGMke8xUV0b4O6778FtTXDTXbdQ4hvH9l1fUlxcjMksEwiE8LjsRMIBXO4BJBIdKBadlK4iCU62ba2hsmoAKU1CTURIxCPIkoFVGYRGDGu1g+QrDmKz3iO4qJ26Ji9mZz4jR48hEo1gUQyCwTA+v5dAW5AFH77B1COHo9gEZKK4lDy6U21oKQsmKYyum1AUE4Ig01DfRlFxBXazREKHmKGwZXMbFYOHYzHHMEtRTEIUXU+gaxp6ytjL2wgMDENEQCAaiyCb3DStLMOSb0e9rI3urjA7t2wk3raNxs4u7nnwD+hmB4YoIEhZ/MDYNx5HtmdGGprWo5hJ/5vmN5l8MJOnHahV9uua0DQtw3vu4Pdsud7v2yYxK+3e9RgZtwfIsoyh/f+/dvJ/KyRJOuCP3CHB9RCATOHmwM5EfhPBNZOhZW+evgvBNdsSuD9GlkYui0h/aft7fyBIfxQy+yntwirL8jcWXPe3Yf8ukC249ieAZz5rmtbr3psWXHNt7PuCYRioqprTopVJ2zc5y5tZf2a7DtZ63d/c3V+ezHkVj8eZOvVoNm/ewlVXXcnvf//IPmXp+p686b7cE4As6+ObY+3sWbtiVtr9nU/NTL+v4BqPxzn66KPZvHkzV155JY888sg+fZzL3T17c9TXHM61drLxnyi45sp/IILrt7EAfJeCq2EYRCIRNn6xmHGTJqEmYwiSB7OpE4tQTMwcRE5KrP1qBx3tUbZu3cqkI8cxtLKMM86YydBBh/Pjq2ZQedhoPpu/hZvu/Q2f/OsFIp1BSsqHEkl0Y2gFtHVVU1YxAJe5gLaOGvLy3QiCREqyEY1GcDjcxGM6ny/5hOt+PJsP//UaRcWDePefH/HrO+/lmut+yqnTp3Htz+bw7j9fpa1pJ/m+oWxdu5qZ536ftZt20Nq+HV9BAffdfQ+/vuseFJOFQWUDWbl8JZoSwu/z0dbSiNvpoKvd4Ic//CGPPvoo4XCYgZUVKIqFa358HffdfyeLl3zKWWedjt1hpqG+hZLiQTQ2NhMMteC2O3BYi0gkEkimBO6CMuJ6ii0bNzGo1I4iCtQ1NDF05Dg0I0oiFsMsg6inkE12GlvaKCwdiMXuYsvqrQwYXIrJImCSdVpaWpBlGbvdjk2ykBQUdETMJAl11eH0DiGhiYhGFLOli662EBb7SLqT9fg8fpLJJIIgIClODBKko6Q371hMQclQNq/fTZ7dh2yV8fl6Aj598cUXHD11GikhhiFYcAhupkyZzJLPFhCOBFm2YhEzZpzO2nVbqBw+hLdfeoHR44czaOgITIqTlN6NXXaQBJLxBDaHHdEkEk/G0WIxPG4fyWQSUU5gpGRCwSjNTR1YLDb++NjT3HnP7Tz1xLOcdeY5uLyQULt58P4XOWHaOE46/SJumHMN188+m85wGVa7zrgjyzDLhUQSccyimebGXRQVuumOadTtamBgyWBEdwyJPJqbOrE5DJKpOD5vHnoyRUtjE76yQhQJkgmIrFCwfzwA6ewPafmsk2hqMEVlgwnGEzicCrJiIaXHUDATDbXSGUrx5usfMuUIG6MrvWh6BF0vQFECSKILk0kkHApgszoQJJ1wNIEoSYiaji5YsXmHYAg6arwDIxlE1xJgGJhkM4lEApNJRhBBVRPomoQsm0kmo6QSItrWo2i21tE07Us2bOpk9YqFHDnKzefLN/HWh58gODykFivo6JiOT/UpuO79XdmXv2RbWvsTXA9E6bin7D3fxR7hNXdQqGx6cr3PvlJx77QHJrgahtFzM4V+SAz5d+FgBNdDZ1wPAchkVD3nYdN3w2aehzUMAQMNA63HxUTojyHsW/beZw323Tj1x9QyLTS5GFRaKOorTSbSzDgzXXbk3/4i5OWKFJur7X3Rka4/81kQhF5rTK629VfW/pDZJ7n67kDKyKYj8y+zLzOVCJnPmRF9M+vc31hl1p95znd/dGbPt8y+yG579uY+e3z2h+y2ZNOYi47XXnuNO+64kw0bNvQG3tI0jc8++4xTTz2dzZu3YLFYuPban+xV9p4yc5/T2SOM7vnrNyJ0bxna12WKWX/74rXXXuPOO+9k48bNJJMpQCSV0vnss8847bTT2Lx5MxaLhZ/8JDftmchWBPU1H7PnW2ae/WF/awj6PhefPXZ98ZpsQTw7b2bd2UJ4fzyzP5r7W9fpMvrKm6kAyLWm99Sx55tgtdrZsGohW7+YhyGkCAaaaGjooLpuFVJ3J6HuNlrqa5GMemZMOYxgKEwqleKFvzzAHx68C3QPH7y9Cn+FjXt/8SjV21qx5EvIFi//+mg5ki2KO9+BRXISE3XyXC7WrlrPjupORF0nFU8ikaC1ZT0+q8rlF1zCuvU7iUQaiMe7qSgayeUXn8/Lf3+J1vZm3Pl+7r7v96QScd754F+cefYZeBxWCovyaKpt5tZf3IhEB3oizJvvPM3mbSvx5w8g0JXkxFMvoKBsBI8+9SiPPvkUN8z+KXmSgsnqorW1lSf++CD+wnJmnXs+doebZMLGc0/+jdaWnZitCTz5ZQgGJLVW2gO12Fx5tDZuxS4lGDdmSM+9kKKJEaPHgGDgNOXR1lyL3VJMCoPRE6cz4vCj+Mtf/oIe6mLQECeJeDsbNq7H5ipmUOXhdLR1Ee0OEEkGEY0ogp4grkmYnZXo4Q62r/0MUbGQiDkQZDsWaxi/M4+G2h3M/+dH/NclV5BSY6RiCeRUEi3UzcChR2FRCvAVFlE0sIRFCz9g1qyZiLJB5cgBRKLdvPLSG2xau56o0ckHn7zL2o1r0I0oJsVCKmkwpMLKg3Pv5apbbuPnt92L2+PCJEk8/uhLxFMmTJKDv774d+KxMOu++gKLKOPJLyelG0gyBLqCmAQbD819iAGlA/nyi61875KZ7NpWg0UxM++N17FavZSWVvG7++9g8LAKujsa2F3fjL/8SHx5EoOHuAl3SbS31RNp7eTy712ExW6irjXBJef+F0OHDMAwBdDiGpFAGwNKfATbw3htLuKROBarDV9xMWoiRTwusnNnA4XHu5HOD6G9fhJWfzE2bR0bV72Hx+3EYrXSVLsNI5Zi5cpViCYXHreDK688F4d7EIm4iqHbsNhlZOwIkkhjUxuSbMMwVDRVwywJ6CkNs9ODroXZtX0NAhpOdx6ytQCb048kyZjMFgRJJqmmSKkaZqsDwwBBSBAMwavvbaHAWkL5UA+vfbSQ0ZX53HzzzXz6VSuCqKMJkEJA3yhibDLtxb+y+UuuvVA2D+yL32SXeXBK4J6zqD1V7zGk9PdtyKZvz7NE+j7x/cV00BHQ6Tnbaghij6CqG8iidMja+h+EQ2dcD6FfpBlA2hKo9S7eNGPYvzWpP6E2O21/Votvi29ikeuvrDS+Sxq/C/RnFfrvrD8T2ZrYvtL9u5GtHBBFkVgs1q8l97tCZrtbWlqZO/d3zJ37OwRBwOv1Eg6He6/2URSFp556gsrKym9dX39rNI0947P/OdPS0sLcuXOZO3dun7Q/+eST34j2bzJ3v4v53tfmrS+kUql/y/rKVqSk0Z8VN630OBhBPo2+PDwy6UnnEUWRE08/HdkIUL99NfkVE3FbDWwmG2FVJBRu5bjjJ9PZuZPFC5YwavwENCNK2eAhnDvzSm772Y/YvHE54464nDtfuJKfXPUbln1Ww3vzf861P76BAref6sB2dCmGkIwhCgaGGsPvsaDpCfILXHR1deD3lZLn8tH1+hImTzseQw9QNbKCuY/cTlN7DbOv+y/mL+m5b7ewqJh/znuHSy+8iF/d+mtWL1/K8PHDicUjyOYCQsEoBV4bgwYOwdBl1GiSHZu34yvwsaummkRM5HuzLuSvLzzOkNGDefLZv1BSUsIOScbjK2bw0HJEt04kEuayH12My+uhq6sTt8uEoLix2EwU+IuRTQ6skof21iYKCwfgLRwAkkg4HO3xJDGbMJvyicY6UFUV4es5YDUr2O0CkbgHr01g1+7aPeOoWLD5y0m0NmFYonzw0QdMmTqZ2toutEiQwZVDaW9tQwt34S8vpKU7iM3moTjfR8XMkcw45UxkPc7jf3qCDeu38tgf/sgv5/yGW3/1C+ySiKRFmDVrFmari7q6OkrK/Zht+Vz2w++zY8tmBDGFzS4z+rBh7Ni6lQnjJ7Fl8w4GDbPRG9dHlNEEK6okMOcXP2PtmvXk5/u4avZ1gE7VqMlIFguJRJzO9ja8bhddnWHaW3ZRXDoA2SJwwmkTUcwWHnv0Ka6f8xNWfbGF9eu28emiDyGZ4qc3XItiMXjuxT+xc0cHZouG011ANCpjdVgQLBJl5RXEEyo2p5e/v/JXrDYL0Y4Uf3/9Bd771+esWbuOSCRMQUE+J0w/jsu/fxFTJk8imdARJZ3S8gJULQAjFZiTxPbCZJzGRNSJ9xKoW0tL1IxiVljy2XKikTATxh9ObcdunvrwcZbtWEZ9ex2iIDKwoISzxk7miqkn43ZakKQUqtYTLMksm4glYzR0tvDG8gVsbKln08s1dEYCdIWDmE0myvP8HDVkND88+kyG5Jeg6wlSKRVDh3gsRTymMm7kMCRBJjTxUw6Lj+DBp59i45bt6IaBqKnc+8Bcrr/xFmz498sr0oqt7GtlUqlU77f0YI4gHey3P9Nqms3nD1aB2R+teyzO/1l7uUPIDSnX/Xf/iTAM447/3zT8X0fP5kVCFCUEQfx6je97biDTWnAgwZsO1oKWbbHILqM/620ui2+a1oMRRjPdYPqqb39W5Oz6c+X9JsJdf5af9HMaB7vpP5A2ZY9/Zj3ZyP6Q5NLS5hIoDk572/cYGYbRaw0+0LHKfv4mZ4fz8/NxOBzoes+Z8kAggMlkYvDgQcyadQ7PPvs006ZNy6nFzl5T6aBJ2XcV7xnbPXlztSHzXbrYPeskO72QQbueRftgZs2axTPPPMO0adP2qWNvmvZVamVvjjLz5Fq3mWkPdOxypUv3Zy76stNkbuT6W1eZOBA+Aey3nftrW1/t7K+sbJ6dvXYz6XnrrbeoWfkJR007jlDKTHt7K26LjqxFiGkyvgIvuiZQ37CFKZMmY3NraEmNZLSTC2ZeSFfHJk4+5VguuegqLph5HaPHlDBl2gAGlA7DJKiIgkhJaRldgQAmRSahpigpK0dVE0gmCwgGq7/cwLDKw4nEujh++gy+Wv0lw4cdQVPbLiqXTsFdXYQxNshrb75FfUMjo4eP4bLLLsfpsXLG2afTHeymIM9NUVE5siJzwbk/YML4Yykt92O3uXn1tbcYN248K1atIBQKsXrlCsxSkmOnT8c/YBA2s5XxR0xkyMgRXH3F5fzw8osxyQL/j72zjpOq3v//88R0bRfL7gJLgzRYoKKgYiB2oFj36vXa2F5b7O66Fga2YCsiodIoXbvEdsd0nXN+fwyzDMPM7oJx9ffd1+Mxj8fO7Kc/n/M+7/4YdRZMNguqImA12WltbKampgqrzYzb40MU9Ug6HUarg7AmgKijpbEJg04i4HZhs8ugWPAF6xCx88rrb+B0ujjh+BMYUJxPSDAiCiIBn4/nXozck3zRtGlYLFYy0lLxeDwMGDIk4g+lesjNzyUlLQ2vz4PL1YzBYOTXX9bjbg1y3z1PIOnA66sgy5FOca9iGhsbSUlLYf68+YiiwMpVKykpLSElJQWjyUJWdibNLY3IujBNTfUU9ixACYvU19VRV1uL1ZTGxs2rQTCQlmVna2k1JSWlDB44iGOOOYZXX3uNYYMKCPpciJrGe7Pe4bZbbueC8y4i4HficrvJzMhA0CSMBjMGaxhJEikoysPpqUGvT6ewqAeyDjLSHVgdeg48cDRp9kzsaXqefvZlDjxwHEXFRaRZzUhykIBfRVP96HQWJh07CXTQ1BIg3ZHCwh8X8vATz/DoEy+yfccOAsEAJpORhsYmVq9dx/sff0pBt+44HGYMBh0mswEEFY/bjT5donVQPZhycSwYh+wox9lYSWWjhyFDhjFw8CBmL5vN2U+fycrtK2lyN2PQGQmHw9S4GvmxZC2frv6Zo/uPINVqRZIMqJqAKAoYDQa+W7eCGz56gY3VO2hwtxAIBbEazbgCXupdLfxStpWZi7/GIOgY2bMvKioG2Yzf78HmcJCty6SxJcipL1zMJ198RXVtPWgROhTWNH5cspwPPviQSb0nk2JKQRoTjqFBe999ConvqY9/97VH//YngVMsovxWvGdcMt4wtm9hl7tvLM2ODVnagx+Km4um7rY6/68MAf9XIIriXZ0t2xXj2oX9QvRhVpRQ272NsS6TUcQy2e25vMUzsPFl4wWgqIUkSgwTMX3JEiol+n1fn4MoIY1tN9H/ktWNnUv834nK7IumMn4Nk7WV7Lf20J7QE0VstsFEQl1sLG+sy2X0f/EvoN87u2Ayt8pk/0tULvZ7rFCzP2Npby7xZym6t3tajWWqqqrIzs5OuO/R+KD21m53e2K7dfcluiTRmW4v/j3R2KNji2VY9hfJnrtAINB2bU+yNRIEgdLSUgoLC/diYqJzak+b35l46fhEJvuL/aEd8f1F9yN61sLhMDNmzCC89isuv+NemuRc8hwawdYymqq2I6f3IyMrGwkTZWWr6NG9mPpmEXdLNcHASjTFy+dzlnDKmefibElnyMgMNq3zMW/eGs6cdhCqX+WHhYsZfcg4RKOB7gU5SDoTlTvLcFiMuH0q6RkpvPvOx5x5+gUE1XLssg1NlLjj9he454F/EnwpA1UD/YXNHD15MouXLufIsRP58KNZhNXWXfsg4m2tx2TMwmo1s37DMtJTu5OTr8Pj9uELZfL888/z448/cvnllzNqaAFbVq9h8YotnHLOPxA0D88+9wI/Ll3J/K9m8eGH7zNlyikYdCm0BNyY9BZqyitpba6nZ69u6Awist5EKCzz67qNHHjwKCSdiBhUUMNBLEY9ntYmqpp3kJsxHJ25AUnNo/iAPpRXVPHM009x9PhRZHUrRieIbN20hSFjIncar1i4EINOR0p2KmkZmSgaIEisWbqCvgOH4vMGcbe0kltowuP0cNP02xg3dgK5PTM5aPhYmuqq2V6yFpPdSo/ePbHYrOhEG06nE4vFRHNzE0FfC1Z7Ous3rmP0QcMp215FUa8B+BWRitINFBbk0trs5Kf5q5AMjUw85ixEo8rPizfTWF7BuCNGk56ZTovTwwuPP0Jzk5vbbr2Xkp2/MGb0odx+293cfue1VDQ0k52RjSSIPPzgw1x21b9wOxVcTg9Wu8z9Dz7OjBkzsNr0uJtrsDhsSKKeH75cwvCDCpCFfCzWFF5+8wFOGj8Ja6qI1ZpLTcNOBCGd9LQUWvwNGC15uBqaeOf9mdx6250A/Ofmqzn6qNEMG3Q0m0s2cNnV17B0+QosZjNfz3mHUSNHEQqFCAQC2KxGWl0tWOyZhJX1tK7Lxfy9EXdLMz/uWMfIMWMo81RzwoOTCIQD9EzrxYVjLmHSiMmUVWyivHUTjy54kh1NVfTN7s686Q8hYECQRbRQJNb416qdfLNuKQf36ktxViHpjixCngA2h5V565bzwDdvs7ZyGwLw4aV3M7KwLwbRSlhxEVBULE1DOeODS1lQsRCz2cTI/sMoyOmBJGvUbpvPyiof9Y3NDMgZxKKrl2O8MhgjqO2tiI2nzYn+3x4tiZaJz0ESLdvZXBKxvEIsj9AeXxnpU5fwfwnHGfeToCWn6134fdEV49qFPxyapu0SWEVkWY8k6dDpDIii3BYbKwhCm1CbDLEa/ljhJTbeKhHDGyswxAuz7cVsJLLM7o/yJl7Yjm0jPhlAvCAWXz62bLIyieq0N+/26sZ+T7T+iRBfLvaTaG1ixxH/iRW8FEXZY78lSdor5rQ9a1J7SDTvjsome6El6zf6HLR3v1x7fXZGmIkfR6ReJGYHREKhEFlZWQn3veNxROJ+2u503uscdnTPa/IY1vjzn0hoTXZmYTfD0H6MbsdIZIGMflcUBYvF0uH51zSNoqKihJr3RO0n2odE5yK230Sx1vuCZPNMRveSjSl2DooSQhA0jEY9d955O5fc/wqOohH079cPqdsIsnodTMHBZ2PILCKgirT4q7GkmqlzVmI2pIHQSlZ2Xwp7H80551/PB+/OwyArbFy9k8bGUhYvewtnow6bI5/RBx+CRICm7esQfT6CngYsJoWG2h28/PQT7Ni6gYvOPwNRbMVqMLPi13WEQxo//vQdIcVGOKxQVVZOVfUOvN4AAIMP6AFCEB0qVpPItm0NfPTePJAVVElj5fL1PPnsM4SUFLwehXS7zLFHHcIj993NS888xdezf6G473jOPvtMslICtDbVc+aJk/l53mz0epGzz5qGTrLjcrXisBoIh50MHFpM8cBe2DNTCCpBQgE/eqC1tgFXTRUBZzOKGkTQhdm2cxNBTaFbdjGKQcHrt+Bp2tIWkqOTBLJyeu968lTCaqBtj8JCmLwe3dm+pQZRDfHz/OU0VNVQtnMn/5g2DYMUpKDQRmNlC676Fs4+92QcWTmofhlNVhGNTjK696Rbt26EQ0HCCNx5+x00NtRy34y72bRpNSarFTXQhM2SgqZp5ORmopfCLFvwHX16DCbolbHbMtm6bRsnnjaNrVtXc8dNt3LgqEFMPHEcJx57Aq31EQH4tNPO5f6HH8CRJ+MNhnjlv89zxmnH8vGnX2CQIOiDNeuWo2k2qsurcdj0GPRB6qoruevOa9HUFuprK5B0eVxz9b0oAR3jjz4Ev9tKQ2sT/lCQ1T9XsrFkE26fij8cACGFtLQMWlxNbN+6BovgJxB08cCDjwAwdepZXDd9OsU9D6C0ZBkZmQZefv5RMjMy8Hi9PPPCmzhdfpytHqwWB0pQISDYaKpvQhSHYuprpGpiJfrUFA7JG8Bm+UYe/+wpAuEAJr2J5y98ln+e8g+CYT9jDz+Mk486hluPuAFZlNlcW86L8+bz2berCQXCiIoORZY4ILeQE7ofyME9R9M9PReH2YDZbEdTNI7odwDv/vMmTDoDGvDi3K9pbnDhD7pQFBXFF2TRljUsqFgIwISDRzHz7Te49qar6T+gD9V1rfTNzQZgQ8063l7xZsLnPvZ7IitnPC2P0sWosJiIpnQ2UVwyRPmEeL5r7zai7zJpD6E1tlwy5a2gseeny8r6l0SX4NqF34xYIhTV0scKIO0RqXgBKln20/YY3HjEMmPxwmBHAuS+oj3CFt9+fGKnREL3/vTdXsKo+PKJrK2J/tfRXH4LEgm0y6owAAAgAElEQVSz0U/UrShes/pb+o9f5/awWzDsnPCZSBhLlMUw0Zg60357muXo79FnrbMKkmTtJxtne0qKfWkjWd1EZePPQUf1OjOuaLuxbUqSRDgc7tRconQt3uUtUT+dfQ7353x3pPRK1l9nznQiITeqnBEEgZy+B2Cwp6IB9Tt+Ydm8WZi1eop79SG7YCjZuUPJzhmEzZqOJG5A0xS2b/Pw67Iy9AaNS/9xBVvWryEvPUzvQjvPPHE/H73/Ec89+xIlm9bTp08+o8aNoLG2Bl3YR1ZmGtnde3D9dbfQr+8BVFXWcvBBh3PvPQ/x3Iuvc/cDT3H/jKsYNmgYOtlIbl4Ofp+GzRa5n1gU9YiSwBszP2DkQRM5cuJYbplxK8eecBJvv/MuZ0+byvTp09EhozfZUYQART2LOefCC5i3eCHL1s9n/NEHYbLa8PhUBg7qx9mXnI8jO4/nXnyDHTtquf7m/3DgEYfTraiY/gcM58ijj2XJsiWEFQFHagZGs4V3Z71PRnoqBpuJptZ63K21PPb4k0yaMpX8PkPoMWAEJ005mZ9+nE9zUz2yLsJwV1VVIighdmzdhsvlwWpPadsbi9XOzp07eOH1l+jVfygnnnYiB40bx9fz5/GfGbewZNUydlTW8vhTz2JLz0aQRH6Y+wWTzzqJzG65NJVvxu1t4qY77uWQI08gr3sfPvziM5qb3Fx22WUUFOUx6+PZ/Pvmezn3n5eQ3/MAuvUaTL8ho3j9nZmsXrcUe4qE013F1PNOQlNlsjLzuOuuu7h7xr3kFhRjz8uksqYCW2oa77z7Jorq5/RzpnHMlNP5Yu48evTNweMNcsgRJ9B7yACOOu503v/8Lb74Zi4//7QYUYQhQweQkZuNoJdIycjm3jvv4dwzpzJ/4QIaW5qpKt+O1SQhyx6eePJ2uhcV4vGGEEQjgXAQTyCI3ZpJz/ye6FCZt3AhLrcbgOuu/hc6UcBosJCalo/Po1JUWMw5Z50BwJwvvqS6soElixYjhINsL9uOzWDC7wtTtWk9Nvzccv2NGKb6SLUMIbtuAgs3fQvAsYOOw9OgIQgi3fMzCIQC6Izd6VMwmIEpkbvPP149l/GHDkSUFBQtwPo1Nfi9Mr1790AJBfB5Pfg8XgxmK6og4ff6STHkUZwVuWvbo/pIS0tBp9cRDoewWKx8sPEzAIx6mUdnPMoFF1yExWylbGcFqampGCWRQw48EIBZK99KShPiPX2idCFeMI3lyaK8SDyNivWk6ozwmUxZmexd0FmeMHYMieaaiGfrwl8PXbvShT8MkiSh1+v3uLuwI8tUR8JlZxj+30Lg/kgks3z81rZ+T6Hyr4bo3KIvxL8a9kVg+y37naz936ON//XZ+TO12r+1L02LXMu0P+38Fda6IyRTfkQ/khYEVARJpG+3YgRnIx+/eB84yzH4t+Oq3sraJSvwNvvYuu5X+vUdRnpGNoUFFiTRyGXXnM+AkcOQLQVoko2dFdv512VncsllZ3DwQf3ZvHEt5RVuUgt64/WLlGyoYtZb37F5y0ZCIR+trS189dUXXHXNP/nPjdMxKQqHjBzLtHNPRVFDBEMKLc1u/D4fANu27eDsqdO46vqb2LS5BFEUCQSDrPrlVy799xXMeOgh0hwplGzZjtliR5QMWKzpqLuuvcjISmPV6lW8/MpbWG3Z+P0BWp2tAMiygdHjxvDq269Q31iHKAq4XC4WLvqJU884l1kffITeYMLjC9CzV1/GHHQAihjGaHRw8GHHccfdD7O1ZBvhcJiwEmbhwkWcdNpUZn05H3WXp1JOViYN9dUUdi/C5/bS6nS17c23385j7PiJvDPrHVpbW5FEkdq6Ot58620mHH0c4VCAdHsWt911LzpLKsOGDWPwgD5t9b9ZuJYjjz2JD2bPwelyIYoimVkZ5GTnYbWk8p+7HuaGW+5kzudfU7JtO4IgoigqO8rK+fDTzxl/3PG88vprKEqIcDiITrbg94WQZT0WqwUAZ6uToh7FBMI6pp57BoFAiMqKWgC8wTA33PkMl157LdV11YCKz+9n89ZS/nPP3Tz731cwm+3cftsM/C0hHCYTis/DiSeO4/DjD+fEM07l2ZdeISsjlYC/FUHwsmbtQmx2O7l5hUw97wJsDisWPegkI6VlddS3+pj9yWwA+vXtg6RK+L0h/MEQJpuF3NxutLY2M3nyJAB8Pj9btm5m/LETqWmpJzs7G8Ih0jIzsWd2o7GlnrfeeQHNqOE6u4WU6lPxBCNnz+LXMMrg9bpwepoIB8IsXLiE7oX59O1eDMC66lK8QT+BkIqihdiwoRGdQcJiNiDJYLVYkEQRV2szX325HKMllVpnPSV1kXu9e2VmEAwFAA2Xy4naks786rkAGIUwq1Zu4ITjJ/PJJ7M577xphMNhysvLGXdI5D7xJTt+wrfrWdkXurA/iFUQJmo/ljYmCyn5Peh3Mt4wajj5K/IZXdgTXTvUhT8MURdDUZTR643odAb0eiOx6cmjLh3xDFK8pTV5H3sLtcmsRFHLwe87x+REMFHZ2E+8pTSZNjAR4i1xierE/97e/bzJLKD7g/bG05HFr7NzEUURnU7XYSxxIktTZ6xP8Rbf9vpI9FtkrHteLRO779GEULvXWoj7tG8tjR1bx2sYO4bE/XTWWhv/PLV3/ttb//iysYh1O4stt78MRXvPY7KkG+2dw87G2+6LpTMZ2rvTubPtxls6Yj/xrvl7Y/e5UVUQNJHITUwa33z/GQ/M/JphEy/gww/f4f0PPmLBRw9QYCglPasXFkceFTudZFlzkYPrsThU/vvaK2Tl6Zi34iv0Zge9e+VitrWwbeNPOJsaCHpakcI7cTaXEhBSOffiGxlz4HD+ccFVCIKDFIeNrFSJuh072bpxHZ5QM6vWL+IfF0zD0+pm7ep1fPfFd6zbsAmA+T8uZNGPP/HcU8+wYc0qli/+jsXfL+CYiRMBeOSRJ9hcWsPnc75H8ukIen0YdH5aWxsBkCQDLQ1uFs77jJ3bVlLf6CIlJRWAGQ8/iCPFzjuvvUrJmtXUVJSx+McFjB41Ck3TuOH6G/E215OWlsahR41Fk2QMgoPLr7iGnRUVyLLMUw8/wPYNS1j87RcsX/wlxx5zFHfOeITGpuZI/wTISM9hZ8VW0m0yamC3q/DdM+6lZ48evPny85RuWM+ZJx3Hq08+SF5ONs3NLUw9/2KCASeKUoEQdiKRhjXd2Fb/waf/y7hDx/H5By8zJKcfp40dwZMPPcybb81EUWV69+rHxedP5cwpx3HP9deyY80aaiu28etP33LqyccRCAa5+Y77UDCTkd+NZYsX8OwLT6MqDr76IiIc6nV6/nXpJVRtX0sQyE5PoaqiEoCVv6zm9ddn8uA9d7Dmh6/4/pOP2PTLrxT3KALg23k/sGbjeq694WouveBaQn6BpoYAzz+727014Pfh8njxhjX8YT2a6sBhz6K1uZknH3sQ664r1HzBSjZtWI9e1lFWUQ7AwAH9yUu34G6toWzHTmZ//D3ugAvZIDNoYN+2PrZXlKGKHiSjn7LySjRVIOBpxZQiUVrpRjOYCStu7DkOdGN3709mpkBRbgYGvRGDTUYWQhx52Ahs9u7YbNlt5b5a/SuqH0TBxFmnjUaV/ITCYSRJIxj04ve5CQVbaHH5efenbzjn1TvwhQLoJInzRk7AaJCRRIGUlAx8NfnU+SKKgaMP7cvaNXOYOP44XnzhOXzBACMOm0xeagaDBxQCoGoqmzdubnONjSKel4qlI/tKz6I0LFFOkH3x1umsZ0mydqJjiHrexIaaRWmgoih7veO68NdDl+DahT8dOp0OnU7XYcZZYC8NWFT4ak8Ia6+tP9O60xESzePP1vjtzzr+FRBNGBOf7OHvgNg172i/9/ecJ3pm/izEu/lGvyeaa2fH9lvm0F7dzu7D/6/4Les6fuI5fPDJz/QZdBSnTr2BgYMP5piLZ7Cm0Yjg2U7ArxISytlYvh5H9/G4G4xIiol538xlxOCBBFwudmyspaV+Bw5HLhvXlZKWkoXiV2itrqFq22o+/+RpslKbmbf0PZb98h03XncF9eU7yczpwdfffM9Vl08nr2ggosmK2+tmyLADOOHEo+nTuxcALa2t3HvbvUw+5lRef+k9SjbUUVKykelXXUVuTg6qqvLW249x7c1TWV+2hKCmJ4hI3/79AHC7vARDfp5//kXyuxXtoVDxeb08cNedHDtxAo888jAtzc0M6NeXWW//F6PRiMfr45PPv8btdtPc0kgwGOS111/ns8+/AODxBx/jvHPOxWpNR5KqkTWNe2+dzpBBxW1WsOZWBZ3DgMlkIaBEYo6jEASBF556jOEHDEI26HjiyacZN/ZQPnz3dfR6PT5/gAcffQxno4qmCFRVVJGRntlWv0/v3rz52nuMPexYvv7xcy668hJMRjPjxh3OCy88x83XTeeh+2fwn1tuZfSYkewsK6WxupbXnn+FDD1MnHAUXp+Pd9+fhVkSWLFiKf++/GJqandyzLFHAyDp9bz+5ssMHz6IgoI8tu/cQXp65BoWl8vFEw8/zCWX/YNVW6sp6tuP7Mw0Zr83i56FEcFq1vufIIs27CkSiurly68+4aRzJrfNoaGmBnfQT+/evdFUlZ59evP2O2+SnpGKICg0NtbT3NyMgMz48ePR6QVqausAyM7KYdFPa8jOKaJbt2yycs3Y7SkoSiSHgMNhB6CiopqAz0C6oy9ZWTmoWhidzoASkhkx/CCMBhuuVhVvcCOOKV6seisAVYEwweB6vvr4TZbPr0bBzKezv6Fk60Yq3Nvb5rBkzU782PCEFaAFMawRDAZRVY2zXrmfotvPp+/dF3D98geZ/unTbKopI8+Rwczzb6FPTndESSQYCiK4MqlpbW5rd/t2J7LpIJav+JF77rmbQNDN4kU/0NraSnZOblu56urq/Xr+OwtNi+SukOV9v33z96bLsaFsiqLs1X7UKzBWmO3CXw9dO9OFPx2xWi5Zlve6jiQ2KUu8BRbat6R1pCGLFXQSaeh+D/fdRJbe9sbVniUt0biSrUdHaG++ndUsttdXRxrZ9vpJZHXuaEzJXHETaYuTjT3+3O2PVjleIdLZurFCXWy99traF2t4fFKNaH/RdmL72FfPhvbGlmgc8c9y7HUK8f0nCifYlzPaWcQ/Ux2dlUR1OoNE9CBZTFV8P+0xT+3tWXt3wcbX3V/aoYpuBH2QgOTHJwXoN3gUcsYADj3+QjaXbGfJ919gCVeTaQ5Tur6EysbFWFIEWpplstJ7YzZpGA0WJMGAyRpg4AHd0NRaWpo2IolbsVtbcda38N5rc5E0GxZjLhecdw233/YUTa1uMnMymTP7c4x6GwaDiW6npeEbXsuKVcuxmk0AjBk1ivPOnURKup8zzpzI4MG9mHTcBAoK8znyyPEAbNpUhhoyMnDgKNauXg0KiLuu0Pjk49mkpjrw+/0MHTIGj8fTtm4nHj+J/v16g6By3/33YjfbsZplbBYdI4YNBWDths2YTCZQIi6ab896B4D8bvlU7NzJd3PnIUpG0hw96dtrHIKWzaUXnNq2xgazFa/TRV52NwwmB1a7te1/551zNj0Ku1HYPY9g0I+gl5GMZoYMGcaUyScC8P2ChTQ3NbFp4zq++epbflq4rK3++Wefy8lTTkBRzDj9dfQbMpRQUGPRokVceOH5rFy1DCUMDoeDkSOHoyhB+vYpZsYDj/PAjEcYO3YMAPPmL6Smoo7zz78AhDB2h5namnoAZL1MU0szPp+CbLRQXdvIwEEDAcjNzmby8UcR8Ps57qRTETQ/IW8tb7z5Njoh8nys37iBQCDAI4/dw/bt2zn/gvMYNKQP7uZa6raXUpyXT++B/VEUhfVr1mJy2Bh76OGEQyp2exoWSyTWWZbM5OcX0NhUh3tXfKveoEPV2Xjwkcexp1rp378Qt8uLKMhYzLa2TOMNjU08/NCTBAMCShhsNgtoIj5fEFVV2bRpC+GgDr1UhMetcNQxR0XOzoqvCBnyGTm8F5kZ29hRWsIR48fjlVuZu+a7tn3IzEtl4eJSVqyswekKUlflxWSyICCRaraRaXXgMFnayuenZHD3iRcwNLcHmqbi8/oIBoJYnMOoYPf+ltdUU1G/nI8//pCmxlYCgQDnnXMqVrsVe0p6WzmXy932dyKvqOjv8Ukzk5WNR2yoWDy96mwbseXD4XC778HOvh+T0fe/moGjC3tj31UgXejC74yINm73tQsdCXn7y8T+FvfXPwvx7jSdsUr/HujMfbuw75d+/5lIlOkQ/vi162w6/31B7JVCvzf+iPEm6wfaT3ARzTAdHc/f0fqfDL/lWenM2nWE9p7p3+PZkFURTRRQFAFF0BGSFAxqAIvJQe9DTueAo6awbukiHOmF1IRK+ey9H1i6xEtzs4iqdMer7UBn19hRFuSAYQOo2LEDgyRjMzqw23piz+hOU4OXAUN68M6rr3DpNdcTUnsxetxgvD6FG2+6mp8XLufFZ57ggvMv5ao7r2H48AOwp2TQ2BBx9e3Vsz8elxeTyUBeTne2bCqn76Ac0tPTSEuNuPzWN7bQ1NiIyaThMAroVAVBjexZXl4+siySnZ3L22+9T1FREbpdiZMG9u9Lz55FSJJAOBwkHNSo99ehagEyMzIAaGl1gShQVVlJ797FGE0RgfrQQw7k5NNPoLi4J0ElQBAjsuQnpPdz9DGnIcv3Ew6HEQUPqxetIK9nD/J79qS6uqpt/Y8YfyQGo57GplrqnUEc/iBZ2dkEwypjRo/ivQ8+pHT7dlS1CYPexPuzZjH5lN3WysED+uOwCLTUtiJbfORk9qXRvJPzzp1GY1M9WVlpbN5SyuszX2fBokXU1Nbh9nj3OjP1DU00eoJ4yxoZPOwAQn4TGekRV1hB0xAkE/c+8DzX33Qj2Tl5SHJkbUcMH4ZO1gi3ethRuZiyLYsYMKA/t95+LwWFRVx+/XSam5tJTTfTUFVOz569aW1xYxV0eJq8PPvMq/QfPIqgpuBxuigoKCCoKbw/6zOGDR9KUVEBffv2Rq/3oKoamgZp6XYgmtRO4+DDDuWgsUNxu110yytEwbDr6ptQm/LCaNBz9z3/QVG9pKVl4HK1IssWvv3uS06aMonUNDMWYzqiRUXwe7ntppv46puvCAQCnPHsJdxy9L/pbTGyYctCVtUYuO/zBxAFEYVI2FJxr370sBWy6ZdNmA7ujihqhIKROPqnTrsMSZKRdAKl5W5+Ll3D80ve5+KZDzO+zzAePuFi8rKzCdZkQsCAd9C7MCeyL8ccNoxjDzmYzIJhCBhR8bCyegf1DbUoQvusf7JwiP2lF8mUZB3xcrE0NPquiDd0ROvv7mPvUJOO2o/W/yvyNV3YG10W1y78zxHR5kH0ah2dzoAs64mNg00WdxBvfUyEeOtkbN1469G+CrftWcmSfeLLJWovfoyx44wypNFysUx/ovY7mlNUk5oI8RrW9tr6PRQD+2qtTmat6oxlMr5Me0JTfOxLrGU30cu9c+sQie+OnHMVTVPaPnu7sO7+iKK8h0CTLG470Z7tPV4VUBEEbdcnuaVRVVVUNFS0ve67SzrDdq6ySeRBkKz/WOZkf89jZyzhnT0znUGi+w5j596RtaCzQmsiK0hsOx1ZR9qz+MaWiXzffQ4VQUTVBCRBRFZVUDVUTSOohjBbTQiSncEHH0f+oAGMnXAi26u8WOyZHH/8WHbsWIvDXoDfa6JvcTfOOOFiNm35BcWkkNdnAm63SmPNJkSljFFDCpgwdjijDhiN2yui2dKQRCMhv0JqtoO3PvsWa04eF19+Bd/NX0JtTROiFGHMdVIQiy0TUbbR4vQxZPhIjAYL8775DnHXtI1GHX4tgE5Mo0/vUYCeQDASq1hfsxOREA2NzQw6YDgIAaLLIhkdOD1QV1GDz+8EQxCrIwdHWj4mS0S4VcIKIb9Cfn4uTz7+MlVVEcEzKzWV/v0KkOUUanY0ktUtG1lS6dOjNylpPUhJcQCgIuPIS8HTVIoSaCYjbberb25OOnPnLUcwWTDqTIh+UDx+dLKR9LSIhS4cDpOdM5iCooE88uRDLF66sq1+ako+5553KWHBxxuvfUZjcyN62YXNamVbaRnvfPgxY486kldef5Otpdtxe7wY9HqMBiPpaWlYLZE+3G43hT2KyEyz0FDjY+Wq5TS3RBJYuV3N4Aty5ZWTkMONuJ1ufF5PZG9kCZ0ujSuuvovVm3yMHD4Ee04RTu82vLtieRVVwevWMFgymTXzXUwWgfTMLH5ds5oNGzdy5JFHog/quH/GUzgyUqmucJOXl0FdbSVPPP4oLqcTt7OSgBqgrLwaX4uCeZfywO3y4GraiBAKIGkWKisr+dfF/6SuspqQz43X5wXAlmKlsmoHUlijuaUOvVXGR5AJ4w/B73Zj0FuxOazoNY2AX6X/oALemPkmZrOZbY2lXPzOtRz28mVcMvcmrnrnGpq9zVx37HVt++Bp8RHyK6Q4smht9qOXwugMIpoqI+tMBEJBtpZUkGEzMe2ICXz0j+nkOdKZt+UXXvxpNq0tDViaRuLPXoE7GGxr98tlZRRk5fL+hzNZumIBC+f9SLc0O0NHDSPk3p2QyWaz7kU7kvEO8XxMonvXEyGajT3+PRrF3u/e3flPIu/H2L6kuP9FyqoqkTj8SBB+Jz+7ETvfLjfhvza6dqcLf0kIgoAsy+j1evR6PbIs77dQFI2v+zsi6hoTL1wmiv1IZmFpL05kX2NI/q/GAnZm3r9lbeLrRrXL0c++uC7/FvwR8bCJ2uwoTv2POGedmduf0W/s9/9VjPmf2W/UQvLB1+9xziUXMPrIYxk+7nis2f347PtfuPz6R3jk+dsZOXoCKbY+OFIEauqdbCsN89HH83H6GzBn6Xlr5hWUrXyL2p8+x2HRCCvr2LppESt/mENT+WaaFtTy0LQHyOuWQ9Uuy6QkyjQ1NONqddLa0oSmhmhubuaoo45Cknbvc7fsLILhAMcdN5l33/0ARYnQ0dNOOxtJJ6NJLixpIdB2X4WUYTfwr4vPZu7cr7EZbfh8bkQRREFGFCPMttcbsVAaDAZuuPEadDo9AIJkoLGxEaMxjDlVpa6uFo0QghgE0YdApA+j3kBRrwFYrKk0NLYgyrtDXQIBHwcdPBxNg8ysNK659gpaml14vE6sFkdbuaaWakRJobaujMknT2j7PTvHTk6mTLpDpkd+HgZBJuS34vTsxJFu4OHHnkXTNA4cNZzPPniVDct+paxkAztLtvPZpx8x4/YbInMRNIySi5YWJ2eeeTaFBT1IS4u4omqaRFpaChmpxYgGG+l52dh3CeU6vQFZ0uPzeXA1b6O1tZUXX/wAo5aGyWxuG2d5eTnO1gAbt1bhcvo55ZRTGD16NK+9/ip2uxmzQeWic6dSsv5X0owKU046jdNOPYuTJp+KEhZAsfPmf98iKzMXRdBhseyKQa2oYOlPpVjNmZSUlODz+XjxxRcJhrxs3rKJ1lYnADIqqSY9zvpKbPZUWpo9mHQy1VV1mIx2ZMmI1xNg7bpSmhs8bF63mROPmcQvvy5n+rVXM3LgCPKtBfTJLebMkSdw97gbsWn2tvkVZxUy8uDDmXjSZJb80sz8JY1s3OLDFwyhCRKtLplu3fLQG0T8fjfZ1l6cNTKyj2+vWoTeOQJN8rO524OsXNTU1m5LYyMznnqDww8fhz/gYfSYkXz8yZeMGnMINXV1Medgd6KoKJLRrN+aj+P3pK0djef/Kq/yfwFdu9qFvwVEUWwTYOPdhaMawlhLZGx8WDLrRqx28fewFnZWuGjPEhr/v2QuNvEa0vj/JWonYZxaJ7PyxrYdH+sSj46sYp21mMWOoTNoz1qXrK992bP2LIKx/XR2rIncsWL3LZnlPRQK7fF77D4ns5ZGyyTbu321NMZr4eP7aU97n6id2JjPeM13MgYk2ZyTWZcTneX22tzfDOTx5y1RApBEY0r2rLfXT3vr0t5zl+y+xfiy8UjmYZDMuyS2HVUNI5sMeMNhNFlCZ7bzr6uu57a7HiIztycz3/qU2Z/MZc0vW7CZ9PQoTGP8YQfhMKdj8Vai+N0UDhxIZv8BrFm5kIC7iZGD+yBpDbQ0buPYtJPpXtMXu91Gbm4eAD8uWsLqVesoLSnh7jvvQFODWK1WFi5ciMkUEY7C4SBNdXWoQoibbp7O7NmftOVCqK1rQNYZkQ1GQmGVtWs2E3U3UAIq99z7AEdPORmn14fVZsTtcaIoGh53xFpnNBrb7v31eFupq43EftY0NGC0GGlpqiOnWwE+XxAQURSFmprqNoslmsDOneVkZOWRnpmNFrPf1dUNADjs6aSk2Ln5lhtYsGARdquRiqpIZllZlsnvloNBb6Ffv36sWLm0rX55xU7GjDkYg97E8ccfz8svv4yiBtHJRr6d+wOKopCWmsqYocPo178PKakO9LIOs0WmT59+NLZErKKBQBgt7KBnr27MnvM+dQ3lNDfX71pbja2l63j7zdm8+/aniKKIz+cHQCfr2b59J1NOPokpkw8hHA5z3rR/oPhcuFyRa3+CgQApKSmkp2awaPFSHKl2Xv3v64iiiNPZREtrPZ99+xWZubkYjSa652ewY2cJDz18H2/OfJUzzjyF+T8spntuNuGQH4PVQHGvyFU0G7eUUFTUE5/fSY+e3TAZI5bHwqI8mlucbes0atQY9EYjBpORHRXVGCQrOkmge0EeLS0NmC16NMIU9igiPT2VFJsRIeSnW34+d997FwuWfs/mX9ex9LxN3DzxRg7sM4Ay11YAzHoz3ez5hMOtGK0uJkyaQIAgazdX4PPrWbumkU2bA8iyETQNWdaBIYxjV/ytJ+jDU5OOP2MNZruVqf8Ygc0cUY707NGNux9/EEHQ6NOnmFmz3mboiDGEwhobt5YAkVju/v36JX2WO3ruE1ljkyGeF4n9LTarb/T3+LDQnGUAACAASURBVFCL9vi42H6T3QUPe4bgxCqEY+lVl7D710fXDnXhb4WoJVaSpLbMxLFMWGeITuw1NH81IhWvRRQEoc1i0ZHV9PfUMLbnPtyF327Fj13ffcmSHc2IGP17f7Xe+1onlpH4I9qP7ysKRVH2WYCM0oLfmon4z8xYHc9E/Rn97c/atGc97wiyIiOpIIoqgqCgaT5y8zMZNLgfdXUyZ507jb79+zD5uAspyEvB71+Hwxzg5qvvQcgahck0EMFZS1PJx+RkpKK4TdhMZuobt5FXkII/6ENv0FFcXExaahoAxxxzLGpIZfiQobz15hv4PK14vV7Gjh2LqkbOlV6np6WpAVWAQYOLueXW6ci6yN7rDUZanH5yc3oTCpkwmy0Edrljbt5czvU3z0C2p2BMtSOKEApFhDmLNWLVEwSBqqoqQqEQbreLc6dOBeDHn38kpIRJT81CUa1kZxbQ2uzH7faxeWsp4XBkbIoGPbsXUlK6g7qGRlRt9zovXLQUNB0g4fdH4ni9Xj8ej4vv5y0AYMDAAVitKTTUu+jVsx9Hjd9tcf3nPy6jxSUw56sfCKhw/j8vQm/08/6sr9m0aRsAh407lKMnnIPPp/Dz8q9oqm3kq9lzcDU2M3fBDwAYjQaq6srZuHkFiuYkvyAVmyMiWBn0BkwWldNOO4s5H3xGpj0VcZfgv2zZcpxON71792b1qsWoahijUU911UYWLVoIgMvtZvXq1Uy/7mq+/v5bQmE3mZlZeDwe1q1fQ0trAyecdjr3PPAYBpODJmcr3QtymHruGVx+xSV8/sUnPPHUUww7oB+a4EVnFjnp+OMBKN2+E030snrtElLSLKSlZeB0OqmpreDnpcvb1mnoiFGEBBl7RjbdC4uoq22isrwMf8CJI9WI09VIRWUpZosehBDr163EaNJQBdDYRQ/zQLzaR/fwgWjWAN9ujNy1OqHfRPoNGkqwVaK+sg6vK8zI4QcR1oysWLmOgl4pjDw0D02R0OkMeDx+3GET2+t3W1ZtFgNlfe7ku88rWfrTDgL+yH2pFbUtuL02+vbrg8vdSkZGBnO/+4Err5rO3HnzADiw6JBI8rBO4rfyF9F3QzJ6EaW5iZSMyd4DHdGfeA+X2HEkGt+fQX+78Nvw1+Lau9CFpNgzzi8a3yBJOkRRJnIXbCQGSxBVBFFFI4wg7k3QEllq4jVvsb93ZGn7PZFoHLGZVxMhXvMZb91pL14lWZuJrGfxlux9RXtWvd9i8d7XurGa31jtbCLEzjnWQpUsecWeL9D4eJq973XdrWEWiL1ndXe8zu4Yn+jYY/uKjj32Xtj25hub3Td2vB2d7zZljwYiAiJ7Wy7bs2x3xlodHUf0eyyjEq+ljz/XifpKhs6cl84+6+0xTIms4Z1ptzMKuOiZTGTt3Bfsr8dBovUTVQHUyDlWBLEtb4GmReLSNCFyXmVRRzjsRxBMeANugrLAgOF9sGTkMmrcBL5f+AVIZszWwQTlAs659HK2bPwZfZqdRctqcbc4yM3MZNGilfywcCmBkB5nSwiTwYBOEsjPNqPuykprNIsceFA/VEVg+vU3IOgVHnvkUQRRRzAqHKoaJ5/2TxZ8sZDpV9yMLGmgRZh/g15GJshpk6fwzSff8MwTj6HTR+JX7Q6Z++66hi2rliFjQdMslJXXogkQDu9ilIH8/AJ0YQEpqHDCxIjgWFlRwRezFxBUNeqqtxFWfDgcDhz2dO659762NdU0FU1S6Tt0IGG/C9W3OzZx1vvv4Pc5Kdu2hZLNZXz5xfecduZkSrZX8c233wAwcfyRhDQBe7qDFm8Tdc01bfXvufMWHGmpZOZkYrKZsDrsIEnUNWwjLS3iyrph0ybCWgPZ6d0Ye9DhNLldHHvUSaxa8ys//7x41/qpdOvRG3tWN1TNjuoz4WqMxLGKkobDmk9V7QZWrFpKvdOPtuudPGhgX4LheoaNGMRBI0ZQNLA7abY0cBgYOSSSlTk9PYPXZr7Mffffjs/TjNWczfNPPYbRqGPM2EPoVlhEwOXmX5dMxSDbCAcFgppARmo6uTl5hCU9733wPqk5BciSidL1Gzj5hCnYrBHr6k233k3/3sN5d+ZHKGEfixcuxu7I4rWZkezPh4w5EE9LCSbJhjfgQpRFJJOP7vm5mIw2wkEDZls2Pfr2o2zjDxjt2WSldccd1iOrtMVRAwg2FfkoP9+s3cK2+jKMsoGbT7ocn7cVR4YRVbQiGQykp+dz6slnkZfXnTmfr2HBTzUooolmjw+bPYfP563h4zXzARiaPRCDQ2XOnFLGHlmIzZ7CtFMjgrnL62H+l68QDupxu/xYDF4ko46Va1ezcNEiAM4cMTXiQCAKICb3jEnEP+w+o53znor1+Nmb5sTzd7vjVDVNaRtDBHvmZYhNNBdpW9qTH4z7Hh87+2fyd134fdAluHbhb48oU20wGCJ3hWnSnp+4cvuCv1N8bKKYjy5i/Pvgj4oJjF4VkOyMdabf/1WcZGfRnrIjmVAXz9zEzjG6ZlH8r57PcDi833X/LjQlGRKNf1/u5I3/HpYkUrIykGSFVSsXoRqsiEYTRrOBFmctBoMOZ1M1WzavI79XD5pby+g32EpFeTVZqYOx262IkkCrqxFRL1BbXQmAx+NDTsvgseef45STz+HR+17kuutv5vMPZ7N62SoAXE4fp5xyGnPmfMyqVSsp7tV/F5MLn3wyG5fLjaYpzPnsYx5+ZEabyiY7L4M+/Ys54IADEMMS1RXN9O8zEIEwEDkb0bNfV1eHJTWFw446jAkTItelXHPDjTzx5BP4fS6CIT9lFTuZdtEFrPp1dZsVTGjLbGunIL8vbtfuMIFgMMipZ51LU0sLGRnpXHXV5Xw79ztOPOkUAsEg3fJyOeHI8RhVPV9+NAcpqFKzs7Kt/sRJh1NRvoUhg/vz86Ifaaitp7CwD3fdPYODDzwQgM2bt/LRnE/wqgLl9T5y87J57tWnOPfCi9qyMqNpPP3k42xeXcWko07h5yXLyMyJ3NVqMJqx2rLYWVrDz/PeI9WiYdBFkjqVlpTicKQj60S2V1ai1xdy7XU3YBByMNmMbfO/cOoVeFtamfPeZzx632O88vLrpOUXkJKRyR133IvRaKRnr3wkSeCZp1+kZGMl/33tI0zmFCrLtvLqf99g2dI1oFpQgiZ2blvOVVdcAsDPy5dw+7334/Nr+HxgMBs4/qSzqampw2I288xjT1HQbRB1dTXs3NaIPtxKQ30t5owiUnP7cNeDj6KE3ASczRQU9UU22kjJyOKW/9zGvHmRO1Oj2Lp5C5c//m8e+CaimPjPidPJMOspWbWY+toGXE4fVquFyU8cxwOz7+C7X9cxaOiB5ObkMu/HEn5cVsWbC+fwyNKnaPU7ERCYfui/CfmDzPyygovvXsDUCx/h35deyYihwwG44+EHue3OOxg9pD/ffvEV/YYP5/QLLgRgQM4gzhl5XofP65+BZLQjqrzsjNI8EX/XkbdOF4/090TXdThd+Nsj3nokSbq27xHGOLwHcerMVRCJ4gs7YjY7ilHb1xi2aNnOWhPbt/4lnneyscT3Gz+G+Li83wv7YzGKtfh1BrHlE2V+jR1HIku2IAh7xGTGIra9vfd7zytfosJZrCU3Wf+Jzk6s9TeRFru9vY35FjeH5Ge3vT1PFC8ZXafY9Yq13MVbfxOtZbxQH399QXtxmskQ66qW7JmMn2uiuUet3J1F/PMUmwU8mQU/HvvDZCWaS3seBqIoJmT4OrK4btq0iRWrVnH21HNA2u0SGFs+vm60PVlTUJDAYGPM4cdRWeeiqDAfT3M9ss5Aesowmpt3csZZJ1HfWorFZANBZcxBQ7nu5nN56vHX8IQ9mE02yus2kJGexvayCqzWFIyonHTCRCyGdO5YuJgbb72GHRWVFPboCT8twO6wcNMtl9NUs4Nbb3mEgF9j586dAPgDHpzuOt7/6BX8Po3Skkai3roGsx1BNmHU69i5bSOPP/U0N9x4HQgKArutOX6/P8JUC0H8viZeevYJTjj5TNatW8ctt9/DHXffj9lsptXpRBAEHn/0Ph559CkqKn14fU2Isg+X24fNmIHRZGhbu4fuuZUbbr+PI46ZjNViIawo+P2R+NEUh4NpZ51Oj179aHa5MVptSAYjI0aPAZ4GQNVE0hwWDLJIY10daWMOwuny4/W6mXLSZL6eO5ePPp3NG2+/yxtvv4vdZsfj9aAoCr179WLK8cfz0JNPIooiV191BWLQzdXTz2fCsQczf2nEFTasKlTX1dOzsCfZ+enMnT+P6AKGwkEKC4rx+1SyC7Ox2PI4csKhnHPmRVx05cVARPB45+03uOnmfzPllLMZekA/Lr34NGY89zIQMRRqmgaiQijsY+SIg2hpruT0s8/irVkz6d0jg5zcTA499GCuuOIqrrzySg4dN5aBQw5hy8YS3v90Nv+d+TqSJHHLvffgdEZiW80mE08+cA9nnn4O06ZdwC9rFvDKix8SDNZSX13ftgdGg46wEkJvsOPz+pANOqyinzdee42nn4qss91uJxQK4dtlLTfqjDx47kOcOmYKRhly8oIsW/IjA4eMRJL1NHoaefb75wB4Yu0TGEQDGuALe9v6NeuMTMw9hkKxP26/wuiDJiEZ9exscBIMBHnpmZc458Jz2bRlI3PmfsaX879EVRR+2lYOQEFBAR88OQt9t90xpZHnde93YjyNSoZk76z4MoloWGzdCE1X9/gt/u893xtq0vdPlJ4lUw7Hvzf/7grF/yvoEly78P8l9nTtFPfZKvVHCWZ/BfxV5taRS+ffDfFC7v6sb3uC6v62Fct4KIoS8UpIUmZf2072Pfrb/jIC8UxH/PhiGZdEjNb+WqD3ZT1iLcCxdf9q6Mx6xJ67cDicNL43tlz8GvXv358BgwYRVvcUencrMPb8LRZyWEGQ9fhVmfxew8grUBCUVsq37aBf38GUlM2jKL877tYA2fm9WLN8C3m5/bj9vjv417/voLp+NSniRIJBPwXFJkQxYvEMrg/T+BAUpQ1H1STenjSb8GsmLjbdwO01kay4GzZsxL0dLF8N4oHBL+F81kOhsZhq6jh/2GUEXsyi4lQXacWZXHDRsaj+yFoGvzcgN+fiUwLYvYXM6P0MLFSY5XoBQYucyfAGAV5zkOrvB3qRsKbgkLL46oz5PDvmQT5e+DE7yyqQBZkjio/ikgMv4wj3eB7zvgCAeXl3PN50zFc28euvq3C7d8c2jtxxDN//cxKP//AQ80t+oMnfSF5aLpLBxKuvPUu/9P5YPskjFA5yaPB4tDdldOW7r9PxV4l8s+BLTjv1TMbpjqPhcQGDKQWDakcw6Xlu+EyGBp7n7V9fZ1tDCZqm0q9PH46yT+LGSbcx8+f/AqA6IfyiFVdrmNW/lDD2MBVVi1hMdfVGUj/rhV6SCQgi48QzeHH5+wC0Ngc47rhjeeG1O8hfcSjuZguHBydz+NRTmPXD2wCEmsM8d95LpI2UKN3hYcqR53C6+V/MICK4KquMqK+k4PT7SJWLGXFYBj5bGUaLzCWDriS8PoTV6kB5TeW2wodwzHfQ8pPAFz9+znOPPURFTRmyzsz6lZtxe110dxRwePGR/OvgK5BXCTw5YjQ5xZn0H9SNUEDkw8e+Z4z+4LY1DC2VUM3ZBEU9ekmi4eQqCs0Cp04cQcUWE5sqNlHvrkUWZfpnD2B84UQuLriCQlsBWnlETWhvFDg6bQyUi1Ap8tSoV/mh4ltWNiyl3F1Go7+esBomw5RJb0cfjsibyFl9ppEqZ2KUDKiSyh3FjxK2tCCYwSjq0VB4bvibfGp/n29KP6PcVYYmafTI6MlxAydz9a1Xkj7GiCqq7K28/PPQXrwr0JaMM7aMoiidcu2NT0SYSKnchb8nhL/LBirR/PRd6MJ+IkoAI3dl7hmXFyWC8dq8WKtRtHz099j6yfprbxztIZmFs6P5xRLpzsbxJYtr2df+f0901F97Fsg/sv/YNYv22Zk1iypQ4sfZnpWyo/Els3zGZ2NMJGR6vV5sNhuqqhIKhdDpdB32F580rD3EziFaNzq23yLQJhpTMmtle9bU2GQdsUJa/LOTrM2OEBvL1ZEHRmw/nbW4JnKl3pc1jR9bZ+aVzJW7jZYKe5fbY3wIe41zz7i1PceHqkMSQpSXb6V5+y8U9e6Bz+PFYtDz8OMvccKkKXzzxefkZwscMWkKaXOPQFFChM+uQA75QWpi2/OpWALpZGZFXFdNFjOqJuFqaaFU3IrliDBZWVl4yj1kLO+N0WSmvrYOm81Kc2sL4bCGIyWF2eprHDftKA4/eBILH16MrSaNUMiD3mAlEFAIBT1YHam4dM3Ik7001reQmmrC8H4OihImHNIwmYwIkkAgpGCUzQSG12MZESIYCBFcp8P8ay61dXVYLEaMZgtKWEGv0+N2u3i04S7u+X/snXeYXMWVt9+bOuc0OWtmlDNIIudkTM7YOK3X2cY4LIvXXmNw2LUxtvE6rnEAG3Ag2OQMAmSwkEAgoRwmz/SEns7x3u+PUUs9V7d7ZoS8Zveb3/P0M3NvpVN1q07VqXPq1E3/ws5tb+J6fj6muBUNFafTDRoMDvURCgVJtcQxH58mMh5GHLUQu8uK3+fDZFbQEEinMiSTMaqrgsRO6cPVEEC2pBm8P4mw3YXdZkUAVE1FliVEUUSpEeD8OFve2onXJeF7YB6aqpLN5rFarQiCiCpIaLkM9w38njXvW0rPvjdZ7j8DXjQjYEJW1ANOgyLjY4SC1aQv72Pdupc5es1ikn90ovbJeNx2ZJNMPgejI2GqqoOI81UKa6IookR8t0bhfgGn00Eqm8FqdZBJZ1FVDYvVgnxekvM/eAF33PFr/vT5P/Pe1f+EKMuo+TQgEk+kEBB55vVnuOBHJxHLpnHYxxj7XjWj4xHcDjOCqOD3+8kX8uTzBfaE3uK5gUe46upLiayXCGyvw2yWEIBsLovFbCGZSmJWFPYe+xdaGhfjCJl48+spmtyd+/u7BghoBWBMRKxW0VqyKIqMGoXwE2E0VSOngsfjR5QkRElEBDYmXmTeqnaefOo5Tm49m8E3wjQ2NnBgxNpVNrz5GlXz3NwT/S1rTljOhvWvco36GQb6B4iMDSHJcPSaYxEUEwIC8slZpAUFNIzG4gRKPfAWj2eU8oxyc9DBd5Ovpimuu4x5tn7z0Vhra8wfKzt8Kpd2JlZKs/j7Q5KkaTf+rOA6i//vkc9PeIksZVp6U7npLD7LhR1O2unmUQojoXumKF2M6oWP6eJIaAuN6CkXXs6cczqL8qkElXLlTadu+s2R0gm2nFCjFzrL5VtOYNebHVcyjzKqRyWNr74/lFtUCMLEVTKlpulGwnjpwmimfaUYv7ioKmeWVq4uwCQa9Zrdw+1LRUznDG6571TO7K1cXabq/+XKLmq0S+k9XEEWDgquRRwiTKuVvtGhpsmSKCKoGlpB5Z47b+eMs0/DIsLjD/2FX9/+Kz5z3bVcf8O/8oc7fsnadc+yeNlccmoKSUgz0BPk3of+xGWXX0lBNVNf5SQW7WNeZysDkQIDXaNU1c3nlu99k2uvvZb2jhZ+//t7WLp4DrJip7qqibfe2MFfHnqUj33qMkKhKgZ6Ezx07/2ks+N4vGZOO+sUXL4G7r//cS6/6FwKNiu5dAazSSY+HsXqmvC5kMuK5DIyDnuOXLZAQbXw4ksvc8qpJ7Fr13YGh3pZtXwhsmQhm81itcPYSIbhkX5MJhM7d/YwOpzh2OMWkk6MkswJtM9rI5VOk80L5NN9+N0dbH5zB9W1ZjzOEKKUZ8/ufbQ0d6BqBZ5fu5ZTzjwdVVVJplOI+TzD/cP86w038Z1bv8nwaJhFS45CKKQ5/vjjuO/+P+H3e/nOTd/gPe+/HH+gGq8/xGhG4L577uKSC85DsKr07t2FVlCxOwM47dX0hkeY095CPjmOJguIeRFFzrJh/TpWHnUye7o2Eu6HtuWdWBQbFkmkkI2S1hSSwxkK+QFGomm8JgeyUiDYWEdWURCScb721Zv57Me/xGh0Hy1z2hAlGUFw8vxzT+Fxh5g3bwHfvfVbfO4LHyGfdmO2iOzc9yIudxsWk4jN7ORvL7/K8lVLKGQUnnzkxxy1dAnxlMy2vUOcevp55HMpvvD5z/D1b9zI4GAfc+ct5tVXX2XBggXIsszw6BgBf4jh8Bj9vZtobW3FbreTzWZxueaQSK0nk7BT17KCaGQA0WRGtFhBkKDUyZA6mVdkCxDb9jT3//IWTM4QS066hqbGZfz54cd44ME/8d4rL2P5yqP596/dxLe+/k0ikQg+n4+77rqLfD7DuedcwRtbXqSna4z65lpWzVvA2qfv4Q/3/wCbpYXb7n0Yl8uFJIiTN6zKuLkpx6uNUN7SaPJGrSgeeqzrYL56AfrgdTWiKJLP5w/QfeicJVTcqC/l7fo1UmmZh2slNYsjg5kIrtJXv/rVvyMpRw6apn31H03DLP6vQGTCSGfiJ0mTz9sZ3e/1dnC4WptKeUwnzpGg++3U/0gKrtMJP9z6V8rDKG45zZNRnMkC3uTzgeXa9nC+dbn309UcG4VX2qE2SqffNJlOGcV0h+MkY6ZaW6PFWGkfr7QhMVPajLSp06VtOn3icOPMJHy6OJCPLrtD2tOA7R0M1wUKKqJYIJfJYpKdjMZiBKqCmE0ymWSC977/KkJVTs498wy+9NWv8C+f/SRWWUAQZPy+JtrmLeHYY5Zy3x0PcMpZq1FkkWQii9sbYnioi0IuzYZNr3Lu+RcTDAURJaiuqSYTy1Pb1MqmN7ahIPH1b/4rH/rAh9HUHINDu/jO937EcSeeyLyFy3nq0RdZtOQoEARqq/3kMilymQSymmXbltdoamnglXWvkkupZFIZRAUsFgeZhMDf/rqWXdt28pF/+ginnXIcdfU1oE04cfL6HLyxfgvj8WGWLFlCTU0rL657gqOPXoJZsRCqDiILkIgn2LWrh9bmRaiyQKDKCdkUNk8NeU3DH6pGNjl49ZVXWf+3N1m15hg0LY9FEUjls7jdDpYvWUR9fT2PPvooHR2txGNxPvShD6KhEotFqa9txWq3YHe7yRc0EiMDtLa0kilopAsFqvwBgl4vqiby1ubtdHS2Igp5RofC5JJhRsKQLERo61iFlk+gSE6+8PmvcNapRxMZHmbf7h7sDjeCLOMwWxGEGNU1rfiCAVLJOIKoIEtWxuMRTj3lHAqqmbFYkvUbNuB0u9j02kZOPuUEfv7TO3DYXZxx5gmoqoBGjv6BPpoa5iJJEg53gFQsx6f/+RNc8YFLUEwZCqkoqqjQvvBMGjsCJKOjmMwO1hyzApvJxFmnn8v7P/BpMpk0JtnB+FiWUMhHNBpGQKS+qQlJseJw+RgejSIpKsnEMPmsHZPFgs3mYN/u7Xj8QQqiCbF0c+bg8gMNDYtswRpsIBLNkQiHeezBP5IY20ZBhbPOuYLf/fZ3rDzqKE486SRuuP4rXHDBRfz4Rz/lisuvYv36V0glVWx2meXLVvP9/7iJoxf6ePThe6htWcC3b7sTk1lCNlkM5vSp54fprAGM/Szo00wWcCfz78n8r/SMK0y2EDmUlsr0lfJ2fb1K4xwpfjiLw4MoijdON+6sxnUWszBA0WOoRnbSvZAC8iQNSVGrkM/nyzr60UMQpmcOeqRQSYsyE00jVNYIHklN61SYrjn0dDGVhm2qibESDjoomqxdMxIEjcx69X9Lzaz0Gy3Toc9I46ovp/TcZvGnF7r1bTOVKbGRUFtOs6vPZ/IGgLGgVwzP5/MoijJl3ygnnL8dlGoJpnIA9XZM1YyEcL2pXKVxX0rDTFDue0xFY7m4Rrx04v3EIl8URTZu3MiylUvIxuN079qFWZLZt2cDfo+fyEgPeSHLv3zpD7z4/K/J9G9jJB7F4a0ik3cyNJxDpofhhIPf3vFrPv7h92GxZggPxgkEfWTzKebOOY5HHl/LyWcu4IkX3+LPf3qMd5/5Lupq/dTNaWTvjh1IQp6Vy5eSKahoZhsvvfAqK+ZX4XR4iCZyWG1u7vjp97j8PZcTS2UIVbURS2WJxnupCXlRZBsFWWZkqJvevT00dqxBknLs2raBpYvbGNo7SEYQECUTjf46tm59iYZ5nYi00d/7FDa7gjswj5GBEexOGx6PDbQ8alZj874UbW01mEwqFFRsUpCtb/yFtvYFqFIb/ftepr4jRDISwamuZHvPepxumVwWnl/3MBdceDnpjIrJYqF/PEJkRxdz58+nYDOx6aVHOGr1uYSHd1LlDhHTJBTNistlIhZN88bmjaw5biWibGHHW28iydDY0M6H3v8ZvvXtb3D95z7FT3/8E5xeP7f/8g7e9/4rCA9FUcVh7KZmVq85ig0b17F9z3PYTC0o5jxmxcGewWGWLJ5PT+8+fB4HFimIJAv09oR56i9PIioCZ593Cg6fhXwuQ8/eXsxiLc0tbkbDw9icKg5zB4p1mDvueIoLLjqTVApOPu1c1q77HRazRmrczuhgL6HqIG6vl63b32LR0gX0dSfRVJHu3u3s2LOXza9tIuCo46ijOzE7vASrPTz04CPc8atfs3btc2TUJCariYHkAOefdgJ3/+w3LFh4LDHRwV/+9FvOvOBSNJsHey56sN8Lk/t/qUy7fft21j95J9mB7TzwwMMsW7Wav24aQRMErv/mbWQiY5hMHgaHEjz62BN86Kp3Y3E38d8/+xHza/M0e9N0jaSom7+CK97/MRJq7gBPmrgGpoTvGfCISesYUcefdMO49OhHOd51cI6SSgTcyUex9FYnh85LwgHajCyOjOYDo2MJej6k91Mwi38cZjWus5jF24QkSRMmiKhM8DoBTQOByWczShf108VU2p0jjamEriOhEZpueUcSR7KcqQSItyO4FiduSZIPiT+VVrJSeaV9cCaCa6Vy9fnoBeVyaYpxK5VZrgx9mFE+lb6H3Owq4gAAIABJREFUPiwcDqMoypSLkb/HLnuxvYzOWx0JLWm5eJVMpY8kZtJfZ1KXQ/vwwfqEQiHUQgFFkhmPRPD6vHTv66WhroFMJkHQa+L4E88mkQ4zNjyMYs6wq+stqut8WO0isUiMe/7wMDVVdXztq1/lQx+6hk9/+nOsXHEU8VEHb7y5iWOO6ySRGqS19Sj+tu5lLjjvHG774S2cePJpOOx2+nt7yebyPPLgn1m0ZAkdLa1kUlF27txDT98Ag4PD2Nw+mue04XK7ufM3d3LsCcdiNonkMgUcVg+5vIDL4aeQMfOJD32Uyy68FJ/bj8nkwOevQpNNeHxVZNJ5fvbTP3L6Ge8ik8gwNrwPi7WF235wJ6eefCa/+8OfaGtrZ2RogHwqzde+fisXnHcWklZARqKrZycmxczg0DA2p4lcJkssCrFYkltv+S4v/nUti5fMIxCoprGxA0Wx4PX6+O73vsfJJ53M+MAAY6MDONxWauvasLmrQUhjd7iQTVb+cPcfMJtlfP4QbW3NJFIxEvEkiuykrqGBscgIZ551Ol6/j2NXL2d0bBhRURiJhKmprWVwIIIoJSjkZS6+5N0Egh5sVi+f+tiXee97r8HtrKU2VI2aFfE5qvnj3Q9zy3e+RVNjA/29g5x62om0d7Tg8rjIZvN43CFQRf764ut4PFZ+/ds/sGT5UiTFxvD4IO1tc1HJIIoqx6xZgdsu4LTWgChRV+MnmUmimGVUQWN8dIjXN2xhbmcHTz7xMH5PgGve+17WvbKR8y95F8+98DK11V4WL5zPmjWrqamtIhqPks1lcWTsHLNwDvnYVrp2v4iYSxHpfoulixcjIEzWPwoH+/5Edxcm9fdlS4/HbvdTVT+XnBJkQaOXpoADK2mee+I3ZCP72PD8vcwJ5klE9lBb5+KY1XN5+C+/IJHW2LB1N+dedg3BuiYQSwXLQzWNFcetnj/p4k5lhVMaT5Lkkk28yWNfn95Iq1ouvtEG6lSbufpyZrWt/3jMROM6K7jOYhYVIAoioighihLFtWGRIU7HGUDpTx9mhHLnEmeC/wnNZ3Hns1QbfSTuRNO3VbnJ50jXrXQCO1whtVJY6VUDxXiH852NtFjFPI2El3JXyUxHY1aMpz+TW9pGlb5VuQ0ao/RTaVP1aUs1xKXtqWkaNpttktCq1xKWpjc626n/PqULIiMttb6+emsKvZbdqH0PZ9OhNP9ycafCVONN/81L6Z+JyftM6jfxfvJ3k0QZVVPxh0JYHE5GhmJYbRbMFivZaJzqOjOR8STNHe2YsWOzOskk8mg5AV/Iy3/c9C3a58xHE02sWLaIjva5dHa24XCNY7GmSKXy1IVWMjLURXXIjc/nYcubWznzrFMYHQ2zYPEi7E4nHo+LYCjIpvXr+d6t3+fcd72b5tY2hkeHCNQ34fG5UUSVBQsW0NvTQzySwm52Eh4YQJLGyeWjuL0ufvXzb7NoUSsWm0T/UA+jUYH7732Iue1zkSxW7rv/Xs4+cxUDAy8wd+48oimR0089nmgyTEvrPAIBL5lkgkw6x8UXXU46EWPDy39jx5YddMxrwhNswh+oxmLJkc2JvLFxD5pm5l2XHkcylmDR4vn0944QHRfweF3k1SzHHX8SNlkkFPDy3LPP0NRQTypjwxXwMTTczWvrN9Pc2orP48LpcLF3oJ9glZ9cOolZMPH7ex9n2fJVxBJRqmq9iCYTZkUkVBNkYGiQ5UcvxWx2sWdvNw31AQb6w9idMi6nF1ECq9WCyZomMhZlpH8TkcgQLpeTQDDE1VddSW1NDQF/FZIZdu3ZRTKexOVw0t0zht2usGTxSj74wfdyyRXvoba2FbNNY8eOPmprvZhsdqymFGq6i1Cgnp/+/F5WH7+KWHQQSZHZs7eLhuZW7CaNeDTL888+R02Nl7amDja8/hoOd4DWjkYaG+owKQXWPv8s9fXVeL0uRFlC1QQKFg1BEZkz9zhqW0/FZMuTL2jI7lo0awCZ/MHxo+MpaJOtUHIK+Orq6Fi+gqNPPpnlx55BTVMb3mA1bUuOI1DdzoIlR/PWju0kI+O88td1bNywkYsuej9nXfl+PviJ6wjU1qNJCqJQevSp/Hl7I0sgveAqljzrLX8mxdOdnZ+Yo0p9SUzmAeWudDvIIybPGaVO9Yx4ltH7UnpKaZzVtr4zMGsqPItZHGEcZIYahcKEd7yiOfF0MV1B4e2Oyf8pwbUorBo5OzhclNtF/XvzqUobCdOJN508NO3Q862lQlHltOXrX6mN9IKrfvKfzo50qSmXXlg2or20juU8cusFu0rfu+jR0ihcv9FjZAFhVOdSQVxvJleah57Oyeash5p1G9E/HcG13CaG0fcxqnO5uNPFVFoMo3jlvkE52mcyhgVB307ShPmwOPH+N//9E959zqmoqTxbX9/B0pVWskknGTXDcN+OCe/DNg8yDrKWceq9bbzy2m6u/eJXuPnfP8PixYt54qkHufrKs+nvSfLvX/sOv7zjh8RGEqRzeaJxC/96/be4+0+34PD4SWbzmMxW0imBZCbJuief5uwzz+DVV1/lkSce53NfvI5wbxden5NEJktVdRNvvraTutpGbr7xBm7+xg2sf+U1TjztBJBk+gcT3Pnb33D5ZRfRUFNFb3+cL133eZqb6vjSN7+CktdIRvsQHKPkCovI56N07dzJoqXLsUpZXt34Cja3k1CoGbPFgyTmGR+LcNnF7+Ghhx9mNBOmrq6Bvh2D1DR4Ge7fhyBUkRDCBMx2nn7mCc4+41Lu/v29HLVmHp3z5qKqbhBGUcw2CimBvn39jEeHyIsQCDio8bSTM2fp2buT1qYO4oDbYWaoew9W2Ybo8NNQ30pvXxepzCgudxA1HSefy2B1usmrWQp5mUIhQzoaY9fOHqpqbPi9jYyOjlJb28jo+E7+6we/5dpPvYdUVkO02NjT3cutN3+LE088nrbWeazbuJFzzj6DZYs6kaQ8+3oSeDwqfV0RXC4Te/bsQs07aG33sWNLnGNPmk8OBas2gCnfR8azCEGzIAgKI4O7UExWRNmKqioU8gO4HU0k4hkSqWHsTg+5dIa773iAVWvms2RRK9FsCsXuxSkXGBwcpKqmkUQ6gyhJWOQcX/zcl7jx698nMtZN0AajkThp0URr55IDx4oQhclX9KkTvKYoREmCSl4VEEQRTc2jCjImoUAincMsC4iCgiiYiCZHsJidSEIKLZtHElzkpPQBh3WCIKBNcsikG6e6Tb0iDgieaJOeRQ7dvCpnulvKXyfelQqIk+eMShrSQ9Myae1hxHsqhev51qxTpncGZk2FZzGLvxM0DQRhYvdQkuT9u4gwYcpSWQNxaF5H5lqQIkoniSKmyv9wF71GApWRRm46NE8nbjnt3XRonI62p1Kc6cQzSjNxLkc40FdKw40EmHK7zcUd6WKdKu1MV9q91j+XE0T14aW0lf5fTsCrVGa5d6Vhpdr7qTZySunWf28jukrDpoI+72LblhOEK9WpEj36RV9p3SvlV0qn/lvof+Xuwp0KlTYdKvVZo7SV+N3+oYIgCiAUDSuFA7y1eOZ1IkSkc04b27bvoaqukeaWdm6/40HqG6sZ7dtOc/sSHn34fo4/5VRSogUxn+CfP3kDa45awLtPWcz617dz0lln0NHWiZDTSOUF5i1cxJzWOvKqh3RhnOqGOsIjeWwmAU3M4lQs5IfjOH0uhvuTLFi2hGh4HKsvxMlnvQtIYbL7qXHbiA4Pgs1DVZWZ0bF+Hn30Jc445yQaOzvYvm0HW998i/aGZmzmAo1NtWzZPIDfY2FuezVXX30x0Ugem8+Dqphxe5oRxAwmQcNqdZFKJrBZ4pgcHnzBDgTRARYVIZ/FbLbxvo99nHRsDFEtUEhn+Oxnr+WSC96L0+3C4jJRyIpYXG4CgVpEWSSXTEIawoNj5AoZXD4/45FhROC/fvAjLnrfNfx17VrWLF3JYw/dS3vTHF55+TUKYpYXn3mO8eEMtbUtFKQxHEqIY1avprmpHklS2L1lHelUHpfbwchoN9GRUdx2G6Im8NJLL+GwW2lqnst1X7iBeGIEl0+iqbmJhQuWs317F/UdrQwMh2kM1vL82vV87Uufp6aumtPPfBcejxtVU3j2mdf5wPs/zPnnXIgiyzh91dQ3d/D1m2/i8ssuJRrdy+PPPYuacNM2J0Eu6iWhOrBYZJLJEUaHhpFEGUlUuOnmr/Ou8y6gt2cHO7fuIDZcoK+3n4aGOoLVDvxBN0MDe6kOLURVJbToMHv3vYHLW4vVbSefTCEICsedcAJWq4RVhnQuyda3NtPR1Ez33u043UHyihWZHKjF/iwhFK1mAEEUUbX940AoHlHSUPd7zxVECU2AgpZHlhU0VFQkBMWMKmmIkgiCgIaAIEr7hb6JeUidWMAcMlbLWe2IgoSAuP93qNMk/f+l84km7F8RCewf0xoc+B3EVLcXFNtA7x243Dyn54OTaZ24T/rg78itv2bx9jBrKjyLWfwPQlEURFGkUMjPWPv4drQkRnmVLnz1V3wY4UiY95aW//dKcziC61RlzFQgnUm8/bEPeaMXSor9pZJAWix3ukLidNtqqk2G4kXvU6FIuyRJk/IsNw4q5TlVHcvVYablVMqvXPqiADhTGivRM1PB3gjlFmpGmuyZYqrNj0ppZlQ3QZf2kAiTBWeLyUpzSxuiqDAajnHsccczOhzmsYf+QktLNatWLiMez/PUky/jttm45LIrkUwi7fPaaW5pIVeIkk6Oo2YjZLNp3tqyidqQld37xti7o48qn4sTj2nBZAkxNj5KMjHKzV/7EgsWtWNSBCQxS76QpKauGkHUyKYLSBYrg4MDWJ1uFIcfISfi81azcP4anC4zyXgBUZDo7OykIMLefaOkohL9PTtZuGI5Xr+DvT1doFhxuwUUSWBocBCTYsZmtSIgEgj6GOwfQlYcDI9GyKVj+PwBFFlGEDQEQcZmVjBbzCTiOa664oP09G5j956daCj4vNXkkjE8AR+aJNLd00tr+xzcXi9mpx25oJKIjnHXHXdx9ZXX8MjD9zN/Xie+Kj+h+lre3LqN5jmd1NQ3U19bQ1OLn9FIN+NjBXbs3Mg3/uMrLF0xF7fPjE2xU1NbjyCZsNnsPLv2JVrmdGCyWrn84ssZGhph42tvcuZZ7+acM84nMjaGy+HlsYfXUldbi9liwm5zse6FDWzd9gaJ5DBer5tYPM33b/0OZ5xxIoMDXbz6+gu8/30Xkc6OEKj2kIznuOjCc+np6cbj8dG5sJGOtqXs3v0CdVVL+dq3v8Mpp54EmoDX6eeVVzYiSVYuuvhy8rkc6154mU998nNcf/2XmNPRhM2u4PW5GB+PsG/HW1isBfyeWs4572qq6upZsfgEHrr/TzjMDhRRIJOKkk5GGR6N0921jzWrjmFwcBhFTvDYI49z9FEryKsaB9mjYChMFv8vtxFdzvdA6RCbeFcyLxjkDzA0NITNZjvkvabpN5wOnVeKc5r+yhlB79jpkDG9P8eSuao8fzEWRKeaMw991m8Yzwqu7xTMmgrPYhb/EEyYvxRNgEoXuUbjTK+RMMJ0TfgqYTrlzBT6BfJUcaYqv1zcmdBeybzxcAXTqUyF9Wagk7/11JNiaf6VTEb1dTPS9Bm1VXHzQn/p+1TCl6ZpyLJsaA5fKU0xvDTOgXNc06iX3iS59H25+paG6+tfGrc0fqFQQJIkIpEIfr//oBfxEo1BuU2fUiGxNE7x7udy/VC/WVF8LnXmVKl/VYJe66rPo9TcupTG6dBa7v3b4Ul66O+AFdGXP9m0UJLMB9o/m+ojmUyye9vruEw57PYQkpZDVDy89PI2OttDVAUkVKHAyOg4gWAN2Vgv+VwBi93B0EgcWVPIxvrpj/j5r9t+wE03fhG1ME774lNJ5tKgRhnp7aKqrpahcIQ8EpokEfT4cDg8mF1VaLKGmlNRCwK5gsRA9wZkWaS2qpOc1s/1n7+VL3/5y0iyzI033khry1xikSjHH7eEp17YyBc++2HcHgvpgsJQ/14sZivJZBqXy4PXE0DVUoyOjSDmZWSLjcHwINU+B8+98AZnnHsKuVwGk2BidHQUh9OMJClk0ipmSxqr1c8Pf/Iz3ve+9/HLn/0313zoA5jMZlRBg1SWfDrDru59LF20mEwuzo5de5nTuoAtr71CPJ1hxdFH8+jjT3LuueeiCBqPPfY4Z551GgU1jaIojA3n6OsepqWtGRWV7bu3s3BeIwUNCqoFVZUxmTOYzQrRWAS/w09/3wCZvIDbG+DUE47myWfuZ3Coi7kdy7jl2z8nn0ljsjnJqCauvuxc0rk4mzZuIBCsZvWao8hmkxQKAtGYgt0Ef335JXxVtcydU0cmH8MfqCGTMSPKg5ikFgbCj1PnOJ60OUMul0OWZX75k18giDKrVh/PPX+4j+NWL6GgitQ3NNDYWs9ouAuHw4HP50PTNLKJMRKJBH++7yXedcmV3H/fHfz2F7/n3eev5p8/8gkkSeK2227jkksvwhuoIZuNoogSL69bz+rVc5FEEw89eB8fuO4rCEjk8wVARMPoipiS8bF/bIuiiHbIHagHec/EO/2xk4N8XzWwSinmX8qPDvKHyQKjphUM5w39/KKqKhNK45J4qvFcNR3Pvqo6kabc3HCgphW8q+/P6cC7ifaUmcU7A7OmwrOYxT8EBxmqKIrIsnyAkRqdCyn9fzrasUrPM0n7djATDe2RoPHtas2Kz0eK5kpapEPPykydl75flCtf3+5G8Yz6kiAIB4Q0QTh4hqqSM4wiyp27naqNivkWCoUDgl2pNla/0DCiudL/lUzEyplIG51zEkURq9V6YNGnT1OuDH276Md3uTFSbgyXtsl00hmhUh+fzhkufdtVastydL0tPqNLqqn68vX0q0xoGDXMohtJcuGy+TBjwR5oYnhkhPqWTurnzMfmt2DShomO9OGw2BmLZbFJWXbt2o27Zg7RWIHNm3cx0NPDPXc9wVXXnEdWg+4BhZo6C6lMjoDPT7ivD8nqRBNl/KEGFMWEy25ly5sbkaxW0vEx8vkCFrMVu2Im6K/B6fCTyyj09O1mQWcbmgAub4ALzzofkynJpVefhcdXS32wmV/97IccvWIpe/Z0MT6W5ac//hkXXngBjz36MB2dC+jq3onf72Xrli2kM3l8Xi/hnm669oXpWNjBaGQYu2RmMDyCxSqQzoxhsYFWEBFFE0tXLCaZGuWoVceRjMaQEUBQufS881E0OPn441FlCckm4w4ESRVUnnn8aZYsWsmXb/gaHS3zcDps+N0CjbU+wpExYhGNKy//J048ZSWoIvHkOA89/AAnn3YCsizRN9jHz39+Jw898gynn7QURVLJpqNomkYiEaO+sQ7FbOKtjbs5/bRTqKmqZbA/wulnnozHbsHn9RPN5Fm6YDF2j5/hgUFWrlzE7t07yOfgxz/8JauOO5oH//xH6upDmGwK2ze/Rse8FnIFiQceeJr2tlY0HOTpJZf0Mp4axWq10dvTj9ftYNHihWzY+Bpnnn0WmfgIp51xFn3hHuqbgjjtFgRBw263093dQ6qQAbWavv5BWlt91NR4uPDCK1h+9Dyymord6SUa0+jti7J02WIK+QLdPb2se+lllq48mbqaeqzmPOF4jkAgiCRNOH6c+Dv1BpUgCIgGY/3AGVRRPDBWDlr3lBxvKDOPGB0LmXg/mS5RNNaM6q2GRFFElCbznVK/yvpNR7322KDmh/gJKMcrja7BKaYrJjlY3qzG9Z2CWVPhWcziHwLhkF/xfKMkyciygqpqgDBxNuXA+a2D5j16plxOW1saZ6Yaj9LJaaaLzZmaQk+HjiMlWM8kLyNhaaq2LjdRltMCTiW4TsydE2d+JvrAoRO7kcbLKKycBrWccFpJu1uuPD1tRnGN2lUvBOnbupyWsTROaR6V+ruR0Gj0Xaf63pXaxki4MxpPRpsNRt63jWgwynsqeipB/10q9Sv981Rn0Io4nGMHB8rR2G+XCGhG9Ij7F5lF3lrSL0QNUQbFZsXsDRIZ7iNUHWLjhucR1VGc3jpMliBWWy09gztpbpxPd38fnXOX4A504LKncMpVVLc14HA4iMdG2PLmDjZt2MZZ7z6NgqaQSoZ5/JEXqW8M4fO4ueeOP7CwYyHh8W7aOpejRrL0DbxOJmJG1vL09+xDE3NExkdwBe34AtXIskJdfROSILB7zz7sTheCIOFymbCacqw5YRnjqQxWSyNfuO56bv7W9ahiho55i3lr5ybmzmlhqH+M+toA3d27cHqcNHd0sniei76uXWQzKg53kOH+bqqr6/jOt/+LhYtWYrYppFQRm9nCaLgPp8uJIKnE06O4TAGueu+ltHY24/K5+cTHr6Wzox2r1YLd7mDhipX0793BScesIpdKs2h5OxomFIudG2/+BheedzH11XVUNQSx2wVyxDn9pGPZ9+Zb5HMqNdX1bNu8iY66AO3t81DMMgODg+zeM8Ccjrm8uelN4tFxTj55NQ6/C5PdidVkI6fFqa2fT6jWwx2/uJNFi9q49T+/x1nnnIA7WIXbG8Tl8FJTVcvVV3yIz37x/bjdISgotHe0UZAU8lmRX/3ov2ntnE99vYk927vJqzHcrhpSiSTp8Rh/eexZzj39bFpbm3EH3CycP5dodJSN6//GvPZOUmmR7u5egsFq7HYnAjlSYzk8QTf5bJR0Isvo6CDtbfMZ7NlKclzGaoddu/dSH3Lxpz/cwbLFS2hpaqMqKBONR9AkC3s3PUdjQwMozkmbekZjTM8HDghwBuNJ2z9WKP5K56Ay47v0nb78iX81VLUwacwBJWdYBQTx4I/ie1WbtBqaXG7Ry/6E4F4c38U1kX49NGGiDJqmIorCgf+Lc2cl3jO5XgfXZbNC6zsLs6bCs5jFOwjFhXhx0aqqKvl8ftLiUVUPmmQWF7gwtcliMf/S56kweQfy7XsxPlyUurTX4+9NUzkt31SbBJXykiRJp72bamI86PlQz97KmUPphb9i2HQ3FIrpilrYSvFKyy0vnOtqZOBF2Mh8q9z7Sqappc96LWKpKV2pR8lK9Br1/eKz3rRWT4+R2W0xXB/ngKdQSaKnp4dQKFSRLn29p9pgOBzBdTpXeZXGnY62Yyb06OMWeV6lzYzJ7w/tZ5IkEYvFyEVGEbQshUISRYJIPMFAdy9vbHyTwaHNfOaL/4aai/PmG5vo7x6ibU4jf/zT43zxX68nFs7SN9LNTd+4hRVLTuC8c4/i2bUvcMbp82msaiaRVRmJJlBFP41eOzaPg3Akjtszl9TYFtSci1iym6HwAILoxuFyISsSoaoqnO4AktVGVoPRvZvJ5PKEGhtRrHakNMQSo6iqyBmnX8xDD95DLDlCfUMj2ZzCjrc2UOXxsXN3F62dzaiqit8fIBZP4vbYyGXyJJNJYpFxmto7iETjZPMF/MEgiegooibiMRcY6t0Kio877/kLn7ruega7BlHMKn6/l0cfeYLmlk7mL2pneHgYu9PP2HCYbGIcTyCA3R1gbLib2tpqUqkMJpMHtHH27dlObcNiTCaVVKGAxWRmdGCArds3s+qEY0klEjhMFkRTgM6m5fxt/X1kCwIbN26kvbMDj8eDlhhlYDxO29yFoGkM9XXxg1t/xbdvuRFBs5NI96NILj7xyY9wy23fxmKxoGXzCJqIVvCRzvcgi15MJhMD4a3U1teQSedx2vw8+eyLLF00H7OssH37duYvWozVJvOxf/oAN37j3wkPjNHQ2AaKRD4zjoBMT3cYq8VJQRKoqQ3S399LW1sbyfERNrzyMpdc+jGefOZh/vjHe7ni8qvYvXsPDzxwF1ZLDdf/2z+RzSl87fqvsmBRG6eceiwNDQ2gjrOvawi/vwFzNsrDzzzN5R/+KILNjVmcfMe3nqcYWalMl1fOFJWOapTSUzTvL8tfK0xHRQ/75Tz+Fr2KF5/119+UhmmaMGkuKQ0velc2quMs3lmYianwrOA6i1n8g1BksPl8HlXNH7IQL4VegDCaUIwW86VxZ0JTuUnRKO+peMh085wO/qf51dvTBlfW2hU9pcLE5FuK6QqhehgJjoaU6cxt0+k0VquVoaEhQqEQkiSRzWYNr3F5e21yqPZUf7VLJYdipdrYYn31dJUKQUY78ZWEo2KaqRaFlcaqfmwa0VpuQaW/FqKc4Ko/UzYTlC56S7XAlepSCVPFmQkfmg7fkWV50kafPq4oaGiFPFouSzg8yEjPTvbs7mPfnjBLVzTT2NaMw2ZHFFJkEgPYHA309W9GjaqEu7toX7mK//z+HZx94gU8/vRvufyqq3E6Iiiqie17IzS1NmF3BZHlPGTsjMf3Eaw9lpHhx9nx1jjz5s0jHrHj8ItYLQoOm4lEfJzh4QQj41HmL1xMIORFkGRyGmiCzNjwCC6ng5FwP36vh77eXmpqaxEkmQIaXdt2cvvPf8PKY1ZzyWWXkEzEsJpNvPTC80iKnZVHLyNXyCIrAsl4ikJeRbHZMJusoKqYrQ7GwruwSCn29qSpqW3EEwjxhU9/li9/5QYEQWJoYJyahhqGhrpoa5nDN2/6Ty648jKa66roGuinuq6FnVtep6OzCZPiJF9IkU9nSSeyFEQLQ12bqW2ZjzcYIJ0M8+B9L2BxWzn5+NUUMhlEu4lcFnx+kDJW7rjzTixuB+dffBHkEoiKi3g8gUNJIyouopECsjmJyxEikUoAMDIapq6hCVXNI2kq6VSCF194g/kLG3A7G7nr7l9y9QeuRMxnGBsbx2R3Y7HYySQmrpGJjIdx+90IgkQ+maZ7bx9jCdi6cxfnnHkCgZAdTRMY6A/j9fgxmeD22/+bCy88H8UkY3V4iY+kiKXA59UQkPB4vKxd+yKBkB+nw89bb61lTuNSxhMR/L4AgpjHH3Dx2ivrsDl8/OpXv8PvqeOjH72C9a+9yElnX4litRmOFT2/qcSbSsdIuXj6eVvQkA66AAAgAElEQVTPX6YSfgVBIJfLTfAvYXKeeh5SenWOPk5xbiwUCmWuram8sTYZk/mjnncabWS+3TlsFkces2dcZzGL/yUoMldFkSdpWvUoMttSBw56Bly64C/V2M4EU5nbTPf9kUr7j8bbo3EqrVSpMHjQ2/B0teCVTL2MFimVtPbFfmKz2Q4IfZlMBlk+1HnFdCf+0vqUK7v0DLiRkGZEu16wM6r/dBYppe9LBeZK7TQTlI7H4rgtanIrOWHR02BUtl4DcrjQLzz/HoLrTONVSlPkkUZZHegTiogkyxQQsDvddO/ajttTi8nkY868DuwOO5te28zQ4ACDo904XE2Y5REe/f291PhlPFU17N0X4eff/wXXXv9JFi1bSSDgxmkPIVqCBPx+1FwOa9BHPm0lHt1DwN+GqllxOKvR5BjVdQFU2UQ2n0UUCoTDfZhkE36Xi82vbmBz7zA1dQ2YZAuiJqDYFTS1gMdtp6dnB00N7URjcYZHwqhkqKluYMGC5Sw5eiUgEovGEACf20Vn6xwEWWRX1z4Uhw2/xc7Q4CCiJuJ2ORkejpDIqeSFAk6fG29oDoVCDoEUxx1zLFabiVgsytNPP8fKNcsZHurF7bCxZ8cuFq1ZzUB3F7XVNYyMRAiGglhsEoJgQSOCVfHx9Rt/yOrjVnD/Xb/khRdeYemyJaQTI9SFQixY1EY00ss1V12I0z6XpSsWsK8/gtcsI8gixxx/LFmtQKagoihO0vEo4X2vE88WcDhcdPW8hdlsQVTcKGaBULWPRKxAb28/oiaAplJTW43TbUYtCKxYuYCCprB3+05aWlsQTBb6evsY6OsnELSTSA8zPDZEOpVjy6btCMToWLyQxcvnkc/1YLaGSCSTuDxONrz+ComRMMsWL8BmEbGZFSSrnS9e+x8sXrEApzlBZHSIG67/PB/95w/iD3qJjY/R2hDgby++ib/ejN3u5qV1LyEpAvPmLGB0dIyunn187oZv8oMffJOTT1jJyHAKf3V12X5fbgOu0rgyelfOCqX0fz0PMMpHlifWKhqHXhE2iYYSB2tF7efBPI01uQdhzL+N28B4Hiz+X2n+mMU7B7NnXGcxi/8lOLgAnxBeFMV04NyHduC8x0GHC+XyMGLw5TRN+rJLw/RMvpxJrT7NVHdP6unUTyhGE2qpV2aj8kvflRPM3i4qaf4OjVN6Bk9gYtdYq/ATy8YtdYphtIgpR1slYbaYvvh/qdav9PsVw42EVn3e02l3I5qMBE/9c6kjqaIJtlH/00O/u1+p/NJ3pQuwqeqmX3AZ9e3Sso00tUZl648GTFfoLifc6mkoV35pPkaLyYMCY/k+p5V2fWHyclI/5stpdPL5PIqiTKPuRb54sMDis6CBpoIkyoBAbWMLDocJRUnwhWs/zuknnYjZkmLBvE7M9kWQjjC4t4/lJ19Iy+L5RIbTLFvZiOKcw113382ak45HMLkYi2WwmFz84L9uY/WalezeupdAwIEk2tm35y3sHg9mNGqr7OTydra8/CzWvILitVHnDpGRzfz1hWdYuGAu1f5ahvu6iI4NsWvbm7Q0t5DPJVHMZuyuanIqmO12XC4PG159g6rqJl59bRNNTbVouTiamiUcDlNbX8+JZ5zJJZdeQtDnQcxm6OnaSrAqRDgSYzyZodovMDLUhc/ZRCqRoa+rm1DIQ3RkBMXmRBRlXl2/gfnz2vAEQsTHEwz1DZCMR9n22iZOOm0Nis3Onj09fP8732Pxonk4bGbu+OU9tM+Zz83fuImrrj6XQCjIoiULyOSzNLfNZXB4kEQiTyBYj83l5l1nnkFGEHjwrt8xlsmzeNnRSLKdgZ4xtry6gT/e/UcSySwWXzVuhwtB1BBEBX/QTy6bJDoeIRaNk02rrHtpHT//yU9orGtAEU38+5e+TTaVY8H8FlBFPF43m7e8jpaPE/I1QyFBPJPFGWzAY3Xg99YSCNYSam5EzUvs3rqd5qZ60jkByWxCUgU2vbienpFRmuprMJmrsbmd9Pe8xQnHnICkZrH5A5gUC8etOR6738fw4DAOhxOb0019W5BX1m1m0YLFBAJV+H3VvLltB41NtQScHmpDMp0dLYyn81TXtuAwi+QRQZSQRRWNybyldEwbbXxVmiP1Y08vqJbGm8ripEgDgIaIKEoHx5+2//7l4t/9v+IZ1slj9uB1a6VC7UG+oJ9LS38HaZvQ2E68EwQQBNCE/cxHEA6cwVU1DVXTDji2mhVc33mYFVxnMYv/pShd0EmShCzL+89O5snn84YL60raNKNfaVixzFKBqNwuaLnd2OloyfThRv+XPhtNsuXymqr+ldIatU05WqfOW++9diqtaWk76Msy/k5GAt90aSxq/YqLn+J3NxIiKpmKGW2QVPrpUU4bqj+nVEpfqddNfb+rVK6RGVql+pY6haokYOnbXy/UVRLO9fkYtcNUfbd0s6i0X1TyIFxqMleJttIFbLn3hmNYT+4U2h193lDehNoovtH31mtjBUEA2YTJ5sRfXc8p55yPIFiQBJlXX95CqLmBAjlMFgvJLAzs3Us8E6a/L8zKpW2cffGVJBMJtPgAY72bcQbqOHrV2diCNsKDQ0iiiNlsZnR0lPHwIJKaZyzSg8niIVTjI5sboiB6yKc3gxhgz469uL0BBDHDyy+9TE2gmrH+PhLRYSJjw8TiKcwOH7I6RDqdxOxwU9fQis0igZDH6/WRGE8iywoIeRKpCO8+9wwcdjuaKpAvyDhddhwuPyDy8Y99jAsvvhBRkPjER6/j8ksvIJPVeP21rYQHBvH5nOzbt52mpnoKmpnxTIbGxgZCoSpuv/12Pn3dR3jsyYcwKw7aWxdw0knH4HJ5UFVIZQTC4TG+eP2/4PH6cXg9pLI5OjrnEo2MEfBXs2vnPpxOO8uWLQNJI5NJc8IJq6ivbWAkPMCXbvg8q1ctZu7cNo497ng6OjpxeVzEhvYSqqllb18Yp6+a++/6FUG/l5bGekRJQJY1Vhy9kjlz23G5fTz2xBPMW9CJ3enCbBF49um/8vxzr7BwwTKSqRiCYubFv77MvI5OdmzbgsNlweEykSKOlikg5nK8uvZpmtsXkMnnsFqtdHR0UN/YQCwywg9u+yknnnwsYl5gcGyAlrntaNk4ZrODl/+2hehYFEHVcHsEwkP93Pjl73P0qhMZCvcwOjTAdZ+8lgULF+K0OXC67TgdBfbu20NVsI6CBo/ecyfLlq8gLwposoigluc3peav050jSwVEI6/opf4OStcDgiBM4qGlvEPVdGNbd4VVsVz9EYnSDelSCzKjuhpvnBn7FDjwTpTKbngLBvfBzuKdgVnBdRaz+D8GRZEPaCKK50KmWhBOZ0Ir/VvJoc10BdGZxi8nuE4XhyN0zqSsmdGjF6KnL7geGnfqdjHaXDAsxUDYlGV5ktBkpN02yvtw2tmIjpnWx+jM6ky+bzmhcipUMuktzW+q/j7dsKKDr9IxPt1+OpXAN1OrhEo0G26cHCK4Vs5nOmXNJP7B7zD5vUjhgEWLw+liPBFjbKyLkN9CLD6ExaKRzaWJDA/ywD2Pceo5q2lvXsz99/yUjnlLiUfjWJU89TVuIgkzgaBMPhnB6Q3gcDgo5PNkszkiI3EG+8O0L2xFclbT09VN155tOD2t2JRhTFYPQV8VtQ3VZDSRzrlLGOwfYG5nDYHqZrKZJCZZJh2NE4/GkNCIhvuQ1ThWlweXy47ZZEFCJBqNkc9phAL1mESBvt5+/KEQiXSSwoREgSIprFm1CqfHjVpQufSCK4mMDuEJelFkK/W1AaIjE2bMtY11+PzVOJ0m+rv38tMffp8zTj2RmoYOWpqbKORg3QsvU13jR8CEJIv4gkGaWxuQTBq5QhZVMhEIBMll07y6fj1VVbWMjkQZGRmmqqoK0WTlu9++FVUUqK12EYtFuOzSy/juLbfS2FRFdXUdY2PjpDIp5sydQyqVJhaN43e5qW9qoq1jLgVE9uzeS1NjK06vj2/f8gNcDgdXXn0p7e3t3P/Ag6w8qhO3s4pcVqW5pRZVLbB+0xbOOftc4mOjzGnrJBodQzELiKKFVFLi7rvu44RTT8NhtWO2Wcnmctz9u7tobmlhbHgAq83L8OgAbe2LGYt147RbiI+OYXf7qK6pRRRiJOLjPPjAoxx77LEce/wSnnluLYsXtRB0+0iP55kzbw6ybCKVS2BWJbZs3kvXvn7aOpuZ11LDm1u309gyB0lTKegvNjbs54fHd0vHblGYLcfnS4XeQ8rT8WGBQ/mtPh+gotCtdxiop7t0fB98PpSusrxrVnB9x2JWcJ3FLP7PQYD9ZjeKYkKSZERROuBSvlBQEYSDpjtF1/ITz4c6dioy7tI7PvVhcKizn+kKLtMVKMuVq89nOjDSwBi9rzgZ69IYaZ7KQ28KPLmOBqWU7EZPfN+DJlJ6M+NDJ349vVNSp1uwFNPp26TcjnfposfoG06lpdWXUwybjtlt6Y6/XiNQ7puW0jHVQq9cn6lkylwat5zQb/TTl6fXBgvCQc29Ps9y2olKmw6VNMyHmrdPzq9cnsU4kza7JhkIHtqm09GkGpUz3TgHv5l+YTxZ+22x2XA6qhgeyRGoayWVLOAySzgtsHhlC8l4gZoqL/6Qh6GhXbgtMBxTEdxNqJksuYIISjVy/wDj6b8hmuegyVkWtDWgeEyYzW3Y8jEy2TT+uk5ESSMRU0iGx8jkFcYSEQKeRqKRvajiDsbjCg5Jw+wYQMwsoXfkOYLVjWg5yKcTDPVtJZ/Ose+NzQx0dWOtbmXd80+THBvjXZd9mPPOOxdJsSKazcQSCbwuB6ODg5hNNv76tzeoDjYwEh4nHO7n9l/8klBtELdHI5EOU+2fwzPPPsLKZUvYvnkX0dFxGhuDLFoyl9r6egZ7kjy/9kGWLpvHpg37sCke3C6B0eEwI8kYbrcHsln6u3bi9oXQNNi+YzetczrRckk0NILVPsx2GbIKixfPpb42gGK2YbOYMZkllq85Do8/wPh4FotsZ7B7L2aLDUU243a5sFvtmDxuYokshZyDRDqCw1VNOiFCKkpjZyPZQhKztZWmjgZIWVDFcUJ1NuKpPAPhIY45ag3PPPwQS9qbESxmbDYbsqRg1ur4+s1fZunyTux2D4KaQxPd5LJZ/C4Jj83PQH8Yj0fG77FgtXiIjmoE/VX07Olh5/bdqJqIyWZHsVr57q23EQzWs2DeSjw+O6HWDqJj/dz/+x/xk1/fzQ3/dh2f/9wN7OmNcfkVV5PLZhElD9v6hxgf6qe5oY6s2Y6oTR6VGPAPPYrjUa8ZNeKDRvwIJluoVJoPAERBQhQE2E9r8XqciStxJh4mW7xMXGUzMT6lSfy1mHb/6agDfxGEA8/Fq3byuQLFY1Ug7J8pBSauABIQ9Xxo/08SJUOeNot3BmYF11nM4v8DCIJwwLSulCEfupg1Pq+iaRr5fH5ajh8qMfyZTgRGQs904s4k37ebZiY0Hm4Zh6qoSuMaa2ArCUlHAuUELX14pbKnQ5uR4FquDkbmqaVh5fro36uN9JhqE6RcGqP/9TDSMJfbIDDC1HTpwyqb4R2S+giOk3L5TjdO6diplN6kKAiiSE1tLZl0nqGhMJGREWKxBF6Xi0gkAbILweREVGqwWUP4vD7MJolEZAibVZmwWPC0M5TsosY5h6Eta4nnJARZY2ggitUisHtfnMaWFsIDO8hnesgBZruKw5lHVASqAlUosojVZqdgKpDJepBl2PzGFppb5+KwOUEtIIsC2WQMWVDoC4+gyTKL57ZRFQiyacs2jjtmFQ0NDciygqKYcbs89HTtxWI1oVgsDIUHiCciOB0Wjj3+GJxuiXzSR8C5mtF4N8efsoZkJo3HV8XG9Zv42c9+zPLlKxgOR7j99t/wnmsuZXh4iL27R3BXq9Q0+EhkYpDLM9DTjySbsThsWG1ORkdHeeqpp+js7MTttCEIJv4fe+cdH0d55//3zGzvu9qi3i33Tjdgeg0kEEINIeFCSSHtLpdLfpdL5XKBdBLSc7kQEmoogdCLAwYMGNsY9ybb6itppdX2MvP7Q15pNJpdrYxJyN1+Xi+9tLvzzNPLtz92m4fB8BD7OvdTU1eNxWZGwEQynuTBBx9mxdGrWP/qG4T81YxEBmloCpFMJclmc1gtdrLZHJ279/Donx9g5fKlfPTqD3LhhReAKUnHQh87t27jvjufY9GSeu6982EaGkIEAl6sVhfpxPg4KwIo+STpZJSRWIZUOoHT6SCRjBGq8bJo0SJCoVr27N3FZz77eS677FK2bXmTX//2j3zg8ivxh/x093cxHB5jz+5O3G4HvmAVP7jtx3ir/CxcuhBJkPjgB6+gts7PYLgbswhZFILBapoa2/nYjR9HRGbRgkUMDEYZHRnkT/fdB5KBgXA/p510PLv37aa+sfXQfe/lrxXtWtWLFFzOWtIK60qfBRqBrqDJa5oGVq0hnSq0E3QEscXqXfBTLVilIGjOgSJBEWe7R1fwt0XlHtcKKvg/CEEYD1Wfz+dJp9NIknTI9EZ9X+i4GWLBVLQQIRCmEsSlohsXgirMljHQ7jXlEt7qtMU0XqVQ7N1SfqLllDsTSjFi44eoNiCF+qDX1lW/flqU8nEspw3aupTq25k08HrzSp1ee5WN3ne9MdKbR+o7ktXM3kzzZaZxLjDNpe6bLZSvDTBSrL9LrZ1SY1cwIy7maz7T3azqwE9qjevU9k29C1FbRgG5XG4ieNdMa6dYe8pBOfNPm6YcA4mJOyiV8cS5ZAwJ6N27jcGRURrmLMDuqmJstBerUaJzx1qG+vfQ3raSoegIJmuQVv8c1m+9G6/rTL59+81849+/wODALgyiD4MVHF4FQahiy/pOVsxfyijDKPkxxIwRV63AgR1jhAIessRJ5g24zQ1s2fIEyxYfCxYvuXSMvq79uO12otE+zNYgqUyW6kYf8Wgcs8lGWjazY+c2Tlx1MnlZxGq3j5uZZuOkc0kkiw2DaKSn6wBGSUQSBfZu20b/YJzf330nv77jDlwuG/F4nMHBYdymEDYHmMwi4fAQm15/g6bmWrq6D3DUsnOxeGX6eiL4fH7ID3LW2Rfw6//+A4oBWhoacLlcAOzfv5877vodl77vSrr2d7Fi2SJMbseh8yfHYF+EfCZNXV0NaczcdMONnHPuaZx3wRk4HDYSsSS5LJhNDj7/+S/yjS9/it7BXhYvW0m4exsmexCzoxFydq68+Gx+9ssf8JFrb+Knv7qZ6vp55NMplKxC5+4uHn/2Ga7/5IcxCBnOO+NMHnj4SSwWM5JBoKd3H/6qGuKxDLFYDIfbxitrXyfgr2Hp8iXkMGCxmElnRzCaZDp3dlPlqyGeiGB1WXE5vYT7h5GVNLWhGpKJMawWATmXwiyZ6BuJ4vXWks9JvPn6i6SSGWpqQ4hmO1ajRE3AR+/QKE63B5dNZl/nTkTRTvuyY6bEtFCvlsMRYKnXy/gamX7vqTatXlwA9e+yPNUnvbCmCt/FaQykPG3fUT3RLbdQR/Xv6qNRluWJa3kmzp0iW0spAX0Ff3/M5jqcyi28FVTwvwQFs1+z2Yzb7cZqtU4h6Mfvi5UxGAxTfiv8Xg4BXGB+YZKJfbdDluUZifq/Nd7uBehH+gL1w+mj2dahUMbhlCUI2sBXU1EgoLR5F0zn1H+zLbfcur6deTbTu2pGXi+4SmGdH+l5UQxaX7R3E8oZB1mAvAB5MYsiZjE5nQhWB8E5K2iYv5hoIk4kEiEbV1CEIE1tJ1MVWEZOsFLfPJ9QfTtZWy21LQuQ5DSfvuFCRMmExWzEZjXg8jiJdofJJFMcf8rxjMgxEIYxmRXMtgb++uzWcZ/OkV687lqev/s1Bg4+y7L5JzCS2Egun8ZkyROq8VBdE8TXvBB7qIma6jpIR8jnx7DaDBjEFPPn16Aoo6SyQyTiw+RJYrIa8PoCZPMGDEYbtfUtDA6NgWBi8aJGUvEcX/zXb5FPJ8ilsrhsToI+LzklQzwVpfPgXuxOCyeedBxGo4XB8DD33HMX0cEBgl4Xd9/5C0zOKp598WXaWptxWyX6eru55P0XkcumSacSfOGLX6axtYGjj55D577XESSBVDqN1WanuaWeg12d3HLrt/B6Xfzn17/MeeeehsEgMjCUwG63YrPZeeKJZ/B6gniq3FTX15EXLQRqV+CqqiOVHuD3v/sWv/79DxFNFu6+//cEa9pI57KIRgPxxDDf+d7/46STT8BoNaCIVp5Zs4Ff/eo33Hff/Wx4YxPNjQvIZcw88KdHqa0LIZqMnL76JO695y4iY0lee/kFnnj0QRLRIXLpMaqCAZBEJJMRq9lCKhbnxGOOo2vHHhRy5HMKoyMZUgkju7r6qfL6SIyM8uUvfJG5i1eybU8Pv7vrT9TUhMjlMvT2ddPf309PVzdbt28hPjbKto0bJrWJRxBahlDteqFFsX2vQDcU24vKRaFc7VrVlvu33NMq+MdBxVS4ggr+l0DPVNJoNKIOLV+4Zieflw/5yQoTEVvT6fSktLTY3WzC5NUdetoovYAJ2u8zMSGl2lQsjRqlNF3aPIvlr9eXb1daO65hVXvdTM978rNWqzj+N+kjVEijTORV6Ge1dFz9Wymzr0LZ2s/jmt+pvrYzacuKaWu1dxCXKl/dF6U0t3omclrNorZdWlP6Ys/1oGdGp1dGIe1M97WqfVr15ps6+nMxrax6PRa+l/Jlm6qVVlCUSX9qbftLjaXePCp2Zc5MmEnzPRttSWG/Uw4FZFIOOcxN7oMKogKiAhISKAKKPN5+URKwWu14PD4cTjtOnxekPJLVxsFwlFfXvU77nDZymRzJsQN09Q/jrGnA6bAjChYEIYtJMPPqmkdpXLgESbFiyIySHNmMv6qBtOwlzQgOU4iB3p0YiWF3VRGqbsJoz+J2hxiN9SIk+pGlAPH8bgyZepKJfpwuhdFkkvjgLowWGwZ7ALe3Cqulilw6jsNqoWcgipJLouQhGY8RGz7A9s2bmDe/BVkBn78WbDUsWLKQ6moLI8kMbqsBOZPGYHVjEHNYzFZsVhsWsxWrSUS0SBxz9Am0NNSybeMz1Nc38OD9D3HsyaeQjo7Sd6AbT6iRSLiXU05YjcnmRbF7MJtkjPIY+/f10nkwgcsuYJYkTjzmDD589UXs3D7AZZdfRjI+QlWdl3h0hHQySU1dA/9zx/0cf9RKGhqsLFu2igM9WzCaIDY6zPBoH7Kcw2SwsGzZcozWEA89+ieWrVxMJgNCZpSDna9hkfwMDiQ4+tjjCHclcDutpLMDLJy/knkdx4Eicscd/8OyFR2sOGoBRoOZbGqIcDhGe0c1bruX+YtbqKvz09+1n3BfHwPdaeRMFIfJzmOPP0dbWzOnn7Wa395xN6tPOhGn08Xmt97C5rAzOtBHqKaBHXv3cvmHrmLrq+t45YXnWb5gMXMXLmTjpjcZGIrQ1t7CLf/1Ay6/+kYGBsM4LDlefvw5lp94HNm8gjknkhdn9mXXrpfCs6lraZIWUJTx80R7Vhezcpm+V03dGyZ+KfjnqvaO8XfVdIgmIrzqfaHg1Kr6E1VpCtduKYwHIRNREA5dICSozkPt/ldhgN/dqPi4VlBBBRMobNomk2mKOeX4Rq5MIWa1BLLeoZjJZCY0tzD9vkxtEB0tcX8kmEBt+2aTTo+5/ltgmk+QbppCnYqbAk9nPqf2uxbqMSj2V4wYmt5FMxMAxfr5SI97sTy1803dTjXKiRg8U9nF3i9lxleMSdXLeybmWF2ellAEJgKvqX8rNQZ6faf3Tqm2v50xVu8hpdqol0avbvqfywmcNonClWT19fUsXLCQvTu24TZLmC1WAkEfBsFENh3F7asnL6QxGVwEqgOYLXXYbTG6u3fi9bYTi6WJJ1Pk8in8VXasVrA6bMTiMk6PAYNRJJmE3bu68ThcWGyLcDrdOExG7EE/NouF6PAgA+EorqoanA4XI/19DEVGyKbjyIpCY1MrIz276O0dIJ5MUVUdJJ0y8PxzT3DMysWIchJZMCDIOYYjA0iCncGBQYaHR+jt7cfpGg/8Z7U4sdtcfOCiy9mzr4uqKh+7d2zjpU07WHHsatzBJsySgXB/P1/5ylc4+qhV1He0IEhGrrzsas4593w+edNnef9FF+FweWmfPx+L1YnZZmbFMctpaGslmzPw37/5CUvnNzMyZiY6HOei913Khz/8CVYuncvIwH5QwjhdLlyuWoKBWtJJka7ebmpCIQL+KgYGw2xa/zoL5s3htu//mLpQEyFfjoGBJBvfPMiFl5+DUTSyZ+8ufn/nb2lvb8NscvCLX30Pvz/Ajh27Wb16NZHhKPkcyBIEQo1UhbzIWMikxxgZjmAz24hEoixcsoih8CB3//E+jjp2JfPnddBQX8c5Z5/N448/QUtLM42NDRiNJkxGieuuv4GP/tNHsVotBKr9HHfSiWAw8Pzzf+XEE0/E43bjcDhYtqCG3Ts343fZ8bldpDNQ19qKcOguYlkoPmfLWQPas2Ly2fT31HuGXh6T/6evv0LMDJhcs2q64oiY6x56fSIvRWvyrC9s+1uf9xXMDhUf1woqqGBG5PN5FCU/QZyWY6pY+Kz3zGAwkE6nEUVR15SwlE9psXTa9DP5LM4GpZiBYm19e/vlbBhXfZ9KWZYZGBjA5XJhs9mm5VtM46WORKzVOE6r5RSGTluPd1b4MJN/qBra6Mql/EO1Qhm9soEJ/+2ZNIAzlQfTTfPUTFkx6M03vXqXo9lUt1uW5YnrtNS+w3r9XqyPSvWhttxyoU1bzG+1nLlW7F2YKtQRxeL+7sXKUfeTMZ/n9ZeeweYKIRniZGLgCXmRk1kGI5001M4nkxuhc88obsdBvD4/Dz6yA58bzjzjFHbv7sHhlMgqIrk8uO0OrE4D6YSRsXiYoL+V3bueoXX+KjKJKEOdb+JtXQG5PIEqD0raznB8iLrGKsLd3aRyeYyKQGBtZFoAACAASURBVDqbo6allXjvNvYcCOMLVOP0upAVBy6HkYGeXjZufJMdu/bx0es/gscXRBKc7O/qpqYhRDoeIZlMk8lkqK9vJBwOM9gd5rSzL2T96y/icxoZHQ4zEulm86btrH11O6edfSrtHR0YFAsvvvoKl111JV/+8pe59eZvIwsy373lVkxWG2nALBn4l89/gmQyyVg8gcNcxw++8xUuf/+5fPpL3+Q/v/b/aGmtR7SYeen5dZx07CK2bn8eh2sOgRofw8ODBPy1SPZa7FKOHW9tpHHOPOR8BhQzVouLp556itqQREv7YkzWOhTDCKRBIcPBA3289OIGjj1uJYND3XztK7fw4IMP88orr/LrX/+aW279JtWNPsZGZRzu3Ph/m4Wtm7dhEg243W68oQCvrF2P31dFU6uPocFRPB4ffX1dfOYz/87v//BLOjs7OeG40+kf7EISBNKpBJGhMIGaahRFwGgws+6lDTQ2NjIaHaK3t5ulx5/AA/feQ3VtHSeeeiavPn4f57zvYiyeKhRE1DEPis1z9XpXz9mpa3zqGaCNpaDOp9gamzxHiguv9NbO9LoUt3DRtkW9p8paayRFS7dM1TZPF/RW8G5Exce1ggoqmBGSJGE0jkfI1AbCORwoioLRaJxCLKtNHcvB4ZoaHg5KMRDvVt8aURQJBoN4PJ6/Sx3fTf3ydqX3ev62R8J380j0kXrt6OVVTrsLhJsoihPB2Arfi9Wx2DVLhfVcTp3/1lC3p1yBx2wx0TZRIivaWHLimcw/6lg6Fi6nbd4iMoKFcNdezGKObW9torerk11711PjayKbNLHy+GNpm9NIfHQIv7OWKk8DFnOIQM0cJKOZu+96nJ7uNL6AHaQUuVQtopRlsC+G29yBSUlTHaonPBpn95vb2b9rD+s3bsDo9CCS4+abb8YoGZEEmbxkoq4mRNBtIxXpIh7ZR2/XfmobOlh18sV86uPXIedTDPYP8MhD99Hc1gyijCCmaKibh83qIptLEKpxkM1HWLfuZfr6BojHE3ib59KybDH1c+fS3lrD6tVHEwi5mNNaQ3j7LjKjw/zbFz7N1m3rSY0epMpu4apLrsJmtNFcG2Sgq4eefd1sXPsy11/zT1zwnkvIiR5MUhCHtZbv3PIzJMHDUSccTwYDTa3LmTd/FUrOzu9/9yCRoRzPPLeWrgPdzO9oI55KIEtmJIuNsXSc0847iTmLVpOSh4hFD9Lb2YvJJLJtxxs0NNRxxeUfZGRkiN/99yP88Y93Exnpo6WliR/+8PvY7Eaig2FsRoWDe7cj5uNEo1FsNjud+7r4xMc/SzJpYuPGnTz054cxGQScNjsP/elBAlUe/vCHu8jns9TV1XDHHXdisTlwuVx4XA5qQkHkTJqRwTCZRJx4PElPTw/z5y/knnvu49NXXsN5Ry3DMNqHW0px6umn8+SjjyEqk0GPDnfOHul1ebj56dVlpvP+7cQnKGfPquAfExWNawUVVDBFOqn2dVWU/DSTvUL6wv/C4aAlHAuBm7QXnKu1mXp5a+tV7FmxtEcCxTSA5ZhbHolyi2GyH4ozbcW0SVopdzEz7qnjqI3qWFobO5t+UUvbtRL2Ym1Rv6uF2txdPSe10NP862l6tfXRElmzmZvltkG7TkqZ7BbrM+27epoXvbrrmTjPbHZ7eGtDTyujp12eSQNa+Fz4G7cimcrs6+WhTaPVOBezfIDJvhWE8SjuRqORaDSKkEkgCQ7i0Qjhwa2kxpJU19VitFmwWK2MjeUwGiRyqSTpgSEEpxejx0F0YBfhgzmS6S7mti0AcZjYWJr6tuX0DfdhSPlxB43EE30YRJnUWI5oPEJdfT0j0TQ+twVRVBgaGiYynESRU7R2rEIWB8hFbXzqszfyuc98jGBtkEBNLWIqwrYdvbS2ddC3fwOB2sXEEnlcTomoaKW13k9iLIbF7mFoMMbgUD8//fHPueH6m3j6mSc56dR5pFM5mhsaSSbymIx2xmIR2uYvRJAlVh2zgtt+9F8EfUGCzS10du5HzOb59rd+z9UfuoSO+UFsfjPD+wXWvfIXLrn6I3R1HiDce5A3t27iqo/cgJzLc7BrD05HFS+sWc8HP/R+soKEkk1iNdvJ5cfI5OJkU2ayuRiZtIDH42Fg8AA1NTWEw/torm9DztiIpmM47G6GhvsID3UhZpyc/77L+cuzj1BfVcvw8ACCmMNX5WDnvt20tSwmm82Szcdob1zJD3/wHS75wIWIooJAjt7eXoKBBp549Fla5rbT2BwgFenD5Azi91cRGRnCajWTyRuQ02P09PVjsDr5r3//Mj/40bcRRcjJVnZt2YTXa0UxmEkkIrhsrRzs2Ux0NMnRJ5/O4J7dLDzuGAYVGa/JMmWequdosb1Bf+2Mz3lRFKcEgCqWl3Z/luWcat1M1WyqzxPtmVKsTgX6oVj5WishgLwiT5xTxSLRT+mfvIzJZHrbgvkK3lnMRuNa8XGtoIIKphw6RqNxgtlUlKnEejH/PO0BpH6m/q79vXDIFZO8zpYROlLQ5qXvW3rkUW7eoli+ZrBY3dVSbPW4Tq2DlsnTf1ao09sZr7c71tlsduJZuUxUqecF4ki/X96+r/RM870YoTdTHtp3tWut2BwuaJtLMahagVU5ddRCb62rCVW9umuhVy89QUy5eah/Kzb/9corRGi32WxEo6MYzRYsZhOiQcDrq8VidZOXJcaiKfr37KGxrgGrzcXIWBSMRjxeF7HoED6fk+bWAGNjWQ7s7+SltW/hdFVRXTfuF2o0CkSGR5BzBgKtHXj8IWwON+QMhId3IogyJpMNl7OabNZKNgeJ+Bh7tr+Fy+WktSHE1i1byGYy+EIBOjt30VTvIjyYZGgswwOP/IXjj19F5+7NmAQBk9mJYnDhcFi47LJP8bGbrmf+0mqOPe4sjBaJUE0TNpOf//nd3bTPmUtTaz0Wg8RTTzzNSatOJpFMkkyO0NTYSCYl8qtf38Vxx51Ild/D937wXUKhVr7y1a9z/gXnUFsf5NlnXmP16tUYTSbMTgdPPvw0bc0d3P7jn3PVFVeRkUewWSXe2rqRvp5+autCZDJZDJIZRUgjyzkkSSKblbF5arDYbWTyCllZ5ie33c78+fOx263E4wm6u/r46te/htGoIGfz9PR2UV9fRzqdIRBspKurD5/Ph8Fg4JwzzsDjtbFr1w68Pjcmk4TJJDIw0E/b3Dn09HUiCSJjI2l6BwZwOBwIgkjn/k68Phf9Xf187IbPUlVVx5VXvIdsVsbtCvKtb/2MBfMXsHHDBpra2nDY/Hz72z9i9WkrWbJkBZKUZ/PrL5FIjjGnvZW8MvM9p+p1Xlw7WZxBnWndjZc5Pa/C++qAeHqCo2KWI+pyy/FtV5jcw7RCyEJadVmGd3EE9AomUfFxraCCCo4Q5AlNRi6XA/T94fS0U4qiTNwZC/paHDW02h8tZjIFLCWBLpVe+1s55kVqbdeR3EP1mCP95/raIi3KNZ/UEzyMQ+vrW1zjWriXVi9vdRnaeh8uir0/U77aNs6k2SykAabc1Vrwh9Xmq0c4qrV05dSpmOZZHTH5SKKQf8GUr+APW86aUjOxszHnK9WOctqnJ1wqxkwXy3PmPUJfm6yrtRcOEfeyQjQyQiYnYzIYGI2MYBQlculO+vrDuFwuapqXMzocxmwAi1FGEm2ks4MMHIwTCDjYuvUtQlWNDCd6aVt4ArGRToySFa/Lxc9+cz8fvPoycvkkyCKvvbiZk05ZSjTWjcUqgeJmcLSXWk8zLuswnd0pUrEwwdoaMJno2jvGNR+6jnvvvgu3K4rZ5aFvcJj57QsYjvSye+t2/IEmMDi49sPXcP8DT+Py+8jIcbJJyOYSyEqOn/zodq666kO8uu51Lr/yIrZveJpkUiAal2mb047TbsMo5knnLYgmD9FIhAceeIArr7ycf/70l/jlnd8lkRw3y92+aw9nn3YyJosNxeIknxrC6fQyMjJIXklw043f4He/uZ0cAjb7OIOSSuX4ty98iVtuuRVFSGI0CUiikTdeeQWDKFIdDLBzxw5WnfE+ZCXF0NAQVqsTQTQyFA5T31DNYHgUl8uF0+nkwIED9PRHefb5R/jkTTcSj6W54dob+MXPf4XBYMBkMrFnzzYWLmonl8vz01/dzSdvvAazoPDUM69x0uoT2bJ1My+/vJbLL7+MVGaUNU+8yNnnnkskFhkP8mT1opDC7qjh1VdeoLWxDrsnQGRomP/61nc5/exlXHvN5+gf7SbostO5dz+Llh5FxiROnKPlrgs9iwxZZsI1SG/ulxJsHcpB9Vnfh39SO6tvoVKsrqW+q+MZaH1ci6GwLxlmKVCt4O+Disa1ggoqOCIQhMlDSZIkDAbDFAZET8MBHCIsUgwPD+NwOCbSqv9PLWdmhm22jOjhMq7lMlR6ZkxvF+XXWZ/o0KadzYGtz3RoGZbi2qhiUZPV4z6b/i0X2nbO1G69uVbO3FHPez3/2lJE2kwEYbHftYxYsfVWKKNUXnrQmgKq/WG1V96Uqvvhlq1t1+yuvZkuXBBFkVgshsViKSr00WM6i5dRukyYXDeyCIIIgiJgNjswWIzYrDYERWFocBBvqB1/VT1C3kAklcXtchLuPUBvTzc9A7sYi3fh8djZvutF5nS081/fuJXv/eg2Lr3yJsymGC6Hi/37t3PmSRewZ+d2AkEPm97aTC4/AqJMJm3i9//zBD5/iEwmww1XfxGXVeKSK/6ZTNpAc/sSHK46JGWIiy65kmgqS2Z0Jx6fDaNRoGf/Plw1VVglkOQckaEw7z3vPQxGDmC1uHj2qQ343Aa69neyb/cuLv/QxQiiyMqVx2A0mfC7U/h8AbZu30MwGKDr4DBGIY834Gf3gS4kQcFitdExdy733/MAdz/8S+YtOJb9u/fx3vefRl7O4HJ7UEQ7saSMZPAgGKyY7TaWLGrF5zYgixmMRhNjYwn+cOfdXHfddfzh9w+yeMlc3nxrHf6AF3uogXjWiL+6HYsrhKDkyOUTVPn8hAciWKxWnE4LgqDwyCOPsWjRQuLxBEajme7efpYun4PNbsLtdnL26Rdy2223c2B/N3fddS8GSaKlpZGtW3dQ37IIm0nEZhQI1NZhNFh49NFHOevss7Db7Rw8sBe/20cyPYpgTjHQm6K7ZwDRmMLqtDEaCdPS3ELfwBg7d22mtXUO9Y012K11DI3F8Lh97Nnbzfbt++hYNGeC4ZwJ6uuxtPNVkgxT1qp2nc+0d061wCpuHVLIRy/Aknodlas1Vgv+yj09Cu0zSOUx/BX8fVHRuFZQQQXvKApEfC6XU2lbxp8pioLZbKazs5OampopB1YpjYyuWVAZJkzqOpVbd72y1c8OZ19Ua3xmi9lLhMVpBAhMlXxro+4entR5qsY1lxv3F9InoKamVZSpJlt6/aL2S1WnKWccSgk7tL5P2vRas7bJ9DKiWCDuxIk2qes1k6+rnqZDDbU2opg2Wu+7XvsPZ66V06czMdjaPLR1LdV+rdZdLdA4XGGTGtlsFlmWJwRteukL/VssGNVk/fJF6zE9qur0NVEoR5Ik+np7iUfHEBSwWwS6DhzEYjIQj41hMIapCSxBMY5ic8xheLgLBQfRtIg/vQsp1I5khHxqkN6DA4CMxeJgZDjDzk0HiWdf45TV/4Q16IBUjO7ubua2H83Q6G4k0QKSmVQyTrjnIMuXteHy+dnf00+1z080GuU7372FL37xX8nJTnq61tPU2MrAkIjXYyKbTWMxeUGxMjTYTV4yUNPUgK3KRWIsi9vmJh4bJJcFs9HMr3/+C665+mrCmRSbX9vIOacfSyIeJjws8eaGt4hHeznl7Pdy9733cOONHycSiVDlSGH2N7LtlTX0RtKMDURZdfJ8LGY32XyE/kEj9TUuRpN78PtPIJNJYLYYGR6MsH7zZpwmiXQiztxFy7ji/Vew9vUXiMWHMCk5LM4AoigSj4+RSqXwVYV49tnnOPOs0+jq7MTrCXL22eey5q9PMtwzTEIxcuLqk3n8z/cxd14rqWSeyy67ih/fdjvpsRFaFrZC3sB551/APffehSDIJFNxXv7ry/zr579Ed/dBsvkYu/d2EgwGMZuNrFmzhvb2dqJjKerqm3lhzdMsXrSEYLCW559byx2/+iWnnXsuZ5x5IgPde/j5r+/jG9/8MqJoYiQSozrkJNDUQH4G4WCxeTq5zrRrsjzT/AIKVgWKoqDNqhxLF/U614t0X6z8vDJ9rU7kqylWrZGVJGna8wrenahoXCuooIJ3FGqJqtFoPMRgjh8uJpOJfD6PzWbDaDTOSICroScBficY19mYE84GM5taTS/v8MrU1+4VGH01QVAuUaIPbbAMaZqJrDbtpMS/OHNVqJckSbrPy6lrac3AdEZe209abd84JMY1xwqQR6vZVo9X4Z1CELJSmg5tHtp5ou0nve/qMg9/3jAlH23+6nKKCXj0TIK1dS1nbNTpZ2veX2peF/xOC+bOenmUGqepDG2p4GDad6cHclMHC7M7HFT5/QwODhKqbsRisRMM1eJwepAcQQb3biDa14PsrsOgKNjNRnw1tQz17CcUqgZBZmwsgtvVQDBYg8PpIJOL8/D9j3LBRefh8nhwu83YLWaaGhv4zrdvZ97ceYxGewkPRmioDZBKDPLiC6+TSiWRRJlsCkZHh1i+bBmphMJX//0/uery40jEIljNNVitRhLxBG+88Sr7D+xCkkUOdr+CnE4wMiSTSaQYHOgn6K9maDRJIpOkuq6OQG0jNoMdq9OKaDVjcnvxOXx89tP/wnnnn4vDnqOh1oFZGiMx0ke4bw85JDwOM03zltK9dwvDkR4a6ptRhFHqa/zc+/vfsuqE43n/ey6nY241kimBP9DInOYG3tiwkWNOWIU/VMPc9gU47E6Gh4bxVQXJySkUBew2D6++uoFnHnuKXC5Me/Mc/NVe4okU77voImQlRzYr09NzgJs+eSOB6iD//Zs7mDO3lbPOPZlQrYNt2w/Q0tZKOplkybwVbHnzLRQ5QV2Nl+a2dv7l8//K+o2vkkxHqa4OsmvXbryeIKFQPTYjvLX5LUZGotTVBajyB7jhho8zr2MReXmMpStXEAw1kIyncLicrFhxFP39/chKjjc3bWDR8mXkNQK+wp5TTFCknqfjc3q6lYyeEK4oBNVeUTrlBPTiBGiDQhUrf0LIVGJP1V+F430kSVKxJVzBuwyz0bhWGNcKKqjgbWNcuyFNHKBq5karcVUTdlrzJz2CWM3E6uHtEvF6h+hMeRYjttWf1YFmDkeTVBpTmTD155kYgdmUJagJlUNEUDGmSp12/Htx7YCW8SjWh+X0nVbzrG2/tn+0Zu6F38LhMC/8dR3z581DIYsg5kCZDFik9mkufC82N9VzSv1OqXkzE+OqJf7KYZL1oO13LUMPTBMoaOteSFswLy480zOf19av2LNiwVv05sZM87qYwEQvX631wNT+0L/P+VBKzbOpQgU1kS6K4vi1Jgr4A35S2Sw+fwCby0kiGccsVBFq8jMwaCAVO4jLEUKQY9h8AbLpLOn4AINDYzQ1zGNkdBCn04sgSgwO9XLdtZey4a29CIY8zz/2NN093URG9zO3owODMUtTfRMb3thJa0s90dFeIkM5mutbeOLRp9i4fhsmcxaHU6E65OOEVWdx/YdvQjLYefzpxzlq5Qq+/93vc/Y5J3HMcXMx2/xEhpO88cYbeK0h1j7/NPPntWG3u+jcc4D6Oi91jTUMDo6h5FO0NAewmc3kEjJpxcjVH7kasz2NTfLSWB/i5Ref4l8+8c985GPX4g6EIDmMw2EnFDQzOjqI1WzHak+SiOVoamjGbLVw0WWn4nG5ICsiKcPs3X6QJSuPJdjQyFh0iLGxUa54//u5/rqPksrlsJit9Pb2YTAKZHMpVp18OomUwIHubuqa6jGb3ciKmRfXvo7FIrFgbhODwwN4gkEefeRZTjvjNAxmAwgiA4MjGE1mRiI9BGpCZOU0i5YtwuKwIysmkqkcDqebdC5NfCxFS0srspKlq6sTwSgyb+FCmtvaUHJm+nrDnHf+ufT1H+Dc8y/EG6xh244dvPrqy/j9VbQ0d3D55ZdyxRUfIB4bo7GtFURp2v6h3mPUAdYmn6sFato5rr8HFxWQ6XzUplX/FYsUr2cNVEpQhs4eUKAzRC2zK2rqMS3XCt6NqJgKV1BBBe8KyLJMOp3WJSRFUV+TpEYpE81yMdM7pcwaZ2O6+nb20pnbpc8QTBzsh1BOH5UTQGcyj6mmsuorEAooZYZWXhmT0PZ3MZ+uYu0sJ/iTeixlWSafz2M2m+nr68PpdGI2m5EkqaS5cSktsdZkvEDAqRnmwv/i5sSGibqNMz5T26S3HsqZozolTXlHUfLT1kOx9VH4XRRFcrnclMBV2npo89DTiKvboIWa0NVjotUoxSgXnquJfHUZem3Ull/Is9y9qHD1SGF9aOsuiiKxSJjYWB67zUlOHmVs8ADxBNhdXiSLSHT/BkaHBxjoOsjc5XOp8tURicSpClYRjcoIohGr08Nb23by7OO/pS0QZMkJpyCnD5CVm6lubMflEBkN72fXjq2Isp22hcv4j2/8kFu/80ki4W3UBevo6zTz5o7HOO2065GlUZ57Yi1Lliyjtt5LIjWIy1fLjs4Y1dXV7N78MHM7ViELKSKjozh9TnIpL8l4FwF/HYmowCMP3Mvyk8+mwWkka4mzad0Ii473YLXV8ts7fsv1H72KfHQfoq8Ow7CX3q4tGAMm7IY8Doeb1SdcyoNPfJXdPS78VUFamhYzMrSDAzsHyGS20NrRQWLERG31HD72yS+zrzfKc+ueZGi4G7vdhkGysmXTi0T6DtLYOBd/3RxsDoHh4UEk0YrTbOWO393FooVLqK3zs2bNC5xx+jkYDGaMBisGa5ze3gipXJw5rStJxPoYGOgjnU7R0laL1WpGFA1IooXXn9/O12/+Kg88ei+QY8tba5i/5BisVh+pRBqDMU9WzCMkk6x/4wDJeIy9O3fQ0drCSNTOns71/NP1F2M0SfR0p4hERpGk8ZgSo+FuzrvoAqIWBXNe32dTvf6LCYG0810Up+dVSpCsBz1GuhDkbYrlj6TS7sqatStO3bvU1gqF9Oq1OOX80TDjhWNotve+VvD3xWxMhSsjW0EFFbxjEEURq9WKyWSaYrr3TkRG/b+KAvN6ONq3mfL8e2Gm8vWY9tmikIfRaCSXy1FdXY3D4ShLE1AKWgZIbV6rDXhUKo8Cc1VuW//WY1YoL5vNIknjJuQFs2mYqoFRz1H1398ThT4uJoRQE+Bvt5xSDLksy7g8XkI1QXJyFkQJf91cfIEaEvEImXg/bm+QjoVHMe+oU0D0kM2b6OmLEB1NYrPZgEPCAVnmpus/jc9no75lDu1zz6OjYy65/Agvv7iO++95ga9/6zZaWtr44S3f4tprL8Mq1fO7X79EJhFkINbF8hOOJW8YI5EdZfkx7ShSlIO920nnRnnh6XtZsqCeXGaIOR3NbHpzAy6Xm+pQIx6bDZ/TTE3IRzo5Ro4+Lrz4BFrneNi1bx3xqEJVcD9+l5Mqh5FL33chJqOdWNKC0+oip4wgmxL4a1rwVdUzGh/kD/f+iurQMpbPO47HH3wOiylCKmXh1VffZPOb3QSr5mGr8rFjzzaWLGnnrjtv57EH7iU+NACpGHJyFLupmiULTueb3/gZjz30AnI2R8AX4q/PrCOTyZBMJjnqqKMwm80k4jlefvllvvKVfyeRGmLXzk7iYwkskhFBVjCZTHR0dLBgwQI+9+n/YO+uQZScm+FwhqNWNXDzrZ9l/8EtPP/iE1itfu656x4y6Rg792wllY4zFB7k4P4BoqNDLF28kGAwyMDgEHfd90NOOHEZimyGnI/aei+BoJPe3h6sFjtzlyxg7dq1GLLv7Jo5kmfIOxG8EA7HOqmC/22omApXUEEF7zgKWiej0agyuZyqlZpJi1LMPFDPnLCYCWc5zw+XUD0cJkcvj0Id1P1RzOxWTWgU194Vv4t05vpqzcAmzZ+1flaynNcQPqWD9OjVoVzNd4EJ1Jp5FxjEUtfP6M2VYj7BxeZKOeOsF3lbbYpbLP2hEibqo14rak2rniax0Dd6461voqwNToTme/F2FtPClur3YnWfKZqwnsZT/blUELJSe4tWO1xsL9Hmq/6s1VAVyprepuka54m6IYAIVrsFq82OYPUgiSIuq8Debevxh1pJKxZ8tW143H4GwjEWLljC2NgIPX19eNxekrEkfm8VEv0IQj+y3Y+ieHlz4xv4fAaqQ008/PCL/OauW3BY0qw4ei6Lljexb3cvD93/JBa7hTMveC/5nAtvlZ+NG3cgKkZS6Swmk4OxMRm/JY7RamfP3i2MRMK0ty0nMjLMSCTOcHcnP7ntp5xyxnFIko1wuB85m8Xtb8EmiPz8N7/k3v95jtWnt5FJKlidTmTFyI9v+zknHX8MyVQMX1AkkRAQFQlFSOHzO8hnqujr20IuacRiEhmMjrB4aSMrly9DkAQ8wSABfxUd7W243BYsBpn2lhDR4V6iw2F2797OkiUrOO/884iMdpPPpXHa3fzl0SdJpca464/3cNFFFzMWG2H1yWeQzWZwuS0g5Lnhhs9w+qmn0rl3Mws7FmC0mNiw4Q0ikQiXXHoejU0N3HHHHax79QUWL55LJivw2ONreN97P8jISIzG2hAOjx13VRUOh42xoRg2s49NG9bh9/tobmlmw4ZN9PfFOPmkU9i6/TUaW1z09g3Q0NCM1eLgt7/9b1afdjyP/fkvnLDqJGTVlNJbb6XW0eReLR/a96SSe57eGtKuJ731rv4+UUdRlR8a02TN2tGea6V224JpsGpxzSo6eQXvDlR8XCuooIJ3LQRBwGAwYDQaJvxUZpL0Fns2E2Mym7wKOJJS59lCa241+f3wjWPUhMDbYVwPvTGtfyY1ilo/oHe+vwAAIABJREFUqZnrpjb/Kkcyr9aQaQmcYkyGFlqi6p2EnnmpVuuoZpxVtZx4f7xdU5lzNbOmvUO1mPZd/wofbbn6zPBMUPd7sfKLEcLllFNKKDRTZOBSeZT7buGZWkurnovqtqjbP7UfppoHT31uACELQh4wA1GMBjN2qwuzxYPNVw2yiEmSwOpAVsDhsDA0dACbw4PX46P7QDf/ctNnOffiqzFkq/BXL4BMBIPBSJWjirFEP6dfuIy+AwN4PQFkoY7ezhH8VXZa5lTT1TVE05wqbvnmz2hutuC1+XB6nLS01VJVFcRscrNx0zbAjl1SaGhcwCc+/iXqGvysPHoJf7zjPj71uc8jm2VkqQqPw4DNbOaNzfvwmC1ccOWHeO9FR+P3NaJYqqiqrmFwqJsVC6pJZ+Mc2DlGejSMPLoewREk4F1CnlEOHuijfe5CGltDROMRQrVzyGb7efbJV1m28jiG+w/wxX/+N44+dhUjqTx1ISN5OUomG8NmNWCRBPojORwuG16XAafTjdGYZ+7cBlauOBZRMNDS3Eog4GPHzs0sX74El8vDgvmLOffC85jTUoNRjJCMjeANNiAI0NzchNkiks9K/PD7P+d73/82O7bvY8GiZZxz4XuJx5N897u38sXPfRKjxUlGtJFPyAz29HPNtddw6UXnYrGYcbk9bNu1lw9ecw7BYJCtW3ZjMloZHMjT2XmQrds2c/Y5p/PWq69gNluYf/SxqKNX683JUvNfO2fVgshSKDbXS62ZafuNev1Pq9xkvnr7lCiUEIIKk8LecSZ35mt9Knj3ocK4VlBBBe9aTB4qApJkwGg0YTAYEQQRWVZQFCaYoGLSXa0EGKYGxFEfgsUO3GKHr57EuZjfUOn2HT6m56Fo/vQ1aXp1V+cJpYNGTWckBM3fVCal8DfeN1PTqhkttWZAraktJrUvxtCo666ncZxep/Hf1cHC9N4thtlqBrX1KfVMrw6SJE1E/xx/vTDe0wOVqfux4EepZZr02zk5Vto8CwxysTmkZci0ggKtIEHvfe2zmfpTrUFXQ8vI6/2u973wm1Y4pAftnCxnfakZ2Kl+eXprpPBbHhBBGb+CSVAMIAgokoTB5sDhcjMSj2N2OHGYIRIZwupwksOCSRJ5/Inn6OuPctyqM3H6qvj+T+6gv68Pi83G8uVtRFIxgg2LQKxm77ZOUolRnC43KSGBz1uN11fD4uVLEWIxznn/ucixYSRvNQ5HhtGozFDvQapceTqWnMqB/tdx+6uRMiLxWC9tTU3c/r1fcdF7L8Dq9iMlE4RTIvu3rGP9+q3UBIK0L/IwNppDQEFCItz5EPu2HUAyZXjh+V24TQIP3v8X3nfpe5DsIYLNcwn3J3HYcryyZiMK+1FEO3aLjZpgHSajjYVL55LJpJAMSVpbV7Bw8TJsrhGi8SySwQeiHcli4Aufv5Vzzj4egX7WvbCTefObCA+PEWpoJp1P8YdfPMiC1oU89deHOHpliJ7BfhLxNM8/9jyBkAuT1c+za7ezfNUZDA73EHAb+MOdf8BTZcNtraLa34TBKWJxOvjA+afx5KN/YdUZF/CRay8jK5hRBDM3f/Wb3PmbX7F2zXPc8oPvklRM1NY28ZeHHuFrX/8a//Kpm+kf3E50WCSV6eHNDVu4685f85nPf45EXub1NzaycE4D1VXViDZz0Tk5/idNzK3JCOmH5qcooSCMu5gKwgSTp56zpdaD3n5SLL0iHCr50HQX1McXmv2a8cSFLe/Q6kBAQNSuN1Hg0EY1rqkdf3vinYq29R8TFca1ggoq+IdC4QAzGo2HAuPkp0iSSxHDesSzHjNXIO71zArL0fj8LTWxM0nPdWTWM0LLuJVisMtp52yYD7VmoAB1+yak5TqMtHb8ten0GAbt+BcYQq3UfrbjWY5moxwU5qOawVbnr41YrDdWWgJN7UOrx5BN1n26VnDyT38ctPUuNgbqz1rNpLrfc7nclDap662nBS02N0qVW86eMdM4FmOWy0k7m3K0mu6JX5VJ03eLxYLJZGJsNIbBaCGRzODxBhgbjRMI1pPJSry1dQe1dU08+ODD5PMC55x9HiggC+B0OwiH+6irbiI6nMXmEEmMDNLd1U9sNMYD9/6Bo45fTc9gmET4IAbJRDgc5pFHnqatrQW3y8XAwCg+n5Wgv5pETECW4f4HHuDc888nnxXoGRqhv2sPte1zeWnNfnbu2EfA4yKd7Ea0pEnEEzz0p7Xs27GX0biJhx95inPOOp8t+/r5wNWfIC2Cr7qDfVvX09jUzGg8RnXTHNwOBy63n21bNlATrELOxxkc2E9f93769o8xNNhLdDTC6y/vpqO9FrPBiMVkIBmLsnz5cdTUBnjiice58IKLsXlchAeGeWnNOqqq3PgDAkuPamLHjq3MbTkZq9NFMOhi9671LF+2kt6uXqKjw9z5219y/PEn43WZOO7EVfzktt9yxumrMFvzeP2NOF12Vq86AZ/PR07O4zCasFvNdO7ZyoXvOYv3XnwNZ55+JqEqFwabg3/7/L9y6cXv5+prruGbN3+J005fxY4d22lqqWbVKe/jvHPOYt3La1i8aAHtHa34vU58/gCy5pqn6XN0qvvEFEsY1TNRFCdOETXzWs5eXur75IOSXw9//9SWX+LKsgr+cVBhXCuooIJ/OKgJTUkSMRjGIx6qCV4t0aynuSqlFSl1hYn6ebE8tShGUJfKqxxoy9MyMwVtWaGccsrQEvnFCO1y6jxbpreYpL5YOer8tf2g/U2v/9V9VWCG1AKMYlrbcjETYTQTo1JMe6+2EtDO82L11WuXnj/o5Lyfrv2erNN0/zIto6+3NvTqWPispwFRFIVMJoPRaJzCPBfqrtaWFwIYqZlcdbnaOVEO4TobhrRQ5kwCj2KMdXmE9HQtrfq7Oi+T1Y7V7sRstZPJy5hEE1abi7wskMpkaOuYwwknHM/3v/cDensjtLQ1oyg5TGYJh93Kji27kBUbJlOW8IEuAjVtZHIyZrI4vEEMFiNSZoy8bKS2roXTzz6XsbEEsiyRzcps3PQmyWSWuR3zWLt2HVVVNRx9zDFYbX4GRsao9VtwBoI0dZg48+zjufHaz7Bi6dHU1rUik+fY45fhd3fwH9/8Or/45R8ZGNhHUyhAwOnhuWcf4E93PcjShR3EkkOYHTXYvQ6MkhU5m8ZmNzDYG8bhMOJxO4mNRWmor8PhylJd72HF8uNBUXj00T9js1nxevysfWkdVQEXSxYdSyYbJZFIs+6VtfQc7Ke1eTHzFy3CaLQSdDew7+BrNLW1E+4bw+doIqskaWvtwOWwYrUYqKoKIAoZMnk4/rhT2bt3M+lMFJujnieeegyL1YLVYmDj6y9T39DCT396O8cdfxQHDnbi8Igks2NseXMNLXOXsmLpEuqqQ+SUHO/7wHls33GQhuYQ69/Ywde+8R1qAh7OOuNUEGHjxg1kczl279lNY3vHxHzTW8Pq5Tk+71TCQu0VThpNazGhlHYP0RMMTdubdRjX8tfD1PmvrougikA8znxP7h/qvaOCfyzMhnGtjHAFFVTwroXBYMBisWA2mzGZTG87wudMKBZF9HCii+bz+Xe0vkfykD4S0VNnm9c7VV5BQ6VmeLRX27zT5mR646INKFUO1O0oMODl5nE480Or8dTmUSAQS41dOeWKoojZbC653tQaaXWe2vRvp0//FtArq1j5hbmr9/tE+6U8eTGHaBawe2y4gl58tVWsPHEFV19/FXWNISRLnu/98BZ27tnLuedfgCQaUbIio+E4bR1NNM7x8tam7Vjsfj5w9cd5bfM+/HUNPPjH32E2GPH4QmSMLpIxhUQqTX3rHN7YvAu7r5a5i07FVz2Hrbte5cxzT2fjxj2sWbOJn/3y93ztq/9J0F+FkM8ijzrYuW0Xdz/yR+oW1xIImInHUtx330vkTVnuffiX7Oncg90GY5gw+LxYAzVc/7mvMDCcxuWzIKdz5NJ9DMdiKHkZi9HBa2/upW84x64DQ8xZeBz/8fXvUV27CmjmrZ3bwejh/IsvwR2s5fm1Gzlh1dF84xtfIzKc4n0Xn42SHuWMM4/hwzdcjaJ0oWDmwx/+FCZznAUdqxgYGMAXlIimNvPUi68xEs+yZcdulq84itoaFwe7e4glQTSkqatpx+eay2h0mLPOOoeqUA0IOY5e3oHV4+D6T9yE0RrkiafXEx2I4HW3ksoFMBoN7N23h/dfcjHd3V3EYjm+/527eOqpF3nj1X5++r1v0drcQFow8PBTf2XhgmWkc0aGBkbfkTmqdjfQm5/qNagVjOnN0SOF4u4OFfxfRuUe1woqqOAfCgWz0mw2e+ignEroFZUAz5CnXlptXuXgndpTixG1hToWmDT1lSSH3pyS7nCIi8m+VEvop0bGPVxG8O32l/Z9tZZKjVJasmIBwkrVrTAW2v4slJ/P5yesBvQwk8ZZD2ot+/TI0/oaEHV9p7dROxem3oNbGGNFUQ6Z8Od08530zWXas8K7iiKofs9N1kAUkSSJbDarq5FRa1P0tL/lmDmq0+hpTo+EEEN7n6TIzD60E/UXNHWQtXWcHo1ZOw6F/hcPCWqMRiObN2/GLNkZ6OqhJijh94v0Dxtwez3k8wpiIs4VH7qOW757Ky31LnZs7WPhAg8HDu7C4Q0R6YswODzCc8+v58tf+Wc2bN7G4pWr+cUPvshHr/sYIyODyHkjEgHOOGc1//GlT3HGWacj2n0kBocwmQVee20N7e3NGI1eDJKZV15+mdWnrmIsmkHOGnj0Lw9y6QfP4Sc/eIjqGi83fux6smTJpPNcf/2N/OiHt2N35LB7PeP9abQQGxphZKCfVDaJ111HJj3K0PCbmBQPde0LSY3tRRRMmKy1DIwkETJpBHMWl3cOn//4VXzt5i/gcgUxmD0MD0VpbGxENGRJSDYi/WMEvG7M5jw9/VHsNg8KGfJyAofFTGw0gyIb2Ll/B0sWH82zj7/IT2//Ibd+/1Z6e7uZN7+dqiofqdQIPT09tLW1MTw8TC5rpqf7IHu376RlYSOP/OlFjj1qMUsXzWdwcJBt2w7y15deZjjWzadu+BQj8SxPPvEXbvzoNRjFMTa8eZBjli8Em4PmjnZkg4io6BmZixPzYXyOTO5TslzcIkG9PxzOulA0SQv3qWo1tHr5ltpni1lYadd8MeuOCv4xMJt7XCumwhVUUME/DAqHqiRJE1fryHJ+WhqYfSCdYiaub9ef8Uig1MGuZyI5lcgVpqU7XKhfnX6VyruHYCjHlFP7rHBnqjbIUal3SjFKoH/tTbn1KQW1CZ12nheru77purYcrcnq5PNxQlhWfS4eUVfNUE7+V2tup2rAU6nUlKuy1HUv9ZtWQzzOIE8XZIA+434kGddCV03kqROBu1CPwlyb2KskDdOvaNujlMUEK4qCrCgoh971eL04HHYcDgc9vQfZs6+T9uZ29u/dg8Ni5qyTT8Nmt7N4STNWSwxftZOurt2YzA5EgwOry0t1jZ9F8xbw1+f/TEfbPJxuP21z56Ak84TDPSQTI6x98UWuu+4yHLY6BsLDKFIEUcnhsNtpaOwAwUYmaWTTpk2cdc55JCUXnV19hGq9WCxp5i1dzb79Q5x/0WkkcjEEnMTiKTZv3sYbGzaw6oTjSaSy5LJ5Upk0kiKQT+e5++6HaW8PUBNqwOv10tubxmJW6OnqxB+sweWthuwwkeEBPM4atm59gg9ffSmiItO/vxeTVWDzxjfIZaOIQgIxZ6TK5WRsOMLLL75CU2sLFouBtza/gUES2fTyOrbt3suiFSsZ2NeDy+li7/49fO7fPk8s2sfKFcv565oXmT93ybhZt9GG2WTHYrbj8TiwWS0sWb4Ms0Eh4Ktl1Ukr2Lf/LbxeH/3hCFdc8UHSqSSnnHwSI9FRAn4vP/3Jj/nAJZczEo9hNuWIp2Rq6utQRK1359SJOHkOqgPl6e9bxczaZ7Uuivi06mloy9ub9KN+a02k1Wu4Yib8j4uKj2sFFVTwfwKCIGAwSBMEXrF7Iou9q6dhVfv6aH+frXbw7TK9xTRJxQ5wNQEyydDo+wbOBpNlqTXT5fkRltIqlvKd0kMpzZrWH6pYfWaCJEkTDKee9m+mfAvv6jGt5fhJltIg6hGX2meFz6XyUH3T1nAiTYFxLeQ1PjbTii26Nqb3lZognlpf7XpTmwiq/xfGt2BVoCWyZ7PuD3cdFH+oSaOUHgf1XFc0ejNx2tpRdJlydb4T4yCAIArkx9VrGCQRm8NKsLYWb6COVDxDPpvFAFz90bNZvHwlixetIhpRMFp9PHjPk/zmN/dw+Qc/isVsJJPNcv99j3L6madw+RXXsnTpQtpb5+CwOxEM4HDZsDs8eBxm5i5YiTfoIxnrp7a6mrwikVFMfP+2n3LCcf+fvfMOl6Qq8/+nQud4b/fNae6dHJkEMwwMOTmACgprQBBFDGBYXdfFNa36E1ExrZjD6rrsqijoSloVycLMMEwOTL45p76du6p+f/T0vdXVVX17SArW93nquX2rTp3znnPec+q85w1nGYuXzSEjCIQDdeQycZxuWLR8OTt37uPAvsPMX9DKL+78PR6vj/b2ds49/2zWrV8LOQVvwIOqZXC5Q0xNjlIbCXPaaRuQpAwOKcTI+CTbtj9Hc4OPaHWEI8d78YVriI+kySoykusg9f4ziMddpBIxYrEujnWl2HjmxQwNTRAIVDHYewxNzfGXJzfT0NCBx+/ky1/+PFdd9QaqwlXkMhmWr1zDgw/+kfGROK2tzfz+vntYsWI5NVVBstksTocTv9/Hrt17uP32r7Jp02VMTsbo6zkIokBVJMJo/xH+62e/YMvWv3DBRRfS2d1PdXU9d/3yl7zhykv42pdvZ2RigAvPO5flC5dS39yM0+skGPQylcjS0NyEKuS1mhrG84MlA6/p5xzzzS6rOAnl5uOS+dZCcDWbkwWh2BrBatzqrS2svtfl/rfxyoHt42rDho2/O0iShNPpxOl0Isvyi+LHZozUerIoZyr6UkBPY+GDL8vytCnny/lhfz7tX2mgqeebfyUoaFz1fl0FYbZw6Z8Zr3L0Wfmovhj+YYXyKglUYvVstvt/bR4q199Gf+CX04/1xYbRj7icX3GJwC6JaKKAKuSjCWuCiiqoiC4/vlADkaYOGlrmITq8BIIbOHg0x0WveyNiQOO8cy5n3foN/Pg/voUi9jLQ1cMtH/ssVXXzwdNIPOcgnRjnbW96A8cGeokrCsOxDBn8TIyoTMQHmUgMkYzJdB7vY3xskpyq8OGPfYTx4TR79/Xwtdvv4mffuJWIR6UqEGBwRGPpknpuvOEtdB7u5pJzrqF9XhtTyTE0MY3HL7H1maeZmBzG4xWJT2VIJpN0du/nyLHdaDmJ3bsOMxXPcM3bryPo9SIg096xALfPjyec5tO3fRq/dz2eqmMEWuOoziT1zW1c/PrzSRJj16HtJInhD7pJ5ybxhrwsXHYKjQ113HDDNUyMDzMxNk5taxOJqTgb167j6V27GIqNU1sTJuh0cs9d97J7xx4i1X4y6VHcbiebNl2CIGiEw0GCATfRaBWpTJqm+irOPftMrnjtVfzgu7/g6S17qatvYeXKhYSCAuedey610RACOfr6+tixazvBcJA9ew7zwAMPkMvlTHmhUhjHRi5X6gLwYqHScVjq4mKd1yt1XNt4cWALrjZs2HhFI+87JyIIEoKQ96UTRRmPx4fT6UaSHGha/uiGgp/dbNoZq51mKzMrq7wq+RiXo8dKM2RVnjGwjv4jP2O2qZD3VVUruCqjx6pOlWhPC79Pxizb6Itllqdes3aybajXMhpps8pXn+751N8YQOpkBUQjXeUWd9M0SvkLUQNRy5+9KIAgiSf8LvN8UvhrlqexbWYgoh+XxemF6XGbTzO7Frnwbp4Gcfoyjj9jO5QbnycLM56YLlc74denaiU+qsVaaxPfXJN3i6OpShTaUt9uUOzrrGkaoiIgKgKSKiKp+bNhBU1EUDI4pRxOF4Trawg0NqG5Eyxe3MB//+yHOEQ3T215lHhmCNHjxuWdSyBazxc//1k2XbiKnuP7uevnPyEUaEYUqujetY/4QAK3EOXh+x5Gdspsf3oXPtFHXUsEp6+OcHU7LlEm4IDm9vkMDowxOriPjuVtRBqXklUd9B54nMHOJIIUAqGKm256HZPdA9z2ydvZs2srDjFCbXOUycFe7r/nUXxOaGpswR9tZ8ma00koDtoWudj69A6cYgZXVYR4SmXv7n10HzmE5Ijwg2/ewf49T6IpAbLjCh4pRLS+g/joOMmJEa567WX4JD/DfeN4Q35WrW1n747fcezAdo7s6cIlazzy0J/54/8+zpZnNqM6ND7zsQ9x5w+/y/L58/n6l24jWt/EujNOJ1Rdx+NP7uPOH/+IdacuIalMklRT+EJ1IMiMj46QETysO+tMVDnMN779PZyIfOVLn2Tj2Wfw+JN7WXXqabzxH67neO9xOhZWoyoZtj76GA4yXHbJBTgEDYEZ65cCHxViPohifuwWYhIYrXH046pwXxTF6fFvnAdUNBRt5jtSGIeFTT49Dxcu41yuHy8qGogCKlr+N8XaUj0NiMVjuLC5aeY+YOPvA3ZwJhs2bLwqYfwwq6p6YqdaLVk8zmayBDPBj/Tp9B9OqwBPldI6mw+b2TtGWvTn1M7kWWyyqmnKSWg2rYP3zLbv+XzqVIDRDM1oNmoFfQCr2cotJyRbCX7lzIaN/88miBkF1RdqVm5EoQ2NQl2RwCyUr5MkFAtGRi2g/m9pkKpS/1Fju86YuVbWvzPP9UJdcfnGsVn4qzcvfjHbuRwP6aGny+y8WmMaqzxLx5QxON2MmXs+z2Kz6oKQoqoqEll+e/f/smHdekQhw/7tT7NoyVxC1RHGxpLknG62P/IYPreL/fv3c9qGZWRTPt71zg9x929/Trimnic2b2dBx2JcYoKhwVG6e44yf2Ezx7smmT9/HhMTY8gOkd6uYRYunI/HpxEby/D979zJa1+/kaYGL7KvlW3P7KS3f5ALzz8fkTEyqsaCxQvo6evHK6UZHxH50Q9/zPXvu4amhoU4XAFUxyiq7CeVGMMrwlBPJ6Io4/UEiMfTTMWSNLQ3E3AJHNi9DS2XpLq+lfGcm1ovZJI5nvzLE6xffxqDg4O4Aj6amzwkYuMoSQGv38vAQI6BoR6WLz2DgbFjOD1hvL4wmZjM5q2PsvGs08hmFaaSKoGAj2AwgCRJuGSVeCrB8Gichvo5jPbuo7vnKA6nQFPbCjJpjd7eQaK1Yf7x5o/w/vffhMvtYM6cNvbsfJruwVEWLZhHbVUIhyeM0x2nJtzKp/7tC3zmC19A8nsRNDFvd2/gGbNxn+cF842gAk+J8kwwtkI+hf81TUM6cZRW4RxmWZantb9W/qjGebRgzl7Ek1ox/1sFeiq8oyjKjLA9i4uIjVcGTiY4k93bNmzYeFXC6CcnCAIOh2M6CIz+o2r0pTFDsQbE2j/2+eJk3zVqfPT0G7U7Rg3RCzW1MtOWmqV5vu1hpFt/v/DXTJs2m5axUmGxkE6vsdabqZUTsMrxgZX21linFwqrfp4tbyutrZFG4zv6QFFmUZb1WhqrZ5XUu1C+2RE9iqKU+L4WtEKFDZ2XwtTZbByalWGmbS03dszaTT9fWZWnbw+zvFU0cqqCioYgObj0stczNhFjYGiY9PgAyak43Ud7GDjaiZDNcfr606iOVrH+7A14PALVEYH/+u+vsWPXEyhMsHhpK+FqmR/+z+8ZSUmsPeNiAlVzWLZsKU4X1NSGqaqqwuWG8fFJBgYGUN0O3n3ze1BRENxBMsRYuKiWszeu4cc/uZs9z3XTPKcRJedEUUe49/ebyTngijddwje/+S3GJnpJZgZJxFNomSmGuicZGu6mobWV2269A3cgwtf//dscP3oYp+hkbHycHfsPkZGCjI4MEfRohGva+MH3v0dHewsCGVwuhWgoikMREXNePP52egcGeGbbNuYtWkxGVXjgvt8R8HjxuSUCgQDf/Ma36R9MkEh7mZqapKurhwPP7aOr5zlS2TRd3Ueprw0x2H8YXzDEszv2Eom2MplIEKoOsHzFIo4dOswtt9yCJHpIJrLkcjmWLJnDP1x1FU89vpsjB0YQZReHDg4RT2Y466yzCASDptrT2XhUv9mpF04dDgeyLBeNL+P3zux//RFdZuNgNiuS2ca9lYa4UGYl87GNVx9sjasNGzb+rqFpGqlUajqYTi6Xm/ZNrUQTVKmWpFy62fKYDXoNzmyaMGOZelhprfRHv8xofF7Yvmc5wdaqvfUCVGHXXX/PTJt3sjTp/1aiiTfTdJTTzpfr/9n6zFiuldAzm0Z9WiCVigN2CYZXzOgyE0CL8tBpBc20Lfn8ZguqUirgmgVwMqtn4b5e6LbSQL2YMBPoC/QY7xfGa6XrL7O8ytVBn3ep9qrUIkFVVQYHBzm69yALFsxj247t/OJXd/Gpj/0Tv737F2y6dCNKbpxYV4yR9Bgr17yOdasu55ndd7Nl2zYCvlb6Rvp45E+Pc92b34wgpBGkEIMjh/D5ZVpaWslmRQJemb7uwzS2r0IT48QTY9RHl3DsuUP4Qxn+74Ffs3zJqYxP1vGjn36B9733Iyxf48MhzSMxPEJ9vZ/BERVBjiN7VQYHpzi48wDnXHQWmiiQysGhZ3bQ2t6KPxIkq2TITWk89dRTrF29kb88uY3lqyOsWLWCxMg4vYNxHL4gAW8Qp5ahf3g7shAFQSWdHSIaqENTZZKZHhyeKZKxeprmr2ZkdAxfQCIzEaW7dwuPP76db33nu2zd+iSSIHPju27iyqtfz2nr1qBkRXzeKty+LKlUBkl0EEvECXj9DA0M01DbzO9/dyea4mf/c1toaVzK6g2nEQxI7NnxMCuWLySTquLOXz3N3AYBVcjwthvfRc4poxo0qEX9Pj3vGIM1lVoHGfncsgMAAAAgAElEQVRL08yDgWnCzLuSMDN36C19jDArQ9HUImHYSuNqnJfMLHjMxreNVx5sjasNGzZsVAhBEPB6vdO7zg6HY/pZJVrD2Xa8zbRrLweeT3lWO+AvN+2z4W9pkWLUZBv7+2Q0Iy9XO1dqWmekvVLN6MuBcm1sZhFg1Nq81PUop019sfJ6oWkLEEWR+vp6li5diiZKrF69lttu/SLpRJL2tjkEvB7aWlqJtoZonxvFIY7jC00xPj7AqWvOZGyyi8svvYCbb34H7fObESSFqoibhQvnsnz5CqrCNUwlRhgYHsTlDuP3uHEIMkFPmNdcdCEt7UuoqV/M9Td8kk9/5gecsnIJF1xwEatWLUdTnQx0H0GUVKYyOVK5PoaHxnjrP3yA7q4hLrr8CtI5jb179uBEo6m1CY/Py+4d+3DJfnx+N3PntZJTkkzFR4gEI+x7ZjsjA8OEwj4i1T5Gxo6gMIzXG8Ahe2mom0tVsIOMCpuffZpMNoTXtZZDhw6RTqYIeH08/Lt7efxP9/PJj3+OOXM6+N63v8e3v3UH6UyMm9//LtauXI1LFkgmhug8vosjh/fj87iRBAlHLsD3vvUjfG6BB+79Mal0nA0bTmPpsgUcOrKHt1z9Wjb/5SlWn3YxU+kw993/a049vZa16xaVHbuVWtJUMs9YxWfQR12Hyi1r9Hx5svPc39K8Y+OvD1vjasOGDRsmyEdazH+8rTSixo9xubT6dwooaF70foRWCxP9bnMlWttKzEIr1fSa5ykW1aFcG1nBqDUrp6Uq3NebW1YCK02slcbZSltolq+VkK+HJEkoioIkSX8T0TCLTAYtNBtG6DXvhff1ZqtGM0Iz873idp/NP7q8xr3QR1bmh7P5o+v9wM20mPqNiNmE/ErGzvO1BCjHq0ZhXI8ijbM04xahqiqSYE2D0+Fk8+PPcPddv+baa69mdKCH2mgIhHHCYRe+cDOxsX6efngHzoCDoZFB2lrXs+XZh7joNZcwp3Uh11//Tt793htYtHAhY2NjdHR0MDg4SENTFYmEiiR46Tx+lGhNmGQySdBfw1Bigoa6GtxOLxed+zru/vXPAZWDh/ayZMkSuo8/hyT6mcwk0ZRuUlMBFizYSEYbJtrUhJKJcfzwAVrqm3G6ZDRV4N3vfg+33PKv1DSFkGUJkEhMZclMjDM81MvtX/oKn/vSZwlEq4lPDSOrk9TULuRnP/ktl1z8Ou655x6ampZy4abFiHKag88dIhIIEYrO5aH/+yNabJI1Z5zHka4xsqkxlixZxvB4Dy0dLWRyCg7FA2ICSVbx+/1okoPhoQkSUwr33f9TrnrDm/E6Q6TiKuEaPw/e/zhtc/0oWReHD+xnw8YL2L77KMMjk8xrjeDwZNASAlOJGOvOORtnOIggzkStN1pr6DWuVrxnZQ1ixa+aoCvH6hRZw1xdQJFV0Cw+roIkFmtXVa0kz8K887e0oWrj+cPWuNqwYcPGC0DB78fhcEx/GCvVUp2MUGV1NuMLQaW70ydT7su9461feL/YKFeXk9VsVZrOzD/6lbTgKqe11LQZf0r99VLS8ULfLfi9Gv1AjQK31ebEKwF6P8VCHWY7niuTSyFKHibGphBVhfraaoIBHy3NTUyMjaApEqLoJhD1s2ThWpqba6mJelAzbp7bu5uxkSG+eNtXWLFyDdlsFq/Hj0YKTZwglczS399PRssyf9l8cDqJNjTjDvlorI+iZHP09/Rw113/QWf3flwuD8Gwi4G+JKoc4gMf+gR1kTaiVfOoqgriDSb4/g/uIDk2iKjmyGShu3+SvoEp3vq2d/C5z36a1qZqPN4wOVXF6fIgSCJDsSnqWtu46UMf5djRw/zXz/6LoC+KmvaQzSi87boryamjnHXOGlqaFY7s7SU9kSMZG8LpdnH40CEevPd+5i4/g+rWet77gX/C40wTCQv89CffJhQKITu8jCcnSGsKoivAl7/2PbqP9dHX3U1bW4Rr3/EufFVVjMSmuPlD/8ijjzzNgf1HiE+lSKezrFp/Fj/9z59RHXLy9BP3c/XVb2JuyzJuve0LLFu2jO3bt1fMB+XGjHEeMh4181LPU1ZH2yiKMmtwPBt/v7A1rjZs2LBRIYxHAMBsmqXyu9wnI/wUfIlkWZ727zRPa62VLdBceK73XbUqt3xexX6LZhpRfR5GH6XCvUL5zycyc6Vp9cJX4X8zv8nZ8rDypzIKCcb7enrNhL/Zyi28a4RZuxph9IG2SmvUdBg1IUVlUizw6f3QCnkV1UGZ6dtS3i/2tTU7iqkYM+kLzasXSov7qFz0XvO+qmTsWsHqHb2WyahQPhkrCX27A6CaW2noNVJWc5RVO6dSKVKpFIOdE9z/q5/wlmvPZ3DQRU2TQmwigTM9jiZ6qI4E6erqIj6VY+XpFzIyPobD7UUQJOKjQ/iDLtKqk0xWor6uFU1IkE4nkRHo7++nsbGeRDKGKEuEgtWMjU6RzQhMTvbTMn8BSkaDVBaH30/X0SN4PBqaIDI+2sO8OW0cOjrKvPktpFIpXC4fBw8eZNGChRzat42ckqSpo4OpiVFqIu3k1ClkZ5q+oSQoDoIBF15JJqPC8PAgLiHN/p3bWLRyKal0hGDUyz0/uRt/zQIUpZdVp9TicbTw4Q/fzLe++SW27p7ifTddz/Zdm/nRD3/GDTddwfZ7f87ic95EpHUJTtXJQ/c9yIL5S5D8Y7i1IHv2H2b56hWk1RxiOscnP3YL//bZz6K6PWjJDL+/5242nHk6n7/1i/z4B9/n0Yf/wOkb1jKlBFDUFJHqerITY/zTJz/BD+/8OYIoW35vZqwGZo74suJbvQXDbNBbCZltvOqtVvS8Z2XZoB+r00GeLMjQNK1o7NjRhF89sDWuNmzYsPESQK+JLfj5FDQbZhFVXywUhJsXWxP5YtJcWKi8EPpeijbUa9FeyoWOlfbAiIKGUr9pMFu9X0re0qPS44uM9ZQkaZpGow9cAS9VHfTRnvWL6heSlxVern54Mct7Pm3h9/sJhUL09B9n/pIVPLu9jyOHBjiyt4tAIIAU9OKvqqFveBJvqIbJhMK+3UfwOILs27MfTVOIpcYZn5qgOuLD41HIKf1MTBxF08ZwuwK0tc5jYjxBOqUiSj4OHe4B0c1nP38rc+cuR82qDA/1kVVSdB7djzfgp7apjerqMHW1DRzYf5Dx8XGSySRutxeARQuX8KWvf4Pa5jlU17XiDdZwYH8nDtlHf+84Lkc1npxER9Nc/L4mRieHOdJ1nObWeXR1jaHmmpCEIEpuCtkxxlhsgCuvOJv1p68hWtdCMpfhvI0X4/O7Of3UIC0NYbY/c4wbb74ZQWxjzfqrUWlCyYZ55plnmEwcBWCoT8RTHSKbzfKNL99OemyMvzz2KMuWruAPjz3F97/5Xf74wP/x9W99G8Eb4u03fJCHHt9MoLqeXfu6+PQt/0KVz8c/f+iDjI6O8sUvfnG6r6w2vvTzyvMZ088XBd/YSuZD4yagPjJ4pXnY+PuD9JnPfOavTUNF0DTtM39tGmzYsGEDZiIZSlKxphBmPsbGHedKFg9Wu976vPT5Q7FvUz5N6bvFv184PWbQNIoWSmb1Phn/V/1zvcbAmMfzNR8ztl85X8eTpakcXcb0Rg2o8dlsqFQLWE7TP/2uMQuL4kVRRDW2lzbzWxAEBLE4oJMk5qObFrQ0xW03Y46f3/xQZjG512+SlGp8ivumuJ8KYzefpryvsln5Zkd/6NvQSptUaA8waWaDNYDxmVk+03xoMR6Mf83SGNuukG9hPmtrb6KpdR5eVx2/u+dXtM1xEPDVcLQrhcfroGVOK15/gEAwwsjIIeoag7j9IMtZqiJL8XlqyaVE/N4AmiIjiy5yaQeZtIoggMvlZO/efbS2zyeeSCJJMq/ZdAkPPvAwkbCPaKSaHA6qq3z4Q9UoAqjZSXKZLDXV9Xz7u99n+YoVRCJRHv7zYxw+fIQLL74QNZdCkCS8gWq+/63v09DQyNatzzA0NEZtDXT3HyMcDePyeFEFDyoOaiP1LFgcIJWJEXC3MjKYIBoNkE4P4fUFQQxypKuXkFNhdLyfSLWTtWvO5NbbvsVb3n4V/oCP3/ziRyxbvx6XnKS5uYVQUCWXcdLcOodEahxNE7n3nt/yutdfQWIySUfHPH55zz1cedlldHYd5gMf/Ee6ekf54Ac+yOEje7n8ssuIRuoIBzzMn9fKWWdupLurhxVrVpMTQBCKNzXMNKtm/K/nLSOPWGnvrfiq3DeisIlUOt6L+a1wb9r3XLT+ZoiGtDZeHRBF8d8qTWubCtuwYcPG80axP1AmkyGbzRb5klmZcJmhkjTGYEilRxGUmqbqfxcCTj1fgc8KgiAVLeitjucxo62cD5YZzIRMK1RifgnFmtlKTTfL0WolOFgJJ2blVkJHpRsj+n6YzZzVeEyFWV6FtNNnORrEMb25n6Zp08/NBUUjr5hHNNWnLwiuegszc+Gv3ALXXJtj5FmzRXIlZsRF9dQvxg3Vt+pD/WbV9OaYaKifamUGXJy30c/6xMsl7+rNygVRRVWdfPXz32Gg+0n+6SMfZc/OLQyOj3P2hrWMTwyjKAoN9e2k0uOIkodAqJFsRmMoPUlzQyujA13Ico7erilcLolMWiAY9tPS2sShQ8/R1taC7K86cQyZRDqd5pE/Pc3Zp6/kvvv/j0uvuB7Jk0RQNGQpy/hoJ9mEht/lZ3hiivr6enbt2sXq1WtQVRgd7ULIJpAcLkZjaYb6+pkzp5VgMAyaiDMA6WQCJSfj8lfh8ob42Ec/wj//401EAgqTsT5kLcLA0CF6uqdYd2oHqUyIx546wmkbVpEd/gN7945y4Llh3vnu6/jL03+hrr4JyV1Feuggc1ZtQM5O4qpuZGKwl76eUeJKHx6xlvHxBKedsY5b/uVWmmpreOyhB/n8bZ+hurEOSUnwv7++n1VrLkDV4sRiXSyYPx+H6KNroI/du7ezdu16qnwRWhbMJ+eUi4IzFfraKATq+b/cPKPfPDHjoXIbcfq89Dxv5DlTlwND0EFVVafdDEw1yZQPYmjjlQnbVNiGDRs2XhaI05emCTgcLrxePw6HC1l2ko/oKCJJjlnyKRUwC5qhkhJ1EVEFQUCW5aJD4PN+eyqCkP+tFyaNmuBK/CsrRV7Y0JerTN+DvICR/zap09dMGqs8NdPLSntgFGiN/1sJkYU8jaaZVmXMaPvKtYe1Bs24gCzXH7OaOYsCiEI+4qfJp19flpnGQ/9bJH8JWl64Mra7HoU0kiAWpdXnp+djPd+VIs8PBd4xakaNZsiiyPRVRJPp4lotujRh5rLCNO2SiCCJ021bdrwY+kFFm+kTUcgLmCcuKyHBrL2NWqlCumla9fSdKFd/Gce7fmzm/dIFZuYwrZgXkRgd6GX9urm89S034g/VUt+0jDWrT8EbifLTH/+BydFhRobHGRvVCLhhuLePnuGj+FUFMZeib+efiSsyC5YvIFTTxtzlKwkFGti39xDRSD1bt+whm8igpDOomSzksixb0cHu/YNccPGbyGaHeNvVb2NooA9QCbjcHDp0CDkYprqlETHgZdnadcRicXY++yR+fx03vPdTDIxkaW5uZcOZZ/KjH92Nz19NTogzMjJCPDGFjJOnH72H1NhzfPgD7yAUqmP/8X58wSZ6Bg7icoikpzoZGYnhcQchO0JyYoi6OafjCPg557w1pONxJG2c2roWLrjwbOYsPxdJmwK8jPb34xUDdMybTzoXpqmpnXntUbY9+Vs+/i9v4h3vuJZf/v63eCK1fPqm9+FzRnh21x40pYf2BUtYsuIsPvuFr9M7NMTx44N09SToPnCQQ0cO43A6Z/jNyCtCKU8U+KIc9OPVbCyX8J1hzjKObeN8paex5Dxo3dhRKR0f+nnJLGK5jb8v2KbCNmzYsPEio+DjV1ho5z/Esx+vYnbvZD7ShcV98QKi+AB6s7X9i619NUNhMWLuc3Vy5Zej1ygMlnunnInmbOWXEwIrpdNKK6unT5/eNNiO4VWznGbTlhjNz8vRM1ubTWuwDUKY0aS1HKz88sqZGVpB07TiMaFLPitFhgSiMEOXsR1UTbWkRxAEU7Pr2TaOTOtm6KPZ5gjBxAx7Jl9jfxs2J8T8GdfNTc0cPHSIqqp6du/eT020BsmtsHDhHKqrgmiCTO3c5SRzSUZH49REfYz07COZmETwNlDfegqpyQn8QQ+ilETNOqiti5DJpmlqakGUJfYf2EckEsHpdBAOR4inu6ht8OJ0uLn80k3U1IRRFY2DB3ezaPFSjnd243HLeDw+RA1cDic5NceB/Qe54PyLuO/+37PhjPWIogPZlcLlduOQqgj5RWLJSZwBH3PnrMAXDDAyOkTfQA/hUACX7MHrjSLgp7W9mVgswVRigp079jG/Yw6DAwne875PsHbtetSMi7b2BmSHh6sv38Rb/uFaVq1dQTrjxOOqYjwxwNhkhvExkaHe4yC5ccgujnf30NzUwbPbN1MdCuL1eRGcDrKKxKKlpzE1dpwDu3cS9gVwIvLJz32aj/7TzThdEtXVdYQiEXDKCIKIaNyQE4x8I5T8KmcdMtuxa0a+s+JDs3nCarOvYBqs30As2qjRmRvrN25tvHpwMqbCtsbVhg0bNl5kGI8UkGUZl8s1fbyOmdbQbPF5MhrRQtpCcItC3oUAF4Xnhf8rKf+lgH5BYyagmNFhpi2dDZaLJN0CazatrRVd+jNMy71r5t+lL7PwXJ9fOc2rUfifTaNbqKPxvlH7acaPVsdRlCvXKFhaaatng7EORk2gWXnl6l+Jdrwc/xv7xKz9rbT1Zu2vf0cPI4+Y8YMZX1htpBiFCjNeLNsvqoaqaUhuJxsvPI/+4UMsXNpAVkvgcjfS1FKHKPvxhtz4PSKTiQTR+gY8bplg0E+sv5NgfQcHdm5heHCUibEhJEHEFwwwNjlBRsnhcLsAWLRoEcPDwwD09XeycOFiRkdHSWemUJU4qeQYX7/967S1L8Lp8rNo0RKmYjHUbBJNzaEgUFvXyEc+8hGCwSCbNm2ir68P2elgwcIlOFxOHG6RP/xxO7WRJQj4kbwh0opAKp1m0cK5BLxhHntiM9t37ScjuBifUgiEIwiOMTaecSYuX4odu57k37/1WdzVAnsO72B8so+jnc/y33f+J8sXL8DnFNn5zFNouTEUJUtNTYCmGgdnnrGGhtYO9h3oIRiqQZIkxkd6+czHb2HegpX4PTKRsIf9+4/Q1dnJBz54M1OTE8ztaKemei7jQ1M4XC385je/obu7e3reMGo5rTSdRj42iyRsxUv674oxrdW7Znyvn+/1m2YlbGcxv+rnUxt/v7AFVxs2bNh4GeF0OvF4PDgcs5sPW+FkIi1aRSbV53EyAvKLBX3ESH1Anb9F36WCsPhSR4+eDfrouX9NlKu/Mcqv2X19PpW0ZTm+MEYifSmgp7PS9jeLdmysw0th9mjk0xfCr9PigSSiyiINDYtxOqPU1S7hphs/R1YRcbvCTMSG6dr9F1pqg6QyaZKpDNX1HWSTSXAIzKtzkkllSSdyaBkvsfgU4eoqIjVRHC4nIyMjSJJEMBgknU7j9mpkk2GC3vlMTk7i9znJZuK88co3kM7KqJqHTFog4AmTjE+SSaYQBIFkNsef//xnNm3aRFNTE42NjUzEx9i/bxhFE0lrg5x72ZmoUgJZmCStZFBUlXC4msH+MXbvOsDSZctYu2413pCDYFUtTa0dICaYmppiy7ZOaiJz+NqXbqOuYQ4XXXIVm5/uZKA7y7vffxOvv+JSGiIOzt+whFxyP363j8R4F5n4M9x7/12MJae485e/JOCvRpIkmhqjXPPmNzMxHEdMJWiIuFi7ehE5zc/qU8/kTW97M75qD7UNbrbv/AONc6JcfPHFNDc3AzPnnRo31Yxze2F8zBZpuByvnCwPFebMcihsnFiNKX3drKKV2/j7gx2cyYYNGzb+SigEXSmcDztjplW841yJVnQmrfHjXrogMGpvjLvgxl38mf/1C5GTFZ5OZuFTnLdmdbCfCV5MDbKVdquStAVYmbYVHz1jbJvi82yNAbkq1TgYNRYFVKr1PBnNRmm7W9fJiu/MaKiEztnoMR67YZXHC9HklDt7srDgLvS5kRarIFimGmVh5pmmzZxraWX+afx9cv1q0HxpGoKqcGT/DmRNZGJynNbmWjQlhSi7SStJUjmNmmgrvfv/zLZn7+WCy26FiMqeR/ezcMk8vIEqksokSkYi7AvQP7iHSOPpiGKKZGyCaFWEhJIBmA5yt3PzUyw/ZRmZnEg6m8gLWIKAksoguWU87jDvfMe7+e73/p1sNgeaTDaXxOeXefjBh9lw6ukklSyBSDWykCM5OYovECKXEtl7bA8dHR1oSRFFERAcCaqjIcYnE8RGRpAEhaaGOdz3uwfRtBGOHjlOU+M8NC3EF279LF+67RMcOriD12w6k/7+fhYuXkAikUCVXPQf6yEYCOMO+FBT9UwkttJzPENtvcjAoIMMCh1zahFlJ3PmLmJseJwfffsO3nj1WxkaGiFc5aGltZ59O4+Sy8QZnIzTUBVm7vLl1M+bjypIpef4isWadlRzU169n2kl49BopSEIQtF54lbvTo9DCxcVvRWJmcWKUfiVhL+9jU0bLxx2cCYbNmzYeAVAbzLrcDhwu90lC4RK8HwW3IV3crncSb/7cuH5mAi/lOXKsvy8BWIz89cXE8b8Kzm/0UrTbvWumblxJXQ9XzpeDRBFkVwuV5Gm9sVsB6u8XtB4EgQE2YE/UE1KzdHW3orX7SGWFEnmvPj8zXjdIYaGeshpTlasvJRYIk56MofH52MqniaWiBOfGMcpixw5cpxAoI745BCCquH2BEkkXKDmSExNkkklSExNsnzVqUymVLLIBP0hYhNTHDvUhZrNC60H9h/k+9//IbmsNC1Q+f1+JEni7HM2MDDYx1dv/3dkyUtsYpLenn4mplI4HDILFy7G4RQJVUtUR3x4PQEkyUV/fz/BaB1uXy0Hj/Sw5vQzWLRoNVdceRVDI4OsPnU+v/ntf/DEkw/xute+AaRqqiLNJBIJhga7uemmz+GprqO6oRkEP9/40ifo7+uiyh8m7IJdW/7I3BY3AQnGuvZwbP9eOrtGCNS2EAhIfOXr3+TGGz7E8UN9iKJIJpOhta2B1tZWUqmUZRfp3UKs3A5mg9GsvHCvEkuDSuYF/TfuZKxHXq1zhI2Tgy242rBhw8ZfCWbCjMPhwOl0IklSiR+aGaY1LxWkNb4jiiJOp9NysWGlvTT63L1Ui239AqpSk8dK/BX19TKrt9EPuAC9hsH4rtG/y4pevYah0roY+1j/zKrNjAtCvbmtMV+jQKooimne5Xw2rQQz4yaMlR+dWZ3KLYIr6WerOpZoPF/CDRJ9Xxu1SlZ+qVY+z+WEEWO7WT2bjVaza5pOUSOVUXG5fWRFP709AwwPDSI6HQRrgnT3DTI2HsfpdBKubsAfWozf7yfsrqE6Wk0wFGVkbARRlXAKPtCCSHI9VUGJZGqQsYkuJtO9HD92hFDQjyRCKhknMTWGA5mg10XX0V4+9a+fZuXypTgdWRwOB9WRAEeP7SeTyaBpGjfccAM9PT1omsaWzdvwer1c+YbXoqhpNEVl3oLFpDIK8cQYsuRGFgOMjkyyZ+92jh3rJJuBtrY2hvqPEAx4yKYnmRjr5OktTxBLTHD+BRfx/g/cyMBgJwcOHOSWf76V4clJJuMpMmmFpsZ2fvzjO7jkNW8GIUtX52N89JZrWL1hLWvWn8cjjzzC1W96LR5PjqC/Cq9H4jd33c0/vPHNfP+O73DJhVdy6aXX0NM7SWZK5YknHyI2NYbXE+Khhx7iZz/7WdG8qIeVUGjsz8IYN6bX+5Ga8VMhXeEYNjN/WLP5CMyFar01ghHGucP2bbUBtqmwDRs2bLwioKoq2Wz2xMdcHxlULDL3sjpe5oVoZQswW/jPmIpJJc/0z0vvvxCB11wgNJZbbI5bvBCyWuCblqY7R1Mv4M1K5SwmqrOZNZcroxIhxAySJFnWxWiSLQjG/i49C3TmmVFQlorSqejOD1aNbTjDw/o2s26XUu2ymaBu7P9S4d/czLGSPi6kmaF3Fm2qLqsSs17NOq2+LDMYTYVL6iIU87r+vF1jWuORKZJgNGnPI5VKMdA5zOjQEE31btKpXqobljPSs5fG2uXEyTIwsAePpjI5OkZXXz9nXvhGXC4XXcMxWgJTCJ4QXT0iLk8MnwD7946zfuMKhkeHyGoCtfW1ZHI5FC0HOQ1ZFhFwk9VU4lNjaEqakL8OjSxKTuDZZ59l7rxm9h0YZOO6VQz3b0dLu5GqqkinVGRZJhINkYhNEY6EEB0a3Z099PYMUVdXi8uT49lthzj33HP56le/ynXXXUeN30Nv/yHu/vWDvPbSt+J2JahtXcS/fuxTrFu7hLaWxSxYGuLAgb1EAh20zw9z8NBOWpoXcGzfU8xdto5YcpzJ0S68ASeSy41PqmfH3ntob7gURegmp2T5872bqQ4188Mf/gfXv+Maqlvq2PbkcRITvVz/jtejCEn2HO7D75qPx9PDvDPOxyfX45I00iWmszP/i6KYPxbphMlt4TiZwhhQtHy7FMZOQYic5v9pC/HizTZN04pM1vVpZwoXisyJ9XxnHLslmzA6dtO0/BnQfy3rGxsvD07GVNg+DseGDRs2XgEoDrSi/9AbjwU5eSHICpW8M5OmvI9TKV7IXmRldJlpRSujzTyvAioNVFKpiaxVunLaxueLgpZDL+jMaFmM9TLSV64+RpoMaXUrW2MuglCqiTTSbCzLSmurz8OsbYvfqbz/Z382S5+UE1yNScXKF+nTNbEQXAsJpp+XEVwxtKdoEHphxirE7wlzxx3fYdfO7ZxzzkZGxsaoqhJIZdKk1RGaGxaSS2aIhutYuep0ck43uXQCr9tBMFzN+GSMcFUjLp1FF6sAACAASURBVDFBOpMgFGoikR4DUUUSHDgcDhKJKdweD5IgIQgqfX39BINVgIJTkolPTpLLCaSSOZScRiabYvWqNYiSgNPvQnZFUVSV++9/gFNPW0ln13Mc2HuEppYW0pkcXmeUXEYiHssSm0xyypLFJKfiuGQHbc0tPPbIn2hta+SMDRv5xCc+xTnnnc7wYBenrZjDVDrJk08+xSmrOlgwfyFPPPEwsujm8KHjtLe30NRQy9hkBknIW9B0HuqnqqqJsYEYTS2thHwdPPKH+3jiD38ik6vj0JFjnHXeOrr6D3DW+rPYvv0xkCUeeOBxJsb7ecs172BoeJS9Dz2BN1RHpK6JuFtBViVDFxZH7tWm7wtFR1IJgoDx6JxZ+VL/vISvipE7odGddjuwmLNM58ASFrYF11c7TuY4HFtwtWHDho1XCAofb0kSpzVnqqo7S1JVEUVz80MjyglMZuUa8yrN92QXFS9E+DIXQvWXlenZTB6lJsNWppv6d81M48zeMRO+rI6xOVnB1ez+bAs7vcak8H8BMxsipZsgxXU1zzefxqglLdaeFrFHiaa3OC+9hsfMBFZfTdOzbSnlB/19XarSClWIUoGumN9KzqIs2QTQ0WJoD8XEUkCv7dKnNdZA34b5cg11Nhk703TphBFN09BMguMU3nV7XESqa1FzGgvmzSc+oVAdqWHbMwfxuCUGhvpRMkMEgzIDQ33k5DD7du9ABjJaAKdXBlVDS6VI5qbweGro6T9OpDaKz+1EUXLkcioO2Ukul0MjC0Aum8XjdOEQJSbGhwmGaunt6aetrY2Gxhq2btlMtKYO0QmCHGHPrme58MLz8QcdOF0a46NxGhqacThciGIa2angC8iEwkEefvBBBE0lFPCTmIqxZt1pIAp09fRw8WsuQpJyTI10ERs/ztJVa1i6dAkuT5ajR3pZtmQxPl8VXq+Pu397J5InhFP24XIE6e+bQCCdNzTQYqTVDE8++jBadpIrNp2Ns8bN3AXtdHSs4AM3/xshT44LL15NIFTL177+X1x68emMjMfw+pysOOsc0g6J/Vu2US1LuKsiBg4oPmZM1c07ojDzTBRFBN18ZOYaMW0PoQswN81/YvFcoT9rNf9cnM5XUZQSPjULNjd91rCm0xILApJ9duurHvY5rjZs2LDxKkdB8+F2u6eDBv0tHiXzUqBSTXA5rdxfaxGk9/n6W9Ei6AVDvW/1S1FGJRBFseiIm3L06IXccufbvtw4GZ/Sk3nn5axfOXqyapIlK+az8ewzGR2PUR30MTGVxuOrwy0GmNuxBEmS+J//+R96egboPnQUr8NPsKoJpyKSTU6RU1O4ffVUVTWgaS4i0WZUzcHgYDcBvwdB00AFl8uFpmmEwj7cLiex8QnUnEptTZjRsT7mzmtGdqhksnHWbTgVScox0nuMt7z+YhYumkNvX/cJs3CZJUvnogkpEskYkiygkmQyNkIoFObM88/i1DPXsXztKdz4/vegqm5czmietppa4vE427YdZunqTXi9Xvx+N7mcSlvLEr5++0/JKmP4Qgmuuuoq5i1axWsvfwPP7e3ic5//Lu3z1hBtXELXQD+jgxO0za1j+eoN/Pr+x5jbVkvAmyGTGOKGa6/hnPPPA8XHxNAIH7jxKjqPP8evf/Ur9u3axdhoJ411XpITPbjd7ll5phJ+sdrErIQfreIB6Mt3OBymY9Nss7FcXjZsgC242rBhw8YrECJ5H8L8FC5JEm63G5fLhdPpRpIcJ57lr/yirfC7vHkqlC4ojAsY47P8PY28T6QKqCaLcqXo0tOnp1NP68xlpG+mHGO5VnUo529q1I6ZaVX1WlmjttJMA2t2FQKbmB1vU678cjAGO9HX19gOJb5kJ9q7cKlqDlXNkfeh1nSa2ELwFPVE3xW3e/4d4yI3f3+6n7QT1sKqNs27M32tniiPEzSoOByOkv4zto+eN2fKn+EbUZQNPFpe+C3d7FAp5jO9Br6Y76zGzDRdqoYkiNNtgKpNt4mGiIaIqgmomvn70z7A5K/p9iy0tqpObzoYhWGj9UHhf72mC5jOU9Dyx44IkowmiNNX3hc5zzeiIOPxuhkd6qevqxfNpTE6PMay5W0MTSTIpodxeQNc9eYb6Dw2wF8e/R0d7T5cbjc7j/aQmPThyIiMTPWQyKZR5CEOH3kOh+giXFPP8d5ODh87SCqZIZvS8DhqmBjJIjhkptJTSE6NTBZq65pRsiliYz2kxgeIT3QzEetBEJ18544vsnPbFlobO8hkIK3kECQvSk7EKTtRkiouZzWNjQs5frCX3955F12HuhgbnuT+Bx9i/apVHDx4kICvlo9/5As0Ny/j3EsupX9omC1P/4lUNkEkspiB/oPc+K6reeLRRzh8oJP4RIzdz27lnnt/Q0b18973vpfJ2Dj7d27jndd9nGjdKdQ1rCVFmpa569i8LU3HnFP50wP3sHfPY0xMTHDNjf9GtKENsv1Iso9FixawaFE7B7s0Pnztm+ne/SRiKAKahiJCVtBKeBbUvG+pqqEpqmGczPCBkR9mRrCGoql532dRyPueikL+giJhVJ/G6M+tadrMeycuFa04P1FAkEQEaSaQmZ6HbUHWRgG2qbANGzZsvIpQWEg4nc7poDVFwVkq8J+zel5Oc2l8JoqS4Z7xzMBSgdT6CJfSCKpW5ZbztdWb65bPY3a6jPf0JnjlUCrwl0bvPJlFmpnQXYDVgm/mXomhaVGaAu+IojgduMVI42xCtrkmp/h9UTTSPFMn/eJ4pizrjYNCnWZ4TTPNI9/uVnmYt4fB3vmkF9PG9Fb9oGmqad8JgmBpYa+qKrlcbrqfpt8x8ocur9n4Te8fCRSZDme0HKDRPKcNl9dDbCJFVXWERHKC+oYoA/19RKN1TE3GCASCHD6wj/qaaiTJTVtLFeMjffR0d9Pb00ttTSsup5OqcIBkcgyPpwpBUGlqrsftdnHk6D6itU7GJzvxeUK4XU5GR8aoqo7w7OanUNQcbq8ftz+C2+UllYGD+46QiKVxuH24nAE8XheaqiBL+Yjt4+PjTIyO4/A4cbslPC7o7hmkrqGWWGKUg4d2sWb5GVTVRBgZHeCKKy5h9+59XHvN9Vx//fVoSgZFE9FElVRymIHhCS7etIlITRNbtx4g4I7hduX41a/u5NwLlzM2Mk5VVYRwVZCcOEptdRsP/+kvNDaF8ThdjA33s2LlOu744c9pnrOAbdt34lQS7NuxhQ997MPce/+fOLD/CE888DQ1DY1sea6LP/7hN1x15dtIZ7NIDhlRF6hrJoKvebAxQRDQKN6Ms4pQXCmfn/w8MONeUNbXH1sD+2qHbSpsw4YNG3/H0C9EXC4XHo+nyF8QMNVgFWClYTXu2OufW+Wl15gVjlAwaj9LtWbW9aqUVmNbGP0n9SaxhfsFfyx91F2jkFuA1fEvlZrD6mmyOjqnVGArLcPK3LQ40vTsPrzG8sy0dgVaJUkqahtz4XL2+hfS6c0DJUkq0baU4wurZ/rFu76fzOpnBWN99H2ub1uzy6xtC/QUoKdL34ZW/KA/TsSYvyRJ0y4DRusAY18WUDDHLkezfmwYrQRymkoqmyYYrWYqk2MqkyGpKAhuB3UNc/jCF75B3+AYkZoI1779nXR29hCfHOKh++9E1BLUNDRy2mkbOLj/CCgio8NDiIKCLDvIZDIIgsBnPvMpmuqXEJ9S8biioGRIxadweTzkVJi3YC7BUBWq4GZwJEEqo+EPRmibu5CGxnaC4VoCVX6e27+XZCyBIAikUimqq6sJBEIn6qsSj8e48NJLER1OGpoaCfj9fOX2L/LOd7wbQVRR1AThKh+f/vTncDgcTIxn8HqD1NZGGR2ZJFxVw7Znd9LdPczBQ10saFvJjq0HWLlyI9XVzaRSKXp7hti4cSPz5rdRU1NHV2c/tTWN/MstH+H48X4GRxLc8O6bufvXD3D7bf8PRIGLLnsDB/YfZOnSpSxZsoi3v3UJ73rP5XgDUcREkI/e9AE8SIiKtUWIfrPOOKeZ9btxDFjN+Xp+1s87Zhpc4xFbxvmp3Dg/GeHZxqsf9nE4NmzYsPF3AlEUyeUyRcIZFC/C9TAuFvQL2NkXEsULb01TDAJr6bEnRjpmyigVFqxgdiyPmaBiFEb1Zxjqj1cp0GxctFsFy7GCWfkFAdqYZrb+qOS7Xci/QLc5fcY6lNJoVq4+T2MfVkJroY9mylEMgtpse+rljp4pDuRSOB5KX5eZBf5s7WksZ6a9So8KKoZZ/Y18WOj7TFYpHlOCdf2Mx9/MyguiQauqzvShqpYGXyrK+8Qr0wKPTlMuaSqqUNDcQTaTwev1kslk8sGUEgkmxmI4HRnGxnoYGEjQ3lxLTlAY6D7CsrXnEMu6QUuya/OzLFg4H8gRrgqA08Gx44dpbmojkxZwuVwk00NUhWuRtSyptELvwCh1TW3klDxd1197PT/4znfxhp1oksT40Bhbn9jMunM2Uh1yk0nEcDpkhidSRKNREokEHtnBZCpJVVWELY9voWVhG9WhMCP9g6iKwsRIF21z13K88zALFzQyNNzLr//7QabiA7zvXe/heF8PyXSWxR2LWLNqJTt2bcbtdrJ71368rjSyz8cZ57yNxvYot97yzzz9l110dR/iff/4TlCc9Pbs486f3s+1N11DlSvEf3z3B7z75vfx4zt+zP0P3kNdayNvu+5GXOoET27dynXXXUXXwW4aakW2PL2b9RdeysiATOO8dlaesQ4ksURLbhzjRb9PBFgqBPqzshax0tgWNiL1z/VzjXFzyniOtN6doRwkwTwAm41XD+zjcGzYsGHDRgnyCwkRSZKRJBmHw4mmgapqgIAglNdqFhbaZtFpSwUkregqXZxoJ8oDSRLJ5bInTEbztIDenFQkf2QKQN7EM29qPEPzjJA2exvo/xbK0WsTjZoAs4WVsd6F3+W0msZ8KjUrLpRn7JNy75uVW1oXYx9J5Ns+f820sXjiXnHb6bWtRi26MdpvMV8Vysv3f2lbGJ9bmzSX1jt/5aP8FtOTp1dG0wrmyidbzkx6IzR0bSWIaIVTUU80Z5Exs0EbKggg6PtCA1EQQdP3BqDrP/3forYV81FZT2RaatIuWJvKaycKKlBSwrdC3rxUIy//alr+ryCIyA4ZpbDZI0l4Aj66j3YjyQE0ZzWD/b1UBV0EQx787hYm4ofxyH5iY2naF83heHcnguykKlqHIHtxOSQ8LpHRgQHCwVpcTicO3HT17MbtzvvwC0i4HG4kKc3FrzkHUZZJxIbwe6pw+TxUN1QT9LgZHOojnU3jcDtxOb1Iogu3y43kzgt6oiDg9LrwORT6OicIh6oJhpwMDI9T29rOjq3bueXD/8L5F15OTvDSUBvl0ae2snjharZteZblK5ZywWtOo66hjv0H94Ok4XYFSacEWtpauPatbyPodTEZG+U1l1yGkzghv5tcCuKxSV5zwam4XB6WnbKaPz/2J/YeOcg3//2TvO99NyLLPr785W/w1tddgeQJ85GPf4U/PPAEb3/7JYjeKFJ2ipalZ+CIBnGrEqph08PMJWO6X3W8YZyzjDA7z1fPf2bv6ufDIn47wd8FvtbK5CUIQtERTjZenbCPw7Fhw4YNG2VR0LgUTAzziwTzBYpeQNE0jWw2WyTEWgtGlaFAxwxKBS593sWCs1okHJUKH6X1LrfY0udfML0smMUZNbRm5nJWx4eYYba2Mj6f7f/ZMLugbNSSG+tTKjAazWPLHU9TWl75xfLMvZMRXM3bZKYu+jLzf43n2M7UoZxmt6RkQ/nFmxn6HRXj4t7KPNK0FItNED0ZRq1X0f9qmWN5DFma8dv0Jo1BANY0tWhsZQSRTDpONj6K36kxMhonk5xAlDT81S2EQ0FSiSk0OYssZPA4HezbtQef2wfZJJKQxiFAKBAgm0ujqhkymSyaIoIm4XA5cHtl0qkYY6Mj+DwhBM2JyynwwP/9ke1b97LxjHMZGR6hKhxFEt309w8RDofzGwKiylRiDJ/Pe4IPNHLZHHv2HmD7jm10zGuhqa0dr8fNnNYWzr/gXL7y5W9yzlnnsHLFMiSnSE20hnvuvptFi+bS0tLE009to7V5Ac8+s5+WeYt45pltdLTUEBvtYc2pq6iJ1nHXr37H9h1bWL5iJZOxcS7edB59/UM88cTTLF9xCouWLGX+giWsWXUKyaRKQ1Mbp5+xjvvvu58zzz+b6z/4ITrmzedXd/2CkcEMO/bs5rKrrkN0qciahGYhuBo32E48LMtjZvdm8+XX86fetL0ovWYoQ7d5VRwH4cRfW3B91cMWXG3YsGHDxqwwLqAlydwfyrjINQaAMcuvgHICjHFBM6M5KvaZND7X/y4smHUlWNbXTCtoXOQbaS74iBnpLKW5dJFvrKtZHcoJ+6V1LabLuMgzajit8jO7byX0F2umzWky80nVb2g8byFsOp3RNL10MVyOV4rrYtQ4W9e/EMjMyqS9HI36toL84ttssW8UJszonqFHLDJnN8WJcsfGxvB4PEXlaJqW1+Qa8tS/W0hrJlAXzQe6NilojQv0A6io+Pw+uo534XG6kZ0S9dFqpmJZFGcQj1hDamoUyemjt7cfj8dLJFJNNBqhr6eLWHyCZCaHLxhBysZRtSwen5dkIk0oFGJ0fBREDVVJUVNdD6qEJMLkVJzaaBhBzeFzeegf6mf79p0IgkxL8xwkGSRZYnikl3A4Si6nISAhyy5URaBjfhvLViwik0tx12/uY3FHG/H4JLLXxWWbXse733kdGzduoLmtmZ7uLh577GE2bFhLf+84jzz8BH5/kG3bttE8Zz4rli5mYrSXloYaUlmNrs4uXvf6y2lobKJ97lxqautBcBCpaiJSG0FBZU77PPzVMDnWR9/AcdJqnK7jIyxYspKJyXF27dvKla97E3PmtBPyRQk1NLBizXpwZtA0mVJzf3PtvKZpRee4lttEKnrnxLOCmbAxjTGt0bIlz2aGDUDRfK6aFpBtC+FXPWzB1YYNGzZsPA/MLKL1QXj0KOcLVQlmEy5OPLF8R68BzdNmFPysNW5mtFQiOALTJsRWAoZe+NUL/oXLLM9KyzdGhjZ717g4na0+5phNgCzNq5wptVFLbrWQnQ2l5o7mPnflMCNIlwquupKKaNcLyFYbFDOvFtOoakpx/8xCYyVtYRQOzBPl/3g8HvM0Jnw0zV/i7O05fb/gJjm9sVMs4DuBZE4DwY2mOEilBjny3EHqaucyqOxjcmicqbHnED0igdAC4skMgXCQjJagJtpAOBJBdnsZiaXxiQmOdx4llswQjQQ58Nx+GpqakB1u4pNTeNxB0FT27N1Mx9yl5HJTtM+pQxJyBKpDtLa20tzUxMTEBIGAF1VV8XgcPPbYFpoaW0mnFETBiSjJyE7w+GRESWTeghWkYyPs3ruLeCrDyHAfb7rycoLREANDAyyYt5Cx0VFWnrKMTZdczYrlK1i2fD4tbbXc+vkvkVPSrFlzCpOJOLf+v69z5pmno5GiJlrHf/7nnQwPxvj5z+6hqbmJ+qYaevq6CYQieH0h3JIXjydMT+8wHXNXEI60MDwyTFic5Lk9R3lq8xZ8fj9XXXs9ktMHUgJBc5UIrphE5J0RXIvnF8ByU9LY/1abJ+U28PRjoVCukN/hmc7T9F1bcH3V42QEVzs4kw0b/5+9Nw+T4yrv/b+1dff07JtGmtFqrZZs2djY2Cxms8Fb2JKwX7iE3B/5BS5JbsDBCSRAQi4JCfnxPAmEhCWBEEJYjNkM2AZjjBdseZF3ydqX0Wj2me6e7q7t90frVJ86dU5Vdc+MNCO9n+eZRzPdVeecWrp1vvV93/cQBJEIX6G1NuGILySUJlRUhWpfmeOl6yYcx4lpv14h+NQeDY1HJtTFfVl11rhjEPfnJ3RJ/w+Lx91MSLYo/huB317VNxNAbA1WVR+Njlu2T23dWfaAwE0t+tj464gT73CYpS80qyN6DlUurLhvRE/EjNGLC4UWijOlaZN/YCArygbIQ5bj+vC4hwd8xelAAJ3a1XVdVKtVjOw/iueefgor+zJwzQwGB3rxq1/eg2tf+9t4fPcebN2+EeVqBYbZhkJxDpVyAZ0dOYydHMbQmrVwnTl0dbbi1w8/hOc/7yIUpibR0tED2+iEUy4inzVRmBiD62uoOi6sTBa9KwYwOjqCllw72tpz8PwKnFLt86xn2+HYOrI5C+PjI+jt6cbk+AjaOnpw9NhJDK3ZgInRwxjo78bRA8O1nFV/BtWZaYxOjeKRB4/jC1/8HP79K5/HkSPDcCvAho0r8ad/9sf4/Oc/j+98+4f4n+96GwqzFXz5i1+HaWg48Nw+vOntr0FX9wq0t7fBqczijtt/hHzXalx91VV4dt8eXHj5pTi+7wge+PU9+OhffBz//Y1b8MyTj8Jz5rD+vM343L9+AZ/4y7/Ba1/3Bjx+4HGY2bbQNWTUXfOo0FQ+aOJe1nU9KOTF3g99h6iem0iiHNJ8X4k5sACk6xITZyeNFGei5XAIgiCIRJgDa5omLMtSbhfrBi0A4iQmXrSG92t0AhRXdZVf9oFfWiepf756Md+eKDD411XLoyw0qRw9BaZpBv/KlglaaERxfDomuLJ7aD73+2J/VsR+VH3xVbQZcUvvpIUJ2nw+j8Gt5+Giy5+Pp544hLzmY9d99+F5l+xE0ZnDunWdcOw5/Oqe+9G/YggrhgawcdsW9PSvxAUXXwajdQD5nnUYL5rYuu0STEyUcOTICGYLJehOBpbeCl2zYPvAzOwE8q0Z6IaPanUOuWwbMpkWzM5U4Tl5jIyMoLUtB2g2sqaHqclRtLe3Y6ZUQj7XDV3Lor9vFZ59Zg/27z+A6aki3v+/b0Kp6MJ2Cujr70U2m8elz78Ir3vd61CeAzZt3IYrX3Qxjhzdj3/5l39BV+cKtLbmcf99D2Hvnn04cvQA3vm778C1r38j7rl3N7pWrcDeQwdh5Ltww+v/BwythPaudgyt3oI3vf5t0DUTN97wGnz+8/+Kz372n/GKa16BYqmC0pyGT/z1xzAw0Id3v/vdMPSM8tqw76i0pPnuUl3j+X7e+UgWgkiCQoUJgiCI1LCJkmkakXxY2XaNTHplk6Ok9WZlVTP5ttjm9dDaqHuqcs1U4+Yn82JOJy8yxZBMmdPKxCy/TZpJnMxBTKoyLI6FPx7VcYrHorqe/FqsSdc7Lgw13b1SX8bDdZ1QrnJjIkvcTogagJBHK4xVDNUO9Ss6rsK+sddD8ToA+MLDlLi8W36csr7SRAXI2jj1Yuw9oSH8GfEMHV1dnehoH8C+vU+hVChioG8lRken0Zov4/vf/yFufMMbkGk3oJk56LoBw8zA9TQ4vo2WXA75lnZ4Xh6Gn8GK/lXo7F0JU6/CzOooVyvo7O6G5rkwzQxaWtpRtW2USiVMTo5hcOVa+G4GHW1t2Lt3L3pXDGDixDBWDPTD0YBMSw6oupiemUa+LYfe/i4MrVwNXXcxsKIXm7dswPDxAn77dW/BS19+DbbvWI9Vq1bh6NFhfPgjH8K73/1m+LDxi7vuweaNF2B0/BhmZ8ro7+/HtvM34eihQ/jiV7+BFd155LL9eO/v/x9cdukLcMdPbscLX3Ahqn4OhtmC/Xuewq5dj+CKKy6HYZh49atuQK61A4/tegTf/t4Poelz2PfcAWzfvhPnbd0MT3Ktwp/Z+meF4br1KIVwjrMQ1su5+2IIsabXv6tknztZSoCqMnHk3kO0GjZxdtNIqDA94iAIgiAahk3adV2HZVkwDCMxP6pRZE4Qj+w9WU6pLNeUbZuGOMdBdEN5Ict+RNGqEi6u68J1Xdi2HQnpbNYJTYNs0smO4XS4pzxpnRff9+E4zoLfc6q+ZPfOcg1hTLqf4tzrZh1nzfXgwcWG7ZtweHgMV197I/Y+cwCP3PsIilMmers2o6N1NTwvB1/z4AHwfA2ankEuC1TKs7AMF6Pjh1GojOKX992GqcIRTE4fwfjYYczOTqNq++js6MPRIyMoFMowjTwyWQ0DK7tQrhShaRo+/rG/ha5l4dgaerraMTU1gampKTg+kMma6O3rgm64qNpF6FoGc3OzeOGLL8LxE3tQLE3jbf/jDRifPARfK+D48AH0r+jGt779dYyOHYOmuXjzm9+MI0eO4YILLsDNN/8ZWlpaYJo6XvHiq/DCyy/DzvM3YNPGVfjmN/8Vz790Pd773tejPd+NZ585gD/7yIfxkpe8AH/1V3+NX/zibkxNzuBLX/oSbrz+N5FrbUOxNI0XvehKXH7583HllVdC183ESAPf9yPrdjcawcG7qrKaB2m/m1hUBglSYj5QjitBEASxYLAQNcdxhCfscpHJ9uH/lrXJ/q1VszRD+4b3E5eDCC9lw+d8NeIMJk0QWb/qY9GD8dfzz6JVjJPGAaiXUGmc+BxPFbK+xeNOcqvjtmHjYpNr3w/nEIcfTBjSfuvbiMcUN2GXb1u/h8I5f7JjEIvW8O+z+zDNOZIdSzMT/kiuLX9P+0L+clJerq4FDzOS3H3VQyLf92EiXB154uQIevp6oZkGPC0+H9jwPcxMT+GZpx6FqfnYunkjbM/F9NQsbNdBaz4D16uiNd+BfEs3xsaH0beiF56Wg6Hn4XkuSqUC7vnlg3jFdddhbvQIWrIW3JZOlGeLyLdaKBY8eNoY8rl1uPW7/411a1fgihc8H7se2oMVvX2471c/w+t/+41oyeVwcvgEquUKegdaMTo+hZVrzsOx4yNwS0V0dvTga//xTaxbtx5zcyVs3boN991/F3519y/xqU99Ci0debR3tWLk2DBGR0fh2w4629rxjnf9Hr7w7/+Bj3z4T/Hxj3wIxWIRfYMD6O/sxs9+eCty3f24+nWvBywf8PXQ94HopLKpsxiVkAZVHitQy/cOXWNd/r0nVj+XbSN+RkzdaOpeJ5YvjeS4knAlCIIgFg3mIrJJf+JyFLi3lwAAIABJREFUHkjjhKqrWYoiJ9p21F1kE3GVUOAnfOIyEMx5Y//vykRGbeJmSF9nr/HHrHI5ZWKdOY58OF6csGXvsQcAPNGKpLXrx/pICi2VjVV8P070cqMU/vaCsQNigaGw4xptPypGmRCNOsp1V6nWl1rYNyomZRN3MdxYdQxp+lBeG8lSIwxTD19XVnApGJ9fb1vXdYCrHFx/qBAfZi8bl8O5dABgnlov19NqP4bk9mfXyjE8GB5QLRZxeM9eTI3thQcTl77gStiehuETB7FmzVocP3YC7e3tyGUM6IaBqmti+PgYtm3bjomJCZSKNlasHACcCg4dOIDeVauRz2WRyTkYH7XR3gkYejeOHzuEoVUrcPzYEXStHML0iVH0dmSw57l92LZtG778pa/i+utvwC3fuRXv/n/ejZPTE2hta0N5ega3fvcHyGba8U//9Fl87GN/jgt37gDgIdfSjvvvvxebN6/D0NAAMr6BufIsCrMlVCsGBlYN4dkD+1Auj2Fi5DC+9Y0f43//nz9ES8bD4IrN+NLXv4IP/MWfBcvZsPMjC8/l72F2v8nEpAxRuPIP3HQhFp7flm+b/27l7x3Z9y77LLL7kjh3oOJMBEEQxJLAMAxYlgXTNIPJ6mIU4khbJEQWJsfGlaYN2QS92eMJ5QDGhAbLQjv5fWWh0KpwZNU5kKFypWX9sXPHF59q1OFJMx5eKC1XV6bZ0O+4BwfNFPBqNNw55M7OI1RaF378Uz9ePa1S2bfh1fbK5ttx3o6LsePya7HpghfCaunDbMHBpi3nw0cerpeDlW1FueRierqAQmEOG8/bhsmpEWSyPoqlKcAtYe/+PVi7cQNaMj7K5TL2H9iDzs52WGYbHG8W2RZgfGIYQ0MDKExNYGyyiM9+4b+wsq8Hk+Nj2Lh5C554ei+ue8Nb8NrfehvyRgZ+sQjbtnHhhReiWq3CMAy8+MUvhu0UsGrVAO76xT1Yu34DNmzYgHvu/jk6OgcwVSjiZ/c+iP/8zk/w0AO/xn985WvYvH4rdu64BF/8ypfR3j2Iv/uHz8H2c3j5q6+Dr7nQ/Pr1tm079pzz3y/Bg4p5FFaSVVKXkeYeV32HEYQMclwJgiCI045t24Gw4Z++AzLH0w39zT9zlblT8SHK/OQ+PoyUD29k48xkMnAcJ7Kv6Pw1SjicWe5i8XlmtcJEbgp3rn5OVa5M2rDaOBcteo3CyAS3GDJcbzd9cSqm1cQJeLq2kp1t1fu8g17bPt0DjyS3VU79Gspc8TRjZ32F7gGFGxtEAvgxlbWN8H3FO/2y0FVxfI3B5WcifB5NGBgdHUWpVEJnZyeKxVHYc6MYXLkDJb0CvTgBV9PQ0rIRh4Z3YbB7A3wTyJoujo5Mo6enA4ZhwbENtOYNTE9Po6urC7Ozs8gAMHM2ytUKsi15mEYvCsVZPPnEHvze296AH/3w+7CsTmjZbvzB+27G9m0b8dobXoaZiZNYff4WQC/jgfsew8kTFbzl7dfgRz/+Nq571ZvwoZs+gcsufx56u/PYvHkNhtZcgA9/+Ga85a1vwp/cdDP+7cvfwLt/58247NLN+MRffxS+NQhoDmbGD+HEaBnbL9gBqz0H23BhukYoEoFFUYj3myoKg792fARI6FpLPveu7wUPS2TiN+67LPLaqWV3bNsO6iUQ5xYUKkwQBEEsaXjByvJhGxGuLIQ1+f+w5oUrH8LGBDETjQspXMWwPZVAlAnXZGGgFq7RSWU6IS93YeOFq+iU8k5MtN30wlUVRryUhSu7DqIjrb6X5y9cNU3DY489hp07d9bvay40WFrF1VM7YCw0lIlhXvzIqh6Ln22gfq2SnWLu3Hrh4zO02vJLhUIBlUoFc6UJWFoJ3V3roedcVItl2J6DbLYPs3MT8MsldPWtwuixI+gbWA9oFUxOjaKnewV830epVEJbW1vtwZqRRQZVPPCr+1CYLOLSl7wUhukhm8lj8sRBDPT24o7bf4HNF1yOZ596ED39fTAsE7ff8TN86AM345k9j6C3exBjo0WsHlqPfQd2Y9PG7XDtCvbt2wsfNlYODcCxDRi6BdPMoFQqoLunE5/65P/F8y++CFdffTV2P7ULuufhV7+6F1suvhLX3XgDrHwGnu7CgCXcP9Eq4OK1CF1H7oFGI8LV18IPX5JSA9II18WKxiGWPiRcCYIgiGWH67qn3EzRCai9Jgob3rFS/18mFk3SIu8xxEI/IuG+oiJPNvlLaosnjWCStanqg8+tlbWV1nGNm4SKDxdUY5Ydk+i+1sVNnGAUJ9VCXmaM4xwlXmyKYjvcRrrCVvMNZ66JXF4gyB8QxN1nqnxG8TRHHhz5QLlcRiaTgWVZwWeztnFYiPPjUDmufGi7aqxyuNxjhHMn+eswPT0N3y7D9UsYP15ES0sRubYB9PV34uSJo+jv3YDx2RPo6l6F0sw0dF+H682hNFdEX+8q+KfuQcdxMDIygu6BdchoHh697xFcevHlmC5PIZurnadsPouj+/cja2RQdU0c2LsHs3Nl3Pr9n+JvP/0PcOfGMVcuoK2tDbseehgHDj2DN7/5TWhpyeOxBx5FV28PTo6OY+15m6DBhmV04Z3v+B38wR/+Ph7d/QDe+qa34PihYQwfH8GLr9qKH916K6561WvRNbQBXV1dgIFauDDESr3hB1Wh6y25JnzNAVHsxuXB8g8uZH3w8Dmt7LPEP+DwHDdUgZ0496AcV4IgCGLZoes6crkcMpkMgPqkmyHmUTZCmn0ayZOVkTbva77IltrhXxPXlBV/xDaSfsR+k8aUdh82aZ5Pvqp4zVT3SDM5oGca8f5fbGTnsqWlZcGWRVrIY2Fj8rVTIkrX0NHVic6eXsxVgaGhNXAKsyhMTcJyK6jMHAQKRTi2Bug+zCxQLA2jVJpAR2sHHv71EzAMA9VqFa7rYtWqVagWC3jwwQdwyQuvxFe//S188I9vQqk4i1dd80qMTc1gxeAg7rnnbmiaiw1bB7Fp4wpctnM1Rp77Nf7+7/8efb0DMAwNF+7chpe85IUYOTGFv/jw32Hr5rW471d3obOnG+957/tx4OAeWJYFXc9gy5YtmCs5eG7vfjz44H0YWt0P3erA9TfcgDnfQ1dfL1yW7yvR/3HfYeL9z4SkKBhZGwvtgKraotBgohHIcSUIgiCWLCyMmK/myzs3hlF3lGSVckUnLOyiGSEXTxUqxwgvhxLNz2T7s4kY71hIw+0UoaJp/hbd12AbzgnxPC9S/TMuH00USqJbxofhylxX8fjUr4WdXL6dxp3oqGsuc4pk5593gCKtcsvfpAlh1jQ/1K/oSPEVetnr4piC94yw88lfQ7Fdvj1xuR2+XzE8uLazHrmW/N+6cPweuOJYQrvQwy4a357oyPKiiP/Mqc5VCL3+WfU8L6jmzd/DvuuhUi7j8Ucfw7qVWThOHj19vZiZmUB7Zwccx4NlZdHSYaFYKKA4VYBbtpHp7YTpdQBOCRX7JDoHtuO2W3+I669+GQ4feAauZsJxHHR0dGB4bApZ08KD9/wSK3t70NufRVfXKhS9UWzedCWmxo9i1xPPYvv2C9Db2YnDx4/j4p2X4R8+/U8YPnEIH//4H2Jm1MFsRcPU9EHMTmqYHJvAlq2rsPepvVi3/jzoLS3QdB1f/6+vYcfmAbz+Te9GS29P7TRwofHhezj80EiVGqBpWvheACLfFeISN6Fr6dVDwD3Pi9yzst+Dhw3C956h6aeuJQnYcxVyXAmCIIhlj6ZpME0TlmUhn88jk8kEkx824eUny41OfObj4IoOHu9wns4Hwo06iXGOKjuXsjb59xrpV9WXDDapnQ+qYkKya3ymXViVK5zkmp3uMaeNVpAWcdLqaxfzaQBsHyZkG73uhmHEnodMJoMrrrgC2dYBnDg5DNspoKMjg8pcGZahw64WMXroIExXh20bGFh/PnTPR0veQNWxoZstmB07ik2bNsE1smhdsRqaAQytGYSveejvHsSFOy7GG37r9bjkyudh4/Z1mHPmcGJ4Avf9aje+d8s9ePGV16Gnux+lUgk6fExMnMA73lErzvSbr3872tra0NZhYvu2ywDfwNNPP4tcth2f/MznYPseWk0H9/z0VswcncIFO18Iq6uloXMkkub+4kmzHbum4rb8gzxZBIbse4cg0kCOK0EQBLHssG371MQovPZmND9SPfFijmt6eEc2OtES80ZZESWZw8Tej5uwiQ6rKm825LKJlWI99fHJckbFftnfbHIp5kw2OumsHXe8G8o/AGCvMUdG7F/TfMHZiRalkR2TbBt+uxrynF/ePaq3ITj7onnFVcMV+52dnUU+n6+vlyvsy7ubvhZ16vmKvhE3nNuXhdYGY/Tk5yrYV3JMQT6yUN2X3XdJId+y+1j8HGh+NA8zaDtSCVkSQeAD8H2Ymo7Z2VnMzo7g+MEDWLt6NbItbdA0D1ZGw9joFKqOi6HVa3BseBStWROt7V1wfR+266C3swsjJwv40pe+gPe//30YHx3BwYMHsXPnTsA1UK6UUK3OYdXgAE6ePInxkxWs6G3DP/5/38DE1H785d9+Cr/7v96JZ558FLfffjs++MEP4k/+5GZYmT4MDz+O4tQcRqamYOkt+Pa3vol1awZw+WWXYMPm8/HRP/9TfObv/wbTUxMYn3gUV137TuS61sEwwvexGC3B57RHc8fD3yeqqIAAvf69E3F2vXCUgK8hFHLMF46LRAGI0RC+OtqCODeg4kwEQRDEWU190u4ERZ0aFa5ANFQyHrVwleUB8gKHHzP7XVWRk98fQEg08q9L+10E4cq/piq+k3YuUTteuaiUtSm62uI2CylcxZDxxRauvCgAuOJIMcJVM/TAwWTXgU36+SI4sn0XQ7iKIcgLIVx1qMOO0wpXXdNQmJ6Blc9g/MQhtGVa4JSB6ZlRrN8whGeefRyrztuOifGT6O1sRbkwDR/tsD0Xnm6hb8UQToyMYvWKQfzwlm/i2muuQtFtg67rmJmZQVu+AsfxkMl04NiJUVjZOXS29mF6+hD+8e++gg984I9w4PgodM3Ev33xCxgcGMLdd/8C7/+D96FYtXHRRWuxdmAL7rr3YfT1dcB1Csi3aNDgwy276OsfwJpNm1AoFjE3NotjMw6ueNH5cDR51WDxwR1fcEn8nmG/ewh/PxmaEGWB6MM3UbgGQtX3It8LwT0Xk1rArjeJ1nMbChUmCIIgzmrq7pIB08wgm22BYVihPNjaxM0I/dT+29MDt1XMv+N/RPcU0OF5dXHET+aYmOD3i3NKw695wk8YsXhK7KTQPyVWvFMVWPXaDytiw/8oBYsWXbKGP6f8NrwrGj5XquulQdN86Q87ft934XnOKVHqBudA7Ld2DSBcV/m46q+7p9r0Itc7Ehp56tx5YO6UFxprbUjsmumhH3YdguvBjcPzaz8+dHh+9BqJ1yL0PidUmYBkffiuF3mftelBIvo0D5ruw4cLHy40eKEf/th9DSgWiyGhytplAoc/53HHz/8uPghhbbO++R/ZurNiP0yQufDR0tkO08piYPVGZLq6obdn0beiDSW7gs6+QbSa3ejv6Ucmm0dn31oUpmfQtbIPfQMrYLkm3MoUDh7cj2tf8xpM2x6Ks4eRMSr405s+AFfPYXh4EiePj+HO2+7E0f2HsPuRR9HZuhbXXP9KWFkTY8dP4OY/vgl/9bG/wnve83Z8/7Zb8aOf3YfuDg9wLPz7176B73zzv1GaGcamzetQKMzi2cefxMZtF+DTf/vPGBmewVPPHUCpNAGtOgMHOYkzyX+fhe97TdNC10n8/DDRGkQ4sPuP3W9cW5GHCKe2dX0Pru+FPnOyB1GaXxOo/P0Kz48IYIJIghxXgiAIYtkjE4fVajXigvKiUtO0wKnl32OwglCiQxY4FpKCInzYZtL4uL2Ev8OhfWKb7Hf+NdlkUdd1uH5MqHTC/6qicI9zZ8W/VW6mzGEW/+aX6KihRybsvIskO9+qcYSXk0l4dq+HBbmh1UOlo2OPXx4nFPoaUafq9TNFR50XCLquRyb+rOkkF5/9zl8PWXEescCYKuRTdE/FthQrHIXcZs/zYJqmMq9Sdv9pwv0dcX41G/B0mFoLSrMljE2PoKs1i4zmojB2Ap29KzBZspHv6oNXLMP2ZuEZGnLZNlSrMygVXHR1daElb2Fq1Max4wdgmgYyZgbdK/qwd+9ePG/bDjyzZz+6u/rx/R/cgt94zavwyU/8Nd72tnegu6cN3//Bd/D773k/vv71W3DhJTvR19sB39Hxj5/5HB64/2784Ee3Yc528MTuR3Hhlo3wTB26nodumSjOFfCzH92Gsm/hPX/4XpgZIzhftfMt/5yJIdy1c1X/3nNdF5oRXXeXb0N8TxTFsv5Un3vfjRZM47/PTndtAGJpQaHCBEEQBHEK13VRLpcB1MWAKHzYewxZRWD+vYUtJiIXroyQGyXp23VdZWEqlWAA1MJVNcGMI2mbOEclSWSJk3MxfDgN9Yk131d64VrbOiq660I2WbgGohPh/F1o4Uk9/7ssLJs/Hl4g8tVdxe3E9kQB6rquUmzK+lUKFCaqFW1F3FW+ErMfXk9UfF98gAREhSsT2/y4NF+Hoek4eeIE2trygFtGtTCDXLaIo8cmMVcFNmw8D7qVx50//gFe+oqr4WVaYJem0NU5gLm5Odh2GaOjRXR1t2F2dho3/f6H8K0ffg8jEyO449vfxeCGHqwe3Iix0RnsuGArioWT0JBDNpvBz++6Hb1dA3BsE7m8jS3bL8TRQ0ew64EHsLKvBWs3nw/by+Ltb30TPvnxD2HFqtXYe/gEXvnKV6I4M4HevtVo6+yB1gLohiU8xImKTt5N5YUru3+Dhz3C9VU9bONRVeJW3aP16xRpKnifCjMRFCpMEARBEKhNjizLQltbG9rb2wHUJl+2baNarcK27YbbjJtoySZ1C4WmabAsC0BdIPATyeXyIFpEFZosvt+MM5OUXzffMc8H/hrG3YcL3ZfYnmz5oGbh8yobvR8X+h7WdR3wswB0VKpFdHS2YOTwARQnJ/HII49hzq/AyBloazFw4JmHULYLuPZVV6MwW4ZldSDf0oFqBdC1DPL5dmRzFj73uc+jp3slPvfPf4vZueOoOCN429uvQ3evhY6uDJ5/2SXQtQxmZ2fw5BNP46FfP4nHHnkO993/MN77+3+I6lwZVdtBT08PspaJjvY8evvbMLR6Je6446dYOdiNSy+5GC+56kXIZE3YlTJ2PfoINNMIPvsy+KgI8cHOQn4fpW1PfABBEAsFOa4EQRDEOQObTFWrVVSrVei6zhV28mGapto1kLh18SHAC0NaxzPOJVa9xr8eCbdtwK1VOXEicW41H4Ybf8xqAStWUJWMgOuv7lLHibf661yIsLhppAiW6ISFC0ixMHXTNGEYBkZHR9HR0RE45/w5KpdLyOVyoX7TigKx4jC/b+RfX8d3v/td3HjjjaccufRLREUcWF8IS9ai27LrrQp7by6ENH7Mjz60G30dLVi3phduaQLTc3PIt2ZQmRqB3rMRbVY/nn76ThheD9ZtuxCzs7MYGxtD/4pe+FUP2UwLpqenUfF99Pb2Yq5chONUgUoB+e42ZDIZ7H7oYQyuWo1jxwvYsHoAxw49jfsf2YOLL7wYv/Out+InP74VJ0+OwIOBP/ijj+AjN/8eVg9txJEjR7B6TT/a23ToWgf6Vw3hh7d9H7vvfRJo68THPv0JmKY8raHuVhuhc8hvx3JRk+6dtPdWmgcNsu8W/ruD3FYCoFBhgiAIgkiN7/uoVCqhZWscxwmWdGhpaYHv+3BdG4bBltCZ34RLNukLqnsa4cmn+H5cVV/xb1m+YNJkkbUhVgoNbdOkcJWhGruY3ynmk/LnUNUGT+3audwYw1WCVfOhOOEa9OuHt41WN67vm2Y6E3bN6k4aK9AUjCNm7OLyS4l9wgiv86nXz6nq+qpCR9n5CNZo5ZbLUYWg1o+3ntvLh8DHHYM8FFy2oYvxEyfRkddxaP/jaGttQaVYgq6ZmJktY+uOnZgsVDE8ehLnrd8Ay8pi92NP4v7778drrn0jfvbzn8AwfFx66UswOjaMF1xxMQ4f3Qdnzkf/0BCOHzuJf/ibv8OnP/tJ5No6cOePfoStG9Yj29IFz/Zw/313YWXfegyfOIgHH7kfM8Uybr7pj9Db24vJyWkcOXwMF168DblMFkeOHMMNN/wGPv2Zf8NFz7sYGzYPwjXUD6bkVdXr189DNC9cli8v7pvm/MuuB1/8iT1Y03U9uDdItBIMChUmCIIgiAbI5XJobW2FYRgoFouB22OaJmzbhm3bTYU/MtLsF8qDVEwiG3FDVD9pxirmQKZxaRY7NDDuONLmyrFjY0766Q5ndF038lrS9ak9NHHheV5QvbpR2P0cRzPXPQlN05T510njEH+S+kkzVk3P4MixUfh6HisHt8JCBvmMhUzOwo4Lr8TDux9Ad/sAdL+ESrWAAwf2Yc2aNfid3/ld7N33KNasWYUdO3ZgzZp+WKaGwkwRup9BT28nhoePYcOGDRhYsQqPPrAL5ekpGK6Ph+59EB/84Afxne98B729vfjqf/wLevs68Na3vhE33Hg9fnbnLjzz7D5MzYzh8isvhaflcfTECB58cBd2P/wk1q7tw+rVq+Bq8uuXtBa06qEDE5Ps38VG0zTp/U8QjUCOK0EQBEFIsG0b5XIZmUwmEA6GYUSKO1mWFXG20uQQiiKVrZfIiCuWkuS48tvxjhnvwrEKrEH7Sf/LypYjORXuGalIOw/4cFh529GwUiDsRMver7UpL84kVm3m91WJyTDhysAy56u+b3jyLhPhrI/atVPn/YoFpGROuHhfieMP+ktxCdk1aSRUme2XlG+cyhVO6dKxtqNrKHuwfA0P3/9r9PZWYKILhj6B/c8dwAWX3oBiaQSD/ZswPn4QR05MYf3GC1CsziDfbqI648PSe1GuTqGttYLCbAUusijac7DKJ7F6cCOefeYAbvnuN/GCl78STz2xC1vXnw/Ny2LnhauQ7+nD44/thWZPo1h08bzLXoAjoweglwo4fjCDoU2TWNHxUrT2mnj4iV9j28ZteGLXU/CNPC696gq09ZrQtUzsuYmE+wth147jBOeDff6D7zVubV7XdaGb9bB1sYhW3H3geV5oTVj+e45/OEeOK8Egx5UgCIIg5ollWejo6IBpmjBNU7l0TpwbK1syhyHuczpcD55GnVjZvmeKtGNPsx2bqPMFjJgT1ajzp9pHdL5kY1L9LRt72jHNJ0pgIRCd3vmMpZl9ZefO04Devj5UtRasGNyAYtXD5q0XYHL0cej6FI4M74VjVrBu/SBM3UFLJgu3XPs+eMNvvhY3/+mf4PChI6jabu2hVqUMPZvHTLkK3zLxtne9C5vWb8G1r7oOg0Mr8LJXXoHb7rgbx0en8fSefSi6Hq546UtQLpdx3tA6GBkXR07shos5GNki/uc7fxcveuFLUKkW8NPbb8XqNSvR19/T1OeNP37btgMHnL+v2N/8eU73sCZKEBpOEIsEOa4EQRAE0QBsAui6bpAHyyZ6vFuXprCM4zgRYauaoCbloMXtE3Xx/IjDFllaRXBVeCeUvRb074VzahuZZKv6Cd6PHLYe2UdEnfvqcu6fIR1znNPN/lY5rvX+5bmItb/rudSy/kQ0zQg5VuFe6+6tYRiA54eO49FHH8Vll10WOG38+COOsq4F97Ns7Pxr/L5ifmr4PIS3E91/oL6ck9iW7DOkGpt4LOr7z4Pm16551bdRnKigMPk0uvJtMFxAzxkwrNUoVKdg6FVMTUyis6MH05MF9KxcBdPIY3p6GnnLhdnaAcf3UBo7iZa2DkxOzGJkZBg9fe2wXKBSrWLlqj48d2AvBoe2oVQFNLuM3sFeGLoGEz7sQhWzc1XkcjkYpoejhydw3vo1ePDRX+O8df04fngvXL8Pg5s2Y815g/A8xedPcp3ilskC1J+zIALEMkMPcOr5/VDfj6fyWNl3CX8NZQ9uCAIgx5UgCIIgFg3LsmAYBkzTDH7nhQiPXOTUWcrhcqpjAhC4kkEhn1OkyaU8HbBxiONhf/OT5sVYuiPNeRDPXZo2k9oThcXFF18cySuM67PRMfMFzdJed9k1adREafTc8WiGDs+ojXmgrx9DAytw2y3fRNn3cWL0GODN4PFdP0dbvh+rV6/Anmd2Yd2abuRyOUxOjSCTMVGtuPCgQ9N1TJwcRmmyjNGjYzA9EwNdvfj1/bfj2SefwPDxcWjIIJsxUZicxl9++CZ88R+/hIN798H1HcxpOg4fPYG2bgN33/MAzBYXd/78e7jwwh0YHZ3AyIkxOG4ZxeLsgp8HFez6xLmnqs9M3GdpqXw3EMsbclwJgiAIYh7wxXNEl0jmNLHX43IoxfbD2/ET1eSCOyKiW6l0LRWVc2UOmKwPVf8RF1Rx+GycYo5r0sOAMOL54UW2GRF7Knh3ic/Tq1d6Do9Z5nA34jSJlVjro5fnMAb9ndKohmGcWm4nHNqexqXmHdhG4fuRvS6Dr5YtjkfXdfgu11YDY5JV3w697wEnh08ilzWgaUWMPr0bbtsAsq0+3LnjGGxdgfGKhnxbJ0wdmK7Y0JDDcwdO4PwLd6Ilk4Vvl1CtjCHXug733/EdjE+cxCte+0ZYWQtwcjB9B3ffdTt2XHgeKo6PVas3o+RNw7Db8Mm/+BD+/M/+Ds88+yS2PG8HxiZG0NvWiqlqGe2ai//+z/+EBw35nIW3vf+D0PxoNW3+WPlzxrZz/Rg33A1fIzENgt3LgeNqmfWNvfDyW3zVaACBqx18brj3FzIfnjg7IMeVIAiCIE4TrPpwJpNBNpuVhueJzggTukuBZpw/0T2ROXFL5fhU8IIp7ifNvvzrsn2adZtMsy4W0oyRL8LTaH8L4Yg1c93PlBPnuBpaWruw/8BxlCs6ni348Eefw+7bvgN7LoPhOLkuAAAgAElEQVQTFRvZrg7MVabgONNoy2UxPjmB87euR1erB92fw97DR6G1r0ChOoH2Fb244mUvg6cDB/c9haxp47Yf3Y6+/vUwMv2AZ+HJhx6AM+Xht2/4LXzkYx/Ft39+Kx54+h5omgt3ysCbb3gP2q02PP3Ec/jGf30X17zydejuPx/VuahQjbtH01yHtPc7+34Tkb2m6geoiVY+ZJ0gmoEcV4IgCIJYYJhbwQtU3ilhua2i8xmsdSgUS2Hv10h2XFV5mqr/80VHEaiFVPI5jyyPVTY2vl0xhzGp/6RqtonVjmNRO66NuNW8IJWdK1YpmN8n7Xq5Sa+HzrfognPuLwB4jryKctqlglibvl9b91MsrKQamyqaQNW+2IY055bhcW3p6nMj64ttI4tw0DQfk2NF9HR1w7GLMHMt+PnXPot1q7pR0jRMFotYtW4jcqaOmckRnLd5Jw6fLCCre5iaHEYm24lMrhNz1Tl0duQwtGoQdtVBuWojpwFz5Qqqdha33XYn9uzZjQ/88XsxcuwIxiZ3Q3P7sGXrThht2/HRj34Ub3r9dbjjx1/Hq294GcbGKtAdGy35djz6xLN4x/96L7oH2oN8ZvF4xPPAr63Lr93K78siGfhQb9nnOnSN+FPthd/n70tN00KfWea4ButUK5b1Ic5dGnFc0z0uIQiCIAgiNWySZppmMCnn3Qa+sidDVn32dMAvkcNj23bqNTjFQkPixJcX72zbpe7IiuGX/N9xuX9AujzSZowD2XlmopoPE2UwQS3mIcfB2vG8xtfcjCuapTpu8WFNIMKZqy0JLU17DvnzEwmVNaro7muF51ZxYvQ4Hr7jbjzvhddBc8Yxe2wXrHIF1dkCbCOD/v51KBeL6OzuQMYtwbFzWD24CtNjU9DtKRTGgQcPHkS+pRPTk1OYHJ3BNde9DCPjI9i+YzNe/bKLkDVdTJZmsGPLS6DbOTz99AM4OX0Xtm/L4cH7foBrXn09OvtWYnpiNzItGp5/2fOw64mn0NaTgaFX4Xn1zyJ/zeOuAy/02XVRfabjimwlwT/IiftsLBezjFi6kONKEARBEKcRz/NQrVZRrVaRydTWZRRzA2WTbdXvMsT/29kEnp+0JrmwcZVbVeJafD1Y35avSOzL+08aT71v3oEUcin96Pbi+FQVaFn+aOAYQz7Br42hMVEXd714t4pVZOUrufKiXzZm3gmNuPueWvQB9RxEvg32OzsfvEhk95DMkeMFq6xSM7ufZfeRrC3+b9kYZedVvP7sGIL8Yh/BQyTLskJtGTpQ9kz4c2N4/O5bcWL/Hlzx4pfDzeWxevNW7N9zBF3tGRzd9xT6V3WiMDWNobWbcWxiFtPHx7Bn9y/xund/AJXJCfj5DIqT07CsNnimhcMHjmH10AB+fsdPkPNLsFrasH7rNmy64CJ4cxlUnCJmS7PIWK3413/8NK644DKs3LQNWy+7FLpWX3uVIbrfwQMTRQ40f15VDy40Xx5Nwbu3QX/CwwRZJEDob7++pjBBiJDjShAEQRBLEOZ45HI5ZDIZVCoVmKaJSqUSmkhnMplQ8R/DMGDbNly3tnakqqBNUr+nm0D08NMSwVFrxN2piaP5Hcd8HM/Tged5qFQqyGQyynMTnDsjLAbFY5M5wPXz7gch6+J95LouNEMXtm+sMBI/Dr5vXtwmuYYizYyF39fQ9JBo5XG8Mgy9BWa2Heu2XIHxaQdT4zMYPvwgfnbLV/Db7/swJkcrOLB3F/KdV8IHUK0C3Z0b8ZOf/hxveNU1mJ0dxdG9j6G1ezPsyhTm5kbQ2tGP0cP7kdFtvPgVL0N1dhRbNp+Pn/z4TrRanZgum+juyuOmP/4Qtmzcjpe/+hU4b+0GFH3A81yYVjQigkVJRIphNVFQiyEKW/GBBd/26Y4KIQgGOa4EQRAEcQYxDAPVajXIifV9PwgxloVd8oIWqC9BIct7S/N/fDPOa8NuqV6fYIs5bkljjLbN5V024bgqxaDgVrEqrvLxeMKY5P3x/aq287VwuLbm18MqE4VBklDx6udOrHbMjkGsJhuE6iJaIVs8njjHnV8LWOyD34b/W9Ymw3XdxAc1ohMoOtI66g9wxGWCfK22xqtpaIDrwXd1fPUzn4BbPIFtWzag67ydGNi0GZniCCamLWQyNrp62qG1DOJPPvB+/O5brgV61qPbAKYmKvjlXbfgpa+8Bnf94hFc86qXo7enH7ufeBo9uVZouo6B1avw37d8ExdvvwB3/vwOXP3qG2HlOjEzW0G+sx0XXXYpDNOEoUcFu+qz7fpxYeP1iAIWss++cwzDCM6dMo9Zi1YYr5+76Pasr5rz76cu5kSce1BVYYIgCIJYJrCJPXNidV0PBKys6JGmacEkkLmv/PaisG0UWmvx9KK6XvM1FvgHGkAt3zoImZXkosbl7iaR9iGJDP6+VYUOqyIGxH3EvHFVf6JoBQDPzwEAqk4VFTjQs1m0dq3AZNFF7+AGjB8/AVsrYnjcxnjhGYxP7UOxpGPPU1W89MorMNC3Cudt2om2nrV4eNcDePObfgNZ08aNN16Njp5OTEyOYd8TT6M1dxSHDtyPr/z71+E463H7t36C//dd70Nb50qMTdlYs3o9Ln/hi6AbBnzUxyleK1k4tfgwQHYu2XcFw7Kspp1T8fyr1n6l7xRioSDHlSAIgiCWEPwEtFqtnlqP0wxNVtk2c3NzyOVyIVHLiirxhZD4tkVXLCl0lp/UimJH5bjJkIWvxq21KWtLdCHFisTsvenpaXR2dkb39zhhI7i1oWqsEqebz81NclqVuX6aFhmzzB1j24o5iYamh5zHpIrM4viCnGOZa58wywodt8LpleXlyta1Zb/HjVHmHDKhpBJaqjVC+XEHrmWMa8jGYULHA3f+BLMnj2Hdmiz6t+7AxLHjyFZnMV5y0btmO1pbO1AuHMGh/fvR1bcG+d5VsNw8HnzwQVxyySU4fPgwLKsTna0t+O73vowtq9qxcefzcfFLr8cXP/VPuPyqq1CuVrD/4GG85nWvhWd5yGQygcA0tKj7HqwNLYyZrxTMjknpoIrnX8w918J/86I46f5nf9u2XfsegkaOK6GkEceVhCtBEARBLAMcxwkmgkxEyAQScz34PD7ZZNV13UAQ88QVcGFt8SI0GoLaWIhunMgTxyyOgy++kwbP5XL34IaEs2oyrgqPVI1Jdgw8KrHNRBr/Ly9efd8PhEmjwjXo+9Q9w9oLhfNCLj74v4NrPY9cStmYxPbZPcbGyX4X783IefbiBRVbHkbTNGUhJ7YElGnq8F0dMyeG8Zm/+Wtcf+35sNoG0d7eie7WDmTbujHnafDdKkpjR2Fk8si2DWDlyrWomhYKhQIsy6qJ0OIsnn16Dzo7s7jtm1+DbeTw3ps+BNfwodtZlEqzyHdl4Ws+NGTCx+bXjzUS/qshdA1N3UgUrvy5C+W0iqJfV4clqx7uqN439WhBL4JgUHEmgiAIgjjLME0TlmXBcZwgPFicODKnFQAmJyfR2dmpXO5GFJ38642SZlKaKmezQRptb6H7X+osZBGdZsLPG+k/7v7gw53ns2xLaEwKdzYIqYYDDybae/rhWy3o7FqPw0fH4fgZuK6FtX1rsO/J/Rjo7sZjjw/jxddcj5NTE+g3NfjGHPIdOixLh+dV4Vkazr/8IlhaFu/76HY89+x++JoFGDY8v4xcZwaupsOHemIed6xxYcKqa8AiMoLXRceV2z8S6ZDwWV6MzzpBAOS4EgRBEMSyxXVdOI4TCrNkeWzlchmtra3B67xLykI6Za6tCql7qHIpxU29GAcyoX+ZAxscr+C48q6R53mRcMf5EMqlFCb5kW1FVzVmBhNxpyVjZq5XpD/hvIrLksTBO26e50FDvWiRruvQDXlbafJIRVjetnhc/DEE7RtCZWRwIcScCyjtB/FOIC/CZO6lbFzVahX33nsvLl67HScmjqN/oBud/StRKBQwMTEB27YxuH4tOjo6grWa+fBavq24KAHeYW4WVvjMcZxaW8L9wI6bvS9DNi5xKS1+W9X55s9BmmgF4tyFQoUJgiAI4hyAd1kcxwkVnmFhxZZlwbbtICyYTUB54VKtVoMCUWkntKwN2TZnSrgm5S3Oh7NNuPLb8cI1CNWFfK3aZh4CsIcp4jHxxxAghCEvlnAVxaXqnnUcB4VCAXPjJXT2tmGyMI6VA2uCz0k2m0XFtZWFpfi2NC2al8qPbb7CFV7t882EqVgpm/UjW4s3MuYU4yLhSiwEFCpMEARBEOcAvJjhc1pZODErlMPErWVZ8H0/lCsL1MIjs9ksbNsO2uDzDWWTWSA5D5XRjGCN2zeYFEteD4VLcpPnoKBNXOEkoUKtahzst4UIxRXbUJ2ruLGJbYnbydZMjbTH5VL6vg9o8qJRYvuyHGcAof5k4qceshtuy/fC4/JSHDffZlJIrdh/kOcpHIPOfTa6urpw8uQYBnqGsLK3HYZbf5BQdWxAiw/XTXro0+zawmIbrueGhLl4n7IHW6oKzXyONV9gS/WZEc+3+DkLQpGXiUlGLH2oPjVBEARBnGUYhoG2traQK+S6LgqFAoDaJJctg8GErW3bQagjwDlvpya7bDt+m+WIrutSQSaKw6UM/zBivtupQn+ZI58GcYkVlYBLA7s+LKxVdb0WCr5QFT9m8e9NG9dBB6D5Zs3J1DW4vgfX94JtxQJKac7/vF1WDsMwgjx3sWo0+9eyLOlyQPwyXGmv3WJfG4IQoVBhgiAIgjjLYeJTNmEVBRubiDJnxrZtZDK1SqdsIs4XdZGFfy7m3IIPtRQrror98nm94rjiQjZlxLlmqmVYxP1931dWFVb1FwqRllTC5ZcXkrnEcaGz/DHw/XieB/h1saNpGqBxFYi5Cr8ywRbXl8oFlrnX4jWVhYunIY0zLl538Zr6WvJ9ncY9V9HMZ4ffVpWHmrTsVPB59sN/R8LwNU35OYtEL/jN5UIT5yYUKkwQBEEQRABzRlhVVlaVGJCHTwIIRKvrupidnUU+nweAYD1GJob5Sq/NTNgXk7PBDRLP7UKjClNdrHOncvNk4+DXrJ0PzYTiiuNkRaMWup+FQiZa0yCG8wYPJ8x6LnwSss//UvkOIM4uyHElCIIgiHMQNkGtVCqh13gcxwmKO/Euq+h48ZVaRWdHXI4nbV6obDtN00IFZyIOJJeXmwRz0FS5rHGCMeKsKWYoMmcqbcEodr75caiKT6mcVTFkNMk146tPM8c1GA+ni8Q2RMdVNbfkxyg7z3H5zHEua5rCRmJ/4usiru1g37592Lx5c+0FXbgPJesdN+LWLwSqB0bi63GOeDA2oUgWX+grlK8ag/h5IPFKpIEcV4IgCIIgEtE0DdlsNnBX+fxVFjLKqpBqmoZyuYyWlpbIpJ0XjCzEmC27IZvgp6EZ92ohnB426T+T7hkbhyr8UwW7VqI4a+RYgtBjeVHhBYfPv2w2L7aZ/pL6ymQy2L59e5DfvRRhx8LueRZFIV7vuM9fcL8rwt1JfBJLCXJcCYIgCIII4ThOIGJ1XUepVEJ7ezsqlUoQKiyDd2fE1/ncWN49a8SBFR1LPscVqLlEsc6bF+PacQ4TPx5Z5dxE50kYF+/WJbm1mqFL3V7R4RYrv4baiMmX5KvE8nieFwr7luULq9b+VZ0T8aGF6rrwxxIRULq6j6Tlj+LusYjDrBiXmIPLXpcdD9+PzF2WwV9LlahOm0OcBv7zJzrm/Jj53Fh27VP34Z8dYfrE6YEcV4IgCIIgmsYwjEDEuK6LSqUSLLcT56CqXDNRAKSd1LN92X6aVqvk2iwLUcG1kTYCIYJk0SOSVtAvFGkcTzFkXNx3PmMN7ilxXdclAn9+FjvvmIeF4C9Uvi+DtRd33fhwfxlidAK/n+oBCUHMB3JcCYIgCIJIhDkvzIkV3SUGc+XiBG4jIodNroN2wYU/evV+PM8LOZs8QQixV3cLWUgt79byx8Xv2yhxuahBdWGhIrHozsqc34UQs/wDBHZOgXgRospRFkV40vhkFYJFxPzIuJzgJMc1sn1MvrLqb9W+jVY2Zoh52GJ+rni+48beCKLLqmqXH0dSpWPxs8Qw9eYKRRHnJo04ruTjEwRBEAQRC5vwWpaFTCYDy7ICEcvnYdq2HeS5ns7cOHGZnzS5rvMZIy880/a3kLD+Gu03btukNTnFUGX2cEIlslSvq8YsntPTTdI5FUOFmRBs1F3kw61Pp5uuopl7l41fVqSNQoSJxYQcV4IgCIIgGoZN1l3XDVxYVpiJ3wYIF4mRCRTZJF6cBAdhjUa9Ddm6psyB5dem5N3MQGTEVFHlx57qXCiqqIpubiPwuYiyyswygZDkkKXtl2+DdwRFtzjYB2GHTdPr4eCRa+sluLKcO500Ts1HKsddRsTp5lBFCwSRArrcLU2DyvEUxe9CXku+bxYiLN5TqhD2uHGIUQOsHSroRDQC5bgSBEEQBLFoiKIqm80GYbf8hJgPQ40LH+WFAj+RlzlZruvW3S6E82T1FBPmQHgtQg6pLLwXAHzM79m74ziR5YgWGtV54PMgxW3q11keZrwciXNCA6GmNRYinbZf8cHPQqNpWiSsN+01SxPmTaKVWGzIcSUIgiAIYkFgk34WQuo4TjCR5UMkVa4rI3BMJY6d49VDfJnT6bpurZgUohV7+XZlFYnF95rJcVWt4yrL00zjaMlcPFHc8+dFdGAXYm6nOm7xIUTtIUC4yI+mqwVdI+cqbhyyttI42+K908y5kvUTJ3jTLsHTKIVCAe3t7ZHX4/LLZZ+7uHuHv8fEB0mi40rClWiGRhxXEq4EQRAEQSwqjuOEqqIy15SJWcMwQkWf2ASY/cvvy4eGsklyUO0V4YJDbFmOoAiTHhV6SYVnGCHnMUF8qdrQNE0pkJPairTDCQlloSOJKFZtnyQ42MMGUVSHQnUbPA5xjCy8mxdezRRnSuNMJ12rOFQh72LbzcyxGxq7EHbNV6/mRWbcNVA5qY24yexzRqKVaAYqzkQQBEEQxJLBsixks9lQriQTmCxHljm1vGj1PA/T09PIZDJKl5bP2RO34f8WJ9Wnu6CSSLMFloDFCRVuFvEhw3wEIZGuSNVCFLIS21Ddh2f6c0IQPOS4EgRBEARx2qlWq8G/mqbBNGtlN/hJMh/CyMKPmUPL5+oF4tQQQmwFRyoUZizk0KoErjRvVSjslLQPE+S+70MzhLBahcMWFzoc5PgK7Yvj4cchhviqtonLeUwKcxadWPYaH/Yt7iv+LRa6EsO/Q/sI2yaFCsf1n3T9ZbBzJrbJ1l2VjVk83yynVXX9VcWbgORQaf4ebzQPl89Xj3PpPc+D5iP4/BJEo1BxJoIgCIIgljSmacIwDFiWFYQOA4iIK1a8CagJgnK5HAg5Ubj6fk0IsPBizUcodJgnSaQtBrquR8o0MVEhCgNRiDZiNLDzspBOWZq1d/nw66RQ7CSC/Zah2ScrgsTgw+V54Zt0bhtZ+3gh9hM/d8vF6CLObshxJQiCIAhiSeB5XrAmq1gwJshT5V5jopRV3QUQCjNm2/EiiheKTGCwcGXTNOuiGHJ3EQgX9pEWttHDbmrIodW1UF6o6LzGwTubKjHBVwBWuZoy0Z5UlEpWnEfclndgZTnIQHjpFEBdjEmWx6lyVBtxEWX7ep4XGRefD92oWymOi7/nxLaS/ubHPp8HEXGFo2QCO40+YPsamk7ilmgaynElCIIgCGLZYRgGMpkMLMsKXuOdH6A+ATdNE9VqFUePHoVlWfB9H6VSKRAiqmJBLB+Wd201TQvaqFQqkTDdxXBmRfEo5hzGHYMKPs+0UZHTzHHy4dvsd9mYxbDmuG1PN806kqebxYoOYA+K4lBdpzT7EsRCQo4rQRAEQRBLFubCiqKOD8XkcwV1XYdt26GCQQxeBCfmmGrqEEm+WrHoWOm6Hs3L9LgcUKGysSyXURU+KuYrsn95t1nm5vLbqlzYJGTnIa5NWf++70fcanauVA6woXGv62pXMs695l1oZSVgSb4o2z4pVDvtOFgbsnVU41z0tCgjACRjYe+L+8hcctn+/HGa+uKtPUuc/VCOK0EQBEEQZwWscBMTDyw3kF8iR6woLOa18kJQzL3kl+Fh+bELRTD59+QCr1lU+aNxebvzzTmdb5tBcSpOuHqeF4hRlVDi8yybzd3lq1WnRdd1jIyMoL+/P7ZdcTxJ4nOx86rFsPm4cTDxyd83jbjgzTj7BDEfyHElCIIgCGLZwZxYFq5ommYkL1Ws/gtwBZ8Qdr80Xw+5T4ZRd9l4YSxzsXhHT4bPZWZpenhMSTmf0vaEfEeVaxtXCTatgFI5rTK3WNwnzkWUFaXiz6+sOJVqzLLjTAoB9l0hVDtFRWKVAx4HHx3A3yPNzL+Z6A+qVEvGrBqn+LuqcFSacfHbGIahXNeYINJAjitBEARBEGc1LCfTsiw4jhNy7xiiMyvuz7bxPA8atMjyJnxoZ5wwNQwDtm3Pa0kQ13WDcOckRIGxGG7qfBDPoww+1JqRJDbFNk9nVWiZIOSXOVKx0GOMO69p3M+FyCuOW+6HIBYTclwJgiAIgjgr8DWgUqkAOFWoyFdXheXdKtd1YWg10VnPg/WCCTprzzTNaC6s70dEWGQb1NcxZY6rNP8VtbVopccmyUdksLZEMSHL41U5fioRkkacqRxX1bZ8iK04Htn55Y8jjaOoCuENFfniQpaB+v0Q51rL8qVV16PZKsCq68KHWdcPSuHwc/e7qmpwXP/89Y7Lkw0e/tAMnZgH5LgSBEEQBHHOoWkaMplMIIiq5QoMwwjyWAF+fdC6QNF1HfDrbdSc07BoSeOopsnBjBRWSlioNI3BwOeByvaRjWs+IasLiTg2WZEmlTAX2wAQ5CnzyyfFibfgnDVhHjKHfDHPYSNOvIxGHVZVmDktd0MsBchxJQiCIAjirITP52NrtYriTVlV+JTDyRf2ESfvLAxZ1/VI27yIDC0HI+Th+q4XrB/LloiR5V7K8il5t1d23Glc1UbdUtXrqmVw5rvcTNp9Pc8D/HDYMZ9bCgB88dtEl1APH1OacTRyLtOi+eG8bJWjzh+n6JKmcX/Faxi3Hzt3pzNUmzh7oXVcCYIgCIIgUM+btCwL+Xw+9X58FVomfKvVqrT9UqmEarUaCFT+RxSuohCoVCpBju5CrWsaWyhKKDClIu12zTIfB091fPz55l3KxT6WONiYeKc9bixxInMhjyOpIrB4DhvZlyAWC3JcCYIgCII452BiFJDnfsr+ZTmvzGUV8y9d161VN+bCX9lrrA3muAbzL6/m6vJL/vCCmeW88o5rs5WBxRxN/jW2HFAjxX/i8jH5cfLtpg1RjqsizPcXcho9tXuu6zqgcWus+vFt8VWn+YcYjeSuMoEnWzs47rVQG9w4xXBm/j4Rz5XMoU8aa5w7Hjpuz59X+DJB8DTiuJJwJQiCIAjinMfzvCDclwlOHl64iC4qgw/bZTmW2WwWjlsTp9VqFdlsNtje933ompDzyoUYs/bY74ZhwHXduiDRo0JRNmZRQKmOf2JiAt3d3dKlaGTty84N/7dMCPHiXFb4R3xQwCOGRseJrNovgvDV6nmvhia0LTTFH4ssjFZENq64UG0Whq5y4uNQiUxe5Oq6Hohv/kGH+ECGb0Ncz5VfD5k/96ZOopVYOKg4E0EQBEEQRAMYhhFMzFkxp7iqsUlhliwntlqtQjcsAAgVd4qrWCuDOcSNhGk2Yk4YhoGenp5UebBp4cOlGx1T2tzMZsbU6HaqMad1j/l2eKG60DmikTHHHKrsgYK4f1xFYYI4E5DjShAEQRAEoaBarUpdQFGE8P/y22uaBu+UnTc2Noa+vr5Q+7oWdeVUIZu88+f7fuASsmV6+Dkda4MfMxPmaUSI6HjyTjPvBPPHzY+TjUHMZY0To7y7KXOgxfYTj8ETcow5x1VHONy6marCacKZGxHq/PZxzr7S0fXDucNxhb3EtsT7jl8Gij8W3/dhGeR7EQsHOa4EQRAEQRALQCaTga7rsG0btm03tG/gvJ4KS+3t7Y0IHVG4JhXu4UM5fS4PUywAxAQI399CFX8Kxq5YfidpH9n2LDybvb8QbiQT2UGYq7+wx7+QpFlKiXE6TKdmIg0IYrEhx5UgCIIgCCIlvu8HocSie8jnnqrCgEVxGckP5WY7nucFeayapgGeMBUSclz59zVNC+U4imMRx87/zgQkTyPFfnhxraLRMNu4XNu4HNy4NVxF95nldTaKKk9UHCN/DCrnOalIEt9f5Lg9IX81RWGvJIffcZxaMTJoQQGv5aIdiOUBOa4EQRAEQRCLgK7ryGazoarETBjxYaeNVnVNwvM86Ai7qOKasIyg8rFZE2FiCDEgX7eT/Ttft3Ohnd3TQSNVmhshTjgvFsF9eOrvNOHhbBtZwTFN06C41QjitEKOK0EQBEEQxDzhXVgPfjDhb3SexcSpmKcI1N3YIPQVwrqenh9apsflQmP5qrB8+KxqfHxerG3bDTmwYtuNFDpSEeQLNyEw07iYcRWA2d9J1ZXFNkTnmW9DPI6ktkVkVYzZ/RHkqfr190WXVsx3FvtX5c8SxEJDjitBEARBEMRpwvf90Dqsru/B87zQUjanA16Yep4HaNE8VLYGbdxyP0BdiIthsPz2KpHVSBGo04GsSNTp6heQ5wI382CDb4+F8MaxVM4/QSwU5LgSBEEQBEEsAry7ltZpZA6rLOdVrHyrCvdl/bmuC8uypGNKynVl64xalhW0xcRfZB8Y4de0cGisTEA1mq+a5IimoZHldUSXNnUl41PnRyUqEysse2G3mr/mohBWjUtV3Vq2vcolFl/33ebyfwkiiUYcV/L8CYIgCIIgFhHDMIJ1Yk8HzMmzLCtaxfiU48r/LRPVzBF0XRe2bccKtzhhvhgwN3up0Uh+cDOOtHjt2MOFpPMRNyaxTVVb/BrEBHGmoLuQIAiCIAhiERCdTDIWdnMAAA50SURBVDHsVuV6iq4cq+bq+fIlU2QumhiKmuQgynIb+dBjfpzitoZhhIpVabq8cjLvCLPqtHHVjVU04vyp1kJNux/7nY2ZPwZZm/z6uXGVk9k2osOZJnyYz/cFomHH4vmWrYHLu7FJfQEIll4iiDMJCVeCIAiCIIjTBBMqpmkG7pYoVgzDiOSg8vuqwmb5PFZxPzGsWES1jqjYpyw0WdyWCVcmegNBKziSovBaaBzHCZzChci5ZW0shHMuK9yUFibE+XGkXaammf4IYqlAOa4EQRAEQRBnGL4okszV1LTwuqyiK6vremQdT36dVzEkWOUGxuWSBuu7+nr4PSGnNbZCLrevbdvw4YbCqFXifL6Iol61nmpcDijvZIrnX9wnlIfKVYMW85TTkqaqsWwfcVyqhxtJsGrXBLHQUFVhgiAIgiCIZQQTEpZlJeaMykJsxfcBQFsAscELXOYSy/rzPA+macJ13YRQ5vrvlmXB87WQqObdWfZvM8sKRftVFzJa6LVWz5SbmaaAVaNjC7Yn+4hYApDjShAEQRAEscQI1uJ03Xo4saA5ZGttht7T5dV8mxVWwVqwQhSzpicL6WB9WQj5qZxby9xmmUDmxSvfXqPL3IhjlFXqTYJfEzdNH5pfHz/vmqcNX06TByxb31a2LBHrV+Y8q45B07TQvUUQC0kjjisJV4IgCIIgiGWAuCxN5H0tvK2qDVHgyMSNbNkcWVv8NiJxooyJMVlBIVUerefW9mO5q5ruh0KM2X7NCFp+XHxOcJzjqxKf4rqxssJb/H5xY2VtpVlSKO0yPOJ4QsvvsDZZtPlpqoRNnLvQcjgEQRAEQRBnGbquh5YlUbmcfC7jYtJMtd4k+CrAMkHIQpKZ2HIcJ/TvYhz3mTR5FuqYxDZUhcEIYilDOa4EQRAEQRDLAFVhHcdxar8olt8RQ2x5VHmQvJgRnUdRMIths2nErOiwxrmF/D68+8iW4WHHxv9kMplgP345mzTHzvZJOg5xG3YMSa6nuCwRGx8Qvbb8mNOGDPu+H+wnhgaLf6va8iXbEMSZhoQrQRAEQRDEMsayLACA7dYEbCOhu3FhwmkRw34XC5kLy+e6sjGUy+VgSSH2eiNrvzZK0hIzYpiu7DjSOteN5CgzQZw2j1YcDy2ZQyw16FEKQRAEQRDEMoa5jKZuBD86ThXU8XxoPmBodceNCRre6ZM5quxv0b2NEzSydVrj4IUca5uF/Yqurqb7gOZB0/1grVi+z9HRUbiui2w2C6C+tqnruiiVSrFL3SQRty3vssZVXWa/h/J2hfMvewDAXy++rbjxsH5E11TmErM++bWDyW0lliLkuBIEQRAEQZxlMNHGhI7neYC2uPmvad09GbxQYnm8fHtpRPDQ4BAAoFwpB68ZhhE4ro7jBGHNi+HAqtagbbZQFL9/muNX9R/3sIEf22K60gSxEFBVYYIgCIIgiHMAx3MT1/pUVQpW5bzKtm2EuKrFjLTCTSVyRYeTVSXmw4vncwxi7nGkQq+iqjAv1pOWx5GFYyedf95d53Nc0xwLc+gJYrFppKowOa4EQRAEQRDnAMxR48VTs+2cTuOj0XHKwmP59wzDCJxGsSjSfASs67qLnkvbzPgo7Jc4WyDHlSAIgiAI4hyFdwd5YeTH6COZa6ta51TcT1WUSDUfTbN+adL44rbh+w/lm8IIqhZrmgZo6cWzytVuZlz8682sl8veZyHizL2OVBX26/2Q0CVOJ+S4EgRBEARBEKlhuaDNuLBMCC0XM0QGv8yO53lBoSJ+aZkkkqoLnynYuGSClSCWE+S4EgRBEARBECFcvy52VK6nzBUUqxCnpRHnNclxZa4iv13DYbZ+vQ1N06AbdedSVf03sUmuMFac85ym7UbWyhXXj5XtqyNcwXm56ANi+UOOK0EQBEEQBNE0fM5nWhd2qTiNvGidL0wEe54fEn5xLqyYN5sGfh9+6RxZG67rBpWXG4VEKbGcIceVIAiCIAiCSIRfWie0tqsW3Q6QC1kdgvupa4n7yMaRdlt+e9k+/HvM7eRDaoP3/Zrgs20bVsYIxLFlWalyWJtxaMVxiTmqSRWiZccpHh9DR+MuOUEsBI04rhToThAEQRAEQSTCKvJmMplYx3E+Iu1MkZTLyo4pk8kEAk+1vRiOy/JlWT/8Ns2EVTdK2qJQJFyJpQ45rgRBEARBEETTePBD4a1xAohVrxXd2kZdVBnMkYxbRxWA3FFNwHNrwt22bZhWrZCT67rR6rxNjD+NaGT5sY0sRSSuXysWoAK4cGaPqgkTZwZyXAmCIAiCIIhFhc99NU0zJIzONnRdD4SqqiiVmAvMF2NS0Ug+bpr2VIgOr67rJFSJZQc5rgRBEARBEMSCw7uwDOawinmh7G9NmO3J1pNt1p3lnc2k6sWq/FFenDKHt1qthnN+T+W+iuMVw4TF9sV8W1kea9ySNuI+vKsq64+15XkeDE2nwk3EGaERx5WEK0EQBEEQBLHoeJ4HD/GiM41wDd5bgPDitG2pRC9zTHlxyHJaTdMMClHNJ4dUFgItyyNmgpY5w3FCmcFe55fDIYjTCS2HQxAEQRAEQSwpNE1btvJIZvQEa7wqHFBWgVnXdZimGSrSJBK31mxSsSuVgD1bw7aJcxcSrgRBEARBEMSio2kaDEG6iuHE/qnlcYLQ4VPbyYRbkouYFFWYZpmcYBzceraiWPV9H67rIpvN1sSpXwu/NQ0T+qnCw47tAdCg6dHQX1adWCaA2Thc1w1VMeYdXFkYsHgMKkc5WCuW4hqJZQBlZRMEQRAEQRBnBFYkaCGLBbmuuyhuo2qMTMiWy+XANWW5o47jxBZgSptXGrdUD0GcK5BwJQiCIAiCIM4oYtVbXsylFXd8LmlcWK6sT7EicNL6qqwfvk8mWvmqva7rBmN3HCd4T8x5FSsGx7mk4rkSx8qPiQ8blh0PVRYmlhN0txIEQRAEQRBLApn7KorKJJJyQucLGxtfmMn3feRyuZBgZtWF+eNxHAe2bSvbZnmxjSyTQxDnClRVmCAIgiAIgljS8I6kKh81rgKxrD1ZW6rtglxQAV68qtpmwtvzPLhOzQll695Cq78nc5bFasLzdUgDUe+FKyETxJmCqgoTBEEQBEEQZw2igFtKMAGYNC5d16FbeiBAPc8LijcZhgHHcQJhGtcWvz4rQZxLkHAlCIIgCIIgljSyCsCyEGLelRTFn6qKMKvsq1qORrUGq7i2K9+++F49vNgP5Z16Xn3NVdM0Q/uyvFnRzU0SrOLSOvzvbIx6Qg4vQSxF6FENQRAEQRAEsewQKxKnEXWqfFlRIIr9sG3S5tvybRmGEVryhhVNEsUzUBfAsoJRBHGuQzmuBEEQBEEQxFkDL/h4QepB7pzy8MWWxNcDt1Lh6PLOLWuDd0/5fdh7vCiWtS1WC2b/xuX8imOWCXJDI++KWBpQjitBEARBEARxTsKLP160pV1WJ6ldFXEuKVtblolMcSzMgWVViZlDGzfeNPmw4pgpPJhYzpDjShAEQRAEQZz1eAi7nYB8jVRZTii/rZjPygotsd9FxNxXfj8gnIPquq6y2q/o3qZBlp/r+z5MVhWKIM4w5LgSBEEQBEEQBLgQ21N/x5k2qlBhWXv8PqoCTkmIYpQVaGJCmG9TDFWWbZNEXC4vQSx1yHElCIIgCIIgzknYPNi2bRiGUa/Ei7DTeibmy3wuKy+mVUJVE4bIr2vLv0fClVhKNOK40p1LEARBEARBnJMwtzOTyQTCVcyNFUUr20f8icNxnGDfNPi+H3JUHccJ5b0mVR2WucIAiVZieUN3L0EQBEEQBEGgLkrFPFaeuPdUbTLR2eg4GLquY25uLuiblsohzkUox5UgCIIgCIIgTsFcScOo+zus2i973/O8es6sYKIG4cacuBSXteGXzOGJW4s2m81G8mn5tjyfW4YHcpeYIJYz5LgSBEEQBEEQRAy8Y+p5XtM5r426tao2HMch55U45yDHlSAIgiAIgiASYOKVX76Gh19KR7YN76byjil7T+XC8tux31k4M/97XP5q0vsEsRwg4UoQBEEQBEEQ/397d7ecOAyDAVS24f3ftzOJ9yJ1GkLpQv9WZM+ZYVoGQrnoBR+SpTttw+c8z1dtufes1NkrpTwcLNe24N204fcCsyZhjsBXLwAA8KBR8WylRis1apQoPdafMfflFpdh9lag/egc6mgJHq+zXdFTSolpmi7+9n41zqPDoSAjFVcAAPgGp9P1R+s57q+87qu12zU2t87WTtMUrbW1PXlUbrfrdOAIBFcAAPiifUB8a/1dwuY2SO7be6+vubQ9z7q9H/FWTS21XLUOmybMkWgVBgCAH1Zr/dQ51nHN+P3WoCUDmDg6FVcAAPghdT8aqZSY++sam35ZPR1P3bcMv1elrVEuW4fraantjpfqU0TvUZswyzEIrgAA8Iu2ldHP7nYd516Hufd4eXmJ8/m8PK5DmIMpX12C/FumaXqONwoAAJ+wH+T00ef0/eTg/noCcL2mT+8Oi4JMWmt3f8XivxkAABLYDl969JqI/f7W73pXkIPgCgAACYwqalkPql4H2d77shqnLqtv5vWxaVwcEctqnovzs/DkBFcAAEhsHz5bazFHX4c4bc+6ritwuh2uHIvgCgAAT2KE0VuRdJ7nqLW+VW3hIARXAAB4MuuanR7Ryqbq2l9bjuVWDkZwBQCAJ7dWYkerMBzM06zDAQAA4P9U//4UAAAA+HcEVwAAAFITXAEAAEhNcAUAACA1wRUAAIDUBFcAAABSE1wBAABITXAFAAAgNcEVAACA1ARXAAAAUhNcAQAASE1wBQAAIDXBFQAAgNQEVwAAAFITXAEAAEhNcAUAACA1wRUAAIDUBFcAAABSE1wBAABITXAFAAAgNcEVAACA1ARXAAAAUhNcAQAASE1wBQAAIDXBFQAAgNQEVwAAAFL7AxxwC6f9cLR3AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Run object detection\n", - "image = skimage.io.imread(image_list[1])\n", - "results = model.detect([image], verbose=1)\n", - "\n", - "# Display results\n", - "ax = get_ax(1)\n", - "r = results[0]\n", - "visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], \n", - " dataset.class_names, r['scores'], ax=ax,\n", - " title=\"Predictions\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing 1 images\n", - "image shape: (2550, 3071, 3) min: 0.00000 max: 255.00000\n", - "molded_images shape: (1, 384, 384, 3) min: -123.70000 max: 149.10000\n", - "image_metas shape: (1, 17) min: 0.00000 max: 3071.00000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAAMVCAYAAAB3C6nEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXm0JEd95/uNzKq6e9/eW72o1a1GO0ISkhBICBmMYVgMzBg8g58xPgPmzfLM2Bx7vGCz2AZ7vIznPK8Yr/CMxx5jMDZmNyDEKoGQQGht9b7fXu9elZnx/qiKrMjIyKzI2m7Vvd+Pzj3qyootI5eKX/w2IaUEIYQQQgghhBAyqHgrPQBCCCGEEEIIISQPCq6EEEIIIYQQQgYaCq6EEEIIIYQQQgYaCq6EEEIIIYQQQgYaCq6EEEIIIYQQQgYaCq6EEEIIIYQQQgYaCq6EEEJIHxBC7BFCSCFEqfH5E0KIN7bRzm4hxJwQwu/+KAkhhJDBhIIrIYQQoiGEOCiEWGwIh6eEEH8hhJjsdj9SypdJKf/KcTwv1uodllJOSinDbo+JEEIIGVQouBJCCCFpflBKOQng2QBuB/BL+peiDn9DCSGEkD7BH11CCCEkAynlMQCfAPBMIcQXhBDvEUJ8GcACgCuFENNCiD8TQpwQQhwTQvyaMuEVQvhCiN8WQswIIZ4G8Aq97UZ7b9Y+/4QQ4lEhxKwQ4ntCiGcLIT4IYDeAf2pogP+7xeR4hxDiY0KIc0KIp4QQP6G1+S4hxN8JIT7QaPcRIcRt2vc/1xj3rBDicSHE9/dwOgkhhJC2oeBKCCGEZCCEuBzAywE82Dj0BgBvATAF4BCAvwIQAHgGgFsAvASAEkZ/AsArG8dvA/DanH5eB+BdAH4MwDoArwJwVkr5BgCH0dAASyl/01L9bwAcBbCj0cd7DQH0VQD+N4D1AD4G4PcbfV4D4P8BcLuUcgrASwEcbD0rhBBCSP+h4EoIIYSk+agQ4gKA+wB8EcB7G8f/Ukr5iJQyALARwMsA/JSUcl5KeRrA7wL4D42yPwzgf0kpj0gpzwH49Zz+3gzgN6WU98s6T0kpD7UaZEOwfj6An5NSLkkpvw3gT1EXsBX3SSn/peET+0EANzWOhwBGAFwvhChLKQ9KKfe36pMQQghZCUorPQBCCCFkAHmNlPKz+gEhBAAc0Q5dAaAM4ETjO6C+IazK7DDK5wmilwNoR2jcAeCclHLW6Oc27fNJ7d8LAEaFECUp5VNCiJ9CXdN7gxDiUwDeJqU83sY4CCGEkJ5CjSshhBDijtT+fQTAMoDNUsr1jb91UsobGt+fQF0gVezOafcIgH0OfZocB7BRCDFl9HMsp06zYSk/JKV8PupCuATwP1zqEUIIIf2GgishhBDSBlLKEwA+DeB3hBDrhBCeEGKfEOKeRpG/A/BWIcQuIcQGAD+f09yfAvgZIcStjYjFzxBCXNH47hSAKzPGcATAVwD8uhBiVAjxLABvAvDXrcYvhLhGCPEiIcQIgCUAi6ibDxNCCCEDBwVXQgghpH1+DEAFwPcAnAfw9wC2N757P4BPAXgIwLcA/ENWI1LK/wPgPQA+BGAWwEdR96EF6r6xvySEuCCE+BlL9dcD2IO69vUjAN4ppfyMw9hHAPwGgBnUzYm3AvhFh3qEEEJI3xFS5lkgEUIIIYQQQgghKws1roQQQgghhBBCBhoKroQQQgghhBBCBhoKroQQQgghhBBCBhoKroQQQgghhBBCBhoKroQQQgghhBBCBhoKroQQQgghhBBCBhoKroQQQgghhBBCBprSSg/AlWq1yoSzhBBCCCGEFETKEAAghGgcoe6KrDyVSkW0LtVkaARXQgghhBBCiBtRFMX/FoXEA0IGEwquhBBCCCGEDCVR5jdeQqlal1yVxlXSjpEMIRRcCSGEEEIIGUZEtuCaKAa/xwMhpPdQcCWEEEIIIWQocVOdNjWtVLWS4YWCKyGEEEIIIQOHgzZVpjWpUkotCFPjmKOAS8ggQ8GVEEIIIYSQFcfN7JeQtQoFV0IIIYQQQlYaw19VRk2tqalBzW3GUjZtIswww2T4oOBKCCGEEELIikPhkpA8KLgSQgghhBDSLaSxvBZBughq9a907WjDXzXWjooIQggIISBlQxsrEzluIIRAFEWJdlT9RNup6MMhANFozwMhwwAFV0IIIYQQQrqFY4qazOpK4GwzEnARs2JChgkKroQQQgghhHQNU3AtJsjqgquU0hol2KU+U9+Q1QYFV0IIIYQQQrqGIahaNLCi4b8qNOEUDUFTSgnP8xL/zhJCralvLGUpzJLVAAVXQgghhBBCukVKUG0Ki00hs3fmvFYfV0JWARRcCSGEEEIIaQdL4CXA1ITqgZOQq0HVNaMqIFMURbEGNopsQnC6DbN9lVonjvsk9IBMStBmkCYy2PAOJYQQQgghpIsoQbMVURQlyqvPtnJZ3xGyVqDGlRBCCCGEkAbN4Eh1barUfE+t5ZBvlqvXU9pWM31N/VgyHY7w0iluipyDsAR3ovkwGWYouBJCCCGEENKgKSTmC4u6Ca8NF2E2mcfVeYiErEkouBJCCCGEkDWFGWVXopYuJJNlIZtCqhACS0uLGB2rpKp5npcw6xXwm0Juo82m4NpsU4oQSek1rdGVDX/U+mfDj9UQhqPYoRVOOWEFPQjJgEPBlRBCCCGErClS5r85FrRNYa9ZyPM8jIyMwKZU1U1zW5n4JgRcyo2E5ELBlRBCCCGErGLSQY1MwTXP9TMuox0LggC+78epb3QBVc/DGkVRbttJc2LaChOSBwVXQgghhBCy6jDNaxPCJdIBkFq1IwzT3Xp70urLWhdYRWwerATZ3ByrWkAls0wqvY2096uPLa++LXATIYMOBVdCCCGEELLqUGa4EiGAVtrNwRPeEmbEhnCZKwATskqh4EoIIYQQQoYSKZNCaSSDVBlhcR41fVDtClARa07rB7JNjs1jiWjDQhdA41KJcQCAjOp1BBoaW60JF0E1fU5NraoeWKree5SoUz9WRV2v7AMM1EQGEAquhBBCCCFkKHENgtTr/tslOW5qTwnJg4IrIYQQQggZAupaQt2E1tSCttJIqrQ0eRpM0x817r1Rt1X+Vr2s3rfqvxNS2lzjO9WX+dmU623+ry6BqghZSSi4EkIIIYSQgaWZsiZs/F+Xwtx9VZXZbCvtbKfaW1MYVubG3fBH1YM3dcJKaagJ6QQKroQQQgghZGBpClk2baV5LFsTqguueUJkp4GPzHqe53VN45ryu20TXXBlgCcyLFBwJYQQQgghK0zSDFhoAqkSq2TjUELQ8pJLWWFRJMpGcSWwSinhIZl6RlpkN1PAtaWZyUO17YkSIFE315XZpsbCq5c3AzOZ6KbOVgE0Sk+C5/lx23p5mzCtTIuVWTQhgwIFV0IIIYQQ0kfSwlAcDTiWUtO1lLCnC46RrWAGCWGxh5aysfCtIh3npLWx1SvStn5Oeea/RQTQKIqwuLiMkZER+L7vXI+QXkPBlRBCCCGE9A2VVxXQha2kBtET2QJTQgjzWpv8qh6ycqG2g1nXZh6clSpH1/SaGt1W4zMDL9k0rjbhOCs4U7q+QFALEIZhywBUhPQbCq6EEEIIIaTnKCEpktkayG76W8bCWS/Vq6sQ3/cxOjq60sMgJAUFV0IIIYQQ0hppLBtFkPjoeR5klDwGAJFxzNMj/8YyZba2MC6aocFMfM6sbdTT/F7rvbcWmFUqGltwJKVJtWkybVpRawAo6RnfeVowKfVdaG1H/7d9Dozzk176G9n8h+8LSBlCCIoKZHDg3UgIIYQQQloj8v0koyiKbVKTfp09HVVHrFREXbs5LzXDhORBwZUQQgghhDhgCq7Jz1EUxdGAB1lY1bFpLvvZr06naXgIWe1QcCWEEEIIIS0RIhkQSA+yVP8cZRjcugtiNuGtl0JlkbZbpcPJyhFrnosenElHBUMyTYv1lDXCcxe0E+20LJ3dBgVpMihQcCWEEEIIIS1RKWuaEW2bGte60CUzEqkypYpCCNG3/KiJVDlMx0pWARRcCSGEEEIIAD0Sb63+f12zF6lARg2kpomLAA9e1/KjWgMxWRR/Njk5q15eehm9nSyTXVv/epCj+JBhQi0M3+BIRhCNdD8q0JOphfU8r5nbFoDw1LiSQayyAj+ltL5eOn1OatzqO/2yyhCe8CDgA2B6HLKyUHAlhBBCCCEAmkGVlPCVEKbaNjgdLmwmu52ga1dV2/3QuBKy2qDgSgghhBCyhlEpVur/Vv6rtnQtyXqD6PuozHA7McdtmkKn50C1XQS7v27ymKk5jaIo9mdVZWwpePL6Kyp45/nuDuClJmsQCq6EEEIIIWsQa5AlJaAwM8uKEQucBQVPptMhqx0KroQQQggha5Cm4KrnXKVqbaWxCa4u18UUXHktyWqDgishhBBCyFBiM1k1zGNFM8CPEmw8NExRVRG9HRWfp0DaFZ12Ayi5YGsnNqttCGnKPFg3E87tPw5IlDbnlc0JijH9X71UblsgjCJIKeH7fqKsGm8r4oBRaJo9y0iNM9v8uV1BNS9/bD0oU72M50lIa4QqQvoDBVdCCCGEkKHEJsQkj9F8tP+Uy2WEYdi6ICGkEBRcCSGEEEJWCQl/VfO7hhAbaRo2Mw1Lsx3EZbQGrEGCbH30y0y11XiKtNPqO72fOEBTlE4zEwRNLXdmP5Y2zTHE10vTHktZPDiUjqmhNseQN249HQ8hKwEFV0IIIYSQocRiFuuZAlha2BKx7ERtbLuoOR+2FEGm0ErIMEHBlRBCCCFkwBCx62XD1xS1+LtUupZkzcw2bRpXCemuRPNE3ddSJMdoG0u7opFL2peEllIAvu/Hprmu/rQurppmW1ILtVz3+Wz6nibGLOzj1o8J5auaOFezw7RmVUYCkdQ2ISzm4nnn1q7QqjTzlHnJSkLBlRBCCCFkQDHzqtrQTUcjhzw2g6xxa2ds1Wo1DoTUL2JBrq+9ErK2oeBKCCGEELKiWIIsGVq7vMi0uqkwPPeotYNoKpzlc5tHpVLpezCk2FeUoishfYOCKyGEEELIStIwG9UFtjj9ifrcMKF11UjmBUlqV2A1zXhtwrSLoN2qj6wxZrWzEhF84+uB9CZA3uy2MoNuhT7PreZVbQJ0K4CV3m87GwyEdAoFV0IIIYSQFUTKtOC60nq8bgo7JM0ga70JGVQouBJCCCGE9BhbkKWEiS8AITxEUSPdSUqgkelUJl5a+BENTa2nyhSUi6SU9WBHFvPlVOAji/a1XWE3T4DL1VK2G2zIjINkacY8Vi6XsbCwgPHxcdRq9esY+xQbZV3TBiUPtk5zY2pc8wIxdSU1kTDvgxCRBHxRxspvr5C1RvuJoAghhBBCiBNRFKX+iuB5HqSUhesVRQnHJM3y8jJGRkawvLzcsmwnuVZd4XUiaw1qXAkhhBBCuoEIUofyhAulEVNCTqxFy4hWK4RAqdRcukntuNZo4li7pqg2H8a8Nl39Lc36qp7ZdpYvrYlZvl3fWhc8T9OIt6DXJsDN9tPn2Gv/06bmv7+RnAmh4EoIIYQQ0gXaDbTTCzoVXFba93Kl+x9mXObOdWOAkEGCgishhBBCSEssPp+NY0qratN0+Q0tXVzHJqxK4/8WrFpKmf1dUUxNompbadc8z0PUPNio5C7wtBqjrjlN+PEWbF9YjllTBEWGZjeSsUY1b5ypfi1FwjCEEKK4uXDKn9TWoZcYWxRFcQ7beA5s7rONcbbSxJtzQMggQcGVEEIIIcSR5II/nbLGVp7Red3RzaaHlZXIK0vIWoCCKyGEEEJIAovGKc61qn1nRqa1CKlSyoTmbZgFsn6g8o4OM2EYcsOCkB5AwZUQQgghRMdisqkEViGawpWAF5sHK0ElK3VLJ0GSzPq9EOyyzFr1gFHKDjcOKqWZEZvn2coc2Dym6IWZqjWYlKWc2bctOFXqfC3t2O6DLAqnzDHrqWBejv3lBdbSo10rk+E80+KupNshpAAUXAkhhBBCNKIobeYphGkiLKFnFfS8phA76Cghlb6MSf/ktY4SuIfhHiZrEwquhBBCCFkzqIBKSa1fXVCNhRibPk5ogYtE40/WBdh6U7JeUwiEYRhr5fIC9LgICM0yFo2Xobn0fT8OOpSrWWu0ZQssFGtTbWlWjKFIyITGWe/Dfg7NcZgmwS7pe5QGUO9DD1CVJXyq61A0jY85PxIS8ER9/noo5zaDLKXvHfMMZCSaN2Q8qOwNCVOTautbWLS48fWJ9DGpfpgWh/QHCq6EEEIIWXP0wvQ2z5xykBjEMbmQtwmghLHCkXyHHF3gd4qCTN9bMsRQcCWEEELIqkQ37236YIaJz63baAgGDmV1rWO3fFvz+jHLR1FkTYVi1pNanaz2XPwXbb6qLlrNTk2UbZpalRLGRi+EWVOL264waE1zpNpyuHXaTYWU228OzP9KVhIKroQQQghZlUiE2r9Vnk+b6S01UKsZCliErA4ouBJCCCFkVaKnrmlqxiyCq6SP3mqG0W8JWR1QcCWEEELIEJKXa1UFt9G+amhVI5k2i3QRZ/JMcDvFze8wO1iSnopHOtiXqnqqRT0YlamdzDP91b9TQX/MMnq5dlO/ZPXfq/KubXZDk5s7Ns/SfpScV3OePc/LvQNcUhLlXrtEqiipHROA9KBH2iak21BwJYQQQsgQYAiqjQV0wl9SraNzhAHl77iazEeVr2VetNg8sgROQggZJCi4EkIIIWTwMbSp0NLENPNPtm4mL29nnjDrVr49oS8IApTLZWvbLmli2jWFLVqvE6G2VxsFa8UMuDl/yRQ1cVAuleooivTMTQ7tdR7USZnkr+4rQAYBCq6EEEIIGXiiqB5oqbnIVlrCev7U+t9wmilWKhUAg68FNqMBFxF4svKokuFCj9Cc3DQQbqG3CekACq6EEEIIWUHSvqp+SSAIAgghEIZhrFnSkVJfQNf/0nJU2v9PRNnaIZt2U9cqqUV7FKl/t2N2bEs9Yy/ZLT/KVkhtMkz/4IQvsKnd085FAIAngCidFsfzvPg6dgvlU+uUwsUlrUybQ2tHy60L8epzFEXwRVK418fUTMuUfF4k0NCwNv1dbWMyLQ2cxy3VPa/GmYzGrZ7NIAjgeRKeJyHbnUxCWjCcW5OEEEIIWbVUq1UEQYDFxUX4vp8ZIMj8yyMvz6cLvcgFmketVhsIDaWUMv5rt9z8/HxXz8V1TKSJ53lt3cPm82V73qIowvLyctfGSkgW1LgSQgghpI/YgyzplEolBEGAiYkJhGGIUqkUmwrH1Qr6qNZqtY6EzzAMIaVEqdSfpVOpVOqbxjUPV19I3fdYaREV6jp2c0zqb7X7tnaLPN/uPPTyprm3rjU2fbQJ6QVipV+IrlSr1eEYKCGEEEKyEUHio5QRgiBApVLRtGi2gERmEJ60yaO+kBZCJExE84L4qO90U+B4uHHgJyM4lDaGYtiWM50JX0UD7aTWfp4l/UnOqkuZDNssQoXsrz+raXprfgc4zonDJeimkKybpccazCh5DnljanVuadP6/HvcJDaHl9mbPabWtfmZBp3EjUqlUuihosaVEEIIIX3EFDAilMs+6ppYCc8TUGvqpIY07TtpogSqdgUnM/iQfnyQFXu2gDlkdaY+UrR7bln3OCHDADWuhBBCCOkYT1PRqbVFBLt5qG4C28r81AzCY2qO9PylpmmtsGrh7OPR27ZpRbO0Uq21cOb33de4FsVJk+ew6lLz3U5qFX2TQe93pcjSHic+G4GqAPu4zbbMQFVZ5M1dIVPfhpZUbeBIKVPppKzjyNGu5naXepapcSVuUONKCCGEkL6ja3LihXpj/aovkoUQmJ2dxejoaEcBk9r12esmTPGSRl0XV3/iQbiO7VBk3P0O7JXHII2FkKJQ40oIIYQQJ5L+pGHj/w2taFhLlVOaJ9MXzjzm1l8Bf0UVIMjeasv6ulbU7NeeKidviZLszzZ8l6VYO1rNzLZyNIIKD26BocwgSXqdrIjQeagUSL0QsGz3U/zZknrG9Dl1nXdzflvVM6P02u513X87q+1mgKz03Akv+zrE/SG9kVT0uauX7SyCN1k7UONKCCGEkJ6QiCjaMAOOZITFhWWMjYxYamQLe6uBYdn8HybMiMRrGdeNgyySzxrvVTL8UHAlhBBCiBNJwVWZhApMTIwnNK5NtaKfqjcoPo3doIg2irgzCGmABgGXDZ+8MgltbJfHRshKQMGVEEIIIUkaZsBNs96mgBabLEJPrSEB0VxSWMMPGcGTlGZNSKQiAdsC5SjTVfWVNcBQpEweAWGYuuYLl/nL+iwhqj2B1Wau2lqscM1b6zQm0wTWUkQ6jCmCbEy2ABrBluLro5kQ5wmhtlys/RBaU0Ke3r+aH8+YGcuwXNLouPRv5kfN1Do3zIBVfb2Z2FzbMHXXU0zFZT3bZlI64rBwCbQU52JWbdJUmPQGCq6EEELImia9WFX+q80UNI2SWvTeVtFR9Yi76t/DaAJqi1ZMstHzqoZhiHK5nBJOOZdN8ubFZc5aReU2fZBbtWd+R1sCMkhQcCWEEELWIPHiVITJzwAElIa18Vk0BU4lhMa6woxAMvpnW/TgWBiUzX/HQqLIzjfZHHf2klpvL6u+c6CdPgpZiTlos992giEVrdO8BsljQghAJIV9dR1dBa+s6+Yypk6iPK+UMK1vBinyrknWPW2bt17f46bFQKzx1TT6NKMn3YSCKyGEELKGiaK64JpYYApTaOyvpjRPeInNk4fUa08XyM1zVIKXW37YlSM2LdWGqKfB6UQIZIqhfJrm+VH8f2XN4DJvcX2LWXCnxK4FNBUmPYKCKyGEELJKEYYZcNMEGLH9r6eE0sSaN7nwlJpGRS18Rax0E5b6iMsXFcKklIn+9OMJIkuZ+FQavpeWtXmzeJ6ppF4+O5hUWntrT1mSHoOI50avX6+mtJXdym+aHksUyUSQLJufpsg5hWbaleYxD43z8URiXpT/souvq+d5TumS8gIV6X0WEYCtbTpUt81TSvtrTYGUfa/YrAL0TY1E/55E/ISKZP26+rt+zzd907NT5lgx29Q3teLb3kt+RBVC1K85JEUN0j2Gz9mEEEIIIU7oPm7mX7/6b0fwMk0nzTapkesMm+l2t2j3mivyrv2wIITA8vLySg+DkFUHt0EIIYSQVUFekCX1ub++Z+36HTY1kNnaKNI+efPbKZ36mvZybP1CSomRkZGhPgdCBhEKroQQQsgQ4xJkKf5sEVZbRSXVy+QtxLPaaWUqrAck0uu0ikAchmFPNYcKW6TXrABProKKqTVuOzhSm2QFvuoU/Zop4dV1rHkBtUzy0gDlpeBpO32QA+Z9rD4HQQABL3WPt3q2dHNy3YRaGeTanhvznGwbVQkzYsfzKkqirw43MgjRoeBKCCGEDDHNBWE6eqswHPDEKvrZzxNsOzVXzSMMw1Vhzkr6g+/7XQ0kVkQA7KaFRVPQ7qgZQjpCDMsOSLVaHY6BEkIIIV3GDLIURUFmWdti1bZotaXhMNswgyu5aoxyNazGV7psHed9RVpL4xQxFe1pQNPlu5lSxZyLdpcz7hoyZa6bVwZwE2aKXPMoiqyBntAIBuVyrxRNV2TWK0qRe7UdsrSN1qBOcfop9+uSNZepzRvpJTXtqcjhsAdsMsqZ4xZCOAnmAuWWZcjao1KpFHrKVs/WKyGEELJKKWLaqQssLot5PY0JIb2iV1pwlyjEqxHbefNZJqsdCq6EEELIICHq2lRdWPW0lBR1AaC1Ng3I98HM08bq5bNS0pj18jRzrsT1PIEwDJ0W4EmtUqHuUv22S7es1/LS/7j6Zyotet41aFfIaxU0SwgRK4aT96+Ij5nXNGvuXOfURbNso2iKJlsdXZuap/nM69/m29pqLFnn7Pt+5iZXnu+vie6f3OpZllK6GgMQ0jEUXAkhhJABIAzrwZU8f2U8YwbJdaiXPqqrnUG5jgnhzZJzd5joxbh7FdG5G2NNCqvDec3I6oSCKyGEENInTF9VoOmvqrSqqoi+XNTjBGdpOm2L1n4KMUqb0yqaq3Dw+VR+dDIRUTVDQ6z3Z55/qqhM+cHqbRafLxf/VVNzmu7X9l2qJ4v8IGW2mWzzWGu/W3Oe9IjNUqvvGdfAWaNp+jUb5q2uwla7EYdt9U1Nou6nqbTWeb1JKbPHbgjqNl/ZLP/ZxHOs+ZzGx0SY0J7q6YeURluVVRrYIAjgiewlfzzO+OWTbcVgG7cnSpn+s7FGGssQwoOAD4CmzKQ9eOcQQgghfSIOYGOY4XUD3/dRq9W61t6gwUi+/aFXqXIGnVhYLXiPhWEYW0t0i269G4IggJQSpRL1VGR1wDuZEEII6QlpASAM69rVXihCi2iuhpH2taKkCGs1sI+LX6qNXsxXt1LPKI1rGIYNTSchww3T4RBCCCFdwBSsJJraz3gh6pQuZXVjzpP74jzbRDoTL2m+LISwpiFRFE+HY44h7cuZHp/rCbeXrzNtTl7cVBjIMD92mLusdDg6NmHPJUiRWcaWasZ1XWsGJ7OldHEJbuaU6sZr7xk3hU0hBCRaa3etcxeZ9trpjbW2ZYKGSXMzuFqWybygqTBJwHQ4hBBCyAqgTCybgmtzgdn0T7PlTqQmpB2KpkHJyqdJhg9lXVDUyqBoqihCyGBBwZUQQgjRkcZPYyM9TeIQlMmvtvhV2oa4jKZVUMGGRFpI7ba+NU8rZAuKY1/3904L3EoDWf/eork0FUaWMZrnrp+3LW2JVjPZdkMoSgq7tjkxtcZJzZOd3gpM+jWvj791HT1glTTu48L9WxW87mbeLoKoChzVqr553+cFDrP2apbXYxbFVhSWfhuPfry5khOQKw9986sudEvISCZSHuma1OZ5Jvura2qTm2b6XOSl2HFCqE0k1WB6g8CuhSWkGBRcCSGEEB2bVtSA2prhIC/vLFn9rPQ172b/fOcQQsGVEEIIMTA1E0mT3yiK2nVZ6wt5/pX656aGxX1BHGnpafI0NEUCKZnCZZZ2NNVSi6allHYNmTFG2zj1dCNFUP60RdK7dCOoVlY6nEETdvT7wtTyuczBSguiOvH4HdLvmNpN/bsi/elz1jSVz/YXzktRpawJXO71Tu6llO8MT3tbAAAgAElEQVS/jOLnnJCiUHAlhBBCEiR9VRMaWCEan7noymPQBCbSe4rkduX90R7dzHdLyDBCwZUQQgjREUpwbWg0UgWk9Shp0q5WiQwvFFx7T1HBlfNMVhtMh0MIIWSVYjNlNSLRynrKmrygLXl2wQnTW5cUI7J1vlVllhcEAUqlEjzPQxAEbZnXpc/L1eezM4GzW4KrPUhS8XGYbTrULNyX6xhc0ry4U2x+bQJNlhmoyzwV9SG2pcyJ09JIe1lb24nxOtjt56Xxcekvt17BW9x2DZT5fRFzaZdrpsyAhRCJgEn6M5U4by8vgFmjTCIeXd102Uwl1AwMpplIG0Gk6mNlWpy1DtPhEEIIIQBMX1X9WKTySsr8lCr1aJzZJPw8o9ar4yL+j5VKBVEU4dKlSxgdHYXnedRgdgHlG9hRFFUCYHWllxmWc3FJA1U0VVS78H1E+g01roQQQlYlNs1EJKuJMqaW1FZP16jkaRJNrU4EGWtSsspkjVNHSgnf9xGGYdsLxWbbrc04G5/a6ier324scNsxf0zMvUUb5ft+YjOhGaimdWTponTbhLY+1tbCd0Lr1iG5ms8CZFkj5PWbdS1dNJ4uGtd2kaK11rroPBXRXueVVdfe932EQevUQC4R1W1z6aR1lul7VVjSg5G1BTWuhBBCCIAosuRaTa260r+Z3dJW6NF39UW3a3/KdHB2dhZTU1Ntm8uuFtq5LkW1aM0ov8XHR0g/Ufd2q/taSokwDEGzXLIaoMaVEELI0CMQpHwh9f8rjZOLH5nNPyvuR2l+Gn51ub6qhi9YO0gpceHCBSwtLWHbtm0tfWNb9+WqcXUZm1nP5iecbruTdCCt6pll7HORTE3i+37icza2ftvxu7W0bB1vt5Y9Sd9C51o5Y2p+ly5v+jvqFLFYcK2Xd81d7hWXsr2gqG+swvSHtZ6vRbtpYvUfb1PjaiItQrJEmByjKun5Df9XCtZrEWpcCSGErBmai9b0McWwRtj0fR9BEGDDhg1xoKa65oSQ4YQ+kZ1TxE+ekNUGBVdCCCEDTrYWQPkiRjKKTUlNDYzyPxs2wbVWq8U+mOVymYtVMvQM6ybSIJFnEULIaoeCKyGEkIHGlqIh9hnVrFSVz5cusOr1iuRA1AVdM/qs53kJMz9lbpdnipxl4pinPdHHL6XMNA/U2+sE1b6rWa+byW62H56aN3u9Yv25lMkyrXRNQ9JLXO5R/TvTZ7qbqY3MtlzHVOQ7s1wURRAO43T1U3apP6xCtPl+sj2vyPvO+LySEYib58FNOeIGBVdCCCEDTRTVzWOL+h92uiDrZboUJSwNm+ZEF5g8jxFB+4luJr7SgnYerkGDSHv0QtBUAiQfaTLoMDgTIYSQFSMd5DeI/5kXibdr/TtqXfTgTnq9VnVaaVVd+raVsWlSbBridFqX9ha7efPU6bnZ/ZPdNaeuC3iXdDRaaec22w0y5TaOdoJZZZ+LqQmPj1uatqWKSo3NMa1NhOxziMfkEJwp7sPRKsClno1ubwwUTf+TV09dF1u6rmbFpPVJ4ivjfaHjW/bq2g0i5UZd2yrgg8GZ1iYMzkQIIWToaJr+9l5YXa30UkPcS/JyrfaLdv0G1YbGsCgByPBTZPPMtvk3yNp6QlpBwZUQQkifSC+iJGTLhdggBCNx0Zza6gDZ/ppFAkYV7bdV7thW48sq69qOrp1uhVmv8a9Uv/1YcNs0y93QmAN1IaJUKuXOi566qd00L3kUqZfn8xx/tvWBdFA04SX7dZlfl3uu1TFz7vJSXLXy13XJl9qq/8R3Ba0fpJT1yOJRkPRxtahJc/1fjbHp39n8zs3ynaT2MvtV2O41QmwM5/YsIYSQoUMiTP/JEEJICCGRFz2YrA1iXzvP66sGuR9Rpz3Pw4kTJ3raB+kNg6BRX1hYQBAE8H0fvu8XFvSUT/1KQcGUdANqXAkhhPSFtL8lgIaQUv8no0uudZSAUKvVAPTP/LkdjXpRoijC9u3b++K7TbrLIOROnZiYgO/7CGtBvLkDuHpjr7yJ8LBGcSaDBYMzEUII6RgVaCQ2B/PCFcudWmSRWTRoShGzWmWuq5vftWtyqoT+5uIve0zJdlwCP9nbKY7dcLSX6Av4duqaNNtKBzTKY+UW5X0WRgyTX5cAQ0D6Ocuql2Wy6xJIqZdzX9Sc3iwfIW0CjshiztvG5bSZl9sLZj8ncT2RNhU2r1WvgjVJKeGJSm8aJwNL0eBMNBUmhBBSkCj9J+p/TRNguWKC66Cg0pf4fn6OiUHQ5pDBoF8C8Fp/Noti5lTm3BGyMtBUmBBCSDEskX+jMHmse1q84nTaZ14wKD3wkc1nK5nn1EHDYalnIy3QuKX1cKE7KVi6g0u/9mBO+e3pZVsF/enGObumXbH1b9bvJi5BhtoVnjsduzn3Kx2MDWiei+35LDK+vABbiXZyrCey5rUbmx1xG6ifq+/7TfP5Alr9rEBtLuPj5h1xgYIrIYSQQkRRmDpmiZvbj6GsGEqwzRNUByHNy7CR9Hd2/65bNBfePeuCkIFHbcx5nhebNLvQj2eUrG0ouBJCCImx+p6JAICWP7BPQqmLBicvBYUL9vPN10plaUfN43mawaJ+fN3bCLD1m05HpLRfeekx3JAWv8VmupT0WIqlQGlVVm0wJNKvNLpN9O+wyZCnOVLz1F1TX3e/Std73iUHqN6mOXemsYUEEhYInWDOnU37Wvy5aV224zQvttN2SGUUKT9qka5nw3YvtxybVtbzslMCxURK8AQ834eMJIRz+Ce7j3KheRVBwxe38Se9+PeHEICCKyGEEAtFA/yQ4Wc1aUnWioa7n7ltSXfo5DkrWpfXjqw2KLgSQsiaxaI5bKxzEqlrVpFAQ7JJLoqHe8G7Vhbs/Y6oO6ybG3l+6ysxFqD4PRpFUWEf7LXyHJC1AwVXQghZo0ikfVWbytU2zea6EKBlWOmlEOFi4lmUZu7S+mdl8llf4CPur9OARWlT42ZbWabI3QiwldWe1Xwzpy2XQFF5175Twa+b17xIW2qsrcbskpc21YYlnZPNRLmbZsitgj/ppvFFzXGzxtdMM5Pspx3M61E0RY8LepthGNYjohex9HUMqialrOekDZO/QVLKxkZp871EiA4FV0IIWaMktKoNmv6r2do3l0iXxceSXiRTW9CkXyahTUFhuLPlrVRU5F7QzQ2RfuabTUbL7Xl3pAso4b2bz425MTXMm5Nk5RHDcgNVq9XhGCghhAwAtqBDErX6/5WQmLM2SQau6ez1226QJetYjPIqdYNrv0XGklcmiqJYI6FSR+SNO+/81MLORXPl0l6Lmta20tqo5Nhs/arizbrtzbPqR18w2wIoqXs6rudZYlmntGjN8RfTWMk43VGzXrqUPgfJ43nX3k0rZR2Vca2yng3zevZCILHhkm4HaN4zevm8oD6mxYGtvj4GWxu2MRTFOt+WKfUgrPdzN+jpNZQW6wevs/d/PAeR5XlNBYySAAQgPQiRn/+arA4qlUqhG5oaV0IIWcUkUrIUUKIl0rwMsLpEmfW5Lua6la5BRZB1jT7cSgheSWxj6yyScDGSJsprc4+6F2lE1H3Vz2vZK+GYaVYIIQAFV0IIGXqE1/QTSglBmuq1UFYCffHZ4VqxFwvZdrW3Wd+1Y6Kc1si1TtlhaoOUH5+t7bbTc+Roo7LK6/+v928vmzy39nztbJq1rLEmjjlMh0sqjnZ9A+313O8n2z2gNKFFrpNNo6hfc71dvZxt/J3cZ1njc8Fmsmyei/q3/oy4XN9eCLdqnpRg7vqOaPq45vvWuo7BFdWH7d1S5F4D3Py/i5xT3jvEvB/W8mYWsUPBlRBChhz+sA8fLkJub/rLLtPtgEitWA3+p4NMPzWtQPev52q/P3p5fr24FvydIYMAfVwJIWTYkLXkR0vESqVozTVD9UQ6qquDP2u7Wqy8tqyRXh0itbbrx9rOGPtNUa1O+4F32j2//mrS0+O0+Xma2u+0j2v747DVt9+3Cc2R4a9r9T+3BErL6qv1mFzqNcfU7ftbP1+lMVXvFTUHeUJ1v7Soiiytd9H3h618ngm8q7+sWb6IJrKwZYrFxxUiqWV2fUcrUv7rGdYXmfeipI5tNUMfV0IIWaXEi3GHMp2a964VVlP0WdKE13Ow6JYJdy/R+w/DECrKNumMIjEICGkFBVdCCBkosjUvSiuTtwag4FoMCq6rk6Z2Z4UHQgCkNXODLriq4Gukc+irSroJBVdCCFlhEmaumuBqmvkKlf7D+P1vN92LHhTHLK/M5/QFh4vJro08bYuZ1qNIO1nHbP20anOQFlX6fOsRd21lgPQcdNNvNu/adSr0F61XxJSzWbZ94SMreFbeHFjTtRjmy/3aVCryLugXec+by7Pfi/Ha3CmKBkLKKp8VeK0d9OtpzkNW0CghBIIgyEwZVqRv8x43x2T7rI7ppsK235aEWbkBtw+IDgVXQghZYRLRP1GPEFxf8GQt0pI/5SudTqUb2M7BzN241lCLPZor1kkLkL3rK2/u9WOxLGoMRuX2lVKu2Mq7mUJmZfonK4/Kcz0swZWsUZCH/+eNdBEKroQQ0gf0XKixRg01dSD+TqhgL6GEgLGDrgIuGQKtNdiLQ6oS2865GqaErAdvgnTyqW1Xk5JHJwJrr/yqstI2dKMvvU2lkVALT7OMTUNhH4KpCbRpl2w5Mu1BjpLnGaXKmlqfbq6VpUxqm1Q3iXMyFr7COj+WIDrG8+JZo+Rkmx/nmcLans90/exrkP25OabknEdGWy5Bnbr3rAjtVSIjCd9itZFnFdCpdtX6XnOgaH82bbxL22p85j3XijytZlaKntwAd0i/V/IwLUBsAZdytfuRNl74dYFUmNYI3KQj+VBwJYSQPmAzL5QFbQZN4bLfDKJZbRb90tLqi7m1qhkmK88wPJNZmGO3nYuyvnARFFfK/LnTMp0QBAFKpdLQvYNS4x3e25j0CabDIYSQLpHc6a+b/MbmrtYa7dlApXbqo/RufqvxAfbUC9ad+Zy3b7e0JEVxiVI6rCjNpe635uInnKeR02pa2sjWyOUHOXKZ8/R90anpc975SmOePDR9Vc1z0efUfKb0e97FzLI395/7/ObVk8a52MoI4aXmqZvkzc8gRp01/cyzyph+mwqX87G9f4toMLPGlDfeRJs52k3dokN4yWfXPM9W9358TlHaOgAi+RuY0MrG5aiFXc0wHQ4hhKwQCa1qw1c1XgH3UK4atEUfISYrdY8yavTgEwexGuLNpyAIhsIX3fU5SD432UGhug2fU9IKCq6EENIlkoKriza1Oz/S7fp0EdIvVlJwXQ2C0WpmWK+PrpUcBqG1GazLzZ+1GRW7jqlV7gX8LSOtoKkwIYQUwDSblVLGQZb68aOblbrGxBb4wyVIjN6Py3dOJnE9mIuVXuj2UpNnNddOmQu7mfzqpof19BPphaebGbDFzC/Vv1vwoHZxMXXvNyKVwqObg+rO/W1/XpPXpaiZa14/+fdI8fZs43J913Zihpz1rjVTubSLun+Lji/1G5RjctwLrNfXMAMu+huR32EIQDRMmwd/g4AUg6bChBDSVZIL/Uga/j3a4rIbiz9CCOkXw5RKKwzDwvlIfd9v6xxVKqRhmh9C1gIUXAkhJI9G8AhbkCVzw73dtAY2lIYsEUCmQOTaTgVnU6PRTqoIlzG5mq3ZxtQrimqOlAYmr2xWqgo9tUSrMdm0P2EYan3nB+bKmrMi18V13s1ASGa9djRWKQ1ciznvBy5z2mkAs7z7MX0P5I+lU4pYGnT7Wqh7psj5tCt4Zr3zVHuu72LXd71Zvgj93iTVI6mr6+F5fiLvdiK4kxZoziTr3Zn4vtheBVnlUHAlhBAL8YJHhA6le7dw4I7/YLLSfnkqv+sw+Nb1CtuzMciWDvrCvpus5Xtg0OllpOaVQs/lGob130fzHJWg2sm92azv8htM1gr0cSWErFlMX6FIVgvVj3eeLb5oLv6kVt+kDt907aZTyNUyqqw7auFtTa9RrA+1KAmCoLOxdehraguu4qIh61dAFl3zk9TAp31chcgeTyfpNTrBLS2I7flxTyeSp9HJ69/UCrUir5+Ytjea2vUNdLFGyG6neV9kf5doSZgBfrL9Zzv2AZXJe1zPl2x7XtulFxtQ5r3i/K73RMsy7frGxl1ogqeTNY30WtxfyXelOZ+u2vkss277u4ubNasF+rgSQogjw7Jxt9pQiyXbIkU/5iIYdmvRWbQNffHXbZjChRRltb/LVjoYW1G6FcCpF/RaA9zOtVKbmLQeIK2g4EoIWSNYdnKdUtaQblMqlWL/KJvvYxG6ZbJbVEPQK6FVHwsFV+JKV6O4DiD9SMXSTXTt8KDRS2sRMy6DK1EUxb8LhORBU2FCyNpA1E1SE5F/Xcx5NTNNM6ql+i7PDCxXqPJEKqAFou686lS/3UhNoc4vngvD9NB1B98lQEmvF3rtpuXIEpD1z91eDGaZ5GWltemmr3WRedJTqgRBgKeffhpXX311ZvqSFNq0xfeBTJoeWuc+p8luBCdrR2sm1Duh8H3mYs5rC/iU3aKLCblWOrN+/jhdynSOOQfdSrnTK0w3A+u9GjXvbYVZrlemwlnuD9Y2ZTIolkuQvKz2Vf9ZtDLfb7p2UO+2WqCpMCGEaHQaZElflJfL5cI7witlMjaIO/2rkX6btg3S4txEzcW+ffvajvzay/tWaZoGeQ5JPupeKZoWZxAxhdZ+kfWb5PpstPv80AyYdANqXAkhQ08qITtqqTL6jn07kR5bpTUYBh+sIql1stJ5mIK7bV7MuS2SEqIbwaRc6rXr55V3LmpBmBeQxWszcI1pCqr+wjDsyQI4pTGyBF1pNUbXtm3fdYquHXLaPPKawXRswWWEEJBh9qZVsevppqW0a9XbweU5l47vxe5cH5dgRTbrBvO9ov7099Igmk1btZReemypOXAJ6uTZ39Wt8H0/5a4ho+zNW9vGT9yfZ1yrFu2Yx9S/8zaxkvX8ofjNJa2hxpUQsuZICVPc2M2l175XKlVLP1DXfhB280ul+k/qalhMtZO6pZuRXvuN7vdnWxBHUdTDpFfERrv30zDfh/1Ez0nr8v6ktQIZBCi4EkKGCiktJr8ivTOfXb83aUGyfB9b7TL3E5dzb5UCJmuXWzepbleINDUqLoukdue3yDVw1QwWMbMrWj9Ls60Wk93WPrho0vP8fbPaa/Vd0eczSytj3g9Frk0785ivHcr+zmyj34JBs7/seU9en/z2VFCi7o7N/j7N2iDTNeeuc6+Cxfl++5o812cjPgfbd21sj7TyJ9W1qrrwaXvW8p47vZ55ndNjyH6/6VYQOln3jf25XH35cYkbFFwJIUNB/KMlLD9u3AUeGAZxIUEtweqG17e3JOc3+/nuptDaT5SgWq1WMT4+PrDRgNc6vCYEoOBKCBkSmru1tkVq691e0h9c/Fn7zSBou0nv4PXtLUV8l4dRC6Y0tyMjIys9FJJDEc0/Wb0wOBMhZHAwzICt5lWNMubiSN8ldwpoYeln2BZcK0mWSbBtLjv9nSlqQtuiNbOFlv26mtIVwWV+9EBitu+6nSvSRUCxP5N519z2ndGmYxCrlNmnaPYVm4Ua6aR6/UynTVjbTVPUrpmyre3eL5ea40xe817nNlb/1q+r7pu8EhpfF2Fd/35xcRGjo6P2gpaATam22gng5Np2i+dezbUZyEsFY2qaQTd/yzvezJSWe6pheSXgI5FPiwwdDM5ECBkS0guMYdlIW83kCfGDrk1dC+QJi91qu9fYopOuNL3cvBrWjTEXf+xhO6c8urnZlsfo6OjQmlUTstJQcCWErAj6jqxCiOZubqp8i0AwnSygurH4ygroEYZhofyvrYIj6WXaxdwtdx2TThHNShGB15a+pB8Cc5ZmLyu4S7vXoMi5ZGky9ZQtRQPJuJp9Zj1fRerk9at/DoIApVIJvu83nxPZLGu2YY5Bn1NzdLbzzQsgVtTU1eV6ttOeOSb1/25r2dulqXlLH+sFtrQpai7090Wr5zXPYiDLsiHrO9vYso65Bgsr8n5pajc7fy+6aIxdfsPiuUR6nou+O5pz37Jbsoag4EoIWSHWxq9RYjHuQDtpSHpNVu7WInVc660UayWFxiCeZ6VSQRRFCIJgxdMaDZommJBBQY9QrFwVsp6VbjzH8W8h+pNajQwH9HElhHQdr+FgkxReTEGm+cPW9OVLamGFV0pp3zyr31+2YCiEQBiG1h/STrVfw0aR932/zOZM2tUI2jZChBAIvLoPWCmq/9Ua96byC/Mim5YtuSiLRF0rKKVEuVyuL9pk/VgyHUfzvvd9H5EMEiaBnufBj3wI0bwvAaC6uIyJiQnMzs6iUqmgNFKJnwl1/weejO97KSVkKFEqlVLpLTzZmDcpISKJWimpYRSy39c1uw/P8xCGIebm5jA5OQnf97Vn211L065Ze1ET2CK+82bqDqOWrYa9oURbtvG23iBS9fM20ezTlPRr1Nsq/j40ytncFqV93K1w8a11GW+uP3ULa4Is/+v4eJSunyqjlSsSr8FWJi5b0Kqm3d850x8/6/ejpYVIjj+rrVzz2tPPdVgp6uPKK00I6TpZAWW6Vb7oWPLMAodl867f6ELSMJAlqHioL/SETC7w1DEbUkrUarWmdqEWYtQroSwFvCACqgGCIMhc3ClTzihE/OeJEqrLAQIRIIBENQJqkY+F5QizS7NYCpewUFvAsdPHsFBbqJfT/hABiAAZSszPzteF2SDAwsJCPE6Vi3JxcRFLS0uQUiIMw4HdbFHzNDU1BQCo1Wq55Yvcj8N07/aaTp/lYXsXkNVBUTcIsjag4EoI6ZAo9TdIgiuQHymRP4x2hm2xmim4NjStQFMvLyTgN/7UXr3+B9R9k+PzlxJBrYYjhw/j8KFDOHL4MDzPw4kTJ6xjqVQqOH36NDzPj/+iSKJSGUEkJSJICK8Er1RGJH1s2LwJ8D1s2roFW7dfhu8+8giE59XLNv68UCBYrGHx0gLOnz6HkydPYnx8PKmFbZx7rVbD6OhoXbsWyVhIz4usvRIoTZXyb01qr+3lKbgWh4IrGUaK+puTtQFNhQkhbRG/O0SQOOZ5Xt22MkW2qXBmGeGnA/WY/Vvb7g3mD2mn5sPdMF/rx4+76sc0GZRSxsJGP35L9IAsesCPet/pACthGGLEL+H4kaPYuWc3Iq8eYCSsBajNLeDUiZOY3DCN+fl5TE9P48SJE7juuusQaek1pJTw0Qzqo0x8/Uq5acYb1J+BUikpeAWBjM1fS6VS/f+yDClDBEGAkZEyjh49io3TG1Gr1RAEAZaWljAxPYaRkRGMjo5ieXkZy8vLeOj+hzExMYEtW7Zg48aN8KfKqQBWUkrIIMTi4iIgJdZPrUMg6mbLQRCgXC5jqVrLDJaSZTrr6vdpv1fbvS+y7+msQDvd0NDkBvHJMe00r4OOlJExh26mwulzKWZi7EJz3Mn3cf3ezjaljkfUQ1Nh+zht85s2ac6qn+ivRQClVvVzMeZO3zSKf9PaNAMuYiqcqNel34lWv1et+sm7lnmmwonrg+TvjucxZM+wwnQ4hJCeYvo4pYXGpn8aWf30UmB1EeyFEAiCAJVKGVJKLC8vNz5XAACPPPwdrF83XY8+CoFQ1qOQzl68BN/zMD4yiu1bt+Hxxx/Hvj17IYMQqDT9p3zfx+zCPCqVCsqVMmpBAK9SijWFS0tLqFQqDcEJcZTTWq2Gixfn4ojStVoNCwsLePqhw9iydQNK5RCRXMb09BR+9M0/jZ//+Z/H2bNnsWnTJhw5fhC33norPvShD+HlL385RkdHMTY6Ct/zsLiwgIMXL2LRq2LDhg2Ynp7G1NQUwjCsBzharmJxcREPffvbePZNN2NscjwWgI8cOoytO3bA8zx4nldo4U6GF93/sBsRyQctgJVrxFuysqj7UPm2q2jiRerHDM7tR/oMNa6EkBTxD4RMp6zpNOptvMiwaEhcWkyEPFGaQAcbyE61o2Y7Op1qXPPICyBTpIzzmHRlkgrqE6X70xfCNgHIjEDp0h8AlIVEqVTB/FwVUoaYX7gAvzyKiYmJOMiWqW2NogheY4jVahUAMDY2htCrfyf8piBaFj4WFxfrgmi5jJLvY2lxEeVSBRcvzmNudgGnTh/DDTfcgCgC5ufn8fBD38PZs2fx3OfdhpGRMparCwhqITwh6hrS0TEsLCxg/cat2L9/P86dmcF111yP2bnz8EQF0xOTeOD+r+L5d96OT/7Lfbg4dw6veM0rMTa+HnPzSzhz8ijWTW3Co489gptuvhal0RKi0MMf/cEf4/Ch/XjLm9+Io6eXcMtNN+LR7z6MqYkxbN28F6eOPYXTBx/Ghi2bsFgax7SI8LkvfQN33nU39u3dim/dfx+eeeP3Af4lnDhxAr/3v/4cP/dzP4lzF8/i0tIc3vCm/4TlqoSsLWFi205EpRIqQYBjB/aj6kls2bwL69ZNIkANUkSA9OrPqPTgAYg8I6BL27/SrbWr9X5M4aR1GpJeo7R8TcGp+0uVlV6n5W9otDvfNo12tpbSdQ66LVSbvxuRNm7zu26+h3M369rVuJpDsWjUO03vFNezaE6FV/8tqNVqcWA59dzk1bMFZ0qlMor82LqFDBdFNa7+u971rh4NpbuEYfiulR4DIWuFpk9TpP1btljAuBELPVpf8Q9/m+N1GYpNw9QterlYLpLPrzsdNv8ZXxtjLaD3ZxNcbWVc+gMAXwBzc/P4zKc/h+uuuxZBsIzKyGi8KNH709st+yXs378fmzdvjv07Q0h48GL/zpJXggwilPwSglqA5aVlHHjqMMKawMGnj+HP/vQvcOXefTh+8DjKYgS//Ru/Ax8+PvUvn8Bdz70DMojqUYiDCF7JQ7hUxaWz5zEifBx64ims3zyN9VPTuHR+Dl/+4n145Onv4XnPux0TkyM4fexJPL3/Ybzk37nXrl4AACAASURBVPxb7Nl3OUZGRyAQYWxsBFu3boEQHtatm8L0+nUYn5jAgf0H8P0veiFeeM/zMT5Wxi/87M/i7jtvx3jFw47tW3H+3Cm8591vx797zUuxa/cObNyyGVddfSsmN+zGzbffhXVT6/DIo09h976rsffqfdiyfReeedNz8As/8268/t+/Hhum1uHRh76FI08+jg+///dRrS5g9+4rID0fKJUwObEJfmUCS1JiPqhhMhyFF/rw4NcDXgEIIbvy/LoKrmmhcOUF17Xm+9ktwVW9jxPtmYJrG+326vrH11lr3/xN6WbfuYJrywOu9eyCdqvNRrfztD2b9bpKYFUuFsn+HGyjbeOU3oqn0iLt4fv+u4uUp8aVEAIAiGQ1dUzIYsJekV1aW8miGtfmwbRmuNu0qx3ttM12iTUEDb9Mmz+RzYRQaRQSCzK1GW4Zr2q/yKJBRboVop5WZm5uLo4uK7wIS0tVvPc9v4V3v/udOHvuJBaXA+zYsQO+76NarSb8bWMNftj0I4zPuVSGDEKIIMK3H3wQTz3xJO550QsBIA6udN8Xv4EH7n8Yr3/9j+L4iUO47vor8f4/+AB27rwMr3r1KzEyUsb4xAjCMMTjjz2JW2+9FRcuXID0l7H/ySdx043PwsToGM6cPo3yunGMVUbxt3/zd3ju7c/Flj3X4fHvfg93P/9OnD99ACdPHsTVN96CU6fOYP7SLKbXT2H9unW4MDeHw4cP46abbsWJ42ewc9cWXLhwCVPjYzhz5ghGKhG+/cDDuPW223D48BEsVZdx092vQFirYqTioVqtoiY9LM4cwpbtV2JhuYpw6RxmzhzBxs37UCp5WFoMMHtpCYuyhD1XbMW5M4cRBfPYOL0eH//EV/DA17+Aq6/cjht2X4bF2Yu44vo7MTo5gm07t2D79u2Y9ybhlUqojI9iYXkB8ARGAi/h59y+sabrczOYgmuy3/x3YJFnvlXZVu11y8ok39S4WNt585SncY3LtJgT8z3UzfkG3LWbNvS0VK3GkKfFbVfj2rCXaGopE3sG7ieWFWsh8V2GxhVI/ibpbWTVs2lczf5k5GduopLBhulwCCHOqPQZw7KBRdwZ5Ovq+36srVhYWKjnN/X9WKAtl8t45zvfiSAIcPToUaxfvx61Wg1zc3PWhakSXpVAq3xOL12cw/GjJ3D4wGFMj07humdci6gWwYePmVMzmBidwIc+8AGcOHIMG6c24O//999garyE2593Bz7yzx9FZaKC6c1TKI2WUY1C7Np7BY6fPo3K+CTkUhULc/PwRyqoVTxM79yG6bENOHP8JF7zypdjpBxg61QFTz3+HSwvzmJJSlx787Mxv7gET4xiaVHiw3/3URzcfwC1YAmLS3M4cGA/zp49hwsXLuErX7oPYVBF2ReIwiquvfYZmJu/hGtuuB7rN2+BHy7DlwEWFpZw6fwl1ObmcG7mLBbm5iGDEGEYolIqY3QE8IWH0ZERLC0uYNvmKZw5cRRhLcRHPvwZPPnkWbz2R34EP/f2X8a/fe3/hV/5H+/HlTe8CFV4OH36JI49fQBf+uRn8Xvv/mn8+e+8A1/++N9jKgwxtlTNtMYgq4tuCcC9phvBuUh7rJTQyHfP2oMaV0JWMXHEPcvWtRnMQlp2NT20jhir12vuflpMSbXFj/JxNTGPRGhqUnN/FC3J3duhm+/DIlEprTvPXSKKotjM1tSmuvokqp352L/ZpgnxRD3PqRCoCYkR4UMCCIIAYUPWFBLxWMIwRLVaxaPffgjPuvUmiHIJUkTwlflp5MODQKU0glpYReRVEAYCXm0ZSwuzKE9PYsSfxNzcIkYrFQhvBMcOP44nH7kfxx5/BHMXL+Hme16CXdsvw7mzZxCFAR555BHsuuIKHHzqIK595h3wRtfjm1+8H7fdfjN+8e0/i7e+9a2YmJjA5ss8LCwtYcfOvXj8sYO4/eZn48yZM3jbz/4MTpw6if/vQx8CvGUs1yJs3LIZk2MlLM1dxO/+yu/hx9/8KmzcNI0vf+lbuOO5L8e52UXsuGI7Th79JqrzR1CeuhWPPrSIJw5+Do8+cR9e8pKX4cV3vwpnT85jctzH4uIxRPNz+Mzn/xV7nnk9rn7WjRCVCh6890u4+aZbsWP7FfjmNx8CJnxUvAq+++CjWFyq4R/+8eN4xcvuwg/+4KtxcXYRBw4ewQtf+EJcWDiNLVOTOHLkKMqj63D60FE88dQhPPrYE3jy6Sfx27/z69ixbQPCUgmiUsGpwyewcd00zp49guXqXD3408RmXFy6iLkL5/HUo9/B3MUZ7Ny6FSf3P4m911yF53z/i4HSBNZt24vl5WWEUQSv3Ai64kUQ0QgADx4CQCwjSsWF7P6C1+arZzum+9nZ6pvlW/dbeKiZmIGQ7ONIa+ZMX+DuBt0y62f7/Jv9thYsO4sVoPpVFgBhGGaWAQApkvOqRzXOEtbzovzqZaM2fZ2d3sk5EYsVbQfisvi9xv1YtKmZ82S5zp5I38ep+WyY/OrPpG1Ekdm+CCEl4HtlUCc3XNDHlRASE2untIWM0kylftSsv34O7xNhWRRp9cyd2Hjx4iC4Qjju5A7gtlYnplfdRDerVdNU2CfRNCmzzLcQIjZFgxAQsh7h1/f9ODuSCmakTMWiKMKlixex7bLtgKibCnqe17g3BEp+GYuLSwAEagEwNjaO2XNn8ZV778UVV16JS+cX8Jb/+GZs3LABX/r8F7EwdxHrxsawZdNW7Nl7DSbXb8T84gLWr1uHpeUl7N2zF5u37MTlO3fh//zDh3H23Hn89Qf/CM+78xa86MV34uz5Y7j2ur2ojE9gZuY0HnvsEdx5xx2Ym7uIi5fOYd9V+zA7O4ubn30zNq6fxtT6jajWAoTVZSzMz+HwsfO46fabMXPhEp5583MhS/P41ncewsat2zF3YQklfxIbpzfj1LGTeOc7fhK/8Z73Yte2fdi5ax1OnNyPA09/B5s3T+HAwcO48qqrsGv3buzYuRMlUcLOy7ahXKogigTWr9+IrTu2Ye+ePfiHv/0wHnroYfzGb/8Wbr75aqxbN4nLtm3D5s2bcHZmBnuv3I3q0iI2btyIsYl1iMIaPvKPH8Nznnsn/ttP/yQmpyfxwDe+gG07tuLw0acxWilj5uwpbNq8Fdu2b8PI2CRK5TFcvBTi3LkF3H3X9+HA/mO4/IqrcfMtN2Jm9hL+9sMfxdfvfwgLFxewe9cueEJAAPDLJUhEALz6PSTCxkaXmXqlqbXt1rPQyu9aP9bNgGvdfpRbj8NmUpp2CeieRqx1G1nz7Hou7VJksxAApPkiy3ivJQ9YylgHk9t1Jk7VHH2B27reLnUs6wK3WAy2g+kD5jNpq5a6VEJt0vsZNcigQh9XQgiUt1kURQjDECXfb1HernFVEkfej1IvNa5xqFi0WIRQ45pJNzSuKUK7hkotOIIgwMyZM4AQ2LJlC1BuaO7DCKOjo5ifn8fISN1v1PMlgloE3y8B8CDKqF/PCPDh48CBQxiRwGIgMDY2hn/6+79GWUg8956XYX52Hn/4e7+PH/qhV+Dez30Jr3nNKxEhRIQSxkbXIRJL2H3FLtz7hS9gcnwUWzZtxv3ffAKlSg2XZs/j5a94Be79/Kdxx3PuRKUyiunpKTz+xPdw3S3Ph4wuoYIA3/nmg7jiGdfi8KGjgF/CVVdfh3MX5lCRAuWJdfDLJZSxjFPHjmByagSjYyVUq1WcOzuPhdlTkFEJ69atx7FDT+OO59yCBx54ADPnDuHS7AWcPLaEdRM74U8AL/qBW/HA/d/GtftuB8aAG2+8Ef/8sY/jIx/+CN761p/Cpm2bsG5qPWZmzuHhh7+Le17yYnz+s/+KW66/CZ/53L/ih3/0DRgZi3DuzAwOHjiAmVOncdddd6Eytg73fv6zWFhaxqte93qURIDZS8uYml6PIyePYt26cYyEIeYWFrB+42ZcvDSHrVu3QgoPX/7yl7F3714AwKX5Ku770hfxQ695DT77mU/hh/7da7AcLmCk4qHsVzA3u4xzBw/gsf1P4uS5Gfzof/xxbNq2FaFo5qus/z+CF5kaEWpcbXRL49rd98vga1zVO0//zjaHSuMajzdM3ytFNK6Jc8vRXOYxyBpXmx9q5jxR40ococaVEIJI1uqaDiHheQLCZUFg+fUTaEZ+tGlOhRB2rahM/5gJrZ6rxjW1I66X1cbkdcm3yTxXfbGl/0D3w5+nm33ECzvPvE7Zc6YCIQGAiCRKng8h61rTxYUFPPTQQ9i5YwcWFxZw6OBBeFFDt+Z59fyo4+MYHx9HqVSKFyd+Y0GiFuNCCEhEKPkVSCkQVQGEIaIgQm2uig/+1V/jq/d+FUuzS4giiQ/8xV/hlS/5foTVZVz1jGtx/1e+hj//sz/Eu9/53wFZwmOPP4Jdl+/Ef/upn8Jll+3E8+/5PgRhhM0bN2F+YREyAj756S/gvq99Ce96xy+itrCAyy/fi21br8ATjx3DqZPncMcdd2Dm/CUszl3ChulpnDl9Ft/57newd+8ejI9PY3R0CktLIRYuzOB//u7v4pabn4WnHn0ET+9/AmM4Abk8h8UL53HkqSfxO7/1J3jBc+7AqFiE783gkUfvw8c+8Sm8+N/cjl279uGG65+FLdsmsW3rVdi8dSe+8tWHcWle4oYb96FWqwFS4Idf98N4xt59ODlzChcuXMRll23D2NgILrtsB8JagImREdRqyzg9cxLVWg3nZmbwsz/9Ntzz/Ltw6MABfP1rD+Du59+F3Xv24NTMOUyN+hgbHcPS0jImJioYKXtYngf+/E/+Es9+1q1Yv2ErZuerKFcEID1s23oZLs2ex5bLpnDZ9k3YtGkdrr1+H06cPobJ6W0oj5RRKpUh4WPXju3Ys28f1m/YiK9/7esIagFGS2VUSoBfkpARUCpVEIWRcW87LJbRPcsE/dlyDbrWqm9TMOrGWM02bO+mdtrpcFTGWNLj0ufAZZxZ713nEVnKqw1S8zonxmnRuOrvJkXCrz5H45oYew80rlltJ3TtHd5/akb0dtJB/bLXBfpzkL4uxkaBdR1g6c82ULNt0fg9kYDn+T3/fSbdo6jGlYIrIUOOHmCpGbI/GWVXuOxAWgXXbI1rfCzHxLhTwTVv+9lsu5fWI/pCRp/nXv449qRts82cKZNSolSqp5jZtH4DFubncXZmBuVyGWdPn8HmjZswc+YMNm7YgLlLszh5/AS27dgOUfIhghAQApVKpb4QVAJzoz89FYYo1RcbwVKIe79wH1Ct4bOf/DSeenQ/3vcHf4R9l+/BPXe/AEeOHMP7/uiPcOcdt+LS+RlACnznoQfxtrf9F5ydOYgbbroTjz/5KEq+REkAL3nxC7H/yAmcOnkKFy9cwLXXXIN/+ueP4/Ofvxfzyxdx9113YfbMeVTlLEZHJiClh19+xy/g2uv24tSJC/CERKk0ip2X78WVe3dj44atePrpY3jve38L937pa7jztusgPIFLF8/h137ll/Dyl74QU+tLmJ0P4JcncPDwCWy94Tq85nWvxZmLs7iw7GPvDXfixIk5vPLVr8MXPn8IX7zvG3jZq1+EyBMojazH8+65B1dcvRML58/ha1/9Km655dm4cPEijp06hc2btmDHzsuw/+mnUCp7+Po3voVbb74Fp04ex9XXXIWl6jx277kGG9dvxH943eswVhnBxMgorrhiH4AIBw4cwHW3PBty/iJOnTiFC2fP4ujhQzhx7CCm149i1/ZN8ESAi0sXML1xHMcOHMSWTZshwwDfffgB7N61ByISmJrcAA9ljI1MYqwyDgGJ85cuYGx8EkfPnEFpZAw//bafwcXzl/Cs65+Fxx9+GDNnTuDM6RPYtmUbBEqIpBldtb8CWNF22ik/SAvnXgmu3eq3Wa5741S/M2bwnoSQZRFczY1Ks85KmgrHvzumxtXWTrvXXD/VjPtYX0+Yaw/r5nZcLynUep5n09c7HLGNWzZKCnheawszMjhQcCVkFSGkehU3/kQEAQkBCRmFiMIAnkB8rPnnJf5spMLua/95IrtePLa4nkyOEc0dWV2jlzIbM+vY+rD8ZxeUkzvDrj/aLuWzfoz7oXHNI2FK1dAu2OrrGgQBD2EQxtdYl1yVWblXLjV2AoASBKbHJ3GmIbCOjY2hXC5jatMG+CMVjE5OwK+UMbl+Glu2X4ZSpYxSqQSUfHgNTasEIKMIAoBXlaiURxAEIWQo8a1vfxvry+P49Mc/hScffQI/8aY34czxc3juc+7ATbdcg02bNuHGm27FwQPfw1e/8q+48ZlX4ZWvein2XfMMnD93EmePfRdYPo3dOy/D8fl5XH/dHmxctw33vOiVOHXxCKJqiImxMo4ceBrbNm7BpqkNWFo8j9/89XfCL3m45pk34+zMcfgYQ602g9e+7qX4zL98Hoef+h5uvm0HKpUqZk7OojpWwtJCBYcf/RaWFx7F8YNncP3eCnbufSaece0z8OA378dtN92NDeunsWXPDdhx9W04fbGEH3j5nRgdWYeHH34SH/3EJ/Hqf/9a3HTb7VherOGqK3fiB176Mlyc8xGGEpdfeRU+9alP4cEvfxU33noD9u25EuvGpjE7H6IyvQ0TEwFOHz+GG595C54+dhHR3Dw2bBxH6FewYcMOILiIcriESJ7DyJjEX//NP+Jj//x57LnmWdi7bwrlcgXjE2WMlkbw4Le/h9/7f9+H+cUqLr98N3bt3g4RLWNitIzLr9iLpcUAx/Y/hk2bpvCdRx/DH7//gyijjK3bLkNlFBDlKh767tdx2fR61BYWEc5JYFliev0YHnrw23jjG38c99zzImzfuRuhBP7y/X+CMoDzMzOYuzCHh7/5VVxxxR6E8CBLY/AjIIBEWJIQqKEc1RCJUnwfN583XWvW/rPVi00n852gtD76uNul+Z5SGXSbf3WNJ6x9ZGkibRoy++akng5N9anKI6HRtNfLfrtLNXBRF2ek5RSsGr1GcxISwvMQSRnXr/+7+aMZRmHqR0Zq/6XGDcDzktdLKs1sQ9OZ+k1OtdKohyjRlpD237ystnKvnTrhxp/tGqh3rxo3hKsA2OwrG73z+p+IQxM0Pqt/62W08zD7yzmAoLYM31e/V8k21b8FSrGFWBSFjWdicDaPSDb0cSVDQe1Nb8/8zn/Dq+F933MAANEXvoHwg/+YWbb8Z++J/x28+w8gDx+3lvNecDv8N74GACAPHkPwq3+Y2Wbpl/8LxJ6dAIDwrz6K6N77reXE7h0ovfO/xp97dk6H9HPShL8X3ArvDa+qC2wHjyH4tfdl9//2/xtiz456/x/8GKJ7v5lxTttResd/jn9Yqm/65cw2Sz/2Knj33A4gQvTFBxB+4J9SZdRoy3/6K/FiMfzVPzbOqYn3gtvgv/HV9boHjyH41T9Ot9n4LSr9snZOf1k/J+tiZPd2lN7xn+LPtTe/M/Oc/Df8ILx7bqu3+cUHEH4wfU6K0vvfFf87/NX3QR4+YS0n7r4V/o/9YOOcjiN8z59k9//2tzTP6YP/lHudxNt/Ir5O4VveXZ9fGAsCCZTe+Crg7mfXNfP3fgvVv/gISuVyamMBAjj/3v+K6ckpVMZGEfzq+4BDJ+pLvCiqm9H5PgAJ757bIH/k5SiVSogOHEP4a/VzktAFgnrb/i+9GdHl2+oLig98EuK+BxGFIYJaDefPncPc3DymvTIWRiv4aLmGG669HlNTk7jyM1/B/NwctmzdinMzZ1Gt1TAxMYGRkREc37cL47ftw+SYj3Nf+gZ2HLiAyKtgpFLChXOXMDu/AIkQu3bswtkffinmLl7A/v2P45anZ7B8/BRGRiqYnJzEyOgYlhZnEYXA4t4tiF7wLIyObsbcof3Y8oXH4Ps+hB/VIyMHEc7PnMHYWAUzz78F/maBk+c97Dl+FptPnsepk6exfftmLC3XMDY+hYMHDmHdM3Zjy1vegONHT+Bzn/8s3rBYAhAhDGpYmF/AxMQkFpeWUKmUsXznTZjdtQk+IsjHHsOGh47C90sIwxAjo2OQYYhaUMPSYhXhf/4RhPNLkH4N/kfvxcnvPoE9V+zAyEgF1eoyKiMVLC+FmN21Hceu2olnXr8dy0fPI/zw5zA5No6lxWWcPXcOS8tV7Ny1HWEY4dw9NyHaMIXHnjiATd87jOukj/oa2cPo6FhTo7FlPaqv/X5IKXHp3Fls+bt/BfwSDp09i12X///svXeQnGl+3/d5c+ocJmfkuMAe9jZcPvISRR6tUCzSZNGmrCuzypZp/SGXRYpH0ZRMUSZtFu1SHcWjRJF3PN0deXFv020O2MUG7ALYBRZ5gAnAxJ7O/Wb/0RN6enpmGgPsLo6aL+otTL/vk97whO8vPT2EQYiqaoCA9w8+h//QIc6/fZLds2X0h1/EdjyEoIZtOyiKRjKVAkFG/LN/SSAKCIJE8Hv/Aa7fXKc/3dvQn2603Z/8v/wh4QtvrHyajV1loBvpt//H5d/el/5Vy/Ia+/x6WFpTSQ1xBZp9Tm8Vq4nrmqur0jRiM4HcZliqb3XaZrPR1iLHFjWu/tWK8LYgrsvpl0xQhZXf6/knszgOLW2v1S6EcK3P81I7lwW1ba5EA4JV/snC7WwAuwk2ek6rhK5ttH2rzWxlkr0mzfrGWQ0n1n7jge+u6k+N+Zbro7G/LQUk3PZ1/UnArfq4Nsek38Y23nNsRPC2sRphGKwiY6sksgirJsZWWJFwNky8q+nNSl2r6t28zBUTrEUzIVaIU9iUtp3Fw985yVTT4viWszetFZe+A2HR4EpsWqwsm7g1kVfXdQkdB1VV8QHHdZEVpT65L5nT1SsgEongVKq4joPG0uJgxfQqJKwv6vwAWZKwbRt5aaHUZAYmsFi2HyIEAufPn2c34Ng2drVGtVyGIKTLiqKfH8WQBP5JLIo9+iKqoqIUK0TCALk6SRchnucjVF1832NkPo909gphGKAXSqiejyCIhGFACoGo5wIgj44j/f5XGIjHGRBC1JoDXkhYqyEUHCDEWnxUVq6Mf3aCIBCIESKWKotmeSLiYsCpXkWBmk3sqZP4hKSqLjFZQXI9+sMQYXS6LvcX8ww6AfLlSYJ//Sf0ShK/aDtIFZsgCJEFgbgA4XSeyOI7VWeew1Tl+jup2lCx8T0PTVGWtSWaIKAGIe7//RdIkoLnOchlm5SiE07MIiBgLAosJMchO5MnefYCfDfARESu2oRhAdMPsEQBRBUm5nBdl76HXyEQRHrDENl2kRe3EgnC+juXZZkwDBAmplAujyMIIpbvIhfKCLbLzmMHQJUBgSAIefvMGfb9wy/gyh77Dx/BefZVXC/AjEYIfA0zJuG7HrlcgWq1zM3nnuHe+x5AtCIErIxVYZNwZekbuy1s0C+37BvY5NvXiKVx+lbb3eyneSv5Gtu0Uf7mtO2WvYRGAnlLJLENrW/z78agfq3MUzdyaWlVR6t7Xt7yq4XJ8NL5Rj/9jdq/lXfXjHaeb0tT6NvkyRv5ljeaYS9da3xum+W/VTST1ua21Ctc27732ChqGx8QtjWu23jfEY5OALCk1dzGaqzqk6G76pogrB3A25G0tzOJ3OrCZSV9i6jCLXxc71TQklbRj1tGdbxD2GqZzRFB70T9WzFxVFUVz/NwXRffD8nlcmSz2cXJ3UeWZcrlMpFIpL44CkICoendNUjvZVnGtetBm0RRXLVX4lKaMAypFmrous6zzz7Lpz/9aSqVCnM3bpDL5XjlxZeYHBtn58gOPt3Zi/Xv/oIzgxkSiSRh4DA0NMzJN97i0qVLfPazP0U6m+LUW6cYGRnh23/zN3z8Yx8nm83ghwLlcoX5mWl27dvJzNQ1MqkMtiMhKQJuzWFuvsDg0A5qdglJFigUCnR2dBF4HrVqmZAQSTIQJJiemeKVV06xeyDL8KBeJ4xyFkmKE00YTM3Ok4imyS9MYmgS+YrBxSuX+eQnHsCuVBGFgJrrgCCSTqYZmxwjk0pQq5QJQkikMzilCqphESDgOjZ2rUoiGadUWMAwLPLFIulYnFLF4ZlnX+LAgf2kkjFiiSiirDA5Pk5XR4Zi0ebG1Dg7du+lUrSJRkSmbk6j6yYvvvQy5YrNRz7yUXp64xRzORxbYG5hnssXznHo0EE0XSWT7QRBYnxsAisSJwhDXjtxgmP33ksoSrz88osMDAxQLlfZvWsQzw8IAiiVK0SjMTq6MjiOS+zhF5n9//45U0LI4OAwjz/+Y/bvO0hvbz+BXkH2NXKzBZLpBBW/gmLGEcN60PBqpYIpVHjmqaeQBJGP//RP0zXQh9NCrr68Rt1QA3l7aDVOLWlgN9K4NvfzRh/eMAwatEC3g/VFjq3G+I3G3OZrreeRtRrX5qJaE6vNNa6Ia/cCFTdhW0EQLEe9XSKPjfWukCh/+dqtzDtCC/JD0zsTaY+4BqwmclvVuN6qYGD5fbZIeisa11slrhubnK+vrW5H4yqwds5vK1+L9dI27j5sRxXexl0PIRFDSMQ+6GbcdWieBAEEmknB+gufRn+gjXwwb5c4rs3faoLbXAK+5Xa1DCJ1d+JO+NE1Rmdcj7guEUixxWJwaWuI3/md3+HChYscO3YMVVURBAFvUTN56tQp4vE4mqbhiCGyJCEAaiggISyacNYXbI7jLL/ySqVS92ltuNelescuT/H8sy+iKQb5XJE33zjF/PgYe3fuYnBggP2HDrLv4AFy754lc2aU2mAH6VSShYUZNFWls7OL4eFBVE1E1zK8+MLLaJrJ5z//BSwrgoSH4/r4XkBnJksimaVcyiMJKnZNQFV1onERXTO5OT2DYeqMT46zY2QEUZQ4/+55bKeKYsT46298h4ceuJ8f/vCH7Nt9gANHB9GVDmLxPuwwYGp8liCwMaNJImYGwhr53BS5nM34xCQ7RvqRhHr/DEWBiGVBEKCbGWo1F8uKIasWrichBg6irFK1HWZmpshm0oSBgFOroWs61WIltgAAIABJREFUoSAzO30ZKxqls7uHN998HUOT0A2L6ZlZOjo7qZbyFMoVUuk4tusSiUSoVfPYtouiGAwO7WDHzt0oqortlLh06TLHj7/O0Q8do6enG1EWicajTM3ME4slKebnWSgUeOzxJ/jC536aUjHPG2+9ydF778F2atxz+DCC51HI5+jq6ECRRV544VmiVhSCgOi1m5weitO7fz83btxkamqanTt2USqV0Y2Qv/5P38SpeEStKH7gEVMVnnr8EQ7u28mpN1/DjCY4cuAwQ729XL18nnfefotkZx+apq02dWz69O+0n+pSX1pTbjyCcHg3S2bHG6FVmyRpa1FO15Ld9srYTHN5O9daJV87NrXRzlZlN+VrJk+NQf1WWZmsIa7B6gBw62hZ1zynpntq1c4lK4DN5rZlC5kGS6etYqOxf902tHpPbVW2QZktfrfzra08g3bqa/VdtGC87eR7DwRb27jz2A7OtI1t/ARAYCXIEmEAjYGVBJaP+mAsLh8bmTndKY1mc5mbkeF6II76UW9Ce8S5ucylybkV+VqVr0UwqPrzaTxz+5rX29WU3o7JYbvkvpEsNv4dhiEyAX4Ingul2Vn+9I/+iH/6G79Bb29P/bsTQBFEVFnBqdXoyGSRhEWdx+K9+0L9EMMQIQyXv0RZt/B8G0kJqRTL6KpFKAgoskIpX+bmxDT2Qg67XCY3M4ulS8xNX6cz08nlq1dIZtJcvXaFoaFBpl4+RfbcKPH7DyIqIvFkF9OzC8zPFzF0E1ESETUBU5ewTIWZuTlERWXi5jQn33ibRDyNF7gIqoKsGlRrNtGohu9WeemV06TTXbx64jUkQWKgdwBRkRFFgXjE4troVeLJDLncHNlslsmxMY4c3IPnq1y+eh1R1RBFjUxPB6ah43kuqqlSyU0R+D6SbLBn936uX7uGpim8dfo0oS8QtWLIisjUxFVSiRjFYpEnf/wURw4fJrdwE0kQ8WyPJx57nFQqTTwZp2L7vPjSCQLX4+VX3kbVFDo7e4hGksiqQCIexalVcJ0amm6gqiqlQoXQ86mUSpx84zQHDu6nXCsTiVlIqogfOmiCwNTUPKIskc6kSCdMnFqJUn6erq4+ZmYXSKSSGLqFaZqomkbVtslmO6hVa7zz9lkGBgY4c/YsZ98dZXjHCNeuj7Fn7z0s5OYplvJ0zZZZ+PSH+Mf/6/+OgMjo6FWmZybYd2Anqq5SKRYZHO7DjJoIioosy/T0jAAq/QP91OwampFE0uKcOfsO+UKe2WtnsAsVDD2CpKkomkLgSUgIi+Nn672gl0aEZS1eA4GBtUHNlvvd8vAhEITBKqIhDPXQDmlt7ptr+3G9klb9tjHfVrSzjeNp89i1nuVLq7St276R9k1sOF8/wqU5bYMhsHkMF1h5B8Gii0y4WPOiQ8oqbtI4byyN/oQhhGuj7q7bhsXCl9xnwobGLE5lCEtlslJ9q3fW/CyX0y/VscX5oJmUN9a3IZruTaDFnFaP7LjqWAo+1RDjat3ZdKNvLQyE+gNdjqYlrJ2mW3bfcO3RKuMah+gW+Rb3hN3G3Y1t4rqNux7+f/4e4al3EY/s/aCb8j6iPpEvT8ENW9jcyoS2Wdq2JrRbxGZl3opWtfHaegu2zUlbq2m0Oc9PtmfBLUvXW5wLxRBRlJFCkScee4Tf//1/QzybrfssLq8jBPwgIBqNoqgqftCaDASCUI+uKdSNtsSw7qsqhSKaovHUY08glV2qOZszb17iN//Fv+GLP/M5qhWHf/lbv8Uv/tI/RDcEvLJHR7YDWVJwai43Jm5y/sUXOZxzKPd0EAQyTs3me9/9HrGYRTIZpWZXAAFZkYnF4rx7/l1SyQTpTIK33z7DPffsxzJVqjWbRDyGZZoUCnkURWXv3n34fsDQyA7OnT9PZ3cPMj6uXcCuVsjnKii6xoMPPIhtO4yMjFAqFujoyhKNRFmYzzExPk40mqBSKuH5IbYbIIYe0WiGTGeKmzPjjAyP4HkBHR39JJMp6jvaeiCGBIREIxaWYWLbVSRJI55MUygVGBkZoLenk9nZAi8df4XAD+ns6CSZ6CYWi6LrCvG4SaU2S8RKoqoahmFQKBRQVYuTb75JRzZLKp0kEjUp5YuYuk7oBxQXciTjMVzXoW+gn2w2gyB4xGIxLl+8hG6Y1GoeJ157DUmWuHzpCoODg9h2lXg8SjIZ5/KVS3z4/vvQNIViKc+BA4eQ5BBVl6mUaxi6xvDwEOqF68x+7CD7HziI51X4hX/0j4hF4vT3DjM3V6BcrNDbPcC//f0/oKu7h/zMHDcnxvnGX/8nyqWbxLNpDF2jWqnyu7/7b/n1X/9nDA0PEyLz1htvMjl6meHuLtBUAvzF77cePb1Fr1jTlxrH2nV9IoWV/rPGV3wLWAoM1GrhvKraWxwHt4KtjtHtXWuVtn3f2kYEYdBEhNokoJueWMEqQUazsLdFvrVkdSXRkinyVsfqreJW1g4bpmmp9W6Vrv0yl6812fKKoriWbLaNVi+mnbJaWE9s467DrRLXbVHENt53BM+/tm6k3r9LaFwwhfiE+CAE9aMBjdLa5qM5Tat8zQudZp/IdjWHrepv1uK1KqvVtfXKarzPIAiWj6Xfa6TWG2h6W2ErJHuze2kHre63eX/d9dqznsajnXyN5sDNdYWAEIQYssrM1DQ118EPAnzClW1qRAEkEUlVcINFQtBiQSQJMqEPoQ9CKFKYn2NqfJpq3iY3tcC+3Xs4/+5rzExf4Nw7rzAzfQnHrfLbX/5NfvVXf5X+vkGy2W7+4q/+gr/82l9x/sIlnn72Rbq6B/n4pz6JH/gIooAiy5SKOR564Bid2RSRSATTiKLJCleujlKsVHjooQeJWDrzc3N88hMfIRY1WViYRZFEqpUKpVKJeCKJaUZQFAXHrRJ4VSbGr3FjcpzAc5iemqJULNHb18uNiXHsWg3f93EchyAECFjIF3n3/CVqjsu5sxd45OHHMMwo166P44cC8/kis/MLGKaF7VRJJRNcvnyJ559/HlEUqVariJKMKEm4rsfCQg7XqQdnCkKBVDaLaVlUq1XOn7/A1auj3HvvUVRNobs3ghWtBzki0BCJ4XsBCwt5BETSqQySJPKRjzxEJpumXC5hWSa6YTCfy1GplIhYJsX8AoqmUS5XEASIR6Pk8gX6B4fp7R0kHo/z8Y99hO6uXiYmJkkmkwwODWJFDILA58CB/UCILEscOnyIQjFPEPjEohHOn3+XSCSC7dSAkFgsyr1HDzLQ34WuSciSwJlTp5FlFdf2mJ+ZZXJ8jM5shnK5jKqqfOYzn+H++++nu6ePQrmEIMHcfJ533r5E1ZWZzRU4+qEjJBIp/vZb30fyXaQwQEQgDNcSiMa+uB6WiMt6Y22r7z947nWC515ft8ylPtk4/iiLkbtbjTmb+Z5uNC405m+nLevNG+ulXY/kbnRtqU3NY/1GbWsc/xvfH6xjrn2baHyu630joiguH63yrzenNRPYjYIJbaXdsAWNaws0v+eN5u6tlt0KS/Ph+42t3ss27m5sE9dtbON9QV3TGgQ+QbA2mI3neR9Ms/4rwvs9cb4X2u9mLC36YGVxsLSA8sV6G1567nnOnz+PHrVAEhGk+qbvjZZcjQfUtUWNi0qxFuDmq1x/9wo//OZ3GbtylbgZIzdTYHx0jBeeeZp7HvgYia4evvAzn+Erf/KH+GGBP/vq/8vBQ/v4wz/8YzQlQcGp8sQLz3J5coI//9rX+f5X/zMdf/MMgqGhGwpz8zdQRJ89uwfo6e3gnXfe5tvf/gET4xPs3XuAjs4uHKdG4Dv09fRj12oEvksiFkdXVXzPJZGIo2k6c7kcfhjS3ZUhHlH4qY8eY6gzgSAFJBLdxJKdBKLL8OAgs7NTxONxTrz2OlYkxnw+j2bGkDSL/sEdDA4O1bWuZZuXT7zG7HyedDbFN775fXxX5/q1a+Rykxw8tJuj9x4m8H2sSBQrkkRRDBRFZ6BvkBvjk1y4eB4v8BEkGQSZhVyBs2ff5ld+5ZfIZlPE4yaappFIJPBcl+tjo4yNXQMEJFGmUCxy6fJlZmYnURSBarWCJMmAhBWLMbJzB7FEnIWFeTRNAkHh29/+DjcmpsgvFNAtk3yxxM2pGSzLolQqMDY2zgP3PwhAuVxc3NM3xDQjxGIJisUylXKV3bv24HkBjuPxoQ/dhxUxF/dXBOHR4xRmcmRTaToyKaKWSn5hkv/ln/5PHL3nAKdOneDLv/3P8f0iB+89zM59B/nwQ59GUtPYVRnTihGIAT94+Hv82Ve/CqLAjv27EUyDjqE97DhyPz/+7nf45lf/I3Y+j4G06vtvt79sxXQw+NrDBF97+NbytCBk22Ddd9Z47lbfaztoJQxoJqmNY96tYKmMrebfxja20T62TYW38b4j+MHTAEg//1MfcEu2gtUmv6vMfxt8VVf5rBLiewGe6yNLyhrztmY/0lbYiACFYX2z7cZjK2uljSTvzVLarZS5Ub7NNBNLaernoO5X1ejzsvq9LNXXuChp16yqsS3tanxv1WSrWcLdCq00P80SZE3T8DyPQqHA9evX6e7uXtZcS6GIKEssVAtMzkxx9Nh9SKK17MMkhgECJhAQCjaO4+G5Er4EgqMweXUKK2JiOzVee/E1Hn74h/iOyx//0R8y0rOPk68dJ2pJPPnEj/jKv/8K/+0/+FkcV6TsLpBKppmcKLMwO4+pBzzx+CN84lOf5dMffQhdkuiq2nzy8k1+7WqOvOhjH91DiEg8mcaxqxiGged5ZDvSCKJHPB4j29MHbl0zKhlxbN9h8uYkjiuQTMWZW1ggkxnED8DxbDTdZH56jGJ+AUEQiESjROMxqm4VRfQIAxlRN9E0hUQijii47Nw1gB9UuXhhjEq5yNEjh4jHdURJQZBE4okoB/fsQhRFyhWPI0d38vLxV+nuHkHWZAxNolrOY+oqgeOiqSaz09OEgc/pd85w9NiHkBSBZCpFIV+s7yWrapw/f52oFUWWHFLJJHPz85imheO5FMoOFy7eIGpJWBGT0SvTnHj5FNlsCk01EBCo1ark5udJpzuYmRqlWiyj6VEkTUUIBCbGxzl8ZB8XLlyjK91JRzaFbkj4fogk6FwZHUNRRZLJCJZu8tJLx1EkCUWVUTUDSdLxXBsCj1deeoNdO/eiWQGzMwtEYzHETILkyUukf/gKlZ4k18M8JafEnn37+MJPf5TvfOdbXL58iWw6i6VZ1EKDSqmAoUBpfpq56Rk60hkIICTg7/3cZwkFBddZoDB/k6QR5emHn6BvVy/nzx2nenMUtVgh0r8LzwuRFA0kkSAElSoCPoEg4IsC4qpIsazyv6z37cVxs8EXsLk3Bz98FgDxi59sq6+2GvPupK/d7QjEmjV4G2l/2ypvaUARQBAFBFEgDDafI5Y2eqv7ktZfQkNR9bfRbpMWq1sxAV4pRxTq7Wl8t0vHkuXJ0glxybl10VS83errj25p7ll6po1m4mu13kvPQBDFVW1YY4j9Xgo/WxXd6kE1tGVdKyAkQKivPcLW99vCpXZtVS3NtevrKHHpOYctXFrCtX6wgugDS/7q2ybDdyu2fVy3cdfjJ5u4rpijrYeWc4EgYNs2iqKsn2/LJq6tFh53dpDe6uR5Kya+t5JmbfrWJsy3O+nfyUXDrQol2jnv+z6lUol8Ps/w8PDyFg2Ni2TLsjh27Njydjd1U/W62XoYBAj4iIKAKKhossXxF55H9AR+98tfZmbqBrIismfHXpKpBKqi8IXPf463T51j954duJ7N0aNH+IVf+EXOnzuD7Qn0DnQxfm2SZDKDIgdkM3F27dpFb+8AU888z/2nx7j32TPs7OnjVELFPLQL1TCQFZUwCNEVkbHr44SCiKLqDI3sJAw8BEkh8GwIQ/KFMpm4SSIeI5nqQDYNqsUFdM3i6pWLpNMRxsfGuHjxIuPjk+zYsZvZuQU0zcSyLIqFInNzRSLxGPlcmZnpWURRZiGXxzCi6IZFNtvJ+PgY6XQKQRLo7+shGolQKhV566232L1nL9VqEd8XGB4Z5vkXnsa2HTKZDhbyBQzDIBQgHo9jOzUSiQSWaSJJIYigawoENrn5afYduJennvoxxz50CBAxDIPK4pYzyWSSyYlJFvJzWBGLqak5IrEIfb1dOI6DaZqUyyVisSi+H5JKxbDMCAgSIT5zc/PoukH/QC/PPfsi1ZpDJpticnICKxIhRODCpUvcd9+9EAZIokhnZweKouB6LvNzOU6+eYr9+w5QKMxx8uQb7Ni5k1dOnCAaidUFCYkIpb4UsmHS8cwpOp84TXS2QkFVqFka9z/4IIcPH6FSdQjCkD17d/OlL/0aP/ezP0PNqZHOZKiUS0iSzNWroximiV2xicdNLMvAdgN0K4ZlJXjwwQfxHJE//fOvMzU9zj0H9yLJAp7rIEsSIQLBcsCgcMNtSNodMzcjruv113aEkh8UWpkQb62gFufakG2u8mRdEhS2U/YGTVjPlHnd+Vpo/rnRHLNB/S3r3VxQEdIiOFfbtd4BbKGydeelNgw424qZ1ZK4tmhDOx+LUBcgNITv2sZdiG3iuo27Hn9Xieu6ky91nxdVVTfVOm7l2jZxhZ9U4tpMMhvhui6e5y1vN9OqHEVRkCSJZDK5fG6pvKXFsqZpKIpCrVZDkmFFPREihTaB7+FUQi69e42XX3yd3/3NL/Pm8Vf49X/8a3RkksStCPliBUkW6ezoQFUVBnqHGb12GVkWGBjoB0SSyRj5+Qp+4HDu3AX+yZe+xN87cg/d49NEnnyN1Fe+Tder55A1Ff8T9+IO9dC3cxhkmQuXLpNKp+ptDD2KxTKqGmX0+iSpTIbSwgzpbCf53Cz5fJ6BoWFKxQph4GEZOqXcDQK/Rm5unoilIkkemVQCUdAJQwlQmJ8v8ObJM3R0ZLkxeZMbN+dIZ5OEQcAzzz7DRx56CMPQsSyLSCTO008/z+XLVxgYGCDAQZIFfN/F9z1279pFpVYmkUiS7cjg+w59fX0MDO/k2rUxBgaHCAUBUQwol0tMTU2haRqqKlIqVJibnWchN4/n1kgn41hWnM7OLH7goKg6nuOgKhpTN26iazKGLuCFEv0DPfQPDDG8c4C56WkGBvv59t98i/vuO4brOkRjMcqVIpKio+k6QeCgKAp9fX0g+Jw/f4lUKktPbw+qpqNqGoZpMDE5QSxqEgQejuMQjUaRZRnDMDCtCKYZoViokkxq7D+wk0gkga5bGIaJYegYhsZCPkdq506mUiZuJkosVyH9vZdI//gkV06dJZvO0nXvYSRdozBznZ07BskX8+zct5ebE9c5+847EMLk5E26Onv443/3f7Fr5w4i8Thlx0GLWMRMg7Ebkwzv38fHP/t55PI0b73+CqdOnmR4eAhDUfBEDZAWtVcbB1naJq7r/26/oJU/l7W3bWT7u05cl4SIG1kSLRHXVXNb27XeAdxiZRvNV+8HcV0VK6OtjNvE9ScB28R1G3c9ftKJ65IpZiuzUlg9iTabjDWaZ623mGll5rpZmxrLZlUrNofjOED7pmy3a1rWXM6dwHpNuRPktf02CBu+u43edXO+MAzJ5/OUy2VM01w2Ec7lcliWtcqvtfn7a0SjabEkSUiSiOt6uK4PgYzk25x/5xJvvXGW3/mX/4qPfeRBSvkaTrnA3//iF7h89RLxWJwnnnqGMAyImBa6rpGfL/Gr//0vo6oy99xzmCAAqVBEO3Md6UfPcezSLL+yILDrtYuob19FQ8TdO0z5yE6mNQE9GsH3PBRFJjc/w+VLFxkZ3sHM9DSua2PbHpFYkosXz9PVlSEeM+tb3ZQKpFNJjr/yKn1DO1iYv8n0+DWozqFYUSJWHEEUiCcsioUSJ149RalUYvfu3SSSceKJKB3ZFLF4nOnpeU6feZMjR/bR19+D7VQJCfA8B88PuXzpMr29fciyTLVWoVKu0NnZRblURJIlCoUCFy9cI51JEIlYOE4ACCiqQsQyCQKf/MI8phlFQObm1A00TSad7kYQFHp7B4hHExTyJcIwoGbXBQu1qkOIh6IalIs2YRDQ3Zuls7OHml0mHkswM3OTwf5+RFFgaHAQRZGpuyvA3MIciWSGwPexayVqdr2MUmmBbLYL09SIREwEAWrVKrZts2//gfp9ex4Xz1+mUq3V78l1uHDhIidOvMa+fXswTYlapVbXXEctTNNgbm6WeDyOrus4NQfbsdESEcLuDM6+YUaLeTh/je4T72J8/RGkdy4z+855du8/QPbAHubnZknFo1QrZaan5ogn0wwNDvPggw9gWBG++a1v49ou0zduIMkOiCHz+Xn80GW4b4Se/iEKxSJP/PgJ8rkcfT1dGKq06M8qrzvOrO2jd564No4J7zV5beVWsRHuFHEN26MQq+oJw/qWNeuRtvXJCavGu+WDjV1bGv9v1dCVctbWs+pe15lPWrVpo3lyOZ3YYuxu+l7v5DfTGMBssfB10zTW67ougrBehOylZy80/W7VgGDz+2lD4xrW/YXayFgnroQC9S37tsnr3Yht4rqNux7hW+8ixKOIn/zwB92ULWD9MPTNxLU5+mCr9JuRmXbb1Fg/q1qxQa5ForReFMX1cKciPjbvr3g72KiI93uy2uz7aE7r+z6u6yLLMp7nLb9/0zQxTXPVczIMY5VG9ZbbFkiUijX+2W/8b3zlK3+OX62SiHVwY2KOV189Tm7hBj/3c7/E+Qun6e3rYMeuHbzw0kv80f/zJ7x95jT/3We+gDg1S/j0CX5p1wG+WBRIP/wS6f/4A2I/epnotUmiPtwo5HmllMc5uBP18E4qyShSPEVudoqIaaJrGtVKhWI+T1SHnu5udN1gPlfAiJpM3pymI9vJxNgoO4a6yBcKaJZF1NQJfBcvDPHzY6QSFh2dPfiqwXxuAUWxiERjOG4NBJnnn3+ZT3zyYximTDJpEWBj18pcunyFg4fupbenC8OIIEsaHdluzpw+S1/vEAuFWXp6eohGIwwODRCLZSmXqosmuRa5hVlA4YXnXmdwsBdBhOefO8GF82e579hRNFVh9OolFE1DlU3efPMMhw4dJJ1OguSg6DIBAaVyAUWVEQUBSZSIp2LEExncsMrY2BTPPXeCc+feZdeuHQgEmLpCYaGEoenMzs4iKxKiKFCpVJBlGV3XkFUFUdJx7RrVWoHOzi5czyNfmIdQJJ3S0TWVarmCrhnoik65WiMeT1Aqlshmusiku1A1CVEU6ejoxLKiZLImxUKe7s5BEAXmFsZRFA3btqlWbeyaw+zMTeZmp0ml4jhODYCCrFHLpkh89Bi13gyy7RC9MkXssRNE/+pRIm9dxL86RlZQiQ300j2yi2/9l7+he2QAWdI4tP8gcdNgfmaaTNcwF8+Ns3fHYV548mVig7vwFYPhkZ3s2FF/Rs9+7+tcvnievoEhZDOyigg0RhRe23/uPHFtvv5ejkW3Op5ulbiuiWDeaqzbpN7N8i0LeFvkbyUEaEuR1+q9NxDX5nLWex7tju3tXFuqcNVaYR1/2DuJ5efXouhW8/tGVgMr59oQlrQwjW6RaN1Tjd/4rWhcYZu43s3YJq7buOshfvLDfPCkdf0gS8tBFhoOlgJ6rGP+s8ocaZNJdyn9RmhXYl4/RARBXFyfrUg+28HdN5A3v5etkfcwXJmsVp7J+hreO6v9rbdhyVSsFXy/HllaqLn8wb/+Pzly6DCWadbjTgirJfhL/2+0KJVCH5EQkRAhDBDCgMDzUVWFml0nEGbExAtcwopIfjbP17/+l2RMk48++ACeXWLfrhEOuBKHujrZNT3F0TmXse8+zqcuzfAlvYNfdnWi338a9ckTCGOTRPMFtHSSaiLGzf1dqA8cpdCdQhnqJScETC9cI5WOkkgl0c0Y75w7h6TG0Iwor77xGn0D/STTKYRQwvVlnn7uOIeOHEGRDQYH+vCdPLt2DKOZCSTFgNDGD+r7yJoREQGVUFDQrCiGmSGfr/HMc8/RPziI5ziIeHT39qBpMqomY0VN8oUCupnAC0WsmEkYely5fJ2h4QHmF2ZxHR9di+EHNqWCzeOPPU46FcWyTKqVCidefYN9+w+iWwa6ZpLORMjnZunqyLJjuA9F04nFLXzfJRZPI2sKsXiMdDqBpggEoYPrSizkCkgIaLKEU60Qy6QJwoBSvoRr18BXSCbijIz0k04lSKUyhAjIikIguMQTCW7cvEEimcH3JH74w0cZHBzCC0PE0MEuzxEENQRBxDAsPA+efvIF7jlyBFnWQJBYKBRxHI9IPApBlWolT2EhzyOPPk3/0C4EGTQziiCKqKoAgYvremi6gqpKOLaPXfXIzZWIWQksSycSS9Hd20O+mCOTzVKzfRLpDDFdYGbyGoplYCcSlJMm37t4juGf/wySJKJcm8U4eZ7kd59H+PFLPPPMU3Tds4ep2VkIAkJshoZ7KVXm6e1L8cijj/Hb/8cf8LlPf4TOdArDMFFUk46ufnQrQjaV4u03TzLUP0goakiqhisKIASogUMgKA39a/Mxc4m4Sj//qdWavg2sHdYbG+oHLcppddwe1nNpaaWd3Czf2ntYCoQUrp0+G9I251smnmx+t62fyiK126S+NRCFVUGQGitsJK6t3u+mZbdE2PB/uGruX7baWnVPS3e2+Vx0q21ZIsVrhBttFrPeN7NaCBCCEC7uYb3O3L0cfUtYfgdhQ5CucL17W0675pWvqX/VES4FjNrKmmIb7xe2ies2ttEW2pgcWuXaQBO6kSayWWJ4J3C75dx9pBXWvpdbI64rGu5WGuQ7R07bwSphRhNEUSSXy+FWanzuC5/HCwNkRcELAyRJWlfivR4CUSAQ6geSRCiKiIqC7wcIfsiPvvN9hKqDMlvgK1/+PbrPXeUhR+CXxBji4y+x7zvPceDlc4xcn8V86xyp69NIXkBSkJgozGEc3I040oN/dC+53gzTpoTbHcG2DGywidsVAAAgAElEQVRFJ5WMMzczSTaTplgsI8oy9xy5F92I4nkhmqrx9JNPMjQ4yLPPPklXZ4Z0MoYqS9y4eZ1oNMGJV1+js6OHK1ev0N/fiygK6GaE+YUi1y5dJxKF2blp0qlORGQEL0RWFMrlMp7nkEnFSKdS6JqOZViYmolpxkmnO4lFE5RKNWRZ5xtf/w5dXf1ErDiBL6DKS4GSfPILC8RjMWKmiRWVOXrsEEgyqhwSjUXp6uzmrbfOUMhXSCZjpNMpdF1DEARESSKZzCCKUCgWiSeiTE5M1v1AdWPZV1kQJRLJNLJmUHM8fAR03cB1fRKJFJKk4HnusgY125HFtmuoqoppGpTLFYIgQFEVioUCjusQhj6WZRCJZYlFY0xPzdPTu4O5+SrRiIUgSBw4eBDPcyiXS7z++uu88sor7N27D9/zicRSeF5QN5G+Ok5P7yCphIxdq1HI55mbniGZ6UA3Ini+QBBKFEv16M8vvHickZ07EESBb/z1N4jHYyiyhKrqlEpVoqbGwtwsmWwHTiDw2pun2bNrF3O5HCO7diFnk0yKPpGj+7mkBUSiMT5qyww+foKLz7yAvmMQtTuFLIukUhk0zSCd6eQ3/uffIJONspCbQ9cUFnJz2HaVRN8AXb19GKbBW2++wdzUTQb6uglCF1EQ8QVlQ5/Ilv31i59E+vlPtZV2PbzXGtdbaccHUddG1kfvRX0tLq4fEbeFxvWWyl5EozZ6RYgaLgsqG8tq/1lsruFt1oK3bfWzKECRJOmWdwvYSrsRNjeZv7PfRysBzQffB7exGtvEdRvb2AArg/NazecabegGA/lG/kQtpZEt/FY2Mr1pKR39gHAri43bb+/WiGt9i4vW+Vba0zqA02Zovqd2fckafVZbLTR0XSdqWoSigKbrIImrSOtSvY3CjmapvSiK6LqOv+jzKsvKsv+rY3s89qNH6Y6ncf/Lo+z8D99H/quHuXdsjh2+wIFUB0Y2hRIxeWJ2nMLuAdSj+7GHeihnIrx+YwI/E2fw4E5KoYdg6FRtG1mWyWYzhHjEonEKCyWq1TKEHhHLwg8hmUwxMTmFquq8fPxlEvFEPQJwMs7c3DSpRJyIZWEZBlbMIgxD9u/dx7tnz5GMiBiygFMrk5uboZTPcfLkO+za248sy4iCjuv6SEJIqVwhlc4gyiKSUPcxtcwo5969gCJrRGI6nmfjBQ6qKuOHHkODAyRTCdLpOLVqgUwmhSDAwsICJ0+eZGTHTq5euUQgONiujSwbEHhUKjU0zWBhoYCu6XR3pwkCn1gshqrpIAqcfeccQ8PDeL5HrVYmkUjhOh627WKYJoIooikyXhDiuD66bmJZERS5LsgwDIPxiUlkSUDX9WVNgWHoSLJMEASYpkE+nycWixGxTObmZujoyBKLxXBDH3Dp7soShOAHdWuRwIfx8UmeefYZdu3aQV9fH4VCgd279jA6OkpHVy8QkltY4NTpd9izbx/V4hTxRApN0Ri9MoqqW8RiCcrlCmfOvM3Q0AiqppBOp/FDH893kWWFZDKFJEsYhoEkK9iVItFolLncAlY0znMvvIgkCLx7/hzDw8PUbBsI699SucJjJ16m8+P3o+4ZprPiMvjjVyndmELYP0TN87EDgUQihSaJ5AsLZNIZFnI5TMMgHotRDQQcz6NaLtPd1cH46FWeffJx7j16sP79yCZh4K+7p2srH/VW/fdW9oTdSDO7Mp7c+ri52djcrD1cGjca27KRVnZTgVmw2mdxo3y3Mjfc7jzS8jmvc36VgHELss1Gy5pWz3spTeN8vvGc0tTuDTTKm2nO10u77Pe7qAlufo+bYavEta6NraMxeFU739qtom4NsE1cfxKwTVy3cdfD/R9+i+AHT3/AwZk2DpywGTYjnuulbweN0tg7acJ6O3j/yPPtaVxb5duIuN4ump9L8/6smy4qF1sVikJ9T0GhvTtuDM7kOA7PPfYUcTOKLqmIPoxevMLM+E06z14j8S/+hOzoTeb7Owg/doypjIGwo5dZU6GoykT7e+kbGSYai1Msljj3zpn61i3RJJcvvUt3NkEoKji2j2FYKKpMKOrM5+ZRNYMfP/E099xzgIV8kUg0QSlfplIqk0xE0VWFaCxKtquD7t5eNF1jZMcORFHEMi1EUcYXNELfRZYD5mdvYEgCVtQkEEX6BwbRNY3Ovl5U3eSRR54jnkyR7UriOh5vnn4HP5TIdHRRLS+gWxE8BDq6uhBEAdctAyG+51MqV/B8n6il4/kOghAQ+DZICpKiYUZi7D94GD8MMAwZ00gwO5OnI9vB+XcuMT9f4O2336ZcKXD/A0cJfJ98oQCihGFZyIpCJh3HdX0USaNWq5GIxrBrDi+8eJxazUGUZXzfQ5YVfNehXMwxe3OCUiFPMhHHsWtYloEgCEQiFrOzs0xPT5NKpQgCn1Kxgm6YQIiqGMzNzZFIJpAlmdmZeZ5+6hlMVUJXZcLQx/ddRBHeeP1NXnzxZQYHRujp7SAajbJ7927K5Qrnzp2jq7OTiKkSjxns2bsb3VSJWDHmcgVMy0JRZNKpBHOz0xi6yvjYdWJRC99zSMSjCEKAJMDotXGuXhvlwx9+ANf1MS0TTVVw/ZB4IokoCBw9fBBNUTh23xE8z6Yjk0UQYXT0Oj09/dRsG01TeOb4S2SPHOK8W2F/3iH6rWdwh3v55d/8TX75l3+Fi2dPMzE+z3f/9gd87COfZOzaJBNjN4lHNCRJI57IYmom3T39xBNRvvW1r3Lx7Dvs3bMPSdM3JJ0bEYTGcxu5A7RTbtPVtstpr7zWaCdQVDvlrucyc9dinaatIn9bKXadeXrtuZXSPc9b1/pqY6Vx64sb7XKwYTlCi3NtYMsaV1YT1fc+eOI2cf1JwDZx3cZdj7sjqvD7S1zFW9DatSKuH/SCoN36b7+9dx9x3Sw6ZKu0S39v9I3UJcIQLJprhWvXEmvKXCorCAIKhQIAP/rRjxDdANMwkEWJM6dOE5UUIv/+m3R+52mKewa53ptiDo9ILMqrr7yEoiokkilEsR6AZ2ZmhqtXr6DrBjt3DKNrGm4oIAkhxdw04zdmeemll+np6UVWZEJBJxIxEAWRvt5+ojGLSsWmUCjxxmuvk01nkKUATVWJJWKUKlUqtRq27aDpel0zGwScP38RSTKRRBdFDhns7yaR6Wa+WGGh4mBE4lRqLl7gEIkm2b37HnL5OXRTYm5mnnPnL/KpT38WPwSB+lYyoSASIGBYOm+9/hb9/cNEIgk03UKRDVynhiDIWFaE+bl5FMMkRERVdUJAUmRsu8TF82PUqi6pVJynn3yRQ4cOMzp6lZ/9uc9TKM0S+CGJRAJBlLAdu+5XHTpIosp8boHjx4/T3dlBoVAiDEGUFQYGB9A0BVGSqZQKvP7KcQ7t34ssipRLZRCgWqtSqdRNgyVJIp/P4/t+fUErSAS+T7FUwNAsdF1HVWQKhRLPPvsC/83P/wIdmQy+62CaERRZY3rmJoMDI0SsOD09/USiKrVajTAM8Tyf4aFhPNfGc2sIBHi+RyIRp1Sq8ezzLxCLxwhDj3QyjqoqmKZOMpEglYwzdeMGsViEarmELMvki1UuXryI43h4nodt13Ach7m5eZ555mnisSiZZBxN1Qh8B01TmJmeIZFOUyiWSSYzDA4NIcki0WiUTDqDbBroB0bIeTYdD7/Mg5/+JNI9e5m7OUH/4F52795DEISMjU0QhgKPfP9bDI/sRtMtDE2jWK6RTEbZv6sfU9P45re+Q6a3n3g8vv7WHk191v+9PyV47nXETxxbdf2/duK6mWZ6q7jdeaTl/PoBEdeV8ldKb+UOslLexnW1qqPV/W72fpsDZP1dI671QFcr3+c2cb17sU1ct3HX484S13oggDDcPNhSK9f+5klr1ZAmCGuOxgG3sYyNzH+WNGuNaZv/prFVDeebCe9S3Y0LhjttYtOMW53Qbq8tq31VW747EZaCQISL/1pQwzX+PlttVqlUoVqtoaoasDqwynJtfkA+l+PMqVM89sijHDl8D4Ik1a9tuBKRltu13pQqSCKEIXbFJnAFZEFn6sYkly9cIRvL0pvpoyMb58zpU9i1KilFpfv3/gxtbIrqZx7i8ddfx3E8alWH3u4uFMng9OmzjIwMY0YSvHX6NF2dHXR3dSAKIbIqUyhW0WSFp595ms7eIXp6uzl65AiyLFEqlzBNjcnroyRjJtGYwVwuRyIRI540iMXS2E5A79AAtuvjuD6mZnLtylXc0gzzczeJxS0C36GUX+DZF55joK8HQ0+jmXEkHDRNJxFLYWg675x+A0U0SGczSAp0dHQghDJh4LNn934ilkmtmuPFF14nEU8iiZCbm0XXDDoyaQQF3EAktzCLqoWomoVhqCzkZjF0HUkUkQXQVBkIUBQJEZmOziS9/V1UazZHj91LJG6yd/8OaraNIhnE42mmpqcxdA27WmJhfhbLiFC1bTTdQFF1nKpNEPjs3DlCJltvm+d5lIpVTr75DlOz8wzt3INmmsiKzsREDss0yWQ6mZufQxRB0zSSyRSKqpDP50gnkxx/6ThdXSkIQ1568RWSiRQf/vC9INuIooysihSKOYqFMvFoDDF0iURUJFXg1VfeZHh4mCD0SaWzuH6AIPhomomqWciKzPzsNOlsikRU5/qVGziOR1d3L9Oz08iKSBAKmGYCIxbhu3/7GCM7RlB0na6ODh68/35URaW/vxfL0qjWbGLRGLmFPN09vRhmBGSBqdl5BFFbFCgoWLpCKT9HNGrhOC6i4CPIEsVyFcswmXNtrL07MR57iRe++zDfGj1DxfE4+dYbDO3o5Z6j+0hmIhy9/z4SqRi+5zA3n0OPRZA0C4wE8XQ3sg/T165RK9a3VgoFAVlTEAKnLjwKodlHPvjaw5AvIX3xUyv9smHhvWocX+rIDcey6GyVqX/dF38l/3tnXXO7JpnNeW8lcnqrtqyXr/H5iKKIKGg4ro0f1JBkCZAJBZ968B2hYdCUEKhPDWIY4EuAKC5uHFqfu0MkQEQQJfxFjacUBhB4SITIoYcghIgE1EVf9SMQpNVrgBb30465tSDUXVpEsSFY0GLswJBw5V7CteU0BndaIn/r1dX8TNdDXXBaj2IsCiuBotrhdUKLabkxaNbiCqdFnYt30PD9iLQO1NV4bIVrCoLAUpCmOl+tN1RAuvXCtvGeYpu4buOux50lrmsljtD+nqQbk4r2RsvmMpbMOFelaaukteU152u1aGhHsvpBa2zbx1pf4DVotWDa4MztElfHcRFFEVVV1y1HBGZnZ+nq6uLBBx9EUZRlb56NvzGPlZD9q9suCAK+7+NXfc6fu8S5M+co5AqU8wUURcezPUqlMmEQMH9zAgnIqhrp3/0z7JqN/4ljTM/PsX//fiyr7keaSESIRqNcvnKJXbtGmJ2dwfdd0pkUpXKxrkUVJSIRk5nZafbu3YOqyvT0DlBzHCLRGE88+STDAwNEohaaodcXhQGEoUe5VKNcFZjP58nnC5w+dYbZ6SlkGa6PXqazM00kFiOVyS5uo1Jhbr6M5zr4Xogky4h4TE3PcPzEq8TiUXr7ujHNGLphYDs2jlPBtkvEohEmJyfRNIVarUwm1YOiyJRKFTLZLI88+igH9h+g5jh4rkDEMlEVmcDzmZ+dRRBErlweJZ3JYJgWM7OzVO0qiqIgihKqqiJKCrpuMHnjBo88+ggHDx1GVjQWFspcvXqJvr4+ro+NYUUidHZ2UalWURQZ17FJJBLMz8zS2dWFphuUyiV830OSJXRNob+/n1279+C6Pr5TwzRNnn3+ZUZ27aBWtYnHY5QrZdKZLONjEyRTCXRdJ1+sEEulSESiXL16ldHRa8RjMSYnJ9HNOmH2PIcgAMcO+cEPHmV4ZBBRkvARuHj+KuMTEyTiCaIxC0EIyc9P1X1tVRXX97Adh9BzyWRS9A0MkelMEvohkWh9T+H5+Rye75HPFzj79rvEkzGi0TgTExPYNYdMJo3ne+i6xvx8jkw2QyxmkUoluHzlErFoDFM3iEQjBEFIuVQkDEIUTUVRVcIgxAskkukM0WgE3dSJxqMUA4f5VJy9V6a4b2gXu3/t79PVnaWrK8P0zBSGoSMjMjZ6nRtjk5w6+RaDvZ0osoSoqPi+SCrZTaFS5uqVKzz6yA/oSkXp6e2kurhCFkIBCXHVSLQcVbiBuK7fpzc+tT75e2/dQm5HqLiRZclG6bZa/lJbPd9HlEU03cD3A1b2jF1KvyiwFhSWWKCAQCDYi2lFQCFAxRUlICT0bOTQxisvICtqvRRBIRAkAkEiRFwkTCFSGOCJ0mohxBb9YKGFefUGc1krrXM72tRVZbWRbs130Q5xbauuVh1h5eEtx3/YaoVbxDZxvfuwTVy3cdfjVonrRlLipaA8tyNNXkKzdnOrxLVlmnbqb9hjsLns5gAQm6HdAEJL198PYrtR+1cm9M3b3WrdsFYKvlLGymS/uh3tQlHUOolZ9klanT8IAgghHo+jG0Z9yyTqmtLmRcfa7zRAFGRqNZcwkCkWKmB7hG7I9OQ046P/P3vvHWTXeZ55/k4O99ycOmc0gEYiQIBJlEjRskRLtCRbkpOcyvLOlstje2vsrZqdLc9W7XhX6xqXZ2q9I4/HsoJHkmWJFilSpGRGgJnIIHJuAJ3TzeHk/eMCYKPRaDRAaiRX4em61ffe86UT7vt9z/emSzhVm0a5RE9HG2dPHGFybBRTl3GdJl/5yte4e8cOGuUmXckkuf/7K4QhuHdvJAg8NFVBFECWJLo6O5hbmCNqRRkaWoMoQhDYtOXz+H5IPt/OQnGOZCJLGPpASDabwfN8DN1EU1vRc0dGRpDEgEg0BqIMiKiKQr3e5MyZM/T1raFaqxI4dbq7O2k2apwfPctHfvYjWKZBtdZEVk10TUcUBTZv3k4salKrNalUK6QzGUzLYtNdm1FUBSsSodEoEAQ+ogSy6KEqIaJkYFktIm5GItRrFVzX5a239jAysgFZVolGLUICmk0Xz3Xx7DqGYWI7LolUjgCFPXv2Ua018QKfjs4uJFmiXqvheiFhIIAI2WyOzVs2I4oCmqYRjyewohae75LOZND1VrTf0dExzEiUWNTCdWxi0SiFUoVvfuvbrF23FssyEQVQpBC7UadcbnDs5FlOnzpBJpNl27Z7ECWR3bv38txzL/Chhz5EqVjBisVZWCjSaDhEohaWFUWTDUIEtmzd3CKAIXR0d6PIKk27juOEiIJBJpsl35bBiER458hJypVSy7f12HHu2rKF+bkZFFniwoVLSLKCaZrIsoypa0xNTWPoUUQpRJFbKWQMwyQWi2HoOqLg09HRTa4tg6aoPPHE02zevInp6QmCMEBAIplIU683uHDhAm1tba3AXp7P1PQ0ju2QymSoFouIssLxE6exHRtVVfjhj14gn8tA4OJ5XovECBKZfJZLakDvsTESro9wz3rCIKRcqJBJppmbnSWVTHHo4CG++H99kd/5nd+mXKkRCgrzcyVeemEnnf29bN16FxvWj/BXf/mXmKJE/9AaVFmFELwlwWpWQ1yvEtJFn6/KtSWyb7FcWiqPbqQ9ey8bkMvJoaspuZaM6WZ9rDag3Y3KLtfH0vJXghk5zSqyKGHXHQKvpQF1KzZzU9METhNFAFOVGZ86gyLbCGGD82ePUL1wnPrsOKJdIaaFaKKDX5tFqs/w9vP/xGtPf4vdL38f3UqhKCqyHkHQdEQgCENsL8QTZQLJQApdJFGAMEASW5rypSbiy8n21WhBg+UiAK+gHb/V+7+07aVz8LJt3yKPXG6Mrd/BjYnrNc/cak5khULLmazfaGytCnfyuf604VaJq/zjGsgd3MH7hcUazOsn+fe/n5+UUFtOU3sHP3ksnRQX36erO+migB+0UtncUtuCQuCLSKLBzHSBz3zmM/zmLz7G5s2byeVy1EtlSs4Mg329XLp4gUwqysWL8wRBkdnZBT7/67/K3335K5x66kW+2j+Cq4jY20Y4cOAIbW0JAIaG1nD+3HksK0Jbvp3J8SmOHj3C/ffvIJfL0ag7lIplFNUglcrQqDnohopt26iKhqrqNBs1SqUSnZ0dAMiaiizLNF2fwPdp1KpMjM8xNNTH668+R09nH9OTo2zb8ijV0jzbf+4TlKs1VNFHNywkUccPPPYfOEShWMPUFbZsvpt0NoWi6miySEiI4ztInojvh5iKydNP/5AHH7gHVYZoUkLXZWzbQRQlonGF+bkKn/zkY1SrDSKRKLbbJJFOoMohoW8zNTlJgMy5C5donrzAuvWbmZ0tk8t34TggyxqCAKqm8fJLr1GpVHn00Z8FQaZSLWKaKrIi0mjWCUKfEAHDiFAslahUatQbHhPj00TXDtKoN3Bcl3q9QV/fAKlUClEOqFcq+KJPuVRBVBJUyjVE2USSFTzPQREF+vpaJslBIFCt1WnOF3n99deRRIHHPvEoYegTmEnGp6aJJi0My6QvNojve5TLZVRVJJ1KUiq4HD56hFw+hqXE6eldw4YNwxQLFSqlKpVyHU3RMWMWl8ZaeWydepNoNMKlqQmyuXbOn7lINKaQzeURRYlarY4ViTA7N0OzXiaX70TVJIpzBT7zi58lHo+RSFoIgsgPn32OSrnB9h13s2fPfoaH1yLJIvNTM0QMk8mZGXJtbbS3t3HoyHEOHT7C//SF36FZr6DpEguzE0Qti0gsAZJM4IVouk+2qw23s43wmVfZ9+wPSf37P2DtuhHKpQbnxy7y8OAgP/Oxj7Lj/gewPZm2jg6m5ufwHZdk1GLtunU4doNkNsrv/v6/wXNsvvTFv+CP/uR/RVDkxcFI3xcs1ri9n2j+f8YNjykPO0gbW+TUPyLh7mxpF9/d1dOvvtf+deOqXHO/oxPOLk8EpA0e0sMOAMGMiPdd/cb9/1ITIdtq33tZJTi2/HJTyAbIn2tc/ex+KYJ7+X3ox2kicvzYSfr7e5kbPsczr36fR3Ifh3kbfU4Cmlhmjpqq4Loest1H4HVxQngWKzaLGbuE2syg1GM0GjUiwSYeiN6PqirM/02ZV8OnSTwaMLJlB/K8iLBrAyECphXDB7ywZVUiiSLip0sIHa0NHH+nSnBMueE5Kb/UvPrZ+S/mDa+T9LADG1pnHByV8V9Wb7i5q/5+/epn7zs64dzy90kcWXyfhBXvk/y5JmLuyn1S8Fe4T8ov21c/21eevWV+K8rDLsKG1vPkH5Hwd8o3LGv8waI2v60Szi5z7pf/639oX3dsJfyk13R38OPBHeJ6Bz8VEBaZkFzdFeR6MidcLX95h3bR58VJvRdj2aXCMtq/8OqO460LucWa0mWF5Ao7z1eF69Wi7+64Lhd84XosY5q8xEdrJQ3s7S6mbjWAxvXlFo87pBUrQrr6+YbtXJf6BmDpBH59/SvpK5bbgV4Z70bwvTqGRTu5V3bflxJcCQEvDAiFEEkSQAgIA4kglBFlmVB0EQsCT33vGb70pS+xectaspbCvdvuwXYqnDt1HFEw6R7Mcv7SGTrbcjTqLkgqCzM+gq9jySK/FcvSYWY5OTVO4qEHaNd1No8MMFuu0N7ezvTsPNm2TuYKFarVWWYuzSIhoEcMRCWGZniksyq2XWF8fIz+vmFkSSX0VcbGZ0ilk3h2g3jCIhACalWbMAyJRwQqC2MIgY8iJ5idOoahtdPZkSeRzTI5NcpcsUR7dxeKKhPRFGr1CrpuEtBEVHS2PfAQhflZOvNRwiDkzNlRBgYGUTUFS9HRkJFDkVgs2TK1DT1On7/Effffz8z0NI1iiUTMQosZeG5wOXiUyg9++By5XJ4dO7ZQmC8RiZgUihXynWtwHJeZyXlsx2b79u380q/+IvV6hcC38ZpNFEVHUSKMjo4jCFAuN3jxxZf55KceQxQDxscmyGY6SCSjVKtl/NBH02WisRymoTE1WeCb33ycX/v8Z5icKvDSzhdbZo+egCqpOA5YqQQpLcbxY+fIp9OMTl6g6QTE4gLl0gJnTp4lnUghigLpdJpvfusf8B2fbCZNudzk0IEjpNrSHH3nEBvXDVMtlrHiMUIREjEdWRRpuB6RlMonHvsYYeBBEHBoz+ukcx0sLMyyffs2Lk2M0tnZQbVcJZtNkc4kqFUb7N13BNOyMHWfk6fP8+FH7qdWLwACtm1TrxcxTANTTbZML6MRoukEs5MlVFWnUikhyQE7dtyNopiUaxV++fO/BpJAYaFALN1FqTjGYH8HtVoJz/cYXjdIJpumabs4nsSDD34Y3dDQVIUw9Ni/dw+1hs0jH36IiKZRqRRp3ruBR147hPjlZ9n74dOUTY97H/ksTbuCIPvk2nPYiDQ8h7/90n9F10Tu3b4J32uiqjrlep14NksQ2mz/4H289KOnuPfBhwlTHYiihxiCFAZcm4VzKZa4qVyR5CFIy+STvt6y5IosuqJ1vKb01e+WyvTmX+lX6y8NtPM/AjfrThTFa9KfLEUoXL1SiBKEoY/nAh6MTV5i/OIlZEWhUS7RN7SGPQcPcurMq1hzXaS9fjyniSnHEEUInYDADpFCBVMwEWTocT+IP+/RXlvPJfsAklbDUESaDYdmo4bnKni2R+i5PPnlP+fFSIZE0M6juT8nDAWMiIkkixDKWLE4kmrQGB3HjMeJRKIEoQyCQBD6V/00Q0JCQSAUl/d7ve4aXK5zzaVcpLWHa9c8Sy2yVsLV9cVNC77rlx3ClYdt5TqisLIW9EaHlw5dEC77IS8ay3JDFATEEe/qPLs4fc9K1+SqWfA1F9RrWUSx/KbDHfz0Q/hpSbdxMziO8y9joHdwUwQ7dwMgPnzP4m+vvrtqLrSI1C3Fj4W4Lmn7VnDTCWXJscXkdOk5LkdcV8bNidytmA6vFu89gvD19/wKcb1Vor7S+S6ut5Rc3or8W7yJsFqTusUTLUCpWEMKZOZnZmk2SxSnF/jz/+cv+cAHPsCnfuFRIhGdN159ndyAfZEAACAASURBVGhMR9dNolaC5154mt/9wr+iWq2STmc5cOAQvT0DuKdO0/6VZ1Am5ijctYZ5RaKzq5PCwiwRXUUxIjQaTUDg2LHjeJ7HPffcS3F2jMLCPKlcF/GExaWL4+zbe5D+vm7Onj3KAx98kGQqhyxrVGpVotEomhHDderYdoN4NEazOsXsVJljR4/wkY89jKJZOM0avl/HdRU8ZMTAx/E8EukUr+56hZH161sEz4riuC7RaJxSpYxhJpmdmOCZZ59paZo72ohGLTKpJPValWbTJplOMT+3QCKRIrjsbNaoVSgvFBmfGGPT3Vuplct0dHQyMzNDOpvDD3ymxicJQpd0OoXvt+7Ba6/v5b577uHb3/42D//MI6wfGsL1HILQR5BkJElhZnaaWDSFKIhMTU9hGBrxeMvs2DBMGnWHSqVILpcDQqanp8hmM9RqDXQtiu/7VGvFFuGu1iiVyrS15dB0GQIPRdYYH58im80CcPrseQb6B3DsOtVqEUkyef75f+aTn/4UhmHy4os7GVm3hkwmjSAInD1znn3vHMTUDX7xk5+gVq8iqxLlWgNFbC0a9YhFo2mjIOD6HoYRYWGhSjRqMj4+TqG4wJqhIWKxGKdPnmH9yDDlchHTNHnhhZdQVB1JllgztIF8Pk6xUMJ1XY4cOcIHP/hBwjDEsWvIio5uCJw5M8r01AJhGNDekWdgoB/briOi8c1vf4vP/tJnERH452d/yIZN2+jqSKHrCrJuEAYijmNTr7U0b0eOHEVRDSIRkwuj53nkkYewbRsRoZWOiRBd1/E8H0WQqL22j/j4HO4v/wzu5x7j1OwYg2sGWJgvoUViWFYMPCiX5tG0ENNKszBfplarsXbdIKLcMkcePXqI0XPn+flf+TUC/V0tmfeF/wMA5cvLWbRdtxpfUSa0ZMdyx1YUJ9fhCnE1/rB5S3k4rw0QdWv5O5fWX23ZZY9d2ScOBYQgpNlo8Pu/+3tUpwskerOcO3WG9cObeP25l8j3DnCpPE97xOQXop/kgR33cvHCCYYHexkdPYsYBiiKimFECIKAYr1EGChYlklv8CDPz/wVx+0nqdfr9PT0oGkaiUSC0YkJdE2BcArLSFCvlgl8GcdxEQSImCqxiIwvSJiJNiQjju2n2Hb3/fSs206+Z4hm6CHrBkEYgnB5k1MIEfxVENfVmOUuaubdNcEq3JNWc3+u8Yxa/XOwqraD1fwOBARxdabnV+bQpcR15UEso5EWrigK7hDXnxaoqnpLQuiOj+sd/A+H0NeJ0Nd5zXdhuDxxXW0QiMU+QLfyC1hO+K1GIC71P7ldsnsjcroaYvQuVuP1eW3b7yduv73lzns1QbVu7XwX13u/zv1Gfj3XlQtCRCQEX+SpJ5/hP/zpn/HVv/4youtTnprka1//Oz752GOkU3FUOaBYmOH86DnuvW8HiqKQTMbozCdxg5ALY9M8/vgTPChFaf/q08QffxG3LUn9vg1MVKrs3bub/v5e7GadIAjQTRPbdtj99l4GB/q4cPE8be194BeJWhrRWBbPq5FMJNBVA4KAkfXryHd0YxgWjYaNrluUyzWiEQ0hcJACl8rCNLPz5+ls62diYpZcZxtOGBC4As1mDcuKEYmaSILK2PgEmqHTaDTxvYCunj58P0ASIfAdFBFq9Rpt+S7K5RJrhrvJ5nJoqoIsqTQdm3giRhiKKIqKIIg0m008z6VWLhEEPhfHxxkeGSESsfB8nxDQdJliYR4xFDly+B3yuQymYVAplxkaWothRADoH+jllZd2Mjc7RzyVpNG0MWMWpq5Sq9aRZJEw9EmmEiiKQq1Wb/n6igInjhwnlUzi2A5CKFCvNxAlhWKh2MpTG9EIQg9N0y5rfBcol0vMzU6TzXZy6eIkmq5QKM5y+NBhYtEo3/zWN1m7dhjTNBkeHuLlnS+zZs1aDh48TLVaIJlKoOkK5UoZ09TYvn0bhUKJw+8cQVNVzp4bpb9/gFgiDgTYdgMJ0A0T04ohqybHjhxgYLCf06fPkMu1MTs7z9zsHLqhUW/UiMVizM/P47ouszOztLd3USzOs3//QYaG1nD8+HG6ujpx3Cavv7GbRDxFvV6mq6OL9vYO3nr7TT7wwP34gUuxWKTZaLJ+4wgCAtFolP6+Xjq6OikV5nEch2Qqjeu4SIKEaejU6zWGhvpJpXM8/9xztOXzBH5wOZq0j2la+CEsFMuYikS1WqWejPL8scOsn7fRvvEMUmceabifTDaD5zRxbRtRkPjePz3O8PAQsXiGv/7S3xCNxpifn6GnpwskiZiuc+H8OcqFSboHBglE8EUBihWE3g7ELWtXIx1WITtWLWpuCOkeF/ke75q571awtN5qfVwX118JNyMXUmgjhiFSGPL9x5/ij//oT/itz/4yc+Nn0ONpdu3ayb2b+9i8aStvvv0ahelR3NocX3jo86hCQGlhglqthAC4oonjC3R09zOzUCaT6yCX72d2rkSHvpZ9029yzhll+wM/g5Xu5KOPfY58zzCzlZDNW+7lwz/7EMeOnWfHh7aTzOaYnpomk4wSj+jIjkGtaHP66DnOHztLVJxm9Ngexi+NMjlxgd7uPE4go2o6QaggICAH4aJAUitdxFsr8u71fH+I6+JmlmowV6q/OtK4mt/BtdYHN2p7qUXb6p/3Ffxs7wRp+qnBneBMd/AvAtfv+r57bCkhXCnYwWJcrbOK/lfTzvuJxYJ3cWCH5bR3i81ZV7eQuD0id1VrfZOgSTeqd2vk+vo2r5i4XTsJrY6AXo/rNzKuH9/yURpXozm9UvbKvVnO3Pq6ayVC4IX8l//8JXLJPGePneTXf/XzpONxjh45wKMffxhZNxnZuJl4MkE6m2biwigdosbBV/ew0VcR9h0hfvoi2RfeIb//DA/tv0jsrSPMqCKvhhUSG4ZRVYNULs+pk8cxdBVVkcjksjTrDSRRZn5ugfmFGYaGenl555vk0xaqLFIpV9AiGqIkoygqvX09KJqE70K9XiGdTlEsVHjphZfozlucPnGCi6Nn6WjPYMSSiIJBd283umUiKybPPP0c8UQUVTVQNY1CocJCoUh3Tx+24xCPJRi9OM7Bg4cYXjuM63sUSyUEMaTp2QytGUDXVerNJlMTM/zgmefZtPkuBFkiDFu+nrMzMyRicaYmJ0ik8kSicfbu3Ud3Vzez8wUiEQtN0xEFEdOMYFkWESsCgsT3nniKSCRBR2c7iBKJZIJEzMJ1HQRJ4fnnXqK9o51EPIrveHz9q/8dx3bp7upGVSUkSeKJJ56iUCjR3pHnjTfe5u3de+jt6yeeTFBvNBi7NEmhOM/+fXtYt34doe8xNTFFJp3h5PGT5LM5IhGLMAjZuWsnBw8eYvPGrYxeOEdXVw/b79lBKpOhVq3TaNTZtn0b42NjDA4OsnHTBqJRC0EMyeXyiKJLMpnCdgK6urtxGg0GhvqoN22CUKBSriAEAboRJRTAdlz27NnP/n17GegfZNOmjczOTpPOpDh1+hTr1q8lFovj+QK9vQMkkhESiSTdnb0gBKTTCTLpBOvWr6FSKbBQmKW8UCKRSJFOxzl3/iLxeIqNGzbiui6qqmKYOsl4DFlu5a0sLCygyQqhGGAaJoIgMTY+QSIeRZJEJEnCbjYhFNi7dx+bN20kl80hXc5zm87lqFRrjI5eor9/kPNnz+AHAUEQMLhlMwerJdREjOQLuxH2HKWQNSGm8dquXWwc2cTa9esoV0rUyzZHDx8nYkR44L778T0bNAXLStPTP8gbr+3k3LHjbNi8CUGVEDauQ9m8HsQbzw9L5cJKuTUXBxW8FVm0XH/hsq4Tq29j6VhX3+/1dRbLwRvJyCtWKMf2HeD8ydN89x++wz8//RSHD+4jaqpUiqc4cPAMOzavY2OXy49efBlDc/jEA20kozJmYS2e6xMEIXo0zUI9IN+7ETWaZa5kI2oJDCNG01HxQ5U2tYeqEhK2yTiyxsM/+0l+9OIbJHN9XJoWiacGeXPfEbr77yXfv4G/+E//nbt2fJRt9/4M3336ZR77lW2cmz7J0EgHwxvaaG+P0bArnDx5mIXJc4yfPcjEuZNYpko000YQhgiBd60J7A0v5u0Wuf7a3iin7opzuLj8mupmz+F7Ja7XuOwI7479Ru0G0wLUBERr9f0vzeN6FXeI608d7hDXO/ipxRUBGuzaTTA6jtDbsWj37Pry10X5XSVucx9uxeh07xUC75LU5aJIrvR58fiWP/beiOvN+r1ZvdvF0s2Ky+9WUfO9aVxvd/y3QnIBgjBg8uIEgi9x4fQoH3pgB4YfkJmY5cFcHnPXHnqmauR2H0f92hO0v/4OQy8dpnvvGTacmUHefRSjUEO6MIWg69i6hjjcT3V9L0ZPD2s3rKdWaxAE4IUBuUyafLblF6npBmEYMDY2STqVpqe3C1EKyOa6SFomhAFNu4ZsmJhmFFXTkSSBerOMJkPTLlGtLNBs1ti8cT2CpBBPZqk0Hbr6BzDNFGEgoOoirudhNyU2bNyELAWISIiijGN7SIqCrCgYhsn05CQ9fYMkkkmisRi6aeIFIapqoUdMPD9EU2IIQkjEilEqNeju7sPzPWRZYv++fWzcuJGJsTGef+55kplOstk8siyTTaXJdrRRrzfQVI1quUbghTTdBoZpoqoR/EBEEFR0Q+R7TzxNf38fU5PjdPf0ksnmKBVLtLe3YRk64xNTNOo2g4NDXLhwAdWQicWS6LqB5/l0dbazYdMW7t6+nWgsiiTLGIbB/n0HuOuuzXR2dRKPx6lXa6iqjq6ZZNJZZEXhySeeIhYz2bJlIxtGtmBFknT1tlNrNEikWmlkfvD9ZxgcHCRimYRhQC6fJQgE/KCVw1KSJAKviW5GkCWdJ5/4PoaqoGgiVjSBphuIiFwcHeXCxBSu6xKLxUjE4nR39WA7NpYVQZJE4vEoA4P9retWr/P440+yfv1mkkmDEydOEI9nqFSK5HOdlEoVIhGLRCKJaZjELZOBgQEUTebpZ36IgMzc3DzVapWx8THSqTSOUwdBQNd1VEVhcnwCJAiDEF0zESWZqamLeJ6Loqi4jo/n+USjFn29/fi+z9zsXCvdkOvSbNrMzc6STaXYt/8g1VqVeDxKNp0hasXQc2nOCD4dokLy8ZeZchvc/cufxg8FTp4+TSabIhZNEQQi69eP8Ldf/hvWrl2DrMrIRhw/FMi05bB8j1AWiaczhB4ogUCwwvSwnDy9scxYThatbFq5XB9X2no/cLtycSVitLRcGIY4jkO1WuX0oeM06zZf/LP/k1QyytBAHztfe4HPfvoDvPn6cVTBRq9Nc/pile6OdroMmx73o3ys7U/whJCyW0TSE4zNVRm/MMbaNWuZnZlDRMSIqIiiQmdPB8WZEtvUB7k//AQj4n2c2HOOrnVdVMMaZ89f5N4H7mdowyClZoAV7aOtYwRXiGPG88jRNO8cm+Pue36BZHIj7V07eHv/2wyt287+3UdpS2eZvngRtzFNvWGjpTqIJ1KEoY8groIYvU/Edblrvhxxvc5C7D3MhTfFCsT1mvrCzbWn9lc0/KMS8r0re5tf7frqhvgd4vovAXeI6x38RCFeTvbckkMhwuVXGPit7wnx/8NfE75zEulTH26VEVg26XTIzafk5epdPXYDba0gCMu2K14WnstFgFyszb3utWQBcuX7K+2xiBBfr2G8frw3PNcbHmv12Bru0qtwe3h30vO5kjT93ft6/W7vbfYCCAiCiCCIiKK0zDW/nKfvmpfIje/6Srg9n9yl9yUIBQRRIghBUlW8IECWBMJA4QdPvUAsmuLs2bN8479+k4H+biKWyvp0hshff5vof/w7xH2HiZ66hOoI6LbD9KWL7ClMktiwBm+wk3DbJtzhfr5zeB9yfw+JjcO8eeYoPRs2oCQSBIJDtdaAwMNxmsTicTy7SiwWRVJ0VD1G0/HRDZNsPosXejhuyMmTlxCcAgNDg1jxFKKig6SgKgrNeoN3Dh7Cd1v3OpFIIYgKlpVAVUxUVcR2Gqxbu4aJsfGWf5Dgs2fvHgb6hqjXKrz56iuMbNqAHXrYbkAy346siBiyQCQSY3K2ysLsBMNrBvB9m2qliqooKJqB33SpV+qcPneOXC5D4PsMDfUxNTnG3t17KBcW6Ojs5fjx0/g+7Nh+D7l8FlmWSKcS1JsVdE1FILic/qaOYRk0q3W+/+QPGBwYwDQUens7iETjDK8ZJhaLkkqnqJZLuJ7D+o0jlMoVrFgSy4ri+QHDa9eQTMdIptM4noMkiwytGQRB4MyJ4xi6gqbJ+K6NLAl0dHaSTMUBqFRq6KpMpVJuLZbEkEazgSyoRGMxcm15QikglDyqpSK6ESEIQwxVp7u7hwMH9pNJp0ilE9SqFWr1GpZlUimVCPwQRbNo1m0kESrlIiMjI2iGgSgGTE1OcvToKQ69c4K+gX5e27mL3q4OEmmLVCJHpbJALKYjIOC5YHs2vu9jmDrr1w8zOXUJWRBJJOJMjF9iYmKageFONENn955DiJJMNB4lmUmzsLDA7NQc3R2d9Pb1MTU1STaboaurm0ajSRAIJBJJfM9HMyKUa02SiRhGJMrBdw4zNT3HurWDaIaGomksFGs88eSzrBnqx4qaRCwTQRQ5eOgd1q0dgCBkcuwSHR1tWFGFgf5BMul2ms0GQdgknoiRzKSQunJUTZn8zndw5gvMtFnk23OUCyUmL51l+/atmKZK/2AXufY0UigTuDaSLOD4IYlojL1v7UXwAlJND79WgVj0GplwzZxyWXSFy04SS18tYbpYqq002S1nVun84+XF/EZ/GZm2WLZeW+8KFm/U3tYG8TKa16vfCSCGPrIk0nAcBFHk6P5XCfwK3/nqVzn++j46YzJ7Dh1grFjg1OF3iAU1NvUmKc3PsGXI5O41GQL/FLnsEJGZTfze+m9yV/SzzKnHWZDncRRwQpuIkqCjK8uZk2dJ5lNMToxRKnsUS9P0dfcyWZmhma9yvHKE2YUptmXuZ2D8blIXeujMpRmfO0kiZ2GXXA6fOEY8aqEKAl29/SQynfT3reNHL77OjgcfYdfuAzz2c59jqhjSv3Ej0YRGT7vBwvQUU5fOk4hFaO/pQ4wkkHyf8twsBAGqGUUSXAgFQl8CUSQMA0LxsmtTAGIAQiiCBIIfIAkCvhCihOJlk/XWXZVC4TpOeGW9tRwWWwldv1YRrp9JV3gUVrRUC5e2s0y/QnCZqF6pcP16aLl1l/d2K47sisQ1fHddICAuT1qh9ZtA5N1f3vuzEX8Ht487xPUOfqIIw+Aak6DFWsYrQih46mUApE89crXe7YqOleotHcfiMayks7s65sXHFhHXpViai01YUufK+5sFSHq/NJnvBxabtC2NxPvjEPQ3vh63q11dDu81mNTlVoSgZQUWBniOja4qhI7EzOQsn3j053n6yacZ7Buiq60bsVan/+UDWH/xNULA+fAO/LV9VDsyeO05ooPduMkYlxYW6F27nsOnzqIoCpGISUdHB93dXTRrBSQ1ZO+efWSybRgRHRGBRr1GNBZDkRU0JU65UqNSqhCLmdh2jSBUUVWNpm2TSmWYmp7FaZQxI1GatkOIgBVtQ5QkqpUFwgCOHT5FR08e3TAwDItiqYGimohiQKPeRDcMIhELx23yox++yNDgCMlUCtdtIkkKqhIhFkmx96036R8coFYpYkV0mg2bRDJF1NRa2t5GnUQ8zptvvEWt7mJFTGKJOIlkHFXXUXUdRIF4IkE6k6anqw/NiPDyzlcwNI35uXl6+3oRBIHHH3+cbXdvw/d9wiBkdmaGdCqN7/u4rsfmLXfx9a//PXdtvasV9TMMUFQZCJEkEVUzOHjoEJ0d7RiaiqmrNBpNqtUqAIahoSoqzUaTV3btYu3wMIIgkEwmqdVquK6L7diYpoEsi3iew9TkNMeOnmRoeC2HjxxldnqGNYODGJqGFY2haiqIUK9VCQKPTKoN1/P50Y9+yOi5s/T39zM+PkY2m0VRFWRZIaK3gkPpuomsqMxMTJLL5ajVagytWYOqaxBKfO1rf8/gwBB79+4lm82ybriX7du2UCoVsF2PSqVGd083U5PTPP/8TqxoknQqRng5+Imu6yiyjKZqRCIWyUQG04wiiR6KpPDDZ59lcKCPwsIMAjqXLo7R3dNDKpXk9LmTzMzOsHHTRqJRCz8IOHjgAIlEnHq9jqKqpNNZas0GzWYDQ9dYO9SPIMtUa3V0TaMwN8fszDR3bd1ArVbB911q1QbxeIJI1CDwfdrb26nXqiTTbYTImKZFpV6h6TQRBR3PD7CiUYJIhGo2QmzvSdh/igtrehlYu4ULo2dBULk4NkkilUTTVHw/QJQkRFkinohTl3y603nefulVhr71It5r+5B+/sM3lyG3KV5utZq7UyWsC8j3eDds7d1xri5WxO1g+XnNpSFq2J4PpTFmT+9l1xP/xJ//+z9jXV8vG4Y7eOGVnXzt7/8RJZTYNpxl27o0sXjAm6+fY0vPVjqNIe6J/is+GvkiD3V/jrp+lOONl3GUOSbGJyjOF8mkU8zPzzA5sYAsO5y9eIFkPI2iaNTrBWy7xrHjxzl19hjleoMmZY7NHmDenKLebLBO28LQ9L3ox/NUz9Wx3AzPP/8yA2sGmChN8+bu3Zw8fBzTtKhWG9x374OcP3eBfGc/sXSeV199ldmZaRK6QnF+nqmpWQYHhpiYmkbwFS6ePo4hC/hNF90ykEQV1wVBbAUYc2WfUAxBggAPHxdfBEkU8QKfQAQBkVCQWpsBtKJch6uKBbH0GVimxHLHbkJcV+7tZg0tPwevZH4PqySuq/wFLb/Jcwc/SdwhrnfwY8e1u8xLUgFcVTJeawp1jcZqlcR1NaaZKx1d0XdjuWM3KLNUm7oU10UjvoEp8O3uat8Mi6PsvRdT2OX7X/bbVdS79YAhywfzuD3iurwWOLzm2K2YRguCgOu2cu3pmk4Ygl2rM3lxjCe/808ItoRdrfPM958kZkTZftd2vv8f/5LfOjCKc/gke9UQfdtGDMvE9z1EScKIRmnUqniuy9at23Bsl0q5wpGjhxgZWY+sSLzwwvMEbpP+gW56enoQkBAEkAQBUZapVKs0GjVUzQc89u7bw7rhDTz1xA9ZN5BDCBpIvkO1MEu9uECtXmNozRCO62JFYwhihDffepPh4TWEYcjatSMkUzEc16VhOxw5chzbdrAiOvF4vBVkyQ+QNY1Nm7eRTGZ55dVXGBjqJxbTQBBQNYlsxkKSNaKWiW3b+EFIsVBAVxWq1TIR00SVNXq6+2g2HTK5NMVSgUa9gRVNIAgigd/Ki6soCk7TpWG7yIrCyMg68m05vv2P/0gqmebe++5D11sRVmemZ3nyiSfp6+snDEIiUYtvfOMfeOyxx0hn0pRKRRyniSRJ+K6PYzsoukpPTzeu4+DYNpIkEolEcByHeDyO7/vU6hVUVaG3pwdBgMD3eevt3awZXkPEstA1HddzmZpsmeXG4wly2Xa+9+T3+NmPfISBwX4cu0mtUub1t99mbHycocFBolET33N4/J+eYsOGjZw/f56h/n5ee+M1PvHxn0MQBWq1GoWFAq+//jp9fX2EQogsy1RKFY4cPcrA0BoQBcq1KmdOnaGvt59EIsnGTSPEohEyySi1WolMNkMskSYMRUqlEm+8+Rb33vsAkUiUZDKKIAq4jssru16hvb0dQRB4663dZDI5nnziewwODaDrBps2bySdSRGJmDz+nadpb29H1VUM0yCeSNDR0YGma4iSSL1WI51MYhg6nu/zta99nR077sGI6JRLRZLJOGHo4iNg6BGEUMSyIvT3dZNIxChXisRiUbLZLKoio2gq5UqNQqGErMjs2vUmsqyw69VdxONxBgYGePzxJ6k3q+i6xqnTZ8l0ZLB78pinx+l84zB//NqLfPLTj/EHf/THfPoXfpH2znZE8XKeTlHEDwNkRaESeiiI9LV3MPWNJ0kmEgif/PANczVflTnLyL6VrH+ullmVNHoX3u5WVNQrxPWKzF3eD3954nrNZu4yBHQla5qVzi8IPcQgpFmY4s/+zRd45elvo3oz5GIq05MnaTjT/OCfXyNuivz8lofYrG5iKHyEj2T/iN8c+H+52/htOoUHsOQ2wvQozfRbhOo8smrihyH9PXnaUilEUUIzVQozc2y7a5BKrYnTcNBlncCrYRkahqoxNNRDZaGGoQjoqkzEijFWnKCiTvLS6ZeRY9AeaUebjPOR7MfZvPAA66a2ck/wIRKNPFvjH+DM4Yu0SwPEG22c2jvNXQ/dRzySJpvsAG8eiQa5mMGxw4fo7uzAdeepTO/j/NFdnD70CpOXxjl95CCDvd3USgtYhoxXBwMJmjazY5fY9+ZbzL7zNifffJVjb+yiNn2J6ZkJujraEQQFAQj8BoKorvhstDTp167TVtK8XnOvVzEvLrvRvOR4uByVFa6vu5xv7tLxrYa4XrEuuFlQsDvE9acPd4jrHfxEsVgm3Eh4rFrjuhoBuqoxXS+sl/XLWVT+Vvq7URqd94NA/uS1sLev8Xx/iPp7J67LaR1uh+AHl4PAODY0Kk2kUOLt13ezce1Gnvn+0zQbZbZvu4vZ6Wmyl2b548kqzXyS2uZBPE0lnkygKgozkxMkYnHmZ+YJPJeJsTHi0Sjnzp5mw/p1dPX0IEsSnu/Tls9z9tRZOjrbMAwT2w2wnSYL83OEtHJ8KopE02mgazqdHZ1IkoBrN6jVpgGfaqWM43hEzCjtHXkiVoR6o061VqXcqGFoOkcOn6CtvQ1BbBK4Ab7voSkKsiyRz2eQJAFJFnHdFrl75/ApcrkMfujQ29uDICgcPniEXHuehl2jbtvE42lCoWVWrWgaoqyg6TIzc7PEk0k0w6TesLEbDQICPM/DcwJ8P0QSWya2jVodVZV54cWXeXvPbj708IdIJeOomoTr+niuh+t6BEHA7rfeoquz9n/F8wAAIABJREFUi56eHhRZ4Vvf+hZ3bd3K6OgFhteuY2x8jHxbnlqljCgoHDp4GF03cN0aAgK6bqJqGqVKjWazRqVSZWFhAUWRicejlMsVFEVBVRWq1QrZXB7LskBoPRuqphGxYiiaiqwqSKrC+MUzDAz0Q+hTq9fQDJN8W56+3n5q1RqyDI7TYMtddzE9O0sinsBp1pmenWbTps2tiMRmBMM06O3vRhBbrhfVaoVoIk2+rQ0/CAgDKMwXEASPdetGcF2PJ5/4Hg89/EEQZWLxKGbEJAwEjh47QUdHB9PTM2zavJFYPEK1XGJ2ZoZo1MIwDDLpDLbT5MSJU4RhQCIRY3jtevwwRNM1PN9DEEWS8RR9/b3EEzFc36VWcfje955keHgYaD2rjXoT13VIJBJkcjksK45AgGlGcD0X3TBo1hvIokqtZiMrGqIkIUsKVsRifmGOaqVCLB6l0fQ5cfw0pWIFXTc4cuQdMtkkzUadfL6NcqmKEAb0dLchiAHFQgHPbpLJZFmIG1hzZUZKdfjYvfzqb/wG2XwW1ZCZmL5INp1DlCQkWUbTdUzDRDV1VMvAfvx5QtfF+vVP3ZTMiZK4LHG9Gd4rcYXFRHQ1cvTGY1vVeG9QJgxDCBWYv8i//9e/wfzkBA0HNmzZzj33baVYaTB5TuTzQ/87vzf0F3wo+tuszd5LRGoDrYSbOcGC/jakL9KQztEQysxOz6CrJoKm8sor51m/No0sephWivlKjYjikoyZjF6Yp6MtSyYusXYwR2l+krZsCpEm8zOXeOCeDZh6SOD6NGpV6k2bUrXIXGWCWfsiByf3Mxmco5Gc48WTz4LhUVwo0RProzdcg7kQJ+92sUHcjrW/jfz5DfQvPMy65m/SrzxKr/1JBr2Pk6QDLiYxZ1OcP3aAxqUGRw++yejZ3Tz+ra9z4shu7Posu194jie+8Tc8+92vcWzPS3zrb/8z/W0W547tpy1lMnbpJOdOHCKTTJHO5EEUERQRwpX9M5ez9rqpEuDKnHgTjesNtaNLyi1HXK/J7bPMWG+EVRFXRHzfv+ncfoe4/vThDnG9g/cRS/wLw+X8DZe+WrjGZ+HK/7AVID546mUEQUD+1CPv7gje7hBXoT0Ll7y/4tWw9LUYreTpt4ebBZVaTlN9pc+lJPtW/UdX8qFdaTw3Ln+zK3X7CEOfK3ektRN7pb/33v9y13DxKS4NxHWlrHS5C0GA8LLTTiiLGKrBaz94kcNvvcO/+1/+kLii057Mc+rEKdIdbbz9xk7+23/7az7+cx/ld+++mw888Qrz63tI7diALOtkc2l0VcdzHRLJOL7vsDA/TTKVZKE4h6LKpNN5PD9ElAJUTYZQQNdj5LsSyJJM6AsYehIzkieekIjF0swXFtCUCEYkAwLYzQUKMxfo78pjpdswYxmsZDuJdI75whw9gwM0mk1s10XXTOIJg4E1/fQP9mNoUcbOzzBbLCIILmZEpeFIHHznHLm0hSgKuJ6HbkTp7WtDlg0UNYqoyISiw959h1i/aSNWNEosGqc8NY8gBkiqju+HyNQIQ7AsC9cD1TBpug6qAqqiEI/FOXP6FG+9tpfzZ8+xddsWjp04hu149A10c//927EiKrZtEwSgqSL1usPRI8fo7++hZvt0dnaSSifxfYf2tjz5fBZDkamVarzy6pusX78Jx21SKJQplWqcPHWafHs3mUyO+fkauq4TiXnIkokoKhw69A4jmzbhuw0kqSWnzIiJJCt4joOmafhhQCgIOK6HIgbImoqkKLiOS19PF/G4RYCPJKtIsooVi1GYn4XARgz8VuRfK048apFMxpmbK3L//fdhRaPU660cnaqqoEhRzp65iO+HWFaUoN7Ebdo8/t3vomgKA0OD6BEZzYvieFXu+cAWDMlAVBSCUMB1AxYKBTp6u6mUilw4d5rBgR6aTo2pqXG6uzuYm5vj6JEztLf1IqsBQ2sG6e3tZWJymgtjE/T39lKcm4bAZ3p6mudeeIm7tm5BVmQIQ954bQ8LCwts3rgOQ1MJ3IDjJ87RP9hHKEA+345je7ihj6IbiKJAs1ZClkwOHjhEo9EklUxw/txZJEXH8z00VcX3faxIhAujE+zauYv5+Vnu3bGV+x+8H1VR2Lp1KyICh985xH0PPkjEsIhaMbr6epBoBXqqN5voI4MkTo8TTI5hPngf509fIpNMEPgNlJiF7buAgBCKlIM6hhxFFXWEZ1+mVC4y1hUj09eNo4jIYYAahHjiZefDy0JMCC/PAYv+ViO2bkADbygPvd2txby0w71Ghl1TO7x5pIjFFig3mndWsuapKzZSIKF4ErbvUpcckl6Tz33iQebnxrj/4Y/yqV/6bTY+8DGC4gDrZn6FT6h/gu4ncRMXaWZ3UwhOoGRmWXDmafoNItEIoiTieTHMiIYVMwgFA1U2GegD1/XxPY3Z6RmqC9Ns3NBJtdykI5dgfOwiw4MmmiAwXqhRDj3ScpOujhiBW0ARHUxTwLUXEJwya7qSIAY0AgHJDxFDG012EWlSrE/SkCvsOf02iWGVE5MH6NuaYsEcJxwUUPo9nNQ5SsEJSvULmMk6vuSiOZ0ojShqsY0h4RcYkD7Fg8YfcL/+P/OQ9QVycgenLzzJ/reeIBMPWDOcpncgzqc/8zCDGx7lUjVkdOwSpmAzenqUE/vf4OTbrzI/Psdw3wi+7CEJOm4gYntNorKKELasbkIxJCCE8MYb9iuuD5bjm6vY6BXE1vN/9Ym77MN6zWvZ7iSWn+cXP+ston4NcQ2Xxrq4tQ3pd8vdIa4/adwhrnfwPuLWqdtKIuCqGdFl4rpY4/pe4yLeqvbsZqXfC5m+VRPUH4+J760R158Mltvo+PGMpdX+ErP2ZSJIC6FAeEVjEYKAQLPu8NrzuxCckH/7b/83/uI/fZFicYGTJ04gKQJf/spX+NM//Xd8/LHHMBsO/V/8e8rb1uJmYyCGVKqtwDenT5+h3qijKvLlneFWfs1Go86e3XvRdbMVqTUZpVar8cabb9Hd3YsqpzHUCJIUMj51BsMKqBRdQCIWV7CbBbxqkWppDs/1yHf20fBBkRVEWcZ1PXRdJWqZhHhASMyy8H0Xx5YpFEo0G3V8r45hiGRyWTRVoVptUG84jI6e564tI6iKSiQSQZZV5ufKHDt2gkw2jaYriIJEMpogEjGwmzZCCJZh4AYesqZSKlQIHJua7ZFMpQnCEFWW8TyXcqXG2bPnae/oIJfP05bLs2HTemy3geO4ZDI5IqYBBJRLJSIRCwjxHJvp6TlUVWNoaIByuUwul0VVZTRFIRKJoGkq9Wqd4ydOsFAsEEskOH70KFErxpYtmxkc7OfgwQN0dOaIx+OIokipXECVDRoNh7m5eXp6e7HrNf5/9t4zRrIsPdN7rrdxw7v0lVVZNrtM++6ZJpscDgmK1AyXciApAwlc7QpacaX9sT+WEBaLlSAIICEBXHAXXK04Ijne9HT3dPXMtK021b67vPdV6U34G9df/YiqLpfletwuWS8QyIyIc885EXnznPN+5v3iOMEwLdJ0YC+zdIM4illZXiabdVAkmcXFJUzLJvA8dj/7HJmMjZ2xCMMIQZCIogEJNU0Dt9cdqPrmciDJrK6uoCoqp06ewsmbSGJKSoJhagShj6bFnDlzHEPTcTI5vv6Nr5LLZ3lgxwM42QySIiFJCscPHcHIyKiaBpFEs92k3++TAo7joGkD0r1paiNJmpIgkLEsVFVD0wzOnTnPhg0bSNKYTreLbdsUSwVEScKxTHRNotFYpT5UZ9u2aQzTYHl5BU01KBYLPP74IwhCwtzcPKIo89HHn7Bx4xSyLJPEsHfvXuIoIZPJ89GHnzA8NIwowOLiEo6ToVQq8vrrryGIEsPDdXRNRRJlTp48TblSZXRslFKpiGXoGJaJbZu43R6dTpvh+kCdudtp4/UHObVBEJCkg9zdfr9PXC2Q3XOAS70O9kMPcPDwJ0xMDiPIKiIivh+gyCqykqJKMpEfwIt7UFWVY3WTdVs2IsjyZa+XeLNQzpoL0F2sUXducl2rK8RVfvQqcf2suHcv1VVIiUCKSCIIiEJKf2WJ//2P/heWZmfQ9Cy/99/8Y5bnY4b2P051/3bc0OVE+C6nVt4iXw2ZuXiOsZFxEEIkxcDQNUgj0nigzGuYEp4XEEciH390kJH6CIsLy2TzOcyMSbFSQSLEMDMcO36SRx7ZiqymiDEsr64QRj5SHJPJZUiTAFkGSRQQxYSh2hCyGFAuF7h08SKVYpbQazNSz1OvFZElBjVadRtV11BljXKphJPPMzO/iO+6eO4yCwuncXICUdqkmzbwrR5yrksjPcsCR7HW6xztfYJXmEctxmjNCg9F/4Cp9buIhl16gc1vfekfYVpb+fN/+w1++8u/T6vhIqcqodCmVq8gSQn7D33M7PwZSCOII3JOjk6rhWpYIIgIokSaigMDCrc+V3wW4nonfNb7b82SNZdxhWjHaxHXn9JZ4e5qx9/HzxL3iet9/BTxsyOuwN9p4vqzJK13O4fP0vani58Pcb36/d6ZuA5ELwTEVEBMBj9XFlq8uvsl3nxtD3/8z/6YykiR8bFhvH6TWq3Cl7702xw+epiKYjL+J1+lm3OQH9hKt9cEYHZ2mWqlxos/3I1pmuSzWfL5HEHgY1kOfuDjez6HDx9mx44d9NwumYyDgICdsYiTBVRNotP1qBRHiTyJOO4jitBpzeJ2Gpi2iaqZSJKNJKv03DaSpKJqGn7gkiQBpBGSKCClIkkcQhIQx7C0MEfo98nYFpCS4iGgc+nSIuPjI4yOlZFFBUEUieKEKIrpdWTsjIFlSXieTxxCIWsjChJ916OxvILtZFhaXcQ0M2hKhu9+9xlqQ2N89atf5YnHHqXTbPD+O29z/uISjz3+OIgCoiSgajKdThPbtsjn83Q6fTRFQlMVZFEYqHQDiqbR6/U5fuIYm7duZHV1GdM0CYMI3RjkWCZpTOD7lCtlnvjcE9iOhW06XLp0iXK1wOrqAkkioukJhqkSR6CpNrIIS0urrFs3Sd/r88pLrzA+vo4XX/whOx/cRRTF+JeFmT7+8CPGRscIg5DXXnuTcqnMxx9+wIbxccq1Opqq0+l0yObyKIpKEPrI0kCxF0FgeXUFVTfx/UEpn/GxMeyMg67rSJJMp+OyutwhjSKyThYn69DtdPAjj60PbGNxeYnhkWEEAZpNn9kLxyjXCmi6g5SqmBkDTdPQdZ0kSei2Vsk5Dl7oY2dyiLKCLAwMHKQplWqJTMYgQsQPQlRdRVJFhCTh3NlTpGlEbahOt+diWiZRGJMmArtf+CEP7NzE8soi3V4PXdOp1epsm34A284Qx4NSKIVCjqylc+78eY6fOMnU1EZ63SYHDuwnn89TLOZZNznG0NAQkiTSbLTw+yEnT55F0xUmN0xSq1Xoux2yOYd+r4ciSbjdHpZp0Pf7ZLMZHMdBVVRsp4Aky/h9n8bqCv3QJy0WqL/8Af/s7Rd4+ktfoFhxENHp91xAHIS2+10aK8uD8k4/fo8EgfcMH93QGBoaIhJ0IkFF5HpxpL9rxNUMZEJRIJBjcBv8i//2v2Tl/D6e/sIXGd2wHUmr8/DJ32H5WIsfXHyWE0sfs7B6iScfqmLrOqNDY3h+lygN8P0YVRKQBBEBAUUTCQIfAY1202VsvEK/5zI6ViMWI06dmSGMTBw7QRRSRkaKmIZAKiXISAyVc5TzJkGi0PNSDE3BUCVkKUUWEkQhwrZAFX2qjkm5pDMxbJM1UzQlxTRETp1bZKXZZ7nZxjAtkljAtG3K5TLNlSXioM3ocIFup4GuKdiZLFGS0u+2WF6BSn2KmcUGc0t9KvU6Lb/Npf4FFsWTTKRPMtn8LepfnmTPR6fp+Ra7HnsSPxIpFOuEgspjjz3J7EIDUVVRpICpiQqvvvhDWvOX2PPjF1HTlOJIHUmUB6RVlK5Le/rbQFylyQRpOkawr7/yJ8FV7/N94vqLxn3ieh+fCbcTs7mCu1km1mpzY/iR+KVfQb5MWu+2Btwtx7tdzsXtNuI79Jum6fWxpWu9f4u5/KTU67OEB183/r2S+FtsbHedE3OX/d8YpiReU6D9sxDXe/+8V8WZrlxz5WeSJCiKQoqEkApEfsjqwjJLcwvse+9jvvP1r7Flaj0PPboTP4kJgj62qUIq0Ol4SM1VNvxf3ySVJV5sLlIqVSmW8iwvL/Hqq2+wY8c0mUyGsdFRHCdDHEUkSczySptqtcq6yQlURWV4eJg4iZAkBdM0iSKfbKZCGEoEYYRlQRQts7y4QBRF2LaNbeYRM2VEWcd1+0T9DrHXJVuoomoqhqnj9328vk8URnh+BKlAo7mMKCVoqoSQiuSyJXQzS5r0sews2VweiMlYJrKs0uv1sawMnV6XfL6Ibev0eh0WF+bJOQ4IKWGU8s1vfYeRkWFOnzmHoqpknRyHDp7g3LnzjI6O0Gw0qNWqdLsdfN/j+Kmz7Ny5Hc/rI0oivh+iaTqnTp3CMi3eevNtCsUylmUSJylxFCNKgzxE3TR46OEHkSWRcqnA0vIyxWKZOInQDIU0gTiMqVZrAzKiKBDDm2++wYO7dlCplBgZHsP3uwipxMpyiziKEIWY9959j1K5RKFQYKg2hG1bVGsVNF1DEFMuXZyhXq+Ty+cwTJOVxioff/wJp06fwjAMbNNCN2xkWcbJZkkBz/NZWlxEkVWiOMH3Qyzb4aWXXkXXdQr5AkmccPHCIpmMg6ppJLFAo9Hm8KHzvP/BB2zeOkWr02T91BS9nsvExATNZpMwCCkUqpRyOtlckaPHzrC8OEecxnzvmWfQNI1qtQpRTJjEaMbAYxwFAadOnaRQKCJJMo5jMz8/y+4XXmR623bef/c9ctkMtmURBj7nzp6lNjyCohkEvg+ALCvk8wWy+SyWZVMp1wfpFkJC3/MQBIl3330PXdcwDI0w6FAbqjMzc5FqeVB+KJvNoWkGqqZg6DpBGCFJEpqm0my0OH78OI8+9hiSpLC4ME+tUqHv9XFdl9WVBoqicObMWQxDp1IuIykybs8lSSP6fRdIqFbLxHFMV0jJ6ga/2RNZ+tWd5ItFDn58iIl1k8iqRpJCr90ijAb3YvLCW1y8cIkt/+Qf8sLzz7Bh3QSalSGVJCSS69elNRerO69jd2cpvdpR2gWxnCCui69by66scXfs6Q57561Ch29Ms1AkiTj1mT13nFe/89ec/fB18kN5sIo8+ktfpH5oF2mUcE4+wcLyBSYnyuQcgUrJpNcJcN0emYyKouiol41TaSriBgK+F6AqMkk6iLao1gokaZ8o9gAJCR1FNHCcBFWRUCSBMPBJQp9YsFhaXiFnq/S8iAP7Zti4YYg0igbh26mIKImEsUCSpChSjKYrSGKCpiqXlddF7EyRi/NNTCeHrsps2rSVmbmLJFFMHAYc2v8h46NF4shHUURUTWdxfom5xTZTWx4jUygjyBrZbJl6vUqz1WBsbD1GxiAuhyR90D+o0pg8jGi2WW12CMM+3X6TodERjhy4gJMfpR9pgEYcSpw6e5FKtcrpE0dQiDl16iOai3OU8iV00x6kubC2OOUd90vh5nvgXu6jezbKp9fvxWv1LdjpDaT1momu1eVtxNFufu0+cf1F4z5xvY+fIn46xHUtAvhZrbt3Nd7djHEXfV8pc3O3OaOfkqG76Ptngc9q8VzrM95NX3fz3Vw58KytWDlQ/7ve8/mz8xQPatFeFaq4MfcnCAYHlSiM8Nw+p44dZ3luAcvQ0CWBX/vCL9NoLVOojaHIEmIa0m65jHgqlT/5S0TbZHG8xr79B1ldbbJp82aiKKLVaFMsZhgaGiHjZFAkCVEUOHBgP3Ei0um0cTIZTp8+zcjICEkao+smoiTg+y5uz8UPIjKZLKsrs6RxjyQ0yObKoIBhW7SWGmQsnU53lUp9iEyuTrO5giiJg1qascALz/2QTw4c4LHHnuK99z9k05YpJCnD3rffJ4oihkeHcQOXyAswbANRETB1iySGZrNBLlcc5HFqCil90iTF92L2vPYamzevJyah2wvYt+8gYRSwsNhg85bNSJLIieNn8AKPoXKJnTt2smfP6yAKTG/fzsToMOVSkTAIkAQRWbHQDRNJENA1DbfnMjK+nu99/xnqQ0OouoGqGSRJjCAKaKpClMR026t0Oj1efXUPQ8N1NEOh2+nz4x+/zOTkelTdIAVC32Pr1q0Db263g6Hr+H7IC8+9ws4duwijNkHoMTY2jm1bpCQkScrzzz/H4088ShQHtDtNTN1GNw1sJ0OUJPiBz4b169m0ZQvbt+/k3IWLfPLRPtavX8/i4sLgb6+o9Lp9bDvDm2/tpVKpYZg2x4+eRNd1ctkcnhfw8iuvIggR9eECi4uz1IeqjE2MMDk1TK6QBVEiSlJyuTzh5YO4oiiouoyUhCSpwez8HOvXVanWRxgeHqZSraKqKrKkIGsagijh93sYioIfeqSJwHe/+wwP7tqFYRgcOXSIanmII4ePML1tK67rYmg6E+Pr0HSTOBXptrtUyhWiKKRYzNNsdjl+/DTVSo1vf/vbbN26iYzjEMcpe/a8QblcZmxslDiBKIaNGzbRbjRZXF5mct0G9u07QL1ep+f2WFhcRZIkMhmbpaVFtm7ZjKIazM8vMHNpBk1VEBWFKE7IOA5hlGBnHEhCVF1HECVOnziJqiQosjBQaHZdFEMn5ziEBRvt9ByObrJfgrHhEYIwQtN0gjTFMLIYpk7f7yNs20z08IOUp7cwe+4ktiEzOjFOlCQ3q6KuuVjdxQJ1j8RVnIgR110lzT/PVJNr3/eUmKjb4uQ7r/Pyd/4/RoY0rIknWLftl6j7DzF0aAvvLP6Y02fPIuJRr+RZnl0mk8vheSlp3EfTE3Qti+d1SZOUIJE4emae1lIbXVewMoP7QBAgTURWVzpkrAy6mmAZHoIAgpAipCmhH6GLsNCRWVhpUchqFAp5hoYd0rgHaYiiyCiqhhfDhTkXw8qhKAm6bhFEIXGUIso2jVafOAy5ONchTFOGqmXmlxbZtGmK2ZlL2LqNaajUKjrh5UiK1ZVVkjhBNIY5dPIcRtaiWKpiGSbN1hKkMYcOHcOybFRNYDVeIGcUmDz7CJfi0/y/3/sqI7U6xWKVP/3TP+Opzz3Mpu27eO5HL/Of/Oe/B5LKF/+j36fnu6wbK/Hh3j1smTTRiDh9+iyjG7YgaBJCKq1JXO/8x7+HtvfQ7k4D3t4LfO8ijXd7nrlPXH/xuE9c7+OWuEoebhZZEtZ8cH3q+03J8MKnC8qnVtm1SOrln6KwtgX3ytxEUbye4NzFYy3cOMbdXnerfq6zZF/5LNccVsRrvHcClwkvIF4um3BFDOpO43xW/KTX316w4eZ75apq/s1EcK253dj31dfWuJ9uGu/Wcxp0c0XcSbxpjBs9A+LlvwtAnCYIokiayvSWOvzFn/4lsacjGTIrs3PMnj1HoVjGLBRZvHiGbTumOHH6OBs2bCJKAhTZRPAtjvyT/40tu99E2TSFu2WKk6dO8sQjD9FrLVMfqhF6EVu3bmZm5hyOIbM4dxFJgiQVKJXqXLp4iQOHjzA5tRESH1mMMKwcsR8SR8Flj2hCu9HmwpmLZLPZQQ6uKBMGHp1WF8POoGoGna5LqVTB9zp0uwtkszmSRCCMIfQDhuslPvfkE1y6eIZmY5mxsXUEQY/Nm7aSCgKFooMiW/jB4B52++5AdEcQkRQF1TARZYXzZ84jKhanz5yjUq2wsLCI63rknAz5vM3U5ik2bdvG9u0b0XWNFIkgCFlZaVLMWai6TrZQYGR8AjtXwHEcUkVD0QwOHTzIs8/txjA0ijmbJIV3PzpApVxgqF4mSUIq9RphHLO6OMc7b79P6CesrqySzRgYusqDO6fx+4MwT8PIsW5yfBCCrMh4PRfdVPHcLoZhIogqiZCg6hrlap580UaSZXLFCrIkomgSogxONke+mMe0LAzDuEwUDYQkot9tI8siuq5x7twlhmoVFhdmmRgfZcPUJAIJS4tLmKbBxQvn+MELP6I2NARpwuhwjeOHDjE7O0t9qM5QfZjDhw7zq7/+BKoiM3NxjvrQKDECpBG6phAGAaZh8v1nvs3GqSlU2eSddz7gzTfeZvsDm2m0msRRwscfvM/09q0IioqiKCiKShILrDYHubSiAJIskZCSzecIg4Dp6W0YlkUiSEyuH2VmboaJiQkcJ4dpDcodzS8uYRoZXvrRK2zesonAj1heWuW9dz7ANCz2vP4aW7ZMUR+qoKoKKSKrqys8+OAuSuUynh/wwg9+SBylvPHGG7Q6Lr1Oi3XrxzBMBTvrYFoOkRdi6iqLCwukiUQUpVhZg0ZjnonxDei6jqyYvPXWu2iaTZKKyIpB3w2xLQNZjqnWqoRhhO3kkDQL34uxVAvZ1Gl3uriOifOj9zF3bSWoWUSRxInj58jaFqpiI4gBgZ/yK1/+PX7nv/tPqeY16uOT/NX/86958tEn8QUTRRI+zYcXuOxA+gwbzpWcxFshjuProlTuRnTpXoyKdzImX3lIqYCUxiRpTCIIpL7MoZe+x/HXv4catGl6MotRnvzqBA+f+yKt4WUER0ZJfao5A1OOGR0qc+70DMWSQrHkoKsZ/H6HKIwRJRFFEdElqBQL1KolXLeFQEIcJnRjgSQOUKUEWdURdBsiD02TCfwURZVIUWi0XGxLwjIHfYqije81sHQdJAlBSRGRaDQbSGKEaamIiUqaxIgiXJxZZbUVUS1kkLM5Oh2fidGNTG9dx2qzy8bNDxDFXYYrBu2l0wRpgqVruN2AlY5IuycwMTGJKMjEMSwuNxFTiXIhj+e7zK2ucvDgQfYfPMa55jkWGws8FXwJvZ3hhZd2c6F7AcSU73/3u+x9/yP+8O//jxw4cAhbN/jRSy/ya1/6A+rj26hXy3RmztJamqe5cprnfvB91k89gFWsIMgKaRINf/arAAAgAElEQVQjAWoaEwu3VyOGa4XFrrl91/DC3mrP//R+umYbv7Gfa895onAzwb4R4asyyVkJad2VTu6etN4JKSEI6TWf+D5+3rhPXO/jLnDrUjC3xxqtbrCErUlebngv/Bd/TrLnQ8RffuS6GV1Lgu5+TmtM6adoeb4V1vIgfuq9W6vNz3xGPxluTX7XCom+mSTe61i3xloqmmu3ub6fmy3LNx7crogupSnIkkISp5w4dJzEj/n+c89zcfYij+zagdfqYqoK87Nn0dQUx8pw8eI5pqenaay20MOE7JufkP3Tf0fZ9fnYlig/+gB7397DxMQw5XKeiYlROj2PTMYhTRPSNCGb1en1O0jyoM6haZkoioadscnYJtVygTSJaDVnMA0JkHjn3YOsm9pGP4h48529PPjIYxhWHsvSUVWNbs+lXKmgKDJRGGIaOq1Wi1argWEViFMRWVF55ZVXGRkZQ5IEisUSM7OztNttPL9PJpOlXK7gej0UxeBv/uarPPTQg0jSQOwnimJM0yAIY9IEjhw6TKVSpFatsry8TGOlycjoOKal0/c9stkccZDwrW98k8l16+m7fd5+6y1+9+/9DrlslpXVFTRDJ19w8DwXw9RJ0xQpTSk6GXKFEtVqhUIhh+8HDA+PUB+qk6YJ9XodUZIQZQkphW7XxTJtkjRhtbnMuvXrESWZ997/mJWVBhumprBtA+HyOmUYOlEY8+1vfYfp6W0ouowgCsiShKHreH0PVVVxvZDQC+l0uliWQ5rEJElMxs7Q6XTw/YBGo83C3Cy5XA4/jFAVHUEU0VSFSxdnMHQbVRmUVzEtk1arhWGYfP5zT+E4GarVMlEQEgYBTjaLrCgMDw8xVKuRECEKItVKDUGSEUQRkhhVVRAEEa/vMzIygiwr9FyX0dFhHn54J4qqYTsWimJy7MRxxsdHMKyB2Jff9zhy5DDVagVNUxEEiOMQRVEQUhFZEtFVlfmFWWR5UNPVMEzGxsZRFJW+1ydJBorGAMXSQL25222jKDL1WoVMxgYhYWx8DFGU0HWTMIyZn5unXCoThT5xFDA5uZ5KpYxpGjz00INYtookiVTrdUI/ptXscmD/J1SrZUrlEufOnmVkZATLMSgU8qwsNYkiH88LuHTpEqZhIAgCL7/8ErMz53lg+1ZAwHUDLNshjlLCMOS9995BlSVczx0IsakKy4pA/dk3iXWNhRNn+Dd//M/5zekdmCtt0vPnSc7N8fuf/wJUsswuLWA6OUarBQK/R21olORG49xnXOzvdNmNa3SyKJD2BATr1u3vafy7jIJKSEkEkSQVIBU59P7zXDiyh9NH3mR4ss7Ytmmeqv5DHpv/bRZzF3nr0B6OHz9Gs7HERC1DOa/TDzxGRkZQ1JhSMUev2yVJB0rnaZqgagp2xiZNPJLER1RkvAC8QODMeZ/jR2fZtGEEP3BRNSCR6PbayIpCELtEccT8SpdivkzGdDh7tsmxY6dYP1lDlBUkSSGMAoRUoJAvoCkiipTSDzuIskAUJVTqZaq1HCurXd7ffxFdt3j66c8hpAKlUhVRknA7S6iCS9JvIVwmhUEkkup5UlGnVquSdbIcOLCfvrtMs92gH8Ibb+5lZXYWKe2Q0VJMNaafXqJlnmFYH+fvjf0BvyH/LtU4SxhEHJ8/wZHTx3jy809x/uIcD+/Yim7kOHPmAooikc2N8hdf+Ra/+mv/MSuLLT5690Mee/JpdEkCYSCcFUsqwl2GkN/84r3fU7eLPLiO/N4mx/UKwh8opEvibcvhfHYk18zj3/eT2t9O3CtxFe41n+4XhSAI/sOY6L8nuH2tuVsT19veD+laYjbJGg3X7hsGuYTx3//nACj/7l9etfqytqf03zd86rNOEjqdDlEUUSmXSdP008LX136DVxfny9ffkCu0llX8ukNCcufv97bz/Yz/34JwpZD3WtfffWjNFa9nkiRXc5zXEEW6ihs/71ptb/5Orhwa1vq8V75nUhEhTZFFCbfTZXl5mQsnL1Cq1BEksCyF3uFTGKrOK3/5FX5z+zbm5s6Tb0AxSUk8H/XgGQQgquRZqeT4+jtv8uSTT7JhaiNRFJHPZXF7XVrtFsVyGdKE+bl5hoaGCHyPZmuVWr3C4uIShXwJSZI5f/4s42Mj+J6L6/axNImuu4puZzlxap6d04+C6LGyukA+V6HvxgT0yTtZojAkiCJIAqIoRtcslpaWOHXqBE889TSqquF5HidOnGR4aARNSZElnRdffJFHHt1FvV7G0B0QBbq9FnamROB7+H5IJusQRRFhGCKKICk6zz/3A5Iw4ktf/g16vT5hmJCxCzz33PP86hefolwu0mt3OLj/EKpisG16G67r8s1vfp0vfvELVCpDuF4fK6OjaQoICWkiQpxw4thx5ufmePTJX2J5eZFc3iFOUo4dOc7mrVs4cew4kiTy8OOPEMYRuqwQxzFJnBCGEZLMZZJt0+30UBQNTRNIkpCUhDCMaTXblIp1Dhw8xM5dDxD4vUHuqyASBiFxFBMEAUeOniIOAoIgpNVt8+Uv/ybz8/NUqzWiKMLzfI4ePYlt6sxcvMjQ6Bhbtz1ASsjJEydI4pTDh47zwPZNTE2tp9/vsbLSQhRk8vksZiZDGie0VhtEQcDF+Rm279yBrul0Wi0UXabX6WFbNv3Ax3IcVFGg2+tCKqIoOq7bxTIHdWQFISElIhVMIEIWNNI0odGcp1gqs7SwguNk2L/vY3Y99BBpmqIoMs1mg2zWIU0EhDih1WpgZS26bpd8rjb4/wH6rkcURuz75ABTU1NkcxnC0MOwDKIwQlUUOq02sqrQbLbI50rEccr5cxfJ5/MYpkapVMDzXU6cOMrk5BSrq6uUSiW8vkeh5NDv+/heyMULs8zPL/DA9GYq1QqKrHDmzBlmZ2fZ+fBOIEJTHPx+D1XXSZKUTruLqmoEQUDg9ygU8qyutjCNDAuLS6xfP8HMzFlq1TKtVhtFUzF0G1EQSUmIFxZRDp5FSCFOYlRVJUlAFAfrR3xpgeSXH6b9v/4harZMlg7f+cq/4b/+B39Emi0ThiHSlQibz7pxJXfWmbgW3r8yAND/Uf+Wa99auFW7ayNnrvXCXnn9yl4kygJhKiFGCR++8Sqz+17g9CdvQdhDMSb5w+nvkMza9GttDl3Yz0pjhZOnT2Br8OBUkXrZpJ8IKIKEbiT4vo+TySGKMX03RJBSgtBDEGWEWCSMYhLR4LXXT1IfzqPZCkPVAoWMDLGHICTIikKChO8pnDp1lnptmH2HT7DjgTGK2RAvhtZCRKVuE0UppmkRBD2SKEJVVEgTev0ummmQxhqBL9DrtZCUhJPnfc4sxDzy0KMIgku5MESj3RkYheQOzfnDhK1lZNMiSSEWsxTWPYyAQKfVJmNlCPo+kqCx/9gx3vnoPbJGwlM7RpHFGNNQkMQUTZMIAx9ZUun7MWJUQnVHSToFyuoovbTFa4s/4nh4nI1PZ3n/xGEarR7/8x/9D8wunqOYs+gsX8RdPcGFk/vx1Ak2btzIr//O74JZJNIdLCG57kxxnWH3dp73y57+uyqncwXX3M+fGvXXtEPf+Tzh/ZkKgP4/BTdffps5XZsKdEsIMYN4h4FK+H38/KGq6j2tmvc9rn8HcRuD2p2uXOOlu7DgfTru4Lfk+deB61WFr7x/nSfvrub0i4EgCMiyPFD+vEzEbkVCBUEgvUzcbre4/rxxpwV/MN+1rrx3S/5aeaW3mNVdjLW2F/hWEEURRVFIEBFTkeULM0Q/2IP2w7fovbaX4R/vJf/cK6hf+wH5F95AfeltNi910Rsd9EvLaEFCYGn00pj+tnV8LAWYOzazEnu0222KhSLdTg/DMJElhR/9+GV27NiF57mIokA2m+Odve9Rrg6Tzebpu30UWUFVVFy3jalKkIT0ul0kWSabL9Fu91A1jWqtQq/dIpeziSMfWRLotJvkSgU6rRa7X3iBB6a3IRJhWTb9vk+v51MolCiV86wuL6KKKZqqkCvkMQyDubllDh46xGOPP4phaTSbHZqtFqqukCYinc4qcZKgqionT50gX8gxqAkoY1kZRoaGyWczxHHCKy+/xuYtWxkdGyObzRAFASurK/h+wLYHpun2uli2SdftUh+qo2gqjmMTBD5pmtJ3PSwzg9vp8Morr/DI40+QsUxe2P0Cjz3+OLqu01xdwcnlCIOYubk5JjdMkpIgISJJgxqasqwS+BHf+MY3GRkdIZdzSNMIz/M+zW02dJ0rAZ2qZvDtb3+bjVMbMMxBCZ/F+QXeevMtpqY2sn7DOobqNRRFYseOHYiIJHGKpmksLs5RLOYwLAtFFtm6ZQuyqtFoNMkXs0gS1Os16rUqp06folYrI4iw+4UfISBTq5WIoohmo8GRw4eZnZll89ZNaLqG1+/TajZRNA1JlPjgg/cpFAuYlonfd/F9H1lWOXvmAs8++312bN/Jvk/2c+LkSUZHhhFFiSQJ8L0IUQDTHHiXet0+hqajqgIZp0AcxcRxMiiZg0jf6+P5Hrl8np7rkc0XEBARRYnFxUUymQyiAKqiocgDD7luaAiChqro+F5A3+1jWia2bfOtb32bXtfl448/IQj6CAJEUYgiy+zevZuh4RF03WBudo6h4WEuzc7g2Dn+6q++xi//0udZNzGKqht4XkSSgOu6TE5Ooqgi/X4PWdLo9bqQDjwwaZpg2yatVoNcPo8oyvhBxKWZGT748EPWT04gERIGPvl8CbfbZnm5gSjJdDotMuUs7lCNaH0NafME7VoRdXoz6cY6yYYJpOMXEIIA7b/4AoKWQRETXnjuGbZO78QslK43xq21Td5NOsc92hij9xUA5EejO7S8e9y0B69BbERBhASSwOXg27spmiEzp44xbf1n/Kb45wiyRm94iX0nPiHjZDl+4ihxHDG9cZjheplut4ssK+iqjO+72FYGrx+QEBOFIaqq4GSzXCkfZeg2sqwxPl6lkM9Rq6voaopjGSRRNFCAlxKSOKXVDFhtdBlbp1CqFLF1EV0UCAObbEYjSn2sjIPve4P1VFGRRfBDH0UzkFEIwpTX3jhBseRgmQ6fHJ3HDcRBTWbHIYkisrk83V4TKXXpNWZQFQk/iomjlH6oYpU34HY7gMjszCAqwwtEXnn5x1iqz+cfnaReElFlBdOUSRL/U8E+RIE4DsnkZRJzga5xjmXtCK1gGa1X4KnCF9jRepoH7ScZr46SmCGvvr2bp59+mj/7s3/FE49vo5yTWFmaIezNszJ3iWKphO0Ub9on7/o8chvj+i3vJdbY7z/jeWLNOq43TfEznq2uCFnd97j+wnA/VPg+7ohfFHG9srmvVQ5nMK//sIirKF4OmV0jbPja59e2uZvF9ecVBfGLIq53mNVdjHVvxLXf7/O1r32NuBcy/3/+a2r/x79F3X+MNAgxowQ5m2M5a5DWcyyM2RiP7UTYtpF+ySYqWxxqNChtGKMrgWbZnD9/gZHhIWzboFAooqkGY+M1VFWk67aY3r4FWRkc+rvdFoZhMFQfox92QUrwgw5B0CWOfdqdNralIabJQCXXMFntrpDN1tCUHKpqgpbScQNkzUHWdUICSCJsQ2dybJQwDFA1kW6nS7fj8tHH+3nwoUdotxcoFTJIQkKhkENWFJZXGthWduDZtQ0URSTwI4ZHhi+XjonR9JSMkyWKY8qVEqomIzDIdc06WQ7s30cYBuSyeTZt2kxKiiRLfPWv/4bR0VHyhRz1oRGiOEA3NBaXlti+fQeabuB5HTRdRZFlGo0mRw8f5ZWXXuOJxx9latMmdCeHravs3LULLwr58IMPmN66BcOysC2HSqVGlISEUcj87ALdXgfbNnn99Tfw3ICtW7bg2BaqIiKKCXvf+YAwDKhUKvR6fZqNNtmcjZMtMDI0OIiGkU/gB2iajm3ZZDMOXtjB7XaBBCfrQKqyd+9ejhw5CCTU6mWCMKJaKTE/N4thWhw5eoTJyXV4fo9er4Vl6YyOTGBnTOI4ZPv2XaSJjGWr7D9wgHUT6yCBYr5ItphFURWeeeZ7PPTgg0RJSuD7bNu6dRCNIgtIoogkS9i2g+eF/Mqv/BKKrPLssz+g1Wqza+dDLC3NY2gKvXaX5uoKpiETRDH9rsfzzz3L9PQmJNkiSeCv/uqv2bJ1K2EYoZkaoiijajqG5RCEKXEcIYjCoIxOmhD6Ln3X59lnX6DRaJLNZjl+7CyCIPH1r38TVVbRDR3byjA+Po5lWvz6r38RxzGxbYu33nqb6ent7Nz+IEmS0uu6TE1tZN8n+zl95hwbp7YgywpJEmJZGnveeIfhoTGOHTuBH/iMjo6QEiNJIkkkkHUyNBqryLKEokhIkoSuDXKqL12aYc8bb/DgQzs5evQI5WIeVQZJknH9mNmLZzl5+hytdodqpYRESioMxK0WFxcolSpIkkoqDDz60uGziBmL8De20/RTJCFhZWmJbLlGeWj4+jV7LYfV5b3i9hFNt35rLfw8ieunUSuAFKUcPnyImdOHSFZPsbJ6iM3Rb7Ej+cd082foVgI6vTbFQpl8Lsf+/Z+Qy2XJSH3e33eBTNZAQcSxVWRJQEBG023m5maxLB1RFIlj6PcjktRH1xUkOUVTY1TFJ+oJiMh0Wk1kRSCOPYRUIoz62I5BrigR9cu889ZhJkfKxMEymqWQhCGiKuD2faIoRNcl/CAhTSMkWUZUNfACwsRncmMJQVI4eeI8gjZEdXSULRvXc/L4OWq1HK12i8WFWQoZhTRokwoJmmmiayaJkMHMryPs9UhTgXKlymuvv87re1+hVFB5+pENlDPyQOUdWFldRtN14lgEVDTLQdFU+v0OghSj4CMkffx4BfIBi9JFnjn4Iv2uy3b9QcbPTPOI9jTvdPZQG9rAg7t24vZ6VMs+547vRxNi3t77ARs2TiMbmavnFu6B7H0G4nqtpsnVC9e86+7Y133i+rcb94nr3xHcuAnejbDC1eciaXqFS13O+yO9474piIMqjwjXPO5mrpd/Xplv8uyrwIC4XllEhWvaXfn93nXk7h135wUc4FrxqZvEpbj6NxCueVxufNMYN4Zi/bRxt+UQAKIouun1q97hmx9pGnO9ONJa391VkaU0vSKmdOcwHEG4If/lcj7tzfmsV94bPBIGNSjFVEBMRVQhJU5FUlFj71sf85X//p/yX+05iHn6Eh/KCcVf/zy9jIY6NoKQz9HxG6SqygcfHqRcGUGUFHq9DrZlY1saGdvB9wNSEjZMbcILIlJUXt/zFrV6FV0y2H/gAMOjo0iywbFjZzl7/jyVfI75mYuIUoqtaHRbncEBWTPRNI2sU8P1ItwgYmmlgaob5DJ5gtCn3W2gayqe65HP5pCkQS6m63roqkGr2SFfqoCqI6s2imETI/Pee+9haAq1ahlZtUCxQdEJkxRNGRzw1q0bp9fuoRkGdsZBllWSROSll16mUKpiG8YgrFrRCMMEzwtYmJ3BsQyCoE+2WMTKWKTERKGLKMTs2vUoCAlRFBHFMYZhIqZw+OABcrkiupUhDnukSYKqGai6wdDIGBs2TKEaEq32Ko6pI4gycRIhCgm+53PkyAlyjoMqRzRW59i9+8dcOD+PIorkcw5ur4sAdPp9tm3bRLfTJJPN48dw9NBhBBGKpQK2kxkcUJHwvR5p6pMkIVIq0PddJNViebmJrMS89urrTK6fxMlmOXjgKPmCQaVSQVNtMlaGfDZDr9Mg52TxPB9ZVui0WlSGhlAlFUlSOHL4KNligdXGKpqmEYUhkgSqWeCHP/whmzZNIUkiru9h2QakKVu2bENRVHRNRlUlojim3e4iiRoIGrt/sJuhWgVVivFcl8DrMbFulMnJdTjZHJY1qOfren2KhQyB5/PBR4colioUimVqIyOQRPhel2qlQKWUJ40DvH5AGITYlonb7eG7XUxDo9vtYWgqke/R64Zksw7N1iobN20ilyuxfuMokhRTKmTZ9sA02XwOBFBUmWK5QKfbJvD75AsOUxvX4wc9kjTAsXTK9TJhFFIpldmwfgPLK/MMD1cxDJ1+3+fUyTO8tudVyqUimzatJwg9er0+kqygKBphKPDJR0eoVOpIsozreqyutlEVkYsXLmDoGsV8kW1bpzBNg74fEycCzWYTI5Pj/LkLFPI58vkcgijSdT1kWaVQqhCnCaQgioNaqdKhU6SmRvf3vkSt6JD6LmePH2WiXsYu1lB0izRJkNKIFPFmbabLG+5aK+qnYjhr7kE39fQprhBX5bH4likSN+45d6OQf21fahKAKBMkoCgCQa9BtzHPh68+g+EvsDp7Grul83Dn/2Y+s4cZdw4rWyHwPDRNw3W7LC0t0He77NgywvhIhqKjk8ubtHurpIKAF/ikRNgZG0VSCYIATdcGKSaxSr/fp9X0CEONfj/ihTdP4ccJ/X6HYjZLGscgygiCiOd72GYWBIliSUE3JSTVwNINEklmabFJEkY4lkYUBqSpxsWFDradg7BDLGuoooZtmISCwd79M5imQxJ6eJ5LfbhMIsD6yQ18+N57FLMaob+CbVqksYusVVlqicw3FjB0DcdxeO6Z3WQMiW5jlR1bRijaCaos4yc+smJwYN8ShVKBbEZERiVKBkrGCKCpBggWXuCy1I7xApnxisiFmQX0fErP7iJOCugdk/WtHQifT0hUjbnVDkZ+nO99ew/Tm3OQNJk/08MpZHGqI0SigpLEa3sxrr37rkSMXaMrcUtDeyoOInMuE8BUSD+VWLy97tHdE1fpGiONIA7OoIMzw931M7gwuf4Mm0qD+aZXhB7voa/7+KngPnH9O4LrD/fXb043qfOusdBc8Rhe8+pdjfmZ5nrD82s9rvdSbmatvn5SXBn/TnNI1ih7cNPcriGutxvnXj7vzxKfWtAl6dP83GsfV15b40rg2vvhJ/eKXm1z/fMkufV3dqNgCIgkCaQJhP2AlaUlVpcWGP7OS/zB2SXi6Y0kjz1IaXI9L7+2h5VWi5FalcD3MAyZhYVFHFsbiPmQEAYhpmEiSSJRnCLJKn4QIKQKl87PYBoZHNvBMHTyRYWJ8XWQ6oiyjJnROXXkIJapcWD/PvK5LCvNBmbG5rnnd/PoI4+zMLfIG2++haro2HaW1157ndHRMUwnj9vrEXg9HNu8rH4c0+128Pw++UKO2O9DmnD0yGFs0yAMQmRJQTcMxsdGsW0T1bDRDZsEECWBntvGMSziyENTVU6eOofjZLFMi06ngyTLnD17lla7xfrJCTrdDoIo0O97KLJEmsQsLy1SKBdxslkUWUYURI4cPopl2SBGSLJI3/V499332Di1jiRNKJdLmJaJQEJyuUatrCiIlz2IlqUhiwamkcEPOkRxgqqpdLs9iqUSy8tLrCy1qVYqeL7PtultTG+fRlcFdF2jVq1RyBfJZm1kWSSbzRGEAa1miwcfeYxiMYcopHi9LqQJX/nKN9ix/QFkRSROQiynQpzGHDl0lPNnz7F9egtDQ+OoqkZjtcHU1AZUXSNJU3K5LPlCjiDwcEo1Vhtt7EwWSRAZnxgnCEK6/UXSNKSYHwNkSsXyQMVXBF03OHr0MNPTm8nnMuimRrlSwjJ1TNPE9/v0+y6Kog0MAFGIqmlIkoSqyMzPzzEyUkdVVVR9ELrdaHSwzCzvvPs+5WKGFAFN1dj3yQEMw2JuYQXbMPH6XVYXFjBMBcMwKJTKpJKMqOpEfoLruth2hjDyUDUZTQZZUVhttUmFFCdfQFYkxkbr2KbOi88/x8at0xi6imEopELIwuwiszOXaDYbOLaFJAjki3kEQaTn9rFtB0VRETWb5dUmqqzguYNc1SAI0HUVVVXRdQMna/G5J59k/eQ6wshH02RAQxIVTp86TRgGfPThfo6fOI6TyaDIEnbGhDTGskw2b55C1xVkRcTt9bAsEztjYVomjpNlqDZCsVhBlCSOHDmKpZto6mB88bLBbHlpCVmWkI+cJdIUVp6eInC77H3jbTZObeF733mezz21A0kRiQWJSBQQ7zHJ9bPuBVeJa3RLQ+VPmpoSYQ/W4PYijfNH+Is/+Zfse/VvMJMWCi66krBx9p/iskxDnGPT1ofp9EIkKSVJU15/7VXC0GNoqE7F9nFsCUmKieIQx8mhqiqWZdDve6iqRiLGSKIKyUA0TTUGa2Pf1Th7dhEvCPjcw1sZG8pTKhhIcjwwBqkqSZr8/+y9V7BdV3rn91th533yuTnh4gK4iCTB1BJb6mhZ4xlrxrJsV7nGVfPgB7/ZDy6/eeyasqumZvzgclnSWK4ae9Qtq9UKLbXYZIvN0AwiCSYAJAASOd0L3HxPDjv74VwQwOUFCLBboW1+qFMA9llp77P2Wuv/hf+HoTVxnELcI58zieMAz3VBGkgtcBwbrTUZAikMYgxs2xswm6fZAEgHHTKV8s7x8zSaFp1uEykFzzzzDGmaUSqX+fjUR8xMlNlYuYJlDOZbPxRIa4h8ZZzJqVlElrKyssLRxx6n1Vxj/7RLpSBx7S2GaEMQ9CIM08K2BbalBuET/R6OYyEBJSRRHJF3LQqFwoCrYMhndiKPMkxOnj7P2uoyo49Usdt5CmeH+Mh9E9PUTO0+TD43zeWLN/no1DHm9mS89srzHD70NdzcELHuobL7swzfBq53z51bnBV378vbrLgPaNh4KIvr07ctrp+dxg8KXO/t1XX7PP13fz77/5N8CVx/weVBrH87BZxv//edAGT7pnanq8htuVuj9rCb6XbQs5PL761ryV/+FMEAuD5sX9uttz9PALj9ud4r1udh27v17wcG51/wN9iurHiQeXQnQN0+L+6cO3df3/7dToB0p/n02fFsT1mzHfDuZHG9c17bWwdeKSRhN+Bf/A//gqXrN1m4doOg3aL03b+k8Or7dP/9r5EMF0lTiKKIt99+kySKOHxwH5ARRj0KhQqObZAmMVorPN+nH0Y0mnXq9QaFQgmpFYiYMOqRy7tUqypvJ+gAACAASURBVEVcz4RckW6nh6uhvraIkXVpNEL27D3I7O69+F6B0lCRXL6Il8tTLpYpFvJMz0zx0amP2dyo8fWv/yqmaeAXiriOg+c69Ptdsq1Yw26vh5/LEccJWkps2+fSpat0Wk1yuRw3btxkdGwMKQWObSG1JoojtGGglSAMAtZXblIp5rh58yZBBKOjY/SDgGKxSJIkTE1NUSyWBtYmIdisNfC8HEs3bvLeO+9w9InHUYbGth1AkGYZP37ux3iuR3WojGlaBP2Q+fl5oqiP1hptGMRxRBqFWLbDxsYGhUKRTreDEIJ6rUaagNYSsgjDsmi1Wriu/ynTbhKnbG6sY5om1eEhMpHhuTZKycGBN41YXLhGoTj4jW/evMk7x44xf3AeIRLI0gFxk+Ny5sw55uamsWwD27YRykKImMnxCQ4fPEzKwMoppWJ9fZMg6A84O4TA9wesp3ESo0yLKIr44+//MeVymUa9Qa1Wo1LNkS8WeOftk3z40Ufs378PqWDp5g1c18MwNPm8hzY1WhsIKZFC0Gq1cV2fXC5P0O8RRiHFUoE0FQNLo4JSqYSUEsf1WFlbRUrNyZMf0+8HfPTRSeb3zuHlCqyvbxKFIVJJDh85gqEl169dY3HhJvMH9wGgDRO2vG/+7E9+wKFDh1hZWaZYKGAYBlE/pd1NsO3cVmqlhH6vRxwFkEKj3qBQruI6JlHYw8/55HNFXHcwd5M0xjA0/aCPEBLHdYmjhGarTZSAZw/SFzVbDXw/hxAZQRDgeR5CKFzXwrZtkiTF9RzSLOWHf/EsJ0+e5Jvf/AamYXD+wkVqtRoTExMUi4WBp0K9wfDIMM1mA6UEYRhg2Q5kUKvVMAyDjbV1PvzwI4RQmKaBYRkMDxfRpkIbklarjlYWf/6DHzA7O4t7aRHpe4jf+jr9Xsgjjz5OqTKKmy+ydvMS0wcOEcWDOSIf0oFmp/38QeS2q3D0uQB1+zr+oMrTMFWIuMPJV/+CH/3Rv6W+fImJQkop75CEXSrpISY2/1MW1Wtop4BbqNLtR7iui6FNFhYX2Kw3mZgYo2QrPMckjhPCUAy8FFoNTMtAa4NuJ0CZkjDo4zkmUTJgE5ZKYVo+/SBkaLREfX2ZNAmxLE0UJ2htQSbphyGm7bKyWsd3LUzTwHZsojim2+sjlSSMAizLwjQtpNKYjsBxNf1eA0GCJsUyTNIkpRcoFDnKQxX2H9iP53m88+47zO3ZSxx2cYwQz0yxLYlhasLEJdUFlGnjuUX6wYADoVqu8u6x1xktphhmjOMYJKnAMCRKJBRKLqaZIbIQrdMByBYCrU2yTJGJmKjfR4iMkbEqjqExVYzlOFxbWGPP3BwrGzWudy8yFewltnu8cek1Op2EuX0HuHJlhQvnz3DoQIGpkRGkrlAdniAxQKPvmi/3PPNsmyo7n1G2K5Y/d3rtWG8no0tyRSC8DH3kDgKxLZLG+yvQd+ruS+D6902+BK6/4PIgFrmdvtseQ7N9AfrUJfee7f5sQPC+491WJqs3kTMTyMf2P3w/D9HvQ7d9H4veQ7WzQ/30PuRMnzeOLzSGh1EGPISyZCC32YHvvcg/uKP3Tm3fr86t8lpr0jTl2LFjLF9aoL3RYHJ4nEfmD1KpjDL1w5dwXjpG65lHwfNIBNiWRbdZ5+mjRwb5+bRm4Nac8PxzL1IZHmFycoJutwOGgZ3L0Wk0GB+fRCpFq9MhXypSHR5BGxaGZdEPI6wsRYR12o0bxFlKoTo5sP4YGr9YQMiUdreHkIqRkVGyNOTmwmWiJObM6Y9pd7rs3j1DLu8RRwmXL1+iMlQliCMsw2V1dY2RkTFMwyKMYhCKU2cucuLkGUaHx/BsTbVSJU4THNfBMDWCAMvUREFAp9nEd1zyeY+Vm9cZGhqhMjJFs9HmRz96jlwux+lTp9i1a4ZWO6C2sYkUijiBcmmI61euY5k2Y+MTmK5LEkdkGbzy8iv85n/0W4yNjWPbHqbhkmVw+vRH7JqZGcQJokiTFC0AqXFdl0yA7dgIIXDsHGvrC1iWJElStGVgmhaGaZOlEEYBI0MFnnvuWX7lV76KNBTa0PQ6HVzXp17fpNdvUCzkcDwfpKKYLzBUruB7Fq1WE8fzCKIUpS0OHdxHFHdBZCg5ANW2mRFHMUIbKNdifWWZs2cvMr/vAOsbmwgFlUqZXq+L1ookSQj7HbSU7N27j0plhG4voN2sMT4xRZoKvLzN008/SRz3WVldYnR4FMu06LSbVCpl+v0+rpcjTjNa9RamYRNFCc1mC9PKyLKELBVEMbzyyhv4noOUimf/8sccOvwYnX4Pxy2SxpITJ47zG7/x68QBnD17nsWlG/zSM0+RL/iYhsTP++SLZcYm5/jOd/5vnnj8SeIgolWvEXY7PP7Uk3iuy/raOkoZuI5Ps9Pi3PnLDFdLkPQghSQOt1I4Fen2Y65euwpZiu/5SGnQj0LiNMbxXMI4IlfIDeJjo5iNzRpKaZ5//q/I4j4XPv4Y17EZm5okjhKiKKRQyLO5uUmr1SaOI1w3R5JmSKHo9wJmZ8exLZtCPo9lm+TyDt/4+jc4f+4iu3fP8fHHn3Dh/HnK5TKOY2+loSqjlUYKg5XVNTbWN5mbm2Jqapq19TXOnT/Ho0cfxbY8tGljmA6m7ZImKfP75ink83D6AqGW/PMP3+e3/rN/irJ8umnK6K5dfPDWX1MujeDm8qj7rHP3kp/V4vpFY1wfpF+tIrprl/mD3/mfWb56ipGSR3WkzNWFawgteLL7PxKwQpLrsFrvkytUGRkdo9cNAUWhUOLmzUXWVtdxHIFhxPiugWE49IOAZquO59qkKXQ6AT99/RpzM8OkcQ+lcly+2qRSqXD9xhUyBGkqGRmfQGgLqR2WluqEoSaTAsPyabRCotjgrXcvsmtuhjhJEHJAihunCtPUZFlMliUIwSCOPYnQCMIgphNHLK9GbLY0566sMjQ+zfDIEFobDA8PM1QdoR+EjA0XaaxdIg7qGFqiLMVm0yA/vAttmjQ3O7iejdaK1ZU1GrVlfDuiMlQiFQLfLdDttBCpApHienmiIMGyTJI4JRHQ6iW888F5Jqar2MomzSK0KTCkTSIlMu1TLfrEGHxw6hzf+va3iK0eU9cOsfvXZ4h1j2sr59h7+Bm+9iv/ASc+eIek22Jp+Qajk2MMDR8g5d4xo3d5iMkHmaM/H+B6dxuD79ShBHV4uwfYg3h+7dTol8D175t8CVx/geRehDV3arPuBJzbQel2C+ct69X9rJ/b5fZ3O8fI3F3m80WKAYOuvDXGO1q+9bd8bD9iC7RmWXZXfOhdY9v63GqLHYDfg4ztYWKBb5W/9dyiKBqM+ZZV8I5UPds/3HLTvuN+b8d4CNj6jbY/6c+zkN8a24MoNB7G0iruiA8ZVNkZJG4f08DCeted79QLbItDvTPu9VZs7Pa5vP2pbh+jEJBJiZQgU0HY6rN2Y52cX8Dz87i+h+GlrH3vR4z/8KcsHp0liDocP/kxw1uJ36M0xLFt/FwBshjPz5OmQDYAieXhMmgDzzKIe6sUS6Ns1DuYjqbf7nLu3AJjo6OE/RpZ0iKLWgRBh36vSxhLCpUJlOXhWha2bbGxto6XyxPFXYJ+D5ElOKZJHMbkvCJT02PMzs5SHiojjQgzzbh+YwlhePzZnz/HvtlxtGUO0t4IhWvl6Mean7z4Io8fPcrHH59j75E5ev02OcdCKU0kFGtLC+RyeSzLI0k1zz77IlNTM8TS4vt/+kNmp+coDhc4dOgIr776FgKDCxcuceTwQeq1FiMjExSLeZTKuLawyK65GRAJ3XadNIsxDUWlUsbPeXS6bTAVcdSlVa9z7O0PmJufRElB3A/58MRpri4sc+HcOWq1BsMjo0ilCOMESUCpUEWqjDgN0VKitCQIY7QykEJD0OOJJ4/SaNXo9XooKbEdl26nSbFYIBMWWtlEQcyrr7zC2OgYxWIRlIFhZMhMksYx3//+d9m9ex/DI+MkaQJZRKvRotlsUih4hEEPW5lYNkxNTtNqtVlaWiJXdnBsg7DXBTSfXLhGIecThH1cx6LZbFAplygPl2k2NvBdG1MqhOFjqpSgXWdxcRXDKZElPV5+5UX2zu8jihKkVGyurXDmzBmqw0OYtkm/2yaXy7NRa6G1zdlPLvHM04+wubJKEsXk8kWef+7PefLJo/gFn/kD8xQLRaxigVKxwvBwibxf4ML5RcpFl7AfD6xMEkZGqyht4vo+G/UNqqMVWvWIbrvOUDWH0BJtD1IJVSo+QmakqSRLY9bX17l2dZFKucoP/uwHrC5f5+gjB8mShChM8HM2tm2CSHFclzSVdDtt2q0Onu9jGJrp6Ul2Te+jMlQhFRme67G+sUq1OkySSHq9Hn5uYJHudXq8+MLLVKpVHM8ZxKAWcwNLbCoxDZNczqNSLWDZmrffegOkzYH9+/EdC1NCq9um1e2jHI+NjRpTUxP0OiFx0kfplPn9+/A8lzBMEHKwVoVhhMgkSsW02+tYV1dpWhL9T77Crtm9JCgM10AZ0Fld5JEDs7SdMTTRPUNFtq+r91ufb3ui3NsKK3clqEPxPfO4bu//zr1hp31GZSBJkSJBigxhmkSbAT/4v/4lrF+mUi7zlX/wqzTbIdPTs4z2f5WJ5j+kW3qH5fUakzN76fRitOnQbHU5deYjri9cpVwpMTo+xnhZUaq41GrruKaHV7DJshjHtkiSCLKEkUoOx1UICWkac/HCCjEhu/Y+yeL1DqMjPpmIMN080vRptnsYWmN7w7x34gpJopgY95icKA74AYIQz8+hTBPPVPS7g9RBaZqRxBFSmYMc2EmCYVpo1ef0xzdp9RRr9T7Do7t47KnD5HM2aSy4vriAZft0OyvIaIMszciXK8SdCLs0Rbsn8D2f4lCZy1dOURmept5a4ZPTlzi4O49tGZCFhFGPNNUImeDYOYKgiTYygjhDKwmpQGVgyARTC6SWA6bsXjBwMQ4MzpzvoHKKdmOdZrfLruk9tJKE2I4ZObmbhfQSYwdnaDY2KBUMXvyr13n7rWPMjGgKeZ+huV/FMiJElqCVIs0y0jQboHzBXZuuuHPbztgZld4ZNyoGkd47nZM+c27aVu+uvf7TM8NOZxN5B6GSICP5dICDo0T2af1b/0dkZKm4KxZ353fly7Q4f5vyJXD9BZP7Adf71dnp2s8WO7kzWHrY9r7oOB70fn9Wq+iD9HMrRnhlZQXf9x/qOQxcWB6g3A71HuQw8/O1xj4Ig+9APt9i/3l93b+/e7W70+U0Y7DpxPDKSz9lbHiMzbUNnn/2BWZ3zSJWN9j7v36Hzq8cIctpmvU1ds3tHihBtKJarW5Zj1KEZdPtx2RKMzk1Tb5YZnltFW06IG2UYaHIcB2XlaVF3n/3fRauLDJcrbK5sUm3HaK1TyIkrl/A8wto06Ld6aFFSq/bpV4fMJ869sC11NAGUZxw5szHZIDnO1y5ssDIyChB0KPV6mKYNgCaDJGkTM3soh8EA9fooEuStnnml59AEJMkEfv2z1MqVuh2e7z3wQkmJmdQIiUMEtrtDrZt02w1mJnZhec6pEmKVJo4SVldXeXQoYMcPjzPwUN7abfbdLs93n77LfL5HL1ej/GJKV544SeMjAwzVB0apKmpN7EsB9f1EEiydHBodz2PPXv3UCwWabe7xFFMvd7gyKOPML1rgumZKSzLQJAispQ0DiATxHEfrRSWWWBzvY6pDMgyPnj/PQrlPFEUYBgGQT/EUCa//bu/x+jIKJ7nkisUMLVkaekmk5PjaK1wXYckSen3B7lPgyDg0OGDWNaAJVdJRdDrIaXCc11M0yRJMqIoIiMjCELKlRJDQ2WGqiOIVKAwWVne4Py5yxw8uBclFfl8nuWlFUZHx6nVNykU8lsxkopMKOKoTxxFXL22yJWrCxzYv4+5uT1Ylo1SmiROKRRzTE1NYpomb7/1Nnv3zhMEAY7jcOnSRcbGRlFWRmWoyujYKLareezRI9RqNYrFImG/R7tZwy8WePetd8j5NleuXOWtt99jeLiE0hrDsnj22Wc5fPgA5XIFKRVaKyzT4NrVqywtLQziQPMFWq0OtuERBgmGcmi3enieSRhGjI2O8dbbb/PVr36Vr33ja2RkOK7LhUuXGRnfBWiiMCIKQtqNFtXyGJ12H1PbXL50nUppmKtXL5ERUyzmcRwHw1S0W21OfXSG48c/ZHxsEtvWSCS+55Er5HFcBykEH538EKU1Hxw/jm3Z9Pt9XnrxJXbv3s2hw4fZf+Qg2jZIBGjHodtqUyoWqdfrjAxX0UKQpRmbm+uMjIwSRTG9To+c52BoiZQZZAmtzgbNRov33vmQiVwe/WtP4T3zBNpycTyPVrtFGAVMDlX53h/+AU8+8zVk9mB5tz9vHb291t97NxEeDwRad2p7J0llSiogQ0EmaG42eOlPfpfFy+8yNTHFlaUGi7UO3/jmf8j5Yzf4avN/ou68T59ltOmyvN4gjKFYKuO6OSbGx9i1a4YP3n+PVqPJ1FiBUycuMzM5Q5I1SBKNkgohQEmBZVl4eUESw/mzi2Spye5d47i+JhMWe+YOcubjUxRyZTJMxif3ML1rntWNNlHQJcsUYRhQGSqQy+XR2sAyFfXNdUSaEEchlm2SpSlCDPY0yzKI44QojICMOBG4uTF6sWJ0fIoDB46QxDEXL1zgvWPHqQ6V8R3BSNmk37qB79oYpqRW66G9KmOTc6wuLRFGEcOFKiQBntnBZZWhSgHHtVBabOWfztioh4CFYWm0EpAOXNtdzyNJI/J5b4vMzkJrTRSFA9blKEJKjWFElPM+3bbJ6VPnaTW7NJMVutR5vPENiotVwt0thqeGGR4bZ//uIpUinD13hsef/CrrvQTb8+mH8UCxLu5tRLj7wuefA8R9zhP3b/zBCn32LHjvc9Rd1zLx2WufKf8lcP3blC+B6y+YfB5wvZf1badrvyjANbt6A+otRDF/V737tXmvcn8TwPVWzKfv+8DAJfVB44/+vwpcvyix1N8EcFVKQiJZuraCY9mkSUS1VGbvnnmy1U0m/+XvEYyVCabGSKOIZm2TodFJwqBHsVSi0WiytrpOFmeYZkahkEOTEfTaxGGP2sYSWRzzox8+j2Wa9Psd2s0WYdDl4oWLfPNrXyUMOpiWwcrKGhmKydndCKmR2iRJUjzHpt9popSkVCrR6bQRDMBSFCUkSYJSBpmUOK7D8eOnqFaHKJYKeLncIP4wS2lsrmEYJiNjY6xvbJDLe2gpCLpttJIsLt7kzOmzHHn0KEF/kJz98uWrnDj5EfP79pEvFLAsi6WVZQ4cnKfZ7CIF+L7H1esLNOot+r0+5XIBx9HEUR/H8XBdh7k9c7z++uvMzu7G8Xwq5fLAXbbTJZfPk2UC0xzErEmp6Haag/QprothGbSbPRzbplmvs7i4SLlaIV/K02o1B6y+SYRlSHqdNr6Xp9WskcQxWuXp9/r0u21MrWi12xRKeQzDwDAGluokTrHsPOPj41y4cJEkDcnnPSzLxPNc2u0mhqHp9npImeFY/oDQaIsARWkDrRRSSKSSuK7H5mYdIQRKKaQclPM8m5s3F7Atk3ariWmZZFnK6MgQru/T6XYwTJMoTrEdF8e2WF1dxnEd+v0BO2q30yEIQkZHJwDByMgwzWZrQHplmCilQGb0ej3azSalXJ5Tp8/y5ptvcujwAcqlAuMTY/SjjLWN+iAFk2Ui0oR6rUapVCKJI1zbwHBspsYmkCLBdj18v8Dy8gLFYpF8LodSAiHBMAyuXb2G67h4nockpVgq4HoecQxhGOFYJpapefPNNzh/7iwzu6YpFkukaYrWiunpKYSWGIaF0gZDY6MI4dDvB1iGZnVpmdd/+jqe76IV/PH3/5DxsVGmJqdQWjAyWkUbmjTJCPtdkjimXCpz/txFHjnyGBkR66tr+L6HYQ4O7VEU0Wo0KVeqg7ltDuIVn3zySUzTpNlssnDtCnk/h0CitMXVixdot9vkPR/bMqltbtJptnA9b0A8lGZUKxU67Tq1+iadThtDKwwzwfdKJInJeCrpjpfwvvpLCKUwbYMkTSjmCzRqNVaWbvLoo4fJkGQPcBL/eQDXh5E7zxP38qRKVEImBpaoaxfOs3H9Cm//+Pfotld56pd/nX/0n/yXXFhYYbS6jwMX/gvCrEbgnEeomExarKy3mJyZRSrNm3/9Jmura7iOw+rqMsMjFbIooljKyPuaLHFZXVnFtkxsa8Dgfsu+nCYmK0sbFIsupYJFvb5OvdmjWB7CtGxMY+sdNkycQgksl6TfxffyjI4O47g2jmUS9NokUZ+ca6FISbIEwSCfsGVb9Pt9LEPT68cIqQfkTCrPiZNXWKu1+ca3vs3585eobdYYHRlh//6DVEp5RFQj7q8StJcxlCRKUvqJTWaWaHcCCjkfL5+j2WxhWZpuawNXdTFNTRgFaK0GzMmWTaMjOH36IlNTwyRRD9MwQUCaJmRZgtJgmjZkKWma4jgOURigZIZpajxX0W836QUhcRSzsrpJLu+x/7G9nKudYtgYZ/jMHG2/iTeXZ/HaR4xUHcZGirz0wo+YO/JVPMfcIgDc8mbaCSR+dkJ9/pz7OQLX4Ldtknf1NnKmbWdB+SVw/UWVL4Hr3zO5E/DsRIq0/UXbmThp57J3uv/sRH1/L7nTFel2uS+2QX6WXOfzN+X4v/1fyN744FNW4Z3Gd79xP2gM8J0b9E7P7l6y3d36zs3+fvIggO5eiooHqf+5C/JD9pdld5Mb3Dqs3/o97/W8HuY+7653929xP+KlO+tsFyUFnUbA+kqDdqNJtZyj32lgfniOoX/9e2zaGucrj4K0cAybbrvDe8c/olwqEIThwBLYbPPhyRN4VkK33WTl5gJRr4UpFZWiSxqF3FhYYnx8hJnZWWzTBmJK5WGGRqsUy3kq1RKe71Io5lFSbQHLPHEcIkjp9/vkCwXSDHKFAkkU4rseSQq9XsBPfvIil68ucOjQQfbtO0AulyNJg4G7FmAaBlJkVMolkAI/55Flg1hp18nR74e4XoFuN2RiZgrHcRBCMLNrF/vn9+N5NmEUDWIElcS0LDrdgPrGBoahWV5fY2lxhaXlmzx+9BEs0+D8uXOMjo2TJCHr62s8+eTTOI6H7Zh4rk2326FSLpNmEa1WE9u2MU1ja5KkuH5ui4FZYmiLIOhhWZr5+f3UGx36vTau42AZCts2aTRr5PJFwiAFAf1ewNXFFV544XkO7d+LkDAxPY1h6ME9GCZRkHD8xAkuX7nK4088yfmL53n88UeBDMM06Ad9XM/FNEy8nI8U0Kh3OX78OJVqkSRJaXe6ZBmEYZ80G1gMXS+P7dpINXAlcxyLXr+LbTnkcjatTot8qQASHMcANH4uR61WZ2lpjXJ5iPW1FZSSuJ6HMgwMrSADy3JZWlqmWi3j+A5ZJvjud36fo48eJop6WLZNr9NlfGyMbq/H3n0H2btvDqXAtW2EgDiU/PGf/IBdu+ZQYpCWKpcvsL6xSbFYIIr69HoDC7dpSorlMq6fZ2pyjIuXLlEsFJiemiJOB1b/l196hfn5fViWhW0K0kxgOT4v/eRVGrUW2ohxXYPZ2SkmJkbp9voYhsZ2bArFPFKB0hotDRYWFkmShCRO+Ysf/Cnj4yOUCkWuXrnK0SeOYJjwlV9+As9zUFqzsVljfX2NQr5IEEQYWm6RMmXM75sny+DUqZNcvnQRQ0vqjQa+71Mo5Kht1CmVy7TbLX707PPs2bt3YMFKU5Ik4caVq2yub7K5VmN0ZIxj773HzMwsN24sYGiDQqlEliV4fh7LcXn/+HFGx8bQSmHbDn4+T5aCYSiktMkXSujldTqjZaynniBOAqIkoNVokcQJlutT21wlrC0yMr2X9D4hFw+qDL63cvG2RK8YpFcUcte94xRvyfa98M41/vZanZBlCpklpO1NXv/hH+Clm5QqFfY98i1OnFpkZXmTwx/9xxSdEgvZqwhicr5LlGrmDx7l8rWbaMOiUqkQhQlkGRcvfkIYdmm1Gvh2Dtc00HaCEgLbMbeIlgzSOGFpqU0hX2ZopIiXAy0FtuNSLFdY31jHsl3SLCWOAvq9Fm6hgFssM1wdpraxBlnM+voyeUcRJz20jAiDLnEUIdTAunvLHTVNE0ATpRbnL17HdT3QVZZWO5hujvn985QLFXbtmsZyTGqbDTxXk/ZXibob2CpGG86W2/goETZpApapWd/cRJkGL7/2U95/7wxTE1U8B7RSA6Zw0yTLYnyvgGNpDJ1skTVppB78XkmSYFs2aZKSZhlhGG4p3TRKCOKkj5YSx7aYmhkmTjL6kUJrj8nRXShHEhe76ALkj09ipy4X1HkeObSXNOhx9exJzn9yHjvtUS4VMW0bbdpkW/vPLV4OKeUOOucvBlx3nP/b/rsTyWT8zoBEyvhKep936MGML4LPz6mcZQ9vFPlSvrh8CVz/nsmdIGgngp6dANW9gNm9rn3eC7aduOnWYpSmd7o1fXHN7l338wDlb6XDEb/xjR3rPdzG/vnf/Tytsn+T8kX6vVUnjuPPTdfz2X62x0zL+869h7HA79zGZ648QDs7XMtSlhbXqa+3OffxGdwsxPs//4jhP/4JySP7eK+9jucpOr0eUsS0Gmv0k4CpiV2UygOCnWNv/TWGlhx69FGEMlm4scS+ffMIO0eUJVSGx5jeexC3UkQisS2berPOy6++yf7DT2E5OcI4RgpBzvfp1FbJF3IIpchIyNKYFIUyTMIkRRkmcbdNv9ej3ekSRSm75/ZSrkwwMjrC9WsLGAa4rqLTbmMYFpbjMDw8gmlk9IIuaQam6WAoi37YJUwCTEeze+8spuWiTU2chpiGRgpBL2iTpAmu5xMnKYa2qDXavP/OMQ4fOsT03CwH9h5ibGwUQ0uyNMPSLkJnxEnIysoSzz77Y2Z37UaoCCkFtm3Q7XboBx0qoRuC0wAAIABJREFU1TJCZLRbLZSWmJaHkCZkklatju1YdLsttBIkiQAsCq5DFAzYbjMJpmPS6QR0ujGdXpeR0QmqY1UefewQkgjLsYmlJu50qW1u0o9CcqUSk9Mz7NkzA0pw4OB+NtdWqW3WsawBC63n+rRaHZJsYIlYW6kzP7+PKOqhlM1rr7/Onr27iaMetuPQD6JBnDMZ/aCPY3tsbm6glcmli9cYHpvE9cvEWChtk4Qx1xduUKlU6HS7VKvDXLx0mfOfnOHRxx7BME2kUsThILXNsWMfsLq6wr69u0FJwjDkK08/iWEIpEyI+wlaK4RSJKRIrQiCHkGvh+s49Lo9LCPmqaceJ1/0aHc20drGsByENpBKUqttUCz4JFFCnIQobWLZHmkWUa1UBjmAOy1MyyBNUh5//Am6nR6vv/Ya5VKefhijlMuNhRVkptmzZ5ZOp4freIDCz/mYlsnG+hqQoZQgiTPazQ7PPfs8pXKJobLHoYN7ETIll/OZ2b17y320SBQnBEHKlSs3WFtdY9fsLJbp8L3v/Qn79w/ytAqRAilxHDIyMsbK0k1yOY/hkRFKpTJXr12jWh4C4PW/fo3f/Ce/xfPPPc/Rx49y/vwFxsfH8SpFMiWpjoxiOQ4nP/yEq9eu8ciRQ5TKFd58931md0+SZALb9RmfmCBKE9IETMcDoTFMmyTUtFpN8kWP5KfvEV9Z4r8+9gqt1gaPPXIQ38+RBAmh1EyPDXPj9FuMHTgKUn920frCch/g+pxFtibRT0cP3+oO67xMBSIThO06f/i7/wq5foZrl5c4/ORXeefUCnt2H+XrN/4pRmyj9l6j22+QxBEkMd0+rG92kYbH+Pg0tm2SpgJDG/g5B6Uy4jhh11QBy4zpdPr4OQOIECJBSUkYxFSqQ6RZFwhRykBIYyvuuYM2MgzDIog8SFJsw8DLlcFwiZKULO5C1EGkIUbWgbSLYaZbcY5yAF7lIP2bYRokSQI4nDl/k0Q4lEplNupwfXGdX/rlZ7Btk2tXFpAyZHnlJkJoigWXlYVPMHWMlglCOvRjQZDlyLRH2A8YKhdo9/tsLtXQMiUNeuyasvA9kySOMbTBrbhLSwbkfAfLFBhakWSKMOwhhCJLFc1GB6kGXl+GMfD80loRJSmWpbENlziOaXczzp2/yUY7Jcpi8nmLdpCysrxEs79GzVxmdHWOmfQp/u0H/4ZefR3ZrWE3r3P+5FucOnOG2bk96K0cuFmWoZQiiiLiOEarbXP6CwLXHc+324rtFJZ0C7jqr9xHSfNzTL8DD37W+VJ+dvkSuP6dyyAYPMtSpBTcqdTZruXcSe5lgdpJQ7RTOpzPA3Tb274NdsQOn22EEjt8ti9gO/W+vc6neVz/8TdvX9/JKnqf+7jTWiyEoNPpYBjGjuW38wrsHOq/sxJhp7Z2ur+7C92h3eYez22ncT5kOoRbcmcOVhike7mfRvE2UN0+h27P3UGRnUkKHnSu3fr79vwFtgibtmbC1hhu93fr6dy+H4HMBg54ksHeVGumdGsd3n/+eWr/2//Bv/fuBaxOj/gffB2GhhmqlOhurpCEbbSGZi/g6pWbGPEGhiFZ39zAsEymZqYRwmR1o8UnZ8+zb99ebMfCslz6vZAw6HH29Bm6nRZpBhvrLZZvrjE+UqTXa1MoFhFSUa83B4c0wyDsd1FIbi4sUSoUSIgxhEdj/RqWm8P1iywt1Xjt9Td48skn8H3Niy++xu7de/EKORw/R71eJ18qEYaDg3xmFzAsD9u0Of/JGUQWk8sXaHd7eF4OkUCr2cU2bZRQCCGJkwilTCw3T5yZnDjxIZY2GBouUClX0IaJ7dhoJJZjgh6kY/nggxOMjU1guQ75QolCvsTI8AhvvvEa1aECiAzT9iEJ6HX6hP14wGCsAGmwubmO4xhEcYipBu65S8uLNNs18nmPzVqTt956jzDqMD42Qn2zh+85GMYgjtgybK5duohnm3T7bbQycLRLL47RpoXv5ek0mxhK0ml1qQ6VaNQ38ByP1157lWq1imnbWLZFlEQMAFeefCGPMg2CMCGOO0yMj1MqDvHcj15GSRvTNCkUXMKwTxwlxHGXKIQs1Tz//I/Zt3+S2sYKjtIs37jByuo67x97j7ndu9Fa43o2jmezf/8BhBS0Wk2kSInDDq1OwsyuGcbGq9iGQyZCbMcjQ9BqdLC0gzLUgOkUsC0HIRSO46K1SZJmmLZFu9PEdhziMB6UMz2iMEQYEsM0UEKRSYlpW8Rxhue4dNsNnFwJQ1i0W21SIhy7gFIgheLSpav0ggYTkzNYlkuz3mR2do5Wp02+ZGKaGssugqFIo5AkjDBkhhKKYCsurl2/SW1tEyFNZmZHcV2ffi+i3mhSKvoYjoEUoKSi12nxwl/9iGa7z5FD86Rpn0eOHibnmggh6fb6mI4LEqJ+j/feP8HRx5+mUCoQZyFSJOQKHoiMmakZIiHJpGBsfJRSuUi728Y2HcrFEoZSGFpx+swl9uzZy+zsLMeOvUMaRrh2kSTuk8Q9nn/uOabGZjj78Yfk/SKNZh3TlCAElu2QZYruux+yGfSI/9G3efqJJ3Fth7WVRXI5mzgxyPkubx97g8OPPo4wnC+0Zmb33IJ33jnuzOP6oJ4329fllIwtrhokITrL+IPf+d+5duo15qZTDn79N1luCE6eu8k/zP0zRNNk2TyL6Xm0aysYGoShsJSBMotIt8rK2ipjI6Ncu3oF3zFYWrjK5toq3V5M3rcwDIc331lkbjKPZQ5YdJXSAxdz2ySJIyxLI0WCziBKM3qpRZKYtGo1JmYmMfMl2r0uYb9FruAilIMQeuDB4YRoHSAkWKZHty85ffYmH51dZ3ysiJYRApMocUD1yUKPyrDHwnKDC1eX2X9wP7lcDiUNXM/FdjT5okfUDWitXyNvbpBJiTJM0jgkjhV2ZQ7Xc0mF5Mq1G+TdAqNjw7z005d4dH+VSj7D1CZkGUkSoeQAqEbxYM9NkhQhFALQpksaBwS9jPfOtYhTD8tuYRspWvhEaZsUCZiEcQchJXHYI18qUm+HNFohnmdzYM8hLl68TJLC9O5psnyIc73A/G8c5np/nUqlwI2VZYrFAmlU49y5szz6S1/DsEogNGmWoUkwZALS2AY2720c+HSe7Xj4EVufHaf01osgBxPyjhcifndwDtG/FLOdzOlTUqdsQAd155+dwKwQkiiKUErd573J7jiT3OvE+KX8vORL4Pp3LttdKu8GQg9jtbrdxv2/375oPEwb92//s8D18+RhLK7qH3/zAcdxW+50pb7zMKC1vq+b9YOM84tq2O5V62exoD6M3KkQGcSf6c9Vjgzk8637abqDZv4BnvODzbnsU4B9+9q2vkSPVGSkQpEIA6QmeOcE1//5v+ZbL7/HkalpwgOzdKfHSKlDVmdzfZnTZy5i2S4TUzNcvbZAqVxldHKCsand+Pki5VKJfN4nQ5DPFYGMoWqZNE3Z2NjgnXfeZWpymiRJaDU7TE9Nk2UJzzzzFdqtDhcuXaJcKeN5LoaWnPzoLGNjY2hTkwlYXlvFc3N873vf5+CBgxQKPr2gi21bCAH75vciFViWRbvdQSmJY2vSJGJoeByExrI8ojDC0G3SOKDZaPPcj1/lkceeod1ep1gqEwYJZ06fZfeeGcKwj9KDXIWGYQy09png7Ccf0+10mJqawrZM1FbeUNtxOPbGG6wsLzEzO4OQBsdPfESahHg5D9d1cSyHzfVNFm/cYPfcHKbpcGNxhb96/kc88cRX6HQCjh8/RdBPKPhF1lZXMLWk225i2ia//Tu/yyNHniRNBJAwMjzE9Mw0fs4kSSJsy0NKgySJ+OSTT1BaIcVA01+tDFGrNdHKQmSC7373u8zv34/UmkxIOq0WjucOCKv6AQcOHsD3/a04zRjLHhBrKSWIo5A0jijkcpimi+u6AIyND9NuNygUfLShsUwHMoXSAsfx8HyP/fv3Y5guxUIFJQyuXrlKrVHj29/6NW4uLZGkCeVyBc/16PY6xNEgPYmhDdrdOuXyEJZjovWA+AmpUErTbrb5zne+Q6lYxMv5IASu59Nodvj9f/ddFhdvMD+/H9O0BvGypo1lOqyvrWNZFt0+nL94hZHhIUSSYkqB0ANFkG1ZrK4s0243Wb65wcbGTaZnJtmoB7z95ltMTI7x8kuvMjY6wb75OVw/RxiE/PTVV9kzN0eWJcxMjrK6vMLv/7s/GOThrFbZ3NygXK6iTJv1WgOBxHNMZnbNMTE1QZalpGnCxvrGVjxwRhJFREEMKPKFEkcefZzxsTGUBD/n0Wy2cF2TRqOJbTs4jkfQj+m1OzzzzDMIMciTGccxjp0nyyQb65u02m0q5TzDQxUkEPYDfvriSyjDIIoiXMfl9OnTfOObv8zoaJE47jI5MUYUR4yPjREEHYaGh5jdtYssTRkdHaHT7bG4sIRluqRZQtAPcF0H4+wVCqOjjP83/wxImZgcp5AvUm806EUphUKel5/7c44+9TSGV/xC6+LOh/h7F/9Z0+F8SsSTgcwg0D5G3OPf/Pf/Ffumh5nc/zinz9Vw/HFmxo7y6CffJN3T4/ylc5y7cI6o28TQAse1SOOMfGmUfHWC0dFRkjgmSzM2NjZxXRvTtKg36+zbPYRvB+zbXcS2LJI0wjAHLMKIAYusbdv0eiFKOkjPJBI2r7x2inMXlzlydC8iTYhSQd7P02v3uL64gmOktOvr+JbAEiFB0ENrRZpFmLamMlxh/9Q4RcciTRISIlLRJ440qyvrFMpl3v/gAklq8ytf/VVOnDiB77vUGzVcx6FebzI6VKXdXMISXcI4xnVsskwgrAJB6g0UZPkivu+zsbpOvmzyyZlTjJccKqUKSg2sv1orHMfeUrZrlBrs12E4SDEWWwplOkSxzdvHr1NbrXP40C6k0GSZiTQkphjwPBjawDQ8yAK00nS7XYQ0CHoBQ8PDpGnE4cMH8HM+/bSL0AL73WHG/vMq/QQuXauxtN6itnadNKjTX79GeWIe28+RCA1IMiG3yOYeHLj+bPLZ+vG7g0RT97O47hhTu5MVNhsombMs+1Tpv2N7d13/Erj+TcqXwPVvQW652t4dI/rptwA7HsSVUp/WB3Z07fyi7pi3XH93snR9Xhv3sug+DHB9kFjVW2WSOy2u9+ybzyyO92v/XlZqIXYmS3rYZehh2rrfc3+QuNt7Acn7xfbe+bvvNJad50N2j+u3RUp1z/o71XsYb4LPvisDY/WdrkJKhkQpoFySk2cJ/rt/hf6d/wdfS961IjYrDpu9BnHUotW4jqkknY6mVB3BcX0KxTJIxf75fSQoUAb9IIQ0xnMcllfWGKpWqFYq1Ot1PvnkY2ZnZwfug1HMiy++yGOPPUa5XEZrQa2+ged6DI8Mo00LiWB9bYV9B46gteTmjQX8fJ7q8DCbaxtMTkzj+daANMgtEYUJL734MmfOnGV4aJyRkSqFYoGJiTF8z6bbaYPMkFoQhl0MLUhDQRQmCKl55LFHWN1cZmZqEq0MtDQ4eeIj9s7PoZQiTQc5M7U20NoijRNMrZiZnkIqSRD0USJDKUmaChobm4yOjZCS4eZyhGFEuZhjfGIMKQRKap79y7/k0aOPMTI8imnauI6H5zkYhoXn5XjzzXdwHJ8XXniBC+fPY2jJvr1zxGnCoYOPkM+V+dM//TMKhRymKQdWw7hHmsZIOSB3cl2HsbFR4jjGz+VxXZcoTsjnC4RRjASarSaTk5MUSgXCKKRaqZCSkSGwLZtby6nYmj9hNEj1kCYpnW4Xz/UGQCqFMAyBlDAMKJdL+L6HaRiAwDBsFhYWKBQLRHFEmqWYls/iwiJXr1zBdh0OP3KEKE549dVX8DyXsdFR0iRBWya2beH5HkmSYloum2stDDVwTZTawTBNWs0Wvueyf34/vu9TrlZIkgQhFUIoioUShw4eotFoYNs2UgjarQ5pmlKpVhFCcP7iAi+//DKWklw6f46hoTLKdLFMl9WVTSzTBRRamWgdYzkOL7zwBs36Jpub63z727/GH/2/7L1nsCZXet/3O6HT228ON85NkwczyIG7yw2USC5LKlZZolSSKNkuWyVVmSz5g4PK5Q+2qugPLssu2zRpf1GiRJqUZS5tkhuIDdjlLoBd5AUWYQBMjjff976p8zn+0HcGg8GdwQDcpVUlPFNdM/P26dOnu0+fPv/z/J//83v/F5aMdqdHpVJhcWGByXjI2to1FuZnUEpx4sQpZuamSLKUer3OcDjEdQN++//8XRYPHCDPU6zQWCFwXQetNfV6FSEoGQHG8NqPfsSZd88wPTOD47gEvka7DpUwBFsK59RrDSaTiMCrYIzl7JkzvPnmG0zPTOG4Hl/96tdoNrpoVU46d/u7TE93cbXm4oWL+K7PkcNHqTWaTMYTqtUqL730MksLB9je3CaJE868e55nn3mRU6eO4fkueZYxGo3IsoywWqNSqdBoNPnS7/+/BIHHyvIyOzs7BGevUPguGz/zAI1mg9FoxG/8xm8yMzPPseP3EWcp3ZpDZgyN3vyHsmf2HSPvAlzf+za8t+tegOtdPb03fsoLtJAk8Zjf+T/+J471JKNJxOFH/zKPPf4LTFJB48wywkj6cgshJQ8/8giuSNAiL6m4xuIGTX50+jyNepPLFy9y9Ogxzp+7wGg8JCsK+v0xc9NdKg64ZcYXiiLH9dxyQUdIzp7ZoNFoUKk6IHNsESOs4PDBQxxa7qFFhO9XSHLB5vo2rtY0Wx1sNiQa9TH55CZFWAiIo4KtjYgkDVByncxIciqcvzrg7MUN6qFHs9lhuz9CO1U+/dM/y0svvcjP/dzPgSjF2ZI0J0sLfC+HfJdktEEQhEhhsVZROA2MqOJXQgpjcRyH3Z0+f/In3+KRU4doVw1x2kfsee+klOR5htalCJyUYm/x3UFrByl9lNSYeEin7dFt+zSbPlpLhDLkRYIjBVmWkxcxhclxtCYIPGphQLszxXiUcvrdd3jwwQdQqlRPvn79Ok5TEwwbSOmxGq6zePhh2r05Lpx9lU5FICab7EaGY6ceJhcOUjmYIkPdPle9hznqfn3unpgH9oMsshvAVd3S1z8w9+CDc6n9J3ofrpXywfnUJ8D1J2mfANc/B7v76tLdlVr3i0W819Wqe/GifdTVrltf4D8LcN2vzJ3asp/Hdf/K9gFw99KG2wHzfmXuoZ57tY9T172Duw8/5oZ9dI/+vQhOfTR1vY/W//Z/Mjc8x9ZaDAI7zDD/w29h/ptfZ1AkXDvUwS7PsXzyBEo7bG1tI7WlVgmQukJv9jBBNeT1N0/T7nTI8xTHF6RxRhhWCYIKSis2NjZp1Jt4rsOTX3+S+06dYmlxAYB6rU6SpDzwwAOEVR+BRUioVAK0Y2g0W7z77gWssTSbDcKqSxqNuHbxIp1uF+34KCVYnF+gMCOipFSRLL01sxyYP8Czz/6Aaj2k1aqhFKTxmGqlQjSZkKZp6R0VFnCphNUypYkjGY8H1GoNtjc3mYwGnLj/GEo7xHFKnhs2N7a5cuU61kreeuN1pqfa+EGAdDQmKzBFwng04smvf5tHH3mcZqeNH/pYkzPdLRVr3cDD2AJhBceOHmdmfpY8z0nihMHuDq1WkyDwmERDHv+px+j1uqwcPMjho4eZm5slCKtcv7ZOvV5lMNrmscceJQzrrK9fZ3Z2jjSNqFRCtKzguooomiCl4trVNd48/RoHDx1kNB6htEZIixs4rBxcAgocLYijMUIKCitRWmONQWtZgkXXJY5jkjRFOw5IhXZchNL831/6EqdOnsDzXHw/IIpihAApBZNojLGlum+nMwXCkJsyxstgqdeqzB+YIwxDao0GSlmOHz+KFFAJPHZ3t3F8H6U1G+ubVCohcZLw2g9fo9OuU60HSOWRZgZHS5IootZoEtZq5IXBGEscpxQFbG6s8dzz3+fxxx/FWsPVq5f58h9/jQceOImQhuFwSLPZ5DOfepx2s0EYBnRnpkjSjMFgwPT0NP1+nyRJOLAyT61aByM4efIYDz5wiqm9PvGpT32Kqek2Qa1Rxv5piedp5menQcLVq1eYmVsgtxmjYR9b5LQaDc6fO8/9px5kYWGasF7ht3/733Dp4iUOzB/A2VNPlVJhDRTW0O10OHBgliyLMFlUCoxV6xSFxeQZxigsgvFohOtoiiyh1epy8uQJjCkQQuFojzAMCAKft956m+efe5Gl5YNcunSF0WhEEPhcu36dr/3J13nsscf51reeYnd3lwOzs4yHQ1YOLlOv13nokUeQkr3czZK19XWWlhbp746w5FQqAdVKhYXFRfI8I8tSqpdWoeLh/fu/wGAwZDyOeOThT9Fs9Mhtjq6EaDshjiLas0sfOg5/VOC6X30fxeO6L4iQpadVWhjt7PLK7/86/atv8fwPX+Jv/t3/gn/1b56mXpti89KQz2/8FfSSQbiGNM9I04Th9lUkEUoqbF5wZW0LN+xQDZtgDWfOnKPb6dEfDLh2/TpGeFy5ukqSlvHX1qQEQQUhBFI6+H6FsNqg1vApTEKWFTjCgyLDmpIq6zsOCIkOajQbTTbXryAoEHmOKSIqFYnnmJJ9IgXGWny/wtnzl5mbbmClZHc84cUXLzMzM8/0lGQ4yLh4cYfjJ0/gVoI9hfLa3hjhM5mMqNfb1KoRg53zOBbk3ruSFRLrt3H9DnlRoKTiu9/9Uw4fPMhgFOHLAQvTAX61iucoTFGK0AkhUKqkrHqehxASz/OIJhFCeWivihYJ7abL9FQVCkuRFwiRYzPLpdWI0aSgUQ9wHUmWOpgiRauU4WTC66cv0+nNMDs7i+M4GGPZ2tzh6rVVZo528V9q807+OrXFNqceup92MyRNE/pbO+Q7FxhlsHT4BMIKKgoKfjzA9Z727Z3r1nnyex7XewOut/y47xnu1T4Brn8+9lGBq/i4cXV/3pam6b81Db0xsS4H3NtFjm7P4/b+F/5O4kw36ridBvu+mvZe5Pef7z274XH5MLuTQuwHj33//+/GZLq5knZr+Tt4XLO/998C4PzTX/uQFeEPB6734uk1+5X54Nnuau+t4H08MH17Pft5Wu8GPD+oAv1BM8bcZALcSz+4/fnufy/Vh9byURWH73T+si7xvg9W+qPT2H/4v0BWsHagTS5SppYOkRoohAJruHb5CsVkSKfh4FU8cu3R34mY6s0QTcYEgcPZc28x3Z7BKodxFDMzNY01BcaCBpIsRfs+Wlo8z2NtbZ2isNRrdaSye9RbQb/fp9ersrE1JAg6/LN//s/4K7/4i1TqAk8qHDTSDTDaI88mbK9u41Uy/GqLZqNBkkRIBZNxipI+Qmmqoc/uziZpmtBqtvD9BnGSMZmMqVVDMhEzHkX0urNgHUxhmcS7XDp/ns3NNR5+/GHCSps0TZHS4fKlK6xvbHDfyZOMdrd54/VXePTxJ3ArIcJYNlYvYy2cu7BKvd7m/vvvA50zHu5Sr1SxKKRbxrxW/CpPfvVJfvGv/iI7230Gu7tMdbs0L66hlOBm/I+QZHkpMLQTeuiZLlp6OINd9OoGaZoxGk4IQ58gCDCmQErJ5vwMYU0x2B3Q3YohSjE2RyqFoExNY4qCvF1lt+GCMQQFuBc20I5bph6xAPamWmeyPE3hOaXi7bUtdH9c9lEhGA1HZT7dPMdt1tjpNQnDAClBv36uFCRJcxzXIy9STGFQSlEs9IgrHlo6ZNc3qe6Osdag1Z4StxAURQ5SMzy6wOWLl3npxRf5Gw89jE4MSpY0SGMEm5t92q0mb69fo/PoAxTG0gtDvIvXWb2+SqPRxPe9m++BNYbhfItMumR5RHMYoQcR1oApSs+SUgqpFbkn6E9XcbWDFIra2Q3iNMEaUEKWaVxyU1LKp1psC/ADyNYnNHfHZciFKPNMFqYoPUHK5fqBBtKkNKo1xJnrOLlFCIWx+d7Y5GCKgoEj+PaZ13nipx6lrnzkmWtUa7UyXNMWKCWZjMcElSqbUw2cRh1Nwej0JbpCY4qc8XhErVaFvQQpY5ujTxwmSQuCQKNfP0+eFxgDnudy5epVZqan0Vrxw41rVJZWaDYbPPNHX+Yv3f8QEoPne6RpUvYrIbEG/unzT/PpT3+G+fkZWpu7yLRgPBqUat5Kc6kZ8rWvfZVut8PPbxeomQ7O//OPuX59nR98/yWyRPG5z32ey+sXOP7QY0yuvsalyxf57C/+rZvsqjvZvmP8fkOnef/3wt6SJzb+zTKW1v8H0d6+D47feV5O9LV+T1znRjkjQRpQuWFjdY3v/PrfJ5bQOHQSr3WEjTWXs2fO8Ku9f4SIFNfDc7jaZWu3z9HDK1x68xlc2afIDVoqdHWGRPVIE5iZ7pKmBtf32elvMhwO+NNnn+X44SW2V8/w6APHqDoJrquRCorCkOcFwslxHIkpFKNBTr3RRDuGPNulMBIoBeAq3SWs1Yx21qlUa6xeus7UTJMsH+LICE/7FHlEbmIMlhxFsWloTIdkJiNJNda4eJUB0ajKmbMDTj16gkIFNBpN0iSnvztgMo6Ym5tBqwrD3VeJts/hG4lwNI6CUQyyeZhe7yhxnjGJYgLfZzIc8c3vfIPpcMKp5R4vvnaRk8c71Bs1lJLl2KFVOXbueQCxAiElVBtor00+2MaYHGWGFLmHEIIkGeHogG88/Q6tRo1jh9uEFYVWDeJoE6liIlPn2rbLS6+8w+OPPcHq2irtVoejR49hhWS0u0OxBsvZSV79wlM0Vhx+91/8j7S9gtH6ZQ51ErbDY/yH//l/T3dqAVcIYm7TD5E/OY+rQN2cy9ycM/6o/Fvf/17//wBwte/NG26+C3I/qrB8f5l97Ma+997jT9Lj/CTNdd2PNCX/xON6j3an1DMf/HcZrFGm+pDvm4TfLR3OfrSFG8put9ud6J+3ek3vlYL6nt0qkFNu5ZB6y3ZjInVrW25s+7TpTgODfOAo4vOPQbNeAsH4ErInAAAgAElEQVQ7eRj3+e12kSV5jx7K26/lo3phbyxSfFzv7Qee0y377C1lYH9VvXsBhO9f9DDcgxzV+7ZSJOn2+7mfJ//9dReAg0SaPfDsOtjC7EOFv71Nt9yDG+AdgSUFYSh++Dbml/8rxNFlrs+FGGVotNqcOX8JrKUaBAgEUkmmum0MgsEoQakal86dxfc8ut0eFs1LL53G9SW1apdet8Xu7jrvvP0uWMFgvMvc/Cy2sGjHxdiCMAyoVqsEQYhyHWxRYIqcVruDdgJc18eYnHazyXA4YGlhCWNBeS6bW9vsbvcJPUW10eC1V8+xONcrlTGVgykU166t02y2ETbFWJ9Gu43n+ayubiGlBQeCMEA7LhWvzPU5mUzI8gylBZPBFkiX3uwSv/9v/pAH7z/OuTOX+YM/+AMeffx+5ucPkMVjtBasrKxgckvFC8iM5atf+Tr33fcg2vPQSqKU5A//4Evcf+okaRrjBRWU1AR+iJKaufl5JqMB3U4TP3D3QKvaGw8EeZ6XwlvWYArDpZ0tnnv1VXa2d9i9voqf5gR+QCUsPd2mKJA3AN/8FFlhCCohZmMH70YOVVOOfVEU4bge1nPR7Rau45HHKWGc3+w3Qgqk1ChVvjd5s4Z1PawV0B8i4/TmO6ekvJmXeTCZ8Orlq8wuzFIUBd7OCGMMytEl7Vdp5B5wLkIPVQvJLbjG4E7im9ePEMRJgt4TXzHdJo1GjW6nQy3JcIWLlLqkMEsXRyu049BemMfptahUAlSRYzd2qFZr+L5HlhUIcQPsKfpSEbQquJ6PGqeM1rYIwwDtlADdmDJ9RpQavvL951COQ6vdQa73cT1vTxypHL9KD7Mk9jXrwzKVT8f3CHODsaa8LiEwxpZeL8chb1fxhWU4HhGmYLOCYk8EDgxFUaYiioqMxftOYYTCZAlt4xDHZbyhFJI4SfH8Mr448S3b/U1wfGqFZOvSVQbDEdVabY8JREl7DyoMfY/JOEJ7Pv7OCGNhbW2VahhSr9XQjkYISWNxntpUh3/yT/4pP/PET9FxHBxHk2U5jlOC+RshEoc/+wS9qS4bGxuYjR0mu0O0dnAcD6kUL1y+Sn93wNGjR1kYRKhayPXPP4xfqbF08DBzK0sEtSoz8102V88y21th9fI5lk7c/954KQwSuyctx12/jXtyMnfVrXnfaHpeIUKLOrV/3N+Nc9yI57vdlDUUQpJO+nzpn/zPXL18nsXjj3Lk4b+MdadpTs1zdO1BpieLfPPiH9Ob6tGbmqI31eO1117GDxxCt8CkKU4tZJIpXLfBcDLG8x2Gwz5Kwve++11cxyWdjPB9FwXUK4JGw0NpTZaXCz67uyMqXhvf0eSZxyiF1199i2azSrUaYgqLIxVWGKSQeH4L4YYI5VCthyiZQT5GFinD4RClJFI4FLnFJBl+NURpSZZmKCHY7W8yGguUVycTDnmm6fRm6O9McByfPDcIYSnyDMuIIN/CphHKq6M0pJliN6pTaS7g+RU21ta5euUK9VrI5uYG1y5dZnd7xPJKm6tbE7Y3RszMungixMqUxDhISqE1pTTGlAt/21sjPLeCch3SdBdHuaR5glTgeC6GgrnZBp16g1ZHMYpyBv0dvEDhuAGT3ZialzFKIM0yjHDpTs1QbzTZWLuCozWRGNGqN+m+vcJbted4/NHHGfT7TJIB6/0NxOAqG2d+xKlP/xxJOI000d5QtzeH/ZgOyDv1//fPFW4RRtoTXpI9gZyCW9+O0jN7y/yFArv356b+o31/mXtt+O3t/CSv60/WPqEK/wTtbrF+t//7TiAVPsjf36+eG3brC/1h4OVOwPVux7/Xjg/3Su57/F1bdId2NuslaP2wcvdS1z3QUfZbZPg457sdcN7rcfdqN0kpH8lreSe7O2V93yPuGbjeBjqFQFowRQFCkJniDgsK90BNxoCw2FfPUvy9f4T83CNc9UELRSUoc2EeXDmGF1TKZPUmI4mH9He2MEXOZJLwzDMv4Doe8/Mz+IHDD3/4Oq3mPK+8+iK1apvZ2R6VIGB2Zh43qNDt9dgdDAnDkPF4wsULF6hUbgj4WJI4Io4muEFAnhukNCgly3yhlYADB+ZQSnPx4kXq9QbtTpdvfOObzM/NUG24LK8sYi04jt4Tu5K8/MordDpdatUqb79zfk9NM+W733mGI0dLVcudnW20VkRJjOcFCClxPZ9xHKG1S6vTxfd8GvUKw/GY8+cvsrS4zMHDi2WMVAGXLl1hdnaOySRmNB6jXQeB4Lvfe5rTb5/hs5/7DHES85nPfKr08NaqOK6LEILB7gDXc3nllZc5tLJCXqQMR0OasQEE8fEldiuaHUfxpWe+x1s72wQrS1zZ3mF27gDPPv0Mi8ePknVreMtzMNsj61aZNAPk/DRZp8NXv/J1FhemcbRi5CvETJtVkZD1GqyJgt976pt0T53EVEtPoHYcpO8xaVVhqkXea1BMtYk7dfJOjb6vyLAkaYrreiSOYBg6FL0m2w7IuSmKqRZ5t47oNZibn0G5fgmS6x52psGk7mGne4wbIcVUE2ZaiMAFKUsHWOCz48C4GWJnOpjpFrsVlzWZ4y3OY7FoLanVQjZsipydZtIMKWZajOshYrpL0qph6yFYy2QyQVdDomYIc1OknQZ//NyLfPP1Vzjxs58h79ZQvkteZGAtO0WOmOnx5KvPs/LpR0k7TZid4p1hn68+9xx/65f/Bt1etwSpc9MU03X6rsFM1Zg0AtTiNON6BV2vMRqlPPPscxw6sYSa77DtK9TiLGm3iWlVeXt7E31gikrgYYQkLwxyqkFU9diwKWJmCndpjnHVZ1SV6HaXJLN4gYv0BUWvw7ujLYKlWQa+xF2cZVB1YbZFf7hLu9OhsILV8ZjOyRO8ub1J49hBLsRDrhYZv/+979E5eow8h3ffOUuzVSVu1uj7muaxI+y4llWRUzm0QL+iGRYpu4NtFhYWePGNNxAzXdzFadJ2lagRIud6rEvDjlfmBJ5MYsbjiG+/9iqvb29z4NEHqY0j8jxj7pGHUUpy/PhR1MY2q9N1nL/4GHGcMplEtJptrCkIg4A4j2lWm7z12nMceeARlBQ3l36NuAFJP74Xaj9Tp4o7gtbb69//2122zSRDzr7yPNtba0wdOMLM0imee/41Hhl+lpnVZbKVAfVOA8fROI6Ddhx6vQ5pNETaiCJNUVozNbPAxvaYVqfHcDikXm/QaDZZX99keWWF3f4uM3NzXLq8ClrjaUOWK86cvYZSmt50ByUjJmkfoV3Wt7chj1laWiDPEiqVCqPhGM/3GI1jHK8GSHb7u2gl6e9cpVZ1SOIBnheQJAmeV+aZNkWBFAqlJbYo0+9E4wlXtuH65oQDy8dAuPhBhfE44uzZ80xNTd2Mia/VfOL+ZbTIUNrHdTXjccHuSGJVFeWVIHFmdpY4SQmrdaabLq1axnRTMN1rMz8zQ54aHEdhyNCujxRlSEyWlSFknudR5BDHCb6rKbIIbIHj6lLwCkOaJFRrHsamFEKwvp7z9unLTM12SPOcwiissBQpvP3OJXwf+v0Ri/MHWd+8xvLSMlE0Yax3aGdzhJd7XGyf4/iph0ily4EpF5VOiCdjFg8/RLPZxcrbwOKfAbh+lN/f68T3Mp99P/PLWnuTdvxnsXJO9Alw/UnaJ8D1NrtVCOnGBh8Em3fabi1zJ7uTt3E/CuUNyuetXtb9znejzTdA7p3q2q+dd/Lq3gqYP1juvY/nzaTT92Af5qW807X9Wev+SPXc63O87f+33nO15yG6l+P2u967qdfdXs/tNJmPZx8duJbO7/cmWDcG7A/2v70z3KDxFAUKwa/+yq/w1/76X6fAIu9KLC/txjXe+r4IYxH9iOKX/yHi0fu4EK/hKEm7M0eU5Egp2OkPCOsNCmvY3FjFJBEHFhZ4+613ieOUhx55mMXFHtdWrwCW2bkZavWAY4eP8P1nv8/x+46gHIfxOCdJJnzpS3/Agw88gJAQhlWajRYgMaagKFJcLXF8hzjNSZICKQyDwYDCGLrdLlJKRqMJaZqhnTJWa2ZmnmajitCWOMpQUpNlGdEkpt5oMDc/T7vdxuSWbz31NIuLC0RRxKkT9+MEFV566SVGwzHnz19i4cACxlo8z0cqiVaaKE6ohBV2tre4dPEii8vLjIYRUimkzPn6n3ydi5eu8NqPXufRxx7H2BwhDb/927/DL3zxi8zPz/KpzzyBdGQptOQ65EVBrV4niidkeUqtVqUocqZnprl29RrtTpsszwh2I6RUjKoeWitcx+XA/AIWyVtvnebzX/gZnn7mWX7hi3+B+flZOt02l69cId9L/eC6DpPJhMlkwubmNouLc2itcT1vz3to8FyParXGww8/QrvVIpoMCSoV4jjei2m1KFXGbkkliScRge+VKRy0s3cfJIHnl542KfD9AMfRpFmG7wflvXQUtjAgJNp12d7aQktwHR+pHRzHZTAY4jqCSRSR5QVxHFOvVvArZR3GGnzfKz2laYrveyRJXAo/NbtIle+1MUUpg+d5JGmMQBDFMc1mEwto7VAUOUopDh88wqn7T+EHHkorHEeT5wWTScRUr4fvuywsLDAYDIiTBM/zUEpTr9dodxo4jmI0GlGpVIiiCWHFJ44jhJTEcbpHfdcoqfF9n5mpBrkBy56Al5YUeUSjVUU7gjiZgPJwXY3NU4q84Kmn/pSDR45irUOS7KKU5fmXXmU0HnJwaQ4pcvIUOr02w90RUZQQVkNcz8GRJSMpihNcz6NWq9Hf3eXdd85w5MgRpBS0WnVOnDjK1FSXSsXBcQXddpt+f4e52TlG4xHNVotqGCIoc4ZaKfFdn7nZOUDy5JPf4PiJoyRpSSMfTyIazSYIi+v6OI6H1i7VWp2FAweYn5/D7w9JkoQ/fvE5pnpdpqd75FdXcX/qFOOVaVzHZXpmmjiO+NX/5Ff43Oe/QL3bod1o8KMXnmJqYYWgUgGpS2AoFOIuoRv3Mte427fjbmnP7janucHL8UzCC9/+Cokb81Of/QK/9Ttf4pd6f5f26QUu195hlA7odjooKTl/7hyVsMLFS5fpdVsMtzcIfBelBdevb9DrLYDj4fs+1Vqdixcu0Wg0OP3226yurrG2tkaSWZLc0GuFXLxwhaluj5mZDloZPM8yHNb57nfPcOLELNO9OkJarCkZEAiL0hKhHRqtKTY2+6xeX0dYh1qocLUgHsU0Ww3YU83Pixzf90izEUIYrIAst4wnMS+8sc319R2MFXiuQ29qilq9QVFY+v0dtKNpt2ZZW1tl/eJpGmGAkAWTeEAhFCuHT7E7GhFNYG52gThKSaKct99+l5dfe5UombC00MX1FO/uxHzzTy9x6Og0rjaoIkFIheN4GFPG5hdFQZIlVAIXx1FopcmyhCROMLacF7iuizUaIXOsNUwmE44dXUbKgkY95Pq1dQSWmZbPgdkG3e4MAkGrUUO5Pq12E8d1uHz5Ctt2i4PRfXw3fYqw0+TQ0eM0anWe/96TNGuS62ubnDp5HBO0eJ/H8iPO5+7KNLiHvm3e0NgNiZzef351o0kfYLb9mAIMPwGuP1n7BLjeZrd6Pu/08uynMHZDHOZuL9XHTQuyH9C8/Xy3tvXWv289/mYM1Ie089brvHM5++Hlfkwe1+Jf/SHm1beRDx6/a7l78rjeS5mPCVxvtbsByf0A7+338F6e0a1773Xh4M720YHrvRKob78M5TjE4wme67G0vEycpThaf+C4/eq/FdBLKbHGwfzyf0nmObxpR1QDi3Y8rAqxQiGUoMhSHN/n5R++xuk33mCq1UQ5Dia3TE9P05nqgDEUuUO9Ns0rL7/K/EKXrevX8TyXVreJG1T51refxpEFf+ELP8NkPARyHO3x7rvnMIXZU8HVJJMxVgiuXl/jq1/5BseOHqJWb+zl+yyYTGK+893vcd/Jk1TCkDhJSZIMbEphFGGlhbUplaBCtVYjiiIKU+wpxgY8/8IPOXhomXariedUEK4miWJ2d4akqaHXaZWqkZ5PlmaMhkMCL0AoSVit8pUvf5WVQ4fIc8vTT3+PT3/qMZaXV1haOchoNOTYseMIYXBcwRNPfIY0nlAJfQqbEIY1sjzDcTSe55LnOXE8xvd9kjguQaTn8swzzzIzM43ruVT6pbjOpOHj+Q6e6yClJM1zXnv1NR586EGMMRw40MXzNJMool5r8r2nf4CnJa1mE0dJ0jji1Mn7GCcpUum9uFKDQJFnBb7nU+Q5aRZTb7QByLOUNI6IJyMqYQMhyjQSSkm0VvT7fawFP6gg9qipN+pGSqTSRNEIpV2kcjEW8skQ1/PI9yaPlaCCLSxxliGVJgh8JDnD0YhavYHAkkQRUsk9TWNLHMd4vofrKIq8II7LeyuRbPev0Ww0yTNBYWOiSYTneTi6pIDHUYwxOY5WKAlFniK1Ik5i6vU629s7uL6Pozwcx9mbyE4QEur1GrValSiOsVie/OqXWV46wGgwoFoJyZKEwWiI3tM/0NqlUW8QRwl5mjLY7XP69JucvP8EaVpQq9bxHAU2QztVsrzAcXyStMDRCmELNtZWiZOcUw8+SmEytPRxHMPW5hYnTt3HVLfD1vpVTJES+E2EhnffPlOKNy3Mk2YJ8WSM6wUEYYgUAtf1GA5GVKt1vvnNb+F7Ps8++wIPPfgw4/GYMKzwgx98n3q1SqfTxVjL5tYW49GYsBIy2B3g7D3D02++S6fTo9Vq0+/vMjc3QyWskMQp9XoDISXj8RDfq9Dv7zIcTvjjL3+VyxfPcfjwIRwh2M1SXnjnbRYXDtBs1hHXVhlPNYgOztBqtRmPIuI45ed//ov87b/zH/DX/vbfQBaG1194iuUTD1Kv1bDSwQqFERJp369hcddReO/7caeQpB+XWQsGy8bls3z7D3+f3czy4itn+auP/KccfPMxXrZPUe82uHr1Ku+88w6OUypjb+9ss7CwiC1yrl06C0WC52m2tneRTpXt4ZharUGe55y/cIFut8skSjhy9BDtVp3NzS0GgyEnVuYJKppeL6QoxmghiaICP2wwGg2Zn/ZA5DiOwlqDUgKtyxCFwkrGUUFYqWONoturIeUYk49xlCJJE4wp0524ngtY4kmKUD6IgMyGvHH6EpXGPH/tl36JY0cOUa+6oB1W19bwPB/Pd5k7MId0LK5XUNNjMBGeU8VYS5xp2t0FwnoLrRSXL18gzyJmZtqEocPZsxeZ7XWY7fgIk6J0QrJbMD/nIUSG71bITQ62FIcrioKiKFBa4/kOBkOaFmipyhh2ofC8AJDkZoLrKPIIAt9DyhzHMRiT0qx3qNeq5BLeOb/OD99a5fLaJrnKWV46TFGkKCVQyqE908FJPU7xMF++9C9560cvceqRL5CPrkAxYDiJyKxh5vCjKKW5CV4/BnD9OPtuzLGTf+1iLsi7psO5U+qbH4d9Alx/svbvJHDdj2pzp1WZ/cDh7auRt8ezwv5xh7ef63aP66113YkefPv5bv1tP7C6n9267wbAutvK1v51iZvbjTjd26NcbxBlb/3141jxG78LF68jP0RVeN9W3r46/RHOe/txt2+32379gFu80Xe8B+KDA/vt9/xOz8fuHX/D63ov3ur9+/GHXR3cLeb0lto/cI5b+4kQEoxFuw6Hjx3dU1vcD7TyXvm942PhokSOsgmFDUhMgP3v/ld47S0uLHo4bkC9s4IVAdrxGPT71Oo1tF+lMJZXXnwerSQLyyt4QUDdL4hHm6RJgvZ86o0ao/GIza0dnnn6ZRYPHeThh44TjQckSYaUkoNHSkVerQUV38WqnB++9AoVN6BarzBJhyRxUaZLUQ5KaVYWp9nd7dPsdEEKarUKb751mpnpA1SrAdvb6/zJ177Fo0/8NEKOEFYABQaFVBrluIS1Jm5QYWdrh/tOHOeN19/k6NGjvPTDF0oPKxCnMdevXsZvNNBaIChAgnScMqbPWp568hv80l/593A9j3q9wsEjCyjXJwgbSGlYWDiA77toRyIkpHFBvVkjywq08pHCsr25Tr0WkuURQhpwAoR0GA0nUFDGuS4cwPWckq47TiiURM/02N7coVKpkMQxWmocLWg2Ao4cXqK/vY0XhCjXx/d9XnnpB0xPNWm2m8RJhjU5WuRIR3P6jXOkaU6l4u55GzSDwYjz5y4xM71AIQ1pUjAeJQhK7+lwPCCoBBQWlOMjpCaoVPArpQq0NVDoMdpRFInBlx7SCKJ0jO9J0miEyHPcSpMkL8hFSeOWUiNlBtkIigxX+yTJBM/xiOMY3/PLGLhoVMYv5jme42CyDG1TNlev0amHXDr7FlpIrl46U8YTxhmh5xKGLaLxDkrmBJUAKyBwPYa7O0ziCLTGcXxcJUnimCBsUgi/jNuSGqRGOgGeG2AN2MIQ+AHbOwM++7knCMOQIPAp8gyt5E315HqzRWFhHFuef+EFFpcOIGTKA/cfYzQYYW2BlrC73We4O6bRbiKF4tvfeo6lpUWKNC7FqIqCPI+pBYpqfZrhsM+LL77CseOn0AhMnuH5LtrxGY6HhH7A0z94nnanS6ddJ3BhkrIXF+yglGJnZ6v0XhtY31jjoYcfpFKpIZWh1aqyvb3Jgbk5fu9f/xHTM7PU6jWeffpppBNQa9QIa1WMlUjhEQYO3/nTp2h126xtbHL/yWMMBwO63W4pDjWZkJoEV9d4/gcvs3b9GstLM3zqs1/gK1/5ClOHVujnCQ89+iC9qR6O6+KeuYqthLzWdOlOT2MlCAcMGaNJyhd++jP4oYdOd2h2FwiqTaxyEcKgyBDcxlyR4gNDdBmdd9uwffOz80HgGv9mQP68g34iu+O3YT+7WZe2SCM4/a3f581Xvs/P/tI/4Jd+8T9i5ssPE6/sErkTAs8jjiNOnrwPrRUHDszjBRVa7Ro72+tMdS2uhjiO8DwXz69w8OADuEFInhfMzMxSCUM2tzYxVnLu7HmScZ9ew6VWdVCyRit00WJEP3JAVrCmz+JcGUqkpAtGl0JwMsUYyLIUKQVeUEcFLcLuAZRMsNkIrQqMiRmNBlQqN1JklQDWISRzC/7k269z9uI2s4tdkkgipaXbbRElEZurAxYOLHDp8gUWlxcpTEYe58Rb5yBZQ0jISUiKHO3NIpwew6SMDZ+dn6LRqJAmKcNBzOUr26TJJoszLbRyqXgO87MVXEfjOT5ZlpaCU0JirKAwFs8PQGvywpLmBqk0RZaXeYyLBGNzoniCgyDJJhiqaN9HEJUgzUoKU2CAK+sFPzq9iudBPWwyP1unWgmROEwmKWuba/iOj9928C82cb9gee3tt7l/+SS9GU2j5bB15RpeZjj5xOfJ3Q6ZClH2xrl4//ZnXFi52zwnf66cU9wKXD8ww7lH4PpxmICfANefrP07CVzvRoe5U/kP239ju5VefKd6bgect9dxA4TcXuajtOler+NOdIyPUscdy95DjOK92I10OB8HuH4AEP5YWvThdq9e2x/XOWBvseRjHHfvdi/P88e3snq7aXKsUOTCQ41G6F/73zDfeJrX5138Wp2ZuRW05+EHFV544QXWN9fwKx5TnQ6OgqOHVqhXQ2amp/B9l62tdQyKuHDwXB+tNJ4f0G632Nza4PChZYoiK/NpCs3S0hJSw872Ns1Gg+FwSJJaDh5cxnElnu/heSGOU6YuUFqztLRMf2eEdkMmUUK9USfLM44eOUqr2WY43KbdbvLyS68yf2AGIQxBUMVxPPqDAUIqRuOIf/7P/yUPP/gonqfxvIAXX3iRgwdXqNdrrG9s0ul0mJub4/DBQ/ieQ6NawxiLdj0Kq1AoVq+vcmjlIBcvXaBSCfF9vxT6kYqsyLEmo1Gv8/1nn8dzfarVOmmSMxwOqIQ+gR+QpBm1ap0kTXAclyiOkUisMaXXSAj+xW/9FifuK9OS+L7Hy+fP0jt5DGtMmW81TRns7vL0098nzwuOHT8OFsJqSJKk+J7PZDxmZXmJar1Grd7CIPcEnhQVbWk36jSrPmm0i5GaLM1wXY8wrHLu3Dm+8eTXeeG5F9kdDplfOIAX+Pieu5f3UIGAwpSiHpPJBCEVynFx8zqOCrAKYhNjXIPr1phE8Z7nxpaeHFehtS7vXZpRZGN2+1sIYZjEY9I0xxqLtQKlNVIrtF/FKhcrNUZqrHYR0qXa7JJLh1pnGuU36M7N4Fab+NUOk7wgL5KSYh1UiBKDdgMGwwGNRo2iSAnDCliDwGCLHKUEQhiyaISrS3EpIQS5iXBcSZJFOF6pqL21sUO1WmU8HDEY9NFO2b8KWwqPIQSD/oDz586CyanXQqwxnD59HsfxsBa0o+m0OwzHE9bXN7l6dZXDR5bRfhXpeCjXp9bssDuKCH0Px1F0p6YorMXRhjRL0dphc2sHKBdZHnjgIbqdLlJYlIJavU2lUkEpRZ7n+H4F3yvjyk+ePIFUFikFzWYdz/PY2d7lyuVr/PwXv4jjSpSCVrtJvd6gXq+hteKVV37Is88+y7Xrq3i+x6lT93H0yGGwZT8VQjKZRMRxTBxZtrc3sCbl5MkTeF6FVrPByy+/RJLGPPzYo2RJTLFHi/ZfexdnktD7lb/DaDJBCEW320Nrh0cffwjH1YzGMW++8Bzt2QM0Oz2sLKmt5Xfzo6cTgfePvrePre+lw/l4wFUowWSwy+/+7/8YbM7KA5+ncXWB+LLBOQiVsMLa+gaVsEqSZvSmp7m+ukZQCfB9n3q1zmS4STwZAuU9NlJz7tIq1VqLIs/3FMQNM9PTCGuZn5vDGENQrdLf7fPm+Q0io/A9l7PnruJoS6cTYvKCKIpwXZdr164TVgMQBb4X4krNaDjEFIZoFFEPQwbDXSouxOMBWgiCwMdai9Z6TzzO4oaSeDfj0OIily/12VwTaE+xcGCR8ShCKR+tHQwFeZGXauNKEo8ntKuCyXAVQZnKSiDpDyyu32YSx3R6LeJJjlI+vutz9dpF+juXUL7DTJ6CR0EAACAASURBVK+OK3dBKqSSOLoMG/EcH6UVWZbhOArXdUpl+D0ApqRCKc0oiiiKnMD1ELnBQWNEqTNw4eIaW5tbdDtV8qLYU3Z32djYZHFhnpXlBvVal/PnL3Pk6DGSJMdYCAIfUxR0uz36k23ccUj6roAHJnzt639Eu9nB5vDuGy9AMeTA4VM0WlOUURVyX4z4/wdwfX8F9w5cP3rbPgGuP0n7BLj+GYDrfjGndwOBdwOut3rLjDHvUwe+k4f4o9rHBa4fN33Jv2vA9U40rU+A611K36Utt/d7lSXkVpG/+i7mP/6vid98h6vHuzS6HbpT80Q5KEeTFzkzMzMsLy9Rq4ZM+tsUWUISR4yGA6w1XL50iU6nw8bOgC9//SnuO3qMMAzZ2tqkUg04sDBHFk8IwxJEVsKQeDLBCxwCPwBbqqgWVhMnEbvDHZqNFo7yGQy3sdaSxDF5keM4VZ5//iWWDx3EYimKDIHFFIa8iDAm58ihEygJrWaT1dV1stRy/uJFFheXGQ5HvPP2GY4ePYbWkq997UkefuQR2u0WrVaLarWKtQYpBKPxiMvnL/Diiy+xsLiM45Vt/b3f+T3OnjnL1FSPt958k6XlpT0aaY7n+3iugzEZnhfQ7cyws7PL9WtrPPXUtzh58kSpwCsl3/rmd1hYWKQShmjtsL29g4kzrl27QqPVACl58JFHqVdDHOWQJAntdhvfd0mSGG8vLiuoVJifX+SNt97g/vvvR2nFYDAkzzOazWaZG9b1cLwAIcux0PVKanC/v0MlrJFkGdp1yrhH1y1jEsdj1jfWObxyhM985qdZWVnBC3yUq3GdMvdnmSLE7sXmg1SSJM1wHA/0mK2ta9QrVSaDmGrQwmYRWTLC28sHu7m9QZEXONqhTP9UiumY3KCkixeEVCpVXM/HWJBSM55EaFmmYxJClErFRYEoLAjDaDxGKBdrQKpykplnBt93EdLiOC4IhVAueWEJfBeBQYnSe+W7LleuXCIIfBAGWyTkcYzrOnuUwgwhNdEkLpV3lYMxkmajg5IKIaBWq+A4GmslhbFl/LAFVyqWFhcwxtBoNpFK02xOU6mWNHaAKIqoN9soJel2p/F8jcWw29+hGgY4SpVpYyjI8ozcmDKumAJLQZymWCvZ2hrQm+mSZzlKgjE5QkCaG6IoupmmxVrFU996im63h+NKLAYhDHEU4bkBgV+hMBa/4iClpRIGCGF59tkfcOjQIaRUdDod6vU6DzzwMAcPLlPkCUoIhCzTjxhj8H2fPM/5oz98koMH51k5tIDSmiCos7O1zkMPPcjK7CyhFzCKhkz3phCAfPM8uauRf/MvUa3WcFwXS6nYK21JS623Z0h2NujOzVFrtjBC/VsNXNM8J3Tgle/8EW+/e5a//5/9Guq7HfzAZ5ctGvUGfhACgm5vCqUdLly4SDQelzGhjs9wsEG14mDyGCkFYb3N7PIxXKfCeDwizzJ8rxwrlIDV1XWsULx75hynThxmlMK1tU1GGxv89BMPMDXbIprsEvgVXLeM73Q9nzAMsDZnMk4wqkqaW7Qb4gc10szQaDSJJ9uYLMLR4ib19sbcK89zMjKIJMLsUm21Wd+MQcGx4yeo1Zo8//xLnDp1H6vXrwOGmekprClYvXqVwEnJJuuALRMAS4dc1JGqSm+qB9py/twVdrYndDotomSXM2++y1YffO0y2wrQnibPM4S8McJIhLoRCmZI05QgKOPjtXJKITgreOX0LmsbO1TrNbQ2IHKEkBijUFLTbrcJQ43rugihMEYQhlWKbIijBNEkZXtngHZDgrBOtVYlS1OkECRpyrlz51k4NE97axbxuTGf+9lPc/nyDlcvb3DiaI/19TO88f+x92YxdmR3mt/vnBMn9rvnvpHM5FYLWRtLy6gldaunZ6YHxnjc0xhgMDZsYx4M+NEv82IDM5j2BgOGGzbsbjQavUxvslpqtZbRVotUpVKpVpFFsljF4pLJzGSuNzPvGnuEHyJZYrGSVSyqZI81+hNEZsZyIm7cExHnO//v/31vXmNh/ih+tUaqHeRBY8xfAtdfxn3GLyxwzfP8Xx0EUD8OEHG7YNKd7d0OXm5fdjtAvUUDvp0OfGedyu3g584s7u3b3H6Me/mcB1GM7yXuR/zn3wfgej+Vm/cad16Pg67/xwVaP4hefmv9LX/In198+Pd58PvpvffE3frorXvizn3e7fsrm/T/p/8T41//X/SmmrQXpvFbLSr1MaR2MbSm5EIWdHZ3Wbx6FSVgt72F55b2KrbjlsIrWmPaNiOj44yNTSHJsCyTLM+oN6oIKciSIbZboT+IcCyLOArY2dlGa5Msz9GmgeVYXF9a5oUXXuXo/AJK5CBhp92h0RxBKoHIU/b2tpmZnsJ1TMJgiFYC0zTpdLbRWlGt1PmTP/kTbLvOy6++yBNPfopGc5Q4SajVqjz22GlsSyKUwcTEFNMzM2xtb+FXPHq9HjcWF/E9D8PUrCyvkFECPVVk5PGAI/OH+fSnPolpmhw9dpy/+cqXaDVaBEGAbVsUIiNPEvrdPoPekK98+cs8evo0jz1xGsNQ2LZDGCQcOjRHnuf0up13RYYsbZU1VkVWgqtCAjk3V9fY3mrjuhb9XoeK7xEnCYYy9ymOGfPzh3FcmyiO8CrV0gM1iTGUYhjF9AcDFKBEQRRGeJUa2q4gDKtU2dQusshIs4w8y9DaZHZ2huZIi7feusTTzzzFmTOPog1Jzr6dYFEqPxtFynDQQaoyoxBHCXlu4ZmwcuUV+r3rLC+9ihIuWhXkWYZjO1RqIxQZaGUghaSQkKeClRsbrK5uMTl1hDiO2draAYyy/zg+e5sr+K5DFAwxDYnIc0SREoV9tJIUacGgF2AaQJGjlUaJnAKDXrePadogJEIKlEiRoqzXLe1iFNVGE2WaSAGWIRhGObbr0unsEYVDXLdKOAypuB5FBgiDKC5plEJKKARpVpQAXoj9ul7F2ddfZf7YAvVmA8O0EUrT6/ep12tcX7zO6NgYluMyHPbw/QpxVPDKqy9T9S20Ian5Hv1el2gYEOWCOMlwrJLaLKRkOAxRymBkdIzWyChKGygBw34XqQRuxcc0y4yYZZXCNFmWcfz4CbrdHt/45jd45PRpsjzGtlxuLN5gdGyEIBgwMtoqs+tZhud5nDh+HCUVmxvbGIaiVvH59re+xdzsDEWWcenSWyRpqUibpmlJGdWaUw8/SKNZR0oDy7IxtEGtXsFxHVpru6i9HnJmhL29Dlo7FOffYXVnl68aAY898QSO6/HUU8/w6quv8dgjp8q+aLkQduj0B0xMz5Ih3wWuxR0D6Ht9k97a66DJ7lvAVX8y/UjvpZ9O0Etk2uPP/4//kf/0v/ivOHtlh6Nvn2FZvINfd2hv7+E4Fjs7bdrtbSyr7IuDfo/27i6u7RGHu5hGThL2Ic8II4nhTeJ7Pv1ej+FggFKK1ZUVri1eJwhCHNtlc2uTpcUVjh0/jKtSPn36MFJ0SLIY8oQshSRNETLD96qkWYTjWFAYLG8MePa5Kzx06jhurQWGA1lEEuximQXBoAtClGyQfcsmKSVZInB9l0RIhGWxurFIf6gYGR1ldLTF/PwRlm5cZ37+EHEUsrq8SDgcMD0+xovPfYtmVWOYCku79IKEmYUn2OkldPtdWmNjjI6MEgR9kiSi0ahTbWS0mjBai3E8SZ7p/UmlFMNQxFFMIcq+73ou+f7kijLKySYKgySDflznjTeu4/uCkZZLmocUmeTGjQ2mZ0rxN6C0ESsgCCKq1RpB1CWNBFLkbGzvMBxmrG3uUKl4jI2VooKDQcChQ4cwa5r0Jlx55wpiLuDq8ia10TFmp8YRwuLS2R/z9oWf4GjN2OEFpDTf368O6Gd39tl7iYO2vx24vjvOft+OBzljyAPHcbfHvYyF87x4j5jkL+PjjV9Y4FoUxfuA68fQ5j3XEd4Zt6sTHwROP2pW9YMA8wdlf+8XuN55vve0z78HwPVu29xvFvkD2/5/Icv6YfH/NXA96Fu4W199T8tF6Sv5vuWXrpF97VnS3/l90v/ljwjXNlier1A5cQJ/dAbT9gjiosx85QlhECCFYOlaOYhob24w0mrRGwzw/CoFAiEUnuvwyquvMDExga01tmPguqUXa5JkJQVSJCBt1je2cW0L17H2hTAcsjyh09kjJ8avjOI4DV584TkWjkyhDAslS7/MghyZh1iWgbOv1GoI6PbKLEFBTJLERGHG8aMPMD11mJMPzqNNizDKsUyTIOgjRMruziZCWTQazZKiVpQ+fmmaMDU+SZzEFBSMjk4wPTtLo1GnSAMGnW38eo2iKFCGZm19g8/9yqdRSuO5Hq7nUhQJpjYpCoFlWbRaTUZGG1iWgWlabG21eeq73+fosXkuv/MWm5sbHD++wDAYIDHIihjTNKCQmIZNEA44d/YNfN/nyF5MI8rpugZam2jL3ler7VOpVciy8nMgDAwlGfS7CCHICtje3KRRq9Dd2yHLcgxDkwYhZ19/lWatimOa5EWBbdsMh0McxyEMA0zHYmR0lAdPnkCJgjAYgDJI4pg8T3Edm2CvzebmGlXfQ6lSebh941Xaq9eZnjnK6NQpvMZxvKpPdxhg+03QPuSgUFy6+Cb1RoOMgiTuE8cxk5NTSCV57bVzPP30s5x74yIXL17i5AMPMwxD6q1RHL9KWkgyFLkUaMskTjJ++NyrPPWDF3n8yccxTIcsV+RCUCQZezsdHNspFVJFwaC3RxgOcbwKKAsKuZ+xkxR5ipIFyqmXdHEhcB2LXq+NbUvaWzex7TLDbtoOBQWdvT12dztUK7Wy/EwqhJCkScLs7DTK0BQIojRFSIXjmiglqVWrpfWSkDiuIopilHRxXY+JuRmE0mjbQ0iTK9dv8JWvfp1HTj+CbWriYEicZIy0RojimE63i+M4FAiGvS7aUGR5xiAYkqU5juMApUCboRVxHON7FY4fO0GRFziOxfKNmwz6A1zXQsiCMEqIwpgszUsKr2ORpTlf+crf4vsevu8QdPuYlsbQJhfefItTpx4iSWJqtSpZlqO1AYRsbexh21V2dncwzAKhJP1uH3OnSzAMyScaGNoiLwT52bcQFY+rjy1wZH6eKI6Ymp7mzJkzkCZkOaA1Vy6+RLU+SmPkDqrwnZmfe3ys3/5+u/Nd/9OMa/qh7dw5jhBCgBC8/Px3ee3Zr/Ppz/8Gh/0v4C+2sE+CNjRvXrhEe3uD0VYLz7HZ29lhemoSpfS+GFyCbScEvTaGzFFCMogkXuMI5984i1SSJIkZGxtjr9PhsTOPMzk1xfPP/wDDkLSmj3B18W08I2d6ok4kB2gpsU2NYTjk5BiGLG2t4hBEgRQm8TDm6JEWllkquDuuTxj2GfQ2sIwcSDEM891JiizLEEJgSZPdsMNzP16k23OI45AoNfjs5z7LdnuTOAlpNhoMhwMsy6RWqxCFAcs3Flk4NIrIemhTkyQF2qmQmy3qrTnSLGEwCImSIbajqNfrdDoDnn3mFY7PTWLnGYurIeGgi+PaSFGq1VumSZqlWLZFEASlj6tSpEik1ARhiuNUqFfg4ZMjjNYtPEMjEoHpOXh2jSTbxbIV5IIsL++JYRAipcL0XJJYUeQxk1PjXLi4Qj/MGA66TE2Ok6U55y9cZG5ulsXFRUaPNzmycYqzSy/z5H/8BF/52l9z5rEzVKsTFPE6b547xzCI+NQX/gEo9+6d9fZF9zG2/jDg+m5fft+O92dWeG9JHHGgI8kv4+OJX1jgmqbpv7qfDvNBwk330t7tIkt32//2nwcZK9/tWB8GSO88j7u1c9C53ZnFvT3De/sN+GGTAe+5bh8AdO6WcTvo3A4CrvLOa/pBn29//Z00qo8C4u/UFSjuOAch3vtpb/1+r2D6zv/3us2dy259j7fP9t1L3/2ga/HT5e872l3O9L2RqVvfUXmMTKQITIpU0V5vs7myBDFoaTDoDxHr22S//yXyf/m/kv/R39B94wIbWcDug9PUn3yE5uw8MQohCrQWpHFAkSUoSipTFEbcvLnK/MI8C8eOUKtWEIYiLTLa29vY+4PUSq1GrVYrx4i5xK3WKKQEAbtbWyXtTWiEFDi2wjQlGTHRoI1j1njl9Yu0V9aYmPBwPZutzQ5H5mfLTKQpSeKopLqaNvWRMQzTKpVMs4JKbYw8yzGkIg5DKr6m0mwRpn0s2yaJI/7sT/8K27Zo1pus3FjjtVfOMTExsy+6EWM7JQA0zFLdd3e3y/lz5/nRCy/wwAMPcu7ceS5efItjxx9gc/lNWuOzCO3S3d1COxrXKwFFHGdYpocoFNeuXafeqFCteSVNVd+i6koePv0QIs/xXJuJyVGUNgmjHNN1sbwaCI0WgtXl67iuxaFDs0xOTGDudCmAtFXDUAZxGBIOB1T9FpubN6nWfRAGeVggZIZhacIIhr0Os3NHCMIh1VoFx6sR5xLLMal4flm7KQvSLECIfQEqI8e0PApASVmCDqUwLBslJXGcYWubPB6SxNv0dzfod7ao1Zoo7eDWJrGqY2ivTi4MBPD6a+d58Ucv0+v2CPp9/vIv/oazb5znVz73OZQSSHK0drEsB8f1kFJSb9V57NGH+cSZ0zz00EP88Z/+BRcuXOLkiSPkacCg08EUkm9/6ymOHz1KkYPjWAgChr2Q11/5CQsLh8iLkL3tDi+++CMOzU0jyLi5vMz4eJMsLzAMCykkGSCKcpBpGBYIu6Ss5gVF3qcAqm6LQqa4lTpaV9m4eZlut0291mJnt8fo6Aj9Xg9ZJBRCoQyNLDKyKGC3u4lt29iGjcxDECXwzUnIMlhZWefihbc5euwYQofUGg2kLMVjkjSnyDJa9QrHHzhJteYjDQPt+FiWxfrmBqZWeK5LniQEvSHP/fB1jizMU61VMAqTvIhI4pQ8y8jzhGF/SJ4lmKbCMA2SJGOvvYtlmTQbDfJccHN1kx8+/yNOnT5V0s8dq8wWDwY89sSjjI6PI6XB+EQDx3NwPJfjJ04ihclXv/pVLC1pjdTp9LoMegNGRye4cvUqX//6N6AQzM3M0euGhNdvMDo6QtxqooRgZ3ub5lobs1nnv/zm3/JP/uk/pjVWI8kzDG2SS0XheciwzRs/fJrJhZOMTc2Q5iCKAlnkFHdQhQ98/oufPqtvPe+leG+W53Zxu58O5j8cuN7+Hrj1XjZI+eGf/gHK0XzuH/428ctNhAdYBWmWMXtoDkNJ3Eqdq4s3mJycwtIGi0tLNMdGiMIQS4Mu+kRBn4ICZbmgLGaOHAchmZ2dZWtzA8s0qVQb7O11uHTxEnOzc9xYXuTQzCSVap2z597GtizGx6qkeYphqtICTO/ThbXeL+dI8V2J6yoM2yEXNrt7MbVKjUFvG6Ui8lRiWJo4CMjjCMtQJFGEYWqKVGMaNpvtkGGk+dXPfpYoSojjLmTQ7ewwOXOYa9dX6PcHNOpVLMcm7a6gdYbpukRBSGGO4NUOE/RLhXLP0Wyvr9Np76CVptFo0WzU2NlaY3G9zZFDk/TCAe9c2WZkZBJtxhSZxBCCNMkwDI1WiiLPKHLo9GLeurxNN4hxLKhVTOKgg6ENpLZJ4hDDSjCkB5QZ2lv1945rI2WBoRSOthFywDCJ6fZtMkMi87JsYWSsxZHD81y+/BYzs5NozyDWMQ+sfZob20uc+QdP8G/+zf+AsDzS4TZVlUEekTs2o0cWEIVfTriKIQXm+8aHHwdgvRXZ/iSN+sRt7AJZgCgoyCn2LfjeP6b68HO4nRV213GwzMpJKHG3Ed0v42eJX1jgmmXZfQHXgyxr7qedOzv1x2mVc1BbHwYiP6zNe/39I7X3AcD1IAuYg4ArQHHubaj5yM8/+b79P+y6/jxnu+7p+n5cx/oo2945U36P+9we98YsuFc7HIEoyjWygLzIEYUgDWKiYMDy0hIkOer5VzF/5/dQv/tvYWuX6PgRto6MsRjsMHH6NN7YJCiNkgZpUtoCRGG4X1+Ysbe3RxZHJHHCpUuXqdRq2K6HNko6VRjFtNu71GstChFjGAqlKF/chYCiYHenTZYmNBuld6NSGsuySZKITqdDEg1IoiGW6eG4NkcWFsiLAs/1kRTUay6Vuk+WxdimydLidbSlMU1FFAYEwwGmWdZGhkGAaVoopUkzyIoC3/NAlPVWDz/8ILu7bcbGJ/AqVUYmJqDIKYqMeqNGlhdkWQ4Z/PEf/Smf+cyvsHZznULAoSNHMLTJyMgI09PTVCsWGaUAketoojBl6cYKY6OjDAZ9tFZkWUZ/0GdicgKtNXleUnANJdGGRCqBZYHn2azevAFk1GoV4ijCtmxMbRIO+1QrPlkh0Nos/VZ3eqRpSscxcJzSUqTVbHH27OtUKw3iKMWQpcVDQUqapZjaY29nB893cRyLPC+zxXGSksYDHMtEGaXispIKZdjkWY5UAqUsws4epswJBh3Wt7eo1OvESYplSmQesHHjEmnWZWb+GM3pYySpjcpNCi0oBAglEVKRZhlvv3UZISBJYx548AF2d3ocO3qMw4cOEccRplmC4hs3VojjGM/zyNOc7a1tHNfB0ppWnDFfb+BlOX4usG/ukF1bJb62yHiYoa+t0Fja5GiqmNobcjSBfGkVY3MXa3OHY46PubmLsdbG2+3D8g4sb6NubhFfXUatbCJ6AyxDI2sVClRZG1cokAVpBsIoa/20VSHPFZVqjWrFJU4T9jpbNKoG4bBNkgYUeYzrapI0wDZbSMNAGRZxGiFUQpEpiiJDSUGeFey020xNzaO1Io53iaM+eZhSZDmmNun1upiWief7xHGEZVtQFMRRyve+9z2OHzuGbdtsb++wtrbO2XMXefDB44ThkO3NHbyKi2maSKlQUmA77j67JGfQ6bDXblNrVHn2med54403OXPmMfyKzdj4JLZrYzk2UZIgkcRRjOc6UBQICcNh6V+rDM1wX9hmdnYa17GxbYcky/brIA2uXl2k3x/wwIMPUa16FHnBjGGCgO+eew1tSHzXwbm+jvRdfvOPf4fR8Xo5waRthDBQRoZQBmkY4Vs2YzNzmI5X+rfu2yXdCVwPfmi/9xl7q1Tkbmyi9OWPDlzfE7nke1/+S6yKZmTmKBOvP8nFqxdwWhbnzp1lYmIcx3Xp9nusrt6kXq9RqfpUqhWKAmqVOsGgTZHskMYBypDUmiO0exEImytX3qFWq75LCV9evcnVq1f51Cc/yfr6BodaHr3hgGvLW8zOzdGoe/hWihKQZTFSQBCEWJZdnm5esnhuXY80h0I6uH6Lt965wc7mDvWqg61zojDDMg1ykRBlMYWWiDyhyDNMw2Jvd8j83BE2tm6ysPBQ6cdtCHy/QppkNJoNiizBtjVaRRBtAwmGoQGbXihJ8HBdj0xAEke4js3W5hY7u3tMTc/w3A+eo+IpJqYa+PYQvwpZ6LGxusnMnIdBDakTkjgu1duFBbkmy4dUfJ92e5fZ2XEqfkm7tixNUWQIkZPmAXESQGFgmaXXc55lxEm0XwefUhSlmjVSYDt1zv7kKkmcUeQhjz/xCK7XIIljGo06tXqNpRs3qIxXGHi7zCyewGwKvKMm4xMTjLckrtNDiS7bWx3mT53BMRukeY4wUijUzzw2+qCxiXoyey9oBe7c/IAcLB9lpPWBYyNxK8t7a+Lol/Fxxn9QwPXOgfhHyaTe2v723z8KzfbOY9xe33qv2bDbbWtuBxYf5VwOavOgdR+1ndtB9bvrDgA2B2We79beu5/182cQt4HWg457+7E/6vd6UJsf1FfeXXcPNRn3+8h63/E/wn63/34vdPEPi4MmGMq/D2r74BoRAYi8II0TskQQDgYMujskaxuMPP06I//zH1I882OSqXGKzz5JeGiKtF6lVq2y1d5i6thJEBba0ETRkM31dRavLVGpVLG0WfqnBgGua7Ozs0Oj2cL1XOr1GnkaEqcZhdTcvLnO4cPzfOfb3+Phhx/Btn06nSFxEvHiiy/S73Y5dvQoURyTRhFhHGNojWnZbG/tMDJSp1KrMBhG+J6Ndl1s2yMY9Oh2t/YVcDPSLAEBpjLxag5ZmmIoA20YDAdDTEsyDHpIJSjIyPIUpMHmehvP8wmDAUWeMjd3mKUbK+QUTM9O4TsOSRaj9b4wUCEZ9vpsbW1xaO4QjuNy9PhRlKH3hZtc+v0O0jRBlHRYIQW1aovV1VVsu/QsNAwDw1AkWYJlWmR5hjYtDKWBnN3dNtpUJIkgijOa9QlWl9cZH5+ks7vJTntvH+RrKFJsz2cwCNCmhVjfJgxCwnoVgeDihUtcvvwOI6MNup0AicIwSopylASkecalN6/w5oULHD16GCEFYRKX/SkvMCTYlgZRILVZagAIjRCCQb+DaVik0sEUAxbffpW6lRN31kmjIcNgQCENvPokigrKGaFQDrt72ziOAFF6pZYCLRlSCGZmZtCmwZOfOEMYhVx68xJxHFCtVvjal77CIWFhbu3QWtmitrGDeOkc1rm3aSyuYb21hL5whYo2GHE9GhmY/QCvAFdr5ianMA0Dw/MwxltkVRd7YhRd9fFNC0sZ5FWXrhZY8zNkC9N0ai7+gydJpkcQh6eQR6YYWBliaxcuXkU++xr5lUXEzS2IMwrTINeKVKQYhkaQEEZ7IBRKuLR3OszOzpGlKWmUIuIIWxZE3R367U20lYEIGQ6HuE4DJfW+PQ8M+z18zyFLY8anmsRRTBgEtOoT3Lh6GdO0SHNo7+zQarUoCkFBThAMy3rVGB5++GFsp6zfdf0KnmXxdz7zebI84YUXnufk8YdQSrG1vcnNmyu0RkaI4wwhi7JmOS/wXBfDtKhWGlimzejYKGkaMzI6CrJUVs6KnDRKSdJkX0U2I4oCTG0zGA4xtMZxHXZ22rRaLbQuvWyrtSau7ZKmGZWqz6c+9Wmk1JimpCDF65eTZ9OPP4rnOgyHA9zFNTJLY/xnn8Pza3hejcEwxDRN9jpbFAX4mMTbcgAAIABJREFUXoVBP6I11sR2fdJC3Bdwfc/7tHg/2+rdZ7FboI7kyLH8w5s+4H23ubLES9/6MuPTE4yNPMTYuUdoftoBAZubmxw6dJgCgec6WNrAtm0KSlp5nmYkUYJlweq1q9imiUSytd1lYmqBHIOjCwvkRY6Uik63S6NW5/q1axw6fJhr16/h1ipgW2zt7DDV0MzUC2xLI6VACkiTDNctrZzyPMc09b4SuUSQEycZhl1DOQ0Wl27y5tnzHJqtokWE5RgURUqeK+LE4+y5TZqVKoICqTIMQ2BaOY8+9kl2dwdESYjWEst16eztQZ5Rr1eRhiQNNkmCLZDFfh2ppj46g3ZGCcKQRrOJYRj0ul3m5xfw/ArDKGZyvMnlt67xxvlFJhotDDLGxjVjo1Wy2KSQ64iigqEyDCMjERmpLMiTmIKUsZEWjgVZIalUq6RZQV4kCDKUdMlSSb8Lvd4QZeQoJTHN/bpnbZBlCVIJslySppIkjmnVPB59/GFyofje957nrbfe5Mj8YbTWeL7P0tINlm8uMf3gOM4rYxhPQKgy0lgxOz1BEiW0r2/Ri3qcPvUpEqEQskCgPqQH3l+8O045SGRJ3tG3D9j/gzQ6bv/7Q8fc4hbz8hbr4ZfxccZ/UMD1zrjXwfvd6MMfFSze2ebPkg38WTOJH1cm8oNB28dT43pw2x+w7ueRZb3PrO59n8mdD8t73u3ukwJ3bvPRTufAx/xBWx64RBaQpxlxELK+usXSm5cY+/YLeP/69zBXNghOn+A7nU0mTj+EtHQpOiElvWEPrcB2K4i8IImHCDJEIVFC8/bbb9HpdHBtC0MrgiTGsmx293aZnz+EqQVBEGM5LqZlYdkWSgoG/QGNRgPX9djc3KDWbJU2DGMTJb2xANIEt+KTUxCGMUtLK3h+hThJMbRLVmSYpiTsx7QaVVAZ1foEaRxj2DbacvAqNYJhl3a7XdrIhDF5VmCZHkqZKGmw2+lSq9XZ3GjzwguvcPLEg7j7WaL1tQ2+9tVvsHDkMLKIMLSJaZWZpzhO+cu//CInjh5hdnYGx3PQpknFs3nj3Dm2NjchT9jd3sKrj2Frm363i2U7mKZBs1lmlSt+lb/+669y8sFjVKqlH6KQin5/QBKmWJZJMBwCYFkOUZSwsrLGiy+8yMMPPYCSBd/61jPcuHGTLIloNhsobVGUFcWY7S5aa4KKS7Va56mnnubxx5/g0PwCL7/yEo1mjcmJCXZ3ehSiwLYdfL/GxPhICQ4E2I5LGIW4toXSmjDss752k2q1RqfXw7Ic8iyh29vBd30MEbF67SfYOiZH4FbqVJuTOF6dIIKbK3ts7w1pNpuQx3i+SyYUstAkcYSSAlEIer0ejudSq9fQQuB0BjxkepzEwHvzGo+lCtvzYH6a7MnTpL/2SXYfPQ6n53HHR/FsG2NyjI08Iav6XFc5lYeOszzikp2YI3/gCNH8YdqtGjdthX1ygXR2jHVfszvZwDt1nMvLS/iGSaswcFba1DohenULZ2MX8+Y29voulZ0A7Xl0Hj2C+Q8/S/apR9jMAirdCPHyBeSF68jtPcQw4traMq6nMLWPlAqvWiFHYGgX064glFFalhQpvd4e7fVlTJ0jBEgE/e4mvm+jtSIKhkiZkyYBSZxSq9TJ0oQ4LdWAvWqNP/2zv+LTn/4MX/7rrzAxOUOlUqEoMuIoodPukqQprlf60+Y5pHHAH/zBH/PY448yMzNFHCR0ej2qNR9tGmjDxDAUQRiUWVTDIsfgT/74zzhz5lE83+av/uqvaTbGGRtvku3XrCdRwvPPPc/x48co8owwHDDo96lU6ihlYDsWURRR8X2gIEtLle0CwbAflnZXtkkYBCRJgmEohsMeXi/EUAY9z2N7e5ux8TFUEJP/R59nuSZx7DqOXUMowebmTZqNsf17qo/jWlR8D6RBjrzvjOvti+42LpFjBXLs/t/J7eU3uPryc+Qio95/nHoxTVqPWF1d4eTJB5BS0B8EOLbN3m4bx/VwPB/bMej3BoSDCNOGRsUgHOxhmQLLcRCGQ6M5wfrGBgVgmBrPq/DMU8/wG3/vN1hbW0ObJqurW2xurKOKgpNHF2jv7dKoOSAESZZi6FLMCPZVuNkHDlKRZ0lZv+82cSrjGCJnakzh2VF5zQ2FoQRKKqI4Y3dnyMR4jVxkaMtjeW2AZbfQtstep4NlCZavL9McG8W2LNZurhLFJUV+sLNKEffQloHc9zEOEoG2W6yvrlGr18mLAqVKcIgo/borjsNWu0eUw9RkE98QaJ1jWwVKGUBCkhZIkRFnguXNhL2BZrThImSBpW3SNMJyXQxtlT0pT5BFhlI2UZRw7coSjWYVzzdJkhilJHmeAQVFLhCyIMcgHCZYlmBups5me8CPX3oDpWxc16bi+7RGW1xfXGRh4RhjIyMsrV8jizOmV06wMrfE4uI7jIxM8Vd/8UWOzTcJs4iHTn0W5TdIRYosfj7A9ad9/+7AlbtuAcU9aHTcU4hi/wjil8D15xC/0MD1djrpz5Idvd8M3p1xZ0bwbnG76vDdzqMoyodN2cytm+TjiTuB+gdlZQ+6Vre19P79PsJ5vDe7WVYk3PpX3FZYn+f5e4SzPqrw0vvO8h77yrtbfdTM7vsOd0Dm9h6A64dliD+uuHtb779OhSjrSG5ZdcgiJStyVF7wox/8kGh9B+OLT3H0d/8tYukm/TMPckmbNI/MsnDsOJZpQZ5hKkmaFFR8n+d++BJnX3+DY0fnsJSk39lDFILWaAvHt7m5vML8kXmElpx9+TW6vR7HHzpJt7sHeUEUD3BdGyEEWigMpcqZ+TDhxZdeYmJqgpGaRaU2gtuokuYxK1dXqNQ17d09qpU6Qa/P+OgIf/7nf8Pnf+WzFHlMSk4Uh3j1JmEq0dpEEPL229ep+RUMkSPygN1Oyte//l2eOPM4piXJMoHrVVhb2+app37ImTOfpchNKpUKkyMNGhWP7l4XZSrSRHLk8BGmZ8dZWlqjyBKazRpZGpOEAacffgChHJ577vssX19kr91hZnqG0fEx5g7PMToyQhAEfPVvvsnx48cpZM5gWGbJBoMBhpIIYeC7VUzLII5ihFR09rp4boXFq4uMjY9gaIMkK6AosCyHlZWbhFHI4UOzZEXMQw+fZmJijDjoYKmCtbVdlDAQGOy8eZlqvU6/6mKZmsfOPIZfr6FEyPj4CBMTE2R5wbkLlxibmMb2KmiVU694dAYd/EqZ1TEtm7Tk8aIMTbM5Qpok+I6HEBJp2TiWZv3GBfrXfgDSpTb5MN74A0hnFCEUg0HAO5cvE4Z9Tj20QC4EKZJwGKLynC998ZscP/Ew29tdup2AZmFivHkZ9dqbiOdeLzO+c+Pkn3iQvd/8FO1//nep/7PfRPsVgsVrNF48T+PSIl6eIxoVOicP8VJnndrpo9QfPMn0w0fZivqMTE6iLYeN9TW+//3v8egjp3j5pdepVhsUwOjYCL3+EGX5jB2bIxutYRyd5YpMqT7xCDermv5MA++xx4kOT/DM4iLS9xkpNObyJt7VVVqbfUyg99As+tAUFAbFepvpvRhzfYC50+PiG+dpWi4ySZDaIBcCaZgo00aZNp7jMnXoCfIsQKU9bi69jakiDJmTRX2CJCeKcuqeg+c3GQyHuK6HlOA3WyRZypNnHqe9tcnbly6ystzmxIljFJngO//uGWZmmqXdRiFxHZettVVMBUePHqZW9Vm6cYPmaIvr168xMzeHkArTcTBFTpZkdDt9bNdBW4pHHzmFZTvUqg2CIMJxHJRMKYqcq9ev8NY7b/Hrv/EFBr1dHEti2iZ+rQ55xsbGNlkC2oB+GGPZFkWRE0URays3+c73vsPhQ4eIwpCiyMmzmDy1sCyDSj9ESEHbLgXehBTIm1vIo3PUvvBJLLtClgvCIKRWq6ILwTDWWFKT9rboFIJqo0WWl1kgI4f8Hp7f4oD/Bz2v78ZMute4tX20t8MPv/OH/Orf/3VGr30e3xkjrcS4rse5c+eYmZ7hjVd+QhrHVKseSRRQcSyWb9yg1ii/y1rFw7ZSdttrmBqiMECbDpvtDsNIUG82uXDuLPNzh6k0atxcW2N0ZBzLNLlw4QJ/99c+y/bGJotLG+wMQh6YH8d2C0ztAiFJmqLyCcJoBdtyQRgo4ZBmMUGSUG3NkOcOjpnjmwFFEmJbHtK0iZMEITOypMdYU1EIxeKVVSJGePXCGt1+jF+tc3T+MMMgRJkOY80aQmjevrLI1MQYYX8XVXQwshAhJKZtE/R2UMqk3c2xvQbhcIBXdfA8l632NlEcImXBytoucbzH7u4avZ0VCrvGhTevMz42ghIxWRpjKoM0z5BGhaefXWT5RsTJhSpSQZIFgCDJOoSRRjs2FD1EnHNjIyKJXQ4fcyk1ziRCSJTS5LcEyAqBYZikSUy316ZWdbBtk5tXVxkwxHEbnH74GI1GlSwX1BstkAZZEuM4DokXUdkc4YXNb/L53/p1KpUaf//Xf5PXfvRFKloxd2IOszpJkY+g9ZC8uD9Ad6vs6N0+fwdlHiD5okV+UaFP/7SvF9zpWHBrmkjso1rxPt2SD0sA3J59vZ0FKfdt0m4dWcrb79Bfxs8av9DAFX42OvBHWXcvcS91rPBeQYS7g5E7wc7Hf1P87NfiZwOutyL5F/8d2defRf2jL9zW0MFWNO873s8j+/ozHuPOrQ889/vMuN7vOd1fHARcy5/5bRYKaZKwubaBv7zNyH/7v1NdWSc48xDDk3NESjE9NYOhDdIkpigK0n3PuLzISLOI0ZFRqpUqUHpLin37joycVrPJYDAASi/JsbEW4+PjIARRFNPd6+I6pdJnmuW0t3dwLI+fnD3LlWvXqNfrTE6NkUQB0jDRlolja87/5CJzh6aYmJgiDGMc2ySJQyanZxDkDIMBo2PjmFIiBSijFOtK4hTb8bm5tkq9XiUII6I44xOf+BRhNCSKhtTrTba218iyBNd1qdV8vvSlv2RhfoGnn3qKRrPFV7/+DY6fWGDQDxmfmMQ0JYbS5SA/iYnimL1OD1D4lQqvvPJjnnzyE9RqdRzXKS1FDIPhcMj1q9eYnJlmcnIc27EYDIYkUYrjlNnTJM64fPkq09MTVKtVnn/+h/h+hX6/x7Vr1xgfHyNJMwQSKRVhELOxvs4b58/y0EMPUKtVSbIc13EZbdWpVH0MU2NqgyyLqAUJlmXyyo2rWPvUPm1qsiQmDCNsy+Gdy1d49JFTmKYiSSP6gx5JkjA6Mk0QxCipSdMCJc0SXPR6ZbYCKKRgt9vB0gZ51Ke3tYw/eYza5FEMq4ohBZ2dUmxLa4vxiUlGR8fpD7pYdilwZWpNmia8+vKrHA4T9p57gblrqxhbW3Bqgfi3f5X+f/PPMP7Fb8MXzuDUalhvLjLz47ewv/wDjLVtrByiIxMUp4+xW/HJqjWuX19hfHyamek5lC6t0DzPYWurjW3ZUORMT0/huj5Tk9N8/wffx/UcfN+j2+0RRwmuaxMEAdo0qNdqCCEwtEkSx2jDRMqCS5cuMbFwGP/wHMXkKMsm6EdPErY8kkHA7mCIPzvLq2vL7DkGrmOju0MmM4nZ6WP1AvTNNtbqFuZeH6fdx+6nyESS73aQvSFOpKgJBzsR5FFOmqRIr4rQNp7rkOSKLM9xbJvllSVMy8a2bIbDgFq9wbXri5w6/SCVqoVlK+bmpnHd0uvWNC2UlLiWRW/QY3JqirTICcKI5kiLil8hS7PStmMYkqUx/eGAqelpEAKpFGEUYWhNt9vlwsWLXLu+yOzMFEUhmDt0hJnZWdI4xTI1YRgShnHp1xlnfPe7TzM1OVXa3FSqBMMBSZLg+z6GafHYI6exbQvPr5BnOS+99ApXr1wHMpyJFmnVx63XSuq9ALm6RX5kku7COHGckyY5v/u7/xunHzmFIRW5SrE0XLl4ibljC6h9NeJ3M64f88SjEILsgqLYlIh7oArfGUopzj//HdK9Rc585tdoXfh7DJt9nv7hU8zOTOF5HkkSoR2bydlJLNfG8StcX14prW76PcZGJhj095BFxLC3iyELlGGytdPHqYwwPXeMYdAnjgKiIOLa4jUeOHlyn/47ZGlxkYX5Q4RByM7OHqZlULViHEdSZAIhUoaF4tVXL3Po8DTa9giTBPIYpQo8r4ZhVrDdKkkSM+yuYWkoRM7mRp88K7C1jakttGHhVapYpsvq1oCdbsiv/J1PMz4+TpolDIchrZERdnbaBGHMwsICUTik39tDEZAM97Bsk5wC0zAolEsvsvCqDcYnRlhdWaFer6O1ZnV1lWajiW1a7O5sECUJDz9wgoorqPoaWxfl818bxElpQZaTMz5Z58j8CJ6VAxmmaQISqTSV6hRJXlCkIVpqzp2/TJbEjI+V9b9aW2RZTprcsouBIs+I4nLSxnFLT2chcuq1Jtqrc32xpINvbrd55/IVlpaWmZ6cxnUsDEMzHA6Qfc0J/zQ/4UdcuHCekUaLy2+/xMLhQ5y/cpXDJ57AsOoImdwbq+Cg/vyhCyB7VsNQoD6R3aaF8l7R0dvpxLeXNN1PfNBY/afju18C148rfuGB60e1r/l5AtePQk3+/wtw/eDs5scDXEtVYXFX4PpBNQu/BK4/z3j/95vJkh4qUSRxzjtXrrNxY5noqR8z89//Ie3xOt1TJ1E1f7+PQ7VaAwo215ZRZDz7zNMcP3mCLA3Is5SRZpOXX36Fo8dLkGRZmiAOsF2bzbV1tts7LC4tYRgGoxOjZEUOheD69WWCMMEyTVojo4RhiiE1S4uLHD95kmazSaXq0mpWyPMUy/HRhqLT2WFqYgZTGwyDCNM0yLOIXm+XmdlZOp0uaQau7XP5/HnqDR8hE/qDiCK3cByLWr2CYZpYtk+9VkVJjW3bWJZBp1PavSRRysL8AnmeceLEMaSy8Cs+k9PTnDh1Clsrzp9/k7m5WZRRoE0T03IwbYssg1q9hefXCIYdjhw5wsjoKHEaYbsuv/97v8/o6Aj1Wo3J6SlGRusoJdnb7fDaK68xMT5Nr9tH7w/in376GR557BSG1uzu7GBZFpOTUxw+ModSpcfns08/T7u9y+uvv46QOb/1W/8IuT/4TJIU09CkRYZhar79raeZnp3Gsi28RoXUc5hamMPUEtezSdIY07DxvRqvv/YTKpUqoy2PXm8PxzbwfR/H9fnm177Dobk5lMwJwyGmlgS9PSq1GkIKXEfT2biMpXJuLN2g3mwxNn0Y6Y6TZhpT2yAyLFtTCIscwbXrS5i2Q7NRL5V5VQko9TDi8evbeJ5N7bd/g+i//ieY//I/R37mNKo7wHrjCt7XX8D5w68jX72EjnPCsSbRo8eJpsbJxpoY1RpCm2hp8O1vf5ezZ8+xvbVNs9nA8xykLMjSlEa9gQCyLMXZzxgPhkNuLC9y9OgCO+1dLl54swROhoXrOgwGPZQqlZL/3de+xfhoqUy9uXmTyalJPN8jDCO+8Y1vMTExRaVZJS5gN0lpHllAtmpMHF8gq7hMfOpx8tNHSQ5NsvTO2+grK8SDIYVpkJgSfAeRF6g4R+cFKhHoXJMHKToFqy/xuhJ/O8QJc9gbIlGIQUSw2Wbc8RG9AeluB19oijDiwccepVZxMCyD7fY2IyMtBsOQIi8YBgNMrZFKYXkuO50Oru9Ta5QZaKRBnuW8efESzVoT7WgsxyGIAox9G6esyDGtUrn72PGjnH70NLVKFderMByEFHkplaINC0PbGEZpj2Jpm9m5ORynZASEgyG2ZZFmKYZlorQmCvr0+j12d/Z46aVXefDkw4RxiOu6NMbGyA3BYNhFKoUyFPLlixTbO+T/+HN4bpVed8ADD5wkTWMqvs/23nXSZEC9OoVlFdiWRV7IsqyCA0v07jtuvV/i/9siX1QYn0g+0v5FUdDpdHjxb/+IqLvKsZn/BPvtE2SH+kxOTQA5nu+wuHiNyckRup1d8jxn2A+ZmTpEv9cnThLIFYqcjdUlHFMhyRBSYdgVhjG0xmawLI1taXzX58j8IRzHJssy1tfX6Hf7rK+vMDIySpZDP+xzeKqObQm0MDF1QZhB1a9ga4csCdCqoChikigiGiZkKEzXI8kEabBNUQTkWYRjNtje3MBxLbK0vD79QY/tnT4/ubjG9OxhlCjIgPbOLpbtcPPmTRzHwbYdlq5fR4gCz/Podbfx7QIhy9RgkuZsbHU5+ehnMGwHqXLSuMA0TfIcdnd2GRsdo+bZdHZ3ePPyNZYWV5lqhkyN17AtiW1ZZEgMS1KkEplD1S9w7IACMLUmjlMcx0cCGQqhLAwlCKIOMxNNxscaSJGipEGW5+/WX5aieDlSFPt2W2AYijzPiOIQ0zN59eXLzB89xkuvnWdzc5sv/Nqvc2hujtUbN1BGaYP1/7D3ZkF2XdmZ3rf3PvOdb96bcyITIwGCAAlwKtakorq6LGvotsKyOqLb4Q61pQfL4Rf7xS/9ZD/4yaEHdTiiw23Laqk1UKpWaVZViTWwOBRZZHEGMQ+ZyPlm3vnMe/vhJEAQBEiARbVaUq2IC+Q99+x99jlnT2utf/2rWq2ws97F7CqyR3dYOniIRnuRF157jVag2eqsEwRVFg8+TCa59+TEt/fnjz3wQVbhm4hLYVDqFojyjxXXv7Py915xvW+lQoibSag/CfzyR41d/SCV/d2vL8Tt3z/eenWvKXLudL17kb8txfX2uu/27m5/trB333c6ticf5SW/2zU+YNW7U7m71HXbgTte417lXiAu9ysf7iMfNB4YY5DGIHODyAUvP/8SOta0373C7K/9B5Knn2TDd9npdGg06rz++hvs27dInuVESQhpTByOePW11yiVK3R3dgooKzA/O8dOr08Ujdja3CBJE5SyaU80sRyXo0ePMTU5DUpw5fJVXn3lVU6dfpTV9Q0W5mZRyiJOEpQU7FvYh1cuYnVKpQBMhu25+G6JNE3ROmE0ipDC4HgetuNgWwL28qA2J1r0ugPINUIalG1hez6eV8L3AyQZQhrSLCXPDXmWYDs+cRwhVdE/lCzxzDNf49TpJ4mTnGe/9W3m5maZnmkjhAElyZKYzvZu4UGWGePxGNt2SNIE13V55eVX+f5Lr3Dw4BKlUgWEpN6oI4Ric2ODE8ePFxup4QDXsQpPVZrRbDTpdQecO3eOEyePI4Rhfn6WmekZsixjbn6e8SgsPAKOjVKSrc1NXn3lBxw4eIj9BxY5/ejDGJNTKpUI4xTP9YiTGM/3SPIMtMWBA4eK9irJiIwsjRmPR6RJUsSshjFJkrBv3wL1Ro1ur0upHCAxpEkBA3349Mki/Q8ptUpAt7uDZbnESYLnWsTjHp2Vc5R8n6nZ/Ui3QiRc3HSIMnnxLC2XcZojjGBrc5O/+PO/ZHFxiWq1XLA0Zynp2xexv/ky1v/wX9P7p5+jZrvYr5+j/Gcv4vz2N7DOr+D0QrJqCXPqKPmRfZjZNqIakOQ5u9sdfvj66ywt7UfrjDge8Nprr6B1ys/+3E9hOTAcjFFqrx8piziOqdXqBcRcSqSC2Zmpwmvul7Bth0qlzOzs7B4btUMURYTjmEOHDmLQfOvZImazMdHkN37jN3nk1Cnm5+dBCKr1Cr7jc/nyFRYWF/HLLlEUMtFskukcISVYCjnfxv7MCcxEDTkM0W9fJFveII7GqGYN6jW0Y5E7DpeWr+DVXNb6W9T3TdHVOZ7jozKN3B3ihDFulGKNEtwwxRlnWMMQtzPAvb6Fv97F3R3TCA0yTPFTjT0MaRiBNRhjMg1a4wtFPgqxtcH29hikpWRnZ5cf/OBVFvcvkaUJ5XIJo4FcIS2BbVnoPC/ImPKU68sFM60Qgn//W7/FqZMnCOMYx3Xp7nYplwK0AaUk+R6hmucVcN8b85vWBmEMz333ebQ2DIcjDh8+zOLSAnGS7DESSywpcFyfKM1w37mIxmD/y59F54JSqUK1WmFiokGa59SqVQK/jOOU2Fy9SGOihREWFIEwP7LieiuE8Ybkr+wR8TyZ3ff877ouz33t/2NuqoZ36Ussh5uUW2X6/QGWsri+ep1mc4J4NCQej8nihDROGQ9CgnJAo1mnVmuyvblKPO7gqAzfU8RJgpEe1cY0nd0R9WYdz7HZ2d7FcS2Wry0XMbM7u5w+fapQrpTN+QuXibOYY4f3YUlDNEqwXIknXSoBKG3wvZzhIEQ5TXSW4vs2Wnq4lTZZkmGZIbZMC+QAOdWqi9ERtmMVTPVGkqSKRHg8cPRh9s3Nsry6zrEHH6LZaqHzjIn2JJ3tLRb3LWDbinqjgc7GlOycXMcoyyLPMuoT02irQblSIwpHCA17mdeYbLdYXr5GHCZYSnFtdZ2JepkHDjWK/qwzkjTDCIFQBsfyyBODkh5ZAsoqDMBSSrQ2JPEAowQojzCKsJ0cz7JRqmAduLHnybIc9vJ2SyWwlEQpiywrYsLzXKPxSXKb+akW65sb7OyG+L7HvoV5atUqUkouXLxAFIXU6w2q1Qr18SRv1V/ikUcfBWNz9NhhXn/hL5iarmDynAMPPkVuewhz/55/uD/FVT5eMGgLIQqW9Vv7/UcMsh997/v+8ff3nT9WXD8t+XuvuN5r2pQbIkQRW3onT+2n4bW9X/k4j+stZ35sXTcUqnt9Fvfz3O58/t+O4nonuZviuvflA8duzxH7EZV+5DXuWuwu7fuouu9XPk3kwI0Y4o8yTAhRpHDJhgPyOGPz+hYvPfcS02evM///fpXos6cZBi6VapVWu4nYg/K+9ebbHDi4n/6gR6Psc/XyBYJyhavXVrh07jKVaoVKpYwQhqAUUC2XEBguXbzM6tom++ZnCCpV1tY2GQ0GWG5AKahQ8gLak22SLKE90cQLPJSlCMMRvucibMNoOMZWFqPRiKDiIYyF1jlJHDE1Mwc6xfN9tDH0ez0qlSqD4RikxdZWhz//sz9lbmmOffuPoKwSWZpiSc2wt0uWhhijCYIKUTR/hQQXAAAgAElEQVTmD575Ko88cprNzVWUpVC2z4WLlyhXK1QbVVKTsbR/HyJPicIxcg/W1O8NmZubJc9jLFvhKIuV5atUSmV8L6BartCebPNHf/QnHD9xEqGKEO0zZ95lst3Gtm3cwCNPMlzHwbYsLNvC80s8ePwoeZ4wGHaZnZ1mY32LN958k6mpaYIgYDgc4rguw2EPx1EcOXKI/QcPoRQEgctoOEQJh9E4JPA9siTGCXxQimrZBaHJ8uSm0hF4HugcqRSW7eB7PlIKomiMMTnSDQj8AGE04WhMa2KSxIDjOji2SxSl1GoTKMsiTlMUOe+99QP2n/gsbmmCTEOWRIz7O6hyjRyB0QaDwbZtHKl4/nvPM9lqc/yBBxBpCmtb+G9fpjRO8Q4tYl9apXJmBdXpY9kO8VQTfeIo4XwbsTCNqNfJSApynxupjShyIJaDMkHgk+mUaDTmscee4OjRBymXKziOQ7lU4qWXXqDVnsC2bLY2NvGCgCzT9Hp9kjSiVPIJxzGXL13lxRdfZHNzg+ZEnXKljO97XLt2nX37lkDlhHHIyYefIElTlLIZjUYcOXKY4XjI9HSbtbV16rUazVaDJI+wbBspYDAYEAQlMmOQBiwpiNOYrFoieOQY0alHeP7MD9nfmiJ/+wL51VVIE9IsojU/gzaaSmWPpMwrgeOQSY0OXHLfZaXXxW01iSSoWoXcsxmIHLtdIwk8jC1BSRiNsdIcO83RozEqTnE6PZxOH7fTx9sd4mzuYi9v4a52sAZjWkLRrtVpuAF5ryDz2tro8LU//BoL87OkaYYwBp2lWFIQJQlKSubn5jmwtESzWSUolckp8hF3tjcI43AvBl7jeQ65KTgUxuMRruMiKaCo9XoD27Y5duwopVJApjOq1Trl7gA5GEPZIzcK2w1Qb5/D+C79n/0MSjrkucH3PbTJQTiQB2QxeIHir/70Dzh1+nFyYcMdOBx+FLnVWH1DcbWeuL90ODfm9j/8d79GNbB5avdf0zgaYJVcatUag36farVGKSjjlQpSuYnJNo2JCQbjAVubmxg0ruOxtnqV+dkKghCdhQSlCpXaJEYFBOUmuSnG1czUDN3eLlrnjMchSZpQLVVYW11GG8Hm1g6pSQk8hTAp7eYkmUm4emGT1qRHlgsyKyHOyjz/4jmW9k2jzRi/2kY6U6RRj3SwgdAx0gjE3lxVLleJw5QkMSRpxjgSvHlmle3OkEvnzvL0l7+MtG2SNN3zjEvWV1aYardZWVmhUquRpSGj7ipCpQWrdjzCSBe3NI3jVhj2+2RZjJCQZQk7Ox3AkCSKnZ1t5hcWCAfblEsKx/X3mJELuLbBobu7jWUZlKNACaSSaGP2qE4MnnLRwqZSWyBNHLIsRGQJSRYhlU2uC1ixUha27WAwGKMRFDmAbdtFKos8y/nGt95jezvk8JJHpnM6nZB6vcLO7i4XLl4Cy6LZaFCpVHjzzTewfEWrN893Rn9Fc6bC+bOXePjYQUy0QZ51mJ6cYubAYyRWgOSDiusNbpcbOYnv2h8/9sAHPa7v9+Pb9r53Yh6+pc9/mvJjxfXTlb/3iitwczDc+v2jOubdvGy3prC5Uc89edhu8+Td7do36r9T2dv/Lqq6wVh2t3vRFLPZjc8H2/1xci/K20fVI/kgoZJAfEjhvGPe1tuek/7jbyEA9V89XdyHMHclpvi4+7nTsVvL38/UcmvZG/b5T+QdvYe67+RF/qRyJxKrPRc+2hgMRYzqBwwR4sNQ7NgUqVRcqTF5xsZml92VHdKkiJU5vNVn6d/+HuFnT5G3mvi+ZHV5nX53C4WmElhcOv82JQd2166CVNQak8zPL9KeaNKenmMUDqjVa2ijcOwiEXqp3GDf0n5m52YIwzG24/Hm2+/ynee+Q7M2wYvfe57OduHV3b+0hLKtmyygvu8hJOS54vUfvkWj3uDChbP4pRKWUmCKGL3hoIPn1wjDIXmWYIQgSXNKpTJxPGZ2fo6DR45RcbvFJimz+Orv/x5zUzXqE3MIUZDN9Hb7uK5ieXmZw4ePUqs2CUcjKqUSaZowt28f5UqF1kQTIS2EkijbIQxTHLfMm2+9yfzCHI7jFdAyIajWm+S5wXFcms0mF89fIE1yDh06SG5SLKE5cGAJZdv0RiNc1wcTg7KwHY/hsEezPYVt2fS7Q/qDkEZ7mmrJJ45i6tUma6vrPPvsd3j+uRd44vHHsG2FVJKKZ3P18hWm5/bhuC46i/j+86/Q2dlh39Iiw34XZQxCKHQmyLIYfxRhp4bMtVCOjWX72FbAOBxi+xWU6+PYCplFrCyfx3VtKtUZsCRC+2R6G5NDyS5x7eqr1F2bna1rGJmwsO840UhjuxbDZIBXruK5EyAlynL2GEU10TjEZAnHWhMcw6d0bR1vrYO9to1wHbKTh9BH9xMtzZPtXySfq6HbVfppzvVrq/S7HRwFjlXkH0ySGGFJhBTkOkViKJcD0DlKKJI0pVQq45d8pLJBWhiTMz0zCQLiKKEUlImjMT987R3eeOMdTp48ieX6KNvjP37tT/iZn/s5Dh46TDWoYJD8xV99g8NHjlJvNLH3ckg6rkBITZKMOHr0AWzbplKuMhyM+e53XuKNH77G0sICnuujTYaSqvD4K8V4OMSkKQiNWwoQ0kYqh+FgQDA/S2+6weTPfJGhq1DjBHl1A3NxFTlIkLlE2S4ZBQxb2RYIhdYQhwm2slECwrCLYyuUtNhYX0PaEtvzwXExvgOBT+7YvHrmHapTk/QBp9UkL3kkno2ulUg8G+M7pFGEqxS1HFR/SDBOKG30aY0Snpiao9ELKcUpUlk4rRq7ux0s6TIz06Y/6BIEPok2xElCOBpSCkp78P2AJInI05SVlRUkGZaU6CzH9/xiarQd/LKHH9h7KaaGSAyWMtjLG0Q7fTq2xpAXaVjeuYwolyn9q/+WPA/xAkEURTiOx9UL7/Er/+qX+fI/+kmMzrl6/nUePPkoueWD0EgSzH2kC7nXtSF/xUYA9pP5Xdftm/UIjTQSgSIjJcoG/Olv/N/8/Mn/GTeaY1lfYGN9HVspNrc2KAUBb7z5BpPTc5SCKi+98DK24zE7P89o0Of69esYcuYWFkizIZKENBrgOBZGCrSxuHJpnTROydKEixcvUq83Wd/YYnFxif5wyER7hma7xW5vwOZmByU1++drJLHi9dcuceTYJI5n43kWeT7GkjX6gxHXLndY3FcnyyOcoEViyjiEmKiDERKjBRYZyrKJkhHSkuzuZCjPoT+CK2s9Dh8+wFd+8rNsdrqUA59vfvMvOXBgicE4ZGlxkWF/SKs9w5n3LtKsukTjdTxhMBqkAmn7jFKbnU6f/k6XxvQk62sbSCOxXJeZhXn8UsDs/CyBKxkMdnjnvVUmWnVKflaQwikLSyqUJXBclyRJ0dqAVnT7Y1xPIjJNgg16hNYBv/vMXzE75xO4e2WlQAuJydIiTZAqoqqFBrIMIw2xjov8z7nNzGydWq2CsDTtRplWe4Kzb13m5LHjTM34VKszuC60JlpcunSZRqtBNW9wfvsM+5+apd/dZm2ty+XzL9EoR3TWeywd/SJZSaOMc7PP3bqPvpVM9Y59+vaNn5EfOpjv5Sy+XXG9tU5hxIf3kPIG85O5v89H7Bzf1xd+zC78acn9Kq7iR0kB859SkiS5hfT1HvIu3YPcPphu9c7e+O3jlNOPkjsprrfKBxXXe7mX26EY7w+cT+s9frTieqdJ54NtuhfFNf3v/zUA9r/73z61dt+v3AuU+pO27J48sB/TlhsS/vWvFwaCO7TGOvolrLmHEEKQrbxN+t633q/ztnOdp3/15t/pD57BDLbueD1r5ihrcp7XXn2Dp06dxL/0F4yGI4LdPtb6NmmlzM54RLvdYrRaw8pr7GxcIHI3mFqqYNsWjuNgkHR2domihJLbxBkdIYsHZFlE9UgPiSRJY3q9Pu12u7CeYuhfk7himouXrjK1z6MyFyEE6FxjWarw7ll2Ye/YXmIwGCAEeDM91ravMjU1iWVZ3DDs5HmGGZdw4hadTp9y0ybyrlApV1CWIs9z8jzHdhySJMVseIxGNpXaJG9depaTjy8hpd6DY8k9xV8SjcAZ7mccjmg06mT1CyAEUhbXDsdjXM8pNsmjBmnfp7szoDlro5pdbpgNzN6r1XlOFMWkq4tcvHCe9967wD/71acQdoQUBczr2vIKC/MLKMtCjxyGm2XqtQnePvMDHvxclSzLMFoTRhHVahWjM6RUhGt1XFXn7NlzROo6J59cLGBtQpJlCVJaCCFJxmAP9jHqD4h1TvvBYXG/N59mETtVfjVH5DbhkYNIYZPILUS1U1j5pSo2TsZgdI6QYPcPARVykZEHF8gZobDReUKW9VDKB2lh5zXEeAqlAnIZkVeuFv1Ca6QsIJ7GGLI0x7vapryyC1lOUk+Ip0YYRyAmmxjPBSCJE+LYxlenMWJIrVJhnL/Gzk6HcjnYy50rwZgiNo8FpJgkNwbyVcLsKrZtk6YpUoqCSAyBkAJfPEamIU0jsC9iTMEAOh4PicIEhKBeryFNA5POI4VNGG/jVJYZj4ZkWU61ViVJksILKAUiPYSlCtKiYXye3vAyExNNhJDkec44jMizlMBr0iw/QZIkOK5DqF9+f2xnGYIiD2e71Wbcq3PhbI/Pff4pzl54gX2HLKRQrKwsMzU9hW3AjEJElKB+ZxMdRlAvo79cR7Q9hFLkOiu8REZgjMbs2KjVEgaNqkri+R2kUsWY3PPmQWFQc5YnEImFNIawuQsTadGnDCD3ZjYDMrFQlytYlkWSpOQPdhERWD3wLkM0LxkvGTbfrTE1tQe/p1AS8jwHnYMpYvmG412SJEICo2FIpdLYI7qBXq9PGMbMzM2jFIzHYxzXZzgYodOYUimgcmmDKIpZmywxMdlG2Tb+Hz5L3qyi/+OvYUhYW1sBBI16m0GvRxqD5wVUawEvf/sPeOzzX6E+fxiBRpkUjX3XOf5+5Na1Ivk3AQjw/6foQxkLbsjNNZgcjAIk2sRoE/MrnzvOrz1xjlUukdQ1tuvffHftdhulFFqAY9n0dne5urzM6cceJYrGdLu7bG1tMjU1iSM1FTsk7C5jKUl/nNEZWyhnkkNHHgBSlq9ep9Gs3oxfXl3bYDjoM9Gq8M1vPMsDRx7i/IV32D/XIvDHtKo1yqVsLy91DrkiyyyEDToT2DJF2RbSn8R4bWwxINx6j9zk2MpGoHGdMlEUgswx2iHJYPn6iGsdmGjPc/LYYTr9IYcOHSCKQjqdDhOTs6RxhEkzrq+tML8wjysGhN0zEPcQsoCsZ7JMe+kpOrspeZIxOT9NEsW889ZbHDl6FNtzyGPNcDhiZ3uDra01Xvnhexw7PMWBaYfZdoOcIbblkOsY27aI44KcTec2g14PZdtcXx8Rx0MOHWpTnTjIMK3iqh1MuI3OE6QEIxQ6G2E5RZ5d27IQGOIwQVoWURzjOYWhSNk+cSaxXY3UglQKdnY2SZISL71yFVyHqVabL3zuaVyvTBTH2Ncr6LEm+pUrLF+5yrtvnWOylFD1L9HvXOfo53+ZQ099GZOrD/W921F797SPvgM7cfLrxZxu/4/RLRd4v88rpUDfoW75CXdx98CQLMTfTAqgf4jiOM59KVh/J00GxpgPTNR3S49zt0Fy62C6dXDdmLTvVNcNeOX9yP16bu9X7jc10EfVcS9yr9Ds+/Ek3q/X8dPyUt5e3129t7d97iS396d7LXf7de5c+c1/PlyOW/ov5gO++JtlzV2Lf+D6GIM0mlGvxx//7td4/hsvMNrpo3VGaWsXtbbFls7AsagELmk0RoddNlbO8c5bF/C9ClJaSOWQZsVYEkLSbhdMjd/79rMkWUhuDP3+gN5gQBTGNBtNpJTkOidJEur1KufOvse777zNOByjlMX2VgelLJSy6Gx3SNOUNEsYDcd4nr+neMH83FzBZpxlgNgjutlGa8N4FGFZFgIol0rsdrv0ewPG4xCdazAGx7YIyi3K5QqZDjl9+jRCFRt9ZTlkmUEbiUHi+wGOI6jVygjLRpsbRiqD0Zp+r4cUCikkg/6I3e0dqiWLJB4iDOR5XrwWXUDCpFQ4jk2aRDx86hS/+M9+gTSJwRT9SymLqclJ4ihma2MLgcJ1Xa5fv87a6noBa1YKy7YJgmCPqVlhDKSp4e233uPggQc4fvw4UMxnSZLuxVFlIDRhFKIch95gh0qtVPQrrffYKguCEykK5SVJE7Q2pCmMxiFZlhT5A80ei6rWCGEBkigFjcakYyyjMWnIqL/GsLeJ7wTYnouyXJAeOZJUhOSkQNEvMSlZkqDznGw3pv4DjX9+jTSMGb97gdj0SJslzMIMIig8alIWkLtLly/xve99D8+2GQ0GKCloNBq4jofOQe4prjrLGA6HRFFMHKVonRWwYSlwHOemBV/nGTrP6XU3CoZRxyeKkkIJkwLf9ymVA/zAQ0jByvJVolGfcNTF5AlZEhOUSjiOQ5akDHp9dJ4X0EAkly9d4Tvf+S6BX2F6embPGCJukqtEUcjG+jqD4ZDf+e1n6Gzt3gBXIJUooIy5xrIKYqSSHzA9PclOp8PS/v17A14WsOk4AdfG1Msw28b6X36J/F/+U9wnH0YYMNvdgoF4HGOilDiKGIfhjcmHXr8LRhSbxr310+gcpSTjMCzWaANZmhFFUQGNvGHMFQKj9U0G1DzXRY5MQFkWGMitnGEtpvtQinddE1yBqelpev0CVZBmmjRNb67dcRwRxzFBqYrrlilXWgRBE9cNUMoiz3MuXrxIa2KSi++dZTQYMhgMAGhNTlK/Qe5lW1SrFRr1Jt1uF8e1Cw+SELiuhUDRak3Rak1QrrhMz84zu2+Gqbk2pUoNz/Oo1+sfO+d+krXiTmv+R609N85V+v0lwVM2gVH8F/t+mYyQYBZKQQXP8+l2e0xPz7C93WE8DpFScv78eXZ2dlhaWiQMQyzXZn7fAqcfPY3v+1xbXmFjc500S9jtbdEfdHD9gH1LS7z0/ZeI05z+IETrhHI5oFqrkeeG0w8fZzzocfrhk5x/7wwzU5Osbqwgsdm8volr5wUZU5aztTXkzTfPkqUjKuUU2zI4VglpBFnYpbc7xHdL+G4ZtELYgiwzJHGOpWyiNELZEPiGes1iY2uNt959m/E4ZGurg9GCSqXGzvYWOtfEWcri4gIvf/97hNEIEKRpVhiYhCTwfcbDHq6rGMcxF85dYHV1jWMPncC2HcJhyMb6GtVyhUajzdvvnKfcaHF5ZZ3MKJI8R5sQKQRZmqHzwmGS5Rk5Yxo1C8hY3e4yHIVYtgeWxi9bCFnGSAtlOYXRR4DWDnEkiSKLNHGJQkEuDAiFY5UYDUOUI9F5SiXQkCUIKVC5R9KrEvYsTj50FNIak5MTSCV45913WFvdIAlC/KjC17/+ddbX1xmNRsjKUfbt/wK9YcT66hnMMH9/L3HrvuIu/fd+RR7PkcfzjxwTdxpDt6fQ/KR75Tvt1X9U/psfyycX62+7Af85yQ1Pa7GZ+2SB5vcj9xuv+zfdlk/jnHsR9d/9k0+lnh9FPm3l929C4pd/D1lt4zz+ix+rNKvZ46jZ47c26q592Hn8F4tT9r7f6Pdhd5ff+Df/lpee+z6/+qu/CriIb8bYzy8z+OzDLF8+S686YH15nSMPHGOrs0q/H/OFp7/CH//xH/HUU08x2WqzurpKKRCk2sOp1qmGFQ4udiiVygyGIzbeKvPyy6/w01/5Cjsmo96s8cILL/Glp38Sk445sH+J4w+dZLezw9bb8Gd/8l2OHMo4/tBx4tQjT5p0uz2SeJtGs8n58+d57T+8zT//F7+A5zlFrBKCeBwRJC1k7pHpiFIpQGjoX2zg2bO8/PJrJMmYwWDAz/3sTyGkZhyHTLYneffdd3nAPQK9KqPRiMEw5rnnvs/k1DQz83Mc2r8AIkLnGoOFnRxgOI7wggphGNJylgivpQS+S+faJRYXD2K7GZg6yaZhdW2dWq3B1maHQwcP0N3doV6vYds7bHe2mJubpbPRIpMCYVkEXsD28grNepMXv/nX/PTPPIJlS2Zm20xPfYXv/+mLPPrEY9iui6Mkw8GQcqlEGEbkUcILz7/EiYceQSTTsJMRxzHnzl5gYWmGWqVClqbUbI9RPOLipWssHnqA0ZqkXi08gFkK21u71Oo+TriKbUtyKTBC4+UtzFadJI1oNCfo9wZIIamUWwgro5f1cCxBON7gyjvrNGqC69cvMTd/jP5GA6/dwHObCKWJTYwlJXnuInqHMVlIMt7B9yZ561vf5clKGx3FROevwHQb+dNPM5zy+J3f+kO+8BM/wSOPnEDrjCxOCCybs6+9y8TEkDxNSKKIWuUJwnQAxuKF7z7HF774BUq+YdAfQpKSZUPqtTph3KDszjMeFyyfVp6TjjMsu2CZxcpQsoiFbZYeJ01jXMdidf06zWarUKoGGVurr/Ha8rM8/tiTLO1fJI5b2LmN7wq63S4VJUj70Gy3iJKij37+85+D1MLSc/iOJIpCLFtSD8A3I/pZj8FgSJ6lROGIWvpQYfyJBa5XYjzq0HAlSTfE9WwW9vnFuFcOg0EJP6gyVTuOH7hYliRNY5QQGAH23Ax6fgriA2RRSH7xKtXtMfryGmp7F+olVAuSBlQqASaU+BcmSZKE3a0tWs0qQlrUrRZSSHY7HVzPY2N9jdl8BmnV8HyPLEnRxmDbzo2ZbG8egigcY5+p895b71KvV1lYmGfz0HUmL5TIR9tUJtv8/jPP8NM//VPUvSpCiIIpOIopl120sLCtAhlRKlXAGLIsxbIVDzxwlK2tHVy/jBAKYQzojI3VFcrlEp7vI6UkjiOUBZOTLW5Y/oQQDAYjbMsjTy2Ckg9oRmER0205NklWxBvu7OzQLLc/+eR/F/mka40EMlHcSR4nLJ89x2cnfomBtU6312d6vs3rb73JiYdOMBz22Nxa48qViyws7QcMnU6H6dkZXNct4qeTFKE1yThEZl3qlSrdzR2UpfACH69cwbUUDz10FMdSLO1bxIgx6xvrTDQnqVYDRuMx5UqZLBsxPTNHqeRSKU0zPdliJC2EBcoohEhpTzVoT7ZQKiJLNFqD0SlSGKrlGqnjMtpcxXKsPWOtRJBTrwWMkpRh6JKNNEFlgsHqKp7bIEkSxuMR29ub9Ps2vu9TrVZw/YCsr1ldW+MzT36GrbWLNHyFkgVrMKLYH0bDPkYJStUKOk2wHAdlKaIworezy/y+BTbXt0niiBPHH+TM+WvIPKc94YAZI0TBBmzZeynhtCgQHlmIkYpyVfLkowcwJkEiiEYR5QnFTmeMrQoFLcsyXMuiWq0zjnLePXORJIo5ceIBjBYIVRgdlVNhdWuAJXNalsZSNmkakZkefmBTm7DIxA6Ls4ZLF6/S3Qk5euwEpXKFTMeQSJ4+9WWshkHoN7i8dZUvPvElnnrq53jt3BksnXN7pHWWZUgpPzbG9V7Eerqo/e8IQPTH8jcsfydjXG/IR8WP3un7x5W/ARO+G8T30/b2wf0SJt0/gdP9tAM+5pmZO/x+H6QTN+EiS3OIpbn7bOEH6/hR5Z7e5Sf0Gn9abyV779uQjFFLj9/Vennr/x845yOg9Dffw63XyjI6W10eOHycg4uHWZxsMfG//zrq0gqbJ5aQtiDwDYGfs//YY4Sp4dnvPU9vaKg0fB4+dQIhMixLU/IlxvFZ3dgCy2aiNUGzNUFmDKVyBd8PePjhE9hKECch4/GQBx88QRznpNEAv1QhyzVpHOGXHdbXl/nSlz6H5YDlSKSQtFotLNsmyzKq1RpXljd46KGjhOEA17YIo5But0u71cKYHD9w2drq0JyY4MUXX6TRmKTf77O4tMjli5c5ceIYu50NlO/gWAHrKxtkUZ802aHSaqN1ztTkJHOzbb75zec5sLhANNwhTVOqtQl2t9ap1hoIZbG5vc1Eq8k42mUw6jE9PU1nexc78EhyjeN6+F5AFI5xHY9SKcDzCnbmJIpoTU4hMNhK0uv18CtNLNum2Zyg09ni5MMPYSkbaYHWKXmeMD+1yA9ff4Mr15Y5d/Y8JjdU6y6lsk+cjDl1+iSe79DrdvfgzQ0qlSqVSpM8z/FdD2VZeKUSB5YeIIoTXN8r4NzdLi+/9EPefPNdTp16GHd3gBCSUcUly0Mq5RoCF893GXR7eJ6N1hrX8el2tymXbJbPv8328lvMHJrBshssHX0KuzmLbjQJRJUiDCJBoLBlmWicYDkKjMKNLMQb5zmoHJKr18kaZcx/+Vn+rzffYuLIIaamatRrE9TqDRAG17ELTwSS2VaVI4cPsb6+UpDCJJqyr+l1d7l25QqBZyFtRZLESKNxhCGLx0jHIwpj0jQDJKurG1SqVcrVKmmS4XgulpLkSYYUknDUp9/fYWKitZcvUbCxuUmu4YtffJrhKOJb3/4uDz54nD/4nd9l/9IBLl25wtrmBu3JSXKd4rg25UqJJIkJApc8T+n2dimXA3Sucd0A17WxLYt6vcnjjz2KHzjkecKLL34fk1vYEr761a/yyOlHqDbKJHmEQBFFIUYbKpUqUmo21tfQeUa/16daqUHSQygbhELZFmEY8tVn/oqlUw9ROXWQ4eEZSk89SqQ01iiFH76H7AwQ4zFJGOPVqpQrAZKccRTi+QWjd6nk4XkBjXqdwbBPuVQCIbCUQilVpO4wgCk8r1E4vqloTkxM0GzUieMYIW22h31aA/jdl16gVK5w7MEHMaZg1HVsC6UkURSRmQzbEUTxEGUZtjf7lMs3UjP5/N7vfZXra5ucOPEgtWqZOBxiSYjSBM8rYW13C8hy0yPTGVqDvbKNPrCA+pmnGY9yvvD5L/EL/83PY+2xm0tZxIHbymd79SzleptSYxKBQaI/FOP6SdexW71K1hMZ9pN39kLdLgpDLiRaCGQc8/Xf/nMe6fwTyg93mZxbRFgOS0sLpMo8b1YAACAASURBVGlCpVoiyzIeeuhBGs02jm0zNTmFZTtcvnKZcilgZ3ub3e1tKkGJqYbF5solfMdCa0W5Psfu7hjL8lBKcObdM9SrTd47+w4zM7P4gYcmp1GtIxRsbm5TCuq8d/YMJk6YmTY0GhZIiYkEQhqEVTBLp0mMFD5REmIHLka6aDy07uPKIYYUQY7OwOQJkKKly6tvbLGyHhO4Nda3xuS5y3Rrhrl9UziOTbPZwBhNHPcJShV8v8zmxgbdzja2BStX3qNeKhV8EWgs2yc1HtvdEa3JGSZqDa4uL6ON4frKdcaDERMz01y6cJHpyTbNWsBgK+LBI1NM1BKkEejMA5FhWZI8u8EMLcgTiZYuUmlUGiLdGN+qkBsf2wvwbYs47ePYFlE0wrZtoqSP4zm0JlpMz7bAjLGFi6003X6PMHH43osXmNm3gO+lkAkKdGaNIMiQJiewZhkNe2x2U1w3YN++RZavX2V1bYWZ0gLZWYvfP/f/8P0XX2H2WJuzP7zIV3/rdyhVLVx/ismlpQ/0a6XUXfe3H93/73Fs3LL3lFIi7gQgvRPp5z2Nvbu39/2/P3194B+q/IMgZ7oht+LmPxSfeNum/U6u/ts74w1o753iZ2+v/07kUPfaiW8NXP+Q0vOR9Xww9PzjYK53I5q6/Rl8XPzBzfMNHz7vHhTXj3o/f1sD/04I2ttbIsQdgv33/r+Vqfj2cz6pUfD2ctnlInbNPvjkR55/tz5QTObchObdfp40GShBGuesnL9Kf22Dq9fOcbxcYeJ//T9JSOk8MMUgGqEcn5m5Q2RJwPraGpPtOTy3QrVexcVG6OKJVio1Ojt9fK/KbmeH82fPcPz4MdIsIUszHMvCsS0sS6KsIgbz/PnL7D9wEKTGtor8dbbjUW1NYtKUA/sPISwbZbsgJGW/xsbmNarlBp5bJihpHjz2EL3uNo1qDZ3ljAZDhChIZLQQWK5DMtxiFKY0JqZ5592zJGnK5ESdz37uMyRJRBTFZGlMPICNtVVyGTK/cJQ4MVQCj0rFx3J8jj2wxNbmBhPtBbxKHeFaeL6LMRZG5/zhM89w+uRnsQDPK4GQ+OUKviNBG64vr9LrFgptqeztQSvHNCZalCpVhsNdXNdBKoevf/3bvPT9lzi0dBSTJVTrLsKyGA6H5EmM59go20FKmJyZZmZmjmZjgnA0ZGJyktFwjMkyglKAkTk6HeMFJaRSxPEYxy5gkONwTJpnCCPJdUSe5axcW0ECruswOzvDsQcPIy2J0+khpaTnO9SbLdI8RyhI4zGu6+G4PloYEmURuCWy8Q5ba6/Tbs/hVebwyrOME4EwAs84ZCYlSSOUKgOiiKm0QS+vIL/7Gva5K/iNCtGBOcb/6DHck8ewGxNcv3KWSqkwAtRrPuVAInROHI0Ixz2kTCjXaijb4uKFq6ysLLO0NEeaJChlceDAIn5goSxJlmXUGy0GoxFuUMLoFJOOEGaIZRdEM7vdHq1WE21ycg3aKCzLLeC8ClzfIwxTpLQIwxitBZ3NTfYt7sPzXWq1Cp5tc/b8Feb27cPxbI4dPUq1ViEch8RZVjDVpjm5EGS5pjnRAiHp9YcE5QpSKLJM45U8tI4LxlAZsL3VpTFRp9yc4NDBQ1QrZTJjUI7P66++zb6FOZQl0JaFIy163T5//ey3OPnIw2jAdQM2N9aKvJBCIaXikVMPU6uXMDorjAHKw1maJzk0g/eTj5FVPQQSsbZN/s4FTG+EyMHxAoy0OPveOdrT01h74WdBqYQQCiksjABj9B7cPCHHIKTFeBxz6cIVskQX8aXKYjQK2bzSYbw9ZrJU4Qeba3zmySeoVgPSOCbPsr16MhzHxXNtJD5G2xgjKNcavPvuGTbXO1SrTbZ2txEmw/cDyuUaw3HMX/7VX3P0yBEc38PbHaBzzU6lhOOVcGwXs9VFfP4U8fEZHMfml3/5l6jWAqTS2LaF53mMx0McV7B8/jIL+w/hlSp7i8b7hIu3QnhvyJ32Jjfn+HtYJ+9lCc2lwNIChMEr20Q/GJN2Ut7bukyjvYi2FK5jEcUJtudTqtRBOZg8Q6C5tnwRx5KUgwBl24TjkJ2dbfySorN+ASXAtjTaylF+E9tvUK3Pcn1tnUq1xGg45JHTp1ldXSMKQzzH5b3zV3DcCspyefOtN1DKolL3uHBmDS0k9WoJ30vY2Mw5c26dqZky1aBEluVYjsAtTeJXFzBuQNzbRsqUPDFI18G2JMpxybUEA/vnquxfanHm7HkOH36ATmeDOB2RxDFZljHRahXpf+IiLzM6YaJZpdGsI4WgUXNJ0+3CQGIMURKzuR1z8MjpgqzNtgrma63Zv7hEqVzFtW3a7WmCssMoztkZrTLsDyjbIG3Dcy+fRyEoV3wsS5BnOZaywLJQaIzR4JQQ2kcGHlpYKFUmjEMcqYijPrZSCCzibITIymgzhDxDYiNUThhnGGlhWTbtZovFKYXJM6QyGKNQdk6WGaRdYWNnByfwGQ1GnL98nTyNOX78ITIsKpMOlbUp8qmIqYNlDrSP4jkDHlg09PubfOWf/wuk8PZcoqLYX+0prPcaMnfze5Hk5wMfvSkxI4GqiFscS3sfU3yEgvcJlvZ+vgPR071tOW9vE++Tat6o+k6OnB/LJ5J/kIrr3eR2rPuNQXSnxeB+O+DdcPT3Ws+9xEt+ErmVQfmeUrncx3VuDtz7VFxvF/2dVzBXriOW5v6zGvh3Ulzveu5/gnbfUFytA0/cPHYj1voDhAd3KHsDJvxR7Yyzgm5n3N8lCbvko5T5V16j/n/8JoP90/DYCUqNNu3pOcrlgvY/TWM2t7eo1ao0J+oIodlY32B2bhrLKrwocRyT64zDhw+wuLTAOBwhBAiK3wbDAkqaU6SaKMzYGZgUDOxsb3N9ZYU8z6hUfNIkQSqJ6/p4XkCajbEshW37nD13jjjO8H2fZrNGmqVIoXBch+9+5zmWr11jcrKFY0tspfZiSR0unj/Pl37iCzRbTfrDEX/0R3/KI6ce59ylyzQaTbTJOHz0GMKycWy/8KrFEaVyQK5KrK5tkmUpzUYdnaV0Opv8+9/8XSaaTT73uc9gKwdURprGXL22QiWoI5UGJKNRyGg4plarsrs7oFwuIwRkeUKeZ5w7e55Wq83GeockznjssVO88uLLdLY2mF+YQQqL733nuzQaTar1gr04TQYYCpKpSqXM9577LpPTLTzXx7FclPLIc4kSOa5fQusincdg2EPnGQgol8r0egMUFnma49oWlXKZsh9gux4AUimcTg9jNM7iFFob8pxCITEJSIW0HaIopOZZbF59l+1r77B48AhWfT9hFGNw9iByNmms0bkBMoyGPM/Q11ZQ3/kB6twKfOlxVJrzzNY1jv7jL6GkwnIswmjE3EyLpcUFdne2aDRq+L5LFBaxlJ7nkuuMPCvSoBw8uMj0dAvHlQihQRjSNC42VVqz29ll7foa9WqFNA1J4hhhBNrkCAS1+hSjUZ+pqQmUhDRNydMRtqMQAnq9AcPBmCzLKZUqrF7f4PnnXuTpL32R7Z1tavUqjUaF8ajHE088iR+4VKtllII0TXAcF0sp0iTF2SMcch2nWLMEeJ5LkiTkaUqpVEB/t7e3CMMCXnzhwnkOHjyMJROkMNiWxbef/TZTrSkcS/LNr38D13EJgoDdnT5f/8Y3+Pmf/3l2dnZwbZvhsE+z1cJxvIKdVErCqE+WRUVOWmljTI4xRew6yka0WpyL+0z91BdRJx8A1yHv9DDvXISdLo0DC9i+zdZGB9/3yLUmz7I9QrUcnWd79x/heSWMNriui+vaeL6HbUuUkjiOhef5tCbb+GGMvX+R1c11FhbmcF0H27ZvllVKkedF3vY4DjEmI05TKqUStlJMT09x5IEjnDzxIFpn+IGH5zkcOLhEUCqTpTF+nCEcGzk5gc5zjDbYa9uwf47hoQV83ydNE6z/n703C7bsus/7fmvY8z7znbvv7bkbQAMgAALgAFKUSU2xIympOKUkplNlV6ripMqPeXEqrkrlxRXHD6kM5bJjU5atVERJlgTTIkBSAicAxERMDTTQQE+3hzvfM5+zp7VXHvbtZqPZDTQIUCqZ/KNOdWEPaw93r73Xf33f//u0QqAADyldXDfEWkU23GV2cR/Kr8STbnxL326S+YPioyauCCqUT0BvdxPxTIjZtMT7UwwF2g0RQnL+/AXefOM0S4tLVb16kbGzs8Whw0dw/AjlBAx7mxRZVQM66K8jplvEnoMgI8szhIjwaw12dkds7+ww05lld7vH1s42Usg9vQEX5Ti0mnU2N9ZZWlxgfW2dk8dWeOCuFq22wJYFrhaEYUyzVQM7xRQZSlSCQ3F9CaEipNaYtIdkiqM0JZY8TfcUpKubY4zBEQWLizW0C8gm7ZmDLCy0SbOM2fk5sjRBiIJWu0WS52TGUFhL6FowQ8p8gOs61btdSqyus7U7xdiq9r3ZbGDKkl6/j7WWuB6QTHOsLbm0uk6nNcMPXzvNRn9KEEU8dO8KtboHtkApieN4KOFQmAlKS9Jc4QcRJk33rkGS51CWKZPxhDdf2WRuwcPxoRw7SCWY5gPefifDi108JZFOyta6ZWdrwr6DBk87WEocrSlMNcmmlMugP2Ht6hoznRadlkR4MVliGOyOOHr0LrZ6G6hAc/DyfZxpvsOpd3/ITm+V+UaGyHexUrFw8EGEkFiqifI7tWv88cT1xyP/ik/5hkI+UmktXENzb2xDylvseSuLnJ8wcf2xpn+OuH5s8WET17+S4kw3xu0enNtRE24lynTjujst4L5ZHOrmY75fZ70VonvjutslxbdadvO6ck/w4tr53YmI1YeJj6PO1fzO45T/+t99pE7/06Btf5S2Pyzq/mHixnt+O2unm8/hRt/iW7EHhBBoJXAF9Ncuc/Wdtyj+99+m9f99l53791Me2o9wPIzQZFnJaDRCKYnUggMHDuKHHleurNJqNjl77izT6ZQwDDl37hxbW7s0GjHd3i6u66C1xnU9pJK4nkuapliqhOfK5TWOHDlOkqSMxxOywtDpzPLKy6/w6ssvI4RgNB7heR7FXoJVUuC4EV7gc+DgMn/yJ19n0O8ymUwoTUlelkRRzC//8i/z+c9/jt7uDtZkJFklHNNqRPzHf+NXsbZgPB6Q5wn33HMXruty14l7mVtocfjoIZTycVwHrTR5aXH8gKtra+x0ezz13e/QbDWqWXErcBwFpaXZaCCB3d0NEJCkKZ7j8oNnn+XP//wpBJKlxcpe55mnn61qKK2g1x9w5sw7WAv33HOS6TSh2WyS5TmOo6jVaiwvL2MKg1Kaz37200itKPcmmMuyogyWpWG3u8PnPv8Zlpb2Y4zh3//p13n77TNo7VAYU9W9mhJTVErNjqsrYajcMJ2kpNkE17NEsWZ7+yrIvJoQkJI8ywAo8pwsTZFC4CgFWJJ0CgJMnjEddumuvQ1mi1bHJbcOMoiI4hZKu0RxjLUVSvatb/4ZcRSST8ZM//1TuM+dQv7Wr+D9/b9FuNnj8XGPA/ffzc7WLi+98DLpZESRDQkDjywb0+7U6HV36Hd30EpQi6OKbprlKCnwXMVkMkDJyr+3UlQuCYMA1/MpCsPc3CKlkTh76PVoNKY/SJAqwBjLc889ywsvPMfa1St0d3YZ93tsXNllZ73LoDvma49/kz/5o2/gByFlaWm32/zKL/0SruswNzeHUoIsq7x7S5szGveBkiRNKmEvKVFS4TqVIFRpCpQUZGmCKQom4zFSlIzGPbA5tixptzu0Oy0Kk/G5z32W06dP87XH/5gnn/w602RKEAR879vfZTIZct8n7ufYiRMoKQiCiPFkyvraBk8+8QTD4YBmqwlIkrSgMCUIge9EeG4Nz20gVIx2K2p+aSxSakokKysrlcp3q4769P0Ef/s/wf79L2OOriCfO0X68mnWLl1Fqcq6QylFFEQo6aG1X1HBvZA8yyiKnCLPqdVrhFFQiYBlCVDiLFjW88ugJLvb28zNzTMYDDDGcPnS5eqdYi2lrSaH8jzHcRWmNBiTE8Uhvu9Wg3a3el7b7VZldaMkcRwjlcCWhuG+FsOlWfo7XaSFLEkgy7G9IZ4XYK2h398lzw3WSkBijK3qH6lKjZS6teLo+wnJ3Ljs5t+tvt3Z73lkv+d94Fjj5nXGGBi5WC+jVosYjfqcP3uOvCioNxp8+tOfxhQ53//OdxiPJ8Rxba9WUWFMiVYBs3P7UdLh9KuvUGQjECVZUSVCtjBsbKyTZSllWdBqNZmdnWF+fpbFxUVWVlbodGZY2b+fLE0Yj/sMh31cx+GN11/HFGM8XaKlYprkWHLisFK1dhwHSyW0VIiS4aRPaSe4jsYURVVXKRRKV/WjeZHjug5ZnlQ1sWWKyYa8+uor/PClV9nZHlOvzewp4jo4jmbt6hrJNKXRaICAaTJiNBqjtQsIyrISB52dbWFtwcLCAnmaMByMmKRVrasXeHS7XXZ3dymKghdeeJ4yLzh85AjdYcpgZNAyw/Oqia+yhCzLQFi0llghsESkqQVTVl7gUhKEESWS0XjC+sbGHnMmQ7iaUjikJuSHr1/h1GubFKZESYXvOTiqJPAsk+lob1In22M8TLB2gucV3HViCd9N6W0P2FzfZX1jnYWlBi+9/BSrly6xJq5gD+T8xvn/mr/9H/03uG6DN09fohUvsLW6VU3mGXM9Ya3U/T/euBF8urkP3Q6Quvn3cZ7LX5Yrxs96/JVHXD/Kg/h+ScCdxM0U25s/IB/3g/2TnuvHhRxep8p+VMT18cq2Rf3mFz/0vtcP+1NIEG95fTfF7Z6Z90w2fEznU5x/HoG4LVX4ZsT1Vsj/9WfwpnMuy5JiOuD8a6+z+d3nuPf/+BqNwZTJ5x/gshF4UZt00kMrhSMgn07J8pTesE+92aTX66KkJvQazC/OMjc/w2g8otlq4bo+URgQRhFFbioKn1PJ2Q8GA2ZnZhmNRnzj69/g6pWrLC3t57VTp7h09Qp3n7yfwWBMrd6g2W5Tj2ucev1NEIJ2u4V2JJubW7x75gpnz72Ndi1f+IVfocinxHFAVuTEtQbj8Zgnn3iSudkZFhfmSJMRzZl5kvGQQW8H3w/oDwf4rqTdqtNq1kjTMZ3OErs7q/ieJvCbDEfdCoHSCqldanEdP/D51CMPMhjs4gU+jh+RpyNsqTlx4gRKlUwmY9wwJgxChBAMen1a7SYzM7MMh2OEEBw8dJD5hTlsWfnJfvup73PP3SdRytDv9xFC8MSTXyczGdNJRpJOOH73cYR2EWWCAVy/ohr7bsBwOCWKY8LQR2AYjTLSJGVjfY1PPvwgWTGlHoWkeZX8+nto1XSaYktJvzfiySf+jN5gzP6VFaTWuF6I0j6oKqkyhSFtRKj9M1UCoyRpOgUMURQgtcO4v0OsM8o0Q7oSXZvFrx1FSRepJCiXJE0weUGRwje+8S3uX5gjfOJZ1CfvQfxf/yPBqQs4r5yheOgk+08cJWqGfO87z3Dh3QscXp4jdAXWKqSyeI5TWeT4lV3NYDBkMOjj+z55PsHzNWk6JQxjtPRI0gSlJNNpzsXzV2i02mSZ4Olnnuf4iRNM0xFCOLz82rscOnYUY0qazRb33XsSYQ0Sy5VLl1leWqEwKZ6vOXz0CO12i4V9+7i4ep7H/+gP+cynP0mSJiRZAkKipAOlYppOCPywElWTDqXZUwUvTKW0KyyB75GlCZ7rUpgCR2tKW+Ioy3AwxPMjTFnS7/fx/crKaW5ugdmZNg88/DDScel0OhxYXqHWDGnPz6MchzzNCKImL734IlvbW3zxF7/A/NwspbQkSUEYVQmcMQXDwYBaPaKkki61SqK1x87WNvVaDSEEcRSSpilSKoQQZGmK9l3E0WWc+4/Sff0tZjcHGCVRjRghJKffPE1ntlPVpKZTHKeyGLF7Ak2u61OWFldXCWaWF9jDU5wZgX9J8ebWBg9+5lM4jiZJEpqtJnmRX6/T+MEPXqK0JbVaXK1vNxFALa7UtpEV+8MUJUmaMp0mQCVOVaQTiixntzeiFgYVO0RKgpffRmx3Kf6zXyUvJviBQ5YZSiPY7W6htcTzHKSEjdVzCMel1pr5McT15nf3ncatvjvFt12YCPSj+Qe2Z/kR4hr6DubxBhvqHEfuvZvnnn+Vw4ePsrvbR0nN9uYWW1sbHD18GKs8isKws71No1bju0/9OScfuIeNzXU8leCzS+ALrBXUm03S3HBxdQe/NsORI/ewuLTIzs46iwuLIM11hLzX7bG1tcXMTIsg0Lz2ymso6RDWNftna0gBUjh7SH9GGLjYskLZ/CBCuDVqM0fQXoNSWIpxFy0ytHJQWpPuTfiY0mBtieMoCqtJEphMJPsOnuTy+joPP3Q/c/NthDK8++5bzMzN43sh03GCLVJMNiZPp4x6W/gKlFQoIclMwSgVZMaj3ugQei5eGOKFIa7nEngOZ985z8zMHNPpkIMHDnLmjZeZ7QTMN2ssdNo43gRbglaVory1hqJIqwla5fLmmzu8+eZpDix38GsxQteY5h7K8Wg2PA4djnG0xlqHUWn5k6+9SilDHn7wGO3YEsYWSpcwhmZLQOkjRIm1CsfxqzruPMFagRLVxJItc+KoztXdkklafWsXFvfx2OcfoxbFbIwvk+VTai8sMlh8gwtXnmV5qUXUXuDgfZ9DKl0hkbKaPLp5jHyruBPE1Txf2UmpR29f0y3krXKCW7R2R2PWDz6n92NR/Dw+XPxMUYXhvcninQgr3WrdjTM1HyUZvnm/2yWtH6a+8+ZZ1w+Kn/Ra3u/eXD8+VIOLPdsCi/3xHn2r2p2bNjGPP4XgvYnrR50Ze899+gn3uznsLX5/ka+o61ThQz+iCt/4LFw/5w/4mwshcEtDgcIqhzLp4eZd/vE/+Ee88y9/n9946m2yYyuUn74f5Uf8wVf/kDNvn+aRRz6F62qGgy7JZIjrugR+RFALuXRpi0Z9hj/+4z/moYfvRyuFtNXUcW9nm7jewHF8pFRoR7Czu0m7WQMsUmnCuMZwNOSRT32SqOaxb2kR3/MJfM2rr73CeDzh5Mn78ByPU6dO0ajX2bdvgSLPiMIG/X6PC+dXuffe+wgjAUJSojCFwSYjrClZXT1Pu9PCCwK0G5JbxeXVtYq2NbdAGNcosym93hAvCBDK4noRSVrieCFXr67SabcRQoMSlRhUZtneXKVeiwnjGO25FUJGyexch+l0TBzVMEWBkgqBxHU9FhYX8D0IfI8L51d59513uOuuY2SlYTTYYdDd5sGHHkFojzyfEAU+1rhcunKFL/3CL/HaGz/kl3/1iwgUrvQoyxQpJFEYUxQZg/EQ3/fxPZ/xcIDrVINJP/A4ftcxsiKlVo+ZTsZgS8LAZzqdkBcQBLUKNRMSUxYsH1lhfmEB7bg4jku328V1HJRUOI6D1IrcpMhihJIS7cfk0wnpRJClQxwxZNS9iopaWF0nauwjN1UiYm1JWWQUSY4QGuU7PBKEBC++xfR/+u9x/u7fpPGP/gV2Y4feA8f4zjNPs3++jadLjh4+QL3mE8YhCIElBSw73R4WhRsIpBCUBex2R2xsdtm/vMj2dheBoiwtW1ubxLU5wqhFbhzeOXeVY3ffh3RcHnjkkyjPxwtbBFHAPXefxHF8gihERxHK9QjCAGMyfF9jS0GzVWM0GmKNpVlvENd8puMpO9vbzHYa/N4fPMHRI/txBAgcJtMJnuMQhjXG0xQhJX4YUBpDnkNhEgI/wpiEyTilyAW+H5CmGWWZ4/kRyg0oLUyGfZrNNqmx+IFPlo6oN9o4vkdpK8TjGuoRhyG72zvY0jIaTojCgE99+lGCOKbYszeK4pAqVyxRShJ4Ibu7A2yeUyZ9lBOiJfiervxipSJLpxR5znDQJwz8yibLGlzXoXAF5vgik3pA9MZFGE6Q87N0Ogs4ypKbEs/zMCZDShchquQszzM8r0JH88IihaacmSCweJs+S4cPIJoxKIGjPbBUgliy8hn+9refYn1zi2NHjxG4GqtChFSUWLZ3dikLGA0nBGFFJXU9F8d1EWUOWiOdgNBrVhMEbkAcx6g3z2JcTfY3vwQoXCcgiiLK0tCpN5iOdwlcB41i7dI5Fvav4MX164mrFeKGQjkQH8OX5NpgXj9aIMQ18ty1g9wcJbkUlBL8sUP+pyHb/lvMzi6xuTWgPddhZn6OqBaxvnaVlf37uHD+HFcuXuTI4QMURY70PJaPHqe/u0NdB8RuhrJDkBLfdzDGkBnJ3L4DdNoHGA/7RFHIaJzw7rmztJqzpFnBhYurBIGP8iVhFNLr9jlx7BBJssvW5pClORfPDzh/eY1m3b8+ueZ6DkJAJkApD+vOYGWAmOb0uxfQ5GipsbagKBVxGJDv1fHnVmJNyvrVbRzP5+KVbWq1Wa5eucL+5WWyNCGOI3RQAykpbEatHmNKS7u9QORZuutXCQKP0lGUpmB9Y8iJex9m7eoa65tbNOo1rDFkaUYQxDQ7TabTBGEFYaCoxwHWenzv2R8yOx8y03GRuV9R8CmwVMyLwghMVnLx/HkefvgYvieZ5jm11hLGaCbjITBFSYswijxJMEbyzrsbbG8OuP/IDLWaQVD5X5siq94Dwl6vzQyDBv3RFhpFaQtKpyTJcnynhnDGvH1mTFaWPPrwQ9x16BOkDCly6Hb7yOaYrEy4f+uvo+49xeaox6F7TyC8GrW4gS19bOngMkFQ/qge9Da1rsJesyW79uT+eF2qeUGDAPWpnGt1rOKGXiSuNfTjrd9iyXv/u/lYICrfY+ye/RHYW1COrS25NjIU4ho28PMk9ieJn7nEFd6LfN6ONnOnSeJfRPw0aa43HuPj2v5WidCP/r19mni7NstbJK4fNX5SxPPDJvZ/ka8lm46RtTnU7KEfLfsAWtjtotSaIs/xJbz1/DP82eN/zBffnfLFtzfpffY+8qVZ3CCmRLCysBabCQAAIABJREFUvMzBlf006gHjcUa/12M4GHD69NvMzS3S3dnhypV1nnrqKR77/OcII+/6APzaAG17e7fydZWCS5cvUq/X2NnZJYprWAQbG5scO3YCz/PY3NzE0S6XLl1hYWGegwcP0m43QZRYDHPzs3Q6Taw1DIYDHNdjbn6Wu++5izxPcD1Nb7fLeDplYXGBwWhErVYjqsU0Wy3qzSaFNWhhCQOfffv3E9UbbO3sIlDsbPeYn58nS1KyoqTZbCKFRCuX06fP7NUiCtaurjHs95nttNFaI4VgOBgSRxGyNCgliKIQY0v8MCDdEyu6enUNKTTalQip0I5Pq92m1qijlaIWB9RqUVWOY0ugZDQcoLXPQ598CNcpuP+BB3HdgKJIKc2UIreMRwl+GFJai9YOSmmK3OA5DlIqTp96m/W1DdrtBs1Wg52dLXw3wHVdkj1qt+OpSqlTSrR2aTSazM7NIagGEkVeEIURWZ7t1Q9LHMdhkk7J04TMwDQv8V2XLOmhGTLqbeL6DbyoQxA1kNJDSI0pLKPhFKzkzdOnWVxaRLx1Fu/iOuN//g+JmzHx//xPSds1kvsOU1JZrnTaLZJkTFmWtNtthKi8NildXB2wsz3kzTfeZf/+ZfJ0iu9JTCF5+61VFvYvEEYNmu1ZCgNnz19COj6dmVm8MODI0SOk2ZQw8pGSvZ+gMDmOU9X1ltYgrSDwPIQQ+GFMvdFCuZI0nzIa9YhDDygYDIa0mi0OHDhIbzBkdXWdRx55kCzJ2NreYWauSZoVOK7HztYWghxXS4rC4Xf+1b9hfmGGVqtV1Q2jSdOc73z7u6ytrbGyfAgpFdMkIQxDosBHqMqTtTSGwPeqd5+UlLZkPBjhKM1g0EWpyge202kxGacoJZmZ7fD0s09z5PARsjRDK41WDpPRpBJdEgohHJ78xhO0Wy2CuE5pigoNU5r+cES9FqG1JggCRqMRUdxCao8itzjSo5jmPPPmOV7NE5bTApkliIYP1iCVvi4gJ6Wq6NJK/WgCGhiORoRBSNYaopWDt+Yy0RLZqleURFtWFkVKXq9xO37iOA8+9CCOq8GWFQpU5BR5Qr0WsbO9w7/72te4/7778DyPyWSKox2KPMXxPJrnNvB2u/yzx/+Iq1evcOjIIbx3LiJrEeY//7U9tJxKEAbJZDKiPdOmMJbRaMIrLzzDAw8/gnD8HyGuP4YqfdyJ6we1V7FuJPDq488TXZmhdtxlOOqRZROiuME02dMH2CvtOH/uPI985tP4gX/dA3f/0jL1msPa2rtQdjH5lK2tTWpxRJokaDdEuTVeOXWeucV9XF3foN5sceDQQRytcRyHRr0BQhB6NUwuOH/uMkliePHFVwm8lCMrMVrBTKeNo6sxneu6aF0pR5uiJPBiusOcuFYnG+/QqrsU2RBhSwwGU1YoK0BhTOUNrBS1uMU0TdjuTilLzfLBw/T6fbTr0Gi3eeWlV2jWa/R3u9TjGJPnCGkYdS8ROAbHq4TFJJDkDs3ZFUajKc1WCymriZTtnR1q9RoXLlwgimIa9QbT6YS1KxdY39hkYWGBWqyJPIMVE4ytknLXCbBW4boVe+Hw4f1AWbUb1BBODUfH5PkYLUtMNsFzNHkxxVeGk/ce5PjxOUJvgnJKlHJwnB95jNvSkKYpnhdy9eoW2tFEfo0sE6yvjxkPM4LAZzzxOf32Lp2FGT7xwDFsmVKiuXz5MvuWljh/9hL1fXXciWKx9zn6h18kNw32H/tllFfHyJxCjykJKEUljoi4vSiS4Oaxy49vaF6oJuDUo8UNW920nbgzxPVOep64ua1bJK4/2vZGwODnietPEj9zNa5/FeMvInH9acZftiLwX0b8ZfzNnLv/Gs7df+09y67d+w9S6rs5jJD4juSV7/05kytX+eyzayyfuUz+n34J02nhhxFIiZCC/fv2sW9pnpdffI4//Oof0m60mZ1b5Be+8Iu89dYZxoMxWkl+9dd+lXfOvsvGxgZKKZI0xQ8DZhbmOXToMKffPM1wOCIKYzY2Nqk1GjiOS7/fZ2VlfyVIox2WlpZoNJoYU3L23fMopQgjjyQZkqQTmq06yqlsOpRSuJ6iKFKm0yF5ntLr9jFFRqtZZzAcEjdbTNMpi0v7aLQ65KZKJCU59XqE1JLxNOHpp58jrnWYJAVXLm1weXWNMAwwRYG1Aq08wqCGoyu12sB16G5vMx5PGPQH2KKkFkXsbm0zHY0JPR+EwJQlpYC8yNnd3cVxHL7yld/GlCCkotGs4wceg/6Yd86cqQSLhGRraw1rs4r663s8/vif8M1vfoO8GFV0XFvRETe2LuEHEa+8+hprV9YYD4Yoodla3+T1V1+tVG2TnE5nloMHDiKFwpqyEv/JDaPRmCyvFJ13drcYT4Yk6RRrS+q1Gp7nkyYpZ8+e44knnqTb7eF5Lr7vMZ6M0Gcv0d4YUW92iBptolod7Sis6dPdWMWRGuk3UU4NoXxGowkSiXIcNje7/Mt/8TucvPtenGdeRp+9TPH//EPCwhL+n19leu9+ypMrRHFImoyYn59BuQrP8wkC/3qN1urqKtPJmLzISNIp6+tr9Lo5Urok6YSLqxe4fHmdKG4QRk1MqQhrHT7zuS9y4NARSgGTZIwhx/M0RZFjyoI0SxDC4nshpiwAi7XgCMXG2galEUymBitDSuGg3Rr7lg6RpgWCSnV1MOzjBR4rhw7z5S9/mX5/QBzXqTdqDIY9okaT0lo6nRaNWoyWls2NbUCyvLzCeDzGlpJut8+ZM2c4dOgQMzNznHn7HP/8n32FXrdPWVSiL0kyJU0TtFaMxiPGoxECW9Uea0WSTilLQZ4XSClI0gSt4e57jhPHIY899llc1yUKYxztMp2krK9vY4yg1x3S7/WZTlKurG+hdaWeOxqNKIqCRqNBmqbkeSWY4nkeVhQIadGOYjjoUatFbG6u8sBjn+HqY/cgpini1FmKoqo/xlb1fdcS1bKsrknuCUS1Wy0slU6DxZIXBb6xFWU9TRmO+nS7OxRFXnmvKonWkn5vl53tLRCCIq3qZCeTMVcuXSIOA778t/4riiJnc3OTZJqQ5wVKOSRJjqCqA222mjz2+cdwXRdshRqNx1PW1jYYj6dIqXEcD9+v6qC11tTiBnEcf7QX/08hLHvIVgnyUsQg3CCst0myKYP+Or3dTaajKaYwbG/tIJA88uinmBYFeVly7tw5hr0+Ns9IU8P83AznL14gLzRL+5cRQuAoDVaQpobP/sIvYqWi3mwRhjFKu5w9+y6j0RDH0XR3d8EWCAz33nuSi6sXKRAcXJnDdaoaRilsVYtvDFVdZsJwOGI0GFEWBfOzbUwxIfAEg34fW+ak2ZTSlmhdieAZqyitxGL2askFjUadxcV5HFfzg+efww0ChHRwvZB7TpwgnyZEQUCeFQyHY7Y2NzAmBVliqf7O1lZ17Lu7u8zOzjIY9vC8gEuXLzM7O4sQJfsXlxDWVroCScrR48dJ84x3z56pfIwLS2FCtNvAokmzlHIPeS1MjhBVPbYxhqwomUxzPN8Fm2GLHC0tpkhxtERjKLMBnpqSpQPKvVrrLMvxff86qKOUQ55nXL26RpaWFDbDcTUKzcL8PEKVDMYGN3ApDZSlg1QeUdSg027y4gvPk0wKLr57idPp93EmM6yUn6EetZFsY/Lu3gNX6WNUFkx7Dhp/hcpB/6qP0f9Dj/+gENdrPqwfVpX3/ai4t2rrwyRut7Pf+aBtb/X/H7T9tWPcKWX5To5xO7T1hhZuefz3Rf/uEHF9v3ZuXvfeutvbi1y83363Wvdjy97nXK79yhuSy5v3vzN7g/e3Ofqge3FjGFP53+k04ZlvPA6XVjn8T79FvZfQ/+wncOt1sKBUVe/iOg55mtDt7jI/16HTnMfzXaJ6jJCS537wHGEYUW/U2Nza4t13z7F25SIPP/wwk8mYPC+YTCdsbWxz6tQpZjoz7FteYnFxASsUw9GIRqNxvYYzL1JsWQk6zM/PY0zJbneX0WjA7OwMQRignYryOByOcF0PUxqSZEIYBkRRTJKktFodTJ4xHo3Ic0OrUSNNcvKsJM0yHEcyHY5wgoBJknPh/CXOnz3PkSMHWFpc4nvf/x6e5zO7OE9RmGqWXgq01sT1mGQ6pdVqE0U1tOsSBCHdXo8gCMAalHaQQjEYjvH9gI21TZqtFo7r4nkeF1dXOXHXCcbjMVopsiznySe+yWOf/RSmtEitCINoj1ZowZZ0uyNyU3D82CGkcsmLAtet6JlCuCAEruswM9OqEGIt8QOHIIxQupptb7ZbuL5XHUNpzr5zgbn5BRzHIc1SojCmVmvguC5aK6bJFM/12N7aJAh8Xn/9NU4cPwaiUiHO8xx/a4A2JaNYI/dQSZuNmY63iKMYP+7g1+co8cjyvCJkSYEQEqVcOo7D4uvvYPfNkvzf/wMyLWj8k/+X9L6jZPWKsjwZDvAdSb+7S2FKiiwFUaJU5fvZ7w1od2LyIqHdqcRftFdnZraFdjVziys8+pnHCAOHySRhOJmwvdOl2e5U/UVarC3xXQ8QVeJqKvGuSjG2Qi/FXh92lMvTzzzDkaPHcP3geuLvqIDArxHFdbT2UK7G8zykUkynKb7vIWzBubPncVyfZquO1g7D/oA4DNja3kRJyWCUsbvb5f5P3IXjOLzy8ilWV1d55JGHQEAQBHzjG9/EmJxf+tIvMhz0K0GtIsfxPKSUJNMxAtCOxpiSsih44fnn+c53nuaBBx7A8zywgm5vFyFgPBkT12qMR2OyNMFxKqRtMBjxxNef5JVXXuHhTz7IvZ+4l/ZMu0JCTUEtjsgLg0Uw7Pfw/aperixLinzMaNTH9T2goisOR2ucvPt+Wp0ZxN2H4ZnXUIMJYq5dUVB1pfZd1fxKtNJVTaaUFTU0yzCdKUIIrry0zazjYlcWqpKVssD3/et2OGUJaZKRZylxFKG0h9YupjTEUUgUxyipyYoM3/PRjssLz7/E66+fYnF+niCKUZu7uJ7LwkP3EUYhURQhT70LcYj4L3+dv/N3/i7Hj5+g05nhGqSa5RkWQZIayqTPwv5lcLxbIq4fhrnzvu/2GxDXDxrzWCyU4CE5/bW3aNcbtJcXkWWGxuB5Plb6nHr9NVqtFhdXL7ByYKVSEy9LfMdlZWWF9Y0NTr3xFscOH2Fj/RIr+/cjZImyhixJKIzi4voA5beYnZtDSkEY+uxsbzE7M0OeZ0RxxExnhuG4i+s6XLp8kbW1y8zNtliYreOIHKFclBAYkxFFEdmehZXWGsdxK2/duMPWdheKKdJmmHwASBwnpsgzEA5CuhVzgIKyLHF0yNvvXODK1pTusODo0cN88qEHWV9fp16ro0WlnH75yhW8IKDZanP2zCkWOi6izJCqqjUvsoJac5GwMU+S5CTplCCI8L2QXr9X1TsLwauvvsHM7ByNZgNXa+qNFsNBn5X9HWqh5d0zXUxREAYuWldlFKUVaO2QJFOUEpTGEjbmUF6LNMkInAJpUmw5RQpRCVApTWkljuPjCkluqr7hui5FkSNENRZwHY8sz5iZqb7rWTFECKjXQqQCoSQvvb7K3Sfv5+jRk5w+fY7hYEqn0yLPMlqtBo1GRJl2cd0pUU3RuvxZNpae4K03nuTCO29yZPk4Mle4jkWYrFJ6voXOxvVnnJvH2R8Ocb3eR4R9T38RQtxaVfi2veS9PeZ6G3AbdeJb5Q0/T3Z/kviZpgpfoxjdKRp1O5/T27V/p8s/bDu3iw+Dqv2kQlM/6X4/ekHclLjewb4fB1X4gxPqD9/Oj7VwqyTxFm3cTuH5/WyS7oSaXQ42sekY4UXvfw3vs04pxWg04nu//7vw3ee477efxXYaTH/h0wS1iJ3dHWpxDQBtMybjYUUVFJK4UWe4O+Ty2iUW9y9w5fJlPvPpT9OZW8QKy7GjR3jn7TP8xl//NZSQdHd2mZ2boywNO9s9PvvZxyj2bAKm0zHaC/B8F6UUWlaoqec7lDavlLBtSZrkrK1d5Z577q1or4HP9vYOSlVCQVq7FX01CsnSbA/pcnjqqW9z9OABRJHzrSe/QafdZHN9mz/92hM4WrG0NI9FI6TLxuY2c+05Th67Gz8qKUvDiXtOMr+4iOf5vPzyDwkCj1YzZjwZENQapEnG1tYutWYb5emKxlqvodTeZITysFZw/uwqLz3/Q44fPYEbhJW6qLDcc/IErvSIgpDRcMCgN+D0G++wsrKIH0YI6fD97z7LbGsOoQ1SwOrqGsfvOs78zD6SbIqQBViIgibac4ijiDj0kMLwxhtv0m41iGsBRVmgHAftSrTnMk0zrFQgXBr1Br//B39As9lgYXEBa9w9dVSYTEZEcURRZOR5SqfTYnnfEo16jXBPhMfzPJztPlJAVxtcP0BKwbi7jpaWoLmE8DoYAwUaRyuKPMF1FdPJhPjcJWZffpvkN38B8b/8PWxpafyvv0s20+Hp1fPMznaQQDoZQ54y6PXwvQDHdVHKkiRT+v0hc3MLSAGO41IUMDu7hFuLcP0AcJCuA6qkTMdorfE8n2a7DYCUJQKLKEGhsAK0dtC6Ep9yXReEvk4XA4GxgsNHjl5PeqWwlKayeUrSFKHBYMnLar2gJPJDcpMyHvdJJjmjUUIQBYgyr6yQ+n38IKAoLVor7rn7HiaTIVo77FtaZt/+eSbTAVEUUotrPPa5z3DixDGsKaAsK/9ZY1COs0fhtcg9YRQpJa7jEHoBKweOs7a2wfzcPK7jUtqMWr2G53n0BxUC5jh7aqmm5AfP/oAvfOELHDy4wtWrl5hbmAEtcZSDLQ1FnuO4HlZIosB/j4KuaxVa+eSFwA1qWKlZmutQGhftSPJyivvwSczbq3B1C9upU5QFeZZjSoOSCkRlEaSUBixKa5L6AK0dOvkS3mRKtjSLFaKyD3I9HO2hlcfVqxsEfoDJcqZJxnCSIXWlbG6xKO1SFBZjqv0qi6CqjCGZTljct59oOMEUOdNGRBiGWEC9eQ4b+Ex+/Uv81m/9F8zMzPL3/tv/jl63z0MPP4TjaqRUSOWweekss4v7kF7wkRPX94sbE9dr7d4urKxYA8U0ZeeZAdpqooUmnlQ8/dS3iWKfZnuRleX9NNsNlg8sc/nKZcoCkumEixfOgZQcPHKIrc0rNOtN4kgySa7gaB9MynQ4pigVS4fuxaCpxyG2LBkP+xRFSp4boqjyYX311Vc4d+EKly6vMxlPaDdqvHvmbYq8pBb5vPLau9W70atEfsqyRGtdXaMUWKFw4zlQHmWW4js5tphQFopzFzdJpwOECnnhxbdZXFpAiRKTpZSFJqx1OH1+h9zGLC80uXz5EqNBnyxL8XwfqSSz8/MEcY3+aITIEuKgAJNQlIIg8Bj0+0T1Bd44cwmtfYS0hGGN1dWrRHEE0qBQeP6ehZsxvPDci0jtsrV5hTCwhE7Cwr4m9ZpCSwu5wNchQmvyrMDzfLI8Q2sHN57BOg0whiLZwRYjbJmQpQW+F2DUlGlWcuHcFeqhhxtppFB79nnVt9WWJaawSGWr5N/muG5trw41Z2dnQFHUeeWNAfVmi3qjyT0nj+F4BZ7r89rLpzh27BAXV19ltp4ibErUNqjuMt76LEnwTXYuXuCHz36DtdWXOP3G23TiqmTG8WtY7UBpfnwsdEO/eO+SG7Y5VCBPFogbhkI396LS/ki46XrZ4C1IpXfU98QHJ67v2fznVOGPFD+TiSvwoZDWm1EvId7r73pjvB/CdTsbnBsTzluhZ7fb71bneKu41UzPtbbuVBL8VtfwQffu5v2q6/zw/A/1m1/82Opbrx/9Fuf+fujmtVfMtUGEAEprEbfx+b1V29cEmz5qXH8Obzqn9HtfoVx78z3iTLduwCCsRtpKNAthcGVEJlPOn3mR5x7/Knc9cYoTz1yke/cSl6KSQBWE8RzKVZTWw9oSVVp2tneJ45gwjBBCgS9ozczg+QGugGl/FycIKK1kmqSsLC/Smp1HaEW706lojtaytG8OtKTWqDHq7zIdDwj8gF63x3g8JowCCpOTJgnT8ZQoCCjSlNffOM3BQ0fpdfsUWYKvdEXdK3J+8INnWV7eh8mn2LKEshKKKYop65vbHDiwD6El7fl5okbM7PwCR48eZXl5kdFwGx3EFGnG9779FCsH9tGebzEejgl8H2sseWqQjkOtERPFIcrxcL0YyhRhfa5c3qbTbuIpyXQ0xNGaJEkBB0cbBJJvfvNbfPLhhyjJMcKwu7bGO6ffZN/yPkpjmSYptVqTOK5z/MQR6q16JXaTTuh1d+nMtolqMVaGfOtbT3LiyDJh7GIMSFxG/S1s0ccNYrSSJMmYJBvTmZ3HAGEY76HskkFvgqMdTFGgtaLf28X3NS89/xJ3nziBkDnKdcmylH/7B/+W48ePE8YeaZohpeXdM+dZWJgly/t4QR1ZGSCit7rVMzoTIN2YaV7gpVvo5hJSRoCH0BJRCIxJ8LXCvHoe58+fh1oM/9s/gF//Eu7VTer/5HcpGxHDpQZ5OqTdaGCKjMCP6PWnxLUmjiNJiglaajynGhCXRYp0fZQbILRH0GhUdZx5vpd8Vkiqcn2kdrCVu2A1SJN7QlTWkJl0jwoqAIWUAqUri5Nr9FUhFVhToVZ7AioIgVUapSN812c67jEe7xLFswipKIoS7XiMe+s0mi2anTZCGAJHUZgSLR0c5fFn3/oOzcYMjrZEkU9pBUEQMJns4HoS33MZjyZ4rkcpwHEdSlGgXEmRVNRYJaraUCEV/cGAWjyDKapEsFafoTfoMhh0WVqcJ0nGaD+gMFXtnMlztAChfJR0OXPmLT7x4EPEtRn8QDO/tIgVAsep0PNRv4ctcqwEHAdMQWFMNTEiKysfhOLihUvMz3awZYbQdfyo5PQbpxl2U5rtNludJtHaNqxuIGYbCF1ZkVyzpMnTDMdzKEuLLUvsbIoUoEYNVFIJtIxdiZIejushbMVSSNMppoDXXnuLi6tXefbZZ7j/5FEkJXmeMxqPK6uUzBAEfmXZYkqOHTtOs9PCcSTOTh8AMzdbIVVFjvP2BYynUV/+G5hyjOuXnDhxF1lqOHrkAFIosjTD91zSyRjlOoSNGgKBEhVLQADyQyet175Ft/jEjSVyzqIO31qQ8r2tSLwsZePMadQLS8x05nHbmmlvk3w6YDQasbiywMb6Gr3uhCQtaLbrlFlGr7vLaDLl2PETOK7HaOcCbjllvLtB7AvKIkMLy2g8oTvJyUVA4IdMBz0uXjjHwtIyrh/T7e5QCz20sFAq5hbmOHDgMIPhlFOvvsj+xTbN2DLX6nD38RlKUvKiwPN90ixFK4m1BlcGZPkI4zQIojmGgy6esiiZk5RDvvfcNmfPZ9xz1xyH9zcw+RAnjNHKZ2onBG6Dy6t9tO+wMD/PaDrg0c98ivWNLWbmD1Tv1HGP7vY2s+1ZfKdgsHuVwMsRCgQepbTIoMZobKm35lBS4zgh8wv7qDdqZHn1nrdCUBQFrnap12K+9/3vs3+lwdwMBDLH9zyyrPJptcKCgiKbIkvQwiHPS4xU1BqHSBJDkWwiigThCFQpsGZAYUvILNNJyebulJn5RWwxxPo+rvGYTPsI16KIKjsjHKQyWFxKm5AnEikcJha+/p3LFIVDlo+w1rCysp9pMiaqz9CcnaffXceOV1GqoBZ6FPmUkV2jM/wM0/aAnvsm+TRDFxnTnV3efOnbTHbPkmOoz+zDJyI3BZmu6P/KVsrh7wVpfiSHef25jywiummcK+CaUFMl1qT2ElWBlIprqe3NvzvSFBYSgbxey/5+8d7c4+eJ608SP7OJqxDiuqLw7ZLQa3EzyvhRLWtuThLvNIF+v23eD229Ez/WnzYaDPzEiSt8/N37ThDMD1x3m8mAn3bcDo0tzj0Pgg9MXAUWKxSlEFiZY6Vhku+SXrjM1X/8r3n0qy9Rsw7mi48yDnz2LR9k9fI6Uajx3cofT9qSH/7wJYIoIk0zfu+rv8+x48fpNJtYY4hrcVXDJgVxHDMYjrl44SKddgcp4dmnn8F3HWZnOvzhV3+f5YMHCcOQ7Z1tOu0WAI7nEsd10iSjLC1+GKC1S73WwJRQWsEbb5ziwuoFHn30UUxe0B9tYMqMZrNBlmW4jovAIctyWq0Go9EQ33Px3JDvfuc7rCwfYGZ2jkD75FklfFFvNNBuHUcWYEuOHD1KKRVJVtCsRVy+cpk4jjl/7hwXL6xy+NBBXO3w0gsvMduZY3NjF9dXzC80eeXlHyJwAEEU+2itkEpQmpI0zXnwgQdotZv4vo8pBb3dHuPxhOUDh0jTFK01v/2Vf0Wn08F1HZqtFqaoLIOOHT2OKSzTZIzjaJaX97O4sIB2BMPhGNerFE6LosAYzflzF/Fcn3arg9IuUirG4xFxXOPK1St0OnP0+70KqUAQ12LSYY+HH/kUjlep5Wb5lMD3OHr4CKa0aNdlMk4Aw76l5aoOUZQIHWKpFF/93SG2NJQHViDrs3H2ZcLFg1jjUpKTFxlFVrJ6fpXGeIr6/9l7s2DJrutM79vDmU+ON/POc41AYSYhcJJEaoiWusNuuUMt+aEdfugXuyPcbUeH3Y5w+KXD4SH8ZFthtxjtkFpNsSWRFClKIsFJJAACBAqFGYWagCrUcOcxbw5nPtsP5wIoFgpAARqsgSsi42bGPXvnzsy9z95rrX/9/zeeZD/L+L/rMXf/v/8z7sI0+oUL+P/nF4g6DQbTdephQL1ew7EshskQpERbDj/4wRNoy2O8VSfLSly3xs7+gKA+RlgPyXNDWG8AEoNEIsmzHK0tjJBgDFmWoXXFSFpl8QDMYT2kRZ7Hh0zp1YEny0riaIht2eR5jlaHLJc3BfeqwJ2AQ8dKWxLLtpBFiaCgKHKMkGRZiR82kNrC9Vx6h0zApSnRls3UdJXl//rXvs74+Di1eojS1XscHAzQ2sb3m3z+87/N8uIcSkooC1zbxQpqKMthFMUAFAEQAAAgAElEQVR4rk+WFNh2BRfc3tnAcWwECtd1qdWCyuktCpSUJFGMVjZCOzz51GnazRqh53LpwivMzk2ilUSKvKrvxlDkGUJWGqyj0ZCgVq80XfMceQjhNGVBWZTkRYHveZRlSVHkjGLIi4z5uSVKI5DacOGNCzQ++SB2lCIuXKOs+ThhQBTFlfak65JnGdFohLYs9i6MCKOx6vezLezVHZjuIF3AFAyHB8TJiNLkJPGA7kSbu04d4/iJJda3duhOTDIcRLzw3IsIBDMzUwhpiKJqrSmt8H2P1dUVav0Yy7IQM+OHMMYSsduj/MyDfGN3hdnZGbTSTExO0u2Ooe2Cnd0NWu06aRaxvbpGWuSMTU7y1uH5rV3lL3JPUcslaqn84AuB1BTIouBLX/wP3G1+Gn+8ThkqlCiJh33SrKTZnmA0TOiMjbO5sc7u9jbt1jgXLl5kemaaRqPG7s4mUf8A38tQOkVbHo7lEI8GlGXB+OQ00vaIE0G91aI7MYXlBTz/wosM9/v4vs/m1i5j45N4gcP21hYnjy7jWwWT43WiUUy7KXHsFIFEaU2WZ5UOsFLv6Ecrg9ENhLRwZE482kYUVRBmeWmWY8eaCBOjtUFqjdIuZRJj+1VJxd5Ac319wKmTR2k0mhWJUqOJH3goCaYoyLKCshTs7W3g2yXS5EjpIYoCZWlurB3Q6iwzMbvE2o0bIAS+75CkQ4TMWV/bQgD1er06l5KxvrbB5YtvMj81w1jLIUliPM87dMw1SZIgAMe2SIsMaSmwQowIsCwLz0oo04g822e3V7DdMwSeQisH27WYnR8nzfpooRBpSikMj5/eBFp0mhHa9sjzjCzL6PULvvonl6l3Lc6/uc2Tp1OOP7DAkYVF7nvgBNNT02AE/f4B0SAn9AWqPMC1BlglCAlJKcjckAM9YH71H7CmRtz12U9x7J5P8uKZ36fdkKQHG2xcfJVXv/vHaC/FRtCqz5Gl8rCE5IMJJ2+3ft7d5t3Jmo9qH6btj5/5f+K4fhT7O+m43izZcvPrD7LbZV5vbf9RnMT3copvdpjfjY2/c7vT7OhH6ev96itvlxWu6MJv/163Xv++sNz3uO7WMb3X2O4kM37zdbf7n3mfdn9ee7/f7NYxvWX55dMVGcTy7R3Xt8eZ5xilyUyKJUqSQY8/+q//e+b/rz9h9tIGB/cfp3dkkTdurJIVhkazQ7PdYXvrOr29Ha5evsHq6gqLS0tkWYbtuCwtH8F1PeLRkGazwcb6Oo7vUwpZwTc9n8d+8DjHji7TajVZmJt9O6J50O+xfPw4nuvgOw5Xr17F9Twcx0ZrG9f1CMKA9fV1Wq0mBrAsB6RkdnaK5aPLDIcDyrykOz5OqzUGxmLQj3jxhbM8+cMnefDB+0iSEUVR1RrmecFzzz3PffffR54llIVgf3+H6ZkJkIo816SjXbK8oNZokhUlQVijzDNarRYH/QOmZ2bp7fX53ne/y8mTx7G0zfNnXuDS65d59tkfsbQ8z5EjR3CsENu2kArieIQBHNsjSzMMJQcHB+R5zqXXrzA7NcvK6iqdbhfH0cRRwtGjx5mYmKDRqKG0IopGeJ7H5sYWe3v7uJ6NbVm0Wk2EUmxvrmM7PpblkKQpvucTpxlXLr9Ju9UmDMND50FhWTbb21u0Wm0c2+WPvvY1pqen8T0fy7KIB3sIy0E7LlmaIVVFgOK7HvVaHURFhFTBtw227VQ6onYlHRJFQ8KDEVmWMmrXSXvrOKSosQVsaWO7mtFwiOcENM5fQz33GoP/6lcR/81/gbU4zsLSPI3/4/dxvvk45pF7MTMdhMnAlKRJCgIa7XpFgNUfcGNljfPnLjHRbWO7PoWRjE/PYTkecRxhOy5CKPIiRyqLvZ1dHn30UU6cOIlUirLMkVIezpEMrTVFWSKFqAh3gKKo4HjVcq/YdJWE4SDC0jZKSfI8r6DStl3VX4rKHTFlRXolJLzx+mV2NjcY67RxPBdtOdhOAEKSJDEIqDcajAYRtuMQJxWb8+7uNi88/zJj3Q7Ndp3BqI+lqxrmPDckcY7j+Ex0WxhTEoYhmxub2EGrkpvSFTNvnkNZppSFoCyzw8Ci4pVXXqbeqAOGej1gNBzi2C5xkuK4AU+ffpaxRsDkxAS1moftWBwcDMiz5DAQXNXclYiKvdj3wUCaxNiOi6U1g/4BSkosXUkoObZNaUo21jf46te+wX33n6IsIAgDChMzMzNNEASYxWlEUSKeeZVCS+x2EyEqCDBwWC+scb0KLg5gdBWYdq9uAJJESLQbMBokWNqj1W7TaB7Wl7sejVYDS1vs7/Zp1BtMdjskWUqSjHBdB9u2D+ubBYEf4vejKjg03mRrcxPP99Gbu3D3ES76iiNHjlGWJUHgsr+/QxT3mZ+fY39/lzRNKKKUsFEnbLUOmYcBceclOW+hmW63v95uH3zr+tshod567bgeRdzn0rlXOcXPIDwLghJHK3Y3Nri+sokb1Dk4GNAe6zAcDInjiDjNCWs1iiLD8xwC36fZaiE4QJAisVBKksT9Sns4KwmbXcanligMKKuqr5+YmEQaQVCr0e50CcKqzKLIcjZWrtOse7z55uv0DkYsLjahzLEsl8IUNOoNBv3+4ecHLSVSSZxwkqJUBE6JMCNkWWLyAsQISytcp2LSlkoj0AgjSQuDVIKdfbi6esCRpTlarTZFYXBch17/gF5vjzIvmJqa5cKFSyzOT6JlijQZa+s7+L5NFCd49SlW1vqMT8/RaoRE0ZA0jVlfXwXAcwNq9Tq9Xo9rV6/SCpuU5S4LC4p208WSkOcpSqtDCH+JFBJTlliWRWEMBRIrGGd/P6IeumTRNiaLEKVhp2d4+pkrLM9PImVJUaQYEyEPs4+WKNntH/Dq6yP294YcW9DkRoMxKK0YRRLPDfD9Oq+eXcX3Gnz2Z3+GWs1HqoJGo0WvN2BnZwvPdhgdrJLHW5iij6tstvcHYDeR7hSlF5K4I06sf5YdP+Z6sklSBtzz0C+wtj3k4rlnWV6ocfrZp+htbdNqTGLbNsquYNa3Ow/dfP7Kv29RXlHIpeLta96NjLs9su6vwt45w/2E7/aj2N9JxxXe33l8vzYf5EzcSX9/VZm5D2N/VWN6S4LgTuztTOK//n8wj51B/uzD73vdh7EP46jDh3Oc/yLsTubPrVfklw91XN/DcX2ng4r4oIhj3vgPX2Hnn/9vfOqVHfKladKf/ThpGHLu7DmazQZjY20cx6EsS77ypa8wOz3HyvUN7nvgPqRWfOvb3+HI0aN0OuM898ILTEyOk6YJ0XDE5uYOZ868hCkM0zOz3HPvKcoyQVkWSIHSCmUpZmdnMMpCmpK93W0c16PeaHPj+ipP/vAptJYkyRBLQpnlFEXBxuYmlm1T5AV5keJ5DlubG/hhiFSSaDhiY32NaDjgl375F1CqRKkSz/VQwmLQ36Pd6eB6DtJkuGFIu9PloBexs70DJuHa1TWCehPb8ej3+vR3eyjLwrIdkjTHdlwcP+DI0SNsbW8zOT1DlCQszM9Aqeh0Jg9lUyRFmSGVqAhDlE0S5ZRlgWUrfN8nzwuKomRyaoKl5cVD6GZOvV6nKCo9Uc93QZRIaYhGQxqNGo1GHWMMaTIgThOU5RK6NX77332BqZlpms06eZFh2zbj3S7f+fZ3MGVJWKuRpinGlCRJimVptrd2UEqxvLSMVNWGuruzyermLu1Wm72tDWqNFp7rsb52A9e3QUgMFpYNUiiktJBSYLIUKBgN9gkOYowx7KZrFbvs1ElEIcjKnFE/QReS/Cvf5qDIif7Nv6J/bJKw3mXZc2n8j7+JEZLooRNkqiSJ+uTpCCEESZoQjSL6vR5aCmqhz9zMDEeWj9AcG8PxfLwgICsysjzD9XyEPCTyQaIsSeB7LCzM47oOiKp21Bgoy+JtiemizA/RFRxKNlnV+yfRIQGR4dqVq/zxHz3KA/d/DAAjK6ixVIo8r5xhyhIhIMtTpLJotceYmJrCCNjb38c6dN4sJSjSmDTN0Nqpgh5CVjWXShKEAQcHA8JayOzcLLVGA2EUruuxt79LvVFjanoC168Io3Z293E8jxuXb3Dm2dMcPToPpiSKYmzL4YnHf8TBwT6Li0to6TA5NU69HlKWOWWZE9TrIBVSSbSAo0cW8fyANC0oTYHj1chyje9rhFRIbZNmOerwu1TKQgGSEmU5YAxSSGytMaZyFrK8ktx58sln+PnP/QxjrTq//Vv/npmpGRqtAMfx0dKQpQnReAvvxDLl0y/DTg892amCC0pjkIxGMWmSvV3/CmBcm9KxENt7hOt75L0Bm0nC9x/7IVPT08RJjB8GGKPQMkMYyLOS02dOc/LUcVZvbNBoNKvATFYR9wwHg4rIxrKhWSOzJLVaCAjU6jYcWWD5H/0yxlQBIkRMWHMoCsHq6jrt9hhaWwS2Q1YW1Fpt3sq4vhvn+wG39PdEbt0UFN+SmCHI8HZtfvxQXyYFL//oCWYmAmpP3YdaylE64vobF/E8n6AxzvyRYzSaFZmb1gqEZHZuBt93mJycZGdrh8tvXGH2yDGiwT7KFCSDPYSGPB3iWJqyVKB9drb32dnZoywFSZwQDwcVIVbgk6YZq9ev4bgu+zu7vPH6G0zPz3P+9TeJkph222Pl6jb1ZhMhcqIoQsgKci2FpJSKJMtxwhm0E5BFuyTDHoYIrT0QJdUMNdiOi9IWxhhev7ZFnDbY34sopcvkzDFcW7C722N7Z4eZmWmUZXPh3EWOLh+lLHNq9YDRaMT+7gq+B62xTsVKH6ekmc3Jkw+Q5TE3rl+j2+3ieQETE1OEfhPPd1lbWyNNU+bn5sijIVkScebJ83i6xfhMWUGMtUWapZX8WJ5jyqooQSoPZTeQXodGrUWRDUiHa5RZXCGW3BLPrljva3WBMQVaSjCVln1apARunbn5LjMzAToXOEGDNI1BClZW9piZq/H0j96g1l5k6Vibg+2EhcUFHNdCK5vRKKJeD0mjXerOiDLexXMCdkcxU/MP4NePEqUCSHEbmsyKmbx4nNf8lzly/8f5/tPnqY3fxa/8+j8lMQ7D9Rv4zogzz/4posyYmTqG8r230ZI3z9mbn+ffcDBb8sfJmd51fr9NgOdDrbo/v/3Ecf1o9hPH9T1ev1eb/z8c178Kp/Kvs+Na/M7Xodd/zzrXnziuld2x42og+dYPSf+n36Tzxe8SNOsUf+8TZHMTKOXgGotaq8ZYp1PpupU5SRLz6iuvMT05zfraNlMzU+zs7vDwww9XMg+2xUsvv8z5C68xNzfLxHiXJ574IR97+BEcbbO9s8PYWAvbEiAVG+vr1Oo1hDDkZUlhBNsb6wgMr79xma2dHcba45w6dQohC8bGmpRpQpqmRFHEaBTR7XYJgxrKkmRpTKvZZJQO8DybOB4w1mnSbAU0G3V29zbwXJvRMCKJcrrjTYJ6Ddu2OOjtYpTCtgJ8N8S2LJJkn42tPovLR8jzAlmCEoJas422NFJIlLKQ2sKyLca6HbRl4wcBvmdhSpuylNTrQSWtUOT4QQAISiPI0hzfd0mziCgaoaRVySJIQa+3TxJFPHvmDO12m4sXL3H3qbuqyLqjOOjt0Ww1kKJiUR0MRrRaNYRSFChkLun1+xw7eYzS5CDKCi4nFZ2xLrV6iB8E1aHHmErSpyjJkpQfPf008wsLVYbIDwgCj874JGVZYGOwnKDKXjmVUzCMhlhWgFA5cZyglEVpCva2N6jXQiQF2XCIqoWU7DE+d4TdPCQUBRklLi7Wt57E+vufgf/9f0C1HJqtOv7lbcLf+CLXfJvgwfvY29smzyJqgcMoGuI6LkppBoMhz515luXlJYQweJ7P7s4uFy+/yeLSIlJWGUDb0hihyLOcyjkQFKYkT1I810Mq+U4Gw5QoVWlARlFcMf0KWT2krJhrTInSgmgUYWmNRFPkkuWlI6yu3aAoU+r1KqhQmsqJjaOo0g9VmrwosW2H0gjSrKqblVSSSMLkZElCENQxQpMmySGMFyzbJssyjiwfYWp6CmR10NfKQkoIQ58sT7EshbZslNIEYYjruqxcucHqylXm5qcQSlKWFcnU2VcvEEVDpqenwWj29ndQUjIYVFnRDIFSlX6vlgItwa3VsS0H23Z49rmXCGsdHMegLZsoSnC8oGJbVhbf/ta38VyHRj2kpGIBTuIRSgry4q0a4ZIkSZibW6AWuJRFRq3WYmN9g4nJMUoDpshRShLWa5h6ndHRWaydHvmZ15CNkOKQrXjQHzKYWMeZEliD4B3nzFKUvk3uObhJzuQwYWZ+BneyRRC61TotC/J4iBSSMGxw5PgRdnvbXDz3BnNzsyDAdau5Z4oM23G4sbfD1nBIu9UgyyqHWb58kTyOiT/3cf7Zf/nPcV2bRtMnTvrUa126nUr72NI2Jk0QWuHV6/xlOq7pbzkUZzXWI8Xb197OcTXG4JQWzzzxHVQxYvz8JylPHnDh1RfZ397AsX1yLLTvs7m1SRiG7OzsoqSFEQVpmrJyfQUlNIEfUOt2EVkMWUSR9MjJUZSkcYIQNpmxcZyA8akZojilzDK6nTHcWoBlV2iS1WvX6U5OYmsb13F548pVrq9vUGQJ87NdPKtBUHPQungbCqWkIEtTojyn3mhgBZOkOZR5nzwaUpghUrpI7UCWkxUFeVFSGkOWZvRTxe6uQgrJ6efPs7lzwKc+8XHqjRbNZhPL1jiuz5XLVyjznCgZEgQOB70+Ex2fLN7Dchy0ZWOkJE4Erltne3ubZrNJURQMh5XGtm15rK3fIAxrdLvj7O3vk41Kev1L3HOvT7NpoWQKRlGakrIokUpiSoOlFVmeI5SLdurYQRtTGob9bWQ5wFKCNItRekCr1kZZEiEilFRoaWMQaK1ITI7INV6QYtkpnmyDlhRFSp6n9AeGYZazdOwBTtz3SRaWl9nf3cF1QnzfIhol9Hp9hCzZ372BNgNCVzIalWRao6xxVlZHeL6LUhGNRo1IHCAOHI4N7+Vy6xvcc89dTE4ss79T0G0v8tqZ73HfffMUxRZnz14h9OdpTE9XPAM3zf1bnxfPVkRkP3Fc/3ba30nH9XaRGnhvKZr3goDeKbHR+9mt8J3b9fFh7P1qLm/X54cd463Q5Q9qe+s15lDc+uYbxVsPbnou3hobFasw/Dir8M2/iLmp7QfZrX3f7nG7X/svilgJ7uw7v9XegYK9U49tbnnkV97tuFbvUkEAVVHAyxcY/Wf/HfzetyjDgPTTD5Isz5AXGjLY2tji8pUr9HZ2cB0Xx3Xp7W4T+jatZoNjx4+xcGQey9UVZKosybKU9bUVlhbn+cQnPonnBxih6XQnqIUhE+MdWq0QUxZcuXydOBqgpGZvt48QFaFK4DkEgQ9SMzuzxNTEHKefeYqnn3ySe07dwyCKSPKEZrvL88+/yl133U1RpuTZiEvnLzM9OYdlK2zbosgk9XobIcFx62RFSVhrcdBP6I5PoW2LYRSjlYNSDkoFPPnYUxwcDGi221iOg+eHTM5MkMQxcRzj+iE/evYMb75xidOnn+PUqXsoyTBlyb/9/O9w4+p15ue62FoThHVurFzj2Wd/RKtZR1olnu+xt9fH830Kk3Hj+nVqNZ+Dg3205ZLE5SHMNkMIQb0+xsLcAutrqxw7tkCaDfFcmwxJGITkeYmRFmkBWdwj9ANW17ZI05xnnj9DZ6zN5uoq8/NzpFmGY1sURU6tFlCYBM9V2FqzubHN6aef47EfPM5PfeoT3Hvv3fiug+M6lAjyoiRLIyzt4/gBtjaURY6ybIZRXMmSiIw0zgmDAEvnrK1eY2pmnqRwsJSDaAVs9TfoLtxFXNrYWpIZgS4M8htPUPy9z5D+i3+CX3fQ2sV54hWCz/8Bycll3shj+oM96jWboBbQG/RxbYdhFJOlBUEQsrSwxGg0QtkatE1zbJKp6SnkoYTNG6+/wWOPPcHxo8fRCgQV46gSh/JPVsX6bBDEUR/Lcg4zhbKCXh5KrwgBZZljyBiOhtiWi1IVkZOlNRNTY2gLjKngsVKpik00qDRebatyhuO4IvjKs5yyyCmyEWWesbfdJysMQiq8sAZCceXyVQI/JE6iSjKm0qAgiUZkGTzx+I9YXFpAaRsjRFVjTHWfzQuwtWbY72PbLu3OBGle0B2fIPBrRFH09ud86KEHEaokqFloCQiJ1jYGg2PZDPtDykJQlAXiLZKveECRS5JohGMlaO2incqBFqVhNNzn+pvrjHe7pHmEH9ZRCqQ0FAYQFn/2nR+wt7fL7OwUzz57honxGbAqpuNGI6TbaeM6AVJCmmVVZihNCXwPbVsUR2awmnXyp15CRgmy0wQM+cQAy9eYjYrFWIqqbtYUgu3dPVQtJNeSVpThb+5TNhsUCuLRENsLEEpiREkURTTrbeo1Dz9scNAfkaUJaXyA1j5Zlh6iODR5Dru7PSzLxn31dcgz9j/7IL/8Sz/PvXefpFFv47tNLNuhLA39/gClNFZq8dJrZ1g4chKEBjUCY/3YfnG7/ePW/VwcogLeufP/eLv89KFEyCOHCIKqUfX3Fpb7NNnn9OOP0t+4yvG9f0jSucz49BGUkFy+vM7E5CRxlOJph93NHWq1Oo2xNoFrs76ySqfVRtuSQqSI3DCMYxzPxdI58TDC9zxs1yYvOITkCoTToNWoV2tMW/T3dsniiMDzGRsbI0pHrK6uMTUzzYVz52jUAra2DvBUyeK0JvQVaZZjWRaGgiyH0QiGgwLfreHWqgxpHu9jqQxbakyRkmYJhShwvQDX8Sq5Nw2tust4V1BvOeSlTVlUKA/LdWg0G0SjIVtb+3S6TRYWltjfG5BmI6I4phNAlg+BEpOkxFFcabB6XYx28WyX1fV1mq0GQS2sAmSOplZvkOUpWuTs7/Z45fwmnVaXtpchRIOsKIiGKY9+/w0obCabDl//s6tcurbLQ3cvIPwORtfQIoasB2VMHI8qSacEpMzRIidOCpSyKcq3zmSGtDRYlotWCowgMQYlFfsD+NGZG1y4kbO3Z/jpz/0CriNwHRslQFtwfXWT7Z1dOi0HLVJ0sYZvFSBtUjVB0DrKWHcSP7CJoyFh0OaVl87huh59tUd7e5bBjGBl/xq9vQ3qtTbalwxUi95I88a515kaq/Hys39KoznBzLETJIczXPLu9fD2XL/JcX23ffjk1Uex263Xd9btXz/05d8E+7CO69/68MBHcSp+Yn/9zRhDWd4ZMcXfZBP8+Py1ywiAvID+b/w20a/+C3bTiN4vPoK5/y5Sz6UfxXz3O9/je9/7AZ7rsrA4S5bnvPLqKwz6PcbGxtjd26fRDBnFFXugpW12d3pcv7ZKmhb84LEfMj4+DWVOnsYoStqNEEXG9vY6UTSgKCp9VKSiMIbv/+Ax/uBLX8YPA9I8A6nwgoDeYJ/cpHzi05/h1//TX8d1NaIs8dyQNM351KceQcgc26myt3efOsW5187x0guvoKTitbPnGA6H9HqVdqXvh9i2S6s1RpYVKGVhWQ5BUMOUAJL93SFxVPDmlRWMkeS5Ic8Frh9Sa9SxPYuHHr6fODrMFGUZ8ShFYPi1X/3HrKzcAAxZklAUBVNTUxw5coTdvV0Emn5/RK0WVjqUUnH8+DHSLGNyYpbrV9d488p1sixjbXWN3/3CF6v61f19/CBEWzZCavIC4v6QYa/HqL9PkY2wdEGr1Wa/t894t8N3v/sdXn3xZeampzhydInCFOQGhEnJ05iDQb+q/cwTknjE1GSHBx84xec+92ksR2N7LoUQSMsiLwqkKEiTEXu7O6xcv0GapmRZpWH6FomIbfloJRFlwubKm5i0z2A0BK0oKVi7dpH21BIHoyobFfV7aFGgnnqJ4p4jlP/tP8WyXZIiRzz/Ku4ffo/4Zx6mnJvhse//kG/+6aNsbm6xv7eH53qgbJrNFkFgg6kOkq2xMfygie/VuHjxMo4fomwXN6gxt7jMP/iPfgVtWyAUBkl/0KcoBJZVMV4LFBJZkewIgVaaLKvqPvM8J8sykiQ5dIIEnuu+zfqqpCTJYqQlMdIQ1HyUlEghqB/qHmtlURpJicDxfApjEEoipMJ2faTl0O52abUaWJY6dEIEuzv7jIYxw0GMMYIip5K0cCtioAsXzwNgyImjEaYUWJZVZUiThOFogOU4FEXJ3u4+z54+U9UGA7blEgSaYyeW8MKqZjlLUvIyR9sWtufi+jWklIc1hrLSP01zisJQq9dI0hELC3MYU8nKCcQhgVVOUGsQJxk7e/s0213yQpKMRvT29igpKETJL/7Sz3HvfafQluLTn/kUaxs32NsZAYbBYJeiyMHYCCHw/UouyrZtDg72GQz6FRvo3cfo/8rPYfb75C+cRxhDs1mxRpuyrKSzyiqLblmabncMy5IIz6bfcNlLE4LzV9HCAgMCjSmp5LVsC1NmKGlx7dp1vvQHX0IIiWP52LbG8xz8KCaIE65fX+WrX/0aKysrlaavUBgpaDabpIdrRuiKGEfJiiDO0i5RPGCs0zq8Y0sw78gF3dE9/yMGuW+2W4PzvtNkrBmwfvkiAkF/d4ClPYJ6SFgPabXHaTUb1Gohm5sbKKXY2NzgsR88QbczgbIs4iQiCDzCRp1mcwzQDA6q37YoCrI0x7IUZZkiipTtzQ36/T5b6+tYSpLEEcPBkHOvneXll18i8OvYlktZwOzsPPVaE1OW2JbCth2SNMOQk2YRggpR4Hse65s9tOuRFhF5lmJLlyiKGY4ikBLbcSrOgcM1XpYV+R2mQAjD3t6Qc+euE4QNPv5TP8Xi0hJCaXb3ekzNTNIdHyPJUuqNBu2xMbrdSd68eg2pVEVQWGZIYfBqIY1mg3Pnz2K7/ttIiOFggOva+GGLOEmRQmApw3bvOlvbl8nzTXI5Iit2kXaCcWB8okV7LKS0Euphg26nQ2E55MZCmhFFPqDIR1gKHMciT2N8L0QqG+1I/MCrkFLKwVakU90AACAASURBVOQGIUpc7VIUKXE6QAhFHMHZy3t8+/vnmJ67h4ceuI9f+MVfoCxLbqysMBoOuXjxIrWwyfj0HNJW+FaCGdwg8A0oi1HqkBQhjuuwvrHO9RtXycuM3b1tPvbwg/QHfaYWJ4naPSaeWubqtWvMzs9RmJLV9TX6ZckjP/drnLj/P2Zs6ihLJyc5f/pPiTa30YVN8dfEI7kTbpu37C9ivf7EPpz9rci43my3y0B+0DV3MkE/LFHPzVnND2O3I4x6r/G+V4b4w47x5te3Zng/OPv84xlYcUt/txvb7TKutzN5m5vBW+OTh1qFd/T5PmJm+ta+7iST/VG+//dqJzuLqJlTCCd45xopMVlK/i//F8xXvkfv40dxHroHO6xR5CUH65s0LZfJuTl8L6DVaqOtKkM7HPShLAhCn2arzfbODmtr61jKot/r02h3uPT668zNzXH06FEQ8OILz5MXBY7rEIQ+pSmrg4FjsbGxztLiMlIrXMfnoYc+zvbWFuPj46TpsCJcKqvMSK3mI5BImQMl2nZwbJ/Ar/oU0lAWhl7vgHq9xrA/4LHHnuC+++/lpZfPorVkfGKMLM8pioS8SBiO+viBS5bFOI7HK6+8yh99/Y+Zn5/ngQdOctfdJ/jTb/4xY50mYeACmuLwsyDAsR1mJ6aYnZ1mOBzxxBNP4XoWreYYH/vYA5RFTC2skRU5GEOnO8b83CxloXj55VeYmppkOBqCqGCqruOxubFNq9FkdmYGQ4aSgiRN0dJidW2F+cUF8iJnf7/PKy+fY3FmDFWmkKcUaUSexMRZSaNe5+Cgz8LCIqdO3cP4RBspDbbtViLzSgM2X/7y1+l2p8G2aIyNo2yfzAhmFhYpswgpLVwvZHVljd7ePs1GHW1ZxHFGp9MmSaKKyVJKtGUhpSSNU8LQYXtzjXariTHg1duIMuf1s8+xODGLESHa88nSBEyBvHQDs7ELv/GvyLVV3QiurND8N39IeWoZ0WkhTEmajJidmeTY8gJgKqkI23pblmR3Zxft1vHDJkJajKIMx3FwfY8kqaC5lnYOM4gKIRQIcShj4x3WrcpKFMGUFBRVFtnwtqZhRdSUV8y1eY4pS/I8x1IWaZISjUYEfohEQFnVb2aH46ue5+xs76K0Q3moSxjHMUJIirRASIXWNtKyDiU8KgyFMZKrb17j+rUbrKxcZ3xiHCkVv/d7v8/R5SM0W01mZqdpNJtobVBSo6QGIdjcWAMq7eC8NLz4/Etoy+K+++5hcrILgNKKtRvXqbfbIAR5GmPyHCk1nucSxwnachgcHBBFCRcuXGJiYhLbsegfjOjt71CvNfjCF36X+++/D8tykEqiVKUJWaHgNGEYAIbf/cKXeOD+e5BaIaWu5o+gquu1LcqypNlqsrG+g6FiAR8Nh1WwQFW/R5alOLZNUUYIUVKUGZBzkAxp/tznMJeuIEYRxVJFPvTK9y7SbDVxXaeqdywK8jzDcqq5i5CM8gK3NKiixJmaJElipJT0Dw4qIi0Er529QFgLGB/vEIYBAkizlCxLaWz00KOEN+OEkyePVvXFl66RSMnppQ5Hj59AaxuhNKM4QWvBwcE+nuegLcWlsy+zfGIB228CFkKU3JojuN3edSdnlZvtrSyUfuQ2Wahb9MOVEDz9+LcI1yeYb9+FO27o9dc5ONhi6cgJNjY2efyJJ5idnmZra5MLly5y/4MPMFZvcfbsa8wtzON7HtFwSFhv0R9EvPDcs8xNN1EiJ0ure0glFQXbmz1yq8ZYZ4J+v8fW9g6TU9NcvXaNhcUluuMT9A56NOp1NtY3eeONS0glaDUEJ450CJyUvEiRumITdhyXsqzkqGbmJjAqIxEeQRiyv3kZrQVZGr89B2zLwRiD0lXwVylNWVhkRc6lS/vsD2yaYx3OnPkRaZ6zs73F3XefII5GpFnEwf4BgR/iOJrQt/HkkDTuVUGt4ZA4L8Hu4oZdZmaniaKERrPBwcE+ru1w4/o1Gs0m6+sbbG5ukiYJp59/lal2QDuUlTxWoRj04dvfeZNTd03SaiZIq83MRMLiok3g34fl2JiiRzzYpkgOMHlCmRcVXNkYtG2R5dXn1AqSaIC0XQYp6CIHY6Etn7LUXDj7JmfO73Ds5EMsHznO9NQ4ZVHiBz6+76MtC9e2WVldYXa6iSv77K9fwLcyksxha7/Eb83S7Ha5dn0NqTQLC4sMh6PqHu052I7HlcvX2OnvsFyepPipA5QnyHLBzNwkx+86yfe/9wyTM8eQluSZp3/IRFBy7fo6R0/chbTd6r77nnO9eO+MJ/K2qIX3k7p8r7V1uz7ea52+tc6qOt2/Jp733zD7OwkVvtlunnAf5Nj8ZdqfN/pyp+3vxFH/yx3Dezuu79XfnTqu5pbN98OO7f2u+bDf0/uN5aP0eUfjdwKEE/zY+6faw/zL/5Xo8dPsPnI34dwytrQwVAeGOB1hZMna+gZPPfUMJ06cxNKaLCs46O3SGWuiLQ1SEfhNRsOIRr1i3UzLKiJ95rnnePChB6nVQuIkY3xyAt/3yfKKoEWgGAz61Gp1XNcniWK+8uWvcv999/Hqy6/w0EMPImWJ7wVIIRiN+hUrpe2QZqOKnVRolFT0ej1czyNNMqS0sZVhNBzgBj6f/sxn2Nvb5YEHPobrOpRlipQK2/KIo5QwqIiObMslSSI8r6qJW15aJkmGJEnGxx/+BI4TcPrpM7RbTS6cv8D05DRJnIIRjAYHuI7Nzu4eD3/sE7z62kssLR7jd7/wO9x991E81yMvDa7n8eijjzI/N0uRS+65914MBa7nYNkVAYhA8Og3v8nRI0uYIsUPHYbDA44eOcr5cxc4fvIEYRjgODaO4/Haa+eZXVyo9GL9Gsqto70GjmMxGPTxPB/PD0ArLC3Z39vBtlxMIdjZ3wQB7VaTzlgD17FwtMX6yho7W5tMTXTYXFtFawcpLX7vi7/H4swsfr1dZRHDOsoSWIdspGEY0h/0q9pMYYiiAfVGA6ldkgxcL+Bg4xq2Salvg9NP2BAZvmMzXN/G/+ErDP/1fw7zMwjtsru2zvTnv0ZU90km2+TZCEFBp9tkaryNrVVVb20EeTaiyEtsx2O/FzE2OYuUNnle8uKLL3L02DJKSpQSaCVRsjraGCEQQiGERGlBXppDx6nKruRZhrY1xlSkLnmeYdsVlF1r/fa60rKqkTUlIAS9/X3OnT1PNIoqmKFU5HlaHdyjhNFoxFe+/FX2dvbpdsYoixzPdtFS8dWvfo3Z6Vlsy0FIQZGXhwfnCqbcHe/Q7XSZnpmiVq/qNefn56iHdZSWtNotwJCmI6SyKDMQ0uC6VW1gnKUobROPUlzXodttIZUhjkeVNFOpcfyAwpQMDvbRUtDbi5CHqALXdbFtm431TU6cOInWmp3dHb76h3/CyZPHSOIM1/Hpdjt889FvceqeUxRFwbWr1xEmo9PucvXNN2g1mhxZOkHYCHEPpW9EKTCHcG3EoV6tZTHWaRL4AUrqikFUxChlI6WoWF+lIEkKHPswuIXEcRyyEjg6R/r8a8h5wLGY947jOM7bB0V1GLQoS4OUmtIIzr12jlwKuqVg01M4tiSKRgRBQJYVZGnJ+ESXTqdNEHrUazVMUWKQuJ6H1xsyGIx4YW2VBz92H66rsc9fQzdqdP7ZP8GybXJToixNv9+nXrdxXYu9vW02t9bYvrHK8sklpF2rsssU3AmM8cPuSR/kuN7cZ2qGPPPYEzTjCTosQT1iuLdGmkCtvkjQaNJs1lBS4tgWY50OQkmuvvE6j3zyE+zu97Atm7XrKyRxQqMxxtzsFFrHkA3Js6q0wAiBUJIw6GC8DvXGGI5j4Yc1mq0xJian2d3r0Wy3qYUenudx7eo1kiSi3W5S921cnRO4ijQtq7r1vAQEhhKlK+Ery/JxGscoSoWiD0WKbVXM6iWGMjekaUyaxlUZgbKRAlIzwrY7XN84IGjY3HXsKIuLi0xMdEmiIb7rYWmJrWw21raohS5vXj6LywDbqmCsWZqSG4UVzHDh0goTkxOkacFw0MeUVSDMUpq93U3a7TGE0Gxt7nL24nmcIqZMDpicm4Ik4/kzFzj54FE8FTHealIqjWfXKYxF5oRge5h4B5NHFGnFJqy1BaXEiIzCFEhZIxnlUFaO7Np2zONPX6HTqXPp6gFPPvsmze4cc8sn6Uwc5d4HTrG5vUarUWdza5vO+DhrG+sEvs+bl68wOzeFTDYY7V7B1gWW5zOMDePTxwmaM7hunXa7S1mCbTvYjkua5fi+x7lzlzh54hRXVt9k3J+kc2OO5IEdxrsz7B9sc+X8OU7dczerG2ssLSyTJhY1dcDucJuwWafdXUJI/a7p/L5z/Z0VdNs1dWtC5p0l8sFnupv7uPn17a6p+vqJ4/pR7O+04/phoyq3XvPW5Ludw6uUes8F8BdpH3a8t8vM/jid/p0tpNv1dWftKo3Dt/7ernL01v7u1HG93TjedSMS4r0fd9jn2/97v8fbUT3ehhT+2Hf2vp+Ed7W7rUTPbR6gUURImVGWAvGbX6X3777Myt1TNLtTZGWlbVcUObatcQIPaWlsKVhZqeCqW9u72J7HwsIMw8E+3fYYeZqzsnqNbrdDUK/hhSFvXl2h0x7j+OIc6zeucf7cOe46eTfhobbdzlaVkUmKHCFttGVRMRrDXSdP8fjjTzA1PcX4RIs8idna3qFWryOAPE1RlkVWghfWkVqSjvo8/dSzLMzPoXVOnmbgKMKwTZ4WpNmQsbEuo+iAvEhp1FsMhwmO4xBFOfsHEWG9TmpSbKEoyfC9cR799rf52IMPoCwL23MwZU633aDe7FKr+2hbkRUZN1ZW8L0QbfvU621OP3uGl186x+REkxPHF2g0WqBtlO2QRiOWF+fxgzpparh6YxVMRujaFFhE0T6mNBw9egK3FiI8C5NkSOnxvT97jE9/9lPUm5NIVTIa9pAopuc6OK6L7YZI5ZIeSnQoaZOMDg4ZTl1MKjjo9xlrt9nbWwMzpNmaZDQc0mo3CcIaaTTAdmxKSjpjTTauX2Vseoo8Mzz//IuMj7dpjoV4to0SgrJIMGWJkTCK9tEKHCtEKkFe5viex6DfoywSPM9ibfU62WiLTneOcithbWWFLWWYnJrCeeoVxN//LMU/+k9oBAWXXn6G1r/9Frs3bvDDXqUn6tk2ZZZiioyyLOkd9AnCWqVt61bMtbYbMj45Q25MlbEzAi/wCGs+CEWWZ5gqCYqQGilLhMnJsxipbZAFphQINEJkZPkQJR2kVJSIyhFEQWlQWJi8gsFnaUKSJhz0eoRhjY2NDV597RJSWJw9+zJXrl7nyMmTWI5HEidkWcYnHnmE2bkZavUa2nKwnEoi4957TlAUBZ7rc+n8GwQ1B6UqIqgsyxECfN/DdRzKvKAsCi5dvMDM7Axawd7eHlevXKPbHmd7c4tao0ZWFEhto5VFURbkeUp3coJ6rYllaQ6lXfnhE88wtziJMAUU4Hs1DJobK9epNwKEBGXZ7GzuHNafTrCxvsmPnjrNP/7Vf0jgN3jt7HnuuvsEjUad+cUlLK3BCDASk6dEUcK3vv1nHD1yFFsX2L5HnEaEjRpGaLIowZSVBi9SILQh7sdvMzJjLCyrhlGC4cFWVU/rBVgCkjjB9QKMckB5/Nbnf5O9vR5Rd5JuvQdak685aG2xu7uL6zqHe1xFZqOUxJQFk1MTNMM6MkpIp9oUSHb2+gwHGcP+CMdWZGmKEIZoNDhkcRV4nlt9R9v7uK7D1MN34boejhMgXr2I8V2yX/t5fvpnP80nPvlTjLXH2NrYwnNybCvEsto4XptXzzzNxx7+aQopQRZVUOTwhi7k4d5k3rn3v72nvf8G9K5H/sx7H+Zv3Y+K2OH5099iZu9+5q0HiJsrFIWiM36MMy++wOT0BINRSbPRpLe/CQb+P/beJNiS6z7z+51zcs47v3vfXK/mCUNhJglSTYitltQSewqHHG7bG3vR4XA4wgvbGy/cu7YjvHD0wr1xqNVuS+52SApKHCFSFAFCAAigMAOFmuc3D3cecjzHi7xVKBargAJISdFq/iNexLv3Zp7MmzfznPM/3//7vrm5ZfxySJTECK3Z3tnm8JGj7PX7dLe3qDeadNvbOMpGqRihE9CCUTTCWCHVSoPJJEXZDqWKTzwa0Ovu4ns2G2vrNOpNdra2mW212Nzco92LuHjpEq2KRbkSYikXRI5jF8I9QhYXIzcxwl3A9eYIXIgnbcgmIAqbK5NrlC1RSuH5QcGjTmOE9CGLEU6TD8+tkacxDz3yFBcvXWJ+YQGEoN/fAqFod3vML8zR7/XIswhbjlGOJtNgyQzLrSDtJrPzS6RJSrVaYW+vzfziEjmCWrNF4IcIJFcuX8BxNY+s+Dx8vMX+QzMgBbbIOXR8lpKrKZd9tIAsjcDkeKVZZHkZKxmRx3vkyRBbabTJi9JzSyGMjZETdjqGK1f2aMxUETIhzUrsdQ3StnG8Os3Z/Rw+eoqzFy/Tas7j2gJbScKwQiNUxFlEbX6OTrtN0u+Sxhvk/ZtUXI2RDlFiyOQstfoCe50BQVjB6Ih3Tr/F8sIsw0GfV155h+FgwqtvvIlflpx55wIb0XlO+V/C2a3wbv4CJ44/ShYJXnrxRYzOePO9Mzz5pd/gow/fpeZs0d8aceDEY8ggvOM+B5CYaxICg3ok/5RZ1l3vfArQcHcl493v3T1/vl+O8HHiCj+tVPKLA5L+NscvOa5/RXGLV/NXnbjeHbdWhR70uA/qYfs3GfKrTyO/+vRf2/E+6zX8m2rz7kjPvkB29ofkwsJIH3Njj+xf/h6XlypUWk1Ov/0uP3rxx5y/cB7f8wqumzbEUUSeG7785S+ztbXF8RPHWd63QBgGBEFIkhturG6QpnD6jXdJYlDCJUkmzM+3EEpRrTUYjwt7le3tLTqdTuGpKAt+amdvj52tHUaDIWtrq9iOpDXb4MSJIziOQxB6XLt+lcGwhxAGP3DJs4heZ41k0kEZg+P77LQ79AYjJnGGclxsyyKKJiAF5XLBuUziGM91iaKIc+fOMRxHhOUy7b1d0Dm2FOx2BwU6GI8xOsFIC4Ria2sbaVk4fkgUj27zBT0vZGF+iSD0cD2L9fUbLC/PY4i4ceMmgV+n3e7iOLKYZHgujucjlGQy7pLriLPnPpwiuwMsqXAsm4vnztHZ3UVog0GjTYbrOqRxhtYpkKMkBL7HeDTC5Dl5knLx/FnIc65dvsL1a9ep11tI5aKky7sfvMt777+PRpJri7A0Q5alVGsFTxGgXA7pdTvoPGccxSys7EdJC8/1ef2111lcWKLVnMWYnDSNpyJcKbbl4AdBUep6677GQhtJEFZpdwZYto9lIsJ6C/wGURyTa4NQDtGVNUR/hPof/mvCikVmAgb/9gXKG7t8Z+Mm166vsbq2jhGQmXxqxZTjug5RFBXos1PFcUJcL0QIReC5oDMkmnqljJrOXzzPw7acAi01BlBTNEZO/TILC4+iXNAiywwCizwvpJqMSTE6RilBmsa8//4HRJMUpRyGgzFZqslzzcEDh/nSl77Ik088xm/+/V/jt77+97CVJE+TqRexwvNdcj3BsgVZlmCMwfdDoiijUq2R6wyh9PSZKRY9LcvCdVwm0QjbVvR6fb7z7eexlIfWObnW9LpdXn31FTKdUyqXMZhCcVMb1te2kaLgeCulUJbBCE2v38V2LNIsYjSMAcVwOCTLE3q9NkePH8X1fGzLQRool8tcuXqF69ev873nv0ejXmN9fR3HsXnm6aeI45g4jpEYdJ5idEqp5JNrzWA4xBjDufPnp0qghkpphs2b24g8AeXyZz/4IVub26A1UmuUVVRWJHHCt7/9TYACQbdc6vUWSroIaRgMe0wmYy5euMCLL7zAc8/9CidPHmVmZYE9BQxHJJMJUTTh2rWriNvobsHDFUJMebtFSXiSJIzHY2zbolwO+LPnv0e70+b8xcvs7LTRGuI4xbYtAt8nTpLbCLsUgngckyUpvU634MoKge8HfOMb3+TYsZNorTl+4ijKCUHaSJ0SWDm+7/+VjQmfNwJXUy2XWGkcJPO6DLttwObqtZuUKmVs22JzfQ3Xddi3vIJtWYgpz7lcKhfjRpxw8dIlDuxbolIpo40gygTDSYQ2kijJbusaTCYjhoMekuI3Egj29togYHV1Dcd2WN/cBiG4fv0qQeCwu7PGiWPLzM6VQSZoleC4zu3kXetbPqcOtuPQ7e+SpinRuOCKK2mRZultQbw0TUmTBKUKjrExBZf7ozMf0qg3eOjkozTqFcbDIbZlE/glfLdKpz2g1ZrHti26nTazM2Vcq7DjETpjPInZ2NyiVqtz/fp10jShvbfHwsICw9EIzyn6OM/3efnll5mfW+C1n7zF7u6A8ShF5wbbKqgOecbUQ9qQpjG2Y2GkQuPiKkG7vYrOY4QwZHlW3OdKIlWCEjaWCaiEips3O2S5YThSvPzqGXbaPa5e7zC/cJhWa4HhYMDi/Dzt9i5CCK5cucKlSxcxdohQATYWjokI7S6eGOEHYByLYeoyymrMLR2kP46ZnZ0nTWMmacwTzzzF9bXrjMZ9KlWfDz98G1cmdDfXyPMYL/S4ap8luFljRR9g2B+xs7PBw48cpzVb45/8k3/AQw8f5+v/yX+BdOqsbW6xubV2z/vX/s9inH+afOb7/uedo/11z/d/GQ8Wf6sQV/j5S2fvl/jdMvj+604KP0lV+H7b34lKfpaS458nPt7/HojrXa/l4yeQj5/49DYf7MCfusmDXsPPcgU+6+9ya4tb2955le63f/r+dzGDbcThL6G1wPyzf07P0jgnD1KfaTG7sA+lXOZbM1iWwrYLsRJbWSRxQq0+w+7uHocOHyJJI4zJEUjSNGd9Y4snn3qcpeVF1tZW+d73vstXv/osG+vrNBpNVte2eOKJZ+gP9qhUCkGXc2fPEYbloizVcem0uwS+j7IV9VqV2bkWjmMRRRE6T1haXibPM6JogutY2ErguYYkmmAJm85wwPzcPiZRTGOmOuWh9RBAEIRMoog0TfEDn7AUkmeFF+fc4hK27XwstCIMll+ms9fBtiQnTxzDDasgC06gmCq3KmGwnSK5GQ1jnv/eDzh+9BBJGtPvdZlp1jn1+EM06rP4bplUJyjboGwfYUSBmEmJrSxK5RofvPcuK0tLBKXqdKXfYHROuRTi2DZCmoJnXKsXfq+2JElGKGHASIQCWyh81+Hll16iVqnSqNcZTxLKpZAf/OAvuHz5Bl/56pdotpqUSmVKYZk0gzSJSLOk4BNaNoNeFykVStqUyhXGUYSjbHr9HkoqnnzqcZSQ+L6DkBLP8zAGbNtlPBpQDkvs7HTwQg+hXKQsSnI9z6XT7hA4OW51gVRUsLd2mcQTFk89jPvj02T/7D/lRtUhqPm4p69y8JUPSL/6BVSpRK41Tz/1JGHJJU0j0jjBdd3bz5DjFFxQ27Hp9btYtkDnhVK5bVlIJRgOutiOB4iP7beEQSCxp5zFwhonxbZsQKCNxnU9jLHIdY6cJr9KiqlIk+D1195gZ6fNgQOHcByPmWaLKIrY3t7mO9/7LvVaBW0iavUqWaoZj0bTsta4EHjKRpTKJZRlIYQkzzV5ljMajRDSMNOsIaUijhMsq7BcQoBS5jaKub62ybFjJ/ADj/FkTL1W5cSJk5TKpSIBEh8rkD//3T8nzzWLSwvF9xeFyrLjuuRZxqFDB9G54s/+7M84duwIQmjK5RDLcYkm0e1eqNvt88wzzzA7O8v777+HlJInnniMySTiD//ojzh8+BD9QY+NtTVazTquY7O9tUmr1aRSrXPo0BEMmpV9S+TSsLfd43vf+i6lwKI6s8iBgwcYj/rUKyXyNENKRakcMh4XFRSWslCWIAxDjJG89ONXmJuvMtOYYRLF1Kp1lJTMzzWo18vYtotT9bGudvA3M+Kpr6hSkjwrvHDzPCNJEvJcF4JcuUFFMXplDjNdPHr88SeolCu8+OJLhGGFxaUFgiBgOBwRJzE72zvUaw3sdg+AcSlg2B9x88ZNFoYRullD/+OvEQZV1lY3mJtrEkVj4hyksIhGAybjDoNOj3K9jlcugbhlh/PTff09e/zPOATLAxr1SI4I7zG5vmvCrfIR7775Gosbp/BcSXt0Bb+8RGtuGcuxCAOfUlhmZ2e7WJxRil63y8uvvMq+pSXCMKRer7GwsEASjdnZ2qI3jmjNzZBMuiiVYVsSIWwyowlLNVbX2+TYVGpVhDC0Wi0s28L3A+qNFmmhMkevs8fC4iyDYR/PNtRDgbTAdj2yOEZKieu4U2TcEPg1cunilWrEUUzJC0gmbbRO0TpFScgzjef75HmO0VPVcctCaEVYmefM2Rtsre9w+OhBFhcWcF2P1ZurJIlmaWmFfn+A71ok8QiR7qLTHprCJ1UqG9evI50ZWrMLlEoBO9u7dLodWq1WIUi1s43jOOzff4Bqpcra6iadvU1WlucoBZDpHCUMSaIx5CAMudYYDW7YwAnmMXmMTnZIkxFGp+gsB6b2W0mOVKZQW04UM3OzSOXSHwqur434O1/7dWZn97G6vs1wOGRhYR7HVgjl4Louy0vLVKplcmNx48ZNHJMg0x0svYlvgbQFe4OU2vxjVGaOEGc55UqDTqeL49i8/JPTSKN4+aUXmZ+b4Y3Tb1Ipa04dP8R4MGA8GTLodvFnHM7f/IinOr9OohL+v5d+j9/67V/n+o2r1Bt1BsMhr73xBqdfe5Hf/odfZ7PdZf+xx7iz5uxWmfinVw/+7AP0WYGc+1X53Wu7u19/mn3VL+P+8R91qfCnJayfVjr7STf5nWjrX3cCe3dZ8Kdte6//P63tu7/b3e08eFvF/z9ltXPH55+pfPkBzvvT4s5E/lNLsB/knO7ooD6tzZ+yRLrrs1uG2z9lvH3XNtnVNwr7iiNfQf8f/4b8R68xevoY4rTWHAAAIABJREFU1eYcKQpL2VQDHz8MkEKwtbnB3s4OnuNy6eJlRuMRS8tLXLh4gTNnPmJzbYuzH53l2Mnj2J6DsDLSNKZAAQ2+4/DiCz/m2uoGGjiwfx9hyWVvb3fKE7LRWoDMsSyXWq3Bj196icNHDmEpRRSPQUAYllGysCMJwzKT8ZgsTQmCQn1zMo7Y3txiZq7FmQ8v8NprrxOEFs1mA6NzLMvG8z1yDa5jMx4NyfIMnWvm5uYREuJ4QrlcYjyZIJWLZTmcfuNdao2QuYUl0kzjuRbCZORZRhRnbKytEfgBvX6fSqXKocOHivPyA0qlEtVqFdcPqZQr5HnK9s4ujZlZ0IZ+p8/e9h6Dfp933jrNo6ce58DKfiqhj3JcoighzWKk0Hieg0AglM1oPEDrlOtXr9GamyfwHQadQr15ad9SoUI57rO4NE+5UpSbNRpzZDqjWqviOIqZmQZhEJCnKb////wBB/cfoFavgwHPD4iijKBco9cbceniFerVCn7JI54UKqBzc00EhiSJEbJAovSUtxvHGZat8D2XMKgQpxHC5ESjIUpoPEcx6HcoVxpgl8kySW00pF4p0z/9HuL4Idb/868TlMv8q//uf+Y3PrhB/OQJdGAz06gz26pjSUMSjTB5RrlcJo4jwjAky1K0ztGyEMYpV0poDFI6U+pBsViojSZOkqnAChg0aVr42Eph0EaDEEhAm7xYoFECgwCjsZWi2+5w6fxF6tV6UT5oNM3mDKPhiH5/wNz8HNrkU4ERh0OHD1EKA+r1Mo7joVB844//mHKlzNLSEo5jUyqVMBTesFJZBarUbpNmKdValSzPiaKIMCwhhCDXmtFohG07GA2ddpcLFy7w9ttvcfDgQWq1Cnvt3SKJH/QJwgAlJHmW4do2Jx86QbPVLHjm8lb5oyoWQUSBNHbbffb29pibm0WpQoys296lXm+CkBgBpaCM1jlhWNi/nDhxDCEL5Of4iRNU6xXSLOHtd95l/4EDWLbCsm2UVVQxCGXjex6eZxeqyq7Lo6cepjnbRAK2MpTKTvH7Tumdk8mYSqWCpSzefPMtatUaynZQlmR5cR7bcaZ2MhKJoVIuUEspDf3eCCFmmfQV1tsfsW0JGjNNhBSc+fAj1lbXWV5eul1dKKVECbAnCaNmlSAoMRlHU0uVlCefeoZ9y0sIYYiTFMtyOXfuMms3r3PkyFHMxi7D0YhRpcSbb73N5StXeHTfCulXH0c+8RhpLImjjDQbYLuaclAjjhIcx6JcLeNJi+12m+a0/FQK8bHF2y8ycS2Leyet8DOJa7/XRlFh/oNTtO0zDAZdjp36Am+/d4b9Bw+glE00HDAZj3nhxy8Wz+l4RGt2jlJYYjgcMBqPQUqyNOWjM2d4+LEnCH2fim/Ikx7DXhtbKbTJcIIQbXxK5Tqj0Zh2e5d6fYbr12/guh6uWyiEa50zO9Pkgw/eZ3dnj35vQC2wgYwgCBDkSCGJk3i66KPIspQUFzecxbYUu9s38KyULIsQAlzXuz22Klk8F5ZlMYlyVq9tsdcfUqnN8tVnn6PebHD9+nXqtQq2ZVGbmWE8ifB9l2Fvl3gypBJGCJOgHA+d52hstHG4crNLGFbo99vMzLQQCIIwYGdnm1aryY3rq5RKPmfOvM+F8+dBxZw8tozJuihLQa6n4kqTQmgOB6MttNsklz5J7ya+q5Fo8iTDtjyyXJBqCjqJzlndSoiyGV576zJuOMPDp54mLLewlGRxcQHLUTz86ENYjo20HPq9HgJJrVYjisbsbK5RcjPS4WVMsksYeCAsEhq45UNUWwfQRhD4PpcvX+HsR+c4dHCFTrvPWz95lWbN4uiBCsutCo+eaBIEARcuXefLXzpMo2qzs73Fjb0NPtr7kGfiX8VbcJiU+xw5eoTTp9/BGJvHn3iafbNN4niNi2c/ZP7oFwjDoqqkmJd+PK/85Lh/gvkgJcO3QYXpvO1+c+n7Jbb3PsYvE9cHif+oE9c74748xs+ZcN6r/v2vO+73wHzeVaUHWUn6rOd35+73S1zN9XXo9hG1yie397nP5PPFZ01cH6jNu67BndzcO31+73X8wsdVYC5E6P/td3m/JfBmmiRaYKRFnqR0tzepzsywvr7GD77/fU6eOMHFixfw/JC19TUOHjpEa7bJT149TavZ5LmvPkdQCSiVA/JU8O4775GnsDi/zML8HAcPHWW33efxJx7HsiSdzg6uW/DKQLGwsESSj0lzjR+EHDh4kCzJ6HY7WLbFlctX8dwSwuTYjo8xorCwyDKUrUhiyU9efZ0oGlGphIwGCY8/9jjzszVsSxYleVKSZTmuF6CztCgTy/MpggZpMmE0HCKkIgjLJJmh297j1KknKNc8lBVgWZJxvwM6pdfroZTN5sY2K/uXcadc0DiK6PcG9PuFkrEQIFWA1glbW6vs23eAm2vbCJNR9stEo4g4mnD46DzSUoxHXcbDXaJ8grQCfN/Fc21G4zGeHxCnBtex8DyHWrUK0mbQa6Ok5E++8R2OHTtKr98mLPlYVmHZ89pPXmd3t8uBgwdozFSp1cu4tntbkOiZp59CAtKymUwisixDSZsoM3S7fS6cO8+RIwewbcFoNESIghdlWQXSGAQe3V6PUqmCNgbHCYjjEaPhANv2iLMIWwksacjTiEGvjclTwsYSaZbjOw5mdR06fYSCP3xiiX/1b3+fpx85xa/88B3coyvo5SqubZFnEeXQ56Mz7+M7NrVKiSiOyfKsQAodG89z8YI6tvKQ0kNJH40pEiSpMBgs2yp+sxyGozGOY2HZijRNyNK4SFiUup2c53mKZdvkWoPOkUKwu73H+toGJ48/TJQWdhZJEnHw4AFmF+bhNhpvUJakFJbxXBfbsRiNIuR04bJcqeB6LrZrY3ILuFWmWjzAge9SKheJqmM7OI6F1qbg8k5tZQSF3Ycxhvn5WebnZ8kyTbkSYtsWOs+pNhrF5DvPGfT7xWTKKsSOMEWCrqb8UyWLhZI0S6mWq/R6XaSQeL5X+FjmCZbtMUlShGOzu7FNtVolzzMaMzWqtSrlagWlLBzXRSlBf9AjTWB5ZYlJFOF6DuPRCNcNePnVn4DRbG6usbi4D2lp4izCcUOUSVlbu05Q8nFcl95wDCanUikxGAxwXY+PznzE9vYuBw4fwLYlg+4OUZQTlkt4njstvx/R6QwJQ5+bNzb4/g9+xOLJ49jr25QmKe7SPEJK9nbb1Ot1qrUKWhf8tzzPMULgjGPMcoskhSxNqdZKWLZVLCLkBd/Ysmx+8uppMBZffvZphsMxM+lUDGhxnsXFZY4eP0ap00McWyF76Bgv/OgV/sW/+F/5u7/2ZaJ4QMUvYVsOncEQ5brkwxE7nQ6L+/dPEde/msT1E8eguxJX2/FZah7HvOgzLl/Dth2C+iyV2gwvvPACjfos6Kzwhq5WiSYTzr7/PuVKrbCNsm1K5RLlSrGQs7W5wcLiMr32Llur5wh8sClKgkFjlMfN9T1K5SYLS8tMJiOiOKVULhGGJYbDEWGlhuc4nD97lsAvkecwmvQ4fnCWmYZHno5Q0sJ2bj03Rbm9kClu0MJyWnQ624R+gk6HSAUSiZIW2hR8V60LBD6fJpzxMEc6DqMo5/13PgJLsW/fPi5cOMfcfJN2t0OpHHL16mV0FnNw/z6G/esIcoRTeDVLaeMFdYRdZa/dxfPsggpiCqGxSrVCHMf4fond3U1qtTJXLl+mUrNYWapRcgvfXSUUcZbgeTZZlpOnirMfXWLf0SdxSyWizjVMnpHn6dQWy+PqtZs0ZmYx9BkMyrzw0ibC9bGcWZpzczTnG0ghWV5YIE767O1t02g2sByXHEHgFqJ3SiksW1JxIRpt4DtdfE+R5D5RnLPVtrH9RRzXRmcj0ijFsV2kBNd3uXj2PQIn44lHFwncLs26jSNS2uOcdi/i6CGfatUjTRXbuwm5UoQtl0e7zzI8tktv0uOZLzyL0QqtM86/8xrV8ohsMiJcfoJGY6awxpo+GPH/6ZK/YX1mcaYHeVYeFFH9pP3vnxv8MnF9kPhl4jqNB4X8gU9FGz+pvbv/ftHxIG3fjZjeHWmaPlAbd7bzaedyr+99K3G937FuGaSn/+P/jn7pTeR9xJnuTO5uebWaO/b/qXO6x9/d3+Fe29zr70HjQZBbccd2d259z2s23SZXAoWA1JALQXrtddKdDuJ/+nesH5hBt2bY3mnT73RYbM6ytbnK/OIcO50+S/Nz1Kohk/EQy7J5/fTbHDp8mH37CmShXK6glKQxU8exJCYvbELCUoX6TJPZxXkc38FxbeYXmlTKAVmeEDgOk0mEbdtUqxXOnf+IPM3RWY7A0O10eeXV1zh+/CTvvPP+VJCphGUXJZJZlvHyX75KEFZwbRvPd5ldWGSvM2ZxtonvW8TpmIWlfUzilOE4pVqrkWUpg0GPUqWFZbtkWqNsB4PC8RwcN2TtxgZXLl7ElobecAQ6wbFdLNcqBHgUOK6D64U4QYX5hSZaC4aDEZ4rESKlv9chDB2kEuRa4PjBbZTWdX2++a3vUg4K1dBvfedP+cqvPEu5PltwFwVYUiFzw+uvvYPreoSlkF63R+C4/F+/+685ceLE7QRm/eYqxkCtXuWLX36KNIuYmWlgWz46V9iOzexci5l6nVyPCMMSSWJwbclw0Gc46BeehFnCcNShUi7x//7Bv+P48WP0u5vsm3oQ1ht1JpMxtuvjByUyrUFYBKUSeSoI/AAhDJAhhUTKwqsWbBy3UOaVqol0M9qbV1lo7GNiBHmWF8Ih17eQCP7gucf4l7/3h1y6cInn3rvI08dOMD6+TBJNiMdjXE+QZTlJDD9+6TX8sEK1USVNYhxZ+DIKaWM5AUZIUBIkBW/XwC2FRjO1zcliwf/9r3+faNyjXgkolSsoy0UqB6E1Bos0S3BcCykslCnEXbQxlKsVDhw8SJKnKDX9LhricYS0CoGjPM8wukgEDTnKVuS6eEbdMGR2cRHX9wj8gCzN6Pa6uJ6HlJBmEyAlS2IwBcITxwm242IMt1WMLdtG6xQhBUKC63ssLC5QqVV5/vnvc+jIEcJyocadJDG2U1QfKEuhlIOQkOUJlrIxuQZTeDYKadDaMB72uHZjlYceeRQpNTs7q3hhgOf56Dxl2G0zHgNyQODZbG+PSPOEeJLhuR6ea5NlCePRkFOPniSJJtSqVSQSy7KnizxVapUKzVodt+SSpjG+4zDo9Vhb22Dfyj62trYIghApLH74g1fYf/gwju8SR2MOrixx8uRDvPGTt1iYW6RSLZHpmHa7Q6XWRNk+yvGZqZYYDYZAzle+/Bgvvfjn7Poljq3vcS0eU23UECZnZqaBsmySNMa2LZRVoMPWcMxkfgZpFfeV0bC326ZaLpNEY2zlsLG+iWNbHDq0TJ6nBIHPsBTwrdfe5PKNm4SuQ6PsIzd2yI8sox45jETz3N95lgP7l/AcB+XVEErheR55mnPjZocr507z6NOPkQkHW5vbCSzG3ObL3m/ckEJMBzxze7y715ia/sjCXFXIg/nPjC23xp84jhFCoHLYOLuGfSbgSudVlBdw8WaH+YUFjh07jue6BFaZ9nCTF374KvUSXN/oc+TIAT547xzVaqWge1g+RkNrdhYpczzfoTnXQCYTBv0ulucj0WijWFjcT280JjeS5uwspaBMluUIIbl27SpeUCHPJly7doO9zpD2oM1CK2S5KXHtHDNF93UeFwsziSDJUjzXxwoqTBKPZqNJNN4ljzoIoRBSEKcJMncxJkEIhZIuST5GGSjXPfa6CRs70Jtk/MpXv0xYKjHTbNHp9qiVGrS3V2m2mvQGA0Q8wOgexhg8S5KnKd3RANurkcsyKwcPEYYzBKFHUCoRZzl7u20ERZ89v2+Fm1c3OTCrOXVohmQ8ICxViKIIyxaoXGKUwkGDsfErLSqtg6g8YzhaR+Q5ylVIMtDxbQXvf/8nl8Fy+NrX/g43r1/na7/xHPNzc0STFMdzsdyCQtGcmUNnsLWxjiU0XhjS73S4cOZtAqtLGm9jiSGOZYhiyWDicWVd0GgtECdjwlJAlmksx8d3C9rL6bde4+r5i3zlyyvMVA2uU2Ica8JyBctkHNnfxGSaPA14970LzO9bZjiOCWoOzdIcjavLpE8OiCcTXv7LF/niV77I7t4IxDZrly6htcWph04S4SKkjW0y0tM2APYXsjvma5JPm8E9yLz9k+bOd+7zeT77ZeL6YPHLxHUanyeR/EUjkH8Tcc+E8R6lD/fb704u7+fxrn2Qy3UvVeFbpdg/VWJ8D3TzZzqhe7R/91n/h/ILGm2ToZFWjhVHbP3lt/Au3yRJ69iPP0Jj7hA6j1netx/LdhlNxoVP4tYOjiWwlcXMTJMojnn22S8iRU40mbC5vkW5UmdxYQHHUWRZTLe7S21mFtu2MHmG51pFmbHnMhqNyPMM3/MYT0ZIpQiCEMtxaDRnKIU+GxvrzM/NUS6HVCqFjcIrL7/C1577u8w0WtgSTp8+zYfvf0C7vcf+fSs0GhXGk2JlfGl5kXG8hR+61GpVdK4ZD0e89/57rKysFIqhWpPEI3zPxlaKNEr55p9+i4MHV+h1e+zu7PDwww/jeh4LSwtYlsT3A0bjEbZTQUkbrWFzY5tvf/M7HDpyANuyKJdL7O0Wwh6NVotSuTHlUGYIYYEpuIqWG2C5Pg+dOIqQkvnF+UIsJE9wbYtkPODalcvMNhu8+c7b+F5IGNRo1MoM+9vcuLnG8ePHSNMclEVzZgbHtknTlDiO8TyPne0tdnZ28XyPNE0IwwApBdVqmXanjW0XfLMgCBiNRgRBgJQSx3XwXL/gLycp84vzSKVIkhSligSuXK5zy9PQdV3SJGUwGhOWSuRGM4ljdJYUE2UhsW2HaDLE8hu4ShAPN0Ep/Mocw8GQihcgX/2AqD8g/e//Sw7+2t/j1CPP8N+cOMWzGUweP4YfBoDBd1wGw0KQp1SqYFkWjqOoNwrrJWU5xTUXCsv1CsVQU6i7ijxBYBCm4AwLdOH7mRfI1TNfeJqgVOJjMSaB0Smp7uJ7PgJn2lZCoV1lmEzGSFmUnkqlAEMpDFnfWOP7f/4iK/tXsCxRiBylScGHAxAFynOLZ6qUAmNYW1vj9BvvcuDQAo4LWWpw7HCaeNsIAz9+4QX8IKBcLheq9NOyxSSe3C5nvOVHnaYZhw8dmoo/WRiSqXVP4Tub5xqpCpQ5TVPsqdJqnue3KzeMMXiuw9ziEo7rkqUxjUYDkFiWS78/JCyVqdWaGJMzGo75y5df44MPPuTJJ0+RZQmTaIyUhtm5WeI4QRuYTKLC/9hS2I5DpVLG8x2Uo1Ci4NZPoog016xv7BCERdm9QNDd6/D22z/BaMHCwjLSEijHYClJrVrFtm3anV1s38a2baJojOdI4vEQxy0Ek2aaLVL7LAeP1Tj56K+hkgx1dRUWZqeesgJnysu8hagKDHIwIZlrgRK3XQGCICBJExCSP/yjb/D+h2d44qkncT0X1/FIkpg0S2jONHn9zbdYvXGVh06eoPTeJazVbTZ+7SmW969gew7SkTi+z2QywbYVUTTGdixee/kNmnWPQw+dJMfFMgUCfGd8GsXk1r1h7njv7rEw/baN3ha3UaifavMuv/Ozr/+I4aUR4UaT64N3mVs+yNLKIW7euEGWpZw5c4YsyfjzF/+cPFU41pillTm2t7usrW/zK7/yRUbDPcqhSz715rZtG88LMCZj2NkEk2B7Lmk8KRaU7BK5sdBYRJMY3wuYRGN63R4LC4sEpRKB71It17h44QpHjxyi395k30JAajLGiUunnWDZisAXOJaNFApjNNoKCBsHMAiiaEA26eK6DklSWKa5jo2yTbEYhSzQWCEwMkdaIUaW2dnd5dFHH2Fjc4NSKeTmzZv4gU21XMfzG5RCl+7uVSyG2EoAxTxKG5tyZY5UO4ShDzqj093F9RzCsISlLHSumV1cZm834gffe55DKyFL8z6QUwCJBUUojROMcJmMYizPx61UEHZIPG6jky6dvR0qfhNMBkojlMNwlLM3EJw4+QhhrcbJhx5iEo8wpvBBr9VqZEnGzfVtXDfA9Tx2draoVEIGw20cuUdodSjJEa4t8B2LycRwbW3MvkNfYHZugbn5ebZ3tqmWqziuy+ULVzHC5vnv/gknVnwWlmxaDRtbaLIswXYK4StjCs6uoTjX3c4OynFpdwZcu3GTw08eor49T2dxHa9h47ou58+foxzM8fYbP+axU0fZ2htz4OAR3GoTECiTk54u+jvrC3cirvd/hj5pvvsg738WxPVOoc6f3e4/lNnn32z8MnG9K8wdHfgnlcd+ngT1btuZu7mPP2/Z7Wfd/n773Kte/xeNFH+cbH783v1Wsm4lruIf/uo9z+le7f5c5/Zzt/Dzxydd59ufpWDbmr/49h9z4S9+zLHtqwjHQSw9gUFw/u232NjeYXFpGcu2CYKALCu4QFkS43ouu3sdFpaWCm5OpYRA0t7rceDwASaTMQKN6xYqhnGa47sek/GIna11bNthNBpSr9Uolwpek+s6lMplRpMxSlmMx2McS9FqNRmNB2RZMk1eS5w4cZxvfeubPP3U0ziORXOmwYkTJzhy5BCua2PbRXlSrnMsy6JeO4gQPkmak2UR1WrA0aMn2d3tYLRBSNAmLThrymYwGPHUk08ymYxoNGrMz8+jDURxhhEayykGN53lSKWJkwnKlpTLAXPNOo1ma2odkhceolpQqlYRwkEIwWDYo9ZosruzCwhs10ZZEs9x2NzaZGFhniD0EXaJOION7T0uXb1Ja2GFU4+coN5o8e1vfpfJZMDMTInHnnga1/PQBp7//g9YmJshCAO0zgmCAJ1ryqUm773zEW+//QGPP/YUk3GKmpaEClmI+biex/buDp7vEZZLU4Eo+3Z/02jUGU7G2LaDUg6TaEKtVsMImyzPiScToskEozPCUoiUYsoPlZCPSDOD65dxXEU0muAEFbLRNt29LRoLh0iFh2r30M//hCvxmMr/8t+yd/4M4cYGx3TK8itvkT50ELtRJknTYsEhmmBbCtuyEcKwuDiPZcnCSzHNcYMyqxtbzM4vFn6n+VR8QwAmYTjo43kBQhbIY5YluL7PwuIiyi5KiKWwMMii7Ni22N69ge+V0ZlFlsW02xvYVlFmbVmFl6fr2sRJIc6k0SjL4oknvoDtqGlZb1FaiJkmhUpNEwiDnIoAAZTCkOMnHiLXYzqdXSqVGbIUjDAoqdA6Z2lxAaEs9K2El2KBznPdgn+nFEopBoMBeZbj+TZSFjmH1gm5zhmPJzi2i1IWWZ5P/WAlgkKoquhiC+GwJM5xHBvLtjACPK9Qbh6Nx/h+GWPE7QWT8SgiTxMeOfUIWlssLTXROiuUj12vKK+3bKQsFjSKe8tifXWVcjlAKoGwFPEkZnd3l2qthuuFLCzM4dg2g96QyThittXk+PHDHFg5yGQ8ISwFpHnKxuoaIAgCH98PsO0yeW4oh1V0Cmc+PEu1XqVaaxSVN3ILZStCZ4VO2SN49yLOTB27HKIsRZrEhfJ/bgqF5jzHGSUkczOcv3gBz/WI4gil1FRcy2BbNusbm+zbt8zcXIs0TimXQzzPRVqCZ575IoNBj53dHQ4MUwh83P/qd9A6pVwJ0dpQLlcxJse2ran3ssfi3CJZNGDxwFFyobBIMEL9VJ9/69m9U+PgzvHg4xf3Hz9u2eHYX8p/dmy5Y96jtWb36lnqGwfITB9sOHDiSZI4oV6v47oOjcYMpdCl0Syxtdphvlnj5vUOg1GbVmuBy1cvUi27SJ0zihKGoyFZmnHx4iUarVk2b16gVLJBgDddVMmMw/XVLQ4eOs7W1g5CClzXpl6vYymbmzdX2d7ewLFcxsMBZz98k0rJZnHWw/Jd0szlrbfOcfTIMsJE6Bws5ZDrHLfcIM49HMcjTQaIdEiWxTiWxLGdQm9B5mgjmIxSpFRkmWASZ7z77iWuXO3wW7/1j1C2muoe9FhZ2U+SjRBaAg5p0mfcu0FgZziujZKSOE4wIiAsz5Jrl5urN7ClwGDY3NrCcTwcy2FzbZOw5nL2/Y9o1Q37FgwmnyBV8VveWkgRwOZ2h1JYwS7PELaWkUajk10ccgLfJk+6RGmCFiFnzg3o9gOefe7vU2s0yTGElTKuo9jY2GBhfpEszen3u5TLZRxH8eG7r2GyLvF4hyDawpEjwtBFuTXiaI/+cExKhVSUccuzZHlRpbL/wAECP2AynnDx6jpvvPUOUkx48qEmzYaHzmJcK0Rio/Op4q/JsJTEthSWmbCy2GCmYmNJReBVEI5L3ZuhujVL5+AqH374IctLy7SaS2jg0pULeGTUG01mlw9gTMF5v5W42l/MPwZW+OlqhF/UfPZTK+o+AcH9+PG7Nff9pXHLg8Qv7XDuEw9iX/JZLU4+Dyr5tz3uXn36/CUWf7vik+6rW585MudPf+932Xzpdb7w71/FxDam3EJnAqUF+/Yv8ZUvf5Ew8EjiiCyNmYyHdNt7nPnoDOPxGKkUFy9fwQsrZNpgex6269If7NFs1tBGMxiMsCyX9tYWVy5f5v33PmR+cR8mz/FdlzxNGfb7eK6DrSz6nS6e45KlKWiNY3uFgmqui8HRtqZ+iAn/4Ou/wd7eKlESE2cZbuBiJDTnm7heUXbsuQGeGyJNhiUFjuOisRknsLuzwwt/8QLD/pBep81gGJFpydvvfki5WiPJEywpUFKwsbkGAnZ320ihUJbDJEpZvb7OuNfDsWyMkWgU4yhlZ3uHwaCPNhl7ex3efus9sknCoL+HUlCuNBiNI/7oD/+Yb/zxHyHSMY4es7O1Q5akXL96hfFwSJbEbG2s8/Zbb5GkKUEQ4nhlMpPxO//0H7O0sohlh/ilEq7ngdF8/Td/k1arSZJEfPvb3yLPDSCJ4jEnHzrO9tYmO7tbbG2vk+em+NwosrRA1Dzi4Sn1AAAgAElEQVTXpVKp0G636fd6DIcjQOB5HllWTMzG05LuWq2ONroQOlICx7WIoxGea5GnMXmWEk3GCAOep1DCwnI8omRMtVRF5EMG4x6NuRXGY4P88DLu86+x++tf4p/XJHzzJVqvX6H+wXXstz4iOrEPOV9HycLuxfc9EMUEI88zlAXjSZ9KJaRcKlOrz2C7Ifv2H8IYQbu9O12pN1Mup6JUrZID2giU5eK6YWFVYgHSYLlqiqBKtBZcunSV+dYR8kSxvbWFznNqlRkEFnGUMC3UJEsyXNtFm6LtUqWKsgS2rQBBlunintFFUjseFUiG1rrg2Ykis3QcB8vRhEGZIKijdY5UGa6yizJ8pfBKAWEY4nlesaI3nbBmU89RKSVSSBzHoVqrgtBICZaysK0AjIXvBaRpIWJ1Cz271a9qnXPL9H715jrdTg9jxNQuQ2CMwHV9qvUa7W6bwWhArVEDmVKtVimVSjgOnD9/gfFoQhynxFGK0RKdS5RlkWuNsoukOUfRmlsgmkywhMSSFl4YMrewQJ5pFGDyEcIk1GpVmq1ZoiTBDZpIBVk65OaVqww7MbPNJWZn59jd3UUpSRaNCdzCL3h9a4M0F1Nu8g5ZWlz7LE3Z2twtOIqPHGbr/TOkWYYQAstSxHE0RZ/lFJE2pFHEyy+/TBiGU//nCZVKhcD3eOHFH5HGE65fvUyaTHBdm3anjXdzm+bekMlohFSSpZVlhJBEk4iv/8ZvI/IcqVM8ZaMjTZpodC6oVhoILCxLsrq6WihHA6D/yseXT4uxDnG25pHjKrZT4tyFG+SZ4ca1G7z95ru8+vKr/OC7P2JrfR2ddTi4UuHxhw/x2EOHKYcu3e6A7Z0ec7MrLCwsMugPqFarLC0vkWmL5uwiUlmkWUaea7I0wVKCudlZet0u9WqVWrXG6urNKRdZMuz3abVa5CZjYb7O448e5vixFYQEKQWunfCrzz2EzkdI4RBFmlRrtBH0+z2UNJDFSJ1hAMdRWDYkcYTjOCRJIQ62urrB1lYby7GwLMVjj53i2We/QK+3R5YW+87PL6CkIihVqDXKDMe7XL58Fs/zSLO8GO+EINOS1c0thHLIjGB1dQPb8XDtgEatWSwU77ZJ05hxf8J8s8zSnE/gWDh2gBAWSlrTPiXHoFhaalGtB0i7SsYMxuRE425RbptrtM5w3AZvv7/J5Zt99h15mGvXruI4LhjIspxeZ0Cz0UQJSZpMWL15jclgm52NixxZqXJ4uUTdG2O7aaF4L2y63S6xnsEKD3BjM2Hl0KPMzMwQhCFRFDMajjh//jxnPzpLZ+cacrLOYhUEE7K44BAneTStSnHJ86LPzPOcNM3IjEGT4diCKJpwfW2Tc2fPMWp2sXcCZtwWo9EI1wrJZJcPz13k4JFneeKRE7z5+l+ytbZWaBTc557+RYEuv8j4RQNCv4x7x996xPWTULzPm3Teq8270cV78WY/6e9utPZe5/ZAqN1drz8Nwfyk43w+FeV7sk5/aot7lQo/aDwIL/WTj/7JbX9a3LOt+9xH97tmxhgmU+VUqWOU5TDKXX74b/6ArRd+zO+8s4M1P0e28ARibNHe2ynKqko1BsPB/8/em8VIlqX3fb9zzr3nbrFH5L5V1t7VVV29Tfcs5LA5pCTDBmXClgnLgh4Mw4YAL9CDDcivfjJgSzYkwhYs0NTQpGkOR5wZjsXZm7P1Wr1XdXVXdXWtWblnRsZ24+7HDzequqfYS80Mhyak/oAAMjJv3Lxx1/Od7//9/riuw+72Nlvr6wwO+hQYbt3aYmV1iXqjgqNdPAveeusdikKxtnabUydXGYcRhREElSqO75b9fEqgHZvRcMzC3CEsW07683L6/b0SkGQMRghsV2M5GpB89StfZ3V1FUsZjLHwg4AkKaWulqVQ+Fx55zKdzhSNxjRJAiioNjqEvX20FzAKewwGPbI0LWmv2iVKcuZmpmnUq2jXoz07j9YO7VYdW03M5b1K6eUaVBHCUKtX2Fjv8uqL51heXKA37OJ7AQWmpDYmOcODMQvTMyRJyMb6OkliqNfaOL6F57plBQtBkUecOXOKo0ePMI7hYJSj7ZxXX3uNB0+fwfNcCgyNZp3TD53mgVMPkGQpBztbmCIDJag3m0R5hihylLIZx12UiNGWjW1J5uYX8SsVpLKoeIrhqMsvP/VZao0KXtUlz6JJxXCfSlBje30drQOSVKLtGlkiaU41KEgZjQcgFWkSkecpjlNWYSSK4cEYSwksR5CkKZ7rl0mNuAP1EaRC41gFZGMSY6M9j972OzhBG1vXUc+8jtjaZfi//Hf4v/EFHv/U49S+8xwDDOqxs6iFOUzFx7JsJIZxOCCJhxRFghSQJjGWsklzwzjLyKWDpV2GwyGe52OQuK6HEBIhJcJAHOcYxN3qhJQ2hgJQFIVBKUOeJSRRgpKSNEuoNdskmcX1azf4+p/+KWfPnMHzA8REloy0yn5a20XJHCbQJyPAKBBGYBGhLYElfYQymPdVwyQOgjvVV0iyBCU0cTLEc8oJknGYIIUppYKFIYkS7IkMuqz0xyhRoCyHJEtBSgoBUsnS71Ro0qwoK9Om3B+o0v5CSgtjCjBlr6YBLGGxt7uD69goJXj3yhVmZ2fJTVQCmwoQIsNCgykQFGjbpkgTlGOhHI/9vX2OHp7nxXOvcezoabT22etuUW/4COniaJdR/4B43EMWguEgZBRmDEcxjucxHo6xtSYXk2NleQhpkyTZxJM54Yu/+wc89vhjaMfGdVz+1Ze/zMz8EtWaQ5qGjMdDlMjY7/WYnp0pr5GZetmeYNvcvr1G0Agpipwb76T88EfPsfLpx7Beu4glBLJRITcljdyyyn0BBjGOwTWcfPxhBDnDYY9KECCMAGw+/eSTPP6pxzi0ssIoDEliQ73extrYQZmCqKk4fOgYSnrIi5fR9Sq/9ru/jePbpHmG6zdIc4XrluA0UxTYtkUUplx+6yXOPP4pCukg8wLuIenfC+b7sJDiTm/sX3yu5S+Wcnbryfzjn0ldReW1ZS523yC3Eh44dYYwCgmjhFMPnsL1XWbnV7l+5R1++dPTOPYQaQy2GHDz3et86slf4s13rrN47CyWSJiemmYUhlQrNYo0wavUuH75LTqBRWHbFHFEKjJst0GBS6NZ58q7b+O5VdIkw/dtOjMd8nzM66+8zNzsLFEcEo/30I5FOvSZmm5g6JfAMiPY2NqkWqtjewo7WAR7mnHYw5Nj8iwki2OK3KBsC2NASgspFc1WgHYkMs+4tpaw17fY2e/x4IMnqNcCJAW7W9v4XsDBxi77/XVmpueJhynVeoaVxyinRh720NoHtYClAxAWyi6r1cIK2NjYpVatE0cx6+sbXLhwgTfOv0SgQuZmK0hZkOflJJQQd469ATEmLRy8+hJCwKXXzlEPLIwZY2kXiAkjh42dIStHjrJ65BhRPKLR8Lh24x2mZ9rs7dyi2ayxcXudcBCSxxmeN2KuLjHDWwgT49ZqWJZPNuySxilj1aGf+cwunELaPo1Wk93dAcZIavUmaxvXMVi8/PLbPHxKcPbkLIeWW6QmwvNKirql7VJ9IS1MYaPQaA3GgooAIyuEseLdqzcpZJ0kHXDk5BHkyMZ6p8rg+DVuXHqNH/z4Rf7D//jvUhjF//PH/5h/59d/ibfO/ZCjx46SNKYwz1rlU+1JSaEKsAySO61ppa2SEJJ7x9UfFT/rMh81hr5ThHhPgflvTW3w54pPpML3xIdJg39R8Z5k9qebcfl5K5QfdXG9f70fJXP4KCn1zxd/uYnrLyr+stf9kfvNFAghKYxCFjlrl15n4/e/xG+8voM5c5zkxOpksGIoClBSkZucPE2p+AFg6Ex1CCoBzVaTnZ19jh0/jFISISyGwx5pWnD9xk0ee/wx8jQkHI1pNJo4rkOapQS+T5LELCwsUa+XNMI8TxiNQnyvglSG3jCkXm9i2YrdnR2EKej3evR7faQUdDptojjGcRzyPCstNrKUl86dozPVpN6ocNDbx9Y2SRJh61Ju5niVst/NsnE9j263y6W3L7G4tAwC+v0BzXaTPMtRQtLv9bAszX63S7VWL6tYxuB5Phsb63z/h8+ysXaLbnefRx97pPT9w2DZmivvvMuPf/gM4yhkdXWFLM/47ne/z/bOLg8/fAZDOWs9GAxxHE2eJrja5dnnXuDdd6+xduMWR48c59Jb7+A6LvVWHT8IkBOpZ5Ik3Ly2juMGTHWmSx9SA88+8wKdzjxZllGrtLi9tgZS0W63yz4tU/Zv2pZG2y7D0Zjufo+pzhTacfAdj4tvXuTN8+/QaE1x/sIbfO/pb9BqeUxNz7C+fhvLsqgEVRxdkp+VtMBIrl+/zkG3x9z8DHEa47kuJi8wpqTaSmVhKJOm3t42lpIkWV72E8VDXLtC/u1zmJkW+T/5hxSz0yRJys72HjM/fBnLgHPy8GQ8XvorpklMlqUoKbBsRZaV5+7e7j5SaTrTs9iOO0ku1GTwLjBkSFXSc6RSKCmQd3vK1OQlkKqUCOd5SjgOsZQmy3O01qV0ushJ44i9nW2m52bxKgFCQFHkd70+pRQkSUSaZhNbmrKvViIYhz0GgyF5rlB2uW35RFYOpV9oYbJJ36nAsjVJGqEdjTGCb37zOwz6B6WFzEQaXGbfZcE1jqNy/yg9qZxKhHivlWNnd5d6tVp6UQoBAsZRhKUUkskASQiUlNiWhTDlfrKs0jZiqjNDnmY4ro2QZV9ulkVQGJI0xfVcbK1Yu7WGnMCibEvhuS6HjxxhNBrx509/n/mF2ZLCWpSQrMGgR+C7FMLimWee48KFCxw+coh6rYJjW9zp/TOFKamvAozJwZSJcqvdpNmqMRoNybNyv7faHfI8LtsZhMBWNrVGAyME4/EIS0oODnooZdHpdCjUNkoqXHWIer3OocOrePNTiHNvIuc72I4zmWwte3KllFiFgYMQszSLrR2041IYQ1bkxHFpX7Oxvo52yl5Fz7PoDw6ojxPA0A1stPbAgHflJoXn4P9nv4XjlKRwU0BRGKJoSFEURFFUHqNC8upLP+bRT38OI/VP3eN6v8tlL06AX/eRuPbW9vGfncN9GObm59je2abZbNA76FGr1llbW+Pd6xfp7u4wXW8RuA5eUOB6Ffr9mINByO7eHodXj2KKnFu3bjIzM4NtW2xvbaNkQR4f4DsGqTUUOW5QwXIaSBkglaQz1cIUZf/0eBxSGJs/f/rPCYIGF85f5satmyzMNmi2HHY2t6nVXIpijBSgbY3nuNhKoSyF7bWxvQ6+FkTDPfJsRJaMS69u27o74rgDSbOsEmy2tRtxe+OAW7c3ePSRs+x2uwxHI9I8Qzsu+zs7LB2a5+bNdRwLtDUkHveoVOsk8QAhbTLRYjAc4XiV8h4qJblJmJvrsL+/TRSPWF5ZwHV8Ak/x0MnFSQ9oerdlIElKb+c8lRgUjj+DsVsUaKpOjMiHeI4iSTLCVHLteo/Dx86i3So3b64zM7vEzZu3OHnyJEUu0Fad0XBMlobMdGwkB/hiQDTqYrsuaAcsh/FgiyiBXNW5cXvM8soqe7t90iyn3WkhpU1/uEGawOW3LrO7vcfBXo/HTzdwdIIlc1zbIUli5EQ9UuQlhVs5pTKl9JbNEZmL0TGFlTHVeoCN3V3a7Q55BrW5OtWtDuqBiM7hKX75C3+TV195g/FoxJGlKV556RzTnQrdYcjs8kOYc/ZkkqaE0SHNZALqfdfKTykgvZ9r8OcdD3+SuN5ffJK43hO/iETsoyhkf50T1w9qHv+wxPX9s0ifJK4/4/o+Yr85RQLCIjeKfOc2m//lf8/jb+5iPfUp4vnlEj5pEv7sXz/NzMwslaDC/u42g/0DegcH5EVBpVYlLXIG/R57uwc0W3WMgd7BkFanQ5oW7O3u8vbbF+m06zSbLaRlIy1JmqUcdLu0O21eefk1nn76B6WXnDR881vfYu32JlPTHTrTc1iWIk9TFAW+42Bpi+PHj7K5uYFS1sTaRKOUpN8fYApDOBpTq9dRykZrBz/wMcYwCiNGB138Sp20KBCytAaxtWZzexttO3zpS1/mM5/9HNF4jKsVcRTj+zWQkkqtCgiKwmAri52dHbIs4zOf+xxPPvEpVlaWkEqx3z2gOoFGTU9Ncfz4CYLAxfN9/KDC6dMPcfbhhxECBoMB3e4B/X6fb3/jzziyeogkjun1ejz88FmWFxcIfAfLAt936czPlcd2cngd16U9Ncszz/yY2U6LwcE+nmPT6TQZjhKmp6d48YVXuHb9BidPnKIocgaDA4KKS5JmRFGKbXv0ukMsy8FxA6JwTHd/n/nZOYajHrPzM3SmWnzmM08yM90pe3+khe8FGGPI0gIpbaQoJXJTnSnyIqFaq1ICe2Xpc5rGGCN47vkXWVhZRStDb3e7lBHnKTLuk+YC/ewV1Ooc3X/09xikEc32zF0f1dnnz+P4LvrEobvJVJ5lZFmM42qkoCQg5zbf/vbTbG/vs7i0Sq3RnlwT4m7vqFSCcdh/DzhkwIicLEuI49L/t+wZLcpkP89QSuFol6IQFLlhf2eXzdu3adQD9nZ3OHb8KHOLC6AUStxhEbx3T7NdB9vWpOME27IxppR7Oo7NOBpTr7UJoxFKWSUoafL5osgmP99JrEswURwn5Lnh+PHjLC8t0R+U9jXKtkCW31cAtmVhKevunaacnS8npcrKs4utII2Gd3tpHccpq4omL6vHquzpzfOMNElxXQchwbZskiTl61/5KidOHsOyNHlRkGUxqlRBox2NUIp6rXG3DzfLS5pwXiQoS3Ho0CECv4IQFl/8l1/k6tV3yfOcVrtDUG/RmZrikUfOIkXBcNBlNOjjeC5SSga9HgjBaDTCcx12draoVn1qDR8lBVprRsMhy8vLZEVGtVqhyMv9HoYR4SgsJxqyHMvWuJ7HYDAgiiKw94jjGEcu8uILz9HqtHAXZpEbu7C1T1x1AcHm5iYHvQHVWq2EmIUJ44VpBoMRjuuDlETpGDk5jo1GHaUkvV6XMBySJAmtZAIzXJ7DcZxSSv7WdWTVw/r7/y62ZTEOIxxtk6alJZVlWXel/JbUXL74Cg8/+VkKqdHC/AWx8F914rrz7B5OrEncMWkh0VbGaBCydnON9bVNJIL1zR0WFzq4KkLkOUGgERZMdWbZ3NrizOlTvHLuFZZWDtPptNnd3aY/6LK5vkEUh1Q8iVZZ2Q+OwXYc1te7WE4dqSx293ap12t0u/v4gcfardt8/vO/zHAU8e61NaqNOksLU1R8Q70qUJQ2Xlmalm0Coixc5wXYbgNhVxiPBqTxiDztoi2BMTmWrSaQrZw0zfG9Krs7XRzHojsQrG8NeeoLv8rc/Ay2G+B6Ls1W2UsdRiGb29t02m3qfs6wewPX1RQYkmhIJjwK2WEUxTTbbXzfh9xQa9ZKr1kDgV96gQ8GY1596RlWFgJsK8dMJqsty8K2NUVRqjOUW6ewWgT1KZIsJO9dBTOmyDMsaXPuwh4XL+/xwOknmF9cKMnYzQZKlSD2rY0N2u1p6lVNMrxNEd5AZLtoGyzfxfYChDHE/S5xIigqh/DaR8kyhe9X8L06UzMzRNEIYwSjsMdse5ndrdv49pATR1q0WoJwZJOmmqCSI5VNnhcTcF2ZwG7upeztjQl8l4rrIpQmTAo2Ng/Y3txjMI6oVFtcefdd3KrD3v4Oh9cfw/6bmt/54u/RqDY5evg4RewRDXtobnHx9Vd44tG/hZpyUYdATt8Zs/IX5G9/3RLXO2C9T+Lj45PE9SPiwySwP22S+VES33vjoxLSe5PDj5IJ3882fdj7OwCI+018763Q3s82vR+C9f735Tp+cll59gTyVx7/WB/XD/lH97Uvf5b4hSbF79smOSGwiDQh377J1d/4B0zvRfQ+8yDO/Dz94QgJOPM3WT5VIe5WyNKYrc0Njp84Tq/fo1KplL0lSlGp+ExPzxKOBhRFQRzlvHXpEr1en0cfeYQTJ46RJmMq1XoJe3Ec4iRma+Ln2Gw2uXr1Gq1mi0Oryxw9doxqpUGr3STL0zKhNZDGKYgSVHMHuBMEAUElmABPMpSy8LyAfi9EoNnc2uXZZ57n5AOnSNIYx/W48vZbOH6AdlxMAWEYYklFo1bnO9/5Hk994ddpt6fY7+4hZIHjeCRpafchgCwvMIWZ9PnmTE1NUUhBnqZkeYrreQSVGkySeqUUvcGAKArptDsIUVZ6jYA0jtnd2UNrh9dffwNTpBw+vEqr1aTVbtNotnBcsByB7QgcTxPUm++d55OXtArqFY942MPzbfZ7e7TbdSq1GgUxQcXn1INnQAjG4+GEmpyT54KgUkEKiW1bfP1Pv8Y4DFlZWSIMQ1rtKYJKzvTsFNVaE0v6ZEn5n6Ww7s7oxnGMUjbf/c7T1Bs1ajUfKLBshZQWSZygbQsxGVYuLi6XEtU8Jo1Dur0DZmbmyOMB+Tv7ON2Qrf/xP6c1N0e9Vmd7t0uaZvzhH/4RT/UyhCUZz3VIsxxTCJIkwxQpg8GAwWCIFArbcWg0Gty+vc7RY8fKCuikSp1lKWKifyxyw4svvMjSwlKZhGcptmWhtY22HbK0mEjkNWmaYFkOphA8/8wLONqmPyFpNtp1Ws0WtUoFIQVpliCFnJyXdqlwmNwLTTFJTpAoITCFxHYUhTHYykFPwEZJkqCUojAFSZKgdSmVF0jyybqkUKVM1bYoihztOFh2Cc/KJxAmUxQl8VlaXLt2lYofYGu7JJ0CQhikkJgiK7fXVgilKQqBKXK2Nm7jV2ulT22Ro6zyuAoJaZZOiMVw+tSDZCbB1i43r96g06qDFNhaMxyFJfBKqNLySIDWGqFKkrbv+9iWxebGNs899xyrq4c4vLrMYNBncWmZ/YN9Op0OSkoKk1OrVSmKouzjFgpJCa9xHbe0iRICKSgl4JS9vNvbW0xNt3Fcj5deepnZmZnSPkg7OLqsmiME2vPI0hQ/8FFSYbkH5b1FLzPVbmJZNrbr0a96OM++jjXXobBKKXJ3f78EujkaN4xJF6bIc4MUJWAnikMCz7/bZ1xOvgk8p8aFC5eZzgWO6xE1KnePnbr4LsZ3GP/G59CWxnN80iQiTUp/0kajgTEGx3FwbI/t9aucPPsohdRY5HcT159lrPFhUVxXiADU6Q9PXEupvYTve0SbfYZmm1FhcbC3Q6s1xdLiCo7jsLm5zvZ6iGSXBx+oUKs0uPLOJsrOyHNFnMEgjBmOCh57/FHA0O60qddrTHU6zC7M0t27TcUVd6/twhQE1Q5x7pAbw+bGNp7v4TiaOCoBVzdvXWV+bo5Lb19EWSnXL1+j1bBpNhxcxyHPsvKZU5gSUJZl2I7PODZUG9OYIseyDEXagyJFSck4ilCWVU4UTSam7uzHG2sjMuOzeuQwliW4fPka09NTE99XSavTpFZtsXn7JibaQuZ9glqDojBk6RhhN6k2D2NpjbRVSTnOCwoUEovhIOLci6/ie3XOX3iD2SnNVE0gLYOjNWmS4Win9INVisKkJNIjqM8Rjftk0Q4yH2BbCiFsikIRizrTs4dYPXKCy1cuc/TYMW7cvILWsgQBNmt0966xt3UFR45QIsPRFXArZTtCEhP2hwz3h9iVw6Xdjg5w3TKpajbbpFnKzbXrzM4s8torl3j2hz9Cmn3OPFClUU0ZJiEXL4154aUrHDnhQ17eQ21bTyYdbb73vUtkmc3sbJ08D0mzLnnW4vxr13n44Rks2eDNSzd49JFHWVpapk+XatrEOV+j9quGJx9/nP/9f/vnrG93+cynH+bZp7/MA8ePkqUF7U8dwlv0ysk+Pnjs/JeJm7lz3fw8DJv3b9MvUuX5b0J8Amf6NyzuADnuDJR/lvhpgFM/a/w02ygOLSAOLfxCt+eva9w5FnFhsfPs8+z/xn9FB8XwM6dwGvO8+tobOI4hjkdkWY7nu1QqPtVqhWtXr7LfP8ALAtbW1hiPRnR394jjCNd16UxNUa3VWVxcYntnjzfOX8APPDAZrXYbJSVBEDCOxuR5zsmTp+9KqL7whc9z9pGHkZYiywvmFpb48x/8kK3bN+nubmGM4bU3LpDmkihK2O/usrl1m4PeHv3eAVqXdhZlcmCwbfj+D77L6uoKR46uMI76E2CK4PDhw/hewAvPnsNkBsdy6O7tMw5DfvM3f5PFxRUGo5BwPGa/v4/lapSy+c63vsv6rdvkWYEf+DiON6HkqklVyRAEftm3WJolEvgellK0Ok0WFxcRqvTmNEDv4ACtSwsDx3H51ae+wH/wH/0dhuGQMB5Tb9VRjqTAQrs+swtLVGrNu9ZN7480SsjilPNvXGRro8v0zHJZQVUaKdVd+M4oHFCr1crBS5LhBTXyvCBJIwQZf+PXf4XHHj7DcHDAzNwsytVIfExhY4wgiodYdsHO9jZJlPL2xUuEoxDfd+7KU2dmphiFA7RT+hqmaYbrOmR5CpaNrZ3yWJmMeDyCIqfebJMYiIcRwRu3SH/7v6W1skwhLIx0y/NmPOapp54qkz+pEELxnW9/jzjO+OY3v8utW+uEYUy/N+L5515CyJyp6Ra/9uufp1LzidMQU0CeZWUFWEmMyYlDw8vnXueg2wMMlrJLKBUWWVpKqau1GkVR0lvzvAAkG2u3uXD+TbK8YHpuhiQvSPOcwWjIQXcXigSQaLusxmEE2nYRBeRpXp77lmJna5MkSSiMwPP8kk5bGGy7tGuwLAslbaS0yDMwRpDnkBfFBIZkk0+k33ciz8sE7A7VFSFwtEdRwMzUNFEcMRqNSLOMLEkgLwf7RpQWK0o7GKkQauJTKxVCUCbz2iaOI4Sa9ElOBuuWttF+qSoQBl567nmyMC4Ts0LiexWytCBJc6SSDPoHKKnIshxtu+zv75MXGVIZfuWpz7O6usSpB0/wxKc/hW3btJtViizBCPCCCt3hCNfzQJZ+m8JyyDP4xp99G3tXaWoAACAASURBVClU2WdeGISwMYUiSw1zc/P0B10Kk/Gpxz+FbZfAtuEoxFAQhSM8z2U8jojGMXmWMQqH3LikuHqxtD5ytM2rr7yCZdl0VlaQj5+Gm1torXEcl8OrK3TaTbRjU1gSazjEVpKwP6LfHRI4VSzbJo4TlNL0e0OEUPzJn3yVWrWKdjR5nmIhiEfjUg7ZbmIeOwNFSp5mYEzJHnAdms0m+/v7FEUx8UOGRqPxi36UYP9WjP1b8UcuY4yhyA3iYoWwuIEyA+rNNktLx4iTnNwItve2GUUDXLvPQ6dXKDLF2touy8dmaTWa1Go11tY3uXTlBl5tisJkbGxusLGxye5ul/Xba0RxgutXyAtTWlsJQRKX0l3PcxlHEWdOP0yj3mJtbZ12ewo/aDLVmaO338fXLlFvwJFDU5A7CDRxljEcJ1jaI85yCiEQlkUaZxRZRnd/lySNMEhAkaYFQihsy0EISZImFCYlTUOCwEJgs73d46AXMjuzgLI0Vb/C+tptKArW19a4cv0aeSHwfB8lEzxbYtsuWVZ6YSepQNkOXlChUq2glGA4HOG6pa3T9HQby1IM+n2uXr1KkSU4WuE6HoKyPz6KYgpjSNOMwtjU63NgHKw8x4z7ZctOIYkSCMOC6U6VRx85zY3rV1g9vIK0FA88cIaFhWUsqfGcCr5lqDkSkY9BGgpbk0chaW+fLAwZRja3hlWE32LYGxL2BgSVJn5gkxcxo1GfleUVwjDk0OoySbrHyePTNCo2rlRUXY3nRywtV6joBgLw/FJFVbYVFOQGllZmuL25SY7CkhaVquGznz2Jry3aTTh06BBvnH+Djc3bHDlyhPXGVawDh3e+eolXX3yG/+Tv/z3+0//mH3Ds9MNEkWZ/d4/Lbz9NNBqSpu+d6+IXzET9qxgzfxI/e/xbU3F9vyXMvbOeHwdSej9I4eMate9d5/vff5xM94M+90HLf9jfPmobP+pzH1dRvfdvH9UX+8GVW/MB67nXPPr+Sc4f9T0+UNpxn69746O26Cdm/O75WzH5hXofUMPSUOBgcsn65bd57p/+Uw79ky8T1n2KJx/CaczT6w8wQKNWYzQc47RKC5rLL+0TeBXSeIx0BFXfpV71SbOE9twUWWQYjQZl35brYkTOwlyHBx84znA4QLsuhSkwCOI447WXzyNxqDdrJGlMmqZkeQnMGI3G/MHvf4mlxQWWl5dwgzrt1hTDwYDv/+BHPPLo4zhaUam3qVSaVL0qBaW33kFvD+0oEIZmp8n8XAtHS1aPHMN1S9sKsoxwNAaTc+7FV1lenOfgYJdX37jAAw89SlEYtne2uHDhPFJZnHngIUwhsGxBvVbBZBlRlvB//94fcOLIsdLiwpHIHK5eeZdLb11iZWGJ7u46flAlNxqMxKRjkmSAdh3iNMeYkt76f33xD6lVq/zJn3yJNItYXT6MFIpqvYYxoqwmhvsURrG/O2Rv54A8HuPYEmm7CDRCGoRwCIchx4+usr29TpYl1KruhE7rYpRFoG1sW5MjSXKDkZpoOCZLuwhjEJaDE/gMhwNa09MUOTz/zHPMTJfSTu04JHkOyubZZ55ne3/EpctXWV1ZwnMdsqKg2++xtLyEJQVGOthaYgpBlgukBWkq0LZCCUMSx8giQmmBp13yOEG/cAX+1qcR//5TWMonzWyk5aEVSGFTrTQJvvsMQknSpTkyk1KveqzMz3D+jUul9284IE9zFg8dwbI1lXoDhGY0SHjzjfM42sb3NFmaUqQF2nV5/PHHcBxdEpKVhVIW4yguKybCoAobYQpGwyGOpTnY73Lk6CGOHj+JlBYV1yWXZWIutUPF8zFJQjHxeS2tdkSJeFISa6J6SPOMoFZjOOqjtSaOU4QS5cBynCNQGGGgmFgUKYvnn3uecDikNd3GkprrV67R292jFvh3ITx3etlkbvM7/+JfcPahM+QmQVplMSyoBLz++pto2yMI6iAyxlGI1nZJL8ZGCokU5QDK8YIy9zYwHJZ+vnEYoi0LUxi04yBFacdjWZo0S3nw7Gks3ydL0wmBubw5xdGgrDYqVcr7e92JeiGhEngMeiNGw5BmrUr3YAchwPOr3Li2PplwCdnbWWe63UAYzUF3k4rn0z/YJ0lG1GoVHKdM+uMkxcgxSlpE44ggcNnd28axNDs7WzhOlV7/gM70XHnvzA229gijDCGhUm1ja5tGc4pOZ5FBNKRW79Bo1Aj7O+RCYlcrmFfeIptvl/6RiBLIBZgwYpymWJ0Gm9vrvH7+NVZWV0tQmu1MJgAMjiPxgwonHjiO3w8ByKY7GGlha43c3EGdXeXNfINnfvwyx46fpT7VorAE2pTEWNuuYNAlzO3Z7/HQI4+RShsj8olY/KOfJfc+w4Uoy+KFee9B8v613F3GmPekH3de71t3dgmi5wU3R9/j8sY+850W+/sj8jTjxo3LOJ5me7dLf3+PE6stbBVSbbRxpEJJ2B/tUYwrrM6vsHQ45d13N6lUOrQ7TerVCk6tzt7GDhVHomSMzBOELCd/lO2SCJeg0WE4GLC2tsnR4w8QxmPi8ZgLF84zOz9DIXKEpcmiFG0PmW7VyNIMP3An/fBlJTdJEqq+RyYtLH8e36thsj7RcB/ftUjjHCUgMRFSWQhU+fwrMoZjWNuKOXnqNL7vMB7EVBoVstxQrVYZDQ6YX5oj3B/gMGQ0eIdqrUpuBFl0wPpmTLW5RKU5VVp0xRlSSHb2tvGDKo4tS3q75/P0n/8YrSN+9ZfmcZQGInKyiQ2ZIMtjHLtCYWuUt0BSxIhsG0ckRHGILHL6/RGXru4ze/hRvKCOtl2SJCVNIrTn093b58pbV+ntb5GPt7Atynu7KTBpTJGN2R0a6stP4DZXCOpNsqTsHa8EAcN+n2rd4fz5NZaPtRiNNC+de4W3zr/Oow82WZr2SJIxwjaIHKaamsVZnzxNymQ+jYB8oh4yHF1tYVke77yzxvLiDEo4pNkejrYpRIxE8cLr6/QGIcry6LSbjMMDvIrPI+JXqP97Lnu7u/T3blMohc2QihygfZdgfRVHnqCYsbGLhIJS+XXnHC+vg49vg/sw6e9fdkX0vWuauxflez9/Un29Nz6RCv8c8XFJ4S9q/X8Zn/k4GfD9frcPktz+NJLqD/77T6aA+e99DfP6JeTZkx+6zIeu/76W+iuOewced34toJBlIpunBZ4Zc+47X6P/R9/kia+9wtZ8C+/RU7h+jQsX3sbzvLvgGc/3yZwdKAq+//++gq0Vx44fIQhq9HtDtO0SVMqfpdLU6nVeffWVshcvyxhHGdWgitaaZrtJGqcElQqOttne2WJuboogcBGiBNBUKhWicczN67f43Gc/S6fTwnUtgiAgy2LC0YAzD50pwU5JUvpihiFX332XTqfDOAppNMsEK0lyXM8lS1Js7ZBmZV9ibkoQjlCKOE44evQYtVoFrS2WVg7huC4//uGPGIchZ8+eZWFhgTSJ2d7ZplKtsru7y4svvMCZhx5FSQgCTbVaxXEqFAaqtSoLC/NoxybPc4TUJEnGxbcu0mjUEIB2A7LM8PR3n6bIc2rVCtVqwOc//3l8P8Bzywq3kJLBcEiapjha4/kVbt++zcU3z7O1fptjJ46WFTtjQZET9g7Y3tzAcz2WlldI8oKZ2TnyouxFlcKQphGj4RDb1mRpzu///h/y4IOnkaogCGrY2scIQ8V32dvfByO4fOkSpx96iIKyd7AS+ChgcXGel86d4+jqMkuLU+SFQSrFwuIio9EAz9EUuUFOJKhlD2SI5ynGoz7RuE846iJwCAJNr7dFfH0b99I26v/4R/jNJklalJLqQiBERl6UMm319e8RRhGDTpP5xYW7U1DHThxHKMPS0jxLy0vkpqBS8cnyUhY3GIz41re+w/5Bl+Mnj5cDS6HY3d1j4/YGlaDK9vYut9fXqFQruHeIvBNoWJHnJcE2F/zJv/oKp04dwwtcvMBBOQKMhxQ2UthkcUzgl3AmIUria5rEKClBlMRgqSRJlmJZNq7r3gUxlYAhwdUr17h+/TrzC3PYWpcDJAPTU1N0pqfLL10Ivved73Lz1nUW5heQ9gR6ZNtlb6Yp1QEzMzOTQauayBfBmALXdfC8EiQmYNIvlk9UBGpyHstJ9VbclaNmWUaRZlh2mehatlXa5uR5eSed9B4XRYFl2UQTlYVlO0TjMZ7no5RFt9tFawdLCdI0vevxq5RCKkOWwWgUAQXPPvsCYRgyHo9YWV7GtjVS2WRZjMBiMBgyN7vI9Mw0UgqUgjgZ47gORS7I0owkiVBK4DpVLly4yLkXXufhs49QmAww5FmKdsqq8f7eHkrpsjex2yXwa/zo+8+xu9Njfm4J7XooEnAsxPMXsKcbFBIsXcKq3nrrMp6tqVcDkkaFarXKyvIKyrIYj4bkuUFJCykFvf4BlUq19HDNcsbCIOoV1MRmx9xcp9fxKU7ZzE1XicJNLl34Hltrr3DpyjqNdgVlG/IioUhiLr72Ig89/hlSYSNJ76v/7v3P27uPlnve/7TPv6IoMC+5hLcj9kZvUJs9RJ4J6s1pnn/xHLNzyyijuPbuJZaXmlRdH9ex0IHAkilCOWC7DEY3qTU1g7DK8eMPkGWSLE8Y9Ad4vsPg4IB63UEWQ4osRFoaYyTK9slFhdvr2zTrDRYWl8izjLW1NXzPod3q0Gy2GYURF998i1rV4uTJeUxeWtoUphRZS6nKfmNlkReSanuOnCq97j5JuIOjh6TZsJQFywQlqpiiQGubNC5II0lqXC68tY6wNYHv0GzUCarV0o6tyKkEPkLauFZOOLyJYyfYls94PCwndivzOEEbpMbzPJI0ZXtrm/m5RZAWWmu01rz6ysskccjZB6Zp1TMsUYIVpbImRHBTTgDlKV51Bq86D8JwsH0dshTbLuXHSI3lTPHS6++wunpkcl1KlJqMlkzGVKvDoL9PzR+jdU6e9xCWxEiP/tDHqDaNzipB0CBLc9Y3Njl+8iSu71NrNLhx6wYLC0fYXF/n8ptvc+2dVznzQI3DKx7CTKwAhCTLyjaJYtLXiiitzu7cb2zLJs9jLC2Ym2uAGaOkRxTHJJFHkhnSTLC7XzILxlHC2bNnSbOM6lyAvlXjbXGendEOWxubtKdmObrU4eLLPwLLYuX6b+HstLE+LVAmoxDiJ8quH5a43k/8ImW8H1zU+Ws5iv3/NT5JXD8k7q2wvv91Z3b8fj7/QT2rH1QtvZ+Zng/7Px/3mQ+rqt6vJv+j+mnf7xN4v4nq+/fJvbPH5TYVP/F/83/2B3BjA/m3v/C+dRT3990/9tt9cIX4fuIv7LsPqMp/4Dbds72OkRQSwqy061AI3nztAt/4l/+cI3/6PMeev8b4bzzF01feYXFxBc8LaHc6NFt1ZqZnynVoG7c9Qgmw4wbHTx5FaUU4PKBer+O4LuNohKUMXqWBwdBqNinyjLnZWV548TVeeP55nnjiccbRmCQuQS6jcMjKoUWkMkTRmNFwiOu4ROMYW2l6vQOWluZIkpLmqCyJJaF3sMfMzDS2tlGWRRqH3L51k3cuv8vRY8fwfZednR3yHNI0p7t3QKVS5/LlKzjaxvMcCkQpUZWKl159lenpKWq1gDxPcF2X/f0u1aDGAycf4I//+I95++23OX36wRLsBHiuy4njxzn34qt87nNPkJNQrzUY9Ma4Qdk75bgWG1u3qVZbjMMICvjaV77K7Nw801PTGGPxxutvkMYRS/NzHD95hKmpKbTt4vsV3njjNWZnpylMRqVaxbJssqxgb6+LEHDi6GGmmh16/S5ZlvHsj5/lhR//iKoricZjpqbnSNKczlSLODVEUYKrHZQwhNEQAM/1sW2berWOcmxarToIm9E4wnYt1m/dpFFrcHBwwCOPPIKxNJZt4zoOUThkcLBHtV5lZXme2ZkGBwc7eNUGnu9DkeO5uiQqK4skDen3hji2i1KGeBjh+QHReEyn2SAtFJIxw5016i9uI/+H/5qLhFi2JqjUKCZ+g2maol1NbnI6z58nVpJvXHido4cPMw5DavUa4zik3qiRJAnDcIB2NFrb9AcDLGWjXZfjJ07x4OkHsbRNPiH6dve7XLt6lWqtzkF3QJSOOLRyiCRN0LamKApGwwNczyeOMvr9IUcOH6Fea5ImCVJJsrwoiaMihyJCqZzCpBRFQbfbRU7gQJY1ofxSJmpi4qUahuHd5PWOh2un1aHVapb9prK0PBn0uqW01vHuSp5PnjzG6dNnCILgrhetUmoCaILO1BQgkMJCYiGkIAxHNJsNgsBDqlI+6EzIuKXkXpQTPlJOBCnleouiKCFFjoNtlUoHhCm/hxKo0kNoksyWJE4hBFJJtC4lj93dPdQEEhX4Aa7jkuZJWdm2LHy/ih8EKGUocsUf/9GXmZlt8dBDD+N5Pjvbu7iuxvNdwtEYy1YUueL5557n0OEj7O3u0+sdYNkKIQyeV6PIC+I4QmubSiUgyiJm56ZYXFzAcSCOIhytKcykjz2JSZIER3tgcoxax8gBW+shtlb86298ndykLK2sov0As70PByPs2SmKXDIajel02ni+i9UbMuqU8mCEJMtzbMvmK1/5Ku9cucKJE8cngCWNZVnsJCHB3DRpEmGEwHEdrEs38DtNKn/nH9KcPku1doSlhdMcWX2CpZXDVCpNDg7G/OP/+bc5vNhmZ2udk499mkJYaBIM1l941nzYM/Mnlrv3WfO+n8f/zCF70cJ6IvvQZ5NSiuRbNjdvXUHpHZZOPsbm5i7zC4vMzDWo1Vq8+vI5luYCllcEdd/H0lXGWYEtPQ76PV4912NuahZpSd58e8zO7m1OnDyD5zmTdDwjqFRJ4hEwgjwmyw1pkoHQuJUppqbnuXH9Bp1Om43NDWamZ1hfv0mt1iCOcy6+eYlut8sTT57GtVM8LUniGHuiKLAtm2gcUeQF0vGJMoV2mjSrDsPuVVwrYHNjxOuv3+Tw6jGydIhllXTrLC9YW9vjpddvMDV3nLOPPsr0TIud7R1s7eB6Pjdv3iAcDiADrXYZdd9FWzauV2c03CMXDjpYQqgKTK7tLCtI04Jev08Ux1y7fhvbdlhcmGa67bHYijB5iG1bSFXK5W0tiRNBnGqcwEEHi+TGQVsFthkRh0NcxwFgr59w6d0DHn/yV5AT6bPnOVi2RTQO6ff3CfyAmdkp4tEAgyIzIHSHSvMEtenj+PVppKXJswTft5ienufGzZtUayVfRAqLcNTjB9/5PkeW6hye19S1ReAZLDUZU4ocR7vl/UyqspfflJNrQkhsu4TaaeUiSHAdCbmhUAWer9lYH9BoBUjLYAgIRyFpIckRjKOIIAiQe5r/9U//J9pHWzx44jRhYnjxuac5vtTm5q13ORT9GrX2DPaTGYiCXMqJ8Pp91c33TQ7dj4Lxp4mfdhz/nh3OByXTnySu98YnieuHxL0n0EfJfz/u8/cjF/5FzuJ8UNzvd/jZKqYfvfzHA6g+iCoskH/7C3cHY1LeZ2L/U23de9v4M8X9Tjbc814VhlxQAkrGKd//2p8xfuUNPvvVV6juhkRfeALaTRYX5vBdr5TqFhmWgJ2dXXrdA1xH47bCsjI0ruFXArTtkUQDojjBCwIsJegd7CKlJs8zLGXxyqtvsLW9y4kTx1ESHMemUq2Q5wXhOKQSVBiPy0E6Bbz99tvMz83hOpru/h7LK0v0evsEvkd3v1dWjsYhP/zBD1heXuHmrTWmpqcosggJtDrTeL7PYDCg1WohhMXvffEPmG5P4Xilb2il4hG45aCw1+shpODI4SNYtoMQBlspxuOES2+9w/LSMoEfEPgBeZazsDSPVAqhJNq2ydIUrRXSUjiOj5SS4WAfx3Up8pT93T3azRbK0iRxjKttTj14imq9Tq/bBSFYWlpkcLDP4sIMBWU1MgzHZcKioNmsE8VxCa6RZb9SZ2qKih/w3I9/zM0bW4yjEc12g1azSTQeMjvdpFZv8KUvf5kHHzwJRcIgDAm8gCxLCKMRtnaxtQMYonBErVrBc13iaESeFLieCyLH5ILRYES91sTSpXWRpRSj4RAlBcqyUNrFcx3G4yFz8wsUKGxLIiYYmHEcYcmyUlmt1JFSkSQjKn6dcZLj+QH97g5SK4a9bfRzazgPH+fgv/i77G7cZmFxib39LpZtoXVpL5HlOZVqBV48j1xZ4IHHHkFbClsrwjhECUkUxiWYJU/pD8Y4jgOUsBtjFL/7O/8njz76MLZd+shKoFZrcHh1FcfRNBo15hZmwYDruiRpQpZl5YBNaeI4wbYtLP3/sfdmwXZd553fbw17PPN454sZBEGABEWKpKjJktvttizJcrddkZO0nVReuisdpzrVD+mk+yEPcSrJSzqpSqX7JUmlLdstWbaktkSKFGdxJkFSHDBPF7i447lnPnteediHIAQBFCirK3E1VxUKuPfsvc69B3vtvb7vP0ks7XL6xLsUPBvftVHaEIVDxsMe48mYNDMo7eAXCtiWQ5oZgjDXfEokk0lemGiduwdDfr/SOv99T753khdffJGjdx8hSTMkGVdXLvIXf/EX3Hv/g1hKkZmENEuwHQeDROkPDKCsaaE0CSbYls1bb75JrVZFWQKlJHEc5whSmuE4LmmanxeGucOvUjkdrt/vYTs2Sqm8gWDbJElCFIbXftY4jtFWbtYVhWEeBzNFjs1006u0Jo5TvvGv/x/uvffevGF7rXDKkVbbsgkmCXGcEqfxNPKqxsL8PNV6Ga01tWqVYtEDEizbRinNaBTz5JNP8In77sWQ4TgO5VKRzBiGw5ArV67gOg6lYoHOTodytUKa5DFNUdSb6v8ERgjGoxFkCcPRmCyFIBix0X2dUlljqTnm52eAlGP33I1bqJKmGYnJkCfOw/wMJpW8d+I9qpUyrq1R45BnLp1h3759xJO8QI6CgFahwtFaG7p9CnGK6o5JNjtE69vowYTJ6jrOOILuCPH2GcwwoP+796O9kIgedjEl1RHhCIRw6HZHLC7uYnm+zLDfZfnQPWTSwiEku6FwzR8vt272Xnvthmfn9c+aa67CH1K4GgPJdx0ujN6iXkkRxRn27d/P5csraEtRrTfo97cQRBQUFAuCzmDME0+c4OD+JSx3E88r0qzZSCvEq5aZaS9TrjR56ZUXKPg+aRwyHAS0WnWCSQeVRTkaZgybWzvsDELmF5ZxHZ+VyxdZWFjA8wt55nQmqVYbvPbayywuzXHm9GkKboajDQKDlIY0S6brKgFhsGybOFMUK7OMBx1sa0gwWcfyHGqNGlIOkSpFCE1mbDJshNaMQo/Zhf3MLy2wub7GwtwiSMF4NKbT2WZhfg5lIoa9MzgqwnWKJGSQGLzyLNsDCyMspHZwXR/f9wnCgHKlxOzsDM32HI8//jSb65c5c+oNDu6pIYRCaoHJwFIWSRbSHyt+9NR77DtyF5bbwBiBFiGT/hWkSUjihDRJSEWBIK1weXWdYrGA57t4nk8wzvPSS0WPKIjZ3NqkUmtjuzXGocL2ZtFunY3tTZRW7HS2cVzN+voqhUKVKAzZ2dkhjmNMaDh16mX6nU0O31Gn4KR0d4bUG0UMeQMsMzGQG2TJ6X2LnDuF43g5Km4ypMj9HEwmyGX9BiljpLBw3Iw0zZiEDhcvXSaMczO4gwcPIEgpmDK/dudvcMp/k+2NDS5eWePQoQU2Vt6kUJDM9T9HqT6D9VD+fEuFRl7n1S2EuGnheuNa+0X3gn+dffHPzvNx4Xrj+LhwvcW4GSX2+gfERzn//4+F680WyY3jep3vrcYvu3DNN3E3fO+6whVgOMxdVuHnuwP/TShcLSFJspSV8xd46s+/x/h/+b/51ZfPwt5dPCEzlg7cgSWiPANxqp0z0uBbFkmckAQx5VIRUeoChu1LEZbloET+uuvXsJwSSZxSK1U4feq9POpGauaXdlEq10jSMYfvPEShUEQISRjkRUR3ZwfH9hiOJmBgpj2L1gLLVnieRxwHlMuF3DgiFdQbddIkYc+u3RRLZRrNNmEU0dtax3VsVq9uorRmbm4OECRxRnenjxKKrU4XbWka1RK2rZiMRwSTMbV6gzAMGY1DCr5Hd3uHRr3FzMxcjihFIdVKlTffepPDRw6jLYs0y/LAcQOFosR2Slh2ifG4j+ek2I5Pt9Ph9KnTlAollGvh2HnRrS1FmMR8+1t/zsMPf5osi5lp1ih4DnEm8o1vElMsFiiVSjkd07UZjyd0uz2qtQqZMZx87xS7l3YRBDCJRtxxeB+2bbG0NMtsu8nGdge/4NNu1bBVikHkhdsUtVHKncb4KEaDPlrlWsf+TodqpUZ30MUQ4doloknEe++eoj07h2NJkjgv2FIDtuMSpkCWUiwUCKIE7XiIqbkN0uRNA/JNf25WIvJMT2mQjkUQDhl0r1KqFRi/eQZnPaD6f/239DyforaZm5/DLxTZ6mxh2RaYfJ1PJiMKL76NKPkY10KaDCNSUAaZSro7PdIoJksTKvUWjuMipeaxx55ka7PDgf17qVVLOI4miaNc/225bG6u82/+7BuMxwP27d+PkLlrpVZ5HulkNEZKG8fxUMrgeprUxNTKFvGkSzjpkWQWvuPmNHq/jmWXSUWGUAqhFFJZSJWbuwSTkJdffpU9e/dhTDptnuUbH2t6vZnUUCgUcT0Hy3YRJqXgWHmMknZQUpBlMVEcoi1nGg/xAcVXqTzmxpmixpvr60iZO1QrlZvI5DTyHMF4/16qtWY4GuR5lCab5shCFOXune8XpVmS50JqKzfhyrIsz3tO0zxXOcuulT1CCIIgJE0M93/iGKVyOdduTtFZy3ZJswytHf74j/+Ut956l7uP3o3vaxxH4DsFUClSqGnRHRCEQ9I0dwV3nBJhGHDHob34hbwZp7WNVhZCWvS6O9QbVXzPw9IWYZS/Riqoln26nR2qtTrazlkF5WKBUqWGyQS1epVCdYwQknbrPoRQzLXnCDTN4QAAIABJREFUOHfqPLPNMlvrqziNMuq1E5gwRA4GeFFCMQH6E2whmeuOSX/8Bvqt04i3TmO9c47yyga6WcdyXdI4JprE7HR2OPveSap+kXK5jJaaOEpItzsElSKV3/odnNTFpoBOy4R9zTC8iFewsF1Be7bGaHudC+fOcuCeBzBS4ZiAVFg3ebzcvHC9ng1248PloxauBBB/x+GN3iPM11w2JxK/4OEXXDY3xmzv7PDMc88RjGP0uIrrT1COZmHhEyhrDSuZpVyxsWVEEpZ59bUOk7DPTnfMQw99klKxhKUkaaYYDnsUC4pw0EVZ72v6JJX6PBmCLJMUiz5bW9s4tsfa2ir1eot+b8B9998DIuLcmRXmZ0uUPI3jWGRZhBKQxCGWpcCkZGmEV6oRRDZKpXQ6Z3FFmc1OxnPPnGK23cIvgMlKvPDCKV47vopXVJy7tMOuvXfSGwyoVav0dvr4RQ9t5VFuURhQdFOyaA2RJDhOkSAdQqiJ8FHODI7rUam2UMoiSWL8gou2Jb3eNkr7nD17idGgwz2H91AqSoSwMCRYSmESQ5QGbHUFp8+PuOv++7AtBy0lwWSLaLSGJMNkuUnci6+/x6mzPR7+9Kdothqsrl6hXmsRRYZudzuPVPPKjEZj2ssLKKdEoTCDV6oRmYhWs00cJbSbbZTUGCNZX11ja2OTufYM3Z0uP/zeo7TahtlWhXbboAw0Zl2EDkEoMA62dkHkrsv5fShCSLAth8kkb1QKCWbaLEiShMREOKpKHI/xvQLjSR+R+bx7ZpUDhw7jOAVq1Sq7FucJ4xAxUmRDw/fWv8EDn/gkb7z3LpUy2OkGWbrDXO8LYBUofV6RCUkicy3vT62lDylcf6oZ9EtI7bid4z8uXG9/fFy43ua4mQPu+8Xs9Rfc+xf5+9+7/rz3F0KWZT/zvY/a3bkxVuf9c9/v3t9q7lu9182KyZs5pf0yCtkPozTnf3/w/lJK0u88AYD86q8gBFiW/pnfB0AK8TMGSrd1yxG5sM1c//WNh9zGede//y3PITdhMgLiJENqTZomvPL0o6x/88958AdvsXuUcO7gEmrvMvt27yIOA8hStNIkccK502dYOXeJcrlGHEcIlXeVJ6OYbOKThYrhcMSPnnqWO+88wtb2No6jEUpieXmRWa01SZKMV15+gYMHd+N7HmvrWziuR6/XRZF/9lEU89Qzz+A6DvVWA8/32dzaRlsOtudw/sIV1jYGlCsN/JJLvzugUPTxih6bmxv4vk9v8xJRnFKpt3n9+E/oD0csLS+ztrZOpVaj1qjSnpnh+eefQwCt9hylcpM47jHpb1CstXjzjRPINIE0IIxGeKUKTz//ClEY8cTTT3L4yCGOHjlEFOQZiRkZWWqI45g/+bPv0mq3ee3VF9l/YB/a9khROJ5Pu90gHnfodAY0Wi0yIRgHAWWvwJ7lg0yCHuWSB2iiTCG1w/Hjb/Nv/+qvuOvIQTIDSiviKEZKi0q5SmYiTBKzfnWduaUlNtYu8skH7sMIQxgGOJbHOIqoVGoUy2XiNKVUrRHFFufPXcijioYBlq2J44ggDKhUq0zCkChOsbwS0rLxPJtomlnr+i7t2SZxPMay3BzRE2BEHuVjWxZK5w9jKRTGiKmOOMnR2f4AqUBIC6EtpBTEYYK0bDAJejzAKhSIz16i+Po6vT/8LKXP/RqOUyUcbJEJC8v2WLt4ibJj8Qf/4T/gnqN302rWsJ57DTwXU7DZ2dnO8xYBoTXFUhG/VGAwDvj2t77PaDiiVCqye/de2q1ZOt1tZuZmAYllOcRpipD5Rq3XH9CemWVmdhYhyOloQiKxkdqh191EiIg4M6TCZjzuUyw38UoN3EIFJR2k7ZAqhREZJsv1q3l0UogxGdGUrup4Dsu7lhACNDFxGGDZFlpbIBVMNaevvHScvXuX8YouGEkQwgsvvcquPcsokbNFfM+jt7NNoeCQGHENnTYwRT0hTRN836debyCVleujRS6RiKLgmiGVEBJM/nxSMtfDCiGnUTkGrabmLnGEdjySLCPJQEiFQeQIVRrnObMmJcsSLG0TjsekccLG5hYz8zOkWUqcJiRpitQaOb27Sgnzc7Ps2bObStnBsR0cp8A4mKBw+NM//VMWF+colUq5CVRopq7ckpmZBkiLIIgolAqkWUKc5M0JRIplqalGURAnfTzXB5ESJyleqUJv0MeYFNfzGIch2rFJsxStLaL0So7sxE02NzapVMss7lrIDd+E4uLlVbq9HvaVLWSrgd9uYBzNhBRPazq/97eQv/cl7P/uHzH+z34L9Q9+l/F//NsMP/cg7y5WGX36MI+qEd8edXjAKrF4+DDZH/2XTD7/EMmvfpbhU8+RWRLz1V/B9hWZCUAOSehTri1g0GhlgxHIaMyVq1eYnalR9FxSUcJwk8gabt6o/Wnjv59+BprrvkheygtX9WCS09+nbr758y5GkTC5YJG9ITHlE9jVJa6uD2jNLSCUwbYU1aJPGAY0KoI7DlTZ6e3QaHqU3D4qlaTZhE5PYfuS1IzIMs0gkDzwqYewfUWSpvhFj4Jvc/XSeaJxD88lR9MdH9vRjIOM8TijubiXq6tX2bV7gSASFAplrly5jGNrkgS+953HWJ6vUaumiKzAmXMbzM/m2eOWbRFGMbm7mSTKXCx/lnAS4KuESdil7GvcUpFGq4TGIERGuepTb1a4dKVPlJU5eGAfm+tr7N27h2KpQBAN8hivTheSEVGwRUFOsHybxHKIB322+hm6sEx7aZkT777NeBji2JpzZ0/hOhbSSLyCzyuvvMGJd99BpV3u3F/BdwVJOkYqQZikaDtDCE3JK/DJB4/henUykaGyMSYcIEyEIc9En4wn1JqzbPVCDt55jMsrl1laWsqzmKXAdQSY3CyuUq0SZeA5LpvrVxgP+1TKVbrdASbNiMKQi5cuMDM/g1YZ435Iu6mZ9M+z0bnCnQfmOLBoY8IEZStkphjFGb5dQpCSyBjX9jFSkBqLlSsjbA2eV5julwWgwAiyLM2zXYVC6ASpHEAyHAW4vqRZdRgNA7b7Q4RIGQxGLC4ustnZoRI0MQ8Nubxxlfm6y4H9Bzl07yd59/lvMx9+lYLnUfqiQyIKeMkEI/R0fchrEokb97y/KMp64177ZsXujXvTG9/lVrXA+xF2H48PxseF622ODyu2boVe3moR3Ozi/EUyoG41/+0gpTc7B34+EvvLRmBvHPn7//R8HxSuX7hWzP67eO8Pm+d2Zr7t9xcgTYajJSKO+S/+zm/z2VcucPeLFzC7F0g+8yCJkjz77LMcOHAAYwwbG+tUKlVgGlEzDuj2ejz77DM0mjWOH3+DvUuH+Nf/51/ywAMPMD+/RKc3pt6qEcURjuvw6Pcf4czJkywvzSMFdLa2EMKQpRHa8nAcj82NTX7wg0e5/75jZJmh2+tx/sIFHv70p9G2TX8wZjAcMTM7R6fT4Qc/eISLFy5y112HcVwLTG6o8r6hhOM6dDs7eIUq3/jjP6VSrbNv/27qtTrbW1tkaUa9VgczYX5hjruOHsX2fYS2sJVkPJnglZu4rk2jnrsaVxsNogiee/bHHNy7yEOfehDLtrm6tkEWhfS6fd595126nR1mGg3iLOLQoQM0mzVsS9PZ3sKxbCAP/PbL1TxQfloARGFEBly+dJb2TIPBaIhfrmCM5NL586TpgGP33MVsa26av5nmRWQSYExGlqZkqaFUKpMkCUuzNWrVEmGckGYS26lw9vQ5mo1ZhoOAK1dWabdnuXj2HM12GyElUZrHIuTZnTllM0kMjlXALxQB0EqgpWI0HhIEAVJqSsUKSudOsnGc5mibUmgBpAlbm2tYWiOlRmuZbxwsK8++DYYordBKMxj0Kbg2SJsk2iIYDyhZReRfvcnq15eJHj4G3hwFZROnA6Rlk2WSYTdE4/Hd732XO+7cx/KuRYrfegKx1ePUZEij0SIFjLSmerKY8WhCo95geWkvW9tbHLjjAKVyEYRhZnbmuqI71+BpLUnTmIXFeRYX58kMxFGcm6akhrNnzvL008/SbNZotBpoS6OUwPM8jHnfvClBSM0H2amSNMmNja5vMFq2zY0uj6nQSMvBmDzGRmCYBGMsx2b/gYN4nqa/s43JMsJgwksvvcC+vbtx3AJJHJElEVpkTAbd3DU6jrBUrg3P4vGUsm0YTwIcv4DJkunmxeRFqczNTyBDKQEi15IJIYiiCGNMrvd0HLIs/7dl2RiT5deCUsRRhKU1eQpUbpeVJNOiLw5JkwghDLVG4wPdqxAEQYDtOJBljMdDbNvC9/Js5mSaDxuGEZ7v0+31+NSnHkZbGsdxp9EeY4rFwjQnV6MthWUptre3py7RSW7ckiW5m7Nlo5WN7eSZlleuXMXSDpZtI5BYOo/MklIRjgaUiz4mTYhZQ0lB0PeJ44Q4A7dQYLAzpNcb8aPHnmTLtjn6+7+H2T+Lfcce9MFdiH0L2Jc2CL7+t/nRyXdZXVtjZmGR/s4q1XIFx3IYDcb81//kn/OP/6t/wle/8mXmzl7B8yzW72giRUYwGTPz+gkc20J8OWcJDfo9fLdIFCVkCIbDIY7jEAQBm5fPsrC8m5lde8iMlZtr3UbL9baYW9d9+X7hqh9MfuZYaVJAMHk3o3t5lSvr79BoLbGwfIDNzQ7RZEK/P2BpYYFXXn2VzaurHD7YoN7wMdmEMEkZR5AKh1deP0mtXCeNMgaTlJXVzWn0TcT5c+dpNFsMRiHLe3bR6axTdAVCxKRhzkbwClXOnLnE3NwStla8/fabLMwvIS1NvV7H9zyGwyEXzp3lgU8sUC0JPMthMBxTLAqSNEYpSZKkKJnrv1Pp4pXmcCwQaR8VRXi2wfYnFGyLSZKgsghPy9zp9nKPXbv24biaRrPG6dMnKZeLaGUxmYQ0q1WGOytYXIXMUCzUGQ76OJYAex6hS8RpRrNZp9FuIpRhbmEOIS0KhQqXrmyglWGwdYovfu4OSt4ojwgkw2QZnuWiEERxjFUug1XEclsokzIZXiWc7PDCj9+iXNqNVhO0lZIaw6mTlzn+k9N85rOfxwjBaDRgMurR6QxwXI9yuci7J96hXm8QhgFKKRqNOufPn2V2ZhHLslhbu8rs3AIbGx06G5fxrA4XT77HriXD0T3zlAoGaSuM0KRpBCbmqZc2CbOIVkViZx7jcHwtwzoMAnxPo7UiSRKGw+EUfGCq7YcsM8SJ4eKFSzRbLSxto6TFxSsJr7x+kcFIEMUZSZAxvzhL0avgbBaQnxtjlOLOfft586138As+9C7TGn4OKTXu5yzQBRyRkX4IwvrXHbcF2NzivOvBpuvZEx+AMx8XrjeOj3NcbzFujLz5sOPeLzpvREGvn+dm572f73gjCnv9Mbc6/+dRGK6f71Y/2+2O64vzD/uZbnztRoT5Zr/jjeff+B43nvPz0Npfxvgp6tWHjJt12W513vVZnkIIMIbO2XP85Pf/Mf/ThYiFULDzxfuJ79yfI6LVGl/+8lfy60vB0q5dJGnGxUsXWd/YZHN761oBb9s2rVaT7e1tfvMrv06cjrlw6TT33X83lmUxMzNLqVhCa0W73UapHKVpt9u0mk2WlpbJMsPOToe5+TmO3XOMbq+LV/BZWlriV774BYyAKM61LmtrGwyGPSqlKn/w9/+Ar/8Hv4vnWpgspVgqMBqNiMIEpSwwUKxUcF2fUrnKF37lc8zOtEmSiNUrl3nxhefJ0gylFWmW4rg2UsmpTsnFLzaQ2qHRalAo+TRnZuj2R0RxRLtVp91uTZ0TcxfJ42+8zuxsm51Oj83NLSDj2D1HiMKAXjfPoZydmcOyrRzZylKM1ERxhMlyF9jhYIDneezeuwfXL2CMQhhBZlKWdy1x1113sbS0SGZSTJagJEwmE5TSxFMjF8exefLpp9hYv0oYhvT6uVbXtnMa6JtvvkKcjKnVCxw4sJvLVy4gRU7Z9QpFigUfbVkMhyO0znWNa2vrPPbDx5iMR7mb9GDMxvo2hWIB3y/gOLnJElkeZ+LYDuEkYDDsY0yOPlcrVTzPy4GWqSurMZAZg+daTEYDLC0pFz2UNJAGjLsbyNQw+e7zRF+Yw3x2jtbyPkKjyKKIznZ/aliX4XsFvvudH/Cv/tX/wZEjdzIJRggEYRiyculSrrfV9pRup4iiBMtyuHp1g3KlxMOffjjXYKYJtmOhLZWbCCl5jZ5rTL6WHMcmTVO63R1effVVJuOQjY0ttjvbtFs1lnftYjQJct1VkmCMIIpiRqMxSZxiRN55V9M+vJpSbN9fvUmaF/7WFLXUSmFrjWXlf7RSWFbu+Ot5Tk6P05IsTVFS4Lg21XqNr//e16mUSmSA6/koy8Jx3VyLDWitSNOE4XDAYLDDeDREGHJ9q8ypv0kSk2UpaZowGg2xLIssy4ii6FoWqDGGixcvXqdrzbVmtu0BYGmVmzcZg+956Om6ye8j+bU5GAxxHA/XdXFdF61lTvUTubbXLxQwWQYYfN9jNModVLWSFAolojjBcV2SJKVcLpOajCCMEFKhtE2cJOz0ehghSLOMQb8LZNTrNQS522gwHuG5Dr5fIIxiJmHETqeLMSlC5Fo3Y0ApTRAE042fRGCIwgAjuHY/KZfLzMzOEAS5Jr1YcphfaPDlr/w6X/vab+D5mn63w48ef5ztrR0Q+bN8Y32LP/qj/4E77rgTx/YoF8pE4Yj19RVKBY9f+fznicIRcTxCCkMUBUzGPWxLkcQhvW4vbwrInMrtTd3JC34VKSXVapUkSa7pjwuVKpm0MUohsttrYN/sWfNR8iR/apMMgMRcMQg7oFSrU2026Q8HSKUpl2uUSyUG/QFBMGZhvkaYTpgEYzAa127ywgvnCeMJn/ncvXieoVItMon6OLbm/NlzlItldi0v47ku2nZA2szNLxJFUc4ekBIpMhxb0myUWV+7wpXVVQ4cvGPqN5A3FoejMcdfe5V6rYwUDisX1zCix+69bk7T13kTR0pFFObRba7r5GwJren2dohUwCCAkyc8NroJwmQoqUFozpxfYffu/Tz44AM4Tk4LrtfrNJtNtja3KVdqWNqQRF08nSFthzhJMVECVpEgliA0WZZSqdZI04x+f8DOThcpFP3+kFPvneX4Sy+x2KrgyBTX8UgzEDL3UDBZymQcYLCw3DqWU0JkERiDkgZByk4nX8dSSJI4xnfh/nv3ceTgAm+/+TISyflzF6jVqiwu7SII8oby7Ow81VKV9949hUETRgntVotBPOTU+ZMMJ2MeefRJ/uLbj/LCiy9zaWWFM2c3CBIbhJya3/XzjGTPQ+si/X5CZ3uCVj5aux84macxC/NNXDePKRJCUKlUcq294ZpXQN6QhIXFGcJwSBiNSLOQYtmi2SqyuNSi2arwqYfvZzgcYvwUkQo2V7ZpthucPX+OxeW9tFoLjCcibx4bQxjmWa5pml7bp10P0tz452bjdgCoG/eAH3X8dffoH48PH/9eIa63cwH9olTfG+f4RV7/MOTx5p2b20NSb8az/zBd6vXH3Wyej/753PAwfuMEolJCfv6TH3rWv4ulfu13uMlr2Q2f74eN6z+/LEmJ//c/Qf7h/0hxFMFXvog4uJtUWUzGAc8++Qxz8wu8/vpr7NmzizgOCcM89sEYuLxymX179/PMs0/z2c9+ll27limXy7R3+YyTHUpunSTLqDVaWAg2N3LK7uLyEvOLixgDluNx/I23OHDHHQxGQ0rF3PzCmIzZmTm0JZFKY1kWxXI5z3A0Ea7l0qhVGPS2ubq6ycqlFYolj3K5wHg0xGAYj0OOv/42S0u7GI1GpCbCsj22NjcpllwKBRetFJVKFYFgc3OLSqNJsz1DHCc5+qSmCJO0QPuQZaxcvECpUsd2CxQ8B9+VFCpVLNsiSxMcS7P/wF6M1MzML/HiSy+wd99uPMfFsW3eeONNHMfF0hbCckmTkHAyxnIcpFIM+wMspSmXK6AVUSa5ePEy7eYMk+GA1UuXSIUgmBiKpTL9YYecJAqW7aC0z2gU8/bxV7Fdl7vvOUrJ93nk0Sc4eOddKEtS8F2GvR3aM7NUqzU6nS79fo+5uVk830M5HgLBqLeNlB6u6wGCMJxQLhe569ABjEyREk6dPMvS/C7GQYDWiizLGI76IEJ8t4iU1rTA0wRxRmqy6XySQa+L49pEUTg1HHIIhttkJs9TjMMJkox+7wp+FGP/eIXkWInjd2+SJoLawYexG7txiGjUltCOhVCGXqfPf/4P/yFf+dpvsrjcRiqJ+/0X0bZF8Z6D07iVPKNTIPHcAo888iM21neYX2pSKPtobSFVTnkV4oOwSWPSa1QzS1tTl0qB69gsLu7i5InTPPXkU/zqr36RYX+Lmfk5lJ1rvbXQGCHIUnjyiScJgwmlao04jBj0+/i+Twoo+cE9y5kWFWEwmUbLZDkiSEI4HuUuxwaUZdPf3kBqlRuqTIZMghDX8zFKI5UmSzOSLEVpjZCKFEmKxnVzEyhtWWjLxi+6gObM6XMM+x2UiJGWg21bIMBkeQ6iIEfNhVDX0NbhMHehrtVqU82s5NzZS1w4f5GZ2RZpEk21pJLxeISSisxcS+ea0owFUjroqXO+kGraPMuvr2x6cJrE2LaFVDLXJStFhsF1XPr9PpaTI9Vq+roQCikVlmVTqVQIggm2oyFLiKOIOIpJkgTHdoiCCWkSI5TGsr2c6q5ttAVJMsnpzSbDmIw0S4jiEMe1yabxS2Eco7wumYFo0sSyHMrFIsKkhGGIEJLRaMTTTz/Dvn376XU7nDxxDtcv02y3sc9fZvL5T/A7/9HfJyO/x2xeXicKx/S7W+x0tvjKl77ExtZFigUX//jpnNr9tx9m2A949pnnMT94lkajifzq51FSsXJphdXLazTqLaI0L7bfbz6ceuMVis02fmMub6CY7Makjo88rj2TPgRxvX7oqXwlfEaweuIcy3cvkkobv9JAKofMwEvPP8/a6iqDUY/DB5c4f2mLWq1JwRUIYajWq6STBN9PcWSIUiWefvEMe/ft5vBdx6jWKniugySl2+3niFsWEA/XiZIQZ+pqjnQATam6QLFSI0oTev0x9Zkmk8kk1xGHE2wtePGVt1he3EXREziWhZAGKfPoFUFuyJcmIcIuIqwqJgmRWR9Xa8JJxCQOWbuyyt7ZIrH0We1mrHUSDuw9hLLcqd5yQqvVotfroyUkJkWkA+LJRYpao0pVxsEALTXDqEiMQ3t2CaElUlisr67n16+SrF6+wrA/ZNdSjc76Ce4/OocUEakQDIb5vTEH2AyZFGBXUd4epHBJgm2U46MIUQQszmkcJ2f5KOkQRWMKvqK/uY5juTz745e57/5PMegNcH2HcqXEqdOnmZlZZGery67de8kyyaVLFxkN+sQRvPeTV3GyLexsg4fuXWT/ksOB5QX27S/Sm6R8+7GTLC0t0HAz4klIiIVEs7hcZt/CPEZEBKqPMrkJHFlGmgbk+MNU+pWmZFmKEEwNDvN7w3hkMEYhhUYrl9EgplKBra0OYSZoNppkmaTdbnFp5TLtYIH2l4q8e/lN7jt2Fz945DFOnHyXg7MOT63+bwT7r3Dng79GJj0sk2DkB4Z6uR78NhgLt7PGrpvzfbbjrajCN46fia+66c/07w1eeNvjY6rwLcbt8N4/Cj0YPkBnr+/43Kr4vNlct1MA/iLF4q0ck6+nL9+KkvwBCnLr2J8b5wJuOu8HXaufRlnl5z+J/PyD/LQ64PZuDLczrtcbfJQ5btQp3LTPZuzcjEAYtG0Rr27CP/rviR9/nvUDczgP3weuT5pCfzCgUquyvGeZWrWMV/TzjW00IYkEWmr63QFpmlEqlZmdqdFoVOh1O8RRgjO3TXXWJhrVKJcrbK2vYZcKVOpVhBDYloUEJokhM4pnn/0x9x47moe1p6AsH2MUa5evIpC4XoUwHhOONxnudHCLNVJhsDwLYeDM2bOMRgPuPnIk17A4gq3NAbValccfexSTpezft4+ElI3LKxx/9SccOHyEarmEUZIoS1laXubll15EC8NMe4YoSTDKIjWGYDxgc2ebou+wubZGY2YWiUGbBGMMfqGc0wGDIY5jMx6HGDunF3qOQ6tRZ6bdxNaaMIxozczjF8q4hQoQkcRg2S5JNEZbzjX0tNfr5PEfqeCHjzzK6soljhzej+tJ3nzzdU6dfIfFhQVq1Rq2srm6ejXfkMkESYjv+sy05wmjMWEc05qZJUngxMmzFEpVxqHNY49+n/vuP4ZXqPLID5/m6LF78L0ixkB/J+bxxx9hz/496Kn2UGuFcjTjKMJ3PCbDCd/7/qMcujuPmRACLMvBdXxGoUFrC9vSvPH6T2i1F3GUwXMd0jRhMOrj2LlpznA8xvP8PKN0MMazfdLUkAqF7ZUYbazgPHeB8L55Ln3WZ23nbSrz9zN/6GsII4iigHE4wLJstrd2qNQq/M7v/T2qjRpbm1t4to//w5cwUnHVtWi1GqRJShIlWLYmjCPuOnY3Bw4dyKmqlkW/38e2LbIsRSkrp/dKKy/SlEUcjjGZIpxEpGlEFIS4jkW57HDHHfvY3t6k4PtU6/W8qRFFmCTBiKky0xiq9TrVcpNv/tm/YX5mjigO8Ase21s7FAp5pAoIhNAIGRJmEUo2kTJk6/IJwnBEisFxFN3OBo5j4ekKaZyRiRTXryEEhOEIiUEpKzdNmjJtlNRTc5DcWTOMQrSlMCYhjiNaMw1arVmEtBEqR3GZ3mO7vR6KGEe5ZJnGSIUSEqU0hXKBIA5QjsLCoVwu0p5pYNt5NuQkCLBdH0trRJoSTrpIK38NA7ZWXDy3wubWOu12m35/RGaY0rMTsgwur1ylWPAQQiJRDPoDMDAYDXIKr5QImRuMSaHp74z4q+99n5lmmyDewbNdkmiIbTm4rkscByAMaWoYDCLSNKZUr6K1yp1i05ThaEAcGarV1tSpNMVkGYWCx2QvQKVNAAAgAElEQVQYkMYQJYpCrYKybYQYkCWSgreXzMQ88+xzvPjCcZaX59FOAa9U46WXX+boXYcpVyscOXqEmZk6aTLBvrCO95UvsLK1ysLSPF/+7b/HD7//HIfvvIcfPfEUn/nMQ2ztrNJqL3P61FUWLqyjlE1w72GEMVRqZXafvJIj1l/9DKtXNvmjP/qf+dwXPkO55mNpB5PlMVfGwOb5qyztPoBbLCJJkeJn43B+4fFB3wfhG9TuDNk2P6O1CyXEloY/8RjZq1Rmq4yDiI31DRq1It2tVdoLcxz/ybtoJizNOKSjPstLTWIxQSiDKxUmSdE6QfsKpGLr6jq25fLmG6doz8xQrFSJsoRBZxMtYDDqM9xaoVj2MSQIodDaQakMXZrDCBvHcwhHQW5alsTYluT111/lyD1HWLmygYiGzNZcMhMhyXOoHdvDYIiTENstYhdrjCeGYNzDViPIUjKT0qy7NBs+SSpIpeDZH59kdTXGL3mcv7SK63lIqaiUK9MoJ4d60WP13Gt4OiL2HQqyQBYOiZTFYNzA8WtoS7PT2aFQ9LHtKtI12CULx69RKtU5/d5xquWIVsNG20VOnFrhsZe22DXbwNU9jLGI7Bbl6l7COCWlh2sXGE0mpNEWcbSDVoIoTtC2IcmG2E6RDEO5aYOMee+9qwQR9EcKI1OK5TLN5l4ef/LHXN3sc3F1g2eff56zJ99gsnOF0fpbLM+47N/dYGm+jKUm+I6FkimYDF/B6TM7tOo29bpPQobtVthe7zMe9vF8ibYlcZgAKjdaUxKtHRxbMskyoijBRiIsia0yDDEZkiyzefyZk5w6s0Frpk7Jc9la38RxHK7uRFw4v8Vdd96DW6qzvnoVx3Gp0SReERwfvkCt1eTQkcMMtrdYXX8Hzwsouj7LB+9FVmaQU5YZ3D4gdW0JfQjD8Pr5bgYY3W4h/KERV+aXT23+mz4+LlxvY3zUC/DDUDghxDXawvvZff9fj5shrNcvxJ933u1oTm+c68M/05t9fjd+/cstXH8Zx9x0yBhBjmIN3juL9Z/8MyZRwMm2z8KdhxhNAmzbwVIaz3NzxEMIdra2KRYKJFGEloIkCxmNevi+jRApxZJHHEc0Gg22trdZvXqVmb1uTqea1EiiEC0lw/EIz7EZ9HpcunCBNI5ZW1vnqSef4O/+9tfY3tpACUFGjG1L+r0tnn3mRxy7d1/euc6g4DfQsobUad4NNoaC51Iq+iwvLdHr9ZFKEcYJlXoD23G5+9jdtGdn0LaNkpL33nmH5eV97LtjL0mUILW+hs4c2H+AZrOBUAo1pRCtrFzBd8o06rN84xvfZO+uA5SrZSTQ6/a4dOkKpXKNMMwje7SyCIKAgueRxglKajw/z5u0bJc4S3n15Vc4fvwNFubnyEhxHReBod/vEoUptmXh2g6O46Mtl0vnL3Lvvfdyz7F7iLMEA+zfd4hSqZIjdEkCIsXzXJTOcy6l1DhuHn8QhhMcy6FS9hHCsG/fLuJ4SLnocffRYxhSLMtBIKk3ynQ7Wzzz7HPEseHq6gozszNYlqbge4RxhLJsbG3x2suvsra+wQMPPkS9XmM03sZ2FN3eFkKC4xawlKTb7RIGIXNz80RRP78cpcK2HZRURHFMtVojDKMpJVZgBPgFlySaoJII+4l3GB2bY/CHv8rqm49RXVygMXcP1fZhEAFuEmCmDrme57O2ts7MzAxSGcolB0GK/YMXGQUB33j+OZrNOr7vYEzGt7/9HWYXFqjXa7xPM47jON/wT92BM5OQJBGWpciylMxkaKVJE8P29jaVaimPaiKj292h0ahTrzWQSiKUJAxC4ijmnXfeYXZhljAKmJ2boVzO3bOPHjmM41lUa2UMKeVylW6vey2WxxiwLB8lNJou494WSlp4xQoGjeW4KKEIJiHf+tZ3OXr0bkbjIdrK0UjL0igpSaIERC6bkCLvygdhwOlTp2k067kpFAaJRErNaBSAULnJlsmRmPcpvUrl5OZgHPBvv/ttlpZmCIMujpNT2jEKW+WFAFIglEVqFJYU2I6Xo6hZxsULZ6m3ZvPcxkygtUuWSar1EvVmnSAKGY0mbG5uTP+Pcnqu67hYOqdZJ0mC6+X/X47jEIUhjmURhhFpOsqZEI6NIMF2FZVKA2kUSRoRJxlKVVlb38G1feIwIY1SKtUiStuEYe7aW/B91jc2pvE8MUIYXNfNMztNhhSKRx/9IXfeeQAhMmyt6G9KnnrsTVy/iONo9u7bTRBMuOOO/Sid62rvPnoXiNz5eH19g52dLnEcUVnv83rDY+ngforlCr/+G7/J137r11lYbLBr1yIz7RZJkvDDx3/Ef/NP/zm/v/cwjmNzuu3jOC4bmx3sr/4a5a9/me3uOvV6jS996e9QqRZwPYXJcoS82+0yHA4Je6vMLC2i/SICiTTqr4243vRR1DbI9i024dYIYcbEf+nSL7+NW65wdX2DeqNJEAaMxyNWLnfobHWZaVZp1YrMzluEkeD86RHt1hKWPcL38yaY1i7GCJaX5xmPR4SiwL0P3M+gcxXLL1LwPZLU0GjWSYIOmAhvygBRSjOZBHQHgmKxiqUVF86eRzuKRr1GFEbUaw3OnDnHpL/GkUMzeG6AsgWWskjTjDTL6A/62I5DZgSx0SSZg+doknCbJAqv7UHyNeqyMzLUWnvY2Bpx/wP3c9fdRymWixQKBYQSJElMd3uFyfASnu7jWgaTKILJNmGYYnt7qLbnMeS055m5GYIgoF7yGPQ6eE6ZKxfXOH/mJGfffZ1PHFtCpBNMmpuoFXyb3XNFUCmF6iLl2j5sp4rtlXMTOGNhaZs0jBBGEgewvtbPJQvKwtYFkjTDySySIOATR5dwdY9J7yQy3MJON3nse3+GCNdgskKjEGBn2zx07yKH9zdYWCrRaHhk6QQpUwQpSuVeCGBI0pijx/bj2oY0CNBaE8YTCq5NsejiebmO3rVthFDXEM0sMyRZjW9+8ziurWg1wAiLOIyRKjeRMwZ2L89yYH8Lz0nIsgm+b3PqzFXWOhGV2iJSKda2ttm1NM/6+hrzzhKqKIjvGPCtv/gmdx4+zJ6lBfbvKjLurmCw2HvkYXRpNkfahbrttXK7+/0P28d+VBbmrY//mDp84/i4cL2N8VEuwJ9njHR9wfp+AXu74+dFv/yi41aF643veavzri9cb0VN/iiFqxA30/D+zSxchYgwQjE8s4L6T/8ZZrbB9u4W1UYLv1CehnPneWfG5FFAOzsdbGWxdmWVztYWlrbY7nRpt2cYDkcEQYTrehT8PKstM4b9+w8Q2ZsoCf2rgmq1SrfTpV6r0et0KRWLlEslypUyjmVx+NAdeK5DlqX4fgGtHaIgoFwqsry8TJJECGxs22FnZ4e//O5fsbDUzkO8s5TtrW3KpRwxaDTbGCGRU43gpZVLtFo5MpIkMXEQcuLkCRaXdlFtVNne6vDeu+8ihKDVbOZoTpZh2/lmJ00N5VKZN44fp9FqUq/VuHjhAnOL8+x0OkRBxF9+53vsP3CIYtHHtm3iOKXgFxBpxmQ0wfOd3ABCaZIsL0rn5+fo73QpF4tUahU2Nzd44/hxfK9AGCQUCz5rq2v4hSKTMObl539Mvd7A8TzG4YSLl1bQws61mkpRLJZZX79MsVgkjlOUzrM5hTQMBmPCySg3fFIW4SQjS3PnWjONERmPB9i2mxtDyQTfcyiWatQbDfbv2YdXKOC6Dkrm6YxS2/R2Orzz9gnWNzbzXErXyjM9kwTH8bEth5+8c4Jmo87V1VUajQaO6yLIqZjGCITM3Ypt2yGOE5IkQQjQtp2jZhaMd7Zxnnyb3m6b5r/8p0RZjNp+l4nbYs/+h3CLMygTcen0KWShjBAS13X5F//if+X+++9nON5BiIw4jig+9hpGKN4LR9z7iWN4nsNoPGQ0ith/4ACWazEcDfJw+8lkSmeerjqRF22TyWSaOyogMwgpqdaquRGLzHWatpMb21y4cJFmqwmkWFaOtg+GIxqtOo6To9OTyRhtK5QSuc5XGCwn3/Tatj2lKefMjiTVaAOj4SlElOFX2niFMlEKruuhlcb3igRBwlPPPMPe/fvw/l/23jTWkvPM7/u9S+1nv/veC3tnN5siKWqXKI3Hs489zozHHjt2kMCIPwTIFwcGnORDAjiB88FJHAOB7UlmgHHGkkYaDeXRSOIqruIqLt3sjb3e7rtvZ6s6tb75UKcvW80m1ZRGQYDhCxx033PrvFXn3FNV7/95/ovv7YLU8m9jEScJQAmqZWl09ORTT3LffSeAUuva7faG3XK37Fgg6If9EtgOL3lJkuA6LiZLSJOQkZE6GJsL5y8yOtoauhdHRJ114qiLZUm0VFCAQJLmJdU8qLhIq4KQQ92XkRQGCmKyLC9ZDZ7H6OgIURiS5yXV3LGdMkVVlNE4Sina7XYJXJMEZwgq0zTDdXyKYU5js9kiSQwvv/QqI60aQbUG0uXRR7+N0jDSrINJiNMM2/XQysK2HfI0xfMDVlZWWV5eYnZ2mjTN6HY6hGGfLM05cfwkUqSYPCVLU4SRHD50BK9SQWmB61q0RhpISpZAmgxwHM3W1ha2djh/4QLXrl5n3769BDc24Fe+SFSk+L5HkmR4lZyN9RUwBi01UThgdm6WI0eOce9OjFKS2i9/jiefeIZ2J+TosXtZ31jH8z2EKKhUPAqTsra2QqVSL12cKYHb2688xb7DB5FeBWGsIXC9s6vwz2skSU73xirWUxO0/fP4jVmyXOJ5VQQO3/3eU3zykw9y5vRbVD2YGPXxPAtp5bQmBLabkQwMWdbHGInrVsEUFCYiHkhOXdpB2y7FoMvK5jaT4xMYIbi+fIO4u4bnChxbYYqMPC8IKhXC2MayffzAo9VoIC3J5uYmge+jlIWUGl8bqlWNEDGO45MlMQh2tdtaWxQF+LUR6s1Ziiwm7C4jKbXSURRhWTZRmPLSa+c5e3md/QePUBQpfrWC7/tsb2+CMTSadfJBF0d1cGQEucSSNmneJjNVkmIaY4HrBriuR5xkgGB7Z5ssL8hSxcs/fIWz597iy5+ex3czPEuihMT1FM2qxLYKlF0Bb4Ikt2j3ejh2mUdemIQsi8mSmE67RxInvPDiJQ4dGEfJHGPAdcsCWJl7neE5ObPTdQIrw7VCDuydYc9cg/lph2qQMzNVwXdzhOmDyTFFjlY2UmhModCWGDItCqQEQx+TJdjaLQ3fSFGyKONtKEjiDKnUrku6FKVZWy8asLbe59DBeSzVxrab5EW5/i1MUTLSRE6eRbiOLv0mpKLfF9Ras6xv9nFdl0988iFWbiziug6tYoJ2usNTa3/B3/xP/gbdfo+RepVL515g4p1fYWrwKdQJgd+aRSv4KNWg/6+B64dv+zFwvX18DFzvYvws+lX4cBrAR5331vzA2+cp9UnyxyjId3PsxphdMH3r/B9kpnT7fD/JyOpO9OVbX3Mrhbp83uw6rQkhyP6L/57i0ad2c1yHe33/fj70Xb7/Pe8e2110vX/6v36BERr5P/875NY2L6cbKK0ZGZ8iR5FnKY5jEw9iirxcBGIK8qzg2Wd+QOCXC7+rV28wiBKq1Trf+c53OXL4GN/5i//IgYMHS/ffnTbNOTBFQX99qPfKcoo8J89zbNelH4W0Ox0Cv8rTTz/F3Pwc15dWuHjpKpWgiefY5f5y8CrjXLm8xPTkBIXpsbm5zNFjJ5DkpOmAVnOELM8QUnL5yjW6QxMhz3XY3tqiXq+xvbWFYzv0OzvUGzVm5vaWBhxK88LzL/Du+QvMzE5TbzbQ2qbb66GURdQf4DourieoN6vU6lVmpifIjaFereI6NttbO7z77mVmZ6awHXeYgVnQ6/U4e+4MExNjDAalHkopRa/fw1KaIPCxbI3t2DSbdSbGxnn+uRdZWV4mT1OEhH4UMjo+wf59e2g0W7xz+gyTU9NIqRhttqjXA3q9PjeurzA63qLb7TMxOUleFBQGBEUZIG8rBtGAOIGXX36DZ595Aa0187N7QCh83yYffvezPEIageNWqNd9TCF5+eVXKUxGt7uNVIqg0sSzFSOjE8wv7BlqhQHKhYYQGozFyNgIlpI0mw3OnHmHyalJhMmGTq7DYtOus7DCtuzhOWDQWpH2u/hPnyW8b5rLX1KMH/kU0fo1Lr/zItNHP0e1sUA3FKQmZWZ6L4W2CMOINE35/vce49d+7dcIAg9hCsJ+SPXxH2GE4N0sZmZ6ekgDzgDJ2Pg4tmvjOA4Xzl/kpZdeZv++/Xz3L77L/Pw8SpeuyDevT0qX3RipxFDHqUuXSluT5WVuaa3eQFsaY3K67R2q9QYTU9NEUZ80fS/bNMkStNIlXVJKjBCY3Ow61eZFVl5TyQn7G0CM6zUIE4PleEht74L+LMtptlr4QcDc/CyWrXbNSPI0w5gcpa2hs2YKCLRWnDhxYlfndRMYFoXBsi2yYfTPTYBohu6blmWhlUBJwczsLLbrsbVVLvgb9YAs69PtrEOS0u9tYbIIkw5wvBoIyE3J6rAsixwBRYoyBUpKDJAXKY7togQIMgrAcT0sbZes06KkM2ut6XTLTn7gB6RZSjKIS2Ary85hHBecPn2eiYlp/v3/81WyLKXVatFoVEFK4iQi7HdwXYtqNaAfdpicmiHN4MqVRUxRYIqszHdujeIHPlqXoMT3PRzLxnFctrZLzXav0yl1yI6DEQLH85GqfK9aK4SQ2FoPsz6zUt+tSqf2E8ePY1kWanGV3mQLNdMkywdUaj4IAwXMzswSR6VJ3cTkJK3mCM6xg5xxckKR84d/8O/5/d//I371138VP7BxvTpFkRJG3XJupXFslzwvtcqdTpv1xTPM7NmH9hsII5CInwtwzd6WFGsCMf7++7qkgr4kuPHUGlv6CjN7TmKMYunGGo3mOK++dorrN85z4t6DjLVsGjULywIpqrz+6jLSVHAcsG2JUhZJHJMkEVrBhUs90rzCyZMn0UpiuZpmrUq312NiYgxd9Ij7m0hyyuqKJM0ybHcMv9pieW2FeBBhOy71Wh3btnnu2ecxpuDa5ct0uiHLS6vMzc5S5BGWtikMSK0wGGzXR7tVsqLU1+bJFr7rkCQxtm2TJAkUKZ3QZnUrojnaZGZ8kvHJMcJ+D60Etm3R3t7i7dde5Z49Y8T9HZR2y1xmbIQ9iVOdwvFcdjodPM9HWzZ5YXD8GvVGlasXz3Ll0jtMT7mcuKeF5wryrMB1XfI8QssCadnkooFTm8H1Kti2odveREmBISKOQxzXY2JikjTpc+TIJNIuMCZGSMjymEIZLMcmTlKEdEBoDAlGGAwCIUHqAqnA8Ur9vJEKjYXJJQabCxeuUq9PIFVaattv6vmFGMo3ZKl3F2J3XiUtlOWU7veOtatbL4oC18tY2DeFaxdYQiC1W17Di3xopmWQqOF+JKCxtIPnVXj36irLyxv84l/7BU69cwbX1jSbDSpRk0zHpId6TE6Po22L3s4WZ99+muPJr6HzGt5nMrzmNFoZTHFbM+Yjrr1vX8ffjWTvo447Nadualw/Bq/vjY+B612MnxW43t6FvVPG690ex+2vuX3um0Dwpz3eW3n6H7YNfDCI/qDtP2x/Pw5of5xuXTz6FCD+UoErvOfsLO/is/qpO67GIru+gfhv/1feaKR4Hhw8fJzM2HT6EZ7rkAxi2js7DAYDtKVLpz2luffYETzP4+yFi6yuLTI9PU6jWWVyYhRkwfETJ0nTFN/3qVRqbIQXsCxFIPcSJzmdXsSli5e5sbTCwt592F5QaozChHsOH8Cybc6cu0ScwVs/eplm3UGpjO2dTexak+eefZ59C3MocvbvvYdCSMJemywpaYzK9ajUmtTrDR777nc5cugAjqVpNRp0222CoXMpeYwX+Dz2xHMIYXHt2iLLS0v83t/5XSzbIqdAawutLPLM8B/++D/wiU88gG3rsjuYlNmSlivJs4RBFHLx3ctIpTl06ABPPPEUi9cWmZyawK9WmJqeYnNjjbDfRxaCXrfH6MgIBUVpoOPaSARZOqDT6dKotvB9m+mpCRqNKlIrHN8DBcsrayipefP1NxhtjVKt2RiR8eSTP6DVnMRxbEZGx2h32gQVnzSN2VnbIBmkWK5GKEWmMo4cPcaRo0fJipggCHjiiad46ZUXuff4iWHHK0dik+WCNOuihGZkZJKJyTHGxxsElSqd7oDFKxeZnd9LvdFCkLF45SJGGBxXk2UxgzhCOx5FnqIUjE+MA5CnWdlpUxLLUuSmBIKmgHgwwHNdon4X13VIf/AWes8k8T/7bS6ceYaRib30Lr/NxMJBrNoM9cY80m3QmBinn1fpttdpNJoYY3jkkS+XhYJehOf6OJaH+/JpkobHs++8Rb83YH5uAUtrJqfGy7+/ERS5oVZrcPToEYSQTE/P4Hne0K34PY1rUYBla5Qq43EKSidaMxTySaVASPK8QCuDliCVTVYIHNvCsmzSNENKhbZLV2IlFUJqiqIsOoAYxuKUhlDZYJV+uEKtfhjhlbpqIyUFQxMYUQJPy7YYnxhDSElRpGXXshjmaoqiXOQNnTS1VvT7/V0wU15LFUIa8qI0VipMuZC3tINt2+zs7FCpVAjDkCIfEMURUnsY5eNXBWMTo6yvbdFsTOF7o1jVJk6lgrIEaZKS56XOXmu7XMwWqqQE5hE3rr5LrVajjNixkQX02jskgzZupYopQAgLhnp9S5W03Vq1hqUtTr9zGiUlzWZr6LAt2d5eQ1Bw5twZFvbMcd/9x5mZm2B8bALLlmxttTn95ht84XNfIo0FcSK4sbTO5OQo3V5MnsFbb73B5MQYnh+QJClBJcCySjfhPCsdlgO/gqUdzp5/l/HxCRzHJrFPo71twm6Fl156lZHW+K6r8dbGBnkak2UGv1pDyYw8y7AdB9e1oN3Hnp8gnvXJ8wErazdoNeeRWCipWV1eZmp6gkE8oCgkb1++xMT+BZQynDzxKR758i9x+DvPUH3rPP/sz7/LV37hS7iuRRQmJHGO41goVRpkSSkYbG0yu3c/2D6CAkmO+TksUpOvORRXFPqT7zdngpTFl97GW6pgmiFWdYSNjRWSOKQ5OoJfrbCxusHqjevUfI1nW/jVAqWh0nDQdkGt6pLFBiGHGaRAZyfk2deW+dT9x7hw4Ucce+A+bKVwVEkzjwY98nAdS6RoaVCydCBXShG0ZshxCOoVvMDFc2tIIVlaWuLQoQO0Wg3QBefeXeSe/XvxnATPKWOtSlAFlmWRZgVxLsmNj2srwu4yeRqX9FsMSmlsHSHtCQ4cOcnhIwdI+zFXF6+wb2GBPE3o7myzdOMGe/eO0Wuv4FgZqIx+0scNjpPJFrHpU6tOEFQ8bMcliVOUtvnRyy9RDNYYcTeYa6Yc3RNQiAQhDVkuQSjStA86QLlVkONIq0ocQa+7zUitSmcrxLYpz00RECeGdNClUvUoZFkEM4VNmgs8YROHMXmaoTVIYZCmtBHMsrIIJhCYAvI4QxqJNBqEQVoWWQFoCy8ISAdh6fiMLI3lCp8kzRAWxFmOkD5K2+SFxHJ9shyE0hRFiuM4GGOwLBsrCTB6gyyO0dTJ7U2KTIIwKFEW8zJphhIPhVaSwqSQpySFQmsPJSTTM7PkecbefXvZOd+jcDOWW1dI85ir166xf2GOfXM+8swUGEl+fJvaxB6UySnMbVThj3iO/TQxkz/LeG9fPxko/1UbH8fh3MX4MJvsD/v9ra+/fRsx1Dt9WMzM3Vh03y4Ev3W+n3T8P+24Od+HdX5vfdx8TVm5K94X1XPzeN97vtR5GSMwuwnqBkHx3uO2+cvJ5Pset5tQYEobTSnEsJpf3OpfUbq83eFxN0NIgywMlhEgFYnSGGmR/5N/ztZIhea+o8we/wL9vKy41ysuWZayub6CbWlGxyfQ2mJ9dZXXX3yWzvY2i9cWmRhv8eUvPsLehb20t3bwHI88yaj4AdVKFdevkAJeECBE6cgrBTzz+FMs7Fvgc5//LMkgJOruEO5sUWn4WLYkL1JGRxp025s8dOIYVjEgizYYb7VIux1+5Ve/jPIk2q2QG9DkZVRLvYlrK9obG5gsIYwjfut3fxu/VqHT3SHNcrIcUIqUFBW0qNTHuf++I4w3PPZM1Pn1X/0lvFoN23FI21tQlKDS9mx+6a9/mTRuM4giFIawu1MaHxmDlC6WV+Gv/dJn+dynj5OkBZa2iKMI1w0gSQjbXfygjhc08BoNguYUUSo5d+4SvusR2A6u65EXgtGxCeI8o9VqMjY9hfQ8ao060c4mSRSxvrzOa6++ydlzF3j71GnK5BGHew4cIRcZly+ex7EFljJ0Om1AUmu0COougd+iXhthdHQUyyrIkh6d7TaWpRkZGWV6fJb22jJxdwNbyJLSaBkGvZQLF84zNhpgTE6aawwWF8+e5sZ6t/yWmrg0ofFqJZ1Y2AijsWwLpQukBQUF6SAlj1Ic38cLSl10kmQU+QBLKRwl0DojxyBERv7meXRusP7Hf8TI2F4y4SK6r2IJzciBLzI59zk2+wYjcxYvXSHbuYbnO/iuTXtjk5rvIdIUoQ2LS4sIDabik9cCPvPpz3L48BFsx2KQhKUzrBQIWYbRv/P2Gc6ePosUZhgvI9jZbpfGRGRAgpRpearnhkE4IIsT0jjFZCCxyTNJXpSut7mxUG59qB1NEFKQDfo4CowUqFxgK0Wvu4OWYAvJhbMXSMIYWRQYk2MoGAwy/GASQ/k9k9KgyBFpjC0V5IpBMqAYdiIxZghYBUIUhIP+cDF3s0MhKYTC8asoYZMbkNoiSTOyOIG8IItTyA0KBbnAZAZHWwhTEHguWZqitIOQagh2NElc0BoZJ0pDjBWTZwWW7WG7k1Ra8/TDLeKog8nLhWtOadImpEetMcb1K+dwTI8sTylkge17uNURshwKA3mSUuQZOQWp0GjPIy0yOp02czMzvPzSG/TDLp6vSYcwa2AAACAASURBVLOUXq/L0soNvvTIF6hUAnzXJQkTEAlhGDI1OcnYxAiZiciJ2d7eYHFxhSKBasWh2Wwy2pimSBTKUoRxSJLFhIMBjo5J44RGY4Rw0GEQ9XjxuVdIEoO2A7RSFHmOOzRq63XamDxHYOEEVbxKE225mBSyQlFvjCKloNfd5tUzZ8i//Sx+MEW1Ps342Cw5hhuLW3S3B1iyIA2v4wQBjdYkf/G9p/kn//S/43//t3/K2s4y9x4bQSxdh6U1/pt/+o/JixgpNVDgOJo46aOUjaUraG0TdntYyi6/10LcNaPxbqI37jbaTUkHEUFuUgrpcunieeq1KrOzs0ghqNdrRFGMZeWkJLiBwpIueWJoVWyqXkYWR0gdIZAkMUSp4MzlNb7wwAKnzp5jYnYv22sbXL56no31ZXrtLo3aCF61SZoV5AiEtspzp5D4ro8b1LDdOhtrPaLeDkJBnKVcXVwm8JtEYUo8UAROjCy6SO2CkqALEAYhbYxJ0cagXY+4yHGURApFnicoWZ6ng1hg8gzPSZCmSmU84OChY2y3txkUA2pjTY4/+CAbq0tYIsHkEiwfIw+AdkjzhFplDGMytLLodjZ47aXX6G70ub5a8Od/8Txhu0Oz1aCwHYxSFBlEvU55bdMBvlNH+wtsdHqorI22I3y/ToJDYYNlj2OpAC3Asy2a43tIRBNlzeHUjyIbI1QnZtH1Ol5rnPr4LNLxiU1KITVREfDnTyzx9A+XyAqfzCgs3yXDRmiHQeYQhgaBYWKkgso6SBXw1jtbXFvrkKSCXINjueRxwMaOwXIFxrbwKpOEgwxkjFQpCkiGObFSSwo7xhZ1tHJITA+V1hAiRRhDllooO0AUash2KTu44NDZTNne7pGagjffOUuSO/S6KZubHUp3eZtnX3iFiq1x7SrXdzIKWZDlZQFEiwQDJMWPZ7jebqT0YeP27e+4DR99vXjruLkuvuO6luIOj4/HRxl/JTuucOdqx0/bOb05362g7U7VnJvP3fz3zl/qDz6+j3o8fxmvu9M8N0/In+RSfPvYzXJ99CkA1G88cuuO3n8sd7pkiA8vOij1fsH+T/tJ2rlmoApSq8AnIbp6hZf+xT9n6vFTpF/5AvV6A0dI1jbWuHDhXUZGRsFIqrUW0SAFA089/jhJ2Md2fDY2t6hUa5w+fYZ6vcby8gp79x+gG8VcunoDk0acP3+O+flZwl6P6kRaGr9ELZSWHD9+nGqtUur6gFq1ysbGBlkG3U6PNMmYnZljfm6emX37qdQnMNrGbbRwLYtBPChpREVG1O+BKOiFXaoVn42NdRqNUeIkJajU0cqi3+uTJDF5luN5HghYX9+gNcxtC4IqKJvRsRGcoEKcZliORdjv4wQ1ojhnMMhx3FJzWq8HdDod0iSh2WqyvbmE43rkeUaWZ3heDa0VjWaNPXvmEQKkFLiuh9KlSZLSmv/z//jXbG2scuniOfbv24tSJd2p3d7BdR2+9a1HWbqxwtFjx+j1u/ieS5LEeJ7H5OQs3W6PPQtzdDo7jI218DyfhT0LjI2NMTY+hWU7BH4FhebGtRUqVZ8kifD9Ku1OmzgakMUZge/TGh3Fch0arVGEEIxPTuB6FaI4B1MaSTmOzztnzjM62qDb6+IFHsYUTIyPs3//fgb9DpICISWe62JbFlnWJ0kSDBbb2z1sy8bS1pCWW2DZkjSNsW1dxhGYAiUtpJBsbK1SrdQp2n3E4z8i+5f/mBU7w684PPetr3Po07+OX58pixSRwfVshOVgaQffqxNub4IweBWPbhySa4mWmlarQRLHuC+8TW4JmrPT1Os14jhEWxLPD8iNQeky0sV1HFzXod6ogSy7k48//jj79+/fvXZkWTbUexZopdjc3MSQ4zo2lq1LkKrKomB7Z4dqJRgWpMr5Hvve46RZGRVFUcYy2LaN1pokSZianMJzM/J0m+7WJsoIKvUGlu0hhVUalQhBnGTYrk9eiNI0yy4jb9QwNubm9S5N092cYWFADXMQJaKkGCcRRoCQgjQZ4DrO7v0kyzLCMERpySAOCSo+SRIjBChl4Vg+URSjpEXYDfFcASLCsW3isNSdpckAChvbcnEDjzQ3ZGmOY2nCfhupbYQQ+EEF368QJVmZGYnAthy00hgkWZyTpSmdbg/fD0j6bTY3VvGH0TztTh+lBDMz0wg0G+ttRppjTIxPlbpQrSgEOJaNUmUusWVZ1GpNwnDAyMgIo2OjHD12mD/6oz/EcqHRqJHlMVOzLQZhiOs4+J67W11MM4XSCvKYF555jj37DwCUpk16taQTO3sYHR3l4sXLBH7AIIlotRpYWpDEMXEcYTs2vW4PU+QgYHp8Cn99h86XH6RaC1hZWSEvBrz15pusLK3g2R6W9jCFZnVplc/sRDwyvcCn/9PfQ5AyPTON/eSrCCGxfvMXcGyHLEv5N//m3/LQQ59EFAWe49Prttne2mKwvcr47DzCDWDoNW0+wl3obu/d+culB8GdOq5pHHP2j87SMqNMHZ8kqE4gkDiWSxilfPvb3+HhkzPsmR7B5Cmuk+MoQZGnmMKgZZk9aqSEQiDJEAbGRybpDHL8+hj7D+6lWvVx7BGSQR+pIRwMePPV11HFgErFB1NmBBemICp8MmPjujaepZBScOnyZfbfcw++X+GlF3/I8vISYdzh6IExPNuh3cvRlkPgu0gBSRTh+h5KB+C0IM9h0MYaajfTLCXPCzLj8KO3Njhz8Qp+ZZTR8cbQF0CiVUC9VsEUCQ47KNEnHGjsYA7p1ljd3GFyZg7P8Tn15lvMLMyhlM3U9BxGhmRrr/PgiUlGx0tNrW0JTKxQWmJVPXIroD6xj0jUwSgatQYpGqFdPL+OYyu6vS2kFGAbhG0TJhnS0mjbJhx2ax23iaVHsdwD9BKHSmsa7U/hNw5hVcYIRsbYe+AE9z/4MJXmHqQ3ivLHUP4kbnMK13fx6qO49Wms2ix4kwxMwflLBuWMMzLdwNguQlc4dWGTp168zIFDD2NyQ9g3BH4FKChyQZ7F+EFlN5ZLDa+FeZ5jD69xyjglmP7em4yPNLCdgjTLht/n0jlc2A7X1gfcWA75tV/+FV57/QU+9ckHWF6+zoSaZWn7Oo/8119gbLTKhYtXmZmdR0bvYp1fKGUvR9aoTh1ECvG+9eGPOaj8jLTfn7UXejeszh///V/t7uvHVOG7HHei3/6sYO/Wf2+C1ztx3G+Nm/lJrsU/ieJ7tyfIT0M3/rAO9M3onNu3/bBxK3AVgPrN96jCd3qXdwKuJd3uw/XFt38mt255p075zXEzk+zmc9kgJdcCRMbmpSv8wb/6V3zppevY+/ci5/aws7kBRYq2Haampgj7A6SQGARra+sA1Cs+I806p8+cp9fvMTY2xpGj99JqtXjuueeZmZtH2y5vv/02lhScvP8+sjTFdmxMt4lKxhGiwLFtpNIoLen1umAK+r0erZEm586+S5JkzExPkyQJTzzxOHsXZnBtn7W1G/heqTft9fsIoQh8H1uX1MVWq1FmfyKp+AFpmvODZ55lz8I+hDGcOfMO+/btIy8yPK80qcBku7ofy/XKz82UtE6lFI7tIvOYPE1ob23y3JOP4SrB+NQUWZ6RxDFaayxdYFkBUis6vS6mkGByWq3W7vfL83x6vR5pmhEEAWmSMD87w8L8LPfs34frOjhumTvZ73eBUie40+5x7Ogh0iTCmIJqo0G/16HIYfHaIgLD5OQ4C3vmys/alADJcRXd7g7aFmyur/LySy9w9NhRtBYkaY5tW/hOwObGBiMjTZSliQYxSItnfvADet0OjUaLWqMFRQyIoRvnXjxX4wfBrnaz3+th2RYUpTFNUKnS6/awHRtByvLyCo8++j3W1tY5dvQIgzikKHK0pUGUrru+59Jutwl8nzTJh2Y8CSIH68nX4W9/iewXjnPt2kWUhprYYP7kF1A6YXXlEl4wiu04YLkgbfJM8eyT32NmZg6/WmO72ysdo+2APEtJkwj/8ddIkwGhZ+F5DlJCv9/DshyUZZGkKVoret0uvV6HeqM+1HPCzMzMLgi0nTKXtqS5mWEnqE6l4pPnGZtbm3i+W563QuFYJT2uMILcGNIkJYkT5ucXSPOMwHeIB0mZoao0hoI4jhlEW7S3V6lVGtiWTyE1RSGQCqB0yxSypCRLOWTOFEVJNRZg2/au+Z4xBbbtDPXWZQRRmqQlnbEo6Pe28INKycDJU1zHHTrnChzHQWtNnidlAWkI3JOkNCvKi4L2dofz586yMDePlBlR1EEpG1sHvPbaKzSbDU6dOld2r3yPPIcg8IZu3D5RkmBbFghJgSq1u2KY3SrKz9kIxY3F66RJgud5WLaDFhmYAqk0UZTxJ3/yTT796U9SrVa5vrjMW2+eol4f5fXXXmNhfoZ+1KcfhfhOGS9SFqQyqrU6hTF4vs9Oe4dw0KPVmmH//gV8t8rm5g4vvfIytUqFLM1wHJdet0u9USXPJFmWsb21yszMLPvuOUilUhbqlLtRFgjMJCD49qPf5v77H8DzPISAeNBHCoEf+CVAs0sAL6TC+B7OO5fZ+sWHkEpSb9TpdtcZa41z5NAxvv/9J1ha3mRsdJQsjTnw9iWy6yuIzz2I67vYroP87ossXlvk4uE5pJTUajUOHjxApRLgKIdudwdLK2rVOuHWMvWxCZRf5aMA1w+7l9/pHpy/UmYB609mu8WVm8P3XLLTMXbokDVyeqEh7IecOnUax/G4cm2RPNwk0CWtfW52EpknCMroE4yDUKUmu0hLuvPS0goClxd/dIluT5CmBfEgZWl5i0HYZmpmkmiQoAqDTYjjaLRmV8JgBSNIVZoj+Y5Frx9SbzZpt7slYybNGBlpMTkzSh5to6XmzNmLjE+MUeQDpChIk4QkL5AqwK6MkyUDVNIZ5gELhBRgJHFhc/qdHe5/+JMcPHyEJA6JBl1a9XFc26fT3mAQtkmjDbq9bZxgFr+5FzsIqDfHsJ0ySmtyfJzltRsoYdPeCvned7/DiT2aWlWCzHBsF2FytCootMSuTuLW9qCcOVJhYQ8N2Ww/wHUseu0Ovc4G9arC1kCckkQpnuWSdns4CM6dX+byxWX2710oUwhEghRd0nSLeBAS9UOwqwglsLQoZRW6oDfo4leadHo2g7S8v6aZBl3H9sZY2YhoNEaY3z/N+NQorZEZhNXA80doje8hQTO/Zw5FTLVSJ4rbSJGU1+vhtaPI81Jzbpe+AdoqHZeNgajfIxGa9a1t5mdGsC2B49hIISmKsoYRZTkvv3GVwBtnfKTJgYMLiKEkxAkr1IMG8ckIyYDcaCxtcfXUY0y1HwBgZ+ES43vvQ0lrKNm45Xy5w3r4gxort6/N33cufvipetfjjvmvt62ry58/Bq4fafu/qsAVfv4c8w8EUncAkj/Nsdzta35W4Pphc36UY/kw4HrHfXxAx/UndsRvL0h86Kbv/bbs/ujd4wxFjp/CC9/+Pq+99CN+4/ADNB99gcFnP4G2JNIWFEpgSQelFN/4+tcZaTX54fPPcPr0KTY3N3n44YdRUlJvtZicHsN2LVzX58/+43c4ef8nuHb1Ci88+wyf+9SDnHzgkyAlaZbiuX75PqQiT2LA0B+EZXarEMRJjO97xPGALM1ZvLpIu9NmfLxFEJRxOY1mlayIcJ0A1/Vx3ApFLjBFThIPcFyP9s5OmSNbH0WajEE84MChwyRxzAvPPc9nPvPZYRfLIi8KXDcgLXKCSpVBVNIphdDkWcYf/N9/yJFDR9HaxdIglWZ7e5O5uQlaI1XCqPx8n3vuWe49fi95YTA4tLs9akGFd8++i+uWJiy27XHp4hUs26ZWr5GmCWHYx3Eset0+k5NTVOp1HM9jkKZkSYrnu2hV5s3tu2cfnc4WRZaSpgWrK21cF86dfZfLl67wxS9+nmqtpO5aliaKwpJG2u+zdGMR3/dojrQ4fOwoRZYjddnVTdMEZQfU6lU67U3SJKFaqaG1yz379rEwN0WtXmF7Z4s0TtC2A0qRC4PIU/pRn1q9TpomDMII7bhYto3reaSZQVkuYX8HrRx8r8LDn3mY/fsXECInzWIcx0EqhckMaRKjlYVWNrYl6fUG+EGVJI3wzt0g6Xdw/4ff5vriRWYnJthZX0c5htHGfnbWL9KafwATR4SDEK82gtIBv/6bv8M3vvmn/L2//5+zvd3noZOf4m/+6m9RqdWwLIEpMoI/exY1yDALU4AhDCMqQRXH9TACtFXSOj3XoVavlmAQyDPD//X7v8++fXtpNBslxX9oICQESFF2zTCUhR8hcD0fIUoDMFsL2ttbuEEVIS2UKJiansH1PCwNSgm2trZZXVmj3qgRRSFe4GHbHkF1FKM8cqFQ2kUqh7yIytgkrcmSGCUFmIKw3xsaL5VGYEn6XvRCGIbYtl12vtOU9s4OSikeffRRjh4+ghIFBRZK2kghyIcuvbca5ZXAXQMKrW20sjAiJ8/yMr6lXkXZYNk2eaHLTNEkZnV1hampCSYnpkDk/Nk3vsXBAweQssAIGCQZRTrAFAVKWwihMSgQBUWel/reLCHLClqNGkHg4HouQpZ0Z8cLSn1uBsfvvQ/HK4FkvVZj374FLNdja2OZkWaFWqOO5QVsrq0RRTEYyZNPPsGe/XsIKh5plrK1vcX09CytsXGUzNja2KJSbXF18QaWDri2eJ2xiTEarRpri9f4k69/i+P33YcRBeMTs2gtOXP2LKdPvcPcPpuiyFlfLg2t7r//ATCSP/7q17nvvhPYliaJB2RpxvbWDlHYp96oo7RNlqc4V1fpHdtDMDdDlhtcKbh29Rrdbp+r15f4l//bv+Y3f+u3KFTMxIUlqrUaS/MjTExPc/XGCsHTr3L61CnG/+HfZnZuFii1zXlW8NLzP2Tfvjl6vR0Egq3lq+TKojZeguyP2nH9oNHr9bBte/fn/JWy42o9/P40gzTq0Xmuhw5tTAtcr0mtWmFtdZWFvXsYHRvl6pUr3Ht4hrFRCykL8gyUA91eziuvXKDScnAtDYXA9V20XePajR7dzMe2q7iuw/HjJ5F2zvTkOEWhaY2NUg0KNB38oDRUU1KT54ZON8RIj4nZWZTUbG5uMTI2RqVSYTBIKLKcxWvXuHzlEs2gSqWiOXZ0D5ZlkDJHaY3SLlpXSTJBrnykyPCGJkdFkaGkQmtNP0tYWlJ87oufJs8iNBJtuwhZ0O9vUPE1UhRIbVEfmac2sp8wN1jCpjAKy/FJ4pg33nqDZqOFLHq8/uJjBKrP+WttNnfazE82yZKUpIBUOwSNeZS7gLTqDAYRlhA4foMsh+3VRVzdw6Qhna0raNMh7qxj4husrV6kyDbIBlcJ2+dRRR/NDqSXyaNL9HeuEHWXUXmMzGNk3sekXfLeNiZZJxusk4eryLzNoLvFU9//PlsbV5mf8smTHrYuIOmhCDHxNkW6iCoS8kGfeBCTxz0unD/LW2+/RS2wmFuYod/vY9sGx1IobLI8Lot5eVZeL/McpdUu6NKWxnEkUqTsmZumXveGBYuyMZOmOa7ro6Tmxuo2jltjtNVgaXmdLM4YGRlFYaEjh/OT5+m01xgfn+Hd8++ycuEH7Ik/W66jT27RnD0+lG6U67S7MWf6yGvfj7T1h8xzBzB9+/8/Bq4fa1z/fzfutiv68bi78fP8HDc2Nrhx48ZuFzwRGY/+yTdZPneNX/zyL1P7gz9ncN+95FJy49q7CGmwfQ8hFKYwfPkrjzA3P83czCRHDt/DV77yCDeWrlOp1QiCgNnZKUZHm7RGGoyMT/DiSy+RZylTE6OMNetlBI228PyAnU63dFJUimgQsbm5ied79Pv9sgtlCra2NnFdl7HxUY4eO8qbb76BbSvm5mdYXNlgeWuDoNnCchsIqej1+lx89wqbG9ukaYbWZTW02WgRJzmDOMTzytiZMOqzunKDbqfL66+/zs7ODiBIkwztuMNjEwiTEw9iLl26xG//rb/FN772dU6fOsPA2Lzw2ptMLOxlcmEPjYlJXn7lZRYXF3ngwQdJ0wQ3qLG53aFRbxIPBuxb2IvvB9i2y9unTvP97z9eVtARBH5ArVaj1+0yNjHB1k6bfhhRGNC2g9YKy7J2Yz/CsMcrr/yQwPcZaY7w6mtvIITg+L338ju/89t885vf4PHHH6Pb7YIo3RCjQZ+KW2ffwgEwmjSFK1eWWFpe2qWMRtGAQkhW18uOumVpiiyDQvD0U0/x2GPfo7OzhedqKpUaWZYP6aFiuBiwiaIQKRWtVhNt2yRJSjiI+eOvfp28gGqtim35pGlBGHbR2iCVIctitFbEaYrWFpWgRp6XIfBSiGF2qEDGGbx6lt5/9VlQCXHYpR742EJx4NinsYsKyU6KGxzAUoZ4UDoIe17AnoV76EYJ0SCj4tX4/Ke/QMWtI6UeOu6W5SRTFCilCcOIer1BlpbdTYB+2C+dLm9Saned0RX/4B/+ZzTqTQbRgHToUFkURSnz3ZVqWExMTNFqjqJUGX+R5TlJHNMaAt6SXWrohz2kEkO6uKRWrdHp9IgHcQkuAaE8hK6B7aO8AJDkZbIFvheQDAY4lkZiyNNkNxYqiiKSpGQH9Ho9hBDU6w3iOCZJU069/TaXL1/C0oqvfOXLFEWB49gooUiTjCIvdl8bRRH9fn/XTVgg6fdCitwgpUVhCmxb0WzUGRsdwXIVWSFwvQYoC8vVPPjAQ3ieh5TgOIq/8Ru/MVxEZmjbwvUDHCXwHBtRGEr3SgEUWHZpmGJZCs9zENIAOYNBWBpSWS6ZgbwwPPfcc9SqZcEBDEqDERlBxeXBB++nWvXJsowsyzl/7jxJXGZJT01N0w+7FCan3+8zMT4JSIRKMUQoK6feCPjSV77I5OQs4+OTZactz/Bdi9/7u38H3/cJqjWiOCVJBuxZ2LPb8U7ShNnZGZRSfPWrX2OnvcOnP/UZ+r2QNMlwXR/bdmk1mrRaTQaDAWur6yAFeaNCfafP9vZ2aZpVKI4dO0a1GnDy5AnSNGV1fY3R8ZGyy1gYlIQ0Tfmf/sX/woUL7/Kphz/F9JDVcrMQkWUZtm2zsbFBGIb0+33a7Tb3HDr0l3pvklIOs4jfP+50T+x1uribExR+l9XVNS5dusjFixe5774TbG1t0Ot32Gp3CONtjOhiTJ8wKhkiuYHPff4RvEptt3MdDRLCOGNxeZ1u1MFxFK2RGltbq0zPjqKU4uy5d9na2mFt/Tq2XUanCfEeqKgHLo6liOOYNM8ZHR3lrTffJI4TVpaXqdfrOLbNZz7zeU6dukxe5IS9LaJwByENRWGI05xXX/kRtuXhui5FUTCIS1bNzaJQFEWkaUiWJnzzG3/C0tI14mhAnksKk2BMhCqrCXjVUZLMZX2rBwq2NrbY2SqLuWmR89nPf5Y8lrS3Vzl2pMVD908wc/Ah7GAck4Nt2XhBlVprL14wj1Q1dnY2cJw+Movp9SNyJGkUsrl6lRtXz3LxzGni3hbKJCShTZYGXLm8iZY1bN1gJLDZOz6OnWlkJNCqwFYu2UDznUdfZWezhxmsknTWSNtrFMkmWbdN3ttBJW3++iP38tDJMZJoBbJ1kv41+u0LBNY2ltxAZzkqzul3LpLEN5BssjDT4h/83d/l8N7D9HoxzeYorlMlzywuXVxCq3JdcrOwnyTpUB5gk6bp8DmD71hYFERhPDSpM0N2lWYwiBF5wcMP3k+vu8Hi4jU2N7rsbHdZX98kyzKklCyvrBAEAZZlceXKFR566CGYv8hW8Opu4eamn8zd6lpvH3/ZPjEfND5e//98xl/pjivc2ZDobseHdTI/6LlbO5V3IyL/SeNOdOQP2vfdbHc3J/SdaBa30h9+om63XkGePITYM7NLEb5dDC8AI0ypab3lcfusd9rXh72DW/cH70UECSEIApdqfZTCCLTJePob3+Kb3/wzfu8f/ZfYT76A/dxrdO8/hJBQbTQwucISVhmPEEY8+dTTOI5Po1JhZnZu2HGYRitNkkfU603aW10uXjjHg/cf5eihA9TqDd46fZr7HvgEnmdhKUkcR1haoceW2epdItq2GWmNEPb6NBsNoqiP5zvUajXSrKAoMsJBzLHjJ7CUYH1lhbnZWbRwqAU2YdgnTQZUggBLS1qtJn61ShpHWJbCsm0WryyS55I0NyBhdHSEe++9F8txefyxJxgfnaRaq2O5FsUg5fnnXmJ+bi/xIAJl8eijj/LAAw9w/8n7ePbpx5mdm2Tf/DzKQJEpBDYzk+PUGzWS3HD69AXGRsfQsqymGyN44Yc/5OA9e9je2mZ2dor7jh8mjSNMkbO0tMqpU2d5/vlXWZjfw9e+9jWOHDlcUlXLvyR5BnGcYdse3/vz79AaneKNU+dYXlnl8599iH7UB6FIs4wDBw9x74kTVKoVMAVKCmztkuUxuYnph12CoE6/n7KydB3b9mm3OwyihEf/9FscPnSQWr3KIElwPZcwjNCWQ7cXcfDQYfIiR3s+Ull4rkdvu8PXv/qnNBtV6vUaYIGE/s5GuTBHcOLE/WVXQQrk/8vem8dact13fp+z1H73t2/d7/Xe3NUUKcka2ZIt2ZZtecaBkxlPJpMMZpI4MZJggiBAAiRIYEw8+WPGyUyS8R+DwIAx8kiWZFmStYsixUUiRUpsstlNsvdmb2+7+721n5M/6pHi0qSasg3EGB3g/XHvrbpVuPVO1e97ft9FV5oprR1MWaKUA6Yyr3C1Q2Ey0jzDmr154WqGvRuIMsE/eYXi6DLyt/8B/fGQjfVjDKcZ4axikgcwuUl3fBJhPfzZRc5dvMLi/Cqj/phDBzf4R//pf0ZYC5EOfObzn+ajv/wRZmfr5HnG9Rs3WHj8BYTjkC7NIZUiyxOkgjTdy/x0PE7+4CSe0ty8eRPP9VCORmqB60gcr4ovslTmRhQp2JLpdIznuSTphKLICfwAU+SVGYt2kdrDCI0xZdUtodzT94JQPqbIYElkaAAAIABJREFUkFKxsrxMWeYEvldpoWyJKRK6O5u4rq5otGWKQjHo7aJdh9IIkG7lGm1sFSEVeBWwLi15PKbMM/I0ph5FTIYjBv2E95y4H+06SC1xPZfSCMbjHqGv2d3eodvrMTs7i0BSFCWO45HGQ0BirUCoEulYHCkxRqKkxmBJ0xzPCzCmwNoCSwlCIoRCacHO9g6u5/H1b3yDjQMHEbbq7rqOw3Q8YDTsEdaiyum0MAgkEsF4PEA7QbXA4fi4nv8j2QoJk3HBt771EMfvOlDphPOYLJsihSBJc/wowgjNcDTB0YqiVNSiCM9RzM3P7bmq54ReRY3s97ZwXJ/vPf4D1laW8VzNZz/15+zf12D/xhqOFvR3buL6DbwoYDQeEYUBlEm12Dbps7Q8h3T7BH6ATTrsbu+QZjmDwYCTz52k1W7TbjdxtGZ3d5uLl68ymeR89Svf5PtPfZ/77r0bO5ripDkXmg7jQR8dhuRlipJ1luZW+ZVPvI8jG+uk8QT1vRfwPJ8bR1doNpt8/OO/zNKzZyuzuU/8LMPBLkLkhIGmyCccPXyUbm/Ib/8X/5iPfPRXeeWlpzh4/Bh4NSwKaWX1LONHpi1vzkp/8zP0Lc9MKv8G+7oH5KsaV/VA/pbnXDOsMfhqQurHLB08gC8lzU6d7mDMw9/8NqGTcfTQGloU1H0XjEIGhrKwRI4ijW+grGASZ2glAJ/zl7pcuTGi0Vrk+JEDHDp0gO1ul05zHisNjUaNUXeHLB6hdUakAeGAkigyxmlOrdYkji3C8TCloNVsorVgbn6WaZqQJj2uvnKV3qDLxv5ZAl/gOC4UBcrRWGHJEo/5hTZxUS1WCqZgUiQVldX1fHY2UzJV52Mf/zAzjUWG8RjtCPJkSpFmKK3J8pwkA8/1cRwHR4VEkUOj3eDGjR36W7vUfMOTj3+JAwsOTS9FSsViM2FtKQK3Tn3xGE7jECpaIt6TSPiuQxwPsekALXcZXX2aus4xWZ/cBgzGOTNNt7pvy5RGwzLXCZESsiIhzl2mpSIKFMLRWOMj3YS0KBkME2aWmjjCgjR4gYdEID2JwMFxPJKi5PSL23SaLaaTEZEXIqxlknRxpYfraCwxvutCniNlgim6iKKHtJsVXVwHuGGL8bjH3EKdssgweQoYsrKodOcWjCmBatFQKJc4HiFVgJUKIQrsnnQKKXFcjdRVVOD5C12UrvMzHzzBoWNHiWohRb/EyX02fmsOWeQ8f/oFPvLRn+Hxr32WYPU5uvoC8wffhz+zgq8NRoi9uvC1gvEt8+DNNfebP3u78VcJM29FW/5px/WnVOF3Nf4iKyHvloL7k1B13wkIvn6bNx/jx9F43714/J3fvzX94W1e719Gri+/cf93PJN3v93tfs+rv9/Vq1cJXBepNcJazj7/LBcvv8Lf/Q//PlHUoPa//Au+M9ymbNSZne1gTaV1y/MCY0ryIufSxUtIKTh27BC5KVheXWFnZ5tBv4cbOHR3+yzML6K0Q6MZce36daIw4sT9J0jTGK1c8iLHc/eyHzt9jCh4/rvXWFiYR0qYxjG1KGIynTAeTTDWIlSNz37uU8wttGk1Z/H8BkHkkecZn/70p3j/gw9QFMlelp6PG0WkRYYnK8t8a0rOnDmDVpLllWW0U3UFrSmYxjnNRoPl5WWCqEacJKRxxngyYWVlCe1I0qTgpZfOcOjABnE8Yd++FfI8JU1ipJBcvnSFU8+f4vDxw5Rlycunz3DpwnmO33GEsiwYjSZo5bG+/yBKCur1OlJJ4jihyDJcx0VIydraGkEQ0Jqd4ey5c6wsrWBLy7Ur12jPzlJaS1gLUVqwurzM7NwctSjk1KnnOXH/vbTbM7iux2Q8oTQpWTbd6wpAkqQ4jiYvS7CVrtH3Q3zPpzPTotlq4WgXz/dZXl6iVgvxfYeiKJhMJnieS70WsLa6guu6KKlRCKbjMUWWMxmNiVPJ2fPnOHT4EJ4XUtqsyryTlQmRVg5OFaZInmXsbt3EdzSG4rUoApAIIcmzjHPnzrG0vEySpjQammw6xuyM8Z85j/f//vd4s/uqWJ9wFu2EJPmQ4c51RHKdMu+SFAG11gbN9gJBWCctUhZXlml3GkQ1H2NLVlaWWFyaJwrrCCmIoojwq98FqYgXOyRJQhBECFHpTz3PwwJLi0tY6/DFL36JWr3J3MJcBchlBbDknm6qyHNc7ZHlJUq7CCHRusrGTNK0qkkksEfVxZqK2mot8XRUdegdD6xk1N+sCioBju8TpwmOdNm6eYmyHOO6XjXHkhTf98nykqBWq/x4rUFribGwu7tDMkmqqI3xECEMzUYd7WjKwiJQlEW1uOCHHvleJ7Msyyq3kBKoNKVRvYmSGqkUu7s9lFK4vkOSZHz+83/K+vo+HCWZxlUGpTHlXl4se5oyWzHgbBXzIaQgzwsazRZR5NBqNWk0GsRJjOcFxElMGNVRSpOlU6Q1KNfbu9eB4yiQ6jWTqTRJ0U6lw5NSU+Ylp0+9wIMPPkgajyptrh+i3QDHcV97rrza7VqYn8UPXGqRj+tqPC8izwvCKNgzEdMI4eEqn0a9hpCKxx77Pu997x2EgY8pUgLfoygtcZLQbDextmA66ROEAWHQwPfrTMYTilwTuLM0m22WV1b5yle+SpqVfPSjHyVPs2r+5gXf+sajHDl8lAcffID3vvcE48mQ0XjMzLnr2N/4yB4138OYjNEgwXM9krRLfzemVq/ROnUZpRXhL36QU6eeRykIS0M630Tdfxwv8KtC3POpN1tIU7EJPvyRX2BhaZFnn3qEA8fuwq23AYG0vAZc36kDczvvvb78Vg8WqAeLWz4Ti0IweSjn5vgVGosL3Lx5jdnFOW7e3KLfG+M4mpdffJkymzI/U0NKget6YAzGGoIgQmlDFEWMRobB2OXCtQGZdFiYm8NxHOYXFpFSsXnzJkWRkiYptajGzEwNYfqIckppDAiFAuq1iG63j1+fwa81iccjkIbRcIDne/i+jxKCzkyNLBuyttQhLwO064AYI1XFzGjXPfJ8jBN2CMKQbLKNwoApKYuCorTkIuS5F7fZt7EPm8NwuEunM4fvKCbjEVJVpmzJZEKj0WCa5ijH5eTpUwRhg2atw5c/90l81efuQ3U8lYCwFFaTOw6d+Q1UsA/hzmOcAKkcinxCHg/Ikz6CCWl/k3i6hSczyAVSlbiBx/x8DVHGKOljHEWaVAvyUhgcqXjqhzf53rNXOX68ha9cSgTaqebv8sIsUWAwGHzHo8hytLIUViCExEpLYT0ee+IcQeDRbAUIkb52zy3L6voWRU5R5FW2s82RClzXpygzijzFWIl2XJKspLAaLaekyRTP95Ciyl2uWEg/asIIKfEDhzQrmIwMRZnvmQoqDLbq0EqFBc6evUarNcPC0izTacLO7i5N3cYtfM7PvcjWtWuceOABijLl7A+/gbJdIGBm/300Fg6iRCVvuHVV985z6rbm3Y/d6ycfPwWubx0/Ba7vcvxFW/i3a4z05i7l6wHpjwN9t/rOWwm8byVKf/13vN4U6t2Mtzw8f0zn9lVjnTe//8bXb+rY3u653OZ2rx+3NJd6U4e43W7vdd08klGfT/7rP+BnP/ZLhEED8cjT+A99Fz70IPvX1xECptMJSjl0u12iMGR3d5eNjf0cPXaY0XiEH4QEYUBZlDTrDYyQ1GotJpMpnudQlIqF+RX+5NOfZ2ZmloW5eYLAIYljHn/0MS5dvMy+OxooJdmYu5c4mdJoVJmPnh9gTaUrwRpubPY5f+4MP/s3PoAQCt8P+OKXvsR73nM362sbBIHHeDKiVm9gEa/lSpZZUgFkx2Vubo56rc7pMy8ShE2staRpTKPV5tsPfZu5uQX8IOKP/s0nee7kc/ytX/81et0dgihCS8n73/c+9J72pT3Todls86l/+yccPnQEgPfc9x4MJY5y2d7e4oMfeB9+5NPrDojCJt/61sNMJhM6M7P0e12uXL7Cvv37K9pykjAzN0sQhczPz/P0M8+gtWJr8ya9bo/5hQWiqMbNm9dJkylSGAqT0261mIzGbG1vctfdd2GMJc8Lzl84j+dpXFdTr7d56qlniOOEdruNpQJnIDBlgedKPD8gniZ4vo8pDWEY4LoaKSvDnbK0KC3wfIfhqE8tijDGIqzhzJkzWGuYnZ9jcWkd15M0W7XKhZYSx/XJsowwDCt3XiXAWvIsQSuB77so7TIYDHBdl2k8BarcTX9PHxvWIorpBJMbwhc3EZ/4GOJDJzBSUVISBm2G/R627OOl24z7F0hLj9kD76c1u8Z4HJMVJXMLS5TWMhhsM5lM8f2A9f0HCIPKZEbrCjgFX3kcJGRLdVxHoqRlMh5grUBpvbf4A0JqDh89zPzCPFo7VbFYWrK0KmiUrDSCUlWg74//+I95/tQp7rjjTorC8NBDD3Ps+FGsLUFW3SWxR18VAkKvxWQ8xnUEO7uXmZ1Zqjrq+d53mpLJaEyr1cD3PMq9OC7PcSqqu97rvuYpWZ6SpRmmtDTrHRq1GlJayrLSZU+nY7Isw+y55zqOptEM2d66QRR6TEcDMDm+o5mOe+TpFEmJ4zoIYRgMugSeg+eq14DtifecIAwipNS4jo/FkOcV3bqihWuKwmAtSFFxG6VSVcEmBKbIKY2pDJYcB2MtnlcBfj8IENYQ+A5GKLB7rvZAVqZ4rltFWwgJQpKlMY7ycRzLoUPruNrH8zTWSqxV1fXSin6/TxRFlGXJaDTCmhylJUor4umUixeu85nPfJa777kTYwriOEF7gjLPmZltMBrv8sD73svm5oAfPvNDDh8+SpIZAl9hpcB1XQb9PlpqhPCJpwW+HxFPIPIrNswknuJ6HhsHNpjpzDA7N4PjSHzfodvd5QM/8yCNloch4fLlC8wvLNGcn8V9+RUm77+TztoyjvYRWP7eb/0jPvPpz/KJX/8lFhfnMEbjP/MSeVEyuusAvV6fI0cOY+7cT+3991KYKqO6LCxpkjEaJRTJGKkVC4sLpFnOyy89z4c++oukaKQBac1bAi9uZ6H31ffe8Cy9Vc1wi2eesobulycQJTQWOnRaHXa7Wygh8VyP4bBHmo647+4jhL5BOYbpKMdxwQiHJNEoXZAklt1+wtPPXWGrN2Vt/RB3HDnM/OISp0+foRYGBL7P8soS/f6AleVVsmxEmQ7QZFWmt+NhigJTZmALCqsZT0uUFFV3HctknDAajhn1M7Z3dti8sY3NU7a2dpmMxizMtpiOE7QK0Y5GKY+gsZ/RKEbbGFtMKYscrRSlhXFScPrlbQ4d2qDMLH6o0UqTxlMcx8UP6mzv9LFFiXQ8Xrl6jYW5GTwb0b15jSce+grvP7FGpxkTaQejHTIdUOssELXuxNDEDTuMJrsI28PLp5jxFdLdC7hmzLB7meHQ8PAjl1hdXkbVJrj4pGXKzRs3aNc6WEfSG7o8/p1zrG+sgEzw3Iig3mRmfpZ2K8d3JUmaobWDoxWQ4WiJldWzXyuPUSIopyVaaBQFphyxb2WO+cV5XLfE0RKlXITkNaApsBUILfVeWE3AhQs7lMalEVmsraKymp0F8sySZUOEACn2wltsdQ+2ltfuh3leUpYehTHkRcnO0DAYjKlHEZ4jMdZgyYGC9Y0jBFGNmYVZmrUOV65cJjJ1vDLk0698io/9/Ee4sbXFC2eeZaVpaJsWqphh9sgxwtl1FNwiG/mN9e+7rXPfUEu/qz1vb7zdPK/O9d9t1eZPgeu7HH/V3PN36sq+np//6uc/8QrRLUDirSbKX4VJ063eeyfXZvPIU9jL1xDrKz/67HbP5Ta3u51hrd3rlnkIIVBCkSUJf/onn+bjH/kQqfJxnZDo9/+Qx165yNJdx3Fcj2535zVwo5Tii3/2RWbnZlhdXaHX69KemSUMI8bjKba0lHlBUGty4dwFHnrom2xs7KPWqKG14uDBdQQ5rguDYZ96vUaz2aTZbNJeo6IP9X3CMKAoCvzAZ3uri+cFlTmIKWk0G6TjmCgI0driBZKvf+MR9u1boNOco7u7SVRvUhSGSxcuMj/bocgSsDlFUVKWlm8/9Ahzc3Ncv75JkpYcPHgIRwvywjDoDzh39jyXLl9hbd86i4sznD71HI7rEtVaaGEZT8a4bsBwNEEIDyFdpHbY2d3l6LGjCAXT8ZjJeMxLL73I8uqe/g2HySRhOBhw7vxZZufmWVpc4JlnnmbjwGG0q/GCAOU4CFUFnEtrmem0OX7HcQ4cPkitUSedjLl57RqOlrQaTaSrEFbQaXcAS7PTpixStNLMLyzQarYIwojhYIKSDp7n43kefhSilSZJEqaTUUUtlZW+1XU9sjznz7/059xzz71YC9YKwrBOkaYMhz1mZpok8RSgoj3Wa3Q6M3iBv+ea6xP6mkF/QL3mM00LPN+rTHykIEmmKCoTDKkUeV7geRUQrgyycvIipbc9oNfrEdXrFe1t2qXsD/F+cJHsd/9zxuUmtbBGnPSJogbppI8qt+hfO0+W9DDOEkt3/yLS5BTWMLewSJZZpHDRGnwvosgtWQpZVhIE7t4ih4P7xUcQWtJt+JRFZaSVpgXTeIofBGR5jqMd0KCdKovWmIqumqcFjz/2BAsLi6RJRhhEFKaiOh6/4zh33X1X1UHd6yxHUcBw2CcM63vAyyJk5UpcFhlZljCdTGi3OhgVUBQwnkwJ/UoHHtR8lPQw1qE04AYeaZJjXtXoTiZ4ros1tjIeyy1FDkWZoLRCSoXnhmhdLVIUec54MsT1JLubm8zPdSizmOm4jzAFg34PazLKLEZRUpQF/e42M50maTxBYpACLIbSgNI+xZ7RSByP0VpVnS9KBoPKBXt7a4dWq0VR5kymU7TjVbRhI/G9kMl0uufyCSZPqxRYt6JJJ0mCcl2sASUUZVmgtHhNTyaoHEEdDdJqLAlKGaaTFJSk1xvR3dkl9F1Ka7l58ya1Wg2lKq2iqzW7vT61Wg1KSBLLoYMH8HyHIPAZjyc0mi0cGbC1eQOLpSyhs7CA58rKvMd18BwwCMoSalETYVXFQnAMlgQhBC+cOsP+9fWKPo+l3qiztLRcLQTYkiyL8X23Yp8XlZPzTGe+croucvzru/Cx93Nt1Cf0mly5fIXlhQP8/Id/iQMHVxlPt4nCDvrSFn/+yMNcbtb4/X/++/zyxz/O1tYWX/vG17jzyHFMXvI7v/1f8os//8u06x1G4y2U1mhdZRWPB10O3XkvmbFICxLzliL73TyD3/AsvcVut/qmdLRD+YSHqifEZAy7Y5LJkFPPneT40aMMRzts7/SYazeZDnt0ZmaQRmJI2dqd8Oh3zrO+0QHhM00K/KhFZ2aRtdWDvHjmBeIs58T9J9CqUptrR3Lj+hZhFHHyuadpRwE2H1cSAamQQFZkKC0IwhZpoej1hsRJAgh8P8TRPnE84vr1mwz7Q5o1uPuueRo1TeB4+J4HAnIBSruUuokxOcrsIqzB0VU3T0hFMk0wzHD4yEE8HRI1fUyZoaXkxo1NSqNYXT3AYDDAWMVMu81k2Gfr8jNEbp+6NyXywXclmS3R0Qzt5TtR7hLjyYSoXkOQELolKptw89orJOMbuDJnGif4tRqhIzh8bBHfSdHSxRpNiWDQy6gFLWRokE7J+r4j+GFlUmdNHakmdBourpGU2ArsWY2QirwsMDhIqbEmIS8lTzx1AelMaTQ7hGEdRImjHRydIGyGwqMsQWqDFJXzv5TVAjbCgCwZxwX9Qcblq5usLdbQ0pLnGUI6eI6H62mUkCgJSoEpDXlevJbEUBQFCM1k6pEWCfXI4eUrU55++gobqy08ZbFlySQVSOly5sxVnnrmJYz0aDUaYC1Zr8QtfBb+1hz97S2O3HGUINT45Q0WT/4dWqMTyBMJwcx+ZLWa944z4Sep7V+rm9/1nn+x8VPg+lPg+q7GTwLkXr/v7Whk3wxKX9W4vDnr9VZc/DdrR998/LeeU7lnVFB1Jqw1vH5Cv/kYb9bXvB3gfbvjvd1+7/Sblr/7rzAnX0b9zV9ACLn3d4sVqVv8vfkMbufKyTefG2CEQSKp+Q1MBiefPcXyQpt/9Xu/S9brsbBxlN6uYeHaTcI/+QrjB+/m81/6MvNzHdb2byCUZrjb48qFCxw+uJ84nqKVpNVuURSG3ZvbbN/cwq9FfOaLX+Se48f54Q9/wGg0pNlssrK8wGQ0YjgaMDc7y+nTL7F/dRXteLhhjSAMUfU+ZVHimEWQkiLPyQpI44xP/ptPcujQAdqzLSimtNtthsMhtVpEmsTcc+8JtPRwHVUZW5Sa3KS8/NI2nY5DzWtgVfX/2+8NaDXbLK+usbW1y8WLVzn1whnuuOte0njA+v79LC0t0uk0OXhglYOHDrDb6xMnKfPzixUg8FzOnH6BV165xPeeeIxXLl/h+LGj7OzsMjc3zze+9S2002B2aZ7l1RatRofCSM6dv8TDDz/Gr/7qJ5hfWMSrRTRaTebmZpiM+niuQQlFmiWMBjsUccHcXJt2u008jvneE4+ysjTHcDygLASry2tMJz3q4QzGFOzs3GD/vlX6vS71dpve7iaBrxHaoTcYcf3yFQ6uLzM/36HEkqcZUlZFUBjUiKc5Qhhc16XIS3yvRhT6tFpNhKgAQJ4laFEgtIcOGgigTCc06nUcL2Q4KtCipL99kXa7w43tEdvbm9QCSVifwRjQ2kNKF9cNQYKWmiLPqdUikjinLDOsLfGcAC19PN/geYpaFIDNGY+HRC/fJN7fYvrRY+SjPpFN+ME3/4jOykcYmR8y23XY3TlDWHNphfvx1+4l8Guk4zHJqE9RWtLSp0gNUklKY/lv//H/wD/9vX/Gf/T3/zZx2qUoY6KvPQ1S0W3VOHnyOZqNJr7rceXyRb750CMI6bAwP4cjJUpQ5eDYEiktxgjOXzhPkiR02h2efvpp9u/bj5AF2lVox6Eoc6SU9Ha6nDp1imN3HUeanCyLKYt8L4Im49rFF+jMdAhrM6RFWXVctMJxNFJVQCKejjFFQpqMKwqyF1JageO6JGmC73uUZcZkOsVzQ55//jSjwZCZhQ5lWQHwIi/BGrI8RgCh1yRNJjhuQRKPGI8GNOo1EBbXMWTTMY708AKXIivQ2mLKhLJIKfMUiaLMc5LpGFukTAa7+GEEVuNonzRN8Fwfz/HoD4fEcUyt0WR7a4fPfe7z3HHHcRzPRdq9BUIsZZlRlpVpl96jTgsrcRyP0hocYcnyGKk9ikm/MqrSkulkiPBDpLEIacBU95cizwlqEWlW8oUvfJW5hVUEMDczD1IyGo2ZJil/9Ief5MR7H0Q5Dk//4Gn2ra7RajdxHEmaTMnSCW5U5+tf/Sp33nEXoGi065Rpxkx7hq2ta/g6oNfbRMrqur0a+ZRNRriuYtgf8eK5kwhlabfmcUMXpEAJB2FLJqMRSit8P8Ki0I6LH4Rkec5kGiOx5GlO7dou5sPvRTccjNK0mrP889//Z/w/f/B/8Dv/1e+w28/Y3eqztTjL//3k42ys7eN//F//Z+pzM9T6Yw6053Dn14jqbVbX1qk3mwRRRGyrDGM/8HC0SxYPabVnkMqtTLCkeYv+7u0Wsm813rCt/dFf/ikPc0qj7irfsv/m2VN4z7Yogz7hTJtnn3sex4u4+977EY7Ltx95lA+fWMcpJ3iRjxeAFRlae7ja5c7ji6TZlLMXd7h+vceRoyc49cLLuJ7HL/z8B8jTGN916A8nCGvZ3Nni4JEjmDyj4eeUo6t4vktWZEgp0K5LmWVYa1CBjyFkduUQYRTie5pms4VyfUi3qbU8tna7bO8MkKZgvlND2FGVSYxma3OI0i5O1K46gHEPEyeURYZyFFdvpHz9u6+wutrmkW8+xmgwYt/+ZYL2PLa0tJtthHa5fvMmjbBGuwHdK08hRucIvJi6J3CVQbkC4XnMrL+XQs3jurNYa3DsBJN2yXrnGe1cZjrc5ZN/9hxJbFhdjXBcw+VLm4yHhnaQYmzBIK3z7cfO0mw02bfWRngew1hx6sUtWu0WL758had+eIUUn5dfus7hjXWSbAhKYEpBVmQYAVq6mMyQlzFKaCBgNClo1XyCQFCaGC3qYHOUpGJmaVFp5UuDFQab7bn9qhKEoCwt9VpEq+WxMBvh+gFFnlesNGFBlSgrKW1JYcZIUzGajBFV9J0UFSuGkK89/Dz90YSV+TYr8yH33DmPG4IRgHDZ2twicEJeurCNDhp87MMfppSSIKoR0cArQ9yPTWnXYLhzifmZOqOts7jn1ilExNLfXEMFHqgSa95Ya76a7PqGmfWTzrPbwARvF7Vzu/u9ih2q1/9uGzj9FLj+BOMvqnN98+vbMWyy1r5mb/9OYO+daMO3Bpm3ou/+eDrzu+2q/kWG+cJDwBvjcMRbIOntjds5s1tuI6qbRWFKrJK0Z2dJ4oIfPPUUv/Gb/z74HlcuXWPfv/40am0Jlha48667WFxYqBxop1NqYUS9VsfYgtXVNXa7XSbTKUHgk2Upc3PzgOL5U6dpNWqcOHGCO+44zuLiIllW6eyiKGK326W728VYi3I9ut0eyXSM26pyPkU6i+v6nDnzMo16gCMF995zN51Om263C4BWe2H0jqLTmcF1fD73uc+yb22FIPSIak1KMi5duEGc7uK5AX7osXlzky9/+cs8+MCDJGVOo9kgCF163S0WFtokaYaQmlq9jef7CCGYTvscWD/A4sIio8GYRivCdR1mZjrUG3WsLam3mhw+ephmo4ajFXE84eFvfpPtrV2OHz9S6V5Mjusq1tdXgYyl5Q6R7yIoKIqCG9evEUUBSZIjtYOU0Gp2GI52MKYgy2I2NtYIQpeilCwszDKZjChy8IOQ6XRCo9Hkxo1NWo05lFJs3rjB/Nw8xlh63V0OHzlUOfUWBY7n4uhKxzcZD/E9Bz/wGI17pNkEqavfdzKujGmUkmgtUUoilaAwFqldsmRKmWd4nsvm1hY/eOaab6TTAAAgAElEQVSHdHc36bSbOF7ANM75whe+SLNWp9Wew/OcvcUmQ5Yl1fcqRZ5nVYd/d5eoFjCdTKjX6wwGgwqguD5WKLKspBlG8K2TjP67XyHct8Gou8UzzzzBzEyH1QN3otwBzz/5PJO4S7R6lGnm05pfwgqHOB4Tj3uMR0Nq9RraqQzHkiThs5/5M65ceYWf+7kPsri4QBTWcZ47j9m/TOF7bGxsVHonrYjCiDTNuOOuO/FcB6k0pbVVd1BWxkKO47C4uMDs3Cx+4DM3P8dwOGI4HBCGEUpKtOMhkMzMzrBx8ABWgiNt5Z7rOAyHA6y11Gs1HD8E6aFU1RGN43gPwEmm0zG+76GVpChLwqhWxVSoSmtrRUVt1lLi+yF5kdNs1Lm5eYOZzgxZmiGURCrFeDDC8yp6XhUDFWPK4keFkrUURYkxOY4WODpAuxpEdU/O8wwlXayVKFWBYMjJsjGNRkCW5mTpFGyOFpY0Ten3e8zOdIhqEUkS8+KZKi5qfX29iqKwVff21dgeJSvQh1QVG6AsEbBHQVc4no+RCiUcpFtDoVFYlPIQwlY60qzA9zwGgz5pktJutjmwsY41KfV61XlGQq0ekGcJi/PLzC8sYI3l4vnLnDr1PGtra9Xv4FS5uPV6i9PPv8Dy4gJB4HDllQt0ZhfQjksQ+Hztaw+zMN9icXmZLK/03Hmeov2A0WTMaDxBh1cIaymN8AgGU+mjixysIAxDtrZ2UEqj9mQqmzc3UUoThdW9Kc8Lwms7XL9jjUs71wnrLRzl8t77H+D++++j3qjRmZ3hn/6T3+Pq1et86MMf5kM/8wGkozDCov+nf0H4w5dRv/7zbG9v8b/93j8hqoUcPXaE4WhAs1GvFlTSmKeffII777mXUigqQ0F7W8D13Y7iYRemAv1g8ZbPXnjqO3QublAECdHcLGHYYHtrlzQrOHv2HHEcszDnMtPyiOoRwkpMVpAkMUHoU1qwBNRbi+x2RyADhNK8730fYGtnk6XlFUxZ0NvdwViDsYI0Ltjduo4tN2mGDnmZop2Kjp7lOfLVLGEk2q0zjhWbN64x2+lw/sJlhNRk2ZSdnREvnT7PiXuPkCdD5jttjAGjFKXNcN2AdruB0XWMVVU8jK0WGKsFPsWBuZDFWZeVlUX6U8PORNCIPKTXYHcQc/XKRTavX4F4i6R/EccOcR2F41ddUeGEzO87gvRbeH6bYX8HW/Rx7ITh9gUmg5soEgQppclZXG6xsdbAdwqwmqII+fZT1zl0YA0pNGVm2e4KWrMBQuVcvDLhyaf6lblVe4mtrSFZoRkMUpI4Iy/g+s0Ru0PodyUXL2+h3YBWy6coxriiYj2UJmVxqUFzJsIYnzSzoMdAlbsqEBRFiXYcpKzMvYSoWCtCal7N2M2yDGxFJZZS7V0ni7FQ5ClChPh+CylV5TOAwdEarTV5XjFmSgTra/uY63hoVaCVrRhLe0wdREEYeSgpOHPuBvsOHCGNp7RaM1y+dJmGbFETdZ5Sj7A6P4t0JKiCcnQB8dJBwsYMtZ/zMUIjpcVa+Ya5dOv4xNufZz9Oonc7+72b8cbjyb/0Ovuv0/gpcP0Jxl82cL2VvvP121prUaoq4l6vf/3rCFzfMcT5bfb7/wNwVVZgJBTCInSlN7x09jpHDh/HjxoIR3LkU1/Hv3iVyX3H0Y4mcD0ssuoeCRgORsRJihDgBxG1ep1Wq810MqQsDcPhhDROuP899xPVAi5fvszi4iJFURXW3W63Mh4Sgn379jMzt4AFoijiqSef4Mi9sxSlYbLrVeDRr5OlffI0pRaGeK4HiMrdNkmYme0wHA6RUpFnGe1miwMH18myBIsijgcc3DjO4cPL+F7EYNCj0WwxP79AZ3YGL2rjOB6nXzjN+x54gEatTq3ZxHV9Tp16gQsXLmKsod0IcB2Xrc1tJuMpnfkmvV6PMi/RWtFq1ljZv2+vmJYMel2W5ue59soVXKfO8buOsbO7yfe/+yxhELK4MMdkPCDwXbJkwng8ohaFhFGNei3k+o0dRuMJs7MdyrzE8zy63T5zc/OkWc5zz51icWGFaTxAa8V3vvM0RZFx6fIlVlfWuHz5GmfPXsJ3HM6dPcfCwgJJMqHZqCGUIjcFo8kEPwgpipIg8BECjClAGEajMVJqwqBGUVY0ZddzmE6riJSizClLi+MFry1cVVq9LgjQyuO+++5iPB1Tb7QojeTFMy9y9MhRFhYXSJKYLIsZjroEgfva9ZNSIR2N72msMYRRyNmzL7O8vIjSAds7XdrtOfLSIp84hb3vAN2fu4NGZ4EXfvB9DGOOHLsfIcZMR0MyQpaWlpk//n7ieMLWKxeY3biTXm+b8Wib5cV5Qj8EqZlOxmgl+cD7/waPfPth/uv/5ndoNjuYUqAe+T4mCNCNOnmWoR1FXuT4nsfK6gqe7yGkRGm36qDtGQvZPV2vlBW1UCqB51eRTM1WCyEFpamA7smTzzLT6aAdjcFQJFPGkzFKKcJaFcvgekGl4zUKbIFSeg/sO2RZQhh5JNMEPwgoihIpJdPJlN3tGzTqDayQFT01KxBS4rouXuAyjcdoPBxXVVpmJQlcD0FJkcVYUzAYbeJpF6yhXquRTCeUxatgrTJp6vV6OJ563TNBVrEQ00nlqmwriisYTJFT5FOyZMJkXBkTKSkYDvoEvo+QsLPVZW11ldm5WcBS5Al5keH5HlhR6XYlSFVpeG1ZoqTE81zSLEcqVWmQpcAIiSlSyCY4rq6AioU8rRZcoijAdzy2NjephR6zMw2ee/4MUa1Go94Eq7h48TIvnj5Ds9WiLCy72z0+9KEPMpmMmU5GtNpNTFmQpQWPfuc73HffPQSBi9KWoNbYu9aWAxvHcF1LlhekaVbR5gV4tSau71KWJW4woFavocxKtbDjKqQSfOkLf06nPcu//eNPc++995KmCVEtwvcDzr58lrn5OaSU5HmBf2WT+IP30Fqbx/VDMFWxuzA/Q7NZGc/9X//nv2QwGPIP/uE/pB5GPPiB9/GxX/5Fln/wMmmSUP7SB/A8h0984le5++472dnZYm6uw6kzZ5ifncHmCY6WNDszoN2/UuD6qqvwrYDrn/zhv+QEH2Msx2QKAr/GwsIi1gheeOE0k+mEPJmiSQhqGi2gzKvOmdCCNBecv9BlMM7Z3R3wvg9+iGmcMje/SGumjTUlpixI4ymuH9BqtpgOR8y2fLL4ImWa4riqupcqiSkttiwwRYGQCqkC0sJnbnaW/nBEGNbpdfus7Vvjxo0dyqRg/2qbdqekFjooFXDlZg/H92g1QqbJGDecw+KQJSNMOcX3nEp2o30CrXC9jMFwm62tXa5d3cYrekymGV/60hd54O59dK+doR0WNL0pSpYIv4ZwQoL6Is3ZdeIypBQReRJjix5kWxTTXZwyQ9icIk9fo9uHQYmixPcUVgg8v86hox3qNVMtdmbg1pr0BjG7uyGLK/excnCZooT73/sB1g8c5eixOzl46Ajj6ZiZhRWeee4c17djdreHaC9iMIqRQBTWq9xp7aC0xHUEcV5y/uUuntfBjyZIGVFkRWWohkCIKku6NCCUpDQGaxVKKlzPr0BwWWWaCyTacXBcFy9wKIsUqT0cHZJlCY5joDR7ETjV/cIYi9ISX+XUfFmBTnJMUeJprzKD0xJjBNK6vPDSTRZXjnL86J2cPv0CtSgitDVU5jC6a5vAVWRlSVIMKYcv4124B+01qP2sRykESlYSh9fPpZ8C17++46fA9Sccrwdvt0sffrttXi1eX6UCvx6cvhY98DZuwW8n4P5x5/MjofePbCB+dLy3pzP/OMB6u8d9N6P8s7cCV+yb7Stub/wkwFUIgTSSQtmKflmUbL70Mnme0e4sEAiN/L0/wH32NMMPnmCapjTCiF5vmzMvXWBj/yq9nW2SOOPm5jZf+9bXOXr0GN959DEuXrrEeDBEaYeDBw+weeM6N6+9wsraGo8++ihHjx5lOBySZQn1WoOiLImiiOFwSJGlRLUaeV5w5PBh4nSIMgG+6GDKEi2gNTOL73skWYLB0h+O8LzKbMNxFL4XMhpNCHyHwPcw1qBdzZPff45mIyAZG5JswI0bXbT2mExi9m8cYDSe8OUvfYszp8/wiV/7NYbDEefOvcLK6jz9Xp9Ll65w9eoVfvZnP4TjeOx2+zz2xOM8+L4HcVzNhfOXuXTxFTY2NnAcQZ4bPK/KhB1PpswvznPs+B105maIIo0pSqSM2Ld/H1mW02p1MEZRYmk224wnCbWwTl5kxInh8See5J777kEIy9e+9gj33XcChCAI6mgd0O122dzeZf/+gxw6cpjhcMSjjz7O+oF1VlfX6HRm6PVu8t4H38+Vq9e4cO4CURhibUFhLLVanXyv6M3zkizNK1dXY2jUZwijiCwv8dwAjCVNM06ePEmz2SQMIpTroZ1KX1d1ICvao+towrCO8tzKMEco6rUGx48fZXZ+FiVLTJGSJFNmOm0EUOQFaZKgHAepHeLJGGPBdXza7crRejgY0mo2MLbE3+xiXzhP+b//J2SmQDoNvvfYYxy7cz+Hjv4S507/KQutI7hrd1JQYzqYsnXu27SCkHD2IPOzba5dukhWWNyogylyJuMepiyYac/xd//Ob6E9Q1lW1DP3se/TT3P++M8+z+FDh0jiKjNRKIXAorXE8bxqxd/aSntmS8o8x8Br2a5CSrKiQEtNmuZVZqstwVpMkdNpheRZlX/qORUFtnIwlgih90xAqgzdMp/umRN5r834LCsRpkQ7/l43ThH4Lp4XIKUiSVI87aAdTRxPcVwHiyWMIlqdNtZkSAxpPKHMEiaTHmkywdWaMJBYW2CKjMBzSOIRSkE6HWCLMclkSq+3Q+h5ZEkCZYktEmw5JQwjbFlUdM+0wHUrI6Qsm9KoRZjSkCYThCiBElPmpPGEtX3LOI4kCAKsgeFwRL3eACBNkz2DlKwCBlLBXofLGEA7gCUedXFdjRECScbu1lW8MKg6V8LhhedPc/36KzQaNZ586klWVlZRWjGNp+xb28B1XEajKVIonnv2FL7rcPz4cZ5/7iQ3b1xDa813v/sEx44ept1uUpYFeZJx+Ogxas0mkzjG9ytzpyLN8TyFq13SPCaqNaqcW5MjbGUZY40hiuo4QR8hBY5Y5sqFy0RhhBGWtZUV0jQnSVLW1/fhehpXKUwpePJ730dJQbvTJE1TgqvbbN2zzlQWuGGIlhr2Mp+hxI8C/vZv/gf8x5s5sy9eYuvQGr/xm/8eS2sryC9/h7IoaP+9X0NK2Ny6SRj6ZFmCliWt2QWkLSAb4TgeflR/R+D6lzHeDFxfX78Mrp1kZfNB+maC9SSj4ZDRaMzly5dptptkWUI+HbO2tMjmzg61RoSjNYURjBLJjd2cF89t4Xp1PvDBDzGNE5rtNn5QYzypsnCVlES1OlI7lHmfeHSdS2d/yMpiwHA4xAtcLAbX8bAWiiRGKwejHOJCMRqkTJMptUYDzw9fY1DkWYowlqeefJZDhxs4qop8K0rFsDumVnPQCtANvLCBLWNsMSKNY8qyYHtnwKnz11nbN0ur7rFvrsnBZZ9mmJAOb3JgKSSUXfYtejiuJEcQzh6gNn8Mv74EukmBy3TUJ3QsIt9G5mPKdFQ5kJdij73gVPIO7eH5EVJE5FZRIugPh/Ru5rz00oAzZ1O6k3myfJb3PPB+5ldbXL5yhYX5Ve697zhGCPKy5Oy5F1lbW2RtfYNnnzvFr/zaJ7jn3ntpdSJmFpYYjsv/j703jbEkS8/znnNO7HHj7jf3rKrM2qureqtepmcjZzgcYkhRliVSgLeRbdn+YcOA/1GAbAiQTBiWBdgwLQkUBxIpkYBEcYazL93T3ex1enqr6bX2NbMqt5uZd489jn9E9jLNXmcGFGD3B1xU3ntjORd1IuJ7z/e978uly2t0d1JmZ1us7aT0x5papcFoHJPEBbvbOzSbDaRUGIba82s3EaIEerbjkaQ2SBfL2pMIzPM3QatUlLZiSpGkCUUSYUrIi5RCZxR6QjQZ7amdi7J6KyRSKvI0oSgikrRULTedCgJIkwkFFheubOM7Jmlc0O1lnL+8SuD79IYDTp46iRgZqMRA3zdEKUXQnsW0HfpXX0JePkq1MY35gEIoE960B3uL+iZ4K899Kx9+d3rb2/Pyd4uPYpP5s2jG/GWQ/HGr8Efa/mPgWsZ78Tp/3mPCewPhD/PZhx3HW6rF79Z3//OvCP0i490qru/vvvre8X4jfDdQ/XYwn0uNLHLG65s8/q3vcujYEun5Fby/978zOn8Z9RufwfYrPPX4UywuzHNrdZXDx06ytnqd0WDAlavXQSjuv+deiqLg2eeeI01T7r/nfhqtFpZtYJuKwc42U3PzLC8vY5ql8E+n0yYMI8ajERXfJ89y0jhEKkWcphRa48gWemQiJISTMRQZ/WHMc8/+mMXFeWzHoVKtkWcZpmmUq69WmdybSpdASkrCcMKBpeMk8Yjvf+dhlg8tcOH8DfIsp98fMjMzi1QKz1bceccJtEjwqxUazTaWUXKBlw7s59DBZYbDPrV6C9f1mZ2bJaiW1jU72wOefOJHHD92HCELXNsnjmKQimq1hjTMUrLfKLBtMKVNo91EGZpx2CdOY4SQ2JUqQpiYhsmZF88QVD2ajWmWDx0mz2NA43oOQdVFmZpeb5d6vcawP+Tlly9w/MRtoGJM5XH36TupBD5FkeFXXILARZgWX//GN0nilEMHD5ZCOlpgWzaOadIfDkBLBr0x165dLxd9RIqWObZtkOUxQpsIIViYX6DQEEURluMShiUHMstzslyjTIMkjqjXp9CGYjDo47oeUsDNWyu0Og2KNCKJI2q1GoPBECkkjlP6CqZZBsrAtgykMFHK4sKFC1QCH1OBbZvE61uoR17g5pc/yw3dp1GpsN4L+Zf/4g/41GfuItH7GW8/hlHsw9x3lFp9Br11g/Hq47RnD7IxkNSDkhddb8+CWae/dYtms040CbEtD8u0kFYMWqF1gfvVh3DTHPfQMtWgwoPf+y7Hjx9FC4FlGkzCCabtkGcpWZIgBCRxRByFOI63VwEokyYly1bCM2deYvXmTfbtW0AWBdXApbe9hRSaWq2OYdiMRhMsu1TUjqMYaZStqEpI8niEMKxSgVcqlLQwLQfLkGS5RgtBHIZYShJnYBoW4+GotIjQGa7vkuV5mWBnOSiJaWikzgiHA0xLoXWCkposzdE6A52S5ynRZIwuMvIiwxAZcdhDIqnXG4RhxCs/+QlBxccwMop8Qq5joniEpsA0jVJ9N05QhiKKEtASKQviKMQyzbIVXQoKnQKaMIyR0uSrX/06Rw4fKa1yDIkyJGhQe1UWJQTrG2sYjo9pWRR5QjreBSwKbWApE4UE6YAQGMqi0+5w69YK9VrA1PQ0jUYLqYySK5uPGY17BIFPkkYsLMwgMWi2GizuW6BeC1haPsipkyfxPJsoCknTmGq1irRtbC9AKZNnfvQs87MzOLbJ5sYqKzdulOrkhoFfqSC1Jo0j8j1rqskkQtk7CCHxjEXWbq7RbncwbYs0DanX6hw5chzbNhiP+2x3d/jut3/AYDiiUnHxK17ZWr62i/ziA1TnO3R3d1HCeNP7djTugVR0N7rkjz9PtVbjn535Mb/yxS/g1wLU957AcxzCz9/N9naXmZlpQDMej3BMhXQcyDPWrl1gOIqYmp0vlV//CoHr2+Pskz/gyOpvYx8pCJp1fN+l3qhTq9V57vlnyfKUu26fRWkIYwOES2/3BkGtzblLXc5dXiNodpibmWer22VhcQHbcsnygiwd49gOW9s71JptkjjDtUN2ti5x+MAslhR7AmoltSJJy5Z1QxfkWpIbFn5jllZjCqEkXhAQJ2m5wCMkFV+xtbFBvdEgGkfMtNtIMcKwNHPTLdKsVCQ23AbdnQGmVZAMu/iujxSQFwbzMy0slWMIVVIM3BzMnLpn4RoF0izAgCQHv72f2twptGqgZUGYhBgqw2KbdLxCNN6GrMC2fda3tvGrDoXUKLtUDNc6QzoWW9sTLly4SbU2xer1bZ58fczxOx9gZv9+7rn/JDOLVdI8YmtjwqmTp1lfO0e/NybXEtNymG63Gfb7pJnF8vIhBJorl84zN7fAYBgxM7tAvVXHsA3WVwdcvNbl2soqC7NNDKFptmw67ZIrDyPyXOA47k9xMbM8ZW0t5sUzrzE746ML9sSVUhAlFxZdPnfiJMWQEllosrz0apVCkycGrmOQZnFJuRICXQiU1hSGwUY3pl4N0MJFkJPnIeNIcONmRKNqYEqTs5fWiHLBl774KywcOICQkuy6JDNSrE8mxGGIE3S4ceM65370fab7nyBodLA+aZbK8kUGUv3UnH87cH0j3i2r/CgFqp+ngPXR4mPg+pG2/xi4lvGLBq1vqK29HyD+RU/UN1ZuQLyZwL1bJ+/bq7jvV+F9vzbg9zr/B3nKAhTffBQogeubRPV3aXF+15vOO17vOo53fPfO3ymEwLRNHMvk6Ycf4sarz3KoKVF/9BhTX/ka+fIC0R2H8TyfXn/IoWPHSLOU4XBAkpbelkJKjhw5yuVLF5mfn6bie3ziE/fTbrapNgJsz0RgooTGDyAZ9gjqdZJM4Ng2F869QkFBZ3aaQheIQlNt1Pa8FAuyNCKOxvieRy5KEQzf9pAW7D+wD9OyyfKcXn+HXENQCdB5QUFKf7iNbVnEecFwFBGNI5Kojy4EXuAQ1Eqlzb/4i7/glz//GfzAwzJN2tPtvdYjk3AyxjYlCJc0z7Bdk/FoRD2oIQxJUhT4vkt35RKm6zE9vY92pwki4dyrF2hOzbB6c5Vmo8agv4PQGb3dHVr1Nisra9SaVeLRANu2cL0KShh017fwgwApNUIUmJaJX2lgmIr+bhfXdsjilFrgMRyNyrld5Mg8IWh2uOuuEwyHVwn7PZQ0uXz1Ol/7xjc5ffpusvEOpm1iWg733nMvJ44doSgSUC5/+u++xoHFRUajHqZXxXFtKoFHUPVpNGpUKjXSJCVLMsJxglLgOh7f/e6DPP30M1imxdzifvI8w7NNsiTEkgWTUYhhGgilUcrEt0zyPMewHHzfIxwNcF2fvdQW27ExTEWhFXmWMBr28D2HJBN8/zvfZ/++/czOLyAMC2m6kOWobz/Frb95LxvH2zz61LOcPP0JNq6/zH/y258hTXMOHTxMf3eHzd4Nms27scwcaYzY2t7m4k++x87adfYfPsFO6MBkQjQZMLtvFql8LLtKf9SjUnMRsmCre4vBcJfOoy+DgODuk4zGE0zToNVu4nkuaZpiKIM0irAtD4Hi+tVVgkqdB3/wEIcOHsaxVAmikgQlTCZRwng45uyrrxK4JpYrsW0Hv9IkinNM02Rzt0tQre/xZUu1YqElSRIjFBiWD1GI5ThoVfKwdBoyGvcxTBtDCsJRF3SE7QZowFASxzVAlqq7UhjoIsdQoEwbqQXhaEyWhAwnO6XVzCTCsiRpPCYNYyxLc+PqLSzDQqmINMsZxTnf+P5ZnGoFQ6asbyWMU8FwsINr2uxuD+kNQlyjFI57/ievMNeZRmQR42TCy2cusrQ0g2UYJHGZHCpbkYYhukgxLYkUEJgmc3PTGL5PgUTo0kZHs2dJliUIXWCZCiUKhAbbrZLnGaZV+kOarr/XGQQIgeWYzM21QCdYlodl2qR5CdCV7ZT+upMQx3XxKh4a+OM//hM6rQ4vvvA8s7MtLEsyGPZxHAfPC5gkSamqLTV5nBB4HkmY4FYqGLZFp916s4JX5AlaC6SyAY3leDz+2BPMzINEc/XckOUjR3E8h3A8xHMDpKkYjPoopfjRk8+wfGiZ0/ec5vDRIxw4eJAsTfmzP/0W9zU6XF1uE5s2rcYUaNja6jI9M4Np+kzGY2rNKo1XrmLbHgv/1W8hZI5IIvjuYwidE/3q/RQ6QVPa9FQqNQrDKRcMdE691qB7/RlmD99JVlgYRUIm1M+sUvpOG723xzuB69srSDfPvcrMzbvZrZxDGVUq1QZPPvUkprIxpcHifIOzr68gvCrXV7dJo5xotIPttVjbTRkMJvzyZz/Bq2fPgZDMzS6wubmF57iM4xjX9djZ7jIe9PG9gnQyIBpuU3EFRRaWXQU6L1uDiwKJRloGWudIy2UUWtRmDuC5VaRWGFKR5TlFnqNzybnz5zl74TKFdJmZyvEsn4SEIk+xTEGaW0xCzXSnQ1EIRLRNpsfkucSSBbYhyLICZZpoUYoRGVKSxikISS4MlOXSmLqDSucYk0mKJUb0b11GZT2iwSp5PIC8QCkLZZYdFr7jkymF67jE44jhWPHMmVVWbmZsbY1oTy+SFD6HT32KVr3BwaNLBFWXG1euMB6NadRq1GoecTJmanofzakGpmnQ292h3mjiuBUsGwQJuzs77Fs6RL3mE47HNGoVtrfWOXH8GI5f58TJuzAsi63tlMeefJmgusC5CytsdIfsjiykoYiTBCEUqzdDrq50qVqlLVlQdWk0Gpgq5tylIYNQ0m4qyO2SP5rnpTc1mmTPPg80RS65cHGVet1BCQOtS7BbFCm6yNB4jCZjHBOkGLLbk3zzu+c4crzO4f11XFOTkTAOEyzTJhc5eZqhAWcQkNhjkiMjHvrhk4g859alZ7HENoujz+LVp3AeKDkNifSQukAXbwBW8Xbdsjdf75UDvvHZ2+Od19kHVV1/lm7D945yxOXhSv2V/z/Fx8D1Z4xfNIhM07QkpP8VnfO9qrfvpwT8ix7TewHXd0YJXDXiNz/3NjD5Ic/xM47r7X8LIUhFzo++9xCBUIiXL3LgK08wPHeV8afuZNipUfV9yBWuWyEah+xs7/DSiy9x9913sXLjOnmelfyo6Q5Jpsm1QEiTre4O4WRMo1mnKEqRnfW1VfIkwrJdbNdj9cYKly5d4Y47TmM7DlEYEcfRnhI0JEmE69oYTs5osouhHIJqBRG7f5AAACAASURBVKELRqOEa1evMzXVIctSbMssrQCUZDgckGqwXa9s05QGaZLy2iuvMjvfwrRs/EqdOJZcunide+8+ydRUm+3uVim8JA26W11cx2ESTkjTmF6/z3e/+xAnjt+J59lImdDv9RkO+viuwdbGNcaTLaq1OkG1gVI2L7xwgeXlOQxDEQQVlJRkRU6jWmM0HJbKrK5XKmsrkyRNMAyDQb/PDx95jNtPniRNUopcEw57nHnxeY4fPcqLL7zI2vomCwtzuK5bqh4W8OILL9CZWyDPc8Io4Uc/OgNkLB8+iOs6LCzMUuQpaSbY7W/iOBJDmfhulTCZsLS0xMMPP8K9996LbTtvKnLnWYZl2SgliaKI8XiM63oIw2A4GjG/uMgrr77Cpz7zaaqeg2kosiyjN+ijTAvDMLEdB8O0yPIcQVFa1yQxUGBbJpMoYjQeEVSrmKbNYDjGsk2k0HiuUz58tc3M1BSGkkhRkOcpctBD//ljZPcfwfmd/xQx2iYJI07ffSebt9Z55PsPceDoSYaJpij6QI5Tn8KrzqLzDEdlhGsXyFVGpgxmFpexVEpnboorV1eo1ZoIUXI8h8M+WZ7RaLSoBnWsbz+JFoKX+ts4ts3SwQO4FZcsSbFtm8lksmdOr9jc3OLxx57gyJGj9Ho9HNfBtt3Sk1DAG0Ihq6urbKzf5Jc+92lcL0BIo+Sd2iaFzjBNh6ef/hHTU9NIVQI0KQUIyLMCJcvqKlK+6TMYRxFepQJCkeUFlaCGUg6jyQQBWJZJEscoa49XHCdYlokUMBwMMKRgd2eToogI/EoJtKVG5xG6iDBFyeHa3u4Txjlnz19kMDKYnTlGreawtbXL8pH9KKvKwv4lGq0Av1LlJ2dvcvl6n1Z9hrXNLheu3GIy3KHRgeurE869do3Dy1MoUYI1IQVpnOI6NkJJkiQlTTOa7Ta5BmFaCKEoijIJNC0HvQdYTUOSS5M8L4Wc0jhCSklW6D0ucIoSIERRCrkUmmgcojWEYUzF95lMRkgFaZrhex6u4yKVYnOrCxnYtku93kEZNoZVKtzW6g3CKGFraxfPd7Bdh6LISeIQScGVK9eoN+ulvdKeQKEQorTrUcbeb0xQyqDTaWM4u+RFQa1yG92dbWqNKnrPHVXuCZnt7mxz/NhRpBKkWY7jOOQ6xbEcBsMxc0JhLUwxmZ5mMBjQaDRxHIfRaES3u8m+ffvwfBf59MtEYcwLFYMD+/dhWybGQ89gGAbxFz5LrVbHdTyyTCMwKaWzYXPtJrahOPP8EyydegAhDCQ5WsifOQ19v8Xjd6u4vvEM7l8/S/vK3ajFPrbXYNAbEfge29s7xGmKNDSrqyv0+hGjYYaQBafv/RQXrt7k0vVbHD5ykCJRtKemuOuuuxFCcO3addrtFpWgwk53m2azwfz8HMPeGtF4F0VExTOJ4xG5zvee6QVCqj0RNEWWlz6xleo0ymrsHfcat9ZvMbewUHZCkeL6NkWe0q4JArfAt00sy0AUslQD95s4wQypNkg1pOEOlikQeYFtlYrobxS5J5MQy3awyNAShO1Rnz5KpbmEdqYRGsab59HDa2RZShKPcCyFbRp7FJ3SRkpLiTAUMnFJo5RUGJy9usOFlRiKCk6lyfTsElGmaLXnMSyb7tpVRoNdpub2Y1s2WZpRCXxs2+Ly5UtUAg8BVIOAS5cu0Wo1MU2z9JQuStqCZrDXmSFZnF8mjgqef+kMS8uH6Ey1aDRaXL85YTDO0cLjxuo2q2sj+pOE85fXWd+J2NjOSFC0gzqOn1GtSgwNw4ni4tUeO7shB/Z3yGWCKSSTMCx5+EWp14BmT6xJ02hWIc0xrRJgKyXQhcSwXLTICSoWZBl5HlMUBqZR0Gm7mFKx2xthWA7buzmoALcSMByMmZ5dQKwbGFXFWucK+w8s02o1uXXjdabrGmN+QPNXD2LWnXLuCwOhsw+dr/687bx/VfHWOT8Gru+7/cfA9a14L/D3flzWoij+0mdQ8rjeeP92juuHGcMHvT7Kb3nnfh92HO91zA/a/8NUbOVf/zziNz/31nsp0UX+U+N+z+O/4/3bz/FheAlvbBMOdrn60mtMPfkah//saYaHF8nuPEF73zyuY6Nzza1bK5w58yy2BVE45NiJI+xs9xEaOu02w8EOt26tsHzwCOfPnydOUx5++GEWZ+eZmmlz8+Yat26tce7cWQ4sL1Op1hGyFGuZXzxQJmdxTLe7TbPdKq1pers0GjWiKMKY2cSqJWxejXBtmyiMyTLND3/4Qyq+h2UZpRKs76N1hmEqavUOWVH6rRlKYRo2cwv76e/ErG90mYQhYdTnvk/cSavZwPM8EKUiq9blvDUNg0olwLZsBJrr125x8NBxDEMynnTJE4dzr12iUWtSqVSwTZ+isFGWSUbEyTuOQ5rxrW9/E9dxaU11GI0nvHLmJaZnpgiCgFKDp/Slcz0PtMYwDE4cP1km3YbCsixefP7H3HH77SRJguN5HDx4kLzIsS2bUX+IZVulYEyjRVbEVIM2XqVOEg9YOnCAkiNY4HoeFb9Gnk0IJ0OgXOFHFjRbTWq1GkGtTjju4zpOKWSR59iOQ5pEJEnK1NQ0SpUKuqZVAtNTp07huDaySLlx/Rqe51FocD2PSRjiuD5xFCHIMS2HvMjJ0xjHsQmjCNet7LXUWeS5xFAOQpT2MUWRMxqPUZaBUimWlTMa78LWNsYPf0L4d3+Vzd96AGn7/F+/98fc97lfJ7daXN9KqE4f4/TJz2NWp6kGc/zPv/OPue+Tn6M9PU2hDWSWsnbxBeq2i+nNML//bibjlO1+Rr1WRymTySRkZ3eLZquKoWxAkeca57tPUgjBDy68zszMDM1WnbRI0VnOZDLB2FObFNLAsV1Onryd69ev8eSPnuDI4cNUq1XCMEZIgWEYSKWZ6rQ5dOQg1WqVPZFKhNREcYhhlL6F+/cfwLRMEMVe+6xESYUuFM89e4Zr1y4zOzcDlPdbx3GJ0oKiKMWShGEjlINtW3uqwxNczyfNUpQsVTh1kRJHE9JJSBSGxNEErXN82yCLQ5K4j9AJk1EfwYQohvWtLVozM7Q6C1RbC7zy+llO3XmUo0ePoaw6QjWRqoLl1ml1luksLHD76U+zvbXJZneNv/Y3fpNqNWA0MHj86bPceccsU02FkgkQI6RGKUEUJ1R8nyLPocjIiwLXczAMsxRV2WubDuO4rEgLTZGnKNvFVArDMFm/tQY6x3HdvY4cTRyGCF2QFyXIeO3Vs8zOLOBXXHZ7fSq+w2jYoxpUy7msFEmc0d/p0Wg6zM3NkKQRS8uLNBp1DMMEFP/+33+NmzfXGAz67N+/DyUlg14PyzDZt7xElqU4rgOGore9Q56XSb0Uai9pL5P6NE1R9i6DwZBhP2BqqoESmiTJKHLoD/oEgU9QqbCz3cUPKmgNeV52bdy8eZMzZ17m9NISYdPnf/y//zkV32d2dpbt7S6tdp16PSBLy9Zt/fgZoijmS7/7v/J3/vMv47gO4vtPoAX8/Sce51e+8HnSNMFQZWt6vgegA89h1N9laWkJt7VAoTMMWVBoC8GH13D4MIu/AIwFcqpALhU/ta0QghsvPUf72t1sqrNsbPVJ0oKCjH0Hlti/f4lKNWB6po1fCYijHGEUdHuaje4us3NN7rn7HjbXehw8fJB+v8+58+e48847UFLQ3dzA9100BZtbm4hiwqDXxfcMsizCdkrRSdMykNLAtny0luz2x1hOk6gwsZ0mWVHy95USzC/uQ0iTPBNIZXHh/CVWrt7g1BGHWnUGy9bouFxITLMc020h3Q5RqktfX10QTQZkqcYwbaQuF5UEZXeMqUxydx92Ywm3dQQrOMA4tlHhZZLxTYq0CzJGyRBDFSgliNMILQUFAlSFl1/bICoaPPj4FXZDxcz8MnlhceLwKWYW9+HXquw/uEylVkVKgW07ZNEIUynaM/OYhthTPS/o9Xo0mjUG/V2q1YAwHHPjxg3m5+fY6u6wcmMVy7SI0hDLCNBY9HZ7mBYk6ZDjp+7EMi0Mo+DipSvMzbe5/747ECQcPbzM/OIUizPLtJozKOVBYZKlIc+/eo3Xz02YxD6NTgXX6ON6JicOH8AoJkiVI0TpAS2kLFv2swwlFUUuQQj8StliX+hib7GJUt9AGQiZQ5EgKEWrLFPSbldxbXPvGihV4F84c5W19RG/9LlfZe3mKqblUN+cIvubO5gNyaOPPs7Jk7dB1uP6+R+zmw45/vkvIqUNoqAQCvkR6GXvdh29m/Xk23PX/xDg9a325Y+B6/tu/zFwfSs+6iR9tx75d3v/dkGmX/QYPkr8vMf+eTxv3y+EEKXE+oe4UXwQp/WDoigKBoMBrz36OAe++hjTT79O/CsP8OArr3Li1El0kZPFMcPhGK0EB5eXsC0Tx/XwgxqWafHMMz+m02lTq3nU6wGD/pBnn32GT3/qk8zMdLh4/gLVuke702F6ehbHNmlNLcCeIE0hNNV6gGUpdFbw0ks/4eCRI0gkUViKrAyHY8z6pFQOHtepVAJWV9d59JEHWViY4/jxIwRBBcuyyFEEgcf6+i0812cwGDIe7OB7PkkuWdnY5saVi8zNz2A7FvVGnUazTpJk5IXAdlykIcmyGMe22N3t4dguuzsD0AlT09O4Fb9s3zUtNIpLl67wwosvcvzECUzTJowhjCOqNZ84jnn4wQf50q//Os1WC8d1QQrmZ+dwPJs4TbFthyLX2I5dWhIVGVma4TgOWRqTZTFFnrFvebkUj6GgXgtIkhDXDxgNR4z6feqNBrbrkOUZeR4SRzntqQaWIYiiiCAIykqb4TAYbPPjp59lbmoBP/CQhi75kklCrVm2JHtWWQEe9Hv4e8I3vd2dUoBJKibhmDAMMY0yOetubVENArI0od/v0WjUS6sj18awbJQsRYGUgnGU0O/t4lgGpmWANPaUdwWmaVLkCq0NsjwBrdna2qLV6qAcF9MwSOOI4tlLuC9eRf79/5bR5+9hYWY/q9c3uO3Iaf7lH/0J+w8e4X/7x/8H/+V/8d/R3djEavq89pPz/Gd/++/QmqqBnhDG8JWv/D6ENzk455FKD+21Ic+pTs1iWw66EKxv3GJ+YZqt7hqeWyfPwLYczG/9BcIwWPrCZ2m3W0hREI6Ge2JcJf93MpkglUEcRziOQ7PV5O677qTVrqOUQb834vnnX2BxcV9pnWJbOI5Xtv0pAUKTFSmGYaO1It+zdMizFCE1eZ6CLitzShmkSUaWxszNzaKLjLJ1TPLqS2fJkpB2q75nz1NWeYsiKwWMCoEQxZtiI2jNaDSkt7XJ9Ws3AEmvN6BWkWVreR4hRQ4FbGzmjMc+27sT/EqbzY0Q07E5fGw/ee5hWC5CSGyryre+9R2uXrvKwcMnUEIwHI8ZbK9zx513g3T4xjcfZGH+KEEgOXZwFsuELM9I04w0E2hslAFRGGMoA9cu1Y7RBULLN6hmGHtVZyEkSkjiKMawzXLOWg5Xr60gRUG1WiuBKgLbMtja3Obi5cvMzM6yvb1Nmma02w0MJdE6ZzzqkyYptXqdze42hjJ46rGnmJ6fRSNxbAcoAIO1tQ2q1TonT53i+PFj2KaD63qEk5DJeIJjWlieTRxGKGUglKRaqRBFEcPRAEOVlWDTshj0+3iuh1L7qXhHqVVdXAuyJEEJi93eiP5gRKvZYjwe4+wpvw9HE+I4xXFdLNvi9Ol7kcMx9oUbfOH//CfUqj7bO1scPXqYs+depd1ucv36ainS9cxrrNy4yb+5cpFC5zzwqU+RHp8nu/8k937+13D3AJoyRNkRQHmvURQYAvrDAU57DkSBiUZrC0T+YR+HH/qZJpfeAq3vjOG1K9Qu3saZ9UeYWzjE7P4lgqoHGrKkIEsSvvPNR2g1WhS5wXZ3iO0oTFOi97jFlYpPfzCk1Wrh+R5TUx1urFynWW/geS7bOzvMzc8RjgZ4rkWWRBRFiu15ex0XoJGkqUYpi0ksEGadnUGC7bUwDQMpC/I8w/XraGxeeuEpKkEDU0rWbpzl8IEKz754jUrVwJGKtEgptMANOmDVGfR6zLYbJLkkT0Oq1RZhLpCWT6EcCuVjug2iwgK3SbW+wHgU48gJOl4n6l0jDXdRSoMsvZHjWAAuUlXoDWJeuzDg2uqE67dGdGaWqNRbLB06xjjUTMKMEyePsru7vWfxZfPU44/TqAYMBz1GYczCgSWETomTMbZtMZlE1Kp10jRGqbLLwDRNTNNESUlQbbC+tk6r3aTerAEK0zAZDgc0W3VWVm7QnprBtQwGgy7TUzPMzh/CNFwatSnCKGeqM8/0dK3sOJEGS/sPkmUDZueXqTVmWL25Vt4TgKDRIor62AqkZWMY1p7FjcZz7dKqTZhcvrxKrdYkLxKEypHSYzgsMEwTyy5BLjlkWSk2ZZlOqQUgcsTeQrFpJqT5hKnZBRqtJpYDjUYb03YItpv0711hc3eTz3zml7EsC1NOiPrXkHaV5Ts+h1AGUuu9LoafD7h+mH3+w1VdPwau77v9x8D1p+P9rGneiPcDoe/kdb7933dWK99tZfW9gPC7ne+DKrkf5re83/cfxAl4r+N9lHhjeyV/moMqxLvflt4YQVEUP6Xc/F4raoZhkA4ThGUzKibUDMnLf/5Vmhe3mP3+c4jf/g0K18J1JfVmh/EoJooSXM8mHI2xHB/bDXj04Yc5tnyQnf6Ag4eWsWyzFC+wHLxKwMGjR9FITNNhbm6WoFLDVNDd3GSqM4MXNICCXm+LTqtDOtohSgsefewJHrj/Hiw/IItz/IrH2sYGfiWgO7mE77lEOz7SzKhWPU6evJsTx46SRGPqgU1va41Ou8XO9jbVap0///o32VzfpNOpImyJY7d45AffoTU9zbFTt1Op1YnGCTY2SRYSxxFFkZGmpa3PcDikXm9w8eI1qrU21cBna7vL1Ewb05BcOHuWb3zrEdApp++5i87sLKZb4Q/+4F9wz+nTyAIUGUeOH2ZlZYNavYOQpY6CbZtIwyHNIdMaZRQYUhBPxtiuC6aFJTWj8SbVyjRKKUZhv0z+DZvBoE/QqDDsrmCaLpvbE4SE3s4azWYTURh4rougwLIdkiTD9fw9tdgcaVgcPnqErd1tGvVGCVbMAJ2XD17TdujtbGBaVcIoLW1N0pwwTLlw4Rq1RhPHs0r7ESG5eKlsGW9UPTZ3duhMz1PosvWxKAqkspAUjAY7mBLAoFZxiKJdEALTrFLkAiFydne6/MUjj5YiPiZ4rknp1zQhySRyo4f6zo+50N3iod/6JR6+dZlP/cqXiLD4k3/1h9x91+385n/8N2hNzWApweJsFWuqRhFO6G2tMzXf4k+/+mfUm3VmZtssHZiiM1Pj1isXUGIXw+ozTgyE4ZGbE7QeYls5k3EfZShcu4NUmrwIsb79FCiFcWwJZSgQEmU5xKMBWZoBb9h9WeRaUw1qaDSWozAslyTNyNOC9Vub6FxQrddLgRMpQcvSKxRdepIiuX5thR89/ThHjxxESigyial8oiRDSA2ioNaosLBvkSwrMG2XJAeN4Lnnnufu06dLOx4N4WiCYZT2EHmeYrt2yacUAiRMoglepYLj12m2XLKoz9Xzr7MwPYtOQpSIyPOEONPsOzKH32jQ7MwxHk84cewQi8tLWJbNzk4XXUBQqfKv/vXvMwjH7F84QMWTtFtNpM6Znl+gUmsgDYPp6VmmppvsX9jH7m6KtGy82gI3bo557vnX2Te/jKvG5CJFOkaZdCoD8pQ4HJW8Mq8OuCRpSJqEpGFCxamS52CZkMQTZmdnqbbaFIi9RYYCKSW+47G11aXZbDIzN0e1XiNPNEJotja28FyTokiQymJjc5dnnn6aX/3CZwmqdTQ5rlfhwe8/ycbWNg8/8ih3nb6z5ASHGfWaiVA+N9fXeeSRH3LH7feiKXC80mO3VBAuPW89zyPPcypB2Qr84pkzLCzux1CqVHhOyuphlmvSPOXHz5zh5soNijyh39+hWg+oVWu8+MJP9nxjBa7jkmUxouLhvn6N3/gn/4A/+/a3+bUvfpE/+sN/w/33PUA1aLI7ipida1N58Tz1Ro2//Xv/iJO33Ubge/gzTYyGS71dZzwZUdqLCDY3t3BlgGlaoHKSdEiaCpq1OkKUIllSJBT6ref4h8kvPtQi7vtss3LhKo0LRyial5hdOMjmrV16OwPSNKG326XVaHLnfceZmdnHxtotlpbbxFFEOOkzM7PI5mYpsDY/P4NUOVk+LukswmTl+jmm5xdpdKaxbB/bnaJe94gnQ0QOeTQmiiYkWQ6GTW+iUU4d058lt1s41Rlcp4I2CrICLMvHVA79nV0OHt5HpWHztX/3MA/cd4SpmkGnofAtgTQNUBbCMlHGNJVah0wXCNHANQTSisiwsd0GXmMfVtBGmB1Mf5FUmgR2HZ3sEg6uEg+vkyfb5LqPUpoiz4CMXBu8fjHm0R/dYmUjod+T7Iwkv/yFz3P4xDzz80vEYYHvelQrVdI4Q6DQSlALqmytb+HZHtOdGeqzHRqtOnEcMRiOsAwLKQ2CoIpUBuNxRLtTY3t3m2qjDsphHOc4Nji2R8WrYSqLeDAgDCNm5+eJ05i5+Xlu3VxnY32Nudk5pKEIRzFJMubGzYvML84wGodcPH+ehcUFqtUKO7s9cu1w6vY7CCddHnjgLra7Ay6shLz80irzs3XcIANtg86xLIWUgihMMA2HQiiGgzFxHFMNfLQ2yDN4/ew5Wq06WZ5iyLJ13XVtDEMihYdSJlKYJClgZORaURQuX3/oZQrVpr894diRowSeh1xx2TpylUd/+B2m9h1mONjiwvPf5+XXnuW0+jKd+BjFQQUixSygeOfcFwXlCt7bXu8DAD+omxJ4M7/8q4q3cuAPr2r8/4X4GLj+nPH2CukHbfNe371XDAaDPbuG997vgyq4H3UsvyjltF9k5P/wn1E8/jzyl+598/zyXYbwfsD1jf3eb+xvtHFnAkzTwM5znvrhD+l+73FOfeNZdj55B7ldchiVkoxGE4SGs6+9jm0pnn32OY4eO8ZWt8uw38M0DeYXF5ESnn76KU7cdhzP87Btt2w/lJKNWzd5+JHHWViYZzjs4Tg2cRLj+D7j0YTz5y7QbNa5fvUyBQYvv/wKJ08cQyuDV19+hRdeeJ67776Lre4WXjsmSTK2bkjiKKS7scMkGlOpuiTphMFgF2nAeJKU8vozs6V/ZK/H8WOHCOoNikwxMzPFkaNHGY9HfPWrX0VJwfe+812OnzhMJagg3/RyE7iOXUrRB1WyLCfPUqamZ0qhMQSNeoP9B5a49967qDeqrN68RbvZ5Pix4zh7c1saitGgj+dV+YOvfIW7T9+FQDMaDBiNRjz00IMcOXKINMlAC9ZuruH5FZRpMB6OqFQrKOkQhiGTaIzvB7z68mvsP3CAKI4whIHrB9RbTaIwZHe3T1CtsrG+hWVbDPbsiC5fvsLCwgIIQb8/oCgKlJRUfI88K4HS6uoaG7fWqdYcsixDkmNaPkFQYRIOCCpVojDkBz94kHvuvYc0S3Ask9F4QqvdKYVlKPCDKqZpIYTkn/7T/4cDS/vx3MpeddZgu7tLkmd7IN7EdiqkednGLGQpdLVvcR/VahXTNhiOBlT8gN6gR/XqFjzxItHv/F3+Qe8af+93/yFf+f1/zqVrN3j4kUf5n/6H/54/+9pX+cQnP4VAsrhvgVa9SloUtOstzr76GgeWlzl1+ynanSkGgwmTYZ+F6Sb9Wze5cuMSC0vL+NUFTL+F4zRwnRoVt4USPlFEaSSPJkszvO89A0qS759FCLHH3wWpc7rbXZQ0MEyTre42V69co9lqkWUphc4pNLzwwotEYcTy8kF6u7u0Z1pvtv6WLdpZ2dorKBcfHI/jx46SpHFp86BMtrd3+dY3v86+hXlq1RppkmMos+QQ77X+Sik4euQIpiURomz9FlK8eb0rVfJsdV7iViHAtksPWiE0FBqdFzTrNYqii5QZWhdsdkf4lTkS7SLMOl6lSWOqgVWxKAobwzSRyqDeaKFEKZKyvtal05olqPj4gY9lWhTAYDjEUAatVhNplBXSldVbmKbPj599kanZKZaWF0mzMUXRR5JRZDmeUydOUzQaIRW25YBQSFGglMH2To9er0ez1UAoiSZHA1leYEjNZDTEMEoAjBBE4YjZuVlMyyy58VmKITXojGqlyng8pFqtcWtti337l1lcXCCOQoKgxs1bNzENi4OHjtDutDl58jYqlbLq9od/+K9pNQNq9Q7VWsDJkyc4f/Yis3Mlz3Q0GjIaj3EdD8jpD3q8sfChpGQ0GlMUGt/3iOMYy3RJkpyg0sAybRYX9xPHEQcPLdFqtbFMg52dXYJKjWazSV7kaASF1mQIjOGEz37+c9z/5d9mZqbD7Ow0Bw7sBzR+tQI6Y5BnyEMHSNsNsrTYE1pMSNIYoUxc1yWOY7rdLmEYMtVuEaVJ6QNsGERhSK3RohClPZQo/5d+6pn1i3jm6i2JHguE/5eflFF3G/sn8+wYrzKY5LQ6i/gVn2arwfraKkWWUm+W1lqddhPHtvC9gEJnzM3Oc2D/ElvdNfbt34dlKTpTHXq9IZ5fZXqmwzhMcF2POJywu7NOb+c6jlXyYCtVH8ebJi1spFHD9qYIajPs9ke0OnPEaUEQBCRpjOf6rNxYoV6vkqQRG5tbFJmg313HMyfUgrKLwLEN0jTFdjyUU6c/0iRpTr1WwTZNtrsrKEvh2HVyrYniAiiIo5j+7g5ChGTRJuG4i2tJdJqTJRpb1TFkheHI5rWzu0ziEZ2Z4wwnOffcdw+GKTlx8jakVDiuVc69WkBBRlD1sB0Dz7PY2d0qBYyEZnpmijRLyeKQ3e423c1N2u0WcVZg2TYbG5v0d3sInTMe9pGAIRWWabJ67SrVSp0bN26ysDhPphOECMGQJEWG0Io0yelMtal4LtvbXXr9f2j/OQAAIABJREFUIb5XRRcZ1VqA7/uYhkUl8Ll6/SrVep3VW7c4dPgoQmjiOKTT7hBHGdeur0AhSCYDFuensAwDKUsNgaLIMQyjzC+FwPcr1Os1kFn5mZYsLiygyVCGYDwal/mmLG2shAiRKiXXIUmWUiBxLIsoSrhwpctwlPCFz/0yr7z6Cnok8OM6wX8ERw4eotKcot+9SdUcMTffYn7lS9hhE3F/jiRHFgbFOy8h8UEZ4zu++RDX4H+Iimt53o+B6/uF+Fn5jn/VkSTJX8lApZR7ZvHvP+HfyW19+3fw7pXHN479RnzYiusbq7TvjDcqju81lvf6Le+s+r7Xb327jPqHjQ8zn7L/5n8BNOoP/tGb51fvcp0W7yYs9RHHkOc5uuIghyOuPPEMP/zBD/ivv/kqyf23U+yffzNZTpKEWys3eeWlV/nEJ+6jUnFZ39xkbnaO7vYO7XYdx7bY6G4x1Znixo0bCAmdTgdjrxpY9V3WV1cZJTZPP/U4f+tv/QZB4DEZj7ErVS5fWqXi+dTqJlXfQVoBWZoTDnaotNpcv3aDrc0N7rzzFJsb68zdmZLl8G9/70UaNZvbjp5g/uAB6rUqSRwRToZE4QTLdpCi9MIsE7yIIKiQF5p+f0y1VqXQJTdzMBhS8Su88vKrHD16oEzstOLMT17lvtOnMExFXpSKf7dubvPoo4/zm3/9r4Es8ByPJElxKybReIRhmFiuz2B7m0JLfvDgw3z6M5/Bq7hUK245piQpwZoEYw+IWJbFVneTAd/Ctm2qtdLv0fM8tC5I0xRHnGbYrXL12jWO3OaB/foev5GyI1GWFTkpDJKdX8O3C5Kk4OzKH9GeNpmamiZJYgzTpNfr0Wq1UMUiMjmOaRrEyRap/QxSlMmxaZWcWqVKk3Qz+yTRWFNx6oz1C2CtlxVBAXqv2q+Ugc4qqPAelOGQZhmh8a03rxfLLkUt4igmimI2bwWcOvIlslhgVDYIeQGBIE0TLNMgzwsMZYAUFINP4xsB+tHHGP3G6+V5f0om8b0m/1vfCfb2EX95lzcOdXXHpDNVw1A5plNHOAFOc4nR0S9Tb80w6Q+xn/tdomRC6ddn0Pq6SdqYMDk2xLbvp9D7sG2bna2nMa0LZGlOlmXs7OwgpGRqagqNplH7MnGSMB6NWV//UypBThzHZP8ve28aY9l53vn93uXs5+63bm1d1VW9N9ncqc2kZUtyLDjO2B4nToIJMHGQIEB2f8h8TQIECRBMMsAkmQ/5MLAntmWNbI1kOaa1UTIlkRJFsZtrN3vfqrtrr7rb2c958+EUZYkiqZZH9kwQPUCjUH3PvffUufc97/N/nv/z/5cFhxYP4ft/ry5iqfqaSAnGiFoAx5RoS9azV0IBtbLvcDjEdTxuXL/DytHDjMYjXn3tVX7x47+IPJhb1VqQpAm+5x9cY4fKlAeApKhptaoW1pKy9jWEDIuAqkhZv3eZC688y+nTpwnDNoVxuHDpDlevXue3/t5vY3kBeZEwnY5IY5uw4QD1vK9vOdgOfPkrX0cLj5//6IfRlmZ/fx9taVzPQ2uNkoZpFIHUuF5IPB7y3De+ydNP/xx5GhFPh5Dv45gxgQPK72DsVn2fLKj9JG2X4XiXVu8IQgUUJiMvYprNDsiD/QKDY3Ju3LzJ8upRKiRFBZJ6PKLZ6mBQtVqniJlOJijj4gU2e7t73Lq5xiMP14W1drvJ//5//BN++z/6+2R5zsxgjue/9R0effQRoihid3eXpaVlPE/z7RfOYdmC4yeO0vD77O2vY9sOw/19mq2QbrdLkkzJi3qe3HVrr9ogaNRAtL+FMRW6PIWQ9ec1nU4pckNR5LzxxmscO3aUmUH/gJpv8dk/+RyD2T4PPfYwnuchhMC6u428dJPzv/Nr5FnJiROneO2115ifXyTstlHCcP3KTQa9Zbb31njl3Bv8zu/8t1z6H/9XKlPg/Me/yfr6OocOHcK2bYqiIJrsIa0Qy3LQVUVZjvCaXSrlIKiQlJSm3uB+molw+k88AJz/Iv6Rx4ZXriP+0VGuh5+h1V3C+Etsbm1x9OgqVRYzHe0xOHQMITKuXb3K4vwqLzz3AqtHFhFKMhknpMWEhcUjtRd14PG9753jIx9+mnG0z3A04uiRFcZ7WziOQ5HtE08jbDvg2s0raN3gxMlTXL5yjZOnH6IoDVmyyyQu6M0MyLMMKQyvv/4a/W6H+fnZmvEzyjn33ZcZtPeYaSscV6GkQZgShEVWSLy5R7G1Q1kWxNMhWkG7E5KkCoOFtCtMLjHVGGkKRFUymdyFIsZUBVIIArfBZDIlK6Yox+a7r97l2KmPMphpEDZXmEwztFUSRxFpEtNpz7O9s0arHSLtANd1mY5HRNEU13Wp8rI+nzQjCEPCsEGZJISNgCTNSNIYL/CZTMZcevM1tISlhTkkMVBQVjnNZpMkTrH9PrfubnPygSe4dusOeTpl8dBhgkYTYSpMVZDlCeO9PaTUzM4tsrZ2l8Ggz9raLQ4fPowUmq2djVpsTGswCqUcyFM2NjcJgxBjBC+/9AJzM/Ns3rnGwrzFwkJNS67F7wx5lmNbdi16d8B215YgSQss7SCEQGvJZDrEUl5t45Zn9T5aHDBbkGxsjXj2a9f4d//tY4hK88XnrtJffIBOo83M3IAmLYK7fS78+jcILI+3bt3i0ZNdrp39c4bpkH9j8g/xgj72f5WCyBGVgxHvyHvf+TuAeW8A+H65+juP+dsGsPUe9/+fsG37J7rAP+u4vku8m8jPuw1yvx+we7fH3u013uv5b5/DD9KB361S+16D5D/42u93nvdLWfpxC/f9jJ7fGW/b4chf+/hfned9zivcz7f77fd9+xqWSYxblTz3pS/yqzciiDPyh04znoypqlqAJ8sKhsN9jh8/zmB2wO21GywtHUZJxXQ84bU3XmN2cQHPrTuBrusxGMyytzui1WqibYvhcEir2eLS5Rtsbt3jwx/5ALdv3cR1PRw/II0zNjbuMTPTwVSGSiiyNKPd8BlOpzSbDQ6vLLO9sUmr1UC1xiAEjx57imNHF1lYnGdzc4jvhezu7tNsdhHCxg9cqkpiKsF0Mq7FHqKMne09pDZoXauRSgF5Vs8TDuZn0aIW0dne2WHl8BGqoqZM5UWC47hY2qHdnWEw6DLa38F2HHb3apuLcy+/jOcHuK7PubPnaLU6nD9/AaUlOztbCClxXYfxeIhrW1hak2QZStukSYI3/506MQ1DhBB4Xi32UQMXhSz73Ly2y5vnL/Lo4ytIe/sAWNRV7VrVGYRUuOoMmAzX9fFau4QNiyRNqKp6/iYIA8qypCp8TN6jyHOKckql10BIiqLAdmpp/+/Pl2RzSOGSxiU42wg1QRxcP61VjQilQOBgiRW0dnBsi5QLf0WTLWoAt78/RCpJr30c1xrgWBZ5tUOltgCwtKYoigMfz4SyLMj3Z/Gfe43s4XnKwTrG7TPJYZwYtNsmNQ5xqcmCFc5uNFmvZkjsWTq+5u72hLA9j3RaYDWYZOA0ZigOfZRy5gm+9eYew3HCIDTI5iGMKUmiIa4T4IYNoiRDH36MZr+LY5ekl75UC90cdJSdm4J0fkLplSi1gGMPKMsS24pIs9uURYkxhiAICMPgoPouUOI0rmPh+z6ut4njGIIwpNFoUJYlX/ryLbRSdLpdlFIHgFLXIEpqlJIYKtKsVqEuy3qGUQjJP//MZ+n16vVz9OgRpFDIAyE0qUQ9WzaNcF2PyvD9gl5VVQfzeBUC+X1bHCEMxiiiJKLdbXLi1JPYXg/La1BJzcLhJR48fRTf88mzktfOvkk6Sfnjz/8LHn3kIaqyoNvporUkS8c0A592u0slCorK0Gg2CfwAJSS3btzEcbzaw1RbKGVh2yXHjh/H81oEQZcLb15jMi2RQtJsusTpuPZ7xdRzX1JS5jlKSYSycf2QoirxPI+qKOBALNDk9fx0tzfD7bU7NJst8qJAa4Vtu2RZ9n3riyQeU1UVYaNXF4GUYm52lixLUEoyjaf8/NNPo7QiDEPSLOXo6iq2Y3P25XPcuHGdBx84hbRskijFmLpAcfHyTfIsJppmPP/8tzm0tEDgh0BdQOz1+ihlUVYVaVJ7HEf51dqGpugAJUWZYkzGeJwcCEJp+oM+RVFiaYs0SVhaPkS308X3PDAGY0pU6GNfuIH7yY+wHUesr2+xcvgI+/tjtOPi2jaO7fA//0//C8uH53ng9Bn+4pkv83d3MtrjhOQTH6DT6RDHMXmec+XKFXzPxnaDmg0gBBsbt+n0B5Qc2AyZCoS67+T3foVh3s/HdX99B/ulPlvyHFVZ0RusUJUVUZzgeS5hw8exXTY377G8vMx4FOF7ARcvnWdpeZn5hUVmF2ZIkowrV64ymJlFK4uqMqDq+/ZwuEsyHbF2exvHdrl1e4ugMcfC4SNMowmOH1IYgbIUcTLl7tqdg1lOzf7+EN8LWF5axvd9RqMRo+GI186+TJne48HjPWxVIWVtE1JWEnSA25hB+wtUVcJ4f5eZbo84GyOURZ4pgtCCKkNWBWW2R57sY/IIU4xxrAae61KWFUhJkmVcvDZmOFE88ZF/k9nFU9iuT14opIQ0nRIETZI4AjS2Iwl8H60D8iyn0WiihKIRNtne3iXPCqSo6HeaZMkEL3DZ2rqLbVUM99eZ7N4mnW7hqYx+U+OoBNuK8JwcYSb1OeqCLN3DFBF5WmCKin5rFhBYlq6tuPKY8XhK4HvkeYG2bDzPre/Bdn2PjpOENIuJowjP8ygrQxQlZHFMRb3HtjpNDs3P4XiSTq/NG2++yexcA1tZSFXrjigpv6/nIEVtW1jkOUVeHgg61iwWATi2R5ZlIGqRx1KMqYyofXSdlOPH51GywpI2ltfntQs3ePzxJwnCBvZ+gCkhf3JCFucIKbh16Tvk4zVWjz9Ab+fDWLaL+kCKkICw4Z2CZ+/TcX23PPZ+1+P9iH7+tONnHdcfc/zPgOsPx3ttGO82S/njOPL3S9F9tznVd77Pe3VG3+uxnxSkvl/cz1zOu8V7Hf+DwPWvjr3P17yPY94G+2VZU13S2+t8+S/+jBWlmf/Dr/NMOsVpt+j22gfqrilS2vT6bcqqIi9y5ufnuHvnHgIYjcasHl0hbDcxhcAYAUjeeOMtbNtjY+MuC4uHKCqJ7YUsLS2ysXEPz3VYWVllZ3tIuzMgCG2ybMr83CJRNCEvBev31imzmq7nBT7RZMqg3yeJR6jmFCE1ezcMjWbA3nRKt+VR5DGOo7hx/Qqe55AVBWCRZznP/PmfceToMlGUU+YVpZkShG2iOKLMCjY31unOzGCk4N6tDV749vMsH17Csmx+95/+Ia++8ionTh6hqgxXLt+k1W0TBDbCFChL8Qef+jQ7W2OOrByh1WrzzBe/yC987BO4XsATTzzBwtyAQb+NGzSxrJoqZ2nF3Tt3aXRnAMnW9hbx/oAZ/wm219rMtJ+C7BAiWUCmy8Tbh7CkRzNssrRyBIqAZK/P3nqbQfcpslGblvUw1fgwrjhFmk9wHZudnV0++0ff5tDgKTxxCtucxNcPILIj6OoYgbsKGFzXJY0q+uGTyOI0Oj/JeKdNO3wCMz0C2Ukcp4EUglfOnmd19UOQHUEVq4hkGas4QRkt4dsP4qgjpGmKpV0m0xE79xrMtn6ObHwYXz1AmazQDZ+g3/oQnppFUJKme6SRRWB9AMucQObHGG/18ThF03kEN1/B+uo57rUbfHqu4tH5GHn04wxNB7d3ko2piz13hq9/7xoPPPY0Ydjm0MoSC4cOk1oDWkuP8dWXbxGpGS7eTXBmTtJZfZzLt9aYm52h4Qfg9umIbf7TPyj5yK//fW7ducTIXqb/C/8h3uBhNkclM3Mr7G7tMgoeIHz0N7CPfRLr2C/jnr2F1X4Qu/thtO5/n4JtTA+tHiSNFqE8Qjv8IMIcw7ZOodVpqgNLIKkEUq7iuI/guo+SZa+jlKbbeYpWu4HvBQCkWUJZGl544UXu3r3H4qF5pBQ1mAUqU/s0atvi8SefYH6+zc7ONpZ2uHNnncBvYlkWxtQAyLZdhJB1NdtQf26WRVGUNXgt6/Z09banq8qpyBDKJtMuhbAQeFh2C8fuYJw2lXKwXJdut0mv3+bDH3ySIo9phD6bG5u88Pw5lhYWUdh898XXOXX6IRqtAIwhjmKklLz++uu4XgPHsZEY7ty+Tac9R1kKLl++zNrtaxxenmVrf59rdzZpdxYY7owInbqIUkkNQmEqg+O3SbIIIysCp8G1y7cQJscNGghAVxXjtMByffwgoDQVWkqk8qiq2h83yxK0EkipkVIhpYOyJGVVgClI4wipa0AipcF2XEajMVVlcGxFEsc0G23OnHkQqQyV0ezv7JHEU7Ii5+r1O7i2Igzb7O3tMzPTpdnsMI2mtRJ0nFIWUBQZZVmxsbFJ0JpiWRaOPEJZGmzLQSsH23XI85z+YOb7qui3b92m02kRxWPanQaiUniuC1VFksTI/QlpWdH50AfIMkO7NeDMI49z7OgDrBw+RHX2TZ4+eoyFJx7m5s01/vP/7L9k74/+lNu3buP85ifw/drK6+tf/zpnz57lzAMPETZrDQMtS7Y21+nOzNYWaT8AXH9cvK3bcL/F4vcDro5yqJ7zmPhvYVuSza2I2dn52rNYSLTtcOf2VQaDeSbjFK01ftig3WsxmJtnGhe8dfkig36HbrfLZDzlzt07uI5TC9GNhnQ6bdbWbnP6zMMUVcbeaMjy6iq74w0GvTmK3NAIm+wPd+i0m5RZTrfd4tbNG9hagbS4fPkKRVGxu7OPpV1MusWJIxW+dABJRY4QkqA1i9deRPlzIGyUnOJqG2MsKlkQBDPkaUQ0XSOdTtEmJYk3sWRJEk2xtCArIgojiBJFWXW5cm2fSM4QNA8zmF9CORU7exPyrCRLJvQ6TTbXdwnDJjduXiVs2GRZhTE5RR5TFSmbG3fZ39vi7r1bBIFmOryDZyfYcszm2mUss4dTbROIHXQ5wjZjfDvFkhGWTGp2TZlhKYGqBFVeoMixVYatpvhOhCi3UCpmOtlHaR9TShqtTu1VTYXSkt2dXZSStNsdsixHSoGt6sJJ4PtEk5i1m7fZ291haXkZI0r2J1skY4fb927jhj5XLq9z+eItZnv+94GwEpKyqCjLiqIo0FrXAo1VnV8JIQ665/rg3ioOGEkVUeHzl1+/yHBXs7zcQYsKlEWZV7x58Q6jGBw3YKbXo3G7T/7JHawlh9s37hBnEx491SGfrFNqj0PRx5Bo1JMJRphaqftHOq7vD1zfjp90bvVfBV34Z8D1xxz/M+D6o3G/IO0HO5n3O7fyft3Z9/q/HzdP+25g+qdJAX/n33a/r/2TAFdDPUch3h42+wmq0+bgvaQBhaAqc4SokyxZSc5993nSrOTUNy6jbJvB00+SZRGtZovR/gjPdhnu7/P8N7+F71iMhyM8v8XZc6+SZhlnHj6D49rsbm+Bqv0Pt7e2mE4mLC4s0Ou3qAr44l98keWlRaLJmKPHl7C9AC9ooD1BNNxmtL9Hr9OjyAq2dsbs7exx8a3LnHn4McJGQFUZ9ve2KYsUv9miSHycaoYkNWjbw/OcWplP+0wmObdu3sO2XYo4Jhru0e/3mCQFS6unCYOAne17BKHD1uYeQeDRaHRRWlKWEa7ycHzB8uosjbDHaG8MTsYv//In8bVmOt4njnO++a3vcXR1iSKbopTD2touD515gKWFGRy75PlvvczqyWMEvkueRhRlhrIUjpZsbW3i+j6OH+A3muRxjNSac2df4fjR4xRFQbvXrTnEVEilKfK6Ev7y2dc5euwooR/UYEeDtuqukuu2iJOUSTRBaUHge/Xn6AXMzy8xmD2MG7p4QfD972GZ56TjfdIsR1k2FQVpHtVU3TLFdkKKTPCpT32K1SOH6bTaFEWB69dVZZOX/P7v/T6nT5/GbrRQ2oKiqL9vlSA1GZbtcvGtG0TTjEbYJIt38VyHPE8xAoRSGKGw7QZJkuE7B93jApQFxpSkaUX+wmukUcr0f/hv+Ge//3/xq4/4WP1Vdje3OfvyeZRlMZ5EfPCDP8dbFy8SjYf0+11sx8Vyfcqi4oVvfpPTp85w7Ohx/p8/f4ajR45hckOz08Z1XKbjmLC4xQ35KC9/93U+/NgCXiOnEawi+ossrzxKmWtsq8APFK6eRRqLOL1F8NxFUBLTDOs1KzUVkE12MKXgz77wRR55/DEMGWmWYtsOUZQgpcbzOxilUbZdr3lTkmVvAjAz83StJKlqsbY0TXFsh7v37nHz+nlWVw/XdHEpEbK+XkIYhHBQWoCw8fwQpTVI8HwHRUUSJ0xGY4LAJ0sTiipFKsAotPQxZYwpC5QSxPEEy5G1tYMQdee8LBhu7qGFwvcDhBIYkVHmBaqqkIDUGqMUUim0qkVYbMslbDZodxt86jOfYTieMDPbptXqkmcFfuCRxBOkNMzOzZMmGUHg4zgSKNjZ3uDo8hLdVpt7a/eI0wjteFy/eZcoKlicqan1rtsiSUosp8SUORhR/22Oj+P77GxvMDvoI6iopMCUORJBnmZURUISD3HdRp1EG6CUWNJhPBnTaPTITUVuDFtrd9AHnW9tuaSZYf3W7VpEyxSM97YIWgvYdoCQKaiU0aTgmc99EWUJ5hcWmZs7xBuvvskvfuwj+IHL/MIsuzv7fPlLX2Ht9i1OnjpMEDjcvrnNm2+cZ2npKN/4xgucfKiNwaDlAmVVkKQpZWmYRBGf+9znWT28gu853F27yXdffJWTp0/iuBZxHOGFbZI0xbIttK6t17zzt7j98DKdTouqyjjz4Em6jZBDcy7hZ79OsL6L+sSDFEVOr9+j/Z3XWFicw/6NjyNVRWUKVg4f4cMfehpBie369bZVGa5feJEjR09SSb/Om1WJMD8KXN/u+r8zj/hBhpU5IIC8/e8Hd8XypXp0wvpQ+SPsKFU45H/pcDV7CQdotkLGkzFRlLC7s0+VFYSBQ1mkXLl0mXiSoq36XhR4TeI4YjAzgxc2Drq0Fr1eE60r0jil125z49p1Zgfz+GEDrR2azRZFleMHDW5fvUKa1vRe1/FxHB+DPPAsDaiqgt3NmIVDTVzfZnsj4tmvfYUPnu7i2hKpavEt5TlkpYt0D2H5HRAFURaTTsY4fkApSmQWI2VFlmwiRYW2baQ0xNMYU5jaK9hrYNAobxUrWCYIW3S6DQYzM7QbDZJkimNBqzODEBWO47KxsY0X+KT5mGPHjjCdxNy8eQuFoNvp8OZr5+iEHiZPaNkxg7aiHeSk0SZVPsKVGbY2VCavWR4qQ2iNsgKM1pSqQhivFjUyglIotOcjHQ+hXJR0MYVAqiFZMqRI9iEbYRGxfvs2o9Ee/cEsXhAiqhG22wArBC3I4xRLl+xu75KmhjAMaTR8erODmn6tJEUmEUZhW5p2O8B1bdbuDEmMxWyvQ2BDVSRIQFg2iIrK1KNFVAVSZlQGilKi7VqpvTIZmBJRGJRuIkjx/ZJep11/NsLi9bc22RoVpFnKBx7/EGLDohrChRPfY6bts1vuce21N7CntyidhBMf/PdxLy0ipEB+qBbsE6Ko15uss0eEOaAF//CCeT+W4v3GX7dp816Mxftrav0MuL7v8T8Dru8e9wtCf1pdyH8dwxjzV/RMfvJz/0mAK/wUfLMqg6kMqjKU2kdLi7deeoHpOOHhzjzBP/4U6VOP4zQahKGP4MBHUkju3L3DK6++xs8//RRSCrStWV5ept/vsb+/y2g0RCuN47lEUUSaZhxaXGR/f5+g2WA6jXj13Fkee+QMQauDESWu7VNkJWWR0e50CRoN9odjXN/D8aDTaeIHLpPpkCyL2NkeoYQ8sN/xyNOSIjW0Wk2qqsBUJZPREAEkccytmzdwbItWu8ns7Awbm+ucevABlNbkmeHcuddYPXKMIrfY3LpDq9nDti1sW7G1tUejGSKkwbZcyiKn1QlpNdvYrsuXv/pVVo48wGOPP4hjWzSbLaRUPHjmFK12wHB/A9dXHDlylDiO6babxFGEkALb97EsG88PqMq6G1eVBZcvX2MwmGVpaZHpZHRQvbWIowm+oymyCMf1sW2L+YUFhqNdlLZoNpuMR2OazTaeGyIVeJ5X01ANxHGKHwRMphHzC4tIJbl69TqW0hRFXiuKygrb8bAcF6UktpSIyoCsabqNRhPLchgN9zhx/MQBVVXgOBbGQJZkbG9tsbK6gheGSCmYTkZkWYbjuKRZDkYxP1jgheef5/U3XufE6VMYIAwC8jRlOt0n8FyGwyHNVpM4S5FCoKTNeLJPs9lEnruMHiVs/vf/Nf/d//aP+OTqHicPNdC9VS6ef4tOu0+Wp1y+fKW2+rAswtCj3au9AysqvvfS92g2GggpKIqchx46g9KSJIlw/ZBvf+t5er0uYb7Gmb/zDyCY4eFHVmgOeqR0cDsDwkaf0f4+Dddw8c2zzB86TlFkbGzeof/MWcRoSrW6UANXUyJMLQqEqavZM716ZtHzfVzHxbJqpeU8y4ijKVpLFCBNRUXG9nZOq3WipnerunpvWw4GwfzCPCdPHKXZah2I3AgEtY1EkiQIoYmjCfLgMxNCYNs2mFoV17ZstGXz5S99lU67R6vdpqrqgpdSmiuX36Ld6SCVRFtWrTYta7aAlBKlJZ7rsL6+jucFSFU7CApZi8pNxmMQtSiJMAJMfe/8zre/w6lTpxgOdzCVoNPuMTc3Q6MR8OlPf5r9vSFlUfHyy+ewbJevfOWrZHnGzMwMUuq6E2xpJtGU2flZ5mdXGczO8+ijp5mdbRC6NnmVESUjtFI4jocSiqwoD2yFLHzPpd1uU5TFgdK1QkpNZcC2HaQ8oOYr6+BvklDVHtBpmhBNI8IwPGBOaBqNkNH+Pv4BxX9/d8qh5VVcN8QYhXILLC3Z393F9xpo1WG4v8vpB04wPz+L1ppXXnmVkyeP86d/+mcS+HzVAAAgAElEQVQcO3qM5577Bk89/ThLS6s4jk91wJTZ3NqhKEoeffwx0OsIoEi7WJZGawvX9fAcB8d2mRnMgjCEzSYz/RlarZA0iWk220STMVVZ06zLqkJ6Hs6b1+HXf5HhdIpWmpWVFZIoRkmDd/YqtuMzeuI43d4cRmicZ19EKoX5laewbU0URfyLz36e+flFup0WRiiKIkcLqPIIr9FBWF6dUIt3B673w6J6Z3r9I8CVd++4lomm/EvNJLhCMtqm2XSwbYvhaMwDZx5lY2uLXrdLXlRU1PTye3fXSJOU2bkFJtMJ2tZA3bFTUtBoNEiShHa7T16WzM7No22bwGtx+a1LlEWF63gYI5mfWWAyHmFExjTaRtkFo70dZmaabGysMz9/mJvrt9jd2UMbm+ee/XMeOKWY7/tonZGXAjdog+pge23avQFVBZNxTCcMKeMxlpKIKkPkY9ISZJUiTUmexkilCDyHPEvQuvYLF06TpNBo28OyQeoKlEZZFq12h+3dHbY3R8TTiLW12wxmejQCh+l4SBqNKLMR7VCSxOtUxS6KMaFfUZVDfFdQVTFlMcVSEsu2KIWLkYrSCJS2cK0QKX0s3cR3O2jpIawcKevOKVJRlAVFkdffcQVSVdhyFlv5dYFIRCTpNoFvoIqIJlNMURHHJWHQQyqNECnRZMj21i6WXdOEG80miNrTtixK8qxkNJrSm2mRpQntVpfB3Ayj8RY3bm/TakvCUKIsj0q4SFliDiwLlbJQ2sYYm82NmKJQ2K5FVaY4tlszWgSgSzqdgFY7QKmS0uQIo9kbFWTGZRonrB4+zmBzkVuPn+eNjVcIfJ/V1VM8fPIwV956lq3hLk889R/Aa0H93h/Mf2id/PD6uT+W4V8nx/xp5vn3hy1+Blzf9/ifAdd3j3cObv9NAM4frMa8swJ0P7z6H2dU/n6zse/2Gu92fkr9ZEPitWiNet+qVg1cBerXf5gq/DbF9wff/37o1m+fZ1WW5FnOeG8fx+9y4+IVvvb5z7By+CT9f/h/YxbnePbKJXq9GRynnrXUSpPnGZalqUqwrbqbo7SkLAocxyZOYubnZnEch3vrm2BgYWGBvd1dsizBDxoIAY8/9jB7e7tYjkcQeFBJvvjMX+Damt7MLNMoptfro20LU1Z4nk+v12emP4trN3jpuy8yvzBfV9G1ptVqEk8i0jSiGTYY7g8pi4J2s0mepRxaXCDwffxGyO7uDp1uB9t1QRi0JTly5CjalvR6fbI8wrED1tbu0GgEuJ6PtizG4zFaOUwnIzzfwnUDUDaHDi8TxTntlmYSJQRhG8vWTKMd4qjk7r1thBAszC/h2posTXnppZc4duIESEmWlWAMjm0zHQ/Z3thgfWOHIs9ZXJwjtb6BHW5RRDM0A58smVCVKXlZYNlWTTdsNlCWJk4S8txw4a0r9PqzKGmI43pesSzrwso0TtC2jVCK0XjIxr0t0iRhMNOj1QyJpmO8oMPecA8lBWWSIitDlBWEoc90OkVbmtXVFSxLkaYpVZXX/ozKIktzTp0+TbPTIisKpDCURcb+/j5pmtLrD3AsmzRJWVyc58knH8P26oQ/TzMsYciyCVrVOqOOU4tLKAkChS0h+eY5prfu8e/cu8rTv/5r/NYvneTB6lns47+KkIKtjU2qSqAsQZak7O7ucvvOGocWFwmbbq2YqzWDmRnu3blDu92h1++ilMD3HMIw4NJbF7GVxd7uLktzDVQ55MI9Q6eh2du8jl2Mkc1l8jSl3fTYuXeTXstDOAGGgn5vAfWF5xBaYY4sUJYFRZ4hBRjlcvXqdR44dZLtrQ083ydJU4qyRCtVi3YIU/vR5hl5lqK1xc6ux6FDj9cFI6WJJhPOn79IEqf0+n20VYMrRE0TLrMCLRVVUeLYNpNhhO1otFIIA/Jg5qrI87rDZkBKxerKUQK/gZCKoqi4d/cuzVZAv9+vFXbTDG1ZKKXQSgF1ISzPC5QqCcMma2sb9Hr9uuuXJEjqDpnruZRVRVVVjEdjQDA/N4+lLaSsWFlZYbQ/AQp6vTazg3neeusKrXaXMw89wvbWNh/64IdpNBp4roPjediOgxGQZBmTKGJ3dxOtJY1GA1NJmt0+aTamynehrCiNVfuKlhW2Y5OmMUHgHvi6ioN57hJtuSBFnSwLyLIcU+Z159yA0pr9/T3euvAWi4eWqMoS25JIbXH92nU2NzaZn58DUfswa1uhLImUgskk5eKFq2AqgsBBWzWNeabbxJiiXmPHjiIQ7O/VmgIPPHiaVtfCddr8yZ98gROnjtFohrz44lmWlpcIAxdhbxJHEUosYFl1YeP6jRu4tsWFCxf4iy9+iTOPPIK2LFxHoVS9L6RJjqNlDQbsGpxX2kLc3WIvdNjU8LnPfZ6nn36aoir4tb/zm/zGYBVlOeiPPUUcJaRZRPDcWRAC5+9+glu3bzAYDFhdOUqn3WN3ZwvXD9FakUYRL798ltMPP0pRt2AR1bszln6QMfXOzsz3f8ofHgW6X+AqC0X+NYVYGGGriiKe0m51qSqLv/zmSxxaOY4AOr0ZOr0Zmt0O3VZIPUtp02q32N7eYmt9s6aaxjFKae7cu8dgdp6d3T1s2+bS5ct02j79fptG6LG9vcHm1joISeC5OFLT6SzgWC0a7RnSwrC7n3Dr1i6XL65x6c2z9BoxZ441ONSfQVkC23HRzoBKtQnbi0jtkVcFcZTgOT5JYajyHMt1yasSUdUzkUk0okgjbEtSGsjTGFNl+IFLlhdQlGyv36EVSOLRGmW2i6My4vEmjsqR5RRBijBjum3JzuYVKPe5cekijkoo43sEdkQzBJMNcXWOoysCV6BUitYlUoKSGsepwbHn6NqKKpkyLXJKASjNJEkohSCvbLTdBAJQbWxvhjhRCBWSpLA7jMiqbdIixnFtHMvH1h5lNkbLAsmUKt9mGg2xrZI8GRKNh5SpJGw36fZm2NrergtzWpAlGVeuXCMMG/T7fbJ8jGW5nD37JkWZ0x94vPXmdR481sWWUywpSOMMqUswGmNkbZ1nGSzHZTRKqTBot0RLDyUsMIZK1rlcvTcItOWSZ/Xetz8xDKeGuflDnFAPo5XG/fcysjTn689+jcfPnOHTf/CPmT/kcvLMzzNz+CNwC4RvEA/+1Xf9R3PDvx5YfK+u7Lutx59GvNu6f2e8nTr/f6nR9S8TPwOuP6V455frbzt+GhWe95uN/Zs4h3e+73uF2R8hDi8gHzn1A8+pf/51B+FVLUHK66+9zrHTD3Dx3Hf59l8+y8c++UnsP/oL/DevYX7hA6wcPYKUgjhJa7XKRsh0MmZra4Nz586xurpMu9XCDXx8z2Nnd4dOp8NkMsEPAsJGC9et5z/u3lmj3W6TZxm7u9t0el1crxZcieMhVVlx8sRJXF/jeAHRdIrSEqhw7QZ5XldXpVCUZcXCfId2t4XnhwyHe/gzU4ybYtEiTjPKUvKN577ByuoKfuDhByGu5+N4Ab/3e7/LmTNnmEYJSmuUMJSVYXv7LoqCRquFqTTbWzukWUyr1SLLMoIg5PatDcbDMbvDDVqtHsqysG3JdG9Es9mi2+uBhCSJsZXNM898haee/jhho4E0kkk05dbNW1AZBjMzVFXJdDzBdRxGwzFxmtKfmcULXD732c/y2GOPosIrFFWESFeQQlJUFZbnkWc5ZWHodPrkec6ly5dZWqqtZWZm+ghZMhlFKKVJ04QsS/E8B9vWVGVJkZfYloNj2ywuziOEIZpOieMI3+/iOApDRTKNMJWh2a2tWoQArSyiaFqDWC2J4xjHdRiPply5fJX5hQUqAVJJ8izFtXRNPzwwj69MRTydUBQpji3RjougQglDUWaUlaEsIZ4m2LZFVeZgDLqUmC99G+m53Pyd3+bnPvYwXPg/6W/+KVHzYYaFh+/btJtttjZ3ePDMabIoZn845KGHHmI0HrJwaJ40zeukT1pcvniZwWCObqfLvbv3uHr1Gn4QsHb7JqdOnGZ7Z4elo6uUay9w5t/6BzQCl7Xrr5Ds3iDsHsV2bKQwrG9ssDC/xNb+HqPxPtMxtJ77HkhBttitbXC0BVKRxAkXzr/JsWPH8IIAU5UoqdBaAxVlVeE4Nr7rsb21Q6vZRlk2zXaHokzI8hSQ2JZiMBjQaneRCrIyQikLEFDBzvYOtu2QphlKK2zL5eat67WXcatZF7IOlGffXltVVd9bbNuiNCVSKhzHRYh6LtIAtuMcUJ8FVWWoyupg/rW2Arp9+y43rt+h1++jdIlte1AZ7ty9S9hoUBlwLLtmGSjFF77wBQ4vLxMEDtNpxPzcIsbk2Lai0WgxmJ3l0KFFgtDjxvXrHF45TBC6BKHL3u4OQgiKvOSf/u7vcufOPQ4vz9FqNqhKsGyXSmrSZEI52cVUBqFBWx55USCVQElBVWVYdkBeFNi2g1KaqqwOZlgrTFViWzbG5LheAAdejEIaVg6vopRGqroYkFcVrWYLJWqqYVllOLYmSSMsrcmThAsXrrK4sMyg30PIkixPsLQPJkNQIg5sPQI3pNtr4zgWSgnSLMZUiuPHjxE2fOIo483zl2m3Ghw+fIj1rVcJgpDQO0JZlliWJktzXNfhyNFj9PsD5mZnUVKRxBHT6YQkSQiCBkpbOK5Xd/zzjKossLdHZCeXyWY6nD51mq2tLSZRzEef/iiPRgY/DCg/8Ajfe+nbLC3OoL70HbRSVL/yNFLC9vY27XYPpSzCwKM0AmMqbCVp9QYEzRaVrPkB6gc2uPcSMXzPEH894GryguLrNsFJl9Foj631DV5/4xLtzoBHnvw5krwkzROU1Gys30NLw907a/T7fTa3tvF9n2YzpNtpAwLX8dC2TbvVYXdvj+H+kE6ny8xggONIosmEveE+S0vLzMzP4fs++9vrBJ7HK69cwHM7ZNmEb7/wHSyRc+XCS4g8Yq4rOHWsgeNoLry1TX+2z2gcEzZmsf0mQiS10J4R+L7LdLKH22hQpBPyqqhZFiZHUCBMzZRQTq32LCjBlJRlSVmVSFMQehaUEWU+xlQJFBHSZGTxkCqb4NgllGPyZJdOQ5NGu/S7DTzHYKscKXKUlAhMbb8l69lyISRCSiojqFC1HU8lmMYFcQqFcYiKZbZ3od07hlB9Ov3jOH6HKJKkuYUbzlFJH9vrM4kNfmsWx+uzt6/p9JbJ8pK8HFGYKa47wLYdECWQYqmM3a07KJOQpROm44igGWLbFu12F3Ogbp+lEba2ydKkZgpImE5jBoM5bMdGK82lC5c4cWSewFGYKsd1anuvqrK4fesunW6bqswpi4Qg8LDtmnL+2vl12u0Qx6pqP23pAvV1iZMc329QFjlvnr/NNNU0ihmOiZNc/uVvEfab3Lh+ja3NO2Tju7S7FZZ2efLnfovSdbAerpBnfpQS/47F8j7L6F8un/6bAK4/5qh/ZdjjX0X8DLj+lOJvA7jejwz3/ca/LsD17eeUZfmeIFQ+cuqHQGv9vIPH/prANc9zhIF2q81unPLGc3/OkYUZZm7H9P7wGfJf+iDbkzF+4KG0RiCxLHXQHTaMxyM+9OEPsLezw+xgFoNCW4IwCGuAF4ZMp1OiOCGaThECFhbmCUIfkxfMDHpI20VomzKeMhzt4LguURrTn+2SJXndBaBiOh1RliWup5GqoCgTkmSCFAnK0iAkjTDENDfBKsiHDbS2EMLm/PnzVBiUVlSmVgze2N7n9KmTtFqdWngoLcjiHK0C/vD3f4+FwYCw2cC2AoKgQbsTIt/eaCuDMC5fe/brPPjwcVqdPnt7QwJHM97dQciAUTTCciVlYZDG4cSpFS5evsbn//SPOXXiCL//R5/hV3/lV5mfHXDj2lUGs30Cz8MA0yghzUv8sIkUBb/08U+AgcK6Qp5nvPriPufPX2Tl2AkqpRnubNNpd/nGN55nMJjFciyCsMGrr77G3MKAOB1z4fVrXL9+gyB0aDR8ijJjPNyvq9za4bN/8qd0uk1mZwcM9/cJg5BG2GBne0iWJ1RVRrfTQVs2SZaTZSlB4LO9vY3nBdh2TWH2A48iz3GcgCuXr3Dk2DG0o6mqWmQojWMwBqUtijKlLAtc10YpQxi6TCc1AC6rHM91SbKKZrOL67hQluRJhLq1ifjii2QffoD1/+QjmBuf5cjkc/RnumxbRyh1E9trMB3vcuHN8zz22BPcubuGxLBy5AhvXbzMQw89iO06RNMIxw0QRnL54hW0dnj2q1/DDwI+8IEPUuQlniu49NZVhFAcOnaC6t7LlMufpHP4EbRTUsS7LC4coShLtodjDq+exPGb5GVEt9um3VhGfuHLFFWJdWyeNCuolKYSGl8rVlYOYxB87+VXWZwfYIxBa0WcxHhe3fmIophWs02UZghtIcQQrRK0FaKUhaBEqgPASYHUOVVVCyplaUqn3eXC+Qt85SvP8vDDZ6gq6HQadDptAt+vKeuiBhJS2BRFxXC4z4ULbzA7O0NlKjCKNM343kvfo9Nt1dRiqLGxMZiyBERNvZOSIsvY3tpndeU4rm+TFWPW7+3xrW8+z7mXX2Hx0BKtdpciz3AdF2Mqjh87ju95DIe7KGXVqpt5jG1pplFEp9vCsiUlOXEU88wzz/ChDz0JlLiWPrBRyvnQB59iMk5YXT5Ot9vDdqESKQU2oWNRjodkcYJxcoTw8XwPMORZBlWJdhtEUcR4PMX3Q0xZeyEiSoa7O4R+SFlmpHmFZXu17YytSPOC0hiUkiRZhOW4eI6H77j88Z/8c44cXUZWGs8N2N7a44t//mWe+tgjWEoS+A2KArRuYaShGdSz3nGW0Oy0uXrpCnNzMwgBUoExEt8PycuEra0tWo05vv3ii/z8R5/C9x08T+NYLYxpsre3R1GUNJpN3NCjNND0G2xvbbN26zaDwYCyLGpF5yxFKJuiKMnzlMBziCYj3O0x1YNHMQszzA5m6Xa7dPt9Dh8+jH7xVYSC6Mwxlg/1sXSBfekOqaPho09iOxrf91HKpsgr8ixBqFoEzJKSEo0b+hhRHfgbix8Crj9RUvw+wFWtVqgHS0Two0+rsgnl10Ps4yG92RmSyTZHjx3j1toaXiuk3W/RbveJpjGWEEyGO7R7HTbWN+j3BygpyfKMNE4IAp+76+vkeUHYbOJaNq7j0Gw0uHLpMlFSEkU5k0mK7TT45gsvcf7NN+i1HeJ4i/WtG7x19VV6TsHmzWs8cqLJ6cMli0s5p1YOY/IS5dvIwMPzgv+XvfcK1uw6z/SetdbOe//5PzmHzt0AGgQIUqQYlDWjkTQqjTwej3XlqilfTnnsmqpRjW9851tbDkocaawhJVFiECiQEgJBEDk0Gt3ojM6nTz5/3nkvX+zTmCbYIEBSki0bX9Xf4ex4ztl7rfV+3/e+L+3xFloI+qNd0nATQ0qU8hkM+iRZB6VTVD4kS0LyJESlI8IoxLIdhFSkQlBkMbZVttumWdleWkiF3k88CsMAZZQJU9tAGLIEwukIQ2gcJZF5jq0UtpPtA9ayTTbTMchSHC7OstJqqjDpD0JsN0AZLlFSkMspDG8G6c1SnzpOvd1C2TZW4JEJjeHaaO3i+VWSHHKh8Kp1tOEiTIckEwyijEojoFJrs7MbQ9GCbIxM9kjyAo2BYQbYOsezbCwjRdPFcWG3nzLqD7BNl93tXUDguoo4SfffkZQ4LikOSRIzHIRMjM1x6IHj/OmXvs701CTVhk9UJBRZThIJBv2IatVDFjZCpGUCTLhkMWx0DWamqjhmQhyVyaU8Tyh0jOVYDEYDkjihPb7C+kbEz7d+mceDLzP9iTZKGgiRU697HDtUoRLA4vInmJj+OLHVRWG++668/5r8I+D6DzU+Aq5/S/FhJenfG/cecz+14B/lPu53jXuvde893hV8uHef9zvHh/keDcP4Pp/YHzx4lPHDAtC7/Im75/8BO5bXphymMlUgtImhy2zhjVtX+faf/SeOPfQo81kF93/630k/cZLQc1AKTCnpd7p0dndRQrG9uUUcjRgba+F7PtOzc2QIlGmSZjlZXvq+dXd3yJIIz/fQFNiWRZJm5IXG9VySOEQJjaFA+RVsp+Q12pZNmmkGw7BUtQxHGKqs0hlKUaQpnZ09fNtDFzmiEOxs7xJUG2i3S1FkZF0XKaEoMg4ceADHtmm3Wig0Qmtcz6JRH+PNN8/y9tvnWFlZwnScspKZCq5dX6Pq19A6pShiSrl6iev4pGHKaLTJJz71GJ5Vo7e3w9e+8nX29kIOHT+A0CNazSZFKhCF5taNdxDCoN2oEw2GrK4sMDY1R6tZp9PdpdFq47gBa2t38AMXwxDUqhVMpfB9n1yUv+tMXqDINSszP49lWlR8l/7eHo5j4bkBWmtazTq+5xKNRvzFl/+CY0ce4M3X3+bkww8yPT2BZZULyDzPybMCZVmkacLS/DTTU/N0OnsgCoJqQKffxzAVligwBJiWT5iUFgOu67K9uUGtGuzbrhjESUQUhfiBj2H7rKwsUGQhSRyhdIopDVy3glIG3e4u1XqVPC1w7bJlUCiN1oIkHaAESAyydFR6PxYg97qIZ09hDlKi/+E3iOZew736ZZQCe+VnubINdza7vPbqaQ4eWqVeb9Mem+T1N15jYnIS23PxHJcbN66z1++xuDSHUordnW2khjzLuH17Da1zvMBmfHIKRGkmH1RrjI2P0d0b0N+6QqU5RrB4lL3tG+h0h5FVpb8V4YqEzY13uHj+IgeOfpxcOxR6hPn171AIjVhdINMGUhqYEjQmYl/NO/B9Ll64QH0/QaCUKtt8sxTTViA1UkniMCLLHidJ38F2H6UoCrKifMezOMIyLYpCkkWjsjpo2yCh0Wzy0MkHkWWeBzAxlcVg0C/bfQ0LIW3yIiJJE4IgoNluUpChhCJLCp575ts88vCDVCsBQprkuuQ9p+EQKKumcr+l1jE8ao06pquQSmBok1NvvM7OdpfPfO6nmJmbpNAxhio9Z9MswfNcOr0uju2wt7ONVCb9YYIiJ0tigoqPsmxura3TqDbJk5jpmalSGMp2yNKcjbU7tJstDhxcQRcx3V6nTKaYDqMw4oUX3sCwLQqZ8+wzZxkf9zCsKlFW2mB4dhvleJiWx3AUErg2yjTK1nrDxa/UyBH0ttbodt6hVmmSY5OLGOIcWxgIW2IIk2Q0QAOZ1hxYPUg1qFFQkGYxhqmYmp7G9lqcOXOeF55/Hk1BQYRlKEwvAMMGDUUS0mg0EEJRFBFJnCKVz+tvvIHvBfz1N7/F4cOreJ7N5FiL/qCPMpogGliGwjJtXMclHPV56psvkkQh4xM1arUKZ8+ew3Y8bMPipRde5NDhQwgUYW+P3a1tTLeKZ5lwe4P/7gt/yG0hmZ2fYnt3wO/99hfQaJbWdlBSsXNyEdPzMZw6vQePYf30p9FCMBolOE5AoSFJS59qDIXQGYPeNtpQVGoN8lwgtUaKFL2vKvzeitH3tBDfndTu+Qh9l9H9/cty4evyc7+kdWKRPW0jV1K0MBj1dwmjhImJSQxlcvvGLSqVgHA/Gbu4tIiQDp7nY5kSx7URhoXlOFy5dJn5mTkGwyGu55MkCfFwRByGCFnQbreIB1sQ7XDzymmuX3mbqhURWBlFtMtsy2K+aeG7MbMzHkrm5NqkyBXCkijHRaoKreYY9r64HEWGJcE2JGkyIBmukQzvoLIQUQyBGJ0OUDomSUPSJESIiDwbIrMUc5/Tn6elMq7UBUWmkYBSgjRKyLMU23QpciiyovxZKwMtBLnW5PvPepoYpIkgI0UZNkKU4NTx6ph2nTix0UaDpPDwavNs9wQTs0cRTpug0cA0LYb9AXdurUNR+vpWvQqvvniKdruk/eRFTp4mSDRJGJFlCUKDWYDl1bh54zbVaoPG+ASViQm6nYwoVXh+QHevg+m5CFXqDchMozRYJAwH25iOxcULl6lXWvjtKVzfxrQMskJjm6XXuOs6uK5NFI/wnJTX37hIIXOaFY2RF/v6AZrRaEBQ8XEDkyzTJGlBHA+pNyq0agaWWZDkOdI0EOYIigpCF1y7NuLF16+ztDjFTidlLDmCa7rsfepVbLeGBqKRZnGpweDOSyR5g0Mf/0ckZoSVOe/asf7g9fj9izcfRJN771r43jXzvf+/V+vlRy3q3Hvce+mI37svlLov5d/fY9D+/8H4CLj+LcaPk/G46w3441z7R9l29wW8K61/vwzv3fv6oGrs3eN/mOt/mNDXbkOnj6hX3/2alP/5Jf4g0Hvv9Z1MkaucXEREGzd56atf4+hjn2TyzWtY/+P/wuChI/SbFTzfx7RtpKFwHJfdrU1u3bzJoUMHS+/Tis8ojMttOzuYyqC3u8v62hr1RoO0yHH9CrblcO78ecYnxkHrEoho6PX75EVBdzDEc22EznBtk+2dLWzH4g++8EccP3IM27bpdPtIQ2BZJghJrd6m0w0xLYFp2fvczQLt7dHv9qioeaIkxXIDhqMB4xNjhHGIZbuESfIuL21qaoo0TWm1WuRFyf2cmZng4MEl0jTm9toavf6Qqempkhc6ChEoXn/jNeYXFhkNhqW/n23Tbo8zPtnGdKsUQpJmGYNen8e//jUOnjhBo9lg9eAq/eGA9sQ4UuTUaxWkgv5gwDNPPcexY0fI8rT0Jc1i8qxUM82yDG29g1KKcK+NYUiazQaFLoV58rxgenq6fI51yWf92COPYqiy7TRKQhzHwXFtDMskCmOqlQaWbWOaFlGYYhgmb54uK2FCGsRxhjJMvEqA41cI45zXT+1XcaOYIKgRRhlFpjh//iJxnNJqNUv/StNCCCjyHM/1yHKNMiySLEMLUS4ettaoBhV2dncwLYusKLAtB9usY5oeb59/g+mZRfKdHvKZ1xCnL5P9/DE6/+436d35Ot7gCv3mY6wPJJX6BMPRgNXlFaanZxBoiizhue98m0cfPkk4GrG7W1adfD9g9eBBHNtj0B8xHIZUghrVWo0kz6cSrPIAACAASURBVPj0Z36SLM146YUXqXjuPs8x5cknn0JKydLCBC4hr29V6GxcJ1A9muMP0unuIayQsfY8M5PHuL27Q5hodnd3aX/7FMIw0Iuz9PtD/vRP/oxjR49jShiOepi2ie27jLWbmKbFaDTC832KQpBlMUmcoIyytVsIQcF58iyjyJZwLIO8KDAMA6FkqXSLJIvLtu1STbhAKIiGBadPnWF9bZOZ6Vkef/wrrBxYxbEd8kKjNfudFQ5FIcrWYCkRRsmXPXD4IIZdehknaYxlmUgJtmXvC9PlFIVGKkVRpBR5hmEqpNAYhsHC4jzHjx+l3qySpSOUgiLP6PcHQMmR16QkUcRgMOTbzzzL9evXEYZFs1nHlJIsSblz8zZ7vS6LS4tUGxUMyyCNS1GZa1evIg1JEscoafHSSy+xuroKWiBUk1rD5do7ayzMnyTV20w3HRzTI880mU5IiyHDXowyTVzPQ0hZcs+yDMMwSdMEENheWand3tqjWqlAkbKz8Q6uMwI5jqDANAR6X7CqyBOELj0kbcfBdT08L6DQFtEo5Ma1q3z+859jY3OHr3z5a5x88CTfeuKb9Lt9PDfYF2xR3Lx9lWajxV4n5NVXX8O1HRYXlrAsm5vXrzA/O8Ow3+e5517EdwPSKEQIhTAU0lQomXP61FlmZ1cwTMXC0iSVakCv26FaqdJujzOIuiRRj6BSwXR8omEff3eI8+gjhG2HlQPTfPOb3+SPvvCHrBxY5uSwTKL2H1oh8CrEYcgnHvs4Jx96gJn5SaQCZQgKnWFaCtdxQap90DGkVq2Uz7emFPjSoD+M2Mp9ptUPVZu533ycQPa0hVrKAfBqbfxqk/PnzrFz+zp1V2KJLpbMuHXzNoYdEFRrrN9Zw/dcDNOk2x+QjAZUKjXSVNPt9On1Brz26itcfPs01y6do7O1wdPPPodnRmzdvsDRlRoPHqgxMeZQDTSNuoUgp1ILsAxBrkGYNlpJbLdVcolNA0NqkniIjjsUcY8s6UI+JM9TRJFi2xamNDGURVGAQpZwXhf7VBOBEApQxFG6TweQZeuwaSKkSSoE0nQQykMaAdKosLY+YDDSVGqTCBWQiwC/NoWWAVpVSHKbXNQw3QmkW0O4TaQ1Ra4apDSojq1g+dMkuUW1MUWcSLqdEb5Xw/LLKnyeF/S7Q+r1FlqXStHKMJiZmSGJE7a3d5icnCoFx2ybQiqkcHjrzTMsrS6+66Xq+wHD0YgkDrH9Fk7QwK9OoqwWUoI0/TKpYlsoKUizPQJfkoY9PAOm2nWECUWRs9fpEPg+QpTe4b1ul0oQcPnSJTQOrfYkly9eYGashmfbGLagKDIazRrKKBXfLctEKll2bwmBsop971cDQ9lkaQpSkOY5tzYSbq6l3FzrsrUz4rPtX+TmT77F7OF5KrUq7elxpicmiAd3cO0N3OoEjZmD5EIjtEXy2w7Fyybqse9vi/9Bb8sHFVfuByTf7/gfVaT0/c7/Yc7zvft8BFzf3f8j4Hr/+GEezvtmT+8DCn+U6uuHqW6+d/8P2vZ+9/tewPh31aaQ/5v/Gf3sq8hf/ql7MlrF993jB1WbtdYoLUFnmCLlj3/391lotln5q1OYX3qCzROr+AdXCCoBaEGRF3Q6HTzXwTQNwjChVq9jOxZCCkzT5eLFC1R8v1RR9Cs8/fTTrB44QF5o/CBgc32DlZUVhJBYlk1/MCAIKvhe2RrbarUZDAZYhqLI03cXhpvr22xvbTAzM8NbZ85x5fIlpiancFyHogDXC8jSiDhOCIIK29s7OK24FPEZ1jAtG6kMXK+s1FqWQ4HeV47N8H2fnZ1tpqdnMEyL69ev0W630TojyyJsx6VWa/L0M9/m0OEjJYdRGezt9jh79jQHDh6g3x2wtbXB3MLsvq2IIM0KpJL7bc6wsbbOwaNHMS2FYUhsyykFZEYDiiIjTVMsy2Z+bgm5Lwo0CkMc22Z3ZwfbMtFFgXBvkOcZvjpKkqR4nleaqRtmKZQThuR5QRSXfNytrS3WNzZYWlzArwQoVVrJxHFMUAnIdSkEoTVEccY3Hn+cn/v5n8X1XIQo2xANQxLGMVlekKUZCwsLIDSmaSGF3K/8KHZ2dtjb22FhcRHbcsiydJ/7qPZVVivkec5g0COOI0zTxnVMigJGYYxfqdIbDPEcC13cTU546DcvI59+nfyXHmHvX3+e0QMVKq6NefoLiIXPYntVDGXwzW89xUMnT7K1tcXOzg6e51Nv1KjXAsJRxN5uhwLIs4KdnV0WFpfo9wecO3eOt98+x9zsDGgwLMXZM2+zurxKs9lke2uLyalptra22NvbY35+ns6oTzu8wJ3qZzl5bJk7l1/BbczjeU3SIsfAwLMqNCfH8DyfIAiw/vJZUJJwqkme59SqVWr1GoaSSEmZNFEKUZSttojyGTVNA62z0gcQgRQCqTR5fok0yXjrjYzJ8anyfTYM0n1+qS40OjNIU02S6NKOQStGg5BOp8ve3h6Li/MsLs3huC66EAgp6XY75fOp4dSpN3FdF9M0UYbYB3ACLfeXA7q05inyAi1EKei0XyVGgJSAhH6nRxTGSMNAGRIhBZBjmQZaF0RRyksvvsbM9CzonFG/R1FoGo0G7XaLlaV5llZXUaKgs7fFoDfA9wKk6TM1M4NhWAgU8XDAtWvXeO31NzBNk+FohGW5DId9PNfBME1kkZGmO0yNN/BsiyLbxBQRhU4wDQ8pA0zLgzzHsOzyZ6N517dWKYmUiqLIMYwA03Dx3QBTOQhtofM+3e4WQW0BrTPSJKbT7VOtVkmSiDyLCaOUNM/QwGgUYZgea2u3+cTHPwYCWu1xqtUqusg5euQwLzz/AlGSMT7RRAhFrRYghMJ1qywtLSCEZGtzgyAImF2YIc8z0JrLV84wNzdFuzXJcBjiBRUKnTPsdlhZOcjubh/PdzDschywDMXVq9cZn5zAckzSKKRSqZELgzQcYazv8vVrl1n41EPYjuDTn/48j5x8mMNHD+P/wqeJP3Ec27CwLYutrXV+4zd+ncnJNlpKXNdlb2+v9JW1bYpck2sYDfoEnk0y6mPbDtowymqpEPtq2PePd+fi+1Rj7x5/v8ietiiuKdTSfRLk7wLXAhBoZWPZLhMTE3iOQXdvh6KIoCgta2bnl0lzTRyH5HlGpVrFtB3C0ZBbN2/T6/XZ3dnkysWzdDbXWF2osLzoMz9ncWJpksmmzcx0HWROogtMZWAYiiTNQVokcY5p+uS5heVUyHOwbRvDEBRZQppGxOEQncXkeY5GUORgmD5Ii6JQ9Icpvt8mFya2W+XGzTWU6VBoie3WqFbbCGnj+TUMu0GaWThui/5QkxUuXq1GkiqiRLC7F1NvTpELn0ptHMtrsNeNGKUSZQVkWEgzoBAOO52YTJecctOpkuaS3U6fial5tDSRpoUQmr1OB41mZ3cHocS+R2tOFEY4jk+4n7BzHIcgqBCGIdtb2wRBgJQSw9hXEjcUOstwbJtbt2/RalSxbKcUVfI9rly+yNT0OH7gMRiF9PojPHuMODG4dmONWtMjK4ZYRg1d5NhWTuBClu3R6cX0BhFZLrAsh1s3bpLEMc1WCyEEhmnSbrWQKuPy5QtMTzWpVGyUKv238zx91xu70OWza1l22UWVx0hpoHPFzu4eFbOB1BlRmBMEPmk8oBs6fHr+p6hX6li/OkDnBnE2oj7eIBoM+PYTf0qWbqKsccbmj5fjszbJXy3nEXUfPvc9b9L7rhc/KO4HKt8Laoui+KG7KN+vivt+136/boz9rR/6uv/Q4iPg+rccH+bBv1uZ/HH4pD/O9f+fONePE+9nh3M3fhBQF/fso7UmNRROnvOl3/4dPpMGLP6vX4X+iPynfwJzfIzBoFRy3VrfwvcCkjBm/c4tLLfC9OwCaa6xXbcEAnmBa5fWML7r0ul3OXTkCHGU8Nx3nqdRbzI51SRJUm7dXOOZp57jwOphDJWztXGHV195mVqtSpxkBJ7H3vY29XoTJU1WV5c4ceIYnW6Hw0eOUnUCKDRKCbTO6PU6uJ5XcmgHIyq+j/C7GJZB1vNKAFxoiixiY32DaqUOSBAC1/WQShLFIxzXJ0kyet0+RV7gOAZpGu23a5rMzCxy6dIlpqanKDS8ffYCi0sLNMdaWNLCCyykAj+oYhoGOokxlC5BeJKxMLeMYZponaKLnCzNyHVpn2FbFrrQ2LZHFI3wfYfBYETgV3nz1BnefONNmvUKnm8Ry0tlG/poAaUMvvH4E/uVwnJRnCQJ33j8CQ4dPgCA53m0203yPCUrcmzHIstzgkpAr9/HdhyKNEQK8Cp1jh5Zpd/vkGQxnc4ejuNRpBFJmmHbNqaSnDt7hs5ep1Rpjkbs7mzSHm/SHmuyvLxMnunSNkUnaFGq01qGQZbEhOEQKXIqgU8aJ1h+nUwL/IpfVkK9gF5vB8OU6OEQ+cybkMLvHh9j9jd/FdwAozKBeuW3oTaL1VpGKgPL9oiiBMsymJ2dYWtzk8vv3MJ2TWbmppHSJEkhqARkSUa1WuX6zVv4vs/83CzHTxznz/70izSbNdbvrHPk0FG0Fly6comHHz3JU08+g5SSZrP8PicXFrC6l2md/Jf80X/4PRy9gdOosLDwOYYDydWrp6j4Ob5bxTIt+r1dnFMXSSeb9FVOLfBpturkRYYy7dJrU5koJK+9dpb19S1m52awbIU0NHEYYlk2hmFSFCmajILLjIZDJhqfwLQUw929shqrFKZh0dvr88UvfgmEZm5+lkJnaApuXr/Ot7/9NEpplpdnsCwTIRS6kBQUWJaB3reAaTabOG75bCsBeZaU1i+UoMKQgnBYWuqgDExVcsiTJEXuL8J1oVlf2+S7332JYyceIs3SEnyLUsjp4vmLhKHg3NlLjLXHcFyFTgqef/4lKvUq9apNkQ3p9noIIlzXwrJ9QNFoVHA8E10k7G2vQyYpCvj05z7HzPQcgV+lKDQzsxO0WjXQ8H/98ZdYWjrB+HSbTA4gG2Nnu4/jxghZikeleYhUEs8vRZ1u3bhNs90iiqISdBUFURRjOwqd5wxHnXLhrA0cr0Y1mKMbdjCUxFQ2nlcqqFMUKCFw/cq+uJnAdlx6/ZAnnvhLjh87gG2bJFlBrVXHUJAkIUsrKxw6dpxoNCQIauzt7RJFKfa+GnqRpxw8uIrvuxiuh+vaxHHIsUct3MoInU3yla9+jdXlZZIoolVvYlkWX/yTP+aRjz+KMmykyLHN0v7FdkyEdPEdj71OF9P22Nq4jbvd58H/+r+gffIgjWadrY0I29QgS4uk4WhIvVJjd3eHyYkxav/+/8B/9g2sf/qL5Dk4jo9tlW2mpqnINTiWiWMqzp1+jfmFJXJhvDtnfRBw/Z7J7T7z3f0i/YaF3pL3FWf6XuAKBhqNQJgOfqPN1MIq9eYMN2/dIo5DCkAaHuNjYygpyPKcrZ1dbq1t8+rrp9BFTNzfpOnlHF+psjjr4Vkp1cBFGinSKDmfSipMaaCtCoVUGFYpjOUFPmubO3h+FdexgZgi7DHqdyjyuOSUa4nh1xFWBdMe4+yFdTIdEKcWnWHBdjehM4RhrCikhxs0SbEwnRrbu0Nst8XuXsgwyuiPCgrlsLbVpdacoTE+R5RApT4JygfpsdsNaYzNEdTGiDPB1m6fpeVD2E6FLJcElSZ+0KA5OYnnNRDArWs3GW+PIZFsbOyUGhhxRBbGOLZLvz9iamaear2J67r0+12klISjIbZjsbW9zfj4JIN+yPnzFzGkYntnByUNXnjhRdbvbHDpwnmqFbh04Sx7OyGnT73K7m6P10+dxjIUq0vzvPr888xMTZElKbeu3cCpOEjTYmH1KIZdJahNMAy72I5JGg0QSHQuydKcoD5NIRx8v8Kg32N2dpY4jnnz9Glq1SpXz1/nxq13+PjHP8uTTz3D5OwUjkyB4l3hOsNUsG+XWHb3FSAkSjlkqcDzfHIh0GZGXrTZ7eyxsjLDRHWZlfgkW7/6Cmu9Nda21zh66Ag4ilOvvcrHDs/w/PMv8VM/+1/hNOZISRFAsS9E9ncFXD9s/LAUuA+q4v4w2z4Crvfs/xFw/eB4b/Xv/bIz761g3u88f1/g8d7++R+lReH9zvl+GaH7bXtvtunu/vcDrmXC+Xu5ufI+51HaQZCU07A0cQ2bwe2bjP3eV2h86xUGJ4/Bw8cQ+2IrpU2OoDcY8PIrrzAxNcUoTNja3EFKQaezV4qRGCYvv/gy0zPzmPtVRGUUVKo1slyX1RDXxLBdRlHExOQEL738IocOHyAaDnBcnyzTtGpNvMAliUIcxyQKh+RZguM2MGxBr7eHY3tYtsSvBBi2QxyFyKLMsG5v71FtNHEcE1XtIYQk2alQqbS4cOESTz39HMdOPIjjlC1YvV4HBwMtTTy/isgiRp1txmfmyrajIkcpE6MwyLOIim8xMzuPxIUsxHMN2q0G5Jqvfe0beL7P9MwkSsHe9oBub5cCiLOMIs/4iz//U44ePcadW7c59cZ55pbnSh6iLgFCriFJC4KKSxiOUELwtT//Oht3NvmVf/pr+NUqcZLgeIpRz6Cz5bG12WcwCKlUfTrdiLyAoOqzvLpIPajQ6/XxAx8oF8vDMMV1PIQGgwJFiqCg0CV4yjPItUE18HEshUajbJcnvvEtHnzgOFvrd/gPf/CHHD58nJnZKV548SWGw4SDh45z5/Y6o9GQJA7xA7tUkBQSJQS6yJFKEqaQJxGu65NJE4oMhFtWTHRGGvYwiTHtGjKMEV97FuMzJwn//b/itWuX2dne4dOf+yzDa0+jbr2MmH6sVIBNI0wDxsYbbG3tEvhVAt/l9JvP88lPfYwwGnDl4lXOv3WeuUOrgKSzu4dtWty6dZ1DBw+yvbXFseMnqNcbGLbJ2TNvce2dK5x44CjXb9xgd3uXne1t4iSm3+3j2BXq+g6vbY1z7co1VuYkkw/9Y/Jrr2AGmk6Y42WCra2reI0W2qrgvHQeHbi47TG0lmRZQpKEOI6LaRboTJInBWkW8eTffIt2u0673SSJItClp2q/30cXGs/xSdK3sRwL1z2GMgykoej2B3hevVzwq4KVQ4dYWF5EGiXxr2wrlxw6doip6WnqlUkwS3XgLE9JwojdzW3SLMJzTbK05MsqYVAUCcKw0CgElPdV5BjyrnWOBJGXld4iIxp1ISl5w81WnSPHjpRtyEpgSCDPiOOUU6fOYFg2n/vMp9jaXqfVaCBUzpkz57j+zhpLywtYjkQol0azhSENlFQM+z1eeelNFueWsRxFfxTzZ3/2VW6v3eHo4cNIBY5rMej36Pb6tBoTrN1e560z53n00UdxXA8lLQyRkosqCUN83UcWNtqcoEi7JFlMnKa0J+ZRuihpDqYq3xlDIjDo9bv4lSpxkqNFgWFaJHnGa6+9ztTUNMpQpcKwLsfoNNMMdjeo7ftYR3EEOuHggVU8P0AZJpUgwHU8kjSh0WgQ+DaCBENUSKMRpqkZDRNsxyYcRmxv7TI21uL22g3q1RqdvV38ah2ttkBI+h2bBx88Vqq5ZhLHd9nZ22F+bo6x1iSeVSETKUIZuI5Hb69PlPRQhoFleaUWgalo9EP0iWVOb/bw3QaVik2rMcbW5ohWa4I465DeHbttG/mtl0p/3l/4GQa9DJ1LDDNn7c41dB6TphG20qRhlzBOaU9Ok0vjnrXmjwdc7zenZi+XwPgucP2eeTkVpE+Z7wJX/e55KFtqpUkkJEFzAp1ldO/cYNi5SVEoxhcPMkiGGFS4ffEmRr5GuLPF4ZU2SwegGlTRUuK4AWGY4gI6y/bfCZMciW27pLEiSw2kISnIaLaqyGJI2NuiiCKEkZSgpDDIjBrSbxGnDc69fZ0gGEM5FXKq5EIxObuAxmd8cpp+r4+UFpubPSYnF7HtBoNBSJJm9EYRaxsDPLvGzl7E1OwqUlncuXUTlEWuFaZTIYqh0Zos25MLQZJESFWQhEP8YAzb9XnrzCkCNyCORnheWWWMkgytcxrNKrV6gG2bSGGWau4mCGWjUeQ6Yv32DrOTYwx6HZrNFhQJtcDj2o011tbvIMM7YKXcvtojGu6Rjm6xt36D9e2MixcusLA4xuWLN3B0lapXIGPo7iacOfc8xw6P8fwLbxFU57l05RLtuqJVm+XMmXdwKiZRpLDtgjQaYhRDpIQwyxB5inTL1vxWtcZmd4NqvYk2JFPTU1hGlVESsbF2i2bV5tadNaLMZGFcYmuHrcgrBaBEqQNS+kGb++NlgjTKynEndhl01zDtFpeu3kGYDeqNOSZ3HyQdH6B+OqfRnmByapb/+Pv/GwceeJi56SpXXnuCwz/9r6hPzaN1tt8SDvnL/1lB+12+9/cVJPX3fYS4z9d/RAD43nXshz3m3n+/H0a4X1X2o4rrD9j/I+D6wfGDy/f/74+/TeD6o2wDPhC43ltxvXu++50xp6AQOUUhMJTL6MpbdH/93+APM/Kf+0nkWJ1up4sATNMkyzJ63S6XLl7k+vXrnD79JouLizzzzDOcPfcWn/z4Y6RJghSSt8+9zfLSMpZlogxJUKugtUBJRa1aIRz28V0PKTRROOLhB05QCTyKIkMoSSXwS6811y3bY10PqUrvwNGwi6TMeNaqAbYlWV9fozU2hjIMBsMhpmlx4+YtpqcncT2XXPWQmJh5i63tLdI84eTDH8M0jX3vSBfP8+h1NjEdgyxPiUcjXNcBBMoQ5IXGsm3ieIiWpZJxt7ODqWBj8zb1RgW0ptPp0qiPMTbWYhQOMA2L3/v9P6DVnGB3r8fK8sGSY/fiqxw6cgDTMBmNIiZnJkiiBNe1kaKsvFqGhSEkw8EAISRTM7OMTUxiexauZyOVIhxU+c6T55mamtmvALeZX5jCsQ0mJ8exDIM0SRmFEZbjMghD0ixHCEm9GrC7s8uVy1foDfqYtoOtLNKkrApfuniJF157hZXVJXrDIUGtSVoomkGNF178LrOzMzz66CPYjolf8fE8j+Xlpf224ZLn2G436XZ6AGRphJKSPEtLLlCtjmOVVRnL9RgOugg9xLIUaAMpfL74x19julXFf/JVkn/+MwS/9d/wO1/4Q37hH/0iH3/0Mb775NeZvv7HGFMP87UnnmZubp7+cIRpu+gcLMvlxRefp92uUffmmZqYRQuJ5VhcunKZBx58CENKzp87y5Gjh/A8n+eff54LFy9y4sQJtra2mJmbYWpykrnZWQbDEecvXODkgyff5TjPzMxw6dJFlusR0czn+Zsnn+TYaoW5Aw9x59oNnFrAxMQUYW9Akufs9oYIZWB99y2Mqk9qmfvCHjaGUbbVDvpd8kwwGo04deoU/+yf/Tq1eg0AZSgM00ApSZGnuK5Dmmfk+mL5vutVbNtFovFch9def52XX36B5cUFXK/kXhv7Lb4AgR/g+R6u4/L1r/4llZpPtVIlTXNefOEVNjd3iMIEy7axLAslS29WISlb2hBIIE0Kfvf//F3m5+ao1uqleJaweOvNt3niG3/NyYc+xh/+xz+h3mwxNtZi7fYNAt+h0Jp4NCQKQ4JqlZXVFcbGJ1AKJibG0EUOaF568RUOHTrEzOwEpqmo1trkWUqWZcRxQrPZZHpmBo3G8RyksBhrj/PIo4/g+y5JEgPw0nefo16vIE1Js9Xg2PFFlJHiuYIiDcmziHqzSsUXhL0uhc7wayZxBnleioVV/ApZAd1+D8f19yuB5RjnODZpmmKaFm+9dYb22BiGYTAxPo5pmuR5TpZlSARFkbO9vYMSECcZUhrYroehUgwDDKUxTcGdtRsElSaGociylN2dbUzTYBDG/M1ff4vl1SW8oEmSRAihGB+f4Mknn6bfG3Hh7TMIII4igkaIEOA7i9iWiW079Ad9kiRjbGwM27Z57rnnePY7z3Lo8GEMZRKOQjY3Njjz1hXOnL7ApYtXmRifYqw9jrm2zc7UDL/5b3+Lp596mgcePEKRZ/zCL/wTfqWTsLgX4n/2UdKiYKfTofLcaZRhkP78w/y73/q3fOWrX+Yzn/k09VoDx/IwLLdsCTVt9vZ2GJ+c/p6K648LXO8X9wOu70bC9wDXe+MuLchSAtMwGR+fZnrlEOtXTtPr7OIYOaO9W7g65vqVl/nYw2M8cGSKmu9iABQ5liFLtV+hCXGQloc0HZTl0B8OEKaL43qYlqTQIUk8JO6MKLKUXGuEY5GLButbIUnuYXhtrlxdp1ofo9keYxTH+EGNIGiUKvhSIqVJvdHAsmySrKDRbOO6Pmt3NjCkiWHZtNoTCCGZmJ6hNT5BVmgKDbOz81i2he24uI5HpVrDskzOnT3P9PQclu1QCSoYBgxGMbZtMjZWJ4kTdna2adQbZFnOYNAnCOqEUUxR5AwGA5IkZjBKEErjewF5lnFn7ToT7XEsq7RVO/P2BbZ2BjzxV98kCCqsr99idbZFvTLg7NsbKDflwHKdQ8srHFquceLgDJ4ZUfUEj32ywuTMgMVljzubt5hbaLIyFTA9GSCzPYpwnXrd5Llnv8PM7AxjE3VsqwLCI4kLkihCizIBK0SBRDAxNsHG3pDZmemy0q1MpKGxDItq1Wd5eQEpJcvLB3j55Vc5ujxLkac8/sQpDq2MYVqQZSk6L1BSkiUZthlQaEk6irh69TaX39nk2o0O61sxvjfF0vBhsoWQm586TVCt0en2EEJw6NgJdLhD1LnNm6dPs3D0MdrtdmlTtg/k7mv99CGWsfdfl/54a/gfFbj++Pv9w8MeHzY+Aq5/B/ERcP3g4/7+gGtGyYBR6I0dtn7lv8Vpt4g+9jApMIwGtJotsixHCMiyDNs0mJ6aolatUK9VWVleolqpsLy4TFHkLCwskKYJjuNw69Zt5ufn6PU7uJ5birMIxfbWBp7rYJmlX6EUBbu7W0ih2dreRQtoNOskcVRy40wLoUr/M/aVJUfDmAvnL6FJII+RhgJllqJBQUASZ5hWKZhSFDm9TY2OqiAUATIaKwAAIABJREFUL7z0EkeOHKIoCoIgeLdCfenSFZqNOqMwRimLWzfuIDFBJKRZihcE5Aj6/SGNRgspBJ3dDhJBGJWeqWmqOX36HI1GbR/YL2DZNgcPHOCts28RVDxmZ6ZAFzz8yEmKIudbTzzB5z//cxiWUfKFo+G+T2KKlAZXLlxmr7vH7PwcpmPTbLeQoiCOQ0zTwvMCFueX8H0fy1IcOLiEYQp812Jrc5Nup8doOKTWaOK4Hl4lACS26SJ1ikAwCCOuvHONo0ePEY8ivvSlP+HgwYNMTU1xYHkadIZtKuIw5K033+TWjRt86lM/Qa1WRShQpmI4HNBut8iypDSPFwamVarJWlYp9pTFIUpCHIUEvk9SaCxDlKqzpo1lKFzLZDgKCeME07C4cO48jw1yoo8fQf7rf4GWihMPPkA4GmBvvEBw/negfYTLtwYsLS4TRjHNZgshDSSSrc0d0jRiaqpNFkUENQcpC5Am12+ssbS4yFN//S1+8lOf5PKVy0xNz9Bqteh1uywtLWFZFhqNaRhsb29x5uxZPvGJT3Pp4kVWVlbo7HVYX1/Hdk3mgxGv9cb42MnHWJypkOmcZmOare11rly+wMrKEfpRTKVSwbEU7WfPo6OUrmviui5FkZGkEf3eAN/3sMwAx3GYnZvGtExsxyHLsrL7QWdIJUmSBNMsvVnj9Gw5HoiDZGmObdkMh0Ok0Bw5fBCJJisKLMMgzzMsw0QKiUZT6PLz4IkHqNZKNeo7a5u88N2X6PdHXLt6nSROWF5eKi2lpCSMIkzbQeflom5tbYutjU1OHD+OYVr7CpqCVrPJ6oFVHNvkuy+d5sjRo2WbLlnJXxYSUxolf7uzR7VWRQNpEtHvd/cFjQxa7RbLK0uYpoHt2CRxVvpMSkm1VqM36JfdCoVGGYJolHHmzBnGxtvkeY5tWwghaNR8KtUqtufg+C6SlDgcQVHQ7w145pnvMj4+SZakWEaVKB4SRjv4wRhSKJQQpa+lMPCDgLzIKXQJ4nvd3j53rRxXnn7q2xw/cZwsTXFdt/z9yP05UIMQkr29XQLfAyF5+tvPMjY2ge84FLlgOAiJwphatYEyHeIoAjSVSmkv5lYCWq0xXM/B9Wv8/u/9LlPT0zQbTXrdIUmccezoYbI0Zn5+HsxtBII0qhOGIZZhMRoNMAwbISRRFJYCb0XG5uYe3/yrJ3jkkUdAFFy88A6NZp2J8TZrazcJKh6VzoB8bgqWp/nn/+KfcODwFGms+bVf+y85fH0dFUXEn3mQHI2yLdynXittkX7uYT77uU/xy7/8SziOhxRmmZyUNlJILMNke/sOYxNTFHc9ce/58wfOnX9PwLUoCrIs49K5t2m3J8r7lCbT41UKnbG9eY3AFqThHpZbwfdAyRTTsgjjAmU5ZWVRKkZxhnBr+LU6lm2jlMS2bWSeEo06FMmAIu4jihSRZ0jDRTptCqOGW52nkBW82hSW28Bx6xRI+oMhtXodz68wMTHDzu4W7XabNC01KhrtMQotqNUbhHFCkmR0ugNcL8D1fBzXxfJ8/MC/x6/ZKDtD0gKlTO6srWM7DlOTbaSC0aiH69lcvfYOiwvLjMIB21sbNBptgmqZwLZtl2q1ysb6NkUBV65cIUkTxttNDMslDAesr93h7JunOXJomSzfIomGfOPxb9HdK9ACsmhEEncpsiELE1WSbsj4suD1128x0x5jamYXz7YwVYrnKRptF5UGGEJiCJc889hYH7C86KJkiOdmtOoefiBp1utsrK/x1tlTjI/NEaeKeqPN5vYdhCwIKg5ZFlFEA+JoRHViAaULhFZEcczu7iaWUWoAKGWQZQUbm9tcufIOB1ZnMYyUldUGQuc4jg26TPSmcYplOKRZRlbkkMXU63XMYIHLV28zXlvik5WfQQaCzi9dpzcYYDk29WadVqtFpTnO3vW3eOabj1Mdn+PRT//M97Xk/v8NuJaK9u/l0/7Dwx4fNj4Crn8H8b58yx+z5fbvMt6PCP7jxL3tx/d+7cPygD8scL3LF5b3XO/u8XmWo7VEZgnZv/zvKQxF8bHjjOKMO+t3cC0b0zDLQdUwKfKCIktAa4bDITPTU1y9+g6ua3Po0CEs02J9bQ3X8XB9F9/z8X2foOKyeec2aVxW8e62vt1ZW8Pz3FKYyDYxTYOnn36O1YMHMU2TTmcPzykX5OsbW9RqNfI0RlNQqVSZnJqiVqsQxzGG7eJXG6RZjm2a76rXtpp1bMcp/WaFyd88+TRXr17jwOGDtJtNDLNU3o3jlHa7zc5Wj0qlhtCSP//yV7l58w4PPnQU07LJdclH8WyfooB+L2Q4jPG8Cv/pi3/B8RMP0m6Ns7m5y2CwR5alNJsNWq0WlmVy+FjJN3MsxfbuJp7vsL21zU/8xKc4c+Y8rfEWQucoJUs1Q6VIkxTfr9Dv92m2Gu+KOBgSkiSh2+1gWiGOq+l2R1y9eplGowqiFOywbZ9nn32Oo0ePEQQeWZ4hhCyFK5DE/zd7bxZjyXmeaT7//8e+nP2cPLlVZlbWklXFquKujZYly7KNdvc0II+7vTTcgwYGg7lrNAYYzAAzmLkzMFczPRftacM9htqL7HbbokVtlkiKEimyuBTJWlj7mnvmyTx7nNjnIpI0RVISZUs9FqAPyIsMRMQJnBMR//d+3/u9bzji7r37CBSnT58uhH80wdTUDI3mFJ39fWwZs7u7jeu6mLqGISVz83M4jstgNMR2bK5cvYIQCsMovncpJVEUo+sacRIRjENsy2Uw7JIjiKIIy7ZRhsF42CNNswK4Ko0kEiAkUuVoMqW9vYfneuz8D7+O7lgk/VXklS8iX/xd8u3XoX6KJ791BUXGzVu3OHPmLCBI44Qrb11lenqWxcVDhXgJA3Y76xiG4jvPn+OTn/oshiawDJ31tXVKlQrnz79OtVplenoa8pw3L1ygVq+xvnafSxcv8ouf/WX6/TFSwNUrV3nrylv4vs+DD57Fntxh0PwkR46eZfP+TVxzgt9eod9dwzcko0ihOy47W+uk8YTW87cRSYpz6mjxu2oS0zQIgwmWbSGECYDSCgXbIAgwDIMszxFKEE4K2xilDCZhiKnNYuhLmGYJpTSCSYTtODQadSaTgHKp/I7ScDiZFKrEB4qQUil03SBLo4OZqxTLtJiEEZ944gmWl5Y4tDCP69oopRNHCYZlkmQ5mlTomuJLT32dKJrw4NnTIEBqGpAW068iQ4iU/W7AmbOnESIhy7PC9ucgCe52BzSnWoRxXHSDs5wojBgOhhi6TqVSQogMw9CZBBH7e/uYpv0OmHc9h1s373Dnzl3m5qb56te+TrVaZ3pmmuGwj+PYZHlGv9enNTVFMCnuQ01ZlPwqg94Qz69z/o1r1Bpt7ty4SX+Uc+3adeamagUoTgp10yieIDUHIQWGXgiKKSm5ceMWlUoFpSSjUcCRI0fJsxTHccgO3sV5npHnoISk292nWq0yDkbous6zzzzL0SNH2drq4noVXvjuy9Qb01y7dpswnuDYNqWSR55lRbKbZExGYaHOm8GDZ84WarxKUqlW2N7aYb/X49ChBf7oj/6I04+0ATDkIQzdQtM0TKMQcfP9ElIqwjCkVq/y6quv0Ww18X0Hx3U5cuQQKyvLzM61aLZqWKaJFsfk3R4n/tXniOIetpfT64TcvbeOca4Q8ho/fgrbcjAMk+yLzyKlYvILj6KUpLO3Q8mvomsGuSjuFilyBCmTcZ9ac4pM/vg6rh9EU0zPaQWz6CPp+4vT76EKvzvkgbK07zoFw0MKICeahITREMcs7v2MkLWtEVlaFGUncUSaC3SnhGbYhEmONMzCFzhLCcZDgmGP8bBPHgWQRUhSRK4j0RGWS5w6BGmFRJTZ3evTHYS0Z5cYjQM0JRFKxyt7CKC718WyXVzPYmt7E1232NndpVQqc/fuXQyjUCwPggnLx46RpDmuWyKKI+JcsN/pMBkPCxozOWEY4ZeKdclx3cLnmIgwHhIEQyzLxHI8NGkwGvYplX1ydHKRcenSFUzT4uKlC5QrNWZmZpmdmWP13n36/R4bG+scmp+mUqrQ7w24cfMag94OhswpexaWIbh28zKf/sQZji238BxJxRFUyxZICyVyDi80kblgkgp0s1BTj6KQLBmj6ym5GOP5CYtLlUKlWuYoKUFJRB6TJRmdnU2OHJ3lwpsXyYWBYZqUyj7Visfmxj082yaNg2KW27SJwpj9vR5xmlMquUV+lWXkQjIOJpDn3L51iyAa4nomnqPheTajcUp6MNtqWjZRnCI1nVzTuX71OuVqmyu39/nUx36F0+nHST7W460HnmNqapa33rpElASkeUSt5qNrBoQjlGlz5rFP4lVq73s+0nMGID4QuP5ATZQP2C4OVJB/0HHvzZ/fO/r3o866/rBrevd53zvm97fX+TPg+s7+PwOuPzx+3MD1pzV+1EHzd8eP2nEFvge4KqXY2tpib3WPwShg+Ox3cP78G0Sf/nnQFboJT3/9G9TcOqZtFMbzQrC7s0vZd+n3urRaTcajETPT7Xd8FrM0Y31jg1K5hG5ohcm679Lp7BD0dnEdjyQF0/H51nde4Pq16xw5cgTDNArFSwHzh45hWQ5CCCrlMum4x2A0ptlqI/KUJAywvRo7nU00QzIOEiy3gu2UEFIjSxLiMEDqFtFkjKZJtra30W2XP//CF2lPz/FLv/wr2K6LyFMmkwlZmvF7v/fvadSbzM5NE4Y9hIg5dnyJRx9/iLv3Ngs6lKYRBgGj/g6GochFjlcqIXTJA6dOce7cC0xNVzi8PEfJL9NoNKjXG+zv7yOVIE4FvltmZ7NDa2qaLJe4jkkcxayubrG9u02jXsE0dMbjEd39IinvDgPmF+bIs4wsSVm7e580iin7HrqSRNazZPoq/Z0yx1aOYpo2aZKRIVGaRS4U1UaFvd0t0rRI8IPhiG5nn9ur91hZOYljO+zt7nDl8kVKdZ/2zDwpEr9UQtNcTL+OMD1iFI5XQlHMpWqGzXgSUqnWaNQahXH9weKgHXT14jhC0wyk0MjIsGwH1y8VSre6hqEO6KbSQOY5vdEGlqMX3ns7fdy3Vrn9r3+FqeUp4ud+l+y1P2DS2yUqrRA6h7i/3ePxRx9nafkY1WoVQynu3LpByXOYmTvErVu3i/nLKMJx52k2ptGkwtAVzVaVNI65+MYFPLfMm29e4cGHznDlyhWUlDRbLVqtFo7rUKuV2dhYI0lgMJzwyisvUa/XqdfrVKtVrl69xnItxjv7W/zar/0rPv7YI2Tj61jTDxP11nH1jCD3mVtaRksDSEPqL68jNI30ULtIKtKEKAoxdYPbt++wudEhTkJs1yYnJwek0gprCinfUc6VQiNNcpQymUyyA6GPHMurMglDcpGhlEYcp0yCMUlcdNrzLEfkEKUxmlYA4jSZMBoGmKaJ0iQLi/M4nkXZd/E8izRNuHdvtejo2jZCCHq9LoaSrJw4TclzqZRdLMciTiOUsBmPYl767itcv36Tn//kxzENWXi46jZJpqFLybUrN7l7d43Z+TnCKH6HKm+aJl/58tdoNupUKh5SwWQS4/sV3nj9dXZ2dlk+erToQGuSaqVFpVLFsiXzs/Pouk2tVjsA3BJd1zEsnyyTPPXUV2k3Z0BTJHGEaekgJSfOPEil3qBRN5haPMx0e5qgu0McDjBNF8O0yIUAJLoq5razJCFLU8qVGjs72/h+CdOwi4KPaZBmGVmaghBIAWEYIii6TZ7n4bkGYTjhscceI45C3rpxC6/kgxR885mnefyjH2Fmuo1SRfcgjqOiaCcd/vjzf8RDDz5QAFunRJLG6LpgPB6wtHSI/X7I3n6XM2cfROg7KKWwtMMkccZ3nvsO0zNtbNcgTVO++FdfQlNaQbuebnLm9CnqjQa6riNIyfMUAVy6cJXefoDtungXbnHqf/rfmJtZZmH+GGE44N/8m/+ZJzBZWlok/chp9nc6lBwP7W9ehDxH/eqv4rg2lUqJbrePYehoplasbSJjffU2vf0O07PzP9aO6/cDrgDaR9L3HZeFOck3DOThjPcu0e+cQ8pCXVskBIMOQbdLGm5DsINMU3IxYmZOULZNRJyhiRwlBBoZ4XgAcYiWp6SjPUa9DppIyOIATWQEiU4iNDAr7PQMQuoY/gKTxMEqFTOVJc/B8XykVPT2t+jvb7K4tILtWKRJRBIEZMLAdU3SLMVzKziuRRSOUeptiyjJofk5BpMhjcYU3W6/EP3LFRoZrqmxsX6PPI9x/SqDwYhOp0OtXsN2bFbvblCp1LAsDzCIk5TtjV10JXA9j1wYKF0wN7uArhuUKz6u53L+/Hl0zWI8HPLWxUsk0ZBBf49nnvk2e/t9JlGIpcNU3aFWkrQbGidPziGTbRpVgV8yEOmE1BA4KmSmYaKZKdv7O3R2BL6boOcCLRdkdgyZg8hMBDl5JtAlaKlC5OrAokojjTIadR/biih5Plcur7KwdBTDqjEcxohEIbMxfrUCIifobRNE0O+PmZqaRSrF9laHtbU1pmcP0esP8D2bRx8+ywuvXGJ/f0LVLZOkGa+/eYO5+TmSLAYhieKEe6sDXr90n6XDDxKmFdrto9TXDiHn4du1rzLo9omSCU/83EcYTvZptWuMg33Gu7sIv8HSqYdpNJqkefY992qWZUgX5GKKbL0rTxTvuZ9/0LP1Pc/UDwed77XKefv/d2uw/F3jg4597+d9nyP/zp/5Dz1+Blx/QvFBN9UPs2v5/xPY/jioze+lSL93cPyHfScfNJguhECePY745KPf4+PKOyP34qAiJgsVRKkK8SQBaRxSmp3D8zz6v/t/ojLFpF1FIbFMl+WjR9EdA0130DQFeUyaJXiOyZVrV5maniGOc8qNFoPeHq7nMhyPcFyHaq2G1BWOo9Hv7UMmaM7Os98fc+XqDYajAceOLpMmBXUtSVIcx0fTbZSICCdDXMdBahqmWWc86NPb38L2SmhOlfFgm3KpTJ4KkjDCqdQKKiEx3X4Ps9Iij0Nsx6HbH9CeniatXOPsx+do2AsYpsS2LPa3dyiVKyjTpD09i2U6aFqOX22gDIskiUiTiJmZWaQoKK/DQQ+/3EBI7aBraCKAna1dTEOnUi6jK4U0PKI0YWt7E9d1sAyTKI5JkpgonCCkYBKO0TQd3XYoV0rsrq0zPTuDkIooSSlXa4yDgL/4iz/j8UcfYzAY4bklJmFEnkfEScLtO3cpTXWRUuGbDxFHEZZpo2sW3UGPZ7/5NK+/8iqnT5/m63/zDCdPniIIBti2SZyGzLbbxHFIfzhAMyxa7RnKtQYAwSTAMHQ219bI04TJaIhIIzQlSPOMFMna+iqNeoU0nGBYFuPxEKUp4iQiiSIMXceybBCQZBGe4/LSS+cwTZMonqAZRTVcCr0Q+BoOqZXq9Pb6DO5vYXzzNf5ktsSJ3/nnTJ77P1Bxj3T6CfTmCXLdQbMMrl2/yfTMDCmCO3dv0Wi5bK+HZOxx784qh+YXC/Vgr8qVi68zNdNAd3T6gzElr8b2ziq2V2Z2fgHPt7l27QbtqSkuXrxEq1EjjROiKAGR45ds1u7eJR6OWFhe5uyDZ1k+fJiXXznHE5/8FMbwOrvmEf7xb/9LHn30MXaunWfq1DEGu13q1TadOMTULPaHOdL0ab54A6HpJEvF76CbJkozUBIGww6NRoMoDPE8i363zze+/gwLc4tkSUpGYcWCAKkEQhXexYZRzINPJhPKJZvhoIdt2URRRE524N+YYds2k0mAUrLolJOTpylZlqFbNkJokEEajUnCIYZms7u9Tckvc/vWPWzLo1Q2IMt5/ZVLzM5MI6TOV772NWbmZjEti3ASYeqCkIw3Ll7j7t07PPLoI1i2CWTkWUoap+x2ejz5paf47C8XlHmlCkG5whYqZH5+jnrdI4pjlNRQSmMyGXP02HFq9SrnX3+dZrNFrzcgTgLSNMWyPGzH4rlvfZul5aPESQYyQ+QxmrIYDcdcvnyRar2E7UqkgH4/wLPdQlU7CRAip7u7T5oKSq154uF9HKVINB8lBVKk9AcjbK9ElsWkyYjBKGVzc5Pp6SmyPCKOA4QyURIECSJLyJIxaZIwCVOef+ElTj7wAHHQwTI1TMPEKVUwVM6wN6RWrbC+fofp9ixV1ybPIsaTISk5plNCSslDDz9AlqdUajXCMCAKIxAavV4P09IQucbhY4tYrs3W9iUcV6O3ayOkYG9vl8PLi4UvZlZ0CDfWtujsDnjhhRc4ceIEUonCPsgRjMYhSWbSas/Rnm9jeGXM2/c48s+eYO6BY3h+G811+LXP/SpLax0MXRF/+mPsbq1iGwLxtReRms7uR2ZxHJc4ygijEa6rk+UGORKZZwTDARfPv8TJ02dBGghA5RwUDN6/pn7PGvpDqMLvXW+z2xLh5mgPfMAcq4LkaQNZyxEWpKIQItPe7pwDUhpkuSKPB+yvXmC8d5UsnjAKIuIMokBi6Qaa0gjDkDhOCk9aJsRRiCQ/UJaXKEOh2Qa5sjGcGXSvTSarWM40jl/Hcn2EplFvtRgORig0NOUxGPcwTYNKpYlfcpkEIWmcsL/XRWoafsVg0O+SZzlxHACFvkRzaoFyo0FGiqW7SGLiyRjH0lG6hpZP6Pc7GKZGtVbn7t01mvU6o+GIZmsK3bQBRRhNqFTr3Lp9C93QuXnlJvVmDdOx0Uydve4uk3HEaBgxCXtoKidN4PVXXibLM9689AanV6bx/Iz52RnW797g+NE2xw43mGlK1lY3cRwPZURoKsUwDGSWk6UpN272GHT7+BWdXOZIzcA0LRyDA/CdFf7AOUyCEVkeo2mqYIJokMYpgpgozQ/szzQMx0LTLCw9Y2tjD91USE1Hahqra1vYlkAzEtJEQ6iMPAgIghCjcohSdYqSq6jU60hg9e4dSl4ZqXTqNZ+rb93EKfmsbuyydm/MscUygpztPUEcRVy6scX65oT5I4+wvrXHdDyHp0r0f+cWf/6Xf8k/+63fwp3TyOIKa9deY7j7BvSHpMEujcocnt9kkoNQOQezUCAK6zIxlSOm8neniR/wrCgE8nv+vveAt/PL94/Ofb9c94P2+0HHfVAIIb6H9vtejPBBn/lB+/wd3DR/auJnwPUnFD8qV72QCP/x2+P8l4y/b6f5+x5fKUHF/9DnePtlnWcZtm5w+fyrNP/sacyjy5hTTXRdYzQe4vk2aRbx4gvfZWtzjcXFRXa2O/T7XY4ePUocpximyaA/oFzy2e3sUa/XcT0PqRR7nT0qlRqGYZEkOY5dLNqu7fDaK6+wfHiBSrVaAJgoYmNjgyiKGAdjGs0me70+lm3T626ztd0hiiVT7RZKS5kEIbbtYB1QBL/6N0+zcnyFV146x+zcApbt0tnaIs8yTN3g2889x+KJMlIqrKxddDykhl/2yURRIDCkzqsvvcQb51/l2LEV/uLP/xPtVotquUIx05MwCQuapq5Juvv7GJrBqB+wsbaJ71osLBxCty2SNCOPM8Jgwte//nXOnD2DZukYuoWudG7dvM1TX/4KH/nox5DkpGlhCh+EIZVKmTt37jA9PU13v0u5UuHhsw8W4g15AiRkeUyl1GJ3Z48337zEsdMaw+GIe9c1KuUycTxByBzHsVlaXOLo0aP4vsede3eZm59F6QWlt1SqMBzuo5RGe2qGW7dvUylXMY2YbncHSUww7lMqlXA9B9f1Cp/FJC+8YpOcaqXO5voWru2hTA1NL2xUkiQrVAylIkkzpCxoqMPhiDzPaLdbhQiRyDE1hWnqaEpi6BpZnCLTnNK5t4j/yafgd36N9NZTVPsvox/+FEp3eevKBRYXDiGQtJrT9LpDXnnpDZ544iHi0KY9W2Y4lCwcXiTLcra3N3j15ZdYOnYY0zbQDY3N1Q3On3uVKIlYOXGKa9du4LkOWQ6PPPIwd+/eJUtTZmZnuHz5GkePHQMEN67f5ImPf5L2XJu1tfuUyz7NZo3tvRHW8Crb/kM8/LFP8L/+j/8tFbpMzVWxNQfDadOaWaK7fQvX90mTmOaLtxGaRC4fQgqbNE2YRAOiIKVc8bBtD7/sEUUJvl9iZmaWKI5Y31gnCEJKpfJBTpKTJBFh9DJxskqa1MiyhCzNiOPkAKg6gEBKhed5B50/cTAfm7O3u8fOdoevfeUbHDt+nEkw4fkXvsvcoSXcUo3ucMjV69col0s4tsUrL3+Xw8tHmARjDs0fwjBgEo1YOX6EaqWCFALTNEiiiCTP2et0GQ16PPjgAygpybKUNMn45jee5tSpFR559GEsy0QpkArieEKeFkmU4/hoStHb7zMeT9jrdAknCa5vkWYJtXqVcrmEUoKy5xTFI3LyNKE91SCYjNneWieOx5BOcLxCxbTdnqZWqxT+j0IRhTFKU4ThiPFkwmDURTcMGq0q3f42IsnJ84BcJEhhkOYxQiiE0HAcnzCKqVRbtKenEEJw7+49qrXqAQgvaINhmpGEEUJqOI7DAw+cICOGTKKERpLFhcKqLCj7SpPMzs9w/rULTCYR4/GYJE5o1ptMRiM0wyBLImzbRkiNcBJgWjbXrt7k6ae/xbGjJ3Fdlz/5ky9w8sRRXvjWDWZnlnHNKk8++SU++alPg1TsdTbwyh7lWolqvcTJ08c5duwokFEqFX7PSjoYhssf/Ps/YKpZpewaSF0h+gPqU3XE8TkOLx0mGg+oVKoYL1/GsGzyJ87iuw4Aqe+gPXSSeMZFSQul9MKSLC8KdjkCkac061V2d7Y4evwkCepgDftbO5wfuHb+EOD63lAPpKgH3k8TfvvA9DUN/Bxhg8wTxMHIDaJI6DVSJp1bbN08Rxru4Th1kjijVq9RKns4vkYQQUahxZDmkhxFkimE7rHbizBLLczqDNX2Cda2IchLaG6ZXJZwvSb3V7fRNJNBf0hjepY4zdjZ7bC+tYnv2vhlm/1ul2Zjmt7+HrV6g36/y+rqKtVqhc61g8TyAAAgAElEQVReh2ZziiwF6+BdMBwFGLrF3u4GOjHBYIBh29y/t4oUCoTAdhyQkkmU4PtlZucW0fSCOhuFISLPyNOY4bCP5xVrRLPZxrIUnucShhGa1Cn7VQQJtUqDN984z3gY8u1vvczxY0usb9xkYWGWm2+9xekTK3z1yy/wi585g5I9Gg2JbUlqVRcBvPDtyxxebGBoEkGGpklcX1GrljF0o6CeZjkiFeQiRtMkUDAUlNIKJsmBWFGWZWSJRFc6GYoLFzdwTQ1dlygtI47G5EnO7JzB7s6Ap5+9QrnWYnllAbvkEfS7yExh+y2UGWAYOelkhJQ5mldnMhqSZzmt1hRSCG7duoXnl5ibP0yvP2B1bYdR7hKlOZdu7vDaW1uEqcsvf/ZXWFg8zmAQsDy3RGNjjquf/S52y+SXfukz1Coud197CdG/TdB5iWi4ja1XGKuU9e09vJqPboMU+g/MCb//4/Ph6Ls/rhG/HyUP/jDg9oP+f7fV5s86ru/a/2fA9cPF2zfdu5XOflClRin1vn2+3zn/IYHbD3O9744fVEX6+8bbwF9Kwe72Nvfu3mW8u8dbf/NNTj19gehjD5EeKHciodvdp1wuU/E8Ws0GO9u7BEHI7OwsWZ5j2w7D4YjLly8zOzdXCAOZJpqukWUZpDlS0wtxCL+EEjnd/R6WYXLmzBk0pUizlDiOKZVKfOELX6BUKtFuN8nzHMf1CIIxnmeSo1GptlEajMdd/FKNOC7EUCzT4vzrF1lfWyeJE1qtKcjhr/7zX1KtVnjmmWfZ2d7iwU8sApAOSoXAk9TJyFhfX6dULjPo9ahXKvi+S63eYH19g9deeZXpqSlcv8QkHFPyfbIsIwxGJHGGrllcvHCJ86+9xlSrRmd/n1q9jmYYpFHCU196in/0j/8JYRxRa1TJ08Kj8vxrr2M7DocPH8HUFcFkiFIC3/cxdYMkTtA1vfCiHY0JgzFKQpal5CLHMHXGoyEzs20Wlw4xyS+zt9/jhae3aDYbSAmuZ0MOYRhRrlZRSrBy8hRKSsIoLGZpooRJOKbVnCJJM2anZ5BCMuj3qZZrSBSu4zMcDTBNk+FwhK4Z/PEf/ymWbVOrN+n1BqzeX8UwdKQuybOcYDTGNAx2trYRUhLHMY7jkKaFcmS9XkVpEiV1NJnT29+ns7tFp9PB80tcfP4c0xfvMXrgKF9YrnHo8ALzN/4v1OwnuH5vjc2NXeo1H9u22drcJYkzLl28TL835OjxOb7+1ecZjLc5svwQKRGWaXDlymVmZ6fpdDs0p1q4jotIc8p+Ccf3KZWrfPkrX6ZeqxFGEbdv3eLRRx9jfW0VIQTLh48Uc5SaRppk3L9/n6XlBV5++RxhGFCtVnjt9bdYcHsc/thv4EwtcvJom9Vb1zH1MbpVBtXCd11WV28QxDGHlw5jf+MiSZ6iH5kDdLIsRTcK2prtmgTBBKUUQupIpQ46lTnVWpVSuUx+MHcdhhOkFEwm3yZL97DtBwnDCZZpo2k6UsrCM1DTCMbjd94LcRyT5TlKQpJk3Lh+k42NbU6sHCdNM06dOolummR5odI7OzOLEmBbBidPHkceCJAIIcnzpBAFc9wDKxyBlLwDYNtTM8zNzmDbxfXkWSFcsrR0GK3QXWMwGDCZBIWXYZrw5htvsbq6wez8PHudXfIc+v0hzz77HCsrJxEyRdd1HMdBSoFSkmGvx+5Oh9FohKZJlLLpdod885vPcezIMUaDEaVaCaUU/V4P23HQlCKKYlzXJUlidEvnxrUN5g8tkCaS/iBASkWj3mJt7QaGSnHcKmESYeomo/EE3XTQjAKIjYMRlmVRKpW4fOkyrUYdKRVCykJAzraRQmM0GpFnCbomscxS8RsGA4bDPqZlkeeC1bU1Gs0aZ848hFSKJ598klKpRDgJaU+1yAWEQYBlWSRJBmTousk3/uZpfuOf/ya2ZdPZ3cH1KrSna2xvDPEci7/6yyep1hqUKlU6e3vUK1UM00HTbWzHQ1c6uqawHYcoLGx2ogguXrxMuzVFq9lg2O8idB0jy/BubNF59DjnXn2FNIloT02Tf+d8Uez6+El000bpJtbxwzDXOJgrtNjZ7uA6HlJJpKYRRTGmrkiiCd39HtPzC4WqsMhBZHCQVH8Q5fdvF9gfvunDdnkAkm/riNIBcCUlzXLCMEHXNSADYrqbNxl21zAcl4wQx3UYjnM2t/oIrcRwopPmNsNRTmc/QGo+jj/LndUu5cYChjNFTkqeu/j+NKblYZgSzXTo7O9TrZYplV3CcIzplFFKMTM7Q6PRIJwE6IbEshzCScJo2MfzfHRdx/M8HMfGK5XZ3t6h0WgRhhE7Ox2CMKZebeJYkls3r6Erg1prCsdymEwmzMzOsbq2QWuqTZqmhVCi0OnsdbAsq+jOb6zjuS6DQbFOSKGzv7ePXyoKFUoprl65ziQIGQ56jAZDdE2QxDGd7g0qfonuXoZuaBxbdvHdjGPHmji2wrUNdCnJMx2pEnIiFhbmyOMQKdLCbgoNzQhJ04A4UcTZBE0WxQWhisGpLM0OPJIV7+4WFr95jtIFmcxw3Boba/doNBsICZpWjGEoCrYNKueNC5c5fuwxLLfK+t17KJWRixjTMtEkxKMRYZgizRrdzg6GXsyUOq6HpuvEWUa1Uqc36NEfTJhEIbOtaSyzxPTsYX7u459GSolXquG4Ls79ErKUI3+xT6Vk09vf5PqV13n04Y+xun6RTARMH36EhVNPMLt0koWlU2i6j647B8Ml3xvpRUW+Lb+HKvy++z//cKDyw+SmH+Y5e5ve+0Hd2Q97HT+ow/sBR3yIfX4642fA9ScYeZ6Tpt+nwvme+IEL1D/g+PtUoz5spH/4V2RvXEGeXfmQ581RUtBqNnn2L/4zD+9NsHfHsHKEKBoRBAG27aFrFuQ60WiIbVs4rsuVK1eo1upIpbO7s43vecxOT3N/bZ1ma4o0S5lMAvqDHsGgh+35uL5PloZ0+wNef+Mi3/7Od7l24wZBGLK4cIjnnnsOy7L4uZ/7OWZmZuh21hEiI44mOJbJeBzRmGqjmxp7uzuUPJ8MHdt2GAdjxkHA6dNn8HyXc+fOkWcJkpQ799cxLYuPfPyjPP7Rj6D8AWmaMtiU+F6JV195nf3dHRaXlhBSYNkGpXKJUrmE1A2+9dx3+NznPket3mBndxfHtdANjb1OF8d3iWPY2x8QJSELh2eZPbRIvdEkjAphDKWZbO/sEkcZL774XRYPzZKRYhqFCMj8oYVCjZQUz9HZ3izmg3a2dnj66ac5vHyYLMsKRbwsplwqE0bpwfyQhmlqpFlKnoPm3qdU8nj09K8TToqubZ5n9PY66JZJkqWMxkPG4wDbKSxBwknM0888R6PRJAe6+7sImbG/t0Wl3jpQhNW4cPEyL710jsOHjxS0X9vk+Mox2u0p1IFy6rPPPM3jjz1W+KcmEaQBKo/RDJNKpUSaxkzCACEFN67dwvPsA7BTdGEt26Rc8nD9MvlGn/q5y4S/8nP8xovP8tFHPsr6s/83x5sxNwcejmuycvwBLr75JlOtacgUL734EvOHpnn4Iw8iRMbx44uc++5FBv31opCgSZaWl6jVmywdmi+EqaROEATU6hU2t/awbIvFpUWWFhepVGu0mi1ct/C7rdfqSCm4eu0qh5cP025P0d3v0J6exvM85ufnKZXKOI7NaOcO9aklkukn8LwSK2c/Sdi9TH12mV6gEe7fZ+bIWTr9PoZt433zEkrXWDNGRPEAv1whzzWyNENKgaYcpDQQSiNNU9KsoCzrhoGmFd56hUCMhpQ6UXShYBaYD2GYJnEYHVAZFcF4/M67xbIsNF0/8OQ0CEZDdF0x3W5zeHkB07TQDUmajMniCaQxaRwVM97DMa7jFGu/zBiOeoyHIf/x85/n0UcfIc8k9++t4bkO3d42mmYQhwGGbuJ6LmkaYBoGg/6YV195lfm5Wba2tviTP/kzXn3lPJ5fptWcQhOKv37yq2xsbnHs+DLNepUn//qvWVk5gZQKx3VQSuL5PmmaH9CECwrhrdt3WVg8TJQkjMcTnvzSl8mE4syZ00xPtwtBqDTHMC10XWEaRWEoywRSaYRRzI0bd1k+chjLKvH7v/+HuJ5PbzDmzs3btEs2URphOVXyDHSlg6aRArpuouv6O0yhUqlMf79DyXOIgxGkEUmuMRiM+A+//4ccml+gVW8RZRCFE8JgRNn36XR3EUiU0tB0SRRmiHzEmTNnmJudp1qvgxSkWcrO9jZhGKEbNklSiFk9/vjj6LokFyl5mnPv7iaLh6fQhMWd2zf5p//1r7GwcIitzVVefvE7PPLAKZRmIDSTOIzRleLWrVs8/fQzNJtTDAYjdE1Sr1Wp1msgNdJMo1yvkwkN89od9j79SfxmG8vyWN/c4ouf/yPW0gmT2RKG7ZKKohMeT8YMhzn/73/4PJ/5zC+CnHDr1hXqjWl03UCSI/IU36/hVxrEQAEQ8/d1g/4+wPXDxruBa5QkKM2g1+/jGgqiIfevvMhwf5NytYLSbEZxzt3VPfzyInFeYrebkOY2hl2jsx+wfPwMllOnM4g5unIG168yCqIDb2TJ7Tt3aDYb7O3uE0cB7elppFDs7O4iNUm9XgVga3MbpXRIM5SuKJXKZGmKrsHu7j6XLl1iaqrFjRs3mJtfJMsEO7t7bG5uc+z4CvVGA4lC0zIcz6XamicYj8nSlPv3V9nt7BXveikZDgeMR2P2OnuMBnuUy6WCjuuVGAUB0SRmd3f3QK3f5fLlK+zt7aMrHUlRoLx88So7O1tcv/46S0sz5CQYSrC9tcniUpPFeRfTSND0gjqtSUWaFCMM5CmaEuhaApkgEylh6nLx4iaVmo2UiouXO5QqFTxXIXONOI2RUi90AKREUwdWXkKQxAlSSNAskkRD03KUjGi02sSJYm21j2n7KC1DKYucCa6dsHJ0FkvG3Lu3Qb19BK9i09+5D6nA0A3SPCKJA4iG3Lq7y+zMLGmeoTSNKI6pliuYpsHMbBPbcTj74Aqe7lKuVHFKJvVqlZ3ODrplIrY0nE6J7m+/hu2kZJMur3znKZolyUZnE0P20PI5rPpDmPOzGFqZDBBKoRDk4v0gLvkzi/yOQr1LnOl9zRLk9wWZf9dn6O8aP5mG1E8XlvhR4mfA9ScUb7fr307Mf1j8DLh+/0j/7X+EuxvvEWf6QefNi5mL+/fx0oyp5y+Rmx5xo4qhchzXIcsUaQpf+uuvUPELz8etrQ3qjQZzcwusr62Txgmu63L3zh2ef/4Fjh0/jlQS3dAplUqINObl18/Tnm7T39/Fdctsb+3Smprm0Ucf5fkXXsD3HD760Y9SLhfV416vh2tK9jp7TDVbrK2tUq21QYLUC0sfiUKa5sH9kzIYDlFCYBgGc/OzTLWauLbBoaWjrKwcJ02L68zsDnmaUjUWyfIcxymxubbKbqdDs9Uq5jLTuGAC6Caz8/O4ts3e3j7NZoOclPF4TKVSJU1zur0hu7sdNF1y9Pgymm6j6cVMb5rGuOUqc/OHuH3rLpWSz6H5NuVqiWAcMAkCnn/hu5x98EFyBeGoj+cUHVDLsDlxYoXRaMwknBCMA8olmyTJ6HT22draw3HLmIaJUgZ5rojlVYQAwkUc2z1QntWxTAPXL4EqFBVL5QpZWsjvG4bJxsY2tVqder2G7zmE4YhGo0qS5wTBCKUJbNvg7OlHiOOYJE0KCxVTYzAYIJVGFEc8ePYsShUVdMc2mIz65FmE0E3yPENKSalcYm+vw+HFoximIs0SdN1kHAR0OruEkwDr6gbihTeQ//t/z1dLBqZycYn4r+ZfY0ct05iex/UsyDWyLCWOU2rVBq1WE92QXLp+gVqlimVn3LqyywNnZtna3qfZqiOUxl53wIVXX8E5sHkIJhOyLMM0XG7eusXK8WMoWXTegvGYCxfeZLo9RRzFdPf3uHP3LrNzsygpCcZDdN1iY2OT2dk54jjm/r276CLFVyPuWR/n0sULfP4LX+TUoZwJNlIrYyV9cm+W2cV5+sM+1RdukOkS43AdZIJpecSRQtckaRqTJhJdM0nSlCSJ0A2FrmsIIQkmQwaDAa7rk2eS69dv4bh3EEJgWQ8XVHlDJ45jTNPEL5UKNoPjMAlDxqMRWZoSRkVXugDGMY5jkUuFaSjGo4Lem8URaZqiawbd/T5SV2hKkeUxkDIahDTqDaq1GlGY4rk+mg6aDp3dfba2Nij5FXTdIJgM2OvscffOKvfvr7Gycoyr167SarQ5efI0KysnuHjxEhtrazz+kU9w5uwZShWHOI6Ynp4u1Jal5KmnnuKRhx9iOByRpBnd7j7NZgupFL5fQSqJYZhILWN3r8OnPvMLCJkiVYbAQNdNRqNCBXVj/Q6GYeA4JXTDRCqdQ/OzSFWIXN28dZP2dJN2ewaRZngiwvItNLOMyAWaphNlOY5fgrzo/EopSdOM7n6PVqMGWUYYDNneWKXSnCFLYeX4Sfb3ujTqDTIlcEwNmSdMggnjcITvl+l2+wgJ5XITJcZYlkt/OKZUKZORYxoH858HlmEvv3yOpcUlojim09nG922CUcT8/BGUHuFVhszO+yS5jxKSRq3C2QdOMBl1yGVOJiRrq/eQeYbj+Ny7t8oDp07zzDPPUqk4tKZa7Hd7PPvc87z2xmXaM22293to61v8L//u3/Hx3/5N0jTBd13WDPil/+5fUi47KNNGt1ysl94kvnGbfP4wf/WXT/ILv/Ap4mSI5xv0BzGO45IlMfu729TrLZRpEuU5+YEqtciLnOHdSqHvX+x++KZ3Hzf5tybJOe0DxZngALj6GVg5UmnkQmEYJiqPuHXtEtr4HkqmkAuSSUymNZmfP0GUGlRqDXJVsIgGgz7lapk0TWlONXFKHr1+F8+3MA1JklsoXWcUBCRZhudXmQxHWIaL4/hkuaRWazIOety/fx/X8Xj1ldeYac9wf/0etVqd4WBAEgfs7w1YWVnBti2iKKLenCIKIxzXpdFsYZgmm5ub9Lo9sjzGLVeIMkWehMRRTL3ewLBMXMdhb2+XfreLaVpkSc7sTANDN5nERYGyPxgx3Zpi0B+Qk5FlCYbhMTszg6Zr5GlCnmfcvHGP5eUlHnzoCFKlnHvhOoeXZlk86qP0hJpdLkTjEEiZgkjJ8xghw4O5y8IFQFM6QhcMxzovv3SboyvTCCyee+4OiISKb5HHCtNRpGlRJNWUhqYVYz9ZXuSeYRhy/sIt7t3dolGvYGgJQjPY2R3wwgv3OH5iEcPMiNIRoOEaJVwbomgV162hvDZpHiNHI3r9LaTKMV0DXcvQsoD9scvMzCxr6+vs73fRTQPSDNPUuXr9YmFNJDJEqpMisMsWmm6Qk1Ie1zHv+gT/zT12J9eIJkO21m9zemWRmXaZPB2wefsijpjn5NmfBzchJUHKBKUlkMfkH0AVTs8V235agOuHEVv6fnow3z9+urDEjxI/A64/oXh7wFrTtHe2fZDlzI/W+v8vEx9Ee/igvyzLPpTM999XGjx78mkA1D/9zAde49uh54JMgFSSiy8+x/1L51l66Amc/+cv4Ngi0nOIY7hx4x66ZvDKKy/zsY89hqYJhAadzj4vvfQ6J08cwzB0qrUqSEWUpsQxTCZDplp1SBNGvSGjMKQ/mFBzDNIoYhKk+J5Lb3+P6akWo+GAi29c5OixJbI0ZNDfwzJ1MmVRKVdJs5xypU6cJxi6S55lBJMATXcZ9btoUvD5P/xTqlWfm9du8fr512hPNWg1m/QHY0zHQlMWnquRxEOkOyDPM7rrRbdKarC4eASpNHZ3dnBdr+g+KZPxaIBnO3zpya8ghMHsTBPddnEch25nh7XVHWrVMkkSsLy8RJYKbl6/jhQpmqZwHI9Bf8Bw0GV6us7MTAsQ5ErD0ixMLWFhYaao5sqcLEkQwkbpxTOxtnkP03S4dOEaOSGGbeO4Lt39Li+/+BIiTalN1cjziPG4j+GvIQToyRJRHFCrN9AMm1wrQItGjmOZ7O1sMB72Ic/J85Sjx5bJSTFMg/1eD69UIcngW898m53tPQ4dWsSyTQb9LoZdUFeF1IgSiW5ZBWUummCaOihBmkTolo9m++i2h6EsTMskyxPGQYDreAgNyHNsS5Blgs7uHnvnrzF9eZ1JHHLtX/86rX/0ObZ2ttheu8BvHnmDjW4C5UPUqnXGoxDDFEziYhZxMBqwvrFJMEnYW93h6Kl5fH+Oq1cvsXJ8gYXllQNRl5yrly/w6EcfwtCL7mO9UqXfG7C6ukGtVsf3fV579TWu3bhOo9koiiCOTTgJ6A5jhEo4emS5eJ7MnIsXLvLwI4+R5RBnEa5e5tz5Cxy17zFufZw//b3f51/8i9/Br7a5f+c25XIZ3Wuzt73KZDzBNB3sS/cZljRCwLV9hoMxlmMUVFmp0AxFEA4K2qahgRIMen1IQEod1y2RZYXwxubWFtXqJnmW09mpYbsuUsuRmkans1eIrFEAYKVJDEMvBNc8p/DWDSOUUkRRgmEU76EkyQpFaE1H0/RC3EmXmLrBcDjA0A1Mw8S2dfySTZYWSVMw6ZLGGV/64jdYX13lkUcfBZkjpGDQ6zLVmqJWrdJuTyGlYmZmmqnZWWrNKjeuX+E7336GX/rlzyJlj5LnMOr9f+y9eYxl2X3f9znn3P3et9d7r/a11+nu6ZnhcIaLRqREkQpNxdEWSbahJIad/GHkDwPJX0H+CBQ4UBA4NgQIjgMjiq04IkVJ5i5yuMxCzto93dPT+95d3bVXvX25+80ft2Y4S3M4pOVIBniAQj3cd859r+rd+875nt932cGyTLIsxtQFlik5eeLoflyUyV5rj+9+9wfMTC9RKrqE4Xg/4iVA6RonTpykVCxCmnL21CkM00O3TCzHxLNdCqUS166uUqnUUCplb3cP0iHD/ohCUTE/P0+pMEO70+He6j2as1V0mZBkEstWDEd9vOIEQloEw5Buaw/H1HM2h+MghEGmNHRdEAzbOIUymiZwCh6VWjmPJFIQxxG9XhfLNnBsj9FghOuWMPUCX/j8n2G7Lr6f8PWvfYNGfYKS56HpDn4Qce7cG0w2pmlMTKIkjIYdXNck8H3K1Sqrd24hshTprCL1iM//38/TbDTo9DoYpoVZrOB4JZ5/9vu8/PIpFpcPcPnSJT7xiU/wyisvs7S0yGgUkCaQpRkPHTnMsaOHsDVJteyQjMb85sphvh20+d3f/QesLEzya7/6K6SawjRcbFOxtX6Hwr/8EuaNDey//Sk+80uf4pd/6dP89m/8PSqFSSzLJM4ywt423/yzP+Khj36SOInR5Zt2Meq9kqL3esbkrOJ3HX6/9qarsHwyJoN3/KgMole0nNpckAiRIeIx/d07XH3t28S9e9hemSB1uLbaZ7uT0axPIjSdtc0tHNdhZnIax3TodHcY9EZUK3XiaIhlOBRclzhK2druUK2VEWlGe69FHEaUq1WUFtMb+TgFg167RWunixApkox+L8+atlwDJRSBP6ZSKhIEEWPfZ2dnl/trGxw6fIRLFy9QrVawLZPNjTUG/S61iTKFQhHLKtHtDuh2tiEZEyVQrjYwbYfObgupRcwvLmM7FXqjPYrlJilw985d/GFIpVjFtEyiJCJJIsIgYqZZ586tG2SJj24E3Lt/hSNHDtDq9HnxpdcwDYtWf8SjJ2YoGWMGrQGdzi6lgkKJhDTJNfoSA10apGmEUAFKWERZSJaCoVJOPjyDzGIyEXNoZYLJRgnThJghIpW5ZEGJ/SqrwPIi4tAgkyMss8qLp9c4fuIInqujKYGhFLqhM784gZQhMvMRmU6nE5NJSUoCqZ7H66SC7a0+/UBHUGbkDxHZLjJV6FoJx92l19ZoNJZBRTiOZDgKCMOU6alFRuMx1UIZ07SwbJdgHGMZFk6rgrptc+bkn3Jt+xssTvn0u3eplA2aM8uEaYEzL7+A13iIY7/4yyS2QZZKtExDoEOmA/oDL/z3A65vtey9A38Sav1fRXu/13iQrA5+/Pr5LWMnkTOX9l/pr+YN/w1pPwOu/wHbuy/KnzYr9W+arhV+WCF+t+33Bx37fud89/M/BK6/+I6+725vydGDMc997S9YmZkk2h5T+nffJfrQcaIk4dKlKyRxytmz51hcXKBQLLC3tYbnuUjN5PLVG0xN1hkOh5w7dw7Xc/nLv/wmv/RLn2Zyso5p7oNAx6bX3mVmfhHPsTEsF8O0+f7zP+Do0aMopVGvN9ja3mZyskmtNsHYD6jWJvKFqOfRH40JkwzTUMRRSpYlKCUwDRvfH6AUPHziUSanm5SKNZqTk8zPz6EZJt/85rdZ37hPuVRlMOgSRgFuI0VqGipoIFCQCpJMEEYRX/nyV3n45ElW765y69pNkjimOlGjOlFjY3uT5aUF0gyUFNy5c5uDRw4hFZTLRUb9AWmcMLc4h+s6pGm879Jq7uuLbDQFmhLEaUwaJ0CCYRkIYaAMHSUFo6FPoVSg2+2zvbNJs9Hk0KGDtNobzM3M0211CAOfQsGhXClSKnn0ux0sU2frXoRnHERkJqb9ZkB8wng82q8GaYxGY55+5vtsbe9y4OAhTMOg3drDsAyyNCFNs9ytVZhMTjYpFDwcx0FI3tLlpUlGmoJpGkgpcj2mUqTk9EolJUkGcRwjRMao1yaKQwzTQDcshNRREvzxgG5nFzsUaC9fprDb5w/76xj/0z/g6FOf4l/94f/BpW//S/7REz1a/ZC2mGN2boo4SajValy5cpUjBw9x+eJF5mbmufDGeQxNYZsmiUypVBvMzM+hGQqldIIoII5T5hcW0ZSem78gsCwXJXR29nZoTDawbIPRcMCdW7c4euQwkDsr+2Ofem2Cqakar509y8qBQ9gFl8npeb7w+T9hZWUJx7bx/YjdbofZQkBPn6W5eIITj/88zzz/LIsrBxj7Q6ZmmoyCMb2tu0xUqjjnNkm0GL3kMIGomMcAACAASURBVB700DTBoN+hUKqRAFIzsG0XJQRS5UYw/niMY9l8+ctfZ9gfUm/U0TRFozHBeHyWLE35d39+mUOHDmJaDmQyN02TgEyRQqPX6+3n/ObVmG6vS5omaLqOZRnESYIU+bVjWlZejU0ikjTFthwsyyZNM9IoQFOSYb+Pa9soTafX7eC6HnGc0G61OXT4EJVqOXf3TLJ9DWxGq71LuVJCaRkbGxuUSmWyDBr1Kgtzc3Tae5RKBVzXpd/vQaZI4pixP0Yp0HRBsVhjMOwTBCFTUzPUJyaQKs2vTd3I9b1KoOsqZwQ4Ns1mkzDK0HWF61h0OrtYmsftm/fwHJco7lMqemRRTLFksL11nz/706+TxRqPfOgE4XjI3GyTcNwhU5KMDE1TBEHEaNDj+vV7dDptqhM1DEtHKQFSMRyN0XWNUrFC7O9iGjZCOty7f49Gs5w7+u5re7M0JYxCSqUyd+6ucu6NN3j45ElMU+I4Jh//+EdxHAvHsWh1dih6E5w7e4GVlXnurW/QaDYolEpkCNIsr3xXq1VMU0cYe4DANlZ45ZVX+eQv/AJSk0iRMRwMWFk+wMz0NM1mE8fU6LTbvPDii7S7PT71qY8ThgEbG5t89avf4MOPP4Ht2EgpKBSLGHc3uPXICmdOvcRv/savMmcUcAyLWHNy5kWxjPrOKwghCT71YYLQ5zf/89/EK3gImW+uZqR4ls7q3VsceeTJd2xwP3hy/ECH3re9CVzVk/F7nxQJyY6ETQ1RSRgFIXvr1/F3bjDubmLaFpY3h58aHD72BJMzi5w5+wYT9SlqtYm3ZuDnnn+RQ4cOcGDlMFGUYlo661u7jPwxCImUOpomMHSLcjnXRGu6wDFsHMcmExH37m7R7yR0Bl1mZ+ZJgInmFLdu3mRycgopdTa3tnA9lzDwOXjgIVy3hGUrikUPSND03LmaTJIJiKIEx7YpFFxsyyADmpPTtDsdlKYhRUqv3ycKE/wgwLEtckMyGI98Op0uXsHj5VdeodGoY1smhm5w7swFNjc2WN+4z5EjS+hayg9eOEO1ZjPsxBRcE6FC5iaLWGaMV3SolC1Ic5lEkkQYhrmvlzcZ+xlKU8RxAkLmLCMBo1Ef2zFApCgtzHNaswy170Sdvplbn6bIIGWcxWzshWgKHGGycrBO0VWYhkQ3DMgEuqkhtRBNS3NmSZrhjwVZpjBNiaGByFKSVGJZHjNzBxgFBs2ZBlKOGQ9HKDJ0QyeMOmxuX2H11hb18gqmm/8Nd+7eZWZmju31e4RRiOu4JH5C8W4DvWuy8cvfoJV8j6oTkEZdLF1QLHqsr+3x6qtvYDoVHn7i5ynUZkkyBZngPUu/nxa4PmDgX9U6+4MC4A8qI/xJxrxVCBNvrog/yLbWf1ztZ8D1P3B7OxB7v+rqj7q4P2j/vw5w+0EB6INu4Afd2D+KKv124Pqgv/Otc0jQpcLvDUnCkIWlA7iv30ZevwuHV+j1uowGLe6t3uHkyePMzDSQImZnZwevUKJQLDE1PYXn2mxvb1MuVzj92mtUqlWWl5bpD9pUKyWGg37uOBuNOHXmHNVSiWeffwF/PGblwAq1Wo1Op43v+3z4ycfQdIMwiqlUK4z9MVEUoRsmupa794bBGFO3MAxFv9fF0Cz8cQ9dVxhWga2tXZI45ktf+hLHjj9ElsHhI0c5cvgQd27fZXKywTjwKXp1CBziINc2ul4BITVa7RbLK8uUikUMXeebf/k0pUqR2kSFZrNBs1knSxOkkAwHY+I4wfcHuK6DrkkEgmeffR6kII5TTp86w+LiIgjQdY00TvF9nyTJUCJFomHaFts7e1SrTeIoQJcwHvoImVIu1ajVyoBECkml6qApE93IdY6LKysg80nWcZwcWOgOntdgMBygaVpOObZs0gQ0TWcwGCKFzvLBA2QZTNRqpHGEFAKvUCAKAxAZnVafq5dvsLC4QBCMsGyDXq+L7bp5sLlQGJpOv9cljsL9CIcU03ZJMoFCkma5yYamadi2Tr/fQ2oao3GAadpkaZJHWly4hfbcG7xW0fj9csY//qN/ytR8BY0xE3f/Hz610KInJmkc/QTDcZ9mfQKpBErXKFYmGA66LCws8cILr/DUz/8ci0sz1CbqvH72jdzd2nXZ2tohjSJauy3KlfJb5iJRFBJGAd3ugBdeeJlbt26iGxqO65ClMQ8dPUwSx9iOzWg85ulvf5t6o8nkTIPm5CSmZYGIUVLSqBaoVYtkQsdybZQSVKyU1fsbfPw3/1t0z2V+8Qj/5J/8M37r1z7HlTdO4Tga1XKZ7Z0WjesdhOMwIoY0QZIQhX5ueqR0kkwghUIpiKK8GmRbDkkccfDAARzPpljwSNIIKWB97RniOObjH/n7uVGKpqPrOnGU0O/3sazcZMu2bUzTZntnB8Mw8TxvXzebZ+0aukEU527EaZoihMBxHNIkN1TTNImmSe7fX+f27TvUalUQgiRJ8+qBZZNlGSsrS9iug9IEw8HgrTxpqRS+72NZeXapbdlITcMwNDQl2dpc5/UzFzDNMuVyGYTGsBuwu9NCKQPHKxFFkKUxruNx+tRrLMzNEvgjSpUSfjAmI2U8HjP2hyjAsy2GoyGG5YDIHdbjMGLkj6mUSuxs72LZFrato2smEvDDLuVyg9npRebmp8jwKVcL7O3u0WndxlQyXwNJRRJDuVBgZn6JuYUFhJKEfp6PiSDP3VUafhgz7G4SxRmG6WDaOSshy8S+wZRCM3RM00AIwfrGBh/60IdoTjYplwqkaQwiza/jMCLJEizTYn5hjq9/7SusHFghSRKiMMbQjdzZNQwY9McgUjK1g5SKkneQTrfH9PQUkDDodfLvFKVRKhbJhSUplWoFISSzc7NUKgVMy8DzCkxPz7C+sUmj0cAPRqAJjLubyN/6NP/l3/97lLwK4T//11TubDB65BFOnXoVr+AQfvl7WJaF+s8+gVAC27VJSclERoZAkTEaDTh05Bia5f54mdAHBK7vtw6I38pxfS9wzURGdl0n2xVotQgjG7N59xK93TWiRCK0MvOHjhGjYXoFBqMB03PLuJ7HoNel6HnYjpcbUzkGZHnm6+r9Oxw6fARNV1y+dIlGvcGot8tLL77KvXvrhJHPVKNA4HcxLYfTr53h6uUbHDl8jFdf/T7dzh62ZXLp8kXWVle5c2OVXmfM9Wu3uXHrNsN+no0rZcZo1Gd3r0ev12Mw6DEzPcvdO2uYjo1tWbRaO7Rbe6RJjG4WGPtjtne2qU/UGYx6lEoNapUq7c42cZjiOBZxlHLu/HkOHT7E7t4OR48cxfNcbCs3lZtZOUxnMMayS7x2+iK372wx05jk+PESB5cKaFnKzGwB4hGuo5FpEVkcoKSGEBlKCXx/jGGYBET82z+9ipAGzVkLQ9kkSZK79+pqX+er0KTM/7/CQAoTQYyUat8HQGEVDEZJia9+/TaWDdWahaEiyMI8Jz3NSNPc0TvLkvxcmUmWDnBdD6lilPIRJCRpQhwMuXD+HCiLxlyZNFUE4yr377fRzBYy03GtEuWCQ61uMBht0NreQlMh05NlbEvi2QG6GiNHMcWbCySH7nLlkd9nwGXqzQYFr0G10iSMNW7f26UfmfzCZ36VAyeexJuYJUgFiBQpIuBd0rv3Aa7ak8n73BM/ev38frTc/DN5Z9Xz3f3frHq+2e/da9yfpKj17nX+j2tvvZefAdcf9v8ZcP3J20+zq/KTjH17v7dXQP+66McfRK/7k4DsB1VcH3zSBJEozp65QGNmgUy3ML74NFEcw1QDpRSNepPJ5gx3bt/LF0RJSrFUoVSuMBwOCIMROzs7eS4ngumZWe7cvctwOGR5eZHhoIdtWYyGQ8Iw4PCxh+ns7XH0yFHqjQkmJ5sMhwNqE1Ucx2a3tYXjevvmI4p2dw8lJH4QMuy1MUVKu9PG1G1u3rxGuVTkpRdeZmZmEk1XbG13+OKf/QUf/7mPsbi0gGFpGKaB7dhsb2ywvHQQ2zFxXAdNlNm536ZSKWPYJum+O2WpXKRcKpJlCZap0x+GPPXUx9B1SRwGufYvTYnChJdeeoWHjj3EtUsXKXgeYRiRZYpCqUqlUmE8Cjly5AhKKXRD7us7dVq7Xd44d4npyRpSmkhNw7IdwiBjb3edLAkJxyFKyxBCJ4x9wiDGsT0Gwx4ZgkwIWp0uO3s9Gs0pAn9AmmbESYJlm+zutigWCkRxBEjGozEv/OBFioUSvf6AL37xz1man8RzbFq7uzi2jeM4tFs9yuUig0EPx3YZDn2++c1v8fDDxwiCEY7joHQDpXTiKCWJIqRMkUpimwadbo9Cqcpuq0W5UCJKY4SAMAwZh2MMK9e5+kOfoldgPByjnj1DuNdh6/f+a+4fO8Yv/uLfYnN9lbI+IP3e/4BtSKyVz7A9ktQaVTRLw9JyF+g0y5DKpNPZpVgs0+72KZYLCJVx7ep1GhNTbG+ukcYx/faQUW/Aq6+8wsrKImfOnGZuYQHDVOi6gkwS+BGapvHwwydxXIf6RIO1e3d58YUXKJVK2LaDadksHjiCV7Qw9DxjtNPexlISTQSEQYDlVklFimUamCJluH2DymO/A2pMHBtcu3yDj544yOmXnmN5ocEo0UG3aH7rAnovYNSs5JmQWU7d3tvbw3EcTMvJY1pCnzTL0A0rX2DFIXE8xrJ0lJLoeq5R1dQeu9t9it5x9tp7GJaG0jSee/b7nHr1NEcfegjXcwijiCAMKZfL9AcDhJDESZ5hORqNcu2vaSKF2N9MMtB1ez9Wx6DbawEply/f4tr1Gzx88hFc12M4zK9LwzAZDPr4gY/rFdA1RRSGpFGK1CRhGNFutUlTsR/BpBj7PnGSkCUxlXKR+bkZJmqTRGmeD51EY+7du0Njsk65Wsa0TLrdDkopJmoTXDh/jjgMmZmfI0sTMsAybWzboNdpEQY+huWQCYVlW/ijMaPBmAyFMiLqzUnKlSpxmtDvBxiaQOkKKQo4novUxzz/7KuM/IhGbY5wuI1JgGFZWFaBNNNJEsiEROo6cZKzGJIoJo4jlMjwfR/HcTAMne5wQKbA0A2yRCG1XF8dJjFJkhGMBwyHA0qlEhcuXmRqeookTtB1haZrlEoVkgSK5Rq7e5u4rsnhQ0cpV3Mt86lXT7OyssRoNEAzXEbDgGq1TCI3SdKMorlAvVbnG1//GieOHyFN43xzR+lkaUZrr0WxXEHXNJ5++pu4lsn0zAxvbqp5nsd4PEYqDQTYhsK4u8Xgsx+l74/JQjBefQPPc0g+8jh+0KdYtqm+ehnIyH7lKeIkRipJFEekWYrjeGhkGIbG1Zs3aUxO//g58QMC1ze9NR50rvcDrqnQSK8q2AVRHXHr7A9Yu38XP86YnH8IaVQZ+Qm7rT5KN5FS4ZYKdDstZqcnGfQHnD57jkcfewTDUrlGNkspl100pTMa9NClZGdrB5n5tFo9JpszjIZdHCvB0CNu3tpk7f4Wmq549fRLlAuScNynvbfD3u4uiwsVtrfW6XW7JGnMaNQjixWGCZcvv0G1MkG3EzM/P4/rWmiaztbWDrMLC7kLvWNRLnmkcUxnGKKUoFwpsbe7R61RIY111u6vMhy1mahMMhz2UUpnYXEZx7WpNxsoqRHHuR/A9WvXee3UWXa31xn2d4mCPT72kSNUShqeYWCbPXQVYNo6rmlimAqhZchU7DvhZiRpjGGYxHFMEsQszFeYmnLR4oxM8FZVNr8eDSQxSQyW5ZCkAUKLEJnYB6MpSZyQJBlCjJmaqFLwxti6hZQ6sO/4LSVCRURxCEku90qzGEm+kaj0mCSK0ISH1AS6TJmearC506bfjbAsK2fJOGWiGDQ1IBhmkElsz8G0DLQkxNBCfH+PXm+baNwj7I8prJ6ke/B5Ng7+BY5TYmbqcUoTJyhPLrCzNWJ1o0ukPE5+5FO4tXmUaROmKakCSYQQ0T5F+P1vhB8C1wewCx4w8CdZq74dkL7Z3s08fPca+M3HP826+KcuSP0MuP6w/8+A60/e3s8G+8cBzA9CC3j3jszbJ683d3/+/24f9GbLsgQhcrdLKXMaiJTqHe8//cr3EOJdGte3xVRlAtIsJRvEvPD0V+hs32Fu5QCRbmP/my+Rzk4S2QZBGDDstTn/xjmaU5PstjqcOfsGjmXjWDaf/8LnOXrsKIZtU6lUqNeqrN1bY21ti5976mMIAbbjkWQCx6uQSg3btHC9It/77jMsH1omTTNczyXNBN/93jOcPnORJ554An80gCTENg3CMMS1LAb9IdX6JFK3CP08EqZYKrG5u0m9PsuLP3iRZnOCT3zy59AIMQyVV9MSMHQbISNiotz5NlHINMO0LZSUbG9t4dkWQoSkSUQcx4yGPnEMjm1RLLp0e11A44//+E94+NgROt1dDh5eQUhBtzdkanqKwWiI41pUyiWEzJBkdPba6IZGGiYM+j2kllAoljCtMmmcYu5XmDbXt/jCF/6Uxx7/OKZrgcydC/v9PQqFYv7ZkYAw0CwdkUDRLaKUThhF7KxvUSxPYLsekTqPcgfYagaNlDjMK1m1SpFGs4ZU8NCxw1SKDSzD5MUfPE8UR1RqE2RiP88uSUiJmFmoc+zESUDj8qUbjEdj6rU662v3iaOQVrtNtTpBFIyJkpSJiQZhf8CX/98vcPjRk6TBgDjI6dO6baNrFkoYDAddkl4H8Z1XSGYqpP/q92iFQwwrI9Vj6lWD8vl/xm5Y5Oyq5NTpM0xPN7h//y5zszPs7eziB2O8QgGkoOBW6fcGDAY9Xj97lqWFFc6fv0FtooJXcCkWK2xubRNEEZ/61GcJwoBub4fm1AxB4BONA7Iop2YurhxmPBpz/coV1lbvMnNghXKlyrnXzzE/N8f01DS3bl6mOdGk025R8GzSJCFLMzRTIXQdoVnILEECw1FIeXSZwmN/hwSXjfVLfP0rzzM1v8hIdKmoATMHn6QfKiZ+cIlMpJgrc4zHfaJ0hKZKaEqiGQki8/CDAN3IF2AAWRISRT1sr4auJP6gyzgYgQDHWGai+Ti6ZVIp18jiBH884sCBAxiWRb05TZyMMS0HTddJCdEtiaYsTMMiCkMsU5JFKZquiLIEx3JJg5RRf5dep4/lljBMl0xIpqeanDx5gjD0ieIIpUl0JRFZhmWZJGmKSqHX3cXQFf7Yx9AMRJZiWzq9TossSdndHWAZBjJL8f0+mpZT+1J8dF0xHvcxLItavZZXfrMMJRW6ZRAnIVmWMj0zy/KBg6S6gVKKJE4I97XQluWQZQrdtMmEIEMi0fjjf/NvKRQ8trc2mJyskyQhr7z0Kudfv8TW/TUOHDqO1BWj8YggSKlVq5A6rN5dxS15MGqjrIxUWQgcBCPCVMN2ikipE4UhmqahNIWmaUhNIGRGELaJIkm5NIMUGmO/j6k5DPo94jDAti2QeeRXsVhhqjnL2r1Nbt26wdz8CiN/SH/QQZcmd25fZ6LWJAwTNrd3ifw+1WqZemOCJAXNsAjHI6oFjdbWPcxCAEA0rLCxucf84jJesUTBLWDqNnfu3GUwGKGU4pnnXmZ+YYlHHjvJ0vISiZBomo6mFP5oRBIEPP2tb/LhJz6CyCT6nTW2Hz/CuD/kK1/9KsubPcqVGp/+vf+eqfpx/tf/7ff5rdIEApPxJx8lDAJMI9dJ7+7skPYDim6RF5/5P5G9XerLDwM5SHnbDPrO+fQBPw/UvfKuSs7bnnuTKmw8md/Xbxe5OmFEfEMj3tYJk1tcP/8idqHO3PKHuHFnm0qlSpLoCMNiamaOYb/H1uoqt65ewzZNpC5pzNbwWx3On7tKb7jL/fWriCzhzOlrXD9/kWZDcvbsRbr9Dq6rOHfmOm7J5/bdHVrdHhcv3iIMtnnqyWUWJktM1l3mZqosL9QpFwQHmjory3mEzIH5SY6tVBiEI2wjgSTCD7u0t+7xyquXKU8U+fZXn2FxaZHuaMity3dZ39qhNFFn3M2wTIezp19jolLNtcK6ZHd3iyAIGY9jFpfmSFKL06fPsnZ/DddxiMOIyxfO8Z3nnuHW9ZucPNRgcsrB1hKe+HCNA9MzuOYeV2+uUyqQZw6rMl/9+gWUUeDihWtUClUMTSfNAoQEKUyk0oizAQKF5yhIwjw6l4Q4GSKUjq4VSBiRiiynvGuSME6IY9CkDiJDSRtERiYVmlAUHCh6JXTDJtk3ZUSAYRgkcYpp5IZ4ecxX7mosREoSJdimQ5bFJBkoUyNOU/zhgO1Wl8FAcvnmFitHl6jV5hkEBkk0RpGiOSWEVUT3JilV5qnUl7FKTUyjhHf7YdoL50g+fRvlVZk5/FkmJpc5d+pl7l27xJWu5JOf+w2OPvIR3GIFKSHb13vLjFz+hP5eCPa2A2+uGZP32aT5Yd/3FnkexAh855gH+728u8+DzvV28Pruvu/XHiiL+0BGrrnsZn8E7/5O+Y+5/Qy4/jW3D7IL89Oe90GP/6a1HKj+kE6R/5bv3K16/QqiVEB+8om3DXznwziKuHH+FIPOLo5p45WbKD/D/YN/zfCRIwRRhOe6OKbFRH1iP8rC5dixY3S6OyzMz+ZVtCRmaXGFKIq4ef0aY3/Mx596iqJnY5oarmPjj8e4joumK8Iwp99MTk1imhqt1h5pGqMpSalU5M7tm3zoQ48gyHNhe4MBhqExHo+oVqtEUcjlS7e4cvkqU1PTNCdnOH36dXZ3dzhx/Fi+6aFppEleEbJsJ6c1ZhCGY4qlMkkaE4Y+odxGGBG6cIGM7e1tLNNlY2MLKSSFYoE4DilXKnieg65p6LpBoVDk2Wef46Mf+xianh/z3AJjf4gQ4HkFyMAwXXa39vDDgDurt1leOYRpWShdQzMMOp0OL7z0CnutFv1Bj1OvnkIIwcbWOocOLVLwPEzTzqvF2ztU9/NEEQLD0Nja2MAf+3z+i19gfm6WctnBsm3CKCTSTiO0ESI9gh9GpFLHdDwcx2V9Y4OvffXr1Ko1DMskikLqjQlm5uZyIK/leifLtIiTFNsuIISEDC5dvMjBg8sYhkG5XMI0LSqVMu12G6UUnucRxSG3b15jdn6GYiWnWzaaU8QkOLbLoD9ECYnr2Bg/uIBanmH9H3+OmZmHaA0GHDlykFq1gvXi/4gsLjCQTbIMHn30ESBjcnKKMIqwdBPXduh2uqzf38QrFomjCNsyWVpeolQqcPbMG2xsriGl5M7dVWZnZlnf3MAwcjOSWqVMtd5ESYWmqVzTfOsWs7PT3Lp1g5WVFZrT09jFKrVajaOHV1i9exGpjdje7vP62dd5/MMfJoojrl27Qr3eJI4DQKCbLmHooynF1as3KIs2XWuJ1Khz++ZtnnvmZQqey/KBeYbtFpqKaO+sMXtuD9IUXxNIP0IqSSYVEBOFAcXSBINBn26vSxgmmKbFeDRk2O9jOR5SCNJMUCiUEUonS0EZJkrLmQKvvfY633z6aR597DHqtRpZEqHpGkppCGSeUygVmrJQSsv1y5pCkxpSU7kjaRAxHvtoukGr090fk+GPBhS8Anv7FXzLMkFI/LFPa69FBrieR5bF+OMEJQ0Q2T5TIEYqcByXwXDI+fMXiOOIcrmYR7hkGUiVZ9gKQZalxHFCmiQImVeYwyBE1w3iKMq1m/tOmGmWEI6HZEmMkIIsBVM36feGKM2gNxiiCcnmxibHjx3n1p3beK5Lvd5A1zUWFhZpNOq0O9tU6xMIlet8dc3kG1//Fo8+9gjLB+b5zne+S5qElMsetqGRZZJYSVzXodXZw3EtgmiAYaQI5QAZw0GP8WCAUjamYWJYGmEQ8PJLrzIajrAsMzfx0jX8/i7Fgksw9hFC8q2nn+aRR0+iaQbFkoNlaMRBTKFYZnX1Ls3JSd44fw7PdamUa/R6Q8rlCv3egCROcB2T27duUpnMqcsiaWA7Dt/61tNMTU/u68/HdDpdFpeWAHjtlVeolIvU93MtlRKkSUK7vUe5VETTFNOz0xSKRcLBCP3uGutPPEwQDnj8wx9m4X6bIAg58g//LhcvXiZO+3wykBi6hfrbP49t2wRBkLNUdJ3ivrZ7fes2G/e3OPjIR9+6Bh44wf3IyfMDHHrbgTcX8/qTyXs3y5UkCyTpVVjde4H+MMbyJihOTNPqdIjiiOZUkVK1QmtvQLXU5OULlzh45BiTE1VUMiLsb9Dt7zAa+uxt7XBgfo4r587RCTq0drfwCiY7OyGeJTl0qMrW+g6HDhxm0N/g4KzJwlSFh4/OULBjSq6G42rYFuh6TLVsoymfcTTEKzkUiyZC9qmVqjQrJaJhQNkpMjWfsLOVkMQtqqURRddjNAq4cfECyweXMG0TXQk6w7t4hTJ37qxTrTW4f+s+WSRo7fRobbfZ3dpld2eL1t4GH//4k7RbbTbXt/BHbbIhLM9ZNGo6/d3rHDhQY+3eiNv3Y86c6/GJpx6i6GpoKq+AOpZBpWSwtFRD1wOQI3ThoqTKK61xiiFzqcFbH4dSxGmNyxe3KZUmELJHmiQY0oZMEQQJSlk5mMvGSF0RhGG+yeUHZElCJgWpbuJnGaaEnKSe62HTLCOJY+I4znNXowhd01i9d59SqYwQgihJkDLPos9dzEuYmsP5cxdQymCyPsHNqzdo1Ou0uv18U2DUY9Tv0KhP4kegDIdup4O+WiILBOq3z1EpzRCMTdrbG7z4gxdwSjVCofOf/sbv7Odx/zCH9s084w96jb95D2lPxj+m2sp7IqfePv6B/d+Hhv++r/PvyTz892Vjvm3ET9j/b277GXD9a24/Drj+pKD2Qfb5/7EA1x8eeydwlZ98gneA1rf3zUCkKcN+n73Vy2yvbfDYY0+wttFFe/Y1vFt34fghHMdma2uLarXK9s4eFy5epNloUvAKLC3Psr29waFDh6g3JtE1E7KUq1cucfHyZZZWVvId3dEIpQSaVLmxSOgjgJ3tber1Or4/wLFtyCAKQxzH5sTxo3RaLQqeB1Jh2Q6GLuj2ryRutQAAIABJREFUelQqFUbjMVGQ7/CWKkV2d7Y5fuwYU9PTFIu5+ctgOGZioobUNDQtr7S09/YolkqAIE7yRa2sbiKtADGuEQQhpmniOSU21je5fu0auq5RLHoYRm5MY5omYRhQKhU4dfoNDh85nJsrZSlKaDiOTaHg0el0UErDH6d8+Utf4qmnPkZzspFPg0LQarexbYtC0cZ0yswvLrCyvMSBlRWOPXSchcUZwsBHCMH9++vEcURxPyi+Wq3SbrcZDQdkacb8whzHjx3D81yS2CeOI2zbQlh3EWQEnSZSChzLzKc1TcNzCxw7eoxOu0djqk4U55OwVywilIahS6Iw4tLFy8wvLBFFKZCgKZ3pqUnKpeK+e2IeB6SUpFKpoBsGaRqja5JStUC1Vs6jE6wCIz/AK3lsrW+iawavn32d+fUuolZm9M//OxzD5vL522wPeiwtzdD/3v+Civp873wL0zCYn5/Htm0uX7lCszlFkiT0Ol1KxSLjkY9tOFy4dBnLNLl/f5W5+VlGoyErKytMTU/RaDaZmprC81wsx+G5Z5+j3Wrx8IkTCKUjhSCOI6rVKo1mg6uXz2OYBuVqlUq1SpTlbAeSGEFGqViiXMlzFC9dukKzWafeqGFZDuPRcL96aRJFYwzdoFgs0W1tUTVGiOmfY2Otxe/85m/zL/7FH/KZT/8K29vbmKJFydWoXA9hHBDJFDPOKN7q0Z8w0TRJEOQ0Sss2cbwSjuuSArZpUSmV6fa76KaBrltkQtJpd/PoJyHzSqcmqTeaPPTQcUxdw/dHPPvM95iZmydJckpyloGmDNIsX7SFcYSum8RxhJR5xJFhGOiGTpSJfVAl0DWJbZn5vWQY+X0TRcRxguu4tFttpFIoTcc0FUI43Ll7nzt3rzM9M4NlmUgp0HWD1dX7HDt+jGLRxfNchMj14VmWf2dbpkkUJ+i6TpKmWKbF2PfRNZ3eINeba0oxHo2J4xglMjQl0fXcWKg20aDd6vD5P/kCmZAsHzjA8888y872LpeuXKHWqPPhx59AafmmmbGvd56bnyIVGbqZV2HiKKZRn6TT36FYLnDixGM0p2fZ3biPiIYYjkmm26hMYZnOvk45j6LSdIc0TRBZln/fKQ9EwnDYwrIslpYOoymo1SZI0xRd1xi2twjHAYaZf695rk2hVEDXLYJgRBaHlPedwGsTNTRdMT0zxUStSZaJnCL+3HOsrq5Sn5jcN1DyyLThPrWyhq7rjMZDJmpVHNsgjAK++rWvcfDAIcIg4sDSLNPTzfz/bRgkcU6NL5dLjP0RaZZQKHlkacat6zeptvoYf/fX0VSAZbnwwuucff0cf75xj3/43/wuj33oJNNv3EGQkfzyRxmNRgB4npdXg6RGpjJKhRKlUpFSY+4Bi+K/euAq3Ay5lKIa2XuAa6JL6AeMvg33+j+gH3vUJmdJUJSqFSanpvBHY9bWNlhYWGTQ77GwOMPm2n1IIk6depnZmTqtgc/FC7do7WxRr1rcvb1KrxvzyY8dY37GZGWljJ4qBDtMNWucO32Fj370ACU9xvNMNF0wHo2AFKUSNJWRpSFkEWnk4jhlNjc6DPoBhqYjtRGCmGoNbMdHaSkiM6lUYHmuhqVn3L1zlUeOL1GqTHD+/DW21tbZXu9iWyVKZYfJWYsw9rly7SJzC5MMRy0y6TM/OcPC0gxROObca6eolUts7+7xxKMzVKot7t33GbdtGlMuN6/vML/iMFEvUHYFIvUJ/H5uLmZneK7AsRWabpImWu60n4GQEZqENJQILUPTdJIkydMBxmPOvLZOveZQLEcQ2+gapEmKkIIozqUCuuYQxTrKNIhSBdo0QjPRlEKToEtBlibESQwCsjRF34/MyeAtyUSWQalcRkpFnOznq0uNNMvlFVJJTJXSaJTxXIdut4tj2xi6Q6kxR9+P8CwNnYTAD5CWQ2/o47bL6JtlWn/n+yTKRyQp6+v3uHfnDq1On4/+4t/ioQ9/DGM/1uyd8ZE/HXD9IO2nAa4/DXvxZ8D1r779DLj+DWgf9MJ+P4rBB3Es/lHUhh/VHsTlf79zvh994kePe5Au573j3z3RZjnrBQVsr22gC8XFU68wu3iQUmMWr9rE/YM/IqtXuB+MKBVLuI5Dp9dnb2+P48eOsb25yezsTJ4NKATdfpdyZYIoHBEFY2q1Klev3+QjH38KTQrCOMzzxzJBGKVIYvq9LsVSEc9ziaMIMvBcj82NLTY3t6hOVBiNRxS8AoN+D9s08cOQanUCJTVGY5+tjftEic/07BSIPJcyjHJAcev2Hb7+zW9x6NDBXCdrGvijEfVqFT/wMW0bpWlsrm+jCn1M06C7LrEdhywVrN1fQ9d1Jmo1lJJ5Jc5QDIcjHMdjNBqgNMGjjz1GHAc4lkVrp8W3v/NdJqcauK6DbduEYYTtFTjx8NEcKFs2SmVEUYxjeoRjnzQa4xWKFAs2w36fzY1NCoUS/U4Hw8hzKeMkpFKtk6QZnXYHTSmqlTK60KlOTDD2ffZ2dul3ukzPzJImCXEcIaxV4nCMGs+QpQmGUox6bQzbA1JG4xGGZRBHY8ajIZ5TYDzO6Yj9fpdiwaNRr5OREYQBppnTLFu7O9h2DuTzikhekQuCgOFoSK/dQQiJadtEKURBiG3l7r6nXjmNyODlF19hfphgbLfp/c//CHdyAbdocefOGn/wT/93PjO3Rbb6PLfGs1imi2WbbGyuo2ka9YkGO7t79LpDdE1RKpdRms7NW3eZmZ1je2eHdnuXxcV51tfvUSwWuXPnLp7roesaZ147zfGHjnD4yEFSEpxCHqtUKLhkZPh+jNId5pdmMSybaqVGu9PFsXT2trfRhMHWZpe79/ZI0pDXX7/AZ37ps3S6e1iWxsjPs00LrkeSZiRJCGlKFMXU5o4QXfkqo/qTVAoLDMbbzC8t8cz3zvLnX/4in/vcrxDGMdW1Eapc4MJnZ2g/egBjq09prc2wYqE0jyjzsWwb3XBySYAm8P0RpBmaTEkT6HS7ORWNmFHwRaLgPIZ+AkGKJhWmqSEEmIbJ9PQ0tmMhFcRxmNNURyFJlH/uSsJo7COkyqujSUwQhghdoWv59eI4JmmasbfXQgqJaZqMhkM0pRBKcerVV7Esk3qjvq+3C4njhDAM2d7eYXpmGqUpwjDAsm0mp6bRlECIDKnyFMfc+THXUiZJhpQacr/aZ5gWSZzwjW98g5MnH8vzaNN439U7xbJM0iRCSoVuu/QHXZQUPP74h5hfXCATGctLK3z/+y/w67/+G/i+T7lSIk0THNciSRM0TScNfcI4wjRMdtbXMZSiWi1QrVXJ0ow0SUEmDLpDpEhQeoyuOZiazdhPuXzlFjMzS6zeXsfzLMgEhuWSpJJYZBiaQheSJE5JREYSh7ncIkmBLM/DljpB6DMc9KiWXRxL4TglTNPED3x8P0TTNcb+OI+Y0/XcgMrQ6XTaNCZqHDl8kFary5/9+Rc58tBDpGEJf+jSHwbomka5VKBYcIlin2KhwNLSMuNxQBRFTDQm0AwTzchBg6EpoihCSolhGAyGQ5I04aUXXmaiOsFM32f76DQ7w22u37jJkd2Q5uQk/9flW/wX/9WvIZWG/JVfhc99jPE41+9KKUnTlOFwiOnqhPEIW1XZvH+T2szie1yF35zu3jff8QMAVyHfNic3UmQjpwi/e67WVYLSV/G/UWMru8Xhx56iOT2L4zrYtkMUw/Zal0MHD9LubCBVyP2rrzPo7HH95h1avT6Xr92g3xtg6ZLP/icfolqVTM9WmJkuUCuE2Aq0VFIug2cXKRRS5mZnMc0I0BFGRpwoel0f13Mx9dyhmwykUGTakEwOKRYMDCPDtCJefrnFqVNrHDmxjJQCTXqEKUjNp+ZMYtoZ09MuihbXrt/h5o27PHZ8kempGEMFtHd3+e43XmZts8P2Zod+d8zW1i69/oCr187z/7H3pjF2pel93+9dzn7ufm/tG4ssbk022T2j7mlZM5JsyY4kWxAQf3AQGEhiB0lg5IvzIUCc2A7gwEaCKEB2x3CsWFY0msijGWm21kx3T09PL1y62VuRzW7uRVaRtdddz/7mwym2OD3sbUYrMC9wUUSd9bLO8jzvf9va7nLu3Hn+ys8epx6MuLVyC98u3YxbYwG1toftZUxNVAgUTNRLaQLkeIEHhUEoVSL5UpMkgmtX7lJv2cRxQC4gy3p4lk1mcvK8KN93QuB6CYcPjVOr2mAMwlikWYSREmHZ2J6/H10zxvlzV5mamSBwWzz9wiWuXHmXg/PTqGyIznNyWTrh36/pjDFordGWVV5fxoAoHdbvo55JUj5fHMfD7HPObalAJOzuDRiOFImQKMtH2TaO6yMsTVDrMOxuEEfbNKJx1I028X90l6ljHba3Njl34Qx+PeDEY1/gqS/8Il69RW4MRVYghdrnt8vy8yknZ35o0UfVoR8Sh/Ow3z2oVf3g7z8IEn1cg/vgdh8nE/y0Tev9v+19s8EHz1mIP33J4J/U+Enj+qc4Pkkj+EnHjzIL8+BN8knP5ZM0oD/K+CNa8MP29fH7LMT7jzb6O3u89L0XqAUhMwePkAmb3Yvv0vni14mfOo3tuRhjuHHjBhNTU9RqNfq9Hq7tIiSsrm4y6HdZWFigQDAa7IApSnTU8ak3JwgCj16vxxtvvMXiwYNIaZHHfRzXZTAYIJWiGla5fXuV8+df5eDiEs888ywLS4v0+33GOx0uvvUm3Z0dJmbnWF1bY2Njm0ajhacD0sJQb7bIUsNbF5aZnpuit9dlcmqKTmeCmdlpEIKt7S2qlQobd++hLI2QkqIQVCtNRuIO2tboZAyM4Pvff4lBvzQmGg6HzM7Mlq6BWmBbTvlwk1AUKe+9+x6T4x1EYcjTnEqtThB4uK5LkpSIVEHO7u4WlUqIMRKlcrIkpbvd5/e+/GVOnjhGkSdYSjIcDhj0R7zzznscWjjEuXPn6Yx1aDTrSOWgtaZaraKkJBoN+cbXnubQ4cOsrq1x985dVm7e4uDS0XLG2LbJrKsopbDFcbRXxUhdNh6mfNFbjoUfBsTDPvVqjWE/4ubNFTzfI6wEpElCHEVYtiYvUpIowrYsHMdBK1Ga3HgeUkryvDRfsh2bb3z960xOTCG1jbQdtFRcWj7PsNtldnKRext3OakrTG/0yP/lP6X+yGGe/9YzBG2PubEqTxV/iN29RNz5HI5dZXl5mbGJMerNGtVKlZs3Vzh69BGeefY5okEfqSStsQ5RlvPKyy/z1FNPcfTIIbrdXRqNGrZjMz4+xbPPPMfp06fo9rqs3LiGthUnHj0BSuJ5ZXapZdtsbXXZ2NilM95GColAce7MGabGZ3nh+e8xNTnBpXffpjPVZPX2Ko+d/ixf/eof4AcOCwemS/ZBYXBsmzRNKUyObdnYtoO0PbLeGvc2t1jttpg90OKZ557lP/47f5+FQy0OHn2cvIDw9XdII8POsTraqSEOH6R2/jJITWVmnqQYItQ+DTVPStROiNKtetDHdhx83yeO+gSepj96C6k0vvcYaRyhhCHPM6SQZMaQGcjzGMuS7O3t7jtwKlxLMBz0SuTAKSd8hAEpDGmeom0LYQSWJYnTGNcPsWyPu3duEwQBeVFgWRZJljI5UeZxep6L0ooLry0jVMbk1DjHjp0oNWdKoi1NURh297qkyeh9hsl9M6gkSZBK0+/38byAJB7heR5SlA3a7OwsCIVtKYzJiUcRUObRCiEpkNiuj+eVdNw8z/DDgLzIEdpmfm6eLE7o93tMTI9TmByh9unGhSCLImzHod/dw7EU5155mbGxBkVRamPTZITvC4a9hJsr12k1PFSuiZIhaV4QxRljYxPcvHGTsVYVx/UohCZHldpdqRj1RgyGQ4JqgOM4CKE5e/Yce90d/LBaUpu7u4yPNRkO9ohHXbQKyA0UFDhuyGjUo9vrUalU0cpGaIFWisGgR6vZwLE1uRE0GnVm5+ep1xpobXHh9YtsbmwwNzeF61gMhr39GC8H1/HKBlFrlG2TJimuY9Pb67K72yUIQkCURn1SoVDMzk5jb+6SPLFEESgOHTqC9+p7FLkhf+JnOfrIBCu37vEP/5v/iZ964hS2I7AsC9u2McZgWRaoFFPEuKLB6+e/y6ETj//Q+/gTTQB/oqL+hye+xUM2PP/Cc6y8912qlx4jrRg2hqUGe9Dv0u0O6HWH3LzxHlNTHV5//XXeeusit9dWCapNrt9YoVlxeeL0IR49PsHSXA1VbKCKnM21Ps+fvcHBxTZKC3Ido+SQPK4jrQF6H2W0LQGijzRQ8z0cKyHOMgwlq0Iog5QBFBIKB89qUOSCJBvg2DYTEzbkEdKRvPjiCpWqTzUs2N4eEbghlkqp1Vu0OzVqlT6+bWPbI1w3pd2qUa9rFudbKNHHd2IOLtQJW+Os3NnFUpJHlipUwxGznQa1xoh6tULFFoi0hytChN5DyRa57JUxNZYujf4KuL0WYTl+eT/YObW6Q5ppnn32HbygTq1qY0mF0KUrcEkbl1gmJE16aKUgdzFqgCBAWgHKChA6ICs0SeFQrbTR1hBLaebGGxyYqZHnXeIiZ5QBRYa2dOnoLWWJ6u5fZ0VRIPePeb9xLh2K9zWgsnw2p2lOngYMRxHdvmBnz0LYIVkW4zqadqtBWO8Q4RB37xLu1dG3Fxj+7VfoejfY3rjN9uYun3nir1GtL1GbmQNlI6XEEjmFeUg9+iM2runvOBTLGnUi/+GFH7HhhzWuD46HsRo/apuP0s/+OP42Dxv3G9aH1fY/aVz/Aow/j43rRzWKH9VIPuwi/zDR+CdZ58Gb7sPE5Z/kpvmkTfhHo7HlTF55U93XNfzgSP/OPygNmv7Gz7+/rSdHdFOnRMOSLvc2N1g49AhW0CDDovUvfhuhFKOxBsNRxFe++nWOPfIoRdHH5CnLb7zNS6+coTM5w3PPf5cnPvckJi9YuX6D9tQUluOhsbh48SKvv/4q9WqFdqvFzPQ0aRJj24rhIMEUkryQBPUGva01avUGynaohAEzU+O8ffESJ44fIc8S/GpI2GhgawvXdXnppZe5e3eDne4GR48eZmtzE8exCWsVlpeXOXr0GIUp6Iw12d7eoVqpcfWdq1x97zrz8+VD/w+f/jaHDy1RSEHubaCV4vzzt5gYn6DRrLO4dAjLsWi1m/R6Xa5cuYofVrFdj7zI8WyNwvDyS6/Raneo1Gps7u7ghRUsbSOMIU2TMpheWAiheffdK1y7foVGq41tOex1d/lLX/hppONi8hKNc12fLIezZ1/lyCNHeeHMyxw+8iihr7l39wZKCgb9Ie+8+x4T01McXzpIlqW8vbzM2OQkn3niSbq9baygUhb4+TJGCPLkIAUFoeewvbleNhJJjmt75ElMpdahO+jTG+5Sa1QIfJ80Kx/mYRiwtbVF6AdIu8wUjaIBYb2BtOv0d26xs3aV0HHIyJHa59Rjp/F8vzTAyIAipx4GbO/s0hyfpLPZx755j/+qo/iVv/sf8n/+r/8bnzvRxr7824jX/zl+tU1Uf4JhnKFsweTMFFlWMD0/S2/QZ3pmGigY77SxLIvJqSkQEte22VxfQYiCeqOG6/mkeWkG1Nvd5DOPnwStaE1OcOvGbR49eYpBf8Ct6zcwaUEYVOn3Bgy6u9RDlziBG9ev4DnlTHqzGtBoNrl4+V0++1NP8NaFN5iYmGJqcoJqzWfQG+B7VVqtFsKC1Agst4ojFLlQCDHi9pU38VyfphVx8N/5zxhGgjfPv8Rky6DNReamlzB5SvD6VbRW5L/4y8wuHGdt5QJ7HYvp8/fYCUZYlsdo0MWyLCyt0cqm1x1Qr9UwUmK7Ja23pPkWIK9hTIGWS2X+oHTfz2JMhn0uv/02L754lqnJcRq1OmlsuLu6wfXbt5menUNqC9CAIcuLfQfeECU13d1N6pUGJi8Y9DaJhjus3Onx7LMvsHBgAdvRSFthux5a2wyGI7Is5YXvvcypU8ew95FfqQWWrYmTuDQPUi79/gDb8fnGN57m2LETRFFJaY+jGM916Ha3aLaaDAbDfRS2vG4t2yklCrbGCInrhTi2Ih4NCAKf3mCAyQVxlOA6DvFwQBqNiKMRtVqIH/qkRYaj91kFtks0iokGfYywsLSHtjye/94ZfuGv/XWcwMeyHU6fPs38gUUsz8YUNlMTbaL+Kq4yWEEd27bL7FzbZnJ6GmG5xElMmuwhC/AcnyRJsBwLbSm0LN9Pme2wNHMAKfpUm2U+b55lRKMR1UoFLBdhFHt7m8RxxO076/zhHz7LyZOHyDOBclyyNEVrCyEkX/m9rzA7M0ez3SQIHIaDvVJCYgT1asj5V19h8eASL73yKouLC8Rxiut4WNpQmBFaOUgKEAVpkrGzm6AshySLEVKi903JWp0GylFYt9YZffY09tQRvvPtM/Q64/yTr32VL/zqUzRbTbQWbKzf5Gd/5ufwHOj3uliOQyEFQiny3MLVHt3dO4yimJkDh0s99ke8Jx9mxPTwl+0PfsQDBkzF2xrWZYm6fmD8/v/9P8DdSzijE7RbB/AnPOIopr83oNlsce3GNQ4tHeD8q6/S68YkcY8TS5McXmxzfKnD0kKbijdAixTIUNqhMIZa3WFyeoL1tS0azQrKgDA+hemVumzHIktykmiE79YQBvIiK0155B+du1YW5AVGQi5SjJbcW99jbHKG+XkHV5XZ3pCyONukUQ3ojRK+8fQVjh1sg05AVnj66deptVu0qmBrjSWhUZWEYc7yW6vEUczJE+M0HMnMeMjkZEjDk4x3AhJG+46+pYdEXhiMkHiuTZ4YMjPgfvZqlttcu9qlUa/QbHgUeYRjKYwRFHk5n7B4cA7PpTSKK1Kyoij/rKKUcRhRYDkeyq6A5eMEE2h3CisIiXMLrX0srcijTaphgRR98myATkdkxSaW2+K3vvgWCRlNX2O5Nfb6I4TJsJTEFBlKAkaSJYa793pUqiHakmQFSOViyEkTwyiN+co33sL3c6RVx6vNIW2HdqfOiRPHqdcaDLpdrl1eJtBgtg2Ve4+y8fl/SFK9RxRHdFpLuJU2g3zE5NwiQqtSnw8U99HVH+Uaf8h9kz1nwVD8oM7VyB/Y8NOyBN8//APr3Uc4H1z2wX096Dj8IAr6cakfHwdCPVjvP1jPP7jOB/b4qb7nn+fxk8b1T3F8WvTygzShH+cG+zTjo7Z70CH5T/o87o/7cTjyV//y+/vShQDb5eryqwxXL3Hr5rscXjpBfzjEvbtJ+D//BukXPktiSje18+fPs7BwgJvXrnL5nfd44okn8AOfWi1Ey/LFUa83eOGllzm4dIB4NGJvd4/pmSnGJ8aYmpxkOBwQ7eewhmFAt98ljkas3L5NgWBiYhxtO7ieh7YshqOIialxAt9n0B/yypnXmJ5eIB3tkcQRM7OzjI+N89prr3Hq0VOcO/safhBQrVT57gvfZ2pmpmyELZsg9BBSMj4+SW/QZ2x8HDfwWJhf4K033kQKQziWUBQFty+PuHr1KmfOnuHRE8eoVUMKY6jUmixfepepqbESMZOCIk8ZDvucOHmay+9dZmx8DM9zCcIaeZrhWA43b95E2zYYm9/4V7/J9tYu165cozPeotVsQVGQJDG24zAalsW07bh4XsChQ0vcvr1GEAR02mNATLVaoSigXm/w3pUr2E7ZIHu+z/TUDI1Gk9XVNer1RkmZNoZMvYsQCodHykI3Teh2e1QCl95ej7PnL3Dg4GEoBihliKIhjVaLJEuJRjHVarWkkinFcDQiz0rdohuEIC3ivI9tZaRJTqM1D7qKVIJ4lJAkCZ5nkxcpN6+WWuHpmXnkucvIyzfZ/O//S779ziUeOdTGv/obzHW/hW077DoL5N4EluMz6PdZvrjM8vIyBxcPkRtBGqfs7e4yHPSo1So4fsAzzzxDJQi4fOkdOmNjHD/+CG+88SbT0zNYlg1pQibB8j1MkuEIRS+K2Ni4x+b6OvVKle3tHaZmplm+dInd3V1WV1cZDSOKImM0HJDGGZubm0xOTXLz1i1OnjzJ5OQYRSHY2tqi2WyRJClFYdje3cGyJEqBY9lQGKRlIwXs7ezSmloivf4czql/F7/Z5sDBOUZJBOkd5hdPsb5+j53BKvHCJI3PfI4sydleuUhWF+hY0Li4SdQMEFqWmuK8jFdyPa809bAtsjyju9en2ejsO06/vY9+HkcISW9vBy0Fg2GfsFLDcgK63QFz8/PvU8DX7q6ysnKbyYlxbLuM+xFFUaLteU6RpygpCCs1MlM2GNq2yAvDwoGDzM3PMD5eokamKJBCYiuLPEuoVkIOHJpDaxutbaJohNYO0SjCsS1830NJCEKfKCrNiVzPQWlJ4AcYYgwFWgXEcVLmfyqJwGDZit/817/N0SNHy/iYKCX0Q7KsNG0ajOL9WJ6YIjf0+z2UEni+SxDWuXljhdu373DmlTOl2Zsq42yGwxHVsMLe3h6O43Dz1i3CIMRxbIoixrI0vV6fp7/5HcIwIE1yPM9jY3MdoVykFKRZRpYV2I6L1iVCk8QRgW8jRRl9E8cj8jwlSSJ6vT2kSPebFfCqDrlwMJTPoTyJkBQU0kZJH9uysWybWq3D9MwUvqupVWrsbm5QrVdJ4tF+vJKh2WxgO25J848ShuZVtLuNb8/S7owRRQnLb1/m1OlH9hshyXDQx/M8bG3R3dshS3LiUcoL3z/L8vJFHn30FGFYYXNzB4nEILBtD3VjjTsHFrhw613+0T/6Bxx/4nF++W/+TX79f/w/+MLnf55eb8gvLa/hvHoR9bOPk6QZnu+TphFZmmA7DlFvhzfPvsDcZIfq+NzHviN/1GC7B/eafMmhuKHQT/ywaU3Hs1i9fpmW+BxmOyScd2m3WlQrVbRl0Wy1ePXsy2TxAC0ynvypE2xv7iBlSqspUaKMECuKP5qAN/vaSM/KqYc+lsoQFGVOs+9TFAYhZUlbV6VzrZCrMu2WAAAgAElEQVRl46e0wkCJEipFluXkTkKRWmgJSZ7z5sVtLl66xsFDM0hdkBpDHFu4nouyhmgr5+DiJL4jkVZGluRokTI5UcV1DEoK0ixFawWFzeuvrvD44wepVQ2WTHBkihtIOnULkfewLInAeZ/2naYpwg2Jkh5CZijhkGcO2nZBZrx3eYvpuQ5F1sMUKdb+s8OxHBzboshSlIqwZYEyFtotc8SFsMkySSRtLL9OlFvYXpthpCnISHNQ0qbXvUGS3qHIbJJRhK0MIhdkWY4f2mRZTqcdMjNVoVZT9LsuL37vbRYPTpR/K2NQSiOF2pdNuHieixSghCBPEpR2KYxgbbVASJcDB+q4XoDttoiGBq08gqrH6p011u6u0261yXND884htg59iX7nHI3xeW6tx4x1DiEcByf0CPw6Rv7xNFAPu3ce7ir8wwDNj3u8DwOLPrjOj3ucT3Ien2CPP2lc/7yPvyiN60chrR+clfkkF9xDZ2s/gf71/vIPoys9jMv/4M8PZlY9uP2D3+H+DNXDaBMfdoz8q2Ucjv61X3h/WZYVZJmhbmWc/+43mZqdx3YajOKU8J/9X9zY3qTfriK1ptvr8bknn8SYnCLJqFYbNNvlTH+nXWe80yHLErr9Pju7PRbm5yiyHNsqXYSDwGMwGPL7v/9V3n77LR7/zGPYtk2axIRhyOTEeGkytFcWjf3uHnES8fS3n+bw0hLRcEiSZoSVGkFQ4caVy3iey507t5kcH+eRU49y+/ZdXnnlLHfvrTN/YI4oTskLw8TUNMqy2N26i+M6GCPodMa4ubJCpRpg2TaBHxB4FjLcRVs2Y8ExlNa02y0mJjrs7O4CZT7m3PwBrr37NtVaDSFgOBhQqYRsbW1x6+ZtFhcXERJ6/SHXrlwh8AMuXLjAXrfH5ESTxYOznDr1CE88+RidzgS2VZofbW5usNcd4NiKIs9BlH+j773wfdZWV9nY2uDe2j2qoUMcZ7TbHfqDHu2xNvV6A0xBmuW4rscbr7/B2TNnyTLD3MwUvb0dlLtDmtrs3vNYX1vFdX3qtRbRaECRG7Y2txDaRguJ54QEYRPLCtCWS71WIY4ihIAiz7FsG1vL0upf22UDn3k4jkWUpFiOxzAdkEcZly5ephpWyLOYne1NTJHjxQL97OtknSbpr/9j/tXTX+O/+FunCd78Z9TqNawDf4WX3r5NpzNFHEdlnm2ScHjpCAcOHEBpwVe/+ge0Wm1qlZBBv0e1EhLW6rx+4QKHDy2xtnqHw4ePsbp2l73dPYIwxA98rr13lVqrQ2EEw70uIi9ojnfod3vEo4ib128xPjVGfzBk4cAB1tbWmZtZKJHPaoXZuXnGOxNcfvcipoDDh5YYjUoa5+2VFVZu3WJra7v8/0Ry5OhRfN8miobI/blxtEVhwHc9hFsl794hs32cmeNUa2HZbHYvoVWTwHMpwph1K6Gf2zQqVeKtawy6O+SLbfztmNq1XehUyEW2H6tisdfrl+ibMORZQbVaJUkyLMtmFF0onyUcxnE8atWAXm9vX9dq4fqVUjvnOvsGZBHtdovjx45h2QoBdPe6DIeD92mccTTCsW0yI8iyjDQrWQOeH7LX3aVSDVBKkOcGrSW9vT5bW9t88xvfYOnQIar1gCwzKKVQWuLYLrZtsbm5ju975HlBnpdmUFPTU+RZShAGDPsxWT5CKc3lizcQ0tBoNPbNV0ra9OEj8/sa3gIpC+JkQDSKkdLC832kkLzx+jL1eo1aLcR17P13h6JaCZmZmWZx8UB5HReGza09fueLv8OB+QUazVJLmmc53/rWtxgbG8PzbByndOLOM8P42CTVRo3uIGZ7d8jm1hZT4wGWVoAhz1KEyRkNDaKw0NoiSwwoiVAlLdr1XDzPo7e7Th71cMJxRtkAKX2MMfieu98MZCgn4LXzb3LlynvMzM4ilUMYuNiuRTRMsS1Z5h0XOQLB7NwcSlsURU6eFaRxRlzcwfd9hv2AZrNF4FUYDvuMTXQo8oxer4cxAtvyMOzn+UrN9es3mZwd46mnfqpk1Yy61OoeWkGvv4uyBHp9F5o+3qlj/L2/93eZmZmgyAUTk+MsHZmh3fExX/w6etin+JWfRyhJnifEwz7xqE+7M04WDTm8OM/ZM69w4Pjpj6wBypfhR766P3Q8uNn7Oa4PaVzzKOK5Z57mF//q30bu1OipXdIkYfXOKlevXef57z2P7zjMTbt0GpqZ6UmuX9tg9c4N5mcaSCExaEyRYNsWo1EZNaQthUVSxvTIDIHACMhzSZqKUg+sTHlfj0YorSiKooy424/GyrIM23FRhUGmCguD1CljnTpLBybJoz20zDCp5mvfWKbdCQkDC1Fourt7BIHCUiUjY2qyiecIsiwp3XL3I/gEI44cGaPRcFFIHKtCIQWrGxFBJcDSNnHqYUxUTpzmGZZWXLup6e71qYQepohLE0KteP31G5x+cgwpR7jaJY5HWJZVUtONII0iCgq0VSK3gpB+nKKdGlGqcPw2fuUxHHcMoVRJ8dUGil1Gg5iv/u63WZiepOp7fOVrF9jtdZmZb2JkihT795yjqQSCwIHCKLSdMDdfL+UN+3KJJNmPw8GgLDCkGHLiNAEpSHPD3c0eK7cjJmem2NrIiFOHaqON42pGw00cz2Pl1i1azToHFqYZ3UxwBhX6X/hNHN/n7saIiaWfoj2+hNIurfEWRjgUpvhjj2p8v2Z8SOP6YPzNxyGtH7bew+reB9f/sPP54Lqf5rt82u0+bHwMwPsXavykcf1THB93Yf8o2/+4x//g8k97jIdRIj7uRvuwmaIPo07cR1wfzHG1tQQ0e+vr1MMaM4efZO3uBtYfvkzzxQu8OVFjcnqGVrtFGATsbG0RhgFjnSbNVoeV22uMddrkWUnRaTYbNFstFubn2VjfwrFdzp05R6PRIKiE2JbNqdOPcvLkSSzLYmNjncEg4tb16/i+SxA6uG7AlcuXECajXq+yePAgzWabMPDKsPNmnXvrdzl77gJLhw9x7OhhBAWO74MR3L17j2PHjzI7O8WhQ4eZmZlGSEGRF2RRD5MbbNtDCMm5s+fwHI1tu3ieX2ZANvogJG++fIczZ89SqYRMTU8TVivcXbuL57lEwxF5WppF9foD6rUqRVEWgYcOHSHLMvqDHpZjMzs9Babg8JHD3Fu/x+REe99EpCDNYoKgxub6XaQocByXZqtDJfDI89IE4sbNW/R6A44cPsDVa1fASE4+cpR6owUYPL/UB7uuj5SlAc6V967SaDSZnppmOBzQbtWoVnzy4Rjf+sY7+K7FxFgbYyS9foTlOFAU+L7NwuIc2nLI8oJ+b8C1q1fptJuAwXVdotGQKI4ZDgZIy8YNKpgip7+7he/V2d6+S6PewKBI0oQ8j5memuHS8jtcv36N6U6Hscv3cF+/wtXPP8YLnzvC0qOf4Vv/z3/LX/JfIaqf5uKdFOV43Ll1m0eOn+DNty8ShB7NVpPALxEuIaBSrXD82BEuXLiAFJJqpc6VK+9x+vQpfN+j3mqwfneDjc11wjBgemaKNIsZm5gljwue/8536YyN8cq5M8wvLOC6LiDJioKNzXvMLywQpxkTE5Pcu7vO3PwUzfEOtuNx68ZNHjl5nCzN6O11uXnzJpMzk6zfW+Onf/pzFEVBvdGg3W6TxkNcz8LzXfa6fYRI0Y6DEKqkmykHk4wQe7dIZ38a29bkSc5o+wLdvsKxXe7dfg9ddKnUp6gHAVsrl5GqYDDoc3vBY2ZyCefFdzG2gIoLUuH5IVpr8qL4o4xQJRiN+iTpRYQAz32UKEpKjbOtQQh6vT6B75NnQ/IsK3WLtoWtNUkWY1uaLM25cX2FGzdvMjk5iWXbGEqH2izP0UqWxm9SkaYZQeiTxBHGgGOXCESaG2rVOo7rlVRy7ZKkA6QsXT+NyYmjIZUwKCmX3SGe75bfRWlAkMQxo2FEEFTBSFrtMpd0OBzso7oKg0SJgjwrUNImiaNS621pHN8vDaHiEZNTkzSbNYQUuI5NvJ+tKgTEyQgpQWvN7u4elWqFer3G9NQEUTxib6+L4zrMzc0xPj5GvzegVg3Y2tqg3e5QrTR57vvP0Gi2mZuaYXamzvb6zfI6rlSJ4xgpwPVC/s1v/hazcxN4ng/SQls2ruuRJAm27RAEHnuba3iVaYZxD0vZ6H3Nr+f7xGmG7blQSMbHW7i+wysvn2VpaRGUQmoXyy41uYEfkqQZWjsUBuI4otcbgBH4tT5gCLwDxHHGa+fPc+TIEmp/MnIw7FMNa9xeWaNar5X62WqFeqOBlArP98FIXM8lTiLytCyyLctGRCn3Ll/li7eu89hjjyC/+SLOyhZHf+VvcOXqeziOxn7uLFmWEf3Vz1PkKbVKgJagtWRjfZ1RFBM22oxyw9jkzMe/d/+EG9e4v8dz3/kan//rv4p8ZgzvaBnV0u/2uHb9BlvbW3zuqaNMdjrMjM8wGO3Q6LSoVhS2zAm9ECNSMAVSlc2I67kUeUGcSGynilAl3poXhp2dEZubpY7YdjV5luH7wftnnGV5qRPNSl5tnhfkkaHQOXc2Y0xRxfNiLMvH1hWyPCUvCo4fO0QYCnq7PRynTpxG+K6gKCRIQUFBnGa4jg2A0qWzd1GA5RgEOUUOcZqByHn2uWt0mgGOk2O7LkqUxjd5nqOkREiXQW+LetXDcRSFSPGcgNvXU5qNNq6jMIViNIqxbI3SmiRLkVphhIvt1zBCk6QSt9pC2hVcv0GUK3zLweQDimSTYXcVki5kEZKMasWhXrFJkj3m5maYn+0gxRCMIYoGOI6PwOxH2uky25kU1y2fPUqXKLbWDkmaom2JoGBlZRXHa7K5M8L1W4xGOaO0zY3b95iYmqHZmmV6/hDKLid8G40qWZLiuxYmj5Amwr8xw97JrzKsXsb2QsLqAlZ7ASGreGEVoQ3G6DKe548Z/fvIxvUDLsIfdexPy478k6jjf5xjfMgef4K4/nkffx4b1/vjw9DFj5sNehDBfHD5x9F2P8nF+nF8+vvjw1wOH3aen+Q491HlhzWt99d9WOMaFQKnf5ff+ee/zuETT9BNbcYHA1r/9F+QfeFxpo4dIy1AK0M87FMNXaIoQiG4s7bOd575Lo1WnY2NNba3u8zNH2DQL4u4NOsRVkLiJOP8q+c4duwwu70uVc9isLOF71dodqZxfRvHDfZn+zNSk1OvVWjUaxR5gRIKP3S5e+8uzUYTR1usXL/J1NQ8zVaDLB1x+/ZNGu02w+Euj58+vu/4CZ4XABlxHPF7//YrPPL4Z9C2Q5FFxPGI1tgEjWqDNEkJfB/b8Rhth6hojHazwqHFOTrjbcKKRxJlvP3mO7xz6T38wGPhwBJZkWPp0nSBQuGHVVw7xRQRyvaxhaAANra3ee3cWZ547DEKnaP3s1+3N3cJWuNo20ZIQxJHONpme2+dwri89vpbHFpaZGZiivHpSabbVZ787KM4YQ1T5JTmNaqMWdEeShr2uj3Gxsu4my996Xf42Z/7PNVahe2dPeIk4/DRw8zPzZTurMCL33+Bw8ePUWk2wLaQykCu6e9tUnFiVNHHZBHkhiwbkaR9lMzpjLVBSAb9LsYYKtUaSdbH8wOM0OSA4wQwynn22W9zYmGBozsZ3pmLbB1d4H8/Os7Bf//fY3ZqljPnz/BLzZfx2gdYvn6PU48eL7WP/R5B4HPzxg3urN5me3ub4bCP7VgopTh84CCjYUSz1aY9NkZv2GdmYopo0OXKu+8wPTWHYzucOHmcne4WrdYYEPDq2e+DKBiOepw89ShhtcbtGzeZnZ7AdavMLhygM9YmrAYEgc/G5g6N5hjvvnuNu+vrzM1OY/KY0ShjOBzihy7NTgvfrbC7vonlFEzPLOI6Pi+9/E2ybMTs7CLKylHYuIFdomkGLrx6lslGk1yAufUiO+3P0W7OMIwyLH8RowX97j1m1jLyOwPuijtkakSzFbCzfh6DTVgdI18aY7eW0Dq3QaoMRcXB8QLiDAqhUMrm3t0NHMvGcy2S/B3SJCFLFwgqVWw3JhoNcawKlaAOhSDXFsryePPNZbSliONhmYFsSkTCtavUAg+pNJbroJSFKcQ+aiTJ0xglM7a3VvH8sNQgSo2UGiMVrl8pkcBqrVyubSyj0ap05IyjAXleEEUZlVoNv2ZhjGY4HCGAeDSkWqnQG/QJKxUAXM8nTntkac5olLCzWzo7K+EjpcMXf/tLHDt2HMfxGEYjTJ5TCUPyLC810FmG0pLeoEeBod+9B6LADUKMcDBiRBwbAt/G9TNcp4Yho9Uc4+bNdzEmYnJ8HDesMIwiao0WSAXkVIIq16/eYHJmkgybzfW7BO4O+aCPZTXAMuQm5fTjnyWsdFCWxhIKKRRpViJqAsjSHDes4zgSaTQvv3SOZrOB42qyPMX1fGQRU6851Bt1cmPjVjqQj8hzWbrkmgJhlfE5SRKhRE6WDHHdgDzPePXV15hZKGOMdjYq+K7P5FQDIwxBpcq3vvltJsdnGI2G7O1tUR/r4DgeeQZaOHihw2g04rf+zf/LyROnKQrN3vY671xapd4IGGQD5q5t8B1nyMKBRSZfept3nv8u/+TFP+S1Vy4xNzHF/Ls3sBwP+9c+j5ARO90t/LBBrT7B1sZdZifqGL+DyD0qdf9j9W5SiH29p3lf98nD3sPmwyWC9xtX9WT2QzrBqlOFfp+lQw2y782xJa9yb73La68tEwQWjqXo721zYDYgj9ZIopwXX76GUD2mp0oWg8mgUIY8LVBSl5RamTEc2Fy9volj2zQDRVYobFtjWQLHVkghMAObSPRKCryyyKTBUmBbAjmykd5+lFURcObcNa5eXWVxcZLLl1cwquDNt1aZmVtEih7SEvRHcP3GGvMz8yR5t4w5ykFKjdaaQgoUBmlyCiRaaeIoQwiFkgLbFkhR8MhSjdArynPMUyRg0iFKFwzzmIbvENQzTB5BZqODkCLPGZ8MsK0hSkIeJ7iOhbRscjTSDjD2PGnuEFY7CFXHqXSwrCZZktLvblNxC0yyxqC7gjB9bMuQJkNsVVDkQ9ptH0SG0hpbp0gRYwqBEjbazRDGochdfLcKFAilwGi0LCcd40KgbElWpNh2iECRWwmNygyubvHmxUtERrC2ssXyu+tIq8LC7DyjtJQCrN65QbVWxa82SFMD+Q7R4DbOboA9bLF9+n+hUmswGBmGkSJxlpiamUYqidj3F7h//X4SBPSj7w29j6ZKBOWnvNYF1pPm/d/90L3yKRvXBwGZD6u5P0kd/jBG4kft6+Pq6U/eCMP9h8cf/fsvZhP7k8b1z2D8qMjrwy70T5vz+mc9fpRzvU8VfrBxtWyHb/3+71H1POyghZvbVP7rX2evXaVYmAYh8XyP82dfJY1jmo06aZ5BnhJWqty5s8qd2yucPPEIE5OT7O7u4fseL730IouLixgDSlkcO3YMx7YJq1WS4QDXddjr9ej2S3TF0hatVhOlBOvbO0yMTfDSiy8wNTVDnOy7IsqygNvY2KTTGeP6yk0OLC4Q+CE7Oz2Cah0lFIP+kHq9jesFaEthhKHX67Gzs8fs/By2VghjwBQl7VWUFDeBIY0Tvvxvf5fd3V3Gx9qEYYiybLTWZSyM7/OZz36GRqPGrVt3+NY3v0G708Hat9W3LEkaR9xZvUu3F/P8c9/l0NJSqcUTgkol3EdCBFIoXNdnY2ODauizs72B4zjEcQQSfL/BuXPnEKJgNIh5e/kiC7MzJQWzgP5gSKVWYRQNSZMES0r6/S5aS7rdLrVajempSdqdDr3eHhdeu0C93qDTblHkWVkQGWi323helTTJy9n6oiBNEvIsxnEsgkqNUWKwHY9hHOH4AUVuSOOYJAetLRy7pKhleUpRFGhL77tuGt5bvshjfoPqmYskP/MYL/zlzzL5n/4SJ5/6LP/fl36L0XCHn27dwI+us2GmObS0xChO8MMqM7MzbG5scvqx07iuy/r6Oq7rcuTIkdKu3gjeXl7GdR2gjIXY2dlhZ2ebZquN0Jq9nS63b9/Ccx1sxyONM65ceYcnP/cklmVTb9RLZEikWI4gLQxGGt55exmtNKt3Vul2+yy/tYxtWziOzfh4B6Uk6/e2GAwGzM3P4TgecZIiTIHt2bhBlSAIMSZmcfEQcZygtQEkQoEUFsPREGMShIFKs0O6fonw0M/gNefo7nZptus4boXeTo+xb18iWI+xnlpiZydh++6AjfV1bMsjMxolLVqHp7hhBky/vsWoHVDsN4p5GmFbNr7nEScxWZ4hVYilJmhUZzAYksxG6YA4zchMTiFipJBYSjE2MYZtKar16vv5iHGc8JXf+zprqyucevwxlC4LqSLPSw30cEgUR/iBj+v7SKz3Cx9jDFKXhdLZM2e5fXuFyclxhAQtBaPRoIyL8lxq9QZhWCFLE/I8AxSVMCTLMoQoKcmWZREnyftonjE5Wtt4vo/j2GitsCyb3d0d4iTG913GxzsIWVLfRlFEnCTYloUxpkSuvAAlNZUwZDAcURQC368gVYGtfbI8I89TPLcCAtKkYHJyrKQ5KwehFGkao6QEI8iymEF/xNmz51g6fBiAqq+JhwPyLMFyA+LEYFkuQjnYrgsUxFFclknCIBV093bxvNK0J01zHNdj8eBBPM8hz5L9WlbR3dlmNBoihcBxPF597TUwGcYIvvzlL7O4sIDn+2xvb9OoNej1elTDGoNRTFFQoujeLkIIvv4Hr3Hj+jVOnT5KluVYloOSiksXl/nMZ04ThB6mKGNLbNugdcH27h5aaxYXD7K9s02z2QSTkqbg+Q71ThNno8+jv/BzuAdmqb51lVq1yuJ/8Gts3N3isccfoX3hIgiF+eWfYTgaYFk2Wnlo7eA6ku2dTYLqGCKNUY71o00sP6yO+Ih9ZA/V/ZVje/0el988Q8qA2s4JYjFCh4oDi9NMjTvMTdaZGHORRR8pM8AgrJB6rYrnKKTKKQprP4PZJs8SDII8t/CsIZbtstffwfVD8iIu9d1hSJ7n5VmLETgaYTQUkJuCuPCJMgepCrSjUSInNxmz8zPMz41h64ROs4rvSsY6bUwxwtYFxiQoLbGURBAjdWn+aNv2/rvDlPnNyQhjDKMoQll2yYTYn7AtTAFCg4ACsBwPoS3yIkUpTZIH3FlL2dvewq+EWMIqnxAWiDxHidIF3HF8jOWAstFOBWXVcb0OXn0SbdulRlsUxGnEaLCBY2UIIrKsD1lGmTduSJMIYUrdsG27JdPAshCIfRaHQoiSNaKkRimLPI8RMkdKQ15QSmJMQRRFCFFua2mHIgOlNEo1UAryfJtaY4xoWCOsOASVDkJYJPGAY8ePEcUxWV4QxyndXp802iOLt2lXK4Qrn2Hj1L+maG2i7IBMVvArsxx89GdQSv1gvXr/x4/A8vuBz0Oa0uys2r/WP9xV+NM2rh8mZfuk+/yw8aM0wT/O8X5wu784vcOD4yeN65/B+ONuXP+4dQKfZPz4N8zHj/szU8XvP/dDjavMBC+/9DJLx0/RsGsEf/+/Q9arrLSq1OoNtBZkWcTd1S32dncoipzxiXFW71yn027SarQ4feoUjuOSZhlJEnPz5g3GxycYH58qZ/EQvPTyy8zNHaAwZZ6otm20pUiyGMf2OH/uLIHvE49GjE3PgSlo1OuMohGNRhNLa6RUdHs9xsbG6Y+GHD1xFC0lly9fp9acYOX2FRYXF8pcRiVLahQlNc33A6ZnZ3BsB5MXZElCkaWsXH8PvZ/HmMQJ3b09nvjsExw4tMBoOGJjc4vvPv8SS4eW8DyPer2OIWNza513Ll7h5KmTTE1P44UBhTGIIkMYSas1QRBUGQ0jtCrNVWq1kCAMiaMUjEAqh3PnXuXi+bMcOniANEtotloMBgMazSZSuCwtHWZmZpJKELK6Wrr/fvs7z/DIqUepNdv7c30C11aMhl0czyHLM+r1GlmWUatX0Urjei5jYx2y8DtExTJpb5phFOEFAXESs7e9Qb1ew1KSzXtrSFVQq9eIEhA64J33rvPulXeZnl+g3uiUaJnjo7WNkop+v08QlMYpWiu00qUxRX+A9/03yHe6JP/4P+E//87v8it/69eYXZjEsj0a9Sasv8F892muDsdYXd+iNT5JWG8TpxFSKgpTsLm1xdzsLJOTk8zOzrK2tsalS++w2x1y/JFjrN9b5fKli1AYmmMdKmHIvfV1xqcmcSyHaiVk9c4qs9PTbN67x+nHT7G8vMz09NQ+Jc9QqZVmPZ5XQ2qLtRsrtJst4ijGsTUTEx363S6HDy/hhx6Wa2NSQ3evy1tvX6TVbHPx4iXGJ8ZJMoNfrYIsqNfrJFFKb2+TZrNBVhQUWYYxEqnk/8/em8VYdpx5fr+IOHH2u9/c11pZrGIVKVKUSrKk7p5eNDPdPR6gHwaYh3k04HkwDD8Y8AxsDAyMYdiwB3bDbRs2evHYsqhWbxa1kJK4aeMiLsUqVpG1sZbMrMqsXG7mXc49W4QfTlJNFYslaoFHDesr3Cpk3nNOnroZcSL+3/f//n9arYinn36aqZlFPDvEDZsUzQOEoUduFZo2cX0SfvAK0pZsLBiywYgHj30cu9+P7DgOzXqDS+9coXZoEmcrIb6+Sz5ViYBQjqmMHCVSOxQYspGLpE5ZFgz7PRxH4gjwXc1o2EOJgmycVGIqwqBcF6EclACtHRzHZWlpmUajTqvTIc1TlKiW8M2NDZ78ylc49uBxtBcilMsbr53j5s1VFhfmENIgpMaUJQvz8ywtLWBMjus6DEcDDBblKMK4xs7uLnmWYkyJyUuK/YqZMYYw8Nnd20Nrp0oyOQ7b29tkeYHnemRpitYa5WjS8RA/8GjUa9QbMcPhHp7vU5YGrd2qR7XMSMcJrutjLbz6w9eYnVuubKscB9fV/PCV15idnUVrj9XVdeJayHicc+7c26yurjA5OUmSlHi68rqVUpIME+J6DcdRLCNCnhYAACAASURBVC0tc/XKdc68cY7Tpz8BpsHO7m1czxJ5bQpbJTeiKEQKi5ACx9MYLFJQKaCaCjwaK0FIxuMRxuSUpsTVHlK4OEpgihJblgyHfRbmp5mfW8ANQur1ZmV7VJTUohpFXlCrNRgME6RSlMZQq9exah3lKA4snebkQycYjHo06g1cXYGFVqvJMBlw5eol3jn/DvNzU6TjUWWHZUriMMJayxtvvMHBAwcoipS/+Ku/5vHHT1OWFkYj2t89Q/1bL6Pv7BAkGfm//zC/9rlfx/ElwfM/xBpB+TunKQuBp2OUdHG1hy2G3Fq7jeMHiNEd8OMP+Lh+pHXzFwhc640Q39c8/8JXORn+FuOexNQy0sE6rrlFIAco28eVCtdxScsEv+bw3ecuEPp16i2ByTUIBykKtIaycHjllYs0JmaoRSFBYJHSorSuxNGURCoHUIxyy51dF2kDpMxQnuRrXz/Ly2fWOHVqEpuWWDy8QKNccB0fKTXKCVFuhPYjHC/E8bpVRVN4tLuzCNdF65DSVkq5jhuS5VX/rPYrOruxFldJpLCYMsPaAq32K8FFAaakLCuP5lA7FOUYY10uXVrHD2LOX1ylVu8SRy4lAunU0H4Hrz6BUU2UP4fy2wgdk5eK3IjK9sakjIfrpMMNFAO0HCNJwaQIU2DLkrLMcdR+ksvRSKUqATvl4GoPEJRl/iNfVikVm+sKS4n2DFor8gwKU1XZhQDtajxfYQqB6wQUZUJZGi5e3MDRHii4em2d82/dYvngMs32JAhBs1knqkesr99hbn4ZVzkEWiDzDQKd4K0eYVR/h42FJ+gsHiGxDcL2gzRmHiaoNT6gb/KzAtcPqvTeozo6BDlpUQd+NruZXwHXX+74FXD9dxAflVb7Ycfcffz7JbnfbzD9fnB797H3oux+2L3cDZLvvpcPA8/3o//+JGrUe8cKIWC7B606jBK4voa9tsrwh6+jb+8wnUjq/90fY+OQ8pEHabbbaO1SFjmbGxscOnQYbIlSgla7gxC2UtRFUlpDo9Wq+sU8l1arjbUlT37lG/T7e9TqMS+9/BKPPfZx8jzFcV1Go4QsK5iYmCLwAxYX53BdRZEX/OVff4VTJ44TBS7jpFIP7e3uUavVsRbCqAKAg0GfyAv4q7/8a+K4RlSTNBt17mzcQrsa19P0+33CoKoQ9vd20VKxtbWN5weEYUS9XqfWqBPuf/2FLzzBic82Iejj2wnWN+6QZDlzszPkeYofVD6Fw2HC6uptLIZut4WWAtdRJEmC5weUxiClIAx8tCNoNmLywvLSK68x1e3iepUH4vzCIntbG8T1OmG9iet6lHmBMZDngtW1FbrdFqasNunjdMzc4gLTM3MMhwkrKyvUaw2yNCPLxhgDcRTv991UAi9CVj6ctVodvHeRQrC5VqczOY2rNbUopFbzUFpRlBlJUnlh7u4O8YMaynEIfI9jxw7jevviObJSa33qG99kaXmJKKqEkyqRDokwgt6tDdTXX2R1qcVL/+hxHvztz/Gd57/N4x8/ydV3t0FEhP0bzK3+KXLmk9Qnlpmbm8X1QhylOXPmNeIooiwKrCm5dPEyw+GQtbVbBEGI7/v4vk+/36PZqjEzPYvvxdzauMX25g71eoOJyQmefeY5Dh89TKNR56WXXuT48WMgBZ7nEccxb731Fq7nMk5yAs/nyuUVmq0Ok60WN27cJIwiZmenaLZiDhw+wve/913m5uZwHIdLb1+k1+vx6U99mvWNdU6dPAECkrGh2a4opEq41Goh1oxwHJ8SiTAFrhuiZEXtPHvmLR5+9HGELSg2LiCXP4stc8K4zd7OLp12E/3KOcoy51x9A9exRLWYYbGLYyR52icd9RGOSxy7bE9rJl/dwmnG5L5LURRkWYFy3MqaREnqQeWr6Tiaer3OrZULSFuQDEdEXoiWGqE04zQBYXG1x872NoHvMhiM8L0Qz/Pp7e5Sb76nNi2wJqfeaHLy5EMICdZYpJC88/Y7OI5kfqGaS47jIeQ++0EYlKKiH4dh5atcGJRTVUtd7SCsRQgHpTWB7zPo7wEW13URSlDkBcloRBhFNOrVBi/LU8ZphpIViNzd26Neb1CWOfVGnV5vl2ajSZ5XIOTNN94kimKEEAwHA86+eRbt+jRbdUajyutycnIWISDPLEUGXiCJazUmutMsLsxRFCWuG9Lv71KUBYPBgDCMKUsoypIoirh08TK3b62zsLhArdbh289+k7npFlqA9qtqrtKazY1NtKvJyxJHewjEvmibwXE8pHKByuNUKQn7a4gxhrwoaDWabO/sVAmzbFyxAvKS6ZlZXnjhO5x5/VWOHTuG67q8ee4cCwtL6P2kohSSzKwgpcCVS/S2e0xNdxiNxowGu9QbDYIgolZv0Gi2OXhgBkOBsQrfbyKVqardymFxaZHezg5SCBrtJt/+9nd55JFHyVsa9fCDFA8sIe5sI9OM8vc/CSqklOB9+2WwAu8ffxZhJYEXUOQZkKMdaLcm2dre5o0XvsLS8Y//ROB69/q5/8UH37/PuXcD1/ev+YWBye4EZbqD3fAQG3XevPYSN969wNJcDVFk+9VqjbHVHkBrQaNWZzDYpdny0EJV3uLCIPcr+Xlh+Nb3rnNwYYJA55iyROkaZVmSFxlCKKyVXLrS53s/uMKdOxssH5wDFXDwwFGOnzhBmQ/QukZm6mg/Rqg60mniBk1K1UK6Xdy4hQ4nkf4Ujtcgqk9hVQsddgCN61fnWhkQ1iYJohZWRZR4KB1SjEcYK/C8EClditIirEBRUbS19rBIyvw9xnbJgYOzKDfmhRdXOXz0KJPTk6BbuPEUQX2WQroIHePpFqYESMnzPZQcI7MBRbKJKvo4NkWSY42sWAdWVi08wuD7HnmR7Vcr5b68tKAoK1Vjs79eV79HSVkYrr27RWmq54S1CoGL48n9z1pgrUDIlLLQpJnEyJy9foZRDq+/fg2lp5maXeD4ww+QJhCEEWEUMDk1SZ6O6A8GWAPCjNlZv0ItAHdjGXc0zfVT/5rmVJdMxrjBHEkRs3TssR8pTP/4+P3x8fn+trH3jrsbpN6bwvvB+aEO3B+0/jTxYfvYu18ftuf+aQHyR3nvw+7x/Z/X/eJXwPWXNP6uANdf1PXunij3y+Lc772flrJ0v+t9lPN/UthRQvFP/hPsrU3M869gn3+F4pmXyJ75AZNXVnFfP8+2K9lbnKA/2KXWaO1XLXyKLEe5lijwaDXbXLlyjUarw2g4JogC6s0mw6zqgez39+h2J8iynG53gsXFORrNGkePHCbwQ9J8xPPPf49me4KpqTl627s4jiTPRlUloSh58PgJdrc2Ge7uEPgOOzubxFGLP/nTP2F6ZpZ6s4kxFl97vHvxHZaX5jly7BCNxhQYRRzWcZwIhEuZjXAdD0owRY7JssrP0Y/Y6Q9xg4De7XWKrEQol8ceP41qbIMsKPtNmq0Gh44cqlR+baVmKnDAKqbnZui0a3gK8tEQVZYoz6+sDBSMxz3SJOWZZ55maXGeIGwgnYjtO6tYa/iTP/tTHv34YywuzOPFMW5YYzBIyJMxpTGUxuEHP/geU9Nd4jAi8CX1Vou43kQqh7fPnuOHL7/GzeurHD7yAHlZEAYhZWmwVlAWhrKwZHmClKKieHrXcByF75zACyMoCorhEMevsb0zIAybYB3Gac6X/vyvePD4SWwxxiEhyTN8z0dKlzxNEZQcOXIcx6nUGoWEra0dalGd8e6A4JlXeaMToP6zf8prb55jeXGJc2de5nf/4W9x5MRJinf+Au+t/5ENeYDbY4/V1VXm52b50hNPMDszjaMks9Mz7O3sEng+O70eDz/8MHEc89xzz7G0tESRDqnXQzrdDsOkYO32Nv3dTVzpMegPuLl6g8c//Smk47C+vsGxB4+xsbFGGEW8/c4FZmdn6HQ6BFGI70p62+vMzsxTlBkvv/QKCMnygYMUNmM47lNYwfrtW9SjGEcpinzMzRs3WD5wkLNnz/DW+bPcvHaDW2s9FhamcVSJxKM0CelwE61iwloLyoQkyfGDGsYKFheOENfrWKUx179HufxreEFAMjCEekha7KJfuYb26mSnTxBKye31O4SNkHI8Jhls4LmGJC1pNGKkK/HrdfTL18kXJtB+Hd+PsAaycUKaDBkOzoJKUP4suRXE8TxRfQblRSjPYZQneH4TpSSudkiHCZ7UCEfguj5JMsb3vCoJ41UiI5iSfJxQSgdEgdYCRwBlycJiVVktigxrDUr7YC15lmEpkdKAcTBCUhp47YdvsL1xh8DzEMLghQFSeyhZgbd0PK5o6UqRFznuvlDMaDTC1QF7ez2iOOLOnU1cXdFur717g9u31zl06BC9Xo9Wu02/P0AIiRSC2ZmFyptUK4LAY3p6gqnZmariUqQIBK5XRyrDF//vP8cal4OHpyq2haieEWk65lvffIbZ+QUazSZ+ENIfjpHC443XX6fRqFWJglu3eejhU4zzXbSqk+ztEIV9SuGDECRJgRQuYRwjpUNpJY7UKOVgRYkQlSo1ApT0QEBRZhRlTp5n6MBnNE4J/BjtekS1/eSC9hiNUtqtNt12jbgWsbm1RX8woNlq0h+MMMbiei5KuQjqvP3WbV78/oscP34UYwSuNuRZyc2b6/hejaeeepblpUO4XoDUEuFYxqMR1lQeummaIqWk1ekgFSgVszC/jHJGWBTGWnh3FZUV9P/e40S1GdzQw2xvwuwcOws+ng4oi5I7m7dApOxu7SCVR70Rc+Pcd5g/fhrXdX+qdXF/Mf3gt+5zuPOJohJm+jHsW635JT7GKnrrVxit7RFsTLDWf53jDy7g+zl5nleMAVVi7KjyXMYligu6EyG+U8PTOWiJsNVaI5Sl3vJ49NQigZORGXj6u2us37zJ4tIS1pRIVbXRdCbbtKYWeeDYMq3OPMJZRMUCL9Z0OqcYOE3qzTZe2MaqJo7fIFcQ+QGOCtjcWcUPavhewHDYI0/GCCurpIlq44ZNcquwIkKqJhkBbn2GUoaVSFJ9ChVO4kRTWK8Nfgc3rDHKBcJvgNdC+i1UrY1R08SNJVAhflhw6rHfwIsnCOIGyp+jHGfsbO/iOgZRZhTFbfJ8C5P2UGVaWZrZPfJ8hMGSFgLl1inyMQJLaUssJUI4ZEVBUZb4QUxZVq0IjqORUiL3k3fWlsB7BQvBxGxMvRkgBFgMxqQIWVntFEXFishKw3AQ8NxzZ3GDmN6u5q23b9GeWGKQprxz5TpSNmk2W7iuAmvI8hyTj6jXGuRZSjrYoKs0/sqjCDdh8zP/Gm8ixg06bG8ldKeOML14DOmH9/Zzumuwvh90fZiWyj3D3r8K+ouIe+2N71X8uRt4/6R7unvvfr/r3y/e+7yMMfe8hw+/9q+A6y9V/F0Drj8P2Hzv3w+bLHdnq+43oO+2qrmXENS9rn/3uXf/3J+lsgxAkmL++C9Q/+wfIY4dRh8/zLoHyUxMtjCJObDAtva4cXOd9kQX3/Oo9qEZvd0dTAlnz57H8zxq9RiKgtXbGzQ70wyGQyhSdne2efvty8wtLWOM5W+e/Aumpyv/PyNyoriBUg57e7uEvkcceVy6fIE4iAlqMYNRQr0WIRVoT9Nst9jp9Wi1OyTJgM2NHawRdDp1xuke1kie+873uHLtXY4cPYwX1UHBIBlRlCXPP/9dZmcXsRi056AcD+FWPpeO0qyv3WY0GDExM4lyXfK8shER4SZZmuNnk9xeu0Ic1jB4leKsMNxau0mrWcNzIUtzhNDEzRrDNEFISZoOKbIET/sU0mF2chFblBhSulOTxM0QJX22NrZo10MGgx5RqOkPhpx57TxXr7zNQw+fQjkFU5NNlJQEnsfmxirfeupZFhcWkbKkGTocf/AwaTrgwMFlitKS2xStHDxd+c8ZLHmWVjRQR2Pda6RZQTf+BALD9uYtanGA8AKMzXCURUqHUEO33WR6ZhLpOqgwIgy6SCEo0wQDOH6Nfn8bpUqGe7soFOMs5/q1mzS/e5a9TzzE4T/6zzFmj4dOn6YxNc3nf/N3OP/aeYL1b1Ne+BLvZjO89tYNTj/+KTwH9va2WTpwkKmZBeJGgyzPefHll5hZXGR58RBPPPFljhx9gOMPHQNRMD0zz+rabbqdCUyec/XSBR47/Rm6E3NIJ+Pg0mGGowHvXr3CiRMn8IMA7QVk2QjfDanXmiSDIf3dHkkiyBKBdg1ChGz3dhBC0Gm1GI9TikLQbrVp1ANMmbN+a4NaWKMz0eXdG+9y6uGTLM7MMn/wCP29bbQUeNJhc+MG5EMoh9xe2yJutiiVi3R9kE5VqcnHOMUueTlGpHu4Xova9K+xvrdC3J7Dygj9gzNgLd1/cJqVy+dwVcKo3yf2p7Beh0EGjVixM0jQnqB2fAn/+2s4no9t1CiKDKUVxoIf1hlnz2DZAHEIqSRaGiwFaToCBEK5KAHj8QjlOBgrSNIUT8sK/KYjAt/F83yksIyTBCklru8jrUUhKfLKFmIw7OF6MUJoCjNCOZUICJQoKUhGCYEfgxRVZdB1abdbtDo1gjisqKEGxsMhg707lYVWLa5oxbYgDptAwXA44Mn/5xvMzk3TaDbY29uj2ayjHcl43Gdqcpq52QWQktG48ofNiwzlOEhHkZVjlNaU1sH1I/wwYrS3w7A/RuHhaQ/lwvb2Ng8+eJTuRJ0wiLGlIs8z/P0q9tFjh8FKRsMMz1P82z/7PzlwaJGXXnyRS5cu86lPfZrJqQkKY4jDGrML82SjLXSZ43k+KIHjRexs7tKaWaQschxRIpXASoHjuFhhKNI+w501hPRwXIdkPCYKazhoYExZ5NXmOBliy5SitJRGsL29Q5qkfPeZ1zh6bAphMxanj2KLAjeoKMmuo8lTS56CEpqjR4/iaiiyFB3U0Y7HtXffZXZmConl9XPvsLC0ROhH3Lh2EyNDmq0a2hFo7eOHHsoJcJXCdw1+AOPMEAYRRZbjrt5BZjnf6mpmZiYY7u0RfvxRduY6vHHubaZmDuBGDXQYEtTrCAoyFRDokt2dVVoTi8S1OoURCCzKllghP3St/tF6Ch942bu+ca8V90fkyvdEnqxFUFAKSctzWX3rVWa2P0caX6bVUNhiTByFKFchrUIYgdSGsXUZjlIatSbGZJVnsoTClAilEEriaAdbwrgEz4nZ2k4JY5eJ6WlwNCUeYTwNfky3PYnnNQnqXayyKF1H6xhDQeAIHEpMWbC7t0Oj0cR1ItIsIcky/LCJkoIsH1VtIG6IUJIsH6PMgL3dLRzHJS8NKFA2QRQ5tijxPQ8rQzzXI88yBA7ab2Oty9rtIe2JZXTQBOmTZpVCvZU+OpzG+hM4jsTmIxwpsGbAN77+PL4wuOEujhhhkhHkY0SRIZUkLXK0AM8N2O0NuHTxMhPdLpL9ymppcaRDbsYIYcnSvOqRdhwcR4PN0Fpy9uKA7768yfEjE2BzlBAUVmGcHDN2EXbAD1/ucWeQMNltYYFxGnDx8m1KEXJjpUcpYm6s3ML3HObmDlUWepMz1OImjUaNdrtDUaaVgJMsieJpXC3Z3VrF263R2nqc3uEv0zv5RzhBTmY8DJLm9KM0Fh9Dt+ZQtvjAuKxoy39rvyhEJaH0t3/eG7vyHqO8er1nLXSv/aXdEDAUyOh9c+NntJX5KPvm997/sErse/H+/+9HZR/e77h77cs/yl77b/fqvwKuv1Tx/xfg+ou8p3uB35+Wf//z3OM9z00zzP/6BGKyA406Erh44TxRvUFcb+FoH2Mtc3PzRHG0v5nOscYQhiFvnjnDhQsX+NSnPk3gB1y/fo2XX3mVdrvD9MwUZVHRRKdnZwnCEO0olpeXmZqYBajUDx0fIaHT7dDtdJBKMjc7B7ISQ/ADn93dPYrS4ChNmma02x36/QGlKel2phHSoV5v4AcRZVGysLDIQydPEEUhQjoIqke0q32OHDrMjRvXaTabuK7GGMOwP+LMG2/iuT6tZoMwrIRctHaqKoUjIdyht7vHk1/8Hg89dJwzZ95mcrKDUqAdh7wwOK6HIz329ka8/voZnn/+eXzPZ2KiUwlWGIujXVzP41tPfZPJyQ6NVgPlBFVFxwlZXbnFrdu3OXr0MMIRaDeg0WiBLZjoNBmPRjTqDfK8JMsN9XrMg8cfAsDz1I+oT9OzsxhbYqzBD3ww0N/tU1rDN556ipnpGYIwQEpBYs6zvbVDoE6Q5Rm+65KmKW7QqPp+9oWVTFmSpBmeH7K5tU2zUScvRuztbRFFHoNRH8/XmDLH912KPOett85z6dJFPtaYwhum/FfdkhMnH+IP/4c/5PO/94/xohrjJGPCGzJ++d+gln6T539wht/+nc/j+wG319c4eHCZRrPF2q3brFy/gTGWUydP8cbrb3Dt6iV+/dd/jRdffJHA81lYmGd3d5eZ6Wmu31xhYmqaVneiUr2WCteT7O0NMMbnOy98nwePPwAiR7sGz4sQSFZXVhECPM9lnCZkWcbEZKvaiErJzes32Lyzwe2NymLp8pXLeDrg0sWrbG5tcvDgUtW3bQqajQa3bt/i9dfeYHF+gU6ny16/T2mh3WkyHAxJc8nE7BxKSpRUCCzjpI+0KWmWENY6YAry7RvIg5+iM9nBGkFeGMpnX8H3HMrPfoxcavKywFWANVW/m+NQFgbPdcjzAV7kI2tzOC9egAMzaO1gzT61VljS7BwgsOUSSsDe3oDxeEyj0aA0BldriqKkNCUCCPar+YHnk+c59XqNZDzE9dz9HueIZFQJ+0hHkhcG1w+QShLVaggUSmqgRAlvX0xJoWQlNnLzxk2arSZCSqyt5rEfhmjXxyLY3Nxirz8giny8IGaUFBSloFZvYssCY0ushdmZBVzPpSwKhBSEYUBRFERhDPvejFmWUG/UKPJK+Mj3okoZ2XEASeCHDAcDVlZW2NnpYZF89etf5cChg4xGA9qdNmEQoByJVII8z3nyq19haWmRMIqwFq69e53nnn2Oei1ia3OLB48/SKfdIY5jGo0GWZbx7LPPkyZjgihGyJx03IcyxdEBpdWEcYz2IhylGOz1fyR8g5D7Cs6GWhSx27uFdhSOE5GlBf29HfzAR2sP7bj4nofveaTjoqpmv/oqE50mSwenCWKNowOkIykZEQRN8tTgap+dnR2U0qyv9zh37jwXLp7l+PHjIAXWlrRazUroRjucPXuGEw8e5eqVy3ja46tff5qZ6S55nuK5If1+n7KErTt3aDYalNaiHF09d7WD2uohR2Mm//k/ZTgYsbZ2i3/xL/4lf/AHf8DxBx7A5JZ//h/8h/zDf/B5TJHjEOP6TRwEvuNjpcQPIqyo5pXE3he43n8Rve+X9z3PCogcwwsv/CVHd36PcGGLwvSoN+sUxlIaQxxVc8hREdublu+88A4L822ksjjaYgqHsrDU4gbjcQFWsbK+h5UapXLmD3WYnX8A6Wi0HxPGXTY2h0hd2SoNRwOk46EcD1PmlHlGNh5T5DnbW9tYql5OY2CcpCgJCInnVdY7OzvbBEHI7m4fx3EIw5A0S/cfixKlBKbIiKMQISR5XiBE5VtuTUHFgZUgHLSo84UvfInlA8tEkUtZZoRhE1NaBsMhRVFQFppGELC9sULg5wyHGxxcbhGHBZcvb7O2skMzLpEUGGu5fXuPJ5+8wKGDEcaUOI5gemaSanqI/T7tAiEsxlocpRGiUtPOsxyhwHcjSmMrpovN6bYCJKaicEuXbz57gZmZRQwFvb7g5toKS3MdCiP49rfeZDTy2draRakatUaLkyePE/g1RsmY4WhEGIbVPM9TfEdx48a7SKVBWByZsbZ2mU7ZpdU7xu1f+5fIg29TljnCicio44Vd/OYS7allkC6C8scKrvcqZryXiPmJA/peR9xjjmR/7FK+pX5MnMne5/iPEj+pgvlRqqz3oxf/rD/3Z41fAddfwvhlBq5w717Tn3aA3s2pV0r96Nh7VT5/2vgwesSPZbbu08d69zn3Ou/99JB7mjmnGeZ//iJ2nKIfWGa3t42jJLXWNMpxsUIQBB6OlhS5YWN9gy9+8Yt87JFHSNOUWhTRaLeZnZtn684Ws3NzlGVBt9tFCPDDgLIoUNpBKUmWjihyw3de+B6e56KkJc9KRkmCEAbHkVy9cpXLl99l+fAym5ubhGGIH4QEQbXBtBbK0pAkY3o7W+ztDdnc2uYHP3iZdmcSJeHtt9/m4MEDWGv2vUjhlZdfYXlpGaUk3YnJqrIjoCwLfB3guR7ffPppDh9aphZXtLw4jjG2oMhTRLyHq12+/+1LfPL0adrtaa5cPEej3sAiCMKIcZaycm0DpRTdbodHHvkYvh+ihEE5at+Kp8baygoHDx5idnYapEU7AaYcsbNzhweOHWRisrPvx1pRHrO0oDPRwhWSosgJoxghHa6+e5OZ+TnK0lCUBZ6rGWcp9WaTsiwQUqJUtZktssrUXUrBocOHaNRbaNerVHj1lUp0ZbzMzRs3aDRbBFGNwXDMeDSmKDL6e7tEtSba9fm3//b/YmF+nlajzpVLV5idmScZ5/ieX4HjfIy1Vf9js9Ui9Hw6b12n/09+i/jjJ3no1KM8cuo0rh/y3/73/4ZPf+5zFM/8p9zoOVy9nbGwuMji4gJWGHxP881vfpPl5WWMMVy8cIHr126QJGOOHDpAEFZWIEePPMDq2hppmhFHATdurLC1vU27O4FyNKs3rrOzc4e3z18EIZicbjI3NwWA70c4yv/RuGq321y+fIXNOzsszE9x4e0LaMfF1YLrN1fpbW/TqNc4eeokSGi36thC8uaZcxw/eYzOVJWQGA1HNJttOhMTfOe5ZymLgqtXr+OHEd3JKW7cvMk4k0xOz+AGAdIK8izDdSS2SFDlGDwXoSKcaBrz7tMMp44zyjTl/u87evUSwpaUf+80urPE5OQMAsnarZt4rkMtqiihtjTs9dfJ8xETjz6O/voZ9kJFJgS+RFDINwAAIABJREFUFzDo7+FoSTI+WwFZdRRhSqJGBz8ISJIE3/NIkhGu66GUQCqJKavNrkCSpil5kTEej9Buday1gjCIcRwXoRWIah4o7TIYjvBdj7I0GFsy6KecefNNlpcOYErD5ctX8L2g6pV9r1dTWJA+WZ6DkMRRTL1Rx/c12djw5b/4a7LMMjO7gKOqnk7HcfG8ANd16Q8GtFstjK1oX1hZUVdlleDp9/tg90WODFgrSUZDPNejLHIwllarRaPRptVusry8SKfTIgh8+v09BLC728P3K3A4MdGtqs9S4jiKTrtDs9FCSMNnP/NZtns7LB9YZnFxEX+/X3156SDjUUJzYpLpuWmE41AMtojCGIsiiCKMkeRZTpJm+H6A57lgFeNxWrU9SEWWrOMoF9dtIaRDVNMo5SFRWAPJaEiRZ7iev6/0u4ygYHJmAle3sMZHqEqZdWc74Wtf+zoPP/wIud0kGfd48aW3GQ37/MZvfBovDFDSYXVlhW63S5aNaTZrnHjwKBJDs9HEFJbZhYPMzHRxHcU4KUiznL29PnOz0/R6PZSqgJWjLY5UJErh7QwY//3TFEXJwYOH+O1jp0jW75Brxde/9jTNZoujRw5Rj0NcV2FFilIFYRzw1JN/zYMnHsLusxiklPdkVt4d96wg3Qe4Zk9Um3l54oPiTNVSI5HWMEqGqHdqVSI1HjMeCy5cXMN32wiR4/qWPC8I6x4HD3bwfY3WLsZKiiIjjHzGaYKUVbL01rbL1Ss9Diw+SG5cSuWxN8gIa13y0mV9c4AfTOJ5ksmpNmlakBeGUb9HLY4r/QXPpVZvEQQRxhqyLMNREtf1Ko/lsiTwA7SubK3G44xGo1klfcdjPN8jGQ0rEUJTUBhTJVOspSwLkiSh2WxQGovn+7japSi3efjhhwgCDykcitwihAZTIkWJkAVKbrO5/g6BO4ZigLQ5lLsoO+D27ZLt3gaLM00cDVoXoCwnTx1BOwWj0YAwdBHSUAmbS4qyRMhKoFE5VR+4MQZXuxhbUlKA8fdBeMrURIQpBUEYUhZgUbRqS0RRRr/fY3FhmtmZKfq7ltXb61xf6TG/uEgtbjC/uMzecIdWN+TmjRWOHDtOvVFnfX2deqNGFAbs9baJayFCKhyt8EWO1wtpbB7h3Y//NziT13Adn7SAevcAqn4YJ15kavkE6KgC3Rj4COw7eQ/m3nvby/cqlR+1gPO3Pq7vUxW+z971o1zzw9iN74/7VU/v/tlmvx3h54mfF4QL8f+9sOsvIn4FXP8dxHuT7xdRRb2b1vuLjI/KlX/v9VP1JfDhD4Af+16aYf6XJ6BVRxye55233qoql3Hllyaw5HmKKQpWVtaZmJxgcWFhX1DBRWKZWZhna2uHIq96R5YWl9javEOj1awEfMIQIRystXiupsgzVm6uVUBVC5595jmWDxzCDxzKIicKIzY2NulOtKA0eNpjbzDA8zzG40oQxpQFW9tbtJotzpw5w/KBA8zNzVWfEZY33zzLIw8/zNbWJnlR7Pu+apSU7GxvkRclRVFgjSHNErR2EFJw6PBhHFfjel5lN2Etg34fz/UQ0S5ZlvPo8b9PSV6pyvqaH776GlNTM4SBj+MImvUuX/7yE8wtTNFqN2i1mhVV0q3ok72dHbQWdDqV7cadzU027+zi6IIg0BSmQDoSz43J0hGj0QClHGqNmCRJqTUajNOqKhWFMdl4RJqlPP/c88zMzVOr1XFdHykVN27cpNupgNtrr7yCkpJ6vUaajQn8SgSov9dHBNdQjuKNF3e4ef0Ghw4fRQcB2WhI4HskgyG311aZmp/HWMPhQwd59tvfotNqEAYhtXoTIR0c5ZAnCX7gEkUNhKxEf9bfvkxndZuVf/abHDl5in/1r/5rXn3tTX7n87/JZz/1CZIX/4h8/S3qh3+bVrvNzZs3WFyaZ2+wx0R3gtnpWa5evcLW1iYPnzzB+YuX+MznPsOVSxc4fOgwa6trpOOM+flZ3rlwgTsbO9y+tU6z2WRt5SY7W5vMzs7QbNdotadxtELIjNXVmxw//hBXLl+j25lhnCVcuHCehYUFoqjG9vYOM1MdlKtRwqcsRrS7U6yurjA9Nclef49hMkRCRb8sUh44/gBu4JEkY1577Q0OHDiEVJrjx4/S6U5w5PARrl69xNREl6mZGf7mb57m4MFFotCrxq8U9HpblHnG7ZWbtLqzSOUwHifIZAs/niCeP4Xnu+z0tvB++7OMP3GYvcGA3tYWWWGZWjhKvVlnNOjT27iB51iEjVCqwA9cdDiF7aXUVnawcxN4bmUbJChIs/P71N6H8IKQ0iq0rqyNbt9eo9NsUJpKQGW31yMMY4yxJKMRQlgc7RDHVY+u42iCICDNMiwWIW3VO6YcRqMhrtaUWYFSAu1WGep6s7ZfBTY0Gw3qjRqO44KoLCeydIznBlhj0UqgpGCw12M8GuB6PocPHWZqagLHERibY8qqzzSMIgTg+z6Dfh8lJZ7vo4TAUu4/3yV+EFf2QOOM96DJV7/yNR544CijZMjqyirNRosgdH7ELMjSDCkdfC9Eaw/P8+n3B7zx+nkmJ6cZJaN9xWWH0bDqYVxZuU4truG4TkWPtBapBEpKXM/n2tUrFIWlO9HFFjmvvfoyceji+QHabZKMEkoDKF31nmq9/xlV1eOqfx3yUqH9AESJI8HYijUDVaIwyxKgZJymYCEdj6jVWrz0gzd58qtPMrcwyez0Elq7/PCHLyKEpTvfw7DL9164jBaGz3zmcRCVovTrr77O7OwsQgjG47T6zIOA8Thla6fHU998jodOHGNvt8cXvvAEM7OzzC3MMRoM+NpXv8Zrr5/hkUcfQylI0xRVFOiNbYa/9Tha7/eq/hd/iPPyOfjdz9Lvj/jd3/t9lKcoKcnSIbu9DZSrsMpla+Vdlg4cRGp/vyr9kZfQD66X9wGu+XMaOxJVn+vd19j/K8tSupMz3DmzRn14gLG+iVQ+ly7fpN1qU6/5GJMilcQPHZSyOFpTGjBGVjZuUmCEoDASxwlpdkM6EzGOyqh3JqjVOoyTjDCoYY3kO9/5LmVpadVrlEVBELgVO6DdZZQkeGGEVJq8MAhhKcscJaAsChztEHiadDwizbMK2BqL5waV72uaEvg+W5tbRGHE9vYOrXaHvMgpC4MQ1T3naYaVAu15WGO5c/s2O3traNejLMy+VRWEvmQ83OXW6lV8H7JsD2HGCDNGiapsLQwoC2Hd5cihadKsGmNSguMYlJOhhMTTVa9qWZhKLNLYqjdbKKxRjMcZxhh8z9sHOaDVPoCWBiozHFzfxZYlWV5WlGIpKG0PbIdrN1fZ2k7YuJMxOTtJf9Dj4594lHorxiKJ6y1mZ6cZDodMzsyjpKTT6XDp4js4StCdmmZjfY1GvYkpRhQ7Ke1bp/j+4n+E090k8iRJmhLFHQrVJOg+RNhcIu5MAe/5q/44cP3Qcfy+0foj4MoHabo/M3C9T/y0wPVnud5Pw1z8qPHzn/8r4PpLFX9XgOvPa2Xz/sn0YRmcn5Xb/1GA6PuB63uN4Xefc6/M1v0eYvcErs0a65GDIwUTE5OU1gAleZqipWQ0HDCxX8kBQavRIC9ysmSEEYJGq0syGJEXGbu9HslwwMzcHAa4fPEKF96+SBRGNGs1hDQ0m220q9AuPHjsOHG9SZL0gRLfC5ifX6IoRhSjjNFgSLPVRjqSZDwiTcdYW1bepzpgZnqK2blp4lrEOE3odrocO3aMoshptZu4rkuWFvz5l75MFIbMzc2gtc9TT32TXm+bw0cOVH0+UYCQij/7s/+DiYlJfNenKErWb6/T6XYQ8S5KKrbWJHEjwHUdas0Wg/6QIi+5tXqdOPR48qtP8+CJwywfmMPagiQZ4vo1lFLs7myRjoaEUWUZs9vfRUmBdkI8V6O1j1Iu2gkYDMeEkcaWObW4hZUW5ccVMUhUvpi1OCb0HDa3tnj8k6c5/84VirwgjutI5dBqtRkOhxTG4KpK3TnLM7oTXW5cv171JeUlcdhC2gna9WUeeeTRylPPCsb9OySDIVt3NjmwuIgThUglCXyPj33sFK1mTJYPWd+4xeb2HTwtiCKHZDhGCJfz59+hVq8zfWubzW7EE7tXeOzxT/HYx/89NrY2CVzD1/6n/5jjvMaw8SjfeelVtNYcPLRMXiQ0Wk2G/QGmKLl65QqnT3+CNBvx2OlPUpiCTqvOm2+8xSdPn+bs2XM06jUeOnkc328y6g+pRyE13ycZ7DIzP4ujoV6boNVu0KxNszB/kJ2dLdrtOoPRJmHYZG1thXa7RRQ1+Pa3nkE7sLm1zcLcIQIftnf7zM7MMBoOSfOUWq3O9uYWo2SHmdkuUVzHSofd3h5LC8v84MVXWFw+hFIlruuhHcn5c29y7IFDBFHMI6c+gaNLejubGCXxAo/QD3GkYmtjnUZrGteDohigbcn4ziq9+nEcVWXMy0Jigho1bRjcus7U/AHupD6DQZ965OLbHqPdVYLwADAmzxMmpo8xmJ2g/tVXKWa7OH6IVJCMBxhzCWMsyn0IoVxA0R/0KfKUVqNOb2eL0TjDD/xKTEk5lfCYNFgLo2FVDQKFo1yMMRRFBhiyPEWJSiU89H1MWaIdD0tJb2+DMIhwPQ8pBZ7rIoRAa0Wa5khHYU2BKQtMAbdvr7G2skKjHhH6LkoKlJDs7u7QaASVaJpSCOkQ1+rs9XcZDYZYLFrrqvra71MUKWk63t88K26tVb2yjWaL3d1dsjxlZnqeKAoJQo84ihkORrjaMOjvgLV4rsfm5m7VI4dgMBgiULzy8lmOHz/B6toqU9MTlRWIdinyEt93CIOIWrPyex2OKj9S5UiUcmhEEV//2jfodlpMtFvMzS9SFjuEfsi58ytsb95h6cAhVm+v0263KzEeKRFSIpSkLDK8YBo3iLAyJ8tGXDh3ns7EBFmWopSgyBPG432atRfg+wHCCJ566hu42uPRx44xMRFR5JJaPWJpaY5mq4bj99CO5hMf+zzHjx5iOOgRhHWyzDI7O8twOODLf/5lDh0+jO+FIAW7gwHdiUmOHD2J7ztoR/DwqUeZ2E8AudrhgaMPsLOzy3A0RkmJdhycvCC5dI3/8swLzM7MIYSk/6VvEIYh9vc/hx/Vkb6HH/tYaXBNi0ajSVFqHD3JZC3lwsUrTC8e/EBV6KPERwWuP1IVvhdwFdVfQjpYYGXvVaYvfQZRv8POYIVDRw4T1QuEKMFoXLfGbg8wHhVAseQmJUkcwCEtLGXhIWSNZriABfI0ww2nKcYZyTDBcwO2tjZpNeu0Ow2GewkLswsM9rbwPHB0BNJhbzjC9UNcXSWHTFFRtC0WoSSQY4oc163mR5KM+d//tz/m7Nk3OXzkCFHgE0fxvhvAdDXvtcWYyhZHSKjFNW7cXCGMIqRS+FrTrB/E0zFRFJOXI7RbMtzbZn3tBp1miLApr796izioE3j6/2XvzZ7kOtMzv9+3nP3kVkvWlgVUoQAQAHc2u8lexN6k0Uh22DFhRThkX/jCEQ5rLuY/cYQvbMXYkmzFzKhb01K3NC1Pa9zi0s2dzRUACWIjUEDta+6ZZ/2OL06BTVEkG6TY7hm734qMROb5zqmThe/keZ/vfZ/nYX9/m9FogGMrNBrh9MmShEwmSGkhcx9bekcLzim+75f0BDQmF2QmQSuH0TBhf6/HweEu9foExhgc14YCTJzjeg5ZkSCFS545GMZQgLYsoiRB6IC13W3evSJpjyVJMcnGxi1Q8OB9XyQaFtQmPSqVGWxrmmvXbtBqLRKnKb1ulzzPmJ2ZJktTpO3TqFdYX7tNHg+YOjjDyL+F/tL/zfRkBUQfcgvt1omKkInWF6jPrpAAUiiUKBCi+DVw/RTvfZr4NXC9y/G/Bq7/+LgDWu9WAv8XHefDPfMfNe4Xtfx+3Huf9nw+7uK8mxbjD45//zlJyf/ln0O9wnoaI/SYyuQcaaEAiet6KKno9wcoleIFHlmW0zlsY7KMiekJbNenMAVxNML3PPwwZGJ6GkHOsH/A8vIJMClFnqFdmywX1BsNqtUaU1MzuK7Dwd4eL/z0Wc6dOUtuEjITE4/HTNTr7OxsMjFZY9DtUwl8TJaVpt95SnWqieeHtA87/Nm/+jPOnT7DaNCmWvUZjocoS5PmBse2CH2fc/fdj+V6CGGIooTZ2QUqlRBL27QPO1AYVk4sMzc7j3QUge8xHAxwvQBpKxQ+MrKQWY7jeEDG9NQUcZwwGg2ZnZ2lNTfDQmueMKwwHgxwbZvCKISAH/7w/yJJBdWaD8LC8R3GUR/fcfnJM0+ysDDPOBqRJBEi7VPkBefPXyZOE6SEbDxk1O8iTE6tWiPPDJlJEbkhLXJaC8eQyYBhr43JSgEcoQSWYxGGFcJKFa0EvU6bRmOaJ5/8Ca1Wi/FQYasGRVFg2Q6H+zvYyuA6IVJp5lqLaNdHFJoiTTnc2zhSVBU4dp2JRg3X0dxe3eH8G6usbW5x+p4lkmTIxdfPc2K9w6V/8jhtr8a16zdZObFM+/XvcMa8xLlwi6L1dYLJFqLIOHfPKZ55+imOHTuOKDTddpsL59/k8a9+DaM0g26bjdVN9ncPCcMKJ87ei1SwtDSL6zsYoXj2ued49LFHmF9cIGw0aDTnGUYjsiTCczQ331vj0qU3mJ9rsruzx/raBp7jUvUdKn7ApYuXWFtb58tf/gpvnD/PE9/6Fm++/jIyG2DpOrv7+yyfPEVrYZEsMcRRxMqJ09y4dpO1mzfpHfSYbkzjeCFLS8cZD3usrW1w5dJVbly7wWic8NAXHiONOmzt3GJ6ugF5hpIFtlUt/RFVytZ7a1RnZ1GOAyik9mDrFcLH/3v86gJhMMXocAPfqTKORvj1EARUbMnNSz9hvnWM9qggKyRp3MV2FTmC2vQMdmMGMcixrq5RLE2TJgmBW2EUXTjq8LgHW9tEwx6u42I5AUZIPNctBdpMgef7IBRZnrN5+yZFMuJwe4181GE03iOJSgsny/UQykeLAkGOwJAmCVJICgkChW25ZFkpgqSVTW7Kls7MGOSRBYgUCqVstncG/NVf/4DHv/IIltYc7PfxKiHtTp9qrYYxZSVUCIWlbUbDEUoKPAeU1Hh+FUmBlgV+2EDpUok3iiK+//2/4De+8U0OD3bQMkORMzE5h5SCNEsoTI4feKWthzEUFCRpgpYpmFK9t8hzJhqTLJ8+gSBlbr6J0BbIUnn84vmL2LbP66+9zvPPP8uZe04T+C6YgjwxKGWVYk6nT3Nr9QbzC4uMoox4NCQ3O1jKY2p6hixOuX1rnYWFReIsw6QR2naQ2sZyfMajLlAQjWMC2yYbdKhNTqFsH6lthADH1ZhUEY3HWLaDKRQzkyGtpRYzC8fRdgXP9+n3Djg8OGB+fgEjdygweNYxtKMJqw2k1BQF/OhH/55mcxbXC4iTnErFw9KlMJwoDJ5fkKURQRDS7uxj8hSN4k/+j3+FG1ZoNqc5e88Kjltyrytvv4efGWb/4H/g1Okz7O4dsv7H3yMIawT/5Tf413/6Z/zFd7/HN7/xNdJ4SGrGKDcgzjOcAOwi5srV9zh+4hRClWJin/k2/OF7+gf+nb1S5hvWY/k/uE9LUqQRRIWFK/q89dS/Qc6k1Ne/ShasohyJFgrrSFMizRK0Ldk/6NDuDKnWGqSxTbcnqDZq9Ptj4nFGGGgKOyOLu7QPe3geSN8jGXdJh/uM+tvMLzRwbYPvFRREIEvJaakV0WAXzzIkUZ+3r6xTxBH5aB/bKY6UkDOKLGV/ax+KEYoUgSHJClZWTrK8fIw8iaEw5HlKp72PbUv2dttUQo/xuM+g2wUVMDc7xeHOBoGjiZKILI8QytAfdsmyFJMbon6fWq2C0gVKF0eq+TGOY7hxq83FS/vce2YCIwWjOOaFF9qIIqZRr3Gwv4O2SmsaZEGapRSAbVtkaYopQMsC5RaM4yovvXyblVPHUHpAmhRIbSFMRm4HOFIyHBW8dOEGM40pHFswGOb8ux+d5/iCx2R1HpEPOHOyxey0RaVS4dzZh8hzhRd6SFW28RoTU69XsGyLq9fKTp5L715haqpJt99nYrKKrTW7O+tMJS2qeZPB7/zPbG6u43gax/HIRZ9ROoVdPUNr5SEKAQrKFuE7Te/Fzx/vMys/NMdNUdxx+3l/+J1Bf6/48YHnj7tM7izSWB8AruJDj48C03dTTPp0qr0/f/1RefAvyt0/7hifX4h/dPHsVxG/Bq6/wvi8Jsxnmcx3xt+pqn7UudzZ9nm3IN/tuQEQJ+T/8s8R9SqHVYeJmSbarpYG5pT2Ep1Ol8nJyaPEssCyHHrdLj/9yU9ZWj7OOE548sknWV5aYmIipN/v43g+ruPjewFSSsajEcPhkJdeeZnlE8tE0QitYDQesLp6EyE0X/zSl/nx3z3NMM44tnIaqR16/T4TE5MIAYWSZQtvklCt1eh0+9iWhyjg3Xcv8a1vfoMsz3j38hrjOKd1bKlU4kSglWKiMVF6VVqaYa/D/t4ux4+1sLUgSVPy3PDWmxcAyeUrlzFZRr1epdGYYDyO2Lk94uLPrjI5MclgHON6VZSWJHFMvVFnfna29Gp0ffxKhShNqVRr9HsjhCxwHJt77rmH3KQc7B2wu7PPzPQEvueQRDlz81OElQquG+AHFaJRDEKzsLDI5PQ0ruviuT5SKmzbIooSxuMIYXJur67SWj6OARzXQdkO0tJH4i6aIk/odnu8+PxLvHfjJkvLKziOw9LSEpVKgOs5KKv0fczz7KgyG9PpdpicmmQUDcnzlCxL0ZZAKYmQitEoYr9ziCk0JrFoH3SYbIS0luZ57dXXmZmew7u1S5xnXPjKPbz72jOcEueZ2/m3nAx30V6DQ+skg0jy4gsv8YUvPMKF8xep1mtMTk0h0Vy+coUnvvENLr5ziUF/xOLCMa5evUEQBkxM1glDjyxLONjfJ0sNr77yOk98/esMBgPAEEUxYVhBCIsrly4zPTXN3sE+teoUm1trrJyax3EtJD5G5HhBwNziArVGHWTBu5eu4Tiaxx/7AqPRYcnJsiQTzWmUa6Ndi2uXr5AkCc3mLAsLi7z+xltkueG9mzcJQ588S3jrwlXOnL2XM/eeIS9S/MCl39nl+ImTCO3i+lWUhJwCgWA8HNA9PKC1tMJoHOP5IUp7ZPtXGLotqrOnShD1vacZvfwW8tF78bwq8dAQ+nVm5k+QFwFGWDRbx8h6u7QPdxBEVKemORzl6OUl/L95kWx2ikwKLKUYxxcxJsfzHgQEo/GAWrVCbkpgHcURjuujbZfMFEcKp6XidNbfoRpIsDR5bhBYmCzh8rvn8R0HZZXgMMvgJ8+8yFNPPscjj9xPIQRoC+345GlCnhuUUkffkSU/K45SssxgTIFlpXz961/Hsxvcvr3F9RtXWVo6ThzFBIGPZSlGo2FJLkS+jzfSJEZZNkIq4mhMHMc4rstg0CXPUzzX5ey5s0hSwkqA1BZoGyVK+6jRUVU0GidEUcQ4inBdF6U0luMhpE2aGQajGMtxcByLXq+D57kIpSkQ5EnMX/31D1ASvvzVLzPRqNJsTmGKAks7dLtDlDBceucSG1tbPPb4V9COi+uHaGUzHu2jVQzCotvvsnjsBEIqLly4yNLyMRCCQggKkxOPRlhHyui261GZbCKFQ5yNENJga4vx0KAVaNsiSVOEkLh+BccNiJMEY3KEBMdxqNUnyAtBWmwgpaZ/6OH7HuNxxOFBh0olpLXYolIJcV235O06GgR4vkuaxXS73VLfQCkqlTpFrgkrIfc9cD+txRae45BEEWs311FKUm33UUmG/L2vcenymziu4t7bHcIw4NaZJf7wD/83nnjiCc7eey/VSp3AVWTRmJ2tW2RRF9tyWVvfYGVlBaEsDL8k4PohH9e/P+5IlAjNzQuv8sJTP2TPWuOEfoBwfJI02MQLPAbDIZZt47g+SZpQqzbwHBelHW7f7vB3z13k4HCXM6cWmai7mKKLSQYU+Zh6NSBPOyTxHpYY4FoRlUCBichHHaQZQT6gSPvEg33y0T5Z3GbQ3cOWGc88+SyDw1UWZhUmH/Ljv32SYXcPaQ7oHtwi8BVZ2iONxrz8/Bs88sAyljik016nyAYoEkQekccjQl9jiowgrJEVNm59glE0xHEtsiwlz8G2PCgKXNum3ekxHMZ4fgAiozBDlMzQso+lQQnB1GSVE0uTmKKPkj5KBbhewEyzhpIFtUqIQCOVpiBGSRuJRWpSjEyxbYcskwgU1YbLyZVZPBdELnDdgDSLcYIKeTEmThKiqMLarS79YcaVK5s0Z+ZYOTVPoZsMY4sXfnaRta0O7169zenTp4iijHffvUJjokaW50TjGCkVb7/zNibPWWhOEEcxtVoDZdmgJFokmHyAn9pMte+n/e3/iaG4xcREhYIcz7WJ4llWznyD2eOPUHhNjHQQRXoXc/WuJvRn2i3/COB6t3G3ufTdAtc7+fOH7XI+nHPfrbrw5xufNxD+fyd+DVx/RXE3HNfPo43go6qyn9R28VGrP3eM4T/r+Xxa4Pt+m0hRUBy1CueBR7umaUzPIZSDljAcDul0OkxPN0s/QgRRnJTtP8awu71NUClvHi+8+ALTU5MEno0fBmjbxbIsbtxcpdGoIYUgDANOrJxkNCzY29nHdR0Cv8r1q7dYXVulUW/gBQHnz5/nzNlzREeJZZplvPLiK0zPNCkKcF0PkKWaaWpIs4Rji4ukecLk1AQ3bt3mytVLLB6fJwhcikJDUYLXTq+N55e2HPV6jaLIUVpgORrLshn0R8zPL3BscQGtNUmWYNkWtu1w9fJVzr/5Bl994ms4rkeW5ozHQxzbJstSRsMhWtskWYK0yvbJTqeL63ikWYIpCrY2t7Adm+WlU/Q6PYQ0KFlQqU5gyCgQpFnJpXnp5Z/RHwxozk4xGg2phtWjlkyBZWuSJMHzPBClHcg4i0vBjrRSCZGwAAAgAElEQVRskVTaIk5StNbYulRuXV4+wYmVErQ6dqkWvLe/g/a3yYoekhqj0RDfD9DawnZd0iwDY/B8F6UVUkkcz8d2XA72DmnONhGFotse0O0csre3xfETS8zNtli/vcHJW7u8/VtnODd3hd+au05rdoqhvchfP3ud1JpgMIwZDcfMzy8wGo957dXXWFgs7ZI8x8N2beIs4eTKSSrVGo6ycF2XpeXj/N3f/ZiTJ1awtKY/HLF68xYSydzCAmEYsL29RbM5w/Vr13n55Vf5yuOPc/PmDfqDHidPnmZ19Sbd7gEL84s89+wrNGcmybIM27bRloVlaYKgwtmzp0jiGNd3sJRGOy6ZAcu20FpyvLVIr9djZ3uXW6u3ePChhwirFbRl8e47F5msV5lutmi15tG2JAxd6rUK9UpIfxRRIJBClMlVnqKUxrF89vc3mJ1v8d6NVaamZyhMDskQZSLyiQdo7+9SfeltnFyQf+1hPCfAtR02b6/iT0ywsbaJ6/rc3txhohIgZUESdemPRswfO81Ea5nB1gH2+eukkxUsx8LxHkHIe0jTFM/zCCsVdvf2kIDWijjJjnijPxe60Uoz7LdxLEGaJoS1OlJaUGiKwvDu5ctI7HLxxfPZP+hw/30P8uiXHsOYFG1rlFYIodBCIKWiKAxpmpHlhv3dXYKgxs9eeZ233nqLpeVJpAAlLbzAZm5hCikkgR8QReP3vRdNAUpZ7/M+XdfFdX1ykyNFaRARJ3HJcRcC3y+Vf7M4whiB51ewbY/r164yOTlBURR4no/juCglcR0P27LJ84wkzbly9Tq1ep3mzAxSa6QocCyNlIL1zS0cx+ON117jq1/5CmfPnSMIAiYnJkvFa60YDkd4nke/22Fv74AbN1bZ29+jtdhCWRrPDynyhGTcBWFRrVSxbA+lNUtLx8prVSi0lBR5wsWLb7OwsMBfff/7nDx1GqFtyA2FKCsfcZTi2T7KKrmISZqBkCRZVl5TvS71ep3BYAgFJHGC4zikZgMpJaGzTBRHKKXZ2z9Aa0W1WiE3BXme893vfpeHHnqAJImI41LtvD8Y4HkuSikunH+bt9++zNTMJH7FJ4ki0iTm+Z88h0DTWlzA3tpDpRnrX7yHubkm2hIEz13AGMOrjbLF/fGvfJHdvT3SNKcSOAwGQ6Ynq7QPd0mM4lhrntu3bjI3N09OqS78ae6X79+379Sp7nQtfWDcHeCqvvQPQYXEYJCYQmI6O7z60lM8/NiX2eFp5nZ+E8vSJHofIUpBuyROSDKwlE3BGCNjEgpWjs1z8ngVV0TIPIMsw+Q5w0HMaJDg2gZZ5Iijqn+epQgDZCNEkWLpgiwdMh62iQYdiiLG0mCrgvm5kHtONJHFmDwpGA8MS8caBG5GJXAQRYZrg5KCaNRjsu5giSGWBbJIydOI9sEujiURIiZNxgxHQxzbRWofW8JoMCTPCny/itCCQfcQLQVBWKXWmMRxNEoaTJ5isgJZ9N+vDCppEEWCJ6uQQZHH1BsFhbBwHEiTAbZjYUgoACU0UmoyA8r1EUc5AEITxX2UMgihwEhM2T/A/iF4lkRIiyRXTNRD+lHExsYh4HPp0k32uxE3bm5QqTaQ2mV+oUUSjzk46PDAQw9Rb9TwfQ+tNNs727iOw9z8DGk8Jk0zer0+juvgBy6uLiiiMY3bD3P42J/grKyVavBS4tiln7UX1Cm0zfX1NSrT09ieQ0lu/+T5au4qL/z8gOvdUOY+mHt++L27prd96PUnbfvgOX04T75T/f2onPzD+fwHfVw/Svj146IoflmA+Jcbvwauv+L4vIDrJ/XP31nZ+TgF34+KD64OfZoL4fOIj+K4ZoGDOV6jOjlHbgqSeIxj24RByFNPPcPM7CwmT8rECEOve8ji4hyW7RFWq9x33734noPveERRgnYcjMmpVEq7g/FohOf5jKOIMKzhBw5SplAYWq1FVs6eplLxaFQD7jt3imjYxbM1tUYdgaDfHTEzPUng+1hSs7m+zbPPPMfy8hJFUbbMDMcDRqMh9z34MA8/8gieGyCFBgTbW9sEvofj2uQmx3H9Upo+DOgPRmjLkGclN3Tt9i0mp6vUKnXiJCasVsCA5Ri+9q2vEicpxqQM2m2Cah1jMrI84Yc//Btu3ljlgfvPkSQJYRiyv7PH/u4uQijiccYzT/8U17WZmm3x7374w9Jr9eQyyg7odrpkec7E5CSIgtOn7yGsBCgLPLfkCu7u7GA7GihVE6UCO6zg2VbZrghoy8XSNiY3bG9sE3ghe7v7/OVffJ+Tp06RmQRlS/rdLnE6ptmcZiSfB32Iw9mytSoz2LaPtq2Sj+h79LtdgqDKaBSjLI9ud0i/M2Dj9hZaCyy74LB9wHzrGNPTTf7Dj56iNohoThdUv/QOioxh/VGefWuDzqjgW9/6TUbDMabI6fcOOXXyBLYbcPbMWdI0460L5zl7+hRCF4T1AACtJNevXUIIg9Ia23IwmaHT6VGp1thYX2dhrsnW7j5TU6XIU7M5y87uHo8++jAmT9nb3eX+B+7njTde48yZs1TCKS69c4XjSy2i0QgtFe9eusTxY4sIUWDZgjCw6XQiKtUG7924hutVybOCZDSkSCO0ranVquSFYWnpOE8/9RPCSsjs7CyWhkYt4Pxb5zFFSnNmEttSRP0+b755kaXlJfJ0TBq1yQsbxxElMCxs8mLAcNDn+NIKaZZjO4okN4iNVxnPPMHM7BTFi2+jtE3/kXtQQrK3fY16A9ACmWd4jk9z7gQHw5xoPMKM28g8w+SKVDroR+6HjQO8S6tEFRscF0srbMsijlOUdtFKY1saKRSW4yNMWqpM+y7j0QglS+uLymSLQSzYvnUbrTRra9sgFb1xxtbOkK31HZIkYfnkMpajEMoglWY06CDJMXEE0qIocgoMUiqksKhUAnq9Ma7jU2/UCN0qgR8yjkcIBVKV6qdaWyRJjCDHmBzbcbFt70gczWI8iojS0uu1VBQueUjlYoVDmuaYvCBJMwK/zu7OAXu7u0xNzWJMgevYpElCFMfl/LNdkiRFCMjSnGOLLaSQGJMhOOKfmZzxOCrVgP2A9u4hrcXjrK2t0+0POP/GBVZOrLC1tQGigCLj6nu3efvtS/ze7/1XmDxh2O9gexY5BSazWL+1xdbmKpWwiuN55CbFkCCki1QlUFYSmrPzSCE4cbyF71gkSQIkjKIC2wrptjskyQCAwWiA53vYjkOWjsnTCFtCEiWYDAK/5BFLBJnYwuQ5mnnyPMdxXIKggu+7SCkYDkfUqhW0VthWqUK7u9Pm9q1tlpZWiOKY0XjA88+/wNkz91Jp1LBdhZICR1ns7+xz4Z0LPProIzibu8g049KJExw7tkSajhE/fgmtBSf++X/HmXuX8ULF7Nw88/PzGKGwbBdBgVYCuzKJqyWvvvhsyTV3A/iUwPVOfNjy4245rhKDERIKxc/+9m/Y3L7Og1/4EqPeFpWZCwTXf4/MW8UwBFMu1Ew0G2gJWkCcSl59fYN61WK26SNFRJIl4ChMEtPuDtHaIvAzpBFIWVCQYVmKPC8XDIzJS2X7PEFbCs8PsV0HQY7MU5RKUCgEYNkpzdkA185wLIXv1NGWpDA5pohpLdQJfUmRpaXXsSgoTEa3e0i14pMmfZTMsGRGkY0R+YjO7iqNqs1w2C1Vi10baWJGgz6D0ZgkMwiT0u22SdOCf/u9Fzi5NIkb+EdqvwaNxRvnb5MVKbXGJLFJeOn5K8zNzoJJ32+1FtJHkJBlMdqq8+MnL7AwN4nSMRK75MTaNkkMSBiMY26uJtzcvM3yzDw3bnd54eU3OXeyxTuXN6hPTaOdkP32mBMrS9x/3zlarTmWji0wNdHgvnsfoFaf4vbt2yweW6TbOcT1PAI/pFavIqWgfdij1x+ysDCPkgbXEvTaBwQ3T5CeeIf+8aewXcm1K+9RDetE4wwlHEyaMIozsALC6jEcuwp8PHC9k1f+Miuuasmg7s2R4Ucc8TN2J35Si/CHt33avP6TaH53c4z3/6YfONbdfc5fV1z/o4r/VIAr/ONahj+88vJRjw+O+/C+H9XGcGfbB5/vjPm4c/+wNc8HhZ0+7pw+8XMVpfdoFkfkf/J9Dn/jYfrDsp3MAJaySNNS7GNmZrZMTlwPaQRpFLO1uc0winnhxVdZX7vBVKOCxJCakJuraywuLKCEJM8NSVJQn6gCGb7nkuYxQmT4to1tu+y3ezhKIoDBYMAoiqjVS/uGeDzGdSyOHV/AOAJjFKurmyzMzjG/0OQHP/gP3Hf/mSM+TB3PrZLFw7Ltx7FJojEGQ7XiMxz0OGx3CcM6BaWaoACyOCUZG27fWmeqOU0Q+jiehyU1tnbI04KfvfIaJx7TCK9PcugTBhWQGs/SJNEIx9YcW1xgsdXCD1wcLyBLc9658CZKGiYmG+R5QlGknDl7GpPlPPDgOWZmm6VNQDrC9RSV+hRpDkWecLC3TRCGaLs8ljQpE415LMcgZYUk1YR1B5WXpvS+7zMYjbH9kG7nkKl6lXa7zfrWDksrC8zNzTHRqKF0KaFfrUwhpEZqm1ReQypFe72BK10GgwFetVSLFQUc7B0wOTFFoUp7nXjYhyyhyBM836fZnMZxHJqzTaJoSBInzMzPMbN9Ff5ZBzN5DpoPcn11jYICk6QUQrOwMM36+ianzp5B+YrLb11gbfUWtzbXefDec9y6fZNOp0Nzcgopy267ielJBqOYWmOScTQmN4KpqWk2NzY5eeoUcZbSai2AimnOLEEm2N+9QmNymqAalC15owHLS3N4gU+1Pg3Cpl6fxGtUaR8csji/SGc0ZL/XJU2gyCRvvPoqtqUplM301BxxlPLTnz7Hwf4hK2fPURioVBp0xyPm5+psbOwxWZukUbEo7AoLSy0WFucQRcp4MKTf62E5NYKKR5IluE4FIVyUgWvvvEVzZhIVzJJnGwTuHBRDsrSP7cyQ7pynsvIY7byK99rVkjv5zccZjQc0ag0uv3udxemTaB2zvX0FWxY0Zs/RnJunM2jjWRmj9gaV+jHCiRmGDz2IyjPcJ18nnW2QA1opLK1Ix0MsyyIx5XdPNu4h3Cq2F5Rg2rIQGIoswxiD79gErmavs8d862Fee+sqUhe8994NHM9me2uHB+87RZLEgM2RKwW27RDFGZbjI6XA1pIsLSt/eZFDYfHGa6/jew4zi01QEqmsI+9dizjugoDclFUKIV3G8ZgsizAmPfKRzfBdn/FwRJokvPzyiywvnwRKz15jMmxH4do+eZxy5cplzl+4iFSCpaXjpHlCnGYUSFzHx+QpSTzi6qUr1JtN0iTBIkdkMd3DbTyvhjzydB0O+zTqFZoLx7l0+U3evXQBC4u5hTkmp6aoVKqEQQUhFK25eWq1OoPhkKmZCRzPol6fROuQZ578MSdPNphoCOr1eXJRYLkuQkyzsbnG1PQUQoIR79MZsTyH0TiiHpZz7Oknn6IaBjSbE2QmxQtDhr0heTZCa4sizXD8kKxQjMc5Vy5dwfUtgqBciJROh63NLdJRlVtrmyjtUK9XybOY4WhYimiZjGq1tGLKEsPld95lbnaa1954h9mZOdZurtLpHPKFLz5MNaigKTB5SprEHFs+xomlFo5XIG7vYmWG7a/ej9QwilIar1zCIEi//QDGaNJE02wuopSNNCPi+JDxuM/29gETlQlS7bK7fQPPhunWCfLsH4LLD0dxRNb7AH0QcQcP/Jwk+PMYCmTTIJf/IajIpQQU2iRMzc7w3qtP8u3/4l8wMrC++9d4jkVl/+sQbKIdheOHmNQQx0Ms22P/MOHC27eIhwcsLS5APiL0XYpcom1FYJWgtcwxNJkZlmAyF2gNhREo6ZKmIxzXIc8UGIMoSv64KVIKJ0EZjYxBO5Ioj7CkjRSS3qCNwBzRHlIkkGYJlmNhigIpAZETBDaIlCTNUUpiWRqKBFN0UEVCnkZ4jkDbESYtjirfgsCtYJKMwLXY3jykOV3jgXuXKWSOFBYmBy01piioTfp4joPSBaOxoH0YUavXqTVc0myMlhaWXbbLC2ljcugd7hI2alQclzROUXZGGhkggFxR92zCRpW9A8E46dLrtBGWiz/RpJCC5ZUTbO/uMzvXojA5S8uLCFUQBhP0ugnt3h5+1S/dACyXJMvwg4D1jXVmZ1tcvnyTWsWh0SgV/ikybCsjGAXY7Vl2v/pHtHt72HVJc7ZJza/jux65KEiSMZGcRwUnaS6eRihBcWcifuRDgCgXmMTRBC433Xnngz+mXGD7wONuoKsMBeLDoFWI0mv7Y/b5cEHn4/ioH3wNP899f1ER6MMA+BfZYX4ST/bj4qPy9k+uFAMU7z9zl3/fX3X8Grj+RxCfx4rH3RDGP+v53BXQ/Az7fPIBQUhBPoow//v3eC+AhcVj2E5pXaOkPPKtLRU4HccmiiKi8YjtrS20ZZFmGQ8/9CCTE3WkVDheQBiEPPP0U9RrFcLQ5+mn/o44zpmYmCBJEkxeYDsWgR+QxBFxkpBmOZ5bKokGoY8Q4HkuvV6XSqXCaDim0+nhOVXGoz6eI1ACbly/ycOPfJEsi+i027iux8svv4LjWNTqDaRU5ZeKlPT7PUI/oFKtMY5i/tf/5Q+599x9jIYRAsna+jpaW8zOzlKp1MiznDhKOX/+Aj/72WuEQQV3aoTrulTUMXZ2trG0g+042J5dGphnGc3ZWcbjMZblMBoOWV46jhSCIKxQr9cwxjA3N8/Vq9fp9/ssLi6SpglZluNYAUq6UAi2NjZpNpvkeWnfMRwO6Hd7pUJyGmNZzpEAQka/3SPLYiytqVZqDMcR1Up45KGXc+LkStkyJhS27dLttDG5wfICCjIKk2L0dQoMtlni7bfP01peRDsWnf02UJQqnSZn49Ztblx/j36vj6Utqo0GM80ZOp0u3W6Xra0tKpWQq5cvc24mhEcucjuf4oV3Ntjd22d2bo5qWGViYoJatcrB/haWdjh9+jSeb2MrG9tyWDyxRJbEzM0uMDc7RxwnXLt6nYn6BDfeu87arTWef+4FHnn4YTY2N7EtTbvTZn5+ljAM6Rx2MYXh+rVVrl6+TK0WUq9PYWlNkRdIBDubm/Q6fVzPJU1jKp5NEHpcu3QJ17GZmW1Sq9eo+hUuvPkmD3/hYcJaje3tbd599xKthRZ5nnL79i0efPA+pCi4eP4Cx461cOwK716+ThhYuCrmtdcucu7BB8CU3QHReMxzz73AQ488RFDxEUJgWy5FAZ3OPtWqj+U4CO0gUyiKDNuqUAifXGTofEx3f42pB34T9eJFpJAkX7wHRxZsb9zm3rNn2DrYQ2ofhMcwivBqLnme4ts1TBqzt7OK74dYjsV+t4c6t4I+6GC99AbD+mXs4BRZVqrgRnFMnudYlkKKMuGRFIwGfTzfpUBg2x7jOEFbmu3N2yy0WkSxYP+gTZLGeK7PRKOKrRTtg21aiwuIQoDSRHGEVqVdVJ4VGJOTZzmgyDOD0pI0ztjZ3WF7e5PllSW01ihlkec5g/4Az/YZj2PCMAQKtFIIWdp52ZZNmqRQaKIoYTgcU61VaS3OA4o0LYVckiQhTVKyLEMA9UaNL37pUXzHRkoBhaEwBfu7e/zND39Eq7WA69lMN6epVKuYPCeNUxJjcMNa2S4tBcqyqFSrKFVev635WY4fW6I5NUd9ooYQcHB4gG1bCCE4PDwgy7OSI+qWrciyMGTZiBPLLVxbYPJRySEWmiQ1OE6FF194hcWFFlmekUTjEn0JgVQKk+fs7WwTVH2WlpYRQpDlObVajTTLcSwL37cQUmNpi+FojO8HHB4e8uxPn+Pe+84RhiFJknDh9V1OLf0Gly9f5uLbb3P/A+cYjfrkWcHa7Q1arUUcx0drC8vWhEHIysoKW1tbXHznMidOLLF8vMXk1ASO6/FX3/93TDenybKMi2+/zeTENDdv3KRWqyLWdnALSfs3zxGELo5nEZ1aQHztYfbGYxoTDaJkSG/QplYPiEcxSilsO+Cf/8G/4D//3f+McKLBZGixu71FdWYRdReL2R+VgH/SXVcufzRofX/fQiIKQ+A7vPSTH2C84zz/wqvIZBMxv85grYUvF0icPfxaQFFkQEphIixdsLK8wOJiE60ytC6IovhIvduAzFC2xSgKSOMUz7fJcwNGURQpBSlSgVCKLDdYWpOkZbXUFDnaspDGo1CK3E7IiwRP1xAS0jTD8/wyX8gNWW4+0FkGQqoyNwJyk6OUwrE0SkCWJmAylLSQwqAsQV5IhiOFLTOkNEgpEEKT5TlxPMT1PaSVkZuMLCnb/h3bQohStMqxHWzLoRApSgkWF2o4bl7iNXz6fcl4NMbzgvK8pCi1EII6tza7vHdzj+bkFMopkNohzRKkyjkcJFy9/h4PPnCWOJK0Dw23bu3S6yVMTc6zsnKWmeYC83MzWJaiAMbjmCRJqDcq1BsTJEmK47il0NR4XC665QbbcmnUQ7wj6zBLF6TxCP/GaVbP/Cm1lQjHgv5oRMWtkIyGdHsdLMciMTZebQW/foz67AJScldtwHdXS/20s/xoxF1WKj+87bM4cNzt2E+qqN4Nne6z5tSfPn///x5w/U9Pfur/JyGlvGs1tM9TbOmzWu18UoiizGcykyMpv0x8z8H3A5TSFLlhPB7T6/XY3NyCgiNuqVsalVcCpqenuXD+Iqs3rrHYajE9M0etMUGns8/v/s5vU61WKYzhK195nOOLLdIk4/btDVw35HD/gIP9fQqhiJOU1vwseZbR7/dQSuG6LmmaoLTAmNJv9caNW3zvO39Jr32A64BUMBpGPP3Mk3h+QHN2Dtt1mZ2bY6rZxABJVlZGpFT4vk+Wl3wMx3G47977uHD+IlEU82++8x2uXr0GBYyGI9bX1rC1zc7OHidXTvH4Y4/xwIMPvv//EEXRkU+lodPt0OsPyXJwXJ84SXB9n/X1NWzriAdiOdyRRV9ZWWEwGHLt2jXCsEKW5ViWixCa0WiEFCl52se2IS8Etm1DYRAIpqabKEvS6fQxeYIQCePhCKXUkR1BQpIk2EoxGo3Y2CorttGoTxpn9HoDxlFCrdYgjtIjlcGCeDwkTRJMbvC8gOWVk2jLIcsBk/Hn3/kO/X4fpGS6VueelRXuu/devCDAdlzy3LzPDZybnaMxMcmZM8vE3lOYeJrdxGPpxEme+I0nuHjhImfuOY3taCqBx3g4YPW991hbWyPPcmbnZlnf2GB6ugQCN2/eYmNjm1dfeZ3W/CLjwZgr71zm9Mppvv2Nb7K2ehOtNdVahTNnTuM4DteuXcO2LVzL5/ixFo899kWQLgf7+9xevY3nlL6DlnDAFFx463VmmnVWb11ne/02jXqN3d0dBr0+w3aX7sE+999/DiEFjudz7NgxvvnNr+N6momJOr//+7/PeNDj5nvXadRDQtfBcUOmp5tMNxv0e23i0Yh+d0CS5CAkE1NNfuu3/ymDQQeAJE4pjKHXO2RiooEfVojiGIGhEk5y7frrSFmAUEg7w1QXcLZfAZLSpiLPcHSBkgXDfo/d3V2qjRDbruK6TZoz8+zvrZKkOdqbIxMTWG6FuLPBxo03cK0Iy9Fk/+PvE92XUXvDZXzQRmuNQZScW9siTRKSNCOPhsgiw7UtOFrQSzKDdjyEtksLFmPheRbt9j4nTpxiZ2ebhx56kPvvv59xNGJt9SYmHqGkxnU8pCyVzC1dftcaJM8881P+6I/+hM3NTVzf5Wu/8VX+6e/+DkKUYwUCrTWu6xDHBd/97l9weNg5Ou+cJEmpVmsorVFK43sVonHKk08+TZ5l5WJcNAZAConn+nheQBSNGEZDKrUK4/GobNXPMwa9IdFozNbmFoEfUKlUS2/WaEync4hSkoPDDlFSkBmFsuwj3il0e33iNEXp0s9TCsWzzz/P3/7tj+gP+tRrVSzbAlEwPT1JpRKwtr5KFCVkKZg0odPegiJD2xWypCDPY1zHKukAe5vsbO6Qp4Yf/OX38Vwf3/NLAI/EdR20JcnzFG3J0t7H88jz8h6TJCndXo/CwGA4RknJ4cEe9VqV/+a//X08L2A0KhfvVm/dIIqG7O7v89v/5DehyAlDjz/9P/81G+tbREdCWlJa7O/s0O0c0u11qDcmOHnqBP1+l2vXrnJwcIDneyy0Sk0BJSU3b95kOByyemuNKE6PhNUEU3M1BlEbpUAcm+V2HlEJJ7AsQWMiZGq6Sn/QRimL8cgwHhq+82d/iWVZvPDsc2ghuX71Gib79IIy/9gQRymBsjRSKcLJKbSn8fwmX/vmf80QzR/81T/DZILq9hPEhxlxlCGFQ5YZfEdQ9WI8J0drwziOEUod+R9rCnLiNOXln13ijdevEkc5FIokLTUOhLBQWlMYh143B1FeM0kcHVGVIE8TDtuG515eJc1dMDFxnJDlpvSSzQuEVGhtoW0Hy3GPanQFSimyLENJiZSlMFiepdhW2f6dxSkUKSYfMxr0+dt//wLJYI886pLGXbKsT1GMeeWV14liQ5op/LCB4/pUqg0s26UQAqU1uYGtnT3y3GBpgyTH0aX/sRCgLcmgnxKNc4SQKA1SGWzLEOXw9tVDtLLIc8lhZ8DWziGWW6PTK1AiIIo1SaqJ04QTK8d58IFH0Nri0rsXCSsON2/e4sqV6+zvHzIcDnBcjWVZHBy0sbTL7u4unuuRZzn9Xg/fdXEdm82tLfb291FKlm3be1WMTKg8tIPvWri2ZtBJyBJDt9sufdvTDKcyh/YmWVw5TZbnZbX1Vxzp04r0afVL/R2fJff9uNz7887Lfx1/P35dcf0lxEcRwT9tfHC/DwspfdIF8eGL725san7Re3cAtDH/cHX3bj6fAjJBCeT6I4o/+guIE8TyEkiFFDmFgXcuXSJJUiYnJ5FSEccJ/V4bx7FQymL5xClOnFzCGOi0OwSBj18NyLKCg8MOB4dtao06lpIEXkBQCZFaYhq3FAEAACAASURBVAkIK1VcP6Beq9Jp76FtmyDwGY+HKCXodDpMTkwzHI4oTMGNmzf49refIAgDHDfg4LCHH1bZ3tvi/gfux7Js9vcPaC22SJKcjc0twrDKjRs3CYIArRQHe/uElTqmgOXFY/iBT1gJeejhh/jCIw8x3ZzC0oI0juj3uiRJxvr6OpatGI8HzJ10yfOcg7WMSqWK5/n88R//MY8+8iUc22c0GtFpt6lWa0hy+t02Qmo6vQHnz5/n+NIi0TjiveurPProF4njhO9//wecOnUPFy++w8L8HJcvnSeJuoShxzgtMCbjcHebwHdKh3VhMLkky0Zsb90i8GpESY4XBnhBBYOi0z7ED0KqjTpaSyxVoKQiqNco/h/23izGkvQ803v+P/aIs6+5r1WVlbV1s6uby5AcUQs1gpbRaDQaeC7si8HAMMY3Ay8QDBi+MexL33tmiAFMWiPZGrJFce1uks2u3rt6rX3NzKrcT2ae/ZzYf19EdotqdTebm0YW+AEJFE7FyROoihPxf//3vs8r4GB/F5mmmI6LrgkCP0D3tpDSQEvP8tzzL3J6ZZVeu43j2Zw9exbPy9M56rDz8AGvvfYaUZQwMZFNqy6/dpm1tXXm5uYoFov0+ntYxWfRu4I3ChM4OY/zFx6l1+3yiQsXOGofMTE9iVIpQiScXj1LGMXopk6v02VhcYl7DzaYnZpip3VAtVFlYWmR1y+/xvzCAo16g/tra8zOzRDFWSat748plUokaUy9XuPB+hr3721gmYp80aHWmMOyTWzX4eVXX+HRxy7S63SZW5xnfnmese9z8/ptFhfm6fX7nDv/CJcuvci9u2sM+x3CcEx/MEA3HWrVCltbDymWcty4cYO52TkE8Oprr7F8coWN9Y3jSASLzY1tkmhMqT7FwWGHXN4jiiMM00I3TEaDPoZpYds2/riPP44YDAbYXg40A03qIFLCcASJT5wGCKmTChuxf43D3ElKN7okSULymfOkKUzOzKEZFqNR71jJkGBbNq5XIE51TLdIFAc0a3U2129imQaNiUmklqPXh2j4bRRQeL1DZOlQLmWgJH+IbuhYjosmJXGa3cuGwwGmYYBKkJqGSlJcy8YfJvzg0jN4uTwL8yukKqDXG7B88jQ/ePYpluZnqVWqKNMkjsPjzUFBMO6i6xq6brGwtMjZc6dxnSw/OE4iNNPAMs3jGx7ZVFjXQWQy9oXFBTRdgsg2qUbDIWmSgViCcIyUgvPnz2NZZgbX0gzCMOLP//yr5HNFKpUat+/exvY8vFweTWp0um26nQEHRz2SVDA9PcPp1VPohmTk+zheLrNeRDHP/eBZ4ijGNi081wQS0jjGNAyiMEClKYZhoRsGk1OTnDx1kuefv0S5VMJ1HUzTQJMKL+dQqVQIgoTRMMQfdRkOA5qTi8RK0Nt7iJARpp3HMPJohmTp5Clc1+bCJx5hPPYxzGPKqsgaCMeWSNMmVdkUNk4iNEMghIYhNdrtA4qlClGc4jgWJDGWbdPp9fm/v/wfmWg2aTTqLC8v4Dg2C0uLFPMepDFSGpw6tUKtXiOfy/PNb36DM6urSBFjmTqbW9t897vP8MQnLzI/P8tEo86169dZOnESxzYplQvohuTUqRM4rsPq6mkQElPTEd0Bh7/6CaYn59na2qGUy+OPxkxOzvFw+z6DYY8o0hmPIAx62Fae3/qt38VxbP7X/+V/5r//4z+m6AiuvP025x77zHE+6Y+pD7L/fMTh6b5ADQXC+4BnrgIlJFEckaqIh9fvMHtyFp2Qgwf7/PDVy/w3/+oL+PXnKY5PYu4/QiKHaE6KbjqAQBMKXcs2GKRuYZkmaRIShvF7CtHpqTnGfhfTUpimjucVUCQksUGchIS+ydr6JvWJAr4/wjCNbBoPSD0k9F3u3zvixNI0mj7CMHPYrsPY9xHHjaMfhH/l85PZJD9OYmzbzr7/Ktvp1o0MFBgnMaZjE/jZs9zQdRbmJ3HMkDQNECrKLCemYn8/i/Wp15uYhodhSIajDOz1rk57e7fDzdtbzMwtMBwOsY08UjPxxyOkTNC0GNNyiZPg2OurcJ0sGsqyTS6cXca0FGkEtl1ie2sfy3C59NJthsOUre09Hm7u8vkvfJoo7nJw0GN6pslw1CNOAmZnZ6nV6xwedpidnWP/4BClYuIE4jjF0DVsIwMrBUHA5uYm3W6HWqNOkpL5jodjipsn8b/4dYbaA4QKMLSEcrmGRoxpCMZBijAqBHKS8tRZzHwTZYgsY5a/spBll+rHma/+/Cau0TcNVEv+jRzXD1sXf5jH9P3v+aD6SbypP0m9u47+IKnv+z/z41rwPqz+vk9cf9m4/oLq53nh/TSS4R+ntX8/1OnDjv3R137aL7SmIHn3ud0bor7051iFPJxaZhyGqCQgSQT5fIFSqUyapmhSZzwa02kfsL52n8nJGba2dmg06zx8uMXUxAS7O5uYnocSGj/4wfMcddqsnj1NGo0Bge049HodijmP7d09wihBaoIoHGPZDt1ul+FwQBxnzUeaCLqdLl7OZXFxgVzBIApTpOby0kuXmZmd4ZHHzmGa2c6vZVkMhwM8L0ehVEJqOq+9+hpXr17l7JlVBv0BV65eY3pmlldffp6Z6Smu37xOtVomTWPCyCeOI+IowDR03FyeyakJkjTi9cuvcvLRGrpuMNjXkVISxwmPnD3Hwf4Bt27c4unvfocL584hTAPXMnEdG8t2sR2Xxfl5ur02AAsLy0gp8X2f3d093nzzTY6OOpw+9Qhvvf46lUqZufllpGURBWNyrolhGBi2zXDYo1xscni4TaWap+BW0Lwc4yBA6gaabpF3bUzLzqJxDJ324W4WoePYaLpOzrbwXIcwShGQTeG8TZRQGHKF5eV50niIpQsM1yVNFaSCzY1NlpbmSJWi2ZzgrTffRqVkktk0IQgCrt18nubp17HWBIflcxTPLzI7PcN+64C7t+8wGg4oFAtYro0i5eioxfbOPsVKBS/v4jkuW5vbzC0tsrezw/LpUyDA9Vzm5mdJkphOp8vOzi7VapV8wUPTDVqtA0zLwHVclErZ2XnAYxcep9vb4+adG2h6nlzByxZpSiE1DVPXMCwDw85gHQvzJ5AioXVwSHNiiu2tXebnFnA9C8+zmZicYjj0SdKYarVEEocsL5+gtX+AIs2ahpxHr9un29+nVpui2/HRpOL0o4+S9/IUS0XSNMGwLFIFtmFi2k62iNRT2kcjtrd3qDWbmKaDEBoxUHQaWFaCrumkcSHzlo0PsG0XJ7+KsTCNvziJ1C3CVOBHCUYa4/sH7O6s8cZrV5lfvIDl5ohkiGXAuDsi70q6/R6jcYjnNfDsCYK7f0FUV+h/8F9jfe0S6DparYQUmezOD2OkYWYE6zDEdRxUmhDHY0BiGRbDXp/1tYc0Jss88shjjEYJR+19Hjzc4vTqOTYe3MPQBJVimdTQUaQIAZqm0W7vkcvlkZpOFIUoqTC1DKqGBCFlNmsV4r1mN3uvpFavoBsZ+ToIw0wuH8domoYmdXJ5kyiKMA2Dfr9PkiToukG/P0AIjeUTJ4ijmHwhj+Vk09fx0MdxHeIEXnn1Ld5++wqfeOwxbFNkMkbbRddt/GhMzvWwDZPJep31tXs06jWi0Mfz7GPPn4Hvx5lc0DQxTEm/N2Bl5RS5vEev18XzPEajHqPxCBC09ts8++wlzp9f5dkfvsLK6UdRWoIR9hFGhGUVODoaU6mVcPI5NENDajqGZSNRCKGhkKBihoM2QjromnFMyE0QMiWJQUMQhmNM08G0sgzOwM+yXb1ckb2dFjOzU6RpDNY60uySxAVIYzzXI1US0zRxHBvfHzM3N0uapgx6RwgBpu3SbvcIo4Bms4GuC2Zn54hThWkIDFMQBGNMU88AcYlCCg3dNDEPe6S//1v0+0OEEOS+8QLu/R3689MYFkxPz/LwQYdycYY0PaJYrPLP/vCPkBL+4B//Hu1uj2B4wO7ONifPXUR+nIz3D3iUftTTNfwPDuk1/UPgTFnjKiX0Bx1O1Rf53gt/wQvPfYezSxdoTs9z585DvvQf/pzH/shCuF1K67+NCg0Cp4WSCYIEkUCckknydQkqyvJzI4EUMRBSrtRwPR1NE6AkURSg6ZI46WOZBSYmawi9ixQmuqEjRKZKypr5iOXFIroRkqYZaCtOYkzDRKksG1XXDXQ9gx5m01xAkW06hQFxHKKEjpAaSA3DsoiSIFMXyQzwZZpJlsssFagEXUDoD5mam6Faq2LZmbojjjNp/mg4QNMFlmmBdLm/tk+lVmNvZ5dq3cEPR1iGgURDKonpGGj6MflcaIRhimV6mIBj2JnnOB5k50iabRD3FG4uo5mfWjnPlSs3ePSRT1CtTOAHAVNTM9TqEwThCMf1cByPg4M2UmhMTzdpHXSOVR0WKoXbt29RqZQxjGzTP1/MU681GXYHFNZmGZ+4QnT6DQ5b26jYR6iIJI0RIvu/FcLBK8wRaWUWTj1GLByUTDOJtPrr086/7cY1eS/66cMb1x+tj1Ir/jTr8o/7np/Ur/qzft7He//fv8b1l1LhX1B9nMb1oxrC9xu+P0gW/KN/9/4mNE3TD93Fef/v/ij/wI8e/2E7RT9OEqEEyBgMZaBr9nuvBSoEITCki4Yi51mE4RDHtUGTOI5DY2KW7ijgsNumWMmTxCm6ZnLl6g1K5QaEoEKff/J7v87FR86gpZIoDBDEDPttJHBw0OWZp35AzskRDAJUEDMYDalXqxS8LH4ilSbCMHDdLHZF91zSRGEfUxBtS1DIW/ijMQINlODNNy7T7RwhdIFQKa3tbf7Rr/06o2GP1sEB337qacIwwj+OAkkUfOITj1AslTB0kzhS/Pl/+kvcfA3DyROPuti2Rm2iye//wR+QRDGKjNTpFQokJDiFPLlygdXzZ3jik48zGg3otnYZDodcfvMdojhFIRgGA1wnhy4lrb37vP3Ga7T2H/KFX/sU/+K//CP+8R/+HugxdilHY3aOg06PSIHu5oilQawUg+4RXqHBOPHRrByO2yCWKVqqsFQMcUKvtUt30GY0HBGOhxwc7lIoT6M5BZAmpm4w6HaIgxFCZbKkUiGLBUIpNCXQhE4cp8QqJQl9dKlz48Ydrt24idIMTqycwbRdoiRmcmqC4bjN9MwEucY2j/zqA5zrZfTteTaKAbeuXGXj/i3qlSK5XI77aw/QdZO97W3G3S7Tk9MsLM6g0oiD3UPu3l1HN20e3L1HvV5Fi0McXSMNI5IYOp0BC/NLVMpV0gTSVOdg55CNu/fxTJN7t29wdNgiGITEJORKc0w2TzHuHqKikMO9XaabDYqei5nLMw4Trr59k/u376HiED+AtbWH7O/vU6sXKZYdlldW0Y0cumnTnGnSPtgiM4k7KGmTIun3++gC0ihmbmGB7lFKa2+Pmbk69bklpNDJ5fP4gx63375DMoZxNETpNkGi0E2HUS8lTROWFk8QjlKk0lBpjJ5E+EmfEAc/MdAtRRiOSIwi4cM3aX1ukfEXPo+RmJhxQtA7oui5hHGM7VTR9AJPfPoxNrfuQTREjEas3d/CbixQmFtlMBpRM2OS4Ii9wQFCgyQJ2a8K/D/+5+jX7hG1OyCyxWkcjEijBNLkeOFqgnDRdAuhFEkSU6g0COMxrpUjHPbIe4IkllRqFQw95IlHH+Xhwy16wyG27iClju8HkEClOkUS28c5sDGGNEmFQsUGb75yle7eIYetDqHv4/tdkthHKEkqEszjCapQgsgP6R/tZfJFIdjf3WR/75A40jLSsAaFfAXDzBbw586dZTgaEiURpmVBquP7MegQxpJ8scBjF88xOdmklK8iNI84Negcdem1D5BRyqg/Il+qEArBhccfQ7OyrNveYEy73UelkiQZZqRUld3LHdfL/MyGQZwmJElMPD5gb/smliF46qmnGI27aIZNLp9HJX30NETaBfz4CL8vceyE8XjMsD/AEJIk6qCET6e1Ra+zjz86orO/BoOHaPGQJBogRZItoRIYdkekMkEaOn6/R+wHxGGIYevoukkcKv7Rb/1aRo0tFhF6SKyG2KZECcHT33uGg4MtpAR/NOY73/oOtmkQBANMx0NqFqau8fu/+0VOnpjD0CGIYuJUsbG+zrWrNxmPIqQweOetGwTjlCRVXH7tdba2tlFKMei3cBybWn2C6Pm3EJev0usN8Owyu5sH/NPf/T1+/7d/E9ecZBSlBGJEuepSbDosrSwzMTmJZQuE1v/I5+N7z1v1N39+2tIQKKmIJbj5Mt7yAo8/8il+/4u/Tn4yj1Ge5t9++UV2uxX2O5uEk99l+zf+JQEB5s1/SHo4gWnYCDMiSF2+/p01tvZ8DFORJCmbh2MethKUAF2LkEqiCQ1NxOhCkqoA16whiDOptSqiCR0VQxwkSKURRRLLsTBtBw0TXcUZdClVqCRFxQopxlkcUxACCXGsSBmhGzpJbCCViUpAlwkiTCEKiKIQXQksw0RJxTgYk6aKVEUkEUhlkiYJmp4iREQUdJBpzGjQQ2gGxVKT/YMxllMlSHUKeYtf+exJKm7IyslpgpHAMh2UruEri4NhCkh0oaMrUHGKLg2EhETohGJEFI3xtQKHg4hxJDnoxwxGPhcfXSHvltnbWePcyhJ7Gx0Oj/YYDXu4jg1KokuDtfsbDEZjLMuktb8NQqdWLiKTAI2Ybr/L5MwMjlfAdvKkSmBIydH2DqX7kwRGi+hT38Af7JD3oFp1kFqEV5QIqRMnECQDwvGIfK5GIiSpptDSGC/+61GKMjO9vvfz7rWaRfwolDgGjX1gyQ/4+fj1/nXwh9nl3l3/fhzI0k/zufA34Uo/zrr3Qef8Ycf/rFLjD1r//32qX05cf0H1ceBKHxZc/JPUjzas78bcvPvnD6Om/bjf96Pn9/MAREUZcwktCbn24veofPNlZClPuryAJjXGgwHvvHOd/f19qtUKmiay3d1Ucu/+GqVimUqlSi7nkcQRxWKJBxsPefrpp7l48RGkFNlUqlLJIAaaznA4QgiBa5lYnsn03BT5oofQUnQjm+L0On1q9TpKpQz6fVSU8Mbrr+OPxpSKJeIoIAgiwiBkaWmJza1tuv0++VwOKSVzc/MUS0XaR0dcev6HXLhwnjjNAFK5nMepkyvMzc1y585trl15iwvnT5NEQwbDLkmiuHHzBr7vc3jUYn5hlmA0Bqlzf22DnJdDeG3SNKW3bSCRBL6PZRlEYcTzly7x+OMXmZic4MHDHdbXH/DIhUcZ+2OGgwHPP3eZzYfbHLRanDp1ilTplEtlXDdPkkIhX8Afj2g269i2TS6XZ/Nuiyf/7KsszUwSDjuEozZevsKg16FcKjDs9/Bch0jTODg8wHQr9HoBO9tr1CqT2JadSdMSgWmbmVE5ySiCKk2xHA/XzWWbFoMmefMcSqXEcUSv26ZQyOMPI37w/R8wOdHg0QvnODho89Wvfo3pqVlmZ+a4euUqs7PTGNVXkM5tzOca9Ncl/r9+jEilnD93llqtRpKkXL1ylaWlJer1KjdvXGd/v8Pd+/ep1xv0e30azQlMw+Tw8AjfHzMY9OkPh7iOy8bGBuVyGdu2uHPnBvlCjnze5fr1a5w4tUy316XZbFAqVVi7t44uNXZ2dnBzHi++8AKWaVEsF6lUKvR6vWxqYAhs28Q2LCYmp3jzjXfY3HzIhQvncT2PJE1oNJuMhiPK1TKHR23yhTy2YfJgc5tKtZpNf7wcB/sddMMkSVOkkHS6h5RKBZSCq1evYZoOhp6yt7dDa69NbzCiWqvw3Pcvsby4jBAS07JBmrx2+Q22tjepVkpoImXsDxGaYjDo4+XyAPjBENvNw/ZlCo//S6Qu6fdamLoiUSmdXptCvpRlApsWo5HP3MLSe/ePfD6PbdukMs/U5Az37txgNOyxNFdhdPtFDMOmcPq/IMpVMQMf49p9uiUHqWlYlvNX8Rpa5nmL4yiLrpGSOI5QJEw0Z7h29R0Ggz6VShnbtXjnreu88cZbrJ5eIQhGzM/PkgqFZbqYugnECE0jSTKfnGZINGmgEkWawP7ePn7oc+PaFaamJtA0RRonDAcDDNMlDEI0TRDHQdbESplNGxHHfkCTr3316ywtL6LrEIXpex49qem8/NLLNOp18m6eV1+5TOeow8LcQrbITiJGoxFPfPIJdEOn1Wrx9b94krW1+5w5c4YwjbFcB8tyEZpEahJ/FHPnzm1mpqeIkwipCXTdJE01kkRhmRYSHaQkCmNcJ0foR2BY1BpTtFoDmo0pfvOLvwHpmCROyRXKCM0iDSWDQQtDVyAEQSQQcQRJShiO0YVGoVTHsFx008a2PAYDPwO69Uc4jocmdZI4ZWvnAZXKJKZho2kxY7+L5xbZ2+mgGwaDYZtS3qVWLTIcdNHsLnEUg9/grTeu8YVf+01sN8941CGKY9bXNlhcXGY4HPG1r32TpcVltre3sCyTcqVIGGawL4CJySa1agOpCQbDEXPzCySpQjMgn8uz9cqbTGgm4g8+z9HBAZsPNqm+ehPbtLH+yRfY2LhHrVbh/Pmz/A//47/h3/27f8+3vvV1fvf3fockici5eZTm0N3bZX19nRNnH0fTrZ/pGfpBlbxqAB8chxMfNxEIAUojlZKpepn+wQbf/sY3uHDhUT7zK2eo5Jf57pPf4TOfXKA4kedm+gp/9vXv8qnSH2EerZCkEcIeUSrqTNSKGGgkxLT2fTwnT86VaKb5Hu03iiI0XeOob6AbKaaVkqoQqQmUSpFalk2p6RJpmMdU2ZQkSVFSI04UQgIiRdMVYCKFDSJFagmalCS+nkGW9JDusI1pu5jSBEbohkSXOsm7tqZjtUu2NhIITRHGPoZugpJZVI+WResU8g5BkCKETr0+kfmuNROl/GxCbwgSFWNbGYAKmeftt7d49rn7nD0zA0KhmQo0RXvQQSkPyzaRAlARupIEwwBd89ANj9bhmOtX7zMOUi48epbp2Rp+2GNiMot3G44C+r0hliZJ05Rms8Hu9gYrJxdApaRJeuzzt9nYuM/R0QGWoWOaOrou0fYsqrsLDObeZPuRL2Eom0rFRJIQ+EOSaEwSDkiCGD1RoGkoMYFdW8arTJAikMcU4FRox/+c6j0w1rv1XuP2vmtQ/Bwnfe9NXD/5VxPXn3Zy+fMCj35cq93P+jk/bf3V+v/v38T1l43rL6jevWje3fn4oOb0gy7kn8Qg/qPSg/dPRT9oZ+jd+rBz+aAv9Ecd+3G/iLEElCQdjVi/cpnJ77+DKuSI5mdQKWxvbXH33jr1Ro1yuYjnOhwc7KNLne2tbV5+6WU2Nu5z8sQSf/qnf0azMYGuG5w7dw6ICMMQz/MYj8eMRkMKlRqO42AZOqHvc9AZUinXiKIsZ1HqNq5jZz4rw+Rgfx/XMdCFxu5ui1TB22+9yVG7zezsHPl8gShKaB91ObWyQppmmY1JEhNHMV7OQyCoVqukaYI4JiO3j45IkpR+v8+nP3URf9TDtgw0qSE0nYmJCc6snmFubpYo8onCOJNFSp00VTiywtadIY3qJN/65rdYWlpie2sdz/M4PDxianqSMA6pVptMTU6h6zqe6zLo97l37w4rp08gZUKpnKdQaNDp9NANg063Qy7n4TgGg8EA08xkhUpGnD57knK1Qr5YRmguqYrhGIkRhCFpmjLsH1IpeGi6yXPPfJ+JyQqm7uG6HpapE0VZM6DShPFoiG2ZKJFBo/b297FtG8e1GfujYxqjg34M/iA2mJub56C1z2iUwZ329vY4vbpKvVan3elgl9YQ9n2Sr+UJBjrBf3sRPedgWgZRFAOCnZ09Vk6vMDMzxXA0JJfL05ycoznZJJ/Lcf/+faampknihLm5eTRNcOLEMrbrYVkW169fRwrB9atXmZqeY3t7j06nj+vmaE42CKOAarVMGETs77dYWFwgn88fZ/PmWT1zBn88plAsEfgBKlXEUYDjOOzs7OL7IdV6nempCTY3NymVS1TrddqdbiaNn5pCahq6rmNIg9HYx7ZthBDEYcyDjS36/S7t9iGWaZHLuRlN2vMyD5qQSBI0CQqDq9dvcvLUMs1qg1dfeYVarcZRu8v1G7c5vXqa6ekmSRxmU6soyLIANY00VZiGxXDUx86XSY/WcOQ8o5HCbeQxDY2jbodCsYxl5zBMG4QkThRRnLC7u8vR0RETExN0u13Ggc69e/eZm27Q2r6PjI+wew9QKsU69au0Dlvoq4vo334Bp1xA5TyUEgRBFpvi+xmxF6GI4zgDs5AyGvWwzQLVaglNy5QSd+/dJfIVp1dXqdUqXH71JaamJhgMO3hOIYMYaRxncBokSYSmQRDERGHAW2++xcFBi2azwROffAzLMtG07J6haTq67qBrkKYRKMFwMESXOv2Rj67rOLaFAlZOnyWKwoyyKo6pqrpJEiecOXMWz/Po9w6ZnZ0kCEdYtka/36VWrZKmkC8UEFLgug6e57G3t0+lUqE20UAIiaYZmbcviiDVcD0HTRO4rntMaPUI/ZDxaIxl2zz/w0vcuXuXkydP8eILL+K5OYTpYJomumYRjEPSJCRNfNbWHlCtT5IqycsvvUazVsLURxhmAc10+MY3n6I5vYhbLOB4RZTQiY6hOgiJl6uQRANsN5/B19AAQa1RJk0NVKro9Vo4robA4rnnXub111/jsScu0D44wPMchBBE7KPSFEebxg99kArHMzNvrpc/BlwFzM7Mcur0GarVGvfu36VcKZEkEUkSU65UGA6HKMC2PdI0xXbs94iwYeST9zwm9no4CrpfvIhpWhiGgXfpHQbDEXufWKTRaOJ5OZSK+NKX/k9eeOFFyuUiv/M7v02UxLiuTSptcoZG6Ps0F079NX/b++vD7Do/btP4oxrXRKVIIjQh0IRBIgWvPf8UfnuXqYkm3f4YyHP2QoOTi0X+5Mt/wsJCk+nFHM7KPYZL30E32+T2fgWriBfGDAAAIABJREFUfYJiJUbpmTrCMGyKFXBdRRpLlFQEQXgsTc9yh19/c5t6rYQmkox0rXQgIU1TwijCdhzCMMHQs42nONVQMvOpdzp98rk8mqaTpgFpCppmEUcaV99+SDlvkKQhSA1NlnnnnS2atRy6CWEkEVLLmi11fI8QAss0EWgkKsW0LVSaYls2EGMaOkKSeVRFTBhHHHV7KBS6LvDHfVzHRKkQyzJJ4gxQNfYDJianaE7lKOY1BCmG4dLrw3jkcvPWdRqNAqEf4zgWmsxyX2/cXufGnTvkciVWTy+TElMoVZmcnKffH+I4Lu1ej3a7i22Z6FLghwHXr11lcqoBacTeTgvH8+h0umi6judaFAr5bBMvVcyNV3DaZW6d/n9wP3+ZUs6m3ephWhG6poiiMZoEx9YYHA3oHB4xDCUHoyqzq09guVn2jDieoL5/Mio/yG72vkv1F924/qT17jr8FzWJ/HGTXU3Tfmb74PsHUR+nt3gX1Pl3uX7ZuP4dqXcvnI96YH3Y+z7usR/Xc/qz7DD9PHaJND1FSywe3n2AGnSpfudVVD5HujhH++iQqZlJlpeXMSyNSqVMMA6QSkfTUxw7AxpdfPwCpiWoV6fx/ZAHD9dZXp7HMHTiWHHj2i02N7cwDB3XdQkDn9F4jNAM/FFAuVjiP37lK9RqDUrVBlLExEmG15fEyDQkUlke4w8vvcA//2d/yGA4olwuMRqP+Mu//Cb1+gT1ZoMkiTIPlWlz69Ztnnn6+3z2s58nikJM20IjodXao1atoWuZJ65UKXB40MI0HdY39jLvZ67AaOQzHI5IU4VumFSrDQ4PO1nj2x6ws9Ni+eQSp8+sMBj2sXSBZdmsnF7Bdt2MykzEeDwiDAO+8uWv4Fg209OTnD+/SrFYYjgMWdtY55lnvgeQgUlKOcbBkHKpghBZ0ygNQbFcpNPtMvZDCqUqhp6lrXX6A2qNCdq9Ps1qjWG/zXDsc+H8aaJkxPbWAU8++SSrqyfwxyOiNEZDMh6OUBJyxQJxkOAHY3L5rLmyHRvbchkNAwzdZNAfce36bSq1Mrl8nubEDNVamfPnz/LgwTq1WpVW+w6NE1cxn8yj5+qIf/MZ7j5cw3ZzQEoSR1y9doPd3X2azTqKhKOjIwrFCq3DfSYnGwgpaLWO2N3ZY29/j3q9wZ07tzk4bFGq1nBdj7nZGTbW7lOrVlg6eYJKtUy+kKM50cBycxnFmhQpsqgZpMba/bus3b/DOAgI4oSN9XXyuRyjUea5TuOErc1tdN1gbn4WwzC4duUtcoUCs3Nz9AZDbt25w8qJZWzXJUVhmxY7m3vs7u8yMdlEpYr2UZdqvUy9UaVQKHJ00CGKomzxKDUQimq1wtPffhohBeMg4fTKCr1eC9tzGfUHdA/bPHjwgO2tLc6snqJUyuHlclx64WWGgwHVWh3TtDBNF5TEcT0SJARdcs/08TZ6dC/Ms725yeTUAgoDoZmkCoTUsZ0sZsowDGq12vH5BZi6xr//0v/FE098mnLBoH+wjuUU6SY2zsxZojhCenlCU+BcukKyOI3UTCwLklhhmjZxHBIEI2zbYjweo+s6UmQRMEpF2KZOkiQU8kWWF+eZmJ5i5I/Z3d5ibnaKctFjf/chhVKJJDVIVcqDjW2+8pUvs7y8hOvkWV+7zeLSPOfOrVKfqB/757JsTKHpyOMcaKVC/PEI28xx2Opy++5tur0BW1tb5DwH13Xpdod4nkuShqRp1mgbhkGcpERxTBRnURxCk+TyOYqlMjnH4dJzL3Lv/gOWT5xCCYWm61QrVVZXz1AolNANDV3q+EOfS88+S6Na5amnn2J1dYVisUAUZpmUUipefulFtre2mJmbpZDzmJqZwrZtNKnx/We+x8WLF1FpyNbmNm+++SbzCzMYlku93uTFF17A1A3urN+itd3h5GKBNPFwixbNiSmmZxcRmsyySoWJEJl0M8u4FehSIgwXqdu8+NLLNCcmSVOF1BSaJli/v4EAdN3k9OppJiYnME0ri5EyTKRm0h2tMx4H/OmXn+XCo49QLhcIggFCGSRxyt279zh37gxB6CN0QZwEzC/MEgbBsQ/QIwgibMdDSp0wSmgd7DMYDLi/tk6vP2B2do7AH2LvdWAUcOfxC9ieQ6GSJ/nL5zBtC/23v8D//r/9HywtnWBxcY7TqycplAqcmJ/HcT06wwFuTkezXExi1jbWWFw999446iedEv0kjeuPrgfCUZuCmRJ0jzCETpyMKNsKV4846A4ZxJKZqVPs7L3F9MQEk/U6J5dthiP4n/67b7AwcZGJs5fZqX8TpzTC2fk01tEnQBmM1ENE6mJIG80cIpSFqesZPTnNFtKzs5PYRubzBo5zQCVSGhiGxXDoo9IUTSh6nS4Pd0Y88+w9nri4mD07azV0wyAIhpimTRQHpColChXlun0cTeWA0pAI8kWTGIcbN9qUKjk0kaBrWkbJ591M3Jj+SBLFJo4tM4mwZhOGIUgBIiUNAgajhI3NA6Znlrh96y6VcgHDAFSMH8Q4dnbv13WBLmJK+XczSWPSRHB44HPj5g7/8HPnMYwIpTyGo4gg9Aljm6Oeoliq0do7IO/qPPb4OTYftNjdPmJmepLd3U2m5+dxPY8H6/coloskSjE5M43n5ej2eqRIWq1DHNvGMnUCPziOxYHy5gzD3oj0X63z1NW/4OTyEsPhIbl8gqZSWvtbOKYGxPSGAZ6dZzSM2O0LLn7xX+M1prPpuHg3A/QDGqOPYcj+u9a4wt/+1PNH62dRVsIHr+M/jiLyl43rf8b6/2vjqr1LvfsJ3vfTNK4fZfz+z924SiJMw+LyS2+yfuMqpy/fJc3nSBZn8DwPSBmNxxQLeQxD55vf+DaBH6ObKcViiVKphO3ohOGQem2earVKsZjDsjSCIKJcqlIu15CaZHp6EikzEuL2zi537tzj9ddfYn5uihNLczSadRKVEocBr772Bru7O0xPTkAa4ng5nr30MkJqnD97hls3b1GtVTFNg1OnziDQyBXyCKmyoPPjzEfHsjk6alOtZ+cgVBaLYVs2hmFiWRambeB5HsNhgKY5PPO9pzh39gJbWzu8+OKLXLhwnvUHG+RyecIw4tnnsgWa49k4jsXB0QHlaoVCzqFYLIESDAYDNEMnCAcYpoGlm6ycPE2z2WRudoHDdoetrRbf+fb3cDyTZmOC1dVVJqcajMd9cvncsRklw+XbWh6pDBzbwrF1Ou09ev0hpmXj5YsgMhmkHyj8wMcpVUAoHEdSLjVYWTmN4xpomsTJefTbParlCl4+hwJGgxG5vIdhmkTGi8Rig9TPHsYqSXmwsUGqBLfv3GZuboHWfhuIuH37FpOTkzx8sMHihbto7wh6pUn2f2caoUtyOZfGxDQ5L5uOVCs1FhaXSFXMlSvvEMcRuzv7nDm3gqZn8UI3rt/i4mOPUyjmuXXzFhcfv0i5XMJ0PAb9QZb5O86iim7cvUKjUUE3YTzuY7ulLBpBEzx8uMHl115lamqGZqOBSmMuPv5JbDfHyskTDIZD8rkcY9/n3t17JHHC/Pw8rcMD4iQiHI+p1etITcNxPYajMeNBH9tz2dnZQdd0ysU69UaNMA5IFTi2y5Xrb1MuF8l7Oa5dvc6gP2BhYYlatUoUhxQKOSI/5dFPPMLly28yPT3Nw4f3mJ6fI2c57O3tcurESTYfPmAw6DM1PYllW8zOL9GoVbFsCxAkqSBN1HtxMSoNMW/56Pk6R2cySq/rlfCDJPOKJ4rd3T0cxwVSbNum3W4TBAHFYpF+p8W5848yGo9otx6gJX2S6idpnvk1/ACqtSmiJEQuT2E9cxll6Kh8ntGom8lKpQ6orPnTs4l0kmS5kOPxiCTyieMQy3Tw/Yh3rryJbtns7OxgGpJapcJg0GE4atOcmCZKTEBh6DYnTixRq1XQpIHn6Lg5lySJCaOIOAGpGwihEcZxNg0XgjAaI4RAlzaXX3sbwxSsnjnD3PwsmhQMhwMMw6ZaLdNuH6LrVkYeHo3Z2txiv9WiWqkw9hP2W4fMzi0RJ5Jh9wjT8vj0pz+bgX0kqDQBkW226bqOSiPaR22EEiwvLuJYFmfOn6VSKQOCOFLZhJeQarlCvVFHM0wMXcNzPb771He5cO481XKFSimPEFnGqhCCRqOG1GxM0+Dll19CpQmf/43Psbp0jmF/Dc+pEwkfS5PEYYLjGgTDAdLIoUkQIuKw1SJXKCAQKKGhhMbExGRGVtYNEuUTBGOe+e4PWF5axDQNDENDN0x2d1s8+eRf0GxOYjs5/GSTUqlM0b1AGCYUCzlsywAlEUJjcnKK4bBHv9/BcW10Q6Pb7eB6LoNen1yuwHgUIDWDJ5/8OoVCkcnJJqPxiJMnT+E4x5m8noW5fYgWJxj/1b9AMyTSUFjPvAZCEP3qZ/jqf/o6luWyubXO1vYDPv2Zz9A76rB69iy5Sok46ZOg4/c7NOsVNK+YbSh9zOfpz6NxHXZ2eenZp3jztVcxTJdrN95h7dZb3Lv5FksnzlKaXKC1fZdHLnyK0aHBaHSHfqtPLFtc+HSBpYU6loC9ToTKbREvPk3cuIVxeA5r6zNIfYzI7yJVmTAYv5dDHAUhlmFiWD5JFKJrGkrEBOEAfxSj6yZhGDEajvA8B0mKadpY7gS5Yo1SMcC0NDSZMhh2MDQbhMCPuliuolhyM/kugjD0UWpEPq9QUieMLV5+6RZT0wVcWzuGO8VEYYim60TBkKvXNnnwcJ/ZqSK6HhLERialJ9sYcvUcB+2ASy/cYHFxhaefeZ4zKzPoMkXXs83lKAxIiRCpJA0VGpI0UQihSFIfN+cyHI8peDpC+hweRNy9t05zaoZLl95mMDIR0qTfGeDZDrmii2MXKFeKbDy4jmnZmK7L+toak40GlWoZ03bQdRPHcbFtl1yhQKlcgTRBqATPy1MslLDuVLFsk2/N/1tCLWJ+bhGhYkolSat9B0czuXH9KoYhcS2D3Xabo/0uUndYeeRz5Oc+lwESk2xaz4fxT/6WG9d0TSI8hXbuw3OLP079snH9u1m/bFz/jtQHAZN+9PWfV/00EKifVirxUTCpjyoVxSQqYe/eK/S377Py1i7p6glUswpCkCpIQkW/10egsbS0gOfZuHaey6+/QbPZpFAoYRge42BIkmZ4fMO0yHt5dnd3iOKAfKFAvlDKvGamQbVcZmqiyfKJ89QaJfzRGMsqoOkpB3uHeJZOa3eX/YMO00urGLrOqZOnOHduFWRKpZJFRaSp4Ct/8qf8g899HmkmhGMfQ+qMA59as47r2eSPoyXiwCcJE0rlAn40Ik5SLCdHEMQ8/dTTTE80qTcqnF45TeiPESLhiYuP4Y9DHNdhOMy8lhPNOhPLilTrUnamEAgMzSSOE5JUkaqEQb+HqUniEFw7IfDHVBsTdAZtlIyxDKiWc8wvTrF64TzLy/PoMiMpGLZNnKZoukG73cPzSiSJzyjocXjYpn3Yo16y8HI5wiglDBNUkuAYEIcBuXwui9wwHTTp4gcBlVoVqWdS7MsvXeagPaA+WePosEXeKWJYJnEccef2LbzqQxABjjxNEIwZ9Dqs3b5NuVJASkGj2aBSLeE5Dhvr68RhRHV6HSs5QJePsnHB5qjdplgsUCjlkbqg1Wpx585dFucXiYM+o/GQubl56tUGIoX79+4yPbeAbloszEygohHf+/4PWVpeoF6v8srLryDSmK2HD7l39y7NiQlmZuco5yuAoFKu0O30MA2LbueINFXU6k1WVs9nzb7rUZ+sEiURhwcDrrzzFtMz0+SKeWzXZqI+yWg0RtN0Wvu7VMo5bCPHcNhne3uLeqPBoD/As12OjtosLCzhhxGpLrh7/SbFQgWF4sobb3Lq5GlyuQIvv/oan/nsP6BU8LAsl5deeY3FpWnu3rjDY5+5iNQlU5NNatUSg/6Ymel5HM9mZm6GVAmGI59CocSt23eoVetYlp7Rnk0DTUpGoz62baDSGCk1VBLjXNtHOU30XzmPH4xJkWjCABHz8MEa0zPTKJWgixCVRFiWgZKCVAhKpRKGaVKqVLl69R6nTn+W7c2rWE5AtbLEcJxiGRloyquWMd6+Q9zIQ5qQCoE6Bh/FUZaZiGYhpUEwGmK5Nrpp4bg5jg4P0TS4f3+Te7du8iuf/wTFfJ4o1BgPuxQKRdxyFVMGGHYOy5Lk81mMVRwH5PM2SRCikkz1YTkGkphw3CONsus+EWDoFpbpECchy8szNKcaDAYhX/3qk0xN1sm7OXRTo9fvYVseeS/H0VEXIRVxnDAzPYfj5PBHba689Q5zs/PopoHl5ihXyyAToniMrgn8oc/B3hFraw8wDYsnn/wGp06tkqQRURJi2jqW65EqxX6rldkZ0pj/98+f5NOf/mSmTkkTDEMxGAy5dvUG7U6HEysnOTo6wst5xEmIUJJLz72cNbMSHnnkUU6cOEU+75JKA4OI8fAhupYHzSJKBZZTRkkDS4dEZNAVTcVESqAJwcOHt/8/9t40VpbzvPP71fu+tVfvp5ez7+fu5KUoiZSsxY5lz4zHdoI4MYKZiZMBJguQTD4FyAAB8iHIgswEkxhJkAxizDiJY1szY9mUKEokbXPfRd5L3n3fzr73WntVPtShLFOkTEn02A70XBzcc7u7uqpvV3U///f5LzTqLXRlIVWC0ARkhQPryVMnKXsucRRgGookg1zTOXXyEZSuUa7YKOsAoWk4xjRPf+tb1MYsatUGSpcMBj3yPCFNkyPgrRdMAS3GNFw2Ng7QDYeXXn6N+fkFut0uC4sraHlCo1ZG14tFoyyNCsbA3Q1UkrL7xXmyeISuSXjqVfrdPlsPn+FX/u1f4tixObJUUPZa3Ll9n888/hjVeq2gX5pVtnd9mq7L5QsXmFk5eaTl/NG+bz+qvjuFejwptKhaDllMFA35p//9f0G68w7dB5fobZ0n3TlPVe/RqJmcfuRRgiiiXlvhcH+L1c0X+b0n3uKtdy7z7NPXWZ6ZZHbK4t3Xd5iedcmUJDM19HKAtvIUg8oVvAd/A5GUydxN0iRH6hYpir39Lrbt0B8GuKUyUZoc0eoNbt0eUK6VuHVrk43NHu12pfDiEDmGEdFqQpYEWEZBwzZ1hW6aRFGIZbpoucX9u5u4rgN5hKEkUhiEQYyhu+zv7fHpTy+jiwiRKTLNRxMef/jsNRaXqmgSJiYWGBsroVSOFA5KUTCoUoUUCUHqI2XxeVBvmiwfW8LQXbyySZKkvP76ZSolSZ7lBTXalORkpGmElAqh6eRpTK2sI2SMEBaGYVGumOQYjPpdGo0Oq1v7PHxmCbfaAM2k1emwvbvDiRMPs7q6TqNWZn52Csuy6PV9Bv0+tWqFPEvJ84z1B6tE0Yj7q6tMTM5y+foNKmvjGErnyalf5wtf+SmqeoApe2w+eJOyHVBxdGQGeZ4xNlYj8od4wiDNFPWlL1Ga+TxOexKRHl2faJDn5Fnh7v6nzs0P9RAucq7f//Nxz/iP0w3L09m/EtD6SVOJP7gI9WGGTj+ux80H//39t/0EuP6F1V814AoffaH8q171+aQuxh/1uKUGea7z4Npltu/e5dTlPdKf+ynyLAdy0jTl2pUr9HtdOp0OQggs2+awO+TGjRvF1CMYUq9W8P0AQzewXRfHdenu93nxhRd5+OxDfPvbTzE5NXEU/ZGjaYKDgwOGgz6moaMdTQx9P+CZp5/mp3/mZ7Ach6tXr5JnOa16jcFwSLfXxXQcbKdEEZxus7wwT+SPMCyTMCwowUlS0JFsy8SyDKIwII4jZBZw7+4t2p1xhDTIkaRZSKfdolwqo5TF7s4WrdYYtmWwt7vLtatXmZqZJ4pi9vcP2dnZZvYhA6skYFhjMOhhKAHk6FKwurpKZ2KKXOjUyiUGw0Nsu1TkIToWQgNDF8SJT0aCYZWRQrC3u0ucxMRxglISDUnJq3H+3AUerN6nUvYYazTI84xa3WUQZiiloyvJoLePY+towiRJEoIoIolTbNvCdYtc2dFohNJ1PAsmp6YhT6h4LlEQk2Q5lmVRqbok8iaaJklH09imRb/bZWlpCbdUIstSTNOAPEMJg15vH691haq7Q354mrWzDgcHBwihaLZaR69D8dKLL/HFL3yRK5cvs7+3w+LSEprU2N7aRElQUhR6ZA3efvsdZufmWV5ewfdH6LrOxMQEeSaYmp5iZmaa/YM9Ou0md+7cpeQ5mEoS9EcMByH1Wo13z38HJQUP7t3h9q1bzM0vEschuqGjSxulBP5oyOH+PlkUcfHqZWqNBts7u7Q7kwRhzPb2LtNzs5QrVW7cus3i0gpKLyihB7u7PPvMM0xNTEOc0GjUuH7rJn5vSLXV4O69u5S8Erdu3mSvu0+rM4HvB+xtbyByQb1RZn9/D9u2SfOcnd29whRICNZX17lw4SKmadFqtTj7yMPEcVwwCbSUJInJsqTIAEyKmBdNSBJNYl3YRlZn2T45yb0Hd7B1qLg6WRyztr5GqzNJnGsMDg+wbYcojtGlQleKXj/AcDxyTTI9M8///D/9L3z65Az+2mUs08YsFbQ4y7IYNUt4f/QOWAaiXkNKnV73AFNX9PtdvFK5iMXQNCBHCoM8LTKvbcsmTjKqVY/d3R3Gx2tomsabb7zF9sYaSwvThHFAGHTJ0FFKkiYpGhpZmtEfDAnCDN0oFm5yXSdHYEgDpXSGwz664RSNBzl5nhBGAVLq6IbFvTt3WViYxtQNDMtENwyEJtjd2uaFl9+g3Zmk02kTRAHKKCag1coYG5vbNMYaoBUmNXmeo5SOEBr+6JDDw0Nef+V1trY22d3eY35ulqee+jqtsRrlkkMUxfQOeyhNR2qF5nBqqgNZjEaGFBqmbZEmGafPnGFra5OJiXGyOMWxCr1n2auyuLCIW3IolUuEcUSaZ+hCkOYakpBguIdugaZZSGVgWg7+aIShRSRZXhhUZTm6XSr0tq5HjoYmBDk5SRyhlMTQJYHvk8QxWVroDQPfp1Ip8WD1ASsrC2xtbWDbBns7Q6qlSR577LNoQsNybJIkxS2VCMIQr1QYiQmpkcRZoaeMMp5+9jmWlpc4fnIZw9Sp1is88ftP8pnPPIJSGr7vgwBd2Ri6jnqwiYxT0n/jl5EqZmfvPqU7B3zn2m3+2+f/gC9/+afISZieniSKR5w5c5xut4freWQUQOjl177D/EQLjZhSu3MEBD7Z0mYTxKkEwzOIh31W71zDFD4P7l7mrad/i+WleRrNExilCRxvDN106fb2yKMDupvX+PVf/3+ZnHTpdfeolOaxleDxxx4jDAKCUYRSOk8+/R1Ofsbij7+R43g5htlD1ffpdV7Gvv5vomUuRrlHkmco3cT1HOIwxHBMoijCME2yrAA/jXoFJRNqFY/JiTG0PEWKIuImiHOiRBL7Pjfv7eLVKiiRksTFIlqv3zty/DfJtARylxwDKTNMC+IYkjjCsgSaiCEVSKWRAQsLEyg9hkygiRRNBHhemTCUjPwBSklsy0HInByFbSsmJ2sk0YhGtUS3N0JoRcxVuzVOHPTwSqXiMyOLSdIIXS+m3zk5um6gdB0pNaQuiJMEw9LJyPH9kN29hN3DPs0xi7WNLkkK1VoD1ytz7/4qc3OTjPwRQsoiSsvUybIM0zRRUmdrawdJSK1WpdYYo1Kr0kmmMQ9c/kf/7/N3/u6v8NYbz1Mt+dy5fZ5Oy0TLA6SWsdvdp+oZaGnEoN8lNiRGeYbWwl+jMX4KVIb2gegb4GMB1x/VBOjjbPXDeL/8OPVhw6Yf9/m+9/cf1tDpx9nfn9z2E+D6F1Z/1YDrR1F3v3fF5cOovu/Xj3uhfq9w+0e9ED/sGD5sgvxnrRjpqmhwrp07z1SjRvuFyySnVhBHxzgajaiUHCanJlFKkgOGYRLHCfv7+1y/fo2Tp06idJ08K6ieX/2drwIajUadpeUldF0xMTmB49hoUhXaLz8szJNcQb/v8+57l1lYnCUJco6fOoZuFPmj01OTSJFh6Abbu9vUanX8UYzjliHXuHDhPRzbxLYNBoOIxtgYQkrIc3QlCYIhkT9CaOC4LkqmWLaDkCZRlCKkKgxcsgxTN7l95x7bO7vU6nXCKKBUKVOrN8g1wRuvv8HlK1eIopDjn2qSpzl63CQMA5SSoOloec6g28V2Pa7duI1rKAzbINd0DN2kf7iPVxoj8COEUJTKdaIkQyLY3Nhgd3ePxaUlVu/t8967F5icbFGtWhw/fgLLUhhHJhvDYIBpueR5ThIVjaZ59LrSPCcIIr7+jW+hkdDpdNg/OKAx1sD3A0xDoJSHbugYhiSOYkxXK1whU0lu3AUtR8aLXL54kampKd597wJKN1l9sE4w8rlx/Tq7vfeYe/Q6ThgTnm+h/+1Po3SNOI6J4pT9vQPW1texDIOS6/Lm66/SbNSxbROl66RpimlaeI7LtRs3WV5eIk8TkiRlMBiiK51Go45Sis3NTUYjn2ZzjH6/T/NIm3n//hoaGu1Wi1t3buPYJTbW1zlz5hSD/gDP9ZiZnubOrQcoXbG3s4vnVhgNBxzs7eE4Nq1Wi/nFBUzTojnWYW9vj6mpKdqdcZQusSyTdrtTaJUsgygM6R522VzfYKw5ji5gGAxpjo+zu73PwtICjXqDd8+f59Tp0xw/fYIkzmjU6nS7u5w88xD9UWH0YZk2a2urnDx5nJ3dXUbDgFu37rKzvcvU1BQ72ztIJRhrNoAcyzyKi0BDaILBYIjr2qDBaNindOUA3Cbyy59iaqI45jBK0XWDVrNVZCkqhWXajAIff+gTBwG9wz1Mq4IfjrAcA5B8+Ys/x8Y3/wEt0WeNCo1mA5TLcDjEME2iwz7OjTWiiTZJGOA6NkmS4JbLhFFMliSkSYLSFVGQYRiFsZHtuijdJksDVpaWse2i+VteXmF2ugFpitCbVCpzaLIwcXEc78h8SUdgc/XGbf7F732ViYk6rtsgCmLu3r6P5sOnAAAgAElEQVSP55UwnUIfOhoOePud71CtVjAtE8OwidOE6ekpPMcuaIq6IknTwtFXE3ilyncdqw1D4PsDpFDolstht0u5ZBVRJkmCUsWCW5pkuLaiWq3yqU89yokTxzh+YgXXtZiYaNNo1NENhdRNnn3mOVqtDtVaCV0XJEmGJEcphWnZhIFESgMQLCwu8/Z3zhPHMY7r8Ru/8c94/HOfL47XNMjzjDxPSbMUheDS9etsrG1gGxpKDLCcGnGcFosaccjd6xeo1JsYdgldSaIkJ0kCdOUQhn2ioE8aZZiWWQDLMMK2LDTdxA8C/NEIJcGyJJZtEkU+pm4QBQaO2SIKBnieg+VU6PYO2N8/wLJsTNMiz3N29/bQdcXh4QjdUOhKp1ZrUK54WHah5TdNm0fOnqXX3SOOQhzP47nnXqTTmeDy5StMRDkijOn+3OP0+nsFS+BLX6D613+RX/ibX0LXLXSlAzFCZgjNpNcLSZIcZWgImbN87DQyGXLv7k0mF1c+Udrk+5VZCcKDV5/6XX7zf/+H/PLPPcq1c3/IpTefZmFuhlfeuMggnWL25KNsbgds7w95/Kc+x7V3X6Kixywfr7OxNmJ6/K/RmnTI9KvMLy/zP/x3T9BorlBb2MQyPgOm5Ld+8w/56Z/+FK4bkaVldMfiWxf/JceSX0HLDHJ9hG4XNH7D0IlSi9EwRlc2g94QcollJ0RBRpYHSJmgTEGep2ia5L137zHyDcbqVW7f3SwYLKZJmhSmT6ZZUPrzPEdoOi+/fAWvXMH1FEmQg5biuRZS5OTkiDxHkzqa0DAtQZIk6KpMnmYopYhii4sX1/DKVSxDRwmDOC0W0ZN0SJammIaNVBG6IREiR4oM00yxTRNNaN91OUeDLDcL12qRFdruNEMXhVFdHCq63QC7VGQTzy2e5vrteyzMzaKUSanksb+3j+t5LC0tYVo6jlMmzwUHB4dITXD3zl1q1SoP7j0gCHzG202k1BmNRrhZmfySxblHnmLhM7Mk0R5L0xUce4ghApQWIFIfLQ2pN0pkfo8giEi0Kub4I1TGH2bi+M+SaHaRzZv/Se/6XbD1wdP3Q1vKTx64fi/Y+0HmRz/o/vcf82ETz496rk8KKH9UX/9R93/c5/xBx/+TietfovqrBlzfr49yEfyzTuD342x+nP1+UrTkj0tF/sj7iRkMYO3GNbbv3Wb5nfskMx1SvZj+GLoqTG4CnzwvUlQQGlqW0hnvUK5UcFwPr1ym3+2x+mCVdrvFeLNNqeIShSGuWwR05wiGgz5SSLI05dzbb9Npl1lb32Np5SRKh/u3Vhmf7oBQaFLDMg0kGZbnYZoGQki2NnYolUrEUUQwGjE9M81gNKRSqiMNnTiJGQ367O/tUSp7+MMe3cNDbM9jZ2+X7mCE7ZTRNFHo8LIUU+l0u4dsbm0xv7iMMgw0oSGUXrhXGgZz83PUajXOPnKGSG0ihcBM28XERilyaaME9LsHuLZLY2yMPA6JsxjbLvRkhiFI8pQo9FFKJ05SgijGtW2UVJRLJSzbotfdRYic6alp0jSnPzgkiX26B4e4bgWh6whNkoQRo+GISr3JKErwByNqtRq266CUSbXiUSqVcD2XPAepJGGQsLfv43gOQTBACEkSF+fDyB+AeQcAlSxRK1fY2dlhrNmk1Z5iYnyS3e1t5s7s01pcI7pcovLaGNd+scH9e/eo1StMTs5w5eoNHnvsMRpjY1y5fBEl4OzZh0jTCM8rcfX6dSanpnnnO+dxLA+UTqvZQAmNkuNw/tw50pwjDWaA53ncu3+H+bl5giAgy4qpvaYpyuUSYRjRHJ8gDEN2drdpj48Thgm3bt9HipxWa5wXnn+e4yeOceHCJRbmZhkFPrPz81iuTR5nZBkc7O3j2CaGLtAExHFEf9DD0vUivkEIAj/AskyOnTiB61bY39nCsHUanTbXr96EJKHb63HsxHFsz8HQFUmYsLO1Ta1RxnRcpLLJco1e95C1B/fJ4gjTcSCXTE1Os7q2SqfTYTQaIZVkfKLD1tYmpVKJJE6Jk5jAD6hWqgz6PTRZTEesy1003eFCTdBqjZOkNl55At0U7OztYZsG/rCH6ZYRCKIoJPIH1Mplfvu3fpfZuUlsx0DkgshPiW5+k3KtSb/zEHub67Qnl7Asi52dHeTCFKUnXyNu1tBtg+Ggj+WViNIcJSRpHBdOn4CSBoPBIaZdTD8QosgFlgZJEiKlxNANwsE+O1sbNGeWULaHkAa6aRXBHHnO0B+gpE+rM84jZx+lPdYh9H2iYcS3n3yaSqWK1BVK5OhKMT0zg26YSGWQJSlSFRNhLT8ybZECpesEvs+rL71CY6yGoRSWZRIGI5QsIkU0odNqNxn29zEcG8uyj6ZVoOsGh70DLMdFKEmUBBimQOoCy7ZAaLiOhx+kVKpjlMollJ4zCrqYZoW1tVX2D7o02xMkcYxuCEZBH6UkE5PjDH2fxtgYDz38CMoweO7553CMAjgIAZ5bwpQKaTt88xtPc2ZlCS3vgrTRpI7jlhj0DhmrVfBqYyS5IA0D0iRBkGIqhzjqc7C3Rr3cJBeKJE4xDQuhCXLdxNANXMfh4GCXnJRcy4/ce3OEJgpXbVK6vUMsq4ZuCeq1sSP32UJPrRsmIPjmk8/QbjewbIPWWAspckbDLoP+AFM5hPEQJYopnSYMbt96wOzcNK+88ionnQoqTrnxSIvNjT08p8Mbb7zNV//5/0On3aTdmsK2PK7fuIbjmowGkv/g7/1n/OIv/U0yAtBSbK9Kf3eTfneP9uwCQvv+KdYnUf1+n93rz1E2fAa7d7hz4TX8g3XKE8fxGvOUGicp1et47hhBkrC+sUHVVTy4fZv5uSkuXHuDL/7Mv45pOLTanyVMEx770qPcvdclTCp886lnGPbG+dVfO85Eu4nr5Nxb3aVeqzF/HNxPXSRdncJaf5xM+WAXC7h7hyO2tjepVlxMQyvOVQWCEogUXVdkWYUgiInjmHKlwmg4pDVeYaLVwLMzpCzO+yLVJyVJUwxdJ46GVGtt3LKG1EbouU2uErQ0Q0NDSIs4GiGlQZpnxHGA0mzSzEcevQ/DIOa9S3eZmKhRdgVRHJBpKSQZUkr8kcQPNHQ7JUsFvb6PrutIEpTMjhZ0ChBMLnjrjSvUalU08b5bsUaWhUdO4iZXr91mFAjGGmM8//IrOF6Nna190jSgXPJYWprn/PlzuI6FZTtcvnydZrNDqVSGPGe8M0GSpJiWjuvaxffrXhdDWJjXGjw4dp72l8t4lRKj3jp5uMPGg9tE4YhWzaV/uE3Fs9jevM9o75Ao1nGbx9G8s0wsPkJkuSAFRi7J+RDQ9n361Q+rTx64vt8rR/+bRfqm+lBzpo/bK78P+L434/XjbPPj1Ifp1T9pMPxn3f8T4PoXWP9/Aq4fBio/aYrC9+77w3nvRdRNlmXfd9+H3fZR9YOmre+/nizLGA0yHty4hmvbTD//Llrfh8VZuocHDHp9HLeG63mEYYiG4o1X36a7v00Sx0xPTRYRKrZFBuzs7TM5Ncnk3DgCVTh0Jil7+3ugwfN//BLBKMK2bE4cX8YqlekPQgxdZ+R3mV+aReYRQRhCppGmCRkp4dDHDwoQ/MoLL7CxuUW9XmVqapJXXnmDQS8iFhq2KZF5immV8CpjpHGCXaoRJILf+I3/iy9+4Qs0GmNIKdA0CIMRcQxRnJOnOdVyidfeeBul67RaTbI0Z2vzgKe//W1KpRKLC7MYusKsjTBMA+FXCEcjDNMmTwcEQUil1iA7cjI87HWPTGNCMi1HGAZ5HGPbBkmakCYpJIIrly9hOyalSgk0qJTLNFsdRr6GMi1sUxDFEco0MG2LwM/52u98Hct1mF6aJkkyLOlilyyyJMQfjehMTmCaBmEUQa4RBgFRGLK7vUXJMtnZuEN7soOmTKRhkWkCpUEqbxQnib+MWyoTJj5ZLvmDr32NU2cXUM0XscsDGC5QfSqh/++dYFMboUyLRqNOrkma7Q7lWomMGKmlLC8vcuf2bUrVCk6thmGahEHAg/t38VyLve1d7ty5i+V6uOUS88tLWKbB+MQ4mhT80XPP8/hnz/DehTvUai00RnT3NihXxyhXq2zv7OI6LqWKx/TsDIZlYrom03OTuOU6G5urnDqxgmW7VGoN7t+5xdzSIlGaYRo221vrjIYDdja3uHXzJiLTKNU8HNPkzs2bVMfqoAv83oCNtfu0xsZYv7/K2vo6cZYyOTGFpZsEwYiBHzAajXAch5Lnsb99yKC/j6ZHTExNk2UGzz77JAtzC9imQ71eI0lCqrU61y9dJUlipucmKFfK2I5FHCeMNVpHhj4mUgpGfh/H0Rn6PbxSleFgG6GlWJeHCKeN/cs/S7nUwdRrbO2dI0p6DPxDDKNJlGUYhomUDlLp9IJDLHec7fvruJ5LqznBH3z1G7z89KucGdtE6RqNs7/Kg3trpKOXSMImpeanSY0e+uoO5m6PpOWCyJEoFDpxmhSxGnGM1ARpNMArV8hSSc6Rm62SKAn+sA+koMVcv75Ga3oGx/MI/Yg8jxCaIAgisjzFMBS55iAlKF3S60f89v/9m1y+cpHxyXFOnDrJN7/+FDdvXGRl5ThhEBXTwThgNOijCUX3sMvW2iqTc3MIqROGMbqh05nqkIfw7WefZWZuBtNUWIYijHKiyMeyTSy3hFQGUZQVcUSmIkp8HKswDhsOBhiGgWm7CKmwTIc8g52dPb7+zaf5/Bc/j64LpKZx9eI1NrYOmZqeO1o8ioiigMuXLjE1PkmmpaRagi4lnm0QhSN008Zyyzi2xTef+hZnTp+m391Hsw1klrO+c8CJhx7m8vn3aNWrGJZNnGso3SFVADoiF0VWpzSPHJlzhDQpVztHTsEKpCBNFXkaogmNPJeEYcYz3/oWc1PjWJYiSyFONJSVk2kxSjloQhLFQzSK6Rt5QpqGkBXZu1kWc+bhYyRpjK4MomAIeQoITNND6Q66MknjCNOyCKOQxaUlsjTmxMoyF+7fY8KwMP6tX+TlF7/DjWv3WV46zuTkNIvLs2zvbJJkMTMzc1hWiX/wX/03HPR7/If/yX+M5dgYyqC3s0mexuTKpNVqwpG77g9bH+wJzNQk13JSkZM8pzDXHbRZyXjpkI2brxLkHnbjJGNzX+bGvW0e/+KXGGvN0tvt0h5vMzd3CttucPXeZapqlxMz04TDQ77x9As89NijVOtzHPR0Vtc3uXjuCoHZ5tK1Nzk5P87xuTY1q4RRHufqxWuMOwax0MiW7pJ79zGu/Cy5NiINLUq1EY1KHV3lSC0lSzPu3D2EXMfzBIPhiO5Bl90dQaNTRH7VqzpalqLrKQiNDA0pijxjcg0yrTDYUpJySZHFEVGYY7suWZYjNR1pQJznmMolZkQSO2ysA2KAbSpQijSHsmsxN13GsSVCyu/mYetKQymbwA+J4wBD2mgCHEMitZg8j0AbcbhjoFsBaCFSOGQyxysXk/j3z0GpbIQWE4SHjE+Oo4Qiy8BQDvNzc5QqdU4uT+G6GlE8xPdD4ijFsRW93iGTU1NoQnLpwjv0+136/UOUFNi2yWgUMhyOmN47RXZ6yCv6M8zOlxl2b7D3YINGtcy5d6/w3vk3OLkwRq1kMhwMyVCkec5BajP16X+H8RNfRHeq6EIiycm1vFCofpAR+D5nIC+AZq5R/PKnfvI/9aPx/T/fTc75mP3l+73r+3pu/bPpd3f3w9THoez+oAjJH7e+9//zz8OA9YOP+cCtf+Z2f9H1E+D6l6w+7kj/x3H+/WGP4YPU3w+jM3yS+4/jmEq5zG//039Cu1Zm7pUrUCmRLU5jmha27fLmG28yMTHOaDRibW2dy5cvs3Jsmbm5Ofb2dil5DmmSoOsGMzMzlEoueZaytbmFZVkMR0PqjTpBGDI3P8+3n3mGzngbx3PIsoz1tS3m5mao1yvEUQJZhGG5xRTGVBi6RCNBKOj292i36pSrTTzPQemCnZ1tXn31FXZ2djl1coUoLNxEkyhie2cPpRtcv3aDOE44deo4g+GQLIcgCHFdj6/+9u8y3hknSROckkOnPc2LL7zAwsIi165eZ2FhAcPQmZqaxDBUYW5g75FmOb0NraAwGgaapvDDGNfzQMvp9g5p1BuEcYzjOGhCQwqJ1ARZlhNFCSWvQk7G+HiLcrlEt9cnR6KkYjjs8vu/9weMdxqYholSOrZjE0VF5E+rVcIrO6DlGIZGr7eFJnTiKCDNCgqhIS2eeOLrnDx5giRJME0Dy3ZA06lUy6TkDP2IwB9imyZK0+gF54nCiPde67G/t8vUzCQX3rvMwlILb/oVpGYh01nEi4cENYtn9Ns8/thn8TyHa9evo6QijmM8zyVNU1zH5ZWXXqXValNvNCEJaI01QAPX9ag3Gmxv79FqtRhrNBBScnBwwKvPvYBAY9Qf8MjDZ5G6TrMxyd27Nyg5KVns0x9ljDWbjEYjgiBga2uLTrtDlqUMhgMc10GXJo5j8+D+fW7cvMX0zCwvPPeHPPrpT+OPRsg8Z21tjWazxeUrV1hcWWH52Arrm+t4jod3pI+zbJt3zr3LseMrbGys0z3scubhk3ieS5Im7O/ts7u7x8LCIrbjUK/VuHvvLv3ukHv37zI7O4sQOlIYXDh/nmMrx7l9+zZpnjMxNclbb71NpVyh2z1k5dgKQRCxtlbQnnu9A15/41U64x26vUOEJhkORzTqTdIMLKNEnhtE1ibJiTbDzgqG6ZKmOXE6olKqsX9wSKu5gFASQUoSZRhKkSQDKl6d/qGPVy7RqNdot9ocHuwzJW9gWCbp1E/RajUJ90ck+YDGeI1wqGHN1NGffBVtfgpNWQyGA5SiiMsIfCzTJAh8dF0y8gOUXrAmkiRCN12kMLAtlwwd3Sgzt7xMqTwGmsKwdHJSDMNE0yQgyClce9+nAhrKpFJ2WVlZ5vSZ0wyGfR555CxLKwso3UQ3bAqlq0aWxuRAuVTCNHSyLME0ddBykjiFHA4PDrhx8ybTM7MYerFf3dBxj4yVAj9Eaoorl6+yen+DdquDLk0yUnSl43neEbNB/cnneZ4XztRmiVK5jOPaaMDa+joLS4vUaiUsSyIk3L67ysULF1lcXDyKLdIY9Ic4jk0Uh+iGiWUbmKZkrFEnPZp0ZUjIck4/9DCjUZcr777B5GQbZZlkuY6UBqZlk6UKXZkEoX/0XgjSNCXPc7Iso9vtYkhQuoaW5WRpiK7EdzOwV1YWqVSrhUfBYb9o9iv3SbIdDG0WKXVct8xwGB5NvQRKKkajgrFz48YtfH9ErdbA0C1eeukVGmNNavUahmGQZQWdM8tiet0uSZrjOBUMQ5EmGY7QcQ8H3Dw1w3vvXuYf/qN/xH+5G7Jw/S7dz5+hXC7j+z4XL14kTVNefP4F+v0+/+6v/W0s2+DOzVtMTrSJk5AoiqmPtUF8MhPXXMtJtUJLmT6pw44gnXqTeLBOikKvnkaUFjhx8hGaY2NMz0zzjSefQErFW+fe4PrN2zx89lO8/Z03aFYccuGjLEGp3GZs/BTnzl/hW99+ATRFEAYkgY5jCL7yr32Ww/42fuzzx29c4p1zXR593CNRNV59NUDNvE1v+o9IN45R6Z1B7M+zsxGRmzmjxCcXNoaSZKSkIiNOTWrVOo7dwg98TGkgRQLohGGClAa6bqIhSZIcy3JJEzBNC6kr8hyStPBfKKJucvL0aPKWF9dFmsWkmeS985c5eWqOPBckicn6xuHRJD9D6bIIfJGSLMvIsqSQKpkGlq2jGwLH8xiNRgWIyHNiBO++u8bs/Cx5rgCFZRh0D2Jsy0A3IAl07qweUKlUUNJkc2Of+lidMIw4/941NjcP8IOEWq2K6zUxzDoTU/NU6nVMy2J2Zo47t2+zsbbK1NQ0vh8ghGJ7e5dKpYZumcwmxwl7CYNfXefB7XtUSpLu3irNsk2eHjDedpkYM7DkiEF/v8iu1yVOaYXp5Z+hNHUKy61/3wDj/c7vB9JqP0Z7+GEPyX9EEPVJxeF83PrzBHk/DHD9sPfghz+2nwDXv7D6CXD95I7h/SnpR/H4fxjg+nG0AK7rEPoJe6t3EHHEwmvXSUs22eIMu3v7hEGEEALHcXAcB8uyuHfvDidOnWRvb5/XXn2FhflZ8iRlMBxhWyYaOf5oBBSTYykFhmngeQXlJUkLG/xjx47hDwe8+OLLzMxMcXCwTaM+xu7uOlGcYtsOQhRNTOBHlKv1wq3Yc0hSgWEoBsM+K8dWOHv2LNNT0zTqVUxD58H9ezz5jSdQuo3neuxs77C+usbx0ydwXA8pFZoQZHnOytw86xsbtMcnsB0bw7DY2t7m6tWrNBpjvPP2OU6fOYFhFh/Qvu9j1kYIoYFfZ2NzA0NX9Ach/ihkMBziuDauZ6NpetFkC0EcR+zubFMu1UHTMAyTJM0xDUjSmCzPKJXqSGkUX86WzuL8PEJLMW23oDlpgjRNsB2LLAto1NsYusOdW7eYmGigK4vRaESSJtiWxc7WIXEUM95pk2cpvj/Acst87fef5MzZh1C6xLHdYsU7B384IAgPGHUFe+uC8fFxNjZWWVk5RmXudfrdmKBXw0117Jf77P6tOa7eu4VlGpw/9w5f+crPkwPVaoU0Tbh39x6NsSbtVoc/+sPnmJlfZOvBLcIwJAwChqOA8+9dYHpqBt8Pigxd1+PSpUtMTk1w7Phx3HIJ1yuB0Lnw3iVG/X0aVb3IBBUeWZqiaRr1RoNatcLW5iaGYWBbFlEYkqYF4KhUauzt7hEFAYuLc1RqVYLhiPfeOcfk9AztTosojZmcmSbOgCQFNIa+j+24SARzi0tIJTB1nXqthtRzsjQjTXNu3b7DZz/zGfIcbt68wdz8LL1ej6WlYwyHQ6amZzg87LGzs0ujXGPQH2B7Dnfu3GVyeprJiQ4baxvcuHGTk6fO8Nprr/O5zz3Ou++eo1avMD0zQa1eZWNtk8ODPpVKDcf2GAx3sawKSlmM/Hvo7RbZ+KOAIIp9HNvmwvkrzC3MYFt1Nja3ieIDhKZjGhY7ew+I4oTRIMGxXba2tqlWSmztbpA9eI5Wp4069gvsbO8yZk7QHV5jZ/cGrfpJ+maMsbaNtnaA1m4jFWgyBQoNYxzHCE2QJmGRf5vlCKEhhXYk18rI8gyp26R54W6c5gZSSkZBH9s2kUoHJN1eH8dxybMMpSQHB4dEUczlyxc4fvw4lWq50GeSYjs2YZQhjgyvNDTyPCXPCr28Y9vs7e2SpUlhDOa4KGVSLjtMTU9RrdTJUrBMD9s1GQyH5FmOZdloJJTLJa5evcLc3CxK10jTFN0oGnWpFHGSFBq7vJhkxEnCO2+eZ/nYcuEHkKc0Wy1cx2Z7e51K2SMMh1QqbTrtFpVSCdM0uH79FrVqBcd1C5qgyNC0jGA0pDnWhFwjTjP+5de+ztR4h0qtSpZGtFtldMVRlrTANFykbpKlks3NbVzPQelGQfWLwqPPaYmmwdtvvszURAslFTdvXsMyDSzbQukKTQriNCMKAizL5dq16xhuH9uxyeMigktKgRB/MslI0gzLLJgC9VrhQRAEId1en3ffvcTKygppGhcLHKrI4d3aXMfQDb7xjW9z+vRZcpEjhMTUNIydA/Rf+RucPv0wU1NTLN9axbJNep9/qDA7S1MmJyep1+t89jMPcXxlhbv3HtBpt2mMNYjDAH80AKnwKrViwvwJVCJScnI0UpJXoXewy/PX/2viNGVvZGCOPcowbfDst76B0jWGg0NOHV9hcmaeVEQ0xsYpex1mZuZ59aWXaLYkzZbi+vXbXLi0iSZ0fu3f/4/40s/8PHfv3eOXfuGzLMxP8sQT32J3P0cY41Qdh8mpaSqOQhM+L798npPHz9AcG2PfeZ3e/O8g6wdEux6dg5/HHs4hEovNw028hsfOXszFS+s0Wg7PPPsmnc4Eo1EPy9LwgwRNGWhSEcUBaZZh2QWNPydF6hLf98lzDV23QAPdUCiZMxoFaKJ4pCY04jTFccrMzc2QZwGWpbO+ccDNm3eZnGqQZSM0Cv2rlJIkScjSGN3UiZOCRZGT4gcxaVJ810lpIPUIx2rgWAWrI099NCJ2d0JKVQOlxySB5Onnr3Dm5DRanuG6Dqv3u9y89YAzZz9LLjSSdIQfhoxGMD4xz4O1+4TxiPv311BK0qjXCP0hluWQozE3O8/ExBS+H2IGDvr9MuI/38coGbz72qvocki7LjnYvsP6g/coWyENTyOJ9onDkJ29LppZwq5/gfr051G1znf7pz/Vi77/90+A65/bc/8EuP7p+glw/UtW3wvsfpAZ0wcfn2XZ9233/jY/TpzN+5qBj9LAfphx1Ic9z/vH8UH6wodtl0QJBwf7PPvkV/nZL3wB74lX0KoVsrkphKYd2dtnOLZT0FFtg5OnVuge7ONYFseOHWNvv8vQD4njCMe10HWJEJIsK/QyjlNMVqM4wtAVnVabyYkJ4jgiTWIeefhToMWgFV9mrmPz3POvUK+3cJximquUweFhiBQ2aaIhdRPP84qV5yQhy3Oq1TIIgVAGvcM+n3n0MUqVKlKXLC8u4JiKSq2MY1mkSczBwT7VSoU4jmi22rz88iu89trrLC3Osby0CBlsbm4wPt6kWi3h2BZ5lnH+3DnaMyUEBiKpU2/UkSLHMCyeeOIPWFyYp1TySJMY3bCJ4xjLMtGlpNkcI04yRv7w6D2BzY0HhUtpVjS5UZzQO+iyu7/J2FiTLM8pl91C55dpxHFKmmU4ToVBb4hjmmhopKmg3+1RqY4hhIIsJU1jlpbmUEqwu7tNu90ijGMOuiPGmg0824AkZWdnj3NvvY3UJFrWwtQnWVhYplwpsX+wSyDewSz1GO5VqNcapK/s4k+6DB9t8unPfB7bcZmYGkeTBmHoc/vWDfzBCCUMyrUqL77wEqVShbmFeWqVEqVyhShJmZyeZm5hjgcPNjh27BgvPAls93sAACAASURBVP8CtmXRaXeYmJ1CWQbC0Dno9bBtGy3LOPvQMdIspNaYoFLv4DgOq2trGIbB5tpqoRPUFVmeITStyFa9cIk817h67Spnz5ymVC6zvbNHuVrj4KCL1HWiOKJUdrFMk97BgBtXrzG/vIwfRYXjtFBkSViECeQaUpnESYiUJt988tu02m1mZ6fY2NxkNBrRbDYZG2uQazmtVotLl67QbDa5c/s64xMzBJHP5sYq1Vq1oKlXS/S7h8Rxwtr6NtVqmWq1yu7eLv1en+XlFe6v3mZycoatzR0OD/cplz1sR5GRMQr6ZEGXbP0dxMLfQRcaWbrN+r01FhZPsrO3SqlURyiBP1inXmlhmzZChGysbTDWbvJ//pPf4MGt+9iuh+majMfXuHnzFs1P/S1s5ZBrKQJBd+s+cbDLWKfDnudSff49kixBb9cJ/BDdNNCALEsRmsbG+gMqtRqaEEdTvpg4CQn9HrohMSwDjhgJuqGQSmI5HmkcEUcZcZIWk+2kiNvKM4oMZlOxMLdYmEXFMRkZulFkiFqmxfN//Mf0e/vUKx5IhciL6Kg4yfAHRUyLaeoEfgCZRhgNcW2Lr/3e73H77n0efuRRDg52KJfLCFG4kBbaf4PZ2Rn8sI9haeSaXiw6Hhnu6VIShiFpliGVRLdMFheWMCwDTWTEoY/IM6QyqVSqhGFAnuVkmqLTaSBlzvbONuVSBcsyiNMMr1wlCiMuX7zEwuwig+GI1bVN2p0JavUa0xNNNFlEkUlNIwlGSFnoxizbIUpifD9ma2uLqelxyCV5XjBlhBAIoaGUxHNt/FEf0/RotNrkuUYYxaQUelaBYDgcoHSJV3Io12OyJIW0RpYljEYDSiUXNA0pdA4OuoUDq6EwDBPfH9FsjiE0yUMPn6VcLWJvNA3ePXeeJBNMjHewLYvZ+Xlee+0tTLNwfe5sHpAf9Pi7T/5zHnnkUWzbYvy9a0RRQPdzD+F5Hpubm7RaLZRSnH/jWUpemc9/4YuYtg1ComkZpqmTIShV6z9y0/jBpjXPM6TI0YIu609sMjjc5r7+R2wOdBozn+bsoz/P6v1NpObjBz2uXrpINPL5x//4f+U//ft/j0qtjsSh2WxiemWmJxt0N+8wNd7g5PFZDg8fkGQSfzjikU99GmV1OXnqES5d3MJ1F3j7nTUmGzX2w0O+/ltX+Ozn5pldafDP/o8LhHHK3EJEtN0hdG5yUHuPu63f4kBbQ/htJgZfYq8b8fbNG2jCotFoMLfS4uadHqkQ+JGOJiR3Vw8p19psrK8d5X4X03shNTJSlLTIkWiawrQMkjQkyTR0u4ymwDAKmrFpeURRBARIIMsiTFsxN9dCywO0PEFI87uOwFIUk3s0rQC+cY6GjtIt0jTB0HX29w4wpI9jWEg1IAolcaRhmjmVMZfeICNJFa6bsbTcQhAitRypBFGgEadw5cZ9+sMh460xZmcXGGvWGYwOmJruYBg6oR9SLpXQNI2xZpMkTdCEhtINfD/gwf11xlZnGX7lHvpMnwvvvMJkXZBGa/j9mzS8FFvv4uqC7uEWumGSYuPV5qjPfo7Wya8ga1NI8f+x957Bmlzpfd/vnM7hzenmMHPv5Iy4C24miSW5lIoWJZmURJOloiTbX6yyypa/SCqaNFVWuaSyKFXZpkiJNEXucvMudrEAkdPMABhgImbunXxzeHPu6A99AQxnZ7AARVIUvc9UV915u/t0v/ee7vP8n/D/a9yr0+uegPNuv+4jAtf3z79369w9r3GHha//YOD6Uf3iO33Xu0lM/yxA3p2+9UcBru9mw+8FYO/e7jPKe8f/RbUfAte/gPZhIix3s5ndi93sT6Op+24g/SfJ9N6vb/d+FkeCWn0TOWwzWRnD/PILRK5Dd6SIIuHlF59n/4ED9Lp9wjDi1VdfpljMQeAThhGKorG5XefpZ54l8AaMjJbodDrEMWQzaXzfJ4oidF1PGA2HQ7zBkBvXbnDh7Fl2ze1ia2sL09QQIkTEGnEcsbK6RSadJQxDVFVhMGzSbPV48rvfY2x0hG8/8T1sx2Z6empnbB0pY/p+QITCOxcXWVy4xoEj+9EMlU6zgaEqOK5Nt9Oh1+uQ3pFo0C2TbrdPPptn5fYSuXyKbDZLEESMjY0wMzuJYWg0Gw10XWNmZgYxzCCGGfwgRMSgyogoDhgdqWAZCcCN45hIiCQzCwwH/UQ6x7TRjSSzIKXENk1S6XSyAKoqiqJg6haxCFA1E8tN0Wpu0ev10XQbXbfQdZ1YQL/XoN+pousqpuliGibVepOvfOWrHDl0kHanSj6fodfrkU659Ht9LMtic7NBpVJEV2LajQbpdI5KscKrr55kfHKK4mgRqeiYpsHS8kUmD60Q9sbw+gECSfaUh/jFo2z4HarVFpZt0x/0GAw8bNvk7NtnmJ+bx9RtNFtnfGyM2dlZdNNkYWGRTC7P+tZmUjpp22xt1VAUyfFjx2jUaoyPjbO5voauqISeTyGTQ9EUbNOkur1Oo91C0TNEYcz5CxeYn5/HMAye+Na32LNnD/V6HcdxgKQk27Bsxsem6Pe6XLp4nsCP6Q2GTEzNMDo+QaFYxDA02s06mqJx9o3zWJZJvlTEsh3WVldZuHyFjGMQeB7Pv/AyQy9i0O+Ry5bwvRjbMQmjIa6bJpNJsbBwhXKlRLvTRtc0yuURLpx/m4MH92DYLoiITNqh3+thaAZOymVl+TbVWo1qrcWRIwe5du0qRw4fxXHS+H5EoZSm0+4jELRa2+QKaa4tLlMoFen2OlRup1Fv13im5rB79wzt1iLjI1PoVhbdjFEUnVa7RaGgoUibtdUt3FQiOWOmbFr1Nr/yT/83Tjz4ECOTExTab7Fd3aZb+DgTI+P8k//9H3F4zydZvbyAk6kS+CalfY/QnHawX72EUu8iKyN4UcI4mrQQaJQrRVZWVtG0RPvRtkwMxUVTElZfUAgD0GSMEAGxEIShhq4IVFVPKiQUGHp9VCUpN1ZVlSgOiCOJEBLdMBgMB6iahoxga32T8bFRRko5HFsnlhrBcICha4QxXFtYIZ1Jcf7C26TSqaTMlwDPGzI9M8XE1BRSVbEt4/2gZRyzuLhKLldhZXWdUrmUZFmlSnhHQFPsEHlJKYlFkl1WpESogkG/gxKH1KvbXLu+SrFQQgoFXdcxXYcg6NNuVjF0nUKhSL/XxXEzRCi06m3azQ6aonN7aYWXXnqZPfv2kk6nGHQbbG1vY5g2m2vr2IZGtKPVOxgOiVWBZTmMT0wSxgGgAiG9fg9FkcRxBEJgmxaWaYAwiBUdRTVQdWOH0RnCICSddmi2auRyaYbhOsQxrjmPqhooika/7xH4HiBJpVLEcYSUMBx6mJZOEAT0ev2EpCvy0XUNiUKj1kIqBpKIbreD66aYmJgkCofk0hmslS3UIOTT//qfE8eCtbU15q4to+sq7R85jqqqFIvFhCxKCFpbNxBSx3IzKJpBLJNMXL/b4cbtJUYnJnYkm/7TLQoj1Cji6vnT9F6JKOYscp9QOH9tmz0HHyHsB/zLf/6r/MIv/xyzUxOoQmVteZMTRx/E81sIoZDPlDj92ks89tnH8FoN+rU1ZDREURtkMibnLlwnQmPp1hLIETbWe1y6dIWpmRLHTszw1EsXefHNPl2vy3a7x60Nnd/75nPomRQLVwdMTIzx4qnbvHWxxXpb4Tvn3uQPzn6T7976Hf7m/H+LNrQRxRZvnb6J4QouX66xtFplqxqTTafp9FTWN1tUihV0VeXSpUWKxQqqlvzd4ziCWIFYEsUhiJB+3+TWUg3LtpNnQImJo4RoKAh6yFggIwMhfBQlQkFFkwlTegwEQQBxjCJVVFUljgXdbkAQSEzbJQh8dF3BNC1U3UUoNr4ScOVqm+89e4mj+2fwZZfTp1dYutlkepeNJiRqnGjNrq5WSacz9AZDrt/eZGpqFlVKLl+6jWVpeH6fSmkcbyjIZVws00I1DG4vLwMhpmWiaRqbW9tMx3NoaPzbpX/C0s1LTIylUcI6jtNHxNu4ukBXBnjDCOIITXNAz5Et78IpncAYmSAydFQ/6SX+Pl/uw0zEOw66H1fKvcf5aL7ju/ZhgOtHtQ8CzH/WIO+jANcPA3Q/WEHkh8D1P5v9lwpc7+4n/ZPsu3v/vSIt7+6/F1nSnZP6znHvLBm+H4D9oGjOva5/LwsEXHruOUamplGcHO7vf4/YtdEOzFOrNxkbm8YwdWzbpdfrk065OLaNbjpk0iniKKJUGkFTdU6cOEoqm8cwDLY2NtAMB8u2EFLQ7fQJA9hYvU25nEc3UkxMTmA5Bpqu0ev3yLkOy9feJo4iZuZmyRazifxHEDAcDpiemmF+bpZev8lDjzxKpZKn22slZXqqTjQcIoWgurXF3K5dzM/tptncQtcNHNdFM3VOvvIa+VwOzdBxUi5SVfEHHpomcVIW+w8cIJfN0+0PGPgeU1NjrK3cIJPPIxWdTmeI5wek0ml8b4ihCeIooNns87WvfYsTDzyE74f0+j4XL15henIc4oggCJFS4gVJeZXn+RhG4hDHqo0qNQIvobvXdBOpgmlaaJpCo75FECmk0mkgIAgH6KokGPoQR2TyWaRm0Wh0UQ0dy7Y5eOgQAy+kWCqzvrGFaRgJIc9OVisK+pQLOaIwwrQsrl+7TKNep1gqkKsorNxaxO8nZBDZ6WuoqkZtA4jBaQrMTYH3s/NIKbBMhUI+TXV7i0KxzLmz5xgOfaanZnBSDtubS2xv1diubpNK61TGptFMg3w+T7fbQdc0sukUiirQDI3yaIVOvwtILCtFEEcomqDWrOI4adyUgzfoUN3Y5NnnXuDRhx9GURQM3SCVytHr+9y4uUS73UE3VLKZLFeuXMJxDVK2xb75eTRdZ2J6klargaGpLF55h+pWldnZOaII1jbXePhjH8MbDli4/A5R4LNr1yxbm9tcu3aL/Qf2kUqbjE2N44UBE1MTFIsFgiAinXHRDZ1Sqcy1xevYhoapmwipUB6pEMuYXs/nzJm3WV1Z58jho6ytrVGt1ZjfO8/4xDiaquA6KRauXGF+fjdDb0i90cHNpPAHHsV8jhs3lwhCQbFSJpfN4DoO4qUqRldwJQeF8iiZjEGtUUNLFSGIOPnSc+yd30WojxDjYxgSKUvorgmRxq6ZMTI2bG+u86/+1b/hS0+/Rc89zPy+o2RzNgePPkp5osKug3PcuLaEE23R6q1ijpZpHZ3HXlhHvXITpsbwwxjLNIkJ8SKDjGsh/B5xFIBUUFQFPwwRUsXzPILAIxYRUurEXki3XSMSIKUBSkQQ+cShChICP2ZrcxNDV9FNg5iIMAxQFYMnvvk9Xn35FfL5DF7gUa6MEZOAVV1Jntdus0ZxLL+TDR8jRiWdzRL4PmEkyOWKeEMP3xuQzqYRikIUSVr1Jl/+xtfZu3c3Mgo4dfI0U5O7E7IjAZpU8AYBfT8CIZFKAmIvnbtEoVhARfDCsy9w4/YyRx98mGKljFAEfhgkPadCogiJqVt0e92kJUBIdN2AKMC0VPLFNKvr2+SLZSYnJ7h47m3m9+7Gsh0c0yQMY15/6xK6YtCo3SBl2iBUgmGMbdsEUUQcRQz7TVTdwTItpJAEfrBD/qJS37pFs76SVNG4eUAQegFxlGh3RkLg2i6B5yP0BlJRaFZB7ujbWpbJ0PMwdDPR1FZVwjAg8HykotPrBVy/eo2J6Qks22J1+TbD/pBmvcGlhascO/EgVxav0RsMCEKf0bExNFVDWd5A8QLO783wy3/3H0Ck8bHmAM8f0vmRh/nDL36d7a06lZFiIvUVJ0Rv//h//p/47Cc/ReB18cIG3uYyqzdvsfeBBwj98L01M47jBDAI/vi2Uw11Z+nm3euqLz0GV9/kqT/8vxn3PkMqW+GJtW/wt3/xH+LHFrqp8COffoTf+r9+hfqGz+/8+z+kF67TrLXotwdcXVzEcmOQHlfeWaAyc5xsscTqrTMEbFJIj6BEQxaunuav/sx/T6AJisUx5ucP8Bv/5t9y+PhhLl26zi/97R/js5/5HKMT0zzz7Wf5+b/xc9Q3A7795CmWavD6uUVOnbnOw48+zoVLb/MTP/VxTp59g/r4NY6HnyOnjNE1NvA9DVWB3bNztBp1VjbbrGysY6fSnH/nBjIYMDUxwVajxUa9i2vaIAWnTt1kbKqCpvtoUZZev0PKNTE1iRL1iH0dVRlA5KFJA0SEH/sJB4Si4Xkxg2FAEEVIVSCIkEiEokAc4HkR3376Hd651eLIfIY48gmjGD/wUISB7/dQVZNCIUM+75JNKURhxNRkiZnZClEk0DUVFEGIgmnmWVqtsbK6zKMPHKM/HIKewTBM0rkMmWwWdqrPNrZrSEVje3OTyPdJZ/PYdia575ZHZmmUzn9zlcqEwfr1C8xMldjaPI0MO0wWc0ReB28Y4Q37WHYKK78LvXiIwvyncMdOINFRI/H+HLzbr7vDb3zfWRQg3t/u9v3u5R/G8fu0TO9P8vsDqPfG5PsfjfB00iOuPPL9wPUDqwPvsd15vfsRkd6vfe4H+cEfxt497t3n/N3//6B7ufO4e9md9/jHcUBSPh/HEckQf/EA7A+B639B9m7Z7r0evHcpu+/c7lzM7t7uHPPDPIgftm7+T4WoKYbq7Vt4gU+pUMH4f58gdC2CmTFM08QwdcIwxPd94jim02qRyWbRNJWtzQ06nTaWY1MZqSSZU8tAVRQKhSLLS+usra0xMlJm6A2QUqAbNqpu0GgOeOvtC+zbsx8hFExDo92pYdmCwSAgWyihaAa9Th9VJOyCvX6dam2dQrGEZTmInT4qiUSRKt1OF6lp3Lx1i3KxiO8PcdM5VE2n226Ssk1GRsdwUi6e5+M4Dp1Oh2F/gGmZdDo93jzzFv3+kLHxCbKZbCK5MxhgWBaapuMNPQaDhGFUSMHQGxAGPoqIuHbjNgcPHsQ0DU6fPsWDDzxAHCcvc9M00XVtJxOgsbS0iiITIgvN0BEixve99xgBlYSrn263m/Qy2laS8RAS4phup0MUCQaDHpqq0m11eP7Z59izby/DYR/D0LAsfQfUa3S7PaIoxDQtegMf07LYrtZw3IQldXtjHdfNUKs3qMxdRTE3CTqTdMK3sAvLKNEuHMvFME2My0M6IxZnvBUG/QG7ds/RbHVIZ3PousbU5ARTU5NcXVyk0ahTLo2ztr7N0SNHQYRcvnQpAcnFIlJRkVKlXqty+Z13yOVyqJqGYZqoWiJF9JUvfZEjhw5hmAoCFc/3cFyHXGGEqelp/DDpW2w2m6TcNIuLC1QqFbarmwyHA5qtDpvbVXq9Abdu3mZpaZlde+fI5DIoUhAMh2QzLqVSnqE3RNV1ds/NEUQRjuNQKpdptZvJd7cs8sUi45PjBJHPwsICo6Pj3Lxxi1KxQK1WxU2n0HbKt/udHul0iSDw6Q2aCSmRYuG6KcqlMq12i7X1NSYnxxkZHcWyLFZXN9g1O49uOUxNTdNut/jud79DqZAnk8+gKpJrVxcZmxhl6A2Ynppi6A1QFQVrcYA/6LGZa/Avfuv32HtkD2NTx8mkHLbXl8mmbDLZNBEZ4nhIv93GtQsEkY/QVFQFXMfgkYePcfzIPuYPHsawMzz+45+iVluhODJKKuXS63eolHLcvH6VWER0O21yI2X6jxzHv7pK6uQFZCYFrk0YBvTaA+IwRNd1QiFRdJNBb4Bt20nQwUgAjqFJfD9ANSws2yWOfOJYQUp2suhZpKIRBiFvnXmDtGsx9D0c10ZREw3h0dFRJsYrZLIuxWIJKVVefOFlAn+Irqr4fohmOOh6JmH4VZMedE0x6HQalMtlup0uqXQax7bx/RjP93e0oC0K+Ty5dJpXX36ZjbVNDh8+iqqrBEHSb1ev1fkPv/sfefjhh1EUiT/0Wbq9QjZfoFFvkM3mkFJhZGws6QmVEikU2q0emi4I/QAhJIPhkIgY18kAEt8LGPT7SCEpFUtomoaqChQJI5UynVYTyzDo9/tk0ilMxyGXs4GYWGoIVUM3DJAqqm5imC6KTBaBwWCIoqpIqaBIFRGHmKaDUC0M00KId0FpSByFIBLyuzAK8eI1pBCIsIKm6lhWEqx4N3sdBBGdTgfLtlhbqaHqFtevXef1109x4NAxOu0ucRRRKVcIo5hjxw5BHKAqgnazyejIaPLu9XzU5Q2UIKD7Y4/zcz//X/HYJ44z+PqzvHNpgcbH9zExMcPWVo1Go4kUKpVKkV6/y0/95Bfo9z1SqRSqrrJ6c4nqdou5Q8cgfj9TvvPD9y2TUiTZ82CnVPzOdf29rNZgwCtP/Xt6/Tp75F9DKhbRwQHb7RZCUfi1X/2XZJ0JGp1zVBt9zr59mU5TIN0m03OTPPTwQxRy48ShiW2OIFFwHJ84riHDNgKBY0nm52fQNIPlWodKpcTy2jpTs9McPnaMh44eJYyHeEO4fWOB+blHWVm7SaR2+cIXvsBrL13g8cc/j5uWvPTKU+zbc5jLl27z0597hBMn9nLJf44T3k+j6AIjK8nn8ly/fo25uVkG3Ra6Jun3++zbdwChdylWRtnYGnLx4lXmZibQFMHaUpVC0UBTwO/ZCKWJ5SggAhRdQxEqftBDVTVAggiRMtH1Tn6fGpubW7QHBrmUiaZECNUgikOkiBFxRKmUx9Qk+WwyZzVNxTRNesMeqqLsVAYMKOYNBAn7sWvnkCJCqn2kUAmiACkkvd6QejUily3S6vRYWq2SSk8yMZFjfHyMdDpDFEnOnrvItcV3GB0do1gqoxk6jXqPIOijqiHW5RJdu8FC6XVWb18n48bEYY3jB0aw9RivU6W5vYqqxGC7OLk92IWPM7rnMdRcBYH+x0HNh21f/ZP4gPH9AepH+RwAG+RMhKx8xHLgD9r3AaD77s8+TJLno9r9wPEPOv6Djrsb5N57/w+B65+b/WUBrh+mDv/OyMsHlTHcKwp0v/PujOTeWYb8/T0098/8flBU6YP2BX7AOydPsrK2wtTEDNaXnqb/iQcQponve/T7XUzLRlNVhIBLFy8xOjJBGAVoqoph6ERxRBTHvPLyqxRyOQqFPNVak1azw8TkOKqWSM8kBCaSMBqg6wbprIOmD7l9+yrV7SqVyiRudhRNAaEZqIrB9sY2Tz/5NH6oUSqX0A0Ly8ohlYjAD3DtNMSCd965RBwJCsUiqq7RarVQFYULFxcZHRtHUwXbm+uYrkO32yOfyxOGMW+fOcvMzAxhFGJbNq6TZmJ6mk6nnThocUyxNIKu6/QHfVIpOyEpKd4gsmuYQYVerwuRz9EHH0WQ9IktXL7M9NQE2VyWXq+bnN/vJfG1MJEOWFlepVjMoWkCz/OScYkI/AGeFyaMvI5DHAuajRbDYUKiEkcRURQx9AK+/vVvsHfPXqrb2xw/fhxFM9je2kz61AZtkq8QYtlOwlIqVRRFwzA1UmkHVdE5f/4iRCGdTo8zb51jen8f0wkJ4ibZ8TX87igba3XW19YQUpK/FHPKqTHzyEFu3LjF6Ng429tVCsUy9fo2p0+dYnp66j223a99/bs89tjHUVWFpVu3qZSKlIpF4ijmiSe+w67duzFUjZmZWS5fucI3v/kt9u/bj6ZpVKubSAEpx0U3NerVDqqmEcQRQlpIRWKZNqdOnWZzY4tmu8mRY0fYPT/L6Ngok1NTGJZLGIRUShUmJiYwTIvSSJEgCtB1neVbt+l22+TzBa5du4GuqzSbTXq9HmEQ02y0yOcz6JpCKpvFtG1qtW2kFExOTRFHMTdu3ML3vPfYWReuLCRBgm4XVbN55eWXkr5B3aDV6KAoCq7jUK6UmZyaYGlliXK5hKoqhGGEYdisrq8TRzH5fJb9e/fQH7Rw0znq1W2ymQyxiJidncYPfPq9Dt1uh/TNkHarRb+0zqHP/xIze+YxnSnCaEA65VCvVanXW1humWZ1BSkGGLpLGHmAz8raCgcOHgQRMj01wr6Dhzl2/BhB6GE7OsQKqirx45hao8X0zG4AZNim29zEdTOEJ/ajTo6iP/8WbNTwCxk0XWd9bQ1FU1E0A90w0VWNfn+A53lodxAFaboOQiKkTMpqFR0hJZbtcP36Mo1ag2zaYXJiBFM3MCwLRZUMBr2kD9UPGKkUcF0XIaBebyKE5Ma1RTLpDOl0lkiofO0r36Je32BycgRFEQgkECUsoTvM34aus7FVxTS0nfc/pG0bx7HZs28P6XSGV15+jYmpCQxdR5ECVVGY27MP17UhDtFUlUKhiG6a3Lh+g3Nnz/Gpz30GISVCRggkUipsb27h5mxUufN7VtSkGqU7IPQjfv8Pfp/Z2Rk2NzcT5uPJCbrtFtMTY/iBz9rKGu1WG8PQyeTTmE4GQzdZWlrk1q0bjIyN4w2HGLpBGCXv2NAbABJF1ZLsi1QQIumTNSwXKZPexuEwCTwSJwE2QzcS8BpEbNUu4jgOWXfPewGyOI7o9wJ01eXb336a6naTSnmcarXJ17/xTdqdNidOHGVychbPHzIyUqHZalOrNWk2NnEsi0wmRTabYdDv8odf/ApLKyvst1zi/oBvawZjExki0SH45quoqknqb/w4M1PzPP30s/zGv/4N9u8/wL79s7RaDW7dWuHf/ebv8PCJY9R7HRYvXsNQDfYcOgjiLqfynoBBvLdO3732Kjust1p7i43bL/Gdp17gR4/+Dwgr5B3/DHP7DrBwZYG3T73Jqy88T6dbx/NMPvuj03i96wx7s6wubfP222dptdo0mx3WNi6Ry7uUyzN0+lk661dBDKiUVLqtFhvrC5x/+yZeL+FyGBubodUKGHRXKI+PUSpN0KyucvShR3n0k4dR9R6f+vTHuXDhHX7sR3+cn/9bP8PHH3uUy+/c5LGPf46ZA/v5X/7Zr/PZv/qT+JUm8xuPMTS6bDZXOfHAMXr9DroUPPjQA9i2yzuXF2j1BZvrfS5dWeLI8UMU8jGqiHAzFrqlE0aSlZUVttCklgAAIABJREFU8tkcYegjhM5WNUSVO73oqkEYCsLYIwpA0zQ8P0SgcOv2Mlt1j/FyGk2T+JFAVZP5F4YBrq0zWkqhGyqalkjmBGFAs91CUwQyDCEOkmxuqGFoSkK2F0eEwiMKBUIk5IyxiOh1BqxvrhIqGvVGl+s3bhGEHXK5AtXtBtlsgWw2y+REhVQ6Q71RR6qSQqaIkD7BJRVburz96JN0WuvsnZsm4/pk3YCLbzyHocSEnk/PE6juCNboEezCCUb3/gSRWSJWFeTd7uSHBK4fBS5+UD/rh7F7nSXKMbL80bld3h3rzmfvzlHu1zN63/E+Ikj9QWPeGUT4QWPfqwryg/z/+/Xt/kXUdf0hcP1LYHcCy7uzqfD9k/3DZE7vZx/l+D9pZCnwAq68+QYnHjrB6tIao0+/Tn3vLk6efI3p6Wlc1wWhMBj08bwBAkm73WV5aZnt7S3GRkdpttrkcgW8oY+uCQzTZHHxBmfOvMHhIwdot1qYZtKbub2xjVRAVRTyuSxSkRi6TiadJUYgNAMZRwz9aEcGI6K2sY4XBdTrbTqdxMm5cuU8hVyB27eXyWXzXLxwnps7bMeGYZJN55BSwzYslpaXyeWzZHM5EAk7ZRhGVLeqTIxNImSiFxuEIYZuITWJKgXDfgfPG6KoOqqq0mzUd/qzfKTbTsg4BiU0VQch0EyHMAwQcbwjBaIjVW3HmfaI4gjP82i32ty+ucTrr5+mVtsil3F3CKxiDFWh32lhOFbSt9XuoCoqhmmi6Rq+59PvD0ilUlipDIeOHMayLIqlPGEQ8EdPv4iiSmzLJJWyCPyYzc0t8vkiG1tbuOkMIowY9NsE/hBV0bBMh3q1yqUri0xNzjA2v45QhqiqRqtm0ayHeMNE0sceqriLIbn/8bN894++x+OffxzLtPjGN76BiGNK5XLy8o1J9PukyoEjhzENjddfP83k+CRBEHLq9GkMXadSKmFoSd/SYDAAIRj0+zQaTQxdJ/CHuK5LqTJCrEgcJ4uiaihaQgCiqEnAx9JNXMdlc3sL17Xw/SHVapVstoCTcdne2uTGtWscOHiAiJizb7/FzOwsUlHJ5fJUax2iWHD92nX84ZBBtwsIzr99AYnCmddPMjExSm84xLZshv0emVRqJ0MuyecKXLxwnrGxMZrVbXbPzWO7DmEUMRz0OHDoEBtrWwTDgKmJMTY3Nsnnc6xtrJHLZSkU8yhKjGnqCARf/crX6HRaTE9P8sLzL7LvwH4y2RRCGsnfzDAJozCR6oljLMsAYowrfQb9HukjsPvT/5BGs4Zjp/GkwNA1cvkS7d6AfK5Eo7WE6woGXZ+YmH59G0XRiTUTlERvlRvPEGwvYk8/jBeGtJt10tkc6VwBzTCTEn0c/O4GQXedOBhg6xJ/Yprgcx9HvHkZ/doKYm40IeHRdRQpE4IkP0TTtPfKp3RdB6nihz6aqiRzKA6wTJcgDBgOPZ5/7mXOvfk6e/fNJb1lhkkQBqiqiq6bCSlcKDANHc8bYBjJ+Kapc+jQYU6++gojlTJSUfC8LvNzc2hawmIcRwFSKsQxIAS6phMDqXQaTZH89m//B7xAEHoeuWKenj+gMlJmz555FFVD2wk86bqObllIBRJi4aTqQeoqpUKBgwcPIBUFVUtkfaQUCBHhOCZCBX8QsnDlGqVyid6gi6YINE1j7949+N6QWm2b1147TblcoVgs0qjXkapOGMQ8/+JL7DuwD8PW0U0HVSiY+pBc2kFKE8c2aTUa2LbNMAjAD5CKwtDzkaoGCKLIJ+bdwEEPVTPxfX8nuACqokEc4YcxUQwpq0LYs/D8pES4Xm/i2ClUVUPVNKYmpwhDj/HxEVZWVnj0Yx8jl88wt3uWmJB0yqHWqFGrNVm8eoMrC5eZm5/HMEykIomImJ6a4sChA1jrVdQg5F/ceIuHH34A348xSyXak2OMPPQQv/1bv8vFixf5lV/5pzzw4DE8r0MYhszO7MbzIuZnR8iUC+yZ28Mbp05y4Nihne9952J6j4XyA/zyMEzaQOo33ub0i1/l+NHPs5mF/tgpLl9Z4Iu//wSmYqGKTUS8zIH9M7zy0iInjlp89mOzLJy7RRTUWN+6SYjBY598nE57gxPHj9FodRiZnmOwUcUP2yiyj2kW0HSYKjsU0jGNxgaXzr3J8aMHqNU2OHjiBJaZYWtpkVgboVKaZaxygLHKHrx+yLEHdnH+3BVazSHPPvssjeYmxbFJTCvFX/+vf5aJo0U6nS65tRn6VoeRqQpTs1OkM3n6gwHVao1ut0ccJgRs2Vya7doWE6MF+oMBr71c4+ZylU5vQK9dYWzCRgofKRSeeOIcu2ZzWJZFFEmiSAERoirJc6oqClEkKJXKjI0VieJhwnaNSNjjkTv9tBIpE0byMAoJ46Qc3bZTqAoEfh9Fc2h2FKr1IZYpkcInjCRhrBKHEexUcmm6hqYrFEqjXLqygecr/Pjjn2bv3jmuLt7Etl1s22Lx6hVKlcoOYaRPyrWBAHHNRu+6DP/uRfIjNs88+TXKlTy//Zv/J3tmCsyOFel1B9iZEXKTx/HMcZzSCcrTB1GcTCLWFfjf39P6oTOu95+b97c/PeD6J7U7y54/bEbzz9N+UJvd3cd+lGPuN/YPgeufo/1lAK53T6S7S4HunHT3KhWOY7Ez6QSKovJBK92H7U2917180Jh3293nvavZF0XRe1Hifjdg7doFxmf3EQ0V8k88x+ZomVKxyNAbYlkWeH0QCrqZwjBN3nzjNCceeJihP6BQzmNaNrquMVIpouoqUaSgyJDjDzyCqimkMy4A7WaHb3/zKYrFHJZlY5kG6+vrVCplTNOiVm3SbXj0w4ByIQ1+hOtmyFYyCOHiuDphNKRUKZLN5NCNZMGJY5icnEFKi3Q6hSISfdq19XUyKYOzb51jdHQMoUA8DDE0gyDwuXXrBpqpsLGxiutkSLlZTp8+zfhIhjgOSKXSnD79OrZl4WZzGIbOoN9FVRUUt4UiVaJunjCKiBAQqXgDDyEk4xO7aHc8MtkUuiJRpYZmpomFiaEIJmdG2bt/L4ePnMBMlyEc0m2sE0cKXmCRclxif0AY9ADwFBVFqqRMm0Gvj1AUFBHT73XY3NrEyaSJBExM72JsdATbsoj9CKFopDMpotgnk07hDYbU2gOeePJpDh86xplTb7C+vEIsdWYmJslm0pjF66hSI+yOkssU0RUV27JIZ9Nkr0Q0MhLxyAgH5uY4d/4stmsjpWR+9xxbtU3SmRSh73P61CkK+RzZnMOg36WUT8rOOsMBjWaLmdlZ+oMB/cGAq4uXMQyThcuX+fSnHmNt5RYTM7tpdZuEcUQ+X6bn9TGlYPX6LU6/9gazu3ahSsHy8i0KxSyvvPoKn/vxT6EoKo16lziAF579I1JuikzKRtdVGvUahmYwPjHB1cUFyqUCQolI2w66pjGze46RsVHMjI2lWezfv49SpcjE9Cw3bi4zNjLC5sY2mVSGs2ffZmykwq0bN3AsC8dyME2bVK7IO5cvM1KqcPmdBUzDoV6t0+11mZ6Z4cVXXmZts0bg+5x65SWqtToDL2K0Ms4gDNANnYP756nVekxOTXF75SZze3YhFJVXXnyeK5dvIVWbbr+Dm7aQsU+j3md1pcVkQ8dNufStN9ga+zHeuXCWQipAlyaq6tLfWmZ0YpqFG5coFCs4TplWt4fjpkml8jjpFNJQUTQTRbEI3vpt4uYKxtxPkMsXMAyN1dWb9LrriDik1RqiyzS11jYDIqLIRsYWYXmcruZQ/MQ84msvI4pFIl0lCgKkbtL3IyxTJ47iHV3WgH6/u6M1GmFYJp4/REiFiAgplUQSK50iV8wxu3s3G5vbqJqObWrEUYSIBUQJ4Ax8DxSf/qCNiAVpO0VEwOT0XvwIoqBNvlSm1fJRpI5pKgR+iOM66LqRkAgZFkJIwigkjuHwkcMUi1nKI3mkIjFNA6nEeEEXTdWIiVEUlSiOIQjodToQJ+BOUVUEcdLzKtnJ8MbEcQJcoyhOSKoCD1VRWVq6TSrtYhg6UjPZqtXIFQrols0TTz7FFx7/aWzbIgiHWI6ZZLrjgD1799Bs9cimyygIXnjtOcbHywxb27x+8iSlUgnFTqMZNp1Gi1QqxauvvkapVERVJcRJ/6sqdfwgkfiRfhdVM4kVm82tJk9+9yn279+HpqvEBInWcm9IoVRh4Plksxnq1S1Mx0QKFSk8Op0apXyJ0dEimiEol6YJfdiuXccyLQzdIJezmZmaZn7PLhxHx/d6EAU0Gw2iOKaYHye6cQvFD9j3j3+Zr33raX7zd7/KT/7yL3F2+zq/+s9+nb/3D36RsYk8xRGXfNGh0x4SE9FoNjh24igbtZsooYumK6QLFmOVMcK7dFw/qPfuj6+vEZFISIj0eMi1N56iHzf50ldf5K//zH+HR4tSfsCTp5e5sngRS8a88dYqv/DXDhB2LvJTnz1CITPk2AmHh47tJmMX+M73TnL5xk3+ys/+LfoyIEuRzbVNlm/1KZVcOrU3MUwTJbWLoLVC1Fmgs/ka8/MlTp4+RbNaY3x8D1evLzI9WyFSK/j9bfqtG/QHS7SGK1y9sskjH3sURTf4xb/395k/eJAfefQEDzx4kPWNLXK5SdaiKwjfYHfzAZSUDo5Kt9djbGIaqZo88uhjHDgwxZkzJzlx9ADXrizSaIJq6MztznL58k0mJ0bJuKs0OhaplI6uCXIZnfJohiiCS1c7/NEL73D4QBk98hPfROo888I5pmb3oEsveTeQkDzpmkG4U/EWhAFhFINiIBWJwExakUOPTnOAYelEImJzc8hrr13i6NE9BFEboWb5vd87zezuOTQlYUgXBAx9jdOnL5POTlOt1UilcmRTDtVGiwNHDtNo1KhUSkjV5taN2zSqdWIvRr2dRm1b9P7+CpHWZfXWFT79mb2Y8iIVTSNlSbA2CMxJwsIjpKYfYWrXJ8iO70E108RESVm9SLL6d02wd1sgk97z+/iC3z9f5c7x7/9D3EUkeo9S4Q877987XggQguiCQrwpkeX4vuf9sTHfVc54f6APndH8QXa/bOe990m+/xt/P/GqvGOs+93FDwLd7+KL+2Vx37+nH5YK/7nZXwbgCh8MEO8EqfcGrryXOUiiR/e/zn+uyNK7Ua07Hx5NTfH2yZfYvfcguVwR9Xe/SqZYxN01jZtyiaII3/dZvHoDy7aJw4DJsVEcx6HV6tDvDbBtgzD0GA4S8qa11S0WFxeY3b0bQ1fp97v4wyRiv7a2yv6Dc0ihYO5kEVVVod1u0Wl3ePGlF3nwoeP0uy28YUCz1aLerPLMMy/woz/6GXL5HK1mG9dxabaaCQCPYXlpmZMnT/Loow8xHPYwTZN8voDvDZid3c3C4gLlSom3zpyhPxiwvLrCwcNHSKfSFIslOu0uvV6f+fk5TFNja3MLy3SYnppJMjmqzvkLZykVC/iej5ruEEYxml9GSBJ5j2HAv/ut/4d8Psf62jpf/8Y32D03gaYKuv0uckfPVhER1do2rpsCBFJRGfY7ZDIuQw/+4xe/yvHjRwgCD6kotNtdUpkMIg7ptzvcuHGdTDpDEAyJo4hcLku308HQdVTN5Pq1q2QzGb735HfYu+8Amp4wGAshGPQ9cpkUpXIB17G5fes2+XyeuT1zXLu2wL79BwiMc0lfcz/NcDgkimKq24l0kPFCk8Hf3Mt22EnAxHBIZWyUyekplpZvk88XKBVKvPrqq3zmM5+h3e7Q6XaoVEZxnESPNZfNcfDAgaS8MJdlq1pl1+wuFhav4bgpPH9IrlBgbGySXC5NLpun1WzTG/TotXusrqwwMTlJvdUkjkIc22ZjY4OjR44lfdSqQeiHbG1t8clPf5KXXn6ZXbtnUTWVQrHItavXKZXzTE9Ps7CwQKFQSpicLZt+f4Cua8Shz9Lt62RyKYb+ECft4KZdbNOm1+uztbVJqVhkbW2NPXv2oqkab7zxOlPTU9i2g6rA+uoqc7t288brbxJGIf1+j/HxMSYnp0hnMlS3N/n8TzzO2Pg4iqqRSrsoyk6WSwoazQ65XIaZ2Zn33i9j5VGEhGzG4fy5s4yOjmHqGtVqg6efepaPpXYnZeSVTeyphzjy8Ge4ffsmfa9Drlhk2N7GzrpYtkWzWU/Ik6IIQUy/06XvDRmGAZEf0qw20FZfQioq0fgnqNXr+EONYmGUTKrIoA//66/8H3zhrzxOEHhk3Czt+jaOo5Iv70VTXYb9bsJMe+ocYrpMHIXESDQtYY4dDAcIkmBgEISoWtKvNhx4SKEk8jcIhFCQQiGbyzI6NgoxZNIZNFVjOPTodQfvMXIDhLGPqibVBEJK+jtkX72ez7e+9S0OHtiDoul894mnGKmUyBfSCASdbmfnuomUVxhGqLqGridVF4Zh0O93ETIpT0y0TwVxJJA7uq1CSrxBwJPf/S7z8/OYlkEURxC/Hzz0PY8ojun1uhiGSRzHO7I0ib5zpTKCZZvohs7rr7+J6zg4rouqqhw9coRCLo+qJszKlpX0EYdRgKLIhEwGQRQnpEaqBBEMGBkbQTdNpGrS63r0OkP6A4+Jicmd7HJy7TgOQcgkSyxjarUNVFWgyhDbNpjZPYuhJaywUkqGgyGmnkiMhVHymaqpO20NEm/Yp1TK43kRV64sUCgVCUOJFIJOr0ohX0kqUdpNVDXJsgaBT+AHDPpDctkiuuHQaNaxQh+1N6T/+I/wzPOv8PzzrzA/N8va8m32732QEyceRgiVubk9NOo9RkYLqKpECo3nnn2ZkZEsirSxbYOr1y4zPTVL9J+i4yokEBP7A5YvnqXr1dmz9xEuXFzl5JlncLQJLi7UWL35Oj/z+TmKecFnP3GEY0d3o6oB2VQOUzNJuS71WoNMcZKZmb1sb7SY27MHS1W4tnQezcixXb1FygrZXm+gWyGGqdDvdchlCsRCpzvoUCqUuLG8wezcfm4vb3L8wQNIOUQIwaXzNwmjLPNzu3jn8mVS6Qy/9uu/xi/8nb/D1StXKZYKRHFMp9ujnM/yysozjB4uYp0ZQTgxvSjRUbYsk3arydraKuVSmaVbt5me3oXvR1y5sUYqlabdC+gOYfeued566wLlko2uCbKZAjEREFGvt2l32szP5BBSBUWiKCqplI1jmyhKSBQF7yUiPS/YybQmTr6qagiR+FtxtFPiLQI0Nak+EVKQSmWZnCpB1MIyBEEYU2/UyedtUo5KGHj4XsgwiEilC5y7uMjcnl04tk0qnUXTLSzLwtA1VEWiaQrlchHXsfGvSlw/i/qPthiqNZZunMHWPDJuQDhYAz9E1xVC3SE/epTx3Y+Qq0xiGCmiO8AM7ACXD5pmH8kvvFeq9i7f9j7A9aPYu/fkf0kjuik/kFX47rH/rKoPPwis/uC7gjsTTh+mPPmj3N+H8/t/CFz/3Oz/D8D13Uzlu9u9gOu7Y7yriXc/+7MArnfryX7Qcb1e7z2HyxQaN69coBtEpLM5zN/5OlEcsaRLbMdOWCQdlziKuLpwBVNLdP5u37qJisbpk28yNlogjjx6/T5RFJFOFen1BuQLaTQtyUKaRlJiWyxnKBazBEGy8CAgCmOq1W3SmRQPPHAEf9gnDH1S6Ty24+CmdB5+6CECP8C2XUzDBgTdXhfbdtA0jXy+yNFjhxEiQlEFvV4PXdOQO7qGlmWiqQqzu2fJ5vOUKhWiGLr9IYNel2wmx5e//GUMQ8O2U3R7AxRFR9NN2u0Og/6Q0ZERDMPAdVIE+haDwYDbl9s4tomQMSqSw4f2k025vPLyS0xPTlIqFXGcNJpq0usN+dIffJFduybIZnNEcYxhGvTaLUxDo9XuYGdyPPDIIzRqW0RBgKKqDLwI11BpNeooUqBrGivLy1RKeWzToF6rYhk6cRQipEY+n0MIwfjkBJpuEAQe3V4XKSWmaeH1alS3t9EMA1XTqIyNYJmJs/flr36FvccSbTpLmyaOY3wvoFarM9Jxibow+KlZup0upuUwOTONbpuceesM0zPTrK+sk06nyeVyBEGI47oUy2XqzRZS07HdFMFgwIUL59nY2KBYLlMslxn0PQYDj7X1DQ4dOcTm5iYXz18kDgN0VePc2bPs278fRaqMj41RrdUYegPiGPL5Ivl8gcFgyFuvv87oyCipVIpUJkMYR+zZtw/bSSSENE0jjKBYzHH+wkXK5VHS6Rx+GFCvNXjx+Rd55qmnObT/AE7KwTAtFE1H0UykZuD1uty6dRPXcfj/2HuTIMnu+87v8/5vX3PPrH3r6r0b3QBIgDsoQAJFisORQmaMx5eJ8FhyOCZixheHb77ZPnnsw9w8MRoNJVEcmiOKjY2kQBALQXQ30I3e9+pauvaqrMr97c+HVw00QWyEZFpS8BeRl+yXL19XvuX3/f++i5AEipK7uL799nm+8MXPs7m5kTuQpjGWqZMmCfXGMKqqcvjwIZIk4YUXXuDkIw9RLBZod7osLS0xOjJCnMWQJihy3vg36hXyB6nCqR88w/jYJJfOXSDNeoyP11Bkk0ppBCFSKpUas7MH0bcCFNckqLaQS1Nc20xobm8zMzWFaldprm/ghzGGCqamsb2xjmOYRMGANPMpVaq02j6lQglDVYju/BhJyGizT3Ph4gUOHTqKJGTCKEXTTH7rySdZ2LjGgX2fJhloaJrP2voNsm6HStGgPQiRjhzF/t7f4FdtBnGEuufKqen5FFLTVYSs0Onm5kSyLOfaSklGUeS9CJ0IIedgCrKcQpqlSEJCSnXeevNtbt+6TaNRQzdUUCVEphH4Ce3uLqZrQiLIgNHRESxTRRIKtUoD29ZJ4gGqrKPoOhlg2RZJmqLpGr3QR1YVUgAhYWjanrFaLjnQNB0hZKIoyo16sgyRyfR7A2q1OqqmEEY9ZFkjjCJkWUZVVVRFQdN1Aj/I9XZJilA04iRF1hSiJMYPA6anpvE8L6czJymkKTvNbYQsePXV15m/u8To+DBpmmCauTdBEAYEfg/HLkOaA5z+YJdMygijGMv0GPQlTp85y8mTD6Mb1oMt214Ocj5pTiUZ15BZnrtBtT5MqpokQY/BIJeODMK7bO8s4ZoVLMsGSRBFEb7fxdBMkjTKXYsTePvcRWr1Gm+cfpO5uZscODiLpphEcYJhaKRpDux13cizejWTZ5/9Icg6ExMN2kELsd7mv3/++zz22OdI4wTj3CW++bkvUX/4CP/Dv/pjLl+5wGOPf4pisUAUd3Kduezwv/2v/5Yvf/mz/OzVsxw5No2sJJRLjU8MXKU9mUCaJog04s///b/n0pVbFGuj/Hbrj3nM+l0uco3TZ0/z+0+N8+WTJr3mPAcOTaIau0hpzOnXb1ArFXGdjIIXoMiCF/76WcaHdW4trPGtP/0WX/itJymNT3PkkU/Ta8kkQULFXUN4LuXiCJtruziORK3cx/NUlhYXCIKY2QOP8eyp7zExOsHPXj/L8ROfxnNL+HHA5z7/Oa5cvcQ3//D3iYIBt27NU63V6fa7NIZreaxQvYQ2GpPVQsTrFeRGiqxJ7OxsEycBIyPT2JZDHCUM+j6tTo9+L8FzZGRNY2Fxg6W79zh+4iSuI2HbCrKQ6QcBupJSbxQ4sH8MOQpIFROhCOLIxzJlZBGi6Xm8Tn5NpWiqjqJo+L6Poqj5onoSE0cJmi7o9kKAnBGFgDRBiBCyPq5tEQUJsizYNzuMpsQIFEzLIk503rpwFVUtMjI2S6lcQdMsdtt9xsYnMTSDt8+9ydhQg2vXbrC7s4vWcyluNTjzxWcRbp+kv46eNnGMhMS/S2t7lYwEWXfoGcc5dOIbmMVZUlkhzVSQ8iHCgzmgH0ZH//sMXO+7Cv8GuH70Nh9tOPUb4Pprq38swPX+jeS99aCu9T5ovQ9k7zvh3T/h7k80Pwy4ftQxfNLPfRxOviRJaJpGmuYPhFdfeI7tezc5+enPIEkaxre+T2KbJNNjOVVOyCRZimubNGoVHMdFEjKqplEuVxgeGeLK1Wt4XpFKtYIkBK5TJs1iJCmh2+mSpSkb62skcYgkC4qlIkmi0Ot38f0BmqpSKlb2phl9kigiiGKSVEESuRthp91B03S6nS66rhIEEeVymW63i6bmDaGiKvT7ufFNEucZs0gpSOQNXRxxb2mVYrGUA3cB7XaLU3/9A4Qk8+STv0UYBhSKZYrFMoqqkmYJ8wvz/OTFFzly5BBClojjBMlukWUZ81d2GR8fY6e5QxRFVGsVBn6fsfEJDh0+jJRK+H6CrBj86Z/8KV/9ytfQNJmVlXUaQ8MAJGEAZLiuw+bmBp5tYlsGpqZz6tQzHD58GL/fxXFdDMtGVXU0RSMIB/T6fWq13GE0ShJ0M19siNPknd86CAYYpkG71UZVdeKgjapZ2LaHbdvYpkkcp/hBxL59+wiUc8RRjCoNIWRBq7VLpVrBPTsgeWKKFXPA2Tff5PjRQ6ysLON6LqMjI+iawc3rN6hWqqRZTgHd2dml2WwCGbbjoBk6ge8zNjaGZduEQcid23cYHx3jjTfe4OmnfwdJglKxwOZWnq/nui5hGFCvDfHyT19meHgIRZG5c/s2J06eIAhi2u0Oi4vzzEzvY2NzE8PUcFyXq9euUyqVMHQt1xknKasra7ieQ70+xNb2Fo7jEAUhV69cY3homHQvczJDZ2enQ702jIQg8EOyJELXNTbW1igUS7RabYrFIleuXKZWrZFmGWmScv3GdYaHRzhz+izTMzMkScK9e/cwTYv19Q1cR2dyagrLsvPcSV3LdaVJShLHBGFIv9dh4Adoqslbb50HUm7fvsXTX3mSIAxxvSoSMlHU5ebNW1y7epORJw7SbijIhIhgl6j2CJHvU3IryGYNWzc5c/pNRsbryLKCHwSYlovjegx6W0SJoFobxe/12NleI51/CSFkpKkvMzw6TJR1iLMBfb+H4xn0/G1KxSLtbZ9Tp57nsc88ytZum8HmRZKgiVKO56/dAAAgAElEQVSsIiky2uoW6loLbWoMgJ3tLUqlEpLIiOIIRTVRZC2n0Ar5Ha2PEIIwDDEMIzcnk3M6VxxHKIrMYDCAVGZxaYGNzTVKpQKlUpE0E4g0Jej3MC2TdqePqelous7ly5cpFzxU1eDnP/s5axvLTE6OImUyyp52OEliMjJUVUbVDCTy+7oEZGlCHKek6btxEkLOQbEQuTY0CiKuXbvO8MgYhqUjiQwJOQetyh6dOMvy60RWSNOMwSBAoOw9P0DKMjRNe2eqJEuC3eYOqysrJGnCa6/+jCiKaTTyhZr//J3vMDTUwLYcVEWlUCiQZhIrKyssLy9zd+42lXKFgufiBxG64eIHMY2hIZIk5tr1qwwNNUiTjDRLGAx6mIaNpurEQYg/CFEMFyHr9Nu7vPzKq0xMTDGIrpFkPQxlhGxPoy5ISeKAKIxxHIdOr0scweHDh9BNHc+rcvvWTWq1Mmkq02q1c42vpKKo+ZQ2TTPuzi2QJBn1xhBxHGKrEm7LZ+Z/+lc8dPQInmPyxbPXKK81Ub7+MN/8r/8pn378BG7BIMl8+t0+iqJRLJb58hO/ha6r3Lg+x9hEmVanSbnYQOjGx3r+vq8cRxL54ovIWLpxBcst8fvf/G+Qrze4eesOi6VzzM1d5Qsnq5jJLg8d/yyJ1MTUoFAoUSiUqNaLpEkfCPBcj8cfP4HQelRGHqHoFVleXOexz3wKWVHZbPb59p//PxzYVyKOIU0FlVKRVnsdIYWE/oDO7hYjQw12d7qce/0iWQqaobKxuUAwWOGhRz7P1vYWZAlJNCCJQ44eO0ar3cEwHK5du8rIyCSGqXP71g1eufQyh2aPodwssBYuUamVcRyHXi/KmU87TUZGRuj0e4zVdcYaFu12i4LrULQlbtxeZXTYwTbl/GpRJTRJJkkSkixEQabZbqMoEqoiI0n5ICBNcj+KNIU4TBGyIAjCdxzIIafdq7KOEBFRrPHSy28zMjKUA1YkhMhyF/IEZNlAIo/GMS2d3WbCIIhYXh+wstqkVBnn7sIGsqxSr44yNT1Oc6eJpmtUy0WSJEYzPEp2jeL8EDtfWcD37rK5dI3V2xfZP1HjxrVLOE5KyRvGKpRJ1AZTJ7+GW5okyQyQQjJJ3pMJ/GIUYs4sef/z773mP+9XaZrmC/ZaHrMny/K738Ev9rUS4pf29UkhU3Lmo3NcH9z3r+rd8nFoxB8XYH7wUd2vXx4AfZyc54+6bzzoifPh2/5G4/prq38swBU+euqaZRlRFBHH8S9MYe9fBPdD52X5k52Avy4RuizL9Pt9fvAn/ycGfdzKEF5hCP1bfwWeQzozsXcRCRQlY/XeIq5jMQhiVMvFNGx6/g62pzGz7zAXL95C02TKpZzWefXqRRqNKkON4dy8KEvxXBvHqyAJBSE0gsAHIjTdYGlpFdctYpkWre0tohT+8jvf5+DBI2RJCFmKaVj4gY+uC5577kUmJyZQFYXnnn+OY0eP71HMEqIwwrGLyLKKpKRkZHTaHTzX47kf/JjdnRYFz8G2DMKgx+TEPu7cmWN4eBhFFeiGgSRlSCI3h6lUy8zOTON6NikxsqqSmdvIskTV2kcUJbhOEd00iNMEwzQxDAvDdJDSDlEasdNqcuzoflxbxXaKnD9/iSCIMU0TVQFFUei0W6hSzObaAlEQEfo+Ra+AbVm02i0ySSDrJrvtDj/+0YtMTIxi2w4ImThJiJMMTc9piYZhIhSVwM/dQIUEpmnS6fRQFQlNc0lTga7IrK4scv78dYZGxtF0lXb/CqpSIImMHDDW66jdDP3CgOhfnqBYrzA+Po4qRcRxyObGNlGQ8PJLr5El+f+p2+vRGB4iCEM8S6c/GFCvVZFkCd2ykGTBwvw8cibRKFeRpHTPrKnK9tY6K8tLHDv5CPV6HVmRsRwLWVJRNY2MjPm7cxw7eoSbt28zMjzK2uo6vW4Xy/Molgrous7PXn2N2en9/PSnL1GtlAj6Pndu3SIKEy5fvs6hw4dBgrX1FS6cPUe9WmeoPpQ7/U5O4JVKhOGAlaV5eq1tYr9NfxBRqZao1+pcuXwNy9ZZX1/jscceI45Trly5ztjkJF6hQKlSYXJqH6+88jJCSIyNjRMGMZ12l+3mMhOTUyByfWbQ77LTGfCD7/01iqxQqVVxTIt7S6ssLKzw9FeeZnikgmYqjI5NkaLyne9+l337Z1DkhLNvvsmhQw/h2AUcw2RlbRV75y3S6a+xcOs2bjEikKDgSgyPuEi6x9pmk9rQCJKss9XcxdJDdN2h180wdB2ZhHTx5Tz/d/opbMdiY3uXSnmINDVAEgRhgPAT2p0mtmez3c2Q1AZs36Df7lKd/hRpOyKtVDBeu0h/bBghpXiuRRTHpCR5XqOsISsGaRIThiGyLNHrd9FUA0mCdruN49hAhiQJFCWPn5FlBVWRGR1tcOToYcqVMmma0mmHzN18G12JUFUb0yyTphFIGbquQpphWQ5RHLNvZgLHMZGFjmrkVFVVVdB0lYHfR0oFwWCAImSyNANS1tY2+LM/+zYjI6OUSxUgQewtfGZZRhIHzM3dZWpqH7ph5kBU2vNKyDKiMETKV0fyaWsKzzzzLDev3WFxYY5apYypGwgkBmHItStX8RyH5aV7dDttzpw9z+c+93keeeQR0jRmbXWLLz/xZarVKiCI45TmdhtdF8iyxPnz19BVnXqthqrEmKaOqplMTh3g2edOceDQLPV6jSQJ8wWEvXsSkkBJO/hJil2tIasCKRsgJIODhw7ntGB9G9MyMfVJer0eugJ+dxfTtsjINYqKqrDb6nL71nXK1TJhKKEpKpOT49y7twakFAoOnU4PRc2wTANNVfBcD0kS/PiFFzh+/FFMP0Brtrh2fIKCY7B45wZHlncxLZPwicdJEoHvp1QrwxQLDdqtDvVGndXVVYJwwO9/47/ij/7oj5k9OEyzucbo8AzZA+ZMnwS4CgmkJOKHp75NqTLOIAiobRym2ezyfzz3f3Hv3m2+9uQk1UqXUM6oFDQiX6Y36KGYIRERg16AqXroNiDv8sbpNv/7v/0B/+Zf/zNOHity4Y2rNEbKtGJBub6PMJAYsUxWVu8idB/HK9DrCKJeh0NTFbpbi8jEjI3qjE9U80ijVMFVCpQmpli4O0e71aTgmqyv3uPO/G2GhibQdQ8h6yyvbqJqAk1XObz/Ie5l9yj0KmjCYGljCccucPnqVQxTp1hwUFWZfbP7cV0Jz3W5fG2VfpBgORDGFmOjDgIfTZFJ6JIFGoNBwtzSIvWhIXRFeuf5rag2Qjby6BtkVlc2MQ0HRZXfWcDSVI04SRByhiYMoqQDcoFLV7o0RkoUSxJRmCGJ/HkhySmIBEmWaDZ36Q9SNjYygjTl0rU1+n6H8Ylp9h84iGnrrCyvoikRtuuQSRlJliIUmSiLKK3XicebXC58j6zzJgfHBTV3l05njn0HG8SRQafr0M1k7OoJajOzJImKAIQIEKn8zsDzPrBM0/RDAdLH6QuFEKhqbrB2P7rpvnQi+6Vx7t9+4nq/krMqSBLKY/EHbvNJ9/13Ne38gE++z3u/3P//XQHXj7ftb4Drr63+MQHX965s3Z/C3p/EpmlKGMakaUaSpHsUYQm4HyCcoSjyLwUY/22O5cPq41KEAbJUJgMSKUNTFMJWn3Mv/hUHTo4zNHIIVy0i/9n3yVybwWidNM2pNVEisByPXneAKimEPZ+5u1dxXQMSGV3V8Twdx7LQFJ12e5ujR/fT74fYtkUYx/gh/ODUT5jdP4YmazQ3VokGbRRVwbIsvv3t7zA2Po5pm8Rhi0q9xOh4lXLJJglC3FIFKRNkqYQkm0xNTmDZKjutLRpDDSzbot9pUfQqpJnMwB+gaII0Tsgkga6pZEnA9OQoXsmh3KgiIdA1g2LBY3R0hJ2dHVRFQ7NUkjQlijOErLDb6mC5FkJVSZOMfrdH6CfookQcJiiyjqII1jY3UQSkYQikZFmMpEgowiHy4c6dO1iOTRTuMj0zhqFZ6LpKlnRJshTd8tB1D8csoZomK+tNitUhFpbXmJ2dRAjBoDcg8n1OPvwQdsFC0WS6vRambdLz+2TBgNAPMQ2D0O+hmjZZktHvD1CEIA76GE6FWzdvsrWxzs9ffYWp8UmOHDvA5UsXqTeG0dx1FEWgCBskGVXX0V5vkT7UYGfGIk192rstdMOhWm9g2DrbW5vsm5zCdmxqQ8OgCDzHQOCTCQ1N14mTKAcmvT6arlOrN3CLRQZByGDgMz41RUSKVSxSHRmlt9ti+d4ytVoeGt/udLAsE9uxqNZruAUPt1xEN1Tm796m4Lo4toNjuWxv7ZKmGZPT47QHA8YmJ1leXebosWOEYciJowcQhoZmGCjA0PAQi/fuMjRapVRy6XZ6hH4fAXheERD4QYysCGzbotVqc29xkYJXYHh0lFRImKbBcKOObilYlsf25iad1jqTUxO4bhF/EFCuuGxsbFKp1Ll1c46JySph3EXTXd4+f4XPfeEzVBtVNtablMtlXM/hytWLlCtFbt9Z4PDRg/k9KQ65eO48Rw4dxCtWOHDgKK6nYJp5Q1euj5FuXKLvneChLz6NZdkMugGOW6UzCOjuLpEkEbbhEoQDms0VKpVp/CjBKzi0B23cUoVk7iUAjP1/QJpkaHJGMOhh6oJeq4Wu6BiGgaE72JbLt/7kz/jKb3+FeyvXKdoDgtYC5YNfAs3HfPECUtEi0XQURSeUBJpsoco6WZKgKBlxFKIpBkJSMTSNRFKQhUSv02TQbbO9voqm5guDQdRDyApIBpomEElCFmckhPQjmVdfOc12s8/Y5AiWLdMbdPaiM2J0UydJJd54/QxTE+M4BYcolYgHPUSWEkcpQjFJyLWtWZqga4J2q4mm2ZimiWNbTIyNIgtBnOV69CwDkYLQdMbGhjH0DIiRZI04GOSuqVlKv9/LjY+EAClvOg8ePMChI/uY2TdNJgSKppFJIKcKFy9cZHx8nHqjRqvTZmp6ksmpCXZ3m7iOjVspohsysizotvu88tOfUa5UuXN3HtM0md03Q9hdo1pzMCyLMMyjzMIk4vChEyAFaAYksYkqII5TJEkjlQRBuEHa30VKQFJdZEkm6LXw+zvoikqYLaOqMq1tDU1RKHhFogyCKKcup0lKFEY5pb3eIOz3CcMmE/sO8MIzLzA2Nozj5lNP2zbxe7soaoGtnSZz83coFqqsN9c4dvwk7o27SN0BzSeO0Wg0WFnb5shik831TYw/+B0MU9Dr7eQ65TClXHURAm5cv83kxCw3rtzgM09+iaoN22ubFMcPfOJF5lSAkUQkqkOaxVz6m+eRjAaPfO7rbP5wm6mxGmL25/zOZ0aYnfFJAguvtEkcemw3tykUPUhBVi0yZGzHJejGiEjlr77/JmP1EgcechmufYqRI4/ilWrIWczocAmnPMTVm9dR5ZC4vUCtPkogymhmnyAGWRUYSotYCrh98wJFV0PXJIbGR+j5Cnfn1piZHSGIu+ybPU6jPsqgExCFEfN3bzE53kCX4NaVy0ztn8UnYlm6xfhbJyjPutyav8ajJw+xvb1JY2QcZIFhyAhhs9vus7m5gqHbtDsmsd/FKzqcv3CNibERTEkgySaqKVGpaOjYxEmAEBmynHMY0ihCRpCg4BYchOIjJAVJCvP4LM3KvXUQpCLKGRbEjDVUaiUdiQyyGFlASoIs1DyzOJNYmm+ysupz8GiFW7dX2WrGPPWV32V0fIp791YZHh6lWHT22DoFhARJnDsfp80Aa7XG3KPfZXP+DRynh6WklFyHQS9lc7NLlxFWdwYUa4eQdZti7UB+b5BSMpRfYOk+2G/u+TDxrleQ9MBr770HNbEfQYH9BSOgX7Zr+gUjJQlAZDnAlR54vQfcPWgydP/7k9M5OJZ/Barwx61PClw/rC9+l7L77p+Xd//6H/Ql77zea/L0Xq3yhx3LRxlGPTg3+3UNsT6qfgNc/4HWg6ZMYRgSx+/ShN+lAGTvTFsVRfm1AddPtm0GUcSd61fZXr/D4ZMPY3pjgIn+538NrkMwMUKv20fTNDY2dmi1dvE8h5XlZbY2N6nXa3S7bUrFMv3+gP6gjZAk4iTdo0UuMzm1jyRJ2G3tYpoWFy5c4ODBfdiWTbRH+1P1XGcyO7sfz/PQdQ1NUgijDNcpkUbgOSVSEpYWFrhw/jzlShHTcnIdpmmSJCmuW8hNT+KE69evIwnw3NzoZzAIMHSTNM5NaAzbptVpI5HrRf1BQKfToV6v4Xku7dYulmESDHyee/ZZTjx0IncClXKqoGma6MJDSg2EDJpqcm9xkUuXr1MulvammzZRGLO4uEyp7IGUcujgYVy7yMryEoqiUKk06A+6WKYDksra2iY3b9zgrbfepFot8/zzL/DYpx/HMHRs12Lg+3gFD9txkGQZCZk4zDB0G12zMFSTOA4xLfcdfV6SZAhJot/vUfBcNFUDNG7fuo3rOKyurZNlEoVyhbGxCa5dvYow55EkQRJpDAY+hqSivtjk9U/HjO2bodvbZWR4iHarx+bWJpquU65UCOOYRqPB66ff4PCRw7Q7bTzXo9eL8AoFTMNEiFzntLm1xY3rNzAMA9d26LRaWKbFxYuXGB0bgzRjfu4ulm0zGPj0+n0W5u8wPTXFlctXGGoMc/bMWyzNL6Ag8/bbF7FtJzesIkXXdOIkxnXtfIFAU9E1FdtxkWSZrc114ixvSCxVQ9E0ZmamCQIfQ8+PM5MybMfFME1UVcN2HIIgoFDw8usthd12i5HRUVqt1t75H2NbJkHo43o5mNva2mBzo8n+/Qdot3fQNYOF+XmOHz3BxYtvc+DAAchUlhaWCIIB62trnHzoBKubm1iWzeTkOIauYekmlmORpSmyrDA6OoamaSwu3ePq1SuMjTao/bCNeavHuXiRreU7ZLKBM/F50jjEND0kSUU3DMrFYTqtEMeqkCYS9eow280t2q02KRKWadIf+Mg7NwiRsaY+T6/fYnNzg0ajQZrmk89Tp06RJimGbtDr9RkaGmJsbIxKSePujfMkUUipOkGiFdBaA+S1JknVI0tDgtBHVyUCv02310TIKYpsEkcxsgJBNEAoeROqKio//elr3Lp1lyNHj9BqtYAYz3WQZJ00i4miiAwZScmwHZvDB/YT+ANsx0RRVFRVRtdzoJ1lGZqmMD21D1WR6A/6nDt3hX37Jvf2LXjjzFlq9TqKkAmCgFarg6Hb9AYDdF2nVCqgqDIZMVmW5yOHQcDFty8yNDqMpqqkyV7kj8idPv0gACTcvUlimuX3S1lRiKIITVX3jk17gOaXMTs7QxT69HtdRkZG8ErFXC/Y67Gzu8NQo0oUBiRxTBonnDlzBq9YYGtri9On3yAOQ+LBLtVaCUVV8f0URdFQNJ0sE8RJRGtnF8t0idMYVVOBFEFumtVvd1FVG0k1icIA23boDfpYlkembJCRUXSmSOOI7e0NTDu/LzuOg2Ea9Ho9XM8lzmQ826VU8hBCYWtrPXcyNw1M00JRdJI4QDc9wjjCtmxsq8DJh06ytblCudVDCkKSP3gKXTeoVurwwitsbGyy/vAsQpaxDI/NjS5xKLHVXKfgFUmSjHK5zqGDo4zOjNLfXWZnZ4Px/YcA+YMflh9RMimx0CDscOW1Z1lY3eKpr34Db75BkkT89cJfsrm6yKOPjFByalSrCkGg5Qsfro2qKlx+e4fXXnmDkeEambyDbvV56OQEg0GBM2faNGb6WNZDnH79LC/+6CWkTOHq5Zt84w//iGigYmkpu50lypU+MjZZGqNpgjAcYBgmQTBguF6j1+tw6vvfY2xsDEVWGRnJXXKDUKfX6SLUBFlJUWSdgucyPjaC4zg0d9tUqg1KdR0VjeyyTc/bxbZUwjBGNyw0TSOJI9bX19hY36BeG2Jrexs/6DI6Nkyn2+P4scNEYQ/LyOh0BshK7ntx//zPY+MSkgRUVSeVYxR1D1gkCkgpYZyiaUaefyyF6JqVO4gDsqygqRq5XDTJYUgmEaUJmubhBymSAM3QaDRqBFHG9RurOJUGB/bPYhgm5XIVsgzDNAiCkGK5jCIrGIZBu9Oh0hlhIDdZHf2PGMo6hcoUhu6y2ezTDnVKjf14I19kZOIYE/tOUKhOICnK3x0I2QM2H76/T/hd7/ux9weuD37/fY3r3yfg+mG994dpTT9o+0+qsf24//buNn973PB3Xb8Brv8A6r0nzYMGTHGc09iiKH4HtL77Od4Braqqojxws/r/8kT8uNpW2FugRCKLU/o72zz7vW/z209/gdrYCVKtgJQJ9G/9FYljcbHXYWw8b4yjMOW5554hjEIOHNxP38/dbGUFLMuh0+3Q67WxLAfbsdndbbO2usn29jZ35+YZGR1HNzQOHNhPEsVkWcrK2grlcoWEGEkSGIaNZVsIRWZzY5U7t29hGnk2p2bouXusYTA9NYEf9DBMh92dXUzTRtdMNjc3cVyX3d1dhofqCCFhGgaSLCErOlkKb555k5+/8Rr79ucgWVM1Bt0eYRTR7/dZXl6iWi1z4fxlnn3mFMeOHGJycpI3Xj9DrVZESBK6rrG7u4Ou542lP/ARkobnOUzvO8Szp56h4Lp4hRJzc/PcvH6H8Yk6tqMQ+CmdTsCrr7zMQydOYFkuupmbNXRafX7y4kt85jOPM3twlijwefjkw7R2d+m0mxRKuQY42gNmvh+gqRmGZZJlEIc+/e4utpsbSymqRpolSEKm1+vi2DaLC/MEvs/u7oDAD1hcvMc/+SffYGh4hFPPPY9tWxzYP00gv4miZWyuJ9TqNbSLXai43BxNKBZLVKsFgnCAouYNi27o6KaJbtnEScrUnltvqVRCqBqypLG8vMLlS1coFUvcvHmD4dFRZvbtY2NjgzgM2d7eptPtMjY6yrk330IWAsdx2N7eZmR0lPn5eU4cP8zC/F10VWd9bYOjh4/Sb3cRksLo6ARTk+PUGkWKhQKrK6tYdh6BoyCzuLCAYRnYlo2iqdQaNS6cv8jE2ASLd+9ieS6qpiOEgmHmxjyGaexl/KacO38eSQgMXefGzRsUCkU21zc5+tBxIOPypUscOHCAjIzTr7+B45m4nkO/F9PttpidPcTVq1eZnhlD103W19bx3BKTU5P4vs/aWpNWc4c0SXjk5EniKKAfxniFAmkccv3qVUhTKtUa7VabOE4wLZtCsYSuGdy5eYNiyaK6pucT2WNFVpYWGXZi/vn//Gc8dPwo4xNTSELKmQRqiuOZbG7fw7IEmxtLrK9scvzoMbqd3JXbNE2cmc8RVMZZXFiiULAZHZvgzp07DAY+O81dTp48yVtvnsc0LSYnJ+n3e/hBH69QQZZT4rDP6sJVpo5/jrgXwaXbyOM1/EEXz6pAkhCGAY5bQNNt4jhDUQV+0EeRRQ5EJciQqFWHOXv2bSRJ4sCBg2RZQBzGIKvIqoQkVEBG0yTSJERRZMbGx9D1fLKpyPlvubPTJE1SFDXPGU7TCMctUK2OMDd3O6fB6zpTk1NIKczdmeOZZ57j4sVr3Lhxh8c+86m9mI4YITJ2Wk3+y39+htHRMRzXoVwuoWs5u0VR84xniQyEgq4bSJnEuTffYmRolJQ88iJJU1RFRpak/FkiSZDmi06ZlOuAu70ujuug6zqymnf0lmnhOA6D7g62aWEa+b1wYnKMeqPB/v0HmN0/y8GD+3j1Jz9mairX1e/sdFlZXaVULGE6JkgyN67fZrheQVJVJCkjDAcMeh00o4yuqFi2QyprKEJic6tJpVqh2/NB2UCSJE6/ukijOsxLP3kZWVYZHhpiZ2c3ByWyjJAEsqIDCrdvXqVSLjI+MYaQIUszZKHyF3/xXYaHavzoR69g2Rbj4yMIFC5fvMjhI9Okc/dQopT+732JJ574Ml/64hOMXprDMHSG/sUf4joVVMVmbXWDb37zn/F7X/8qhqlTr9fIMomXf/JThsf3Y8sGK/c2Gd13EiHeo/97n2nW+05LRAapIBEKtujxw//yn4iFxqEjJ/HPqLTbHf7yzndg0OSznxpGZAb9aIss0el0OiBlZFnKUKNMuWxjWjq65qCqJbIgZnhyiH/3H77N7ZsDvvvdbzE50eDxx0/geSaHjx3g3/3H/8SXnvqnFMv7+fGPXsGUFXTDwnENMinO842zjIIn0NWALG5TL5sc2t8gixPWNpaZ3neSZjOm320R0GYwaGOqJi/+6If4QUClPkJzp8mZn7/BgUNj/Pj2Dziw+VnK1RJ6OSOKE7a2c6q2pqoMBl3W17aYmpzBNBVMSyJFsLXVZnF+Ec9VcT2L6zduUCyUKHolknSAECpxnKHuZTFvbG6yvBpRLDikSW4CFiWCy5fWULUSqpZAkpIkEWmS0/QVWSZ3E84IggBF0fYYWjKycIiiFN2Q0HTI0oifvHSVIw99Ft2xqVWqaKqOpuncvHWTUqlApV5F13QMQyOOujimgnyzjP/VF8i0NWql/WTIzK+0ibQR9p38CrWpRymNH8ap1Ul1BVQZwbv92XsB06+aE3pfB/veuMZf3M8n6zV/mU78gLzhfY7lfr2jcX08/cBe933nwg9s+94p7q/SM7/ftPO90TPv990fdCzvt+2D+3rvb3nfL+aDftf3wxT3672f+w1w/TXWPybg+kGVrwZGBEGwZwzw3hMwD4m/71z6YRfN/1+lqoI4SpFTwQ9PfR8l7iJJLepjj3JvbQNLZBjffo6oXuHU22+RkTE8PIy8l1l48OB+Ll2+xtsXLtFt7xAnPq7jcfr0mzz66MMsLCxjWSZRFDEyMspPXvoRTz/9FeIUrl69RqFQwDItZFmi0aih6npuIIBEHMN2cxdNNygULLa3t9nc2mJkbIwgiel0W6iyQnNnh0q9gazImIbN88//iDQFwzCQFYVC0UOWBY5lMfAHmJaFJAkG/R7VcpFPP/5p4jQljmPiKOatM2cpV6q4rrPXiHUQQqNUKjZ68/oAACAASURBVKLrebzG3NwSzeZ6rg/TNBRFRrK67HQ38Kwa5966SL1eIckE1XKJSrnIT158kRMnTzIzM43nOWxtb2HoFhkZB/bvJ0kTet0AVVOQFYVWu8Xy0j2OHT+Gqmv5tLBQpNftMDzSQFYMmtvbSCLLnYUVnW6niaLqJGnGxuoKZdcmlgSqZqAoKt1eHrWhaSqGriMkKXcvbvWp1+skaUytXsMPfMhgd7fJtWvXmDi8iywniKyOoakoP23Se3qCLaVPq9VBVuDK1atouoNuaISDAe3dDp5X4MUXf4JtGpi6RrlUJU3zKXW1WmFqapJOt0291iBOEzRdwzB0VEWmPjSMoqpcv3Gdg4cOIUkS9VqNdreLbdvouo6ma4RRDBJoukq5XKYxPEScpNy6dZNqtYBtW6Qp9Po+d+cWmJycotcfUKmUWV9fJYoioiDCNA2yGDbWN/AKHs3dnb3VdplXX3ktp2Tu7uB5BZaXl5mZnqFUKrK+tpqbb42Ooas6/dBn/u48pUKRaq2GkAUT4+N0en3CMOb61atYtsn83QWKxRKOq2PoBlEYkKWCnZ1tFhcXuH17jt9++rep1RsIRUZRRc4iiENkITE0PMzGxjZZlrG+scGP/+ZFHn7kEdqdNt1Oj2LBoVz2MO/EgCA+UsAplih1zvF/v9zmzbfO8FtPPcHivXkKhRI73V1sxyBNfAQhu1tbqKpNEARYtstOs4nnFYgGCUnaxtRtLNOiPwgxTRPbdlBVDVlWEGgUi0W63Q6XL19EN1RGRmfRdIXd9iZjIwU63TaF6Un0775KMjGMahpIkk6/10c3DJJUIclUhJTlGlehkCYSmq6TkeaGWbLMyUceYXxykihOkFWBLGtkSYKQIM0El96+gq5mGIaBkFWCMKTb6eRmS2lufGXbNu1WC9MyIBNEYYiiKnS7PrVqFc00yMjIkgy/73P6zGkee/xxVlZW+MxnP0ulVs4nN5oGkkCWVSZGx6nVcw33/cirOI5Bzo2mBCmpBFGU/57VSpmfvfYKo+MTIIEsJCSRN0GyEKR7/gn9wQChKAghc/bsm1y/eoODhw4TxAFCyO8YRumaTJJmBGEe37O2uc6pH5zCNG3GxsZQZVCyDuWKhx/6FAplioViHmkV+1hWmWqpThJ1UDSDIAzIUnKwKum0mxuohoZQTUhTdEMnjnJwgFgny1ImRx5DFjKmYTA2Nk6Wpfi+j207+ULHzg62ZSKhUCi49Ho9FFUnTVKKxSKBH3D79hwH9k+zuLTK1Mw4hqEy6PtMT4/T6w5I5pYwMonFx47yu7/7VSYmJtBfOk273eLSSIWf//wMly5d4rHHT7K2fpev/t7XkESC7Ri02y2CQZ/ZQ8dI+j2yNKM6No0kfnFS9EETnF9+L4NUIspk4p27/MVf/AX/4l/+a1IMVl7okKYpZ7qnODFd4JHjDm6hQSDtUi0MI0kSiiIThgGa0sP1LOI4wzDrSJJHyWugeSrHH36Ut0/vcOjwKLdvXePJp55A0xVM22BxYZ7jj34KySjwhSe+Tr9nE3RXCKMuqipIYwlTt/HDLpajEgYDKuUKa5uL3L27jOdZdHsD4iCiWi1gFksEfkyjXMTUNWYOHCJGkGbQ3t1iZGQin4iXQ7zLY6xG86xvb1GrD6PrCpKUgFCYmZlEJmHQ77G1tcPa8hZpEjLUKDI9McTmps/EZB1DB1nIJFkM5HnHWSahqCKn82sldFVCFhlC5NTs27dbnL9wh8OHh5ABIUAIGTKJNE1Is/z5IPYYSd2uj67nGc1CCklSnzSRWLq3Rc93OXbyYcYnxtE1nbt3F3LzSVIs20DXJaLAR5MzOu01zI5D2lK4O/4fmBw7TibV2Fm9RojBo1/4KuWRY6hWnUwOgQRBgiDlwYn+g8OMX6XeBa4fa+tfad/vfuz9MmI/uo+VH0uQH0s+fNr4vm9+OCD+VeqDaLh/F/Vx9KsfRgH+oGN9/2P++4cbfgNc/4FWmqYEQUAYhnuU4eyX3IdlWeTTJ13/hWnr36eSSJBQaG3u8OLzpzgyO8xgsEql/jDFaoHVuRtUnzsN33iSWq3C9vYWjUadIPQZHq5jWDaybHDt2i2+9tUvMzMzAZng4MGjrK9vsLC4wiDoc/DQflRV4+FHjtLv+8Qx3Lhxk3Pn3mZifJwoClD1vOmVZQVNt9je3uW553/IwYOHUA0TgcYPf/QSxx76FKrpIMsJmqbjeCWCKMXQVbJMYmV5ndl9+3nj9M+ZmJrG0PMJSrvVJokSllfXsGwL01QQUgpC5KYhaYah6owOj5ACqqrgujamqRMEGQcOzpJJCSsrqxSKVU4eP4hpmGw3t9B0Ham0iu4kJJ0C9eowQdhH0TRqlRJZGjM1PY1hmiRpiCKrOE6RVruJ55mcPX2W4ZFhVpY3qFZrSGqKoan4/QHFUglZV5BVgabrORUxS9BVF9s0chfIKMLULfo9nygWLC6u8+PnfsSJw0fJNIUzZ88yNjaObuikae7AKgFxFJClCWGUUatXc9dUQ+XSlUsMVWtMTU0wPjWFZF1DyALHmEC63UPazmh/Y4I0SyiXK4xNjDA8NMrKxiau42CpGoNOj6WFJR791KfIkpjb16/TGBphbm6BVnsHRRW8feE8MzPT9Hs+O7u7uJ6b66glWNncpFAsUiqVaO7s4A8GlMtlhJCxLJudnR2KpdztuVqr4rgWYRSwtL7K6PgERc9le3sN07S5ePEikxP7KJeqvPba64xPTeC6Lo5tsbPdxDEtVpbvcef2XSYmp5hbWuThh0/S7fawTJe3zr1Fq9VkdnqG7c0t7D2n5mtXrjI9M8PE5DiaqrJwd4FirYLfH5BGMW+eewvNNLg7P0ecKFTLNYgHjE9OUKsN0W63KRRtNFXDMlSazTb3lu/h+z2eevIpUHK37sWlJaqNMsQRO9vbdLttskzi7FsXGKpVcV2PbrfH2PgkP/vZ6/z0p6/w1BNfQNcl7LsZQRARHSrieB5Ja5H/9t/8L/zz/+5/ZH3rHuVKgctXruEVZ1BkA1mSIYKJ0Vl0VWVp+R6Tk1M4rsuVy1eRUoNCUWZra5csFbmLqiTlD9hMotvtEUcZ5869xejoCP/5u3/J17/+NdqthPpoA93W2Fy/TXPpCrrpYc11SYMEuVoiTgYgx6ytr2F7RVJkFCnbU2Ap6LpLRoqQyN2GZSnPB1V1+r0BSZqgqhYKCUgQRRmDXoAixeiqhaIZdPt9igUXVc7vx4PBAIBwL0c1DBLKpQJB5GPbHkmUkkoZQpbYWt+i3+0xs28W13MpV8vIqqBc9vCDYC87VkfTTHQ1I4wDMkCVFbI4ACGQ5NyYLksi4ixFCIlBv4eMxMzMNAhlb5EzIwh8bNOk3++jqgpZlptkRQkoisbkxBTTU/vICaoJWZaytraGpuv0+x2iKMN0CghFYXh0mBPHjtHp9FhbX6NS8nD0hDjpUyh5ZJmMosrIsoqf+GhaidZOjzjcxXZcfD/EsBwkWSOTBI4hCAKfKJW5eP5thhp1NE1GlhSCaBNSQZZY9Hu72LZGb7ALKJimmZvDCRnHsWltb+B5Fa7fuo6iKphmTr/3/QGyIvPwyUeIoz5Hjp6g3d3B8ywUoZBKAXN3NzDWtrD/X/bePEaS677z/Lz34o7IO+u+q7r67maLpEjdh63bskcDwx7DGMwOvOsdrL1jY4H5Y/cPD2DsYP8YwAsvDA+8A3s9O5YsWZYtURIlUYd5d/Mmm+xmd/Vd3XVfeWfGHftHVNMkRVKkrLHXhh6QyO6qF5FZlS8qft/3+x5S8Xl/j3vvfQ+6rqG+d5owDBn5V/+CRx5+jO9//7t86jPv5867D1EuDZHic/nyBWbnpnHcPnbJo9dY5dr1lzhwxyJk+mvvk28buCakmUacCvobS/zRn3yRT3z6F2k1B8wdmuWl3Wd46Jn/wmc/fIKZyYhEuHTTXa5fvMXIyEiem5omuHodUo2+72N5GoOoSay2WN/M+I1f+0t+8VdnUUxz+tGnmJpe5MGHnuDeez6M6jpUR0d55MUnKA8N8fLFG4y5IWHcJEkCqpVhBr0Et2ARBD0K5RJJLLEKJjPTh5Aq5cbyVaJuH+no3Fr3qVVGuXT+aY4ePsyla8ugDMbHx5idHOP++x9idHScrBJSY5RoycSeMZCaRq/Xwh+02W306bZ3uXrlPIZhc2VplVptGE33sY2U7l6DpctNDh6qoWs+WQpRnCA18mgp0yRJQ4RMsew+usjIEojTDGENGKofYu7ADELuYMgMXdPI9ksxXVdIBWmaoOsGZBIlDZRM0BQIOcDQFWmk8+KFFeYP3IVXdgkHAa1Wm2qtRrvdQdMUhqlB0ocsQSOm39vEXpknPPE49uQuN9eXicwOe9eWmD90itr0EYQzilAWWpohEoVKTbTYIlHxa9bRO6Gpvn79vdFRYRi+rnP39wtcX5n7Txy4vrVe9scDrj/8vZ8C17+38U8JuN5eTFEUvcZBOI7jV2JwXp3ZKoTY77Jqr9CE3ynN4Sd1gb1VRpQQgkzTicIBazcucuWlZ0m6PeYOnKJcH6PZAceq4f3lN4lOHsU0bebmFxgEIZaVa6GiJMazLY4eXIQsQ8ncbr3RaFIuVdje3uGOkycIg5QsC8mShE63QxKHHDiwwPj4KKYpqNaq9Lu9XF8aJiRxjCTh+OEFWjsbOKUyZDGn7jhGEPnopo6uGWyuryEw6fs9lMhNU86df4HDhw4wOzuFUGDoJkJohGFEq9Mm7AekYcDFC5fwylV6rRa27TIIAqSAKBpgurlOJoxChFI5pTDO+NKX/ooPfeADVIoK3fXQTRfL8iAOiLQNtjZ3qJoz7DV3CELJFz//XzlycIEzZx5jfHwEzdSwnQLKkPh+blMvhUGr3cI0Ta5eW2J+bhqQ6LqBVyxgapD5vZyC3WpAllIoFIlEgh8M8g6laRMjuHzpGrqmmJ4eZeHgAQZxRqlUZGS/Ix2HIY3NmziOQ6PVoViqcPXqdaYXFnjk4QeZnZ2hsdehVKoxNjbO008/y1CtiipczGmOYhTtyTbJvRO0R2FschqklmsllSLq9anVKwhTxykUiJMEP/IZGRlhfHKa69eusbezw6k73oVupDQbu1QrQ2TEBH6f4dow/e6A06efotttc/DAASLfR1eK2elpMpm7Xz/wwAMcP3KEJOhiuwY7e9s4BQelJFfPXSCMI5xCgc21HSzLxjRtbMtgZfUmBw8d4NLFi9RGh+g0Wyydf5mDJ4/iOCWGhke5euUqsxMTZNkA13OI04zpqSls3UBoJrXaMO12j3ajw/LyCrdWb7FwYJFLly4zNT3Nc08+wdzsDFubWxxYWKDXarO306JSLmK5FsPj43Q6TdyCzfMvPMuhw4dJsxTdKeGVily/fh1DM2g1mkxMjtLrdBkaLiJTiUojbt64giYzil6RpfNXWTw4h+3ZTExNYOkalWKBo4cXQSlMu4B+oUO73UacqpNkgqCzS7B7g1bhXirlcXrdlJ//uc/x7/7X3yDsNzCFwLBLhNLFqgzT37lFkGWoQo1K2SZ7/N8TXn0M6+AnMUwduzSErgmSoEF/0MUqlCk7Be7/zreZnZnk0MwYg70NhidqKHuEUmGY9YvPUS2bpFkBgyLWlVU6dQelLJS00KTBoNvHNU38QZ80S4niAMOSpFGMEIIoihAC4jhCZrBy4xZPnH6SmblpUFqekRoEVGtVHnnsGRxXUSoU0aWk122hmxp7ew2K1Sq9QUC5UEZkOdVQ6Tp+EJFmMc+fPc+DP/ge87PTVIaqFIcq2K6JVJLR0XHKpQppPOD8iy9z39fu59ChRcoVL6eMJWmuTQVSMqIoJo5CdN3A9yP0LMI0TZJMkqUaAg2hZQwGfTRNy2UZca4vjZMURG7YkkY+uq4TpylCJBh6Xiw1d7t85/7vcPjQAWyvCFnKF/7r/8Pk2CieV0QzdKrVMrVyibPPn2VtZZ163YYkJI5tYi0lzVw21naxLYNqtYhUFmLfqyHLUrIsIYpilG6ipM6TTz7Bu9/7ftIkJJMily10TErODFJ3ME2XKElRymDQb1ApVfEHGVEcY1g6Ba+AlDqaIXEdDz9MKRRMbFPSanYwPQ1TLyJkQrnk0e10KRYLGJaLkineVgMTweCjd6JZ4JQd+NQH4WMfoRukNNq3+J9/439h6cINkiSmUKij6QajE1MkmYnjDaMZFcLGHoN+n7G5Y3nc04+4B79e9pMXrBIlElIliDvb/MUXvsR7P/RR5o8dZbV3hW89+gXCxi6//Cuz2FoVtASptfid3znD+z/0LhKxR6k8xCAJidIY27GJfZ9g0MM1Chh6xAc/PIlrOjzyg6f4rX/3syy9vMe5Cy/wwY/+LNOLRzn74hPMjJapeh7zC4e5tCuYGhkl7PSQMkLTYpTj0gvzPGgR9pCiTM/fIclSwtBGCANNOlhCZ3Z2htWtdfRCmYLj4reb7O5u009ijh46xMb6GlEUYhxOcFbGKAyqxJUOpUKB7a0mo8NDFAolbtzYQQqDQwdHCMOQdifh6loHoQSnjo9RKZkoBWGU8ujjSwzXzP3opdw7II0lmnLIEDkDRVNkgYYmehScCEPpoPK4vCBMWV/v4XpFpMgjdLIU0iwBEYPUcwaEnxDGBrHmULQtStUJiuUqtu3Q7bQoFBySLCCKBuiAUD5Z3CUOOnQ2YwqtBcTnHqefhRhehWJhgvGZRdqBTiYKFKojJGRkIiGTGalMXgNaf6geexOa8Ctfz/LNwdzNaf9Z7v+T/BkBmlKvRN8A+xFdr3vNH7G2hRB5RA75a75i4fQO5G5vqTV9o8erxusps+9kvNGxtxmPb5d6/HoDpTeTC7zZa7x6zpt/tvsf3mse2WvqdinVa97P/x/GT4HrP4JxewH5vk8QBADEcfwaMyZepVlQ6rbhh4lhGK90W9/uRZgkyU+U0/5G57mt0VVSxxDw2Hfvh9jn5vJNfvt/+z/4xV/57/nrr36DrRvLnHj+AtHxA3mnQwlc1yYOQjSl0et2ee7pZ6iVK9iOSa/XIwxzgF8sFnFcA9e12dzYw3Fs4ihiZGQUoRReoZBTJT0HpbRc02UYKKVj2Rb+YIBuGFiWTa+f55oWS0Uc18HUdRAw6PXodAb0Bl3KxTJRFHHs2HGCMCZJMpTIMzY1TUPoBl6hzJnHH6VYdDlwYIE0zahUq1y4sISuWbRbXXr9gGKhhN8fIIWk1+1T8Dwy4L3vfR+mbaCkIAkjgqCLMiGKQXo9dMOkv2tTKpYpF0rMHzhIlsLC/AKuV6LvRyydfxlNaSAVlu2SCpgan8DzPKZnpglCH0N36HQ6mJZJGPTQDYFUJr1BQKlcIctSBoMEf+Az6PXISNENncmJMQxDYds5HdgruKRKohn7lvhK4ZWKRHGCbdm09lpsr28xMlxjd3sL27QZGhlneWWVxs46777nboIgQrgvk2UJV5/dZeSCpPtLBymMDJMpMC2LVrudF8WlMkEYousm58+dI0tiPM+l1+syGPTZ3Nrm+MkTJEmIZerUh+rEUczWTgvHLbDb3GNsYhTLMVicm+HixSU2tjaJE0EYpxRKNrqmOHjwAL1ulxfOvkSpVCFLBa5TQBMalXodr1hA0zVarQalQoFqtcLe3i4C6A/6HD96DKFJsjhmcnwcP4lIkgE3rl1jcfEgyPwGYpo2zWaTbrvD9Mw0yshzAputBpu7W7znffdyYGGBlZUVKtUq3XaHY0ePs7K6TpJmOLbH1avX+MCH38+ZJ85w512niKOIKAxpNVssLh6i2+2xsZ8BK6Xk0OIihmkwOzeLH/joUieJA6SmCOMBxWqJcq2K1A2OnjyOUhpZBp12lzhK8FwPy7FIU0gT0C+06bQ7bAzFVCplzi5dYyI6z6f+7R/xwY98lJGROv/dv/6XOLaG47h5nqjIiJMBWdRChm2qQxMkqcJMInqXHkBJQeXYJ7m5fA23NMrO1iZR0KdQrKAZHr6/y3vedxdeyWBn8zr1IQ+vVEIqnTDssrd3kzSO6PU2aQw2GXmhCQuzuVN0q4WSEkhptxpY+yZalqnvO+8qIEU3LJQyMHQjlwaYBocPH8R2baQw8ggyTYBIOXz4ELWKy6DfoddrkSQhpqFjGA7tdgdDN9lY3+WbX/82N5ZvMTIynLvZDvocPnSUqalJKrVqnscahZimiWlaRFGEZmgIYHx8kuvLN7jn3nuJ44hBv8fjj59mYmKGOAbTMFi+eYssS7Esg0Zzly9/6etUK0NYhs3Zs8+TpCntTotisYCmKdI0pdfro+tG7k4sJUppRLGPEPDy+XNUSkWeevIJHn30SeZmZ1laepmpqVFKlSK6BiPDdcqVEgjw+xGB3yeKI4aHh7BlGyUiDN3GNIukaUZj1+exRx/n0OEj6IZBo9nMjZQKxX3HZoFU2n6dmTFcr2FqiiRNkJoBSse0HFIhSZIETSksy8z1hqmg1/X52n3fZGFhAU0zaLUb3Lq1iucVsK0iX/rinzM2PowUBt+8//ssHjiIFJI4DtE0jSROc/3jPngv7XaRQUT7k3eSEFGrlbm1cpMgCJgeq7FwYJKHH3mKQm2UW2ur1Cs1rl+/juU4dDpdnJJJlMYE7U3iNKM6eQglf3SR+Kb6NzISIdGjFt/6y/v44Ac/TpZo3P/Vv2K85nLg4HEmJ9oo2cIwHKTy+Oyn76FgaYi0T+qDSHw0kSIQKOFSLIxiGgZhOMArpQwPKz73kc+hG5coVwqMT4/zn//vB9jeucSnP/ELXFnaoNPpsNde4+nvXebUh34OrVimdescMhpAmuLYFr1OB2VYEPTQZIxMIzxbx5A+V5a3KBbLvHzpKnfdey9ry8scPngQ0zLxBwNGR4apVqo88sjDnDp1B0JlpAcbyEfrBHGGMexQG6mwsrxCksVsb23j+13StMfqWgvL1BifGOaOQyOUygFKSbLUQEmb4aEhip6H0Hus3AxZW48pDRURaUiW5brJJI33jUTyJ0PX8miqTKBJjc2NXYpFjyTuk6UpcRwBGbquQRLh+12U4dDpWTzwwEuMj47T9TUs1yXwe+xsN7BdF03TME2dUslh7erLREGIbmoUWwdJnR57s9co1xfAGAVzBM2xCTKXIDGoDI0itbfXMXt7DYsfBk1veEiWve587wy4vvVb+NFHRn9hkJ5XqOPpD33v7da1f5ca+O0yJOCN9MB/+/V3CszfqtZ+43O90fz0te7PP+24/v2Nf0rA9fZIklz3cjsK5/b/4RVHcpTKNUaWlQOH29rW1y/at9o9+XE1D292rjfbKRJCkCQQ+11Of+8bPPS97/LJz3yaRPf4wIc+weKBRXZWb3H0iZeQO3sk81N54ZAkKMR+wSa4vHSJxu4e84uzDPoBpVKJb37zmxw5cpBi0SOKI4bqY4SBj+t5rK6vMzQ0TLJ/MwmjMM/izCCOE4QU6Erb15j10HWDJ08/zeTUBIalk6UZQb+PkIovffHPce0Cx04eI+wPWF9fpVgqorRcJyqyCPYzETMkYRhRqRSYm5/Cskyk1IGMq1eucWt5hQsXLxIEAfValUcefpijhw+RpAn9Xp92u4NTcHPgEceQBEBKJiVSGmiFLoap4WnjBEEfpXKNThT2CaIBrmehdImumfT7Pq5Xwg8CdEMnCiNub2ZalkXkh1y9fo2xsVEgxTB0lGYgdROEorG7S5rCF7/wBe668xTFgkeSpiRxhGlaNBpNkiTGdW2iNCOJE4SQLF+7gVvwaOw12N3ZpeQVieKMcqmAaRjs7ezhhxEvvfgi42PDbGxssrO9R2n8FrqmUTpXRszWuTWnyJB5hEgcEYYhV65cIRj0eeGFFykWK4yOjNDe22ZkfAxdz0HR2PgY165dwzC0nJqZgu+HjI1N5y6ilkmaJRimRuQHuF6Bufl5qrU616/fII6DPOC+1cL3Aw4dPoLneqRxQr+/r1/WJEEQYJsGa6urTE6OY1omumFQLBWwbZuVlVsUykVae3u4jk0vGNDY28XzimRpxuWrV6gPDeO5DsFggBCwfPMm3U6bQrHA8Eget+R6LiLLKJfLOI6DbebdqVazRblcpVAogBCUqyWUpigVy2RZhq4bdLt9arUaUko6nS7lapVOq4Wu6xSKRaIowvEKpFFCEOa0Pkj3uw15B05KicgEDz74IEcOHeZb3/4Wi4cOEichxWKRl158kbFtE8e2WbK2qVSrKN3EDjaoLX6QmWPvQ0r4H3/93/Cxn/0YaQyNVodqvcz62k0GnSbxoEdpZAZl2ujxgOjmo0il0Bc+Qqfbw3BqJGFIt91gYnKaTi+g3dphcnqKLEsouDldvj/ooZsFuv0+tXqZxO8i6eGNGJTOBmSOTua66JpGmsRsbmxgGibtVhvHdUnT3FlXqgwhdKIwJc0yMlKSOOV73/0Oi4sLuaFIlusNpRJICevr61i6h2naZJnE88qEYbrvOGsikcRJRqlU5djxIxiGJE7C3BhJSnTTQDfMvDEAKE0ny1KUUiRJzJnHTzM7M8vFpYscPHQQQzeRAubnF7h67Trf/va3OHXqJJVyJdfDiwzXdTh85BC9TptGc4fDRxYplT0c1yWK8k7s7XxaTctpwktLS5RKJTTNZdDzuf/r32JidIrTp5/mE5/4OGHgc8+776LX7aJ0D1KFEjpSmDzzzFmWb6whyRgfHeLs88/T3LlCvT5MnOQmSUo38LwiUkkMw8S2XZ57/nkMw6Ber5Psy2GU3I96y3ISN1mCZugIoSGkRElQMiNNMpI0RgjI0hTLMOl2uhw6coQHH3yILMsYGqpy+vEzHD12FH8QsXz9KqdO3YGum1y5coPheoVSqUQUhwghME2bVrOLEAlhEKIXXbLtJnsfPkkSBuzt7OYZpbqBShN29jZYvrnJu+/5AIcOH6DgeJRKVYqlEsVSAQFsbm1SNhI2NtYYnz/K7TScN6MbvjUFMiNGoIctKfcvRAAAIABJREFUnnjkW7z7Pe/jd//D/86v3v2rzJUm+cMv/yeiwS3mpocol8okiY7n6GhSgzSg3w/xnGEGfo+YAZod0x7sEoUBmtJJIouSO0Wn+RJS7/LQAylf+PNvsdu+Sa1S5MbVZe6779v8zMc+ysrqDaTYpJlmPPf8S2zfWMPQ4n35kkBXikGYoGUBaRojSOl29nCMmMtXb+APOjxy+gzTM9Ncu3QFIWB7e4ssS9ne2GBkdIwHHvgOH/nIhwnDgEvXzzP0vjLFZyfJnIxA9KgUx2g0WxSLNcrFArVagUKxhKYnLC29xEhFR0mD61dXcV0PQ88wjAGasvHDNp1WxuXLy0xM1rDNXIKVg1cIE4VUCtd1GfS7pElCJiLSLKRQ8ND0BE0KpBCoVwBKhqZyxkSYxCSA5VqMT1SIsWi223TafQ4ePkyr1cJzTEh6RL1tdNnEK5ax7WHkpUn8XzoPjiDFQmguaQZx2GVq+iDDo1Ns7jRwPO9t1XK357x1Z+2HO3wZ6SvHv2JoxOvrx78bcH2nNNfkYR36Au1VrsJvdd283kzpR2lIf9Tjjea/nZ/vnSZ/3E4NuX2ON8pmfaPz/e3P+9oO7e1IntfOfVtv5e91/BS4/iMauq7T7XaBv90d+1tQKl4JezYMA8/zcq3NPpB9J+PvQpEAXgm8fzt/BJQ0SAddXjrzEHOzkxSqQxw+vMjR4yeRusXcxAj2l76JbxqkczMIJEmad2RyCoxgbm6earXK2uoyhmGRJjA2Poxh6jiuS+D7JGmG73dwvRKW5SCkQNN1DMuEDLa3d/C8AoZhoitJr99HCIFhWmRIPNtFMzX8wEcKgW2YZFIxMz3J3NxBpJK4piAIfYQSmI5FGIU4Tplbt9YQSNZXV+l1OswuTJElAf1eFzJFpjQmxibRlOK977+H8ekxRJaiJFQrZaQETRp861v3c/TEUYRSGLpFGDYoVuoM+imu4xCo1fyz7pRJM4kybG5cX+Whhx7m0MFDFIol9vbamJZJfWiMz//ZFwgGA3RNUa3nAKbdbhNFEUnkMzE5QZplKKWxs72HpmsYTpFMCJIoJAoD7r7rXYgsZTAICYIU17W4ubzC5uYO9VodREaKQqSwsnyTWzduMjY6waULF1BCcmt1jfmDR9A1nQvnzyNJ2dve4tixw0xOzVKv12k0dqlMrhFHMYVHHeJfPooYcvEHAy5fvEjBdWg1GkxPzLLX3OPY8ZNIobF6c5lyycFxXa5fu8bwyAhRHOJ4LpViCU2ZZKmk3/e5tHSBs2dfIBgMGBkaprnXxI8SkiTFNAz63Q66FEzNztHt9JFS58zjp6mNVDE0xbUrV1hdvcXU9BRpBq29BkG3i0hT1jY2KJfLDAZ9lpaWGB4eplwuk5BimyaR7yMNDUvZnD17nsnpKaamx3HsIlcuX8azc+aEads0d/aQKJ595jlmZ+b47gPfo1wqsraxgWVZPPbII9SHq5RKJaq1KkmacO36VQ4ePpJH3izf4pEHH2V4ZATPK3Bj+SaDgc/4+CRR5HNjeZn68FDu9JvEmIbF6vItLFNiF1x0qdHp9LEsj067S7vdBgUH5ubI0piFAwsITVAsFcjShPGxUVItRU45TJycAwG3bq4xUnHo7KwjRj/Cn/7pf+GFF87xuZ/75/zxn3yebhAxvzBH5HeZmjpEpTyEr3t0fR8V7RGtPE2cxCSzP4NmuRh6gVLRpeBYtNs9Vta2GaqPo3QHy3TRpU4UxAwGPaJIkaQGbqWGipp0dhokXR9tO8Tc69ItWpimwe5ug2AQkcVQGaqjdBOpKzTDJPB9lDTQdAshE3Q9Q0mLhbkZhMjQdAOpUjIS+oMemmZg2x5KM4mzCKVrCKmhDJPQjxn0GgiRoAwNx/VARGhahmPbZKnIdXKajlA5oFYidwPu9/ukaUIURSwuHCTNUg4eOsSN5dzQhf0iZGS0zomTORhKkhjDMEmT3HQmQ2CbNlsbO0xNz+UURiUwTQspBUHgo5QOmSDcZ6ukaYaQAkWKzBIuLl1mZ2eHyakxLrx8jqWLS5RLNTTTREnJ1++7DyEkG5tbhFGH8TEPS7aJelsUSwWSxKDRDinVyhimzaC/x9BQnbW1NSanZ1lYOIRl5R1m9ouztL8LCDTTJEWgGwbI3PxGZCndwcOkrKGrabI0Rcpcd0ca0+/3MAyNO+44iVQKf9Dn1LvuYBB20HWTVqNNt9/BLZY4fPgwUdhECINCoUC/P0AIRbvVo+i5tNodCm4BY6fJ7117kU997JM0d5osfuMZSudvIn/mHoKwz9jQFP/m136de+8+RpwIPv3pz/I//cZvEiUDXnzyAlcvXWa8BFcvnefkXfeQvEUczo8sgslIhGLtyossX1nhM7/wr/jYp36JkecOU+pPUP7ZiPnRRRylSLIWSgkSIWk2fZQeIzUNIU1Mz2WvFXH/dy7gh9PMTjhICeWSw/raTUq1RQbpJq1OSpi0KHl1pDD55Kc/yPFTC4xPTnHgwN3MzC8yXKkzWhumNDTPra0VRicmae1uEocBhUIJf9DAMC00HRxXkGYd5qeGaDVWed/73s/4yAinH3mW8clxFg4t8vgjjzA3McnpZ57mYx//GK1Wk1K5xM0bW9SmHa7tnsN5cZQXrj9DfaJOt99kfn4aw4Rm8ybPP3eZIAwJooz56VmauzuMT42i9ATTEBAlCD1l0EspFhUz02Vc2yBJwv0aJ9dzh7HHuXMXGRkZQlMCqTLSRBDHAbpuIyRIcqfmfWhAEsckJESJwXe+c56pqUmUSNneDdnai7jz7ruwTUU3DKlUihgyYOvmOVS4hlGoY3rDxOs1RKxjfKrL5u4aUZSwuXqF2N9C9DpcuXSFoeFxSkNjoH78aKU3Wl0/vBb/FvS9Uvf9ENj5CXZc38ZInt53FX6LOJw3Gu8E4P8kz3l7vDox5O0c9/pNhncKfG8D11fjiR/+8P5bflI/3vgpcP1HNPIOZfJKfuvthZbTtyS6rqHreYi7rmuvANa3CiJ+s9d5s/H6C+VH7YDdfrwezN4eoehC1ufCi49TKbl4nsP01AxaYYhAKLQM7D//OjthwGPrt5iamkBTEpXl4d+ddg9L19BVQprEFAomUkUEUYAQsH5zG9NxcIsFhDSQhOhW7lC5u7VCxcroB4JqpYrIEgwd+smAJPa4sbxCfdjAUEUKjo1rmzzz1BPUKzWSRJAmMWEUgkywTJPBoIXnOUBGHCWkcUSUSr76119jenKCLO4zOlpBKJM4HGAaw6QS/t8/+SLHjh/jyScfZ35uARJJEAxA6BTKFWzPQbMEx04cI4piLMPAD/r4foRSFq5ThAwyZ480zciCOoZpkyIoWC6XLi5x8uRJoqiHEAGp1DCUh2NbVMoeY6PjSJnQbu1Qqw8RRIrN1TWcQr5T++LZF5mfmcewTfq9PZKoj+d5FE2F32/jFBxMy0IZOuGgT7lcplavIlRGp9fCKbiIxMdzXIZGpvnKl7/CqVPvwrA0Dh6aRxDSb7dAN9htdV+JKHr84cfRNJvFI/Nk5hKyC3K7RvzZBS5fvQICkqDP0oWLdFodLly4QKlUIU1jhsdquKUisTCQ0mZoeJhOZw2Rwcq1BuVajZsrN6nUy5iWwdzsGAsH5ri+vEx1aAjdsrFclzSNWVm9RRgGXL6yhJGZFMslHM/DcT0q5SKZFBQqJQqFIloGumbx/HPPImWGYSq8Uo2ly5dZXDzI1PQ0UtMJ4gFZmKBLxcbOHoVCiVRqHDgwx/LyNcq1Mq3dLSamp7hw6Qq2Y3P9ymWmFmZ57vnnuPPOd9FtNYiDPqNjkwzVh1i6cJE0TamPH+DqhbMMD1XR3QJj4yM8+egZZJwh4oTBoM8gDNnbazI9MYbr6WSpjshgqF7HNjWiYIBt6MRRB7tgoFk6mlJkwszp5QkYykRi4JgW/UFAzx9QG6ow8HuYukOY9OgFPdK6C8MWYRShSY2VW7dYvrXB8fIOv/2Hj/D7f/B/8dlPfZwLZ5/nK1/6MkvnLvNLv/wrVEdH6LY7bDd2GauaSH+XwaCN3DibSwGOfw7PdhBRzOOPPczQ2BAbW9t85a++Tn9vj+G6y40bl6mPTNALBIYxQOgx7U6I7RUY9FKwXEZmD7DWaVB9uYmayKnKmmmjKYVjm1iGTrfTxisVEVKSxDGmpZFkAVJq+H5KHAegFIZhkMYBCBMhdHTNZvn6Lc6/eJ7x8QqaSsjSACkyoiAgI6bbhUplBJEFCOy8Sz02ShxF6LpOKg10zWTQH2CaLmGUITSBJjTu+/o3OXbiJFIlCKVIs4zvfff7HD92El3PO7JIhZBqn/apkyWwdOECjb1tKoUS37j/27zn/R+k0W7heC5KSDIESmqAoNftYll2nvsqEjJiZCYwsgjPVCxdusiJE8d57MxpxoerjE8U+ZuHnuHm9SscPLBIp9WgWrY5eXwOnQYTQzbd5jau5+KVawilCOMEr1gkI8bwhpCawfDoCFHkkyUhjmOTiZwNI6SOlBVarV1MHfq9FhkdDK1EmukgUvrBNYIgxjGnMHSTJE7RNYMoTskkuG7endra2uHJJ55lfmYBkUUkCZx+4gmOHD5OpVgiSQI0JXCKFmng8KU//wqIhLmFGZI0ABVho6HWtxn5tX/N+sYOe60e9jcewRxEbJycp7HbYmioxok7DjPwfSzd49/+1m8iZUwQ+tQdxej4ON3GLr4fsnDkFKn88YCrEIJMaOgiQ1cmf/af/4CzL1/Cq4wiXvS4ePEa31h9nB888AQpPvMHHUoVm0GnT7u9jeN4ZFnGbnSLoH+CZm+E55Zu8Ed/fIZPfmiG+kiJRmcdZURYtoDQYWSky6m7pnj4wRbbjV3mDsxz4uTP8IXP38eRo5P4vRZx3CbwQ+776hMMT82yePSjdH0Hx5Fo0QUiwyOIuvjdJraShN0upqMoeApDhiTBNu1Gm3JpgiDOePf77mRjc5uhkRFmhibo7rbpDtr0+l3K5TLj7xrF2C5RPuCiVMLeVhtdZIg05MbVdZp7Ad1egN/3mZi2efLZa5w4No6lgUqyXO+tFJrMUDLD0DQkGVJjP64KslSSpiHNxgaeZ4GQxIkgU9F+zzskiwVCpvvxJIosExiGCVKRDBTjoxbNoM9DT26BKvHhD3+Ara0NlKaIVIpKTHZXLpGJTZzSFBh10sxDvzRC54PXKB42WL11hZn5SSbnFwnSIkNzx1i7vMQP/vrzvPdnP0Y3SIiCPI+ZLGeDvBHd9o06rQL1isb09QDmFbAjyLWn2b6JXQY/rJ380eMNGcdvMu/NzvwKk++pdwZc30lX9J2c79Vd0Nd3QH9U7fyjWJGvPkeWvf638toNhTfvAucMALEvu7itb71NX/5bIPv6xz8smP0pcP1HNG4vvjiOf4hWoJRC0/JQak3LO62vPu6d7Pr8pOe++j2+/mJMUw9Lmjz38GPUK6NsbnWQps3Q+CyZMEi6Xdy/uB9nZJh4bpI0TXFdl93ttdygQzMwLYt2r0uv3cvpmMUSWSbo9wPOn3sJ2/XY3tnj61/7BocOHsDzSuiGyc7mBns7u1SHRxkMfKIwpt1qYzkGItX4ype/hGNL6tURGs1NdnY2OXBggXKpyuOPP878wgKmpZMBpmmjhGBnZw/HKdDv+9i2w31f+wrHjh5jemoa03T48l/+NQsH5tnZ3qFWGyGIfEpeAde1KJU8XNfFdmyeeupJTp85w6HDRwjDAIkkCvN8WcMwicKIUqmCFBpLS0u0Wg284Sh3/uwWkVLS73XpdZq85733opQkCH1M08DvdPnG1+7nPe+9G80Aw9CRQtEfDAiCENvxWLl5nVKlgh/4TIyP0+t2MG0by7Lx/QjTsOl2BvhBhFco0ul0EJkgSTJs2+F7P3gQpWlMTU3T7wfoSuH7AUkKO9ubGIakVCoCgijKaOy2qNeGqVRqaJpGu9VG6DqNZpvZ+RnWN5+j/KJO/Ll3EZcNKpUKpWKRielZZubnmZyaZHi4zujICDeuX0PXFaViEdu00PSIQd/Htm0ajT3iKGZkdIQbN66QxiFpEhNFEXu7DaanZygUCiRxgm3a+bNlMzk5RaPZZm5+HqkkSmZsrq0yGISUSmU0LY/IuLR0ib2dHVzHZXJ6htrQKI7rUC6XOPPEaWZmphAkrKysUS6WCAYBu41GTv21TTZX12g1m0xMTAEZW1vbHD9xB1ubWyRRSN8PuevOu1hbXaXX6+F6BTa2tnFdl3KpxObGJroGw2UT2zHxU3AsE13PqWk3b93CtG1K5RJ33HGKrY0NbNei3e6TphEPPfQQ6+ub1Ouj3Lhxi4nJcdgvXOI43aeFpXS7TZTK8AoGN66v8swzz7Kzs4eUBtXKML7fw9AdlLIxDJ0sFYRB7qw5OTHJ08+f4+RYwp3//LcZmT7A7//+7/Hzv/g5nj37PP/+d3+HwG8xUi/RH/QpFV02N9bZ2tqiXKnDyhmyNENf/AS7jRZZlDI3N4tXKFIoVLnj1N38h9/9j9z57rs4ceokqUwRSpLGfVKhMTV5CMu26Hd2kCohDgdoJZPymRVCLSa1NZC55t1ybIQyUGZOl03TmDTKcllBktPfpZQYKtdvJ2m6z3LZp/JKRcHz2NtrMOiHaMrAdYvEsSCOMmxLI/Rjvv7VrzI3N4UfhRw6OE8cB2RZzl6JkgFZFmE7BogEpbK8UMngxPETJPvFqO/7KKU4fuI46+urVOtDgIA0QZC7B8dJTJYlrK6uML8wg6Hb9Po+Y+PjlEoFhMyNZNI05eLFiwwND6MbuRFV7ooq8P0A3RQIESCyANfROPvC05QdndnxKvWySRb5LCzMEAYd0qRHvVbAthS2pRNHEabtopkeUtMxDBvHKyGlTpikKM3CMEySJMEfBGxsbDA0PALkueVSKJK0i2kL+v0QQxbwnDJx0kcKyWDQAblJv9fHtRfpdnvYtsWFl88xPj6Bvn9/XF/fJApjJibneO6555AqwbAcms0mF5cuEgYBa2urTE1NIHVoN/c4cccipXKBLDPy3xdgLm+jml1uvXuBublpvve97zL18jK1WgU+cxdDw3U0peO6Ht1un2NHFzFtjctXriKk4o/+8I/5zOd+maKrsby6zPTh4/v5vz/uPVcgRIZraDxw35/x67/5myQypb42jT/oci35T/zyZw5zz0mH8VIFPazgZz2q1WoelwS47iH+z//4p/zFX9zHr/3aKT77iTuYGvcIowFZlmHqHt3OLo5VJoptMjzOX7jOUG2W0489jpAx995zgtn5KbJUoz5UwrItdF1xx513kiQ6tlOg1WzT7QYUbRtN6OjSptOMcZ1RoqhHlsZ4BRtFzNj4NF/92ldZX7/OxPgQ9fIokTL4mx88zLvefTfr25vcc88pXr7wMuMT47TWO1iX6yRFn0EvzDduZUKn02VqpsbUnEujsU3QUxw/VKVUMIEBaBF+1M8zcYmI9yniaZIQJfka1DRJFAXYtsPIcA2lcvszf9Dn0oU9JsYmESKFLCbdv471fTf+MBwgsoxQtHnupSbPPbvDJz/xfgTQaO4xMTmF7XiUCzUUbdJ4G8cqomkGhmmhboyAEIz+lsFeo4ldGiJKJRubDQzNpTKzwOTYGEkUMwgiMB1KpcrrF9GPrNvylfTWbL28tnvjI9/peLtHvJ157xS4vq3X/TvWxW/EQHyntfmbn/+N2I0/Psf3Nd3zN57xY5/7JzF+Clz/kQ0pc/3cbQrwq7nxt7VIr190/9DA9baR1Bsenyk6u5s89J2vUq/koG3m8ClSYVAqltm+tUL1vu9D0aNw6vg+2Mmoljz8IMyNcYRAGgYkucOy63pIqSOVzpHDi4RxyvjYFLVajSSJWV/fYLg+RLPZ4MaNGwyPj6GUxnPPvYDrevR6bZIk5d577mF8bJhBb0BtqIDrFTAMC6Xp1IeGUUpDN3Q0pWOaNns7e5imTZSklEplMuDk8UUmJybY3NzBsl2OHT9J0TNod/q4noNlGbi2RbO5h+042I4DMmN6eoYTJ0+QpSlnzjyBrls4jstg0M+7OklGEue7Y+sbq7kWdVAiabmEgQ9phqFreJ5Np9vGcRyiOM51u7s7XLuxwuz8FMWiTZYknHnyOVZurjA/v0AQDJiemCQTAsuyiOMYz3VJ0nxHVddybe7uXofLl69Qr9cI/AFhEGC7HltbOxw+fIxyuQr7ESUZoDSNtbU1ykWPXr+bx4BkEscuoJTB5sYmzWaDmzdvghDcde97KBTLNBo71L0NMixuzRdxPIdLl5awTJNGp4vnuiglaezt4Ng2u7vbjAyPsHrrJi++8ByjEyWSUECqaLb2UJogCiOKRSfPfZSSbm/AuXPnGR+bYHevwdUrl3EMm8APCcKISq1OfXgYpUmazSbPPPUUi3MzlEp1ms0WpXIZ07DY2dphanKcickpzjz5NE6hhJLZPigAz3NYWbnJyNAYuzu7OK6L47g8+ODfsLmxxszUNMVCiTNnnmJopM7U9DTnz19ge2ebe+6+C8crceH8OY4eOUycpFTqwywsLGAaBudeeok0TSnaiizuoUwdrzqE2g+d6vf6HD9+nGK5zNT0BGSSSrkMImXgR5TLDp12l6NHTxL4Ee1Wl0LRwzCsXLMnFUmcoYSOkjq+7zPw+zz8yEP8wi98hvmFWR55+FEmJ6eQKiOONL72119nNi6jNRK+89RDeK6H6zosLiwgkzb1eoWON8cTp5/gQ5/4BO++927Gx+oMlV121ldwiwXCMMC0bErlGnEiSK7+AKkU6dSHSZBUCwX6vT5ZJlhdXUc3LVrNPsMTQ9RGqqxtbZAJgakLgjBGSIcUcC2Nfn9A4PcIox62beK8uEW/qlC6gWHlYF+3HAzDIIl9kjjCMj0gd86UUjEY9Om1m5hW7jjK7U1FmRe7AP7AZ2pqEsPU0TUNITLCyMf3e4hMEIQBk5OjJFmCaRokcc7iMAwTKSVpkiFRBH6IrhkoXSeJ4ldKkyTO+PKXv8yJEyfQlKRULhDFeYNFkJJEId1+F03XiOOYiclxMhK2thqcf/llNjY2WDy4gJIQRzG6rlEpl/MOp0jodXu5xIJ8AzIVgm6nTafVxHMspibHWTx0AM+zsR2LSi2nVl67coHjxw6SxAG2ZZBECZbjEme5pjVOMpRmEKeCUqVOnAiUbmJZdr5BF8XYjoeQCiQoKen1+thWgXifyh6FIbqKaLf2MIw8YzfO1vEKRTQ5Q5bB8vI1DizOQaYQUhL4IVJp1Osj3HffN/jkxz/O7t4m8wsLjE9McuzIUYaGhhgeHiJNE3b3uriORbu9i+eVuby0iaanaJrCvLqG8kPCf/YewjDkzjvfTen0WQxTp/m+g2QZOI6LFCq/N6mAdqeDkJJqbZjvf/dRPvCxT2KomPXNVSYOHssjoX7se26uqyYOuPT8WTLNwy7UGdmYx7ZMWqPnmBg3qNdDUmL8QEOY5F15qTBMi0any4c+8B7+xS++F89oszBZo9VroekmUZQhpEG1ZCGkjqZG+MY3f8CnPv1+Zg+7PP3UQ6zeuME/+/l/yR/83v0cf9cMzz77NKNjI7Rae4SxolIdp91LuHZ9k6npE+xuXACZYJoSKTWUbqITY9s6ftAmjfo8cvphxkfrKAasrtyAxKA8NgPKZBCGDPwBOzurQEqh4CHHIpyH54iKPaQuSNKQTruBYxcRKuPxv7mBo08Ss8vshIPrKAQpcaIIQpssC/c11AopdG7dXKdSLaNrijDso+sq1zhrkCQhmpJIkUFmYBgCKZN9oxsNyEjS3IU8DEN6nYC17YhzV1vMLxxkYWqMfuBz/PhxVlZWGRoaIR34tJqXIWujqzKoFNEpoW6NEv0Pz9InoFYfoVSfwPUq1GqjWJZDYpexNI3G7h7CMJk+cJAkyXiNZOynwPUdj/+WwPWdOva+E+D6ThmXt+f+FLj+A4x/ysD19vPth67rr8lqfb1G9e3Qed9qvH7u7QX9TmgTb6azVUr8f+y9aYwl2Xmm95wTe8Tdt7w38+ZelZVZezd7JSk2tVO7MDYMaDy0RhIGtn7IMDwe2IYB//EPe2DLA3uEAWZoDK1ltFAkpRYXkb1w7b2rumtfsjKzKrNy3+8ee/hHZDXJZnez2dRAMwY/4AJ1KyNOxL0RN873nu/93pdrb77K/dsXcPt7nH/4DMXRhzAMgzgM0aMY6zNfJnQsOD5+tPKvEiNIkCRxREyEokq8ng8C+oMBTjaLphmEYUQQwteef45HP3SOhYVFbty4xvj4KPl8nlyhSDZfQZE6mqZhWSa1+hBxEmMYJqpipUA2jtF1B1U1cF0PRREoik4URXR6XaRUsS2Lu3fvIhVJNpdFSEEYDOh2elRKBTrtPXJZA+IIJ1NBNwX9Xo9u+5DtrV2OzczhBwGKqtDpdVJhHs/lyqVreIOAmWPHsG2FOEopl91uD4ip1arpNUHFymQxTDu1QAL2dvcJ/AhV1ck4DmEYYls65z70OE4+w87WOhnTJohU/EFIPpelUsnhugOEFPihTxSFiCRB1VTWN9YRQoVEIqKYYiFHLp/B833KlSpRHFIqlxGKhqrrSEWgKTLt0RMqz33lOQ4O9pmbncXzAwqFEkEQsXfYon24j2MbzJ48wdK9u0yMjvLmxTfJODrZaJ6dook5Pk4QhyRRxNb6OgKFra0tuu0ujfowA89lYnKaC69f5NixadrtA7KOgTsIU69bIYkjjfpIHSdj4Q5cLNMiVygzc/wESQKba+uMNIa5u3IX33OZnJxkd3uHwA9YXlmi0RglDGI21tco5Qusb66nVeL2Ibu7O9TqQ2xsbuAGPpubm4yP1uj1upSKRQzNRNcMTMOkWC6lisitNmdPnmJsYpzPf+7zPPTQQ9RHGmRzWaSiUq7UKJfLLNyZp1KpMegdsrQ4z9yZMwhNIw5ClpeXIUmYnJxkc3OT4eEh8pUaQawSexGqpnF/eRkAB4brAAAgAElEQVTP81hZWcGydV5/7SI7Wzt89dmvcO78w8SxS70+zJVL1wmjgEzOYn5+PhWckpJr166hqTqf+YvPcm9pnfPnH0GqKseOTRHGAw4Pd7l96ya9bpdSscLXv/48q2v3+RV5Gns/ZOJXzpPLZfFdl+vXr1Mp59A0lfzJX+WJRz9CEEjqtTqOo+C5bQLPx3B0LMvCdHKpeI/uIFWTpHiMbuLQOtgj40g8f4DrhtSH60SJy0efeIRMRiUMXMbHpui0elgZB1W3SEKdjfX7VCsNLl64QrMxRjZjsqX30O8dklvtE4gQX40xdBWSiNBPfUylIhFJigg1La0KSinI5nJHib8gPPLWTkVcEkhSUacvfelpdnd2GLh9iqUMTkbHMDNohokQkpWVNTLZLH/0h3+CY2eplMupIBA6pmGzu3vIpUtXuHXzDqVyEYHg0//209SHG2SzNufPn0NRVDwvYG93H13TuT1/i5dfepmp6WPYuQxCKGjakeKxlOTyJTzP52NP/QS+308XcjSdJHkg/peAAEO36PcHRx7OMZpiokmNMEjQVI1sJo8wNIRqsrPnp/3kvsdQo45uWAhVZ+DFqJqNbmWIUAj8AKGaqKpBIjUUzUoXFeKIKErodgdYloPtZND0VDQtiaNUgCwxcQMX3TTRpM/2xi06nRhFtcnmc0RigzTtHkZKhXwun/oe35zHtm36/QGHhx2eeeY5PvFzH0NBUsg79Ho9coU829tb3JlfoFarkc1m8DzJ5/7yrzl+fAZdt3n++ReoVrIUizmM9X2EH7D1E7P4XoIqLbIvvZkyZX7hZ+l2Pe7M36FWq5LNZrh25SamaSOlRrFcRFMTGs0mid8liaHWnEHwvQn3+52rj7Ym8D0IPL7y+c/z2Id/Ct2uIi/btFpt/qtP/69881uv8cSHz1IsQygGmGb2aJEgbfvQtAGCA4j7lLMNOq0eQk9Bq2UV2NjcwBQGXfcQP4o4NXeOUn7A//Q/fI4nz/4kjz0mMfILRFqLmzcO+fmf/0Vu3rhNq9WikMnzzLPPMX18jvroMf70M3/LlZsrnH/0HLHsY2oBSezheQG9QRtdVTANg3otQzWnMjOZZXSkQrczoBdYeGHAkx9+jK988Wnm5uao10dQVQPTstm6s8/B/jb5So5Go8re3gG2VWKkOYxQlhmbMkFG5EwV44hVIYXD88++iWUKCrk8qqoReAHFUokEDyESpJDEcYyuaYSBB0QIAUmc4GRjpAxJKZgynXPiiCgKkEIliVUWVgZcu95j7twZZmYbKGoGqepHC2Q+Vy5dQAb3UAlwMrk0J+j0sO+fpvvQReT4OopQiMMAz+thGRnWN7fJlUuYpoIMAg72Dzh+6gyxVFEV9Xvune+GSe95TyXv3TYmhEDwvcDogebKDxv/oQLXd6P8/qB93r7/O/3t3bZ5EG+JXb1D+933bv/uROt3Asc/qN3gB23zY+D67yn+/wpcgbcA6gN6sKJ8x/NNeYdG/A9CRXi3/T8oteHdIvZ1lm4u4h3skTMdms0p9MokkR9gajqxF2D8+RdIsg7eaB3D0BEiIVFMiJO0VyzwSIhQhco3v/UNWu0WlVoVkoStzR2konHr9nVOzk5TqVZ5/LFH8bwBlpNWOHd2WiwsLjI1MUE259Dpu1i2SeBHPPvc15mYHse2Hba3D1AUjf39fd68fJH93RbDzWF0wyDwI3RdRVEl5UqZKImQCqiqjjsYQBIi8djZWsWxsziZCigBgR9gagavvPoax47PgZCpB6htMRj0SCI4Nj3DxMQEUkk4ONwmjAI6nd6Rx6KLrmtsb+2haxaaZeG5Lr7nIwRIdEBy//4qX/vac4yMNNAMHdXMEhHR77S48sYVzpx/lEHPZXpqkv7gEE1L/Rsdx8H3fTRFQaqCUqmIpul8+4UXqVfKGIaGlTFTESddI4pSz8cgTCfyKI7odQ9TcRuhcuPKDX72Z3+WS5cupX3ZqsrVq9c4/9DD3Lh2iUajRjafIybBUTW2trYY9yKSk/dRCgFqbZZMPke5WKJerbKzuUWn1eLkyVPs7x2QKJLLl68wNNQgn8/i2Bb5bA7HTiuer7zyGiJxqI3W3ppwN9Y3sJ0cURRz8fWLrK+uMjszw+j0GOVKGQncXVok72QwLJ3dnRZLS8tHVGKPvb1d8sUciiIRJDSaoxSKRcZGm+i6SjarI4Sg33O5ceM2cSRQJQxcD6RA1zTeuHARPwbbsphfmGdm7jidThdxZP/RabUZqlW5ev0qM9PjDDdqaLZFIhVElLC5tcXIyAj9Xh/DzlEbKhMgiBON1u4+h60Dkjihc9iiOdqkVC1iGg67O3vMzh2nWq3heR0K+RJhGLO6tszYeAPTMMlms2QyDkP1GqaRUB+qcXv+DifmZhBKxGf+/EucPXOGfK7A4p3lVElWUZidmyKXt5nsFhEkbNR6uP0+GSeDROJoPkKz2bVO85uf/B2Cfszh4R6zJ6bZ3dsily/g2DpREuN6EUEsUTSLPja5xvG07zHw0ExYWrzL8MgoiITNnRW0JMCyJJ7nI2INTWjYeZveyk2E55IfGuHu3fsM15q89urr5LMGpWqe5IlpFlcWaN7zsba6hBooWS1VYtZ1EJJOZxfD1AEVEojiEKnqhFGEIiWaTBCK+hb4S+KEv/7rp9neOkCgsr6+xdmzZ0gSGPghqmrS7fW5cvU6xUKZhx56BNf1GRqq4PkDvMBFiJiEkEqlyPnzZ9BNC5GQgg3LolItIKXE9wKWl+9z9co1Ts4eY6g6xOT0dOovKUBVNUgkUkiC0EdRdEaGR+j3u6gK2HYqRpda+SjESZzaeyhpUh0nAXESoEro9tqomkDKmDiJiEIX3/NQEwcpQhKRCorFQkUoFm9cukG73WVoZAQhQVckUaIgNQ3LdghC+Na3XmF8YgTbctB0HU3XkUIhEWk1K4kjAj9A0X0GQTdVOw4SCAKWlneZnJojEgkR60fq8CP4QYSqqIRRhONkQaYVUNf1uXr1OrPHGtimzfPPPkM2k8XOZshmc1y7ep1CoUAmk2G/tUun1aNUzJEv2lRreSYnx9Nn/P1dFD9k5+OnEInJ//G//0se3e+las/ZEnNzp6nX65imyvydW7z0wiXOP/QwzdFhYiIKjoLpWHR3t4iDiMrIMRKCH2FWTanC3YM9HO2Qe+urVIcb7H/dJ5uxeeJ3T7F7d4WarTBZNbBigauoKKqG5/uEUYwtS0R4CEVw0GmhWD5CyQEGnh/Q6R1SsetY+QQ36eFYeYLBLuOnMzxyZprhuoqQOf77f/o099bWyGSKLC+vc+7seb753Jf4tX/wazSaw1y8fIn6UIN2f5jHn/wQh3ureIc7WKqJtBSQKS0+jlXcwR6mAm5/B0XXyOWH2e2YVGtVdF3DkFAs10liwec++1f0ei5mWWdy4RHC6iG9QZckkWQzdTy/RzgQZKwRXnrxEiP1CrajkSQ9wqDHsWPjOI6O42hE8QApAxA+UojU1uYI0MVRjKqmfe8CkbaQRjpJIomiEFVNQVwchyQkxJFC4Euu3mkxdXyYh899lH7fIFex8FxBGLi4gw7VcpbQvYkUGfKFBj1vh8z2GYTUEb/6GpHvYekGt29eZ3NtmWKxTKZcQ2gKitcl8Tz29/ZwCmV020G8h97OBwUo3ylgfOf9gza2D2Kh8ncJXOkKZDVBTr4z0++HiXfqD/1h9nk/wPWdItWuUd7nOTzodf3OhZbye6um79jD/D7O5Z33+/u1yPkxcP2PNL6bIvx+G7p/2LG/+/13R5Ik30NJfr/jvdOP2VRVLr/xJgtvPIMjDihOTKBbOnYhTyBV1ESg/enThI+eRRTTKiZCI/RcoihhfWOHfL6AZVokis7G2hqTY6NkbYesY9M98ntTRYxl6fRcl3y+SBAmuAMf13U5OGzz8ssvEAQ9KqUcnudh2zaKIigUszz7zDNMjE8TRi4kIYauMzE2jW6pHB50MQ0bIRI2NraOKGECXTWJgoQoSXAyRXTDRAKqkGSrdXr9HopqoOoacRQzNT2FoktUVWKYBpHr0mv7fOELX+Wxxx9Fy6T+jS9+41VeffkSjz3xMbbWVllcusfo+BS7u/v01BvkKiH7932q1QqGrpL4LlLvky8XOHnyESxTwdAMAq+HN+gTo/P6paucnJuj0azgBgOkYtJz+6iKRb/rc29pgUIxgxSpsI6mKlSrVXKlIgftfWwry87WIUrikwiVJBIQJ8RRQOAPUFSJgoEiVPqDPkkQUm8OMT45Sj5XYHlxjfZgD11zqNeHGPgelUoDPwzY2LjPxOoBwcN9YikJ7THa+3uEXsibl65y8uxJMrkM+4f75AoZWnu7jI820VXJpUuXyGYLDPo+IFhcusvIyAimLdFVjUGvjWNZREHC5s4Ol958E8eyefIjH8Eu5tEUDaQERaHSqKNaBoVskf3DXeJowOyJY2ztHlKqVIijmHKpzGHrkHKpiu+2WLh9hb3tLTTF4e7iPQYDn4mJKcIopnPYwjJNlhbusLOzh2Fl2NnYZHp6miDw6bbbVCtVdrY2+dIXvgAk5AtFxppNDjpdvCjBclKVz9X1DTTNJAojpAqB6xJEkM0VUyNVCfcW76JJFctKKyq3btxk9uQMw2M1BgOfb3/tZTRTpVQu0u4cMj4+ThjGlHI1lCPfUuIIKcosLCzzMz/3UTy/z50bWxwebnDq1BkGrkshq5PPasyemsM28wzVm1gLqRK69kidXC5Pt98jEQla6KHoObbENEHU4pO/+UtMTR0DVDQzIleoE8sIt99HS2IUKRCJIIxcBoFPP3BJNAVbKyOlQSaTJQoi3F6Ak9EQG4vInbsE819HW3qe8I2/Qd2/h7z/Ku31e2x5BfJFm4POFmPTsyhGjVZ7i3gUtqezSEMnf3UHsbJPqIJSLCNkBil0UAykcbSqrygEQXAkTkKq/vugUpHEJMDwyCiTE02Oz0xx/qGzaJoGQhKFoIiEJBpwfHIYx86jG5KRkQq9fhtF0wg8F4nENjNopolQNALfRyiSyclJSsUiEOO7IYZusbO1zaOPPoyqmyQiIklCNFUhSQL6vS6GoR89xwVx6BETYVo6QtWIEogCga7reJ6LqqbJUxgFR89tFSmNdGFOqmm1VChITUdVM0SB4KvPPcfsqUd49tsvUKuP4TjFoz7xOuValXyugB8mhKhYzjBLi+sUMjV8P2RouISqhaiqwqDfJwpiDN3EdwdHKskSz4tJZIKt2HQP1hgMNnGcBs3jMwglFRqJ2SBJQJNNkjg8+hlLvP4gtZ/Z3IIkZnpqHCdn4zg2e3ttao0JXn/lBYaGapSqJXK5PEuLyzSbQxSLVUZHh7EsBUPVsGwb14+wNvcRns/qEw9x8Y2b/P7/9Qf87tg0uYyN+9MPYZgS0zCJQoGmWqiaQNMKxCisrC4yMTZBaChEiUKn1aM4nEe+B1X4B863pH3KTr7E9VsXmH/1LicmmgwdTGOqCteUeb7+4td47rnr/MYnzxEGGn40wLRsIk9DSVwG0Q6qtIGYIPTQxDBu5FOogKaZZLMFhOYTRpKMVcT3BvihZHxoHCF9ChWHyDMwAoXzH3qS/+3//n/4nU/+QxqjU8wdq/Av/sUf8NgjH2HQ3adWFvi+S2N8mrv3PLJmghS7RFGPXK5Ot6UixSG6WsQuOCimCdjEocfLl9f46FOf4I2L1zl+fIJWa40vfuFL/PZv/Tdsbu0xfq6BvJjHDT2coRxSMblx6zrtg0OuXL1MY6TG3aVFZo+PYGd8VCkIfQMhYlQZE0V9NMUkDmMQIYrQCRKFMApRCYnilJWg6/p3gYQYKeO0lQCVJDaICFhc6iJMyfPPb5MYFn6QzqODQZuMlSdbyOELH9vIovn3EKpBsTpMpOiogyHU+6NE//grHER7BKJMrjzJ7uEuw0NDdPZ2qVYm8VWwVJ+//os/o1Cu0JyYBiG/o60k0lYGRci3LHpIEpI4Rgj1bUJM4vvkfr4bBD34txTfyekeFFESkTo/PHiJdxjr7bngO9/L3/96r3iQj6rToEy9c276nsd7W676vX6m38s4fLf4USjFbz8efC/V9zvnlopfPajoQ/zg0r71evt5vnPFNh0nPcSDb/jtFXTlreN853h/v/Fj4PofafyoljXvFe+1uvN2oPpBgfKDMfdX2rz44ktkRZfDvRVmH/sIil5EajaqZuO3e5h/8UXcJx/i0uU3qdfr3Jlf4M7NW+Qyee6v3MfQVHzPJY4iZk8cw7YsOn0XFA3H0IjjBCeXIV8sYhjGkZl8iJAxtq0jYnjssUcYGqpj2k4KAI4eINlMlhMnTtBu71CrlVL1UBJ0U+Ngv4PnBqxvbFIul7hz526qdprLIBXB155/nq2NLcbGRnHdPlEcYDkOMSClghAKSaIQRz5+4GNaqQVFq3XIt7/xInfuLHJi7ji5vHNEW1apVso89PA5FC2hXk/9QRNC8jmL0liEoguWrh5QrVbZP9jDNB26/R7ZbBGRSJYW76LoJv1+H0GCSGLOnjrJYWcPx7FT4Q3dYm1th7/4889SHxqmVq3iOBkM0yEMoyPlSfjUpz7N+YfOoSo6mmYRxQGmbWEaVmqzYZmpWFQi6XR3sGyNfK5KxrFQVAkCOu0uGTvD5PEmxJJWa5/hkTGE0FFFxPHqEOL2PaKPxCAF1uhDZAoFXr1wgSc++lFu37jNnfklRkfH0DSTcrXMjRs3GPgeJ2ZnSQTcW15Gqgpzp06BFAw3RzCN1Mf12rWb6LpFpVphenIKVVXJ5LK0ux06+4d0O11UqaBKhZs3b3L71i3m5k7gHNkslcpVOp02dxYWODE7i2HqBFEqhNPqtDl55hylUh5VVRgZafLKK69x6uRpVF1ne2eLU6fmiKPU/OKw1eLY8Wk2N7eYm5tjefkezWaT+Tt3yGRzNEebHByktg+lUokwCOl3e8R9DxknOLrO7es3OOi2qdWHUDWN5599jrNzp3DDgIWFO5w8fYqVtfsUs0UKxTx7ezs0x0ZojDRwnCyOk+PChQvU6w0KhQJ/+fnPMDo2guPorCzd5rXXr3Nn4QbTxycRCL761b/lpz72JHbGwrRMDMtkeKSJVHSCxCUWIfYdDylUvnVwk0ajgRAC2zaRwTYR8Mu//b/wyd/4x8ydGkOVOvt7u3hem3y2zMbmOlknw9bGFuVqDc+PYPVVMlEPu3wCBRvbEaiqIGndJ156AWvlBcTN5xAHq+C10UyLgZ7HmvoQSnkUtTSK2F0k3l3gzc2Q0fEJ5hcWGGrUaR/uYhkxlpVlJytYP2mg51QyV3YJ9rYJ8z6GKUkSSRJrRxWYHppuo6pKahUjBIhU6V0KQRwn2LZDPpthMHARAnRNo9fvYdsOEBOFIaqqsrt7gO+7JEmEk8ngewEROi+//BpCVanUqqiGhioVQDIYDI6eIwl/+Ed/zImZE9SGakhF4gUeuqYTxaBIE5JURC6O47cEZoTQEKTJiB+kwkeEMWur9zE0DU1ViPwARahpG4OmkABSSFSpYxoWcRSTJALDNBBS8Mjjj6MaBoYiyWSy5AtFYgGGY+H1fW7P32FkZJQ4BqFIioU8165exvP6TB2fxLZySJkyRUzLIgiDtC3myD/z8LCNeeS3iwDLLqIbpZTGfTS3CDQUWSTw1dSjO45xPQ/LNDFNk2wuS7FUpFgqpfNFp83M8WNYjs7MzAS9vkfGqRGFEZ32BtX6MJ2Wi+e59PoDNjcOyGQs5m/eRlvfJaNoiF9+nCvXrrG5ucmv/+TPEDYqJHPn2FhPxdOEDAlDn4sXrvDP//nvc295mcefeByiAKFLtDBic22Nkampv5O5PYoiOpuLHG6sU6xWiR4NeaP/LErrMj/7VJVPfPwUhlym7Axj5Ax6gwESnX7vgGyuQuDpRIGCSGwuvrbEn/y7y5w5/TAyTLCtiEHfR5Ea7VafnZ1d9vdamOYhppGn1+vhBftkcgF/8G9fZfxknWoeitkh/urpp/kvf++fsri8xrmHH6bV6dA73CNTyoJic9jp0pyeI+i2SZIeBSeLP4gwdQjcHu6ggyYV9re2mJkb5uvPf55iMUcUB2xtaQyPjGKYIb7bob3XIzY8smvD7CvrDNwezbE65aLFiROTxIlPrVqhfQBr6ytUK3l0PSJOOqiqBBEghII8agsKhc2166uEsUY2n0cSHnkpp9ZpQshUoE1Lfy9xAgF9QuFxe9Hj9tIANafzk0/9DPl8nmKxhBCCTDaD4eSQ3V3UaJkwisgXG/QHAlXJo12ZYvAPbhCMxDSnjlMdmkPLDJGtDrM5/21kskapkKHT6fLM01/iyY9+jKmZORIlFY98O+KLjzy4B4MBmqYdCWe+Q572/Ynb92+UxN/fCibe/vbvBuj9oHg/efEPAzrfC+B+kPF/mON9N3j+wRXWD9oj+94U43ff5u83fgxcfxzAe/fQPFi5ieMYVVVZWVnhU5/6FLdv3+b8+fMf+DhJkmBh4fZ7zF99GV2NuHxvndm5x8mX68SJwt7aOsWnn0M8fIp8PoeiKBQLRe4uLHFi5gSjzVEOD/fJZpxUMbffw/c9avVhXNdHhD5e4GE6GQw7QxIF7O3vUy6VGQz6uK5LPpc7osZp9D0PQ1PY3txKqbZSIBG4PfdIkCYiTiRBmJDNZfn8559mc2OTkydP0un02NvboVors7W5hZNxaNSHyRVyR/1uYJo2YeDTbndYXd0knysRxgGGYRCFIZ7r0Wm3GGtOIqVk5sQxVE0ihEqSwNb2JgO3j+f2Me0Mhq4TBi5JEiKcNoqqklcnODw8pFarIBQtrQgjWF9b51vffJHq0BDDIw0C30WKBM91KVaK9Hp9TNMiilN7D9s2OHt2DsNUkDJmcWElFYpJEkgEo6PjlEpFPN/FtjLYmRSoDlwXXTfodjoIma7QI33a7UMcu8jli28gFMmFixewLRtBQnmohKnZrKwsUx2qc+HCJUxdwb67hv7IabqF2yhCcBCUkIng3tJd3H6fqaljzM7OcvPmLYaHh/nKV7/Kx556isZwA9cbkBAzOTFFqVhk4Lmsb2wAsLF2n37fRVVT6ncCaJpKt9NhYXGBfKlI+2CfQj6P73nYloXvewxVqxRLJRYWF3nj4htECcycmOHWzZtMTI6TJAmmZeHYNkEYYWeyKbU9SZifX2Bne5eDgwMECQeH+/jeACkk7U6b02fOsL+/z+bmJgsLi9i2TaFQ4NSp04xPjNPv9/na819HSoE7cNMxDg4YHR8nEQmD0Gdq5jgTE5Pki8W0FzyMkAlUGkOpcFM+SxRFjDbHQICuqwShT76Q49qV2xweHDIxMYnve1QqZRrDE2xv7XLh9YucPXmSialTHJsZo5DPYds5pqaHSaKQnd093MAnm88dLcErxAQIKbDnfQ72D+lNmZRKJRRFEschUXcP3crjl07y4Y+eZmPrPrXKMF94+gv8xE88ge/FWHaWwHep16r0XY9ECHov/T5qZwl16iMMBj1YeoH49c8QL19EiXykUyAojpPkR7GqY3ho6LZDFIbEUYxQNCK7TC7Yo7NyjaGHfoFCsZD6Xzs2iwvXiEMoVaq0B236lSxrYzD+Rpd21GMgfXTNQFUtotBH1wRBlD7T+v1e+r0feZ16nouiarz+2gU6rUOazebR508pxAL48pe+zPK9e8ycmKFUqhDHIdlsJm0vFZIvfPFZNjY2SYiZmZshjENEIllcXOKZrz7H+NgEiqZx7PgxBt6AXD6HoqqoRzSzJIEv/M2XqFQqmEa6aBSGAYPBAN2wURQ19WVVBIoQrNxbodftMDQ0RJykStD3769SLhcJwgBFkYBEIHnphZcYGUnV3oUm6Q/6xHFMBNRrNS5efAPTsrEzNnGSIBOFVqdLoVDCtGykTH1qBTFj46PESUwca6ltjGm+VQSQikJ/0COKE5xMFiE0kiRkbXWdUnEYVTeJkhABBGGIoRchsVIhqTitequKgqIqLK8sp/ehqrC5uUmn1UbXFKSIcXIOh60DLDvPX/31l7Ftg5MnxwgilUE/xHEspFT5yt8+z4kTU7gDl7ofo0UxK+ebjE9O8V/81m8xmJnkYHiIT/7nv82v/dovU64UCIIBlmWwvb3HzInjnHvoLGfOnkYRMQEBjiIQUUKuMYQUP9rCdJIk+L7PnTcvcOWNb/Pxn/slPvM33+aTv/EbBP1DFlaX+Ma3rvDkU09w5XKHaj2h1x9gGVkG/QOcrIFtOSA8VC0mly0xNFqmWErIO1lkohFGLo7jMBh4ZLNZSAS6GrK7GXN/ZY9c3iSbs9FzWZ579i4bixs8/tEmZ889Rala54/+9M/48Ec/gq5pPHzuJNt7Wywu3me4eZz1vS7DFdjfn6d7uItpGbjdDq3DA5IwwtQ1NDXG7XVpNmpITGq1CWqNk+ztbZDLQq/TpdcNGeR3GFt7mIiYbMMkCF1UDDzPZ211gzvzd8kVszQaZXQtIQoH6KoDQkVKlX4vptfxURQDRfSplSvkHA1F9FOrpSgmiVOLEE1VUfVUETq99wRex8C2bLK5AmurIcPDE1iWxdjYOIPBgG6/S6FYYDDoIbrr9Lt3kWYFO9vAsPIo14dJKgOK/0hDt/Jcv36FXLYGeh5haqzeeBHYYWtjF99LaEycZGzyGImiEyapFsj3AZskvUf+8i//klOnTqUA6KiS9p654DvkcWkv79t0UN6e970P4PpezLx3O6ckSd4RssXbgqQHwnnXw75n/KCq7PvZ/weN/YM+73vFA7z6ne0f/P/39rH+oM/wznWnd+eVv1MV+O8jfgxcfxzvKx4AzSiKyOfzPPnkk5w7d+5HunGllHT39vhX/+pfkrj7aKrKpaV9fu1X/zMMJ0eUCHRizD/9AnEpj14tHYmhqDRHm28peL524VVGRpvopkUYBkRHr431NSzLIJfPoukW167eIpPRGBqqs7fbwjAyWIZDEEn00hsAACAASURBVIW0Ox1sy0qBy/w8o80mpmHgDgaYlglJRKFQYWV1A6GolMpl4shndnaW2dkTxHHA+HiT4eE6pmnyta99kzhSKJSL5AoZXHfA8sI9ttd3Wb6/SjabYXd3l3K5wqc//cfUanXmb89TLpWoVWrEcYhmqOzv71MpV/nac18nk81RrlYhERQyOYSpIgXIGJYWlmgcT5/Sty5uMX/nNuVyCT8Jccwc3qDD4eEO+/sDshkTyzIoFvMIRcGwbCzTIY4E3/72C1iWTrFYYnikTpKE7O/tYDsOt24uoGkKQ0OVFNiUq4TRANPW0E2TgddDJGCaFr4fYDsWiiIJgghNtZDCQNNU9nf2EIrkkUceY3i4QRC4ICVeP6Lf75Av5jFMk5HmMOrXX2X3d36d+DAFbH21ycryKk8+8QT3V+5xe36earXK5OQEQghURWXt/hpra/eZnpqk22nz6kuvEEcx3W43va6mycXXLlKu1IiikInpJr1eWo15/bXXOXv+PNWhIdZX71MfroMUSFXh4OCA1sEBumFQKlc4f/5hakN12p02586dpd1uUSoXae0dsL66wcF+C6TK/fur1IbqeK6b9vBmLEKvh2XptLpdipUa9eFxfLdHr9fj+PEZer0B5XKB7e0dNF3HMEyWFpd46uMfR1M1hmo12q0WlmESJRGlSgnLMlE1HbfbhyRhfz9VzfY8jzAIqJSKfOsb36BQKFBpNjg4PKC112Lj/jqRHzI+OUWtViWTtclmbaI4oN/p8uW/fZaUIirY23e5cvUCUQgSm1wxoVCsYjoO5XIJhYQXvvkNhoYaqMJge2uP0v0YyzbRPlTFdQdomoqu62zcW8SRfSqP/ybDoyM06wWiIOHUyVNomuBwr0uUSHTNQBKzdO8etaEG3vwzadX21C8SBX2Sl/6YuHYCa+wssVVMgaqmYthZEgS6JtnZXMf3fXTdQJE6cRIjMnWq3jKvLfs8862XefIjj6GpNoW8Tr8z4N7KMnbGQNccYhVCXVJZDeg7GrquEJOKtAVejKqbAGhaShlU1NQzMYxSCytV1ahVKqn4Ty4LAj73uc/iDTweeeRDlCsVDNMmCHyKxQKDQR8pVcIwYebEDGdOn2JqahJVV9NqrpDk80U6nR6K1Hjz8iVOnz5NPu8QxamSqRSSgdtHVSUnTsxgmAbPPPsMzZFRojBVJTdsE4iJIh9JRBQGZPNFavUaqqYQxiExgnyhgKIo7GxukLUsEikggeHh4SOPyrTCvLW+TrFUTEG812f6+HEcJwcx+K5HksRHgk0GruumQlECNEUSJyAVnTDyMQw97Qk8shQSUqLrGoqqoKg6ChqBd0gcxjiZIlILIU7PaTDoI4U4oj8KpEjT5gfnWCgUOJo6sB2bS29exjQM8rk8nW6PbHaIVrvL9LFxBD7BwEVqeTY2Nlhbu8vUsQkEqaJ8c2wEq9ND9F3WPnyKncMDFEPln/zmb1F0svyP//N/S7mSY/9gm0wmg6qqzM4dp1Yvce7hUyQiRJca7c4uSr9Lq90lM1R/a9HhR5lbB4MBCjYD9x6vvnGVX/zEP+HP//BfE+kKC4sdblzpcXIuz4WLVzl1skQmm0MkGqYBvS74ngQRIqSHqqo0qiFJsk8Y6djZKkGwSxh5IOKj+aSAEoWYZgbdDJEyoVIcZ7g8QNMKeAd7qLrBKy9cpVDM8ku/8gni0ENGgt/7r/8ZTzx5lmOTx/HckJm5OZbub5F4GpZaYPNgG93QsJxsOlcMuuiGIPJdDHq0dje5dfMmmgH3Fq6xvLLN+PQJGhMNXn35m+RqBYb2j6GPKLiey8XXLjNUK7O9vcHQUJndTofXX7vJ2TPjSJF+bzExURyQJJL524sMNSokQYiuRYCbLtaItF1AUbW0XeDoxgrCgCQBRdWJVZ9OxyDRQsanJnG9NkONSfb29sgX84w0R+h0O3jtJdzBCpl8g8QcwS40iJYdREtl9Zf/X3JOBd8bkFG67KyukskXkFqIH0oqpSaKrJEoKsKpYWVyJFI9Aq3w9iZXVVExDIPh4WFM0zzK4z5oLvf9Yp0fCLi+x9/eK94J7PmfNoivKx9YnOlHBWTvd/8kSX4g9fhdjvC24/xw/avvp+L69mO905g/Bq5/x/Fj4Pp3Gw+A6wNjYiFEKozxAanCD8aSvsvq2jKzEw3OnTrJU7/yj3CsDIpuEwuBEvrof/hXJAOXaLrJ2toa2WwedzCg1eoQxwmzcydSm5JOj0Iuw8H+HiQRk5MT7B3sUa6U2dzcZeHOXYolh0HfwzAc1te2uHNniWKliOd5ZGwLTZGYloHne7TbrVTZVQqk8Nnf30coEidjoehAHGEaFrZjp0BTV1A1lSgMqdWGmZs9Tc/vY1ga/U6H57/yHAqSO0uL5PM5Zk7MIKVCFEsmJibptFPbGs/zefPSBfb39piZPYGhW0xPTRMlEdlcnmefeZbF24s0JkaI/YCck+HO/AKjs1n8wCevTjAxOYFp6khdTVfH/R7FUpYzZx6jmLNRVEHfG7C9u4eTydLvehwctFBVhXqjhmXkicKYtbU1GvUmUQjN0TGkTHAcG6kIbt26Q3OsThB5aLqBH/roikYQhBi6QUKC73uoisrKvU2KhTJe0Gd3c4dsPvX1W1pcIJdxSITCSy+8ysREE0VXyGZzxOsbhHsHLPz84wx1X0JIwX0vy36rzcj4KCNjTUZHmqwsLzPSHCEIfDJ2hlKxSKVcZGNjnUq5RKVcxXVdxsbGWL63zL1793jk4UfZ2trm+MwxNnZWcewCd27P02w2WV1fQ6oqq/eXmT5+7C1rE9MyiYKQOEm4cOEihm5g2Rarq6sM+n0aw8MAZJ0M5WKZg4MW4kjkplKuokhBpVrENFVUEgqFPGMTkwz8CNPJEfl9lpbu0u+7LC3dRVEkjUaDUqnEpcuXWF1dTe0+kgRd19jcWKdWraElgvbBAbs729y6cZt8JgdCsLe/x8nTp2g0GgSey1C1yvjoKAN3gJHPkMvmqJVqvPzCS4wMj2BlM7z++qtMTo2jqIJO5xBFRAw1GmxtbTIxOUKnnVCtZel1XW7dvMvxE0NoRmpX4nkehiqpVko4dpYkVnnuua9zXh0mCkP8OSf1clQ1oihBGCrq9iV+5/98lbt39/jpnzpN+9DFtrNsba/xuc/+DaXKEK++8iKFXAY/CqnWagQL30IqGvqJX4edBdhZIipOoKkarVYby7YZ9DsomkEcCwQRjp2qru/tHeI4GaIj5VrV71A/fp7Jc08ShAOSROC7eyhCoVopESQBinAxDOjkFapvpEJjHeERCQ/DsJGYKHpawZHyyLNaqm8p90ohMQyLXMbh4OCQvf09LMuiXq9TLpZT1WTLwvd9Dg/208W3KKTb7aNIhYSEa1cukyQxlWqFgeuiCsnCwiKXL13DcTLUhxsUCll83wUhiCMI/ADL0hEixnUH6JpOY7hBv+8ShTGvX3iD8clRBAmKAu1WSn9FMVNaLglxEoE8sl4jhjBEEQLUtK/XNCxUVUl9Lf2AQj6LoihpxdfUQSiEQYymKnzqX/8bBv6A6elpkqO+QCEUwiDA1DWkoiKkhqKkzw1FUVCU1L7nwW9QURRIBDJW6HZ3yNgOUSTQrQTi9DxvXL9OraHiugeoSpb4aL4KwzAVpFKPQKEAqUjGRsZJ4ghFkbh+gG0VMU2DBI98NkO/3ePzf/NVNjc3mZgawTINivkK1aEaYejjKhHmYR/1P/0FssU8pmlwXLH48OxJ9OEcqqbQ6bbZ3z+k0WjQ7uxRLGVRNJFe53aPKPHZXblHFEvq08e+X0znA8zXiqKQdco88fgEL734Bj/R/YfMqWfYtF/kz/7ws/zMhz/BzPQ+P/WRs3QHe2kFHJ3A73D10jZXLy8yOtokTnxMo4CZGPi+j2IU8MIIkbQQElRVQdc1ev0ugbePYUk2dm5TqZYJfYOiaVAaU9FVl8sXJbdvX+PWwm2yWQdVKvz5n/w7fvf3/jt2tu/imBZ37swz2qzy5b99lZMTZxguj7C9v4FCnyBKiIIIXRf4/gAnIyHuoRkCwzYZGhnH9wMeefznGJ2c5plvfIUnHjnP0Okq4sUqB4MD2mGLOPTJ5U2EDOj1D7h9Z5fpiSbVso6u9UiiEBQIwn6qaNyoEicut+d30U0VzTBBZlCVtOL3wOGBJEEq6oOrQBzBRvuAb39jj+b444w0ZwlFTMbJ4zgOrXYr/U5VSWf7Nk4eDGsU3RlC4sAbFt3/5BkSa4vOvovreST+NiqC+bv3qTdr5ArDlPPD3F85oFDL05w6idTSavFb+dnbbqgkTgiCAMuyvqtK+h8pcP0unZcH8aOqCv/7BK7fnTN/t7Dq2//23ufwY+D6Q23/Y+D6H1a8H1rBjzr226kc79ZH8MOcy4OeiG7bY+neCo3ROTytzMj4BEYuy+b2BtmMTex66H/8NEnOQUxPYFsON6/folyrUCyUuX3zFuOT45i2RdZJbSU63R5RDJpugtARUsFxbKanp3G7bfKFMi++/AojzRqjoxXCIOIrX3yG6alRdEvDMDLcuLHE0t17TEyNYRgOkRDoRpYvf/FZdrb2qRTrbK6vs7m5g2lavPb664w1xzk4PMS2HTRdRdUSCDx0RUHVNE6fe5jR6WPMzp1gfGIMRfFot1o0Rxv0+23y+TzLy/e5efM2H3vqp5iankIqqWqpoqmoimDQb9GoN4gSjWo5RybjEAFDzWGk0yJJYrLqGFJRUCQgBH7ggVAgTuh0Nlnf3MZx8nRafZI4wjFNhCqwDIVGrYYUKkKVkIQQB2RyWbb3dikU86k4VqJw+/ZdvGhApTJCHCX4gzaWahCECX7gERODVPD9lDJp2wqKDNEUBTubBWBleYWR4Tqu10PXDDQ1ojFUod/v02m3qK3uozz1JOLjp9Dufpl+r8fYqZ9m0HcxDR3LMvF9n3w+w87OBocH+7R6PfKlApCkixyZLFGiMDLaJI4T+u6ARmOY7qCHpqe05qydJ4lj9nZ3qTcaLNxZpFaucebUaV58+RWazSZREHDpwkVOnDpDu91lbW2Dc2fPsb+/gyJVDMPi8HAfRUoMxyESCcVSkXK5iG2bHB4epLYGisG163cQUqE2VGN+/ia6FGyvr1DIlcnmMtSGanhexOzsCQI/4M7CArVqldMnT7K/v0tzZIRWq0Wr1SZXKCJVjVdffRHHsZg6Nk2SSGzHoVwuoqoSKQXdvUOiyMX1ehzsHaIqEpEIrl+/xYc/9hGcvEG302J65jgxKdgyDR0nX6RcqVMfLlMtN6g18lSrVSYmxxmfaNBueSShjyZSkSFILZgioaEZMDc3TWdCJzjhoGupf+nBQRtdN1m+c4ei3GfkJ/8ZuZLN5ImH0O0sQlNYnF/hxpV5SpUK/V7E9MxppFT/P/bePEjSu7zz/Pze+8qzMuuurq7qq7rVhyRaVwtJrQOMDV4MQoyNWYPxwfoIeycm7HXExu54Z+yImR2fOMZjjw9AgAfbgEASSEhCEuhuIalPtfqu6rqPzMr7vd93/3irGyEkEAS21zE8EW9UVmblm+/71i/f3/P8nu+BpkI88w08r4e19W0kMy+Qeg1CLYeiyFi2iRApslBQZQmv1yGKE1TNwnVdXvjmYY4eO8a+vXs3CjEPISUYg5Ok3TaFwRJRt4fk1ek25uk1VkmCLkZhGDM3gSR6mOfXkUbLSKi43Q7gkkQump1DklWkNNmAvCYkSbzhvd0l8iMK5T4KpTKqKuPkbNotj06viWFqGEZmr6JpOpKsceHCDM8dep5Oq0Pge2zdtgVNNzFMCyEUiqUyk1u3MLllkmp/Ac9zsUwbRVFYr9f40he+RHWgH1XXsc0csshEyTzXxTQ1tm4Z34DpZr7GTi5HsuH7miIglSBOUDQZohiBQNE1JF2HOGV1ZQlFIfOrTRPiJCBOAhbmm6iGgSorqLLA7bVRVIXhTePsvWL3hrcsxGHM0sIKAtB0lTRNSJMEvxeiaHrmVZtkXqlCknC7XZLQJ43bBK1FPM/DcBxMMweRiZACYiHTPzJCmBwlSdfxah6aSJHNAknko8qZ/7BpmBv3xpAgDFFkg7/9+CeZmprC811yeZM0jnDdkFrdY3npIu965zuRJY3Pf+6LjG0aQjdUgqCHpahoy038n7gRkSicOnme/fc/i3bkJMa7387Zc6cwTYPxTRO4vRA/iQmjlHarh6roWI6DlAKayfDEJKqskUriW9xE8Qbp5ffo1kiShGrpyHo/R54/QvXCBKtzDa74wD5ePD7Llx78JB98/3XAND/zgXvZsW0rpYEmqprnY5/9Op1myr6dkwhRR9YtvKhBKskUi3m8botS3whJJBF4Ib7nYhgaqgSe61LMVVBQUWUfP2qQShLCNzk5P8fA+FW8/NLTTE308/XHHuHdP/0LIDX56n0PsbQ8x9Seq7gw1+WW6/fS8qARyOSru9HMKk89+RLVUgldk4higaFahL4gCVNsXWd1dZZOq84LL54iSQWj/X1U+zbzqU9/kr7cIIbvsOyusXvPbg499TjlfB8zc/PcdmAry0vzLC+tozsS9bWUvpxKkMIrrzSpVvN0mxHlioVt6RtA+ZAUCdcLCIIYRZNJiEhSGZEKkFKCSOPcnIJQTMYnJllYmaZaHcX1msSJjCp7GMky7tJJkMEpbaHrQZpKJEc0UselPvUIketRcBRU0SPQDPpGryD1epw/8nUUu8zK0kXaS0exqyXsXD8iTTc6whuDSLzGGiX7hRQ2tm89ypqvl0SV3gRkXWRoCSHJlwestHGFMh/cN4Cr8ppxLb1a0OnSuP/efNXXW+N5M4Xrd4Pl/qA59ZvJgb+jyH8deO9rX/9OO8lX/a9exUm9hH559X3hux9T+h3bpfz+2/mzb7yJDfTKPycX9vstXP/l5aR+FP/k8U9ZDH/HZykyR48eZXBoCNXQkTUVTdPo6+vD9/3L2P0kSUjTzM5hZuYi33jyGSRZYv+1+3n0scfodHt0uy5hGCLLCoZhIEkSL73wTR564EEatTrddotiqYSh69x+2y2UigUazSa24zC+eTOyknHTZFlhz549NNabxHFCvd7klWPHifyQ22+/gwMH3oqi6qzVVjlx4ji+73PH226nUVtjdWmJdqeNYVukkoyVKxGloCpZkhMHLoWcQRy6rCzN4zgGiiIYGOinUi1xxe4dvP0dt2PZOooqI0TWXYujBN8PkGWVcrnM/muuIor8jZuLYGW5RrwhuBAEPt1uByHJhF6IbZgYmkJjfQ3fcxkfHyefz/Hyy8fpdruomo4iZx526+t1jh07Ss91afe6lCoDRGlKvlhkYWEh6wi6Xaanz+PYDp7rIyERJykJEqaew7byWQIty2i6ysy5aTrtLpKqIuk6lmVnCwztNo899hiHnnuBIE4ZGB5jZm4RSTGprbdgfhn5jgNUK8P0pD6W2xLdbpcLF85x7vw5ams1nnn6GXq9HtVKlcHBIfxejyMvvEin02FpZYVUEjzwwMOsrTaQZIWFhXmSNLMtWVhcRFVVWu02M9Mz9Ho9SqUSo2OjjI+Pc3HuIqNjIxsK2hL7r7mWMMy6auObxliYn6feaDC2aSw7V1nhxJGjkKYoQsLt9lhdWeXsqTN4XZcLF87T7nXYuWcnQ8OjLCyuYpoFcrkqhcIgdr7Eaq2JrGhcd8O1DAz0UywVaLUaLCzM0XO7LC0soqkapWKJ4ZFRvv71b+D12txy8BZ6fkipr5+V1ZVMkTVOSOOUbqdDsdpHKgmWlpaJoxDDMCEFw9CRJIGm6vRV+/C9HookIBV4Xozn9vDcHpEf8Nijj2cFv64iSSmylCARoEjQ7XVIkpT1VptcuQ9Ll1iv1wijmFRSaLdc5uZWWF1pcObMGZI04eTp8wjAd3v8+R/9MTfdcBtrK+soQsaydX7xox/iN37j1zlw4zW4bpuxsTGiUCJwsy5IvVYjXTtPapbQDZMwiojimChOQJYJohhZ0ZAUBT8MaTfXOXDgem659TY6ro9q2LT8FHnpOF/5yv2gwPLyMomkcur8HLLpYOXzuO46SdIhX8zRGq+g9mJ6bpduu4mmCmSR4HVrSLEgjSWQtctFRZZwpKQpfOKTn8oEXCSJMAxJ44jBoX4GBgeyolCBXq9HGMW0Wi327tvDwYM3c9XVe7nhwHXouo6mGcQxpGlMkkRYlkac+MRximlaSLJ8WXhl09gEpUIFw7BI0ogoiojjmP7+AXK5XCbsFkfEoYdEgu+5yKQQhZkaNSmyqpImMUIkpGmMppn4fszaao3BwSF03QQEUZQgqQZxqnLi1DFMS0dsJFC2nVEYHMdBKBJClrLOqmqwafMQds7MFhpVg7W1dU6dPoWuafS6XVRZIIiQUkEcNfHcVdaW5hGWxtD4VkyjSnO9xeEXn6KxtoSUBBD6CCQUVUVB0G23IU0wDJ0oDjB0nSSJMyujOBPB0k2d9911V8bzSzya9VWCIEA3DPqHBxjdNIhuSMgKbN++FVXR6HUDBApRGIOA1ZUlAt/nU5/8BL7n0e106LQ9pqZ2Uauv4PlNel6NQqGA4zgUCoXLarSaprGwsHB53vphhSzLuK7P7T/241QqFRzH5sL0EjMXZ7lu/zWkQYKjOvy3v/gIW7eWUWUJRU75w3//s/z6R29hdMTAcor4UYBtFZFllU6nRRj16HU9YgRhHCNkhTAMCVBIVQvNKaJYeQIUosQmZw2x+yqFomXxjYdf5CM/9yFGR3K028v80od+hdnTF7jjHTvRzD4effwEsu4SpjIzC2vY5VGKQ5Ms9wa58uafJ7SuYH5VINQiqSwjZDAtDd0EXWrQX4jYMmpw6uizBF2XRx99lG3bdjAzdIy+xjB7N1/JsaMvsHvPHnpuSK3WhKjNlk0l9uzaQt4uUu4bxE8hTm2Wlj3Wmy6qbmKZ2ZysqCBkmRRB4EeEQUSaSMiSgaopWS6BShhpdNY76JrE7OwFRkc3s95qUu4fwXF0aksn8TpzGEZErjKOYgzTP7qbXDiM7jvM3XYvo0OZF3HPDVmpuxn8OM5EElXdhsYckt+hVCoRhSlhr0O3WUeVUyI5JlajN5eL/YB536Vmxg/Ke/z2Iulfd7zZc7+EiHjtwtOleeNf8nr8S3/+P0X8qOP6ryhePfiSDb7PD3Jzej34wmthw9Jr4BqvRzp/9c3tUmiqTqVaZW52lqGRYdYadQqFQiYClCSkfoj+6Xsh51Ar5bBMm6mpKc6cPY1EgqbKTExuBgRJlFxedYqikDAMGBoYYnx8FEVR8F2fCzMXUGQJyzLpeV0q/f1IkoKqKDh5A1UzMthbGLPvyr2kaUQ+X2R5cZUwChnbVAW5gxssMzK4iR07dmx4eGYrzZvGx5EVBVnRcD2fbqeDZZkEvk+xWMwS1zTOID8iwXGKSJKK7wdEG8Inx48fo1Tqy4pPIRPHWZfqc5/7PPlcnmZzHcvWOX78BGtrNar9A5TKfSBF+N0ENbaRBCiaRhTENBt1CoUcluOQJALXDYiigGIpz8DAIH/7Nx9n9969eG4Pw9CQVZm8U+CLX7qXXbv3ZGIyUYRtOQxtiPzs3rMbGcHM9CyKqqIbGopq8bl/+HsmJsfRNAXX9ZCFRKvVYXR0hCCKkGSVZ55+ip1T2xkaGmBkZJiBgUGsXInjR4+xY/sOCsUyhVigX1yg8ZE7ee6F55m0mpw9f5FTFxa47rr9yIqMoZvsmNrJyvISaZowNzvP2Pg4hmFS7a8SxxH5XB6hJPRViiwszbB12wRLy3PYZp4tW7awXq9jGAZ9fX10Oh3K5TLHj52g3e6QLzpsnpxAUhQ8zycMInI5G0PT6XW6jI6M0Ol2SOKEXrfH7Mw0e/fuZm5unpMvv0ylXGZ5aYldu3bSbLWYnNyMJAlkWWJtpY5pWdTXazRbbc6ePUcQ9Ojrq5CQEoQe0+fP09/fz9TUFMMbMOTNm0Y5f/48uqkxODzI5snNSKQsra1SLJWzYtQ0MU2TTrvF8WPHcEwT4ZhYxSLFSpX+0RECNyBJsmT+xImjzM/NU6lWqa2uEYcBK8srVKuDJGnCF/7xHlqNGrccvJVC3iFNYlqtBoamYtsWrudRKBZRNRVJymCRsiR44MFHOH36HH3lCkODFXzPp9o/yNjoGLIiMVCtoHan2fne/4v3v/cuHvzqV/mFj/w8rtdhdHSMrz32GB/46Z9HVRUq/Q5B2CNNY6a/8Sk0zaSw+33w8pfw82MZx1QIJEmm0+0iS1kRqGqZqqyiZAgE3TDJ53IIJRPEyjsO1KfZ/c5fIlfoR9NNJMVm+/ZdrNfrFApFur0QJMHKYhO5YDDw9Dz+UBHVsoijmDiOSBOB2OBissH/vCTIlqYJuq6zZ8+eS/aPLM3PU8wXiEVC6CesrKziWDqaqgNgGjo9t0uSRBvPJaiqiqJuCBeZBmEYoqgykgTffP4oR48cZWpqCiFgbm6WfC5H/+AASIIkDpGQWFxcZHp6mnK5TBgFKIpy+d7dc3uEUYTvupiWnRXHkU+CTJpErK2uYFkOsqxi6GrGX4+C7P6OQFV1ZFlDU0McU0PImYd1pggso2kGSZLd45KNtmtKQM910TQThISTc8jnbGRVQ9c1ZGJ63XXcdpM49tENg2KpH9UsE8YyURwA6zhOQK44hNhQcw6TRYSQsJydmPkKobRBPUkD0o1uOAgMzSBOU2RZkM/nOHHiJN98/jmmpqbIF4rIioLve4yPjuG5vUy0qn+AvlKFz33+Xq6+ei/OkbPIPZ/Za7dimibXX3c91RdeQddUujdfS5JkitH5fAnHLrK4skwcxxiGcXnhLE0iLs7MMDG5hVRI3/IYuTR/vs68fAme+up5/dVoKCEEIolQFJ1CqcrFL61k0PWrff787r/h0MnT+JHF3/7Xr/JT792L7QTZ64kg7NYxrIBWt4eTGyKVPdIoREgyTi7Pv/m3X+Tf/ecHETW9FwAAIABJREFUEULiyp1VfN8jly+QpBGmZZIkKZ4f4Ho+S40Cn/q7R9izb4gv3HuMXVuG2DNlcf8X/pKP/NxP0+n6zJ4+zxe+eC+qXMFtdFicOcXOXbt56KuPopk5ZucWGRrbhZ4bZNPkXt750f+XP/jMMUo5leuvGsVzOwhZsNrQOPgrD/J3X3mBn3v3TzA2eRW9zirDQyNUR0Yo2RU6F12KIxqLS8s0Wy7NVoOZVYVQQLvVJQpaREGLmZk2plNgeaXJlq0WlimIUoswkFC0ECEUkjTBNE0kWUWIDF6fkoJQcH1YWQuI4hxDw/3s2LkNZ0PN/Q/u+U/c+Qfv4cjsce66+jbs4jiqM4xq9pHGKskzGuqv+hT3DjG7UkfYAyTWMKaZoaN02abZbGPaOvPTZ5H0AkI2iNQ89bUGQpXRLAtJkgEZiTdnAfMdUNAfsIv2XUGur/N5QnyrK/x6n/9qqtrlv2cjN32d8/p+ocKvLbq/X27t6+W2r903fLvdzet1Ul/v//Dax5e6qt+tU3zp56W8/7X7/m7bmylaLx37pePJPuNHHdcfxQ8hLk1skiRdTlCAjUn7hx8ZNO773LcsUalU2LFzilw+z8DwEM1mE0mSKJVKmEYmeiLJMvPzC6yurnHvvfdxy1tvZHiwysLsBU4eO0IS+dxzz5dIkpR8Pk8u53Du3DnCOLNoKZSK5EsFxic2UywV6XXbuG4vEzKRJTRDIwhDJEmm22siSQmSnOIHLnEcsfvK3Rx6/hCf/tRnSXyFPmcERZFRtYzTmqYJ5f4KjVaTz3zmM0R+wLNPPsPy/DyB79Jst/DCCD+OQVIxzBx2vowfSSiKhqKohEGm4HnFrt1IQqFQKKGqOn/z158gTVI+8pFfZPv2HWye2IyiCDTVpN3qMjc3Rxj5yN4gsjeIJAS9boduzyWXz5Er5Ol5Pg88+DVW1jrUanV6bpf+/iphEHDnnXdi6OblRGp4eBhL17jjtjuQhEx9tY6laZimSa+XQcKCwCefz2ObFr2ei2k5IBRuvuUGDF2iVlvBNDI+ppMvgJTx1dIkZefO7fTcFlHsouky1WoFTVbYNDLK7MxFHv7qQ8jT8yQ3vYUvP/QoN9xwA2EYYGg6Y6OjWRFuGPS6XY4cPkJfXwVZVhgbG6Pre1h5B9/3IU3xuj22bd+Bphts27YL2y5x+vQslUoFz/PoHxggTRLOnD5Df7Wfky+fpFgqMjIywvLqMlGSdVPm5xfQdIPa2hqPP/4YqyvLzM/NYqk6997zxey6jY1i5XI0G02u3LOP8+fOIZKUKE0plkvEScL582eRMiA1tmOzafMYk1vHuPGma1HkCMc2SKOIJAzZvHmcKAo5ceI4c3OzCAG+12VtdZFSOU/PayMpKYquEydQqVSYmz7P+nqDKIp46KGHGOzvR9d0inYROZLRNZskzmxKFhYXaTTX2bfvSoaGhlFkE1XRIEmoVsokxMiSxu0Hb+OG665FkmKIQ7xeD0M30HSLIBJYuQKSotJoNNAUQc4yUHSLt73tJ7j1ljsYORygP7ZMtb/ME098nSRJiaOYXN5AAN1eg0QSfPzj/43pC6cwNI0wSrn++ls5/NIpRoY30e02EXJAz1tncstWZmZmSdp1UklBNWySNEVWFBCZkFAaBzimjq5IeN02vU4LRdMJwgjf9yAKsGyD1WYTISl85i/+jCNHz7O4UCeJLWbmW5j2ALY9wOTUzSSJhmOqJLFLa9AhF6pIqkUiVDTDwXIG8P0WQnSRREy73QYyoSDfDzLBJg0UTSFNEtZWG6RJdrydjsdXH3iEi9MzNFst3F4P1+tlvqO+h+cHyJJCo1EHEaNqElGYkCaCIAiJwpjnnjvEtu07SJKEIAwYGxujf6CIkDK4oKZpaJrKwMAAIyOjCAFHjxwliGISISEUDcvJYdoOTiEbq2kc4nWbhEGKphnYjg3ERFFASrxxb/TRdYUkDYnDEFkIBvoLdJtrSEJkIkvpho+jyFRzVUkijXwUERFFMY6TR1HUjWI2QTf07LvresRxSK/TxOutkXf6ULU+IskgTUTmD63KWHaVQmErQjPxo5ggjL6V1EkaApkk9JHTkDD06XTaxFFMEscbPpwJYRwSJxGjY5t4yzUHsJwyS0trhEGIpkjcf99DNJsdnnnmGXRNY3Z2ligKmZubp76+jgBWlxcxVC37fscxnU6HU6dOYlk2llmg3UwQqYPjOOTzeRQlEymzbRvTNC93X7/fjuv3gjxGCaDoVCpVFEVmaKi0ISQEjz5xhN/4P3+LOAqQ5ZigF6PKOro5iKI7oOTwfBVNlYhil1Z7nSCIEBs+s0EYU6kOkCsUiaKIJHDptdapLS8Tul36Cg6bBkLe845dmF6P/+2Du3jXO8tsGQv41Y/cycrMYUTwMmNjAik06Su10TjKxcPP8qu/+Isc/ubzzJ6f5tr9+3n6iYdIYvivf/kpgnCjiyjrLCw1sMwccRhltJiNWF0/z8XFM+zZt42V1XlKBZsnxZfIr1RJWwqaYSDJCsVSkbhTY8tIH6Yik8sNodlDjG0aQtE8SmUVVVJx2zFPHXqF2YUOSSpI4xRFlUnJxOc0Q8sWrsi2IIyRFZ35pQauH6CoEp7rsTx/Ec+tZ8NTbNy/tQqKZOK7DdKjKcp1IdpucGwbVdUplapsn9qNVRwgimJajSau67OyVkOYJYRdQXMGGNtyBVNXXU2pMoyqWEiJihS9uYLi1fnbSy8d5r//97/mV37117j+hgMUimVMy2Fqatf3NTa/W6Rpysc//gluu+0OBodGKBWr7L7iSn77t36H5eXl7/n+IAj404/9GTfeeBMDA0NUKv3s338N//E//h5tr/09399ut/m93/t99u+/hmp1gMHBYW688Sb+5E/+lCAIfhin+EONSwXlDxOR8T9L/Kjj+q8wXruC8v1i8C+tJr2eOfJrV4NeD7v/XYnqSUy+lM9ECsIIWzNZb9YY3DRCL/AQrof8yXtIczan45hjx1/ix3/8XcSJR7PVYnB4jKHRTYRRzM4tW/B7PmEQ85UHH2TPvr1YmkwQBCiqRqPZhA2xEcsu0Gq00ISEUASR7+PYBSRJZebcLOcvTDO+eRLdMEnViCRMGB3fyt4r93P8xHEKeZt8sYLn+chK5oMYRgmqqrF1YhKv20WTBVt2bCWK4qwgbnfJ2Q4+CbIiowgZkcS4vS6aavD5z93D1I7tRJG/odLbI0li9l9zDW5nBVmV0JwcQpKJw4hS0WR4qEJ/tUwYeoShT7fTIyFG0w0cu8DFi+f5H5/5exy7wLatW+nvL1MumRhaVqj7QaYKaeUsZC3zvG3W1lGtrJh+5KGvYVs6sgpEKdPTM0xfnGV0bBQUnVypSKFUQFEMZFnC0DP4lG3l8L2Mi2rbFmnskUQBqSRjipA4kWi2fCzHQdME84tLnD97EVWVmdy2hfzpi7g/fiteX4FSv406+xB9BZ2LazEvnzzF1q0TlMo26/Umhm7jODkuzk6jaQJF3hAOI0U3TUw98wEtF/t44ZsvMrV9iubaOt1ej1zOQZNURifGqJTLtNYbnD93jrdccw2DgyM01pukSYpj29Tqa7SbPVw/YP8N19M3MEDg9di750ryToEL5y/g9VzSFDRFpa9aZWh0FD/yWFxcpNJXJo0jPM/FMGw0TcOwbFTdQNE1KpUKs+dmSOKE8sAwa6vL5ItlKgPDGFameF2ujFFbW6bZaDA4uIlvPHGIan8/QRhSqlTpGxpi4eI0y6ur7Nq9mwtnZ0iClJmZcwwP9NOu10m8Liuzs/R6XYZGh7kwfYG86WBZGqphYObz1BstQj/A79ap1dcYHZ9A1iSCJEYzbD559z8yMraJOHVxLIN7/vE+hgYGcQpFUtlGlSK6bpNCsQ/7RAct1Yh2FRkarBKlAYkqI/wUd/EI9b53oCopv/kb/wf33/8Vrr9+PwMDVXzPZ2l2hl/99V/hQx/5MI1anXIuz9lojM89t8YtW03k7iqhYSOJS2JxEqlQSOOIwHfpdts4js384gKKUJEliSSOMA2DXqtBr+NhyQk79+yhq+qcPH6O0c2jGDmN6mAZz3epr5zBtB3cXh38LhZ5tNkufn+ZNHFRE43Aa5NKbWTFQZZLWLpOHIdIMqiaCiJT+Y2jCFlA/0Blo6jMaA0TkxPki3mSOMbJ2YShT22tyVNPPc/FuUUmJjaha4IgjNB1E6/rcfbMGVRVJl/IsXNqG4ODfQSBiyorGIYFsgBS0iQr5qQ04uzpMzSbXUrlKsOjY2Q6MhJxDJLQEKiINEWkKUgShu1k1yyVSBKZhYUFbMtAM01URSEKA4h9DE0QJxKSqqKqOiQBqiSIkhRZt0AkBN0GSJlgkyAh9jsIkVEUwjBCEgLCkMhrQuQReS0iz0VCoOaKaFYRoegb4jdJ5pEbp3Q6PopmISsaIkkIfA+h1jILnGSAKIx58vFHGahW0S0TRc0KDE3XM+VdVUEkKXICiiqRz1X4x3/4LL7rc+7UeRxbZu+Vu9B0lSuuuALLybHeanDDgWsxLZVqJ0L4IfrP3s76ep1ioUjywBPouoL9npup1xYwdZWbDtzKVXv2M/WWPQgZZi6cpVLOs7C4gkgEtpOn2FchlkVG94MNRWSB2BDLkmSJS/ZA4nXm1lfPuVnHFWJJJxEy3cfbEIewV+XBR7/M0vIqffkKD37lCT5816347jyWplJvNNAdBb+3Tr1V5WN/cYih0gADJZ1ivoKsmjzx4ixRmHDD3k1ctWcAxXCJExU9SckVbQy7ipkrEiR1lNRnYMDEjyOKZYXhvgLzc7NEcYxhpNx+cDuDfT5TEwnbx8t84tNfZPvefZw+eZEPfuAu+gc1bKvIhTMvc/U12xjZvIm///x9dHs97rh5D7u22EiihyZprPQE/+PBaQB+59d+ikROWW8o7Ngygd9r0HKbVEaH0C5WMEcULl54hRuv20Ou2Mf0Qo3TM4vEQqXb7VLNRzi2TrVfQ6YPw4l5/Okag6MVypaCotkkpEiKihCCIAoRsszKukISxmiKTZTq3PL2O7ALRVZrNXTZx28vcXbuJWYby0yNbuPOgx9BdUbxQ5f0bIzUtJF+RUaxIuJOkwuHn6WYdzD6hsjZY0hKzOryObTEpKht4orbDlKojJOvDGMoMY1QwdR1SDLrPiEbQPhd873X5m8Hb7mdv//sP3D48OGMXhJnnctCocCv//qvvX4u9+o889K4vESAvDSgBaQkeL7He97zPj72sT/bWASK0DSNpaUlnnvuEJ+6+9PceutBBocGNjrYlxAa6YYNXJ3b73g7n/70Z1jcsLgTQrCwsMATTzzJ5w5/lnft/in6bnFe91hnZi5y880Hue+++1ldXUVVM1Xoubk5vva1r/HAAw9w5513YprmG163N7qOr358CZH4bR3ijbiUT38vQaZLXdBvf03iWyzhbMtu2fKrnvtB1IrfXLzeuQrxz1dQ/6jj+j9B/HNyVr/fkDdk/wcGB/E8D0mS2LVjitAPOPXKKxsr4tDtdimXy5imhaLIPPzQ1xjoHyJJIAxi0kTQ7rUo9RWJYp/du3bgWCZdt0fPdQmCgIHBfgxV0Os06bldypU+IgH1+iqrq0vU6iv0eplY0pX79rAwN4fX86mvrKMoMqapoWkKURTz0EOPkaYprVYLWVYy2KWqoUoypmlSGein3F+l5/ZQFIVSsYRt26Rpiq7qiETC7QWs11tABifcv/8tyLKMaVjMzy2SxilxHBJFHkPDo6iqitfrIG0Id/R6EflcBd8D2yphOjr9wwVKxT5sOxNACvyIPXv2sTC/yLFjJ/DcgEajQ6frcXFmDoFEqdhHGGQTW7vTptlu0duwAfrJ/+VdbNkySafbRXdspq6YYtfO7ShSSuh3SWMPXRUkkYuURrh+JqwiyQqGadNq90jSlLVaHYTMU088ief5nD1zjlarRWO9Sa22zsjIEMPDw+TzeSpODrW2zj1LMxQrFSzHJlqfJmrOceVV+zh48BaWlpbpdT0KhRxHjr5Ep9tmcnKCsdEJFEknn8/4Y4apsbS0iGHoBIGHk7NJkohTZ0/hFPI8/dxzmDmb51/4JuvNBokEd951F7ql02q2uHDuPMeOHEXTVPK5PKosMT4yQX21BolPrlikVCmj2yb9w4NUBvvZvWcnlWqJNI0wLY18rsi2bTvwgxBNtxgaGiOKUu790r0EnsfshQs0V1dJUlhaW2H64kW80KdULF6GzAsh0DSNTqdN/8AggR8SRxH7dl9B3jEpOBZSGkMUsu/Kq7nq6rcwPDrKzj1TTM9fQNN12p0u8wsLNJotTNNCVVUs00JVVIqlImEY0et0aa+vI8UBa/Oz3H/fV3nxxcMkSYLrusRxgizLvP3td6BpCqVSHzEaE1t3Uq724/kecejj+xHPPnOImZmLKIpCFAXEaUAY+uiGju95SHLWDXz22WfRNIu/+PP/wh/9l//A0vwMaRjxn3//P+HkbUzbYHp2llK5n9pagx3bd/PYo0/hrtdINAdJVonjhDiOiaIQkSagSBi2hW5YtDo+1f4ROu0M1h34Aa1WC9ftIsuCViiT1GYxjTwHbrwGy9boK5VYXKixVnPpeCZdzyZKS8haldWqgp4k5HIWiqIQJx5+1EPXB/C8BmGwSJQmIEkIIdNqtCFKIdVQJIMohHNnLtBpe2RiGIJ83kHXVUqlEkEQ4Dg5hoYG+bEfexsHb7kRz+uRpgJJKMRBjG5IbNu+hUKhTBorOLkikqKhG2YmxCYkZElG2lAE1jWVnusxsWWSzRPjHDr0HEuLiySxjiQUNE1CUlz8aBVZEghJQpJkhJCI4ogkTVhbW0NRFFRVQSBtcO4VZufmWVhYotdbI/BbpFGMYxbodpsEQQ8AkSpomoOqJYRRFyHFpFKM26kR9JrEsUeahCQkhGFMGKc4hT4k3SbXN4SuOZlYVJKSJtDpdPE8nySOefzxRy/boCEEprVh3igyuHiSplx73XXkCvmNQlnD90N8P0RRdRQBYeCzsLxATEwYR2zdtpXJLVsYn5ggl8vj+T6SJGMYNi+fOEXeKROHKRIy6UaXSjVyhIlCL4jQTQtVN0lihb7yIIZh8dd/8+cceOtVuM2YF54+ga1UkJI8juOg6zpzc3PZYf8AVJ7X8tIuPyd5IHWRpA6arhLGAX6wRuBnHaXdu7dzw1snaHSXyReGEJKDognabR/LLNHtNHnmua/z3KGHSaUWqhnTdVf4vX+7n8/96S18+K59mOYgXm+E+++rMbdkU2uEBGGddn0JEULXV2m2QuJAoEQSflij1KejaCGFkkrPW0G3dMbGiuTsFh/7w49y8ECRX/6FA+zY1WVyAs6fPEEUa3zta08ioV4+V1kpY9ibULUiimFhmdrlaxCFHptHxui0Ojz26BPcffdnqfQNIN3QoeWuI8867N53NUGi8+JLh5m5cJGB6gD9/UP0ehGRPEjL05iZ1vHiBkmUY2zQwO/VUTUZSNB1izQRRBv2UqQSTzx1hIvLdZ584RS+yNFqdTl+9AQTw6PZ4k3U4MM3voOH//c/52Mf/H2iECQRYqdltIUR1t7xELJ9kSRU0XUd2YxpeT1Q+oiUFCc/hqoN4gYNnJJLd62GrmSUoiCUkP0ucuwyc+oEhhzjdtfxff/76tRpmsq+fXv50If+V/74T/6QD3zgZ76vMfm94rd/63d4+OFHUFWVP/mTP6JeX2OttsRTT3+DHTu2U6vVee973ke73X7d78OHPvwLHD58hHw+z6c/dTfr9TXqtVXuv/9ehgYHmV2f4QNfePflgvvVEccx73vf+5iZmWFwcJAvf/k+arVV6vU17r77k+RyOQ4fPsKHP/zzP9Rzfr08/M0gLH4wu5wfxavjRx3Xf6XxRgP/OxXE3njV51K8Wcnu1+VMvOa5RGTHoOsGfeU+auvrzE1PU7RzqEJCkyTUv7sf6f0/gW3nmJgYI05SDN0knysyP7/Effd/mT179mGYMq+88jJur81gfz9520bVdJxcjm6ngyzLtNZXsJ08pp1HVjVA8Hef+QKOVeTizDyaZvPii88yNDiIadg06uuYuk7LbaJrOs36OqRwww0HWFhYYHx8M4KM49CorXPs+HGWVpYZ3bQJpMyQvNFsYlk2X/7ylzl06BBX7NyFruvcf/+XmZudY3l1ibGxUfrKZcIw4itf+SrXXHMduq6SEhFFAZ///BfZvnUbuqawsrxELp/DNOSs0LUsgsAjcE7TiRZJOkXCMIOqDQ2M0tdXIU1T6uvrzM0tML+0xOSWbYwMj7Ewv4BumBnUL0koFIsIZAzLQlFVWs0msiKRz+dpdTqZ9YGqIIkUz+thmzph4CHSmDD00EwbIWTCOEFIMkmaEoQB5VIfjWaLyc0THH7hJaZ27SYIQhwnh+/5uL6LY+V46cXnGYrBMwweKhrcevBmltcukl96FN9zacuDpGnCxdk5xscnyeVtSqUSCMHi4gLHjp8mjGLWGw2GhodQVQXLsKnV6yiqwuBAP7IsMTw8QLHcx9jmzai6ysjYMLquk8YJsirT81zOvHKG/mqVK/fto9PpUKvVEGnCmVPTtBp1bAskRefhRx7hsccf5447bkdWMt/IleVlVE29DB178YUXAYmZ2TkGBobotLtMTEygSKAIQSGfI0yg1JcpxTbbLfKWzdmz5yiXy5mxvSxx7MhRtmzdkkFCXZ9zp89Qq61h6DpnT5/m/NmzmGaOcxcuUBmokJIgy4JzZ2col/s4d/YC1WqFRqvB8MgIp06dotFosGlsE8vLy7ieSzFvc+HsGabPnqYyOM7NB28mlVIs28o8UJMESYZioUCj0eEfP3cvtxy8A0UTqIpEGqWoisbOnbtotXoMrmRJnrtVI4qTTAhMVvDcFlp3lms+9MccPnqMrZNVSqUChXyZv/rLv+W3/t1voxgSP/OzP8OmiQmkVObYsdNYVpEXvnmM68rrpGoOu2+AcAPVoGkqUZihINI0xXMDCuUqspKJoK2srWI5Nrl8Dkix7RzzMzMk7WW+MR0wOFbh+eeepuAUGR2dIF8cwHJiCuUKa7UlgrCJUXSoPjmDND7AemMdkXqoukMht5N2dwVNjpHNIoqsIFKZL37+XjaPjSMpKWHg4nltKpUCmiZIhZQV0s0GjmPieT1M08YwTNZqKwiRYJkqpmUSBBGtRps0AUlN0FSdtbUGzzzzPKtrNYYGh0nSlCRhg+u50XWTsqaHoqgkSYznezz91NO89cBbieIWQiTIEri9gDSWNiwaJJI0IYxidF1DkiQMXadUyhOEPmEUo2kaiqqSyxfI5YuIRCHwPVyvgevVsZ0C3a6LrlmQSCzMr2DnLBTZBKFkatwiAFLcIMCyLer1Orpm4ORLJEJB1m1SSUdRtI0VfUEaZ5xhWVHwPI/du68AUhRVodVqZ6JQUtaFsc1JhCSjGzphGEAKSZppK8iSiizJ1FdXsGyLXLGArChYRo7B4X467S4vPP8SY6NDeL5LX18/SZySpoKTJ09x/MgxBAljsUAKItZvv5GhoREWF1dwnjiM70U8V7aJYkEQRUxdsY2XTx1BJmK9tki+aLO0PEdffxVZCFZWVhjdtIkwiVGk19hk8OrOhrg0Eb/h3Put92mQqohUQfc1knLIvHSchx59iqWVVdZX5/ngB29lx2QZRah0OzEdv06hOsbFMzMYus57/s1BdkwW0TSTMALLLCOjozsGimzQbjepd9rM1mKmz7bYuq1M1L2AEgtUyeDuv3+AgUoVx7LRJYHQFHLWIMsLHSzTIcXnM59+iF1TWyFy0USMY8DopjL3/MMpPn33V8k7KXM1hSNHvslPvfu9/Nlf/hV+4HPNVdewY3ICt1dHUWGl3uEzD0wD8N5bJ4k8wcOPPMuP/cQ7yRcrmJZN4PfoDKwyeHon5+bOc+TcSdIkplgsosoKxUKZs+cukioajZZEs9WiXOgjFXW2bRmikLfRFQiJ8d0Yt+fR67oYRsbtndzUh+1UWF4L2b5jLwtLi4wPD9NYPIvbnCVnRwjDxsmNkMoVvDAh8FuIFwr4N1zA3TpNp+HSVxjn/PljLK+eYe9briOhREqTsCfoy1fp9GapNc7ht2XyuRxhGBGFEZ2Vc7z0zDcI3TarKyts2bKN5DWcyO+ld/LRj/4Sv/zLv8i7fvKd7N//Fo4ePcoTTzz5XTuu33W/r+Kvnj1zlo9+9FdJ05Tf/d1/z2/+5m9uoGUShoeHecc7foy//ZuP02g0kBWZgwdv+bZdPfboY/w//+H3APjrv/oL3v/+91/OY7dMTnL99dfziU98kpW1FcbGxrjyyiu/7f133/0pPv7xTwBw3333ctNNN13mqe7evZvx8U3cc88XOXfuHAcOHGBiYuJ7nusboQvfKJd+bT796v28VhX4Da70t/32eotWkvTGx/Xa9/2ghfG31wJvQoH6hxTfb8dV+d5/8qP41xT/f1APS8XGxKzIeJ6H2+0xffYcq7Uae3dObcBOsgTM0E1cN6BarSArMkkSc+ed7+XFF1/gqr1T9JVKlMoloighSiWCMKJgWxnPS5Eplvox7BzrrQ6SkAh8j+GhMbZu3U6r2eTQoUNcc90+csUyiwtLJElELm+TN8okQUQ+Z2XJX+hlvoBhmMFAq31YeYfrbrj+W9COFHRdv9xF2bVrF0888STr9VUOv3SRt7/tDjqdLi8dPkS9XmNocAhNM7j55lvptBsoqoRpqiiSzK233Y6qaXjdDpah0el2sDTB2toqTz9ziNvvuB1BipNzaK341Gvr2I7J3OwCu3ZNsX3HJEPDA0hCwSo4mIbO8uIi5XIJy9BBTkglCd8PKfX1kQqIkwTd1Dc8FSVyjkmaCsIwIpEVVFVnrdagXC7R6/VIUzDUGCEJVElAmhCHIZIi4/oRx46+TClnM7VjF+v1BhcuXOCKK3bz8olXmNy2GbfTJJ/Po9c/dEmVAAAgAElEQVSadK/czS996Gf4j//377L/+knebSXYtkPNcxkYGuC66w/w0ouHGds0iKFb+H7I6OgEW7ddgaIoJEmEEDBzcRpT01laWsTcUNA99corVMo58uUKqqIyNz/DQLVCEsYUCvksARHg9lxefOFFgsBncHCAwPPpH+hnZvbr/ORPvgNdgygK2TQ2mhUNSUQcRzz81a9x4/UHsCybKIqQZYXJyc3kC0USUlJJYmi4yuGXDrNr107OXbiAlctz7NhRNk9sRpIk+opFFufnsU2LkydPsnPnDpaWlti2bSspgsXFZcq5AgsXZ3j3T9/FhfPn2bdvH8tLS9RWFtmxdYJTL7/MzqkppqZ2MTQ0zsXpWUZGR1EUDVmWieMEyzTZs2cPCTC6aYwkTdANjWsP3Ehvz17OnZ/FtDWELBHFCZLQQUQUizniOOHokZc5cM01HHnpRa68eieB28YxCyQiYnV1lW984+vsKdwGwOlT5xgdHc38OUWKbDmEAqLY49rrrmRpeY5eN2BwYJyF1Qb1ToNiOU8v9IkSeO65l3jmyUNIJ/6aD1zRQo1lAhQQMoZhZWqngYQsCeJUQlckNFUm9F28ICDn2KjqMGkKSZJiWQWCIGJ0xz7MhWe5aesUVq7ILW+9Cc/zqNXrhHFMtzFHkpoU8haEHeRIp2dKWI0eppFDlVoEYUQQteivjLG8OIOjtJGEAqnGrl27cH2Xf/j8Z7nrrvfh2BYvvfg8b9l/NamsoVkmqqKjqgLSlE67TbvVplAoIES2QBGlmehLPufQajQplEcBCU1VuObaq3nhpSMZ5FXEWeIiEjKAVEKv18OyDMIoRtV1jCThloM38cjDj3DjwSuJ4whVLWIaOYSQ8LwWsqKSpGx0y0MkSUGSxYanqkDTTNbXa+iGjhCQKhJeALbtkKIgSzZuT7C2vI5jV5BliNOQbqeLrKbYloMQEqmSdXyVNOPsloolVM2g0+1hGCZpkqIomR+mJGUwYF3V8YMYVZWxHScTxyJBkGI7uayg7e5GkSQSI0UI+bItESKD38qyTBhG+F6Ak8sjKSpxmmQCVsuLOLZOpVKhUu0nRVCvNxgdHSciZHR0kGp/maXF/4+99w6T7KrP/D8338pVXV2de6Z78kxPTsqaUZZAJBkhRBawGGNj1vbusrZ/YAy2sY2zvTiBvWAyxgQhC6VRQHE00uTYEzrnrlx18z2/P25PSxpGMmB7F6/5Ps95+j5977mnTtUN5xve950jFC5MVJAARZYJfBddkxj+mRtIJrL05SQOHzrObbfdRtOep7Ozk1Q6zpbCBsxEkvGJKer1OkkztsCcHzngF9X4+HHercKABYVOabdLQbTSqdyAEfsUAL19azh+sobXDPnSt5/g1LlZBILVyw9y1y0bue2GVtRWg/KETku+g3K5SuhL3P6hr/H0oVF+8a07eN9tA9SbTe6+9z4mT1b4/S/HmZ5v8nsf3M6rdvdiaX2897e+z+hUHVWRWbc8w/tu28HBxx6ivTPLm95yDVfvipz+RrXGgw/uZe3GS/jjv3yA+54cxwl8njg3w9o1G3jHnbfRqFeIJ+JU61US2TZODc2xZXkntjVKS7Zrce6BW2F09BxPHjnGF996F6VKlVw2y6VbNvBLP/8h7lH+jlfH30NOy3Oo+AS5bIYHDz7EW/4pyrR9tf3TDJUmeXjiUZ679wglq8KW3uV8+b2/je8LymGDPUcOcN/RZzg9M8p0tYQX+LSnW9jSvZGV6mY2brqUkeFzFLIq1fJZOtpSIKn8xSN380f3foZLVlzC/R98EP+ggR9rkLxZ4YM//xm+efce3vTG1/HbH/1lDhye5jd//50cOX4ax3FZ1reEu956O1dsX0WtLqPKNrNTQ8i6zvz0DPXyHN3trcyXK1QrdYT40TlNzlfC/Sh2YXnsy9mXvvwVgiAgmUzygQ/83A/sX7asn9tv/xk+//kv8KUvfYWPfeyjL9n/hS98CYD+/n5uv/2NP9D/0ksv4eqrr+axxx7ji1/8Eu961zsv6P9FAHbt2sVll136A/3f9KY38dGPfoyhoSG++MUvce211/wLM/+p/aTbT0uF/x+z/9vU1+FCE0S4nb5lyzh9+jQ97Z08+tAefN8HIajVqpimCZJAURSeeeZpNE1h5arlxOImfuBTma9gGia+56NqBpVaHUlR8NxIBqJSKRNPtWA7YURGpOnMTEyyY+dGXLfOshXdvOG2V9HW2Y2karR1dNDV08nM3BShkNBUHVmWaC3kSGeTLFu2jHq9wTe/+c1IgsLQkVQlIokJBbqiUqlW0DQN3dBZtmwZb3jDG0gmokXfqVMnkRWZrVu30tLSgu3YOI7D+NgEyaRJs1nD90MCX1BobcfUDZKJOLIskUqnaDY8PFdmSc8qRKihaToImJmepbW1gCzLZDJpkEJUTcJxLb57z92EkqBpN8nnWxgZHUZVIwfeajZRtQjnWixXFrI0SkTKIklYjSaaqmLZPooWQ5J15ubLnDh5BiFpxBNpmo0ajm3h2E2mpyZJxE3iiQSKqmLGY7S3tTE3W0RRVOLxOHv37mXz5q20trbS2dlJV1cnZrHGUEuSylyJlkyW9mwe3/MJw5BcS45QhDiOw6ZNW4nFExw7foK5+TJT07N4gctz+/fxzN5nOX3mLLlcAVmR2LlzO57vkk6n2LZ9K73dXbiWjRRCW6GA3bQoF4ucO30GEfg8/OBDrF69iuXLl2MaJvv27aO9ox1VN+jt62BiahgzliCmaSzp6mHtylXgh9RKFdat3cDExDS1WpPR0QkUBWRZQlKgrb2NIAx4/rm99PZ2oek6a9dv5NjgWdLJFJqiUq/VeOzhPbTmW6lUKmQyGcIgpFapomkqIFFoa6dYLLJxYICJ6Rn6l6/kqaefZXximkwqDkFAd2cnw0MjVEtVspkcvb1L6OvrJxSCTDbL6dOnMXQd0zA5fvwYoQhoOjZ2EOAg40gq/ct7CYQHUhBl0BcYDT0/Cma0tBRoTSfZv28vrmNhmiaqqjE7O0k8YfK2t701us99waOPPEGz6VEul7GbDYTbJBQSvgiYnB2j4cocOn6OpicxODxEsVEmlY7R29uD5wVsWL+Z973vgwTlES7f2Es+bSIZKfxA4Pkh2WyWMPDRNJV6uYoswLGbiMBG18BxXWRFwfVcJiYnCEMZx/FJJNMQz5FXSri24GMf+zgPPvA9DFMhlU2jSwlW9a0nEytglQNUoWH1pbFHp4mbKVzPxXOKTM8fxnJsEqk0jUoRXZHwPYe169aQb8+zeeNlOBaYRpb1A9sYH5nlqSeeYd++/XzlK1/DcyMnM53JLJT2SczMTlGvNajXmxiGgSwLNA0adZcgEITCIxZX2LVrF57nMjc/SxB6BMF5chGJeDxO02qgaRp+4KPrKn1Ll7B161YIEsTNDJ7r4vt1BHU0TUXTNDRNW4RBuK678D9l0cFqybdiGCZmLEEQgpFQUDQV08gThC0k43mGhsYhDBDCp6e3jeGR0/zDFz6LG1iEuJRrLoFsEE9mcb0AEQgkWcMwY8gLATDh24QLzriiiKiyQzciXgHXXQyshX6UcfK8gHg8ClYGQeTIy4qyIENkE4Y+9XoVTVOIxww0PYasGohA5tSxwQhrNz2FbhikUmmQZNKpLEEQUK9XcLwmSB59y5bS2d25kPyQqJdLuM06rdk09x9+nv/ykY9iOQ2uu+F6XC9AVeMomskzzxzCTLTiiTiFzhUYRsQkff7vv6UJpYkkN5ClGqgOoebhKxl0MxpLUhJ87it7+G+/8zUOnYiy1I2mx/OHJ/ng79/HJz/zMNOTZ5BlmfnKCLEkTEwN4gcRCZLnNNECnZXd27nrzR/hD//wvSgLjMiVmsdbf+1hPvX3+zg3XkOWJWpNj2cOz/Hej99L14YrueGmK5CUBstWpbCcWWyviZ7p5K6P3823HxvC9j0QAs8P2Lf/WT704V/lI5/4+GJ5tqQqrBnYjB5LYyRSzM9WF+d+emye9/3mF3j64HGq9TqSLDE9O8u379/DrW95C1O5sxzc+mXSWpKbsm9jXWo7A8vXL/Z/buwgv77nk3zv2GNYvh2V3isyim5gmAk+8Z3P80tf+1O+d/RpTs+OA+CHAcPFKb51+H7++OAf892D3+Oqqy7HNEJ6uuPISoiRaEVV4gCoro5/MM7spfvgF06QyS9HVhYYYYXDx3/3T/gfv/GnPLX3IIHnYtsOx04M8t8/8jv8wae/zI7LXkO5WmFufoKJoSPIXpnpmXnW7XojV73uPXz+a/9E0355fOu/pV0Mx3kx2/PQwwBceeUVi1JZF9pNN90IRFrvp06eesm+h/bsAeDGG69/WQf5+uU3AfDkk09iWdbi/5vNJk899dTiGC9XFXjjjTdEYz304CvO5af2H8N+6rj+hNvFaLJfqVzhYu1ix8JFiB/+FWUB5/urSCgCEAGhcNFMiTe/+00cPD5JdeIY++/7HAQh6aNnEUQSHqqmcN311xOEIbVaDUWW2LFtC+eGh5BkjfGJaVzXIZtLUS2WOHTgAKqsYOgG5VKR+blpfLfJ5NQoh48eZGlvJ62FPHPzZQwzRioZQxI+InQJPJ/ujiVIwieQZSpWCbs5R1Ct4Ic2QoS8733vQzdUrPI8ntUkDH3swKcZBJweHMGyHIQICEKPZCqBmUqxdcd21qxbTa4lTWuhAyOWxAtDqrUS69b0EQQB+549hGUJjFgSV9SwPAvLllDkBL7no8UM9h3Yj+f7xEx1gXhKpn/VMvSYRDKm4Vku83Nl6k2Xzq4u3vq2O9A1leeefRY/cInHTObn5xYwvDE0XaFUmkETATMTE/iuQ73ZwIzHUDWNudlZTF2jUakgJBOBTE9XAdMA27FIp/MLODKN9rY8jlUnDAIUKUQhpFmv0bl0CUeOHkWEIdddew1nz52mWmmSysVYunI1nuOw9ZYthPGAjhUddC1dHQUwgDDwGR+fQFYglFwGT5whbup0dWZY0ltgdGgMQ1FY3teHGqqcPXkc00gxP1fF96MgjWEYHD89xvT0HM1anTMnzkAIhc5O1m7diBIzuOaa3SzpX8rApgG80OXGm2/g4OH9pLMpbrn1tWzdcQVCiVEr+/i+R7k2hVAcFE3i3NA54qkEyWSCns4umo5LKhXHt2uUZ6eQQ+ho6WTk3Bj3P/AAjlUnHdNYs3Y91VqF04PHueKKy6k7DqvXrqW9tZXZ6Rny+TaGhoYJXIe21iyZlhTtfZ2k40mOHzzApTu2svPynbT3L0dNJDHjSbq7e5grFSnOT3Lk0PPc+927OX70CGYqwfZLdlKrW9iux7ad2ymXauTSabxGjdC1qFcrfPmr3yDwVAgMnn1yL+W5OeqlCoqQqVXKrFrZQ7qzjSV9PVSKdUSoY3subW29mEYSz28CIX7gcf11N9OoOxEjrjAI6rM8ccZHaerE5QS9Rolty5OUpo7xF3/+RxhanFqjiVtvMnLkCIVcnEzeYGBgLapwqFoBXihQhIsU2Ph2k0wyxcTIGMl0lka9SDqXIURDDaIAliIEY0MjlIo1Qt8nnjBADbEVE7U8TiKb5rc+/sfkEv089tg+ZsolVFWn2ZxB1gTtS9cj8q14KxMYM2UkM4YIZIxYhkw8iWvPYzs2CSPAbtgYMRUnmEIJJbbs3EBrVxY7bKIm4uS7elg/sJpCS4rdV12GQJBrbUVSZOKpBJVyHYkYjz2xFxkJ17KZnC7x6JMHqVXnkYi0UXVNQZJ9VNnjm1/7FscODkaZUreJHziEYUAylsJzGmiyhISKpGgkW+K4roXrNdB0MMwUkETSTEKI8PWejSxFbOAgCEIZgYaQJPwgYtwOQx9BQOAIGjUbL/SR1JCaVebmV99ILBlHkiPZhA2bdvBz7/8ABA6O1aSlkEfTIqZlVdWRdQPf8cAP8BwH12lSrZTQtRCEhKzGkI0EkhyxGtuOHWVmhYQia3zz619n/Nw5hB+VPo+NTDJ46jSe6xAGLrpuRiXlmkEQhLiej2VV8ZwmjtNgzcZ1JJM6fX19aKbKhq1rae3sorW9B9d1SSeTqIqK5Qge3fMQmiJRy8bxFZm/+LPPIEITz4Wbbt7N//qrT9DZ043n1qnX5/GAVGsXu6+/iuFzQ0wMDRFTfI4fnyYMbDR8RABe+IO6m5KQFxuhFLWLWIiIqjqkqJJJEhIChUDSCKZ1wmmVgBqIKKN2dvgEig4fvOMyvvN7N3Pv71/Jdz51A5dvbgfg0187wNjpSTLxNEGtSXVygtJUCbHQ30j34y15FYWtd3Lnz7+XHbs/QLhQmPe/vnGSmXmfP/mfV3P4H9/IsW+8kT3/+w42r84jBHzib79PKm1gN0KCwIzICiWNP/rKMc5NlNBUhV/9hXfw3MP38Yn/9mE++3uf4oZrbuDb9++hXCkDkEymiGf7sDOXEugrMeIvOE0f/6tnaWtJ8ZYbt/Otz/wB3/jMp/nDj32EbCpFvdHgT/7u88RWpJh87ZN8/PivULQqtNVXL/b/i+c+z9aejfzPbb/CX978Sb5w2yf5xK2/iCw5uF6NrJLj1v7d3PPBP2bwt/83ez/8Bf7g0l/nW+//Elf1XYUfenzy3t/gxLFnCO0iQqioWguhJ+HPR1jcQHJovPsZut+8DK2ti2b5GLiRU/7A/U/w1a9/l1949xs58tSDzMycYGL4NO9+ZxQM/Ke77+PJAyfYds2rWLl2J8lEB7WGi77AbwGQTsaIGURyXYJFWZwfVi90ca33Q0idvFLZ6Yuv32PHjgMwMDDw0iwtCggZEUqsWzew2PfYsRMRvl3IFOfLTE1NL/YXyERPppe2NdIGIGJKPnny5OI8Tp48ucicPDCwbvE7eHGprhCCgYGIPXlqappisfiy8305bPmFx/2wa+UXEzGdP8/Ff6fwJU2SBJIUcaKc337xuD9MyfCF47zwnbzQzjNmX+wznQ9o/iTaTx3X/4R2/kb/P0XDLQmJTGuSW297I1MzRRACqdogFAqSoqLpGqapo6oSqVQcTZUplebxHJdkIkl/Xz+mYTA7PcPRo0dZs2YtKDKjk5PEE3G6OjtxbI9Caxe6nmJ4eAzb8eju7sb3AoTvISPwvfOO3SzV4hxKCJpi4gUag0PT6LJMMmHSaFZBAT2WBFmh0WwifI+kqTOwfi2mqaEbKvF4DAiYGhsnphv4nk+xVGJ+fopQeMTjceLxBI7r4zoOmzetR9ckbKsBQqJarTE7N8epwcEFxt4UN998IyvXLEUgsCyXwPOQEBFzp2qSyuZobWsnk8lgW3VC38aul7j00m3Yts2KNWvItbUxOjbFfLGC8EFVdFLpNJ1dXbiuh6ZoICQM3cD3AzRNJZlM0CjNcObEYWKGSqNSRpWjckZZjnQai6UyAhlZ1nF9HyNm0NndSTKRwjBMli9fjmU1yGSS2M0ap0+fQpEi+aZHHvk+S5b2UC5VSWdbiCfiSMgcOnCUobPDTE5OLkpb9PUtJQgCFEUlmUwxMDDA2OgY8/NzCALC0CeTTaPrOhPjE1iWg+vazM5NYNlVksk4Z86epdlsokgKnutx8NBBbLvJzPQU9XoDy7bZsfOSqITa9xGh4ND+A5w5e4YzZ86RTGbRtDipdI7u3i5a2/KUqlWMeBwzZuIGProRI18oIIB9+59lYmqM7q52NFWhJZ/lb/7mL5FllQ3rt2AaSeKxDKMjkzz//AFS6TQjoyP0dHcxNjZKGIasXrcO23FJpJPIuopqGgQiykgdPXIIfUFiKWYm+P5j36ejo4MbXnUT2y7dQa3SwHUCBgY28vzzBxFCJh6PU6vVSaXSeH7A5OQEhpFE12OEocTll1/NwUOHOTl4GscPSSTThJKECH2uv343suRz//3/jKrKyDLU63UM3cTtSyCvzFNoy9PT28oze59kdGQS6uNceevbaDZtZmaKeEqWUkPQt3w1cV3BqxWRFB3X8fj9T32KgwcP0rAtQiGYnZoglsoQM2WkMMBzbJpNC8tx6VrSF1ULKBpCqMzPV5AkFRD4vqDRsKlWmoyOjlCrVQkDQahnkWfPkojH+OxnP0tv31J27dpFId/KudEm5ZpKpRFiJJJMnDlAsc3HzSdQTgxhpFoJA4XQB9/2SJsmnq9ju0WgiUIc2y9GpfN+xJ6rqyqyJGHGDXp6e1ja18+Jk4McP3YC1/FIxJOYsRit+Ty33HIL2WwL1WqDvXufpVQqMjIyjucFmEYcCQ0RRKRF73zHOxkYGMBzPWzLRVF0RCgR+AJVMfHcEBHKVCo1ZEmhtbUVWVYIwigjff557/s+YShwHHcx+3qeNdIwjAjXL8k4tofr+EyMTXP0+CFUTdColyO9VlUjCAW246BqGvVGA0mSCIKAarWKrCiEIYQBBAsa3LVaFaEITp09jaxpKLpJLJnBCyREKEUL7zCqwtE1jVQyGQVAVRVJgd3X7kLVZFz5KGZmjOPHjzM8PIwiq/i+oLnA+i0A3w9QFxhhZVnCjMUQIkSE4eIyXdd1fD/AMHVm5uaoNerUanV816NhuzQbEo8cPo6kKbzjXbczMzvG6OgoT/3SJ2h58BAtLXnS6ewibk3TjCh444f09/dTr9fp7ulgamoC17X/XYkU3a/quF/VefEyrlSu8LnP/invues9jBUFwsxhaD43bm8jpkV44PufKDEzUsHRMgTJfpI9u4mlOgDItK+gb91OiGWxQhmjexV6LHKcbCfgz/7gPdx4+RJEIOG5Eq2mxx/9j8sxdIWG5XHv09Mksm2oyKBqHDhX5Oi5GQA60zGuvGI3xVKV1WtX0dKR59N/+qds37Zj8Vqdn52jkOlh8OQ0h0+cwXZekMPRNIX3v3YZ737r68i3JEgkda7bdTm/86u/gqqqTE5N8+m//SoPPHSEzT+zmY8d/UWe6f3Hxf5rUhv4m+1f5Y5Nb8Mrx3AbS4mTQSBDEPJrt/wsb113M2ta+zDkNHUroKXQRluyhzeteDuXL7+SptvkgcG70YVAaSwnUdpJYvAKiEWkQWFLnaY+w/jgUaaOHeLEkUepNysAVGo1fu93/z8+/lu/QXt3P76vklFm+PD7XsfaVcsA+KdvfCO6P+NJVm29jG3X3Ep795LFOViNGiMnDqCFNtp5nKn4v7eMr9Vqi1Jh57XJL2Yv3neeNRhgYmLiosf8QP9M90X7v3j7xxn/J91eSfLyhw1WXOyc59t/VPuP+8n/E9iFIPELabhfTrT4lc73clTe/1p7pRtIV2Ks2bEaM9/J1ET0kPNcB0VVCZGxHYtKuUijXsN1bXzPwbYa9PYtJQhDvMDH8Tw6urrYfsmlzJVKtOQL9PcvQ9E0RsYmGJ+YYnp2nmXLV9Ja6CAIAyanxlBVGc92GTw1GH1fskwilUaWFEI/JHAFQig0HJ/vfPu7+L5HLt+C43gYZgzd0EkmksRiJtNTU5gxDVmRaDQazMzOYhhxHMvmvu/dRyaTpa3QRkehg0atjqJoqJpJo+kAMtlcFsezUVQFTdI5c/octuOxbmAdMcMkDATVaolUOsaxk8eRFQ1ZkhBhiKYZVGpR6e/Q0BBIAs9zEWFA6Ds0alU830XVDWpNm67uXgqt7biuh6nrBCJa2KXSGWJmjFq5yuTkDIVCG57nUqtXybd1cOU1N+JKJnqmDSWWRlVkfM8HSSbXUkCPJ5AQxEyDjZs3UW02kWTBpk0bKJWKxONxsrksMUMhlYgBIaqqsmnTdgxN5x3veif33Pcglu3g+z6X7LwEXVPJpCMt1+6eLvYf2E9ra4FyOSonn5qawrKbbNm6mc2bN9Bo1HAci1KpRL61jSAQbNu2lW3bN5PJJsnmsmRyORLxJPVKDVXRWL9xE816jUK+lWXLl+G4HrKqIwG2bTM6PMyq5SvIF/LEk0lS6RZm54o4bhQAmZqawjA0yqUiQeCjqzphKLFv335mZmZYv3kTu6+9hs72DjzXwTQMbr7lRjLpDKOjExw4cIj7//l7DJ09x7Jly5memaZvWR+GrqGqKlMzs5HsUDqLhGBoZAQkiUbdol6vsXHDhuj6RWJifJLLLrmCYrlIOpMgk83QkskT+CEP7tnDJZdeggii69fzfIIgJGbG2LJlG7e98TWg2Ci6RyActm3fypYtW4iZCQQyZsxkamoSRQpoa8uxccMA+57dy6kTJ0knUpw5fYbxrgB3S5ZsNo3nW+zadSVLl/QiqmPUsgN86EMf4rlnj3HTLW9n1ZqdNC2XM6cHCW2XeDzHbLHGkv5lrFi9CmlBXiamBNQdD891aDQs4okUqUwWzTBAlpBVDd1IgKSSSmcJQh9Nk0GWWbNuPZl0imKxFJV01xtUHQm0GPVH/553vvtdOCLgr//6rwldj8lZi0yun2rZo1qtM7BqFXKywPzr1qAMT6CFJvHCMmL5fsxsDxhpMpkestk2fCckGcuTSLQgIZAlkBCEoU88ZmDZFtVajSAMmS+WeOyxJwGZWq3G448/zpEjh9F0BcexSaVS3Hjj9bzuda+m2bSx7agELgxgZnqeiYkpAs/n+eeeZ2x0hHPnhpElNXquqDphKDM2NsU9/3wv2Ww2wrFJ4HkhimIskBoJJGRURQMkFFnBsSM936NHjzM/Px89v8NgIXhmIALoX9rPti1XoGlJErEcTh0kWUFWFJAUXM8n15JHIsLNtrYWotJYEREuybICAuLxOGEYsnbtOsIgwumqqh5lfEUYyfQEAX4QRNkVIXAdB9u28QOfXEuOniU9CJoE1Lnpppu49trrEELCNOOoikoYhAsOq4wsKahqREYlLZxPUVUazSaWZSFJcM899yDh09HVhZnMkM7myGaybL9kA6m0yebN65AVCUn2CEMPpJDXtfWhP3ecudki6VSEH1bkaL6GnuS++x5YZGg2TJnO7lba2goRllj+0fGF5+2HcXwlISMWnJjLL7+UW99wO/HuTbz2rt9kvJ4n072Zazb0cOvVUS7NMvUAACAASURBVNbp5JxM21Vvp2vVz7J08/vYcuNdSFqUMXR8ga5q0XWomKiyh7SwTHzja19Di2kwORfj6YNVTo0Icrlelq+9le2bonMPTuVQE7tQ40lqTp5/+M4wAJlUij//9Ofo7FlL34pVDGzZSG//MiRJ8As/9/7FuchyyIkjz+OHsPvm25EWSnAB7rxlJdddvZ5mbZbPf+5vKBRaqNl16s0au6+IsI1PPPskm7ev5fHHHmF8fJzHn31isf+qzXlmu4eIpyVu7ruDS1JXE5vczOGHNOSgA6HPsH5jD5brcmJwnrHxkK7uLejxJLsuu5zXrLkFgOePT5AYvJFE0Eeza5zJ1z6MujEqaZY1g7n5OrmYRkIR6LpKKpsHoKe7k1dfvZbK+HHmzx1h9OjTnDl1lHqtxNWXbgHg0OEjIKugmniSga+m2bBlJ1Zthsr0WT7+6/+dRx68j4e//SXwrMjp/hHsYuu0f4lw83y/i9l5pxVYlJq5MOspSRG84YU+9Ytux2Lxl4z/kv7aS/ufP/+L+794jAvnef7cF475cvM9bxdz8C4kP/1x7bzO7sXGfvHnfyWm4vPHXMyxfblzvlI29sL204zrT+3/aXvFUmWhosQlOpf209+/ZqG8UyOejGHEzQir5fnUa3UmxiaolCu0t7XT1duDbGhYrkOho41YOkmurZXe/j7q9ShKrqkGqVSKYmme7u52OjoLqLpKe3ueMHSxrTojY5M8+dRemraHJyRk3UQxEjz04B4QAZomaFplJmfmcX0fCYmEmcJu1LAaDVzHQZJVOnt6icTHomxBNtNCEAjaurp51Wteg+f5eK5PrWoxNjzFzEwRy7b5xre+iaSaaIZJMpVCUhUcy2Ho3AjZfEtE0tRs4vlNUskUQaiweu0ApmmAJGMYcUAm35KjWpqjq6OAbVmomoaQVRTVJJ5Mk0ymcR2HwPUIRKQtK8sCRY6yJJISkWWVi2VSiSQtuYj12DBMZBmcZpV0IoamaYQixPcimRFJhlAIJEXBcX2CwCYQIZ4fkkhmaVpVLLvOwYMHqFSqnD0zTL1WQiaEBYf5yaefpVQqMTs7zzvuuosgN0BZbicILNavX4uEwPd94jGTFSuW43kerusxMjJKNpdjZHiY2dkZTp06RWuhlXQqRTaTQZYkrKbFxMQ09XodZUHioq2jg5GRUVRFJfB8qrU68ZhJo9kgHo+TSmeZmppmfmYOx7L53n33kcykcdw6c3MzzM7OYBgG8USM+Zl5JkbHGR8ZRhIeEyMjnDx2HOGFDKwZoLuzi46ubkwjxvDZYSQhMzNbpKOjnWQqRT7fwuYt60kkVLZsHcCMqbS1FYgn4szOznDm7Bm6e3uYnJ7CjMeRJYkrr7gc3wvwHQ/X8njwgYcYHRklETeRpJAHH3qEFcuXU6tUmJ+ajhwoCVatXkXTruM4Ter1OkePHGNmZm6RsFRWNGQl0uat1RscP3YYSRJMjk9Eep/45NI5FEVBhAH5ljy5XJ7Z6SJHjx1nz5497D/wHA2rSLPZwDSSgITqT0CynYMnR9i5cyePPPwEd9x2J0cOHkGRZWamZ3nL298dEbG1dvDzv/CLEVY8FlVaJHXoWLmDTCpH0wmw3YAwFLiOTeA7C4vniE7XjCuEkoMIBZVqBTOm0dqaYumS5Ty793lURae9o4MpqZ2UPYU++F3uf+B+dl+9C11SuPKqHZw8fpTjR44yPDhI2TYwWlfiZE3mbliD+dQxjHITTdHRNI1arUytOY0IVTzHo9aYIAwNFEVGVWSsZgMRRvI9yVQGzw9wPZdLL9vJnXe+lVKpQqPRjIi11q4hFA5B6KLrKslUDEUVnDlzmunpSQQBc/Nz7Nu7j317n+Ob3/wmCEEum2XdunV4vovne3iey6OPPsq+fc9yww3Xc+DAfjRdQQhBMpUmDAEpygoiRReHpumLZbiVSpW1a9ZSKBQIwwCJIIImiEjSKAwjGRkhAur1Kg8//Ai+7yOQ0A0DRVEjMiYhov4Li5wwAElSEIDjOPi+R7VUx7VcFEkhcF0cq4kqeTTqFRzPRtYi7VdVVRc+p4ah64QhkX7twvnOExwFvs/g4Bk8N4iws4oalT4KAAnXdQmCAFlRUBQVVVFIJpNoqkoQhFx33XUghWiGTiwRR1V16rUqcigRhE1yQoAf0t+3kmQyTb6lwOzsLIoikUikGByMSrcNw8CybCYnp3n/z36AsbExZmZmiMd1XNcikUj8WKQ4P8bbd3Fr+44dhBj0Ll9FqnMVb37/b+KZfdjGCiQlck6bNmhGO66cYqLoEhDDc6Ny5srMWaYG9+FXp5HDAFlEerMAqUSM+Vmb7jWv4bo3fJh83xW4epZk+zp6+1YAYJPEUrqZLaeRYss5eW4OgOuuvIStW9cgfItGo8HjT+9lZGiMXCYJbiP67YFkwqClELJidQdNx0TR04tzu3pbL4auYNWa9C9Zxuj4FKtWb+Cq3Tdw/fUR4c7w6DiGJLj2hu3c+prreOvbXpB9KXS20ntbgHTbKd55ZA3fjf0RD47dQ1LPY57eReb4m5k/tJY//PrD/Nd/+jPe/vX3csOnr2T7x7ey8RPr+dV7fh2AcXGM8df8LrV3PkHxymdI9NeYn4oyh5oRY2DrJTQtDznfSkvnRpQF53v7pvU0ak1K5QqtXR2k2wsUlu6kd9UlbNm6E4BSqYRYcGQkAhQ8VN0kUGKo6TayPcvZeMnV7HviEQKnifg/qLX5o9qLHaT/qPIv/1rOmPPO6XnH8l/Sff2p/XD2k3vV/ye3i0WtXmyvRNl9vv+FEZMf9ya88LNc+Dn+pYdSgITsaixd2U/fwEoAmtUycrOGrskk02k6+/sp9PSwfO1a2pb00NrbRao1TSITp7uvFyHLSLJCPBkDWcJMJlHNOLblEgQhu3fvBgRdXe24toXdtNBkCceq0t3Tw5vueDOZbA5ZSFRn5qkUi1x65U7yhVZ0VWPz2j7eedc7SaVaaNQczp4+x+FDp9C1OGEgQAgCN6BencdeKEG95zv3MD46zvC5Ub721X/k+f37UDUJRZNIJFMYUoxULMV/ec9dlObGCQOHRqOB5wToZoLu7m4C16ZWqeJ6EpbjRYtN38NrNlArXcjVXuaLRcIgZG6myN7nnsYPfVzHo1JpkIinUWRQhIrv2Qhhk81lSJppAifEas7heB6pmEHgNYjFJGKpOL6kcc+9D3Po6BEsp0YsEcPybIrz00yePYFXnseqlDEQ1CtVVD0GskIyYQImjblpzh49wNTkFJJpEMtkuOFVt9BSKLBs+QpCJUU6mccNQmRFZsOK1eQLrSxfvxIpJpFIxhEB2HbAxPQstVqDJx59jGwhz/GTp1FknXxLloSpYWYyvPbOO8jks2TybcxPTyNESFtXB+NTExTL8zzy8B6OHDiKZ/uUS0XUoEFLIsO5wSGOHj1MMpnGl0Mq9Sr33nsvUijobG1DNzUaVoM733IntUaDlWvWsvu6a7AdG9d1CX2J8dEJtm27hI6uJSiKxtLePnq6u6lUZpmdGWX4zEk0SQVCtLjK8wcP09a6FHyVvc98H0lymJueZf2WdVhuk3QmS61WR1VUcu1d7Lr+RoSqUujqJJBCiqUK8USGwcFTDJ46iq4lyGbydHV34uOycvVS1q3bSNOSeWbvYTLZHIePHyLdkmFJ/xISsRi+bYGw2LxlI7l8KwCOXcOqNRG+gmMLvv/4Xlpa8nhOyNNPPkez3sD3SsTSJrJqgGRiptL0Lu/HD3w6Opbw+te/kSvWbUKaC3nm6SeRJAXNyOLOD+EVLuXqXTfx1P7HmJ4bZtn6ft7yrnfwxFMHGVi3jd/62G8wOVNG18AtncZ0xwnnBxG2DbJCaOg4YUjoOkhI+Cg0mj52wwMEdgCuZaMrKo4rcF2ffEsrshLSUmjn8Wf30t7eRrU0H10fS5bid26E2RP83BYPTXNwhU+yPU97/xIsH44cGyXXt5L2zApUPcXc1jYab78W+cRZlO88jLz3EPrwGErTwnVLqKqHhoQu6rj4BGFIIp5ASOATZTJnZmd5+OGH8a0Gmmrw4AMPMzw0TktLDsNQmJsp4/sypWKJwGnSktR47WuvZ0l/Nw3LorOjnZtuvpXXv/4Obrv9Nrbt3Ewu346syWiKjqqoOJ7F7huu5bbbX088rrBqRT+g4CPwQ2/BGZXwfIEIA1zXIQh9AgKee/4pypU56o0qYRjiOC62bxNKAkmSMY043/rmdyMYguNgJkxufs11SHL0Hgj8EFmRsN069eIYvmvTaDrYloOsSgvOboPZuTlkRSOXz/H1b/wjISBrOpKiMTszS8yIo6s6nmMTcfZIC86xjOuGqAoR4m3hneX5AWHgUK+XSaWThICERCgCLKeBpEqEQDweo1SaQQQOoetGgcYgZHJygnJ5nkwmgaolIVRRJR2kED0B01NVynNFUsU6kuMzcvY4btNibGyKZStX4BOQTmkgK/zar3+U44eOIjsev/Wx32Z2fBwFwbJVqwjlEL8k0Ww6uLKHJiU4jyV7oYUXaS//7l1834oXNaIW1WFE7+BUMokURlJSqqriiCQ7rn83l7/lE6zeHhHUTI1PI03uwzQkOlozaIqKbkTZMpcUgyf2MzH4DPb0ScLAWXSLNVOn4eXRsykks52du97AbMPl8P7HMczI8fSCkJ4NO1h99S+zZOXlCwoC0FnI0LOkH0vIrN2wmbe96U30r8hRL06TEgqZVBIA2fPZ9+yjnD28B8X36b3kjsW5pxI6upagVpxi+twJiiNnOfrcPtKpHLoUBQjCMGRkbozALnPXu96BosUW+//XD9zJzNwwn/uHL/HB9/8y3dvSLL1zmPrP3M+H669m7TcKXPPP2/n7U3/FsfJhGn6NeNwgn02STekk49EcrcCmvbedqqexeuBWYkYvemoBhxqCbxu4gU023kahsw/firKSiWwW2WxFlTWmJodJZ3qp2jauVaU4F5Wvel4UQFAkGU3IiKaLVyvRrJTQFBXMFnrWX8HmLRt5+vEHMEUT1/cuuk6UUBZxpuebJIjqxV9kL5ZleiWJnZesJRdaMvUC/vY8adKF+FIhBPX6C1nO1MJvfeG2ZTV5OWt6L+xLpSI4QRiGLyGDajQaL7vGffG5z4950e9Mkl6S3bxYlvLlspYXO/7FZbnn4QUv4EqlKMi38FeSlMV9F08CvfTYF+87/5l/GI6bV3r2vBzO9yct8PBTx/Un3H6UOvZ/r4vrwgfRy93wLzu+JEAKEJLMqg0bAXA9n9HxCYIgjMj9w5BYLIZu6lE0HwlVVpBlGWVBT0payHZqioZpxHAdl0qtSDabRoiAYmmec0PnUFQJRZXJ5wu05AqkU0licQPHsajWyhRL86QTccLAIwyhVmtgxBIYscgpLpVLyIrC1h3bUTUNy7EYPHESx2pi6HE8z6der3Ptdddw9Oghepd0c+ONN7Bx4ybqtcZC9vE5vvb1L1BvFHHcGj29SyJslWEsaBZKrN+wjpaWLPGESa4lQz6XRTc0GvUGYRByYN8pzp6cJJ1OMzMzTSIR49bXvoZGo0EylSSXzVGuVvFcH98XqIqGLCkLpb1+hEtTNEwzjucFBH6EdRMiYnVetXIFmzZuxPd8rKZFKpXh1OAZunv7yWRbSaZb8AJBW0cnrmMzNzON77pIiovnR+XDS5Z2IQGJWIx4PE61WkU3dCzL4ty5Iaanp7Ati4cevAcJF+HblKdnmZ2aRhBhzvItLZRLJbZs2ULCNLjyissZGxvBcx16epcgwhDPaXL65FFk4eM4DjMzM1Emb2aG8bFxdF1n1apVDA4OUmhrQ43HMFMJYokY/f39JBNJDD3GkcNHuPaaa/Aci8cee5hUMruQUZkjCDwS8QTlUhnTNCjOF5EXXpDnSypnZqZ5Zu9zxBIp4sk0K1etobXQRrVWQ5YV1qxZw1VXXcGhI8+jxQxWr11DpVpldHQU3/cXcMU+qVSKEydOoEgS87NzKELCsx0USWa+OM/QuSFWrVxDJpOnWinS29sFQtBsNGk0bJb2d9C7pMBll2/l+InDbNy4GcdxGBsdZXJyknqjQSqVirKauoYsy8TMGCdOHKNWq6KoErt2X82aNatBEqTTaer1JqVig0p5DhHahKGNLHm4dg3NMLj77u+QTCZof84nv6/J1dfsIhQBmrCRK2eJr30Dsqxw880307+sj4ce2MO2Ldt48sknaevsZOP27Rzcf5jpqSJjUw3m6hJqohtFzxLGugGJbDZDJpfFcRxCP+ChPXtIpVJIQqCq6kI5miCRTBKGUK83EUIiDGHDhg1s3LSRVCoFSJG+rBGjkl5JLGbSe+LLMLofOfBpK+R5/W1v4NVveB3jo6ewmnPUa0Vq5VlO5SWcP/8lzrz9WuyNncieIPnMEMaTZwlOTmFbTaamxlFlGdd1kSRpQT4qItHo7+9jy5YteEGI61m8+tW3sLRvKbbt4nkB7YVWggVIArJM3XKIx5IEQYiu61SqNer1Knd/9zs8+OBDaJoW3W8CxAJnu2maQBS1r9VqmKYZEd2pMoHnIAIPGdDU6Blq6JF2axAEXHbZZbS1tZFIRPJO8Xgcw4gRj8WjcQi5+ebrMU0TTVUXmadjsTiWZSHLUrQQFSApOoYRwzBMDDOOEALHdUmlUnR1d2MYBmEYcscdkQMiSxKGrpPJZAkWshCNRgOIGIN1TUMCNE1DhJFb5tguIhQoC4u/1tY87e2FqERbCMIw+t4UWUGSBJbtkc22IskqsqosEkl1d3VHGtEQ4caPHiUIAizLRtNiHDxwgFw2j++HCBHy53/+t6h6jBWrViFJoGkqTtPFatR5x9vfwooVPRw69Awf/ehHCIKAWq3G/Pw8rmNFGdlYbGGB/YPkTP+WJsQLzv3Lma6ZnF/uCSFz6NhZzpw+SoiDJ0mcRwH3dHXS39PH6eMn+fY/fhXH9ReVfFoLHRQ6enl+3xgHDw9SqXh0dO6kd/kAvn9+8SuQJYlUNsnQ0FkkJRozECEzczNsv2wHduBw/8MP8tze/ThOmXyLj+9FWNZqeYSuzlb6+9egmxrNurs4B9d10Q2JlSu6WL6yi0Z9hiMHn2Xk9Anmp6cWj7tk23aWr9nIQ488SbnyQinrxHSRvc8fYmDjDh5/ei8oOrqRI5kusP/wEWabZYQQrFu5kk/+5qf48M/9LHf//R/whd+5nYf+7q186O3boxlKKnOuTs+SPpxAkOpZSTbdEw0iSZgJKNVHGBs+gW1XcdxobmEoKLR30WyGNJo+JwfPUpka5syR56jMRo6rRIgky/hhgCdC6raF4/m4tkW9MgdOjUZxAiOe4vn9hwl+CJKlC+3fEtuYSqUWnrcvxateaC/e19nZubj9YuzpK/WfrIxftP+Lt3+c8f+97cL1+79EpvSjnPM/s/1Ux/Un3C6sQ3+l416I6Pzb2vlxL1bacOENedHx5WZELqSppLuX4kkSyWyOM6Uq3bIaOa6eC5oCqroYzpOEwPcDUCINTs/zmZmeJpvNkU5ncDyP1tYsYQiu69De3oaiqNSrJSrVWiR8n0wzPzlEZ1cXhqEimzrZXJrAbRJL5/B8n7GJWTZt3EAgAhCCniW9zM7M4oc+eAGmabBq5Qp8z0cxDGLxFK7r0GjU2b5zC6l0nHjCXFjAxamUS6xZO8DNt7ya8Ylh2tpaEJJMuBAD9X0f37PIZtNAtOgNAh/Hs+ho78SyLVLJLCtXrWV6egZN0+jobMNpNhDopFIpFASKKiMJhamZOR584Lt0dLbwqlffRBCA5deIxxNIXgpJViiVSsRiBqpiIkkSZ08fZdXylSiSjBAyqmrQsB1aCp0Eskm5Wmff8wfYtn0TiuujaypqOoXnuYQhJBItPLv3KOWGx8qVy0il0li2HWVkgoBcroXK/CytLXliMZNrd20BZ4Yjzx7h3OAEV3pDUaleMsHx48dYsayfWq2KNTJKa2sbmVSSdCrJ3r0HGdg8QCGdIN7fy1xxnmq9SU9LDtu2acnlaG8tIG3ahCpDoVDg6JEjrNqyhjBUWLJsCY5VY3RoiOnZOXZddQ2u7SIj6OtbwvCZESy7ybr1a5EVCFyPw4cOsWPHdlzb4czp05gLerEgMEyDgaXLCCWZWDxLqVwim87w/ONPsGXrRuIJnSB02LZ9A4EC6ZY8mWyOQsHBDx0S8UgvtVKpsmLFCoQfkE9n2fvU0/Qv66elJYf//7P35lGWXNWZ7++cGO98896b81RZQ2aNUpVmlRBIJYGEkMRgbDE+t7Hfa9vYYNp+nrBf43bT7ffsfu02NsY2GNYDMRgJEGZUoRIlqTSUSkPNY1ZW5Txn3jFujKf/iKxSqVQSAsNrWIu9Vq7MjDhx4ty4JyL2Pt/e3xf4rF2zBpB0tvcyNnGSVas2MjU1Q0u+hWp5huKqPKGKJVaymQKHDhxkzbq1TI6NcfVVV2JZJieOH0czTBLJBNlMFqdWg8jH0BSWLjBME1RAMmmxbnA1Tzz+FGHo87qbrsW3Imo1B9tX+J5PX18/GzdtJAg8vKaHaVtEEqSQNMaPcmTapK0ckaPOxz72MR577DGWJhaYXFhgz959hIYg1ZbnddcPIfWQa3bsIEBQaTZQ1RBar8ASGrVqlYRtYaERhor1g4P4QYCuCzzPR7MTSM0gChXl5RpPPPkUb37Lm2g0Ar79r9/gnnveTjqTJooiQs9nZnaGYrGIr6/CCXQyR75NtP+r+C291FWKltZ2EjQw9YCk5WNbGmHkMHP6KFFPkonOVuztvSz6KcRzp+h4fpzo2CzV9SUi3yFhW/h+RDKZQNcNVBSQTNlkM1kajSZL5TmSdrzCb9spRs9OoAmPVasGCJTCMJM0XZfqcpWsZVOvVnlw5y6uuuo6PK/Bm950B4cPHcFOZ1i7phff8+NAUpMgIoQmSKVSCCS+76OFIbZh8PiePVxz/Q1I3UCpmJ1WSkkUxfX5qVQKIWL9U9d10XWDQEWEYYBlahimQGoCUzOJVsiP4rrSWMIsnU4TBD6usPBDRRQpdNOg6TZiGa+Vd0GtVidhJwmjEMMwAIXruthmksXFZXTdJN/SQqRASIEf+IRBhGHYKKHTbDZJJVMs1l0s20ZFsR616zorEjkCQ7fwXAelqZUFmjxSi1AqoNl00bRY9uQcMlGv1dENQTJlousSI7RZWlriltffSq3RpM2I3aI/+/O/JpFOEkQurFy/pbkFPv1P/8iHP/xh5qZHaG9N0tFZIHA9si39eFJRXpql0WjS2z9IgEAGPuInmDGslOIHvfU9XxGp+B1dbO9i3/EFNta/z3ee/x6Xbb8DolhiJZI2Lauu5qrurQRKoOsm51KRO3pXcePr72BhysdIN5GZBOHyEO39BSIRa3EqQEOgNI9krkBLPsPI6Cx1T9HS3koziDAsjdtuv5nFsc0sz+/HtqepO3Fwl0nWWbO6j1RhE7NLM+gY5z/DfC0AWSWVC1jVn6TedHnmucMMrcpx7PCTAGia5NizT7DjrncyPD5OY/4FBtm+9RvZfPVrKS9XWGxA97ohDjz1NL4K2Xrta3nm1OdZu6aff/i7vyap51ma1oiaR1i71mZu2cHTYwKrSEgqDY/Knodo7V5H5+DlmGYsRySlJJ0uYtttyLBMvTZLs7mC9gmNQls/1UqTdYPrcQKwTR/hOew5OBb3HZ27TyOQgkyxBV2FnH76SRrLcwgUpmWjki3cfPtW5uYXSecLwKubYGEY0mi8PLL5o9jGjRt46qm9HD58+GXbHD585IL2G8//XSgU6OjoYHp6+kVtLrajtbhvKSXr168/v339+qHz1+vw4SPcdtttr3j+jo52CoXCq/tgPwa72B+Ox/ry7V4N+PRC23/7+H5W7eeB60+pXZi+8Wrbn6OvvjDAvBgVfTm7VMB5MYp6rv8Lt118vkv1EwFaFK+6AggpMdcN0FiaQVMRkRAsLc5T7OnGD8OYuVYJAtdjYWGBSqVKZ2cXtUoV27RXGDZj2YRKuUGtXiWZiElAqpUqxWIBzwspltoASSEMkELGDpiCUns7kddAGgkQOps3bWZmaoau/i483wepKC8vMTkxwZq1q9AkeEJQqVWxgsQK+pBACUGhGOur1hsNLNvCdV127vx+LHZf6uDsmRlGRia5+ror8cOQZCqFCgUT07Ok0ik6OjqwLRuFwg4NAj/k0KFDrF+/kXxvQNegidtsomkx8UgilUYXIdXlReYWy/T2r+b4iZO87Rfejmkp3GYTz41I5ZIsLi9RbOkiDF1M28Y0LeoNF8swufaaq6gtl1FBGDOU6iaWBT09nbi+j+v5jI+eZftrrkOTkij045ox0yT0A3y/jtusMzT4Gs6eOU4ikWLN2nWYhsnY2ARu06NWq58nSEnaLqePPs3112xnYb5BwUtSrzdwmg6XbdmC77ksLC6g/AhdMxkdG2Pj5vUUWnJ4zQbztQUay2UyhSJWpkilWqWnt4VsJouhG5w8PcxAXw/NZhPHcQi8CEKo1ipMTpzBdSVbtmzm8KFDjI+NsXHjEBNjk4TBGIMbhoiigOHTZzh2+Bjbt1+LFAK3GSO764cGKZRaUUQ06ss49SpaOksgQuZm55mbnmZoaBDP83HdeAGl4TQwBDHrq4qwUwnCQHLw4EEGBzeQSiWxbZsjB4+yqr+fdCrNwtw85cUlhrZsRkqF23R46KHvkcsnCIOINWvWYFkmqWSCpcUGpbYUp4dPsTS/xJp1Axw5dBjbMpianEI3TXq6+zh24igDqwc4fvQYXsNlcmIS3ZAoAVu3XYHjxOhQb18HHe23s2vXI3zh3vv5rd/+AIVimu9++7vUqjU2XLYJ04p1hNUKyqVCRblaZWH4eVKrbqWzsx1NWuzatQspFflCgkyhH6WF6MKls5SlotXwgFCLCctUZYyEptBL3aDiZ4xuGgyfHGH3w4/wjnfeQ4hCiyKcRh3LslecO43uTMAnDgAAIABJREFU7k7y+RyGaZDWLLo7OqlWKhhmTEK0MLdAV38v83NzdHV3YnSuxvd7WJoao2jaFLw60cwpbGcez99HlvhZ5JlZEuV26p5H3dKpZ7pwvQbmplaW1xRY/fWDZE8tMu2GdPasQQlBGPgEvkvgRaTSGfzAw7QNulKdHDxwmDMjowSeR2triW1bN+CHfrxQFoBSEel0isB3SSZtfumeX0JKjVw2Qb1eY2Jikmu3v4ZGo4Ftm0gVp5QpIVBq5ZmvvZChEvgel2/dBoj4WmlazIAchkgZs03HrN0ajUaDZDJJs+liWSbJZAIVhSwuLlIqldANK862WUkv1DSJ6zqcY9RNpjM06w6Tk5OsX78+zpCRkjCM3wuWZSGkQCqBigtgsWwLz41obesgCDyabgPdsFBBiFIhpmWBiiVg7KSN23RWCJdi1RhdxmRSRCEBIIWGZSVwG3V0yyBawaH8IMQwrTgxN4pQKKIwWhkT9Pf3E66goW1tHUShj+c4BH6IKSW51lbK5UWSKf18rb6ZTPCf/+L/jq9j3sa2dSanprC0eBFOS1pYps7w5ASdG4biwFqGhP/G5LbzzuolELY4G2nlby5NHqOZwMp72rASfOjDH+UTf/rLuI0KUdOjtjQHQKDALvRhKR8lQ2ziNP1zY1hcKvPM3u+zessAkdZJsbOV5Zll9HOpiiiUEoQqIpVtZaCvh2cPDLP78X14frDCUi8QgU/Tq9NwI/71oYME4Qr67gBmntCw0fQkUXP5/Gc4cKrKa7Y1SaUMspkckECPSqzudGmu6Byv7imRFouMHH4MtzyObbxwvb730MMU8t1YVoK164ZobWvDCeDuHW/k81//LgCDA+tIEtHX3sTwFpiZHKfcyJJvX8uje78cX4cwoCOfIZfq4uDhAyzOjjAzHWuT1msVlKMwvAKavcyZsdm4zAbQpEYoNPrWbcAVEs2UVGXMt1FaFQdjQkq0UOH5AaZt4XkeS/NzVBbnEF6NgXXrEWaSLV09aKZFiH7+e71wPpybKxf7a7Ztv8QP/GFTQS+eXzt27OCpp/ayZ8/j558nF44DYOfOnQD09fUxODj4osy9W27Zwb33fp6dO793Sf8SYNfsdwDYvn37eRIogFQqxfXXX8+ePXvYufN7fOhDv/MSRFkpxc6dsX7rLbfc+pK+X0053cUZhxf3f7FdKhB9gUDppc+Ci/39KHoFKaLz214KIF3KXglUejUxwk8jwvvzVOGf24vs4pz8H4dFwkAoiRmBJYEwRJ04w7oTkyx+6kvUPvNlwq/twrv3G6gvfxeeeJ4oCJkYH8dtNkmnUtRrNQSC5/Y9g6nHqcS+5yNFgkYtwHHiVXFNB68Zkcm28O3vfJeaU+fo4eN86YtfRpMmfqAIAliqNmg0XXzP54k9j6GpiOXFBQLXZWJ0FFs36Glrp1mtxSQstkmhvY1U2kZIWFxcRCmJYSRwvZBsPo8fuoTK4/Y3vY7Ltg2SypgIGZHPt2AnUuRbinHKmyZJpbKgNHwvwnUDdM3CqXsszC2w45ZbaOtoJdHiQaJMrVZhenqaMIQwUtSrNZYXFykWCkzPzVFqK/HdB7+NlArT1KhVy5w9O0U228Lo6DQHDx8ikYiRKttK4Lou9VqV5aV5Hnv0UU6cOEUUKZbmJwAP29bp6Chx682vxbZiPdl4BdgklDYqcKlWh9mwIc/hA0+yun8A2zRZWJjn+ef3U2prpX/VKlpaCiwuLCCEIgrKOJVJ6rUlXv/mOwmVIplKYto2x48d4+yZM/T09LL/4BFaSu2EQuKFkEsnOXbkEPVGHV8JTo9N09beTndPHKRKIZgYG2fVqlU4jkM+n6e1rQ236nDswGGiwEcIGBsbY3ZmkmTCZmpqmsCFdWs3cO21lxGFTRYXF+js7OKmm25CCMHIyAhr1qxh3dp1DA+fYu9TTxKGAW2tJTraShw9fJCFmTlMTdDeWqS1rQRIcrki5WWHWsVjbmwCp1rHsixCEeE4Dq1trczOzuI4Tc6cOUNXXw9WMkFvfyx50NfXS8Nx2H/gOWZmx7n2um1cfdX1FAqtHDt2jP0HnkMRYJoWex5/FN2A9vYiJ46dIGHZrO5bRX9vH7l8kfnZRbZsvgynUcfQDUzTJpPMEvohY2dHicKQTCaD6zogPBrNZW68cTt3vvl2AukRSJ91GwZYvbYPzw9IZ1JoQlGt1qiWq9z3xfuZnV6gOyd5alwjDEO+8Y1vrJB7eXhRlZm5EbZdPsj8mZPs/MoXMfUiKbuT5dkIb0nRUplDs0yiZpkwVKTSKVzfp6WlBUPTePKJJxBCMDE2tiLhInB9n5rTJFIBl122iVOnjqMIacnlee6555iYnCQIA+ZnZwmCgGwuRxiG50l7Sj39RKkW/GwvXnoVeycUzdZt+O2r8fMlVBQSBh6ms0hx9jQdw3toMRsUS1kqzSaz77gevebT3lB4nouhm8gVXemknUYAU9OThMpFkyYDq1bzhjfcxjXXXMXGjUMIMxHXogYerlPDa1QJQh/TEHheHWSIIiDfEqfh3XDDjcRsvBpRFOK6Lo8+socoDM+jpo1GAwWESKRhkcrmCJAooceOx4rTpGna+WPgBSZOTZcIAUEQsbxcpb29CykFUoLjNFeYcWNkwzA0tBXiI01KDE3Q3VbCqVXid4YQaJokCAJ0XcdxGnHgKQWe7xFFIV/6ly+zsLjE/MICuqGjaXIlCI/wPBcERCogjHwq1UUiP4NBAUXMAm6ZBpXycuycRwrXcSmXyzSdGkp41BuVGGWVGkEYEITBeedLN3R8LyaDk1JgWhqgaDSrWLYZB/qAj4+WgKpTZT5hMatbRLZguryMspJgtRBoOXQDWgp5KpUKKInfaLBv3z4idBQgf0JOn3mPh3mP94MbAggXJVYIYoSkHAr+3Ue/xq9/5P+je91WgjAO4M8cfpKRfTupjj7P+P5vc/rogRdqXDVB4Dc5efBpPvwfPkoxNYCdSJEImizMnJMYUYRoRGgkkyX+j/f9KgCjY+N8/rOfJ2p6LE6M89Uv3MvU4hnWX3YD33ls7PwwM6WtOLJEtqOT7p4hHHfp/L57H9hPtX4uTmsSeVP0d4WcGn6anY8fA+Dum/tY1Svx5/Zz1VAet/pCiul1V11Bf3cPTz76BNWlRQK3wS133EKtUae7O071PXnqOPuf/DSHn/kUaV1w2eAbae24hX2HbZ58+gXUr6YShJ1XUBq6mshvEK18DYHfYO+TX2Jp7nFaO7fQPXA57V29K9ddgS4IdA0PhRIhCVx05SPCFcQ79Dl16CjTI6NooUJXgmJLhmzKjoNOO0tp1UaUlabmhkhd45IQ3suY7/vnibB+FLuUtue73vVONE2jWq3y93//iZccc+bMWb785fvOt73Y3v3uWMf29OnT3H//V16yf+/evXz/+7tX2r7rJfvf8574+N27d7N379Mv2X///V9hZGTkZY//abALSZzOlWb8LMvV/KTt51fmp9wuXLl5pZWPc/svtdr6SsXk5+zlbpQLz3sp6u7zbJIXobEvqoVVrJCXKPyEifG9f0b/mz/gmbduZ/x/fwvpf/xzxt91DeIvfxvzv38Y4Xj4j+5FCotCsZt0rpVEIkXgOtx86w4sy2ZucQFpmigZ0tnbzezcIo/veRrPjZCGTqVa5eabb0ICW67cxm1vup2GUyadiiUrVCRJJuNV/OMnzuIpDU0z8JWgd/UAXX2dSFsjmcsSRRr1soNTcVCRjm0meeT7j9KoVvGbDkJ4CBWgo0hoGkkrgWUkqNWaZBIpzp44Rug6qCgi0jSUEBRLefLZFJXFeSrLS9SbTex0mlJ7K1ITVMpVlIrrbxt1j1KxndAPWZg+g2ElaO8ZwkymkNIj9HxuuuEK5qfGiQJJqa2TlmyWoBnx4IPfYn62SmVxgcD34tQ1XcM0DcbnKpwYGWXb5VsZPnoUM1XEThTxfZ8IDzudp1GpMDtZ4/DBozQbi8ggwLTSaDLBwNobyeWL2DmdXClHIpkml2thdnqGZ558nEw2RS6XACGRxaspda0hnW2FhkujVkNF8K0Hvkm9XMd1HE4PD/O2X7gbP6izZfMmGjWPyDTxQoNiqRvNNJifnMb3Q+qNBq7XINuSoN5cJJXLIjWJ4wtGh0c4e2yYttYifgS5QjuvufFaXM+nt6eDTRvXUCi1MD41TaXqMjU5S8pIcubYKU6dOkE6k8VOpnADj/buVq57zQ1svXwLyvd57vmDhJHOtm1XcezEIebmpzFti8VqFaGFLC8scurkME23ShgpnnvueepVh8AJCQPByOmzdHa04jTK9PZ0MD81gZCSRCpLud6k5ng8v+9ZOot9nDl2Ci2qgeHT1dtLb/8goTIptnYwMT7G7NQsg4Pr6VvbzxXXXEE6mwFNI1QhdkKjZ7CPRCZFdanC3MwMybSF4/msXruJqaklGnWfIPBJp1to1Jt4fgPdgIGBoRiJ9xx6ertZvW4NadvkyKGjlCv1FeQq4Prrrmb/07vRNcHd7/1NhGFy4tgw02cr7H1yBJHOY+Ry+MrnzMQS/+Pj/4qnpWh4IZYtaYY+1Ylj+NUTVI7eh1Orct8XvkJtocLM9Cw33HQT12y/nqWFOU6dOUMincdXEg2N+clpyss1okhx8vgwulC8dsdNXHvta8hn2nnyiacZ2rweQ9exLQuh6XHadCqDZhjoRgrTtJBawNYrr2RucZGaa2Fme2kksnhmkkaqlbB9PVGqSPbkk4QL43QM9GG1Fjnxpg0YJ2YIq0vMTZyGSOBHJsrQaIYOPb19aJqJF7ikMykMU9JSypJI6wSBi2GYJFN5EokWypUA0zAJAknoRUROA99zEdiESnJ6ZJhTx0cQwkApA9tOsHHzEABBGBKJCDtlxwFGFGs+h0pg6BraCnIPoCIVE82JWNJGSB0hdTw/XJHLibNSkukMSmoIzSYIJYlEXE+sUGgI3LqDJiRBpAh9hdTSPP7UASanponCCM91gZATx4+iIkgmMytIoYjPoyRvetPrcZt1vv/ww2hSo1ZbRNc1dM3CNEyEiDCUiaY0gsAhoQ8QOL0cPXgYqRRP732axXIl1mFWAbqt09rRjpHMoAkNy4jlxULfp9lw0KSO0A3cIEATEk2DWq1yHqxyXRfLSoCmEBJQMD12ioe+/jUWRk6T/vC/p/7+d9CW68OUGpHfYG5qFEKHXLENT0iMRBZD2thGk86BVkwtRAsV7iWYhV+ZPOWCdurFPy96j5dCROulg5aL+5aRhlhJFUYpbClRURPSea56/T3kCu1xO83i6PPPsufBbzF+5CBP7/xMzDYNzE6Oc+bIo6zfegUTxyp88mN/RaUxR62Qp9Ae1yoKBEr6yFDHyGd47R1v5c477wDgAx/8EP/8T//El7/wBRzHxUr38c73/TbP7j9wfgEl2dZD/+orEUGK0E6TyHac/wy+H/LLf7KL5w5MIUNBEMKzp1x+9c+fxPMjOkoJ3nHbaqqVaU4OP89S+Syt7S+Q92TbDVo6k/zSe99OR38P/WsHOf7cHvLpCjffGOuEnjwzxrceO0YqlaNpSaajAv/ynef49d/9CIWWfHyNTIuuoctJ6hopK0WqrR87G+/T9ASZ0mp6N7wBu9SObVuEK2m8QoGM4jRHHUEYCfwgRX1+gtNHngLAc10OP3Efk4d34lemiTSb4xMVrnr9L3L93b/Cn/zpR3CqFTSho8tY7zn2sWSsZayFKD0k8BsEpoavixUt+gqLi1PMLywxO7dAo7EivRVFzM/Pv+jnYjt79iyJRIpEIsVHP/pfXuJDrlu3jl/91fcB8Gd/9p/4x3/8J3zfB6V49plneetb34bjOHR0tPM7v/PBFyGdURSxY8fN3HbbGwB4//t/i/vuu58wDFFKsWvXLu65Jw52N2/exHvf+56X+LHvfe972Lx5M0op3vWud7Nr167zn+3++7/Cb/7m+wG47bY3sGPHzS+9WVbsQh/64vvnlVJ5Xx0h0gv2SgRPL2wTKBXX+F9I2KRp2o8U0F4ol3Px5zx33pciyXEGjBAKtfIM+Gmxn6cK/wzZT4J86YdJH/5hz/+yx+s6jXSSsWKKmuVz2VA7z9w3h5WCjdu2EPzVh9Hveh+trUUaWY/77ruPt7357hW2SZ8zZ86ycdNm/CDEV+F5wiEpNdo7OqhWyxSLeXzPZ25hhtbWLkwjlt1YXFxCkyYPPPAN7nnHWxCYvOtd7yCM3LhmSjNQStFsOiilUV6uUiy2kEgkCcJgJRXP5+677yZcOW8QKebnF2lpyVFvOJhGfJOnkjaXbd3M/PwkmqYDktBzWS5X0KSGJjV27trN1m1bKXR0YEhJ03EwTYOlxWUaE5O05HPkO9rierF6hWee24+KnuGuu99E5HsUUjlar2wlDJqgIh57fC+1hkt7a4FG0+Hd77mHer1OLptCSJ1QRUghcT2PjZs30NXVgRKK/tWrSSQTRKFakRkSnB4exrIiQt/g2MkjbNqyHk1AFDbJZDPolk57ZxduQ5FJpanWKgjh0dO9BqGg6QXISh1Ra/D47qfYuOMKtOmYQdmUGkoFoPl097fT2dUOElRgMjs7zez8Apl0FtdVbL9uO0KLSOVy3LjjZjTDxPUC2jvaCT2XIBKEYcj8/AKFti7aO9tJp5P09HezXK1Rr9XIF0pohmRufpLBoQHGxoa5+uptREqRTGeYmp3CsHXK8xUatRrFlha8ZoMocBGawemREWzbpqVQ4tTwaQYG+lm9di2lYpE9jz3Ba2+5GV0E7D30LFsu24puKXwvoqenB6KI0bNj5DJZtmzajFKCTC6P0CxWDw7h+wFNt8ma/l50objuxtdx+NBR+tdtIJnP4nsuJHxGTp9izZpVVMplNm0cYmCgnygIWZhdoKe/j0Qigec4jI+N0XAarL9sC/VajYbToFwp093bw7XXXEl5aY7rrrmah3Y+xC23vQ7TSJBMZpifn0fDw/IiECGu2ySbzbEwN08QeoyNjdHR0UFrKk3gu3T39DDQZhO2baWtVKTacHjqqb381vs/yK/c+Q6+/e37GRpah+d5bLp8E3/3yb+lUl2gpaWFKJKk0glCbxFfaiQSJk0V8sY7b6e6VObR3Y/wv/3KL2PbOm5NsWXLZQgpIAQUnDp5iuuv304+X0CTJiiJpmsMD59CSkkmneHggcMMDg3RUmjBc12UgiAIKC8v0NneHfMpKojCkLbWNkbPDhN46RWCoAjfdUiYGo5uE5k5siceR+v3CLs3Uu20aPS1YE5XSPW2MzY6Sd+qNQiC81wDTceJEeKmR6Nep1jMYRgGhqnHEj8CpBR0dbfjNKoYhkEYBkRRiG4kcJs+R48cYtOmDVhGFk34RJEiCqDUUiIIBciYEEAIQbPZxDST+F6I1ATn2CJt2z5f0hFFEVIE52vR47rTkCgS7N+/P86UyOdjR0ZKoihEEpNQWWYSRIRlpVAqIgp9ZmfnMKSFIsLzY4RViLiOv7OzEyHitN5Gs0kykYhrIKWgVCpRrzW58647iaIIzwtJJFakxpRGFARIoRBAsVhCoGHoNlu2XMbS4hxbtlyGnUyhIeIykDCMx+sHaLaBpsdyPSg4dOo0g0NDWJoWl5SEEZpmUiq2EwQx6Y+uWzRqS2Rzac5p7wyfnedTn/4S//2vPoquQcqK061LpRJKhbS2tmLbNvWGx0MPfY83vOEN+EEDQ8vjNomZXGHle3hp+uKPw/xdBtERjWgi7j/Yq9P8WFxvKVoV5j3u+bbB3tjdiyYkzb+1iROLdYSy0Ny4Lnlg3UbuvOq3Wf5OyPKpeTrDiLDyMADZg72sd+5i6uZH+ODvvp3VQx24n7MxlhOER+LP4x1WeH+TBhTaphB9h88n/uHjvPH1d3HwyEF+9w8+jKEZJM0UZeePEULwl2/+H/zN03/FaGMUKQTNhwT+QYFhZdDmhs6P/y/f8N/4vW/9Ae/4owdJJUyiKMJxY6Q4Z2X49Bv/lq5nNhKGgtW6hWfsZTnzgo6r/s8DNMoNukrttEerqT0asr3xFqLTkrVXL3D7jev4zqMnue/BI9z34BFyVpaaVydUIZd3Xc47r3wvf/ivvxfL5SXzyFmT7Nc2kY4GsY8/C0CinKfn4e3xd/OLLrnO3Pnzh8d03L87l+Yaz83Q85ioeYRhXMtrJ5LcUvswy2cXWDxkk8oJxNIFc2fJRqvPEqZTyJMW7vfNF82HOOsCAs8g9/suKpIoJH/5K3/LXzzwn18yf8bHx+nt7X/RtuW/fDGZmLv4wjlU/YXt/i6N8HAclP/5wF8zPHiWh048yAc+8EF+90O/h520z+u8FpJFvnjP17E/24bLi824OeAzn/k0b3zjHTz//H7e/e73YOt2zJ+wwibc29LPvXc9cEl5KV3Xue++L3Pbbbdz9uxZ7rjjzvP60c1mE4CtWy/nM5/59EuO/Wm1/79Tcy8FeP20MQlfaD9HXH8G7NzK1A9q83IT7Xyx/8rfr7QydKnVoAtXhS7edvGqzaVSSc7ZubbBn38c+799lre+453YSYsv/v3/y+zMDFs2bWZ6coolFMt/+6fou5/Cdhr84tveShAqHn9yH1GkUEIwOzvD6RPH2b//OYSAA/sPsH5oPctLFXSRYHZqganJOeZnKvzjP3yCptOk6QTYZgKB4j3v/WWS6TTpbBrN0HD9ZqyhphSRitA0HSl10qmYTMd1m0SRj+M4eJ7H4uIiExMTHD9+HNtK0lIqooRGMlOgXIkFsjUtIlQBr7t1Ryz34Yc88JWvUV4qMzo6zne+u5M73/ILdPX2oWmKmekpokgxNTnL+NgE3d1dJFNJquVlqpVlNENy0+tez91vvoumU8GpVhg9PRbXukmDxYrD8wcOEUWKK6+5hiuu2oZhCtJpg6bno6KIRq1CrVZDNy3shEFLIYedSlJ3m1TKy2hS0mjUcRp1rrrySlb19rNxy1re8ra3Ypsp5qdHqVUXUcKk6tTIZPNYWoZapcLUxBlaizlCL2D/gYNkc3lKpQ5SqRTtHQP0rb2BT3zic5w8ORIzJwYR11x9A+1dq3jwoccQIsHOBx8mCBQQUSjm6OxoY3R0lDAUpHN57HSK8bEJTNNeeSnr5HMlDE1iGhpRFJFIJSg3ytScOnbSolAosLiwhGVkmZ8rY5kpurp68P2Ib3zjW6QyWTo622kp5tmycRPjo2MEnsv87CxCKGzbZO3QWgbWrmVocD2KmJW5u7uHIFBsv+FGlubnCQOXjRvX0XBqVCpllitVEJLycoXZ6VnGR8eoLldoNJqYRoJIxE7FI4/tIfADzoycJpO0UX6dlBlRzMfSFprQcB2HvU/tYWz0DKHvU6mXmZ2fZmlhEV3qPL1vH1LXSGUzaJpGIddCFIRx4NpocO1119HR1cXw6RO0thUY3LCOyy7fxvcffgRNmpSX65RKHTzyyBPc9+X7+Pxnv8j+Zw8ilCAKAtYNreXOu+4imcoSRYpMJsuhw0fZOthJctX1RH6Td//iu/nAh34HDJ9Dh56kv6OXz336XsZG40WBYleK1kKKRmWJxZk5ZOQha9OgmWi6RiaXQTMEbW2dbN++Hdet4zVrnB0ZjheJIkVluczy0hL9fb2EYUSz6ZLNtHD69Bi7dj1Mo1Gj3qii6wb79x9C1zQ0KVFhRBSFaFJSzBepVCsgwLRsbDtBFCkajSatpXYsK40KQ/LZDG6zga4pZKqVWrobc/Q57KlDZPI55E1DmGfncZse+/Y+xYmjh+NnhxQgJIlECjthk2/J09ndjULiugFRCPW6g+/5eJ5Ls1lH1+P77hyhkSZjpNi2dcLQIYwaCKEYPXuGR3Y/yuLCEl/6wheoLJVRvkRDx6nX2f3wbmYmp9GFRuD6aCu6pr7vX/AMjwiCWDInisKVlGDJ1m3bKBQK8fNcxanMqAgpFU3X4fSp01SrDmhGjOp6DrlslmQmwc233sS6ofW4TR+BRNM00uk4wFVhQNJKoEIwpEYUekRRhG3b2Fas413Ml9Ax0IXB/Mw8fjNEEaKERt3xCaI6tcYcx4+dIJ3Ko2sWCEEUxmUMImaPouk0CYKAarVKo14nihRr161HN0ykionGEDpRJHj+uUN8/YFvxjIhQpFKpRgbG6Ux1E1omQyu38KnPvcl7Ewrn/70Z5Chi+d5HDlyhOXlZXK5HJ/4xCeQJLjjjXfSbNZYLs9QLXts2XwFmmatvPguXVv2cmjLq7Ufj2Mp4vfHSkJwpNv4WgYrnae9d4Cu/vWIFYSnXo8lvGrLI9xwczftnVmSVoKkaa6g7Cs0TurFbmWxWGTXVx/ij17/fzHYth4pJLrUuXXoNr72a9/h17b/xvm2KlKYusAydVDqPCsxwOaOK/neHz7IW++8JSYHixSdmXbeffnb2PW++7i883JMK0kylcQwJM3qLLOTLxD+yKiCIWrUK+M4tQk8ZxpND5EiQGqKj//XX+MPf+NONnYOYmkWoYrY0Lae/3j7f+Jb//5hMon8uZ5QkU4YCjTdRDfs83Wm8TJS/FwXgov8NgUqwnddiAJcp870+AmyWZvBDbFMYBAG+BG0lNrwfJ/lhXl89wUypXyhyGc/+XEsEaKf10QSiBiORyIRSuA2HN5+8y089fDulTn14wpCLu03WrrFfb/2Tf7m7f/A9QM3kLJS+L7P2rVr+cAHfpunfu8A23quvGSPSiny+TyPPLKb//I7f8HWnisxtDiQ39ixmd+/9U/Y8x+eo7+w6mWP7+/vY9++vfzxH/8RmzZtimvLDYMrrtjGX/zFf+WRR3afZxR/ObswY/GHuRdfHYL6Yp/5B/V9qeMu1oR9tXapuuFXM4ZL9fPTYuKnaTCvZJ7n/WwM9CdoP+qL6sIb5gelGbxSofml7Fx/lyJuutjO7fPe98cxa/A/fJRn9zzMnq/fy/TpYd7zR/+Rjt6NmKFJYIP58c+jfecRlq69HCUNvvmt7/L2X3gTXujtHcvDAAAgAElEQVSTz2Y5e2qY9t4ebDvF88/sZ93aNXh+k69/9Tu87qbr6enpIvAjKrUlstk8IHn88T3ceON2hG7hBzWEMgGdz37uM9z02tewZnCISrWMVCGGkWRqaoJjx45x6+tvART1epPd39/NLTt2sOexx0gkElx97VUIGZHK5FCRThT4BIFLGHpYdgJhmIRhyML0DJZhks/lqNeqLCxVmFuq0nTqXHXlFpxGlTAAy0oQhiGZNbNEStEY6aBcLtPW2YFAYJkxO2fT9ViaX8a0dAqtJfzAp16tkLBsPAWpZIK5uWksUyebK4EKUWFIrdEg31KkUlkik86gFEipsbg4Qy5TJFIhmq44dOA0tUqZ3oEOunpWEThNjh1+isuuuIoo0vE1iQx19j/7DFdfcwVB4HPmzBhLCzWqlSWuve5aXM8l+8DDRP/yMejqYuT4Sb5w7+f44KYniMIIufrNRMDx48fZvGkT5aVFjp84SjKdZPPmLQR+nWefOcSGjZtIZfSV4KKDeqOBYZo8+dge1q1eQyAiNBUytVhm8/pBDEOn1qhjmBZjo6MoL0AzMpQKadxmnZnZRbZcvo0vfelebrnlFpJ2gnJ5iaWlMgOrBzhz9gy9fX04joNh6iQyaaTU8BwXXdNpNGqYho5tJfjG17/FG267jXJlinyugG6kCEUEoeSR3bu5+eabWVhYYHlphqH1GwjCCM/3SaezuG4Tpxmzuj6/by9dHe2kUjqmaWHoFiA4MzmF4zRZt26Q5aUyLYUCUleYpsXi/Dxtbe2cPnWa6blZhk8Pc/01V1PMt1D3XPp6eqguV/BCn2w+j1QC3RJ4fojTCJmcGGP07CSjYyPs2PEaSsVepqbGSSRSJJNJgtClpSUbY3dKohRYtQipFG4qRJ34MuKNn6bhm9z/wDf51d/4DXQdGtVZdC3J/v0HME2TrVduJgjrzM5U+av/52P8/v/5pxi1YXInvoIfjMdKlGvexvzcIpaRZn5hlsGhAQLfZdd3H+SmW28hVDojZ87SViyhS8nZsXH6+vp44GtfZ9u2K5icmuamm25ESDg9PMLzzx9g7bp+NmzYQDaXxfN9nnn2Wa7cug3NkEipxURwUlCv1bFNA6dRIQxdDAmajPELp1HHTGRwmw7Kb5KrTbG09ia8SLHu3qM0cinMtf00HYdEPk8YunieJJ1KE8X0QRAJpFB4XhOUjImcAp+xs2N0dfUgpQdIbCtFs9nETiXQpI3r1XCaVaSwyeZy1Gr1FYkjk4XFWYqFEroeS840GjWUCvGDgJaWFsRKetnZsbP09PScR0KFjH+fIzmp1WokEqmYuY6YIMZzXeyERblcxraT6JrGo99/lCuvvgYraRMFLirySCQyOM0mhhmjurqmEwQ+UkIUhTELteuSz7XRdFw0XTA1PUp3Tz+ouP60UlkinUoRBiCExic/+Une975/h9IidGljGOCEexFIvnH/BHfdcSdf/dpXufW2W2gpFc6JvKAJwfLyEi2lVgLfJ1Jg6AZBJJAipFZZJJtrIVI6htQ5cPAQoFi7diCuc1WSSPn4MwskDw5z7Pd/hUKpnbHxaWbf/mus6u8nd+9fE4QehUIeiHj0sd3s2HEnrttgbn6CVQO91GenOTUyzlXX30ggQYkIqS5GXF9IvbuYPOVSKYqvZD8s6eL5fZfELV7QmVXSJdQSSD9kYfQUR597hA2DnYydOEjf5dto79mOL3RMJZgYP4ZlS1rbewhkAYV/6bGujEcSEV5wTeSKtNTywiISh7ZSESUThBKiKEAS4jQqmLrEMPOIyOHQ3u+RMJqYwgdZRygdS9fQNJ/y/CKuW0aKJroGXtNHaT6WUcBxXOyEwmlWaF91LbPjkwQyg0y3k8/240Q17GQnvd2DzEwfwNBLtHSsxlNGzDoevvDdnatH1DQjvm9tm3BlMUXKF6697/sEtWXOnhlhemKE9WtX89ijD6FpdW685a1MzywxNnqK0HVobe3n8iuuIF/q5tCBw9QadVZvvJx0toAMm+x9bBduvc7r77qLQGkEgCZDBAZhIHHLi3zti/+MijTe8+u/gasnYmmsMCKQP3henP+uLkHa80MtrFxiW/QKx1/qHD/MeX+aEcILTQjtkmV3P3w/r46c6cdn8id2jU3T/KE61j7ykY/8RAby47YwDD/yv3oM/6vtR500F6ZX/Lgn3sUrTBciuhfbuW3hAw/Fv996O2vXraWUThKUF+nduAXdzmJJi0AFlDsKZD7zVU7gE+kWU7NzDA72kc6lcZsNJkfPYCQS2HaCXCaPYRgEvo9paLQUk1RqM0g9pF73OH7sBLVag1w2TyabIpIK05KEoSCKNLZtu4JiMUe1VieXy6FJhee7+L7PFdu2EUUKx3FZWl7iqiuvwrIs1q9fT09PD9OTYxQKubhuJJLMzCxweniYdDqJNExCBbohSJgGMopwnAaB36C1tZUoEpiGCYGHt7Kt2fRikpBMGZB4ixn27dtHKpOhXpuh3vAxrTzDI6N848Fvkk+kaSkWMUwN16nQkk2CYdNwHEqFEiiBF4Y4tRqWoSOkhtR18D0sy8L3AnzPR4goduZViFIRHe09rO5bi24LdMNEU4qWHASBhWXnUYbA1CzaO7NIaVEue3R09GJaJrryYkHyWp3sYoX6+9/Bpz71KVb39JDP5Wlp7kcKnTDRyuTMGN1d7YyOnKZSqTKwehXzCwt0d/cS4tDd3cvIqWG6O0u49RoL84vMzc2Sz2WwDJNsMo00JI16lVJ7FyMjwySsJKZpYdsWCcMglbDIF1qo1eaoN8rohkBqoAvJqRMnceoOtapDz6puTpw4iR9EHDx0DKcZ0tvbjdQ1IhWhwpDlhTk0qVBhwPLSEmtXr0HTLGr1JaYmp1lcqjM6Nsbc5AydnV2gSVKZDI5XJZPN0GjUaTpNDux/nsryAslUlmwmR6m1HcO0yBRacAPFkZMjlDp6SKXStLa1YZgWtp0klyvgqxDd1EmlE0gNiukCArjmumvJ5HKUy8srwa/O0SNHmVtcpKe3Fy+QfP5L97JqzQDJdA5TM9m0cTOaDus3rOHgwYM8+/x+rrrqOp555lkeeWw3m7dsIpHM8PnPf5Fia4l0W5p/3fldSmaF8SWfmeTVrB7oZfXa1fhhgB96GJqOJwXtnd0UW4pIPBrVeQLf4sSxs1x95Xam9z9I0faJ3DmkkKjMIBNjk7R19ZBryWLaBr4XkE+XOHHyKH39A5imxcLcPAcPHKCvv4d6vc7MzAzDp4fZseNWUikbXdeYnZmnVmuwenUf6XSaWq1OMpkinUljGiaNRg2hxXWeDb9JMhUH6oYZr/S7jkcQqhUHVAOpVlAgCDSb9PRhzI41hFaWzMEx6iULQ1doVgqpKUw9iVIQEaJUjCT5vs/s7CyjZ0cZGx9Hkybf27mbQwePcuWVlyPQOHlymK985QGKrVmq1Rql1haqlQqlYgduqDAsEythooTCtuKV92qlzuFDR+jp6cay41RcTdORQsN1PVKZuM7PcZzz9VNCxMRFYRhnl3ieixAxOmucJ2+JsKy4dlZKSW9ve0zipGmoMMTWYykzpWJW4ygSlJfKaJoWL35pgiD0kQgmxmd48omnWLNmgGw2hZAaY2MTZNIZ7ISFqWu4TZfy8jId7e309HShWwago2kCPxpHSklf57WgBLNzs6xa3R+zCCuFZuggoeE00HVjJZjQUZFC6hqajLAtQbPp4IWKKAxpb2+nUGghUj5B6BAonUQyCa6PMb1A7YYBim0dKJmitPcQlXKN6PbXEEUhuVw21gbu7UHXTSIVUCqVEELnyMFHSKSTtHX0EImYrOoSuU0veS++3P8/yH7Ud7ogRuLUyhgNmkgVIRBIQhA+oeEhfEnRSjN15mlOj3wP3Zdc/pq7aKoegmRIoAly+W5MqxU0i4AGUlyiCk0IfM/hyHNP4lUXyBZf0NMMggAhBEnLZnryDJ7roBlJDJliamKBRLJA0s6jk8SPNHQ9QffAEKaWo+oYaKYkmWknCHUWlxbQExlCGSOfC4sVTD0FgaCy5NHV3ofvNclmssxO18laNpqWpL17NTKxlo41q0gX1iJkntn5k+iRR6HYhSZTiCiKZaiIUCJE6kbMBBwpiCJcpwFRhKlrvFBSHPtIRtMnoevYmkdSdxkf3s8d9/weSpWw9TyW67Bjxw7OHn6KM2fH6Vo1REt7N22d3RiRR8rSwMrStm4DE889xROP7iEIIlKpDLZt4Hoh+/bu4+SRvXS1mrzpF98FSRtXaGiRxAwhlC8OcC4VJJ6zC325HyUT4FKz8pV6eWUG3Vd/3p92E0L+QJDn1fXzYxrQqz/jT+waa5r2Zz9U+58Hrj879m9BXF/u+B+0WhunvGov6uOVfi487uX6jr6+K07Tu/t1BGFAsX8NTS+kq38DjheSK7UwNTZCoasHceAYRWkwGYXkszm6uzoQ0kAIna7uHubnFkkmUgRB8D/Ze88nS7LzvPOXJ7253pb3Xe1n4GYwGICCI0QQ2uUS3KBZkkFpPyxj94uo3f0HNrih2A+rjVAoQkF9oEiJnoRAzMCDwAwwpntMj+nu6WpT3eV93aq6/qbP/ZDVg8FMj8UQkqh5I25U3byZJzPvOTfP+573eZ8HVVPY299ldmYCTTNJYgnTdFA1i6yT57nnLnDy9DS6lafXPkRVdEI/wDJT/cUoCpGStIZVUSQ21zYZHR1FVhUkCdZXltFVnVwxB8qPmTmjKEJR0uzN1asLrNxZRZYlxkbrDPptFCkmjlNIlqwZbO3u4bpgOlmKpQKlUgHDsjEzGRTVIIhinGyOSO4QBdA7FNx3/31kHJtMuYJhWggJ8hmTqbFhJmdncL0BlmWimSZHnS6alNBqHqQBp2JC7GNnsiSyiq7KJP4AM+tw1GwhCQlVVyGRiJNUi1VIJrIu0WsfEvgH+K6LEAqSKqNoDoqqEhafJ5ECtKhAFEbIAvb29vC9gIPGPotLt5kZHqG9tMbvX7vGr//yL5IIlfrIMP76BbRsCT07xM7OHkNDIxw0jzA1i2IxT8Y2sEyd9Y09VlfWmZs7xdLyBprloBKyvb/P7ZUNPvKxD3Fr8RqW6ZDN5rl5fYHZ6RkiUr26drPDy5evohs2CwtXefG52/hBi9GRCqXMKKV6AcUwyeRztFqHjM/PktdtpDhhaGwIUxfIioquatxZvINjO/SDgEq1ShKB5wX4YUKnd8jwyBiu57O7s8MnPv4wVjFPaaiMnbHZXFknlymwu71Ls9lE1w1koWJoBuXRGiKJ2N1Yw7QNZEWlc9RFJAnt9iGZYgHLslhZXmJ7Yx1TVbhw4QLTk1Op3FCcIAwDwzFpt1rkHBtNken0Duj1+oyPzTA1OcHe7hZREHHr+hLjI3XKxQya4tN3W0zMzBInMrVqmfkTcwSBz8bGOp/59KcRkoRtKszOzpF1HAwFDjaXmbZ2+cpCkdzUhxmdmaSQzdDY26OYL6FbWSTh0u12MEwT285hWVlMzeKjD32Sv3vyST45qdA+2keNj0gApf5hStUK4KKqMlEYIoSCmTEYnpgmkSQ0TaPV7rC0ssL9H3mQnd0GlUqVxs4Wc3NpvTbI9Ho9VBEzPT+PkFWOmk1azUMURXB94Tr5bInvf/+HzM3PIQNCkojjkIgEzTQBwebaMtVKgTByafU9dC2H7wegquiaiXK0Qfe+h7BeWEITCko5C5IGsp5CLxOJOIwRkkQQeCiqjKYp9Dou/V6Per3KfedPc/+HzhIFHr4X0On2CeOQqfFZtrY3KBSL5EsV/DBAlXXCwOew0cU0DeIwQVNldEXjsNHBztiEcYDtZEkQ9PoDvv2d71Ap1zBNFVVVEZJOIgk0XSeJI+IwxPddTN1ClkMkKUQWCkJSSEiOs+wJrttFM6wUNprEIIFQVI6Omsc6sjKKkNFVFUmKCYIBiqqiyDqKZiBImJgaR9VUIklGxCpLd+5QrZZJ4TcylmWTLeQo18qpLFoUEUU+kpTghmsoikLGmUVSYHJ6ElVTUWSRBtZIxJGU6lF3XZIoQlYEQlaIwgAhyfg+qIrDiy+8RL1WQpZTiGXKtKygqUrKmnx1EbndRfzGl2g3XQ52Gqz+uz/i9JmTaL/yOWqjw8iazI3Ll+kdHhEL0FQVIQkC32dv84BKfRyrmAeke+Y1JUm8+kqnVom3duvf3t6Lf5CChI8DMWQSSZBIyXHQpaBEOpKUECd99ne2OTlxhlOf/lX80EbWkpRsKAGIkeSUQeqeQSupXyBime0712hvX6fbC6jVagzCEEUVCBGzurqCGnZ49M//CEuTwEwYHs0SxwZIFqE8IJFBQifub3BwuIDXabOxvklj/RJyskc+q6FZCpKcoVA5w9DUQ2SGz2EZVfqxiprN4Lk9hBCUpx+AwjS14Tmc+hms8gig4PWPONxbIZ8ZIlcaQzV1Bl6HWJIQqkoYJ2nPJikqI0xAyAKhSmiGQSIL4mM0RxxFJFFAJ4qIFYm1pUWWb15nLJ9lYBhMzcxjZItUTs7RExJuDK1Ok2uXnuPWyy/R77rodhY9UyTGQ44GDM2eAr/N2s3L7G9v8a2vf58rzzyJrfQ4c/95zn7iCwSYxJFAidM+fm3Q+lp/7S4S7+62u/+/Pqh9LxwnKXSat4yyXt/2a/3Jd5ppfbNrk+7xej3U9mcf8L7x3tLs6Wtfb559fm07IB0nG+6+f6Offu9j373dvZS/j+/rg8D1H7D9rMmZ7tpdspF3ew1vFbgmCai//PlUt1FRaBy0KVarZAsF+r0emVye27evo5fzGI8+TvFTDzA2NkIcR3S6XSAhiSOeeOJJNjY2qdVqxHGE49i8cOkK29s7jE9M0Gg0sCyTwcBluF7Fsg0sO0cYuOiGge+lEhlBEGKYGvv7Db773b/j7Jn7KBZzeH5a1yTLMvV6HVWVEXKatQx8D0WRMS0rJSYRCos3Fpmemeb+D53D9V1M00ZRdVRVT5ktJRlDM1heXsbzPIrFAlevXqFQyKHICkKIlIwngc6+ghbm8VyX7e0twjDEMXM8e+FZXnj+WeLQY3JyDGHIqIrg8KBB5PsIQJYlFDll6Xz+2UsUC0U0zUTIadZICIEfRFimBcQIKWXgtB2bGAVFt4ljF03q0e13KZbqKLqDUG2iYECgHiLZR6B2iQZlQk+i3+uzsbpKtVSg23f56Ec/gnrYRB74LJwYJV92CBKJze0tKu4r2I5NpGaJ4ohuuwNRjOf7OBmbnZ1tiqUykhQwMzPNS5evUK5UaOztMzE5TjZX4MT8PIHnY2gaupXFyWQZGh6h0+3j2Ca5TBZ34DLo9Tk5P08Q+pyYn+XcffN4/gBZVdnfP6LT7tE8SuVYJKERBz3a/QZTc7PYep6Xr1ymUChSq9VxBy57Ozu4/QGHhweUqxWyxSLLt1dpNpuMjU8wf+Ikly69wMzkGHHok0QhnjtgeX2d02dPU6vXUHUNJ5Oj73Yp1sokQcClZ56hVCpiO0WuXV2gXCrT7nSpDQ8hCxnDNOn1+iyvrPCZn/8sSGnOJIpjkiAkGHjcWbwNUYxjOXTaHqpqsLx0h2zWYHNzBc8N2drc5fSZeV566SWGRyZptXvYlkkYeHQ6LUzLhkRienoaw1SRFYkkiYjjBE1XkZ7bY9ob8PggT+3Bf8bW1ibn7zvL6q0Vri8sUihU+JUv/yq/9j99mUwmj++GdDttut0OmWKVMIj5V7//Lzkl7qCaORobL5PL5VDKZxAyCARxHJLEMYHv02p2MCwbiRS+Wyg4zM1Nc2fxJq12i3K1yubWNmsrW+zsHBzXVhfIZTIYhkUcJaysrKR6rxmbWzcWMQyTbC6L49i8+MKLRGFEJuMc17YL+v0B2WyWo6Mjcrkcvtsi9D1UReCFHlp+BLmzC4pCkM/gPLPMXq1AxlQY9NuoMik0XwpYW11OCYakNMSq1coMDdVwbBsk6Pe7x46dIJfNMTo6jCyHzMxM4gchumahKCZRFLC5uc6jj3yT++//MLpm4XkuvU4PSchUhorIioxEWj8uKyqjI2NkszYJEWEY8Cf/8U+QJBgeGmZtdZ1ed8DXvvp17vvwOaI4/f3puonn+4RhQBSm2q+KohFHEa7rHQfAgjhOUuKnGJBSzWTV0JFkgaqq7O/s4bs+ummkC4R2mvmNjomhtna2GB4ZRjd0hKwQRlGqEe0HECXIyrEubRgh1MYxq/EwiqIgZJFK/CRxyn10TMTkegOeePxHFHJZTENHyGlW+S5rvqIqRFEIiYRp2siyQhTGxDEIOc2MittrCNfj4DMfRVU0Lly8wJn1Rkra9aWfw7QsojikVqvieR6yqpHL5djc3ERVVf78j7/Cgw99CjObkhRJHH9Bb2s/+8D17SwVCgJJ0ZmYP8tfPPo9srkCteFx4kQiEfE9tWXvaYogURQq9VHixODJ7/w5tVqZUqlGLFmATr5QJQhivvClL1OoTvAHv///IAUNTO0AyzYJYxVEiK7IHG1fY+3WC8iez+hwDSlu4vX3Ua0QxarixQayWSNXO42Rm0ctnSQ/9QBW7SyV8fuJjHGUwgl6SZYgjGj6ESKQkSOf7sEOQfuQjCJYvP0ija11jva3aR9uocYBXi99TsZCISFlwU6Q0GRB4vf53iN/jSEn6KrM5uYG7e4AM3FwVI1iTuG73/kqn/+lz1Ed/xCSMIlFCh8XskKpPM7JM/cxPX+CubMneeWZJ/nDf/+H/MKXvoSkyIAEisHI+DhnPvJxpk+d46Gf+ywfe/hhZs+cJV8bJUZ7VQLrLfv3WB7rtfbTZj7vZe+khOxedq8g+l21fY9tr0+q/OcIXN+w5Q2b3r4P7l3r+kY/XZKk9wWafDfg/iBwfRf2QeCa2julwn49cdLb2b0G95ut2LybNu9l8aOPIUkg/9LnXn0oOdk8dxZvUco6CCKarSamaROPFMn8xXeRxobwlXQaVVSN27cXMQ2der1OtVrjqSefYnh4CNM0yWZy5PP51DHNZOh223TaXa5du8rc/CyyYqJrglarjW3bbGxsEMcJtm2Sz+c4feoUkiSTEKHICr1OF8u2kGSBO+hxe2mFUrlCEodAjKJpqa5sENHYazA7P4tQUsFxSZLQNJP+oIckQRylWoW3b98mn8+Sy2UZGRk+1jEU9AepbmzghxiaRRgN0A0DTVMplcu0Drvkc1nm5+coFPLYmQz9XgdI6Pd75PL5NMDpu9i2Q/OozeWXXyGfy/CjJ57g9JkzJElEu9NC13Vcd4BtGbTaLSzTpj8YoOgZVFmhdbhOr3tEqTRCEEkgyXS6AZoSIzIt4iRGko41dbsmuqaxurzExMQYjcMWuUKWwc0lsh85z3+8dYXf+ae/yczMHBPjY+w9+x8o5DOYpTFURaVSLnN4eEBvMGBvbxtJCEqlMo39HQqlItl8kUI+T+j76JaeSnkg8cPHHiMMQ3TLwrZttne2sS0bJ2vTarVoNlvs7zcYuC6tZocg8MkXS1hWAV3P4LkBzcNDyuUyM7Oz6IaJLMUMjdaJJYWlm8ucu+8sQRCgaSrZbAbbynB0eMjIyDCe76PqGp12j8nJSZ56+knKlQr1+hCSFLO5vka32yFBSslE6jWazSN8P0DTDVaXlqjU63TbbaqlCl4Y4GQLjI4M47ku2Vyera0tioUispAJwxDbccgX8kgSLC+vphDMyUnCMCQIArrdHradwQvaDNVrWHaGTKbIlZdvcGJ+lmq1TrGYwzBMZNVAQqCoMiQRjp0hjKHf7wMJlmOgKjL9XrqYIguZ7MUNGGR5vPohVFXnc5//HAf7O/zFn/0Fn/rkp2g2W1y7tsAv/co/QUImChO+/72/Y2J8HGFk+Nf/77/iv//iF5mWN/D1As9e32P+o1/kuUuXUwimYaQ1klFIGMY898wLzJ2Yw3UHKLJMHIUcHh0h4pi+61MslZmaniYJQJIlpqcnuXr1Chur69i2wwsvvpQ+J+o1NFVlZnaebruD6/YplcqYhkGxWCCKQjzfRxYyiqKgG1aamYxCkniArpkIKUHTFPxIwjAc1KBLa3QMa7VLZr/NwNHwQ/dVBEYYhuQLBcIwTPvFsonikGYrhdRqmobvB2SzOQI/4D/9p68wOzuNkGL6/T7FYpEokgiDmFarzVHzgNGRSer1OkgySRzx7W99m5nZE2iGcszQG6CpOkJKtVY1PZX9UhSFk6dOMT4xgee62KbF/u4+u7u7nD1/BllRUBQ1ZW8mnWs2tzbJZnIIoZJICbqmISTx6hwjCwXP9xCSQFYESZLClI8OD8jYTooqMHU810PXtBQSKqfXLcsymWwG13WRFSVlBgb63S67OzvkCnmSJEW0CHUf3wtQxWgKDT52uMPAQ5FVvvOt76YZtFKB8fFJioUcnu+m/Ze8lqAwxrYtbMshiiLW19fZ3d2lWq2CdDxvrmwgeyEHn/442WyGQiFH6fkFhCzz3bjL6fPnkJV0HFqmgeulJRd3+4tAYnb+BOJYH1Z6kwzKG+39q1N7twvMb7Z/FMf0el1kVSFAYebM/VTKBRLUu0Bj7uVk33uhOyFGQlZUbCeHNDjg7AOfAGEQkTKDSyImm82npFyux8P/+LfoeAfcvvo9nMhFcQ/AUOkdHaDEh/RbO1iaSSx3kUKZJM6Ty55C9jTcTh9Niek01/F669h2DU3EEAxo728yaB6iKSpqHJG0VrGNEFMT3Fx4FtsMScIOcdRj97DF3OwpJKEShC5J6COR0B/42HaWJE5wB32iOKbf7SB5LTo7y/Qb66zcvIItx+Qthb3DBdZXL2OpClu7Ax7++d8h1vRXiZyQOK5LN4gTGVlTkXWVs3OzFGpDmJkc5vHiTyyloyVOZKLjmskIiUiCKJaI47t9c+9+uRsQvnYM3E1QvNbne7uyr3vLqLzxvK9v8172XupoX3vcPT97k/3f6t7eb3u9X32v23sngeu97I338ObEqD+tScfP/dx6LaAAACAASURBVA8C13dhHwSuqb3TQXM3wH03WPr3Y7+7P9K3CrDjR1OdLfmXPvfqNk0W7K4vsb54hUGnye7OJqNjpzAdG2llA2ltG2l0CPkYXlWv1zB1HU0zyDgZpqanWFtbo1arYlgKjmPRHwyI44SLF3/E6ZOnmZgYo9fvcHjUY3dng2w2i6ZrKYFHGHHp0guYpopppXVViRDEYZTCZGUZZIEg4ZnnXmDuxDzdTgvT1CAStNtd/vKv/4bP/vznEHKMogpa7Q6mmaHXHdDrHiKEhHcM6Z2cnKJQKOB5A1RNxfM9FKEDEVEYcP36DcqlGkhh6mjZDkJI+H7E0upt8sUchuXQGwQMjg7QNZ1cocz27h52Nodm5Lj6yjXqQ8OcPn2a0O8zNzfHUesI2zGwbZPWUQPfT/ULkzhB1Q1iJAzNJPH6HG1fI1seR9UqNBpHWLaGFKnISkKU2UKKNeTEJNYaKP06S3eWmJ07QZhIFEsVdra3GFF11HKB0S9/iSsvPs/+zj6Xnnmej1kvEfcbLB0IqtUq+419RkbHKJYKxElMNpfFshyuvPACxVIZw7GJooBmY5dCZYj9vT1aR0dUK1VSlseAjGNjGjq9bgdUGd0wKJXL1IeHSUg4dXKKTm+fcrmOkC0Wl+7Q63WII59KtcTG1ialUp7d7QaF8jBBlHD7+jUKpRxB6CGRsLK6hKwatDtt2s0jdra3KRYKVOtD7Dd2GRmtY2dsbt66zje+8S0+9fDDdHsDysPDDJWrXL92jYxjM+j3Odg7YKI2xtb+PlICsqpRGhri8ksv8srVl6lVy+nCS7NDY3efleUVdre3KeQLOLaB73ooQmF9ZY1sPsPC9etMTE5RqdUYuD6+G/PUUxcwDBVVlSmVC+zt7TI5OcPW9galUhmfJIXl+h77+w1AwbQdLNtB1WT6gy6SnGCbBR752iMMqYfktgyi7Az5X/pFojCi3+shSTGaDJ/85EN859vf5PNf+Bz10SFURSfwY5575llOnz6JojsQRfyb/+//5jcfrKCOn2V8YgbNzLCzu0+1Wsc0deI4hCTGMGwWb60yOT3O8p0ldM2g0+pzZ3GZ2vAwwyMTPHPxGaanplh45RWEAmPjIzi2jaGbXL1ylTCImZmdwcnYCFlwcNiiUspTyOdpHBxw5/Yd8rm0Rv324iLj4xNIikAoOiRweNBAN1SEpCJLUqrDKjQUwyTZXiA5/QXWKoLKkYd2Zx9sE72QJ0hUNMVEkmQUWUVRXs1fYdkO3iDg8LDJ0tIKjmMDguF6nR/98HFOnjrJYNBP5W+SFD726Ne/R6/XZnp6BsdOYbtCJCiyShhKOLkMmirodfuoms73/+4H9Ho9SqUSSSyQjgPZIPAxdR1FESgKPPjgh4mlFFYrIVIYsCyTxCnbpyyr7G7vk8nYxwyzElEq7IofBGiqxvLKHVRVQZVUdja3qA/VkISMrOl4vosqZGQlzWYrmgJSQqGYR5ZlPN9HQhzXAseEfkAhk6PveWiqhq7r+NEaQkioYgRZCHrdLrquM+h3GPQ9JsZnqNUqdDpNrEyWTreFnXEI4whZpBq1vu8iKzJh6KOqCoHvYVkmjmMjK2nArSoK8uo2kufz23/7l/zmb/0GmayB98hjaJqG9t99FjubIYwjwijED3yKhdKrc95gMGB7Y5G5UzMkShqNvOOM5PsYuL5duc5r7S33kVRMTUGRgpQxWzcRiQTHC5ZIx+Rj76BtJQGkhChOCcIEFp2+hJGvABGS5KPhEsY+iQR+MMAUITurV3DkCDubZ6WxTtRr0Nnfw3cbOBmT3UYPO2fS7flkCyU8NWGnsU99vIquSfhuHwYhjaM12kdrDNqbrN18Dq+zSdP10GQFzTug32vgtkN8t0cYJ6hmkUTJcfL+B1HMOk5hBKtYxvc6uH6Aqigc7O6SMQwU00LVTXRFcOvlC8RHGwy0CsNj4yQS7O1sErhtwn6XjGNTGJrCGU3ZbxMp/V5AQkokJEKkRH6VPEvJ5CmPTKDYWWQpQU7SBRgQxJKSiholIYkUE4kUOq/GEfE9+vX1Aevr++q9jJmfeoy9xT4/bds/61zqG85/zwD5vWVc36r9H9vfJ0nT+wc7fr19ELj+A7Y3Wy17rb2+NuAnV3reHdz3XrpO7xXy8VoT951EfPoBkqzz45U4dOxigavPXOKpR77K//y7v40vO+wdtLCyObRHvs92XsfJ50lISJIYhIwkQxRHeL7L8MjQcVbAoN1uoykq/W6Hxu4uwyPDmJk8mpXjxp07bGxs8KEzpwldFyErdD2fq1cWmJ8/jWE4JAj2dw557LHH2d3dZnZmDFXEqIqFoUHO0dEUQRImhKGLZRqcPDWPbmjIKERBjG1aXHr+RYQkU8hVuXrlOtX6ELEk4ccBQkkld+IoRlEE7WaTjJOj3ewRBhGFk3voxQHCL3LYOMDtDhBaQr/bZqhWI4pgaWWNR7/5bWYm58iWS8SywFA05Cjkka/+DaVCjnqtjud2yeWyKIqColkEkYRu6EiyiiRket0+OVtBUSz8JKLZ3kLyJezSOLKqoGoGcST40ZNPMDU1DIVNugcqijCRjC4izmOqGfLZLEeNI5568nHcfp/hZh/1zDTf2bzBL//67zA6MU0QeOQPfkAcRfTVOn4Qsrq6Qb5Q5MoLLzA1NYlQFHTLZmpilsOjJkkYICUSi7dXqFeHuHnjBpVqlSiK0E2dWm2C5595llqtgpkxSGQLGZUkhOcvXkJTTXKFEkJRiZOYft/DNnO0m4cYZhqITk9PEng+l6+8TD6XwdI1xibGSVQdx8miqzKlfI7Yd8k5Nrdu32Z27gTPPf8CZ2ZmMDSN/d19HNshk8kyMjqKaWXI5nJE/gBZjhkeHSYGDNNhZXkV1bbIFwpYmskr1xcojQxTr9Y4MX8a3c7QbLfZ3T1gZGSIoaEyg/6Aaq3O3v4m2UweSUoYGS0jC4nA83jhxctMTk3y/ce/x4Mf/wTFco6R0TpLd1aJAoXhkSqKEnH16mXGxsbJOTmkRELICisrqywsXGNuepIkCWi1PEw7h1AkJBLKDmS612hvnaNQLrA1OcLW5iGf+rmHAZ+T999PLEX89j/9Nf75P/9fKGbKxH6A7/pYVp7a0DTtzTvMz8/z3NM/4ufP15ErU+iGjqKpjI6Pohkp0U2nO0BRTDa3tpmeG0dB0Drq0u30KRYLuN4A0zQplHPYtsXFpy5y8uQsvV6fbndAJldibXMTEsGZs2fIODaPP/YD5udOsL2zgxAy12/cYP7ECYbHhpFlme3NTSbHJmgdHuFkswRxgKLKyJKCHLpYlkXHdRGKiiJAsUvEnX1QTeS8zt5IiJ2fw3zyBZJ+H7kyhBsMiDyBpekkIiAWAiEpxLHM889do3mwx4c/fBLLKaAoMpJwmT9ximarxebGNoVCkTgKsAyVw6Mmi7eX2dzeZmJ8DEWXSOKIxZs3UERCPpcjUQW6rhEFLs3GLp3mPuPTMylRUSIh5JRoDUkiShIURcN1fTQlx7cf/Qazk1MosgZSSvQWRxGdVpuLFy8wOzeHEDFJkkJtv/LXf8u50/NAQjaXRdV1ZFWgGSrdXhfDNPCDtDZeM3VkTUFS0sBYV3RaR21URUUWaU1ks3nEzs4ea2vrDI+OImsycZKgCIXO4A5RGGGoEwwGLqZpkiQJUaxgZ7KouoKQUzi97wUs3lpidXWTXDaXZoKJUZU02BKygt/30DSNMIkRioKsqog41a4VK1vg+mz+3FlGxie4vbRK5qmXiaIY/ocHyReyKELGMmyE0JC1JjEd2m5McHSEJCmMTkwQHQck0k/Urv1kDdvrZlCS5G5m4zgF9xaO6FvO50JKveFXM3n3OP7uKY73e7VM7jWvtPZVIk5SCLocRyQkCCkhIXrDfdz1PdREQkgpe3CcBEgiQkQgxQpIAXGk02+4bLl7RJFHTVcYBMvQuMXW1i1sZRlFUTna7lHOg9dZJ44NCpVJFM2h1+4TBRqJViTO5DDDNrIpI5SEsq5jWBpHB7uQxJiGwe5Og3pRpt3s0u11yBUkErmDLLrIUcz+4SGG4RGrZbKiky7eDX+CYv4ULql2sZQIDNlhq/EKumWhaRaaLnC9Q2QpQddVDptN7qwukqvmyFdPMzs+wvKNa4T+gLwRcu3aLWbPfppupDE0PgRxfDcc4NU/kgRSfBzMCsIoTQbIxyyyiSRIYhkhyYjjjH58nLIVxwo58ZtkFO/1/rU+47vxDV+foX1Dm68dSq97z+s/uwfS753UuN5FCv40ZEfvhM37vbd9TIT3mlp2SUrSLn7N64329vcvSakfLMTd58Qba5LfX4j3G/vo/bIPAtd/4PbTDJifdrC93bHv5EEDIOWziEL2Jx42mqKkTL/ESH7A+t4WTnGYfKEItQrKv/sz4hNTqE5aN5RO8gmKLBPFaa3m3fML6Vj2QRLYtk21ViWTTaFjUhwxVC0zf+oEjb0dBoM+mWyGbD7P+bPnuXL1MvV6DUlK66VOnTrJ7NwsqqzS7/u4foTlWPQHLrpp0+n2sZ0MrXYbQ7MgltjdbfBXf/VXnD9/llq9yt9+9atks3l6gx61eg1N09BVnX6nh4ySQoqTmFb7AFlIdHtt8gULvTggjhI6uzqaajBw0+yoZdmYpokkCyrVKidmRrm1sEBtZCiF70Uxmi44dfokw8OjbG5uoxg6/b5LLpdLH3hhmNbeygq+65LJ2viJjOv6WEpM+2if6tAUrpuQxDGKIhNFAdVKEaPogdZDl4q0m00MWwcxYHfFJZPN0m51KVXKnD9/HuXWKkvn55n//M/zr//g3zI2Pspf/+kf8cmRBqqi0dVGKZVKHBw0KBVyDA1VKOSzHBwcks8W2NvdJZ/PMhgMsG2b4eERHv/hYxSLBWZmZvA8j4Xr16nWawwND7G1vUW5WgMhoSsyizdvYJg6L738Ip12hygKqNdqrK6sMzoyxuLidU6ePMXVV65gWCZXLr9MtVqhWCzi+z7Xry8wOj6Bpsrsbm9z+cplpiZn2dvbp1KpHbOqSiytLOPkcmxsbzE5NUOz3aZarfDUU0+TzTg4tgWyysD1QBJsb25w9tQpwsglk8vQOWpSrVbJ5fKoUsyg38MyDW4uXOf+j5yn3TpgZ2edD334Pja21giD4DhTl2N1dY36UI2Z2Tkcx8G2Hc6dO4cQMrKA5lGTXCZHp9snl3W4cOEiJ0+eZn19E9d1efrpp5idnaFWqzJ3YhZFE8hKQq/bQYpcZMkjDEL0nYuEp36H7LpKkoSon/0Yzz77PKfPzPF//J+/x8cf/jQZO8snHvoEteoQuzv7yLLKwvUb/Oqv/QZzJ06wvbnM6NgEHx4zsKMDpFyNePcS9LaRs6PHgQU0my2y2QLZTBZI2Nvd4+LFZzkxN8/yyhL1ep3dvQalcolcLoM7GKDrOmdOn+G5559jemqSmZkpfK9Pp9tC1zUmJibZ2tpkYmqGJE5I4oSvf/3rlCtVer0+w0MjPPaDxxkdHeexHz3G6TOncfsuuqpx49otvCDEyWQwTZNBv4ei2yiyghr0cKv3E0km3UqCfvoM4c1bmC8vEXc9unHE0tYymXwWIRxIfOIkJpfJ0+0ecXi0TbEwRJyEuG6HTqtPsVRmYmICIUuEQUicxIyNTXLf/R+iVq9RKZXY2d0lY2dRhMKFi8+SLxTJ2AU2N7bRNYuZmRNMz8wTxTF7uw0effRRzp8/n7JjH8NtFVmh0Wiws7fOoN9kbKJGGPsgRQihIisqppVhanoGSaSOUpKA76U1q46TSQPh46BLVVUUWcHz/VezpYqmkUpOSkgxuN0+L770MiOjI8gifX4vXF6gkC/S7/fpuQNqw8MsXFtAU7SUdE4uoIoavp+gKuk5kECImOi4Htp1PaIoSetOhczExASarqQLApKUZnallDlZU1WELDMYpLJaJGnesNfvY2ztI3yf0X/xv3FwcMiJ+TkCS6Pwcx/FOjWNLKvEUUyvd8xgnNjEvoxmlJHcAf3BgOpQnVj8REjy+lnwHc6z71EGRHrLtz+x8V3XCL7FMXch3LGU6q0jZJJEQUgaHhnCROCHRwgpwd26RLno4O9ucuOJvyTsXeOlJ37A5suPs7H4PNWhSazsSTY3bnC0dwfDMAEPEWm0Dg8J3CCVL5uYxldKSPoJDGealc0Gui5AVvDCmDCW2T/oUC5amE4F0y4S+iGGniHo6yzdWmR6cpxwEKLngGiHo+4R9alTEPcxMirELtBlf/8OulYmm6kiEpPQF7j9iM5RC1PPk7FrTE+cRlGybN65xvbaApqWoDsqkllgePIEsyfvY+H6AlOToyTcm8jqbS15e1/uvWYw36m91wztPT78qa/j/Q/S3vlnb9PqPZJJ7/y4d1JacC90498PBPq/nMD1nRVMfmD/1dhbCSf/rDD978VCzyeIIubOnsWLEyTZoFIsEIch6419XrEUCs0+mqbRbDaJoiiVFfFckvi45kmkTL97e3sYhoGTcdg/aGA5WXb29lm8dZOvP/JV5NgnDnxsx6FYLhGEAdtba6xvrLC3t0sQeOi6hpOxOGoeMRh4tNp9Wq3+sbSNjqabqJpBvljCC0McJ3Wen37yAoZh8alP/SMUTSWMQn711/9HakNVHnro41iWiSJkAjfgj//9f6DdbPO97/wdkiRTqYxwa3GF0dFJqrUR7hKOfPfb3wcUSpUqS0ur3Lm9xKDvEoUhsgxCTrjv/jMYuoomBJqs0Go1Uyew12d5eQk/iChWKiQSBJ7PoN9hf/cw1VaU09X3UNFSoqneEZ47oBcp3FpcxHN9kiSm12/jZCwko4cUGwgp1b+MBzqYR2QLDkmS8NLlKzQOD+h0u/itDm03wMoWuXV7kYmJCXRDI/B9kNJ6J0VV6B9Db1dXltjc3EAAl198iZ2dbcIwAFLhbc9z+dKXvsjpMydx3QGDwYDPfPrTHLUa2Bkby3FotXsEbp8wdGk2DxgbGWJ6ZpLz589x7ux5GvsHbG1t0m6nEjE3bt3kH336s1QrQwwPj9BsNrFtCyFSkplO64gkjsnmcoxPTLK1vUepXENRNZIEysUSDzz0ML2Bx+TUDFEM+UIJ27YZHR3FdVNZpSCMQZKRZUGpVGJnezMl8lFldna3aOzsc7TXoN1scmfxFq3DQ06fPEEUJRRLVS5fXuDwqMPs3AnmT56iUq5w5fJVhNDQ9JQgTNcNLjz9NEkMge8SxzHZXJ5SpcKpMyfTcVaukyQyM9OzRFHEF77wBY6ah/QHXYLAo9sJ8NwI27RZvLEIASSbzxKVz1F+4LdpNg/wfJ+t7U0sW2VnZ4vf+73fY3JimsODNjeu36HX9Wk227RaHRwny2/91m+SEDE1dwJJkSk7gkTWIY4IDxcJGrcI/YAoDHEHHkEQpqQ/CHTDpFav85nPfIa9/T1OnzrNpUuXuKs3oagKxVIeEonFxUVs00wJieKAQtHh3LlTdHsdrl+/zsrKCi++8BJXrlylWCxx/vx9KLJKo3HA7u4en//CFwjimKHhEW7fuo2macRJQrEyxs3FdXTd4vDwCN20U9K2wgjR1gLV8giFoZNk8zK7lk70L36T5d+5H8bHyF+9zvRx3dnW2j6B7xKFLtm8zUc++iFOnjrFH/3xH9FoHJDJ5CgWCuxs73NwcIgkpUytpmlimTqGruL2B2xvbTFUHyIOI4qFEr/+a7/O+MQku1ubfO2rX8EPXCIpwo09Ou0uuWyOL/7jLx4Ts0EY+gS+R5LEDA3VGR8f4/z5c8hCQVU1VFXHDyOEnP5d39pEllOJmTgGRVE5cWIOVdO4cfMWh4ctvvI3X0vlgqIYx3YQskKcpFInCdDv9Ggdtthc2eCpp58mDENc1yVJYuZPnOSRRx5lc3Obc+fPI2TBxtpmGozGMb1ejCQZhGGEJARRFBMEIZ7XI4nD4/pYiUe+9jVs26Y+NMTmxgbLy8vchesaepqNDfwQJImEhFwuh65pNA8PkSQJ27aJU9Vispkif/M3X+GVV15B/9xHkT51njiS+NM/+Yt0gc+yME2dJAzwXZc46bG9fR3f99PSkv8GLQxDwjBMay0lCKOEKEqIIgkl6KN4R7TXr3C4dJGD7iaFbA6CHtVyROgeYNk6VjzACxUO2i67W2ts72yiWyaWKZOxJeRkn2I+RNU6ZO2A1u5tDE0io2l0DxtkHHA9Cd3II6sWimZRGxqh7/bZ3j0gjFQMo0oYmuScDKfPjNIfrKEZMYNBE1VWCP2AbqdDq31I52CA2/fZXF0j8Dz6/T6t1hHN1i6yGpLNmehGQOdondA9QiJgY2uboLfNxtoi2ZxFJMuIzBiz5x9iY2c3zUb74X/u7nrVX/zZ6IC+/5YkCf1+/x1zv3xg787+Sx0XH2Rc/yuyexXBv1VB/esD1XdT9/JuruOt9rvX+aL/8DXil28g7j/16jY1FkSaQJLhcGcfSdMoFcsUilUsJ0dNKMgvXcMfr5MkCZmMg6qqqGqasUxINRcDPyCfyxMnCVESYzuZlOjINMhl85w5c5pefwAS7O02eOKJp1lfX+f82TOYpsH01CQSUhoMq2mWMggj/uzP/hzDtNB1nUIhh+2YALiuhyILhJwQRiGVco1Wu02+kDKWWpaNppmYtslg0GdjfYNvfP2b1CplpmdnGBoZZnRilETEeIOQaws36HY8wgCsygBZEUxWPsby0jK5vI0QgonxcVRFYWt7D1UzyeZziETh1p0lKpU6cRCRIEgSmW63y/zJOZyMQ+D7xGGEputEUcLjjz3BUK2EqgoUwyJJQnqdNqoiKJYrKHqBrbVlisWUCMi2bNrNFnFuA4UMUSjR63URkoRmJ/j9CFuv4vshQ/VhmodHDC1tsvvPfoFKJU/kx5w8dYZWs8+suILvexxERYqFAkPDw9iOw9LSOjt7e5w7fx7fD8gXcmQyDsVintXVVWzbRlHScb29vc3U5DRBGHHQaFCslNENHVUoEIdsrK5RKhRptVrMnJjjxedfpJAvYNs2lmVQqRTp9Qfk8jnW1jYpV6oMel2Gh0fY3d2jXq+jaTrLt2+zv79HuVKhUq+TyxZ45uIznJyfxzJ1Xrl6mfHpSfKFLLu7u1y9epmhWhVJCIbqKWGYpsrcuXGLSrmIkBUymQyHzTZCCJxikSQCSzewnQy5XIZcLk+jcUgUxiCrGJrN2TP302y2yeUL+K6LpqucmJ+lUMijGiYrq6uUSkWiKGJnc49ut8nuzg5CVrly5SrjE+M09ndTPeNcntW1ZcZGp7hzZ4nR0RHCMESWBX/6J1851hVVWVpeZyQTkrhH5L/0bwGN6EfPoCgaX/qX/xdf/vKXmZyYo1SsoxgCiZhSsUSr1ebUybNcvfoKP3jsMX73f/1d5uZneeqpJ6jUaihrF1Ash1hWkZq3gYTAnuOHP/whs3Oz2LaDhGBlZQXD0AmDgEuXXkRVNW7cuE61WqFUKrG6voJlWeSzBa5fv8Xlyy8xMzPJ2uptKqU8+WKVJE5YXl7hxIk5xsfHeP7SJXJZh7m5GZI4JXo6NT9PdaiOZhqsrq+Ry2RZubPMUH2Ivu8yMj7J7t4OpiYoFPIomo6dKRAiI3k9ou4uLcUgo1kc9m7QbeloVR3pgbMoDzyIeeEKamfA5qDP4uINRkZHUFQD1xvgBy5nTn8Yx7aJIo9B3+fb3/o+L115kVMnZ9F1Hc8LCKOQ/sBla3uHbCZLNuOwcG2Bb33jG0zPzSBrChlb5/x9ZzEsjTgOCAKPzbV1Lly4wMULT/PAAx8mkRJ6vR62ZeH5HlEYYhgZAi9EUw2QNIIgwdQ1ojDhmYsXmZudwPfTBQVdTxd14iRAkmWKxQK7W7sUcgWyhSy+7x9L4SgkQBgFr+rHbm7tkM0XeOgTn0DTNIQMsiyIJZlTp08xPTOJlIT0Ok1mpmYpFPMIOS2NEYqKqqRkS43GAY6TOZbukZGQWbqzhG071IfqgMTTFy4wPTOF42Tx/QD5mGF4Z2eHUqWUVglKEhtr61TKZYIgQAiZ6KiFMvDof+lhzp0/TS7nEMURruviuSmMd/iYUC8MfXy3AUlEt9+huX8LVStTG6qnUGH4iaTpj+fkNy/1ea0l6erNm2bP3nQufhcZ1x+f6x7SG2/DJHPXp4jjmCiKgOOsKzLEISIK2Fy+idc7ZPvGi/QO1gl6ayReD2EWOWy6mFqDxv51KhOf4ubCFVzP4Bf+9z8gUz/D0c2nScJdMnkDoTqYpkPo75IrZUg0yOdzZEwDYo+kdxM12SSXkbGcAnHcx7ZUJAKiyMV1e1Trc1hOEVUhnUdUlzAOQY4Qio+QMiSDgFxhCqc8j4gFtpGh3+5QLZaxdQenkEcSIZIY0Onss7W1BnpCr3tA92CJJGrg+3toYZfa8DCRmufUx36RYm2SRFJIpAhTtykV6oTvIN66l08nxBvZgF/fd/fyCd+q7Xdir9//Xse9mll8m2t7p3Dgt7ueu7KE7ycS8V7w5ffWtnjN/3fbfHPSrB+f583P9+PvK/mJ938fwfu9oMJ/H8HsB1Dh/wbs9T+oN6szuNdx70fG9V71CG+23z0D13/zJySrWz9BziTHCZ4CEFM0M6xvbRL5AcVqjTCSSLJZ5D/8S4LTs2iGSZKkMjq8+pCUaLfbWJbFoN9D1/WUHVMI4ijC87yUMVNWMEwHVREcNTtsbGwRxxFzs7P0juuy3IF7TCJiAxLPPfsso6MjfOyjHyWbzaDIEv1+F0WkxAid1lEKrVMULCdLpVomm3M4PDzEsh2E0AgjN4WpeT5z0zNUhyp885vf4Oz5cyiqgqLLxMmA6ekpVlZXefbZZ7j/E2MgJWzcHLC9ucnYaB0rY6d6s5Jg4fotSqUapp3lG1/7Bg9+4mFAYuHqNS5efJ5nnnmO8/edQ5YhDrzUwUgSegMXN4iYnZ7GNjTiOCYWKoP2HhknSxAnaKZF5EXYjo5pmdy5Q5ZdaAAAIABJREFUvcTG+iZT0zPIpU2iroOqapiWiaoIZCHQsgHeYYb9RpOjxgHdoyZjhx1eeXCcl1++SOQKXr6yQHcQct68Rr/fQ6+cZOnOEs88f4lKbYjV1W0GrousCnZ2dhgMerRaTfYbe4yPj5PN5ugPOpiWxc7OHt1uj3K5QiGb45Vrr+ANXG4tXMPzPQLPp9PuMjwywte/+S1OzJ7g+vXr3Ll9ByHg/2fvPYMty87zvGfnfPI595x7bo6dpnsSJiDPDIxAQpDLICnLrtIPmbTkH5bL6ZfLJQdRpmUblKFSMZimKCpQIgkIHnBAAAMMenLonNNNfXM69+S0o3/s2zM9Pd3TkyTTRXxVp+qEvdc6e6+111rv+t7v/ZLJBJVqjcFSmYFiCUEQiYKI1dU1RkZGcftxHtE33niVYw8eo+e56IZJFIQUSwNUdrep7G6Ty2Wo1PbIZjLsbG0yNjKCEEacv3SJXC6P2+/R7bbpNZsAGLZFGIkkUmkcO8lOvU4hl2fxxg1uriwTRCFOIsmVq9eYPXgISYMg8BCIMC2FUPDYWt8mlUrS7bW4fv0KqUyBRr1ONpsmk8qgKgaaJrO8sszk5DTLK8sUB0sokoiqati2hev16HYjLl68RBRFXLt+leHhYfK5FImURiREDA6ViZaeR/rCryMnJmk12+ira9gDRWZ/5Zs4dpJf/3u/wTPPfA1B7WOZOmdOn+bRRx5mfW0bXTcwLYPJqSkSKYdDh4+gygrawvOIiQHarovYmIuVdYcfQ5JjpdndnQqyrHLixAkOHT6EIkmcOnWGKCQWMhKg7/ZRNIV0OsNbb5win8+ztrpCt9dCFEJGR8t0ewJzc/OMjY4iSQKGaTBzYIbh4TKvvvoSqqowMjyCJEtohk5ISCqTZml+kc9++jOEUYiiq/tpKlIYmkgUhbheSCgoyKKMLymw+AbdfBFVKtL3WjT759CCCebW32DwyBNUjx3FfOsspXqL0ScfQzY0giDO/6koEv2uz3e/8x2GhgbQVIPLl6/z+GMPUx4u4nsenhvsC7npjI1NoMgqe9Ud0ukUyWSCialJBFkk8ECUZAzDRpZUdNUknXKYnTnAgw8eRZZFIgEMw0AUBTzPQ1FkVE2m32uxsDBPLp9DEAW8XhdF1hgdKdNs7pFIpdB1A98Lcb0+qioj7j/7AgIvHn+RQw8cwtB1IKbdiqKILAmASBBBpVolXxpkZ2ubZDIRx3iJICgqoigQBH3EKODShXO8cPw4Rx84GntH5TVC6pw7vcTPfvYzhoaGMQwD34vodvqIosilS5e4dOkijzz6CKIgMj4xQSLh4Hk+qqrS6XSwbZtCoYAoxxu+1b09bNNCFETWN9bpdDsk8nnk3Sq1p45i2yarayvkr67hz6+TPvYAo6NjaLpCELjs7OyQTWSwtTSqmaW5s002XyaRThHsryPftfT7AAvTd9uHT0N3t+I/CHB9109vA9d7n3f7Rvit42+pNwuRhBgFXL90Fl10kaIugaASShpWLo2VG2f36hW8Tp2d1ZeYHsuwvpGgsXSSfl9n7Mu/hhqGrLz1pzhOQLqQw0qUuXh5EUPR8SINQctQ3XP5F//0O8jmEJrZQjc1AgbotSv4fotqdQNdi9NoOYk0u5UeimbQalfo9WtEok4qMYUsO6iGTKOxieR1qLf6dEULx9a4eu0062tzzM9dJfA6qMYoyUQWUYhIJjKMlKdxsiNoooYS9NjbXCbyO6yvLpAtjTN16DN4aglFiBAlAVVTkCQFRUsSCsH9m/IubS8K0j1B3/uByvvV84lSie9Rx532cWHQvWJtP0n7OFTh99oHSe3zQer7eHl2P7z9xaEK/xy4/v/YPuoAdbvdThO5c8fm/Xbpbn//fjmi7vb9LVVh+d//0tvfuRIokYAaSRi6xcL1RRK6RCKdAk2mb2mo3/spQj6L4NjIokoYRHR6nX1AFmNYRVWoViuoqvK2cIEiKXi9Du1mlfZ+GpgIGdM0mBwfpVnfo7q3w/TUQarNKslUEiGSEDyRwO+QyyQ4cuQBej0fUejjBT66YRKEEYqqIKoKmqbiuy6moUMoUqvukkzZ+xcs0mnXicIQJ5lGsywM3eLg4UNxTkJRQJO1WDSo0WZydARBgvyYQmV3j+PPnSOTzVAaLLGxvs2NG9fRDIXR0SGSjk2EwNLNJaYmxmjsbdDvN3jwoaMcPXqMVDpDp9fGNHMIok+7XUGXdX70/Z+QLVg4yQSqqhOFIYIoEUURluWwu7sHEAu9hD2SyQwD+UF8eQfRauO1RQSi/dQhKpEHmHX6Ozq5fAlFFgmWN0hlM3hf/yyVvT2+8Itf59TpM5QKacaCk2iqhjb4EBvr24wND1MuDhBGPo8/9ji6YTI6PsrI6CiyIpPNp3Bdn5v7ZbZbbQxVZXl5lSCCmzeXKaTS7G2vkC8USaQzdHo9BgaLVGs1ZmamKY8MUxwYZHR4CF2XCSIPr+exvr6GaVr88Ec/JJfOkM1myWQz7Fb36HseQyNj5AdKGJaJH3g0m010XWd5ZZXy8DCaHufZbNabpJ0kO7u7DAyWqDfqNKs1+r0eummRzRXouT6OleDVV16lWCxw7fIVTFlEFqFaa+H1I1qtBtVKjWMPPsjmxiYJM8XC/A3WN26Sy+YQBZlOp8fq+nqcOmdsgm6rTrjvFbJsm5sri4xNzGDbFv1uh4OHDiBJCqKqYids5hbmMU2b3EAByzGQBNjd3WVifBwnk0KUVVTJYe71/4e0I5P4wt9id2eLTqfLf/cn/5rP/bd/m0JxENf1WFq8gWVFJDJ5dMPif/lf/wFPfelL1LsNJmemGRkextQFrl1+g0a1z+ryMsXaKZr6MI1mF6V5g1q1Sk8foVLZpVAaQBYlIj9mViTTNlEUA7yx8TIHD4yTTlksL2+QSaWpVWs0GjVmDxxisFTi0MEDTExN0fNDuo02y8uLKLpOJl/CCwQMVaXerDM8NMabr5/h4OFZWq0umxvbyGIseJJI2nR6XTTdiNOoRAFhGGKaCVTdQpZVNpaWSCQd2t02SrcK/R59O0UY1gh8A0V3yJdmSTga9c4u5tc/i7u4iv7KWdxchvNXb7C1sUk2nUfRTCYnJtE0HUGKGBsbwk7rWE4KkOm2a6yt7dJqNkhn05w9e5FEwiaby+AkHVRVBiKOv/A8w8PjqIqBIIEoBfTaDSRNA0FAVRX8QESWZIIwiL/TTEICFM0gmUqhaTFjQZAFgsgjIkRWdBRNRxJFGo0qoeeRTCQJvIBWq45t6+zu7DGQtTENjV63x8b6Boqq43oesiyjSCL5fA6RkHa7jWlpiGKEIIgIIURhRK1aJ4wUcoUyjXqfaq1GMpVE0pYQxS4J+xCNVptDh45QrzdptxpcuXoNWdFIprLMzBxEkUNkTUGQY/EqSYxzXy7OLUEQoCkSASFCECEj0G41sRMmp89cxXEMsraJtL7DhaFJXn35RR55+DD6t/+Y9hvnCZ5+FNM2QAgJJQiiANNKEwgCYr9BbXcbOTeAnUrtE5RjYZY7BVo+6Lwsind6pW4XbopfkRDtCysJ73x9Z3lE75GHes9cHd12+h0H3coZKQi3i+zE7yPRi/ODIxGJImgyqxdfIZua5crJP6Gx9RqqbLC9UcF3Q8x0m9rC65hqhKLUSWeS1Oo99nYu0966iGV32KqJ1Nevk3fS6E6EoDq88vIG167vMDGRIpkooqgifhiQzE5hmi758jgeIr67CfYBuj2PlO2gKA7tvo6PRSKVoddTMBImRgpUFHruBorSQxJU2q6P6nuEQQSRzO7SZZSoSVoVsBWDZr1PcXIESYGOF6JZaXxRQZLAFySM3BB2cZrM8ANkR2YZnDpGpBqIgk9EuN8KUqzgLwQQxe0ZRbzdV25Tzdq/y+9t8/e03ft4MD/M+vDWGvDDnHO3vKiCIOz3xzted7EPEyt7L7vn+vNu//c+59yt3Pc79v5xqHe+7taed17/vQXd3s3auK2fCCLvB4rvZfe6tvd6geP/IYoCURTuN+cnA15/Dlz/Etknujv2Iekit7//sINO+OwLcW69bzx128AQPwIi8QRaGhzkypnTVGt1Bkp5RFVDuLqIXG8iDOQ5c/oMt2KSVFWNd/ZlCc/zSacyiIKEH0T0ei6vvvYipeIAkiihKjo/+OFPKJZyJBM2lco2IyNDjI6M0Ou7+GGArhucP3eetY1Nzl08x+yBA7h+SKvdxTT0/TQUQuzxURU67Q7dfp9EKkvXDQg9F9ftoygyAhKuG+csNHSbXrvLW6++iaIKOLZFFPi4vW6ct7HVRNc02p0eiVQGPdvFMk2OTX2RoaEysqxw4q1TPPLIo3EqH1Wn2+0hRD5D5aF9L7FKIp0hDHyuXLnGwEABTVdZXFrgxIkzHDxwDNsySKZ0ysPjSJLM7s4eju1wfX6R4dFxZFlFMwwkRST0wXV7GIbJxsY6SraKKAtoUvLt9hTFfTEsyUdSwJTy7FYqDNtJZNPgn2/P85nPfprv/clP+LW/8Z/yh//3H/KVT+WR7QyrO20MTSYMPPaqWwSBxMrqKsVSIU47olvopkGEgJNIk0rlQIgwNJ2NtTVSqQz5/ACpXJrNrR1mDsyQSGYJw4BMJoNtWXieh2M7SLLM4sI8qiyzsraCk0hQqdQYn5jk2tVrPPnEE2SzKebmb1AsDrB0c5HZ2WlSGYcg8Dh78jRiBOlMBkVRWF5ZZmxsjIX5BdJJm4F8juMvvsTBI0dQLZt00mFnZ4fZmVl6PQ/DNNnd3UU3NCanJ+m7LgO5AlevXqVUHCSVSnHx0kU+97nPUSyVcL0uCCHLy0vMzk5RKpVQZJ1e18UwNYZHhghCD1WRUGSFer2OYZg0m00mJiaQZIUoCshkHPzQQ5Ai1uZX0BWNwPMoDw3R7TYpFQukMykSCQfT0An2hc0EQUPbfRPpU/85cuoAjbpLwslw7uw5Pv/FT/PS8Rf5vd/7fXq9Hr/8K7+ComsAfPWrX2V+fp6ZsUHOnjrBmTNnGBwaRjYcvv2tbzN38qd8bjrN9Z1YLMzbOU86naZKkampqVhw68JldEVjcWGB8uAgQujT6XZIJpP8+Y+eZ3xylnarzdDQEM8//zyjo6MUSyVuXL/KyvJNXnv9LVZWtnEcG93QmZ6eodlocf78efywTb6YQzN0piZHkWQR07S4cvkqe5UqGxubJJNpVlZWyOZy9Lo9fvzD73NgZgbP9wlD2Nzapd/u0u11UBRwCbHq63SNDElnCscsEwQdDFVmc32T8vA4bqTRffAonu0Qfu957EySU9cuMlDIEAkS/+qP/iUXL17g2LEHcGwHw9IJ/AghEtjb22Z+foV8IUcmmyadThBFsLq6TqlUxvdDJElhemqCZ5/9M2ZnZxAkaLdbKJKK6wUYpk0UxotnQQgQiNjZ2cU0zVjsJYo34lzXJQgiwhB0zUQUZSBOsxGGEXuVvX3q+ShhBKoW53ZNJjMoWhwf++Pnf8rjjz+Jquq0Wi0WFhYpFkv7FEcxBtC+G7NkDBuEEM91MUwdRZEwTI2x8WH6bpd8IUcobIAAcjTI8OgwqiqztDDPD/7sz/nMZz/Nz158gccef4RsLommKqiKjKrIiKIEgo8sS1iWzY9//DyTk1M0mrVY0KnTJZ3N0ut7lIeGSWdSCNU60vYe2V/961SqW5SHBvG/f5wgCPiNS6/z9NNPE0YBQRggS1KszI5Pt7HN4pVTJMtTOI7zgefD97P3Tqt3mWeFj+iVvX/Jb9v7ZTIIxDAWGQxCdhYXcYIOxWKCTreH27hJygjJDQzQaQQ8/qkjzC9eI+OYdFpdvH6X1aUbJFUJOQzRRBO79ChP/Qf/I05ylMWVbS5cvUkinWV0bJh8wSBtq+zVNrAtnXajSTZjkBtIoihpIt/BUQbpdtfIJHTqzRrIOoKaQPT3qO3V+Mf/8J/TrpqMFI9Qr5xG8F3Cvsfm6iaZ8iyqCK4vI1oFWu0OTmKQTm+TzY0rhGHEWs1jsFxG1XTCfUGyKAwxDBNBiOPAFUXF0h1A2RdgUkAI3/euv0MDFu9L4f0gDLsP8tvt9mGzTtx+3sfte/+2PKbvV+KHqe+T/W93h9P3r+P9f78XDfl+dq97f69n/t1r/p8D1/e1nwPXd+xWp4lj0j68CMStzng3qs+d9dw6/s442ruVd2fZtx9/++fw2RcQhHfncX1XiaKAYmjUdyssLy2Qz6ZQbRttr0n00gmYGScMArLZLLd2gYIg3PdeSkA8eaytb9DvuziWQT5foFFvIIgynh+RSFpEkUciYeO7LmEQq01aToJOu8voyAi6YTA8UiaVTiMrGvMLCywvzTNQLCLs50uTJAnDMIkQUWQVz/fRFRFD19B1k1azS61WJ5VK4/sBm+ubqLJMabAQe4VFAUkS8Nweft/Hsu19OrPJuVOXkHwLKdLY26ugKFosPFIscv36dYqlIpIk0O+1MAyLV159jRtzc0xNTdNs1BgYGMC0LLq9LpIsMzw8jmk4uH6PZqtCIlFA13SOHz9OuTxEqVzC8wOazRaiJCGKEPoipq3TarYoFgcQExUkQSX0pP1FaAxcBVFEFBQEswGtLKZp0d3Yod/uMPSf/Ar5gTxvvfYiExNFvv6NL7H05h+jahqilqBUKrF0c57p6Uka7T7j42MsLc5jWjqqZlJv1NF1g067x+7uHgsLC+SzWaIw5PqNOVbX1xkcGmRzawdRFrAsJ/aiWBaCINBpt1lZXqZUGkSMwv3cpDLDI2NsbW2TTCYZGx3hxo0bOEmHpaVFRkdH8TyXRMJBlGKKtyarqJLKidOnKRQKlAfLqIpKMpFEJOT5H/+Yp595hpsrK2TyObxum8FyGQSJUydP0+v3SSQdLl4+z8joKLpuIkSQzeVYW1vjwoXzPPzwgywuLZEr5JAVEUmWGCjk4lyekcD83AKGaeIkLTzPxzR1otBHklRkWX17x/z48eOMj0+yV9lBVWV0Q8fzfK6ev0qn08FxEnR7PaqVTUzLRFIlLNvC0HSiMKLRaiJ1K4TtbUp/5e/yP/zd/41PPfppMpksjzz6EJLgMTM1y+GDD/C1X/gFNENDN3UcxyEIAhRFAbeHaRgUikUEWUXTEuztbPPFhyawgyqr9YCBQoFg7xK+71M88BSCKCLLCtlMlq2NDRrNBoVikZ3NDQzDIJXOks0NsLtXw9DUt8eugYEBZEVhd3eTyu420zMHWV3dol6vEkQh4+PjbG1tc/7cOR577AkM06HvehBAtbpHs9Gk0+4xOTnJKy+/zOTEDGtrKwwNDdF3XXKZJJ7n4fY9VNVAlhSuXrrGgYPTCHjxxkDoo1SXUUtjbFQb9PsbdFs9ZmcP0mz2EGQbBJV+Jsv1fpOJa8scnpzEKuUwkilGhoc5ePAAURQgSSL1RpWEnYFIwDRkBopDRFHED37wHI889BC6aWDbDifeOk0UCciKxKVLF/j0pz+DbhiEUYAgCMxfmyORyqDpGu12A8/3gFjQzrYT+F6I7wUoqoQgRPT6LrKiYegGILCzvRtvzqRSRGGEnXAYH59AEET8wEdR5FjVWdcwLBs/CJEVFcdJIssypmWRydwaqwXCMEBVRURBQhJlBHFfIV6R41QqigwE9Ps9HNtC0zX8aA0iCPtZDNNAEgXy2SyOk6BYKnL48EEsS0eSBSI/Zi2EYYAsy1QqW7iuh64anDt7LqYfi3DtymVGRoZpd/oIkkKzXsP3faxLCyhdl+CXv0oq49BoNdBfOIGTSPD5f/Df02q3aTTq2KZJ4MVxvpII3UaFlfmrTBx9AkmS3sVgun0OvAVO7jdH374QfbeX5c6D3x3rdrvX7fY5+M7Xe4p5n/9xL0pqFMVpcSRRQfRD/q9/9L/z+g/+Nb/9e7/LM1/9Ess3rlGr1ehFIhsr67z2/B/z0CMPUdtaRQo9NjcWMZWIfCqB1+ly5vxJ7MnHKU0+Sa/b4Lnnfswrb5zmq1/9MtCiVMrQ7YSEQhNZ0lAkHcN0CcIEimbQ7VaxrAa6LNPtdwkEEc1IIqDRrbqYlsTU9DizB4ZZWDrJYCmLLJn0uwK5XIk2Jpsrc2xX9hg/9AidZhci8NwKjiORzgygpcYoFApxjLQk73tLBaLw3V5TMYrXIiECCOJ++qB32y3K74d1HNzevh8HgN01rvmOzx9GOfijAtDb78EnGav5kQm+t137R7UwDN+mzt9eZrwpfOc/u/umwe06NnfGNd/Zbz4qcP2w/e/Oa/kk7OfA9S+JCcJHD0q/2wB1vzLuBk4/TD23v79FFb4duL5zYJxaOxShNDbG1s0bLF2+xNTULMbMNP63/gnioUkS2SyqqhAEIbXaPv03igcKSZbwAx/btrBsE9vOsLG2SblcJCJioFTANGx8v4csSri9gO8/++dMz06galasVNduIUs+yYQDAviex0Ahx+BgAVEQ6fU8Tp06y8T4NEggIbG9tkLQb1Kr7eF5Ps1Gm+ee+wGu56FpKooqkx/IYzoGgiSh6TphFNH3XERJJogkfv+f/jNK5RJzV6+SMXI4Th7dkFFUFctM4CR0tre30XSNublrFEt5PD/C83x2tnd4+oufp9/poJsatwhiqqoRRAJ/9tyfYdsGhm7QbHa4dOkSQ0NlBgeLmJZOt1sl9F1+9tOXmBwbp1rZRVYM6o0atp2m13URMxv4XRVJ0NirVDAMfZ/KJBKhgNyk3xJQRQd/t4YqiJzI6Dzy6KOkUgYDw2luLM8xa9doNprMr+4xMjpOoVhCUBQs2ySZTCCKMmsrq/T7XTbXNkgn0xDBzvYmw8Nj9LtdhChiemaadCbLwtw8iBLj44PoSkQUiFy/fp18Lk+r1SSZSHD8heM4tkk6naI4OIQoKZw9F3v7dE1h+eYig0MjTE5PEwUhnXYspnXm9AXCUKDV7lAYLBIEEQMDRRYWFxAEEcu0+M73vss3vvENTp54i3w+i+NYEPqous7K6hoHZw7h9foMlgYYLBXod7u4XZ+LFy9y+fI1CoUBxiZGMG0d0zKwbBNF0ZBkDSGKCAOByu4etXqVQiFNiMIf/dG/YnpqiigMWV/fplGvc3PpJlOTU6SSKXTTwDJN9ipVer2Afj9kcWmJbj/OSSoKIu19YJfK5giCkL3dKoquYdgm7aW3uFG3KBx8kGLpMIsLC9QbVcK//22KN9b4zbde5MEHH8WwHQRFJop8PM9jfn6eQqHA3PwKkSiSH8hz6fwFqtt1Pv/5z9C+/DyOpaMkCoRhSM7yQTGxS0cRZQkkGUmRSKYSTE5P4SPi+wGKqrOxvs7WxhaV7R0OHz7E3t4e7XabiYkJGvUmDxw9QBS6jI9PsLm1zWc++zm2tjfxXBfPdQn8gKX5BRbml8hnc/z0+R8yNDjG3I1FZmamuXbtEg89/AAXzl8lk7FIZ5LksrmYYuh6pBJJrl68BH7A2OQMnU6DZr1GsVAiUB3Cbg1x9SJCKklbMDEsA8sxEWUFSRC5eOY03/6t3+Gv/zf/GdWJPM7CJurJqwT1OlYug5FNEfg+lqWTSKVpNvq0Wy0UJcBKpEkmMgyVR9na3Ma0Jfb2qlSrDaanpzFtjfLgIIoSC8CIooQsK+TSaURZRhBCJCnCNBMEfoAsKUSBxEvHXyWTTiFKEVEUoOsWsqITBn2IQFUVNE3D93w2NzdJpdPxbrwoxuEFxHORKAlEYrzwzGTSiGJE4LtEBIgitNtNDENFFEHYz1EpCHLsVRQkRDEW2vM8F9d16bQ9EokUvhfQ7NyI09gIIyiKQr/vUturUiwWgYhmq4WmGVSrdVqNBpoivr2hI4jxJpvrehw8eIB6o4JtJkg4Fs1WC9tJ8Vu/8/sMFjOUy8PIq5uIrsuNR0eRFZVCYQD1J28iiALyN7+MqmoxM6Hfp16t4hg6rVYbkKhUGkwePhrrL7zPfPjBF8R3Hndv4Hqrjo8yV9+j5Pt68qIo9ieGoUhIwKUzLzEzovHXfulvcH1liZnZJzn4yJfJzjzApTM/g/pZ9Aja1Xlqa1exNBdTg3q9yebuLl6k8Yt/6+9hyDZrc68yOTHA2NAkqiJh2SHbmzVKw5+i6W2iSFkymXGavSVSqRHqDRdRDBGiOq6nI2gO3Z5AZafJ+TdOE0ZlnJSCpMlImoJmy6QLj7BTlwgEG0G3qdWaFBMyjVYVKzUIbkBl/SKaYJDMjLNeaXDg6KfRdH0fjN5Omn7369aSPiIEMbzr5oHwERJ7fNT2vdvx77uR8QHruf38T9Jz+kmU83GB68eqex+Ev5dKfbc2vzdwfWdD4P6bXR81YvijXu/Pget97OfA9d0mCAKyLL9rR+bDnHvn5/fruLfquP3zB1Eovn0wu/38uwFX4R0KP9E+eEUSSWkSa/NzLN5cozQ7i7i0SnRzHXlkEN/zEUURyzIJw5Dd3QrNZjOmvhERRSDLEm4v4rvf+Q4PPXSUZruBbur4bohtm3Q7HRw7RTqZx7I1ZFXH8wJ8v4eIhyIruH2Peq2GaRp4XgdF1djbq5FO59BUE1kV2VrfIJMwUISAZDpDIplCFFUMw6I8WGawXETTNLzIB0lA00wiBIIootVqYZgGgqDzxltv8sRjjzExMsKrx4+TzGbRdAVZltjc3GOvtkUymSSfy5PLZRCEAEHRmZtb4NzZsxw7cpjAdzEsA0EQ0AwdVdVot/t8+snHMUyNeq1Jws4wOj687+UICEMfTQ1RZIXx0Sl6nZimvLKxzYsvvsDRIw9y5dp5CpMeopug13Ppdro49n4cr7gfmyP4RGIf0U2h90O0rT1Sv/bX6HU7nDp5jqnpaYbHp2m8+QdE/SZm4SCqZlCp1kgkU/TcNqIgoUgKsqxQHMhTr9Wo1+v0ez1GR0dwEmlq1T26nRapVIrFxSUuXbhIYaBINuewtbEMkcrQ0BBhGGIYcZxiqVSisrtDsTjA6sYmXhBy9IEH6Pd6bG6s43semfwAL7/0MpqmY9tAr6UjAAAgAElEQVQOuWwez4fh4RFS2TSRCMVCkbW1NYbKw2xtbRIGAdfm57Btm9GRIQYG8nS7HTzPRdY0ZFnjxrUbNGsNUimHzc01Muk0G+s75IsFjhx5gGQqxc7uFqoq78d8NdANGwGJwHcRkEhnMkhSRKtdRzdSbG9vk81k2NzYYGR4jHQ6jeM46LrOwsIiK2sraKoa5/qUdYJAZPbQDOPj47RbbTLpNMuL84xNTCBpGqIoo0oKshYLz8g75xn/yn9Bw+syv9jiW7/5LQ4fniV/bZF0Oo31lc/z1lun+T9+8x9y48Ycg4MF+v0+hmEgSRKalebM2TPMTI0zPFhGRuF//vX/ib8yLXF9vc6BIw+STKXoKSX0/AF+8pOfMDo6SiRIBIFPFAXIqkIkSCiyytbmFidOnOChY0cZGxlGkCR0XUdVVVKpFEEQYpoK6ZTN1avXGRoe4eUXX2Nre5PB0gBuv8+DR4/R7dS5eu0qIyMlDs5O0OmE3Lg+R71RY2JylDNnT1AeHCOZMlhcnKNUGqTe7sWUQD+g02iwvbFOrdUllbQQCOn1XDTVBFnD10yszWvkVY2+7dDo+ZiGxfrqGpPjYzzx1JfQDRGtkILPPUb/yYcRa3W0Ny8i1Vvo42UiQhqNBtevLfDTn/yUBx6Ypd3zCAOQUDjx1glWNxd44MgxBgdH+O53v8OBgzOoskIQBaysrpLJZBEgVgrXVSRZAgJEVHZ3dkkmUtRrLbodl9nZaUQpotvrvD0GyhK4noskSXi+R8pJYTsOCLFXHECQBIig1+ti6Dpdt48sS8iSiO/Hwk+I8TgsiAJBGFCr19A1FaLYKykrEkSxwJMgCoiCiCRJmEZyHxDC+vYpet0u1W2NfGGAdqvNibfeIp/PYVkWf/qn3+XggcPs7Ozx0ksvMD05xsLCfKyOrqgIgoipmzH7QJep19tYpoZpmURIPCgaTK3uoNxYQu67RIrM1heOYpk23W4X73s/jTdKv/Z5ZElGFgTCwEdTVMJ+H0FU2dzcYXevxsTsLJIkvWtOvnMOvPW753n3YU39xQeuCnGv2qvu8drLP+QLj08S9g2kZILxsUcI1Cy+pbM+9zru7nmOHXyQfmcTOWyTyyZZ31hF1Ew0K0EQpCkc+UWqKzv4zRVkrc1z3/sx7UaTmdkyplmg4zmIah1ZTOH3FXaq15Akjd/4jd9heWGPowcepu32EWWDdHqApblFcpZDyzXoeBUSiRIDhWNYxhCRnuUf/eM/4MixB0mk0ygEaGEdO2Gys9el2+rQqd5AFpOoRgnZsXHSgyiqSiQItwHX95pIBEJIJET7wFW+i9f7o3knP0j73O/cW5//ogHX25kJH1fB9v9L4HqLavtz4Hp/+zlw/Utgd9IYPuzDfTd6yPtRIz7MYHe3c97zMJ69ipB0EL/42NsP5e21ioKAEEHohzjpPFoiy+7WFr1GndJjjxH81h+xkU1ip5OEkQ9EeL5HIpnENC18z41TLAQB6+vraIrOxOQEhqVjGjayGMdx9V2fXs9jZ3ubyHcxU04cL6iItNttbDuJrGjs7u4xPjGBIMromsl3v/ss09OzDJTySEpIr90ik02ytb1Jp9fHjXSsRJIoCllcWOTy5esMj5TZ3t5CjMAyLNini4iitK/wKSMSMlwe4szJs4xPTDJ6OM+1xYsc/8kZjh17hNdef5lHH3kCy3Lo+y6yphIiUdvZYSBfYmhoBDthYVgaQRAQRgK+H9FotNBVCa8fEfohr7/xMgcOHN4XgQhpNGrxfZFMOh0Xy7EQJIFqtcbm2grPPPU0ogCtYIlMUSfqGxhGLPIT7bdvr9dFU2WiUAazQthKoiSyCD95jR+MpZianWF68hjr6zuIgo82/z36nRpq/gF+9KM/Z2JsjLXlZcRQptVqo2oayVSCta0txscn0BWNarVOuTxEGPXo9roMDAyCAKm0w9T0LKWhEoIfYSbTOHaKnUqFCAHLcbCSDlGvz+DYOLJpEfouUhSg6QarSzcxDJPZw4epVapMzU6RTCe4evUK3XaTYrmIIsHu5ib5XJZrly6zMHeDcrlEPpdmfv4GlmGRTjlEUcjK2jrX5pYYGR5FQqJVr5PNZlAMlW63RxhJBD4QRXQ6TTRDQdYkAs/DsZIsLCyzV6mwvb7G2soyvudiOxaCFHH+3AVmpmbZ2dzk5uIShw4/gBcEOLZNtVolCAJOvHUC3w2YnpnBsm10x6BWr7C0cJXy+DDtWo12q0Ey7ZDLDjA/P0+jXqE4kKPVbiOJEWF1CbG5wkbiCzz7/Vf58jOf58ybJ8llTJ4yBlBknbWJAdLJAms3t3F7Ozz12a/w8vGXeOJTD3P10gWq62tcOnuGC2cv8sILL3P04WNEXp9jqTaZkUPcXFvHMFRM06Dv9tE0Dcs0iLwAU9dpNRu8/uoblAqD1Cs1KrsVDh85hBf2MByVRrVOq9lja2ub8nCJRNrB90AQDQzdQpGg0arzta9+Zd8LmKXb62AnUrTbPTY3d+m7PojQ7XcJo4jZ2cOcOnWBmQPTzF+f54tffJpQjIGZbZns7VUYHR+n2e6wtHCDUJQRFZN6oxHnfBViapiSLRM2dzGWz6E0NwkCD0/OIag+MhqtVh1Z0YkEid1eH+eLj9B6+iGUC/NIZ6/TSjlImk4+n2V2ZoY/+ZPnOHbkMNeuz/Oj539ELpdkYnQUx3bQVI1isYhpGIiKShiE9LtdFEnE63dRjESsJkwEKIiAZVkEQUC1WmFqepxICPD9kNWVdZJOkssXL5IvlWJBL0FG13QiesiqgCgJCEI8ToeBjyjGm6ie56MrGgIiUQiiKCMIEoIgUa/V98c5cV+oScbzPSRFIkKMF/iEcfoXIQavzVaVVMJkY30NSdvDsixS9iyKJqJIIkODgzFwBg4dOMjFC+exTJNDhw8RhCrXrt9kZmaawO8TBh5B4BGEHoqicuHcJYqDQ7RabbqdFvlKjdZ/9A32fvWbVE+ew89k+A//z7/PU5/7EoMDQ4g/eglJFGl/9mG2NpeoN3ZJpXNIsoFgJZB1jZXLJ5icOkQin7uLQE4c0nJL1CQIwnfFMsYW8l5Bljvn7PeKtrzj4xPeEVa6Y2q+m7f3djGm+y1b7wRc74hHiXGOUlHnj3/7W9hBhclHP4Ni2Cxde4uJw8/gqtsY3RTz115nuKCztzbHbrWKoETsdXoMTRzAtNLcnLuJk7I4cGAWI19GNZL4bsSnPnWIfF6h0RE5f2Wdf/G7v0c2aZDPGZimRBjCv/n+RU6dus7f/NW/TTvok89NUKn2CdHIFMdIDU7jiV2mZx4njGyuL8xjJxPgV5gaK6PLEYLfQ+qssraxiiRGNCs3CXsVBsvTdPtddCeDmR7ByZcRZZXwdqGt9zpcCSKRSJBiwIoMxPN9FO3TRT+Ct/Vu7XJ7m37Q4z+IvR+N+F7H3+u49/vt7f53xzXc75o+akzuvyu7V37cu4G9W+Jtd3aiW999MNAKsXjSB+9Xd1vH3+4pvtcxtyzuyx///v8cuP4lsk/ygf2kyvogg534xccQvvCpt4+5lwqeuE87S1gWlpNgYXGJZ1//GUcCjbwXEA7F6rVR/PQgiiKiEAsnRWH8ACeSCWQEnn323zA2Noai6viBwJuvv8ZgeRDbtmg2GlimSSY7wOuvvoEoSiRTqTiGRRRJpdN0+30QoVatcOjwwVjWXlXwAw8BgcX5JYaGx9jdqZNMx3lPwyDE9zwWFuaYnhklnU5h2w79vossq28vNERRpNNpIQkRiqJQKhXpu12s4SrFYYdS4hCqpjI6WkaSRRRFot1qo2sGQRCiGyqWlQAEDFOj3WkjItFsttBUnc2NTTLZPKpioGoSU1OjqKqCGwiIkoiqqSiqiiRGCEJ8/wM/IIxCJibGUFSZbq9DYVzG9btImLhuH1EQCYIQSYq9JaIoEQXgBS4dfxsjLMOZy8x98XFUReX3fvcPuXTpMgcOTiEvPYcu9FHDOsMFm0Rxhm63R61WAwFM06ReryMpIo5lYmhxio35uZsYOiiSRLVWxUkk2N6tIIsgKhIn3zhBMpXFsQ063TaCIHLh0iUkUWFzY425hQUK+QJ+36Va2aNQLLK1tUV5eAhFVen0euiGjiAI7GxvUSwNYJo2rVaLWq1GabBErVYnmUywubGGbcXiUQICc3Nz9Ho9bswt8LVf+AU8t8/Nm8ucPnWKgwcPEXQbLC3Mk3ASXLl6ncHhEbK5BLV6A8e2sQyDdrtBaXAQ2zZiwaFiEdtOopomQRSvSdfWNhgdG2V+foHZA7P7YkoC62trbO/skstm2djYRNMiioMD+L5PEASkkikkMZ4QAz9AkTVWVpfQNJl+r002naBRq6ApQOUGdX0aN/sY04eOUSgO8OWvPEkyJ1O4XqfXD/nmt7/F4OAIiVSCb/7y13nttZdxHIOTJ99ibHwYwe+xOD/H0OAgzzz9Zf7g9/+QcilDmQ1qbZ+zF66Qz+exk9b+/1F5842TqKqOaZhsb+9w6uRpHjjyIK7XZXxykmQqSTqbRBQFrly4wfkLFzl4cBbL0VhfXmN+fgHLdPjhj37MwcMPMD4+Rr1e59y587RaLfL5PGEYcvjwYdbX1ikPlZmensIyTURJQlVVxsZG6fa6yErs0bUdB1XTkCWJ5ZvLlEolGs0G3W6HQ4eOUKvWiEKReq3NyNgQ/V4XwzRwFQPPKiN6LaStOazN0wT1nZhNopt4foCq6jiJBJ7bwwsj6kemOX/6LLMXlggzCUJTxw9CEo7D7maFK1evMDJS4ugDs6SzOcIILNtGkiVEJV4Mq4pMMplgZ3uH9fVNBFHF2hdgkkQFN+gi7MelO4kksqIQL6pjiq+iiuTyWaIgIvR9JBH8fh/PixBFBUGUQIAoimP2bmktRGEYi+7FXGAAgjAkjELkWzGf++I1YSAhK0oMvaKQyA/eHjOjfZV6VZFp1GvoqoJuBZhmksC1qdf3yGZSRGFIEPoosowkxV7adDqNpgvs7VViReqEgyLHni7X7WOaBq7bY3BwCMPQ0TSVRqNJZmmD9i99DT2XJHH2Gr1enyf+q/+amZmDbG6uo77wWuxJ/qtPY9k2zUYL3wuRZYlgH4IsX72A7qTJFAfuNjO+a367Pc7tHY/KB5piP5jdYi9F917Ifpjq7uYJAuj3+0iuiSj2OH/yOfrNHQ49+gvsNdaYGCqwcHOZdCZD2GsStm8QtFYRPJdkxkbRTezMAKgmVqqAoCoE9SqtTo+OG+H1+9S7HeyERRSEbK7v8tu/9U/4O//l3yGZNZGVJPVGhKI5HDjwGE8/8zSFQppcwaLa6CCpOopm4wURqmmSGUij6zrXr1+m19qlVHRAETFUGa/dJpdIQvc6vt9la3MX3R5AM7PUdpsUh2bQM6MY6UEMyyQIgnt6Kd95vbMxcS+9kH+bdj8v6sct65Mq4+OW/BcVuN7L7g5cP6lr+HB96/368AfbGPhk0uL8HLj+JbO7UYPuNTDez0N6r7Q2d3bg++UOu9cOzZ2g9n50kEjYP0dUSGcHGJ+a5caVi4QDGUrPvYp0bBZBeiefWRRGBEFA4Hv4vo+iKIiCyN5ehcce/xSGob0t3uS5XVLpNIZpxvFYkkR1t8LI6CiNZoton6/suj6e52MnbNy+i21ahFGAYepxzJOsoogyfhCiGzaZbB7DUqjXGiSc2IM7PBIrxgqCiChKhGHImdPnyedybG1tYhqxkubW+hpOwsF2bExTx1W2CPyAzo7OSy+9xMzsFP2+S7VaI+E4scfD95EUmcD3cd2Yztjt9lhfXaM8VObCuXP0ux10U+fF48cxDZn1tTlsQ6fe7vD9Z7/Pgw8+RLNZR5FvCUWIKIqKaRgIooDruciSBMkN8FVEQUORFcIwwvdC+m4PPwgQBYmNzS0MJYGR6yL5DuKJeZp/9WnOXbqI32+STOoceWAIo36dUDRYMZ+k0DnFxcU9Ikljenoay7a5cPEC4+PjNBotqpU9dre3uH7tBiMj48zduBoDPdtCUVQSdpLF+TkSyRT9jstgeQhFFqnXG1R2drlw/gKf+9znKJXLFAfyGIbG6soquzsVCqUiuUIBa1/ISTNNvG6P1195hSOHDmGaBnNz81iOQ3mozPbODnYiRdKx2NvdZHNznanZg2iaytjYGJOTU4xPTKBoEqZlMTc/z7FjD8a5UoMaxVIeWZWZmpkgEiNM08BykqiyRqtZxzY0Gp0uWztbiKLExsYWURBx4sRJykNDyKKMrmpEhBw+fIRTJ08xP3eDwsAAhUKBfL7AyRMnOHjgAEODBRYXFmi2O5SKg1iGzc72Br1+n2yuwNy1GwwNlxgcLJPJZNnb2yMiYK9SR+2uo4x9me/87Dxf+PeeQVANdENBUsE4uYzrBgz9x1/HthUeefAY3dYuB6YPMD05haEZGKqJocmMT45Ta7YYHh3jscc+hST7NNYXGBlIkxmaJJcv4F3/Y4TaVazyo8xdX2B4dBTHsQmCgPX1TdKpDAPlHGfPnCaVTCKK0Go0WL65wWc//xmyuTSSLKJpBsViiV6/z8bmJr7v0ut2uXnzJk888TimafDKK6/w6KMP47oe+UKecrmIKIo4iQRXrlzBtCzKQ2UM20REYGlxiUwmh6LKyIqMpmn0PQ874ZBKpVmcn2djfZ3i4BC5fJHlpSVa7TaKqmLaJprt0A91PM0GM4HU76JsXUC7+SZG2KalZlHkWMFbEnVc36f0pc/QSagkXr2A6CSILBNVU9BUjYcffYhCMRePbaKIZZpIkkK318GydARRIQj6uP0ehu7w/Wd/wJNPfobA99jZ2SEKIxRVRpRiHYAY04QQRfi+hySLdDrdWDW938YPeoiiz+7uBmurFZZu3mRoeIiIeKztdXsYhvH2xqG/v4kS+H6c+EMUicIgXqwJEgICYXirypAoCgh8F01RicKIKAz3c27LNOotLN1gbW2dbtsk5Uxh2wbdTpNatYppWRi6ThTFSseyorC9tYWuK3EcqqlhWzaiaFOvtXnrzVMUi2UEQcb3e+i6RmVvj6ysoq3t0PnmM9QaVfrPv0oymcL80pfodJqcOXOC0t/8JfpPPYmoCkShRL3WZmXlJgf/X/beNMau9Lzz+519vfte+8qluHWz2d3qRbssjyRLNsbCWLYHkyAIkHyaAAEGM0DyKRhjkASDSYBMMhkngxlLI3sseWzZkqxepF7Y7GYv3JpLFVks1r5X3X07ez7cYjebXWSTrZaAwP0QF7z3nve8563znvu+z/9Z/s/UQQRFo12r0S1vYaVzJLPZ/Xazu/bQ/Yy89/Yw3e3x/EhlUXj/vI9osu81Pkput1MUBVVQqDY2qKxP05c2KAwdoDR+gOUrV1G1OpGrcfqlP6Z76zR06+yWwQ01/MSzHDn1u8TzjxGIadzAwDZrqJqHongISoCsFnE7LqlUlq4T8OwXv0Spf5Rqo069IROLDaCZNooso6gint/B8xwct4vXDcmkS3vM0g5RGLC7vcPhQwfI5RPIaogpJnA7O1QqMzTq89SaIR3fYOLY5xmYOIWa7KPZLBPZcaR4kkQmiSRp941Ce+8eRsKHjn/UnNzd9lclDzrH8OCe1wfRPfcDQ8IdbQRBuG+w63465P3kV+GVvV+f9zt224C0n7r7sGDznkYA4cGerzvHeud3d+KA/bDFh/X1T4HrfeVT4Lq/PAxwDYIA13XvSRzxoDmrD3vsfu3vB1wRboeNKUSCSCTKJOMJOkqAObeCuL6JMjpEFIaIQs/KL4kS8l44mud5tFotUpk0kRARBB5hFCAJAoqsYMdjhFHIbqWMIivUaztYlkUuX+Ctt8/x9tk3mZmeRpFlCrlcL+dO1kCIUBUF1wsQBYUwCEAQezVkaxUURaTrOBi6QRB4dLtN4vEc1Wp9jxipztXLM0REZDIZDFMjCHxsw+rZ7vfYOuV4HUKB7Xm4euUqmqaRTGfJ5/OIosD8rZsEgYehmSwtLlAqFgg8H0MzsGIGu7u7JOI2Bw5M4vkdThw7Suh3KRWSuJ0uiq7z6COPICKhKgq+HxBF4HtBrzZrFBEh0Gq3URQVIbWM6KURRYmu4+A5HrM3blLqK/QYchGoN+pkMikCNyS0txHnIt7c3eCzv//bWEaef/1//DFf/srnyXRnEVQTZ/TbtLZvMWg7JPqP0Om0uXDhApVqjampI0iiTty2aDdrTE5OECGwW6njByGmobNw6xZzN+ZIJtOsrq+jSQpWPMb1a9exbZuRkWHyxTy23fNwlSs7KJKE47hEkUgqnUKQe96aZr3O2to6Z187w4GxcRbnF2i2muiGRf/gALKq0qjXmbs1z+T4KPXKDgcPHULRDTRVYX5+AUKRerOGaRn4fsjI8DCmZbKwsMix48exYykcL9wrkSCiGSqVcpPybpXVpUWyqRRmIoVtWWiqThQKTF+9gmkZ2JbF2toqbqdD//AQ09PTiKLI2OgIK2urVKs1LNNke3ubfC7PwtwtdMMilc5g2zZvvfU2brvJyNg4QRCwvLjMlcsXGRwaYXV9h2LfIGYiQRipWI2rNPp/h2e/+jV2q5skMoNEnkoYRoivX0GWZA7/t9/E69ZQQ5HK1hqCZJJJ5/nWt36HRr3Du9cu8+1/8B2seJx0LsWFK+d58unHyQpN3n7jNIs7dYbHRqF8DYgIYhPE7Dira6tkc1kg3CtpFMN1W1y6cBHf88mlUywvLrKyuo6sSOTyOSqVGrKmcfHSJQYH+nnnrTc4evgAyVSCdDrJ4tIC2WyaI0cO0+12KZer2LbNxYsXyGQzqKrK4OAgsiwTBAGqoWEbJpcvXe6Ftqo95lzDMjEMA0VRiVkxLl54h2Q8RjyZoFypgOfj+gHpbA7N0HHcLpaewHXbRIKPkRqia8aIrCRCfQt1/gwNOYlgpyG6HU4I8sE+nPFhrJ+cpha4JPqLGKaGH/qAxJUr04wO9kMETtfB91xkRcTzQFUliEJWljc4depJ3nr7LGNjI5imzurKKk7XJRGLIwoCsgRR6CJI74d/uq5Hq9lGUU1Urfe3RhHkcnmGRwbfUy4lUdgjxYs+pATd9vT1GDWjHtOw1DN2CYJE6LZ7oNX1UGQZd+9/URRpNZuoqsra6ibXrl5FANbWNhgYGKRaq2DpOolEglqjSbfdxXEckokUf/5nP6TZbGGZFvFYvJeT6nu8c+4CYeRz5OghBCFEknv1qX3fx/d87I6H0Omy+dRxIEQ6cxHLsjmDS76QxrYN8rl+vvfdHyCqAeOjh+m0HQ4dPogghoSCjOQHvPvmGQ49+hiaae6zmT1ArurHzE/bVx5gO94PuD6M3GZNbToVTp85Td5W6EsoSFqIkj7G6pUrIG6QtIeYm/1bDDni1lobMfsU6QOf5dlv/FeoiUEUK0uzUafjtCCMCEMBRdLodBWIEvzR//TPOXHiERTTpuE4mGaR9c1NEokBHDfCjKl021USSQvXdahWmuTTFoZqo8gGsiTgeBU69QaqaqBqBpEksFut4danCcIalUqNTGaYwoFnmDj6eYzkKLKRxExmGRk7SjI/jpUooIgKovRBJuDboZUfun/Rx1PoH4Q/5JeVX0Zfu588DAPxe+/v7uMhx3Q/uV8Zp19WHlYffv+7T84T/mH56Lt3N164+7sHwQHvg9hPQ4XvK58C13vLfgWg75Q7weFtmv47F9z9+rj7/P0sL/td86Osc4Ig4P/X/yPBj36B+K0vfai/Dy5ot0kPwh6VvBCQzKTI9w+ylbSJ/6fn2VEF1JiFrPTIEgRJJBIFHMch9H00XSX0ejVVPbeX+9rpttHjFoIAjUaNuGUjCBGSarK9W2H62nWefOJJjh8/zKMnHyOTzeK4XRRVIgwFIi9ACEU2NmsoagxVj3Bcj263y8WL75BPF0nGE5Qr28RiNpIk0qq30Uytx0AcRQwU+0nGEyRS8Z7nQ1MQol4elqpqiKJCoO3Q7XZJqCOcfOwRTMvC9QL+/b//E0ZGx0kkM7z86uvYhs1Pf/ockwcO88abb5Ev9WNavXBXy7Zpdzooqozn9cr9OL4AkoYVSyLJFl7Q4dbcHKlcP6IsEoYdfKdLvdzge//xT8lnCyxvXCczKIITB3wURcN1eszNsqIhiuA4bZLJOFEUIgsKyAEUIcgfYezJxyj05xgeGaBYHMSbf5GtrTI/vyZy8NFnsdd/Qpg/jJmIo8gafcV+YokEmgSzN2eRNZW+/gKKEhF5IaahEk8kcNyAYydOopgqxVIKVRe4cXUGy46xsrxCGEXYtomqiWwsrVOrlMkX8mzvlikUi5x59RXq5SoriysUciWSsVgPMCsKsbhNOp0kW8rjNqvIgo8djyEgkkonCEWIxVMEQcQbZ15jdHSMcqVKrV6jf6AEsobrdBEkgUJ/HlXSmZ6+QehFNOtNrr17lVbHJ5/Lk06n2C7v0jc0hIDExuYW8WSCSIShoUEEJEzDZnd3hyNHD+F4Afl8nnPvvMPRY8cYHB2gWCgihAITExOEskAmn2ZodHivxJJEqb9EGPZqcXa7DolUkoGBfhqNJvl8nuWVNWwzya3rMxSVTa6Jz9DfP4gYikiyjyhrlMsdkldugBDyfKXMo595GiNn8dMf/mdy6QzpQppv/8Hvce3qu/z+P/pdrly9wujoGEsLaxRzQ8zduEDJVEgJDRJ9h+m0O3ibFyjv7BIffIqu02V5eZtSqUi1tk2xWEIQZGQZHCdgZGiU8+fOMzAwyMFDB3E6LhfOv8uho1MsL65x9NgRXK/D+Pg4+UI/kSTRrLdIJhPEU0kkTeGVl19h8sA4dsym2eySy2XodDpsbK7TPzjAbnmHdy9e4NDhSSYOHGBjY4fXTr8KEYyPTcBtI5/oU8iXWF5aYWbmKlNHDlBrOLRqDXa2txgdnyAKnJ6xTFSI8Ok6W5h2jnazgZkpIRkZlLmXKFfa/Bf//R/xX/7hd6hvr6DrOi1TQQfKEMkAACAASURBVDoxSerHZ1CLCTqSxPrqNn/zV3/D8EAfglbHMGyajZ5XVFN1FKlXJ9VxfW7NLzEyOkZpMLtHBiRw8eK7zEzP4vsRqUwGRAgEKG/t0Gm5EMhsrG1SKVd5/fTrjAyN0Wy7bG1VyOUzeL6PIAp7a6kESIRRtJc2AK4f9MKWhYjA9Tjz6utcuXSFYj67x/Ir8tOf/IzZmZvslisMDQ+DKCPhEUYSjhMxd30Wr91kaKgPO24TS6Zodxw0TSedyiDKIkHo02q1yCVTPZZh18W0LZ548kkkMcS0U/zlf/4xBycmGRzosXzrlkWj3kCKQlwvxLZtHLeDsrpDY3IE5cmj1OoN0k8+in/iALnDkyQSOrICmq1w7PHjJOIpXK+LH7g9gh5E/G4Tp15hYXOHY48/fg9PzN01PPfba4V9Xg/nhX3f27d/bx/o+cEvddf+LCLSMypHAnTVBN3V87RXzxP4bWQzQ27iGfonR1lab9M3foBE8XGs3NM89c3/htFHRzk0+SyhbyLJW7SqW9y8ukguJ1EJErQ36sidTSLPR1RDHnvi80jWEKJqkrKL2GYHRbfIlor8u//n3/DsY4/jCiKdxgaqGJKIZfnNr/0e3/qdr6ObARsba8xcXmNkYhjcBC//7BUsfZvIXUBwoba1i66lcEKdtqej6zqKKiJK9AzeKAiiiCT2opEiPnzv9+cbuUsP2+d1W257ue424ot7Zffudd4vK3cDlruP3TZA3U/fu/3+Q2Vf7jFuYa/NAzx2+4737rE8CC/Lx5UH8djeH6R+uK/3ctMF3nvtl7t+9+tB0ph7OfQP9rd/cD4lbs/S7bza22vWfrr9++eJH+rr48inwPXvqDxoCMe9FqBfxfXv9d37rMJfevjrS70fVWZyjPL2DolXz1PO2iiahqYqhL5HGIEq91hpBUEk3CMKkRQVQZJRVA1JkKjXGthmDM/ziCJwvZBXXn4ZhIipqUO9QuKySq3W4Pz58xRLRSDAMjXm5m7y7pVLHD4yiRCGrK2uUSoWKRYKvbqYsoTn+VRrDTTdwjR0VF1FkWVa7RamoeEFLmEUoOoaINDpOriuRxAEmIYGRhlZkVHcnuK5u1smkUjQabdxnA6lUpF3L13ED0KKpSLFYp5fvPQiw4P9xONxdE2nVquytLRIKp1FECW6jks8kURWFDzf7+WsCSGZVApBDInCCEIB3w+I2TpDw4MkEzFawSqpvE7kqL38VlGi2WySyqTx3WAvTNDb88BA4HmImCA3aPkO63qWP/yH/4hvf/vbDAwMIK2fJpaMc/y3/jt8wUTYeQcpdNCS/bRbberVGslkgjAISGeyWPFYL2y4XKXVatPX14ema8TsOI7johsyUeijKTq+B7qhE0QR1WqFdCrFzvYmlUoLN/BYXF5mauoYu+UKt24t8OhjJykN9KObOpIiMn39GqIsk8qkuXLtOoPDw0xfvUIqlUbRTOKxOI1GnVQ6zdbWNrYdQ5ZETLNXr7JcKZNKpZEUlcBxaTcaSIJIEIZIstwzJrTbJFMpJicP8Od//p84dvQojtMrz9Rxa6iKjNv2uPbuNYaG+wl8n0QyRb1ew3G72LEEb735Jl/64pdoNhrohkq30yXwQ1588UUmJycIQx9FVXoEO3vKhySIdDodVlZW6O/vw7Zstra2kSQR0zJIpePEZIcwDBn+8j+m7XRJpJK4XRdDN0mmU3SkCG90lDPXp8nkUsTTNoV4kgNTp7i5sIBsynz17/0GN6bnODB5iEK+hGHo/MZXv8JXv/Z1+gpF5N0b/OSVd1BkkQGrgeu62ANPEIYRr712hna7yaGDB4gimL1xC89toyk65XIZLwg4cPAAnXaXpcUlREkgmY4TERKLWywvLZLLFrhyZZp8NsvsjRu4XYdGvY4sSbiOz8jICN2Oy+LCMpOTwxiGjmGY+H5Eq9np1ehVFer1OqIo0mjUGR4eJp5I9LyNkoQfeCiiwvDQCLIi0zfQz43rN5mdvc7I6AiaoWJbNuXyNvGYQbPZJGalCHwPzTDp+iGiYqBlBlE3L3MgFZA79nkKxRyRqNB1AsyBAVwxQv3bNxAmhkhm8nQ6HbpOi5Mnn8Dtirz00hkGBwawrRS1Wg1REpFlicHBQba3t4gn7L3IFZH+vj6OHz9KPp/tPR+ahu8GaJrG5uYWnU6bXD6HFbNYXFhg9uYsiUScpaVFRsdGejWh9+oJRvS8p7389l5dcYFe7msQ+BAJVCs15m7Nkc3liMXjIEjE43HmFxY4cHASorBHBuY5tJotdnZ3kdVe3r0XeARBSCqZwpXP4YXL+J0eCO12OnhuQLPVoNPtEEQhw8ODIETomsbC4jKSLDM8NIAggh9GvTrYpkEUhei6jes5SJKEPreK//RJ/MECuq7jqDKBqYMgY2oyge+i/KvvIZy5QPT0SWzbxjRNJElCURSCwAPPI5cvEEun77GnPYjHdT/5BL2wd4tw348fPHbH3yRGEaEg9YjIkFADn7df/CFBbYF0UgNZpG/sJHLUZWdzm4GhKTa22xw7fIDXfvEj4qbAbiOgWn6HbkWhVr1Fx3kDQ04T1wcZHDrA4sYMXtRgZPQ4UagTSxQQVYgl0hA5dByfwPf4zGceQ1MFPN+jXq8RopDIjfKHv/8dPN/B9Ry6XZ8jUyeIZ7NsbSywuTHD6FAat9XGC0RExcLKDlEYO0IqmceMxRAkCUSJ23VZPzCnwr3CJu9/gz9qxqOoF35/d/3fX6Xs55C48/ODpJ3d8/0DXvdXIZ90/58EcP04be464wHafFDPf3AQu1/e7YOM8cE88R8lnwLXv8Oyn2Xstjzsg3znObflXpath7Xw3AlcP0puW/FuS0AEkoggi1jPniL66ctEuzUalkq31USRpZ4lPIJ2uwMIyKqKIIqIktxjAhREhDBAUzVmZ2eJxRKsrKyxOL/IiRPHGRwaQDNViHp5WWEYYpsmmXSazY0dqtUWnh8xNj6OJIpUdne4eOEC42Nj+K6HpPUIo3TDxg/gwsXLlPoK1Gt1JFFEUhQEMURWpfdYNtvtDqYdR1ZUdFXF6bTx1G2CKEB2s0xPT1PIF2k1awwO9DE2OoLnOpx89BGGx8coFHNcuHCOZ596CtNQkVUdoogwjCgWSyiqiqZpVKsVTNOgXq/1Slsg4TgtQt+nUumVyOi2Q77//e9z9NgB4jGbmG1i93cRRQlNNBHoMZSalkkYRZR3q9SqVTJ7ucJBECBJEoIoIVyskDjokzv8OHKsxFe+8hu8/fZZCloFR9awJp6lvFMhclto1Uu4ah+xWIJ4zGb+1iye5zF7c47BoREkWUWUNGZmZiiU+mm3umxsrJPOpNB0mXa9zub6FucvXKZ/qA9FVjh44BBzszd7+cZmjInJCdLpDNVqg1yuwLHjx2k0myCEOE6bVrvF4GA/8USM9bVNjh59hHarzujoKC+88AusWJLr12fQNJ1EIomumziOw/raRs+4UN5FlCQM3UTVVK5cehdZkOi2umxVdujr70eSFQzTpFgqISIwONSHKAqkUhnqtSaJeJq52Zt0W2VKhQS6abK6skK5XCGZTiJIEptb2xw/dozpmWkS8QSvnX6ZpcUlctkcmb0ax4IIdixGq92i3e6gKAoLt+bxPJexsXF83+fWzQUOHjzIyuoSQehixwwUPAhcgqEvoxsmiqrz9ptv0ddf4t/8X/8nj37jq7jFfpK6iaqqmDGdn/3kx/zlT19leGyUkbFhZFOmvt3lrTff4eDBw3z3e/+Bf/bP/ikzs2tofpOUt0Zm6DDdVhu1ewvX8whjh4jHY4yMDHHo4EFazSY3b95iZXmViZER7JjN8uoKqq5TKJbY3NylWCwiShGJpEGhVCQMfWJ2jM2NHebm5hka6KNULFIoFlhbWYMQpqenGRgYRJYV3n77HJmsjWEYRJHASy+9wtLyCgu3bjI2NsbZs2eZOnyYQ4cOkUwme+GlvoeqqnQch06zy/LSKqZtYVkWoiBx/JHjlAZK6JpG1wnI5dI02zUSsRS1qosQtAhlGUU1aFR2UMUIMTdKQXEJF9+E4kEC2UZTY7zyyhn6vvBZRF1Be/0SYSnD0PgQxWIeAYFKuYEoCiRTFrOzs7x59h2mDh8kinwEMSIet3A6Ha5dvQ6CiKLJEHp0nQ6KoiIKcu8lCSSTCVKZFJLcy+edmpqiWCziuW4vpUASUVV1j2QJPNejVq1h6iZhEKIqIp12vUeWJMgEAZT6+5icnMC07N71JAlFVTh46CDJRBxDV6jXKhCGhEFIu92kf6APPWYiRBGxWAwAI97E93269RiapmAYJm7XQ7d0MtnsHt+AiCBEGKaFKitc3iPkiqfSLC2vQBSQTMTZqZSZvT5PNptBkSS0W6vUP3uSShRx8/ospUKJxflFMoUishjR7bSQ/+LnCI02fP3ziKKI53kYhkGj0UCWBOZv3GBweBhBVR8IuN5J3HN/+aAn72H22nu1vT1+URI/WErvDuP27RI90h3r+e1xSIJAIKgEUYQUuqxfPM3Lf/MnRJ01CrkYkiqwsbJGp7LCQCmP4wlUqy1m3v0FU2M5EvE8oWIT7tapVmZw2xV0MYkk1xFCh4WtDsNHTuG1Fa5cn2Fzs7FnNIzY2NhENUwSMZt2u4YkhQRCgKLI6JpFpe4RaQlsvRfGLggKmUyOMBIp13epVm+Sz0nogkbkK0weewJPSZIZOYZgZoibeo98TBRBFIgEoVfl4C7geuec3GcW7prKe0ej3Xnf79bVJPHDJE+/CrkzrPZu0CqKH3xW9gOrH46Y+7Ds64n8hMa/nwf8lwVU+/2O7gcMH+Q3vd9cPhjQFT907Q9fL9p3Pj5a/98PgO4XRfAg5z28fApc/w7LL7OwPSyo3e/8B23zoMB1P2ufuPcSAEGSUD57CvmPf0jbVJGTcTqtNpqqIim9nFNZkhGBKIxoNVuoigJRRKdVQ1EU1tbWcBx3Lx9xgFw+SzweR5IVIqFXaqBSLvPupQuMDA0Qs2yW1zZ49bXXyaaznHv7PI8+doLR8VHCMMRxPUxTY3dnF13TURWFwf5+Oo6LoRl4no8gSXsspSqq2isfocgyXdfB0DUg6ikVdg1ZUohaSWKxOILQI5Fpd9rE4gnCCMIoIgp9DNNgoH+AZCqDohp4fs9zKwk9ApfA8+h2O0ShT8w2iSKfZquDKKr4QbfnBVJMZFnBDxweffQEzVYLVTNodx2U3A5uS0ZRdFzPQxBA3gtLNA2dra1NMtn0nrVY6OUBAay1ELs2YXSRrZ0a6XSG/pFBavoYhZO/gRqqXD53jbYUp1h5nmvLHtlckeXFeVrNOp1Wkyc/8yQdx0HXDC6/e5XJyXFkSeWNN86iKjKpVIx6rcnq4iKKrDA9O0cmm6a/bwBJlMmk04SBTzafR1OlHtvvwgKddpu5W3O0Wk1KhSIL84tYpo2iytRrFaq1Kq1mm2wuiSjKdLoOI0MjCEKvNmwQCKyurpFMJmjUWpRKJZLJOIZp4TgenXaTQjbP7M1bDI6OksmliUIwDQO366KpGlubm7huh9XVZZYWV1hZXmN0ZJxqtYKkQCIZx+06qJpOvlAknkxgx2M9A0OnQ6lYYnNjg/5SnkceOYkVi7O9tUXgurz59lscPHQQUZTRdJ12u83QwADr6+u9HL4zr/H0U0+zsbHByMgImUwWQRSpzJ8jVjqIMfolzr1znnqtxQs/e56v/uaXsSyDYqFEV4yYv3KVQjaLmUxxYPQAl6dv8NUvfRnbNPHCiEw8zrXpqxw7dpxUMkMh38+/+Of/K9/51hdh7QK+XWJtYwvTXSCfy5IY/gxh6CNLIqqi0O26XDx/CU3TSGWSaLpKLGaTyxVYmF9iZHSY+flbDPT3kUzFiSIRRenVF/Vcl4mJCRRFxvU9YokkoijSV+qnVMqzvbVOGITEbBtFF/E9H9OySKZSPPbYSQr5BJ4bUir2sbW5xc1bN0kmk72Q1D2Djawo7Gzvsr62weTBA+zs7lDI5bATsd56GoGiKiiKiu8GNBtNUukE9douTreNrkp74KeJYelIiUIvjPXiX9ORLOREP3/9Vz8mVypgfOYR1Jl5vLklwrSNIouoWi+qo68vjyBG1KpNCvkcuXymR5jmeSAItOo1Xn/jTQQERseHaTdaPPez5zh48BAgoGoqQRQgySIQ0um00TQDSe7lvifiCdqtFoqu3LE4QxAGyKKCIEhsbm5i2TqqJBAGEZVKg0q5QhD4WLqCaVgsLy8Tj9t4Xocw8NB0hW63g2XHkFWddquNqevcuHGTeCKFpmk0Wy2iMESze0a/uD7KxsZqL89Ylnts20GIKAi0mi0ajSaiJCMKEblMmt3yLolsgeefe45jRw6jGzqIIulEjo3NdeK6jja3Qu3vf5lGq8vCwiKJ1y8S3ZhHPTFF6DvUa1WsV84jiBLR1z7H8vIyu7u9muFhGGLoKguzs4xPTiLu5fzus5vdvRt+5H6533mfqCfp7q6iD+oB9Xodx3HeN1a8d5pAKAqYMoSVBf703/5LtKhKfz7O57/4eda3a2ytzbO5dIWY7tOobdCoLFNKeyhmjGz/k4iizMLVa7SdRWwzjW2M4YVVNrbXyORH8HyJsdGTYMj85Me/4F//b/+SwVKcxx49gSeoaIqMqahEKKhaAgGXbsulslPlN7/ym3z9t76CrKqEoUAYibi+j9deRBEjnE7A5sYuXgi+FCc3cABJNdEUBTGCUOjVZ42EvWDWMPygLvLAU/BwXrqH7+XXK/cCWvf6W37d4/64ns9ft3z8cT6Ijv1+fw+n098buD78eQ8vnwLXv8Pyy1ia9rMCPUhfD3O9jwNc76bylyLer34mAOkc4Ugf1p/8DX4+QzsK6HabiLKErPWYKn3H7XliZbFXagHotuqIkkRfXz/JVIoIMDURx3ExLJsIgTDy2dzcJJ1Ksr66jK6rKEpAKpvh6IljvPP2WwwN9tE3OIAogaKqKKoBoU+1UkESBXzXxfdc/vjf/QnHpo5x7u13GBmbQBRlwhBqtTqyJKLIEhAiAtV6DT8I0KI+3HKC7a0dTMMkDAPeeOtN+gcGex5UQ0dRVcpbG3TaXTTd4hcvvUo8mSGZjCHQ81grskyrUUUEUskY1co23XYLJBXLSiArAmIUYekZVlaXiMU1FEXGNJJImoaoRmCvIXo9ABdFIbL8/ry02y36+kvvhTpJokzX6faeqY0mUmQQPPUoOW+ZROUC0vKb2FsXYfY1wpsvMxjNUXBuEXkV+pIxdLdLToN8Ls+5S5dIJBMYpkUUgiKplAZKtJsdhoaHEAUB12lTLjdo16vEYjGseILDRw5RrdXxXJ+drW2uT89QqVdJpxIsLy6STWeo7O7iew7jI6PUqnXarS71agNFFjA0mVwmSzqZQlIFGs0m2Wwe13HwA5dcrsjM9HUy2Syzs9fRVJ1b83N0um12d8uMjR3Ac7vs7pYZmRgnlCTiloEkimyub5CMJ1hbXePylcs8/vij2DGLocExCoU+FNVncXGR8fHDhGgIURdV1bg2fZ14MoGuG3TaHc6dO0c+lycWi1Et76DrOotLK+RyWXZ3djj1xClEsecxESWpR/oRhLTbHbLZDFEE6VSaG9dv4LouoiSjqhrUl3jl3R3emK6ys7nLM089w9rqGqlsDN9zCM9fw3LatGSR7Y0tvv8Xf8XTT36WgcESTrPJpXPvYtkJ4rZCX6lIuVLha3/vtzl+/CRvv/46X/76b5PafQMxe5C+gWFM5yblShk5M4XjdnsEXecv0Om47O6UURQF3dTJF/KIAnQaHco7FQZHB6iWK2xurBOzbQwrjtPtIggRqqpgmgabW5tcvHKZ8YlJJFGivFMmle7V2y31FXtljmo1xscn2NreIpFIIIoRouDxxutvYVsJWq0O1VqZ0dFRLNuiWqsRRRGqpiPSu6+SJDG/uEA2nWLmxnWyuSw3Zq5Ta1ZJJbPoWowgdIjoIMsaYthFjDxERUe1EnRaFSRJBTNNaGaQ514Bt8nhZ7+JnUnRxsOdGCf2+nmU5U0CIaLqu9h2kl/8/CVEUWKw/wD5fAxFkZDlHns6oYBAyNDQOP0Dg8iqiKmadB2HruNw20Lfy9cM8H0XWZKRJImZmetMX7uGaRg8/9xzDA4Poao9UiNRFFlZXeH1195gcGCYbqfTK0HVqhEEIe+8c5HX33iD67PXOXZ4gplr01y5fJl0KkkQuOiaTBCEKIqGrGnsVGvsbG3z7sV32VjfRJZVBof7abfbhIGPEy73SLKEIrl8hlqthiBIGHaCMAyRZRlZkkjE47Q6HXzXJRlPEE8mERWDdy9d5LGTJwiDEEnTaNU6XLh4jpIoY3kBW88cQxI04rE4yl89z4SdpPH4UTRFJAp9rNMXexvO1z/XY5Z2HIaHh0mn07hOh3NnzzJ15Cjhnsdsn93srr3tw/viPXbBD3z6pBRxURR7JZHu7O8O4Hrbw6aq6nvt3zsXiYgIyW/xf/+Lf8pjx0fZ2VjAD9oopslmuUUuKaMKTRSxgeuU2V6/QT4uYg5NgXaM8uYKWxs/Y3joFHbMYqs+g0Q/xf4p5FAjnlDoCmBmi3zpC19jamwQwhrlnQ2ywwdRJQm8AM1IgRhja/sWoidgyCrFXJJjp06wvV0ml+tja2sbWZbZWXqDbhOSiSFiqTTZYpZUfgwjkUWWBBTB29uBb99sCAWQ7r7vv2bg+uuWe43tTvD+KXD9+PKrBq73Sgt8kL4/Ba6fsHwKXD9a9ltU4ONTgj9IeMp+P44PhB/tI8GP7g9c7x7vnT/CkDtIJQAiH2likMgyUH/0C5LPPk6t1mBjcY6EYSAoZi/URpJwggAkEUlU0O0ErWaH5aVVwiDk3QsXGBkbwzA1wqinmGmygmUatFpNJsYnMEwLkAlDj621TQ4dHKevP4mu2awtLxOFIZZlIkgyoiRiGSq+4xD5Pv3FPjrtBooiI0u9zVHTNQxbAwK8bgc/EvZCetWep8h1kSWV7//pnzF1eArwyBUKZLPZXu3XVocwjFhZXmdgYIjNjXUajQoDAwU0TaPRbOC5LtVqhVQmi2pYNNoOiVS6F86qmXhuwJ9+/wdMHZlid2eDq5evMjJykOXldXRLBWTQt0DuIPgmgqQQ+S6CIOF6HrIiY+gaEQKiKCOIIoIQQgSKokLbh8sbiN88RaDnWKxBW8kws9mm78Tn8GL9uFaJchhDVwXKmzO4WoqO52AREZoJBsYnEFUVXTdYW1nmxrWr5PMpDEMik0nTaHSQJRErEUeQZEqFEvVGl82NJcq7O3h+xPFTRwmdLtlcP2bcwrItisUBvKBLNpdlZXW1V17m4lnS6QLr62Vq1SqplEW702J7a5dMpkBIiGlatFttZEUg8F3S6SRXL1+iVBpiYnKCbD7DX/zwRxw+PIlmGxi2BWGIQMTOzg4xO8bNm3Osra/zxFNPYhgW9WYbTVcxLI2lxUWGR8a5fOUaY5NjKIrBz194hWc+8zRvnH2dYn8eRVQxJZnyzhbXblzh2KkTRAjEzTjn37nA1NGjdJ0Oumbw0s9fIZdNk4jHQBSp7uzSbraYnp4h6NbJZDP0Dw1jWBZzN26gN26w7I3wxJf/PjvVbSYPjiELAqPj46QKOdI/epXu2cv0/eHvIMUsrly6ydnXLnHu3FnygwM889lnWZie4bv/7/fJpAqkk2lGJgb4xm/9Jo8+dpJQEElsv0nX6Oe5555j6sQJArnA5WvL5PJZ6vUaUSSwsb5FsVjAjpl4XR9J0bg1v8TW+iah79HsNFB1hdW1VQYHBql3GiTsOBJSTwGVFVKpJP2DJSRRYPHmAteuXGNs8iCWFaPeaDIwOEipv4QfBCzMr7C0sILvQiadZnFlhUcfe4RUKsnG+ga6pqNpe4RbhIRhhKzJpDJJhDBkdHAIzYpx8cJFoiDi+Inj5PJ5ECIq1W0SiQRhKOJ7HWKxflrdJqIArVobO2ZTq2xiWzaSlsIzUrB+Ga21yFJN5N/+73/M2OEj/C/P/4SjEwdIb1Qxry8jNjvkiv0URocIg11Uw8bzQjptF1kW8QMXWdHRdQ3d8ChvVQnwidsWfX0lVF1DNTWC0CcKeuRMsqLjhy43r9/k3DuXmJqa4sChCRynTqvhYBoGnteh0/JIJzOohkY2E6fTqtHputh2DAh55qmnGBkcQVQkXnjxBU6depp4PIkVk1AUA1WE3Z0tLMPEMnREAY4cO8rszZt87nOfo1GrYJo2mm6ix+qEUUjopKlVKyTicXZ3ymhqtMcnEFCrVGjVq2SK/b05EkBWZNaW13C6XQqFIqIgIkQRYRjSbrYZ7UasjPezmrIZGRrF8VsMLW0hKwr/84s/4KnPPIltJ5FeOEsYRXhfOYUsmly+NEM2kyUKQxamp4ncNgOHj2OofBD8vL+r3bVvPlyo8MeNiLpfWOFt8kPh9r87jt9mDBYkEUHsERLtseoQ7Z23dmua6sp5tHSakaEMreoSxZxBNmcj6INkCnEaDZd6dZt0MkDVMvheinZjlzOn/5rf+s4fEU9lqNV2qW3XyOYy1Gor2DGNtuvTbDRQXZNGp0xmZITR0VNsLCyys/AyQbcBokGrU6HeXMQKHHRNxYrppHMarWaE2/L54Z/+GaeOT1DZvkIi3odmJollshjxLMnsMHIsiaoqRFH0oXkTADHqGRkEUSK6TSck7KPbRO/Fgb3/ukOPEe6aiwedu9s16u8lnyT78P30vbvH/bBhru+13af9XXftVyKfJID9ZfXpj2pznyvTI2kK995/0HjQm7ve2nLnHe2tNeLe4yhw51p02yAlCLdBb/jedfYLOb7zsyC8P2OfAtd7yKfA9aPll/tRfLLjuB9wfZgc19v9fZQERyYQN3cJf/wKiZPH8COPrbVl4raOoJpIsowkyxD6EPhECMiSyMbmBn2lEiOjo6imhiiA7/tUd6uIoowoSkQRtCRK2gAAIABJREFUhEHE2TfeJJNN4nldolBka3OHfD5Hu9vBtsxeCKjnEQR+r3YhPQUpDEKSyQSFYoF8IY8gCeiyiOt0ESUFUZRBEKk3ar37IkkISEiSgu+2OXH8OJVqpVfWxLKJQvD9AKfjIAoSP/vZ33L48GHS6VSvtIei0mw1ScST/OAHf0HoQy6X7eWoaRq+7+J7Po7j0Ok4yIpKLp/D6XSIxWKkMxkSyRidTpu15XWSgx0cxyVwJGav3yCbSyPtgfMoiujs1a0UJYnA9/cYTCNEUULYbBDVPIQvH+aN068zdfAwbtehz38buXEDo+8EvuegqjJbuzUy4TxV18ALAgzdIGvHEO0MjXqTH/75D3C7Ds88+xRzt+Z6LLp7ZEOZXA5ZkUgmk4QRtDsddE1GVVRyuQKREKAoKtdmbjI4PEi30+HG7DwCAqlUmmvXrjE2PopmmGSzOba3tykV83SdNpodI5PO0m61KO9sc3NunqGhISzTpF6rIQsi6UKeKBLRdQFNFZg6dJBms0oqlaLbcTj98mmqlTIT45NEkUClWuPEiRN0u200VUPau5e+6zF3a47BwSEGBgZoNGqUy7uMjo6RTKbQdBVJEKnX2pR3y5w+/RonT50incnhuwFzszeJxS0kRcIwTa5dm+HUqVN02p3exkRP7+rr62N8YgJRlRBliVarw/bmFlLQJROtMPV7/4rnX3qNb3zt6yRTKVY3q8xcv4WhWKSvzqHrOs3HpxBViSPHTnD12jTf/MZvcPz4EVqtCpIAyxvLKIbKteszfPs7f4DrRwwNDvLd732XU4kyDSXNiUeOIphZrt5Yw3E9hoZHMS0DRVVZ39hA1VQKhQIHjxwiFo+RL+QoV3YZHBqk0FegvFuhWqlgmAZ9A/2ICNRqdebmbvXYwDtdFFVGECCTSTE6OsTzL7xAoVhka3OL6WvXyRdyyJJCoVBE13RSqVTvOVZ7z47TcanWdhgbH0PXdWRZ5dKlK+xsrtJXKhFEERcvvsvcrQVyhQyjoyPkc3leeflVFFUllUii6zoRPZK4IPDZ2V0hHivhewF+VEMIBQTJw49EFDWBqGmI8T6i2jrJ5iwHPvcN8v2HGJuaYjNjk/qDb9E6nESTNbQby1hXbyHXHeauzuLVOnRcl0ypQBhGOG4XwzAJgghNs1F1hXarCZGA5wfM3VrE0gxMPaJR30UUJDRFJZOKcXDyALlMjphtUa3Vmbu5xNBQH4IQEI/HSacTyIqIJIkEvkc8EaPTbROPx/E8F0URScZtTEMjl83jug7gAHs1XYOQruP31iXPZ3e3zMmTj9FqNdF0Cc/3sSyLrr/U8wyHeVyvi6IqpDJpOm6IaSWIQgmn69NodNnYWsO2DDzXRdMNrl2b5fDhKQYG+pmeniadSmPYKkODfejTt/gnr/+cbjzB46dOIUgRxrlrCKLIf7g5zW//zu8ShALCc6+BIOB/9QlmZmZRFJVWq0mxmCOua+xsrzB8aIqe2/KjgevHDRX+JOWB9IH92gg9pVnE48zLP+PUI09gyD6y6NBxu6DGCbyIjtshnh5lsxLQ9iVSqT7UeBI3VNCVNPmRowhySKPRwLQTBJKOZcfRDIvAD4lZJradZLe+QQRUtisMD+VZWZlhfm6JyvYmithF9KtsrM1jGjr1ehUREUN2UZQGI+NJqo0dJiYfo+U42Mk0XiRh2SkQJLbKZUzT/FBk133v1X7A9VfgXb2tR/269Lr7leG5fWy/Nv9/CHv+Vei+Hwe4frJ93n8O7jREfFAffzCjwz096R/4/lPgel/5FLjeXx6knM39FsKH9areeezuPu+0SO1rpUvEEB85iDDS/4kl0cuyjPCFJ2CnQvjdH5F+6nFWN1eZv3GNYv8wiiITRQKtZhNJjOh0uoiyRCaTQZBEdNMgJEKUBDzPJZ3KvBdK5ThdXMchImJ3Z4ehoT6iSESWNK5cvcLI2DCqotDpOESChCIrPVIpgR6TpijRabdptlvopo6iKliqTLVSRdVsPC9gbXWFVCaFruvUa01UTSOKLxFpFej2QpenZ2YpFQv4vkcUhqyvrZNJZzjxyFHCIKRWq9FqtkmnM0iyRLfrcPTIUQREZmdvMjw6TLPVQNd1KuUqURQhywqiKFEpVyn1FVE0FVWVabdbGJrB5UuXGDquImOjqxYx20YQe8BQFHqhZJqqEoQ9y3AYRghEiJLS8xivNokyCdzDBVqtLqsrqwwMDNJYe4cgCFnYtbDtJNVKg4GRKbytCyiqQaYwgCALyK7L/MommmUSt2OU+vpx3Bajo2MIgkSn00bXNRRNo9VsIMtyj7jF9SnkM6STGTY3t4mEgPk9kic7ZuI6XQzN5OzZN/GDgIHBfhYW50mlsqytrzExMUYyneDc+fNMThxheWkJt9sh8H2GRsb4y7/8KyYmJpi/dYvVtTWmjh0jmUhx9fI5VClkaX6BgeFhRFnhxRdeJJfMYtsWrXYL3/dJZzNohsFrp1+mVCqwvb1NIh5nZWWJqSPHaLe7mKbG9ZlrtFpNTNMiQqCys0ujWsWy4ySSSTY2NpmYOIAoyJR3yoyODqGoMolUAlXV2d0tk88VkCQJVZVRVIVauYogCFy8dImhiVHi8QSapDJ7/ToTBQnJyrKbehY/DJg6dJhqucLk8TFcv8HwQJbKj54nlkyxPlZEFiIqlTqf++IX+MH3/oyXXvhbHLfDqSef4qlnn6TZavGZZ5/m1dNnmDh4mFajwqnHH0Oc+zlyYRxFk5EUg4sXLuB5HsvLyxw/cZwgCOgf6GNmZobjx08gKBGtRh0hgtOvnWFkdJRMLk8ymWR8YoJcLsfqygrJdBpBltjc2kJXNdZWVxFFiVgsxm55h+3tLU6ePLlnkBJZmF+iXqvTbDYJgpCNjQ0KhQKGqZNIpiASOHv2TR5//FEQoNtxKJcrGIZJ3FCIp1J0XYeJyQMMDg6ysjxPo97oeSVdD01VqVQq6LqBH4RIsoph2khqhCzYeH6XSGghRGCZQ/i+iB/sICs6oqyw1YwwRJ/46hleOX2awOvyj//J/8AzX3iKNafBbl8a/Ztf5I/eepEnvvgFYnGTdNslu11DvrmMvLaN1HJQ623OvHqWTF8fnf+PvfcOt+Os7v0/02d272efXlSPerEtybKxAQPBAUOA3CQUU9LbdQJpN7nkcn8JJLkECA8JJCGhG5IQB4Jx78a2iiVb/ehIp/eze2/Tfn9sSZZlWZaMyeUm/j7Pfp6z9571zjszZ8+71nzX+i6rQTgUQhTha1//FmPj06we7Kdey6BrIrbl0mw2aDRrBAJ+qrUKtmOztJBCU71Ikotl1Wk0GtimiaSIlMtFNE3DtJpn0ktdZFlE0xSq1Sq6R+X06XF8vgDJzg4WFhZ47NEn6Eh0Mb+wRCAQwnUFRkZOMjk5QV9fH65gIssatgOp3DFUVWXkUJlkZw9N08HnD2PTotWq49gNgiEfiC6D/f3kc1kikSiCJGOadTRdolYvEY0FCYQ8ODZUpmcJFmrs+ofPMLeQIxGPIKsivmdPgiCw8Vd/kUAgRNOyUB98Esexsd54NX5/iMOHj9LZFScUCvD9O/6ZRj3L2u07cFzxnJjO8/HjE7heLvMjCG3laHgui0oURSQHHFFANQx0WWf0mQPMTp8gGvOR7F9JyQyQGnkG3RckFF6B3xNnfPQ00d51eMMJJqfTbL3qNeD1k88VCUcSBGKd2KKOoSjMzC2ga+0eyEupNJoGdtMh4I3gCC0GBlcyuGI13T2d5HNpapUigVAEfyiIbnjQjRA+JUCukEf3hlg5fC2hyCZc1STS0QOiSjTegebxnKt9f6lz8fwPLi9wvVKW/IUBxn8sGfFSrOrF/MjzSYqzthfz6S5He+VsivqlGN+z/4MXpi2/1OuVxIsd9+XYXWycK533c9+/uGjX2ffPMaqXTgF+Kf//wvk+V8b3ypznVwPX/8J45Z/o/HD7fbEfqjjQjTDQ/YrO69zY129HqDWwvvcwoWu2IUoS+WyKcDiMZYHu8VJr1PB5vZi2ia5rIAogtGtnXddGUVUQREyzXS+XzqQIBfyoqoym+NB0GU1tpw2GwgF0j4dWo4UoKriujGVaqKpGJpvB5wsC7ZqzSCSCC5iWRbNRp1Zv8syzR1AkiWQ8gqJ5kSS53crFssCXQpRdqEUIh8JUyg0MQyadSREMBHjyySdYu3YNCC6mZTIzPXMmJcRFVqS2sqzgoqoyhUKZWDyKqilUqxX83gCVagmf38f8/AIPPPgQO3ftRFUVwKaYyyMKMn2rOxDDaQQzjOu0F1bLaqFrBsKZm2Kr1UAQRERROsMcOgiijCgKCCfTmB4NcXMvgqQxOzNL/+AAWnMS13EwOrbi8/mYnp2hs7MTWQK3cAol2IPjujRbFrJZxxNP0NXThTfgx+c1UBSVeq2O4TFomXVq1RqqLJFeXia1uEzfwAru+v53EUUJj8dHIhmjlM1imjaxeAhsC0Mz8Pi9rFq1Etu2OH78GBs3bSUcCSHLEuNjp+js7OTksRH6+3upVqu4gkyiq5PhdesoFPIMrhhCkmRmpibp7uymWim02wKpXkRVp1Sp093Vi+BCRzJCIOAnHI3guA66R2fl4CCVcgWASqVCT083giQzOTFBJBJGwEFSJLp7+rBsh1g4wumRUSRVplgskOxMkojHKZdKpFPLaJqC1+cjnc0T8PsJBEI4jsvY2BjJzg4s22FibBy/z09HMsnkzDSVYplSvkjA78XXHIehn+DgVJWDBw4Qi0Z55uBBFtLLJOMdNJoNAkfGURSNJ1olHn/gQSRJoqe3F48aYsfV2/j2t7/N1muuR3BE4rEO7r7rLmzHZvWqFciKRMtqIc/sQQokKNUs0mNP0xvX6R1ai+HRQZB49tmD9A/2EQgE6ejowsHi9MhpHNNhYX6JlStX4w/6cV3QNY3x8XGCwQBevx8EgWAgiEc38HsMGi0LVTWQZZVKpUY0GqPZbGG2TMbGx6mWK2zcsJFMJs0zB5/BMHRkTcLj8eA4DktLi8zPLRAJR3nooYfYsGEDptmi2WiQyWZIdHRQyGUxdI1AMITHMHjyiSfYtnUzHkNleXmJUCjUbk2kyjiAJHgoFpdQFBdJ0BEkCUEWEDCxmjVERcQ2LQzNS9kUMaJJBjx1ArVxfv31vWRHn2Z90ks4EKRYq/KGt99CqSuGsLmPvznxLJ8bP8LqD/wM8toBzKCfUrmMnK4wuJjFm6vgLudoFktkM3n8gTCrh/twsbAtEcPrp1otouk+vD4foiS166qrFfbvP8iqVUN4PBqlYoUnH9/D+g3DyKqMJMpnas5NJLktPNVqtfD5I2gehWisg0OHjjG4Yohmo0Yi1okoKExNTzM2Nk40Fmf16lVEImFUVUGWJU6OnKLVsjn87AnCgX727jnK8Pq1GLrWZnRVnXqlildXaNRr+IN+crk8iwvzxOIJWqbNvr1Pc+TwUa7dvRtVUSkUiuRyFULLWex1Q7Q2DfON2/8FVRUZPTXCcLaGKIrY111F02pgGCpSuYTdGWMxYRDwh4nF4vT39yGIDgsTp1m3fpBQ9xCOIyNdNA768QlcrwgXCVZE18USRURBxKP5eOK+b9Gd9LJm7RC5isPA8OuYns5g+pLI4VXEEj3oHoMWGms2XIckB5E0BdkwMFQVVVaRZAVZN6hnFllaXEL1eFEML6FA+x4YDiRwHR1JkyiVLTRfmHLDIdm3klJDopCvoxoempZLy5ZJFQsISohgdIDunpUIqoDq86CoBobXh8PZLgMv4/xebuB65SO37c4LFH5ccDFf7kpt4NLn5MWCsPPHOvs/+EqmSL9cXGmw9qNkXC82zoufoytVM37htX9u7FcZ10vi1cD10riSm93lKg9fyROlVzLv/4d9eiPv2o49t4j00D5827eQWRglEokgqSFkWUVV2mllkijjCs9J0OdzeXw+P47tIggiqqKTTS3h1VV0jwfdG6BWr9KyTFRNRff4qNVMHNdCU1VmZ6bY++TjLOUqDA6tIBQKoigilUqeUCBEq2UiCCK24+LzBPB4DDo7Y/h9XoqlOpIMPq9BsZBHUzXwFEAQMcwEuWwazSMTDofxh6NYrsiGjevANRFlhbHTUwTDPjwehWg0wTe+djt9fX3tY3QF9u89RDQSQZZFwuEwkqSgBWIIDgR8AQTFw0B3ArPVwDQtPN4AjishqFVEvQZNg3Qqhc/nAwQs02rXRckCsgDVSg1FVjlbXyEKLo1GA/fpWaTXbULojmL4vDz55B6SHQn0xgTFYpmm0Uss7sXnMahXG5w4NUcHp7ClCCDSsh3CmoYQilKtN1B0D0vLKXxeg71PHGBqap7uvi5kUaNYKtLT20M0HsN2LNauXYdmGBiGRrVUJRCOILg2drOJL+ClUMrQ3zuA4wqklzMM9a1g34G9dCQ6cByoNZr09w/SckxURaGzo820u7aJrsj4fDr79+0jFo0R9OtU63UMv0E83s3cdAHZ66WrM8H8zDSyIJJOpymXKui6jiQKOE6Teq2OKKiYpk29UUOWJTRVY/T4MYL+IDMzi6zZsJnl+UX8qkF6eYlVa1bhjwaIdcQIBIMcP3mSUqlI/+AQUzMzRBIJfH4ftXoFjxHgnru/x84dWxFdibvvf4Dh4TWEIiFy2RzJZAeBgJ90LkMsEcEoHEHc8Yckugbo6e1nzbr1DK5cxX13P8T1r30dpyfGGZjO0KjXsV6zmb/8u7/ls1/4PKVCka3DQ7g4vPnNt/Abv/6r3Pi6nSwsLbL7hteybvVKWpUU+x55En+gA2X6EfB38Y4/+BR//LUHMShyw/Wvw7JMQt3dhIJhVGRmpmfwRQJIlonX62N6eo6t27eRSi1TL9bwG2GOHjvMqtWrAAVBEqnVa0ycmiKfLZPL56iVq6SXlpmbmWPtmrUUimWiMR/j46dwbZtdu6+n2WrS1dXFytUrESWJUDiG6IqYLZPpiRn8/hD1RpXenl7mZhfpH+ggGInQaDgogkqrWadZr3Hy5ATJ7k6S3Z24jkAhnwdEZEnG0BSq5SL1apNqrUWhVCeWSJArFtEVm1q1gGDXwWkg0q5fzmfqHD06zsDqdYjhJL7ulRSEEKOjp+nqCKOmjmHMH8AtLtBApGhpfOeO+/jFD/0aptzg2499H//uG/Bdv53CpkGOD3WQ2LUdN+RDth2GBZ11yBjzObzLNdS5LFK6gFSu4ynVEHJFdFmmnk4TkD10dcUwnSYdHUlcUSSeSLSVkYsFWs0aCO4Z5Wwf9XqdltlAklWyyyk8hkyiI4blwMzUDMlkJw88+CDJZDcdnZ0sLMyR7EpgOxaKoqJ5dAACQR/D67bz3e/dz7U7ryUcCVOr1/F4vIydPMnkxAyJRDfVWh3BBX84jDcQQlE9yLJEZzLKxo0bME0Lx4aDBw7h0bx0LWWZ3HkVQm+EWJfCvff8gF07r6VvaglJFClv284XvvB3LC0useKWm8h3henrXsv04gL9g31Uclky8wuU8ymuvuFmHFFCEGxc54VsyuUFrs/Vlz33enk4pwNx5vVyV1OXFwryuLSDV0WSUb0+HKHK8twkjco0wbAX2beZjT/xdrrX3oziekkMDWIlVuF3ZFQ5jDcYRjdUBDwIooztmtDMUk9PULdMEt19yGoAxZWxJBvd40cUE1RrIOsOsl3EcVUsKYIR6MQf6ULTQ8SSCeQzCt6R7iFWrd9AIBrBVYR2h4AzpRKO6yKIArZjISJedn3l853157/O2V+k9vNSvtHzRhHarXfOfn7+OBfu0XGcl2T9Xq4P9VKB44VjX47vd7lMIjz/v/7F2M3/20Hri+Hlsr4vPE4JzqtPPb9O9ayPdf51Op+pfiHL2r6vCAJcOI2zLZAuzJJs255lVF9Yv/3cZ8/N/4fBlQaul86ReBWv4jJxJcGm89h+nMf2/0j2f+71v34DIkHko6eJxbtJpzKIYpN8PkWrafHggw9i2hbg4jg2tm0Tj8dwzkjf12rVdvsYFzTdwHHaKg0diQSaooILtWoVVVVQVZ1myySfL7Jjxw50VcKxWpiWSatlohs+iuUypm1Rq9XQNA3LcZAUGVXXsBwbf9BPwB+kVq0hiiBJIODiujYt0yQciaBrCpZlgeugaQozM9OUyxUazQZLS8vMzc0RjcYAl3e9613E43EUVebQoUOsWbsK3VCp1SpkMhlsx0KVHBTZoVrNsWPHRhpmE0GSKJZLWLaF7jGw3QblUplqtYQ/4MWlXcNaq9WYX5g/kxLdrpMURQHXtREEF9dpK7uqSEi60u4HaFnccMNrePwHP8C2bQIBH41Go80A+32kUsv0rlxH0YnSLE5jWhaSKGE5DlOjI2f63dZoNhosLy+zbfs2RFGk0WgwMjKC1+uhWq1iWTaW2Z6nqihMT09TLBVpWSKy4sFxFVxHRla8TM7MIEoigVAQURLYveta/H4fR48cJhaNsriwwOzMDLlchtFTJ8jn0+SyOUZGRmg0mqxfvx5BEEin86TSWYLBEOMTY1h2A0MVqFfKlEpFRk6OMj45Sbyjg9m5BXSPl9m5hTYj7DU4evQo/f0DFApFypUyV++4BlVT6erq4sknn6BUKpHJpnEFePrgARbml5ElDUmS2bx5E1s3byQU9LFueBhVVlFEBXCwbYvNmzfTbDVxgZteeyOZbPpMH0cFRVEQRZH1Gzbg5CYQEptZyJYYGTnabjNUyuG6Ju9773txbJtivsDiwgJ+v5/u7m40TWv/pm2b/QcP861/+ldkTWbntVfT2ZXA41XRNAVZlsnnytx5/73MjOzFdl0ExYcit1us2LaNpuqoqs7c9BTxaISF+Vmq5RJmo8G+fftZWkrhui6tVotYLMbxkRNMTI6RTqdo1OvMTE1gm03sVgvbNhk9OUKyI8GaNavI57OIIpw+NcrTB/aSyWTp7u6hWq3z2KMPI4oC9WYN3dCIJ+OIksC+fXuxbYerrrqarq52P9Kenh4ymSyC0K59LxYK3HPPPUiSQrVWI5vJoigKmqpx/NgxPB6DxcUlspk8Bw8eplZtEgoH8Ad8dHd3I0kKwWAYUfIjSwa2LdJqyphmA69PJZbwo+oO5Uoax7YxTZNAKMzVr70ZK9CL1XM1lcQmcGxCYw/Q+ewX+Z9vX82e+24n0d3Nxm3b6e2KUy4WmZtfYv22q0gn/cxt7sX+pVu4/apOdh99gNtK03yMHKXb3k3pxg0U1yWprO+hpgi0ltJIxSpyrkjfyXlWHltEuOspAqcX6VY0BNfBNE1cV0DXdARBQFHaKfuiKGG2LALBEM8+exRZVhk7PUY0GkWSRNavX0cymeDkyRF27tqBpmn4/X5kRQGnLZKlKCo4LsNr1tLT08XoyZOIooCqysRiMVqtFiAQDIQwPF6KxSJ+n//swoDX60XVFEyziWFoDA0NEBFcBNcl3xlD0wy2bd7B7//uR0gmO1gWHPKaTKPRYHp6mq6uLu644w4eeuRR3v2B93DzT76ZRLKD7dft5vc/9jEWM/lzfU5fLlKpFB/9449x1dU7icU7iUQ72LL1Kv7ojz5KOp2+DPv08+yjkQ62brl8+wsxMTlJJNqBxwhg6H6+/rVvvGAb27bP9Vm/7rrXgC2iihJmo4xdUxAdC48HzGaLoDdCbHADBAJULBtH8oPg0HaqYWJiglOnxvB6/JRKFaLRKIqmIrk+HMsBoUx/fxSr1aRQrOL1++jvS7I8O4VXdgkHPNTrdWxXJN7VR1dXF7Isn7s//WfDj2PgdrFU51fxo8OlguLzvzurEH4xXOqa/SjSrF8pvMq4/ifDf2Qq8IXbXO6+rT/5Au7h0csWZ7ocnH1yJAhnVA9FEWfXZvj8N2mFozRVgWpliWgsjKQEWL1qBarebu3gOHZba811cRwX07QwDA+ubdFqWWh6u9dio9GgWa/SqNfxen3IsoTP50VVdeq1BitXrKBWraNpErFYmHqtTsty2oGvZaJpOpVKFV3TcUSHaq2GrKgomoaiamBaCIJLuZxvqyX7y4AA9TCWbWMYCpVKHa/Pi2U28Xo8eL1eEAVWrlhNd3cSs9WkUChz5OgRhlYM4roOXZ1dJDvjmGaTgN+Pz+ehVCrQrFvUqhV0TQUcmi0bw+PBH2z3sXVcl9nsQSKxMLrsx7YtbNtCFCV0wyAUCiNJIrVGC5/XiyC4lIoFJNFFUhQkQUS8fxz3/ddSbtZQNRUcGDl5ko29Eooik1z7GuYX5vF6/SwsLNEzNIgnOoSY2Ycl+tB9AUTHJZUpYEsa0VgMr8fLwvwsXd29TExO0D/QSV/fALZjUiwWmZ9fQhIlapUqsiRTLBZptFr0Dw1gGDqRaJiWbREIBQkEg9i4+P0+mq0mtukgCi7VWpkVQ0NUKjV6+3pJdsTxGionThzFcSV8Ph+FQh5N1ZmcnELXvczMLBCJBonGQmSzWbpiQU6NjuIPBIklkuSLBdat34hueDg1NsbqtWspF8sAFIoF4okE0WgMj9fDMwcPEgqF8QdD9HZ3IsvtFNulpSV6enoYHFhNpVzh+PGjqIqM06oxOTHG9OQURw4dJZfN09PfSS5bIpGIo2kqkqQzMzVO/0A/hmEQCIU5NTpCPp8n4POipPbh2f6L1OQI64bXoqkKR48c5utf/yrZdAbD0Onp6mFwNku5XKR+1Tr+9bvfZW5+HsF2+OAHf4WO7iTdg91svnoji7MLTM9M09GVxDZtPv+5L5Do6+LmYT/1QoaH9xzmxMwyIk12rQyzfet15LN5hvp7yadSyEI77XxsbIwbbriBer1Jo9EgnUljWi1wXSzb5Prrd6BIMotz04gixGIxmo0G8ViEUjmHoWtYdov+/l6CIT/rN6xD03QUSaVcqrJyxSBzs9PtVkNeDUVTEAWXUCjKvffeT0dHB4tL8xw4sB9NMzhxYpSNm4YRJZVkZ5Luni5OnDiB1+vn+LFjbNmykUq5zNj40u62AAAgAElEQVSpMSRJYqB/EJDabLtmoHsUdMNAkmTm5xYwdA+VUpV0Zp5wJIwktWu0vX4fLhLJzi4Mb7sfrCyJlMvltoCSoaDIMg888BDj0ymCXetYKFn0hFWu7qjj9yr07Xwj1Gv87d9+iZm5FFuvvoZYtN0mqFQqsWbNBixH5q3vv5U3/+xPs1TL413XSbPXi7N6gPK6PqrbV1PYPIC56yo+NfYs8V/4b/zmP36em1/7ejyj0yiTi2gNm1yhgqmCphlYlotlOTTqTULBMOVqlcNHjrF27ToCwQDNRh1N03FcB4/Xw4aN65FEAUFwMU0bVdX4wcOP0NXTgyCIjJ7ew/Cafg4/M8LQYD+hoJ9SIY/H5yUai2EYXsR/f5Dao/vQrtlEJp0ln83j9/vJZJaQZenM2uDQ3Z3EN7HAw3YZz87NWKZDLl3Co0sEAgHUndv55qmj9PYOsmPH1WxYP8y/ff2r/O9Pf4rT46ep1WttnYBCgVNjY9z98GMkOpJs2brtDLt5MYfyxRnXvXv3cdMb3sgDDzxEKpVGkiQURWF+foE9e/by9a9/gxtvvIHOzs6Lrn1t+ze9bPsL4bouP/dz72VsbOzcZ29961vYvHnT82Z+Nlgf7O/g7ju+w+kjB5EkkVhyJYnEVbTsHEefvhev6kMzOpBkgVz+FMmIB9lSsUX3bH0OkmOjCAK6N0ij5XDq9BjRaAQPcXKZGZrN2XZLOkXB608wM7+AKNg4rQr5hTl0n5dT41Os23I1FcvFq2k4rttOBT7Hkj6fDXVdF+EKuZsXZQsvY9uX65tdzO7CFOdXknG9nDlcbOzLYX9fKlUYXsi4/r+EV+oaCxcVeHthS6Lz7zMXY00FQcBx7MtOrT5/m7M1tC9n/leKVxnX/+I4v2j+7PsLcfbpy8UK4S+eMsDzPjuLs09bX6l5X8kTuwt/nM9TvTuTGiX3d6H+j18iePg0sqwiuC5mo46DDVJ7IVNVmUqlhCwKWJZ1RtxHR5YlVEUmEo8hKirhaAxD12g2aySTSXAFlpeXKOQzLKeWOX78eFuMSJbo6e2mVCqC21ZGNBtNDK8PUZSoVetk0llURcLjMZAlFVGQsKwmmWwGoC2uJClYlg2AKKkoqg4ueLw+Crk89UoJTVVpNJvYttWuLXUcisUCfr+PmZkZ0qkUi4sLNFsNLKuFoii0Wjb1WhOfL8CePftpNF0ULYCATigYwTQtWi0TUWyrLkcSfhTJQJY1HEdEFNUzbXAURFFotyxQVBzHxbIsfH5fOzHlTMsJVwA55MXwGLi2iaxIvPe972U5laLZajE7O8/8/DInTpwiFk9iKDJ6sAux8zrUxjQuDnWzSU9HnHA4gmNb7X60kQiFUpHd1+0mn81gWS00VSMUCrFu3XoEV2B5KUWlUmXlqtXEYnFMq0KjXiSXW2Z5eR7TajAxPtFOCywW8Hl1jh09yqlTo6xevZJ8PsfS0iKy3G6hkc/l2bJlG+vXb6C7p5e+vgF0w8M11+wkGApy3fWvIRpLUq832LRpI5ZlIskK5Uqd4ydOcNNNr8V1bWRJYsO69ZRLFRYXlzh2/CjrNwyj6zr33ns/lm2zdngYUZLajIHrEIoE6R3oY8u2bUTjcer1Cj6vwdVXbScUCjI7NwfA5i2b6OvvZdu2LeRzWeLxKKqmIasaluuiqBqlYhHTNHEck4H+fobXDiPXl7Bsh2bsGhRJ4cSxEzRqDa7adhW7d+3mbW/5SQb6+umIJ3hg8yAfXjrM3qf20GqaACQSMVatGGLH1ddw3933IIsyuWyVnu5BBMFFlBz+4A9+j5tvej3u1B4OjS2xa/du/vDWW3jso7u59bouioUctVqVg/v2c+zIEcYnJ4klOgmHYjxw/4N0dXVTrVapVMoIgkuj2WDL1s3YdrNdRxr0E4lEMC2bzq4uBlcMkspmCEbDrF23DkXXCIRCVKt1To6MomkGu3buoHegn2uvux5RlBg9MUq1WEKSZGRZobu7m9nZSdavG+bG195AsqODaDSKZdmIkoxlmwiiwLbt20h2dvHGm25i/759yLLImtWriEbjFIpFZmamGRzsA8HG5w2cuU+79PR0MzExSWdvEsPrRZQlNEPAMIIIKJSKFe74139neSlPq9lEAPw+D45tsjQ3h2NbrF4zTL1lU200WDG8iZmqQta/BmvmMO6x+5ldmOfe+x5CVTXisRCuoFFrmMQ6EnT2dPAz734nmcwsn/rLTxCJhHBFkUi0g2w2S6vVIhAIkEwmEahz64feiy8e44++9AVObutn/weuo/xrbyfbEWKgZtF/aBbP4XHUZ06S/f4jhE7OIe4/QnxymZ+++lqkWoN6rUyxVCQQ8hNLRInEwmiagotNo1GnXC6xtLiMqmrIioru8ZLsc0BdQJJkFLV9vzE8XiRZQlFVnnzqKVjK4i3XEQSRTDrDgw88xJFDR0jEk/h9QVotE1mWKKYyaOkCvp+8jnDYILU8z3vf/R7q1SKNRg0Xm/e8732EQiGeeuop7rz7Tv7mn24H4EO3fpCJsQlmp2fY//jj7Ni+Hcuy+M3f+jD79j2N4IrPW3tfak1bWlrine/6adLpDP39/dx9953kssuklud5ev8edu3cSSaT5e0/9U7y+fxF7Jd557v+2wvsl5bn2Lf/KXbu3HFJ+4vhH/7xyzz22OPs3Lnjkmuvbbcd4rrop+WEuWbXWzh8+DSF3DLT43tx6wXmJ06RXZ7BEFvoQhm1UebY008wcWIftmMCbZGX2dl5fL4AiCqNpsX6TRupNio4YpNgJIAraPgCYZpWCxyNnu5+cqUC3f1DBBNdlBstbrzpZmTVSywWex4Dfr4S7vn+wsspa7oQl7q+F+73UrhS/+f8B/UvNvbZsc6vC71wHxeqBV/usVxs+wvncqUiTRe7Ti829o8DLjanK7nmlzPmhX78+czpxZSez14b27afZ3exfbzU+XUc5xX18V9JvMq4/idE+ymLcy5N4GLfX6rI/aV+dBdTKruUlPqFeKl2OFf6ZOgi3yKc6Upgrx/CvfMxpEqdkiRhePxIHg0BERcXEQFd09pCQqJIs9lEFCUcx6FZq6JoBoKkItBOLcM1qVZq3Hnn97n6mqsIBP2IkkSyI0Gr1aBRryJqOqqqMT83iyqK1CtlFMNAECR+8PgTZFNpkp1RGrUGuuqhWW/QatYJhkNIikzLspBlHdFbpNlocmRfimgkSqtRxUYk4DWoVSvMLyxg+PxYlokq65hWg0gkRL5QwjAM+gd6CfgDSJLE008fYHJymqf3HySdydDV2UnPYCea0Vbk1XSNWqnK3Xd9vx38er00G00CfSWsuoosKYiShCzL7SD5zDWvlcs0Gi3ARVXaaZ+SrCHgUj21iJpu0Xj9KhRFwXYsPIYHRVEx/GGKLYPOgY1EInHiiS4cG04dPUQkGkEK9eOWp3Fry2iBTjQH5stNyuUSqaU00XgEr8+P6zpklueYmV2gr78XSZQZOTFKMV+gp6cHWVFYXFrC4/UyMzFDo9qiXmlw+tQUnR09WM0m4KJIIpnlZbZu28Hc3BTRaBDLbAcZttPCNi0mxqewLNi3/wCBQICnn96Hrum0WhYjo8cZGFiJ5Vj4vB4WFpaxXJfOrn4kWWVufpaQX+fkiePks3mSHQlE0aWzq4f+gR6KxSKiKLN69RoQXUZPniQWi3Hs+Ak8uozX78MW2i2GlhaWUDWXWr1yriYqEo6iGx4QRRrNOsuZJTo74zQbNsvpFL6gH9OkrYYb8HH69EkiIT+yqFIqFqG6SKrpZbyS4NiRk/R296MqOvfd+wCaavDsM/vRvR4++clPs3bVWnxegZUr13Lfw4+yuLTIO9/6VsxKmSOHDzO8ZhgJjaWFKvMLiwyu6mFhfpxnDuyF5XH0+hIlMUSxWmN4yxbIHEIQBCpiJ41Gg0a9Qb3RIpsv0T+4kpGTp9m6ZSOPP/4D/H4/1+7eSTAcwHGg2awiCg666qHeqOELhFENH64o4eAyuHIFiBK2C4p+JniXVMKhCKoqMTU1jqsaNFstAh4fuXSWeDjK1Owc0UiCU6dG2bZ9I41Gi0x6mVA4itl0iCcitCyHO+74NqvXrMJ1BAzdQ6New+s3aDabJGJxnnxiL5FwhEQiRtMsE40FEEUvDg6Oa2G2GkSjERp1k3CoE1EQqdYKSBI0WyW8Ph/dPb0sLM7T09OFJAnk8nm8Xj+jx4/S09OLPxJj1fAaovEoqq7RslrEEx2Yagg5dYKQR+W+A4vsvmYHrVqKr9/+PW564+uxnRblagFBsukI+njk4YcZ3riRaKKDU1PT9Hd34fX4sCybTCZDq5EjEAkjyCqFQga/IaN5wnz6K1/mrx9/gPit70DftZbAhrUsBgPsyWeJXreD+lAIMxxAqrXwHj6F6jPw9fVg2xYILqqm0Gw2cBwLTdfRNQ+SpDB6apRirUqyuwdJTiFLEl3JqwgEQ5QrVRAEJFlCFCT6+wYR9j6LYNuMqwJqIEghX2DL1s3IssrycppjR48Rj8fxpAoIlkPjrdcyNzeFJIv89/9+G6dHj+EPBNj/7CEi8QST49P4fB5+7w8/Qrlc5rWJHj7xuS+Q6EoiSSJhnx+/qjI2M83ycorTp09z6/veT7sX4oVr1MUZ149//BM8/MgjiKLIvfd8n127dp6z6+hI8La3vZUvfekrZLNZHNvmppte/7xRPv7xP+PhRx59gb17xv6Wt72VL3/pqy9qfyFmZ+f4mZ99Nx6Phy/949/z5a98FbiQcb1g7TUiiJbMU488hKrD5p27WUodJput4lQtspkF7n/kHtZt3EQwOoQW7Cba34N8RhxJFCTioQAnjhxF84WIxDvweL0IrkW+MkvLaaDrPfh83ZTqGXLLVboHeoj39yJofgKxfiKdHdi2gijA6OiztBomiqq2U86F9qxd13mBj/KCY7lCnA0gL4UfNuB6JQK28+sYf5gxX06wf77N2bTVSwboP2YB6ovhUufiSvzhi4/1wlreKzn3Z89xuzXhxe5HL7X/i8/hyuwvH1fKuMo/1N5exY8lzgatwDnZ6vOfnJz9+2yT8Qtx/pObi313/ljnB8k/DF4J++duFm2mD0ASZIRPfxjhltsI3byb0dMTrF0po4RCWC0TRVFAENuOkAQew4OIiGPZuK0y+VSFcKKLpmkjygq6EcHrs/ipn3oHjZpJIZdDkGWclsTU9DTrNq1GoIVt1YlHfeg+FS3gZX5umd7eLnbsuhqv14+iaHi8MrVaBVkSMRSDRr2GYRgYmkGxWMLrj+KRbLZtS9CoN2maImG/hgMEQzH++dt38tZb3kGyK4brVrFbNmXLQtYVVqzoxjIbqIrB/NwSkUgSWS4SCgbp7+0in04T7+1C0zRc26ZZq/LgQw/T1d3HmrUricUi2I6JLbpomo5ruUxOTCBJMgNDg4iCS7PZxOMLMDE+wcpVK0AQEAWx7QwIYCDj9IeRZAlBAFcQMEURy7HRI2s5sX8MNbhAMtnBqVOn0TSD7pWrSKczhENBpN434YzeTjk1htfoxu+PUqw2GDk5QbK7C00VaDYFoolVTE0/RS5TZGp6ClEU6Bnsx+fzMzUxQTAYYnp8gmR3goGBIVKpNM3x03h9HnSjg+npaXp7e4klu7DtJrbtUq/aSLJEpVqgv7+feqPB5muuoWWarNmwjoMHDtDV0cn83DzBSJgt2zZjmQUOPfMsfQODzMwukEjEicUUwtEQ6zZuIJzsJdo1QKWYxxFMPF6VYq6EZuhEowmOHTlMIhYj0dVLX98KZmcXMTQD2RPEsWDk6CF8ZwIZx7Xwerw0WjZIIjNTM9QbdYbXraG312Ds5AjNmk2zWaecy1PxekBwCAUiVOp5hlb0YzoCy1NzdPV3IKg9dJUeI++IJMM+nnzyBwysXs39j9zDTa9/HVMzU7zjXe/gFz74bur1Oj9xy3s4fvQYrWYTgLpl8bo3vp5PfPLTfOzTf061XqVWq7NueC1LmZ/llz74K7QqNXpLacRmD+sGu5menOXtv/4xDoxO8JGfXMmHfz1BOB5GVwwQJba+53eY+8K/cesNm9l59TruenaEg+Mp5tNfxKNrbF3Tz6+84/XcNDRIs9WgP7qGpcUUhalZTNPhxt/6MwDu/MzvE/GqfPmuPdz95AHShTIhv4/rtw7zkVvfQkJSmJyapLe3m8GVA0zOTCGJIo5gsXLdMF+55ynufOxpTk7N0WyZ+A2N112ziV98++u54brrsJotqpUcbiiE4ZExqzKBQICJydMY0Q4+971HeOzgUfLVOo7t0NURYcPKAd524y7esnsrJ08cZ/OWjWTyGQrVJt958BCPHTzB1GKKVL6Cqsj0JEK86ZoT3Pb+dxKId9Oo1jCMEI8//gA3vu4NSFKQde/6JeaWs3zmw7fyxmvW8ZW7fsB3Hz3A3PIX8Ro68oPQd7iPUjGN0xTYt/8Ij+9/jPseepiFxRQej0Gu0eJ3bvtl4uEg6VQWWREI+MP4vEH+4rNf4W/+4ev0dXXzzb//e+587EnufOBBjp88QbPR5I//z5/xU297C7/8offiDoZZsTqGZ2A9S4tHCUc6eMPPfYAjx47z0Q07+aM3vYVKIobrSkiKiiFo2LbFJ+75N/7i3u9x7dAq7vj536FarUHDIV8qIEkij47s5ctPPsSJ1DyVVguvqhH1+VgVS/KGfJX3xAYYrDsIHp2JQIiRkRG2bN2EabYoFMqEwzGEo+OMDvfg00OsXttFsVrjW9+9i9mTY6xbn+M9c0WE/WN4b3s3//Ltp5lfmAfg14fWE0/qNMwWiqSyNDFKh+Zy22238Yu/9Ms89dRTTE1PMDg4eG5deq51h3xR9uLue+4F4LWvvZEtW7a+4PtwOMwHP3Arn/7MZ7n9m9/i4x//k3Nsouu6z7PfvHXzufBYdNvbRMMxPviB9/Ppz/wVt3/zW/zJn/7pOfsLV1wX+I3fvI1SqcTf/d0XSHQkL7rWnl1bzwYYIi02X78b3WvwyF3fZM+jP2Dd2rWMH7+btRs207v1Fq7XO7BFhaYrkSuUCYZjtMw2K2S7IHgi9G7ehVdTkXUvLauFbWuo4Y1I5TRus4aluAjNAOuvXY2iKOf5NjWwZRAsLMdlxYqN57KnEKRzgkkC0nMH+iK4mBfiCs+/buf7Gs9ZiC8Y+uw3lxI7utj7s1ufs7uI/dlPLpVZd+F8Xyqd+JWqT70Yo3vWz7Qvg8ETLnG8P0o834d8aX/0cq7ri+3nhbjQD3fO7OOsj20jCPKL2l/Ibp9932ZexXNjAbxE96crwtlr+x9d2/xq4PpfAD9Kuv9HKUt+OTfly8LwCnjDTkKzaYZWrSCbz5HweJEk8Vw6qy8YoNlsgCvguO36U58vjFfVMW2HZr2GpiiIskA6m6Gzo49jR0cYHh4il8/h8YmsXNWDrhmomoYkCFQpU604tKw6U5OT9HQnCYdCgECj2cBxZOr1OpqmMjU5wcqVwziOQDrTFtPw12JIskjDNWk2m+TzRXwBD41alWatzvXXX088HqXZNHHsJrKsMzE9R7I7gSK3xUVcRyCZjGM7UK9H2oqctQp9sRjVWoVyoYRlt596775uF/F4HNu2qFUbSEYTXAdsAddxEMWzC7+DZdvIsoJtOwytGMCy2mnAIGBaFpbVxJOqQTRAqVJFNwwUsZ0e6SKQzeWIRTuo1ZrMzS+ysLBMf98gmiri04O0WhblapNwzy2o499A0MNklxeJdvVyyzvfzFNP7SEUCNIRjxIMBrjqmmtwHBtFVtBkGY+hI8sCg4P9zM/Ps337VmSvSiGXBxxWrRhianycVDbL8PAwuVwJSRQ5eOoAHYkONF1j7PRYW222pwfLsfEoHk6fOs2mTZvxeHz0JDupNxoEQkEcbCRBwLJsGvUWr7n+NezfvwdZEbjzO99n17W7MRsNXMclHoszNztNMtmBz+fj0LEjbNq8iTVr1qApCo5g4/XqaJpCV2cX5UoVW5ZQFJWOzk6Ws1lkSSaR8FEp5+hIxlk91MuefXs5/OwBNm3aTN/QEB6filitE7RBMwxsx+Lw0RMMr1uBbdnkcwUi0QjLSym8HhXDrFLJTjG5mGPlhs0MDQzyd1/4W3KZNEP9g4iixPJyivUHxujsXEa95QYs2wJgcmKad7zv3Tyxdy+yLOMxDGzH5ujx43zkDz9KKlvhd3/rFxDu+ib2wLVIpkBfXw+1eg0A27IxdC8uNhOnJqnUqpx1/YLhODf/3l8xsZBGkSUUSSJfrvLwgRM8+swIn/2dD/Ezb9iJadYwzQrxRJBs9rm0yOmlDD//998mlS+hqQqKLJHOF/m3h/dy1w8O8I0//W2iioNhGMiygtcbpFatspTJ856PfpaRyXYatiJLGJpKplTlXx7cw78+vJdfveUGfvmdP0Fv/yC2bfPM0/tJdvXi9fj4+v1P84/3PHWuHk1XFSRRZHx2mfHZZf79kX2c+s7nEUWdRr1FOBThxl/+MLNL2XP3P7+hUq43GZlaZmRqmX9+6BB3/vX/ZrCzm2LBJB4foNm00fTmOaLiwDNH+Py/3MfpuWV0VWmnzharPPDooyTicb7wyb8gW1jmtj/6fVKZNIah4zgOuXyBb3/3Tg4ePsLeh7+H4EK9UUUUZVRVQZLbHo9uaHzpW7fzpdu/iSAIeL0eWqbJsZFTHBv5NA89/AO+/PefJRaLYFpVZCPMcqZMudSu565sX4k0tUyoUCM91MGpk8fp7V2J1+M5x4BJkkSxlOPU6GnK5Qrbdsv83h1P8p3Dk+euq1dVadkWE5kUE5kU9wFv27iNvlKFysET/ITfz6LXIPk/fhWAn91+LT/daKJXm7g7N1E3G0iOSy6V4cE7v8/P/cy7GRzqx5s/ius6nF5c5Ovf+lp7X5LMjT1DKJqBomjIokKt3qRncIg1K4fPzemhhx7mF37h5y97aZqZmWkvUWvXvug2a9auAdoCTIcOHWb79m3n2c8CsHb45dmfj9tvv5377rufG254DbfeeivT09OXdQyO3URwFNZu3MyqFT088/QDVGw/4X6Dsu1B07sQtDCu1KRcLtPd3U75V1T9eePEYjFEx8YWZBRZpJKzyKVm6PC4HDp6iMSKDWzbsQ3LsrBt+6J+h6IomKZ5ppfwKxeMnY+X20HhPwNeFV/6j8UPk3Z8qTH/X8erNa6vAnhhasOlah3+o2sQLqxnvZwnTudDFGWk970NTk0R9gcxgX/51j+104R1DVmRcQXQNB1JEpEViVAogKt5cQQZAfBoBo7tYjnQ0dmJaVn09vVwhkrEpY6itfun5nMp8vksutdDKrWEocsMr11Ds1Gj2WxgWSZej065WMTQdRRRplFr8rWvfotW08bn9aHrGqVygeWlRZaXFtF0lYHBASRZxefz44oCQysGQQRZUjB0DwsLi5w4PkI+V0RRvfgDEURZRtEVPIZMKOQjX8ygez2kC3kyiynSyzmOHDrBcjpLMOQjX8iSyWSYnJwincoC0pmUE5EVK4bo7u5CEtrtPVwXNF3H4/UiyyKVcgFBcJEVGVXVEBo2jaQP23bI5/NklpawmjUEwcGwlxlKyni8ASKROGvWrueJp/ZSyKXJZDLUag08mkG6LJD3vwarOkp3WKNSKmC6dW648QZWr1pLqVBAlkyCkRAejwerZWI2W5weG2VhYQ5NVwlHQpTKBer1GqFwiHg8Rk93N/F4lPn5eVLLKRRZ4fTpMXZde21bYEUU2bJ1C7F4nGKlRDgSIZ/LYzab7H1qDx7dYHxqimgsTmo5zfjYFGNjk1x//Q00Wy1cFzqTCVzX5Prrr8UyLabGx2nWajRqdbyGn1q1wd79+7nq6qvJZDNUqlVKlQq2Y6OoColEnEw2jaYoHHr2WULhcPv/r6uHSKKTRstkeXGefHqeYmaRwb5O+no6cQUXUZIolyt4vD5iiXabiFwuTyAUQpYMHEtAcAVGT58mEAhQq5tIvi7Wd1Z5481vRtN16vU6k+PjjI+eYn5uka98+WusGFqFp9wgc+wEM3NTRKJRAB598nGeOXyYT338Txl79hnu+MqX+Yf/81Wu37kbgE9+5pNM7bmXoqXgChqPPfoohqHRarUZ28mCF7Pl0Go6PPPMIUKhyLlA7Mv3PUEqV+RzH34P//wH72f83z7P537tp9i1cTWO4/Lbn/oyxyYXERyNoD/B4WdPMNi/6tzv/w//+ptoqsInfv7tzN75D9z957/FHX/+EQY6IjRNiw/9f3+NPxajWq0iCCKPPvo49ZbDhz72OUYm5/B7dP769z7Is1/7OCf/9a/Y/9W/4E07t+I4Ln/z3Uc5NLlErdHEtF0KhSo+w8tv/8ln+OLdT+K4Lm/csZkHPve/mPz3L3L3X/wOf/lzb+KLv/v/s/fWYZJd1fr/52h5l3S1VLuPu0/chRgRIHBDIEF/EFwuwSX4Fw/3IkEiBAJECCTEhsgk4z7t3dPuXdKlp6qO/P6onp7JZGZIIDdcmfd59jM9VWfvc86ufc7ea6/1vuutvP6cNYyPj9PW3k06o5FOpFlcV8k7Lz2NbXd9h4mnfk3bb79A6y9v4Xefu5oVzWWMhWe4+XPfRiTO6o3N1DVW8/TfniMSnp5zhT28o4tMTufHH3k7L/z4S2z52Re474vvothtY3JqijvuuZt3ffAW/D4vv/zh7Ux2D/Dtz3+eW95xMw67nUN9A3z6i9/AHyjFHwiiGxbDI2OFFF3A2MQEv7jnN1x16cW88MSDPPuX+/nVD3/AJz/8YQRB4IXtO/jOD3+KqqpMh6ewO0t55zs/QHzWcNVEiH3uHTCToPTQOGXFxVimQSaTnnt/m4aJ1+vh9DM2cNrp6+kIp3hgXx+iIPDZi6+m/bPfZOhrt7PtfZ+h+3Pf4P6Nl/PWimaydpVodz8PXriSZ71OKvUj84Bu5FGnI6TqK6hfswSv34ssi9RVVfKD73yH3oE+yun49owAACAASURBVCpC9Pb2giAwf9FCyisLXsd5RcUYeQvTkhno6yeTTLCnrY1FazYQKi+npCQIQFt7+4vmpMObxn9vg9cwTry5fJivBnDg4MHjchGPPuZkbbe2Hpz7+zCVqJCreJxPfOLfsdvt3H77j17ayEnmXtGwsDDQRRHTFWDZudey4uLLOPO6m1h+7mUMTw0jSkksy8Lr9SIIQsEbehSOx290uVzMqwsRnhikubmaxauWkLdy5HK5I+PkmKgxXdeP6818NRbrJ+M0vlJF3ePxQ49t7x9p53jXezwe69H9/Wo7H07UT0d/96/ksZ7svIefiRMd8/fKYfyzfXr4Oo7Wozn6u8PnOBH3+GT3cviZeTUcWv8V4+fl4JThegr/ByAibFiBsKQFeoeorKnh8quuJBafKezcFgibWGbByDUNk0wmDYKIYehYpklsJomJTHdHL1o6iyiISJJFNhtHkmUMXUBAJKtlUCQLSREwLJPK6hBFHgelJSU47A7ss2I7kgieIjfZbJZMRsOmOpg3r4VoNEomk8Fhd+JwSwiSTrCkBLfbiSAZSLKMrKh4PB5m4jOIkoCsSOT1HDU11Vxy6cWkM0nyeZ1YbAZZVsGSQBSRZIlMOo1NEVFFC4fLjU2143a5SMTCRMIzuJwefH4fjU0NlNe5sIxCnttEMkEuly14QhJxEEQURSWXLYTWCoKA0+EoxPTMvjAZS2AVObDZ7UxNTaM43KRSaUQBhPBuiOxBtSls37EdC5PlK5bhcXpwuYqIx5PYbAoN9fV4KlegybUoM/uITY+jCA5M3SAcmaKiuppkSsfSTVKpFDV1tfiDAYoDJaRSGYaGRjh0qJ+uzh6S0RjpVBLD0ElkknQd6iGbzaJlNeKJOEuWLMa0TA62tTEdDmNYFvUN9XhcbtLJFOMTEwRLS1m+dDHJ5AxLli0ip2soikBjYyMtzU2FcYPBTDyCrucwdA2bTaYiVInP5+P5LS8gSjKSquINFLNixQoMw8AfCOByFzYs9LyBKIho2Sz5nI7sUFEdNkpKStmzex96TscydLRUBlGQcLt8ZLM5vF4fNpsd0RKQJRmnw8nE2AST45O0HmylIlRBqLyUvJ5HkCTGJsdYtmIlhmngcbkwJBeqkGbn7l1UV1fT29tLNqOxZ8cuFi9eSnPzPHbs2IVlWjjsTkKhKvJ6wTJIJBN84/NfZtmCBWQ1jYC/hKnJUe78j5/gKyrCNE1+f+/dDM8YCJZBXX09um4RDJYA0NhQTyaTJpPOcN555zI1NTkX2pTMaHzxxiu4ZP0y5s+bRzQSZUljDV/8t4upryhFN0y+escf2b1zP5gSlaEaBvqG5p5+LZfn7i99kH+74mLCkSgLFi1g9cJG7vnSB/C6nSRSGX78+yfo7OwkFouyYsUyeiNJdnX0AvBvZyzi0nWr2LFtF/v3HUC1dD75hgtpqigYK5+9/U56u3oQLIslS5cyNDrKgzsKBsyFqxfwpRsvRdBiyIpIqKqM9etXs6CqnG++5w0sWdDCNdddTlGRG7fLyc8+/V5uvuoCyjwFxWBvcTXe4kpWz6vhzn+/lKDXwb7uYZ56/hksMUkml+D0M04n4C+au9+8rnP/tz7J6y/YiMMpURIsYVFTC7fecAUAjzyxiaGRUe766Q+pra7kve99H6+/6hpueNP13HzDWwB47MlnUB12piMxovE4piCSzx/+rVOUFwf52fd/iCIp3PTWG2lpauANV1/FB95T8G7e8au7aGvv5pvf+C7x6Bi3vP89lJWVFS5QkkgpMr0fuZacruPtmuTA3j0kZ+Lk40kAUpEo/okY6qERApMzHOgqCNedXt/CKtVDkWrHMPL4tDw17SNcWl7H95s3INdX4bAsls6rZdmnbmH842+f6xdbLInY1kt0cQM7nn8eQ8+RzWawux0oTpWrr76aeDyOYZrE43FSmTRjE+MAVDg9qDY7uilSX1NLKp3gnPMuJGMWBmlFqAKAsbGxVzQz1dbWAtDa1nbCY9pajxjDY2Pjx9SvmT3mZPVbj1vfNM1CejXggx/6MJFIhFtv/RSNjY2v4A5AsETAAkEH0cIyRbAyGBboSNhVid6ufQwODs6d70TpOY6+NqfTSSweZXx8HN2wkEUZI38k7PToXKYnWzy/WhFnr9Q4/Vfj5VzvP2J0n8J/b/y9jYHDRuvfewZfCV7r8XPKcD2F1xzKHV9BueMrr/l5pbdfjbWrFbvNjr8kiCwrpFJpTMNAtgQMw8Q0DRAsLMvENHQkQUASJRxON8mMzqHuQdLxDGPDw2TTcRIzYRx2J4rsQlVc5HUN0xBxOf2IogNFcqLnLDZvfo5oNMLU1ASSKJHLZREFKHJ7cDqcvLD5eRKJOA88eD+SJBNPJME/huY4RDqVJqdnicxMEw5HMLFwuVw4XA4ys6Im6XSSZHKG8PQUwWAAm13F7rDznz/5GQMDI2hajtaDbdRUVWHlssSnJ7jrnt8gSDKJmSi1VWWMDI/z05/egSiIzMxEicWnsPSCUJXD7kBRFOKJOG6PG5jlXxRS1KPIKoZuzHEq9LwBmo5zUTUOh4P58xbgDVbg9voxDAPDNJBliS3bttDU0og/4MPldpFKphFFmVAoxKHeLgaHhnj00b9iK12JaC8maA1zYHcHg30DeP1Osrk8Wk7i2aefZnpqioyWIVBaQk1NHT5vgOqqGhYtXIJpgd9ThJnXaW1ro7QixLLVq3jjG69h0aJ5RKNT6EYW07JYt24dJaUlWFik0xmcNjuSKNIyr4WyinJ0PUtTcwOKKpE3smAZbNnyAhYGo6ODNLc0MjU9TktTI/lcFm+RB8s0qWuo54orr2R0fIyZZJKsbtDR2UEulyMej2Oz27DZ7dhUB/v3t9Le1klvbz+Do8PolkkynWL5suXs3r6bof5enHYbWc3g6We2ks7k6e8fQZZtbNuylZlwhN6uHmqrapAFiWWLl2KTFRKxKJGpKXbs3E6wrBjDNInFYszEomQsB/nx/VzzhuuorK7i0ksv5eEHH+LsM86kuLiYAwcOEAwGcbvdJBNpDvUOkkgWvGgt9Q3s2roHAZl8XqciVEdGS5DPZ7j84osBaB2YpHHRCmKRMNWVVezes5fsLEc2Goui2lQef+IxEokZfL6iOW/sypZarjjndNLpDD6fn/D0NI2NjTQ31nPTZWcBsGnHfmwulVQ6QiIZxu054tE5b9VClrbUc6ivj83PPQdiwcCoKivldWsWAfD7JzazfPlynC4bDofCn57dBsCKllo+/6H3oapFnHfuxXi9fmw2G/PmtfDR6y8DYGAiwra9B3jo/j+S0dLcv+l5UloOWRL59I1Xkk6ncLocCJJBIOhlKj7N4PA4fX0j9Pf3Mj7RRzIVJxGfweG009zcTHpmHEUCQ7Bjc5fi9IaoCi1gw4JqALbt68ZCpaykFpfLyUxyFIuC1+281Qvp69yDJOVxeWRsNpWuzh7G+o6E2b7l9VcgYOFy2XnjG69hZiZBW2sHSxYW+mNweIT9Bw4SqqzC6XJRHgohHMUs+v7Xvoso2AgWh/jh937MM5uewh8s4vyzT8Nus6EbBr/49d187bbvUe53smr5IlwuJwCuIh8emwNHkY/uN51H93SYM2csKnZ24ogVDFebJJOvLKcrnyUsiRRHCzSFxPQ0FzoDBPrH8bcOUjkaJrJxEeFQkK7hIVxOFwgCoYoiMpkkNoedA1t2MLRlP1ctXM1EwMMvuvdQEQwyE45Q5PPS3tNBXraorq2lrrGBpqYmXG43qqqSTqUAsIsSHe1dJFMa4XAYPZelpKIcUy54oR3Owr0lk8lXNCddcvFFADz77LO88MKWl3w/Pj7Br++8a+7/iXj8BPWfO0H98RfVjx9TXxRF7r//AR566E8sWbKYD3/4Q6/o+gEspIIYIgYKJpKpY9NltJiJzQoQKmmipryJhoYGJEmaWzyfDId5c1nLory6hurqOu761W8xtcMpPgpG9+F2ThmuL8Upw/X/Ho5Vmz5luJ7C/yj8oy+ko4WbjtfmsThZeMdrFfpx9LmOKyxlFtSDhQs2ItRXwe7WwkNr5JiJTJDTMoRjMRyySCajFSZiUUKwBEQBpqfHsdskNj3xGOHJIYLFxQSCxXgCIYqKG1GcLkxFITI1jNvp4NFNW9jX2kYqNU0mHcXQMyQSKZxuP2WhWiRFRpAdiIpKzsxhCiZloQq8Xh8lwRA2mwdVLngvS8vLkGURLZHAJQrkk5NY+TSGZSIKIBpZBNEgrxnYFBsvbNuON1CJpIqoNhsupxubqpLPZ2lubiIWS7Bt5wESGYE1a9fj8dpZuWYRmayGPxBgw8b1CIqEPxAgnh7HMgt9YJgGhmES8BcTDUcwzTxY+qx4gAmShN3tRVJsmEYeK5WFdJ5YXmdoZAhDzCGZWUaHhsllc1imiYWJJMl0dPQyMRZBElSSSY2piRG2b99MaVkVqWSC111yEaLDB+7FuMUU86pl/AEviqDi8XjZtnUbLruDiooSJMkio+VpP9iK3SYTi03T3r6fxYsXE5uJIAkijbVN7HhhO91tnWi6jm5ZLFy8BJeniO62g0yMjbHlhe385c+PMTU5RRYTyaYwNjpMPp3mYEcvTpcPUVbQtAwziRgbNqxlx85dVNc1Y7d78BUFGJ2KomVgajyCqgoc6utAN1I01Fdj6VkUwWL18sV0t7XhcxdhYZGzDP7w+z+yaNEC1q9fw5LF86kpr6Cuqo6Ojm5MUyccHqe+cR5ZPU9lTRUL5s9HstlpbpmHTbVhU20YpkHzghZyVpbymnIOdLYS1zSKS0qJxmOsWrUSr8fL4EAXXq+XqroGnIFKXNoog71DfPu2b/P7e3/L2999I9PZSfp6B1EEH0UeO8lkEo/XzdToEPLsFLJ61Ro+/dmPMDY5Rl1TM3avygc+/C4mpkfwFBUW91HNJCc4sHkCJDMp1q9djjgru+HIj9Hd2cuG9RuYjMxQWVWLOhuauqCqjK6ONirrGtDIsWDRPHo6DzE2GeacVUsKj7hp8fT2Pbg9Rbg8xQRDdXOP//nrl2MYBjXVFaxes5zpiQiJmSR2l4MrLzkbgKSWo733EO1tbdjtTva0F3JYLmuoIhqeprtzL4qiU14RwFNko6+njbNWLJ1Tde4YnqaiupGpcIzBSAaAhXUhqqqqsdk9RMNxJsemQLdYv2YtNlVi2dLFhMqrCPjKUVUnKDKiIvHI89t433d/z6JrP0jFuW8heM5NhC77JP5LP8HDW7sAmE6ZOAWL2HQvkpQj4Kuc44eumNdMPi+SSuXZ+sI+psaH2LBhNTe8+Q1zfbK2NEd9cwv1DUupqffxq1/ezW23fYNHHnpm7phMMsL44DB6OkciMsWB1sK5KyvK2XjWEg527cWyByirD3HxJRtITQ1RHaqidNaLvmvPPgYGd3FoOMmbb3r3nHdeT6YRHAppQyPQUot563v5Tr1M4msfYGBJAwBaRTHadRcxccFqWk9fgHnt1UiixJ54mI1b/sSNj93PfrdE/7+/nfbGanJNFTS63bj2dGAVe8k5Qvz5r4/wk9t/QGmZh4xN5/TvfY3u6y7m9DPPBZsXp8dHJp1iYXM9FX43uXQGzCy6kcOikN7rsJc521BB4KvvweGy4bYbtO/ZjCyZGNbhWOTjz7Omab4kJPToOfGWW24hEAgA8Kbrr+d3v7uPmZkZMpkMTz71FK+77AoSicRcaK0oSi9q45Zb3k8g4Afg+je9hft++3visRnSWoonn3qS1112+TH1BQRMBEwQCloDH/noRxFFkdtvv33uOMuyyOfzR27EAssUsEwBLPHFhYLxalkKBgopLc/j9/6IrZv/QDi8i0+96zR++MmLsFIJLNzkJA0Q0XMG//m1L7H/2c1Igh2bpWNQUO6XJIFYWkOYmaayZj5JpZSrrrkWVbUQRBlRUlBtDgyTQm6Ao0IWj11zzGVBOE55OTjhfR9Vjte2JZgvLrOj5OhyONesaVmFEXS89ZIgzOWjPVzvJdd4HKrUy11/vRZGx+FzHG9N+pKQZl7aT8caYpZlIQrCi8oruZbjCUgdD//oGvZk4ekn2kg5dv16+N1xvAJHFJpPpGx9uI2j76GQ4mY2stCEggkoYlnCS8rR7Rz7+x2vz/7RsPl/BKcM11P4PwNBEJC+9XGsbfsx0hlKystwOZ3EpsYo9znR9BwOpxNJFEE3kGURMPD5PcgKXH3tFbzlprdiyTIzqTR9A2Pcddd9pBMJXC4PFdUNCLKDNcvmo5g5FEEkk8lhoHL22WcxOTVREEyyIDoVZ/Mz24jPaEiSSsv8FkKhEs497wymp8fJ6WkEwSKX1XA6Hbg8XmR7EcHyOizJgSip2GQVVZSIRpL4/UEMy+R1l16ILBrkUzOYuTRvuO4qgiVFOOweTFMkmcxQXFyK3eZg+eJFGHkdh9NHSVk1WsagtqaOVDpMKj2DN+BB10QMw0JVVCzLRBAtAsUB0pk0eT1HNpdlZGiUfC5PVsvOepItlIkMerWfh598lM7WdiYGR0hraSRZZCYaR9cNJEkmFKpg7dq1JFMJSkqCTIenKPL6WLJkGQ6XE4fTyeDQIJPhCEI2zmPh1QjjW/nLw3+hq7uHvkPdXHThmSxesRK7w01ZWSlFThWb044pCCTSaWrq63G4naTTGslUBkmWWbduHQ0N9Wx++lnGR0ZxyCoH9+wjnzMoKSlh6dLFNDXVMzQ0SGw6THImjohAb08Pa1cso/XAfqLhGYLBSqpqWnA63fj9xYiiyOTkFOXl5RT5/UxHoswkU5iCQHl5CJvNxvBIPyWlHnQzzkwqxrKVyxBEEcMQsEyRq15/KZqWIJWawcJAEE3cHgd2h8LwcD9nnnkaomAQi0UIBktwuD24vQH2HWzl8SefYsWaFYgqzEQTDPYPMTIwiF2SMTIZLAmam+bR3dFNf3c3kiVwqLuHcHia7uEpRCODoaVoqivn6ssvQk+nWdAwj+nwKGedu56/Pf08lmkSiUxxznlnzK3+OjsOEY1GWLNmDV/8wpfJZPJs37WbsvIavGZBgElHZrj3EDZZQTcMsnoeaTaFkiwUDICioiKCxX40LU0ulwNgXkM19Y31jI+OUeT2YloWy1YspaIiRHx6cu75rmpoxG530dPdgURm7nOv004ymaKoyEtZaTm5TAqf2006lqJ95+6546ZicYaHRqmurGc6WvAkz4SnKQqU0tMzQF4XcDi9yLIDv7+UcHSKQFEh+qC6oYFVa1aydvVSJqIxAOorQ6iyjCyJNNTXMT46gpbJsHXLC/gCPiwRMpk0h3p6SERjmFmDN3zk69zwmR/wt71dDIxNkcvn8XmclPiLCPo82NSCYZHWsph6AlnKkdVSaJrG4R+jJOjnzLM34nDZ2LBxPSWhGsYmpzCtIzxIl54gfeAJFJvOwbYuOnu6ue6Nb+TAUWGpblcVv/j5A1xx+Q3s3NFVyF8NlAZLyWdFvEVBItNhZMlJRUUTNqefVEYrpFcCKqoqmL9wIQ4zy3e+/hVs9sJGRCKbJRqO4LS7mInEMcnwjk/8OwlFnuNqGobO2NgIJaUB1q1fSWVFkNrySpwOB3sHerlvuIOVt9/G6ksv5P0f+yg/H+zFjCWRuwc59PVbEBGY19zEW2+6mc6udix0vvf9b/HQQw/xpS98g2efeYFoNMHE+DSGDv39g3R1dZHP55EkCVmSEVDmFmBZWaJ42Qp++6t7+NsjTzA1OonT4cGm2InH42QyhfHmdrtfwYwEFRUh/vD7+wgGg0xOTnHj295OWXkF/kCQyy67gra2dr761a8U8jkDPr/vOPV/RzBYPFv/JsrKqwj4S7nssitpa2vntq9++Uh934vrf/SjH2Nycor3vvc9rFmzeu5zQRAKivuvEIZhUFRUxPmXvpOLX/dmQqWVBAM+LrvsUp599Nvko53YBRe6mWN0/2O88Ne7CBUr5NDJyfKL0qUEAgG04DyU4iAuY4LoaDtZUQXBfGk5Bkcv6o/mCp7Ci1HQr5BOeVz/B+Bk4/lo5eZ/JV6r5+1ff6en8JrheIT844kEnCjs5uXuPB07aI/1hhpf+jH6l348d03/6I7WycSaDu9CHUtul+bVI73/zfDQk+imWRCukWVmwtNzk/vh/jBNk0QyiSzLZLMaiiIiqwq5fJ7iYJCpySmcTieSrJLXIZez0A0Ll9tBccDPww/9iQcffJjegSFkWaK8PFTYRTMtbDaVUHkIr8ePZQm0zG+hPFRKcbEfWRYAk7xeUEc0rUJYrmlCWtMQBBFdNzGByelpXC4Pqt1BMp3CpiqookA6lUaRZUZHRrCA4aFR7r77XgYHhrHbbKg2Gza7iiRJDA0N8Zc/P0pjYx1enwdVteFyOXH71IJCsighiAKKqpDLaYCEx+1Flm0Fg72iAtMwUWS5YPQDwowGLWVcdOF5nH3WWdhtDhxOJ6HyEAG/D0Mv7OYHAsXYbDby+RzDw4NUVldSWlaGP1DM/gP7iScSyIpC2pCRrDwXXP9hxMB8rjh3OZIo4/MWEQlPoGU1Dh06RDKepvXAAWpqq/D5fFRV1jA9HSGTSRGNxglHoqQzGpIsodhU1q9di91mJ5lMEAj46entQ1FVvD4PzS2NNDU2Ep6aZrB/gLKyMtTZMMjamlpURWVwcJgDB1pJp9M0NDRgmhbT09OkUmkkSaK5uZnm5mai0SitBw4Rj+UJFldjt3kx8lIhP6tlIskSkighCSKZTAZd1xkYGMTpdJNOp0mn09TW1rJkyRIcDjuWaREqD82F3iUSCZxOJ+Xl5UiShNfrxefzU15eTi6bpawkSE7TyGYLGydYAqUlpaRSGVKpFBMTY7SUSRieOiYmJmlubuAvjzxESTDEXx99itVrllFRV8IVV19HNqsRLAnS1duDzVZQ76yorODAgQM8+uhjXHrpFTy/eTub/vYcIYeFPt0PQC6fR1VktEwKl9tNXjfmFvz5fJ6ammp03UTLaLicbiSpMJYUVSUcmcYywdRNkskEXb1dyIqI3+896qk3SCU1LrrwfGLhkblPPZ4ipqfDhMMRtm7dxsjIMNlclumpKYo8nrnj+vr6OPPMszAMg1n/BzabA0VVOfOss9m1azeWJSBKKlu37aCsJIgoHQ5VNBkdGiSbSc2FOBuGiaoquJxOFFmiqamJ7p4uGurrKS0tRVVV3G43gmVhU1Xue2obT+xsQxJF3n/t+Wy/8zYGHvkPOh/4EW33fZ/2e7/JBataCm3ndTrbxsln7WAJGEYSazaFgiRBUZET07Jo7+xmJp6ksjJEZVXoyPuxuBHnyA6EqXYGBqb53Oe/wCWvuxjDOuJl+8Mf/8ze/e1sOO0sgmVlRKMFpebOzm5GhsNce82buOaaa3jg/j8jqV5KKmqorW9g7bq1AKiqwkc//gk2P/sEpp6dewcPDY9ityk88diTbHrqKfw+F7l8hlgsQn9/Yay4XW76+wcxDANFUairq+HhBx5g66an+fytn+HySy7D7XQTjUVp62rntu9+ndONPnZ87l184vNf5k/3P4DP6yUSTdBQP59sNs873nETl1xyITfffDPr1m3g+9+7nb17DpJManR3HeLWW2/Fsiy0c9eSv2AjsqzS3FwQ+RodG+Ovj/yN+Y0tBHzFtLTMQ8/lsAQRp9PJ6OgoAKHQkT6GF6fYOJEYz8aNG9i3dzef/9xnOW3jRmpramhpaeEN113Hpqce583Xv4nUbMhyc3PTi9oQBGG2/i4+97nPsHHjBmpqamhpaea6667lyace4/qj6rc0N83Ve+655/jtb39HeXk5H/vYR0kmky8q6XR67lzZbI5kMjnXDhyfpypJBWpJvsRBQpJJKeV89GsP0RVrYF6pzN/u+xYHHr2XgW0P8odf/ZBSl0BlqRfDyJPUsnPtGIaBaZpUlvoY6Wplx2N/YNsjvyHevx+wCpQeLARh1ot8lIfr6PDho3mw/yiOF811Iq/SP+pxOlm9l5Nu8OjxdGybL6feqyksdDycSEToeAJDx17f8fr8eGvXV4rXMiLwaJwoBSUcX7TreMJPJxonLwfHeudP1oevdDydyDv8auOU4XoKrzmswVGsgdF/2fmlD7wVobka68mtoNgIlFWR1HRmIlEkUSSjaaguByDjdHiwTIFMpmAwKoqK3aaipZNsXLeCN153JZk8tLX1sHPHLqLhKQLlVdhcRTgcRTQ0NjM4OMzU1ASTkxNIkoxhWMhSnvLyYn7723sZHZ8gEosxMTFFPJ7C5/Pj8/oLO6EIaLkcsiyjZzVcNpHpqTHyRg5BlimrqsLhUMnqGiVlpezZuYfp8Wlsbh9ZXWBkeJK2/V34AwEcDjvVNZW4PU4kycKUBDxeN3U1laxYtoC9+18gl8ugyl5ESQE5D0YhgbWmaWQyGfJ5A4sCR9XCRDfygEk6kyq8pKxCWJUwkiDjkXC7neSNPKUVFZimTDqjYeg5BKEQ3mm32bnjjjvweb243A4CAT+GCdFYnI0bN9IyrwVBFKmqrsIQVEqFafSa85BmOsnnDWRRwelw4bDLVFVWIUkK/mApk2OjjA6N0H6wDRmJseFhTEsgHk/i9XkZGhnGwqTI5yMaiyErColUitM2noEkSUiyUDCMAn7mLZhPcUkJrZ3t1DTUMzg6gsPtQpQFamsqaaytZv++/ciSTHg6THl5CEVRGTzUz/joGMP9g2ipDMuWLUWWJfr7B+jpOcTUVBQkG7phoWlZII8kW0TCCfI5gWVL17J3dzv79x/E5/Pj9wdIJlK0trYzcGiIvt5+DEPH4bThUCXqaqrwFxXR09FDbDqODkxHo4QqQ0iKzOBQP4lIlPDkNMXFJRiCSWVNHZXVNdhsMkKshz5jKVUN8/CXlbF4xUrGwwmaF6zh4YfuAzlLNmuxz0jR7bJRUlqJaiuktCjyu7j22qvZsGEDQ4PD7N1zEElW6N/9NMzyAJ1OJ4GSAHaHDVVRMx8o0QAAIABJREFUsKsOFLng1TEti/6BPvbu2YdNdtB+sBN59rtoKseCxQtIp9JseX4rPYd6qWuoxel0gOqYe679RS66u/vIaSmSM0dEaJ7evBXDMPH7A5xxxhmsWXcaE5PT5I0cDt8Rw/ecMzZioXPf7+/BM+sd9JeWIpAjWFJMIhkvzJiCxfIVy5gcHycyU+A0OhWJitISDu4/SHWoIELUNzJGIhEnGgnz/ObNqLJMeVkZ3iIPdoedlJZmcnICARgcHuLBZ3cC8KYL1vOl97yBxqoyXE4XNtVGf/8gT2zaSmJ2bS/ZXNS3LCBnCOzbexBVVJmN/SKXniGrJVHtLpavWk9kKoxpaPT3dszd68holKgcQt9+D7bBPdTXNTJvYRM/veOHc8c43Ha+fNsX+NZ3vkZdY8URcSVR5Df3/JF7f/MHin3FfOub32P3nk6GRsMMDo0Qm/W4+v1ebnzbTSxeOZ8lqxbNLZSG+odJzsRRJYVQaRnjY3043RY2x5G0LoYB3Z3DxGNZdu3cT3l0D2LHX0jE43zolvfyzrfdxNXnXcOf7n2Qay5/PYIg0DXcz08ef4j160/jd/f+lsmxUULVNcSjMDGWoLung6aWaprn1XDL+z/Ee979Pp5/fiuGLjB/3mLuvfdenE4n+SXNGMsXYFmwZHGB89vX08PK7imWrVjJ0NgYy9asQVcV8opMLBZjaqogHrVwwZHUOK8ExcXF3Hrrp9i06Um6ujo4sH8vd931azZu3MDmzZuBwkJz/eymwHHrf+qTbHrqcbo6W9m3fzd33vXL2frPz9Vft27dXJ3DmwTj4+PU1zdSUlL2orJy5REP7C23fICSkjIaG5t5OVANkC0dy9LIqSJX3vQ2+qIByusDxMYP0LNnE4oFiXCYX/zkJyiCiEOW5urPeW5MgfqWJTgrlyHZS2nduY3BwX4kSZjNR2limvqcx+mwt/bwIv6/gxfqFP55HM+L97/Jk14I4f2vS1v5j+K/a//+97yqU3hVcXjn41ghg8P//jOD89hdlWM9nCeO53/xbtrJcDLZ8aOPOXw9x+5OHU1GtywLJBHl519F8HvRH30WxW5DLipCT0bJaZmC59U0McUcok0CRcVdVIQiS+h6Fk3TcDpdiIqIKIPLDno2RlllJX5/kHw6hSgJLF2+hI3rVnPJOadRUlzGvt37EEUJu91OJJ5gOhohlpjh/j8+wL33/BFBEJBlBVFU0bQc+Vwey9TxeYqwLBF3kRdTyOFyyjhkcCgqgiGTmJkhr+XRcyZVNVW4vS5EWUESLExTx+P34/S4OO/CCyguLWNsapq/PPYERtYAQQRVpLismOXLN+J2+8nnkqT0QSxdQjBl+g4NIIoyDqcL1e7AyBvkszks0yooC5tZvEV+Oju7mQ5Poet5iGSwNVdhGgLZbJJIeBCRPG6XB0G2oSgqpqHj87mpb6ilpKyMwYER7KqdHVufx6nKPPLQw0yMDBP0+ejt7CYplaC1PopSfwFkY5QFvYyOTLB7ZzsHW9uxkBgZn0CxqURiKfz+INlMlrKyMsorK8nrKdasWUE2m6XI5cbUDba+sAPLkNE0k1RSY2h0kEQ8wYHdrQz2DmNT7eQ1HYfTRaiiBpviwGlTyWlpREvAMCw8xQG0tMbI8CjT4QjdPT3EUylClVXE00kM0aSkrJjhvlZikVHKKsopLi3H6XKST2eRBYG2A/vJpbOEx6bo2L8fXcswMNDNxPQgK5YuI5WYITw1jsPhZOGCpezZuxObQ2Lnru1Ioszw4BBj4+NUN9Ti8rrQtBSte3fTefAghq6TSidZsGghRd4AyWwSZAVZspPTNSqra2BmGCOf4xdPDzI+PYHbG8Tm8iLaBP7wp3u46sorceQ8PHLfHyh587XYr72A933g3QWuM4Xw0cee2I7XX8ZVb7iCD3/yFoLFKptbh8EshH+mUim83gA7tu3Cpdqw2ywyWiEk1+V0YuRN1q1dy7ZdzyE7rDnhpr88sw0jryEIWRYuaGAmHMfMycRnprnn4Udn3zcCaxYuYWiwGwsZp7t+7h0wnsxRXVVFX18foighCgKhqiq8/mKe3llID+LzuPApdvRchosv3sDapQXP5qZte9n63Ha0vMZZ55zF1s3PE5uOkpzR2NM/hj4b2lob9DA2OcHq1Ws5fXnB+OocmiChZSguCdDU0kh3dzddbR10tHfT2d6DaCqosh2Pq4jq2mrGpgsezUV1Fezf0cHY4AR6LkcqlaS5pYVFK5awq+NQ4X0n2UCwONi6k2XLFyBKR3hOsfAUQt4gm8mTyWrU1Ncg2zzUNx9lVCkCpQ1Lkeo2csNZFbD1Wwg77yYw8tTcIWcFwrDrl+jbfoLv0EP484XNxnQmxc1vv5Kyikp+9cuf87enn6U4GOL/ff07HNzXxoGDhT5dv3IFaxY3s3j9hYQjCTwuFwBl5RXYlSLOPPNylq88h+ZFp5HK5ymtKGP/wQOFvuvoRJZlVMXFZ269DSsZJh+fZP78FrRUitHhbmyeFEZihm997gtcflFBAGz3/j3cdPMNXPPGN+EvDmFqefp6u3nHTTdiV2Tsikx1RSWGlMQU03zzW18mGCgiMRPlhpveRf/gGOlEmr6udnr39TI5UMipncpl6duzjaGhAXRZwOb1gmkhGQZ/fezxuT4797xzD09uL+LoHZ6jjuc5Onqueqm3QuQXvyzkkr3wwguObB68COJcEUUZEAtiSbPlV7/89VH1y1/CYftHcSIdDMuyECwJ2QSbICGLKoYusuGit+JxryRnujl4KENN4yIG4xL3PvBXVADZg2kJc7xVCxEUC1NRWHXGBSw77RIc/ibykynS0yksFHKmiCTbEDCx0LHIIShZTFHCEkRMCvcqIh2XO3lsOR6O5a4ezas8liv7ojXKLP/1MEf25XqhXsKXfRmeseNxbE/mUTx2TXg0n/Jka7J/lvN5+DwnW9Mdr3+P9coKs7zfw9zg4/Fg/x5O5gX+Z3Hyvj/8/B15bl96/PG4py/Pg36yY47mwx79DjrR9R7b5y8NUTbmiiC8duHmpwzXU3hV8VqRs0+Gw5L7x8PcQ+iwo9zxFYSAD+vPT1Nsd6FLEkN9HUhmGhQFSZCwzMMTj0gum0eRFRwOB4IgMD42DlYhPKqhsZHKygrsdhtatmDcer1e3G4XWjZHMhnlzLNOQxBNJiZGqaqooqK8gnfcfBPXv+k63nHzjZSUBtC0FP19/YXcs5IEiExNRUgmk+T1POlkDkW2o+sW8ZkZ0uk4Tz75BKZZCEusqqou5FAVIZfVmJoao6amDEUS8Hs96LkM85sbueJ1l5BIxDEtEywBu90JgkFHZyuGYeAI5knPmMzEYxQHA8iyVDgWC1mWQJid9CwBm+oCZEDCbnORHI8jxLNYLX6cbhlVdlHkriCTyZBKFTxUucrLOKSvQJQKYZiDQwOsWLmU4bExmufPJ6VlWbVuLZORKTz+IloWzMdZXo+VmuaPP/sBaXsttvwEkUSMZDbFiuUrUGQFt9NFWWkpS5a24PHYmQ5PEpuJMdA/yKpVq0mlUuzds5udO3eS1bIUB900NVfT09PKxtNWsWbNGmLRGIuXLAbgiSeeYGJynB07thPw+ehob8dbHCQcmyGVSrLlhc3kMikkWcBuV/AHvCxfvhSbKqMoCo0NjVRX12CZYHN7CZZV4nY6mRwfZWx4GCiEqMpygd9XUlrKBRdfhJbN4vf5OG3DBjxuN/v3H6SoyMfwyAgjI0Nc+forqampYdHChWAJBEtKCu2IEqlkkryu09jQxJlnnc3jjz9JVsszPj7F5NgEwUCA1v170VIxXC4XWnqGKmWM+IIP8IMf3c6SBQuxSTL7d+1BNC2+/pXbkB0eHn96E5ddczl9o300NyzkB9/9MYY+m6fShEcf/jMH9+xm23PPMzMZ4eLzX0dx/RowC8+jzWbHwGLZihUIsko2B15vQZhGN3QqKirYvXsXweIKbLJrbpJs7R/mj49tIZnQ8HqLcTjtdHZ1oig+/vDMPgDOWbUEmyxy1bVX43C7iB2l7vqX53fx1789R39/Pz3dPVhYtDQ38dcnnuTJvQXBoctOW82eAwfx+ktxuIu59rwNAHSOTDKayqFpWkGN3B/A6/MxMT3Jz//8LADzaysodtqRJIXtu7axpCqA06agGyYf+86vC+myTJO9e/dSW1vL0qWLcTgKeZq9Xjf79u9hajKCpRc4vQf7xymtKicYKkO3TOx2B1lN4//d+RDJtFbob8ukva2flSvPYOuWg2x+9gCaVqjvcLrQMmmSsTF2vvA4v/75z9CzOSTxCGcxVBkinoqTl+1ky5eRV30kkmkSySPhobpp0rJgATaHB8XmQjCOhBF/+zPvIbvzDlxihqnpcZLJGO9+983s2L+VjKYhyzLnn7eWjB5BVVVKS8pZtGAhADv3bufXd93J7T/+PocOdSFaMNIf5cH7n2DH7gLnuKamBlHOUNcQ4m1vfwut7R2oikI0kqLv0DCXXHwFt37q85x+wdl4SwMIQmGsZFIZBgcH2fz8szgcNizLpKmpnvvuu49gsBRJUtC0NJ/+2IcpK/YjyhIT0Sih+ia+8ZXPUVFWjq9/itqkgdPv4M03Xk91VRUA323bxryWRq6//nqs2fMZuTw/+MEPANi4cQP19Uc2TF4N3HX33WzatAlRFPnkJz7xiuvffc9v2LTpb8etf8MNN5DJpOZKVku/qHR2HOE7//SnP0HT0kxMvLJ0P0dDUwM0rb+YC9/2MT74jV+w4rwrWbThXP702KaCQrBwxKg5DHHW+AZoaGxkzcb1TIXHGB7qxEiGUU0DIy9iigV1ewsJI68iHWW4A7wKdvr/ShwtHvavCp09hVcP/xVh3i8Hr/U5Txmup/Cq4r+D4XpscvOjcfTL+bDxKp2+Cuu+RymzbAR8bgZ6upAkGVmQwbSwTIvR0TE6OrtflE5AlmVESUQUBQIBH4qqkM1qeIo8OJ0uZEXhhS1b0A0dw8yTy2VQZIniYDHhSLTA35QlTFNHViCZnEGWJXK5PIZuYYSryU2E6O3tR0BkYmIcn6+MeDzN008/g8frQVJELrroYpxOJ1NT0ySTCXRdR8ukESSJCy46H0kyUGWBTDqOgIGe05AEiz179zI5PomW1tAyWaLRKZwuOzabHdQkiuUhEgvjdrsQBMhlsyQTCfJ6Hl03yOXzjI+PY1o6gmgRCpWjKBK+jAiLKsmZWYZHBlBtbhJxY44763Q68HiKaO/sZnBomOnpCIapoxt5mltaGBwaIZ3J4HI7qaurR5REItFppiNR5JJmTitL46i/ECU7zhlnnsHZ550JlsVAfz9+n5/2tnZ6DnUyPDqAJBX6rbm5hVQ6y+DgIPPnt3DG6acRCUcoLwtxqLefIq+fTDpLe0cHhlXgFPkDfmpqaqiqrmTlyhXIsoyiqsg2O8HSUiRZoqa6AiydM846nVBlOZUV5WSzGSxTJ5/VSKfS9HT1kE5lKK+qQ7Y50PN5qkIhysvKiM3MUFFRwcKFC0kmEqSSSTp6uqmuq8VmsxGZDhOOxpBkhbxuoagqmWyaVCbFVHiKrq4eHn/scVS7nXnz5qHredKpNE1NTUSiUVTVxsKFi9E0nYqKGoKBAPlsFpfDxkB/D7KsoMa7MUtXU7f6cg4cOMDHP/wRbv3EJ+nr7iGXypCMzXBoYITpWJQFS+dT7XCQ6h3kwP5OpqbCADz99N8oDfjY9OQT5LU8fb39/ObuexkemSJmFDxtAgKiKLFr925ME3bs2DfrIYJcNocoijQ1NTI2PMHw0OicOIzLrvLxH/+ezqlCbsh58+ezr7Obaz7+dcZjSSRR5GP/djnjU+NYgkXO0Glubpl7Tm2qwufv/DPjqTyhUAjLMtnd2cuPHttBeCaB06bywTdfjq4b9A8Mo8gefEKOJY2F1DMf/497eOT53YyPT7BgwUJGpiL85+Nb2NczCMBH3vQ6gsESnE4H5aFyqsvLeOs5hTDLp3Z38NYv3M7ejn6WL1+OoioMjI4wmtL54PfuZHhsnJZ5zYQnpzl7VcFTe9+TW3hsXwdZ00A3LAZGJ7n1R3dx51+fw+9xzd6VRTaXIxKNsmjJMgYHRzFnc4o63UXohkXA6+D0tYu5+soLMfQEgpib6xMLE6fbTi6fx+EuAmcxkYyA7AzMHeMqrWRXxxBtA2EO9IWZTBQM1yKXg99u7eWbdz1I7rnvMc8ZQVEkHvjzn7jjzrsBeOfbbsRl9zE6GsO0dBx2N+effT6CIJBMJXlyy3Ocec565s+vo6urg+ee28n7PvJhijyFfLSaprF+4zKSqTBXXHkp33zgeT7wk4f51d13oesWfX0DDA+PE03PcMfdv+aRJx4DYP3K1ezevZOhoQFKSkrYtOlJ5q1bwroLz+L9H/sEqmrDZleoDpWhKhKSJOD2FpG3TOySRTQcof8/foX7mV3UtNSx/ox13PyOGwF4cnyA8y85j1gijiEIjIyMcuMNb+HAgYNIksRttx0/xZvT6cbucPGOd7zruN9/5bav8vDDfyYSicx91j8wwKc//Rne/e5CXtyPfeyjbNy44RXW/yzvfvf/93frS5I0x5X/rzReFPLIqo2sKaMLKoGmZdz6te+heoMoNhVT105Y1xRActiQ7TYWLZtPIjLMzmf+gmLlIW9gzh5jmmDqApJlIlmz6slz5RSOh8OetFOG6/98/F8xXE+8wj+F/zU4Wgr7WBz+7LCowonCBf5e20fjcGjuPyO89EpxLGn/2O+O/XzOeHU6EG/7EOL6ZeQ//T38oWKsxhBjA4OEQhVgmGTSKSqrKpAkiVQqTn5WWMjusJNKpSjyFmEZkNUyjI4MUV1bh9vjJpfNsWbdWgzDIBJNEgiWFcSeBBG3U8WyFBRJoMjjJpVI4nC4Mc2CAMfY+Ch+vw+73cnKlcuRJBF3UTVaJocgypxz7vnEYvGCOJQooes6vb29rFq1inw+h8NhR7AEsrkspmExMTWFzx/ANE1kWSYVjbJuw3rsqszExDgdHT2cedYZKIpMXh4HA2yKi7q6OkRJwjItYtEZAoEAsiIBFjabndISFUE0EEyTfD6DotoRhqPkynx4PH4EQSWRjLN9xy7Ou+AMBMtAz+bJ5fIES4J4PEU4PS5aW1tRZDtVleUk4yn27dlPeUWQ0087h8f/uoklS+fj83mZiFrUFJmE8WPXpuk/1INuali6TGlJCel0inktLSQycYb6R1i6dBkm0Np6kNq6eiqrq8EyiEbCxGMxujp6WblyDZueeoramnqSqRRrVq8mk8lwqL+fkmCQRGoGj8vB8MAA5aEQu7ZvYdWqVTgdDuobGklnUhiWQDQSQ5EVDvX0UVpairuoCMvi/2fvvePsOst73+/qa+3ep/eqLrlItmyMbQzGGDCYErjkJJBQcgJJuCEnIZATSMINORwISUiAhCTcECAE4kOxgSBjXCXLsmxZljQaaUbTe91977VXu3/sGTEejcaSbDg3J3702Z/R3uuta633fer7e+jq7OaxRw/Su2MbouBx7mw/iqrR0taOLHrMzMxglsu0NLdQMU0a6uqxbYvxyQl6t29lcnKGYCiCKMrkcjl27NxOsWxx7twwqWSM2mQNh554nBv27+ds/5mqh0gUWV5eYHJSRlWkqhK8uMjU1CTDo0O0NndSl2rCKS6i5Yc5l/hvGIUCra2tfOrPP8P4+Dhf+tLfUtvUwD33/BtvfccvsLi4yPFnj7Hv1DxD936OV9c18NmyzQjwmlCc97sGf1mcI5vPE9NCvDVcQ8digY+NV9eLMJcl9O0+Xk2Yia88RPurtpDNfgeA4EKC2Pf78fv9vM1pxD9j4OWqguxv3fIyvnH8JL/2Z1/ktz799+iiRGYFAEkA/uKGW7nlTAVBsBi8QaKQLxIJR8+v9U/vu4U/PPwwv/W5r/Phz38TSRTIr6T60BSZz/7KW2k5MMi2QILMgWG04AJ3yjF2XPdq3rD8bfqWFviNT/89siTikxWyKyHMoiDwyb03cfeUgjc5ib85SeG2DtIz87xiRye1ixJ/fPQgT/SP8kT/KIYkIwkCefunnsuXNfm5u3cv2+ZVtid2cTDcz9nMMv/3p/+RD33mywQVlaxl4nlw254ekqbCv/SdxDszx63tfsTZAsXSAr+idfNJ6SGgBLKPpeEsiTMzeJ5NUJYR5QyVNelN1EIFwbVxLRvj5BS+wTmigsBw5qfKT+LhKVr9Kseb0tQ21DE7U0Vw3hmMcXV7DX954Gn+4f5jRJTvkLEqOCv765ae7bxr+020/9sRHMfGvfcUc7PzXBcK8+tbr+FvTj3JI4cO8sihg4SCAYqFIrbrcntTJ+3+CF/oP0qd7bHtu09zLqhg/cLrCEei3HPwJAeOfZJPfOaTBBQVWRRJmz9VdrqbW/mfn/os5wZO8JbgB4n83TfoOH78/PW6pQLCp76MpwmUbr+WmKpz8uQJ9j7wLIqqYpYtKhUHO1WDVSnTd+IkLc21XLf7Kn5/2z4+eeoJnjx+nMa2TsLhMOl0FT1almX+8i//guuuu+45vOgCHsXG/PB73/sen/jE/wOAfyWcehUESZIkPvzh3+OPPv6x861cfv3f5eMf+9j58usBec6fB71C4XN9uPPav2tJowI2yIjIWAjBCMFAFM+xqTiVlZhb6fyYhJVw0dVYXMt1cAWPwXNj5BZmUCsLHLn/m+y59c1Ing/RdRGcCoNn+uns3F71skoigiTiVvPTXNH81s/tckJR15b/WRrzN5JtNrp2sTIXK/dCylxuH5d7fzejjcJhn28ML6bytVGe1J+2f/H7shFY1voyG83pUua3SqIo4jjORY/XrW9zfXuCIKw5ere+z40Byy42pyullzyu/8npSqxsP4+N+OdFq3MRX3sz+kNfgW29hB94Gj2XZ2F+lnR6gXKpALiIkkAoFKqmShAFgsEgoVAIy6qcTzXR1NyE7djYrkMunyOdzqBrOgF/gEAgiCjIGIYfBIel5QWKxQKRSIRHH32M8bFJTpw4ie3Y+HwGZqWAZZcQBAfXdbAsC0GCaCyGZTvIio7tCCwvLzM3N8vQ0BDFYhFN0/E8l2yuQCAQpVSykFQVSVFQVA0XCITC50OqJUEinU4jigp4IrY6j1vWquAHK1D52WwOQzcQhWr4sqJquK6DbVUol61qKHXFQVMNpOEM0o0dgIauRwiG/GzZ3o7neZhmGdu2GTn0j1zfksPw6QiCyE033UxNqp4zff0EDD9vfP1dGIqCgkZA92ObJgszU1WPb7Aea+xJPFHFJzskopHqeWDP49y5c5w9exa7IhAKRnEc6D/dT01tiuXlDJqmYtsWoyPDNDc24fPLnDr1NKLssLg0TUNjA/liAUEUESWRZE1qxSvuMDgwiCzL7N93LYVsmr7TpyiUSpRMG1nRiETi2JbDucEhGuoasa0KpUKhipwajnDq5LPMTk2yfetWenp60QMR4vE4pmnS1NSEqii4nsfiwgInT56iuaWF8akpmpqbaG/vZGpqlubWFuYWZrEsl87OqldRUyVMs8L4+DhBf6AqiArQ2tpEMhknGotQLpeYnZ0hnoxzx2vupK29i7MDI6j5YabVHTRtvZ7HH38c0zQ5dOQJKq7D+z7w69h47N1/PV/43GeJhf3UxBJMT83Q3taGrmtI5/M+Vg0i3Vu7ueGWW/CHI0xPT5BeXqqeowYkSSSfz7Mwv0A0GsbQFLwVoVlW/TiOiyAKGIaGJFcjGQACqs6P/vq/8/Zb99IYi2I6NjFN55X1TTx09zv4lS27sKxqO7PT01TKJksLi+fXeEqS+eFtr+fdvTuIazoVxyEZ8POa63fzzU/8Jq+5dg+SIOI6DqFgkIpZZmlxkcZQhENv+WU+/otvZEdbIz5do2RZNAaCvL17Kwff9It8YPc1GIZOIBjA81wqFQer4hAI+PlvV+3jkde+jV/q2kpHqJqGxAO6w1Hu3LGVj7ztDmKRKIbhJ51eIqob3H/nm/nA9j00B4JIgoAiiuzf2cvffuTX+Oc/+93z+5WsyIiijOeBz+evvq+riN6igh6IUSyZSJKKrBg4tvccwd0yK+DYCK6DWa4gStLKO7/Glu3CcjrNU08dZXhkiOAKArMgCnzyhpfzN3tfxtXRBI7noYoSO2pjvO1VN6NLKpaVx6qUcZwKruuSSCQJBIJ84ubX8uXXvo09u3fh8xnYjsOO2kY+98q7+Oc73krAXwXbchyHdDqLrgXo7z/Lb951A3/6tldyZ2sP3dEEkiCStyokDT+3Nnfw1694Awe++i0sPDo621FVFcuy2LVz5/np2JYFVNHRRTVIxXU5/PhBKhUTq1JCUVVUVSOznAbP4eqdV3P40Sc48IMf8eEt+/j6ntu47ab9pFJJisUiDfX1vP2tb+Ghhx7kXe9655WwHwB+50Mf4s1vfhMdHR3nf+vs7OQ973k3hx8/yMc/9oeb1v/Qb/82b37TRvV/lcOPP8bHP/bfL8j5+EKxLa6EimKQohjEEjVsQUHCwnVMJLEqSzhsgL68pr4nVD89PTuYHh9nYXKQJw/9BEEoIdggORYz4+coLk9w77e/TaVcRhIFYE3M8P8h9L87qu0l+tnS5crll1P+Zx1Z8fMg4T/Ky1+pVP5jDPQ/GF3ME7kRvdB3ZbW+809VL4v0y2/YUAnebAwbWdJeLAuai4foAt97kOKHPsl0W5LaW28ESUXwBCRXwBFdHNvBsipIooQiy4iCSKlURFWlFXQ4AUkSWViYQcAhGAxQLJZJJFIsLiwSCAaRRY18PoNlV4jGk3z1n/+VO+64g6NHj3Ldvr34/D4c3xSeB4rZgCiKlEoFJNnDMPyYZZtzgyMsLaXZsbsXn2EgCrC8vIRh6OiGn4XFNOMT4+zYuQ2fJuPYEgsLyySSYYrlDOWsS7aQQVFVamobKaUXcUUTf+84bjaOWXbw+6oKRSabIxJ+GvsyAAAgAElEQVQJI8kieOB6LoLgUUUctvAbOuViAaUM8j8/S+ULb6HkOQhIjI1N0t3dw9TkFIGgn2gsRu7EV3BtD7H9TbieSSyWYODsMILjMTo6wpbtPURjUVRV5cSzJ8jnirS2NGGaJUIRlXBmjGxhAlUVKYZ66TszyHX79nP/gQPs3Xs1pbJNc2M94+MjmKUS0XgcTdFxRZFsPk0i4ieXSWMYUSzbplQqEY/FeOaZEywszKPrGsFQkI72dsLx6hnf5cUlpqZm2N67BdMy+d73vsvNt95cBf+QBAREDj9+mFAwRENDI7puYBg6uVweVZVxbBvDMCiXywSDQY49c4yGxlYMn0wyVVVgg4EgE5MzhMMhVE3hmWeeYff2qxkeHsb1bDo6WpmZmWFmcprGxhZGR0ZoaW1kOT1JfV0zfn+Uo0eP4/MHaemqIRSMcuypEzQ1NRIK+Rk6N0JHZycDAwPIqkJz/jFmW99DdMstDA2NIIk6n/nvf8gX7/kavkQIoWxSXEzzzW99iXf92kdJL5mcOXoIKWmwe/utpDNL/NNXvsg73v5eJob6icVTLOXSiLJDZ+sWAiGdsclh5Ce/TDjZyFRaQJKgsbkOVdE5dfI0dsUkmUoxMDDA/v37mZqbJxGLsu9dv8v0YoZP/8Y7ed2NO5BlGV3Tue++7/Oa19xJqVSkf/Ase/fuBctiYSFDNBbm7Nl+tm3bSer2dwLwjx95H72NNcRjcQ4cOMDWLT3U1deRqkniei7TE+MspwvEEzXEY0Ecu4QWDCI5IoNnhxgZHcMX9NPW3sbxZ47T1NxIT083pUoRQwswNzOPJHrkcsvMTs+zc+cuFhbmUQUXWfdx6lQ/ra0dnBsaoLG5npmpBa7Zu5uSmUeVVIr5Io8+fpg33v160ukM42NTpOcXuOm2lyPoCrpiMDU8STQewrItdJ8fSZJxbZAUASQYHxkml87Qs2UL+XwOQ/fz/Xt/RD5fYv++nbS2d3DPt79NLB7jxhv34blWFdDG8xAFGVUPYtk2siwhSi7p9CJWReTgY0dJJlJcdfUO/uTvv8UX/tcBbtjVw7996neYnV1kcXGZnp4eHvzJg4TEIlc3quQi29H2vI2P/uEfceONN3LDvr38wtvu5iMf/n2ioSjbtuxiYnGISCTGl770JX7/9z+KJVWolCoUcmWsks073/krWOUi111/Dc88fYZ7/uBVRCJ+StvegiRJlEolMpkMgu1iuUVKZR+FosNV+7rJLM3iOA75fJ5EIsHC3CKiJBOL1+EisbyU4/WvuZ1v3fMVUqkkpmkT8MXxB1Q+89m/4K1vfxvtHV24YoViwSa7mKb2E58nk0kT+JdPE4lENuQ5l8IfzyuLm3jBNuKFm3qqLqG/9ZzQ87wqiNSatjfilt7a8qttXqHAuwqgs9qWKFwIOLMarXVesN7I8ySIOFYFM7vAA9/9Bvt29hDt2EVpIcfi8hEWl+cJEabumtfgj9agUKEiakjuhXNZnwP2UvTbjYCtNqq2Wup8f8/xVF3oxbqwnyvzXK7SRs/pgnovopf9cmnts/5Z0fq1dKne5/XXN1vvz/V8SuuuXbz/8yBTG0RCiqKMIAjn81pfyjgvlS4WkXixcufX6xpw1yuhzcavquplTU76+Mc/fkWD+HmT4zgf/989hv8Taf3LtNnLtWqtfaEKrLi7F/mqrc8FYbjEMxaXM96Nrm0WwuxRZVxiVyuVq7YS/O5DmJaFr7EWQRCwcRFXNhrTNHFdF01VqznvSlWLPYKA48Hs3AK6HsDnC+M6MoauIwgSx449i2N5GIaCoijYrk2pWKKjs51kIkpTUwP9/f2EghHmzONofg/FquHHP76flpYWNM3H7MwsoVCIVE2c1rYmNF2vCkIC6JqGrutIkoSuGyQSSRBAFDUk2cPnlzn02CEG+keIJGo4ceIEu3ftIJdJ8+CDj1DXreJJJlT8DAwOosgyqqoxPDREMplAWLVgr3xs20HXVFzXqYagzOexF0rMXVVDPJZkZnqWhvpG8vkC9957H/uuu666uadPMz09RVqoIR6P4zgi99//E0JhHw2NDeiaQiBgUCybnD07gIfIwvIytfX1LC6kidfWo1hlCplxZsaGSLVsZX52nm1btlApl9F0jXvvu5elpTTpTBYRj+NPHSOdSdPd1Y1u6CiaysDAEIFAgGQqybmhIZYzGV5+yy0EQgE6uzpxAc9xMcsmc3NzxGMxypUKFdth2/ZdiJJCKBLFLBfx+/309vRSyBWor6tHkl0kWcDwGdi2hSiKhMNhzpw5w9j4GL29vWiGjs+nIwgC01Nz6HqAWCTCxNgYhXyO+ro60ukMCwvzbN22hVLZRJYVfIEgqq7T1NpEKBJmeXEZBJljx45jVkx27NxKMZvBb/hxXFB1jdn5BUaHhgiFw/h8PlpbWigsjjGXF2m/5tU4jksoFOPWt91FTPPx2A/up7WtlX9/8Mf80jvewfFnB/jud+5j+5YubLdMJBjlycOPcOvNN/A//vQz7Nqzg8/+5V/xmjtfQ7lcIJzq5PNf+BLX793P9OljJDWHeFM34UgYz/M4ceIEdXV1xAMKbiXPudEJDEMjFk0QMAz+7tsHyBZLvO7l13LNjm4UVcETBGRFof/sWUbPnaO7s4tivsDy4hKj4xNIkoQ/4GNpcZkv3fsQAPu6GulqaSIcDtPW3k5NKoZpmpimxbGnj9PW1ky+UCQUiVAxTayKyeTEFDNTU7R3thNJxKitqSUWjdLW1szMzBTgIQpQKpaZnZ2hubmR5aUllhcXGRkbpyaVYnpqkobGRnTNYHRslN27d2E7DrPTs5QrFVKpGibGJ2htaaO9s4PhoSFAoLOzg3DIjxH0IQgCZsnigft/QndXD4bhQxQF8sUsmioiSgKlQolIKML8zByz05M0NDRgVkxCkShDY6NEoiGSqRS79uwinowTCEWwHQfLcVBVA0+QqJgVnj1+EkXWGRme4NzgGFu2bqGrs4uGhjpESeDJ/iEOHe+nLh6hK+kjHovT2FSLIEA2l+X46SGmChLbEy7Gch83v/2D/N5HPkprayvXXnsV933/Xr761a+yc+cuxkZGCBgaiuSxY1sHy2MDxOx5Ipl+nLHH+dU79/Cml/Xyyl313LKtBqeYRW/aybylI0sqjz58hPa2XmzbxhcM8v37Hubml9+K4xRZmJulraWdfLaEgMLMdJo//vifMjszz3333Ue5UuTPP/Mp6upq0XWNYsHkyJEnaWxs5Nq915KsSfHggz+hvaeLkOHHLhUoP3EUfypC+A2v3pQ/PR9dLr+6UmF1LXoobKyUrldaLrWn9WNay7ufTzZYy3svNjfHcc636XoXIi2LVNHwNV+Q7Xuu4alnTxGKFMgs9iO4FULqdgbHR9i2/3aQNUTHwkO6yD1Yp0Be2h24slKCcFHZ42JHrl6IsnJJdV8ExfVKSdjkfrzYtFHo7tpxbEYXu776fJ4ru66XT5/bzlqjxWZrZqNl9LO8T8+3L70YHtrN6kuS9EeX09ZLiut/IlobIrQKTb520a3dSK70Jd0I6nx9/y/Wpvd8jHKtNfc5VtwVWm/5FAUBz/UQZQmlqZaFWJDA1+7DSkWQw0E8qZpKQxKrHlXHcVBkGQ/I5gocPHiIru4uJFlBkmUM3c93v/t9VMUgFg3x9FPPMDw8QmNTE4oiMToyQiAQRFFVAqEAjlOhkC9QU1OLqqgo4Sw+vw83FyGZTCJJIktLaVKpFIVCHtMs4boOgiRRLpVXkBmriuXy8jIBfxAQkKTqGMvlPLZtEvRHMEsuja1N9PWdpKe7G7NcIByLUbejBGYAy3RIJhIEgn5c16VslgkGAwiisAJPv/rugCiAZdkIgoh6ahEvFmA0KVGzks9U13Usqwro1NTchKIoLA8fIhINo9XuJhAIICCxvJxh67ZuRElifmEeTZPJZfOUSiW6e7YQi8UIRUL4ND/DExNEQz584RYMIU1EdxidKzM3O8eTR57Adk1e+arbqW9spKOtHc+22L59K57rkc/lEWQJ23WJhKpe3dOn+2lpbaGhoYlAwM/s3CzBYJDl5WXCoRCzswtYlQrhUABBFDl3boinnjpGTaoWWZaZm5vGcz1AQJaqiMK5/DKpVIozZ/pJJBKUSmUO3H8/t9xyC80tLWSzWU71naK9vQ3LspmZmadcMgkHAxSKBXLZLE1NjeSLJVpbWxFEgXPnhojFYuiGj2AwSKlcxPD5KJfLyLJKKBxh247tTM1OMj89x9zsHK3t7YiiRDAcoaO1manJSZqaGxkZGUaTwCcWOTpt4DpgVTxyssX3vv4tfIjc+8Mf8Eu/+i5+8uOHuHbvTXR1dfPU0cM89fRRDh96kre85Y34/RqTYwsEYkF+9VfezXve/W7e//5fI5gKc92+nXzjq3/Pvu2dSMtnGct4BANV4LJ4PMbs7Ay+pYcICvOYehv5fJ7O9lYefvghfvjUGbLFEjW6RypikEgkEEWJimUxPjHO/r3XYug6kijheTA3V/WUNzY28Myx4/zbwer5xve86TXs6u2ibJp4nsfgQD+dXV2cOtnH9dfvB1zi8SS6YXD69Glqa+uwrQqKKhNPJlA1jb6TfczMTOJ5FsFgkHg8gVk2CQYD1NXWUMjnKZXLpBJJfP4AoiQhSSLTUzN4uGzfvo3pmSli8Tjzc3Ps2rMbz4PTfX3U1dYSioQIRyL4fD5UVUGQwB/w49gusiijawYnT/YRj8fRdBUEKOSXMHSNXLZIpWzh2S7hsJ9IJIxZqaAZfrLZHKomU1tXg+PY6JoKQtVoJooSpbKJrhlMTIwzcPYcAX+IcDiG3xfAMDQKxQKmWUbTVQ4928+h42doSMX5yH/9ZQKBYDXqAmhsbKK3p5et27ehxJsZ6TtKONvPHe/+MD3btrNtWw9XX7OHN77xTTx+6FFu2N7FUt9DtAsThOaPEZx9BnthnJmRQYKhCJokIUugiODTNJLiPOXOu0jVNzI0NMIf/MEfUjFtXn7rLWSyS+zeeS133H4Hr371y4kEA0yMT5BZLhCLJPn2Pf+Lk8+eIBgK0t3TyV13vRa/z8e///BHKLKGz+fj4MFH+Z0PfZj3vvd9+IN+WtsaUXQdwXPBMnlgcZDIK3YTa+naVAC+GI9b//ul8sKNyl/Qz0a/ra+/ji/ChV7Ci43kAp6+wfULQnwvopSs5dnCmt/WtpXP59F1fcN7IQgCoufgIWIjYXsuiVQdM4NnGTl3kEQ4wMzkLKOTM7Tt2IcjSkhOBUFSzk94dQzV53j5iqsgXKKR/cKKlyT7rC9zqdFoG7WzkWf3Ofd7k34vZ4wbtX2p4/tZKmSrMt6V3PfNyl2srOetL3Ohd/P5vq89O2qaJrquV2W7TUL713pFzxt4LmGf2szzv9l+djFaLbfRPd8sguAlxfUluiitvjCrB7Or6VY2LvdCLX2b1fdGJiGdQ4iEXlAflzqO1bJrF/IFG/iacB4PD1cU0Ht7WbbyqP96ALG3FUnVQBCQRJFcLk8+n8dzXQy/j0AgQltbO6IkYJolAoaPillm29YtRCNBZFkglUpSV19HfV092WyWM2cGCQQihMMRPFwKhWI1DK5cRNMUfMkyggByJYXh03E9l3gsBrhYtoVlWfj9PmRZxfM8NE0FqgaJXDaNrvt4+KFHaWxsoFRYQJZUFNlHsWxS11hLuZBl545duJ6Hz+/D37SMrLq4JR2/z4dtW8iyjCxLRCIRBAEkUcBxHVY3ZEEQcSwLUZIRRQXrwQHSe1uI7+rA7/eztLyIpimYlTKu41CuFAkE/Ui5s8iyTKhlP+VyhYFzA7R3tOALBFEkjVQ8hT/gQ/QsBDwM3aD/bD/t7W1UzCLZbIaxhQJ1hsOjZx1S2hw1ERUx0EDv1l462hoxLRfdF6RYKCLhovoVwsEQx48dR1V0NLV6TyVZJplKYpom+WyeI088QXtbG5Ik4rkes9OzhIIRdE1nfn4aSbCoS9XSd/IMmXQGSXTp6OogvZxBU1RGRkYolcuEIwGWFpdpamxGECRGx0fZtXs354aGCEfCiJKMpgYIh8NMTEzQ2FiPqirYrkMgFKSmtgZRlnE9B0VRsCwLTdM5c3aAE8dPsri4QHNzI3Nz80RiQcbGx+nq7qFi24QjYZyKQyQS4cyZfvBESnmTyfFhkqkkyspzDUdTeJOPUnPDB4jFk0iSik+U6N22DcHQyC2niRoB+gcnaGpoZnFxjo7eDm6/8/XUNbQSS4YpV2zmFyoYAZnamnpuvPEGhgbPEE7EmBsf5fCDD3D99dcjLw+iJ9t47LGDWLaLYejU1iWRc2eZn59n0a6tvstOhtraFF+69xGKZoW333Eb1+3sJegPMDI0TCKeoKG+gXAkQC6XZ2x8AkSJLb1baGpqpGKWMU2Lf/rRIQDe9sobefzhB+nrO017W1s1HHtinEw2Q1t7G8PDw0TjMQqlEk8//QxWxaWrpwvbLjEzNUU8FiccjDA1NU4wqNHe3gqehCrJTEyMUioXCIbDjI9PMjs1Rc+WrTx++AidXV1MTUySqklg2Sa1dXWomkEsFiCWiLO8vExHRyt+nw6igOvA3Pwcuq6iB8KUikUEz8HQNKKxMM3Nrdz/4/tpbGwim81z5tTTxGNJgoEoIpDPLVNbnyKXzyKKIkF/kHg0WjUWSTKWWca1TURFx3NswEOVZWRJIRaN0d7WgaYZ9Pefpre3G8Onc+jxxzAMDZ9h8Nizpzl8YpCW+hRvuuV68vksp08N4vcHKZWKIHg4ro2syEQbOpAqGQLp05QibbBwhnj+DIH0afb6xggXz1IXkgnFaygQQG7ciRusw1/ThqeEyJkSpwbH0EMJJhdKhIUMk0o9jmdQLOW46413cOdrX0G5YlEoLyMLGpGQj61bG5ibm6Kzo4O52Xk+8Sef4O43v5Lf/tD7aWqq56qrdyMIAk8ePcz1178MWdYIBv3ohoxtSdz+6leB6GLZZVxsBFEks5xhZm6eW++8E1tQrog3rvcyCuuuXazNF8vLcUkK2SW0c8ltbaKUXEwBhiqP1jTtovWq/bt4iLh2BVUEwSox3v8UHY1R5icy2M4s2akZ9r38dmy7iqhfEbSVTK5V+unYfr4e10uq9zzer0slQRCYnZ0lEAic/21Vqdns/l7pGC/3Xf15KK7P59xYX3aj3y5PgVsfTXD50YnVfqph1Iqi4DjOppky1o9zfWjvZnQpIeuXQxsZzTYa53q6XMX1JXCm/4S0ugg2y3f6syT7Tz6P/Sef/5n3cymbzloLEe6KZVmqWq1KIqTe93a8rW0UHzmKWSqvnDkQ0DSN06dP89CDD61YwwQkSUGSJJxKhWx6Gc+xWFyYxnXKOK5NNptBVRWOP/sMoyPjqIrO2OgExUIJ13WZmpqmr+80kUgYTVdwXbvqFSkVEQUBw9CZX5hFEMHnM0ilanAcD2cVuIlVowTU1NRglst0dnWiKhpmKY/gegiCQiAUBtkjvbyI6zg89OBD5MRzqKEcuXmRUqlE2Syh6yqyXEUsFgSBSsVcYTQgywqVFWTXqlJlrzBmj2BdElmWyOezJBJxRBEMQ6Ojo43Gxnpsu7ICvFN9JoZhsKW3m9m5afpO9/Pk0af58QMPkl5OY1smDXU15HMZAn6DXDZDoZihpaWNXTuvQay7itu2JxBqbkaspKkThvBcC9d1kKWq5fL7P/gBszMzSKrE+MQEiViccwODLC0sEo5EmJyYQBRF/D4fw4ND7Nu7l9GREXKZLH7DYGBggIA/SDDgp6O9nbGRYfLZNG9985vZtX074RXP7Pj4OLphEAwEMQyDTDpLQ0MDiqojijLNLS3kC3mampqYmp5mfGKcTCbPU0efprm5GVmWmJwaJxKNoKoqZqVCxarg8/lwXIfp6Wk8T6Czs4utvVtZmJvjsUcfZXhoBFVTaGltAcEjm8thOx6tbe3YnkNrayv1tXWcPnGKurpafIbOwsJC9WyNGkWUFb71t39MqVTi6NGjjPUN4sgCPVfvor29nc6GFl7/hrs5cOAAiUSC+fl5KhWBD/zGB/ni3/0diCLRaA1X770WSZH5/Oc/z0c/8hEU28/XvnwPL7/udk4MLKF4FZxKga1bt1JXWwvAkSeOVIFZXIerr7kG1wVDl/H79fP71PT0LPOzs8zNzOLaDpnlNK5tMzh0jhMnT+I4Dm0dnYRCIQYGqkpwU1Pj+TWezWYJhcPEYjFUVaW2pg7X9di3by/FUo6ZmVkqlkU4HOLuu+9GFCRmF+aJxqIEAj5UWUGWZSyrct7AMTExzvjYGLU1NczMTOM6LqVSmW3btpLL5Xnd615HIBiiWCwyNjbG2PgYJ06cIJvNkE4vMTI8hKrK1TzP5SLFUgnDMBgfH68aL2wXzxNQZJl0ZhHPs1AUiXw+hyhIPPrIY3R1dVMqlnngxw8wNjaKZRaRFJlINMIjjzxMemkJ/0oO2GI+T7GQRxarhiZw0RSZimkyNTXB1NQ0gigyPHwOBI9vfusbzM3Ns3PnDhLxOLphnDd0ClQB4b72ta+xtJRFkXV+8sCDDA8PEQj4kUQBWZEh0YUHRA7/OcbgvyNmpxBcG6l5L4N2E1ZyN/0zFmUhRMnOIeuQK6aRVIFsIU1NTR2JZIpQKIiuqTTGNT7ykY8gyzLBkMbguVMIiocowhe++Dl279nO/Pw0wZDG3Pw0bW3NfPCDv0nAL1A2M0RjfoKhAAtz8/T1nSIQCOH3Bcjni3R3d/Ge97zvvLBXKOYxdBVBEIgkk1z7spux2djQ+0LphRqK/6PRZvMVRfF5hXR3RTlw7Ap/89n/yaf/7I+YXzrB6MgwlYKCLOi4hSVmRs+soPd7eMLP5tn9/5k8z6N2ZZ9dpVWArpfo0ujyFdcXh9aehV5FAb6Ucf5noZc8rv+JaL01ZO0GdjmQ1Rst5s3DJ54btuB+7ycASHe94ormsdE4N/Ouri3/3DChn14TRXHl/CbgVcOGDUlCVFS0HT14f/stMoaIHg8jyAKSotDQ1Ez3lt4qyrDg4ToVBODc4BBWBQ7c/332XncNmUyBXKGE4TMwfAa6ZtDU3kNrcz1PP30UV1GpS8RIxmOEIlE8QamG/irV9BM+mnBdj+/fd4Ce7k5cT0BSdIqFHGapgK77qTgOqmEgSQqqooOkoGo60UiE+YV5ljNFBFFG01QMXcIqF4hGauk7dZqCO0nvPh+VdABdMfD5fNi2g7SCnuw4LoIgkcvlwZOQlSrSsKpWEYE9T0SWZGy7gnZ2mVxPjGBHE6IsIskSgqQgqwaKJldRV20XMXMGPBcv1Am4eK6Hruq4Fmzp7aGxsZ5Djz/Ojl29zM4tkIilsB2PYDRCSAsxMnKampoEg4PDiKEUztI0KgqiOY2eP4NqCYiFAlIpw9a2Jgr5PKqk4VNVTKtMY0sTqVSCkaFxjhw+wtLiAk2NDYSTIfBcCtkcIyPjOIBZLtLc0sDU7DRL6RwN9a34gmFEXUZSJYKhEAHdwCxbzM8vEksmiMTC5HIFdN2HWTHxcJF9OqFwGE3XScTizM7M0NpaTyqZopAvAh61takqYNDcJNFolJmpaY48foT62joGzg4wMTFBV0cnfaeOcfMtL0eUJOpqa1icz5PNFsgX8uC69D1zimRNAkVWECWRilVh+67tqHoA03YJBUNkl5Yp4xDQRIKGgNFyE9hlTg0c59prb+DJw8dwHI/jfX1E4gECAY3O7g6ijbXcf99PeOtb78ZzBXZs301f3zNMjA6xZcdOXvGqVwECu3bu4lTfCU6ePs2ea67CyJzhxKkBMnmTbCZNIhbn1Kl+miNF/H4fGa8BWVWJRCVEyc/+7jY+/aH3QC5NW0cnBx99BJ+u0tbRDqLI1Pg4sqQSiUSZHB8hENQ4e3aAgYEhdl61iw+89TY++q63MDs+xo033kSpVEBR5aq3WxSZm18glojR2tKAY9n88Pv/TndXBx4Whw8+zu49V6MHQkzMTBKPxygUi4wNTxCPpwhFIwwODhKJJhgYGGJudp5SsUhp5Sy041jUN9QiiiILi0uoqoaqajQ01FMolNANndraJKZVRjN0VMOP7TrU1tXhITI1MU4iHiOXzhKNJqnY4HoeW3dux7Iq1KaSRKIxLMdmbnoBs+zQ0dWEqPnBNejq6iaXz/Pd7/2Apvpa/KEIqh5gcTFPIKxRMW1KRZNIOMTY6BBn+odoa29C1UQ62rvYtfMqJNklGAgiyQpmxebV+6/jd37xtbz99v34fT7i0QS79uxEVjza21soly002cCsVFHMRVHCVUOMZlXCzduwtTByKIbpOCRrwqi6Rm1dDZouo+sBHNPm8YOHCQaDpGprURWZH//4AWprawjb88yPDvPYSIn6hia6uraiKkGGB4YZG55i7969jI6P8Vd/9Y/cettrSSQbOd1/Dl8gyO/93sfp6t5KS0sT87NzdHVsobWrjaeefprWtlYWFmeYW5xGdTSOP/sMmqaRqK3D8nSsTJqv/8Pfc9N3DmPd+wjyG16xIb+5GI9a6wVZG8a3PlzT4yLC5xUKoxeetruQLkjBcbF2Vryjq59L9SFdwKM3GdPa+/R8HjJFBFeQkWWD2niE73z9/2V7WyMtrfV4okmqJsXS4jSmbaHoQQLRGrAtBPG5ymv1vKyIsObfpczuOdhOa56ZsO6z/j5sCOC0wTMXV73R685CrvWmre1HXNe/uFp2oz5X+xIuDDG/XHrO3C/Ds1md2oufIuVidDEZdfX72rPEa+Xi55vTxuBMq7f4wrv/0/IS698WQRCf83ftGNaPazMv9cVASzczVqx/t35KLuCdn4/n/fT7hfM8v4td0P9msvcqvRQq/BI9L11OKMqVhH/AhYtr7f9XFVf5DbddVtuX0u/Fvq+lSw1PcT0LwROQkylcF4QfPsqs7hGuieMpIhIyoitgWxWK+eqZxGKhSH1zklAoQTxZA6JLNB7B788cWXUAACAASURBVAsiigKVSoVQMExf31nCK2cp5xaXaW6opwKEozFkWUAUPPRYCVGSEEtxKpXKCv6SwHI6i+HzY1sWhq6jaiqqpq5sCgKe5+KtsGHXccjlsszOztDY2IDremiqQqlUYnpqjscef5g3vncbVt6HoYURRIGyWUE3DBAEKqaJqmqYZoWF+QV0w0Bb8UQIgoht2QyPDBONRhkYGCA+ZaHfuBWhJowoCiwtLeM4DrZt4zgWhuFDlhRK+TRzaQvB34AsSeRyGcKRIFOTk8iyjKbp1Nc3cvbsGdLLWU73naWru4d0Ostg32mam+vwPIdCvkB9Qwov0IATTHFmLsDY9CJJbQbLyiLrPoq5NLXhAKpdRLWKJDWJgCLiBSIgCBQKea6/fj/nhobxGUGsisXY6CjX7r0an6FRX1+Pqmk888xxdu/Zw8DgIEuZNOFIBNuxOXLkCHguFcumtaWF2blpZFlCVQ0efuhhOjo6OTc0jD8YJJfLI4sy6XQGx3EJBoMUSyXGRsdpqK9DU3X6+vtobWvHcUBXffgCOrFYjEQyQXNLM+eGztHT042iqcQTcexKBVkUqatL0dd3iraWFjRZwfBFWFicplTOoesG2bTJE08cJFWbQhAFTp44QTSewtAUwnKBUnIfvVu72LZtD6VSCb9fxTQLJJNRIvEYX/6Hf+DGG/ZTNEt0djThOSpf/+r3uOGGG6hvjPLoI4+ya9dOFE3mi3/9OcZHpzjy5NPoRghBVNjWEiPuE2nZvoel5RlmZ2ZQRD8xaQrHtjkzo2DbFepq/czPZbBtidq6FMeOPU00mmBxYQHTrCDLMrOzc8iyUr2fsoLrgWpI9PT00NDYiFkyUWSNbCaL67rU19VRLpcJh8MIgoDjujQ3NSFKAhW7BIJIS1sbPp+fkdExdu/Zgy/gR5RkfL4A5VIRQ9dRJJl4IkGxVGRybAbXdZmbmyVVE6epqZ6xkVFe+apbKZcK5HN5lpeXaG1tRRRFOjs7GBkZxXJdautqKOSy6IqCrqq4goznetUcy4UCwWAIXVXIZJbwBwKkMzmKuQKBQIBCocDc7CyapqEbCg0N9cTicVyvjCTpODZks8tIIiTjKeLxOIIgoCoqR448ST6fpr6unnK5jKqpxOJR6uvqcV2LaLR6f0RJqEaSrESfPPDAA5TLeUQBDMOonpc1VGSx6h2TJYlEIsmJZ/t54oknqKurwWfo2JaFZYl885vfYsfO7ciKhCSLWBULSZKroGWSiKwoPPH4YfL5PD29PSiqysLcNO3tbcSjEeTcOKIvxs2/9H7i8QiG7md8fJK//txfcffdd/ONb3ydV7ziVv7Lf3kHjiIxPjbCIw8e4LprdnD82VO0tbfS19dPOByhXDYJhA2eOXacWDRGXV0NkihSscsUSjkUQ8J1bSolh2IuTTAUoOaZQTxAfpGMrRtG/2xc6co6uwTFYFVM3UxxvfxuL10hudKzm7JQwUHAdB0C4TBv+r9+kQP//iOao8t0Nd6MmWgi4tc4duQgXilDe08PFTWC4F4oNF/Y76UoX5s/x41oszOKm8lKKz9sMoKLyz4XU5RfLHqhXr4X20t4uUr4WifHqlK1Uf3na+/yZeQL34NL6fP59o/N+7y09fjcchuv5c3b2nzcsLES/ZLi+hI9L220AF6MTWQ9IyqXyyiKckG5VcVVeN0tV8zgNrKerf3/+k1srcVqffn19c73i1fdZAQZ5eod2A8dQTw3wUJARpNlZFlBlmRcHDRdxR/w4/MZpLNLBPxhwuEgqiYhijIIIooio8gypllNaVHMp6mtq6N32zYMVUDWDTzHwrGqIbmunMd1BChHcF2XZCpBuVDiwIH7mZiYZMu2rYCHJEtYpongeUxNTqIZelXgdF2Gh4dob2/DNEscPnwEXavmTvT5/KiazLZbJFQxgFNSUFQV27bR9WoeWNM08fn84IEkiliWRSgYxHYcFEXFsqohv9FoBFGUCIUiVJ4ao7ytlrRiochqFQHXZ6BpysrGKCKJEr5EF5G6HsDDH/CTL+SpVCwikTC5bAaoMpLunh78/iCSVA0pVlSdmsYWBFVFD8SJpepxRJgcGSUUi9DS1kND59UcO2ei2lPo9jRSKIWFjOXZjE5PIRoahgdFZCLxJG3tbbiuiyRJFHJ54okEyZoksiySWVrGFQR0Q6e5pQXP8whFIzQ3NTE8eA5DN+ju6SEajRGPxasetvlZfIZCMV+mWCyQTCQIBgL0PX0cn6yCZTNwup/6mhpkVaP/dB/t7a089tghJElB02UCwTCSJDM9NUlNbQ0Vy8LzQJJk6urrmZyYIJ5IMDs3VwUF6+pkZHSM2to6pqdmyGaWOXjoCC+76UYMQyMcjGFWHLo7WxBkEV3XcV2PhoZGTp4epKZykuP5Jjq27KD/zBk8u8D85DjtHe1Iisapvj5ed8edNNU3YlUs/vVbX+Oml72cW299BXfd9Truuece3v/e9/EbH/yvvPOX3oEiyGzb2s273vNeXnbb7fyPP/0Ud/RIBAI+XD2MIkuYZRvPE5ALZwmFQ7jBHmIRjXJhgaA/RiCUZHBogEQiSigYoHfrNto6Oug/fYpiPsM11+6jtq6GfCGHh0jFtqirq8PDQRJlzvSfYWRkjBtu2M/BQ48BEA6H+cpXvkJTU1P1HLBjochaFRBJEMDzOHNmgO7eXtLLS/gMg3K5RMDvZ3x8HMe2mZubY3R8jMb6FoqlAjt37qChoY5IJMz09DxDI4PUNzQAMslEirm5eSYnJqmpqaNcNmlorCUUCOA4NqVSmUK+gCgpSKKIWS6jKio+X5B0eh5JdMnli+Ty5WpeSlnGFwgQj8fpPzVYPU4gQyKZxBNAkb1qKL5g4vfL6IaC7tPw3Arlcp7WriZioSSyIiIILq7n4gkiU5PjOI6DJEnYtoWqyuiGged5mGaJutoaamtriUSiFAvFlXzRMkuLyzzyyCN0dHQiipBIJHEck872RmRZwrI9RkfGSSYTxBNxVFWmYlUQBQnXc1BVBc8FSVaoq62hob4BAN0wiISDGH4fiAJCehTPiLFktKDrBrlsAdu26O3ZSnNzE1ddtYt4IozjlInGk6RSca7few3/8o1v8IHf+HX8/gBXX7WXQCCEpovIikNzUxv5XJ7JiUlSyST+WJAdu3aSSCSQZZWwHmJscoQbbnkZ1nd+AqKI9PpbL8qnNuOhG/GnC8pswL+ulC6l/gtRXC/W9uUg4V7pPN2VdDTV3MUqjiixfce1fOkvPknFStC+/1ZUI8bsYpaZ2SWGRybp2XkVbBDqfTmK60+V8ktHUV4lSZKe4+G8sM2Ly2QbpVDZaB4XeGXXOBEuBbRntezzOTY2k8Eu9Zmu9b5dzjvwQsFDL2Wcl2tQ2eh5bnTtp/1dvM+1z2yzfta/F+tTC6195pIkXZB2aH3Zjee6ObDXxnThfDdCUV7fzkuK60v0vLR+ob2YVq+1JMvyhm2vKq7i62+9pL7XJ01fW2cjRnkxZrB2oT6fRQvAYyUeQvTwRAHlrlsR/+5blMsmGdsknkxh4SEpMohVsCvH8/BpBgD5wgKSJCGLAVxcPMGjkM+jKCqyquA3FCRJwB8KYpl5XMdBFjwyS0voPj8+pQmv6EOWNVzXo1jME/L56erpwfD5iMYiyKpEqVwml8kgeBCJRUEUKBYKaLpGIp7ANE2i0QitrW3EEwk0TcexLeTUFFpAZG7URJarSLiObaOqCuDhuS6iKIEnYDv2+XMXumGcB24ShKp3hhWlSjo1h35jL76WJKIoo6k6jmuD4KGpPjzPo1KpIIrgOhYA6UwGUZAIBsIYhk4oFOLswFkCAT+6YTA8fA5dk1FVFVXTEEQX1zWRRBVJlLEdE5/qJxgJ4yIhYBNNRNFqdqJ5OSgtMZeu4OKhaxqhcBjXcamYNqI/imXZTE6Nk6xJkIwlyOTSWJaFa7ucGxhEWhXiqXrqivk8I8MjhH1+otEolmNz/PhxYrE4qiJRqVTPB584eYqbbnoZp0/3UVOTwrIqWK7NsWefYd8N12O5NhMTM6Rqkhx7+ml2776KwYEhdl+1g6npaSLRELLksrSUJZ5IIorVPLx+f5DxsXEi0RihUJje3q0UijnqG5oJhmMkEgmsikV3Twc+I8DSYhZN01A1kePPPEVTcwuCIODzBdB1Bd1ZRKnM0/Sqj6IZQWSlwmM/uZ//j733DrLsvu78Pjend19+3f36dY7TMz0Bg0wwiSBFChJFUhYtyV5bpVqXakteWbZ3117bW5a2Sna5VPbWSuv17spebWCREqnAHEBkEAABDDAzmOkJPT3TPZ3zy/FG//F6wEajp6cHGEpbNk7Vq+737i+cG373nO/vJCH0yfUME091kUl38Sd//G/YXN3kh08+wy998ZdR1ADXLzIwMMSRsdPoKtxcnOVTn34c3/Gp1fJE4glU02b1wnPcl6wgZIYpF0tMXbxGLJakf7CfIH8R0zRxjCH6euLkN5fwPZmZ68vMXL/GyOgA6WQCQZIwTJ0rly8yOjyIahgYlk40ZpPfLnBs8iQIsLmxvgOMW3heSDqTQpIhnUqTSqa4evUqk5OTRKI2nu+yMr/O0sICTquBaRjksl1Ua1UCz0HXVWrlMrphYpompmFgRSwGh4ZZX1tje2uLXC5HGIbMzMwQIHPyvuNE43H8QGLx5iLnz79Fq+Wwsb7J9NVrnD59lHK5xPzCEtF4EkU3MA2DUrmEKIg4rRamZSPLIaapoekGgqhgqHq7ZI/nUK1WyXUOcv7CWXr6umi0XERZRhEVtjYLzMxcpaurE68VUK62WF1apSfXS9NxmHrrEt3ZTmRFAlFsr1NFQdfNnY0mk2azQctrJ2ELfZ9kIk4QhjiOR7lUJZlMEhJgmRarK+uAQCwWQVTBdRuoMtRrNRTF4tq1yxyZGEMUQZLb7xMQCYJ2gihRUnA8F4KQZrNJxI4gKwpu4OIHIaEgIhfmESJpwq5HuHDhMsvLiwwMDJBJdxCN2ciKwKuvvszY+AiVYgW36VAoVtkuVkkm2zw2mwF/8Af/G/0D3bhOjVbdZXR4jIWb8wwPDRLv6iAMBERRoVF1wQtwgxayJiM++Qog3BG4HpYOAq73gg4z1vsBrvciwc97pRAVAQEl8JHCAAEB1Yxy9pVppmcv8Ytf/FsYiV5GTzyGluzFiCbIpWIEkv4uHu8GuP6kz72LEd1Pf3m3HnL7Ywf+vg/QuRUredDGw0F0q99h3FYPor1lYe6G3i9wvdvNlTvR7qzah7NOHrwxcKdj+92j/ebfvTnwrvCEQ92395K46XDn9gFw/YDumg5+cb83OszO460Xjv/NZ4B2jOvuxXVrnL07evvtJt5pnr3fb+0wHfZFK4q7Y1/aMkBQJPxPfAj933ydlqKw3aqRsE0CQA4DmvU6jUYTVbcQZQkEGVFWCYWARr2GqiiIYrtUTrVUo1Aok0gkUXYSFflNh3yhSjLdhabp1MpFPLGdKVgQ2jz5AnhuA4kAQ1NRVYPy9iaWZYEgoGoGQdDeNAg8n0a1hO9WkRQTx/HZ3MrzjW99kxMfj6JGmpTXFMJQIBaPtq3CO5Yn1w1QZJ1Kucb6xhq6rqBqGo7jUcwXiUVjuK6HLCu4josf+IShj3o1j3/fCCXRJWKZiAKUSyUkUSQUFRAFSsU8ulAn8DwUXadVr+EHIpG4hei5XJi6yIlTpwl8ke2NIl1dKSzbQNNjFItlgtDHMuN89U+/hqErTF+5xPLSMufOnGdwoJ8Qn1Y5T2E7j9Py0Jo30KI5Wo6DbUcoFgoYhokuwCvnLkEAyXQa3TBwqg3OvHaGqB0lmkjQ1dNLfn2NmBVlbXkVQ5G4evEaI8ODWJZCvValsFlEED2KhQqpdBYrGqXWamBHo5ixCD39fWxubiEEAkMDQziOh+e2rd6i7NGZ7SUQFFaX5tE1kb7BQaK2DSHouoVqtF2zW60WthWh0WiwsjRHs17DjkRo1KsIioHrumysrKLIMqnODmauzhB4LgIemqHT8lz6BwYQJQnHaQP5mYvnSLcu0TrxD/mnf/Itjk6eINHTwcDQCVzPQAg9+roz/PZ//Q/4j37lV3jj8hS/+Tu/TUQxWV0rcvnaEiNDx/jan36NX/3PfgU7ppNKdiDLab7z/R9w6uQJtlbnecyaZW61jKBnyRfK9PcPkOvJMjt7g+urTXomPky+XMa2E7h+SKPlEUtkyPUMYNo2N64v4roO3/n2d3ji538RUIklIkxdvEK5VMVtNYhmokhCSKPeIJFO05HL0qjUuXL1MqdOncSyYzsASSKZamfJfvmlVyHwWVxe4b4HH0TWZELRQzNMDF1vx4O3fJbnFwi8gEKxRKVaJ5lMceP6NNnuLAvzS2xvlxgfP0pPf5ZWw+PalWnSCYtEV4axiXFc36O3v49T951GkmTyhTJHjh7DtEwUXWX68gypVBJCkYsXLjFz7TqFfIV4sgtJUdE0Bc8P0TSNc2+eRUBgbesmkyeOoWsmpqajKRqBL/H662/QbPj09w3SchzOn7vMsZOjIMhUihWGxobwAg9RFgiDtiIu4RCKArKqoSlyOwOrrBIGLrqu4jgtBAGCwCcSifDCCy+QSmWQVY3+gRyB3+TSxQtYVoK5uUVyvcOoRoRI1GZgeAAxlHjmqeeoVeqsrK5iairLSxukUl3UGy0UQgQxJF/cRjdtPF/YsSJ4EPhIhQVW8i3+6V+c4eSJEzz5/R/woYcfQVYUGs0qm5vLJJJRRFHgjR+fJZHMsbqWZ/7GVT782MfxXR8h8HnsIx/mxCOPkEgOcXHqPOmOFFYiQayrjyBooUgWtVoDRI+zL/wVJx+6n1A3Eb/zI8QQxM994rbybrecuRv5dGDbPZ/DtLmjOronTvI98ST8JO51txVsb6mbfefdmSsIw59EAt4OkO3m8+3+7V4B7URNIUAYYGe7mXzk4yTSnYQ742cyHXR09RBI+qFAhbAPcA3fZqK9kb07H/J7BVEH9dt7TfbzFHvHpsPOdd8bVbnXqigI7c31e8nvYayz+1k39+phe0sTHjTm7eggz7zDWlgPS/vVYz3MXDvcves9cTf67e3a7GfR3O+3/Y63E4EKvDNede+8ws4S3O+Nc+sT7BnjnXGvu89h9/cPgOsHdEf669gVPYj2JmfavZP0dubKewiu7waw3mk+uTOFMtCL9uVvU8/EaADxaIRQ0pAVDV1tA8HAb7vBlQpFZEmiWq2iyAqlUhld15mevkq+sE13dxfLy4t4votlRajU6giCgAhcuvgWSwsrZDu7+OEPf8jwyDC6aRAGPpquYcdilKtVola7FqxuGECAIASEPgR+yPr6OpnOTra38kxNTTE00sf4Iwp6zMEvR6lVm5imSRgE1OsNFFXZSfYg0Gg2mb56lVQ6iWEYSJKMqmkYporvO4hiCGKIoqj4vo/jOEiXtjhDno6jA+i6ztLyEpquo2kqoSDiey6WZdG48ldQmcO3h3Adh7feukSpXMD3Q/r6B9jc3EIkJJXMsLQ0hx2NIAkayyvL9A0OIgoCI8MDbG+tMzE+ytiRo0TsKAuLiySTCWZmphkcHuPaQoFOdZNAkAgFFWjH6G1ubZM0TMRohqnLlxkcHsI0Da5dvcqJk8dJJhOomoqiyjQaDZZWVjk6OYkkS2S6UlRqRdKdCRaXF7k+d537T9+PIAi8cfYs6XScZCqOGIrMXJshlUzhNFvktzbJZruQVYmIbWJFLFzHQZI0TF3H1HTsiIVmGjsum17bEq4q7VqlfkA+X2BpcZGjJyYxIxGuXrnK3Owco2NjNOoNkqkkq2urxBNxopEoW1ubWJZJ03GIRCJcmrpCJpliY30NS1PQtl6j1fEz2Kd+jXgqzrGTk1RrZSw9QldHJ6+8/BLJZIKV9S1i8Tif/8IX2vVjS0XOXXyLxx57jLfOv8np0ycot7ZZWt7iB08+z8j4MMcnTvM7v/nr3CfPkLMhe+JneebZJzlx4jj1Rg3btjFNiyPHTlIoNxgcHEaUFDRVpFJtEIYyZ954o21F3dri4UcewtuJk053dFCv1/C8gFqtRjRqoigSuqphm1Fq1QYCIiIiEdsilU5SLBapVmtsb22TyaRRNYWrV6a5//7THJmYQNEVwsBDDANEQaKUL9Fq1sCHl195laGhIeLxGNPXppEkkUw6xZtvnqXZapEvbCNJEs1mg7W19bZ7ccREURVi0SiZdAdrq+tIosTlSxeYnJwkCHwc10VEIB61KRS2SaYSJBNJTNMkFo9hWAaVShnLshAEiTAM+OY3v8Xi4gL3n76fYqlEKpFAVmSqlRKqqZHt7qazqwMrYu3MnyCdidFquly6fIXurm5836NerUMooCk6ogCaYdJo1KmUS0TtCM1mC1lqq/KipOwAB4EgCInHE3RkOigWtwn8dkbxbK6XV17+MR9+7DEuX56is7MDUWwrRa++8iq1Wo1YLMqDDz9EpVzBNCMYpoGiCEiyDIKAbUe5ce0GpXyJVNqGMMTzPNTKMnqihxNP/OdIks9HPvIQlfIWKys1/u5/+d/wX/ztv0O96tHRkWV5cZFsdx9/+Vdfx3cbaJaKZehsrm8yMDSMpOpUyhWyXR3E43HsWBJBVlB0Bd8HVZK5cXkK16kwfuo0yBrBN55tJ77ZAa77KacHyZlbbe/G2gOHs4K+X2nu+/77yjS7X2Kpg3jaC752//autvsP8K6fREEgmUwSiUTaoS68W0G/01zt+fYBBcLer389+tOhgPYhLHQ/DV7uJd0NaDvMOD8Nw8x+c93JnfeA3u/JUv1+9Nfbrq+3fz+cp8HdWml3eu7LwwfA9QO6azrcztDdj3fQHG/vUJ0YR/rYQwjx6DsE+mF4u9PO3a02++0w3QvgGgYQDvUgdqUwvvJ9KskokiogqiahKEPok9/KUyoV0VQV0zCQRBHDMFFVFcuKIIoi2e4OcrluyuUisXgM0zQJBIFkOkPLcXBbLbqO1+gdN1mernLf6ftQVBlBllFVmSAI2C7kidhRXMdHkWWCwGd7e5Nmo8H/88f/mrGxI6TSGYIQPMdF0FqkJwpopoBfidJsOFgRk7m5OVLpFIZhtHcS2xeNSqWKH/rkcrl2jKvntV34XBfDMHBdjzAI2y7CkoSqqohTm2z1x7i2vUgiHscwDSzTZHVtDUEQsUyDVrOFUJzGcRzqWg/JdArLipLLdpHu6MTxPWRJpFQosrGxQX9/D7KiIokqly5NoVkRlpeXWF1ZoDvbQaNR4+bCMltbeXpy7Tqeg0PDSLJCT28/q0uzxKQyRqwdP+e6Lq7joSkKlWqDgSPHcByH+Zs3KZUKdOe6KVdK+IHH5uYGViSK67p4nockK+i6xbWZ6wSBQCaTZWLiOPVGnUq1ypHxUQxDg9DHbTqUyzVSqQxus44dtblw8SJj42NEbJvZuRvU6w26Ojq5dHGKiYkJBEEkIOCtt96ip6eHYrHI8y88z/DwMJIko0gyoiiR6EhjWTZRO0phu0AylaRarRAKbe+FaqVMNJZgO79Fq1lneGQE3w8oFsvIkoCuKjRX36JRK9D7hf+Tr3/7G3zikz+DYmmUt+ookghhwO/+7u/x1NMv8Nu/81+RiMf5x7/7e3z0sQ/zx//XP+fTP/cZIhGD3/uf/xFPfOqTZHJphgdPELXT9HRoZLZe5wsjNTq7e5G6Jqk1PQxTIhKxmLk2w7Xpa0xPTyMQcPXKNGtrW/iBgKapJNOdNJststksI6PDLK2uMjg0gKS0E/nkC0XKhRJbm5u4rsuxyaPMXb+B03LIpDtYWlhClVUuXLzAiROT1Os1TNPEsiziiThnXj9DLpfj+swMR48d4+LURXK5bkQhpLi9ydL8MkIoEY9HuTZ9jWPHT7G6uoKqKoyPj7K0OE9//yC6rtPT08PY2Ci+71EulYnHonR1dTF16SrZXBeu61IsFOns6CAajVKrl4nHbZrNBt/91vcwDYtkKopuqEiSSLVaJRa3MQyV6elpunu6EQSBUqnEmddf53Of/xzHjh3DMiN4rkc8FqVer+J7DqLWXoumabGwMM/q6hpTF6eIxUwUWUdTDWLRGAvzN+nIdPC1P/tz4rEkkWgUwhDXaRGJmLi+jxC2gbUkq4TIeI5DsZjHtiNErAhPP/0cPd2dSLKEbtloVpTBvl6CwKenN0etVsXzXDbX17AMi2QyyeDwIJIq4jo+9XqDqB2h1aohqToCoMgKzz39HIEbkMrYWBEbkJAKN5HsDEtCnGxXBt0Q0DWZ6euX+eUvfp433jjDiVNHqNa36e3u5+vf/C4PPfwIP/fpx7FTNp7n83//iz9GlhVisSQNp8azTz1DrruXaDxG020iqjK1Qpn8+hqXzr7Ghz/9swiKDsgE33wWCJE+925X4b1WjcNYYPazfuwriw4jr27Jptu4Bd6O31t0u3ruh6VgH1fJ/WZ/l+w+YMzdCXP20u36iaKIqqpvWx/vaoPgbb73m29v9uV36h8Hjbn7nuwHuPd7bg7L734Wu3up0+2m/ZJavZ959uqFh10Pu+kgV+N36ZzC4e7ZYelOY+zH00/63Blg7+Z775re731zJ15vp2P/ZJ53/r7/83SY+7IfmL+9O/ytvx8A1w/oUPTTeLntN8d+c4qJGEIies92xu4EXO/lzpYQgC8KhEdHCBIxzK98j7Ii4usyVsREkGVMI4JhGMiKjOu5tFotZEXesci0EEURz/eRFRnDMNFUHQGRwPcRRAlN1zAMA6w8IKD4WQQhRNM1KpUKmixDCCICkqzQbNbaoCUIicdiSJLEyVOnqdfrRCI6IS0ivQWSw1WaVfCq+g6QVhAFkc2tLWrVOolknJC2AtJqtrDtKOlMO+GQKIkoatttWVV0QKBeb6Br+k4SKwHXdRGnNkj87IMMPzjZtvgoCqVymWjUxjAt6rUyhALuxhTlUgkSYxiWiW3FEEUQRIEgDInGEqiaqKlftAAAIABJREFUTr1aJRq1uD4zy/r6Ft25LhKxJJsb69SqZRqtFgNDI2RzPTSbDivLK3iuQy7Xw9XpK6QzKapNMCvnmVut4/kBmUyGubmbxGNxMqk0ajyDaRgQBqTSGcrlCvF4EkVSWFpcor9/CFVViCdiLC2voEgKoiCRiKe4fOkKkihRqtTo7e2jXq9xc26WeCxOqVymb2CIQrFEsbjN1KXLPPqhRwkRcD2XWDwBkkzEilAulZhfXKRYqdCdy9LT04MgCJimSbY7iyhKvPrjV+nr6cV1PSQRKuUSqiJjWQalYgFNV4kn4lybuUZ+c5O+oSGWlhYZGx1BkRUarSaxeIxGo4EseFjl89Qn/z7fe/EtfukLv8y//Jd/jC5pvPKj17h44Tx+6HFs8hT1psPAQB9f+cpXODZxlKhpkd8osbGdJxaL4zRbfPlLX+KLX/w1wlqB/sZZ1Et/Seg18VJHKAU6oqyT3y5y4/p1LMtGlmQ6uzqRZZn+aIHBLp2mmMCO2GxsbvPSj17igQfup1Qu4bke83PzjI4MtuM/DR1d1UklbErlCr4fks11k4qluHDxEqlMu47wxfPnefSxx2i2GsiKiCTLhAjouk5/fz+ry8tkuzJUqlVCARLxGLII9VqZZDqDYdrMzs1ix6JIssLN+Xm2NtfbdUplkaXFNbqyXQhCyPz8TTRdRddMBAEitk25XCMRT1IsFCmVCvh+CztqEo3aKKrE4sICDz3wMC+/9GOy2Q5ESWR7O08ikUJWBERJorOrC8/12gBSkkjE40SjNqqqIogCmqbgOA6+62GaFs2mi+eEvPDc8yQTCfr7elhdXWXi6BgIMt/85rfo6e2mt7+XRrPO0cljJFMpRAl8x4EwoN5sEYbtNV+rVzENE9fxqFYrbGyutV3KBIkbN+aJxaLEkwlqjQaSJOO3mqiyTLPVRDd0RElg8eYchqZzceoio2OjCLKALAhomk4hX6BRqyAgsby0hCRK6JrFyOg4nueiaxaaZhBsz1Ic+QxT02vYEZtvfv1bJBNJjk4OMzQ0jKpoqKpINGbwf/zBH/KJT36G8SMTfPfbX6d/ZJzADTFVlTffeI37HziJbhs0qg5vvTXFyPgIsi6ioCAiEHgtCvlVeieOIcsaAhLETIRTo4gDPbeXDQfI1DsBydseu+2R/dvslX2HoferB+wLzA/R7/3Dh108vN/+BwLXvW3u7tq+DRDuAFzfC79/XXSQtexej3fYsQ/yXrjX/N4tHTzfnb0Adq+ng56Rw+rxt8a4fSjDYeKN3+uqvvO77wPg+gEdiv4mgOveDHJ/3cD1sALioDZhAKEsgiShT05ATxb1S99mq7RNfLAbX9TwfZ9gJ9uvKIkIUhuUVmtVDN0EaB8XJcIgxHd9QGR7cx1V03F9n3qziZ6sIsoSOt0IQLlUxDQs6rUKm2vr6JqOaUVQtHbtL03VcFseAjKKqSGJAlpqC7FzEV9s0tq20OUoiqIiIFKpVvD9dk3PZDKJqqoEYQCAqrYTHwH4fvs3P2gnaxEEKOS3cFrt7Mey0k7SFAQB8uUtrkY85E4bTdcg3ImLs20EBILQI/BD3M0pNFVF6zqOYVnkt4q4rSaiEKKoKk3HR1Y0Fudm2dxaJ5lI8+QPnmZ8fITCRp5KucjRyWMMj44jSjqzczfo7xtgaXEJgRBJFJElAVWRiSa7KC5PkYgZRBKdCIJArVZH0zRMSeSNmQUkUSQejyJKCrYd5eyb5+jqyvLUD5/m2NFjlEtF5m/eJJPqxLYUpq9eotWs05PL4nstfvjMj5iYmEDXFHRNR1UUjIhJKMj4QUBvXzeNmkM8kUIUJV5+5cdoqk6yqwMByOfzTJ46RW//AI16Fdd1URSFIAhQdY1Ws4VpmEQjNr7v4zZr1KtVyuVy29K+ucXQyDChJGBHLGZv3KCnfxDXdUjE2ptEtXqdWrVCV7YLb/k11J6HeKMxymee+HkCL+Ch0w9yc/oGj3/qM7z8yot86LFHSSTSPPzoR/G9JslEgskjEyTicUJPQRBkfv9//V/45c9/gfuODPPan/7vTLhn8BoVXrpW4vWZm4yMjxGL2SiKTsSMsb66TqPRpKOjg2KxgGmapMNrKGGNjVYKIQwwrCgPPPgwU1MXOHJkHEVRmLsxi26oiAJcn7lBMpHkxvXLpFIdbG0XyPX08a1vfJvuXI6e/j50Q8H3HZaWV0kkY+i6RhDCysoKkiKzvZmnUi5RLhcYHhml3miQSiVo1mtYho6i6yyvbKAoMr39vRhGhIGBASBA1xVkSWRs/BiLiwtsb28SjUUxDQMRiStXLxGPJxkYHOG5Z1/koYcfwrYtdEMhCBysSITNjTUy6QwX3rrEsfFJYqkYpmlw5vUzeH5ALBF52/tBUVVURUFTNWZnZ+nsbJdvkSTabsSGyeLiErVag2QsQ+AFLC0sE4uaaKrC0MgIiipSKtaYn18k1Zlob1IJQTtRWxjg+y6u06RerWFHU0TsBILcLqcVsUzwQ8rlCkNDAziug4DExEQ7CZWqKYQ7a25rfR3DaNerdpwWnuvRkU6hyAojo6OEBGiGhtNssLK8yvbGJn19/VydukxXZydbW9t0Zbv50pf/FKflYBo2czfn6VCrlHIPUirA8NAI3dkejowf45VXX+FHL5wl9Ez+5E/+HclEktOnTnH5ygzzC4scnxwnnu5BV3U0CR559AF0Q0LSDXJd/Xiuz5FjEyAFmKLG1to6s3MzfOhjDyFaUQQkAj9EGuxGGMjSDuK4vdz4/yNw3Te28DD9DtHmsJz9hwhc9+bu+AC4Hm68e3Fu/18GrofJMr0fPwe3/QC4/lToA+B6b2mvq8De1OSHEbS3c8e9vatBm7x/+3WC81cRT03csxfKbt6DINiX31vt3tfulRAihiFSGBLiIx7px/voo5hf/i612QWMvk4CWUMW5HZWXgEEEdxmA1VRUVQVQRQRBAhCn0ajiixDs1ml7oSossLUW+dRNZlo1qNSrNAqJVE0HUNXKOW3efnllwEJUVBQZZVioYIsKYBAQICuaxSq80SH1xG0BmIrjlez0FSDMBRwHY8wBEVt10vVdQ1BCgl9j1ariRCKCKJIKPwk0YYsSe3XTxAiiBKGZuL7AYbVjscUEdrnOrVJeP8wQqeJKEkoisZrr5/lypXrdGSSyKpBPl9GLl9rA974OPVKGStqo1kx3FoZSRDairkIS/OrjI8PU2/UcX3Yym/zyKMP4YchiWQGWVa5fv06w4P9bG8XkVSFE/edwDaT5Mt5SpU6lUoLTfKRG/Ogd5LPF+jsSFOplrA1g+2Gw8BgD2HgoGkWoijSnetmceEmp06foFmvszC/iCTJdGU70O0o6c4uurI9PPnkU2xvl5g8Nk6lUmZudg7bjmIYFpcvXUcMXVrNGoIsk8tlqVbLWJEIvhcQjydYnb9BtVJh/MgRGo6DpMgosogiCniegKSK4Is0my10XUPXVUrlIi+++Cr5fB5NUejrHyBit90hq6UKxUKBU6fuQ5JlarUy6Y4MgiTygyefYmR0hKBRRt0+R2Xi7/Haq6+TzWT4b//Bf8fHH3+cRCzDd7/3FX7j13+DmSs3CH2Hf/5Hf8CJU6d49dXX+LknPsvGZom5tWvM3pjjsz/7WbauPMVHY7OM9aVR+h8itLvRrRgjw0dYWlzDMOx2HLUY0NGVxXFcOjsy1BsNdNvE23gLTdMo00OxWKa3r5vz594k25VBFgUkAiTFYHh4iIhlUqs1cBwXM2KQzaYRBQlJEBgeGmFldRVFVcnni1y7dp3+vj5q1TorK+tEI1E8z2dlYY2eXA4/CNjaytPV04ms6e2suhLkt1bQrRRXLl9ieHiYzdV1Ws0mM9emMU2LxYUVwlAm9D0CAYZGRpm5NsPWxjbXF5Y4OjFJs9nk1Vde4lNPfBJBElE0g1K5gqLpXD4/RWdnBjNiks3liMSjTF+5QiQSY3BkjGg80a7tGkDgBxCGOK0WntdOLiaLIpIk0tjJwOv7AbFYnFg8htOso+o6giySSiXb2YCFENdziMUjjI0fIW6n8II6jaZP1Erg+XnKpSrxRJpa3WknesOnXKpgR+J4XsDS4hKLCyu8ceYcp+57gI2NLZaXl0jEY0iihCxKfPVPv4ppWOi6gaqouE4LQ9cQVJ2W5yHJEqViCV3RcD2XTEcCMxLHjBj0D3QjaxqJTCdrq8uMDvdz9Ng4mqpw6eJFem2PK/keOvpyXLl2hZEjI7ihh6WmaTktst0ZTt8/SXeui3qzyfDgINcvTzEy2AOiwOL8DQQppLunl8X5ZXI9PeRLWzz8yIM0nRaiIIMqcu7HP8I2DbpHjyGGbZgqiu0YytuB1vcSH7qfW+9+cumW2+vboGev0rpbNO1SdG8new+iu5XFt3QHcfc8t/SJfT77jS/uUsoFuKskU++HdmeCZRdv+wLXsL0x3L7/AuGO1eqd1qt3J6XZnX14v/MTd67X3mPs0c326mX76i77fA5Du8c87HwHuQ3f6Rnar81BAO69Zh7e3f+wiZ9+2vSTa3RrOb87gdHutrdovxI7gvBOF+K9925vn9vpvLfupSCItPdWRH7yBL1zjCB4t47/bvoAuL6DPgCu95Zu9wIJguC2qb13t7vd/4epy+X+4ZcI51eQP//4obIwHob28rEXlN/ibff3vbRbmB0mTugWyZkkG6cmkKevEz7zOlJ3BiEaYSfzPALQ8gJU3QAEnFYLSWqDV1VV8L12hlnDaMeDbm1tYds2VsZpK6715A7/ArqmkU5n6O7uxrRMtra3mJ1bBELC0CcaM/BiM0S6KwhuhFpegkDG9TwURSUM4dy582QyHUiyhNNykCSJkBBRaLtTarr+tqIkIOI6DiEhjuugqgpBGNCoN5iZmSGby0IIjuOwvLRMfL6B/OgEUkccXdPJ5/O8+KMX+PSnH0cW2/Gl8VgMipcRJRkzexpzpz6r74fIqooXhLiOg+s5dHf18uzzT3P02FFGhsfp6cnh+yH5QoGF+XkS8Siz16+R7ujg5txNujKZdrZiWaPeqtDR0UUqlcETdOTCm+SrPp4vEovFKBZL2FaEZKaL5Y0iS0urlCt1MpkMy8sraJpGOt2Jokhousng0BCCJJDf3iD0fZqNOstLy3z84x/B83ziiQT1RoNcLsfs3Byjo8PoqkxMqaKaFqoWoVqt0my0yOV6sCwTQ1G4fPkKHZkOVpaXsc0I9XoFVVMRBJlr01eZuzGLqqiEQUDEjmCYOrKkkE4lmZ2bZWRsjFdefwNV1bEsi5WlRXzPpdZo0tfXw9raGkEQcPaNc1yeusQDQxHE1DiJB/9T4pqG63v8yn/yt0BU+N1//Ps88OBJHFfg3PlL/NlX/4xoLMEnHv8ZHnroQUQJrt+4wtBwjo9NpAkvfIkH+nXCzAhKxxEuX5kmEUtw/twFtvPbzM/Pc2zyGJIssb6xjh01OX/uTSzDQJAkBgYGcTbOEwQhb9yoo2oaG5ubaJrOxMQEV69MI8kK5UqVSqVMPp+np6eXjY0NLl48z9DwIMlEB+fOnWVldR3dMhgeGcJ3XVaXlujr6+eFF19g8vgkdjTK2TffJF8osrK6yvzNWbqyWbpz3Shyex16bhNRhJsLS4yNjaFrBmurG0RsnWjUbsfBShLXZqbpzHTghyHxeJyXfvQSvbkeJo+f4Py5s9i2TSqVItPRwdbWFktLCySSERynRq3q0pntYmNrCzuWQJZVvvfd7yCKIn19/Xiehyi2FS7f95FlGU3TEARYXVnFtm0CP0DR2gmTfM+l2WxAEOD7DeqNKvF4BDuiUypt4/keETNBIV9G00Rk30cUBHTDJMAnn18nmejA9wN03WRzc4NoNNoOZ5AlZFmmUCiwvVkgFo8RjcXIZjtRdZlatUmlUsW2IwwO9pFKpdANg+deeIF6rUFv3yCu51MplXnm6Wc5evQYly5dJpVKIQCWEeXll18i3ZWlWqsjSyJvnnmVwb4cK6urdHZ1ks12YTbXUEyTp87N8fAjDxGJ2LiuSzJm09mZYWbmGhMTx1iYX2N4qJdWs8XK6gpnz55heHySC+cv8tyzz+O0HI6MjxOIHhE7gqhIlColVEOnUaly9rVX+djjn0BQtXcqjy++QTi/gjCQO1AW3A3ttaQcBIBvt9F6O7obWXaY8e5Fv9udw0+zJN9h6B3WrX0trnssZLvAwk/4vjuFvT3M3cUiH0R3e/VuV4bnp/mcvBe622Rm+9Hf5LO1m+7GmnkY3XP3M7hb170dSN/7TtjtEXDr+O55g8Df47l4C+QedB4fANd30AfA9d7TbivrLTrMztl+C+NuXjC3yuHIn3/8Ljl+NwlCO8X77VKh7/5tPyG591zudndOEAQEUcBO9/BjocD8+jQDL16DZgOvI00oiIiCgCxLu3amQyRJpFKpYBoWiqziOh6e6xKEAZmODgzdxFfXMQwdqZFAkRWCUGR5cZFLly6ztrZGb2+O119/Dcf1SaUSdPTriJ2zCFIItQS+I6HIKk7LZXllmagdIwgCdF0nErEplkqYloko7pTF2CmS3nIcJFGiUW8gihKrq6tYlomqKTSbDcIQRFFAVmQiERtBFPBdjxgaymsr/EnlCj2jQ0QiEYIw4L77TqCoCp7ro+k6QeBD8Sq+H3DupoMkiDRbTVRNwfd9KtUyiUQCggDViJDuSBIGAdVqO35OkiQkUWRxYY50MkFvTw7Xh0a9gqooyILMjbkbZHMZ1tY2SKc6mbl+nWTnEFb9IoKRoVZrthMuOQ5Os0W0s5erV6/SaDpEoxFu3rxBo9FqW5x8h7mb86yurbOxscHYyDCFQp5ypcKpU6eot1rkursp5PNcvnyZbLaL/PYWldImGe864cZb+JtX8RtFNM2kWG8rzS+//BK5XI6rV6c5MnGEeq2GbZlougwCqKpFEASMjY8hyyLRqE1IwMLCAkNDoximTi6XxfE8hkZHMUyDWrVKX18/hm4gihKSJGBHbVRF4djRScrFMl3BNbjv72B2DRDVDFpui1KtRH9fjlMnjnD/Aw/ywgsvIckqv/zFL9I30Ivve/zWb/0Wn/rU44SBj3X5zzHX3qToKdjDpwlVk2KhgCgI1Kp1PMehWq/y2c/+PJevXKazqxPd0AlCl4H+PuZm5+jp7SUgRCxeQVVV9M7TLK+scvTYUQaHhtjc2ESSJVzXYXp6hoGBQTY3t7lw4Tyjo8Mcn5xkbW2NeCzN008/Q/9gPydPnaTZbKIrKrlsF4sry3zkIx/Bipgomko8mSCVSHJkfIxypcypUydBELl0cYrenhylUplAELEjcZYWl7k2fY0wDInYJrIiI8sy5XKF7u5uKqUyumlQq9cYHRmm2WjSdFocP36cbHcXpmVgGDpzc3McPTqOH7QwTY1oPAUIJBNJWs0WoiAwfuQI2WyWZqPJ0z98iuHhIRzHxXFdFFnFDwIEISQajaFpGrIi02q5qLLK9tYWogCqKmNGYggICAHIikXETiIIMHtjgZmZGfoHcnjNMk8++TyCpGBFdOKxFLKs8NQPn2F9fZPe3l7CMMT1HTRVpVqttNe/olEoFFE1A8NQkWQwjQhOy0UQROr1KqlUBlGSSCRSdHR0EYZgmDqGbpDpSFOv1Zg4Mk4YCLz4wvMsLa1y/PhRrGgcQ1MRAxfTULDtCB2dWSqVKpqqoFaXEEQ4sy7w2qtn+NCjj/H0Uy9w/s03eebZH/Kxj32If//vv8w/+6N/xez0FU7ffwoIGBwZYWF5nvvuO83VSzO88MLzjB8ZoKO3FzsaRzdMxB1PmNnL03zsEx/FiJgEwjsTFvm//68IL1xD/MWf2V8G7GPluJPc2P33QPlySPm8nwvhfm13K7m34+Fulf29cnPv/Lesinv5vJu5bl3jva67u8lxnAOvz61yMIIgYBgGnue9k48w2EcH2B9UvHOOOyvst9rvp6u8X/ppQLODnp97BbjfS/u76X8vQO97Afj76ZF77/87xzg8cL1Fe9fxfjzeaZz9vA52Hd0zxmGu5eGA616j0gfA9QO6K3ovC3tfoXQX49xL4HqLn/2Ewe0E6UGuwgd9vx2JCASaxPT0ZXo/+iiXOkr0r/vIP34LoTONYOt85y//nEQ8immZSIqCIIC0kyGWEJqNFsXtApVqjUjUplwuYiYbhGGI0kzieT5f/sqfk+vOks1mGRoaIgwD0pkUo6MjmNkSeuc2QUPHKcsoik61WkPTNCRZIpGM43ouoigSsSMU8tvMzt3EMHQURcH3AkRJQkDA910EBNbXNlBlmXQ6tXM9RGRVRZYlwsBHkRVUTUcgbIPzlxZwRjpRHj+Bqsltt0ZFRlVV1lbXSKU7kHUNVdUQrSxBbIiBwTFkWSKf3yQMXSxNRVcVBFHcqfMnYxgKmq6ztrrZLs2yeJNCPs/AwAClUhlRUnjjjTeZPHkMP/RxvQCBAEWTiMViOE5ApVyk6kXYXJun0yghRzqp1RvEEwkShs6bMzeIxyOYlk08YRGxTTo7u9jazHPhwnmy3T2MjY+xuta2Ap09d477H3yIfKlELJFkYa4de5hIJEinknRmEiRr5ymIvWwf+Z+w7/8cbq2Ot/QyUXcB0a+TZh2ptshIGsKVH6O0NtBUkaW1LexUhqXFdQgCrITdzvwZBpTyBdKJBKGoIBAgSSKWbSOIIaVCgUI+T3d3D6+9/iaB79FqNXjm6WcwDANN1SkuT5G0NTIf/4c4zQZ/8c3v8tBjj9L0K8QjErX8EqJuMjwyRiwWY3CoHztm0t/Xz8c//gme/MHTyIV5hpU1LhQsSs2AZKqDG9fnGRzq5/UzbzI5OUmmK42mqTuxjg7pdJowDBBFlXNnz7O0uMjY+Diu5+JtvoXjOFg9DzEyMophGSiKjKapxGI28wvzaKrO2TffIhFP8PgnP8Fzzz3LyOgwvu+xtrbJ8ePHefG5F1hYWODIxBF0XUU3TYIgIJ6I4fo+oiSiaRqGpuP7Ps1WA9uOIIoyS4sLZDs7MUyLze0CMTvBN7/xDUZGRhgeGmBtdY10Ks2ZM2cZGBhkYWGJiGly8dIUg4ODlIpFwiCks7OTIAzY3t5GVmRq1Sq9vb1Igoim6TQaDaBdLqtSLqPKEpoiIWsagR8wOzvH4OAggtD2TrhxY5YgCEkmkni+S7FYYn5hnmQiRRhKPP/8C3R1drG4sEhProcQ0BSFs2fPEY0lyRfLXDj7FmNjQ3R1ptuKuuzj+BpeENLX1w2BSrlSJJ3upK+vH8uy2gq+1AYChq5jmiaSJHD9+iyzswuMHxlDEGF7e4NkMsNXv/oXHD06wdTUZVRNJRaLAiGSIhCGPpLUdpGzbYuW0+TpHz7N6NgQhXyRkyePUiyWqJTyREyNlusQSyT57neeJNedQ9U05PICsp3h5C/8JmOj47huiKbpfPjhj3L6/lPML1zjyJEj/Oqv/hr1UplE0qa7r4uObDfjRwdQFZkHTj/Ehx57kHx+iaHRk6i6heOB60LT8Zh6/XX6hvuQdY0A6R3qVvCt59rv+n2yCv910t24gB6mzb1S+N8F3PeTr3c14p3n2I9HSZJuW95HlmV833+7zJjruu8Yqz1e+O5z2Qsq9uXu8MAV2KlRfG+8zW7P0wHt36dl9V5aMf9Dtqi+n02du9Mn35vuedi53xvtBbT3Dri+4+gHwPUDei/0fhIZ7aXbLfTdwuAWcL1Vx/Ug2vty38vXbr5vJ4hvzX1rrP1Si+/m726BeBCGEHiMThwlnutj7WaZ7whrPPILnyD40vfxyw0yJyaIZTLISjthEX7Ixvomlhkh8AO8oIkoKViWjaqaWLaN6/qETYPAM/n+D57kC194gvJ2lZlr19A0FUkRsWM6evcGkl3Br9oooo2i6ZRLJa5fv0EqlSLER5ba2XpVVcX3PXRVRQgFHNchGo2hSCpvnDnL2uoauVyW1ZVVVlfXiMZtVE1B3gHboiDiNJsIgoSuGwR+0M6IXCwjP7sAf//nSPZ1krCjiILUdnH12yU73MAlDCEMBULJRJRFVFUCSURWdRKJDLVKnUbLwbKjBIJA0KoTBA7F7QI3byxg6jrJVIpWy2FtbZ2x0XG2t/IMDPegygq6bhBPp3CaVVKd3QiSjuM2ySQTJNNxsAYJqitIzUXqoYHrh8R1Ha2znxCRwJewYymsSBRNhpeefYqf/dwvoCs6Z994meMnj6JIOosL8wS+Q6VcwTbjrK+v09HRRb1Rh7BOuPg8ResYN1M/z4s/fomPfuwznF81yD3+9wjMDhRVo5J8CHoeJ+x6mDPlYbpGHsFbO0+8OYNYXsK2FEqtgEQsg1Nv0Gq1EEWV5194iYhlYGoyrtOi6bQQAognYiQyaf71v/13fPKTn6arK4kViTA8MkpHZxeO49Itr9Ls+Bn+7KmbuI7Hh37hEZp1l5ULy2zPzaBJ8zQElUQ0zR/+k3/B1cszzF6/SbPpI0gSx08dpy//PGVP4/pKgQ99+ENMTU0hSyKxaJTuXBY7Zu94DwjM3LiBqCjYsTiBC6trWxRLZTqynSTSCWJxGwpXUBSNZ85vMnFsBMF3adXrnHntdTbWNynmSySTKUbHhqnWKiQSMcbHx5lZWGjHbQc+nufQncsyOjqCLEls5/N4vk+mM0erUcN1Griui6SonDtzkWy2k0wmges2KFdKvPLqq0wcm2RxeRFVlZm+MsWpUw/RaDrUnTpHjkwQItLRkWNubgGEkIZTpbd3gHq1RU9PLx3ZToq1Ch0dHcRiUX74gx+wuLiO49bp7s6wurLO2TcukU4miceSzN+8iWFoyGo7y7ShaSwuLhIIAl3ZLLIqkUoniMYTELZLYBl2lNdff4OebBfVRo1MKsv2Rp5cTwZRlpDDgEK5SF/fKFvr6zz5/b/i5OQRzFgMzVIwjSiyFiGejGNZBvV6C0XXWF5cIJlM8LWvfY1YNE6z3iISsahWilhmDM9ziRh0fQ2nAAAgAElEQVQ2YeiiKj7pVAJVVtja2EASfSYnR9AUiUQ8xvraGi88/xLDg/24bgUCh9D3sMwIQiizvrrFffcfJ5FI0dc3QLXapFqscPPmLHY8ih1NIEgq6VQMwzC4PjNLt97EkSz++3/yZ/zS55/giU9/mu99+wc88dnH+aN/9kfcd9+DHJmYYGl5gcnTD1AqllhbWEQMXIq1GoWtLVK2hR1NMHbqw9CCX//bf5dczyC96Q5qG8ssFPOcPP0gQSAiILxdWioMw7eB637lcPa6495uY/dOllNhn8+7ZNkBcuh2suwWj3vbHWgfvnUuB7XZoVs1U9+eTxDeEYu7e979+gm3SrDtmu9tfnfL/p3v+1rBdj7FQoHFxUXS6fS753d9qqUy/+h/+B/57BM/D35AsGuY9rg78ay7Yv3E29zDPaO/3e/W53YkCEK70oAs/1RB10F0O4v07Y7t9/y+13kF4fYhZX/TbuN76d2bGHduv58ueedx9gLXkDAMuLWc2p+D87O8l2u333viJ/flJ8/0rfjWd/f3EcXdcbv7zvKuz+4SOR8A1w/orumgF9K9Aq576W6A636L8V7sRv00dhMVRWn39QIa9RLqyQE6fuM/Jpyaw/z+j1CCkGbExAnaLksLi4ttV11JQpIFdMNCEtuZiEPfoVpskLC6CEORaDSKHbUpFfIIIhiGTiYbR+6exwschEYCUZTx/QBZlhAEke5sbsfKpNJqNZEVBd9vu0LJkoQfBKTTKWS5rRSLksTAQB+yJOF6LpZlkkwmd85LxPd8avUaxk4MbKHQzgorhG1ra3i0m+aDA/iBjyRKLCwssrGxgWnqeL5Ls/H/svfeQXad55nn7+R88+2+nXM3QiOQBJgkihIpihJlZVvySjO2rC3Plss1Hm957NmatFs7O8lp1vJa8oxdlj2WaUu2LDFTNEkRgQRIkEhERqPROXff7ts3nrh/XIACmw2gAZKypwZv1amu2+dLJ33f97zheWsQhmiaShgERFFwibFYqKf3QKgz8qr1eD4BAVnW8IO6O/FqYZWujmYq7irZbIpEIoasCPh+DcOM8ezTT7OcX6a9ow3LMAjDSxMvArVKlfHJcSYmpmjZdD/y6hksXaDsKTimxYXxKS6OT+DYFkeOvIFpmczMTKNqGqaVZv+eV9i5cytRGKHqOu3tnZRX5mlLiij+AlE1z9z8AriLJFfeQN30SYy7/hmF1VUe/tjDHHz1Vbbv2M7RI0cZWhZIDDyAme3Cbt2GKycRVIt4Ux/TUj8X/RSZzttQvDzG3D7C2cOIy2eRvGW8apHmXBOpxnaWlhapuTVOnjyNaZjYdgxRkrlt522osoQoCszPL5JMpjhz+ixNTU0I82/w3/YHPPzpL7P7zu2oYpyEpWDoCyBF/PD5IT780Mf52795igMHXufuu+/m8ccf4/Spczz//PN8+p4+zKXjiM076ejsZGpqivPnzvHAAw9SKhUYHh0lk87iewFurYJtWXT39KCrKrMzM+SaGslk0xiGRsxxiIjw8iMIksFsyaSrs43lpRX273+FXbvuQNM0Bge3oGoGFy9e5N577yWfX8LzPNq7OtEkhf379nH7rtvRNZ1SqUQsFsNyHM6fO0e2oRGvVkNV63GyhmFy6NVDnDp1ksHBrXieRzyRoKe3D1EQacw1oioyDQ2NDA+P0NfbUyeJkmVqNZenn36W5uZmBCGiuaWJKBRQFJX5hVliMYeTJ04yOjpCLteIZds051rp7OqgVqtSKlWJx1OkMjE836fmuiiqwvmhIdo76gy3rufT3tGJJIPrVikUClhWjHy+gKErgEhbWxuB56JbBoWVVfbt2cOWLf2srJZQZRlV1xCQiaKI7q42YvE4ph2j6lZQVZ1CoYCmGyiKgmHUrdvpZIIgCEgkEpTLFYrFIggh+/btYdvgToLAIwhDLNukIZdFVTUQJGLxJLKiEEag6RaxmMWZs2fZuf02kqkUghAhiQqiqOD7EbOzc+TzeWynHtO/uLDA+aHzdHd24QcuzS0tqLqKIssoioTvBRw/fpyBBpV8VUBsvZPGXJbZ2Xm++DNforenn2/9ybdwHJvnn/8hfb3dfPUf/Rx33HYbhdIKI+Mj3H3ffRi6zdjoFCPj08SzWcZGLzAyPsYjjzwMQZXz507xyc99juAyMQGA8GPrW/TES/UN9zVchW9k/Vh387mBNea9sKy9tUndQL330pK3EevuO0ps1Lp16a9hGJe8HtYJZxIEKtUKt99xB4lkgnKlgijLbxvHusqCdcD/VcexwfEqirKhcu+X3Ohzupk92PUUN2vlZkjO3m+50b3gze9V15Zb3534vQau641zvWd19bZvts+3t38LuN6SG5KfBHBdO+G/l8D1WovJ1cZ/vQnyZj/+yzHDeq6BmKaTPzfE+PIMqZ//ONZPf57gxDnkJ15CXV4ljFno6SSOE0MQBWpuFSQZRZcRQpfpqXGaGrMIokrlUu5XyzJxHJXWthZiiQSRuYQrLHP+2BKpVBrP95EkgVqtiq6bb80NMzP1WFlV1ZBkGUkSqVYrGKaB57l1pk9NY2p6El3XME0TWZZwYg6iKMMlygpRFFEUFd/z6zGJugZEeAtFlD2jVP7JB7kwM00UehBBKpUmkYhTrZXRdQ3btPFqLmHgIiweJizPoae6EEW5Hk8rgOt5lKtVNPVSXJ+o43k1RDGiuamRYnGeZCoLQLlcYmFxEU3TOXd6mIQTY/v2bQhihCxrXLgwTKVUzzW7f/8rtLU3oyo6Y2NjrIRpslwkEmUiQSOXTjFw+528dmAf99xzF5Zt0djSwnw+z/jFUQa3bqVaXUYUfIx4gmPHT5CtvIlQHENwlzF1haS8iiXVELf/E86Hu9n74h7uu+8jvHHkGA89/AneeH0fTsyit78XXZXxa2XePHWW3r7uunIh8Dh09Bi3bbuNiysyfvODVNu+yLB+P9/8wRGaOntpbkijLR8lWDhJcbVAS98OUtkGLMPhyNFjNDe3IAkh83MTOE6KEydO4rk+juNw/tgBsloR+97/g//n3/+ffOzjH2Li9AFszWd+aRkt2c6dH/syC5ML/Pc/f5Q//bM/4xvf/H3+5b/6lwxu3c5DH/kIXHwez6vh5DrwPJ+piSlamptZKSyTbUzSkMuhqgbjo5MMnzvJwEA/URSxnM+zsrRIIhNHVUUs00QURZaWlplelog13046mcQyDV5+5RCOHaOpJYdh6tiOwejoJB0d7YyNj5FIJBgfHyfuOBQLBTRDp6WtFcswEQSBarWKKEk0NTXV49/DiL179zOwaTMRkF+cZ8vWLVSrLqlUFi/wkSWVx37wOFu3bkVRZERFob29nePHDhP6LrF4gunpKe68czePPf59JiYnaco1IQjgxBwqlTJDQ+fZvGkzXd1dSLJEIp0i5sQ5eOAgpmGSSKS4eHGEpvZGFE0HQSaTbaCltR1RjMgv5ikWSySSKRYWpiASyGYaCf2Ixx97nKamRhRJxtB0DF1FkAV8N6S3qws/8FhcKlKtuNiOhaab7Nu7j/a2NlBULCuOokqIsoIsqIgIBEGArmkEl+YNQRBxXZeOjnZkRSaVStDZ1Y4oKEDI1MxMPWxAAAQJ1/U5f34YSVKx7ARhJFBYXcSybMrlColEChCoVELm5/P4fsCZs+fo7+9DEEVkWSaWcIjFHOKJOIJYzwXt+z6u61IuFZFklXQqg+PNc258kTs/94t84w/+kIMHX+XXf+Ofc3D/IZ58/El0TeZnv/QFUqk4Wcti2+3bGdi+Ccu2mJ5ZoFiscXZ4iqofsG3HINmGGA89dD+TExfQdZFKrURzWxe+7/94/r8CuF7L4noLuF67v+udey+B6+UUYuvtCyRZQjN0YvE4YRQhym+PY94ocH0vlN5riXF+0vIPEbiu5Sr5hyB/X8C1bm1da2C5BVwvyy3g+j+5rJ1Y1nNxuNH2riaXJ+rw6GmEhIP04TtvuL31fl/pcvBjeu93gtubuZ6NytvaVTS8qsfk+AQrywtkM3H0jgGK9+4g+szH8Iol1L95Fn1sBlyPMG4jqjKKphH4LquFPA3ZBjxpmVCuMTY8z9zcHKl0CstQyC8vgyCiahpSbJmk3VYnLJJkFhcWmJ+tW38qpSKKLGMYdQImSb60qIcBgiAgywqiINUtqqJINlu3pHhuffPmeTUUVQMBlhaX6tZhQSQI60ynAL7vox+cotqdJrpvgH17X6a/vwPbjlEqlZFlCdsx2bt3D4Zh4cQcajUX5l6D2gpiZpBSqVy3FCkKy6urxONxQt9HU1UEQWJ1dQnTMKjVPGJxB1m2KRZreF5EU1M7QSjQ3taBLImoukYkCARBSOh7xB0b27Y4d+48PT1dxGNxxkbHGNg0yGJJIOGeRrTSqIFAKOu0dnVRqdZ4880TtHd1kWtuIeWYTM1MsnlrN/Nz0ywslUlGiwhBlVeMX8Tv+CCpHb/An7xS4J5f+G2kRD9/9s0/4n/5ypfwQp8/+uM/4v4HP0JYK3Lq1Bl27NzN+Mg4mUSCl/a8xODWLYRhSEO2kUwmS1t7J10DA8zN53n00e/wxS9+ESvVzAc+/TWChnv4ze8Nk6/qbOvQYOQ5FL+AFsuQbmzlxRdfYmFhlnTcQdVNkokknu/R3NxCgzxPkN1Nw/ZH+PwXPkutViGeyDM3V6S19T6sZBNlZZpv/9fv8Eu//IvIisCHP/IRvvPd7/DS88/xwrNPs2v7ADm9hJTMUS5VOHb0BIODg8iSQCwRxw8jfD8knU5jGiq2E6NULqEqGmNjY8TjCUZHRjl+/DgdHR3UqnVLZKlU5sLwME3NLVwcGWH79m2k0ylEUaBSqXLg4CH6+vpwHIdkKsnIyAi1WhVREDh18k02b9nE6dNnaWhooFgsvmV5BfBrHmfOnieXy2HHbFpb6nGTZ8+dI53KEBEShhFDQxeoVMr1GE9ZQZVFmpoaMQwdBBHHsanWyvT29NLZ2Ymm6SSScRzHfAtsdXZ2MTI6gu3Y+EGAKsukM0meeeYZ+vv7KBQKdHR14FY9NE1nfn6eeNyhVqsgIFJcLZLOZonCEEmSCQMYGxtlx45BTNPk1YOvsrSwQDqTIhQEAj/i2WeeZnDbZvLLRU4cP8XmbQNIksK+vfvpaG8jkcrw1BPPYFsGfhAS+gL5pTxDQ+dpbMiyWlhBFAU0TaNWqxIRMTJykZbWHIIA+/a+gmWZXBwZoakph+t5GLqJJKrkmrKcPXsWRZEplYqYpkEimSKVSrGYX+TgqweZnVmgp6cHSZJpa28niiIOvnqInt5eBKGelmu1WCAWi2M7DqIQIRCgKCZRKLC0tExaXMFuaCdvtNOUa+HLX/4Kx44dYSW/wG/8xq9yz727WF1doVQs0t/TiZ2KEc+k0CUVUZSwrRibB2+jr7+bmCNTC0KE0CObjFOtVGjr6kaQ1Ldv2MQfz+2Xgav82Qevu4ZcDxRcFcBdd5XZOJBcu57fSJ21+wC4NgHMej2sda+9Hmi9DDbFNeWidcqu286lv5fbWa/f8Apip0sNvq1MFNX5g69MM7Lenuhq13GtvcnVrvtmZe3zuR5I3Ahw3Mj+6Fpl1hvT2nM/abkRBcFad/orf19u5/1yZb7SdfZSj+v0s3FPwetxvlxPrhaS984+N9zkmjHVn8nlZ3MLuN6SG5L3enLdyIcl3n/nhkDrzfT9fgHTGxHVj1DjSVYEkdaWFn70/cdo27ITy7LwNB3u2kHtFz4L3e2IZy8iPbcfcWqesFIlMjWsRAIElSgxCWqRhNaLbdtYtknoX2IaVVVcz0VO5hE8k/GxCVKpNOol978ocNF1Fd/zmJuZRVZUqGu2gAjf9xBlhUq5yskTp7Ftq54GBwFJlDl75gw1t543UpJEVlZWiKIA9RI5k+vW8Fyf6swy5r4Jgl/9KIJp0tfTh2nIdVdEVUFTVWq1CrlcA7FkEkGSMawY/sKb9WeVGiTwfaIgIApCDMdGkWWIIorFIrokIgo+qmYiKhaCpOG7Fc6dP4thaESEJBIJRkZHWFrO09TcguHEmJwYYX52mmIhjyQKtHZ0Ui4X0TSDjrZ28vklUrlOSmUXtXiayMwRFJY5NbFALtdKa0sbfhAgSCJCJBFPZqm4LraVxJRVEquv8XLtA7x2ZpYv/ew/5cTR47x+/E0+/lMf54//4Ouszs+wdccWOjrbuP+j96MYCn/5rW+TTDcwObHA1k2DvPbyIdqas5w9eZKnnniKzQNbaG1r5/f+6x/Tu20Tqm7y0Y9+AkUUaWrK8dzfPYttx/D9iJ0f+imcOz6Luv0ziFGAf/Yxoso8/bd9mNaWduamJ0lmMli2yYWhC6TSCcSZg4w5D3JhOk9HRzsnT5zn97/5ErffdS+KPYMVCymvqOzatYN8YZZEysG04mzZsoMtA+18/pMfZ2VumLS8ipzKUan47Nh+GwdefgXbMTEtB1lVkWQJUYREPIUoK6i6iaLq+H5IQ6aJhmyO+fl5fM8jkYhTcwU6urrQTYujx07wkQc+iGnpHD5ylJaWNlRNp7u7F1VTiYiYm5+nf2CAxqYchAGl1VV0VeXc0AWSqRSJRIJYIo4o1NN7PfaDJ9i6ZZDm1hbCKGJycgrbtsnlGrAdiyAIGR+foKenl2wmw9jYGOVCiWxDipXVZRAjSsUqkgROzMYwDVLJDI4Tr8d8avWczZZtc254mHgshlurcfrNN0lnExiGzrZtg4iSgKKIVMsBlmFz5vRpCiuLGIZGpVrBthyKxRKxeJL5mTkmJ6aJx+O0NDdQKueRJI1ctpHS6ip2zEbVY2iKjudWaMyliMdT2HaaI8cPIckKTQ1NKKrM/PwSfR09OJaOomiUi1X27tlLZ2cHY6MjJBIJHMemVCphmkYdfCbiFIuryDK0tfaQTCXp7uhgtbBC5IeMDI8hCTLF0gID/f1IgoBhyCiqg6pqFIsFdENl06YBenp7CEK//vwi+Iu/eJTFpVUGtw0iSiJ+4GGYOr4f4NU8BCLcWoXjx85jmjaNuUbk1THkhm7E3BZEQWNubg5FhZ7eNJXqCh0dHbz88gEcJ45sCISqhCSJDB0/xfDZU/T3D+CGMDU+glucI9Xcy/LcDEtz0xw9fpIdu+65FLZwhVyxlFzL4rpWbtrq8R6VuVlZL33ORtbzdelYbvAe1Gq1ej7wDW7M33Fuze9wnWvZiFwJVm+03k9S1ssGcTXZiAV1o3I9w8RGx3St9t9rkHuz17pevtr3E7i+XdYHrjfX9vtZb+PP6sq4ZlGU3tb+LeB6S25YrvwYNxrHcbXjev1cTS5rszaajmYtadN6fa/VvL4bbeJ6ba8d/1vnBI9QkIg7cYbPnCIV05kfO0NQFTh48DhNzY0IqkEh6cBHdzO5o4O8WyKRr6C88CpUXeTmNJ4xXycJqWZQNZXQqzJ5/jCKZmAnM4iSTqTP4ZYFspks1VoFWRapuVVMy0LSTCRFIxaPoyg6kQCIIMkyoiARhOB6bj03YyyOiMjiwiIjF4fp6emmsbEBLgXmW5aNrusIQkQQhkiyXCfVeO4cE0mR6m11EhzfL+P7Pprl4Ls1apUShWKBWCqJHIlUqyVWC3nU0jAgIqe3c+TwkXoKIMtCEgQW5xcRCAmDKpKqougWgqygiKCEHq67RDbVzMULM5SKK1gWnD8zQSoV4/AbryMFAi1tXSiKRsyJc/rMWTq7uuvAQdNYLqzgWBYLc3Mcu7BMZ8qH8hii6pBLZqgKCoigGXpdg49E3JKZmxjn/PlRstEQI6tZ/m6sncb2FLt2DdLS2oQqKziqjWUZ7PrAbgwV9FSOkgeB59PR10U61ciz33+K5flpJKPGhx74OO2d3WQaGpienWVxcZE9e/bS39WPIgWYts9K3uU//4d/x+c/+1lk22A6n+fbf/bHfPITn+TEiYto7fegbPkqwsoQ0fCToNkMTczR1NyMH4Adi4NXRFo+Q+zBf8tioUhrRyeCIvGFz3wKRa2RSbcSVBN41VVSto4khmi6SqUGx4+foqO1jYJbQw2LxL05glgbb7xxBFWWGRk+T9x2ePPkGbo7uzh7+jSGpiFcirMtV8qEgUdxZRnL0ZiZmcE0LQLXx9F1xIkfIK2cZLaSwKu61AKfpcUFWnIZVE1mIb+EokpUSxVOnzjJzMwcXb29BG4FTXPIr5RobMrR1dWFougsLOaRZBmECF3RKVeKNDQ1EIs7lEtFnnriSbq6Okik4viBx8LsAqVimfNnh7BMnWQyTnt3O5EYoWkKoe8jSaDIIiv5PIIkE0kKouSzslJmfGyG5pYcqiqSy7VyYXiYpfwSd95zN7XVRebnl3FiDYyMjdKYyzJycZzGxkY0VaWlpQ3DsNFMHVlV0Yw6kD508A00XSXX3IhuWuSXyxx8+RCphIUTUzEsAyHSKZVXaG3PIUoyumZjxRUcK83eH+1j27bNWJZGMpGiUquwb/8rbNmyFVWrsx83ZJt58slnuHhxlMEtPUgy+L6L60WYZgxdV9BVrc4yLsks52eQEJiZmGa1uIpq6LS0tuEHAopuImsGCAKFwgq6oeEHHn7gQeRTLlVwqy7F5Twx22DTQCdOwqZYLDM6PIEdz2CoGmLoUXVdDCvO3Ow0ff2dTM1MEA9XOSTewYmTw5w6dZYHHroHw44I3QhF0VleXqG/fwBRFHj8b54iZSWxTRtEiaGpRcJQ4Ud/t4f9e1/m81/6MqIWEhVmeeJv/5qv/NzX8FUbIfIQBN46rhTpMw+8DbReaw28mnVyvd9vs+xdXlduAKDBtXk8r2fhfdtx5XVcpa8NtcPGrDwCdctsFEVvERWtvX9CvZG6h08UbXhMYVjncriete0yaeMV/3gHaH+H9fnKa7j0sghvVX8ns/KV6XvCq5BRXSlr7+XNyo1agTfa5pXt3Awovtl0SGvrbqTeu7nW9RQ4N7rnhR+TfF37CHk7edHV3ox3jm+9Oed689G1rvmtkW/Iwvz267iSnGztca23+hZwvSU3JRuZkNaWvZG2r/cBXJlPaiOyUc2XcMnqshHt681oaNcdTxQRiTISAgnHQFVkDh89TlNTG4v5FVo7m9FkA8s0UDSFZFcL4bYu5E9+Ev3TD+Gfukj02Auw2cATBEQ3Sxj4RGFIQ1M7kh4jiCRUSSZUF+pED4FCGEbUajU0rW459VyXIPCRJJGRkVFs20RRZAI/IAIq5RonT56kvb0NWalbUV2vhqopJBJxXK9Wdz++FEeqqsolhYGI6IfIj59FX3SRf+0Rkm05YokYiqbhJGJEUUTgB5iGg6ZbaKqBIITIsoos6cyd24tpGITxTUxOTdbHIEsQSXiuX3fVbe8gClwW5ucxTJMwiiiWy6wu5xEIcf0qcwuL9A/sJNOQQlJkGnI5NNNk//6X6OutuwY3NbXy9LMv4JYKpDNZSuUyc/NzmLZJNpNhtuxgGCpK+RySX0RxchipDKIkcnFkBMOUCf0yghTS3NKIuXKC/+tv8/y73/pD7vvgbjRN45mnnuJHP3qJ++//MHv2vojjmPRu3sLCwjINqTQvPPN3uCWFY68f4mMP3MbU1Di93bdj2Dq/8zu/gyiK7Nixg87OTu6983YOv/4qg5sHOPLGQZp7drBzx06+/ntf57/89u9x1x338NWv/BwLs4ts6u/Gr5bJpE2UtkFcK0H15JO0J2UEo076pKo68uowYrqfP31mmIc/+hAx02Z5YYl0Nk5EBU3TWc7XeOqppzl/fpiOzh4qlYDf/c2v89BHH8bQPSRJxqtUsPIn2HP4FPd94IOsrKxy5tw5Pvzgg1imVifeCsE0HR5//Al03SCVSuG6NbKZFEIkIEoKiWSSMAxwbAuxeA4EODkZEo8niaUSyIqMbuhEgkg8maRWdREQyOWa6OvvRxREBAkeffQ73Hf/hyhXypiGwenTZ1FUlcZcI1NTk9iOQyaTwTAMCEOqlSoiIrWaRzqdQRAkyqUy6XSazZs348TqruVB4BMS4tY8LNNE1g0kSaZSLqPJGm7No1xYxDQs7JiDIEnUfB9ZVIjH46QzaQxdR9N1BFHnB489wezkFNlkkt7+fgQBDhw8QBiFHDlyBFs3WVpcIp5IIssS2Uya4eELNLc0ouk6pmVi2hZPPv0MH7r/I8iKwezsHC+99CN6uruQJRlV1QnDKr7ncdv27VwcGSKbSSGrCo5j0dnVjiyLhFGAbugIArS0NtPV1YEoy+i6iSgIeDUXIQzwwqCuOENEVVRkTUPVTQzTJtOQI5PN4vk1ZufHMG0ZgYhKsczk+Dgz01Mk43E0VaFcCjh/9iI/fPZ5REnhzOmz3PuBOylXqsiywhuvH2alsEImnUSSRQShHqvY2NBYT9ElimiVOU4Vkzzzwxfp6+uns6MH20pQXq3Q2trO8PBFYnEbRZXZuu0u3jj+JpEok8nl+MRPfZyegX523X03n/j0J1gtLiN5Lt/8xh/wa//6X+EJEp6kIIXhtab4d6wrNyJXA67XO/eOdjba3xVt/X24aW70/qwd3+W8qm95Z4niWylubuSe30he+boF6FL5K1xL1+6JrlYXrvJc1nmu73DB3NAIb07eH8vgj8H8tfZL19tHXY1V+Hpys/VuVq4FzDe2X9zoODfyjb69rcvv6UYUZTcjNxODfbP93gKut+Sm5Ea0M1e+nBuJhVlbx/3avyR47IW3kTO9nYb7xha+jZRZq4FaL/bhRibEa2vaBYjqZSzLolKp0du7mW9960/ZOjhAV18viqzhex7IAqEogKawMHGBMG7wigHRg/eRKA0jL+YRxyWkbIJIECjVIhTVqI8z8PFZxg2rnDx+jlwuh345L2sQoMhyXVMtCPi+XyedEYS3GA3HxibQdI30JWBRJ7YIaGjIIor1GNgwDLEsi1qtngNWQkA4MYf0g9ME21op/MoHMJtyLOXzqLqKJEksF5ZRJYlq1aNS9YjCiMJKgSCsb0p8LyXC6MQAACAASURBVMSbP45u6Gi522huylEul4gI8Wo+QRiRSKSwHYco8jE0g1qtiqZriKKEZdqsrCwRc3R6e/rIL5dJZRx0QyeIIuLJBGOjwyiSxOjIKA2NTdhOklw2wcjYBIv5JW6//XYUVWZxbo7Orm4On5un67aPERRHEfJn8ZQMJ86cp7WlFbfqk0wkmJyYRitPYWQ6abv/n+MHLomkwdFjb9Lb3UMqlWZ5eYWm5gb27XuJ3ffch6kZlAsFLgxd4Lf+4x+wbbCfmBPR1t7O7LzLwJYedu7cSV9fH5lMhiAIOH/2BI0NOZqaGonFbCQrg0jIPXfeSSaZZrVQ4ulnfshfPvpoHZgI8G9+/V8g4REYcYyBT/H6gTdodo+yOH0RNdlKMPsmat8jiPE+5mZnqZTLfOev/oqLo6Ns3tKNrhsszBUZ3LaV733/MfbtP8jduz+Aqqr89m/+Fj/1qQcZGrpIZ982pOEXcI0smqZTLFWIJRKIskw8ZhJFEI8nCIIIx7apVavE4jHKxVVOvvkmvh+QSmUIopCZ6WniyTjB4glAwGm/m+bmZmzHRhQlTKvudjo+NoahmBSLJaq1GqqioEgSiAJbt24FBErFEqap09zcWicgk2VGRi6STmcgijh+7DjZTIbRkRHcmveWK+Hs7DyJeAzD0Dl+/FgdTDsxKrUKthNDVzVEQcCPBKanp6mWKyzML3L06HH6+9rRNQNFVYkEkfnFBaIg4ty5czS3NNe/IaUO9jRVZ3VlmcZUmlgqiSRJdHV1YRg6+fwSPV3d7N23D0kWSWcyREHI6uoyqq6yvLyMbdlYtoWkqNhOktdee43NmzfR39+P61bZv/9lOjo68L0aiUSCiICW1maW8ku4vocf+MRiMQrFApqu1z04onq+S8u2qNVqWLaN7/qcOnkc2zLRdIua5+P7PkHgoxk254aGcD2P5uZmREKiQMa45JmgqTaKJGHoGo7tEI/FURUFWRHIZFL4oUcyHaOrtxPbtjh69Bh79+zjc1/4AplMEtMyKayuIokCiiIRIlKp1BAQEZbHuOA2snPX3QgC5HI5VEVHlgROnjqDqmooqorjxDGdBqyYgyDLtHV2US2vsLi8hJmII0gR5WIeL19g+67bMRMJAkkmigSkdWf6q8//l2Ujys4rN/pr27kRK9KNAteNju9m5Gr5Uq8nV+4Z1m7+LwOTy2WuPL9eipx3K2vX7pvdf6y1cK9VTFxNef9+A9efRHqZte1fj8TqSkXBlZ5z61rc3yVIvRaou1mW6CvrXwmkN2IlvfqY3n5ufUPStZUn15PrKWCuZrW93vjfC2XCLeB6S/5e5EZe2quxCr9fwPVqdd6vCT3iUsC5KBBFArJiUKtF3LV7O5s39VDyXAQUlpaW0HWdqYkJFFmnIZNgcWkRRVNpGhxADibAcZD/8g2EpRXC1hy6aeH7LmLoMzs9iSfnsRIS6XgTsixRKBRQVRVFVSAK6+yJoowiS2iaShSGRGEEgsjS0hLpTArHdpAVBVEQ3kqlw2UiAAFAQK4GyMdnkJ44izBfovxLHyZ4eCuCrLC4sERhZQXbthHFSxNgGKDqJueHLiAIPtlMAulSShHD1FFKQwiCiJQdRJYl/KAOrFVFZXp6hsamRgRRQDMsqtUKUeDV3TajAEG10BQZIfQh9KlUS6iqTLXqIckKsqbQksuRTqWIxxKMjo4TCSJurURv/wCJZJLh8+dpyGRozGYpFkt09/ZTCSSE+GZKsyfRixfw1EZGRsaZHJ/A1jTmZ6fJBMPod3yVwxcKjF04T0trhkKhRldnB9PTMyQSSbZt30K5UuSVl48wNzFKtiFDurGZz3zmU7S25jj42mvsO/AqX/vl/w1dUdizZw/JZJKpqSn+8A//kEQyiR1LYVgxLlwcwbbjjA6dYWFuEise44MP3I9mGPT29/Bn3/oWI8MjfOP//W3mZvOcPDHBS6+c5h//+jcZV7eSiqYQJ15CclfwB3+J1p7N2LEYiVSK5198kX/0lf8VVRX5zne+w+9//Zt8/guP8OEHP0Ym1cipE6cZOn+KRx55CMsy6O8fQFE1onM/JNm+GctJEo8nyDXlMEyV5cUVHMehVquh6zqJuF1nqbYs3KoLocDCwhxNza2ohk4ylUTXFPyFkxDBTC1DuVxk9MJFbNtBFGSGzg9RWlmmVKwhKQphFJJNpxEiGBsbo1qpIkQwOTFFLpelWq3xwgsvMLBpgFyukUgA13XJLy0yMz2D77oYhka1WiWTyaDICrFYDFVVsCwDEHj99TcY3DaI63qAwOmTp0kmUzzx2BPkGhro7R+go6ubMPDQdJ2IEE1TcGwLIpFz587R1dWJoioszC+i6zpPP/UUn/6pT3DotYNUPZdEIk6hsIJtWySTCXTLon/TJk6dOkFnezuKojE1NUlvfy+xWBxZVoCAxsY2Xj34GpIQ0tjYyPz8HI4TY3llmWwmg+d5mJZJKEQgihi2habqyLKM67rE43FEQUUgQpEVJFkCRDRVplAoIksqIyOjxJMJbDvO/v2vMLh9kJX8Ep5fd6uUFRFdlfned/8KQVBQFB3HSVCr1fB8F9OyKKwWcGIxZucXAB/P9xElgfaONpy4jaZqXBwa5p677+XQ4cMQemQbG9BNk8B3mZmaIBQk9u19GUGQaJQLlGeGoOUudENmaXmWjo52Tpw8RndPD3/xF9+lvb2PSjXgG3/wDe69927a21oxTA2vuEwylULUFBRJQPJqPPPUk9zz0EdxRQkhktCCiEi8+nrg/9/fJNzzOuL9u9ddO64LONesbTe79vxDAq5rlc03KteyOq8t97bz7yMQE9br71rlr2Vx3WB/75e83/uctf1c+XsjipyrfUM36g58o3IjbW7ku75OCxvsZyPtvrt7cb1vbKPA9Uow/V4xY98CrrfkfZf1Jpb/UYDrlVqy98uFKhTqMS+hHyBKCoKsU3UDvHKefH4azY6hajaCKKAgYWkGn33kU2wZvI+u3kHSja3Ekhm84QN4ioz0L/417t5DqK8cxWvNEgk+pdU8jm2haTKyU0bwNQRBrMehigJhGFCtlCkUigRhhGHU017U2R5FBFEinUkiS1J98xqB53uIUj121fd8JEGCi4uIr08hPzfEYuCx8NltHBk0abljK7JsoKoGR15/ndt27kSWJATqcUj5xQX8SKCppZlk3KBSzhNRt+jquopYncWLZKRkD8VinY1UFEUIA5xYjAgoV8uEqKi6ilctEYUetVqFciCjqzrFxXksUyZiFUOPUS5X0TQDURKQBYWFhQVEQWBubo5MtoHW9iaCSGBxfoEzJ0+iyTLVqsvU5DQhEsl0BlmAfNCAFc0Rq54moxbp7+sminySwiITyxH2h36FzrYegkqZ3/qtf0/fwDb+6i8f5dSp03z845/A86s89tjf8qVPf+VS3JyAlkmTTqtkslm2bruHhz/1aSYWL2ArDmFYZ+H9+te/zle/+lV002JlpcLU9BzZxhyRWyWbjjGwqZupxTm6Bnppamsh09jAA/c/SBhKfO+7v8v4xBxlV+M3/u2/YdmbprWpD3PzQ0iJVsRYK8mdX2Z6fgrdMnnz1Elu372L9lw/iiqya/dO7v/QhykUZxFVHV2zaG1uprU5Tbm8RC7XhSDKBFGAuDSEG8DSahVJkpFlEAk5/MZxOto7KJVWmZwcJ5VyECQBWZJ46cW9XBwapbunk2xDI+cvDKPpWj0ue3WI5eUCDQMPYNs6+1/cQxRGTEzOMDUxyfYtmzHMOPFkAs00mJ6c5I1Dh+jv7UMSRQ69eohqucbI2DDj4xPs3rWbuYU5YnEHUZZRFIWGTBZd1eho70DT6y6/qqZRq1ZJJpNUq2V0Q8OybLq7e/F8F80wqFVr7PnRHnq7+8hlG2hqbkJSZGq+j6arRIRAQGF5Ga9WxTBj9Pf34bkuoijgVWrkl/P0b+olmXRIJONYtoOu68Risbc8GjxRIIpCWpqa0BSZ1dUqoiiRbWhAUVRqVZ/84jxBILCcz9Pd2YxpWdi2g+/7NDc3EwRePUY2isgXVlB0A0GSUUSFas0FQUSWVYhkPN+jXClhGCZBAFJYQxAkxsan2LZzO7ppUqvUyDQ0slpYIZlwkCSNdDqJYagEbpWEpZPOpVjOF1hZWSGV1REk5VIsvYgoy3WW8opHuRKQa2zDsOy6MqpcpLuji3g8yejEBJahkM5kWVzKk4g7iEKInUixslzE90NajAqJXBdzSjf3fegOwqhMQ2OamlfBcWL09Q2ysFDk/LlxQm+VO27fwezcFM8+8yR9rc3k83myLS2s5pd46ckn+eBHPoKWSeEJAkoIqg+BdPW1JPjvj8PK6ltxrjcLXN812LuJcu8focy7A0a3gOv/3MB17T7sfxTgemPje3fAdT0m3puV9wu4vhf76FvA9ZbctGxEe7KW8Gij7hZXLp5XAte17dxI7OraSW8jcbLvdiLcyDWLRHUAJwpAiCAE6LrD7OQkS/MjdHdvZX5xHsvSEQhYXJznq1/9OTKt7ciKiCJFhNUy4tQRJAHk7nvI37MdHQHp+89TbEhgJZNUKzWCqIQcr1EpgKZpeK5LGAZIooIsa5RKJaIwRFM1qtUaCAKiLFGrVQijCEVV6gsIApIgEAYhE+cukj5bRHruPMKSS601yYG7k5xuV1kWA1INWZpyOSLfQxQCUim77kqoGczOLvLtb/81fd0DXBy+QK4xgyBqyGoM362iaDqyohE57eiZPgLPpVIuoenGpfsLoSAjCBLzUxPEkwkkSULVdEDCrbnENB1F09FiKRRVp1IoEQgBuqpTKBRw4nEIRQ4dOkw8kWJhcYFsg40XhkyOT2CaJtu2b8WwDE6fHWLnzm2cPnWK5fwKpXKZ+dl5lvwMkdZEypBwvQrKygnUsIC5/ZcY2v8sdm2KheFj3LO5h9WRU/zMw7v51H2DsHyBiydfxxXjOKk0sm4SRBGObqDoElNT48RthaefeZxdd95NJJSxHAtRkIg7WZ558jke+PD9HHjlINVKkV27BtFMG8Wy8QQZJ5Gqk2O5Lv/pP/4nRodH+eA9d2KFC0Sqwl0PPURTdz+25oDsUQki7I47ODYV4JdmmJte5I9+/5vYmsXOO3axtDJHIp3ACz1UQ8UwM/z5n3ybO+7axV9/77vMTsxQKdS4677bCKQISYrjX9iDbjtYySZqFZeJsQm8mkfvwCZEScSJxUll0kRRhKoZhKJCZ08fimIQChGNuUYmx8ZQRJkDL79CV6qMqqg8/cokq8UiH/jgnbS0tXLy5EkUWWZqdpqIgDDwOfjKy+SX8vT29jM6NsLo2BjNLa3UXJf7799Nb18fr732Otu27UCUJPxKFVkK8fwKiVSKcsVF03VKxVUujozRt3kLhqkgSCK6brBaKqJqMmHgEgU+AiGmZZBMpEgkE1SrZaIoQMQnEOp5aIurFVLJNKZhkV8uoBsiYeSzd89BNE0mm02RiNsoioogyJimhue5IImEAnWrcKVEFLqYloEoS+QLS+RaslRrZRRFplKtEYYehq7R0pzDtExKxRpPPPEEt+0cRFZkyqUK5WoJx0kgiyqaKjI8dIY3XjvCpoFeapUyuqYRhSFB4BL4PqosUymXmByfZG5ugbm5WTo72lldLZBIJdBNE8uxURUZzw+RJCiu5hEESDfkMK0Y8bhNMpVEknUiP0SIPFQlRIgiLpyb4Myps7S1NhMGLoQegVfBspOMT43jxGyyyQwvH3iD1qZGEpZOYbmArseIwpCXXz7Awx9/BJaGkOI5Fo12itUa2VwroqwiSRGyZvMf/vPX+dgnH+Hu++5GkXUGd+xA1RXu2HU7SiZNU3sXsh9y7vjrDJ97nd0f+wyyICFfCmsNJN6xexSuOMLHf1QnE7pKHtcbWT+u5a73jv+tOdatd51ygrB+ypq15a4sE0WXUsdc69oEAQRh3XGt5y4arfl75fjeMYZLbV/uf8Npcda5vzcCRNcjVxLe+rkOGRe8Q0nwtnQ6XPFM1qn/Xshal9UfD39919sr5Vpjuda5jbiHrne/1ktXeGU7l0m13itZbwzr9buRdtaTK13Z1xKGXirxjuPKV/uKV3zd/t6+1w7XtHX1a7n83G/kXl5rXrrau/BeGX9uAddbctOyEa3xzZ67GnC9Mt70XWmi13y075fcrKVWEWBlbpaJ0VMkHYtATyPIKqvlKqKkIik6FbeMcsnVVlYkyqlNSK27cN06q+dKbxu6L2I99wq1jmaiyEdSXcRYmdKSgK7phIT4vvdWaoGIiEQ8juf5yLKEKIp4nouu6yiqcmkyBEGICEou8msTZA7MQ3Oa/Cc2UfzMTowPbCHb2UJ3VzeHj7zBwMAApqUDPmHoYdsOqqKwWiwyOjbGzOwMge+zuDRPX38vkigiiRKqoSHJClIkQFB3Y5ZlmSgE3TAAkUqpjK5o5BcWUUShnkIjCJAkoU5Ao2sEQUSlWkHTVYSofr1+dRXLiiHJGoIkQ1QjlYqTTMVpbG4iEmQESaKtvZN4IsZifpZMQ4ooVDhy5Ai377yNmGMjCgFurUoinmClKjBX0cmYBrLZjmI1I5cXsOWIrK3iyDWaEhIp3cPNjxOuzhKVFki6E2yyV0n3buV7LxxgYNNWfuWf/ip+WOHsmbNs2zqIomnYiTjz01PYZozAC/irR7/L5z79aUaGL9De2c4HH/wQRa+CYzj1eNFLLriyLDM9OUZHZxcfuOcuDrz8EpEQ8DNf+QUaWzuRFA1JhOLiMqqgUMrn+ZP/9kcM9PRz5vwFPvfZz7F1+3ZqYcD//s9+jR07dlKruZh6nN/97f+Pz33qE2imxp137Wb/3j189Ws/z0pxmRPHT/H9v3mSzW0xlMoMq4FEqVQkHk+wlF9hbHQUSRRQVRm3VuX06XOk0xlURcH3qzQ1N5BO1d1Zjxw+zI4dO2hpaUFaPYvneRTENnbvugM7ZmJYNrYTY9v27WzeupmGTIqlpQXuvPMOuns6qVRLBCE0tzTjxGIMX7xArqUNUVTo69/E6TNnqVRdnnn6KTzPJZXM4NZ8VEXluR/+kF137qazs4v80jKe6yEioigiUVT3CIgiv54eJRJpaGjC81weffTRek7clmZWC6sYpkXciVGrugR+wMjIKNVqjVQqSRiGtDS30NiQYejCBSRJ5vAbh6m5Ls8/v49XXz3Erl2765uWKMLUDSQJCqvLFFcLJJwkoe+zsryCqmh4NQ/Lsvnhs3/H1i1bEUWRkYvDbN26CVVTqJQraLqBpZu41RrPP/dDNFWhIZ0l25DDMOtEUZ7rUSqvcPTwKWamV3AcG00XaGzvJJ1toKu7B0mS8D0PTTMYGhripRf30NiQQ9cdxkbGaGxsxK3VGBsbxTDigECxWCAkwPVWCYIITU0iyxqxuEZnZweuW0GSwLINJElkaXEOXdcxLYdIkuhqb4bII4p83DAikW3gRz96qZ6iKJtByA8zNLnEt544QtxyaG9ppVosYdlpVotVPvWZR0ikHYKwSldXK6XKCkvLc5SrJUwriYxIaaXA0cNH+PI//hqhor0zRnMd4HpZLqfDebfA9VrlrwZc3wvZCHBdTzakRL7J+jd6bRshXLoaALuRPuDt+T9vdJxr9zs/CbnWdV9rb3Wze7r1yJnWA0/r1bsWCLxev39fspH37r185htr5+r3+mbH8/aUNddn5X6v5BZwvSU3LTfyol/WMK2Xu+tqWs/LE1P4+IsAiJ++fk689fq90fPvxvXk8gf8bt1XRCEknWrkwvmjmLpCPNeDIAh14BaEWKaFKARoqvzWhCHIEoEXEkYgRgLVcpULDY00nr2AfOIcQnsTqmwhZhYZObOIbTsgRPi+j4CIH/iIoojv+8iyzIULFxAEgUQygQBERHiehzBXRn59CuXZIYLGJO4vP8jq3R0sizVmFpaQJRlTN1BVhc7uTpLJBIoqIysyU1OTSKJEGEXouk5zczObt2wm15hj85YBVEWhWq2iyDKiJFIqVQg8nygMkBWFIAgRJQlRlOpgQNeQBJFqpYzvByRTSXzfpeZ6IEBhdRXTtKm6NWRZIgojRFkh8KuYdgJRVpmdncXQTSzTZDmfZ35uHlVSeeaZZxno7a8DaSFCUWRGR0bp7etjYmKClZU842NjNDU309ndjeu6XLg4RlWJkQ9Vmjbdz4GTE5ydzNO55XY8xeH10xfpGbwDyUozXwxo6N7Kkm8RS2YQLzxPu1Ulu/1+fvpnf56tW/rZsWMnJ4+fpLe/H9nQiekWx44eZyW/wnPP/hBVkXniqSf5/M98nlroolsWhqRy5PARlvN5kqkUCwvzuNUKA5s2kUw4bNnUw6tHjnH3hx4gDOHkiZOMjo7w53/8bZ584jEWZqf46S9+kUS6gTt27+KF518kmU7z/7N33mFyFNfa/3WePLszszlJu8phJUBCCEQOEkkmG4z9gY0B29c2GCfs64ABc7EB4QgGk4OxSCKJJJBEUs45p9XmNHm6p9P3x0iLkCUhCXzte6/e55lH2u6qU1XdVV116rznlL8ozEcffsDFl1yArutk0jlsU2TbprUcM2YMOUNn3LhjyRt5imMREr0pJMHHps1rGRpzEUOlWJZJLFpKUXExkUgxzc07aW9ro6W1mcZRRyFLMgvnz6e3p4dINIJtOWSzWYKBAK7rUlRUhG4KbGnJMeLoCcydO4eBgweg53RWrFhJRXkFM2bMYED9EN54/S16exOEQ2FisVIc1yUSjZJOp7AdC1FUWLNmDeXlZWzZvJn+df0ZNGggZWXltLa2s3DhInp6e4lGIgSCfhYtXsLGDZswdJ3m5maqqitQFIVUKoWmaqiKhiwr5PN5FFVm1KhG6upqEUWJYCiIY9kIosCMt9+hvmEgoijR09WNIAgoSiE4VCQSQVM9SKKMLCuEi8L0bxhERUUloUCBqdC0Ywei4CJJAoqsgCvS0tyG1+ejuKjArIjHk4SCIWpq65AkEUmGcDiMqkgoqozH48VxoHlnM5FIEaZp0NLcQmVVFdFYKZaZRxQEJFnGsiyqq/uRSeu0dzQTLvLj8fmRJHnXUshhy9bNRCMRcpk0ixYtZuiw4QX6dlMT0WgUXddJJOJIkkYoFGTatGkMHTYMsPF4/EiSh3w+T97KsGnDRoLBIJpWCN6Wz+fx+QNs3rwNUZYJBAJ4NQ2f34tp5pFUFdXjJdGbpKy8FMex0TItyMFSHpy2iOPGH8ftt9/O6KOOojhSgs/vQ1Jc0tkEHo+HpqbNZHNpBg4ahKzI7Ny2nVhRmIUfvkdLezujxh2PI/wjw8g5QMRX+3M+x/VA8+MncIDF/KEs9A9VcT0ka9SnyOmrwx71PVjL4+dtnfy0cvas46FEJt5Tzp7/Hmy5h4v9WVUPR+aB3sm+/t6forqvOu2rrE+7vvf72FcdD7adn6db2P7qsHeb96f0fda67D6+afdZqJ/2LD9ptd33Gv9wn+vnhSOK6xF8JhzKB/dADvb7wu6JwH65oLju6eN6KOUeKg7Xmrt8+XIeeOABli1bxrhx4w653D1hAYLgIRjy0NPViuotQlNEvLJIoqcLM5fBsQ0CAR8tbW34AkEcV0CUZGRRIp1M0dK0k7/86QFO+a9foOxsQXlvEenSCGpliiJPRSGaqiiiKCq2ZaPIKtu2btt1PA4EAgEikQiZVAphcw/Ksnbi83bw7tw1PKV3ca/Ww89WLeH2517j91NfZ+JJYxkz+ihUWWHG228Ri0UJhkNIsohlOgiCRCAQQcRGVRSyuRyKIhd8ZgURzaNg6DnCwRAfLVnNz+77G7c+9Dx3PPoij778Jh/Ne5/Kyn5URIpAKLRVUCRc2yIQDODxedFzGWRZZuHarfzsvr9z20MvcvvDz/HMWx+ycuN26irLCAf9+AMhTEEGQURwHBwcspkeBNLEihTenDOfZz5Yya0PP8+vH3mOv73xAWs2bWHsiAZqqyvwBoMFv0bVT7C4GBMbRZEYPmwIIb8XRVHYubMD03I46piRGHmdtrY2crkcZeUVLFy8lMbG0aSTSWKxYrbvbMP2l1Ksucib38UpqUUNxFi0cDGyKFNSVo6kaeTTaVwHHNNi6JBBZNNpzrnkEqr7lZFOJYl3Jdi5bTvLly3j1FNP5dxzz+Xiiy8mFi1i1ZpV9KurZse2ddjeGPUNA3BdePWllzjvnHPIZB3i3d2cN3kiGcOktH89Qb+XmqoaysorQJY455xTyOkpRNGhvLySoqIYPS2tZE2TJcuXo2mFI2Ycx0IwBbAUaurLiSTWsHRTNw0NDbBr4yKbTlFdXUU4HKKiogJF87Bpw0bWrV5LbU0/ECXi8TgVFRXkDYOdTTvZsWMHWqCS0ppBrFixnGg0SixSzLQXpnH6aWfgUTU62ltZtXolF110AR2drVTXlJPT07iCQigcRvUoVFRW4FhQW11JOODBzOmsXL6CyqoqZFmlpyfOMceMoaK8HEWRiZWV4vX6iEVi+H0KI0YORxYlenrixKIlSKJKPJ5AFGHzlk0EQkFkRULXDURJYuvWbWxat568YVFZWYUkqbz77iyOOfooAv4Aa9asoV+/mkIEb1dk3bqNDBkyFK9XwxPw4vNpbN2yFVwB14Hy8hIc28U0oHlnB3X1/QpH1kgipuXw6qvTsSwDv9+Pz68BFuYuhdpxbBRVJZcz2bhpE/0b6vB4NYaPHIkkKWzfsQO/34dtW3g8XgRBIaenKCkLU11Tid8fQhFdzHwe08pjmDqxsii4NkG/B9dxqW8YiKI5qKqCJCnMeHsGp5xyCgjQ0dHBkMFD8QVCeDwBLMvGdvKkM0l8vhAlkRh5I08qnSYcKmbr1m3MX7KKwYOG49E8WGYWUQ2iyDKKKiMgkEqmGDBoCKFQAFkWEXq24WpFPPP+VqJlpfhDAZrbWikqDlJdW07eypHJ5BFQCRUFKKuoAEHGcQSqK4road/J66+8wHd/J/VMHgAAIABJREFU8mN0UUV093H0zV5z2n+X4nq40U0PpbzDtbgeDA5acd3r2udl8f1n4b/D2vRZW/dZLcyHm29/GymH4up1sOV8mhX3vxv/zLXqweBjuvXB9c+9vzWS9LHCu6d19V/5bA9VcRX+FWd8HQ7y+fz/jIr+L4Aoip/wNdi9w3O4u4/OXufjObMXFMo55dgD5tvfvX35FOzLIvpZ+/bjjz/OddddR21tLRs2bPhMshAscDw0b95Iy5aVlFRUUVZZi+4ImIZOurcTEKmqqiKRzOACgR2zAQFr6LlomkI6k2T+B7MZMHAYFRU16L9/guCrs7H/owrHCoClkOmOo1oClmVgpA28cQevx4ObyCG1ZJA7sgA4lUUIFWF+nWnit7Pe32eVn/3NTZwwYgjJdAqP34OmqJi6jurVEBwBwRX46MOP8Ho0hjWORtV82JaJno7ji4RRJBnBhadff4/v//4JLNsGIOT3ksrmdhsTqC6NsLOjh29+4RR+feNXcWwbSZbI53UURea3j7/KnY+9VHiMgkDQ7yWZLrRDliTuvvEr/L8LziTZ2YGiSKihAJYDkmlBvofvTHmKqTNXASCKAn5NJZUzAPBqKvfd/HUmjOyH4Lr4i0qRRIlUIomRy1NRVkEy1YHfH6CnJ47jgNfvoae7m/LyKlwHtm7dhqJKVJSUsn37VioqKlm/eQMNAwfjD/iwE614UzuQGk7nvR0OF331ywAsXryYTEcPHq9EeUUpmhrA7wuSyRhoooxpmnQl43R0maxaNY+LL5qEY1poshe8Mnbe5KVnn2d04ygStsMxxxxNV2crJdEQiWQ37Tt1gkE/xZEQouTg9WoIKMiyzJw5czj22GNxHYu2thZKy8vY0dTKuvXbadq6jlPOmsz9f32Iqy+/hMahA+noTrJkyRJWr1nFWWeezpCmp+kgRln9CFxHYtHCJWAn6TdgEDndZMmSxZxyxslISLh2wa9H8yukEhl8Pi+6oePgIiAw78MFjBk7Gq83TFdnO5W11WQyGYLBENu3b6OoqJhl63dw2U/vAiA++zEEQSSPheCI3Pfos/ziidcB6JzxOLZt8uKLLzFp4tm89torXH75l9m0eSUANdX92bhxM6NGjaKrq4tUKkXDwBry+cL5x4busmTxSsafdAyC4+LYDkZOxzB6KI7EaGtPUFJaTiKVwKd5eOmll5gw4USi0RjNzS1s3rwJj8fHuHFjSSQ7cQUF23Jpa2ln9Kjh2JYBmoptuixZsIgtm9ZxycUXIPv9OI5NIpHk7bdmcc5ZZxAKB3Edh97eXjKZLKUVUcy8wOZNW6kfUIdpGXg0Ba9HJZsz8IUiOK5AKpkm4A/gOAa6nmPLuvUMP2Y82zdupqjIh9eroGoeWlvbqK2t38V8yCJYCobZgxrwYtlenJyO6wq4rsm7M2dw0qln4fMpyIKKZVlkMu0EQrFd5YXAAUHzIgouHe1NFIeD+LxeLFPkhedf5fzJZyErAkYOJM2Dmesmk46jegKomg8XsB0br9+HrCgIjgtY6LqBvHUOOV81f16msGXtJhxgR0srzz/zKL6AD0uwMXFAdFHzEmnLwOvzocgysexGnnl+Gidf+BVi1f2xBBHJsff/qd49f+xxzbzm5wCoj9z+D/PZ573g2z3Hua6L+DnJPpi5cF9p9qnw7lWnfbKRDkLWgZT3z/pMP415td98ByFnnzIPsb5966uDeE6fxvY6UB339nM8FCvonvFMDqbP713Wnmu0gyl3z36/v/ruKX/vOu0L+2Ml7Nsf9eBwMOvLz74u3ZdSutvSKu56TodOA/53haqqh9QY+Z9VkSP434PDHeD7G6D7U1g/C/4dduIOBnX1/Vk8fyairBAtKSOdMVFVlWisFEPXWb1mLTW1/RBlBSfdBQjkcgaWZaEqHk444UxSmTSSrOL/0TfJDa5HS76C8kYbbMsR1W2ciA9EARCgfwxX8yEEVexJDaSjftbbCYYeMxojm0B/qoPKkmJGDqhj9IA6ioJ+fnLf3wBQJBVZVlBVFZ/Xj2MVjv8QHLAdl2w2y8mnnYZrmSTTWba1bWH+vLlcfMEXEF0FRVaZu3w1N/3ucWzH4bRjhnPP975KeSxIx9Knueu1zTz1UTM7O3oASCbT4BbowOASiUR45o1ZfUrrVeedzsCgxBWXnks8o/PD3z3OzMVr+P69TzCwtoITRjSQSiUxMllULYgqyfx26uw+pfVHXzmfb1xwGno6Q2syw08feJ75qzbyH795mDmP3EFFNIwoWqRTcXxeD6aeZ+u2tfgDAbq6uikujpJIJCkrL8Pn9WOaFlu2bmHo0GHYWMx6512GDB7Mh/Pm8oWLLigcWySICN56dE8IaePrDBz1rb6+4HFEIjV1RKIBenq66c30osheVq5czvN/n0p1dTWXfOlyIhEP502eSDIVJ+D1kjWSBAMlyD6ZiRecT3E0wpvTZ5BM9FJeXo7jGmRyBkOGDUbXc3R1d6BpCkY+z/duuInHHnuMuro6brjhBq6+6iqKikL87W9/40tXXkXeEnjt5We56rpvctutv0BxbNJ6hnPOmcxLLz3PhBPHk+ppgq06lpVg69bNVFfVMmBQPxYvmEsgGCZW5qW6uhxJ1Zg/Zx7BQIiGhv40NzdTUVbJ8uXLOero0QU/bElk3LAS5HwLgVglfl8dHZ3ttLW10dg4ipJIDNeFvGn0PbfmnR3k8xYVNWUossiw4UOBguIqCA6Oa3HqaScRDPkx8zZbt2yjpKScYDBIOmUgyyrJZJKioiClpREE0Sanp8mbWQKBEGOOHYKZ19FzOVRFQfOqaKEycoZJpCRGb6KbonCQXCbPWWedhShKWJZFRUUFzc07GdBQv8ufXMIfDGNbNm0dnfznnx7n3UWr2dnRgyiJNFSVcf5Jx2C4LqooYhgGkUiESy+7hGw6CaKEKEl4AwGipaUYeo65c+eQyeQoLSuhrCLK+nVrGTRgAB+u2Mzj0x9j8ZrNxFMZioJ+hvWr5poLzuScE0aT0bPsbNpOXb9x6LqOJMrU1fajN95LR0cHGzsTPPnqeyzdsLWQP+Bn9OD+XH3eqUwY2cCkSWdjIyHLEnbewTJtItESbEciFo3xm788yYdrtrNmWys9yRSKLFERK2bssAauOu9ETp94OjYugivyxttvU1dXsytitY4ge5g5620mTpyIbbk4jkAykcbr0XBcGz1vERAltEEnUdO5nUggxKCBQ+hMxFH8QURVQSGPJhY2TEYMOYpQKFD4hgkwb+FSPMEIJWXlOBQiYB8qxJPGAB8v5v+nbPgfwT8Xuzf5DxV9G/AHmfZgrv1fwOc17v4nP7+P+9tnY2H8T8YRqvAR/AP2pgEfLuf9cD8yB0OL2l8dP88Bu3z5cl599VXC4TDf+c53PpMsAQp0WAEUWSHZ3UFZeTmh4hIMM49uGBi5HFVVNfiCIVTVg7NjEaIg4hs0AVGUSCQS9HbrlJSUYmFj5i1eWfQRw8Id6KOPZ2ONzNbxZShfGAOTRtI1phzllKHkhsSwxvSnt1hCKg/jCQTQPF4UweHkMY1cf9lELjj9OI4fOYxIKMhfX5oBwDnHHU2/yhIUVUNRFWzLore3ByOroygKmWwWzevFcV0y2QxmPk9ZeRlerxefL4jjOlz/6/toau9iWP8qrj99DA39awkE/MiJNUw6qpzFbRrbWjsBOHZoA8eNHEggGMDr8SAKIlf89PckMzlOP7aRB376HVp2tlBTU0FZLMqZxzbyxpzFdCfSbNjewmWnjSGTyVAcjZHP2bR19nL9bx8mb1r8v4ljuf2Ga1AVDVXzUBQKceEZJzD17Q+JpzJ0JzL4zByKLFMUivD2W+/sos+IuIKILCtUVFUSDof48MOP2LRpM/X19ezYsQNRFPCFfNT1q0MURIYMG4ogS7hYmDmDZDLN8jUbKC/WSFgiD0x9FYCzTzyFP93/IKecehIej4eAP8zChUtobBzO9Fdf5Vvf+ialFWWEQl6admyloqKczZs2UduvmvUbt1BVU43s9+BIIlXFMTo72ggF/SAKeP1+/N4Akixy1VVXcemll5HN6tTV1lJaWkooFOKoo46ipbkDQYRjx42lra0NxxU47rhjKS2LkYz3snHzevx+PzgqxZEiZs6cwXjfNgRZwVs9Aq/Xh9/vw3VNNI+fru4eurq7KC4K4goi0eIos2e+x7DhwwgE/ciyh/LyMgxdR5El8oZOdvPrOKmdLNtu0b++P1s2rmPggAY62jpQJIXVK1ZiyjIvzJoPwLAiD/3qBhIriaAbBvF0hvkrNxAtCnLtBaeRTicLZ59KEjU1dcSipcTj3fT2JgtU8FCQ1tYWPB4Zyy6cqbxp01YqKqowjHzhXOFdfuHgYtkWguotjEnXxutRAYdsRkdVVXK5HD09PRQXFVPf0A9VU5AkEVVTEQWJbc1tXPHzP/DuotV0J9IosoRlOzR39PD+krW8PW8FF542Dk1VMPQ8kiSxo7mJaEkpumEjyhKSIpPXLSorq6msrGTmzJk0jhqOadr8+I9TufWhF9jU1EbOyOP3aiTTOba2djBt9ny2NXdwyVkn0lBbR1bPEggWkUym2bJ1C9FIhP/8y1TuePQlNje3kzPyBH0ekpkcm5paeXHWPJrau7nwtPEosorjmOxsasXr9ZHTU+RyFlfdch8PT/+Aba1dZHI6XlXFsmy64ilWbW7imbfmEIsWc9yowbiCSygcRXBtqmsqkRSZQCDIgAFDmDV7NosXL2HUqNF4PV7ylomqevB4vLjdWxEaL6SyspaSaIRkIk5dfT/UoB/NqxDwqlhGDsE1qaiuQ5QlcGzsnM4777zJ5EsvxxOK4iAgCE4hlPP+vtX7mEPE0UMQRw/5RNTYA6X/LPh3o0bujc9KW/685Xye+Q/V4mqaZsGSdRhstEM9QWHPtIfi/vRZqK17+kYejMy9++7BtHHPNdw/C4fi0naosg42zaGVua+0u2LE9DEg929B3bN//Ct8Vg8Vh0oV/ve1HR/Bvwx7Ts57/nbjQI7ce0eb21caZ/aCPrrwbjQ1NfGTn/yEsWPHEovFCIVCDBkyhIsuuognn3wSXdcBsG0b13VxHAfbtnn00Uc566yzKC8vx+/3U1dXx+WXX87s2bP3274zzzwTTdO47bbbME2Te++9l/Hjx1NaWoqmacyePRtN07juuusA2LFjBx6P5xO/22677R/kJhIJ7rzzTk488UTKy8sJhUI0NDTwla98hfnzFmK7FnnHprK2nlS8m57ODk445SRq6/tz8eVXEAoXk82b6IaJLYg4Luh6niuv+n/EKksZf9KJ3PCDH5CzDHQjSVdHM2eOGYjrLUKpi9AwYTQDhgxAEBy2bt9CUSSEaRr4vF4UyYOqaeSyGaKxYhRFwREVVI8XAREcF0lTYY+zDE0rjyQpCIKAbTuomocF8xexbccOZs1+j23bdmDlbQzbJhqLUllRwtChgwgWFbFuzVpWr9/CvFUFivXV553M8OFDMAwDxxHABceB7335gr7yMpaDKErYlktvb5yZC1f2WWNvvOJcXMFk8gWTUD0eJEUhEo3wrcvOAWDR2i3s7MlQVlVLNmvT1dnGs29/QCpb6DffvuwcBMEhb+awXQM9n8TndfnqrgBhr32wkIbBA4n35Hhx2nTOPvcCBg1rpLZ+IIZhks3pWJYJIhx99BhOOvFkbNti3LixSJJEa1szvb3deLwa3T09OI6LrGjMnzuf7s4OTpgwHi1Wh9Cxtq+9d0+5lxtv+B7FRVFcV0AUZcaOORbTMrj//j8zffqrfPTRB+T1FEFfkLWrtjBi9BgkzcuwxpFYjoPoAJaNYOdZu2olhmHQ1t5JIBzBkWxyls7UF57HdKG4pIzGxkZ+9KMfYds2xcXF1FT3A1fm5ptvxh/wUtevikHDh7J+9XK8qs2w4YPwFYe54MJzWLV6OaVWC1b7BtzYABLxJIZuks6k6Opup7Z/DfUDGxg0eDBdXT0IoouqSZx08glIEiiqiOVYLFy0kFkzZ5CMd6EIDuFQkEAwSHl5OZs3b6Z+QD8c1yKe6EU3dKqqaz4xj59xxuls2bKRvG6gygrjRg7mvYduZdZ9v8QF/H4f2WwWSZaIxYrp6u4gGAqSTCZYsWI5+XyOiooyLNtGlhUcWySXdZDFAF5PEZLoQc/qeDQPquZB9XgRbQEcB9cxEcTCuOzpKfRNv9/PggULsB2Hzq4OFFXAxcYybRwLvnbrfezs6KE8WsSzd97E1lf+zNZX/shff/YN/B6N1Vt28rVf/glJVPB4/YgCNNQ3kM+ZTH3mOd5+YwZGTsfj8QIOkUiICy+cjGmaPPzqRzz77jwAvn7hGWx++c+8+7sf8+H9v+TWa7+ILEk8++48/uuvz9DeupNgUQDHlfnbM1PZuHEzU/72GtPeXwzANy6dyEcP3s5Lt36TplencMd/XIksSbwwawG/feIVUok4Vj7P22/PYGdzK5YDtz84lTc+WgLA184/lel33sjff/Jl2t96iBfuuJGR/atwHJef/fkpPly0nHhPB3U15dTVVOKKIsGiCK4AoiJw6hknc/mXLiOXSZLNJFElkXhPN7lMGkEQyGXasC2djevX8LOf/pgF8z7E0rtxzDRZPYMoa1TXDaKnp4vmpu34FAUnb3D+F69GKypFt8XCOPsUC9ne897ec+DeFrb9zZMHunawONT0n1ang8WhLHoPd3F8MJFpD7W++5K9vzQHW8f9XTdNE9veP+X807Av5eJAa6s923Cw7/bT0u5Zzr76zO611p7t3v3vnun2VnALawb7oNgJB1O/w8U/Q2nb3/p2X/1vX/k+Kw7Ub/47IwH/K/G/v4VH8G8H+8mXsZ98ue/vp59+mhEjRjBlyhRWrFiBrutomsaWLVt47bXXuOaaa1i3bt0nZCQSCc4++2yuv/56Zs+eTTwex+fz0drayosvvshZZ53FT37ykwPWQ9d1zjzzTG6++WZWrFjxiQFfVlZGKBQCCh+KsrKyT/wCgcAnZC1YsIDGxkZuueUWFi5cWIhMqmk0Nzfz3HPPcfKpp3DXXb8FUcAfCNHQv46W5p08eN99eL0+li1fxu2//S25nIGu59FzBoIgcP9LM5n+xmuIosh9f/gTjz3xJJpHIhDUCPhVrvrBzZRc/SeOuvIHWHYeVZORZKiqLidv5jD0LGbeRFU1QsEwPr+XVDKJaZqoXh+5vAkISIKM6VgI0sdtCgQCLF+2jC1btiJJMpZpce655zK8cSRDhw2jprqaJx59jLb2dsDF5/dhGDquIGBZOjMXLuuTdcqYUVRXV1BVVUVXZzdt7R3k8ybHDh+CKBY++Jub20gkkmzYsIGiomLeX7qmUA+vh9GDanAcA9vJEQyGCtGIRYmzJ4ztK+PdxWuwkEGQWb12Baua2gAY0q+KAf0H4NoSEjJ+b5BYtAxZVDlueH8AckaeTa0d1Par4uzzJiJ5QPNLyF6BdDpNfUMDtuPQ1t6GJMmsWr2Kzs4uHMfF49UIB/yUl5agiDI+rXCeZT5vM2LESCorynEFByEQg54dffUtLokydepUtm/fjizL3H33FDo6unj//dl88OF7fP3ar1FeUcqjDz2CJGosWbwS15Ex8g45Qy9YBRHQuxO8+87bjBg2BEkUKa+qJJXKoOs6qVQC13XRNA+25RIOh7nnnnvQNA1N01i8eGnfWCorKyOTSWHaNtU15eCarFy5kvbODubMm8UFZ45nYnUauWoMS5evxO8PEQwVoSqFaNKiJKB5VXChvKySpUsXIcsSeVPHdkwMI4dtmxw3/lgaR40g4PciyQVquCSJFBcXF87s9ahk9Ry1/esIhIIIsrRLaSsgEg0zaHA98XgPuVwG3cijal4sy8Yw8sTjKYrCxTg2bN22meLiEMuXLWHw4EGoqoLP7yESKUYQRJqamsnketD1JILoADaC6CBSiOwrIGLbLoJpkU9nUESR3u5eNI+fUCiEqqpomsYVV1yBJEkUFxVhWXls20TTPDw87U3WbN0JwGO3fofTxx+FpHlQNI2LTjmen3zpfABmL17De4tX4zgO8XgcUzeQRZlIOMKYo8egZ7N0dnbgOBaGkcVxLVrau7j/hbcBGFVXxs+vvYRQMEDDgIEUh0N887JJ3PDFSQD8ceqb5IFMNoOLyFVXf40hwxu57/m3ADhnwtH87NrJ1PerZeiQwQh2jm9cOpFvX3Y2AL/72ytkdItUKsVZZ02kuqaGQDDM24sK3+XjGwdx57cvZ3TjCEY0HgWCwNihDdxz3aX4PCqu6/LuojUEgz7a2nawauVK4okElu0gKyo5PYOmqQiCi+1YeD0quXSKgMeDT1VxHRtj+zI+/OA9hg8dwuNPPMppp55CNOQhnejCtm0sJEwU/EEfuVyGTDbFe+++QzBaiqD6EWQFVwBhX4GZPgXutmbcbc2HnG+/8j6DUnkE/1rsVlBkWUZRlH+KNevf1UL2P82S9+8Ex3EOi1a+P3zaJsf/ZhzxcT2Cf8C+dkF3X/807L3rBAf2A3njjTe45pprcF2X8ePHc8cdd3DcccchiiKJRIJVq1bx9NNPo6oqAJIk4bou119/Pe+99x6qqnLnnXdyzTXX4PP5aGtr4+c//zmPPfYYU6ZMob6+nmuvvXafZf/lL38B4MEHH+TSSy/F5/PR3d0NwPbt23niiSe47rrrqK6uPmBwpm3btjF58mTi8TgXXXQRP/zhDxk5ciSyLNPR0cH999/PXXfdxS2/uIVhQ4Zx/vnnU1TcwLotb3Fi41h+86t7+e6Pruf+Bx9g/LjxnHLyKWiyy/qmNqa8NAeA737ru5xx2kSwLHBlcukcoVAIK1+wKAqAYVjIikygqLhgmXZcHEvHMk0c00QURBxXAtdGcFyy2SSmkUdARFVV8jZIgtrXrnw+x8DRw/H5FeLxFkLBYlxHxePRqKmtRNd1zps8Ec0fLESWFQRkVcQwdCqqKlj6XIFyHA0H6F8VoTeeQ5a9iJJEaWkMx7JIdXchiwJ5x6UnmSYSCfPs7MV89TePsnUXhVgQBeas3MKpY0YgShKu6yDLEo5rURYNEQn56UlmuG/qGzz0wtu09STIm1Zfn6uIFbN1wyaKYiWUlJaQy+dQJAnHdBhZX9XX3mtv/wu6kUdTFaLhIHUVMc4cN4orJ52A65hs2rSNysoaXpv+Grri575XZ7G5tYfmji7i6SzhgI+RA/px+cTxnD9hNF6tiGh54cgYx3JwRAdXUvrKu/qrV1NXFOXdl6cTT6U5+fgTefiBB1H9KoMGDSKdM1FED5deeQXFxUGOP6kRPdfN6jVrePzvz/H2W2/R09uDV/NwzOijuClWgSt5GN2voMwvmDOXgf3qcSyHVUuXMWrcGOYsXciMGW/wzrszaW/vpLu7B5/Px/DhQ2nq6ODr116PpPpAC+PaJn+973FuvfU2WnZ2UDd2PABzHvoNPckct/z1Wd6au5S27l5CAR8TRg/mp1+7iOqSCKriYeigIQiCSE1tf15++SUmTBiP7hpMeepl3vxwMYlsjmg4yPH9Nb51ei22vpOJ37sTgFfu/D6Ng4voSbQTDhcjxZN9z01QFMKxGCsWzmfMseOYt3Ijk2+6A4BNz96N69joRg5F9VNVXcWitVt49sPV3Pr392jvSdCVSOLzaAyqqWBgxMevf/gNRjaOwHENzLxdYBmIFqqi4CAiqzJ6NoWsSWRyOQLBMJIoYzkWtmuTN3IIoogiy0iqD8eSWLNkOVU11bzyUcGaecKowYxrHIAruNiGhShKIMLXLzuHB6bPoqm9m6emz+LkMSMojkUR7DzZdI6amnIkyWX50nWs37iKSy6+DMsGWRaYt3oDet4E4IrTj+P5Z57jwovOIRAIYuTTOG6Q//jiudz799fJGXmen7mIb1x+JoJg4dVg+aatffmvPucERFtB9UA2n0fzhHEslxuumMwfpk4nq+eZNnsOX5o0nkipD80joGfztHfHAWgcWEc2ZxLwagSKQnR2txMujjB67Gj6V5axeksTiVQOK68SCvg4amyMvGkXznRGQrQFsskM/oAfwSeQSCZpaepkyNAh5PQsqusQSDQx6eJrMXWHgOZHkUEVBUzdZenCBYw5bhyCYJHKKwwZNJzOlm0k82m8AS9gITkWALagHByFcY//W7c/AIDycIFp8wlL3l759hnkaK8gMfsKQLMv/9m9A97sC/sLQHPI2HPu3n2p79b+gx3ts9yDqMvnGZDp85J1MNsIruv2tU+UJFwO5G14YNn7K+9Aa60911Wf1R3rYIM17dlHd9/bc52493ja0yIJ/xjgc89yd68PD5Y6/e+MAz3Xj8ex+A9pDq7d4l5y/u/iiOJ6BP8yWJbFjTfeiOu6nHDCCbzxxht4PJ6+AR0KhZgwYQITJkz4RL6FCxcybdo0AKZMmdKnmDqOQ2lpKQ888ACJRIJp06Zxyy238JWvfAWPx/MP5afTaV544QXOPffcvmvRaHSfH+kD4ac//SnxeJwvfelLPPLII5+4V1payi9/+UuKi4v50Y9+xO23387kyZOJVDRQVtmPTRs/4qovn81b753H9OmvceMPvsfsGe+xfm0XN0x5lqxhcvToo7numuuwLBMZm1QqxbbtWxg+fCiSa/aV5dE0vD4v3d1dhP0qlgOKJmNaNulsHNM0cF0bUZRxsWhp7kAEgsEguaxOe3c3oVhZn7xQKEggEMDIZ9FUL6Zp49g6Hq1g/cqkdVTVRzAY7JvEdlvLpWAQa9cHtqokCq6Ipklkc2naWlupj41FFB3CpSX4fT7yyTSpbI4Lf/hbFqzZgiSJCLtOm01lcnzx5rv56jnH86v/uBJVUjBNk1wuh6pqOLu+/9t3KbpBn6dggbELk+X7S9bw1qLBXHf5F7DsfIHmlbfweDzc89KsvvamMjl8Hg3XLcja3trJ+0vWMqg6xtih9QxoqEPXDVxviG9Iya2TAAAgAElEQVTf9fF7VmUZWRTpiqeYtWglsxatZPrJY3jklm8DLgsXzGfcseNIZXQEf6wvX2dbGxtWbaK6qpJYGcQ7W/niRedQUlHLm2++ycrFS1m3bh2JnMG6deu45557+PGPbubF16eRSqcB8Hq8WI7NzA/eY+6iBfzohhv65L/66ut0trTy05t/QiRaxKZNG5h0ztl99yVJwufzkUgmmDN3HnPmzuOV16bz3LMv4FhZQsEAd99zJx6Pj/NGaty6K9+mnU3c9Ptn6Yon8WoqCAJd8RQvzV7EuwtWc8uXz+ALZ51KR0cXDQ0DWLp0GY0jR7JqSzNf+/UDpHfRt72aSjqr8+KiODNWdTPl+x9bz6PRYkRRIBwK4/cHifd+TLF+5OFHmTBhAgOHDmb5iuW0d6X77gWLYqSSCZq2tdDUtJP6YcM478Y7P26zKODzeEiksyxcu5mFwJbE73jkP7+O49h4vR42b95KpDhAUSTC7Q9OZcrTBZ/k5VPvpjwWxLJMRFEhXFSEKEls37GD+vp6VE1DsE0kEUY2jiBjOcxfvRGA40cOpLc7gaKpBPwhLDOPqsoIgsOZ40bxyCsz+WDpWlKp+K4zYl0UReOjj+Zw0sknUllRw6jRw+ju7mXu3Lkcd9w4Wvdo99mnnUDAp+D3B1AVjZqaGtpa24lEIpRFwrR2xXl/2Tq+fvGZZDNxTCPHyg1b+/KPHTkCxxFIxJP4/F4UVSFvGPg9IuWRMC1dcd6ev4KvfeF0FI8XxypYResqStiwo4VVm3fg8SjkTYMlS1cxdPgQ0sk0OdNla0sHAGOGN5DP5ygujmI6NpaVR5UdHNMglUoRDoexTIvmnc2k0mlSyRyGaSApEoIAgiSS6erF5w0jI7Jk/nwGjh6B4diMOOYYBEVFFEWCXg+6nmLOnDlcfsWV7Au7F8v/Tgvlz6KIHMERfN7Y09hwKONkz3y7FdIDYffmzOdpjfzfiCMK68c48iSOYL/Ymy+/r13jT6M7HeiDNHv2bLZt2wbAXXfdhaZp/7ALtbffheM4TJ06FYDq6mquueaafcr+5S9/CUBXVxfvvPPOPv03hg0b9gmldV8+MXu2e1/o6enhpZcKUW9/+MMf7jfdlVcWFlArVqygvb0dIaBS3X8wba07aW9bw5Q7f09tbQ3dPT1896bv8qs7bmH19jYCPi8PPfAgpWUxuns6MS0DWRGJRqM4hs4rN53JlufuYsFjBYtTT1c3qqyQSiTo7GwnmUzg9XnI57O4WGiagqapJBMJNNVLMBhGQCAQCDBkyGD23APujfeSzxt4vT68Xn+BFuvR2L6jic2bthKNlhAOF5HNZvt8WiRJQhRFPB6NrF6IBCtLAj09cTRNw+fTGDR4IDt6ZQxfFa4oIO3qY129KZZv3MFd372K2b//BeWRcOE9l0YBePT1Ofz5iZf6/J2LiiJIkoKyi2p8zJB6Nr7wB7a/9iCrn/wtslSQazsOtz/1Gi2dneTzeUSh8G63tXZw91Ov9bX3sjOPp/Wdh2l6/UGWPPZfTP/dT7jq3BMpjRUTjRbjOHlc16C2uowLTx7DL758Fose/zXbX/4jC//yY2ZNuYGfXT2ZoM/LK+8t4i/Pv4ksyQwYMBDTtMlldIRgeV95Ab+fYHGEvz//PJU11WzbtoWdTdvZtH4DtVXV+L1emrZvp6qiihPGn8B/3fFfTH35OVLpNF7Nwyt/e56Ny9fQtHk7L//9aer79ePeP/+5T/748ScwqvEoHMehsrIcVZM4e+IkfnPbraxd8AEfvvwkPTvXsej9mdz2n7cRKY4wd948bvvVLaTjCSwjj+LRoHMtxrblfXK/9Zu/Uhry8/q9/8nzv7iOd6b8mGduv4mSoiCpbI7n5q4nFiuhqrIKyzQZPaqRZStW8c3fPEQ6q1NbHuMvP7ialrceYfo93+PV7x9LdUTje1Me7iujqakJBIF4PIEkKaxfv77v3sABA2lo6I8gSZimSaSoqO/e6lVrWbRoGUYuT8Drw3Vcjh/ewCO/+C4v//oGdk5/mA0v/oEtL/+RP/zwKsqjYeat2sjvnn0b13VJphLU1tXiIiEgFs5h7YOAIqu4OMhywcLa0txMQ309juNg5vMkeruxLBPTNNi4YyfOrl2VgbWVFIWLUSUFEJAkCd3QEUWBATWlhf6fSJNIZ8imU6QzWWzbIRIpYs6cj+ju7iUYCFLfvx8TTjiettY2JPHjfWePV8PjUTDzFnnTxLJsdEMnm8tiGHkAlm/YguOIiDiEi8IURyJ9+T+au4DNGzdhWza9iSS65TBt2nRamjv7NoDWbWvFdUXmzZmP67hs2rCOwVE/AB8uW8+P//g021rbGdE4kkQixcJVG/narfeR1Q3GDKvnjKMH4vVotDa3IIoyPm/h6JxUspdQOEQ6nUbXDWzbZcH8RYwYOYJcLosgCrgu2LZD0OtjwZy5SJLEkOHDULw+wtEYPn8QTfMiCBJ5I0s6GSeRSGHvwxK3N6PoUPBZ6b0Hyr8/H78Dpf80n9r/Dh+/w8XnSXE8GL/QA+U71HufFw6nH+7tT7ovmftbm+3dpgP5R+7t/7p3/t0K594+snu/h3350e6dZm9Zu6/tWZfDGXeHO14PJt/ez/mz0P/3zrf7Xez5O4KPceRpHME/DZ/2sZk3rxBUpLy8nGOOOeag5S5ZUggGcvLJJ+93QA8dOpSqqgINdPHixftMM378+IMuc3+YP39+n2I+adIk6urq9vk7+uij+/Ls2LGDnJKmrHoIQaWOnVu2EfQJPPinh5BlmVnvzeKDOe8BcNuvbqO4KEw83kNpaQzLMpDlgs+tZGZxBRk1GMIVQDcMNE3D7/PhoBIpLiVWHMHMZQkEAni9XjTNg66bxGJllJaW4PFq+ANeDCNTsHLuMYeGQkE8Xg+uC5YJmqrhug7RaDHl5WVs3LAeyzIJhUJ9k5HX68V1XRKJOM6usxIVWSEaKUEUCxFYFQUGDOqHgIBl5Pv6iOO63H3jVUTRiUYiSLsUz+NGDmZ842AAps1djS8Ywh8sQhBVNm7ejk8pOOaqkkhRMEi8N4Eiy30TYP+qMrK6wVOvz8a286iqgqIqLFmzBcdx+xRnTZHJZtIYep6mrdvpHwtx701fYXBtGTk9g2VmEV2DgRVhfnrF6Xzn6kuor61AlCXKamoZOmwo3778XO6+sXBO68PTZpKMp+nujLNu9UaCgTC9mY8t5AsWzKO3q5VvXHcNL0x7kdPOmczJkyazcsM6lq9bw0eLFvDdH34fI5tFEUU6ezvRDR1NVfnjHXdTHi0hm86wcdVahg0ewTOPPLorEm4B0eJSLrzwItrb2+nt7aakpJj77vkdE08/jx0tSQaPPZG29nVkUp2cdsIkLjmnsLny5N+e5vGHnqGjPYGQTeMuexbDW/Gx3FCQaXf/mKOH9WPgoH401Pejc8t67rnxagDmrdzA8y+/RXNTK03bm+ju6mBj3KA7mUFTZO685kLOO/k4li5bRn1DA421If7+nbEoe9R96NAh5A0DWVZYtHAxxx57VN+9iooYnR3NdHd0sm3rVqw9zuSsKCsjb+QRFInho0dQFini6dtvorE2QkNdOZJc8KHM57Jcff7pPPKzQgC2p974EMspUNDBRdU8xBMpbOtj2bbt4LhO4RxaPYtuGNTU1OD1evH7/WSzWUKRGJIsIQg2Xb09fXkH9qtG1zPoepZMNoHjWuQNg86OLuoqPmY5pHMOuCLBgB+PV+YLF57L16+9GlkW2bBuEx3tbfh8EuXlYcqjob58G3a0YZo2oqjwwfsfYVsOAwcMwBUletM5ABJZnVwux7QXniObzVEc8PXl14pjVFVXoGkiJWUlyJrGRRddQHt3D53xFAAdvQmam1tZvnQFHa3tdHW0ct+vfsANV5yHKAo8Pv19jr/2Fwy8+LscdfV/ctnP/8SG7Tv5zhfP5pnbvk1RMMybr79NT3ecfDZNsreXRCKBx+dD01SCoRCO42Lb8MXLvoRXVelobaWns8CksPIGjgCnnnkGumvhajKmYaHKGnoyy1svTWfuO+8jOja2aXLOuecSLC7hCI7g3xWHq5AdLj5t4+SIxf9fg/+rvqqHiyOK6xH80/BpH+W2tkLwnNra2kOS29FRoJ5VVlYeMN1uxbVz18Jnb5SUfPZFTUtLS9//29vbD/jbjWw2iyXquAgcM/pUbMPFMnUG1A/huq99oy/dpLMmMfm884lGo0QikYJlUyxYPQ3DINO5EyQZBAFVVfF6vSTicfRcju6eJI4NZj4PjoNh5NFUD93dvWiqBzNvk8mmURQJr1fD6/PQ1dX1D9ZxQ9exTGuXYirR29tbOCvVyFFbV4PXqyFJEi0tLbiuS09PD7ZtEwj6CfgK9OyMbpDOZLFMh2QygZHXIbUZv9mO67pYVsH3TJEkzjhqCGWlZZSUxCgKBQFIpJN89/IzAdiwo4UNO9qxXbARGDBwCNauKgf9PnI5g87OTpYtXUbAWyi/uqxgsV20bivqLmqrJMpEigoLf2dXHw0H/Ph9PhRF4aSTTqKoqBg9p6PrOh6PB1Fw8Xo0VFmmqqqCTCZNJptF13VE1YPHH8Tj9XLeSQXK69aWDna2ddLa3MbSpctxbIfwHtbByZMnE+9q5XdT7uGdmTNp7+oBReP4CSdw3PHjmTN3Lm/PmEF5RSkuNm/NLPgMn3z8idTX19Pa3lawNlo2d9/1O+7/81+58osfUyOffOpJFi5cTF1dHal0gh07dhSCN5VXMWz0GNACrF+3guOOO5Zc1qR/7UDCoRDZXBZJUXEtgc53/sjW9hS9xsf94uxjBrNo0TwURUZRZDo62hg2dAhnTzi6z8qddWRaWlqIxWKUlZXyyvsLAbjg5GM5cexR+P0BRjY2ks5mSMcmokdO5oIJHyunoihg5PNEIhEaGxthj4A69f37IUkCfo+XSRMnoWla3z3bylNWWorX52HRkoX4/V40TcG0DDxeDVF0cWybltZW0qksI+v7ESsKktUNlqzdjCiKdHd34/H5UVWVm6++mObpf6F71pPUVZQWCAlugQK3ds0aLMvCcV0ss3DGse2AKInIskQyneqrl9+nFuiuOCiKgCAUdtU1zYsqf2zVTaQyLJy/iLxpIAgulpUnm83Qv38/5s9fgNfrobQsSlFxkGMGV6Ophby3PvAMuZzOxo2bGDp0GIlEgkQiwW8efbHvG2zZhaBeX77ySnw+H5NOHIdnV/57n3yJQNBHOBxEFAUs26K7t4XnP1j8ifyCJHPueedTFA4zbuxYZEXiluu+yO9u+ir+XeMtk9Mxdyn8pu3Q3ZvAciBvWpxwwonIooJl6IRCQYLBIHo+TzqdxtB15s2bR2dnJx6Pl43r19Pd1UkqkQBAwCUUDmOL0NbViek6SEjoqRy9HT1gwZCGweRyGWbMmEFVTQ2mmecIjuDfFUcU1yOAI4rroeKIj+sR7Be7w5nvHki7rZt7O+jvD3vSYA7kT7S/659GozlQvoNJJ0nSJ/4+nI/2bkXP6/XS29t70PkEy8WV03hqo9TqJ9HbvARvrD8vvzatL82G9WsR9CTdvQLhcBh/oAjbNrEEEW9II7e9B1sNYRl5tP/P3nmHx1Vda/93+vSmUZcly7Lljg2uEIptmukQSiABkpBwSbsJpIeEL4Gb3BvSSIOQckkICWm0UAIY7IDBNsY2uFtyl2z1Nn3m9O+PkSVhZFtwSbvX7/PMoxntcvbZp+y19lrrXaKIIgsosks+n2b37t14vF727t3FtMYJBKMxbNPC5/Hg0WTy+QxbXt/AtOkzkGMl+PxRvF6b1s5hJT+dyOHaLoIoFWNlC3msXJp1r75GNF7G6YsWIUguVsZCz+axjDyRUIiVK18lmRqgIl5UGDv7EvT09vLkk08TjQW55NILEbpfRxRE5GjjkCtiaSyMrhtMnzGZjs79hH1FhaQvmeNdJ56ILElYts0rm7YyZXwlqiwhuJAfFJJbOntZevPX2dfeRUE3h5yeX3qtyE7c0ZtAVDSQZJL9vcyeUEUsHKA/WYwV3NfRzdbdB6gtjxWt0z4NBA+SXqC/uw9ZErAVDUvQUWSVXz2ynGVrt9Dc0k4qmx8S1kcimTOZv3Ae5ZVlJFJ9uMKwkrK3eSOyqHDKglPp6+vBJ+v88YEfYRkaZ5y+hCsuvgLb1hno76aiehyJdFGAn1hdweZNW+ns6WbqzBOoaWigvLySuXPncbBjmPn0pBmzeOyRRxlfOw4jLyAIMr/671+Tdgu8uv5VduzYQSKZxDBuedO4M7ksnoMrCWs6/RNO4sk/PjZUdsa8WSw8qRFBEJElD90de1AUmX17Wwh6NAayeXTbYOqM2YSiYXoHEuzt6AWgIugBSSCdTeDxBWnb186sGdMIBIKc0DBu+N7f1czJJ81C03xs29ZMPpcffnYEicrKcWRTaTo7u+jpHt4U8ng0HFvHqyhMGj+R5uZdVNVWs3zjHpa98ijNrR0k0ll003rTOR/sGeBkVaO03ItlWby06kXOOmsJHr8HTIM9+/Yxrr4OBPCoAtOnT0GRZWzTRhZgZ3MTtQ2TCAUD9OdMLHvk+8VFFBQefvhRrrv+vUiCjM8nF11+R6SgEkWhmJ/VdjEyKRTVT3dPD5qqMnX6ZLy+IH29aSQximt08uGLl3D3Q8+yrmk/t977MHMrA9xw3VVs2t7E85t28/M//xVFlobuzcqKcgqFFIqiEPbCDRct4p6Hn2P15mY+8e1fcvO1FzGlvoLenn7u+/NqfvH4G9v7vAqxWIR8QUdSAvQnk9zwuW+ydutuFs2dzmeuOZfxlaWYrsTrTfv4xn0P8+Cy1azavJOnfvhlyktjaH4PoWCAvr5+QqEQA30ZSstqQMwxb8F8NDVIItPF+Im1vP5agki8AvraULQAP//pb/nAdVeT6++lprKKfDpBwXIorSmlqqEGw7Lpb2+hpKIcw3FBfOO7f4hM5k1Xf2wEO2PBkTMwvnUcjWdhLKEsR3I/Hq1sNDKeUXGo/XDlN/c9WrPDx3bkI4wJYxXwj3aeh5NPve3rNIY6giDgOM4bY5ldF3EEuZEgCDj/A1f2Q8cpdj32a/92+jyS/Hek446UAY/U7nA35pHf3858jEV+PBKR0jsTc/tG1+vDj3Ecbw/HFdfj+LtD+e9vAFD5jeLfQ3GuY0VZWRk7d+4sxsEdBW1tRSE+Ho8ftd7/BOXlRTe/fD7Pnj17aGhoGFM7Gw1XcJFkCb9XY83z63ngme/R1t5GZUUV+UKOvS0tfOmWG/nSd+9BNzJEI2W4joSmacX8cdl+JEXFo2kUCjqOYxOLl5PNZjj1tJPp7++nYUItgXCIbDZLIBAim82RyxaIx+MsPHkOmWweyzIGLZ8G+fywgqAoMrpugSiTT2Tx+RQ8fi8LT1lIPF6O69g4josgW9RNqEEQoLunm6rqCnbu2sbkuqIlvTeRQlQDSJKIaVioyrCFzDQt8oMxeOWxMBvWb6K9o53L3n0xJ06byEubmtnZ2o5ru3hkkYxtk8jkkUQB09Lp6k/Qnyoqns2tReu3IAgE/V50w0Q3LcRBYSCbL2CYNrLtgu1g5nN89tqLufXuBwF46qUNPPXSBoI+Dyef0Mh5J5/I1eeeRj6Tw+vzk0j2I8gqPakCF9/4dTp6E0Pn4dVUAl4NUSgmo+9LFq1tO3fvotDfzsKFC9m3fx+d/cPsuJP9OaKnLUQRZKpKy/nRXd/l6vdcSc3kmXztq3cwdeoUECzee/X7WPfa+qGcgSv++iK14yYjCALr1q3j/AsuIBD08K5T5/PIo8MKZkVlBXfccQe33vpFPvPZT/Pg7x7k/j/8mo4R1n9N04jFYuCCYRhkslnApdKXx2ldgznxZMKql/jgJgSAY5nsbm5j8lSFPbub6ezp5MwlS1G0Yg7VgWweSZGprKkhn8+zdv3r2IObExOqq8EGr89DIZ+lvq6anFHAMAxmTW0cOkZdbR2GYTHQ300qmcPjDw6Vte7bTUlJlJUvrEaSRCRt2GX24ME2DMOkJF7K03/5C3WNkznno1+jqWXYM8KjKpSEA7iOiyAKDKSzOI5LLmeA67J9+zYaJ0/m9NNOw3UlBGQcTMaNqynGGwkShp7HNAyC/iAbN2ygoaGeSZMmIGpeMtkse/fuJhwcdsXN5nQUVeHaa9+LIwo4OOi5DGXx8FCuYwCfz4usqgT8AVyK1ySRSDC5cQoH6GBn815eeGElPp+PuvGV3HrDVXQNJHlo+Ss8+sKrPAp8+XcrhvqbOK6CJXOn87NHl+PVVDyagmurgEtXZze3fujddA2keHjFWh56fg0PPb+GkWioqeDchSdxz0N/QVNkCjmdHrufkngxLvfmb9/H2q27WTB9Io9991by2QF8/gC241AVD7NgxgRO/dD/o6Wzlzt+/ifu/vyHCIUCWJZFMplAkiQ2vPYa8+crBIIatu2yYvkKzjp7Cal0momNk4iXxLD7IJNJs2DhWQiKSntHFzX1Oe775YNcccXlhEpEWvbtora+jpaWFi644AIEUcRyHITj8uH/GRyuIB36H7y9jen/S/hnmadRFfz/BThuSX3ncPyVfhxHxdEC0A+9VA4Pqh8Nh+f/Ali4cCFQdLFdv379m/o+Un+H4kVXrlx5xF2x5ubmIcV17ty5YzrXw901Drcwj4aFCxcOjfOPf/zjMfu2rGKaFsEREF1AtKkeX8+abQdZ/sJriKLId+/8Lv/1ja8D8IcXNrLiryspLS0vEhEpSjHVjeviMZMI/hiKrKIoKo4LBdMGSUX1KMRiIUKhEKZlEw6HcRwbj6eYv7Ozs5OOtjSi4MF2ClhuEkkS0bThdDgbN26ks7sTHIunnvwzmXQWwxSIhEvI5dK4jkFPZwe6YyErGoKoEI6EaZhQw4c+fD3zp00Y6mv5uteIl5ZQXVMDFMkGTMtk1aYdQ666VSVRzjnnXK688krKKyqYN6XYPpMrsGHb7qGUSB0dXWRzeRzH4r5Hlw0d48z5s3j2ntvpWPZLdj76Y+68+f3AsCuwC2DbuA64SIQjcfr6swBIgsDJk+qoKY2SzhVY9spmbrnrfhb92228+vpWPP4g4WgcWdH42J330dGboLYizn233cTex37IfZ+8ih/fdBmrfvYf3Hn9uUNjKi+vYMGChfT29hbdH3ftGirzDTQzf/6JTJo5hQlTJ6L5o4QiNeR1nSnTp3HDjR+mfmID3/n2XXhHKPs3f/4LXHPNNciyzAUXXIDjOCw993x2Nu+mpKRsqN7dP/4xBw8e5Itf/CLxeJzNTVvp6OoiGonw/Tu/w+6mHbz6yga2bdnO9s3b2Lx+M+FQkRArkGziYF7FlRQEgTeQFDU0TKKhfgJr16xnxoxZLF26lH0te7HsYQZJWVb482N/pr2tnfgIl/zevm66e3ro6OwmGAjh9XmQO1/Am1jFlq1bh+oVmXshXlpCR8dBRtprSkvj7Nu7hxNmnYCsKBgj3EFj8TixeJzevj4mTZ7MnQ88RlNLO7FQgK9cfxGrf3Y7bcv+mwe+eB27/nw3Ox/+EWXRouIrSRIvrXyZcTXVyLKMrEgIgks2lwEcFFXCtm1kWUESZSKxEkzbpr5hIpFYDEmWkWUBQXCZMWMGpZFhZbtnII0oiehWAV3XEQUBj9fHQCLJ/vbhjYT+jnYUWcE0XSRJQJZFJkyop7e3n+kzJ9EwsZpzlp6KpOg0Tp7K8889z91fuJHf/+fNvHvJfKaMr6KmvIR50yZy243v4XOXnUZ6MMa1YVwFBT2HgIBH81JdXYNX83Hnx67hoTs/wxVnnkzjuEpqymKc1FjHbR++gt/f8VGSgy7PE8dVUFYW58CBNtatW8fOlnaeW1sk7Xr/eafT19uLKHvp7u4nl8lSyOepiJfw3vPOAOCJlevZvHkrhWyBRGKAuvF1KKrMxRdfSDweIjmQJ5vOcfbZi/B7Q5RXVuLxetD1Akgy1tSlnDB7OqLHwxlnn4eiKPz7pz9FVV01qqoypXEqmUSKdevWkcvl3mDFOvz7W4X8lZuQv3LTW243FhxrjT1ESnikdm/3eEcbx1vB38LF8Vj9HctLa6xj+nu4Zh66544mJx2uNL4TYxrruR1OyPS3wFgtyCPv9cPZiQ+Nb6zndaw6x3Kbfifm4ji50t8Gx2fzOP5hWLRoEfX19QB8/vOfx7KsNzzgR0rYfNVVVwFFi+rh6WcO4Y47isk74vE4S5YseVvjC4WKAm1yMMZqNJSVlXHRRRcBcNddd71BMRkNqVSqGNvmmMiuCThs3NHMAw89BcAN772GRYvmcvm7L+aGpUXyqK/e/g1aW9rAlYeYe/O5HOT6EERlcI4EXFdEVb3IqoeCbpDL53FdEGUPqVSaRCKBJMkEg0H8AT9P/eURmpq2IQoaihTCce03uC3OmzeXceNr0DwKp57yLpKJDP0DGZ566lmCwSCmUSBeEkaWvdiuhCgqKLKM45o4rkVjXRULZxataPf/5a9cfMlFnHHGIqTBXKaSJPGTh58dOt7BAwcZSPQQCvtxHIdFc2cNxad+/8E/k8jkADBzBTTVC4LIb58t5rlVZYkH//OzzJnaQCGbQFZlLl2ycCjOFsC1bRRRxHXhueUruf93D/ObZ4skWEsXnshlc6fwxH99nrs/cjmfveZ8NFWhubWD+1e8jmGauIJAR2+Sddv3AvDzL3+YcxfMwNLzLFlyBmcuOR1Fhtlzh4nGNm7cxC9/+StisTh1dXWcffbZQ2WWFsHatoxApATLNmhp2Y1h5rjv7m9z+Sn1eHs2MCuS5dxpPsb1v4A06PaYHejgox/9KH19fXR3d2MYBl/60lc4cKCdH/34nqH+W1pb8Xg8RKNRAJa/ULTEffDqDyDZMnrB5bE/PoZX9rBuzcuk+vvIZotKiq2GaZgxj97eXmzbYlLjpKF+176ylieeeBhTt0gOFDjY1sHExjokWRl6fjPZLGSpX4AAACAASURBVJMbGpEFiZNmzhwiwCqpqqR+Yj2W46JbNplcgUKiHbcwgOQZtlCKoog/4KGjoxVFdYux2oPoG0gwZdoMqmpqOPPss5FGKNUer49kMkU4HGHtq+t4cVPxefzmp97H0gXTmdY4CcdxmDNnzqD7scBAqrh5oRd0Zkyfjqaq5HI5wEUUHQTRRFFkRFFA01QymQwejw8bAUFSCIQjOIh4g2EMw8Tv95PJpJk+aRzi4DVr2t8GooAv4EUTJWzTBiTiZVW09BTnvDQSojJewlOPP4koiti2Q76QRZFl/vSnh3hlzRps26a0NM4ll1xEKpPgxDknki8UWDxvJvd++SaW//gLbPj1f/L8T25nbk2M+SfOZX1TMe3NnMnjUVWVfL4ACKiaRj6fJxYrYfaEcu699SZW/OzrrLj7qzz1g//HZ669jOrKiiGL8MKZk8hkUyyYP58FCxaw++CwFXt8ZTma6mHNK68hSxqGbpJOZTBMm4aaIhdBXjfwB2PsbNqN3++jpWU/qVSKZDKJZRr0dPaTSefYv28fL724Gn3wmjtucUNEVSSSyQEsQFJUfL4AgmyQTPUhiiJG3sLIuFx99dWEB+/5dwrC+GqE8dXHqnYcx3FEHNq0Pp72Zew4fL4O/f5nncPjTMB/Hxyf2eM4Jt4u9frhdQ69cIyv/Rjr9ruRJInvf//7CILAqlWrOOecc3jppZeGXkrpdJqVK1fy/ve/n+3btw/1N2/ePC677DIAbrnlFu65555BQbNI+PTRj36Uhx9+GCimxRkth+tYMH36dKCobD700ENDc3H4584776SkpIRUKsWSJUu4//77SaVSQ+V9fX089thjXHXVVVx//fUAGJKDjYaum7z/hqvJ5fPMnTuPKy46j66mTeDAl647l6m15aTTaW748I0UcgUc1yKR7EdRi4/uhZ/9DqVnf5C5138BRZYY6O9DFgQ0WcXnDSCKAvl0AsWjEPBrFLJ95LL9FApZLn/3pUyd0kjfwACdnV0ksln6ksOurAOpFOl0nr5kDtkXIRavYHxdHeecfxaupKJ6w1x4y7epPOt6Zl/5CRRRRZI0XFRkyY+ievjaR65BEkW27TnATd+4h/1t+xBFi76Mwa1/2MGK9cNWtu68SThWgotEV3cvsqRw+79dA8DKEZbZD1x1Hrv27ePDd9xLz0BxvAtnTkaRXATBwRsKY1sGIZ/GZ6+/dKj/RCZHMp0mk+zDG47xs+fW0dWfwOfRuP0T13DRu5ciayLvvvRcbr3xKj56+TkAvLRxB4qi4fMFaR8Y3sSYPqkBbzBEIBrC41GRFRlch5c2DuccnTd/PpdccindPX0YRhYYXnDdWB3BntfxvvR9hOe/wX0fnsrMzFPcfk6MaPdqhI6NlNsd1AdSVNVU0VhTdEtft+wP/PT9E/nq5VPY8pefsemVl7jiqitYfOZpzJo3faj/T33k32jf34qm+NjXsh/dKKYnuuTdF3LBRecy0N7HNZdeTeeBTnyhKNubtmANuiM73hJkWcJxbdLpFKnUcM7Qmupqzl66lLnz55LLZ2htaUEWZZp2NA2lKkonUngUCU2RUBSBuvJi6pVXtu4mmUpSUVGGKIhk0lls28bQDVZu2DZ0jJaWAwh4KS9r4Mwzz2X7CGtsOBhn04btFAyHX/3qN/T3DseWR6Mhpk1rRJJdTlt8OgWjyOI8e1I9U2ecgC1K5HIZ8qaB4lF5afPWoXhXURTQVAnbyiM6JrKkIQgKXkXFdkVkWcUsFFAkEcu2ERwR2zTwajJ6IU9fdw+mnqeQyxOLlBDUgiycUWTDfn7tRkzTwLFkHNfiL08/BZgM9Hfw1w3Fczt5ZgOWqTO5ceqgtVciHIihKV4+9IEbmH7CDEwbAoEIoigycfIkVE0CW0eVIJVK09E+gCCA4xY4+ZSF7OseYNeBDgDec84iutt7CYbCuKJAKptGkl0EV8e2FQq5PEYuRWk8iKo5dHW28cIrm9lzsGgRPmdWHf0dXexs3o3ruuhmYWjeX3r1FX73298R8GkoqoKDTHtHD5lUli3bm4bqhUIBZsw+AUHQeOGvq9m8aQcuIMkadQ2VhCMh+vvzVFZVkexPc7C1C8sQEQURyzUJlURRJQvbSCKIJpogEg2F6ejqI1MwyOo6tZMaKRgmriiA4AzHtR7Dk8cdw+ettHNcd+gzVHcMFs03WJUGP4f6O1K9Y1kZx3Iuwiif0dodXmesGMtcHj7+0c7pSBbLY1njRpunQ9dntDGNtNC/Hcv20PwMxrEKgkBLS8sb6oxlfkezwL+Va3CsdofkrcMt+yM9FY55rm8h3vidcv891jyNVbkd23jEN30EofiOFkV56PPmesfxt8DxGNfjOCbeKbeJoT5a23EB80Nf5kzgpycv5d9fWcbq1as588wz0TQNr6aRSA0rUf+eVDFHuEHe++Wv0tfXx8qVK7nlllv43Kc/Q1BRSRiFoQXok1Pn8sGO4fQjAOaHvoLbXLRAOI+vwNyvD5VJ11+MeMb8YtmLr1L768dZVFHLC52tXHvttXz0AzcQ1YpK8L9/7TY++clPAlD7wNM8vuB83vvin2np6eGmm27iIzfdRET1YAqQ0YcFvMUVdZgf+srQ7y+sX87m5s0EZZVffuO7BKpDbHv1RcZveoKovp9fXHwyZ97zBK9v2sT3LriUL89YiFpbhfHp63FO/TiCU1TQhXSBwD0rCbguCAICLqZpkj+tHnVaGZqqIe7owbesqFQFBq1jrbkss1YO5zIdiZu++Ys3/P7xjAUs9UYJnzET4cLZgIs0GLsopPK433wMSQBJKPJ1iMDc607hO5/+IJ+765c89fIGnnp5A2FZIWUNkyeN8/g4UMjR0TvAwyvWUCIUOOOVJFooxCWORXPDdL61Z1ipueTmb5IejIs9JFx17TyI8K2nEQUBSTj0f5dJJ49MNaLT+O5P4pdkUlbxvvBJEr+YMo+GrT3kzmhEClkYrV14HtmKf3dRyJBMG+HOvyAIEEsOK0lbdu3l5HYL36aDmJaN4zjIrsMPVw+7LxuGTnNzM42Nk3G/+Qy5EUyz5k9exCyLofq6cBY0khoXwufz0b/8dQKr9yPHCti6Tr2i4DjNLHWC7KCTR9e38OkPlhBu38UiOQvpJ8GF/ntX8MAvHhnqv2HvAdZn0+w7uJ+T62qH5mrXl79FQ3wcE1WZva17qKiqoPb6M/jif942PLbH12Nt6KPG60WSZcaPGHd7RzvzTpyGR/Oi3PUMancX6vosk3MFPEbxqpZt6CCrNrEpaHLehRdwUeMkftDRy5+fW8Pn8hFKHfAGg8TTGdSFBXriQZa9NqzglD68DfPFHvp6egmFg8zOD5Mp9fZ2YZg5Ol/fwbv3KKzLdg6Vyd99FiWbweP3E754KsLgvbjtkdVMyL2GKElI2QyBQJC8XuC/Nrw41Nbv8+H3e5G+uwIXEXdQtHNss2gBdVyUc6Ziz6wkl8uhNfUjP78dRxTQbBvNdRElmUQigejxUvjs2Vxx5gJWb27ipdea2Pzl3zEnWorkOlzoSrBtGcvb97O/vUiI9oGLz6YhWIr84FrEFe3YtoUjCIgIhFyISBLudadi+V28Xh88vZXyrQexLRNRVYiYFgwkUUqimCVekpfP5Ut33w/A4pIKpv5+ffGMggGQJQKOXWRYnlVCbMkCli9/npN9VWReWE4wGETJ5viPdUUr/aJYGae92Aefm4dlFzckZr3WPTR3ry1v4sGTTsN5thVh2UHUmdVMXzwFw3ZYvr646Tg9EKH0F6txRQFVFHifGcE5kEKcqmIHFeLxONJz26nbksalmWwmi1Qo4I/txr1YJvz8YxRqTgDA4/Hgfuw/MCne1OWiiGPbVOgFCn4/6gcuxT21GFLivLgO+4EnOBLkX9wx9N2+4ye4rR2j1hNOn4N0/SVH7OdviSHhesQ6/E66lR7HkfFOza8gCNTX17+DxD//HPhXj0N9q9f3UP3jz90/Dse3BI7jmDg8bmQkjmWNPVTnaA/5eydMZ8NFN/DxM89j6tSpyLKMYZpMCES4cNxEfn7K+UwOx0aSFxIKBHn66af56U9/yumN0wgqKhnLoNzr55Jxk/jLWVfxjZMW/Y/P/YHTLubjU+YwMRjFdB1asylas6k3uA+7wAnRctZd+EG+O/dMFlfUUaJ5SZsGjusyceJErr76ah6464c8eMYlQ7LHM217uLf5dQC+N/8s6sfXUjOhgUCkhG2bXkPEZVJpiK/POg2A7zetZ1Vv22D8n4joj+IEK4qdyUUWaOeQZXtwsrw+H5rHg2VZuAjIg7GwlmXiui6282Ym3CPBtiyy2Sy5bBbLNHEce4iZWZZlLNvEdooKnG2Z4Lq4ts21557B49/5EldMnUql5iVv28R9Mksnhnn4pNOp9fkBCPm9fOnuB9jSPoDq9yMI0GnoNKWHSZDCskLBtAh6FM6ZP5PbLyi63jZnU3x223r6CgWMgkFvOs19+3dx49d/QiwUAEAVRUKijO7YjPP6mR2KMjtcQkcmzWu79iC4DoocxOeP8ljnQX60rxmAs0qrkEQR13WYEghSFSu6kN/y3ftZs28/llWch9czSS5e91eS1rBbq+u6bN22bZBITHzDcxDw+VEdFb2vQC6nEwwEWbF8OZVVlUQiETLpDOlUikwmQy6f5yP1UyhTPeimxXtu/wXNehhrk4j9sM6mJ3q4/BdPYwvDAlGoPMvi8SYXTrKJFTayYNBie9vOl1lduRfxrAyN15XTNm2AG2+/nc2tPXjU4l6m3+8nGAyiGyb9/QNv2NUPBv3Yts3q1avp6Ogoxlc7Looiv6Fe4+RG5s2fh+M6fOLsxZSpHvKOzZXrX2CzpdPV1U0gGGBtywBXfn/tG5/vcBhFUQmFQni9nqJr/CCqqsupra2hNF6C3+8fzL1ahGkY+LxeHNchEPAxZVzx+bj1+RWsGuiht6cbr8fH5v4e3rtpNRtTA/gG88e6QtHLwB5hJfvmzs3Envkjkb/8ngN6Dtd1UBSZYDCAJEtDjKCHtv1N08Ln8yPJEh6PygcvWczU+ipc4LrXXmJF10FEQUI3Tf576+vcvG09AIvmzmD+jEYsx0aWZIr7TxJ37t5O9Ok/EHvmD+xLp3Bdi1fWriGbybF1yxbWJ3q5a38T25NJcrqBpmkYjsuKrk4u/sw3aW7tIBby84Pp8wkGg2RzOYzBFFmKLLMxk+J32/ewt6OHU049jVAoguz18mx3Oxesf4EduTRlqocfnbAQnz+A6vViWXny2QyVmpczI8XNxGd7O7hp8xq29XYjiiKWY/Pqtp1c9tk7OdBXfH4/UT+l6HItFLdQDr3nm5t3gSCQH0wtBS62baGqKqXxQ3lxQfYJZLNZVFUtksmZFo4zmDopn6Wzs73o9QBDRGZvBe6g5e2I5StHzwd+JCvS0SyAI3kUDq9zJA+m0dhxR1oEj+b5dCTL5TshfL/V2NgjyRF/q3jUkRbF0Xg0jmW1fifn6dB4jjVff4t44bFajw/3ThhL/dFwuPw3sp+xxHWPVn8sz9TfIr55pPvv3yMu+jiODuFfZbfEMIx/jYH+L8VIf/2x3jOHW2rf7r02st2RSAz+XvfxqG5YowgUx8KowoUkYpsWva0ttDZtxtv0OFUTJiK/62P09vZSWVVCQbcZGBigpKQERVEwDANRTyOs+gl4o7gl4ynkC/i9HjKZNLgusiQiCJDNFfD5/Bh6Aa+q4OCSz+cRRRFFUSjkshiGSWV1Fbpp4bjg2gwqJSogFollRAfdtvH4vGiKhpHPDsU3ZrJZfP4App5D03zouk4mnSdeGsexTRLJBNFYCel0jgd/81vKyuPc99zLvLKzh0+cU8+rexO8unsARRLwazKJ3LDF/FNXLOELSzRct2hNVjUVQRD46C9e57H1w1YSryoPjf+E2hBXLaziK39soibm4a9fnI8SKKNHmcGDK9Zx1++eGmrnUUQ8ikQybw4pUePLwjxzz+1Egj7ETAt2z2s8t7mTG+7diOUMbg6oIiCQN2w0Rebuz3yQD3/z5wD86ZPzaCxx0VSNfD7H/u4sl91bjBlc/9tvU+UHoeOvMLjhkMvlkGSZZDKJXtBpF6Zy+lkXc+DgQXy5HWzfvZNr715PVreHji0KAlndJuT38t2b38+N37gXgE23z6M0pOEiYpgGzd0G7/7hRnJGUZBTZQlVkcjkDWRR4HvXn8C3Hm/mYH+Bb145iesWNTAQPpuuzk504PzPfhuAJz85jRkTKhEQBhUFF9NTja/uNE5672c42N3P966dzsWzSor5byUJXS/wemuW6+7ZMDx2j4qIS7ZgEvLK3PWZj/Chr/8YgJfvvR1NhEikFNvJs3l3K1d95QcA7H/4Bzz7zNNUVtUiSRL7e1N8/Ie/BWDDz28nVhIlGA5hWgYvvrqdG77xE3KFomeFqsioskwmX0CWJL53y/u489dP0NY9wN1fvJHLF8/F41FBUjiwr4UHnlvLt379eHFMP7+N8dWleL1eHMdBUrzohTyyJGEaJn6/D0lScGwHwzBIp1NEo1H2tndx6ae/RWtnMSWQz6PhOM6QG/OMieO4bGYd1159JaFQMT42FCkjk0nyw98/wQ/+8DQAL9x7GzMm1ZNOpbFMh9bWNjryNtfedhcAoiDg1RQKhoU9KKzXV5Xy1evO5+S5c/D5fHQcPEh5SRhBlhBlhYeeW8XNP/hNsb0oEPL7SGfzQ+3HlcV44I6P01hbiyiqKKqAXsiRSmUp5E32H2jjM/f+nj3tw2m0vJqKadlDbucAV585jzs/+X5C4RC6rtPf38fmTdvp7OjimvdejaqIpDMZJEmiq7OLqqoabNukp7eX8soKlP0vIpQ1Yi+4gXA4zMDAAF6vl/7+BBo6nW37qaibQKi0GvmwNGejYbTV4u1aMN9Ku8PXspFr5NHWsENlo53bmNa+UdZhcSzHHa2rYx/tqBsAfwuh/2h9vp31eSz9HHNMh7cfpa9RFbDDfh/uIg7D1260vo+Kw+WmsbZ7GxipaALvuJX5bc/BYTjSRs8bfx/7nXIcbx+qqr6lh/K4q/Bx/FPgnVBw/9Xh2DqupBGpqCWXSNLZcyLG5JPxyDIlJSXk8zlkxUcwGBwkb7FRVRVHjsLpH4eV95Bv24FaOZlCQce2HIJBP5Ig0t5xkHhZBabloKoaqVQCUZawLItIJIJpmmiyTMDnp72tnWAkgurRGEjkKC2NU9DzDAx0oygqtpmntKqabFZHlb0oqjpo+ZAJh2OAgCy64EI2k+OZZ57lyiuvwutViUYjWJaFLMssPf9CDCOP8PwqAFRF4k+fWsC9z+3l0fXttPTmCXoUykJ+vvSh93D+wonQtgJwcV0b13EQJIm7b5jNnPoIv13bz562HlwEGqsiXDa3lBsX171BqQ0EAliixDNPL+N9l1xKaUmEtWuW09yRoSupk85bhL0yk6uCnDerjEsWLyIW8KKoGuZgDMtZM8r406fm8OPn9rN+b4K8YVPilzltZiML6koQM/1DxxMEAVVVCQQDhCNBEkbviDKRnu4uooaBJEn09vaiKAoer5dQMIS3zEt1+VxMHEory2lZ+zIn1gZ49gsLufOx7azdnyGRswj5JM6aXsZtN99Cd//wsX3BEIYAyWSK0rI4JwRd/vSJ2dyzKseaHQdJ5/L4PQqnN4b4yFkTmFrh4c4/F5+9Q5sDhm5iWTbhkmGyG22Q3dm0LPKFPLlclrKGusFd8eH7WdPUYsyWKKCqGgsmaay47V3c9WKB51/dQSqXJxLUWDojyg3vKqO5e/g6eRQBj+rBtl0eeeQxxk2ZOlRmWQ5VlePo7umhcdJEErv2D5WVV1awf/8+6lUF09Bp2b6ZL12+mOe27GXL/nYyuTwBn4clC2bysSvPZf70CXzr14Ou8q6A1xvEtg0sS0fPZ3BHeCSog2lqTMtE13W8sookyYiCjM/rRZZUDDON6whIkkwup9PTuwvbhtW//BY//MOTPPHiOlo6u5FliVnja7jqnFN4z1kL2Nu8n72795JKDtDZ2ckV11yNKIHmGWb5DoVDILgEgwFEQcW2IWRafPw9S1m7ZRct7d0k0jmiIT+1ZVGuPu8M3nfeKaiihu1KZLIZampqaNq8CcNxmLtgAVWREFedMZddnb0c7O4nkc4SDfmZWj+Oi0+fxwcvPhdBMMmkC/x1+fO867T5hMI+HAR27W0lGvbwgVOnolaczzOrN7B1TysDqQyyJFFdFmXBjEauPf80TjlhMomBBKZhIIoCpfEKSkt7qa2tI1/IkM87qKoHXJFCweLBB//IBeefRWVlBeKgRd1xXCSp+M7q6+ujrKwMDZOethbSyT5mVb2LpKshu2/O0fvPBtctnsvbsQz/s+Htrt1/rzVfEN6YIudfQdZ4p8Kz3u6x/1lT0bxhTH/D+TluUf3nxnGL63GMGSPTw4y2W3wkt5JDL0Lbtkd1GzkWRtsxfSfvW0EQsG37TSxwI3cMj7ZDenjZyL+HE4KMHPfhucpsoei7LzuAafPs088QUi0qJs0kVlZJPp3CNXNkclkqKytBKVpAsymd8vJy8v2duKvuQQ7EMUI1KJikUilc2UPIHySbTeE6FqZhIMsaqWQv0WiU/v5+ampqyOazZDNZopHoYB2F/lSOcDg0aLmVyeYyeD0eECCdyYAAJbEKHnzwDyw+80wqayoRZBfBFHBdSKczJAaSyIpMWVkp4NLT04PX58Hv9w+dfy6TJRQMolsWkiwgCgK6bqEX4Pnnn8N2TC666Pyim6oLruPS39tH0O9D88g4tkk+b5HN5YlEo9hWBpBQFQ+iKJJOJ/EFI6iKRCqRQEBix7Ymps+ajsfvwbYsBNfFNR3WvvoqJ845kYKRJxaLYTsComuRzaYQZRlNDmPbOr39HQQDYTQ1gCRpmFYOFxNN8+LYIjm9AI5DwO+lafs2GiZNZs+e3dTWjSMY9JNIDJDJWQz0ptjZvIt58+bQ29PNlGmTyesZFNnDnx97ilPetYBwOEA0GqGns4doNI4jusgCgMhAIo2maciKxO+Xvcxnf/Ar6irirPv1d9i/v5Wa6mqadzYxa/YMCqbOsiefo6q8hvauTkorgsyccQKa5ieRSBAM+hElkWwhT8AX4LE/PcIZp59BKBbFQUCWZFa+sJzFZy3CdlwyqTQl0RJM02Lv3hYi0SCWZWDbDuWxOAfbW6murcLjD2I7IrZuISsi+VwGvz9AV1cPjqPQdqCJV/d28OWfPkJteZx193+Hrdt3sX3HFq647Hw62vqQFYlMOoXiUQgGA/R0tZNNp4jHy/EHohxoayeXyzFxYgMVlRVkMmkUWUA3LLw+Pwjw7LJlBP0xYtEQU6c1YBp5NJ8fwzDw+XxA0R216A7tFhVUj4osCBQMHUGW0As6mUQSJC+KZBMM+jBtUD1FN1pF8uA6DrZtYlgmjiOiKh58fh+5XAaPx4thGGSzGXw+X5E8zhJoatpNWWkFuXyGaCxIJpshXlZSVNhkiXQygWVZRGMxBgYGUFAIhULsaNpBZXUVoVAI2yyQy+eRFY3Nm7cyfnw9FeUVmFYe09TxegMgSEW3ftsGV8Y0XFTVwOf189LLLzOxoZGSkjg2TpGFOJPHsh1008Us5LDNHKrHQyAYpLu9h6rqKpp2NjNx0gRkVWX588tZsmgJyWQ/gYCGI8gE/D4cyyafz5HJpImXV5McGMA0dPx+L5qqgCvQ3tkNrogDVFWVUSjohMMh7KZlCPFJZGdciBKuxucPoVoGzz3+KNNmz6aioR5JVJAEAUd4o2Xnra4UR8shOZo4ezSioaE6Y7T6HXNdG1R4j2mpPazscOvUaMd8uwrdqFbZUcb2JivWGPt6qzh07Q59jsbueixr+Wiyxjsqe4w2psN/H+U+fKuW07cix4yln7dT//A2Y3GZdt03309HI+09+rmIo9Y5rqz+4/BWLa7HY1yP4y1j5KJwiCl4LC/zQwvIvwoxwT9qvK4gICoyC05eiIVAWUmMdGIA0zSRZZnS0tKiW246i2UWNwNM00T0R+mYcClurh+xfx/5bAEckBCQJAmfz4frugQCAbLZLLFYCX5/gHA4QjKZIhKJUVpaTqGgD8bC6ZSVlWLqOook0NG2H8HWcV0BUVQoKSkjFIySHOjhmqsvpyweRQYKmRympeM4JpIEFZVllJWVYJoGesHgySf+wrJnV2DbNpZlYZomXm8xDtejyGiyRFd7Gz5NIZXq5+KLLuD8887F6ykqBLlMAtvQeeyRR9mxownHEsgaJprPN+iSbGAYOl6vF90oYNsWgWAAUYBsNk0g6EeUoHZ8DT6fD0EQhmLj2jvamXXibERRpqujn+RAjraDnfT2JggGo3i9Qdate5WWlhbqx08gEAiyc2czgmiwY0czOB5kSUUQDbZt3QK4FAo6U6dNx+f3MnHSRHxeH7bl4vX4qawsp258DR6PhKpK5AtZMpkMmqLg8cjMmDGZaMiHJDjksmkqqisRJAnHcejr66enp5vfPvgbHNPk1/ffz08fKaYXWjx/Jtlslv7+PlRVpbKygkIhD66Eonooq6pk0uQGBvpTiKKCaZh4PBqmpfPUk8vo7uijra2DaEmMjZs20tnRwZ7dexAlEU3TMC0DUXQJBHyYpk4+n6NufB2rVq1CFEV8Pj+yJjKhoR7d0HEcF9eGh/70R7KZDO0d7axes4Z4aRm79+whEqvg18+8AsCik6bT3dNHLpNi0vg6Xn5hBR3dXbiCQNW4GiZMmIDH6yFWEmX2ibNxXJuNWzYya/Ys8oU83T3d5PM5dL2Ax6vh83uQZYmnn3qWunENTGioJVYSJpfLEAwGSSWTyJKM4ArYpoUiS6SzeSzLIuDzIrg2tiNgmi6ypBHwhXBckZb9BwmHI+C6WLZJJpNGVXwIiJimiWVZIIhEIhEkWcIwDFRVw7J1dL1AOBThwIEO9u09iGnrbPXOiQAAIABJREFUTJxUz+ub1iPLIqtXr8GyLJqadhb7cSEQDBEMhTFNi0g4guaR6Og8iGVZbN60BdNwUDQvLhJGwcIje2k/0E4mk0aWZDweXzHlmFTUazRNxXZMvD4FQ3cwDIdgIEJZWQWuC6ZZwLJMsrk0Hk0iFA7S2dlONBoddNdN8Ohjj9LV3UlZWRyB4nuovLwcRZWIlUTxer34/X7y+fzgfeDg8XhIJPoJhYL4fAG8nhCSJNKf6GdcbTXRkjDjxlWiqCrRkhju4OahYRlk9OK6o2HSunsrkViMeEUZkiS94xuax/G/H8dKW/KvIqv8b8VYZcu3g+Opa/51IX3ta1/7R49hTLBt+2v/6DEcRxEjH/KRu5uHMBq5wci/Y8Xhwf3/U1KHIxEvHDqPw8tG/u9oltcjjWGspAaHt3ddFxsXoXUNfitFU1sSyyxQUVVNPptCUVW6Onvw+SOoqh9NlYsWGEWhvLoOvWQy4r6XEQv9qLFxmIaFrCjoeoGA30cul8fvD+AKgCDiuC5en59sppj3NZFIUBIrARwsq6hUqrKEKBbZitvau3FdF4/HQzKdQhIBXGzLQFUVjIKJi42iKqTTKTxeD8lkglAwiAvMmjWbqVOnoqgSsiyjKsX42K1bt1JeUYpp6Hh9HhzbJZtNE4kE0VSVfD4/qAAZiILI1CnTCIfD+IN+FFVFEiVcx0ZVZIo0KyK5bAFRlEilkkiiQiGfxR/woWoqhqnj8wVAKO5gW6ZJNF5aZMuVVTZu3Iwia+zevZd8NktZeTkgUj++lmAwgIDArp276Ovvp7I6TkdbD2tfeZ3GyY1YVo7qyhqSySTrN2yguqYGDjE9FwqYhlWk0B+MMw0GA0QiUVKpNOFwCMsuzqUsFedH0zx4vB5+/fgKHn95PdGgj0RPL5l0hqXnL+Wl9Zv55V83snVvKx5V4ce33oRfkSgtLUPXdaLRMPv27aGqspKJkyaxe+9uJk2awOTGqSiywm9+81taW1tpaKinPF5F/8AA0ZISJjc2omka69dvwLAsKisr0VSFUCSIomi4DiiyyqpVq6irq6W2bhwejwev18+zy5bR3dvNuHE1KIrKw8+t4clVGxhfXcbUyY1UVdeQyens7ezn5rvuo7m1A01VuPtLH2P75k207NvDqacsxHUtJs+YxfoN64mXlOD3efFoGmteWYuqakycNImy8gqam3cyYUI9NTXVmKZBrCSKi4th6giuQFlpJaFAlFhpkHA4iKLI5LIZfD4/q15ew8SGSciygMtg3lYEXMfBdR1sV0BRFBzLRpQkfAE/VdU1CNhkMyki0RiKqiEKEuBimTaJgRTRWDEPsSSJOI5LPq9j2xaiKKFpPsKhCJFIFNMsIEkCJSUlqJqGaZo0TJxIOBIuvhsEAcMyURQFvaCze9cuKivK8Xi8VFRUUldXD4JINp/BKNjIsoee7m5UVSEQ9OH1BnBdAdcBBwdJkjDNogVU88gYehZVkwmGvICNaeXBFTAKOt3dXZhmnnC0hP6+HkIBH21t7Tz3/HIWL1qMx6uSSSdRVY1MJktt7TgURcS2TFzHRTdMRKH4XrNMk0DAjyxJaIpKJp0hl8nh9WvkC3rRc0CV0Q0Dnz8wyOZsQ+9epGApoRPOJehRyfS10XlwD9PnLkTz+0CSEBCQEHCFYXf3wRfsEd/BY4lvGwlxDGvQ0dako5WNRUAfbS0dtc/D1pajrZBvxwtqrDgqmc47frQ3W/JGU0gOySxjUVb+1la4sfQ+qtwyouzvgdG4RY4l97xTYyv2M7pt+q1abovfxb/bvB3H2CBJ0u1vpf7xGNfjeMt4J0gs/hV2xh3HKTL1OkWXubeK0VyNxwRRwAHsjm0EHdB8VSiCgOjCnr27mD5jFrFYHFn1YFtFl5l4PI4gFPPElZaWYpx6C57tj+B2b0GLTQKKeXFtSyuyvwoCHs2Hbdt4tKIil0nnUBUVvz9AJpNBGMyBmEmn0E2LUDiCPxwh7siomoqsSHi9HhTZiyi5ZLMZ8vkcHs2LIIvgCmiaB1GQiEVLEEURVS0qlY5t4TjFBcRxiwyhkydPBkFG0YoWK0XRqKurwtANEEQEYNPGzciKy5w58xFlC0kW0e0CTl4nkcwUWVFlEY/mxzBsVq9ay5w5c4hEIzzx2JPMmDWVSDQCokAsXgpO8RrZjo1hGCieAI5j4zg2Z521GMexKSmLI7oWkiSSSqeJRkI4rktbWzvjx9fT0DARB4fZJ87GsuBAays146rIZJKEwyEWLVqM5vHi2jp+n49crlCMjRQlDN1ClgRisRiiIJNMpKmucvH5vezY1oxtCzTv3MVJc2bT0DCedF7nh79/ih/+/ikEIBL0k8kXMK1irJwiS3z9pqtoKC/HMAp4vT4KBZ2Wlv2EIyH0TD8mMifMnIoIuK7N5i1bEUWRE0+cgyJ76OnZyfTp0+jq7UGQwoyfMIGqqmpSmRydnZ3s37ObaDwGrsLWzdswdIPFi89k67Yt1NfXkc1myWZ6edepZ5BOJ5BkBcvU6UsleWpDM09t+DaCIBTHnssPj12SuPGc+ZRF/FSedgqKKJDL55h+4hxyeZuTFyyktWUf3e1tJBMDnH7aEpqbttPXl6D1YDv19ePx+XzIssRAoo/OrnYmTGxElmVymQy7d+9mxrRZtLa0Mb6uBlkW0TQVURA5cdaJOLaLZeu4gkV2IEkgEMEWJGRFQcBFFKBQKGBZBqbr4PP6MYwCwVAI1xWRRAXXNTHNIqt028FuKqqri9Z/nwfHAVmSkRUN07RwcXnt9Q3MmDEDBAFBElE9Gqrio6FhIjubdzJh4gREWSwSYclF13vHtJgwfgL5nE4un6ejs4t4aZyysgokHPK5HE+/sIwzFp2Kx6MgyRKKopHL5kimUkTjEWwLclm9+KwKArLkZeuWJsbX1+L3echmc/j9XhzLoqSkFL9PxnVtamurSSUSdHZ2FnNVSyKyIjKutoa+ngSllVUoigSYHDzYSnXVuKLVRABZlIppbFwX0zCRJYlAwDu4OSDh8/phoBX5/7P3ps+RZWd63+8sd889E5nYUUAVau/qjeyF5MT0zGgkh8e2wuMlLIXDS4TCS0j+IM9H/wn+4k+2JUszlmRJMZyN5MywF7LJZjeHvbG79r0KqB1AYct9uas/XFQTDQJVqKruHo6EJyIDiXvPOffcm5nnnOd93/O8/XU0EKzwWVSPSmLU6DFEnOB32ywtLXL95i2e+/UMIaTGp69gStlpK8we/uZgO9Xax8HfhD2y/67gSQnmdsalPfy7gz2P6x4eCztZmx9mgXuaaz3Kcr2TxfxR/dnJe/tANOMB6ZRSfpby5VF92lomDEP6/T6WZX12fDs8uAclU3ImhUQC4fUPSWSMmPoaK0urWLGkNj1DEILWFuurd/H9NfL2MIEfsLK2jJfPIZSBaZnEtSMk67fQi2eRpTEMy8MwPbTtMgj9VPnXzqBNB0FIrC3CMCQOA5CCSFiIJKFYGqJcrRFGMY5pI2XqOQqDiCiI8TK5z/rv+wFSGTSbdZI4wTZNAn+ApVPxIcvWrK+v4Xl54iAhChNCP+Ff/+t/y7FjzxATILRCqPRZEMcMBj6hH/PWWz/gN177NUZHJlIvWDgg8AeYyuDe/UXee+9jbMejWCkQBzGtdof33n+f555/jnt3buNmshw5OosQCRJJGEQkMmTgt7AMRRSF+M2EN77/lywvL1AqFdBa8y//1R/zycnTNDttDh89gpYCISS24yKVQKoEpQRKJYyM1LBtG38QkPgRi6uLFCp5JCGd+gr9bo+Fe8sUiyX+4i//nNnZY9RXV4mDiL/4/pscf/Y5bMvAcbNEccL5C+eYmh5lenqaOIaca5PLuoRBRLffp9v3MbRmamSI33zxKP/kf/uH7B8qIBHcvH1nI1TTolDM0u93CboL9OOIKLRprtYJkoSR0VFOnHgWrTT37iyweP8OBw8dwrMt7t27iWkKrl6f4+rFCxyenWVy335Wl9fxXI8oDMjlPd764evsm5hCiDQRu5NxePeNNzl+7CDN5irCkFTKJQyReuGllLS6fQytmawN8TvffJG/++IE/9FvvMrI+Chz19aIxBK53DDaNmg1e5w89QkT41NM7BvBzibMXb7J4cNH6fkhuXyJrOvhD3yElESRoFwZwe8F5AtFDNugXCtjeiZ/9ZN3GMrbxEEPZVp0mmtYjoFpG/SDAcoy8OwCUZIw8DfCbGVMFIb0wgQn46FEwqDfxbItIqDV6mDbDtKQ+M0eIooZnR5GS0EiNb1ehBCaKAj4v//Pf8bBg4dQStFsNahUKmhtc+7sBcZHxknd2ILSUJkoijj18SdUCyUQMY5poqXEcWzWOz4xMdXqCPXVNkqGIAQZL8P09D4qQ0WiyMfQijs37/P699/k+PH9DAJYWljl4rnLTI5Pce3SVWq1YUZGh4AI03QwDY9Ou4llGHTabdxMHhAEQUyCYHJqmqGhIUbHR8jmPJI4IfRjTp8+z/T0NL1uj1wuhxARIoq5cuki1aEygR9y/eo8YajIZtNcus1WJ91jPFhCdVdQL/83mAdewagdQ088TzL6HMmh32Y1s5+os8CVs2eIhMGrv/k7CK0BAQmpQUyksRabZwW54XEU6WCbjrkPHcE3xvFtXrvBZu/UwyJ1tqv3qLkrjuPUyLGN920zHtzfZx7aXfZ7p9d2bW++/oOX3FqXx3t2j4OHenMfMU8/SeTW1rqPjKjaxWs3xPdhJbZ+1zf3b9s+PeRzfZJn8Lm+bLOP9clCrVOV/kf98lLP6S9eIH7p2OZzX943cQ9Pi8f1uO4R1z08Fr7I8I8vywr2NFa67YSnnvT6xkYI7KPCuraWeYBw/iMEkspzv00Sxcxdv0JtfBjPzdDtdikXiyBiDO1w685NKtUq3U4XbVoIYsIowpx6kaS5SLx4iditYBgWUqmU+AWpSJNSmigKEFKjlcQ0JIZhYVhmmiInCFBao5WGJEEqPsvhGkcRlmXRbKzjuA5aG0ihyGSzhEFIkiTcvX0HKRWu5xCGAYVCEZAsLS7wR3/8R4yOjnLo0Cz5fBZlKOSGoSAKQ5IoJI5iut0+ly9f5sDsAaRS3Lt3F6VkKqgjwDBNDs4ewfcHaENiSIntOjz3/HNYpoHrWEyMT6ANRafTIY6g3e4SxWAaNiQG62sdrl65ysVL53j++WepDddASG7fvkt1qMzLL72IoVKjwrlz56jVakgliOOIIPCp1+t4XgatDS5fuUK9vsaR40fx/YDFe/fxgwGVoRoLC0tkMxnu3r3N5OQU+VyG5eX7rKyusbK2yvTUJOfOnWNmZprjx49RLOYZDHxcN4OpBGUz4ff++/+c//rvfIv/+Xf/Nv/gP/51/sff/Q95ZrLG1NgIuVyOW3duUyjkuHr1MpNTk0ipCPwQgnVyxRqWU8AwzM9Ua998802OHjnC8v1ljp84zsryGpZl8+abbzA2Osq7733AcG2YWq2GNjSf/PwTTp06ycjIMFNTk4wMj6C1getlaLZaWFaag9XNeBRLedbWG1TLFXSnxe/9d/8FR4Zs/vff+5/4x3/vP+U/+82X+NuvvMjhg/sYHR0jSQQ//+gUMzNVcpkyn548yWhthOnpSeauz1OrVrBNA9POkC/k+eD9D8jlcsRRwKXLF7Esi3anzaDfZe76NYqlLJZtYWykbDp86CDEIY6XQWoLgUkcKQzTwbRdkjhN+WKZNkLGKGXS7XYJAS+TQyQJoT/Acz0GgU+n0yWXK6CkZjDo8elHH3Hp4gVGx0c39nQ6ACgpMLRidnaW6tAQUguGazWUFkRhTLFQ4Mrly9y4Mc/E5BiINLS3kCty7sx5hsdrkMCHH35EtVqFGFzXwrJsMl4ObUEum+Pixcs0Gk2GR2oIAVIrTp++iJdxGR2voU2TQr5IpVIhDH0ECQuLi2QyLkkSpx7wRNJqtcl4WRYWFqgMVdCGxrJMDMMgjELOnD1DdahGNpMhCmN+/OOf0Go3OXhwFq0lSRJhmBqtbUZGR7l67TqmafGd7/4F5XKF2vAQlm2xfH8ZM2qT6d4l+Y3/laYuEDt5rEKN+aU6xfF9YHm4lqbbqrO+vsYLX38J280S8+iF8ROP409U65ev97hCNrttfzek9HGI6xP3Z5vrfRV4HGL6NG09adm/Lor0RXkpn7bsk6+jdk+eN6+nvgznyR6+GuwR1z18qdhpUn6SieLLChl+WuL6NG1srpskCVrrbff/bj62nfKwEIJw7kNAoGdewctY3Fu8RbuxQuiH2FZKEpVhcufuHFMz+xFoXNdBy4SV5RUs0+LSpUsMHX8NvTaHbC+ReBUGvo9l2VimSZgAJERRgNrI5xrHqZpqdmMvmuN6RBsEtd1q0e21kFIgBRQKeYIwoF5fxfcHZDNZPv7oE7K5LLZt02o0kEKQz+cRImF5I+VLs9FAKTjxzDMoJchmPZqtdaRI+5CQoEWaf3bgB7hOhuHhGtlsGsrbaDRRKs3jKkWqYGyZJgsL9/j5xx+zb2oM0zKQShJFAZapQKZhhyvL6/zbf/OHOI7LxNQEhmGSRKCVxZtv/SV//+//Paq1KgnQG/RYvHeXr33tefJ5LyWuCqrV6obBAZIkxjAMLMthfX0d0zIolYrkivl0AR9DxitRHKrghxGGVkgRk89muHPvFp7n4rgO7XYHx7FodzrMzMywvr5GNpsljiOuXr2OPwiYn5/n3r17HHv2OJZtY1o2mUyBP/3Db7O4sEgURYyMj1EeqlDMe0xOTnL//jKem0mFgfqr9IKIbLZCP4i4euUiQkAURSzcu8foyCjlcplTp84wMjLG0uJ9jhw5zrPPPk+32yeTzXDlynlOnHgO17UJwiDNPasUhmFy8uQpRkZGiaIQN5clm8/T7fUZ9HzWltepVIcYGRlmcnIKx3E4f+Ec2VyW119/g1dffYlLl6/QWG1hmgIZC9qtFpOTk5w+dYax0TIiEZz+9CyVUo3KWJU4jpiemmL5/iKmYzA7e4B8Poc2BLm8Qybr0O21UFKilSaJYmKVIKTEsjMEESzcW+JP/+w7vPi1r6f73pII2zKJE0Ecp+JhkTCwHS81pIQBCjCtNOw1m83h+xFaW4g4ZGJsmKmpCfz+gDAKabZbZLNZkjig024glUzDaUVCGIXpPlPLYXFpkdHREUZHRgg39nEnaN584wcs3Fvm0NGD+AOfCxcuUSqVefuttzh0cAYhJUiBMGMW7y5TKZexbYtGo4lju0jTZGRslLGJMRKRIElzO6cKxxaFQoHK0BBr66t4XmYjvF+ystLgO9/5Lt/4xqsoSxOF0YaXKEYgeP9nf8XXX3yVft9ncWEJx3F45ZWvYdkGiISVlfu4rk0YglKKQqFIAszOHubs2bMcOXqIMAyolgs4y2fRr/0jktwo2UwGx7LoCyiUcpgyYfHSR/SW73BzqcnXv/Eq2raRWu/Ko/PXSVy3ju1Pu6jeagSFPeL6uOeetvwecd0jrnv4YrFHXPfwpeFhwkQPFhAPGzS2yw+21du424HuQTuPCmt6mglsuzZ3EnXY2u+tJPjB++321mx9Jg/aCec+hERg7n8ZrSWO63B3/gK3bt7imePP0QsjDMPCyVrIxOburTtYVkK3vUohV8G2LDqtNlIqzNoRuP0BMgmRXhmlNFpKwjhGmxqBpFlfw3Ycmq02QRgQBgOiMMQPA9xMhiiM0EohgDiKaXc6xFGEVhaWaZDxXFqtJpZtYdkmhlZ0Wi3y+Szr62s4jsXKyhpDQ1VsxyKJY+I4wXM9bNvCti0G/QFqI79sr9vdWNTbGIbJ/Pw8hqGxHYtCocR3/ux7hGHA1NQkUqSez263Q6/bZWZ6Csu2iYG11VXiKEQpg7t3F3nzjR/wm7/1WwwGfUbHawRBjyDoIWXCyy9/Dc/zUFojpMAwNbWhKvlCjihMRa5arTpaS6TQRHFEEAQbwjtdSqUSYRgy8PsUShWkiFASvv+XbzK1b4qLFy9QLheJo5hisUwY9qhUqijDYtDvMz42zujoKGEUce/eXer1dZQUZLN5asOjxFHEwUOHkErRbrcQSASKVrvJSy+/TKlUwrRMpJTEcUS/10cqiW1bG9/RkOWVOvfvNzh1+gzHjh3Gsmz2TU1x+9YtCvk8pqWxLRfDMLhw4QKlUpFCsYDrZbly+Qr7JicwTGtDhMfg1q1bHDgwi+05TE9N0263sS0TPwwxLYt2q8voyBj37y9jWppGo4nWBr1ej+HhIcIoolKuogzBcG2ED9//lOPPHKBSGiOTs+j7ISc/OYfUIaVikWvXbpLLFXAyDpaZRhCUSiVsx+Ly5WupoSX0uXj+DIcOH0tTK/V72JaNTEAaBpZp06g3cGwH2zGZ2jeJkDGOo1hbW8J1XFrNHoapsWwL085AEpNEIUoppDbTGD0haLXaIDRzc/PYpsXPfvYe+/ZN8/OPTzI2PkY+XyBOErQUtJsNisUyjWYD1/MQQmKZFkJIspkMJAmrKysUclmklsRxGrkRBgFHjh0kiiJmZ2cRAg4fPoqQCf2en4bchz0cKxUby2YzzM3dYH29zu3bd5manMBxHfxByLUrlxiqlHFsm9///X/BlWvzHDt2mCROgDQHrdYK2/EYqpQoFPMoLSGO6fY6dDod8rkcx48fY215nZMnTzMxNc7k1DiOY+H7PoPBgEwmk34/paTZqlNvrOPYDlGc8OILLyBkkopW3T2Nmn6ZePpV4iji3p27mIaBcjSmMlEI/A/+DWJljsP/wX+LtDSxFGxKsbvtPPDZ2P2kexmfqNbn+7T1/dOQip3qbrtw31L+qyauuzEAP40nerv0dZ/r0zYG9u3EFh+G7eb0xzFuP84d/SqQrq3fo63nnqRvj0uG0/KfX29tbkcp9ZkK8F/389rDF4c94rqHLxU7DRabSeSj6m/1Lm43QeymH4+jwvgkeNhCYfPAuR2Z3W4xsePCiu0Jezj3YRoKvP8lkBLbyXFwpsy1S1dxswXKQ2NIbdBsdwl8QTGfY219njBaJeOMEIUhgR9QKhaRpgflceIrP0LmqiTCJAgClFaIjXvRIiGOExwvC0mMpVJC3esPsGybRqNJr9cjCFLBFiFI98RGqeLw6voyjmNSKueJoghDS6QWmFoSxyHZXBbLsBn4PkoJ+t0eZ8+c4/zZC9yYnyefy1Iul0kgFcRJwDQ1pmnR7fRQSuNlPPygR5JI7t9fY3p6Gm1I2u0Wvj/A0Jo7dxaYnd1PfxAilSaKY5QQdDsDlDJxXZeZ/VOMjFYBC9Mw0UoSbIQZ9wYDlDbSfb5xiGU7aNNAKk0C2LbAHwQY2iRJEhzHRgiBaRp0u20MQ5PNZggTSbezStDv8dwLz9Ncr5PxHIaqFfwoYRAIygWPIBJo7fDxRz/n0IFZhFZ88sknTE5OMjo6ShxHaG2itUkcRZw6dZKff/Qpk+PjhKHP6soKdxYXKJbLeK7L/PU53v3xOxw79gxvvvUDTpw4Rq/XwbQUgwDK5SEcM8PSwhKHjxxESrh08TLj4+OpYE7OJY5j7t69SxxHHD9+jDgJcTJ5FhYW2TcxgdKSa9euUywWGR8b5zvf/S5xEjM0VEUgOPXJJ8zsP0ASJ7z77k8pl4fo+wOKxSzVao3V1XVyuQyNxhqVag2lDN5883XCIMSwsuRLilOfXiNftilUhjh3do6XXn2Wy1cuc+LEi1y8dInADyiXKoRxAipV881li3z80Sfsn5miWi0jlUu71UIkMZ6bvtfaod8PWF25j2NpEmlRLJSxrQfCQT7aMFhfa+H7PdqdNrZloQS0m00GQYS0PBQJrVYDy7JRysQ0TOZv3OKZ51KxpUp5BM91UdoCBFrrNLWUYeFlsgRBDEhWVtYwLQMhBP1enxs3blAo5AjCEMez8TyLg4dmiJIIy07z9YZRgO3lsRwLKQy+86d/zpFDB7DtDEoJ6vV1RkbG6PcCTp88zcHZaUSS8OnHp1lduc/0zDTdbo8XvvYKZ85eJJuxsW2Hb3/721y9eoVDhw6iLYXnOdQbDRIhaNXXyWQy2JZFEPjMz8/z+l++zje/9Q1qtSESGaGlQaOe5iXOZDJkvFyaviocYJkGjm2zfH+JXt8nn8/iL8+j+utE3/gHmBtRIBnbxZAK09aIKGFpaR29eI58voje/01CFZGIB7n8vhhP5rbj/NPW34asfpHesAfz0K7qP9FVd4eHeVw3CyF9UR7SOI4/S3+0E7YKMKWGvPhzx7euQ7Z7lk/z2T0ucd0NgiDYcWvR0+KL9GA/3fV/ca0H9/pl3fMefjWwR1z38KXhwcDxYIDfGgK13aS1ud5urM67tTxutX4+LrabqDZPcpsJ6aMmuG0t3mw/6e0m/cKD68XLcwgrgxx7BikVQgoUWS6dv8DVi6cZGR9Cuya28oiNCGkbZHOjEBVZq9dBGkQJmI4mUSa4WeJeA7lyHZEdR+uEfq+LZWi63RYYJkIpkjjGH/hIZdLvdckXinS7PYSQaGXgB11EHGFoTbffI5dzCcIIJTTra3Vs06TfDwl9HylJ2yai1+vhug6DwQDH8xChz9LyGkiTo8eeIZfLs7x0k3wuT6/TZXV5CSeXQ2nF6toS1aEKShnYdpp3dGV5mcOHDnD65KccPHAYaURksnnKhQKGZaABLSRxFGNnciR9OHP+JMefPYpteQgMlCExDUEURWhlY5iKQX8ASSrGEwURrm1Bohn4HQxTkyQmCIEyBUHgkyCIkBha0Ok0iBMw3BwQ06vfw5M9mt0Ay8vgelnASj1ppmB9vc47P/opIyMVIEEZDqYDpWIBUxvMXZtjaKi60ccB0tTkcyW+9sLzSCmwHQfTcVhZWmJ+7gYjw2Pcun2HiclxPNdh3/4xMrkSSprcuTlHIV+m0exiOzbdbodCoUin0yWbzVCtlDh75hSuV+DewgIHN/Yd31++T7FSIYlD6vU18qUykZ+Gln/r+Y99AAAgAElEQVT08ceMjY2RL+axtEm/N6BQKJDLZ7l87gKlcpmxiQkcx2HxzgKnPvqAsbEy5aEaly7d4vrVG0xNTOP7dZbvRSyvXmdyosro8D5yeQs/6FLMFpiZHUWJPHfu3CVKBly5cpXDR48TbOTo7fU6mEqyvLxEuVygWPCor68gDZ3u7Y0l/f6AYODTqHcYDNokSUI+N0S/H2K5MSQhg96As6dOMVSd4PrcNcIwplKpYhmp+I/lZTAsK/19xtBsdfn009Mc2L+fOIkZH68Rx32EEJw/e5HrczeYnBwlCnsM+n0sy0GZBlI4xMkAiDeSuMiUtBsm/cGAxvIyxfIQKE0YBGgpUUjiMEIkYJkW3fYqg24vPa8F5UoJAVw4f4GfvvdTTjzzDLduzdMfxBw6dJjeoM7U5ARj0wexXRfDVKyvLnHs8EGk0JBIJif3MT4+kipzmxbtVoc4TjC0RhguQmgWFxfwXIdsNsP9+yvcX1tj+sB+ep0+/qCNEFCtDqeK5bZBp9tGGy62nafZHhDGCtf1cMI1xPoN/Ff+BzKZKgHQCSNMVxMlA+JQsrJwi9X7NxkKlxBaoqdfQCUClaRKy5/3z/xiPH1wfMdZZHNaj41ycpNRVbC9R3A3s81OkUBftBH1s3lmu/L84p6+KO/Z1rY/e74bHl628U5ufv85wayNOfRJ+rLTs9jOO7rd2uMBEdrch+2wnT7Fg7+b1wEPMz5/ro873MsvGazDcEeDRBzHn+vX02hx7NhPkUbQfRlG/+3LKoSQGz9J8die8T38zccecd3Dl47Niru7weMOPEmS0Ov1MAzjoWU2h/88LoHdGp774Nh2k/x2e5S+iMl2p/486Ic5+Sx6/JnPDd6xlkzvn+HooVk++vEP6K/dJ2NKPNchThISJIahMWTMP/m//ikfvf8JE6PTOJ6BkoooN4a68TMQEuwcCIUfhBiWhZI6VVGWaU5EkoRet5WGnipJJuNRb9Yp5gusr66xuLhEsVRCa5vBwGd5eQ0hBEoptKURAqRI01xYloOXKxDFUeopiUPWmuvsm55menoSz5GIuIebzyGUotnq0m73yRcLWIaJZVr8+EfvcPHiZUqlIkoqRkbGeOP1Nzh89NiGdxfiSNLrdDE8RRAO6HVbQIxpCISO2L//CP/qX/4hH3/4M0aGCrh5Oy3Xa2E7RipIk8ly9+5dioUi3W6a5zIMY0zLYNCPWF9tk8sVCYOA1JNmEEeCJIkxDY1pWURRmH5mYQdTQag83IxHEARoQ2Maihs35jCUpjI0/FkOz0q5itIK23R4660fUCqVcD2HldVVhqpDJEnquWvU62SyGSzb5PSp05w4cZRnT5wgX8hz584t9k1PYttZHNclCgSnTp5h9uABTCsNS713b4FqbRg/Crlw8SLFcolut8fBw4eIkVy4eIGJyQkyuSxD1Sr+ICJJIJPJ8d57P2VtZZnllRWklMwc2E8ulyOfy3P2zFk8z6NQyLN0f4nh4RqQ0GzUCcOQqalpukGPYqWG47pUawX++Nvf5dnnD3NzfomIBt/6xmsIDNqtHkoZrK/2cVxBv+tz4MAMcZRw984CRw8f4523f0yz3uTWjVuMT02SyxdYWV1jqFrF8TxAEkdw9uxZpmdmNtKryJTclgrESUw+axMFbcIwQQiL4bEJPMdmeHiEaq2KkIpEaoTUrC6v4ToOSgiQ6d7wcrmIZZsoJRDSRGlFkgjGxycZm5xAGRplGCRCEcUJYRiitUm9kf5eLNPmvXf/iuvX55idPcjc3Dy3btzl9u0FqtUqruuwvrZMGCafpTcKwwjHszBtG8O0KZZK1BvrCGFw/vx59h+YZWxsHKU1U9OTdLttSqUsURhg2TZSxiRxCAnkCzlOnjrPO+++m4bpxzHFUoUojDZyOldYXl7jD//w20xP7ePWrdvk8wXa7Q4jtVFmZg6QJALXTr3DUioWF5fIZTOEYUC71aFcriCl5PXX3+DG/A2O1jRm+y7itf8FszRFmMQ02x08x8OxNP1OmwsfvcfFs6d4+ZvfhMWL6W9t+uu7Gm8fLPAfZ1zeOtY/zvi99dpf9IL7YWTtYVfZztu5Gw/oY3bulw9t/N0pF/qXQbYedm6nsN+HYTuv7KPEGx+XuG4HrXfOUrnduS/jWT6tOOV266udy6e/0z2v6r+/2COue/hK8DCL2E57NrcLJ95cdjMZ1VrvyrK6U3+2TtRb+7Jdva3lt5LUR1loHzY5b7X4bsaDhc5O+3031w03iKFtWqwv3iPstPjgp++xeH8NpE0ul+PmzXnKBY9GvU2j3uKb3/wmti1J4hjHzdIWHuaNnxAVplCGkYo8aZWuPxJo1OvYloWUEstKQ227vR5xnD4X0zCJgogPP/yI48+cIBGp7+Ott37A6Ngo1aEK3UEvTQ8iVRrimoDlOPS6XdbXVhGAl8tRKORpN+tkPIvBoIPt5QiDAMuyKJXKCEiVgpViaWERgUJLCKOAKAq4fe8uR48dAyJMy8QyPH78o7cpDA1TypdRwqDf8xFIgriHUi6tZoejh/dz4MAkhp1FCSMVsRGKKI5QSlMqlWh3OmilsSzN+noDx7MQwuCHP/gJtVpKKIIgxHE8rly8hON5eJkM/f6AJE5I4pjIbyIiH72xr7g/6GHbJoNBn1ptGNuyOHP6HGE0YHV1herQMFIrev0+0zMzOK5LMZ9huDZMkgiUYWA7NkpK3vnJO8zO7mdyYhLbMVPl4CBkfn6OQ4dmUYZibW2BO3duMzoyAjJACI02DBzHI4wihErzlE5OTqShqbZDGMUEQZCGhdoWQRCwvtJgcWGJoUqFkeFhTp0+yWuvvca+mRmiOOLs2bPcu3uXZ048y5/88R+Ty2U58dxxWu02165coVQqE8cRI2PjZPNZEhRSKpQKeeaZrxHGLerrPr/26y8SxyFSKm7dvsmly+dYXa3T6zdZX2syP3+NI4cP02kPiKMud27foFjI8o1Xv87Aj4jCMM1prCRBmEAcE8UJIyOjeJkM9WaDQqGIaRokxNy/v0QcBQR+l4ybxbQ8esEAUysazQZ6Yw9ttzfAUAYXL1zANk3u3bnDan1tQ3Qs9di7rkuMQmlFv99HyFRZFyFS8kuqfq2VADS2bRDH0cY+UMWnn3zKsaPHaDQaHDp0jH6/z9tv/5ByMc/YxAiBH9Pv98lksnz/+99ncmqMJEmNQ5ZlYpgG589d4OsvvUShWPhsDF1bW8U0TbIZi1a7iVKaXreHZVppfmoB4xP7mJ09wNS+KYrFMufOXUAryfj4OFJIXCdDPpthbHSUaq2Kl8kglaZULPKjt9+mkC8gJXQ6TaIo5rvf+R7Hjh3FtAwKhSLra3Uc12VkeISXJm2M3n2CX/uH/OD9Uxw8eBRhaQxtYksDS8La6go3r57hd/7u72Jnc/g3PgVAT7+07di73Vj8sIXzw+aR7bBbI+2Dsrslzo/C5vlkOyRJgnwEadtpztuqOfEo8reTV/NhaX8e9oyf9Pk8jHQ+6tyDv1s9irsht1ufweNucXqUgWG797vFV2kIeBS20/HYis8bNPYI67/v2COue/hKsNOEutkiubns1nqb/99JrGg3g9luyzzuQmW3be9U/nEntc2T+Hb9fbAQklFMgiIUmuHRERKhqI1W2X/4eTKFKkkSYOmYu7dvUiyUePbEcWq1PEKlgV1RlKDyJaLVeeL6XYRbIo6CNHck6QLctCykEKytrdHv9ymVysiNfImul0EbBr1en0w2h+W6hFFAGIZ4nkelUiKb8/CyeVqtNpZlIQR0um1MQ9PrdjEME21YRFGU5oyN09yL3f4A0/LQUtBsrAFpiGIY+kRRQD6fZ2piEtexSJIIyzM5cuQIpuPg9zv4Qcj83G0q5SKF4hCL95ZYXFhifGKCdrdLOAhwXJfhkSFyOZsojtCGSxJLoiim2+ngeg7dTpckSffZ2pZNnIBpWkRJQJJIPv30U44dO/JZuFkcQiZrk8l4DMIIEoFl2JimJAk69LstrGwVITRBGKSKzFIRxxKSkKGhYXI5j5mZGRqNDlIKXM9Nibht0mqss7CwiONk0HojZNzQVIcqOLYNiaTZbLGyskqpWCEMI3zfx8tmCIM+Cs2du/cYmxym0073WGqlkUohkRQLeZIoZv76dcrFEn7f54c//CEH9u9nfm6OQi7PD37wNktLC0xOjiMknDx5kueefx4AZWhqw8MQxxTyBUrlMuPjYxi2gT/o06jXmZyYIFcqsLa8Qr6QpVFv0+/0KeY9TNvDdmG4NoNhJXTbHUzTYWxslCNHZgmDiJnpGfL5IuMTwyRxRHVomKvXL/H8C88zPDLM1atXuHZ1jrHRYSBCSIVSBlImBEFEt9fH8dx0j6iCRqOBbTusr63jeDkcS3Pj+hyFYokg7GGYJkobDPwA07KxlcD3+7huKghlmCZDtSHkhhK3ZaUE39AmSRRhmgZSxEiZEAYB/W4f27Lx+z2arQaum6HX72BZaToqwzAolUuYpqZWq+HlPG7dnKeQyZAv5BASDO0QhRG9Xp8PPviQr3/9OfyBz8K9JWzbxnEsDGWhpOLmrVtkMxneeP0Nnn/xef7iz7/PzP5JchmPwE+9oFqZGGaa6sc2bbQWWJaJPwiYGJ8km3UZ+F0++eQTxsYmqFQKDPx+Sr4NhVKSTmudTz76OcPDVcqV4kZKHRBICoU8lmWitYVhGPRadbKdG4g4pPetf0y9H3Dk8DEEJsJW6FjwV++8iySiXl/nmRMncEs1fDTR/MdAsmviupsx93HwJHPBV7UYfxhxfRQeRjB3Wzdhm9DgLWUeVv9Jr/uk57YjqY/jYXycef1z9XZd8vHxq0b8HuYg+OXfxq9W3/fw1WOPuO7hK8FOFtbtQmkel7g+THhhNxbdnfr6tMT1cQQmHoe4PvC2bu1v963/g+D6Bxj7X0FrTRiGGFFCjMFAKkJpUhiuYWqTxbU+3V5IqWCxunyX6en9DI/UCKM2UdKh0x6gpMUH73/E7IEpOoaDffN9AjOL0PoX6T+SGFMbCAQZz8PQBs1WmzgCN5MlCGOUqVHaoDxUIZYCy4BcPs9QdQjfT9V5fT+1ojabTbQWqViRP0BKRaPV5dt/9Cc8c+QYrmVjaINOLyBbKNNptug013FMRa/fQW14PFutBgLIeh71+hrDo0P0/S6u56INE5nEhFHCj95+j4OzM+RzLiv3FxgertAPu7h5m4sn55iaGWVp5Ta5fBbHzZDIkCSOGPgdED5CKBIEppkKL/m+jyAlnFHSx9AWx44fRanUE/zBBx9x984is7PjhFGMHySsLddxjHQPYxS08ftd7PwwAo1lWamirOMx6AeYhsDQDq5jce/eAmEY47pWSvRdg0TEqCQhDBPyuQJLy8sbXvCEbC5Dq9UkCkJ+9v6HjI2O86Mf/YSXvv4y169f4513PqJUKDE5eoBPPjnHgUOHME3NT37yLglp2GmjXqfTahOFIXdv3yGJY0jg0MGDlAoFSoUCSkhs18WyTN5++y1GRqq88uo3sCyLDz78kDv37iKEYO7adbxMluvXrxMEPn40oJAvMLNv30aaIBNLS/xgwLs/fp9apYqhQNsWzdYiwcDh2vUL3Li2wOmTlzh9+ixHjx7FdfN89zvfY9AfMD5RI4gGKGkQxZqTn56jWh2jUKxx6MAUUThAyjQqIA6TjZBtTS5fIIxC/NAnHHQ4e+Ys0/sO4HlZFpbrWKbEVpIbN9PvSKcXYBoWcQJaGci4SxKm+Yxtx8XJZGg2m2QyWdrt9oZKcuqp7bRaSJHg99s4tglxgudmSKII3+9iuzZaWSSERHFEFMH6+ioTk+P0eh1s2wQdM1KrUS4UGR0dASH4/X/2/yKVIopjXn7lFbSIcCwHy7CJwpD1tVWy+RJzc/MsLi0SxTHLKyuMjo5SKlSQMiGTcXFMB9vyOHv2EoViiQRQSYw/6BFHAVoZ/ME//wOeefYozeYaB2dn0drkyuVzeBkP2zaRWhKEAfmsy9deeIFCIY80oNPp4nkexWKJUqlEr9el0+4hBnXc1fOoiefpn/ivWGu2mJ6eQkqNqT2soosME8QgottpUhupUR6bphtrYqlJ5n+GSEDP/OoT163j+ZeNpyWuT0qytyOu283vj6r/pNd90nM7Edcn2fq0R1y3x9b+bA0Z31L6q+vYHn4lsUdc9/CV4WFKwpsHqUeFIj0o90AtcHPo8NZ6202Q201Cm7FVTGq3k/V2VsOH9X+n+9+O0O6mH8H1DwBQ0y/9wiCgJIgYRYSWqWfD9fLcv3WJ+7cuUsgXKZaHqbd7SMfDcYuEA4VdqEKU8M//6f/D/tlD2EOTRHGCs3wWVdpPgibwuxBHBGGfXr+HNm2EUji2g+PYKKnQhkq9sqaRhmH6Psq0GQz6CGKkSFBSImXE6vI6P3zrRxw/fpQg7BOEMdpQxEFIv93l8NGDrKwts1Jf3VAp1gT9FggQaiPdTBQiRYRpOGRzVYSSrKyv42aKFPJlBr0+3XYdw0qJysH9+9AaBILh8QlM20FrRdjvMjw1SiIkuUyBZqOBqRWBL1FKIA1JHEu0WUhDkcNeun/Q8kDECAWm6RJHgiAK0j2LYUS70eDw7H6UbaTpfxoNbt24RT5XRJshrfoatpvDtDNIIel3e2hlYGgjFRRyCiSyh9Imve6AkZESZ8+cY2ZmP8EgIgoS3n3nr6hUKmhD8e4771Eq1HAzJlEY8dOfvs/Bw0eZnJoiEWBaBl7OZnikRiHnEkWCrt/gmednMQyHdqvD/v37qQ1VOX36FLVagUKxwOVrc1y+fJlvffNVtGngZh38yMfNZlGGSSabY225Tq/T59DhgyRJiGN5/Pjtn+D3QpIw5oUXX0iFgpSm0WjRbK0xPX2ABE2MwLI1aI3p5pgeK6OSPsrNEgY+pz+9wuR4iZyT5/biIhlP02kuMzIyApZFHAUMej69bpte3+fy5Xl+/vOf8+zzx/n05MeMjtbwcjZB6KO0pt5YwzAE2nKYn79JHAasLi8wVMyiTU2+UCSMQkzHplLMIaWg22uTy+UQwiJGYZomQb9Hv9dhEIXYbpZEGPT6A4RMiIIBSmp6nR6ea6NkAhF0+00iYrzsEHEiUaZF3x8QEuJ4LlqbtDstLMvB0BZCgue4xHHC5UvXIFEU8xVazTXyhSLtjk8vHFApVtk3NcXZc2fI57NUSjW63R5KJ/hBH60sECFD1QKTk5O4bo6FhWWmpyeoDVfIZHKpEUpoTn56moU79xgdGyWKIzqtDteuzzMxuQ+lLUqVClnPZv7GbVwvS0RMqVRBKY1p28RRDCT0On0SGbPeXENJjevYJHGchqFLTb/r47RvY7Vvc2Pot6m88J+wfH+NoaEs2isiTQetAohClu7OcePWRfYd3E91ch9hHKE2xjpZmUaNHQfLS8f3ByRkh3F687yTbDmHELsTWdr8ftM1H4XN89LWYw+t97DXg3vacp0H7T6KdG13v2IjpPnBeSl+eT59UC9J0tzH8eZ7khJ2mMOSTX8TtvkMNrX7MIOw3NK+2OFetmI7YcXN197J8P04n9kjz295bfsZbGprx7XUNq+tkEI8sszTQAhBt9sljuMdtUeSJL1yumc1jSpKw4DlDnfxZfR0D38TsUdc9/CV4nGsnw8ru3W/DTx8s/7jtP3EFtLHXKjsBo9jiX9AXPXMyw/1MMdaUxup4vtdVhZvIOIuQ+P7SaQk2FhEKhGRxBGvvfbreBkbwwR37CjBrZOI3hqxU4I4JozCjbyfLkqZEMcgBTFJei4BIdP8q1EYYRgmlmlu5FFNiBIwDJNep00cJczMTKMkBL5PsZCGGsYi4ZnnTtBpN8hksriuR5ykz8Z2PBIEtuXgOBlWl1dARGhDYRoWK6vLSCXJ5bJ02136vT6e6yKkhdYGlmuBhEG/TaNRp9PppOG0YYzSBvW1+kZYs4OUgsGgD8RoZbO63ODOjat4joWbcQkTAUKCPyCOQpIoot1scPfGIvlMju9+7zu88s2XCZIBhpVBKkWv0+LendtUinkSmZDNZhHCwLSy3Lq1QBQlnD51BtfxKJUqxHFEMGijlUG71eXc+bMEfoKX8UiICeOQwwcPpyHCJERxQKfbpFgsIYSk1++Ry+WxHYWSguGRYaTQXLl8jf2HDmDbHr1ui1zGw8Ck0Vghn8/hBxHZfBHPSUNcK0ND7Nu3j/Nnz3Pn7l1qw1VAsLK2Dongzp27iAQOzB6gVCkRywSlFVMTExw7epiV5SU++OB9Xn7lZYqVMrlyketX5gn8Ho4ruXrlIpXyMN1Wk37fx7MMEuDDk+epDdVw7QxaJwgRUyrXuH9/gd/6zdfIFgsIaVCtVMhlCywt3mNq3wwrK01ee+1lRkaqzMzsw9Amg86At37wNlP7ponjhE6zg4gTpBwwOlJi+f4qrpNjYWGJYrGIYWqiyCcUA5qNLrZdwvFyGLaB1g4kMaaRGhhs16HT7vKdP/sed24tMFwbp1zOEEUxtmOjtabZbGI5Ftmsh1KpSnAYhURRiNaaTqeDEL9QDwZQShNFEUki8Achw7VRiqUSUTAgiQd8/8/fYHrfAZIkZmRkGM9zGBsbo1odIorgZz97n3KlTDaXwXLSvctr62uYponrZVhaWiQOYrI5E8vSKOlQX1/h2NGjmKZBeaiA42gcy6JSLRLFfQZ+G8MEKSxK5RKZTAZJgmU7KCkhiYnDEMvUNBoNXNclDGNs20VLkw8//JiJyWniMKR77T1W+pL24f8Su3aAbD4VDOuicVwPQyYkfp+bV89x6cJ5fuNv/R3cYo1IGIgk/MUYa3kIy/ulMXc74vowMvSkwkSPM24/bmTPZ2V20fZ2BHC7Z7AbPCoyaqfyTyui8zjP52mv86jIp4d9H57Wi7mb2l8UbfsqPK5aa7TWOyoOp0R1L3XNHh4fe8R1D18pHuZpfFTZ7c5vDZndDlsFJXbr7dzOK/swb/GTYjcW991YdoPrH5AA5v5XHtpOlMQkQlAbrrF47zb1tVW8zBCGZdPudGi125Rcixvzt0Fo8nmP5cXbhElC3Role/s9EjuHNFw67Q6WbWEaFv1+wP2Fe1hO6nnVUkKcgEhzXZqWTbOV7l0VSCzbRkiJMgyIE6I4plQqk8nm8IOQbreHbdsobeAHASKJ8Ac+hmmhtEbpVKRmvb6GY9soqWk2OmQyDt1+D8twOXPmDOPjI0ihOHP6DEkSU8jluHT5KrWRKnEc0uq0MbVAaY3jOGQ8lzgMSZD8yZ/+GVNTU+QLORrNBp/+/GPGx8cxTY/FhRUunj/JiWefoR8ECNJUOlpI1tZWMLRCKc2Vy5+SyVi88LWvY2iX733vTfYfmMaxTEhiRkdHyGQzG95egxiJVBZvvv5DtGEwMTFOtVpFCIhCH6UT+r2ATCbLyMgwC/eWWF1bY3JqkiDwmbs2R7vdYjDwmT14gDD06fZ8ypUyQ0NDKCVTcuW4dNptHMfjxo0bQMJf/Pn36XXbFPM5er2AQdBN934qyfLKGiv3FxkZHU33zUrF8tIyK6urHD58aMPDJJifu8mlCxfxMg71xjrV4Ro3b96kXC7h2CamaZLJ5JiaHEtJnGmSiITDs4dRSmKZikplCH8Q4Xke2jTpd9oIEgIUE6OjnDp5hrm5y4yMDFGpjLC4eJdiOZ/mLRQaJQU35m7QaKySzRe4cOEyhYJLPp+j2WyytlrnxvXbvPTqK+TyeXx/QBxF5HJZclmXTrfDUHUYrU3yhQJKK7SWJElMEAVYpsu/+IP/j0qlkobyak2/30NJSb/fx7RswjCk0+mSzxeYnt6P77ewbZcoTACBbTvU641UmTcIUUqCAMuyCMMQ23aI4wTLNJBCEoYhSqaiaUmSsLi4RCabAeD1779OtVJi9sBBDMMiV8jQ67VxXXdjj7REK8395WVM0+TO3Tvk8hlIFKZpoA0DpTT79u3Dc13i2EcrhVYmN29cJ18obHy+CYZh0Kh3sWyH+nodhKaQL7O+3mB5eRl/0KNQyCO0wbnz5yjkspimJgwGxAmparjpEIYRq6tr3Lx1m31jVfTyWazxZ8n9+j+iNjWTiooZCtO2UKbGIiIadLh16xbry4u88q1fR7s54kSSZriNth1bPzembzq+NZplp7F565zwsByeu43M2Q3pexR2NeNsN6/tsv3tm3t4X7cTCNx87knT0e2mD0I8XDF5p7a2fhaP+nx261l93PDvL4u4JknymQHjs3vb5nPYXGa37X6ubzs8p63HfxEGvEdY9/Bk2COue/hKsZuBajcWuJ1yw26Hxw3B+v/Ze7Mnu64rze+3pzPfOecBOWAkCXASRUpllWS3q9tdEe3ul45w2E+O8IsfHH7wg/8Jv/qpHWG3Q12ukkpdkqqLVaWSSEqiJJIgCXAQMRDzkEgkcrrzvWf2w0mAyWQikQCpwY78Ii6TuHdP59xz997fXmt9ay/8Libax9247EVcAcwexBXA5AmJMAjtMj19CIRm9cZd7iwtMzMzS8Xz6W92+Ff/+t/yk5/+gv/iP/8OveYm5UaNTGqUW8YsnUFUZtCWJooitLZQ2sJS4PguYRIj8pxBt0u328bdcm30gzK2McX3pxQIhTIWlu1hez5ICcpgOR6DwZA4SQphICSDQXPL0qqLHJm2RZLn+H7hbhgOhnz0wUX8wMMYTZoINjaajI7VGAwG5Jkgz/KCGMQDHFuSk1Ep1/FspyAJjk0U9cnSIWQa3/Np1OtIJfA8l0ZtBCU1w2HEuU8usrR0g2NPPU2r08Y2EpFEIGzOX7jA3Pw8SZIxMTGO75cw2sJoSRQOmJ4YIwoHuJ5DLhTGdVFKk6Q5SQY//tF/4vix4zz99FPUGzXu3LmFVDmWUgwGbdIU8lxhuxZv/eodTp56hkq1jO3YeK5DqVQhTQS//vVbPPfcC9QaDYbDIp4zy1Pee/cDJiamCvfWJGRiYoy1Oys4lul9KawAACAASURBVMtTTx1jcnoSxy0RVMpkWYbr2Nha0W53sWwLbSmUkHx09mPGxsYZHRtBSIHWFhMTk6RxwonjR5mcmsL2fW5cuMbtW7eYX5xDWTZrzSblksdwMMAoxd07y5RLHt1un7t3mlw8f5nZ2UmiVLKyusG5j84wWq9QrtZJs4jNjQ4vvPAsWktIJaVSQK1RwbJtNteaBGWLyfFJZmcnCxdFFKt371Gv1eh02kxPTeJaHhc+vcDk7BTDfpfxRp04HYKwsOwyuRQkecSwPyBJ4kJESCpsq4yWUCk7jDTqlEp1kqyPZdlIobEtl2EU4boOY2MNZg/NIISg3Wpy+p0zrK1u8vFH51lb2+TYUyfodfq4rsfayiquX5DgNL1PwiSdVpM4TrCM2RJbGpDmMfWt9DxhNOTmjRVOPfcM165fpz5SRzkg8gzynM3NJkEQ0Bt0mZmZwfMCKtUagR/QbnUKYSglCKOIK5cvMzneQOQur//sF4xPVBhp1AqhKi9g6dZdLl24wuLiNFLllMollDRkGbxz+jQXL17gO9/+Fq3mJsb2qJRLGC3RErqtJl4QIISm1erxk5/8hKPHjrK4MIu9+hHZ7NeITvwLNpt9/u7V/8TxE8dJkhjP89hc+pS1W5d4/523OH7yOQ4/9QxWUGOYChQZVh6Sic+IQnz+DbK166jRhc/PndvmxSexpD5pvZ1t7PXvh733hTJP2v8+23+S/u/Hr+6G36Vlbbs1+Unq7fXekxLXx362vqIye9bfz3P1FR5q3Mf2mNVtNZ6onwMc4IC4HuD3ji8jRPEwSf79nnLfr6dUEXu521h2nsTvTOK933Fu73M3y+f969hOwrdjN0vxXmOIr7yNAKwj3/zCdW8fR4ZEkkOWkiEp1UaJk5hhZwU7C+l0WvQTyZ98+1v8N//dv+XQTIPhsEm5NEoSJcjyFNz9LXF7FVMaR2qLLM8RJAgpiIYJljSFOIqlsJ0yUhmUKixWCEEmFEmaI5UiiyNkrhAiotNZp+R7KKEwUlMpVbeUWDV5rguiqzQiy+m0OtgqYdjv4zou7W6P+ngdZRnC4RDXNSzMTePYDsZxiPKE2dkJdJ5QGxnBsmy67R5JnBClQ4RQ2MYiSxMsS5IkMa4nqVZdlFBEg4jqSEBOysXzt/j00m/50+98h2rNwXNs4ihBmJTr15c4/fbbLM4fptsbcPb9T2jUG7S7G1iOYWJyiiQLsSyfPDMoqSGDLO8hMgFpxvTECJPTE2RpTJbDa6+/zpGjx7FslzxPKJUqKK0RBu4sLbF4+Ch5Vpxia6FwbItPL55HK8nkxARpNmR55R71+gTJMEMhcWyB4xiktMiJMbaHIKcclFHapjPssXxzhZHGCFEUs7a2xqH5SZAacpckhlqtxPziNHESFYJRSze5u1yQbHLBT3/yM+qlMiEJzz7/CsZ2yPKQwC2jVZEXtNttU664xCLDclwsE/CL19/k8sVLBNpjY30V2y8zMTNG4HdwvHGqlYC3336b6elplBI4rksaQxwmNJub6DxjZX2df3rt5/Q7LWanRri5vMLMoVlScuojNT69fosTxxfwLUGWC/pRjjIaY1soLRkOhuQZXLl6m1s3l1lYXCDPE+JoiDGGcrWK63ukWUweJ5AXngXDcIBra7TSDAcxnh8QJUNkbqjV6/T7PZ5/4Tkq5RK5yFhfb5Jlil/+6h1mZxukMYT9DCkUUmS45Qr3lu8R+AHGlihborEx2qLdaVMql3F0iu8FlINKkXInzVGWTZzEeJ6PkBb/8A8/oVypEAQeggylBGFSqDJXgjL9YZfx6XHSOEXpjGq9hNJFah8lFVEY0R8mLN1ZZWFhnGiYopVDFA6Iwh6LR45x8uRJer0etVoNZMaw38cYzdLtOzTqDW7fuoXWGsezOXp8EZFHWKvnyUefovzN/56lW0v87Odv8a//1Z9TLdnYKuXOjYuE3YRYWpRHxpmcPwRSk6UJigxBTi7k56Lg4o9eJe+sYhZf/oys7lgHHmc+v9/u/Tl1+3vbP/tCvR3ePLtZ93Yru68xCQHii3GsO9/brV6+reyjyj8Odoud3Ov+7IWHtbNXm9tjZB9c3x5tb08P9CTj3Ov73cu6vKvF/iFj3P7a1fNrx3f4hXaE2Eq1tfe3/KCfbd/hFwulIAovKnH/hWZnXOr2eNWHx6we4ABPhgPieoDfO77K0+r9YnvO150bl2zL9W4vEvwkJ/P36+y1SdrtNHf7OPaTM+8+HmVx3WvhqtRGGB8d5d13fs3a6l0WZmaYmpoglxK/FGDZLloZfN/HcT1CfxLnxi+IrDLaCcjyjDgcYlsuWaHDwjunT/P222/x1NPPkCRxEfMqQGQpg0G/sKQK6DQ3kdKmP+hu5eq0WVlZQ1s2SImxLAbDkIwM1/MIowhtFak5hNJbLoubJHFYWB0tTaVcKQREtKHXaSO1xvM9lBB0Wi0cz9tK5eNgGYvVjbUiR2ynU7ikxiFKF2S73W4jkAzDENd16Ha6xHHG3bt3ePmlV/A8G5CkiaDV2mRmZobZmRk21zf5T3/3Ks8/d5KlO7dYWJhHoGm3B/i+U4hW5BmCjCjug9AIigU/SkL8cg3Ltmm3Nzl2dJFy4CKVpNlcxXUCBsO0yJcbp3Q7XSbGJ/jg7BlGRsvkpFy5eoWxsQlu3bzFzOwsjusjclhfW+HKleu4notf8rl4/jLaaFzbxfd83nr7LQ4dOsRffe+vmJ2eIij5vPnmL5idncbzHYyx+M1b7/Dpp+d58flnkdpiY6OJH5So1hqMj09SKVepVGocO3YUIXKqdYef/MM/cGh2jEF/E99z6LZj1lfb1KqjGO2gbIXIBUkSI0TKK994EW3HzB2eZm7uCLZ2MQh6w4gkyVmYP8zGehPXs9BaoZWk3+8xOjpCnttYTol6Y4Lz5y8zMTHL1156Edd1cD0XrYv0QOQJkPPv/+/vYlkeM1PTdNpdLGPj2IXAWKlimJwcI0lDorh4xqWUhGHIYDDAsiyUKBRyXc9naWmJcrlElmb4fok4iUiSqCC7ZZ9avcow7DM+MVrkLa1UsB2LxcUFPN9GCkMUJwyGfTzfJUkUf/PXP2LQC1k8fJQ0zvn7V1+lXClTbzRQShFFGf/009eYmJ6i2+9hORqtDVoroijEshXHjh/n4sXzTE9NEEVDbMvg+h6DXo9Bf4DSBq0tkniAUpowjCmVqvh+Ca00URwxOjbK0WNHkBK6/QFJlmJsg+d7pFlGmsa4jk2ztUmepcgtK/zSnWVqI6P0+wMqlRp5LnAch2z1CooU8Sf/E1kuKFUCThw+zKDb5OaNK+TpENcx2KU6R546QXV0BGUZyPaeC5Nrp4Evqgo/sTXpiWr9bjx09mr7cSxqvxPvoT+itvb0WtpnuS/Tx+PWe5yW9ntt97GXJXxnvT3Lifv/+exViCw9Sgn4AAf46nBAXA/we8eXXSieVCxjpxVVKbWrNXUn4XyS8e6XuG5XMtw56T8ucRW2jxpdRJbHv3At98fx0LqqyLVYDhzCQQ9H5tRG6iANcQa93oCV5dt0ux1s26LZCylXqqjlD8grsyRxTBKF3Llzl0q5wnAYcebsGXzf59DcHJZlYRmNlAKRpYXaoGVI4pClWzepN8ZwHAfLcgFFEJRAC4RSxEmKNjaOb2NZBtt1iaKQoFwCoQnDiMD30FJgGUU4HDIYDtHGIooTjIL+YIDr+XTaHbTRSCn59NNLGGMQQqCNodPu0GjUGQx6lMtl1tc3qdXqRaxhnlIuBaytF+JDrmtTqZSoVhrE8YAoilm9t0EQeGit6LaLeMZnnjnJ5uY9nn76BFmWs3Jvjddf+wUnT50AcpI0Jiel3W5SrjRIshQhixN0bbkgCuEoz7UK65VjF1a/OMeyAyzb5qP338cyNuc/OYcUgnLdxbYdFhYXKZWrjI4WOWEtYxOGA/I84ciRE3xy7iOam00WFo5ijMaxily5i4uLxaGAEIw0agSBz9TUJLVajU63g+M4GMswMz1FHA0wlsPFC5/S6XQpBSWyPEdJU8Tr5hnvn3kH17H52gtfJ08zkjjCKJcLFy/iOi4bm+uMjRWuzMYyeJ7N3PwsaRZTHxnD2joYUKSE/Q0s28fYHp5X5vLlq3R769TqNYyxsGyLOI4JylWkVgS+x5Gjx/jtJ59waG4aKSVpmuI4DiJPsW1NGMWcPfMRpaDC8RPHt8SlbuN5XvF7VDlCaGzbxbacB7+rLMsol8sMBgOWl5a4ceMmY6NjxQGZKqwM2rKQElqtDQI/YBgOsG0b13OI45huv02e51iW4dy5T6jXariuh9YG13VJkhil4PDiAucvnGNxcR7H0szNL6AtiyRJSOIYz6/QGBmlVq/hlzziJMK2HFqtFmtrq1i2RkmFbRssS+M6NoNBH9u2CMOI+sgIWts0N1v4fkFaHbtQxT79znt4vl948W/F+eZCbMWoC1zfpdlq4vsexihaW6R1tF4lSVKE0oRhQn1klEq5yocf/Zbx8Ul03EVvXiX+9v+CU2ow6Pdpt+5RK5cIBx1qtYCbN68zPjFGfWaeTEhyIQiTBC329to5IK6PrndAXB9d7sv08bj1fqfEdRcxy4fV2/uavmg5VUofkNYD/F5xQFwP8HvHl53Y9usWvJME7izzsLQ4jxJJ2u/k/LBUNg+rvxt53u7atptc/3bI8vgD0vqoPr44lpRMKNxyhbmFBX7013/JIEoZHR+n2+pQ8lyMpSmXy1sE0xAHU8iV88juMioYJU8zHK/Mz3/+Jp1Ol4WFwzxz8hn8oFBNHQwHD1yklLEQUhPHCZ7rkIqt9BFCPnB7UjJHiO15BzN63T69bo8gKCGRgCQcDrcsox16wwFRHFOtVomjENsyxHEfASRxVhBDLcmThHq9jjEGKQUfffwJc/OH0Ar6/V6xgQ8ChFCEw4goGrK8fJt2a4CUmmrVpl5rcHf5LpWKh8gFb//mNMOwz/T0NFopbt28wZFjh3E9C9ctNvnVWpVKrYRrG6Kwj+s4vPH6L3n6xCn6vRZaCbIsLVLCpKBEjlQ5w0HhWhxGCWE4oN8d8vobv2Tx6AInjh+jUqnRGBnh6LEjuCWfNBcoZdCWjbYM586f4/qV61y9cpmnTz6FZTuMjtdojDQ4896HvPP2Wyzduo02mnK9xse//RjSjNGxEYyx+PDDjxgdHWfQj1DaUK6UcRybeBhiez4Tk5NMTE1y6fIlavU6//TT11i5u4If+AiRMzE1g2WVcb0S6+tNzp45z8zsONVqhXq9TprFIAxKK4xRpGmG7ZTJIgVSIqQkSYdcv36B0ZFxpCnim6enJrEtQxCUGA6HaG0QQpHLiG5rnQvnP2ZiYhypNY16BchZW1ujFJTobG6SC4lXKvPy17/O7PQUv3rz1ygp6ffbTE6MobVAKRcl7cIKGYVkWYplWQ88NSzLwtKa2UOHkFJiuy6264IQW2JRGcYIjO3R7nRwXIckTbFdG0FBBIWAyckJjPFACrRWrG+sUa6WCYdN/JLL5NQ4K8u3icMBpVoDYwztZpMf/s0PeeGF5+i0W1hGYxnNYNDF9XyiKOGv/ur7vPjiS2gt8X0fJRS9Xp/r125gtIXtuShj0FLgWAatJevrLRzH57vf/QsWDy9w+PA8nW4bpEAguH1zGSUhiSNcx2Xp1lKhDt4fUClXSZKEOElJswwlVRHLnWbEecrU9AykKeruWfKT/4asepgsHPJ3P/xL5mdHSFJNkmfURkeZP3oUyy+RC6vQk8kFShSK2XvhUcR1r3l5rzQkj4uvYq3bbd14WMq2vep/VWPac7w7+vgy8cD7rbWffOlfWP+3fbZXvb0UhHfbGzysnX2999CRPF6/u7aznwONPcb2WTOfuQDfdwc+wAF+3zggrgf4vePLWjC/ij73ezr4qM3Ak9Tf2c5+yt7//MsKgzwMOo9JpEYamzCKePHZZ2h2+mxutpiZHKe5soxbCSiVA9Y31vB8lzBOEDMvovurcOcDBolktTXkzJmz1OsNPv74Yxbm57BdZ8typFCqWOxyqUizHKk1xhiMJcjSDKU0eQ5ZVuRjFVDkgMwBMmxjYWmDpTW9bpckigl8j2a7TalSQSpFtVojjWO0lqRJBHmKkpo0y/ECH9t16XVaVCtVhBAMh0Mmp2aQIidOQvI8p14fIc1SpCgk/YXICEou1fIo62sbVGoWYRhTrzeQKkUIyTPPnMIYSalcQ0vF6GiDe/eWqdVqRaqaJCUM+4xPNrC0Jk4SbMslzwy2VQI6KAlpmvPjH76KQlCvV7GMxPPLLK80cSwH21ZYlsPtO8tMz0xgtKbX61Or1cnIkNpCSUOcZmhtyEXOnaXb+J5Hv9tn8fBhcpmTk2C04sK5S/zpt75JNAhBScYnJzl/7hxfe/FFbty8yczMIZQyfHrxMu+cfo/V1TXmF+fJ0ozLFy/hlXzK5RLtdmuLfBmOHTnO22+/zZUrVzh16iSub8iRKC1BpERJyo2rt5mbO8y7755hbW2d/iDk5s2bTE6Og7DIEsOn597HchWOV0HisLbaIvAthG0TpzHkGZ7nkaYZSZojZOEi2252WL17F0tZvPXWGcIwY+bQOMayCmurkFhKMwgjLMclCgdIcmYPzVOrlZEKbNsULuNGIRV0eusoleI4RW7QOI4ZDofYtk2eJg+s1GEUFcraUqKV2oqJlWRoHKdwuZdS0e8PsCwbs+UBAAIhNEkcIwQ4rlNcV5hgWR5K2nzy0TnGGuM4pYAsTbGNxYnjx8myEEtrbly/TrvdwrFtjG3T74W88vJ/VvzmSLfI5RDHdimXqiipsWwbZTRpHNHvthkMQ+r1EYbDiKWl21i24tChmS2BsoAkyfjRD35Mp9Miz1Nc2yGOExojo1iWTa/bw3Ec/HIZy7JI4oTAc5EC0AopBGr1PEJKlka+RRIOmRyrMTc1ysrSp8SyzNyRI9iBD8ogjEWegchBARLIxZcjrnvhj424Pur9R60xX/WY9sJu5Odx+ntSIcXdyu6ZHm9/jT70cPvL3MOHaXw8aYs7n9cnflbv/91zz7ObyNIBDvD7xQFxPcDvHY+a/HcjZ/t1gbpP7h723uMu8vexfRHcafl80jYfNe7d2tmrveT2x2Tte59zFd7ZxsNOhTOhHgg2KaXJtObQ3BxJNOTcxx8wOTmB5Y6R6xxjG2ynTCo1aZ4w8CYRdoC3+iF5f4PfXl/mv/wX/5LnXzyFYxeKudoAIkcJTZxkZEnGb978NZZSeLZGGa+I+cwyomFBIoowNr21WBbumlmuaHf7GNvCci2U44DUaGn4f/7D9xgfayCFBCHp9YZo4yC1RgiD57j0Wk18RyOVRX8wJM0K4iPJMFoDEqEM7U4Xx7HIsoQ4iZBSkcQZedqjUnVRFOR5s7nG9avLhfskA2zLpd1eJUmHaFOISg0GHTzXIxyEiBwC1yeMQqQUvPvuaSYnx9FC8rPX3uSZkycxxjA1PU191MfzbFrtLlkKrVaLkbFRhFQ4nsPi4XnIBO+dOcva2iqzh6ZRWhMN2qRJhASMsmhuNKlVfBqjoxw+fgQlM8IwwTIWQkqmpsap1mpMTIwyPTWJkYrRRp0sSWm2WgBUKiWCwGPl7j0WFxdYXVnlxz/8If/Vn/85r/3sDcYao6zcvctoo06SRGR5xsLCHPNzs/S7vSL/aBIjyCiXS1iW5De/fpupqUkOH5lHK82VK5/y1NFjfPD+B9y6cYOpmTHef/c96o06QmTcu7tMozJCu7NKKQi4feMunmMjtMQYm831Fv1uj1LgYXsepUodr1TlmWefISh7tDdbOLbBcSx63R7vvXuG8+cucOLYcaQ2SKMxWhBGQ8qVKlIbhNSs3VthZWWTeqVG2G0TpqCkptlsUSqXCytvnnHt5lUq1Qq244PURS5TCVEYEicCG0meC3IhkGSkcYgyhmF/yJXLl7G1JAz7JHGEVoJhf0A46OOWPJQwxHGX4yeOoiwH8qTIa1wKkFISDYfkOfS6fdqtTaamJskzwfe/9wMuXrjI1772bJHiaUtpOIyG5CR8+MEnVMoBjm1ASKIU1tc2qNUatNodPDfgqaeOoY2m0+sRBBWkspkaG+fZZ5+jMTLOYBiSkuM5mm6nie/7WJZDq9PEtm2k0oUgnLGJ+0OyOx+SG4fwhf+Bf/yHH/L1l05x9+5t+uGQ8cl5Zk+cKNgpFGk7srywsIqc/P5rt/lt+1y4g7juZU3die2ieQ/WjW1z6ION+9Zr17E8xrqzs86jSN+TksInJRwPu4YvOo3u3udOPPCguW8t3mWM299/1He31z7ioVbQnWX32fZe93C/93f7uHZb8x+Wbulh2N7vo3rf1fq89V6WC3IE28WUviiydIAD/OFxQFwP8AfD4xC+x1kQdpde3387O+M1dhvLTnGn/ZyMPw6epN7w7b8kXb32OXGmndhvHj0pJeQ5QamEbVlcunqZqYaHFhn9fki72WejuU6322Fqcgpr7Aj5wne4cfbX/NmJMq4R5JZPiiBH0u22C5fgJCbPc978xS9J05QjRw6jjUYbizgKUVtWKm00WVYsnGmWkGUxAEpJXMcDRBFDmSXkaUa/1+elr71EqexjjIXreQ/+DnvtwmoqFZbrEsYpm+vr+L5P4AdkWcbK2gqe79JqNQkCD8sYkjTEMhb9/pAkzjDGJssyBoMhjmMRxSGuU+e99z7EDxy8QD4QL7Jt57MYamEThjH3VlZBgDaCTrdQQta6KFMqB9QbNWzbIk5iypUqZILhIMS2LILAo1wO0MomzWKGwz5GF9askZEqhw5N0243sYwiiuIHcUdZlnD79k36/T6TU9Pk5GRphpApG+trhRq0KIj8T//pH6k3GtiOww9/+GPiJOHI0eP0en1e/btXOXrkKKdOnWRp6TbGMoyPjzMzPc34+BjdbptKpUSp7JNnKcNhxObmBtVqFc/z+MlPfkq1WmdsbJwkyWhutpidmSNNYzabTRYPL7B49AhSKY4fPcrVK1dpt9sszC+gjYXjFBbCc+cuMDMzyfUbN4njHMdx8UsBgiLuWMoMY4BMPiCAAjj/ySeMjo5y/fo1RkYaKKnZ2Fzn8JFFpBTFM5ULpMhQWjMYRkRhjNYWt2/d4trVWwC4joXnecTRkE67TbkUkN+P2TaFO7FWhiROOfv++wSBh+u7RPEQqQxCSvq9Do4FjhHkUtFpd7m3ssrY+AR5nhKGQ5IkJc9zgqBEq9XCc0tkeVTkYY4zbM/Fdm0yQBsLYRlcP6BarTI62uDW7euEYUqW5oxPjDMxMc7p0+9i2w6lUrlIJ2W5TM3MEgQ+vW6XOIxJ44RKtUKeCV599VVe+cYr9PtdfN/H8zx6vT7NzU1uXr/G+MQEcRTzySfn+fnrv+DUs08TRYILFz5lYnKEvNBBRWlTkJU0Qa9fIo8G8M3/EeN6zM0akqjL+SsXeO7rz1MaqZNjPzIebzdsnzHTtWsI20dPn3ysNuDz8/tuxHW/bez17/3UeZz+HmdM2wUK94OHWS6/Civ0nnuAHWW+KuXj7W1/lbi///gq1vzfp0Xzs+dCIaXcc/90gAP8MeCAuB7gD4ZHkb3txHE/i+z2skKIzxHKvdp5HGGB7e3tlpLnYW1sH9N+sF+ivr3sbqrC+6m3fewP/k1OLgRKSvxSCWk0P331B6RxxuTELEmcMjZWp9ZogNS0uz021jfw5r4OtQWctI1efh/SEGl5uEGJfq9LnkGeZSwvL3PymZOUSiXiJERIhVSSKAwxRhNHEVJphIB2exOtNf1eF0tbSBQCQZ5lCJmTJimObYMAqSRCKZTWJGlaWEWylCTLsF2PJANlHJJwiBCSOE7I0hy/4iNkkQ+03WyRZxmO52IsG20MUhVpeJQqXJsRAqUl/WGL9bV1pqYnsCxDc2OA61lEUQJIbNtg2x4Cwa9+9SsOH14kjkNGG2MkSUy1VqFarZKkKVqB7TjkwGDQxzEuljFATqfbQsqcPJPEcUin3cT3AqQQeG6JOMoI/Ap3bt9lZLROlmakaYrRmmq1yvlzF1hYnMdoTZJlSFJs25ClOQiFsSzm5w4xDEOSJGV+YYGRkVGqlSqWZVGpVAjDkMmpcSYmJ+h2u4yMjHJn6Q6+73Lp0iWmpicgz1i+u0yt2mB0dBSlFQjJ4uJhSqUSWhXxq1EUo7VmfGIMKOJEkzwlTVLIc65eucLIyCgT05O4rscbr/+ChYUF6qMNpADLtjh0aBHHKSx7WmmazQ3KlYBh2OU3b56m02lSLvtoqfj5G2/w0ktfZ2S0wfKdO1SrNcYnJsjJGIQ90jhhfW2DVmuTSqWKVprXXnuDw4cP43kBU5NTjDTqCAF5FlMKArQqyLFlNNJoHNfFaAvIyZKU5TtLHDl2hCSNgYxev1DG9jwbrXI21lboD2Iq5TrlchUhBaVS8OB+BEFAv9+nVK4QRymQFEY+FNLSZBQb5ThJMI5b5JnNM6JoyNhoA8vyaLXbzM8vcP3aNc5+8AFnz57l5MmTxFFMUPJJ85zV1VWMNri2g+vYaKPJM8mxY8fwPAdjaTrdbpFLud8nCFyqtSqu6xBHEbdv3+bkyZPU6jXeO/0hFy5eZHSsykhjDCkKMax82IFb7wOK9E/+VyzXJ44HXP30Aq5f40++/S9B+SS5W8w9j0laiznrM+jpk09EWrfPh9shd1k/8m1lH3bQuZ815WEeRo9rsX3YdTxsbF8mLR18efL3yLX2S7S5/Z7ulm7uUXoRT4K91v791t/t7271t/fzJL+V7SjCdz5zAz7AAf7YcUBcD/AHw+9yktxpFb2P+5P8k6rg7anKtw/Su9/F8nFdwGD/xHV/7ReuQrmAVEJQrXDs6CmkDrh39y5lT7K0fIdWq4NbLixYJc9Qa9S41+7SOPFNkonnSKIB1p13Ee1ldJ4RpRptFNMzM9TqDbI8R9um2PDnGVIK8q2Ne6GynwECKQye4/H2UFkT8gAAIABJREFUW6eZnJxkMOgCKUkcY4whThKUUiBVkQZnK5ZWSkWWS1zfL1wNs5xwEBFnOZXaCMb2SHPJsNdDSY3r+gilsRyXJMnJc0EUR/ieQ6fXIktSBsMBluUipSHPh8zPHabRqBMnEWkiUDrHtX163T5C5vQHHYTMmZ+fo1qtkJMThQPanSZJmm1Z4iySpIvZUq3N8pRwOORv//ZHHDm8CHmxeX7v/Q+Ym5uhFPgopej1ekRhiFKaf/yHf8J1PMoVHykkP/ybHzM5McPNm3f42tdeJEtjVlbuMhgMCQd9pDBFXlghUJaELMP3A86ePcvRY8cIhyGIHN93uXz5U5555mmuXPmUWr0KueDqlauMj09y7foN/vRb30JKBcBHH31EKSgXMc1ak2YFgb506RK1Wo07d5awrML6ePPWDebm5oCMpZu3icOQ1ZV7jI2N0R8OmJgZZ9DrMzE2zg9/9Dc8/9LzBEHAsN/C83ziNMH1HIQAzwvIM8jSlHsrbZ5/4VlykeE4Pk8/fYq19XXefPOXnHr2JPdWVnnrnbMcO3YYz7OwLQ15xp2lVVZX1yiXS5RKPoIU23G5dvUKnW6LiZlJ4jjGWDZplm8dYBjiNCVPBXEUk8QhRiWMjY0UIlJJVrjAD4aUyxWGUbxFEC0sE/C97/2Ap55+Gte3MVsWeGMMcRzjui4IiZIKbXLyPMOyHAb9AXmakkYJEkE46BEPQ+IoxnFdkiTFthyUkvzgr3/A1NQMr7zyNU6dOonjWFRrFYaDPpa2uHblGvX6KFES4vou/W6f0++8VwhehV1A0G73uHTxEq5jKAUeylL0+x1sWzM/P02jXiaXNnPzhzj57NOUt1LeKDLUxhXkvQuoU3/O8Pi/odXp0Ol0iKIBL33rzwgqE+TSILG23BH3d7i324z1u8LjeAd9Fe3vPAx9kvYeZfX9suP+XVOcL9P+w9b97W3/sZG0x/Ha+rIHGfctq58/vPjjuh8HOMDDcEBcD/AHw35Oovdbdre2dyOJO11hHrfd/cShPu6YHlZ2v3hc4rrbdX/xZF8CW/Fk8j4RDKg3xmhv3OPGtd+ijUO52qBUG0MJQXdzg1wL6pUyw14XpzZJNvk88sjX2RgqdDLArH5E3rmLrQWZdsmEJI4jjLHIshQhwLZscnLiJCaKhgihMcYhSzNGR8aQSqG1RBtRpNRJEuIkIUlSjGWTJCnamMLiikBbNmmWEkdDRA6+62EcjyhOyHJBr9fn5tUrTE/PMhgOMZZNq9ulWq6xvrFOlqVkeYKQEHiFK3K328d1fMgNSSKI4gFSRQiZEkUJWjtbrlc5tisJwyGWsbfch1PIY2zHBqlA6K1rTMlzQZYJjG3I04xarUatVsOyLAaDAWNjE6ytreL5LmtraxhjYWxJGA64dfMGi0cWCUoevV6PF1/8Omkq+Pkbb3LquacRZNi2BVKzdneF69dvMDk5Q0qK0gLXKkSLSqUSjuOyvHyXctknzzMOzc0yHAwQEowxnHn/LF9/+RX+/u//kTtLSzz/wgvFwQEwMzNDa7PJ8t27VCoVev0+jl2kX5FSMDk5SakUkOYZ4+PjhOEAYwwfvn+W2ZkZgiCg2Wlz7KkTWK7E1jbkgudeeI47K7f54P2zTIzX0cYmzTPCaAgI0jTfslAL5uaOIWSGZWviOOfCxU+ZnZlhdHQEz/ewjM34xCGUgjju47oOju3Qag6Ynp7C810q5QDPc0nyjEa1huvZlCtlkjhFKoVlF+NKswxtFemGojCkFLi0WvdASpAWSmuUkGRxhOsHZIBSmihKcO0y09PT+IGLMgIpYGNjA8uyC9XmOEZIjUTR6W5sKRo7ZGmO57lsbjYJ/BJ5GtLtFPlnbdumN+iTJim2ZbO2tk4UpZw8dZxSKcBYmjiOCKMBrY0Wr73+c8bGxqk2KkRJhOe4HJpdwBhDkg5wvIBwMOT0O6dZmJ/DtjVuEGDbFsYolm7doFT2+Nnrv2F0tEqp5JNnEtlfhTsfkvt1nD/7nwnLM3Ra6xhjMTs7R61WJTE5wgiUFmTZAEFILvS+577PzWtPVGufbR8Q1y/28aVq/27af5jq/8M8rf6YsNuYH+Yp9qTf3W5u4p+1dUBcD/D/DRwQ1wP8QfGw08SdrjCP2jjsdM/a2fb2OJ3dFvBH9VEk2b7vTnNfqGD/Ljq79f2oTcmjFtadi1p89R0AzOIre17PwxbCz5e/H9slkLlE5BIhBULGjI7WqI+MMeyss7J0A4sUWynKQZ0kCYnjFGVstFaQ9CFXVKaPwuQzXM4miY2HKxPk0hkYNukPE4JKmTDsFZJM0oDQZHmCVhZKKD44c5aJyUKYSEmJNJoojpCyiI+1LAtjGchSyCFLcpQQpGkIFGrFStvkaJCaJAnxSyXI4cJHv+XKlQvMLhzBeIUlMx12iRH4ns+VS9eYmZ4nx7C+vo7WCse16PfbWI7BcZ2CXEgHUAy6A8bHRrEsXbgYovG9ElEcEycxljEMox62VcO2JcNBE5FL+oMBVgZCp0SDENstXDezNEMi6HZ6eL6F63hIDLdu3mJkZIQoTLEti4mJCSxtyBEMhyGWrTn7wXv82Z99hzCJsByL5Tt3yZKcOOwzv7iA7XsYbXF36S7GtoiTENsxDIZ9JiYni9jgPENrRavTJU4EQVDhjddfx/Mc/vRb32B9o8m5859w5Mhh1tbv4TgOynLxPI9atYJWgu9+9y94+eWXCYIS7777HiDRImI47OOXygghuX71GsdOHCMou/i+g+97tNodpCpEpLQ2XL9ylTzVLCwewbItLGORRAn3Vu7R7bSp1qsorWhuruJ5DlmS8en5SxyaniUj5/bt21RrHlkaEZTHaG4sce/uBqMjc8QioVYt4wU2SZ6gjE2GIg6HaKOJ05T1tXWQafHcKavwGDCaNEr5d//u/+CFF14ocg67Pr3ekGG/j2fbCEAamzRJaLdaBH4AuSCMeqyu3Mb3HLJMIoTZiiXtEg56pGnEMEq3DmkcpHJQ2kbqnDQDx3EJ4xBtu6zda1OueAzDLq5XxbbMA9Vix7FJ4wjLmMI1EMW5c5fRluHb3/4WtqPxXRdLG0DSbG1gLAU5DHoDRho1jh8/QqlSIs1ylFBEUYQ2Ntoqk6QW8/Oz1CpVBBnp0oeozhK88N8ij/05N67dYH15ibm5o4xPTZCYnMxIRCaQQpFlhct6LvS+VH13E/jZXm/42v9Ocu00Zqeq8C6vvdxxvzAvCvHgtXP+lVvj2P7aDx6lqbATO8V79uOqvPO9xzkUfiyBqd3q71Fme9tf+F4e2dsu36fYJuq0ra+H3aPta/9uz8ajvs8v44G1s/6D52mX+g/GvPXK80KgLL9f7nOvIjwDIRFfEFfabR/zOE/rAQ7wh8cBcT3AHxR7ucHsRTYf1cb2z7ZvMFZXVymXy5+LNd2fJXQ/S/LjYy8Rksc9VX1AXA9/Y898s7sR1/vYa5OS5xlCKpJcIiyPickyG80W4SDkV2/8nNFyGRyPoOzjeBZRHLO21mRj8y6t9ialss/MoRmqUwvE4yexn/7nRIMe/uoHJJ1V+nGKVy4h8kJFVCqDQJJnOc1mEynh/PmLXL58mUNzh1BakqcZSZKQxDF5ltHp9LDvx7tKgRCQZzlKF+rEUkiUUqyvrREEHkoJHMfhxIljVOoNhJAMBgO0Vlh2hV5vg1LJIcdw7dodFudnsI2NEpJer0upXCdJMrS26PX6uK7PWKNOp9Wi3+8z6PcRWjHo93EcZyvnrCqUioVGawsQxElIuRTQ724itCFNIYoKN2jfD+h1u3ieS5pnuG7A3ZV7fPLJJ/T6fSp+QA6UK3X+4i//GtvWaKOp1+tEYcjMzAxaKyTQ3NjgN7/5Nd/45st4vs8wjMiytFDbdT2MUUCO67rkWU6ew93lZcrlCpbjIrKcKAo5+cwz5HlOr98vrHyWxfjYGEYrPNfBtm20kgx6XaJwyPTsNEmc4PsBly9fxTKFeNWVK9cplyp4rs/MzARCFs+tUoJut025WiVLc/6v//Pf8+ypU4yPjzG3uIDWkiiMCAdDbNdBaU1jdIw8hyhJGXQL624cx0hlyMjpdIf87Kc/48UXn6Xf6+N6Zd78xZtcvnKNQ3Oz2JYmiuOCDCcRSRgShQPiOKHVauF7HtVajWgwoNfpkSU5Rmvam5u4TsClTy8jkGilMbbeEt2qMBgMMFbhUaC0wnVcNjbXQGRIIbAtF6UsVlc3WV6+TRB4OI5DnidEUUilOlLk9s0zsixDK0OzuQkItDGkaUKa5tjGodvdpFwp0+0UwmLtdpvRkTFGRkb4j//xb3E9n9GREYSU1OsNbNvgeg5ZltJuN3FcmySJ0MZgWw7NZocgcAl8H9dzGQ4HWJYmzQTDMCJJMj7+7Tk2NzYZqZcRWUR85VcobRD//H9D1UZprl2mu7HB11/6DlbJYRhHhTVabB2M7cPytXM22u2gcjvuqwrvJK67znl7tPM4+DLum09S50k9hh7H82dnn48ss592nrDtJ+1vr3pPei/21ccT3N/PHbZv/f9+Du6319+esuZJLfYHOMAfMw6I6wH+oPgq3Ga3q/nd3wQ9bMIulUq7yuR/GeK614n3w4jg9g3ETgXL++U/JwSySzs7r2E7cd2N8O8mwf+Fq9zlvn1mUcgLpVChQFvkaZWp6WPUG2WieJPrt8+iZYkrlz7BqJiw32esMUaYhJRKhTrq2toa7eYmqxtNpB3gzZ4iHn8BkUd4axfJBx0GuUUcpxjbYdDvIUXO+PgonucxNjrO6NgYjutAnmGURgBKKn79q19x7NhTxcItcyAr4uyUJMtytNakSYqUCt9zCQcdhMhwSyW0MYUglCwEm7ygRC4UrmMI/IBOZ8CVazeYmZ7k+9/7G44cPYpSEj+oIaSk1+8xMjrG5mZ7SzRK0+0NePf9M1SqFaqVGmEUFRayKMLzPLq9Du+e/pBGfRSpQ5SQbKzepNaYQkiF5wd0e12iMERKCMMBrmczHAzJ84yZmWlKgcdms8XU9CRLt2/z8ssvMzJSx3YcjNYoJQtxKalBgGUZ5ubm6PUHeEEJqTRv/ebXzM1MkeUSrTVZnpOmOQJFq9Vh6dYyvd6AXr/HG6/9jGPHjlGt1jCWxfWbN6lX6mxubuL7Hqtrq4yMNDj93nsYrTl37hy25dAYGaPd7uB5Hp7rsrA4zwcffMSRI0fRlsYYyfe//5ccPXpsS0m3TakUsLm5idEWr7z8Cjev36BRr4PM6PcG3F1eplQKcF2DVEUIwOZmEykkrY0mZ8++z9T0FLZj4/k+5ILJiQmUhpHGGOtr91jfGHDy5LNoO8FzPJQqrFkff/hbPM8rLK1JysT4OEKIIscqRezz5UtXqFarfP+vv8/C3BGOHDnM+vo9lJaMjI7QbnfwgwBjLNrtDlLmCGG4du0m9UYdpSRROCSo1BDScOP6NY6fOEa3M8R1fJobGwSBizYuSt8XUFHEcYLreYit7zOOMv7Dd/+C1maTw4dnEQguX7nFxfMfU61U8QKPHCiVA44cOcKbv/4ls7OH+ODMB8wvzLG5uUkYhhhjtn4nkuEgRGvDT3/6GnNzc1y7fp1Lly4zNTVZ/L6MhW27eF7A7Vs3ef75k7iWRCydQR//Z4hn/2s2rr7Jh+//jGde/hqTJ56jLT1EloLUZAjIJVIWgnWP9C7ZY77a7b306rsIxBfyuD6kkS/Mk4+z4X8w7++r9N7t7MROornXQe9ueJzUcNvXwCe1JO7rHnxJK+Ve/e067t3u2T763FUU6St2L97Ps7bXmr/988/KHRDVA/z/GwfE9QB/UDypJXU79muZvf/5bsq+DyOuWZZtfbbbgvVw6+R+4mh3Wg0eJUP/qAXOHP7GF+Jb9xrb46sRblnCSdF5TKZzchEjLcP45DxC1Rhs3KNRc1ByiGsMWZhSG58gDCOU0riux/joCK1OH2VsHNsmHIaoQy+hFl8mvHcdZ/0iVmmUVBuSJMJxDFkWo6Th7179ezbWNzg0P4cxiiRKUFKxsrLCu6ff5ZmTz6K1pNdrb6Wk0URxWFhbHwg2SYRIWLp9nUq1ilDOg9jNPC3EeKK4SBljpE2eFyl55hdm0NowOjqB47kFmYwTLFuTZQnDcEilWkNpC6kMFy5d5tvf+WcEnr0l8OQXBMEyaK1RCs6eOceRI0eReoAlLWwrRttVwjAmjpNCOVhBHIU4rkU0HODYNtevXqPd3GBmepJqY5Q4DlEiL0R/LFO4aQswVqFyK7VduBgqhW07gMR2fLIMZqenyZKCUBTWZollbIRQtFpNapUGG5ubLB5ZZNjv0R/0aTRGSLMM1wuwLIuVeyvUR+pMTI5jLMPU9CwgWVw4zO3bS6ytbvLxx7/l6aeewvVs7q0uc+XKTRYXF/A9G0TGU089TZbCjWu3mJiYJBwOMNb/y96b/Uh2ZGl+PzO7+/U93GOPjCX3JJlJslhk18Jeqrt6enp6ZtQ9M0AD0gh6EBqCMJg/QA+jB/0HwkCCAEEQ1JqeXmvprr1YxdpI5sotk8x9j3333e9qevCIrMhIj8jIZLKLpYkPcERcd7tm597wMLufnXO+YxMGETPTM9y7d480TXEdg2wmT73RREvwHcnK8lK3XuxGTdN7t+8zOjpMsVTEdrq1fIOgycDAwIY6s0CTkMn0s1pdZXJqkDTWLM7dxVQm75w+x8mXXsJxXSzLQkmJkF1vvW3bmKaNaTnEcUypVGRwZAjPdyj3lyn39z0IIWbj/8wwDSzTQqcG167eoFDIdVWdowhpmIRxyNBAH81myE/e/DloyfDwIO12E2XaxElMksSkqca2HYTQrK52SzqFYcLM9AzjB8bxPRPLsSjkKhRyDoNDg9QbdTLZDLZj4DoW2WyGdrPNh+9fpNzfTz5fYH5unv5KP7Zts7y0jGEamIbF5OQkuWyeSrmfD97/kKNHj9IJQmzfRkkDrTVDg2WC1hrmwiXk8X9CvXSUy2d/Qm7iIM+99BVsd5g0BUO2SIVCC5CbXiF+KZb3+Jlnj7OUEMS3Hq7j+qR4Gk/Vp0FcN9/fqoy7vd2TEOzHnfdJN5I/rXvwicZ7DHF9ovGesfdyex7rQ88Evdpv/Nz6rPBouaJ94rqP/39jn7ju41cKrfUDUZfdsFvoy3bSurkI9HoY2snr+Hiy2M0o0Tp98PvW3emdbNotDLhXOZ0nIdVbP98u77/TfXrc7u1ueLDAItBCbiyPApAIw6LUP8DA1Did1GB5OSAIJEqaxI1p1tbXWF5dxS/20Wou0VccwDFcSEISWcN1PEzbRQ88jyyMkl57AxHHuKV+ms0GUloEUcChQ4eYOjiFYWqmZ26T9QsIJB988CHPv3ACwxKYliJNBZZpk6agVFcUqdWqE8UhhqnQYQvD0dhOHwBxs4ppGEiliHX3uj5+7yKV/iLSEAhlIqQJSpPL5jFMk1QK3rtwi4HhHFKaOG6JIGkSxxrTMMlnc1iGSa1WI4w6eH4GpTK0Op1uHrBSTE4NY1kSJTxqjVV8zyOVBjqRpEKT6oROu02qU4RISCONNC0KfWXK5YGNcGNBqrvExrIcFmcCUtFEmRJlZEAm/P03v8f42AR//41vMjo0hJexSKOA1YV5stksmAbvnnuPXDaDY3cVnnUSY9g23//2tzkwepCUlGNHjlMZ6CcSAUqmGDoll/WREsbGRumEAWmisRQkYQfTUmRLOYbHD/D8C8eAhDBKOX/+Q4b6iwwNDTAzM0O5r0y9FvH1r32TE8+d6JaxMbslkmzHoNhXoNw/yP2ZRUZGRkkV5Is5HFMRxhGW7SKlx6VLV5icmAJDMzBcwc94xEmClCZpCkvLC+TyJZaWG/z0529y4vnDjAwPYBgG0oBMcQCExckXjlNbncaxAhw7R7PRQEkDhOKnb/6MfK7E/NwChw8f4sK75zgwNkx1vQ6pwLYdpNSEQQfbMdGpBkyiICXRIYYtKPRVsJwcjuMhDIuEAJ1I/uov/4ZWs0mSJrx99jyOW8C1JK7jAoJmuw1aI5OE6bvz5LMFJDGHjh/G8SyKfRUsw+f73/8hRw6OI4B6tYafy9KoNkAkJGmAYSqOHHuOjz/6mHfPv8fnP/8qUdRGyZRMvoBpeqysrFPqKyIMxer6GsdOHCcFXM9HJ5pWp4phgkgF1vxF4tFXuVePWFye5uU//NeUKhNI2yEVKQgNKAQSwS/nPs2jtS9Fj9ee5qctbTdDhfdCXB8Za69EcNurZ27uHryhuwnmPClJ3b7u9Foztx5vjfjZ3rZXJNHT/J0efPaE680jJK3HeI/0KMSD1yO5tdvWPr3ZfpttD+7NbrY9ZQmaXgR1a58P/2021loEbOSiyo2c1d53/0n+W/axj19fPClx/WzJsO3j1x5CCJIk+dTHeJZ99XoQ6BV6/Enrq33a2EtY2BP3KRWjExN87gu/wcjkBDdnpllej+h0YgaKfZQcG8/LUK01cDNZvGyB1WqHZqvK3Xs3CMIGjewQ7j/7nyDuEC/cIE7AMK2uyIxrbzzsSoYGx9Ba0+50ePXzr9JfGaDcN0AcdXMH0zTBMOh6a5Ugk8ngOj46VTSaEYX8EEIbpIlEGV1RGK01EgjDkB+9+SNWV9e6HjNDYhoKIRRx3EYTIzGZm73H6nIVIQzCoM2tq9dh42+fzeVYXF5GCBMwaLc7VKtrGEpgmBaO42HbLlIqPM8nk82zuLRGFKVESYIhTFr1NgqLJBScP/MRrud1692GAXEckaQJ7U4LJSWu6zM/v8iP3vwBjXqTMAi7VEEobEPzkzd/QP9AmUgnhFGEUAb9w0NUm3Vs2+6qEbcaJElCFCXEMdi2yW//7m/TCVsUS3k0EWkaYchufu69+7N0gm4I9MLCArlsFqUktXqD8+ff5Wt/93Usq6u+K1DEUYLn2vz277zOkRPHsT2HgaEhoiSmWMry5de/gJKCMIy5cP59khiUsgBwHJPDh8cROsExJToOiYKAn/70bTJ+gTNnTvPCC89h2YrR4WEMoWjWm11PLOB7DuW+IuiY0dF+/uiP/jloQXW9Thgk6FQQNAKEjhASsoUKQhZYWl4gCNtIJUjTmMWFVer1FuVyPzMz8xw+eIyV5VWCIOQb3/gGAHHUVbiOwpilpSW+/a1/4MzZM0RhQKWvgEw7KN2i06mh04Q0TojCmIMHp3jl8y/zuVdeJo5DcrkMYRTxox//mCAMKRWLJEnE2toazVaTt976BY1GA4WkUuojiTpAyMBAgSjVKMMimyuAlty+cYfaWh1TWtimRTbjcPToIRApUuquYrFtE0UJnU6HTtAmCEOiOKBQyIFIiZOQVMdoDc1aRKcewb0zxKMvcmZ+ifUUXv+D/wZbVp7ZnPLrjM2InV7YiVA+i/VqL/30Gu+zuG59Fm36x8Bumwb72Mc+9o59j+s+PhXsVYBgtxyP7d7UrT938j5uDdN5NORmdzu2t91cYB+3yG4/d7tCZK8xd7J181hrTXDmP5PMXMIcO7nr+L367mXjTm12W0QT0a3CmGqwPY8DB6co5Ae4dfMO9VqNax9dQpmKgYFhVlZXUY5NmEIU1MjlsjSaDUqlEo0gZMU/hDXzLg4RItuPYUjq9TpKKUzTpt0KePPHP2Ggf4CZ2bmugA2CdruDn/EBTb1Rw8/4xHGETjVCGKAFYVhDSYskDUniECElrVYbISSmaSKF5De+8Bqe56MME0ModNotryNUSq1aRWIxMpgl6CT87GdvMTk5RqmQx/F8hBTEaYKQkmy2jJfxiOIE07AIwxbKdDBNG4lBmmqq1Sqra1V8x8fLVrr1aJOQJAmRUuP7PkE7wvUzBJ0OURTSaDQxLAelNN3cx4SbN2/Sajd48cWXWV5awbYMlLAYHipxYHyMgaFBXN/rehilQktBuFE+KJvxOXf+LJNTU1iWy9lzF+ivlMjmM1i2S6O+ipYJmWyGRrXJwtwy0zPzBJ0OQkgGh4Y2XSvYts+BA+McOXoMZdokSUIchNy5dRtNimlK7EwGLUT3HiuDe/duI4BisciNG7dotzocmBwnjhOkBp3GZDMO7VYHy5S0m02q6zUOTh0niVNGRodIdUSz1cR3HCzLJuwELC8ukc9nabU3BLKCgE6nQTZXpNlo8rWvfR0pFMViH++dOc/45CjtsI3tFBDKJ5fpqklnc93atEODFcr9eUqlLJ2wTido0WpGNJttXnrpJTJZD6EMDMNEya642NEjRzkwNsby8hJBq0HYqeKYAmWadIIE01TYpkWplGd4eBDXszn54kly+Sy5fI6+ch+ObZEmMc1GnVwhRy6fY319jeGRYQxlEQZttI6oVVc5MDqEFhZRFLO2to6fzbG6tMKdO3cZGRnZyC2N8XM5DFOSL+YwLQshFUEYk81myOfzKGlgmIJ2u4XnujiOTRgGnHnnDBk7Qym8TxvF2dUW//KP/3uGT3yRtpAY6RpIs8c8sf340RzOZ/GQ/iQe16fFXizcLfLlWZPUnebxzWicncKxn9SWBx7Zp7TzWWI3Ya3HRWk9FPX0TK3aHdujrbbb98u1fffUoX3s479U7IcK7+Mzg70Q1yf9bC9tnkSMYzuBe1qbhOiVm7I37HROdOVNdNDEnHrtifvsNcbTLJpSC6QWoH8ZuiSlxYGJcfKFItK0eecn36NeXadSKWFaFq6boVDIEIYRuWyBNIU4Tin3Vwj6nsOavYDoVInNIq7joDcedpM4od1qg5B873vfY3BwgIGhAYQAc8OD6tg2QhgEQYc4jjCUsZF/qBFYVKtL2JaFYdkoQ2FaNivLK+SzGaIkRCkLkXZzTMOwg2GYaBS26fDG979LJR8jhMfte9OceP5It1SNVKRdv3BXGEnZCKlJkxhD2aRJRDZfIE2gWqsjhMQwFH3lATqtDqaTQwjQWmLaNsqQ2LaD72dptmLqtSpRGPKNv/8Ohw4f7+aIIpiZmaZcKXL0+GGUcHnXZFJBAAAgAElEQVTvvfcYGapw7uz7TB6cQKlu/U7HttBhgpAKqRSO45BGXbXawcGBrhKvVNy5fYdyXxnbcajWGgxUSjTaDWzT4d6taZrNFsNjw1y/eoNbt29z/PhxpBJd77XW6DQlSVOkqUjjDgKYm51joL8CaEzHQyC5duUKF85dQClFuVwml8tjWxaO45DJZ7vKs0ju3L6FTmL8fIlmo4ZSCj9b4C/+4i9pthqMHRje2NSw6IQdNII4ThkcGiBO4+53RYvuxoTSSCVRsjtmtVZlamqCoNPCsh2CMMK0uu3iKMAwLJRhYRjmhuiVIIjauK7brZtaDzhwYLxbm1dotOiWQkKnCA3V1SpSGvzd3/wdp069yMBgP4tLi/h+hjRVtNsNSGM0Cc1WAyklylBAipQG7VaLXC6LZSqqtfWuwJjvU6lUukJNhonjWNTrNSzLolpvkCsWmZ+bY2hoGAT0D1QYnxzH8Vw0Atv1EELhuDaZjI9teaAllmUTxeGDsjlsfI9BIKREA5aAfrUKQY1Lzin+8F/8GyJVAdMEWkALgdNrZtl2/OgG2TN5TLc9ZHkCmet/Fr31xNPa+ayJyF7WmmepnPu0xPUTj7vbZ5/w2v7Rr6WHN3Wzxvyvzqp97OPXA/vEdR+fGfwqietei5E/S+K617bwsAd0pxI68YaqsLFH4vo4+5+GuCrdzSfQejNfDISUSMPA8nwKlX6ODWYwFKxV1/GzGfxMoXuutGi3QgzDQUmTlYW7xLEkd+R14ltvoerz6Ew/lm12RYSUYmRoFMu0WVhYIAw7HDw8geNYRGHM5ctXiGONn8mhpMQ0DVKd0G63MKTFrRvz9JUKGIZDrVHDczy01ri2033QUxKBQqca01K0Wk0s20QpnziMOTg1QnvtGv39hzj+/ClMV9LqhERhhFQKw9z0OEmipINtWihpsry4iDItFpdWyGXz3Lx5g0qlD2XY/PynP8ewfBzP5sKFqxQKFVINP3/rHa5cuc383CK5jEd/uZ8PL13h+ZMvYaruRkGpL4/WEdlchitX7jI7PUOpmGH2/jLjh6eIowhDSaROkamkVqthWt3SPjeuXqOvMoDneziugyYll8+QcXMIpbh+/RZJ3CFbKKCEyZs/+glRFHHsuSO4ls+Ro0cxlMRyTEAThhFhGHDz9i1K5RLtdpUkilmYW6R/YADf90iR6CRhdXmVF04831WLdlzSNOX8+fMcPXaUu9O3yefy6ERz5p3THJycQLk+tqG64artiKnJSRqNOmNjIxjKoFZtkSm4GIaFn80RxgGdsMN3vvU9+kplcrkcqytLGKbR3VgQkqmpSUzLJE5DhLDwPR8IkSIgjqDV7uD7WdpByDe//l1arQ7DQyMEQcK3v/1DZqZnsSyHYimPaRkgTZIkwVACnaZIofjrv/xr/viP/zWm7RDpBJTCUookNVAGRGGLJE3I5/LYrk2j1cDz3W6UgOhufKBTlAChFKlOcVyHThBgmBadoI1pmoRRQl9fBWkqchmfKAxxPJv1+jqZXAYtJIZlkaSaNIEwCjEtmzQVIAwgpVav4jpO9/uP7tZZ1QKdQhqG2KtXUGmHmbEv8oXf/RMQZUIvRiVNTG2QJjmEfDRf/x+LuMpc/6dKWmGfuO4T108wXg/i+qja8z5x3cc+emGfuO7jM4MHC+IuhOlxeR+PCH3sIRR2q2LjTmNsD8tN07Trkdg21nahqd2EN/aCx+VHbX09KIfzGOL6pA8xT5Jf9Etnq4DNey8AoUF0vVxersziapWVhQUW7tygOXeDtcWbFIsDuF6RdhCiFGQKFXy/SDtp4x/9PGltBT37AYHyiYXEsAzStHtvDx0+xMFDh4lTjRSS9dVVms02I6MHMA2FTlPQEMcJpmlimJJyf54gCkhJyDgeURwh6Xq6Wu02tmWTpjFITYpGKoMkjUnTGGUAqisAZWTzKMdFYOGaNqbdrVGK1l2Ro7hJp9mEbiEVsoUCwvA5f+Y8A6U+VtbX6B8ZI2iHvHDqRe7cvokU8OEHHyBEysjIKGNjo7Q7DcrlCpXBPjpRi9d/88sYSpBELaTSXVElaRK02rgmHDk4QaV/iNHJUTzXIg5jatUqAs36eo3lpSVu3bxFuVyhXOlHyG5N14W5ZdrNiBvX7oBOyJVyDA73UypWSJIUgeTKx1cxTZPBkSHKfX1ICWmasL66SqfdwrVdhJBc/fgqE2NTkCakqeDAxCRB1KbdaWIbNt/79vcYGhrm5u2bjB8aJ4xaIEImJscxbY+4FZLN58BUHBgfR6LQQjM7M8/ly9e4fuUaaawp9GXJF4tobfHxpQ8pFQskSYBlSRrNNitLa3z5i6/z3e9+n76+Cjdv3KVYKJLGKb7ncefeXTIZn2w2x8WLH+F7Lrlc19ubYJLP5UjTmCRqU8hmGZ88gOk6WLbFxPgYJ0+eon8wz+rqAj/4/o+AlMGBCjrZyEFWcPjIEbL5LI5nYitIgg5KxEhD4roZrl27hZctYtkuhmVhGBZJklBbr6JUim1mUcraKB9kbdR2FXhuhvraEkokhFGHXLbEW29doL+QRymF67lEcYxl2qC76tnVtTV838ewLCzbQUqDRCddDRidYnsuURKSxAGWmaVeXSJtrmAsX0MtXaZplxn6k/+Z0sFXSJVBaiQILdDCIBUCxE66BZvCdptTxKOCQA+Ec7Zgc7aSUpKm6a5z/EPz9Q79bLfok2DT3u02bC/N9jQbgb8sRfZLcSI2N1q3EZ7Nsbaet/W+bm2zebx9E/SByB/s+ILe97GX3Xu+zj206TWm2OF94JFNkF1L/OzS9/Zrfzy64kndUN+HhZQ2xZV6ffboe/vYxz56YZ+47uMzg16L7E5tNkUvHlce4Gm8sXsJK95c4HsR5e31V5+1sMR2+zbvRXzrDAjxWOK6V+/yp4UESf/wEOOTU4wcOMBH165RGinRSQwENmaqCRo1hG13y7kIiTBs6mYZUyQY0+dRtoewfDSgDIlSgjDscPfWfRzLw7Ndzp+9QLFQYnr2LuVymXa7QxjG1KoN4iTAsiwsy+4SWdX1QCZJihASy3LRJAghiOMYw9ysAWuQJN2yMqZhEnYC/GwRoSx0khBFbYRUD74HUkmSEFw30yWzQtDudNBAo1blo48uMj4xhjQkSwtrCG3w05+8xauf/yJJEjE3O0ccJ7RbAYcOHmV4uJ80VeRzJVzXQBPieQXCMKLdbGBIkDIGUjzfxrAMlKFRymB6+n43VNix8DNZRsdGyeW6eZKOa5PGMVJLFucXSaKY4aFBrl67xsFDU7RbLWzLQSCp1eoIJEMjwxSKBYSmWz7FNLh+/QYCgWEYZDIZSqU+bt28xf37s+QLfdRrDbLZfFewiRTLdlhdWePdd9/lpZdfQkqBEt3dD60FghjLtrqld2yXC+cvMDu7yMT4BBcuXOCVVz5HqxVimorh0WGCdsDI6BCmqWi2mrTaHXLZArlcgTAOOXjoMOXKANeu3ySTy1DsK2EaBhnPx5QmWncoFQv4mQzSVLSDCMcxaTZrG+WJfDrBGsVSEVAobAzlkuoAy+6WGjpwYJx2oCn1lRFC4jgeShkkSYDjOQRBm2a9SibjEoUxGoNarcUHH3xIdb3O2IFxSFVXmErafOPrXyeb9fG8LJCCSFCmQ5zEGKZNnGiIAyzTpLq2jmmYVFfXGRodJt3McaQbwh0nCXEU4fk+7Xb7waZOu9XEskyEgCSKkYZCCkFYXyddm8Zev4pqLLIkh+gcep2hr/wp0s+Q6s3H7KfbmNuOHTcsN37upRyMEIJ4+hJpbRGxzev6adCBzc3J7eXMnoWXc6d0kt02dh/Xbrf16oF39mkN/hTxpDY9yb1/xj7wh8Z/XJm7fexjH0+GfeK6j88UdiJVW0UmYOdQ1p2Odyp/s1uB9u3te/XRiyQ/zQK1F3GqnezbfH9TkGQvHtde/T9u7N1s2gse2ClNUtEtoaMcnwMHj9DvjdJcr/HWG18jXDtNVH0fbY/Q7tRpNBuYhk/UXsMcPsy6yOHNf4BoriL9Asq0CMKAOInpr/ShVEqtukSxmGVwpEKl0k+r3cb3MxteVE0un8EyrQ27JPfv3UMKSaHQJYGGYWyoyKZdoaU4xjAMPnj/IlEc0VcqA4IklUjTRqeaJOkSAtAPzuuGGncf7RPdratqGAYCGBzop9LftS8MQn7ykx/w/HPHabebvP/eBVKtGRwc4t7de8RRQtAJuXz5Qy5fvsGhg0eYnZtmdmaan/30NJ6bZX52FqUEpUI/QhgI5VCr1vGcDEGnSzwd28XPZbAsmyRN8FwXz3OIogAhDG7euEG5XEYqg76+PobHRiFNuPjBh/heBs91mJ+bZ2BomDRNCYM2V69d5Y033mByYpI7t+9w6tTLaJ1w8+YtctkcFy9eolQaJOP7IDS5XAalDFIdUygUMU2by5evcPnja7zy8suEnQ6NZgvLdLl3/y461XiuB6nG8zxq1RrvnH6bP/mTP6Zc6SNf6KNcKTA7Pc2P3niTfCGH0CanT59m6uBBLMtGym4e8d179zAMxdGjR8nlCszOTvP+++/iuxnmZxcol/OkOkUqRa3WxrF92u06tm0ShgFSmHhuFikUliGJkhZh3AAE585dIJ8r4Ps5snkbpTRSJayvLSJlgmWatDvdvFidJoRBSKcTIQ0Hy/U4evgoxT4f0xBEUUAYBpiGolzup1QqEgYpi4vL5HNZOkGIkgZCSkBRXVvFczPMTM9RLOQZGupDKwvLtllfX6derZHN5RFC8P4HH/CLn/+ckydPAilB0MH3PaIwRApJGsWkzWVYuIpdvYO0FJcDWBh4iRf+5N/jHzqCYXpIIApCkiTFMB20Tnr+v+8UubJTJEwvsia3zTO9SoBtRXjur0mX7zwizvQsqcPj5r7d1pInHqvX+VvWm528zluxde1M0/Qhj/DWz58F4e71N/+keOoe9rJ5vevpj3rwHw3r/SXkxsblPlndxz4+HewT1318prDTRJ8kyRPloj7JOE/i6d1tQXraRWonz/FWbFcR7oV4j6HCvfBUD1NPe70Pzu+6a6QysVyX4sAgA6OjxGnE3OIylpGlv5KnkCuRJoJIh6Rakh89gh5/Hd1cRt45TYLAylbwPA8hDZRSXbGjShmhFJ0gxPc8TMsgjgMs23hQtm/TY5T182gtsCwLx7Wo1ddQ0sQ0zC6R2fjeXbt2nf5KH4Yh8bwMyrKQovsAbVs2cZyytLSA67okiQYE9doqjXaDTDZLqjVRnLCyvEwUx2QyWdbXq1TXa4wODzM9Pc3c7AzDI4PoVHH/3n0GBiqsra4wOjLIyVMvkc26XL9xjfNn3+f48VPM3L+HEiZTBw9R7CtSW1lHKIWX8VGGImx3cGwHnUoarYBWs+sV1hocx2F1ZYWsn8HxMliOg+N6ZHM52p02zU4b37ZYWVpmZXWdfNZHGpLFlSWmDk7iWopUw/HjJygUirRababvzzA8PMDg4CCmadFutZmamsJ2DPIFl5WVBbIZn3Y75Mzps0xOTPD8cyc4MDbFuXNnyWZ9FhcWsSwH2/b4xc9/QX+ljO85vH36F3zhC68RxyEDg4MYlkmcRKRpgEJy6aNrHD1+gq/9zTeJ4ohjx46C1GidkIQJhXwOnUbESYf6eps7d27y+utfIpvLs7yyTmWgwsrKKrbl8P57HxJ2IsqVCo1GjWKxSL3WRBopUdihXu3mCEuj+x3oK/VjKIuzZ85RKLj4nkujvo5rWyghiFOI4hTHcbteamUQRilBlGCaDlJJMl6W+/enKRX7CIIOd27fZnziAEKknD/3IWtrNaanZxgbG0MKQRTGpAk0mg0Mw2H6/hxDwwN4vgWGQxwnJHEMQLvdQSqFbdkcPXoMpQziOMEwLOI4xdQxazfexa/fRjSXMY78Jov9X+R+o0NhYorXvvLPaUc+yjIIqgFEIZYSSMMiEQqh917WbLf5bq9z624EeCdV4aelEc+SiH1S4rqlo2duw2739FeNp7XoacOQH5y/tVpAj+eAR1/7VSP3sY9PE/vEdR+fKfQKg918bzOvdLdzH4RoSvmg7V4Iaa9+HreD/bjreJId9+39bz9va2j0TuFjutNAZvtRlakd+3mczdt/f1a77w/lUaHpBi+C2Mjt0VKSCoGbLVIYPMLYsS+xPn+b+Y/OsDh3ldiXWJk+PCNHe62F5bdJDpSR5ddRs+/C4hVSu4BWZpdEui6doIPj2FiOT5omxGFXxEZZNkpZaJEglQApQChMyyIVkjgVuH4OdItWq4Hn+qRJ1/JisbDhbVWEYUirVQctWV9rkCQanUK7FeI6Webn53EciyDp0Nc3SLvdIo3bNKp1aqurlItFZqankUJy48ZNJg8d5M6tOcZGp3ju5AtEcZX5+TkOjE0xPDxKpb9AdX2dIAh57oUXGBwdwvV9Ll+5QbPZ4MUXn8O2DKSd4vo2S8uL2I5DkqaIVPPD77+J0gaz0/cZnZzg0ocXyfk5okijbJdOJ6DVCjEsF2UaNIM6Gcul1emghWR5pUo2l0EDBw+PkyYdBDGu41IayKOlolTso15foViosDC/yP3pGW7fvs2hwweQUlGvNenvH2B9fY12K+Xd997jxHPHSZKITClHtbrOO2+d4fDR4/QPDvLGD77LK698jkIpjzQVlf5+XM+lv1IgjjqEQYTnGgTtANO2OXHiGIsL8wRhmz/4g69y9epVhofGCNoRWsckaUyz2aRY6CPRIUNDQ3TaAZ6rqJR9kiRAGQrbziCEyfvvfcjByRHiuMXq6grf+Ma3ODBYRAhBqW8AZbrMzi0xN7fI2z//GaOjgwgZk8n6GEqiNXhehiRJCeIA3/dYWVohTRXLy1X6ykUWF1a5ef0GSiaYOuKtt08zPDrJL35xmvff+4Df+I3XSJKUoeEhNJp33jnHq6+9jGFI0iSi02ry13/9t7z66quYtkmn3SZotvEdQApsP4MyDXwvjyENHNfBcV2E0CSRSWPhCn71Fizfwhs5xnzlq3jHfp9qYhEol+d/659RGnmeWDsomSLjhGatxb/6oz/g7Ds/5fd+/3eBhCRI8BybhBhESq+y7w9yNndRVN9tzknT9MH5m3PLg/O2tHsQfXLwtT3PX9ttE+Lpld+3RwZtxbMihZu9CLEl/3Xb+Jv5lg+/ensLt27Obr2XWutuyPkn2Jh96LhHm+0W7nWkT4Neb+YsP7RKCYmQ6oF123NVH85b3cc+9vFpYp+47uMzhV7hTXvd6d78TCmF1pokSZ6ZJ/FJ+9kMx9pr/48bYy/XrypTD5HWJ0Uv4vo4u/ba7+MI9NYxDMPo5p1KSFII4wCSNnl9FKnWaTKDMgfw1QnaokWj9DxGoR957YekQqLtLK1Wt2Znp9NBGTYCTRB00LpbgiYJIzzHptlsoKSBRJEmXY9RHEdIIVGym2eplIlOU+IkwbFtpFQYRtdr+93vfZdDh44gEDRbTZIkxrS6JVlu3brNwMAAfsajUW1RrVaJwoCFhWXGRkYJgoB79+9jOzapTrhx/SaWKZmZuc/1mzf5/OdeJIpi5ueWWFtbZergBLbtcvf+fVzHoVQqopRksNLP1NQUM7Oz5PI5wjDEdTLoFDrtkGw2RytImZlb4tDRY/QNVFAmDA4M0G63iOOEXKHI0sIi3/rWd8gX8gwMlBFC887P3+HIkcM4jkuhUKSvVCKT8btiVULSrDcwVVeNN+zEmIbFxx9fpFDso9NpMzg4xNTkFDMz9ykUCrz3/vtUKmUs22R1ZZ1CscDw8BCu6xIlMUpK+vpKHD50CJQk4zkMDw/Tane6Ockbwldh0KG2XqPebJLL5xFS4DouURRh2zZ9pTKlUh/Dw8M0GjV830Mq2SVtjoNSBpZlIITEtkzSNGJxcY5MJofWkrt3pzl79jxf/ervY1mKeqNKPpejVCzTP1DGsl1arTamZaKTlEzWx/fc7rU5JmmscNwM6+t1GvU2ruPj+hlajQ7ZTJH/5//+T+QLJYKgxcGpo5w+fYahwX4MU3Lw8FHWq3XOnTnHgQNjFPIZLMvEcR0KxSKnXnwR27FYWVlCCglC8sLJF7BcFz+bwTS7isNJHJLq7gO4ISVJHKIMSHW3bmzQquKs3cANVkiO/xH+6/8j9uRJVhopayv3idKIE597Bd1rPsTgyscXufbxx/zv//F/47/7t/8tSDZC0DVgsJuv63FzyiOkattnPTfutvy+17SJx439LOa+vbz3VH3vqb9en+0c5robnpa47gVP7Ql/plb07r1XOtFn0SO9j338l4J94rqPzxR2I66PCxPePHeTsG4S2E9qw07v7YY0TTfIzd5znPZKXHfLr/kk+CwQ1822WmvcQhl/+AjV5XmShet0Vr/D/dl1Rqf+KablEHdug/RQhoEsDCDHX0DceBuhU6Rf2ijhAdIwsE0DJQWmZWO7LrXVVdbXVpFC4tgeSdim2WywurJMuVhESSA1WVlZY252HtuykALq9QarK93zDMMgn82zvLRE92EwJeh0yGYd3vjhG5x84RQXzl8g7HQo5sucPXOOQ4enmLk/z5XLlxkbG2NicoJbt26QyXpMTR1lfKKMVClzc2scO3aYwcERlpdXGBwc5IMPPyRfKHPk6BHanTbZrE8Udbh17QaZTIbJQwcJwpBcpo9arc3c3BJXr96kUOgjn89w5MghUh1RKPi0Ww1s2yZOEgqFEtevXWdmZp4vf+lLaB1jmNBqNfHdLD/7+U85MD7O+fMX6CuUCIIA1/PRCBzb5fzZ8xTyOabvzfLRpUv81m9/GSEkuVweQyn+6q/+hrt3b3Py5Ivcvz/NxMQ4oNFaMjw0SBAEJHHCO6dPc+LECYYGB+mEbSAll8vywQcfcGB8AsMwkUIhBMzPLVDI55GGQlk2UhkYloUyDZSpWF5YRhkm1WqNvnIBKQGpaHfaSCUR0qDVrD6o7bu6vkIun8OxHZJYc/vWfSYmJsjnu6G7IyNdcl0q9RGm3Q0V3/cQqcY0JZZjUekrEkcBjuPg+TmkkoRR2D32fOIkIgxCPM9jdHSE9957l+efe4FWq43v+UxNHaTRalAsFFlcWGRxcZFXXnkFP2PSaNUxNtWuHZtms0m+UMB1XUBgOiaGbZMKgWGbSKVI04hcLk/QbmOZJhpJq93h6tXreDrAW7mKqBxnYfx1rNIYluVx7sI7xO1VJg9NMnb4IJHhIXsRUCH4va98hW/+3dcp+i5f+/P/xB/+m3+BkBKhHNAGOysLPz1x3Y007BPX3VptxT5xfZLelVIP1VjdJ6372MevFk9KXPfjIPbxqWK7l3JrqZq9ELbN0OJNj+vTqPrulRhuzX3ZPsbWsg29yPjW15OEsu3UJ0BaWyCtLTw0xl6xPbRtMzS5F7YS6L2Q0l5e85286A8JiADSsDn1+depRjarDY98ocPc3T+nvXqWoFrFcTKsrjQxVZ5Q9SO+/D8gGotQncPayDkFaLVadDqdjf4FpVKRYqmI63lEUbyR8yoolyusra2TpppWq8md27cZGx3FUCZzswvcv3ePOIqYmZmhWW8wODAEgO875LIZHMtieWmVyYlJZmdmabeaDFbKrC4vIwR8/PFHjE+MY5gwPz9Lo1Hn1Vdf48Tx5zl9+h3iSDM8NMbk5ASn3znLyvIKuVwOx3H48pd+k3RD+MlzXdIkZW1ljWKpj5nZWdqtFmkSc+nSZTqdgGw2x8joKMsry3Tqq6wvz7G6MEN9bYX6eoubN+4iVVe1eX19nUNTk+TzGYqFHDrRBO2I8+fexbZdbNvi1dc+TxKF3fBmKUlTTaoFhVKJMAxBa15+5WWUKcnmfCzLANHNG+7vH0CnKYcPH+Htt9+h2Wh1iXcc8/WvfR0hJHEYEnY6RDpCGqAktJoBhw8fQ2uI4gghuyWN/uHvv8P9+7MUCgXQ0Gw0adTq6DTBkJLhkQEcx8a2Xabvz7K+XkUKjSGBNIE0xnddDGVy4cK7vPfehyjDIgza1KpVjh07wtjYMJevfMilS5doNTucOXOB99+/iG3ZXfEuqUiFxrTt7nwTp1y+fJVOJyROO6Q6xM/YWLZkrbpEJ2igTE0YNckXHJ57/lA371TCu++dJ00Tyv1DaKBSLvFbr3+Zn/3sZ2SzWYaHh3Ech3wux0cffcTM/RmSOO56ol0P27LQacJm8WShFJbtUquuYyqBFBqdSnwnw2TBIlO7yY+Xh/nNf/d/0F8pYemQjz9+n4sXL/LKb7xGcXgYvSHA1AuGIVG2w1998+8J04T/8L/8ByoDQ9iWA6Ts5G3dOndsnxceN2dsFQ/aad7tNffs5DHb/tokJ1tfTzKP9rLpcdfZ63qe9tp2ut7dhLB2s3fzeC+bxv8Y2Ot92em8x/W5/W+llHqo5N3TbILvYx/7+NVD/Lr884Zh+Oth6D4ewfa6qlvxOFGP7TX+nhZbCdzm8dafvezb7X/jcZ/tROB6tdmpr/Yb/ysA7u/9+2dK1rcv3FvbbKpTfhrzghQxMtVoFIlSrM/doXn3ElZrnrXOKuSLZMZewvdKZP1+ZmZmyOdKiNU78M7/yaI9wcDYYSIdYxuSOA4xDAstDcJOE0RKFCZ4bo6g1aLWqHP33j1e/tzLSCkJ2zVM0yaJUzqdCNt2WF9fxjBMfD/D7dt36K+MsLQ8S5qGjE9McuP6TXK5IvVaAyE0/QN9OKbg2vW7ZHI5Dh4eQymH+3euceDAOKurDVZWqty4eZvDR6a4fuU2Q0PD2J5JxnVYWFigXClz7ep1XnvtC9yavsHgwCCFXJ40Sjh3/hy/9Tu/S6PRQOiIMGywWu1w9MgRzp47w0svn2JpcRE/46GUybmz72Eoh5nb04RpxOj4KC+/fIp2o0GSBBSLBaSh0FoBJkvzCxgWrFfXOXb8BHevXaNQLuFms1iOw8L8AnOz80yODxKHmmypiOkK6ss1stkCc3NLmEZXYffe/RmOHT2OUhpNgolQbmMAACAASURBVN6oq3v+3AU8P8PJF54jiAK8nAc6Jmi1OHf6CmNjw4xPjtKJWuRyGdLUoF1vIdHYnoFtZ2i1mrTaDWzbolZbx/Ussn4/OlX87Gdv8vpvfolOexXXtUmShE47QqcSw7Sp1ZtoAYPDA9SW72EYPkKYfPf73+Zzr7yE6xRIU833vvtD/vRP/2tmpq9h2hYHJibAMAjDCElKfXWd9959n1Mvv0RfZYC5uTkuXfqIr3zlKwgBUdzBNm1AM3N/GsuysG2Hc+fPcerkSTzPpx6EFLMet69fBxRj45OEUYN8Ic/Kyhqm7aFTMKTCsCRaCKRh4ClItCDS3fw7ncQYMmJ9dZlSPk+CYqW6RrGziEwj9Kv/lsWOwjP7OPPj/wvf8vjyP/lXeKU8sXKJU42pDJROSXpMpzpNSZWFNATt6gKeAY43RJrGhDraaLQz2ek1l/QimA+OYce5ffO9dMv5nR/9RwCc3/13Pdt+GthtDtxt3Kc9j17nbfdUC9Vjjn40haXXHL+dxD7tndtrjusj5+3Sz5PYlO6ytm3Na97e976fZh/7+GzCsqwnmo72Q4X38Y+G7bu+vd7bHta1mzfvcdgprHf7w9VOO7i7hQX3sqdX35tkebsoyObOby/iutkuvnkaAGNLeFyvxX778UPCSVtqEu50Xq8+nhY7XQt0c/NSobo5dhrMjE1x6CihNUqEQxyGvPudb5Ku3qSSy4M1BnGEsEqcv/A+U+YSsjSC5WXQQhFFCUJIwk6AaVgYysQyTVrtGsoA27I5f+48Q4NDuI4J0iFFoYWi3enQbLdZnF/g3PkzDA8PcH96msHRPlwvi+sW0NrEtGw8zyZNY/rKFeZmFxEioa/cR//AIGiLeq3NwOAAURwTRAGjY6NUymVu3bjD2NgItm2ysrRMsVSkur7K0ECFYqlAtpjnxuUbuL6H53mEYcj4gQMkSUyu6LNeW+OD9y7RboVkMnmSRFMoZOl0Gszevs30vWkG+ofI5jJMHRzDcQxMQ9JXLBJFEaVyP+traywvziMNA9NzyOUcLMfng4sfcWBiglJ/V6nZdmziOMaxTU6/fYZTL38OrSQ3rtykXY/I5T1MU3ZrxvoZpBTUauuUSiWiMCEMEv72b7/O6Pgox547TtDq8P6FC2SyWX7y5o85cfw4SwsLNNsJh48eBJFgWTaGcoiCJkJplCFptloInbAwP08UJsRJRLEvT6fdwXFMOkGLAxMH6AQdpEhRykQpC2VaLC2tokVKX7lAGKfcvz9Pua+IEArDsChVhqgMjqHTDsViH0tLSxhGipCSxcU1RkbGSJIIw0ghBcdz8XNZ8vk+TFthKINSsZ+VlTU810ephDDsEAYhH128wuGDx2i26ty+c4epqSnSJCaTyfPD7/+Y8YlD3Lx5nXzOp1DpoxPERFGC77u4noVhmghhkCYa2zSpNusIJWg161iGiVIOqU6wlSaKIpRfwFq9hUxCmi/+GXnP5NIv/opbNz/g1Oe+yEuvfxWjMEAibKTQG/ndKen2/8lNEiCNbghxkmLbGbR0SXRMojVCSAS7167s9dlWz+dOBLUX6dEbr619GlOvYky9+kRrQS8yvdtG4fbeRI/X1n56XY8QAnRXAkhusXP7iFs3c7evKQ9dA2zzjuoNLtu9S1qnCNEVGXpYUOjhiJue9m473m1tedwmxE73aft4D7XptYZuOyfV+sH34ZckviuS1r3Oh3tVynhEaGl3q/axj338qrGf47qPzxx6eTd3Xfi3tdmqwPu0xOpJSe9u/eyE7TbuNbx4pzE2y+FsJa67FT/fybbtYWGfppdiO3YlyWjQBl6+SP/oOJHlEIfr3J+7RRCusbx8l9S0KQ/0MXTyt5HT5zGUAGljCIijAMNQCAVKGiRJCoKuwE2q0Vpw5PBR4igiDENOv/02QiecPf0OuWyG5cUFwiBBKYN2O+TkC6dQ0sFUNm+/9Q6WZdJuN7l39w5Hjx7jjR++gW1bdNohcZKysLiAn/FwXIs0TWk06/iej5QG3/nO9xgdGcKyTMrlEn7G486daV555RVWVpZ56+138Pw8Sghq9RoDAwOcO3eW+bl5ypUKShkYUjE5OcX42Ai16jq1tXUuvn+RleU1hoeHeeuts6yu1RgeGaOvVMQwTdqtNktLS1y8eInh4SEuXrxIuVxBGWY31DpoE3Yijh09TBwFIAQrK8tkMhmajQZBGDF+YJxCMY/WmoyfpZAvkCQxly5epFwuAxrH7ZLtJE356U9/wvjkOEuzyywtLXNwapxcxuPa1RscOnwEjaJSHqTTipmZmWN5eZFs1sO2DJI0JGiF3L19lyTWrK6sce/uLKdPn0dKk4WFZYrFMqbRFciybIt2p00un6O2vtr1Op9/l1Y7JAwSFheXuHbtBo7jcebMGU69cJJGvcWPfvQmx44fxzRMojDg5o07BEHE+PgEUQjFvhxR2sR1XeJIoZMU0zTJZQvMzy2QRAE6SVESvvWtbzA5OYxUgjiO8DyHQqGA49g0W21GR8dYW10nny/xF//5/2VuZpZr169z6tQpRkeHqTXq+F6er3/tHzh+7HnSVGKZJpZpY5iSWn2NbDbbzdd2HIIgQmjB0tISi6t10hSMhY8wTJfc7/wZf/ONP+c7P/g+//S/+jNe+Z2v0j92kBSzqxyLeOSZvffc8fDGVncee/z/8CedA570vCfpqxdhfhLi+qS2PZj/e7TZPmKvdW5HwrfLNXfn9kfX1+0j7oW47nXMT3P9eIRM9xz30et9WrXofexjH7967BPXfXzm8bgHkq3EbCvxe1xo0PYczZ0eXLb2u/2zx3l8ez30bB1np/F6EdftfW5vu5W4Pgnx3m7vdrt3ym/azbu9Vy/HTpsPvdtqEIoURaglTraPqfGj2HaOeq2FIQxS26FQyNPpxNxcDsgvnCVQPpevXCVfLGBbNmkKOtVIKajXGjiOR9BukcSaO7fv8M7bpxkbG6PdbNBqNrlx/TovPP88xUKBQqmEFAblvgrFQhElbT68eJH/j733jpLrug80v5dD5dg5d6ORCIABACmKokiKFhU9SrZlj2Zly5rxHEneYMuzY8tzxpZ8jr3a45XtGXt3xvaORVGicqACJYCZFJEIoJFj51wdqqsrvrh/FBpsNhqNBgiKpLa+c97prno3vfvq3Xd/9xfu9u23cPHCeerSaUaGB6mva8A0DDKZSW7dcQcLCzlM00SSRaLRENKl/WYlWWJsdIJNm7dy4cI5uru7OXf2LPF4HN8X6b9wga6uTgzTJJmuIzs3R2ZuhtaWFlpbW+g72sfiYgFREAiYARzXAd+hr68PEGnv6EJTNVLpNK1tHWzavIXnn3+e3t4NnDlzlo0bN+J5HrquE4/FmJ/LEorGMM0gVqXC8OAAoigyNDRMNBrC8RxS6TSKouA6LgEzSCgYwHYtbMfGtVwWF/MMDQ6yffsOTMNAUWWGh0c5c+YM6bo6NE0lEo3Q0dbJwOAALa3NGIZKR0czi4UFuno6EESPWCTE+PgE9fV1GKZKIGBiWUVOnzhHpWyRSqV58oknecvdu9m4qYdAyKCnpxPTNLArFVzPQ1YURElkdnaWeDSCouqcOXuOhoYmZFlG0zQ2bdpMPBbjlq2byWYXeWLPXjZs2IDt2KiKwrG+PmRZ4eTJk/R09/LjH/+MW2/dQjRuIskKIjqe4zA+PoZt23zzG9+kt7eHeKwa9XnTxh5su4gkqwSCJr7vUyoWqVgVIpE4ruvx2A9+yJbNWwkENHbu3Ek8FqdnQw+CKKBqKgISphHkwIGX0DSDQmGRixcvEo4EcVwL165uS2RbLo7lMD83RzqdJhxNEMhdxClmuWjczgs/f46uTW38+r/5JIH4BhxJwPUEqiKriAh4K7RvK7Vnqwk/1bRrLzCu1NyuZ3xaPk6vNl5cbQy52li5Vpuuxso0l9u07FqWvl9rkVAQVndlWc8ofS1z4sv1XkPzubzG1QTXtSxgrtAwr9GH13oH3izWI7hWtaridd3zGjVqvHGpCa413rBcj+C1xHonRMuFtPWwXBv6erHWZMz3fez+/Qi8LLi+2nqu9aJ/LVbZ18rnI8OlfQh9obp3oePppOo7CIfTzM/liUbDDA6MEI8maO7ZhCyCMHGMVM8OTp8+hyDKmHoAURLwfVAUlUK+hKmrzM3OEw5F6OzspFgscOToUTZs6KWlpZWBgUF8qsGVdu7cyfDwCLqhsW/fPkrFPPFElA09Gzh48KXqtiaSysmTJ+jt7UIUZY4d6+P8xfPE4zGSqST41WsdHh6mpbmV0dEJZmdmSCSTyLJCX98xypUKsWiYU6dOks1mUXWDWCTC9EyG+oZ6Dh44yDseeIBgOEw+V0CSJBYLeSLRMKKkMDmdoXdjL2bQJBKNMJ3JYJgmpVKBWCzCwMAAqVSSlpYWZEXGLlc4dfYcdQ1NBINBnnxiD+cvDHDX3fcQiUUxAyaarlIul3Adl0xmBtt2kCWR7MI84UiYxewioWCQlpZGjhzpY2JiioBpEInGaWtvQ5JEJibGaG9vRzdN0nVpVGOpzEp1v1ZZwHNtHLtES2srtmNTLpWJx6IUC3lmZmbJLeZoaW1ly9at2FaRfCGHpskoqsIjj3yNW2/dWt1SSVZxXYFK2a4GVVJUEokkuqGTTCUIRyLMz2dZyM4SjgRQdZO+vj7ufstu6hvSaIZKa0sL8XiUgwcP0dzcQnNz4yWB0a1evyJx8tgxGhrSaJpCLBolnoySLxQwAgFEqRp1WFF0bMtGkWVmZ+e5ePEiiioTCoZo72hDlhX27Pkx27dtJx5P4Ps+5Uo1SrHvCzz33PO0d7TS2trExOQ4fceOcccdt2MYBr7vUiyUsS2PkZFRTp46SW93B9LYQfAsXiyGcIwUXZu2sPPu+/FFA2QF0Xeqeyn7ACKCL+AL3lWfxZfHg9XO3ZznfGW6a43Tq52r7P867thJpKYt11XfdbVp2edrCUSWZV0O9nOFcHij7VhW/7rSrxBcX3nu5TRXHe+vs32/CK5o0yrvrtreqjVq/HJRE1xrvGF5vQTXleUt/V2peVwroNGr5Wr+VqsJrksmZ87AgddEcF0r3Y2cu1bdV8NDRsBHwEHCRvY9HNkFWUHWNdraWwmIGhISB/YdoFzKcWosQ1NQQsyOEKjvJhSIIIkqtldhdnaO6akM+/bt58L5M+QLRU4cPwVAS0szmdk55uaz3LFzJ0ePHeeOnbvo7Gwmny9QV5dGUSTqG9L0buzC82wEQSK3kCczPU40mmB4eIiR0UEc12V8Yoy33fs2jp84SXNzC1NTU4CP4zgEgyH6+o6ze9duXjp0BNMMMDAwRHtnC7IsIYk+iVSSi4P9zGZmicar+6lu7O3lp48/TmNzCyEzxOzsLPWNdfiCiCjJdPf0oBkqlluhVCwwNTlFsVSkUimx7ZYtdHR2oOsq3//+9+jvv8iGrg1UbJdkqp5YNIJVKuL6Ioqq09jcwmJxEU2VUVUVQRDZu/dJurt72POzx2lubUbTNYKBIIIgcur0CQwjQDpdTyAQZGZuFjNgAj6puhTFUp79B/ejGSbhSBTd0NFEE0FQKJUsbNvBLtvYbglN08hmc8iSRCgcoqGpkYamesygWf1VCCaVis3CQp5KxWNj7zZU3cEwTVzXx3MlFhbyPPXUUzQ3N5PP54nFI3i4yJJMKBggFDI4e+YE2cUy97z1Lh577Ls0NdUDVeFUEH22bt1KLJ5A0wUOHHiJng2bkWSRxXyGWDiOGdAYHBxgIZeltasNzdARJIWR0XECoTCaYiLLEp7nI4kSmmbwxJM/ZestWzl16hSe51NfnyCZTHLk6DF8IJ6IoRsBoLpQMzI6SLouSWtrE9u27ahOygWBSrnI/n0HGR2dYNfOnWxsDOKPHsJKbeRnA1mS9Wnu/MCv0di2Ec8Pgy8jSFk010O65BToC3LVn/zSNjZvZsHVOfM0WEXkzl2rplnLP3PdbVr2eb2WJa7rXumKcV21X5nvRgXXV/bBK9u5Vn1vJNbSAq/1W61Ro8abl5rgWuMNy7UmKzdifnYt86XrMSlbq6zl6a8Wdfd6JmWrCbArPzsDB0AQULruvHxurSAZV+N6hP+V9QiCcMX1Xo951lrpRLyqn2s1lAm+ICAhIvg+gijhiSqyEWJudo7s8GlGzh2gsynMFBupU/MoxXEqRgxfqkZFXcxleewH38dzfayyTSKRJB6PcfDgQerq6tm8qZdIKISmKaSSCSRRYHp6lvHxEWRZAV9CViVAolAsY5UtTENjdHSWublRGusbiEZTCEAkmmCxWMZ2LJoa64hGoux7cR+zM7M0NDQiSxJ6UKG3dwOBQADbsvF9kfb2dgYuXmDrli1Eo3FSqRTxaITpiUmOH+1j+/btjIyMUqlYlEolBHz27H2K3bt3omoSFy/0Uy7anD19nrt238Vg/0XSdXUEoyH6BweJRGJ0dfWgqDozs/O0trZw4MALxBNRunt7UGUNQxc5dvQQLY2NjI2PYpVsDC2AhEAsGqKnt4NEKMjUxBkkMYYa8Pn50/tp7+4k3ZBClAU0xcOxfPb+7CnaOzrILebIzVZobqxHU3zsSgGXAo5bqZpzOwKjoxM0NrciyxKJWKS6R6ii8uSep2lsaMCxHWYzc2iGgCRLpJNpntq7B0Pzqa+vB0nCch1EHKKRAIePnqCnq4vRkUlURSYSMLBtF0nWWMzl0RQdUYJKuQiewUK2QF06hV3Ok5nOIEsmZWuRg/uPEgwlaO1oYCE3A66CoUnIikQh7zAwMFyNnixI5HMLhII6J08cwzANSsUKluViBk0UXeWlQ8fo7Ohmz96nCAZDRMIBBFFkoH8A33Xp6erG9kASJRKJBMViibHhMZpamhElASQfx3XRNYWD+w7x9t3bUeZO4hUyzDffzcFJi3se+jA77nwQxED1uRRsEF3wFVxBxhVEfFEAwQPhSh/71Rey/CuO9Y4ZrxwzrwyYs3QsBcoRBBHfvzK6+1rjstN/AB8fpesulgfc8S9te7U8GE91Mezlmlk5dq1S33oW9lhWpnipHFFYPcDU1fKtJXat9v1S2SvfG698/1yZ0/e9VyzSrrpwuo52rxq0cHmbrrIout5Iw1fUcynQ1MoAS7UgSzVq/PJSE1xrvGF5LTR666nzZgV3Wv7/qxVc14OUbEdu2oqgBV91WdcruC7/buX13ux6V2PJh8mXIByPsGX7bUSTTZwbmKS12WDMDZCUSihzFyk4MsFIAl0zSCfrEAWVYr7AQm6Brq5OSqUC7R2tjE2MEU/EUBSFAwcPkEwm0A2dpuZGREnCsiwyM9MkEgny+TwXzp2nsbEB17G4886deKgMDY/Q2tSJZVts3trDhg29FPMW+fw8t2zbSjKRoFDIY9sWdXX1/PyFF5iamkLwfULhEMMjgyiyxNDgMJphEA0ZHD5yBFU36Nm4mWA4RkNjHcePn+Atd7+FUDhIIh6jVCiA5xMJhZnJTNPZ3cb582fp6d6Aqutohoau6xiGjiRJRCNhREkku5CloaGBpuYmHn7kK9y6YyuWXaGru5uLF4cwQ2HC4Qie5xKPR/AFF8fxOHmsj/qGGIFgHYLs0Nu7GVWVkQSBfDaLrAcplsrMZDKkkjES0TDnL/ZTKi2SSibRdRN8kbnZBcplm2gsQjQSRJQ0Hv/JT1BVhccf/xkNjc0IlsP+Ay+ybcd2QtEYgYCBIICkSPRs3EDZKhOPhPBcG0HwsS0LWZLYuKkXx6nQ3NTO3r17aG9vx0e4tBjio+kaoqqSSKRIxJt48slnMEyDuoYUsmrSd+wsG3o3ATbFcolUKoLouxiyjiAqeJ7P0PAk27bfiq6pDA+PkJnOEA5FOHjgEE2N7fz4hz/lxX0HeMuddyNJCo0NjVQsh472zqpQOjXB9h230t7ZhREIYASC+IKL69q4rk0yGaenpwtRgGKxhCwryLJEdnSAW5tNtOI4xfptPDdbAKOBB9/1XsxYHbaos7p4cH3c/DF5veWt37rF933cgYMIgvCKQHVXLdv31vTjfz1YT61rpVnbkujqIu+aC6TraNNaXBam15t+jXMvR7+XXrd7VKNGjdeHmuBa4w3LzXohLQlSy4Wpa20Ts5rWYSWrBbJYbRV+rf1e1xJqlwvRiqJc3lP2qgFHtCCogau293oFyJXa05Uah9XSr/x8PZrWm3G/fQQEUcYTRVQjTCrVzMTgYaKpJE7DdtyKTTBzFFGSmMkWSNU34joeU1MTZLNZotEwkiyyceMGgqEwMzMzhMIhkqkkgWCQcCQMeCCIGKZJLBZBvHSfGhsaCQRMpqanOHXmLL6vkE4niYaCeL7D/oMHiESiaIoOgs/x4ydYXMyTzS5w8sQpOjs6yS8u0tHeTmZ6isViga1bt2AaOvUNDQiiwtzsNEf7jjE7n0WUZOrrG8guzHP+/AV0XaO//yKKIjM1NUWlYpFMJtA0FSOoEQlX/VqbW1vQNBVV0/Bcl4WFLNnsPLZtkUgmUDUNUZbZ0NuLrin0HT1KT88GxkanGJ+YpLu7B89z6O/vRxAkNFUnEY2TyYwSiTZheyVAwipXOHniFKlkHUf6+ujp7uHI4cPE41HK5TK6btCzoYdCMY+hB3BsF88T+P73f0BdOo2qqfhItLe1oyoqHZ3dzMzOMzM5xLYdW9A0mdxiFlGQkBWZfDFPMBQkHIliWxaSCIoiV7e/kRWK5TyBQAA8AU3TSKTSlMslsvOzzM/PEY3F0HSdSqXMQP8Iudw8d951B1OZSaampum/OExvbyemDo0NDSB4ZOfmyUzOY5gBBocG8byqOXPQVImEwyzmcuzZs4cH7n+AQFBl06Ze4vEIpqkyOTnCj370OJs3baJSKXP69Gluu+M2wpEImqah6xqe7yErEvg+iiwjSiLFQgFD11BVA0pZvLE+zHIGt+MeHjkjURAVYkGFe9/9G/iyjiepuIKCiPuqn68lVjfJvIHnddnQt1o5Lwdnuj6TWKf/AABSxytNhVcrQ1xmJru8Hdd7TTczCNGrFVyvSPuKa7pSG7vyUle99ht0jbmiL9fZTytrWRlgafm11KhR4/8/1ATXGm9Ybpbgupr2dK0IkDfalvWWtZ5Q/EttXpq4LQWGWh4g6nq1H+vVViztI7v0eb3lvxGQPRlfAFcAUYRoKMixwwexPJVQshnSG3HiW2D2AqHcWcT8BLlshpm5OTxBRFFVduy4lWAghOP7qKqGYZjoukGhWEQ3VBy36j8pSQrgIAgCuqazf99+FFWhe+MmGltaOXPyHOXCPIKUZ/OWLTQ1dnPyxEnq6yMkE/U0NDRx+vRZNvZuIpFI0X+xn0J+kXgsSi63QDyZYHhoiOnJCfKFIvPZRW7duZOdu3azYUMPhqoyMHCBxUKBzZu3UN/QQDKdoL4xTUNTC9FYAsd1MIMGqqZjVSo0NNQhKgK+J6LICseP9dHa2oLj2ISjYWKxKLppoqgqkiRz9KVj1NU1cOLESUoli3MXLhAIBojH4zz15HM0NrSz52d7kUUJRQVVjWMGNVxbYHp8msMvHSVV34RVyhMOBti27RYcD5KpOvqOHOfgoQPs3nUHi4s5CvkCjuMSjyc4eqSPQCDIS4f7SCdTjI6M0NjUzM/3HeDBB95BIV9geGiUgYuDtDQ2UyoWUdXq/rK27eL5oKoyjuMgaQF8UcF1LDzXwfcEVEUgM7fIwMULKDI0tzQjqQpOpYKASzQUZGNvK56fp6G+iWBAp721hVJxBsXP49gOqqZz/ORZ2ts343o2ll0hGAwjKSKzmXGmpibo6GgjHosTDofJFxZJJdIEzACaphAJh9mxYwfgU7HKbN++Dc91CZgGsiSSzy+gKCKipCIKEt6lYGICArmpQeTZ8ziZ8zitd1Ha9TGEQJi4UKClfRM73/UxFl0ZT5BBkC4JrTdRsLpJz/+Sxmy1Y3mE8+utbklwXdK4rj1Wcs00v2huVHD1fX/VAFBL5/xL++zCSu3q6mmXH+t576ze0BvrV2ldkYDfOPesRo0avxhqgmuNNwXrFRzXMl9dvsJ8s9q0ngBPK+tc2Y7V2n017eZq/y+VY59+Em9mADndeUU5q/XB1fp0udncWv25XnPgta7zav6/VyvnWosN1YioPiLVSbEnSSRaG8llF6kPBViYGUUOqCgtb6fY/XayYoTcaD9v7TbpqTNpaKhDMyMouoZm+BhmBEnREGQXM6QgiyqyJIHnISoClVIBz/NQFI10fRPRWBJddnEdl6bmBtraWhgYHuPQoaN0dXYCPrOzc4DMmTNnaWvvoFyxaGlrJZWMEI1GOHnqFHPzC3R3dyGKEuFwnEAwTCgYJJVOMT0xTjQcZHhklK3bthMOBbhw9gyzczNEEnF0WcdxHBRVxsUBUUASRARRqQoxooTrOZQrZZLJJLIoEzBDSIqMJ1V9hz3XQ7BdDr90mJ27d5NIJPEcm3vuvYdEIoYsyyBAd0838XSK5tZ2fEkiVZfAdTUmhocRJY2FxUV23LadZEMjUxOTDFy8SGtrG7KmceSlI7znve/CsioMDAwhSyLxeITFfBZVUynky9z1trvILmRpamoCzyOga4QiCcLRMJIsEQpHOHn6PJFYCN0IoMpBXLeCqqgUCmVkxQDPw7UsNCOIJEGxUECTo/z4R99j5x13EwzrVKxFNDmGZqjMzWYJhQMIroNdKuM4FroRRg0EMSIxRM/Bdh3GJ6aJJ5M89fRe2lrbqatLksvN89QTT3P3W9+OohmowQDZXIHMVI6pqX7SqTbGx+fI5XPEk1EkJYgmqYRCYRQziOPmKJdtymUHWZYwAhoyctXHUwC/OI84fRqtOMm43kPs/k9jNm+gONZHZnqSjq27qG/fgO9LCIKDKPgIVJ+JG+dKP9T1ySKr+a++ciyo+iOuLpwsCWDXElxXs3xZElyVzp2XTcGrfrhccXi+/4re8S99Xn4sL3tl5bcRpgAAIABJREFUvWuOkau0d2WPrHbcKFez4HllGmBFnyyxcqxezYrmWvVf8e5bdg4A0b98oT4+1ZDWV/qqvrY9VaNGjTcrNcG1xpuCm6nxvN60a5XxavxgX21bVuaz+x7Dz2dQruLXtcT1BF+6WrrrEVzXSrOeidZ623Q1NFWns6Ob4YEREGRkRUcUXMx4FN9Ic3pMYSpyO5mKTE+djjp/CsHO43gSvighiR6SIGJbHrmFBXILC+i6juVYCL6PKErVrXVUDYCxkSHC0Tiu56KqGvX1dYBApWKhazqJZBxJsIjFgwQCKqGwgSLD9MwcqmbQ0NhEMpVG11Tq6+sRJZH9+/cjywqDQwPEY1GOHesjXd9AJBJlanqKtrY2iqUiLa0tjI8NX/b7NM0g+OB5LoIgMDc3RygUQlFUdE1HlmV830WSBXxBpFQqoWoaZ0+dplKpkIjHicQiBAImJ44fI5FOous6tm3T2NjAzMw0jz76de656y501UNVZWzbIZudY2h4iNtuvxUzYCArMgFTo6OznenMFM89/zxvvfstZDJTJJMpEvEUTz/9LD09vYiSwIaeHurr6xABQ9OoWBVc3yUYDvHIVx4hMzNNe0c7yUSS1pZWDEMlEAjgewIzc9PYls8zzzzLdGaatrZWbKvCcy88SyQcp1i0cD2L0dEhtmzdjGEqhMJBBCQOHTxBT89Gjh87jqHrhIJBXEEgny8iiRKCB4W8BYKObUM0HCcUCBOLJy71t4Hve4SCBsGQQalUYM/jj9Pe2sq27Vv4+YsHOXv2LHffcyeu62DbFRzH4evf+DrbdtxCMBAgGIySy+VxHBtFUZBEcOdHEGbOI8wPYbfcjXrvvyfZ+xY8u8Tiwgynzpxl2+13Ea1vxfYlHCQE4WaZBq/23N54vvWaerpu9TdbFWC99bdWEPArecRwCinZccW5lVwhWK1W5hpp1vrueoMO/SJ4NWP1q3nXvZx32QLIpf2Dly9g1KhRo8Za1ATXGm8K3myC6/VslXOzBFenfz8IwlUF17W29rla+b8MgivIuDZEYzEqFZeF+QUsa4FYNIksqYQCMdo2dRBp2YDdsB2hbRfgIY8fxctNIhoGkhpCFjQ0XcE0DRzHwQyaCH41SI6qaiiaioDP/Nw8ZjCIqmm4tsPAwCD79x0glUzTd+woc3MzDA0MIIkS83PzvHToJXp6NhCOxtHNAIqqsW/ffgxdxfM9NE3j1ttuQxRFGluaOHL4Je68806yCzlSqTThcAhV0wgEAiiKQjBoIEkSnu8hCgKyKIPoo2k6qqrh+9VtYKqz6mok2XK5iC+IyJLM8NAwrS2tFItFCoVFIvEotutQl04TDAWxLJtjfcdpbGrEtstsv2UHF8+exHXyVOwKkUjVV1RWJMLRCKqq4jo2qqaSW8gSTyRoqG/ANHRGR0dJJFJYFZsDBw7S2dlJPBmr+nUKPla5DL6HYRoYQRPbc5gYG+Ohh95JMBiiVCohSTKWXcaqVJAlFR+Hlw4dI5lIMTExQUdHO1bFor6hDgGN7333B9x621baWluRFQFdV/E9n1K5xIH9L9HV3cnhwwdoqI8TiQRB0TF0E6tU4aWDh5jP5WlsbGJgoJ+G+jqee+5ppjPzFAp5PM+hvaOVSmkRQfAxAybhYAhdVZiZX6BUruC6Dl09XUiShG2X0A2Dru4eVFXBMAJYZZuvfvVr9G7oJaJ6eCMHEco5Km1v46S+i2jP3RSLObLzkyzMT5OZHOfuB9+NHorjiiquKGN7HrKwfmHvGk/dld/coOAqiuv3UVzSuFYF2OtorSAgpTqQUh2rnltJTXBdX5qbJ7i+rE19OQpwTWitUaPG+qgJrjXeFKwemOHa5qOiKJLP55Fl+XKam/WCXN6WlQLsaua0N6uu5d/By6a9ywXX5f6xK82OrzUpWZnmaj65a7VprS2CVvbb9fTBStazQCCJKp4IiqERiYQ5friP+lSEuZlZXNshFI1StgpEI0EK+RyKHkSt34iV2o4kiogjL+FXCviBOK7vIYkisiRhuw6qrKDrOqIoYjs2nu9eMruVcF0Xx/Y4cfwk27Zv59lnngU8bLtMOtlEbrFIKBwnkazHdnwKhQUChoHvuXR2dBAKB9B1nXw+TyQSwTBNotEY8XgUx3FIptK4ns+TTz1JY0szoyMjhAyTfKGE7biIIlSKBVS1av679FsQRbArJUQ8XNfBdT1U3cDzfWRBQLm0xYSsKEiiRCgSRZIkMtMzaLqC6/pEowkkWcByCgRDETpaGinm52ls6cAXg8hKNUiRKAhk53M89r0fsPWWLQiKzML8AufPXqCxsZHGxmZOnzpNxSrTs6GH1rZWRBEEQUIQJA4eOszsXJbW1nYWFxbRFJ26+jiRcJTR0TE0TUORTXRdw3E8fv7CAbq7u2hqbCKdrqOlpYXM9BzDQ2M0NzdRKVfILiwQjsR56dBLRKMGgUAY39MQRZe6dBzdUHDcMrqhEgwauJ5CsVDEcz0GB4fp6uogGo1QV1+HpEi0tLZwrO8Y0WiMaDROPB5DksBxfYLBOJFoHHyfXL5MU3M9W27ZhKKqIIiUSzlUPYSsGpSKRQR8xicmuPXWbSTsEYTZAdyNv8Jo+i60+g109mxA1RQGjr9IxVok3djMhi234skGHiKe7wMegugj3iSfVt9/2aT/cvTuFdvTrM6VbgpLguvLwfKuHDuWWApGV/3+6tey2nvhWufWOz69fCVXr3e1utYa115v8WxNAf0a7b9aH658t76iD4WVvwOZK82Bb57/dY0aNX65uV7B9dpqmho13kA4joNpmpcmTbWV3V82rqUVFgQBHxcksHwbRJ9t27eQnV8kFo5glQvE0gEa0ymmx8fQZYXTx09gFSosVBZhw/vx3/afEUJpGHgGsThb1QJ5Lp7n4Xl+df9UUUAQfCyrjHPJxNHD50J/P7bjcPbMWRLJBL7vo6oKJ88cJ19aYG4hw5nzJ5nMjKHKEpVKiTOnT6FrMuFIGDMQYHxiAvuSz+rs3CyRaJREKsljP3yMyalJdu7aiaKppNJpysUSmdl5opEY0UiUUmmRhfkZLNuqCq5iVVvmOiVsp4wg+MhyNXpvpVIBH4qFIvv37UPRVGZm57FsFwSZF154kcV8nr179yIrMoqikEhEkXUZx7PJLmTxfAnHFUEQEaXqBPX733sMQw9QLlsgSKTTDTQ1tiAIEiBSV19PNBomGgshSB75YgHLcVhcLLHrzrsolir4Hhx+6Qg4PpFICNu2SSZTDA0Ncf5cP0ePHsf3RGLRJJ4LFatEqVzku9/5PgEzQrFgszC3iCD67NhxC6dPX2RyYhrXcxEQOXH8NIIgcvrkaSRJ45atdxCPNwEmiwt5Thw/zuj4GGMTE0yMTvPtb3yfvXueo1wRcXyD1tYGBEEgFAqjqToVywVBoVR2cD2JzGyWyclp4vE4onhJKBNEJLHaV/0Dg+RzeQQB6iISsfk+ynKI4r1/RC7cS1fXBkTJxzAlfEpcPH0Ep5ynvrkFTwmy9GoW8BB9Bwn7up6fqwl+N5uV0d1fK7zcNF5u+jWvp8bqrOYre/n35YtXHjVq1KjxGiH8Il46NwPLst4cDa2xLtYT5XY9v83VNHRrbVez/Lv1mNeuxvJIwNdq23qDFa2WrrT3bwEw3vH7V823vJ/W+yyvvO61rmd5maIoXtaaLNW9Ms1aGtobYb0Tb79i88Ken9He2sCiXaC9dzOSGqJke+iiiGQV8IMhXNthNjNDUDdwhg6jnfsRBJKQ6ESSZWzXR5JErEoZSVKxKi6K7FKp2ExPzbCYK3D40AHK5TKqqhKPx+no7GRoaISZmRl27drFqVOnUBSFHTu2YIbDJNNpBAQEEXwPJiamGRke5vadOxjtH6Ktu4NCqUhI13Atm5m5HI3NTeQLBUrlEoIAkXAcBAFJEvB8C0lUqhpVSaJUKuHiIvgCmiQzPjlOurEeu2wTCAaxKhaObaOqOvnFRcxAgHyxatI6N5OhXC5z8uRJNm/eTHt7O7lcnqcf/zbvePd70QMxfMdGkEVAxHE8REHm4S//Nz76G7+FrpvIski+kKua9fo+jz32Iz70oQ9RskoEAgEqlQq+5yHLMq4HiioyPTlRjfRs+wRjUSTRB8djemqGH3zvh9y+81Z23LqFYsXma1/9DvWpFJ1dzbS1dnHi2HG6e1oQFRkRl2LJRjVSfPvRf+YDH/gA4XAYTVOxLBtR1cjn54mGkizk5nG9EgEziu+JWJaF45QZHxlHVmTMgIkoapw8dQZfEBgZGeW++99GKhVlfHiCubkp6hqayOdtghGdQi5PMBSirb0NWfURRQHP9amUHGRJolIuoFpzSPOD+Ds+gty8jYnhfhrrmzg/dJFYNMTZQ4cpzGb58L/9BA4SKAauIAPrMQu+WabDXFp0uJF8NyYY+/4r/XVXK8X3Xv62/OTfAaC/49Or5rtZ483Vou1eHmNXybOy7etpyarXu3RutXrX0CivbqUirji3+tZxsPx9IF6R5mZbNdWoUaPGSlRVva4BprY0VuN1oarduvrEa61zNW4uNyrAvxaIoviKY70oAYNtd9zG1Mwssi8ydf4oM8OnCKkekiIihmK4tkMxX8C2bSRFJrjpbso7P4Ht2Pgjh3CsEvgSruPheh4IPrICszNznD1zjmg0ysDAAJZlYZommqZRLJUYGRnBcZzq52IRwzCwLItSqUQikVimlfIZHBpAlgV27b4dSRJp7m5H8ECwHDJzcziKhBFQ8HGxLItwOEIoHMJyylTNkquC7NLzYds2rufxzW8+ho+EJ/pE40kyU4vIpobl2lhOGVGGTGYMw9AYHOxHVWQ8x6YunaattZUHH3gHTQ2NZKanCZgRtt1yB4YeZXhwih89tofFxTyiKF4y0Yf77nsAzxewHZdKxcE0w+QLeWRF5m333ot3yZfR8zxUtSrQjk9MMDExhetAMlGPqpqMjU2A71MqlnBch8XFRe66+06ampuoVCzyuUU812Hzlm7a2hvRNIW57AIjY5MEQmF0I4briExPDJCsSxNPJUASQRLxBDh3dpCDBw7zk8d/iqZWfVs9waXiltECOovFInP5Ej2bt9DQ1EQiGWFubgrTVAmHAqQSSYKBMIlUnFt23MLzLzzHs888Q31dAx0dLSiyhOM4CCi4TtXHz3U9RgcHEabPImZH8O75NNOBbuYLFkY0TbZcYEtnDzND44jBIB/+zL/FEgxkI4Ajerii9do8XDeJ5Vuq/LLxRhgLl96Nr+c78EbH4Ro1atR4ramNSDVeN9Yy9b2eFd7lPlYrtX9rHSv3tVsr3xLrieC7fJV6ta0drtaWlYihFGIodUV9yycSy31eBUG4HLlzLVbWtTRBevjhh9E0jZ6enlWvaWVdq7FysrVW+uV9L4oikiRdce5q92DlNVQ8i0h9iu137GJkcALJrlCamyIzfB5VcKm4DuViCYD6+npUXadYLqMlW3Dv/CSV1GYYeBF/fgjPrfq92raF73ssLhYZGBjk1KnTTGemaW1tBaHqM1oulSjk8xhGNcDTyZMnmZ+fxzRN3vo//x+kH/w4Lx47e3kv3daWZlKpOI5j4XsegiQiiTA1MUkimUI1TZDBdm00Q2NkZIRKuYIoChSLOYqlAvl8gVOnT1EqFnBcB0GAf/WrH0DTdRAFVFXl3Z/6HHX3/k/85T9+hxee30+l7DE3u0ipXOKTf/lPNL/7d/niv3yHSrmCgMDo6CiiIBAOhVE1n4bGNJZVJpmK0ruxk1gsjiwrVZNpv+qPOz4+ieN6fPPb38bHJxaPI8oywVAQSZYJBAKX75vjujQ3NdHU1MTJE6c5c/o85ZJFJBLBdVwWslkKhSKxeJz6hrpqpGZZwdBNfvX97yOdTiBKAqIs8fb776ejuwfP81FUE9cFxy7y7ne/B0GQLkVWhlxukbNnzjE+Pk5LczPFYgkBifn5IvNzRTLTC8hygELJYm5+AR8fWZH53pF+PvCf/x9+eGwAx7EpFyskUkn0gM47H3onH/+dj+P7HooqEo6EAQHbdvB9gVKxjJ+fIlk6hxprwb73DxjO+bzzV+6ns7uDH//0p5SsEmdOncXzJe5/7/tYlGQ8Safk+niCD9cRPXg9liPXGgfXy9XiEtwI68m/VpqlMeBmC3jLx5XXS0Bfru1c7d20sp1rsZ4+XJn2WmNtjRo1arye1ATXGjVWsNpm7deb/2ag7f4o2u6P4vs+X/7yl/n85z/PM888s2Z7q5P266v/F20GtjQ5kiTp8gGvbjImeeCIIkokzEMf+CBqrIfBwQyZoWH6j+yjOHaBsBkglUigKArIItFkHA8RUQvgbf1VnN2fQCxlkMf2I5XmsMoWrgtnz5wnHI5y8cJFREFA0zQaGxtxHQfHcbAdh9nZ2csRU33fx7Je1pp5l8xkHRskSb10DSKSpGOXCtiiT8uGrqq5ZsUlGEzgOD6KrNLU0IAsG5w6eQbP83BdcB3o3dBT3RIHn3K5hK7YCL6LJKhUSnnS6TgAighvu/tuHMdh05ZbyC+W0TQdgOnJaY719VEulbAti0qlwsT4OHPZSWZmpjBNA0WVaW9vZnGxcDkarKqqhCJBOrraEETYuet2LLuC47r4+OiGcUmgrt4nz/PwPQ8EAVH02bixl3PnztPXd5S9e3+K6ENdug4zGCAYDhGOhbFdF9ty6e8fuBR4SubggZdwPZ8f/uQnPPqNr1MuFBkZHaShpY5UuonMVAY8HzwoFcpcPH+BTVt6ePt9byWVSvLNb3yHc2eHGBsap5DLc/jQAb7x6MNMDQ+RzcyQnZsnl1vENAMABEwDAYevfOXLlG0PQVSpa6hH1WQMQyRghjhx4iRf+crDFItFrMVZ9KljmLl+9F0fZTi+Gz1WR2dnJ+Kln+uFvv2cO9RH9/Yt7Hjw7TiChOIqIHgIvojsSciucuMP1w0wNDTMV7/6VT772c/yjne8g1Qqha7r6LrO4ODgFelvVHB9+umn+chHPkJbWxuhUITOzi4+/vHf4ciRI+vK/4OfH+e9730/LS1tRKNxNm7czKc/8/v09/dfM6/v+/y//+NfuP+BB2lobCYWT7L1lu380R/9B6ampq7rOl5r1hJOrye6/VrlL8WIqMWJqFGjxpsN+fVuQI0abzTW8idab/6bNRFYasvDDz/Ms88+y+c+9znuu+++VdP4vo8kXTJdvAGN9S+Kq/nGXs9+tCvzS76Hi0jJdnA9aOnZQsAIMjlwkvzcDJPjo9SXRBL1aYxAAFESsV0XWVYJh01s28Yyg/iJDuz+nyP1P03Qc1nUmpibm0eSJERJwrctZmZmyGazdHV3Uy6XwfexHQ/f95mbmyMcDtPd3X25bb7vUygUCJgRfN/Fsmymp2dIpxrQFQUbHzVkUpzNEdJMyoKPj8TY2BizmQx9x87wkY98AFWXEBDxPQHHrSArEqIkEAoFmBwfRpIN4rEGRN+HSz6Ehfw8c/MTJNMNOH6FmZk5kuEQjfEILfUNjI+Ps2nTJlzXJZPJEAgEyC8WAYUnn3iO3Xe/ldOnztPV24PjuEiSiOe5iJKPLItomka6LommK9iWR7FYRNdMPK+qtXYdB1EUCQQCeK6LZVvoeoB3veshRAluu+0WoCrc5xYWCIYiCMIlTaIk0dbShmnoaLpOV9cGKpbDPfe8la9/8xFmM9NEU3Fm5zOcOzcATgXPcUkkEliWRXdnNyWnQiIZxC6LfPjDv8bFixewKnlyCxne+Sv3UCptZ9+zx2hpaMDBRpIV2poaaEnFSMXC6IbO/fffh+cJCKKEcykolmWVkASVjvYONm/oILh4EWFxmvHw7YR330+huEAirJNbLBAMGJe1gsmQyfv/1YcgpLHge0iuQFDSKLvVhQ7RlxEAR/zFmYn+xV/8BQ8//JV1p18rnsDV+PznP88XvvCFy/nD4TBjY+M8+uijfOtb3+Lv/vZv+J3f+e1V8/q+z6e+9A0e2XsIqGp+g8EgQ0ND/NM//TNf+9qjfPWRh3nooYdWzV+pVPjwR36NPXv2AiDLMrquc+HCBf727/4Lj3z1azz2g+9z2223rrsPXkuWa1pXjofXirq/3vJX+1tTrNaoUePNQE3jWuN140ZMvFZqQtcKUHG92tKV5qlXO3c189/ln5f/f72r2iuvb3m+pQBJSwGVlh9L565l0rdkYrfyGtaKHLmW9nm1tCtNoJev8K+Wb7nwvTL/ynpXa78ryEieiC4riKqCLdhEmxvpvuNt6OleYulNePkMP3rkvzNw5Hl0wcO3HQTfBtdB9AXssoXri3z/6BzTW3+PSvuDGKUx3rMtzDtvb6anzqQuYpKdn0PVTUKRKKNjE2Rm5ykWFykWizQ1tRAKhRgaHrjcNs+3yc1Ok89PIwoWsiTS2tJIIKBSLNk8+ZMnmewfxzBNKthIvoXoW5zoO8bE+BRdra0MDQ7j+xI+PqIMuGCoJlbJxi477H/hBI8//jSu6GKGFYRLoV4ELCrzgyxMnEaiwqYtvXz5r/6IfV/5P/ndD9/L/Q/cz9e//g1ApLW1Fc93sEoevuDwtvvu4pmnn6W9pRNd05AlAfBwXRvHdnBdl2KxQMAM4bkSvufz4vMHEHyxqmEURHxEPF9gIVfkxRcPIUkqnueh6DKyqqCZQQRVBFFEN0xs20L1VYq5AgsLc0RTUaSASa6YZz6bp1IqMnDhAh9474cYGh4nZESRXInO9hbuvvftxNIp8pUyoiYTTSdobmwmHIwRDGvEUyE2b91Esi7J2+67h0Kxgu2oPPiedyJqAojgeA5/8okP89gXP8sf/sb7GB4cI58v4jkOki8S0BU8t4SiRfE9m0Z5htjCCexwC/1dv0581/sRzCCNbT20NrYzeeoAh554jHK5aqae6tlCWdco26A5IrIvUHYqIPog+riigyM6VAMvrTyuZEmj/fKzJF1xXOt5FUWRzs5OPvjBD/KFL3yez3/+z1eta+Uzul6LlG996xuXhdbf/d3fZWxshOnpSS5ePM/73/8+HMfh05/5fV7ctx/P9y8fvuDhCx5//aW/viy0fu5P/pjM9CSZ6UmOHTvKXXfeSbFY5Lf+9b9h4JJ22F9xfPaP/gN79uxFURS+9H/9NXOzGTKZKZ5//jl6e3uZnZ3lgx/6ENmFhWq9q5SxdAirHCvTrIe1+nAtreryrczW0/cv32P58vHy76IacM33BXy/pnGtUaPGm4Oa4FrjDcEvc8CPG6W8928vRxZeYmmSutwf9GaxfGL6alnLl27lvb4ev61rLXZcNk8VBWzBx9cVOrduonv7FqRAhM7eTQwNj3LkuacYOrqPfU/+ECs/gyBAMBrDCMZ44slnmJldgKY7OdfwG3z7jMrggojt+ty/Kcxv39/OB+5I0C6N844dTdy7vYX6mInrWGQyU5cEutLlNomCjKLqKLqOpKqIioTlOniCRzAYoKWl+dL99BElkezcFFalxI7btnPXW++iriFNQ1M9kiwjSSKSUA0eVbEq6IaOqmk89N4H0DWVzGSWSvFlP2dBkqhriONYC0yOnMGxF8CrEAgGiCQbMYwg733fr9Le0cnZcxcJhaN093RW99gRoKm5jnMXTuP7Lo5jYdsVFEVCVmRkRUaUqr7JgiAgyTIPvON+BBFc18eyqj6/pWIZQRAYGBggl8tV++TSIoYsy4iCjO8LCIhoqo7tOiAIJJMpJElEFHwqlQpTk9MYpsmp0ycYHum/5FcKrusxN5/FxyMYDBKPxwlHIsiyhCuIZGbmyOfyLOayqDKk69LIikI4EiaZSlEoFtDNAKphVLXxskJLayuhUJiLF/qJxZKUSgUKhQLlik/AjCLPDyIOvoAfTFN4y/+CctuHCaWbOXrkBKJVojg3wv7nf8z4xDDvfPdDmKZZ/TEo5i/cwuFa/MM//D2nT5/kkUce5g//8A/YtWvXuvNea0HOdV3++I//BIAHH3yQ//pf/45EIgFAc3MzjzzyFbZu3fKKdMuZn5/nL//yrwD47Yd286d/+jmCwSAAvRs28N3vfpv6+joKhQJ//uefvyL/+fPn+ad/+mcA/tOffo7f+71/h6pWzfVvv/02vvvdb2MYBpOTU3zpS3/zuprM3sz3383waa5Ro0aNNyI1U+EarytLGsKVAUau9gK/2qTvasLPWuanq2kil/9dLd/1BGdaWe56uZxfEHhkz0E+9R7t8rkvfOELl7UXS5w7d4729vZX1HP06FH+/u//nmeffZbJycnLWpX3vOc9fOYznyGZTF6ua0kYXG46tjJAyNK5crnMP/7jP/K9732PU6dOkcvliMfj7Nq1i09+8pOrmuv5vn95svizn/2M22+/nS9+8Yt85zvfYXh4GNM02b17N3/8x3/M7t271xROn3jiCf7lX/6Fffv2kclkMAyDpqYm7rnnHj760Y+ye/fuS3VW+w9JwMfnK199lG88+nWOHTvGfDZLwDDo7mjlnfduJ2DY6NFGwok6kpE0X/iz/51wLMnOt+xmZHSET33i07z1tt/kYx/9IPP5eRzXQRJga08XOxsMfuvBnXQlVe7pSmO7PpnFMl7cvNxmpZzFFMN88b99jcdePM5oJouhqdy+qZPPfuz97LplKz7gUdW0GUYASVZZtPN87bEnePbIaYYnZ5manUeWJdobkjywazuf+vX3kIxpuI4DInzk1z+IgEh+Yap67VSFZkHQ0ZUglqdQmB3jfX/2lxy+MM5nP/Z+/uMnPsqp06fI5wu87d57ECSB+WyWsdkCf/vYV3nu8CnGpmcQBJGGZIxbetp4113b+JW7thEwg0iixPT0NLFYHEWWLgm4HpblkMnM8uSxQe77/b8iGQ3z0iN/jaHLiFUFK4IAnu8iijK5Qp7bPvq/ki1W+N9+8/3E7Vn+/af+HaVSAcdxicWiTFkyH/tPX+LExUEWHn2aUMBgy56D/NoDd/PBB+5i79493H//fVXXbOGSAAAgAElEQVRBGg9REPF8lx+80Md3nniR0wOj5AolQqZOIhpia3cb9962hQ/deyeTk1O4noOmG/zH//I1vvXki3z4/l38zR98nIpjUy6UKeRtTCmEP9nHWEHkvx+2efrA/2Bw6M+wbZv6ujo29/ayuauJbZs7+fXf/NdIgSiepIBwaXsSrm4Sf/ToUf7hH/5vnnvu+WXPbAf/X3t3HiZFde4P/FtVvc3GAAMMm2wSBAQXUBBXIqK4JC7EPYnX/SbG5RqjSX7eeGNE4/XG/d7EPRqDuzEqigoqkc1d2QQEhWEQBph97+6q+v3RUz3V1aeqq3qZ6Zn5fp5nHpjuWk5VV/f0W+857znllFNw9dW/wMCBsfds52dlulPRJE+H4uZzzc34SnP2FwD+9a9/Yfv2CgDATTfdmLS83+/Htddei8svvwIrV67Et99uw7hxY+PP//Ofr6KxsTG2/oI/xdthbH/AgAG47LLLcNttC/DKK//Egw/cj8Kiovj6zzzzLFRVRXFxMX7+858l7X/MmDGYP38+nn76aSxc+AxuueV3jufAidONuKSeQQ7bMF4Pn88HVVUT1nP622fX68duPSKinoiBK+UFc7CSqkqmdT7RdLidX7W7FQT9KC8vR01NDSKRCIqKiuIZB4M1+3rrrbfi9ttvjx9fYWFsDOfatWuxdu1aPPnkk3jllVdw6KHexnR9/fXXOOOMM7BlyxYAnWPVqqqq8Nprr+G1117DlVdeiQceeMB2G7t378bMmTOxZcsWhEIhyLKMmpoavPnmm1iyZAn+8Y9/4IQTTkhar6WlBZdddhleeuml+GMlJSVoaWnBunXrsG7dOqxYsQIff/xx7Jx0vLRVVVWYP38+Pvroo/h6paWlqKuvxydfrsMnX67Dyk+34g+//TUa1UZs/HgFBgweCl9gYnz5/v1Lcc7FZ2N37e7YWFdZRjgawWcbN+OzjcDra6oR1EIYPDCIE489HOMGl2L//ScAeBYAULG3Ftf870v4dtc+hPw+yBJQ29iMJR+txbJP1+Pv156COTMOAgIFaFcKIPmLoOsyfvSr/8HOvTWd57qoEA3NLVi3tRLrtlbi+XdW4uU//Rqjh5YhFCqG4gMa6vcCejs0LXYC2tqaoWphQIpN1VJSNhyBjuJMsuKDrEiYM/f7aGsLQ1EkVFR8i2eXfop7n10U30Yo4IeiSNhauRtbK3fjlfc+xKdP346CUGEsoB02DC0trdj89VaMGzsGwVABJMkPn8+P/miHIsvYV9eA5V98hXlHHRIr3CRLUKMqJFkCoGLlmq9Q19IOSZJw4SlzMLSsGLt2fYeiwgLUNbXh0j/chc82dhbh6VdUgJr6JnzwxUZ88MVGLFr1GX530Wnw+XxoaW1B/9J+qG9owLk3/Qmr1281rVeIlrZ21O5oxpYdsWOZMrgU1TX7cNzsYxAqKEIgELtRVF/fiI0bt2Li5MnoVxQC6nYBlevx6FrgloefQXt7O4BYsapgMIjtFRXYXlGBN98BVi55BRH/ELRDgqzL8UhF0cUVg//wh9twxx1/FLxn12Ht2nV46qmn8I9/vIJDDjkkad0JEyaioqICxxxzDN555x3h9ruK8blq3JBcunQpgNh79cgjZwnXOemkE+P/X7p0KcaNu8z0+7sAgEmTJmHMgdPE6594Im67bQFaW1uxcuVKzDnhhHg7jPWPPvooFJkC2sT9z8XTTz+NiooKbN68GRMmTPB+4N3A+DspClx7wJ82IqK0sKsw5QXReEc7XgpUOI2TtO7X/KNpmnA9836N8WFmovGldt1k3RzrWccegh07dmDWrNiXvuuvvx6VlZWorKzEjh07sGPHDowaNSq+j/vvvx8LFixAcXExbrvtNlRUVKCurg51dXVYtWoVZs+ejV27dmH+/PnxTIa1naLzVFdXh1NPPRVbtmzB7NmzsXTpUtTX12PPnj3Ys2cP/vu//xvFxcV46KGH8MADD9iO0b322mvh9/vx9ttvo7a2FjU1NVixYgUmTJiASCSCq666SnhOLr/8crz00kuQZRk33HADtm7din379qG+vh7ffPMNnnzyScycOTPh9Q6HwzjzzDPx0Ucf4dBDD8Urr7yC2tpaVFVVobq6Go8++igGDRqE91asxlMvvobW1giGDBuNAcEQGr/dDDUaAQA8+OiDqK2vxeUXXIJFf38F55xyBsYP3R8FgVhW9buanSgfNgT9y0bhtWVfon3IVLy1cU+87b95YjECxQPw/HNv4jc3/hEr3/0MTz/6FMaPH4+IquH6Zz6GVD4JkqQg1LADgR2r4N/9OQ4fX44Fl5yCpffegF1vPYJvXvs/VC5+GC//6UZMn7Q/du2rxZUL/g/BgAy9bTcadm+GXLsDvtY6+Dquy6C/CGG9DL7S0Rg29gCEBgyBryMwq9mzGxVbN6F2z3fwa+2o2lWJ99fvwN0LX4em6TjpyEOx9JE/oPKtx1Gx6DGsWXg3nrv9BsyYsB8C/gJIsgRJVtHW1gyfT8HI4SMgSz7IkNDa0oB+/QpxzBHTMWXMMADAC0tWoL1NA1QftGgsuImE29HS3Io3Vn4JAJg55XsYXNofyz9YjYEDBkGDgotu+V98tvEbTN1/NC465kCs/dsCbHnhPmx99X/x4K8vxaD+JVi88nM8teQj6NARDBagvqERi1Z8jtXrtyIU8OP+Gy/D1y/fj6//8QC++efD+OqFB/DQr6/AacccjkHDy3Hc3GMQLCpGVNOhIfa6l5WV4aBDDkYw4IO+cx30ukrc8MYe/PqBv6K9vR2zDp+Bv9x9B955/mHcd/NV+Pydl/DWW4tx8cX/htDAkfAFJAQA+DQtPvhRkwDz2EJJUvDAA/+L22+/A8XFxbj11t9j27ZvUFOzD7W11Vi1akXHe3Y35s+fj6amJsHni/mdkjw21jom09i//Y/4c9WYssr6uWj9DDR/Lq5fvx4AMHHiAQk32CRJgarqAGQMGTIUgwcPBgB89dVXCdvasGEDAODAAycD6DiNktQ5plTX488BwIavNkKWJEDXIZm2N3ny5MTxs6b2T57cuf769RsSKoJbGfs1bwtI/Jsk7PKr6/E2icbFGkub/yZEo1GYx6BKkgJF8cd/7MaqcrwqEfVmDFypV3Aaw5PO+J5cTbouake2xh5VV1fjlltugSRJeOGFF3DjjTdi6NChAGJZ2WnTpmHRokWYNm0aKisr8cQTT7jOOv/xj3/E9u3bMXv2bCxatAhHH300gsFYAFRaWoprr70Wjz8eG0t2xx13dHzpSubz+fD222/juOOOiwf5hx12GBYuXAgA2L59O1avXp2wzrvvvosXX3wRAHDvvfdiwYIFGDlyJIDYuRsxYgTOO+88PPjggwnrPfroo/jkk08wefJkvPPOOzj55JPjYw2Liorw4x//GK+++iokScJf//43lA4uw/emHI499e3Y+HVF/NzU19fj+iuuwZD+AxEoCKKhvhXzzzwXD/7xIQT9Qei6jrVb16K1tQlNLY0IFoRwwQUXxtsR8Afw53vuwezZR+Dqay7FqDHDcdoPT8OjjzwGAKjcVYWPm8vQMPlsYM5vIM35L6hTzsVffncdrjxlJg4u2AP/tx9A2r0egYZKHL1fEC9fPw9DSguxZvN2rFr0LLDtSxTu+xbhlmZIsh+yHAsSgtEm9K9ej5L2vdCaqiFpnRm/svIhGDh4MHRJws6dFajeU4Vb//x3AMBZxx+Jp2/7FaaOG4HWcCP2Ve+DGmnDUYccgBfvvhllpf0hQUG4XUM0qkPTdCg+H2SfgsamRoQKC1BcUoQxY0fjsvknAwAWr/gUlbt24cs1X6CxsQnRaBQ+xQfIEl7/V6z4zjknHoXW1ga0t7fA51Pw/DursWZLBSaOGYFX/vQ73PGb/8CggQMQCIbQv18pzpt3LP6+4DpIkoTHX1mK+pbWWAY0FMTnm7cDAM47+Vic+f0ZGDhwAHRJwnvL3kdrUx3OPGEWHr3lF9hvxHA0NdRDhgafIsem7kGsGzOijcA370MqGwv9+BvxzoefAQAmjR+HexbcBknS0b98P1z0sxsw+fBjcfTRR+HPf/4/TJo0yfkN1XHt7t27F//1X/8FSZLw3HPP4MYbf4Vhw4ZBkiT4fL6O9+xrmDZtGnbu3Iknnngi5XZzxbiZ5+XzdNeuXQCA4cOHJzxuvek3fPiwhOWt65cHo4h89a5wH4WFhejfv3/S+o2NjfGbc8b2Rcxt27VrF/x+v+fP41yNHTU+g4yeHkREfR0/CanbiSrcemXOFlq/VDl90TIq9IrakG5BC9Edd+v2jC8hRpc2UQbYzTGbl3vmmWfQ0tKC6dOnY86cOcJl/X4/zj33XACIdysUFUuytuPJJ58EAFx33XXw+cQjDH74wx+iX79+2LdvHz777DPhMpdccgmGDBmS9PjUqVMxZswYAMDatWsTnjP2PXnyZFx55ZXC7Yoy6saX/CuvvBIlJSXC9Q45bDomTZ6McDiMNRs3oGhgOY4+8XScddHP4sc+7aBD8MO5J+JHZ54BWQaCgWJUV1djy9ZNGDN8HACgqb0RtU01uPJnV+CoY4/B9sod8X2cf96FGLf/BBT4IwiGdPgKJbS2t2DWYYdh9OjRAIAv161BUUkxGluaEfaX4JPKCKQpP4I269+hnnIPIsfegPZBkxEtHILg4LEomfJ9HHFYrNvoyrZBUI++BG1HXYaSub9Av3nXQx4wAgDgmzIPgdN+C3nYRGgNVVA3LIEebomdI1lBycCBGDpiJA6YPAlfbN+NptZ2+BQZt13xAwR9KgKBAhQXDUDZoDKMGj0KBYUFKCouQiDog6L4UFW1F+H2KHy+IKKqiu3btyNUUAC/3w9Z0dHS2ojT58xASWEB2sIRrFi3BVOnTsHGjRuxd89eRKIaXv/XR2hobkEw4Mdpx8yAqocxbfpB0DQNCxd/EDuHJx6FksIgAkEFUU1De0RFW0sr/HIAgwr8mDh6BMKRKJZ9vC4+TrCkMHZjpaq6DoriQzgcgSwrOPGkuRg4qAw+nwLZJ8OnSCgpLsLePVWArkGLxjJuUmsdpG0fAgefC/nws7Fs9Urs3LUbAHD7jVeg/5AyXHjJZTjgkMPRGihFJDjI8xCEZ599Nv6enTt3rrB3hqIoOOecswEgoSuw8fymTRvR1taCd955y/V+02VXjVzUe0SSpHjgWFBQmPCcMRbWYNxQamxsSlguvn60EerODbY9YAoLCxKWt27L2L95PL/xY+5CbGS0RbUS3PQEymT4ifF3yDifRobbKH5GREQc40q9mBEcOn2ZyLcvBG66D9tZuXIlgFj3PCMjKdLaGqt4u3379qR9i2zYsAE1NbGxlpdffrnjnf+mptiXxYqKCmF1UqeKpcOHD8e2bdtQW1ub8PiqVasAAKeeeqrtugZjbF1DQ0M8AP7973+P22+/Xbi8DqC249gqtldARjtkfwBSMAB/R0GpqVOmYPuuHRhcNgirP/0Yp552CqqrqzBj5nRMPeQAXHD5TwAA191wDY49bg5a29uwdt2G+D6OOGIWhgwZCgkSotEomsPtCBWF0N7SjGFDh2H79u1oam5BSWkpCouLoaoSVq1YjllHHoZ33n8PCxc+hy+++Bx79+5BS0tL0jFs2rYLm7ZXY/ioMSgt2w9KoNB0DemQB46Ab9B8aNPPhF61FdKDy2PPVFdAq94OfeB+gOTDZ1tj2aqJIwdAa9uDxoYCBArLIPv8aGpuQnFJcawbvapB09vh9xVg0KBB+PTTz3HQQVNRUlqMUaNHx6bskWOZy0AgCL/fjx8cdxgWvvkBXlyyAuefdDRGjhyJffv2orx8GF5+90MAwIwDRqOhthaj9hsBTdfQ2taG9d/ECvvc88wi3PfsG5AAyErH2D50drGsa2wGAOyoqkZ7eztCoQCOP3wq7nn6dby5/FP85OZ7cPYJs3DUwQegQPFj41frcPjMwyH7AtAkGT5Jx0CpEdq2LVBaYtefXFwO//E34ou1a6F+9y/89fHYjZDBg8pwxoWXoU0KAbIGHYCsa7HuoCk/ThJvNhnXduw9O0pwdca0trbFrtGKilQ76FKpCtnlG7seOd3J2L9xQ9D8+ZqHp5CIqFsxcKVey1otV8Sa4ehORtdZox2BScd7Wv+7774DEAtMjeDUiZtlgMTud3v37nW1jijAApBUWMrM+OIWiUQSHq+qqgIAjBpl/WKfzCjcVVVVFX/9jaA7lbaWFgSV9lhGLxqEbmRcZ83EyT86A7WVu9HY3ISBZSPQ1j4YdfW7MXBAZ7bGH/Rj3LixCEc07Dy08zyVDRoMDTK0VhlKKIii4hCKCn1YtXQpFF+sS6+mxaawCQQCaG1vw69/+0tcfMXFeOHFzmJUPp8P/fqVwO9TEAmHEY5E0dYehj8wGLOOPwURXQb8QYQj4dg8qgAkaJCgQoIeq7RbPh5Sv3IAm+EbOhl67Q4g0o7IsMn4riaWrRo3fBiCcimi7Rqaw3tROmAAioqLoHR0P45qUWhaBPX1rSjtNwiHHnow+vUrBiQZkWgEPp8Pmq4BugxNBXRFwnknHYeFb36AlWs2YufeGvQvKsTgwZNR29iM9z6O3WC48tzTMGDAALS3RREM+bGnrjFeIMoITFO+huEwQqEQND2Kg7+3H3590Q/wp7+/gaUfrcXSj2L7GdK/BCfMOAjRYClmHz4VYV2GtOML6P1HQ59yNvRRe4HV32Bfexh/ffJOFMqt+OnFN+P5juz42HH7ozlQBqht8Psk6NEIfHoYshZFOMUsVdZeEsZ7y+171u591V1SBa5GT4fWVud2G9NHlZQkfj6UlJSgpqYGLW0R0WqC9Tt7Vpi3ZexfdNOtubnz2nL6fMoVu3MXuwnHr2hERGb8VKS8YHTvE1ULFk0rYKWqarz4h5sA1G47RjuM/5uLNZm3LSpkZA463UwvYW2LuaARAPj3O8jV+sY+jakTrrjiiqTxnuZ6HfGiKkiuRinatrFdIJbxKS8vj60vy1BV1TGLYe0S6OaciLocplrX2lXcPMZ2+fLlmDFjhqtK1O0diyiyFk93KJIEXyiIgWNH4oT9RyHaEMHOnTtRWnpwwjZbWsPYsnE9WhtqMKp/5zn7bvPHeK9qKyYc9n0UFvjQuK8CWrgOAwOtgN5RCEbxIaJG0d5Yi6LiAP7f727GCy++BEWW8dNzTsUPTjwOkyeOw77qvWhsbESgeDweW/gMFj77HHxFQUQhQZJ0INqGgBSbdiV2QhTIegBQY+NCzNeBVDYSysTpUCu+gKJH4+NGAsUlGLb/JOzYVgGfEkbNzhr0K+kPecAgQAkhGCgAVB8UOQJdVlFUHELQ50d7NAxdi0JTYzuSpFjgDKiYddA4jCwvQ2VVNV5cugJXn/MD+Px+/OO9pYiqGgYP6IcjDzoATzz2FOafMQ8jR41Ge7jzNXzt3t/iiAMn4cPVqzFt+kEoLAwiqmuQ5UDH9RmFqsamXYpGw1AUBQWhQtx00fk454Sj8fqKT7Hiy6/x6Vdbsae2HgvfXoGFb6/AaccehgdvvBwlugbfoadjT209GqpjhbUKgiFcdtUtKBw4CG2aH6oc6LjWAJ/aCkCGHlUAKFBlQJWRlCLTdVUQLHVeM6oaO8bLL78cDz54f8c6saJFyYzPIHFlYjvx3Lvx2aaL3gfuRw2JPo+tn4/Gc8OGDcPnn3+O777bJdyHsbxx023YsM6xqLIkYdiwoaipqcGumvrYNo1tm9ZvaWlBXV1d0volJSUoKSlBY2Mjdn23K1a0yVjPtP7OnTvjjw8bNsy5h47luAFATbpBmnycxjLG3yjZ4TMttvvkwn9ERMQxrtRLuOkW7GU7Ts/n6xcKI6Bct26d43Jej8HYrnXb1qDUbl+ZMvZv7drsZh0AWLNmTUbTJxlfbH0+HyRJQvGgEuz3vbEoG1GOurbOMXUDysrg8xdCDhSiqbUz6GqurcGhkyYg3FwJRa1GcUEYWrgWjfU70drYAABo2FOFz95/H1u/XI/17y7C6uWx7rOnn3QsTp17MIaOHAIpWIZJh/4Qhx97KY79/mzs7Piyn63+hEPLBgAAtu/aB00CykcMxcAhQxAs7oed33yNtatWoXnfXrRGW9HUVI2gP4BoWIGiBFHXWAdVVREKhRAOh9Hc3AxFVhAKhaDrQLg9gnPmHgkAeOGdldB1DW+9tRgvLY11bz/r+JkoDgUx47BpqNy5C5FIBGX9OsdFbvx2JyAD48aPRiTahpraffD5FDQ2NkAC4POF4PPJCIfbEY1EEAlH0dLchs8//xiDBxTj5z+ah3uv+Qnu/MnJePu+G/HTU48BALz+r0+w8M33oes6vl3zAda+/yyk9lgQNGDQUBT0Hwxdio2VNQqdbdu2LeW5NN5jnVXGxcsZ1+n69bH3VabjJPOJpmnxir0bN25MuAFmkGUZ+/bti/fksBa1Mtb/anuV7X7Wr+/slj95smX9ju2t37ABdjZssF/fDTefp8ZYVfN1ka9/R4iI8hk/OSlvmLOdZuZCGk5f6uyynHbTvFh/jMetXYxF64m2Lyq+5NRWuylj4tMhVK5FtDLWvdEpMDfWP+qoowAAH374ISoqKlIWqHJTCEqWZUyZMgX9+vUDALzwwgsJ7UnF7lw5sZ6LI444AgCwaNEix/2Y9zVgwID4l+AXXngho3Fsy5YtS/i9LRKB7JehQsWyD2LPybKM4477PoaNGYMJUw/G5MM6x/KOPPAI7EEJioODsHNHPXbtDEPxj4SsjIai+AEAzfW1GDRwIIYNH4nAgFGorIp1bz527ik4ff7NmHHEeRh74BEIDSlFqNyP2pYmfPJpZwGsdIuJSZDiU3TMPCg2f+XnX32DXTU1UIJ++AqKUFY+AuMPOwbfmzQFbQ37UL9jHZrqduO1l5/Dzm82Q9I1FPUrhs/nQyQSgU/xYfny5R0zgMhYvfpD1Nc34NwTjwYAbNmxC+u3VWLEuPHxuVlPO3Iq2tpaMH78OIwYNQ5frlmH8rJSTBgVy6C9+sEnaGlrRP+BpQgVFKC4pBSqCpSUFEFWZGiqDlXVoOsdNxjkWMGeiZMmQJEltLW1orSkCKfMOwFTJk/AXdedjxmTxgIA3nh/FXRNg3/IaMy58vcYsP/BAAAVMsJSEOHYHDY44oiZAICqqj349NNPxedTcP5j12bysrqux6e5+vDDj7Bt2/aEAj1uiwG5DXTTGT+fyftGkqR4kbjGxsb4eF6rt99+O/5/c1E5XddxQsfvm3bswY49tcLz+3ZHwaqCggIcdeSRCc8dPyc23GLFipW23azffnsJgNhQBLs5XM1/f+x+zO0GOoNVc8BqXqa33KAgIupKDFyp1zPu9JvnEexuTkGG8Vh4w1KENywFgHjgaHSJE7nwwgtRUFAAVVVxzTXXCDMcBk3THLdl5vP5cNFFFwEA/va3v8WLQNlxO6bUDUmScPHFFwOIZUYeeugh1+teeumlAID33nsPzz//vOOyTm1euXIlli1b1tlNHBokaGhva8F9990DAJg7dw5KBxZBUnSoPhVyqHMURrBfCSZPn4ZREyfh0FnHYOqs4zB03FSMnnoEAgWxMXll5cMw7qCpGDR+PCZOn4kBZWWxY970DbSAH1GfBF2KFQFSdB233nZ7wti8bDjj+CPQr6gAUVXFb+59ytRl1Qc5EELh4CEoHzsOA0qHINrUjNHDSoHIPmiRRkCPTd8SCoXgD/hx6qmnQlF8AHRMnzYdgwcPxpDSIkyftD8A4NnFy/D68ljwN3HMCMw8ZAraIhFUfvcdVA1oqG8CNA3nnRgL7D74bD0Wr16D9vYwJCkIWSrAdzv3IBJR0dbWAknSUFvfDp8SQFRV4fNJCEfbIMkKiov7oaigAJrWhrVrPkJD1TZs/WoNlI6BwKUDB0L2+TB+0jT4AgOg65Z5STu66B533HEYOzYW7P7qVzc5zvfp1gUXnB9/z1533XXxyt8iXt6z2ZJpcHXsscfGx6bfddddSc9HIhHce++9AIAjjzwS48aNTXj+9NN/iJKSEui6jnv/uTpp/bq6Ojz6yKMAgDPPOCOhQjAAXHD+eVAUBY2Njfjzn/+StP727dvjU22df/55aRxhMp/PZ1t5nYiIMsPAlfKGke20m/LAGuiZM6OiDKY1+2lUnE0lVdbX+pPplzs33VgPPPBAAMDixYvx3XffJWUlJUnC0KFDsWDBAgDAG2+8gXnz5mHlypWxLr06AE3Hpq824t6778GhBx+C199YFBvzKEuALCVlDYzXQ9M0/Pa3v8W4ceMQjUZx2mmn4e6778a+ffvi7aivr8dbb72FSy+9FMcf71xUyjoWWPSam/8/e/ZsnHPOOQBi0/HcfPPNqKysjG9n586dePzxx3HllVcmXAeXX355vIrxxRdfjFtuuQU7dnROU9PS0oJly5bhuuuui3dJFCktLcX555+Pl19+OT52dtOmTTjjjDOwadMmKIqC3/0uNhcnpChkSJDRGXwo0KBH2hDWI4hIKqSggsKyfigZUga54wuur7AQ8PkhQ4ImBXDyyacAAB5/7FE88vif0R5piRWd2rUPN/7yt3jwgf9DWUdwa369kqbxgA7N9CN4NeL/lhYX4darYvPPvrxkFS789Z+wdvP2WCVfTUV9QxMWf/gVfnrnM1CGH4ADZ83B8LHj8cnyd7Dti3fR3rAXPkmFLklQfQFAa0fVrh0oLgpC8flRXNof58yNZS1fee9DPP/2CgDAeSceCb+iYGBpPxwxcxrGjx2KuXOPhk+RcPXZJ2HaAbGiSFfd/ghue+SfWPbBJ6iu2oOhQ8vR2NyMDz7bgGv/+3FMv/B6aJKCQCAEHyT85Lf34arb7sdfn12Ides/QmN9NcqHDIVeVIrXv6zC6g3fAgBOPOowAICq6VC0MGQt8YaPjlh3X5/Ph3vvvRuSJGHlypWYN28eVqxYEX//NjQ0YNmyZfi3f/s3rF+/PpQO8AwAACAASURBVHZWJWO6mM7Xyfx+Hzp0KG677Q8AgDffXIx5807BBx+siHfDj013swn33Xcfpk07DG+8sRixP9syJEmBJCk44IBJCIUKMXfuSfHsudOPrkvxH0BGJKJi37498Z+Ghs7guK6uxvTcvqTCaQAwYcIEhEIhzJ07N+k5RVHiFb0XL16Mq6++GtXV1dB1HZWVlfjxj3+MtWvXQlEU3HHHHZAkJX58OoD+AwbgpptuBAA8/ur7WLAgdsNG13Vs3rwZZ80/G7t270ZRURH+83c3J+1//PjxuPTSSwAAv7/1D3j44UcQDochAfj8s89x1lk/QmtrK4YOLcd/XHdtwnlKuAaM95akJP0oij/hx1ieiIiyj7cFKe+IutqlYu2G1ZOkCn5b3r4XZ49VcU/Ahy1btmDs2LEYPHgwgpIKaCrevOvnGDmoPwDg0gOApktOxe+ffBPvv/8+Zs+ejUAggOKQD40t7YhEO7+UR9a+hZa39qJg1gWQ+g3p7Brd2oDWJfd3NkDXUSBJeOX2n+HHt/8Na9aswU033YSbbroJpUUF0HUdDS1t8cXHDR+EaOVa+EZOBYB4d2cAaPvkJbSEv+iYOkQCdB3BOVcnHG/kmw/RtuR+mAcG3nvuwWjbV4lX312Ju+66C3fddRf6FYbQHomiPRILJqeMHRZbD0BgxrkI9ivHyy+/jAvPOhXLPvoSd955J+688070KwxBkiQ0tLTFz7uRIWkzHbfeMX71xrOPwV8Xf4gLLrgAwWAQoVAI9fX18dfuTz87AwfWrkDbkhXx0DBkOqbIV++iLfKl8LXVWzqDBK1hDyIfPwcA+PdDCvDyyCHYXLkHv/jFL3DNNVejX0kJ6hsaoes6Lpl/Mlrr9uCZpdVQd32FtqUPxLcjl3TOkytJEtrfTSzUpdXGxuxGv/kQWsMoaI17gV0boYeb8ZOJCvbNn4HbX/4Yi/71CRb96xMUBHxQZAlNpsqugR2fQ9srwQcd04b3gyRpCH/zEcI6IIcKEeg3CKqkYKgSgbplOSABkg6cOd6H//TJqGloQk1DE2RJwlnT90N4z1ZozTWAFk54P0i6joVXHoPLH47gg43f4bHXluCx15agJOSHLEtoaA3Hu+H6ZAny1vfQrEoIaxKa6muw9JNdeOmD2PVXUuAHIKGxtTNTevqsA/Hjw4cDe7cg/PmrQFsD1F1fAUDsvHZcD8qIyfBPOh4nnXQSHr7/f/CL62/CypUrMWfOHAT9PoQCftQ3d1YFvu666wAA4Q3vIrpzHbTW2LUU2bAU7Us7rp2SwQjOPBdXXfVztLeH8Z8334xly5Zhzpw5CPgUFBcGk96zkiQhWrkO0Y3vdl5DHdepVrsTrUseRMEJv4g/1/7hc7HXV0AZMQX+Scdj5cqVOOmkk4TLHHFEYtfbt956C0cOUaHuNI11b22I77/9w2cRnNmZuWxbcj9O6w/cdP4JuPOZJXj44YfxyCOPoF9hKH6+fD4f7rv11zi46SO0Lvkoacz2zw/2Y/NPf4Knnvobbv3DbVhw+x0oLi6OvwcLCwvx9N+ewtiOeaCt7vrvO/Htt9/inXeW4Jprr8Mvb/gVQqFQfM7XsrIyvPzSSygtLRWubxYvbMfxqURE3YKBK+Ud69hSN1WFezKjarHTse0/YjBev+Pfce972/Dxxx+juro6nv2LqokZ22vnz8YZZ56Fx5aswbvvvovt27ahvqkZJYVBjBs+CMdM3R+nzToQh00cnbBe/HzbtGHM8MFYtWoVnnvuObz44ov4bPVyVDc0Q5EljC4fiKnjhmPejEk4eeaB6Z8MG4WhABbe/Z9Ysq0dTzzxBD76cDWq9+1DcWEQ40cMxtFTx+Gc2YcmrTdo0CC89pfb8fo/nsdz736GTzfvwN662Fyzw8v6YfL+o3Hq+ZfgBz/4ge2++xcXYundV+O+pd/gn0uXo7KyEgP7l2LGhOH4j7OPx4xJo23XTVf/4gK8/T8/x53PLMGi1euxq7oBPp8Pxx57LC699FKcMWUgrvzVLa62Zb6qrK+tUv49yEUDAQBaQxU07VtcP/8YzJsxCQ8v/gzLN+zArtrY+fre6OE4+ICxOH32TJQOLoYUbgYkwB+KBZqFUAFdR0NYx7ad+9AcjmUwRxfrKCwsgqqpGFBairmHjMWiT7YCAI47dAJG7D8x1k6fAr2pGjqMazGW5SorC+Gp607B8x/vxJsfb8KGiirUNbVCgoTy0kJMHlmG2ZNH4ORpY6ApAQzcb39IJUNw/+/GYfGy1Vj+yRp8s7sWVfUtaA9HMWxAMQ4ZV47zjpmMM8//MQAZ0rgZUOvtCwCZXXjufMwo3Iu/vLoc733+NXbsqUUkGsXYYWWYPHoozvrJZZg4caLjC6LresLrcv3112PeoDo8umgVln25BTv21KK+qS32nh02CMd9//s4/YJLMHPmTKg717tqp/3+s/cZ6vYW4W8uPBFHThmHh19bgY83bkddUyuGlw/BMbO/j2uvvRYHlwcQ2fieTXMlPPTQXzBv3jw89tjj+PLLL9HY2IhRo0bhhBPm4JfX/wfGjRtnu+9gMIhX//kKnvjrk3j66b9jw4YNaGtrw/jx43HKyfPwy19ej/Lyclc3PPNpuAkRUV8k9ZTsVDgc7hkNpYyJMq7Z6pabar92AaTTfIVeuNmO27llrVPOeG2bMTVKfB9a8nkW7d8oomVXKMq8nnFO7ZY3b9O8vle5uC4mTJiAiooKPPzww/jpT38a34/b18eJqPCXwakQl12xK9HNnVy+VzpvcsjQpI6u+Dqg6CqCUgQ+qEDLPjQ1NKCyYjs2b9yAuppa7Kj4FoMG9kd7WxOCfhkjhw9DU3MYbW1taGtrQ//+/bFxw9eYPn06Nmxci6EjhiMUCsJfXIKRQ0fC7/dj2IihCBQVoKD/GESjUWzd+i0OnjYDKChAezgKHQpUxQ8NMhRdA2B0u439KNABSUNsWhkNkp54/zYh4xt/rdOdQsZdNWtd9/7+FZFc7E93nGrH6SZh8nUper/H92N5zEsRqdjyanI7uuD7Srzdpqyq01Q3RESUvkAg4OmPHzOuRC5ke7qdbAYV6QStZp3d3jrHtXZXZtsY/8euePlNlzqn+1E68m4hSNAlCe26H+1KAdoL+0Eu1DFq5KEYO+sHUKNh6HIQMlSEw41QZB2aFobfV4RoNBovSnRWRIHkUzBX1qD4ZYS1KCL+IOT2KEJKAVr12Hy7UakFkuTHmP5j0CjLCEVVAAokAH4t2tFODdBlyJAg6VHouoqIEgB0GTp8AGT45eSx8rl4n5I7nbULumf/8de+e3ZPREQOGLhSXspVdtXIAJp/d8NNW6wZBrvMrd0YXvOXZVmWhe00spfm4NJN9tb8hbxz/GC8AfFlzUVhjHWt2VLr/jRNg6IotlM8WDPZbrLIbojOkxvmAMVrgG5dPt3sptPyyTcOzNeBcQ0pKbeTy8yrufiUIdrRZEUCoEdRaByCGgsCYtd3bJxsMNBZ/VWSdASUQLydWtDojqlAjQIK/FDaNQAyNLUdQQBBANAVQNegyDpkWYcq6Hmga7FtqToQ+3Png8+oGiwBRjYWEPcSyA1R8TcktEGWBK+ZpdqxnpCINDLgLnouaKLPl9i2E7uVJ76vzL0w7N53bnoJuCVZ/o21ybKMi2tcM52oVFN/ifZPRET5g4Er5T0jcMpmJlDULdipC2w6zF/snL4Eu/mC7DU4y5RdBWfAWzbUOMfZPK/UfXLdXT/bRNequcq4HTfjzqlnEBXuY48OIqKeiYEr5R277nrmYMrLl2fR1DGA+MuL3XbdjMG0ZiHMmVHrVC+psqTGMqJsLIB4htMLUTvMAaX1nJt/nOabdQpK7cZgpgoK3IyfBeyDD9GXVeu/nscEZ2mccyY6Xw8ktMVtFjvToDMfg1bjtRZlTs29EszXs3l5u21m42ZRuuPzvV5rnculXl70+WLdr2hTdp+jmUg17j0pC2pTuE90k03UPgasREQ9GwNX6lG6+4uzly+UxhyoRsaRuk42rpNNmzZldXuUW+b3pCzLHTdIkpfLhxsQlDtJQyj4OhMR9RoMXKlH6e4vnV72b80EUddxro6a3rb4OuY3cWY5dxXCKT85Ba68AUVE1LNxOhzKW26LGzktmy3GGFsjkyNiV3QpRtzlLZF918Su+rItSRKi0WjaGWLRdC3m6XCsAWW6RZK88NK93O01k2lXUqc2ZWscnpt9uGc9Vvu2pVsUyu597XasqXkZa4Exp22Zr0OrzD9D3E2jI1mmoxFNWZN8DlJ/XojWEx2T7HBu4nvTs/ketb+eOrsBq0mft7qeGJSKPhd5Q4KIqOfwOh0O+y9Sj2KtCixidNHNNlmWu63IUFcVxZEkCYqipF6wD/L5fD3qS3Gu3gddSTTOMRf76Ck3cLtDdxXkcrNf4zPZ/ENERL0XM66U16yBojlDl04Q6SZzae1yKMoIei/sY5/l6eza5lyoBEBC5jKXQZS5+Ik5e5WyoIuLbaYrF5VerddDNrKEXvab6rl0voh7OU9ORbAAmLLlqmUpb+3qiox6JsuYr3Pze6urMq6wnF9RxhWwfh66y7g6iZ8XN8u7mILJSWIW2LqN5IwroCV91hvTQPWkG0hERGTPa8aVY1ypT7FW5xWxzp8q6h7cU274ZCqfprHJNFg3XldmZUikL07dFH9P5GkgaLwWnYFr6s9vIiLqvZhxpbxlvttufgxwvuOezrQTZvFty4Ixd4JNW4d+iZYxT9Egylpm48tyNqc9AZCQtXM7PY21K7fXgF+SJKiqmnFwaWQKs5GhtV5zbq+9bF2jmUxDkrq7ZXLWzjqO0NivV27Xt05Zk+75FZ0na28N8/vMzX5kWUY0GnU9Jt167iTRMppgPL7kpku39T2R/D4THVvSY6KxvK72l31OQz84ZIGIqPdjxpXIA6dCT9m8U5Kqa3JPuYHUFZgR7f3siqllM9tptx0vgb/XNrELqzfmIQgGnkMiIrLDwJX6NOfANXvBZKrMZbbHbvZkmVbspfwnygiKsqSZSFWB3G2VaS9tyt7Y2L7BuDFgvlll7p1CRERkxsCV8pb5S6BdMCMqVCTqNmd0HTWvZyf+nMP3JiPQFHaHdPjOqmkafD5fUhdGuy+8oq621u7G2c5UidhlyKxtAuy7PbsphGS8nm66c6Zqb7YKWDl1d063aFdXFYPK5Jpw2z3cDWsWXTgli4sbFtbiZNb3kbWtTp8L5vXsXkdR93C3hbXsCN9LKddy5qZgWrz7c4ZdwN12hzeYxw7bred1m0RE1DcxcKU+pbsyIk5BXb5kabI9Rpb6Fl3Xoaoq/H4/AOe5Nb1Wos5FMGO+8ZKrfRCSMqpA/nzmERFRz8LiTNQj2GU37QoEWR+zPpeudN8vooxO51Qjum1XYTdf+L1Oe2LNIokyp9ZMVi6KHaW7bFdmHVOJRqPxQM1OqgxzKrquQ1GUpNcp21K9p9wU1jL/3647sN16TgGk6DnRdWrdr3V9p3bbvT7egu7UXdyNrRmZY1mWoVkrvLmaRsdtd/rsrOf0GrjJWhMREVmxOBNRL5LLKVw4lixzRjapL4zJNQcnouvReM44F07VpXua3nQs2WQeMuG2azYREVG6mHGlvGfOpLj5MmR8qVYUBe3t7a6nVUh3fFq62zaORxT0OD3nhl3WzCljan3cPC7Yro3pZGAz/cxxk4U1Z4Ksy6Qao2jNOmcrUHHqip0qIyjKunrZr1NWzJz5d3sMXruVd3VVXqft2GVWnYJxVVVd7llL2J7wuAXXlV3GNfF6TJ2VFV/j1syp/bEknrfkOVOtWW7jnDGYJyKidDDjSn2e+cu9pml5OR+gm+7M3XlTKVfdUanrZSMAF3Uhz7buvt5YIMhZvLiTQ5ElIiKiXGLgSr2O8QXLWkk4n4gygm6e6yp2GSjqeezGLnthVIV1n3lMbx/dfc2b20KJFEVJawwxERFRtrCrMPUoTgU/rN1W42PuBJNNyA5z3TgFk9Ztu2VXSTjVfrPFXAjGzf6cgohsZYTTXd9NV+FsnMtsBy/pVm0Wdc3MxbViV1zHri1euCmO5HUfoqJO5uvc3NU+m69lpsWZxNtJXUDJ6CpsPu7kGxIu9q8JXleps03WYRkM4omIKFfYVZgoQ47j0wRy2bXXa1vM65nb5mZZp8eyPfawLxQz6i7pdkPPhy7qmTAHrqIKyZlknb2OBc6FrugFwalriIgonzHjSj2K9UuVKEBL+tIqiLkkh6tJVAAnW5kucxbDS3fgdAohORV+sk4jkqq92ehuam1XuhlI0TpOWTtRZi7bjPNjV7jGnPkzL+f1uLOxvrXNXtZLd7+i10N0LObHvBZLcwrGRdeH9Xpwez2a25scyCZmeN3cFIpxn3EV6Wy7/Q2h+PHqyWNUJYXDAoiIqOsx40qUJRzjSW4ZAUxPuWa6uvunU3Vq8zJGQTVjTG2qzHw2x7H3lSlvRMWVeFeYiIh6AmZcqccxj79yly1M/hIqScmZo+7qYmnOQGZSzddtpsquG3DC9ByWgME8JYv1OSNgS5URdpOFMnclziR4MM8vKeo2aj2ubHeF9sraXnObHHsTeBg76pX1PDll8FO1xQ2718faJi/z5rq9tr20yWk8qXVLwtdLtD8X505LWsa+uq/oHPaUmypERNR3MONKlAM95QZPJlJ1j/TStdnr9q0yDbq8BFP5kF0zz9EKZD51DSXqzvevJElQVTVelbcrWiIqUkdERNTTMXClHsfIRmWalQPEX+rcbNs8Hs+6LWvGzLpt65dou+yadRm7572OOxQVmLFb1zp20/gCbu2imWnW0ryu0b5MAmU3WTTRY04Zda+8jKE0zqfounMKaN0E6F7HAlvb5HZcs9NYYjfruxmDbFd8KdNtpvOcG8Z+RXNJJ5x7uH8PdS6TfH7zcc5qIiKibGHgSj1SNrt3kj27QDlX517XdUQikS7/Ap6LjFxXXp+ZdC+34/N1/nnINNueKWuA7aW7cG9lPicMWImIqC9g4Eo9kriiJ2WbXYY4V+PljHG0XX1jIhcVh7M19tPLvrzuz2k9I1g1TwPTXTeLzK+PrutQVbXP37gyB6u5rJhNRESULxi4Uq9gLXCU+Fzy8qmKLFm7ATt1xxV9oXdb8MW6rtegw7aLLxKDegnWAjsSzFN3xNqQ2PW3c00d5rqjuq7Z7tfIgjkFtk7ttnY/dmLOuJmnnrE+5637ZTIvBZDcvpaibrVO10KqaaAyKdKUqmu7dfytdZt2XaLdXsvW90OqY0jnxonXmwduuxgn3TzTU7dLj0+NZLrWJQBS57vM/HljvD+NpoiOnQErERH1BQxcqddJd85V81yb5t/Nj9ntz+2+rN0brWMarftxM41IPnETUDgFStnal5cAOF9Zpy0xV/U1/s9MW+9k/QxjRWAiIiIGrtSDiTI9qYIUN5kp0bQfdgGC2yyRsay18JNR/MZuH26LKCU9JyWeD2s2Ob5Qim2L2yQ+PtE2jOO1BvepAq1MsnbW7TsV27IGBm4LGRljLM3rW68bu6yqKGh3yq4az6ebNTSzu8a9ZqXdXite2mkE57m+0ZBOoalMtmVdVvj6Qpy15g0JIiKiTgxcqUdzCli6mygIYlGprud0zr28FrkYs5rptdCbrqWelhnP5mcOA1UiIqLUpJ7yZSEcDveMhlKXcjOW1MrNVDfG+kamy6n7sV0W1i5zZtc2p3Gfoq7ComysdWyu87at7XPXHdk69Ua2xuU67cvNdu3W8/KcaDlz1jjV/tMda2p+zjpO2Cm7afzfbnxqJufafLxeuqrnIsAXjSdNNzubrXY5ZlD1WJExVVWTnmOQSkREFBMIBDz9MWTGlShLespNoGzp7cfrJbDIpyxstmR6TOkWHbPbVk+63qzFwszy5fUlIiLqaRi4EmVJPnZXzqXefrxeMoe56Dba3fItcE3VUyKfaJoGRVEcA9eeFIgTERHlAwau1KO56R5r/QLt9suvtcuw3X7tCgJl64up226aiqLEuxVbKySLJD/nLdCwFsVyc25FBY6Mbrjmas5eiwWJpuGxdrF2XdhK8JyXa8Z6PXoJfK2PiabBMW8/VaEn6++5DPys7c12V+FUx2m3HpDd47bu17h+zdetm4JgRERE5A0DV6JeQlVV6Lou/MKc7nhFJ0ZWKZP1gexM9eG0DdH4yGzrqmmLRNWLqXsZgav55guzqkRERNnHwJV6NDfFcFJl09KZ9zXVtq0ZIk3T4PP54gGHrifP3arrUduiTk7tt2Y+3U41I0m6cKqaVMdnfi5bVZLtMojpZqys58I4r0ZQb1dsyalrp1MWXbQ/URDjJhvrdtoZ637tXo+u6l5rLWbWnUGbU9Y5W4zz6vf7U+6fiIiIMsdZzanXMneZ7UqqqqKhocH18kY77bo8Z4OxD2vX2Z4yZtArUQa0u8dImtvUXdcmZU5RlHi3/Gz0FiAiIiJ3OB0O9QrmgMTIrImmq3Az/i/dMYlugqLO9URfeJMDGWubRF1+ncbxeZ2n1Dxez8t6xo+b9dLNolrHHHsNQt2Md0w1HjTVNEciqfZn7mKaalt2y2TjczzdbXiZNijdMaei7Vq35XYMs92+nZZhgEpERJR9nA6HqIObL5vdlYFLt+JqugEzuZPuucx0TGNPuYHYXZxuVngpJOZ2GeP/6QwjICIiotxg4Eq9lpviP9mcssOLXASu/HKduXRfl2wGrrwRkcxNlV63FbSdxilb/8/3FBERUf5gV2HqNbxMQyLLMlRVTZrSxlgv1XQ26XYNdeJmShbR8aVbkMfc/dgoqmO3fqrPCUVRUhYSMrbrtstuJlMKWYsx2W3T2m7zeU51TszHl25A5STdruteukQ7vV/M58JpeiW7wl7pEu3Xy7qigmtOQam1iBYRERF1DXYVJnLBHNCoquo4/2d3Mn8Bt8s4pdudMVtTuBjt8loRuTvYjU81dw01zrU1CMple/LlejMzn4ueyikYNc49s6tEREQ9AzOu1Ou4CeTsnksnaLUrEuM2g+Mme+vURdipG6UTuyloUrXJLrOqKErSVDnmbK41u23OioraJFrf67F5YT2HonMvap/xe6btsx6nOeNozR6L2J0nc9GkdAuPZbq80/XlNbvvpR2ibCozq0RERPmBGVciF+wyb+bqpT0l02QENEZwk6qyay55yVKKqtBagw/zsbkJaLJZTCccDgvn6DQzjiHTbsEimXaX9sqpO3BPY82mdtdYdiIiIsoeBq7U64jG+4nGO4pkOq7S2JeXfTi1yfyYXTbYWN9NMSq79tg9Zs6OxtskJS4j6YnZPmtW1VjWOm7U/JhdG8xZV7u22R2DlTmgFmUgrb/bBXLm9lszpE5ZP7s2GctYz5G1sq35urLeHHA7HlW0X2s7Refcbv105SKQNJ+PbGVxiYiIKH8wcCXKslx9STaKSXW3XLQhnXOW63MRDAZdL5uNgkRuHuuKgKwrs7yZsN4oyof3BhEREeUOA1eiLMtFt1FR5d/ukotiNumcs67o/um2PZkGe24z8E7Z32xJd8x0V1MUJeF3dgcmIiLq3ViciXolt2MinaSzvtM66XS/zFbwIPpS72XKnITHLKtJlkXMx2kXkIm65RpdXVO10W0XWLtA30uAY+5+62YqGHPBKadpVtwEh3bdeVO12amYlXWbovPkNXDtir8hnLKGiIio9/FanCm/564g6kHMgZfTMlZeK9Jmi5v25mKfbpdzWjadwllGgGb+SUcuspxu9ZSCYam4fQ3MY38ZtBIREfVtzLhSr+O2qq1oPTM3GTbR8ulOJ+K16FCqKUacikOJfhft16nQj2j7Xqr6ivZn3q/dsYuKVDkVk3KzX9FzxvNupnJxyuy6rYbslClNxbqO2wDX7bVqbVcu/27k+1zARERElB2cDoeIAKQ3J61oG0DXjRl0017RMl6mcnGafsf8XFdmN83T/qiqmtSWriSqWpxLDFSJiIjIDQau1Os4TbHiZqoP83p2c6KKiiWlm7F1M64zneecppkRcbvtVEGs2/GRoqlfrP+mypzaTb9jZg7gjf9bx6GKjs0ui+sU+Npty9pe87Q15ufN5yLVeGk3+0qHKMvsJvPvpTcCg1UiIiLyioErkQeiINPuC7vTnKtO287mc10tW+N13WR43XbFdRsMut1fNmialtG5chPQ55PuHBdMREREvQMDVyIPrGMwnQJXUVYp3TGy2RpLmWtuMtputwOkDtit3VpFNwtSPe9WtoOubAau+R4QGlPX5MM1SkRERD0TizNRr5ZJEOVUxMftdCvWx0RjMb1kFzNpbzpcFVkybTq+Hy11gJ2qSJK527Cqqq66l7rtAu5mebv17dbJJBA1ui+buzWb92Pt2uz1OO24vX7TeQ/lezBNRERE3YvFmYhyyCkT6HZcp7GdVBlbt9vsbtZ5RgFAR++9z+S26rMXiqJA13WoqprWNt0GoE7LZHoTsydcq0RERNRzMXClXkvXddeFgozlgeQCQdbnrcvaFQZyCgrcBqtexgYagXA0GoUsyynnvjQKBKVbeKczSO1kbq/bbTsdi1OFW6eMpGg5UaEtuzHLxo0F0TqiwlypjieVVONwRVlY676tx+/23Dm1ye4x0c0KIiIiolxiaUeibpCNMZdWra2t0HU9Pp4wlXS7thpdWvuCnnKcxuue6yDSeO3NP0RERERdgWNcqddLZ3oZ6xdyp+yhUxbMS/uc5iL1WvTI3BU513S3uxCMe41vwzRNil0w73Wcr8G6zUy7x3rtKmxd3jwVTrbGkzpN45NukTAiIiKiXOIYV6I0dddNnJ5y86inMoJ4nmciIiKinouBK1EHp0ycUxYq1djYdPZvV0nXvIx5Sh5rljJfsmYJmUCH5axFq0QZ8VTjfd2McQWQ0JU6nYDWTdVo82NuxkqnW1zJzbKapsWLP1mXz0WhKSIiIqJcYOBKlKGu/MLf27t45npOg8A4jAAACrtJREFUWrugM1vzzqYrl6+dUaRJNKa5N1wzRERE1DcwcCXKUK6DLTOv1Yh7GlVVAeQmoJIkSTjeM18D12y9hm4D1556zRAREVHfwOJM1KfYdZG0dk9NNZWLLMsJc26KpjOxBgVG0JTt95zT3LCithjHZjdVSuJ6ggrF1kBPSi6mJAkO0c3URF7OjXVbTgWP3G7H2o1X1G3ZOG+i6WdE27XrBizqCp5N2erCTkRERJQLXoszcS4DojQYQVI+TQeSiyl2RERzmHYHTdPiPwavr0d3HYvTTYNs4bQ1RERE1Jsw40p9mtcpa+wKIbl9H5kLKmWLqDCQLMu27fI2f6sg4LFmEh0yrkYbRJV9rVlv8/Qt1u6tbs+xU5GjVMWd7NZz2rbT/p0yrl7aYj2Hoow6A1MiIiLqaTgdDpGDTAPGXE6tkulY2Z7QFVTTNE/zilqr4eZaJtnb7tATXnMiIiKibGDgSn2eXTBllip4spuWxspxP3IsINbMYyhNmUvzv3ZtiLcXMmJN7lgPydO0WH8XH6PgeIw2xX8XHZOWsE0j2LdO+WOcM2s20ekGQaYBvmiMqtP0O9b9WreV6rlUbbFb3+Bmih0iIiKi3o6BK/VpRrCUD5VlReMtuyJQyYfhAkb3YENXB2bZCIZzhUEqEREREYszUR9nDlwzpet6RoWR7ALXbLbR7X67mqIkVi/ujsA1k33m8hzm+vUnIiIi6gmYcaU+xegmai5u4ybb6qbQDpD5uEhzgCLLcrxbrt20NtbH0t2nl2WylZk2dx82phZy6m5tbaf5XHu9YWA+d+ag09i/+RqxTmNkzQy7mebHaT3r9dcTxtYSERERdTUGrkTdLB4YdcQ+ToFhrqe66QrZmgqmq85Ftm4QiDCbSkREROQOp8OhPslNkSPre8NcXMhrBtKaMU03UHEqVpTutrxmXJ3a4mV/TusbWVBzgOumEJKbIktmTuObs/XZKNoOs6pERETU13E6HKI8ZAQqmRYBouzKxby6VgxSiYiIiDLHwJX6JKdxrXaPW4Mb87Qt5vVEWVVVVZPmJLWub7cfpzbZcZNNNbfTrpqx07hO6/Ki8aFO2zT+L1pe1O5cBP1O0+Gksz+OVSUiIiLKDQau1Cc5BVjpcuoG3NVBTKYZRGaE08OxqkRERES5wcCV+qRcBGbWwNWafevKYDBb85IyEPOG54uIiIgoNxi4Up/k1BXVkKp4kN123BT6Ma+fqltuqv05tc/NeqL9itppfszcvdjcRjdTC8mynDQdjYiXINDLtDROhZtE597ttoiIiIgodxi4Up/kJsDKJ9a5RHsruzGv2WQen+sUeNpNgyOqdExEREREucXAlfokY4yrSKbBSLrZUbviRW7XFz1u12U4VXbZS1djr1nKVOwyp3bFrIx13HJTsMrpMQarRERERF2PgStRGrzO49od3GYuRYGiXbaxO7lpi9HubBTD6itZbiIiIqKegIEr9UlGV+F0p11JeE5SAACakTlF8phRL11g050Ox2kqF2ugbT72VONfrd2qdRhBYcf60OLjVjuXS5y3NrYtVZi9NJ8Xp+ymsZzT1DXJ7Ug9tY/dOWDASkRERJQ/GLgS9UJORYe8cJPlNIJJ0Y0Au27PmYwxzjQLLAp4iYiIiCi/MXAl6oUyrZZrXjZVgJlO4JpJAaZMp/pxykwTERERUX5i4Ep9mhFsZWPMqtHtVUJyMOQ2AMyE0/peu8I6da/V4WYqoORtm7epqmr8cdEYW7upeVKdR6ciTewOTERERNRzZV7BhIiyIp+6rVqDeSfmjGsu2Y1JFjHan0/nlIiIiIjSx4wr9XmapkFRFMGUMEp82pzO5wQZPT2WPZSl2P+9hm/mYkPdOb+s26yzLCVmVRVFiZ/DzvWTz5OxTaNar6Zp8fNrDTDtuvCas7OiNjJQJSIiIuqdGLgSdbNsTN2SDeZutrkMAM1T7aiqmjfHT0RERET5i4Er9XmSJMUzeeaMp5sxlenyuk2n6WzMjxvHkGoeVmM8rrktXroGi9pnNy7VaTt+v9/VPt1uk4iIiIh6JwauRD2I1yDTzbaIiIiIiPId++gR9SDZDlwZvBIRERFRT8CMK5FJYiBnP7VKuts1B5yyLEPTNNM+ZcHUPKqgXZ3btJ+T1LgnZTyvJayXqm2ZTAkU25ZRqMn+fJr3IZoSh4iIiIjIwIwrURdwk93Mpwyol6lnzKyBt5dpafLl2ImIiIgo/zDjStTBOl2LOZCyBnLm59wEZaIpXMxVfO2WMReKMk8bYy6u5KZN5sJNqY4NSK50bBRfShXQdm4/dZuYYSUiIiIitxi4EqXBHNjlMlNoDqIVRYGqqvHn7AJft9u1rm/+Pd0pajqrGStJ2zG6PRMRERERecXAlcjCTQEk0TjRTDOIsmx0FzYHlJ3bNAet5vaZs7KdzyWPzzV3RTYv6xSkWo9TdIzibKzWsb7tpomIiIiIXGPgSmSjq8dcdtcYV6/zrxIRERERdTUGrkQuiMaM2j0vGkcqSVLKyrleA8hMx4xa22QeB2se72vtUmzXRo5ZJSIiIqJcYVVhIotMM5+apqUM9nLBaHe6bbcr3KQoit0qRERERERdgoErkUWmgassy2kXN8pErgLX7gjCiYiIiIjM2FWYyELU5dVLMGjuOmsuWmSuEGx00zW64jp1ybWrYGxsW5blhH2au/p2/l80vY2acKyi/bP7LxERERHlA2ZciXLECAStgadofGymXZPt2GVgmUUlIiIiop6EGVciF0TdaFMtYy161DnHqRR/zFrASURU5MkIhq3ZVVEb3QbGzK4SERERUb5i4EqUJebAlIiIiIiIsoeBK5ELRoZU3Ls+OWDtXL7zd9F0M2bmMbGi5wCknFJH1O7Y+q5XISIiIiLKOwxciVyKBZXJj3dXUMjuv0RERETUVzBwJXIpXwNXp+DUzdhcIiIiIqJ8x8CVyIbRLVfUtTcxWIw9Z52SxnjMuq5dEKlpWlIXYytrwadUGLASERERUW/AwJXIA/NcrF2xHhERERERMXAlsiXuZmsUYup8xNpl1zrdjSzLrgJWYzk3U+QQEREREfUlohKpROSBLMvxjCrQOS0OERERERFlBwNXIhckSUoITq1ZVVFG1TwO1byuHesYWWZbiYiIiIhiGLgSERERERFRXmPgSkRERERERHmNxZmIXHAzZ6pBVNSJ1YSJiIiIiNLHjCuRB5qmsfgSEREREVEXY8aVyCVzsSVzYSbRckRERERElD3MuBIREREREVFeY8aVyANmU4mIiIiIuh4zrkRERERERJTXJGaQiIiIiIiIKJ8x40pERERERER5jYErERERERER5TUGrkRERERERJTXGLgSERERERFRXmPgSkRERERERHmNgSsRERERERHlNQauRERERERElNcYuBIREREREVFeY+BKREREREREeY2BKxEREREREeU1Bq5ERERERESU1xi4EhERERERUV5j4EpERERERER5jYErERERERER5TUGrkRERERERJTXGLgSERERERFRXmPgSkRERERERHmNgSsRERERERHlNQauRERERERElNcYuBIREREREVFeY+BKREREREREeY2BKxEREREREeU1Bq5ERERERESU1xi4EhERERERUV5j4EpERERERER5jYErERERERER5bX/Dz+5nQB910gpAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Run object detection\n", - "image = skimage.io.imread(image_list[2])\n", - "results = model.detect([image], verbose=1)\n", - "\n", - "# Display results\n", - "ax = get_ax(1)\n", - "r = results[0]\n", - "visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], \n", - " dataset.class_names, r['scores'], ax=ax,\n", - " title=\"Predictions\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing 1 images\n", - "image shape: (2787, 3942, 3) min: 0.00000 max: 255.00000\n", - "molded_images shape: (1, 384, 384, 3) min: -123.70000 max: 150.10000\n", - "image_metas shape: (1, 17) min: 0.00000 max: 3942.00000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAAKnCAYAAACGfhAOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXm0JMdd5/uNyKzt1q279l369i611LYsS7Yst2RZlrEFNthYeAFmDF7mgM0DzzzeDPAYBgx4bGzmcd4cZgYwBsyZh40ZMAy2ZQuvIFt4lWwZ7d2tbvVye7v7WmtmRrw/qjIrMiozK7Oq7u27/D7n3NNdlZERkZGRWfGL38aklCAIgiAIgiAIgiCIrQq/1h0gCIIgCIIgCIIgiChIcCUIgiAIgiAIgiC2NCS4EgRBEARBEARBEFsaElwJgiAIgiAIgiCILQ0JrgRBEARBEARBEMSWhgRXgiAIgiAIgiAIYktDgitBEARBbAKMscOMMckYMxufP88Ye2cH9RxkjK0zxoze95IgCIIgtiYkuBIEQRCEAmPsHGOs3BAOZxhj/5Mx1t/rdqSUPyKl/IuY/flB5bwLUsp+KaXT6z4RBEEQxFaFBFeCIAiCaOUNUsp+ALcBeCmA96oHWR36DSUIgiCITYJ+dAmCIAgiBCnlJQCfB3AzY+yrjLEPMsa+AaAE4DrG2CBj7M8ZY1cYY5cYY7/jmvAyxgzG2P/LGJtnjD0H4PVq3Y363qV8fjdj7BnG2Bpj7GnG2G2MsY8DOAjgsw0N8K8GmBxPMcbuZ4wtMsZOM8berdT5PsbYJxljH2vU+xRj7Hbl+H9s9HuNMXaSMXbvBg4nQRAEQXQMCa4EQRAEEQJj7ACA1wH4fuOrtwP4OQAFAOcB/AUAG8BRAC8G8BoArjD6bgA/2vj+dgA/HtHOTwB4H4B3ABgAcB+ABSnl2wFcQEMDLKX8vYDT/xeAiwCmGm18SBNA7wPw1wCGANwP4A8bbR4D8O8AvFRKWQDwWgDn2o8KQRAEQWw+JLgSBEEQRCufZowtA/g6gK8B+FDj+/9PSvmUlNIGMALgRwD8eyllUUo5C+D3AfzrRtmfBPDfpJTTUspFAL8b0d67APyelPIRWee0lPJ8u042BOu7AfxHKWVFSvkvAD6KuoDt8nUp5T80fGI/DuDWxvcOgAyAmxhjKSnlOSnlmXZtEgRBEMS1wLzWHSAIgiCILcgbpZRfUb9gjAHAtPLVIQApAFcax4D6hrBbZkorHyWIHgDQidA4BWBRSrmmtXO78vmq8v8SgCxjzJRSnmaM/XvUNb0vYIx9EcAvSSkvd9APgiAIgthQSONKEARBEPGRyv+nAVQB7JFSDjX+BqSUL2gcv4K6QOpyMKLeaQDXx2hT5zKAEcZYQWvnUsQ5zYql/Csp5d2oC+ESwP8T5zyCIAiC2GxIcCUIgiCIDpBSXgHwJQD/lTE2wBjjjLHrGWOvbBT5JIBfZIztZ4wNA/i1iOo+CuBXGGMvaUQsPsoYO9Q4NgPgupA+TAP4JoDfZYxlGWO3APhZAJ9o13/G2DHG2KsZYxkAFQBl1M2HCYIgCGLLQYIrQRAEQXTOOwCkATwNYAnA3wHY2zj2ZwC+COAxAI8C+PuwSqSUfwvggwD+CsAagE+j7kML1H1j38sYW2aM/UrA6W8FcBh17eunAPy2lPLLMfqeAfBfAMyjbk48DuDXY5xHEARBEJsOkzLKAokgCIIgCIIgCIIgri2kcSUIgiAIgiAIgiC2NCS4EgRBEARBEARBEFsaElwJgiAIgiAIgiCILQ0JrgRBEARBEARBEMSWhgRXgiAIgiAIgiAIYktjXusOxKVWq1H44x4jpYQQAhwMnAfvYUi2yZ0iCIIgCIIgCGJXkE6nY0sb20ZwJTYWIUTg98wgpTxBEARBEARBENcWElx3MUIIMMaACF22KtC6OX917SxjpJYlCIIgCIIgCGLjIMGViI0rsLoCrIsr3BqGsel9IgiCIAiCIAhi50OC6y5GCAHTNAFVEGV+k2GfLlUGfAfAVbhKYbcIta421hVqpZSQFBOMIAiCIAiCIIgEkOC6i+GcQ0rZIoj2EleQtW27+R38Jse66bGU0hN4dUGYIAiCIAiCIIjdBwmuxDXDcRzfv65WljFGgitBEARBEARBEB4kuO5CmISXBoeBeRpQAIDUzHhZcLThIFQhM0rwZBCNMtr5oq6VFVJCaAfd+hg3fZ+FEKG+twRBEARBEARB7AxIcCW2HK4Js4oX3Vg6LWXdYxTdmCAIgiAIgiB2JiS47kIYYz4/0q1GoJbW1eBq3wfln/W0s41/gwRhgiAIgiAIgiC2DyS4EjsW13fWy1eL1kBQBEEQBEEQBEFsfUhw3YWoWkpXE+lqYZP6tKrazCgNbsfBljSfW6b3T/fJrTfS0h+3XVeYZW5qH7cMZ4HRjQmCIAiCIAiCuPaQ4EoQqAu0rlAblqaHIAiCIAiCIIhrAwmuu5AwTSJjrMWHNApPSxtQt+5n2qLZ3UCa/rDt2wnSFrsa6SiN8lb1DyYIgiAIgiCInQgJrrsUXfDyhMku5bEgQVVvL6ztoAjBLTJukGmwXkS7liCTYfBw02UOVk+zY3BAyOaQKGU9oZj5++u7Nq2vkmRdgiAIgiAIgugIElwJoge4ArCaVxaKQA7E0wATBEEQBEEQBNEKCa67mCCzXcaYLwpvN3UnLeum6JFSKhpb7h3Ty7ZtK6ILQSbOej/UY6o2OKpNdUxlo7xneqxogF1htuOgVQRBEARBEASxiyDBlSA2GSGEJ8zqAaAoIBRBEARBEARBtEKC6y6m6Qva1LBKwcBgIMiqlXHpP6/LdqO0lk1cH1L35ABf0pj1+o4JqR/wtM3QNK6MS0g4zRw6vg5pfRBMOVfTZnuut8q5Wj9s2wJQF2D13LPuZ0c2hV7S1BIEQRAEQRC7ARJcCSIBnr/qBgmMqsZVzz3bLFQXYHth0k0QBEEQBEEQ2wESXHcZQohA18+mINY8qvt19kpYC4sqHCWEeWUC6opzflgf1GvyfFtZcB99/quhKYVataC99mNV++DW7d4nwzAAbLyATRAEQRAEQRCbCQmuxLZmt2sd1Y0FoKmddf9ljHnCLEEQBEEQBEFsV0hwJXz5RtVco44M1s72mkjBs9E3ppRVhdVIf9aGslFK6ZnXuggvD2uMPkleL6a6uIY2KgLcX92OdDaaLTlxlX54evKIcXCFWD1asquVJV9ZgiAIgiAIYqtDgisBQDFn3eK5RnXhK4jAwE0BZcK0tUki+7qpcnptBuwLDhUn2FQM9LJCS9fjts85bxmDoFRBJOwSBEEQBEEQmwUJrsSOhzG25QVyl61i9qyaGuv/ksBKEARBEARBbDYkuO4iPG2ZJnjUbAvpdBpAM1WLFwCINc/liklxoJaRCd+5of3QPkeJamEaTU/rF3CyZz7ry16jB1XigRF8A2FuSp5WoY0xNFLlRFyEVg+AesqhAIL6oV8ji+qqdiyOdXJYsCz1/77vHOHzm9W1sx1aRBMEQRAEQRBEKCS4Ep7QmgTHcUJNatXv9eBBSdmp/pfuuCQxS96q6NpZyXbGdREEQRAEQRBbBxJcdxGeX6f2vZSyRbOp+zFyzgHRPKZq6Zrn+D+r9ehl/ee1qui89kWb1DI9Mq31+ZQi2IczqQDtjne79jqpO0kfktQdx3/Vvf9R9y/suoO03FvFPJogCIIgCILYupDgSmwqnHPPlNcTjnagRpUIJkoDTwIsQRAEQRAEEQYJrrsIV7PKAhwyXQ0aa0qV9e/h/+zWo59bPxAueLjpZ9S2GeMtdXttiGBh1msijpDDWyMHNzWK4adJOI3C7ZsIbJZz2LYN0zT9bYqgfgRruNXovZE+rfo4BFxYmEAY6E/bzj9ZShgNzXxQnwEEzi/vfDXLUID/rNpfb04y1upHS5sdBEEQBEEQuwoSXIlrhufnuSnZYjcPx3FgGEZoup2dgnv/NuoahRDeGLp+tG5QqJ08rgRBEARBEEQrJLjuEjxtaz0Mbk9I4qfJeFOLppuLBp0XqiVM0L/onKPJBJ+wvK9B9bfzKw3WAPs1r0E+xEHni5Dz4vgSR/kWA4i83rj1RRFn/uia1iBT42q1ikwm45UloZYgCIIgCGLnwbaLyV2tVtseHd2iuIJrEKopapLUK60VKUKF5PGPuUXaBAYKCuwTmA4nRtAf3Uw1Knpx5BgwTZBSr007FmQq7CI0kZxDEX65JiB6rsGy5Vi3xHkf9EpDrqZaAprXpUYn1o/p54b1UEVN3SOlPwIyQRAEQRAEce1Ip9OxF2WkcSV2HHGEkq0quDT9ha9tP3YStm0r97u+maCbHG+XDTyCIAiCIIjdCgmuRMfoKXRUuhEIglPtJEvrEhdXixuUwmcjU9Qk+U6EjDNjrGP5lnPeUY7dXpqax24P6CjytBACpml6c6eee7j5f72dsNyzlLaHIAiCIAji2hO8UiMIYsfBOQ8VzrY6UabuYRiGAcdx8Mwzz8C2bQghYFlWqMDuOA4cx/GCQrmfCYIgCIIgiGsP+bjuAlrSlfRqJDUfTgYjVDvlpZgBWnxc4wTpCdJ2qT6enHNIJ1yDGOa7G+RPCSFDNZJh9QT5oyYZ56B69TrjaP6CrssNspQkLU7YMcZY2+tSg2IlKRPlt9rpe0pKqd3H+txT/V6B+NrUsIBUnnZcCLCePWAEQRAEQRA7G/JxJbY1cc1YOectQY2S4qV0MbrTRLqazG77E6eNpEJcVOCpjSBOe5vZp16amespgFyNrCrAkkUxQRAEQRBE7yHBdRfg5sHslY9eU/Pn/6w6P7YICiHRf4NMV6PSv7SUaxwSQnQc65ZzDqm0yxCcdiUKr89MEWJCyqppZprnhfu4eqObQPhqnhtDSxsh2IX53kblqI1OQ4TI79VjUWmD4uJqmm3bbnyOTukTlzDtd7sUQvr328XihSAIgiAI4lpDgitBbDKqtnGjNLWe4N3jdDlbEW8MQzYb/IGXwoMw9a4v/nsZ1S8K+EQQBEEQBBEPElx3AdIR9dyb3cpGzDWT1L6OSOHS1JS1CgtxNU7tcq2GaTgjtXpuYcYgIMGkQDNGb3zBJo5fpuf/qGo/ta7puVGlUkD1o21rHq34wybRssbVaLp9b2fqG5ZnN477Z7t+6/Xo5rut2lAO3iMBPmycXC10/f+6SXdwHl5IQIR0S/edrZM8CjRBEARBEMROgQRXgughcQITxSVO0KpOqKeF4aTtu0YEmRmH3VshREsgKYIgCIIgiN0ICa5EJFH+jFFRbnuRx1VvN6gfvvq1iLpRdev96pVQqGoyw3ohpfSORfnzquPrXruUEhLNvK5R46FqqtWx60YQYoxBJvD/3aicuHHmXlR/OqWdlUCcoFNJ+qxqcl2Nq37tZHJMEARBEMRugNLh7HCklIBoM3RqWpsAk16vnjYwHlEmpN7Q4rKZkkYVBtTFuhDCM0XlnLe/zqA+K0JyT4gxllHEMgd2m4oQVqIEuzgav6gNi66yvaimzFo9UWbXbSr16gS6F07jEPY8RAmulUoFpmkiZZjNOtqYMKtjpI9POwHaT3gwLYIgCIIgiGsFpcMhdgybncplN9BpWh2iO7LZbP0/mzjs7oaMlI533zcyOBVBEARBEMRGQYIrsSXRTTLbmfYKIVoCHMUhSnhzF/3qQn+jtXredXdZfRxtbFB5L6hSl766YSa1nZqOx9L499i3eKMEe98c2qC2dAsCdQzd3LMu7vwO0sDTJgdBEARBEFsFElx3OJ0KdFuNa7GA3o2aqbBr7pkpdUJ2YnAidS7rEZGvBUECrZ5iiMyMCYIgCIK41pCP6w6FMeYtRLvySWxQ1wJqwktIipvgDkUIPh34ggai+Quqmq04Y7DRi/ROtbWub2Mcf1X9OgWamtMgTWKYZjUo6FNYIKnNfIfEazNqPunzUNU2Nu9/3b/XaGmr3bXWTdsd/VvfJ5//sIg/J8J8gDdy/HXNq0twQChK10MQBEEQRDLIx5UgEnKtNIpbDTINJVSCNPCO44Ax1nJsFxooEARBEASxiZDgukNxzRAZY2CbaCocld6llwRFve1U2NK1jm5k3ygfzaQ+pO3OcbFtG5lMBo7jeP0K0zLGSYPSLnKwG7nZxRVK9PNdjWvS8Y5K17OZGttmW3rAr2AtdtgYRKVTCk9RFF5/L54P/R5uJO51BqFaLOj+4bQhQhAEQRBEt5DgukNxg7GQb1py9Lynm0kqldq0xb0rhEQFP9qovkQJ5BvJdoxS7fV3mzzL6rPjCrCu24Lrr0zvJYIgCIIgkkKC6w5F2A44GAyWUAjTfFGbi2Z4vqietpNH+Lw26mnqtRRBup1Pa8y8sm21jdIr3LLoV/0FpVoW9cV2u/p1zWuvog2rvqS63ypnmmYtSCOsfxGiOXQ/B0Wf1T+38/2NyscalH837FgcgrTGMkEC2HpZtbx6/fFzGAeNk/evrvyM6F6crofrhiP658m6rG07Sa0Iwsu54yfRlLVdTaublsd9D0TMp1445RMEQRAEseMgwXUH043WNUor5ThuTshkC0yvP4l7kwxvIY72QlKYUBIkmMQZy27MlYP6px5T6xZCwHEcpFKpln7q54QJWe6xOIJZEqSUMAzDZ3ac1ITcM3MP6ftmElcz7GrqeRea5KC24lxzNxsoSepPUqce0EtPuxM2J5q5Z5tzN8w8eaPTUxEEQRAEsXWgcBpEYrajueVOQPXrXVtbQyaTaXvOtUjpwzlv8ZVNguM4Oy4FTlyCojfvFoQQPgsAdf44jgPHcbwyelmCIAiCIHY+lA5nh+JYdqIAMLE0ku3S4bDWRad3foAZsV5Pp4JO6BxW0uPo/XFz23Yz/4NMbduVVwnT4AohwDmHaZqo1Wqe5tFNcaQKo1GBpACAGbzl3gaZ/obd96TXCNTNVL3zeHJtoVqP15+GmbRpmo1rsJVzgwP/tAtMFRd1LKLmi3sfwq7DbdORQrlnmqm29N/bOOPXrs+bRdTYqP7U7cqq50TNS72eoJQ9QefUIaGXIAiCILYClA6H8CDtaJ1e52gNGlNX4IxDWCRYNWqrbdst9RuG0bJYj/JhDjoWFeHVtm0IIVpMkK81jDEYhkFatl1E0ndX2Ny4FlYHBEEQBEH0HtK47lAcy469YIudoiSBxrW1kfYaV19VbTQzUb6g3ucQGZVz7mnBwvw7w0wWU6kUKpWKZ8rajR9jFD2LCN2hxk4n6jqjtNnuPQjSfrUbO13jqrYnpaOU9AviQfM+yOdS71cSy4Sg+sOORwWvitK4tpaN7tNGaFd7EUDLRbcU6AVJ5pOKHgBK7du1iHZNEARBELuVJBpX2orewWxnTUM7H7bN8HHjnLcsttfX17ecNnKroWuKg+j03kkpIzVr23nOd8puvOZeE+RDSxAEQRDE1oI0rjsQIYTnZ+hqmTo1GfZpY7kW3TYqrU0MrWovUDVSut9qlLZK9zsMSgPkHdP9Dtv1KURLFRUxVmgRmnmHsZeDrjlMW6Zrq4Jyq3rjIJr9a6cFDMpmUq1WkU6n/X6nmjZWbSMuQX6gjPm14Yyp0ZN7Pw+TpJvqhSZdDdIV9d1GEEezGaZ1Vt9BkXNINN9Xrj9wUD9c0/yw647zrIb5JQehRjhuPidO1CkEQRAEQbSBNK7EjqWTYEGdtLGRWqztslnUSzKZTOiYOo7T8Zh0G304KOXORp5HJMMwjA0dZ855i4WAe29dgdb97GpiXe2s45DQShAEQRCbCWlcdxiMMdi2DYN1F5QpSGso4fi/k7wlym2zI73VuBqG4S0wwzQ30b6EWvfaaFz9FYX3PWiMO/I55JoPqBrMOYl/YYTGtRt/Rb+/afQ5QRrXwLq1euKe5zuHsZZ6pPRrIoG6sGGaJvQ9j07zneo5dXslXLmCVNTGibp504klRZQPp26dEXVdLT7lEf6mLRYEPFxzm2SuRWmwN/K3rdlmM+esSpDPLEEQBEEQrSTRuJLgugNxHAcGi442GxdVWJUiOL2OZ45sdLhY1APSKJF12wXDEWjmC3Wt9qSULdF3W5pU2mitPFzodscjrO9hbal99jWlmQp7KYxkRIqiDoX1sLaj8MZQxDc3j+xf4944jtOTwFGqmXOzjdZ52jYQVCPVUF24TR6BOq4JuT6Guol2J/XGwRvzAKLMbLsVXN2cvu64Jg181M38TkKvxjlOsC/3vaNuQLSWJR9bgiAIYndA6XCITae+GOvdYivJQrK5YO4uH2ysdnpctXedu0Qp4wbA2YoBhVzfxZ2oISuXy0in0xvaRlhO4qDNhd2Mu4HgbuIAyVJpEQRBEMRuhQTXHYYaVKcXOVz1ADBqG60ard5pLVRTSP2YZVltI/uGXXc3wZXi0mvtzUYRdJ2qkKGnBOqF6bnqk9qLNC4tQaRCjoeha8iCtIJR/UyWgqV1DONoWuNoKdsJhnpgrHb1dWJCHRiUKaDNsLrj1CN79I6Jug/6/Y57z+LWp5YRQnhj4tfEB7//ovpFEARBEDsdElyJLUmY9kFKiVQqBSklLMuCme4uOA+xO4kyJ+/EVPhaExVdd6ORUsK2bZhm8+eknal/ENtx3DeaoEB0njsBjRNBEASxyyAf1x2Gp6lUUsOEaV+TamVbgjM10FNTtK1H90nUfWcVH1MGf2oTt5xt23XBowN/TyEEDMb916H6tep+q8qxtmMlw1N+JElxo45Ri4ZF8Q1tF9AoToAqtU41NU1SQShcEx/cH308Yve1XVk9HY4a7EfpD+cc4J2lkfF8kwPmezfWDp1o09QIuGodnRB0bpCPahBxNa5hcM6xvLyMwcJAy7lhz1RSdIuUTs5VtaNxxqNdMCwAMLl/zib1VVd9iv2QryxBEASxtSEfV2Jb0Yl2xtXu9Mp0cKuxHbUpndxHwk+nWkdV49przetm+l4ODQ1BOtdGc5yErTTX1fsdtnHY6xgEBEEQBHEtIMF1hxPlm5jUbzHKHy9JXS2aRBGhqQmo0qd9DUirEeUP1y6Kq1r/Ziyew9pyHMfzBw2L3goALESL62luAo4F+Sq3BNHpIJiO2i8hRKzIzmp/go5H+VXH6UfYd958lb3z52ypuwM6mXOqtrXbIEi6VtF9VlyLijhjq2LbtmfarxKktfSE9oA6e+XjqmtxO7n37rlJyrcr040AHOl73bAecYSEkBaAptCt/7sVhHCCIAiCiILCGO4CehWEhegdqrARpCVR/QU3g17PAzWtzE5ityzu3aBBSQgSBNttXhAbDfP+9A07IQSEELAsC5Zl0X0iCIIgtjzk47pDUCNUAn4f1yRIOOH+eRG+n16RML8u5dwwv7cgH1e9F26OTtVHLck1h/mCxdG+dLKQB/wapaB21TLe9xG+u2Hl4tKJFrOdL62vT1Hjz/zl4pqhRkV2ZSG5dGPdL923NyZ61OWOEdrz4j4CCU1+o6wq2pEkanFUfUFmzh357Ko+yVtwX62dFQsQrfXXI1kHvcu6pRuNv/s74qaHUvvcvLc7b1OKIAiCuDaQj+supEXwirFuCVpkmaYJy7JCzVTDcFPUqAsc/8LbHyxKbT+Z+We9rCrwRJkcB9UTlWIiuu3OCDLJ1a9dT/8Tx9yUMdaR6WSU6XFQGzqGYcC27dAxi2sqq5dLImS51M19gwVwzjmq1apnqhooUKn1aKjBxjoJtsQYg+M4vnsaVxjtVCju1NS4HXE2GPRnUjdh1vvXjZls0Lm9MLuNQ1QQKr0/7UyrdTeLoDmSJMBVWL+CCOub+n7S718Tfx+D5ke3ZusEQRAEoUOCK+FDFVqT0Mk5u5EoYS+pD52UEgkCFfcMy7K2xYJUStk23+9G4m7mbBerls2GxqUVd2NtO4yN4zje/1UhVd2oIQiCIIheQqbCOwh1p57J5iJIN+FLEljETYEThF6LGlSlZdESYs7ptuFbrCllpWaO7JqFRi3wPC1BgLltqHlqQDoc71q4onVoZy6t9l03b42oJyrASpRptRAC6XQatm23XhOiTY6jzDCTpO5paVNZxAptlkSZgQalx9HNwMPO9bdRH9uoCL26aa7bb/d56dSEud6+VibGUHr3VK+Ox9OYdWL+HYdug5jpmuOozZmtLuhEaXmDCLNs0E2FVdbW1pDP50PnH+fcExg7MW/Xtb2d0omlRLBW1qHgUARBELucJKbCFJxph+IuGMvl8qa2yznvafqMXqf22GlwzlGr1a51N3qKGzSG2HrEFS5cC4Jevw92OoVCoe14bdcxtW0bjuPAcRzfM07PO0EQBBEXMhXeYei7+plMpuVYu/N9msyYMiNjDFB82pIQ5AumBlEK8ylL4qupnpfEB7NRs9JmcJkov7dm/1QNYHvtd9xgUUkF++a9DdZE1v0yjeBzItoL0uYwHl/LHxrYK0bZsH60O18dAzVQTrvr7WSed6JhjPITDNJe6r7TcZ+ddn0O8kdv5+McVyu3kdpi1ae8l77qccurc6kX19ltrt5e+Z3GrcPtq35O03dW+MoGtRHkc0sQBEHsTrbfti2x5VAXJ71iu2oVtgNRY9trDbfjOLAsq2f1bQY7QcsfpcXa6Osj7RnRC9w5LKUkrSxBEAQBgHxcdxTtFqRh95ojXBvhCjhBiwbd/1TdB2nx1QtIndOsSEsRw8I1RnHSskT5uHrjE5XKB5q2EU2fMim08W3j49rODzeJABHHR67lnAQac3eRyBiDwcLT9kT5repElo3w33TLBvmiqv0JugYOf+5QNcVMZHsBvsS6gO/1xwmfz3pfK5UKcrlcpOYpab/Cjus+wV7ZNmPdrs0kBM933Vc+PLJ3pxrJOFrVXvjVttMeJxGwOtEkdmuREId253e6bujkeoPeoUEWAOFtkMBLEASxlaF0OETPoF3u3YGau7GXRG18bBRqChq1H73YpPOEzwTnZLNZMnHcZfTCNLkbtkvAo25Nl6PeK2SxQxAEsfMgwXWHELUAiKOFiOtP2QvipHwI2/HXexnpW8rCywThnRfix6r+P44/ZtTitReanrjRPJP6NnPOW8ZALeeOq6f1UI8FlUczJ6pPO9i2V62+qEHzoukvV5/H3PC3lWQMfNcVch7nPFLjGnoNcC+lO9P6oDnXMh9j5DSOQh1TXQAA67BHAAAgAElEQVRop41zxy1JdOZuUX1qo96D7TR+3QpS7vlJfYjDiKtFFkLANE3ffeuGJNYJncY16IY4sQGaFg6tc3G7uwIQBEHsVshUeAcRlnqinfCkHu8kDYp7vkBEIBm1C0xLz6Ob36rH2nTHl14lShDW2myJstQhLW1GpP1JVG+P1lVRZry6KbW7+A/KyaunjQEUAU/6vwdvLrbD2pdStpivdpJGptGg1i//4l1K5gvw0im+DYyA69I3ZMI2N3zjzvSAZuEmtEHtteuD2nbQ5gGASAEzSdmgvoU/k+q7KsQcO0CI7FZI2mhNaFKBzr3GKDNpvZ44G3+d0o0LQxz064pzPzZSyNSfY2Y0x9Wd5lFptQiCIIjuIVNhAsDmm4nRDzux1enW92+3QeOVjM14515rM+SdjOM4isaW5j5BEMRWgwTXHYK6Kxw3aqi6+Akzk42Dbpqr1q2bk6pNNNvfWguDJGO4UWkaujXFi1O3VG62er/UhbH3r3JuN2blm6Pt0rV9TdPBMG1hlEZSrb+diWJSU001vQkQ7JeXVKMVZELsmpMG1ZtEgxo0Bt0+A6GB2AKegU7aUsuGzYFOBfRur133RVV9wt35uFFtR9XZq7rimPTq+CyAON+QORfVp+YzEzz26jswzCKAhF2CIIiNgQTXHcZGmpHtFnZCOpQovMVwwkizO512z06SeRHXV9LnV0y0ZauZbXbbH/38nRYMT53XqjYzzjnuWGzF37Iwt5ytMi8JgiB2KuTjukNIsjPf8llG7H6rXwt/wJYWnz6mBHPR0l/4/Fh5uD+X2o7aftSCIMyf0u0PY/X0LmoAlzh49fIIDWJUehzd3zXqmFskwrc3Tt9bfLZUDYIylqoQJqX0xtz1b3XLtvNV9fU5jk+f5ler4qbOUX1ng/oe1r4nBEi/1sonRLbMvWj/0jB4pGmCHtFV03T6Ug2Fp5RySWpF0eniWZ0rUXXo/YkKFrVVUa9PvZZebfqpmxH6mCbRpuraxrhmwkm0lOr3G6Ux7MQPNsgioFfzSrVECAs+FtlHvQhvHdvQVFqN38btEvmZIAhioyEfV6Ln1PNj9nYxs9V/uL3+Qc9BufPYzhq/MAGAcw7TNGFZ1ib3qLeoAjixu1CF6qRRmh3H8QVa07W7Qe/frfBO3mpa9TjEydHc/CxDzyEIgiCiIcF1h5BI6xUSjTSoPkBZPDWKqIsnn9CgLLAY9PqUXXPtXP2Hu5fBR1pTI3QwTl2uK5o+wOqiRjvW0ma4ZrGlrHJMPyvsXgfVFeXbyWKWC2sziBY/6Khr1g652qGgiKxqGV1obbU6iL94jBPxVY9gWy/TtuqWRa2qCQp7Hnrt55fkvsXxdd4Mosy7w+aqXl793Es3gbDxjJOWxT3XNE3Ytu2VjfvsOk7rZltQGdeHdKNNlOP4s+plVX/7jYg3oGpdg55bvVxU/UH9C6sf2m+j6t++FZ4pgiCIrcz2VbMQsdkqi8yNgnPu+4tCCLHj/Mi6ZTtrW3czQXM5KJXRbiOpS8BG0KtnanZ2tqPzUqnUjn7nd4sr2BuGseHjlMRawn2m3T/HcQI3IQiCIHYr5OO6zVF3dVXi5u9sV9Yr02Fkx6id6LB6fBqtAE2bWsaXx5X5y/nM3kSbi4zhfxp4mq6tUAMeaW36/NpCcph6Y6Mc7zy/qXZem2fdp+XT++P2JYa2cSPeKfo1c4RriSTzRwfmULSyuu9ugkWrf3z0wDHKnNH83XhLlOMmonEdTUFHD/pi+Er7+77xQmrUsxllAdA6N/QxiPuMBY9zEp/3KL/xoHOjIk+3a1sdr6jnIY4Wzz0e9Qz2kqBnO4mmtFuCrrOdxlXtZ9wxDbJUCauzXX/jWMEkIeoa1PddfZO29XncLus5giAIFfJx3UXogpP3QxbwA5pkcZS0Dy6dBOEIIsxkdiPNijuhZfESsYDyLWZ73I9eCI1BC/Y4i3SXzbwP6ljqCzqh3RNfvyLMksMWrGGbQypB4+99F6HhDwvgEhhY6hoQ7qfXJImZdZwykSbjEXb7+n3iLFw4FkLg8uXL2Ldvn08jpv4/6F0TRpCA383GTpT5btgmQrfv8E7dTNQ61DJJhbgoFwS9XcMwYNs2DMPwuQ3E7T9jLDBAVpJnLWqeqlr/sPdJu/RbbtmwyOOuqXdU35K4hBAEQWwHyEaQiEW3i5rdAo3B5uNqZjZ6E2MzFnxbwcx1uxPHNYJzjqmpqS2x8dWL9jf6GuL00zVv3Yw5LKXE+fPnvfaS4prh7lTce6D/kdBKEMR2h0yFdwBCiFBzX8aYl2bE+041r03wY9aJVi9IaxHHxzTI5A4IMHPWFp6+9DxRposRl+D2sRMtgS/NTIBJttvfdmaLuqlhXD+pbswTVbO8OObjYajzLbIePTVNxybR/mBhcTQYzTOlck50WgwppeJD6p/DvmvWtW+a6blkrfM//N7yyPvlft+qWXG0Mhvn565Hoq3/m9yPvKltbn4Om7PdmHgGEU/bG06c/qltxX2Hqvc2rI04ms0ws9ZuolXr53HOfblau51vyX5v1Ofe/7yp1gvdzJFe0Ukf9N8DN8q/L1VQwktq3qf2vxUEQRAbCZkKE1uWzQiM1G2agW4ii1LakmtHLyPCbiV2S9qM5ruhM0OgrZDKpddsh/cJBbvbHILSGXVjMdC8b63vl53+riEIYvtCgus2x9uJTeh/px+L21bcesPOSYq6ex+kPdb7kVR4CdJWdDMmYf2KU149Hsd/TdVeh/njRWljkmiX2mmk1HFvt5hy76Uju1/w1tuJp+XSBRvOORCgdQqa5625VLXrU5reCEFDtyQI63OQL1y7fqlm1up9du9pO+EpyfzeKMLmXNj8j9I26nWFvffC2glrV/8uqG09V2uUiad6r4KsTNzPUX6QSe+XbgUihIBhGJ6Z8EZHKG9nLVL/f/j5+j3vxIpILd8rAS+sPvW+qsc68X/X73fz2oP7EtSvXls6EARBJIUEV4LYQiTVGu1ELdNmEiT4u2O6HTVJzYAv8c/pVuBQx7CXwou6GeK2oS+S1XsVtOhX+6P+P05gnGuBYRiwLAum2dufZl+U7V2W/moj7nU3792gc7f6e9ztl/oc6sLsVnuWCILYmZCP6zbHu396uheu7EBH+b+G/KDH2UVlXNvlD0gjE7aDHNYft0yon2gHO+RSylb/yR7tEsfpTxKfWa9/StGW+8cDxqnNjn079DaEpsXs1Oe1Jf1Mo56gsXDbtG07dOEeeL1C8zPW0s+4mgY1OmfQsxGWesnFYDz0mL9fnQu8eioffxt+iwJ/3/1pYlwf1+a5Ruhc8I2JBTATALMhZRqMawFsHBOMCwhZA0MKgOJDyFRttgBkGpwbsJ0iHEeCgyHFU4CUYIaAaxLscBtSMNTT+3BAOM1+aX11kIJkEmA2wDlSjqIh1koz6WipqszQ5yXIRzmKpFYZYdrd3v/++jdipAz3gw56L8W9rigtr16uU5K8o3VtelKi3uMt74wATXWS926S60oytlHvMn+56GjVeqq2dv3Q+6NatMSxBCIIgkji47q7tl53IGEJyrejtoggAMA0zZ4sbOq5DjfnFeeaSm50G+2uJ6wfcfvGag6+/o8Pep+lU/9jkoNJDmFUIbgNwQAJDgkOMAMrq+s4f/YChC3r5R2AiRqkZUFUGb7yxYcgHANW1Ya0JGxhwhaALQSkA3AYXluSce/Paflr9FMCpgBsXv+rQcCR2p92ri2F97eZrK2toVKpbGqbRO8ISpvTbX07Ueutv3vcyM1BfwRBEJ1CpsLbGCmVKKciegc47Pw4O8XtfKzatRGXQL+yBDvZ+gIjjm9vlDYkSZ/btZFU8+DTgkS0tVH+Rd3W5/U14niL9itAk6z3J8n1qias7kKxE7++OAvXXpshxvG99GsTdXM9Xevcmp/UMAwvCqzrS/n9bz+Mz336ftxz7ytgM8AQDa2JaPTLtsBZCgYYrFIFxWIRKysrsCwLJ556GgsXruDDH/4w3vNzP4O9UxMol6p40xt/Cq/5kftQmV3Dn3zkD3HqxFP49fd/ENmcgde97jXIpnMolUo4f/4iZq7OoepU8OY3vxlCCGTzfSiVSjAMA4wxGBxgtsDC3Ay4I1GyqgCAyclJMDMFy7KQSqXqQn4qAwgglUqhVCohnU0BqM8tI21CCAHLspBOp+E4NhzHidw0aedDHVYmn8+3+K1uNM02on0TO9G2+uvfGC2aLzq74ucb1kc3p6tbXn2GDMNApVJBOp1O1Mew93ccbapaR5L5FFQ27P2TZNx9bUUU55y3jSMRq40Q3PNV4ZVMjgmCSAKZCm9jfAnIhX/hlOS+xklfErSY1tN66Gk/OsUfaCNZ8AlAEZoUM9Vu0rvEQf1BdhdQYZsCgYuZAPOsuJsKQLTfWi+ecXUxmGQso+5jmDlb0nuvCl5AfQ77fLEMv4moby4rz027/nCEm2brptU+dDN+n6FLG7M9NE063dQ47rWePvEMbrzxRiwvLyPbn0cmk/Guz2H1+8ScugCQMkxUHRuWdJBKpQDJIRiHBGDyCphksKo2nv7OKdz0wltRKq9AVJaxsM6xcHEOQ9f1Q8xJpPkqyh/5GwwMDmNu7iIOHjwCy5JYWy1icqwP80urGBkdx/zsKvrzJqRTw9ce+g6WV2YxsmcSe/aMobS6imPPP4ZczkQmk8O5Z8/hiSefwNDoMI7feRy2mUWKOXj6scfw3MVZ3H3HbZjYMwjJ0jh98hmcPDONl73sDjiVFXz/sROYmBjC8FAeKWGjKDL49qNP4e47j8Op2uCGwMrKOsZGJ/G9Jx7FncdfiqdPnYFjVfGae18Fbph44PNfwNDoCF5xz90YHBmEgA0DGTg1Ac5qsBmD8X/9HyiWVzAwnIElMjBrNZRzOeT4MqoVDsMwYDtrSLNhpFIZ2LYDAcCQEoYUYFzCYlbdZJqbjXnanAf1/wuA1QBISGSUY9o84OHzKezZibNhEyVIJfHBjCNotkMP9haE+vu3GS4fLkk31nphGux7v2m+ys1z1HeJ/nvQmcY4KpVXsk3p5EJp8/6Hp4QiCGJnkMRUmATXbcxmCq7BggcJri7Wu95bbwtNDamrLTbedh/4K18KKSXE1x6B+MRnAf3+NMqaH/2A95XzgT+GPH85sD12z0tgvOON9TbPXYLzOx8J7Zvx3p8HO7yvXufHPg350PeC6zy4F8Zvvcf7bL/rN5WjvivzrgkAxNcegfOX9wc3LiXMP/uAd2/sD3wY8sKVyGuSUkKeuwTxwT+JdU3iY5+BeOi7aKoSWHN8D+4F/81/22z/Xe/1K/GV28Defh/4K483rulhyMY1ecp/yOZ9+tP3179jrHFN7n3SFrT3vATG236sXs+5S3A++BGtTLMDxm+o9+kzkP/8XV8phkae3UNTYL/+83CsKgzDgHxPvS+ra6soFAr1co3zFn/oDky+5XWYPnceey/MwPnLz4Jx7t1OKSWkDSwsLGDlt38Z6/MXkCsMYewTn0X19BkMDY3iyccexwtffAtMcMgz55FaWoX0NkpkgGCuXJ1r2stYdLl6IbDGrWOaVYHvPcAYwBikFPWR1KuVzfvk2xAKaV82ykvIxtg03xcMwErGxPLEHjjCwf79U5C/9G+Qvv56PPPkIzj21Bz4t/8FM1evYnxiHNwAODMghYQ1MQTz138eZjYPbqZg/dyvqVcLdR6wn34j+A/cDsCGeOhhyI//gzY4jeISMD76fu+Q84E/BpTnSTVUYa+4HbzxjsD5y3B+58OB1w8A/Dd+AfzI/nqdH/s05EOPBJZjB6dg/Na/9T7b7/qNwHJSAvzt98H4gTsA1J8n8fHPhLZvfvSDzWt6/x9BnL+sG9vU27/npTDe8UZwzmGfuQDxwT8OrdN473vgf++FX5P52/+u0W8Zek0AwN/+Y2D3vLS+idDmmlJ//iGvTuf9f6S8I7Q673kpjHe+CQAgzl703Sd3XKIseppsXcG1E6+0IH99faOCBFmC2BlQHtcdDmPMZ+LX6c62aqK5lV78SUyQg3a2XRNqN92KlNJb/PXKBFbF+dhnvIVyUO3qbnkLUf2JqyFJoJlUhRqtMUjo16f+XzVBTTCGHcxN1hBM4iJ1QUDTVvrNIWPUp8wX/zmtZpXB97VVMFFhrFEi5iMXNOKMMZgN00f3eCaTgRSybnLdkN32jI6BCYY9I2OwT16EXa2hZtkwDQPr66vIptOwLAfSriFtr+H0Ew/jtT/6JpSqFQwNDsJ2gOtvvAGONMGZA9OyUbvhEMovPFZfvK+sofD0aQjhABKoVMowDQNVy4LBGHD7zWCjw7h47jQOVhjMmUU4jo1MJotqtQrbdlAsFsEHC5ieHMbBg/sxfWEaL5xfR6VSBecGqrVqw/xXIp1K4VJ/Bk8sz+Cuu+7AcNGBePpZmKaJas3GerGIfF8OKc7BDAMXj+0HZxzDo8Mwv3cC5fl5FPL9mJlbwNjoMFKpFGqWA2tsGMvjw5ifm8MQt3BovoZKtYZ0sYIU40hxBmFLrK+s47FvPIpxJwPDzuLK2edgnT6JfH8/aqUiLNtBpVJBKpWGjQrOPfQ1TN14M9KpPoxa9WjP3OC+vRUJCd7QogrBIR3Tm4O6iafvo5T1s33zKHjuJXLriDKFRbDGUaf+CHf2rpVofU69vYjGu9Q1NZUy0asivM0EG6VJtbz191nEsYjP6vfuuLtWFS5JzZ/bldfdONq50oS9C/3XEv6+bGdZpB6PctlwfYdbLMM62AQnCGLrQhrXbYgruKqfw6LmRuGViRmBuOX8DdK4tmsXaP9jJKX0tC1CiMhotkkIGlf73b8JMIbUn30g4IzgH2K9/5FRIGMtDNr3Vy+v+oDGNSOUsh4dthdEXXNXaJo1yVrnpTcWStmWCMg+gZcFRuPUtfuB1gIBpsKuf2k7TYhqdimEtlHDRHORqVhcCCGQzxYwNzOH9aUVlMtlfOIv/xI3H3s+br/tNswur6FWWsMf/tffxd13Hsfxe96A5aUZ3HD0EOYuPYX9R1+AKutHaa2ET/zZf8cP33sL9h29F/JP/zsmvncFK887gstS4srFk7jnFT+AtdUiODcxsmcApYqF9fUy8tkULpybxsieSSysLGNsMA9bMhgmUFxZxL5D1+HUqVPYN3UIswvzOHzoAGrVKs499xy+9M/fwdt+8k2wqkXkM1kUazWY2Sz+4f4H8Oaf/Gn8/V//L/zQa38IDmMo5HLo6zPx9FOP4aYX3olKuYhCfw412wI3UlhYWEWtWgGYjWw6h9mFRRzYO458YQinnn4CTzz5NF70kpdACIlCvg9PfP9R3P3qV2B1ZQUMHMNPnUetkIU4dhDlso03f+5TOHY4jV9+z09hLXsUX7z/83j1D74cY2NjGBnai5m5deTzBfyH//DLePNrX4WXv/ZeDE2MYfbZczCG9+Mr//h5/MzPvg0HDk5BGAzFYhHr6+tYmZtDNtOHP/gfH8HrX/8G3HbXrcjlcnWNutEwRbZtAIAjbW1+KibHPVqct9Nk6c9GL9PNhLlEhJkyh5kxd9KfpCbVLe/xDt0cdKyf/XUAfk10e8G1vcY17vU1XSn8eZyDNK7xfp/CTc2jXGrUvoedr/fb/V3TXXZIcCWIrQuZCu8CbNv2/Xh1awobax5ogqqb/qap+fMHRvItZiKE2paUNz5tV2eCq14urO+BZfW2o8yjJG8ruLatH3Vz7bhpWoLOj9Nm2AKh23eALsiqaVE6XdB1h7ZIEsqilwf3pz5X9Z36Zl8Nw/DStAABQm7AEMYxY2vxjVV9bqWEwyQgJM6cPIUjN9wIIYQXQEjYErZtI5PJQFQ4HvzKl7F/7yT6sxmcOXMG0i7j8NFjKFkO+nIZrJfWsbS8jD/40Ifwn37r/VhdXsLpJ76L6bUqDoyN4O6XvwpWtoTh/ikU/vSTqC3MgK8UkSmWwNeL4OUazLKFK3c8H6cvn8Xo8DDmFldw883Px+zVC8hmDNhODoIBuZQFg2eRyo3AMjNwKhYGBgtYL68hX8ijtF6CsEsYGdmLi+dPYGxsP6YvXMbefZN44Atfxcte+nxMTk5hbmYWI+N7YQtACAfpdAZCCKytzWJq8igq1VWYRhrf//7juP7oIYwMDWJxaRmDo5OwikuYX1zE/gMHMT+/gP5CH2Zn5jA0OITVtTUsLy/g2dMncNNNN2FifD+y2SykBEyDw3EYvvu9R3FgcRXHSjacQh9KXALpLIyJDOZWVpGdPAh7YBB7pybxreeN4djzrsdjj5/H7/3e72FlZQU3v+gWjAwX8Cu/9IsorZexuLiKPZMTYKk0uGngwvlnMT4yhcrqOkoyhT//8O/jV3/1V8Gyg0iZK7BqHP19ozBNG2fOnMH1192IZ545idte9mJwI4X8QAHFchl9g33e/OGN9ECSMwgGcBkuzMTZLAtDFZ6CciF3QyfvI79Apvdn4yL4Rgld3bzzXMGV/+kHQi2qWt6tAb+bQQJnyyZ3ZPeSmxzHu241t3K7NqPaao1Q7LbvBa502wmwmNE3jsn0mCCuDSS47gJ2i+Dq9ksPPkSCKwmuUT1S2+RQFrUhgmv9O/8i6FoIrlwXXCVDmhuYPnce66tFjI2NYX19HcViEV/6wpdw8uRJ/MIv/AJKJQcnTj6Nl7/sTmRzaaysrCBnSEhhgKezyPRlUFor4eyZc3jetx5Hfy4Ho1bBwqmTGOofBJaWsH75CgbAkS7VIITAqlXDksExcd0hmKODKOfTKBsmhib2YWn+KtbXFuBIhmw2j+WFBUztG8fySgXZXA6VtSJq9ipGRgfx4D89gte+/tWwLIlvfvNh3PvqH0K+kMHs5TnUnDVkc3mk0zmkMzmk0mmcOvEUps/O4sabb8TB/fuxuLiIz37uc3j7v/pxFEvrWFpag0QZExNHUKlVMDo6glKxjGJpHflcFldnZjEyvg9zly7AEcDC0iL6+/vxvKMHUSyuw7Et9A+PweApWJaA4wg8+v2HcdddL8OlS5cxOjqMpcUVrKysIJtLwVwrIp8qYFAIVNeW0Vd1YFRspMslsJoDJ8UhhgcghwcgMjmcmL2KF7zsDjjpLGbnZmEYApOTY7j42jvx1re+HZ/8u0/jXT/7bvzRH38Yg4UhvPud78TNt7wQN1x/PR555BEsLi/jN37zvXjyycdQGMhjeHwIBw8chpQMp08/hy997iv4V//6JzC2dxKWsJEZ7Ee5XMaBAweQzWfrc5O5gqvyVCQQWGK/VxOcE5ftJLiGvdOvteDaatFDgqv6OxVm8UTaWYK4NpDgusNxzWF8wlxE4JO4dbaFacnthfaS14VDXwOdCa6B5WVrlEFfvxSBzCvbgeDarDgiFYFgLYJrOxMqvd9AG+G9iwVmHGLn+AwxM4sjuG4u/nvLZKtJr3csQuOqCsCcczApmpsxehRo0Xq9cXzJBJrmf1JKTJ85C8uycNNNN8FxHJw5eRZPPP44JsbGsXd8Euvr6xgcHMTc3BwunJvGkSNHUCgUkP3EZ5DJZWFaNZimAXu9iJXnzuLq5Rm84OAhyHIFvFqFXF2DYTngxTIkgFIuhaptIz0xinNzszD3DCO1dwLL1RqMTBZ9aY7+fB65vj4Ix0aqr4C//9Tn8Pof/kE4to18oQ/z8wsYyA8DpkC5XMXXv/4N/OArX4VMzkDVKuGRbz+KO+58JRynBCPlAKginRmBUxHI5VMAT2NxaQGjY3swP7+MkaECnnriJPoH8xgqDGKtWKqnrimvI5thmL64iJtvPQYh02AQ6OvLYnV1FaaZQrm0DseRqDkcEyODqNk2zp49h0cf/T5+5L77MDRUgMkZFhamYVsCnKcxUBiCaZool8vo68sjnU3BqTlYWVpAX18a5UoVn/zk/Xjr298GR9Tw93/zWbzlx9+IdNZBqlZDZWEVOQtw5peQKtVQWVjEkFMP8LQMCZsBGOoH0mmwkSFk+nNYWl9HanIvlhYXUKwUceTYDajZAvPzc/jq4UH8wwMP4c/+/MNYXp6Hk07hyOHrsbZWxOc//wUcGDmIUnUdL7v7DliiCiOdw6OPPor9+/fj+huPYHBkGGYqBRgcQtTntmEYEMLG+vo6BgYGAp+FoOciai6HbUpFPfvqMX1z0/0c1p/4Jrx6Hc3nuL1Zane4Y92tYB9kKhxWTzs3HyBYcPXefZHO9r0J8hRWb/2e+DdQGTNCz9IJElxd9HGKHp/2bemb53HmJEEQ8SDBdYezmwVXV4gI1pi1LqBIcG3PtRBcN/ZHf+ME10qlgkwm0xPB1bIscNPwzlleXsZAKosTJ05gYGCg7v+4XMa++x9Ewa77aYulFZx6/AkcmJwEX17D/NwcDg0Og9k2mBDgQkCYJoSUYKODWFxZxcj4BB67eA7XXXcQa6aFXGYIw0f24dEnnsbY1CGUywvgMDA+dRgPfu1B3HP3y1FeXwOkRG5wCJ/4q7/Gu971c3AcgSyv4uSZ85iaHAXsLNbKi7g6cxlHD9+A5eIqDhw8gFqlisrqPOaWyth3+AbY1jJq1SKy6T5kzAwuX7qCif1juHppGo/9y2m8/BV3YWFpFiOjw8hk+5HJFHDhucexd2IvlpfWMbe4CjOTw779+7Awcw6lsomRiUFMTh7E2tI8DIOhVF5DJt2HxYU5DA4OI50bgCEqqFg1rK+XkMmk8YUHHsB9b3g9slkT+YFJPHv6NK5euYqbbnoBBgbzsKwaOOeoWBUUcv2olou4NP0cMoVJVKpLSJtZXL60iP17J3Dd0XGsrdawtrqAsfG9WC1Z6OsfRGltEeVyGZxz5PMmzKUazp06B3tuFoP9A9ify0EKC2ytCFmxwBiDaTkQmRQM04TIpCH7s1hdL+NKrYxDBw+h2t+HzMAgSo6N75w4gcp6GcOjg9j3gV/G+emzuOHwMRQKBRSLRTCnCks4ePrEM3jlq16Fj/zJR/GOd7wD2WwWvD8Fxhj27CwNtbIAACAASURBVNkT+CwEPRdRc1l/v8UxHd7pgmsmk4Zl2ZF5V+Mgz12q/+fQVNt6SHANpteCa1D9pJkliN6QRHA13ve+921gV3qH4zjvu9Z92Cq4P/a+RTIAsOZf0tepaZqRiwMpJRg4AOb9q9P8PugvHK+ElGiJpKnDme9a6/9njWuOMqnS/pio/5Ipf4zVq2r9FQs4XzKvnPjsgwBjMO57tdeeOpaqX6K/T8qPNZivBal2VQaPKGftb3TQYk0ldKEY2GZjwFuGhzXuRSPCbeP6o9rd2EWk9P+5N5YxMOU+15upl1GbbPaf+6+DSZgps36iaMxV975JWb9vQgAs1ViEO5BwIARDZXmhrsErDEOy+llOzQZEFRwcp585i9/8T+/HzcdeBLtWxXNPnsSL/uafMPbpr6D/e0/BnL4CPjsPY62IkdERGELA2DeJ7P69KE+MoXbDDbCPHoR1yzGsX3cQxUNTKO0dwchtN2F5MI2B6/dimdewXKmi1peBkc1idX0d2WwK45P7sbgwC24wPP30Cbzg5hegMDiIE6dOgTOB6w4dwerKIgYHs7gyu4QDe/ehuL6Kb37ja7jhhusxPrUPJ0+fw/VHDkIKB8IBHvjyQzh+/DhWF+dw6eIsiqUannziaaytrMBggC05+geG8Mj3HsXRw/swPj6ONAeWr5xFijswTaBYrOHsqUdh1aoYGhxGvi+Fp06cw4tvfxEGC/2YuXAO6WwG+UIB62tFZHP9SKVTyPUXkM3mcf7cJQyP7oFTWcf4/kPI5YcwPrUf83OzyA0M49mTz6C/P48Hv/pVHH3eUQyPjMG2KjCzGaTSfZhbWME3vvVdlNbXkDOBwuAwRianIOwS+vpHkBsYwPLcPDL9I/j2d74LQ1oYHhtFca2EQq4PvC+LKmcY2jeF/be9GOVCDmtj/cgeO4C5gRTSL74FX7h0Abnbng/7wDhWD+5HzRRYFsC5C9PIg6O2vIw9K2swLl1F/5kLOLZawkHOsH9oCENnp3FwvYLc089C3H4rPvj+/4JMfgRpbmNizzD+4MN/gf5CAcePHwfnDKVSBXbVxsUL08ilsxCOwOzcPPL5Qn1Oqs+AFI33ceOPac9UwIvH3ShUidq48j9r4Zt88RDe89z6Hmn/PlHbb9eXoJzZ7jU4Tnt/3zgCDxsaABsaiOxrXYhUfrcaeZnrLyTt981XAbzfzsaWQ/NLN+eSr3Bz46DzV7Pehnot/s2Mlve38seYHuQpeL3BueG9k4NWIFI7Jew3ljWHIPD3SQjhKRLc/+sWYSTgEkR7DMP4z7HLkuC6/XBfjJE/jh3Uubi4iGw2G3jc50/bZjHSLZH1BBzyfiSS1NfD7Vf5+EmwwYKX11TH1Y5H+Zu29JEF/rf1nBhdbSdABp4TVY/e1YhridI+J5lH3Qm16jntF8bhC17Z8l/GGNbX12EIC+eeO42RoQHMXJnHQKEfpfU1LC0s4Or0NC5fOI0UNzA8OgpupADbwbNPPYOLT5zF7MUZ/NRb34E/+qM/RsGxMPW7H8HBv/sSjIUlOONDEMdvRPnoCCqHBrE0lMJK3sDZ6gqGDo+jmuVw8ik4zIHgDorrqzC4gGOVYDKJcqWE2ZmrGNszBoenMXXk+fjbv/3fuOvue5DK5HBlZgZj4+MoVSsolWo4ev1BDA4NwxYCg4U+DA0NYGBwAF/+8j/i6NFjGBwYwMWL08jnMzh641FUaxZqNYH19TLS6TTW19eQTmdx6NB1OPH00zh48BDy/UN48skn8fznPQ+je0aRymSwd3IKz546g5E9Yzh85CjWi2Xk+gpwYKCwZz+yfQWsrqzj8JGjGBgaRTabgqytIZOS4LAgnRosq4IHPv8l7J2awsPfeRiF/jyGhwfRl8tCCBtnz5zF5cvnMTyYxujkHuSyfchkUshk87BtC/lsFufPT6NqSbz4tltRKpVhMKCvL4/zZ8/jySefwOt++LUYGt2DwcEBCGFhau8YzFQKxdIy+vtHsTh3FYPDwzhwYAqjo0NgzMba2jIyOQO5gXEszC2gkM9hfmEWo3uGsVYsor+vD2srq+gfHIKZziLdl8YXH/wGXnD8DqxZa8iM74G1ZxxPrS2i79gh7HnZS/GUqCF9/EXA868D6+/D6nPnMXj2MtInz0PWqkifv4RXFEbwwMwMfujeu5HOSLzm9a/FxOQERkb6kUoDF86extTEOIorJawuFpFiBuZm5lCx6umJAAaDmwA4GLN9go+EAW0Lq/koRDybcZ5x/X3R2bPeuhHWieAap90k1xl2flBf49bRLKe/y5K954LP08/tleAadWL8vrKACPHB5Vh9wyVmdyIvq83vnftd0DxW/0h4JYhwkgiuZCq8DdEDMwURJ1hTr+99lJlklOCSZKHSEoVVQTdZDRIYm437NY2+HxYZHrq/HVFCl1qmnQCnys4cwekmGGOhMnYcARGIMBMOMH0N6ttGkGQexVsMqM9KElM3PSCYoxxp9kNKWdcnNITYfGEYUjpgTEJIG6aRhWlXYDk2HCOLpfkFzExfwhc/dT9e8/ofBecc6ZqFyQ//FYwnTqKcNfFcnmHg6BH0D2RhgCNtMhTLAuVKCVP79wMcsCwJg0msLS9irVLBQGEEX/3qQ6hWy3jl3Xcg1zcAI5XH5auzgCOwZ3wY8/PzGB0Zg2EaAAQKhTzm564i09ePFMuiWl1G38AomJnG3OXzMIw0xsZGcOnSZRhGCoV8AelMCqk0Q6Um8YV/+BLecN8b8PQzj+PJJ07iVa9+BVZWVjA0MIjBQgGPPf4k/uXJE7j7rrswPDyMyalxLK8s4ur587ju6DGk8xlY1SqcWhlCCuQKAzB5FnOzM8hm0lhYWkJfvg9S2Kiul7D34F6kwbC4MId0XxbzC2UMj47is5+5H/vHJzG6Zwh7900CjAOSYXltGROj/bCNLKqrS8j1pfHw905jYXkZ977iOKzyKvL9OfSP7MXK8gpMbkNIhmrFwulTp/CiF70ACzMXwI0cyhULNx47irOXljE6OgJuCEjLwdr6KpjBkMvnUFqxMH3xEo497wjM7DCWFxcxNjEOM5fG9Jmz2Du1H6XVWXBUYMk8/uaTn8J9r3sN7JqD8UNHIErzsATH+loZQyOjYMLC/Mws9kxNwYFEn8nw0NcfwS23vhCQAqOWA5w8i9TFWThT41g/OAFjagRVqwq85x1gLAfD5ABs2FZ9znKDoVKpQBocWTOF4vIq/uD3/xve9X/+PKanp3HrrbfiO996BGfPnsVb3vIWPPnkk3jJy45jeHjY29i0DdH2N8g1sY9LXWPpdLjAD0/HowZZC3t/xHnXJxVOAbS69CjHw8yvhRAQH/s0AMB455siygebRAPNd5V6feHCU7g5sGu2qwe+irqGYKLmgZZWL/KeRKfVca9TD6ank8g9KeK2R1mo1f3KRctvsX6OYRgdznmC2DmQj+sOx7bt0AAQLu6LONAkU58eMf1jEwVRiuFTGnqqwT2ByhcRNqx8m5d+nN3OyDbUawm4Ds45HMdpq1XtNmCHV48m1Krogn2Q6Zv32emNv1KvFgHdLiKTBIkJqs8QFiQ4BDgk4768rVJKmGCwISE4YEgGsIYvmzTBU1kIqwYTEqbJwVIZVItlSMFgMAeXZ9Yxc+kc+jMWOBvG5dOnYGQZbvi7h9A3Ow9++jzWUgy1IxOwDkxhaO9hGKks7FoRphQ4++xTODB1BMsW0J/PIGUXsbhawdXLl3Ho4AFYDmCYBr75rW/j5XffjeWlFTAGTEyOY3l5GWkT4IzDNFNYXF7E6Mhe1GwLZkbCshykzBQKfX2YWZyFtHJIp9aQzxaQHR7F6vI88mYGKSONS4urmBjpw+paCY6TwTOnnsAtN92AvlQWZ86fx+DgAAaG+pHJj6BUWoOoVTE3O4OvPPjP+Ol3/BswSKQNjvViFRI2AIbBfBpgEmtra+Cc4YnHTyOVTuOOu+6EaRVRERIVR2BpZgYT+6fAhMDqcl04FoyhVCpDSolvfvv7uOeVL0cqZaBcWYfJsoCRx9LiVUxODGB+dgUzV6ZRrtVw7sxZTO4dx223vwgrq8voz/Ujm+sHMwxkzCzm5mexvDKPQ4cOwK6tolJiGBzZCwEB2y7DNLM4f+Esjt54AzgDLl04j0J/H8DSeOShb+LFd96A1YUVVKvL2Dd1ALm+w6ix+pzJZRhOPf0k9u4/DMEyMIwsmOBIFThWludgWBKnTk2jf7APo4UM9owfxIXLV3D4uiMory/j4YefxC0vvgXDQ/343re+ifzgHuwdHMbyw9/DdTbALRurhSz6bjgCTIxh2ZDIF/ogf+HXsHTpKRTnv489UyZGJ2/HMyeew77DR/GNbz2Cu17yMsyXV8AtG47lQNgGqqUi+voN2Kk+rM/OIZPPYmByFEcnJiDNDHg+D6tcQiotUFw1UK4uYGRPHqaRgRStvoqW6X8WDekXOMJpPouc84ANt2SRg8OF3N68o9XzOtEgu8GZUn/+Ia8O97o7sqCJfLfGH8tk9YTjbibUhfr2uaz1vsWJocCY9M2TJJkXJGsvmNc3LIN/f4Pa7GTDV42M3Gt/bILYSpDgusPZ6YKrLphtZcHVrVsPGhXULxJcg3+89WAucQXNlrq7EFyllEjBiRRcV1dX0d/wO+MyBXhaV4GsaWB1ZQWl1RIe+PT/xvHjx5FO9eHZZ0/jpucdQPrjX0LGEZh/6nHsQRbGwipSS0sQfWksZwF5ZB9yh65DKpfDdx75HsrVGu666+WwKlVUq1V8/Z8fRL4whptvPIxsXw42S0HUirDtGsqlIkZHJ2A7DrK5PqTSafzTP30VF6enceDgPrzqVa/GpenzGBkZxblz57Fv/yTWViuYvnQRLzn+IgghkUmlUSqVkC8UUFqroT/PYNUspHN9qFTK4CyDUqmKz93/9/iJn7gPq6vrGBnuQ7Fs4pvfegR33nELhgeHsLK6ikw2i5XlFYxPTIAZJqo1C2tL8zg3fQkL83N4/o034AtffhA/87PvhGGk8Jcf/xv82I/9GAYHByAhsDh/BZlsHvd/9gHc+6q70D80hHy+D8WFWeT69+DqzAwuX7mMF992G+xaBZZlwTRTWFlZw/79U7h0aRqGwbE0NwPJsjhyZB+q5RUURqawsrSAXH8BZQsorq5goL8PpsGRy2axulbE0vISCoU+VMpVcG5gZGQE1SpQqxUxMGBiaXEWZmYY+b7+xuR1cPLUszj2/JtgptJYWVxEcXketkzh85//Mn76rT+BamUB01fPYWrkIMw0Q8YEnEoFpy4uYWR4EIcP7Yc0s/inh76Fe1/9Clx87hl86aHH8ea3vAncqaFYquLy1Rnc/MKbkcuYuHrpCu5/4HP4qZ9+Gy5NT2Pf1BisqoNMJgfLtjH77BmMlmsYhwE2Mw9hWcD4KCxZxBq3IcGR3zOJcspCNpuG1c+xMD+H8UPH0DcwglrVwczcEob/71/E2moVNauE4YkxVEtFpLNplO0KHnvkKdx66wshhI1Pf+pTeOObfgTPnpjBD7z6OFJD/ai/mThgRvu8MpDgGsRWFVyjryX+74k/AFP0ea4WWu3bbhFcVVzNPQmuxE6EBNcdjLrIV++dLjjFER7csqpwGPUDdy0E127y08YVWNpXFC24Oj/3WwAAU8vjmkSDqJ7T7kc5anyCouaG1tfYsOj2HdArjauvjhBz6qixCTMrjjrPDawhpcTFs6dx+Mj1YEYKknEYrBkIzbIspFK5/5+99w7y68ruOz8v51/uX0d0QDcajUCAxHAIEuCQEzQz0shjjeWRZVuyZGvKqw121ebadW3JJdWuXFuu2i2XVeVQGnk1yTOUJpCUNMM8jABIAkQkQAQCjUbn7l9OL+8fzQa6Gx0BSBrR+FZ19e/33n3nnnff+91zT7jnIMsSfsuD2MdtioyOjqLqIbgRFy9eZnjnbkSvifmNp1HmS0jT8zA3h1KuA9A0VWqawg3fo/vAdiRLx0lmqNRjTn8wxqFH9jM6epV8NosiS1y5fJWx6zfI5pJIuk1P1sHzQ06cu8SOwW66OzsxdI1avYpp2UxPz3Pp8hU+8YmHKZdKiJKArms4lk2z2eL06TMcfvxRxsYmSGczJFIOIgv36YcBcSCBECBLCq7XoFmro2oa1YbLn37/aQ4e2MMjjz2C53oUpi9h2L3MFhu0dyRQYzh55ixDw7tJ2RpRHOMGEbppgd8kFiQ0TWV2coLR8Sk6OtuwTAvdNKnVa6iqgqYpeK0QWVI4deo07Z15+vr6qZSKSLHH6bNX2D40xAeXLvLEk08yPnaVzs5ORFFkdnoKy7Jw3RbJZIKGB5pp06rXkOUYXRGplktk8524sUCr1sBQFQpz8yRSCVRF58KFc2RzSSzLplH3eP65F/mHv/n3CLyQoAXFQoVsu42qKADIskKj0QJRQhBlRMrEsY8QpynU5jlx7DgP7dtHV08Xo2MTKJrMhdOnGBnewWtvHONThz+JLMfUmi4dnX2oski1Msu3/vR5fvmrX6UjkyAWNcZGR5EVEcu2URWJKIiI4phqrUaqrQ1JEIiCkKA+jySblKtNOnu7cBstfvT/fZMvPHYYb2qWtGmhaRrR3DyKJBLX6kgN96PfpkBoa/h+iJhLEUkqQQytpIXa0wmOhfLf/hq1SgkkExGB6clxbNMiFlroSp6mO4+WTqOqKtlsBkGXMAxj2e9IlmVgwQC7MmndWr/j9bLHLuAvr1brUj6Wft7qvHkniqv6R/8KuGWA3KziujXlZuW2mfVDq5cmh1yeFXp9JW85vVtGyoVtFRvP1St52+p9bVVxvb3v2wmsllF/OQvx2ufuEe4rtPfxccD9rMIfY2w2Eca6b8BKReO2LH+bvW69PtZLHLEBhFU/bhn3bCJfdi8rPAaCQPjsKwtZfj/KKnw3/a9cHK3eaC1ubj+wLr17ZQra0nuxOZIrveSr7e/dkK0NfiOLCMMQTdOQhBjDtIgRQBAQiKnVahSLRcbGxqjNlPlnX/tt9g/vYn7yMl7Z5dKZ8xhKCymSyWg27j/7HTqffhn99HmEQhnPNrnoNkh+/rN8f+wq/T/3OAVdobM/i5p2cHID3LgxScK26OnK06zVsE0DWRKolEqIqoYqQzah056zUJI5/DDCFH2OvXuWjo4uTr53GgQXx3YwTJNcrh3btnn1pz+lo6Od+fl5ECXsRJKjR48x0NdPq9ngg4sf0NXVA2FAFMcgCPzZsy9gOxLZbA+aoSyUdbENRCFClQUOPPwIniARIWDIDpIqkM0miPyQwtwMH1y+xutHjrF3/24My6BZrxB6DWTV4o0jx+ju3oZhWrTnczQbNZLJBGIsEQchmqqiqzpn37+MZWoM7xhAiAUatSZvvn6Unv5Bjp14m0OHHqNSKpG0Ldra85TLZRBAlCU03SCRSlNvuri1BrVqlemJGxiKgiAJmIaF58fMT40jEuM4Np7v8d6ps/T29EIcks/nCYMIJ+HQ3p7H0hMYpsGps2d5/qWX2Dk4QBC6NOoN/FgkCHzCoIUsxritFobZzqXL1+nqGqSrI40s1dEUjRgZ12uRTqZ49+13eOyJT9Pe04dipSjOFjj93hu05RIQGCiyxGB/N7XCBE0v5sjrrzDU340gCGipFIoAhelJPrhwFjVyCeszVGc/RBSazM/Okm/LUasXkCSD/QcP8sqJE9BmUbA00vv2Iu/opd7dRzg8QG2wm3JfDr+/kzDfjty7DVkQacYxsdsiXamhn/oA7do48itHid85zfRrr9AzU8J7+ACSLJLI2IiyhW4riJ5PYXqSZnWOaqVBYXqWaqHE/PQMFy5cgDAik0qjiBJBfEvxWTQgrf5b32iy+stftG9qbt7k9RsheualhWu+/NmbY7KoLN/p3Lc2lo+tKEo3+1uN7lr8bKbLWzRvKa7iitJioiiuw//anvLbr1lhANmYvS03FjYSfmsvHe4ZFqMVFp0aS42xW4liuo/7+OvE/azCH1MsTkiLQmN5CncBlnxf63o+aivc/C+sOrmtJriEFX/rY/Otbwt7Xkcxuy2N/XocrBdOKsasXwJnKaH1pU/87CvA7YrrVrB0vNdaNKzKwgbDvPQdWVxZ3BzrLXgM4jhGluXVk0StwcKqi4kteFzvtt1KK74oioSNkPnZApZlQbxQ4snUZIK6Sr1VIYpiWg2f4nyJ6ZlJpq9Mo4YwN3ODVKqTJz79JLEMhp6mEcZ0D/aRbLZI/u6/I/2Hf4KuqQSD3RyVXDJPPsrrly6TGR5EEH0e2LWDUuUKmiiR7OlG1nNEQYSlyYyPjxEDP37uBYhFRq+PYzopnn/hRdJteYaHB6nVK7S3dUIc0dGZ48jRt9j3wF6GhnfQ0dmJJBvouoUghlSrVfq39eLYDulsGttOELRapFIOpmHx7vG3OfToIwslIySRZr2Ooplc/uAimaSBY2h4XgvVMGg2A2RFp39wgGq1jmPoBM0KfqOJLLlMTVbJZjqQTZ16rcmXvvB5HEOm2Wjxvad+RE//DgRCWo0qmizywfn3mSk32LZtG5qmMDU3Q7VWZ/T6OMlUjraMTbPlk8rmsS2RRr3Bzp0jyFLAA3v24Hs1MpkEkihTrTaxEylUGeIoQpZkRq9dRxJljhw9wo4dw3R0tGHYKoEPlcI8siZjWA6KZuB6Pk23Tl/vdprNIulUgobrolsJWp6PpcqYCYtSYQZZ0ajUWuw/cIBvfPN7pDPtGJJHIpXnm9/+Ew584kHcSGB6YoxWq0kUNLHNJGM35tBNDcO2EcKYfC6FaSskM3nGRq+jKwKZtk5OnrnA0Mg+FFMj19aGF/kgqqRTaQrzRS5fusTAUC/X3z9J5NXx3ToSId29/chiTLajF83Ko9gqjVYZr9ZAVQXi0CdhW1z6cJT9+/Zz5K23yGQyXLhwFk1VOX78OCO7d/HOybP07NpJYCr4SZ3JoIkx1EdzWzutwQGEfJLaTIHE9SmyYwW8WhVtchrhvdPEe/cRBy7TkzdwMu2k23I0PQ9ZEqlXK9QKRZ76xrcY6u9HQefG2ATF+Xlq80UkBCzTQooliCEmRpJliBaMR8QRCB+VYhNEFjLLbt4wutlEdVvBZjybixFQN+X1RvP6Errxs68gCALSL31uTU/vahE9SxXK1bB6/xvL6lu8L5Tggfim+LjFBwiC+NFx4aPntJy2cPM5LmYoXo3PtcvqLb8uvsnvUt4WZfrKEjfLSsyJC40+YvXmXd98TkvWU4snVz5HQRDWHLpba60Vw7zKmG7WGLERFteES9eBMSsyG8cQheHCeXGT6437uI+/AtxXXD/GWCoI79Rjtlq45F/3xLWs/3UU161499ZXalYcuAvFNbpHiuvmG99h07vwuAqCQLVaXbNc0nrXrc3Q3WMzimscRsRRhCgIiCqIsogiK4CEWw+RJaiWixSnC5TmyviNGCFQeO/IMfbstCnMTdLVvo/AncIxNLKJNC2vhHD9Btnf+Tfof/QjmmIL9/ADjNsCoqPQ052nWi5y6eJFxq6OMdCXIvZ9Ek4SI9VOLKXwmlXKpRKpZJIojslksgxuHyAOfN56600ee+xR+nt7GBzopV4rU5ieYXq+SK69nUgQGNmxnWQmg6SqCMS8fextLNvAskxkRSWdSiCrMhEiZ0+dRddUMvk0M9Nz9Pb1YJgGUSxiWQkkUWS+MI9lpRgaHmR2vkIkCASBgGOZlObHUfBotHxKxSrJZA43Ejh97hyn3jvPrpERFE1FUxQEMYIoJAoizp8/z/b+AQxdYnBwEFFWkFSDvp4eLEPl6Ftv8sAD+zF0nb7eXqIooFZrcGNsgs6ODjzXw/UiXC/iO//5ezx04CFiQcRxkkQIWJbOs8/8OZpicebsaUzTQhRFDMNE01Ty7TniOMJ1XRLpFFEUoVsOUQSvv/4mnd2dpFJpZHkhA2ij3sJ2bERBRFM1ZufmCcOIwPORFI19+/cTRRHvHX+XbDrB4NAIftjgoQP78FoC9XqZl158ma6uXj68eo1iuUzDdWnv7CKVzBALLmHokXZyRJHIqZOn6endhmXr7N69C01T8H2fdCpJtVbGMAxE0UHTbdrae0hn86RSSWTDJt8zyLlL18m2d2PYSVAs/BiQUmTa+pA0iVJxHllRcH2PHcMjpNNppqenSGfSdLalUDWDN44eY3jPXoqFOYhCcm15KqUaiWQSBBk/gJ/+9KekezuomCZvlcbpObAP4eo41umLyFGIe/Ea1559gX/yH/4jX/7Sp4kCH0NTOfH2SdLJDO25djo6uujo7WdqYpK5yVFmJ67R2T2E6wZMT81Sb9TxgwBJ0gAJRIiFmFiMb3q2bv3e7yyi517Lua2E7d5UHjZQdgVBIHz6RQCkX/rclvre6P7u/v7jmzwu1rlei/76/K27z2jd/tduu8KYsE7T1Yyvqx3fkJ0NsJHiumaf96K/VQ7E0RJv+ZKaxz8La8D7+C8b9xXXjylu7kldtORu8fqVlrWl3tufKWxRcV1NEd+wXJBwq+0aPS1pvHQv8Uo6wj1RXFftdoVF/eZ9buFxiUusw/FKSb5Fw4eqqqvzswLrejju4FVb7Xlu5FlY2rcEFAsFDF1HiBRMTaU8Oc7E1Yu88fxrqNSpzF/mp39+jJNvv8X2foVrH/6Ui2+/hynWSP3gCPLx94lffgH5hdcJn3oG81s/JvnMq0Qpk/k9PTgP7kVN5rCddqxMGw0/JtnWztDIAwyN7MK0HMoNkC2LOBD47ve+z/4HdtKol0CSKVdqNGt1Wl5AT3cH5XIFJ5nFNjXCwCeVa8exTdq6OhFEmQvnLyEikmpro1wooCoqvt+iLZ/F83zCKEaWAFFEEBVeev55Dh58hCCCdDqBnbDRNJOJySlk1WRyYpzOjjaCIMSwdMbH53n5xRcZvT7GrpEhiGMkRQdiHCeFosq0WiLXRz/kM59+nHJtjEyuHVWRSTgWMSDJMsPDwzi2eHQ4LQAAIABJREFUxeTUJKIoU6vVMAyN6alJEgkHRVWwTIdSsUC1WkIgIpWxkKWYOGoSh00SCQNZEcjmsmRyKUDC83xkdWHhPLS9jx8+/QxdnV2MjIygqjKiJJDNZpBk0A0dUVCIgxBJUQgCqM7PsGt4GE2W0BSBWFKpV5sQh1SqFerVMs1mk1Q2jyQqhH5My/M4fuIE2/u62bVrJ8lUEtlQiEOf2I84eeoMg9u72P+JT5LNZBHimPn5WR49dBDDdPBaNWTdxG01EPEplyvse3A/5XoVx3b44MIH+H5IOt1G03dxTJt6w2N2epRICOnt78F360SxhGkl8YOI7u4eYq/O66+9zkBvP2+8+CpxFBCHLqHnkc120Gh5tHd0IQgCpXKJoaEhioUCqiIQIPDA/oewkzYD/T2ErSaCqPDu8fdIpR06ujqIYplqucSu3cPomokgxWT7hjhRLtNKqKRLNZzTlxDmC/xCvhPl4iWcKzco9ebxm9PIsoeih1SasxTninS3d/Hss0/zuc9/hmRm4f3VJZmwVeCpb3+bfDZPvVCl5TbRZBlNlldJ33O7VrLWvLQymuVusVnv6VrXLWK1ee3mXtaT5xFSDuKTj9y89k5yEawaObUJvtfOF3C7EXfleKzV5/Jjf72K60qI68mTO3hlVnMuCOJyb+1GsmstZXLlWC5+jz4yzq7Le3xrT+zKc0tL96wftn8f93HvcV9x/ZhipWC+a9vpz6qV7S4VV9Y4tvz8BoSXnVo7NeBfheJ62/cteVyXLJRWnrzLPa6beXfuVnF1XZcoim6GKd9J35EXEIUh3/7Wt8kmuqjNzXPk1edIWzLuv32KnqvjxK8eY0+hwoGpMonXLzJwdJIHx2t0vXyJxEQF4/yHWLNNFF9CknXC/i68xz+J39eL6mQIZIFWrYSRbiOOFkLWJEKqpSLn3z/B8SMn2N4/hJ2Ed998hy/+4hfQNQNFijCsBLphIRHhZHKEgcd7p88iKybNZo3Ozg4k3ULAxwsC6rUWXsOn6fq0dXZQmpnh6Wee4YknDzM7O8Pk1AydXd3I8kIoXSTIDA8OMDMzh2bYSFJMq9VCkmUcO8m3vv1dDj78ELIiIsVgOxanz1zg8UOP0PKadHZ3oOoO3/7uD+npyPHiSy+yd99uNLnG0I5tVEoBtpVGMUSEWEQQoO66WI5FEPhExMwXqyQcByEO+fDyRXbt3UOz1SSTyxIFIY1Gg2qljGkZxLFCJtWGrurYukGtXMf1Il5+5Q2Gd/RhGTaCAHEcMD09RdKxSKXTTEzM0NHRged7JBI2oihRrhQQBAldM6mWS7x97B0USSPT1ctzL73OdKFMMteGphrMzsyQyyZouj6SAPm2PKVqg2tXr/H8c8/z4IGHeOXVl9m3axhV11FMC1H2CT2B733nKX7xy19E1wRiQQJiItdj1+5hmq0GgigRhg0kNYWmCNTK43g+2E4C07YQYpG5uQKKbPDKK6+yY3gHVz+8SkfnNnLJJLpuIggy9XKVYqmMKkuUC/OMXrnMwM5dvPveOXr7Bjly5CSfPPwwqXwG22nHNDQMwyaIIogjSqUiJ0++x969exFlkYuXrpDJZpBECEMfQ5F59bWjdHV30bOtE1VTmJ0psmfXCM1WjbGxCYaGBqi3ykBI10Abwq5+ZpImUcOls1Kn/dos6kwB481TlH58hKGKSOG1kziXZ9AeGiaK4bmXXuVvfeWXmZmbojg/S2luhu68w56dw7x/6n22dXYjyBI3RkfxGk3sdOrm73ph4b1SsRI3NKjdiaJ5Lxfvm5VTgiAgffog0qcPLlNS7lRx3cyxzdO5V5s2f7YU19v2qm6WnY2wbLg2T2jlu7feftVlSuxGIWnxEoP4yvFaQXMz0Uz3cR/3CltRXO9nFf4bhEUr2KLFbJln6y9rdIRbG/5vywy8MnPwUtxhFuEN2dngPhe9yKIoLuMvjjawuAvRuguDm4IjFpcVlV8vq/BtXdzFAmQZL4v66wrr/cpjS/td6QWNouiu35mN9lpt1TCyyFetVsM0TWRZplIq4bVcrGQCWZapVqskk0mQRSJAiQUIXXwvRlVMgrCBKgo04gBZVfBaLrOlJr/05Ff5nyOZX3rkQYTpAnGhgFx3FwR5DLFtgCgQJZOImkyUckDVIJ0kViSqUYSRSFCrVkg4NtPj19ANCyQZJ5Fm9PJFUukMqUyGd48cJZFK0tXThSKJtNwA4gDLthFVnYmxcSzLxDA1ZMXmw8tXOP7Ou/zKV79KuTZHKpVGFGUkUUKQJPzAo1wrk0wk8BsumgaNRoztGAiKsqDI+j5aUKTmQ769B8/38TwPx3GoVqskUkmCIKRUbBB4dZKphXIuJ46foqenl1xblmq1Qq4tQRjERDHIMpRKZXRZRdBs3MosyWyed98+wZ7dOzEdC89vYqopSuVJLLuNeqtCHISIkoGuK1SqJRRFZX6+TFd7DlkQKNfLtLV1AgFTEzMk0yaKbHLy1PtMTU9z8JGHSSYdSuV5nEw3quTi1pvMzs6RSicolWuoqs4LL73MZz79WX7y4z/nH/6DX0XRTYgDRCLKxSqpbI6QhYRJs1PTJBIWjXqDfFcfXrOCrloEoU+xOI+TTGGoEpFs0Jwv0PCbJLIZLrx/iZ6OTsYnrrNnz17OnHmfbf1dtOXyNOvzxJGC6aSp1qqoUoTbqhMLFrVake6eDhoehLUK3/2TZ/nVf/BVZEUgkTC5cf4durY/RKneQNMFFNHhwyvXeP755/m1X//7iHKIgMzLL7/E5z7zOUrlAgknhaZaPP/Sq1y9domvfvXvYhgWAhGmqXLtw2vYiQRH3nqLJ558EoBUyqZWq1OpVFAEGSSRRDJFs9bAjyLGrl5l3/4HqLUaEEJMiCiq+PUCARHdPb2MXrlBKtdGMpHk/PkLdHf3IGsioigQKRqGFFCttNA0HYiYv3GFbsGhfm0MveGhNFsITZcgk0TIpanaGlFHDjuZJPjHT9Cqq/ze7/7ffPUf/TL9fZ1Yms7zP3mJw5/7ewiBhyQW+PHLJzh8+DBPPfUUhw4dAings5//ORRDhyXJfVbOzR8dXTZPrY+N5dZ6SsR60Sab9XSuLKu2Gu3VsBmv7Go8rF9RYOXYbS1783r3sxFW4+d2ORfd1uZucJPueiUCReHme7aligErA57WeR1Wy7S98p1bWhViESvL8dxGN4yW1YZdk59og6iqJRFri/e1Mnpg8ftGPN3HfcD9rMIfWyzb38pKS9vauKtw4PX2d65fD2cLfdxd06VK0rKxEZbu3xA3EOybXBTEt4+lmEog7NuJ0N99s+1i+41Clu8I6xmHBWGZZ3LluWUW3LtgYXG811pgLfazVm3bMAxvKdArrMqLx8bHx8lmMkyMj5PLty3sQWw0SCQS+G6AEglU5otcPneWwvQ8E6PjtGoVzh+/zB99/XtYmoFarJL+P/6A36p5PNAKwPWIMkm8zjTS4wfxd2+Hh/YwljApb2vDGNmL15VE6sjgJ5OIjkWsqUiqiqKoTE1OkUwmiT2fUqlEe3s71VqFhGXgeR5xJHL6zBn27d+PqqrIioKiKuiaTEyMGwTYho4oCFy+fBlDV+jp6SaVTnHy1EkufHCR4eFhRElibn6ORMKmXC6Ty7XxnW99mwf37aPl17ATKWrlOSamp8jm2pmenSNpSDipDBESsixRKpWQJAnHcWh5Ls16jXqlRLNeJZvOICDQ091FGMP4+Di9vduQRB1BlIkjAUU2UFQFIY4pVmp05FJMz87R39eHrqvMzc3jJEziWESSRS6cH8VOpLjwwSXOnLlAKp0ikXQIo5D29g7m5wrYpgZhEySVZqOGKEpomkihMEdnRweqqmNZNpouI4ogyzZR1EIUwEpaSJKObiR58823+dIv/iK27bB7z25iImrlAsVCEdtK8PIrr5FO54hCD1mWEUUZx3ZIpXOcPnmSbdt6mJ6ZQpIVEok0pUqVMIpRdJ0w8FBUCU2W6dnWDR8tUo8dO0Zf7zaSqRSu20LXNabHJ3H9iJm5eQQBbEvD9T0MQ0NWFMJYRJdFREWjd2AbqiQTRSBEHo1mHc8TIZSpN5v86EdP849+4zdwEg5CFKPKGm25HH6rgSyrvPnmUdo7OwhjKBQLPPzww5w+8x7vnzlPJpsk395GHMWcPn2agYF+NE1DVQ2KhRqXL47huk2GR0aIkfjhD37I0NAgV6+Pkm9v58UXXkJEoKOrm29867scevQR6s0GgdegNHsDSYqQCGjLOnitCo6lQhQiyQIgEEUiUSSgaQZx1MC3s3j5JG5fO/MdGRgZREzY+IUS5o1ZrHMfwtQc5eeOEJy/xCEnx9//13/AoccO09PVhe/6/P7/9W84dOiT/OQnP+bNIyc5fOgQTz7xBJom09/eybFjx5BUBcO2kCIWSuuwfnbZjeXgxuXIVsrT1eb4jbxVKxWRzWzbuRs5vlp46sr5d3Xc7tmGzSe8ulvP3Mbyczl/qymTdzJuG43IUnobj+EaNDeQ4yvfw5XZlm+GHa/gbVWelybmXNN4v/Tj5hJELvR/ewj8YiLRKFoo27XWVp/7uI9F3A8V/phiXa/aOtfd1QTxN0hxXZr8YqniunDdBgJw0+7H2zkQB3oQ+rpufl/kY5G3e45NCLyVAm4lL3eruK7V18o+Vwr1xc+u6+L7/s19swCXL18mk8mgKAqKomBZFpIo0pbLEQsLC1PHcQjDkMvnr/Ctf/9HjAyPkO/M0Wi6dHb10PIa6IbLZx56kLb/7V+T/E9PEwQtGt05LnXleHVqjIFPfQol5RDqDqqm4vsx01OTdG7rQJZ1ZqYnKM2XKBVKTE9MIgsisiBSmJ0hdJu4zTo/fu4VnGQa3bRIpjMUi0VMx0GSRfoHh4iCANswqTTqjF69zuT4BIlkGt10iOKIZsvDMG0i32d6epYPr11HN2w+9/nPo6gq5UoZWZEoFuYQJRlVMxjo7UCWZcIoQJQtfM/HthMIYYjuJClMXSeRyRGLMs1Gg2w2S71ep1QqQeiRSDokkmn8KEDXE/hhRETI6VNn2blzGE3TkGWJMPJotqoYhoGq6MxMT3Pm/fNkkiZt7R006g1iInw3RtMFZEVHkEQEv0EYQalQ4lNPPEIum0SSBERB4tqHV3jhldc58MhBREUijmIC38MwDG6Ml+jfPkixUiKbyyOJIIkq775zkq7uHlRVQhI16q2QZmUGx0pw/fo1uruzBH4LVRaRBAFFs7g2OkW53uLg4YNEQUDSVqhWK6RzWarVFqZt4BgxyBqKKmE7Sa6NjiPGEW8dOYJj6eR6etE0FUEUiEQRRdU59u5JHj10mLaONqq1OqauoegGhmXhJNO4jQqWIWGn2zGcNIaZJHDhuRdeobcrS3dfN60goDA9y8xcEUUScAOB0+eu8Nrrb/KJR/bzyUc+iaqpuH6TP/uzH7NtWx+SIiJIEabtsHvfg+i2jkSTJx5/nOJ8kWwmzd7dIxiGQSxKJBM2+/fvQxAXyoyoikqxWGBkZJi2XBvH3zvFtt4+LNNm9NplPvP5LxCEMdcuX0PSNXp6Otg1MkyxPE9X7wCSYiKrBqlMGs8PCWOBludTLFSZny8RBy3GR68Qug1sXaDVmEdAwHB0fF9C1XQURedPvv8D9j52AHnHIGOOinVgLw3XxZ6rk7xwHalc47ceO8SAH3ItpRKFMDk5ycFD+3BSCXYM7uQbf/x1PvPZg4xeu4Cq22wfGKBWLDNz7Qau6+IkEiBLtyci2KLiupm2i/PeWl63zShzS/+vnEf9r/0LomdeWjc501awXiTOnSiuG9Fej4/NKnqr0b6VGGrx73Ylb+39uZvHulesOLnZyKKtKK6LRu+lSutm6G60ihFYL+psU6zdUdul67PV/u4rsfdxX3H9mOI2ZSiKF5IKrDJ1LCsbc1eRGgtElip+K4XGrU6XprHfYhdLv8a3qCwmNFijKbHw0e0JAuIKL+fiZQvX31okCIKAIC5Jqy/Ey3m/LaZHvG0Mlp1eEcq0VLCu1m6p9ftOherS8VlLUV35fakyuUhns1j6PskflS9acxEi3iozEEgCXuTh+01kRUAUY0JilNBHlAQkIUaOI7x6nVxHJ0IcIhIghD5BGCNLOl7gouoSUuwzfe0iR156DtWtUCtcY1tWZfz9tzl/+j3OvHsUp3CD7v/3B9h/+DRFv8n47k6cg4/g59pQTY2Dhw8jiTJPP/1n7No5QKVSw7BUXn7pVVLJNnTdRZeSNJtVOjo7MHWdaqXIS6++SKlSZ2B4J+lsmoTjMDYxhecFZJwEf/ydp9i1YzupdApD1dANlRsTY3R2tPGnP/hzvvALX6QwP0fCSSKLEZad5tiRI8RxwNCOHbRaLvnOPKai0GzVSSQdmvUGpqWTSCaQZQ3X84lFCcvOEoYRmmWjKgaELs1GnWKpTNpJ8P65cyQzKTzPo1KukbAz+KKAaZtIxISBS7Fc4wff/yEP7X+A2anr5NvaF5Skj94nQ9eBED/0CMOQpK1hOxbvnblKd+92zpw5R8YxkWUFRYVGvYqTzi14C6UARRZRFZFavYFpprC1gL27RhBFlanpCslkgiDysU0VPZFBkBRU3aBSraCJGjPzRd45/g69HSaioCFrMrIgE8chjUaFrs4sCctCNGwkWabebCAiM1sukXUUFMXk8pWrpJNJ7ESWCJ0waCBJIrFgE0QCogiGaqEqIaIcs2f3LrLt7UShT7VaxjB0SsUSUiyTzaRIppIIiMiKjGroiJKI58WoqkQyZSEpMvW6h6oJCEFILAQ4to6ZSKMbNn6jxtEj7zAwOIAY1Uim8siaykMPPYTXbKHpDqqqIAkhIyMjHDn6Onv37kMQbEDAd2sQRSRSGSqVMqoioMgCH1wepa+/lziGVr2Faqj4QYRbD7lx4wamofLO22/jJJKcPXmCtlSCK1c/5MEHH8QxE8Rxi/6+Ybq62qjXy8zNzTI8PEIY+AhRQL1a4sroDbp6+hbuI4ip1Br8xQsv8fjjnyKWJLJtXVRqTWRFRVZiSoVp6pU5WvUqMzPTDO3oR9ciKnPT2JpMudEgt2uEC37AtC3TkUijnb2IfPkG4okLGBPjfH7bEI1HHiajQyzL7N+9g1axzPjV6/QM7eHZ7/8RtmUxU3DJZjM0qgUiUcHQFQQRQiEmFmLEZeVVVgrDW2V2Fs5HH8m1WzPkakbI1cNq1/ZsbtRmZdvFOq6Liutae22X8bREbt4+ud8qY7ORcn57CbWlf2tDWKzFcrNcTnRLxq7T53JFdHWZuRbimJvPLo6j2xS+O8bK215nCNY1UsTrjNwatDaS5+vyulaTm97ZtRXhzT3ljxDHNx/1Wr+F1ejepL/8VSGO4oWMxyyWIlrYgbuUz/sK7scb9xXXjyluE6DxOpPaVixiW8TNPm/zUt5hTysV1+Wdrd/DivtcHoK1Xifr8L7F+4pee4d4dAKhr3tV7+ZqxcDvRnFdztrGdFbydCtsaCv93PoYBuH6/C85ZEUQNjx0xUESNAr1OqKiMj01h5rqoBXJxJKBpC4kkJFkjSgW+emrr/E//Vf/nNnxKfLpBH/3Cz9Hh22TVDRKE5MEmsOefQdo6+ol8dQxek5Nsu+9G3Q+dxrsJEdNCWnPA/QMjKCZKpIoIcsKvtsCQWTHzt20/JCT7xwnaTuMjOxEJKReq6AqKiIxtWaTyRuTnDh5ht179uM2A3p6+lFEBVkSaWvvJJ1JI8QBA339JGyTeqOGKMbMzMzQu62XUqnKoccPY5kqpmkwNTkFgkyj5XHm3Pvk27uJIhZKwfgeCB66YRJGMYEXLNAXBSrVOgk7ia4plCszmKZEHAn4nke9ViGd6eKZH/2Izo4Ogiiks7uX2Zk52nIZNENCEmIUVaflejhmgiCMsWwDw5Dp7+vH9TwUTSMKInzPQ1VVGq0WxUIZTTOwnQSOk+Ds2XP0dHfz7DPf55GDj1BrVBEklRidMPJQ1QWFLp3MIAgiiqZQKBawTQc/iBBEkb/4i79g/0OfQJQEms0mshhRKswT+T5TE1O8/trrnDt/gV/5la+iqQKmnaZSrVAplfnh08+z78FPUqm4OE4Wz2siCjKGleTMqffYu/9BDEVAMxN0dXXieS4gEEcL9QtVRSaKQr7zrf/M8M4hBBY8zJJi8OrLL7OtuxtV1ahWa1iWhaapVGt1BEnEsEyqjRrl+QK1agVT1/nT732HoR2DxIKIalgoskS9Vac0Pw8IGLqB7TgEYYila6SSaayEA34NRbNI5zrQNW1hL3KturBvNArRdJMojkim0jz1ve8yPDyIIMaEUYjXamIYGooio6kKyWSCeq1EvVbGtpLIikq9XufEuyfo6emh2Wzitny29fbS3p7H9z3qjSb5DhPXa1IsTfHDHz7Dgwf2kUikePGFV8hkM4iCSBiEZLJZivNVDF3j/LlzCES88spriKLAAw/sQlFEHNtGFGN0TaJYiQkjmd7eYer1On39Q7zwwou0t7UReE1sy+TK5VHefPMIe/b209blMBE3mM3nkSyZRLlO8v0byJMz2BevErx/mVpfmnQ6Tbne4vjJM+zYNczXfut/5Td/67cZGO5Clm1iP2R6fAorYaJp+kfeJVYYdlef22/NY2tHGG3Kq7ZO9Mla31fbv7hScd0MnfXE3VaSKq1PZ53r1lXqNpZPd4ql8n4prZXe2b+OfC7r3tkqJ/+ylLOb+VFWWZ/cLe4lrZvhxVFEFEc3jex/aduu7uNnBveTM30MsZpnS4jXDh9e3BAvCMKaUbDrJz3YBJYkPwrDEElUbvK6WgKpNSGuUKiWWvEWdfQl55bdwxJ24zBabm1dLzmTsCKpw9JkUiuTTsXLrX4rsZicSfqPv3eLxJJx3MwY3OnkHwvLx/u28x9N+Ks9k60kZ1o6zovXrZVAIg5DXNfFtm3qcYAsSoS+i6YpNOYKJE2Z6zdmGRho5+grP+XDy5fpyLfjJDJUSkUcy+Cdt4/y0MG/Ta1WY3zyMl8cD5D9kHi+RFQso7gNxFIVueUhVGq00knCnk6knUMoOYtKsczU5DRdnV2Ylkm5UMROpCjMTGE5FrGg8MYbR+jJZ2i5LsPDO4giD1m2qDbmCUOBTC5HYXoO3TCZmpujuzNNs+WiqRKT4wUkTWf7YD8yIbKkcOLkKRRZZmCwj3qjzptvHOFLX/pFgtDHbTVIJZK89ebbCJJENptBVjUajQZTkxN84sABzp4+xQP7djExWWBgcDtuq8710TG29fZg2g6SUEWRLaJAIYpE/LCGoioEEciSRbU4y09/+iKPPPYouXw3P/nxczz6yIMomkAu3UYoKERxRGWuSLotRxB6jF29RldnJ4IioekmR19/E1ES2bN/L7qho8oKlUoD0zJBiIkDn0KhhqHFuGFM2KpSb/icvXidL3z2EI1GCyeh47senhvQ8jw6ezoozlVwnATV6sK+VssxmJuZI9eep1ktYNs2zaZHFIKqaoiqumAAmLxOvr2XIHKJvJAPx2/Q3tbGqZPv0d/fx0DvAAgSYSQQBU0CSQG3gqQlUFWVZrNJuVDk+LF3mZid4re+9puEQUyz5mJYEqpmU6nO02j4tKXTjE/eoKujC0HRCSIfMWohyjqiJBHFMa7rMjc5Q0dnO41GDSEOUHUDSdGQVR3fa6EZJn6zQaPZRNcNypUq6WwWSYho1T0ERcav3GB8qkh71xDJpI0XeNRrVRJOknrTxbEdosjD9TwcS6NabWCZFkHo0qzXMQ0LLwgW9nVGEUHgous6585cZtvAAIlkgunxMc6cvUBXdwc7hnbyw6d/xN/521+mXq8QCzJR5NPR0U3LrRAFOvX6PJaVoFark047RDG8//55JEWmt7OHM2dO09vXQz6fZ3p6mvZ8HkGUqNdLzM3MMrJziIsXzzFXC+nd1ociiogx+NFC+SJdjTFSWeIgwPcjLl65yicf2EWrUSSI4N13z/Dkk5+kWithaUnqJ06TnCwTeT6zHQ713k6+8pOn+W9+6zfo7e/knRPjPPlzTzKyq4Ov/4dv8rWvfY2v//t/y3/9P/4v1Op1du7ehaTICKp4c89dHIfLwnsFYWWimqVz/50vlNdL4LRW+6VzuP+1fwGA8vXf39S1sHw+X5n4RxDiJWuIDUrFrUNnOc2VJ5fLzeVK2MZjeZthdR1P3mK0z3KPXLgu/dXCidfqE5ZEJt2FYraejN1KUsplNNcZl43WGuI9dmMsfcbrhWhvRc9YbLtaEspFLD4bWZZva7ORB/g+fjZxPznTxxCrhgot/bzSirvk+GbehjsKr1mW/OhWKO2WrYar3NctBZPbzq15YEWCptUk8Ka8xVv0uMaL5XC+/JlbV2xxLO9YOAobj/da3tE79bjGa9R4AygWi+iKiizJSKKI6Iu4hXne+NH3eO47f4zXLHPqjR+TsRwuXLqILMvs3LkTTdPIDTyEkWwj843neGg6IP3au3S/fpw9Ry6gnXwf8fI15HqNqNVESiWguxN2DjI70sfRuUm2f/IhZFtn/MooiiTj+z7JVJp6swFBwPT0HM8+8wyKLGDIArHnk8mnyObyGKZJrVGlVPIYm7zG2++eZs/uXaSSScLIw0oYiJFCJpvHbXqoqsGPn3uOXSMj+G4dSdFRDIfnn3+Rnm3bSKUybN8+gKYrgISuafzoB8+wZ89+2nJpxNinvaOdTNJk164RYgH6tg/gNQOiSKFaq6BpIm25TjRdXfDCuhpBEFCpzlFvzBEF4EceVjJNtVrCcXQy6STbevsRJdg5vAfT0NF0hWKhhCgqCLFPHEeouookqSiyhue7mKYOokKtVGHH8A5M2wJJpFkrI0oSYRTRaNXRVYNqtYWuyzh2AiHy0HWFXL6TDy5cYteuEVpuFVUVsCwbWdYJgwiEhbqubx99l77e7TRq0yTtJF//T9/iE5/4BJ4XLuzTFGIgICIiJlyoZ5vI0GxWqRQbJVfGAAAgAElEQVRL9A/sQJVk8rk2kk6SQrVMFAUIkU/LczFsm3qlgGbYBEGAounMTk4x2N+HH/lsH9hOGIpMTUygKCKuF2I5BudOnaKnpwdR0SnOznFtfBLdNAhaNUrzZURBoFgskEmlsBNJEKHeqKOoOlEc06g3iAKfesPHtlMcO3KUvr5e/CBA03RUTaNUKGCaNoIkUpwdZ3BoJ7Jq02hWUDQNQ5WoVquYdorpqVlUTUbTFaIwoNX0adRdFEXFMAxk3cANIgRZRVNNgjCi0fIozM4jyRqarqFrEplcG9uH+mm0GvT0bKNRr3Nj7DoDg0M4TgI/9Gi6JRRVxW2GuC2PMHIxdYNGo4lu2uRyeSQFevv6EQSF8xcukUrqCGHE9556mr27d6OpOsQRmqawrW8npmZhGgatVo0PLl6hWCoxPLSd4myBWnGGbMpAjF0U3UGSBUavj5PN55mZKtPd3UcrahJlbFoDnVwtlOgpNmmfqfKPn/gMh7M5oqEuKu40X/jC53jjpTcY3t5DrAogNhnoHUFVNQpz84yNXkezjYV3K16IS1y+yF2pUG3eM7nudLmVUM9V2q3mcd3w+jW/LIjYW3P2vfG43n5f6+313bq3er1xW90DtzlFZTPbahY/37U3+I5PrnPZ3SjS9zz+bm1+7km49hp0RFG8aYBa+reI+2HFf/Nw3+P6McSqHlfh9gyyN628a3jF7gVu0lzhmRRYPc36qtcuPbZiflnNKriZ+7hNmC31uN7NOKzijV3qqV1aDicmvGXxW+Ll3UpCiptdLYaNrai3tlSvvi0t/yre65X07gY3hYRw652M8In8AC0SGBu9zrEjb/HoocN8+w//HX/nK79KuVph774HEGWZOI5pxCqh5yNLAkIYov7uHxBNziIVysjFMrEoIuRS+I4NuTQ1SUJIJdA/quXo+x6GbhDEIWIM1VodXVeRJJlatcnY6CUq5Rae12TXnh34Ppw8foqO9jQ9PduYLc5w8r3zHHhwhExbO4Hn0tPTg+v7NJsBYRBhmTKe56JpOtVqldHRUY6fOs9v/9N/wvzsFJaZoFavYtsmqqYiKxrNlkcsiGiKD7FIHAk0W3WEUOL6jVHOnfuQz3/xMzRrRU6fPsfnv/RlBHwa1TKKoi14RIOAMIwZuz5OPt8OcYztyICIopmcOHaEtrY2pmbmGBweJJfLgQB1r05YCahUrqOZSfId2/jmN7/Nr//6rzE+McbUxCzDQ32YiRSt+jyqsVAeh8BFM218X+D906fY/8BOAknFrRVI5bppNmqoqkQURbSaPulUinJlHl1XqTdDjrzxOl/5yldoBhHV+WkE1cAyTeI4ptV0OX/+A3TdYNeeYYrFMpIg06g30S0d362jKAqj1yeQFZVMNsuRI0c5fPAwHR0OQSShShGVahVFVRFlGQGNRquKqSuIgY8vaiiySK1awknkKBQLWKZBFIfIkooiLyzWhFhC1jU8v0W95iKJEZpmUa1VsWyNOAJJXMhkHEg6x996i4RpU264uG6NQ4cOIkkKoqgQRC0ERCRRptpo8epLr/HFnz+MoppEQgiIRK0GlYaHqioYho4kSQs/TUGmXJyGqEUu347naZx67yR7HtxLYWaOZtOlvauT8dHrJJIOpUqF7dv7aDVdZmfnKRQq7NyxnUp1IaO1KEpMTIzzwfkP2bmzn8tXxujsbKfRqOM4Dvl8jpZbJQhCFNXGbzW4dOki3QODEMTEQZP29jYQJcbGxnn51Tf59JNPoOs2quSjqhKGnUYWfJqNkJ88/xKmYfLYoQMYmoIXhjiWjqwnKUx+SDLfRqPqEkUhkqjixyFeQ+LSpXMYuknLd3n04B5q9RCkmKSVpFqtghAQo2GoCggBkibTqHg4CYPp6WlymXZuvPo6/TN1tJ0D1PYOEP/aZ/jf/+W/IjYy/Mvf+T3OnTqJaajIVoKO9gyh6zF67QZeAMN7BkhlUyTz+ZtbSpbOk5uZI5d7azfwWq4TmrqZcOKVHtfNZPG9F7J+Lb4XPdayLK7puV1vf+pmtrKsdt3i+ZUydHUew3XpLT8u3tZmeaKtdUr9rUF7PRm/2rhuxrO9dE2zVlTces99JX/SKsm1toLVns3KcjeL67ela5I1o7yWriHvUQnFpX2smjxNvHuDxH3ce2zF43o/aPy/ANwLy+F9rI8YbjMirNt+FQvhapbDv2pspn9PCBCFGL9eRyBCKNf58+88xf/zf/4+41c+5FNP/i1kxeGf//f/A3ZbD/ltO2ihc322QrneRAhitHIV87/7Pcxf+KeI772PrCocKc9T/flPcf7hncw/+iDiEwdgpB+xM4uRyyCKMaIY4YfBQibey1d559hxqqUSsgBz01NcvXyJifFx8m1pxsfH0FUVGYHDjz/IgU88zLFjx8jn8zz++OMMDg4S+CKZbAczMwWafoRhWRi6ApGHYSoYhoptOwwN7eTwoceIooh0NouqK6QzaVzPp1AoEcYifuAxNzVOYb5Io9FkanqGV156i0gQqdSqHDp0CM9tksp10j84RBB5C2G4ZgJBVHj1tTfwvZgXX3iBru48E5PXGBuboFisEAQRR958k527R2jv6mTnyAjJdBpBkvD8AEe3kGSfrs4ecukEpUqFL3zx5wkjyOe7CIIAO5mk2ajTcGtYusORN44iyDG+76OoEnse2Itl6OiajqbbTE0XOP7uaVzXp9lqomoStXodSZYpVSoEXszOXXtp+j6uW0fVdZLJJEEUcfrUOTRN58EH99HZ1QaiQSrTRjKT4uyF09iGTUdHO235DPv37WXnziG6uzoJQ5833nyDWrXJ/8/em8f4dV15fp+37799qX0li6u4iZIlWbZs97i77YyNmUGSCSaDTPJnJ0EmQJAggyCTIAmQzAAZYJAeuNOTttu22m7bst0yLVkrtVPiLoqUKFGkxKX27bevb7n548cif1WsKrIk9ebWIR5Yv/fuPfe++96793zPueeceq3BG2+9zXKxjqIYtOpNJq9fx3FcNN0kFBKW46EbNrFEBlVRMDQdXdMgEvzkxz9ncnKeCIlA+BQLy1TLFZJxF02WKJWWSCQTRJKGadgUi1V8P0JX4f7D+xndPgySz5e+9Ai6rrO4OE+rXUXWNHRDJ4x8iksLiCigUa0StQOIJIJWC0lRUWSdH3z/R0xPzYKIKBZLBGFEPJlD0WI06j6+HzAyMsL89Cyu7fHKq28QoTIyOkC9XuPloy8RBCFCwPPPP8/161dRVHjj9ZMUCxXmF24Qi8W5//6DxLw4H374IaOjo2zbvp2h4SEW5mdo1JokYmmWF5dIZ/KUKw16sjleeekogwMDmI7DQrHIyMg43/zGNxgcHOaDi+eQZIlcvh9ChZMn3ici4MCBfczOLeN5HiL0EX4dmYh6rYhlqARNn3jCI5ns46WXX0aWZWJxh1C0mNixjUw6gazouI5Hu1lnbmGZ1944TiyeJZkwmVuYotVu06y1gIggCAkDAZJKpSfDU4ZEbWYe7fnjOD96mYnxMR57cD//+n/9H8inDdpBgbFdOwglmVDI9GQHWZydwRDwkz/9Pq1KDTkUW3KT+Jw668LKtsyt1Pmror8W/1Vp/YBSf5doKzLPXxetyDTd/rNhGBKGm28t/5z+5tLnFte/JbSRNq/7+UVRV3LprgTaKz6OW6E7NZDraBU38QVdj1a0jnf4Rn4Ci+t62se1FlfB7YnpXrS6G34L92hxVf74f1tXg/hJLa63+rV229cai2v34nk3n+AVnvdKay0TQRCgGBJiqcJ3/s2/JTPcz1d+5xsdXzshOsnZQ9A0neXZ66RzAzRaTRRVJZLA+b+/S/3EOdLFCmKoD39ihIKukEylaLV8NCUgQkIzXEK/RRgJQj/kxIkTHN6/C13XaYYy165+zM5duwjbPpVyEVWVb24P0gjCFpZp0vZ9bMumXCzQ8n2SyTTFQpl42sPQYgR+mWpT4Ymf/ohvfeubDA6O8sorL7N927ZOGp5cmsXFRS6cv8AXv/hFyrUa+XyOQrGA65gUiyWSyRSSpFAqLHLt+g0OHDyErulcunSR4ZFhwkBC0QwKxTniToZmq4hq2Lx3/l32HzwAkiD02wgEqCbNcpXlwhIzM9NMTEzwztsXyeZSjI0NsjRfJJFPIgTIkYxhmSwvL2MYBosLJXp6DSShd3JsKhq1WhvbcvD9NigyuqERtBtEQkGTJaIwIpI0SoUFUrkMYShBUEd1YhSnryEweefCBR5+5EF03SDwQ1Rdpd2uo2oypaUqbiKNZhqIoAVRiKSazM/PEXNNVEW7aaVUCaIITVOYm5nhwvnzPPjgwyiahKx28qU2Gy0iCdptHy/mokkwP7dApdogk83hxWM0Wy0qy0UyPVl834coIghDwiDkwvnzTExMoKoasizwA5+pqRnSmTyqrpDOJgnaIEkKQviYqkqjVcN2bFqtAElIvPD8S3z9d79Go96g3qqTzWaJhML01A3SqTyOYxFFPrKsUioWaDXqxNNJFM1Fok6z7BMgUOUIy/OIgjYff3SDRCKFqoaIIEC3HX715FP8/W9+Cyem8MH7kxi6Sa4/D0FAFAUouoIsSZSLJXRdw3GTyLJMpVLGtm0QUC4XmJ+fZ2RklHa7jaqovHXsGIcOf4FIRBx98QUMw+Cxrz1GIpGi3qhQWl6kd2AIkCnOzxIoEoYiYxgm127MkIh5NOpVvEQGQ5aJZIUnn3ySwwcO4Yc+U9OzHDh4EEkGVRVoioRmGBQXF9AdB0eOaAmTxYUKZ86c4ND9h0ilUxx740127BggGe8hCuoga7x9+gJf/dph5hbrSJLCzMwM6ZTH4MgIYRhSWFhE0TrW6mPHTrJr5y4MS6bZlDAticTFq2iT84iDu6j0pDm7O06tXKJRrbDv4a/T29/LlevTjI7tJYhalEozeJbFtckFRsZGsVJx4qkkbLIObO7DuXWd/3r+lGvXhjAM0XWd4KW3Oq089uA9zc0ra/wnWWO2Ft/izjG4FwvgvVhc78XvdLM2Vvp2N5m221q8sVX8sxE3N+vL5j7Jd47BJ7G4btbmp6FVSvc1W3o3i0MiidWyrCR3yRf3IC/diqNxDxbXjazz69UVQhCGnR0VaxU0W4rX8jl9Yvrcx/W3jFbA3nofYjdoWaX96/p4P8kHdxsIRZ2ZQFrxD+L271Xpb6QOaLt5TUjS6kubtXXzWC+1z0oaFtFdUAIkCdb670oRncj4nT6s0oiu6Wun+pp0AhtpT1fuV1pn3IW02se1q92VGXLrC/DqsiujsnJ01xVdY4HErfD7iPXLCkCSpVXPJIqizjIuh4iO6E0gawgRdLYWtVWUqIEVNDn9+utcPHuJqzML7L3/AXKZBIqmE4/H0DSVMAgoLpdR2gF2Ookqd8Cq8aMjuN99Au39K+j9OaJHHyTcPUpkGxiGhiwJRARCRDTqPgoasgy1UgkVQa43w9vnPkQ1dH75xBEe+9IXCfwW1WoZS1WJx5O0Q3jzxEmGh/rRNAvXdVE0GctLkkymufzhJYa3j1BeKnHh/HncRIbScoFHH3mURr1CSAPXtjh75h3OnDtPNpcjk0ty8eIVVB082+1ET5UEpcIytuXwk588we7de9A0iTCUkVUdXYcoEogwJAxrqJqF0vaRJYFs2oTtFoVyDUWFuKfRbrXQVR1T1QlFQMyLsTi/SC6TI9ubIZfN4CWSKJZOFPgIIfH0s88hSzKDg/3MTF4l7Sm48RyS6YCqI/yAsyfOMzU1TyKdpdGoYRkarUYdCZlytQOKWo06sWQagUBRDZYXp7Atm7ov8GIeI9smCAX4gcSxt86wc7yXydlFEvE0huNRrVWpV8oYusbScg3LNnDjDmGzihwJFuYWcWJxXn/tVSzLQTctZucXKRbr5PuHkAhptSGMBJZh4JgmEQI/4mZwKBXNNGgHEVEI5UoJS1MwdIM/++kvGds+gW3ZnHrrOLmePMmkh66qWIZNpqefeNzGsS2CVoCu6nz/T/6YbdvHkSQZTXdo+RJ+KCHCNmNj24CIylKRXH8/QQRaKIHs8PSvj5DLp7A9k2q5RjuIuDa5SG9Pz800XDKKDvVGk+tT10ilktTKVRzHJJ5KoNgxqoVZEokMqUyWbE+GMAwoloq8//5FYm4Cx/MwXBNUCeGDrmuomgZozM5O86u/eJadu7ahGBqua2FqBoQQoBIJCVlWee3Yq+RyPWRzvcTjaXr70shSRL1aIRHvZerGDQQhTV8wNbNALj+IEDLlcoH84CCmadNuRLx58iQDg4MsLS6yb98+Uuk0fb19tFs+haVlMpkEzXYFS01haiYq0PIDdEVmuVDGceKk0zGufPAuyDL7D95PuTgPQKFUplatU1iqcd/uUeZmF3j2xedpixh9/T1YqoyumkgiotEsk0ymyOSSHD36Mg8cPsTS0gLtfAph6ajvXsG4dA35gxnSdZX71Bj/8k//L/buvp8rN24QqWXeeOUoO7cfploRJNN9tBrzPP7dXzA6vJ10Io6u6Z3vVXTiNMiAgrgF0W6vu9yahT9JTIj1/O7Wzv/KSqqxkX6kkf5V5eSV1VEIujPMrPDsjqK7kv5GiM7/6+VfXUsbyhKre9xdY0s816PuMVkpu7Xt293AbivKebHucWspvYc279a3lesbjUFnHZbW9cxdzy3sM7Hu3qNMds/spJUENrdllDvknZX3dQ2gvHnx9p+yfFuO6Uqp193fW+/KmmNtdolV1D3OXTLSqvoCZElGUSTWvhOdNEsR3Dykte8L4la2KVnqfKWfQ9yt0+fpcH7LqHti3+jaHb/XnSQ+SeNdk/SdFzcsu/bavfRifdB4lzqrfm3mkL9ZXzdp/260AXBdufZJ+a8F1Bs2zxqBY1Omq/mtlO1YSvWOgkCKAAW93USjhV+v8fLzz3Hu9ClqlSpD47sYHxsnkc4QBAG6CplcD+VyGSEE9r99nIXv/ZSl73yfwWffxPijP0e+MQOuQ3PHKMHhPQQDPTSIiILODoFWs4UiKwRtQRAE1Ko1TMPg/fff6wRHCgIk4TPUP0S5UsD1EvT15iiXy6RSKSqVCsVSmXgyRSabo1KYo1godLZw1iog6TSbDUZGhhCShmnZnDh5BlXTCdstkqk4goBEMksQRExs38b2iW0kEklMQyOX7aWnN8vM3Dxe3MMPAjzXRTOMTnTVnl5Mw+TIr59ifHwUIQJURcXz4gghoVs2Z8+cIt/TQ933CcKI+fklBnoy1OoVatU6ElCrV/F9H8s0SaXSuJ6LqmnISMiyRBBGWKZBpVxldGycdCJGEPjk+3rxgwgUDdPQqJYLVKpFEok423aMY9oazXqNhcVFMrkcy8vLZLMZGo0mluWiqTIQISLB4twsXiyJbXv4bZ/SwscQNNAlyCWTCCLSuTyyJOEHIa5j4wdtFFkmlkghEdFsNNAMi0hAq93GMHVy2Ty6bmCYFo7rMjY6RhQF2JbeybkZtEFERFGAfNNKu7y8jK6oKJpGFEXUqnUmp6bIZlLIikxPT45MJkPg+yiKTN/AEJVqBdt2uXDhIv0DA0QiQISC+fkFbMdloK+fWMzFtG2iSHDy5EmSySSe47Iwv0As7qJrKqqlo6gKxeVFfvhnP+Y/+cf/EYlkilq9SbVc49SJM1RKM2TzOUzTYnFxDsPQEJFCT76HpaUlbNfDcVwkIVOtNDBMnUqlRl9Pnma9ihASmWyWsbFtOLbJ1OQN4rE4EhLVUgHTNLBtl+efP8qJE2/yyCNfIptNo6gKqixTrzd45jfPkkilOXLkV3zhCw/guTbpVIpatczVax/T258nDEJEGIGkMDMzzdDwEJbtcPbUWfLZHCdPvMmhg/exMDNHGIZYpsVLr7zMA/ffTyKRQNc1JEkQBD4geOaZ37Bj53ZcN0G1UkDWIir1KkuFZar1GrlsPy8efYGHHnqAocFtVKotpqfmmLw+haHHeOHFV/m93/sGU5MzaLoCUsea/PXf+QpETZaW5mn7IW+fO0cmM0DfYD8IwbbxCdrtAIEglUwiJ2MEO0Ypiwjv6jS91+fQKw0eMnqJl0ssjXrkUj3EYinmZ5f4X/7l/8Q3vvUfEIZFMqk8XsrjxtWrREJ0LNk3hVshiZt+e5+FaN81V28hYMy6a/1dIhWuWKo67XTO3QbYWwOZG/dz68D105a5m7X29vVPDxe2KgN8GvnqXqzQn0U7G7bxWfDYwj2sX6jrmUkyQRBsmCHhXmSbdcutHcvN2HxC50lJWqPI+uwf1289fQ5cfwtpPc3kppNG99931aJuQp8RcJWl25FtNzrWb59V9TbrgSxvOiWt29dPvf1DSMjf+urtiMIbANe7JdLu1lKulL3rM5YkpK5AA1EU3brL7rq3eMtrxvrmeVmWkVFptxuoBPjVGq89+zzPP32Ewb5+RoZGGBoZYXpqhmR+FCnykXWdcrHAwL//OdqPnsZ5/Ajmd/4c+eNJUqpOdmiIsC9H++AuxP49vFcrERvsZ25+ibOnzzJ54yq9Pf2Ulot8dPkyrm1jmibtls8TTzyB61okE0lKpcLNfG4tWrUajqvQPzCCoessLCxy/PhJvEScWDzJteuTxNw4oazROzBOpdHG8hLUKhUSiTi1Zg3D6ORI3bFzN8ffOsHQQC+haBNPJbDdFJapI6IWS0uLJJMZpqZvcO7ce2iaTL63HwjRNJPrVyeRFYmxbaMYhsXLr7zO17/+daKwRTvwsSyXK1euks3kCEREJptGKDK27VIuVXjxxaMc3L+bQqmMZTtYttMBdppGYblAMp0iEoLXXn0NU1exXQNNM5GjCMMwiQRoUggyhGGEascxDR2FEBEFvPXmBT7+6CpDI8OEQkYWIV4sTqVWxzJNGpU6165PcfbCRZKujWHohKHg+LE3yWR7KBTKvPLSKxx44BCqYVEst3j9zVOMjw4hqxqqplAuFdFUjUa9wY1rN7AcG1WWiXyf+s3t4vGYh5AE7VYLL+YhyxKmaSIhaDUqmJaJFLYJ/Ta2YyPLMmEgUDUdU9do1Ju4MQ9VVQjbLfoG8gSRwDRNNE1GUzWqlSqO6+LEElTKFRzXo7BUwkt4NBp1wkAwOTmDLCukMymCKKRYKuK32wwM9BJ3HZAVdFND0w3K5RKtVgvLNGi1GwyPDrO8tIhtO9TqTXRFQ1c0JnYM4sRi6LrROTQNQ7N4/vkXObB/H6pp4bfblJeXsU2LS1euMTA4gIQg8H0azc62Y9/3kaSIZ575Dfv27uX4G2+xc9c2QFBYLlOtNvnSlx8i8ANUTUVVFCrlEpqus2vnbrx4HBGFICJ6+3qxHQtZlhgbG8aLJTAME1XVUVUwTJMPLl2mp7cPQzeo16rcd99u5uam6O8bQJJkao0aX/ziI8gyeJ6DqkoEoY9A4Ng2O3ftwHVsZNmkVlvEjedZXm5x9OU3uf/ww+iqwtDwAK7nEMlQLi2Sy6cYGh3C0GUOPXAAw1QYGMhRrrW5ev0GX/nal2lXivh+C+9mrttCoYjtJLFdg2KhQKVS60RVtk1kJN48fgrXjfPCyRPkv/wI0dggYaOFMb1A/L3rDH44T/u96xTeOE1rTz/f+tbvdQLmhRUyyRxe3KVerFKv1rjy4YcIP0TXNHRTJwgDZFm5NX+uFaY3AqGia05VVZUgCNZdA+5G0SsnEFenkIZvW11laU2gmS5FpLRmfV0L4tZb5j4ZONoacN2I1gPIWwG53XLD7Wex/lq+3vNbj+9G7W8kI9yr7LAR3/XuZa3F+W5Gi7srGjbp15ZrrG77XvrV/XtdWa9LZhRrdjLcwWeTNtYDrrfKrPlONtJvRFGErNx+n7ayhV6I2zsjhRAIxB311z7fvwxlxN9m+hy4/hbSVrS1sPoj3wz43Z3RZ2VxXT8ly91IVu6y4HT/fa8qOVjX4vqJaB0H1LXAdfXiyq1z3bR2wl6vzLrUVUQIcUsrv771es21riEwAU1qc/TpXzDz0SV6BvcxMLYdJ5Eh1DxUzSSZTPH44z/kYLYH5b//P8l+75fIk3OQiBOMDrA8MYK/fxdvLM7Q9/BhfNskkjpBkz64+B7bxse48N57HDxwgOkb07SaDV577RW+8uVHqZSKNNplTNPigcMPghBoqkIQhsSTcZxUjtD3MY2IUrmCl0gjqypzCwv09fdhOy5nTp/FMAyuXnmfxfl5Yq5Nq1HFNFVUVaNWb2GqMoVikWefeYb79x/g1KnTPPjQg6i6AZLMwsI0uiLhOgnafoSmK8zMLHDunTMc3H8/MzM3WJhbxIulSGZiVGtlNM1ibHwMSYibgq+JbbvEPJdmu4qp2Wi6Qq1Wo11vIcuC/QcOYtsWhuFSLteIxxMoqkajWmF2fo5EKomqa3iOh+dY1OoVokhGkSRmZmZ444032btvL9VKBdcxUTULKWpTLC5je3Guf/Qxhw7uJp6w8YMmpuUyPXWDVKIDtCavXieRzHDi7Hn6e3sRsoSQNGJ2JzpzEIbYpkG+Z4iFhSXy+TzxeBzCgLdOnqK/v48wCIjCEE3R6Ovtp14pISPx8quvsnfPHq5e/ohEMkmERLvVJAgCLNsmCAIMXaVeLeJ4MQoLC3x89RqO4xIEorPtOgooLi3ixeLUGw00TWXq2jUcSyKRzhHKKsgyqgyu4yCQOfLkk+yYGEdTlI4ngwSmYVCvNnjz2HFGxkY5fvytTrofy0SSJZbm53FtE0XXCUIfWbY4c+bsTWu7gaKpJBIZ4rEYiiYTBG1eevElHvzi/bixLKqiglCIQolioYSqCCZvTJJOe2iazptvvMb+/XuYmZulWq4zONiPkFUk1cSxLCYnJ6lUKmR7etm3fx+B30LTJUI/xLZM2q0mU9OLpNIeAwND/OAH32dkaJhWu0k8kSSIBEdfOopj2ySTCTI9fbSDkEQ6iaKpCCHTbrU5dfI0A4M5NM0gnclTqZTJ9iYxTAvLcnC9GJJmIEsamqYgKxKyItFutcgKGmwAACAASURBVAj8Nqqq4zgemmZgmhZBECCkkBvXpoklEly8+AHxmMv27YNUK1Uy2STlUpH5pQqDA/2d1Fi6hSpLKLpOsxFQr7SwYy7JZBrbsomEgu3GEXRAXzoR5/SpY8RiMSxLI5VKoioS5UqB6ckZ5pZKbJ+YYPv4OLGkg+bZnJudodYXp5xL44Qy8Xev0OfFyLV8StsH+Pa3/zHf/MbXMPQEsUQK0fY7OYRrdf7gD/6A6vwSw4ODhGGA5bobztd3m59XgsF0A6atrH3R//EdxDsfIH+7Kx3O2vVzzQ6aNT1Y29s7SvxNAK6rOK9xidpKvc2A60b1tnL909S7G3BdS2uNFBuV/bTA5y/b4npvDO58nzYcr83a3QC43lER1n1NboFq+U7+93aP6/en2w997fv9OXBdTZ8D199yWhcIrdm3372vX16zjWFT7WI3Ewkk0eXDIK/92DYGg516t1nd9sXkjmNtT1a1IcQdvgirfq/qTcePVZJkOq49Etz0W+r2v0W6M0DUppPIWl/erkOSu/1iOmVX+tHNe1VAgk3aWk8zfId1doMBWNEmbhxkCiRZRYQSsghptH30sM2JF17k+vuXKTWaTBx4gHy8j4VilUq1jmW7nVQo1evMX5vksR8+j/39X4JjEh7aRfTIYaKhHE3d5PqNGwStJqlsL3LYQlZ0Ll3+mNnJa+zcsQPDTeIYOo5t0mrXGRoe5pFHHqUtGmimi6FaGLpOy68h5IhTZ84RCpn3Ll4kGc/w7LO/YXB4B2fOXUIETbKZHFEoUJQQ17HYvm2MRDbB6PAYihyRTOeI52IEfohjqrz80lG27dqBLMukkklS6RT7Dh2iXS+wtDBLzE7gOhayKoMEim0Sc03mZyd59NHHkGTBC8+/xEMPPcy1jy8SS6Sw7Ri1yjJh2MZ0XBRV4fy5M9imQavZ5pe/OMLIYC8NP8CLxZGRePxHP6ZcrjE6NgptnzNn36HZ8llaWODipcs88sjDtBpViAJUTaMdhMRjOarlJUw3hoTMfTu3o5kmtuswPb3ApXfPY2oSigym7ZFMJUnETcJIRpZcmq0qsXgSVbXQZAk72YNtSBx+8H6Wlsr8+unnyKdTLC0vke3p47XXj3HwwF6mZybxEnGiCBzLodGskU9niHkekqZz/doMYRRhuwZLywUSiTj5niyNlk9PXw+qphJFEY7roagyU1PTnDp+BtvS0BQfSdKJJXMIWUXRFSxdRlJ15qcnMSwXSdP5s8d/jOfGmJgYp1ptcGNqGkfXaVVLnTyt09dxvCTFUoVkMkMYRPz4Rz9m3949hGET23QwYnF0WaLZaNDbk+Hi+1cZ6O2nVC6SymcBmemZOTzX49dP/oyDB/djGAaqZqBIGstLSxw7dozR4REWFmbZtn2carVFEDWRJY0//MM/5Ou/9xjlcoWBvnEuvPseCUcm7vUhaRG26ZDv6+f5Z55juC/Pr37+5/T0D2EYOomkh6QqhO2OH2MsGee7f/IDUtkctUqNRq3O+PYdNFtNdk3sxPM8nnn2KLt376RemSOVzLFr1w4qlTKnT55iaKgPiQi/HRA2GjTrNRzLRBBhWTaF5SLNRo3A94l5CSqVCqqmEPoRVz++SjaXQtM06tUm7VYLWQ6QVRPVNBBC0KjV+PVTz3Df/v1k0h7tZpWB/hFGxrYhZBndMPAjgW3aNCplVE1FVhWa1TJuPEW51ODKlSsMDPdx9aNrPPX0M/QPDHDs2CmGRwbRDRVdt6iWF+nP55A0BdvSWVouICk6sqKTSceZmZ6ip6+HiABTN2kFAbZtY5sqvWPjFFyb569fZkTScC58jDE1y6H/5j9m+/gobirBUsHn+rUPyI+mac7P8V/8l3/AjakCPYMDtNpNkBQc20EiBDppjjaal9dbTzayHN0LiSNHO3/8/a+uEsC7/f6kFX87cfNY1cbdgetauncBfb3V95PRvcol69XrBJyMbt72+q4/6wFhSZLulJdultlSoKN1+XCLT/fOqbvx6aa1ssJWxmQj6+26wHfN7+7cqPfaHqwjM64pJ9a5dquPHUeYmzLaGgvrrbG9+W8zuUnq9rRdLUetldq6KeqERbz1XXXE5k/w3XbHQZEEEp1jXV/qm76yt3xnu86t1OmIyp+9u8LfZPocuP6W0Yr2tvuDumNCvmOd6poAtvLyb6zIWseiuTFw3ZTR5lw+tfZz3e02d7Gwbt7mZp0XhP/7HyFePYX82OEOUN6CdrQ7oMY9a2Y366q4HeBjLSmRhkZARJ1qu8xHp16lVqzS8FvsP/AAhuvSavtEfkgskeRnP/sph+4/hKbIxP7Vn5D/3lMomkbrd78E20eRYjEiZKrlCnMzs8QTMbLZNPVGG03uRMgMgxajw0NUKg1eeeUYhw4dAEmiWCpg2xa65lCqFLCsGBcvdvwSJVXHMCwmr08zNjpGTz7P6RNv8YUHD2KbBm+9dZyvPvYYEhLPPPMM+w7fjwgjapUaxeUykQyJpEer3sDQIAg1dE1mfNs4pVKZRDyBphsoqgqENFtNkskcgRCcOXuG/t4s7UYF3fLwGw2q5SqDgyOYlsr27dsQIqSvt59qtcbpEycYHxjBjrkoqkatVufIr37NofsPc/nDKwRBxP4De1FUDUVRKRSL7Nu7h4nt49RrZRRZIQJ27tqJbRu8+eZJ7rtvD5ouMC2VIJSolMucOH6SeqNBIp7g5ZdeJJfP4sU92s0GsqLiOh7pdJpCqUg8lsBvg+fatPw6tq1SK5ewdIv5mTnOvn2aWDKDJoUEQmDpOqqqMDw6Rjqbp1KpcfrkcXbt3MnU5BzDQ8P85MeP47k6ggjHsajVa5iWSRD4PPfMc5QKFc6fP8/Y2Ci2ZbMwP89758/TqDWZnZ7Fsk0MQ8d1XQYGBmn7PrKwcGIO9WoZWZYQYUTYqqPqNpblsFwoous6X3jwCyAElmMBCm8eP0k2m+e9d99laGSYerVOpdbAsR3efvttTp06yT/6h/+wwxNBqVDiL478iocfeoTTp04zPDzIwNAgb585TTaXw3U9wjBkbmYGSZbYtXMHumGiagb1RoN6vUgiGaOnpxfTNOkbGEYSOqYRUlheJua67N41gSxFRBEsLc+QSmd4++Q7nDv/HgcOHaKwvMTHH75PMpUmnethYvcenn7qaSzLJJfNd76rRoMrlz8km88yMjJMT28f165eJ59PoRkqv/nNbxgZHsIP2gwODWLbOiLyMR0L3w8Io4jFhUW2T2xDVQzqdZ9KtUGuN48X91BlkygS6LpKLGZj2hYvv/QKPT15TMOkUmmgKBKWpdFq+rzyyutYhsvVj6apVqromkq9WiYWc2iFNTwnjazK2K6NH0I78AlFyGsvHcNzPGzHIvQjTp45y9j4GKqsUWvUef7ZZ9m/fx9tv41jqkxs38GRI7+iUrmZezabY2FhkXQ2TblUJuamUDWHZjPEsR0EIS8ffYWHHn7kpl9xQLlU4sm/OMIjD32RIApxPI92o87I6ADJ+/fSMlW8s5exG1UuJpssF+e59tG7HDr8MJKhETQFWjbDvj3bKMxdx9ZMqsUa9WoNO+YSKithm1bPy7d9Su8ER5+GVoCr9K2vbWKBWjPH/5UA18+WPs1a3+3Lu3mZdZ7NJvLSlvqxyYl7taytt/tqo2tbpU3lijW/Oy4Ln6C9u4kn0ibXtsJns6qf8PuTbspft7b4/zXgxG5L7Mp8cnvL8Sfbqfi3kT4Hrr9ltN62kY2A6y1NW/fMfJdATauA01qt16qSd1kMV0XdXd9Zfd0+3NROrqelXjvxbnR+Le87r93ZbDe/zXlvDlyjx49AqYr87a/etLau39etaOE3BbN3Aa7rpTASQlAWTZqL1/jpv/t/SEQ2qqHT27+XZK6Hdz/4gHg8wcLsPPFUCl1TefjYBewnnsH+wx/C5Dzi0B6a+3cQCsH3f/A4o2NjBI06R548wjsX3uHhhx8iiNpoqknQbuM6JrZlEUbw9rl3aDfr9PT18uKLR3n0S19GiBpHjvyGRx55mCgS9OaznDl7ltdff4Pt2yeYGB/lwoW36evto29ggEajSiabYdvETkQkcOMx+gb6ce0kH390mVQyyUdXp4h7HsvF5c59R21iySz1WpUTp07T39tLGIbYrkskBLqqYDoxBDJ+CGfePs/Ejj0EkcBvtbh86QMKhRLbJnYyNzeLpivUG3Umr80wODRAT28PlUodZMHTv3mOvXv2sn//fhRFpbevl3xPDhDMz87heTGOPP00X3joQSRZIKsKmqpiug6WYwMho6NjSFKIqsDCwgKuF0NVVQYHRzh19hz79uzCMjRyPb0sF4vUbwalsgybk2ffZnh4lOWFeeYXrrFUqtCTG0SXdQzbRlE1IiL6+3uIJdKocoBh20iSQjYTR9VUfvmLJ9g2PszExDayPf3k+/Iga4R+g4ltozhejEqpQi6fp1prY5kGMc9lZHiEoaFBEokEc/PzPPP0izz44EPohsrw8CC2ayNJgkqlEzzJjScwLZ1mo4KuG6iGiWlalIsVXDdOJMkYhg5RwMV336O3t59KrUY8FmNi5y5c1yUec0FAGEkce+NNwqDN7l07eeALD7K4vMizzzzLnvvuo14q8dW/9xVURWXP7l24rkW5UqW0vIwiQxAFOI6LHLbwEjEc1yIMVX785z8jkYphGQYCgSzJyLJEuVLh7bfP0D8wiKKq2LaNH/j4fohlW5i6QzvwiXkej3z5AZpNQTIZx/UcRsa2IckyKJDNpBgZHiEIQiRFoVmvYFsGbiyGLGtYtkW77WOZKp4XY+99+7n20TX6B/qJxT1mpmfIZfIouomumySSCXrzvYQipN1u8cqrrzI+PkK5XKbtt6iWa9QbVRJJl8APaPstenr6OHP6HENDwwRBi3a7gSSp1Kt1JDrb9C3bZWhkgBeefY7de/egGjqmHKfVXGB2dplmQ1AqVvCbPr/+i6dQZEFfT54bU5PkszmGR4eQZIlquYxhmQz0ZLEsm3QuhyQkDMti34E97N2zE7/VJplI0GzW8H0f3TBQVZML773PtWvXabcD6rUKO3cfYHFhCcfWUJQIVTW4/8B91GtFbMdElhVsx8Y0DZaKRVqWSS3wyV2aI0WC/H/4jyhMz6KrLWrFJRYvXcDQCjSrFRKmjJvOg2TzwaUP+Bf/47/gP/9n/ww/8IGOQm69dUnTtM9MyFwBritbhde3mN07cL1jPd6E/qqF5K20121J7NTbfHvwRkpkEa1+Tp/UcWgjkLZRu1tRaq/Q3SJYCyFup6O7C62SK9YU34oP9mqm6/+81Z8N5cl747NitNksRsqqehuM1Xrj031GluU7v6lN6F6+9Xt5tzeTC8XNUVgBst3AdqXcvRg//jbQ58D1t5DW7o2/M+Q4q36vZ/u8J4veZlqvO6yWmwDXtXnu1pnQVyyDIhK3889ukTYDq6vL3b3+Jq1sckkQHXkZAPnbX9207Gc2sdwFuHbTSpS+K1eucOXp55n74Dy//61vUk6meeovXmB8+2FkXSOVSWH9ux+Rfvkk2k+eRvl/f4x67n3aQhDu30nt4E7kXAZZUYiaNUbHt5HwYrz+8guMje9EVTTGt49SrZb56PJVROAjK2DoDrpmkEjGGejvRdYMctksiWScMKowOjyBrEoUiwUIfBLJGAf3H8Q0DWq1MsMjA8zNzZHp6UOSBPF4glAo2J6LpHSsPVEzol6vks1luTE9z8y1Kfbu30sqk0VVBZGQUGUZVTNpNRp4ngeyjCQrhC0fXwh0Xac8dZXd28cxFYVmo4wQEHNc6o0WXiJNKpFAVVVcz+H4GyfpG+yjHQW4XgLLMqg1Wniui6opBEEbVVPQDRUEtOpNBBKj27d1ohkLH9NyIAyYnp3DsEwURcZ1baqVMo7jEPPihJFA13QEEmPjE5w+8SaZbJpqrU4ylebyB5fpGxhGU3VC4PyF8yzOz3Lf7gfRDItGYwFVrXPqzGXyPT2ouoIIfd774ApJz0LWdPxQQsZH11VSCZdEzCGbyxOqGkIKOX7iNA8+cJjOtjwNx3a5dv0GqVSeudkZEvEOgExnsmiaRjwewzAS5PI5bMckFK1O3lUifL8DEkMhWFi8RiqeRNEtavUW8/NLLC0usTA3T66vn+//6Xc5uO8+dN3Echxcz6PZqCKkzvuSyaSoVWv87Ilf8E/+yX+KKsukM2nCKCKZTlEsFsnl8qTicWRNxrZt5udnOXP2BHv3HEKRoH8gj+2aRKGMroCkdiIY64bD8PAog0P9NKotnn32OQYG+4jFPDRFpqc/S9vXcFyrk9fX9RBILC4soCtJpmdvMLFthHZU4Uc/epLDhw+wtFzg3Xcv0tffQ+i3MXQdSZIJgpBQCBr1Cul0Ej+IKJaquJ5L3HNIxuN0nK9k3rtwERA4nkuhUKS4VOLkmXPs3LWTxaVFjr3xFoODfRimiq6raKqM5zrUqjUGh4bQdRlNkymVqriejSLr3LgxRT6f56OPPmR0bJSPrlxHUyQsR8dydIQEqqEw2D+AG4tTbwfUyh9BW+XJI0/yta9+Cc/VqFeL9PflOPzgYarlEv3DQ8iSwLAMTMtAhAGKqkHgMzk9jel4HHv9OJZt4SUdbFMnHk/QarcIozaOaaGZOkuFAulMkt7eHqYnp9ixfTuP/+inDPT3k80mKJcLxOIJysuL1BolXMtEUhRqjTalcpn5hQXy+R4uzEyR7c3gnv0QrVgmOTPPwqEHOHb6Av/g97/BtbmPMcKQG9evIidyBJHGP/2n/xn//L/+r+hJZ9EdEwBN02i1WreAKnSExxVA+1nQbeD6tc6U/ymB61bsV3/Tgetq2rpfawe0re8vvFXazLq4pf5s1sY9XO8Gd/fc1idA6+saTTaQGVcA1T17RW/C5y8toNEaC/lWE9n85X8rG4PyFQAbhuEtQLvWr/5vE30OXH/LaG2Us3U1a9LKIYG0BiStubb695pzkaCTj+qmv4AsdZWT1xyd87f8broZidt9l2X5lm9qt49q5+9OG6LL12AlkBPcOTGs9adAomPBkNZbRG77tUooqyrd8qu4wwNCQrA2H9zqyWL1xCAR/eolAORv/Q6bkZAguumLtJXprtsPQ8CtfH7rHarQaAOKLGMKiY8vfcjsxzM4mszA9iwje7/Apckyffle9uy+D6NaR/y3/zPOd3+OduYCkh8guTbh9lFaDx4k2jZM21B4643jqLJEFDRpt32e/c1zpNPZjtWzr5fhgV5iTpx6PSARs9B0hWQyy9GXX2VoZADdMKhUm3ieTSad5P333iObG8TyPFRNJ2gH6LqKaer4oYykhliWB0Ll/Usf8eEHHzI03EetWmV2epZcLk2pMEdpuYCVcEgm0xSWigwN9dI3PIQQIZIIkdBptnwMw+Loi8+z/9ADlEtl/FYT32+ysFDGtnQ0VUOSZZy4xZGnnmd4bAhdVzDsDhALWm0kVSaMfJYXCywsLCPLCrVanWwuQxi26O/NE/htDNPB0DWKhYWOn1+jTjqdB0lQLRfQZCgXS5iGgawbmEqI3ygzu7BMKpnEMHT8VpPZ2Rm8WBJN1hGSzPSNSQxLZ2RsnGNvHCeXzzIyOsr01FVq9QqpZAa/HTI2NozuWsTiHpbt0Q40xoYHmZ+Zw/McZm4sMDDQi2FavHvuHXRNwvM8lhaWAYunn3mWvfv2QBAhI0gnPBTV4oc//iX79u1EM20+ePd9kpk0MVelVGhhuhbNlk+xtEgQhMRiLoXCEvF4DF3TOfbqcQb6BigWl2jUSxAGINROFGdFR5MjIr/BkV8/x43JKQ4fPIhtOeR787RabSzLQpFDFEVjcW6ObDqDiCQ002DHju1AhKoqtNoNNF1DRBLDI8OYpk6hVCCZSCCQ0XWdfL6XyclJfvbEEa5OfsTI8HYkQkqVOo4XQ5Y7UY8Dv4UIQ46ffocHDz+AJEE8Gacd+NiWSbW8gONl0fUQhE7QCrh48SLptEM27eEjINLQZMjm82iEyJLCjRvTaJpOYbnA1I1p8vksrXqZhGfiB20kTcezXfwwpFyu8vNfPsfe+/bRalfI5BKcPnmKwYEBFheXGB4fZXCwF0PX8X2ft9++wPbt23AcB9eN07iZamluZh7DMFguFrHdGH6rRbMpME0VyzKIxWLIRBimgWVq2LZBtqeXZtPnrdeOkUjk+fijS+RyOYJA4LlZZM1k28QEqmpz4q23SCaTDI6NEglIpTKcP3sKw7LRNBkZmevXZjl96iS77ttHJpenUFiiVa8TBG2yqRxhGNJoNJmanCKRSNMKQgzDwrFshKygqTqubVOvVxgbHeWp3zxHoVBkfHycMApxYh5RpPPU0y+QiCU4/87bZJJxBnv6uX59iosffszgofuw43HkoydRDIej3/kBziNfoG9siKW5OWSrj3cvTvLD/+87fON3f4/f/fqj7Nm9g0rZB03B1A0kBPIG7hi3VoU1AubacxuuETfL3lpTvt29VTjqWgUEkaBrXV7tb7lWybwSc2KrbnN/eYJ59718MkB3s9StQ+qSe7rlpQ2Yr144PymtlUU28HntNHknCLllaNigr/d0L128t6Qc30iIWFfGui0rSl0yoeDO93tt65sNs9hk7FaudeTL2/6rdxuHjXxu17XOrvTrpsy7laCdn/bbuJdnteIre8tnVkQ3H0PX+VuPpvNbiIgoChFReKvOyij8TbbIfg5c/w7TehPhvWxLvTX5rL12U9u1nlZvM/7yVifQLj5S1993TNhdLO8IUHXHfXXzud3GRnQ7bczqBbA7cvB69aMjt4WMu91n9+S+cn9305CtjMDt/tweE03TCMMQWZY7OUA9m3bxBo//8b+hUVqgr78fw00wW1gimRumXm8SNKvEG22s/+5fY/zRD6m3Wqh7dxI+cojmaB9hLslkocCps2cZHhokbDfYPjGBZWlYlo6t6+zaNcHU1A0mJnYSRg2arTpvvnUCRTPo68/hxGIsLSyy5759lMs1jvzqKR790qOYasDU9Czbd99Ho1LHMDtBY6rlIo6X7CwckYQqR6iqRK1cwrQsqs0mw0NDmLqKQsTMzDReLE4qk6deqzIzM0ej0cB1bb73vR+QzyYxNIlqpcjZU++QSMTZu28vhq4yMz3P1avXGR0ZxnUcEFCrVTEMh8WleTw7hqbKJLN5ZNlAM2wsxyESEbqqc/ToSzz48EPomkZ/fy+yBOVSGU3TkBUZWZFoNZuEYYiuK7RbIWffPsdzzz7H0PAgs3NLBO2os9VVDlEUBU23yGZ7CPwWzUaNKPBJpRMoqsnU1DUsx8GSOyk66o0GO3bvwrJtqtUKfb39NGsBb504yZ59u9BNFdd2KRaWUWSJdrsFikwYBOiaedMn0SeMBLblkM1nqdaq6LrB6VOnuW/vfSiyxokTb5FKJ5GijrJlx86dqJKCpAR4joNlx1kqLHL23EVOnjzJrp07yaQ7/onxVIxEMoGsyLTaPrlMHsd10HUTTdeRVAMvmUKSFJAEqizTrLeYmNjBV77yKJHwicUcisUig4ND1Go1DF3l1KlzDA0PoSgSuqEgVBkRCsrLRdpBiGEa2I7D4mIBSfgYpkEskeCDy5d4880TZG9ahXVTp1Kq8ftf/xrnzrzD62+8xf4D+9E0CUU2uHDhApc/vEQ85pFMpZmdniKXzyGpCrqmEwYhitKJVt1olCksVbh8+X12bBvF1DXarRaG5aGpMsPDg2i6jm5qgCAeT/LiCy8xPDzAjp0THYsCBqbjEYSCd89f5JWXjyEigSxBNqEh0SIWj+N5SWzDIRZL0D/QTyRaGJpFvV6n1WqzZ+9uTFOnvFzkyC9/jeU59A/2YzkmQgR4CQ9FU3Eshw8vXsIP26TSGXTTRFZlFFXCclzabUG1XEJVZDK5Hp5/7kVa7Tb79+/Hb7d5+aVXOHv2HA899AUWFxfJ5ntJpNK0Wz6tZgNJFgwNDeF5FrKk8uqrb5DLZtl/4ABhFCErOj//xZN88/d/n0QyRrNVxXESIMm8dJP32PgEjuNQrZT4/vcfZ3x8G5lsClWPSKRybJsYZ3RoAEVE6KbD8bfOoOsWu/bsRdd14q6FqSpolo5t22yf2MFHly+h5TN8HLbpvb7AhOWyS7ewPprhA9djbGw7mYyDH9TIZQw0Q8OJxZEMjepCmRPHTrN79w58Eay7PW/F4tG9bgmx9R1FK7nB1X/w9zbZFrtaGI1urgMAsrImOE/X6ijJXT59G+XMvAeZ4Y4+byXg4T3Y4bYC9Lt53guI2wrvLVmEu/7ufNefIqPDTR7d8U3+umitXLl2jFcdrH73NrWYSuv+2fktr7burjcCa9u+eXKN/Lb+vaw91/kWPumm8Xunte/DVt6PrZRbrTy7baFdOTrnb9/v2i3pf9W+tZ8D17/DtNFHebc6GwPX1Xmt7pX/JwkItdkEtbbsem3fUa9be9aVmuau3VlbZG3KmzW0FeDa/edmY7qq+Vv9klafgFugNQxDhBA88cOfotHm/sOPkO3fhR9piEhFQVAtVahViwx+OIX+z/8VkWUwv38bs6kELd1A0nQcx6VVb/His8+yb/9+RBTSqFZotSOajSbNVhPNTmBaJqapIQtwE2lEFFGrN+nr76fd6qS5CFoVVNXgyuUrCCLicY96o0wu14Oi6CwuzJBIJqnV68zNzONYJoXCEjcm58n35gmCAFVXcdwkr770Mvfffz/VWplYwiUSMrFYnHa7haZo2I7LqTNn6Mvneeyrv3MTwLjYdoyxbaNopomsGXz84ftk/n/23jNIsuy68/vd5016U95XdXV3tR0DoGdgZ0ACIBYACRpwYyXuirskl6RitR8oMoK7sSQlUasVQyGuYpeiRCOQA2AwAxAYC8xgBuMNxtv20758ZVWlz3z5rD5kdXf5NtMgQQROREZkvnfvu/e++/Id9z/ndHQjqzq6IhPhQyTz0ksvkUp3Mr8wzcgHtgAAIABJREFUxc4d4ziNBpEED9z3ML29PUhSyPxCgZgVJ51OkcoksWMmntuiUa/x0EOPE/gB2Uwey7YJAiCUaDYbmKbNI498jw996EOMj++g1aqRy3WCAqqi4foBpmnjug5CUjEtGy8IEJKMkGSIfBzXxY4neerp59i3fz+SCJFUjUqlTBgK3nnzbW790M3EEnEkWUWKQuJxm0qlgiwJdDuJCH0Mo132xY7HabVc3nzjLXr6utH0dkKsoYFe4vEY6VQSSWrDrC3DaCuduk69UULTZV5/9S26O3vQTZlXX3mTX/y5n+W1V19meHSUWMIm8FsIEWGbFk6zxbPPPUNffy9T01N0d3fz7rtH6OzsxGnWETI0aw2ef+55EskEYdj2/EVRRDqdodl0CMMIVVPId+ZRFHVF+VEJAhdFUXn1tdcZHhlt1zCVFUwr3i7fI0ICr0nMMhgYGiMRj+O6LoFbZWZqjsHhHnbs2MnoznHOnT2DoevohsVbb7zB2bNnsEyLRDJBo14nnU2jWRalpWVidgx5pVRXs1nDbQYcPfYOB2+5haXlImfPnqdad8jnMggR0Gy1kGUdL3AxdBXbMojHY2i6TL1Wx/MCzp8/TzIeozOTpmegl3wmy8zsDHsP7MGK2+iqzsL8IktLy5w4cZpstgMAXTe4//77GR8f58EHvsPOneO4gcsHDh1CVS3q9TrJVIqYoVKplDl//gL4AflcJ4XFBdLZDJVaHbfpIONTqzk4rRBFjohCHyuW5KYD+3CCFtlsGlWCsR3jTE1N0dGRI2nrPPHUU+zeuYtqaYmICN93UDUNzw2IQome7h7K1UWiMMB1XQzDYGhwGBEF6LqGYerUGvV2/dnRUQ4c2EciGeP++77F/n37mNizC03TMCyDIAo49u4xevt6eeHFl+ns7EOWJU6dOkN3TxcXzp1pQ7ENg3gyiarrhEGIUCQUaGdWbrm84zcZ7cijvvQ23vQcky+/iX32PLGP7Wewf4jC3CyRr/Lk955ix0A3c7Mn2b37Zkq1MnYitrkHZwsh9Frhe9IX7mx/VhmOrxS3KonLY0SEOI6DoijttqtRQ6t4yfUqdlfHR3/4iutm17yWuV2Ncno9iuvFfXu/alAQBGsg6f9QtNlzvmXbde22fda2UVwRV6e4bjsBuGpddHPj0I2nfxgjxNXJ7f+Q5Xp+orj+mNBFxebSy3UbGMqGvusguRdhuWv6R9HKucslZzbQyrlLsN5o6/HXjLlqDestYhugHOuZ/apz0brf6+/Pmt+b3YRL59Yni1pbHqddf7WttEah4GIpna28rZc8uWLFOi6Az9+xrcK+2TI2Y6BRFLWvy2po8OW906UmDhpCAjXU+JM//Pcsnj6OSkQUgh9qZDv6mZmZRUSCiYN7+LV//iUm3z7G/r96APmBpzmSjiHfehN116W/rwdNl9FNk0q5TNiq4bY8Zmbn6evtIWaqmEacRx/9Lvv37wVFUFoukUhkkE2D6alZnn7yGe644xPohk4QeZiqTLVawYzHaLUi9uw9QDKdoF6pEE/l+dpddzMy0odtWdSqTeqNJh0DA1jxJLqmEHgBc7PLyKqGGdfZv38CWVXbyVxkBUUz0DSTUqlMGATUq1XeePUVenp7OXLsKIYqYRoGsqIgqRqqLHjqsSeZ2LsDz2sRtxI89dTzjOzYxczkWYZGhhGRxHPP/YCxHWOoho5tq4yP7yQWSyAJmeL8PFNTs/T09+G1HHRNx/MDVN1kqbBIRy5LNpejvLDM0cNH6BvowanVkFSF0R3DDI8OEYYhsojI5tIoqo7vtJAkCT9wsSyDMBQQBgShg1c+D6iopoWsG8hIGJZONpsnDBQKc+fp7OxDswx6OlOYK0pbZanMzNR5srkcmqFjWBZ+q4WmGYQRBF4TrxXy3olT3P7h22jUyqiaCopFuejzwnNPMrJ7F3ErxtzsHE8++xIH9owQSAGqbOBH0N0/iKIJNN1g1/gIc1OTHDlxmtEdg+iGjlA0VEXn5ZdfpaOvj7GRQZYKRb7znac48KH9JBMWuqYhyQrNWoN4PM3UzDyHDx+mu7uXVnWJZCLG628epV6rc+LkcUzLRI0UEKK9/6ZJaXkJp1bDawbMzM7ScqpossCtezQaFTTDBCICt4muGxAGGKqKopnsmthJyw/RTAvf8+jp7QOJlay9QwwPjjDY3y5Z89Zbb7F/zwGKC0vEkymOHTlGKqEgKRqGaWNaBqqiEwaCp596jp/61J3ELB3XdZGEgirJLC8VSadzCBFimQLN0Ak8jyeeeY7de3eQy8Zp1oqoaoSimJw5P4mqqMQSBqpq4DgeQegx0N+HJAIKS3Pke9oJjvL5LjKZNDFd55lnn2ffvgPIUkCzViTbkcd1W4S+h6LJJOIx7FiWe+/5Grd/9MOYMRvPaZHOZomEhK5pPP7Yw+ye2I1lxZmbnWVxsUQ2YVGrVJBUlSBoksll6ezqotlsMjg0hGUnMO0kb7z1JroiU6uWyHUNMjczS7G4RKlWorOzDwK4cGaKdFKlHtUxzDhBs0zoNkkkMxw+fIx8NoOMz96JnTTqTVSpbaSxbAspksn19hC6Hh0dOdzApV4p0dfbTT6fR9YUunv6qNUreEELQzXRTR1VldDlaCVZVcitH7gJ0ZOj0ptHbbYYvVCgUqpTPHyOxvg+Hn36VQZHRtl/4AB//RdfZ2iwj0w+jheBLBRUTaddxcMFtvaoXk/MWRiGyCv1iC+BJMVaxrmWx0crYT0rB0JQZKXN9xCXwk3WKAqX+NlaCPJF78xquhoh9iKfuhQWtG2fLZj6dj22MJpfPL5SDO+SXLOdCnJRrrrsZVobNtQuU3J5ZSAQ4mKbVXLFOpns4n12PQ9ZkSGMNshdm8lP2xk8VssG16pMrEetrZ5vxFq015q1SGvHuhyetFYW2ViGiUuIsPVK66Zexk1kxsvXWSuzbksrz35EtCGU6vK02uu9KFsh1iIDr1VxvV7v5/tBAWx33W3broMcS4IVCPGqILR1ZXpWf8IV2HH7Nq+CLocr5Ta51ujgjfQTxfXHhDa8dDY02KbvFte7obRekbzaMa+ggK6mSwH+V5Mxb8OBbay628UybOFh3ezlEwGUqojBHsSBndsqrldDl+Euq46tu6YX2SieoHz+Aq+/9gK3ffCD2KksXQNjZLp6yWZzRBGomoplJrjz9s+R/N//gr3f+wFyEOJ84kNE6QRfvfcb3H7og1SKi0SNBk6tTiaXw7Rt3n3nLX76Uz9FvVElnohh2Ab9/QM0Gy6pTFsBLS4VsG2LWDxGq9mgs6sTx2th6QayrGPF0jTqVVKpDN/+1t/R19eD7zYwLYv9+/cRiyUolSucv3COfQf3IoKwfU3LoFav4NY9SosLePU6ruuiaQaariNkUBSNRqPJI999hFtvOYAQETfddIBsNkMQSqSTSZrNFkEY0ajVERFYmk4im0XVTGRVb5eoUQSJhI1pmmSycW66eT/lconHH38cSciEocBxmiACch1pVMPGtGNUSsttz4UkCIKAXTt389Ybr5PJZpEUmaHRYZAFlmWhqCq2ZaOqK4l/TJMwkqjUaqi6ie95yAKWFuYxLJsH73uAfQdvZWl+ATPRg2HEUSSNUJKI2QZLiwsQeMRT2XZGSRkiX2JxuYShm2i6RldvDy3Pp9Fy0Q2TpUIRIQS6qdF0mpQrNXbu2oVQJOqVMkKS0XQLEbQQNMl29+A0G2SyGcZ378VplpENA01R0HQNiPCbVcqVCvFEkgiJ3bt3YVoGhm4iQp/S8jKvvPwqE7t3EgUuM1OTHPrgISxLhUBCV1VC3yMWtwmCiIGBIWZnZjFtGytm0fICqqUKp06d4iMf/jDpVJpIirgweYFSsYgiSQRuE9MwyXf38dIPXiGfz5JMxXnooYc4eHAfXuAThRGabuC7TTRdp9Z0CAIXp9VOplWrlUnGbaYuTLG4sIgqRUhC4fEnnuLZF17gQx/4INlsBs2QicVMIiHx0IMPsWdiN8VykUS8Xes4k8ugqyoHDu6jVF4mbpkYuk5AhOOG3P3Vexgb24EgRBIShpWh6fjs3L0PXdEJ/YhkIkOlVCcUEbYdo6Mjj2VrCASSpOD7Ho7vEbdjZNMZFEWhXqtQr1dJJROYhs47hw8zPDKMIksouo0sa5i6hpCidrI2uV0TdaC/h1Q2i6qoSAKmLpwnmcoQIrNr1zhhFCFJMppu4Lkuuq5z9PgxRkZH8V2FbLYLVVWQ1bZS/t57J8llc7z2g1cZ37GLfPcAU9NnyaYTGLqKbsbaCr4hk8vnee2Nl9i9czeyZCArBk7LQUgKb7/9DrZlkkhlkTUN3TCZn53lxZd+wMSefVw4fw4RRiwVlvi7++7j9o9+GE1uKxuqpnL+wiSWZdPd1YmqtLNTl0oV6jUH204gyxq9vT0sLrUzfUuaStHSeKdeYnczwD97HrVW5kza5NvfvJuPfvgQ1VKFv/3y/8u+/RNkUikWlitk02kkBQIhIW1nsLwOvttsNpFleY0XdTt+24alrqJ1oTHbc8+1ZyVJviYP2xbTu4Lieu20lYfoIpT2WuSji0ltLkO41zfeKDtcHn9rmezimYuJJ+XtjBabGhHWNbkKhWc72k6GXO15X39u/d5tK9dsUFwvj73dvG4orVnH9uOu3dn19/eHH+N6o9b+fq5zvUryerixQLrsXHuf6/qJ4vpjRDdScb3hdBWK66Vz6z2qbG8x2hC/utJ2NXRqgyVrw6CXcfwbsxxv/YLa4J1dt441zECAOLCr/RECadW5rayN2133Ur+VtbYZ8uVY2DAMqVaL/Oc//j0Sps/BD3wExUxipHK0PVEKjXqF4tx50n/5TfR77mfgGw8Qbzr4BydwDuyi5rawbJOD+/YThQGe61Cv1RAC5udnkXWDHeNjOM06qWSKN98+gmnp6LrFmbPnSaUzSEg8+cST7Du4n6XCAv19fUiqQSRJBC2PWq2OZcXQZIX5uVkOHtxLImatZGUVeGFAtVqhq7uLWDyGqiqIMKJRrxOFPpqu0tk/QNOrE0+nyKUzLCwuEYvZRGE7SY+u6ciyjBU3SaXTLC4tYVgm+XwnzUaNrq4OJqemEUh861vf5gO33oxmxnnqqacZGxshFrdIxE0My6blNgnDgEa9TixmMzg4QDye4Mzp87ieS2dHHkVTqFbqWJbJ6VPvEQGyInP48BEII0ZHB0mmUviBh6KrCEnGabYIAp9yuYxpmhDB//MXf83NN9+MbVp4vo8iy9QqdSRJworHyWcyaEaCZCqN51doNCogAsJIRhAS+iECmVOnztDZmUWWBLWmg2WalCslJFVue4MEBJ6PIikIQpBBVhU02UCICE1X8bwAEfk4jsOF8zO0/Dp9vV1oZgJdBiELdCOGCD10y2ZpfhHdMFleXmS5sIwdS6CqBi//4FW6uvKYpsF//a//Nx+8aQ+KqrF7Yg9EHqZp0tOdJ/QiHKfJffc/xPDwIEHgAYK/+ZuvsHv3HpaWCxw8eAA7kSSZSNPV3YFlWywtLxMhUBSZRCJJMpnC0E0C32tbgxXBnn376O7polgq0dPdRTqbxXcdAFTdpFoqo+kmsqqiqgqEEvVahYStEUYgy4JUKkOr5SArOq+9/ga/8t/+N8zNTpPNpbFtg1J5mUq1SWdHnt7uHjRdx/cCJKW937IE9VqVIICW20Z1yDIosso7bx/l4M37cF2H4lIJIXloho4kAirlBWK2TsOpE0nRJbh3KpXG9+oIBLJQefSRx5jYOwFhiL6CKKgUF+nsyPPu20cY6O+i3mwyOjZKy3GYm1vg3SNHyGVTCEnQbLjE40kc1yGdSRKEEk6zSa20hGXH+da3H2Dv3v3c/fW7+cAHDhEGEYePHMX3mnT29DE6OooqCbzA4elnniSTS+B6IclEgkQsxr333M2nP/Mx4gmd6dkphobG8FoOYRhgx1M89p2nGR8f5957H+DOT/4002cnmZ6a5MixE4yM7cTUVQYHekmnU/hBiBAyjlMnm0mxa9ceFheXyWQShJ6LZtocPLgf36vj+SGW1a5DHU+kcVs+Lzz/PDvGx6g3W5i6xdzsAi+9/Aa5fA5dayuFy8UiqqJhmSa53h6mLIXeUCZRKHLT8Cif+N3fplqtUK00+Bf/6l+STieRIol//Wv/kqQWsHd8GEm3gY1hH9fiEVlvmJX+01/Ac68jf/yDqxnTWp6xgYlcvtbFc5cNoWsTAa2d1+axs2uOCHEpfncDD7zUa4NFesN13i9t5XUF1uR+WJnQliRJ0rp65+sV9cv7t7GU0HYy2To+Hm0TK7iN4rpZ7ovrUVQ27tHauW517mKvy/VNxZrfbNJ20zEuDXV9SvdV99tEcd0SNbB6b1fOXb7XV6e4Xg90+3o85tdyXbHuP37x3PuZz+pY2E2RI6ucPBHrlNprXOu1KK7/OPMm/4R+Qj/CJEnSpn/yrY5vRWEYEoaXIUuFQoEHH3yQn7/zl/k3v/Xv2HnTp2iGGo1IQdVtpk8dx/jD/0z2N/+IkX/1x8QeewlRcZjePc7R3SO826zx6iuvsLiwgOd71IoFFhfmkVSdgtOia2iAzs4cmhThhwIQvPzya+Q7eglDgaZrjIwNEaFx+OhJfumf/jOWS2U6OzrRVYu77voaQSRRd5qk0wkqxXnm5ubo6u7ENDXCKGBmZo5GvQFRW/h13AZOq4UfQKRqdPb2AhJBK6BeWCKXjKMKiVAIsvkcqqxQLCwxPT3NkaNH8XwPy0pQqzk88+wLgIIfOFiWRmFxjsHBXqxEou19dBttr25hAU0WFOanCAKPMAqJx2PE7RzxWBpZVsh35HBaDfIdeaJI4rXX3qG4WCH0XPxWlQMHDtDf308+n+e2224jl8+u7LEgDDxEFCIiMDSDeCJOOp1u778s8du/+Zu4zQaV5QLz0xcozM/z/IsvkUh10Wp5lEvLhFKIF/lEzRZSKENk0ihXadQcZNXkuRdfZ3RggHqtQsNpgdJCVSOy6RSWZREGLVqNGoYisbwwi6oGCBESRuA2XO7/1rdRJEG9UiUIAhLxONlUhu7+YUw7RaPWAM9tw3BbDqXFIs1aE9OwCQOZbDbHY0++wFNPv0jgBowPjxKzLU6fOsUXPv95QnyEJAhlgapJSKpOuVJmenaWqek5mq6DUBQMO44im4wMj+F5LQaHeqlWlvjrv/oryqUiJ868x+DYMMM7xkjlchRmFiGSefDhR/CExLfu/w6mZeE2KqhqRK1eI5lIMzdfwHECosDHcWpMTp7nqWdf4t57vompqHhuwMs/eB1Lt1kqLCIUDaFKRHJIvnuAEIlbDh5AVyKGhnsxTZ3p6VlcN+Bbf3c/lmVSKi/TqDocOXyMZtPj7q9/g+88/AimaWGZcc5OzuGGEW6rweE3XuMzn/lp4gmTSqVEMpngxWdeZur8AkvzZaYvzFMpO3z1K9/EdSSEAENXaDTqtFpNFEVmYaHA8PAw+AGnT5+mUq0SyYJEIgkI9uzZR9Opc/vthzh27DixWIz+3hwf/cgh4okEIMjm8kRIZLJpFFXG8zzclkelUsKwEvzyl36Z8vIiuVwHkixTKldoNlvs27eHeCqJrChUazUadY9kopPANTBMCz/wqVXL/Hf//FfId/fRavmMj4ziewoXLkzjOA6yLDGxawiiOl/60ufIpC2mZ+axTYNcJsnzL7yM63pocnv9h996C3yfmNWOzT1y9AjnL1xANzTslEkiFePMe8fQCajVmrz08qvYsSQP3P8QitzOEr5YWAJUggBsy6Szu4sg9InCkKeffI5SqYS74k1uNptUalWW9+4gEBLqs69h3f091FiKf/t7/45SM0KLZQglnY/duo8OU+KuP/s/OXP03RtfhuLCHFyYuXHXu0F0kSet5kv/GOnvcw1X81z8qN7Ta5VZtqIf1fX9uNKN2rf3Q6vfFTd6/3/icf0Rp9Xexe1MWxviX/8e6OJYl0rnbEeXYhDac43CsA1/E2shTlEUrYnpXO2dvWKNslXXaP9eiUmJxJqY0fZnLer/Yts24mGtp3Q7y5QAODfdhgunEmvmt77f6njlreiSZzmUCCUJKQBNmDTnp7n7z/+UW/fv4rd+6zdoKRKTU/MkNIlGsYT1e39C598+gDw5j5OOoxy6iYWRfhrdOZ54+UUO7N3LO2+9TWdHB0HgY+g6paUF0GzKxSLlpTK6bpDt7CRAQVNACiNOvnea3oFBZCFhx2wg4qt3fYWZ+QVM22K4p4tAElTrdQgC4qZJPGYhywqyoqOqCqbZ/l2vNXjgoce4MDXLQH8vmUwHpVIRVZFpNR0WFwsI2iVHNMvAShj4oeDUqXMkUpkV6Bz4QUClWqNvoIfuri5CBFIUMjbYjyTB/OwU2Y5BZuYKNOo1NCmip2+QSmmJYqXEodtvpVqv0tHRzZe/fA+33LT7UkbBSqWEbds0Gg1kSaawtMje/fvpHRhkaWEWWTVIpPOESBRLpXbZHUJMy2Bueo7lYoVUIsl9DzzMjh07KcxPEU9lceoOlXKVWDwJRGiWiW0ZmHGDbLqbocEuyosLhELmxZdepbcjT9yK4QY+iqbhNF1efeUVduzahawIens6sFNxAiJkxeDC6WmSqTjgI6PhOg1UtV0H04ybKIpBpbgMhHgh9PZ0YWgaimZgxRNEAdi2wvLCApIkiEIfSY3xxHMvsjw/RzqTIZVMIlRB4NSQVZ3RoTHGxkYwLB09prM0P0tHRxd+6GAl8mi6iec2adQdZFUhDGRkBXp68+SzXfhuA9tUmZ5b5MR7J9g9MU6uI4OsGMhE9PUPETfj1MtFQq9OJGSOnzjGU089Ry6TZnS4n5PHTjI0OIwdT9ColXnzzTdRVYPHH3+aXbvGcf0WuUyWdCJFT28fHzr0QUqVIqHXIpHO8vY7b5FKx4knUpiahdOoUCst0WxW6O3vRbMsfNcjimQWF5c5dvQoH/3wITLpFIapols2nZ1ZwhDeePMYS4V5xsdHKZeXicUS5PNZhKzQ0dNHMp1BIHH0yDGGRkYYGtuBbiiomkRXTxfnLkyze9decukMyO1oLUlRcBousXgMyzbo6Mhz/sI0I0MDWDEbP4gIfR9dV2g6NexkijCCdCaDppsUCrOYuokkZGQ5RMgyQpEg8PCDAFVSSCRixJMxlgrtfdYsm65MG/5811e+wsc+cohkMkmr2aTl1LFjBuVilSiMaDglOjMxZEXj9JlzaKqGLAIS8QQ1p0UkQrq7ejFtGVU3yXZ1oKgWoe9QKS9SbzqMju3m8JG3CRGM7RhGVmTOnTvP0Ng4lXINVVEwzQRHjhxh545RWk6LWCqLphoIAhLJGMXlGu8cOcZAfy/jO0ewDB0hBB09Xdz7jQfYu3cXvl+jVo8oFRfJZ5O4Qcje3RM0Gg7Hjr3Ho489wYEDN9NyK6T37yI8M4k6XeDEcy9x5+/8W5K6wn/8o//IR+78OPtvOkDHyG7233o7S5NnOX/2GP0jewnCEJkaSPq27/krUfTQk21e8IU725n92ehFEetiU1nFdy4LBCs5HDZAIteMtp4LbTqndr91Y64qx3HxyOZCSHip7YoUcHn0qyz1sjm1Y/DEauFn5XOl0jSrPceX53VpFavabn1u/ZgXywlelF9Wx1Nuh5i7UhzkVccyrlvzxaoQmwy5rQf/0j1bt+TNZKH1t2DTeV2Pt/FSzHb7AbsauHL72eeSrIngUvmelQjuq0LpXYnej/d7O5ThdrHll5/VzeXLdR2BdvnFiI0Zg7dFhkSX471XIw82VYRX54jZIFVv/FyMo13/EUK6Jo+r+IfOVna15LruP46J3mBakwo9XHsLVodiXkP5qRtO6+EJm5J0uY3E2lTp4ao348Xzl36vUly3Sgu/OnnVmt+r5nWFxMCXxtwO4rDV+vxf/w8AKH/5v6wZ92r7r6aLfUMEcghe0+GeP/0DDtx6iNGDt1H3JDQRgmpQqy1R+P4L7PqzbxEZGqXhPhI7h2i4Dqphc/zEWQa6M7i+z5F3D/OJOz6K5wZ4ro8kK5w9c4o33j3KZ3/ms+hKm/m7XsCDDz3G57/4czTrZZYKC/R0dtN0SvT09NNstNpr1XR006ThOIStOvIK9OqxR79HItvF3r17ueurd/Hrv/Zr1Ot1JicnmZiY4Mt//Zd86ed/jlQ6Q81xUVUJw9ABGVVRCMMA13MRgraAmetESBKNeo1ICGTNACS8loeqKRiqQShaKJJCo9bAadXJ5Pto1OvMTJ4nnUqBBKZp4vkega9Sq5VBhJimgRWzCdwm8WT60t5LQsb3AwQep06dpiPfhW3HcFo+lUqFcqVKNt/Jm2++zh2f+BiSaMcO3nffg/zsF77Iww9/h717JwiJmLpwngO33MSRd97l4IGD5Do7WFyYIp3rwnEcfL/FV//2m/yTz92BCENmZ9qKsmpo6IZBs1ZBVTV8XyaS2/Bep1rl3q/ezT/9F/8Mp97gzHvnePfocb74858nlYqzvFxC1w10w0DVVMwT51aYYvv/02o5l9a5oKtkd44xM3WBTt0kODuDZZnIcvs5XF4qEY/FmZmbJvvJ25mZmYfQZ9CNkFsB9UaDWCyGokiEYdsgFaZ0nO58W1EXCvHZRcIAPM9HUWUUuZ0tOQx9Kl0pIjOJokgwOUNUKKLrKmEYYZomjWYTyzKIdJUpXaBb7WzIPYUytVoVwzCo1dqlfBKJGI7j0MimuO+5Z/mZT32GvASVo+8RT8RR1HY5mihc2WdJZnmwg2atRCKVxZoqILdcggD8oO2V0w0Dz3PxU3HOBS3y+SzNQpHg2Gm6ujpRNQNJREiSaMOuJYnmQA9yIo5CiJieR63UCMMIISJ8P2B6Zo6enl6EqTJpq9iJFLahoh87h6LIRGG77p4kCVzXQ1VVnjl9nH133I4i6wTLRVKlBoHvgRAoirYS6xcgSTKtPUN4nkul0iAzX8SIokuQdCHJbVh3gNJFAAAgAElEQVS0JDFVq/HEyeN84Rd+Ab9aJTNfQBKC5f5uisuzdPT0AxLl0hKJWALfDxEixPMdnGZEobDEQmGKn7rjThqui65rhJ5DELQQkg5CJogi3jt2lmp1ieHR/aTzSaIgxGkW0U0FKZTRdJnlpTrpbApJSIRhxPz8AoEXkkqn8fw61XKTMArp7u4iCHzsuE25XMY2DKq1CqZlUKt7mKaNauicPHYCW1NJpWy+8Y2H+fzPfZZsR5IwMgkDF4HPfd9+kM9+6pPousbk5AVSqRROyyeRjBGGEdXlOgMvv4t76wSP3TaKmekmLkLcVkiqv5tMvhvdtJFDl/OHv8/BD38aM9OJJ4OIrs3bsZof+r5P9K//ACEE8l/+8eUMtesV12itByNaHQ+7oRa5tGactbR5281po9fk8ry2K/kTrrS5BM7c0H8r2pbni61hietloq1kgCuVm7kmJSVcJ3tsI6NdSSa5njlskAMlscbTtUmhha37bjOPvxe9QVqnIEfbjCttsv/r5roZhHXDmsUPzyt8PYortOOlwzDcNARty3G2gIFvt3+Xjq1+d626H+vLfN1ICiOBaZpX/Y/4CVT4R5jWKF4/wgaGa8W0r06osJWFaTNv5bVaua7lvl3vPb6aOa2/9lZxOqvXPle4wOEXnuV//h/+DXtuuokdB2+lWGu140DdFqWyS+OlE+z+v+7FmRjB/dydmDuHQVERQsJ3XZbmZ6lXKmiaws6dO5idmaVSKWOYKoXCHAMDA/zSF38W33UI/Hb5BNPQ+eQnP84rzz2P5zn4voskCTq7+piZXaBcrSI0HVUVtJpVDENFyApmLEYkIg7dfoid4+PEbIsD+/YiCHjlpRcYHRlEleHXfuPX8bwWSDKqouF5Pq7roSgq58+d48033qRZr1OtVIgn0iiaRhCGVGpNNM0k8kMW5+f5m7+5i0qlyuLSEoHv4bger77xDkQyrVaLSnmRXL6DViDz9DM/YGmxSCKRR1FD4vE4T3z/KRKJFM2Gh+tEVCs1gsCnUi6zvFykVmswX1imt68fWWkrWeFKNuCdO0fIZFN8/OMfxfNaSDJEUcjI2DCIiEqtytT0JG+/8Qof+NAHSSVTnDhxgkw2Q8ttYZgWiqIQhT6xmM7HPvYRurq7yXX1cNtHbqdSrVCvNahV6jSdBl7gMTs/y9lTpxEI6s0Gv/TLX6JRrdHRmWd0xyhf/OIv8OCD38FxPExT5/uPP0nTaaAeOYXvBwSex0VjtK5p6JqBoqgkEzGcRoNMOsViYZnl5WWq1SpO0yEMQ9LpJJGI6OnpRsYlkYiRy3ehKCqyLON7/hqvhSRLNJwWkiRIJdPIsookJArzC+iGDgjclksYBBDB9OQMD93/ILVqEUkK20qz1DZmCBFhGjq+5xNG8PiTz/Doo49i2RoQkkymkGWZWCxGLG4jBGiaSixu8Qu/+LPIUsTMzCTJZALCEAH4vk+1WqfVahFGAREBCAldUwkCfyXWVWJhfn7FSg2KLKEqCoP9/UhCYBomvb297RhnWYGIFeEwQpYEykrCriBwYCXuJwxXrq0o9PX1thMnKQqdXZ2YusJXv3IPS0vLBEEARHie1963oG1ouuWWD6DIKoqqYKoGYRigqCqqqlEsFnFdj0JhkeXlElEQUVxaYmF2HtfzqdcbVMrVFZlaIK9AcTu7Ovj0Zz+J12rguR6CiDCM+Nu77mZych5DjzO/UGRqqkClUuWhhx6mXK6gqjqaoaJpMocO3cJycYGW67CwsMCxY8eRJR0vgHJ5GV2XKBULDA50c/ToWzz07Qeoleu89eYxCHRKpRrF5Tq6rlCtLLG0tEQYSiRTafIdSWRZ4AcSru8TTySQFQVV05i+cAFdlZibnyUWS1Kthrz9+jGeefYlZibPYlkmheUinhuya9fOlSyxgvOn30MSEqpqMjo4TMsL8fyAdCaFaWl0dmapVeuEEbx78jjOnjHkY2e442c+jR9FmCmLw+8d5fd/5zewdY8wqDI3f47RvbfyP/3BH6IKENtkGN6KPwCXypqt5wVXm1V2O/61mkff6Fi7i9crFouX5rsVv16f3OVqaH2fNSg0rs/7tfraV7on1yMbrO5zPWu+1jG2ouuBZ17Nc/SjQpvJiau/r5e7Vsdo3zBjxXXOdbsxV3tXL+7h1f5vr/SOuJb9uwjxXT2PG0kX53OtsOafQIV/hGk9A1j/OG4Hz1hdcmb9+e0sP1s9RJsxoqt54C79AWEFdhIhZAkhSVtOXkiiHei97ZVX2l5ESUFbCOUydCFaBRvZAKFZ/1n3MltjpVynTG9ou6qOa3QJ2rLWyrX+pRSiI+Oh4OBLgtCwiTwfU8i8/P2nuP/Lf8knPvcL3H7HJzHSPUzNTFMpLZKI2SyXXO7/87/io1/+Fq39u2B8lOWFRZ558mkGRoZwHYEUQTKuIKSQRsPBjqVI59JcmJxF10x0VSYKBJqucur0Gc6cmSUIPcAhYemM7ZxADgRdXZ3ocZOvf+1eYokMA2MjmEqMIAio14qIyEHICvValZbrksqkEX6LhfkpDu67CSH57Bzfga4ZCKEgqRapRIamU+eer3+bgf4hAAqFBZSYxfjoKIZtotkmimoQBCHlUoWXXniLo0eP0d2TJxbTOXL4OB89dCvVWhXFTCBJKn0DA9Qdl4RtEoUypmXz/e8/wmc+89PYiRhe4KIqIYaVoK83TaVQ4L6Hv8vkhVPccuutqIQUq01S+S5cp0om04FpmCwuLBD4HrJCu0ZrBF69gmHqLBeLWJqJaph0dOQxbZ2xkX52T+xkbMcONFVFSCE33XyQKPJwWxVsK0nkOciGDl5ErqMTXbdQpJDC3DypbB6v1SR0G2SzeZxmk3QqTty0iMVMFMNCseKYqoUfgmYpEDYRQHd3N6XyEqO7JpBDBT8T5/tHXie/Z4gl3Ubr72FZh+dPnkLp7sARDoYdZ3F5mWR3hoIkkdw5Bh15vv/uO/TdepBGPIbal6dUKaNqBsvLizz+xpvkdg1zqlEmf2AvXjqFk9QIO5IEMRuJBEIohLLA78jRSOos6Tr6YDczYYWCHEBnjlxPN72DwyiqhmcZRD0pZiIXtS+HnzGo5nLQlUPKJJjYMUz/6Ahe1ELq6iJMd+Dn43jZFLOhD709+HEbP2Ywc26WZDZGrKcfN5NmUZGwxoYoihBjdBi68ywEDoHnkUznkJSIkiYh93TRiiXQ+jsIu1MsKhFq/yBHpi6g6Cp2PI5uJykaOm7aYpEaZcOgIGl847nnyEwMYCSTKCIgDKo4uk4znUf0dBLlcyxrMl42QSNhEuWSKFLEKy++zOd+7rOI7hytTIIHX32J3J49iJ40JVNpzysZIxIy3/67Bxncsw8no7IgexgDQ3j5OBXTIswnsMfyNBoOphmj0axgDw7jxKGs6ZijfbjpBM2EhZeL4dk2tUoVgYRixtGWl4gI6Tw4welTxxke6sMyNXRdJZ5Osf/AXlRJp14vEkYSZ09fIJdN4UcBtq2QTKRZLNRx/ZDnn3me/v4ebCtBJt/LwlKNA/t2MzzcRb1eZmCwB8OQuf++h4nFYiwtLTI4PIShm/x/X/5rVFVCkTSCVgOQ6envp1ou8vLLz5PI5ejMdRIEIMsqnuczef49lhfnGOjvY7B3AEnRGRgcJGaZ1Bp1ktkMy4sV0qkkCJlGo0Ho14klMoBLvVYlFU+BpHDs6DGGBvsZGBrjO9/7Lvt8hYdyFr/627/F7/7O7/On/8ef86u/8qtUy2VefPEFDt58G6o1yG2HdvPQA/cwPjpOIOtESoAUhWzlH1jvRW2XypIgiogebvMU+fOf3JJnrYBvQUggLha+WeE761xJF8F/ROHFLyswwMtn26iAKwmQW3NRy7Iuj7fOOyPLCtEmOOL3qyBcLlEjEFG0Zkbry+5t7LvROHBVY0Ygt62VmwhlYs3ncjmjTZSl96kbbarIbLHmi7La6i3YKrzsqozxK52ilUCrLeezbvztKLwId7/0gEcrYWgr+7nOyLAe8rvyFFzbfV3Zp8tw7tUu6bUlkjZ8xDZtr8J9vZlBav2xTdd6FQrsFR79zftcuu4q+O8Wc7jRJEnyT7IK/zjRdorrtnQV78etHsRrOX7FP5AQG5ResQms41quuabtml9bx+pc6YqbKeVXa9FdrbgiVrXfwkBw8bdEQCAUXEmHcgklDHnisUfJZdP89M/8E+YKZUzDIh9P0Go10EyTZKaD+oVJPvJnX0fdPUa0Z4Jz587RqFVIJmzsuM0LL7zI5PlzjIwNYlgp6k2HWDzOzPQUAolGs0Eqk6LlBRiGzulTp6lWq9xyy0FUTaNUaRKFgtnZGXr6+ihXq0yM76C7pxunWUPVfUrFJXK5bhbm2jA9246RiCcRSJTKFTq7u4gkqNbrlCt1dMNG0w2iwKHZrBMA4zt2cOLkcQSCWCxBJpPg3JnTBF4LQ9dQhMJiYZFWq8XExARPP/sENx28Gcu2SSbTVKtlzl2Y5Lvf/Q633HwQVVGIxyyi0MP3fYSI2LN3N5Iko2raCpOKkNBIJC0CN+DQRz7C/r17WFgsYJkm8WQGzw8gCFA1haWlApl0GjtmoWo6kiyjqDKqBMVykWQqCUHY9iBrCgJwWw61eh3LtACB02oiCYXXX3uTRCzB1+7+O4aGBlcyGMeo1uuYhkmjXuPo0VN4QUBHZ45YPMb8/AKJeIqFhWUefuQRhoYHkQRMnj9Ho97g/IWz9PR0s7y0xODgEIqiYugGkqxw4tgxuro66O7txvN8crkOauUSZjyO74d0dXej6QrNlk/MTlBaLtLV04OiKtTrdUZHR1AUlXffPUxHRxbPaxGLJ2k0GszPF5jYvZOunh5ajouqKLhuE88P8T04efIdurvTlCsL2KZG4Ickk2kiAkxD4xv3PsyuXRPEY0kC3+P0qVP09vSiyjqmaRKFAS23iaHHUGRBq9XA9VoISaAq7SzUUVhnvjCHH7TIZpNU6nVa9RooErlUGkmO8P2I5559no5cDllTkUWIbmkEkcxdd/0Nw6Nj2LEkrusjJJlWs8GTTz5LNp/GMNtxilEYtMssBREt12epsESt3uDk8RN0dffxzjvHsG2T0dE+unt7UDSDeq2OoeuoetvQocgRQeAT+B6WbaDrOkEQUClXSKUzQESlXEFTdfbu2YOmqQRhQMxOYJoGkqKgqjrHjx5jdMcwmmpx+vQZstl20qUwFKQySUqlJXTNQFV1TNPCjtkoAgw9QaVSQtd0mo0m5dIyyXSOer3KC8+/yKuvvcFEJoMkBGp/P+mUja5raLqO03KIxZKUiyXm5wpYtkGtXmPP7j0oqkwmmSOMJOo1n3cPn2Jq6gyHDn2IycnzdHf38sorr3HmzEmGBruo1RsoioaitBND3XTTAY4dO7ry7AqcZp1d4zsZHhrCsNo1oav1KjErxckTJzh02yGsWJxWs87S8iId+RwRAd3d3ezcOUYyk6JQKPCNb36TkeEhJCkikUhRLBV55LuPsmPHPsqVBk8+8TQjw2OoSoQkC/wgRNUtKuUyAwMDLBTm8AMJSdfoXazSZca57b//TSxDwtQVTp44xc//4s/TdBu4LR/JXSbZO4TvOEy+/hyDe/YSSSrSVXhf13gPWfFYXlRcv/DJLftd5HabygfrBOe15zZoW5e+3aiELlcNbX3fiutqHr9J/OkW9H68hoJVivkVpr/t6RuguL6f9u9r+DXy5dXJSVc6H61vE20tO13t3K6V1hfL2b7xNm2vIXZvM8V0s+/bHfth0w97TPETxfXHgzbF41/LBVY33gQb//ehtG7WTgixgeFeqe+27dYwoOtXXFfPZ71lbzMmt7pt+OCTIATyF+68qteeEAIJn0jISEJFJ+S//K9/hK6p7Nq5u11nUtIgCEgkkvzpf/rfuOPOj+MhY54tkPmt/4CYGKM5PkIQwsz0NBI+ttXOYDs2OoKsyOQ6O3nn3RPkO3JYpkmz2qC/v4dsLkvLC0ikkoRhwJtvvMnY6AgdnZ3Umy6ZbBcRftukLwSuH5JO2pw5fQbL0rGsHLaVol6v4gUliksN7r//QXbvmmBqchrdsNu1Fwvz5Dt7SKRSaLpORERpeQ4IMOwkAp/+/j46Ojpxmg62pZPJZKjXqpiaThQKXn3tVXZN7EZWYOfOnWRzOUBCVVU6uruZmZnlU5+8g0Q8htOo4zTqNJ0asViMer2GaeqAhB8GaJoGQqFWa6CqoFlpAj8AWSUWi1EoLNLyXGK2jW4YCHzKpRLxVBIkCd8NaTpNZEXGcxrIioJuGBCGILUzwOpau05qMpnkoQcfYvfuCVRdRVV0DM0ml8szOj5OOpsjZhosLS2TSMXbMEEfHn/yaTzXYWR0kFK1Qke+g+mZeY4fP8Wnf+bTyIpAjiIiz8eK2fT0dSHLKkLIqFq7TuzxEyfJ57NkU6l2yRRV58yZs6STaaq1KroVI5PNosgSvucTiycI/Ij3Tr5H/1B/u0wEEZVKhcLCIh0dWer1GvNzC2SzOVRNpVSskEql0E0D3/PwWk2Wi8sYeoJYPE7SjqGpGuViBd8F3/dotBrIEhiqyuDwIJLkIykBMg6EDpapEAZNHv/eUwwP7yAUAXKk8dabbxCLW0iqhdOo8d575xno7aa4fIFXXj6Oohhks+1yRW6jjpWMEbR8ypUSpmnT1ZEnCn3MeIxWq07ge0SSzsTuneRyeZyWi5A0dEUhCFrsmthPIhlvZ/OVZYhCNFVFklXclksmkyCVStKR7eD02RkaTo1du0bo6szRCiJ81wUh43kBpXIF09JRRISQ2kaPVqtJy3WQANuOoygqIhIkEymmp6YxdBNFlajXmzjNFpoW4XoBRDI7x8doNmtUS3VkoZCIG6iKxj3f+CYTE/uJJxLtZByyhKYZ1OpVVN3AaQacPHkc3w+Znp5haGiQEydPMzTQT0dHB/FknLwPtm3ztSce5+CBPRAJZFVtZ21uNiiXS8TiKRRVkMslqddqqLpOs7GMoslIMuzes4Oe7h5itkkum6PlNOjt62f3xA5cp4Ik6bz66uv09vYhSQI/aDI8PEIQQOR72DEDXdNYKhR55HvPkM50ocgqqiw48d57DI+OIUsQRiGKpqJqGqqmUq3UQERUqhU6uno4eGAfsiwIIjhy5DDJeAxJSGTyCZ5/4Un27BkjwMfSdVTNRMgaumly8vhJenq60I12yIWuyhjFKm8eO450xy24rSq3f/gQRjxLJCIMXWHnyAhhawElM0I6meSV791D39AYdqqHSEgbFapVfGADj4naMW3t2uC9SAd2bcewtpYPtlBc2/x3fdkeaQPv24quFKcHXII7r25/PXStcE5JrJv/1eg416P8rYq1vJIsc9FTuOmY4uru52ZzWP3MXC989EYorkJcMS3nluNf6n/pfqxXrK9+71dTGK2NWb6m+3QNimvEqvJQrIUgC3Hlfdrs+V5f7vFK7Tddwybe2avpu9V/9aK3/IfqcZWVnyiuP650/YrryqF/AEvNprTqpXfFplfydgarX1I3RnG9mrFXnwsfeuqaFNd2sqgIJIW5Myf5L3/wP/Kbv/vv6erqp1xuIQKVsF5luTBJtdVgeGSYUrVM/tX3UH//T3A/fCvLHTayLCguL5PPZ8llMtSqNVotn8nJSUZ3jFOtNOnp7USTJKYnJ6m7Hp2dOZxmk8JsAUPXKZdL/z977x1k13XfeX7uuTm9/Dp3A90NNNAgQBAEKUqyJJISJZMea2yvPdqZcZSlsnfXNfasV7tb9uzUbpU3WOX1OpZtle3ymJZGVjAtUhIpUqTELGYSBAGCBIgcOvfL79149o+H0BkNknIq/apedb97zj2/37v33Ht+3/NLXL/vRgYG+nn+uecZ7B+gXa/wV1/4G/bv289rh4+QzefJZD1s1yebzaJoKV/96t9TrzcZHd2CZdnsv+lGojgkm81w93+5m9Gt26hWFimXC9SqVZI4BJni+Vks0+DggUMMDg5iWSZh1MHPOKi6TaJ0FfhOK8DwHEbHxmg1mliOi2EZKAJSmZAmEtN2KJdKOK5LmkqiJMHPdJO/GLqFpmndWFIJSZrSbDYxbA9TM6k2FlANj0ceegTd9ojCmGIpT61SxfM8FKHSqFWxXRfdsOkEES8+/yyjY+PoukWjViWTyRGGMc88/QzFcg+qEIRhgOPYBJ2AUqnUTVykGygonDt3mkzWxrF0pBBMT0/TWy7T7LRIk5QHvvEQH/jgLfSWshQKBSzb6y6AqsL2iXG+99TjDA32U63WCIKEbM4nkSGqaiAUjXqjhuNYlMv9KGmMpoJ5Zhq91sIe6CUKI7x8kVMnjiFIEcSYuo6mKEhFoWeorxsLqIB2Mb4zjSWmpeG5Dr29/YRhiGEaHDnyJuPbtqGbBgLJybeO42V8XnrxAKWeLKZlEIRt8oU8M7Nz6LpKLp8lCjsE7Q626+K5GYJOjGvn+fp997Nzxy4kUC4XSWJBFCdououqC7KZLF/8/FcZGOhn5+QY7VadOIBtE7solfJ0gia66TB15hyFnjLPPvUcjXoL3TCwLBVdTzGcLLquc+yN44RRSH9viTgM0A0N1RDUK4tksz6p0Lu1eNVuopywE3Hq1ClK5QJB2EbTodWuU63UuXDhHLfe+kO4vk8Yi64FT0Y4rosiBEkaY1sWlbkq8cVM6qfPnMGyHFzLotHsYFgGKV2rX5ymGJZFEidYZtc1PE07aLrJC8+/DMT0lssYRkoct9FVlygKuOHG/RimS5LENJoNbMcijlNs0+mWHTItBoYHcf0M/YMDhHG3nqsQoOkavX19mAtVFhYWuO6OW+k0O1QqFWr1rqtuqzHH4NAApmlj2RonTxyjr6+fOE6x/ByddoguBPXKPKgahqHhOhlOnTxGGCVkswUsw8B2fCzToae3B8syieOYZqPNiy++hJfJEiURluXw53/11xTzeSYmtiPTNmkSMbZ9HKEJ2s0qqmYxP7+In8mSpt3Y5TCI8TMFGo0Os9NTpInk5QOHeM979pOEIZqhU8hmGBnsZ7C/l1y+RBBLnnryGZrNBgP9RXwvRxQHGKaKpgoW5qbRGh3GSmWCH3kvQ6NbqbUFP/Ozn+SuH/lhto8N06jXqXQSLNVE6DrDN9zAiVdeY3j7dSRaiLiGRE0K3TAVdd+ujUHrGgvMZi2uqyxbbH7d20yfS8lkrmY5eic81gIDl0Diuw1cV4Lw5dd543HWOrqWfNcKXDf6vulx3tZZq09+J+Msk32j+bzReSvbxHKQdi2g65osrss2gNa3uG4WcF7q+3byuawcY63/3wl9v0vr/MBV+F8QrYxBWBmzsdGUFBd3BtfqcyVFu3LVcTYbOH0tD5tQFOSS+IW1nvnLv5m125DysivJlZ2iFRfoUp9NvlrfzuKhKMplV+GVwHWVOEqIKhMQoGsWsl3lni98gY9/4hdotxMUDBbmazzx5PcY3bmdnsEt2I6D79gM/OfPoT/4OM/5AmdsmLAjL5ZX6SbIaTQ6vPDiK+ycHEUYHl//5j2MDQ8hUciV8qQyYWzLECdPnCFsh6RxQCaTJ1fIslCp0JyeIpfPUij3EEZtdk1O4rg2bx0/xtjoFixVo1KpoesqsVQY27IVXRW4ftclc3GxRSaXJZFtfCdHb1+ZVqtNkiSUi2VMwyQKQyzdQioGRw4fotxXQNMs6vUWpmWTJCn33/8A4xMTaLaDErdAqBiOSdhug1RRDRPVNGhWFjlx7E0G+0u0gwihSrph0wLdcACdufm38OwCQdBG1wWqoqKjslg/i2eXmD8/yxNPP04QttgyMMhDDz/C+NgYmqqh6hYKEsWwMUyTZnWeLUMjGLrF4VdfwctksT0P1dCRaUq5p4eo3ebEyVMXwbSD5/t04ohu3uyUfDGPIlSa7TqVmSql3hJSBgihY5oOo1tHSJOIXLGEarqkiiCNOxiGSSwjCvkCpuVh2xke/PbD3ZhD1WRmZhrHMdCEiq7raKpCpV7Dy+ZQzk6TdgK+e/hlhvqHiIKYhbkanuvjZSyipAOaiyIUhJCcPnKMqfMX6BvoBZmSyXhouophmFy4MI2iRLiuz2D/MF/7ypfp7R2kFdYwDJfe3kFGtvQRBzExJlImWIaCnyniZzxarTq6ZiKEw4EDB8jminz9vvsJWi2u23U9pmWj2xqu5fDok0/TNzBIdX4GRcKzzz7Hbbd9CNu1qDcCbDfL2bPneOmlV5jYMcqLL7zCgw8+wB0//DFkmtA/1EvfYB9ZzydOY1JVRRMK83PTDAz04fkZFhZm8H0PFUGzWcP18oRxjIwbqBigmFiuBUS0Om18P4NhmHSCGIFAkLJz90T32RfdzQlVtVEVjUOH36A8OEgaBSRhB7dQxDIF1YVp8rkCtut3kzvZLoqqoik+Uunwza8/wpHX32LyunFMLSVMQsJII04iiqUs7XaCbil4foE4kbieje12NzikjIjDAMtSkamJUFNEIllYmCeJWiRJB9NQQcZEQYRtWSwszDM7O0e5XESdXcQ0LaoWeJkMtuvgey6Vyiw9PYPUmk1M2yJJBKZp0Wo1SeOINAEl1Xj0u4+yZcswhuEwPzuF7XvkeweIwwhFSs5emKbTauI4Hoato6iQpt1yNoNDQ3gZH9/zSKKQG/ftY2JyEtsxyBfK2HqK0ASKgKjZ4Auf/wo7dkximSphq0EUgqWafPHz/5VM1sHP2+imzu7rbqDRrJMtZvH8DEG7hW576FaGeqXOa6+9xP79+3nyyafZe/2N3H///UyM76RRryIl9PX3QypRz0yj/8yPY5kuv/4//jrN+nluv/VDCFXQiWuUSyNUZqYp9ZRJrSy2HlM7fYZ8/8jq9W0N5fSydYZuCQuhiquuzd2Mn/LKZ0lpiitRrZeUhe7CudLaClyMDZXd/BPQzT+xDqVpjBCXVubup5v4SnJJ2pX5ITZr8dkMSdnNY6Eo3ZrZl2RXkL2mZIgAACAASURBVMvyS6wEhetZrzab+OpSn+4/rOKxqs/lA5d0raWfizKmV2JyL1kbLyfquqS1SLmqZCAsjyHeEMRd1Jcu6VyXisps9k6s5HEFvF/bOJuhFerS6va1rMaX5Fox1S/pvt1reOX7Ur14mR55medGNzdd9owtB91i2alreVlcnmMX42EVRdAtwyivZA7vduy+H64RLC6dw+vN542exZXH361ndiO6zOMay+H8ALj+U6b1DYhrfV3ettGEU5b3udrUvJbdos3222hnVFn3y7W9KK/VveHt9hXX70B86CaUXGbDhFJSajQNgYXKS9++n4e+cT//7b/9Rc6cr5Av5AnDkGajyeTkDkBiRjH2Z/4fvD/8Ap005fX+DOM3XoeUgscefYItW0aIoxTTcJiemQIiisUiBw++zh13fAjXzeE4DlESkc/lWKjWeerpZ+kfHCJbyOO6JlKJUDUVv1jA8jw6QYDvuaiGC1IyMb6VKGghDIeHvv1tduzahWaAIhPKpSKdoIVjOETRAotzczzx6HNIRWVsbBTH1SkUc6RJxNzcHJ7vUW9UEKpgeGgERQjm5hYolcqgpDRrFcbHtqIJBRWJqigoqtUt4dNpgVR4+qmnGezrx3Y9yn39KJqOdrG0iqpqpKlkYbpCpbJI78Ag56emMWwXy3JYrNSoLs6g6Q6vvHyE+YVTfPjW29i793os12LXruuwLZPp6WkMy0YXCZpQOH/mDNVqFdOzMBwfz+/W8Gy32whFUCwWSZME23ZxXAehaaAoBEGAbVtIqXDw4GuYhonvZahV6tTrHfxsjiSKMS0HKSXNRoVyuRdNN1A1DUWRCKmhqiaq0LHtLjBt1GsMDw+RzXk0mi3SBHRN59WDBxkeGeHkyVNYVtdV16k0qDfqPHfyNPlcAUUo5PIu+WIWpEIUpiAkYRBg6BYvPvcKbxw9xp7r91Kr1FCUlDRJ+OM/+hy7d92I49mEYYjlGAwN9PPN+x9i9/WTlHJ5VENjfn6edqvNmQunyOcc6rUFVE0jjlPiOKQTtHFcg8cefYobb7qRYjHD0GgflqMDEZ1WgySKmNi5A9+xmJ2bJpfPMLJliHwhS7vdpFguowqB7zkMDvUghGRocISJnZMYeneDxHFc4iBBFU2SWGJqeVrNKqqmdi2CmkE24xFFEVKCrnfvmWGaJElMJ4gwTZNatYJtO2QyOeI4wbJsgla7+5yrGkKoaJoGSoIQkqAzT7OxiONaeK5LGgXoqkqSxKhCI5PN02i18X2fVJGoqoISB6QERGHMrsnrGd/ewxtH3mJwYBikQieo87V77uf63TdTLLnomk2adDMVW5YgTiQySVBUgWta1GsLhGGMZes0m3WEsDlz+hzFUgGU7hwKwhBVU7FMAykjHNsk9jK8dOI4hd4eNF3geTZSJpTLvczNTeP5Ds1mE9uysEwP2/J46aVXcH0P2/HpGxjhmWcPIGXA+LZt1Op1UimIwwApY3r6Cji2SSaXRVEUOp0Wnu9RrVdAUXBcizBocubMKTRdw3WcbnywgNOnzuBnc904cym44cZ9BGGE53ikcYxh66gaDI30M75tlDAQZDNFgqiKYzvMTM0hhMkLzz9PT28/L774Ao6jMTm5i8cfe5Jms8nCwiwf/ehH+eb997Nz5w4gQdMVFFXBOnSKKKzxmhVz220f46d+8qfIZcu88PwBrrtuN57nslhp8sabx6hXF9kxMcEbrz/OQN8oimWvWjs22uhVVRW5ojb4miVbNoyjWzn2cgvQxj3XXweF2Eh25WIfsUyBhrVDn94erQCamzCQbYb3u6WgX5O1epnsK+/JcgCx8k4vdcfekOclD/S3kbl1mTzvkpX3ndBGwHWzFuB3JPdGz9uKpGbrhQcAXKpDtNRTcLkB5mKZyKuUaVolwrt8T74fltv1ef0AuP6zp8sv2pUNbwPErem3vsaatq6ryzWC0fXOW7lzt7R9lYRy7RfS0q8rd0z/USnndz+w8U0RYKYJx55/gQOvvMK/+vFPkGouD37rIXp6+vjkJz/JJ3/x56HZpPC//z72H/8NQhHEP3Qz7fGtZIs52q0ms7Oz7N27jziKaAcB2UyOgf4+DEujp2+AR779bXbuHMfxCxez4apd6wiS2Zk5zp49y44d24niAEWRhEGIbjoYuoaUCfVmC8O0CIMOuqbiuR4nT5/B0lX8bBZdc9GFiUxU3jp+lmzWJ1fwcFyfXLaM0ASFYp52p4VtmqQSdN1i6sIMxXIZqUC71cFxPDqdCNM0qNdr3bg/pbsH2Wo2qFUXsd0MBw4cZGi4nzRR8FyXXDbDwsIcnu8jNI2g3cGyjG49T93klVdeZcfObShSx/NN/uIv7+bM6TNUFubpKfehmwaqMMhnXTK5HK1Gg06nc7EmJ1SrVeJEYpkGgm5GzHLvIK3qBQwhEDJGGAZCUbpZQIXSLSmEoBO0abUDPM/vljxRFRIEMkkZ6Ovn0GuH6B/o5+DhQ5RLPaRxgGZYnDhxkpnpabL5IiAxDJ1qZZEwqKNpgiQN6DSbPP3UU2wb30ar0UQ3LSzLwnasrvXd9bAtG8/zSBOYunABr9nCdRyeO3Wcvdfv5dWDB+nr78H3febm5snmcuiaDgrEUczwSC8jo4NYtoZMQlRdIwwD+vuHGBgYwPUcVFWwsDhHmkZMTS8yPjaCLgSpkuL7OTzXJ18sg1QwNAvT9FBEiioMzp+folarUyr24LpZslkfFAPfz6IKg+89/TJbx0fQTIt6rYppWZRKZRYWF9ANE9/zSVKFdruDY9vINCIIQlzXwbFdnnryCUrFAqahIzSder2K5eT4/T/8Uz58+/txPY80EbTrjYsuoSaGaaGpGpKUREriuGsxWlycp5DLoQgdUEjShCAMcR2XTCaHouoYmooiurHCmqaTJALXK5Hx87Tb3frGmm4gEZw5c55vPfQwY+NjCEXSaDTpdDoE7TZRHIJMsC0PyxL4Xg6h67RaDTRVY+uWMVzXRlUTZmfn8X2/+9zUKjhOt9yPaduEQUgYB2QzZYKww6svH+Op7z3L4FCRcrm/u4mQJARBhyeefJaBgX5MXcdzHLBMRrb0X3QlFVRrFRzH4cArrxMGbRy7m+lbUdRundNqi3w+Qy7rcfj1QwwND+H7WUZGBlB1nU7Y9aRo1pu0mi1s16fTaaLZNp1OiGs7zM7N4vs+qmqwMF/FMV3OnJrGdQvk8w5CM1icnyGKUkxTR8oE3TC4++4vMDAwRC7r4bomitA5e+YcfYND1CoNnn76WUbHRkFJefw730UVOq1Gk4GBXuI05eSpU7z3lptZWKgyOjrG+PgYpXKeVErOnZ1mcGiAjO8yOzuD6bkYb5yjXvKZ+Pl/x7333o/j6DiOz2OPPsHrrx8hjVu89voJ5ubmKToaA1tH0UTEK089yZY9N3aXhiVr1nrr46V+yWc+i3z8+cvJmdZch1e6Ay/rszZwXVP5X3J+FyRttIitYbG9bMURq6yYq3i9TQX4yvW5duC60nL0TnWGjSy418JDLLV+rb/PcNkSdzUgsRb/lfd2s7RuXO4a/f4xQCysyFy91Nr4/WK4AXBd+cwsvSSr58JyHXiZ4XbFO2LVtFgSb7qWhXSztNH8XM/y+v24z1LKbkw/yg+A678UejeA62YGVvj+7tZc9fhG8lzlN/+TAK5LaYPLODd3nq999g/ozzvs/5GfILUyzMxVmD51lK2jO/jUpz7JzJe/Rv9/+j2SOGFxzzbOFDzUnEsqu4puq9Uim/FpNlqcPn2K6/bsYnFxkfm5Bfr7+5BC47qdO3E9E1VzCYM2hmVQr9VI4pC91+9lx8R2gk4Dx8sQhiGu6+NoNs1ahTgMcPIFknaTNE3JZPO8dfIMvmMw2FPEy/ikIiEK2xx/603OXTjN2PgoSaISxQl//fm/4s677gJFIZvNMzc3g6FbqMLi2NETNOoh5d4yjm1Rqzb40pe+zM4dO8jmfaSikssXCTohuUweRQlRdR3Py2B6FkEUky8WuTB1Ht8xsC2LWKaoiopQFVRVRdcNBoaHmJ07y6EDRynkTXp6B7jx+hvYNjrM1IU65T4f3/dx7SxW1keTgkK+CEKQJjGlUgnTcZGqoFat8ehjT6GaHrabwc2V0S0bVVWQF+tsSkVByJgkVRGKxLAcoihEVSGOAjTLpdVo8eLzL7BlaARESrm/B6EIFhamUIRGqxly3a7dGLZFHMekaYxtGbSbMXGoMDU1S29PiWw2j2N71GoN0kTBMHQWFmcoFXtptVo4jotpWiRxzN999cvcNDSMaZoUd28j42cwzC6wlTJF07oAVBE6pq6TygjTzJDNFgg7CYtzixRKBVqtOgMDvRiGymK1QiolqqqRyThMTOxGFQlREKAYKhfOzfHlL3+ZLWN9ZDM2mpDopkIqJXEkePqpF5ncuQfXtXji8eeZujDN0ECRVEa0wzZbt02gGhqoGkEYUC73EEcJcZximhaqovF3f/91oihhZGiEMAy79UmVlHa7RS7n47oWkhjVtpGJhW66vPcD70VRUpqNJnGQ8vm/uZvxz/46rcEi+p4Jpn2L8q03InduJxjfRv4nbke9eRJl307+45e+xLNpm4/+5q/h3HYzx3s8yj98B//z3XdT3dnL7p//9xzN5Al3X0/urh+CD95M/ZHvYJo2mmEhhYqmauRzRbbtnMSyTc6fPY2MEnr7hrAsj0atw/TMKfp7B0AahFGLeqtJIZ+BWMdxdYKw0t0MsAxUoTE/t0g2m2N6Zp6nHn2SrWPbuq70uoqme6ALXDdhx4599PeNohsCRRG02y0c16FUGsJ1XO695x52TU4i1ZR2Yw7TcVCwQEmxLRdSi55SgURKTp08y/3ffJCJnWPkcgUUJSFo1RkfH6LdaZDLZdB1jVgRXWuyEHSaHZ5+8jmOHDnBvht2kSgahmGjShXNMEglaKpJFDeIohYKEsMwaDYqmI6PZxtohg4kGIZKJwjZNXkjp06folTK0G7XEMLhtVffpNFKmbmwyL79u1lYnKGvdyt9fUV6yj0US1mStEOxVGLn5C7iKOHNN49SLJXJ57NYpkaSKrxy4DVazSa+l6G3r4dOJ8CcqxIKnWc8k9/5nf+XO+/6IIVCjs9//r/yS7/0aYp5m33vuZUjrx2m5OkUtgyjRS7HDz/G9ptv7y4N17AJnN73HWDjrMJvB7iuOcyqnhsD1w0EWleet5OEaCP+1wJc3216twD5MlhyNd1OuTqPjTYl1mtfjy6Bo025I/8jAdelgErCumDv3WN4LXN/w4Eu9rmk4y4Z9yreEBtZzb+f9+H7OXb3N10bcFX+ySn+61AYhv88BH0XaKkbyFK6hgzbl7wRug/zJs67xC9dsTOrrNj5W9q21vG3YwVda7x1d/hWHk6XFFRWVhRIXiMpxrUsoJvtm9x9LwDqz/3YctFE9/qpStft4yuf+1OIA+74+E+RCIskSViYneW1V1+hlC/xnj/7Ktr5GY4P9VDPuvQVMjjZApoiabQWuf/+pxga7qO3kKcehAwNDqAZBq+9+gavHX6OX/7l/4HFaod7vvwFfv7nfhpUlYznIBDUGwFJuIgwHUzHR0GSxgH1epvnnn+JO+/8KPV6nWyuW+7EsG1q1RaObdFsViBReOWFl9h/y35yuSzVSqVrlanW6OsboLo4R6lc5MLMHIV8lnarSaXeZOvIMJKEZj1moXIeU3Uo9vaiipSgo/Anf/bH/Mdf+1UWFmbJ5AsXd98uziWZcOr4CQZHxmg2q+TzOTrtNo1mk3yxTJIkpGk3u2gaxcxMzdKJIwZ7Sxw5fIzBoR78bBfAz5yfZmBwmE4YkKYJpmmSyoRWs8PX7r2X3t5+7vjIB+m0Q0zTJIoDhG4TNxc5ceIUW8Z34WdspExZWFyg3D9I3G6jKoIojalWm2SzPnEcoTs2IpHMTU+jmTq6plKr1Mn4Oc6cu8D2HdsJWou8dvh1btx/M4oCiwvz5PwMquWSphFCdJNKHTp4mEe/8yg//dOfwPdzLCyew/cyKMLC81xOnj5LIeNRrzXRdDBMHd/P8NaJCxw9coiPbxnFtCya4wMkqUIqoVlr4noOQdBC1zUECqmQNKsVLly4QKm3l3JPHy899zw3v2cPQvepLFbQVYnrFwmiDoYqmJ6bI4kEPb15kkRDkHLkyGFOnz7HdddtJ5PJIGVKqVS6nOmxWqnTanV45tkXuOMjH0ZVFXRTJ+gkhEGbKK7hez6+XyIhpN1qY1omzUYLVdVJUkjCiGw+R0wKYYimCxRFJ+oEREJDky0MN0ejWkVVVcKf+DC1Q0cZbHTg9BTy/Dzi2BnUOEZW6pD3EQrEcdLdAQ66cehCEXDRhVgzjCsPtkI3Nuqy4tz9Pw0jZJoibRPpud33+OgAaRKjpCmabhJECTKNcHduJRzsIxjqRUxOoP75VwnCGNuxkURoSxLcxEGIbmiEcUyaCjShEscBlmVRrVZ4443jHDjwKp/+9M8TxBEyAdsyabVr6FoX5EZRRLsT4vo+hmHwR7/3++zbdwO33HIL7XabVqtFT5SQpgmLnoFpOti2TafTpl5vMNDfR7uTcv78eQrZLFKJKBZLJElCu9NGSvA8j0plkU6riWXYCFPFtTU6nQgQOHaGOIp4+JFHuOOjHyWRKTPTFyjmc3jZPEG7RqPVwNRLLFSn0DDRddHNKC1M4rhKEkKqKCgkyNTgwIEXmdy1jcWFFhnPw3QtKtU2tm1i6DpJnGJZ3SRtd9/9RQqFAh/5yG0XPQB0pqbOMz9XRcqUY8eO8olP/BteffUg4+PbsXSD2YW3yPu9mAeOoFgOjd/5ZU6eOMf/8pn/ld/4jd9gbGyMTqeDavgMDA0TJZJOEOIVc0RhwpFnH2bfh++gUCgQpyDXqJO6cr0UQhB96jcB0P7i/7oy7RTlGtwHl6+FG3lDXaIkSa4aXiOXLcAr1tt16tWu5N+VYen3a3BhTa+syV2LW3KFxwqxV3l5LXGbvdR3qSvz94OW6U8rwekavNeTR3BFr1op+2b5vx1aN9PsEtbiXYKKm9EdV16fta7BKh1x5Rhr6LRXGpfHZy/rc1GfXOs5VIRce7yN5Hibc2+9ayDTK8eVi1W4LsdMr3WdVmTGXpMu6uKXAPPS+PV3REt0c1VVSbublZueSD+wuP4Tow1N+Ncy0NKX2zUA16UuFxcFWt6+mTG4OsjdzJibsc5ecivu9r1KUDCbc5lZz01mLfcJgPSPvwCnz3fruHLF/SGgg6FrKEnKGwcPs2t8mPFb7qIdBnhWSthp49p5fuf//F1+9clDhM0Wczfv4aUTx7l+zySVaoV6q4OQEt/36OkdQqjdepiZfJGvf+Mb3PK+/fT3DrBj+yien8VxDHZN3MCTTzzBnr3jdMIIw1CJZdc9UNVNms0mmgCkhlAF23dsY3ZqCplKbNOk3WzRqs7j2ga6rqIbJvd/45u8/wMfoFDIsLi4gG17fOlvv8KR149xw837CMMAKTSk0LBMm+mpC2wZG0fSLa3yxBPPksl69PUNsLBYwXJtVCHZv/8GUCSu44Ci0Go2URVBEHSoN5p4roPre7QuJktRNAPb8xEyxtQ1oihEoNDutCmVSrQaTWzXYWTLMK1OA8ux6XQ0ZqamyJfyzM/X8DyXqelzOI6JKiXjW7cxMjyM7XTLyZimTafTwTA16vUqPX09CFWSKiq6JlBkwvlzcyzMz1Mq5gnaDRzb4/hbx9E1HV2o6JpGu91EKCkqKj39vUgkb7z2GkNbhtA0lYG+Ae752jfYtes6hNC6cZWqTq26SKfVpt1oMTs/x513/jDHjh6l3NOLZZnYlompq8QyJo1CojDGcgwyWQ9N1xFCZ7E6z/joMLkgRSgqTUdncX6ebMbDsH0q1Wq3DE6acP8D32FkqIdSwaNYGqLRaOD5OYZGtiPDGInAdmyCMMK0DVqNBmmSEnU6fPWrX2diYoK//Zu/Ze8Nu5CE7No1QalUREpJmsD8fIUkTVBV/aI1tMPYlpFuBlnXotVuYNsWtmXje1lanW4Cn7m582QyGWrVKoqiYOgahmlczErsEcWSe//uPiYnr6PdbnHyxFnmP/4RatNnKSYG5snT6I88j/OFB/BPz6I3mlSE5PHWIoVPfpzPnp7iw1/8E2Rax942gdZfxsr5mL09mI6Nmcug9hQwBnpJB8qI/iLaQBmlt4TWX0Yp51B6CqgDPYQZF7uQQytkMXUDU1WRqsCSEl1RELpGJ4kxMy7BDbtonprCeOYV9HseQf3jL5K0GzilLGL3TsJbPwi37kc+9xpRFCN0gUQhCLtx1J1WlU4nQLdMHN+np6+HfTfeBAI0VcXQDZI0QVMhVlTSJGJxfppCseei5Qa2jY0xMbmdJI1pd1pk81nsCwuYKYSFbLe0UBR2n03PQygSoev4voOqgeO6l9PzxElCHCdoho4EdF3H81zCOEGg49gO7UaDKGhgWhYjI0M0GpWLceIRvufRbLeJowTXs7rJyiydXNZjdm6KQiFHs1XHtR1sM0s7WERRVGzbYmh4EM/zcN0cQlF4/cgRxiaG8dwC8zMLZDImpmlw/sI5br7pRoaHh6nX6xQKRXRDxTJNspk8hw8d4c4776TaqKAoBnGS8uKLz7FtfBKhSUQYoZyd46G8j+Pn+dhH72JkZAzHyWCaLu1Ohz/73OfYe8M+3njzTf7sT/+UTqvJ3uuv5w9+97f48MfuJBUmQiZXM8dctLg+AoBYYXHdvOVr9Rq23tq30v1wZdsKLqt4XHFt3NgatFyGpXqAWLPvWiQvAtcrlqel1qq1ea5s7rrmvruhRuvJ3N3juuLOuh5d1eV2k5blVS7MV5Fvs+Os7rD0302AyXWSPG2a3zXIKTdwi+/KuwEA3qRVdfXY/3B2taX66HJdfYmeukT/X8sKvXSMy074a2XqXnKd3t3NnRU8FH7gKvwvld4OcAWuEbiuaJAr2jczxlWObabtUvvqF0v3T5qmF+OAN/qh795O4DIZVvx/Kauw+NcfXpYIQkgTNU5pzFzg2ccfpjA4QaM2z+z5sxw+cJDRrWPUG01+7JnD0GiwuG8XpmNTr9XIuRa1Rove3l4efvBhSj0Fzpy5wLbtWwmCgHanw/vef0s3c6iiUa8tkskVAEG9Pk2x6JPPF9B0i2NHj5LN5TAMo1vTsdMhardoNiM830XVIJcvcvbCOfxsFtOyefih77JzcoJGrUar3uLk6dPs3rubMGigqSaqpqIoCjfcsAfLsrENk6npGR566BFGt46Ry+dIkATNJqdPn2TryDhh1GR6Zh5TN2iHHXzXRRUqSZwQRQmtRocklpw+dYbvPPxdbrxpP6ZloqiCFBXLtum02ygyxdRV6vU6IFmYmydfLJDIlFa9QRTEBJ0mhUKeKAiJApWpC8cxDIXnnn+B8W1jZPwsqqoxPzvPSy8fYmBwEFVLSBKJTBSEqjK/UKNY6sGxXYSiYJoqSIFh2mSzWdyMi6rrKAlImRJ0AizTolUPOHvuPP0DfahSoqk6gezWkfVtC920MCyLuZnZbubS3j6SOERXBa8dfp3evjKe7/Pc8y/wxhtvsmtyB/19/bTCgE67TafTQqYRuuFCEvL3936NraM7u3HJYYiqatiORy7rIBLJYhDgDPZiWTbVSpXFhQpPPfUEO3duQ0HieQ5Z36bVidGdIg8++CDbx0c5fPhNKrNn8XMZhGbgOD5JHHPgxQMUS73UFheoNkL27d/F1qE+/KyLbVmEQUIqu3VEHdvG81zePHqU++59gPGxbeQLWc6cncZzfDqtAMu2cB2bVquJlBLLz6BpFpZjUlmYxzRNMpmutW5uocb01DT9/f0oqiRstnmhUSc68Dp7Fpr0/t1D5BcaxAWfZPc4+v/0C7T/w7+ldtf7kHfdQu6uD9Jzy3sYePIQt8cpzn0PY56aRQkDVARJX4FkpI9wcgxxwyRMjpOO9KFtHSTtKzFnaizYCZldEySDvci+ImJ0ELmlH2PnNuKxAdpby4id25mJa9gFnzCOsVMVZ6GOESY4jTZeLo+4YRvKzbtZ+OWfYM7WmDt6jMKzh1B//7+gfOtxGjkH8ZGb0X7sw1QefJqs53VLwwidbC5L2OmATAg6DXRNRVMVavU6tmWTJAmmoaEqBopQsB2n+z4U0G63yLgeiZQEQUg+nydJU5xKE5lKklIeoek4jouumwihXSzt053ncRTSardQhIppddstx0ZRBLbtdOPFNRXTdlCEQbVaw9B1dE0jiptoqkoYJYSdmBdeeJnRLVtIZAoSDFMBRcOyDWrVRRzHRtd1wGRq6jSnT57le997mcldE2iaoF6vMT+/wHe+8zi1apX3vf/9GKrGwsIspd4yr71+jKNvvMHu63ZhWd3n4/77v8WzzzzH7j27ePrJ5xkdG8PPeDiuTsbzOXv2HIW8y3V7dnHfvQ8zsWME1bLQD77FfXmLL9/7DSa2befM2fO02gGK0HjggW9y510/giJUtm+f4EMf/BCjW7agGzZp8xwTe99DqlpoxGtaXVeuN+sB182sU126dsvPJnuvyaM7xrWMsz5wvRr35Qr7+sB1rXM32/fdouU81wHjm3HHXffLin4bANdrobcDXDdz7rpg8l0FrlfhtaLtkqdBt3Hz7sDLm/7hgesqkstuyvJzNhpjyfO03vx59+kHwPVfFF0CPkKId1QO51Kab+SV8xRxcbt9xTO2NI28QtrNiLYixf1aO7ar5Vk+Ga+2o3ktL7j1gLWiSCQXZZUrSgBchVa6PVxyAYHlsQRXe6leAq7Kx2/v1sdUIJYJimVgqpL/7T/8Kj/z3/0Kv/Vbv81tt95GJptnYHiYWqON8dAzeN96jLn3XE+Uqhx89RW2bRvAy/i4roauCUo9OQYHx8mVPTQjg0xCensKaJqCoQg0zeH81AL9PR6GoaCpGq7nk8SSs2fPMTY2SrtRw7IcqgsLFPI5YC1d8wAAIABJREFU0lRy+sxZevr7QVVp1msUCgWEKmh32ozvnES/mA220NPL2M4dSBQM00FXYWpuhvHt2+m0AvKFAmEYYuoaB195mZv234RjW2iKJE4iSuV+MFQyxRKWLkjC7jmakVCtVkBRURSNV149wiPffZgPfugDqLpOX18/QStACI0Tb53Ccm1M20TXNJAppuORqDo5x2TqwnkcN4Nh+VTmprAsA4mCbWdIZEyrVaNc7mFgeAue7xInCfV6G13TGd02yJtvvs7Q1h1ouk69VqFWafPAN+9n1659CFVHKBHtRhXb9FCAIGxhWt1ENSdPnKBQHsLJmMhYYWbqNFnf49nvPcv27ROEQiUOI4JOiON5CBJkkuB7HgMDg2iaRFFShKpTLGQxTQsUhbm5eXpK/bzwwovkCzke+va32DWxHUM3ML0szWadXLlEb38/YbXO6TPH6evvxbQd5qdPkc3kULI+SsalHXSYnZ+lt38A07KxbQ8/k6HZrtLXkyNOLbxCjlarTl9/D0kc0Fv06R/dgqJ3S7yErTqnTp1kfqGC72VwfZNjbx5h29h2Dh56jVNnphkaHuHc1DQHXzlIu9VAaN3SKb09A2zZ0t+1rJo5shmXSjXg3JnjbOnL02gHJApYtkoSx0RxhGk6OJZNFCUgdBTVRNdt7FRBGxsiff5Vhl49zlCtyZYfvYPFj9+C+pu/wIXb95D/8Y/R6PXQBwcQuoZnaZjnA5zf/wKZr34bMVcl8SzktkGCPTtQR3qRw70sxgkdW8PyHKRMaTYbpGEbzbRRAEtXcD0dU7eRrQVQOihSodEMkarCwrkzZLIFkqiB2duPVsoQZXSMXROct1P8/iJR3Eafb6AeeBO10cGeXqR/cCsXfvROhj/zS8Q/+2NEvSHW0aPof/oN1K89itLn0R73OLpzkN7pJkknxrRDFCWD0Cx0EdAIUnzPR5URzdoCMWr3TaiqRGGMYegoaKiqjdA1mo0arueBUEER6HOLSCloOB6WrZDEEULVCJOEKNVpVLr9wzTFcXwMyyVotVF1kKmgVuvwrQceYWzLIKZtoeomugqGJVB1HYSNrjpMzZ3h9Oka2bzHrj3XEycJGd8lFgqaKonbszQXL2AaPr6fpd5qYpgavp+jUq0xMjxMsVym3mjgeTbH3zrK1rEdDAwPA13X5VNnzlHM5Rks5fHyecKgjS7AcbLsmBhicsckludz5OgxFqYW6SkVKZR9UsCzNcI0pdUMcT2DYqmHVAi0w8ep3XYjvVv66C8bjI4Ocej148TS4APvu56f+/e/yHB/H1uGC2Ty/VTq0+QLZca2bEPx+4iEwBYtUvRVa4iyQnlcC7iuWn9XWkpXlVdZpj0s4bZynVy/72pLnVzyudp6u6Jcz7rnXsN5y3QZlpeauQqtBf4u6zUXh+6W6FOWslqtc2zQthbPy7rQOpbAJEkuh8isxWOV7rcJujyXNtd9Fa3U21bpenJ9cS6VW7z02UzU6dsFrmuOdUmuy1NGYeXlW5nB98rJGwDQpeWmVn7eZVrXgr+BNXu5ri5X/ealY1y6Nyzps9Ir4p3ek8vGpTXHWQGUlR8kZ/pnTct2365iQNz0tFKujL3aStltv/KiW5vpmpNv1TDXNtE3A1xXxdysAq4bCLQBrfVArWnhvYqcsMTi+vHbkYokRWLrBka7wc/8+H/Df/4//m80O8dtt9560SKmMjfX5Nc++Wk+/dybTO0c4WxlkcX5eVQBN+3fB0LtKnsISGNcN4OixLx+6A3OnD5FudytFXr6zAnCMKZWreE4NlOzc+QLJTTD4sDBQ+zcuRNVdMHszPwC+WKBMIpwPY9yTx9Rp4lIIgzLRqaSNEkRQsG0XJKojWmqaIbolm3RVOIgoNnocPzEaUqlMq7toundeEzLNNmzdzdRGFKpLuB6NkIGCFJalQoFzyFFwbbtboxpmqDrJtVKHdt20QRsG99CMZ8ll8kwMz3FfV/7ewb6e+nr76PV6qAJgwMvHSRXyF0EsAlIg1SqzM7M4Tk2QdCib6CfOElpNFt878mn+eAH3o8mVDTDYm52lozvk8Qpjz32KHt278YwTKbOXaDVbOD6PidOn+L2299HIlM0TSGOQrxMhsVam1hCFLZRVR0p4fHHHmV0aBCJRGLg+g7l3h6Gtw6zUKny+uuvs2VkC5Ztoek6qm7QbLWxXRdFUS9mXTYJw4Rmo47juCiKIJPJ0G43uO32D1Es5tmzZzeWafLEE0/gZ3wyXoZEKrx19ASFfJnBoWEeeOhhtk9MkslmUFQdiSCWElUVeJ6HqiocO3aE73znEXwvQ7sV0NfbT605j2XZIFWKhQJCKCRJN35s6sIUhYxPu9XkK/d8kx++6y4yWR9dE4yNjaOqKj09ZfoHhtB0la/fdy933fWvKJYKmKZBpxMQxQGOa6BqCVHcQKZd99etW4cIwwDLdhBCEAQROd+n02phGjqtf/MR5uOIglTh2GnMJ1/AOXwc0Wwib9zJmZ+8meYnPoZ5xz7yO25Ct/Pksn3EnYR2EpL5mwfwH/wexhcfwnj0WSoyIL1+jHDHEPpgltBSiNMI3VCJkwTHNjBlzNyFs1TnZsg6FolIQElodxpYlo4QZRYqFRAdpNSJUwXb8ZEoeK5HqqjUmw0My0XTDEzbJUggkysgXYeWb1ArlEkHc7TnZ9BPXEA7dgr3yFHM42+x+PQTvD4wzLaf+xT1n/0I6uQk2oV59K8+Sc+XH0etNDB8h3klwtu7B2XvMG/1JPTceSuNJ19AqAIhunGqnU6EqilYpsb8/CxRHOF6NooiaTW7Lt9SSqIowq40SeKEuCcHCOI4RdMMkArnTx6jkPXRVQVVgKJoKHRL1eiGjhBdF+VSqcS3v/0Io6NbiaOIVr2BIlMURRK0G3TaC7z4wqvs3r0Lx0uxDJN2p00niVFTDdty0TUPN9MHqk4qVTRFQQiDOEoo95QoFnP8+V/8NXv37qXT7jA6Os6zTz3DyMgglqEgSBke3sqhw0cIo4hSuYzveSwsLPDyq4cp9xTxMkVSJK7lYNsKwyMDzM5WyOWL/Pmf/yXbt0/y6qsHGRsdZXFhEdu2sY6ewv3kT/LZP/oTPvUr/z2nz5ynv6+HP/r/fps914/xqU99mqeeeo5bP3QHqRrjODZIhZZ0+J3/9Cv82EfeS8sqIdaIE1u53qwHXDc6b2N30k36mq7quxG9k3G650ZRtAq0bYb/21GqN1QVNvIs20jv2gRwXcFiFY+1Eu6sGvYaf+47Ba6rB9zw61X6/sMC13c09j+g5XQjenuW6SW6+ga/4x/Kqrox+P0BcP0XRZcSM71T4Lp010SuPLaq89IvK2MPrmSXW+Vbv2JiKixJILCJNOnrtW/oS/+OFuSr09KHbWXts0typWm67Pgl4Kr+6w8DkjhJOPXGMT7/h3/AF++5l1/+tc+wuLBIHEdIKdE0DcPK8u/emiJpNjiXt9g6Moyuq0zs2E4YRdSaTQzTwXYcbNsiDkFREmzLZev4KFLpjlMoFGk06xi6SiZXoFAudF1fVBVNN3A9jySJ0TSVRIJuGMzOzpHNZpGKoFWbx3Uc0rQLVAxdJ01SEinQRIoQklq9hm2YtFotVEUlCBOOnzrJtm3bUBWFdrvJwVcP4XgOlmOgGwaJTHBcj1TTkYqJpjsIzSRJ424MaxiSplCr1unrGyAMQ06dOsHY+FZMw0TXDSqVRSZ37KBYKgEJtXoL1/G45++/ws3vuRld10jjmHYn4sSJ07zw/HNct3uCYqnE7OwMmWyW+YUKM1PnKZVKSEXw9fseYGxsFMPU0XWd3t4eHMfFdZ2ugm9ZeL5PLp/DsQxczyVJYqIgJEUyNTVPqVhGygCharTbHfbdsJf5C2c5eeYcB149TLGUx3YtNF3Ftj1yGQ/HdYhTiVQUgnbA1IUp8vks9VqD5559nny+iK5rhJ2QThB2XSQNnULBR9MEaZIyPzeD7WSQKPSVi0xPTZOkEkPrJunRdY3JyUkefOBBJJJ8Ps/c2bMYQqDbDgqCuZkLFIt59t+4j96efs6fn6FYKpEkAZ1OgOvmCMMYVVMxTJM4SjBUQRxF3P35zzO+fSfDw4MsLM5SLJaoNWpohoGiajzzvWcRiuCW9+7nscefZPvENlS6Gxonjp+npzyAYdqEYQRCxc9lQKaXa6eG1Qba+26kMz1LdOIc+sG30P7wS2QPHkcmCdWRMmc/9n783/4MnTt/CP3mPWiFLfze732Oj9z5oyArpDokM+exf/cvKd/3NMbZWUJVoTH4/7P33kGW3ded3+fm+PJ7nXOc6e5JwCARBCHGFSmJK5nUitKKK1kSrS1vlWptaV1elyXVesuucq2t9Xq1LnNJiSJFBBIECBAgwiCTyBgMZjAJk2P3dHr9crjZf7yemZ6e7p4eAHSJWzxVXf3uvb9w7u+++875/k5KIN12O0pfO74ooesx/FBCVWO4jYggEjl7dp59e/eT6+wk3dZBPNNG1fGwjAxRIKIoFtV6QBB51Oo+33vwCaa2bUM3LLzlOq0RraLy6nL93igSmFvIo6oGpWIR1YiBKCCKGrIdw00YqFsGKQkRsVoT8dBptFKDnrpDcPYCh6TT1FRI/PIncL7yRdTf/XXkXWNUGiVSxYDg+dfhvmdIPfIW4UsH8J0mcmc71bYM9ZE+/tVTj/Hpv/gTpHcOsbiYJ5mMIUoiQRCiyRKSLKOqKgigL5WJooh6XMWyk0iSzOLCArZlYVgWWjxBw4+o1DzEMOCNN9+kv6+bCAnP81qZsE2VqYltRFGArqs49TqaplMulTAtjfxCDTFM0NvXTRCKeG4T3bQQZRnfqSJKISERjhfg+xGu40MEYRShagqlQoFarcrH7v4Ekiiyb++7hEFIJpPC833Onj5DJp0hQiDX3o6iSDz6wx+RSqcRRYnBoSGCyENVDBr1Mvv37mP37bdwcWaGYqFMo96gt3+Q9lwblm0zd2mWeDzOCy+8wBZf5CuPfJs/+4v/mfbuLkZHR4g8hztuu4X2jizlcplvfONvEdHoGujA0BP4XkioxNnSrnPwnTfonLoTeUVCoZVy55r/27cgfuK2K3Vc15NV1xyvewAr41E/COBcWwn98MD1etB6fb+VusSHqUd6M8B1w83yNQ7WzYvB1Q1xQVy7ZI4kSdf335D59ek6XW1z3TYx8E2wswZw3QiIrXy2l8+tPF6v341oPeC0sX75s3Kxvzn6YGOv3PzauOXNas1r1Wa+ITdrWG6vYptVhinhF67CP9d0OVvZR2lxvWHk5zW/0at/QDdwmd1gZ20zBZQ3c+3Gc360wHU9Pi7TZaG58nz4+Istl5hf/SUQQJQlvEKFXHsPf/KX/wuBIqKGdQwrgaIoVKtVePUN0j94msod2wGJWqNKZ28nlXoNUVVJJJOIkkZ+aRFRNjhzdppUOkEUySiaTCwew3GaFItN3tn7Jh3tGeKpJGIYUCoWCDwX2zQJBbEVf+k2sVSDxbl5fvTDRxkaGELRVeK2iYeKvFxYfu/evZimiRWPL1s6FGTFRJBFNM3kwQce5vbbb6Wjq4Mw9AhDD7fpcvC9o0xun8Dx6qiKiesGKIqO5FQIfZ9qrYJhqUSRgCK2ssjZdgwQkCSZZrNJKpvFMA2mZ+YwrTgv//SnLOYL9A0MoEgCjusTixlMbu3HNizyi3kU3UTwa7S3tdE/OIyggixIyKqMomrousHo2AiyoYKioggqtm2iKCL1Wo2ZmRni8RSKIrNUyaMbJu+8vY+h/h5mpvMYlkkQeJh6q4TJSy++zOTEVlyviarraKpOtVzmwP53OXdhmtGhUcZHxwgDj3q9wn/+f/+GndsnCUI4feYsF2ZmqZdKJBIWntcgHY9z/sx5ZFFEEnwefuRxPnb3XZQrFVRVodGoEUUC83OLtOfSzC0UyC/mSSdjGHprY+KBB75HT1eGRNygWl4i9Fx6e7uJWRax85fQKjW8TJpnn95Df08HuhkHWrVi47E4kiqiKnFefeVlEsksX//G19m5cyeCJPH1b3ybkaFBYvEEI+Nb6cgkSSdiOPU6bhiRzaUJgpCZmXliMZvR0TFEKaCnbxBZkSjk8+TnF0i3xZieniYeiyFKIMpyK3NvrUkh9DFfO4j26kGUi4uoikbQ3Yb06/cS/ukf4fzuFwg/tZtSV4L+yS0EtVn2v/EkUyMpzlSq/NaXvshbTz/C6BPvYTzyMsajL4Oq4Ix2E+zaijrci5JK0vRcXL+KqktIgooXCui6hSzKeDhIosb8pYv09nSjaRqu66IbBqEAnlNHViRkzUAKZWRVZPetU0hKDEESEUUBQZCBEEIPP/DRRJlvfvNvuPPOuxCJOHL4MG2d3YCPFMmETg0ECccXeP3AQZ49epTYLdtJpVIoZ2eQj5+j7ViZxhvPUX5nH8WhbgqVIva2rSy0CcR+5bcJv3Inc/dOkviDr2JMDlHxPEwPzH3vo33vKX7tzBLKj38KdYfk1FbCz97OhYkucmcKNKolTNMkiiKcZhNpdh5VVQnSFqgatVqZbDbJ4sIspw/vpbOznUphifLiAp1dPZiGyflzJ8hkO5FlCVkR8LwmiibSdKooooIbNhFljVg8Q6Pp0nAC+kf6cKIispxC1TSiIERTFUJRRpJUogAIRGq1PJKkoOo2itLK+KzIKp4bEuJRLhUZGRnGdTzSbSl0M8EzT7/A8VOnOX32HIN93RA06RsYIZdrp1As49TKyKqIoRrUi3Ns3bqFal3hzTf2sXWiFwSRru4e3nrzNXp6B/B9n/m5eUZHR0lemOfj/+F/o2usm+mTx0nGLc5OzzAyOYkhWZQreb761d9h+44d2MksxbzPn/7p/8CnPr4b1U6S6hkknUmsKaeuA6HJ+IagdU1Zte4BfFjguokZb3KcjfquDZzX+nwz9P+nxXUt4LoemljT++sGPKxHURRds7H+DwW4rtt0k+6wP6s213faPHD9Wdaw/VkD17V7rU8rc7dsetyNnu3KRFLLTPwCuP4c00Y/OsKqv9X91nJ1bbkGr9/v8rhXYzvWb31d7MLyh8t9N120ennoK372yzsu0XIUyDW9lmNZrsTnrrpfYY3gjys/3tIyk8J1o27oxrA68/HqXd7V/aL3jkHCRrz3Nup4vP7I4xx+Yx93fO5z4PvIgYgfKOiWyskj79EpmZj/3b+lPDVCTVcwdAUrlUWU1FYS5wiqpSJmLIkkSDTKRVQ1QlEViqUyb/z0FQZGRwmcENvWOXNmhsmJcWRBotFwkCSJZKqNM+dmidsaB/bvo72jB79ZQlQ0Jia34zca6HYMRdOp1SpEgoIkK+i6hq5ZOPUqdlyn2YSQJoHrIiky27ZvQ1ID3KoPURXDyCIqEVsnthL6HkIYoao6jUqZmUsX8IMGiVQaRbeJRIlmvQKB2yp94kUUl+bx3Qa2HcMwW1bBV37yKqqskk5adHd0cvToMdq7eiEIkRWpZfmp1YglE6iaTuBU8UKRb3/3e5QX82yZnGApX0RRVGrVaiuBkigihDLHj58g9Otku3oR/TqymSYWlxEihcNHTzDQP4imqmiqzsEDB+nuyHJp5hKOL2GbOmMTUxw+9B4Llwqk0+lWvdZIoVCqkEzE2bJ1BEEWKBQL2JZNIh6ju6uLw0eOEI/FUBWFhYU5Dh0+wtatU6i6Rd9gL4lUCkWNsX3HBK7j8MzTexgdGkVVZUrFAm+9/S7ZtIWqGnR1daLpMqphEfo+2yfH6e0b574Hvs/WiW3see4FtowPY8YTKPkSggBiR4bx8QE0XSYQwXU9JElGViJ8x8P1RcqVKn29/Xzsjl00a0Wee+4VRga7yXV0IkoCybiJnUoiiBGWFaNW8YnHTcrlJbo6O0lnUpw+eZx6tUzCNlhcLGAlsmTbs8iyRbVWJG4bWIaJUmngHjuL/OxbqIkYhU/eSvAXf8jF20cxv3gPR8I87bdMkm/UEPwaszPvk+pIoao6SkJjbOrTON98hsxPD6M99gqje88i+gFHykvEPnsPQVeG83MX0NSAwvw8YiBhWAaiqCHI8rIbdUgUBTR9B1USMQyDwdEhgkgiQmTZfYnAd1FVE1mSIPRAElAUhUp+EcU0CEIPUZKIQhDFiCgSEAURQYLtO7YThSGNZhPDtJFFeOJHT6OqBsl0y6p5/3cfZHzLOPV6A1XT6Nm+lWCwFy9to7k+2UWBmCPTVfVIlAOWBjLEMDE0KNZdujva8eMGXjaJ8fE7KI50Y/xXn+bwzm74b36L5GfvxkvYyAePIfz7+0kdvsClgThtf/ovCfYeRBAEVFnBn7+EYNpULJ1zxw/Q3tlHox6giSEdXW2UqhWmpy8hixrxlI2kW2TTGQQhwvcbyJKEgEzgh9SKVbwgwIplcZw6guDjui7ZTJpDh17j2SfeYnQ4xakTZ7HsBJ5XI0Jcrt9aRtMkAiRMw2B2ehpBEHAdj6VCEU3T0AwZWVKQRAFNl9AtHS8M2bV9G4NDAxSLZdKZOPMLNTKZDJIMYdgk1ZZDVwwqlTKJXFurTFAjz+BgN6lkG1EUIiBQqzXxfZdSqcC2bds4ceIsnQsFXnj6Scx7dlOLIuJGjLdffZsXXnwJVTcY6O6h0XDR7ASRqqPZEp/41N3YqkS1GVGcOU12ywRi4LFSkl6bnOhqfKcoCpeT+i/LnNWxnxuAnTWRz3oawOpxN6s4X1U+149ja/21PLdW/q3ss3p+8bq+lz+LLJepWo6xjLgqm1fHhW4Etm6kEyEKV+Nn17+tq6dWWJdWW2sv6ziX+bucf+SyBXZNBf+GJ66ny6UPW/rc+kVqNlPWcK3p11uvDeNfV5VK3Ayt9uxb2fdmxrlCyzrkFf42XMxVN7KSVuVQEVZ+T9cAvB8G2G60BivbXHttRcxtJEK0gscNaj5f9zzX4Wc1vrjRMxGQWLlW16zXZX1+WfeHXwDXn2taaaW8ma/86pfkZl+YTbVfRxDc9Mu5epwNdhsjrqbhXu0ytKbb8/J4oiiuelmvbblx4Pi1Y0mStG5tXaDl0vWJ3QDULkzz0x8+yT/+g9/H8xU8L6BWL1EszSEKKoZsYP+3f0lJUyh0t+E0G3R29VCt1CiVSmQzGTzXIWbrLCzOkc6kMG0d07QBFUO36ezoRBAFFFnCCz0S8RSxhEG9USOZTOIHLvn8JRIJlXgsTuQHxJNp7LgFEfzwkUcYHhtvWYU0FVmWiEIBTWsp8z967HGmJrdTqVSYmyuQzqSRFBU/jKiXixQKTZ740eOMjmyh0ihTWaqQXyzy46efZuctt+B7PiIyb721n9GRQQRkSqUymiIhqhrlYhk/bAnWQr6AqmiEgKbrQITbbNDV1Ukml2J2Ic+FC+exNKuVnfbYETraMiiqyrN7nqO/rxenskC+UOJTn/kcr736E3bt2kWjWUeSRJKJBL7TIAp83KbL/ncP8PGP3YYniISOi6LoCAIsLVUYHu4HQkzD4tTp04xPjLG0NI9lJTDMJIHv4jhNyuUyU1MTCKJAtVphdnqasYlRUpk0iWQSmk1ef+U1urt6yLXnQBDo6uokEY8RhB5Dw0NMTk7gex7NRh1VEZFEgZdeehnDkIGI226/DS/wMYwYnudyy45JFhbmMS0bK2bjOi6NRhlVU4gikfn5RZbyi8TiMXbs2M7xU2eJxRMkmy6iLDMbuCiaSr5YRAxlAs+nUa9QLi5iWHEkSebJHz+JZSjohkY6k2FycoLOjjSmaWJoGqHnIogyAtFydmMX2zZbMbkIVMt52jLtuE6TRx9/hr37DpBOJojpEqZlYFoWcghioUr441cQPvcxTv/zLyP+6u0kb5mk1nSJxZLE01kM06K0VMBsHyKRzGIYOXSzB+PrP0R7/A2k+36MfOZSKw63I8dcl4kwPkDHxCihEOI4Lo3aAulsO/F0J5Go4bpNREmkVXnQpVmvE/ohzbqDJCgIgkipXEXTzFYiIyEijHyIZERBplquIQCy2komhmLTrDWJluOgIcT3BaIggCDADwKiMEKWW7HqsZhJGIYcPnSMsbEJ4olWAqienn66ursgEpicmkTTVAIhpCmI0NWJOzCMLIF46DTCqQskTlzAXpoh//o7pD7xBer1RTRZRBIUzJhGvVmlUFhgbOsW7HgSsS1DpSuD/8ufofxrn4DQJfHgc3jfeYTq5++CL38Bcd8RSrKH3teHqtnEEwkESUEmZObMMeKZHIbZQzKZwQ8bWIkUqiIh+A10XcH3mlTKJQxdA0HC8z1sS0WQVTRNJgwDXKdV2ufc2SVGh8fRzIjBsQkc32+VDUOkXCyjqyZ7397HwOAAlUoV13WxTJuj77/PQP8Qnudz+PAh+vv6KRUXEaWQasknZttMXzhNre4wMjJKPGEiCionjh2hLZdBAAxdJ/B9dKMFXp16iCAKPPvsHrq7utB0GUmW6O7qIQxCmk4DgDdef5vbMllGdm9H+NQuOttTVGtlxidG+MTHP8bg0ARzM+f5sz/7Uyq1GsOdaSRJQxBVJFPETqU5tvc5tgz3ECnWaimzQi61LMvBtx8lPPA+4o6tK+TdddJp/aObEskbWzjXp6uK6w1bbtjmhj5hK65cK7OjFWPfCOzd1JL8DCxpl0e87B55U/boTbKzco4btl3nHj+0PrfGeB/WUreZaxt0uvZw0/02/71cz1L7YYHrB2+z6t1czd8GwHUzc20Ga6z01lyHvWv6/gK4/pzSajAVbbrY+I1f9svXryuc/CF8Cj7IK3mjH+zrxl1xsNJNd2Vh5XUB6IqXNQjC5YLl6+8Arr62EiTfSBBcdqV49dHH+OJv/xZCPIUiiggCqKqKZcWp5gvk/sW/4fylS9S2b+OZPU9x2+23EkUS1VqVTCbDwvwsQRCiawqmrhOJEhEgiTp/+81vsbSUZ27+IkMDgwhI6KZJo+GiKBKmaXPx0gzpVA4hEpifm0UUBRRZYWGhgG4ZlMtFMuk0iUxKY325AAAgAElEQVQbybhNFARIooggtTJdyrLI9m078ByP/NIC1WqTzq4cURQgyxqa0lLwu7uzPPHYc1hxjXSqnT17XmD79h10dXYRRSGL8/MkUwkUXUfRDFRNQVIg8AMkQSQRT6LpGu+8/S6JeIpXX3+V3r4eKqUSsiziOnUS6TSyZrBz+zayuTSCLGDbNocPHEK3NWJWDKdZIZnJEE918N37HuDXvvCPljPZqui6Tn5xEdO0AIGjR4+RjCWJxRTMRJqL5y6QSibZs+c5NM0mk7Yol0uEkUBPTy9IEpoiE4YRJ0+d4cL5U6RTcUbGRwh8B0lWMEwL01AwbRPf8wnDEMdr0NPbj2ZYuG4D3bRAiAg8j2qlhOO6GIaB73lYpk6zWcdzXUzTRJEkurt7CCI48v772KbF7KU5zJjGyaPTdPV0UqsXUJSQeCxLPl9A1XV+8NDDfPk3v0wYBti2xUDfALVKkaQbEEYRUlc/Fy5cIJVOIYoy8XiCcrnasmaIKudPn2bnziksUyOeTLGYX6JWLtFoeiRSaRqNKqIYIssy83MXMQ0NSYFao4LnOzSaVaJIwLQsvKDJ+MgYQ0PDtHfkWFycwTRjGIkkwvefodFm4//7f4XxmduRLYmIAN00yS8VSWfambt4GjOZwwtEUrkkhYPvkf5/HsK6/wmkQpEgaxMOD3Cp3SbqzSF25IgnYiAqLC0sIosKTTeira2XSDDwQ5E9zz5HT1cHhmVSLldRFAVdM5EVFUEUee2V1+nr60FAQFFbLr+CICKKMo16laX8Em++/hqZTBJJVAj9JmHg8+67++nu7kAAatUGqiQxfXGGmdl52tvbAIFKpcaePc8yOjKOrEjsf/ddNE2lq6cTQRAwLZtKucyB/e8xPjZGGPq8d2Af7767D1XVUGM+QqadcGCYUIuQzs8hHJ/DdRqosyd54shL9HS3Iccy4IUomk4m10kktWrkinIr0ZsdS2MZGvauEYyvfYm5coHUf/wBnLmI+88+Q2KmSuh6KIqCJkY0m3U0XcbWFCJVR1JlKrUyuVwWEahXKwiySKHs4EcR8USaEJnAczDtJLII5WoNXVcoFUtYZsutuqOtm3QmzszMArZtoCgSQhAgqzKSKFKtVOju6qJZr2GZFoePHKGtPUsyGader6PpKpIkt1yGgxDLtMkX8lTLDWJ2moX8PB0dXRQKi0SByPBQL/n8IrGYjRRBqVJuJV1D4EeP/5jt26fIZnKYZgxdN3AdjygKMc3WZplpmsxemmfYMgF4PCrT29mBZccIRQmv0eRvv/U97v34XQwM9TI8Nspf/dV/Ip7MMDg0TOAUiCST4oVT7N/7BmO77lwle1bK5mX59p/ug3MzCL/2qRVya7VF7GcHXDdH6wOfjSxF180ehVf6bTQutAw1K+X4hgr4B9BXrvArfEDr3iraMN50Ixx0E21XN7suoeXqNutZyD7o/W6wziutcpudY6Xetda11dUg1uu/4sRG7K7P1yaA61UeP1rguhnayAJLdK3+upqNiI/m+73e/C0dfX1efwFc/wuhyy/kyi+TeKMffIErlvcrP/mX+y+b4iO45p1a74u6EpxdIxhW8rjqbzO0pvvJGr8PK8e95r5WuZ0ILAP6y+eElrBfM0X5smtHFIEgLgv+dVyHV7sHr16Ty+fXcsUOxRAp9MlPX0S3Y8i5foJGned+vIehsSGiEA4+8RLD/+Y/Ihoar2shpqlz6227SaUSTJ85Taarhwfvf4hsJkdHRwbZStNoBkiSwqGDB3DcBnfdczeDI4PEVIlkNk2t3qSUnyeVTFGuNNFUsGNpnHqTN954i52770LVFBBVnvjxU9y6cweqaaLoBrauUS0uUq01MOJxJBma1SqLs7N4XhNZ0Tl3dprx0SHCwGFuYRHbMokiaNabqGaMrdu2kIzbJBMpxsdHSCZtFFnE8x3yhUV6enqI2ybf+tvvMD4xgR23KRUrqLpBpVanXKowPDbM7Pwsk1snsFIZFFUjmUgRiydoOiFvv/EmIgFGPI5hmsiySHtnJ5KkUm806OzuRVQMHMejI9fGyeMn6O7pQlJFxEAnHvMpNQJUxeLo0aPkC9OMDk1iyiGmHUeUBS5cvMC2bRP4UQPHaWCbBnueehLflenubuPwoQO0Z3JM3nIrEQKmLhG4IpEfsPett2nr7ib0fCRdQxYhjFxisRQvvPAy6YxBubiE53nomoEdS/D2m+8wNDpEuVLCNFvuzj/56U8ZGxumVCvx3sEjHDhwgB3bp/C8kFQuRaVSYmB0nJ+89CwJ0yRohNTdGom2LKooMdiVwfNciuUaTz/3Irdu28XMpfO0CzJhEPB/PXg/iVSKdDaFqMhIooLrBZw8e4GYYdE/MIRlm5SXiiiqimGa2JbO333nIXbdeheeU0OVQjw/RDUtXC/iwtkZOtq78YKglcxJiaFoAoIoYsZjqJrE4vZBcpeqGE+9iuBD/k/uIvXH/z2yHhKFLo1aGQWPZj0g1dZBoPmIZgKqNRr/7pt0Pv02yWf3EiUswp1bqAykqEkep2bOoScytOcSHDl0FMcLiSds/CDi4sU5Hn74MUqlCktLs/T2dDE2PIofqeQXimRyORq1JTTdwItCAkLeP/Q+I1u2oegCjcoiiqiytJBvlXMR6wRelbHxKaZnSyQMFSKHyG/S2Z5F1VS+98BDLMzMcfjgQXq7+2lvyxJJQisRmyIjSSG6adNs1tm16xZymQz6cibvpdlpzlycZWh4iEQqTkREJtNOreJCKFCrejzz9HPYMROzqx15fJiGqRG/VEI5Pkt3A2ae/TFh5yKyNcjxcxXaLQFPKqCIaaJIwSkXmTm9j0IpTyzXQaVSInXPx4l+49OIz72B+O/+HvFzH0P86uepv/wmLGe/9gNwQgldNxAkDVXR8BwfBJBVA7fZJJU0KCwtIIkCBBGSZOA5Am+//Q6mpaCqBqYRZ3GxhGHY5BfOUS42SaRS6LqC57itDOphy8X6W9/6FhNTk+x/9zDtHR309XcQuFWSyRT5fJH83CL79h7kllsm8TwHXbda5bUkkUTCJAhcDENBFCRiMZNCsUgmm8WyYrz21nu8/vqb7L5lJ4QRvUN9WLaFICnYcRvPi2hUi5i6QaNZ5Omn99B0PeaXLjLY2Yt5cQG1KbNn7hJDw73oegiCxdTWrQiSx1JxEQmB3/ztP2AhP0f/QDfNuoNtJpCsNLt2ThGaKTRJIgwlQAIhuiJbLrvFRo+/CAhI/3hlHdeW1LvSZq0a5xsI56tzrFZ4xZaMFK51hVyWxteNcUU/EaXr5ObNKsKtHAOxFcruZSV7bVdqYdmFN4wigjDE930URbmS/OiKzrNKd1itV6z+u+IWLAjXrZ/IqhI54gab5avoOr1nswrUZf1nVYgUrHFfK56RwIcHJFEU3VTpxZu5reiatb5qeJBlec1Qs40A9mYB8IbAVQi5EvPGKv3x+hGvvRcCBHF5+NWlGIWbcbnfmFYnRr2OqzUMMIqi4nleK2dB0OLz8jVRFK+4EhMJRMK1T1Aguqpv32idr7nva+9ZEK7+rYYTEdd7BfwCuP4c0sqdpHV36K7rtObHG1/bgId6vY4kSR/5TtGGwPW6xhtcY5Vb9GYLRt+M28fKVuu5Qaw4H/zRnxP+zSPMPPg4fcemkZ99FeHplxg7e4ng6ReRH3uenkf34He3U5oaZX5hgbGRUeqNOooiIyCgWyYLC4sEvk9PTw9Oo859993P1okpZs6fZcf2nciiiGkY6KZBsVKjXKoRT1pohoUXRFQqVQQxQJYUzp+7SFd3L9Pnz5BIpOns7KLZdDBtG0Nv1T1t7+ymVC4Rj8UoFArYlkWlXCadybJULAERtq2Tz8+TSGRRZBVBkPDcJnYshqIq1GtVTh4/y7539zK+ZRRBhCiM6OzsRBJbNSBT6RTZTAJJbAF2x3HRNINUKk4YhiRiCR794WPceustnDl9inK1RjyRRFMViMD1fdo72wk8j0ajiWmaqGrLotraXY5QFRXLMkkkY4RBgCBAcWkJVRa4dGkJQ1fp7elgavsuHn74R/QP92BaccIQhoYGEQR48439jI5MICKTzbUvW3ckent68Fwf09LQNZ1IgPnFWTzfASGkb6iPRrWBrhs4TpN6JUDXNeIJk7ZcFwGgKCrlYhGn2UDXdGRVJpVMUKuWkUWBXCZL6Adkc92cOHaGT/7Sp4kigYe+dz+3334LhD6KotE/0I9lx6m7AZlUDEVRcWoNVM3Ajsep12q8++47GLpJe2cHKbflabAgCqRSSfr6enCdJook8sAD93P33XeTTOggBHhejVxbJ47voRkqnusyNjrGwuICQeiTSqep1euomoYiyezbtx9N18nl2glDEV2RqBfyNHuzqGdmUF/eT/rF/WhbRij+8y+h/9EfkFcryLRRKs2j6yaVSg3NMkEyMM04eCEsVmn7379NtuQQ9XXg3zpO2NdOLYQo8Ekn46TSGcx4nGI+T1//IHY8ju+1MvuapsXkxBRjW4boH+wniABJ4qmnHucnP32e2++6lcADSRRRJBExDOjv70WWBcSoSeA5lIoVHnv0URr1CslkjCiKaDQ9HnnkUXp7ssiKAIS4zTp+4DLY30t7Ns3wcAeSHFIszeG5DrIoUq9UyKSSGIZBGHrUqjU8zyMSQlRdRxAjvCCgt7ebhcU5EokYhaUiUQjZTIZMNoNtxdA0lbhtIasqYszE7W1DzCQxzs7THiVpnipS3vcSQ5/fTWmhjGgOMH32BKYdIwpcujvbkVWTWCJDuViiUCrjKxL1T9yCfdcutG/8EPEHzzO9Y4TEH38V4e1jEMrMTC+gKSKuH+A5DUxDpVKtouk6uqrSbHpYpo2IzMJCgShy+O7ff4fb79hJLteBEIkcfO89Bgf7CaOQmKXx05+8yo5d2zlz8iREEa+/9joDg4MEQUBHRwedHZ2oqoxtx1BVBcIAz4/wfTh7+jQjWyaoN+u0d7ZTqdUQBQnfCzh96hSLi0VOnzrD+NgYiwvzSIpBpVqn3qxTr1T49Kfu5eL0RURFxbYMXNdFVWQC38d1mli2TblS59ixM3zylz7LO+8cwPegf2oU68gZXjl7GuHjW8m1J9E0i0Sii4cfepQtW0eJxRLUaz5hKDC1bYowDNB0FQERr56nuXSaTP84nh9yxZXuGuC6vCH6+AvAteVwblZG3YwsWx+IbSxfb6RU34hs276CKzYC1lc/t/6vrF+7esP/KnfXsXtDWhMYXN/oZ5qY52b5WR0Q9ZFY0m6ko31k47bW8nKZwGuufch7uPIusYHl+6bK31y/8ld4jFbf2EcHXFeOsxngCiCJ8pXPxWIR3dCubb+S3+ueyfVGnA04W/Fxg3u+bn2ub/cL4PpzSCuzwX2UwLX1Jb3x/JfnVBRl0y/bRunLV46xnpvAOocb3td1wm2TwPWy7FvpSrGS5/UE0RWX5FW7Q5cFZiRA9INn4N33aRIRk1XERgNqDYRGE6np4jcd9soi0Ug/9Vqd3p5uHn/8R+zcuZMwCJnLLyEKAd3dXaTSKTwvQBYCLs3O09c/iN9oYJkWURQShQGRLKObFpKgIMmgmQaO4/P8cy8wNTnGQj5Pe3sHxUKB7q4uHnjgQXbvvhXDtgl8H8dpks6mCQQZWRJp1lpgZGFunt7uXir1lvKWTMWxLIPZ2Uv4AaRSaaIoIr84RyyRJPADXMch19ZOb283iiqhKBKBHyLJrWQ1rhfQ1d1BtVKgXitTrVYxTZMHH/w+Uzum2L/3XbraO9m2YwdnT59iaHAYy7YQJZlycYlMtg1ZkVEVkVqtRqVYJgrAtE1kWUYQBCqlPFEYLoNFC8fxW0DW1PA9gVQixcLCPIYpEwkqr772FpPbx1nKl9A0g1q9gq6rmIZJvV4lijxiCRNZlAgClzBqJcZym3WWCkVMy8aOJ7DMOO0d3QShxOkTp1AljWqlgqGnEUSfWFzjgft+SKVWZXJigiDw8H2XXDaDYVqoskRhaZ6YbXFp5hKmYTO3cIlUKkFXVxuaJtDX24OqSmiyzNLiAol0Gi8UeeWV1xge7GX20gKyKOFFMp7vErN0OrJtjE9t5cdPPsVEOkcUQWy4j+PH32dwYBDLNIgCly3j48iyQrPhEfoiQQjVep1YzCIMPIRlYHf//feRzXWQaeukXq3iuB5xWyPb3kEYhrz/7kH2nj7N2HwR45X3kBfLNLqShP/1Fyj94W+QnxikbaIdxymhqSKe2yAWSxFGrfcn1dZBs+lQK1fR3zpO/P/4FnTncG8fR0hblCplLMNAliVilkUYRkSCRBgJaIpBve4gyXKrRq6soOkGCAKaBv6yC2rTbbBtchs7tu1EUXTOnDhDIqbTrJaQo4ggqBMGdbxakTAKUWSVZr3G8Eg/iWSK0HfQDZ22thyWISKJEZomIUYhiiKiqRKKBPGYjW3buE6IrsuEns/et96kI5el6dSRJchksoiShCRFyLqOH4Z0drZTLhcxTRPXcYnHkzz22KPE7Rjnzp1j29R2ysUiiizi+q3YdEEQqAkR4pYxBCRipxdQqy7uhRniu8fwxBQxS8BHwDJ13tu3j46uPiJBZfrCBXr6+9B1HU3TkPu7kU7PIMoyxlOv4f/9D6nuHED9Z7+O/+b+VnmpeBxDVzh5/Cgdnd0IokSpuMSRwyf5wUMPs3v37Vw4P41piGybnCCXSyPLJgsLCwwODnD27ClMK0YYeIyNbeHS3AWcehPDMNkyPoYfhgRBQFt7G9ValXjCav1eIxEGARcuzpJMZgiCkAvT0+RyORKJGIoqc/jgEZ5+6hlc1+Ouj91DLpvD911icZtXXn2TsbFREok4mihy5OghOru7sGNJTE3Fc1zqtQaiIGHoOu8fP8Xb7+zj87/yWSrVIp2dbUxsHUdRZBQ/YMCMs/Vf/z6u5wIG9933MN/6m2+ya9cOBgdGOPb+GYLQp7+/h/zSApKiIAoi7739Km+//Bi33vNpJC1GGERIUUgQXR8SdBm4Cr/2qQ3k2yppd7MWwBXnbha4XnYF3FDOb4Ja8vhaHlb/wbUJaC5XLLjafzXQ3VxVhvX4ue7cquNonXbr8fNBaKUF+kb8sHKtovVKDK1Pa5aHWUdH+9CAfY3FFAThpnm+Gbru7q5B+h8OuK57TbgZ8HeDWVc83408HK55jitchQ3DuMLr1fabA6435m2FXrwGcL2KZVa5r/8CuP6XQ9Eq0/xHZXH9wCEsm6SNdoFkWb6+LM6HtLheAyI3C1wvb4xdTuvNVbfojQX35f6rFIvl9mEUwSPP4l6aR/vipwiHB4n6Oqmk45yuu9hTYyxZCrmebiRF5cLZs2i6xm133tYCrXML7HnpBe696x5kNaKtPQuSgBGLc8utt6KpMnE7wYGDBxgZH2JxcZ7QcVoJlaKIuGkyc2mGVNJi2+RWRBTSuQyWrXPm5DECQeG2O+9AVCQkJUKTVc6cPEehVMfQRURJplprQOhTr9YpFsuIssb99z3EXR+7HSKwzSTpbIpTp06iGxq6riKrGvv3v0dfTy+yHmHZFp4fYRg2jXoNVVUpFIqIkYQkRgQhpDJdHDt8ghdffJnf+adfIZJMunJtVEoFZF3i6Wde4p139tLX00Hg1omlc/zgoe9z9vQJJqe2IiAwOzNHcalErrOtpcBEIQoiiqIiiDKLS3msZI5nnnyO8YkRjp+cJ5G0mJmdJxQkTDXg7nvuoVarkom3EUQOtm0jihIxS+edd95hYnI7YSSiyq0Mo6ZtE4kRruvQ3taOU6viRk0unD2Doag8eP/91GoNdFnDMAxqzSKO20CRVW65ZQe6KuO6HvF0BsWwUEWfaq2B6zZJpjsRRBk7ZlOtVUilM3S0d+AHDqXSEolMFiQJ3w1I2gZNP0DXFJKmihaLkc5k0UwLy9DxvRpe4NHV1U8U1Rgf20JTVnnk5Rfp6G6nt68b07SpOz6CEOF4HhemF8mm05RLZV577VVGR8YgcKiV8tRrDsm2HFvHxqhWKszNzdM/MEAYhHhOGSNSSRkG3a8fYqSvm+Dz9/A/OovkP3s3Q1/+ZZoxi2TaolCYxTKShKFP3Owjn5/FTlk4fgPNVNj/2lukUwadrx3BeOwlnFvGCEd6kCQVP2igKDKyEDF95jBuGBIgt+oCCyqO43Ph4gzZ9hyNRgNRlAkJl5MwRTi1OoLfIHIrVEtFQqdBYWmean4JWWyiKPD++8cxVR1VV4iICPwm9VqdRNxG10QMM0G1UiAMPeIJm8DzCf0QQYgQJR1F06g3mhBFhIJErVHnxZdeZ3R0C4cPv8/tt+9GM0QCr4ksCwiygud6VAuLeEGEHYsjCAK6ZvDEE08yMbEdVVXZsWOKZDyFbccoFors3fs2IyODyzViWxudjuMg4SOnk/j9neg1Ef1cgdr8JZZ6imRTvWiWzWI+z9axfs5fvICdiJPLJgiXlYnZ2VmazSbx/e8TWjq1v/5zhFwW9b4nif7uEZThTjo/dzen+nLkfuOXCV47QCQIKKpO4LkMDw2z+7Yd+H6TTDaFFUuiqBq1hkO1WiSTSXHo4GHash189/7vs7S4RBiIDAz1kOvsRLdMBEni2LFj5PN5stkslmlRrpQwDJOmU0eSNI4fP83wyCjZbJpMOsGF8+fIZuK4ToVMOkdfXy9TU1upNytksykEQaBUrjC5ZYhLF6c58O5+uvvHeeGFF7nrzjspLOaZmV3g0uwiTzz5DCOjW1ANnY62TnRNRtE0LMtAFMBzQk6cOkGyq5PY4dM0l6pod9/BY489wdf++A/44hf/EUuFWUzT5uWXXuHcudP09nXR0dGGItn87le/xh9+7V8wPTvPrh1bqEUGoigiRR4Ba+RbuGJx/WiB69oWzQ9ucb3Z+dfh6gbjXKvMrAforuv/MwKuG43zUVvY1ry20Yloc4mZbszA2oeC0Kr3/oHn+FlZcjcx58/C4rrutY8QuMIKvXWTG0VRdLXPDRO7fRjgyuaA61oP/sMAV2HDYrz/gMh13Z8PRj8gXU7MJAlrx5eupMt+6hu1u8YyH64tGFa7Jq8312pAvfLaWu032nX8sDt2K8sFXUfCqqD9SFyXz7X4Wosur/NasbphGCIEIcHv/Wv8fQfxfu83KcxNk0ymiULY89wLNJs1prZuJWaZ7NnzEwQx4p/8ky/hhCE/fORhdmzbTndvD+25HEHoIkoyYSjiNCuYqQz1SoHIBd1SECUZQdRYWppFkRUSyQRhpCCELvVaES8MCH0JQ1NbpWkIkU0bzwvQNB1FFKg3HEzTbsU1SCGFhTnSmSwELLuJizQaNURRwzRNqtUqkiih6RJuGKFpFqoQcPLkGYaHB2g4JQzFpuY20XUDEQjF1g6q03T4+2/cx2//7ldwQ59kOkm90WTh0gKZlIosREh6hlD0kZDwvIjXX3uV23bvwvPc1m6sGBEGEblcCj9UEIgI/RqhqKIbCp4b4DXB8xucPHGU0eEtJHI5Ih/KlRnK+YifvPICX/mnv8v0+TMtkKoo6IbJUj6PpYvEYjEKlQaZVJITJ04wODRC03EwlJB63ccPI+y4xXe/8x2+9BtfJpREZNFBVg0aDRdLVVlYyHPu/Bxnzp3l13/jVxHFCFESCAOZKApQDYMw8JAEnyjyqVVdLDMGgccrr78NyOzasYNy8TyKGsOwE8iawvzcLKlUgij0CJ06ViKOYsYJIpVzJ05x8uRJPvnpj6HoKn6jgdd0UBSDhYU8uWw7zz//PBOTW0im2hEEF02VEFQdgZDA86mW6xw8fJwzZ07zq7/6K0S+j27rWHGdxdl52traESWZUrlMMpnCbdZQJY1o70E4fh73E7upfOl2Mjvvolyc5tK5Ah0DvcRsm1KpBLJEti3H4vwJ2nLd5BcrHHzvCDt2jZFIpBAFmahax/hf/wavVEG+9zZOzZ+lN5NlrlCnvT1HvVlhcXGO7q5BvCBEVWyCsAGhgRd4BH4TM5Ei9BvUKk3CIETToFoLyKTjEPo03QUiT+HF51/ik790B4VijYHBYUrFJfCaVL0QUfAQwgBBM0kkUuQXi+iaiWUreKGAoqr4rttK9iVreE0HCJDCBtVKnXi2F6e2QCm/iCyr+K5PpVYh15VDkkVcJ1jecArwPA9NszCsHF4QIQke1ZqLYVsghdSrHkk7jqzJICqEvkN5aRHTihEt12Z2PQfbtvAD0CQZz6liaCb1dw+hL5YI7r2Nc7s1zMwosUQHpYZHOhmnUSlhGyquK4Nq0GjU0SUf+68fIowCGn/2VUQlSbNewn3+VYx3jiLtOwSnLxIMdCH+5hc4NN7GrreOE4ZQyU9T8wTa2jtw6jUkTcN3m7iNADumU600qNcdnKZHW2c7UeTh+wFRJLY2AnwHp96k6YYEoUO2PUez6UHoo1k2eAEH9h9h27YJ5uZmKJer9Hbn8L2ARCJBqVQknc1SqdbQVJ0QF9/3kSWDp59+nlwqxuTkNtzAJUJA1yzeemsfg4O9+E4dUfJRZJtEwuT4qYvs2rmrVZdWhLpTRDV06jVQJIFavUDyzaMEGQv3//xLfv+r/5K//vqfc+TNlxjbfRuxVBfH3j+PEgkMDfegGxL1qkHckvH0GN/7v/8nfuePfw+teyda6OAJBoLgrZA/LRkWfO3PAZC+8W+vijdB2hxg+4B0NadDuGKeqwkR10uKs7l51+8bBKuTH65uK16ZX1wRq7eaLheAuXJNXAWsVxqkVvVf7cm4EV1j9Vodu7daP78ByF6PrlvTFTrcerxeLocjSRt/TzZDN1yf8NoKDyt5XktHuxE/m9p02WjD4Ca8Cq/TE9drz6p1XO635r1Ea9+vIAhX+m2kE1+5vmqclXOKokgUCtddu3K44nlstBnVMrisAJfrvJsreVvr/I0wyLUdVnksSuJ174aqqpt+C39hcf0HQiuz5G6Gbviib2BxXekvf6NxrnFdvgnebsZ6eTO0Ib0nVyMAACAASURBVPD9gHGsG9Fau9MreVFlmXP/4RskmgHRji0EYYiqaUiywsBgP5MTk8QsG891UTSBT3/6k0QR7N/7Jp/97GdIpZI061Vq9RqWZVGt1TAts+USHArLGYZVnGaTIPBRZQkpEDA1g9JSEcO2iYKQ0INaxSOdy9BoOiRSGZBkFueWSCUTCFGI5zooqkQQegShT7NSR5UkSsUymqbjOM5yGRCQZQVZlmg06nzr23+LJhp09/QQuA0eeuhR7rjjThqNJpKktCwHqoLveYiiyMzMAkv5AppmMLV9C5IisrgwS+C5NKpNTp06w+j4FkRZ4OjhUyQSNrIo8f6xE+zauRND15BEkWbTIZ1Oo+sGYRAxN7/I0feP09PVQ9N1EQQBz/WpNSpoWozTp86zbccIlUqNSrVIIhEjFrPZtnOKcrnChfPTtGdsJBlkWUCVBMxUhlqljOc00Q0RP3DxAgfDUPHdkL3v7Ofs2TP09/UyNbWNQr4AgohbK2DHkoSRxH/+xrc4e+EC9957L92dOaLAo1apoCsaRw4doqenmyNH3scyTSRBolqtAwK6odEslxgeGSFfKPL0s3u4+67bcLyATCbL6VMn6evpo16rI8sKiqEiSxrFpTLz03N0tMUYHOhDV1VqlQaB5+EHEaoV4zt/fz+7b7+Dju42ch1p/u7vvs/howfZOjmJ7wcYhkYQRJhmjFwuy/DwILIisLRUIRaLoes6lUoNXYuxZ88etmzdiigKOAM51MdephG6fG3pBMHnP8PUxyeoliqoSZvB/k6q1UsYpsH3v38fE9vHuTR7AVnUUFUFVRN5Z98bTGy/BUVTmX/1bTJ/9SCRaeHfOUUgVaFWx8x0kU4nOPD24+iKha7mEGW1lZ1aUhGliOnpuf+PvfeOkuu67zw/992XX6Wu0DkAjRxIgAAzLTFIorJsSyPLlpXGkuU565nx7tkZz+4ZzXrWHvvYXu8ejdcT7HFYybKoTFlUICkmMIEkmAAi5wx0qK5c9fLbP6oBNhrdDYCkPPKufjj3oKrfje/dV/f3+31/ge/c/x2uv24jvueiYvJ3X/4K7VaLnS/txGvPMDZUwvc6kHgIVNauXksYhphaxPTMDGEcoRk6z27fw+Ytt2KmBxBSRzdTpLI5TMdBqiZST6HpFlLqRMIkiqBZb2Km86iqjp1JE6KgGCkMJ4ORLlDsL3WVJLpJp9kmrZv4XoBlp1EUHV0mtJotVBmjzAZyiqIEy0xjGBoz05NomkHY9nnmqafoyecRqo5p6LheB13XaDYbWGY3orXnu13lVn+esNVB33uUHrtIeXyMVsenr1gkDH28IEDTDKT0iYgRSkS9OoX10iFIEuqbVqOrBpowmJCC1DtvI/nwnfi/dBfW2BjJf/k6pU7IvruvQ911mGYHdM3ENkwa1SqKSPD9ADuVp1Fr8dLLL7N8+TJs28Sy03ieR7PR5sCBQ4yODHZNRRVJq9GkWCx2n4+hMzU5jW3ZBEHXD96yTVyvTavZZnhsFNUweP6FlxkZXUVCSBJDuTzD+fMzmJZJu91kzdpV5EsFrFSaMI4IAo9UysKyDXL5LHGiYDk2QpqksxmKhTzf+/u/J5vNYmRNFMWhWmmRxE3OnzmDrkmM09O07riZcN0wH/nY3aScFINb3odmpYmaZVond5EbKSCUiG3bnqUdTKIbEXZPiSO7tnP91hsQTi9qEhELDXEJAzrrurLzAGTTKHfeNOfsWRrleqtMVBdCkpYSwK5u3MXbKoqch+Jdfo6/zogvMffLUJ15Z/dS03uDt+5KaOwbfSaXtVsC3JtLcpZfC4LgrTW/XQBsXAwBfCPgxFXVX/LZX5kugjBXCRZfls7lauOpzP2rEAsikYvWvRJye4lv6uKWCkvx7EJcDL80O/M3puS4tmc8711ULpcRfmYq/I+UkiRZUnC9GkHz4o/GJZYAC4emvxat3JUE0QvXrxSKff6YS5mczNXwztX4Lqq54tLrSy1vrm9rp9PBMIwFo9rN/byQj4HbbuN/4/vYLZ9448pZ7bEgIUbTVDqdDrVqlXxPASdl0W63yGYzjI+NUmt2+NHDP2bNyuXopk65PENfXx9tt4nXatNp+zz99DOsWLkMKVXSjkOzMUOia3QCl3RPFt9rEvgtvE6TcrmMrqnYjs2ZM+fIFwrYlsVDDz3MyMgYbrtNpVJF01SiKMLUbc6dPgNAvdGgWCxSq1XJ5bIYhoGidIN13X7bbTRbPtlcmka1Qu/AML19RcIo4itfuY81a1ej6QZCVZGKSr1W58CBA2zcsAHL0jBNg1yuB1XTOHf2PJl0mna7ieFYDA8up9GoEgQBTz+znXy+B1UKXM9j+7PPUywVUYTC0088wYqVKxgZWwYIbMeCRJIk4Ice3a2hYJpdIa5YylAuN0GGRBFYusbA0DCWLgmjGFU3mJ4q4/Rk0RSFk8dPYJg5Tp86z+joKpJYJYwCfvzQI9x00030lvLM1Jo0G00Egv5SD0JKVE3nuo3rWLFyBTuef4FNmzaiyIRCsYhUdWzbImXrpLNZUrZNq9Egne6aJpMI4jhC1Q3yxTxbNm8kiiJSuR5IEtKOxZnTpzAMg3yxgG4aCKFx6OBRAt9jcKiErmv4fkiSJERhSBD4pNIZtmzewisvv8Iay8GfnmHj7W9jbGyI7pGVUK1WSaWz1KptgsBDUUTXvLveIN+To9NuUiiWkDKhP5fHGBuC7z+Jtn0f4tc+QvmX7+KWD36A/oFRDEfQ1z9GrGSZPj/FyMhqXK/JHXfcgWroFItFpEjQNBXXa7Nlyw3ErTbm7/01+Sdfw12e52wqIvaquPXzZLK9oFldwTLK8/xLhzg7VWHFxuWoiUAIjXPnTpHv6WXNmtWzeWYlqvDZuHEFaUeyauUYWcfEcTQ6HQ+IiRIfL/SwUw6W3UuuNEw624uq2QyNDaJZOpphoBsGQpFEUYKq6sRhglC1LsMjukF1nnj0USqVKmMDBRqNMoauoosuE9Bp1DA0jUhR0XQTqSjEUUIsAhIivKADBKiqgVQkntcCJK12CylVdMOCJESVAtMwmSnXeerJbYwvX4YQCqqmoygqlmmjaTqhH6CrBrquI6QkRiAHinDiDM1KndSH3knaMqmUJ3E7LplsljARNBrnSWeLdDouWScDT72MKiXRbVvxvRpHDh7lI7/4i7zz7ptx44ieUoFGPsfkhpUYP3yS9MsH8D/3EWrP7ubMyRMUS3m8IKDdaBKEIWfPTJHNZli5ciUPP/Rjdu7axbr169B1ie04jC8fJww9dMPg0OGj9BULSKkShiG6oaKpOgoRYRjjeQGapmIYGoZhoggV09RwHIdGrUmzWeeBB77P4OAQlumQzWWxbQuBgm2ZGIZFvd5gcLAfP/DI9WSp1xsUCiXSGYsgiInjAFUVjI+vYPeevdi2imOnOHzgEJlMiqHBflr1BunXjvHb5w7yzo98gKPHDvLKy3t49rtfZtMNtxKZOQY3bObEodOMjK4knxtnz56DbL3hVrwkTThTRrUh3bccjZhYaEA0B3Xpni3KnTfNE1rFZefZ3DP9apjiq3eHWVhKmj/e3HJlYSW5pI9Lx53PMyysgO62vXzOi5sGzxf+LjffvIgcLTDjxdZ1Cb8zbz0XGPK5dRa7ZwvRYtfEpQzdoiTnZIZ4o7Sg1dwFsPLC/FkcAJmPxM6lK619fruF5rBg26UWNG/sq5a3lgi4dPkaFt8jVxJcLyCXc9/xarXa9U29rO3igutSNPfeJknCXOl9McH1rbXuuFxwnU8/E1z/EdLFwExL1LmazXLRTOTq3ve3hJYyJ55P880LFqp/wSd2fsTChcx1583k0utXYf9zIRT7YpqpK1G72UJ94FG0Whtx3SpOnzzDzPQUacem43n4nkcSwXPPPs/o6HIa9QY9PVk8zyOVKzC8bAUp20CRkMsVSESCEBHZVIbJ82WmZmYolnLksj1Mnj9LPp9GieHIgQNoArK5QUQsOXzgKL4Xke+xyaZSGLqGpunM1MusWr0O0Im8kJdeeomVK1eRSacRUuPrX7+Pvv4BVFWSy+Vm96HA931830OqCoauc+j4CUr9fRALjhw5TL6QRtMkm2+4EcvUEapESkl5epqUY9LXV0KVCrpUqcxUiYVKywtwbAdDFxgyQUuleWbbc+zbvZN1G9YxODhKFIWUSkUMQ8dx0lQqZUqlfkr5DEHkY6ccjh0/RafdxvcjoiikUOil4zXo6cnwgwceY/euXSwfH8ayiliO5NTJ86RTJoZlcPjQMXpK/ZyfLGPZaVQZMT0xyTPPPg8iZs2a1aiqyl//zV+ybPk4mqrRWyxQnSkjNI1KeYZnn93O+IoxUpk0tdoM+197iUw6zeo169Ask2pjGsO0SRAoqkDELkJRmJo4Txz6OJkUe/ccQEqDMBFITaNWnSLvaASxgmZZRGFA2O5g2zq5fBbX94i9EN9LeOXVV3nbnT+HVA0SYmr1BtKQxLFPPpcjCiLazQZJnDAUJCRtl6889CA3bF6PJgWO7aAbOseOn+axx58kCiOOHj3G2rXryOTSqEqC8b7bmDxyFPvVfVhPvErccQl+/h3Uf/ND6JsK1CuHKCxbQ+/AMoQObVfl6ce/xabNq/gPf/KHbN64BSk1XD+kUq2haW0mJiboTZcQf/RVUvc9SqwJzoxZMDCC4SSYpkKnraFnM+iAtPIUsz0sXz7A2EgvtpIhwicMExSZcP7cNM899yzDoyOUJ06jKipup4ltGBArSAl+2EHTbdK5LIbVi5MuEgsHxdIJgZiQmZkJcvkhRCI4d+oc2556hBUrxiFRUBWdwG2gapI4dum0G8goYM2qFTQ9n3Qhh26nEZpDmOi0vADLSRELHSm6SJLUNEzHRjULOE73+fiujx9DHINmqDz80JPYtolh6uiGTqfdgjhEKBpSt2nWa/QWiuzbs4/Dx05x6NARLDtFOpWhXpth3/6DFItFvCjAthzcdgc972DtP03canFIttB0g4GBAQ4ePkK95bJ8tJ8gVIlCBV3qGDteIwpj/nLfLkZGHFaMjfNrn/4UYTDNwNhK3HaTvbv2ceD4KT7/zb/in224CfNP7yP1uY+T/8R7sQ+dxI0F6XSGtJOiWW2QylqEYcj4ilUUC33olkKn0yTl2Bw/fgzbNimXy+QLvdRmpvnGN77Nlq1babebaJpC4LdwnBQ7drxCOp2iUMyzZ/deps+VyWZM0imTysw0ff39FApFxpevQNM1VFXBsmyq1SYpS6PV6CBQsCyLTqeFYRjEkeDVV14klTIo5kukUyZh6GMaFk8/9Qxrlo/itssYpkq1GhGELs5EjaTWJP+FX2Z8+Qb+4Hf/KytWjZLu6WXdus3seuFxRnI+uf5BTp3dS6GYp1DKk0pLIj3m5MEnMOwMhZG1qEQXBdfXz86lUM3FrX+uRFcnXF6gq4T3rqnv1xXFl9cV8+JgLG45tZDguuhMl0At5wta1yK4XjqzpVHea6VFhbpFv1xKytXCidc6DzHv72/QEvlKoMZ8nu/SnL1L9HtNc7jqmvO+XjviOrfdUgL7xXXP8qyWZV2Fb+qbAJ6uQnB9a+lnguv/t0mIi2UuUnq16OhF4W5OWXyoq9PWXk37q+nnsiBNXH2wiMWE3UvqXUg+logrCq1C6f4oKIroIqRL+L/M/bsiL4Teh4SE3U89QqY0iLHnKLWxQX7wg4fYcuONpNIZdEvD0g2mJqfI5XMEYYRlmwRRwNRUFddt01vIzY4nmJ48h66qJD4ouk0ml2bZslEc00AaGpbjoKsmia6jKCaPPfoEGzdsINEiJsse0xOnWL56JQgdRWoIJWH6fJl8rodadYof/OhhfuEXf55YxEQRxCKh0NPLshUr6C0UiOMYzTBIhIIQoMkuEtv2I5YP93Pk0EEGBgcZGRrmqW3P8f0HH+KWW27m4P59pFJZpEhwLB3bTmEYJvV6o5s6xdBR1W5eRb/tUanWCJOE3kIvhqFyy223EYYx9VqV48dOku8p0Gq1ee6559m6ZRNBEpLOFzAUhVq5SqXeZqS/hG4KUpk0odcNsKTqJivHV3Ls+FGWjYyhmwqNpku90sExVDRDIwp9bCfNd777AAOzzK4mVVauWkvatnHSDm2vxbrVq9ENg1deegXDtHhl125u3HIDgpC169ZhmBa+10ZXNTQlTavTotTbS6ftomgmuowRUYM48Gg0ZjCdHhJFx06niH2PJI7pLfUShm0a1SbPPPUMA0NDZLM5ajMzWI6DmU5RrdbJZHJ0Wi66YRAELitXLkOVCp7XoV6pYNkWGctGEZLJqSov7tzLxOQMzVaDAUXFMk1uuPcuIiI0yyCIBY6TIp/Ps2btapYvG2T1yhVE7Sa6bSO/vw3l/icQfojx3ns480/fQf7X3o9cP4puOVSqNQQmcRBQb9coFYvEnUkUxcR2THoLvazauJZOItAth8hvoekxA3/1FPrfPoQMA8pjGRqDBYYHBziyezvDY6vZ+/IOhlesxtDSJIpOHIYI0ULXDYTQkbqk47bQVB0pA3KpEnt2vcj6laPEvkezMY2hS+IkpN6ooOo22fwAiaoQhCaGZRMTI2VCEsWoiiCJYzKZHImIUBSJ5TisXbkaL/SJ44iJsxOkcjmEkF3zXt1B0TU6fkhvby+WpuJ2PAxdxWtXME0bRVFQZn9fkllFUJzECFRiITF0A1Pv+pyHQRvbcnDSKWxDI5fNdt9DRWJYORSpc+bMec6cO8PqlStxOy7PvbidVqPBqhUrSNk2um1RLOQxDR2pCmJfoVrbh5UtwLkyIk5Qbl9DqXQTUaTQV+wna/WjWDqvvLyD4cECnU4Nu1QiWj7I8ltvJ18sceLoYUoDJazSOJXJaUqZPF4IO155jf/zj3+fc5vWctroMPTn30UcPkr9fffQ3LIM9dXDvLZ7L6vWrcSxHVr1Ki+/+CL1lsvQYD/l8jRJrNBpBximQk9PvpvqypNs3rIeXbPotKs4qRwJCm7HZeWq1ZimQRj65HpS7Nm9k+Ur1iItlXSuRL1eY2JyAsPUsJyuT3ASh9iOTafjEoU+KBGabiGUrj//gf3HWL5smN7BfhqtOrpuoqs6J46fZM2a1Zw6c5Kh4eWkMz0UijaqTEgdPMvE264jc/edOKksBw7u4T3vvocvfenrbL5uGDttcaaioAqd4eHVxEKiCoff+b0/5N633cGh3Xu4/qZb0LN9xEi02CcWCUkS05UG5udSnXsWJXSDE3VZhIv8/MXzML5Y5/JyLef83PEv7fPyMS//vrBV1Xy0SuH1vLGzudgvjjOfkkWvXaLYnj/1pZY1fx3i9bleSbF+ybULLMdsH2+El1qIf7qMB5ozxpJ9/QTco2AWWWZ2083jleYjpVcSThfaK4vxkJcIsguUOIqQytIm0fFsptsLRQr5Oq+4lPA3N6erSJbmwefVXTof7KV0qR/thTbd/y+7HxfelSv1Oz+v7Lz374Ll1UJC65LrXCRf7ZXogpvDRYDrTQqub4165mf0/0t606HRF6GfRJ9vFclYhaSbO9RIEiqVFtYdt5IYGpqUFIsFPNfl1KmTJH5Ms9Zg3/59DC8b4aUdLxDFIdmeAkMjw5iWhet5KFLiuh69/X1MT08RRD779x7AbYfd3KlSpVmvowDnJ6cgEpSKBW6+ZSvELjIWlHosNm26DlB5/ImniGMQQuL7Pvv3HaBcrrD1ps1EcURjps7+na8h4hhJiN+pEysQhCEnj5/oHt5RiG465HJ5dFVBUwUv7HgezbBIRMI977yHO265DUXA/gOHePihR9BUEy/oBp7xfZ98Ps+jDz/Jk48/ie+18ToNdu/ZhW4YlEqDRGFMFMV4rk+z2eLkyVNs3LCBI0eOkE47jI4OY1kWqVQKt+3TdgOkoTE+Pspf/D9fRWomnutimIIkSnj8x9t47oVtfPgjP0+h0EOz0WDv3n2sWDFOpV6nUpnGyGRJpORXf+WjWHpC6PlEccTx40f4u69/kwRJKuUQxB6t5jStjs/I2HL+yYffSxT6HD1+AssyUIgxDJ0ojtl/eD9Sd2i7Pk46RU/OoVKtoBspLKeHntIyQJJOOyRKQq3l0j84SBi2kZaGk8lTqTTw3Aq1VgfdtPDbTTq1Cg888EPqtQaOY5AQkE47OE6KqakZDMNCtxxMw6ITJUyVy6Qciw2rV7Fl8yY2bdrU3bRCEApJjAKKhqZqeEGC64dIAaLSovPaXvRv/Zjk0Am8f/1Jgof/hHP/yy+h/8q7WXHDWl7c+QKxjNAsm57+cYoj4xhOhkI+y8T5MzTdgPXXrcdycowsW0az3mDq7HES9xyp/fvI/tbfIE5O0Ly+yNHBAtk111HsGyRIElw34MTRPVx/y8+hqL1ESBCCRqOBEA5RJGm1mvheHV2a1KtlWo0mtfoJPvjeezh68Bi+76LrJq4nQM0yNH4dpaHltLwIw3S6uUyTBM/rIIRCEoMiJFEUEwbdQEFdC6qEMI7I5rI46TS9fb20O3UUGYMIiROfJEmwbXs2dZja9XWOBbadudhHs1W56PMtUIhjiJMIohCE4Fv3f49EzRDGgvLUeTJpg0IxS+C5CCBKQhARjUadl1/cztHDh9j21FMsG1/GyOAghqFiGCpf/8Z9bN++HRSFROkylgkBudwQUSJwR0popybIPnkYX77CxMzL+PEEL772d9Trda7feDP1SsSB/ceZHM5woiAx7YTDR48zODqGppsEYYxhqjzz7DakGvPu99zDa7sPYqs66Xe/nZ3/9hMoI8vJ/ObvkfuLr3Ny1MH4zY+hSA1dSVAUSYjCuo0bUaTC1GQZVZPUGxVqtQq+F1Iuz3D02GEM05j1tTcJEomm5RBKhOvVaXUqJCIglUrxrve8G6kJWq0GUkhy+R42bd5MT7GAwOT5517qumq4TVqtNp1OBydl43baEMcYmk556jzF3jQiMcmkSwRhC9dtMja6klyPzeqN1/Hlr96H53k06g1SZgbl5HlKn/gFcnmdVmeSd937dhRF8sUvfpHKTJtWA/7T//2XpO00oR+hSx3d0vjin34RPwyoN1ro6RzEESKBZBEWLPzcFwg/94V/mENtAZobkPAnQReCUc6lN6NEf6sojuNFg1D9Y6afhnu7EHWVfG9cDHkrAlH9jP7x0c+iCv8U0HxfzoufZ1f8Zp7RYn4GV6rzk6KrFXaXivK7EHK7VJu51y5q75Tk0gNqfjS3BUgIgRqq+GqEocOubU9RKA1i1EOs3/pdZm67DlXqGIZBo1nHclJ4rTY/fuhB7n3Pvei2gxAJkxPTDA4Ooqoq9XoNTVeZOF9B1wX9fSVOnzrN7t17GRocY2CwQKl/gE6rQhAEZHv6UERIq+liWga+20RVMnhRA9vpodNscf7cBIiEbNZm9+4DrF2zgf7+EkHcod0KUKRGuTyJaTkUczbNdgunUEAJYyqT0xT6+zh78gjF/pGuD6nbQtc1bDvF8ROnGB4dJo6g3WzTbtXoKfXy2EOP8q73vBPVlMxMTJPNZvF9H9NwaHeapDIOcSxQVYnnuriuSxQFFxOPZzNZJicqfPOb3+JXPv5RenrSGIbJ4YMHGRtfQaVSxrbT+H7E9mee5c677qRcniBJYgaHxziwby9rV60kiBM0TaFSnqbY20+z49OuN9B0lTj2KeYL+FFMFEacOX6MXL5ErpjF77gkQuXlHTvYsG4d9U4LSYKRzWKbNlNnzmKlbEw7BXFIkgQgJE46jR8EyCjGtB3iRBBGAZ12m4zjMDEziWGY6IqCrutUmw1MvRsIK53JoGsWjWYN2zJRkISEaKqK23bxPA/LtHnssSd5/wfeRRxHSFUSBgG1eh3bzoFU8DrdqLYiCUjiACuV5sltz/L+D7wf61BXEdFaMYai+jTqTVozdVp+TPncWaKZSW5vqMQfvh0+8yEmA4WhoQFaTZ9PfPw3+D/+6F9Q6MmRyY8wVXVpVU8yuuI6VNVHUTUMJaZer4NmoSgqquKQENCsHCXTbqP+0d8j6y7ihvWclVMMDa2nE5fR1BKJ38JtVfACD1tqkB4jdGug6pi6ThgECKHj+wFJ7CGFD4mO61ZpVF0yPSGtWjfq86s7D3L3ve/A0DO88spu1m1YCQQc3H+U667bQHm6Rd9wD81WlXQqj0AQhAGqqnaZdCSe28Y0dMIwwnAMEApJAL7XRtW6ab2kIgmjEEWqXSV2HJFIDalA6LfRjXTX3F4KkjgkjhK60WBh757drBpfRoxAM23i0KfTrOG161iWSeh1EFJF0QxidKQpERFIqVKrNlGkzszMND/64YP80898hiiKUDWNTrPJkeNH2XrjVpKkuyYpTRQZ4bse1qPPE928nvjz/wMID90QeB2Vin8EXZRYv2Ytjz/+fVKpNMVSlnqtjZ0t4bWrhDHo6Tyi0wDP5ezkDKW+YW5YfwM3fvMGqo0qg4MjBFHAkdf2MZgk9HgxHz+/ha3Xf5Ro6yqe++Gf8+3R3QS+hxCCIAiBBF3XieOIe/9A5/Y7bqV/cITfH/kBL9YO0d/f2433IMDteLRaHe4N1/HpmRvQNZszqTZ/MPwwURwhFZ0kCUmSGN8PME2b//ngbfTVDXTT4r7+V/he+DJ9s3mHwzBE1TR8z2ONMsC/OXEvcRyiafC5Zd/kzJnTDA8NdQ/gpGuNoyiCm+6P+cyLJg/9r7+McnOK+1vfhSTm9Kkz9PX3Ua82UDUdVdf57fDzqLrGyjWr+eOp/8Tp4ByR71OvlCkMDnUxkATeXriLT498AoDj7eP83qH/0D2Odu7vnjmb1lw8f/7dqn/HMnsZAF869SWenHnq0vOJrhXQmDXG76z5nYvn3md3fnZRJO6Tw5/mzsKdAGwrb+NvT39pFp+9nP5q819xAev43w/8e052Tsw/IUlIuLNwJ58e+QxJknCic4LfO7g4kPKFVf8by52x19dUfnLBeqPW6MU1AXz2NcBUZAAAIABJREFU1c8u2ucnhz/JXcW7Fr0OlwNFYRz9RHOJvlm6Wt7mgrOZEPPNr9/cuG+EZ5wbR+SCcHo17d5qATuehypeyNzR9W2OLrm2FGp8LXzy1aDPb5bmI92X8MaLRCee23bu81mo3wXpCv1eUnXuPUjmIa7ycn77WqIK/wxx/SmmxbSe12I6vKA5r4gvKYv5d15W903SW2GWfFmYdqLX16Ekl3yfS/O1epdpVRdY5+uO7HOuKW1EEuP7KqGi4qQyRDt2E7bapCyHtu8yNTON54fMnDtL2jG54+dux7ZtTENHoJHv6eOrf/slJqfOk0qn0BSVl158HqIQKRUK/X3cc89dHD9+nN7eXqK4i0DohkUQdijPzKA5OVA1vLbCc89vRzdyzFR8Dh84xtTkOdK2zg+/9wAbN1zPgw99j+MnjnL8xATHT5ziB997gOnz04SuT4wKQhK2fBSh8tyOF4m9kGLvCPd95T6OHDxKteJimRad6jT9fT088fCDEAbESUxpaADTMHj73W8n9EPa1Q6WmSL0Y4Si0XY7SFUShV1ktdVs0upUse0UUWgRexF9uRztZgdVV/nwxz5KlKiYRp5mwyOVSdNozJDK52m2KugSrtu4mXqjSrG3gGnbqKrP8tF+4thH1cHzA0RisG/Py6h49A9msC2dlJXmyLHDJJFg+zMv0z+0it5SD1JYxPhYtsq6datoNGpk0ikS1UZDxdZUPK+Jaeo8+OCj/N2X70MIFdWQdDyflKVgpQySBOq1KpouCaKAbU+/QiqXIZ8vEqGQxAoylpimisAj8pp43gxyNrenIhWE1IkTBcdJoakaEQpOJgfCoD4zhevXqTYrtNoulcmz+M0qx48cwzEF9XqFnmIBy7F593vehdusEkcxcRigSBXX1XBbLmpKMrZmFTeenmHLqrVE3/1Dwv/pU8i+UXqyJtP1k+hOjl/51Q8wtO421Mw6jhw9TzFr0dvXT+B38H0VQ0jqDKCKKp3p85w+uJ+pc4c4f2wnxf0J1he+icylKb9tI8pIhqQyQ8VtUa4FRLVJ4sjHSI2SyY8iMsPomsqxI6doNj38MKLj+gQIUCSHDx0lCnx8v4mhqRzY/xIy1LDNFEms8b4P/jyabqEZCltvXI9t6Zh2mk1btxIrKg23TJJAOpXvKk0SiVQ0/I4HUYxMYiwthd+JkUaCEAlKnJDEMSQx3fyIGlGiEITRLOMToUgdiUAkCpqWwnVbSNll4aM46CK4kQ8iJttTQBopLCuNikRRBLl8CTOTJ8Lu+jdrOrVGC0cNqE6exDQtoqiD7zWZnjzPnl2v8eFf+DC12gxPbnuCeqVFNptlfPkyXLeGmA2yhfBpNGoYjk0y1Id2boYjJ15lurab6al9TE89Qf3ccVR1mv2Hn6FvMEX/VB3ltTPY2TS6qFErV6hONHAnapSnm7zwyh5K+R404XLHD29FaAql3kFazSYksHLzejI3X4+/dR2sHyf1B38Bf/t9vE6TJAwgjqnXmyiKxDCMbsoZVef6zddhpzRa9TKqoiMQJLFAkd0oy0KRpFI2hq7Nmrb5RAKiMAASYhHOnitdM2xERBD5OGYaHRNFCoqlElEckSQBk5PniWOo1BqEkY9CRBC0CH0NSOjr7ePMmbPEUVfIRUCcJKRLvWiKws/tLaMoGrVKlSSKcVJp/DAiXyqQzmY5d3aCw4cnGF+7BsWyCWdTWJRnyhSLhYtCYdfk940rjRe2SOya8M3nHRYyHr7YYr6Z6qIjXoldTC5pu6TJ6Gy5YDb8elnIIPTqKJn9B1cWMi54E10o/5BC60LuVVfijRTEopanF9peCIx5bf7MC9OF/bNYuRqUdO68rgXBf6vR/ov3Le6mm7yEV3yD81js3v4kLRXmm1XPp0t42nk8PolySbnQVxy/fi2JxcV0O/P35WKyw2LzTJIEgUQgL443V8B+s/QzxPWngBZDXOfnX51b501p0xbId7qY1uWSl/sqUMnF6MJ8r3bOS/1gXOJXMRvYYv448+c7N+ATdBHXxQe/VDt4oe6FlxFAuA12Pvs4amaEFX/yFZTdB/F/6f0IVeHY0WMsGx2jPHWWfKFApVpBKAoISS5XoNP2OLBvF5u3biVOYpq1Oj9+5HHufeddaKaOF8a4jRa+F6PImGUrVtJptuh0OvQUCyRxTJB00BSd0ydOUywV8YIIz0/49je/zWc/+wkc26TdanPgwGHWrl0FCMIkxjQMSBImzk9QrzUYHh0ilXbouB6maeJ1ukKqIhNOnDhJqdSL53nkclm8ZpOm67Hrtb1ct/H6rr+TCJieqfLoI4/wiY//KrqucfjIUfxOh5VrV/HaK7u48aYtSKnw0IOP8KEPfxDXa+HYPZw4cYJWY5psxiGVzlEuT1Pq78dtu5i6jmHlUbWYMPSIAwj8DhOT02x7egcb140zMjqIrutk8r1oUqFWniadtgmFzde+8lU++ssfQNNTdNoVUlaWykyF02cqbN/+LB/92IdI8Pj2t77Hpz7zOcrls+iqymOPPMp73/M+hJSIBGqNBk7KQTdN2s0aYazQqJXpLw2QKCFSsTCMiEbLJ53KMj09jd/okO6RaJqObWcJpUYQBNiWRRiESEUwPT3Bwz96iLe97RYyuSI9+RJJ4OP6EYcPH2Hna69x1z1301sqIYVEUQXtWgtF66YnDDo+R4+cRjdj+gZ7sMwepKrSbDVRNQ3P9Zk4e4rrRBZdU5gaziK3rEN9bAfyRzvw160k+vwH0d/+dqbOnmVgYIB2p4YRxfiijmn3ErnTTEzVufvu9/LM9hcwLJNyfYrhvgKaEmJEASerGisHPTphH6alU/cCUg8+i/jWI/g3r0cr5JC6Ts1tYbTPcvTQAQoZG9JFCgOr8RFoaCRCkiSCmYnzpPMF4jDi77/7fd7zvveiqRJdQhw2UYTAdTtEYUCr2SKVzZLOFolQiePub8GF1BpCkShKN4K2EDGe76NpXVPpWHQFErft4tgOIoZ6vcVDDz3IB3/xnyCFIEkiVKkgiAnCCFXTQQiSJEYRCo36DKl0Fj/wMQyDMAhRVZU46ZobaqpOGIVoqtE1jRRxN2pvEEICjUYDy7JRZMJf//lfctfbb6PQkwGhEquCfE8/7U4bQzfpdHx27HiRdetW881vfodPfuoTbN/+PGOj4zhOSKuVsGvXXt73gfdy/NhRlo2PkMk4tJt1UrGG9swrTP/n36fjnyP0Ie2omIoKwEy9gR8Lln35YYQQ7PmF2zCkjmlk+NrXvsHnf+NTnJucIo4CCENKpQKnTpymUCgyNdEk8jvc/8B3+Zf/+n+k47r09/UxNVnj3/78x/kz2UP027+Oevw0iYiRQuPokcMUi1kyaYuOG5DN5pmenkI3VHwvRFUkTsogDD0syyAMEoSMCYIAz/OJopC0bdL0EgxN4rUq6E4OqRq47Qa2k6fVrGHZgna7hmX3YRoWlUqVbDbLq6/uZsP6jXTcOpZt0m64VGfOMdi7jNOT01SrE6xZswrTdti75wC2YbN9+9N89Fd/Gb77BP5gkX+eNDlz8hDf+fbfUmlW2fPacW65dSu6lsJtC3zqdDyXs2emuPWOeygffo4oaTN66zuRl+V8nMtAd69Fv941E5b/7XcXPabE/PNYmavYvTwX6mXt/0FNR+cjPt1z9Or8SS83K16Irgk5+u9IS/lxLsr3JHMQzEWWpSjKW2KlN7f9YvO6gO5da3/XQm/V85uLLEoprxolXOoeLAYe/ST34EW08gro94JjLoKUxnF8kae9KFjKy/nsxcZabJ7AxX7nt5NSLriHf5bH9R8ZLaqJmH3WC23WhZz5r/olWSDf6aLtL6n7xl/Ca9UEzp/PXC3fpete6vB7/Qeny7zO1Rwt9QLO04KK15+PH6toIuHwrpewdBXVzqM//DR6pUF7zTJCPyJl28RxSLUyQ3mmTF9/P+lMBsMyiKIITdMo5vOYtkWSgG3ZZLI5ctkMrU6LfLGEZVqUekt4vk86k0UguP/++1m9dg0koCoRUtHQDBXLcjg/Mcnw0ACr1q5B17vmjGEYUywVmS5PoWoGIg6QUiFJYjRDQyoKmUwaVVMvhN5ANwzK01MIBdJpB893ieOA6ekZGk2XBMGatWuo1Rvc97Wvcdstt9Db38eKFSswdI2zZ8+yf99+xsfHGBjqY2hwBM93mS6XmZmp0D/Yh1RU2u02Chq1eptSaYivffVb3HzT7Zw/P00hX0QkaldQIKJWrxGFMU8/9TTXb97M2Pgy0pZDsdiDKiW1usuuXXsoFvKcOn6CoycnGB9fRiplcv58BV0TmKaFrmmkcgpDw0M88/QOtmy+jbUbVhMFEZaVwTYN1qxbxw9/9CD5ngL5fJZmo0mptxeEwNJVbNOip5jn8MEj+J7Hazv3UihlyWWLVGszpFIOsciQylpojoWiZYlDF99z0Q0dz3MRohvddNWKVUSBT0+hl8OHD9Os15g4P8nYsjHGxpaT68mThCGB3yaMQxA+cRKhaYJOs4KTNenJF0kCDVVXabWaKCRYho6iQHDXelJnG8hGC55+DfnSAaI148z8+t3on7uLzMaVnDu3h3Yl4DOf+AzvuOc2bC1L062iKCqeO4mlO/zChz/I6LLlCEUl31tiz66XmJ44yanjx9iw+Sae3/YAds9q4laF1O/+DWLnIWo3rELrHaA9fYTpyV0U7Sy12iSZrEZqYIxMdoyYNDEqUkC1WkdTVTQJSSJI4gQFycMPPsjK8WX4Xqtr8tyss+PFl2h1Alat3YiZStH2AozZoEhCKChSdosQtFsdzp05Sy6XQQgFBEhFEocRqjBQFYsolAhiEmLWrVuLH/rouuDUqcOEYYt2M8S2bVqtBrqhkcSCMAgwdBWhqHQ67mz6KAlJgkCgCIUwZPb/rhkrIsZzOwiREIUBE7Mm9SQxK8aX09tXolarcuTAQYaXLUdTDWzboNMOeGLbkwwMDNDXV2JkbJQEhZdffpXNN1zPvt1H2LTpOsbG+3E7EY88+ggrV6wkk04jFRC2gzxwHKPVRt66DlWmsZwshmaihD7pVA5fMbGff7X7K3D7FgwtzRe+8DvceuvNjIyWSOfSnD55GgUFwzCplsvYloFjO8RKxN69+7jr7Xfx/LMv0F/qQdMtlt1yO390/7d4xxOvwL/6NN/64/+L5WOjlHpzKEpEGAbdIFYIbFvHczuoUiDwSeIOnXaTZmMGIWL8oEUSJ6RTKZLYZ2bqPKlMgZStE3sNqrWAyIt4+ulnGRvtRSBw7AIKacKoK+xCzK7X9rN6zRqkiCAO8IOI6YlpMmmLXTv3MLp8GcPD/ViWRqPtIhKFkydOcvutt2HbKX709LOsq7jctXUzmz//KZxshqmJs2zceCOe1yYMAorFApqt0pMt0Ww0Gcin2f74D1i36XqU0gjyMob/9bMojmfTYjzwWPfM+dDdlwUMev2Umh+4Za4QdPkZP/dMezOWT28MzZvPXL9+ll9pPt3AVVc3NyEE28rbONE5cdGs+q2iN3LfFrNmW+z7XF5wPgp+kYdaasA3Ce/MFY6uZNl3JZ50bp3F+NWlypulhYTtK/F+14KCL9X+rVrD/L6vZmxYQMC8TFKcK6BzSRtlgRyr1zrPbvvFn/dCosS1BGf6GeL6U0AXNFeXHVDx0lqvK2mFFqUFENeLH2fbu4/92WzdOf3Nbn5tzV3IoY0ARGd2Exx4YtGhzHv++cXP/o6vEzcmWWjXysH1aGvvASCuT+K/+I0Lg86dOAD6jb+EkukFIDjwKNGZvQuOLdIl9Bs/RpJ0/VnDJ//L/K648NbKNXciBzfMrmkf0cG5a0ouNooTgX33P+MH3/k2t77tHbDrO5ivvoRotKmkLAxNRwhQVYni5tj5zDnWrV+PYoaopbMX86wFfoCqabiuC8D2H5xm07obQBFkx2Kk1SROEki6xk9REHYFzEDH8lbw1KPPcf0N63HGJwjDiDjuip7dsZWuiWi1gJqU6HQ67Nj1OLe8Y4w4iTFNE0Q3slw3SAZQWYGiKGhSpaMfQmhdIbcbrKIr9Hc6HoqXo3zUpVgc5NjZY6y7I0USx0RRxOTEBL19vdRqNYqFAq1zGdL2MFHsI5wphNmcRRcEYRgSBgGWY3No3yn2PVlj3cbryOQz9IxP4XkulZkaTsqiWCwQJbOauloeGfXwZ//xv/Gp33gfVqlBu9kGIJVJ02m10U0LkojkXB8zMz79Qz3E2bNEoo2YzZ8aBD6tdpNcLs+pfTOc3gtDwz3YPTrFNQFREKLpOhAT+P5s9GmF2lGHUmkVftDBlcexexJiAuJIoCgJIKhVajhGGlkboeO2KE/MMHhjjKZpxElCnCRcCKonpUZQ7UHxcxD5CLtBNTyGQKHZbNLX30cUBhi2RRSGKJV16KZJEgWEzjES6eF7HXTdIAh8zKFe4rOTiJfKyOdrRFvXkGwqEg41wNHRzBSJHxPSxtIzzEyfIlz7NvT0OOmMTnzyCN753eiGjRQRiaJBEnaR+PwIrbF3kC+kOXHqKIXjP8YwHCZOHqTfGMX8/gmSrEprq4mpDKHKHKdfe4x0jwG5bi5UqQgSNd19m2ZNmIx4K14YoqoSP9qJUANIEnzfJwwiVFUiVYWgnSKoWniRYGh8EI99JFGEIruBleI4RswyJxobkLFJpVJHtc6hWXXiuBu9VVFk1x9VN0him7NHU5hWhkzWQk3vI47B9zyEgHq9TjabwfU8MtZabHOI/fuOUCoWUZQYJ51HKgq1Wo10JkPgt7r5VIUgjLq5a+MkRFEgSSQkrxtAhmEXlY2TkEQEREmMjEI61Wo3WqYpiBINqRmcOnWO/r5hHNshSEKefup5jhw5wtjYEONjo6TTPRimQSqrIxWVvXsPsnbtOlRdwQ9C0i/vxc/ZNH/rXSAK6FaaRIHKqX1YqR7i9CClL/4NQlFo/4tPceLEMR758ZNcf/1m+gdypHIZklBh+lyZ5557nre/81byhTS+lzBVLbNq+WqkNDi47zA6k/QNruDmO+7l0R89zN4/+Y9s2PYqE//mY4yfbmCagk6nRTad4/ChwxQKBTQ9wfVUnnzicd737rsIgiaalScIO5imhdfpoEqDWr1OKq1gpfppVybRLJ1WGKIGHq1Gi0JfP4EXkwgIYp8wjijmhjlz5hR9/b1MTEzgOA4pJ8fU5AxSE1hmDqnFvPjifjasH0NTE0xThwjabkCUCLL5LDOTZ8mXRvB/9BSJ76HcezuTH30/edPALBaZmDyJqqqo0sDJlghbPqrS5sVH7+ddn/iXeFLDCjt486KgzkVc47jLB1xAXMWf//tFTevmI66JmCu4Loy4vllm+o1bey2MuF4NXYpIX5l+7dVfA+CvN//1NbW78jyu3W9xIeHvWtpfHHMuW7hEyqQ3YXl+cbyFBOmFxlrq+tx6l5is/wP4fs4fa+5cLpq7vgX9/bTRks9tCd/Uy8yDlWTBfXsluuzZLmKhqSjKm0Zcf+bj+t+Z5mq4rrhRFHFJmd/2qjfaPHv3ufS6VqSLZs4m5emeirMc11Vkm7mELkQQTC6EfbgqF5b5njjd+SxY7QI3uAgJIejyCvM8fC52Ly69H2J+WoG5Ew1RENy49TaatTokEkGXWbYtE03XEIqgXJ6h1e6wes1KwtBFERBFEUkiiKKYKApm77GCIiR9vQOcOTdFId+HikIcRbNpehLCIOT8+fNIRSEKfNxOhy03b8Ky0/h+yLlz59A0BU2TF+ebkOD6bRAJuoQtWzZTrdZQpYoQEPgeYRiiSK1rFunH6EKl1Wqhamr3qSuSCxFYozAilUpx5MgRnt6+C9cP0FUIXA+hCFRNpa+/D1WqFItFwihGFTphnBB0QqrlMnEUdIUvIVClxA98fNdjxfg4qJJUSmegVEBKiWOnGBoZoqcn30XgohCv06ZWmaZTa/KZT36EwG0jpYqTctB0jTDwmZyeIgxcFKkQYLBt+1MomkYYxWh6N2Kp58+inqaDoiiMLBvh+q1rGRwaotVsEng+vt/1yQOBkJIoSojjhFyxhNup4rZq6JqB57sQgxAJQRB0UaFsjhhBpxOSRIJCfx/NZpsg8AgDH0V09wAoxFGIqSmEgUssFFzXI5fLkMmmGRgeQpEKiiqJo3B2C/r4nToi8RGiGxpfNwwU20Svd0h2HgZFJf7wPfjbv4z8039F6903ExndtE9RlJCYBlJL40ceRiqLHjoE7gF2HnwB1XG6QXGI8ToNksCFKEBTNXw/IJ/LII0C/QNjyCQAv0rv3gjn2yfwl0maWzUQMYECM5OnyGSyhJqKZmdRNIdYsZBEs8FpRNfvMPaIIh9FKkRxTByGRFGMKlU0TaKqKmEQUa9XefHl/5e99w7T6yzv/D/Pc/p528w7fTSa0ajYkixZlmXjio3pGAwEHGpCX5JsErKQsrv5sVyETTab3f3lCoEUikkIG8CmhGADjrsxLnJRtWWr1+nt7aef5/fHq5FGo5mRZCBs9uf7us4lzXueep7znPv+Pnd7nrb2bpI4PrXvFc0DHikVnNTOKBRKJWQyzXRMs/tX0zQECsPKoISG1HVWrBkg6xq4tt08yFIJURRgmiZtbUWUSsnncximThBGjA4Pccc3volMTQLfJw5rfOW2v6FSqjbtrJRG4AfohtEEIVGMTBRx4DeHJzXQAUMQJXXqtSmEZpHEAoRGEEcoGYMwyWRbkWnCqlWrEFKya+dT2LrkojUrufqql7F21Wra21r5wd0/INuSQzNsag2ftevXEqsIoZtouiTtakOfKpNp2YRZ6ETDxDYsKjVFkmo4xCgkSZQizJRabZje7k4ytkNHe57v3v59RkeGWNa/nD/85Kf5q/KX+ezkl9n5+P30deSYHJ4kqI+wfFkLwi4yMTnNYw//kGplN184vI09N6zjki/cTfDqFcRhHVsXlCdHaG9vxc06qFiQK7bw+je+CiUldq4Hr16i4Qc0vBoNr47n++x94QDVakB5ahjLdahW6tjoGJlluK0dxGlEKkIalTJGqpOzc9TqMxTa2xFAFFXIZQokKLJtreRberj927dTLpdZf0kfcSz4p+/+iH/6zt1otgvS4ZlndlMtl3Ecl4nJSb41ehQzTEl37KXre/dgFEwmK6Pksi6dbb0kWu4k36uxb/sTbLz5XUQiQaY+wZw0ELMHqnOpiVFP858zg9rIM675fppz+d1iNB9EvBjh9PxBRzrnmjf2Of6S88cz//fZw92lylxIewvR+WQzmbsW5/vcljKnnW1noTJnzWXOOv+0Wr2lZM0LBSwLjWPu2BcFjy+CFnrXlyp3Slb+V6TzeTd+Wn/fRZ/hPD/VM2gWM4jmwcfc+rORnRfU2C6BFebfF2in+1ezSo+m7J+otHng8jNak5c0rr9gWvL5z9e4zl/v9Ny+ET8rUkqd1f/5nu7NPaEVQpxXOwvNZyGTKcVsoJQFzKnmapIXccQ/VXfuZl9CI42WICPY8eQ2+gZWcOzwMGv/4qvozx/Af+cbkEimp6YZOnGCbdu38/IbrqO/fzmmaaKkJApjRoeHac3bJI0SmiZxuwbRU8nI6AQ/fuQRbr317aSy6Qf3wx/8iOtvvBFTN1BKsOfZPaxbt4aR4VH6+vop1ypkHRuVhrR2dGCKgKHhMdo6uppRfC2T6vQ4ulRomRaOHj6KphQD/X1IzQRdozE1jeEa1Os+Y+PTrF17CcNDhyl2tlGr1WjJZRHSplbzCIOYIPHo6uzkueeeZeOGS9nxzE6Gx0Z49etfjUoVYd3Htix27tjGuss2k7MdfvLIQ6y7ZB0d3d0ntdySwwf28dDDP+Z97/8AURyjohDP87jvvvt405vejFvIEfl1kijAyrShVIKuC4IgIE5SHF3ihwFxpPOtb9/OK195A8W2IraVIUngf//v29E0nVve+Ao6e5ehpCSol7Ash0MHj7B8eT9pmjA6dIKOzi68sMbkeI1yqc7lW9aRxh41L8TN5hGpoDQ1SntvL7qpUZ0poesmYRDhuBaabqBpcPz4Cbp7B0jSkLt/cC+vvOmVWLbFbV/6B973/lt5dtdzbNxyCa7bDNoi44RqrU4+lyNOUrzaNJlMhiNHT9C3fABp6uiaJAwCnIyL73vEYYRtOUjdYHr387SOzDT30K+9BfHqKzk6PEGxNcvkTJWejg72Pb+LzVsuY/sTO+hbXkDqKTLTRhorjLhKoXUdXnkvsROiuVcQTx2jqnSO73mGy7asxw/ytPT2IKwINTlEeeYphp7bjXbCZcNPZpBCMj3YisgojEwOKWJkmhAmkJo5pGFTyHdSqtZwHRehoOFXsW0bIQSh72MYNgKNmakZHFsQRgFR6OHoGRA6Dz38KG4uw9q1F9He2QlSoBk6oe+jaZIkjSiXp+ns6CWKm1F9BQZPPf0MA/0DTM1MsrxnGbquMzU1jud79Pcvx7Zt4iTG1JrWFEIYBEGFei2kpaWNO+64g7e94+1IKfG8BkIIpifGyWZzDJ8YIlawZuUKbNvlxPAEpq6Ymq4RxgkbN67h6NGjrFo5iKLp0zo6Os6atReRxM1UORowMTFKsaMbKTVUHOFXZ9CUz0zFw8kW0EwLy8pSbwTksw4TYxNkC3nGx0bxahW6uvvxw5DO7iKW3hQYpmdmyOfz+HECqcLVNKx/eYzw5huYefsN4IVkW3Nokc/Y5AQYDp1/+32kEMz85q20trTzd1/5JmtWr6ent8gdX7+D3/n4R4njkEYj5NcOfQzbdvibvv+BHzb45tfv4v0fvpnAjzl8qMqXv/g3JLHP1277EyamD1P1anR983nUtuc4+lsvZ9XOBgcPHqG3bwDb1tF1jXK5gW0LfL+GaTp49SodHZ1EcUS17lMoFPEaAZatUQ9CTNPGthySJCFJdcKgdjI6c0jgz2CaJppeoFydoNDW04wKndaJIxMlFZpuNM+mFPieRz6XY8/z+8lmdExD4mSy5PNQXeMKAAAgAElEQVRFSqUSmqYQJAShRJMSvdQgd+/jeB9+O+n734qyYGp0mN6eAX7nDz7JZ//okzx69zd4+dvei93WM5+TneI9TSB4Nq9LH36qWfLGK5ssSQjUeZwWn+aF8/ndaR42X2b4+Wm/5vLRxXUkS1mUNX8/PZfFy5z+/cM7mxGHb9t024JlFxzDErLM7GOf1TafT3tzx7uY+exSz/9C5Lm57ZyPTHYhWvNzaVwXG8dSdV8snXE4cx7rdYrmyNE/b43r+eypC9l3C5VdrL5K5wDa+XOc41OulEKTc9phnvXD3LrniiI8736apmf5PwshToHlWZC80LO8EI3rS8D1F0zzT6bmbvrZzTn726yJyCkQqM5u52dBaWUc4JQ57myf801UlgoEsJB/wakASYsA13PNYTHgOp9OfZjnOoefI4JcMzerWLjsnM2ZEKInkkcffISL1q3n3//ax/h7pwfzhUOMv+F6bNPivnvvIwoCXnfz66jXPVpbC1i2QZRINKkoT1dw2rqxRURcOcHIyAk6B1djmi2kQgeZoguNuOFRrpRp6+4iiRUk4PsBrmMxMzODZTUBUxpHeI0ammlD2kDTTeIopq29g9GxKdra83i1KapVD9PMc8ft36HYnuf1r3kNuWKW0ugEMYr2zi62PrGNrp4+HF1hujZxFNLW2oJm2nzjG7fTUihy5ZWbaC22IzUdJWLq1YhnntxKd283K1at5Ctf+jsyGZdVg4Psfn4PH/7AB4njmL//2lf5yIffj5QpAhNUim6YJ8UbwcjIMG1tRUzTwPe9Zp5M1YxUaToutZpHHMdUayUyjkvWtajUalhWFtfN0vDqZDI2lWqJfC7H+Og4tm1TbOsgTps5Yw29mdtWStFMM1Iu4Rgmd3zre/zq+29laqpEPp8nCOoEdQ/dyuNms1iGoFKpopIIO5Mj8BvNKMBIZqZrLOvvJY594lghNAGpAyLk/nvu5xWvuQlduKSqQRwqdj79GFuuuII4UQjTwLYsSjNTSAGZTB6pO1i2QxwGhHEV09RJ4xCpZwnCCmnVp2Q7tG59DnN0Cu99N7N3yyAbN65lbGQUTZmsuaibp3buY8uPdjfT53z8fWRtg4kju7ELeX7y/S/zhtfeROL2MT0Rk3iPk7R00L78TRx86gEuvfrVpHFC4tho9RHKBx7k4XvuwMmsZnXr1Vz04H5kuURtsIjfbYCuoemduK6L0CXIDDKpEVRH8eoRZms3WcemVvewM3kCr4GmNdfCcbJ4tQqGEPzksSfYfOkWhoaOsHygnyiOcZwME5PTdHd3olkmSil0TSdJE2xdECUJaAYqjVGpRKUpQdDANB0mx0vkcjaaTBgdnWLZsl5M0yCMPaTU8b0Ax3WI46ZpuNB0SIOT6VZ1yuUZCq3thIGH0KcwDA2pulEqQaUJmm5QLZfJZQuEScLY8AkefOAnvOyqa+nuacUwTRwnS4qiVqngBTU6u3qQUkfFIZqu43ketm0RxgpdF4SNOn51iqee2Ul37wADK1cglOJbt3+bW9/5TsRJH/U4irn9699C6hbvfe97qDfKGIYgDALyhULTukHXqNd9PK9K3/5RkoE+6r/3XlQjQHMcspZgcnIau6UN50+/giYE/u99gCSOObD/EF/84pf51Kc+TRpHlKvjdHf1EAQJv3Xsd9m2bRtfXfMXtHYU6e68iJp3gva2Hg4fO0RbaxbbTmnUYGjfLi7fvInpWCD/+23YBybQvvAHlL/0zwgV4FiShp8gpU0mX0BJgaWbBMpAJDGpEoR+jTiKyWQyGIZBmMQIIfEaPm4mQxonBGGDNFGkqQ1pgJtxSZAYekSqQNcN/rztHg6ODNMx2EGiUiaNOrFQqCRtRj9XiimzRiqalitWotESOyil6IyyZKZMrnk25YYf1zm0pcjnV07S++Zr+djgxxFxg1qtjt3Szt7H7+ea668jLfScBUzPDky0sMZtlped1oJdiIHchZsKLx4r4sXS2cD1LGFbnX34fnaZ5IJMUucD16X6PFV/ngxyBlCY9ygWGstP6xN4Ljpf+W6uzPizSIczv//zfX9+HjRXUzib9mdB2XMR4DorPy4ZmHNuOz8nIH4+7byodVOn99hZaX7mfDuUUsgzwMM8q0u5+L3zcTM8fSA3Zw7ytMXTYvQScP03RP8nAlf/gc8BYL/yt0/9NhdwnhrrOYBrkjQ3j6ZpLxq4ztWm/msB19nNeYa5xEmShiKuh0yPTiINk33PH+LSv/4G5t5DNH759SRhzOOPP87ll11GzatSLHZiWQZJGlBrxOzbu4fLL9vCd77xVX7pne8l1U10kUBjDKUy1LyYnr4u/FRgKsXQ8Ak6e/qAlKmJSWyr6Z+azWY4fvwY3T397HluN/lMho6ePqQhyDg2gedx5NBBVq7ZiO7opFGNmaFh/umf7+XWd/8qlcYMGUujtTOPN1VFczJUazWmpma4/4GHeNdbb+XOH93JunXruOTii8kVs4yOjuO6WQwR42ZamJyepqUtj9QzHDtwgM6OdoI4IlFN09aOjjYajQZCwT/+4z/yjve8B6Iq+YJLGIAfhOiGiWYYfOELX+I3P/ZbBIFPPp8ligK0WCE0g61bn2bFyi40YfP88/tYuXKAXMYml88hTJM4CtE1C8+LqNXLdHX1sf2Zp1m9coAkDnFbcoR+dDJVhs7Ro0fp6+tF1zWiNCKoNXjgoUfxGwm3vPl1SC1GSguDmJ3P7mdgxXJ0PSSTb8OvlHni8ae4eP3F9C1fhu8F7HnuEJu2bESpmCRWpCpieiKkrd1mZmqKbHsBx2ylVpvEMl0QCVEck823QhIhBQReg6xrE4uUVLPxGh6OZaAlCpmE7CoGrK4W0Z94BrnrEC9kDVb/+rsIXruFlmVrsB2B75U5tO8Aa1ZczNTUfpzCMrKf+x5JFNP4/Y8wNPo8q7v7aBhFdv3jfyCnl+m54YMc23kYKe7lWLScV77xP2FWjhMZ7dS8iPrBx5mc3kUc1bkku5a2f55ATJVpDGaptxo4bhbfk5hWAbu9Fd/zyeWLJEqS1o9TL53A6liDZbQQ1qtYtkukNBRBM+0JijgVBNUZYr+KZpjomoFQMY0wIdvegWXYxGFIaWaMlvZmDsw4ijEMg9ifIYoFpltASpo+o3FC4Nd44vHHyLqtHNj/LG9/+y0EkcSyTXzfR2iKwA9pbW0DJfCDiCe2PsH1N1wPaYyUOlEUYdk6X7nta/zKe95FpG9r5n0NLkelMZmMQxgFqDhFCh3N1PEadWamKhhSw7B13EwW3bRAas2vkYwRUiOOwdAUSZI2zfFJSJVGrV7FtQyGjx7k/oce5VWvvZmOthympjMxOkbXsuU0GlWkIdGlzV9//ots3nI5jpNh9aoVFIpZNCmbSWPCEF2m6NJGiYT40DGcwxPUX3EFM6+6ikJ3DyKoEycJqeGQ+19fQpca4x99GzJukMtlGB0d59jRETp6u9A0wfhYmcGBtbx353vo7Ozgd6q/zJoNGxgfSRgdP0Cjprjp1a/i+LG9jI8fZvDSZQTHyzhCkV9hosRqtD/4HIxPM/PJd9Dz4+cZHxmivWsFGIIgFcSJRBcahiGIGzVsJ4eXNM3iU5UwVJrgixuepGwGHJsZoVAokMelPDqJ6HVxhMXRmVHa2otMG3UiUnwRMmN4gCARKbnAbLokpCa5xD7pmiGb39bYJBMbSKlREjUMzUSUakxoFRIpONYRogmNWSOdgp7H1bIIldJhtqPVDfrtNtrb1/CJwd/HMJIz+MnZ/p0La4BmtReLAdeFwMnp3+bz0vMDrrN9/ayA6+m2XgKui83vJeB6fnQ+wHUhBctLwPUl4PoLo/9bgessLbUO8zfQLEM7gxZJnQNnf3jn87T5JhgLAVdofjhmN3+apmckuz7XHC6EzocxnNokc9PhzA9WsVQqn3kbcNZUWEpJquIz+5wLXE/2PTUy3ZQ3REJ4+DjF//znJDffSK1aw6sHHNy3lyuu3EIQ+wRhwP79h1m/dj2ZrEujUUciMWyLIAz4/j99j3e+952YArzGBKVSSLFYQBgmtlOkXqkThj75QhbPq2M5GSrTEwRhQFvnCo4dO0LWtbAMnZaODtIkZOTEEKPD46zbuIHR8UkGl/Vy+NBhMlmb1vZWLMulXg8YGRkijhVHjx2lra2VSy5ZjxAa05MzuBkHXRdkcy7l6WmE0KjVSvQsG0BoijCO0HSbenWaWrXB6Mg4mzdfzn1330OlWuWt77yVyA8YH5tg965n6e3pZOOmzXzj9m9y8xtehaYgm82gWzZDJyb4yY+38prXXU82L6nXa2SzbdiWS61WJucWmC5XyeVy6EJRC5sms0kU4mayaFLDtEwmJyfJ5fPUqlVybg7Hjdm7/zgrBtcwNj5GW2serxZQLpfpW9GPImVqdAQhNXK5NgwzZWamTi5vgTAw9Cx+MI1hWE1NsBcxMjpGd28TUA0Pj7J//0FefsP1JLGPJgWJZuD7EY7t4gV1sqbB/fc/QHtbkUsvXYdpZUhihR/UcDM5hBDMzMxQKBSQb7+R0oNbyR2bRB0bheePoCZmkB2txJddBFdtwnr9NUxVJ2nv6SJJAjxfB6bZs+cFhkcn2LDhUtoLgmzfBjJ/+o8k6JQ/fANaMoOZ5BgtPcL0kUPUpmps2HIdx44foL2nH8Mw8NICHbk8hc6VfPvbnyGsFLn5tb+E8dkf4Ew1SAaKzLTqWJksgQInU8A0baqVEoIAodsUin2ARqV0AkuzSXQNW7dQQBCGWLZDrVwhk80C4Nc9pibHsS0Dw5BI3cR28igpMDWNVCU0c2nqSATBycBKum6RJiFJGrN/30HWXLwOKVJ832Po+AiHDhzkqmu2YJgGtuXwwAMPcu1115DJuM3orQjCMEShiKqTSMPGdHLsfPY5Nm++HEGKH9SwrQxBEILzHEopbK5EKUUUh9iWdTLglkDTdZIwJAgCNCnxKiF33f1D3vHuX0bXBGkcIE0LwzBIohAlNNJENYNFJSECgaZpzXQ6YYNaaQopTfYfHmZF/zKe2rqVjZuuolIeZ9XFq0iilGOHj/P0tl0sW7aMK192GaZpYNkGntfAtl3K5Rla27rxalUefuRhbs50EWZsks/8FkHkceLwPvr7+0mkzete+0Z++MPvks8WqNZjbEdy8MBhPvNHf8a73vYG/uS//Rl//w/f5P0f+CBrvriSWqPBV9b9LYqQ733nLgb7e1BpmTUXDVKvT9FeaCVT7MNQijT2OT45wl1f/Tpv/eU3sfxfjqN+uBU++SGi6y+FL96JYdr49RphFJJvKaJI+NO++xg1qoxrNcbNKmXNo6YFOKlBe6Yby5cYYUIaBWheTDbS8GVKr58D18CJoCvIE5gJTrET12wh8KuI9iINI0LPtCJFM6o0T+/G7F9N94EqK/ZUWbZris5DNUZXZTl2WYaDN/QwtqqIF4XoJKRCECUpT+7Zim1HZIstTCQzVI0G4/EMqUppN9vptDrpsrvoMnto0QtoUufjq36P5KSALYkRCjQFyUmWM99UeGGar4Gdm4P8NE9uygpzTffOFB7ng7ZZP8pz07lS7pwGrgulv5lPp/ucx5uVuiDgNAtcFwvOtBBYXno8Z7Y/CwoXOkhf0hz5AsDki5WpftrgTIvRWSBuAbPd2fnNlzdn5cRztTNfhp37nGdNT89ldj23zfkKllMyszgzNeL50kJr/dPIvEspapYqA6fnslj6x7NoKfPoOekfm4d3L9KUer5v7VwFkNCallK6vmj9l4DrvyGa7zdxPjR388/fnEtt5FN9vkjgeq525vuyzh/H/DGfz7zm1luo7FxwKoV+ahzAGflXZzfnqQjO2ul2Z5MwL+ofMOeDIE4y0cnhKeIwJpfLUXnhBVr+0/8ieO3VjA6Nsf2ZHaxZtYKWtk5ai3kc1wWhs/2Zp1mxYgDD0EGlVBp1unu6CRs+wpIYIksUV8i4GWoTx6iFgo7uQU4cGmJo9ASbt2xCMyQoga5LSBISYXH/fffy8pdfg23opNJAigSpQBMaU+UqDz38CDe/7rWUpsYptrcSxAG2kyUJGpTLZYaGxthyxWWMjk3Q2dVNGKVoSpEkMUkSo0g5ePAEjzz8AB/60LtwnDxVr46dyaGbWWSScN9997Nu3QZaWlqJvDJeGBD4Pu1dHSRJysjQGL4X8NgTT/H6193EqlXLOXDwKMv7l5HGMZ4XQaKQekqhkEMgSTUDiaI0NUqqBMWOLuI4xqtVcHN5PM8nl89DAkEQEgQ+bsYEPYPfqOCVayhqDA3XaWnt5JFHHuZNb3oNd931Q972S28mDOoU2tupTE3g+QFtHe1YlkXgaSRUSKVB1i2CDEgTQRr5eJ6PaZrNYElIUgS6bhKEPhqKrG0QRB61WoCTyWM6FtW6h200DxYkMcNjU3R1dSBIqY9Pk1u3iuiJXcjdBxGVOuklK2ms6MLrLtJ+3XqMdZeiOS4Nv4EmwTF0wtBn3/M7UEZET+8V5LKSKNKIYih2Fjhy8GmWr7wI7Y++hpIO0W9fwc6t99BiNjAKbbTbLUxOTZBkUvL5K2hfdy3lw7sJRRczR+8gLlXILX8LUxNHuORrWzE0DX99L3UlyLZ2opsZEClS14n9Oo3KNEQNTNsl09KP1FImJo/T0tJNKiVpGANN82whJGkakcYx5XKZvJNjfGKUQku2qTW1c+i6TZSEpHED180SRgqFhiYUaXpSO9YM8USqYqIwYnKqTBDUWTGwnDSGxx57lGuvv5rk5BoRJwgJcRwSxeC6btPfR9NoVCfI5otU6jFu1qJWqeJYBr5XAQxMyybWdyKExEyuQNebp9rVSoVMtoCUOg2/hkgVlmWSRglJAjPlCu0d7YR+Fdtuoeb55AsZJClh0sxL6joZwjAgSRJMy2wGcQt9Ir9BrV4nTgS9y3qoVetIaVEpV+no6SQIfAwEP3n0cRzH5eK1a9ixcxfXXHMFuiHw/QhdpLgtRRSCyfFhOtwc1kPbCa++nOijv8ToiYP0L1+BF0NtZoKpyQrdy/p497s/zHe+czt7XthO/0AXIlJIzaBcrYHU+FT504DOH8rfpVY/zu4dQ1x19WbQymQ1h642i+lqndR0ac1aTI6P4rR005LNMjY5g+Uu4/DX7mTT9x8gWDuI+PfvIL1oJcP/8Df814F7GTWrjBgVEpHSHmXoDDOs0frZuN9gy7aYnn01rEZMogvqLQbTq/JUrISxNkhFTOfxEMOLSZOYcqXOxX4WN4A4SVFRTHtdw3dF8x1SELgS20sxAsV4j8bIxjwHBg3Gr+jBswKqI/sQRp7WruWUSjU0TaNWq2MZJgXXoupNkSqTeiOi1qgjhY3ZluXJfU9SWNFCWVaoWnWk0Oh3+hl0VzJgD/D/bPwvEMaEJ3MMC63Ja+KPzOZx/a8L8somXzvLJvIsre5p4f80v5utd4rfzT/0XiB4ysLA8dzAdZYuBLguFEV4KXlgPhg8H+B6rjEsVG5h8+2F254rB80CgsXA11LjuBDtnFJqSRPanyUt5W+6lJw4N4PGWWWXUL7Mp6XWf7H+F5XvLpCWklPnju+UheGilgQLWFkuYn1wXiB5jsZ1tm9N05pBI0maucbj+OxqcwDnzwO4QlPjO+vjuhi9BFz/DdFLwHXpec2tt1BZxJzk5ItoXIUQpMmZ7czek1I2c6vq1ul1WAK4aifXqzReZuf2naxbtw5tdAr3E3/M8OUbyOiKSqNCe1cnuUwr37j969zy5jdjWk7Tp02TTE1P0lpsR0iJZhrUShVsy8ZwHJLER0sKVOpjGCKmNDVNGMVU6w3WbdxInCqSMMDO5ggaNSxDo+F52NkcUaJwdIswqIFKqFfr2NkcutDZuXM7Lxwc5ta3v5GMrTE+MkKsIjTdoK3YzdOPP86KwVV09vTix02tcT6fR9N1Dhw4wM7tu3nt696A7ZqQ+lQqZXK5PIGfUK7O0NXVzb69Bxkbm+DlN9yA1DWGjhxlqlRm/bo11GsVojAl21LAEjHlSplssQdNJggS6rUGUtNxXBNNGtTrHrpusPf5F7j44lWoNMF0MgDYhsbY+ASW4zRNYFKfWjXkya3beMVN15HNt3Bi6AhSOHT3FJkYGWbX7hfYdNmlGIki39GBZhpoIiWMU8qT4wihUSj2InSPv/3r2/iVX3k/+YKOShxSPOJIIGUzNZBSYOtQrdXJFlop12pkXQcpTcIowDJMoijC1E2iqIHQBUmsoZs2cRpjv+5auOsBknu3oo1MkV6/GXX1pYiXbcBcuQw/TTBNk5GREboKkkxhGV6SMFVp0JU1KZVnMNw8umZSnqySyVcZryWsXLaKE/ufpaMt5sC2IQ4e+hGv2qPhxXD0eg0/cmjv18l330gSTGLmeui56CZiYZMKvblPamOkKuD48wexkgO0fvMFnFJEef0ycsVuTLfQjFstNdKojjRs0ljh1xskSZmgVibX2k8m61CujGPIDIKYSLcwjaYZr0SSiBRNCVQUMz11Ast2UEJDKWgtdhD6IVHso+k6hu6A1FAiol6p4tg5oijEsjXEycjb5VKDe++9n1tueR1SnLQGMVoAD8FJn1h0pCZIk5gojEmSBMdxqNaq6BgYhoI0wHBcoghAops6fr2Cm8nSSJ9GCIirF2MaFlLT0LWEZ3fv55KNG0FGIPSmm0QUo5uClGbU7urMGGmqiJRGsbUdoVK80Md1Myh1Uqt0MthekiZ87i8+z1tvfiPbd27nVa+8jmxLK0pohHUP0zG5596HSFPBdde8jHxbAZVKNE1w5MB+BgcHmlHNawE7du3iDbfcjJRgmwaeV4eDx8mcmKb6l/+ZkROH6OvrJ0LnyOF9/P5//O/8xec/zyP33MVb3vw2nn1uO22dBpWpGitWDtDa3sreffv4c/6OvfsOcNdVX2V6dJySfwQn14prL+eBe77L2265Fr29B02FTI8faUZsNrpBz9LevZyqHyJ1DUYn0G77Pvt+8l0+9hvjDLUGrLQH6XH72HTE4qqtASufKtN2rM50n8P4SpeDqwRHOhLKbSkThIyNl1lz8SBHjhyhXK5gmUUq1QaDq9ewes0qStUKeTdHI/DR0pggrCKrghbXQdMEhw8cZnNY4JBRxryoj2rYYO8Le2l4NXra83T3dKO0Aj9+6BGmax4owZWbL0GaGdo7exAqpNDazqGDR7n4olX4fp3HHnuCQ4cP8frXvJa+ZcvZu+95jh47RG55lgOVw1hrMtQ1j2uT9Vyx6pV8Ys0niDmtWUw/+qkmv7lA4Hqa757mw/9/A64LlVmqrcXqvBjguhDw+HkD1zPWJl1onX729GKB61Lt/N8OXGf/PTNS+PkBVzg9z0XXdgHgOmsVkKQRuq4vHMH63yBw1T796U9f8AB/EZQkyad/0WP4edD8l3/u/zWhg1IoFSPFbEj5s+sLIeDUBc2MM+KMe2LONd8FQMy5AOLDTwKgD161aDnBwptr/sYS8/teoMz8sgsxooX+FkIg0maYbSElfiLQlImRpsS1aQJlk2oSailDxw8wemKUB/7lIVYPrCcVGhoaWgL3/8t9tHd0YtgmZpKSynnjnPMlTGWMITTKU1N09nShELzwkd+lc6bKd/c+z6qLV1BsK+B5PqVyiWVdPbTmW9B0HSUFDa+BYehUZ2YQIqVaK5HPZSiXyjimRaMasGPHNnp7Oti+aw8DqwYxhCCXl6hEQ9Pgi1/4Ki+75nJKpWmSKMWyDDQVMzU6wqFDw3T2LEPqOo5tk5KQxj6FrENbWw85xyBNQlrauwhqPl69TKFQJJGC1rZ2TNOkXi1j2ja6YRHFimJbJ/19vWRcAyk0Hn7gGVatXIlpxOhahdbWfoSCQt5m5WAvUZRiiBTTyjJ0/Bg9PUUM3UKJBqXpBprhkm/JE8dNTZlhGGiaJPB8DCUJoxA359Ko+SzvH0RoEsd0qTUqlEoVDOmSbWlBSYFrG1iajtQ01m/YgC4Uvl+i2NaFbRnopFi2w8BAPy0tWYTl4PkBD9z/EKtWriUMYwqtRWzXoTRzDNdt4YqXXYOmJaS+4O57HsSQBjJpEEYxhmFi2TaaYSOp0yiPkXVyoBoI00HXLUK/CqToloFm2hiagah51LwKmUe2Ib55N0kxQ/iRt/OJ0ae5/n/8F5yrLmMmaZBpaSdMKjQ8CDlBXImwMll8PYNuFhDCQ3PykLOoztRpbWvDLw/TllnG6PG7mTzyA2aef5YT+++jr9Ok7YSDFILRlS1kO1bgezUmDj5IKl2Ky6/DcXuIDYGgqWVPlcOuZx4iZxxHHS3T9eQk5U09eKGgWOxA6DZKKeKwhiFN0iBA0yx0N4OmCfQkolKt4BbbiIIQQ1N4cYDlZNGUQak0RMbpAKlIUkW9VkE3HRzboVarkyt2IJTGjh17mJwq0dnZQalUpVKqIkSKZWUxTIFuSFSqkUQBKg6J44CNl16OaRrouoFSOtXaDK5tEYcBpi6Jk5RSqYJrm3zv219n4+VbmqmDUiiPjmI5WRLpQ5xgui61hoeZKIIoaOYQ1saJwpCsfTG6IUhUgkDhuC6ZTAbUyTRiCnTNoOH5iBR0oWGZFvV6nbb2NoJEcOjoKN3FdiBEKA0pwGvUMHSTetWn0JYl4+boXdaLkia2aRJ4NayMi2aYjI6cQAqH1RetRNc0JAlpFFJsaaEe1nFzNmHDY9XgKkwrxq9U0J0MCEFasLH2HKX+mlUU8x0Mj+6mXutm5QOP0jc+QWmZy9iJkC1Xr+fZ5x9n4+p1rNp0GS/sOcQ9P/gxr3nFLdz16F0MOr1kxxXLVy2ns2UF3R2tKGOU/hWrSVSVtpbVTB55goGeDYxOlXALa8gWl2NrOvXxEUS9xrFkknfm/1++fOMorx5dzt98cYCP/l3Em75T5ZJtHpPZCk/daPPAh/I8/ArBs5d4jAy4jLkaFFqIyLF2w1VYmRa6lq1CmjnWXLyWZf3LWda3jDiMKGgAACAASURBVMNHjlAsZnjyqSc5eOAoaeQTJwk9K/tIXZs6KU/s2UnnDZdh9XUToci0ddA/sBqpFMWOFRS7VmFmcoyMTLFl8wY2bdpEdWaagRWr+NHd93L1y64gFpJiayt+o4pQIf2Dq1i3/lJSmibknT1dtHd20lPs4crBa8iMOky+MMr+jmFK40M8svP7/NKGD5AoExkHqLseRCGRb77pLD55mgfKefx1rvygTl1ns9r5AmbzElKcFA3mpoObx3dVysmTFpqRSudLD3NprqCxlEyazhnn0uBlPmicL1ssWffklKQQZ/Ui1MkRnn5sZ8k7p1IDisWB4XwZZ0F/2iXGetq0emlZaf6906DsTDlwqeungbZLrXrz/Zh9XuduB6XOkFdPzUvOlWvFmTLt3Dbm/z3vmj04OF134XcsiqIzfDDnAs25cvlSBxcLjWshGfhCaf77vnCH6tRLLkTzbzW7t2geCi/8IqQgVDMS/7nivynJgm0suNJnvmyza7AYaZr2R+fo/XTZl4DrL5aW2gBS6CRJ0tywcuGXY9GP2qJ/cC7esChwXYzmA9XFypzvpj2f09NT+aGkQEsFWqwwwwZf//KX2btzOzuffIzvfOHP6HF8nrn/22x7/DFmThzisXt/xOSx/XzqE7/Ht277Moe2b+OWm25gslSmvbuLSIpTjP5Un3OAq2EYJGHE0YPHcDM5UCYDj2/HnCox+NbX4fseSqVYpkUml6W1pcDQyDC2Y6NrDkmcYBg6GSeDaTsYhkPoB0gpGR+fYGxsjPXr16PbFtue3kbGzTSjkGowMzPNzPQw1157HTOlaSzNwHJzWLZDpVajWGznx488QqVWZnl/L7oQaAImpqbJ5AuMDE+wb++z6LpONt/Kk0/vIJ/J4nk+CJso8jDMlKmpCju3bWfFigFqtTJeo8JDDz7MunXr2LFjBysvWobtWExMlMlkupkuTZAkEYZmEgYxTsbG92sYlkmxvYjtmlTKzUBMtm3jODa1ehUUOI5No9EgSRRtHa2AwLRz1L2QO7//z1y2aSNh6FGaLqPpBuVSlb17XqCzs4iug1etohAITefIkSNomkaxtRPPD4mTCr4/iWHaVMo1QGBoCZaps2LlIJplYJqQpDGBH0Ca4gXRSS2fZGZijO07dnHtdddhWDaBX8PNuNTqdcI44ic/eYp16y5HaSmmlaPe8HEcBynBMk28yRloLyAffgZx/5Pofd2MvWYT+h/9Os6bruVwEPPGV19HNp/FMXXGjuwj295NrVzFVCF9nd1UjBa0xCcjA8rlcbJpEZnu5OiuE7S3O6Qk6C1FalY7rYUuYs/HtCNkVCeTt+gazZGmCi7vRUQ1Zob30bbsYjpWXkHHqqtIhY2QKaQKFceM7d+KJRsINDLP+2RqCUFPNy3t3Ri2jSCmUR4n8ipUS2OkcZ04nCH0plGpTuz7ZAsdSDuDLiWRV21qOeNmBGndtBDSIAwb6JqOa1mAolSaIZPNYpgOUkg6OztobW3FcjRs2yabzfHA/Q+Ry+VoLRaa5k9KYZkmSRRh2s30QL5fJ0lCTNMkl8uQRBGO4+D5PqauYVkGKg5Zs3oQTUgsqbCIsXIaSmg4houM60jhYJoG0+XDmJZLHMUkYow0TbFUN3FYw9QlkzMzZLPZ5oGbiuacdGvYZkoUBuimSZTE6FbTF/uHd97F7h07uPzyTdQbFaTUmJycorW1lThOkJqko6MbhUdXd1czIJouUWlClMT49YjOjk5qFR/HMgjjhGNHj2PbDgifjNtGmmjU61NksjmiJEAqQSIlhtQoD42QGy8TvfNN6LqG62Z53/t+g7e5edpsl8H3v4OR4SGWr+hm9eoBqjMThGlCe1sbf/wnf8yKFf08/c3d/OEv/z5/+pn/xmtf9XJ2br8T20zIur1YhSxJkqFQLKJrEYnWgXKyCK0FTYPPfu6zWGttbtn6Hr4W3kFXpps3d7yF3OB6dr1xgO3XZrl3bY1H3w6HN+toG5ZTj6fQ3Q72vTBJ38rLyOcKGJaN47gcPHQQy7YQQnDw4EE6TwYJS2NFrdoABE8/tZ3LNl9GZ+cy8oVWtu3YxQt7DyA1jS1XXImQGrt2P8vAwApAkqbQ1dOFYbmMjU3w+GNPcO21VxFHHm4mR0d3C0qT2K6F4xikieTA/v2YpkSIhOee3UtHWxu6npLLZ0BBxs3iODmCOOW+++7jxi03MPPcFGO9JcbiSe5+6GtcJQdwegfhBw8jSZBvftVSnHIeT0zOyWOb95cGXUsBzjMg37ml3EXbWajcYmNfyJLrVKsXAARmS4qFgOt5t8J5AdelfltqzLMaqQvRyr5Y+ulqn0f7F7I2C5Vd4HzlpxnLwu/3aTIM4wxZfC7Qmg9c/7Vp7lheXP9n15mVoefKu+du+0XOXZy7/QsBri+ZCv8fQIuZCldLHkNDQ6xdtwYhzs6jCiy4sYAzzSPkPHA8Pz/sPBOFxUyFF6Pz2dQLlTnfd2/++Oaa3Awd3McXPvdXNCpVspbgo//ut9Gkzm1f+VtW9Pex+bJL+Ksv3cYHf/MPKZVK3HvvvTQaHh/68Lv58Ac/wG/95m/Q19PN+IlR3v3BD6G1d6CS4My5zHFeT1EYSmNqeAIlJR//+O/yl76Dc+AYD/YVePn1L2d8fAxFQld3F14QksvmOHTgELWaxyUb1qNQ+I0KDS9mplRmZf8yNMOg0WjgOC6e55HJZ0mimGqlwTe+eTu/+r534FgZLDtmfLyMSmJaWtp56JGtSKm46RU3cOLYEK3tBTL5HCiI/YC6V8e2HCL3bk6cOMFA/3I0TTI+MYVpWpiGjpNuZviExeCK5UQcINR2zwlkAFIKlJKkSYLReAPf/e4Pedvb30Jg3o80qkipI4A0SYniCNM0iWvtFJxr8D0PLxphsnEfvb09lMtl3IzbjBwrQQiJk9wAaYHxsRO09E4Qy+MkcQKkTU11qtCkhqSFpHwljmmgNKjL7zX9S6MQXZt1/jeIIw9LbaExU6Qln6Wa7kVzD5EkSTN6qCZPmc2kaYqb3MLY2ASxF9A6cBBh1E7m9o2J4xTTslBCIIIuRHgJbiZLnEwyE96H7ThNX2olQCnSKELYJvbWIvKZUeTVG6i8LES1VkhQ6HrzRNe0LNI4hZblaNd9AtKE0vAhMrs/j0o0hBbj1wW23kBpGqmWxeu6kq7N7+DxrfdzdY/F+KN/iZZ4qDDALPYhIo9GeYIk8Tksl2E6kpXpAJY6QiWewW/UyWRcrFw7Zq4NqWcwB67B2fQehFL44wep3P+pptkqGu7wDEJKVMYBwM3cTNJISMMKjXAP0pw8ue4RoDDVjcSporV7AGEU0QmpTI3g5IqQQKxJlDJIwmksM4/v+YReDcfN0qhXiZOEfLGTJI6wTINqtUomn28eKgiBaWRI40YzKJOKkVIR+DGaSJG6geeHGIbAMDRIJbalE4QRSZoSRhFZxyaME3ShSHWLFJ0gCLENDZQkSTxMLWRy/ACW3U6qXB546BFuueX1gCQxdpEkKbZ2LVJLSJKEwPObQbj8BqYp0aRBmiriKEbTYsIgxbBc7r33Hi7ddAXLejt54tHH2HTpZjTTRNOa35g0TTFNk6mpSfbv38u2Z3bxkV//EIah49cDJsZHyGWcZrqYJCCMfDTpopsxf/m5r/Gb/+6jGBkbCKiXIjzfJ1+0sJ0sKk3Z8cQzrNl4EZo0KJQ9OHCEY//xfbhWjSefOkKsadz02F6E1Ih+9yP85KEHOT4yypvfcjNZLSbVddxsC4cOncB2M1Sm92LoIS25LhyjSBLvo1KusXzFNUxUJmj4JnnXII5GKfZdS6yFmKFBRavysd3/gcerW9mQWc+R+4/yK2/7FVIVosI6kd9gZvwErqUxMjWDmymSa+klDTzGKxGlqRGufPnV1Eo+uZzNzPQU9ZpHpVKiUqlw6aWX8oM776K/f4CLLrqIY8ePs2nz5Tz88EO84hU3Ui4HKBWRz7lYlsPIyBCWbVEulUmShOnJSVzXYao0Q7k8xZYtV3PnP/+IV77yJgZXLSeNfYZHJsm3FNm1YxdJlBCEEZsuW4cuTfbseRY3Y9HW1sPMTImL167CDwNOHB9hcHA1+/cdxHazPPTQ3bzjbbcilIbbZnPn6J2UkhKrhtpYN7iF//mtdpIkxvr7P1uCV843OVRL8tTTvPlcgHPx/KtCzbknF48Q2hxXcp59nmlCOz8I0hn9n4d88Zl9nwHgUxd9at7Y55SfZe2z2jh1+u+F+poLnufmdb0QH9TzLT+3zoXI50uZmi5oHbdI0/Pb+UUANTg/k+PzNaWea6Iq5NL75HxpKbn3xbZ/3i5yC9xbuuGz999cdztgSTPe82pnCUpZOjATvGQq/G+OFlv40E/RNIntOE0ThgV27rk0rmLW1II5JyycfXIz9/+ybRCtdwPCylzwXH5eJ4VKnQ6xPfu8Dh06xB2f/ywXrx7k6JEDvOXWW3l+3xH+4JOfIltsY2Z0iG9987tcvOE6Nl9+JRK44vLLufqqqyjkOti1/TletuUq1q+9lK/9w5fY9vQOXvna16Pk/I/86fFGcYopTYKGT4pgzUV99Dy9FzkxTX3lCvL5PPfecx89vd006gGZfAueH5GECYbRDL5imDaICNfN8U/f/R6GltLe0U0QBERRQC6XpVKeIiUhk82zYf1a8oUCx4/PsPWZp7lkwyY0IVFC0teznJ7uLmqVEi2FFizXIYpTNM2AFKRpoLL/Quj7FIvthFGArhu4bhbL1DEME0k3xdZu0kRnYvooRmaqycylRhzHCKEhBCRJwp3fepYrLl+PYUpKjT1kc3YT5KFoBgdJ0aTOM08eJGuvxhAKKT2cQpU4CXHdDKbVFO6FoOmrKFYhcBBxRCTHUKKMrjVTU6RJgqYZJHGIwCLvrCXwqyTSIFB7GB4ZoaWlpXmaByAlUZhw/HAEiUV7W4b/j733jpLkus48f++FT28qy1eb6qpq79DwAAESJAAakBTd0siQHM1qdEbjNHIjUSPNaEQN9+zKjlaiKImeHNCCIOjhCIDw7b2v7vI+fWb42D+yu1FdXe1AyqwOb588nZURcd+LFy8i7vfuvd+tNssIbRZFUZiamMH3AwxDRwiQUkO6Q4RhQL1iU/GOkMwYrYutyBbLaxC08hllHlNdSRgJVBxCfawVjuMGCFOHuSJivoyQAv2mNzP+r95O+gP3YmZs6jPDaJreAiK2g6JpSAQNu0nbwI0cffkZVucUige/gaFolMuTpBPt2H6DWnmBhGmAMCjLYbYPfpjTh76IOnsIVZVIM41CSHl+DEX4+IGCUhgkCCVuysCtT6HRItrSzBimmTqXqyox0l0onVuREQi7TOPMcyiaiSo1lLEpokwSpIQIdH0It9okCn3QbYRWRyhqK4w2ilD91QSRgZnIoyIoz08RCdDiOQI/xBchamQQutMEYYuESEYRrucTBQGpdAqp6URBQBCeI6uRFlKRKGrLU+S5NpqqA9BoVBgZmWT37p2sGRhEUQw0VUUKhTPDIwhaOdxCUdB1AyEljufTbDYJavP4nkfcshgdOYsQAclMBt/TMKxeFD0iDBts3LCNIGiFl6mig9KcQkqThE6Z8vw0yWw3QqpIqRABge8hhGit3qMRRhJDM1i9og+phCgKGKbJpz/zWXbu2suaNYPMzs6SSiVQVR3D0Onp7WDTxg1oehYpJfVaha6uzhZjdRhimBlCBPF4DiEFmzdsIQo8hC6xGxHfeuTrDA2uJl/oJRQQ+oIfPfkjNmweJJnK0DwzidRV4neuY3LyIGvXvo7TU2dYPTKHZVlMD63Gd1z+9M8+Tlu+kyd+8H26uvsIIoX//Gv/hRdf3sO2N6zHVVyMZob/9tGPcc/r3oyqx6k4JSZOTJDIaDzypW+xbccA0uxEyIgzC4d5y8F3I6Tg7YW3s9Jaxea1a/HtBqFbYe/evUip4UY6VU+n3hQMbt6A0OIsLJToWtFDKqZhqjnQBBEhdsOhWqnR1VGgu6ubo0eOUqu5rF07RBC6rFjRzcjoCIODA+i6xpNPPEk8phN4Tfbt3klvbw9HDh2kr6ebcnEBXVWx61U2bFxHs1wil85y6vRptmzbQqNRJgp9UuksbtBgYHUfbr1COhWjrZBmdmaOjRu3MjIywcDaQZq2RzqdR0pJOp0hiiCVSvHMD5/mA+97B/v37G3Vmk7E2d77GmrlMscLYzTn59jwdJG+bD88cPcVwEPrt1e8MdcWunh1r8lPzuN6bW0u73FdDuhdi+3w2bHPUvbLvL3z7Rcfe5k/Lrw7lsjiti66Bksjsq4ii0HgNYGD69B9teOu9PflWljax38q4PqT9ri+8v3HUHQN+v+x9F5fm1fYV1xPXvSrO8+IqwPjn3pc/38kSxO3l25TFOWyHlkRvbqVuQvHL1lBjKLo0pVHeflQietabVy82rkM6cHiPIIIl0gIiCRSS6A0m9j1CsWyTUd7loe/9nlGj5/gpu038qUvf4s3v+0tnBkb4VOf+RyWLuluy5NKmLzx/gf42sNfZnRsmre8+T76N97OmqFNKKJOrVYjEbf4w9/7r3zkd3+bP/njP8PSJCsG1vKrH/0ISmAQIYk0H4LWyrKUkqb0mXp5H/sOHeTGW+7i+PFJbv70g2hHTjLzhlsoFLqo1ouousbC5CTZzk6mp2fxGjVimTTZbAHTUFkolcil8+x88SVuuv1GIl/g+k3q9QapRA5FiwiDANfziKUyeJ6LpRvMzMyQiCcoFedQFQMflfa2DCdPHiWeaEMGDRpNj/6BfsrVBZKZHK7+bcIgQHcf4Mtf/N+87a1vRRgqumpSq1apVssoIqJUbFCvN1m/vh/XDQjDgK997SE+9KEPoegalYUi2VwKL2yxwba3t+N5Hp7TRFNNXnjxBW66eQfVap1kIoEeS2M3qyQTCTzXxnVsRBSRSqepNRrEElkEEfNzRb7wuS/x+vvuobe3HadZaRFDKQaeHxBGIYapUV4ok05n8cMA3w95+fmX2LZ1A6GmkkmnqVarzM/N0dnVi1Mtk8234UnZyu/w4PjRQwxtGKTZbIKIsCyD+akpcoV2FN2gUauRTCapVWskkgmCyMdxWix8qiaJnBrSjwikhXX7esI9Bwm/txcxOUN081bUt9yOfN1dnDyzm9VDmxBWgshzGJ+eJZ2MkYyblEtFNN0gCkM++fGv8B9++deoJc6i2b2UTnyCJ7/+Rd77K78HmXUINU7FlnhjL/C1B/+OxsII1UqTzZu2cfjwcR54z8+RzRc4sPNp8hlBowEHjx7nNXfdyv4jU3zib77EX/zlr5LS2wicUY7s20WmaxXt67fQt/5nSHX1oAbGhRIc5+d4qVTC2H2E5DefIrhp0wXDLooi6qUpQq+BYqRRY2l0TaO08EkgIhH7AJoiQdUIhE9pYphkWzdhIFFRqNVq6LpGGIZohkHg2dSrNexmg2y+jWqtSVt7B1EUoCgtgK/rCp4bYpomQeAipMS1A1RNJYo8SsUKyXgczTSQKrhNG6moCF0H3yMMXAQR9UaNdK6DIORc3VWFMGri2A6GlkAzoFicJ5PJEwQKrl9FYqFq0HQ8YqqFF1QwzDQNew5DiYOqUFmYIZXpIxJ1DCVBo9lAkQ2KC9Mk06vQdBXXdTBNnZpdx5KCUKpEioH0I6q1OrF4Ak2TuJ6Nrpn4XohQDPBLzM2ewUq2k8nkEUjCyAOhEHgBIhIEvs/jTz7F5i1b6O5up16zsSyTeqOCYaioqsX09DSqqpPNpQijCGv/CYJkDOd3/gOqN8mzTz3No0/s4n0jTbp7evhidwLHV/jgh99NPClxHIfDu/ayedMNTM7McuTYLr468BgIwX9uvp81GwepL4Q88vDX+aVf+gCTU0XMeA4zbiBiGZoVl7lomrcdfBc3xDayPf8awEYJJeWFs9TK0+hqnvlSjSMnTnHzrbeTy2YIwwipquzdtZv16zdz6NBe+gdWokgDQ9dRNcF3v/so99/3JhaKM+RzSfbvP8Tg2o34ts3pkyfoXdmHIiOiwGV0bJrRsTH6V69haHAAz62T6VjJmVPDZFNx9u97me07buR73/8eawc30tnXzcTIKKl4gl37dvPAA2/l7JlRdu1+mbe/6+0EXoiqqJSKC+Ta2ogCwY9+9AyrV/VixNLgK6hqQLm00JpTbkCz2eDs2Gne9IZ7KFY8OlcVsKsOo6MTlErzxLtS7NFeJunDG/ZlSL7vTVhahl8b+i2i4GJG0GupL3q59/HFYHh5oHL9NsWlntOlbVyOF+Pi9l7R82o8rkvruC4nP07ZmOuKfFvc36WRbteh54r9uUaSqEv2uUITVxvn5fp+WV3R9XmbL7S1ZIFARFcfl/NzbilPykV5qj8hcqbl5MK4X3zAq29rSbsXDXsklz2vZcf6CqVylpJGXe/4XG7OX0TWJMWFBe7LyU89rv9CZHG+w7IPHn68lZ6lK4hLvp7f6fLHLZHLge8oipBXyetY/KAJpQfoBJGBPTPDt7/6JY7vfpEz+1/iyMtP88yjD7Nz5146evo5fuwYn/jU3/LEszvZvuUG7n7N3dQrFVLJDPMVH9VM8uxLe9mxoY//+T8+xs/9wgdJF9pJpJNMjZ3lzNG96Dj86m98hPLcFHuff5Kw0mDV5o1gaCQ8gbeIrCnwSjz+8Ld4+3vfzdPPPMmv//rv8392r0KdKzLX10ZpoUgsYeL7Hs3KAoqq0lboIJ5Mks5kELLloRJRjMOHjtC/ehXxZIKFWoMwNMhm83hulSCIiMXi1Gp1NE1B1zQq5SqZTAbVNEilMmhajMcffYKe7h462gtYMRNVUzl0+CCrVq2iVTZHxQ4PoaoqllhHOpUknU6jCAVd0/nEx/+aVX0reP6Fl1hYKFFcKLJh40YqlRKZTIqbbtpGEDo8+OBD3LhjC41mlZhhkojFWJifI5VIoJspAFb09bFn9142bFjL9Mw0lqWjS6iUijQbDRLxOI7fRAgFXbc4OzJKIhEj8H3yuRynh0+xcmUfuVwWKQReEFEulSAMSZgKwkziBgGW4qPpJslknEQywfTEKOl0CituksnnWp4pz295CkWE59lEQUC5XCGZimFZJqoqCQKfeCKDiEL8IGShXCYWi2M7DrppIkWEKlV0TUOKiObRw3jzNbSn9yKeO4CbTBC+9/XUfu19xN95P+NmSLanC99z0WIJDh44RD6dIJPuRdckmgqq9CCWw1A72bptBb67QHXuJF7pFEf3PkO9Co8/s5fZ6SrTZ8f47f/ye0we28N73/tOetbeyZoNr2H1utfw0HdexhFdnBqv8ZrXvYfdhyu46gruuv9DHDjZ5CsP7WT9tttZObeAOTeG1pOHMGC+0qStb4iBDXe3QH2kXORBOB+yGvvGExAERIXchd9938c0E7jNBqHvoscySKlg23tACMzEzYTifC1SiRIFeKGCEBpRGKLpGtVqAz8IsWImdqPJzOTcudq7aVRNBXku3BowdZ1iuYhlmQRBhB94KFJl3/59JJNxLCuGYVl88+GHGBpYQRiFrdB2VeJ5HpoaO/cMConF4oioFd6rWXGQEqkqKKpOhKRRmycej+O7IYpQUZUIAsm3HnmELVu34DSbmJZCFLXmbqVaQ9PjGJqGZmg06zWKc1OIKMDIdGHGU6hSUiwViVkWQiroqornVTl66ASFbC+aqSEUgREzkGGA3WgwOzPHJz/1adYNrSWdAtPSicXbEEIShAGu6+K5DlEUYcUsENDd3c346AjtHe2ohsrUzBRtbQUiIVGlQr1Wpl5eIJ1PIoVAOTVJ8a4bUdZ0EXlxVvX1MTO9nzuVHOl0huxb7ufP/tf/y4d/8ReICDGNJB1dK5kYHydhRazuGeI7te+jSPjw4Dup1OtkcwUG161lZGKM9q411JshyXwbIooYdSf4mYPvYpuyhRvymxBRDEmTSnEKz65Q6OrBFzGSyTQDg+tIpZMU56aZmppiZHiSHTdsxnFCJicn6e9fxQ9+8H3WrV/PqZPDrFi5ikKhHadRYXp4mDVrBzlx4hTHjh1HKgqZbI5UKsvUzCxbtm4nFJJm0yUKAjo7CtheyJNPPsnk5AwDa9aTTidxXB+EIJnpoLhQJJVO0tbejhQGE5OTbN6yiVpDUK2VURSfVCLPE48/xujICIMDA1RKZSwryYkTxyiV59lyw1bGxkYZHOgn8Jt09qwgEhHlehkrFqdWKjE/N8PmjRs59NJubuy8naSZYHfXDM80dnF8+hDP1Z5nb2Uv+yr7uDV762Ve1pd/Jy+XH3c5b+h5eyMIrp4zu6Q14GKQcKU2lvu+WM+r9bh+c/qbAJd4XC/Sc1UtV5ArAM4r/h4t+e069FyvXM3zepnmr70f1wNcr0XfFdq4MHev8bDlPHsXtf8PVex2aTv/EPqX/LXceV0pOuOKui/Myx9vfF5JsbsorOEn6nH9KXD9J5LFq5Hniyxf76SX514u1xp+ctm+LPouAO/oEwRzwyhtq5cNPrqefl4A3Ve5F86/pKIoQnpxvv73f8cn/uj3OHZsJ/e+6X7cKCBuKvy3P/gYWzcM8esf+SNWbryN2++8i3vvu5MfPvpDxidHMQ1JpTjPtq0b+MbD3+DkiWHaCknm5+b4vz76h3zn4Ye46babGD52gt//7d9l3dqN7LjhVn7zt34DNIuRs6cJ3QYzZycYWrsJW5doqnrhnOtz04imIN2zklV9vXz4Z9+K9thLyNkiyg2bmJmapaOjgOcHxFN5rFgaw7QwY7GWp00ICCMc12X3rpfYsGEdqmYwNz3PM888xqqVq9i5+xALc3PUag2kULAbJVLJFNCqgxmGMD83iyCiVJ7m7NnTlIslVFUhnkqzdu0g9VqVZCKDIgWN4CDFhQW8cge1Ro1cvoBvu6Aq3HLrLeTa8qxfv57NmzcwtG4AK2YxNztFoVDAtluhxav7+9HUkGbT48jxnaugTgAAIABJREFU4/T09aGoOoqmE0kVoYR4rk0inuCTn/w0d9/zejyngaIoKKpGMp2l4bqE6ISh4KWXdqGqrTzEKPIxNJXOni5SyRSSFhGVGUvhOjZx0yAQJoYWYTfKGLEkxYUFUulEKxRVtHJHdc0g8ENc22Fyukiz4TA+Mk5nZw6p+Gi6hBCCwMd1bKQAK5GgWpxBKtCWz6NIWoBVEURhgKYojNdKJB7biTFZRb37FqofeiviN3+e5L1vYlKdJ18YwkgaTA2fotBukcx0IxSVZDLJ1NmT1J0qUWgjw4Ag8BBKnn27HsVrjBJbkaEnvYldOx/ko3/4DL/8O3/A0LZ7OX16nr17jvC/PvFpThwbpnjw23Tu+EXa+9ZR9xXe+YEPkmvrZPttN1N1FB759vf4hV/6MKl8G9PzdYhc7rj3Dm4+vEC3r/ESM+hSZc26reS6N5Jq24QnQUbqJSuswnbQ/vpBwi1rEWYrbFoK0Qq1bTSwnQaqIvBdG4UA1x8jCFR0uQKhGq21rqhV39VKJBFCQdNVwlDypS9/FcfxWbGimyj0aMvnSCRjGKZJLJFESg3N0AkRzC0USaXiBEFAEIRIJYJIEo+bmJYBSHynSjadBEVAIFF1nYbjYag6buCcqxurtlitwwDfbYAQ50CwJPB9NFWgGzGQAlUzCAkJ8AhChY6OTkxTw25UiIxTBMwTOVlUGfKJj3+Sbdt3EEQ1TCUGUZlELkfkeaiKSiTAilkoqoqiaiA0FJmgVq2RTpmtEGip4LseQSCZnZ8jX8ixadNGchmTRt3DircRhhJFaS206LpFFHhEQLVWxYrH0VQNXRHEU0k+95kvcujgITZt3IBlatRrFZLJFG0d7ShSIfBDjJPjOG+6m9/9r3/Am37mPkYmR7n5prsJn34BTdfxb13P+97xRuKmz8z4GSrzc5SbVQpdBfSMxx//yTfYbTxPJpXg9eadxHWD0HOJIoWOjhV85ctfYcuWbdRrVR6c/Cy/Mvxr3J64hW35TQjFQkY2c1PDfO+bT3DD7a8HJUu5VGR2rkQ2l8Nz67h2ndHRKVb2tREJBc9vMjAwwPTUPJ2dvYyOnmH9uk0cP36Sjo42dDOGj0PMULDrPgNrh0ikMrz4/Its2bqFXKEd3dAozU5TKpaZnJmlq28lYQhr1w5Qa9SYnV9A1wwKhS4c1+bUqWHa8ynashlMI8nU9BSpVJYzZ0dIJXROnjzNyOg0QxvX09+/jp7eXrwgoKdnNXFLw4rFiIRCqTyNH0I238b+w4fRpaSt0I4QAW5dIZFKEotb2I7H2nUbKJWquAsO29o2EB2cJp8yOdUc56Xmbhp+k5HmKLdnb7/sovKVmGyXA7DLGbXXktt46YL6pdFjr3j+Lq/nUnC6vMfwSkB2cT+WAtfFY3ItIOiq536d2OQVQ/6SDVfsw/XaddcbVvqTBu+X6/P5aJ3L9eOS/c9fpyXzSyzadllnzrLz+/LA1XEcxDWAquX6t9zniuezRJYbr2vRc+GzNG9cXLzgc7V7fGk/Xi1wXdrnpcBVCIFUrj6+PwWu/+xFtnKiopY34LITNeKyxNPyMi+oVyMX9J0LZXH3f5uoOou6+uaL27uKnigIWwbueaXnJAxDVCFb+VaKwPJb5X1CReABjaiBGioo9ZAnHvo++3/w9yRNyb0PvJO+tVv53Ke/Sq3o8bE/+n944D3vZ/Ot97Fy3RYMy0QzFF589nmcRoOk5rJu3Xre/sAb2fPiM6ipLHfddgv33n8fb33LW3n22Sfo6+7gwLO7+fznP8GHfuH9DA6s5u8/+be8413voaO9wKr+QTauHyKZTvJXH/0tfubnf4UocpECIqFjpQv84LvfoH/oBoSA0xOTJCs22skRgo1reeFHz9LWlqdeaWL7DslU/JyB3woLDIMqgefhNCISSYkblFGEhapqrN28gZhlMHrsJCtX9dG3cg2aEiIVhQhBi61YA6FQnZ9ANw3616ylrdDByr5+ogAsQ2VqYopSsYih68zOTGNmpkkmE8RjO8hlOmjUm+hxFUU30ITEDwLcWg1VUTAMncnpSRKpDFJRkIqC3bRJJlLEYhkcOyCRSKDrCpVqEc91icU0FKkTSh/TzNC7sotMMo6ugGrq+L5N4LgkzRRh0KqxGbMsNCtOPp9loVjmq9/4DjdtuxHPdRBCQ9Jim41ncnhhhGUIHMdH10xc18aKmZhWAiFUvCginswSRALPc8ALUBWBFU/g+j6FfIbiQp1kKoVmpVE0AzMeQzdMStOHcBoVFBlDqIJKtYqmGVC18SNB9I3HSdVsgn/zLuTv/Uf2aHN0b1iJ5leZrzcxEu3k9CKBZ5Fq72XXrqdB76I9BrVyg3TXEO1Zg1q1yuTCArH5PdRUgw1b11FzkrQbK/iLv/gbjp0MeO19D3B2Yoabb7mDP/nzP+dD77gF8exvstncT1cqxKrs49QLj3Dq5e9yfE7l6aeeptCRoqe3h7/7m4/zmjvu4OTxI4iwyRve8GZW965D3XUA9CTetk4qlRqdvT1EskG+cwBfUS8CrheKlj+9E+XECNH6NRc/JCJoOg75QieV4gxedZ7A9wiDLpLmGuyGQzKVJIxAVRVst4xne6i6SdOuEQJbtmykf0U3UejiOT6KAk6zDqhIzULoLaIkISS242CYZut6SIGimOiKCqqKphuoEWBoxDNZNCuO74JqxTAsE9+1sZQIFJUgbIUMu06rL15goxlxQqeJrqmEqHh2Ca9ZxfNsdBUkEt0yMOIGhDp+ECC0CSIczhx16ejqZuPWzczNzjE9MUc8YRIKgWEl8HyfwI04cXqEbC5LEPrYTQ9N01GlJJmO4UU+tVIVTY2Yn51jemqONWtWoRoaZixFqVhjvjRDNpPHj0BI8DyHZr3Rmu/xGIamMj83jWHFiMUT1Ktltu24ic6ONmKWhmd7xLM5ArdV5sF1Q8LQxzw1Dm+8hcKa1VixgGp5AdNMoDQqxLsLOOs3oOt1ShWXfDbH1PCLdPZughAs6XD3jrt4PHqaeDLGqpFehK6RzLbj+QqpdBtDm7ayx93Pvzr1b3i29jJvzj3AmuQQoddsLYwWx5mcXWDTbXeQiCUIHBslEoRRxEsvPE8YRqxavZquvhXoZpzA9fjaNx5h7dr1PPnkY6xa1UcmmWZ4+CQ93W2cOXMSqWh05OI8+vhj6FaGZDLFU089xY6bb0RVDaSAAwf2UixOcfsdt7EwX8Z3PY6fOEoh304um+L5H+2lPZ+l0J6ivaO9xSKuqxiWSaneZHpsjF179jC4bghTVdm4YSsL8xVWrFjBIw89TL4jT2dHF9/79g8YGFpFqVLjyMHD9HTkOHPqLC+8uJPX33s/URRx7NBhdu7cy8rVKzmw/wDxeIpEKk3d8zA0SCRSpPM9PPHYMwy1DWCOVNiorGEsWWJPdS+l6ii3F+5AFREgiFBgUR1YcUmpmlc+S02GKLrYS3Vlm+LypXKuvDq9dN/FelqfVrNX9rBezkheDGi/OXWpx3XxwnirNxfrjc4Nj5DnKjgsk9p0JU/ptcglh10n0Lyq/ssAucWA/2IAt+SzDJBaWgpm6aFErVKEi3UvtVsX9+NKEl04SFw0WK+kkC3ado1h8cu2uwiYqar6Yzt+lm2bi8//IjlXUkYgIRLnSCrPzeNznwvAPZKIRf8uApXny9+c/yzSu1jnKz26FCyHYQgiRCriFT3XI4vK4yxecGptW9TmT4HrvwRZ/DC5Qrz8lTT8hEMSFj/cXimHc/PF26+iIwqXJzAQQiARFyIHQiEJhUQgMRUVrWbxzKPf5mtf+ThN9wx3vPFt9G/dRqyzF9WTOHbIa+95LfevkwTjLxOvnqBfGSM6+zRGdZgNbRFJe4RNfTkG2jQ6rSafe/gx7rzrdQjfY/jMKdKpPEKRbNx6A4ObtjG0YT2nzoyyZfsO/EjQ0dlFJpsjFk/Qv2oVs/MLeOVJVg6sJdbRSRiBlAFeJHDnp4mlCqRScWzXJr1uEOXR5/D6+xjqX8VCcY72QgFVN1GkgmGolCvFc96dGH4EyUScXC5PrWqTz2Wo1RskkhaKFLTl2qjUa5QrVdKZBJZlYRgtz5fdtEEalOZnyBcKaLrA85qYpka1WsJKxLFiMfKFNhzXpeE00VPjNJtNhDvAoQOHee7ZZ+kfWEM8bjE1Pkk214YqfXbu2kVnZxexeJpYzEJRJPV6A1WRFIslHKdJMpXgW9/6Dtu2byGZTKDrOmEgIJSoasTY2DidbblWX20bTc2iaxpCetQa8xw/cQzHa7BqdS8CFUMTqBI2btxMLKawUJwimTKIcPH8gKZTR5Et76ciNRBgGDqKqjI7M8vc7DyF9jZAEPghqqqgqhqe7xKGHjFLo9kISGUy6LqGVCVh6BNFEPgBcaONIApRDIHpGzQ1lcSLh5E/fBmtu5Po370b8e/fizqwmlD6dHW0Q6hy6sQhVg5sQjETjI+d5dSpF8h29tPdswWREHiVUQJRRWMew6+RTVvE0+2c3LMbLQx5/DvfQXgKE5Ml4vEEK1as5Dd+/Tf44PvfQub4n/H6wlEylReZaegk+1/H6ZFJzKBIt7VAp1FkXWqG29aoTBx6nLb1b4JQkM/n+cjvfIQPfOADTE3NMTc3y8qxaWZnZzjTaTE4uI6G52BYBui9qInkRcD1/EKY9smvE+UzkM8sekAAEYSej1S0Vu1dqeN4IVHk4jQqaIZOuVwlmUojoohGo4SmxpCqSuAHqJqOrmo061WkVGjUG7iujVQNrFiSpt0kHm/ViRUSDFPHMAwUVUFRFIIgYM+ufSRSCUxLp1GvISIFRajoaqssiaIqEEVoik4Q+oS05kOxVCSVzhGF4DoNVCFo1hZw7RqB30CGLiJykYDnNPGcJlKErdBfveXxdMIJQJBOriOSLqapkkwmsEyTRDJBGLbYmKvVColYHE1XCH0HSYhltpiQA88BJFYsgW7oSEXBtGLk8tlzdfRaERWWbpDNthGGPkJRERLCoFVH2IrF8T0fXdcRQiEIIhRFtp4RfitiIJVKgBCEYYAqVEIEtXodilVixSpnbt/E4OD6c0aMJJ3K4Q92UY6DHpNEwiCT68J1PGZmJjGTgl/68L+lf007qazku7XnEVLwr9d9kFplnihSaO/uw/bhC1Nf4HdOfYSNiY28Nn0PGT2DCG38+jSzMyNosQxt7YMYapogtHFth2NHj3L06DHuvPMOJibH8VwPz/U4ffo02XwBUzfYu2cPuUwG17bp6e2j0WzS29vD8PAZ1m/YzOz0BIl4CiueoVwuc9sdt9OWz/PZz3wa09Dp7e4hmUmTSOWw4knqzQZdnb1omsb4+AjthS6OHzvMiy++gO3YgKCjo5PR0THSuTzrNmykUq7QXsjRVmjjueeeQzN0jh47TP/K1ZQqJdKZNMMnTzM0NEQu34bv2ezfv4/73/xmXNcnFk9y5sxp4jGLZCpNR0cXQghOnT5NrV6jq7OXyfEx3v+dMkOHqszdvYpCWxtTU5NUKzb3rn8zC1GFffWjlPwqt+buAkASsDgDTojLe3IuNR2up77k5Ymbrg+4Xj4v80pyLSGwj0w/ghCCt3W+7Qq9WQpmluhb5lT+MYHrq9J/FQ/kVT3oy5zY0lzRZY+TS67J1Tp6+Q5c/OcVzueqxugV2/mnpstZOoeX2WOJ1/KVDVe/x1qg9xL3/qW6ObcoIK7fu7+c3kvaXORxFdeg/6fkTP/spXURW8QDl0+Evtr99ZOmKj8fsny5cjjhZVZDL8yhcNH2JaROImqdteu6BJHA0BReeOJxRk6eIBcL0PQ42wsRsxOjZFIWzfIC6bhBtTSPpQYYqiASklrdxhc65VorTFHVVIIgJB03iemtXDx54Z6XNN0Q24/I5nJIqbaKTKsqC/NztLW1Yds2SuSjieBc2LWClGBHGnXiPHyown/8g/8bVzFQFJ9mZDG952kK3UM4gKGriIk5tF/+fUp33ciPnniUHTt2kE4nMcwUTbuOZrTqR9ZKZWKJAvVmA8OQ7N55kJ6ePlIZnWQigeO6LdDlRIRRwNnhMwyuGwBaJF1SaRHcKMLANBQUTVItNRBC4AchEYJUNobttOqJCiH41sPf5rX3bEE3dCI3QWl+gbb2ToSuMzEyTFdPL4pUKc2PoaoGqhZD1ZM4Th3XaRAGHtlsCtfzUZQWC7EfCILQRZxb7f/yg1/jve99H1Ys4uWX9qLLiMF161BNk2ZjHstK4XmSmNUqe/LUU09x9913o2iSwKnjuA6pTDt206Zer2DoFkIoDA8fI56M0btiNYo02L//IGfODPOWB+5H1/RW+KiU+IELKFQrTWIxA02XeE4TBSiXS3z9G4/xCx/6AFbcwvOaSKmiKjqR66HsWEfp8RdIvnyUaHoOedeNqA/cSe3mAXQ9gaYZnD17ip7eTiYmR+jpGsCKJaiVR2nYKvFUBk0NwFGoh02KpSkKhTWMHX6Z7oEh9KDO5PABKtUis14H8QOfor8vh1uZwrZtiIIW4HCrqMJHhjYNkUYrbCSK9VCp1cimM1TKRcrlKj09XdRmTlOcOE5/ZwycWUJpMl7WaO/fzkJDMJu7j74V/ew/sJe3Hpni0KFDPLFjBZ1ZnULOYfPm9aze9h7qmkAJdBD+hXtVNGzMn/st/HfdC8vQ17uNBiEKumWiIPADF7s6Q9isIA0D1wXNiJGwdOp2DSveRSRCRODjR5JGo0nouQgEihKhSKjWfdoKOcIwQCoqQRjhum5rzkbnaPQjge+HBJ6PpqmATxiF+G4FkKAoGGYK12lgGTHCSAMlQEQhjm2jmya2bRPYTZTIxqmXMSwdgYfTrKEZMVQBju+jSAWBIBIC71yutFBMtNwMUSRIqq+l0ShhmAZETTxftJicVRUpWgtc1XIVKTySyRSu61GrV2lrK0AUEgkDqVmEoUMQRtjNBpZl4nk+pm4RBD7PPP0cN998K6rmo2gxHKeOaWiISFIul5FSEk8kcV0X0zSYn58iFU9j11xQQnRTQ9E0Qt9n/75DrN2wifLcLOauIyTvu4uF+zfxRx/9c/77f/8fOG6dVCpOzbNJawq7X36UG257C1I3WiW6RIhlqpQnGnzsT/+Yd/78m/hj8Rk8z+cvV/0ps9PjrN24CTuK+NPhv+JL8w/y7o53oDoKMSvJs089wbqhFTQbcxTnJXquneLCDO3ZGLNzNXp7ejBMgyiQjI4NY5o6lXKdublpTCuBHwruuO0WTp06ydjICDds38aefQe58cYdnDhxnFQqRXtPL35jHlU1yLd1MTI6iqbrtBXaGDl9nHg8iWP7CF1jYaHExo0b8XybvXsOYJomg2v7GBuZJx23SGczSEUyMTHOvr37eeMb72fnSy9Qbfps37aZI4cP8rp73kAQeuiaysT4JHMzC8TTaXRNp14p07QdNNNk+ORR7rnnPo4dP0xPTy9TkwvMF2e4eccOHn3scap1G89p0t3dTXdfL67js3btEO/944NEUchn/t0aYpZJvV6hMnOGibPj5DsLHO6fYiA2xM35O/hPa/4TKg5+pC7xuF4s5xenz9uQrxBDXo/n7/Klcs5vO89ZcbEsv+9ybS21K67XRv3M6GcA+GDfBy97vGSJ7bIUfF0ptPnVAtfl7fprtuHOez8Xe0+XI7q8Hp1X6t9yspz+68JW5/dZxlN+LeN64bjgYiKw65Ifk5zpeuW8XX1BFpVXbFVkCF7ZtORYsYRUafG+F/a5AHIX7btoMXrZNhePOz9GuuGiNs/37cI1OkfOJKW85P5aTn5KzvTPXhbftK/O43phn58gcD0PhF/xuN5y8fZl9r8IPF+0GHvpiqYEYprBI1/4PHue+xHDR/Zzb2+TVWadFf4ZlOoICS1AuDUUTccXGko8xWRVUA7TlKMEe0/NM1XxGJ2toKU6aGoZutbdwq5Dwxjtq5n1EpyeDSj0rMOJ5QnQSBe6iKIAOzJQ9CSKESOebqPhhtScEFdajFZUzEI/tpolsHK4zTo5ymxYN8RjP9zFuu23IRQVT9VJBjVsx8NIZ1qv42PDqE+8iLJpLQODAzz+xFOs27geu14hCAKsWAKp6ESRIMIhbpkEodIq5+BUOXT4CCv7VkEEUjF46kfP09PdRS6bwnFdrFgcRVFpNpvouk6lXGTfgYN0d/chQg/HtXno4YdYs2Y1yUQcXdWo1+tMjo/TrDVZO7gepxESBS5B4BAEHqFQ0CKdhtvy1gauT1tbO/WGzdjEBAf3HaJRr6OpClHoY1gGUqqEodrywqoS17URSDZt2YRumoSEZDLtdHYXCBCoukHkByiqRUREw61hqArZbJrp6UlS2TzJZByERCgGnltBU1V8X+FTn/wCt926gxV9vQSRxA8k33rkO7zr3e/EMHXsZpNKpYplGTiO3arJODHNww9/k3WDqzh58jTdPX0IVeeWW2/CDx0UVUdWbfSYSfjUy/CD5wlPnEXpayd8/xuo/vKbmLuxn9j6fiwzTq02y+6du1m1speZmdOs7BlgdHyGeEoHoXHiyCEKCYPy9ElcFM4OH2bDil4mDn4f3ZkiOvYQ3sgLmHO70MeeoXv+URIUiUKP4akarohjRyY+MaJYB1NejhPFOCu3vIGR6TKdnV3oMRMpYGpinFgsQSodJ5AmI7MeC04Ko2szs9WAFYU4cmE/SYooXoWv/2iEt//Mm1Fe2E88luCv9uylsyPHLZt7UM042b6teCJERspFL3JlzxGYnIXezuUfElJi6rIFRkVIGEGz+VV8TuPZrTlMGCIjB0VTUfUMQgRowqPecPibv/4ka/rX8swzz9DZ2QZRhGUYRFEAUhKgE/ohY6PjJJNpFKWVwqAoClIqIH3sep3Z2QUS6RyB72KYMWKJFL4nCX0HIg+hqi2Q6NQh9Al8j0Z5Fs8uo9AEmi0SJ9dBkxFN1yUKPbwggCikadeJAhdNFXhOE0IPYdYhCqjNB+hGREiI53johoVQVSIFatUShmagSJ1IRIxPzJDJFtANk0a1Sq1WJJZMUKnVURDoiokiBaGQSKEgRYhtl1ndP0CtPo9lxUAo6LpKo15HVTVMXeIFPq7vYcUspFAQBGiqjpZIUG3UWh7XCFQzzmM/eJTtmzaTPniK2aSJ/f77aZbPcN9b3ka1WiObTVGtz6BOF0moedpXrqJRnkCqPiMjx2lUKoSBhwiPsXHbHRRWdfPt2UfRdJN3dr+bbNcaFrwS//bYr/BC5QUeyN5PWk2hKgp+Y4JKaYHDR06x+eY3kO3sIJ2w6OpoJwwVuru7mJufw3Fcnnv2Re68swVQe7pXksu3UavVaFar9PWvIpvPUWhvo6OznXw+w/Dp02zevIl6vU4yk2Ri9Aw9vX2cOTPK+Pg4/Wv6sW2bXD5LGEWMjY+SSqSJwogDB/YSMxXWbdxAR0cnqioZHZllenqMvhWrOXjoID3dPWzYvI1qrUbC0kklEyACYvE0ubZORsdGMQ2Ng/sO0Gg0yLd1EkURzXqVNYMDqLpJZ0cX5UoDx7Xp7e3huWdfpqOrg5dffIFGw+Ytb30bU5MTSEXh1OlTqCLk9JmzvHk8BmHIl1NTmKbJs8++zA233ENbbw92vYhyaoHDyXHc0GbUHuWWzE0glEW5apfaBa+UkwuXLHpf3oa45B1/DR7XKIqW8dRdm3d2MVh9tbbNtvQ2tqW3XXGfSz2u1+E1/Il5XM83fW0KL5cneUXP5HXI9RxxScjxdepZtn/XAVzlNXiQL6/kH88HtngBZ7n7rfXblTDA9UQqXMH7eRmP63mdrx5HLD5uyaLGIo/rtUQX/DRU+J+9vAJcxTmK6wuvmss/Dy7Vcg2ToVQqYZrmFfdZTFwQRRH+8EsIcTFwFUK08hkW9fVC3H0UXXI/KeH58wlBBPiBwv4nnuIrn/osKzsNbomPc0O2ihXWcQMVpW01dmyAfSPTvLT/DLmelSQ7+nHCGGfGZujuW8ns/AInh0/TaAYomkEsmWR+foHBoQ3UytOMjU1hmjHa2gvUXB9F6sxVbbREjuNjM3T2rcEXOjUbRuYqdK4ewky3YWbayBfaePKHP2Tt+vUEkU6iYyVoBsr8MfIpk4cefo6tt92EGtNJmRbPfvebmAkTXY2hf/RvEaMTRFsHWZibo7ers8UkqkhM00JXDb73ne+zYsUqHvrK1+ld0UckIjoKbVQWqszNVcnnU4yOTLNn9z62b9uKHzoQReTTaYrFMocOHMDU4zz/o92s6e9i7Yb1RGGA1CS1eoOt27aSzsRQ0M+FaEoUqZLO5PGcOp5nYyQLWLpBo14HVaLgEE9mcO0mejzOxNQ0qmYwPzfF3EKJHds3YMUs0rleGnYV01CplSt8/7EnKZfqdHV2E4spqJqGZ1exHRc0lcAPscw4jtNEVRNUq+UWk680QIKuQCyW5PjBw8TjcVBa+c/l+Xk0LcaJ4REmZqa56YZtaJaFIiSoCls2r6dSnMFQJUKYhJGKbTd59Lvfp60tT0dnjlV9XaBarF49QKVSIgo9HM8h5gSEw2Mo33seOyZR3/tWot/5ELF//X/g3rAe2dfDQrNBb/cG6vYshDBernPD5m2cPnECK5EilS9gMQuRxfEDz7Jyx32gx6kfepjark/RXtlLfffnEGefQpveiVOZw60toMRS6IX1jNTTWCtvpejlOD3VoHvVELH21bSvGiRV6GZiYpbu7j5GR0eZnJigXq8zMjKCoqqcPnGalf2rOXjwMMX5EkQhN9/xGsbOTBJPFZgpw7zoIaXZyMYo6Rs+hO+qZA4eQ5WCnve9g/aOJJ0dJn7ok27vJpIppLBZ7A1Rf/Acslgl6mxb9lkhpSREIIQkigRSSBxnH0gFEQ2RTsXATOHaTVTdoloroiHw/JBPf/JBPvjBDxNPWfT1dRM3LTTNBCQnTp+l0NGNZ9eQkcLnv/ggZ4eHGVi9ElVVCcMIz/eQQmkxSqcTKIqHpidQdYNqtd46REgmAAAgAElEQVQi+TIMVM3Ac20UqbbIj7wGzfoCoV8km4jhNuso8hzTeVjHbdoYWojvuARuE1WGqCq4noMmNTRNAhHCsoEII0rgNOqIwEZqJsXSHKahoQBKGFCuzvOJv/sCN996O+lslsD3+f73vk//YD+xWI5Go0EyoRMJDdd1ETICP2D/vv3kslmkFCiKQDcsFDWGqdg0m020WBIhFSqlJql0i4VZihbjdeCHhIoG+GiaSRBIXN9FErJ5yxbMXYdhdQ+fz8f42V/897zrvT9Lf/8A8aTF/HyZw4fG2fLMQdwXd1Hb0YfWGMbTkzQdidqYJZ1PESgJUt0D2GGB9akuDjSO84mZT/O/xz/NX078NUk1yQ3ORtKpLrzAozo5wqEDJ9ly8+0MrtvEqUPHSSeThJFHpVymo72TSqNKIpkglU5hGXEqlSpbt26jaTfJ5jP09PTSu7IbAo/jx07Q293H8PBJwiDCMHUQku7uXjRdI5FMMjw8St/qflatXs3MzCRxy0Q3Ypw8eZb+NYMIEVBobyebzbF37wFW9HSDcDh44BBTUzNs3rSe3Xt2cvNNN+N4Hl9+8EEO7N+P6wRsvWEbjWadru5OHvrig2TybcjmNCuGttDb3cWul/dgmCa20ySVSBLgMTE+TVs+RaE9y6OPPkWIy/ZtN1Do7KKvt5uF6QkUXcP3Au65525Wruijo7OL7u+cJJ5MU3zPJqamptm+fStSk6QScYRQaNY8NmZWcyA4weH6EQ7Vj3KsdpwbM3eihR6RbBnEURQipbjw/7KGbyQusUFeCS0NF+WeRgih4PvBOY6O5QhgzlkGQi7h74gu9GepoXw15uDFOZMtDg0By/B/XM1gWqwnJELIc+lPYhlbapHi6FyV8qW5l9crSw9dbEctp3fp+F7Nu3q+nOGiy3XeQnvFRlv02yXjdy3nsAxgfDV6ltV3TdfvXGm2Cw2Kiz7nr+fiz6ULBv9wwPWCRzNspS61hj28+FqdyyV95b5a1LUln+iSXPBXxuySa7E433WpLG1z0b5CXB851VK9QtK6r89xU7T8cUuA8k+B678EWfSgWfoiuQ7gei0ipURRLg0buqRHiybW5YDr9YTseGpIIAREEt+Bv/79X6U0PcU71zZZ4Q+jSIX5IMHBaYfRWYeDR45w8MBBbr9lO339m5gYnyQZTyB1jWJpnt6+XqyYxZnTp6lX69xx+y3MTE8zMzmFZSk8+8PnufPuOxkdG2Pd+g1MTE6iGyYrVvejmSbdHe1IpcWqaVlxctksihAcPXyYQj6PG0KlWieVyVGrVognk8hYFvQERvkkfSuyLMhuYrF2psePMDN1gg2bX4eqWkTffIxgYppw8zoC3yPwPEzLRFUNXNclImR+fobOrgL/H3tvHiRZdp33/e7bt1yrcql9732b7pkeYGYAEBQwEEEK3GDRjhAt06QXUVLItmyHIhihCDHCEbZshRdKCpsmKYIEQIAAONiXAWbHYKanp/e1qrtr6a69sjKzsnJ7u//IXqqru3o2yKIUOBEZlZXvvvvue/nezfPd853vHDi4D8u0aLZc2q0W3V0ZNENFENDf309ffy9/9dxXOHJoP8lUmkbbw9AM8vkCsiKoVNcxdBNVFszN3sCykySTnXqaQkC5vIzrttG0ToQ09GOswi1iZR2VAb7w+S+g6wZIKoHrk+3qUKj/5I/+lGq5Suj5jI4OMDGxi8D3qW1uAjGqomKaFpIisXvPBK+//mPctkvCdmg1m3dz70zDZGZmujNGVaZR3eRb3/g6Tx4/zurKMrZl4QchsSQYmRhDUgRuq4UqKSTSWeJY4utf+wZPHjvO0PAAiqpS29gASWDqOgkniapqNGqbvPzSC+i6xNNPPYNpmTTbLRKOg6qrNBtNmvUG6VQa68oc0o/PEhzfi/jf/glzR/Lkn/gwakKh3XIJAh/D0Km3NjC0FI5tUSm5ZNM6Xm2NjWqJMAzZbDWJPItQ9gmTWaTaDOKl3yOYfhkrKFNqRLw93SQ58hSz7V6So89wenKdgX1PImkp7ESa+YWbjI6O0tPTy+zMTSqVCn09RYLQJ5lIUa1uMDExgW3bDA4OMjg6RHc+h+M4OI6NoWucOX2ap576MLphsbS8SCJlcunyJQ4fPkKpZWC3rrF85RWq5mPkrs2wWlrjt//8j3ji2GEM2SdhSQi9C9XJ0aHs3Xv21c9/i7gnBwn7HeeLOz9I7dZZhBBE7iBeu46VSKPKEi0/xElmkRSdWGhoqkWhkCPlWMTCRxYdQZ5yucTw6Ah+6EMUIAFHjx3l4MH9yIqMrhvEEUxdneTKpUsM9PejqQqNep0w6tRIjaIAVVGJEYQRCEVHpk27sUHo1iFu47Zd5mZXMS0JOdig7da4dGaNdJeH8GLCqMHmZshGeYlmXSJoBWhS5Z6zZHmdH/m23snf1mSEJNA1Dd91URWBrCqYVo4jx46iqgARmiYzOjpEGMZomk4UR0RRTKuximmmQHSAeXeugKYbSIqCJCnESEgohKGHpGp02J8BpmnT9hpoqowsS3hhjOe20BQZTZWRhMBtN5FliFwP/e1J4tF+Fv/Wh0jnCywur/Jf/Zd/l5XldeZv3SKbzXN9ao4961UkSWJxpEgyP8H0mZ8gNVfIj00QYRKEgtWVMn/4r/9vCk8W+NLKc4zaIySwGDOG2W/vJ53upVRa4OyPf4iTSjC+/0lQOwJt1fIK5y9eoljIMj09Tb7Yy+pKiWQixdtvn8Z1Xebn53HsJI26h6mpvPLyS/T39vKd7/yI3r4BvKCNJMVUKpsMDPRhGDo3pqfJZLspr28wOXmNWq1CT7FAbaNKIplEkiWy2QzP//B5JsZ3MXl1ikIxz635GXp6CywvL7Frzx727NnLuXOnOf7kh7lw/gpDQ/247TZPPnmcQ4cPUq6ukUwmsawUiUQ3rXaDiT27ee4b30dTJPoHB5BkiUqlwtDILnzPI5/JEsURsiLYt+8Qp0+fotid4/zFixw+coiZmzMsLS5z6NBBHMehUm1y/tQpnp3TEAK+ka+xd++eTjqBrLJRraCrMqW1ZRwpZjjupdFscT68xJq3xrK7wIe7PnxXcOlelHXnqMrD8j3vRVrv3xTHHUEbuBdN2qnfRwpP3v78YTmUDwNGO217WMPZ5ixVv0paTT9sc2ds2/p6P/m179V22ls8BBC/F1Xh+87jEdse9dm/K3tU5PaBtlvb79D2DuNgq7/6/ydwhTu+8paFBnE/4Pxp9P/Ttg/S570UhIfXaf0ZcP0PxrZM2g/ftP3tO9pOoFLteE+PHs02UBqVZhCajdy7//4JYNsP4E51WwHiIEBut3DXlvgXv/dPiEoz/NYTFpKq0XImeOPyLQbG95DJFlhYKJFMWiiyyvjYAEGksV7Z5LVXX2Rx+jpSFEEQ8OMXX+ajH3madrNFTzHP1SuX+JVf+9t4ns+effso9hXJF4rM3bzJrt27abcamI5BFIUsLywCEpphEgvBzVs3yWTTNFtNJEVGVTQKxSKGZWA6Nm6rRXm9SqnukbJkVL/O//mV17GMiKRt0tc3SsPzMQyb6JvPo5ZriCP7MQ0NWRL4vk+z1ejUoAw6SryJRJKQmKmpSfr6B1CVTnRSVQ3SyS6+8IUvc+jwYzx+7BiGZRJHUUdQSHRW7nRdo1jsorLRprZRZmBglNpmvVNr0dQhljENh1tzKxQK/QBUyitIycvopotojjI2Psz4xC402STTlcFtb6AbJkNDQwhJZmNjg127xgn8Bl997ts8/dTTSLgYpsHKyjqSoiDLEXv37EHXNCQR092VIJIE9XoNU5OwrATJZIp2u4ntWDz+xHEq1QqGqaLpFophoasayGonh86yiGPREUtyHI4eO8bi4gK9/T0ISSYMPHyvRRyDrGhMXZuhuztHvjtLOpsEZCLAsIwOiAgCgiBEFTFWGBPemMf8yj/jQt6mb3yUQqEbIou19RkkoWDbFrdu3WR4IocqK9xavIgs+yRz47ihS6pnmO7hI2RsjXp5lguvf4OByc8hXfgSke9ytWKT2/dphNNHYXCM1eUS+VyG0vIiN2/cYGl5lUwqgSQkIq9z7xV6clTLVUqra2QzKUzL4MKFSyzML+B5Hqurq6iqiq5JlCsVdM2kXKlQrVTxPZ+LFy+yZ98ukpk06+tlJq/NcPSxx4gRLFVc9qTKGLqE/5nfRn/2Ka5emmRisAu3Mkl3xkLoXZjZvk7uyZ3nuN5E/fNvEj62B3FnsWuLouP2HLQ71m6dBcCxHwMBkuHgtyoIoSKpFi23iaJAoacLRY1oeR112dALWFxc5vLlywwOj6LqOrIQtOpNkGVkVUFICjFw/tw5CvkeNM0kX8jScpt4rk/SSROGMQIZZIXI99EUAb5LZW0Ot1GFqEEctAi9WidaT0AcejQ8ibMXZyj0j+IGEjeX6qSzuxBWkpOXFjh1cZrBgRzETcLQRVYEsRcStCJsy8R3m/heGyIPz63jt5vEMWiajix3BCna7TaB72MaJppu4fotJCGj6zaGkqJUvgRBgOUk0DW9Q4uWJJBiiGPCIMDzPVTNQNApRyTrZoeq3/ZQhUIsS0SB35lb2w2azRayrBD6LtrsInJ/kfnP/jxQQ9YMfvO3fovA6whhmaZCJpPGsmzM0xfQNJ1j//B3+blP/gL9fT1ouoKTSjFz7RxV32d89x4+9pFnmPWWWfKW2a1O0CUlcESG5mYdUwWpVeZHL7zOxz75WRYW50nYNmtra3Tn8+zffwi/XWN5ucSlK9PEoc+tmzfZv28/QgpIpW36B3q4OnkJTTfZs3cXM3M32XfgCEMjg+Ty3aQz3UhIWLbBuXNn0TSNdNoiFoK9+/YgQh9VlrGdBBcuXiKTSaEoggP7D2DZRqdOsW2Sy3XjJJIoqoGTSNF2XVRFxQ9ifvLmGwwP9LK2usLYxCiGpTMzc5NEIsHk5BTlSoXenIlkJSl0ddNstyn05unO5RgaGmVp4SYxgoWFW+RyOVZWl6hW67TdFoos05XL4dgWb514g1/4hV/EMDXW1yqopopCm6evRsiqwvwv7ObixUssLS/y3W9/h43SKumETiZhoikSsojp1fOYSyorWpnT9dPcaNzganPyXr3Xbc/sA4I9DyQpbm23PRp6Lz/uDkiQ5fsd1nv+wgPuwQP2buiv79oPut3wH1/+x7xafvWBOq739fMOYHn7eB5em/a95ZQ+qsUDxM53CaS3+253KLQPgLeHReh2GsuW/oQQ70qg6YPYO4HRu34n7z46e9/+W/p5J2ruB7WtNNm71/62wu+dhYj3ReN+yPe3tYzNfVH3bc/6Ox3vpwWm4+jBsd4973dxiJ8B17/2tjXi+tBN29++/yO9j5tS7juA3Hfg7v87AdeHWRx38tHOvvomf/DP/2e8tXk+M9rmI7sStI08dO+lvrGJ5ZhYThLDztDbO8QLLzyPQEJSQnr7hnjtJ2/iug1GJoZYWl0hFIK275OwDXp7+rAsg6HBQSr1NoV8P6FwCfyASqVCsdiL67okEwZB4OP7LmsrJYaGhgnjmLbnUuwpslZaI1fI47ou7XoT0+zkYnphSOj5lJaXmJgYJXZSqKUpnv7s3+fmyhWKuSG6ukdRzQjf95G+8zJyaQMO70aRZS5fvEgylcQwOmIZvh9i2ykam01M28IwVFRNZ3FhAVmofP4LX+GJ4/s5cGAfpq0QSx6x1CnhUF0vEUYuzUYLRdGoblRwI4mV5SXsRBezs7P09hSRZZAllWazQ8ut18tIikc2nQHrFrIs0a4U0EwNXTd4+aWX6R/sZbO+hpBUDNugWCwyOjaG6/usLN3iqY/8PEIIFDmk1WoyP7+CJOkkHJPotqhMGLSRpRDDtrEsg43KOpqZoLxe7gjOBLdzS2UJTZcJIhCSwsb6OrpuoaoqQshIskbktjh58i0GR4boKuZQZJlqtYZEhGUZ1GqbVCp1Lly4RGm9TH9fETvloKs6iqZSb9bxXJdEIo0ZxGjnJhGNBtIf/FOm12YYGh3D8yJa7SatBjRaKwRBTCqd5ObNOZoNhWZNIZkwSNoZqFdYnruAo6m4TRehatQufoHB+W/TbrdxU3vIjj1D5Cso3VlOv/kW/b3DCCWgb2gAO53lzRNn+dhHn+Lq1UukExkq63UGhgZpuw0cyyLwQjyvjaIppDMZHLuj1Oz7PleuXGFooI9EMkVptYSqaJw7d55nP/kp6vUGQyN9CEXBNCz27j3M3PQNpqYmKbdixvIactQiHv1FZudn0UOZQhoSUgnT0En1TKAke+5jv0lnriAtrhIPFB+Iwjzq2b8DXE3zMdpuCyPRRbC5giSrIOlomoLfCpFllVhoxOgoUkS70eb73/shQ8OD5Ao9aKpBHEWsr67z5a9+jaOPH0NWOmXD0qk0X/vKV/n5Z58lFgG6oaNqBr63yUsv/YienhyK7iDiiOZmhXp5FUUKkEVEY7NM6Lew9BDDEOiqSSypJLtG2Xd0H7LSzxun5pibr/D0xx/DMZIcOvo4o8M9dJk6USwor1UxY5OwFhIK8FwXRISsKGiqejtCFSEJhXqjCihIio5lWp3rhyBCEBMiJBlZ1iiVF8klDqCpLUrrZSzTQkIQBQGxEuN5bXzPw75ND40iCUu3CWKBJASV0jqpRJrqRolEMgmyjqrK6JqBtdnGuDKHlzK49WsfJZsvsLI4RVe+ByfZRauxSaNZwbZ1ZmanGRsbR37jDELIHPp7v8P+fYPIToZ2KNNcucnUuVkOPvlp/vX/8zWOHfsEn1v7Iyab15gwR6nWSizN1xjs6aFRvYlfn2OtHtE/spts0qBcWkdVDZpugECmVllleGScU2evMDzYy8mTbzE2Nsr0jSWGh0bw/YC5uVs0Wm3yhW4GBoeZvHaNrlwWhKBSqfP2ibdYK61w9OhjZDJpZNnk61//HolEBkONSafTxEJicHAIVVVQ1U55mNLaMt1dXXzpS3/JsWPHMEybqanrBCGksxlsM0EMDI8M4zU32b1nN67n0mg2OP32edZWV3nyyeMIKcaWXebXKyQNnWJPP81WHdtxcNs+tiGRK/aQz+cwdIOTb5/g0KFjhFFAeaNCoVhExCG2piJkFddrsbS4wplzV1i+Oc8vLCWpbTb5eneVS5cvdFg0sswTxw5j6TISHtnhQ5jpHJKRobswSvvCKrZh8uP2CVbdVSbrk1zYvMCHMh+6z4F9YAHqPQDXrV7Jnf3D8H5Rli3ewA5ewjvbBwGu2+u4PrSf7af8CJ9mOzh8L1HMrXPmI89j28at0fL3Yg9TBn7U+LbaTtGyn7YI6MOO0Xnz8O1hGBJFEfJ9tUbfud/tpY/up63/2zXB1gWeewDu/V7Hd2IuvJu277Xv92zx9uu8pf+fMnD9marwvyN7qBLvB+nntj0sGvpON+aO4f0dtkEnWiwLgXdnNSmIkOOIq5dO84Ovfgk7XOfjIw55I8KPJILMMJOzK+zZc4DXX3uZfXt2k0hlUQybxblZpiavEYQepqWyuLjC6PAEiuSTyTjEsYGQQ8JQQhEh+d5ebCdBGEd4fkwyafPG6yd48pmnaLdaWEandEwoyRDFREFn4vPjEFWWOXPibYrFAt35HCExhmFQW1/HMCwqlQpxFFHo62Hhxiy94yPUqhUK8SqR5hDt+RVmZiaxUl184Ss/5L//vf8B7Xf/GeL8JMFv/jK1apXYb5PNdrO4NEsu38N3v/cCi0sr/Ee/9uvEQNLRaTQ3SHcV+f4PXuCxQ/vIZhzKlRo9fX14fgtdN1lZWcW2LQzdIQwCrk1OkUlnkE2DL3/xL/nU3/g5Cv150ukuKpUNkikHRe6Qz1v1OrZhgqFTj/6KMIxR3U/R2GhgaAaKpRL7Hvpt8Zdzpy7R119ENWVUVcO2k4R+HYjxApnLFy8zNjbOD5//Ebluh127dtPX30ej1SL0AwzDwvVaxHGAkCXiMGZ5fo3iYB+plMP8rVsk7CTJTJogaNNutkk4CSIBQpYQYUyz0UDXDRRVpVrbwLodiX3phy/wzMeeQlUifvLqBZJpmd37DmBaBkJWaVSr6KbWEfQKQb21Cq+8RfR3/ibhf/YZlESe9sYSmmWiWxnmLp1ALw7Rn1Zox2kq5XlMLYNly6ytlzE1ibnLJ9n98Y9x40dnGB/rYaU9ifraH6EHVarWbpI9B/E8jygMkNVO5LhWrjAwPIDmGEShoFKqkk4liQKfWChEUcTU5Uv0D/ST6sqyurhEuVTt1ANdX0MRsF4q02y46IZGOpMgV+gmiGPiAGr1GqpsIgDfc0mkbOIo4szZS7RbHomERaO+we5dY2hRBbsxxdrjf8qf/L//B7snJvibH9vPS9/4V+z/8GPsP/5ZtMJBQilAjjorweoffw1x/SbRkT13f+xjYuTjp9hRTGVmiMrkdwBIjX6CeHC6o8IrJBRFwQ/Cu6VsxFuP0/ZcJFlCPTgFVgPf9xDI6KZBFMfEUczcyTaZ6hEMQ+NHJ77Np/67fjRNgzi+Wz0yolMPODq/n0tvzbBv/16iwWnk4gq+1+5E3JVOf81mCyt0OP+na1TqUOwZpu83qiiqRhBE1DZq5PLdbNY2yWRT1C92I1b6uHDuPN37Wuz75TTtVhu3tYmuSYg4JIpjNFWm8vUAx8nhBxLGMy5K2u9QfGWZKBLIiooQgnC5i2hmqHMZ7U3kQ9c6OerS7dp7ohNdlRWF6PIugg0bVVFg8AZ+dg1dU2+rUyqEt/fzNzTkq4fwfZepK9c59NstordayK/44MWEn80Qf8ym2Q557purPPupf4jjOBBdRZVOIMkytVqVhO0wf2uB4a911JRXf+s3ULRhHFuhufk5UikPZJM4up3YEofs++YfQnfEb/b8xyiST7Nep7K+TtJxaHs+QaTzxomzPP74Edquy5mzZxgZHmFgsB/LNHAsi/X1Ei03ol65QaH/CNPXJxFC4vHHj7GyukC+2I/nNSitrhL5HoaVJJZU5manGR8fo9GoI4gp5PNMXb9B4AXsP3QISQSdRZK4U9NweWUJRUjMLy0yPtqP5nQTtVu89MrrPP7EURKWThwLao0muiJzY2aaffv30243+MH3Xuapp48xODhEo+Fimjqe56KJiFiSaPsxG5U6rXaLK1cuU1pd5bOf/XViPGTdIWw38SOf13/8Jk99+Gl+8sZrmJrB4OAwV65Mcvz4caZuXKO2WaOv2IuiGiQSDs+8XGZ5eYm3PtnD7MwsH/3YU8iqighdECF2MolQzLugwvM81tfXyXd3Ud1c5kTlLPP2CsfSj/Nk6kP8t2P/6L7f9vvASHRvYTqKogcUQO9XRd1KX304VfgOkJVleQudeHu60j3RmjjeHjmMdqTJ7qTMu/U8fuf87wDwx4f/+Hb/8d22D8sb3elYWysibD3PrdUVtm97lL0XNeL3AzSFEO/Ln9wp6v1+xvGwyHRE5xqHYdipLrFDbdidxvUwuvujruWd7+RexDO+7//7B78zHXur9ksURXf7eei+OygVb72/3gvW2un6P2wR4e513rrPDsd6qML2tvE9THn43Q16mwKyuL//d7KfqQr/Nbf7JM3fx/53J4F3QeN4t5STR23b6eEJ8DCEDA2P7z73bV577vPMXTnBp/oDnuzVsHQdsrtpOlkC4ZC0LaamJm+XJmjx/e99l6mpKZr1MoMDA+RzXaytLtPT18/evXtpN2tEscdGtU5ffy8Jp4t6q4lqWqimg2raNBt1vLZHs16nK5dCU3WaLQ9FtYhDH0WSII5ottsYqs7c9Az9AwO0Wk1Mw+DMqdPIQtBsNojjTh3SuekbpNJJuhJJrs/eYGBgCC+K0esLxGOf4NUXXyR2W3z44z9PKtsF33wBaa2MOLofVZVZXy8zNztHV6GXcnmD/fv2sWfXLkzb5Hs/+D59fb0sLKwhYkFvvgtFiejq7sFx0rhtD9M0kWUTTdNYXFxDVzo5fP0DPdhJi1uzixw//gSplIWq2sRhROS7iDBEkmK8IEBSFFRZI3AbhMo0a6UyGetDbG40UWSFZruBplqcOHGSbDpL32AfqqZQq1VYL61y9uxV0qkUiWSSKA4wdYMXXvgRiizz2OOPU+jtJQRUXefVl17hzJlzHDt6FMPQkRUJwzRJZ3NYVicvK99d4LVXXmd4tJ/qxjrpTAYJCVmKqayXcNsu589dpFDME0YeuqFCDOW1Nfbu3UUQhVhWCknxmdg1RoiCJMsokoyq2siKRm2thFWqE508T/C//H1uHhjCNBMkuxymr13CtG2CIMLbrFDom8DfqGEkTGy1iKEYrNUadKUNws0ZFq5fYWjwb7BefoX49B9iTT2P6uS4XB8g07ubVDqNH7jomoSqBARRSBzESJKGEJ2otpBANw18r9Epz6FoLC8so1kmlm1z6tRp+geH+Pa3v83hI0dQVJ10wsZ1m1y/NoUQEsV8AVW2uTJ1jlbTo6e3wLmz5+gp9nDh9BmQBWMTu1hfXaVYzJPOJCkUC/itTTS/xOv//ATH9QQ/qZdobCyRNn004aM7GZK5EcJI7oi2xDHqH38NBnvvy2+Vj799ZyZgC+nq7iuqJHHXpzrUO6MfkS11KNGhjyIrCKkT6VJkiY3LFpbtIMsqIr+GrIe3ywFEd1fU4yjCjvK05jXW15Y4/ORB9P4NwjC4XcT89iq2kIiBb//hGxzcfYRbN+fI7FZREi6qqlNvtjENiyiW2NhsYek5bp1T2H3gGIWhXZhjJSzLZnWthCwrZDIpbNtGlmX0Rjd+RcFzXQb2dWMW27TbHp7v0Wx7IARhqNJ2PcpvhaiKS9BqoY+0EXoHhMZRjEREHPnEUYRXiYlLCSRihBGh9FSRZOl2ukhEFAtkWWFxcRFtrUDcEgSRQM61UVIecJsqJwni246gCHTCpTSB59G/0UT61ipSBaLfyBP8TgG/T0KWdVRdZ8++T+IF3XzxL77ME4+PoanLBF6IqomFmcwAACAASURBVKi0mh1Kv3naJwZq+3fRJiAKNkglVhFKTHy7qH0sYiRZ5lutEq5ocdgYZGFuhkwmh5PspuGClcqhKCaNxia79w2jawbdXV0M9/cQ+rC2skar2UYgWF+vY6hNFD1FtVLl6NHHcF0P03RoNJusLC2TdDLU2wEXLlzk4P49pJIOhuPguS7VUok4jMj3FMkV8szOzHDq7fNksxlUVeaNn7zJxN5dyIpMKuEQuA0sJ0G9UmLPvt1cvXwVv90ijiLePnmK4bExevt7CeMQooiDBx/DtDTq9Tqu61Nv1JFkifMXzuEkMqyVylyfusrIyADju3Zx8MB+VhdvIcuCpbV1Qj9AkqC3ZwAhVPr6hhgaHiCTzTAyMkypvMbo6AS79+zm/PkzSEKip6fAxuEit0YsTEPDcSxmZ27SOzzMerlMJttFINTbpZfuaVgkbJs4kkgluhjS8riTmyyl1ij7ZZa95bvU4QdopNt9AXH/7/79lFNpS9tH02bvBzTy3ahTx2fhgT63Ujl3jDA94oM7VNI7EdfPFO7VcY3jGPEQULUjCLgN1oUQ91NUuX8JTxLbQfeDdjdf+CElQd6PKvDDIsD3oroPp4Zup29+kKjcex2zkO6Bzp0iwo+yO9fvPgC0QzfxHRGq+z99RO87RzK3PwNb7/fOuUhb2j2czvtBIqwPe7a2t7lj75aG/G6++/cfgb3/ub+TXvRu+/sZVfjfI3s/t8jWieOdVjPez03YfvFfEsy8hTJy/JH7S1HM5Z/8hPOvv8Tq7CU+s1tw0Klj6xrtxBhrgYNiGkRCRlcMrl+5xNDoOIMj47heQKvdZmW1xL49w/T29DB59SqFQp5EKkXCSXD1ygUGBwYJfGi06siygtBMuru60DUJwoAzJ08xOjZBoa9I5AdIsoysqJ0aj76L73q3IzQwdekKqqwgqyqOY7Mwv0Cr3mBudhZVU7l+/QYzMzO4nsd6tcK1yWt86KMfZb1URjYTaK0Vgs1VbjZNHE1iYHwcSbNQv/caYnWdylCRMPRoNDzeeuMNdo2PUigUiIWgtrlJOp1g7/4DNOoNeocHMQyN1aUFBkeGqdVbnD93kYTj4LsecRzhug0cy6FWLWHZJqulErbtEEcR6VSaerOOZTsomkTo+5w8cZpcLoWQFQzduL2SHdFmEsM0iNuDfPUvv8rE+ASJdJK/eu7rPPvJT+C6TfxAYNsWttVRQR7fNXI7uuCh6iq2qTM2NsLw0CCpdAJFkYnCTv7dQF/v7XIQWWJCfN8nCCM03aJebxLFETExIyMjeJ5LIpFEVnT8SKDIHSchmc7R25NDSJ2atLKiIhDICFpuC+QAQ08jKS62lUJVFBqbVUxNIZRU4umbGK+eguEe5H/1TyknJUxdYBgadbeJrSu4XohpScTtCnamQLOyQihphEEJWRJI/gpuZYq5S29TXqzgXPu/SN18BUWSqTm9nJwKGBmeoNVuoymCa5OTZLIZWq6LJBRMw+SVV1+jt9iFoUm4bhNJ0pCRSSSyhGFArVpGVTWuXrxMFEYMDfcjRRGXz13g1sICI+MTmI7JxJ59dHUXmZu9xq2b09iJDBO7JnDbzU601UnRbrexLROimL5iP8vLK/QPDBEhOHPiBP3pmHHxDFlNIf3pj2MoHgmtjQgbyGaKnokj+JGKEDFivYr2F98lOn6o45HetqiaIl7Lweww8UIv0UIvLPQRL/QSL/Qimg5CmERRHlvaxca5mPoVk2i+QDCXJ54fQCz1E85lUFWNmI5wRbicpX7Fwb2eRprvJV7ooT6ZQLrVC5sZJEVjaWWRQvcg4c0C0mI/3kwOdyaLN50nnu8jnu+jvziCpmskkglErYtwNoeY70NdGyNeGqJ5oxt5aRxts59coYgqyzTrTbTVEaoXDdxrKSpnZbS1XUgLvYQ3u5m7UGKzvoGVMHGkbpSFAVgcwF1YwK4lqZzs5dabManaBLPTJVJZg8jXaFyr4V6RcKdkghsa7qRGcMPAndKJ1lRCr47n1lAildY1E3mln2C2B7HURzDbRbw4gFOZIGiArCkIWSGqJGGxl3Auh3s9i1gZIpwrEi8Uad90UOMY7dQkkSwIf/fvUP/0M7T6PkQ7PkooDhFJB2mLw4RhF+XqGk9/5CkikSGUjrDhTqCoTxOKx/DCCeQ35nFdk9KBCcykRXnpJmE4CqlPUyv3g7wXXbqIAL64fJWqXyZftij078EL4Oq1aXTdwDJMDMMgjHyWlla4euU6506fIZM2mJ1dod5o0PY9BkdGuHD2KkODJr19E/T19dJs1YjjiD/9N3/G2OgoV65cJJ1yWF0rc/TwAVrtBm4UoysqZ8+e4YnjT3Ro0pJAM3V0VSOKoacnR7vtMTuzwMhQL4rREZeLopBAqMxMT1Ho6SVfLFKtlukf6Gd4fIzPf+5zbG5uMtDXTxD6/PD5F+nrL2IYBp4X4CQcdF2jb6AfTbe5fn0WSYRkUwm8EKrVdW5cucjo+Bhd+T5WV1bo6x2gXN7g2rXrtNt1urq7WV1doTvXxcrKErXaJvl8jqSTgigkCENabruTe3/zJmNjo5w+c44Dh/aTTiZQVAUhZFy3Ux4tDMNObV+h0Gy0UC0NNJPBrgL+bJML+iRFvcizuWcf6hM8Cgw+sGkbcH331mkcBMFdR/+eH7MdFD0CBD3igztvHwZcgdsLX3fG/mjq5aMovlshxLsBYned9/dB69wJIO7EqNuptw9KB90J4L+bY9x/vd7fsR8AQDt01Ik2bv/wvQPXu33t0M/2+3b7Md7P4sB7te0A+f1yN39649x+vXhXwrB37GfA9a+xPUDveI/7b42wbhdE2JFes9OEssMq4b06rsfv+zxEQaZNGDTwQpuzz7/K6Ve/ymHrFk/kXWRClj2V9NhxvvvdHzG+awhig6WlRRw7xbVrU4zt2ku1XGJ9dRldEXzoQ0/y0qtvI4cVRndPIAcB586dJ5VySKYzTF+fZ3zPIMMju/DdDbp7+mk2GoRBgIRgYGQESQZNM0CCKJJQFInAb1CtNXCcJJ4XsDo/T0//IO22y/rSIm+eOMn1GzdYr1aoNeoQxYg4IteV5cBjR8D3kRWVRtMjn09jpzIoEojGKjc5wPe+/yUKWZP+iYM0TAv91AXkx46gEuLYOpl0N+muJJu1Sgec9hZoNxuYloWiahiKSmVthd6+Al7goyKhGSqZXBe6kyCOAww9gVA6P45xrCIJgaZFJJIW9QbcnJ1jbKSfRrOJmXIYHBrg4qUZentGqddrrJXn0ISG7MwTx2BEB3ny6SdouptoscT16Xl279lNo17ne9/5LhvVKsNDgywtL6JLEdVKDcOyMS2TRr2BHLWYmZlipdQi25VGxD5Bu8nlCzeYGB8h2ZUFw0YTGnHsE8ce5fUS5ZKLYUhoqkzgumxulHBSGWrNGlEsIFZ4++Qp8vkckpCQZUGzsYlu2AhZxbQSaFoSRfhUyxXMRIK26+I4Nq0bC2yeOIk+vUDpH/wq1n/961QqS2hZhYLVg7RxBt0ZZuH6VVKZFGYqj6abxIrO9VPPM7r3GK9/44uM9OWYnLqCowTIV77GUHAeWbFoJg9S1YZJdI1S29xkevoa16eusmfvBHEYkcsVkM0Ezc0ylfU2Tzx+nJlrN7h+fYbBwSHeev3HJDNd3JqfI+nYrK+uMTN9i2NHj1Iur9PTnUFPOHQXi/i1Ddq+RzKZJghD3jzxBkOjYxT6+7h66Sp9w4Moqsrc9DRhq0EgJN5+6ySHjx7hjROvIaSIMAhIOA6GJqO6i2jlcVZWVnlTj1GETX9vmlK9hO0ksO08tl0kJER55W0II+jO3PfMy56O8LUOzU6ALESnKHosiGOZoLGJ14ggMgkadcJAYCdtJE1HNxJIQiEMGrTdJpqSQBIaURwg4hBDN/H9FkEUUt/cxLEM3FYDxUrjB22G+/pYW7iGk0wRSRpus4Zh6KyuVLhy5QqDgwUUWcZ1XQzDQJLpiEpJndxo29JQZNB1BRHLIGQqlU2y6Swijgldn9Bz2ayVOHnyJMlkmu9/70WOP3GYrmI/sqaghC2am1U0x0bWK4RhgG30kc7ksOw0hcF+NupNbtxooqf6KZVKVCsVkrqMJBr4TRchXMLABSUiCl0i3yX0Wvhei6ZbRTUMdMWk3aoiSz5RFBIGLTTNwAtAlyWiOMbQdQgjhOzSqm+gyaC/eZlgIMf8f/5LeBmVSFJxHAev5WLoCaLAAwwankdvoZuoVcGVJGrXX2P9yuvIRh3NSHDp3Aa/9fu/j/zEQXJ9BYojR8kk8yj4lJZOI9eXKS9dRMKjsl7hK6Wz1MImK2+WmNi1j9mZBXLdOXRd5oUXXmV4eBDf80lYDrsnxjh69DAXLl6i2Qp55iNP0deXZ6O6zt59+0h1D+J6LpqpEfguCSdBw/W4cO4cn/70L+EkEiwtL3N16hrj47uwLQdV0+jp60XIgs1Gg6mrN6hVW3R350l2pSmtLtGVzZDvybNZb+DYFvWNCsvLywR+QCJd4PKlq1i2TrFQ4Nq1GyRTWR5/4hjra2vomkKr6bN3/wR+4JFMdbO4tEJ33u5E1CWNOPA5+/YJnnrmacx0FhFFWEpAd1bm3OWbdKWKJLIWrVaLQrGLXD5NvpAljjvzRhgGLC8vsbayxsBAPy23RVdXN5ajMu6bLF64TvHAHnTDYP+hfZi6TqvdIiYiCNvYhoOsdxgtPbk86+vrfOXLX+bx4x/Cr9UJohBbMxBBzOXgGs24yVOpJzsswrgTLYyjewDtrm8hOvT1zmu7Imq85XXPj+jsJ4OQEFKnZI4QEn7oExDiCxVN01AjeP3FF1m8+BaGkEnaaWYX10kmsxDJzM7Mk82kkVAQdJgbAplAdZFiOnPPVt9m60hvv/nGyjdBwGeKn+lEj2+zFLaWiomjO6X9tpeGuff/ndOM72Chh0Sj716J2zvd8bTu+FYRcQcwi/uFku602U7TfCdAfef9fdHsLWN+GH1YPOTY79YeBsAeFn19ZIR4y+v92N1zeERHW0sdPQhyH0bx3amjiLulYrblbMbcTwfemsf6oIjZg32H4e3UkPuOL4i3AuJt2+6+7py8uFcjebswk4hv3wnxg+f8MPGvDxKBf6htKbnTWT94b2V2fgZc/z2yR90ucRxvyy/ZmaYB727Seze2E3DVoja+0JElhze++RX8i3/E030SKceiaY5RjS0iSWVppUx902V1bZU3T5xm6toUZ06fIghdHjt6lMCLO/Q0W2ettMa+vUfIJk0WltbJd+dZXitR7O2l2NOLKpkohsKN63N0dWWxbBvLtDFMG0nRkGWBH3i3o4sdFWUJ8L02qaRD4Lks3LxJGMX84Ps/oLsrw+LCLSzLxLEt+vp6efLJ4/i+y8DgAHEcUsj1IIhYWLhFubyG77bI53Kg2cjla4wNF3j97CSjY7voGTvEz/3cJ/gveoaRxkdAkvD9kBdefJGx8QkkWSOX6+Uvv/JXHDq8Fz+M0TQFoUidH3LNpNkOMRIWTiLZyQsKQ9rNNooa0Wy4BL7H+nqZYrGAosr4vsQ3v/UthgZ7SaQyGJZJq17Fb22SzubQjRDLUkknCii6QcObJY40tKjA7OwSuVwvN2avsTA/z9jIEKmkTX//ANlsBj/w6O0tMHdrnvHxXbSbTWob6xh2AlXVKPT0U+jqRlUEXhBiJzLkewokkxau20aXZRCC2kYFTdWQ4oDz5y9jOgZduR4ktUMZC7yApJ3Ac11UGQr5LIHfIgoDAj+ktFqiO98BJpLcqUnbqNfRTQtNNwhmb8HZKZQrc8S/+iz+7/83iLFduL6CrMRY2TyEsLa6SLI4gZ1M4mS62ahXqa0v4esWyUQCoVm89cZJgtoyyWtfQJ39Hn6oUNYP8ONLa/QOThCFIaZu0G67HH3sKJ7rdiiwMTjJBIiYdqNFPl9E0zXK5QpDo6PMLyzR29NHJtNFd74bTZPRNZnltTVGJ0YZHB7E0FQMyyGdSrOytESmu5vFxUWKPT1k0hmuXrrGZq3OxMgw6+UVuru6SKW7UFSDy5cvs2/fPqobVRKJBJubdXTdoFypMDN1lb5USONGgUK+yM2hIt987rs8duQA+W4bXRe4kY9kqKhGGqlSQ7oyDfmu7ZPH3bxSAciSRKtRpVVbJ46rNOtrRJFLHEd4YQlF1QkDBd00kYRMDCiKQFH02wrBEUghcRjj+9490Y3O5Ear2cRzPXRdRUgqluPQaHuoqsbG+ip+GHDj+gzFYg+G3hFfkxXlNmVPYaO6gWUaxLFPs96i3WoiRKemnqoJko5FvVZlfm6acnkDy0nx/A9f5kMfPkp/fz+79+6lVllAM3Q0TUOWJAw7iZAVgnAeWUiYci+NRps3T5zC1hVs08QPJF578y1GRo7SO9BPrLgI4SMpgtD3EHGTyGujSjGCCAiQoxhNaLi1VYQeE/oCVXOQNYkwUPFdl6Rt4Mchruciq2rHdYoNZEVFWt9Aml5k5j95knwuixH6yHYPkqyACFF1ibYrc+HU2yzNXGZ8cA+bqwtouszqwlka7VVy2QFunH+NwyNVHvuV32Rg4jBz195Aac0zffHrrM79hLydRTVSiFhjZgp6i/v545UXwFYwSr3cnL2Orhu0201qGzV6cjkmpyYxHZtcNsOrr75KuVLh0KFD9PbluXr1Cpl0hnKlgpM0KK2vMj87jaKZLC+tEseCXbv2cuDQPlRdQ1F1spks5UqZVquOYSjcurVMKplicWGRXK7A0tIi58+exUk4rCyWEBFoskzge0xO3qBQyBGGHj2FDEKA4ziYmookK/iey8DAAD9+/Q0GenJkuroJIompqYsMDw/QbNUxLYNkwkJTkpx86zQDA33Ikkwul0fTNFrNOgknQSxBEMeMjB6kUllB1Uxs24BYEASgKhaKIvHKy6+Tz/eSz/eQziTxPJ90JosiKyiqwrP/+xUevyV4dVdEKuV0wHIc47bbGIaBaVk0m62OQx9BfbOOk0hw9OhRBDGut0m5WkKWItqLFeaTFQzJ4G/lf+muE3sH0NxPhxTcLxn57uI4QgjqQYN/dPEf8Plbf863177JC4vP89z0c3zx4l/wB8//r3x/4Vt88cf/hlv6NLcy65z9szeplZd5+1t/wsKlk1x480WeObaXHz7/DYqFNDEBum506i2Hidu48RHjuT3s7RHXu+e5zdt6J1C2vd+tAH9Huuztv3eFeN7hGO/q+A/Z576I63uIGn4QivAHafNB7G7/jzjMI0fwQMT1UR09GB++d37bg05bqcvvDFyFuKPAvfMx3zGCL+4tFDx4jEeA9Z1b/lv7/n4GXPkPA7huzW29x/nf2RRFIQiC+1bldlodeS833zu1DWZOAAJl5Ph9E6QmS8iR4Ft/8i/ZW3+FkS4Hz8izENjISYtvff27HDhwmELPAL39w/T0Fjly5Cjd3WlSqTRtz2NpYYGNjU1MvSO24jgpbt6awjFleoaHSKYsDhx47G6eZrXapKe/gKToXL58gWKxh9L6OqXSOobRqRXq+x6+H2IaJp7bQBIxgRfSajaIwpCV5WXWShWa9Q0amxUmdk+w2dgkm83S0zdAOtOFoiqsrCyze88ezp4+Q//gMEsrq9imgapoNDY3qLddMrbCxvoqc9Umr7z+Jh/96Ef5u7/6n2L86BXErmG+8c1vs2tiN4VCN93ZLMQCPwjZtXs/SCApGs1Ghz5rGjqSkLCdJM16kzAMaLeaqJrKjanrXJucZKB/AF3XSadTBEEASLz82pv84qc/SSrtEEUCcTv3TxaCdNqm3dokCiMUSafd3uS7z51j3+gn0U2TxflFpq5McvjoUfbt3UOz2UTXDSqVdTLZFJlMEt9v4zg2kiRzdXKSoaFhJAkiYSBJOpu1dZrNBgiJZtNDkiOEoiLFEeXVZUw7SRgGqKqBLGBgcATL0distzEtBz+IqJUrmKZJEAQYlkGz1SSZStF2fTRNp1DsoV6voxs6URQQRyGqYaBGEM3Oo5y8jPLbv4r2P/09GodyRLJLtbZMT18WXTVwXRvTiYlJISkRTTdGlWQSUZs/+Rf/I93pBF2qytKtacaX/5x05XXWWhra8Md54e05hGEiC4nx8XFmZ2a5evUq/YMDzM7McujgQXRDJd2Vodluce7UWZqNFqdPn6a7O0M+l+Nzf/5ndHV1k+vKc/XaFQaGBmi3WhiagSQJzl+4SBBFpLMZhFCIwpie3l7CMCKRTBAEAcl0ilZrg7HxYTxvg2w6h1A0ohDm5m5i2xa62XHsensHqFZqzEzPUV6v0tOdpEuvEywN4fkB56yQT//y3+bC5RlMpcXSzGVyuQSSaWGmBhG1OvKFKSjcD1zFyBwiXYVKCt/zOuCxXcVvVZHDkCCUsFMBmgGmuQ9F1fD9NppuEUUxsixRq9WQZZlmq4mmq8RxRwE7ikOIBYosI0sSbtsliiIURaaxuYFtZwiJ0FQdRRIdqnEkUcjnkYQgkXBQNfXu/Nio10mlOvdeGPi0Gj6qKtFsNgh8D035/9h78yA57uvO85P3nXVXV/V94WzcICiSIiVZl2Vb9tqr8Xi8dnjksWV7PbGOHe+Gw7GxsbG2d8LH/LETsbMTe1uWJVuyPLJEifcJgiBIHCTubnQDjUbfV3V33VV57h9FgAAIUKAkR3g39CIqOrMy83dX9vv+3ve910kR41g6TiKBYbooms7g0BCGJZHKZJBlFS9oo2sqpqYSBh7tqBPpN2QJ3/eJWkkmJybpG9yBbenYVpa5+etMzyxz5LEjWG4KzegiCB3WtppoSj8hEo4pEvgexG3CoMbKepnLlycodOfx2xV8P8aw0/hRhGGotOrreF4Fv7pB5NWxdJXN0iqaESHLCtLZ6wSf/STy4w8jOnkUO0WjvIYshnitGitLcxiqytL1i3Q5Hk3mMJUasZghnTyCZqWp1JLk0gUW5i6TsQ025meRvQ2MnkfoH9zPi8cmsbseJr3rIJeut/nGt17nwGNP8Ep0lJm1OX565FPYtsva+jKu49BstjFNkSsTV7kyNc7OHTuo1WvEUUxPdx+CFHPmzBk2NsoYukU6kSSRyFDo6icKfbK5Lq5du4ptaqh6J8p0FPs0m022b9+GbdvMzs4yPLSNE28cJ5PNMDk5SXdXgTjw2LZtlL7ePKqpEoRN1lZn2bvnMC2vjWVZbFabOOkCLx49wfSNefbtGaNRr6EoCsXubmZnpikUu7EsB9ex2CpXKRZ7UBQJz2vTavhomoHvddwANM3k2ae/x9juMc6ev8DQ6DZE1eLC+csMDnShqCpTU1Pk8gVmpud4/fW3GBjoY3BwhDfeOM7AQF/HB9oP8PyI6WuTPPX0s3x+0cGyTNZ/fge+56EbBqXSeie1higiyyph6NOuNTn7zgWuTF4lm02jqjJeo4bnS3znyed4/LGPk01mSJsZXt08RjWo8UTmifeB1rsUhNtO7k+BvHk8UZvgi2e/yP809SfUgipaoDJxY5zr1evMVGaIEiFxVmC2PctKV4kJ+ToXvAmu71nl1eRpZnd6zA00KfUFnNy8xII6j/lOmT/+/T9Eqopcv36GnJPCdjpp1+5F5+00qPNnn7OPj6U/RkpN3WFpvL1XHybCa3yfMbgn6I/uCmxzVxV3W0Tvx3p7nxX8tu/uTnHDPaypH2RF+0GAyo+yrA9T5x3W3Q/j+3zHxR8OuN63nNsjRD1Abtj3NhzuX+4HRYXufD5o7d6+Th4cuN5LfhSRpAVR+jFw/f8DcL1dboU7/z5L6F4T/0MvqO/zvH/tBPHmAtHmPMHcO4RzZ4nmzlG7doar3/1f2Get0hQUgsQAbTFJFGnkMgVyuRyiKBMLIrV6HTfRSffh+3UGB7czMXmVpfl5NjbXIApZW11ndnaFer3JQM8AltvFtavXKZU2yOZy2K5LMpmiXN8gk83T051H0mxMw0CVJVzbpO37KIqMLKuIxLSaNWRJRJYUGs0WnuezvLLGjdlFCtkUgwM9CJKEYbv09A2SyxeJBQld05HEzkZBo1UnV+ihu3eArq4CE5NTHDiwn0S6A3CD0ixzTUjkc9Aus/3iMsLZcbYGCuQzWdLJBF6rSqNa5vy5d+jp6cE0DWTVQBAVZEnCMgyatSobpWWiKGDy/ASObRMLMYap02610NQ0shzi+T6SJGJZFnEsMjg6Squ+hWlYyLJKq91Gs2xUzaLVKGHoKYIgplxdoVXZ5KMffYJWO+TV18/T35eFuIWuJtAdk4WlZWbnF9kztpN2q0UQenheC1WKEUSZpeV1ij19LM5eJYwV/JaPk3SRZBFT19FkGVlWqDc7QaUEIhTNwPPaWKZLs9XGcRMEfg0hgqeffp4dY7vJZlKEYYAXBLSDCNvNUKk1cJMpWl6bduBhGiZbW5tomkIYtJHKdeIXTyANd+P/+/8G9aH9VGqbaJIOoUA2lUcRNGKvjqZkWVi6gESClcUr2IkMlbUVGtY2PvepjyEoJtUX/wcSC0/RlHMsRP10De6nVmly4MAhJF1DVmROnjzFI489Sm9fH9/61rf4yMMPc/78OTJZB80wabdDTh4/zac/+2nOn3+HdCZNZaNEodDF0MAQF8+d59DD+wijCE0xuHhhgnatzuZGmWyugJuy2dqsMnF5gnqjRqFQ4Pz582xsbtLT3UMqnaPRikk4SYJIQJRlvHYLMQoxTBPDMpmfncU0bfL5AvPzC4ztHsOrr+HKFfJ8hNnZOWb7LQ4eeZRLl6/Rm5Mw4iblSo109w6sdD/i+iby2SvEheyd758d1xCsBix0U6tU8aolZCmk7dURo5hIUgnENwjCBWR1hLZXwzYdJFlDkjqg0TBMKpVNXNclDGMkSScmplLdQpYUBGJazSbEUSfvtKxgqnKHUhWHNGpVdMOk5UOt3OC5557h4MG9BKF3KwBEu9VCkmKiMOwEbopFFuaXOsGzFIUoDFFEhVazSbNRy0e8qAAAIABJREFUQ9Qc5ufneefMmxw6uBPbSRFF0Gh4CLKNqWk0qptEXgNFt5ElkUhcw/MDdKmAJmsoekeRXlncxHEk8tlennvuBVIJG1WLUe0i6a4M3/zW63QP9iHLEYZh4Xt1iH1cBbq6rHddAFL4YZtIlJFVFyFWiIMQzcxiOi6btTaSkcBM5PAqdYKZBbTFdVa/uBc3mepYvf0aUWud8sYKmiTSqjYIm+sYUpsw3KDa7EUJZFZqDdS0iSpZKJkUTd0gM/gQXW+X6BI11Ed/isnxV/nGV76HZWX4+V/+GLpo0FjfpLL6Nj35BifFFZpSi+3Gdq5NXWNqaoJUOoWumgwMdbFzxxiphMv4+GUeeugIrVabmZlZZm7MoesWmUwGTVPR1BaRENEOPaIgQDMNLMuA2ENEo1RaJQxbqKqGoigoso4o6hiGRD6fxbJ0bMtk/NIEe3ZtI5FOcfHSFfoHt+N7kHTSLC3OM3XtGraVYHF6goRtc+rEWzx2+DALy8v4XgtNU7FdBzeRJvA9vFaDN06cpK9vFEN3aDQaTF2ZIpszWV9fI45jdMPmqaee4bGPPIRmJkikk7RaLaIopu01MDWdZqtMX98Q16/P0Gg26OvrZXFxieXlJQaHupGUmKtXp+nu7mVifJLdu7dx+NDD7D+5QRiGvP2wg6IZBDEIQohtu4iihCSrCHGM12yzvLJG/9AQhUKOUmkNQ5KwUzYDAwPIUky1soa34ROlZGabN/jV3l/9fgrCbSf3tyQttZf4g8t/wL+9+m/p1rv5TO6z9FSKsBzRF3dTOb/Kr3z0F9FXRPraOR7JHeGAuo/t3jYK7Sy9Ui8DziCRKLLoL3PBu8TZ4BJrWoOrXSVO1yeoDkV8yuzm+We/gqomaSGRSCQ6aejuUuCjuGMJTakpkkry/eDy9l7dDJj0ALrU7RZquNPiejuYvJne8F5g+qY8qCJ/L3B+X+vpPSIbfyB190cIXP8x5e4643t8d+veDyzoHwm4fggL5wfW/wNYXL9/uT8ccP0wgPP+lXy49D8/Bq7/ROVWdLR3eej3WqR38PjvCuv9oeq6rZwP+8oJzj8FjRJ4DeL6BnG9RFheo7Y8jSAKhIl+tOwwnhcRCQGpbIogFoj8FtPT15mbuUEmk6Jeq9FqNbFtB1FUaFU2ME2deqOJoih89ImPcXHiMsmETk93nnarQSyZZDJJFE2j7bUxLQPXSRJHEY2Gh6opeK0mtmNz+swpunt72NrcxLJ1fC9E11XWVtdotzwa1S38ls/VyQn6eosMDPTj+QGKKuO3Qy5dOAdhiCJK1KpbTF+bprS2SKm0yuz1G/T19LGyusrjjz7M9556ltHhQXw/xA1LzDddpNDg2FvP8aklAWFhA/WRMRzXJSACJCTVZGTbCPVaBU1TWV1d5cbkVer1GolsDkU3AYlEMkm+txdRUbFdlyBsMzk+jawJmLZFIl1AEELWVzbw2xVajTbpTJ7o3WisgdcEv40kibTrVRAk2kGE5aYIIpFmGGBZBqmkTSLlkMsXMCyTOPCRhJhiIYuiawiigiR3aGgrq4u4boZCsUAQeCQzBTRNxm/XqDVruHaatbUNDFMjIkaVRULPY3OjjCgqCKKMrEpIsoDv+5hWgqbXQBYlkq6LJCmIusnmWpnnn3qaYiFDMpMi9AW2SiVcV0MUbQzdRFEEpKUtohdPIPzevyD41Z+kUl2m0awi6hZScwkz0UWtHXF94g3SqSIr65eQZZGGv0VhYC+Xjn2DkbGHUBSVyaPfQH3zj5FVm7lwlJPjywyO7ETTNOaWFnGSLtlMhnQ2xfZtu5idXUBTVdKpJNenZ9i+bSfPPPUigiAyMNTP9r27WN9Y5+D+MRxLYXJ8GkGAnv5usl1pNN1BU3U2NkrkunJ09/TT09vHq68cZe/hA1ybnCSbTrFVLqMJIrqdYO+B/cQECLHIC089Q+htku/u4erkBLIgslkqIysil8enSKeSrG2UOHv6LSpbm4xu20FXPkGwOU202EdfT5Hw8BH+/ut/TXljmXfeOsXokEsyl6Jn+BHURAFBlpC/8h2i3SN30oh6FzsHC100GxUUJSZVGO7QpAQZUbVAvAaCgKXsRZYMRFkjFBQQRFRdxw8DZCFGV12CaAOZNH7YwLAMtja2iMKQzMc3sI7MollNFL9G0EpSr1fxvSaSDEq+hj48ibVvkYQVYMchotKNEMUQweTEJJqmokgKQbCFIkjYjompm9QqNV575SiJhIubcoklDc1QwI8ZGhzASNg0qi0QJDTDZmN5CUVX0HQVEYF2y6dWLhFKa5QrFYSGhKYJPPf8Ubz6FovLM5w49Q7D20f45E98AlnWqGyuk3M0GtXr7Brpw1SayEKAQICqdBTqTk5XHc3KEmsWVyeW6SoUQJQR4hph4KNoGi0UEq6LSIgoycShh332Ou1/+RnGV88Qt9qUNutoQZPlmbexMiP45SpqMk22a5hE1w5qdZ3+kT3Y+U4qMSFUeOnZ4xhKxF/+r3/NZz/5CMKTx5HXKlxwY2z3IP/df/9vGB3Zx6GPPkyt2uCvv/ZVfuM3FHr6Qt54LUTKixTlFH1Doxw4tBfHcfGDiM3SKqmubtKZFK6bpOX5FHt6qbdaHDq8j6HhATLpBJIE6XwR348xdQff85GiNuXKJpmufl55/imWFhc5d+4Cew8dpu218LwGpqnRrFfY3KySzaQxDIl0tsjc/DyaLJPK5djaWOa1l46yY8cATsqh2F3AsZJoto7jpEgkUuR6s+RSCarVBrlcFxulNRZmF7AdG1FSySYdwjBANXQs16aruwCxQhS06Sr2Eocx3YUs+UIKIY5QVYW4ukigW0xduMJbb55hYWGRocF+ShtVao0mXVmHpfU1Usk0PcVevJZHd08/f/O1r1HoyiPEEl/56lf5tXYfUejzpyun2LZtO/X6FlvVOqmETbNRR1Jk/HYbzTB4+eWXmZudZWhwhHwui2h00rtZroVuZtAMlZnpazy07VGeL71A2a/w8ezHuemMdtNHM37XttjJO3nz8vv94NpRmydXnuSLZ7+ILul8vuvzjFqjqKhMXJxAiFv09g3jOgaiopPKFHC7CmiqRqNRwXZ1Ek6ef/jbb/PwrgNkMSj6eQ7ZhxlU+yGImWpMUx5p0HAajLsbRDvSvD7/MsrJEmdefx0xFih09SPSYnZ6BtdyEAQJWVGJwhCJkPhdn7+bqtDtcq88qXf389Y57+pqNyPW3n7Pu06ut+oQ33WtEDsD+J6ud49G3P6e/QGYdO8B8u9Peb69bz9MCsx7W+hv8wsV4vdRYe9V5w8EhO9JDrjHpsS7k3FzXQt3KNXvbQjcG5zdrjjf2a+bvqmCIL77/y9637X3nv0gSnt8x0e4tU4FBDG+7bd3szO3961D5Y8RuNMXXbjj8CZLQLhV0J33Pkgopweao9v7fTddWpQ+lOX2x8D1n6jcnRD5nnL/zboPJz9EOf74ywAo2z8GiR4W1gJOvv0OkZkm1TOCmcqzUa6iqCogIIsSkhjzne98h9XVZZZXFhnbuZepyUlUWSL025w/e4pM0iHyPfq6s6iiiOcHfPqnPkchWyCVyeEk0th2AtuxmJ+fp9jdQ6vVRhBA03QWFxe5em2G3t4ixD69fUWCVoiEQHWrzMbaGl6rhhhHWIbBxQvnGJ+4zO49uxkZGUXRdbr7hwgFFb9Zo9WsY5omC/MLIITUqlscOrAfy+xEjpy62vED7e7tpbdvkG8/+V3mVxbYNTqA4W8QpAb4nd/7U/zvvoK4XsbfM8L1qzOkEkkiPyJq1mg1m0iSygsvHGX37v28/OLLHDy0n8rWOposIsQRzXqd0PPZKm1x/NgxdFWjt2+QGChXamTSKSrVDVKJPKIsor7rmxVFEUIcEPktCH2Wl5coFPp49ehxlpZWKRaKRL6Plj9GKE0htAdot9r8P//3lzny0BGq1Squ61KtVIE2mqYwOTGFLCkUCwWaTR8QabWbaKpGFMaoqkbCsZEFgfLWJtVyhfJWm8WFJdLpFKlMitWVTbY26kTUqVQarK6s09VVQBIlLNNhZXWFhOMQhCGZlEu50qFvhyGEUQ3HsdAUBz/wqVQ3oVpDfOM88h/9LsLPfgJJsVHVCFHQqFXrKEGTrWoNQbexU12IVgbLtpCI6enqJW5tcPqFv2FtZgpp8SXc638P2cM0rEG6uvtIpVIUu4s888wzFPJdFItFrly5giiCgIiqiHheneefe5EDBw6wsrpKT1+RPXv34vsBrXYNKQxx3ATlRpXBHfsRwxaSX8dMFbly+WKH4jhzg9L6OmHk8cqrL/HZz3yGzfUlBgcHOXvuAvsOPIRqKCwtziMBXrOFZdmMjIwyPn6Jrp4hEq5FeXODuZkZypUaB/btpVrdYtvoMLbrIKsaggCR38BlnSffDNiQRU5tLhH6MqMjOykW0mSSOjdmOmCva2A3kWaifPNZot2jdwHXJUAgmuuiVa9iGAa+B7qZQEtk0awk7dY7EIVE/hCCJBNLnXyT66srmLqOJAgQh9TqDQzThHf90RHFzrV945jdFeJrDlJfC/lgFW2ghGF5iL0rJD+9hjy0StiOkJFJfUREKnqI6xW8msrC3A1OvXmKgZECrpMkCDw0xeDsuXPku4topsXQ9lEM3QBi4tBDN3RUE6xEghgLVYGttRK6WEUU63zv209y8sTrDPVLTF48i6PVMZI+hipCtUEcbtFfNCgmY7JuyKFdRUypzJvHX2R95RrdORWNVWJ/HV1qIcZl4rBJHLXxPQ+v7SEqDqqZoxmAamWxnDxeHKObLkQxhukQR9CqbqJIAqurHQuydPYKjaSF8Es/C2qBVFc3htuFnSrSjtMk8sO89NxTjD3yKVrNmPMXLoEo89Q/fJNCNsPGyhbPPnkUPwixLJXPfPpnqVTXSZyfJgoi1I8+zla5whd+8acZHt1JX18e01b5yJHHSblX8TyfmSDNkrHC/Pl5omCLlJPHUFVEoU4yk8M0DM6dPsXm1haOY1Gr1RgcGmTu+jWef/Zp9ozthCggimOq1Tq6oXH27Yv09vchSaBrItlcgWtXr7J39xiXLkyQsC3isI0sd5TH7373exiGThhEZDMJFNXglaPH2btvF0HQZueOvTz1zHdImhaaoSJLEvVyA0MXMR0VWU1QWi/R19/PxYsXkSSFfFeK2laALIPuuqyXNrgycRlF6FB5LctAlkQUzehQ0qMQr+3RaFbArxOJCk8++QLFQo5HHj3MyLZBdMPFMh02NzboHxjg9Km3uDI+wdjYblzX5ctf+TKGodPT3Y3tmDx05CEOna4gChLtX3+Eubk5pqdn2LNvL3EYoqoqMRJR6NFut9m5cyf5fJ5UKsnayjKqZhCFASffOkEqmUVWBEpra2wb3UHVrzPVmKLklXg0/egd//e/H312rb3Gr539Nf5k8k94c/NNPpn9JAcSB1BEBYA4hK//zd9imwbVShNNEZmenmZ9dQ1TgVdeeYlcvoBmONS21jl4YB+e3yIMQ9KpNJcuX2FmYpYndh9hSOhllziC73tM+3Oc9i+yYla52r1OabTNO63znFh6lRenn8G42OTM8dc4f+4iehTylPccb9cmOJDYd9++3G2NvUnJvd0Se/P4fdbZD9Kt7rLAcp/n7pYHsQDfD5ze64l/LAvpvYHrB1Bo7/PMPyZwfZ9B837Ffb823MfC+t5cfVClP5gF9n1Nujth7e1r7wPaL4p3b2bcNSc/KuD6AVbn29NcPYj8GLj+E5WbL8cPnMa7Xor3ytP6Qf4L9yvnw0i4dpU4ChDdAu1qjcUbUwhCzLZde/EigRiRzfV1ZE3Htl02S2s06luMj0/zuc99jnK5zO49Y2i6Rl9/P0EI7WaTkaF+KtUKyWwOJ5FgeHQbnu+zsrREOp/j+uwNensKgMiVqSkymSxrqyukUp1UIq7r0t3TgyQKyLJMvVbH83wkSaJSqWJbFltbm2xtlTl96m18z2NoeIh0toCbynBlahKv1aJW3mJzY5VarUyr1UIURFZWFxEIaLc9rk/PYDsmrmMhywq5XJooikklU9Qqq2zftgu9tcaVZoJUYYTgyWcxKm2Eg2Ok0ml8P2L+xjzPPPcsu3btAiCdTmPZBttGhpEUgVwmRRRFVKp1EqkU9foGbsLBTTj09XWjqSq246CqKpqqIIgxW1tt/vbvvsHB/WN4XkeBmZtbZPbGHL29/aSzXVRrVfK5Itu3byPw25x48xSp4hblcgU93omuWRw6dIhKpcSZ02dRVIXe3l4mxieQRZ2BviEgolypEkci3/7Od9i2fRTTMBAFkQsXLiGKAo1GhWTCwbYc1kubiJJANp9jvVTinXfeIZUyUcSYZDJNNpNlc2ODMPSx7ST1WpWZ6WuksxkUCYrdeSJBRNM1iEW8tockgSxJ+EEb4/XzCF/4NDcOdSMSEYk6ceBRrdbo7+tHs1JYCYd2u0FXvpdrExdo1MtEgUCMguW6SETsVBeRFo4xUevBl3KAwIkTbzI2tpfZ2Xkcy8S2ba5dn2ZsbAxdM4kjmLwyyfbtI+zZuw/bcdnc3CKO2rz5xlsIccxgX5EwCpBVA1mRUUSZicuTGHqSixfG2btvB4uLi6RSGQYGBjEMnXbLo9VuoWka2a4uCoUiQavJxtYG3V058vk8pu3QbDZ5/vnnUVSVarmC65jk8l3MLy5TKVdIJWzchIsoihR7BkimsxiaQTJXxKhcpP3Eb/Kn//BtPv74p5ibXcZNGGRzaSYunyOf1ihkXVLdO4lVB+0bT8PY6J30tN4l4jimcUkjbNZoNkt4jSpIMpreyffabr5NFAaYzsOomvbu+thCN1R830ORJVqtJpqmIqAgq51d4DASkPeN4/a3iF7vJlgXaU0pCNMZoiBCHmwiKzLtd0xaJ03k5QStGQHhRhIhESAfqSDWPTbnFcbGxhDlCF1zkcSYWq1CPt+D8e4cyoJEFHVyvMZCTBiJGEYKCYm4XaFVW8BvLhHWV1CCDXq6bPbu7EERmtiuiq5FhK0QPBn8AEVW0MQQQVZQNRVFkRBFGOzO0dedR5M70VDDUAZJJogkREkHUUNUbFQzgSC5tCIb3XTxfA83mUZWY2QEUA0aXoSkqMStVeqNGqZssH7xKhlPpP47X+DoyXd45Y2LFLsSOE6KVjskkcuA6OFtLSC7PbQ36/QVs2i6xv59j9Bs+yBK/M///j+wsb5FuVLia3/9n/jMZz+O/OZZNM3g+WaL3/+9f83HP/sYQ0O7WJ6foavYz6WLE5jaRWIiVqQiU+F1dhXGuH79KpNTVxAlAUVVEQQRQ1VwEw5d+TxhFKIoMlEU4rpp9u/fR6WyRRD6HauyqiOIEWsrJSq1Cr093bTqVc6cOsvQ0CCarnQiBHelkVUJTTOIYo99+/fRbIQ8/9yrdPcW0DQVr9VEECUymSxf/vLXqTVqjO0eJZXJUWsEeGGD6elrvHXiDbZtG2RpfplcLk0y4dJqtrhx4waGpmJZKobtcu6dcxw4cJCZ6zMMDAwRRZ1Nj1rDY3V1BcexmZtdJJPNEFRXefbVE3zhP/sFbMfAth2aTZ+v/91/4vDBQ5w5c4aR7dvpKWQACdu20U2DvXv3sHvXbordBeJIQNUVtr+6RLvt8dyAx9bmJrlMmlQ2g66qAJ10Y4pIvd7AtGyeevppFubnGBoYRFF1/HaLWmWTdLqLWAjJJFOoqkKvOcCV+iRX6ldYai3d8ne9nz4RxzEXqhf4lbd/hb+49hc4ssPHMh/j8fTjJJXkHfeKAgx09+LaGtlsF8W+ATK5Lvr7+lhbXmDHrl2k0xla9TqiCHEskEynEUMFSZZJJA1yuSSVWgNNV2nUWvTZQ+xzd9PXyOJICSINZlo3uMQVzkfjTJZnmO8vs9bdZKNY5u3gDF+d+zoX6xf4rdHfvtWHO1Sj20Dr/XSr++VJ7Xxxz8NOXXc/E7//GtxJxbwfFfhuuT9N9v1W41t1fkBu3R+d3OVjezfYuo98aPD6oBbX9wVR+gHrvg9wvTXGH4pWfO82dNbIna2/V523zsQHjQL8fhB5J3viHu34EHLrN/QBAapE8cFT4cCPges/WbkjEfVt1v3b5Q5Sw92UlQdYYLdbdW+Wc7fcvdt4u6ixhL91DcHzCCSV8beO44d1Bka2Ixku7UaDlOuysbFFrivPOyfPsLa8RrPZJgxjDh85wvC2bZw5cQJb1zE1nWPHj5Jw0kxemSCTL/Diy2+QL/SSTiUQibixMEOx2EU+m6XdbtP2AoaGRpBUjUQixez8NJWtBumkDWJEHMZEEZTWthAFCLyQ0PNYXF7hxvUZ5mfnUBWJfQ8dpNgzRCKRJvYCqtUmURQz1NvFwvwN0ukuXEdHFBqMbtvBwsIye/bu4drVG6yXVvEDj4c/8jCiKPHqK0fZtXOUPbt3Uq62cKjjSC0Kh3+Cxl9/C7MVoxzcjoCMKGvoukL/tm0dfy0i0pk0YdggFkLGJyZxrAxf//rf89hHHyeKY2TZoFYNiGKwHA0/iBDCNrIiE0UCqmIgqyIJN0FX0kGIA6rlBoWCw9pmGc1I0ajWOPP2ODvGduLVyrSjFiOj29DceRRVwTQeYau2ycbGCl25LONXrpO0LSzbpVjo4dix13AcizfeeJ3x8atMz0zzy//FL6EqMoHv0WzV6SrkUawUmm5Tb3hoioKkyfT19+P7Eb4fs32kQF9vAVl3kQwdr+nhtVv4cYBpGjhuirPnLzG8cwdLU2/TLq+guWl8v40i2XzrW99m99gONrdWSccQnxxH/PPfQskPYxIh2zkUSaK11aThBcSChCDbJJMZ6hvrhM01CoVucpbM3PhbuLpMdPzP2Vya5lIpRbkaUq01uHBpnE9/5hPEUUy9VsN2XRJpFy9o4Og6ywvLvPzSC4yMDFFaW0fXDI4fP0o+m8NybPYf2M/K+hqFYh+RrBI02siaQRTHRFGbwKszc2OWocEivhDi1dvUvJC212R5cYk9Y3uYGL9EsStPHIW8+PJrNKsVZudnyeW7AIlKZQPLsti7/wCi7NEoN0nlc4xfuEAilWVh+QZDwzt46vkXyCZc1pYWmbo2jWlIGHGZzdlzfOwLf8Czzx/FSij81M/8BK4j8hOf/E1iaYaUqbBZbpLM9CEfe5s4YSOY+nvvit5FQq9B7bxPTICqmAhxSNMPsRMp4kii1TqDIMVoyl6iWCBCQpYdIqGNpmYI45AICUkxEBWNRr2JJIA2vIq6Y5b2i13IcSdokyjKLM4vEW9aRNdNWtcFVN9AEmUQ5I5VKJaI12yiTQX10U0SrojmB9jaAK1WHUkS0U0dr93Aa3lUKms0ak2chIGiiIixTKylUII1SnOnKa9c5uWjF+grptEsjyAU0E0TQVKQtSQhEpJqoSlpZMFFMlIIioNiZmiHOpJuI2o2sp4CVUezHdqRjGGnCEWFEAVRNpBMhyBSiVWXQDTxQh09kUOSHWRFxVZigpZPIKooQkzktfAadfRQQpY0nDfG0Q7s5+rPPkxbTjA8NMLBI9uIlQTpRI7pq9eR44h2LaJSV7l+ZZy1pSXePHOMw0cepVoJefgjH2FoZIA/+MM/RNM1zp08x9lzZ/jMz/wUhcl55hcWOWnIzM7e4NOPPcroaA84CURR5Vf/2S/xX/7ufjTd5d9M/x3XvRny1RQJzWfX/keRzQBLTTB5+Qwp1yaRzOJ7IapjYyZSyIrOsWOvMDw6gmpoKLqKoTlslTdIZvL0DvZw9KWjZNJ5rs7MsraywM49+5EiDzudQ5QUGk0PQZS5euUGK4slLl48x5Ej++np7kVXFRJZF4lOiqS+/gKf/NQnmZ6awEpksByTxqaPaeps3z6IY7q8dfo8QiCh62DbCcyEhaGbSAAiGLrNGyeOsmvnXv7yr75KVy6Bm+vm7Knj5DIp0qkEpY1VkoqClbHZf/BRAgRMwyAm5rXXXmdlbR5R0ti3by9hUOF7332Rjzz6BJapsL60zquvHadY6CMMQ7a2SiSTSfa+tQHA6QM6O/fswjJNBEQkufM7abbqhI0Gvtcg9AN2bt9FJt+NqlssLa2RSiTQTYeXXn6Jgd4RKlslXMdB0RxGrRGW2ku8tvEak7VJJmoTPJJ6hDiOb6XsqPgVvnT+S/zZ1T/jqwtfpd/o5+e6fo5dzi4c2XlX2bj5lhCJohg/9FhamiWXzeMmkxx7/QStWoWnXniBYlcG27IIo5BYENhcWyaTy+P7bYIgYHV1mWw6RbvdwE0X0YWY6uYm9WYdWYiwNZ24GtEtD9Av5Hkie5j8RhJR1GioTS62x7nQGGdanKemNGmX27T+z7OMHXgEyTKI43rHfSUW8GUFMQpv6UK361gPlDbmA4DrLZ3rXQqxLHeYUbdfE28C2puG2AcEDbf0xxhEQXyPoizeRtMleq/y2yt5wPI/THvek3d79m7OtLuZuQ9kt7vH2L+vnNsp2XeN3c06OnptxHuE2vePjSDA3XTde37e18i7yxHed+2+z97V1zs2R+7x3O0A8w7qcPSebi+KMXEcda7RcZm55YIo3Dl4d6QLujli7w5wHL1rHX33/BYV+rYJEASxc99NynEs3Alab83C7RP24dbRj4HrP1G514vhg6b2gwDm95PvRzm5X7mBKBAuXUKoVTg/foXKVonde3aDpCCpLqqqsFEqYbsO3/vuszTqDarNJqVKhSgMsWwb27YZGB7m1KmT1Gpldu3ejuPYFIp5Gq0mn/jkJ9FUGcvqpFBIZ/Iossrc3ALZbJ5avYppGcRxROSFpNMOrpNieX2ZRr2OZdoEno/veVy7do16rU6r2dlJtyyTaq3KI488Qu/gMGvrmzz//IuM7drBVnmLKPK5cO4s3T1dnD13Htu22dzYoNkMqNeaHT+WyKMrn6VcrhB4AadPn2F023aGR0a4MTtHb98QAhGm4PG1Z95g29Q6VgvC/buIBQE76Vj/AAAgAElEQVRBiCD0UEQJAg/LNqg3m1iGjiAqFAr9zM3O8IlPPEEQ+SiKRLPZ4tix4+zZM4aiCAR+gKooxIKIKMT4vs/MzCwvv/QqPT15bNfl2swsceRT7OnHNGyOvXaUhG1T7CmyvrKKk8nQrG0hmjOIInj1QTLpJAnHJQpEuopFpq5O4gUBqUyaTC5HOpOmq7vA2K4DTE1eJZPJ8zdf+zq7dm/HsixAQFdliEPCMGCrXGZ5aYVkIoWmaLzw/AsMDPQR+AGCLKOoKoEX8MILz3Pg4D78Vki5XGZ9fYWhwV7SmTxWIs96qYKm6qiqxPDwCLpu49gJgvNTiAfH2PrITsxknuXr4yTzXUiCz/zcDH2DvR0wI4lMTU3hmCoLy2sEsYzjJNi48DTRW/+OSuhQMfdRLBaZm1/Csh2y2Qy1WpUgDMnnu9A0nYgY0zCJghg/jNi+YzuqrGAZJu+cO8dDDx1mfX2DRCJJ2/MI/IhEMoUsCDzz3e9hmAbpVBrX6QRxefSxx1le3GRgaITScomV9RJduQzDI8OcOXMaU7cwTQPTNqnVqqytrHD48CHW1teJY4F0Nk3CcdhYXyGRTjI5PsngyDAbq2sMDPTTbnqcP3+a//wLv8TS4gKtZgPTtDoRXssrOAII5mH+8u+/gee1GR4a5cbMJH/8x3/Gpz5xqBMlOBbJFAdQT09BwobbgCvFeeIwwJvOYLkZIhQUTSdAwrUdJDGg3ngbARFdP0C77aGoKq1aBUWmE3xJ9NGteRRlizBcwrDqKKk1xEeuE7xSQPZ0wjBEEASiuMMwWV5axrFNDFNHlESCIEBVNYLAJwojRAGoKQTLMupYHeVQlchYQdUaKMkyQWsLISoiKTqWZWHZadp+gKxoCLLOq09/k4zbpl5ZgVjh4sQy/X0DOE4SJBNRNpE0B0HppPVB1hFkh3bYSV9k2elOjlUjQb3RxrASxCgIooog6viB2LGkBhBGMm4iC2KKODIQJBfHLaAbBrKkEwegyRErpTKWk0GRRJrVEoYkI52/in5ljg2g8q++gP75TxMKMZvrW3zz77/Bw489jO0miQIf0zC4MnGNL/7LL/HWWyf5zd/8V6iaz9iuR1lf22Cj4vF/ffn/4L/+r36XqN3CD6GyUeIv/t2fU2vUEY6fQtcNWkcO8NOf/zy5QhfIEm4qhybL/OLP/wKe9zq6bvFXC+OU/QqPFx+lXKnT8CCdTqLLBrl8FxsbmyDLXJu6TDrpUNlYJaHLDA5vo1wuEwYRpu6wubGOZZocfe0N+vqKXL54Edsy2LFzlJGhbSyvrlDoSiGKnWBfui7jey1OnTlLsaeH3WNjvHnqJDtGBnjttVcZGh7GNhNUazUMw0QQRHRVwLATNJsB6XQCO2GgahqtVkBps8zFCxfYs3cH9YZHOunyzNPPMjg0gGFpJBJphoYGMHSXA/v20NuTp+35dGWKSJLOP3zrKRq1kJW1JfKFLI2ax/r6CpubZdKpLN3FXo48dABZ1DAtB8t1qFYqdBUKHT/pZ55j/6GDpNNpdF3BMA3m5udpH+ln9kgOpZDENAyIY65MTiJJIoauoygqmtpJMfXCS0fJF3o4e/Ztmo0G77x9hmTCpbunyOjoKC+//AqDAz34gYfhppBEgWFzGFd2eXH9RbaCLeYaczyeeZz51jxfOvcl/mjqj4iJ2ePs4bO5zzJoDiKL8v00Coihur6OKoooqoqsamQSNsQRSyur9A7txEpkaHgBtp1AESKQZDzPo9Fu4zg29doWgdfCtFwa9SrzC/MEYUihd4CJySmGd+xCUyQ8D6IQwkaDhNjFTncH5pyDeF3ic0OfYSK4gqsnGJ7YztSl0+zduYtITSEpUkftFsJ7BjR6UP3pw7DZ7mXhfBDq8AfJ3T6tH6we/mCV/FBU47uNjx+yvvuNj3CPk3tThe8fqflHSaH+Qct6kOfuvue9dXR7H+7y0UZ8sLH7PnXdj9r9YbGIIP4YuP5/GrgKgnArEt1NisitHZcf4AX6IHSP77fQ7vfDiAWZ4MpRass3mF9aZmjbNiTNpOXHyIpOFIad1CSaxtLiGltbJYI4IpUvMjw0yODAEHNz81iOgyzFZDMOrx9/na58jrXSFt09vcRiTDqbRlFkLMtG0S1iRMKo49hvGDpR6OO3mxAJTF2dwE1ksF0TXTZZXVnBMi0a9TrFYg/Hjh2jVtuk3W6SzWQZGhlm1+4xmgHU602ymRTzC7NYhkytvEGr3SSVTqJbJq6bZHRkO5OTE2wbHWVufpY9e0bJ5XIkk2lazSZ9ff1ousXrb5yg5QVsbVUIBZl0XGLd10ieXyXlC4SH9+O1G8iExFHAc08/Sy6bQVV1NNMi9AIEQWJlZYNnnvkO+/btRdVkavUqXttjbGw3nucRRTGqouCHIYEP5fIGtm2TTqUZHhrCSTrEyDiui6YbmIZF4LXJ5rPUy2WS2QyvvfI6/aPbePut8/SMNInjGMkbRpVFfD+gVm2h6grFnj5yuRzfe+pJDhzY14kWbJlIks+OnUOIUsiBg/sIg7ATIda02FhfwbZMWu0WCAJJJ4UsS8RxSBQF5PJFNMsGIkREJEWhu7uIbRgsL69imza5XIpWs8JaJSKWXRRRRDdMYtqIoogs6dTq68jHziL83j8jMTKMF0msL0xyYfIKxXyOhtciikN0TUdUJHRdpVHdQFGLnDv+Mubp/xGnOU0rdYSqXCSTzSJIEulMDtuymJub4eChw4xfvky9XuPy+cvUalXyXUVef+0Ee/fvI5lMMj8/jyzLDA4NYdsW77xzjsMHDzIxfoULFy7Q3d3DsVdeJp/LYhkGCddGEATSuRyra+usl0oUerM0KmtsVleJIwUkgdWlBZKJLI1GDd3U6O3rpVlrsF5aY//+g0xdvYbt2KiqTKNRw02kePP4m+w9uJ8rly+gqypBEPP440e4enWW0dFtnDx9iiOHD3L16nX6+vpwNxeRToQ89N/+Nr/+G79FMtXFymqJ3/7d32Z+ZolkAnIpk0ajQvpiifAzjyFsVjpBWgQB31wibksYzR1IZhpR0dFNC8MwadaqtNsVongKIgFFP4AkS0giqEpEvdbC3HMZ+YlJxOEKwvAW8vY64kgZobdGPJ5CXHaJAd8PgBhZljF0g0TCwTB1oihGFITOflIEIKAoEnEYdJgXdWhPGnhzOnoOpKIH+SbaQ1WizAKV9lUcRSD2KvzVX32PQ4fGCLwKSbmMJNSw3Sy63Uv/UD9uNkuAhOH2EQgGdrKIaqYRBBMUGyXhodgKmtpLJGpEgoKiJ7CcLIJsEYsqspZA0RKYbpamD6abQzESKHoCUbW4dn2OyaszDIyMEsUxXiPg1ZePUuxOkUxlQRCpV8uoBwbRXjhLnHC48ms/h/Uzn0JMpYiCjjtDrVzi8ccf4+LlKfLFHLIgIAqwtrJFrdZkeXmJ5dVZfvKnf5Jjr77NhQsXGR4aZW76Gv/7//Yf+OV//i8IkXj96LP85E99mn/9e7/Px2SDlZVVvr12nc///M/z61/6LR5+5DHWFhcI6nVEDdKJObxWnW+W52jQYKe8HcPKYTkapfUKntfk2vQCfhTS1d1NpqevkxopFolEGVWRmL52nUsXrzA/u8TQUD+h77F7924QIqqbWyRci1TGYWF+jb7eHlZXV7g6dZVkwiUKfRKuw+DwEPV6nWa7heu62JZCrquIJKp876mnyefyVGs1rl+/zo4dg2xtbJHJFjh16hjd3QUiQcK0XHr7exkd2Y6bsNgq1ymXSjz60UfwohBZhigU2dwsceL4aTyvTn9PD6Ki0WxvYdoaTiJBLp/l8MMfQdYULMMlkTAobZS5fGkKy3KYnZ6kv7+P14+/TndvPyMjA0QxrKzMs3fPfs6eP4uiiqytrbO+scHOnbuoaQI3ahucO3eedDKNquv09XazsbHB+noJx3Ko1Rt4fsyNG/M4CZeDB8ZoNRvEccTAwACKKlKrlTl86CCCEHViIPT1c1PpSKtpttnbmGnM8ErpFb6+8HX+443/iCEZfDb3WQ4nDpPTch3r3j11iM5HFEVKpRJ+pYokwtLqKtliEb9RRVZktm/fyTunTnL29Em2D/bSrm2RSKdRdZNypYqqd8axWqniuClURQJRwrAsisUCXq2EjM+N6Ru4CYcv/+Xfkkxk0TSR3r5BXnn5FebmFnj8ow/hujZvN87hV33+eeJ3+IXPPcF3n/w2u3cfQVFiYjFCjGNiHtz/7n0pbG4fA+6tRz0YFfXDW0PjOEZ6X1ChD9IHf7RGjwcr4IdrwS2L610U5NvL+X/Ze+8gya7rzPP3vEnvsyrLu672HqYBEAAJgl5DghTJFVcaitJuSJQUip2YXWl3djQxMTGakEaalZuRRIkaSRRHdCJI0MCSABpAAw2gG2hvqrqrurzJrPTm+f0jG0B3o9EwoibECJ6IjMjK99699+WtenXO+b7zHeHaGs7gijZEbwHxfCv2ZoJS/1R1xDe2K+77hirHb3gEeE2t+s2YnFeiw9cmF97s9RPElR//wPXa4vvXOOKvnfOjNN/3kaS3xzEHUBwB+9g3cZsV5HiSnr4xLEdANaIIQYvF+RlqGxWW5lcwIiECr8Ot+/ezeXwLsqoyf2mOs6fOsLpwCU0OqNfK5POD5LIZPGRURcOMhBDELh3B9wScwEFVVUJhE1ESEUW1+3D2fWTDpFItoSoGlY0irhPguR4L8/McPfIiG+UqlfIGqWScSMgkk83QaneQFZUzZ6d55sknGejL0VvoZXVpDhGPcq2KpocZnRgjHotw4vgxCr1Zcrkc6XScarXJerFMPJGgVClSKm4wMDiCFgqxZXKUeCxCJpMhsOr0RWVmXyhRcMHbuR1N9BGCAFHRyfQWCAKIhGOcO3uBRDyG5zlEo2Gy6Qz5XA+WbWEYJrIsI0oCuqEjCgqe7yBrGq1Gh/v/4Vts3ryZcnkdVZNQFY0Hvv09wroOkkwiFuf73/sufYODxOIpHnzkYSZHR0mmkxQ3KhRGmwiCSEjcSrlcotNpEYqE6DQ7fOnv/h5ZErn9wC1EQt1kgK4oWLZNp+Ogqibtlk0yEcfzfcLhCOFInHq9hSbLKEK3JuvkiWMYhoxpakTjUfxu/g/bsmk020TCIdZWlgnHo4TCYWRFRQ/HaVWqPPHYo+zcuwNFFrCsANvuoBkC6mqd4NIS2m//n1TWLmLEEwStBlu238Li/CL5/gGioTgXL54j31NgY6NIbaPEie/+BbcG91N1oxTNPQSiSb63h2KpSHGjxOrqOv2FXjzXYWl5lf037SOXy+K221hOBwRwHR/JB8fzMCIhJEND9GFu7hKbNm3i7JnjWFab3bt3Icki8WgERVOxXBtdljh34QJ9g4PomkKhMEi5ukE6kqBvYJBGwyKdzdBp1tkol7CtDslUmqnzM2yZnMSyO7RabSzLojeXp2O5ROJpFEViZWGZsclx+npyIEn0FDKoWpTlxWXiyTSSLCHi4nkS1UaLjL5EXr2TBxsVjr50lI7VJhnfxG//7r/j3rs/QLl8lHgoQaddRXbChE7NQTIGQL1ex10y8RbDSKpOIMrIkoDndGg3NvCFAFWNoKk7sew+NDOCAHi2jZSvErr7NERseD6P+1IC/5SJOJ3An0rTOa4i1cJd56TLdXqVVieKMpIsISAgijIEoKoaICIKIoLYJWvJqo4sqzQaDWprTaRSGHc2RDAbY+WQRSKcIDIuIu+qoAy32PeRNFJmCTG+TGRSwijoiLKOIon4bhwtnCAcy+B4EmY40lVKFwQUJYxmGDhME9BEEgo4roMgCdgdG0UxLtOcu9QtWZHwfQ/NCOG4HrKi0rFsBEkjnUiTy+YQBQFJhE7LYmBkCE2XKG3WsNeLpE6vIj1zBvvdt/JF0eLuj9zG4vI8ETOC50IikSQeNTg/dY7evhFWi0s06/Vur2Uv4MiR5/mDP/wddu+d4EtfepKPffx2+nt7+bVf+AX+j1/7ZXL5HkKpAo898hiK2GJyyyZ27bmVcUHk+PRFdv3cRxkbG+JffOxjiL5PcW6KyYlJRF1idup+DF3ii/NnadNmu7mV86dOkc+ZNBsugeyTTWdJxGPIig5+h8B2WZxfJpntobi6xODgAIlEDF1XOH3qLMl4BEkOsB2foYEhVlaWUFSJnkI/l2ZnqNdabN4+iRkKUyxViMXSVCrLGJrGQH8BWYRsvoAZjeG5AbouMz4xSjqTIpNJsVFcoacnS6VRI59MM3NhhmQqhec5aIbJ4z94nEQiyvSFOQYH+xBEn+888F127tyFJOmcPHUMELj1tgOcPHGKZC5POGTiOh6CKBCNRZDEy30mJR1ZlzENjXyuQK1WY3hkkGJpjZGRAcKGxtz8Mg8/8gP27dsDvsi2HVswQzqGYdI/NIwoiKyvFZm5eJF33Xknru3QsSysToPSeolScYO1lXXicZNWo0M2l6NQyCPJCoqm8eyzz7N921Z830VWBGRZxHMcms0GmZ7CVf/vNVFjPDTOgDFAVIlyd+putkS2EJbDN/QTrnZiRRRZYXV1mWg8SiqdYa1UJJXMIOtdrYbhgX4mN0/Ssi0yPT20GnUcD2LxGM1qlXarw9Fjp8nkB6iVVqk0OiAqyJKMGYngBAFmNIciyoyMDZLrSaPKBm7goOsKY6NjxEIRLNvmtH8W2ZO5o3gLm++8m227dvHAX/4x6VycSCaLF3T7i79jn+uq+OAdILavnfSOpn9dIuGGgdqPc+B69c9Xo6rXjBpcAQa9SeD6o2Ix/jgHrvDOkN+3c+1PAld+vANXuFpk6cp2OG+nbvWt2JUZjyvV8V45dt1xxQBfCAiEAMcXqL14P2LgIabH8D2Rer1OyDSorBeZnrrIuekLyJrC3v03Mza+lakzJ7BFiUwyy9rKIna7zqaxcbSIyfzFWYZHh6nUm/QNDKIaJtNnTpNKJLFtGySBVruJroYgEKjVKsiyhCBLXfVNxyYVSTJ99izZXB7d1Hj52DFOnz2H4/m0W2WGhgYJPLjr/feyuFxk5+7drK+tEjJU+voGaDbb+L7H0tw0rWaFsc2TLK8skolFuXB+ir6BAQb6+njxhSOEwzqxSAhNCyGoIQRFZ31libW1NUaHxylVawwMDvPkE08g6lHSwgb6jkm0E2sIk5sIfAfErpMdMkwESYTAQhVttHAUzZBpdZrE4nEUVUYSJSRRpNN0kBSQJAnPF/G8DoHvYtsuO7Zv5ezZCySSSVQNNMVk8+QOkpkkuqFj2222bp3EcR1arQo7tm8lnc+xvLTMlm1bcIQziKKE4oyj6jqGGUFWQ3SaG4yPbiYaDnP/P3ydWCJFKBJBFBzqdYdYLIbnOJimgaioBK6L12liux6W3cAMh1hbr3HwqefI5fvo6+8llowiSTqVjTUUSeTF514ikUwiiBKLi6tks2k8z4Wg29NS1VT6+gpEzDC+06BcKZLJ9eALMt6ho4gfvQf1jt3Mzp4nFc5Tb7qoagsznmfx0kXi0TC6rvHy8y/hVKtw8guMBUc5tpFm000fAsdiavoC8/MLDI8O4Ts21UaHoZFxIrEwfUP9KFqIVqPJ8vI8RjhGLJ7k9MmXiIQ1mu0mfiCwsLBEo14nnU0hSAJzl1bYtWs34UiE5eVFhscnmV+YxXFaKJJOLpvF7rRpNOvo4Shh08R2O1yavcDQaD8Xps+zafNO1leLHLj9DhYXl6lUKiSSWeyOQ//wALFsnKMvvES9UiebyjJ15hSReIp4PIVsaqiqxsrSOvNziyAEaLpCu2URimQ5/tIhtmzegdGcxVuDic/9Go8++BDpRILh8X5u37uP2GCextoMG6WzaJaLum038QeP4nz8PYgr3f3DUXA7ZTpWi1AohqxIWPUygS8QiaYI/ABB9AkCB03qIubanotI2y4QnEvgHU0jWDKu4yDLKl7g4zhtVMUABHzfRRK67p/rukiSjOe6SJLQVeRW1G4du+OwurrGWnGFVDKLJMkIBLi+g6obRKIRNFUGUUJWZAxZx98Afy6EfcpArKu4y20QXURZB0FA6RFR97RQRizUaAMNi04t1FXzDQICz0GVRBzPwfNtfGEVAQFF7EcS1e7zVFKRRalb1yzIKKKP63VFmzwXBFHF8wMMVSHo+PjDGeT5JfTzc8jL62iVOnqxhP7yBSKH5zE6EtXbttH5pU9zyZBIp9N4rkc+W+DEidM06k1iMZl6q0k6V8AMpenNpdBlFy2kE9ZVduyYpFIukYyn6R8YRjXizJyf57a9KRZXmvznP/pjisvrPPzwAyQyafK9Q9y09wALSZ1/982v8Muf/98puyVS4SzpRA+RvjzzF2eJmgk6Vp5Dzy9yOr9GqV1kW3iC/v4h2o5FtWLT25PEtpuYuornuciaytmTU5w4f57RQhZNjyCrJtXaGrFwjLW1RfoGxtA1FVMLOHnmItt27qHZqKDIAvF0iqXldZ584gm2btnOwYNP0T/Yg66FqJRrHHv5ZbKZFKIq0axXiYZixGIhquUqpdU1Lk6dI53PEonGqVYqhMIpevt7sewmsiyC5yKqGoITML65n5CZQFZkCoVBps5fIJvJEAmLxCNRFM1ElQVOnzqBKqu0W01SyQT1apVLFy7Q0zOA77nYLYtWu82Ro0fYvmM7TqfNqbMzjIyMs74yg25oVEtlIrEkWjjMC888TX8hx6HnX6I/l+KJg8/woeMBk+uwMhbCDOsIkoikRYnGYsTjCTxXoNwo8/DDD7GwcIktkxOIItSqFQq9PcRjMYyQRiCIyEqIUCjC6toSPf39V7VvecUjCMth0mr6VYXgV/0JXn/ua8e6iR3X8WhVGyiCT+DatFpNWm0bUfA59tIJTFPD9T2MUARNN/B9B001kUQfRVRouN0Skc3jA4i+iBI2OXvyFLVKmf7BARrNOvFUL+FwCOQmupFGEAMUGXRVRlINbMdCM2T8wOG4dYaoFmXf+h38ws/+LB/+wAeZW98gsBx0CYx4DOHVPjbdl4eMgIUo+AhdyTZaroNIA8nwEIQoyB0sK8DquJiahCQbCKKHH/j4gYcfeEiSgCBoILiIQgcE9XU+3muI1Gt+2FtFfkVRfDVYfpXB97p2L2+0Y9ef63r+5ZspTL9yH9f9/IYreOtjicLlas7LzMSrEdZrXuIrbZ2E6xfHvoV1XzW3KHZbvVyvP+Wr9ym94Rw/Mrumzc7V9czXtri5anFX27VfyZX10ME1v09XXnaZLfp2GaFityXD27KfBK7/DO0qlbp3WtzwDux6tQNXNtCGbuNu/K50+8bCOsLsQSTBp60lKa1vkEwmKZcrPPjgI+R6evEDkffc+35s22Z+boFUPEz/yDitToV6o0an3SEUy5DqyZGMRpFVhf7hEdZWVxAI6OntIxSOsLyySiwaQ5JlBEFgY2ODkBnCdz2EwMW1HarVCtVymXa7xXOHDiH4Ps1GjcCzEfHZv28fCCI33XaARr1FX6Efz7VYW19EQEWRRabOH6e0vooQ+Gzbtg0fCTyVM6dOoqoSqWSMhYVF+i5TsSzbZXV1lbAhYzUqbN2+jYWFRdLpFIapceL4Me66+04arTZe4BGXyogv12DTGKKkIgKy4OEHHTTdwO54GLqJ63v4XoBphFEUDQGRdrsNPnzta/ezUS4zOjbKRrlMrdoiFIrjOgFf//o3uPcDd6IqMp6tIivw4IMPMzo2iih6eK6N77mcn75AIpMjGo0i+h7zsxcIR2MEnoQq9eIFCVaWFknEwlQ21jDMMEEQsLy8yP6b9tLX14csqywvrWOGTHzPZ2NjgxdeOEzf4BC6rqNoGsX1eRLRXo68cIwtWwaY2DTeVfyUZVqtDo7VwfFcwrEkw4OFLpIugioL6IZBNBoFQUBSNCRZQJQC/MBCCcUxIzFqtVq3VdDjL6L+p19nZn2FwcIoTlAkElOQiKFJIrohUW6uENOymHqT4PF/TVzsYOXuQQun0TQf222g6SYTY5NoioYuC0ydO8/4+DDtZhXfl1lbW6O4XuzWshkGoZBJOp0h1zfA8ePHGR0a4szJ4+zefQutZhPb8iiWlmm2GszNzbJ161ZmZi+xeXITyUSSZCZPvdnkmacOETEjRCJhHKfDwvwckxObcOyATCaPKAUMDg7SajU5f/4ct95yM4HnUFxbYm11mdHhIcLhMPValekLU1TrG4iyxEa5TC7XQ6m4Rm++h0w2g+BLnD9/Dk2RCQKfRDxKoW+AYGYW0zCY69nDwSeeZObCDM8fe5nS4jLf/vYTfOg99zBz6nECd4X02LuIJgbwHzxITbDx7QaV+jRhM4rnSmiaQrNawjRC2F5XNdC2bSRJwhhsIm09hrz/Itg2zsEs4kboquePH4Asq8iyitCFPBB8sEZkhPkmyoqFV2ziFev4G008yUPZcGHDQqzaxGYdUiUJ8WIdcaaGOFtHCkSklgflNmLVRzlZRjxfRZ5rIs91kBZbCL5HMN+GRQFhVkO8FEK8qOKfUHGfURFekpEuOkh+FTW+giguIYrzSPIaorSGJLeQ5CbCooNUlxATvdieg+PZ6LrB4uICx08cp2+wH1cU0QwNq1rFWC4h1xtItQbiiSm0U1PI61WsbJLKe3dyqdAkdXuJ6rBL6+Ofwfrk+xHeu5d1o0E0NoLn2iSTIXp7B3Fdh0TKJJ7QCXwXzej2SdZNjaWFecQgwAhF8VwPBBHLtvn7r3yVO951F4Hg8+477uL/+o3/m7Nnl9DDCn39ef63X/x1/vpv/hJVE/id3/2PvP8DH2JpaZVA8Pj9//Qldm7PkUz4RMN5TMPCtm0cO8S27Tv4dv0hLMliUh6jWS3y0IOPsW37LiRVxzRVXNdFVBSqlQrTZy9w1z3vAc/mz77wRbZu3U4yGWGjWKFWtcjk8szNzeI6Ir19WS5cnCaVGuCZZw4xMbmFdCbBzh07kRWJ/v4BpqamyOf7OXL0JbZu20Q6HUfVIpphL2AAACAASURBVFSrVSRZxPIczFCEaCJOJBomHInSbluYRgjHsyiXixw98hKDg+MEgU0smWF5bolvP/AgnU6Lw4cPs2PHDjLZWJcBIAmAwdzCHC88f4jtO7YTMmNIksahZ47g2B6C4BCOxhBFkY2NIvVKhcG+Pr75jW+Q7+llctMmqpUNnn76EHtuvpXBvh5iERNVEejr6yccMhmb2ExxdZnBkVHe+2AReWqdI3u6KGIslmRlbp5YLMKluUs8fvBJdm3bze0HbmHr5gnWVpdxXIjFYjz66COMbhqg3qiSTKS6+9ZqUSqV6B0Y5HWNNm/kP7zJUQFQJJn11TUESWZxdZ2Xj59k+/adBL5DLpdD1RQMPcrc3AKiKPGdB76Hpohks3lcZL7+5b/B6tQpFArooTBWp0YqmWBi0wS25yIFHpbVoFVfpbS8QC5boN1pcuHCLNFoGDMURpElFEUHX+Csfx61o/H1X72fv/jzP2Pq7Bn+9A//kBdfOs777rmHhZU10j3ZV7SECASQ/QBPlHAFjSBQaPkNVNulcmGBB/7y9zj0nUc5/NA30BotXnjsr3jqgb/jwpkX+PqX/wcxU8dUVSRBRBIDZEHqttwTNCT8N/bJhOt89mb78UowRze4ulFQcaMx3szeSXuef4y9UQB0LUvxBgNcceG1x95+UNnVXLgxsn0jRd0fnV2L8t7g2Bsfus6or1dEvt7v09stObzq83/CwFX4p5HH/tGbbds/Hgt9A/M879X34jsMXN9sr97sQfNGQgE+HoHjoiBy7ODjZC99E0OV6GT3sLK40KVV+QEPPfgQoVAYIxTmrrvvxvc9dC3E0WefYMu+W5ElhakzZzj6/Avs2beX/tE+Xn72WfbecjPIKlajzHppg/HJ7UiSxMryMol4HEEUCC6TS0ulChenzjHYl0NWDMobG8wvLrBp0yZefPYwiirTbNRIZ5Lk8lkaTYcdu/dg+z6rS8ssLS4zuWmMVqsKgkKrVqNZW8fzXELhEL19A6wVN4ibMaYuniaVDNOo1mh2uoq3luWQzfWwUVpDkSU2TUzSsj1ePPIS+2++haeefobxsQn6BwaQFIVY2IDFU6jzGwiJAmJ70+XgegPP6RCKZKhXm0iCgxYykEQNQRC7jnsAzz37LAduvRXXdS9nbgNUTeWpJ55h//6b+cJffIFf/bVfwbKbaLLCDx89yIHb91GtNXnhxSO85713ETJ0XMuhXGsh6wqGqiALArIk8d//9st86tOfRFFkkBQU3+X73/sOd733XvRQmMDxaDbqSIpM4Ht4rs8TTx7iPe99F1/8wt8wMFDgE5/4KXxBxHFdJFHEdTpIYojV1VUEqUM228vGRgldD2EaYax2o6saquiUiyuoepgHvvVt7nrXARKZHO1OB1EUCcdTiPiX+6X6l3sT+t2H50oR8fHDaM/9LZVaHVPRKFeXKBaLTIztxFRkDj3zBNt29oKTYPmBX0WX4Ww5z/BYjnqlQV/fBO2Ox/e+91X27NyPpimIQYBq6iiaRK1S5oUXTzI8PkTEDJPJ5jh7+hQ337wf2/F5/sXnedfttzNz4SLnzp7ljjtvp1brCjP5gcjLL7/M/n03sba+jo9AyOgirafOnkGWJKy2RSwao9no0NfXy/LyEolEnOmLU2zfvou23SAciaKqKgcff4IDt9zKidMnaTeaFAq99BQKXJy5SC6VxQ0gFo9gWW2q1Rp9/YOcO3cOTRKRZIlmzWJldYm+/n7qjQ6FQp6nDj7Nx6JJhEiL/696O3ffeSeyKBHuLfD5T/40opnlQ+/eRk4/weBghj3v+9e0qmUGf/e7nH9fH5mSRezDzW6A+uQoLhair2AHXbq6JIkISDT1v0eMN4im9xEshOiseyiqgiTKeL6H5IN9Vx7XDpDnW8gCsNTCP7aKdqGFm1IItsZwN8cQVQURiXa9TqQk4EYD/LiC57k0xCZBxgQkfM9DbDmYDR1BlpAEsL0OQVhA6g2DIBO4DvbcCs78MiFNwtNTRJL9eL6IIEp4nnM5qy8SuBbiYgecDoIQIOAjYAMOAh0QZLyGh2+JiIksINPqdOmZeD6e59FsV8mkNhAFG+hgJwOkRAzXEXENBWEwhR2MEk08B8EqguATBCKiKDO3IJHJ70dU3seR5x9l+857adRL/PCxh/n4pz5Dq9VieXkBBJ+RoVEsp4URCrOwuE42nWD2/Hn6RyaQBPlVh89xHERZYm5xiU995BP80X/7r/zVX3yFz3/+Z3jkBwd5/3t/iq9942/41Kc+QaHQjxmKMjExycvHDrMwXydsNhgYSmOEe2jX11CVCOfOLBCKOnz6wi/RDlt8OnkfdmudStUjnkkSj+fw/CZWq004Gsf1LFYurZEfGmDl0jQPPvwk/8tn/lcOHXqM3dv2c2lhhrFN44j4zMyssHlyGElRcX0VvA7Njk0kotGo1jAMg3K5gtVxiSYimEYYUfBRFAHL9kEASRJwfB9N1rl44QI9vTnue+QXCfzuHsmy1H3v+0iiwstbD7K0eYGVi0ukpwf4aPNTlErdZK3vuwiCSIBPrdrkF52f5rM/92kQBW594l6SjTy+14V8Op0OoXC3tn227xxfU/4Kq2OzP3eAe49+HNuyUBWV1bV1svkcrtOh3e5w7IPPsKItEtJVEg8Ns699AEmW6HvsvwKwdO+vAQG1RJUf7vsW5coGjudy3yOfIxKOIckCrmNDACura/T393Gw/2EWxqdJxJL0Tg+z9+xt2J0ueykST1zhfQQ89IlvvOrCHnjsHmKVxFXtRAQEAgIWhmc4tfcICALRcpwDj93T1awVwO7YOI7D2toaCAKP7fs2xoRAJBJi68v7GV6cJAgEbMdGErv/R0xDZyNc4tF932J5YYb+gQE++tjnXhXCFejWtSOKBJ7LixM/YLH/OLVancnKu7h55j2IgozjWMiygm11kGQVURD4+ds+yfJDK/yH/n/PxNRuxpMTCKLI+voasUjosuBTH0w6qO+5rC68FGDdb+I6NqoksTw/S7m4jKYKtCyHv53+LUb3R7h4YZkDxkfZkbiXZqtDJGSiaRrlSgWCADvRRnz3DDff+wlsLYb9J+ob+mTinQ7y9u7fqn9KxHtCed05r+yF8nnrVX/N/ZpKsH79MaUtHvLd3Xvy1wScr79+zFdM+WkHMdsd331cwjv9xqVl2q/Yb3jsdWu+st70R2hXItevKDVDN+B6paPMK6rLV1/4+uTBG9lVaw6uDVyvHqeLuN54jndKS77RGl6jUl+DjgZXzCcKb+jvAwS+e8X7t7++V8a+EqG9cr4r9+Stmqqqb/mKnyCu/5Psfwbi2q0Pu76QwhtZEAR4+MhBVxV1beYIo2EbgYCG1EMyHqLT6WCGQizPzTM+NookiqiKjKyqTE9fZGl+hqbj0WoUqRQXGR/L0yiWOfTcM+zfu4+VUhU3CMgluorDgmogShKGZnRpdn7A4sIckiQTCcfJZVKsryzg2B6JWAxZUzh06BC5VJpAhKHRQfK9WVzfZvf+A7RbLS5dvEQ2lyART2J1bEJmmGarwtzMDIFrY1t19t90C8dPnCKX62Vm+jR9g3l68xlkQWRi81YQApLJDNVyhZHxYVLpHMtrG3iOz/6bbmF+YYlCT4GXXz6GF4j09Q3S7HTQv3gcOSEQ5H3EVr5bo6cq+JbDww8/wYtHjjC5ZQRRlHj20AucPzfFyOgosixTKVfQVZ1AaCLLMo1GC98PiMVCRCJhNk0OY4ZDyILBkedfIBYVyfX0IogCu3btRVEUJFHiySeeZnW1TCKqkUgkCJD4wl/+d27adzOZVJqZC7OoisTypTk2TWxBNKJIikilXKRWLdNodchmun1VxzaN4fse+/beQm9vD47bRpW6DpLr2ChaElH18LDo7R3Cd0Q0TSUcDlGvt1A0DUNXcax2VzlVNrA6Frl0EjUUwjRNTNPEDQIs20ESFRwnoLGxhO+5uF6AtlTEHi2wtimHJMmomkdIL6DKUUS5ybM/fIq5M6e5/2/+CHP5EQy3zAqbGd80yoPffxoJgWPHjmB7Fr09fWyUSshSwOpahb7BfkLREEdePMK/+NCHkTWIRsI8/cxz7Nu7i4W5S5SrdXp70sxcnOXkyTNs37GHZr1Nb28fBArVapVLs/OEwzFisRTJVIKzZ86QTqdJRHR0TSWdTWN5Lq3aGpfmpnG9DtGYiWmGCEdSlCtlyvUNUokEiVic4toagxPjpBIp1tZLiLKK67jgC8QTSU6eOsfwaD+y3A2sFEWn0JMnFouQyqboKeQp1xsIogqBTzQaJ7PhICQ2GPrIv+XP/tufMTI8Qv/EVnrCGtnePNPTR9k8mmBiy93YoSye66Eko2SfvEjxY7eRCM1hux385R4EwsiGiaSa3VpOSSDIFrH95/CXRfTqLnDkbpJEgGCpiTTXRDy8jnR4He3QGuJiHbFiIbjQ2arS+XSe4L5x2JenmZRQRlJQ0BEGDezJMPV8BGk0D0MZ2kaAkc0QzuUhHMLsz+KlPLSRDEpfHC8dQ0tF0M0YohFHMgLkTByxEEcZytJKekjDQ4h5HS+jYKVAG0njZiMEOZFgSwJ3c4TmWBJhZw/tiQTy7kG87cP4W+J4mRLSzT7i3g5sLaHtKaLsXEbdtYy6Z4XITesI20W8LSbWpjziaAK5z0XsraPly2ihFRT1DHa7zcxUh4WVBJnCzYiCSTRcwnMu4DpTDAybuJ0zJGIlRkfex7e+820++tGP8fOf/SU+/rHPMHX+IrffcRuNZot0phff75BLZVheLfF7v//73Hb7bSiqih8E3H//P3DX3Xfycz/zGeKFPBPD43z7m1/lk5/+RT5+3wcJAoef+7mf57f+39/mw6dmuMeIsT45zOZ9oxRyE+h6Dkts8ND9j5OIZ5CkpzGNJZzEEFWvxkRsAp8G0UgG368h+N1A5qHvfZ+B/gEsu0MiliQQRRQhIJvrsm16ezP4bsDpM+fZvmMPri1jRiU0JUKjYaGGZSSg1rBwXIf11RXMkI7V6SBLGrGkSb3W5KWjx+krdGuERVHFD3xcy0KVVHRN4yPf+1kkScayLBRFxepYKKoKCNRqVWqD66yYC1y6OEWsnmKzsxNN0xCEANf1CAIuqxkbrN10CXyHUDhE/+w4phPpOpYCyLKIKEq022062SatiSptq0Mh3M/A3ASKLNFqtZAkBU1VUVUVWVaYG17kzNLLnD55kndn3ke0kiHARz3zFKIgUhvZh+97NOU6GzvWkBWRcrHEgdK7UVSFIPBBEFkvlujp7QUCOuM1mlkbAZlUPUV6OYcsiti2i24YV/3/n95y+tX3/RdH0DtXH3/FV6klKqz3LhMAWttgYGYE6OpN+J6HrChEIhFqtRruzQ3kqI2kKEQuxQmXk/i+j6JISJKEIqsgSti6xdcW/orR8TECQWDbzF4cq0UQCCiKiud1698lSeKCeY4Nc41U7wDJZi/5tQKB300a+IGPLEnYjoMkinyz8FUKcoHPjnyCTepOsGRERcYwNGrVDQLfo1KukR2P8/z8QRKRKAtTq4SXk1SLq5w5dpQgsBgZHkeP5DHCcZzRCKP79tJ0knzirp/FXhHRNY3lYhFN10ml4hiGSqMxxfmlv+Sv/vqvuevddyKczL6uVvPV73bIR8xd9sPWBYLZNw4cpf2vte/xT0nQeoNgOBMgDl8WcmoK+DcIRqWtPkK3FTf+rEiw9goSfCV6GSBmu+e+HfunqP+8UivmdXNdiV6/7sK3HkC/QpHuznHNSO8Qcf3HfRevX8Nr410fcRUEAf86tN+r1hJcgay+3QiTN6eS/wRxvWw/zojrldkhQRC6nLnLdqMG0dd+dr1zrjz3erSRazM+1zvHDQBX4MXHHsbQaoyVDhM4Fn7/razMz4Hg4dgBF6an8XyXpZUV/EBidGSEkK5z7vxZPDzi4SjV6gbbd2ylWCyzddtWdMMkFInxwnOHSKWzTExO0rJsTMNEFAVajQaiKDE3N4+m62SzWY4dfYHt23by8EMP0mw20BQZw5DpyWeY2LIdAigVNxAkiamLM9x2+92sLc+yvrpBJp2i3WpiWx08z6HdqbK2usrufbvpHxzDtj3mZ2aplNdYWVnhrrvuYmVlhfLGOnanxcj4Vqx2k3xPkqnzi8zMnsexQdE0JFlGUrv02vVimb6+AYYGexn96lmU+QrOvxpGEDS06nZApNNuYrUdHMsmmYzRaLYQRQVZkRB8C0lWmF9YJBKNEktmEAKX4to6szML5HIZegcG0BQFmwDB9QlsF18AWZOwOh0MTadjWRiGQcd2kBWNVq3Mgw8+RCadZXLzZsyQgRpe5cknnmbX1veQSPdiWy7T586wefMmqtUK09OzHDt2hg9+6B76B7KIgobvuUiqxkZpHVUWUDWVUChMvV5D0QwURWGjtEE8HmdpaZFCYaDbn07w6NgustJFolynzcLSEqOj4/gB1GtlEvE0ju+hShKtpsd6cZ6B/hE8r0V5o0koqqA+fgz7wwdwf/rdyOEE7cXTJArjSJLED77zVW6792cImbD+0H+kcv5xLnXy7Lr9PVgdi3rDpbS+QjZpcurEMXbuvYP5uRl0TWZgZAxJDCiurmEYYcLxGO1Wk/JGicGBIY4dO0E0GkEQfVr1NtGIwlqxxI49t+C6Dt/61nf55CfvQxBdTh49zuLSKu/+4Ae5ePYM+XyO2dkZBgZzrK208b0WPb1ZisUasiKytLzIgQO3sri4guu49PT0sl4sEo/FME3jcrmOT6VSIxqLI0sKL790lKnzU+zdvYeps8d4/333EYgCbqtFaXkZw5BI5vpwfbWLID93mNsOHODk6bPousamS0W0TIeVD/we6ytV7FaTlmTwO//mN7n5rrsJNy9y061wz4f+A3O1C8haluHhPfDr/57KvjGit55CkhX8w3ux2i1U3cC1XUTBQ8m1kW49Tukbp8CRSETvodNuIdY9tGUb1tt4P1VgdVwiOTSAHzjIsoKAzPLcOeLJFJoWxvEuo2WygiDKbKwvks4WcCwHVdPwPKvroCMhX6YzSZKEIAh4dGuhPMfG81xUw8TzXKx2HcNMIAo+teoGIhAJReh0bFy3g9VpoKghbMtCMxSMcBwEicBrUl9fI5rKgiTj2DaaFGJ5YYb4YplA8DFu3oLjtNF1k42NVRRZxAzHaVkgCRqeUwO3hWW52J0anl0nbEZo2D7L6y3ymSiukCKZyWBGozidJgIuG6Vp8jkPTakjCD6OqwFh6g0PzdhEIH6cVrvCRqlBvV5F1RWyuTRzF84RiZtoeoze3iEalVXCsTCtQKU4u0rfYA+24/DDHzzL2dPn2Lp5kuHhNILj0WhaqGaIx598mu3fewYEl33f+HNK9SqCH5DJZKiUy/QV0rRaLUrLf0DfQA/3/MY/0PfZAXqdPjTFRZJM/AAUVabTrOMFCs8fPsqO7VsIx1Q0NYobtNlY69ZHC4KAGdLRNBVRM7h0fpr+gX4E0aNR98jkwnSlC32mzy+QS8aRDR3H8zl1/CQ7d29BVTXq9SaqqiKILrphIisGzUaZRt2h3erwi0d+HQH4/ke+wtTUGbZu24ptO+i6wYsvHmHnzh1UK+sIkoaqxzE1kT/9whf56fs+TqW6TrVUZWgoi+OrnD19ngMH9uC5Du12g2QmT6XaQlNkZFkgEARePPwSe3YN4aERMuN4nofjtnjih8/RU0ijSCHGJgYJCAgEgfVikUQ4iSxJNJotVleWGBoe5L3/9kWikTj/5p42e/fvQVJEZEnBslyqlSrhkIbruIiygqIYnDh5CqtZ46abb8bxO2iqepnqKHb7w5ZWqVcqjO/exytcyjfyL97Ix7jWL5FEkaW5ZabOnGfTlnFMw6BWrRIKG7iuQygSo9OsIUomTx18grvuuhNZEel0OniBgyTqfOtb9/PRj9xHuVImkYhghgwuXjxP4JmIskMs3IdhCtSqaxiGjqKJOI5CKKrRbrucO32W4eFhYok466vL1KoWL0RfpFDM8+W7/wzbknAdH0UNsC146fmnGO7XOfb0D7AFDc2IEg6F0KUShx4/zNBYD4Kc4SP3fZqFlTqr6/D0oR/QrHUQsPn8L/9LHnvkB/g0SaezTIxOUGmUWFqY5pnHHuQD79mOqUlcOHkOTTHIbz/ALR/+HIRySLqP6EtIooIruUheQIAMgoQY+Fd/7+L1fT1Jkq7yH7sb8pp/eT0U7q3a9XzP6+39m9GTr42D3soartRieSv2yhzXpbW+A8T11b+ByyhqV+Tpxte9XXXidxTAXou4XjHOjb7nN0O9/7Fx3/VikSv35J3c608Q139m9roM0ZXv32CTfxSqZ9d+dm0Q+0r2SpZEVqbP4FkN1lZXGJDKBL5LlSiJVBJfEIjEEjx76FnuuON2UokYm8ZGOfzCc+iaTDaTY3RsC/F4lGQqxcTEZkY2jeJ5EqlUjnqtyKbJrYTCYQJBxNAjyJJEvV7BNDUQJcKhEOdOnyYaCpFMprl4YYZUKsHywjLg8N733cPK6jqZbAFf1EkkM0ydm0IWfRZn5+m0O+RySZ55+gk2SutUyyUSqQgjYxNs2rIV0XGolCvMTE8T0hWiyTh9/f0EARQKXfXfvkI/1XoDVVWxnQ75fAFFFRgYKKAoCroWYvvOHYiSyNat3fuJhhWiJ4pIlQ6lAZNQCnypQWNVQdc11taKhMJhmq06oqwRCYXxPZ9ytUgkGqXWaJBOZ/jKl/4eTdMYHhsnmujW0iqaBKKIa/s88tBDjE+M0LKaiEhUKlXMcBhNlxFFofvUEjwcy2FgYICRkRF0TUfVJQg9T2FIIa7uQZbA99qYIZWwEUIPafQNDLBzx1aiURNJErsCUYFPIEmomgL4GHqIWq1Oo9HE1EOX25MESLJCLBpDFH2q1RK6riFLMu1mG9sSWFxYYHBohHbbAgRc271c5yjStjpUKm2+8tWvsG//fsqVKkEgEzhN9KNTSP/qs8x22iRjMUob08hShnqthRlzeP6H3+XkV/4fBrQ1nlkIYxgm6VyBpflL9A/0MTtzEUMziUQSZHszuI7H/PwioZDB4cPPMzo8SqVS5tBThzh1+jQ333orc5dm6O3tYX5hjkIhx8zcPP19/aTSGQ4dehZNEekrpGjUmiQymW6mPZPh5KkTHDt6jHQqQzweJxyJoSjQ29tLu9XhiYOHue1d7yIei6CJIgcPPsX+ffuoV6tIisILLxwlk8mja2HKlQqrK2ucP3uOhUtzjIwOYFsWvT0Fnn72EPtuuRUh8PGsNqFIlE6ng26GCFyXTrOFLHWTQJlchvn5BRylCqbLb3zhOT70wY/zxb/9e2ZnT/Fbv/mb9I0OEDUr9PREyRTuoli8gJHowyOMvmeYyJ8/AB/pw27VEVeGECSFdr2MJAZdSvveGYJFic7CMkEQYGijKHET5dElvLsLeL++g9aASTiVxLWbOI7DRnEDUYB4IoOsaviCiCR4KIqObbuoqoipKvh+gGtb2I6Npum4rkenY6HI3YC10WggCEK3x6vlIog+ntvG9X0sq4MqS4iC1NWiECVkRaPtOIiyhhGOohgREAVM00SUZHDagE+n1cZzO5fr0V1kMbjcU7kJ1Q6yptLRHRzXx3JkdEmg1fKotzzqtRaB51IqlrrCTHIIUQmjmDlqlsbZiw1sRyESkukfmUSRZH7w6GOMj41g2Q6JWC/Ly6Dom1lelpHEGOVyjWhExtBmEII5vGCZttdLs15hbKifRmmd3/m9L3HzgXeztFpkduoMSArReIpmo048qVOrB/zOf/ljPvcvfwZDN/mVz/8Kn/v5z9J2LcLREM1WjQO37mNwscLo6AgzhRgvPn6Q7Vu2UN4ok833cubsS4TDIRYvPUhPTxZ9852cc2ZwVn0iEYNHH32cTZu2IAoisqrQthyGhwZ57umn2Dw5RLPeRFNVOo5FNJrEdnxs20WWRSRRIt/TgyyZ3Xp3HxYWLxGNxfF9l3A4SrlSxLKaZDNJcj09CPhIsoJlOZw7O0VPoRfPs/HcLtKYSMSIREKMnt6KLMscLRxiYHAQx7FxPQ/Ltsnn8rTadWRVxgiHqVUrtKrL3HHXnUiyiKKKjI2OUWtsYJhhBgf6OHn6HIWhESLhEI5jY5oapY0ayVgC13eIJ9M4XgfLsjEME/ARRY2V5RKTm8fIZvNcmrmApoYBkUgkAoFNJBJFklTiiRjf//4jfKKcxbItVn5qgkgkRBB4NBoNQmaIcmmDer2KYZiIgoBlWfT05hgfGwKhmzzwgwBJkuh0LEqlEr5tkcgkMSJxXicyc4WY41vySy6LOzUrVTr1Bk8ffJwdO3bQ6dTRdIVqpUoqmWJ9vUgsFufS7EVuufUmXM/F83xAwDQjOI7Lrp176LQtvv71r7Nn7y4syyKdKtBsVcnnevnWA19h2/bdqIaOLyjdJJQo43s29UqHTCYJAui6jqaJvPTScdZ7ixCHz8R/hv/y+3/CAw98h3vvvYeFuYtMbNlBz8gmJrbsZO97P8a2m++grzfOw//jTyhVDC6UZERzC6phIgsB589fYHpxjUd++CgnTh3jy1/9Gnv27SKXHyaXH6WDxOD4Fgq9Yywv1ChWS/Tk03idVTx7g6RS4btf/lO+86U/oZAu0D+xHU8xUa02imwgiDK+B1xTC3slSnttjad4bd3hVZHaDeoe38SurGe8XlLjFQDmWnro68CSG7SxuVYA6HpB8FsKfK5z+NW1v+7c4LrnXW/Oq1z1d9BW560kfN6KvRZI34BBee0eXXHnN0o8vFGS4O0E2NfWHgvCa1Wzb0XY63r2E3Gmf2Z2o8D1jeyfgmrxRuZ2LP7uC39AOh4jCGRCuoRjO8jRDJ1Wh/m5RV566WVu2rWNcqnIyuoqKytFdu/ajWM1GRocZL1YYXhkiHQ6w+HDL9LXM4rrtWjbdeLJHhAFZFUDUUQUwXUdZFnm4oUZAssSggAAIABJREFUstlMVwVYN5iZnmajXCObyWKYGmvLC9x59200Gg3KFQvPd8n2DtBqNZGFAMdtMzExwezcAmtLl8ikEqRTMXryOQaGhjlz6iz/P3tvHivZdd93fu6+1r6/fen3ul+/3thNNXfKsijbpKJIlqNxYit2PPBkBpmBx85kHAMJMEgmgZ0ExsAzk8RjybAtm5a1UJZEURTX5qJuUk02u9kre337vtRedfc7f1RTajabm6QYNqAfUHiFqlPnnnfPvRfne37f3/dbLuT53svHcP0A3/fodpt0Og4J20YURc6dPYvvh6TTGTa2N1EVDdfrsrlZpa+/hKbINBuNXvZSEfHdLk6nRb1WRddkUmeriHUH9b5xhMggNqt0nQa6VCYMY3w/IJ1OoWo6V65c43vHXqJYKWHZCZLJDIIos3fvHtLZFBCjaTqKpiCLUU+1VIjxXZdisYSsa5w/cw7TsjBtiyiMWV5eRTd0FFVBVzRkWWZrc4u19fWeKqlyBYgRg51sb66iyjKirCFJQBSxvb5JryyitzvdarYg7lHlVEXB1FScrossyb0FydoWc3PzVPr6EWWZ2tYWpqkjCDKybBB4Lt12gwhYWlihr2+AdruFZVsErs+LL36X8R2jtLp1UskCl69eZHRsCFOTSKfSeBsbqNdWEH77VykVCyxcOkvL1RkbGSGVSmImKuiz32Qy0WBNnECxiszPzNHuBFw4f5r9B/aSz2cQRIFLl98gnc2RSiaZn59n9/QUxUKZM6fPYlo6Q6PjHDhwgNmZGTRNQ5JUnnnmCJOTE+ya3s0rx1+hVCwxOjbGCy8e5c477iOMXVTV5PVTrzM8NMSp46/wmV/8RRBiGo06MTJWQsS2kjz55NPsHB+lNFjGMA2cTpeu0xOP6bo+gR8yNbWLK1cus7a+wtDIEMVCnqSls2N0hO1am06nQzaTQhEF8uUKoiz3AIIsE4YhoqTQbjZYWFig0WiyvV1jdHyE4eERMimZ2vYy0o6HiCWNze0qrcY8F06d57Y7P0o+CZ3mKsWRe5mfe5rtOuzbe4h1dxNlrYp8YR15WiFaLCPICkIUougaiqUj3naO8HsZXJYR2yHmd3VYatH9l3uRDuUIoghZUVGEmE63haZafPXLX2N4eJhEIkG700SWZKLQxfNCTNPG9VpEkYikaui6iij1alAlSSEMfeIoRlVVJKnnRxwGAbpqUK9t9uZPVBGQUCQFQRCJoriX/RdFZElAkWWC0MFzfILQQ1RVgrBXZ1pvO4iSxflLVxkam0LWEoCCbMlIuoncP0Lcl0HVCxjJHJqRouP5pAp9PaVuUaTV9Wm2A8p9Q6AYaGaaje02j/z1t0jaBufOn2LnWB+ZyiC1rSrZZBrD0gkjeP3ECRKWjRvGFIslNjfqfP2bL3Lw0MdZXXPJpJbwXbh2KcOZU2coFEq4UcTSwgwJK82B/dOMDfaRLfbhRQJyHNBubWEbGe6+83aCwGd2Zpb11Q0e+OgDrG5WGRwa4XN/+IfEYYh9+hqiKPCfjn2X0cndlPsHCIIuhiGQSORYXFhleLDK6ddf55Qlc6p2loPlPQhCSH//IK7nYVoGgiQTxRAFLtNT0zQ6W7TbLqpmYxg2kqyhKDLV+ha20QNlhmHxla98kdGxPtrtLsSQyeSuCwmJSLJCqZSn3W7RbLnomkkcxVi2zuBgBUGSUBQJQZA4c+YsiaRBFAXsmTlMDMzte4MgDAl9jxhoNlsQg2kaKJoJgoRtWgiSyBuXrmCbJslkiiiAZqtGNltmZnae/sog7UYLWdF7G0hhgCwnOPLMM+zYOYYgKVimzuL8OopiEPgBkhaTzRZpdxokUzmSqQyPP/YEg31FVCnEtJO4rtOz82o2yBdK3HWuR3u9cF8BTVMhCjAMk/XVdVKpFPNzM+QyGRJJm0azhq6rxFFvM8C9LpjmXQfPvu8jxCFWKoGiW9wKuL7vEHpLaSGKaTeaeH6XvfunsVI9L25VkQkCF8/tkEymmV9YYbCviOtGKKpCEPiYpt7TM7heQ+z5Te677266TpcgCDENG9NWCH2Jvv4sKTvB/MI8D3/xS9x+6ADJRBJVFZi9skwml6JQLLK1tUkiYZBKZXmDyyiRzCekB9m/bz8/87MfoVpfZveuaYhi6rV10kNTuJIJQYM//b3fojR+Fx//xf+NQ3fdi6UmOf3K01w8+zK/9wf/L+76SQp2k1/5hXvJGT5/8oVvoUkC//H3/h0/fd9+dMPg0W8/xf5993DfT/0MF86dIGgt4Xe20VI5zl2YozSyly9+8RFOfPcJHvr4g3Rjm9CrEUY+otS7xt96nt8+N28ChF79748fuAJvA65vnfq3AuibP/9+Hze3f7e2P2wN6Dv85P0A11uN4wcDupFz/MGB64+r/Q/m4F1+c/M8/IgliB80U/q2tj9ixvUnwPVvWby5U3WrG/nmuNWk/7AXwjv1LQgCQhyDJBIJ8Pijz6AIKnfe+zFqbozlrGNJAS1f5Oq1GYaHxxmfmGB1bZOTJ09gmzo7JqeYX1xgZHiYkydPsm//XpYWV8nnC6SLWZZXlvFDn3KpQnR9AUsMkigjihJXrl4hkbTIZwrUtuukkgZB4CFLGu3rysQL87MUcynsZIZCqYIsCAwOD3P0xeeYHB8lkUwiSQrXZmYYKFfwQyjmkwS+SxRLbG2skkwYrK8uUeqvEDrQP1BkfbtNPpcil6/ghTEDo8PkiyVqrSZ9pSEyxSxGMkun06SxuYEfa9iGhuM4tLtNhsZGiBCRFZGLl+cZmHXRWj5zZYF0MgGihJbyEbt96KqJ22rSqW+imyb5XJFLF6+xe99uBAE0RaDb2uLKlSVEIcKyTEQEHKeN02mjKiqu06ZQyvW8XUUJzxWolHN02g2+9uXH0HWdSl8fna6HrIhIIhx76Rj7Dt5Oa3sb9Gv4QYDqD5PI5tDMJKooIcgyG0tLZHIZ1FQWWTOpVRtEYUAqU0bARxZUgqAFSk+AYntzi3ShgCRpPP6txxjpz5POF4liiSDwaHaqRGFvIZpKWQRhjCIHZHNp3DAmjAWGh0YIAx9VEtje3uKOuw6i60miwEMWPJS1OvFte/AfOETbCRksT/DCkW+zY98Bzr74daRLX8bYPsNXjjVIpNMYepJiqUSzucXuqb0cefY5xscn0AyVVqfF6I4xwsBnZHSYOHAQhYgTJ15DkhTiICASwe06DIwOYlkWU9O7+e6LxzA0g6WVVXbv2YOsyuiaSDKTRohjZhfmGRoaRpIUpqYPcP7saRRFYaB/ECOVQVMstjbWkTWN6elpOq0mgRdSr3cZ6CvyyvHj5IsFBCHCSCQpVkq4nSqrczNsrq+iqwavvXaSVqPDzp0jeJ7H4PgEpqYgCSEQ0azXUQQZVbeJIlheXiMIIiZ27qC6uU46m0PytrHUkH/7p28wPTVKQg9Yna+x97Z9/MF/+F0mJxLMLXgM7RxAiyOM0XvJmLA9fwFx/xTmXx+HwTR+s4Qo9kSRJEQYXEN8tI74VAMnsUxsq2j/+OcI/7sdkNIQIhFN0Wg2t4niDrqZRSBix8Q4uWKJOBJxXRfTMggCAcPQcZ0OhBGSouB2O/iuS6tRIw693maLZBBGbXwPVF1BEW1iIaDW3CaZKuJHHqqWIPCbyKJMSIyiKXi+hwAEXkSn20DXTQRRRpGknieiICGIMkYiRRz6lAb6kUSRKAyJ4gBRkBAlA0FUkNARZBG36yCLYGgqURgRI1Jrdmg0ujz/wnMcvuswUhSxtrrCkWef4zP/4BeoVPLs3DHM8MRuJEXHMmMUVUMSNZxmlf7BCtliCZBZX1sjkchz24GDPPzww8zNr7Bz6n4U6RyrK2d5/oUmn/jEg7zxxjn+0Scf5HuvvsS+gwdpVLeQxQhNFVhb2SSVgs72Inp+iISkkE3luf3gnTxz5Dv0VYZYXlrmm49+i6MvH+N/PXQ/iqLw4X/1z5ncMc7G8hKqGDFz8QTZYgUpKNPsPsnE1Dj/cfkFVv01Kq0RkikbRREQpYi5uVmyuTRS6HPspVMYtoEch9i5IgQBnZbLqddfo1zuQ7cF5mfmsZMpVFNnYnyEazPzjI2PYloWRD5RbDG3cJl8IQeSSiTIqHKEH8UcO3qMwYF+PLeDotkQhbQam6RKZcQoplVrolZMnlp5HHOnhhBHeL6MKsdIokcqUyAO3B7zCBFBkZFEhUq5j5jeBqVpaCzOL2IkVAb6h/F9n5dfPkZlIMN3nz/GQF8FSdZYnJ9hbGwHnu8SCxLZTJb5hXmy+RTdTodMKk0mmabdXKbVaSEJAidfO8Xo2A7W1jZw/Q6FbJZ0OoWeTNB3uU6QEJk/lMLptpEEkUg2WF+aI1OukE4aIKh0nG3SmSEUQ0SII+YXF6nVWlhmb7NGkST8bpvtepP+gX6gR2n+oGuGH3wAYSSxMDNHLpNFlhUMXWNtaRFJ1VE1HdNIouk2CzOztFotipVBmp0WsxfnSSY0RNUkjkJESSbyO6iGhiwrSJKMZlu4rkO30eAb33iSg/fcj9tpYJom42Nj5Ir9iJJCGEosLy+RSiXwvSaKGBNGPars+egiGjKfTX+GwG8j46EgUKt7eJ1NZt54lanxMnWrQOOVr7G8tM3tD/4asl/ntWPPs3//FC++8Aj9apN/c+DL/MqOf8M/HP0tzK39HMrdy6du+wj7zUkO53+KTuYlTp08yz/5td/kjYVVhgaGkeJt9HgVvCbHTszywD/854zc9in+3oMfQQT+v3/3Ozz1hd9nKJejlMwSSRqeAgQiciwTqyFqIBAp1x0fYoE4jJDEHoOkJ9ADb9qivGW+iN/y+n6b77d9OxB+t/n2/otG+Ir8/RpbeGew+YOaSb5v0CLw/inIb3OxuanNW76PYr5vKdkbFMRcL1eKbvqf32Gct4oPAFxv1edb1tjvAfB/cMwbbG3ezZv1hn5uWUMav8dxfoxxy2PcYrPlg8RPgOvfsrg5Bf83l0u9dYhAGMcIUYTXdTj2nW8zUEwQ41FrefRrbQS3RqjaFAolTNNGVRWKhSKWZXL16hUSqSRnz51ncnycXD5Hs9kik02xsbGJlUiSz+XIZlI9Kp8foqgqvh+wsbGBqmv4nottmsiKSqvR4NSp10gkkly6dIlEIsHrp15HFAVymTyVwUFaXQcrlUIWJdZWV1laXmZ9bY3+wV5t5eraCoau0GnXsW0bSdVQdYN6o4ll22SzGZaW1tEMhb6+IcTIoVavUxkYoO04zFw8T8LQuXz5Mq36NpVKH7KkIysGmibQbGwyNj5OMpHn+WefR1U0ioUy6VyK3LkqUsNBuHOgR7UVLQS1RSx3kL0izz//HAMDZWIZ4shjdGQQ29CI4wjX9zHsJNlkCtsygAjf99BNHV3V8fwYRTGIQ2g3Ax555NtEkUs6myCTSTEyMoZh9WxlErZN6PvUt7fYOTlJeN32SM8soygKfmcISVKJohjHc/D8kFw2R8vxsBMJRAQStsXFi+foL2VpNavEsYxm9KiaCdsml80RhDGypHH+7Hn27duDIqu025tYhsmr3zvF0PAghmmwvr5JvlBCUWRc10MUZWQxJooFdNuitt0glysRRx6KoqJt1fG+ewo5lUL+3X9BIhTArVLbvsr0ziniUGDrqX+P0XwDBn+OVtdjbW2F0YlhDEtldMc4rY5DHPicP3uWseERmo0m2XT2ev2kyMvHXmZtdRNRkLnnnvuYX5lj165drK4sodkGstKzZpravRtVUVAUiUIxz8zMNVZX1jHNJKlEClOTkSWpd95kkYFKhc2NTeyEzfb2JidPvEommWRsdIJ6q0UYRzz11LPs3Xcb586dZnzHDk6/fhbfd8jlcmxtbLG1WWVkbBLDTDAzP8f84gKZXBrXbRAHIaIooWkqkiTRbrUR8Gl1mqyur9FpeJQrZVZWVhgf28H6xhZDw8MIF+eR/C7lj/5THn30UX77X/wO++44xFp1k+2tNvfcs4+ZuTVuP/wJqitLyKkU5bSNGEest7pkJtYRv7SONDqCEIc456+gn76ENLtMPFqm/dkxfObBVlAP7afdbiOJco8K7jjopo3j+MiKitPtYNsJIgSE0EPRdBDlHkAMI3RNIwwCIgRMoyfEk0jl8YOgx7DQFALfxbZTeF6XOJYQxRARkAQIgi6KrIEQI8q9e0kUJZqNZs+CKY6RZZk4EhAlGVkSaNQbWNcth0zDRJHFXq2mLKEoImEQImsmge8TBx5iHBBEPlHgIxBTazTR9Z6gTRCEZNMpbj90G6oigaJgmAajwwNk0xaiLNNsNjEti1qt1rv+s0WCMITYpdt1WFnZotHocOXSVerNdTY21vjIRx6gf2AAWbJodyQmJ9qsrc6Qyd7P7/3u7/PJz/w8jzzyZSxdYmh8GFWRWZifI5dLcPH0afrLfcSize/89m/y4EMfQ5RiDh7ag2UnEASBhYUl/u8/+EPe+OOHWVtbhfv2YNgmpfIA//r/+Nd85pd+EdEs0mkuU8gtYmgWf7F2iUbQpPrqJtN7duH7PiCTsLJsV6tEEfT1VzBtlTDokEj3RPCC0KdYLtJqOmRzKZaXVnvP4UoFQZQoFEsEYUQQRiiyRNdtks3k0ATnur6tiOuEzM0uEAYRiiqTTCaJY59Wq0k2X0BRTWRBJAzg6MpLlG63QYhRdZ1jR1/CsjTy+TyCoBCLKqIo0Wo00RUVUYyJ45Aw9JBEmSiImJtbZHh4gjD0aTTblMs9y7H+ygiN5jaJVIZKuUwsgKbrRDF4Tpt8voSm6qhyTLvV5bHHn2DP/v3YZopkKs3OyXFkOSZTqGBaJo1GGz8UkESJSztFTpW3sXP9160rImRNppTLIEg6Lzz7DDsmJjGtXuZZVSRqmxuUSmVymRROp0EyleHcuYu0Wh1SCRsrmUCUlbe5hbxbvG3xjYAQRSgixGKIoik4joum92ivYRiytb3ZU3AXY4aGB+l02yQSGVQlQtFdHC/C1HsCjZ7rIAgmZ09foF7vkMmWcFsbdJubOJ0OExODOK5Lvd6gUumjVavzhS/8GeW+CoPDgyTTGQzTwgvA8zxMO8Gp7hks2eKzhU/T7XYpFgYIgpi2AxvVOrEmUtpxAM3d5uxjf8JXj5ylr38XVy/M8nP8D6w/GvHT4n/Ph8R/hqrKXKy9jpZYx5JLlJimEt9Nnr1oUR+p9Tu53foU4VWVbCuJuqZT7A7x8uXPMVgqEBl5SuP38I1vHUWQNNpOyO49B/ExePWlR3nxya/y7KN/yqmvfYlrJx5HNkJELYdmJQmFnv+EHEdE8Q0U3R/JeuXtpWLvBjTCV3o1nzcC11tdF7fq773a3EhZvRUQe3vm9MaObj2OXj8/wvn5EYHrD9fm3Y75LhsE73C+/ibZmrcawE+A6w3xdxG4vu3GfPPzm9q9X+nwH1vmFQiEGEOQefbRxxnIyMzPXOW2w3eSLw9hLhxB9BpIqQGWlpZJpTM9lXqpV4905dJF6rUqYQS2aVCt9ozCl5aX6B/oY7vWwPd9qtUtUqkU0BNeCcMQy7J7NbOWhRjH+FFM6HtkMwVcx6XbaaMoCkMjA/i+h+fHJLMZCqUSURyhyzKWabC1ucnB225jfW2drY1NiB1UBWzTJIxiNNOi2WwyMDBAMpViY22NvftvR9Vljh07TrmURZQlsvkCCCLdepWF2RkMy2BifBxJFFhe3uCl4ye58/770EwL3c4hRi7zc1cYGa4gyNDudEmc2kRrB6wOiUiSgCxpCMigNnG3slSrW4yOD6FpCTr1JqaVJIo8XM9DNywQZIh9HMejVq+TTqdYX9/EthI4roNqSHhuE9u2yBXKDAyWyOZSNBpNEskkpqWjKjKdtoMfBNiWiR8EaLrRo5PKlxAEAZUpJEFGlmQkRcR1fRzPwbIsNta3kEWJleVlhof78V0HSRZYW6ti2Dqarl0HTC0kUWRtbQPf9xka7kdWZFy3gyQqFAt9xGKEKArYVgokiU6701OQllVkRUDRNAgjVLVXDys0q0jrVaIXXiP6pQeRfufX6QgRkhwwv1QlXZxCtHTaJ/4SZf0l6ukP0e5ELCzMY9oWghAxMNCHrKmkUln6KsWePcTyKlEQIUkCly9folQuUSpVGBkdY3V9jcGhQcqVIoIk0N/XRyyCYZg4nS4ry8v4vsfg0CB+4GEnLE69dhpd0blw4QKKJF1fKJmIsoTvO2RyvXqrhJ2kXCwwPzvHK6+cZPee3RiGwcjICCdPvs6h229jdXWdfXv3kS8WSdkJTrx6gl1Te1F1nZnZWcYndrBv/wF8LyYMI2rbDoWcRSqTpt5oQQimkcGyM0SRSrvZZHVtmaWlBSRJZXhomPmlBfqa24ieQHDgY3zy7/88X/zLv6I8PMjIjjEunT5PLu3zsU89RLfTwtI7TO6cplnfRlAM0rkCUaWI8ug5NofLaMfPoYcQ/JMJhM+KdCfHMQoJwm4HwcrgmkaPbgk0Gg1M0+ipiCoGcRyjqQqSJBHF4LTrdN0eeO20e3XljttFFAWiOEKURHzXRbUyaIqCINKj+fp+r7/IQxJVoshHllVEEWQJJFEnFmIQFESh92yVJBkAp9slinoqsYIo0WrUe5k9QSSKY2QJwhiiMILYRxRBEiUQFURivJdfI1hYQR4socgKjutiJ9PXcxsxiqLw3RdfYGCgn0ajiWoYRKFPwtbZ3l4nmc6QzmQJg5B0wqJaa/EXf/4w+/dPE0Yeimryrce+w7UrV/nYxx5gbGyQfCHP3NwCqytrzM0tcPz4efbvn+bAfo2TJ49SLt9PtlymVMiQTpqgqZh6imw6iyq5/D+//wf0D09QGhhl7/QkrtcmmdKpVetIks4f/dHnOfnaGf7qi1/lNw7dQTJpI/3UbQRhyOrqBofvup9MIY8fKNSrc8xee5Ru2+PJuEY7bvPg5EfpdnvPkKWlFc6eOc/C/CK7p/fwzDNPsGv3nh7IkTVkUcLx2piWyeWLV9B1ib6+QcqlErIkfR9QNRpNDMMgCnxUXUYSNYJOk2a7TTKdJY4k5ufm2LNnD4omE4Q+uqahKApx3MsytltdLDtBsVyk09oGRBynV3crKxKxIBBHIs1WF98P6Dbb2IZJSNibzThEkg26TodKpcLM3DLJhEUUxQgCJNJJRCSWlmYplfuRVYlWu43ruj0mgWlC1FPRbTdrKIrG+I5JVte3e9oDho6qSnRadTQjges4KJrByvIqD//lF8kmbbIJAytbwfc92u02hqXjNBsoukVfKYei6kTIeF4TORYgjug4HhK9Omtdt0BUuHT5MpVCGkk3UFT9bZS+d8qe3YqmKsXQqG5S3d4ikc0Q+CFBEGGYFpqqEkURmWyW7a0qmt67py3LQBB0uh2XQrmAJJo47QYdx0OWZXRTJpkwWVldIl/KEIQygRCxd/+HiIQI13HRNRs7YaIrCpM7JzEMnTiOEAWJS5eukcuXemrNms6J9kmUSOFXCv+YIIjY3NwEBGbmVmk0HHZO70BP2Jz+5n9m+cJlPnvX55g4cRe7V+9B6MisNZboJs+wzrOEyRmyaQ8jXWU1usqF6mvo/efpCFfRTImOE2OINkY9Q64+hL6WIVw3GfV+nkL7QSYTn8Ja282exO3ssG7jKyce4ZOf/kfcdvh+7v+5X2ZhpcGv/0+/zWpNYGZpkdbKea48/03u/vjfJ/AiECRECeJY+LED1/eznnwTuMqHo3e9Xt5vfzeq9r4tE/sBgKvAD8byZj/x9brutxu5vj1urrX9Qb831Gf+mL1Zb0WT7r25cU5uHuetfwtv/y/fjZL9tmPe1Pa95vb9RMw708zfT/wEuP4tiXcqgr55Wntmx39zuyRiDL4Qc+7EKS6deJ2jx77Mz/+DXwW9j+WVJXK114kDlyvrXRYXl2m1OxSLRWKpJ/d/7fJlhgb7Wd/cIpdJk86kSaczNJttduwYJpPPo8oqEJFM9YzHs7kcURShqioBMYog0mrUEWWFVqOO54TMz82Rz2dYXFzEcVok7CSKoTM5tZN2vUZ1ZZmLFy+SyWYolYqsra1S29rA0lSyaZVyJc/MtTlEUaHUVyH2HOrVLbrtBoqiIcgayNCud8mX+gnDgJWFBdYWl/GCEF1VGZmcQNZk3jh7hvp2lQ/f/xGaW/PgtlhdXGRmocruqWnWVtfQEzm6nS7EAtZiE/O+cXRdgUhge6uNlQ2QtICh4j46ThNBdFDFCElScaOYS5euUMjlaVS30ZMWsmZiJzNEgOdEnHjlBLlCEt3Mge+hKgpWOoeuaURRhOeGhDHouobnBnzpi1+l7YYMDQ2j6gbNbheIkcxZiGPWZhP82Z/+CSN9g9hJExmQpJgoDHjmyRcJvBABSKYTRHIC3TIwTZuus42mWwR+QBSEyHJPYGN4ZBhJifEjD9Mo03VcUlmDOBaACEnSiQTwuh6f/9wfMzE5QSgJCKJI3G3jLy8hrWwiPP0KzdEym//yl7E/cg+yaVBt1ijqFuszr9LceoULjz9MdvkbHJ+zUJMFapvb7Nk7zebWNgk1QavRAiCVTBKJMfl8nnyuQByDldQwNBWn1eTq3DylcpGu0yGKfc6dOsPQ6Cgt18FUFGauXKavVEYRJVbX10gkbXSjt9ib3r0bRZDQLJXFpTUKxRLHXzqOJinYKQtFVXBdlwAVVVXwPJfbPnSQpbk5fKdDu9GkWatTGuyjr9KP5/qcPXuJ6HoNWr5cIvC7dNttum2HYqGMLAT0DZVRLIuoUyWRz+H5IbaRZGFpHsVU+YsvPEyr2WD/gSluv/0A1e06iqZQKBWQlmeI2ybKvT/PyddeY3FhlnSmn+WFa3zt4c9z/4fKHLz/n9JsXESJNTbXFlBVjVCxCBFpV0PkdkD6saO0Pnw70W/8EnLx23hBElXLE8chnp3B6BuDOEAUYtqNKkk7h+d2qNc2IA6RVQ3PcQCIEHrgIY5RRAFN1/E8F9/3kSUJRHAAjkz3AAAgAElEQVRdh4Rt0Q0jJFEg8Dxk2SAMfKJQQNOlngeqrCBKKlEcIik6USwThl28ThfH85BllVarjaZpaIpxHTg7BKGAZem9BZAoISsSoe8QxqDKGkHQRZag03IRooBWu4W8USWKY8JcGlHqqbkiywiigO97iALs3LWHGAlRUgndLoZu4Plej9kWg6iouO02q4sLpDJFrl69xK6pMQwjxdzcMj91/4fZuXMUx20TeAoJ2yaTTdBstWg2WvT1F7HMPkyrQ19FYWzn38M0k6iGSt/QILFg0W0JPPjAQzz0sx/mjrvvRU0VeqUAQc/ntNNtUqt1uHJ5nTgWieOAX/7sZ2jFMd84d5K7PvVpnn/iMfZMH+D8uSuomk3Q3qa64XHocAE7W+BL62doBC2WXlhA1yxK5QLtdp2JyXGOHHmBYmUA29Kx7TJJy6TthiiSgChJbG9uUshnyeVMFE1DUUScbquXiSHCNg1836XdbtJoeohizLW5LQZGxggin6uXLtOsVxkeHcFOmvihi+uCZdi47Q6tVhUECVlTGZkfo+KP4FVcLr9xiWw2zXa9iqSoCLFIHHZoNRskEin++uvfZGpqN/V6DdM0ECUTXZfw/S65QgFZEnnhhe+Sy2YwExq+G2IYBqqWIsRH0zVUTUORZXwnQtM1fL9Ly/ExLIvA9/G7Hpatc/7yJfLZLIHrsbgwz+bqCpX+flIpi0tX58gX+rHMLHbWJgpjdN1ClmUi16Hr+RB1aDQ6aGaaRm2B+nqDv370Wxy6+17cTp1soY8wEvj6I19jbLCflaUFdh+8nfA68IYPniWKoogLr58hm7J6lj1qGqKYwHdpNeuIUs+Du9no8tWvfJ3bP3QIVel5q1Zb18hmh9jc2gahQ+iHdBwXz/cxjV7WuFQqoxkmpqTSam1BECAGXaqNDtvbDdKZJK7vIIoCQhyRMEy2t7aII4G19XUs2wZR4GT7FEqosGfhMGNjIySSGmsbs4xNTBG7IPlthI1TtL4Tc0fz/0Jr2jiFKufi12gYS8xuvM74sE/SDAljHy/yCQSFtBqSyWkYSIhyh2q0yvcuztA1axyde5Zo0MUYlWiEy0RhFVPXUcIKllMgVc9hrCW4R3sAa7aAe1omuBSxu3gQdyFN7q4idz/wy7S8JOv1Rc4c+SrXri4xuf9Ogh6R/ccOXN9P/AC4hu/R8v3FO2V5Pzhw/cHvbvYPfT/A9fvHfPunN7z9bwtcb3XMtzWJ3zl7/W7n60eqVf0hI+ZHS679BLj+LYo4jiGKezv3cXzLx8bNO5vvJTf+gS+O65z/mAiICUQB4hB3dY2Vq0e494FPoaRGWVuZpZTLo2+8hhiHxMlB0gmLo88foVqr0W1WCTyX9bUNDENlanKSWqNKpa/M5tY6OyanaLVbBFFMq1FFkBXsZApFEgnCCMMwQBTx6tuIIiiqxrlTpxkeGyHwO2xurHP23CUMQ6bVqLF3/wHGd+3CMjWuXLpIKpkBfKrVKjPzi1y8dI3p6d0sLczQPzTE3OwsaVsjimP0ZA7LTlOtVilX+tlYW8fxQ1pth8hr4BNTzqbZrlU5f2mNffsn8f0u7WaDja0OFy/NkE6luHb1DfoHB7l08SKarnPw8F10vA5W0qK2XWVy116MXJHoxQssZENSmRy+0yadSSMIIh1vCy3oJ4oDZFFDknU836Hdcnn56DGmp6ZQNBVRViCSIQ4J/Da+52MYOvlcFsII13dwAwdd6dVCtFsOmq4hOD5nTp8nX+hRbg/u3UWtukG71cbrhpiGjqBfw/N85i7pbKxvk8mmkaUYO51lfXmZWBAY27GTl48+z237drO8ssaTTz7J9NRuNE2iUWsiCCBLCs8++zwTO3YBEXHs47kOmmoSCyGKCk6nhe+HqHqSKIrxuw6qprO+sc6BAwcIAhex2UKeWUU5cRHp4/ex+OsPEdx3J5FiImsyimYgxgaqqZLOlTn13Lc4IJ+hrfSTGpym26wyNDbM+sYWSdOg0jfA66dP0Vfp4/VTZ8ikE4SRi2EliSUXrxuwvraG47js3jON5zuYlo2sGBi6iYjE66dOMtQ/yOVLV5iZmaHVajEwMISkKDQaNQxFQdZN4tBlY2MbWRLZ2tpgx8QO5hfm0GQFWVMJAh9V8gmjgGy+QL26TaHSR22zxvr6FofuPEzgB8RBF1XVsWwDQ5OZm5tnfX0LgZBsOs/y8gyeE2KnbM6cOksiYVEZGcbxY8LA5fRrF6jWt5naNU0+naRcKRAGIW+8cZFSKY8XQhi6pBvbSOgsDBzGCUI+9olPsbW8DjL8s0/vRgwjrEIet1lHNdPE3gbpzBib9SrJRIE49vDGh+D2aaqTBRIZFVV4hlCYgsjv1XNrJpIQI8oWru9hJNIIsgCihG7ZeH5v6WVYJmEsoMhGj9sbhiiqRhR6yJKOKMdIUhJFlVBVEz/sURI77TqaJiNLCpKuI8oyUSyDJNOsbWHoSo9iLPToibIooygSiiL3ljCBhyaGdH2fUIgQIxFVU/AjECQFARFRDBBFlSAIev60iMiq1VM9VjU0w8SbW0IQRPTRfjrtFrEkI0UQhyGSKOH6AVEQIAgSf/z5z3H4jtuJwl4mVhQjdDPZE1aJIFsoYdgG9UaLiYmdCIJCo1EllbY5cuRF4kjgO088zo6JMVTN4uKly5SKJXyvy8TOnbheHl29BP4Kc3MGCc2g7cHTTz3Nk088y3/5r/+Vta0lDC3B3JVZ0hkNfIX/5Td/i49/+tOYSgIv9JidXeDa7FV+9qGfQk6ZKKODpLJ9LCyvUSyXqdY2KJWyvHDkGIfuPowf9TF3xeNpjrPR3uJg9jBjY/1EsYBlJ9E0mVwmS7lc4JvfeJSpqXFa3RaWpSFKCggKuiahKXqvbCAAQVJpNGtYiVxv80IR8T2HtdVNBgeHUWUVQZGQFZk4FsgVily7fJVKpYymKPiuhyhJqIrK+Tcu0Wp4PHfkGcZHB/jw0U+gX7RZPHCFbLGI0+1SLhYJ/YCvfvXrjA0P8/yLL7NnzzS7dw4TiwFWwu7VU/tdotBHURQe++bj9FfyWOkUxXwZJYoJhRhZ03jpuefwA4G/+vM/545Dh1hf20DVJeKoiWGl0HQbRRCp1eqkC0VOnThOf18/iXQGQdWp1VrkCgV6dGCLkf4B/sc/WeP2My6v7pNRVRVFValWN0lli4iiwsN/+XX27Jni8oULdDoBmXKOTjfE67rkcykUXUOTYPf0FFoijWEmyRZ7G003UzlvZIXdvK6Q4p7erUBEbXPz+ga2jmkliMOAeqOKZVlYloXnuQiChGUn2LV7F0IcoJkasmZgKHm63Rpx2EWVZBB0jr34IsODFYTAgTggjHz8TpsIB0NPI2khHdcnkyuTtU0WZmfZ2Gyg6TpPPf00O6d2oQg+qqJTLBV47ZVXyWSKnOqepFPvIj8ZMzExyMriCpNjBxEVSOdzhI6P/JUJiq27ORkdZ1u+Rkdx2Tk+xrPPPU0xI5BN91hRkWDw2LPL7BxLIikaq7UWQhyjaTGRYHFhfoONzW1+5Vd/DU3TkA2Vtlun4ZwgVtc5W7tM6dAwFztnSO1KslqfQwhiFEfHbOTQl4tIosTs0SWe3PgmGTvLz3z8l1AMgce++Hm61WUOf+ggTiwhyiqR4KHEQBwRi70azhuVZ997bfjjAa7vpEp7qyzmW0IUQBAQ3vzLDeMV3tpP/OZnN5Z/xjGiIL4ly3rj3/dDFX4nCvP1d73XLfp4bxLvjY3frW715o6uz+MtT92bY7n+im9Qmb7p9ZYub3Fvf7/HmzcOhB4u+H7d9A/h63r9ID8BrjfH32ngGn8wOnAYhu/9APggcXMBfywQxxFHvvEtWluzDO26gysziwxUErRaPunmG8SRR0fOEsYCd9x1N6VigRdeeJGlpSX6KmU2NzYRxZjd07tBEHr1UqLKwvwckqJz5eosk5PjQIyuG7TbPfuKMIpQFZUYoSd0cfQo2VyZhGWysrJENp/tPZyAVDpLs9XC6bQRBUjYCVLpFKlsgTAMKRfyBJ7L+NgA165dJggCBgYG8cIQRVJIZhIszs+xtblNoZjDsExGhgdJ2DqZdIoogqGJYXbv20uzUUeVJJYX50jYFoHv8NEHfpq1tXUsXWZgcJBcqZ+rl69RLhbpNGsUC2leOXmOlGSROrOKsyuNqqkszM+iayqKmkBOdJDdInEooggygihRbVTJZfJks1k0VUE3NapbW7QaNXynTTJhohsammbQarVJJFKIokC93iCOJeauXWNtZY1yqUAsxVy5do3RsTGKfWVsy8CyTRRVodPu8PWvf4u9O3+BR798ns3NKp7vcfiOO6g1W6iaRr5YwLQSJBMaU9NTbNfqPP74k3zi4z9HMmnhRwFm0kaRerVMkiRz5MgLjI2OX7e10ZAVCc8PUFWFTquJosqomkLgtolFUCWolIvIqox89grKsTO4h6eR/vO/RLvrAMWRUexkAiKXSqXIqePH6C+nQZTxUSlEs7hz38NPH6RarWFZCXKlPMVKmVa7Q7mvzOjYCKZlEPkBbieiVquSyuZZ21yitdliaWWNUmWY9fU1+voHkGWZRCKFbYm0uw7lcpknvvMEtx/6EH4Q0Gg2KeSzuJ7P9maVYr5MLEF1s8qJV16hf6CPwaFBiKFc7kNWDFRFp9N2yWYTRDGoqsbqygqBG5Mv5JmdnyFhmfgdh0wuQ8d1uXbxPJoik0zYbGxtMTo8wqmTJ9k1NYJhGLzwwst0210+dMdhOo6DZSQRBYEzZy6yZ2qUOI7I5EqcP3eeRCKNridZXFhHjgJOnDzFPjNPqLbo7vgk//7//D0e+dJf8Yuf+RTPPfdtjj//FXbfdR/1Zo0w7BBLCpKmIMgZtKSJIqi022exMjFKZZRup4ZlbxP660hyH4HnI4gSfnWVdnUNRdeRRFAkET+AIAhQFPW68IpK4LtoqowfuGxvb5AwpF7tKCLtVhdVE5BllViIkSUZx+0iALpuIEsqgiDhdrsIcYRISKO2RTqdodvtoGk9iyXH6QDQaDawLQtBANf1ECQZw7RRRJN2Z5sIGQIP4ghBkoijGM9z0TQdiQgRiKLwuh5AgChAuLAMAri5AqZpIsURXcchiiNkRUZWZZqNOutr69x91510nNZ1SmOM5/sg9LKuW5s1fD9CVhSef/4ZJnaMcPGNyz12gGkyPjpGo+Owc2qaTL7I6VdeYefEDhJpm8mpXXTaHTqtDq67gWGZtNoHuHZllo997FP8q//9fyadylHuHyBZTGFpNqWKxNz8JrWay0MPPcTn/+hzPPjgJ0jaCoZm8tdf/Qa/8tlf5chTjzA2vZ9s3wADYwNksimcRoOVmRnu+egDqKkkkiySyeX5yubXcUSXe/vvptutoyoGszMLhAH09w8gKypjo2MkkonrvrsyUQRC7OF02qwsbpFKpkESCaMIIg/dtBGEmDDogatkIsPRY0cZGelDU1Xmrs3xlS99hf37phkdG0GSREQJDFPHdX0UWSCdsrCTJvv37yWOZfpeGyeTTXNm+FU2NjZRZLk3x5JMqVSgUC4zsWuKKIoRFRWn20LT7J44k9dCkiQ21je5487D1Bot/PoG58+/wYnvvcSe6WlmZ2eZnpoilc+za3IHGxvbZHJFQi/q2QI5HWxVIQxdJBFMVUXRZZLpFMePH6eQz2GqEpadQVYNnnjiOyRsk8OvdxElgSsfLqLrGq7johkWbtfBaTUxFYEgiNAVmXw+RS6bJpPOUywWOH3qFMuL85SK+esbjiIba8v0Dw71tC3eoQbxVgvOoEeAIHZcGlvbGLrO1sYaURBgmCa6rlFvbGPoKooIrttBliDGRzNsOp0uJ0+eor9SxPMdEsk0QSChaRHl/mEcT+Dq/DJDlSK1jSXsXD+iGHP+3DUSySSqkqTrNJBkCVWXSSQUTNNg34EDBEBte4NkOoss68hGii/8xZ+Ruy3DlDnJf/rk76KpBkeePoqmGmQsiQfu/wS/Yf9bTEWiXjjHyP7baLQ6jIwNc/TYd7Ftkb6shOMFXJxdZGwwx45RA1msIxk5nnp+genJMlHgIoQ+lYxN0jLJFksYCZO5q1coFNJ0aquoooeVHULW0qysLKFbOnpWZr5+lZcvv8hLC0+z2LxAzh0m7eVwlkP8Pgc5bYNrMT48wtlXn+VrD/8hyWCd5Ssz5FNJIj2BpOg9z9ZYQbjBSue9QcN/u4yreN1j+13HcFO2X7jFdzd+f6uv34nJ+OYYftxqwO/Yz/v99n1mbt/fuN4fMHyve/utwPUmcPtDA9efZFzfFn+Xgeub8uU3hiiK70gR/nGB1u/vrNxwYQqCgIRITMzihYvIYY2RPQfJ5PpobK7QPziOvHwcp9Pim8+fZGxsDNWw0A2TQr7AtWtXyOez1GsNhgb7eO3kSSZ37mJubp5Sufz/s/emQXal93nf733Pvtx96b69rwAaGAxm3zhDiZI41EJaUmTLdplylEpSqVQ5iausb0m8VCmRVJU4kaxYlhnLoSRKNikumuEmcvYdwAxmsA12NNDovft2913Pfk4+XHA4Aw5mhpLKJVfxX4UP6HvPOW+fu/T/eZ//8zyEkYflOkzP7McyFPZ2tzEsB9M0SLMUwzRBDDRGXq9HY6hOvlRka2OdxavXKZQqlIp5fN9jfHySvd0WY2Mj2I7FxYuXsF0bNJOzp09iaYIg9LEMlZXVG1TKVfwgpNPtsrG2ShwF5FyXO+66D0OXdDstet09Op02uu3g+SmKKuh3e2SRz+ZGk+m5Oa5euUCpUkHqFsXaEOfPnkYAOzu75IoFqrU6vhfQ3NmmWh9h7+nTDG+EOI/OgRCUCjniOEQ3XDIZkhktot0CYbfD5toKrq0iVIs0SdA1BT/wyedLOI6NrqsIFPwwZGnpBrqhIRVJv9+lWCyRJCnDjTpDjQaarqJpErKMtZV1hhsNkgzanQ5pknL9+g0+8YmfQCqCmZkZRhvDHDy4j1K5gGnaGKpAqIIojOm1u2RC4+ixN/hbn/k5bNcmiEJMw0IRClIOnpfPFwbNWM7lxIkTTE3NYJkmKYPNEMeySDLo9/ooZKiGS+T3UFWF9PwS+to2/PY/RX76x+j7GySpJAgTul6P5dU1qpUh9lpbWJYgzXSU2Cd47p+zo0zgJyrVagXN1Ol1O7h5F8fJs7a8jG2beEF/4AiramQkSBTiwGN8YpqXX3kVx7EHGkdVRVUVpDIwZXGLZcJ+n729NtvbA112uVwh6Ad0ej2WbywThQG+76PqBocOHcRxLMIgHEQRmTZB1OPKpQukIsUydfwwwvMDRhrDOKYJioRMsrm2xbVrlzBsm6GhGp1Wl73WHqZjc8c997KxvsrwyCjVWhlVs6lW61y9eonGSB0n7yBTQZZGZGgIFDrtFpcuXSfNYtI0Y7u5xdT0JDeWrvGTn/oZjKu7BOYa//Q/nmeiMcrG6kWuLd7goQfvYma0yPx9P4FIA1zLQVoFLNeh1ZVkCuQsB8f4DrqyijQeQldV0uQU3W4fwyyjqxndXo/o1W+QrV9DTu5H00wCPyLJMjRNv/kdJAl9D9s2aLdb6KqB67r02qv4vTaKkcN1Xfygg6YaRHGMqgz0rKZhkiQCMpXAD0FkqOpAsuA4NmEYoWkqnuext7tHPpcDBJbt0trdIY0CdNMmRqApkn53DyuXR1FNsrBPmsYoukkSpyASFEUduHcKBYQcOClnCb1uF217lyzNcOemQEjCwOPixWuYhoPvh9h2DkODZ55+hsOHD5HLO/iej5QqlmmiqCr9Xp8vffFLzM/P0Wrt8MhDDyCQqLpkZmoKITKkklAoVADBl774RT75+E9RLOUxTRWyDF3T0FWBlAmWHdAJ7ub3f/f3+N9+/TfIVcqsb2zzxNe/yj33zrC+sYuSwvj4JIVqlXzOZHttmX133MHe1i6/+zv/hkIhz2OPPcTVr3+XO+rT/ME3nuATP/4oq9ev4+Zslm4scvDwAZIkRSGmtbPNE91v00173OkcpN3pomkmQ/UhdEOl73cxLIMXX3iBl158mTuPHCbN0oHruSIRUtBqe+RLOYRqEEUpisxQNReRKaiKQafjIWXC6Pg4cRTR63dYX9/kscc+jm0bdLo+WZbR6/WwHYeNtQ2kkLxx/AQzc9MkSYJp2tx5/UGkhG/Krw4cXxWJEBLP86lUCux19shZJlIIen6AbWrEsQQhOH/uDI3hMcIwwdB1DMPkzNlLjIxO8Nhjj7K4uMjk1AyKppMJycXz5/G9EISKqgBSx3UcotAjTAI2m5t02x2q9QaaZrC6ssZwvcGlS5cZGRnDD7qMjAxTyOc5fLQFCE49XB7oUqWCoqSsr6/gOCbVeplCoUaWJXzpS1+jXG1Qr+fodlv4/R77Fu5ASDH4DEqFXmuLSr0B8r3s3Lv7gvdl0QSoGWwsr1CpVgjjiCyLKZfLZGKgKbQthzCMSW7qXcM4JpfLE8Up1xZvsLa6QrmUp1zKE6fxzZzPlGKhjKlrVOujKJpGvlIlUwxeev551la3OLCwD103gAzTzmE5JjvNJrphAgJN1dF1C11XabU7PPnkX2AbBsacxh35g/zM0OM4Vp446YLoEsUBv7bwG2Q7gm7+RTxy9PsDOVOaavh+wskTrzM/ViRfSJmaGEbgo4kESw7T7/VQZEy1oqBrBiJRySyX46eXuLa0hogTiqUS7X6bdrOJqXn4qUulPoFp6qiahuvmsCyT48eO8vC940w0oCOXyNkO8/I+Lh47xms7z3J5a4Ufe/wzjE/dzZsnV9g3VeOLf/QH1AyfsyePU3IMCoUaSaYiZfoDr9vt64cDPbcC11vZ+Q8CRO9mYL/vhHuLdvp9lnZbDe37PPa9960Q4vv5obcBiu8wuR9R5/nuc99uPbevd90H0vf09Lde693rupUp/cF1Sm5lUd/XR+eWz/atv+t7/i9v3Qx472v4fse8u95hveGmxvgvVz8Crn+DKsve8Qb//uQAf7n8qvf7IH2QsPqd5/OusQUEKQlKpvH1L3+O6fEK0hoiFgZucQTXdkmvv4imwNvXt7j3nvuwbJssBd+LuHzhHCP1EpZjoIqYe+++nzgNmZs+hFR1NN3AMHSuXbxIoVwmX6zQb3dxLZs4y0iCkDSJMVSFTrtNmkHU3qEXQC9oUy2VsAyJIgTrOx3ue+hBkgyCKGNqeh+WCblcnlKxQLPZpN/rkSu6bGxsMzs3hpsfJUlUxkYbCC3D9zP2tjfYbu1BnEAckssbCNPANMpsrV8i8yNGx2cpVYYgS/CimIKpkq80iIOA2fl9XDhzCkWzmdh3B2+/9QbzMxNEVoFarczQdxZRtvp4h4t4/UFDDSlSN5HoZEaLrFNAMRzKtRppktBpdajW66iGhd9poVs5tpstLMdlaXmZofoorm2gaAaG4Q5cGhVBkiYDZ82wDyIlUzVIM5qbGxTKBRTAsTWSJOPqlVWmp8fJRIqTc7EdG8/z2drYolous7q8CWmMbdr0fYGqK9SGinhhj3y1iioVNAFZGNDvtikUKkhNwzZVHEdjdnYSRX7PsEnBDyJ02yVNUyw3j5CC7dVdev02hiaxX3iL4H/97zlnJrz8/HNMH1yg1+uwtnKdyZEhqmNTnDl1jKrjMVKeIjMS+s/9JiLxKS58DFUvkGkSFBPXMIl7IZcvXWJkbJa93S2yuEfeySM1WFtfpV6vcf36Da5fXaRQLJIJiW2p5HMF3HwORYUsSgnCkEKhxHClSM5xGJuYZGV9HV0bOFgnScKhI3dSLrjYtsW5ixeo1Yp0Oz6aYlKsl4mTlEZjlGNHjzE+dxDXyeE6JlLEBNLixpVFDCnQFCjXqpiqQOBTGpmmu9Nhc6dJUddQBAyPDrN8Yw3btLAsh+WVVQ4ePoQmdc6dP0upnOfkm+fIWZKNrU1MXWV0cphyscS1y1cZrg4cPIUU6Bc8xPA6cz//P3D+6ivccegTFMsupeQGtbl5CrbE0X38VGFy/pNgu1iOTdEu0m33sbTTKIpKp78fBYmSHseyYpAFgizElEV6l15DShVj5jBSquiWTZoNMpelIlGkRBUZaTTIrZWKJE4SVD2PU6iDqpGRogiV0Otj6A6BH2CZNgjww02k1PH8LpZbRiCJwoA48nByOfxeB8vOo6Q+QtVIUdCljm7q9Dpd3KJJSh5dTQmjEEPTIE3JBAhFkkQeipAYpgNZCpmCUGLCwEdTc3jdHqaVI1leHeRRT4wSJQJTt3EMhVJZJYz72GYBoUrm9u2n0+thWwZhGKBrCp1OG8vJ0+922LdvjvpQHcd1EEKy1+1imw5JOmDpNN2g2w25cvkyy9evcfDQQcLQRwqFE2+cgTRlfWOd+lAdRayQ5X6Cgh1x9epFpmcPYds2zzzzbR5+6F4q4/vIFRpcvnwBr7OF32tTLJVwKhXiMMXN1VjfaPHP/8Vv8usH7mT1hVfo33mIyYkyZJLG8BjV4TK2TPCzBC399xRzVwnXHqGZrjNsVNB1l2efeYHhxhCqKlC1DOKAxliNO48skHPrbGyuMzw8TOB5GIZOsVRF0QVRLyIKQxTdxJAJe61VNFVDagEXLyxRb4yhKhLLNBkeHsawTDIhsEwTTdOx7BxhnGFaNpbjMjwyim5YWHYOUBg/OYvIUm7ceRbTMPD8Poqi89JLrzAy0sDULTa3NggCj1KhONAsC8FzzzzLQw/dQ5QK3HyBpavnSKXB0999gUMH53DKJTIhECmoUiEKPUZHx8gX8tRqFQzHRaKwub6DU8jxZ1/8Fg8/8hCa4fDKC68xPT1OvdZA13MUi3mef/YZSpUimmpw+vQFHjjpYZomZx+rIBUdISVBv41lujhOASk14jQg7+aYnZ/HtC2EFDj5Mm5pCJHFNJs9DFtCKjENnVwxT/quwcLbN8kZGWIQX4eK3+7S67TRLBNdE0TtLTTbQaQBu3td1tf3yLt5vCDmwnI4V9cAACAASURBVOUVJho1hGmiSEmpXGZqeoq+n7G+uYmh6jQ3tynV6iRJwm7rOjnHJvQ6NLd3UBWVqelZdENBkHL9+hUuXLjGxPQosRcSp5DPFwemS1s7uLaC50ssw8S0NYaGazRzTWbscQ7357AtFSGgMTKGvudiPT2Bd2CNzL/BejtDUwyCKGZzq0ljZIicuoaWeZTqDUh2SRMVRdWICZBKhmOBqajs7nSw8hYi9LjShKFiDadQoVyu4LW7bO+uU3JUDFsnUcsIobDb3KS11+H5514lCGIOTVuYmodpC1TnAorQuCP30zRin63jbX7v3/5DHv2Fv4t26A4WFh6mVv84e94GF174Fkef+zO+/e2/4IH7fgE9i0ntgQHerZTHD/SFt4nGGTw2kJQN5KY3gZQDcipF1m8/Tn7rxoeiKO8Z4RU3N6vSbKDVve1464f8e8879J0HxM13qxg4xmfvP+b7nnWmYnCCTPBhethbQfbt1vOe0WAE747k+bA+//0A561r/v51PuLGgxQ/gDluX7cfgr71tb11fd/DI2k66Df+KqTbj4Dr36D6KOZMH7VuB1w/7JgfWJOEOILjL7/MwYXDWOVxNMOmtb3JXmuXIf8SSehTm7ubY0ePUygVIMtYXV7CtnSEAN2wiZIYRbVo7m1z7doKQ0N1dEPHNC1MwyBKBxEXge+TpINInCDwubG8gpvLkWUZQRBwY+kKm1t7TEyOcfXSNYRIUVXJUKNBlqXomsHZM4PGw++2sW2H9ZUVvG6bKEqYmZlCUVR2mlt0ez4XL52jXLYZG59i5cYa3e4u+w8chDTDj2JmDxxCpjGaorNy/RKVQpHt3W322jt4ocf07Dyd3SZStRBpQhhGGJpClMRUinmSOOPlo28wMz1FFoN5bJlsp8v1IYFu6DfjCTRQFCQaqB6KleDvWIRhzPraOpPTMyiqxssvv0yjMczTTz1LPjdonMdGRmnubCNI2dze5k//5D9w3/33EIYRlmGRJgOTJK/vkSLJOe7A4CLLSOIYVVPY3d3j0sWrnDv3NvP3bBNlV2htFXn+uec58eabFHIF/DAYMNhS8idf+AK1amkwamy5CKESRQlb2zt85Wvf4M4jd/H2+YvUG3VMbbB73On0eOJr3yBXLNHcaVIuF5BZRpaEKFIhCkO++a3v8sCDD6CfuUJWLRL8t7+E6zgcPnwnhu5gGS4TYzOo0iROegxV6zR3N9D1Kpunvoy4+hdokz9JFEZkEbi2QGQJqqLRarXwgoCh4SHW1q4zMT1JhIbf7zI83GB3d5ehoSFMXePQoTtoNIZwXYc33ngT3dBwHAfTtgmiiJNvnWR0eJi+79Pp9piZncE2TSrVKsurK7iuy8XzF6nVqwwN1UhUlU67R61eRcoMRao39ZEKhXwBCYSeR+B5aLrKzuYGwyMjrDe3yOdL7DR3UFSFnZ09HMNA6hq25ZKkMZtb20xNTfPWmyd59dXXGBsfY2xiFCEyCoUimq7y1FPPAwl33XMvk1MznHjjGFGU0fNC7FyBRqNBsVrB3TEIrEu0yj/FV776PJbpcP+DhyjqPUam51ldXidfnMMtlun2N8nSDFUmCOGxtblIqbhOksHa9iRh6FHOPU+SDoMwSVMI/A7BlZMoUkOdOoSu6/T9PpqikiYZtmUPpDlkA42joqBqOoLBZ2R7axvXzpFEISQRuiYQikaaJSRJDJkCAlRFRzc0VAlpGqEbOmESo0gFRUg8P8C0HVRdR5GCLI7x45C8myMjQ1EMOt09HDdHBrTbewNNmqJBJtne3sK0HKSALJX4gYdp6CRJSrvdxg9CtOYOWZZCYwipqGhSIBVA6BhmjigKyVBQFImuq2RJilQU+n2PQqFAkkIchTi2hapKdM3E8yOefeZ5JsbHUBSFN986QePmNMVLL75IY7jO2toqo2OjGIbBtcXr7JvfN3BLVi0scwmv3aNS+jhH7vkx/u/f/j954IGHmJqapFhyUTSBbVnUq1W8SGdibIattV0WL2+x27rMvv1zDA2X2Npe4tBOQKVa5plwj82tFR555DEMw2Rre40TJ95g/4HDGMopPM/jX3/tBNeUqxwY2kecdZmensQ0VJI0QFPz9Ds+puWws7dNzi2h6tDv9bBti1Z7l1bLx7IM1laWefv8WebnZ9nbDbAdF00vIqRCvV4BkRGFAVJKwiAY/P0CFJmRpgmaqhCGAaoi8L0+lmWQpRmdVhuv73HX8oNIqXB+3xl0YzBy6zguhUKBTqfN5maTWrVKoVAkSyWrK2uUCgWq5SKqoiOFwdlTb1OvVrHzedqtFjPTU+ztbaNKiWk7JCkkSczOzi5ZlmFZNoIIz/MGhk2qRFUMikUXrxcwVKuTkXD02HGGhkeIY4+J8TGkOtBmv/7G6zzydozrOpx9pILIMtIkZGV5g8XFJfK5PBCjaQZB4KPpKrZrEfT7qIrK9cXrg1gqoZFmEapq4Pd9dNtBqvpH6h3kzWmD3c3mQIuuqvS6HZaWFhmf3ke32yeJfOxcntXVDRRFYtkmFy5cxLEVDMchDkN03SSKAkqlIpVyAUNXCaMImUUD129VkiJJknSwEeHmyNIERZFUqzWyLGNmdg5D19nZ3mWv0yefK2AYGrapECcJUQJ/8O/+HZ/4xMeZmhzjrf4phJfyq3P/AADbtgmCAOM7DTTXIMg16W6t4qU5RkbGEFLQ7vR4+cXnuP/IBK6hEsV9NEVDKioZCdycmjMMkzgdmHIJkZDEsNb02dzY4uAdd1IsllB1g9GRBmnQI0sS7MI4126ssLBwJ07OYnTEJk02uXB+g+mJPKqmoFEl1BfxI0kj/EnmGkM8fPhO/q8//p/48v/zVY4eu8wnPz3Hkfsew5m9h8nZwxwZL/HcV/8la5tX2X/gflANxK2ysA/sD28Fru8GJzeZwDrvgNaPUu8GOu9mWd957COf6YPrHW7wHXJGfJ9N/bDR3L9k5M0H1/vfyw884iP08z/4+n004Pru+/OhR32ECJ532OzbXS/LfgRc36/+cwSutw1q/iuc89Y3+UfRzd5aQRrht3rUKyO4hQrV8Xnq9RoKARfOn6GhdzB0jWZocub0Kba2Nlldvk6tVsHJuWw3d7h+9RoPf+zjnHjzJJ3uHh975DHCOGB9c518PkcYxRTyeaSQBFGEZuiEQUAYhgyPjtFs7pDLuzjOwEFycXGJ1l6TOFYYHx/D67epDw9Rq9fZae5SLldo7TWpliucP3cer9cm8npYuSJhFNDp9lCFJIhiRkfrtFtbZInB+voaBw8t0O14RFFErlLFLY8QRzGoJoXSEP0gIOxHXDp/iX0LRzAtYxCV4ZZ4+6036PkRo2MNNjbXaK2v0OrHXLy6wp0H5lheuUbh1DZaJyb/+AG2t3cQCM6fv8DwUBVVNcgyDYw9VjauYTDCyy+9QrVeIwh8LNPAtm2q5So3lq4xNTmBFAqWrZNkgkqpwujICEkcks8X2GnuUczluXTxImMjowRBghDynfiQY8eOUy5XKBUrHDt6lEKpzNSBLnHSxVaOMDkxgRCCe+65m3wlj5vPo2oa9997BMc2sU2dMIi4evkam5vbjE9O4xQK1Kp1VG1gza/rBkJoXLx0hQcfeohKrUa9VqXT2h04sfa66IaJqiocuesIV89fpvz6Obzf+kc4ozUq5TK7rTaFQkKSeqxvrBAmPgXbQFEculFAlukoL/8z5OijtCKNN48fY2u9SamokwQ+KSp+FFGr1njj9WOMjY2QLxZJhMrW2gr5XI6la0tkacp2cxvLNonjiKuLi5TLFUYaw+ztNpGmOYgZKhT4xje+yaFDd2CYBnEUsbW5SWWozvBIg26nw+5Oi1IpP9BqOkXqw0P0ex2OHz3G3Owc3U6HmdlZXj96lEI+h9/3CP0QVRWDiAzXYWhsDN8PaQw1eO3lV5ieneLUG28xNT9PlkJze5N9Bxe4unidqalphoeGKRQKFEsFFAWSOCPNIu6+6z4QMDI+wZ/86Z+iScmhw3czOjbFy6+9NnAh1SV71RQzXONzXznFP/xvfp1XX3uOfFHgiBb3P/oJRCZAB8NtoCt59rZSttb2UFWDSrWOqpwd7JibD+IaaxjKCVrdERRVQ5UKve4GYuUaoJAO70PT1UEzrer0ul1M0yRNk0HzpxogVaSAvZ1BLIih68RhTL/bxjQ1wtBDtxx838OyTLa3m9h2HiEydF0j8vv4kYdumGRCRxEpmZCYpkWm6Hi9LpoCntfDcXMDDWqckiUempUjSVOkoqJrkiy9OcYcxlSrZTIE3U4bQ7dJkgipSDrdNvlcnpybJ1ME5lAV6booqsrWxiqqYRAnKrpmgEjQVBMhUoLQQ1E0FEW9KY+QiCxDt0zSOCSL+nhBxrf+4ruUXIfjr79OuVzh8OHDhEFIHHtMTkwwOj7K5OQ0u7t7gKDd2mNsfIwzZ84xMzNPHK2iKgZ/71d/i7//2b/HPXfdy0/95OP84i/8EtVqGduStHf7dHt9pCOx7QTHylhaXCFJVE6fvMydd97Dfffex/aff4sDBw5gP/5xfvwTH6O11yEIQgpFB810KORKxMGrWJaJPv0QG84G3RsdJibHkEIniQW6bvL660e5cP5t5vbNYrs5skwQR30s04EswXVdDDOHpkt832PhwAFURXL0+HGmZycIowTVEPS7rUEebpbdjDRK0QyN06fPUi3lB5shUtLtdsjSlHw+TxgEaKqOqqrs7Oxy140HabU6LN5xmXa7RblUJkmSAetbLPHdp55jdm4OIRV6PQ+JwtXLlwgDH8vRsQydbmsHxzVJM8nBgwexbAvXNrAth6eeepbR8Ulsy8B1cyRxShiEBH6LYqmEoqkkYYDfD3Edg68/8S3W11dxHIdDhw6zvHKDoaEKO81tqrUGiJiRkTEePTeQEV16tIquauzubiOFTZbB0FCdlPAmqwxB5BPFAXnbJUtSkjhiZHSCb3/ru6hqxujIJG4uj+G4fH+o74N7jDhKUBCsL6/g9X3ae7u4tkmxXKQbyUH0UhbihzGG4fKFL/whH3/sESq1CpaWIVQTx9RJokGcTRT36ffbGKaBVFUI+4N1RwMzPsM0iZMYqWkoUmAYBt1Oh5ybIxOS9t4u7VaHM2cvMj0ziaGrBH6PNFNACObmZ3FsHZGlHOu/Sawk/Er5l9nb20PXdZSLOYxTdbIFnzTcobm2jk+O4eERUplhmRY7m6vUiulgA83S0VWTOIvQdJX0JmgVUqLqg+mnKAiIM4VapcLi0jYLBxeIkoxyqYaQgnOnTlDNawg9R7UxSZQGRH7A0tVFdEUjTGLG6hamqRKzitQcAm2F0F7ECeYo9R/lSO6n+PkH7uds64/45tffQhrjzB5oUHXGefLPv0Z5wmRr6Tw3Lq5x5P4HSW8dzf2A/vEDwVb2/sd/0OjorWO23weut73iD13vXF9+H/RlNw2b3lnTh4DGMIhQb05WDHD1Xwecvv29/KB79sP42Qz0wx/tue++A1IO/tZ9bw3vy8K/d/E/eL5b4oveb23KzXv6l60fAde/4fXXtev0ly0lkWxfv8rixbPstHcZaUzS7PQwXZf+3goVS6KQ8erJy3i9Frm8g2MaTE7OMTYxTblS4eL5M5TLVTRFpVq2ae/uUBseolqtIaVENQy67TYC0B0LKQXddodytUIaQbfVprm1Sd610Y0Cs1NT1Gt5lpZW8aM+rmnQ7fkMN6rEUcbO9i6jo3X6wSDgvFYtUCo4IG3iNOLtty/g2jbjE5N0Oj1KhQrLN26gqBJFM6gPjdPrtW+aROmsXD1LLqdiqA5J0qbT80iiFl7fIwpiLl64yMKRu2nvbjA7N0dzd5csTUlFxu7ONj/22MfYabWZnp1HffU6ylaPbLSEt+UjOwnzQ1P0V5qYiUna1cgmhygVehi5iP2Hp1Ail8jvYCiQZilbOx32H5xDMwajjv1uj1OnL1KvDmEYKptbG2iKxvHjJ5icmcBx83S6Hn/8+S+wf2GBXN4lCQOGh8d46eVXmJiY4P4H7mNkrEGqXRzsZsuDCJFRKRcHWjORkkaC5559jrn9+1E0lW5vD9vUqFYaBGGXLOkzPVEjjGKioAdJipOzSFPw/ZBKrUB7t4njWgMAYbvobpEoiujsbhNFfdw3LyHvP0L/pw9h284g+7ZYZmd9DV1zyOVrZNIBBbyepNlcIb/+DOnuVdyJh1lauoFiWqiqw5tvnWD//sMEUUR9eBgQTE7O8vUnv4Hf61EpFdBUlZWVFeZm5+l2uhTLdTrtDsVcjkwKfM8n6PexDQM3XyAmQdUVZqb2cer0acLQZ2V5iXKpjJFz0E0Dv93l4J0LXL92nbfPnOPA7CxpGmM7DidfP0uv18EPfHKFAsVSju1mk7HJKd48eYah0THq1fogn1RCc3ePvZ0d0jhiZuEQaZTQC/psLC/huDmKlQo3bizT2msxNzfHyuoK9eEavt8hiRmwfAieffq7HFjYz775eWbm9nPhwkVqlSKqSGi1+2ysXGd6cob2+hUKyh7/+P/4D9x99xGKpTwVK6SXBmxtLjM5Mo3bOExExuWrF+nFHqMzM2S6SdJ9HtPQUZWDaOlTg+gYfZQ4jkjiPmEQsP3WCXRDwZy7AyEkiqoj+d6ufUKSRHT2NtDtHBLo7zYplsr4/iDvUlEFqqaTomLZBZIkJYkHDEwmuhhajijuEQYJul0gDDx0TSf2UlJiDMtht7mNpunILMLze1j5CnEUoRoqWSwIgw0sq0iWxAN2N1MBga5rCDFwew/jAYOXpj5hGCFQcN0cQmTsNHfok6Ln3YGmkRRDVyDTIOvS3F6hnK+QygH7ZhgWGZIsgyQZjOV5nRaqaaEpCV5nm6888RQ/++mfoV42uOvuh7Esa6B3Nk1Cv4dh2pimjW3blEplms0d5vdP4/XbSKHy5ptvMjpawjADPvO3f4cLr5/BdE0ef/xn+Cf/5Nf47Gc/i7eX8rv/6nP83N/6NFfOncdUU1ZXrzGzcB8H5vfxO7/9r/jMZ36Wz//Rv+VvN6ZYurHMP/7iV/ju03/OA/c/xG/+xm/xycc/QXl4kn//rz/HA/cPpCb/y4UnuBpdp+GPkGTRAKAbKlHsMTU5x/jogEFMGZhzdTs7fPPJ73DkyH0D0y1FsrR8idHGNEmcEHgBE2PjdDq72IaD73cxdAOimCgRPPvsc9SHykhFMD4+w7kzb3P+3EUmJqbIMkm7NZjEOX36DMPDw6RpimGYTJyaRwrBt8UTkKXk80WeePJrjI+P8vnP/zGf/ZXPopsDhl8zDJIsxjBMxienUQyLfq+P5wVcW17DvSkB+drXvsb+hXt4++1L3H3XXZw4/vrAKb7Xp1Ku4AcBX//6U+yb288bx45TbVT44pe+ykOPPIQfJNx772GqtTqtdos0jVEV2Fhf5crVFeI45Mrla9x/0sPQDc48UmBlZYtvfesp9u2fxjB0NF2CSIhvjjy2Ox6FUo0ojHjhhZc5eOAgnX6budl5TFtSLBYJ0wTVUG8a+XxYB5KhSYW95g59r0ttuMG5C+eolHPkiiW81i5h4KGqCYbpEsUpBxf2EwV9pAZhr4VbqBN6bUgEp0+dolwq4LgOe60OuXwJTTdQDYVTb12htbeHfXMyy3VdPL9Hs7nDl//sK+TcAi+89DJzU6NopmB6rIFlmZx46xRDo1OYuoEXeZRLJaSi0Gq3OR2dw8Tkp5Mfp1arsbWxRe5r+7ghrlGYqhHuXUdkISOzdwCSlfVVNCnp723RqA7Gvs9c3mVo2EWkEUmWoigDdjeOE0SaEsUxUskTRBEmPr60CYKYUqHE+XNnKVZsdNnBUX1iIYlig8gLSKMYRRHkci6ba9eZbdhESYaujLB4vcvaasbqyjLlmU0ic42inKYWPMrHG5/iUHWIF8/9Pm75MIHXR2g5fuLn/msqw/dy9Jn/lxeffZqHP/ULtwWt8EMA15uPJWcl2ZZ4h3X9IObttvXXCFy/f6Jbgav4yMBVe9fUwX9KxvX92NSPClrfyaj9qMZJty7nNmsY/PCH8kt+35JyMA7+I+B6S/3nDFzFLTLXv2q9n+j9dkLy92NohaLxxBd+j7S7TsE20N1R+uuXOf3GUaqTMxSiJr2tG5w8c4FP/uQnqJUr9Do9zl88R60+zur6CmONUSzHRjdcxsYn6XbW0S2DMInJkgDPi7hy4W2KeZcwTIj6fcqV6sBNU8S4eQfXddhcXR6MGKgJmRC027sUXQvSBDfnooiUC1cWGR4dRxMSRQraXY+eFyBVHb/XIe+6HDo0R7lY4PS58ywcvINer0NjtAYYVPIG7fYexWKJdrtD1O+guy4yi+n12yiqy9jYCFkqkQRomoGVKyMz0A0NP/ARqsH68nXsvIuUg5l+KXUUIbFOb5ABslFCFyoEIbEXomsqcWcPtZmi/n9vIPomyWyKKCpIfGRYxMmZ9Do+cZyQZSlZmtDrtkmiiMD3eOGlV5mcn0FXBa5jMzk5R7vVxDJ1XMfk8F13sbOzzTe/8Q0OHDyE62qUh2rYjomUCbpqE6sXBnFM4ThRFGLoOttbTdIsJov7zO87QBb12NvbwrItvE5Eqkgir0M+59D3EzKRkSvkUHSX0A9Jkoh6vUqSpPR72/RaW6wu7VCtD5oTN+fSbLbIRRH2mUX8f/lr5BtzLF86Rb06gucLzEoRoeQJohjHBi/QKFh9lCwieuk3oHYvme6CiDl36hzVSpEHH7ifNPNxixW8fhtNkezu7lCr1YiTlPWVdXrdLkKRVKtltjfX8XoB5y9cYP/CAotXL6NIheWVVfZanYHTpt+DLBmMD+dsqrU6i5cXmV84wE6zSd7VKRcMtnbahN0O3W6LcqHG6to6qqYwMzVCoeCQz7n4nS5rKzcgFbz00stMjNRpjA6jmDoIiZINGqDayCgkAUJIri2vcHDhEF7fo7m2ztBwibXVXVqtPcamxxgaaZDKgSFI0O9hmi5ekLC+vs3Q8DBvvP46jUYZTZUICXGcUiiVmJ1b4Nzbb5MzYmxTcvcv/QvGR0aJr5yhfDhhsngHilECJ4/jFrlw4TR3HrqbfM7B1hXaO+sU3UuocgWFo6jKMlE8j2aWiAOfdmuDem0csXYZyPCrExSKRVRNBylIs5QsBV3V0S2bJEpI4xhF15BSo9ftoioJMglAUVF1izRNUVUdRYVer4uhF1C1gbbbNG2yTEERCUmcoOgmGoIoirHdMs889QJTM7MYhovIJKpuQgpZFiOUwdi/MBySMCRJPNIU0kyAhDgM6fdaKBIsXUE3bFTdJFMyQMW0TLI0wTRNup0OpumSKZIMgW7Y5NwSCaCgEIURQRCgiBSpSlAEoedjWDqaopIkGopeYGFhlpxTJkxBUxSCMCCfG4yLKyLDtC0yMjRVodvt8OqrR1k4sB/VctAVneHGKLpTwFSvI3icfKnCideeo16z+B//0X/F2o1l8hWDBx55AM8PKNWmuX5lhbQfIPDJV1zuufcwu3ttpqf2Ub90jVKxQvTwAX7+53+OyalRPv2ZT5EkMSqCf/MHn+MXf2GSJBN8fvssu0mL+yp349gOqqYhpSSKIp588tsIRZIv5DAMdZCPG2fsm5/DD7tIodDr7KApEsuwOHXqJBMT8yRhH6/fwS0UEFoBKSFOFG5cW+KeexfI5apkYvBd1Ol7LNxxB6pmoOoGL774CorQObSwwMbGKmmW0e/7/LPX/2eU/yLjmWe/y4MPPIDUM6YmZzDNPPP79mO5OnHkE/k+rZ0BSxqFCX4wYPx13UEzLIaHh7ALOaSQrCzdYHp2no21Vaq1MqNTo/zZn36VBx6+kyzTcHM59h/YR6fbYWKsgaob7FuYJ+faKFnIsTfPMzczxZPf+CYPfOxRsjigNtwgXypQqQwxMTNJlFNZnVbZrhmUSlVef/04jz72GK47uNdxAqpmkmVgmzppFKFoJtVGlTiKOH36FOVqiUp1mF7fJ45j7JzL+wXy3Qp0BII0Aa8foGYRluNSHR4amAGqLn/+1a8zMz2Km6+yvtEmilLyjiQKI/K5MkLPITUFkcZ0gi7T83fwB7//efbvn6OYz2OqDkma0OrA4tUbPPbYQ6haxgvPHyPv5FHjPmkmmVy4m5WrF6jWh5mYmsCy8hhOniwVbK5tMjo+ht/ZRKoKQkhSIWi1fd6Oz5HTXP7L4b+D5+2SvziCupnnrfZZpqYb7K2cQbjTmHYOFAXHNlnZ2OLk0deY3VfBEAndbo961QEhiRQNJY4IEgVTS5FJhm6a9DyFZ1+5ysFZl63NPkPTB6nXJyjWSuiKJIpNZLBEu5MRpRrFSh7HzWHnyjz5re+S06HuBmx3M86fu87sVIlaJWV0vEa3l6HZHrFzlUC/hhHP0kge4XB9jme+cpLX9q7TmLXore+wvhFglS3WL51k4p7HyRk2poRIipsbiLfrH9+ldxXZOzrNd7N60Zc00mvyB12F36Xh/LCu9oN633ezkZl475M/8KzZ4H0qEMgf0F0yYIy/5+3yA8Ds+7/zB0VBfVi9p98Wt9zLW36/713jw096q1b2Frb2AzTK2S2HvXPP3web/7CM64fdnyzLkH8FYyb4EXD9m1d/XZs676rbjXF8FOB66c3j9DaX2NvZ5VM/+xludFpceOsZ0nCbvFvF3LuCCNoIo8DozAHcXJ4L58/R9/tcuHCZneYaoR9QrpYZn5jme18hhqLh5msEkcTJW4xNTqKbFmESYRWKZFmCogjiOCaMM1TNQEqFdqvP9WvXyLsFioUKx15/g2KpTL5UZXV5lfse+hilcokL598inyuBUGgMNfB7PtevXSUIAnRDIwx8ZmdnOHb0KFIqWJaDbuUp1UcI/S6WpZPLWSDBD1WGhhpsbG4yNzfPW6dOMzs3R7vTpdncojE6yubWBrvNJlIonDl7jnvvvRdN08i5OWzb5fkXXx4Epy/6iJxF+KuPcMWJ8LqvqgAAIABJREFUKD52kO5kAeeRe2nWJe6n7sZ/bD8yU1Cf2oC9HcR4hLyxgajtw/iJh/hys8/UL/0slaW1gfOgm6NeL7Owbx7TgCQKsN08mm1jagO2qNlsogoYHqoyPTGBpkpURccwLHRd4/q1q3z5S09y5MGB8YuR3UmWQpJE2LZOLlem2/V59dXjpF4AQsHJFUkyideP+ca3vs29DzyE6TrsbKyRJglZEiOkiu9FSKmgaxqWYSGQjI0P0fU7BD2f69dWsf2Y0qlrPHtkin2//IuEUYBu5/DDkN3tdVY2NqlWipiaSru1y7NP/jGlgsre5ecwujeInSGeeOKb3HXX/UxMTuDmciwuLrK4eJVvf/sp7jpymCgKUBSTaqXKyy+9wvBwg+F6g6mZOYIw4umnn2W4McL8/Bxnz5yh0/EolooMj9S5cvUSBxYO8sbxY5RKZRzV5fTps8RZxsLBQyxfW+LSlUWmZmbpBz6W6XDs6An27TuE7ugMjzUGY9OKiW6Z7O3uURtu4Dh5RsbGabU7FAtFdEtH1Q2EovDSiy9SKboUC3l6rT263TalYhFJxsbKEvsOHUSzTUZGJ6nWCgS9Lv1eB9vRSZME3+ty8tSbTE5OMFSrs721RbVawXFctrd3WFlZZXZ2jly+wBuvn+BjS1WcOCQptvnf//gcRUdS1s5z5wM/TWdX4DRUSqUpNrd9JicnBqPV29uYponvhRRzp0CExMlB4mSKfhgjCdneXKU2Mk4QxqRL51CkILdwN2QZWZYAEZom2NxcR1EVFN2k2/MxTAtV0/D7fY4dfQNF0TFtFVXTyLIURRGEQR8hBZbpoKoKcRyhSJVutwNCoCiDcS+hKOzubmEYKoqiMDo2gqoLFGUQu5VlHp7Xx7ZtwihBM62B7jQNiZIY284hhCS7maFnWjZCGmRpQpLczAtEkGUxSRyi7O4R7O6Sb4wAGXEYoSoKZCmB75EkMYo2iGNQFUGSDdit0A+wLZso9oCUNI2JkxAFULWAoB/wyqvHWVleYWiogW07DGLEDNrtDv32Lmma4fkRteEGWZbQ7fS4euUCrm3iOltsb1+hH0wyuXCE4lCDTpgxNnOQsNsiJeX8ucv8yR9+jp/79Ccp1KrY1XGyKGRvt8vw8Ahvvfkmd3UCXn75VQ79d7/C8tImjuPiuCa2o9ANY/7+L/8dkuA1gn6f/7h3gz4eh3P3oOsZvu+hSI00UZjfN83IyPCgOY4Svvud7zA5NYWVc9FUFc/zURQFyzbJMkm5UiEIY4RhYBgGggzSmNgLCeMY5WbUUZooqJokTQS2rmPeNDPrd9tYlsX+/fOcPXeKodoQURxTKleoVMpYpsHHPvYxNF1jbXkJieSP/vCPOHz4IJZlkSQZqmrytT9/knLBJY0jVEUgFY8sjeh1d8kynyRMECJldv9+Mk3j6aef4tD+AzS3tnDcMnP7JjEth/WtVUxV5e0LFxkaHkEgcFyXJE1xHZfJqUmiOODQoQNIkd58vcVNB+0uQgqiuQrthoVh5ZGq5O57jxD4MbpmsLi4OHD1zRLiOMQPPJIkwjBtHNug2/WYmhij3W5TLpdQVAXTMFEN/baOqu8tSRz4dFs79HyPTq/z/7P3nrGa3ueZ3+//9Pr2dnqd3jgzIociJcqiKcuKLWelZNebwIYTrwMb+bBAgCBtkyBB9ks2dtZJ4ASxs7uyV7Jly1a1RLFKFPvMsEzvZ86U097znre3p+fDe4YcDjkUJTuAAugGHhzg6edp73397+u+LoqFPJKQiJKAfft243lddMMk7TpcOHeaYiGLnXaobVbxB22SoIsQMZap0m7WefTRR7Adg/6gjaLG9HotdNOgmM9jqD7d7hbP//BFjhw7iqprqIpEJpthdizD2OQcCQlnz55jeqbM6upNGo0tTp48wb59h1B1g6Vr1zEFeIMB19QbmLLBfzr7O5AIoj+vMEy12PngDpSkRW39OrfXh7S6HVKui4xg6fwpHjs2TiZnQiRTLhnEQQwiRo37NHsO333+Ertn0ySyDiLE0BN2zuYJwiG1nsSJ4+cpF1OUKxWuLa1gORm81hIxITsPfZp2a4Asa7zx5gke+cQxWrWbyKpMPq0zPlFEFiG6LhMnCa1mE9PUUFUNP+oxNC8TSAPSrU+yY86kf7VKN+MTyQGf/MxjmEqGVvUql57/MqWxSYyZgyh4iPfJNX2YbY14Xx55XzucD6jO/l3iXkrxR93rHQrrh6rnfsR+058mfpLtPtq6P0mv7P0v2P2OdDeV+/7H+OmuhST/3dxQfg5cf0bi3cbx+0cURR/NuPme/f64+R/0It9pXn/6m1/HMVSmF/YQ6Rlsd4rJXAkiE8M2KbZOIQU9nj95kXyhzIUL5zl48CDFcoFmvUV9c42JyUk2N2skScLbb7/B9PgYrXaNgT+qxvX7fRw3RRQLFEngh9421SGhXt8im83x+uvHuXThAulMFse1GA6GdDs9thpN9uzZjWWn0BQZ3XLw/CGWoWBoGs88+xwz09ME3pBBv0s2kyWKfJrNBrqm4DoOhu3QrlXpt+r0e136fsCw10ZTZSJJIgpi3IwDccjN5SVs2yJJRlUdf+jRbLcZG5tg5fYahw8fJklgo1qDBNKpNLIsMzU9Qxj6TK+OfAqlT+xifHyMiITLl64SRT0y+TRGAs8ev8LcL+xD/cUD9KbGCYYaWqkHW7eR/vB7HDtxAePVk4RqjDpbIjqwi+6hacS5a/T6A4qFMpIsM/A8rl9bIp8r8NWv/iWHHniA1dU1bNtB1w2Gg2Ck1Bx45LMp9u8/QqJfRUjwxisjICXLAsPQQFJ57fWTfPpTn+Ltt96kN/CYW9iBbio4ukZ5fALdNFEVhdDzsC2X3qCLrqtcuniZM2fOMjM7gSRpBF6CaSvEsUomneb293/E4u0ag9/5VXb/N7/N7bUl2t0a4+V5/CDgBy/8gEc//hid1hbEHpZmIgUyZrqCu/oCIo4x8ztJpdKoeoRhudQbDTRVY21tlZnJSWxTJ44jFM0gjiJMQ2dsrEIcxaxubJAt5jn64MdoNLYYDPo4lsXa+gbpdJpUymUwHKCpOhurqzhuiuXrN7m9usLuvXvodtsMBgNm5uZQdY36Vo2Vmyss7tzJxYuX2LVnJ5KI8P2RCM3Q80jCIbbt8szTz3Hp8kV27dlJJp3lrZMnyOcL6LqBrumcO30aw9BZWVnHNDWELON5Ht12ixiBoqp4A5+by5c5e+ocBw4dYDjsY6o5Qi+kXBzn9u11qmu3RxUYSWF1tUohX6BUKrO6soKQZLa2ttgV5EAJ8LNNCg/+Hk98ch9XLz3Lw4//JhfPvI6V1kllprDcPM1mnZTr4DgucSTIZAo0W1v0B0OQXJJEwtIt6rUqpdIUcTJKfkS2jDa5QCQbAGiqgqqYVNfrVCpTKKoNIsSynFH/XOgjCcGtW7fZt28PYZLQajRQZAlNt5DESHgnikbUakmSkaRtAKtKdDvdkX2OPySbyRITE0cxhqnTbNWRZRlNMxAEqIqG50dYtkMYxcjSSCAkTiJkWaO+VUc3NLzhEMMwkKSR4nF/0GdjY4O0m0UIgaKo+KcuIHUHxJUimioThxGyJOENh0CMrikkiYQkJBqNxoiRoqgjlVxFRsQjsR8hVBRZ4423TlIspokjqFQmsR2LQiFHr9dB1VQUVeB7HvlCGUXVKZZKaKpE5A+x7DSOa2PbGtAZ+aQmx7AcG1lOkGXY3Kjz9b/4Cr7fo9vz+MynfwEv9lBNk+MvnUSRdf7ZP/vveOSRRzh27CHkV98kimJe10KOHD5KGIZoukwq5RCHgnarhm1cxDQN/mJrmabfIrOZJk5CDFMljhKefPIZxsfH2Nqqc2P5Ful0ikKpSDo9EvgLw1FF3bRM/MCj3epS26qRyRVQdJWrV65SKZcJk2hkb5R2MHQLVZe2gZtMY6tBJpPl2WefRdc18vk8qXSWMIooV0rIQiGOE0zTIJvLEIU+QkC31+X5557n4IHDyLJCsVSg12shyzogsba+zpEjDxBFCV/7669x5PBDyMLgypUbVCoTKDLIqhhV/oG56WnqtRpr6xvUthqkMiaOmxkpSSsKYxNTI6GhRKLb66NqGv3+AFkG03bQNIXa5gbu9ja+N0BVZDTDIkpiGo0Gum4gSQlxnPDNr3+Hp597mrWVdXbs2IkiybTbbQqFAggJCei0t8hkixi6hOvY20ItCYqiIqnKR7K3IIrod7uoqoKbzVHIZel1u8SJwDBNkjgkl82SyCqNxhZzMzMomsnAG6n4S0LDMtME4YhRkt728q3XW/S6faI4QFPNbeVgELGCH4Z86lO/hKoZhHGAZagomk69uo6dznLi+JtcunSJuZl5DMPlb7/3NOPladq9LoVigWIxT6/bR5IlLstLWLLFb+T+EdENHfNsEXlPH1VXaa1dolbbYs+hx6iMVQgCn/NnzrG+usyueYMogjjxsTSTOInxkxiRCFQthZ22KaUVghhIIgQRZ65tUsrk0GyLmytdHn30GI1Wn2vXlti7Zxe9xiqEbc5dXCZXmCKVSiFkKBSyPPeD0/hhwNiYStqxGA4GI9VdSZBJu2iqShjHtLpdXnmzQakSE9lXyPUeY2Yyy/q5Hj+8/Ryvv/oKUSxx9MgDSNXjfOvJp/ilL/4WiZCQ7mC3e3obP7hHVXpf3vjjgKsQ4qf3/eSePPWe3dxN/70bnH5Qnns3hfnH93C+n7X4Qed1v7gfUP5x69xv/fcMJiX30IfFh1VsfzLgel+McR/g+kHV4g9ieL6z7O9o4/lz4PozFD8OuEqS9Pfm23p33O8lGQ6HKInMwtwcvuIwkF3GcwpvHH+Rxd37efLp5zlaDpBFgsjNYcqCiclxCqUSiUjYqtawDUEiVMKBx+TkGIWcw/K1iwSxRT5b5uRrJ9izZxe9vodjOUhxxNqtZfLZPIqqk7JVBAmu7TBeKmGYFqoq0HWNQj5Pu9Vk5dYtoijE93rUWx0KxRKOabC+fpvZ2Xk2N6vkMmlKpRKnTp1C01VSKYfIH6JqGmEEgWwjKyqyYjI1PYvf66CqErGskjIFrVYdKYlJPI/+sI9jG2xWtyjki2iGRbPZxR/EzMxO0mw2UTQDbzBEALZl46bTVMZzLFXA+sxBNjaqIx/Zfh/XSRMPZb79t9+k7PrsP/ZxNFmh2+2iWSYdAi6t9ShM6cSfLBD/w8fp7D6Mpbs0XzyN890fYX35GWRDR/4PvsjrWYOZagvigGKxQpIkHDx4ENUwcdNpoiTB8wN0RSeKIixT59RbJ0lnC6w1XsZ1HSrZR5GEYOnaEsViCSFJWI7L6u2bHHnoCBPT02i6zrDbpLZ2FSed4eyZ85QLBRRV41vfeZIDBw8ghM/01Aw7d+wkTgaAweZGC8tRiTcDpPNXySaCG//5r1P+d3+JOFZwnTEMtcgz3/s6+x94gLl9B5AjyGQN4mBIq9UHx2dq5xy9F/4lHZHn+LlrOHYOv5fQHbaZmJhCVTU63Q4TpRxOyqU/COh0W1y6dBHXtXnttVfY2txien4GN+Pihz75XJ6VW7dZX11FMzXm5mfJ5gqcO3cBVVEoFnKk3AwTM1PEIqFczHLxzBn2Hjkw8iS0TDKOQxSB6ZpMTJR56smnWLt9nempEvE2pUJNAk6fOcsvfPpxJmfGUVSJM6fPMpHNY9k2qqxw6s23OXrsGI16g+pWm6mZSfLFCl4QYJoGilDIZfNsrm9SzrvM79yPZTvIuorf71PfWmNldZlCMcf01CS3b69gWQ6qanL1yjV0XeP69euj46ka6Zs+WrlL14750ZJD4q+zsHMOT8qiBMuokY1bmSBCwXFVBj1/lCR/4zscOdzHdiIM00DVdFRNIWGAk7bpex66kEb9nOkMWspBMxQ0VUZICWE8wE7pSHJEGMd0G1toioqsROi6hKrLTE2PoVsymmHgpGwGvT6gE8cxQTjEcjRkRUKSRxXRUTU12R7kGrEskkQlCodYjo4kJ1iWjqYpSFKCJN0ZyVcQ0shL1jBAKAJVk5AVgZsyUVSBoasEvociYpA1LEsnm3NGNGMpRpZBThmoYzmMjE273UYWMr1+j1TGwjRVZFWMzlMV2I6JooxaCpr1FrKqEvg9dBOEHKLpMDUziaYbGJbG0O9SKOQhiVFUCdu1QIQj0CKBpit0ew1MU2bl1g2+8uWvc+zjn2Do93HTFaI4QVF9dHmZYHgZU93A1FY5euTjuOk8N66vcuDAOOMTdSxji9rViHRpjIcffph/8k9+m89+9rPoTzzKU90ef/wnf8Tv/u5/jJASyqUKva5He2ODVMoCzUTWp/izm8/TiTocdQ5hO2kkKSaKQnbt2s3x194gk86xWW3gMWRifILbN28RDD1UQ0fXDYLABzGyNkHA3/zNN5mcKGOZFqbjIG37pkZRwPe+/T2m5sYxTYswHJB2Xdodnx07d6HqKoqi8uzTP+SVV19n9969REHI+QsXUDSVx1/9VXat7+NC8TS26+LYWWRF5/LVa/T6fVIpFU03QZLYu3c3QlKoN1vs3bcPyzHww5EytGZqWJYGIiYOod/t8tzTz/LQQw8xNj3Jzh2LqAZIwqDXH+K6aZavLxMMe3zj699h99696KbJ0rUlxioVULRRYh5HdPselmmgawqKNBKBmn5zi/EmXJOb+MMhEjpxIvH5X/lVxsbGeOaZZ2hsNUlnsqTSWYaej+8NyKQsEqHSbtTQdR3f94Fk1HeuvEvl+7Ck+8bVS3hegGm7+FFMHPqs3LyFYTogycRRhCwp9MKYVMpF01ReO/E25UoKSVGxUyn+6ut/za6de3DdNCffOImqyZh6Blm2OP76cSYqM0T4GJqK0FQSPNrtJoHfQNcdouEAVItcNk+YRFTK4xw+fJjBoIakCianJti9Y5HxqSk8v0+7tcVrb7xNOpvlurqMgckX9F/h1tNNbMdESgUIoeI1bzLwQHXG8IIBuq7yxusnWatW2TOfRxIaktLGD4YIWeeZZ1bIj+Vw9R6ZtEAQIRKBLCsMvJgz1RSL+TQkbVaagsVde3n77XMszo7jD5qoiYTiN1ENiUxpkU6nx+TkNJu1TWYqaYYbt8mYKkKJkZEQyCMBOSkiSSSiBHTDYGbcRNViIhkwazjtI8QDmCvs5Qu/+1nG53MMQp2j+0ucPfUWc7M7cKd2IyXRfe/z+3LGD6jO/jjg+q7d4t9DvA+H3Z89+L5NPwxIfog9zoft78Ni1Cr24f/3j1cIfn9Ikkwcv+vL+x78/XcErh/9+nw0IP9z4PoR4v+PwPUOJeMd3rkkQGxLVX8UHv9PEPG2rfc7fll3PWgSEAsIwhC/1+frf/r/UKuv4ndrdDdusnTzFkZugompOcppE7NxDpIQLT/L22fOsWPPAQZDHzeV5+aNq5TyOfwgZGllhaxjYBs6U/M78bw+umkwPTeNquvUtmq4roOkaqQyeVrt7jZNTAdFQTEN6s0muWyOwaBNp93m3JnLFIppNN1EVVU2Nhs4jkm5XGIYCNxUmqHnc/nyFQzLotlqsGNxGr/XpdPv4vkR2VwBx3bod5s4poqQIZs38fyAbm+Ia6h4oUy375PPFhGSDJJMaWyKWrVGaayCCAfIRKDIZAoFSAJSlk4Q+9i2g+/79Ho1Aq9LJpXDzZXRXAfCiJRlYBgqELHv0FGkyMdyXJAlkjgmScDURn2I527WmciohN11xLHP4O2eJHn8KPE/foLkNz/HYOk29h9+Gf/4m3wjleCdusHM7DRBHJAoCpqIGPRbhHGE7eYQUsLS8hW6nQ5TkzPU622SZEDKHkOEKfxhTCFXJGZIq9GhkMty6tQp5mZ38vKLL1IuZqlt1khlJ/nyl/+ch489SBD5KDLMz83jBT4p26XX7aBoEp1enx+98DIL2Qy6F6A//zJ8/jF+3+jwxG/+BlEQ4gU9nIyOrCTMzs7j47O1egVdz6CqCrpp8dbbpxkvjRENuoSnvoKfOUgmXaBYLvKDH/yAQw8cYatWI/I9MukUb711ntXbVapbdYr5DFPTk5w/f47J6Tl0TWXY61OpjNHsdIj9IRnHIgb27NqP7doIAdMTU1Qmxuk061y6dJF6o8v09DSKpjI9NUkYRRAEaKpCIMDNpNmsVsk4Lr4vOHrkEFu1GktXVpiYGKfd6zO1OM+pt95irFSi3Wix9+ADHH/jDbK5HNdv3ODAoYNcvXSFIIA9uxdRdJ1Ou4NtOWSzRVKZNJ3hAK/XpjAxwfUrV4mjAal0iQtnzjIYDpiZnue1V09ibPeUR1HE+HiZsfEKa6tr3Lx5iz17d6FIPmNbOqG7QS2/jxcuJyTBBumihiuZWK6LZOfJzx5m5fpNyhNTDHtDADY3t1hcVEmSAZIUIiSJMAwRAhJkJFljJMxtIIkEklGP9vaHDwkx6kNVZPz+ENvJEscyXthB00wCP0DVVaI4IYnDETjQLYhHgEbX7e350radDqNqhNj+cSdEE2mEFCFLMULeXiYESRxtJxYyURwShgGeN0DXbRABIhl5FfLOj+7ou+z7EULIhP7Ig1bXdRB3DS4O/VEyZWioyoh+nzZ1gjhEkpXtRCshiiNk+Y5qpYSsqkhCJgp66JY5oiDfERbZbrOQJQGxhOfHJImMpo7aA5JEoCgjmrimquimSTqdpVQc4+zps5SLFXRTxjAiwjBLokgglG0BkoiBbxCGJV58+SUefHCBMKqRxAl+UsLNT6EJj8NH9jG9Y54fPvcqqZRDv1/nk098CkmYLN86Q+jpDLwO6cIEgZ9n7caQJ8Pn6TPkSPYAqi4jqSZhENFpbpJKpZieHqdQTKEpIyZLOpMBoXPr5jLZTJYXfvgS9a02lXIeOWmya9ductkiqqqgqSqDTpf+oI9tuywuLqIAGxtV0ukcnXZrNKAhgaoqDAdDTMNgYX6WbLFA4Ee0Ox1K5RITLyyQSrIs779CrbpFbXOTXC7N/PwU164ssWNxAcvOIkmQBH267R5vnjjB9OQ4cSBRrzWYmRrH91qoxohBJCSNHz37Ao8/8QTPPf8cU+MVkkSMlK5jjb/6iz/n0KH9pHIZMtkC167fHKkft9pYhoGdyuD362iahlBNAn+AH4YkoY+ka0hSwrH/4zS5szWqX9iPEAmxiBmfKiPHQ1r1TTr9kMOHD1EqOAT+gEw6Q7/TQhIyiqahm/bIhi4KaXf76LqBrG6rfm4Ppr8zJTHIKiL0efv1F5mZmiWTzaIqMs1aHSdtc+78dVQlpFIpb1eGNV76wUtUSgVkGbLpDLqiMewP+frXvsYX/8GvougqnU6H4SDGUEGSFRzXxXEMqrUqtWqDQtbh5q0lSsUSpqHT63kksobnDTAUqLca+IM2kgiRVQVZyFimTTqVQdZkvv2Nb7JjcRbLdFA1l2efeRZ2CeQgYeHcBDtbuzErBpKhkgzrrN24SGb8ALIQCAVefeUtdsyWmRk3yabhxo01bE3GNBwGXo/ZmTSOpWOmMvhDD+KIkBiQ0FTB7rLEIO6gKTpRrNPv+swsLNJqt3EMC9W16DZXyDg26bEdtNo+qbSNppogJBI1y5lLt2j3u2RdDUmX0BUFREIo2thyHj8ZVfCFZPHCi0vcbLcoT2xSkg8g97MErRB/esjU2C5u9ATe8lu8dvIkn3riC9xJNWPeayHzgZG8vxr7DnB9OB6hqO1p9OdOZe69lbh7QeS9vav362O9M1sSo2/ih/aH3pNLS1LC+3p27+k3fc/md6xz7om7q4n3W3Zn+/deu/f2pn4YRv0gQPvOtWTUO5xs37EkFqOeXcT2db7rkHfo1Xemu/d5Z507/4eIt3/zPsr1uT9IvfeeJGL7t1n+KUS77omfA9efkbj3Zn8gJeEj7OejNI7feZzuUCDufnDvvNyqrNDa2MQUCbqpMPBjduzZT6/VYmxqFgQkXgt96xyaIqMV5nj9xEnOnD2LZVkEXp/LFy+Qy2Wp1bYQQmJhvoJu6AyHgoW5KV597VX27t3HYBiRclz8QQ+VCFQFWZGwbQtF1vD8gDCMKZcqXLt0Hsc26XU7bKytMT0zy+3bt0dKfknMgUMHSSSBqhuohkq/N2DP3r2kslny2QyNeo12u8Pc3CK9fh/TNLbFg/L4vkfgD6lVN5AlleEwIJEU/GFEoVBiq7bOsN8lk8myutbGsHV8P2Rj9TaKJpEpZOl1Ozi2zqVLlyBO8Ice/V4H1zEpZPPUmhuksiWa9SFL165hmCq6piHrKmffPsOuPfvp9OtImoVmuoDCiy+9zPziXkrlMUIzhd6vkVQv4+x6DFmJuHljk/LUOPrD+2g+cQx3rcHHnn4bcWQnFw+nmWlqCElQ26wiJAVNNzl75jRJHBEEAeOTE1iOjWGaVG8nBMMMpdIkS8sXyRXSeMOEb33rmxw5coSpqSkunL/M9PQkjuvQavXIZLLs3r2TTCaFLMNLL72Oqpqk3RS+1yOTzuIHIXazz0LbQzt3heZ4kcz/9T+xtafI/gf2Uyrm6LfaeH6PTquJZdp4wwBBgmHIpFJlkiSg3WkxOzNHEAZEa28iD7cQ9jjf+9vvUMrnOfzAIb737e+gKArliXFkdVRJyGZTZDIp5qcnePPkCQ4cOEizvsXq2iaHjxxFkiQMTYc4ptZokC8WuX3rNlevXUNOBNXbK6Qyabq9Afv2HSSdchn0+9iuQ7PTHiVvqoo38NAkBUmSUWSZJIlRVMHS1SuUCmWuXLnGzl27sSwDIUtoks5bp07RanXYrG6gqTrZdIrq2m1E5PP2mfMsLMyzvrHG9MwYbtolikMMTdAZ9nFTLvWVdV5+7XX27Fkc3QNdo91qsWv3Hp78/veZm5tjdnaGVDrL0089xb69+zh3/gLlsQn2HTjE8o2rGIpEcV3Bz6zQKH+M595YZrbi8uDhaZqNDmOzM2Qq+xCagSJrqJqJqY98Mfft38uf/PFTPLC3iixV8b00W7fa/v5oAAAgAElEQVSXSaIQXbHpdobEUUIiwL9wgu6Na1jjuwhDQRTCoN9HUUYWKaAQRiEQY2gmSSzwAoHYfh9VSSYIBSQSoR8wGPh43pAkgl53gCwbJChEfoQX+MSxRRLFtBu3MJwcJIIgBFWS6fd84mikHC3JMsQWQggMQxAGCf1ef+RJ2fMZDkKCAEAlCGLCwN+usAq6rQ6K0PnB0y+yWu0wNTVL99U3Ga5uEJfHRj6qskKjXkPTHYSkE/oxidCJE4EQMkkk8IPR+6ioCopq4Q184nCkNDwchvjeqGc8iRSSRKbd6vHCCy9SzKXR1SwInSgWxIEgDgWDYUQcRAz6PtVqjaWlJTRJwbWusHxti1j9FUim2diQsa1dqNoUT3zmM/yX//V/heVkcZwWQgj+4A++x7GHDo9EzIolFFmm32nzN3/1Z/yjL3yBdHGcbnvA9HSRTstnbDzFRq1GLufS7zT5fvBD6l6TPepuJE3bVpWUsdwUlqkjywJVU1BUDdd1+du//S5HjhxBlUZ2WVOT44xVirz44g8pF7PIioaiGbQ7LUzTAAFXr1zFNHS6rR6IhEKxxGDoYVs2Q69Pv9fHttIIMVKGPnXmNHNzs3hhxOTkOGHQ44GbD6FpOl8bfJlKpcj09DQnThxn546dlMoFYiIG/SGypNBotlEVlVJ5HF23CZOEk2+cZHZ+DkXTiSIfWZLYqjU5ffoNZmenqJQrpNwcQeihaireMCKT0clk0qysbZAvFlncMcf4RAU3k6IyXiEOA3TD4MbyKmGQkE7bqMrI9/rcmfMUikV2v1TFMEzOPZIjDkMkVWHQH5IQYxga5fESgmTUSmMY1BsNXEtHMw1avQ6ddhtJSuh1exiWTbVaI53LfiA9MkaQRCEbyxcZ1FcpTszRbLeQVZnIj9FNjYX5BRQlRCChyAoIiXK5gGXrbG6uo6gqqmbypS/9GV/89784EuZSQZIFuWIJ28zwpT/9txz7+BGisI9lpdA1iXQmjW2laDTWabXq/NVXv8P8/A6ymRGVWlIUXDvF6VNnGJucpt3cwrZM1tdW8fo99h84wpe+9G84cOAgpuGwe9dONuR1HnGP8nsf+y2c2+NE44LmZovBxhK2k2JpzWN+dgo/DJmdnuX4y0+xf1cOSQTIho1luMSRhqqHSJKOZqtEgRhVmmUfVdO2PaYTRJyQyDJxLPGj16+xUavz0EPHCDwP07IYRgnCb2OpCcsrNUrlaU6fPU3GTSFJAkWz2djqUEzH5B2ZJB5VWjteQm1LJmNZJMJHV3UkyWO8UuZmtUd/0IZ8Db01hda3Ed2ImnGZ6nWfjz+yn7Nvf5deK2Th0EMjgHcXG/f+ueSHANdj8T1rvt865/4Vvfsc7j6LPhIA+gAc+5PETwOyPnybe5Hj/XtTP8qx3+1Bfu89ee+mH1Ixft+MD7bm/Ihbv+ccPmjVn0bc6t74OXD9GYmP4rH609zqe0e27pj/vqdsf/cG2291NPT47te+TnX9BvM7Fjn80Mfp+RAlCrIU8eRf/xl79y2S6iwjEVEPLaYnx9hcHflhxoHH9aVrzO/YRbFUZsf8LL4vaDb7eP6A6voaC4vzaJqJpunEUYCbcVnf3CCdSdHptDFMnSgMUfWRF1oYBpiWiWZYGKbNwuIiFy+eR9cUpqbHqW022LlzB9WNKtlsgTAMcGwH3wswdZMzZ0+jSCBLEoiYjY0qrpOi1eqSSDLFsWmGns/Y+CSOlaLRqKNKCYNhC4iIA49Wo4bputgpg/WVNZBUDFVFNwxioeL12qP+v1SGTjPAdlzKYxXK41O0OnUKT2/gvXaF3hTs2n8A3TK5dOEKlp3CFG18SUUEHq5pEKEgqRIzU5MQS3z1z7/Kvj27aXgCd3CLS6dOEuUrLO7az+UzFzn+5ilOn7vE4m/+OvbnPo771MuUnj3LyrEJ1M8/zPN/+Kfs3/8AJBDHPlPTU5iWhWk7xIwokLZlsbJWpVzJk8sWSJDQDYUdizsJwxDDMEilHDx/QCrjkspkkIXE0tJ1KpUJiBXmFucxdION9RWWl6+hN/rYGw16PzpJ7fOfxPr9/4z2kZ24lTF0U8ZOZ/B7Hkgmp8+d4+CRBxkMYyzLJGWYdIYtDC2DrMD160tMjE8iKSqdN7+MGvXAmWRmeo4zp88yM79AGPrs3LWLIIgIgpDV5etYtsn0/C5efeVFdu7aj6Y7XLh4kZ07d7GyvspYpcDG6m1MxyFbrKBqKo6pYzkp1jaq5ItZdAXWqluUK2XWalVuLC8jASk3w8at23hBwPETJ+m1Ovi+T76QR1UU/GCA1/eZnZllYrqAqiq0221iFK5dvsrs/CKDoYcqEubm5vF9n9W1KomQKRQKTE1N4ToOupagGCaKplBdvU6700fTTVZvrXD02DF0NUFWRoyA6sY6tc0GhUKBfDFHkiRYVopKuYibyZLNZWlU1/H7bWq1LpXKBO7NkKhyne7YZyjM7uDYA3NIlsxwGOEFfdZXfWLhkC4XkWKPEydeJ5PJoqmXeOihGRTpEiLp0GooxIqJZWdHCsEJWIaCF3iEZ19D9LtoOw7hB8HI61BR37GDkWRBEo+Uw+NIA2mAJGQ21lawLAPP89ENk1EVQ0XTLAxDwfMGWLpJIgSyqhLHId3GgJA2ppVDN1SiICYOPVRVI4xCFMVEljQUBWIkfH8w6u8TJqHvYRgmsjLyGFZVDUmALEFMjKGbyEIlTASyoiAJQSrlsLA4z6DXRapuIcsqxtw0cTzqw41jCKIIkoTI95AUhcjzIY5ptOo4trst/iOIvAhVU+gNh+hWCkM36LZaWLaLF/kYpoFAMDMzA0Lh+u2btBp1bNdC1zQ0VSeIIgI/4ty58zz66MepjOW5eWuVmZk0qbRFdWMHF86fZc++/fzL//WPOfLAHnYsTjNemebsW5dR1RUMQ+fFH9xkc+MG+44+yP/8L36fR44eZveJi/zy+Az6Iw/TG8T873/4R/zSZz+BLHRMwyBKZAx1mTdOfJ9Wyaab9Cn6LrZlEQ56JMQEsUARAkXTCKMR7bnd7rJ//0H6/TapTA4kgZNyUQ2Vudm9WG4OPwBV1fmLv/hLyuUxTNOiVKkgKQlnz15kcmocRTPQDYs4iqhvNSmVKgyHQ06+cZL5xTnmFheI/YDXXnmVwPfQNI2j658AYPXwNVw3xfXlK8zPL3Dm7DnGxyuYVgpFCP7yr77Kx449hCzLnD13hsUdcwRByOzsBIoikIVKvVbHsnRSrsPBB44gS+APe1huhjOn36BYLNHt9MhmRqq/k5MV/G4DQ1eQJfCGAxRVgTgilmRM02DY7TD0PYhCGs0OU7MzBH5E7q/PYpomVx+foFpdJ5XJYOijQRHLSZHECZqqE/oJUQyyqtFqdUBWiYMBbjpLHMVsVht84xvf5df+wa8hKfJ2TvLerGM00J1w/eJZpsdKhFIKJ51mOBwiE6GoIFCwTRXP99E0EySBZWqEYYAQEo5j4g27fPITj+J7Ae1WG13T6fe7pGybIIx48NiD1Gs1Mk52pM4vAsJY4LpZJEkHdB577DFcV6ZRr5LJZgkT6Hd6o15nyyRMBL3+ANu2MYxRZXn/gT1ouoZpKMgyXA6uUYzz/GLu84jn04jdAWx2GTSvky1OMohG1P56s8GNq9eZKKukrRHLQ3N1/LbHt757lsm5DNevtrFTaVR5xCoZDEGWNIQYsdoUVSdOYnRJIgolNKdMqVjANE1iBELWcW2NzdVr6HSoTM7jFiqEocAfDtlqbZFIEecu3GK8mENXkxFzRTY4e75NseShqWlQZLy+j6rELFR0homMpMTI2jLp4CCNWo+3XzzHxMMZLm569G6d4fiLT/Por/0Wqqa9i+y2xYzurji+k0fG768k/jjg+kHg6t48FfH+auw7E/ev1H4YGHpHX+Gd6QNX+4njw3L2/6+B6729o6N577JzRtfyLj/VD/F0le6pjkryTwIs360q/9ieeHGXVc/fMX4OXH9G4p2H8F47nLuegQ97lO4Vbbrfi/zOBwCxLRP+3mWDaIgm6Tz/jW/BYJUjjzzOsz/8IXv2H0USJhPz81Qqk1RSKlfP/pBy0kWSJba6EZKi0xs0OHzoEBvXrrGw78jIoH0wYHqizAs/ehE7labeHvDA4UO8+MIPmJqeIBgGaIpMGEZk8kWSyEc27JH1jZBJkghv2MeybWJkWrVVIt+n1/O5dv0Sup6h2+hRmbS5ubxCHMoUy2U21jfY2qzhDTtUq7fYvWs/w8GA69cvkUllyWQyI8NxSeL68gqVUhndtDlz7gLdTgspCVA0UBOVyYVdLN+8SS6b4vzpcxQLGYRqcPbcWcanFqhvbaHEfdrtFops4KQcHFdHVgS12gbecIDluLivbaD5cLUQMD4zT73dJZcuEAZDVFUm57q4uWlqt87ipicJwwhFVUgIKVcKWKmRMbykOBSlJu3sx9DTDkbKJVvIMz5WYbKSoh7F+J/7HLHco/ivn0V+5Tzlz32a2x/bwfVvfR9dN4n9iHQhixQHDOubyKrBZu0qE5MlvOHI1iOKAoJwSK/T48rVG2zVm7i6oNsdkC9OkCgjurnX73Hr5jL1TodSqcDm1gZTrkOpPiB9eYXw8Yd59hMH2f87/yGaHBP7faIgwo9DImFCEDIIhuzcuYvq2gaFbBpfRPjE9IcRaTuFP9gil8/QD3RardtoF/+c0Mih6AYbGw1qW3VWV9fQVInK2ASnT51CVwQBEp7fZ3q8QohBs9Xi1o0lsm4GkXSYGitw6txZsqUSjY0t1lZuUymVgRjXNrBUmbRlEysxEoJ2s0OxmGd+cQHT1rEck0G/j2nq7N67i2w+iy4PiYKIpavL1GoNDNOkPxhw9coypaKJrhmoeoryeJ5mvUZ1bYO9B49QazaQlFHP3tz8AstL10nn8uiGwDZShFJCEIasXt1gfHoK0zAZn56kWq2Sy+bQbBdZVjn56gksy+bg4SMjaq1mcvXyEo3GGvgDEkkhlS2ytdXgypXL6LpB6tYQMbnKV67kePNHL5M1VBaO/jKKCNHMPM7EHMOghqHpZPUC9dot8uPTGNY63qCBKt0mCAbYzm4CLyFKAhRJRxIJCRq+FxDfvIAkCfSdR9BVmXajgW7qCEBVJHq9DgLQVJ0kGSJESK8/xDJGdiPtdgfXcQmDAN/3GXo9EhQMJ4NAptttockJUpKg6gmKMNEUlSQWiG0BE1nR6Gxtods2fd9DEQJJVlHVkWef73v02gGK5FBv3EC3M0hBD6KAIJG2vQB1gihGEwqWpQMRbsolDAYkioZYWSNJICilMAyNKJTQTRckCUXTSCIJ1ZCAGBEnqIqEKlz6/Rq67DL0O0iSjG2mSCJGysn2SEAnjiWiKKZZr7G2dpvy2ARvnzrNgw8+hOaYiERi2Pf40pf+FQf27UORoVjMMBj2yLolbq3cYGIs5s0TFVbX63z5y/+WVn2JT//y55ASh631Gl/52p/w+V87jKxoFIuHOfLoJ6hvtfmjP/q/+ce/8R9h/eBV5KFHY/9B3nztGn/wv/xTjh3dzfjUbtZXb2AZEpr8PebnVDYb42ypDRayu4glFaGoqJqGpmsQJ6BI9HtdEmGCLAjjCF1PEcV9DG1E8w3CmCjsIcsqqm4x6Pns3buDKApwnRxXL13AcVyGgYdj6RCHXLtyjVymgO3YhCImCH3KpTzRIMDQHPwwYGZ2nm/8zTdYmF/g6PqjACwfvIrn+9iGQyZb5Omnvs/idBGhmRw//hq//Mv/Dm+fPsfUbJluu8vAH1ApjSNLQ2QpAuFgWAayqiJkCSlR8IMI07ZBRJiajZly0A0FGQUz5RD5CVv1Gqpuj2xrLAvf81AUgySK6XTa2K6NqaVRNYtMxqVeW8PzfeafXUFWVM49kiOfr/Dqy69iWAaSFCMB1Y0af/mXX2VyepJTp84wMT7Dv/mzf82BvXsgibbBVYwXdHng0F5My0XIMkmc3MX4HOUTsiQYeD5R8waZiRlUM0cw6PAnf/zHPPjoo4SJgqLKDIZDZGGg6RqB79Fut7Bti8APMQx75HU8aGHZNoZbgMSn2xugGQZhFOAPOlQqFRodn1tra6QzeQbDAbpu8q/+9Css7tzB5u2rGPpIXLHT9zGtHJtb62QLkyRxgm25mJaFoqp0Bz00WaNZq6KbGiQqUehzJbzGztQcD07+KsqTEpEEnc3TCFljvWUxM1Xi1o0a4zMFXjv+JhOVPLlsghSO+lp11SaTTchkS5THXFzDxhs0GMQa335yhV07SmhKRBLJyIaB5HvEQYyd1rl6vUW700HTZCrFLKqAEINu4xYZy6LZvYHrzNHrdzFdl7GxCrMzs6hymqs3lkjZaSSpga6ozE5paKo2UjRXVCRZIY4C/LCPocQ4hopmwakbJ9hrPsH4fI7hnjpzcwtIioJXfRMRppl66DGsqE5TzmGI8EOAE8B2G8V2iVY9FqM8FL+P5ZvcLRrEh9NEP4Qp/KFxh2J8d2vdOxTjd2jKyTsDL38fIZBHPbuJ4G4BqvvRh9/d8MfTk99Z9a5zv18+/86xknfFp+4c513Qn7x3SsS79+d957ptc3Tnon5EtWIhJe88Fx9ofbR9L/4+dHp+Dlx/huIDxZk+InCF9450fCRFwA/ahwRKovLP/9v/gUc+fpTZ3UdxMhlK5SnSuRISAecuLCHpJqlsBrt+FU2RaJGh1WphG3nefONNFnfNs7B3P+W8Q6O+xmq1yc6dOygXC1y5cA5FVRkfH6NYrhAEfQaeRxDF2KaN5/loqo4qaySxwPd8TMuk1ewSeCG2bRDFo49q1imwurrEWMVlY6POsYcexklZ6JY2ogEHEcXCyEPUG3S5ef065VKOVquFN/QIw4DhcMjiwjy1WpVrVy+zsGseddvAeXpmjsFwwFazTbFYJo5gdn4ey7HI5Iu0thoEYYjYpmUFw4SxCQddgwsXbtFstjh8+GO02z28Xofk1VuoqsZrcothv8/41BSarqOKhEopx+bmCpICCSoba2/gprP4kUBSVBAKpmGhyFBterhSH6O9xD/9H79FdaXBP//v/wWf+5XPMux1+J3f+U944rOfx5+bQ/r1f4gkqTjPv0LxK09R2b+HP3z1OSZ+7zdxr6+gKDI3lm8iZJnIegHFWqezVRipCksKSSyhGzpPP/00hw4cIFscww/76EZCHCaIaIhj6Qz7Q3Yu7Eb0h0TVLdwX3mL4qcOo/9t/wfrMGPP7duP1Nli+dg0zVQbd5bd/63f59774RarVNQI/IJfNMvCGqLpGGPhIQC6bpddqUN9cpdtsYjsOklYgeuP/RMod5vKFW5y9cI7HH/9FTMNio7pKvdmiVCoxOTnO1SvL1Os1Wq06hAETEyWm52bpDjxidKrVBvPTOynmJ+h0GqxXq9iOjaEovPSjV1jb2GIYJpw5fQE/iFhcXODCxQskSTIa6Y9DHNvlypXLlIpFrly5yrkzl6k3WpTHxiCRabc7TE3PkkqnUbZtPpqtDlYqhWlaLMzPUauu0e108foDiBOWry3x4IMP8uIrL5HEIaWJcfxOB13RcMpFdEWlVqvxnW9/m9mZGWzLRFY1kjhhYXEHr584zo75edrNFqsrGzgphWKhTKPR5tKlaywtLVPfavD444+xsnKbsbk8slQl3vsbfPYT+3CMPhkH2ls3sZwU+dIchfIUfiyj6QkrtTZTUxWU6Cr+oIUsbaKqgl4/QxiG2K5Du9XGNHSiOELTFAZX3iaOI9zdh0hi0A0LWdUBwdDzcGyXequJbjp0en2EpCLLFpquEYsE0zDwfR9JlpEVBV0ZiT512x16rRqZtEt1axPTTSOrKn4okGRlZDcTBQgiZCQsc1S9HVmchMiShCxJJPFIlfXll1+iMpYhmy2AEES+R5SMbLl00yRJQFVlJBHTajUQQhAG0O91cNI54pu3+H/Ze+8gSa77zvOT76XPLNtVXVXt3cz0OMwMAA4sSYhWpLi0MhuUKF2IVNyGdrUm4szGxd2ebm/j4tbExp52L1a3q5OWFyRFkVrRiFaUCFAESAADzAzH+5m2077Lp8+8P6oJAiAIAgrqbhXB19ExU90vTVdlVr3v7/c1ipAoIw0C38eyDTRCPK+NITNIPKRqDfJM45A4iwnjAN0enKumagghBx/0UhmYWEUDbbAQA4fVOAqxTYtvPvE4b3/724nCCEjx+j6BH/DIIw+TpjF31+5SqQycqs+fO8fs3EEce5Wr15/i0cf+Dv/df/uPOTA7zxsfezuXLlxAKgHvevcHcdxdkiTBNPYT9Dtsb6zyvp97F//1xz7GuwtD5PMu2s88yHee+Tq//Isf5Uuff4I3ve0RrlzcpNNOsM1L2HaODX2Cc90L1I1h2q1tTN1kZXEVVVFZWFghn89jGRppv4trSHrNTdTMR9FMkihCKJIoTul3+iiKxhe++CWmJsbRDQ1VlaiqTrVWQiiC8dFJNE3u+SMoWJaGphl7f4fB1sYGTz/9LHP793H69Gkq1SEOHdxPrVZl7uoRSBPOjDxJoVBicXEZKVRKxQJxFFKpj+A6NpcuX+Lw0XvQNYNadZhcvsDO7gbPP3ueUrGGYQn8nke/2yFLQrqdJrduXqNYKKBrg+5ynEQIGAC7KEEokm9/+yn2H5wnCH3SOCHo9wdmXL7PxYuXmZvZz8LCDc6eOcPI6BgCi698+Rt8cLuMm8vx+BycOX2OOIw4eOggcRwRRxGWafHww28kn88xNjaCVGFu3yzDw2WyLMZxXTqdFvXawPXdtB0Q3+/efH89Mfg3zWD9xveoDA2h5OqEUQcJHJw/RKHoksYxod/D0iRbu6uoKui6SqfTwXVzqKpGv9enkK+SxBGFQnGPZRGh6zqmaZFlEss0abXapIAkRRUZ+ZxNgODB+46ShQHPXbjFvrkphMiQCkSBh2WYZFnK9tYKaTZIYchSiMIU2x4YwvX9wfuAbRs83T3Dbr/N+9vvwPruMPr+HuHWOW4t7nLg6AN4YYhCjK7l+M63vk3gLVPMl9BUhYQIJd2mWK4CCUka4UURjlUceEXkNVw7RSgxKJLUC9ntwWY7hiTl9LU13vOBX6DTjymU60jdZGFlDV1NcbWQ3XaHVCsRqznSJEZKSRgE+J0WYzMzPPPs88zWLRSpIuTAJ0BTdVRdJwxDdFVFVR0so8D5czcp5EugO6wFGdPRPJYokM7EPPXkdzl29H6+9al/zTs//HfwUREIRBa/JELmR645X0Hv+tJJLwauP6F25w8d4zVO2wNxP/GDvjxD9Sd1hJd1lX/UnO97JLxkzuuJx3mF/b3u/fw446a9hz8Frj9i/E0Crt9/U/i+O9hfFbi+/KJOkuQlP38lUPtKwzINnn7yWZqbLVYWbzNUnWRsfIRmu0W/10MVGb12l3y1ipmv4C1eQeoqVnUKv9+jXhvl+vWrPPjoY0i9SL/VRtUNjp18kEZjhCgKybk2pUKJXC5Hvlhma2MNqVvYTh6v08ZxczR3d0mzPYpTEqFpGs1mm6FSkTAOEUJi2xZR0mF9dY1m02N2bh9bm5s0d3dQVEGhUMQ2HVaWl9nd3WVirEG71cF2c/R7bSqVIbY2N1EUheXlFQqFPCOjA1fk0Bu4PfaCCKkKoiji5rXr2LbN5uY2vV4Hxy0Q+SH5Qp65fbNIoZLPK7S7HbyewfzhIyQJdHsetXqdlYVbVG8HKIokPTlNv9thZHQUqWlkcYTv97Fdh63tLcq1EYpmnZ3dHQrFEopUB0ZVaYqu62i6jlasIzevMlMzeOR9H2ZqqsIff+bzHDuyj7e/9S1MTE4hNY/f/l//GZ94/inu/Tf/M6Vfejc7T5/hnRsho19/BmNqnJ3RCvJNJzHun0fnOmo/oGyf4N/+zu8wf2Ae07DxAp9C3mVxaYF6Y4RSOQ9EfPVPv8L8gTmCMKB1/Q7Xv3OKyQs32KwW2fhHv0z9w3+LbhAO8gEtk6tXThF6Gb/9z/4lswcOYKk6D9x3DKeQR1cEuZw7cACOAnQ5+JC5fv0aw40GAoUoDNFNHaVzhfj2t1juWYw0GnhhyPXrN7hx8yaHDx9kemYOIQXXr13FsmwO7D/AwcMH0YXAdiy6vT6nTp3m/ofux9AFW1vr3Llzk/JQlcnpGdY3NtGlhqYblIYqNEZG8foB8wcOsNvcIfB8RkZH0fWB4cvTTz/D0aPH2FzfwNQNjhy9j3qjwdLKKqVCCUUI6iMNtnZ2KJWHCYMAzwsoD5VQtcHCIw5DarVhet0Ouq5y9cplkiThkTc9zO5OC8O2UJKUVrOJkc+jCw3SlLzrMDU+hh+FKFIgM4XFxVXuv/84zz/3HI6dZ3lpmTQLWN/Ypt8NKBRy6JpKY3QMVQXDMNhq30QmbS715tlZ/A6OExD0PZIswM3lyOKQKHOxcw59b5tKfZSst0boXYMsQ9N2UZSElBEc10EIlSj0sEyTKIlJs4Tw5gUUIG3MkGV79d80Q1EEXq9Ht9NhaGgIEBiGjWmaSE0njUMyRUHXddIsQ9MG2rE0DklTyBcKe/EQAqRENWykEGiqvmd8F6JJSb/fIwhCMkVgmQZh6CM0ncDrD+KSVEmv12V+fh9CxiiKOTCw24vZUVVtoLlPQoQCURAgJIRhhK5bqCogNYKcgbl/H1EYYts2GQnN7XXcXA6pKPheG1XP0Wo2cRwXVRb3aKY2ChqaKgiCAFWVBIE/0LhJdWA+lUGn02Fna4tup4OiZIyPT5AlGZHfxTQsbMdFKArLK4vs7OwwMjqKqupMTU8iRIaidNm3b5peeIS/+5v/gKOHDyENg//pf/zHvOtnH2WoMsrGxinGJ8a5fKnH6OgEmpZhmCa/8ssfpXzpClJKVqerlIZy/Nt//XtMjs/w5rc/QL7gouophnYW3VA5Heg8v/08k+4EmoS7q5s8/hffYmJ8jPGJSRDZwCHZzBFlCkgNu5BHQbC9tYGbKxAnCe0QHnsAACAASURBVKZu8fnPf4H3vv99WKaGooBhmNxdW8WwBrmucRQTBgGu67Kzs4NtW3z+c19k/uA8UlHQpGR7t8X0zBSu6/KHn/4jjh6eJ0kTDt26nyxNuLbvNGGUIFSdbqfN2OgITt5F1VQ0KXjyyac4dvwEWdInClvESUCmSLbWW5x+7gzD9Tynnj7FM08/y/333Us4EEfTbnUolcropkmWxNy8dZNKtUKWpkhNZWZmH0JkJFGEoWlAhiIHn+XFQhFVSorlHCMjNYQQ+H6H0bEaD1+MCMKAT5grDA1VyLk2Ti5Pt9uhVCph6AaaNnDPzrIEyzKRqkRIhU6nS4okl88RhglhmOHmXOI0eRGF8AddnyzocOXUt5g4cJxWL8TU8+haSq+/SRxlOK6Dkg4o+W6+CkhCP0XTwTQsvP4gAu+Z587QqNWwHZM4CWk2m5RKZbI0Q0iL8+fOUyqX0AydQt4lyxKSKCSRGkQBrZ1dQnRGRyr4fh9N0wAIg5B8qYwqMhzHwu/7/MWfP06/F1Asuaiqilssk8QRSZZyxruAkim8+eaD1Lbm2BLPEXubGPkZglhSGipx9eplVu6sMjykMzVeIudq9HsBC7cDGtUKYTygvqdJhhelSKGRJS3KRR0pFXRNI0pi1FQlkQbbrR6u7VCt1BgfHSX0fWxD4+7CTeqVIVJvG6H0UFKojoyRr84S+R5SCLy+R6e5RWl4hPMXrzPkaLiORIgBiy5JMqIoRDctgjCALCCKQyqVIlHksbbe5OzCAsfn7sPo2gRbAUwGGHYF2bvK4tIys/e9iTBo75m2vfL68qVrT/GKXcaXmAjxA7bfT2L8UGPmNegnf9Dt+6sB15dTc18dtP3483m1+a9EhX75vFfY+mUPX2On9GXH+iFg+Rr385LX+UUFjRdP/UnQhOGnwPW/iPESU6aX/S7jRRz217HPF2dVff8YaZq+avUMIPZ8djfbzE3u40//9AvkDBtNRsRBl0q5wNLKXcbKOTbXl5FunUp/ASXzUN1hVCk4872nsC2Tq9cvkC+WuXHtMsPjI+TyQ3R6Hna+yPDoBN/6xteYnplGM23uLm9QrU2ys7tL1GtiuA6azBBSDujCMiNNY1rNJsWciaLp6IaD70Xopkshb1Ebq7G1tsPOzja25TI9e4jbtxfY3dlhpDFMvuBg2S6WU+DS1RtMjFZxXYfFxQXuve9eCuUKiqpi7FV8l5dW0E2DfKnAysISfrfJ8FAO0pBqdZyFm9fp93yCIKBYKnDrzm021rcIooyDBx/i9tIifb+HrmuUh0r0+j0s28A4fReylOj4MLeXl/H6Hjev32D/wUOEKWhGDssug1DpRj6RF9DaXsN180ip8Z3H/4Ken5LL5UgRqFaeUrzKytJtjr/9Qxw9dICReg7P26bTbeOHCQ898FY+9YnP8v73vpdTly9Ses+b8H/+UXrzB1g/dYbhS4vkvvAEztefJlVvoPgh6pMej7zxEUTBYjv1KBw6THpknPlf+QDnnE3kiTfQeeIS++en8EZHKJ67SeX2Os35SXL/7rcRP/colfFhlBCunL9Ap7nLcLmMPuTiGiWam5u8/70/CzJgZLhIrFiE7RZplrHZ3CFfLGKpgqXFBTRVYtcmkaqD4xTJBMjlszS31xieOsKV67c4cvgwGxsbzMzM4rg2N27eYnpmhspQGb/fpdf3abY7TM3Ms76xydXLVygXSuTyJRzLwrRtZvbtZ3t7h63tLeqNBp2eh5NzMTRIIo8gDMnSlN2dXUqlAp7noWkatm0z3GiweGeBxdsLbKytI3SJH4Y0RkYJvC4jow280KM8PISUOufOfI/NtS0MNca0TVIhsHMFNjfXaYw1WF9f44GHHuTZZ57l8NHDtJodNBTcagk7n+Pck6fYaXf4xp99nfn9cywvLtKYGEQAhX2f3c0mihLjhT75YgVVgQvnr/PIGx/ADxKCfptyuUCuVGB8ZIJrV28yO1rA0CSXd/dz3z4NRfWozT1GJ/DJkiZGtovtDuP1PXa31ujt3qGzep1SRccsNpDpEmQxQp3EC3pkqUCqKVEUI1SdKIhg6epAyzp9BNPUUcnwfR9dFZDEKGmKrtskYYxCjKIEZElEFPgIRSWIBt3WOI5JswwpNcI4QTNsvvb1J9jebTE3O0ccxHQ7O3s04RBFiUEYAz2q1MjIMHV1sCBWJJoUtFstpBQYhk6aJmiqRRQNMjVRBEIK0jRBqjph2EfXdHTVxvd9TFMjjkMs0yQVGprIUI1BjqVh2MRJgmZaZNIhjMB0LOIowDQdUkWj32mjGR5ZrBAEbUBgmiZ9r4emyT0nZvaeg4hTzzzD+MgIQ+UypVKOfKHIM999hsnRGv/+d/8v7jlxH09/92mO3HOAoUoFRQx0uptbm0RhgG3aCLFMFPW47+Tf5jc++hEiAj74gfeiS4jYptE4zuICfOXLf86fP/Fd3vy2R3ByZe699zH+4b0nEELyHy+c4ZFH3sPhQxM8/Og8t5YWWFnZYXxiktHGKlKq/A+3v8ByvMq8cRTf9/nGN77FG9/8KLmSiSJivMCDFBQRoWsaQlGJonCvoJcghEqcDgyxTpw4hlQVdFUly0BKMXjNLBeylCTqsXp3HcdxWV5aY3RkitmZKcJoYJbk2DZf+PJXefDBN5DECXOzhynkXVRVYnguO/kdbhWuki8WkKrAMlWETDFci067g65Kpqam0E2LzbVdHNvCMFxUw6VWzTM9XUfXDMYmR6lUxigPDWNaOTTdpFyt4Aceqm7QbbaYnJyg2etQcEyiNCKMU/B8siRhu7mN5hgQQ7fTJpezECJFEYK+10ZIcOyBed+JU12iKOHOOyY5ePAApZJLPl+h122TyzmkSUKrvYVtmxi6RavVRdV1YFDYsawCihB4fh/DMFA1DfYyjAdrhR+sGb79lc9w5NBhfFFAi7oIUyf0QrrtCCeXQ5EaKRmObdH3PTqdJqWySxj6hGHC449/m7HxBuNT45i6htfvIyQUCgU6nQ6qqqJqLqpQ0XQVyzXo9jyEFFi2ha3bfPs7p9g3P0/JyEARaJaFauVAs9F0hTiRJGmGrmpYpj2QUGgap5+/xPz8QTqBj8gG+c1n++eQseS/yf8vyG5Mll7FbuynMnIE07BYX71DLldl8c4VZqYFhnBwrRDdFHipRrUREPtgmiaBn+HaBYSIUbWYLFSRQiOJExQ1I1N0iLbJ2xoeGs+dvkVjfIZyrY7UdVTdQDNytNo7qKKNLTQ6vQ0sdxTDcpFCYls2MTG61KhV6nzzqTMcnHRQhUIcxcRRjKZrhPEgkUDsAeosU9A0DcdU6CcatdkxnPUiS6s3GBZVRn5mGHX/Cc5+4p+jlScYmT+M5KXSsx+5ft2bF35GI7kokYfTl2yTvUjj+pMCri9f376ejutfFbi+XI73WoHrX8f4SQLXH7vv17yflxUTXgG4/qTiPH8KXP9/HsqeM/fL9aYvjAx+Urf7j6v+ZFmGYqjs7HaJOgG3rl/m0LEZvN01Rut1bt2+w4H986ysrVEoFEn7PrK/RNDepB+nOG4eMsmdhUUKTo7I79Pp+9xz9F4UoXB3eZF8Lk+UpFy9dpWpqTpeu0Uub5LFIWEYMj4zw8rKKlEiieIBnSdJMlAkhXKeKIogTQn8Hrs7WyzduUOnF2KbDsVCiV53G5QY08qjahnDteGBkU8vIIkzMiWj12xx69YtVE2jOlxB1QULd5YYHh4ljTxE5iHVlMZoAylMiqUCCMHyyipOLo+dc/D8GKlKRkcrZKkgS6DTazM2OsH1GxcJ/T75QoUgCAmDAKHA7uYG1dsBTi6H8bajNFttHnjwYXKFMlbO3ovUyFB1QZYpmKbDH/3hp3nTI4+wvr5KoVxgfGoG13T4k899mmP3nuDMlRVqQy4VpYUSe/jlccrDoxSKdRYX17n8vTPcWVzEHdJwiPi9//BJtpsRD5w8yuXNqzynOPzWn32Vx37/X1D4e79KEpxFqQ/RPvEWQsumdX2RkiJJHv8u6jefx/n9LzD69Qvkzlzj+vfOMLO4i3VjieQtD7L2mx/kw//mf+cjv/UbRP02qws3CBKBF4ZMzM5iuC4yUanVJ/i7/+C3eNs73srk+CH8TsRzp57hX/0fn+A/f+FP+OAH3kMSRmRJRL0xS64yzNLlZxjKm6SJx52bNzG3nkF4y3R9h621u7iFEl6/x765WZZv32b/4Vk2Nlv0Wk22tjaoVoucfu4U7d0OvX6Xffv3cf3qJRzbojE5QZhELC0tsLO9ze3bt9g3O8OdWwusrKyi2w6V+ghba6vU6yN88/Fv8cCD96MognPfO09teJg4DGnU69xd38AwbTRVhQQsc+DwaZgGke/RunuXW7fuUB4qMzs3Q6YquIUCipCITME0TNrtDvV6gy9/5SvMzsxy48o1jt5zlK2tTerDZSI/wMkP0d7e5uFHHyJfKLG5sYOds9FNHV2zKJQKCEWltdVk4+5drl67ysGDB1i4tYCiwPjEFJphEHo+7dYWo2MT9K9cJWckuPf/CsMjedp+xOjMSaK4x8zoQbabC6zeeI6gu47o7RBIk6GRGSwnQCEjSxdRiFm7myDSCMsy0M2BOdMgIzAlvnMFIQS5g8cHlXpVRzclaRIN7vdihThJkWpGnIQoiooQKhkKvu+RxDFSGXQxQt9HQcHQNbx+i/HxMeq1Migp/X6f8lAdVbdQVB2EhqIkZGkyiO/SNfzYQBo6aZiR+gE7zRa266DqOppmkmSgGRZkIUJaZAgUJYU0IYkzNH2Pgqprg/OwHKTICL0+mRhkhipZShL6JJmCksUYqkaaRKRJjCLkQF9IQiYyvH6IZeqopo3X62HoOkIkSMUllYKElDhIWFha4Z4j8yhKhumUUUSK123TGKmRJinFYgVDt7lx5QLzh48hpEqchqQkFHIuluWA4qKwjSaajI/myNfeSDln8r6f+1WK5TIn7z+OahYQWp5Lzz/LO979Tt7zrl/gY7/+MX7r7/8q2tNniVLBR3//D3jLzxxjanYeu1ClNlGl3Q4YrefRxCWEqvDx5cv0sz5HzLkBFdVSGWnU9rJ6DTShkMUxiiKRUkNRxADgqRqxkpAlAl2JMO0ciVBQpY7ndYmjBFVV0Q2JokgEGmkWY+gKpu2ytd2iViuCUAj8GFVVScl48IGTeGFMIeegG+B7PbrNbRbdi/jzfdQ04/lTzzE1NYdu2Ki6AYqKYRmgSNbvbvGNr36De+8/wZUr16gMV0kJ0EQOy7ERhkUahFSHi6RAe6fJ9u4O7V6bodIQmtSJRYKqa+Qtl3a7jWMP7sVma5tLV+8wf+g4qg5CkWi6jiIFCIGpmdiWzdLSLTJFoqTwDy9/kfOPVLly4QzHjh1CESqKFFiWge/3MA0V2y2w09xBaCaWk0coCUkSoqsGXtAbXNeKgmGYAzbDXqf1BQdWZUCwLOarOEMNdEsnQLBwY2AS9/kvfp4Txw+jqRJdtwkShf/n45/kvuPH8TptVld38XohBw9N4jp5kjDg7uoGmm6w295h6fYqlXqD5u4OcdjFzrnYjku/1aZYdFEUSRSDH+zy3LPXaYy5VKsNSDxu3VmjVCmQxhmp30FKja2Wh5al+HECQufW9ZvYjktxyEFJI+xcnk63z/nwAnk9z0cv/j381gZbncuUJk8SxQlB6FMZroOEC8+fY/+cRdGRKGoCaUYpJwh6GZpmoyiCRGRopkHGgAosRUaU+AhVEvkximmxvuoxPFJgabGL6YzR9XpMTEyws7WNJiDOUmzXht4mmhHR6UUIaaBoNlGm0O/38byILI3IOTq3F1bYP1EilR5RrKMZNkIqqELBsmy2tra4diekOqSRRBmGbXHmeytsdHqMHm4w2pvDLBkEKxpfeOqzPHSizsf//T/nXe/5GJkuUDNJKrMfBiEvWlNme1/JEyr0QT4QM4hpGXwpmdhbw74GA5/XsG4dGA+lP1g8Ky/VbL4gs9z7//cjc77v65Lx2nJVf2yXc0+j+mIN+Mu/f+D4+yrjxfE4L9PKvjw659VAZPYy7azy8m1fQTH84i75C8ZO4rVrcF/wflIGr6+yZ7L4iu7RPwWurz7+JgHX11L8+euq2rzSEEHE0u0VxsYnOHpins2VJpNTcyyv3eXGwm0mZg9z6cp1RsYnSaSBtfoUZtYnUh003WKn2UZRTby+z/b2DtVKifNnTzE+Nsmt61dwTJVLF85RHSoy1pik2bqL32tSKhfID5XohyFKnFAo5FClIIojTNNCEZI0S9FUdUAHzKBULFEoFrEdh3zOZXlxmbW7K0xNzbK0skGnHzBca6CbFn0vxNRVkiRmY+0uOdfg4PxBNja26bR95vdPc/r0c+RzJs3moEPXbvchg8CPyOdcotinVq/SabUpFkoMDZUJk4RSqcz27hbVoSGEqtJo1FhYWKJUGqLZ3OXw0UMEQUhtdAzj9BpSVUkfmWNsYhJFUXBsAyHVFyp6vu+jqQJVlRw4sB9F0zFkgtfaRJo2Qdzk6D33oAoDAx29OIQkRdm5TbS9wu3tiOH6ONdu3KC126ZWn+KDH/oQM/MHyJXL/Ow73oiW7rJ/36Msr13k7/+jjzE2OkOKglh9gr7fo/SOX8E9cZT45P18pdnmDf/0t1A++E523/dGVh97M//kD36X9/7SB/gPvbtM/Kt/gPvQvUjb4W996H2kaR+h2iyt9VldvsEbTt6HZkgQKZqm0Wq1efe7f5bpmQn+8JOf42tf+c88+thJdN3lN37j17Acg2JxiGani23b3F26w+zcDM1mB1UzyZDod76Eojs8deoaQgHXMVBVDU0zUaVCcShPqTSEVFNCP2BnZwfLGnS+Ttx3L612k0a9QbPVJCWmUW9QqdQYGRtlZmqcrY1VhofL7N8/R7lYZnlpiQvnz9Hvezz66KNsbq5Tq9VptzvcuHGN9fUNxscnBvcrMDM9y/kL56nXa5TKFTZ3dllcWqFWH+X61UtIBUZHGgNqnpun1++hSQj8gHJ5iDRN2L9/P+Pjk5w5c5bqcI1avbpH8VNJMyhXKwhVwfN9giBiqFpGkYL1u+tsbW7SaXdotnbJspTJyUna7Razc3PYrkmhUOD082dotTpUK1VOPX+GE/0SirPOP/3M89y8+CT3nnyAzYVLWHrIbidCdSQyEuiFEZzqJLnCFJpuYjutPZ1ohiBF0xsD51+pEPoJIEHJ6HU9lObgGlZHp8lQQJEkUUKSgmk6oAi8zi6aLgf0eNUm8PuoqrrnjGy/cJ8kSYLvBwhlQOO1LRvP72NbFo7jDmJ1soSMDD+MiQIfTdNQpYogRqoWiBSpGpiOg5uzUVVJGPRRFJUkSUiSmDgI0AyNNAnx/Q6aaaOIjMjrEWcCVYpBDmYGfpRhOQ7+2Quk65uI6sBZWmo6QtUGWaxSIlWdXreLYVqkaUwGaKoEMuIkxXJckhTiNEYIi8FKTCFJBnTyAd1XIYoCOm2fKIgplkv0ex1KQ1U++alP88EPfIBbtxYwDIOcmyNNUnwvRNVU+l4Pzy8jlGVybkyx/H6iIKFYCfnlj/wiUivQavXod9rcXV3g5MlDfOzXP0Icdel1WhQu3iZNM/7TjfO87Z2PUavV0A0LQzqMjg4T9tvY5nUyMj69eYtW1OGoe4R2p0O5XMJ1HHZ2ttENiZQDsBP53iB/UEpUU0Nkg+d1c71JruAidWNA9yMlTSM0TUcKDRAoSkYUxty4cZPqUJ1Ll6+zb/8MceQBGaZhI8QgmuXJJ59iuF4bdM3NHJpusL27g2HaxHHKlStXOXrsGEKFdnsHy7HodNpomoWSga6pHDt+hDhJqQ5X8f0ATTUI/Zgo7mGY+qBwpUhA4cLlC0xOjmPpAleHne0FioUGoIESkgm5N1UiFYuR0QqKiFCwSOIIwzAIwgDP8xBKSpx0Ebg4bo5ep8ONm7d558/+HPccmafd6eC4LooSo+l7pldkxHFMlgl03SaOUnSZEgcBgedhmA5pluL73gBeSBVlj9L3QjSKMgAGuqnjBQFZmlHM51laXGF5aYmf/9D7MXSXOEnp+13IIu57w30D/wbdRJCiazpR3MM0bMIk5Utf/hpzM7N4rRaGleeJbz3O8eP3YFvu4HyTjF6vT5IpPPfcaXw/QAp48KFHcVwdkcHKyl2eO32Rg4cOkEQKqkhotpo89Z1nOXv6HLV6nc9+9jP8zGNvYXJqHCkFSZyAdLhx4xYLxm0czeHXvvmb9KqnaHtdMm0CJQlQgEsXLvD0d59BZn2mxhx0VQUlJU0zVFVDSpU46hKnEWmsYdgFBClR6A0KMapCmkmkIsmUiFLBJU77OG6e9Y0u995/H+1un3yxwLUrlxiZGGdzYxERNpEyQgpIwgTTGcK2bO4sLDEzux/D0PE8Hy/M2NlaYzgvScjzxb+4zsyogxQhimKhaTHPXNhmYnwCx+6TBiFOrsiVGyuceOAe+noTZ2EYXTE4On6UU52zEPS58+3PcvxN76TvjKJl0Y9snLx4bZo8qwIgTyYvncMPy9VeL3D9occ/Tk/5Ktu/mEHwo8aP0/a+nvHj9/EqWtkf6lq+9m7xX6XdNQCur2ODV9E3/zDQ/ylwfdXxNwm4/riL6/8L0PqSoGAd6rVRtlc3WLpzlZFGhdRwyVeHmZqaplgs4NgmWRqTLxUxF56A2Ce26+w2mxTyBVzXZf/+Oc6dP0+726fWGOPJbz9NtVzg1o0rFHM2huaQxhLbzmMZOdpdj1KpQt+LqQyVSYnRdH1PO2agCIEiIErSQWSFHBhwCFWg6yZJGOK6Ojvb2ywsLHHg4BGkYKA/Czzi2Ke12+LmrVscP3qUhYVrAw0PYOgmbS+m2e1RKFfpdtqMNMZIkxjTUNjeabGyukKj1sB1CmxsbtDtx4xOTqEbOTY2t3Asm8U7K9h5m9WVVZIYZiYnqNcrtLotiqUqYZLhKjpdW9BrWChCQdM12t0OUtX3jFcGZjO6phGnAAJD11A0Dd00WVtcYKQ+h6LlSNKMb/75l5g/fITIKKESY3YWKKQ9uhtLHHjwnRSHCkxPzfIHv/8fyZeKzMzOsL21zsz4OP3QZ2RkEsfNsb27hhZHKHefIgOUkTfR67VptlscP3ESVAi8JqaWx24UOfDYSaLZOiP3HSfNFJYXd/mTP/40D9w/j6JU0VWHS9+7yO//37/L297+di5euszo6Dh3V5f5nd/5d7zv/e+h12uTyw3xtre+gcnpGeb3zZESUhiqEmYa3d1NSuUctlNgeXkVkFh2jny+TO/U/0lgjnHuwh1q9QrjE5NsbG3TbDa5s7BOtVKl2fQwTJPacIk4ytjd3WVm3wxOziGfz3Pu7DkOHpqjNlym7/n0vBDdGNAUy0MVnFye9c1N7q6skmUJhw8doTo8zPb2FlNTUzz33GlUVeP48WPs7jTJ5/OMjNS5cfMamxvbmJZGGESsLC2yuLTEo298I7puMD0zzaXLl7Fth4vnLrK1tUljrIGQQDqgMmmaiqqqdPtdJsbHKFUGnTUUMehCqirtbguZpayvrlEoFChXhlCAm1dvkiYxcRozOTWJHwYsLSxw770n2NraHGhP4whzz+jo4qUrCFVynzlOmF/i/l/4LQpawPyxN7OxsolmFhidfJimD+PTh6hOHqbtJQwVp9ANlW5vE0Ov0mnF6HpKHOskqUQ3DLIsQxWCKM4oFItoY7PIkWnSNGG32cIwTCACRaHn9VCJUHUdRYE4TkiiFCkVpJSoqooQAlVViaLBgh4ydF0jCAIs0xpkoKqSXs9DErJ4/SKlQo5ut0++UKTTaSOlJMkShDCI4z6J75Flg+gkIQYgqtPpkM/nB2Yy3SaQoWoahrReiFfIMjBshyyJiZMYoWoDqisQ3Vog8X3U8Qa9bhfdNAnDmCQN8fo9DN1C03WElERxgGFYg0JdGJIqg9p1lqbouoBMAgPNpZSCNPJJU43NzR1u37hCqVzmzPPPk6Gwsb7DN594gl/9tY8gxYCC+Yef+iTH7jmKqgp0wyZLoe8FxKmCKoap1ZqsLT/Ol774SX7xl36b5eV1MHSqpQVIVtjYsmg0ZoizgExJUVWdcKdJOlzmw//kv8cPTYaHK9y5fZ2zp88wOdXgs5/6OK67QKlU5OMrV+ikPea1/bi5HEIRnD93jtHREXRN0O/3OH3me8zMTA/owXudBUGGkiYUS1WkpUImUBRJ6LdQVZPTz5+lVq/jeT1UYSClQDcNLN3mxq0bzMxOQZqi6Sa7uy2ybODePDY2hmFZkMDCnQW+/e2/5J5jR6n0h7GCHFrdwrItdnc2qA0PkyYZmmaQphGKotDpdgijmIU7txkaHqbb6ZJzXS6dP091uIiuuWQiQwgNr99lemYaqRnYlsP25ga2m0dRNTy/jyoFqmaSJCFpmmE7NlLdi41QVO6u3qW0lxFtmhY7W01M08J18/hBhGMZbG3vcPbsZeb3T3Hj5m1QMqRMCcMQy3ZRNRNdNUlTyTPPPMvIaI2ONyjcrG1scvb09yjmc2iaII4ibDdPkqUIRZB+v5uUgcgUFm7e4M+++hfUajVQUlzL4MD8IYSq4oVN3JxLEioIDHa2NwZ69iylUi0jpEYQegjVREkjTrzhJI5rI4mp1mqMNmoYtk0Y94jDHmHYo+97fPaPv8R73/MehEhp1MdIshCvH9Bp71AeqnDknhM0W1sMFUtEoUeWxkyOz5AvDVEp5zh+7Ai2m0PXFcIk45nt55nUSxD7XNVuM9av8/OrH2I7fh6ndpBKZQRFZGztbDE5OcmNyxd406Mz5O0MQYiQGv1+f09nn6Jo0Om5mK5L1x/IMFSZoag6fj/kzNlrDFdHEGSsrq5SGRpDUTIMy6E8VCOTOo5jMzxcYW19i0IhD/42/aCP1Ay6nZBibR9bu21GG6MsLS2SxCG27dAYnaLT28E1PTQlZX6+gRIHKEpKmikUzDq1kRQ9aqMpsHEUFAAAIABJREFUJmkaY+qC7Z0W5eFRQnzWlVWKO3WElFT0gyhTMWfPfJOvfe5PeP8H3z9w+/4ReOP1ANcftd3rHa8FuP4onegrb/vD4/vxLq/1PH9cJ/nV9/OjgevLXZgV8dqfO/EaEOjLnx8hxOsEx6/uEv2yyT8Frq82/iYBV6H8wJjpv4QRqzFkkj/+xKd59i+/iZVXaEzPsdPu4XV9mmvL6ELBtUw8v4O+9jykMUlhEk1K8jmXfqdJEAbM7tvH3P4jTMzMUx0aYnV5gbxrc/HyJWq1AjdvXyEII+qjDdY3VwnCHqVijgSNVnsXw7QHAC5O0A2DMArRNJ0sTVFQiJMEqUnW7q5jmyZbWysEvo+mGWxsbbO9uc7+/TN02jvkciauU2JkpMHW+gbbW3cJwoAw9AhDn/XFZfbNTpEFPsVykTAYVDtXVm5z4NARasM1Vpbucu3aTWojdZbubjI2OU2rs0F5yEEoIbu7Wxw8fJSdnR08L0CXKn2vS6lcJE0lQpUocw2CMYdS0cXz+tiOi267GJpGHMcvvGGqUh0sLKWGiAMwXPxYoZa3WLl7ESOXR5EGB+b2oxoafhCCVWS9DU60gegs0bxzjqy7xlaa46EH7qXb7jI6Nsr4xBTdZp+FlQv83u9+gVKpztS+Mt978jsU/MsIVaN69P0EYZdc0UbXTdrdLoHfRksd7naXKOdtJPDHn/lT3vKu9/PJj/8Rf/sD78XrrKDl8xhqHyVcptkWvO1t72Rqeg4hNBQl4sqVa9x7371YtsbExDRLd66wvtFCl6AZkkzV8YKUIVvQ87v0Yo2hUh7bziGEyvLNSxjXP4Ux9WYuXbzGQw+f5OrNBbIMVleWqTeGGark0DUNp6Ai0ozTp8/yhjfcT7FUJAhDDNOkMVxH0wXffeovmZqeQ9Vt0ijCMC3OX7xMvjiE1DTq9RpDlSH6XQ8371IoFlBVDcdxWV1dpdVq8dBDD3P79i1s22JicgLbctnZ3cIwLVRS7jl+D2E0yI1sttr0+h6lcplKaUBlHK7VyPbUQoqA3d1dFKFgmjprd1dRNYmqCqTUEFJDVVVIU3KmSa/d4fbt24yNj5FmKZcvXmF2ZppioUiv3ycl49iRo2xubnL58mWKpQpjY2OoqmB6ZoLpmRnm9s9iXQkJyjf5va+fZf/MBLNHHiaRPk7JotmLmN5fZ7ctwXQhCWnu9smXTDIlRxzVcc0twmgNFBspDXzfJ4rCAa0tXyYIAqI4QtM1up0OhjHI2hToIIxBx8YP8dMYw9BRhSQJI0zLJAgCwnBg4mJZFmmaIqXEMCW7u7tYprlHJwxQxICuFGsm+XwBYebAKiHSAF3TyZKUiAxNsyD1Sf0+fq9HsVQiTQV9LySfd/H9AV1VVzNMy0bJNEhU0sQHBJrh0Ov30PfAslQ14tBDUyXerUU0qaKM1jF0nUwRaFIgSAbdkr6HaVlkWUYYekipkcQR6p5bsqoMljM725sYqo1uSFIEURQjsww/hM31TfbNTmG7JgowXGtw5sxFoiShPlLB0DWEEJx84H40TRAEHn3PR1V1FhdXyBcKfP1rX2Xf3EMMD29x+Og8uvUwlpOg2haOvoIUCf/p409z5MijPHf6GcYmGghVZUFTiCeG0UyTcnkf73nvO/jor3+Y6ckxWu1tsjhmavIjRMo9/G9P/wusssXJyn0IKcnSlGq1MohF0gdFyImpSWIyej1vkDMdR0iZQZqgGS5xFpKlIIUkjXu0WyHTM7OoqoJhaPj9GMuxUFSIg5jGSJ0ojgj9EAWJbTmomiBOAizLZHl5jfW7W8zNTDA60qBQyPHWP/sAEwv7+MP+J6kMDVEsuDSbbfr9EF0z0fVBB1DXLb7wxS/xtrc+RiYESRjjBV0mx6cgi1GkDTJFSQcGYJmS0Wz2WF/b4XOf+xzSKDFUL6HrAk3orK9t4dgmQhEoMiGJQVNNOt1t6rUxdps76HtF3G89/jTTU/vxgxam6RKGfR763Sv8V4Wj3LrHpVqtky/kUCW4To44UTh95jxLC6ucfv4sBw7N4bgmRcvk2qVLlHIm9cYEvV4byzJwc+6AHr+3wEyV7AXqZbfdobO5Sd4tc/DwQe6uLXP90kVU3cJw8zjWEL1unyTpIUSA34twbAeUlBjw/IhcIYeUJs31FZxiAalJTEOysb1BIe+SZIIoSLF1C6Fo9Poxj7zxTYOYLccg8JNBUVszSJOAjJS+H2GagtZOE00dxFNtbDb50y9/lenJESrVElGasdZa5XPtL9G90+Pw5FG+++wpAjNkVhzg0f40rmWQaxxCV1OibECT1E2Dzmaf9btXaFQqA5d95fv0T4XNjU2EbvHdZxapjZbIFytkYQ9NZiQIND2iMTKKrgFpiJs3SBGQ+dxe2KBQrhOnEiEFmirRzBy2YbN64wy5oguaRZLq9BMHqRrkXZecY6GrAkWBv3zyaa5dukZ1yKJgCGwRkSgpUhikWUSkKxRyJdI+9PQWhrARWcRwvcgzZ27RbLaYnptlJ9misjUOxYgV9yZjx48Rr9zg1rULHH34XYMA61cYf53A9UeBwdfbcf3hY/54YPbDRkyvbfykgevL/y4hXkPczgtbvjaQ+GKA/1qB/YuP8nqm/hS4vsr4mwRcyfY44S9wz1/bRfNisPsSc6eX3SCvRVPw4gs3TSIyRXDf/fdz5uzzaERcv3yVB97wELbtkmbQ6bZRNUmuXEVdehpBwnZo4fs9cvkyqir48le+Tmtnk7HZA+RdDU0TuLbD5tYKnW6CkCYPnHyYOA7otFoUChY3b66haRa7zS2GKnWUTGCokjCJEJpEFSpZJlCUhCj0MHWDNMko5HMIqWKoFoblsLS4CFnC9EQDP9MQqoEmVMK4T7/XYXFpkTecvI/tzQ0qQ3WiRIISo5kG1eowdmWUdq+HbtnMzR9nY22VOFS5vXidWr1BEiXUq1UKhTy2XaDb6bG5ts3kxDTt5haT0zN0WruUhgvkS8MYVoko8tF1nX5nF8uxiZHYhkF7t4Vj26RJgq4pRIFPEqdIIdje2CDv5mm2O6iaiqVLer7H0FCNtdu38dpb5MsOSaqytrJOIWeRL1XwtDy6VcaNN3D8LSqyTdxeIymOIHULN+8SxluEcZ/JRpUvfv6PeOCBB3EKRf5f9t47yK7zPPP8fSenm2/n3GjkSIBgEkkFyoq2pdGuPGPLtsbSWl7P2Ltle+2ZKcfVuqY8DiN7rLFkRduyJEpWYJAYJEIkGEAQAAEQsRG60ejcfTvcfE8++8cFSIoGKco7a9dU6a06f9zu09/9Tuz3+d7nfZ786J3Yw29g1QNVUwlc+Oa9D/LL/+7Xufm2mxgc7WBifIrf+50/5N0/8VPc9ob95NMm27aPkuvIk+8Y5K673snPf+jDIDRu2nkriRIiKVCankNRJLbv2k1lrcX/9Sv/kTe8+XbK1Tpbt4xSr9eQ1QBdKrJWmiHb2Q1JRHTiqzDzAv7lJ/HOPYx55UGS2KWmDNLX3YWqCFKOg2HoNBsuYRTQUSwShwFPHniGvqERYhL6BvtIopiV5RXcZguE4PQLZ9i373aWlkpkHAc39JAkCUPTMHWDpfk5wsDn8uQkmUyWA9/5Ls8fPUr/8DCaqpKybUbHNrBSWqGvv6ddKVV1qrUG05NXqJbXSec78QOfQj5Ld3c3rWaT7du3sLy8QG/fAJZp8o1vfJMdO3agGSbHDj9H4Lt0dBVRVZtsoRNd1aiUfRbnlyBOqNddrkxe4sTJUyhK21Kjq78XRZFZWSqRzWdRdZnZuVnGxjZz9OgxRAK33XEnS0tTzM4tYltpjh5+jsGREXTNxJl0cVNXUPKDSNkh9FSOpakzoGYpplQ8fQBdSOiyjG06GLqB2wxo1AKiMESSz6PJdfxAR9NVJAJM2wFZQyQxzWYDVb3WD6rrqLJMFHmsry6hqBKKKhPFPoosISMI4xjFShGHLqqiksRtqvB1hd9arYEsdEzTQFFUEKLdVyopCCHRKJex7AySJIj9CnEYtyuWkUARKoIIRdZRdBNZa4Nj4gDLkImiCElAubyKrDsEQYTrNqnV17CdDM2Wj6LLiCjCbbWQpDYgU+Q2uGRhhShOkPp7UVWZ9bVldNMiCCMUVaflusRxjCSUthpuFBJ6LgBRu90QSTZoNmtksh00Gg1UTRA0ayRxQqW8yuBAL/VGE1UzKXZ2koiEw4ef5wM/815OHHuBsS2bUZW23Y4QMhcuXKGrs5vpqQlGRoYg8tmxYwdC0vF9GdNc4dLZArnuDLMXTtDVIxHFEV3ZDFu33MLnPv0ZbrttH6l0THdxI4gy6UwXP3bHLXznew8QEOC7EYeevcjhp59ny86tOJkU99ceJNBCOmo5ZFlHlmMe++5BBob7iJGRFZ0ogjiUsG0D12uiqjqSohIjE8dhm4rtucRRiG5mCYIyntckiRRmp0vkO9r6B61mEyPtQBhx9uQpCt1dSLHLqbPn2tZjmoJIBOlUGkULUXQVwzRpNDw2XdhFvV5nYvNZNE1c85o1UBSJSqWCiBMsyyCJIZMuEEYeaTuFJMBzQ4Io4P4HHmTPnm2cOHGK/p4CrucTBQrVSoXe3g5u2rcH27J45NuPsn3rNlyvRjpr02y4HHnuDEODve17IAqxTJMgjnBbTXzPZ3F+npv27eZrX/sau/fuo94o85W/v5ffinehVlym3zHMmTNn6eruIAwFsqIAMZ3FIp1dacY2DlLIZxAkxElCIZ9D1Q2qtXL7XlRUVMtCRuZ6c6sQcTtHIUFKQrL5Th75ziPs3LkVy9QYGt1KLMl86QtfYO+e7Zw/P06xmGN2dp1vPfIIt952C7puUg8CbCuHCKtUl2dxOjtIfDj4vacZGt6MY9toqk7gu9iOjRdKfPwTf81tt+xFUgSe22hTmqUG1bVlpFjw2c99jY2bt6JJ0Ki5FDv7CWIP/Zpw42237gVkEqHSaLb4bvQ4H85/iD/a+kfcltrNXuduunt6GDu5la2rOkE6TSozyNSVy6QcB1WoLC/Oc2XyLDfv7cPSE7zQ4+jJCQb6+2g0szx/ZpGNI2k2jXRjGgoCBVlOkERA5DbRNQvf9QladVQzR+QpqKqg1pBA9HJ5coX+oR6WFhcxLYdWvYznNsikHUSwilAEYbOFh0lX7zAKIX6sMDl1FVmRWZifZdeePcRhjXxGJZFcEiRkWQGSNjU6UHD9VczYQCRQj9aw4jSNJGJ6psT2PXvIdGWYm5klXe0k8U1qxjooHitXnmHiwjg73vh2wlBDUlqIWPv+Xsxrmet14KrcEn1/N+X39UvemFp6ozz1Rn2miqK0RUZpK9ILIREntF+Yr9bOeW27Licjkpf98Npx3Oj7fxiQ9Wr6Mdd/niBdK5e+pGr8UlWYFzeEfG2f9vzEtV7eF3//WnN45fayca9XRl8LkL9YcX0lBnkdvbI3OuaXn5MkSdqsyf9BDNIfAdd/oXgRbCavvJFeH3C9flNcf7h+kPDS675hlIREgjBO6O8d5tLxkzzw4NfZu2/Pi5YFBUdlbXUFhI6xdAxFSrB6t0Dko+kaM9Mz7N57G616lbGt20CCMAghjtm0ZSMzM8s0mw1GNowQE3P1yhXSGRsnlUfVdYaGhzF1nYsXzlPo7CSJEjy33XMSRgGGpkOctAVdonayWK6UMZ0sjXqDhbk58tkMQhGkMzlkSUHRVBp1j6PHjtPd1Usum0Yg8AMfw3HIpR0yhU6OnXiBIBFs6CmyXppntdKgu5hH1R0WFqa5aeceZuYWEECzusrC0iqSaMt8x5HA9VuslJbp6+9DSBaqZmKnU6iqiqzqKKst1FBGyqVpVSusrpdRFakt1CKr115yEWGUkCvkiZII23Jo1mvoqoTve6ClETEUszbl0jR2uoN02iERoBk2sUiQrQ6iVAcTs2WychO9No26fgW5voif7ef8mdN859Ej3HPX2xBCR9HSTE9epOEFNP2YRElYXSlRqzboyPfxkV/8ZTr6DHwP4ijkwx/+MH/yx3/Km998J0uLy8RxQqlU4ld/9Vf5y7/8r/QPDmDoJhIJ7/zxH+cjv/SLmKpEqbROKptBiJD3v+8nSaU1VpbnKcw8gTp/HKN0gdq5x7DmDsHlg3D+UaTqAsKtICKPRqShWoKkVUXXDFzFYmV1Fc8L6Onp4bkjh3nTPXezWlqhM1/EMXTstENHsUCr0WB5ucTi4uK1/jiFYr7AwuI8mqqTyeRZr1XIpNLIssLq+iJ9PT2sr1cYGBzC91xUIdh/y824fsj4+fOYhoGsKJi2jWHqeJ5LrVJlanoaXVUZ27QRRTEYv3CesbExFheWGdkwjOv5jF8YZ2R0I9Mzs+zdswddkTl25HmGBgbp6e9H0nUUIVFr1DEMFeSYTMqhtLxIoZDBtiz6+/oZGRmlUq3S09sDAvK5AufPvEA6k6WzswvLNPC9kOXFRTK5DAMDPXT39mFaNkmUECURJ0+eYqObwzdKRPECAze9FTvfSyHvUMMmbdsY6SK6rLK6uorjOLjuGpoOqtpA0wIc/SCyXKbZyrcZEUCrFaIZGso1im/jwL14E6dIejcSRiFRGFEsFhCyTKvlIUsCRVURsooka0RRhNdYZ329TOCH2E6aOI4ol9dRFZMDBw6wefMYYdj2YoV20p8kcbsyGwW4rQaKoqCrOn5Yx7TTJEnbB/p6j2yjXsMydEhi6rW2hdd1emacRMiSTBIH6IZAUTQ0zWj33MsymqZde8dCFNbRVJNgZgFJSPjFHEnctiCRZKXNHtGsaz2XsLa2jqapGKpEo9lCN3Si0EPVNNbXV+no6KVaLWM5KYKgjKaaVOsNDFNDkiUef+JpkjDCciwkRaa8Uqavv4vVtQqZTBZT1YjCtlrvV+/9Klu2bKaQa6vIIhLCOEI3DVpuhK7OEHAL8wt1erpzaHoDgcrpU5NUyku8//0/i6I55AodNC9P4NcqyLk8b7vnLsr1JlYqS8bJ8bV7v8lTh47woV/4tzSbFR72vkOTJrcW9/PXn/57tm8ZZeeOXaBc86QVEs1mi5YbY1g6iiIhJEGr2b5uQsgosorXctvCXbKMadrIsoLlGLh+jUPPPMPg4EA7YU9AkWW6e3owTBNV0zl65Hm6O7swLZuW6yKJGMcxIFFQJBVN1dgwvh3TMFi8eYpMJn2tl1rGNE0sy8AN6iiqw7GjJxEipKevF1UWnDtzisHhQVRVZu/efayulsnlCiiSgh9EPHXwaWzLaB+bKlOvNti6dROSBGfPnKO3ZxRFVchkLaQkRLbSyIpGafoSmUwHFy9eQlY0XnjhDH39A+zZcxNJHOI4eUzd4NbTLqqmcGp/nocf/Q47du3C0CTCMGSltNaev2khySpBECFLSlsR3bCRZIlK6SqdnZ1EMZDEmJaNkKVr9ZoEkJCF4OrUJKuldfbs3kWlukIulya+Jp62aeMYiizR3zeI5zVw7Cz79+/Fc32mphY58NBDbNo4gmk66HaKwA3J5fLomoJjqySS3ra3iiOCoC1+NLZxjHxHAVPXkUU7JzHtDrLpHHHkMzIyyJmz53GMDMeOHSdXTJNOpanVqrRaLRZX6iiKwlMHn+KEOM3G1Ah/sv1PUQwFRdfoHxhk1+IYuw/eTiNzFjcpsF5p0NfVie/5SJLE+MXLTFy6xM5tRSKvhaJKrJezJLgUOiI2bFKRYp3Qr6PIEqqRodmsEQdNJBIef2YG1XBIpQPCUGF5aQXT0RGyzuL8LAPDwzjZLJlMJ1EUk05lCcMYr75Oq77QthpUTcxMF7qZpVGv44cJsixjWyYdHQVOPH+a0kKJ3h4DWejXCiFx+9pFCcgC3UhBErBST5hbNejpEjhOgoh1jp+4xFp5jVS3TmdjkFSfzpXUOJLWRVpfYurUETq23kxH1wghLiqCOBEvWptcB33R0ZeA66vnoTcGLz8of70eS0tL2LaNkF5RJbxBvGrF9vs+/HOpAb+U5wvxWuO/cq4/eH6vSom+wbg3Aq3Xz9OLQP2fUM1+rbjeLyzJ8o+A62vF/0zAVfBPA67X4/XSGV7vDaOETluJTQ7o7exq21M4Gvtuu4dUZpAzJw4RNtfp37yToBlgrTyPLCV4ZjeELrppoKo66Wya2uoCXd19bXUzRWZ9rcza2iphpNDdYRCHEZfGL5LJFMjmUvhhxMBQD+X1JqHXoLenB6EayEKisrpKKuUQ+XVAIUIiVmU0RaLVaqIoMoKQqalJtm3fzuXJSWzLYmxsDMu2EbJGR2cnw0NDnD9/jsHebtZKSxi6iu975AoFpq/OsWPLKMKv44UwNLKB1bkr+GFCLKv093dx5dIEW3fsJp3vYHLyErVqGU2T0A2DQrHI0tIqKcem3mjSPziA67vU6k10zcF3m2ifPYRyZhFv/xBRFFHs6qfZbGDbNm7LQ4gEWU0wrTStVhMEhIBh6IRBhGZmkSSJMNFYWa9T7Oph+tIJisUiCQqChCj0CIMIWYn41rcfZ9cb342c7kbyGiSrE6izz9MpWgznbQx/keka/PlffIJf/ve/Ss9AN53dfVyenOPLX/smk1eneMMt+zh67FH27HsTQhIUCyk8N+Btb3srly6fZ3BgFMdJMTExyfvf/1NYBiimwXNHjrNnxyZ+9oMfwjANTp14lr/7u2+wdccWikUH3SvReObvyS0dQwQtZCtHLEmYTpYklUXLDyF1bkDu3QbZTuTsAE6+l+bsISRJI5YMsv1jpNJZHj/wOPl8jt6ebsLIpa93gLVKGSefYmW9Si6fR1E1Crk8URTR09PDxOUJhkZGaCLxh184wO9/7hH+7N4n+PR9z/D0C5Nk0xnSckIcg2U72KkM6+vrLJVWGN04yML8LN1dRfIdOWTDJEkiZqan6ezoYn1tldENG9DsFPcdusAXnhjn9z7zEH/97WP87cPPcfjkRX7ibW9ibX4Ky9ApFIscP34KZInV0krbt1W3OHtmnO+dXuD3P/0Qf/j57/Kn9z7B1588x1PPn2WoM0ersoob+Ixt3tRWzJVBCBkRR5w9fYFmK+TvHn2OT3z7BH/zxHk+fv8hPv/tI5y8OIMueZSXZtF0iV07d6KOV4msdZbDKq2eOzHSBWzdJjdyE431GqrqvLhIU6lUMDUNVVEx9IuQrBAHU6gaJKIfQ9MQQsIybJLYJYraDBH38ikkScLZvO/Fd9La6krbd1SSUWQJ3w1Akmg2Kri1EpLqkM3lUTSVOI4JoxZR5OPYWTRNQ4g2mPG81ougVZFlJEUFAlRZwtQsYlkmiRWkpEmCQRInGIZGGPtohgFSgiRLGJZJEIZtv9Rqg3pznZSdJ3ADVFUhjiOajRaykEiSmDCMXqRwIUkIYRLMzAIJUn8PiizRaNQxzCyS1PbTbKvmyliWgywLiBJkxQBJIgp9ZMlAURJCX6AZIVEcISIVhMxnP/t3jG3cgJPKMjdbYuu2zVimSRwGrJXW6R/upm9wmM99+nPc9obbabpNFE1hy9YtpLJZdFND1lQ0RScIInzPb89Duoqk3c3TT1+kt7uHbL5OEHqEzVEGtnZDkuGxhx8l60Dhq0+QnizB3Xfznh9/K7/2m/83Dz9yiAvjU3z7/i9z0y238dY3zVNZO8h6bZDQDkk1bfbsvxld9gjDmESWkIWE63qYpsXczBQpR2+/w/wEIcfohoUQMkksOH/uPJ2dXSBAUWVUVQdkJFljw8gIVyamGT8/wcjoIIi2CFYchAhFZsPQYFtNVJEwTB0hEogThND41re+TV9vHwMvbGBxcZH5vdM0Gi0s28L3PWr1CkkSYtodRLHH0FAfoR9RWashqwr9w4N4bgPT0Gg0KxiGgqal+Po/fJMdO3eyeWyATDaFaTsIWSfrpNEN5ZovZ0i+kMbzXNIZm0SoRM1q2w7OLkISo+kWlyevsv+22wkCn/sfeJBKaZmDTz/DammF967kUBSFq+8cZOeOXXzjH77G6Fg/cQSqaqCqCglBW0BNFvi+R8axqNYamJqMk85wcXIOJ5XFVGQ0226fv4T2eUIi8Dz8ZhNFEW36vSQwTROv1UCWBJamIKSkDSjkEMtyCLwGhqWRzWfZueM2wqSGpdvMzV7GyeQIRYJh6YRBi8p6CTOVBtUgCZuYhoblZPjeU8+SyRVoVNZYmL1KodhBtbKGrGiksp1IkoJlxWzZspnSsothKpBESLLMsZNn6MiYFHdlWUlX+K34V+jvHkFSBKphEfo+4iFB2FrEzzWwc9uRNZifnUOzbQQBjz3yMLs2duHoMelUikCK6C4IMhkNBQtCgYgEkhKSyA5C0jF0mThstVs5HIt02kJVZTQlwrEs4igkiTQmZppcnVshm89RyHWimQphGOK6Hq1aBU2qY5gaoRsQy2mCWMH3muiWjm1ZnD59joH+flqNGlenSmzaZKAKE0WTEUKhVKq2qdqGimr20HIrSEJGRG0pBRElVKs+pbU1Uk6WXD5PSkkhPAX7LTlGNwxTLGxkcf48p599mh97+/sIhILAAqJ/XJFsCqTOBGnk1VvfXi999UaRJAnpdHtB6QeWH7mBZc6Lc3j5h38+4Hp93FcDoy/f76VPr4/WDK9+vDca97XG+f8DuAJI8o8qrq8Z/zMA1xc56kl87Rm8TmT44ce4Eef9hn0BP2guQCKFQIJAxotC7rvvAe7Y/0ayToaP/eWf8tP/+t9wdbVMJpNlZGyY1vnHUASEmX4azSaFziLLa6vY6MzNzVAsOnh+zJGnn8IyNBbmlrg4fpldO7ZRaTSJ4whNVZmanmbHrl0k6ERBSK3WYH5hgdj3kCWJVCZLEEeAxMzsEsViJ4kQlJYW0Q0DTTdYXymhazoTlyeRJYXlpRIbN40SCQnNtEmiCN9v0tvdz8rqIoaZo1qr02isEMWC4eFBTjx/BN2S6enbyPjFCyyVymzdtoflpXl6OjoREjS9Jq7bpFGpoMpgWQaZbK7tLxl41Gtr9PT1o2ixgVriAAAgAElEQVSpNrUl9Hjs0e8wONKPfXIZgNrOTgxNx3VbpB2LOPRQ7RQaPk0vwXc9bF0jCQJUYRFGDSRZpVFdRVIU4kiwtDxDIddLoaeL0uwVhKSBYaJKKrqqECNz0/6bOXfqDCEamd4houwYQoXG4hVycQm5ucyQ3SAv1ug0fcKVs6xdeopDZ2f5/T/+GFMzc/zaf/gNtm67naBVobm6xumTR1hfWySdTdHdt4VWpcK73vk+nn7mCD/x3n+Fk7JJWQ59PZ2MX7h4jQCfkLV07sgsUayPI19+kmT6GJJmkOSGiLP9xFYXRqabtbpLKlMERSMWEqEfEXotFN2g3mjC3OPIVg+qpOEZDpEUsX3LNh4/cIBbb99Poaubat0lCSH0fMbHx+noLGBYNrWmz/z8FcqlCtu3beOrjx3hZz76JU5fWaLacLF1jWrT48riGt86dJaLM3MMOIJiIUOm4KAoEmMbRvA9n5HRUTK5Ai03QFYFjXoTYpmU5TA1fZVStc7//rEH+PJjx5hbqRDHCbapslZzmVqu86XvPE9n2maoI8XCUglVhmyuk+m5K9y0dy/zpSr/5yce4svffZ7Z5TJRnGAbOuWGy9WVJt98+hwbB/vYOdrLkeefZ8vmMaJYZmF+gc6uXpbW1/gPnz/It45MsLheI4piDFWh2gy4OLfKQ89dYrink7v33sIzR7/HpmYnktMgLghyG/ag2ykaskziN9GNNLVqFUVpq+1mMxkS4bFUKpHJeiiajixmicIWnpcmjgMUVVCrt3BbLQy1DfK8yTNIkoQ+tpNms4VjOtipPPI1kLm2XiIRBpqqIIhwHIMgSDAMnVqt3YfnNSMcJ0eS+BiGjCQlaGpbcVaWZGISIkBR2vZJupEmlELiKCYO20BNlkUbDErXqVkuQlZotZrEkY9mpAEJXfIxnRQCUDSZIPSREWiGjRAKSRIjKwJZbltYRVGCLEM4Mw+ANtiHQGAYKiulEqZigfAIY0gij3q1gqapxHHbCkPRdAKvhWYYqIpGrVqGSOC7dSxdIZZ0btq1vW0jo6r0dOcxLB3XC1E0g2JnD/VKgzgKuP3uN0AYoRsxbstF1/IQt5BlBVmCZqtFGAS4rRZJFGMaFbzGNHZqG33bxvBrlzAUAzK3otDJb//Gb9DRZbNx9zbsE5eQkFka6OY97/0w6UzIX/zZf+PnPvBvsGyDo8+e52d/tgvTSTizkLBoLNOldaKbNoqWJhFNgqaLqlpUy2UsQ8Y2VEyrDe5kScJruAghCP0m5bVFSss1+ocGcRsNdFXD85oEns/Rw8eZnLzKTftvxrYiHNvBCyMSoVCrVrC0DEeefZre/m40QyPwXExdI/CaJJrGpk1jtJoN9szcSjab5cLGs/zNF77A7j07kK95e5umA3FMFCREYUgua6NaBooqQRwShsE11g24zRjLMskXUtimTJCAomogta1DBAmu1wAJCoWOdntOkqAooCBTqy+1KeLpTpKwwezkFAeeeILdu/bylS9/ibe9/cfo6+tk967dzFyd5i1XVFTd4PAWj1jE7Ny3D4jQdK3dC5+ItuCfYbdpwoGL5zfI57I0mi5Li9VrStwabuBip3MvggNZTkgShbXSKpYqEfs1VF2m3myhqlr7mROCtbVlFNsmiVyCIEDSNYSiEgUhspA5cfIYXR0drK0tUujo4ZOf+jz7du4l8KsYVgY9lSHyEgKvQlBfpd5yCb2ImYsXyKZkMjmLrp4hfN9Ht0yQZBI/Ynm5RjYrc+ipF9h3+x5KpQUK+SJnz0/gNTxWwjVOWGf51JY/YX/XPUhShbXSMqrh01rxWXosZCb/JDlrF34Yky/0YKdymKrMWmmB7ZsK+P4yfb2DCNG6VnWF2Icg8bESBT+OQIAf+CS6hRrr+P4izx2eZ3jDAIZWp+EZVOsRhiYhiwhZgdDXODO+wJve/GZOnjhKoaOI12rRrNUoNxpIXhVFSZBETL0JTrobL/TQNI0wiFldWWVxfobRsWHOnT/Oxv5OtMTlsWMlejslMnqeRGrSaJnksgZaeghd9TC1FmGkUCtDf7/M0GAfR59fIlFjsukCdj1HY/MyjdYqTxw8RqGYpTz5HJt2bEPq3kkqWieUtH9UNJGGY6ThNmh9dZpt8n3bawHZ64xeIbX5rtLL89wb5Lev3F7Mj19mjSNeOW4ivq9V74cRP/phQnCN7kvymhY34kUSdPK6QOtr0ZmTV/3wirlJL6Mii5fmJ4T0j6/PdRuiG22vAXCFEMiK/AOP5/XGj4Drv3T8cFj1hvF6pKh/2IfxuuXE/PQcp4+fZHl5iTvuuB0nbbJx+2ZSjoXnByiLL5DEEUl2gMD1cVsNZBKcVBbHMZm9Osn8zCxnzpwD4Jbb38D2nbtRNZVGy2NhYR7H1BgY6GO1VAJgamqaarXK9h3bSeeKXJqYpNBRRLrWt5HJZNsPWRxSyOeJohhZVnCbHkIInJRFJptGUWTK6+vU6i6ZTAEISeKYMAzpLBQ5feo8qmLQ3dmL67r4QUyj3iBJBFenVti8ZQuNWotWY52F+Xn6Bwa5eHkCwzDJ54qsLC9j2Qrz80sMDIxy8dIEPV39TFyeJFvo5L77H2Lnjh2oqmBs4ygkEdrRdiVGu3uM+JqfpO83kQTEQmJx7grZQoFquUwQRhiWjaTIxCIiSTQMwyARIEsKjqOj6waxF2PZEo3SGXRJQ9YsIsVEkaDZqtPd1YGmKchGTJLIGHaG5bWQ2WoDycriWDaDeR2jPkM49yR6a57zcyEPP3eWTDrFL7zvHVSbLUQUE3jw2//xD/jgB3+BCxMX6e7tobQ4wU379vOLv/hL9Pb1cP6FQ3SXTxJNHyVbHUeZOYw+9RTKzHOIOEQzU0R2F6JjK7FZREvliAEJwVe+ci+7d+8kDEOq1Qa2k8J16zi2Q7lSx5QjwsUjSJkN4Ae4WhZZ1pCETL3eRNE1dM3i0vhFRocHmZ6ZRFM0bMvEa3kkwmBoqBeBxJnJKT7ysQdw/Yidw0W+8f/8Ar/34bdx+7CDoSm8cKXE1HKdzZs38Pa79pIICdOyQMhcuXwZQzdYW1nnkYceYefuXaiyjK6p1Ot1PLfBf/qbJzl5eQFDU/jtD7yJj9wzynv3j/LuW8doeTEX59d5dnyOd921ByVuUSxm6BvoIZ1Jk8QS/+5j93Fqov33v/fz9/D53/15/u07dvO/vecO5pfWGJ9Z4eDpKe7YPcpdt92EpAhIElKmxvFjz/IH9x7j3PQqqizxez93D3/8kXex2Wny+x95L3Uv5NTkIkcuLZJRl/jX7/lfWO44ichY+F6NaOAOtNQAudwQSawSBCG2bQBg2xbl8jqWlW2r46pLuF4LOb6KJEVEoh/LTreFlAzzWv9pghcEJDMX2//EhnagKDIJIUEYsDA/RzqVIZ3KoRkyAglNVRGSTJIIFEVuCzJJMo1mg1TKwfVaeG6MrmuoqtqmFXs+qXSaIAyRZQOSEAm9DWa9gLbNTdJWQ67XMXQDIUk0Ky0UxSL0Y1KGQ+Oaj2h5dQUrlUIImUajgWka7THiBCFioiimUi2jqipJDKqqEgQBQbOFmk4hcjbl8ipxGBHHMl/+0lfYsWsruuEQBT4JCYZuICuAEMRRjKmb1FpNdL2tPKxqBqZp0Wo20QwT3/VASMgKmIaKkHQuX5rAtHScjINl66iKaIM/t0657BEEEl/7+lfYsX0rEBMGEUICRVZQFJUTz7/A8FABTU/IFN7H4Ue/w4atNqGIWZxqMXH1Iu9//3t405vfhK6ayM+epVats7J9CN+L0E245ea7+cxnP8FP//R7+fSnvsjP/9wYYRjRzNzEc8sn6TN7mJq4jKbp2CmLlhdi6jYnT55iw8goiqJRa3isrq1z+dJFdNMknS0gJIHt2HR296EoMU8//hhDIxuZvjpLR7GH8fMXuOetb0GSIEkColACJFRZEHot3DBkfn6eDWObkRSdi+fH6SgWCcIYWdVJ4oQD332Md8XvQ1E1TvQfoVZZY+vW3XhuwIXxcSzTRFEEqyvLbSsWOaJSccllcwghY+gm0Kapf/exx9i0eSupVKq9mBm1Rbe8VhNNkkjimCSOiIOIwPd54vFn2bRxC5Ik4wcNHKuA7yZotkIsJJxUmlv238zy8gJ79+6iozNPGHg46QwTly9z62mPdCbD+bt7SaezKJJEpdwkk8oShgG6rlGuVEinM7hui5STYrVcRbNzJGqKKPYodhTQFJnI8zGcFNdVsxPajJPLly5SLGQxMzk0yyadzuBdExirVCs4KYeMk8dtuIhERkKm1ahCnKAaJr09fTz15EG2btmCbhps2rSVy5evIMkghE7gh2h6QhDEpDsHMNMFVMNidPMmRNJWhlYUg0ce+R6bNm1ElmGlVGJ6ZpaV5TX27L0ZIXtIQiGJY3r7+lGGBedS43Q93k36rMHQ8BCKCrVKgCYM1Gd1fmfo1zmcP857pZ8ilc1CHCHFPiulFeI45pHvHmDrhj6mpi7iZGymF2RMVaLlw1OH5hgccdqLAySYZgbkLK1aE12P6Cj2oqlNZFnjewfPYaoehXyaOGkvmC2U1ti9fy/ZfJbe7mHm5mawbZtsPodpGiStZdJZk8D3mS95ND2N7r5edM3m0sVLbBwboX+wD8vQuXJlDsfRsVMKBDqZFKiKRMOD0+OrdHTnICUT1VtIsYumygi1RrUMZy+tQyrAlFPku7IU1vuYvjrBocXv0d83yN7dW7n4/GMsLi2z4453gKx/n03S681Jb7jfa1VgX/Ed318pff357D/a82XjXlfefala+T8gIf9hZ/RDiSG9FNeFPF9XvIoP78u//5WCUDe8hq8519e+JtKrCHz9U+JHwPVfOv45npOXxY1WaG7EiReirXZsaGn+/M/+jOW5aVy3RjOCsS1bOXf+ArHv42gRigR6pps49DAMHWKIZRkhwNR0FhYWue3ON1Ls7KGjo0i5XEKzUhQKBRZmpjFMk2wmTxSD7zUY27iVnp4e6vU6saSSyWTQNRVZEniej+8FaIqM16rj+yHVShXP8+kodlzrvXOZvDKF53rksilGR8eorFdwLJ219TWiOKBRX8UPmtRqq8wvTKNpFlu378APIpYXJ9lz081cnDiNY6vEQUgm7WBZJpNXJqhX6jiOgyJibFvn6tUFrkzN8ZZ73sLC7AT9g11kC1l27toNSYKqysSxTxRGKEdmECSUt7WrAplsFllAeX0Vw3YIWlVUwyJwXbK5DC2v1V6llwUSGkIK0RQVWVJQlRjPbSIciyAxyeb6cOvrLJeWyWTSCKQ26A1DFFXmuw8/zdZN21hbvYxtC3LFAtliHxVXYbYSs+xrZOVVZJFw/mqFh1+YIaMJPnJbH6I8x8R6yBMHn+WpJ49w5113ssdegrmTOKvn0eefw1g6gnblMTobF0laZQgDJEVDSXVSUzv45lMX2bT3LuqxTIzMmVOn6e7pw/M9ZEWmWatwyy03g2hbTgR+SDaXQ1WV9rlTNaLKFfAqSEYOKYxZbSWsLK+TSjkEvk++kEfXDS6Pn8PzmmzcupVsKsPc7Cyz0zNMzy4xONCNoZv85y8d5PTEIh1Zm0/8H++mvydPpVpj29bt3Lyph9n5ZS7MrfPC5Xl+7l23YOoqzVYLWVXo7urCD0JOHDtOHMU46SymrWAYGnEseGF6nU/e/xwAb9uc46P//v10duTZtHEbXZ0FtnenOD+3xtxKjYtzq7z/LTvpKuax0in8lseR8Xk+cf+zAPzOB9/OLUMOgVtD1wzyuQz33DLG0XMzzCyXuTy3ygfffjPLy0tomkF5bYXD43P8/ePjAPz6/3oHfWqFTRs3sby8iKUKcqrHXCVifq1GLdB53xs24VUV8BbQir3kt/8Yqj3C/Owy+XyRyclLdPd04Louc3Oz9PX1srq4guM4JMyiaRpSNI0sJ7h+B0mSYBgmXrOMbtpEMW268OwFAt/H2bIPWRFEgY+my1iWThTGJHHStrRI2pTniATf95BlCUVVSOIESYZGs45lOlimjR+4eJ5Hs9nENM12j6yAJJFQ5BiBirhmi6VrBrV6Dfka1TFJIIxi6o01FF3GNBRWVhfRDAtV07CdNM1mizCIMU2LKIralSi1/f5ptjw0TcEyTUCi0WiQJAlOXw8im0aSQFVllhbXQEjceecdSEpEnGgYuoamqkRRSL3ZantdKjJ+EEIcoakKlWqtbSuEgpBVKuUybqPa9mxtNiivr7ZVbu+/n6NHj7Fnzw4MU2NlZYVHH3qUvr5eDj7xLM8ePswHf+EDGIaG26hiOSlq1Raf+tRn2LNnH4V8AUnV0dVJytVJetPvATUkwqaY3oKTUlENjU/+1afZuWkbybPHqVSrZH/yHgQS6YyNbXVgWIKBgW7e+c73MDPzDfr7+vnE5UMcCB7njHuOi9pltmibif0AU09x6NAzzM3OY5kW84vLrK6vs2F0lK6ODKm0A6jtqrYMcQSh32B0wxiqkSBJEIQ+A0Pd7Z51ERGEAbqR4uAT32PT2AiKpmIYGn2DgwghoUhtZU5FlUG036P1ep2enl52z95KpVJhft8lcrksuWyeBx98kNtvv51Wy0ORTU6dPI+hp3CsLKoikGSJOEm47xv30dvXi207bNu6nVp1ncuXJ1hcWiEhwTRMfN+jUa+yuLjCN77+AFu2bCfwA4aGezBNhXKlRBBEfO/AUwwMDqNZEr7bYmFphSiMGOzrIpOxqZTXiBPQLYOOQoE3nI+Jk4RPcZlisZNPfPy/09HVQ1dXF5Jog3lJNogCjwRw/RBdJARNl6988e/Zf/t+JCExPTWN22qR6+x6SVQFgZQk5HNZhKa0F1UadXRNR1U1PC/AsEwkWYW4TUmvN6poaoIsaaQci/Pnx8nlM4wMjxBFIUKKUSSZYmcXTsZhdnqZI4cOMbaxLRIX+h4qAX5jjThoIhs2pmmzurrOyIYxJBLKqytEUcwTBw/ypre8A1mLsIw0qtr2Cz/YeoYZf45fsz/Ef7rjdymvN7hy9TK7d97Mt7/9KDsHtqHf38cDQ18gEQnv8t7N5ORVfN8jn85Qr9cIPA/TyXLy+Bn237QVRY45c36OzWMFkALSuS4UeQ0Jk1ar3mZLxAJF9UlijySptAUk8RkcSpF3bJASkCQkIXH85BQDwzu4cPEqXcUBNEMi5WSYmprEdiz82jyymkCSsFoVjG3Zi+u7yLLG3PQkxUIGxXB49umnyGW7uDJ5lqHBbjqKDRTFADnGd12GhgoIr4xtjKCnM1RWl1DlmMUgxVNPT7N/1yAbu1SOnLwCUsSgtRGn02Qxf4U7734Lp06dZdOGDg4/9iA3v+HNqNm+axTy7690JiWpTRd2fnAe+lLO+VqA6pUfXwaofgBufTmgk14JwMT37fiK3/3j43plBfd6Dn0j0Pj6xFFfP3D9QWJKr7W9HNy/lm1NQvwicG+DefnVAfE/AbjeaD7/X+NHwPVfOv6ZgesPU3lNkgTLzPDf/vRP2LN9M7t27OCNP/bjuHFCId9Bc3mZoHQRPXYJhU2jtY6VcjBTOZIkJAxDSqU1+oZGyXX2sriwxPzcFKPD3fiRxMrSAkockMoXCSLB88ePs33HFubnl1laWqRYLLTNy4Wgsr5CHHgI+ZpgSugThx4IBcMwyOXzLC7OkSTtFeJLFyZo1FvXBI1cLNtEIFhbW6fQkcNU0zTqDbo6OzENC91U0QyL1bUSpqphmAVUVWV2epZUJsvc/CxSEpCyDZZLJTZv2czkpQssLJTYvv0mFE0jiF3CVoyumzi5Ip5Xb6+i+0Gb+iHJyM9dbb8k7hwhDEHXTS5emeaT33ySj37mm/zJlw/wX7/4MF8/eJwnj5+jWauxcbCPKPCugZI5VNUiiQSfe+AR/vBz9/O7H/8S/+XzX+czDzzO8ckSm4e7kOtLCM1B0x1USUFVFQZ7LX7iN/4Lv/nfv4msWtx12+3858/cx2/95Rf4zCOH+OS3nuGOzZ3c9tHDPPzCDADVpsefffUAH7v3Ef7my1/h0YMH+Pk3D/HeniWoLkDgIoTKiUsL3HdunT/4+jF+/2vH+KP7jvK3B89zYqZGKlXg0DPP8DM/89OsVdbJF7KUVkp85M/v5bc+/kWeOH6Od9+6FUNTieIQRVPRDRPbMvnZ3/kLPvTRT/I333qCD7zrTtTaJJIsEUYSCgI3hGPHT9FsVAg9D02T0XSN2akJVlfXyHV0I8mC8Qvj7Nt7MyulVQpZh/Vyk9/85LeI4oR37Ornl376x1E0mVyuk/n5RTo7uzD8Ct94bgI/iMhoCSNFk3Q61e4Ti2JM06bRbDE4MEClUiOfd9oLDLLOZ791lBcuzWFoCn/7ux+ARGZ1tYyT0oniiDiMMOSIAy9Ms7RW46feeita4rK8UsfQTL544DgnLy+gKxJ//is/CVFEEAcMDo4yfv4ig/29ePUK3z1+haX1Ol1UuP3mPaysVXj66cMcnfM5NdH++0/92r/C9dtqyamUQ3f/ABcuXeH2fbt48NlzLK7V2DtssjRzlY3dKk3DJj24l0TqIJvTqVTXaDTqpNMZqrXyi2wGOfFYWJynsyvB8wIUaR4hQprNNLahg1AIvRotL8JyUqiqgj95GgHE/aPEcYwitxkHSRwRxwFR5KNrNrV6A0VXaLkNlGsUXtdzMQ2bRqOKZZlIkgpSQBQFWLaDqmiYpoXnezRb7Yqp79dRFI2W3yD2WySAk0kh0Ra2i+METTeQVQNVt5EUDdtOI8sSfhAikJEl0DSDZqNBGAYIKQEh4RgmsqLRcpsISXrxH75t2y8yVuIYkjhhdaWOkzZJOxZ+WEdRTALXJ4xC4iTCtDPIQOi1CKKQoFkjDkMs227bw4gEzw1QJJXAW0dRVSShYGomLa/Gzu17uOvON/HkY48xPDKE4ThMTsywe+c+Boa6Gd0wSDaTBcBv1lF1C0VO0dfbTyGfwfUaHHryKKOjIwTeJKG5CuEIV05N4hoxv/krv8tb3v4u9u+7mc/81Se4Q9JwUg7uHbtJgoQLF8ZZX/V59rkD7N65j89+7vNs3lgmk0nz1fo0uSDHx52/Zr+yh79qfpK/7PsoTy8eZvzSOKMjowwO9jO/uMTYxjEMXaJeXQFiKuUGacek2VhnpbSOY5koRopm3cO2CszOLBNHAlUTJJGHquugKoyMDiFEQiQUolYTVdOIgxZJ1CJOEmQVFM3Aa/ocPXqUkZFRlrsXeF47iDNgIhQNWQSMjAxRrdS598tfpasvQyaT5siR5+jv6yNlK20QIsuMjW3ASdkIJL74xX9g9/Yx+nr7KK+XOXz4eXp7+8jkM5jpFLlsJ41GwPzCEmObxgjDmGqlQbHYgarajAz3ghRgWCn86hqHnj3B8NAImXSaRqtO4LkIxUA3VSxDx6hHXJCrPLQ+TpLEvPd97yNfSCNL15JSIVA0A6IQSZZRNANZTzM9u4Dnegz19yHLEoZlYdoOmmm+BFyFoFGtoMiCII6oryy0fZYlmYXFRf5f9t472rKrOvP97bXzPvnmWLdyUKmkKkklCUkoIoQkJIMMRhgwGGxsY7cjbbdNeu62rUdwm2eewca4sQHTIgiBUAQllFCoUgVVvFV1K9wcTz47r/X+OFeFEEKAoR/j9WOOcce445yV9jlr7zPnmt/8PpkqLMdEt2xq5QZziw36Blago6NbFnHok895GHY7Eyo0qDaWUGmCk8tTb9bIukW6O4ucPDGN7epY+TwyiTENg0hquNn2AZMQGnESEfot7vj6HVx88WV0lDrpHuihFZbxyy66F/PtxsMMqn4+3vkptvefQSHfwze+8Q2uuuoaQCeXcyk9tIIkDbh3+DaUBr0Pd7Ni5VqKpR4UAqVFFDMOO3c+g+ZoHN03ycY1eYaGcqB0hEzp6DTxkhxBIrFdnUQmBKGLbZscPXSSUj5DLGOiUOGaJloaYdg2Cr2tTDA8xBNPHuOyK14JWh3TyRKHKaau4WU9tGgRXU+JohAp8liZTuIkIpPJkXVNXNeh7kNfVxelTofeksXYwf1YTp58rpdWOM3+sRZh6NDVYRGLBGl14AhFEgW4MmXVcIHe4RZJWCSUGsdPnKKvYxjRdDjsPYmbKVAsdPDIE9/CChZ47uARLrzytWjLxEwv9Cejz9rI/frLkjP9oB/6kweuP6rbi01J9f0Jm5cb5geyjy9460cEii/V56XrTn92geuPay8lSfQ9U9+3fo2XyeT+FBlXTfx8AtefXZ73Fwb8x7H0p1m6fkJNpJeqhX3heC82IQS6pfP1e+5m78Gj5IvdTEydQkYhzWaTvtWriKKYJIkpl+eJQ0Wz5jM/M4MAcrkCI6vXUG80sG2Taq3C6OFRDh4cpVpewMvkmS8voauE2K+warifiRPj5DwTzzY4deood33jdiAlVyxSrrQDwVTFCMvCLXRgOg6G6ZImkkKxA92wKBSLOJ7NmWdvYmZmnl3PPsvs9CStOGTlmtXUK4ssNpsMjqxlenaBZqtOrVpnYuIE3Z1FUgXV+iyxVFxw+asYGB7hnHMv4PiJKSYm5hGaxdRMmf7BlZQ6uzEdk1azwszYMQqdBTKFDhp1H93OgTDaMgOZAn7QztYI3UBpOXLZLP9y211c8bsf5lNff5j9YxOEUYJlGpycWeTeJ/fx3k9+jaMTM3huljhskPHadUm/9N6/5k8+fiuP7DpEtdHCtS1mF6t885EdvOaP/p5/uO8gtpGyOPE0J49Oc+sXbsMq9CGMNgNqnAhu/MNb+PiX72Gm2kJfhnEIXdCZMci69vIe0Ogp5enMuXTlXLryHl6xl7I7TKv7bGTPRh6ZSPjN//EQH7712zw7eoqmH2JbJtOLFb728FO88QMfZ07kUDJCR+KHEf2DI/zz+96Da1s8e+g4n/jqQ2g6ZDJZKuUGhnD53N2PcdfjuxFC49MfeA+e50FUJvFr6Lrgxo/dx6bf/QwfvFh2O5kAACAASURBVGMfqaboWzGCH0u+fts3eOWlV/DKK69Ctyx2PLOXob4VlCtLrFo1TLlc58v3PkIYt39g33zdK0iURDddpAzp6eni6Ngo11z7Ktav6AZgz/EFTMPmscefIY1T0ihG1zW2bD0Ty7UY6O/DsrOoFKRf5ejJdo3j6oFOLMthenaG4eFhnt3xHEG9xdjRUYrW9+61bzy0g0KpFx2B59kcODbR7j/YzSMPPowmBEMj66nVa3R3FllYqJAR33MQxlsajZZPZ1cnV1x1KSenlwDo78jwrW8/QFdXHzOzs4ysGmZxYY4br7+S/uL3nj/7jte5xtiOXl0i37OJZihYqkwyPz9PR3GE/oEuUCa2YSA0g2rFR7glBkbWEkRhm2BISZI0Wa7rVtRqS2QLA2SzORSKNFEkSdpmtE0lpmWim4IkTEkThe1mcbKd+K06uVyBOFRYmoVl2ghh4XkZlICmnyAMD6nphFFAHLfrWSOVEKUxYRBSyHlYRoxp5EkSScbNYDoFLCdHtVxBJgI/rKJpFn7YwDQNwkYVUolUOq3KFK6IQEvQbYdYRrgZm1QmOLaLoQlqjSpS6LiZPI7rECc+wtSQSieoLOKXKwijDblcubKfUqlEEAdo2AhSdFvHsHQssw29C9IU3cmQy3RR6B5qB0+6gTAswlYTjQDHtejuGcHQbUzbohmHZAtdxCrEsDTyHZ3Uqg2WZufp7+0BXbFUqdLfP8SBAwdRUqA7LjJNSNIGhqnx2GOP47o2vcNDJNoIxY4iOXcBze6m0LueN7/qOj752c+Q9QxOnTrBjucOI1NFFCYsTPi861dex/oNq5ldmmOkt5uJk6O897/8GatWD6BrEMchGTvDh/+Pj9BdKTJsD/KVQ3eTSMVNr/8lNm1eQ71R59xzt+BYbRcrV+rDdjoxhCQVJq1mSDaXRVgutWoD13ZQIubJpx+l2ahiGhYHD49hmQ5hbYlauUqa6qRBs11bpdI2B4CRBc1GaA4qCgmCOg2/gZtxWPIm6LygE123OLD3ORaX6hzcvw/PgV//9bcxduQUx4+d4Pzt5yGMhMVKRKo5KJm0Sb7iBE2D1990HUa2QKpprN+0iTe+6ZfI5V3SKEaGkqWlChddeDarR1bQaJYxdcWeZ59dLlWpo+kWmVyRVr2JlSnx6lddQqHgcejYMZrNkEJHP9+65160RMPQDZ6+qkj5N7fx9ne9lYsu3IrfWMI2XfbsfY5KrUqaxPj1RQzbbgftSrI4N4Vt6Fx88fkoJahXy9x1x70kaYymteX2lGqz0mpKMTc9Rer7mF6eOKjwpc/fTl9fiVJHB/t2HeGJhx5HmBq9pQJRc55UOiR+E8Mw8TIldj29m+PHJvjirV/HEhkKhV6SIKC+VKU8dxI3l2FqZgpDWIhYI41TpNJw3RxBq61vHicpncUixa4Cb/+N3wGhGBkZwtYVBa8bIxvx7drDrExHeL/3hwz05Nnx7EE+8Q+f4C1vfSsr+wb44Ic+QGG8gD1RwtrWfgArKdmweT0yFcRhA11JNGGjuTkyjkUx38XVV28Bx0PXTAxdw7AEQS0kFDFfufMgzWaM45VIZIJtdvGdXfM0mjG6LtC0GE1TKFsgNANDk6TSRMUal1yyldHDYywstMmvdB3CKGX/3gMcP36CMIoxhU5fdwnHVNQqS/h+nYmpWWp1n66Sg533mJiZ4/FnDrHh3AvIOCZBa4HJaZc1K/pZNagTJQkyCjE1m2ZQwxACZSq8rEkS5DHthM2ru9h65kZq5kkKcSfbG6+hUZ1lx7OPs3J4IyfmI6Z3P0gcx6d9xh8bqvpDfM4Xj/HC/19cQvnC9j9QXvmicb/PhIZEodolrS/Z73TgpkRb/klqKKl9/5gv8d6L7cdhR1akCJ3letEXEVktz3F6rhcFrS+sEP5R9sK63ufnahOoqbbcldBQGgjN+P45SZcPZ+UP/v3AxbxgvT/sev8DscrP0n4RuP7/0HQD1mxYza/95ruYr9cwVA1HV4gkYc+uvXQnk+jNWVxXx7EtbMtgaW6axcUy5WqVcqVOJptnfmaKnGdgOybrN22h1NHDt++7l1UrV/P4E48jVcqGjRvo6e1BySaGZlHMZ7nsisuwTIOF+Tm6e7u447ZbIU3QNMXiUhklJZqW4gctTNs8LYE1vGKY3t5e+vr6yGaydHd1MTs1ydLiAlJqOKZJmiTkc3kGhoZx3BytWo3JEyfYsGUbK1atYWRkmKxjkC0WWarWcNwcYSQ5c8tmDuzfS7VeZ3xqHk3TWbt2A6mwsFyLbCFHNp/BEOA6FmHQQsmEUrGEaZhtyKQG9353D3/2qdsJopjzN6/h7v/rv3Dqm3/P0a/9LXu/8Ffc8bE/4s2v2o7rmkSRj+t6ZLw8v33Lp3h010Es0+CW33srx+74NM996aPs++rf8ZZrLwHgH75yH5+7+wk6ih309iect20t+H4bbwd85o4H2H9snE/86W8ydscn2f+lv+PEXZ9m42CWPR++ig+9640A9JbyPPv5/5Ndn/srdn7uFnZ87r/yzpuuw3QKPPnUMxw6PsWv/9WnWKjUufHS7XzrE3/Jsa98lD3/+iGO3fZx3vu2G9GFxkc+/w2+dv8jgMR1MtRqTQY7i3z4994CwCdvu59Hdh+h2WzQ2VXg8KmTvP9TtwLw+2++jou3noFrOcjmLLqdp9VqvuDprdHf108+47LrmSe49PILOXp8DNPI8p1vP86G9Ws5ePggO3c+g+fY6LpOC/v0Hu/L28g4Jmg0aIUBmgmr1q4hTmI2rOgF4PD4PEkasu3ss5kYn8azHOrVOmEQoaTCsiyCZkASSZaqDSzLBCBOE/qHe1m5aojDh/dxdHQ/qYzo6e2lWm2cXsNUucmpsUP09HSxuLiwrMMHUinOPW8buqFhmjqHDx2g1FGkkC9QLHac7j86XiZVGqZpsjA7c/pXWddNvJzJ0IphLrrkYp56ejel0jDNZoVms3y6/96xOYxqiNBT0swA+Vw3fX0DhGH7kMowjDbpSq4Xr9iJ4xjowgNlYug6uqGTqO2kchjXsZCyLYkRhQlpImk2qzRbDTJnXoy+9hwsx8U2TWq1OoZtARpRlKBrCi+XBQGeq9NqLJEkIbZtYlsuMjXo6xtE03SSJEYpDdt2SJIILbUIghZe1kBJizBoy+1IKUkTMHWD0A/p6u4jVg10YaIIccy2hIRlmQgBUiVohoWme8hU4bcabQdACHK5PAkGzTDGtB3SyMcydGSqUEqAkqASOHAcDo5hCBvdsEiIQRjoloPlFEhSCyEMbLNAkqYgIwyhEUURSRoSBW22VpUmyMTHNiCNA4QWEyUJQRi1iUakJAqbFAtZpIwolbrJ5Upkszk2btoAxDz26HdYmF/k0MFRarU6ju21SaZ0wcqVg5y5ZSOGabBzx14CP2V6pgvHmMXkTt7xa7/NJz/zaTQpmZma5eCBfdzyN+9n/MRxDB3+/uMf5Z8+/UmkhK98+TYuuPA8DDRmJvdybPQEjpXF9Tx0Q+eWj32IY2NjvKJwAQu9FYZW9JPKCMs06entAsPEsB2UprfJquIWQiUgE+ZnZjAtjyhMGTt6gjAKAMWv/uqbWb9hHUdGx1i7dh2zczMgXWwrx4H9h2g2fMbHF5GpQa1eR6HaSiFo+KFPqbOLrs4OkBLb9QjCgFq9yrZzzqKju5NzLjgfO5fH9lwuufiVHD8xRl9/L5bltnV/laRea1KrVzFMnZbfxLIsauU6Ko1RJNSr82iaotVKqFXqdHZ3UalX+faDD+Llc8QyZdMZa9G1GNfJEwc1KgtTWGYWDBPTtjFMxfBwD2HYIggCzj1nO3Mz49QbVRzPI1IQJympUuQ7O4iCkEcfeQzHchg9dAwNnVYroFaro2mKe+6+j3vuuQ/bcnni8SfwXI9arYWmme3aVtWWU6kulXEsi1wug+PYeJ5Hvd7iTb/6y4BDubLEGWdu4tzzLkBTKYkKWVyssuvZxwijgCCIkFJx7oUXsnHLWWw6YxNCg927d2MYBgMDA/T09HDq1ARXX30lmpA8eP/9eI6LQqDpFpZlomk6nucRRDFJHBFFAWgajtfWsJ6emeH2ma8xFA7yrtZbmJ9d4o5bv8TKgQHe9KY3Yuc9duzbx/v/4v0M7tlGs28GTQtQmk6apKRxQk9vD8I0mJ6bI5/N0GzUWb9xHdOTdWw3Ys+zx9pOvd6Wgzl8sEyiKrz+xo14lqK+NI9rgmZF/Oovn0cua2HoJrreLoOQiYmUKVGaMLsY0Ww22LlzBx2dJTzPRRN6mxWdiG3btrFieBjd0JFK0qgvYZrGcl26zvoN68nksvi+j0Bjw7p11Os+07MVTBFj2S6NVoomEhzPQWgpMqyhE6MJE8vOUHSKWKZEW9YW3bn7AEE8xeFTR4llRLc7yHMHR1mzeiNGbojtV91ErtDNkcfv+g/7kz9NsPv/ZXth8CnlD2dd/oX97O0XgevPyJ6/eX+cDfx9p0wvypj+JDfAyz0sXu6USJgxkQp5w1vfzJotZ7Kw0MIPAizXINddRKrl+MFwyJW6CBNJrlCku6NA1KrTUchQyLh4lkEpa3HllZehrCyZjMOWzevwowarVq/DsjPU6i1My6XUMYiTtZmcmuXkxCRSKmYmpnHcDDfc9CYM20XXDQqFPMgUSYzjOYDCsAyiOGRweJBGo0GtVsNxHebm5ihmstSrFWSsYWmSg/v20qw3SKK4rb9Zq7Jq/SamTpzk2aeeIg1jjh87zuzJ44TNBmvXraGzp5tKZYnzz91KV3c32ZzL0sIklaUpOjsLGEKjXqnSqFWJwgShGTzy0KMYmkmtXoZfu5Dw5q04jsEHP30bSinO27iSL/+332b7hpE2OYSmyDoel5y9iY/+/tvZtHIFcSyJopB7Hn2Cux/fC8BH/vDt/PrrrsAyIJvN0t/VxSf+9De5/pXnAvDX/3oHzagbr9DJyvVrIFrCb7WDpaYf8M8f+F3ecv3leJ6Hl82Ry7iUMhYaCns542oYBo6bw7A9hNAJmk0OHx1DCcGVV7+aj/7Pe6k2Wrz2oq185n3vwYjqbYhbqmFZFoPC5wPvvAmAf/j6I0RRgFKCu+68h3vuuY83XHoe54x0oZTiD//7v3NycpalcoN3/eU/0goitm1YzV+84yakioiDBspfIFGCXPZ7hTRRFNPfP8gTTz/NjTe9gUq5Su/AEE899Rhnb1mFpkmuveE1XPWqK8EUCMemmbT7FjIOhWyW/c/txTIErmVTr5SxhEkaN0laVQDmynWSULJ3z146S3meevxJDu8/1IYhGSa+7zM3Pcue3fvo6h8iZ7fvp/HZKlEQUa1UOGPzZl597WvoGRzmzG1nkx9cefoaTkwv0AgTdj7zNJ1dnQx2F5ZfX2R+YZ7+/h5sR+ess7cwNztHEISMTc+f7j9XbjA7NUmapgyvXM2a4X4AJhZqvOIVV6FpAVOTp1i7ah1SJBRyHRwcWzrdf6nZQuoh6JKlRoofmm04s+OwuLjY1knVdYoGBLUytXoFqXzqjSXCaD312koSTEwrR626SKu5hBAapqUjdIlpunR0dCH6R8isXo/SdPxWA8MwsV0Xy/UwDZOF+RkMQKUpcQqZfAlNM2m16m0NYy1CyhilUizTQhfmMsGGwnPAFBaa8khUimka2A7ohkLoGvXKPK5j0GzWMWwH1+5GyhChdECj0agjVYwmJFa2myC1QChMXaALQZJKwkQSRw102jV8MvZJ43CZTMqFVBCFAWmakMZtNIphelhuhtBvYmiKNG5gGjGgaAaLWKbJ0vwUZrsgkUar0mb+tTPUGq02M6vlksv3kKQCL5shk83gt3w6CkXSMMYQBkkqWbN2mPGJMYRQ7N71LEJpvPba6+jsyPP6112PbesEfoqGhUoCGvUKHZ2dLJVD3va2N5PJZggCi1TlcbMm33r4g6zcsJXdu56hXm1x0403IFWdlX/5J0xcuYE//883Y1rw1JPPsG3r+dz0yzey6ayNnJgsMzM3QCB7SaKYJAmpVk7xxl+9mQvsi7mzdi9v8K4jiSUoA00TNFt1pExIQp/p8VMgBE4mQxhL1m3YjGmbHDywn507nkHKdhZOW75OXdfQELhOlunpKcbHT7Jhw3os00MhSWVKsaMTTdPRSJEoTDMDusG552xDCCjeNciZz15AJpPF0A1MQfv3TTPRhWB6ZoJfe/vN2I6GaQq6e0sYWpvkyjJdmo0Q186yZ/c+dC1ibm4KTUsp5fLYRoZmK+KhB+7Fb1axDLjg/K0YWopQiqGhQXTTxfBgYmKOo6OTKEOAMNGEgWl46JpNsdhFHKcMDPaRLXYjDAd7rII3Vmb3jmdxLZcwCHFcjd/5nd/ANnU81yaJFXGUkMvlaLWa/PIbXs+b3/wmGs0aV7/6Cnbt3snAQB+WaX6fT2AKwakTx2k1mrQCnzBJ6Orpp95cZHGphYwiZqePMz1xBJWmGJagf2At69etQKmUpaUKc7PzzE8fpbxwivXrV6E0xZYtW5YlpxStVoszz9zC3j0HeW7vIa6/7lUsLs5iOQaxjECTxFGKrhtYdg7HyVCeX6LeCHn0saf4whe+zO7GbgYyPay/dx3VcpmJ8RkSLU+tGpB1BWlzim7vKOqBU6Rxk+zgHEl9HE03MUyLnp4eypUKhmXS1d9Lq+WTzxfRDYve/gxL8xFbtq7Cc7MowDBd1mwsIUSebEahWxamAa6jEWk5cpaBboOSglolAAwQEpm2WZj7ug1My2DDxnVUqxX27N1FvVYlCFosLS3x3HPPkaTpafKgJApZWqyyeu16/GYLhMDKeJTLZebnFzg6ehjXLfDwY/uJ7SKoFls3FMi7gjgKSJXA0G3CVoU4FUh0krhCFEc8vWOWVOpcdO5K1g0MEjQrHGntxpnK8pa+3yBNQ46PTdG/ehtX3/gGbv/8P32fL/qTBKM/KiP5fdnFl5F6fPGcL4TU/jhZzx+1vhfWtf4k473cZ/H8OIZh/MTB+48DS36ptfw4475Uvx91DT+J/TTfx8/CfhG4/hzspU5q/qOb54UB8Itvzhdv1NNt5TKMQIfFyjyWSvDLi4zv3UFXfqCtnyo0DMMhbNawUPh+QKqyGLZNMyjTaoXUaxUOjk7w2CM7qMxM0mw16eoZoKPUSxKHHDp0iIcffohGZREpDYrFborFXjasWYOmaQwMj5Am4GUsZBLQrJUxiNsOiN6W0PHDCPS2eL0MQqrVCpaTxbazjI4eoV6p0arXEIbGrv2j9I8Mc/b525lZaGBbJh2dvfjNFn6zimkIojhkqVJBS0IOHtjN0bETOJkONDvPUs1nbm6ens4ChmmwuDBHX1eBhh+SKo2sl8W0dFIpGVm9hlp9CSeToVVwCIs5HnrmMCdnFgH48B+9EzfXhe5mMdwCwuqgo6MDJUwypQLCypLNFRG6yQN7jgMw0F3irddchK5bOK5LpVxFCAXC4IPvvhmApVqTJw4cRCoH2y2inGFMOwPA6oEurjl3HYbQ0USbabVVryOcEtglEvU8dbmiurBEveKTyVq4uSIXn7edWq3OwuIsdz3+LADvfduNxFGLzZvXMD05h2kIAr/BmjVrufHSdiC979gp6oHiq1/8HCoKue7aG1CWzv/4r/+JFX2dzJVrvO/T3+APP/IZ9o+Nk/Mc3nHJmejCQBcOc5PH2k6cnSWJFd/4k1dz5/tey5f/4o1UKktcsP1cFmfnWHXGOSxMjHP2mRvpW7cZXdOZnJzDyRbp7OyiI5vj5Kk2lNe1LfI5j/n5eaqNAEyLQkcvSvpkM0VWrBgGoBlEFEuddBRL3HP3/fT097Fu3TqCRovpiSl27HqS2LIwnBxRuclNl28D2kQot3z2bsbGxplfqJMvdpHqCWEY8Jm7n/neDScMzjzrTLaev50dTz3Fay86E4AwTvnuiTpPPLEbXcb4oc/gyAiNSpWvPjF2unukIJsrcfzYCSzL5ZIzhpf7J3zy9kfwmzGmKdi/fxflhXlSbL785Pjp/kECpgtabKNRZGGugqenlIZW071qJXZxFeRsjs/MEKeSjG1jhHO4WojQsginSOoHxGFAnCqsXIEUhR/6hGGMjCV+q4Jpum3CISGI4jY8WGoGqdJoNBrkMhlagU8zrJGqqP2ck4JioQtNU2iJQqU+pmESJi0Mw8C0dKIoIlIKpSlQEa3KHAqNudl5dKGRhgG6k6FWr6AUmJpGFC9gmTb1Rh0IMA2JpgRhS4JMEEmFsNVA122azSYChW2YGEJgu4JqtYpmOIRxQhTHCGFSqSyhWTYIHaFrgKRRr2IJGyHa0mepBD8KSeMIpE6kdAodK4ikiRIGrpdv18XLFNd1SBXL92jahvi2Ah579LvYToaFuXkMI6XVXKRVWyJVdYaGeoliyYWXXU610eL2r3+LufkKrWiJjOcwenA3S9UqRrYDTbORQYhKqjQbVSrVRYZX9JLEDhopM3OzkDboKglWrejjzjseYKBnM2/74C10bT2Xbz50hFvv/gqmWeKRB+/hX//lX5idW+KVr3gll137ASLjWgAajSbHT0ZYQnLDyMUM24Pc03iEVKXEcYgmJQXTZmF6Fs2w6BxagSZMYmUzO73AUzsPIQDHtbjpjddj6CZprIgTBbbO6rWruOPOO8hksggRkytk0Jezt0Mre4jjgPmpOWYnFrBsB5m0MHSDA3ueQwidpXKFi9LLWDu1HhU129I3aCRJRByUaTZm6OwoYlseUaxhOB5KWMRxQjbXCU4W4RjUG4s4RoKbyVPsGEAmJsrtYWJ6GhXXuPaG6zHMlGxpgJF1Q5QXa4RhQDP0CZp1Ar/MuvXr2X/oGPV6HR2Fkia7dx4gDXx0QyNf8NB0QegbyLDJVZ8d49VfmGLNunXUgxDLcWk1G5iGRRin5Es5vnX/A5w8MYauaURRTGVhmpnp43g2+GnE+rUbsE2No2MTyyQqOomvwHToHRiid2CIOIU0iIhCQSHfyR2334lpCjo6c/QOdGLrCUEzYH5xgkyhQL1RpaenhyNH92AZAzTrGp/5l3/DzhRohs3lgweDxUaLL3zxi6xffy67du2n0fKRmkGSClzLQSUGhtaGp0oBYRTz0AOPMDU+zamxKboHC8x3LtD45BL/9j9vZ8MZF7Fl+4V88Z9v4b4HH2fnrn0c+e6naR19hJ7DlxN27aZVPY70FzAMC90uML24RJzExIGPIcF2M+zff5DBlSs5b3MHk3M+iYpRsoWSGhoplpVimxph4BPGCaZhIQywTRM/LmPhkMqEfNHBjwJ0LUHobUIx00w5NDrJ3l0nGRxeywWXvIKegW7sTIaRkbWcveUsmsu1sQqLroEhvM4Cmgb5UgezM7MkgY/jGHiWw+DQOtKkxVUXnY0W1Wn6GkqZaMpGIajXHOYXNWS4ROxbNMII3XBwnH5OjpcRwiLjCBw74spL13JcGyNsJEQnJJvLF1P1q+zb+SRRdgPJ9HGMykmUnUeTP1jP+lL+5I+Ez74EbPjFiZqXCtpenNg53RaJ0BRCewlY8UtBYH8YFPb7LqLdRpEuC669YJ3Pw4dfBJt9STj0i9v+ELjtS8FrXxai/aKxpFLfgxW/6D0N+b2/l4kDXjyuhr68/3U0Xl7e5ocl3P7ftl8Erv+b2A+rL3gpe77WRUpJT08PfgKR1Kn6Ea1mvT2GlMzPzSFMmzCOWLlimHp1Bs/1yOe6wUiRwmDDpk0MDQ1QymfwHJcoCjh5Yoy+3gHyxSK5fJ4kiXj6mUcJwyrZnMnk1CSLC/Oksk2K0qg10HUTqTSCIMG2baSUCF2Qz2ZI4gTPy5AvFlm7Zh2ZbIZGs0EhX0S3TNBNwkhDKY0kStm7ey893b1Uq1WUgvn5BQo9feQ6unhu337y2RzVVsi2bedhmzpp2KCQ9dCFztCKlfh+iK6b6IbLvv2jbaIXXUfX2wQOfqvJlrO2YLs5kjAm8JuYhuKhp3YA0F3KsW39ClLZFod/XlMrkimGaRA2fVrNBkopgjBiz+F24PrKbZuwLAvT0FEypVQqkaaSIKixaqDEQHcJgF2jp1BAFLbQhIZYLpC/7NzNpDJBkaCRoutpm2yl9AqMFVdjaDEAUZQghWRxsc146TouioiOziI7D55Eyvb+eeOf/x1bf+3P2Xzzn3LFH/w1F737r7no3f+Nt334s1zz+7ec3k9LjYRLLrmMLWefheNYCGDl8CD/+OfvxNAFD+7Yxx1PLGeU/+BtvP61V6NIMQyDwU4XzeslSRNatTrjC01WjKxgdHSUUqmLhx78DseOHSdpLLBizRpGj59gYeIou3btpFFvcOTwUR68/2GmZ+ba9bK0fTSJxhmbzySbzSBS1YYA6gZB0GqzZC9bs1lnaGiQV19zFfv27WOpvMT+A/vp6enmhqtvYP3wIOdvXUnkj3HmcJ7zNraDx0/fuZNnJiO+u2MnMo0YPVHm3R/5Ks8ensBc1jbTAKFStGXdw1xS4ew17azpR774MHsXJRPzdbxckcMTS7zrY19m99EpjOXvUwiN6emTbNywlvHxCdZ3u2xdOwDAP931DB/99/uZr/gMDY/gY/Erf/GPHDzVDuoA0iSlIecQkcupqVk6u7pIpcRoLUJtksr4fkRjjsHuDnIZD2U4VBrNtuO5uAgywXVOYeiLeF4O28wuExa11+bYDrV6nXjiCHZllnqjhWXbNFt1hGwHaWmq0G0HNIHnepiGgRAGiITFpXmUgnS5VslvtXCWM93NZhPTNLGEThIltPyQXKmHIAgoFktEYUycpHi2QxKF6KTIVEfDpNXy8TyXMJBIKUjTBMe1MHUL0DFNF5lGgGyTJCVt8jdN0ykWi2hKI45CHFtHyoD+gX4MXbSdDq0N/fU8CykDDN1ok0FZFroQpGmM7ZiYhoZt21hWm2H4+VN5aMvrZDIZGo06hmHw8MPfod6scf755zM+PsnXbr+TxaWUz33hDhyvBA3qrAAAIABJREFUi7vvfIDJiTkcy2XnM89yYN9Brn/t1TTqVRyjm4OHRtl69rl0d/eg0hQ/CHn8u9+l1NFFR0eRfD5Po+ETJ21in/FTE9SqMbYDYVTjlZedh+2m/PEfvYdjR6Z4x9tv5j3v+SDnXbSVf/zsJ+juPQMrU6JWm8dQLeqLJ5memWN2ZoGukmBmYor56Tne5N7Iv818gT9Y9VvUGw2kUgSJxLAsDCEQMqbVaOJYBv09BS6+aBtxFLF79x6ymRx21m3XG1sGKwba+/zmm2/m6WeewbE9OoslZBRy333fxDSytFohmYzH4088ipQaMrapVqusXDWCEAaWZbcPFVKJ4WTQDBOBji5sbCtLLteFtswgrOkmjWZE3GpgGTrNZg1TpdhCkM8V2LBxC/VaG9JbrZbxmw1q1Sr9A4M0Gi0UEpDkcgWU1Onq6UOYNn4YYVkecRzxhtdfhyMihIyQaYxEo9xo4tgWcRRhmia3fuWL6JaFbpqgaeiGQ3mpgiZBqZQ4CXFdG8exyBfybNt2Trv+XMLg0DDrNmxANwyQGpVqnYsvuYhatX2YiqY4NnaI2K+BTJk4Nc43v/5NPC9DLptlYnKCt7/jbSAs3EyRVBmEUtDR1Q0okjBgcHgDwrS44MKrSVREFAe84aY3oKFjmx733Xs/laU6XZ29XLj9PO5/4HbWb1hDrVbD8zx0XRDHCQdG97RVLRMd6dchCensLLBu3UpuvPE6Kqsa9B7t4rN/9m986I/fTmX6FHu/+wx//7X7ufmXz6EYPUmHHrO6/gckmSaxF5JGKX6tzO+eeiMf8n+PgqMI/WZb21hBkoRs2rQRmWrs2V9lciZg/94FolDjqScPkCYGShokMRi6ucxwLSG1kamGZRYIU4GUKUmSks1midIMlVqK0G2EprN92zBnnd2F47bRA2PHxhBCUC6XqVQWyeXaRHRSJQRhW2u5UWti2zbFYpH5uXkymSxB2KLVatDX30euVKLpWximRDdajB6dQKKRyUV0dLaIYo2hVesQZru8otmc5IbrN+NYMYmUmKaBoSJmThzj6ca9ZOZ7mdvrc8nFVyM0m+MnTyFsnW/feTtJ6L+s7/i/u/20db7/q+1/RZbz5bLgLzX/zzPT+rz9InD9GdlLQXx/2vT8S51W/SiYxY87p5RtuuyhoSGsXJF8rhOv0MWpE8eJoghd6Bi6TiwVtusyPjGOk9FZmF8CpRNFdQqdJTK5LMeOjbJnz7McP3YEQ0T0dZeQmsbk5DTFUgduNks+U2JpsUYcSDKZDB2dnZRKBaZnxqkuLNIKAjK5AseOnmjLU9BmTUuiAA1Fo9mg0QqYmpmhf7CXufl5BodHWKxUWb/hDCZn5jln61Ys08RvtWjU2/I2ui7YuHEDVrbIxjO2kMvl6OvuZGDFCgaGRrAMgWNIJsdPLcueSIrFbhqNCC/fSd/wGmw7s6y9KkjjFF0okjTGdjIYuk7n09NkHhljvlIDYKS/B7/l47o2J06OLdexqDbhVJq2A+zQp+UHeNk88+U2dLWnmCeOAjSZoD1/Z6q29IZSit6ONtR0drGCkgJNgh+3TmtpFbIeUoMwCtC0FNKIJEkoFAvYto3+AuaCru48hw/tQzcdQj8gTlqYpsmRE1On28xX6syXayxU6lSaPnPlKvOVOtVmwFy5drrd175+J929ffQP9BJLH89x8Fsttm1YzW+/7urT7V5/2Xnc/OoLiWRIvV4mjmMa88dAJliWRT6TpZ5o+C2fV1/9ajRNsGnTGYRhBGGDKFXkCx0M93bgh0G7PstxGD8+zokTJykV21DjVhi3M3+Wy64dzzB1cryd5UIHKTl1qp2VzLkOjmvhB02qlQpnnnUWwytWsO3cbRQ6cuw8tINISmLlUejZSL7YwXt/6WxW9mRJUsktn/sWv/Wph1n5K3/DFb/zce757gGu3r6ai89aBUA+43L08GG++9hj9A2soFZv8bF3v4YVnRmSVPI3n7uPre/4W4Zu+CCXvPtjPH10lq0jRbasbJNHFbMuGzesZXp6gqDVwvd9fv3iYdYPdpJKxWfv38er/vO/cfX7b+XaP/1nnj46yxVnr+KskS6gHTS7GRuRmlz+mhvAMqjWW5R9A6vQRbZ7gMQoEQdNwjDE9XKkhkeodPr6AjR1HF1fRGh1TMMhjQ1ajTpCaMuMwZJcNktr/xP4+5/C9Vx0XUNH0qjXsCyDYrFIkip004Y0BaXQTQ+lUoqFAoZuYHsuSZpiWRYySdsEcrpOpVIh8H2EENi2h9QMTNtEN010wyQIU6IwRsmUKGrht6Jl2KggiiIMwyKXLdJqtUjTkEa9jmGYaHpbjsWxLZRMEQIMYaApg0SmeG6GfDZHGPjUq2VkKglbdVg+8IvjBE2kpDIilapd85cqTNNBGCZxGhP6DWQaEkc+OhqGpmNZbeKYJEmQUpLN5gC44orLMcy2NujA4BDvfOdvEEY+119/HUqLueaa1/Gt+x6gXq3gWjYXnL8d204ZGRlEJTbr1m3ivvsfQsUxJCmFUpHLrnoVCwsVZmfnSGJFFEoqlRRIOXvrFh64/yHm5gV//Ce38PgTh/jQX36cFXsOs3mywtSp4/g1idJaaE7Izr2neN9ffBDLlPi1I+SMBuvy6zhncDubNw7z8f/+j3SUerjUegWe8Lhn4UFcL4MUAmG7uJksaRLTqlX58q1f4TsPP0zLr5Mk7Trrm17/BjQMFhbLWK6FTBP27NqDpmnUazXO2baN4VWr0DSdw4cO8tobX8upk5M88sgjoEmCsI5S0GyGTE5O4LoWUoLrZACFbprECGKVkkQhU+PjWJZHGEG+VCKMA4Jmg3u/eS8yDmm1auTyGVTUzhpHcUq1GfLwdx6hWCxiWjqerZHxXKJUbyNnlEBDEQcx3R0DpFLgt1Icz0MIl2ajwfipo6gkIgoajB45iGEZOFmPcmUJw9QxDMFv/cabsTNZQGN2doYvf+mrTIxPETSbVCsNwjAgjHxA59rrryOMIuYXK5SrDRqtEKUZOJk8rtXOyh07NkYpn1n+7Ye1a1dh6ZJqtUqzFXDt1VeTJAmVSoX+/m7uvfdOhG5hmA5hBJru4gcRnR0daJpJ068QywqGBZ//988yuKKP4eF+quUl4jDiVVdeRVdnJ/fdcy8b1q3hmmsv4Zprr6Sro4RlGiATWo0aWXcAhE0QVvBrZaLA59IrLmNy6gQPNR/Cn/d53+D76BvqZ8focU7VWqw7Yx091UeZ2f15Vq/tp3vrH2AfuQDjDJtsaSVKy0Iasz71KE1XqUw+h2tqZHN5du/egVIS13Pw/YRLrrmJUEqymQJSS3nlpecgVYAwEjQREwUCTUGsbHbuOYRuRiRJjNRbmFZbIi2OI4JYMHr0JGGYoGmCqFlBxQ1OjY2zZ8coq1atolarceLESXzfR9cFqUwwTR3XyZDN5Mm5WeI4xvd9hlcME8cxTb9FvVqmGcTce/9jRJqGYeSpNQTrzxhB13Vmp+oEDQGaIsJCd4ukMovnuGSsFJVITNMiThMcS3LVK9ZwbHKM3emTrEs30fPUWkZWb+bciy7HzHfyxD1fwaV9CPhyfuZpduqfQXD3cj7rTxtAvtgnfuF4P8pf/nHn/WH9Xyy38/xrLwdTftkM6Qva/CTr+nGgyC/3Wfyotf68zPi5zfwL+4nthbDin8Y0TTudQcxms7TqVZ58+GE2bl3PqpVr0Z++C6lSSsU8whToCAqlTky3RK6koRFgohM0a2S8AtfdeAOpTNi/5zmSYAEZp0zMVxhaMcTooVEGevo5evQgYdREExr9wxtAGXiehVJw/MBzFHo7UEKxZctmmr5PvpCnVq3hWhoZzyO1FYmZsri0SGdnicuvvJxSsYsjo4dZWphj+3lnUVlaYnp6nM2bN3Bw/yiokHXr1vPcc89R7Orn4MwMgd+g1arQ9COOHT2BZZr09vXgxlCvVjg5dpS+/gE0AU7Gw8lksJw2dX8UR/gR6DIhkzGpV5ZI0gh3TxuK5brZ059vrqMLlSasWb2eJE5JEkmz2qBQ8qjUGkydOso52y9EaRpq+Xs1TQNDN1BKEicJluWQStBFBqkSms0WAEKTaJqOYTs4aXKa0MgwDCzbJVVtTbkwijDtLOnzdTXCac9j6KSBzxVXXIoQFjKJmZ+voGkWlr3cRhccu+0fSGWA51lMTS5QrZYZGVlNoVhkamqczq5OxsZOInQTTU9RmsTNuCRBgOd6zNda3Pbw06f33e4jJ5lfrJDJZrENA13XMcI5EmGjJymGUuQ7eyl1F9i9Zx89PR0YpmD9+rVMzdVoHp+lf2CAhUrAhRdcguu5jB09SE93iSgOGO5tB2zVhs/8UpV1q1ewTq3GD2MW5+aIwpjjR46yUGmfKhezFtVKWzdYCMGh0VHcjEu9XmHlqhWcc/b5BI2IxeoMmazB6IET9GazfOwdF3NgNubh58Y5OjEPQmP1QBevu2Qdr790M1f8p88AsH6kj1ojYNsrzkcYDq/s6WPs0AG+83//EX/7uW9waD7gwNgUaSpZ1d/BjRes562vvYiL3/OJ9vocaNR8evv6qJRr1Ot1Vg/1cev7t/OJL93HWFkyemoGqRTdOZvrL9jAgNXio99aAGDdUA9xHGIKhZ3NIxMQvqQ+v0QlWmR6ZpzuriH8RNHV6eCqkM6+IZIwRTdO4IkUGapl3UgJwsBzHJRKsS2LMIpwMw7R8vMkUQoLCAKfzp4+fD9ExmEbTmu6uI5NreFjex6G3tbATGWAqzTSOEG4gkYQoWttuYFcLoewHFCyHSjHLRKVYJg2SSzbKA1NgmbgeEWSOCSM2pk+2/SI8anVQoodnTT8FratU61X8PIdSF/DdkwWl+YpFIooCabpoAlBo1XD9WxM4WLZBWQaYGiKWGvLCmSyORQJunBQoo2i0ISBVKpdv6gkuoB6rYznZUjTBJSG0DXSNCUMQwzDoNGst5l0lcK0LcJEYTmCyuICQwNdlJca2LqFn6a89f9h782jLavqe9/PXP1au9+nP6dOW30L1UDRU6AYBBRFsQmKxrzolaeJXu+LN+8mPvPUGM31OmJe7KNJDDaokYgCIihN0RVFVVFA9X2d/uxzdrv67v2xDxVEQFDfTcZ9+Y1xxqi9195zrzXXrLnmb/6+zdvfgt2ap6+3wMzMKcrlEpOTE2QzDUpGF5dsuwQhIm77lx9x7Ruv4+l9B1jS28d9997HVa+5htnZGQxDQxCTMee59rrL0DIl/uRPP8jY2BjrNw3S+PjX6Vw2xD8++hBbN/dz9taLyXcMcM65y+guXc/s9DTzs59nxYo1vNe4gXJ3F0aun4/8xafAUOgaGuA68Vr+aeYWvr3223xh9ksQh6SqTAos1GyCGHQjTxipJKmFIERVNf72b7/AO258B1Onp+js6uKiS69A1yROHD/OsmXL8NMIL4xYsXIdiqnT0yvzhje+DkWSeNObrkfVJGRFolhage3YZKwSrUX/3fb4TdvomtRlaLiHheoslYU6q5YtR5FSvKDBVVdcilnKQdoWH0sUFVkGTROYkeDKK19JHMeoqknk2vT397Fj1x7GTx7jyiteQaGcoVqdo1WdwfObTE7Pcvnl5+O0WsiKyuDoKvxIJg1tli9fimEW8MMGSawDCZKsENg1XM9EkmTKpRLXXbuOfKHAj26/nVe94lXEUXvcW0YGx7X52c/u5VVXXImuWyhqm5s/cfoEqiJYMrSE8dMzNBs1oI20sbQcx6cPMzS2jN7BJczPTLJz507O3rgRyzL5nStfhSJHVOdn0VWd6lyFgZFhhKwSB2DpCa1WC6HZvP8PP0CStDmw+ZyxCO8PmatUuO66qzh+9Ag7du7mjW99PZ7tUCzlcV2fbDZD4DnMzlU4eOAoF1+4Gdt3ePrkEZr6PGWrg0+u/isGOjuJaPDBm/6IJQMme3/2JQ5M2Ayvu55TrQxDj4yRdAaELFCZmUckCqVsCc/3UGSLrCUTkxCHARvXryBKJR5/fCeaanD89AOcs3ET3aUGYeThB14bdYGGpOrsf3o/55y7kplpn5kFGc8XiEgnFXWEqhEl7eduVnc5d9MK/LBFEAbouRzOhCAJmqxft4rKfAVVtVi/fj2H9j9FyWqypCdLGKTU6jad2Zgjhw7SOzhCuVymXq8T+C4jw2P88Ae3Ylh5IlrU5gMKusqPfnKIt1y3enF9oqBkUgwtxjQtRFTA02cJgxQpTVHUGJCIESiS4PHdR0hSOFV9ktHlY/TNDzG4/A189gefJg4zSM4J3MY8+VLnGdCscr3/G601//8ekvQiNjS/QZsA6a92KPpfNv6j4vpbCgkZEoF4Fqb9hXDmLyQZ/kK7Hc8n4PSb7kQBxItVjuPHj7NyZS8dnVmOnT6BJARxFKGrCq1ak2bTIZPJEgcBQaNOy0tJZRVNkWnaLWbn5omDhAMHj9A5sJpVZ1/I1de+jqVDPbzy0q0opsGll15EVzFDMWvQ19dJvTZHErel5fPlDmI3ZXZyFi/0SRMfP2wr4zmBj9NsEQchkZTS210mSSNK5RKV+QqGbnD0wD4OHz5IR3c3ExPz1BsenT0dNGoN7HoTSVGRVLDrDYo5Cz3bS9PxOffCiyh0FMlls7i+j66ZLBkepVmrsWLVUlQVDEVhYW4Kx20gZJmOzhLZbB4hZDRNplTqAgSk0JE3ATg5NUcaRzSqVaqVKoEXIqWQzRm4nk8hl2HzuVtxnRZ+q05XoV15OTU9R9O1iSQZfbE6K0kKcRLgeS2aXgBAZ7lMEgQcPHCkzUl49kaGMLDtJkkCqtHZhjUd/i7+we8QRu3EV8gysWKgmAa3fu87aFaefLkDM5ejVGgn32GcsO/4EbL5PJKSZWh0hGKxyOFjR2k5DSxTw240WLtuA8uWDWNmTbL5HCKVWGg0qNWavO8vv8rUfJWecp5SPsvxyTn+7Evfw7Pb6q9xaJO0xkEtkdgegWywa/fDNOp1zjn/HIZGRhgcGSWIQvrHlrJ0xUpmpqYo5HPMzc9wYP8BCoUyl111BZe/chtLe3JnuuHgsXEee/hhJk5PkC8Uyeez5Aomm87fynSz3Y/rly6hMlehkM9ht5qcffZaurq7WbpiNZpicuTQEe6++y727dtPq+ni+zbL169k69atXHPhSr7wgWv4w0s6ufsz7+Xm/+tG3nzFecxUXY5NtZV914+V2bL1XKQUntqzlxToGOjHdWa5essof/O+a/j6B67mk2/ZxM0feTtve81FVDyP03Ptavartm4ASebw0aO0bJsNWzaRtXKcPnaY911/Pv/tjZv5+vtfzeduPJ+/fNsFvOvq8yl39zFeaQKwpKCS5iyirEO95iDCCEn4gEskdPoGV0EaYSqC+ZlpkgRmji2gChvXbiEBkiyDJBEnCVHsIxQdWTGQFQPd0NviSgiiKGrDg1MJXcsSBqCpOrqhEccxiqrSbPooSopIBbImyGRzmIZJlAgKxU4adhXTzKKbJlHooWltBc80Com8VtuXVVZRkxSnOUMc+RiaQbmjE9KAOInQDRNoc9ljNyFX7CIVCpZukSQpuq5BGIIkEQqFQkcXaZIQxwlOY4YkDsgYEq7rttlCaUSKQpgokEIcRXiBT5JKuH6IUBXcwKc6P4NnV/Fr+xBxjCRlyZidQIJlZfAjj9nJ0yBA03R8zyWbL6IoKvOVGZBkZKHitFwyuTw/ues+csUsQZwQxS6yppMr9HPo0Ek6OrqZnG4wO1sliT1A8OPbfwKKySWXXY7b8GhV6xgZmcuuuAJZUTAsk9BXieMMkrDJal8naXyL7nyIoTr0D3QyOjYCwB+89w/4y099E8cPed1V12HPHGXvgSP4XoZztmzBNCVWrF5OqdyNZppkMz6nTtVQRZZr8+czG83yvSPfIA0iXMej2XAQkkJHZ5EVY8OsXbWC44cP0qxWSZKINAm4/g3XEMUeWUNDJeT0qcO0bJfe/kFcP8GQVGamxoliG5F4GJrG0YPHaLRaSIYCpCiSiiIrtJwAx26RNbW212ESE7k2CJkgkQgiQancxbKlywgTD93IkS92gRYDAsex8Z0YTZJo2TZBFJDJSG2xQEnjiV1P0EgkFFWhK2fxiiteRb02z99/9R+w9A4e2vEzokRw2Su3MTc7SxJ66LrOsRMn0A0Js9iDlcshywmzUxU0PYekWjhOA0lJsDJ5oigkCGK6+oYwsybXvf41bSVnScZzXaI0xmk2Wb9mFV/6wv/DA/f9DFnWmJueoqNcwtI1osCjs6uElc/SqtXwmjaJiCmWsxw9dIBWtUFX9wCrVy3lW9/6BqeOH0dJm3h+gJXJIMspS0bHkGUNuzaPUx1vC2gJjSQGx50nDt12H6cpQRCj6UWsTJkkiRkc6eM1174GSdKxSnkajodmZnAcF93MUCrkGB7qZbo1RyWaZ0/xcUblMf40+hj33HYLpWIvf/e1W5Hr+7j/nz7CseOzdG94O08dszEbZdSjHYRDASeOjVMqd2MaHYSJwTfMO/h28Q5kSUGN58lm20iuyvQM61avQ5YSrnzl5Rw7spejp+dRJYcf3bGvbceFTxQmbD5nFWHs0d9j8cpty1EUC1QdVc8QhynEMUkUEUchnm9DqhJGIa7tcvD4FKWiTpToFLJ5SH10U6e7s4d8xkBKE6JEwjIV0iRm2Zp1TE7OgFBwbJ/Ojh52PPoI5110AZs3r8OSA7I5g0Je461vXEsauiiSTE9fibyVJwpDqgvj+HEKmkoYxKSqTprI+HGEIiCIUrZdOMqG1WVm5xzG09OgJkTjGu+44Xc575obyHV3cPLJ+6lH8pk1ouhK2n/PQeu9aDwPz/QZDunLobSd4a8m6aKi2iLP81clbM/lmL4czuuLXMcLrcef9xSeuV6e52Sfy0199t8iz/QZzuwzdj9nbH+ETJq2aXHP2N+cscFBIkUCIb8gb/glXfaLiHQ9+1z4LXq4vtz4j8T1txT/M+WwJUn6rXooNRbm+dG/fI39u3cx0NOJb3QjZzuwIwGKTKZYQNZ13JaLpsaoWoBpZlFVA0VW6Oro5LEdj7Jm1Qp6+5dg+ykiNThydIJ9+48wMjyEVuhFK3QzX3fx/Razs1McPniIqYkZOjq6aDZa9HT3omk62VyJer2KbmXIZPPohoGiqGiaRiwpqJqFIsHC3CTDYyM4nstAby+eH7F6/Vl0dPfStF3WrFvGrt2PsmLZUlqNOmEYomk605PjFHIFLDPDypVrmZuv09XVRZz4mJaC49rUanWiOMEwNModnRQKJWQh4bg1ZCXBcWwMwySOXGy7RRxHbDt3AwCzC3Ue33+ETKaIoujIsoTrt5irVIA2921+dprA85BVjQ0r29DSB/ccRFNMiKHVrNGoVSGNMDSdvQeOMVVp75yfvWIMVVcZHRuFZzmASZKMHzQp5NtQ0yidb1sMLH5GVdrczjRNUWQDPZPn2te/nsZChUa9SiFncfm5G85MeHc/fgBIiOOA0ydOsqR/CU/ueRJFViiWOkiSlNmZSaLIp9GoousySeJDbPChT36BOx/dixDwtx9+D2+7eBMA3/npw/xs9wESGYRbaQveSDqarJAkPj29gzheQBonHDl8mNpCBce2OXlgir17dlPsLLB37wGWrxyjf6CLkbFhdu3aA6mENz+Brrb5pQfmXDL5AqPLlrPzsR2kiUDXTO5/aCeHT7eVe7cs76Wvv5tGo4ppaggJWq0maZJgOy1Wrh7jsldsQ9VMHnlkF0ePHWNuZo79+/bT37cEy7K44YbfZefOx3hqz17iOOGWe58CoJQzee2lZ6NqGoeOHqerswO3WSNyG9x730OYmVzbAzWwufzyS5ivVbHyBW756RMA5EyNzcv7mZ6ewTIzuI6PLlnEwkcYCqWuUVasWMFsZY7+gQFOnZri4KEjPDXb5jEXsyY33fAKvOWCSLi4rYCWL5hxEgaGRgk8H01RqbdcNMNiaGQMIavIlsx8s4lhZknF4qZImqKoi0JCCbS96CCRFYI4oq0G3K6gx3FMNpvBdZqQtBd27YeogmVlqFXrCCETRgFJGhAnIUlikyYhhXwOWUAaSxhmnjSRSMIYVdUQsowkYhRdxY8SDDNHvthNvVEnXoRz6rqBbTtYmSy6oWPbTYSUEgQenucgEGiagSQLVMNo+0iGMX4Iqm60PVYliCOBrlmEYUiShkhySpwEKOuWom1YRpomJIuwQ0USREFAqaMD08ritqpEoUMUR8hS2kZPhCG6qtPZ00OaJLiujWlZVOcrpGlCd09Pe+MzTTANg4VKlVe8chuKotBoVCGJce0md9x5J6tXryFBMDA8wMo1awhTienJORq1Brqqkc/n2LHjETactZ44TslmdJIkYGxskFVrliEknZatYWVlwmQf+fxuJk8eZvb4HiQpIfBi0rTJzd/6FlMTE9z03vfw5X/8Fq99/Y2sXL+eRKQYlolj+8hKylxlmumpOXI5s21f5Cl8qP99/G3r63zl6n/ErsVU52dw7XnSUOB6Ebff8RMM08TMGEiqykK9Rr5UoqOrTKGzg5odUi73ouk62WwGK6Oxa9de+vsGyWQsUiJc12FwsB9VUUkTmDw9zX33PkbdbrYR6SScGj8OAqanZwHlTPVVVgQpEWHoECcRcbJ4j+OYKGphaCXqtQaNRo2sbnH00Ak8R1CrOcRRyp4nnkbD5PYf3cXg8CD5vElvfy9LhvrI5Eze8pa3MDzShyygVC6jaDpRErNhw3pUVYIkpmXbRHFCy/GQJEjjCMvKIRlZ5EVNhOrCPOOnjuPYDpKsYFgynm+TsUxOnjzBxMQ0UZjy9rffwNVXX4EiBXQUs0giwXF96vUm9953P8tXLKdc6sDz/EW+tcHqNeuRFYladZZczuK6664jlyshSTp2q/3MiGKHKPDxfZeUCCtrEEYJibDRTaWtrKzJNKozuHaVem2BJAk4evRI26NcaKRSQpIDHT5xAAAgAElEQVS6RIFCId9FELQ1LDL5PE3H5VR5mh84t1N3W3yOTzL5mXEe2PEA7/3Qx6m3XN71e+fz1K4vsf53bmLLtv9Mq+mxectGup8eo5mZxw0qSHJKPlcglnKkSpHHysd4KPMkqRSSpjanTxxh1ap1ZAp55utVlq1cheebDI0NcHDfNKGfcM1VZxEGbSQEUkIceBBH6KpMmjpIcrBYUY6J4xBJVkBqJ3iariApKYoi8+T+GYysxejIBnbs/AnHjp0knysThQlzCzWy+RK256EYCm6z0Z7vJMHY2AD1+hydnWWOHjvGtm2Xks/nmJgYJ1/IM1dr4PsxEoJUzeCFEaoMrmsjJAlTN3DtCF3rJI509uw+QLOZYJl5FFlFVWU0XWLtskGW9JZpNBeIBh2M2RwT32jw8MOPMTXeJGh6yOKXk60kSX5hjfvc1/8R//bxYnnBbztn+LeO/3Wu5N8wfuXO0fPgxF8OyfmF+LO/7sTxzG/HcUy1WmX1WRu56MJrcNwGXZ1lzK5hak5IzlQpFkrIkkyaQiGr0KxXcZ0IkGi5LTRNYXrqFJdeuBXTUGk1qli6xj994xsIWaNQ7mJudhpdlhgYHGXTlnPZ9+RTLB0bo1TMUy7lUFSYnZug2aqSpiFzMzOUcipp5BPEEEQJp8bHkWUJyzRIUwk/Sunu70dRFWzX48k9j1OZmWF4bJjvfu8WipkMhWInhqkyOXGKxvws5XIZ3w8I3BbV+Tnuv/9eqtUq87UqhUKB06cnGD89SalUQFV0urt6UBQZ23Xx/YAwCJGEgu+FaJqG7/s0aguLIiw6Z68YZqS/G4A/+etv4Dgu2x/YTq1aR1MtAt9H13WazSa5UgeSpiHLCtdeugWAqfkaX7rlDpzmAlkrw5HDJzh86BC+G/B3P94OQEchiz1xAj+KkFXpDL8VwPMCDCODEAnNZhORGhi6RRy1X+cy7Ypwo+UAAklISEJgZiy6yp0cP3KcvTt2cNG6pQB86Z/v4anDx1FUmSVDPRw+coh3vusGdFnGtj1KnV1ESYRnJ2T0IrqcYfu9j/LEoaf50d624NRN172KSzev4dKNq3jblecB8KHP3szpiRozR3aCksEOAyJFQokihkbanCCRRhi6xokjh3Bsl8Fhk7nKNHEoM31yAtM06erpYmGhxvq1a6nMV9i27UJec/FZAPzjnY8yMT3NXXf+mPPPO4/dj+9i12O7+ebd7cTQ1GS2nbWUYqFMV1cPnZ3dnDx9iqxl8PSePQhJYDsOumkwNDLMilUrufHGd9LX3ctCtYYQEocPH6UyV2HbZRdz1sazODK+wBe+/xAA7772PAxNAyFz3vlbGBxeQs+SXuZq87z6mmuRlDZve9XataRCMDIyxMGTU/zNd+8H4ANvvZwlw/10d3cxOTlBR2eJRx/Zzuq1a9l49tmMHz9IvdFgZHSUJ57aS//gAPNuyt98/wEArj1nGX4rxI8zpAjuvuOH3Hn7nVTGqwSRzEBPN7HvMbp0DdlckTBKmZ1bwNBMQi8mDEOiyEOI9nwhSRKGYeD7NpIMjUYNp9kkm8kihCBJU8IwbCsBBwFZU6NamUWRFUAQxT5h5JPNWUgSCCkDQsU0y4RBQBTGBF7I/Pw0jlMhJqTWmMV363i+i6JbJBG0Gi2SOERRZEhj8vk8QpKRZR235aBrRjvBliQymTZ3LE1TZFlGSO3d+lazQZLGtGpzhI6NaWaIUoGsW0RhRJKmJHEbZqfIGiQqpl4gMXKYHb1IknRmg8N1WkiSIIpikBWCVEPVc8hCIU1DHLuBpqr4vk8iVELfQ1PbisnFvIXrudSbDSozFebnZvBdB5EKDh48hOMEfOc730UkIXHoMzI0SJKmNBpNkjimWCgyNV4hn83gBw71+jyKqrBu/Uo0TcJ1Ar74hS+iqxp20yaIfaJQYGpl6s3VlMqjWJl99A/uI18ahRR0TSajWaiGyehQL1deeQUf+LOP8aPbvo8sOUgCKrMVbjrxX3jPofchpBDXCdENBVkWFPJl3jx4PQNqH1d88VKcYJaDhw+Qphq7d+/nvPM38sY3XcvK1SvRdAPHdnn6yX1Mjk/QajSJU4l8sYihy/i+Rxh5pER0dXWgam16S5oKgsBD1UA3NIRQGRjsZ9OmtWQzBr0DPWiGRDaXpVGsoS9vcxLjOEFVdZI4IU0TgtBDVdrzsm07lIrdKCLL7T/+AaWyQNM14jBgSW8fzVaT+35+D3f9+Fbe8uY3UJ87RRy2UDSJVqPFQtVG1Q08zwdJR9NNkiBCUVVUPYuiWkRxSuhHeK6NZZgkwNp1Z7XtggKPVFLIZgoooi24NzA4SF93if1P7SOOU+xmQLnUCQJGRgbp6iq3N168gGazgW3bhHHKkWMThAHcfc99HD9xCiHJ7Nq1G1mWOXBgH8gK/3Tztwj8iIW5efwwodjRSaFURFYVcvlFjrDeQRzEfP+7tzI91WLnY4dRFItspgtJ0ghEFvQCwiyS6xohm8mRpiErV4wQhS6mqqAogiiEVHjEiYuiwszsJK7jc+v4bSRBSuaPLd4b3cSWZVv58If/K2+5/rV0lFx6s9Psue2zrN/yIVIjR/9qC0nocFpDPZGjeJbFxOlJlq1ZS8sPyBfLmLlOEApJCrJuEnh1qpUJ9j+9j67OPJqWUl2Y58mnfsJTu0/RP5IDuUwSOZw6fhpJqERxBJKEkCTqjUZbIM530HQFy8oCEbJsMD3jkrGKCCFBKlAVkzWrluG0Wmx/8F6Gh9azfMVKQKDIKZs2raJarSAJiTRuKxafPHkCp1lloVKlOl9DSBLDY6P8/N6fISQYGxtjyZJ+Wo2QKAkJEp9EBChyjO341O2EMAKn1aCzqxPXsyl1ZNm4ZSWqnuB6NrIs4ftt/r/thJw8dRrHbnKqeZg4DSkpXbzthncQhDZP73kQmX9dV8b3asT3ar+wXn25Fi4vJV5KNfD5lIZ/03g5XM0XUjt+bnsv1D8vh1f7Yn37QsderKr6cvirL3Z9v+3+/3VD/uhHP/pvfQ4vKeI4/ui/9Tm8WKTJswfCr+e19FLjme/+pjsoURRhmiZ+kNJh9nH4xBOY2S7y8Tx+bYpUqDRsH13TCcOQI/t3snxkGRE5sjkLx61RLpU4ffIEs1OniVJBd1cX9939U4odBS665GKGR0eYn53l2IGneXrfAcZPnaSzs4tGvYFh6Rw9doTqwhxLBofQrbYiad7KU69OUyiWSRQdRVYo5HII4OSxw+QLHUiKSsuxqdUWKBVLyKQUCiW8wOes9WuJPQfbDQh8h/HxccLIR9Ws9kQuZPLFDH0DA8zMzbB06VIc2+HY0RMMDo6w6/FHWLZ8JZ4fEEU+pc6etjKlkGg0vPbiOInRdZXZ6WlyT1aQZBnt8nWMDvTw/XseYXx2nof2HuCyC8/l8YcfZtXKNTRaDZ46McEn//4HLB8dZklfL1HgMdLXzdPHJjh0apLtew/SWcww2tNDsdhBmEr82Re+xfd+9jAA/+eNr+Ndb72eZFEWvtVs8b27H+H0TIVtWzZw6eazSYSLqujI5EiSkKS6ry0GM7iZL//zT/HDiNG+Dka6C/iuh2YaJEFIdb7O+vUbuXjTOm6552HqLYcfbd9NIWuydHAUVbLIFctUa1X+/ta7+PwP7uHWex/jnddeguPWUVSBZuq851P/wEy1wfKBHr744feiaDGDg4NsWT7A3Tv3MVmp8di+g7ztnAyKamDku5mdmaFgWrz6z7/DZ3+4m2/etZM1xZiNG9Zx4tQ4k5NzDAyuoJhXWDpi0goUKpV5KpUapVIBXVcxTJ31K0e4+c5HqbU8plsxl21czukTx+gbHOEf797Ldx88AMC7X72FDSNdJHFMmrar1Zql8Pb/+zt84tsP8p27d/O+N21rLwx9jyVL+nAcj7/44ncJ9BKmKvCadXp6urDDmJvvepz3feY7tLyQ89eP8j8+cB1BGGAYFpXKBIVSiTBNefjwAk8fn2HZaD9J4KNZWWw/5Ft3Pcb7P/M9GrbP+etH+NT7XoOqyeiqwtJlo8RxhO00+Nq/PMz+k9MUVIfhkRUcOXKUUmcPdz5+hP/xw8dpOj5nL+3j3a9Yi++3yHghWbXF8LnXoucGsdKUSNNYmJ2kXC7T8hOyWYOWbZPN5TCFyczUKcpljyT1UeVZSENsp4iqKjTtJqoiYVkGEhJR6BGfPAyAsXw9qqoBou2faxiEcYQfhERxSOC7pATIskm9WQER4roOuWweWdJQZAUrqyFLFoqWxTIySMJH0VQcL0RXDIRI0GSFWnUGRdGIRbqoqppiKAr1eh0rmyOKE3RZRVYNBALbtoGENBFkMm1+rSJCcpksjbqNapqQCqoLFQxdQcgKiqKTJoIkcXCcOrICtlPHymQxdAMhwHNsctkcTcfFMEyQQUhFkjglClpEiYdp5IjjhDBNUSUwNI04FaTEaJqObuiYmoXvuyiKws03f5urrrqaNJFYOrYUETtIkkJXTz+P7niMNStW8NBDD9Lb3csDP9+OpMAFF2wljDyy2RyVuRm6ujqRZJ1mvUF//wCapiKETK3apNlsMT0zQ//QRhxXwtIPMtO8EPWhvcSJzzu/9CWWr1xHuSyza9c+Pvflr/GeG6/jw3/8fno6p0lTwYMiJE4CXt93Lbfdejur1q4miX3SKGR8cpbzezbx32uf4xPLP4MymqHlNCh1pQRhQKlc4q6f3MPy5cs5efw4ru0wPDhIuVjiib1P4dhNIq+JlSvw85/fw5LBPor5PJVKBSFJKIqGZWo0GjU03SJOJFr2AmFQx9AMZF1DiJhMJsdTpf1UVh0GIVA1nSCIURQVWRI4toOuZ5FlgSIr3H33vQwOlVm1agVJZBCmEbf94FbGRkYpdBRYNjyIpcv09fdit6bZvGUjkmYgCYPv3vJ9Lr7kYlq2w9P7DrD/6YOsXrGCKPXZf+gUd915F+vWrmP7A9tZvmyMMA6QJBUhyagy+K6LohkEdovqQo35dWUObOiCoiCXK6GbBrJkkZISRT5B6FPI52i1PO699342b9mMlckgKQauH2PqOh2dXRw4dIgLL7qArs5uJElGyAlWxmRseBRN1REJFMolUgS+7+D7DoZewnUbxEmLQl5nYLCfnt4+ZqYmKZY7eGLPIQaW9BM6TVQpRk4SnIbL3if20tvftinKZnQUIdo2RYmKphr4XoymZPnmP32X6SXT9Fl9/HH4Ia68+DUkSUhfby+lUgep41Jv7GLXz7/HpSv7KGy8lHDe4v77jrJ0yRKy3x3leLyPidYESwZHkXSNeqOFpUvMTE+yvechkjjkqtZFRF4AapGMVaYyPwWEdHV0k1GG0bQ6lTmVKJ5iSU+BbKaTJA3Zs+cwS5b04kc+mllAkzIIPY/TmCOOXFQ5wvUE89UQsz3dIUkKjhMSeg3ypTFUXTA8dD5+uIAg5fixQzQb03QXNXQlwQ8ihJqjs2eMll0nb/VQrdVJSDEtg/6eHhqtFpapcfdP72LF8i5yhsWOx/bR39uNpecYn7DZsfM4y5b1Uyz1MTM3iybLqFJEKqUYqgH4BEGEEApCKDy5/xS2r9PRUaaruxvDydPymzxQuYO+4gK1eo0tV7wZSW57/0a3a6RzEvK50S+tP5/775cWv1zA+fXbenZDz15zixc59pxDzxJM+s3iX9fk7faedSh94QT0V7733JcvVf33l954bh/8esW09CV+7tcJWZb//KV+Vvx7lX1+bgRB8O/2ROM4hiR9wUTyDF/gWWpsL6bM9kK7QC/XR+uF4pl2JEkiSRKO7d/P/LHDqLkCo6vWw55v4k4cgP4NKLqJ57h4Toue3k5cu0WKIFvqwm02MK0sntNi35NPMLZ0OZqVY35qmkcfuY83vvXtxEIhiWP27XqEnbueZMO6lfR1ZzAzg7ixh6FkSKWQ3r5eTp8+xfDQCG7gEngemplD1gxkSSCRYLdaGLqO54eoAnY99ih9AyOcOnGMwLfZdN5FuK4NSUzge5w+fYoVY0M8+ujDnLN1M0cOj1Op1Fm9dhlxEJHNZ1F0i3y+xNHDh5CllLnZdhI6NDjA0NgYETJpGLZ3jpGQ0pgojqnXm2SyGe7/+YNc8rhLsVgi/fBVxFHELXdt54Of/jv8xYq4LiQMWaYehWfuwd2f+6+sWzqG9PQJtHtPUPNdfnfXdh6qtmGsihBkZZV6FJzZBrlp9To+NriGlARZ0ZAWx8nVj9zNgwuzfPidb+A/v+0q1IqD9I2HcV0PyzRx1xwkTVLM/au49tG7uW9+BoCcZVJUVRIv5KaRlbxncGkbRqxqPFGf58a9D3PKbp0ZawVZJUoTWvG/PsS2dfbwvY0XE79yJeHqXj7yle/xtdvuIysr3L7+Qtb39ZEk8aJVSMR+2+aKnT/D9QPef3k3f9q3Fm1KI0lS0m0FXvv5e3hodoEBTefBd1zH0dGU3t5eDj2wkwtPFvFcDyEkfN+jWCzieh6yIhO9eTVpt4Gma9z39Ud4160/xVkkw+QVFTuKiBd78toLVvM3H3wTzWaLvm8fpdW0yeSySAKueuQ+Hq4vMGiYPPaR30ec1YsfBMhPVQh+dIBPThzny+PtarIqBJas/MJ9PWdZD99Ycy49gQqkxFGMorQtFNIU/qRyjC/vfrr9fVnCQqL+rP78na5evrx+M3lVJbx+jHSgh4lTk0h3H6K/IvOnh5/+hd83JZnGs75/4ZpBbu4+i6DRQFUkurN92BuPwHQG1VvPH9x1O396x82MDOVQHjyEe/OtKEaeFJBlQRQkpCTkPrQK1i4jbu1AyC3iz9qEx+aRZQUERIGPqhogEpxN46R9FplXvong4DTq559ECIk4aSsECwRpEiFkheiPzkUZKbYrXjc/ifb4NEIokKbEcYQiS6QIxFCB5IPnEToNUgTGf3uIpH2EOI7bD2YhSOIY48ZNuGeXUBQZ9bEK0befJF1UTY/j+AyEGUD561cjmxZpEuJ/4l6UKbutGUB780LQth1xz+ok//vng4gIj9dI/uoh0qE2NFAeX6xICIEQEskHzkYZ60QIE769l/jBkySLv/sMkF+QEHbriA9uwsqX8MIE6QM/WbyilDQF0pQkTZEkGfmt67HP6ubhBx9i6azK0KMNkiSh0Wii621ucSFfIIpCnE+cR2dXH7EfkHxmO/6xOTQ9Q61WR5ElrEwW13UwLx8jfv0GWs06O39wN1fsy0AqYX1E5/RfRfTOGsiKzPb9+6j/3ltYdeUlfPwTn+Cz51+J8fgeWvUm+nsdwjDk/TOHkCXBn//8fD7q2Lz66ot57bVXIT7waZIkQZYl/nLTbo7kGnz4x0uQJMFTr1nCiY3dCCEY3VNl9a3HSZMYWVEWn3kJSdK+/ts+uok4aaubXvrlAxSmvLaadZyAJHBaNlY2w8mNZXZf2Yemmbi7jvPG2+ah3aMkSUy9WqdULiKE4MH/tIrJfIyZybH2X04xumu+bcmSpkxPTdHb04skC2p9Jvf9/jKOHDrGkqEu3vDJoyiKtFi5b49rQdtm559XxURXreSee3fyn7o3cPYdpwmDAMMyz/RDEidUKvPc8+kLyBgSURRx0VdO4Ow6zvDwMFHU1npIAVkIDq4x2fuaAdJE5qtf+TLvfvc78V0HRbeQFZU08rDrM8h6D1beRNd05qbmQNLo6ukm8OrU600O7jvAxPQ0b7rhBhASYRQjoogkqDM5VePJpw/y6muuRCQhkpQQBiGyrJIuLkxbjQVyhc62+rNk0rLnKRa68MMYx2mSMRQc10PVs4RhgttqkcophVIJS7FwIw/TUAhdmzgViCRBMzJM2PP8c+MH/LDnx4x19bF/70F++KNv8n/88afIFAKm9tzMgV072XL5tdy+8zS/c8XrqUzu4+jhGc4/cj21qXlqHdNsf2QHr77ycianZth87rkITcWrVrip+D7SqMkXZz+E77gomRX4VgdyFGOaOo/t2IVIDDZs7OPuH9/HprM6aC3MMDRURJJUqjUf0/IxFIsECUntJLW6kb1pknAeP5JIYgVdi4lSH11YxKlDGGYIUbjzZ3tI5R62XngWy5auIoljAscmlWRaEzvIFSSII1qBTqqPYuSKZHJ5iGNE2rYBnJmaImt14Adz7Hj0Mc47uxNJxIyPzzG8xEKQEMQW4xM2/X0ZOoY2tv12p2YoFnxU4eJ6PpaZIQpdwjBApALHlfnnnx5k22UXYJmdWLNlCoUCn6/9Eaty+6mEGW769J3Ei9Z54efbKC3tf/decD35K9ehz/YyFc8RGF08lqbpL3EmpV9Ov347QkcvxnN9nnN93mO/op2Xorz8vJ8Rv+ij+tx88xdyA+lFcojnvPVM7nwmF3mRbnyx+/lMO/9fJK6apr3kRv8DKvw/IV7uDsWvAz3+Ve09H0ThGajxwLKlzNQdKtOzPHDH9wmmD5EzJKx8GcuwUCVQFJVEyZNIFqRK+wEo2kRwTTfZfN55mLk8siyh6Qa5fIHa/DxxGCKrBhs2b6Wnp4NyqUSjmZDP60xPTpEv5+nr78OxfYYGR6nWFqjMVimUO5EVgUxEq14jDEKsTJbA9wg8h5mp03R3Fmi5HqZpoMkydsthYb5Ore7Q1TtEJltgx+N70TSLE8fH2XreeXT3dNHZ1Uff4DD79x+gu7OPRx59goGhQWwvwHbCReivxsmTJ3EchxSwbQdZltFlQei5dHZ3Uyh1cv7FF1HI5aE7RxRGICTe+MoL2HHJ1dw0upKVmTyKJBGmCaNWlqu7B/ji776RzkIG141wHB9BSl7V+OF5l/M3G7ZyYamLrKxgxxGdxRzXXLiZ7//Ff+FjW85bhMo9iyz/LFgPKSRJjB/4kIKh64RRGyopJIEkBF8/60J+77ILWLqklzCKOF1vMOG7VAMPVdPQdB0hBJvKXTz6+rfw8fe8mQ0j/XQUcrTikISUpVaO6/tH+MLqLXzj7IuI4oQwhgeePsHXbrsPgM+s3czqzg5gMSGQZFJkVpo5Pn7T7wLwtz+f5eHTDkmcEEcx6YwPmnRmjPt+RK1uc+jwcS64aBuNevOM5UqhkKder6FpGpqqUa0uUKlUMfQMly3p5sGLXsGNA8Ms0Q28OCavKGzr6OYL52zmK39yA2makMtliKMITVMhTag3Gm313MWYryywe/ceQtcnDiOSOOY1nT28rXcJq6wsliTjxBEDuslFa/r47LtfyZf+6Bq8aoPQD4mjBM9z8RZhWgjBVaM9vPPqzawc6iRjaLhJwoBu8Nrufr6yfB3f3nwhOaVt16LqCs1GhVJRQybGcWxeXezgHQMjrDQzZGQFL4npMwyuPm8NX/rQ6/j2x96DnqZYlkmhWGxvRDgWccbFDzz++nP/nQ4rw+Sxo+zY/nMi3yGOAmTRFhhLSQh8j3TGAymL3SoTxl1nEoo0CdsQc1klJSVNUjLaRWQufyuRHyAUjbgtz4kst685SdO28rSQSBIwdANF19B1fVGIIm6LvkiCJEmI43Zf66qKambJFUsISSAW5ywhSUhKm7MoK+1kU5IEqVDbUhhtfDMpKWIx0ZBkCSRBTEzkzJPEKrIsFm3BFGRJhsX5MUnAypjtCpQXosgSCEjKkJZFm98mJKTF7wih0N47SEgQBEGbA5ciiOOENjFYQlNVpFQgUkjCmCRJzyRsi/99F+fliMrMNNlshnO2bsVutQjDkFq1Sj6XIwwCspns4vXJFHJFAq/KwsIkKRKGaSKEQFVVFFVFkOK5DlEUMjc/wfGTB7jqqlcBMpXKPCTQ2Z3iRSF+FLLxrPWEURtR8qm/+nNkJSZKQk5Pniaby1LqKCMQtJo29abPG66/mmuueR2e2xYN1DQNz/P5wz3rOFlo8ZNzXJZaywhDQb1eByHwfL/Nu5KlttDIosDdM7cvitvjrLpQxXN9hEjP3HuRgmHqJHGMYzs06zWEgN7ernZfpgnJM5tWhRxCanOy9+55ijCV8HwPkcbtcRdHSEBvbw8szqVJKghCwd49e7G0PJXKAhMTE216TQJhGJMKGVlRWbVqBWomy6uuvIiJyVOEYXDGJ1qI9lhAEoRhhKGY7apwpgtV1RkZHm6P3UWUliQESRJj6AqhZ6NICf/bu28iEQqFzh4MWeB7DsgmyN2oqoyiaDTqNp2dXWQsk3/4+t/h+wm5fIb1Z6/jFa+6HCGnpEKhseASek1k1SSfz3DZpecgwjoLc+P4noe26HVr6CaaZqKaJVjcKAIIg5BGo0kQhORyeVQ5ppTP4fsh8zWH79xyC6ViGV3RCeIE326RRCpR1Ib2R1HMd2+5lb3+UyzbP8z8qXkqjSYjW8/i7e+6Eefk53jgq+9AjmKspZdxvFrEinVSx+XTH/sqI/dfSOX4HLuq91Odr3L5JSuZmTjMhjUbmZqYwvciBCpxArqRxbM9UiGYr8zhNxrkCnkaLZf1Z51Fw13A93TWrFmFJvv09vaQpimO47BQXUDSekikhDhJ0awcuVyuDbmNUoRkcesdTxM67XkzkXwkWcMyA+SoysZ1K3jtta+lWCqzd/eutv+qmcEwZRT1GUcHte1rrcrEYYyyqK9w8PBBHKeFpms0GlX27T9AZa7O5OQ8InFYtqybQwcnAAMpdVm5stwWSdN0nFadfCFDQkoUgSyrhKGPJEvtOVfRKeVkLr5gA9sf3kVP/yBGdwbJ1RhbvR5UnXLeIvKbL2uN+evY1jzfmvRXQWtfzHbmpf7mb2In+XLi12nnhSqwz+2T54q+Pvv1c8Vgf53r+lWQ438PUOH/qLj+FuJXVVyfG7+q4vpi34OXt9vxUtqXU4n77rkP157noou2Ef/8U0iRQ6P7HDqLBXY+/ADrN24kVUwCt4Vntyh3dtOy62hCpVKZpX+4j5npKrIiUeroIXBdavOzlEslZD3DzORpKjOncdyA1WvPplEf5+ThaZavXkW+nGP7/TvYuGkjmaxMECZoZh7XbuLadQYHh1WntP8AACAASURBVAniiCCIUGUZWZWx6wt4dh0r28Xk6XGefOIJzr3wAjq6ugjChPmFBZrVBXr7+jj41G4832HlqtXMzlXo6xukq3eA7T/7MRu3bCVMVY4deJLBwQFOHDvOytWrSeKAYmcXQjUIXBdJpJi5PI3qPNlcDl03CcIARc8Q+i103SJO25WjMA6JAhtZkZFSlZmpaQoFgyhOUWSBlSsiKwK7lSBwkQVkciVs1yGJYm77wa289rrXg0hxGzaqYaCqCrqhYds2pqETpTKKotJyGhSLJXw/QFVUkrSdTNi2i2VZIGLCg9+m1bQpnv0uvvrVv+fiiy5m3fpVuEGAiF0eefRxzj3vHIgj3JZNqdTF8VOnmZ2dQ1FU1q1bT7OxgCQLSh1dnDwxzujYIGHoI0vtczIMA1mWaTabKCpomkySSIgkQTdNJFkhTmF2appyVwfu4dtR/Wmk0lLCIMCxXQqZHFIYMykVmZtpkstrKIqK53mMrlyG73pkTJ3piUl0QydNAh7esYtX/c4VbN/+IGvWrKfVamFaKp3d/aiKDEnEjkce5ZzztraTkijEdTx27tzFJZdeSrW2gGcH9Az206rWiOOYXLGAJEmoukroBZw8eoyRoWGmZ2eYma0wtmwZvl/n/2XvvYM0uc/7zk93/zr3m9PkmZ2weYHFYpdEIAACpEhJpGXJOktnnU8qUWfr6izJd0VV+SSXL/lkhbLqJNkq+RQo0xJpFyNISiSRCAIgASwWmxM2z87MTp5589u5+/7oRSAIwKBS1VXxqXqrdjv+uvudt3/f53m+36+u5ZAlQafbolQuoOka506dxPMiarUq9UaNdruNUymRs3IEgQtpSBwFaKqKlSsRxqBI0O8NkFMV1ZDxfZ9cwSZNYrY3NyiWy6SpRq/VolTOFDt7gwEXzr1CpVynUinS7/fQdIXNrQGWrdLpuOw+MEv+cwuEtVv4cwqXR/4Z168tMjOeY2n5KmdPrfHLv/KLXL5yjXq9gR+0kXSDimlhaDquarB+6Q/YfWCEnu8gVJnm8lUa47vodj1sS2O7uU61MkqUdCESREhEoYfr+VTrQ4BMEvlZO52qEfo+xCGabjHottEsC0kW9Ltd8rk87sBFNwRhGKGpOm6U+a0Gvo8igWq8qrYt0+/3sa3MqzmKfOJEQYgseaMoOlGYVbIk+Y3cJIVea51CpUGGcWJkKSFBI459ZEWh1+oQJwGlUolB38cwjYzz+9JpJFnCfN99JEmIrEgoaXq7fUohTlNkQEIhjFzCWEJXZVrbmxSqVQhDQt9D0S0k1YAoQBIyceQhY9yuOEb4vpfZUkkqURCwcGOBs+dO89BD7yOOYiqNUTzPxTJNUhJuXpunXJQplIqoaoXV9RvIkkm1WmJzs00Uh0hxgJYzKRaz5OKgO0BWbV547iU++AGHOG3wzaN72Dlc4viJE7z3gR/AyRv4YYDQcshC4hf/6S8yMmzxsz//8/zK6m8wP3+DL9z/59RqNZpbA86cOcO99x3GtDJ7F9/3OD1/jp+6+DF+ZudP88V//AX+3p9+lP5gwPjYGGEY8tnPf54f//F/iKTEhGGKIktceeUiszPTKIrCZz/7OX7yJ38CNwiw7DxJmkDcJ40Twlhw+tRpCo7J7gP7CPwQUBh01smVaqiazoc//w9BVvj6j/5nWltb5EslvH4Xx7GIETzzjW/y8MMPA7C8soIQGrqZ5xN/8v/yC7/wC3iez4svnOTgoVkc00DPVVlZXKBar6OrMOj1efqZl3jgwbsxNJvnnnka29R47733sbm5jRCCXLGIkCAOIzbbPUhlXnjhWe695zBDQ3UkWdBqbpErlTKRLiICP+Lzn/8SH/mhDyMpSkbnyduERAhVcOPSTfJlBVmYmRJpHOEUcnh9l7987GmOHL6TcqlMsZJpKZw5foLY8xgeqbG60WbPnl34weB250oJEoUnnniKhx56gMDrYxg2S6vbCEVmfKLO5lqbfEFjaWk1q6haBroCqSTR7fl88Utf4SM/+Pd46omv8dEf/SgoMoO2x1Z7k907Z4mCiND32Rp0+Er6NT5p/kdWrq/ywfcfYWgo4eKLz3H9zGfwBuMc/Pu/TNBrkfo+9UodWSux8Gtd1EDhYverjO6oc2N+iUN37mJ+oY3u1Nhz4BCppuK1W3x85JdR5YhfP/ffopoqG9s6+eok+XIDTbU4eeo4MzvnaDd7BINtTh59jg/cP4mmBoSRzLXrq+zZO0MaZ1VSq7QLRc/jbl4hTAZErocQAl3IpElEKIPrWsSJx80rNyiP7qQ4dIhSpUwSedy4vsDQ2Ajlok1n4UVQ+hBFpCJPN6xQG5qm3W5RqdeQZGhubFIqlXn6qW8yNlbnuW8e4/4jQ4xUAmJJEIWCvGMSRz5hkqLaFYr1Paws3GRr4xbDQwbdrQ0UAU4+l1miCY3QS1GUmNOXB5y+sMH73v8gO+qzGK8UeOrwfyC49SiVUpn7/7vfwihnWh3B72f2eO9UcX013nZe+m6rmG+quL5TVfDN53y3HFlZlt9S6fe1/dPXE+d/nYrru4k3j12SMmXgN8arVec3818BEr4TDyRv6DKS+U714zd3K38v9/aNkfDucc73Gt9LxfX7HNe/ZryWnUjf2N/+3V/IN8ZbtQK/+kf1TvFW2aW/Cph9cySyxNxknc988o954IMfIrn+HEkUEptVer0+EhL5YhE38F8TaUkSsG0T1dAwbIeBH+K2Wniei+nkUJARqs2J488hwj7rq0vYpsX+g0dAy7KNoyNlFm8tUa3VqQ3VOHv+DJXqENVyiQQfy7LZ3u5RKleJoxTTsIjTGAWyDLbusLq2TM4pEAQ+ti5h2iW8IKBYsijkyly6eIHp6Sm6vTaTo2Nsra+RK1gsXL9Cr9uhPjRKGEYs3pynUasRRwErtxYJgoBStZ4Zw+s6vW4LpATDyiGEzObGKsQpqqqSphpBGGfqkEjoQiGJImRZRzFMnvyLL7Nz3yw5p0Sz2yOXz5F4AZqe0u62uHnjFpWhOsGgz2DgMjU3h64KZDnB9zNroG7XJQw7FPNVbl6/jlPIQ5ySpiGGrmXVnTTl2ce+QbVeQ1Mz7pSQEhLhIJxRtNwwBw7sY2g4s+lQSQiimMnJSSxLpttqYugmsmkR+3Du7HkeeOB+tjY3CQKPsbExblxdxMnbKHKK2+/juxG2bROFIa1mC9Mw0NXMTqnf9/jKo1/l0J13sbxyjVyhjmVayHJKtPRNVLNCmGoIVcMwDG4uLFLJ5dmO4Oy5s8zOzbCwtMLOnTvQbAdN0/EGPpcvX2V4bJRircbo6CjIgtmZGQQxna0NVpfX2TG9i1T2iKKY0alJnnr8KWzVxHJM+v0+U5Nj9LstbKeIaRrMX7/OjUvXyTk5FuavU8g7uF0X0yqwsHSNcrGBF/ZQVZnrVy6xuLCCputcuXKZ0bEx+v0elUaFUrlKGsHo2DgvHTuOrlsMD42wtrLOwo1r2JagNDSGqqkM2tvImkAiQZYUVjebOAUHUxMs3VoBxUCRZFaWb3H5wiX6PZfFpQVGRkaIk4jA9ahUS3z2c59jx9QUaZJVFxr1CpOTDfxui8KShJ/0WfEv8pcXZIJI5o6DexHaMI98+EeIFI00DRhqlFHlmF5rgDO8Ezl08dyQfDlAiB5xJKGpKoZdv22VpSDLGkLJFL/7vQDLdojCiFwujyKbyDK4gxZur4eqm7el/xWQNIQioRsmaQL9bod8oZgpVYYuisiAqqYLetvLqHJCHEbouk1CVmVTFCXjlMYxvW4TRZZRFAtZAn/QRYqj7N9BgqqAnPoksUTgB+i6gR+nWSWVGN/zII6RJRVkEIpCPl8gihJUoZGkEqrQiG7dIo5ijKkGvttBVkySNFM0VoQgigOQFMI4IpVihJzQ7mTJhjiOkYWKH/oEvkvsZyBZFjJSotwG7y0MXUczLWIv5C+/8hfs3D3LuXMXWV68xVB9iNrQECeOnWLh2kXq1TxJCrVGlU6rR77cICVCklSK5WLG+82Z2PkCTs5BV/NoemZdJOQcSQwzs8ME3gpCqBi5h6nmyyiGzmbHR5ahmLPwu9tIqsmHf/gjjExMcfz5m5yyjjI8MsQjzgfoDjrkikU+9nM/z/sf+SGiuINp68SxBoOQfzD6Y/zb+d8h98MF/tHwf8Ph3gGuaNdRdI2dO+eylmsEXuijaQZJLHHixGkmpmfYu28nqhAMuj3cwYBvfuNZhkfG0VUT3XQYGhmhXK6gaVnSzDQtVENHM0w8P2T35TsgTbg0+QL+oINdtGk1PQb9AbaTZ8f0Dl588WXGJyeIIpcXnn+J2Z0z1BtD2LpJTMjc7DSWFpKiIeQEWU4xtZTLly4wPDqCbVmYeYfrV29w16HDDI1OIqsgywZRktLttoiSiHa3S702jGqoTE2P8dST36TRmEKgkCQuXq+PMApIcYKUply4eIG5XbtJU5+TL5/AyimoikQURFRGRgl9n3KxwaNf/AK79syiyCrnL57nAw8/gqaofP7zX+auQ0eQpJRiscD89auM79hDp9NDERKFYh5V6CTBAC8MmJiY5tixk4xNjuD6PraV41Of/k8cPHCQJx//GnO7dqFogjQKkCSBrNp4gwGqnLJ3705anRbvufceAk/Q3lgjigJK+TJCMVCEjzAcLqSXaa1s8XP1X2BqqkhVBDz3uY8jKTnMyZ9g6p4fRFdVkuY8G+tNnj+3hvsnERWlgrb7ZcYn85RzFpPjBqurLmevr3HPve9jc3sbQ7cxNImXk5eQt10eCu5EaCZBrIJcwIsinJzD+PgUUqqQRi6XL11mebXLcKOMF7rICMaGq8iKT0yAkCzCVEJSDPA7yHKmKuyHMYJMMOnoqQE9XwG3zdDYJOev9ZidmyXst0hkmeHRBs2tdWzLoN9ZRcXDi0BW8ihGHSSJVqtFEMRYdg4hBEEQsr62xdnj3+bwHWOMNGwk2UUIA0X2WFiTiWSFgpMiyQXcNKJYnsNWBvjBNoYu0ISAVMeLI44eW8eqmahEqJpOx5UJQ4kkHjAUTKGgsBE9haL0qe+6BzOfAdfkWMZ1fSPH9Z3mp9mkNEvfvf5540bfzbV8LW7zKqTMYOl7ipQYWZZuc0tv++i85qfzuqhUNl9+J3El+Q3rpO/8SMmbjvv28Y6V4Nv3R+LV+/TGOfx3CmC9es709jVJb+CmvnkE8u2uFQmQ5FfHeHu/VHq7J/K2Y33L8UvS3xpw/V44rt8Hrn8D8XbA9dV4N6Dyr0sSf/N+r3q9vqtzkxImcNd7H+TcmYvU+5eQkgi5MIWdc0iSmGZzm0atQqfdZHtri6Jj4XsezWYL23KQUvA9n+FGlauXLlCrj5ImgjAIcYwiqVDQTIdCuUaSJNiaysVzZ5mYnMJwcuiqRs5yGKrV2NjcQKgaqmpQLORI05hev0MUZf5yYRiiCZX5+XlUTUfXdRYWbrJ0a5Hp2V2srCyThhGFUoFrVy/he/3sKpOExcVFUinzpZwYHydJJfL5PCtr2wzcARsrS5QqVfKFEtzmABuWjWXoyIqCrhuEYUCcJFimgyTLxEnKi0dfYseOKTqtLYSqEKUpSRgjdMHOHZMIXQVZxrFtQj9rDzaMEqQWF86dZW73HuJI4cTLZxkd2YEiMj6OlEqcPn2WRm2IMOgzf32J5eVVpqanMiuRyIckYdAfEPo++/bsQhISpqnR63ZQZIGwa0h6kSiM2NxYJ04i3MGA9vYaSwsLxFGK4xSIwpT5hQWGhhu4bjezd3AM8gWbp556hh07pqjUijhOgVarRRzFmIaBYZr4fsDVq1eYmJgkiEMUoZIvlKlWyzz7zWfYs38nsqzhBwMEAdHCk0iFWWQhiKOI5aVbCFWQNywSI0+hWObCuXNouo6hq/hBwOLNm2hCZM83jsnlcly7epW85XD1ymWqtRqJLGXCO0LDcSwUyUJSUnbv3M3ayirnL11mbucuUqBQKNLvuVy9eo19+/YzOjHMiVMnUDSDxtAIZ0+fZGxiEsMUaEKnWC7xyoVLHD5yhOW1baZnZpjdNUuxnEcTBikJvhcwNDTEpz79KarVCmEY0h+0kWWJXTvncJwcfpCiqSaKbjPoZiDm9MlT7Nm7h8AP2d5uMTI6hlBVFm7cxB147N13gOZ2kzvvvANJkdE0DUUC3dDxAp+x0THW1zfZuXOOo0dfZG7nLCvLK4xsWSSKjz6RMPcj/ysTO2Yolur82m/+Nk9+41nuuOsQkhugqTn+5f/xm+yZKDE0NsXqyiKRYjFaexpVNAmCBqZhoagKECOR3E7aJfSPfhWxtYQ0NIlu6Pi+nwE3BXRVRZZVeu4A2zaRFQnfdzMwMhi89rKWRdZSaKiChNcnD4aVxwsiNMMCGQZdF0PXIAmJQjd7eUsphu5kNimDLoZuoMg6UeISJQmqUGhtN1E1HdOwGLh9dFmCNMX3QnTdxPP7xHHmHa2pEu1OG1VTCQIPRUkIQh+W1zMhqKEKvudjWjlIfNIkodfpQBoBgiSOMHSB6/k4toMiNFRVIwhCVFUhDAIKhSKyIhOnsL25hSIUbMskSVKCIGLQH3D4yBH8wGVrq83BO+/g1OlTjIyN4Hkh++7Yi2HZ/MdP/jnvec/dbG93eOyxp+h2+kyMT/L009+g3qihahZpkhIFHtvNdfIF67XW5EF/gBAqqkiQpTVyhszm1iiPfOgfcOqlo/zu7/w7fvpnPoasC3TVQE59PLfH3MwBfv25/4uxsTGO/u5R1lcGzEzP8bMf+2lq9RKdVpNqtYAkxdhmmZHyENIzMeWpMr/f/UOmKlMEaozrB7etaTIuqCYnCClrr2622gSuS6Vc5c8//Rlmdkxy6vQZ5udvsnffHkxDQxLZd1HXFSRJYJoWSQJSmhJGCRKw+8qdSLLEiZEXKJbq9L0+3iDmi1/8PAcPHiKJZUZHx/nUn3+KI0few8zsFEmacurkeU4cP0+xpFEsFDj6wgnKlTKaltFI5NTkxvUFbDuPoqjIimC4XiMKfZI0Jo4lDF1DqFBw8uiahmkY/Pvf+wMOHX4PSBF79+wmDAOeeeZZRseHMW2DNI5RhUzf9bjj0BFkOUUREvVqHadUfs1jnSRFM3See+7bvP/hhxBCQddt+r0Q01ZwzDzjUw0sW0dC5+rla3TbLdrdLp1Oj0qlnPGeDYuVW+uUqjWazSYXL5zl0KG9pEmIrqu85977GAz63HnXocyeTrPJ5/JoqopuSHQ72ziOg6Ro2KZNb9DjW996ntm5MeIY1tbW6HQ6NEanafubPNZ+kt8a+3V2TeyGxa/w7Sf+bw7e94tMTD+IlZ/B63icOXOKWK8yOlxh+Y8v8r7xB1BnnkdJQjRNEAcBsixh2TaXLzeJU4nJ2TFWljcYGaozt7STjyR3ksQDVFWw1fTQzDpIMs1mE9s2uH7tFsVSjlrNolyS6fUGCKXI1WvXGZ7Io0kgpxphFCKpFZxCmdb6DSQ55Nq1DbY3AxqNAkJJuH5jle3NDQ7sHaLvKZw53+Sue3aTxgX80ENVdW7duoWuGxB00UVEnEqcv7BItTHD8uoyw0ND5PJ5VldXMXWNpfkblKs21VqJY8fOMDObQ5HLSLJKHCQ8/8IFJifrpHFMSA6nVMbtBmhyjzDqkcYJcRQxcPtomsHiQotGfRjThPVNiBBU60PUqhXMTol2ukbbfBJNh7nDH0FY5Wwe+VcBru8EO98JuH7Xcb6XeKe57neD57cFru/Ennw3ZcpXN33Ha5DetM1bA9c3rnt9z7cHrm8843ef/u3H807qxW819L+tVuHvA9e/w3iVJypLr7cYvBuO6ve6/K+67t1EkiTIwkA1HEZGhhic+SpCSgidERIJdCub/Bw/+hzlSg3LstlaX0FRNarVKp4fZHwlobJ4/Sq6KlhcWeDbL7zA6toCcRxy/ORZ5nbvx7RNNEXi0vkz5CwNTdPodrbo9bq0mm0URcXJO5imA1JKnMSZIEYcY1omQZSgqxq+H5AkCUu3VqhUa3hen+2tLXZMT3Nj/iaFfAFd17FMg0q5SLFU5fy509x9991U66NUa1VeevFFAj/Atm3KjSHSOGR0pI5qOBTLFSqVrC3TMB2i0EcIlW63m1nhhBG2U6LT62DZOaZ27CCVQBcKYRRimCaarJAqMVIcEaQpQlaIoxBNUYiSLp7v0+93qFQskEKcnINQU4TsoRsmnjcgCiKq9QblSg1JSiDR2LN/L4HfQ1IyfqBlWhimjRDZvYxJ8P2AnJMjCGMGnTaWadLudonjrI01SWLiMCKXK5AA+VwRzTAoFAtEvotuFDn64jEmJqfp9z12796DqmqkhAx6Pp/85J/x4AMPIoREq92h1+szOjp6m6cYY9omSSJTLDtUylUsQxDFMaQxyfYrpP01JLsBQBSGqLLAsW0MWeHS4hq6pRNFKYHvsWffPqQ4gSTl4isX6XW77N65i77nMj29g8sXLzI2No5u2zj5Igs3FxlpDHNraZGN9TaFgnO7tbSLnStQKpZ54vHHiaKISqXK/PwNlpdXWFlf4ch73sugN+D61asIVcIPQ4pFmzRK6Q4GzMzM0u32SFIJ27HJ5R2yl2YKcYhQBQlQL5dxLJP6SINGo8GVy5fotDt0WgNM3WJzaxvTtDE0k2tXr7J//z6CKMQbDCiVKrj9Pm6vw+T4BEkig6Jk+Vkpq0bX6jX8IGBjq8n+/QeIo4hisUSv1+Xy5VdAStm19wDJ6U3QPIJyF33fT9Dv9vjY//BLfOznfpYH7n0vv/Gv/w1zO3dh2Dl+6eO/zK/+4s+QqBajo0sU8x3S6CYQINSpTECLlND3cd0BQhV02m3S62dIfBdlcg8AKSmqoRIHPm6vhyQrOPnS7d8kiOMIVagZZzCOUTWVlEz11R300HUTVdUYDPrIqoqqqiiygtvvYpo2sizR6bSxbYs4TlHEbeP2NKLf72DaFpKs0m5tYeecTNAnldANg+g2d7Pb6ZAkKZqmgyShmxqqqhNFPu12i2KhSLeTVfBkBVSh4M0vZRnnkSFs0yaVsrboKEzQdZ30duU8CDziJESSsuuSZYHvh4SBn7XtAqZp0e52UTULy9TxBoPb1i4K/iDALpRu++ZG1OrDnDt3lj27d1Ot1xgdbRCncOPGArqqMzE+Qq5Q4fKlS/zwD/8Qzz//be67/96Mgxyn/NF/+EOOHD6M41To9ts0m23WVzOxvT/6wz/l8OEPoEgLxL95A+PUDdRHDrGyvMBv/Mb/w/nzV9i3fzdpEtFavoJpvEy+0GX/jh9ixBvlpz7435N3yuRyJgO3hZPT8Psdbt68QuB7NLdbVKpFhho1Hmzcx0Plh/nlxV/lfyz+PF89/RilYhFVVfEDD3/gs7m5RblSpVqtYBkmN24scuQ9RyhXCoyMjHHnXYeQhULkB/QGA1RVJklCWs0OiiIRhgGKpPGnf/pJDh8+xI5zmR3J+amTtHsDCoU8upZn186ZTJldTgiCLpNToyClaKpKEEbs3buPyakZalUHYomx8SmcnAWpxHPPPc9LR7/F3NwscRpSKJrkcnmCQQfbtvjyl75GqVRhYfEajUYDWRbM35zHsnMsLC6ze+9ODENBSlNM02ZqZpxcrozQNDy3D2mMbhok3O7EkgSf+vSnuPPgIWzDIg4TNjabmJbBzOwMmqbR7w9YWd3giSe+Qb1eIZ8zScj8jmVF8Py3nuH+++9HVWVOHT/J7j1zFPI2oR9w4+YtqrUKZ8+e5P0P3o+qpqRpjOf6yLKEkONMGE0RSFIACgThgG6nnfEnTRtZN+i1tskXilRro7Q7TSqlCiMjw9h5g3ws8WfNz/Hz5Z/hHw/9OOce/ZfEcYuzy0e4/wOPsOUGfPozf87KyhXu2LWXX/3f/hXWxjI/ZvzvDBovIgmBbme0nUiSuHRpBUX12LVrmMrwNMVyg3yxgCZUTDvPoL9GGrSR4oCNbZfpvfeiawLLNFhfW2VqxwhXri5w4tgFLp5+hXsPlikaISN1G90MiXyFNEmIkLGK48SkOIqL5/bJFXOUCya6HhKGEWPDDWZ2FFCklF4vZGNrwHany8j4FFKaIMkK9VqVJJboNRfRRIDQNFS1SM9XmJycRBEyqSRhqBoKKWtrHfoDj9MnzzA1Ps1oXePxJ05lVKxyyt5dE+h6iCJ07Mo0KQIpTGmuX0KIhCSRkVXQhEmaBtTqAknq0vcMnnjmAhMTs6yurzE9NYHh5omlNk3nUUzd4PRNl9133pOJd87LSHaKvPc7ges7VxSl79juO+aaafydc+Q39bC+68rfd23zjmtfH9qbFX/fHOmbgeMbD/M3xVZ8hyq09Gbg/PbAFelNtjuvaQRIr2mfvL7uO6vO73RP3/hs39zRKcl/O4rC8H3g+ncarz3Y76G5Qbpdbn83IPfV7f82I01T5CRGiUNQYjon/xJZSjGGZpA1g/6gj2PZlIs5yvVh1jebOKaGMAxSCfwgRDN0nFyOfreLaeUZHZ5lz56DPPvcN3nwfe8niWMSSUZI4HldTh8/yvhIDdf30RSPfD6PYecw7AJCkUiSTGUxEz/JPNUWbi5SrtVJoog0TYjjmHpjmDAIWN9YJex7zO6aozE6Qq5QprXdot1qIWSZhcVlcjmLIPRZWdtGN3QeuP9+4jjk6NGjHNi/j8AfsN1q4uRLbG1uUSgWbluAeMShTxRF+J6PpmmYtgOSQNcFcZwiKwpxkiArGt7ApbW1iZSmRER4/T6GkyfxPZrNbZxCHlMrIilQLOWJA5l8oUSSChzbImcLhGrS63WolKtojk2SSKRSjOOUMSxBEgeYZg6hajRbHQw7h6LqXL54jqHRUcIwRsgaYRTjrpwl7G8wv9xmenqKrc0Nup0OX/jC19i7fz+j42MEQZ+YCN3Q8Lo97ILD8GidlBAnZ0Cq4HkRmqZhGDZu32NqcpKNzRVyuSJJEhOGEZ/5zGc4dNd+PHeApmpsj2YgDgAAIABJREFUNjeolmp0O1vYtgOpQrLyHKgWCTqSBJqmE0QRwWCALlQ8vUAu52DbOfbt2csrV66wvLhAs9mkWqlQrVbRdB0/CXEKecqVMkJV0VSdq1eus3NuD4vzN6nXS9xaXqNcKaFrGrm8w8qtFdxel7sO3oFjmRRKeYZHhiiW8qSxQq1SZWV5iTv27WVsYpQ4gVI5h2M5NDvtTPl6aoJTx19m3769qIqK7wakko+hKchCodNzKdgOJ18+zvTOnUShzPDwEPlcnqMvvoxh6FTKBW4tXEPSdFy3z8joGE8+/Rz790wTJjGObXJr4QbzN66z1WwxOj7MxfMXGRpuUMjnieLMSzCOE4rFKrKUcv78eUZHx/B9l/vuu49EEpiXe/hpm6DcRt7x9/G6HQ7ccZi5yRGmRho8//Sz/NQ//VlGRir8yEceZnRkmO1+TM5aRxUCKV1CUUKC5AdZvCVTKrjEUQY8dcPENCyi+QukKdg778T13MzvNUiIw5Buaxs7byMLO0uQ3X4pJnHGx9nY2CBfKJJKMmmcTZhbrQ5RFCFJEpou4bkuvjsgZ9v4aYym6+imQ5IqqIogjkMUIbO92aRUKtF3eyiqwNbzuL6HpgmS6HXlYADZMLPkkpYBYmQN0oTQ76PpNmkqkSSgCh1ZFmxubmM0O5AmpEN1dNUgvs1vRRYoasYvlwHbztrhNcMmTUGSFSRJQZZh0O9SLBTxPJ84jrNzJRGaUEkVIJW5tbjK6tYWxUKBNAmQZJXtrS00Xadar7K9sUyuUCTv5Fm8cZPh0SF006JeK6LpCmMTo7iei64Z6Lrg7jvvptPto+qQL9jkcrmM/47E9PQMZ86eoFqrYpzoICkNlkfHGN1VY3RkipdefJldMyMIVePyqeeYnltlZeUCycpdPLDr/fhBwvBYAd2Q0XQlq0YmPcbHhtGEjSRCbsxfp1Ku89nPPMq+qQNILfj93h/w+/v/gFP9s3ziE5/grrsOoZoFiuUqvW4by9L51H/5DO12m8N37cf1XXQ9o6gIofDo57/MgTvuQtMFge8hVIEfDojjkCsXb+AHIXt272Lmwh7W1zc4M3qUzc01khTWV7dYXV2iUqvwXz79JSbGJ2jUR9G1PHEUIKsKruuiGaALlfNnL1EdskmiFM8LKJcq2JZFtTJEHCvcuHGTWq3A+votoiDh1tIWO/fMMjo6hKpqRGlCKoFh2ShCo1iykaQYGcHGRgsrrxD4EpKkIqkychox6HUxDY1U0mlutykWSowO1em22/QHAc2uR7mcQxEyYRxhGCaDwYA779pLozGGO1gnTSxMs8h2a5Wx4QrdXo9KpcK+/XvRdZmNzVWQUoaGRzAsDceyKBcLbGw3iSIolRr0WpkFjG5oeF6EpFgsLTcRwkGRUizDBkkiVQSJP0BRDb746GOcv3CRqb3jpGrCZztfYjXa4l/P/jb/aPhuXvjcx/Ekh8LEP+Hge+9ieWGDWmMC1czxAx/6KJ/9z59A79zk5wr/Dl+9gaetoipNIhd0xyFG4fkXFtl3YISlqz2e/vYl9h04gKTAyq1lTCdP4K6jJj10IWEVhlFz41y5dI5KpUo+V2Jra5uxyWlmZkYoWj16vYhKNSWRCnz7xQXGx7J2YdQ8dr6GHwYkg22kFMIwQBc+aawg6QKSFEWO8QMFVUBtuEShsJ/aqEKr2Wdre5NBv8va2hqOHmJqAXGa0usHVBpTGKZFFIcosmB1eQVVlig0ClSqdZYXLjI7U8JSXWb3juA4CUJVUdIUb+BjO+Mouk2KgiZMpHiNOPJRNQNJSUiTACGbCNlkYzllZatL31OQMHn4Aw/Q3tpEGqjoSkp/6Kt4g4ji1HsZn7sjAzB7QuS90Vt2Eb6bCud3UdtI3rTsbwa4vjOofPN4/uvb/v8DuL7Tpm+iEH6PwPVtl73jc//rxfeB699hvBVwfWMW5K0+fxNqY/+18Xyvx04liUSWSDUd+eqzRJ7LdpR5Kw56XVRVUKjUiaMEkjBTaowiCBOQAgb9FN/vYltFWttNnGIOmRBDVZmcmWB8cgetjWVam0tcfuUSnU6AYRkMBgG6pnP5+hpzc3t55fxpxsbH2d5eZ3uriWEar9lZ2JZN4GcWL0mUMHADioUcQRSSBh4bW2sMvIjhoTECt4/v9hFC56VjL1HPOYRRjGbZJGHIxso6F1+5yB2H7qHdC1lfW6JUtAnckO3tjIc6PNKg1+ujaRqqbhOFMTnbBiSiMCJNYvq9PrquErwqBJNAkiaoukq328IyLSRFxjZ1Bm7KoNfHztmEoYsf+HS7fZxCDt/3Cfx+xuMMEoRmocoy/UEfRVEI3R6b61s4+QK97jpWrogQMp47QNdV4jjKOGnFGoqioKqCMAxI05jmK1/BlvqseEOMj49h6Bq27WAYJnnbQJIVLF0nSVMUVSOMM9sHRVYwDAfPC7n0yjVuXrtGvpRD0wS1WgVZUXniiWfJOzZf/YsnuOf+B1FUgT/wMXSLQb+FFPuYTg7TKRKGHqoq8G98HSU/iSwM2u0u7XYH23HI6QYbg5hEs1FVk1I5T2/QxTI04sSkXNcJAkEQ+uTyOfKaxPFjRymXK7fbyE1KpSoXzp9AUzW6nQFTk6Nohk4SBXhxSK1W4tL58wyPjpLoKssLK7TaLkPDY9imiqJppMDGxgqrK+sMN0ZJYkCkWfW+WkWWFWb37kQmpttpoxo6nZ6LZhdRNBUpCrEcm9GJcXRdYnV5lTTNMtZjY5PkiwWErHFrcYnY81i4eYuFpWUe/MD7iBOFE8deREJibGom8yZ2Q86fvcC9D7yfVy5fYMeO3dxausmTTz3Dgb2zLK8s4tg1RoaKLK8sIMl5+t1NbMciHc5xZv0CxVwEB/8J5ZyDWSpQHypw8cJpHnr/gySpyurqCn/8J5/kww/eT2fgU65HKCRIySqS3EFIF6kWT9JxD2PaMUJVCIMIP/CI5s8jywrG3EGEZpIqOpos4QchqALTspBlHaTktsKrQhQGyLJCLpcjHLTw+j6SFGJYRYSuoukakgRC0UkBXde4eu0aOdskieLb1jmCfq+FqukMegMMW0VRNAwtUx/33A6yJGdqqZqBogjU290bkiSIApcg8DLf1kRFliHwOvhBjGHYyLKC0DLVYilNSJptFE1DmxghDCOiYECv20JVldtKy4Lm5iZ6rowiKyTBgCgMEYpg9dYi+YKD72XVapIY3bTpdVokSYIwTTzPRREKhXKZfruJZQs8L0IVJsMjIwwP17m1OM+tlW3c/oDLl17hjoMHiJOYsyfOMD2zE1VNCaMI07RRVJ1B36e93SKIAvIFA+SUNEnwA5k4hnzBpNttY9vDmMeXicIe1R//Me557wPk8zab25vs3X8EP/Jx5SpDlXl0kbKxOc2//73fZd+uWQrVBq7nIckpSRqTs8scP3GB8Ykp+kFMvTpMGqQM10fIV2vcUbibr3a+ylPPPE5lqMADDzxEc6uNbgvigcuXHv0Se++8k9mZndx99x3Zc1QEaRJj6Fklf8fMLLohUFWB64fohomqmmiaRaM+xvRMna2NLe5euR8nn+PF2kscO3aCg/v2UWlUKZcb/Nmffpr77z2CbRuYjkFCShoHmIaNUDVir4ciVIbGhokTgSxkut0WjXqdcq2Eoso4OYNGo0ESwM3rN5mYmmV6916SsIMkJ0hS1hXjun2EDJZhkvo+tuOQyoJUEZhCIMsp3qCH64bYuQKGZdPrD0iSmFKlRMHRkRQdLwgoFBwcSyF0fbY213FyDqpQKZQqxGGEpgRYzhDHT5xkx8wkmq5iGHksy4A0ZeB2iSOVanUUwzBoN1vknAIDdwAKbG0NUEWBp595llrZIUh0dLOIZSjEgceFCxeYmRzn+LEzWLZGKkVYWg7D0ukO4OyVk8z96AQvBi+jrMn8m7n/k4/f+a/Y0Wnxjc/+Ko3JH+Dwh36JxI65cf063e4qllZiuFrit3/j19hcepmP7/ktTG+IVu7btNo9jFwRSdURskoS9di5YxRFcSmW8my2ZaxckbDbY2i4wT+v/AKP2d/gw+33IkshnYGKalfIOTaarhOnoJo6chjQ3Njm8W8cQ6gJow2HOEpYurXKxI4hEs8nkgRWcQdeu0UcrUHo8uXH59m3dwIIkJOMJuYHAc0eJFKB81c9Dh/ZT7MrM1I28fotKqUChqUTtzdQ9B5JEKNZdda3XBzLIZFiSBPiJKJSr7OxvEochFy9dgXVsKk4MTIhpmGTpCGGaoMs40YSilHGcCos3zwLwSaKkG//rpmEaUrk+nzlW9dodQJq1Qq9QcIjH3wIt7PJysYWJauBFmh0Kl8lSjyGZg5QGj8IaQYyFVLSt5iDvq0943fwQNPvrMAiQ5rZiEm3KSGvgWBZep2EKb2Oy95Y/Xv9HG/im34Xr/a7GZ2vjfeNQPFt+Lhv5Je+G07rdx3nXQLp1/9/+3P7lr3O95Vvc35fZ/6+piT8liN/9TpfPZ7Eu6lqv7r8jeveUsVZfut9/ybi+8D17zD+KhVX+N7A6N9mxfXNQFqWQAn6hL7HqUuLzM7NZaDRtpElaG5vkXNyaIaJZdtsbW7T6bXQdYftjQ1azW1WVheo1GqEYcjK6jqjk9MkyNSrRQadTcrVAltbbWamp9B1A0nVOXjwEOvbG9SGawRemNlcSBLGbRXRrEIA/eYmAKquMnB7NDfWKToW58+dJZcvcuDOQ0RxTBwFOPkiuZyVAZ80oO95LC7dwrHyzN2xj7GpHSzcmGeoUkHVFFrtDltb21QbReq1AqpQkRUDN4yQFQlNSpAVlSiK0A0VP3CxrCJC6MiKQEagyHDl4is8+bXHOXzv+1hdXqFYKtLpuQghoyoKnu/j5OuZEEnkEbgdDMNCU1XazRa6phGFEQs3b1Gt1rIsZZrcrtKDUATICmHgo6QR89fnKRUq/MWXvsbczhnW1rYoFAqkaZSJyXjzyIrM5MEPISsJvV47uzZJJkXmpWPHmZwcR5LkrAXatEmCGN9zUYWE7/UolSuMjjSI0xDLzOP7AY899hjvu/9+7HyeU2dOsmtuitnpCUrVEpphECYBlcIIV6/fJCUll7MJtq+TdOaRnDEUWUHTdGzbotNs4gidDQxyuRIvHT3Ozj2zWI5DlKZcfuUUqyvLHLrrIJ1Wh5HRBl/7+mMMBhEH7thLt9NCUWWEULCNHMtr6+ycm+b69Uusr61m97Jc59bKCkONUY6fOMHc7ByqkEiSlK985Svs3b+H+YV5JicnMHWLickdpKRsb29mlkdSVonRdR05DRj0fS5duUmr3WVytEEYhgSuSxj1EELJ2kxlQXmohioEG6ubnHr5OKppsry6wh2H7qJUsqnVa+zavZfVlQ1uXD7LPe+9B8spoGoaN27c5PIrF3j/Q0fouwGqBmsr68zOTlCpljF1HdDIVUyuXJ7H7btMTJVpNwdous3S1jLbrQWMtMP//HvHuPe991AomoR+xMTENI89/jgvv3yBwI945OFH0Owcf/H1p9m1E1QtQhYpklwlSN6HF4xgqd/Cd03CwCMVCraTw792DpDQ5+4msy3xkMisZkzDQJaz9vkkjWm3WmhCR5YzioLrZjzUXL6C0CWSRHqNRyOEQhhm30NIyTsF7EJWPe93OyRhgKQo6KaNEFlyS5YEpBDFQSYKoyhISkoceQRuF9LotqcsmQesbhL4CYqSWcvIko5QVYRQs7ZeOUGOQ1zPJzczQ1guIcuCIBigKJn1S5pCEIQIIfjSo3/Jnl2z6LLPwuIShWIJWRHkbItBe5NcPo9mOhi5AmmS/a4KIUhTMHSLNMl+j4WiY+gmq8sbtLc3qJSLCFVDN22KhawjYWR4BFlS0HWNXD5Hr9u53c0juHDxIrbjYIqUR7/yJd5z7708/+zzDA83MlAdxXjdFs2tDSampjIV5mfmUVWVL693kURCtVzn2tXL/Mqv/nMeefhHaW81mRxfJghDLuaKhLWYuyfvZuB2qJTLqEJHyAZuv8/U1ARpmk1SLVPnxuIVJC2AJOTksdMcqdzDF4pf4CPmD/JIcJhb5VVkWebxx77OT/zET2YWZJ3NTK1cMxCywbXr87hun3KliGFoyCT43gBDFUhCzZ61JBMnHWRZR8Zg97W9pKnMV+Uv8MEfeIRvv/ACuq6DBE7OYc+eOXRTEMUhg34fy9LxwwDXG6AKLeMlptl3UZEkVJFZeyVJhOd5WJaFEAp+5HH6zBl27ZojTfqkUkoUSWi6jSylt5WvIx5/7EnuvucIkDJ//TIFS0MWFi+/fJLt7Q61yRw71WmcpMDS+VXuGbubu8QBHv2dL/K//Pj/xL3GXbzcP4mh6+imTS6fIwpj4igljQZYpkKzuYaha9QaQ+i6zeNff5JapZAJLuXLWLrNCy+8RKvVwrYtej2Xfq9NsWAR+AMsu8yffOKP+OhHP0SxUsPJFUjSBE3XgZCR4Qb9fpuh0RKaZgMGseSzvdnjld5lFiZu8IBzhH9p/DN+bufPUk012i/+J5597t8yOfMvmDj4EK47wLHLNDfWOPbiOnffF/FD93yIYXOVf7H7j7D7u0jHX0LXTQqFmKUln8XlLRoVFd/3MCxBnKaEoeDC1XUefOgBhEhJFfhc8gXkNOaRtb3ICvR9jUSy6LS3kCSJMAy5OX8Nx7HRdEESDbi1sMzUWBElDRgbLRLTx1SKqI6DYjeIowgp7ZAmErumC8j4xIpCFIIqTKIEFm61SDWddj/C7a+g6TLtjofl5AhjWLi5iKN2sC2dOIpY3xqgF4eJ45hioYIitCyB0PcIwoSN1SXumMlR1lusbPQpl2zi0AdJot8dIAwDoVdQhI1EyObqFbxIAUlGVWLSNEaRE3p9nc31Nnvv3I8qKwwiwejEBEuL/x977x0u23WWef7W2mvHql3p1Mk53nOjriRfK1jJNo7C8pAGQzfBmOmeoU3wYOjpeWAGE6YBA56haWjAYDDRbbCNbMtBkiVjXV3lq5tzPDnVOZV33v1HHcnStSRLpOEPf8+zn3NO7b2qVtXZe9f3ru/93neO0YlR1laW6Q1GqNUCop6zZHNDlMduQJCCkCRC6/z+KnLJl9nzsse+SIvl2kLk9s9rbV86O795r+zLT/SFY1+hze41VVhfoYr6zY59pSP/kW2AryVeFSX7W8D1tcW/NuD6HOB7bpOvsCL1SmJNL1eVfbnjX+28Xu65vun4JCZYOoUWNEisIq6bJZfLceXKFTQJhtIxLBuQRGmKm3ExTUUQppS6SpS7exmfnGTx6lWa9TrDI0P4oYdlWjRqFS6cO0O+WGR9rUrgN8m6JvliiUatjqYpNqt1dKmzuLhAvlAgThKy2SxpknZ6vtKUrJsjSdIOdSyOsE2DGIltOTTbAY7jUN2q4BZKNBtbnD99mlRIpmZmmJ2dJeOYlLv7MOwM1a0Ktq5YXl2l7XkMjYwyP78AcYCbyZJqFoapIaSk3ayzVd2gUMjTans4jvu8F6Hn+yilCAOPXL7AxMQkjYbPudPH6O8to1s2rVYDpWmUSl0kaUIcdarNcZIigFarST6fp9VscuLoMa5cXWF0dHTbHN5DiBTTMomTEKWb1GtNHNsmVyhRbzQxrY74zaf/9l72799PrV5BaRqqdYEkjhHFnR1xGD/EawdoEj71d5/jbW97Bw89+GVmZmdRhkG9Vkc3dHTdoN5o8vTTzzI+MUXgeZi2ThQK/uIv/py3vvWtPPbYIUZGBrl+/x4yboY4Bk3rnIP5fI7Iizj0+CH2X7+feq1BsHgIQ8YYTplw2+dUeAF5y6GiXOxcgTRJ2dqq4mYtfN/H80NMS2dwYBInqxHFKRsba2Rdl31797G4sERPTy/Q8chzbIeu3l7Onz9PKZcnSSXD41M06lV6eocwTRvf8ykVSmxtLjMwMMzs7Cxtr8Xg8BCtdotLF67Q09eH77ewTINW08O0M4RRyMVLF+np7UOZDmkS0VuyWV1fo9zdiyYlzzzzFIODQ+jKoNWqoykFaOi6SVd3iR0zU5imxrHjJzvzzTgsryxhWw75TB4vTPnifV8gjWJs02L//htoem0cJ8/mxhprqxXWVpeZ2bGDpfllVtfXWFvdoLe7zMzMJKZjcv7seb745a+wY2aWnAUF3efNP/pfWV1fJuNo6Mpmfq5jTfTFz36B7/ve76HdrFMoW+zaOUF3eQ0hUkRaR0gb3eic30pcYWV1ENsBXTfwPZ/w4jGEADEy2+kZ9NskaYcCrmmKKEo6lNx2E9tyIJWYZqfH1fM8MrkcoEjTEF0Z+EGwXamUaMrA0BWe10ZpOnESdaqtSieIIrKuSyoVcRTj2FYHuG73Lmq6hdQEURDge15HhVho6FZnEUx2ZMA7/d5xjKabCKGRpO1t32aFYZpoSkPpBs2WjyYVcRIgZYplOGjSpNUKcN0iUhrsmJ5CiKTTw6a0DoMhjIhCH00DqelUa3VM0+oUGERH5TdNQ9LnLNXSiE9/6jNomk5PTy8nTp4ily9g2SaGoQA49Ogh2p7H2uoaZ86eYnJ6CqUkhXyJpeUVpianeOihrzDQ18/AyDAZJ0NvTy8ry+vk810goN5o0d3bQ7PVwjRN7KfXEEJy32aFd979FjbXPJbmN/nJH/9JvGCLnmIe1z2P1A0+dOk+5o15vqv/3bS9LWzDwW/F/OL//Z+58cbrafs1olAjmzXZ2NxkYHgEK5tD13SmpncwVZ4k52f4rcZvQzbgg9M/xQNXH2JmZhrDMEjihJOnTpIkKVGQEIQBBw8e5JZbbiVFkIhO0msojTRJQWq0Wm1A0Gw0MA2TB+//KlopZqVnEa+nipu1GRgdJZfNsry8xO59uzl96gztdouurm6yTpYwClHKwLYzICRCyM7/RQgee/Qgw6MjhGFEEHbsxpqtJkrptJstTp6+ytTMTgxdQ0iBabud3tAk5vDTzzAyNIRINUrlImkqsAyLir+FuKKQI4pL+cv8ffUQK601rnrzLMolvhw8yN9UP8P6dXX+ZOmv+Ezti8zIKX6w6/s57J/ED33++yc+yZ49+4jTOq22Ty43SOA18OMEJ5tDI8XNOCRJSMYyCSOfrq4i3d3dJImg3NeHaXcWMuvVFqZl84Y33IKmSexMFq/ZxNgW0VJKYekaURxhKhOlGfz5n/0lB268iWVtlcf9x/jToY9yW3CA/sIQtqWoLz2KH11lo76f697w3VxZOsSpU2fI54uM9pf4+H/5ECtXHuPH/807eDe/j4pytPq/hhfVSJIamnTQDZOeHocEHdvKkyRNRKw4+Ngp7Hw/tXqDdtunt3+A+937kTLhzUu7MB0TP3bI5rro7e3m4oULtNseA31jaMpgaXkO2wrZPZUn58YIEaGMGL8dkzUd2kTUmhJLl3j1BQypEaV2pz1Bkxw7v0kaQ1deUbAMLi83aTRNbn39nTiZAZaXrgIp5a5u3GwBEV7pVE2TkKsLVYanb6RULBHHIUmS0Gy2CIKQzY0NpKYR+htkHEk24xDjY1kOSZQgAc20QCshpIljSZYuX+Sxp5eobtYY7HVRSpBEIA2H3lKehY2ANBHM7r6eanWD3r4hVtcX0VRAuTFJWrhI0H+ORHWz2lT09vYR/rcs0ZM66kD4ijnnS1XqXkms6YXV0+dB7LUVvmv+fJGa7T8AuH59nt8cuL5wAq8uh/7nAa7fMPKfkar7SvE8pvgWcH1t8a8NuMKLL1CBxteL9i94/GUA7cudfK+kSvxqTtprxz8HZF9JwvpFNGYEyfJpaG2SGxgljROiNMWyHWzHpe0HhFGA0ASb6+soXWE77rYwiUBIjTgWLM9toKuIY4efpbfLZX1tiwsXF3DdApp0uDK3wPTsXkI/QUdiuxmC0Ke7WEK3MxRLXWQyGUzbhSTl+LEjiCSkq7sfENRqnepCrVpFKRvLdHn8sYOsLK8ihEEYKwoFizhMKRZztLbWWVleo7unm+WFK2ytb7Jw+SJhq0Um4+C1fFaXV5mcnaa31EXfwCiVWpt8qYTQdQxd0m4HdPd1EUYgpU2z2QJNIqSg2WxgmQZS6ISRh2Vn+Myn/pbb7nwDYRqTzRYQQoJM0ZTO+toCntex/AlCnyBIyBdKHeVRw6Tc0834zAyxV0coE8vNEyZgGRaakszPrQIaF86d7Xh/SYFtCDLZLAduPsBWdYv+nl6EFMQbp1GaRlzeSX2tgp3PcvroMTKOxetvegMnT5xk/4G9aJpJq+5z/vxFFpdWMAyTcrnM0OAQYdDmwfvvZ3bXLuIEpqYmKRYKXDh/lv7RIXTDQAmJY1kIZUISEQURSRSwZ/8ewCLwaxi14yTSIdUznS/fEHQrQ6M4TD1IOXvqFIWiQ3dfF2vra+hKkHdLONkshqljmBaWYzIwMk69vl1Bk4q8m2Xx6hzVrSatdgvT0Oku93Lx8iKWncFxTE6fPo6pC5JYMDRS5qtfO0ippx/Pb2AaBguLC5i6Tiab6zAGEo+TR09QcItYtsOFSxcZHOyjUHCJ0El8H0NpOPkCVjZHSookpZgv42QyRKToTp44CvDjlEbbo1Gt8sTTTzAyMc7l8+dZnlsiTSX9A0O42Ry2m+X8+bOMT4ygKcHxY8ewLYtLF+dYX11kfGaS/sFxjhw7yujgEKePXaC3P8/66grj42N4UYCm6WRcl5tfdwOl8zHe4ipOt8+HP7vKrulRTjxzmB07Z3nv//rjvPu7fpCN9Xk+8uHf5N/+6L8nY2WIQkHWXSRNTeLgPJpoU21MovQEzegi5y6CfgCZVgl8j3TuDFEU4ey8GUGCZehUKxv4YdShXic+mu6QJALbcdCUJBYJJD6OqSDR0VTSETtKJBK/0zsbh53jREeAKRISpemdHi+lULpCCR2SoNMLqkWQWkShQGoJUayBTGg0m2TcHEI3QDdJI4GWmPh+gyBokCQhtl1E0yRSgtQy2KaFFKJDa459wijAsnQ0lRKHUUfZWKQXypF8AAAgAElEQVSkaYBSCl1p+H4N07QIwgg0E8extxV8E3TDRmgZkjQmn3PxPZ8kCdANkzgGqXQQgurWOrqS7L5uH93lEidPHOfG193I1tYGui7YWNlEmToz01OUCjkyGZO9+/cThTVMU5EaioLbzUZlhT37byCKIwxd59Klc3R1lykUu1iYX0FqgnzeIUrbSF0hDRPj0AJpCrf81M+wuRmzuHiB02efZufOWXRL8YM/9L9w600Gc1fm+OzWMpqU7K7tx80UOXH0ErlcnhSPwcFhMnYXJ06eoNzTTS6fIYwTSIvMX7qArlkoPWRfeYq73e/kryqf4Q8W/oQPDP0Ei3KVJEmIogBNZKjXmxRLNpWVFaamdmJldU4cPU0+Z2JbnUWDtpeii5AkDLEslz/744/TU+6BNOCzR/6OkTdP0NXbx9LCCrliF4KA/v4uWu2Q/p4eNtbrbG5UaTXrZApFNJUgRYoIa0gSvvTFr7C4UGF+bo7de3YTk+A1OvffTLabMEnIZDSmpmawHYuWXydJBUQhUgm8KKE8VOZ1mRso9fZwtb7IieAEX6o/yCn/LFqPYio3wnv6v4cP5H6cm9t7uV2/leLpHt6p7uarP/s1Hv25h/jRoR+gnJb5SusRfmX+N+lLivzY2I8ipxwSITHMLFI3kLpBtdWiUO4jDFpYWkAQ+p22Ay9GlxqGLkET1Gpt4rBBGvnoVoEnD5+ipytHLluEVKdZbxKnEY7rEMYxpDrVeoso0sllJVtb69z6hpvxkjaf2vwcvzbwf/DYb51haOQsZv/bsOce5NyVRxnc9T4KgzM88rX7kS1JT59J1Nb53KHPcufUZcbLRabP/zKJaFHtPswXHpzj6Ml1duzuQ5cgZYyp68TEBO06htSJ4wTbSVmpWNx22+309HZz7sRJHh04RKuxybfXr0OmKasbLZzCJLZt0T/QT76nB9vSURJWl1c4f3YOM2thGWsovUwcbKKZOcKwjVWYoVCeQIVV/MY6dc/nU/eeZdeunUhZYSRXJDVTSDSafgvbNqhtRYzvmCXRNnGzJbTthYwrl87R5yrAw2u3mNrzBtarEfOXLmHn8tiOgefVKJcKxCHIaIknD1+kN++hmwrXNtE1lyhNkFqCF1u45THq60uEwkFXDWYGUwZ6XKQeQSIIwiZLK23sQi+Dwzso5LrYWFtno9rCymawpc7ChaMMZEbBaLPedxyzaweaUPQPDhI8ZSNIX5Wq8HMhpeyor28Ll76Ibru9dVLUax57zrV026XjhVXZ557360nrNcBQpNvtoV+3v3k+P5fXvP4Lab3fQAcWL/sa39Cv+0Jv1W014q9jglf4gF7i83i12wtVj9NrucLXeL2+XK/qPwT4PqfL84/A3N80vgVc/4XipU7c7T3fdOxraY7+x6ywvJpm7GuPD5/9NDQrUBjCsEx0w6BRrZMkCYV8Hiklhq62VTdt0jSlUqlgbQt+dOiVG6CFlMq9rG9sMj45RbHczcjoIHFYQ9MFCwuXUSLs9H5FIb39AzSbber1DpDY3Kxsq4hCudyFbdtsVeudKqfsWIKUCgWWl5c5e/YccexjWiaT09MMDPVT29qk1WyyuDAHCJZWV+nqKiHSmKWNTdqej23baEonjmNWV9cwbBvXNlheWmZ8ZpbV1Q1ct0NFDIMIpQSmYQECN5tBGQohNGwry9ZmHU0DkMRRytraGoODfeRyBT7z6c8xPNCL45gIIUmSmFKxTL1ex7JN6o0GlmV+3YtMSJQySKKAP/7onzI4OEhXqcD66hKaprO2ssGpkyc58Lp9mJaJ7djYpk4mV+jQGrMZgnaDIAxoLx1B1zWS4ix+s4mVyVAuFjFtm3YUU+oqY5qqQ8uOYgQwvWMS2zZRSqJJiJOIvbv3oJsd0ahyV4k4CRkY6KO3q4yUoqNAaajO/NOUhfllvvzg3zM9O83WRpUkaiNXH6URZ9BR6LEgcrsJcz34QUTWsYnDkEw2Q6lU5Omnn2b3nt2gTCprNUzDYXlplUKuhKZpXLxwEceyybh5Hj14iCRNGBwZxc3YHHzka3SVSvT19lAo5jl58gQ33XwzWUfn8sUr2LbB1OQOlhYXKBULXLp8hYxlsrKyCknKsaNHMXWdqfFJnj58GM0yUEKRzWZYW10mXyhRq9Vo1htYtknoBUhNYpoGhoIo8rcXtHTarTq26eAYJjJN0Q2dQj7P2PAIc0vLZDIO4+PDPP7YIwz0D3P82HFGhkYIvIBcPke53L1d5WnSN9iHaWTJOBZpklKprFDoKrD/+v1YtoWuK6QmkULjwrnz5I+0yduSqrWEs/+96CrlN37rN3nH3e/iNz/8Ydr1Lf7szz7OxNgEf/t393Ln7bdh2xauO0+aaqSU0LQ+kjRHnNikqYUyQBNrtJoxrpujXd3E7OpDFQcQaYTXblModOjiQkAapyhlYOg6UdihZGqaotVoYFsZvMCj2W5imJ2KqZKSKIzxPA+lLHShk8YphrIQQqPeaGJZNpqm8L0mQkiUZtBqhliW2lbVBKEpIMayOtecLiRaKvHqq8TCI00SMk4J0yggRATEbG1WsBydwG8gtYRUJGiphdJMgkOHCS4vkZ2eII471RFd1xFoeL4HpOjKxLQsEB315CgKCaMIQzfRlU4UR3i+37FVMQ0ajSZKdXq9NNlJ3MIwxDKzhGHA+NgIUSyIwpArl6/y7OEj7L9+P/feey+7du9kbXUN08qgSbmt+i34209+mgMHrqfZ8jGkyWfv/Ty3334XAJ4XcuzYCR5//AmW5peYnJgiTSSmspCHriCkxtyOXaRJlvWtDcYmR3ELeVJNcc8930Fv91Uy2QwfPX0Ew9D5wekfQiDY2Nikq6uLX/iF/4s73vQmyv0Zyt2DKBTNVh0n61CprPNbH/4wo6NjmJbe0U2wiry7+x62Whv80tKvck/h7byVO3mk8ijFUoF8zsWyTKIwREiDRPide08co+udan4YREilyLgutXqDTNYhm8tx3xfv561vuxvHlGSdDMtLy6wuryFSaNSr5NwCmq4odpXo6u4il3dRhiIKQ6IgIYxCUqEzOTVLlEAQeIyNjaKMjoheFArqjTZOpuOFqutWh4YuEnRNMVdbpNXy+MTqJzkdnOXQ2uNcWLxA7XKDwkKe/7PnA+j/PeV33/M77Jaz7CjuxhaKQrGIFDqGblMsFrnuuhswTEWapPSE3fzQ5L/lzsIbeHT9ST60+GvMPzPHD+74Pr67526+ePlLZDNZTN1AkzprK8uIJMLJ5qlu1XnqqWdQmqRUKrBe2eDgwcdpNBqMDA8RJTHTMzMYKiWKY/74jz7GrbfcQKOxheu6xFHHt7zZbBGGEUePHGFsfBI0xec2v8w9+Tfz5+95nLvu2cmb7/gP1M78HpdP/BWzu9+LXhphYWmdm26+hcPPPMWe3a/n/f/b93H88Qt8793jjF78eRLfIh16FiONmRgboOhG9BUNogQM3SSOE3RDQdrpB237IQ3PZc/r7kJpGlGaUC5384Xsl0iTgLtrNyAQpFoOt2uU1aUFGvVOW04YBEgh6Ovt5erly1RXN5gaHObpp64wOTFJIiJMpWPmhvBDQW19DtuI0JTO9GQBTbYQpERpxMOPXqKvqwvbsTl/NaUVKDLZIm6msE3BzhNHIcV8ho2FUxiWBmlKrmucejtlYnSEzUoFpUmyWZeNSp2z55/CzbhoWsrRJ5eYnBkjSZp4YR2ZpiBAqjwRWays22mtoE4SNBFCIbQUgUU71FlY8lhYrdDdM0zL28R2smi65NK50xSzEcV8jBG5EFuEs0sop0CtoRganSZ6pnMv0w68euCaJAlJcq0I06vKPp/PQa+t4D4PnJ4/9CX6L1+mwvsN00hfHpy+FuD64lEvLgz9cxVFX/Q63/C+Xvj6//QU45eic/9TxreA679QPAdcO/SuF7VHv+K4l6vCvnDfCy/e5xSIXzj+mzVYv9QxL0ddftH7AMITX4LQQ/VOkgJJkvLXf/FXzO6YxfPabG5WiKKIcrmMpmmsr69TLpdxXJe11VUWF+YYmxxncHyUbK6HuatX6enrxXayJHHA/V94gJ0790KqEQURliPpGxgjjFK8dhuBoJDPUa/V2KhUKJaKCCERuoZt2tu9TM+pk0ZsVjbo7e0mSSIGBgfJ5Tpqi3GUsL66jtIEmq7YvXsntmXz9OGjzO7ezfXX38Dp02fYs3cPJ48fw81nmZjcyfLCVQzbolDswrQcLF2SJnSUg8OIKAwgjWk1W+imRRQlJJHgYx/7ONddt5tm0+fChUs0qhVmd85QrdU5e+Yi1+3dAQm0vRaW5eAHHkJ0vpR1owOe4zjGNE1azTakCXbGYd+uvYRxgJSQy2YwdZsrly5z4w37MC2BpnfEodxMls3NCpVKgy/edx/Tk6MgFEb7IkJA5I6TtWw0y8TQTNpRiFsoYZoGrWarkyBGHZshN5fdVgr20XX1PACJ0wRNE3h+CynBsU3Wl9fo6irj+T5CCqrVClJqOJkcs7v2IQkRCURBA7XxOE5uGiV1wvIo63UPx3aIo5hzp46SdfOYhs3KyjL79+1jo7JFNp+j1apimBKlpSzMXWJhaYXrr99PGAY4poXSdcp9fbiuy+LcPIHfpljI87Wvfo3de3fR19/PA/c/gGUKBgdGSETCieNnO59RKhgcHCSb6XgTZ10X0pRmvU693mB21y5K3WVOHTtNo14ln3PJullM2yJOE5bnlzny5DOUe3vQDL3jrReG1Ko1GrUmlUqFWqXG5sYGELFjxw6efOxxfN9n/00HaNaqRH6LielxbEfR21ui2azSbNW4dHmRnr4eJibGGBgYQGiwuV6lVdtgcGiY3sEe+noG8JIOlUtqkiROEEgkKfJUlVT3sMZiug78CONTY3znd72D+mabRx4+yFZlhT17r+PYqVO8+dveyt49u5FSYdsbPPPMVfqHdhEGJpqAMPRpe53+cdP00FSh4+U7MIFWGsRrV1lbXaa7u49Uqu3kULK5Ve1Q3eKIpaVFisUCShkAaJpJmHhknCyBF5LGMUp17FFs28bzazTrG5impO03Mcws1jYgTpKEVMSkKXhegG0VSGjRbFfRVRYhBWna2Z8mAqE6jAhl6ijNJY4hJiBKGgS+3xFBC0OEZmPpFoEfITULaBLHAcnCKkkSIwf7iaKOwrbSbZI0AZFgmNbz1l1x0rFWiaKINEnRlYUftDGMzrVmmiZhnCBIURrUqjWEAKmpjiIoacdaKo2p1RpUKlucPXued9/zLo4dPcZtt92G5/vU6nXy+QL1WpOMk6HtB6wur9DTncc0c6RxjYGhXnK5LKBQZsTMjjGmp3azunKZvr5uSAIcUyLcJumkQzj4P/Gud76dD/7sT9HVXaDV8skWe/jDj/42e3flqDcSnjCaZHM57lJv4j3v+X4++MEPEIY++/Zdz649Ozlz7hn+/b/7Cb765Qe4+533EHg+YdLiLW96O6VSkbmrSySRjp+0USJkZzLCjeWb+KWrv8Znmp/jXf1386boABfNOeI45tlnH2d8fBrHtYgin2ymwPkLF3CcDKZlceLEOXp6elGGRj6fo+0FjI1OsL9xE8VqjkZ+k0arxZ5ds5AKXDePoWskWopSgma7QRhFtFsNAj+hUWuSK3WTCknb88jlMwwNDaJpOiJNiCJAKJyMBWmC32zTajXRHY2sdLh38Qsc9o9hbJjEHxM88r6HeeTnvsJ/vPVnef+3vZ+97k5aWy3e+7734bU3+OVf/H+48447WF1ZYmlhg1Kxh4985DfIZIvs27uffMHl43/6F7z1LW+hWq2wfHqO7xh/D99RvoeHrz7Ep+S9/OHSn7IjN83but/MndzKI1uH6O3p5fL5S+RLPZw5dZrbbr2ZE8dPUCi4SCWZmJjk5Onz7Nu7iyDwOtZTKiZNUg4cuIl2awtNE+jKQCBpNJssLS1Tq21x44GbaLbbnI0uUE+afGTn7/ND3/9GtOrTnH/0j1heXuLWb/9lTjUaBHVQhkmjUeW6PTP8p5/+Ka6byPAzPzpMYf5dGHO34/U/3BH4QsdxBVnXIEnVtg1YitQEge8jiZBSww8UDz16ge6hEdqNOpabwTQMPhF9AtKAt6ztwTQUyi5gZHsxDYOtSoX19Q3yhSLVzS0unLvAlStXed313bhOQLHXxtBDgjDpfOdnBtB0hRZXCdsVdMOgc3WGSJkS6m2OHU6YngGlcjz67AKmYzA9M0Yc+nQV86yurKEriSlriLBC1s0StNo0Y5sk0SEJyWYykAhA4YchxIJHDx1m5xRMTQ2gqQClKXQ9SxI0UUYeLTNAJtePFwlydkxt40LHwiaKUbrJ3ILHVx87z+13vQvNsCgUu8lmXcDosAH8y2isY5sd3/VsdT8kBo2uU/SWx1hZXyM/N0oKaNtU4VcqqjwHVq/NV18pXpynfuNzv/B5vhlwfS6uZRz/UwHXa+PFefZLo8gXvoeXy79fSzwHXDsg8pqi1EtM9x9LLX4Rq/RbwPW1x79m4CqEeE3A9ZXi5UDta6mavly83A3l2sb36PRXIA6R5fEOeUMI9l9/A0Qxc3NzTE1NMjd3lSiOCYKA3t5earUatWqdMyeOYWgavf1DBElMGAounD5GdbPKyPAoywvzNNoN6q0WhVKRgYE+zp46x5W5NfoGBtG0hGK5h2a7RbGrRDbjkNChEYZxQhLFz/eFaZpGq9Egvw1yTx4/hWVn0A2DJE05cfwkpVKJuSuX6Sm7tJp14lSy/6Y7WVta7Ch8NttUN7fw/RZuzsVxSzz+1JPs3LmLVqvT29NqNYiilEazSd7NAzGe18K2HVptH8u2qda2uOmmGxHoLC+tMrNjisCvoRRkXZfr9l1PEPoYlouTzSDp9AyZpsHWVq1TNdF0Aj8kSQWObaGURhTH+GGTrp4uEgSaZpAi6envRWgp1a1NNGVgmVkOP32Y7oJDEEpOnD7L7r27SNGQW6cRmoZWnuXIU8+Q6yphKAM74xBHCabUOHLkKOPjY+i6JJvNkSJZW12jVCwRRQma1FmYn0MzwLKy2JYNCOIwRlgOURxjmQ6+F+L7LWzHRjctlCYgbeH7IY7RJqlewjC6aRGROmU2K5tcuniR06dOs3fXFJXNJlvVKqPDQ6ytrbK8sMLq0gozs7s4ePBRRgeH8Noe/QN9pMRUNjeQYQMhUpA6vd3dKGUxNT3N0soKe6/bz+XLV0EkTE2PE8WSYlc/J08fY//1B0BGGMrk0KOPEJMwu3MWqRTdfb2YjoUuFV6rTRqnOLkMo2PjLC6tkqYRhmUSBjGtWqePdXR8HEMp6o0QO5Mlk83g+yGFri6uXLzC8PAg5b5u2lHI0OAQZsbGNBRR26eQL2Lm8sSJwvcT6g2fKNZotZpMTk4QhD61zZCrc5cpuAU21hYxbA0n08Ozzx6mZ2Cg0yO+sYVjZ1haXkbXJNnLIa1WG3NgkeXCXfQODfLQ5/+crY0mUuW5urTAsaNH6BkeZH15jQ//+of53d/9Pd7//u/kYx/7LHfcdTOh77FVWUdpGlk3j9QsAm8L046IYhspYoLAo92u0TvQTyoVSSJpt5poQpDJ5fG9FrrSyWaztFstDENHyK8zQhr1Fm7GgdQjFRLDlHheG93KYBgmum6iWxlIU6RMieKQIPAwDIckTTo+iEnQEdLRbKRQpERAiiY10lTS3rxEHGyAzNDy6p3Kg2agKQNNPWdrZaIpSKIAqUGcJFQ3N3DsDNH8MmkKxmg/nt/eZiLoSC1FahJSSRwF1Ot1bMchCmN8z+/YQAlJFLVRyiSJU6QGmmFjKEmrXsV13eetc+Ikpd3awjAMhKajlKBQKPL4Y4+xZ88sGcdlbWOdfL5AubebwG+zsbGJ45gkCaytrDA6Ooihu1w6e4q+vkGiJGVpeZnungJpmtJuhYxNTHH0yGkM3cR2LMRAQlyq4rcmeMfb76C6tUToefzR7/8Zt992J5NjvaTxDP/fRx6mcUMbpCB3JM+33/1uxicHabZaDA2M85Ff/xDXzd7C+37oPey/YQZdszhz9iJeu0ngx8zNX+R3/ssfUO4a4oM/+0Huuv0WGpU6u3tfz/d23c1wdogPz/82X2o9zAfs93M6Oc3YWC9OpsSX73+QsZEJ0qRjO/Tss8+iaYokDLlw/gIDA31YusXXHn6Ym17/Ou489A7GmrOcGDvMwOAAa+vzZPN5lGFS2VwiY7u0WjUMpSARZDN5PvrRP2Z0ZIBCsYyuFKYuiIMWhp0hTSR/88m/ZnrHTEe5vN5gbbXCofNP4vbk+GTlXsIk5r0jP8Cvzv4K9/S+nXfc8kaq1TWOHz1K3umh1OPg5myknpDJWmyurXPnHW/k3IVjTE5O8/9+5HeZnprlV/7zh3jfj/wY3/M9/zM//MM/wK1v2E+axKyvbTA7vY9WbZ2NuQr/7uafYPj4ONeZu5jXVvhvqx/l9zc/hmYqvn/43/Am9W2c089R7i6xVVmlu7sPw1TYjoVlZ5iamSGJPGzT4UtfeoDu7gKWmeXBB/6e3t4+sjmXOE0IowjLcsi5ebp7yoRBg/l0icPNY/z64C8zVR4nPX+YtZVPcd0bf4PB6Rn08iBxkNLe2MJr1vnVX/l5li+fZWPhEO99z356ayPYR/530omDhKKGJiRSCYJ2gEhThJaQxGlnwUimJLFEpDEpioWlBnuv28Xg2G4MXaB0jSvnz/Po4GM4puJNK7sQgDTzCLMLqSvK2zocTibL6VOnGBkeprJe4Yknz7FjsgupBCLIILSOJ7PMDgIRfmMNg4AoSYiSYBsgQhI5OBlBd8Fisw49fcPs2n0jXeUe2u0amWyO+YU1bMemvn4GQ3rEKUReAEYZ0LFtE5Si2WoTBT6XL5xGI8UL6uwZ7AG9Rsa2IeowvtpeQjsycLsnaCcC1zJYvXyErJ0QBBFSCOIEnjm6zI233IRpZmg2KkgEc3NXOHXyKP1lE9fexFIGuu4iswnG1gTSatAoP4xMO+rjufkdSKkjXwa4Xtur+po1VV50/Dc+94uEQ18lcP1GFd1X2P+PBK4vOe4FY1+K8fhPB1x5VcD1nyL+tQHXl298/FZ8k5CARAiNNBWdxJlke3vt8Uqc9Ofi2gv5m8W1qyXXjn/hDaejbPncRfCC1yRFkCJEgnJNZvfOcuL4ScYnpnELnSRoYW6Jxx45zFcfuJ+9+29kfHYPV+cvc+HEGS6dOsaFS1c5c/I4X73/7zh54jjTY2OoJKJd2+LIM8cJUpPZXVNYlsQwMmysrXDu1EnajTqr6ysYykQkAksJdNME0VkB9toe6+sVogBWVtbIZ7MkcUzGddEMk5XlFdI0xckYDA5M4wcRYdDi1NNPMjQ8yJNPHMLOOBhOhnypzMLCImFQZ2ZmAttx6OnppVrfxDBNkqiFZds0Iw9lZxGaTUKMY2WoNapkcy667qA0Sd7NcuSZJ9hz/fW4+R6UnpImIaaTwbQ02s1ah8YodaJYYGczRF6bzfVVnnnmCHFocvnSZYhT/GYL28qQhinEnURa0KGjKd3Gdl10ldJurLFzzwx2YYDevhI/8H3fiaVpiDiEie+G4XexfGWdaiMka+VpB23CMGRro86ZM+e54fU3IQTEkU8qJPXNdUxHdSxyEoMoSege7MfN5VBC0PR8ogSkUjh2hsCPaDZbnDp1mnyhC82wuHz+HEkckKQmMQkyqJIql1TXcFCYjQXW1teYnd3BjTfcwOOPPo1f32R4qJeltQ3CMMXJFqg3m0ip8fa3vBFNl/z940+RdXNcOHeB0YF+8r3TKKdEo1HnyqXzSC1ieWOF0fExatUKmazDyaPH0SQMjgwQJQ0O3Hgj83PnuHp5jUsXLzI5Oc7EzDRb9RpKE1TWlonjhFxXEUwd3bZQQiAkzOzegU2KSlNMQyeNfIbHR/jqQ1/Ba7SwHJPTp89w9NljmEojjSImZ6dRpo6WxjimiTINMtk8hukyMjXDWqVGY7VKu77JiSNHicM2w8NFLNMg9mNsu8i5C8e4cO4KyBBlFslYeS5fOU+xy8GQOl5zE11PeOBLX2F4dILNhk8ul8M185AmDA/vII5jbrj+Jq7Oz9E90M3i6hqve93NnD56ll/4+f9Eogl+7bd+g43NCh/82Z9BS68ShxfIuFnMTJYACFIH09lLHGqY5hpzZ3U0v0Wxe4Bmo03g+aDFGLZJlHTEaXTTBmmCZmK7GSKhkJpBo15DVwbZfJ5IkyRIhNgWvNNSbL0DCIUwaTUbpGGLJAo6FU3bBRHj+Q1s00aIhBiBbtkgYtIkQukmpFCbO4nfrKCsAl6jRsbKUq+uI2INEadESUIYtdBERBomRFEKSNI4oJDrJpYWQiqkFB1VU10SxCFSRJCkiCQliQN03STn5mjWqwReE10XJGlIlEZoUpImCUKmCA1IUvwgwsp0g9CJogRTNxBJQppoKGUS+m0swyLwPO648w4OHnoCt9TFydPnWF1eIahWkVrK1NQYm+srGAr2XrcXZAYvbPLVRw6zuLROHEU8dfhZEIIoCnFdkyCk44ktPLxYIrCQmobQTeKgycGDxykUJ7n77XcS+UtcPH+mU1WREUpLMDTJG990GxOzo6xV6nzib/6OQ089wUMPfY3NapNnj1+i3NPD5790Hx/46Q+QL3UxONRFV6mbP/n47zA4Kvn8fZ/h4oU1njh8BkyfYm6Yt+Xu4S/Lf8S0NcU7j30ng6dnCCKLdrvN9ftuwPdD5uevopRBd7mPUrHMqdNnuDq3SKsdcGV+nnd8+ztptLZQmmB1ZY2nn3yCIAjIFkdIlaDZquE6GRB0VOGlzvnzV/nao49z4MABFuaXEUGNZmWRVnMLw81hElLZ3KDcN4HtmCz5i5y8dIpH9K+xPrSJTAWf3vkJ/nrfH3CXfjuq6mOaOmMTYwgN/uPP/RR3vG2WT/31veSy/ZhmHi+K+dAvfYRTpy+Rzw4RtH3ufostqGsAACAASURBVNu7+Ks//wSPPfIkwzM9fO4Ln6Gyvsmv/uJv8NjBJxgaHiXSIgxDp1XzmL9wlQc+fx9vG76R94XfwWd6Psm9Oz/BXcU7+OHDP8xve/+VW6p7CFo+hpWh0FUgigVpopHGIVK0adertNttpnfOkst1EwnJLbfciB95SCFRMst9X3gEGUfYpqDSqvCYf4TDjaP8mP+THBgYpnryrzn4979HFO3n3PIq0rKoeR45M8fQxC6+/MBforcN/OZRfvJHbiFcyaA//YucCb6Mp61gKBcMDZmCaSgM3SDyEmw3j2XoBJFCGQYSA5kKenqzaIbB4tV5UhR6ajM4Psq7Vu/hlmenETGEUUAcStrNGjldx2u18f2Arco6u/btY6vuoYsN3nbHMLphsbbSZMuPSUkJRYqRik6PftzGSxPW1uocPT5HnGogYiI9YmqoF78Vo6RJpRajDI048Wi0W6Rxi6GBHurVOpawUbaJnkBs2sSJTTafQ9kOiCxWJoOmG+zYOcXS3BojJYuAClEroN3widMEzw+oNlL+5vNnSC2Fg6BRXUM3oN3yqQcRc4s1YnRaUUCjCYaVodFOWKuuY2fyTA6XqK2fJwoiMCwwbDzPx+86irE4g/PYbcSNJzl7+EEqa+tAjC8NJDGSmEiol8xPX5hzvvhB+bJbmgjSRGz3nb58HvtKGi3fECJ50fZCEdUXzu+lHnvR2NcS22OETDvbC3Lu1wTsX+GzIpXPz/U1F7Ou+Uxe9XykACleylXn/9f4VsX1HxwvtpH5l/yfvpZVlFfTSyulfBHIDV9QcX3hsUp1zLa7y90cO3qMQwefQNMkfX29DA4NsLa6xtj4OIZhYJtZyuUyURyysjTHDTe8DjebYX5xGT/0qWxVMA2DkZFRVOqRJjGGZWPaGU6dPM6e625AmRlKpR6iOEVoknS7OT1NElZXVrAsm4zjsLKywqVLF4m2+2Rz+RztdpvR4RGiKCKfs7hw8Tw9PSXC0Gd5ZYlCPg9JyNjICK1Wi+WFK+yandkGujn6+vsJfA/bMdGtLLZto0vwGm28ZhvXyWDqJpubS+RzvYgkZqsyh5AGc/NXmZ6ewAtqOI5LmkZIYZBqGtXNCrahk5DSbrfZrFQxdJurV6+SCo3BgSGkJnFsnXa7hWmZmKZGlITohr5tVG7z0T/8Y6ampnDzJTTNxLZdLLtAmvpomqTdbuFkM4RpimlotBpV6q0mjzz6KAP9fViWjtJtlCbp7s6TIGnUayilk6SCIGiSc7tRSrKxdRkpdRzHoVFvE0UettPxd23UqyhDQymNwA9x3RxCJiipUSqVCJOUMIlx8wVaS8eR3iqetDor61FM/+79nD51BkvXGJ6YIohjTNvFyubwm5s0GjX2XbeXWqOJMhRt36e/fxBJytDQKGtrmxi64isPf4Xbb38DaZKgK5tnnnqG0ZFxDh48RF+5m/XKJmNTEyAVum6wvLLG1maVqakh4iikp68PXdER6NEMTCdDLmNDmmAqncWFeQzd5MqVK7iui+lmQTM4e+YcRBFzC0tMTk6ysLiI7wdMTU3S19vLZnWTZqtCb18fmtR4+MGHWJpbpF5r0D80gB9WCPwWrpthYX6eMIq4dOkKExPjBEFIo95mfmGx03c8OUYUgGlo1LbqmK7N8OgohWIeAVy5coWe7l6y2QxR1KHfWmcbRFFM2LuMPfUmlraabK6ucdeb38qFi1d4/PEnmbt6lf/w/h/nM5/+JDfddAvDg0PcdFMeXVcYPIll1mn6fR2aeJRgmRZJImj5FpYZII5/Av/SWZLBabKOg6YpiEETkrbXQNc7yUmSdqixmuz4+HntJlLQsRiyHOIogiRCCguQaFIn9L1te78EpWsdhWLTRjdMNE1DorAti42NVcxtj0aldOIwRCmbJI0RGmgixMn3oSyXKI3RlUEYeR1LqsRHV6qzNJ9qCJFutyPotFshgdfoMAeWVgAwx0aJE4kmbHQjfR78pEln0a/VamHbNp2SMgRhgGPZBEFAknYWn1Ih0Q2NRqOO7Zid81bXCcMQKQW27ZAKidI0qlsbIFIGB4cZH5tgZekCB26+ATdvE8YtdDOLEhIpUlQmT5LAF+77PGMj/Vx3/R6OHX+W6ZlRdk7tQaoYKQWtRoOENpOTUwgpcTNloqcvoK15zKXDKARDo+NYtoXXrHP8xBb3P/AQ4+PTfNu3vYP7al8kjhK+vfQ2gsCnUauxurLEbW+4lY2VDb7y0EP4cZW77riT7u5+fvqnfwbTNlhZnsPNFqnXW4yMjHHi5AUqG2u88U034WT+B3tvGXbpWZ77/x635etdr8u8Pj6ZuEyEuO0EglOKBAsFWooU37QEabFNoVAg0EIaJIQkBEKUJCSZyGTc/Z153Zfb4/8PawhhIiRlb/79wHUc94f12H0veZ51yXmdZzNjo6Pcfc9trF49yFWt15BTC/xU/TEfH/go//s7n6Grawn79u5jzZqVLCwsYloWpmGydNVykqkkkViU0IdisUQimaL5qW7KlSozp4yiqCKGoiGEAYJoIkkqnufy8MMPMzS0FNd1GBocpLW1hdbWFlwCAmD06BjpVBMLc1MYaZPppkl+k32IKWeGUzpO5iO97+djPR/j6p5z0esGvp9HUWP853/8kP7BfnTDIJVMEY0kqFcdlq1eSi5b5Auf/yJXX3k1l11yFf/x/R+wZvVa0qkUA4NLWLlqgFxhmvnJRV736tdz5PAB/v6TH2RwaBhFkrn0vIv56ze/BkVRaWlNM7y0j6npKcaOzFKoVljVfxJrkyfzyvaX8+Dk/Xyl9u/E3Rh3vf8Bhi8eJJ6IU6pUCMMQRTUIEZF1nVg6ge947Nyxmx3btiEIMmOzo5wYPYG8UmRDdjOPBRvZ6exlhTrAN1b9H85bsoYjD3yfwu77EdpPZ/Xl72fLnmn6m3uQZZmdWx9m7+7b+eWPbufz/zjIyYNLiHuDtG75AmHmIKmBEXw7yWy2yKPrJ+jriQINFQFRlPCdCq4rMTlTx4jqhIJNIFo88PAUNdtg+eoV2I5PqZRDkmUGhU4GXQ1ZDHB9n3xFJtncxdziPGZEh9ClVHEwDI09O3bRuySDIpXQFQ9D0zm4/zC61USoJVBjGXTJxK2NE/g2aUOjtasFz6ujSDJ6KOMFVcazNr/dmqO/t5vmlgyKohCLxTk6Ok4600HgV7DzhzAjOuVCkRpRYqnORkIvlBFEiXIpx97de+nuascQR2ltChAEGcmwkEUbFB1EGU2RWNI3SDRq4jt1oskM1fwogldF8C3MiMTd9x/i4quuoV4r09LcSqVSZtnwMGF9nNA+TNTS0M0Ypm5QLuQJXBvbX0SjDaHQgTC2hNTCKhJ2H6KtoZ1fb/AaCRIgIrxAgebZPuef7h0/Cy34kqRqjrdnX+e/S1j0f/O4Y0e/+Ou9QI/rs+d+dmX5Ra3rmR/V/6vG3WP2F6jwn8V+X8Fs9Li+tAzNSyVMemaQefz2F9uI/Vz9r88FYXD3PQiAsupyxEgGMdrcGJEW/OIsvh8wPTHJ4vwi3d1dpJuaCEIByzLZu3cvlmmQX8zjBh6JZJzp8QnCUGTr1k0EiJyw9kSq1QqiCKViiY6ODLl8mb7+IQRJJJNOoWgaBw8dRtUUJFlElBpssALguh6mYTI3N0uxUCC3mKNQyFKv11m6bDmGYTakXIolKuUyhfw8vu80+nBNq8H0KUjkslmmZ2Zx3AbUsbOjHTcIaWnrZHJiCsetoyoisqxRq9fxfQ9RdBs6lVJwjJBFworEESWBSMQkCAWamtKYpk4IFAs2pqmiKAoQYJomQRBSLdvUqnVSyVRDNkPTcWyfaDSKritoRoPkJQgCstnFhiOLgF13qNUdRkaOsmL5MNn8DKLg4/s2buAihgJ+GCJKCrKqIcoy2fkFUulmUk3N+H5IR0cndq3C3ffcz9DQAJoqEwgiiqw00mqigOsEZOcXiMYsak4dU4/w5BMbGBgcpF4vIKsRtm/byUB/D5KsUCwWMA2dMPSJxWM4tkO5UsY0DTRFpl6rIWW3NRgCFZNQkpHCELGcxWjqpFIr4NXL2JUC8zPTuNUqQ8PDKKpEqdRgCZZVlUgkSui6LMwvEosnkBSJ7NwsmUwaUZbBDzl0+DDdnZ08tn49F158ETu2bqfqOHS0t6PIDTbKiGGSSTeh6zLj4+M0t7Zh2zaiIOH6HoIIR0eOYpkRbv7ZLaxZvYbpqWlSqSQL8/PEkmkCP8QyTDKZJtJNGbL5PIcOj7B65UoKhQI7d+9kYHCQRDxOsVxl6+ZtDA8OsKRvgIXFLKlUit0799HW3I0sGhRKNer1CsuXL+fokaM0NWXo6+slX8zR0dbMzOwoo0emSKWjJJMxRkbH2bVjO/2DAywuLtCUbuWJJzYQjeocPTTK9PQcsVGXZCpBpWkatf8ixEiaZCyN67q8/W3vYNmyVSwuLnLyKaex8akneOLxDZx26qmceBII1Am9aWRFJgh7KGZzyGpAMb+A49aJRhP4Xg2rvx/RiGBmMoShgOM44DlkF+dR1QYDsHqMuMbzHEK/0Zvuug66ocGx/nHP8xBCDzeo4jg1FFXCdxp/uYEQIooSmmrgen4j2RYExzgkBXRNRZJEFK1BnFarVFA0nWqlQCSeoJjPIcgRJFkBBCRRQ5QEZFmjWi9DEGLoOpKkU69XjvVqNZ6T0UQU33PwJ2Ybs3WmGkmUaoEgCKlVa4QhKIqMf+y9iKKIICpoqoqmKuTzBQzDQlEVJFlBEBU8z25A7gVwbecYA7GA6zrHqrsyIQGqImEYBoVCAUURScTThCgUCxViVgJR1agW88cSOy6WEaFnSTeRqIWsCPT2DpAv5FFlFdevI0kShBqmoeN6Io5TR1cNtJuPIh6pYlz8CpLRKHrEwrR01j/0CFt2beOTn/47ejruxtC3c/Amg89f/mVkGcLQoV6v0Ne7hF/98g7OOO00Vq9Zw1WvuJLtW3Zx1133U66Uae9sIRFLIqBy8NBe2juaae/sQRYEens7EGWTVMpixYohYpE4hUKFZc4KHr/3MT58zcfJPpXl29fdwHZ3K62tGTzPa+i8SjKCHBKNRlAkBVWRqVQqiJLMKbNnsWduJ5//x+t57IdPYiyTaG7JsG//Ue6++05m1s/y6Jef4OCTBzn9VScBIa7rEI1FUU2r0a/uOASSwIg+wUPZRzk7cSZ/Z76dz634J3oWetj14FZWn7CUkUMHsbQkU1MHkWQLX1Dp7mwlFASyi3l++Ytfs2rFGrLlBVqaO1i5YjmPPHQ///mDG/mHj3yY+++/j1tuvgXdkLAiBocPjfMfN/yQ/7rpR3z8i5/mX77yZVqbmynlSvz1G9+MrAh89rP/zMknn8j6xx7mkiuu4No3v5fv3vhd3vXOdxFPJ0iacc6zzuS88DSeLGxg/NJpYlIMcU7gvO5zOCd5Jptmn0SSVVw/pBxUmNowxoQ3Q2J1gl3mPkblCQ4XDzPcNkzbfDsX5M7jkx3v442r/w61LLBz/VdZnNzInHI68c5T+M2v7+INL1vBt2/6DlEtzle/8A0Wj2ziHW+8ilR0gcjiSZgb/h6naSde/BCBW8X3LPS4zUB/B0LgNu51TWv4JaGIqAbEEgqyo6FJAoVChUiig2Vr1iCbIn7gkMk0MTE6hRSWcMoT6IZCGMooWhuJlk5qFQ/dsJiby6OoKooUkkmmefSRe+lozhA1BCRVRLYMMjEXzUrjBzpepUCpPM34RJW4JRAKIdIx2S3HD5FkG12KoKOw+pTTGq0P5SqyohCLNhJJkyPbaIrWkWSVWr1GLcgQS7aiGRZTE5MkEgl8z8at+0xNjlHIOrS3mBAEuGEeTYixfc84gS+TSFmkmpoh1KjYNQRRoF4YxffqqKrN7t0unUPL6epZTjIZoVwqUy4WmJsex5LrRBQPWbHwgyqVShHfD5nNVsgVdQ4uHKHV6kd0YihBHC1MUPNLWOfVkcxII2FHyHNFSc9FqgQNeOtLLbYc374mNVgvn7HvuDmegwPm+fheBOEZcNsXkLwRxQZfwZ8a1D7f+c+19ucDVD7nNY7f9oIKPC9dPigMw6fneEkV7/+m/SVw/bOY8Ic/vJcA4X36Cv8Pszx/inkjT0K9QJgdxZ/e/ftx+HHCahbrjDeTCoqsWrWM3Xt3Mz0zR1OmA11TGtILI4fp7enCikcJghBLNugfHiQej6JoBkPLltLe0c6WTRtpb22j7Lp0LxlCkhQIPSRZolws0J5Jg+hRr5dw6w6SYCAqApLYYOXTNB27XiMWjZHLLVKpVWlubmHDkxuwDItSpUI6mSRiqRTyeTo6upifX6Cvr4+JmXl0Xae9o5vh5SvZsmUTpUoFxwfTbLD0xWImkixQLhSJJlLYjkM62Y4fisiahSRHcd0AURMamcjAANFHUUQKhQK6niS7UCGRMMnns+iKQN1xERWdWsllcmqaqalxdEPmZ7f+iqNHx1mYn2Wgv4tavY4sS6iaiqqo5LJ5IpEYhUIRRZNZvXINhiEReiCGIoZqIEs6pXIZQVCQZQ0/FMB32Pfgd4iQx7eW8Os77yERS5BOplhz4lqCIODnP7ud/qEBHnv0MZozLdx5169R5DiplEK5XAYhiSpJRKMRfN9GEF3KZZe52UWamuKoqoWha0xNHaWlNU2lXEcIQ1RD5+C+3Tj1Gpl0ivrURgRJRdWjlMtVpmcmSZgxxHoeW9EJFYvBpcuZmcuiWjFqlTIRK8LcXJYDu3YSjcTYs2s3m558kr6BISYnx+np7WTD+vUYpkl7ezszs7P09vWQnZtjaHiQg4cPsmLlCnp6+xH9kL179xHRTXKLOarlCkEg0N7RQSCAF0qoqopn1wh9m0xLD9lcgZNOPhXb8WhpyeDYDoosUyvXkQIRx3aQDZkjh46ypK+Pzu5u8AMWFxcYGhpiamaKiJFE0y06O9qpVopY6Qyt7a08/sgjuI7L5s0b0S0Vw1TQVZNCIU9ffx9zc4tkMjGQAsrFLN3drWSa2ohEVUxLpVr2WTY0gBWJIkoh9ZqPZVokUxEmj84yNDREs2cwX86idpQQ7Xm0gYtoburg0Mg+Tj/tNB6457dIisyBg4cZHupHllWGh4ZYs1YhDEU0NY8gQKXURCYSR4k3IyESBiKuXaFeCbE3/Bi1qRUlkUIQQxRFQhIcIhELTTfx3JCF+XkSiRiyLFEslglcl0jURBBCfDcglytgGDoiAaKoo6oWxXwNWY8gyhKyqhAgI0oyAgKu4yCLAn7g4To+oR8iKQKO6zdkMnSNaq3x+3EDmXgsjqQ0iHUkQUIUDSRFRBDUBuO25+KHIYGgYGgKIT6SLLCQnUYxY2iqjDM6hSjJeE1tqHoUu1omHm2wnTtuvQFLQ0JWZCRZIvgdtCv0sQwTQZTxAhdRUgiRkMRjAbQoQOijahr1WpVSqYQZieF4fgMBEEpIoohpqUhSiB00aoG6LDM2cghJj1DOLyApMk69hqKojbmAwPOpVUO2bNlKa1sT0biFIEocPpJlz/Y9PLVpJ53dzSgCyBvnEUWP6kkXMjpygGgigqqpPPHIE7z7bz/YkO/S9lGvu5x4+muxawKmqVOt5jF1s9EDbRmkUhHa2jup2x733XMf177tnQwND+GFVe7+5Xq++c1/4+3v/Ct27dkIoowsqBw9Mka6NY7jlCiXyuAbZPPzuI7Edz75fbKlBQBG/uoQg1ovl6Uv5pKWi/jOb79HV1cXsiRQr1Sol2u4Xo3NWzaxfOUKBvetZDI/zl07fwnAWz/3ZnKFPJs2buXcc06hcLTM0c2jRJujNK2NkYjFUDSNYqWMLGqU7CLdmS7uKN1DRmnn+sHP8OqmN9Df1Eq5VCWTbmHN6pW4no0iqnzsw5/hogvPYG6xSCzdSmdbE6quI4sqjz36JMuGVxFLp9izczf9vW2sXj3AhRddRjY7z959u2nJtLLu7LOYmlxk944Jzjr3DHKlMvc8eBfFYpGLzj2XyckZFksVlvYvZe0Jp9LW1sGKFcsolatc8LIruPzKS0lnTARFQhRUxg5PsbKtm75cgqviV+BHZBa0LL/O3ctXp77JFmc3Ewvj7KseZKO9iVgmTofUzqnqSbyj6x849OndrLNP4ZK2Szmr72xu+d6tHDqwn7UX9VI58BQHH/0Jq8/9OEJ0Cffc+yA/vOXnfOIr3+DB9Zv42e23IsolPvTGK+ntKJN85FtoI5dhtz8OsblGgigUkVRQZQONsIGSEMDzfMIwQJBEfE/mgd07uf6B7/OpO/+Lrz16K7ftuoenjm5EDE2WpAcIBQe74rEtuZ5p5ShLwjYcJ2Rq1mFsNsuh4i4+etNH+er9X+X/3P1lvvfg93ny8BOIQci5a3rAd1ksmWzcuUBvVxdCpBM9lcbNj4Ig8927f8sPdv2Kf/z1TfzL/T/jBxvu56mj+9DkOPu2B0yXFHp6mogl4gR+2ODacG18x6W6eJh4pIYfaIiKSKb9ZA6NTBKNR2lpTjM1NcP83BQrlq5i/fqHGVuYYbg/imiDqnoIiOjxDLG4TiDKiJKCH8TwRAE1dHAr00iqiueCLZXJldLEEx4jh6ZIJRPUqwXGxw/TnHQQPY+a7xB6MqlEO4raRs1voWd4mInZLG0rUowGM4SJChI1fMfm7tkfM7jyJARJRSYgfEaU9HzcKU9vD19a7+tz9YX+LnA6PnB95jkv+vrPoQDyXOd7ntdAGf437KX0tP7B/ufB4/7/Ebg+c44/R9zxl8D1z2BheFzFMwSO03F9IXsxuPdn6TQJwh9M8wet4c/KKr34h8WzHhSBi9S6FO2MN6EMnv30kIbPh/IC9vZfMNd9Dpa9yL69+1l7wgnIItiuTVNTG4sLOaLJKJpuMDE2gWlpbN64kUQyzf79e1m19hScWonc3DShoLF61VBDj1USmZwaB0QSqSYkTUeWRDRNw3E9JEVBERufbzaXxYpYjYBQU5mcmKCjOUN7VyfLVq4ilkhyYM9umtIxDuzfSywaJ9XUxMTUNF4A2flplq9YzZ59BzB0jfm5OYb6u4mYIrJiYhoy6aZmnEDBikRYXFigKZlgfmEcw9DJzmdx7SqxeBTXriPLKgICnuOgyA1n1AtskqmGkL2hm1SqRaqVChEziuPY1OsVurq6KBRqjIwc5KILLiUWM4jHMqg66JpBsZhDVnSSyTSyrGKZERRJQNVkyuUSqiSzY9ceevr6yWVnESUZw1AJfBchbEjbBIs7kHEQ4mtobWvhyOgIQ0uHERWRUJQRBJFoVGNgYBDDjDA+OkprawZRVNm6bRcPPXg/K1YuRzMUVN3AMAz8ehVDk4gnW6hUq4hBSFOmGdvz0FUTRTV45LeP09rWTFfXkgapxfhDBFoKSYuiqTqGGaHqOERlBUsKkGPNCJpCMh5H9n3auzspV2t0d3fR2tlL6PvUqmVWrFmDbdcoLi6i6TpL15yEopvH2GhdFhcWaGlrw/F9+vr7mZ0ao7CQR1YVVEPGsCLEE3HGJ4/S1NqK7ft4totXLTM2NkoynWZybBpVM9A1jUcffYRMOkU0GuPRR9czOTlJsbiAFTWo2TVkWSWim3heBbdewUckCENaW1sxDYsgrJNfyGKmTCoLUwSOzdTULJVKhdZMW4NRNhTxHJd8sdyA8ZULhHj4ocjCXAHXg/mFIh1dbWRzOUaOHqW9s4dUJoWkKKCZzIzPoEouyXQrqUwKXVeotIqEfVFMqVHFs1a8Ajf00EMfpxbyg5t/xcrlA3zkHz7EDTd8j1K5wnvf+14SiUksI4bADKIAjtfDfCFH1GyQhkkSmJEEuhmluvshvNkDaAOnNGC9QgiCSCFfRpQMJKVB0qWojfvYtAwUQ6dWr6HIBoKoEItZDd3EY5rQAiGGpaNIHna9giwqSJKMKkGtWoFQQVLquLaHFDjYrous6Pie19AsDnw0zUAQZBynTN2uIEsqoiIT+AGB4IPgE4QuhDKqGOI6Dake3dIAGUFQiERiKLKOJKuImoaaSSPFDAR8NN0iCAPqTg1FllEU/RhRlEClXMXUFIQwJPB9CsXCMah00GAZlkQEScL1nGMPdBEhFFEUBVVRAZ/Qc1EkmVrdxQv8BnxZVPG8xlo1I4LjC4hehXSqCVnXGTsyRq3uMT9+kJb2Fmy7iihJZOeLtGcSyHoDcVDKFujqbGP1qqVYkRgoCvITkwSBxxMq3PTT2xgePJGvfOkbvP3db2P7tm08sX4Ha9c0ECSBeD75UhbVULGicY6MzmJGYiwZ6CGZyvCL22/Fq1dZqNkMLu0nFlEpZBdZtryfyy67hGLBplYRGOgf4NCBAwyvWYnky+TyOXKlIunWFvLZPKoQ0De0hN17d5JKJXnrm97Ojvo2vl/4Id+avYHA8qnJDp7gsuvIPmYqc8xUFjjt1DNJV5O053qQCiE/3fIjAFa+fIBCrkSlXGL5qmF2PrmHmR2ztHW1cenrr8YSZZxKhX25A0z6U9xffRDflfmb9rfzwd4P0iEnqWZLmKbBxNEREvEIjqRSKxd58IEnWHfOWYxPzbK4UCMZkUglmtm6+SmSqSaWr1hGrjJLVM/wi9vuoqe3n/lsFqda5eOf+igf+dinWLaml2Q6Q7Kpma4lXSzpzdDb28V//PAHmLpO3DB593XvoqU1xYYNj9Pb18difho3LLN+/TaGlw9g6CaiaNDW2ooo+pjxGIFb4LH772DN8Jmc338Z55hncnXkEl4rXsErY6/i3z90I9df/SH+ddXXuCz+Sg7fMcYj/3k3rzz/ZVx+0ZXEYjFOOKGfSj5L2ZP58Ec/jnToDrZuuIP2/ldwaCHkTe95L/c89BAL2RyyJOF6LnXHZTZXY+vuPK+v3ooSLVFvewxBzUPgEQYuviChqApB4OOHPhCgyFqD4VsIqVZtPvyL7/L53/yIkfkZaq6DJmrUvBqHZw9z55Y7yFXnueSEKynOTfGtzn/noE4fgwAAIABJREFUYGKa86eWo0bb6ew9kc/8+p/47O1fYHRxjJpTxVItyk6ZIwtHeWpmO7PFPBcvOxVTDelp95Esk2hyEEXwsYtjfODmL3Hjzjs4vDBNzXOIaAYlu8bhxWnu3P04UtTj3P7TWLFyNb7noukaiqYzN5vDrU1hqlk0RaPuOvi1kHj7IELo4rrHODk0hZZMG9NTR5icnuHCM3tQKVPxPTRZp+wo4Niovo0giCipIXQjRiyeRJXg3keeoE3XyFVkBLGZ4eVrSMTTaLLIYjaPItRpjXuosotth/i+RtVTKNQk6qGBEUtQKlXp7etDVmVmxo+yf2SMvtYV+KUa1faNDJ5+EbqfpyhHUfGf5WMGQUC5XH66Uv57B7MRaD7neJ5q7PFB67MCwWdAfP+Yn/vsvttn6rY+tzUQN38eCiBRkCEUXlTt63e+euPFcfueccyzTzxe2uePvzdBEJ5OUPyl4vrftP9pgevvfiZPN0n/wb4/BX//rCme18TnueH/O9kRURRxHKdxbrIbqan3OSV6xLZlCJVFpP33oaQ6GrInhkGlXMVxPQgFtm7ZxOoTVyMqKsl0CkNX2bNvP5qsMDjUzf69h6mWiniex+joGM2pOIQeBw7sQ1c1Mq2tBEFIqVTGMkyqVQdNM1FUBcJG70u93qDuzy/Ok0rGmZoYx7I0mpozRGJRFhcXyC7MIUqgGxptHd08/th6ujtayS9Ms+7c83nk0Ydp62gnGo1x+PAIoiCybOVapqbGaGlrJVcsoKky9UoVQ1OplIrokQiO42NoMp5bQZQ1RElEUXUcx0OWwHEcKtUioigjSxJB4FEpl0ASUVUZp2Zj2wKiCFZEpa29ia6uLpozTTRl4iiSQamQQxACRMKGnmDoY9t1gtCjWnUQVb1BKiLLaJpGEIRE40lkRUGUGpWpfKHAYjaHPbsN3dC598kxTj7lRAYGejAtFd9vkMPcduutnHnGWYRhiCyLLFmyBN/z2LhpI6lUkmuueQVB6GNaBpKsEXoymmmRaGpCEEU0WW7AFOt1JicmiccT2Hadvv5eovEEo2NHScUM7PFHUBJ9OK7P7MwMVizacMYlEdn1KcyNgpEiEomwe+8estksbe3tbNq4CUnTKVeKJFMx2jvbCGyXXbv2E4gyS7pamZudIBEzqZXyuD4kU2mmZ6axHYeF2SySJGBGTZKZJhbmFpiZnCK7MI/j+jS3tFAul7nv7ns566yzUQ2TYrVGzFLZumUz7W3tqKpGNrtIa0szp59xOpMTkwwPDxMEPps3b6JSrxCPWYyPjzM0vJzJiQl838e0LHbs2EZ3exteCBse30JPbx/FQpF4KkVfby+VaoV63aZuO3R3dTXYrmt10qkmqqUqQ8v6KJYcisUcrS1tWFaU1tY2Usk05UoJRZXxvDKWlsLzHCKWgu0EzM7OsmXTZnqX9EJ1Cs8PEHqvoJCdJWJaHDh4kLPPPYs9uw4S+PCOt7+Ln/7kJ7zzHe8k2TTD1NQcqUSDQdPxekkl01SrNWzbJRKJkc3m8DwfYWIHAjnU/lMIwgahG6KAoli4ro+qqojH9coIoogi0mDgNRq9qA0khYSPj6JIyALUKjU0w6LmOMiCTxB42E4VVdWp1UqoqkEQhESiCVzPpVZrwHY1TUMSBHzfoVIuIcsyfggiIbg2ICCLCoEf4tp1At8lBGLRCNVKCU3RcB0b123o8fqehxSJIEWj1OpV6nYdTdOpV1xMI4oky9TqFUwrQhAGx3gD/EawKoEoC8d0Vn0kscEXIAoiktDQbw0AQRKBgHrdRkDAMHWqtQqWoSKLIuVSiWIhz7atu+ju6iYIXKanxshkuvjtbx+mr2+QdKqJXL5Me0saNBW3HqBpFpYRxQs8rEiEEBFCl3vuvZ+Vq5YjSiKeG6BtnEEUAswLL+biS64m3ZTk3HPXUavW+dFNN3PTTTfy7netJQhCPrH/VnawnbXCMI89to1ly5bieR6WGaNSK5JImSwdXsaa5Wsp5fIEvttICAQan//cv9DR3kWt5tLUnaa1qx1FVXAqBX55x52cd84l1Osubc3N/PVb38KDv3mQ1198Dl//8tdZHlnNlU0X8LamaxmeXsK6/rP42ffv5uo1F7KyuY+1rWvR8gJEBTa5G7lJvZEfBv9J/YE6AM1vaqGasBnJjPJUdSvFnSUqOysUtSLLXjXErL2AFxHoNYao73S5cOYMvnTh18h4MWbH9qFoCtF0O7nJOUzLYm5mGlPSKJU9PvmJ6zl44CCXXX4xpmryueu/xo9/djOXXnIe3/7O91BUk499/OMsW7qcK664lFtuuYUvfP4rPPLQo1z/2X/BtCwihs5dd95Jf183mhYAMp4b8K5rr+Oqy67irHXnEk0kmF2YZ0lzO07V5dWveA2lXJnLr3wNDz/8IIIYsGfPfpYuH0aUBERJYerwHk4+/Rx+s34PV19wCW94w6tJplNIRoLr3vJe7vzBr1AKNTY+sZ2dew5z8y2386Uvf4HWNovR0Wk+9KGPceppp9G75kTOPmMd87u+y7ZHtlBVO/jtripf/943mZiaIZNO8cVPfIBXnd3Mh95yNr3RGE/tmWciP8f2ykNcta4fz69hGhqO2/A3DF3DcxtQeSEMkGWJ3GKRfL6EacT43D238KMt9wPwhrWX8/enXseHrvoIH3vtR2mKNPPo/kfZdnQ7qihyQmsbDyQfRZIkLp5dhmz18L9v/wr/9VgjcXHtuW/lc1dczz+9/gusUJfTHI2xY2Y3O6ePIMoKw+lBEskW1EgnXmBSLx3ks7d/ixs3/qZx/mkX8l9//UH+4cJXcu0p55O0Ujx+ZDf750foaOtkWcdq6tUKtXodVVWJWxFyc4eQKGNGInh2nVjbMqq2TDrTRuhr+G6d/GyB2elDHDp4mImj47SnDAJf4PEN87S2Szy6/ihDQ90IUoFoqgvNamFsdBwzEsUtzfHEll0Md6d4YEueU868EMPQyC/OsXvnboYGezlyeB+RiEm14hFvHebgeJEVa9cxv1g7FgDHiMdjbNiwkaZ0mo7WdqyIRdJtQXQ0frHlvXSvPA2tZRDLKxKKz65ECoLwB0HrM2UWn18K5vkresef/0zfNiR43vP+mL0UWPGfw54ZsL4kIqrji18vpeL6jMruC8lkCuJfoMJ/kv1PDVyf+9WfJ3AV/i9SQv3uhnnmw+L5+mCFlqUI0zsJBRnViLJ161ZisRixWJzR0VGyC3OsXrOKIAgJvQC3XmPsyAidnT24nsNATzcHDuxDkMDzXDKZFmRForOnG1GSMU2LbC5HS0sznuuze/c+EskkCAGSIOJ5HqZpEoYhmqYxOTnJ9OwspqbhBAGpdBNzc/MkE3E6u7rYvXsvmUwLfuBTrdVYvnIlu3bsorurg8mJCdLpDL5dI7u4QLVqE4tEqDk+ZiSKJEAQCvhBgGEYaJpEdnGRWDxOKEIkEsdxHTStIcHhuR4gocgKnu83ZDpCH1WVqNZqJJIZFC3CxPgoyVQMz2tkUC3LIJtdZH5+ho0btjO0bDmizDFNTRNFVlAUDUmUkUWRyclpHl//GMuWD+LaVSQBZFnHc6tkF+eRZRFCn3S6lYg7hqppLD3jCgQhxDQMHMcjDAXCUMDUG5Up09ARpQZEyzRNPM/l1FNPAWgIv4sCvg+/uetu+gZ6QYDFuSylYh7VMCCE0AtQNa0h5SGE1GsVTEOlXppHLBxEjHSiqirRWBzPcRps1qKE57okzAg5T6KYy+PYNolUkmqlQktLK5ouI3gOuqoxPT1PpjnN9Mw85523jsMHDhCPxZienMI0DXbu2kd7RwfxeALTMOlsbycStUikMri2zcz0LMtWLKdSLaPKKpnWFiRJZMXqlRw4cIDWlhZiiTiHR8ZYuXoNmeYMo+NjdHS0s2HDk/T399HR2Y3r+1hRi57eHtJNLaiqyo5tuymVSwwMDIAgNHQRRRWvXiZUJVatOgnHq9HWliGVacKx66TSaXp7+7CsCFOTR2lva6GQz6OpKsmmJtY/8hhDQz00NTVz4NAhItE4P/3Jzzjp5JMQBKjbNXTVwq7X0fWQ/XsOUqnW8b2AwPc5cOAAiahGXHNQll+DWy7z67vuZTGbZ+TwATTd4NbbbuEDH3w/v/j5Hdx1zz289vUryRUqZFIuQRAgKUO4ro2mG2h6g4XSMEx03cA+9AQCFVhyDpLoQgiSLGLbIIgikghh8Ptnouu6iIJEGHoQBIiSzOLiAtFonCAUqFaKaKqO6wXomkYoKYiySm5uHN2IIYogCjqGocOxoDIURILAw7IsJEnCcWyEEOp2GWhoJctSgwjKD0PC0G0EkqGPLIOoGMiqSigISLJCte6iGSayIlOtFFFVDd8PqJQryKpELBbDcTweuO8eVE0jkUqhHetrlyQJWVYaFdggbGh/CiKe6yHLEtWqjecFjZ7YY0k4WdUIgqDR96triKLY0HENPBzfRVE1QhRMy2Lbtu20traSy2Xp6emhXHPp7e5GEEPKlSKaZbFt8yZ6BpZSLZe46cc/Yd2Z60Bq9L6Loopr+6w98XSqtTyOU4NQQNs0j+fZcN5llEt1TEumWiuzb+8hrrrqGt513duRxa3Mzy9wU/YQVbHONZ3XEIvFUDQPWREaMG3LIBJTEEKFf/3iv3LvPXdz3gXn8tObf0x7eyunnXYqS3p76VnSRb4wj2bojO0/iBQqbNq4Ayti0daWYs/uA7zmr/6KJV09mE3dJFJdHDp0mP6lHUxMHEHxE3Ro7Vy45DLsvQ4rIqsZtpaQLkU4VT2Nc8Iz+NsVb2CodgK3/fwXAPzte9/LefFzeJV+Da8TXo0worBh4wa0qsaP3vdtrup8OWcap3Na+mx+9bU7+NgH3nMM5m6RSKWJRKNUSw7f/e5/ctp564inYjz1+BN87nNf5oc//CGXXX4BihYweWSELdsP8cGPvI+hwW4OHBjjrrvu413XvZuO9g4UVeTIkXFedt6l3P7zW3n1a9/Iffffzc4te3jVNa9mbm4Sz6nz9a9/h/vu+w2KrFEtOVx5+RX0dfeweulSJufmOTgyzradu/nUpz9DqdII9nQ9wsDgAKmmJKomN4iXNBnVjPONr32XD33og1jxRkXT0jPoeoS21iZEqUpnxwCDy5az/snHecvb3sDIocPccMON/OgnN5HKmPi2iDL/W357/3c49ap/4pGNO0mm2/nJbT8H4Dtf/Qz/+sVvUJwrc3X6OtblrycdD7n36EOM5qc5pXuQFUt6sWt1JFFE1VQcx8ZxHEzTaFRZaZC3JRIxstVF3nfbN/EDnwuHT+Y9J7yGo0dLrDphBdXFKqevWkc+n2fr+FY2jWzmzWdcyGPNWwG4cG4NRdK856YP4Ac+l625lG9ddwPpZBN4Ljt37KAvkqSz1eCpsf1sGT3IZcPnE4vlUCNDiFLI/OwR3v3TL+IHPpcsPZGvvOLtaLKG63pYusHqliUUaiFbp/axdXwb77j0OtKxBIausXffXppTSXJzB0jGZAJBpVoqke49HacGvushSAGqbhCzopgRmSceeYrz1i2htSVAMzwGhlpQ/DKdXU3IigehghztwxcMohoUigssjm1l5dIOJBye2pNnoL+HsSMH0VWD7t4ljI8fJdPUzOxcES+I0NIzjKCoVAqL5AslWlo7mJ6dw7R0otE40WiMo+MzNLe1kVhsRsUiv3ofBzc8wNCpFxGzLLyX4Fu+MGz2j/uwz4QJH0829GKCzOODwT93YPrH7bhY4sWuT3ihGOT4Y/84VPiF4Mj/0wLXv8jh/In29M0kPnv8jkL62UN8xni+Y36PZng+VENA+Lw01U9vf451PauJ/thxgnSs6lpdJCjNHXOeng3lEEUR7ay3wdxeolGdC//+SyimwuanNrJ921aCUOCuu++lmCuxdeNWHnv0cU465SxiiQTd/csYnRilrbODpctWsHLZEJPTWY6Oz6LIJmEgo6gKzS1ppifGyWbznHjSiYweOYKpmmQLRZAEPAICQaJYrBK14ri2x/jkPP0DvRRyRWKWhu+7bNu8he6ePg4c2EMpnyWXzWJGU1gxE98TkAXAL6NbGqZhsDg3g2rGaE6nMFUVxYjhei6GEcH1XErVMumWJrK5HKlEinq9jmnGCAURXwiQNJkDh/dhOzZ61EIIFZxaiOuLRKNRSsUSIQGDS3uxLJ1oNImkxymWiiiKiiiILB0eInAdVEFAkFTK5SqBIFEoFNm1dQdHDh1BFnzOO+8cyiUXSdGRNAUEGTmSwopYKLJCLNbCww+vB0EEwga8HYkd2/fhOhK+B3fdeSfVWpV8bh7fC7HrAbIsI0khq1evYHZ2GrteQxJEAj8gdGucdObJ1B2H0ANN1WhubeGOW29HDkJilgdSiCxDvZLHtEw0RcfwC6ClqFYq1Oo2nttgcl1cWEAkxA61BoTTs1E1lVSmBUVT6OpbQlNHK+l0ClXXcHyfzp4eSo5D7+Ag+XyBwA+JRhM0d3ZjJps49/xzmZmeopjLsm/3LpzApViuYFcqLE7NYGoGk1PTaKqBJOvs274Hz6nj+S7LVi5lbGKcYr5AwjJZnJmkUiyiGxEOHjrASSeexO6dexE1hXK1hl33UUWdfC7H2JGjtLW3U17Mszg3y8LsJHMTY3j1MlPzixiKQSB4xJNRvDCEMEQ3VSYnJxkbHyOZjrHm5NOIxkzCwKeQr7Jnx3bOPOMsVM1gdOwo6ViU/Xt2cN7567A9B9tzsKw4MyMT4FWYnp5jaNkJLC4WaWvv4IQDMS7M9dPS3oYgNOQHBMlkZi7LqaedjeupLB1cylvf+BZ+ff/9nH/lBZyy7lRM02R4aAhBFJBlEdtxCAKFG//rJrwwRNZ1fL/euBd9jzDUkYI9DUGwsEHeoSo+YeBjBxK+72PbDpKkoKkmEFCp2JiRBAQy6VQz5VKRajWLLKl4YYjruviBjOCH4NZoaulqwIUVkyCsEYYN9mpRlBBCH98PIQyoV0soko/ruui6hSjr+MeYO3UjhhaJousJHKeMEDoEdkC9vEDggeeHVCt1JDFEwIVQQI+kCID65BgsTqPKCtVSBVWWuOjSC+jr68StVynM5zlWbyYkwAsbMjsIwrHA1ycIQpLJNKYRBQEqdRstEkUKG4RSIFCzbYQwJBQl6vU6kmJSqdYRCPBDmXVnrUNTZGIRE6dWZt+eXSA5KFJINBZB9ooMDS0BASxD451vfyOVWonHHn2KmckF6tUKRw7vZXFxkkqpihhKGLpEGAZIkkipmOfE1WdRrVQAm6mJSaZHRzlyaAOyFJBOJYlYOqHvIcpx3vTWN9PZO8w3/+0GdFngW9/8Jhddcg29y5fx7Zu/x0xljpGjhzlj7XkYepzrP/tpvvpvX+Xks09j5dqTGRhYxic/cz0jk3u5+OKrGBzuww1C2vq6+OIn/jeKKnPt37yZNWcu48tf+gIjB8cwYimWrlpOT/cQS5f38NVv/itf+vZXOfuSy7jy9W/i5W9+Pa+/9m386vYtJMXk0/9dL0+fzwUt6+g3hvjkB76AEDQqN2tPPIG7f/UoP/n5j7jilVexZGknv3jgNi656nX84MYfMJ+d5tJL30ghXwLX4fL/dSlj+x/k5JPO5Iq/eh3RJpWHH76ZT376n3ndW6/l6mvfyh2/vYWd+3ZTKefoaMsgazJ33H0X17zxVZz+snV84FMf4N3/cC1Gq8nNd/yA/Qf2ky+4/M3fXodpNXHH7Zt48pEtXP/PX+bvPvl+rnjjZbzr/e/BiDWxfuMWDD3GmjVr2Lj/KdacfQL33ncfM9PTXPe+d/Lat7yGlq42Wju7uOaVV7Nnzwg3fP0GPvWPH+ass19GLNaMYSZxA59XXHMFhdI0pXyN7o4UqlLg+o9fy+MP3MWqNSfzvRv/GU8KSHV2oLGfn//8n0k0X8Ott9/MWetO5me/vK3xGa7qY37nCNdf/gm+MbyV8OBa3L77ecUFS+hONgPwpV/eRTEfNp5/qokfhICCopi4XgCCSCgoSDIIocf6Q3uxPQeA95z9ckTZpHvpEM3N7RjxJKLv8reXvg9REKm5dW7b/BCCIOD5PgvVKHds+BW2ZwPw5rOvxXdtZElhz4EDtCQynLymmfee82pEQcD2HTbPP0UieQaqEkMM6zw2svnp+d92yiXsmihStCU0VcMOXMYWdFabZyMgYHs2v9x4J9mFHIXcIoP9vTilGWKROqImUa9mMdMr2fTUZkLq6LEIZjxBrV6m5tUpZrN4CESiOggGEENFRBAjqKqCX/WQ5DiuKOEXJ/ECgaiuYWoCkmBT8zRe99r/hWt7DAz2E01EqZRq9PcNMjIyQktbM4ZlMXJkjCOjU7T3rWD12pOx3RK9S4bZvGkbyYTIvv0HGF66gh3btuHYDW3sgwfn2XxgN/mdm1mQJXwEHCEkDP0/6hu/GAnH55SmOe46DQ4BH4TgeSujz7kNqfG/h4SA9EfX8rv1HL+2F1pzEPxxctbfV4uPG8/0+cXw6ff4RyV5gvAPx/GSNy9S2ueZ39Px38NLktz5M9pfAte/2B+YZVl4m2/B3fSzFzxOMGJoF3+QcP4Q3iPfovO8NxBJxggJCX2PTKKJDY8/ycHDh9EjUeLpOLZrY0WjqILI6MgooqSTL7sMDvWzatVyPN9BlgUc20NTI0QiMVRNJQwDli5biud7mKqJIqg4FYfQDbEsi5GREURRZM0Jq6lUqkSjCXK5HPlcBccJCQMRQ9cJfI9kIs7evXvo6e5ncnKKlpZ26jWXpnQzuqHR3duFpMqY0ShuGIAIqiKjqSKGpqLKFuVCHbsWMDkxB26NeqXQyF8JQBiwfOlSopEouYUFCoU8d919F/VaDTwPRYLAq1MolgARP/Cx7RoCMppmkmpK0dHdimYq+IGL79vomkqtVsUwLSLxOIVijXg8QSRqEonoZLMlAk9BEOt4xTIRM4IfQs2pc+qpJwFBQ9ZFUykW82Sa09x2+8+RFZn+gX6WLV9GT18nfuiwZ89uJsamGD06ShiERKwo27fvRBRlBFEgCD1aW9sxTRM/cInGNARJ4dLLr+Dh9U8SiBq1cplKpYpmxfED6f9j783D5CrLvP/Pc/ZTa1dVd/WS7iSdpLOHQMgCYQeD4CCLiijq4IbrKO64zeg4Ko6DMzrqIC74qqiAC7JI2LeQIJAQsi+ddCfpvbu6uvY6+3n/qKZZBhycd9bfz/u6znVV1Vmfp845z3Pf9/f+fvECh+LYHgJFRtEEigye7VEqlmjv6EFxAmLRCKOYVMpVJidLHDkyyKy2DgLbYfuTT2HVLSYmJqhUKgRBwJZHNzO7q4toIo7tueQLUwRB0JAcCUI0XSebzZJIJCjlSxQKJcZyk1Qsi7k988m2Zok3xcmPD+F6LqND48iqjqzotGRa2btzLxP5SVzXYzI3SSIWpymWJNvaSiLdhBABrdkMsbhJtV5BVXWaM1k6OjpRdA1VN0m3tLN9xy5sx2qQ7CAhISgVi426UbuOJGRmdXaSbEpiWXUUxSdfmCQWi7P/YC/rTjqZkICD+/czf+58dN2gOFUkm2lBkTUUWWuwGzdlODY4Qv/hfqYmRumeP4cj/YdJJZPETBNJUkGAIju4rkV7ewd79+5l/fq1rFx1Aps3b+aH13+f97z5Ei5/7TnTxEEhE8WTmCyfzMDAEPfedw/r1q3DNAxcz0XIKp7n0XTG23GWXoKujkAYRRJSg5BDAs+qooY2QgRomozj1Gdg9BASBA5C9qjXq9OswRF0XUNRlEYtdeAQ4pKfyuH7LpVK+dk3ECDwfX8aKh8QMaOAjKaZ+H4Djluv1zBNgzAMsC0LETrUCjkC38NxPDw/xHZdVDWK4xaQpJBYNIYkCcrl6XN5DrKkIA3mkIby1GpVVFXFtm0QBrYHQlEwYya4MsKVEZ6C69gosoxt1Ql8HyMaJxAyXgA+glBSiMejBI5FQIjnukiArqpULYdqtYaimzi2TcQwqFQquI5D76FezGiURLIJw4wSjRgYegRZ0fB9CT9QSKXbkVGJRGM4loVvV5CdUTpnRTGjGvOWr2XXM9tIJhMouo4TSICMLIfIksb+w08RCodKtco3//nb3PvIJuYtPh7XD5FVBdf1EEJC4rlshuO6XHzZm/jcF/+WffsPEIQBU4Up7rn/fl576Rv47vXfYdfOXrbu3ss1136d/qP9EEKhWODOu+/m0rdeydev/Qc0TQEkhB/wmtde8ILA7A9/eANzZnejyQrH+o8Qej733Xsvew/t4Le/vZXxiQlURWNwYIjeo4d5z6euZP/BvTP7jwyV2LL5KY4e6yPblmDL5icBsG2bbQe28Z4Pf5gntz2NJCQs22bnnt1c861v8cGPfI7b7/gViWSE4eFBvvSFr3HLzQ+zaMmSxnFHx/jRL2/lhpu+x9andxCNRZEkCU0zULUo83uWcMsdt/DTX9xA/9F+RsfH0DSNUqnEzt07+do3rmXjgxs5/YxTueyNb+buu+/mBz+8jo9/6kNUSpMziIXm5gx33HYb87rnMjY2xnnnnTvTtuuu/xf+9tovMjw5zNDQEJIkkc/n2Xj3PZzzmvN4ZMvjxBJpSrXD7Nu/BZ8pHH+cv/7SFznp7Fdx2gWXMDhWRDWbWbhiLRe94Qq2PfU0ARGammcRCti++S5OP/u9RFvnc9mbvko0Mpcntj4BwOiRMuvyb+RE9804rY8zmb6bQMkhIXHGgqUADLlH0dQp5NDjWH8vvg++76MoCoHvo6oqnueiyDKW7TBcmpxp37xMKzItHOnLkc+XQGqgJkzZIBPJAPBI71P4QQBCR4/Nwtaem+KumLOC/GQeAWRbmpkYO0JTIk5LOk1bohHceGD/LmQ9CSKkUhjn6Nixmf0Xt7XT0zSXVCRBqVRhyxPDOH5ANt1Ke1M7ABu33YHtucTTrYzlSjh+Dt3IAE2YsSaGRsY5/oQTMbQ4tXIFq1ZB0zWxkLahAAAgAElEQVTGB/qoVusIGYRbw7MdwtDH9WoEYeM9IisSsqqhGya256MaBiOjY+w9ZqMjcGp58OpETZWjx46iGCaKoVK16qxadxKqGQNZMLd7PutPOoV6zcKyfXQjydGxvbRk0+zccYRCvozjO/Qs6mn8L6HP6a/9AMvnLufhO3+B54VIYTCds/uzC/Gn2LPJoFfi6P7ZXt7+fNf9O+2VYOGfv81/FlTh+bj8VxLZ+reOEQTBDPHUs/Zyx5WiGdSzr0JEUngbv8zJF72Zd7/nnZx0yjpcx0VRBJousf6UUygW8ogwxLVtbMcjlW5mqlhmfs9iNE2hUqlg2zaGqeN5Pr4HyWRqGqkQYtsWtVqVSnmCqfwgquKhqw1ZDFVVqdVqqJpMLJqgUq4RhNDS3kRzW5qBY/vJpFMoikwiHqO9rZXNj23BdiwsyyKRSHGotxfCgFq9RiIWoWbZ0/BXH103qE3XrSRiCVRF46knn2JkeAQhGllqy6o16vhCH6tuUa3UePS++yH0WXHccmrVCoEfoqkalUoJVdPRDINSsYgqSQwcG2D79p04ng9yg+DG8Tx0VSHwXTRVQVYU2ttnEYSgaDp+EFIsFvHcgKGhUaampqiWSuTzRWTNQNXUZ5OtIART+SLxeJJsNsv69Sfh2BbHrzyORCKOEdHxAxfDaOgczp4zdxrOqHLiiSdSq9WQhIRpRhp1jUKiv7+PWq2G61jouszsufMIQo1UKo2uG3hugB/UCMKQmKYhBwJZMpEBVQQ0RxIUc+NUY21MYmKHIU2pDHPmzGbhwnkUCiWO9PXTmkmxb+9eQj9g/569uLaNoWocO9ZPoTDFwiWLaW1vZ3Jykmgkwvh4jnSqmYMHDtGabadWq1IqFkkkE2SybdiuS7lSRhbQ0zOfZStXICSFO2+/A6fucOzoUfr7+1m+YgW5XI5UUxOxSIR6zSIIQ9LpFJMT44yMDOG4FrFElGy2hf7+PiqVMvPmd3PgwEEECs0tzfQsXEBzOkNuPMfQ0SGikRiu4/PoI5solcrouk4qlSAWN7Adi1SqGTcIueCi17L58T+wf/9ess1ZRsbG0A2TpcuXg9SQiDLNGIoqE880UShXOe20MxgfHaWlpQVd16YlnCRcLyCwq+iKRKE4TqVSYXJykvWnrOGhhx/m8ssvx3dczn/je+hadhL33LeHscl2IpEII8NjpNMZzj77bLq7uzl67BiKrCBrekMHMtVBet4aAukkdLGZai2N43oNDUbPoVYqNiDhYUgQhA2N01CQSCQIAh/brhGPxxqSMoqB67p4njcd+fXwA49MJkNDesqcliiQCMOGc+l5DeBarV6lWqkQhg3Ci5CAaDTSkN6SG0QTqiKImREQPmEoUDUTRdeRVR0RuPi+i2VbSJI8DXcXQDBNJtKAMD5bpmCaJrKiIEsKnuc1IMp2kWJhlGolN61ZC0wTNCmKjCQJbMcmCAIC3yP0fQgbtbuJRAxFlihNTRGNRZAIiZhRjGnHPBGLkc9N8sSTT1Cr1+k/cgzLclm2bBGu62PZHqoh0GM6ZlynkB+kblmYZpR4PMqZF12GZBj4gc2RnU+ycuUqHM9GNTQkRecXnX2EHwNDvYdSNc94bopsaxe33fE7znjVmbihTMVdTaCejpAUHn1kE4NHDuMHjazL9T/6ATt37+Zf/vk7jPQfYfeTj3Dnb25lTtdsqrUaew7v40c//x6FQpGbfvwLjuzp5cYf/5Tr/vG7aIrGZD7P7++7nXKliG25jA0O8+q/eA2u586MOTfddAtf/vJXMXQdTVUZGBjgrz52FY7rsmzpMr71lWu4+V8+RmFoL5/55OfJRFr40pevmdk/YiZ5+umddHd38/m//hRLli4H4EDvQb7/f37ImuNX89cf/SyP3/cY13z+b/jwe64E4P6HHuILX/lCA9JqJrjyXW9l29NHSTQlAfjDtqd5dMvjXHH5W3n7pVfy4O138ZZL3syqlatRtDSOC10dXXz2Y1ez88knuP5r/8yN3/kZv/7p7Xzjy18nmUhwuL+Pcy8+k3gszWc/89d86MMfYMGS+Ug4TOQmALhn40YGB45y629+zezZc/nc5z4307ayW6ajvYPLL34L/X3HyI1P8timR1m4sAfXdXli1zZQBbPb5rFu1QbCehM/+f5v2XjXXTPHuOv+Rwh9qFbrjOUnWX/GKci6iUKdicObiCoyRyai6E0t3PPQz9i995GZSfiHFn2Seen5VGc/jpTsY1Z7FFlWMHWDJdm5AExUCoyXJVAidHfPJaTxHCmKghCiUUZAQBD46IZBqVKduba6rVKxjnDG2auIxyMEvky5XMWxHWSlMb/qy4/i+hI12yfSlKJQmnrejCUkk26hUi5Tq1Y4+8wT8CyLYiU/jRKBQ7kh0OK4VonAKTSe32f3NkAxckiiiGnKdMxdysFD/Zyz4dyZZ+DwRC9dXXOwrRptzWkqpVE03cS2fQJimNEUYSiYyE0SeC6jQ4MEfkhTOolTt1gwL4GChyQ1UJqhAFlVkWQZWVUaxH++wAsDSuUp8mNDFMs1CDwSsWij/MB1SaXTlEplXM/FiEQZzRVoam5ndvd88lMl6tUysYhEqTDAHb+5i0fv20Roj7Nn1zOYho5VL5NqSk7ztwiiqVYkvZN69SjhcD+K72EqGgj135x3vtLa0ZcjGP1T5rV/NGP7Mr89iyr8U5iAX3ycZ+f3L87OvvhzEAQEQfAfBr1tzNf/37KiL5D1fIl1/1UkVX+K/c+7ov8l9qdETf43RVgaD/Fz38MwnJkYvpQJRUM76W2oay/H3/Ij/Hwf8151MWdsOJ1zX3M2G151Go899ACFiTFKU3lGBodINGepez7tbVmEb1Es1lAUvVELhoIkwfj4OOVKkUjExHFstGnWwaZ0O2Y0g5AiOH6DmKhQKDBnzhwKhUk8L+Suu+5tMIRWQg4fHmPl8tWosozvuriOQ6VcJpttECHlcqPs27cXz6kTCp9y2cGpVlEkGUXIOJUqihHDiCcwoklGx47iuhXWrl1J99wOlEQG2YyhSIJ6udjoP6D3YC/LFi+GMKQl20ImnSKSSFG1XRTNRCjqtBOURpUFLS1NLFq8FN2I4wYSsqJiRBL4boOgSQJcz+OmW37FiWuOR1FU8vkSnivR2pahrT3F6HCZ5o42Ys0tBKKhLVyvuZTJEkTmsHHjAwwNjbNjxx5aWtpQVIXBoUHq9RqWHWBG4gwMHMP3Le695z62bHmcgYFBnvjDk+Qmh7EdG9uavo9DQc+CZdx7zyZCt06tPEVubJQwFNRtD9/z2bNzO6oUwYymCOxJhJFAk0DYoCgxppQ0cmsP23buIR6Pkck0s3370zz8yEZa2kyi8ThtHe1Iskzg+8RjMRYvXsx9997LOeeei+85PPPkVgJJUHdtFvQsYO/evbS1tjE0NER7ezuHDh2iq7uTdSetRgpcXMuhXq5xaO8+RgcG8BBUXZu5C7s5cdlSQqdOpiXNxW98HUiC9o52hBA89eSTzF+0qJEJqJSJR+K0tbY3snshIHyWr1jM4b6D2LUSCxfMY2J0hMU93RRKBSqVMlatjqZoTIzmsWoep64/C9d1sOoN2Kvr2oyNTBEGGh2ds6naFZpbWunoaEeSZOYu7CGVbcEKAsxkkkq1QBC4uF4dCYeT153E7277PVXb48477iIIJaKxOHrERIqmEW6F0IOly3pIp9MIIfjnb1/LW97+l/hhQKYpxatPW8vme+/k7DNOYcdTjxEEPh0dXWzceDelUpEwDGlva2s4lkJGlRvSVEgKVaeTkNkkzIeQ1QxCQDSZQYkkGrJRkooQMrKkUa2VAIEsG2iqSbVaR9NUPN8hDBsDcmPSIqhV69RrLkKoWFZ9Wj5GIIQ8E8H2fZ8QBzOqIURA3aoR+D4hIZFoBFVVMEwDX0jYQsd3HQwjQrXuEIgGA7hMBM957l2nKEqj5k5TcDybwPcgbLBp2rbdgP66FTy3Cr6PFEoga0TiTeiRRKP2NghwbLsB/c6P41gVFClAU0J0OWw4t6reQKqEIcX8JJosE3gWVrlA4NjIkkwYhGzevJlEIsFVH/0osVicbduexrI9KuUCkUgcWVHZ/vRBNK2Zp57cR+hpGIaBLxQCLQI1C/wAWVYwklnUSJJILELoO9RKBTZsOA9oQler3PCj39KcWUAQmiAHLOnpBMciNxFDiC5kRWXFipW0NqdmuBYq1Qo/vv57vOnyt+D7gpGBI6w6YQWf/ujVAOzcu5v7H76fV5+5gcU9S5nKl5Aw2XD2q/nAu98LQN2tkMvl0HWDr3/1GgZGhlB1beY/OfWU07nqqo8yPDjEz392I+e99jxK5RKpphS33fwbLr1wA2tWvp6bb36EVDTGDy74ETWnNrN/QJ23vvVN5PMFUsk27rzrtsa1Vyqcf96FbPzd73j/+97DF77wBd5w0YV8/APv5hMf/jAA1/3get73vo/xt1/8ezQzz7e/+x18Gk61ZVu86y3v5ZqvfY5PfvIrSBLMndtNJt1G39FRfnbjzXz6Q1cz3HeIWtFj6NgAN930U/7mrz/OeWdt4B2XvhlN1bB9myPHjnHVVR9lwYK5NGU6SCcjNCUTAKRTSUToc/aZp7Nx4z10dnW8YKyOEKW9pRFwEkKwevWJ3PiznwAwMjbKH57cxOjIYXbv3MFPf/xTbvzpT1i95oSZY8xdNJ/yRD+qqJJukgm1gEqtRGVwG5PP3MiSRacx7/gTiLdIvPGCi7GfRSUAa7uXU2+5j0pNpRz4IBQC2cAloD0Rm9nuxnueYU9/Ecv1kdVG4Ne2rQaxoCSB7zXmS0Jicee8mf0O5Y+STs6jo3UBhUIZy6rQ0t6BHFcZK40DMF6ewoy0EE80Ydky3dn5M/vv6t/B+MgEYyMj1KplAm8KRUChXmSsVABgrJTDFiFefQpd9miPp2f27+0fRTNkQMGxo2zdupN1609leHKU8fL0+YvjHDi4n+G+3Uwee4aYFMH38hAWKRQkmlKz8AKfbDaDauoUJnPUimUOjo4zMXKE1YsjKBEVEXoIBLlcFVlO4LserudgmDFUdFRJpikmM7styhnHpQlUhWLF5fd3P0o620U8mmRscIhEtBFobmudxVShSiAaAWXbKvOrG3+D7+zngg1ZLjm3lQWtEuecNZ+9e7ZSmhynMlVsaGiH8OBd17P2wneBIXHPtVczlZvAsesQ/u92If4r5ubPOqt/tv84+9991/032ktFOZ6LtkgvWMJQTEPjnv0ezkRpni9FI4RA4rnlxXWqLxU5msHYTzN5vlTN64trZf9V/euLjvf8z5IkNSBxf6QPwjBEmX0C+iXXIDUvILj/n/FKoyjz1tLaNYfVp65hwfLlHL96FQsXzWfxcUvIZlNUilNIioLnu9SsGsmmVmRDJhKNEomYGJEYIyPjIATVWhXDiBJKgmq50qgDUHzqlRqyojCZm6Buw+HePiRs5nUvRpWge1YThdIkri+QZI2WlmZ818axKixavgpJjxCJaHiiAX/LpONU6w5mpCHc7TgWspCoFkpIkkAx4pjRGJlsC/HmNqzKFFHdbMhoaALXD4kk4ixY0sPCFUsxojrJWJxHHnoM17XQZZ94JIJVrHHPXfciFJm649LW2sGjjz2A77rokgNhgOe6BELghgGOVWOwr493vuMdlEpFbNsh2ZQglTFQNQlJklm8ZB6FwgRupYpXtdi3excP3P8gWvs6aD6R173hUppbshiGjm3X6T/cyzNP7+OnP/kFhqKTz02yZu1qunt6OO+88znptNNIptOsWbeOlswsNNlA0RUkOcT1HEJ8zj33VchyhHi6jRNWH48IBIqqULfqLFq8GNt3CERIWBtHIY5fcwiiEbaP2miJDPsO7GLt2uOQhIsnQoSQWLRgMYcPHmHfrn3s2v4ULa0ZVqw6jrY5s5k9bx49C3t48g+bmdfdzcrjj2d0cARN1pnMT7FoyVIO9x9m0eJuBkaGmb9kBbmpIvduvJ9jxwYQskutVsKIxOhZdhyHeg+x/cmtqJJEy6w2iuU8E6MD9B08yFR+jIgeMjA8TGdblsC1GR0ewtANtjy6mdHRUTzfIfAdhKwQSSS56OLX0Ta7i3wxx8Il86hZNrKs0d49l4nxHA889ii7dzzDyMggw6NDFCdLPLZ5E0eOHGFyeILJ0VGC0KVSnqI0NkZpapTW9jaeeWYHVrnCE5s349Rr+K6NYSYIhYIkRRu6nT4cv2o1C5cu4fxXb2Df3j24jo1Vq1EtF/F9D8troBvuf2QL57/mEnAcdm59mlPPOJ33ffADvPPKv+Tjn/wEufwUq9auIapuQ5f/AKHE2OgEt9x0C4Hj4Vs2ge0CIaXtv8fdeTehB3Z4IrbXhuQ8BAJCXDSl4XhJyrMOYA1JkXB8Dzdw8AMfTdcolsoIRUXWdSRZw3FtwlAmFm2ahv1OYRoJ7HqN8dFBvMDHNAwIQVEEqjBxrTJOvYShxyEMqFbrBEFIIAKEkAEJWQoQQsKqlwj9KlLgIakxAlVFi8TQIyayquL7IaosUFARIY0AShgColGDikKI3HC8azkCz5kmW6o1JiqS3CBm0xWEGiGZasYw4whJJhQhXigjJJ1quYRvVZEUhVhzK9FMBkWP05SdRYBAkTx8z+GMs85BVkICz6evr5/Xv/51JFMmyVQGx3cJApeFC+ahyCHLVyxGj6h4vodTq6JKIWo8iiQrVMpVCAM0IyQ/6RCGCrFYAtt28IIUrjvExeefhRmXCdSA5lQWI5FAMVP0LFmL7es4jkO5WsVMZqbZkGHtuvWcefpJGATook7PktUUpkqsWbkMTWs4nxvO3sCH/+rjpJri/PD732RR93y2b3uG73/vhwAEYUCl5GEHNl/43GcxlVgjQz9t3/ynf2B0coxCaYqrP3YFFatBvtWZbScZUam6HmEiw9nnnMZbLn8jpy0/m9csvnBmf002ueWmX1EuFqiUC7z1TZfNrLvq3X/JvoO9TE4WWL/2RKKZOcTaOnnv+949w5a6bNU6vnbtF/nGP92EHziIUAVAVVQ+c/UnGDg0xcc/ejmtrd287U2vQVfrWBNFeubN5Q1vvJRLL7mcVDLGQw/eyxe+/DfcdOstTBbLnHf+61m0cBFhGPL49sf5znX/wt13bmT86CGGhkdxp4PHLW1ZTlh9Ar29hzl06CAf+fDVM9f/tsveypvfcinZ2SmE8JFlQRgIViw/ntmdnQAc3N/P7Xc+wpLlC3nXlW9iy+OP8OmPf5qRvn0c2rqXNYu66F62gkh2Dr4SQXLL5I8eZnDvdUSzJzJcF4wf3kNGayFfCPjd7++eOb/a1s/OZwZJxysogY4sBwi/juwHGGbTzHZnrGtlRU8GXZJxLJf7Hhujt7+EXasgSRpKxEBCIfQDTutZiq40+vj6Tb9iZGqIsaF+JDlCJpNlfGyCa3791Zl5ixd4fH3i77lqyweZ09XBeSeej642/rsv//orTJUmGBwcoW/vUxw4eIhQUfjWA7fPyH54vodXy1GtHcOpCNYvXIAxff5/2nwb1aqgVIoQaApCamJ0uMS/PPTdF5x/7sL5dHb1ICkVtIiKZznISoyRKRsvcFGFgmaouE5A+5wuVM3DdOscGRyjXHMxJRlVMVHkkKZ4FKfeqHkXik7V9fG8CqoWByONJGoITcd3beJNceq+zy2/voWpfJn2zjYGhgZRlQgiDMkkVZ564nHu2XgLwjrG6mVNRGQFXRMoaIRKSGtC48JzF1MY30//8DDFYglJhFxw6Tt56O7fk2xdS10ZpTDWT6jGUai/IGP5clnM55hvpRcsIf5MTecLajunvwspnFn+3faies8X13I+v77z+Rnef4tp+MWoxJeri302uDqz34uX5/PYvKh/Xs6en2l9Ti9Xevnlj3XP89CWf6yN/5Psz47rf4G91E3x7I33x+zFN/x/h4Vh2JCzeAXXIRQdbeUFGBd/BSnegvfAP+FP9NF23OlE4zFQZAIJCCVaWzswjCiyrFMuVVAVrQEt9ANcx0PTFSYmJuhsbwXfxVAlJsdHkSSfWCKBLCT69h8gFC7xRIT29nZs26a5JcVZZ5/KeG6AcrnUgNuEAVP5PKl0ikKxzGShDKGEJissXrycZKaD0PcxdQ3XtijXKtStKqYZoSndhh/YJJJNFKdKaIqCOQ3xdWwbQ49juyWi8RiylsFxHFzXJR6PI8kqtbqNkATrTl4HQBAIKtUKZkTjnFedhVUuEtQLTEyMEXgaYaBgWSVyE8ONCXbooSo6sqzQlEqSn5pElmV27tzFHx5/sgGvVHU03aBarTExXkRRdKrVMnO7Z3PJJZcQi8fxPA/dUInEDLrmdCIrgs6ueZx62sm8933vQtMU2tqytLS0IEkKtVoNRYJo1GBo6AhB6AM+kiwaBF402GF/9atfMTo2Qa1cRVUhkTIZHhzGMCIY0QgaNrWje0EoVAKfgq7h6c20tWXYt/NpumfPRVVjVOoBbtmCUKKlbTaVikfdtlhy3ComJgqMDecwNZNcbpzjVi4lk85QKpXwfI9KqUaxUKBaLmHXqyxbtpxSpcbK41aQiOhkmpuZ39ODJivEYxnKpRrZbDNPPfU4C5YsZv3Ja+nv7cV2PNLZNlpa21ixcgWpRAYjmkTSDExTR0gSpVKFrdueRtdUVEnGtzyOHTpK4FrU6mX8wEGLJVm89DhyuSlmzemmKdlMNBpl9ZrjmL+gg3PO3UA6kyZq6rR0tvGqDefR2TmfZHMXESOG64VkWlop1W1WrVnL1q3bOWvDBgYHB5k3bx6LFy9uwI0EOHYN8BgbGubhB+6jMDmGqYc4TpWzzjoTWVYaEHXDaPxvisLg0T6u/vCVXPraCyiMefz617fQ23uA737329xx2/3Mm7uMzs4oTU0VfC+PoVmcf/75bHl8C13dC/B9D00WqAR4tkUwtJvK4SfRdZ1atY4VnIAXJAn9KrqpUa/Xp2uPAxRVnX6n6IQBjWdd1QiCAMMwEEKgKxKSCFFkZbrfG3VwZiSG49qY0RjtnV0IPMqVAp7nYuhRHEL0SJJIIgOKSt1yiEWSOLZP4EK9XKIylUchQNINjFgTkWgTlu1ilQsooUfg1MB1OXa4D1WSKUwVcetVPLtO4LlIiGnCJBXLKqOoUKtVIJTwPXBsi2gkguvUYJq4RBKCMHTwvYBatUa1WsKyKngBWI6FbkYxo034jo8UhHiOTymfawzOisZELtfQtxQ+siYIZeicPQvXrSNChxAFSagMHB1B1yUKhRyGoRGLxVCFgWEmkIVK4HmEoU8sZtLWlkaEGnfdeQ+EgsAP6XxgCunnE8QTUVpnZRGuy9iRIUbGcth1i3179jJ05G40ejkjfTpvWnbZ9P/amNxkUmkITIaHjvCJqz+PFBr0HRrj1tsfINXUqCFsMmRyw32MjA3zsas/yxVvfwuHD/fy4H0Pz4wjI6MDVMout/z2VkIcXLs+s+4HP7yeVNpg0cIV7OsdpjSd8bvgoguxkMjO7sYwFX5508/RNIMwhIXmkpn9I2aGJYuPI51pwvUrqEZjXNMUlTVr1rB86RImJye5/+FN3LPxDnw7ZM+OvSxeuBiArds2oUou3//Bd/jtrTczNDQEwIolS+jv7WdgYIKO7gV899vfIRLPMjmRY/nxWc7esIontz7Ej3/5Yz706avonRph5SnrOG7VCZz+mtM57w3nsmvPLgBy4+M888wfeOf7Lucnv7iFaLIdMxIBwDRN2traOPfcc/nUpz7BOa86e6ZtZ515Oh/++FW87/0fpFwuU6s9l2nOtrUCcKR3J+edcxZbNj3F5//my5TrZW7/1c0c2L+HbFczma5mXGEQ+gGSO0HvY3eSYAdePYqcXI8an89YrsqD99zNBa8/jTne6ucmAHLI6nXdRGOC8XGXel3gByF+6CM9n11SuMiShxGNIiSdhSsWU6jV8IWCa1Xw3BAhQgQB6UiCd560AYBN/bv56aE7qKgOqi5x8MhO/nHjtdz4xI2osjpzeFXVyba2UbXqmEqEK059OwC7x3fzmVs+w1BuG6esm0vn/Cauvf8X/GTrfajyc/IuvmejihQ337GXJjXLu05u1BFv7t/Dp39/PQdz/ew7VCFXz/H7gbv44UPff8H5A9ciP76HpBaiKB6+CBFKhta2Ztra2yiVa4yNT3HowAEysSwH9x4gHvE45aQlVMsBtQAqQRnfEQjZx1cLOL6EoSWRAo2xkSEiTRns4gSaqjcUBxQFfAe1XicqVTh04Clu/uXtDPYP8aP/8xM2P3w7xb77WTarzutfvYjAHcXMyBw7WiegSFRPTZcs2ERMif7Dw+zZ8zSxmIkQgp1Pb2PlCcczb9EJhJG5PHjnrwnLY3jiuXb/f83+J2dK/7v9gv9u+/936/8f7KWYxl7MzvX8bV8qIvWsvRzG/vlRoOcvz2f7/c/Un3r2eJqmveA6fN9/QXtfjPMXRhx11aXob7gWObuA2gPfIZzo4+cP7qVcKnPkSB++7+J5DsVinp6eRcQTCRzHRdeNRtbCrtHS0kooJEbHxgiRaM5mCYIQRdWQRED3rGyjL4TMxMQknueQSqWoVKo0JdMkmxLIikwiESPwfarVKroZpbm1jcUrVjI6MsyBvTuRRMDceT1MTBaQVIMntm5HFoIw9AhkcGybqVKJWDxCrVqhVq2gqwqqJCHLYNV9FC0CctiAaAFhEOB6gkSiCctxqNSq1Os1DCNCPJZAUQI0TSESbyKRbmb/vgOcu+EUEnENAplksgmrbjWYdkMIQ8EjDz9MNGoiSQEnn7yWrq5O/FAQCsF4bpJYson587u577778P0QSVLZunUr+ZHDJAwfRVPQDY14IkosHqVcLhKN6aiGjuvalMoNKKhVt5nK5/FcB0WG7jmzME1jWi6p8TJXNQ3Hdrjwooton9XK/ffeg+f5VGsWuqoThOBODsCx7Qz27dV2q78AACAASURBVCSIz2W4YlO3dQKhIgsYGhtEVhX+8Ic/EI9FSCQzRBIJduzYRiE3SsRUcGwLp1anvaWFvt5eOto72LFzF4ZpcPTIUUzTJB7RsKpl+nv76DvYD0Aq3cKDD9zPgb07G6y0ioRq6NTqVRSlkWFavvx4+vuO4tRqTE7lcX1QNYNMSzOO71It50ASzF+4kNbWVkIabJXd8+cTS8apOzbVuo0i64yPjBGPRCkUCsiSTO/Bg6gCSpUpEAH1epUDB/ez6sTjqdkWrW1ZWtuyRCMJbr/1d9RKRUbHhpm7cB5GRGdw4CjNqSS1SpFUPMbT27eiGzqRaATHcTAMA8IQWRZUKgWaUi1M5Io8tW0XliXo7z/Kww8/Mv0OCYjFmzBVCDybjrmLSGfiJJs0LrvirfT1HaK1tYX3v/+9zJnTBSKgVJpEEnbDqQwDJnITuI7LimXLqNds6o7L5GSBes0hFDKyolMplxFCEDEjhPIahL+vAReO69M1ro0Ic61Wa8jkyAqKqhJM31OxWAzbtilOTeI5NpIsUa2Wsax6gwzMCxAipFStIRQF33MbpESySrVWwdBVfC/AthyECInEojiehe/ajWdVVTFjMWRVw3EtPNvDs1zuvutODMPA830EgkIhT7Y1S82y0CMRQiEhKQ1t5JAQWZEJhMD3LOp1m0gkimEaQIBp6AgaAQXPdWC6zaHvIEKX0HcxdRNNNrCrFXRV4Ds2bhCiqhLlQg5BI1vr+h6B56LrURLxNF4QousGvfv2IoIQWTWo2D5+ELB161bSqSY8x8euWzhWDbteQmCzZcsW8vkCBI0xQ5YkisUCvufj2BZPPLEF26riDRURYxauv5Zjg/08vulRHnvwYRAq5UKR3v0HyMR3oISbuSR2Ma0727jhhhtmxovWTJJ8Po9pJFiy7ESu+953URW48n0fRJ52DE5YdzLHrzuZdKaFSDzC7277FRdedAG7du6aOc6+/XtZvuw43nbFO1D1gOGh5whyHn3kMTLpNt7+jveQL1szv19y8cUIIdN3eJBarcyVV74LWVbZvPlxkspzrMLRmMp13/su8+bNo6111kwmeNnSZYyMFJkcH+YXv7yZH9xwA3M6O3j4/od5/5UfJDqd9e07dITPf+Gr6IbEm970Brq6GplM0zDIZtoZGRzi61/+PB/52HuJxBPMntuCQMY0Db76jW/w67vv5N4HH2ZkdIwwCEjE40hCQiBQpzN7nmNzYM9eipU6b3j9xfzD31+LPD22zp07lxUrVjA5OYmsCEzzOd3MaDKK7Vr4CFKp1EzboCHRBGCaEYiXWH/mar7yd39LZ0sLb33jeXR1pFCicVxJRxIhqlNh96ZbyWZj1Es5yoU4gaEjKwrdPQtYf/pJXHbOPE7SXz1zjuGxSQJbJnAV+vqHkCQDhIoQBjX3OdRWRFOpVSsc6h9idKzCwqzDmhUdKLqMMBps1YpmMlUVjBc0zkydwTndJwNw+9O3c+aXTmHeR7p41T/+Bd978DrmZ+fzprWNzLmhGkxO5GnJZtEMnUKxyKcv/DQXrboIgM2DW/jYA19j+devYO21H+Lbm+5gXsss3nPOWxv9oxkooQoMceEFS1HUCp8693Jet3I9ALfu3MKFN3yEi3/5Dr628ytc98D36Gzq5J1nvn36/CYRSSb0C/g+lCsF6jWNcl3QNWceQSAwo1Ga0im6e7oZGelncHCELZuPkcvl0RQZP4CbfjeMp1jYXpybflOgHsZRYylUUyceMUCNoIU2tbpFKEJ8LyAeMzh/Qyenr2+lu0NmSXeUtozHGSdkWbU4gxGTScY1NMmjKZFk144h4skUXpCg6pWRaOhKe47N6uMXMLezhQPl7Yw6gyxduIhyrczRsQL7jtXY/fgDGF6ZQHrOcX0x38ormZf+sfnry82n/732UvPplzrXv8oSvwJ7uXb8Z2Usn+9Q/3v75sWo0Zdq77Pvjf9p9mfH9RXbC+G//wp++3zowb8hY/PHbubnS+WIsLEQCAga9V5hA+P7r69HyITTdV8vXpBetLyEzTy44oU03S88z3PmOM5LXDsz8GNJ+MiqjnrcBeiXfA01M5tL24YYz9l0zu6ge/F8PFmQTrdg2WUO7DvKwNAwqhpFyCqu4zGZy2FZFh0dc+jtPYIQClbd4eDeXuy6xfjkOGEoM2tWNzW7Sntzhmq1ztDgKPVqHdsNGB7LMTAwTLmYo+4GxJLNzGnrYPeOpylMjlMqTjE2Mkx392xsT5BJZ+lIN+pxJNXEtR0ULUEsliA3OUE6puEHAdHMLFAMQs8mGk9A4OJWp8iNDDYgWpJAVlwUWYDvko4beI5HoVKkXi+g6xEqlSoyIa7tsP7MM9FMDc3QKFXruIFANeKEkoaQNSRN5TUXnIdjldE1mWqlRjQSo1qyMXWNrq45qKog0FTOveA8Ms0ZRobGCIRHrPwE9b67CO0qTq3WSAQJkGQPT3goioIWSZBMJpkYG8a2PWLp1obeo+Pieg6+EISBiuKH+H5AGDRkT+Jxg9CHCy++CNd18D2X1rYMqldGKfRTmH8JA7UAKT2fRLyNuu0gSYK9ew8wa9YCYjGTZUu7CdwaxXKOOR1teNU8C7szdGQzjA6OMD4xzvDoIMlUAt+1satVdm3fTWvrLA7vP0DEjNKUSLNk8RI816VWKmLXa8zt7iBqxPFch9ZMirbWTnbu2EUYCJ7auo0Q6D1wANkwiSWSlPOjVAoFJnMlAkdgmhGsmo9brqBEE+zYtZtFS5YwODiIpJq0t3WRm5hEUlV27+nHskMm83nqTpWepUuIZpoRkoaLT+DDgmXHUa85eIQUqjV8X6KcG6O9vY1DR/qpFqeYHJ/gWN8RYrEkoaQSCJXxXI7FCxYwd04ro+PDaLpKtVzDLhXx3YCYmUKNy5z3F2exqGcOhalJuud0Mqt9NuUlccJ1rTihCbKOEuaoVxwKI+O88fWv47iT1/GTn/+M3/zmVm67cyOnnXE2B3p7Gzq+bsDw8AhhGLDpsU0sWXocvuOyc9cudC1CMpNG0hUIG6zVqhHF1BWkwKM8Vcf25oE/BsJANUwkIdBVHc+HIADf91DCgGqlhG5GCSUJVfjEEs2Esorngao1IIZO3QWhUau7xGPN+IGM0HUURUVRdFTdRA6qCCQk1cR3q8iyhgAMRSAFNoqiUSnVCfwQFRlBiB8GvO71lxLIKrKWQJUbpGmKJjfKFTSzIfkTOPi+Sxj6qJKMDASBgmnGKVenUFUTSdGp2VXqVpVEIkXgVFCVsOHwBjJuKNBUFYmAaq1MJB4nDBrZZoHAcTxECL5VIRFPokgSuiYToFC1LYIwoFQqs2DREqpVm1/eeBNxPY7v1pnb1YwRU0GCYqlKrR5QKFUZHOjlpDVLmRjLIckuvu+BBBvv+T14Rd5x5Zs5fvVaIjEDRdUJQwdP9LB86RrUSJxLLr+URJOKZU9wzvlrUA2ZQPgUJgZ4+xVv4ZxTzwa/MRY0t2S5+We/xIi18I73vIX3/NUH0PWQi/7iAgqFIgDfuPbb/OLnP8OujjM+0MvksMVvb7yFSPDceDI2VmH+7G7S2dkIJUX3gsUz6yy3gm/BlW+/kB987xszv9eqk2za8gBevY6mxlF1n2LlKOvXn8TsOV0z2z2z/VGu+bsv8KVP/y1nnLB+hjlaVhSuuPK91As2f7HhIt55xXs54cRTOe2UlWzasZ2WdAsAmqzwrW9+kZjezrvf+T6k6bH8mWd28atbbsOu1Rk81svR4T4MNUJQnsDSBNfd8GMef/IpDF3ns5/6BE9v3sbh3f10ZmZxxy/u4r7f3s/ypY3McM/SJXR1L2ZoIE/P/BY+8ZEPz/BMTOXGaGuNc8OPfsJPb7yBT3/2M8+Nv4EglDSwGwzrz590PuvECiOGEnYRM2Ficg/VoEz7spUMDuYpD+zECaLYik6l/y4y/kCjHn2gn9iCU8mXbYSlYGgpfnv7/WwY/haa+Rx5kq1aqJqKotY5df1yJN2C0EJILiOTpZntZmfTJBJp2pub6JrdhqxmsaQA34riByDwqDp1/DBHVKty0vGd/Ohtf8U3X/c3nNVzNp3JLmalZ3HC3BO5asNV3Pv5uwmmoaTzswu4ofsH/J15Db4FLS1pDu0b4C3zTubGKz7PRSvW09Myi45khhO75nP1qy7n/s/eTsVu9G93dg6//+1t+E4UU6sRelFkWfDNiz/ED9/wSS5YejJzU510NHVwXOdKPnjW+3nkSw9RqjX6oSvdRa001ZBZkmVkNUPNTxLRIlh2wIFDB9BkgRaqGEaUWMojnVWJx4ssWNBEOqUTU2SuuKgb4YToosJlr5lFRPdATeD7IOsRnHoex7IYnwwYGqohqQYCj6gKpqzSHFdZtcxk4RyJ7lkKEb2MIhTqVhnVjCMrMU5Z1U5HJkDyKsj4lIsWQtHZvr2fOS0m2aSJrmq0NGc4cLiP005egyRJdHYex5oTj+e+W65H8oKXdThfymZgvy8h0/JSiZgXO5P/0fZip/iVOKuvCH34x47zJ8B4/+g1TPfhjITOH7Pnw7MDMQPLDkLvBb7L8x37/4hgwX+W/dlx/XfaK3mY/pRI0X8lLOHfeji1NZehrbnsZdc3aP61l13/r86nGtg9ZxMe/zZSU09hTYzizzmNTCZDqTzF6Ng4SAGt2Ram8nlUVSWRTBCNRqlVG1H1hQt7kOQQz7E4eHA/mhlFKCZBEHD06FEEguGRUQ4dOoQXBMTiCWLRJhYsWERrayuWbdPakmF8fISHHnmQNWtWM2fOXAzDwDRNjh3pJ53OsHvvXlLpLK7r4/k2qiqhTkN2Dd3A9gTxRBOBayMCl1K5jDqtf6vpBunmLL7v41o1LLshrG5GItiOgxmJIktKg+E1DDEMA8fz8HwPQUPax/caDqLv+VSrZWRJwqnXsKo1HC8gEktRt302bdrCzmd2kJ+cZHx8jFKx1Jj4+h5S0GAqbWlOc/LJJyPLEkJIHBscoEEzTEMPU9OJmFF832d8vEEukUgk0HSV3/zyZ7i2hSRkND2KXa3h2HXKVh1DU/Fdh0cffojc+ChBYPPM9qeJRGJEowkkSSasTSG0OPH5q1m+cA6VoX0MHh0k3ZSikM/T3pqlra2Zvr7/y957x8l11Xf/73P7nb6zs00raVe70qo3y7JlGRdsE8AYbIMJthNKTEkMIYQfxLRQUyFAfgGSENKojgmBYMDGcbcxko2qVa2+q+2703banVvP749ZycLY2OQJz0N+T7563ZdeO3PvPefO3DvnfM/3U45jGCa7dj5JMhmn6TVZt2ETiVQHJ0+dYmpqsuUbrFtEQUSlWmXJQD9mTCeby7Kwf4BMLsv49ATT+Rk6ujtblXXTxLYt+pb0gyJ4bNt2inMFtmzZTC7XxppVKziwby/Xvfp6rFiMvv4+lixZ2vpOPI/HHnsMtIjh08eYmBimVs3T39/HyMgI2WyWKPQo5mcozE5TKs6ybu1Kjj51mI5sBzHDRBcqx48cRVdUnGqNyI8wVQ1FClQpySRTTIyNs23bNqRsQWFz7e1MTU0RRRGZdJrjx4+3bF5iMcIwolxqcPz4KTRNx7JMTk9OYdoWiiJxGi5tbTna2trZu/dJVNXg9OkR8tmAYCDG8KlWJToKIlIpi/e+/73MFGfYu+cJtm17jFUrhvjc5z5HJpPhfe97H5qmMTMzQ3dPN7OzeUzDYMuFF3LvvfcyOzOLlJKpySksw2wJGAGmbbcQEjOzCE1D0dcThXNoWhMhIoaHTxAEHolkHBEF+EGAVFQ8LyCKQpASiUBGTQwFFClRNI9Q1jBtiRfM0ZZJIaWHkCFOvY7nuzjNGoiW+qWqqgS+TxhEBL5HJAXCiBGoJo1Gg0QiQa1WO4sa0TQVd148yQ9cIumhawZIgR94eL43z0VS0S9Yj9i4bl7VWBCPx4jmbUo8r2VfYVspNM0kikJiiTYiqRJGEi/0UVUFTVMJwhBN05EyRIiwhWgRkpAIoavoto2itH5nPdcncF3mCq3JcCaZREYtRMq69Wup1itU5ip0dHRimjamadLX38ddd/2Arq4ech2LUTSb/sElFAs1oghkpHDT695MKLVWBci0EUKjViuhqgJDXUypVOJFL3rRWXRPe2YJltqOInSE1JmK8nzqHz/J8hX9aPNjgarrvPnW36ZWKVOaLRF6Pqqqcu99PyQWa1UsPdfnyit+jZnpErf+zu/TuTTHrR96N5ffeN3Z8eLii85j4+o+pKwSs1XEOWPo6jXLiGSdDRs385u/+Yazr2/b/jgXXXg56eQCwgACT8WpR+TzRfKNmbP7rdmwkYWDi0l1JNn+5LZ5CgRMTk3wg7v+ne7BbvREwMc/8Qfs2PEEvh9imTEe39GyfOnrX8BscYRqrci3v/2vhPMJ98tffjWXXXYx69avolKp0NfbS8Odwkx2EfgRd37/hwD89ht+g1t+8/XU5uoIqXDX93/I1os3smr1EPlCy/ol8AOe+MljbNgwxK6d+3nLW36bMGj1M5fLkclkePvbb6VUKnHgwN5zRtoWvPbZvSVb471pGJi2SqFUJNvejWW3EYQRm7ds4cCu7filcfCa7Ng/TMfgVmZmRzk9NsJctUJ7e5qxwlOktHFeXbmGzi6L9gWiZX8FHJ89RRjV8aVLqER88xuHETJOEHgcmnkKgI54mpianre/kkjp4gQNdK2PUDqoKChKDN+xyWWX0JbJEqkBQaiwruM8XrfkNTz6h9t5+AOP8MUb/5HbXvNBdNXmJydbtkbnD27miHeMMWOEnbt+zOzUKHt2PMzKwX629q/ks9ffyv3v+CTbbvsi33vnX/L7r/pd0h39bDuyHYCNvUNc82tbW4Jj0kKoEUJKNN3nRYNr+fDlt3Lb+ndy59vv5O7b7ubNF7+ZwlSJncM7Abh01SWMnz5JWyaGYQg8aZPILiEwk8jQY2BJH67XZM+BPdQrBe773lOcOFiluz2BKnzkPOtTVVVUVUXXdeLxOIqASqVCIpnBjKWJx9MIGZBO6eRySaIootn08H2PIHBBRBi6juf5qKpGKEHRTFACIhr4QRVFb6LbEE8m0LUYdgLq9TqbNq9gvNxg18GjTM3M0nCadOUW8fjjOzlv4/m84lWvpFgpcvTIHnQ1/KWg/X7Z8b9SxT1D8/tVTuz+/x7/k7j+gvFcKxHnPrgtSKX8hR7oZ/JZn62NMwPRsz00LySRfq7E+JmwZDXdhZrueu5Vs2e8fm7b5xoXn0tON+IpEsvW0fm6v0CNIry7/hgtt4h6s05HVw/r1q1lZnqCeKwFhXQch3g8TjKVnpcPh1JplmwmxSuvvYZQKlTrAdPTU1i2QRRJkqkUvQsX09nVRbPpcvfd96CqLfhg0/ORMsAyFNasW8vePU9SKBTRdZMwjJienKKrM8em8zbS3bMIoQgMXcOp16mUZ2jW67Rnc+h2EiEUArdBZa6Iphs06rV5H1cNVB0hBUoElh5DVRXyxQKuLylXqsgQMuksruvi+T5CEcTicUr5aRr1Gt/85reo1z0S8QSqojA8fILh48dIJhIglZb8fxCRSqW4eOtF1GpVVKFw/Ogx6jUHr+m0RJ3CEF3X8H33LB+yp6eX3Xv2EoSSUnmOdDqL57dUMdvb2xFCIZ6I4Tg13nDzr6MSousGjuNTLuZ54MH7MWNxvKZDs1Hn6pe9lFQijlQkazesQyIIQyjPVVBjbRA4hJFCefQAozN1Fi/up+k0OHbkCLVKlUwqQe+CHnbvfpJVqzfQbDRoa8sgNRMjkUU3bVavXc3KlSvYvXMn6XSK7Y9vx4rFedGlFxPJCC+UnDh5goHBAepOAytmk0gnW/54ukatUUMRCps3X0AsbjGbnwER4nsOK4YGmZmZpVwuo5sm1WqdU6dGCIKQrRdfhBdorFi5EdNIoAuTdCregnkbBrVqmcOH97N0sB+FiEJ+hsWLF5FMphg/OUKtWqW7u5vD+/YzV5hDlYK5YhnPaVKYmsRt1Dlx7DibNm3i/PM3sXz5cpquS1u2DcM0GR4e5qKLtrDrJztIJVM8+uijJOJpcrmuecVdWDwwiADy+RnCQDI+No6UEbValbHRCfqX9NHR2YZp6AwtW0rT9fB2f5mJ0dN86Z+/wo+f2MnffP7zLFrYy4qhZdx04w00nCr33X8PjXod3/eIwhBVKMgwpF4t4Xgu7R05dj+5l9PDw5SLxbMQR6IATVPJdXZgJ9I0mj5eeDHgIZWFDAwsQdJ6lhu1aivJjCCTbYcoJPRdpFBo1KuEroPXbBAEYJlJmk6AZSYoFmZwGnMIJSSZSKGqAlWVCAHNpt/iwMZM4vEEmqa2Fmo0HdWwME0TTddIJhNYloWmaeh6axHAbzbQNUEQuqhqS/G7UW8QhgFREBKz4qhaiy8ahB6O00AooKoKmXQW0zBxmlVARVG0+cmNwtxcFUVT0XQVVbQSXE03UA2TwHWoVkvz/YwwTINUWxtSKBRLeWZmZhCoZFJJEjEbTVFoNhroqiDXnmXd+jWgwEMPP4Tv+YSBbFUQZcTNv3ET9ZrL2ESBcqWJaqq0ZVM4NZ/QE5iWgR+qmLpJuVDGcTxSCRvQKcxOccsttwAttV1N0whxsO0Qz63jNMp8sfFlHu57lPHJYyBalT0JqAmTTDpB4EkUVFavXk0kXWzbAuD/ec+7GBkZ4Y//6DP8wXs+RmnkBA98/7so/tOWN5YJ77/tVnQtZPeu7S3I9Xx0d3dx4uRhpGax/rwLSKdbdjRT07PoWoJ3/d57+frXbyfb1kO2rYdqd5F/2fPVs8fniwWmpqf5zbe+iaYaYpmthHp8YoLTYyeYLISEoc6uHYf4j3vvwjRsfD+iOFcE4LyNFzA142LGdXRbRdXmq5oK/Nv3buf8izaw9rwN6IpOw5kFM0Eq1sb0/MJgX99iJscnkGHEB953G4KIRrPE2PgIo/N8WdPQufji84jHVS648FIuvuSyswskAZJMroOhNUv4+Cc+yuYL15y9tiDwEH4dqbYs4n46np4vpDsSdHQvoqNngEAYCN1CajZHjhzBlB5x1eeqa97AHO1ADTWW5LwLLyGVTJAzMmjf3YAsdHNUeYhjTw1z/uKlADz01D6EMFHVJE1P54abBgkpIVB59PgRAC5fvh5N1RGqIApdZOjiBjW+853HcQMfVWhEwPjENK5bx3HyjI9XUA2dwM/TmUvy8MOPcPjwMRIxi2JpjscObuPY5DEAXrvlJhLxFEhoNlwKE8Nc/8o1pFNlYraJaeqEMkL1myB1DCvDY/sf4tjUCQBet3ErYXOWfD6P2xTouoIiBA2ngWalKFZ0brj5Fjq6F6AKQWdnN8dLJzg2eRSAa9e+DK9Ral2X2yRmJZicmCVmm3iOw8zUDMXyHMuWL2Xvzv30LQ15+TULWTbQRTI2b1+nCYIoQgpQNBXX90glUhi6iaKqeG5AvdZAUQVtbRaq5iJlhKIZWLaFaektjrDQCIOA8lwJVbeYmCwTi+UQoYKCRhB0UcxHuM0QXZNIdKYmK3iuTzyus3XTMjYt3ITtxTl2+BBLly7FsGwe37GHiy65FEXWUZX/XAL3XEKjzyWC9Iu08fPElJ4JA34hwkvPpMKdSVzPzKd/nkjTLyuezwbnF7UQ+t8Jc/6viP9JXH8JIaX8pWDDn0v564XGWfWxc/7+ryB5v5B+qcJANXQ+95efg/U3MWyvRTl4Fwv1BvGeVQglwo7peI6DaZqoqoqUEssS1OsVhKKQSGSQhokXuMjIp6ezE03TKJXyxGIJunsW0J7rIJlMk83l2LBxBVHUsr1YMriKcmGORq3BxNQM+XyRkeHTqIqGaVjkuhagCkmzMk1HVw7Xd/Bdj4TVhmWnMWMJqm4TJYoozkwhCElmsgShRIY+9VoNx29x2EAwNVOk6bT8KDu6Osl196AqBk/u3U+1VsewTHTTwA8CKtUqmgJOvcJFW8+npzeHrqq0pVN0dbYztHIliAhTi0jHVWKmZM2aFZRrZZYvW4ZAUirM8cC9DxKGCsVilcnZInY6e2ahfV6ZucHmCy6gXKmQSKUplyromjn/3QmKxQK+75JKx9EScTTbxA9dotAl257lxVdcCiHopk2Iwo+3P4GdTCOlim6YOG4DoUXohkWgJ5B+kx1/+w56F/TQv2wpTtQklowRS8ZZtGQxe3bt48D+Q6xbv4EDhw5gaHH8MCSWToJpMpMv4HoOu3buYv36IR577GGuuOJl6EaaRqXO3p/spLOznYH+Pjy3ybo1q1EVQSqdgChC01SGTw8zcvIkp46eYOzUCXoHBlAsi3R7jkQqzczEBEHT5fTxkxw+dJTurgU89qMfEQYhqlSZncnT1duDYukYukK1Vmdo+RAXX/5iLr3iSvRYjPWbN7Ns1WrSuTYC4dPT04NhGmiWia7r+GFIKCX5YonR8Qlc38G0TZatXMHBgwcxDJPZmZZPYyFfoLuri3giwf79B7hw82ZKpSIvf8XV5AvjDA0tAVoONOMnj5Mfn0IzYximxqJFvaxctYzrrr+aEyePsOn8dYRPlRDHG+RnZ1DsHGFjjkMHTxDKJB/88KdIxNv50UMP8o9//yVeeuUVGIbG9ddfi23b9Pf3MzE1iR8GvPrXbyCdS1OpVdi46TwGBwfZdMFmEukUYdS6vtMnDlOcGadeKaOYFvFYkrlSQBQKDGU3vh8RhRAEsmUZY5iEnkMoIQxb6sNC1YinO/D8CMVQ0TULzwuxrTjNpo+um5iGTuCFyFBDU008P6Bea6IoGkJpTeCjEJpNl9BrogYu5emx1m9KJHFd72zV9UxCQOgTeD5SmvNVSUk8EUMokiiI8HwXVZc4fgXPc0kkYvjzyZbvRy07Hhmg6SGSVsW3NDtGwlbB99ClwHUaGIaOUDQUVSfym8TslvIvnk+tXKZSmkOgYplxOjs7CSMP1TKIZRJITSB0lVqlwZEjx2h6AaYd57rriFdBdQAAIABJREFUrsU0bWo1hwfuf4Cp6QnCIOCuu+6hb3Eve3btxXPr1CoRR4+c5utfuwNFiUhk2ti18wmSCRMpIxASKQVGKsMdd9zB6dOnSSaTCCGwrQT1agMiiakbGGZLEEagcerUMAAjx09Qr84RhS6NqsdH/vCjuK7LP/7TX7fOD8QSKi+6dDNXXXUFp0fGmJprEk9nSZhPi+M0vJAFgytoVCM2rNtEGD6duJaLHgt71pBu76Gto5dXX/caAL5xx79SLOUZmzzEjTddz5133kkURZRXj7J3es/Z48NGjcmRUS6/6GoI2jl+bOTse+//wB9y7Ysv4zOf+kPWbBjg9971DppNn89+9i/w5316r7v+Wjq7FiLUGIoWI5wf9gzD4KOf+ADl2gwREtcwCRo2c6UpZKiQSLToJ/UgoqcnyeBgJx/60O9RmZvgS397O+//6IfP9qNaLREzTIaPj4Auecutr0fTW5+PoirE4kkabgXD0Kg3imePi9kmoV/DtGM/dywORQxhZBC6Tah6LZ9ns43fef+fEOsepDR2Eq9ZQ6hlbNNCaFmOHS/TmPTJ/OsqnLGI6dQ+onqBV12zkZcNXQ7AtuHD7Bo9gYxCxkdGcKoxTCPBnfu2c7o0DcBrNm4h8CWmEQcpCH0XQ5G87JqLsJO9RKrO+FidpUO96LqPLiwWL+5GUwO6sjq5rM7o+DCnhk+SSZnopsIHb78NgOWZVWiVCuXSFMXZGQb7PLrSEUpYxlAzyCjA81x000K10hiphVQjgw/e3vrsr1z9Itb29mEmYizo7cayBb4r8EJBKNvZtX+GnYdOMjx8CtPWyM+VqTXLfOw7HwFg6+DFrO7uJx438KWK0NPkqxHLVg8QhhIrmaSrexGRJyhM5WnvTLN3b5HTJx2qtTqBL4n8CBH6GJYJopXAGqZJIwDLMCnPThM28yiESKHTjDS0ea92SYiqGEQhqKpOteJhGiaWbaGbNo/vGKfR9FCIECJkYnoUw9KRgOcG2LE0nV1tKIAMm+TadGzFJnAjpBwjDIoomsZLXnod1ZrErc0Reb+6yc1/dTyboOoZ5M6Z+FUQVP2/If7nE/4F46xktuCnNvhpnmiEPLv9bETnbE9b5shn+NhIEf3UJoSk9UxEz7s9Fzeg9do89/VZuLKg4B9+CP/wQ62/z1jmKOIsR/ZpHu5PW+uc4di2OLc/TayX0icSOr/7gfdhdWVZ+YrXc8dUH5X0aowT30NMHSTXPYCMQqqVCqdOjOB7Pp4bIISC7wdEEjynia5rSASGFcM0LDpy3VSqFY4dPUIUNenoyJCfmWH5itWcOjnCdL5ApTxFKt1GuVRFCXw6ervnfVSTKIpLs1mhVJyj2QxQdI1yqY6q6gRKE1U3UISKpRjM1Ur4UYQdT1Ipl7GTcYRhEE8kEGFErTpHELh0dbZz7733ELlNFD8kP5MnlUqwZu1yDMNqqYvOlfCbDp6vYaWyxNNZ7JiNZemUy0WarkM8kUIhpFKaw7KTVBtNNDNBFAV0t2eZnZ0klkiz8fzVbL3oPHbueIJ0KkVPVwdes4yqSqII6pVaaxIqQ2pzJdRQkkjGcKtzKFLFdRpk27uIhI3nS0IfQqGiqC3Ysm7HEKo2f3/pCEWwecv5KJqKHUsgw7BViQ5hz47tNIMIL7GI8xbHoDbB7EyRer1OFEVUK1Xcus/Q2qWs3bgJPxQYlsX41Dj52RJurcnUyGmWr1jG4iVDrF63jmxXO1su2kJhdoafbHuUg0dP0tHbQ3WuwAP33sud3/o227dtJ9vRSYhO1a2TSi9iaGgZmbZ21m7cxMDyDYyfOoWKz8mTxzl+cow161biuU4r2dQMyuU8l15yIZXyHE3PZ2pqBlVIysXxVpIrPDQdTo+Momk6qVQK122gKj6NegNFVTF1lR2PPcbwU0dYtGQRhmZQa9SpNWpYukV37wAhCm3ZNMlshurcDJ4zR/+yIdau34hmaqTb0jjNJrVaDRkKJsdO057rZGJqGhlBcaZA3+BKfCmwVAXfqSJExMjpMY4fHWFg2XKcpo+6cxb7yRKFYgnDttB0laSl8/EPfwTDVPnQx/+AN73xRpKd7Xzja7dz+9fu4O677wUBfhgwPq5xakSiKQZ7du1naHAIr+li6Aq6abV+FpI59EwP3b1LSMUTOPUakRdRq1WIpyy8oBtFSzFX03GcIqEraTYcPKeOGUuiKC3BNT+UlPOzKIBq6KiKgUKN/Ow0qCFCusTtDM3AJVJCmk0fQ7eJWXGE9FCsJKoSg1DBlx66qaLqBkJTsRMxXNc9y+kxLYtASpquQ+g2CUMHgUvDaYDiEovHEUJHVQVIF5A0dx9BO3IK3bDwPJfAC5ChQCg6mp3GTnUS+gpEFroRo3PBYhQjhmZa1J0GZjxBKAxU1WpNUDUDz4/Q1FZFOJVpI5FKUW86GLqG23TQdXCdAiLy8dwI3bAxLJMf3nsfCgLPraIbNpVmiGGaFGZGWdgzyBe+8Ddcf+3VeDKkLZvEEDqVcpE9u59gycAiKpUGiqqTSmZp1H10I0YQeEipoPkRE6frxOMqioR6fZYnHn6IZCwJikRRDZymg1BVzGQXnbkcAEcOD2NYKfRkgr6lC8jlssTjSd75zrcSRS0OYeD6BF7IJVds5tTIFMcPHWXRol4CJXl2jBIyojLjkUx38p73fQwz/rS4khc22fbofXzqI58k8gVbN19MIp6gUCxy0+t/nU/+xf9LraKwZEkfd3zze9z0W29EOUfXob13AQNDy/nbv/kCt9x8E7n2ltpuzI7x0CMP8ZJrr6S/d5CVK1bTdOG6m27kC1/4NAC3vP7N3P7Ff+OR+x/HShr4gYt2tgrj88D9PyIR60CGEbbU0dSA2XweVXVYsrjFs/3Upz/Lf9y7jcCvYWoJJiYm+cI/fY6HHnuYdKrl1aqqFiER6awgGc+huApOo6WsrCgqhUoZNZbFF5Jk2+Kz1+Y0G9RL+RbU/Wfi7AomCi1lbxkGxELJH//JJ8jYKko8y4nhI7T1dHPowC5kowSVIvlqiqhewfp6F3qbxkx8O5l0k56+djRVcN3mLazoXoyUkrfe/lkeOXKQlSs6SSVcvrN7G+/7bsvq6LKlG7hs2UUYaojnVIkIUVWFz97zDVZ8cCv977+SqabAI0TQJPBDMHV2nj7M5x+5m2IwR0cmxqteOkh/t8V3t/09L/7wVk6VTpHUE7x22WtxynkStiCV1MgYgnTa4ODsFJ+577s8NTWGlBLNiNNQszxwaDtX/9ErODB6iFwyy1/++vtRIofAd9lzsMBdDx7H9xrsPXWAj9/5FRqaz0teejkLF/UjpcLO8V1c/1c3cGTqKO3xLH92w59w9MgR0raDIuKUnCSxZI6psVFUTeA3fSIZcfr0LIZmsX/fEWJWwJIBm7aUSSh8QqWVzHteHSEFrhegGO0oIolQwcxkUVMp6pVx4h0bSaY7iRQLBQNdTxBKn1CGRIBmtux5dBXcWoVrrxlE03yEpiIUla5UHENroGsxUHxcZ5ZIi/HwY8fQhECNIiLA0A3Wb76SRLKLu++8h6//wz/zla//K9KDucnhnxUjfcb28+KZVdCfsob8OQngz3vvhVQ9X0hF8plz2Gfj8j4TXXm27V+Aw3qu5c/zoTR/ysZSKihCe7qdeb7ruf8/2yYUiYwEUQhR+LMV7TPX8KucgGvPv8v/xP8NceYmlVISjh8AQF955c/d95nRSr5//g+CEKIFr4okb/vdd1CYmuHfv15k9vCjvOFKSBshUf91LLMsduzYweBAP6l0hiiKMI3WgFutVIjHkjScOp7nsXPXLhYs6KIjl2P09Bh2LIaCwvCpU6TTaUzLIPQztLVnmcnnGWxfyujp40zNzrL5oq2UyiWoTBOPJ7HjJk6jQXd3dwtiqykgAyrVOdoyGVLJNCLVuk5dV4k8Oc8bVdENnaQiURSNMIx41bXXIgDHdens6kZRJLqaplqvYZkmMTODH/jENJticZpkMoWMIlzHwTR0atU6yXSGKAxxvZbfpWlZKEIlHrNw/QY9C7pARCSTcaRtcckllxJFkjAMkFIFRUdVFWKJGFLooCosWTpAtTqHGYujSsl9//FDNpx/HrquU6/XSSaTBL6L5/nYpoVlmUSRj2lqOI6DbaX43ve/x2te/WoiCeOnRijOTjG0fAhF1dnyoi0IxeLAyZCVMRO3WiRQF7B4UT9OrUpfXx+Hj+xnYW8fo+4YK1cuZ/lgP0JRse04e/bsYfmKpa2KSamMaZgYWox8vsievftY0NvFsuUrMXQNIeD8F11CR7adY0eOUas0KBWO0mjM8dS+Q0SyyeYLXkS1VqLeqLGwtxuhwLp1K0GqlAoValWHo0d2srC3h3giQdN1KBZLtGfbWLSgC00JaDYqtLcvJhYpzEznWbh4MY7bSmgQglDo2JbCjx56kKUDy4gEDK1YgRAh8ViCcrXCosUL8Jsuxw49RXtHDtdpsm7VejzPJZQaT2zfwcoVA4wdG6W/r591K5czUyjR0dNDKp3k1NHjtHV1EimCjgULEEKSbW+jUCjR091BsVigb/EiVFXh/gd+TFd3D93pFAjJ0MoV+CeGcWtF1ly4nvGpBh3tOXRNw5eSd/3+u3n5la/gwL6DHNy7D6I38eTuYyTSF7d8UKOIUqnM+nVrSadTuF6Tn2zfQRQ2WbH6OqxUBtVQIRCk2+1WZci2qdWqmLEsUs7SmSvieR0EgY+hWIS+27q3XR/LMIkiSbat9X6L412nva2dhb39hAHYVoqmW8A0sghF4AYzeEEGkKiagChACg1VU2iUi8SSKQxdR4gIRZGYsfg8P1VBiRwMzUDRbQKviS7aQEgMI0JV9XmuWICma3hBRDxuEtSb+KFH4DRpy7YRqCHV6vg8X1XFMMx5XppKvV6jVgtIJpPIeVVwBQXLUgnCKpatEwUxNNXA8zwCWkJ+fr1C0tIJ5jUP/CDAC1V008DUXIozo6RSbdxw3TVoAhAmmqYgI49/+/Z3uPrqV3L69GluvPlGntx3gPM2ncfGjZso5AvE0iZveuvNLZE7V2V2bJwFPZ0cO3aYoeUriG3U8eQyqmFErTGBXdeIIotkJkeuu4N60yGbsgmC1v3gNCpcePvFlN0WN/O88zYi/SZ/vf9v2BPuJ7gu5LcOvxXfDyhHLRGkL+z5e9725rfRvTDBbR96K79z4ve5p3EPT3378Nkx4q8Lf8edtbu59Mkr+fM/+yi3ve/9Z9/7WP2P8Ze46MsE7zj5ZoIVkuXvWc7+P9/PgYP7ufo1L8OIGYRhSOiGmFmTJW/s56kvtaCq/zz6TRYf7OPb3/oO7/nM7/J7f/cHANhLLRat7uVLX/0qQoFvPPxdwnp4tqKybPMAszdOMdoc5qB9gLt2/wde02XH7I7W2EfIJZdsQuDyliPvQlUUZBihaibH7znGgg8u5OCtR6mWarzjttt41wdUNFOj2Wip7a6+ZRXjj4/DIXjIfYjpsRm+uOLzzBZGWlXsWAhV+Iexf+LBkYdQhEBoCvIcoJPn1JhLwwf3vx1x7hvAkVrr+st+GYWACIUvj3+dR4o/4sDUk2f3+8DBD5Mqxulv7+CmwgBh4Qg91gV8duofEBu/hLRDfL9Bvd7Ec6pk25K82riUL//GH/Daf/oEo6VZbvynT6Carb5Ffqsfmf4E1rtMZM3D8RxKJZevrH+QcbPAwd0nz7b/4ba/wl6qcHFtiF+fvYhmw+FQY5RP3fdVPnXfV0GAHtMInBA5j5ZY3NHJ13/z/fR3DfCtzIPza+wCwwTP9yi4Ff7igTv4iwfuQBEKKTtOtdkgjFrf7dLuQe545z+S1eqokYWq2ly43mTNyjY0QiaqLrcf/AG3H/wBilBIWAnqbv2c45fy12/4POtWreZUcxRVM5FGFlVm6OjooKu7F8/3IFA4cGAPmy9cTWVuBKdWZO3qboQM+feHTvHiiwbIGC6KZaHICN+DZFsnmpEiMtL4QUsnw/M60SxBIOdoOBIRaKBWcd0ATVGxLAvf91r+rJp5lpPfEoFTcV0PGUl0W0EYOvWGRAY6+/eN4QXTXHXVAB4CPfJRBPiBjyLi3HXXD7n22lciFMmRpQ47Hvgqma44T4P8/yf+u8SZhPu/a/zqptS/gvFsq0DPZYvzrKswLyB+UYz8c+3/TDPlc/d95vafaffZ4lyc/Bnfxme1zDkDz1MEma4cb3zbm3ETg4gL3kV98BVEB/4NP5QsXrSISqWClBH79+9ncnKKwA9IJBL4ns/kxASGYZBrb6dcLpPPF+jq6ibX3snExCQDAwNnYbCDg8sZHR1l+fIVjI5OUK83ueF1N6NZcR59dBv5fIOTJ/OMjpWp1WpnvWu1eRuMZDLNzMwsrutTLs9RqcyhKK3JsipAMzQiGRKEEaqmIxSFMPRBUbBiMcLQY9eOAyjCpjrn8aOHHsHzfELZWq23DB1T1+hob8O2WhPgTKaNifGpefXeJGEQ4nsexUKeQqHEzEyBx7f/hFq1Qak0R7k8h+/5RFHA3FyFMFCYGJ0gioLWgoHa8rQNggBF0RGKShBFXHHVlaTTSYSIiMct/MBtCc3YMTzXp1yq0ag3URUdQ7cIQ483vuENmKZJFEKuvZ3+Jf24vk+9XmNmcgLhedQrcxwp6BD5tFHhySf3sWvXbvbs2UN/fx/t7VnaMm3Mlec4cuQow8PDTE5OcfLkSZrNJpYdww8CRoZHOXlqmCf3HWBo+XLWrl3HwX37MHSdWCxOW1uK4eGT9PUvxjR1unOLILTIti1gy5ZLQYBlmWiaitd02bVjJ5VShcJsAcdxGBgYIJVKUK1VCcNWVWvVmpUUi0VUTTB6epR4LMOpkRHGx8bJpjqolMrIIMRQVQxFxanXEAhefNnljIyNsfWSS9m5cxezMwUOHjpMKCWZtiy+H+A2m5TyBdoyGZ7cuxs7lqCru5eB/sUYls2qVevY/uPHmZ6aZPT0CJ2d7ciwVZmLQkkUSg7uP4DrNNF0nY6uLiQRhUIRTdep1eq87GUvZWx0jHq9TrPZ4o6qiQ4M4SF0jcuueDGf/vSnSZg2kaISRAqxVJrla1Zxy2+/FccxCL1OHn30UR577DG+8pUv47pNnEYNCWiGRVdHjgs2X0gylcGwTALPJZQCVTMIg9akPx6P43k+XtSNwEE3bCzbRKiCeqNGda6EbVuoqkKtVsXzXYgC4vEYmbYclUoV1/XQ9VYyQhQgo5AoDInHbYSiEYQRitLyMfQDjzDwcGslBC2hm3KxjIwiPL9GGDkoakDDaeK6AQoKjUZrESeKJPF4DIFC023O89taPFyAKApQVEEqnSYKwfNcMpkeLDODplgtixu3SRj4xOMxTNMmikAIBduO4TabNOpVPNfDdwPCKKLhuCBAEKGpLauaFiQN6o0GqWQGSzNQiPC8BrpuYMeTpDIpFF3FisUJopCYbdPT2UGuo4tcVyfZ9namZwqUitM4Tp1qrYqizNsbCEkY+jy5eydBFLD+vE006nWUl7o0r34ZqbTFeZvW0NGRJZmMA7B4ST+JZIrJ0stp8jtEgcTQbZYODmJZLZ5oJpOmUSmhaYIwCjl+4iRiXlTmDKx62bLlNByfru4F2LEEmqqgazpDQ8vOjiOG2eITd/e0E4+37IKeHsOYt1HSUBSBqgkGXryEd7zlFq675loMrYUQMdI6S141wBUfeQlduQVnj89kMrz85S9nzZo1RJEkn8+3xi5FsPK3lrP1Y1toX5NDRhJN11kxtJI/fO9HuOWzb8GMma0FEiJkFHDkqcNPW8NpOtJzmB4fQyJQVYUgCNixYwdLlixBbVN5yd+9mKte/WI6O3JIwLIterZ0sfVPL2Ttm9agaWfqCALf9Th6+BSqSPOqa24mmh+bhWjdh81m46ya99nPRtGwEhnk89S5pCKR+GhKhBIFROfwi4XvtRBjiklnRy9ybBWr97ybyAhxqCJpifw0HBc7aeF4HrufLFMtwf3v/Aw3vOwSUgvjgEDRBG1LEqy7eSlXfPx8ktk4MgrQTZMFvT0IpZVMndtfRdNoOD5SWKhaAs0wWbmoh6FXLCK7NIWZMgiaIUZCI7cyw9rXD/G1936IBZlunFoV3/dQ1ZZiuOv4zJV8KKi8ov9i1vcuI5fMUHebZGJpLl15MX9208d59BMP0GXHETSJQoVGs0zgVVGjKoYZo9vs5PIFl7Fu4XpSVhrHc0hZKS5ZcQmfeM0fsf2Pt7O2fw21aoVkKk7Vs6h4JiE6nh9SczyQgtnZCdasXsNTB0f51u33ceXlF5CyBb4jufLyi4nHTRRVw/M8Qj8knswQChM93o6uGczOlhGKiWY2EIqK6wV0d67BjXQwsuhWBjd0qTl1hK4QCgjCCISC6/koqkbgB1iWiaIKNDWOisnJYyOoisHmLQu5aOsgge/hN3VKVRPHaQms5QsTPLlvF/c/cC+Tk5N89wc/IpVs5/jRPWdpYj9Pg+X54hflU/6vCpn+Z/ibz2VN+Wx82J9n7/NC+/dc+57LrX02rZsXGr8Iz/dXLcR/l6zb87z/wx19GhJwJiGDp7/cZ0pqn7uPPDvonLkRzn3ofjYRfnrf5384f/bcz37e5+rrs0Xz/r8CwLrqXc/T+jP79/QqzlypSDweP2cwfroPCmcAzfN9J0DJe3zta9/kiuuupzCyh8Wz99NQUsjVryU+8wT1RgPTMtFVnblygbHRSRYv7OPwUwcZHh7Btg062zsYXL6c8twcubZ28qUC3bkcP972Yzaddx6Hn9pPEAToWpyBgT4cCfnpGUZPniCR0qlUI17yssvQNJNYLEmtXiOUPrn2HgLfhyjCNFqEEj9wgYh6pU5ASFuuEyE0FKHgegEjw6dJ2QpdvYtxXQ8Ch/944CGueflLEKpBebbUgjAm41i6RqNeIx6PUyyWW16wAjxP4vkRpt6yy4jmfURTiSSnhsfYtm0HF124mYFlSynPzVGbq2DYJrlchnK5yvYf72LtqgE62zQMK44Sj1OrNrHMBHfeeTevfu11uM06mmXi1OuYhoEQAk3TcJs+0/k8HdlO/vUbd3DpVZeyaNEiXNclFm+pkQpUgiBEColtaKAIQqA2PcZ9dz/AFS+5CttQiE58FSuzgaLncWzWZd2atTz6yCOYcZPR02O87nU3USyWSSVjjIyMkcu188RPtrF06RBC0enp7qRan6O9vYtqpcbExBj5mSkuvexy9u7fz4aVy6hU5jh64hSbLroQNfTYvXcvixYP0NGdQJNJXDfk9OgIgddkaGgpTqPJY489zpatmzlx4iQrVqxECCiW59B1g2x7Bs/zOXHiOKtXribwQ+aqJQw1Dqgo0mNqehK32SSSAStWLSeUcODgIc7bdD71uoOhGhRmp7DiSZLZDJqiMjk2zuzMFIsW9GLEbMZOHmNwxVrqjoOuRFjpNu65+z6StkUmlaBczpPNZtizez+v/603oeg65WIJVSpYiQSqoeBHHl59jngsxX33PkB3Zw8rVq/k4IGDXDzSgdNwCG4cIirso1KYJLz0z5mZcjh04DCveuWVnJ4aI53tZdsj2zg9PcHvvO1tTI3ewffv3MGWLYsYHh6mq3s5J04c58YbrsdOJTFsm307d7J61WoUQ0WL6YjAIwwFvh+AoqIpELMtULSWfY33b6jGEAiVKBJEXojnRWiWgQxb97jTaBD6TZKZduZqdZIxC8/1MIwWPFUXCnbSxg8jTMWkGQgUFSQ+c/kp0u09OPUKhpfH13MYRoyW3IBEUWOtvgGqFoGwELJJszGFme4CP6AyVyOdaadSLRKL2aiKQeCH1JtlzP0nCYMm1taL8P2QMHIRuoWuCZrOXMuj1cqgCB0pA4Ko9Sz5vk88HqdcKtKeSyMjjUY9RBhuC9qMj5Ahmqrhei6aquH5AaZhousG0xPD2DGLRDqL05QYVgKhRERRwOTkJKmkjaUnefCee7nm2ms4fnKUvsFeHnlgO5dftoGZ2SLZXCcikKhWhFAUxkenmR6fZNXG9fiBxGQM0/CYCd5GTPUxRYaqO4yqZDFjBqqMaDQiAlxklOHOf7mD/KTLw0/8gJe88gbeevOrePfvfYC3vfM3aM8l8EONnr7lmJFDqdBg//79dHRb/NXn/4X3vOc9LF7Sji66ePetb+ITf/ZJav4ssyN5lg4NcfjUQdZvXI1T90iYkvKEz5/+6Z/y6c9/nlOT49x/7328/ZY3Ii2Vp44cYmjJAIeGj9LdPUB5Ik9nrhMpGrzxN27jy1d9Bdu2aNyQB+HiRWViRpbX3/xWfvfWt+NFTZYs6ectb7mFHz32CLP5CYSw2ff4E6y6fCOFiTI/evBhbrn1Jhp1C0trIDUFTcDk8AxducVUmhXs9g6SQYNmEFBVTMoTx1m9bBnbd+7lS3/3RT7zmU9imCqnho+xcnA1XlAl9OKUylMkM70UCrPEEhHSzPHDf/8hP7jze7z33W+nf3kfU6fH6Fs2yNjxI7Tl2knlsnhRyDxhBl1X8cMGdtsgqgKa9InEc6v+O6GPU54hhsP48cPkRx8iufhqTMqURh5kw42fQ9Zsgj91kAWTyexhtAVJGsUJOhYswfPBqU4SFGzGp+5EjcVZ0b+IsalpFvRmMIwYwycK9PWlQTRw6h7pthxB08FxGpiJONJz0HSVMAShqqihikOdRMcWFLUNrzZJ5BcIwjpa2GxB2T0fiQOeTiDnCKJOUKqYigKq5L5HJnH9Or/2ayvRpQTqWHY3s4WQag1Wrh+kVCpjJfrQlBDDUlvzCjNBrXyAqJ5HkTpCn0ONsmhIKp4HUYa9J2qsXrGWXHcnhfwM9XktjkULeti7dy/r1q1lbHwUrzKCVJP0Dqyh6QXETAMfleL0BG4tIpAN9u3bzebz+/Gq03S2RxhqEo0QH48g1BC+A2gk27qJ4h1EageqVyeWzJGvuiiqpM1qY6Z6jLBRQ9dNNDWGEtbkrko8AAAgAElEQVSpzU2jqhqlYoWR06NsWNODZdv4vk/g+2i6ges6xGIWShCCHuF6AkP3cGo6qiHRjR4iv8lwMaBz8iLa4xmm37odz4V4LMvuXU/S257h6KNfoG/rJWy97vfPVvAURTlnkWV+jvw8s8gz8cy57Audr/6y49kKU89/0NMIxjO2P2evj5/WvxGK/JnjnqttKc45j3wG+lH8Asn8z4Ewnzm/qqrI/425q2EYL7g19WMf+9gvsSv/dRGG4cf+z/bghXtKCQmiJajeMp8/8/rZ486tgkZASxWz9fq5qzcvoFdnVkykMt/mfMsi4mmWwfP09xkNBSdb0v/awJbnWSUSz9iePpdlGs+NkT/7g9b6J4WOtFTS2Szfuv07bLn0UvyujSTmDiOKx4lUG8u0iEJJEIU8deQofX19SBnxk8d3EEUhhWKZhb29mIZBtVqhvSOHpmi4ASRiJrt+so1EKoNpWmSSBqZpcfTQfpb0LaCvbwHLlq1gSV8/+/YcRNXjmLpKMhlDN2000VrlVzXwGzXq9TqxZBIk2LYNCJqOSyKeQKJCCMMnh1k6uIQg8jCMGF5QZuWK9QjdplatYtoqfhAQi8XnBWUCgkADBYqFlkCSlAEQ0XBBCJXDTx1FNWw0DUzDpHdBN9+/+x42btrAyePHOLD/IElTo72nGxRB5Ll0dnUxXW6Sbu9CoKJpGkEYsGLVKhSlxWGxDINqPk+9USeRimPoLajz/fc+SF/fYtpyKSLfI55IoaoKxWKRTDpFtTaHbev4noumqsyVy/hOk7vvfoCBZctpa8vh1Kex/HGEnoUwJNE9wNTkJLGYzaJFC8jPFOlb1M/evbtxXZehoWWMjp5mYe9i7FiMQwcPsXjRQsrlMqVSiVxnju6eBRw7epjxsWlSyRiVcgE7mWbpqtUIKSkXynR19WDFY6h6jGNHj/D/sffmUZZdZ5Xn79x5evMQc0ZkREbOg5SZkqzBkmzJNraRbcATGLCrDDbQXQ3VVK+CLhqoohoa8AAGA6ZcpsBQxqso5EmeJEtoSFmpMaWcIzMjMjJjjhfx5vfufPuPF5JSmanBBaZ69fJZ660V8c65U8Q99377fPvbO5vLsbi4zNjkZpRE4cKF4+RLI6wur+KGLrlsnvmLs8hSr468Xm9i2zZry6v0D/QTiZjpszPIMgSRh6RqzJyfpVAsMTg4zJlz5ykPlLF0g/kLc+TyOYQCpWKes6eO4Idw4fwF/E6T9WqNbC6NYdmkbAXJsJA1nRPHjmKaJv3lMv19BTIZi4GhYTaNbmFgZAjFNPHaXeLEY73a5t577yVt60iSjqaqNBpNUk4Ky7I4dWaG3dsmcZ9cJFfI42138GpzWEqEGH4b/+KnP8Lvffxj3PPtL3Pq2dM4ugkRHD11jNtuvJ6V5e/yhje+ha3jM2zfahCJLTQaDZ588gjbtm0jDkPKg4O02nXiRz6Df+YwDF6LooAsIoIgRFFVOq6HoqlEgYssq4j4BIgSkgS+L1irrGJYDqqiEschmiJjOWmiRGCaJkkU4Psenu/j2Cl008R1fTRVI4wiJAWSJMRt1LAdh24o4dCm4dXRnQKqYuJ5HkKKQECcxChqQhB0UWQJJBlZs5ESmSCScBybruthGhae66EpPeVYtxugrFYRQsEv5rDTNr7bxDIyxFGIppmYRoYw6BDFAbIqI6IAWQbbsXqAVJF6tGJidKPnp6eoPXEmVVbxQ79XN6zqtOp1hEjwPJdsKk0iBJKiEkYJuqbhdjuosoRMgixLmKZO/1A/QRyTy2cJwojyYB/19SaZbIG7v/QNBocGsJxe3a7l5DA0G8sxIK5j66eJqj+KtxKgl/KEkQeJjlAUZFmlstZAF3Dvtx6if2gT27ZvobJ2HkeReee77kRSVIY3jTA0ME6mOEAQuchSjCIpnD9zgU/+3sd530/+JJ/99J/z5rfdwtrqPEsXTvCGO27jU3/4MQ498gimk2d8tMj2yX4Aams9zYFCeZibX38L9U6FbreCkcBavYHbaVAqlKisNvlvf303+3ddzz1f/Sb9g0WymRIPP3I/d5TeRhwHRHtX6YYhX7v7PnK5Ih/9+Q8zNFpi6/YJMlmH9//4e1E1BdNIYZoO//bf/QY/8RPvJ5fLsnvvbjTVRkgSuhxTWV4inxlB1iSW1uYolfqQkpBaq8XM7AVG+ss4Rs/TWVVTvO/dP4yu65w5O83Q8DiJ0PADicXVORRdxckM8MBDDzExuQs1lBga6uNd73or23ZupeMpDG8agdjH9QVj41tYr1RxTBsDmQsXzpMvDaHpJRRV3og3rhSGTIQESYLXbbM2e4z+Yp4zUzNMbN9HefBm8nqIkdrE2M4Pwb0SwadVpIygVnqYvs1ZQjWDYzoEYYBA0Gm7zC+dYcvOHVRrMudmG8xX2vSXikhRl7QtEySgJCpTM4v05VNAl6/fN8umoSyWYxLHAkXViEIVoXlcOA+artFxFzGcIVRDx211SOIEN1zjy187w8hgCjNlkaARJx5OykJIAiSHtptQLhoUsya2LiMZWSJSZEplykPbqNZqKIZBkkRopkzg63Q6yyTdGnLS4rknq/QNShDZyLqE7zU4P+fzxLPLFIsFRsdHCeKIJJFIOSlWllfJplOYlsLFC0skQZfNO/bTdF1MK0u1toxlmFQraxRKRZA7ZHSL+aUlhmyPc+dn2DQyjixH+IkPkU4cdlEMG0nPohlF2l2JRAjaXRfFztBeu0BtfQXDUuhUO/gtH8NJEQUurg/3PXSaVDaHrDmU+icI45hO0+XUdJs4CMhmTKJQ0G37KDrEkUQSK8RSgogTJN0ijjxE3ObEmSZj2g5UReMfOn9LrRHwwD88yvaJCY5MneXCuWdI2wZbDr4BWZZ6JRGxeN5x7+pZvMvvy8vjwn8CVdt/6kzhy2UmLz33l7tSIZ4XgREIpN7n8v2JV9iTiDcAxcaHF+tq5Svi60ticXEZ2E8kLo/VL28vsC83hkjfB4HZV2qyLP/71zz2B8D1tbbXPhlebnJeHbhenjH93oDri8e8/IZ/5Wn1kqGvAlz/R5p0FRrDyx0PIZCkmGwuh6xqrK2u4KTSKEPXos18m9gq9iwZ4hhJksik0z2BGE3Dc12KpRJd12N0bBRJlkmnMywtLiEQPPn4EwRhQMpxNsChRy6XZX29iqqpDPQPsLy8SrfrUq1V2bp1jEqlSqFYpNVuoyoqfhijGTpBGGOZGl23Q+B3iKMYUDBNG1nWkBUFhIwiCwqFLIkwiAVIiWBlcY5UukDgeT1rm9AjCmM0wwRZJwk9NNWgXq+SRAqS3KP0LMwv8MhDj7BeWcU0DCSgUMqjyEqv3lbS0DWVcrnAjp3bKRTzVGtVbMsgm3EAhS/d/RX2H9iP1+miqtqLUvtCYnlpiVQqjWHaOJksSCqNeouLc0vcdMvNtNst7rv/O0xObkdIMkeffY5CoYBj2xh6j+LZow+HkCRIJOzatZdCIc93Dz/C5iJEXh3dLOMnMlauH9/3mF+4yNj4FgqFEtVaFVmBQj5Pt+uRJAlPPPkYk1smabUauF6XcrmIZRvUajUy6TTbtk0ShhHjE5tRDZ1ssQRCJopjup0mi4sLZDJpVFmmXBqgslZhaGgQr1Hl6SceY+uOPcRC5sLsNNcd3I/v+ywsLjM5OQkIRKLQWK+zbdskiSRA0VAkmcGhIeqNBt2ui2HobNs2ztzCLAOlPp478gyB77Nz114qlQqqotBuNyhkHRqtNnYqTYKgUMxQLhdQdY1KpU4mX0AS0GzVKBdLuN0us7PnKRQKLC+t0Wq1sdM6qqbjtjzOnz9Lf/8Q83NLJHHIxNbxnsWDkKlXa6iazsjoKI3GGoPrNpIsqI2q6JpMXJ2mO3IXTzz5NKZpEEY+f/M3X+A973kfv/4b/57X3XQT6ysr3HSzgWFEEC/heR6PPlal1e7w9re9lWePHGFtbQ3bNihkUvjTh3sK4JO3oJsWASBrNoqioSkyfreLJAni2EYTT7CyOoCTVpBkga46yPLGCzzpvSyjGJIwJAoDJKn3HDFNG0WRCTwfVVFQZAlJSvB9t1ezqhjISh6ZGl2vimX2YTppoihGkOB6LmHoAzHtdhshQJJUkjghiiNkCcI4QRICVZWRZUFC0psvUYxpmoQXF3qqkUMlhBBYVgohej6wuq72PEEljSgM0RSFMEoQkqDdbGFbFo1W73mCkKg3GqiKQYKEJMn4fm3D9qdLs7VENldG1XQUTafZ9DAtC1lIiDgmEQqKIlGrrpLN2sRRL5hRVYUoDvE8j29+81vs2r6LVMoBYhzHoa+cQ9F6UUkcGayszKKrKRzjFIl2PcEnj+FMXcS/cTeJZqOqCqqAemWZbDFH0HFJ2w9SzK2gqXvZMjlJvljgiUcf5unDRxCRzJ/84Z+haA6moaNIgkMPHsey6+zdN4okDfH444d530++j1KxDLGMJgne/iM/xoHX3Y4Vu9zzlf/E9l2TNDsaumaiqhoP3P8gDz98mD3X7KfcX2SgL88vffQXueXWmykND/Lok08xWBqAROHf/Jv/gw//zE/xG7/5m3zogx/EPRyTL+TxtrWwLJN9+3bjOCaVyiqOkwLRyxKlUimazSb/6hd+lX379rBn7w5kLSKbybO2VkeWBV2vQ6dZY6B/sEfz7nQoFkt0Om3mLyyQymQZHBul4bkE7RaGleJnfvZ/4d3vfydBIsjkB5G1NGurPT2DQqEEKJw8PkU+l6W/XEYIF893KRVLLC2tImmC6bMzaLLNwMAwhw49iqbqpNNZNF0lncsSSyqJrL84j672ziVBIkZTZZx0miCW8AIolAaodSvERET36/D5fuI1CemgQNrUpVufYa2yQq5vnOX5VcLYRcgyqmozvmWCetNH1R2OnTiL53ssLnYRcoqZ+XkUuR/LEpRKKVrtBEUOGZ8cx9KjnpKt76PICkHkousGR4/Os1Jd4djxBXbu3YcbumRSQySSQDdVdmy/HuIKsqz0mFOaIPQDYiCKwW+vsWXLCJph0vYlsPKkstvwY5W275EkAblsiTiWCMIARRHIxMh0CcN1skWbJGnhmFlCAcQJTm6Yw0+fYefefeTyeeZmZxgZHqDZapErFXjqycPs2L0TxynxyKHvMrJpjDDsibaVCjla7S6ZbI6VxXksM83C4gxRd4GxkSEG+jPYlobvdRAiQZE1ICSKFczMALJhYqX7UdQMyL1a05SpoxsGjVoVy9B6HtCKTmd9kTBKeG6qwpYtY0yMT9Bs18lkiwhJZa3hMzyQQZddavUOyyt1srZELBQkJSboKMRIaJpCGHq4QULgRpTtcZIo4fzAUW6+7U2Ecczpk8fIFga4dmKA9YXT7LjtnQghIcsKkpBfoH6/FuB6OYj7p7Bj+Z9BcX31K72k54r495Vi9ctj6BcTaNIrXeflwPV7wC/PD/3nFmf6AXD9vrTef1PaqEF6pcnxarfepd9cmdF8deB6NXrwPwa4Xt7C6cMgQJ248Xuut33+vJIN4YJXehi9WF8rk4gASRXotsnpoyfZuXMnfhhxru1Q7pwiaq7QKN+AvzqDpmoEvk+zVmdtvYIQMmEYc83BaykUi3iuRxiErFWrxEFAp9uh1qigEFMulTCdPIsLFzENk7Nnp6nVGqiqxurqKpJQKJUKuEFAsdyH22mTcmwCr4Oh6SSShiIL/G67pyaq9WrvJLW34iiERLfTRlUVug0XP2yjqhbFYok4SYgCF1XXabcDFF0jCH0CN8B3O8iSRrvdorbeoq+/zGpllaGhUcZGhxkdn2BoZITQ65DOlFAVmdnZcywvLrNt2xZcz8NOpfHDGFVRcDtuLxssC/YMeoT1GaTcGNMzFyjli5w8+gzl/kFs2yYIApqNOnbKIYlC/HaH79z3AGObBrAtjXKxyMDwMI7jYKgS+XwGiIlCn1p1HU1TOHHsOKVCP7Vakwuz0+RyOSa3biVeehSDmI6c48jsEtX1VaIoYmx8C4oKpmVv1AImQIgkaZT7iggRIisK23dsRVFUoiAkn88ThBHra+u4nksun8H1PMqlPM1Wi8XFJTKWiWlZ5HI5Zs9foFzqI0wElm0RhB7VtSbj2zYTRhaNZoXJyR0cf+45hkdGyRfL6JrO8WMnqa7VsNIWrdYamq6yvLhKNtOrVe4rF7EcjXJfHtfvIEmwWllh8+ZejaqTtVEkwdryKo22y9JyjVqtzsT4BJZp0e22STsOsxcusmliAlkSRGFAOpXl9PGjKLLK4OAQcRJTLBZZWamSL/SCF1WY5PMZnFSKw4cfx7YsRsZGUEyT9ZU1VhZX2LpzJ4KEbCGDOeUCCdGuHEQeSW2ar08X+LVf+1V+9l9+iDtvexNjWyf4yte+xi/+0v/OeqXG6ePHuf2Ofhr1Ntl0B8/3cDIHUFWVTSMjPHLoEK7r0e52GNu8meTCUwghIcYO9FSj601MSwPxvE1MgmKYVNcqGIaKba0i5MJGjVDPAisBPD8ESUFSFPxWjTgKCBMJSVFQVYWO20HTe+Dfj8KecqaqoYie0nmsSHjr02jpMoqSwg964iKe62HbKdyOi0DCNjNohtzLAEu9QKtZbxEnMbIUIZMAMWEcIysKSdwrD4jmFkmSGGN8tOfJGicI4SMJGRKZOI5R1Z4St5BV/DBEVlTcbockCslkC7RabUzT2hBsijaAeoChOXh+lyhwcUwHpJg4ign8ANtSiSIPz++wtLxEOpMiDD1IYqIgREg9UTVEgqJaGLrO6MgQ7WYVzdQJQrenfptE6GavdKPb8ViYX6ZRfYRSeZy6+CDKw08ghIR7w05E4PXu4VqNXLFEt+NjaRpu9zucPPEkh5+AicktPPPss3z+83/PB376g/zVFz6PG3Z4//vew/BwibkLcywsrHNw/y5SdppieZybbrmZXDFHFAsuzi4zNLqZVqdLo1rnt/6fT3D9wbfz9a8+yg033oBlOfh+l/GJcVIZi1yxiKraSEnCzbffzqaxESQEpWyJ8S1DjG0e49z0Sfbt28P73/9eFpeWGW/uQJJVPvrpn+Wtb7kDIYVksylM00SWNcLIZ319HU3rgYDR0WFGNw+yeXwEw0rRqHtksmkq1bMMDm7qzaFEwQ87HD92EtNIky+mCNw266tLhJ0WKVUhVxhCqDI/9t73k3S7zJw9TzGf588/88fs338A00hBovHTP/Uv+bmPfISf+sAHuGbfXpLIIuVkcbs+n/nzP+XgDTdRW69hGSa/+3u/w/XXH2R4eJAwCnjk0CFUUydXHkTVLEh679yrBZwSMYHvIicR1fVV4ihElmRajRbJyQTzL/chVlJUco9ibZVR0zpIKnQrBF6btUZP48BxHJx0CieVpdtuIEtpum6VHdu3sXu8n0a3zeJajfGtuzlz8gwoIelUjqMnLzJYzCBrLnIsE4QBstKzvIuFDgkMDahsGihh6RkUJYUsg6YoBJGFrGUwrDSKriLrBWQ9jUeCrmZRnCKalSdbHEa1y7QjG6e4BSHSaJpGo7lCPt1TvlYVDV2F2HOp1uYpFIbodNYxVYsvf/kphvpHEKLRs4USEitrTUaGB4mSBGSDzZvG6Hg+p6dOsXl0FBGE6JZO1w3Ytm2Cs2dOMzG+CREnWIZA0R0QoAlBtx3wjXu/yRsO9BOILl/+2hkKeZ04aoPcR6PhYdg6hpXDC0DIaeI4otVcYn1pmWzGwfVCNM1CRAFx0OHC/CwD/WWMbA4hInZsHWKw36SxvkI6YxB0WyTCo9xXwIgXiSV6+gEZEyF06k2LTthhab5GOucgxT3BwUgo9OUkFpdD2h3B5h8rstbqsGVyElWDJw4fpq+Y4aFD3+DOd//Mhv2jQAjpewKuL4lSX43J+DJ1mP9fqMV8pSt9tVrS7xW4vrDPV4rr/weA6wuaPJf8/s/ZfgBcvy/tRb79q06wK37fuMmSjT5xacr+8husR+/tHeLy9P4G5UBICHFZ3xWs3eRFcaREvLTrKhhXEqKn0icE0eo0ku6gDO95yWQTCa+8H/HialCPEiFtKNzGG5YEV79mAYikR8ezLYvxrVuZnZ1lvbJGOl9GDB4kbFXJXPw6sV2kYu5A7a4QxQnHjx2nUlnlmn17KJT7MXSN1coq+XyZTrtFZX2F4cFNuD6MjY4yNDTCiakzbBodRtU1UpkUy6vLKJJEp90hn08zOLSJMIhIZdJYjk4Q9eijkpBw21USJLp+RMoxCXzwvQghPGRkhKJi6AbdbgfDMTFMiyiJ8KOYwPexnRTNRgtT0wjCBNPKAtBpN/jWPffQV+4nSEJMTSEOZWxHR5F7nomdVpuFhWVq6xUsJ0W+OMTY6CBRGPPYY4cZ2bSJL33xvzM5uQUhVLquIJ12SJYPIcdNcMaZPjdFLp/DsFJopoGqyhx/9ihTU2cYGuzrKR9rJrv2bEFIAtOyepRMWebEsZP4vodihGhaBoAo0pASibOnTnH8xDHiJOH6A9fx6HcfYUBUkDpTiPwElbCndLhz1z6sVAopiDkz9Qz9/QPIqkKn22RgYJi5xTmy+RxDI6OkMxkqayusVlYZH99BFCWcOnGSRq2GYVmUymXOTk/TX85RqayiKCqaadFqNTDNFIV8H0kioysyzfo6lqmSTpusrKxg2ga6nkI2tF4GtdMh9EKWV9dYr9VRVMG2nbvR1ARdUzFMm5OnTqCJgOXlBfqKw6CHCJFmdeUiY2Obif0ulmXSacfMnJnGsdIMjW7CC7oMDwzSqNdI5zOYhoViWTi2gyxkJCSWl1ZoNluky3lSdhpV1fCjmCgK6C8XEZpB4sGZMyfoHxhicX6VG26+jtXlOfr6R9AUnaXlWUqlARYvXiRbKGBoJmuD4O6IiAMBahoWH0Ns/xD3fec+fuqD7+d1r9vPrh07OX7iJNNzF9k3eS2SSNh7rYqhWSTRIqZpEEXbmJo+xejIKHv27kLXJTrtLqNjm2ieeBBZlkjvvI0oCkinLMKuTxwlqLqJpMlIYc/f2PczWPozuMEoipLQ7YYomg5C6ilWmwZus4pspdFtB1tX0DSN6lqVlJOlXpnHTKdRFAVVFvhBz4ar02iQ0ddI5CyJlEIxZCI/QtkQI5IkQNYJogjN0nC7bcIkJCFBiiVMS0WVdUhkvCBECBnf6yDJMbLUsxHy220Sw8ToL/bmhEiIgm7PS7reQDNs3HYbXZaRFQMheWi6im5ZuEGEKoNmpEAYCBTisIOhKUSeB6qGGyZohkUSgyopCFkmkQRrS7PIqo5hpck6FkHSUzIXskoiqWiyimYZIOtEUcjjh59mcKiMJFIksYehmywtLVMumkiysrGtxlB5mXxBpRl8EM2w0A49hyCmtnucxDEJ3S6qpBLrGQyvy/ziOkODSwyPDDN1Jk0mlSafyvCf/8uf8ku/9Eu84fY72LF9N5M7hpk6+Rjp9ATHjj7Inj27iVH5tV/9v3jXj95F4HZQ5Yi/+/u/4bZb7uRXfuUXede7P8Bf/OfP8ebbb+VLf/+3vPVtb0FJmZx8+iwaAVZfEb/hsXJhAcXRuOdL/52B8igPP3g/fbkt+EEX3Yl5wx1vp16tYhg6hWKK6GkNSZa57sNbsbJp8vksIONGEq2Oj2Fk0E2TiBhJUSkX+/HChOX1ZaZPXuTTf/Rx3vbWW2k1mpQyQ6ysreAnCt1Gl8GhYexMilqnS3+5zNmZMwxtGmZ5dR1EQqxD4rWYnV6hb3AIZImDN92AnCiEYUAYetx119vwlZj3/vg7Wa/U+cQff4ILxxd53c0pbrv1wzRrFb74hS/yxjfewbPPHWPLthEsS5BOpZnYuoP1RoNSyqCZOBiSDxtWdc+LNr347lYRSFRXa6iGytJilZHMBNHnsuhPDhCMtVB3CyLdRA5rGCmHSCh4kYto1rAL43S7HoaRJkkkfD+gUV+iWCggyxZLK/NYeYNMuki5kCObVhkeLFDMxtx/37Ncu3cII9Wj6tcaIe2ugqFFIOksV+axjTRJHJIgo5oylpVjabGGosroVoQUC2TJwA0NEjQsp4AvF3DSQ0hKiiBScBMHO5MnimNSTorQ61BvrFPIF2h36sRxT9gq8FyEAF2zUSWdudnec337jgyq8EinVEI/ACXm9LTKsVPz9A9uYmlxmlxqgFNTJ7n2wHVIUkKz2WJtrY5l2SSSwtDICJ4XYZop7vnavaytJUzPnOLkyVnOHj/HzQdNsqk0QnXZvW2YXM5Cll0qXpZ7v/Es23cWSfQBEtkimx2gXV/H79bIFvKsrkxTLvbhdzq4fgcj3UehnCNozNGpXiR21zHiRTq1NUQcoyQuUdjE1GWCThtUEEIl8DtEsUqQJDzy6AkMS7B163aSuIUkC+IwIdIF37r/Ijsn9uJWE9bHn+HE8SVWls6xdXQbSi7D7j0j3P+1e3nnhz76YkyavEhTvbTG9eUIqpeWuF0uKvZK2dkXqK/P+zFeCtQuo8UK6TIQdkn/FX2XtFeDfq9IvL2E3tv721wySsRIstjouxx8v4gzrjzKBlRNEiQhbdjnbJypSDau5WpnfrWzf/mWsCHi98/cfgBcvy/ttf/jX3XkSwa8Ep32H7Pi8aL31JXZ2Ct/fUGhTAiU4T0ow3tf+bSv+sWVXVf3hHr5R0IYhmiaRiGfZ/OWcTK5LI1mk6qU5/HzXTYZHfoqD7Bea/OXdz/KkraFzXmJbdt39CxjooB6vc4zTx8h5fTorNlsjjj2WVqc79VI9pc4eeI0e3bvRZJULl6YwzJ7ojuTk5M0Wk2GRzaBtKEcJ6DVbKCqKqokCKO4ZwgfRwhCJFlG1RXa3ZBUOsX62hqpVBq/20GRBKos4XV7Hp9RGGGZFkkS4PoesqpgaAopx2RsbDOSLGE7JtV6HUXTsdM2XbdFlIQYlkk6m8a08ywszmEbBpqe0Om0yRf7AIXxyQlOnjrB0uIcKcfAdhzi9WP4vo9c2M3Y5nGEkEkSQbfVQlUlCquhyXUAACAASURBVOUSO7ZvR1UVFFUmCEIEGp7bE8UxTR3Ldshlc3z7W99gfHySVqODkzIIg4jV5TUW5+cplfpYW6/ixQFbiiqmrhHVj8HgLUiKQb3RIvADTENncWkOXctiWdmeMnGxiEhiSsU8acdivbLKamWNocFB0qkMhx95iHw+y+T27djpDLZpEIYh/X39rCyvYttpwgjqtcZGnXOTdqvNfffdx/DwMIgYVVPRVJt0OkOcxMRRiOOkKBdLnJk6QxR5IAn27t1DyjE4/OhDjI4OI2smrW5Af3GIwI+ZnrlI6Hdo1KukUjkMy8EwLObmljDtHF/58lfJ5wu4XpfpmTMMj4xw+tQpGo0mjVaTYj5PFEX4vs/0uWkK+Rxnz5whCHwmxiZQhESzUcM0dJ56+mkQgly+wPnpWUqlPubmFjhy5Dksw+LM1EV27NyMqgi++Y17OXjwIPfccw/7rt2P51dZnK+QSfURiwTDVAkXn+Hbp1X+xc/+PJ/93F9w8PrruTA3z+tveT27d+1iZGycT3/mj/mJD1yDZgQkwmKtUkOIERRFMDw8iBAS+VyJ/sFhFEVGmnuKJEmwd7ye1oZXbwI98B2GxElE4Lrouo6qmSiKg5ycQFL6ELEKCfh+gGVZxHGMZpnIisrKwjy2bROFMbIss7KyQjqTQpZVut0OsizT6VZRVIGmy9SW57DTJRJJp+N5JGGI5/WYB1EcoSgJlmXheyGaohNGEp4Xoclq74mUQBi5RFEvU2xZJl3XJYw7uF4Ts6+MWiwgiZg4ihCAqto0mk0gwXYMksRFURKC2EXCQpY1QCDJgnajg6prSHKCIsdIsoIXBMiqiiAmSWJ0RcbvtpBE9GLNspNCyCrNdhfD7J2/QKAoGkJIrK8uEUUBtmGBEAz2D0Hic/zYaY6fOMbIyCiGYSNERBQnxHGCJp0iERZu/GG+fs/DfO5P/5w3aFlURaZ5zVZMVcZr1RGEmIpCvbbK0WMnGBmsoOsmJ6dshoeGuPOOO/iTP/kssqTx7W9/h5npWRYXF5GiNA8deoCp0xd53U2vI5V2+OG73sHv/u4f8LHf/xjveMc7uOWW11OtrjA2NsTI2DjveOc7KPUV+fDP/SyJofHNr3+TY88c5/Y33MncxeNsHhnCzmTQ0xamprJnz3VousLHPvZHvO6mPQSRTzaX5+LsGT75B3/Agf030X405sSJE2y+qx/TtKisVFBktRfvkhBEVRRFplJZ691rQcz83DwjQ/30D2S58843oqoG6VQeIRKcVApF08imM3S6XXTTIIljkjBkaHAThm5RLBaQZYVzZ+c5+swUP/fR/5Wh4RFGRsZQNZ04DLn77ruxbZu+vr5eTbVmYFs273jnW7nu4HWcPvcMufwQmazJ1q0TVCrL3HrdjXzs47+PYWXYvHUXZ0+dxdZ8ls88ysBgHi9UkBW1F71eIXQTkiQBldUF+ospgqaP9JlBfLpo+7t4Wock8rFNjSiJiCQdSTbQhEK7cZH1tQp+oGOkUsRRyIXz58hl0zRbbUCQyWZYnG/Q39/H1KlzdDsaK6tV6o0ae/ZvZX7eo9tWaVbb9BUzODYocoxIJHL5HIqsEsVdIiQUPY2QLUr9fWSyNt1mQgx4YQvLtpClGN9rkTJ6TAQhYjzPRZUFskiwTIPAC/ADH0lIdLpdOp0ulqFjWhaJkFmvNomFQEg6UeyiyRGSCBFIhEnv/RdFMvPLC3hBgGEUuPbAdXh+l2KphKJphIHHeq3OwNAgluOgqAqx32VldZlWt83wpmF2bB8jCj3mpme56VaNvFPENAOSyEKKWtRbgsPPrTI5ELF7/whmfi+mWUAWCWvVFul8AVnT6XZcdC3NyvIyhYF+VKlJUr+I5M7hex00BSQC4sBA1mIi6gShjybJeG6TOIzQDYEmSVi6RRh2UBKfyS3D5PMWSRQS+S4QERHjuxKbhragtg1MKUVj9FnaXY0tu3ZwdmaZbDGNo+S5eOYQe297O5Zl8wLAugpwffVIkSuyhFcDri+GkK/OMHxR8feVIOj3oML7mkdevt1lDAjxSsmv13aUHti98rtXOovX2hL++WnC8APg+n1q/3jg+oJ30j8SuF5NJOpycPh812sFri/8vDHZr0YRvuJBIl1drKpnwNz7WZKkq0yCFx9sl17n8/YzQoCQBUESgQSZbJpCqcDmbbso7X4TP/av/5idE6P86E1DvH6gSgeLvuveTUo08T2XUqnEQP8g9UYVy7Rpt5usrS3jeh4DAwNEoU+xMMDC/CJRFJMgiMMQt+sRhj7jW8ZByEydOUOp1Een1UTXFVRZxnPbCEkiiSNkkSCrcm/7uEdzjaIA3bSIIvD9LoZpUK/XsW2berXG0sIqnt/Ftnq1ppqu43bb1KpVDNPBtG0sU8NOpdF1nSAIMfQ0lUqDZsPlzNQMhb5+5i6e59mnnmZ8ywgkgi9/+Wucn73Avmv30FfuI51OEYYu9973AGPZNoos4wxdT7PZQVV1vvCFL7JtcrLnRZv0KI6e6/U8aOOA48emePLJJ9l3zV48z0WSJQIvYHx8rFeXul4lCDpk0kXqtQbra6uous7WrdsYGRnAqk1xeEVB6cywHvfqWPv6+ui2WkSBz6kzp7n+ptfx1a/8N0rFFKatcnF2iampKRRZwne7lPsG6LpdJKGQdUyeOXKEVDpLu9OlkM9Rq9aQZBnDtHFdn4W5+R6N2O1SKBQ5d/Yct91+K7Ii02m3aTQarK7WyBfyRKEPScLTTz5Fs9Fky8RW1tZWyBdL5HI5jjzzNPuv2Y2iG0SRxFqlju/VWFxZZP/BfYS+h6aYQMDs7DKaopAIBUmS2bF9G57vMj4xRn+pjKYauJ7P5vFxkihGVRXcbhdFUTF0jTAMmZgYp7K6wvHnjpLOZmi12qwsL7Nn317KfX2cnznP5s1jPPTQw2QzWVLpFAP9/bTaLsMjRRr1ZZ596iy792xl06ZNmLZNrbZMs+ZTr7Up95cIQhcacxy5ANv23cK933mA4dEJPvvZz3LwuoPkMhlmzk+zddtmtm51qFVdLNMlky3zmU+d4IbXbaFaqyFLKg8/fIiHH3mEAweuJZh+DFlWYOx6dE0lPfBGfvcTn+f2Ww+yZcsYghiRJEjS8yrURZK4hqzqJJTptCtYlkmjXiOJoxdW701DxXUDIEFVVYIgwDBM4igiTmKQFCzdptPy0TQbkpC3vO8P+ej/9meoisIbb92D73sYhgEkhKGPJMkkMXS66xiWga5LxHEbTbORJAlNV3BdD8PQNxZ4Emwri6aaCAxAww9aKIpGT0W959+qyDISCaqRIU4UQi9C0yxA4AUeCQmWbiIpCnEcACFxTE8sLQw3aNMSQkC30yYRMbqu43Y9YqGiKhqyAKGoiLhXC6zIClGckE711Nt91yeIQgxNx/dbZNJZxsbGAEGr1UbVdDTVQ1dnSUSZpcZdyFKKyfEJ9u7aTf/0EnEUYr/1VoJ6B6EkTE+fI+z6ZAolhocHkcVR1ipVvnLPHG/9obdw88038su//Cs8/vjjLCxc5D/81m/yt1/8W95yx1u5+bYbuPHGN/I7v/N/c9c73kmj2eLQw4e54Ybr2bFjG2uVNdIZm8nJbTx15ChZR8dMWbhxRLvTYfv4GLu378R0spSKJkura6QLBS7OzjDQ18eX7r6PXCHFDTfcwtjm4Z71kNSr87719W/kV/7tr3Osegz7GpX/+nd/yZve/Bb+6BOfYsuWraQcm1MnjyEpCcXCCEksEUY+zVaHp594inI+A2qXJFZQZItGo06jWUE3bBIBjWaLdCaDlMDaaoUw9EliHbcbUm+soRs2lcUqX7vnXj79Z3/MhYtzZNIpFubmOHHiNL//+x/nve99P0LIBN0At+vTN1BmYXGe9XqV/sERzpw8SqHUq6Ht6yszMz2DJOu8/a53oKiwdP4Ue/eM8eQDd2OmUqRLEwhJfglw9X0fVVUJA5e1yiqdVpNOvUH+m7vxWgHmNTFCluh6HlKS0G7We97hiUTodzHNNJ5Xpbk6g24VSGXzxHFIZXUJ0zQRUk/wzzCMHgBVYWjTMKaZ4uLCBQYHtvPUkyfRLJWZ6Rmu2TtBkqxv1HrLhFGAqmmEfkCUhAg5jZUeoO2FaLrG2toqqZTJes0lZaVQtYR6s4FIIApcQujN6USwXlncmE8gK+qG9YuBoiik0ymI2WDT6MiqgemYBEFMNutA7BL5DXTdwg08VMVCSCrlskM+n+O5Z89wYW6efdfs4fjxk6hqT4nfsJ2eVV0cEXguYeDj2A66abK8soLfaRD76yzOnGLHjmG+/fVn2TyRIYpD7n9smpGhASI/ZvPgGBg5rPx2JBESRwGmk6bV6fS0oxWBrqikbAWvMkNr/SxCJPiAKiIEMlEcIokEpABFdXjskWnyWRVFjdE1nTB0EQh83yNMII514qiJiBM0TUIWEqqm4vkxqtZFVyBdO4gaZfjS0ifJFCYZm9zMxMROfL+DYWY48ujfsfWGN5HJZF5kAV4OQF8roHoV4PrSfV6exXwlgaNe3/Px9/PbXgpqXwvl+NJkzPcC7K4GXF+eufn8QtPL04ufP/b3xuT9/xdw/YEdzmtul8hbv0q7gl7+/Pdiw7fsJffQ1SWsezfr1W+e5/dzNeD6Yp3ppVThyyS2X2axKkkShPzy13nFdUlXngf0fKaeH3t1SfP4sr7LJiYxodQbJW0cV5UVQt8nVqBdb+OYDg8++DA37RwjOX+I6NxDtNI7aI/cjnv6PtZWq5w7N8U1e/czPz9LxrFI5Ys8fvgwB67ZRbvr4boe5XKZ1dUV1tdWaDXb9PWXGBoZptQ3TCqbp+t2MXWZeq1COpXBd9soqoYfBChSglMcxGt7NKuLZFMl1JSJ6wVIik6zUSOdTpPEMZ7vE/su9WoHx9bRdEGz45Iv9UEcUl+rc/TEGW64/gCN2iLZTB4/iDg9NU2pmCaTTpMkgkceOcTe/TeQTltoik6ceJiGQdcLeoA6jHj6meMMDA1x7/338kNvfCMD/iGiOMLc9pMsLCxhWjb/8ODDvP3tP0QUdVBlQdv1yGWLJIlASCFxBOvrVfL5PCBou00cKw1xQBgGSEJBkiOOHrnAyVNHuP31N+GkUz0Rou4iupOmGoVw8QGi4nXYtk2328VxNCor6wyNbWG91aSxNM/w4ADdKCYWOqvLC0ydeI7JyQn6B/qpVCo0Gh0M3SblONRq69imheu7jIyN4gcBdirF6soKR55+imuvuQbbSjM/P8faeoVOp8Odb34LQeBTq9WwUykUWSCSBE0xqNUrRLHE+lqdrZMTrKytU6vXGB0ZpFpdJ1csc376AqMDQ5yfP8+OvddA3BP5OnL4GUaGTPr6d3D/g/dz+5vuYG11AVmSSISMYTpMPXcaJ5Oi0F/GNEzWlpZx0hbLC0vIps6W8TE6nQ5RFGGaJoHfRegmkjD56pe+yqbRMgeuv4HYjwiiDppqc/ixxzlw8Brq61USJWL23AUOHJjg6NM1jJRPqTxArdVi0/AmsodqNJvrRG/ejJ94mEuP8uSJJWZKP8Mdb/thNMvi3e/5ET7/F5/jwfu+yT/c+wCf/NQnKQ6eJQgi5s9/i02bt+B2y/zcL9xNuuAytqnETdfvQUQB1914Hd6Df0qCwHzTL2IYGlr6egC+/qVPceN1e3tKwxI0Gk3y+QJx3POi1fXTEK9RWX8TKftoL9uqanSbdWLFQNc0SCCKQ8IwQFYEuuHgtepIqo6kW/itCnEisNNZJKFx6w/9Ct89PMX/+a/v4jf/3Qdot1uoqgrEhAGEYYCqqmiaTpyoKKoESYc4jvHcGN3QNpTen3/OJgRBgG4ohI0WsqRAusfOEEKFxCcMAjRZRRYCl14gLQUdOm4HVdc3ailjVCEhqQZJkhAFHrLkoyhqT+gqU0RWe2JzmpQgKRqdThNNVVAUG6/TIPA6WKkMcRziBwGW7fTqeBULVZZYWaxgGAq2k8L3VzHUfiStikQFz/Uw9QoJCa3gDXTc/ZTSRT73+b/k/T/5AaIkxvr454kCn9WPvIt/+OYhfujH3oRp6yydm+NDH/ll/tOf/zbjgw8iCYWzF+9EVRRy6QzrtTbtTpM/+4vPcN8D97OwtIiqKOzYthO/E/I3f/V5VFXn93/3T3j9rXtZXLzIO9/1NlYry+zctpdG3cPM5nGXz5Lq70OyUsR+RLc5T6vaoG9kB1/4u7/nr7/wV5w+fYpms0E+n6evOMSOrZP83m9/gt/+rf/INQf2894ffy9/+/kvcscddxAnIRcunOfnP/KveM+P38UjT36X4ydO0O60KRQKXH/wAO/+kZ/A0kr0DWTZc80I3TZ86mOfxFYTth3czns+8OEr3oMv1378Rz/AH33ij/DDCgiDqN1BcXTMVBbf6yLFETNnpjg1Ncftt99OrVbD8zxOPnscWbe4+fb9nDw+xY79+1hbaDB76mFuveNd+L7fEyPK2+iozE4dIXQvMjxQZm5hFkeVKE7eiJUZAUnpUYU3NCbiuOfb7XUCkjhEjkLUvy4TL6pwXYcIH1kzSIDIbaMQoWu9Upd6dR47P4SIuzTOPozWN87MTIuB4TFU00aEEVEc9urMFR1ZkZg6c5Hxic0sLE6jSzGHDn2H/ft2cebMOa69dhJD6WCZKtXlDql8GlVtQyyQhYYfJQipn3R5jJW1CsVSAbfdQig2YRgSNKcRSopMcZCuF2OoKrJq9nybfZd2cwnHyRNjYFg2sdcmDANct0sul2V1vU4+lyEOA7puDLKHoVqEbhXCdWJ3icAXhCJGV00UWdBpeKiaxtnZOkZ2gEYDBoY2IWSFJPKxnDRTp08SBT7XHTjASq2KY9ksLyxzYfYC01Pz3HyzjRZ0mNy2lVr7PJY2QhitE3o2yG2UTAYlZSOFY8SijSzyBH4X3dBp1qqkbZMo6tKozmAoJt968FnuuHkMHR8/8EEYHD8xw+T2CQw5IJF6VoNBlCDHGoncRdPSJITIGARxg4WlhPsfPs+77tpOzjTw/SoKCjEqM+eXsR25pwdy4U4CX+UXzt/IR3/ht3EcifvuuZ/h7Xt589sO8rU/+3Xe9NH/wNjY5l4cl0gkl9myvKKI0CWx6eXbvTLc7VFZX4grL902eR7YiZf0vRA3X6K6nRC9ZOylcerL5Wkvj7Vfrb3cuV494XP1mP9yu03gBRud13Qer2B/c3mLSf6nUIV/YIfzfWjfE74XV//El2RbFUXZuOEu47BvZBuSBCQSxCWfS5dYLs+6Xrl6Iy5ZAXuppPblNa/P06aeXyzr3veHhNOH0cZvvEyu/LLPFcft0d16C1m9Wt3LP1er3b1SZjxBQiAjXqirjTbqLEUio6paLzMsCbKlYfz0BCcaGdanDjPceIyavQvcdSa3biOfLzIzO83FxRUyKRvfdxndsoNsJoUQvYfqQF8/p06eZHR0jHy2RP/QKOcvXuiNiUPiOMI0LLpu+5KHX8L/y957h1lSlnn/n8rh5NRxuqd7ZnpyJA0CgiBJRVFQWSMqKLqruGtgTWtcdV1d17xiYF3TGnZJoiBRYGBgYHJOPZ3j6ZND5fr9cXqGICiu+77u713v63quq0931VN1qqueusP3+711XSfwHWZnJ8m2dWAHDuVqk5gZw2nWiMWiiJKE47oYuopqGi3Om2GiGjFisSh2s06tVMX1RZYs6aVpVclk2hAliVpllkjEJJFKEYYakZjCwr6F+J5DPJ5ENzWCoMUflmQJ32tlr52mTcRQOeO09WQzGezZXUiigBVdTCqX5Uc//ndyqQwL+zp5fMsuUqkUiUyuVcUipNloomjHnXuPaq1AKp6AIMS265TmptA1k337jvLwI5t41ctfQaI9QbNho4s6Uesopa7zGXvoetq6ehAjOQ4eGcQPRUbHx+lftIhytUzUiCGrOqKmoagKY6NDJM04607ZwPjgMVLtC6hUa+RyOexmg/aOLCEih4+OwDw3ZXZ6mmrFom9RH8tXLue+u++nWM6TySQx1QiL+5ZSt0oQhuzZs4dMOoGIgGN7TE1PE40niEQTzMzNIog+2UyKbDbDgf0HiKfjhLbHvj17ybS3Ua0UqRZnCAmJmDEisTiVRolaLc/Jp51OodREkgQkQWFyfJbACxkZH2HD6Sdz5MDRVhV5QYZaqcqefYfQdZ1SoeVEi7KI5XhEYwkcp8nkxCgnnbyBXTv3kk6k2LdvL7qhIkkKg0cH6e9fxOPbdnLShg0EgYsktZSL05k0v779bjaeeRq+48KWSWJqlHBtGk3T8avT2I7DL/Z4SIT88z/8I6uXr8F3Q2644YecdtoZPProVhYvVUin03zjK/v59g0P44U17t70ELffvYUli3oI3DLPP+eFDI+O07ZgIUG8Cz3Xi2fV+cw//RsAr7/iItrSOtF4AkHW0I0IfmsVIBQEQEeSQOYePOECZHkWy2qiR5PUy2V0oyUQI4lCq5qpma11QmyhBMLQQ9VNDLPl2Fbyg/zHLbsYGctz5sbFnH3GCmRJRlMlJiaGicUTKGaUIHRwfQFR8rCsOrJiAAqyKraqPqGIH3jMzEwTMWMQ2C1hpz1HcSZnUHt75zUB3FaQioXrCYSqiOh7SEKA6zkgyOi6gR+0BNOCIECQBXy3iRi4hIKBKCnohondKCHRarvlBl6rohuGNGoVNE3AcR2i8SSu24L0SUoEx3GplvKk4ialWp10JovvVxCCY8TMUUJJwrYzeP4aEFdSrV/IL39ZYeHC1YSygaQnESUZXZHxHRtl8y40TWd2SQ/tne34tk/cSLBr916Ghqe54IIXkogcwvc94pnzGRkdx4wm+eRnPs4HP/VRHnpkM8VSCV0zsGyb0fExpvJT7N6zm6N7d/GfP72RcrXI333sgwiCyEc+9EmueM3leFIDSTHRMklCUSd0HVynjGLoSFqG173pDXz1G19hdGwUx3GIRiMUikWmZibYe3AfTbvBNW97A4v6OlFlOPnUUxkaHmF0fISVawb4yre+xN0P3sfo2CiWbRGPxcnP5Tl4+DA33Xojj27+DVPDhzjptNNIJOKsXj3AmS96MZPjh7nnvoeIRKNETJNIJIJpmkTnPyuKhiRLuK4LwNVvvJLenhx79+zhoft3smKgix2P3IzTsEmlMgSByMiRQ6xdfxKJpEG91iSZyKIaImtOWoFsKOgC7Nm2k1Rc4dTTT2bXngMs6G3H9eokZRPHn6NUEDDUEaz8EHYjTza2ELdrHYaszL9AQ2TBx0NibHSU6swoqfmEnXhvEvZrVAfGkVRQZa0VcHgutUoR3VBBkFF1BUluvZMb5QKSJFKaHkJUNPR4mmqlhixq5AuTiKLKsaFB8Fy6e7qoVcskolHau7Ls23MUXc8wPDzO2uXdGGqD0eEK5WaDTEJGlQ1cT0aQHRDbqVogazqarhEGEkYkTaM8h2YqxHM9aKpJGEqIkgqiSsOqE4StNSURSyEpGrbVEhbzvQa27ZFIZQkQMCIpkA1kWcWzLWw7JJFM0WjaCILXEiYKLRRZQRbAcixGx0tIErS3RahUGmx+eDeHBo/Rlc2Sa8+hKAIdnT3kcl2MjAxh2R6iV6deGKQtLfD8je0QtuTeDo1MIxJDlR3CQEFWNbRoJ0asl4jeju+JqHKSer2AQIAoGkCDwPewGjOE9XFkwaanLYEoNzlwyGVkJk9XW5wgjBCP6RB6KIqCKKoQWASiiybGAY8QEc9pUTZCX8Q0NdIxDVVsXS8XAVkxeGz3CKEVEs2oRGorEFF4/21/w2mnbuS+ezdx9TVXUcxPs3b5AA9uupv+/uW0dy4gECQEweM4xk/8HVVMeX49fHJ4KgjhExzO31vxm/cpT7SJeZKbOs/1bAHMn1rZPNF+5gT/9LfFQ08MJI63sCEU5l1a4QSXNzwO+X0y5/aZhnj8eK2Px+c9Ph/zfnqI8FvX7HhrmpD5qZ5yrk+/JM9+Dn+IiJUgis952/9O+0Mqrv/368F/NqAViM3MzPzW74MgmH+g//T2P+U84Ak15+MmCAJ9fX0YER09YhDNdbL8FR/j3pkuOgv3MT05SXluki2PPsSLLnkJr3/D6yhVKpz9ghfgejYN28NyfVLZFEeOHaK9o5Ndu/fQsBrUK0X6FvYQTSQx42kUI4IRixNL5ogmspixNEY0Sa3p0WzaaFqrt2Q8liQWjXFclMoKXLwgoFKcY+joPghaEC5ZEvDDFkRLVRQCz6NaLROGraobgohlO2RzHbR3dOL7FoahYdkNJEkkm83hum7reggisqJSnG+DIqkaAyuX0bGgk0K1ykMPPUqxUCQIQuRAwKpVufINV7Bh/XJc32HJ0j7iySh7tm2nUakQBB6aqVPMT1IuTuM7DZJxk1BUCCUZPZKkrXcxgayxoKePjaechp6MMXlsDKtex7cmKbsa//GL+1jZZjNWEalWa4RBQH9/7wlu59jIKI1GGdNU2bx5U0sJdcFCZmemeOzxR+jq6WRmYhgx9BDDgM72HIcPHCCZiLFsaT+zs7N0d3cjCAKqIlGcm+PI4SO87GWX0N7eQ3dPP2pEp1AtkMl1MzI8TjaZJvAkJsZnMIwo9VqD0ZERJEkknUqRTCaYmZ1lfGyMWDyO6IbziroxVENlZmKKXHsXsXiacqWMQEgunaWzu4/pqTyarBIxY5QrNXp6ewnCkI0bT0VBpb+/jZ7+DkQ5QmdPDxdedAGyKLJ01TIODx6hkJ+jWaljN5uoskJ7WxsH9+/nrOefydatj9HT1U0u14Gm6rS1taEoMn29XTStKr2L+tG0CJbVJJtLIcmgqQblcrmV1JBkBEI838UVDRZ1J7jo4vO59767ePtfXsmhwwc5/4IXctHFF7Jn9z5GRkY5fChKo7GUfftmuebtH2X1iqtoNBwAhofqGLrJli1bOLB/P8qCtUSXnAphiP8kH8J2XKKpHK4PVqMGvotVr1HMzwA+vm8QQ9ZrxAAAIABJREFUIiMqSzClb2NZGZT5hF4qlaTRqCNKEIYefuDgehbNZhNRlFp8WUXBtiwsy8JzXaKpzicUEeXW/eqG4CHT1bsEUZSQBQFd0zF0Dd/zEQWBwHcQpSdoC5brgyTT3rUASdPRdBPdjOD7HrIk0aiWaFRLiKGPEPgn1mxxPmnXbLbaTsmCQOA6+E6TYj4PUqv/qhgGOLYNokTTcQlFGVnV8byQWrWKIkk0ahXCICASS+KhY0TSEAiIAYSyyd49hwg9manxItVyhZjugLODRGQvk5Mlbv5lL+OFN7N1Rw5JWYPtdVFxY7zssn40fQSnUkIULWKmhq5G8B0Z57WXMH3xGbS3d5Lr7mS2XGRwbISO3gV8+dufJtOmUCon2bWjguc26Gxvo1Kd5aZf3UapVCKdynHV667l8I7DvP31f8lnP/YpJEniwc0PMjY3zfOedzrf+tYNjI9NUyxU+e53vofviUSkPvbs2AmuiFPzeM0Vb6JeDRCJ8M6/fhd333sPoijydx94L/fffgc7N2/mfW+9ho3rTiYMQ7757X/h9ttvoXfhYrRYjsnR/bSlDb7zjW/wnjd/gEK5hCiKfPgDH2bn45s5tHcPP7nhh7zzrVe37uepUc6+4Hw6sjlUGTLZNgLP56RTLmbPjn3s3rKVI7u2sf2xzezduY3HN2/i6N6HeeWLXsLzz9gIQFdHJ1e+/gr8wGLpssU06nNI0Qyrz7yEgVWrkQyDhuexYNEiSqUS119/PR/96EfZunUr/Yt6aNYb6GIEvDrnn38eCxYtYbxQZfmKJfOVWYdAgXK5judOE4tn0bAwvDzT+Sm6495TnE0fuaUZkEkhShqHDx/Cv8MkeERHOMUikU2gaRqO4xD4NgiQTOXwA4VytYLjhgShSiwSJ5pbRPvAqUSSXQhuiXp+ika5RLVcQ1M0BAIWLOikd+FCCoUShVIJXTdoOiIrlq1hZvIo55+7FsI6gavQ3Z2mvb0PP4xj+1VULOwmyHqcbK6Net0iFovjej5NyyKSTKHpbbieBGKMIADHLuEFRQxDRZWj+J6L58v4noRhRFBlFVU10IwARQa7rtCozBJ6DVzfIWYYZJJJrEYTwQ/RjTYkOQOhgiy2aDGe5dPTo5GIiRiqREfW5NxzFvGisxeRn5vg5z/6IT/+2a3sevxOZke28MAD97P7sR1MjmxnYY9HKlrCduZIpz1iMZXSnIEZhwceGqQeGph6BFuIEsoJqiWXIHDxgjqxRI6IGUUMXeSwSujMQnOSwFUIkZCkOnguhuqzpLcHWQbHreM4LpKkQwhNq0y9EcWqx0G0CX0fXTGQJBDRSCRElvYpRE0bRBfPDwhCF88tctr6TvoXLUBVpfmASSCbzZLNZjnrrLMol8ssWtzLr351B6qcYnx8/A/qPgEtLZP/Cf7lc/G3j6MKn5n29mf7U9if/wvPwYIgOCEy9F+xZ9o3DENyudxvbfvkzMhzOebxbf6Y83v6cZ/8uz90jt81HzwzrOHZrs+zfZ8nLx6W30TUBFasXkm6J8Vr3vtJmqf9Nb3RBopv8cudTbY99jg33/QzXMumPFdicnyYXDZLxDDJzxRQFZNqvUk218b07DTdC/tIZrO4novjWBC2XqBhKNKoV7GaNaxmHUNXiMaSJNNZzEiMYrlKvd7krjvvQhRlxFDj4N4Rtm87RGfXEoqFEqIgUi2XELwAu9lEVhTmKmU6O3PYjoWiKFTKFcxIhFK5zuTkJJ7vIYoCvhcSBiLFYqGVNQ3DFr82BDMSRVFbvDzLqlOtlonHUiBKZLuXIhkZioU8hqGjqK2+p8lUlo6uTiqVKhtOWk8sFsW1bZxmg1Sqm1o1IAwNZDmG7/t4nkOl3OCRzY8TeDA2NoJpKExNTTCVn2s5FJU8ohCS9A5SFbtYvGI93Qt6OPWUkzly8CBt2SxCCPF4HE2RefSRRzj/3PO59+77GDxyhEq5xIaTT2d4ZJZUotXOwIxEGRodxYwlW/wkVaC7u5tbbrmFzs5OJsaHOXZsEKdps2PH4yxZtJBf3HIjmUyaYqmE7/sk0ylWrl1LJpMFBAxDZ66QZ+nAALfceDPtuRy27RCLxWhra0MAVM3A9nyMiIkqCBjRCNV6HUlwicWi6KpMs9FAVGJYlsXDD9zH1MQYnV3dPLrlcVLpNFMzU4xPDiMICqpsIiIwNzeHpMDSlSsYGRpk4cIeQgTiiTRWowlBQLVUpqOtnWTC5LSNp+AEHnf++h4ef3w7nZ1dOK5D76I+VE3H8wIqlSJr1q7Athu0t3UjiALpbJxIxCQMgvkKZYCoRsCpMjE+yVe/+jVGxwZpb8+xa9cOisU5LnvlxfQv6mJg4CTuuvsxLKtBd3cnjmszNlICYNXqJG3tHYyPj7Fy1So8z8P3fQLfRdHNJx7UwMefB4o4joMotRyhTC7XUgJu1AmCGKKcplg9m7hxO7XaYjzfodGoo6gKYch84gN8L0DX9Rb8z7YJ/ABFUVr8UknCC9QTa04QCi2hN02eVzlX8bwQIQgI/JDAt/FdD0WWkcQQz2slgkRBRjc0PM/F9z1c18b2Q0RZAYQWpNs0iCXieIFPo1rC9TxUVcNu1HBcG01T8VwfSdao1qrohk46k0MSQgxVwnJc9EQW266hqtK8KJSAppv4nk/oeRiGiSTLyLKE3azj2A2CEDw/oGnZrFq5HMtusHx1G2a0jCbvxA+yTM9dyeve8DgbTrqUhzdtZ/PDW/B9H1WVSad8JAny+QLpXC+H9h+gq7Od2ZkxTAN+/sAD2MkkP/3Jz4mZERb39bNj6zYMVUNsyshCklB+MWtP/Qh//7G/5z9/cgv/cv31lCslDF3nzlv+k7e+5SUUpicxVYmr3vQm3vNX7wLg9nvu5j3XvYvLXnEFX/3KN/E9kTBQ2Lp9GzPTg8QUkfe+8x00qxWed9qZZLJdHDk6yM233gLAO976Nv7mr67jl7fexb9+86d87JOf5I5f3s4Vl18BwJe++R1uvPFWKoUimVwXh44Mc92HP8BNj9wIwMrFy1mzdDV9vSfzyP27WNy3hA994KO89tWt/T/5uX+gUSpycP8O6o5D0LS5+ee3IIQQBhKDgyWikQSqqpJMJvAD+NsPfoi77r0fgJdf8lLCUKCjvRvTjLJm7VLuvec+VC3F9MQ09UqdyfEppidmcV2Xq6++muuuu4677rqLifE8+3btZmxwP2YiTaVRxzA00pkEiiKRSCSIRVM0ZY/2bCcDSzSEUCe65CwKtsHiF76VUlN7ynvXDQTqlQLF2Wmy7d30PLoOtkQJT7aoWg1qtSaWZSOIAoqoIEsyluUgKypmLEkoypjRJI8+sotbf34zjZpPrv8UstkUmVgNU66iKCGSFKJrOsW5EseGR6jW6gwMLMMLQnwHBNEhk8txaN8cgthqXyXpPuXCGOASOBCKGgcHXSZL4PoCqXQHATKRWBwjEkEKfbzmNIJdwRObiKKHoZrIQppmvY6qeEQME83QEOWQeqNAtTY1305Go9GoEISzxGNRdDFADDyQbGrNArISEkuaVBt1ik2BeMcSGoGCohlMjM+hCBkENFzXhqDO9Pgw2ST0ddi89EV9XHZelLV9GgsSDq+6OMdFL0yzYiCF4EvoRhJZkHEbHoqsct5Z3SQMkRdeeAbZtg7UjuW4rodXK2Ems4iqgaarzOXHadQLRPSQSv4Yfm0CSVEYmS0g6lEE0URRsnT3GhiRKp4XkG2LoighbtDAtgJUTabhCBwbnkQQQzQlimMXEGURz7UQ/ADfVimVAwKiKLKBjIYoqMRME0UW8Xz3RMGgVqvR19fHfffdRzQaZf/eIY4eGUGWFVKp1Amf7dl4mU/35wRB+C046pNRhH+ML3v8WE/ucvFs4+nbPJM9fY7fdaw/xJ5+7Cd/frZtn/7zc7U/JD74Y6///w37c+D6/wP7Y4PS4/Z/+ob/U1kLPhjiiC4NHBafdArfPZggmYjxsUti/OjG+5AFMFSNA3v3cXDffh5+8H6mxieoV+qMHhtDFCXMiMm6detwghDbaTmtIj6eayEJrQbuTrOKLAYYqohr10EQaDZtgnmoRzQaZd269Zimid2YpWdBlmUrB4gmTTRV49ixY+iGztCRo1i1BvVmg6UrlxMSIM/DzmKxOM2mRSTSUrCMxxKEgYBluViWB8DExCSlUglxXqBlHoiN67hoqkIhP4eESEdnG4cbC6lETyYUQqr1GkgKU7NFPK8Fyclk28gXC/gEGJpGYLtMzYyTziXwAot8YRpJBFkSOHL4MGODQyiCQEdblmwuSbVYJNnRxtZtW9EUA89zufzijQS+zW9+cz9zxeJ8r0SZXDbHvn37SCYShKHI0oFlzEzP4fsCuWwOwzA5fHiIwlyTXHsnM/lCq+plRlmybAWlapXOBd1kMpkTPLHu7k6KcwVybW30dHcxNz3Ggq42ZFHk9I2nUy7NIogC5VqdnTt3YDsWo2NDrFy5jKOHj3Deeefhuh6q2gqCXM8j19bG5kcfJZ6IU5orMDo4yBnnPJ/OrnZ8u8qmTQ8SBj7ZTJapmTlKpQIvuuh8GvUqYShw9jlnoxs6rueS6UhTb4Q0ai71SgFD1ZmemUaPmGSSSaYnp+he0M10Ps/MzAyFQgFREpmcnGT/nt00mg26+3q56KIXMTY6Rq1Wo9lo4AQhjhvwyEOPgughyXDo0CE0NUIQuJRKc0iSOJ8pBkkSCfUkoVvn1FPORFWiDA0Nc+mlL+UnP/kxpqmzdv0AZ5x5Mp/4xKewGiGf/8KL+NUd/8gLLjmbml0H4EvfuJFXvunj/PVHvsMp57yJRNfZDD5+P+Njoy1xmHmTJYFqucqnPnM9Z55/DfGOcxhYczmXvvp9PLplD6Io4rgykmSjG6twvDUY6p0cPDTON264h0te/TlWnnwtC1e/mwWrruWciz/Bxz7zU0bHZmD+Ra+qaosz6nnIkkw4nz2XJLHV4qpWwXNsxFCgVLX58r/czKuu/CIbzvpb+tZeS6b/alac+j7e/u5vsmffKIIgIhJi6hqqLCIJrSryW991PZnLv8xffuUOkGRu+OF9nHvJp+hd+x76Vr2XF7/y73n0sSMtUScARL7+nTu58LIvkO17G7lFb+HlV3yWxx4/hKKbBJKGqgjMzU7jWA1+dvMWtNxfsPH8j7dgdPPCULVyiagu41h1du05TLL/rXQtfQf79m+hPbcLTZ8jX26n0ng/929eyalnX87uoe0sP2U9b3nHS/jyd77KCy6+gE985jMc2LMFz3VaiIfpIql4jrPOOJOBxX186/qv8IpXXM709Cznn38hgeXwyAOb2Lt9J06twfCR7Rwb2oMnNyn7ZV56yeWMjU7zs5tvAmDN0lUc2L6Xgzv3s3nTg7zqVa/C8x26Mh3omo7v+3zp61/mO9++gQ0bTuZ977uOhx56mDVrVqEYZXq72inOTuK5Fo9ueQjbs7jlFzefuJf+4i8uJ18a428/9DbecvVL0YwEWtTkXe9+JwAz+TlkVUYl5Gtf/wGZ3AKu/su3n9j/K5/7Eueddx5WbYajRx5jYHkWJeXyrmuuBWByapJNmx9i9cpl+F6ILMusWdELfpOHtzzOlW/9WwRBYmJiAlWV8UWTG370Y3zfRxAEXnDmuVhND9cNGR4aY9XqFQws6qEwNkwqkuDg7v1MDo+xeGEfhw8fxvM8UqkUH/zgB9m6bTcbN55KT1caT9aIJzJMT00wPniI4eEhXNclHk9iBw6KojE6vJdarUkqEmPm2FEUUccMnae+20WJQqFALplB+F4aZShGuKFGKAcUCiV0TUdRFBqNBsNDoy2hMFXGD30EUUGUFBzXZfmqPl520SmU8kco2zUkzSQICsSjApXqHK7TIAxDTCNKxIzQ1t5+QhDK1DQWLuqg1vRIphOEYpP8nMX0tER3R5yQKr4tUbcFRiaatHUvIQhEfD/EdVpBk+u6oCXx1RArDBHFNJ4r4tgWkuKhqRq1Rh4AywLXlUjG25mdLlJtDmOaMRxLIvRlZudKFOfm8B2bI8fGUbUkbqBSbwhoWhzVaCeUO4hnluMEAgOruvEp4HgyR4cG8YKQJUvWE4g+cQUET+PA9gl8JaQpNlGEOBI1AhdEVSVQXMLAQpFEFM0nUB1CsZdUZy9Gejkz48fobk+ixFJYvguShtVwiUdkQlwOH96HKgsYqoQS+qxc3IZbncWXqgQE+L6AQAxBUDAjGqIU4oUNhFAm9KFh1Vi0pBsQCDwBhAZBEBKGDp4T0nREKnUbL3RBqIPYQJADQsEjEoki0EKOeV5L5Kper3PNNdcQjUZJJTuIRpKYpkYqlcL3/f8+h+7/Afuv+Np/tudufw5cf6+JhMFvE5WfBJN/VjGm5xb0BU8bT9pfeOo4vk0Y+oSh/4zZrWfKKhEITxlPn/cp2wtPPf4fUgFu+Yxi65qFwrzoUuvzU8/12b/zs9kTmTj/xAgCD/E40V4CGRURActu8pkvfYFvPFRh0Ovm469bzUBKYmi6wKy5lIElyxBCj3x+FASbBb3t+L5DLpMmkcwwPnoMTZLQZb2ltiibaJpOcW4GPRqhVndpNkHXorhWA8l3KE6N4DQLiGJIritHqVIkkehANWQWLGjDsVwMwyAez3DH7fcSTSUwIwZ4DnajhqwoSLKKYRjU6mUihoaiSnS0tSOGGnv3H+CeezcjSiKmGSOdTlMs1PEdn22PbaWQL7ReHoGDKEj0LVpMNB1jYMVSVq9ZQUd3N30Dy8F1qc1OsHBBJ9XyHKIItVqFRLJVzXQDn7HRw9jNIrGYRjQaIZXOEIQSjYbDiuUDnHve85F0iKdj7Ny5m1yujZ50lra2diqhSlwXCWqTVGyVxX392I0m6XSKXFuORDJJJpUkFjUYnRgmk8ui6QrLlvYxNTnJ4NAx4qrEGWet48ChwyxdtgTXaRCN6FhWkXTSYNP9D1KplBkbGyMeT7JgYQ/lSonpmVmy3b0cPDbKwLL1TE7P0rSq1Mp1cpkMmirTlkuyYtkSYvEYmmGgGQaS6OF6DUTFoOm6aIZGvd5g9aqVqJKM47iUGhb56Tz52RJ79g9x4XlnMjk7Ts2G7s4Oli1djhVCrr0HTVc4cGAXhblJlg+soFa0kQQXRIdIPIYgSnR3dGPXy0hiQD4/x8TkNI1agf7F/UxNTnFsaITla9awePlaTCPF/ffejajJvOzSi2lryxAgUZqa4f5770dC4sj+URTTJGYkcNwKYSgwPVud58+AHwgosoZmxgk9m9Uru2i6Vd7zoY9y7vnnsKCnHRmBn/zkDrY8tp9LX7YMSdxLGO6jWT9IIp5AnJ8rYmrEogbZTJJsJkEmptDc/wBtXT080b4cJqeLnH3+VXz2C99jZHQSURQpFCv8+q6HufjSd3L/A1sRMAnREaVBBOXFRKNlXv6af+bDn/opDzx0kKGRGXRdoVa32blnmM998SYueNmnOXpkqtVj1PNwbRchEPGc6gk0RugHSKI4z4mXKVdm+eDHvs/7P/ZTbrtjGwePTALgeQHHhmf5wU8e5PkXfYSbbn0Y17EJA3AdD8IQZV6RGFrr4TXvup5rrv0W23cOAVAqN7jvgT28+NVf5LY792B7IS9/7ed534e/x74DYwRBSKXa5I57dnLh5V/gsa2H8K0yimaSy+YoF6chfMLx84SWarmsaChahMAPCEOIRLUT20iqRsM7l6Z9CqaRYdNjt/GK172U8ekxLMciCAI0VWVqeoqtO7bzhS9/hZtuvw9ZM+hfsgQDm2hyAQuXLUNKZfnAZ7+I/uBDrJuaYnJ8lF/edRebH9+FYWb51Kc+zeIlS1nQvYKk7mJP7+WNb7kaM6kwMzsLgClL7D94lH2DcyxfvwFRk3nwgc2cvOF8nnfa6QBs2baNr37ts7zyVZdy023/yRnnnowghmQyi5Ficd74xneQySb48Y9uYGp0nD279gIQj8U4df06urt6QE6T6FhBo9Fk8OAoTsVDlmUAbr/31ziyzHe/+1X6ettIJVrV/7ieYOmKdiqVKXy3yBuufiP1UEBwQgaWL0OWWvvf+dCDOL5MwlSYnpxg1apVBF7IqiX93PWL71Cv1FnY00Zg+9TzZf79p98H4PlnnMX+3YMMDY9RLNdRzQzTU3P09C+hvbeP+x/bTcTQCRplvvdv/44kt5KdlWoBQbIYHDzEq19zNRMFn0QyQii5JDJp2roW09aexrdaSAfVinHfHV8gFb2EwtAubrvtN6w54zXsuP9GEIwToipSCNRqpCfb8T7eiVAUcDaUCHUBq1FmQXcCz23gOS520yKRjFCrlWlaFoqmo0iA10SVQiTPRk33Y0baMQUVPbUcI72BaqVCZxqiqkSlNAOSRd1ukIoaeFYd13UplGYR3JBMPEoqFRCV4qTbdDqyICshphQD3SPWtpJXvuYyXGsazTCQZQFZUxmfGEOTwLOrSIGJrsYRvSKqJhEKAvXiHGGoYChxLMumXh4hqlqU5kYYWL6MhNZPEATE0ln0ZIxkIopqxhHECIsXL0IImzTK44hhDUHwkZUmru1QLBaIZE9DTWwk0XUhRnwxc95S4omFZLI6fpBEy3WipUyWnbwKWTIQQxUlquOFGpIuI8oakpxATq8giA+gZdeiJ9agxTKUSyV8y6KtYy2h3AGBh+BNUC0NIwQqvtPEnjtKQisiiyJ1JyDwPIIgTsPXEcUk9UadW+4YZM/uWR7bNU21ILBjb5WqE+UX9+zHdjUWtmnEoh6BJ2IHVUIxDYGKIEs0fB9kmW2PTeHZHl5gEgYqrh0gCiKlShFVknAcB01RiOgiQiBgRgTu/PWjdA+oVBsRDh7cjt0UEQUZQQjn/b4/AAUoBCfGsyvtPgcLxSfG7/rb7xEpesq547fEm550jk8eQiieGCe+znEf9/h3wn9CEiYMYd7HfvIQhBBBCIEAPwye5vM/+zk+F/td6sS/b7//yfbnwPU52DOp+D6T/Z+uTj59/t+1ODw94Hz69v+V83wuN//T+7Y+ExTjv6Pye5xz8PRtjs9rGAZvf/e1XPvPP+Ga7x/l1semuHBtlssXDDIxPsamwyWyuSxtbTkmJibwAxdJFqnX6nR2dKMoGq7ro+smiqxQrVZIpeLISqwlAGE3qVVKELpI8yqOqhJSKZcJfBtVhQAPWRaYy88wl58hFCCTTXPRxReRybSghrKmE4Y+um6gqhqi1GoTMD0zjue5zM7OcfjoMAv7+rng/AsI3ABCkZ/+9OcIgsD4+BirVq0kk0lTLhcxjCh+4CGJIm7Tw3E9AgQc38fzPcxYDEUzEAnI5XKIgoiqqbh+SCiI2K7DosWLWdK/DLcpMDNbo1zxGTo6hCLLqLpMKteJgIrjwKq1J3P/b7ZwdHiIVDrFsbESCh5B8SiKkaS/v5fuBZ0MDh6lUqkwNDxBoVRhfGyMlStWMDs9g+u4jIwME4sYnHrKqUiqSr5QwjAj+L5PpVKjUWlSKVax3YAzzjybFSuWs27tWhKJOCESF1xwMZIoUatUOfOM53PPPfeRzbSxe9deNF1B1RQEIaBUbCl5xpOpVuUrDNi6dSuaplHMF5mZnKEwVyCXa0NRFUzTZN369axesxrf9agUiiTiMaZn8izuX8z2rdu581d3MDo5wVx+dr4NUZMlS/rp6GxjaGgQXdPIz84iiSJ7du9mx67dzM4VW/0BI1FWrViOIgRk0knqtSahoJLOtOF7AXv3H0SSBV547gsIPI9Dhw9iGDrReAzfsalX62zYsI5jQ8NYjsvSZcs5emwYXTHoXdAz/+y1kkOe5yPIGqGkM7h3Ozu3PY4uBgiSx9XXXMnZLziLgYFlTExMsXRZjJdcchKSKHHhC/o579QXEo/EAXjH1efzT5+8iv3bb+GRe/+NHV+6mK6kiqGpCOETiaj3f+RrKKrCHbdeT35iE/mx37D5nu+wdEkPrutx7XVfplwq4vsxdL2J7x8mX3kezzslzec/8wl2PvyPTBz8OpOHv83c0A38+qaPcupJixmfLHLVtd/Cdi0sqwXN1Q0F33Hw/JZQTuD7rT7MUkupQ5Jl+nrb+OB7Xs5Dv/4YR3d+gZmj32H68L+w9YHPcPnLTsO2Pd76ruuZnq1g2zaSJLfa94QiqqIC8Kstg/zHLY/wtS9exeyxf2Xi8HfZtukLbFjXj+f5/M113+V9H/oeW3cM8q9fv4b80e8wdeRbPHzPp+nrzdJo2Hzo4z/DtlvPcblSaXFp54V1BAHwPWRBYPjYsVZbj6BBPKljGtUT1zYa60fXFWS5iWFW+Ovr/gHbtnnhC87hZz/4PmMjo4yOTzN+aD+b7r6LD//tdfQvWjafVgjRZA9FC4hEjRNz6gdG2PWDGzl45CAT47OMj83w8lddwee+9DXy+WKrj7VwG4Z+N1u3b0M15BP7fv5zn+C9H/hr3vfR97Ns+SI2bdrEhvWn43l51q1eCUCtWaVaryJI4PpVAsFidqrA3t2HmJspMzI2RaPhMTo2zTv+6t0cPHgQAN9vKeO6rovruhw+fJhf3fZLfn37nWzftuMER+3QoYP8y1e/zK9vu5HD+/ewas3q1r0Q+EiiTqPuoedSSHoGTcgRSgr1RnlelA72HziMIIT4fkgsmsayy8iKj6z6zOZHEQIXuxFSrNrs3beDoeERAK688s287Z1vxIyLyLJPLp3g29/+Lps2baJUbHLPHb8i29bOzXfcyZuueiNnn302+Xy+1V/Y93n3u9/BN77+JebyY1hWHYSARsMiYqaQJIVSeZZqrUhUk8gmVTQaCLZN76LVVGoe8WgMTZYQhBaUvVFqYv9cRPppjkbHNJPJ3RhRldC1SScz2E6TaCyK5/nIssrQ0AjRaBRZChECm8DzEUSZSq2JGo/gCTKSIhFQR9VNAqONdFcXvj+Nrpbw7TyZeI6+/l4mp0fZ+tgjOFazlUgVQqYnJ/CDJs1mA8IQx2oS0ELbnREzAAAgAElEQVRaFIoGWrSdUBCImhK6rCIpOgQBiVgE23NRZAlZMRBlFdf2KJXyhILX6p0qeTRdDz0aJZXJUKlX0Q2NUrlOvjhG0yrRqJXBD2jaFkrERNIEJibz1OpFLKeCaURxnRBFNFswZM3AssdpWHPMlvKoyTjr1y1HSrQjRzOke9bS9LsxoktoW7gB0exFMHuRY/2ku04m07MRI7sSKdKHondimD00myE1B2zLB9eF0KVUm6JpVfAcB6eZRlNMdKVI2JwkoguIoQRCQKVsc3jKw3Vm0EWBux4YZ/u+Cg4aSjSNpLfz8K4hDo0F/PJXw6Q7koxN1hFUH9v2EUQRUWr1rL7n3n1U6h6PbB1k7/6jnHfhAKrWai1kmiaS1EJ6JCIuBDJ+YhJHmeVdb/0Lcrkc9YbL6mWrsJwqp5++igVtGeqNEp5vE4Tes/puv8+f+2PtucCT/5DA+LnQ3p7rPP+dgeaT/3acn/uH+OX/r9ifA9f/BfanIJT/KaEjx0n0/SuX0QxcxianWfviN/KKT/+K9/94L2edtoaPvaSTrlyWe48ILBpYjanHOXrkGKNjo1SrVaYmp9i8+REURaVZL2FoKo1aA9d1SaYSZLs6MFIZEEyaXplYOkEk2k08HqVRs/FdscXvkxTacu3oqo4fuCiqgm7qOJaNqhkoWhzTSGA1qviuhd2sYjer5DKduI5POp2lo7ML3VRJpSLs2b0dz3O57LKX09XdxqJF/TSbTeKJKKl0EkQFRVUIfJ/hY6MIXoi15/t4+/+d0G4CAmY8Tt1p4vkejuNgGiamLOFZLpFoBjs0+N4Pf8YDDz7M/j178Zp1mlaNWq2GIKqUy3mqxVkO7NqOaSp0diVZunwN3T0LyeaiuKFEWBtlaGIGy3YIA+jq6qVSsVCVkKXLFtPV28f2rduYm53Fcxzas20UKnUs22Fk8ChH9u9hLj+HpuoU5opkOztZsLCPwUNHmZuaZWjoGJNTE5QrJfYfOEwoSMRicXzX4cjRg5xxxuls2fIwZkSjo6Obe+75DY7ts2TlUvRYBEKRarFKsVhk48aNFItFFBGqpTmy2TTjk6MgiVRqNR5+dDO6aZDpSDA2Poao6Dz+2H5mZ8osXbyIU05exaIlA7husyW6JYg0LQvfCykWKsiyzOrVq9m/dx/Lli6lUi2h6Tq6HkM0EiCrOLaD40OlWmDVujUs7O9jeOgwc9PTRGMmTgCh7yEKApIsIcoifujzspdfhhLRed0bXkMQehwbPsob3/Q6xieOkkiYWN0KpVyIIEgEftjKjIsSB3/xaYaPjHPjj28CSSWRzLJz736++pWvcfllr6RarbFv7z5KpRLr1q9D13UGBgbmny+BF7/oYuxqgfz0NIViiUqt1qokeE84L4osc+etX+N5G1eC28S1G6xZu4TvffvvABgdm2b33mEalkIYigTBNErkHH50w9Vce7VA38CVpJJJXMdCEFzOPG2A2/7jOtpzCbbvPMbDWw5imibNZhPbbqBHMsjzAaCiRvCDFk85CFt9HT/y/kv50HsvZd2aRXR1ZvF9D0WR6OtN8t2vvI0Lz11DvWHz/R/fj6bpgDDfo1XGdVsV13Ld5quffzOvf/WZ6LqKLMOSxTl+9N1rEQSB4dE83/7effznD97HG/7ivBb8XJZZu6qHr3+hJQa0ectBSpU61UqZaDyO7Yq4zVZQ6s8nmCTZYdGSTsxIk1gqhaxK+HQ/sciFHUxOCBSLBnv3Chw5Og3Av37zal500Qvx67OM7N6GYeZoy/bwgb/5ABeeeTrivDp9LfDmYa5PvBuCADacdCqvvOKVKK5LZzrFTT/7CVFTo1ppsm/fPsIwIJGIc8ettyKrT+zb3dtPpTRLbW6Uq666hiuvvJJsNolllXHn6Q21eo2PXvcuarMT/NPffxbFFvjRD37KFz//JXQ1wgMPPsIPfvgTEpk2kqk2Lr/sMgDqjTqjw0U0JUmtVmLxQAcrVizk6qtfy+q1S04ErrP5Od585Vv5zcObSbR1kEy3tY7r1PjlL+8lEtUIwxRq6DI3tpvmnMXhowdO7D85OUXo6zTqFql0FEXRCAKIxxIsXNiPaxdabZkU+N7PW9zZTDrNaeuXIekysiwjCxrbH93JO991FYuWtKOqEu94yxsZGZ/iH7/8NSRdJBaLEYvFmJ6eplAo0KwXEGiyZvVSTCODY3tUa0X8sEa9XmcmP0o0ajA3+Askay9T04cp12WcehHDlFi18WSacut/EYwJhJ9JIRxUcNdMo3T7tHW049oOjUqRer1KNJ6hWm8iaxLxVJS169dgNeuYqk7g+niejyS3uK6CkG4lGuwKciBRnDxMyoyiRXtJZZdSrzeJKjXyE7vIT+TRJIXOri6SqTZ27NiDLKVYsaybRFxvtSETBCQJ1ECn4IqsWv9SXG8Oz2kiCypNv0aAT61Saj13nkggtfjpvmtjzL/bNDWC4yit5LIWJbCaNBs+uhZBUU1uuvF28vkqkqggEiCEFoaq47k+jlUndObQJJOO9mXM1auYiSSRRAeiqqCabWh6B4bRRia1AEkxiIgBstGOKCVQVYlYXMJ2Q1zfQ5BlVM1Ekg1sR6Xh6gRiFNNMIWoG5doUmiIjNqaJpnPUA4Fq/hiGquP7IT4SEaOGLDTZ/OBD2I0yjitw9GiR0fEyfpBjx64itzw0jWd0sWz1aaxafzpvePPb6Vu0jNXrN3LpZW/mNa99GZdcei59i07GDdLcc/8UihqnXnfwPIljg9OsWrcYyfU578xlnL6hG1NrIgYagujNrwGtyqevS6hKgkCscWxqjoW9Cyi7NqmFHYwVjhIKPj29EcJglEhMRhDd+XXpf25IEYbhf0kQ6k8pmHrcl30mYaj/zWJR/zu/9XM0QZBaDzL+fHP4p8pUPx3Ge7zk/3Sy9dNhxU8Zv5McLj5tPNM5PnOG5snzBcxDgEWhNZ5hmyf/Tl5+LvLyc5+V0P6sFoTz4uECosj8tWjBev8Ye+7k96dCqcPQYveuvVz00iv4uw9/nDe+/s1ccdV13D2V5bsHE+TaO3j9wCSJbIpycQ5FFulasIBEKk0ilWDZimUEtAKFSrWOaibQNBnLqiMGPoLrkp8+CoGIEITYjTx2o45tVYglEi0nMQwIBJloMoeEhBCGrcbosTiu4xBYNerNCtFIHNcLUbQIsWQbc3N58H12bX+cWrFKaSYPYcjq9SexddsuQq9B4DYJFYFsewbPsclPjOM06xBICILMbx64H8eykSQJQQgJ8PF9h1Jhjohu4HghkqJguzYN18XHQ1UFoqkkr33taznn/HM454VnIckeiwaWkutoR9VkktEo/x975x1g11me+d/p5fapd4o0RdKod8mW5YZNMTbBmBjshBjTAyGQvukmm8qmbEKAhYQAS8BmHQjE9GJhW7ItW7Itq5dRn9H0mVtPr/vHlWVjwDEhuwm7vP/N3O8733fPPeUtz/s8tWaFVetXo8oZVq9dz/zcDAef3s/SZavxaGX/12+5hunpCuPjkzz91F7S2CZwPY4dPMzRw/vp72lj8eBigjRlanaahVqVIPSZq9a48vpXtFhVs3ny2QyN+jSnTpygVm2QJhGaodG7eIB8sZPurm40KcZUI3KlIkNDS4iTiGw2R7m7j3MXTjO4aDEHnniK3Y/sRxF1Ht25k2Iuz5YrtiGKMQsL85yfHGd4eCl+w0VKoNTehqoJbNm0BllMcCyXq67ejq4qvPSlL0fVZbr7yjg+nD50iHLvACeOjhI2ZvCsKgcOHmDNurVY1Sb15gJ+5OO5sP2K7Xi2hShBnKZEYYgsq3T29iEKMoqk4bkh7aUysqYjChoTYxP4To1lK1cTJilCGHLq7HkiISBKYmJJgzDk8JGTLFTqSEiMjU/SXG3ir82SJCDKAgkBolFi26Zl2H7AEwcPsf/RA3z1vgf4mTvv5J2/+PPseepxNm3eSCaXYcOmDdRqNfbv28szsH5FlTl85CiKnqW7pw9d11EUFU1RieNnX/A/+/qX0tGWQ1dEQt9FU3RIFdavX83gQA8Ax09PoigaiIOYGchqh2mGt5KQx0z/khiDheYSICVNQhQh5KrtKwHYvfsYjmujqhqSpGH7NZ59PMWIKSQICCJEvkUqSCC2ZCgQVSJUEBUMVUPNmNx4w8bWcZ8YJYhDUhIsq04YOJcCvEW9bfzc668miSLi0KNZmUUVU5YOdTM02CLb27Z1CevWDhAEEZ7vQ5oQhz7XXrsaTWtVKQ8fnkAUE4RUJvA9XL/lOIqiQK6gIkl1hHSe2ekmU5MZbGuQhTnl0rn9yle+xYnjZ/DckF2P7rrkwMzOjaOqJ8iWush1djM3M8EHPvABmtV5Pv2//gcJMaQCWbObMJrnIx/+AHOT4+zf+ySkCVHo8CvveAef+8KXOXb8JPfecy+fu+dussUCQ91FHMsBQSNKYzzv2d/6yNFjzE/OEUw3+ZX3/gZ7Hn+Ec2fPsnvXXh55ZO+lcQ8+/jTz9Tl+/bf+iNCQeee73kWx1Mn99z9MZ5fMbbf9FIoQ87G//yCvuOFll+a9749/i7nZc3SUOoiTiPb2Tq6//uX80fv/9NKYsbExzp46z+VX38THPv2/uHzz5kufPbLvUWzHI3BnSUSF8tAGSl09/On7//rSGNt2sD2Jxx47zKGDo2SMbhwrxQ0nqdam0bItxMHkuTHuu+8rALzu1tfSt2QJkgA93WXiyOLqq1bR1tlFV0c7+57cTXFwiIEl3YRuBVkwsawakd3k21/dQS7bi2maLBrsJxElNFElCTwMRSL2Yko9/Wy+8hZq4zuYrxwjSV+DqYkUy92UcjmiRCQIUkJXILhXJXi/Dj0xySobraCDKKOpbcSJSqYtTyIkJEgouoIoSyDIxAIkkkSIxoHD52nUGjTr8whxjCAkJI5NJt+NIKqYpkqzOkbiyyiZJeRK/UiSQykXMT1+gmypnWJXD3FkMzS8mJrr8thTZxHDEFGGo8cswjTCTyw6ei7HTR3cRgZJVIgTFVlSIY4QJA1Z0UgiB9+ziHwLVTaxrVlymQKOA6KqoahmC2Wh6shmO6mYIQyhkM8zMzeDquYRRIhjAVlKEX2bJI4ptZURU4/QnkUVNNzGNNPTJ4mjhMCdxw9d0HOkoojtNJDyHUS+g2q2MX7+ArrRSaFQwLdmsaoujcYsRDGCLIGso8g6kR/i+iE93Wuo16qoioFtT9LTPYBu5lBUmSh0SPwF3PlDzJwZZfnSMqIQ4wchdc8kVtp56uAJ5IzJLbe8nVL3OqLA58zZKQQczI5Ozo0eZ3p6ikceegRDzbC4v4/uRUuoegJf/NpJqpFGEIssW9RORz5FNRTiOAUxRZLzxGJEKso0my6KbiCoEYQlkBr4gQhI3PuVfRRMHcGGSrVGX/ly8hkNI1awQw1VLSIJ8vdosf5I9sNAfJ8L6/0B9oPIQn9QRfi5875vFfR5MOcXQj6+cKvcD/bxv8f/Flr+fEJKmgikiXDp/HwXyvJiXPLM2Ofv/QfFMoL04xES/njs8v9h+7+ZzXmxa0l9a5H61v5f2NH/WROQkBSZ9/7KL3L/nse590tf5rd/9y7+5i/+hqOj57jlN/+Bn//o41RHH+OGjT2MzkPou1w4M8r50aP0dhbBt1ssvKUSkiwiCiqkMtPT01h2HUExkVSdpuMSJyLZQpF8qY1UkqjOV4j9EFUSkUhBiECIkKSUwPNoNBp4vo8iqVi2TRRGCAK4jkVbRxcxAvWmg26CqglYlkUSw+XbLiNOWkzCkiDiuS4zs3Nkc3kq1UrrGJ7H7bffThg/k0lNARnDyJHNFgEZVREu9l1I6KqC3WxSqzXwXIfAtXAcG0036Sj3cf+3d+DYLlGYoOo6/YsGkGQVSZFwPZckSegud3Pw4AGqtTniVKdSreA2q5S7OhgYGmbtxsvwfJut2y5n48bLUDMlLMejlM+RM3V6e8pMTk6wuL+fRr3OyhUrmJ+bwfd9cpksHV2drNm4nlJvN4sHBmk0mzTrNY6fOE6j2UQSUvxGhYWFWXI5k8su30zTquE1AxaqNTLFApmsxOjJQwwOdzE+cRRZaD30N23cxIrly5iameTRxx8nCGImxqcQBJmh4aX4QUypox1JVegsd3Po8H4kEeqVGY48vZuBJUsQZInVa9cwM3WYcyePo8k5REnkwKEnyJhtrFi+Bt1owehVVcV3XYh8mo0GfhBSWZin0WzQtGpIckqhLcOWzRvZv38/u3Y+zPnxSRzLJvADJEXmuuuuQ5FkJEHk9NHDjB45RHWhSjZbQBQUctkC01NznD59DkiIowiraWPZPrMzM9x662u5/bafpbyoh0p1lvnpKW599WtYmJrBtR081yUOfTzX5bOfv4/5hSoAjuPTU97Cvf90L7t27cTzvJZOaZwSBOGl+++yLcuxmzM0K+OIhomoqkiygCQk9JRbQd7s7AKOYxFGCZbdiSRWMeTD/Ms3C/zMz+9j9da3s3rzyygtfie5RW+lbeg9fOFLjwMwOVNHkpQWzFYAU8tfWjuKAmzbIvBcZEFCklVCz+fgoVO8+1c+wparf5P+ZW+l0PcmzN63YXa+gV/97VbP4sRkDUXKIIk6plls9Z9fJJ3atHEpCKBqLXZu3SwQxyKeG9DdWQTg8i3LyWQMPN9FURTSNEWSFCCloy0HwEKlhizKBJ5H1ozIXexfFUSB0KtSr/cxX1mDom0gCEUs28Vx/Uvfb9PmtSiGSrZQZOnwUq65cgMAN772z/njP/soux99jHwmS3e5zJ/+t/eTLeR555vfQWWhTBytQojreJVe9uw6w+T5eWqVGUgFRFFifGKM3/ytX6Nc7ubee+/lySefJGOaVBsutVr9Etuy+BwnsVG1uDDX5CsPPI7jOEyMz/O1r97P626/g9Vrnn2XmEYRWVKp1ecwMxKu51BvLDA3P8l73vNLdHWVMQyDTFZn3dq13PSKGwD4/Je+yh/86fvZ88RexFRmdm6OtVvX8uiexy/1uLaVSgyP9NDTk+V9d/0WQqJw8/pbAPjU3Xfz0X/4GNMTdT7zj3dz9twJ3vnud/Dgzu+gXKzSR1HEU48/hKkGrFregRdUKBbztJd6KeTLeF5LpuX+Bx7C91u/xVvv/Dn27d5FEAREUYRhGPi+j+u66LrJdde9FNPIIokK9977WXbs+BaaYTJbmeGdv3gnWiYiSiFqwXNIUo/JqXPYdh3DlNFRiF0Hpz5NraYiZ1wefvLz6NkM1QWXZgP8h3TiX5dJjwjEV7qIQzFqsYgTtbTPZ2YvIAo+mpIDJEgDSBJEQUKWFCRBJWNmkWUYGRmgadXRDR3Xc4gFCVnTiQUFQTEQdI2puUkQmsxXLyCpJkamB1ESKWZcdu74OjICtcYcC/MV8tksvu9TC3z8KCSX0xCFApJWptH0EFIwinM03TFEQcb3Q1IxRZRkBFEjSTTEWEJWoFI7j6hmkfUMmqmTijFICq7rYtVriPi4nkMYx9x40ys4ceI0ruvjOC5Nq0EQeizU5oiSgDCOkY0saraIouvoZgedXUtR1C50o5d8oZvYD1ClFEMroKomuqaQpCGFYhue71BrLBCJJdr6hyktWgf5xejZPHJsY9UreKlEzkgZm3qcct9SPDJIqUSzUsNPZWrVOlktQgymCFyffBbiuIIgZvnGA+c5NeaC0s9Nt7yZG195A+Pj50nSlFXr1rNt+xUcO3IUQ9IpdnTieD5LRlZyYXqBiekZFhbmeeXLX45hyHzn25M88NAFLMEBVHwvRJMVdE0jcCxUUUREA1UlDEAmhyy62LZAVC3RV1rEb/zGbzA9PU2StJjcbSuivjBHw27Q29v7Y0vO9P9z1fLH2X7yi72APb8v84Xosp//9w+Dpf9BldIfZo8vlPH5t+zrB+31R/kcvn+/w4tZ9/kU5s8/5verysZCSionlPs66Frcx+6nn+Tp0aNsu+4aglhBEjV6lmzknsMy95/0+fUbuulevIThFesYWrUeH4VYMRFFlSCMiZIESVbQNINisYRpZuns6ieKIrKGid2wSNMYSVSoLMzT0dGBoigEoUcQONRqNdIkodGoo8kiHR1t6NkM8cX+Ut0wsJtNirksgigQxwlBEOB6TTo7S8iyxH33fYlGs46iGExOzUEcEfgBqqLx5FMHMQy9Rd1PgqYpZHIZpqamiKOYRrPJ7NwckqzgBwFjZ84SBSGiJNKoVxAFiRNHRzE0lShNyOfzuI5D7IfccvPNeI6D7zn4QYAoqphmjiQN6erqoFDIMjw8SF9fD+ZF2YhyZwfLRoZ5+OFdHD58lCf2PklbewfT8ws88NBOim3duLYNaUR7Zwe95TLr16yh2aiz5/HdTE1PooiQzWXJZDJIknTJSX3k4d3ouk57RxtXXLGZQqnA6fPjCKKIaZqMjo6ysLDA2NgYq9asx8iYbLlsI8NDIyzM2/SWlyFLWcbOnuPsuQucOHYSSZBYvnIV17/iZczNT9PbXUYSRWzHYccD36Fea3L/jgcQRYWNG9czMzOLbbusXbeKME0JwxBdVUhFlY1btpLPF9i580GuvHI7Bw8e4rHHHsd1Xer1OhOTk4ydOcfo4afRNY2e/n5mZ2ZYvXY9E2MXMA0DWVeYmpxixbJlvPnOOxheOsLs9Byjx0cJk4iFhQUcx6ZRqSKkCX09PeSzJla93tLtlVWGi/2E0xaSKGBoOoZuIhvtONUJPvKRD7Nr1yMYGZ1rr7+c//Lrv8bdd9/NxMQElmWxetVqJFFEVmQuXLiAqrb6POfnAnbuuofrr7+OIAxwXQdJlpAUBfE5rMIdHb3EkUFKBlVV8TwPQRSp1+s89xY2DJ1WolfGj7p567vezxvufAtfuO8Bzp1fIPBTSsUCXZ0FursMdK21D9uLSFKRFJEoiQk879L9L0giuqGiigmeYyPLOp+4eydXv/IP+eTduzhy7AKW7VHIG3R15unqyJPPtfo9HdcjwcZy5gmjJjEi0cUEUMaQSbm4ZpwiayYN2yFJU+SLcM1cttW3bhgqsiwhihK+H6KrGtLFjHaj0WB68jyBfwqJfSTxM3wEMtXmCJWqysTENGEQkS+0MzY2dakqC9DdW6ZQKJI3s2zffjl/9+HfY+2aZczN1/mTv/g8r7z5FroHF3HjT7+GD330w5w5f444junsHMT1JOI4xo53sWpdjsGBRZwdrXDwwEFcN+Duf7qHvv4OfuHdb+Mb3/gat9/2s/zX37uLb+x4mBSBJ/buQZFNPv2P91zaz/LVqxheMcIdb38LvX3tXH31tQwPD9M2JDO8ovfSuH/54r+QpikdHR2cOHECVZX55V95N29528/w5S99nQceeIiHdj6AJKcszM3wdx/5ONdsvxqA/3n33bzsVTfSVi6z6eor+dQ9n6Gnq8wN17eCW1VTKXV1ELs2kgBrN27i3e/7eYYHhgH46Mc/xsbLN/DuX303G7Zu4rP3/hNbN2/mtouQ5FKxwBVXbuCK7VsYvzCG7bTQIo6dksRQr9k4jsen7v4MAJs3bWbt6nVs3rz14nVskMlkWFhYoK3USaNuYzUd3vH2dyMIEm96051c+5IrOXX6NNuuuAJRVag1G8iyycxsFcXI0Ww2WbJkCdlslmazydTUFM1mkyiKkJVlKPoi1qy/nvaOzfQKA6zecSvxt03E9THy1ogwtXmmzqLpGTTdJJvLYjfm8Jwmum6QxBGK3NJAjiKnxQ3QbGA1a5imSne5jChqmGauhQoTZVJBBllHVProX7yBbL4dM2MSoSLpHWhGjlxGZaBcJPGbSILCmnVrOX3yOCMrVvD03nEkT6S/O0YUE8zO5ai6SZpESHE/RG1IkoKsiLiORRQFHD1yjFOnzpJiIao5fN9EM/J4QYzteKiywplTJ4mCkKyRpT4/RS6TRdWLBGHEm950J5lMhlwuTz7XBmTIZtrQ9Tby+TyikqfajEEQqDdreKFNGDtopoDVqBH7Ds1GE8sKcJ2AIGxB6+NYIIwjMpk8RT1D7M6hxilK7JGEHpX5KXIZFd+1iIOQjvwIvu+SpiJIGfLFdop5DV1sUp0epVmr4YchvttEljR27D7N8NrLuO3O1zGychWxHHDo0CF6+7qxLYsoStB0heHhQWzbIVvI0qjXKbUX2bBxE5lclkazgetGDC1dwituXke2LcfXvjrLvhN1JuZTjp2apWmLGHqOMAhIBYPDh2cJ3Jgw8klEhf1HF9BowxRNpqenOXjwIL7vMzAwwN/+979mxze+BEqOcrn8XX7Yc/2yZwol/1bipedXPl+M/Wv9oc8//ov1SV/M2B+FR+ZH7UF9oTW/n4/8g87Hj4P9JHD9iX2PxROHiCcO/Udv40XbD8qaJVyES4gRQhIhyCmxnPDxz32aT332C2y//gZuuOk1/Nqv/w7b3vg+qhvehTr9JN6F/Tx9eh67OovfrBBFCaIkk6Ytvcw0jUgTgTgCq9FEUyQcq06jUmFmagJZAF0VCZMEN/SRVIkwDclmc0RRQjaXx3Xsi71sCiQpiqoRxy0m0CDwII6QhITBRX10d/WTJhKNhsVtt7+eUnuJiakZbMdjamKSMAxRNZ2rrr4G0zSI46jlMEsiiALFYhFJkjCzBp3dnYRxgKRIVOcbTE5OEsUBhqGTxAn5XB7PdTAKJVJBREhimpVZgtBB0yVII5I0RZQUbMfFMHX279+PJEk0m008z2Nh5gyiqHPi+HF2Pvo4W7dtY3hwgELG4MknD9DV08PKlcuozs+hKxKZTIb+oWE8z6VWrzI8NMSyZcsQUjhx/BgHDx1m9OQoVqNJ7AUcfnIfK5eOMD83x+jZUySRjyRLbLxsO3UnQhBkkljAc0O6OnuIiNmwYS2uVUeUfbI5laeeepLpqWk629uZnV8gjhMO7D/K+PgkCRFr1qzg6JFDNJt1EBJe8cqXcf7sOTasWceZk6d4Yu8T5PJtWE5CqlOUDMQAACAASURBVORQRJmDTx9gfmaGYvdqjEIXfYNdXPeS63jgO7sZXtLLFdu3YDVj+vr6WDSwmPmZWUr5LOfOnkGSJPp6yrhuyNz0AhMTk4RxjKlniJMQ160jSipnT59lzZrVRElEuafcgoILImMzs7R3d6PpKo3GAufPnyWTMVB2XGD9TIk0iTlx/ASkcP7CPO1tJe544xswzSxmIUf/oh7+8ROf5Kvf/iY3vPpVFEpFZufnaHo5fL+AKkTYVh2AI0fGeOOdL0fTVC7buoX+vv6WrjACoiw/5/4LUbMGgQhevYaYJHiOT6mt61LHQhzFl0hlJFniE5/6Ovf+824kSeSu37qNfY98jLNHDnHy0An2PraX08c+x603j1xcQUBRVFJAVVWyGe1Sj60kqUCCJKR4nsfo6Vn+y113kyQpr331ZTz4pd+kNvYpzh/+COcOfZCzBz/AX/zRHa3DppAmMpJooKlZJFm+BBUWHBdBFEnShDiJScWUYqmApj8rxZMkKQgtSZ4g8BBFCU3TsS3nOY6BS1/fOIraiZ+8AUm/WPULYxbmaux76mn2PP4E1WoN23bZ/dgeSsW2S+c2SlKSOGbi3HkkKaW3r4s9D97NvZ/6Q977rp9i0/pW7+djex7nfX94F9fd+Er2Hz+On8bo+TZKnUMsW3wtQpzFai5w+RUjKLKKJMnUrTr/9LnPcuzYUXbuepAoilmyZAlDQ8vp7ellaGAARc7yO7/9+5f2U7OqLF3Sg6EFlNp1CsUMq9csQ5K7qNVcoMUOrKgJJ0aPQaqwbOka4jjk8JH9SHJMmohs3ryZl73ses6dO0N3dzftXb1sW7+Vj//9J3jFy17G8OAgA4sWc9UVV/DHd/0eJS1PvdEAYN3qdTTqKZdtvpI4jOkut3PFlVtZ1r+W9SObeMV119Nb7qGvt5ft2y7nv//ZX/DhP/8QY+PjAIwsGaBiNQgSDdXo5eToObo6+3n0kd00mvO0t3fw1L79HBs9DsBb3/hG5isNrFBC13XSNKVSqdDT04OiaKiqyhe/eB9hGDM6egrHcRBFGFk1guX45LNlvv61h/H8mI6uXhw7IAwEolBEVU1y2TY6+rvJlNow8t1MVPfgJx6IOv5uhcxXtiANh4hXJwhdLZQBSUIQ+YR2EzkFUdSQVYNCvogoeSRp3IIXJiKGruP5DUQxRVUkDN3Ac30MM0ej4ZGkMoFjEQc+QpqSRDGSJKHoOnbgIMs5Orq6EWSRRiPk6PEZYjxEPEq5bgI/IJsxyeXyJBkDMVvEFtooLL6RABlFk1vvKAEULSROLOJQQxUlsrpOV3uRdauWkVLEiyQEVSRNE+Iwopgt4NshHcUsXR0dpMhYjQbjY5OcPTeJqhqkhMzPz3P2zDhhAFFioZkpqp5iNRpYDZddOx/Dsx3aC2V8JyT0faxGjSRsosgQCwqmqZMkCZKo4LkhumFgmjmiSEFQMiAlNBtNXKfGhTPHae/up1av05WR8HwXUfRIwoicnqLm2ohFmebcOZzaaU4eP8Ijj59CUCQEDM6dtRhZdxWbt27Gd+skfkjgOixZugRZFnBdF6du4doOJ06Ogqyg6zIrR5ZgN6qMnT1FsZDlqquvIVPoZOmy9QwuXsfmjRvZvn0Jh880efLIJIncwelzC9huTBAlzNca9PVpGLpK05J4+uB5xqcsEECWZJYsWcLKlStbifggYOOG1SShjWl2/XDO2g9hzyX5/GHsP7In9Uex/6jK7zP+8/cjPP3PavK/PuT/b3sxYrytz1/8D/7dNNfPsO8+91g/yL57jefK8LwQdfYPa+HxBwG+By78XHZieHEZsGeZjZ/N8jy7p2fmP08G6F+pHH939k58Tl/bM2u0/lIuMZxKQIJIi+BGFkVi3ecvP/gXCFHKJz/5KUqagq6brNv6Hgpzu9l09hGiqB9x8bUklZMIoo7dbNDe2d0KMDMmtt9Ek1S8IMIstFFCoa2jE9v10TO5FlmHIiEgIMs6hqpg2Ta+45HL52k0bIqqiaJJKLJE4sdYlkuh1I5jN8nm2xgyTQRJAUmi3Nvd6plNYrLZlkxGnAjsuP8BXvXqn7rYxywSOglPP72Hy7dvw6o3EQURURTwLQ+j1GJnjJOUoZGlmJkMkizjegld5V46y2Vmp8ZoUyRmpit865v3c8cdP4cX+JhmhjAMUVSJKA7J5DKEkUdXNkXXEy6cnyGXgZ52ATfVUXWD7SuXoms55sQFFC0lXzCIfAfbipi/cBrJUDkzPsbg4BBdvWXOT4yxdMVKJvc9zWyjiSBIvPQlL0FWNL72ta+ybds2MtkciKALMpKZI6skTM/NcGG6TrncjlnIs3zFCI7jMjAwiKJInDx2EhILXVMYWDxIGAtkTZXpqXG6uzpJgELRII1Dzp48y9JlQyxdOgiiQhSkVCsz5AydOI1YPNBDGHVgWR5RFNHd3s7OnQ8wMDhISExOy9Kou9SqdQrFPDfedD0P7drJ4oEhiqUScZoyNjbBFS+5Ftuy2VhexMzUBS6MTbJ8pU4qSZS7F9G0Ghw7epjO9iyrN27mwIEDLOovI5sSUc3GDhIO7DvINde/hO2XradhBbz8phuxGjV2PnyGTUKL7EeSZJAk+hf1EIUurh+ypFumkjp88xtf4LKrttHd04VXb7Jly+XIskycmBSLWXZ8Y4r3ve8DvO2t7yJjFoApQlcglwuIo36E9hSn/e089OgerqpbFEuZZ+/ZVECVFOSciZQmxKENCMSxcUnvVRBTbKtGsdBOEPjc+/lvAfCWO1/DXb/zBmTJIQgvEKZV0qSPsVNZpmes1gJxjCjEJEmMkECEiCg987xJkLUsAKrg8YWvPEgcJ6wY6ePTH/8lRCFGFjOEkU8Qu+h6hsmZFhQ6JQUhRFISUiEljpJLz5TIdkmjkDSKcT2HfL5Eo1nDNHVE6ZnXaUwUxCCKyGqGRIRqbYbuzh6Ei45BPh8jGy9BkzVgHJJWUOr7AVbTYaEyz2t/+jU8+NADhGHEjTe+lOnZ2qVz61s2K5Yv4dFH9hAKCe3tHVQrE9z40qt51SvXomkJh0+P8NG//Ru+8cC3uTAxwVvf+Rsc3NtLrpBlYc4g19ZJua+fmalZ0kSkd+NKdj21j57mK3ndze9iyUgnSWJTma+ybGQ1GuDaNkmScM01I9z/nR2X9rP/6Sfp6+7AdX06ehYhywrFrnaUMOHIkYMADA4McfTwGG9762rCoEniB9hWQGXeRRRFfvnXfqFVWRQ13vbGd/LNB7+FuzDBS6+9hjMzE7zh9XfwmptezbEjx1m1YRA99nn7z72Zka2tXtYNmzdy8OBBHnnkEeLE4/SRg6xbsZIv3vcxTp0eZVHfUmynRjZTQlElHHcB29XZf7iVpN16+Tas+Vn0koSqZejt7adiVXhq/3l6exczPDzIvf/8BQAMXeNVN15HNp9DjGNiF+pWjUw+wXeyuF6FU6dOcfvrX8Ptt95CJKfoeZ3YtUk8lyAI8f05tm4YprlQ5Zfe80t8+p5PIuoQxQ6u76FnBPRUQBFFGLie1y67GlVocv6zEfljy5G3NRHbsq0eNmLqzSaFXJ4ojEhECVEC266hmxmEJEGSClQXKhdJswLiOCFrFgnjFBGlhRLI6sSpgJI2ScMY3TAJ4wRZApKABAnPjTCNTkRZxPMD9Pwi/Fjl8utXEUQ20xM25w/sQtdKdPf2Mbxcoa8rpm3RBnKRTXVuEjFxyXeU8cMI08iQVcoIQCYv4TYlwjil1NZOEMYgxIiRS0c+Q73ukc1mWzIjQoxm5rHdCFGW6O5fBqmAtFDhc/fey62v+ynaOtoxMxoZLSYVskhSC9YvyQJJ5PGSa65AkBRiIcTQlYtqAiFJLOL7CWkaEvgJumGSpAJJKtFYmEdWVTQjRyoJJGE7qhERhg6dvUM4dhUj20VsKGiiSxA4RHGAWiwjeXPEaci50+cZ6M2ydGiAJUsETp3xOX1+glt+5s2kpKRxjCzLzC9UKLWbxHGIkKSIEmTzeSYmxhlZMoIhy1yYmMMLfIaWLOHQoYMEcUp7KSb0HNp7evCCgEypDcsZ4g2v3UiCx66djzFv+bhuwMqRTvYenKU2V0VRJ5ENExmZzZdtpuDmSWPwQpkjh48z1L+YqXOjiIqP5o9hdpZBkS55cM/3CJ9b3fthq66CmF7sW+XiM/3FzRNF8XloyWervq09fjcK8Zkg90eSgHl+b+3Fntw0bX2PZ9b/fhXO7+f7P18R5NL/U3hGce4Hjbk07gXsu+KFF4Eq/c9mPx7h9U/s/2n796bqflGQjjgiFVPcNORn73wDN916Cxgqp86OUe++nqm17yIuDSIcvQ9laj9EDpmBrURBTLPRJIlBV7PkSu3kCx1IkkI2lyVNYqrVeYQ0xbYcKgtV4jhBEmU8z0cUBFRFYX5+FlkW8FyHRt3GsS1c16FUKuA4NrlshiCwqTdqRFFEEocghESJS6PZoFzupr2jjQvjszQbDpKoEIYBTqNJFIa85PrrEBSZarWGqqoIgoCiiLieTRT5iGJKvlAgTmLiKCaOQ+Ikugjj66S6UKOrs8zLX34DkqKQy2YhTdFUFUmQEBEhAUVS6B5cQRAJkEg06w5CZOHr7Sxbvpzz589z/MQx9u7di6aZbNiwgWwmR39/D5JZpD2nMzd2EkioVCqsXrmKR3Y9TLFYYMOmdXSV22g06zz5xAFWrlpGvTGPoecZPTlKV1cXhWKBeUujYvls3rKO9rYudj+yi3NnT1MoldAyBo7lsGxkEd3lfiS1iCTqHD10GMdx6F80SEd7F57j0NvbS7m7jK7rLCwskCBw6tRpVFlG1xWKXb3omsFju/cwN29TLHYwODyEIItctnUzhqYgJjHnz04wN7PA0/uextBlpmam2X7FlciSgmN7zM/NMbJsGbVKhZOnTjE9M4UoJqxdt5Jdux7CtS2+/OX7EEhISFk8uJQnnniK5ctHGBkZgVRk185HMA0TSWr1RYqyTr3WxHNddEPjyiu3IwgCuqaiaSrnzo4zNzeHqsmsv6LFOtvZ0YPr+OzasYNapYmmFjl7aozP3ft5JsZ7qC4sJ1fM8ZnPfobdex7DslsBY61uIwgSo6OnsJo+T+x9Gsd2sR0L23m2D9OybOI4QhRS6vU6ktRiaU2f+1YVFUqdPSS0+u2mpuYBWLdmKb6Xw7JMVGUBQ5kkY57CzLWz56lZAJpujkZtDtu2SEUNq9kKjAHSpOWg+F6ArumMj7f0RleN9KIIIkEQkaQtDVBF1iBNeXDn4YtzU2RJRZJU4iQhScJLmWhRFPB9B1VVyGQKVCsVstkshmG2FgUERBRFIklT0iTCaTZob+tAUloEfgBx0kka53C9IrbbR1upFbhWak36F/Vy2+2vZ8eO+3nlDTdwxfb1FAsFPvHJf7p02r7zwHcYGzvP1ss2omo6cZLSXe7j/h3fwjRD/HAxAwO9vPmNb+RDH/ogALNzc5w5cwRFqqOqEoqcZXZmnoce3Iljxzy4qI30zbfTU+7jg//jr3j40Uc4c3acK6++ClGR8PyYb3+7gyh+HR/80Ee4YtuVtLe19v3Nbz9AZaaClEhYjQp23eaef/wc43Pz7HnyCQCyqsZ73/tuZmensSyHWtViaOkA73z3WwijhCiJaVhN4iThW/d/myj0UdQ8d3/xixzcd4T+nl7CsM669f04jSn279/DfV/9As1mi7n7p2++jQ/91Z9z7PA+fMdl+cq1hJ9qY/6vBYqFNkBkz549pISMjY2hq+3sfPRBms0msizx+ltvpdjRjRs06B0okslkKPe2855fegdDQ0NUKjX++UutwPU1N72Kk8fHEVABmTe95RfQjU5ExSTflmN+rsq2bduQFRHNSLDdGnEESWRw4cIYhWKeMPQpl7so93fx1rfcSRg4iHJAGIbMzk6jGylh5DE2fhZdyxGrA1TOLCa/bwPCFkhKGeL0Ik8BKYIgQypSq1WRZbBti0wmT5oICIJEpVKhUMxhWQ6qaiBLCs2mTZpEKJqKoigIqYBVW0BIfMQ0Jk5FJFUHWWGh2oA0RRYFJDGlNj+HmMb4YYKaaUdWVcJQpKOrxOLBIVYu76VUlPB9l0LfKuarVRrNAEkRyRbbcL0AXdep1Vu8DEkSEXoehw8fR5FNEMQWgV2cEket75DP5VlYWMDzWlrFsiwhiTA7PU2z6eD7AV/5ypfZunUjUSDyz5//EnGcYlkWvp8QhhGiJJAmMq7XQDfBdSMcx8LzW4lIRdEwTJNMLothmoBItVoDUlRNodTVST6fIw1DHKeJaSjouo5hFoijCElSCcOIZqOGXa/QsBvkSl1EqYcU1tj76CPsOXKBVE6QEJiYTiiVV7Nx28vRzCInTp3DsZtMTFxo9ZMHAaW2NjRDRUhizpw8RlshSz6XwbIb9Pb3sqi/n0alysaNm+np7afYVmRyapJarUGt1kRWM4SxgJoxMbJFbrr5Zt7y5jtYunoLjSCL6wrcctsb6O1byg0vezmFYpn5uToCEEYhmhFQ7mlHljVcG3JhSKldYcXWV1x6Jv04BT7PtxfDOPyj+qmSdDFZexGi+3zC15/Yi7efBK4vYM+9kEVRZGJi4tLfp06d+r46ov/WC/tHmfvvAYv4t/QgPBc3/6/t/YX6a39UHarn98C+0JxnxsoiIEQouoKUVZELGV59+0+zcf0Gzh4+RFvOxF+0heZlv4x6+dtwbQvlwGcQLzxO3hSJSv1k1t2MZTWIoxinUSPy6qRxRCFn4jg2SZJSKrWRJClpCrbtIYkSgeugqXkEQUKSoVgqkpIiyxLNZh0zY+B5IX7gIyCjqjII0GzYmEaevr6elixPMc/qNUt5y1vvpFar4Lk+yBLtHR14jouYpJTLZdK2TaRtG7EsF1U1EEWFNGn16YyOjtKo1TBMjUaz3uqpdXzqlQU0VaKr3EkQBQRhSAoIoki1MocoxJBG+J6NohVJUoHu/h56u/MksY0j5Thx8iQd7f1cGJ/g+pdeQ6Uyh6IoWLaDICZYzWmK5V7Wbt1OEoR0trWTJgkbN2zAs11s26VQLFCtNfADi87OHrq7+6nWZikWipw+fRrbsqlW5xgeGGZ2ao5qY4EVq9ayafNmRo8fIg4sJsbHsZoBCBJdPWV830GWBBp1i9FTZzlxYpShwUFs20bXdQqFAoauY5g5+vsXoaoKrtXEs10O7nuSdWtXo8sKse8wduYko0eOkymU6OjuQVF1VEVFlVUGFg8wOz1Pd3kxcSrS2dFObX6Gzo4OLoy1ZJcWL1rE4kUDyLLO/qcPs3njOvr6uli3dhXV6hxXX3sNhbZOhgaHsW2Ler1BFKUsXbqCmdlZVq1eSRKnCLKIoWkc2n8YWTEoFPPMzk63EhayzNDwYjo7O/G9iBAVWZJImwv09y+iNrOAqUr8tz//AzpKJq977U20FXT+7I9/n+GRQRYPL+JDH/1b1qxZDYDteQBkszo7duxg2bIRbrjhpXT1dPHpT3/20r2WyWQJPA/fsckXCkRximHmSNPk0n0pCglxEAMSomxQKBYA2H/gGFGSYma6CJPFpOTR9Rk+9Hd3YdkOALrWwMgUyOXyhF4T09C4FLimCUIaE/oOSRTQVmpVX4+OTuB6HoqskaathI0kyXzr/n08/FgLAiqIAkkiIAotWFwLetYiH0kBXTeJkwBVlenoLBEEUUtr9CJBiSgLKCooGkhySKGko2dkEDy4qHWYpp3YfpEwyuHaPiPLFl16Zn3p699BVSVWrFyO7wccOXgc0oi9+05eOrcvf9krmJ2dQTdECqUixbYiC7U5Lt+2HEiYmFAIY4sNWzej6c9qtSqqgiDIeE7LaTKzAv2LO/m9372Ll1z7Uh7b/QR///cf5w1vuhUjk+G2n3kjDcviqmuv5Z7P3c2V196IF8m8/R2/zODQSrZvvRKA7zz8MEaxm3s+/xXcRsL4uTHu+fT/5L5//gKOYyNJEn/yJ3/E/gNP8olPfAJDz3LgwBESKUbJCJS6OsgU83hxyK7HHsUJfTzb48N/9Vd87K//K+9736+xZvUQpC7nzo7S3dVPpnOIu97/lwAUzSyFXJZP3fMPLBks8/juxxBElSAKyefyxDE4ts8vv/cuLtt6FR0dJU6MjvI7v/87ANx5xx10dnbSXe6ls6cf10spl7sQxABVb10nX/ra12lchCXfcdvt7Nu3r8XSXp/lD973q2iywviZSeIgZHhoKZOTk4hiSqNhkTFzSJKAZddYsXKEsbEzlNryKKqMG1pc+5IrqFdmWu/y1GDl8g3Yto0k6nR0FrCdBmrTRvzHHOKSGDkTIJASujZhGBDTIpk7sP8w2axBGKYYukGchKTETE5Ok88XWglSz0EUU2zHIkljhDTBjwJ8PyINU/zQQ5RFmladNIlJk5g4iigWCyiSgigKOI5FrtiG7flomk7GLBAlKYVCL8gx7R3dCIqAKCmY+QE0vUQUO2haHtnUcIMQI2MgkCAlNgszY9SqFUTVYMOWlTTtBqmQcnz0KKpmYJgFUkQmJifIZrJMT09jGAZRkhBFLhld49Tpo6RpxIYNG2hvb0dWoLe3RfZVr1uoqkKzaSFLBmmaUO4egiRDqVjANApkzBxR5BHFDrbrEMUxqSBw8uQpSAVc1yGKAgI/4utf/iq6qWOqGeq1GvOVWVw/IIkCtEyGOEkQ05gg9ii2deO5C0j2OPbCGQbLGq+9bgWeE7Ln8AxHz8b0Di2mvKib6dnzyEJCIZtlYFE/oiBQnZ+nslBlamoau9lgYeYCs5PjPP3UE6iyjGfVmZudvpgEaKBpOmEUsWLVCGHg0t5RQpQlNDNL4EXYTY96tUFoNVGNThYt28xlWzaj6glXXrORhuVw2RVbWLyojzhOkGWZSnWBUluO+3d8lVNnDvHoVz9Mdb7O0sueDVyf6wt+Pz/shaqu/55cLC/kJ37/iqfwokiafhTuGuC7+n3/tUD5xbAd/zAxw496Tv+z2U8C1xdpSZLQ1/esjt7SpUu/68J7wQvoogzNs9I532svRFf9fLt04V+UuREk8UUFbd/vOM/NAv1bG8+fPQ/Ppfh+3lwhIRWSlhzD99CBP9+eLwMkkqbCRbjxd///uQ/DZ+SInk8z/szc585PkCGVEVOQkxa0wvc8sl05ZBNOnjzD+dNjFLMaoVkiv/3naF79q9grXk8agXjgC4Tf+F0Ue5ZU0fFyA8iCguN5NF0fXVVJIx8h8gkdB0GAfNZAECCVFCTZJk1cPN+lYc2iZQuYpSKSmqVWnUMkREwidD3D2JnjhIGHKIr4rkOluoCsSQiahJnT0QyZxUOLyBeztHUUSHWRUIjwrQZ+EpHmBpj1sqApRKmA47gEgY0iySwfWU6xVCJNBPLZHJIkcn5iCqPYQZCCZpoomgFBgG81SSKfYr4EskKMwOzsPInfRJFUFhamUKxxUlRMrY2lQ4uQhJgVy5cSBT6GpvLkU4eYm1/gicefJNvWge8LPHD/LuZn52k2PSzHIZUEehb3Mz1Xx7ITarU5Vq5chqwoaJpGxlDJ5rIEQUAqCnQUs+x66Ns4do3Q9ujo6cZxAvp6+2hYNQxd4fChQ2SzGcIoRZJVNm3eiu36LB5cxNCSxUxMXmD8/AyV2jSIImqmSL0yhyZLnD19nokLc1wYP8nWbdsoFto5PnqYII4YXracQkc7Qpwwfu50i+U58rB9j0LRxLVDjh85TCoKTM7O0tHVie94zC3Mcf7sOcLAZWZimhNHT7J+0xaOHD/NwNAyEFQUOc83v/Y1vvGtr+EHAV3d3Tz2+F5237+TykKN8bFx4kTgqb17iUM4deokm7ZsYGJqGkXVEOWUJE4JgwTSiCh0yWaznDl/GkfIE+/7K97+7jt5bN9ejh87wqtv/t/svXe4HVd97/1Z02d2L6d3laPeLEvuFYNtiAktOARMEkIzcEluLimQ5L4QIPAmkEJuiAM3NFMCCWBjqju2sS13y5KtdnQknV52r1PX/WPLsmzLjUuSN+/D73nmOWfvWWVmzV5r1q99v6+kVauzfvNp+GaMyalpxgZuxlH/GV31TqxJoQiYnlmmry/P+nUbaN/3ZbS936fdaHPlla87MYvDSKBaMXTLolJdwtBDFOGhKIKngsoEYdCk7VYQIuDlLzsDgK98/Ud87V9up9kKCAKF6ZmQ3/3AdXz6M9eTyx4PAVYDDN3oWK4NgzDs5MwCqIpKhylAIBXBhed1KHT2HZjlD//sq5SqLfxQUm8GfO5Lt/Kmt33mRLtI8P0WQdgm5sSxdPME6JQA/ChAoIAI8QKJZeuAj64/Gf5Mx5urd3JhAx9adY/IWzwxNp7rE7iCr3/tK8SSDkOD/Zy+bS0Af/7JL/PTux8hnctgxRzy3eO85k1/zHKxcqK+aels27YVRUtx3wOPsfP8N/PNb99IqVai3l7DyMoRknqSO+65hz/6gw8A0NfTzeYNI0gZkujrY2lmht/9/T/g4l95FTfeexOPHdjNr7/2Im69+TZWrxzGMWP85Ae3MDTQy54HH+DCC86lGVXwhM3V772aaqPE3//dX9CVz9JqtXjNr7+aDVs28Q+f/RyZVIrX/eYb+eTfdOhqrnrTb7Bh83pe/6tX8I/X/C1GQrJh+yre/s53k0j3YMUT7N+9n7H+IRZnp4ibFulkhr6xQV771quZOlbFNFMksxm6+sf4wjdu4PLXvJ7lQoHRkRHe/Ma3EjMc0skUfSs3sfOMbbSqU9y074f87a1/RXF5Hk0W+KtPvI0vfPYavv2d63jdm9/I3Nw8q1et4kMf+B+okQSpQxRi0+Lo1GGUwGPmyDG0WJpvf/96ANauGWfnhq1ceuFl6KFD2uriyt94L8dmDjDQO0CtvMgP/+VH2HYPT+w7hulksI0EmtSx4gmKpRqjK9cQ6RaZ3j6seByJRj4zRrUtaLbrGFqI4rVwDB0ZOdh2ksoXjc4PcCTqKKqAKqUAAgAAIABJREFUVBUM04RIolEn9MvELBuh6whNJfRdVOnT199Du75MJCFmx2g06sQTDtlcDqlIDCVCRm28sE0unSeWHsaM92GqkgCN0PcJpE61VicKXarlInXXI55OsLBwjEphGhmBpgc4VhJdV9DsAQwjSdBcRhEKue5xfMDQbFTdImi28FotYo6DbceIJzOApB0IdMskCEJWr1qDlBFLy/OAJNvdgxGL0dXTRxBJVOlTr9UJfIUwqNBoLLJ54xqW5gs0vBKrRgeplspYyQStVg3NMJBC4MQc/DCkVCrQqM7RahSRoYupGTiGg6ZpKKioImLt6o0YhkGr3UZKFUUVXHbFq46vW4skkznSqS5U1UQ1I/AtEnGTSCh09ayCUCehC9ylKZquwIh7RIqg4apsOu0izrv4DI4encHUDboyObLpPPv3HqJSa5DpypBK9xP6RbL2Mt3JEsPdEYo/RcpocnTfw8zOLaCKiEq5jI1Ou1KjvlxidnKWKPTxGk1Ki0X6+ofJdWfIdPeRTGaYWq6QSNrUy1X8MCKbzrIws0B3d57Jo9Pku7s7Hm1Vg5bH/HyLVeNrmZ28j8svXUl6bBuqk3zRClR0AgPgFPvDn1Mhe1JODpt9rr3wSwVieil0PM++oKeociIpO9E3dAyfQipPO55W7fmoM/9rOrP/XeSXOa4vQv7/ZKk4WYQQuK57Aqn1v5K8lDzbl9KmEIKBsXGklORyOcrlcicfpllB1xSc0U1EQ5vwmpcTVI9ithZRSkdIzz6GEApK70aUsTOoHHuY3buf4OCB/bz1t64iDH3a9QZCAcswsYw0jzyym+HREVKpbgLXRVFCdEVHsSzK5TLxWIyvfuPrvOG1r0IRGp7bJGbHsDQbic6RA1MMDnVRKpVw4glM0+LQE/tZvX4tiUQCLZFCCpXQD8hkMhSKBRzTQtc0VE0iUAjCENuxcd02UoCiaIyvHqdUmkdTQVUkruchdQPbspBhgBt4qAh0wySKIlotF6FJfDeAcBnfyoOA7113I07MZGhokLm5WXp6uznr7DOQEpYXiiTsGFPHjnLW2Wdh2waHDk2SzSZRhEIyGWdsVMf3AlauHqRWLFIoLGOaNs1mm/7hEYZHRnA9l8cffZh4LEYsFuOnt9/FFUPDTBw6zNZtm5iZm2ZwYIx6zWN+bpneoX5uu/lOHNMikUpy1+334Hku519wAYHrUizN0tWVoLiwgGObFEtFisUigR8xPDSMaZrcedcd5HM5Hn3kEc47/3zi8TjVRp1CuUI618OKsTE8N6RUmiOdTqLbFrQLjPRmOHisyKFD97Nh40YefOABlgsVKqUSGzdtxIyZnH/BeTQbLW677WYuv/yVnHHWmSiaRuB5HNi3h/Xrxrl31wOcNX4eczPHaDQaLC8vU1icZdXKYXQNHEtDCEl3dzeN5mQnRzMCXTOIpGTTxg1UD5XRggpe2ycWSzG+ei1DI93c8uPbuOWWW/jDnTv57D++EUGDfU8cYMPGb/HxP1nLrXfcRKVWYWzD75HPpfC9AFvx+OGHt7Hu7DxTU9Mn5pOpPkjCKDFb2IqlG0RSIWz9DNP0USh25m94EFPcgalBGPbz39/3Jq67/lb2HzzG+37/Y7z/Ax8nmTCpVNtICe/8re20WiHXfvMRFFVD0wtE3gS2CJBmhK51wpkVjqBFPyMd05DkeOUlaa587Sa++d3H+PyXb+XzX76VdMqkVvcIQ8n2Ld1c9etb+L0P3oQQAXFrAmQVIUFqoIhOqLHeFeJoDxJF+U7uulAxrTwIE+TxMOlwGjXchQgFBgazMzVS6RRCa/Gkoc4yD9CqV7jqyiyWuIVQDfnon76ZX/vNTzC/sMyrXvs+LEs77t3yyedsPv3n5/O293dygBfm59l1750MDK/Eb93Lnscn+JOPTPAnHwFdV0nEDao1lyDo9JdIxPnGF/4URcygoBFnD2bapVJ+8MTzOuv23WiqQqVSJJ+5l8W5u3jzb6xEEdewYUPI0FCNnnwV0b2Fv/u7v0FRwHNd/uXLn+fX3vIODhyc4Mqr3kA8FuMfr/2HE2v0zu07eNtVv83M9AJdfSnSmSSVcp2B3hGWl4on+h8dX8Gtd97JOWecQ6NcIpXLslxc4se3/oQf3/oTNE3DsW1q9fqJtk/ffjpve9s7uGjnuSiKwjXXfI7fefvbCXyVH91yMwtll4/c/Gd85GbQNI14zKFSrT11bTt28I1rr6VeKZFJpQiFjisV/JZLV64fz5fEkwmOHj3Arvs6NExXvv61lOrTCENSbk6gyJB/+PtPoekKtWYDEcEnPv1RulcO8xcf/XO+9OXPc/c99/Cyl1+CPJ5ucezYMQZHxwjDkPLSHJlsF7VWnf6+HghDHrh/F/lsBtVIU6vVUH6URRzWERf4HZOP0nl3P0m3pAgFw0qwdfsOZhfmyXb1EgYhQRjSarWO5/kJ4sk0hC6KohFJCAPwvQBDVXBiCVwvJAg6KSOWZVJvlNHidifvXdGw9QTF8hLJbDeGEUeNJP39q1AUDbddwfeDE6kpfljH812iqIUWughBh0uVEMt0iFyXiIBGu4Wmm513i19HBiFS17FMG6EoyEjS29NPEHRCg0Pfx7JMFCGot338UHLfvbs459yzCfw29+66l02b1qCLPGaiTTyRQCo67eZiB1HfbeO7LghIJBP4rQqKZrJULJNKpvGjNr4XIggRQhLSQlEk6VSqQ9MjJbVanWQqReR7tLwGUdhAKAoKcWr1EqatYpkpoqiBDCssLx9A6AGGDAnDPD+85RDnXXg28XQXlpMklw2YmjpCKhEnkhGJbALLSFAtLJOKm5imh1tfAkLyWZVmOyIeN2k2Q6bmJkkZ3TRcwb6lGQzdpLevn6GxIdxWBfA4eGgPO844AylNFCSNRo3hwQHuu/tu1q1dS09vD8VCmcGhMcq1BitGBygtL+KILjQEGHmC5m4OP3wHV10+TiJhoJp5RKQ+O7/zP0H+q4Yo/1J+Pvmlx/V55Elv3pPJ3s+nJJ2SoPi4/Dwu/Wd6c18IsOjJeqeCvT5V/Sc/v5DS+vQk92cTMUfR08mXpZTPy+n1UkItXowHOAzDZ93fcxJGv4CoqooQgv7VK8A2qbtt4qkUppMinc5TK5WQsgNOpBsCJZGilhxC3X4lN4XbOZo5k9DzsB/6Ilm1wbZXvJUdO89E0w0iJLFEingigeu2OHr0MH39WSKaRNJHlR7zM7MsLSyiqBCEPs1mi5e97EKklExNTZPL5QH42V034jYLlJamqFYqpBJJQs8n8Dx6uvtZmJmhWatTqNRoN9osT97Pw3d+F8eymZud58477kIKgVAEyVQCBLQDD9txaDUaqEIwPT2N225Rq1bQVZUQEKoGQiEej58IizRNk3q9we7de+iJG/heg0qlgWNrbDttjDXrN4Kqc96FF7Ni9RrK5QLLy4sMDw/z4H330qhW0VSVcqXIxo0b6Onp5oEHHuSeu3ehKoJieZkwFJiWTiwew0kk8KKIMAyZnZnhiT17URSF/oEBatUql112Gc1GnfHVY7iuh2441OpLBGEDP2wQhR7rxlcxNjZMq1Vn5Yp+tm3fgBfWsRyD0dFR4k6cyYlDzEzPkc2mabUbmKZDtdrg3779HXq6e1i5cjXbt+9gYX4RVdGxHZutW09nZnYOpEsYeMTjcWIJmyAMaBRniRmCSq1FKh5jaX6B07bvYNXqtWw/fSfTM7P4vsdjux+j0axz1VW/wdzcFMvLJbryPVTLRVauGCOTyxBIn4GRQTZt3sTI8AhnnHEGMcchmUhAFBKPOcfDWwXxRIxYwiGUAqEahGFItVJmz8QCsj7H7TffxWc/+1luvPFG3vue/8ZffOoveeiBB/HaLotLCywXCihC59FHH2N5cYLPfvISLjh7iFwmTrFUo1SpM1vqUEUoqnLcm9qRaqXjIUylUgRBiGY4WLaD4GSgN0AKojBCSEjHTX564+d5/9WvZXQ4jaoKNE3hgnPGuPafXs9nP/1qjgP80vYkERmEuZlIpJGyB0mHKieSDpHoImSYxcoOXC7hn//xGj790UvZtL4b01QJQ8nGdT38+Qcv4vbvvxvLHj9+TRaN1lr8IEUQ5oiiLNDhWZWhQMpu0Fcj9NWYsZFOOKV3sAMkAkhpEskkfhCjVIlTdzfhsYNQOZMnX7lSSvr7+7BtEykh8AMuPP90bv/RP/H611xMdz5BFEm6cg7vftsOHrz9anaevuLE2A4MDPKWN7+Z8847k4vOW8PX//cbePfvnMf2rUPkMjbVmotl6mzesILfe9/V/ODfvsH4muGn0JGl5MiRI6RT6RNtzs7OEYSS23/6Pdqez4aN6zsAPG2PVDrFyMhwB7U52ks2F8e2LbKZPKMj69l19x28953vYmRwAP84n2nCjnPBGeeRddKsWrmGRDzLTbffSKVWJmiFWGqM+dn5k34vJa75X5/nttt/xl//3V+zb9/jbNm4kd9681VsWLeeRDxBq92mp7ubc88+h2v+8XN891s3oEcm2VyKIIjo6x3EdT0e3zvBq694I+cMn8e7zn4vPV09pJJJGo0m3V3dvOyiC/niP13DzT+5kb7eXkZGRjoKl25g2TEsJ86PrrsOoZik8z18/etfQUqJruu87aq38G/fvIN228YPNJLJPk47bRhNhVQ6Q7VZ5yvf/DKjK0f59Kf+hsnJSc4991wajQbpdBrTNMlms0RRhO/72KbDsalJ4lmL4sIi9WqdbdvOoLd/jMnJSXoPr4YHLbSzQ1RN6bxfJRiqRqNag7ADPOgGAlSDfE8fQsqOF1YzSSSzqIpGLJFBUzTq9SqNRodWJQwlke9TKVdw2wFS6GiahqpbFJaXsWMpFAH1SgFVgBQKqXQezXQwNI96owCaxCek5bpECIrlCqGUyFDg2GkWF5tEoYvvtnBsB9/1IYq49ad3UiyUUDWHI0dm8DwPy9RwTAOiiCAIOXjgEGEoaTSaHDs6RbNWo1GroiuCaqmEZSfJ5Xs6/eFhx03OO/8C5mYb6IaKorn4YZlItrEsC8/rhFC7XkAoFXTDIRZPYVgJ+vqHOnFamo5hxXB9lyCS6JaG5VgEvgehi9d20TSdIJAYeh7TSCEjFVONEfo6iOg4UrNDq1JANGaRrRqBDxEBj+2bYmzTGpqRjWIJqtVFavUiQeCRTKWpVksomo/i1zm8506mJ35KuzyJGrUw1Ajfl5i6AWEbnSYrBzWy8QpZp0I2HpGwBKVChUSqi3q5SbHY4swzz0OJoFatEbpNmo06XqtFd3eeWr2GFbOp1RtUmz6uF+JKhe6RVYh+SSlcYHL3zdSmbsEJnmCoX8HIjBOpNqp4SoU4lWfzuehnTnU8U15KzuxLKftiyv3fOkROvqcnc1l/Ucr1843Xz5Ny94vGmPmPEPFf5YI9z/sPv1ApOwqkqqpEUXRCgX3p7fx8dZ6JGvZcn0/V1zNReJ+r/KmkfUsHzMN62ftfsG4URSfOKTwPetrJH6MXUkifUt6f755PNip0zj2zXeVpdZ/vPk4+FykR0g859NjjlJcLbN2+GT8MqDTrdOV7aLVcVBmgqh5ey6fREnz1i19j32OP8Gf/z3s48NgjnDPeDxM/ha417NPXsSZeQUWj1axg6RqtVhMpIxRNJwxV6pV5FNWgr38FswsHMRUNU4/RaLv09+SoNV3sWAyv3SSMQhrVFr7nESLp7x/ADyNM0yJEo1qYJR5P8s1/vZ7LL7sUY+57KKpKatvvUC3XqVbKZDIdGhQZdZ5VKCWaqnLbTbeyddMWCsVFdt13P2+88teRgNusYdkWntfG93zseBJV1Qi8FkcOTVBremzoUpg+eBuYCeabSdaMjxHqNrZtMTs7y/DIEEQd3jyv6fLY47vZsnEby0uLHJ08xLYdO6nWqlimg67bVGsVMpkEM9NHMVVYLFXZsHk7rWaTZq3Cww89RDadob+/m/mFOaIoolKu8/LLXs7s7BRdvQNEQkd4AdPTs/T2duNHAY888CBRGNI30M+K1Wt49KFH6O3poX+0n2ajwt5HJ3BsBc+TjIz2UiiUaNQCxlaM0PZalAoFBodHufHGG3nNa17D3r17ScYdlpcrFJaXWLO+n4H+NTyxbx8rV69m5ugU42v68f2QwDNotWs88tBu1m/dxuFDB9hx2uk8+NDD2PEE+/cfYMWKUfbvf4Irr3wjUmhUyhUM1cNI5CksLFAuF9i4aSM333gz2WyWZqvJpk3bCH2X++7bxY6zzkHQAd+i0EDRFNTuBIqEQ4cPsnJ4gMf3PM5q8QgfuGkVH//rv+bxx/dzy80/5f0f+H1KC0uMr5tF1TVeeflfYIkYH/qzP+YTn/oYH//YJ1EUQSy+RCY5z949TcaLP0FGkLjsd/n+DT/kvPMu5EvXfpX3vOdqXK9FzLFQCUGzUFWV0GsTIjFNmydRwb12CwUfU+usKZ4M0c08KpJGq4WmKaj4BAiEUFBVA1XRCXFRZQFNrRIEKYpFiRPfQrG0gGp0AHYsyyIIAlrVGrZt0263aUuPVCqDIlSEUHHbTQQ6y4U50naCVrtOPB6nUQ/I5NIUSwvk6w9gDoNi64SBglAyNJshippCN228oI2QCqoCQgYoWowgbLBv7yTzc9OccdaZaJrO9753PVdccQWmoVIslUim06h06KQcx8H3fWIxk0JhmXQ6ByJASJ1qtYkTsxCqztev/SpveMPrMWMmihRIGaHrcwSsw/N7MDWTD/3hx/jkp/6QFiaGCCiVinRnDxOFEfNLgyRsm9f+6m/yzne+g0su3cHkOz5ONpdHfPDNdPeO8N3rvs2n/vJ/ccnFr+P3P/hWUk6SVn0Rr6njKS3q9TqZdI5MLE1DVDHUEXxvknpTJZbo44Pvfwd//KE/5ff++wc4cGiCO+66F9V0+dbXvsZvXfUWZqenKJY8bF0n05MhZdocmSnzpt+8ihvvuIGY6HAyF4tFstk0heUab3j9m7ju+n9FF02sVIY7b9+FI0xWbVpNox6xa9cufvV1L0cGJl/452t4XeMqbCdOeFWJRDpFs16mUvCR4TyGYuL0DmEZOkcnJxhftQo3VAm9CtVKAb9WRKQGMZ0MSqNIuamQzccIgoBr/uqL/Pa730K6z8EUJrXSQSJSWE6KuaVZerr7abuSsFbGjieIJxI02y2smIMi26iaScsPOptaqSDCgFJxCb/tksrlKFTq6LqDdY+DeXcO9SwfxTnOkSyOv/siKJU64GBRFNGoV0ml0gRBhK4KavU6TiKJomr4XhvNUAmbdar1BvFkgjCMOjRsbid304incL2IhG0TCp2gVUc1DRqNFl5xltBwSKUyWJZB4LVRDYcg7IBJOU6CMGjiud7xCB4XU1cJfAgij0q1ST7fxbe+9W9cftnlVIrzjKwYp1SYQ/pwz7338IrLL8cPQ0w7BjKiXqsBETEn0cnVjQSB52GZJv/2r98ilUxy+St/hSf27ee+ex9i59nnsWLlAIriUlgu0dOXx224ODGHUq1EzLD5wQ9u4cyzd5JNGpixPH6k4LabRL6PpitUaxW6u7v42d0PsH37FjTNou22aNVbpFNxgqCJVEwMTe3wsRsKUaRjxXRUNYYMmnieRDcjhGJRnbkP1V9A123a9SZNxeDu+5tcccWvML+0gGY5pBIxhBqgCoNquUKrXcerFakXJ8kkfOIJA8N00DQHxTBRFBPXrROF7Y4RUKhIr0oQhAgMQhmj1LBId/UwsW8/I+u2kkhmKM7PMjAyxtL8FEvLRTTDJpNO4DgxQsWgsDBN3+AY1UqJfDLO0tIiqVYWUZFMrPpdAuExtOFMZHIleiCZqtQ5/WVvfU6435OdKc+113q+7565B3w+eaaz58WUf0F5Znjwz+tZPj4Ovu+jadqzwoNP3hu/IBrwKfSCp7p5HpThZ55Tnq0f/GdT4RiG8aKtBeqHP/zhf8dL+cVJGIYf/o/q6ynP5dPhvF9ITng6ZScV5cnjxaitz5fjeioP4qksWS9VnuuetBVnoK0445TX9cw+TyitivI0WO2O0njSKDyNu+e5r6mzUD1JEfTsRe/ZYxQdb/BUk5WTzj193E6lCD/5vxaFqEJFqCZeBEG9jWEmieey+K6KpIn0dZB1FqefoDuTo7c7xhW/ehGGk2HNli1Mt2xY/XKU4mF6iw/gDZyF2q6gKAqaoROFAfVGjXg8RrvZIJXtQlU0SoUlurId5bjl+dRrFZK5LnRdo7C8SBiGGKZOrVzm/vseZf2WDVRrTUwzThiFKKrAjsWp1ZuMj68inUkgS4+jKIIovhrd0khmkwSeT6vtYhzP+QGBlDC2YgzVUEjm8mzesAlVUwhk2OEpFAqaZlAvlbDiCSLohPSlc3Tle3AXnsAKp8mOnkamZ5jFxSIyCmk2ymTSSSzDZnlpmXKhxMzMNJlsjtCvkckmGd+4lbbbot2KWJg7ytTEEbp68szPTqNqOkIzKC+X2Lf3cbq6uygsldi0eROxRBzVEHRl0sgwZP2WLbSabcrlIkcnZpk9eoByuYbXbrPviSeIhOigZyqC+dlZ3LaLiqRYXqLdCujvH6S3P0937yC2pXPk6BSGYROJsLOpyaZRdYt0RiedzlCt1gl8n77+ASLps2LVKJaVZnZ2loH+AR568EHG121kee4IU8cWuev+XRiayrYzTuOWm35Kb1eaxeUFpADbthgeHmT22FEuuOR8EloCzVBxXZd4IkFlaZ5GO2R0xQAP73qQHWedQ3cuj+v69PakWZqfI9+VI5NNkUglWFpYZmphnv2HDwEhmUyaH/7gh2zZtp1kOo9ozHDhjiGKxhrWr1vN9NF5hgaH0XRJLldB13QuveJd6LbBqpXrWZqr8cCuh8inB/nCF77BG35tBW/49U9z1fndhEGAve5iiBQeevARzjhrB6lEhn177meot4cgDFGE7ICxaCrQARxrNmvopkGzWccwVGQUITQTRbEIog4dhcDDa1dQdYcojEBG+F67E/IuFNxQp1mLMCyXRLyFolRJxnXcoIdmpYSh6wjDJPQ8itUK6XwORzXQsXBbDWTYwA8UdF3D8wJMJ44dy1GqtMj3ppHSwYlP4fTU8emluKximD14nk+j7tKoLxKP52j7PseOHiWdiOP5HQCceqNNLp+lJ5/F9zsRHGtWj2NoClEksSyD5cUC7UaDwI84eOggqXSMwnKFWq2BE7O59faf0XWco1c3DGQYsnnzOL7n0mwEPHD/A4yMjaCqVZYLMaJQZ3lxgYtedjZhKDs59qGCGjRQjDZCi7F8tIqVH+SNr3s1K1YNslwqML7okk6laWzupTB7mK2bdvLW334n67asImc7SMVF6jaKbRMzLNq1Cul8F5oZZ27mMKbms3/3DL7r8c7feTv/9KUvcvjgLLt37+Xzn/sc/+8nPsH00aOkEt1s3rIVRYPBlf3E03niqRgz04tMT0/xP//0D9BxicdT1EONyK8wcWgvQwNjXHzhy0kkNf7wj/+UTRs2smXLWianDtI3Ms773/servqtKzE0g3pzhtNOOwdjXxxNNymOzmA7BtVCkZ7uDLnefvREgtpyhZiTptGMeOOb3sbrLjmbYxO76e4bY+8jBynO15h4/Any/QZD/aNUSlVS2SznXHgOmiVQlOOc1pUWhpkjAHRToTyzRFLXiOezCAWarSL1eoF208N1q8Qcm0alTtxK4NaWiOpLCDvN7j2PMTQ4RlZ0Ef5VAu2Yg36mh4jpCAXC0MdrNjFUQagpWLbF0sI8hqEhIx+CGkJX8AOJbgh23Xk/A30ZhKoQ+iGqqSEjiEKJ48QJvADDdtANi3qlgqEKSuUylmkhNB0UFUsIWu2AXFcPurBoNetYcZ1GvYxh2Oi6jdeqo2k2YQfBrxNlFHhoemcuxx2NZqPCaVu3Yuo2qmXSrlZJJeNoRoyVa8aRQmAbDpXqMkcnjtE/2A1aRwkWUqAqAjueplqpsGLlCrLdeXTLId/VxV0/u52xFaP09fZQq1QolmboSqdQdLVjIDAcIr/Nuk3r8N0aYeiBpuD7AZpQOo4JVUNRDFTNoKeri7vuuIf+oSFM08GOOXheC9OyUHULFANN0VGFimkatNsulq13kJzjcVRF0G6UCGtHUESbVqDgAQ/tmiGID1BammV83QYW5mdQkFQXlzHtGEJXiduC6uIkXRmJ7Rg4iRxRBI1Ghchv0G63kG4DRUaEIeiqhm46xBIpkBJFCRGygkmVXDoi8iqoSki5VsbWBciQ8dWrWTg6QTKhc2xyhsH+HM3GAqasUZzeTauwF+ktYAVJHD1NMHIr5VaTdrNJc2aKdM8qppdcRtesB55CyD35OJXn9fk+n0pxfaFIx+faG75QuRdyyHT6BYREHt9jvhDuzNPakyfvf+Xx53JcMRQd7mLZIV47QXFzMk3PS5HnMxA8Z52O9evE1vj/C+BNqqp+5EWX/aXi+mx56kfw4pXWk+s+s/SLVVxfSE4OA/5FyC/yhyqEeIbl7Rltv0jFtXN/z235efY1P3djTy976md5KsW180chnoghFIU7b/0xowODTD62G+nWmJ3ZTyKTZ646T4/ZTal8jNmZeQa61+ALBU2PYdlJrGQGa2AThUZIfOIHuJ6LOnwGy0cPYJtpDFNB4oO0mZqept1q0dOTo9WugtCxYw5ChkgEQeCTSiURQLMREIaw7fTTqZRKRIFEMw38MEDXdXzPwzRNfM9DAMHybmQYofduRdE1JNBqNlGQyDCCqDOKURTSbDSQUYSuaURhQESHW/KhXfcxOjaKVBUSsQReGIDo5E0KFGZm54jrEap7hIoxxJGpWexYDIHCgf2HWLVynJmZWdx2m66ubnr7eok7cRKJJF7go6qCaqVJOpND1yStZotHdu9ldGSMRqtNKt2h4+nr6+PosSNsXL+awvIyD973IK0gZGmpQDqZIJGMY9lJmvUGMlRoNmuk0nmsmMOKVavp8CqaAAAgAElEQVQYHBxEVTSEUNm4cRO9/f0sLsyzZs1qKtUGhtHhM/T9kEwujev6jIyuJJnMIEMXw3QoLJfYv/8gfT2DPPjAg1iWzsBgL6lkmmq1QaPRZN3atXiey+HJCTLpPLGYTiKRY826dfR091Epe6zfsIrB/gFUVcdx4oytWMn0zCznnnsWViLDz+66C8O02HXvLur1Joo02LvvIBs2rKLVqJHK5Dl0cD9BGBFPpvD9iJbr0Tc4SOiHXH/99fT29bB2/VpiyTiaqp6g0/nut6+jP++A3+L3P3MrZ551Ft+57ju86lWv4eZbbiKeWKZcrpDJnsaaVWsI3IDP/N3fMrZigOuu/xbve997SGUEvV0Oo2qRZrOJvvIcjk0e48jkUWqNMlEo6B/oQiKIIolpmNQaDWzbRiJoNhodCinfP54Xp4NqIYQGSFQV/KBDBxGPJQlCia5ZIDoor4oiiRQNBRvD0IlkFomGppZRlBqm0SBmtwmjLPVWG8cU+EFELJbHcxuARr1RR9UFpu1QrVVQNYVUMoWiqNi2hWE0sLQ70bUKfjhEuxmRSGcIwggvlCQTGSzboAPaAnEngZASoQhMI46umx0ev8hHtyxUrQOw02o3EQiiKCQRT/Lww3txfR/fCxgYGEIRFq7nk82mSKXSZNJp/OPjhKLTqDeIJ1Og6rRbLbq7M+haicN7BKlkL7FMFj2RRNMNNMOm2mhx3s5VvP1df0KpGSeedDDiedr1KkJRyXT1Ye96DCkljW2j+LLIP/z9v7L9tAtohceoVGpouqRcKhEFIbalE/gtpuZmiDlxbNukVKjxlS99nVt+/APe9farsS2D/qE0v/LqV5DJJFm/YS1btmxleHgIxzEJQh/V0CgUSgS+ZN/ju/mXf/kGo2P9aHqE53WoRYJ2xPT8IplcH+/9b/+Dcy44ny2n72RwZAVuGDK2eg0iEpy+dRu5fCfvOptLYFsZpN2kkiyTWZ2k3qiRjQ+zsLCEbmoIFcxkHIFAeiFXvu7XCBRJvr8fw0yRzyW5/ns/QKgamzZv5ciBR1FMFTsdx6252JaGEOFx+iSdiBDb1Dpo7N15vviVr2IYCRLJFJ4X4ThJdN3G0JwOgi8ux6YPku0eoNps4WS7GBscwr3VIPpyEn1A0F5ZQFgKqq4TBCGqqnZSWhBIoSMQnbBRwHFitFsumm4Rui30eJK5pTL9+QRhGOJ7LmHgd7jFjxt1VU1FUQzctoeqSHy/hWnFEUiEEiKjAIWAr37tWnr6+9BNmxuuv57VK8dRVYmm20gUDF2lWa+h6zqqrnfmvAzRVIHvNlE0G9OK4QcBpUqJb1z7HeJOjGwux+TBCTLpLEulArqpErg+qmIgVLDNBEIGGKbA95u02xGmrhwfhziKHqFqGuvXb6C/y6JUWMIwTFLpHFHQoZ8LghDLNAjaFVQhSMTihIqFrsfQFB3pu2iGjut20jv8MCRsusQcG9OwQARoqoLveccprjpHFHodqiFFxfc8FKEg1RDfDagsHsBvHEEXdTxfEEZZHt07y+CKjZx+9mkM9Q+CUHAcm0ajQW9vH4ViEUUBGfqEwRJK1EBD4jY9tNBHVVQCX0LoIsIQBUG71SDyPdxmA7feAk3D9z3iMRshIgg8hPRw64vYooHfXMBrzFEtHMNQq7iNKWKah1c9ihrUaFaP0NudJuFkiMXimAvbiJo2j2mfZnD4DA4dnEQwx/LMfgqLc6zd8UrE8RSr55PnChk+2RHzf6u4vlh5LgfR85V7obLPLvM8btRn7G9P1Pg57/Pnqfe0Or9UXP/95D9ScYUnJ9ZT8ekvRk5Mwme29QJ1XrK15CRr1TMn/nMtAKc6nk/kyRYiTu3RPdnKJKV8xn2Lp52TJ1usnuNWn8rNfarf5/NEP1djp6ojhHKK7069MEVoSCGIRIAdM9i0cTPlWpu+/l72PrSb8uIczfkKsrzEfOEQYVhHNwIKpSOgd2PFUjS9NggVEQWkBsYJhs5ED5qw97vUKhXkwE6qC8c6+TWmQS6bY2lxiXwuh4zAsGxUTSWdcIiEShSGLC8vYRoGUQiJXB7DsZhfWCSb72JhfoFMKkEoJZOHD5PLZAnDEKEoRMW9SCnZcyygq6uLKAyxdQMZBaiqjiJUgiCg3Wqh6xoLc3OUlxfI93SjKB0L/dDQYIcDT1FA1dF1DSHA8yPu33U/I8NjGLShuo89Uy1iiSz5XJ7lpUXWrduA7/soCszMzDI1NUUmnaHlVllYLBKGgslDB7EtE9OO0XabzM0uIRTB8NAQyUyS5aVljk4eo1yqgNAol8tIKdi4eSPVSo2urjy1ZoNSsUoUiQ7Ik6qyYcNqatUiiWSSdDrHkYl9xGI2XT091BpNZufnyGdTRKFLMtOFpqokEnGOTB7FdOzOhsdtcXTyIKBhx2IcPnyASqlEpVxlbGyMsbEh6o0mxUKRhcV5+vu78fw2x44dY/OmrUxMHGZs1Si1uovjGCwsltjz2G7G169lcWGeWDJFKp1FSsFPb72R4eEudLuLI5N7yed7uO+Be9m0cTOq1mDthk20Wi3uueMB8r3dEEWMjo3xwx/8mMd272Z89Sos28Rtu8zOznFRbC2ZlooylkZVNdxWGxn6zM7OMjKQR5dN3vw/v84TT0xw44030t09yCUvfxn9/S6KqvKlf76DdDLNN79+Le9+9zu46OJLuOTl5/P2t7+D0cEubEeizOzBtCycNedQLZaYm5ulWC4wP7/E6Tu2kUxlO+uoqoKioKgarutiGCZCqAjZyWdTVPU4HrhHGLp4bhPddlAVHVXoKIaOKpQOKJDnoqkmQRBg64JGo45pWB1kYZkCoaEqZTS1iKkfIWbOYWoLJGIliI5gWRVUdQ7bLmCZ86gcJRGbJuHMo4kJNOUQpn4YTRwmikz8qB8ZSnQdXN8nigIsK4HrtfHcJlGooygqkR/xrW/9K5u3bgUixPE1NAo7eZ+1YpVquUI6m0YIhUajzv33P8imrTu54YbrWbtuLU/s3c/q8VFSqTizc8eIJ9JYtt1Bj5WSRqONqevccMMNjIwOMjQ0jK4t4vs6lUoXue4cQkiCwEMRIUJE6JrC1e/5IxRhY2oWlXIbx9ExNQ+30WRxrkri0SdQNQ3n0nPRzTjnnnsehinJJOOkuwYIQ5/IhWQ8w8zMHM16nVS2m1TGZmmhxPXf/QleO+LDH/sggyNjWI7JX/7lJ9m0cRt//5l/Igp1Bgb6yHXF+cxn/pZtW3egaAph6GPoST7+4U/zm1ddzVe+/A1e/erX8c53Xc2lr3g5M9PTDPaPkEokueuuO1gxsoqxVWMAaMdzPsNWiw/9wR9x2umb6esbZGZ2klSyh6oxR2Y8TxD4RDIk8nxuu+1WkukEiiZQkPi+z0c+/FE2bNpA71A3bT/k8L79qGqC8y+6gE1bN1NvtejtXY2hxwjcAEKfKHRxLAMZQRCBrvvMTk/QrFaJhM667dvo7u5B6CHxRAahmtSaJUIvwDZTqCoYluTIsRLdfcO4j0fIz2RRpkyi9S2CLpcg8ojFUghVQdBRkhCA2omQUYRA11UE0HbbaLqJrukEkaRZX2LV2ApcGeG5IY5jAce9PZGk1erMwTAE34tQkBiGhmHZGIaCiCQy9KlUy5x5zjmkUlkEHitXjmCaSdxWnYnDR8nle/ADH03T0TSF4tIiybiNPE6jEIQRHQos0DQVy9Y5bdsmuvIppBJhGB5hFJFO9yJCFcuIsBMJTEtQK1VBNrGMOJ4b49577qarK0kYtPB9iWV2PM65bBqJi6YbOLEEMzMzqKrWQcRHoCoqrtfENjRqzRa6Zh/3fCnIKEQ3dDRN7RjKAp9ScYpU2sIwdYQMUBWl865UdKKgjYxCfLeObtt4fhuBpNWoE48lMVSXsDGNbBdQFQvTNomiJseOVpkpwUB3hkOTC9iWQS6XIQpDNNMikiHNWpVDhw4yMLiVhfkqgVSZmJon0bsZ1RnAV3JII4eVW0U9SrJ73yzJbA+FikukmNSrLQpLFQxFw202CUSE67VRFAhDDxF1aOx81+08cyXC8yRtt0GpXKbeDlCNBPsn92PE0li1lYhIJ/vWC/ni9Y+y4+K3cOvdx1D8Coa/gJXIkRlY+6IVwOfagz5XmOqL2af+IuWlRFie6r5O7IlPhg8Sz/Ayn3Kn/OL7PJVn+5nnXqj+08ZN/OeHCcMvFddfiDzpcf15LBEvVXF9qfJiLUY/bx/efd8gnN2DNrjpxHfPl997aoX96Yor4oUV16fae/Ykeu7QjheXP/Hsp3Kqfp8s0/H4dHIaJEJzSGSzSMOg/7RtjGwYp15pUC5M4bsePdl16KrG4cnH2HrmK2g0XNK5OIYRI/TcjuJuOBhdq5jSVuCoYE/+gPsf2s2svZOlw3fR1zuAaVjc+JObaTY9MrkshqGzND9LIp1F0zTSqRTzc3PkcmmsRBKhKOS7uzEtm5hlUiksEU+n6enpRUpJq9VCM0302oFOfkVmPbFYjFazhS4UpCo7KIt+gGnq2FZHUbMtC0sBxTDwwhDbsBCa0kF4DEJcP6TtNtEUFUUzyaZSmIbFxOFDZDhKKcoxNTVHu9mmUFrk3nvvY2Fhnkh6NBptGo0mAwP91OpLZHN9ZDPdNKsVsrkE1XoLRagM9Y9RKC+Qy2Rptmsk4mkcO8bycpFVq8fp7R1A0VTi8RhLM7P09vWQ7+pB1R3SqQTHjh0ml8uyd+/DKLjE42lKxSozMxOYlkk8HieZTuHE4gRui7nZKfI9A0gZYZg6Bw5O0JXrolYuokif/t4sy0sNlktFTB3Gx1eSSMTJZjMcPHCARCJLPB5DCElvXw5FUSgslSiX6uS78ghNkkrl2b//caan57nssgvxA5Xrr/sOqVSK/v5Bvve97/GmN76GRm2JUjVi4/oRFhcLvOIVL2NpaZl8podH9+zFiUVsP20tBydmWDs+ztT0NAknhkLEzp2nYTkGN1z/fS66+GJ69nmoFR93fQohwTJNDhx4gtHRUfIxgRLU8EYv4U8+9FE+/7+/wF988lNcevmlxGPztFptHnqgzNlnnsnKFWOoAr573Q856+ydKEKnVj7K0HCeyvIyIxtOwxlYzd7dj3HGzp1YjsVZZ51LMuXQcj1UVUE3DRAdULBWq4k4HnquqJ3v3HYLU9eI0DG0GLrm4AYdnkjfC9F0HSl9fN/FMCwEGo16lWp5mkQsTaVWxfc9TMsijBw830FV8tTrKkJLoKB0QhlxEbioSoDAO742mQSBCSJJtSYJQxtVyxDKNK1WhKqatO/4Pt7kfpxVaxFC4rshhqURSZ/Scos9e5+gv7+P7nwXiXQKVelELEQR+J5Pq9mgslSiWq0QygjTNDFNHc/1+f6PbqTdrjM2OoLvBpimjW0luO3WO9i4eQOKELieR6PRwFB1brnpJi699CISiRaaVsTzBURbSfb0UKmUUBWBoQgU4eO7bSrlImY2Qb2xhCLrmJqLrploYYMjExNMTsyxarGMFHB0JEupEFAoH8N2JLbWjWI5HJucREidPY8+zviadaSTSRYLFWxHwTbSfO3ab5FJZ9i2cxPLpTKao/8f9t47yrLrOu/8nXPzffnVS5Vz5wh0o5EJ5gQSpBhFyrJESuNljzXy2PTIVhhRYTyiLGsUbCVSJM0EiCQYxQQQkciN0EDn3NWV46uqF2/2H7e60d3obgKkKGnW4lnrolHvnnvuuXl/e3/727zptbdjmmmOHx3nvu8/yvt/9h0sVWdYXFxk3ehG/MiPVW+x+K3f+Hf84R/9Phs29fG9e7/K4NBWuitlKt0l2rUGp08cZ9c1O+iudMWliiwd32uhCBAoyCgiinxSmRyVzjztFkjFix2RUcjs3AyphMLAYA+JVIJkKs2pI8dIpzK86fbbMdNpwtYqUzPTDFU6eefP/ALvfs+7kEpAJp+iTRtNbTM/c4R8vpdGs8bY2ZOYpsUf/MF/Y/fuLVTnphnsG8BKlnAJCAOHOCCqEoURuhGhEKFrGWzbZG5+ioc+9SybHroebW8SOehS61nkzMxpstlYnKzZdDATJkQSIdZy4oRAiBDPc2k16ygKSFVFUVUC30e30jSXTqNKia/aZJIZpCIABVVRAUkykUQIhUiE6JrNX//lX3HNtTsJI59mo47n+LSbDTqKRRAKRAq66qPrGkJaJE2VtusjVI0w8tBMC0GEJiNWluYIQzWmvyoqMmrhuR66auC5bQzdwm37SMVAVZIkUgXq9SVEtMzs9BTJTBaphCTNRHx/qD5Hjx9gcGA9qaQan1MpWZpb5ezYKbKZBFoiBVIlDCMqpVhASqoajUYLqWnYdvx+RhGIIETRdPwwxPUcAt8njOJ8Sikl+Uw+7q8m0JWI2uoqhpXA9wJC30FRFTQZohg6RCHL1SU6OnIIX2WpegoR1mLzQbpEkUCTCp2dGQY33whunXxnhVw6w/LyEoqUuGFEq9mkq1yMa9BaAkVKfJKs23IjfqSRsHM0am06Cl2MTy+hqAlKhQpmegg3NMkVeknmOvGlRVffEEdPjqMqFpqRp1aHUKQhiliptclkyyws+ETSxM5UKPb0o5oVEF2Uu9ZRq5tEIkPW6UOiMNF3lje89Tps3WfXtuvpHlhHgjnuve/77LjtPeeFLS+01a5uj3FR338OwAleObvyiuuuAlwvbym/POD5o87nqn3EPyz78kdtPwWuP26LVKJIIkR0VcB2xSYuXq4W7Xw5EdML+/6kQSuAd+QBcJuog3t+6P4vWi4CkZfMM4ol+6Mw4tL81/j0vvi3OEf6J84ziKIQIVhbLn3BXSURXchzG73UmXDpNbpo+zCmSiGIffJxPS6pCKJAYKgmxXIHfSMbMewsyY482VIPqllh8uxZbDtBKlGgXl3hr/7ik2zfvp2xU0dYWWlwdnwSvbyOO5+cpKS73JI7Q/bad+CuzpFOZ9ANi57eAWamxijmC9iZHLV6A9uyOXvqNONjZ0ilC6RzGaIwBAIgwjBNDCtBsFbbNIjgyJEj9PR2ES4dRNVU1NIOvvbVr7N16zZUTQdFwTDN+D5XJVKVcUkcTWV+fgVV1dFUie87+D4sLy1imiatlXkSqRRIhVa9zskTJ9F0jd6hYYKZx3DMfuaWm1x3/W7SyTz1WoNkMkEY+rSbLbZv30F1dZHevlFs2+bUqePki0UmJ6bwPY/Dhw4yOz/B6PotWFYCQodmrYGiSHoGBlANnY6syeOPPkqxVCaTzRMGPo3aKsVymbmZKTKFMkvz86TNJHOzsyyt1BkcHqBnYJjAE4R+RLPdIJPJc3Zikk2bt/HYI49iJyxS6SSVSieGpmIl0uimjRsEJDMZypUKhm4ihCAIQo6fPMHu3dfz3LPPUK+tUi6V8KTKvmeeRwQwW10gmUiQTmeZnBon19HByEgvQQiBJxjo66S7a4CHf/AIGzcPcXZ8llxHklMnz2IkOgg9H6/tUKyUcXwYHh3AtjMoWoruzhJ+6FFdWqZS6uCaG3bjiYh228X3fCYnJxiqx7TX9voEIYLQ96jXGgyPjOI6Ds7cIcLR9/PAg9/nHXe8D1MN+cpXv8yNN76Kh+7diyTNc88+wz3f+z6eF/Dlz9/JjbfezMhImULJ5robekn17eFbjx3GcRz23LCHZtvh0MFj9Pf1YpoGmqqgqDqeF6BISRiE6JqGadmxEFsU4ns+xlp5JaTE9xsEkR8b3p6HqisxhdttE0WCluOh21bscLGSSD2JrmtoahxBkYDU4hwiTbcAlbar4Hs6Uk0gyeG4Kq6rEoY67VaIZmZZXa6TTOZpNr2YBhkKND2OHgXjx+NyGL2jCKmgagpBAIpqkM4kyOfyaKaKlUyxurpKFDg0a7U4wj0+ET/fdpLxqRl6+wfiKLNUuOuuuxFCkEhYBH5AbbXB8vIc5XIWyzLw19Sh3XaDpJXiq1//Cj/z7luw7Cp+kKJeH6HprMPz6ihSxzRSgEYkXaYn5yl0lDB0E1XqWPoBTLNOrZ5BtZNINUkyXaFULBKlDaLhTrLr1+PU5vjL//FJbrjh9QTSo+0GlDJJmk6DX/pXv8Hb73gDhXIH2XQOJYQvf+Vb/MVf/RX/2y/9Ap/79Ge4/e1vR7NtWvUJarVFbFvhHe94C3/6x7/CTbfeTl//EJ/86y+z56ZdvO+9H+RDH34/v/zhX8RDouo2xXyR4eFhpqanyGVzJDsquO02mWSaf/uff4PFmUk2bx5ldaVGFKgoisrpsVn6BvrJV7LMzi9hpwyUk2nCqRC7O8dnP/0/uWbXHhK5PEEkOLb/CNWFOYY2rccPIyyp4AUO2XyeZqtFsbOH4XXDqLrE99sY0qe94lPIdbP/yDMUi11k0mUSyQS1hqAnm6Czc5BvP3yIzu4CzsoiqmbhNZcJvRaH979AZ6kLKTV8PSCYAuWuCtsXb0D0BIidAUo+ZOzsJH19PQgRoJtJpBLXPo0kBL4fU1W9kCAU51M6PN+j3WyiqBJVM9FEiG7m+NSnv8DW9ZtQNUnLaaLpJlEUEBG/84USf+UiqbJ56xakAMNI88A9D7FlyyacVhPHD4mkhhSSM2NTWFYSVUZ4QiWTtliarZLL5RGRj+t7GKaNaaYwDB0/CGm1WgSRGtNpVQWhmjiOg2lKvv3de5idq9LV14vreyQTaTTTQBE6UoEwUmMFXw86K13UGy1sO0Gz7ZMrdqJpAsvWMU2DyHdQhYIUcY1xEfrs23cwzkFuNFAUDcOwCF2PiJhy3ajX8FwP27aRisXXv/otKh1FnDBEUWNWUoSBYRq47Qah74KqoCoWuqmzPDuLUATZXJ4oDKk1lslYEV5zkSj0UJXYIdxuO5ydbPCd+46yfusQ6USBxuoSpu6zvDCLaadIZbIgNaYmp0hnC3ihQqlcZmFhnlQiiZEwSOcLRFKiqxJNERQ6uzBtDcs0cByPVLbI8moLHwup5xBqElVLYWcqaOkKle4Rnjs8ztDoThKFHjLFHjQrQzLVjRuoGAmbpuNR7hkAVcOuZlGEyhen/oKN60ZwXZ9TY5N0FFKkigWe+P73WJmZY/j6t2CGDm1pI/FftMMusb2iMPa8iPM2YGy/KYryEjvu5bQfl+J6pe1fTpT4wn4vAeuXAa4v/ikugggXjhWJtTNyHjuEXLmo68XY4Vy7muLwZbHMT4HrT67940ZcY6XLcxjplVCFX07fKwHhf0iv0yt5oC/t559+EuC8QNPL3f5KwDXuwxXXvdQ5cDWPnTi/TewdvTLN+iJKRnTJWJecmktfIFdcKddoz6qC1DVSxR6sXAEtlaPQ00+5t4u24zF24hQOLd7z/vcTiojegR7K3d2MrB+l3FXh5ttuYeSmOzBK65DPf4Gq3o0mQpqtJomEhWEZ2KbNmbNj2HqCB+5/kM2bN5HL58kWS6DIGLhGAikk83NzsVy/7zAxOYVt2pQ7KkCAqB4mCAKyQzexadMmZqemmTxzlmJPJ3ItZ0peSM9GkM7n14Q2BEKohEIQRiIGIgmbZrNBY3mVo4dOsHnrZqQaxSJPs0+y6qbRrCSmZhJEHvmOLKlUmtpqk3a7he+1yaSSTE1OkcllKVVKaJZBNpUB4utqmibVhUUGBvsRusriwjyHjhxmaLAfVZWsVKuYpk3/0AiGbtB2XVquRzob177L5zpYWa3jBRHbr7uBrp5+bNsmUgW5fAeHDh5kemKc7p5eiELmFufZsXU7oe8zPjHOww//gNXaKpEfokpBFHhk8nlaDZdTJ46hqCq9vX1Yto1hGgwMDZHP5ZicnCBCIqWkUimjqJJyuczyyjJCSvp6+1GNFJqm8oXPfZaOYpFMPs+xEye5ZtdulqttDMPn8MHjlEtlMukUDzz0MEuLSwR+iGUafOHzd7F54zYarRVm5+ZYWVjkyWeeZd3GDShC4rYddENl67YtWCeaCAHuxiyhHyAin0TCACKOHDpIxW5T7XgjY6dP8/G//gQLs5N89Pc+ShDafOOr9/P+f/Fentv3Am1XMDi0nv7BIiOb1jEw2E2qnCZt1yDIYpvQUSyTz+e4/4EHWViY4dTpk/T392OaCWanZ0jYNq7bxDTWhM88D6fVwvOc86kJrVYLVQYIQpAKgVCRqkrgxTQ3zTDQdQtVVQgDB9cNkUIQhh5BKFC0mO6n6/b5dA9FxlR4QzfW3kOCwA9w2m1UVcV1AzTTJAxCEsl0nHupKqiqgqIq+J7ADxqE46cRKHgdFcRajq5uWrRaLqpiEPgBAsmXv/hFRkdH0WTs/PJDBTORwbSTVBeXaNbqdJe7OTs+xtiZs7zh9a9j44Z1jA6P0G612LFzGyPr1vHEk3vZtn0HtmlACIcPHeP48WO8/Y6thKFJtbaBequLJx47zM///C/y5je8hT//o09BEJDLmkR+C6QkmUwwMzNNRyaLELEYjLMs0fUCTrsNMqTtN/nNP/8f7HjTWwiCkNPjJ9i96wZ+6cO/zM994Gf57Y/8R3bfeCNW0uSd73wfyYxFo1Xj9NhZPva7f8K73vsePvKRj+C1XQY37uDokeP89z/+Y2577RsolXvIZAr82n/6T7zzta9hYGgbgeaxcfNW9j72FL/5nz/Kd7/zbYqFHH4Ukc5YFPI2tfoqfb2DfOgX/i0Li2c5fPAIO6+5jtvvuIMd27bQajkYepblJY/Ah+PHj3LzLbtw/DqFjg401cL5okk0IXB3zLNlywitMMQ2TZx6A9MyWL91K+1GAzUMiEIHNXDwEChSZ+OWTbE4ne9j6CaHDxyHQHDsyEn2PnWEHdt3sLI6g5Q+69aNstqYp+40GRzoJ5XQaLY9TM0gMpLouk2xUMRrtfDmJeonOojusZE5CLbUkLmAMHSJPB8hVNpuwMmxMXLZNHbCwvd9gjCCMEKKKI5aajIW6Go52IkEqqqiSYnr+zTqdQzTZPOOnYSKStKSBEFIhCAiQlMURBjitx1WGw2cZovPfuYzREQ89OBjdGqAzckAACAASURBVHWWuOfe7xGGHrlkiW9+7Rts2jLE4aOn6ayU0TWNpx7fS29vJ4lUAt+rISOfMAIhVdrtJlIIGs0WiUQSoSjomhbThTUDIVq4bcH6DSP09Xej6xq2ZbG8tIRp59A1GyKH0A1BaDQbbRRVQ5eSv/3kpwkjSW93H5+/8y4ajQbrN6ynudzADwIM2yKUAk2HcqmEbdnoqoWueRAGtBpVUpk8XruJ77Qw7QSRUHDabXbs3I6dSgI+miJpNRsgAohCIiloe21sK4kQsSaEnbAIfAcpwLSSeK0l2qsTJMwYhLjna+3CwqJLoxlQnZ9hYGQQTdXQzCRWpoCpwsTEJJlMjqXFKtlsFikliqqSzmaYnJrFMEyWFquEYYCuqSxXq2Ryedy2j+cHnB2bYHG5QbmzG83QsJI2biBRVBOEglAVZudWufa6G1leqaMZaY4ePxFTq6dmyRXLEEZk0ml838NzHVK1IhKFjR/uZW7hLEHUolzp4Nh4i+fONNk5WuHJ732J4Y2bMbo2YtMiWotaX0phPadfchGAEtErslX/MdsPm9MVgSCclwqOwfulfa4y7qXA+Op8zZc/n6uNIsU/i4j3T4Hrj93kWhQwfEUX9Md9+P6pHt5/DODKVUHtpQ/cK3lYr5LncKHX7JK5/qjAVYt8lAtU4EQcxzq/gE4qk6artwcjKdF0E9UwEYoglBGRiJcw8pBqhEgV0fp3Yxz8EskdbyJnK6iGSjKV4sypM/T19zM7v8j07Cz9QwNki4WYMinj/CZVavieTxj4mIaG67ikc1lUQ0MQsrhQRS9uJzFwA4KImdkZKt1dFCslVF077+V7ydWSIVIKGqurGJrGyZOn+NrdX2PPdbtptT3ajRoCOHFynLnpSUZG+lldWUWp7iOVyKN29DA2Pknow/z8LJs2ryeXy9HXXcZOmJRKXUxMjNNutTh94gTtRoOp6Vnm5xfZec1OgijAMk2qy1VM00RVLSrlLqrVKsePH0PRTTrLFcbHz3Dg+QMEYcTw6AiSkMbKHNXqCuMzM2zYshnd1FANExQF4flEQlCslCkVC8zPzZPOpEhn0iAk45MTDI4MsfPaXXR2d5HN5jANg3pthTBscujoafoG+pienGFqaorh4WHaTotIyLh8QDqNlBodHXlmF2bp6ekinU4TBiHttkOz1WJpdoFmfZmbbtzDA/fdx0B/L8vVKp7r09vdzeLSKW686TWYyQwLczP09A0yfvoMxVIHTz31BN1dXZiGSSaToVAqIfwGJ8amuXbXLlZWlzl64ABtx6Nc7sQ4VieKoDZo0mq1SFgGqhrnY3ZkU4QLh/jDL5/ld3/vo7ywbx97rt3OyOgITd+nXOokEirP7dvHNdfuZGCwlwMvPM+Nr3oNK9VlUskcCWuM6RNnWZyaYmTLjtiRFEbUak02rN9IoZhHKvDVr32THzzyCNt3XotpxgIouqrQatZJpS2EhCiM8/C8AFQR+6xVRSKJaDSbGJaFFwaIKI4yScVH0RPgB3heC1W3OJevEwQRQkTEFRIECIUI8P2YIut7LrphIIWCpmk4bZfVahWBiqZrBGGEqqjU6w2C0EWgweQpgsAjuX7nWsRVR1EVAi8iCgUf/5u/ZuuWLWzbvhHT0EAa+CH4fsBdd95JFKooimBxcQnDtLFtlaGhUWqrK7QaNe7+0lfoKBQZGOzFdUP2PvUcTzzxJD2dOTLpDM88s49bXzUMooDj7yaMVHzfZ7B/kA/98r+gurDI6bE51m0aotRVIJHMEwYwO7tAZ2cP+/c+QlevglBVHPqQQUDLabN373OMbtjCUP8wH/7Qv+btb38bw+t6KXSUeetb3saZE8e59bZb6OwboFFd4PlHn6U82I2VMCgUyjx4z8OMbuojk7H4pV/4MB/44PsY6O/lB48+zo0338LC4hK5fJ433/4mzp6tcve37uNNt78aTTF47KHHeeqpvaRSNjt27GJhaRXd0KguzFIodeB5Lu9698+QSRQYHNrA+OQEmZxGPl3kT/70j3jDG1/H3PwU73vfu/jYH/4uhqkSIglDqC4vYh/NI4Qk3NXCNCw020ITgnatTr5SwKlXMYRkcmoWNZ2mXavjei3Spo6zVi96ZWUFx/Hp6eok8JvMz8/z6x/9r7z/gz9LqbOC5xsowieUCoZpk05m8b0a9VZA0rRRZCyAh2ehfruM/FoWUi5iawvZqaAbcbmapGWyuLxCNpsnnbbp6SojZEwPbrfaaJqB73tIQkxDxXFahEGAYdgoqgFRSG25ilAklpVACFCVCIGL77qoqk3gxyq0SAUh43tB0zRkFLFl2zaGR0fZunUT2XSC0dENjE+u8ugPHuKtt7+ZZitg3Ugflm2AVOju7MbHw/GjOH6mgG7YRIGPpvg4bkgylYrLtIQhTqvO3OwsvuejayaCAM/3Y2qzoeN7LsvVOT73mS/gtD2K5Q50I4GqKTHY1jVqyzPsuekGhoaHCL02O3Zs5fDBgyQsm7n5KoViYU0USiMI1uj1tTqPPfI4le4uhDBQVIkXKSgiRNM01EQaUIgCF03XiKRABGKtVvg0UoFEIo1uWBiWidN2UBWJ7/k0m6skLD12YlkpNFHHq03jujW8iFioTcTOj2xSpafXplyoYOX68fyAb33n+6zfsIHmyhyHDh+m1QoIQ8hmUpw6c5pCqYgfBOTyJUxTBwSarlJfXSGVTlNvNMlkMriuQ6mzTD6bwbR0FBk7tm1ToqCSyeYIZUQulULVJVHoYRlpbMtE1zWSiQSrK6sk02l0w2RuZgohBalaEULBvuRD1Gor6JqJImzcwKcn18Ujjz/Nlt3XsnD4cTbtuY1QVQj8i8vGXJw3eqlt9f9v4HqVtQDouk4YBpddd4VBL+n5kweu/DM5/z8Frj9mO1dH9KV1Qa9OLbgct/9Kfc8ta5ILxPLUnL8XXynf/R+y78sGrmEcUZAiPgqkjKOcQsAlFIeL9xa9ZHmRCnwpTUO5hEr84jFATCO+8oG+OH6cRxdLkF9Is3hxRtHaznkJbr7wzxDJOSJxfKySiycfK4pGAgzDvuBcXDI1ocRfeiHAsBG5bpwf/C3anvcjVqaRArLFAigKHcU8GzZtiFV6hYKHhxboRJHL8/uOkEql1xRYHU6dGaO3d4hmq41qKmTSeTwvYGlhjlQmTcK2UXUdqakvgvkL/nv+XCBQhKS6sESr0aDc3cmm9aMohCgiQFc1dFUnm0nR01ciDCLaLR+zvh/dLHG26jI00Emxp4+Z2TlUqTJ+dgw7kSKby3Ds2ElOnhqnVCqxbnSEMPBIZNK0ak3sZJKFpUUW5ubZtGU7qgG+59PRUWBycpp222XrNds5fuIISdui3Wqx7ZrteIFPFMBCtY4A9txwM5qZQIgQRZFARH11FV2LaZ5eGFAodmGYBrqhI0RAV/8Aim6hRAGqCmgammWhaDqe7zKyfjD+uKsKw0MjTE6dopDvARFhJ5IkU2nGTp9CCMngwBDNlktteZnxqXEGhoZwAsinkqysrNBoBXT35lCkSWdnnmKhTBAFtJYX2Xd4gaA2Qamzi8DzyeXKLC0v8+pXvwop4MD+Q5weH2N0wyiT42dYXW7R31shn0/T099PJp3k4YefYKNfJAwDljpDUpkETtthtTqNZiQRWoZw5mk+91STm2+9gTMnZ3jve9/DZz79GYodLSy9SbFrI3tu3Emps4JmpdClzuTZCe7+8tdRZQnPHaM/32Lf332WA1WJEJJnn3mecrmL5eVF+ge6iRBs3LiO66/fQyKRJBISIX0URVkTHBK02y6qphMEsVpn4LVoNBxUI4kb1LHtJEEgMFFjIKkpOL7AEIJmcxUjaSOQa4a+RIq45Ieqxirage+DkChSBxwCt4HrBOiGRSgihNSZnV+go9iBgkRVFJqNOomEiSIMwgD8s0cBMAY2IoWC5/rUqg1ajWW++637eeMbrkPqFnYySRAJwlDy4EMPs2nDJiqVTo4cPciJEyd545veTDaXIfSazM3Pkct3kM7kmJicYOc1O4lCSFgmq/Uqt9xyM9mONLph0Gy1GR62aDa20Gx4/N5v/z8oUYLvfeO7bNy8kVx3B4VSjvUb1rG0sMBqfZFU0sRvJ/na177Orltei23NIaVA0UbxhYemp+nt66fVWqQ4ucjP7Hk1M2FIe2WSUmUbi43T/P6v/w0/9+Gf48Tx44ydXaTpRdz9pTvZc+0uEpbK5i3bePLxvRi6zb//yEe46ytfYHRwN8UOmyho0FnOs7o8R+DWMZIet936aoQ0CKnTWbJYv2mYcqXC//mRj/LWt92GaWpEUZaphbMkEiaNlXkqPT1kMilGhweZmzxDEMq4zJXr87GPfYy77vwce5/ay8jwetwoxLSz2IaB+3iE1AzEDpdW08HUJIvzszQbVRS/QYDATCTxfJ9cymZu7iyVjgHe9c4PcevrbiOXyxLhYZiCufGjfO4L3+BVr30zd7zrzXQUMkCIbgoWZqYQUUyR1WxBfSni9OHjLMycxk7m8OoreH+RQ60ryB0NRKGKG7ZptZtomknb9+NPgZFBahLHa9FyGxCERGGAaSVo1xap11YxEykcH1RVR4SSMAwIRQAITNNGMw3CwEEIWK7Wscw0PvF36fnnD+EHHqqq4DhNNE3QarqYVoIg9DB0SRBJojCmo3YNDHDtNZuwkxmePXCajnSSKFhBEREtoaGKEOnXiaRCEELbcVGF5OSRk+w/eoJCRxlJm+Zqnb/70jd59oWjbN+5HcvQUTUNw9RRNRVFKqiKTjqTZ+eOLRQLOpEfYdoC3wNFKCiKitAlvg9hIPj+Aw9QLOUZGeqio1yho5il0WyQSKZot+uoRhJNRuimydD6TeDHaQZ+GKKbNpFvIIRLGDYQYcz4kMKnWZ/H0HQEUCzmEcLHtFPU6guErRBF8VGiJmEUMTM1TyaXwzBtolDiNGuErXlM26QdqXiNNqvLTZIpi1DTMVSfw0cn+d53n2H/C/vwhEoyrTM9MUn/0Cj1Zpvenk4c32GgawOBtooZllltV2murGBbJidPTdHVn0XTcjiew9FDxzCMNLmsycKcg677qKqKZaTxIwPdMtFNA1W3WVpexDB0dM3Cb0tW6rMk0wVUU0IU0lytMjm9xKFTM0yMnaFfGcLzAj70qQ/wwv6zPHz//bSWj/Ca17yD2bk5rrv5ZuzRDdz38T8gneukb/NWoiC2JuTl7MzzNNdz/4Kqqle24S60w66iMPxKwe9PQq34khkBEATBGnVTrFWfES8Wb1yzN8/NItaCWdtaXGidvbituDDNToSEUXD+fP6oOlXin0G0FX4KXH/8dq4G0xWAK7xIVb1aPaiXlYP6Q394ee0fKqkcXj5wFVwCri8a9lLO/4/WhLh8jvGLx3CVp/VCpvBLSgld+Xq9kmtytev+St6LIlUE38E/fB8i0QFSQSKRKGuvqbX4bhgStT1OHnuBZm0FJ4g4c+YUnZUKuqZTLpZ54IEHGBkewl8rr/GJT3yc3buuwXVcmq0WlmXFXrarHeTa+nQ6xdjYGIWOPLWVVZwgorpYxbZsAI4ePczw8HomJiZiI2/haXylg3z/CIcO76dc6iSbShD6LiIKWVxaYnZmhq1bt2KogkwmzfTsLPOLS5RKBZqNFtVqlZ7eXmanpunI55mfm2FxaZ5SqUgYhfT0dDM7PU25XCGXL9LZ1YmqKExPTzE5Ps7GTetIZZKouh7ncsn4HvU8j3Qyhef7OJ6PbVkoSrQm9mOgKnFUznEcpIR6rRbnDQcBlqFh27FnXlUsAq/N1OQs5UqRyckZXM8lmUqxtLREV3eBUrlICLTbLtPT04yuGyWVyTA5McXJE8cYWT+KZpicPHmSF144Sr4jVhZ2Wi6nTx6n1ljhhut3Mze/QhCENForbFq/jieffBypKWzbsY2h3gGspE0mnScMAkzL5OSpU3R2dfP8vn0UC2W6lnSkFLRHUxiGRaPeIplIsLLcIJGwiZYO8YZ/+Tt8+74n+MTffIZsschDjzzC//6rt5DKhsxNJvn0Jz7FU4/t5e+/8g22bN3EyMgw69aN8vCj9/J3n3+Qt725j4FrtpLrvoNszmXLlk088siTOI7D3qee45qd13PfffeyZetW/MDF8x0UxcBx2rFgTMh5cQ9FVWi32iiKTiKTQw1DvHaN0HPxWnUCNUAIFVUYKJFGEDq4ThvNMInWxonCMAargYfruLGBLxQEXqzgKUPCSMR1LIOAe+65h1OnTrNz5474mY1AyhedWKurNe688y62FWJxl5VEnqWlRZaXl/ncXXdhWwk03aCnr4tCRxnfc1Ckxt9/69u86tZXIRB85St389bb30Jvbx+u47F//wscPz3G8y/sJ5vNUiqVGB4e4bOf+QJhEO97y5YtBBE8vfdZhodHSacVbNtnaXGQen2VW255FWEgGN08QrGQRxeSVrNFoSODZmnk8gWUyObOO7/IzbfsIZPLQXgG3dBoOh1EkVgrDQWKIrC+8B20sQn2ahF/+ud/yo033YQX1EhYJus3buCuu+7kU5/8DOvXb2LT5nWMjo7SqDcplcp8+ctfYmh4iJ7eHrbu2M7xE8/yb/7Vr2JlMtx0y2tIpNMYVgJFRNh2FqQkCFwy2WHuv/8pHn7waWqzR3nrG25Gem3ClkOxUonBhCJxXIdE0mZi/Ax79z7Cjp17ePSxR7nuut284x13AC47r92Cpgc0VxbX1KsNeE4DIVgeWMB3XOZnF7EMi65KD54L1ZU6pmnFThTNZHZ6El23eNvb34ZuG+fvS03TcF2FSmc//UMDdJWLjJ05g2mqzM5Mk7a7eNvt7+Y97/kAumHT8losLS9y86tvwW872J8fRjct2OoRREFcfkwqqIpJEMQCZJpqItVYgVfXYkq85wYYRvweM6wElp2Is+cCH9d30TVJq91A0RU0RaG6tIgfelhmklazTRD42AmDleVFwsCjp7uLVCaHZZqoispydZl0JkUQhOi6jpQKRIJvfuObdHVXsFMKkVdHpUUhb5HMZvFdkJpFo9lGV+JSMIpmIqVAChUpJaurKzz5xD5ue82NSNWgvrxKudLN61//ejLJBIoiaLfbOE4bIcDzXer1FYQicF0D1/UAG9200TSx5kwN0dU8n/vs3/HII4+zbetWyuV87JQUCppiMTe3xPj4OJXO4lqk16NerxF4IaZtYphx1FSEKs898yRSNjGNDKrhEwYhnitI2h1EuoliJGi4HmqooSgmrtvA1BI4rVWCCDQrRbGjAkBEQBR5uM48vjvP3HzEQz8YZ+v6ApZl4XpNVAJEEJFJ2ZQ7DZrtBtXFJRbPrrC66rC8XMeyTMLAo1TqxA9WiKIkhlGjttjANGz8EAb7cxAKnn1mPx2FBLlUGsdt8vSTPyBXKJHLZ3lm7wEct4En2viuR8Kwuffvv8U1O3fGwlRC48TkCygyRxBUefzBg3hhm6XZKZ59+jka1XF6yiqlZIWVWps/f+q3qbeneP8Hf5atm17PxPQJSqVu7r7762wZvZlNvTp3f/Wz3Prqd4JuXtE2ulz7x2Q1/ij7/NHaBfO8Cti+sGe0VkbtwnUvHfXCcX+4TfuyZir/6aOt8FPg+uO3C4DrlW7wC4srQ3yjneP1v6KiyT/0h6tsuwacLzfHSxPKz/W7UmT4XIuiiOD0k4B4GcD14vzUi0e9PHB95VHhF+d+6fm+3H4uu9PLtCi6OEp+YQHtlwz5Ei/Y5ef70n2EF90Lvu9fVfZdlkYIJ/ZDexV153tYPLoXt+Vgmiae57G8vByrk67UcNt1Wo7D8LpNlEpFNFXl+PFj5AslEgmTqckJ0okMZ8bO8NqNIcHyCaZrFrqmMz8/TzaTJToXHb7ggM9H/9d+bbfbVLq6qC4ucvzYcTZv3kLSTqAoKgcPHmDrtq3UVhp4nk8unyGYfhSZG2W+5jC6bpTnn36OUqmI57VxXId6vUZvb5ynahgKjuvQ09vH5OQ0RAHrNm4km83y7NNPsWHjRlaWqyxXl+nsqhCGMe1qamqKQkcH2XSaAwcO0jswyEMPPoShSFKpBIapYSZS+GGErikIIWm32zGoiYg9/YaFH0bUalUM0yQMAtqOR+R7mLqKqmnomo4XhDhOm1azzsLCFJouERLOnDzF5Pgs9UaN3p5eHMfB932EEOTyeVZWVrHtBKZtUas1cJw22WyaXDZLKpnANBOkM2k6KxU2bdoKIkBVDO6/9x6KlV76ezSs1ADtVgPDMGm2lunu6ub5/Qe4bvceECETE1Mszs/x9FPPsXHLOk6fOcvA4CiaoVMpdpLvyKHPO0SmwkOTz9E/MMjRI8eQiooiBau1FWxWsHp3c91td5DPZzl1+iwf+MDPIuUY2WyWO97x74i8iGefeoT//if/hR279vClL32R++77Ph/5v/4DD97/fW5OLyI6MnT0ajz7jIHjzLHn+q2kMgmkFKyszvOqV92GVOL6iwiQQkXXNQCCwCeKItrtNgiwEwmiEITi4WGjWRaamUVoGooai4U4ziquPw+RimUaBJGgVqvTaDQwTRNFVWm3WySScSRJUeKIQhj61Ot1dCtDJEI812Xjhk0MDQ1Tr9XWntuAxcUljh49jq5bJBI21167C//sURRFIblue1zj0DDp7e2ms9LLho19eG6EaVpMTU1x+tRpwgjK5TKPPvIDrrnmGh566EFuuOFGxs+OU60uc2rsLO9+93tIpzLMz80jhGBldYWh4UFqqzVOnznJunXD9PUOc+edd7J+fQHTTHL0SMDouhGWFqvceeeXuPHm3XR1duL7IV+7+256+ooomoIf2tSWanR1dfKd73yba3ZvJWlXQQgarSyqYjI7N0kyaaNIA/2Jffi+x3dWF/it3/6vwCLOKmzcsZ7vfudeXve61/L03ud4w+vfxI03Xcdv/Ppv8ed/9pe8451v5frrr6NWW6Gnp4tao4am+bz+tW/huecPsWnjFoIgQFUNlCjOtWy0m5iGSSuo0dOZ5bpdm3jL+3+eUE/zp3/1ef7wzz7O61/9KpKJNJ7vk8rnEELj93//v/CLH/pFEBHX37AbVRUkkxa+30JKwdLSIrlkAtcLUDQV76n4W34mcQqJYKRvlOryIpGA/+NXfxNdS/Ktb3+VG2+8kbEz0/T1lllamqNUzlJvxayAEydOk8+WOXXyFJVSJ7oi8Pw2HR1ZVEWSySRRVZ9f+PC7mV04Ta4ji992GFw/QGs5RPvbLqKGgC0eUoaYuoXQNEBiGga6prJSXcKwM4RRG6cd50WGIRiaHkdldT3+fog4P7vdbmPbCTy3haIoaLpJbXkFVVEwLYtWo0UymcS0LBRlTQ9CqERRQBhF+L4PESQSSYLQQ1V1iATVapxD2dvTQzqbJvQlupYg8CNUKWk4dWwrwfxCFRG5+J5HIpXC9X00VaPleqiqSiJhs3vXHjy/jeeHEDl0lDK4Xg3XqaFpFufYUKrMoWk6iqpSX3WpNRZJJVXS6TSrjUVUqSKlwvz8PJoqyefSbNkyyshID6EXgKKuAX+NbDZLZ2eFMPTQdJPAc+IPuNRQFYGqCdx2TB9erC7TP9iDEmnMTTc4c+YUpXKSRnOJsFXHbzfQpYeZMGg1qkjZQNV10ukcipFmtVYnmUrSaDRRpMB16thmHk0NUbWQgYEKkbeCYShIRbDcahEpGRpti6efPoIWaOD7vOPtBcqdGpWOgNriJJNjpzn8wnPMTRzk/nsfoyPl8K1v38/E7BR7n3mSjnyKz3/u73ECn0cff4Gx8UkOHjqE50ZofosD+57ErTfx28s88+RRDuw/yIlDj7N1NMEXv/owq7U2jz76NBOnTjJ7dppW7Ti1xUl8b4V1/Rkir82uLUV6O21MmUBEOrf80vM8dO8yD/3gCNfdVua2m9+IbiSxbJtyqsCzp47TnDtKR75EYXDDFWy1y9s9P6oWy4XtH7oszrn9XbrPl2/bvwhAo6vZqHDe3pRSXtT3snb9Rcy48JK5/PB5Xe66/BS4/gTbPxVwfaVA62oR2Mtu90N/uPo+r/QgvZIH7sLfpZTgNBCpIkpx6KJ+YXgxEBOX7ucnEHE9B1wvBdw/LnCFKyuxXemavFLgem5u59bV63UMw7jyGFKi9F1DMPEC/v5vMpPeTm3iCKpmMDkxSTqdprZSI5W2uO++x+kdHsAyMkxNTuG5LXRdYiaz6KZCoVBgdbVBV2cFf+YJVBEg81v5ype/wvqNG0gmU6iacr4EwIXUlupyFdu0iKKIkAhF07CsBJ3lMmdPn+TEyeNUKhUymRythoPnu2SzOVanTqA3D7JqDPPCgaP0DQwy0DfA3MICS8sr+EGA5zmsG93AmTOnqPT0Yts287MzEAZ09XRjJVIoUrCyuAiaxsLiIidOnGDHjmuYmppFCIWenl7SuQwnTxwlZRuoVpLV5WVWFhfJZFKUO7tANRFSQbImRqJpRFGEomj4fkAQRaiqhmUkCYO4JEcymcHQFFaXq+imjRAKUlExDA1dk6QSeTTdxGmHpJMmhp6mXC5iWRYRUCqXMQyD0ycnmJyaZnpmhlK5QFdnH7l8hsOHDjJxdpz6yjIryzWe3vsknltDERqKiNj37H5sS2Xr9uuInHG+/9BJ+voKhH7EwUP7KXf3sH50M08/9TSWYdA/MkzC0nBbbU6cOsauXXuIkBiGxhOPPQkiotmjE45ksEwVx3MxDZNSuRDnNmkaojGBtzJGI7eDoaFe6tUah/a/wJtv38z42Bi//Cv/L9ftuY4P/eL7ePKJ+/mLv/mf3HrrLaQzKRJ2macee4Kisw91tUV26+sYXdfgmWcPMzK0mXu+9yAjI+vYtm0rUeQxPz9PJptHSg3HaQESIkkYeEAcLVUUhUCCDFzmZo7RkevAd5sY0qCxugxqc60Go4aqmrRadaQQKKqBbdskbDuOkgGmkaDRrNFuN/CDNqaVBgmmmSAUKlHktwBXpwAAIABJREFU43seUqgIBM888wyapqIbGslEklyug+PHTpDLxzVwNTuBn0zjqEm+/a3vsnHDJtqtFcbPTJFIBDz68FP09Q1w8OABDN3i+MmTjJ0ZY/euXRzYf4DXvu416JrO9PQM8/ML3HbLjSwvr/Dd791LuVih0ahzw427yOdTTIyN09/XRUc+G0eTdI3BQZ0zpzsYHNzGiRPH+OxnP8/Kcp1yPoWRSKAmbG657jpQPLzIp9HW+NynPs7NN93E8PAG5qsTVMo+Akm9mULTEgRhC1VVcVoRymPPABHTQ338x1/7HbZsqvBn/+3z3PHed1MqdJDLZZmamuPWW19Nq13j8cef4j/8+1/DD1oUCgVOnTpFd3c3KAEpq0ylnEeJFHq7K2RTKbZu2sgHP/gv0Q2VVDZWu64vtcGJmBmbpLti8/Sjj3Hq0FFec9MeioUiru8TqSpCMRHovPq21+N5LqYRR/WCwCeZTLAwP0Mq2cHpU7M4oUc6kydwG8h9Fp4Xkb0ly+989P/m/nvv4eZbduH6Lu9+388zcWaON7zpVvL5LMlEB7XaHBE+7XadXKELx3F53WvfyL/5179CZ4fJ0sw8/98f/CHrt6zH913CwGP87BiaLKAZOu1WQDJRQXhtnHYT/ZPdhELgr1/CazvUlmbiVCRFxnWSfJcgEkgRIjSdRq2GbdsIETtQfM9B0zXCUCADh1arhW7ZqKaN74VxLW5VA2FgGwaBF+B6PqatxvTCUBAEAhQN00qh6jph5KDIc07nENdtoyoaUqpx5FnXUDUNz3NQFIGimwjdQOgCv93GbS8hhUIyYaBqKn4YV1+u15qk01lCEaGpKkKNMLU0XruGlSih6jGV2tSSCBmt1RkXaJqKVDy8oI6UUMpXCP0WUSDQdQXHCVCkhqrphGHI/hcOokiNnp7euOyTZa3VIm8QRgFRGI8rlDh6aSVSIHWWFybRlJisKXV4fv8ZNm3ZxsryLLomKJXyJK0coa8hVUGj1ca0TRw3IJVIAiBlBj+K8AIFy1RotRuYhgkRGJpKrTWH8HzwaohgFU1T42uoqhik0NQAVWmybqhEZ6fB4HARXVFIaiYGPqWcSnd3guGBJH3lFF3dFpWMxXCfRSlrMViysdRVBntyZFJtvLrL5vUdDPclqWQMukoWg/0anWWNYs6kXNEoFJIM9eXJ2C7FnEq5Q+A2p7nl+mEG+0M6C0VKBY11Q12kbTdOndE9bDsFjQwJLUlm/TE2X9fBvQ/sZfZsN4blcuDgYbbt2Eitfprh3W9GXZ1hfmWc9bteu+Yk/uG2sJTyor7/nNqlQagrBYku365kF1+5ZwxyX/z/y9r1Fw32CkSfLrffnwLXn3z7xwCu5/Ip47TFi2/YF/tcvazNuRv9ZVMaxCXLZed15fEufZAuB6B/mJfo0uNQikPIwuBFfS6M2F4YmbwwEirXfhPASyTALxhHiDgK9uJBX/oAXrguLoUTJ7i/qEp3fl4iOt/1HP8/DKO14uwXnNa1/cXbX8aTFUEURrGowcu4Ji+vifP7BIGmaEjxv9h773C7yjL/+7N6233v03tOem8UIVTpCKJiHxuIDoNjw1F/I68FHR3rqDBjR8GGqChFOgmkEJIIhIRA2jk5ySk5de+z+179/WMnIcSA+MrMb3wv7+s613XOPs961rPWetaz7/u5v/f3Kx3KaYZ/8ujrGwEictcKQs8luvN2MnOW4zsVpiazJBJJookkruMyf8Fc4tEY2VyBxx9/nCXLlqLpJq5tMzUxhSLL1KpFIpEoYmE3jmNjNS5jydLFRCyLh+69l5lz5+AHLoIoIiPjeT6VapX7fn8XHe1d5CbrDKiqJCNpCrKukUhnaGtvxw18TCvCzmd34Xs20YiFln8OgjyP9xU578LzEMOQWhhSzGdpbswAMqlMI8XpLJnGOLl8nnKthqKouOUy0YRFEPoU82U02aClvZVaqUx3dyfpZJK+PXtoaGrETMapVWs0NbZimSb33P8QZ555BtVaiXKxSNn2UBUZw9QJCXFtF0GQsCvTEPh4rkPdb/QJQhfbrmEaBm7gEQoyqh5BkABRIAzq7LO6bhIgUCmVMHQFQRbJNCWxXa8uMeEHiKJE394++vv7Wb5iOROTk3R1d+N4VTRdo6Gxkea2Fjo6ezCtKKlUBjcMKVdqNDa2EIkZ7N4zwMJFM9k/NMVZp6/gySe30tjUwpy5sxk+MEpbRyPtHS0YZoR8YRpRlMk0ZIhZCayYXpeqwME0TDraOpkYGyOTjBGPJxgbGaVmByRTDXihjSALiG4Fr5Ll3Z/7NYhRFi09ke7eLgxzDEXRkIWZ3H/vw8yZPwszYXH2qqXcd88mRsdzfO4zn6C9vYe3rErjOFVu+PUQrz63l2yuga7ORnbs2Mau3c/R2TEDRZXRNRVBCCH0GB0a5OmtW+nu6qZcq2FYFoqi4nk+nmdjqCGybFEtllD0GLUwxNBUhEDFrlYxdBHHLWCYDShqvZY89B2CwCcMA+xaFVEGTTUxzCi+F1KezmOaFrVaXVPSdxwIQiRVpeY6pNNpFFlDt0zGx0bxPQ9FM4lYOps3PYEt6diSxp2/v5MF8+fT3NyM4wRs3PQYM+csZMHSRezdu48ly5dgRSPM6OlBkUT27d3L6OQYJ65cQbGUpampGdfxEQRYu/YRXv+6SzENgye3PkWpUqW1vRNCD1nTiCWS5IpjzOxVODBYpX8oQtTQqVaqjE8M8b73v4MZCxZw+eXv4OKLzsCXJMxIkqnJIg3pOMtXncB/fv0GFLlGW+dcRFFHkdJUSyGipmHqcUIvZHD/HhJP96HoOumLz2Le7C5aW3o4+4IzePTRNdz4Xz9k1YkncssPb+Si805FzTRy9jlnk0xEec+7r+QNb3o93TNnEIoK2bERFNUjFm2grb2FK6+8miee2Mr3f/A98B2ueM/VnH/eaxBCkbvu+AO/+/0feN2bL0NWLYZHJpnKVfjk567niivfwT9e/QGueO+72fTIE4yNDOO5RZqa0tRciS/929e4/A2XcnBsL5lMB7WSTa40TffMHrLTU0STEcKtETwvIN89ztq1q/nc56/HDwOa25qRFIGOWe2kIiaDuzay6ZEfMW/hShoys1BMHbvqQaDQlGmmt7cZSVEQJIEzzj6LeGMMRdaIGTHilklohuh6ilg8xfBIH5VSjfjDnbhDUOo4QCSeQdH0OhGT52JYMURBolqpB0eyruLZNXQriSxQl46TFAQBatUSmghVJyQSjVMuljmwbz+ZpgZC38P3fRRJouo4aKaBrChIioYk1eHznm8jSjLFQg63VsWwYnXoq+chyiK6FkEQBGynjOPU1+NSub7Jqph1KajQ93HsCq7jEY2mGJ/IkWxoRBBEAi9AFiQsy8T1XMLAQxZ8BNkk8EsIQki5UGFsZAhJDpBVAUQ4OHwQQ4sgSDKCJCIKdc4Px/eRRZkg8DCsKIHgUc5n6e8foL2zndWr13L6mWfjBTaCEBIIArKkUsyPI8lRBEXBq5QRDxFADQ0OY1oJLMtClDQkRaVW9pmaGqezvQVRcDDMOIqmHAr6LcazOaKxKEIookgytltDVI1DOrniIQjyIII3jaFGgBqVSp3dWZIkPLtEtZzHDSNoah1Z5AseYVBDCAVGRrNkyyGtDRqSqOL6RUJBAUlk5479NGRSIITIhyg0bLeMZkRQlABNC9C1gKZUnK42i0QE4qZExBIwzRqSpCNQR5lEIwIT42Ue2DjA/N4kqaRBPGbRkEpQrRSIWlFqtQJWREVyK9TwMWUPTcownp8mYs9CCaOMdt2P4pbwihanXjSflctPpVC2WTBnDnuHBpBDkTvuugur2s9Jqy6ipibQwwqeKL/AhXo5Gq8v5e/+pYmhF7OXkzk91nd+yfbh0T7rC9sd1887bsujPxc4VNh6xKcWAEEM6/KMx03YHO0XH3OSlyi3+3vg+t9o/zOBq/gXBXnH+189q/M/s4P0cnZ/Xlad7XEC8JfTl8CLZUF50cC13u7PabH+6a7S0dDhFzZ9Icz1hW2P6vfPLD4CPP/cXuH3+PA5FVnBdd1Dz+2l54fY0IvSezLewGakka1EMi3IM89EKB9ECAMcx6mzxU5Pc/KJJzA5NkZ/Xx+dbY1IooAgy5jRGNnJSaTiLkRRZMpvIpqIc2BokPnz5qFoWh1CGUBhKsc9d91Nc6aBBQsWIIkSU9lJNFWlobGBQDh0XxEIRAFZktg3sI85C+ehyBpucQLTOUixPInesohYPM6B/QewdAXPcVi9ejUnn7SSiGkwXSjS3N6BFYmQTGR48omtLFm5knKhiO14NDWnCfwKu/f00ZhJo2oGhhUhmUySSESpOmWyo+P1jIcgsGTBfLY9vZ2JiRzxZJLeWb3ohoEo1d9nWRQJRBEvBF03kFUV1w+RVQ2ZEE3V8UMBTdNwHRtFqddJyqJE4Lo4to0QgqJryLKMJImUiiXK5SrZqSzJZILnnnuWZDJBKpUkmUmTTCfo6OxAkuvSOLZtI8sylUoFTdMZGTlIIh6loSFDqVAmGosxNnoQSRTYvXOAHTt20tnVga5HmJ6ermeSmxvJF3LouobjVJEDuPuue3hu117a27rJ5ibo27OPff376OntZHJqkkQyShB6FIs1XM+ntaUZRZXQVBUBgX1795CSS1TbX8/c3vlsWvsQrc2NdM9U6du3n/37RVrbmnjXu9/NVe+9mlgswfXX/xuf++x1zF80k4nxSWZqB3Acl2TnCmbMn006rXDzzT/hjDNOZ9nSFezatYvuni4URaVWq6HrOpoZpamxGceusPGxTbQ2NaGrErVaAV0Sqbk+ihFDN2MIslyHKeanCAQPXTewHRdV1SEQAR/HKSOLCpIs19k+yxVMy6RcqqAqEp7voioi6x57moUnvJWvfONmzjllHps2bmb2rHn4ns8jax6lu7OHX/zidhYtWEgsGsMPAmQZZs6charoPL5xC0uWLETTNSZzUzS0NLJs2RJK09M4lRrJdBrT0FBVDTEUeWzDRs48+2zisSSibNM573K++q1buPz1p7Nk2WKWLl+KbumkkynC0GfZsiVAgKZ5xCIpJia2094qMTEeI/DmUcxPEODT1t5Ec2sDnd1t+IHM6y57AyMjoyTiCVzHIx5LMJ2bZmx4hIii093TQmG8hkSM4dESjR0tGCJUChPUSkXuu/MBVjgqNbuKcd6r+OA/f4KLL3kt+w8McfFrXsuKeQspVSu8/corsDIZRFlFlUWK+Szz5yynpS2Dj0OlWsEuCXz/e7ewZMlyLnvdpVx77SfYvn07F1xwLpOFIosWLOG5rVsZ7NuDi8eVV76HarX+ftz0o5uYnBzna1/+Mluf2ITvwQknnEBvdxN9e3cwb24vQugi6hJnnnEKTs2hraWHiidgJXTUiIYi6qiqxoEDg6TPMRGXQRCUOOusE/F9n0xDjMnsBLoeQRFc7FqRpsZmZs5exrRnIWlRkHRu/cFPuPfeP/D+D15NoKrYtRqZdIrxiVEe3/wskUgjsqpRqBVAlNi5cyeRaIRzzjmPqzs/gdoXwVtYwA9cVF3H89z6szWSBAJ1wkAJREmiXCqDW0NSNDzfww98REJ8x6lnX6W6XIznuYQENDU2UYfZisiqhucDuIgiBIGH7zs4dpUwcNG1utyZLNUZtHPTWXTdqK/lgYciwXQ+j65HQVCRVBXVMOpQ21qNMCwjhCGPrdvKnHkz8ULwvABdM5EPB9d2Fd+xURWD8YOTFHJFdN3EscvUalViZpI1ax6hrbUdVdEJPY/bfvM7Bg6M0L/zKTRFxDwUWMq6gSJDQIAXivi2TSyVwoiaaJrBrJm9yILP1NgQT27dTjqVRlNU/KBKiIpuqPhOFUHUEAUB04iyceMmQgQSiTgCIZX8NB2d3ehmhCAIKZXzRKwGBAkcr0A8FkfVZGzbJZRUZFnErZQIbJswrFIuTBK4ZYyYiShFKFdtorFGEGSyuQJm1MQXJNSgiKaECIgokgohSLKAZchENAlNDkEM0TWdwANJ9mlqbiQMXEI8NE0mCAJMQ0ZTQZEDFFknCD0QXESp/swFwUeSQuzQ4rGNz9DTnYHQIay5pBsizO9NYEhCnZTQqyCKAZalEQQOiiwgSZCvypTyLnFTJRBG2b5HpMVfjiHEcOb+lMZkN3OXCvzb/7mDPz69mXMvXoVpNvHAffex6tRzWTCvl+mR7aiJFFamA0VQ8QQLEfclfaPjoQOP54cHQfDygsiXaS+nj78UGvxK2YujI1/mGI5tdxx38285cP3fQSf1v8SOnaTH1rEetiD4Uybbo3dnjvf/VyKQPV7d6p9re7zjjpc1Pvr3oDBGWBw/bsb5pezltHu5i8UrbUffsxfVfX2Rz//cvT5e+8P9HX1cvc7rhQx6LzUerDT6mf+EfOlnUSIJ5I3fwC8c5NmCgSAIqKpGc2sTjmej6BrdM3pZ8+gGJFnH1E2qxTJr165DURQkWaKppRkvDGhsbkJUZHLZLLf+/JcM9A2QzeVoyGTIT09TqlY4ODlGV28PrZ1t+PgvzOKLIr7jIvp15t1kY5qYUEBonoWYnk1bWzu79+wllUrTv2cv8USa177hjdQcG0XT6ZzRQ6lY4rG1a/jjYxvwbJvhkWGam+u1usXpPIODA3R1NJFpiFKu5skXp9HNeuAzOTZBuVxEkgVGRkaQNIlMY4amxgytzWkq5Qq1Wg3Xdclms/T19eN7NqaqQOgjhCGGXpdfKBTy2I6LKCsQCmiqShh6hEGIF/ggiUTjcUSpXmMliSKO4xCLJqiUKnR3dlIpl1h54ko838V2arR2tiFrah0NcGhNOCywLssyoRAiKzJWxMKKROjs6kSRZRLJBIEPwyP7uPS1l3HXXWvo6upl5syZVCoVBFFgX/8BAl/ANE32D43whje+kZm9vTy3cxfpRJzO9jZedeqpiJLCwYOjtK6pEL87y969/Xh+wMHRQcLA4cD+AwihSNecFVDLUqvV+MLnP4sZb+Dmn/+KLVu2kE6l+OY3v0lvbw8//9mtaEqS/YNTzJrdTeBXWLhgKaecsooZvTPIF3Ikm1sZGbWwrDEWL1qGJJisX78JVVWRZQ1F0QEJx/ERBXj00Q2Issaq009H1QxKFZtyxWUqm8eMphAEhSAMyGencGoVjGgCVbVAkJFljVyuQDY3TLmUx7NDPvelH/Dpz3+X/oERksk60ZUQCti1GookYugWYfj8+tPR2QOihKLpFHJZTj/1FH5y848wLY2NGx/DcRyefnobuhYhm83y6G9vgakD+KFHR3cHc+bOQfBdquUikiSh6Trr163Hdhx83+fg0AE6u9roH9hLYXqKeKzhqPdeqo9J09AVFdez6enpwvdy6OoQ8YSDrNXQ9Nns3rmAiy78OGNjk0xnbcoVhxCJYqlKsVRjdHQUSRLY1z/Mo6sfYfdzu7jvD/dSKZb56he+zKYN64nFDXrn9bJvqI+582bg21UIJUQRfvTDn5BOduK4FWrVMn39O/nhTT/ggYfuZ+6CuVSdCroFPTPbCQSPUADXdQlCj1jcYMmyufVgyRMQMfj+927i9a97M65rc+edd9LW1sb69evrdZt2wK9v+y2Lli+mZ94MLn7NuZTKOb72tW/y5BNPccWV7+GCC89l2/YnOPGkOXR3p7EsieHJYc59zflIuoFixlBkg1I5TyJpUa2VEEWXvTt3EDNiEMrIkkl310wCX0BWRHbsfIZPfPoLnHbBeTT2zOKUM8/nbe98NxvWbyYSiSDoBrYUIZaMYLtThH6eiy69jEsuuwS7UmTf7n2sXr2Zqeka2VyBuT0t9O/azo7tz6KqEb77/Zv44LUfZs6ieRycGGPV/3MCH37yKgay+7DMJKIgM50r4DkCgWcjAnalioRIvpDluw9+l4u/ehnd72+h46pmVv7LMj76w3+mf/wAqm6iygq+71GtVpAlCd93IXCZ/+G5xP/BIvPuCI1XNJB6Z5KG92RofE8jLVc10fTeRs687ixcu0IYeKiahqqI1CplPNdFkRWKhQKaqiEqEpIqIwohIiG1SokwDFBkC0WLcNpZp5PPF5FVk3RDBlG0KZcmqdSKGBGT0VyBQFVp6Gijrbcb184jSwqSaGH7NpdcdgmNLU0omopqWrzzne/gwgvP5dwLXkPv7Lm4bsDE+CRjI2OUinlcx+aRhx9BM+L4gUIimkQgRFElqnYNI5LC0BMMDxwk8EVkmUN6zi6+7+D7NULfp1ousXTpAmb0zgAxQBB8BBnEQ+0NXSGTaSU7PYksS+h6BM91qVVtDDOCqgp4noNpGIyPjlOrldENA1OPUavWuQ2siIXj1rBrNaLRJEFooRqNhEoMN1RAVKjZJSTNwPHrmTPLMlDUCGHoMVX2Gc2V8IHQdw99v6t4rl+v/3clCEN8H5xaFXwfCQh9HwIf33MhDDBkkSXze/Fdn9AHUZYZOjhBXAtQLQXfdZAEkEUg9FAVCVEARVTQFINUOoaNiCSmmDevEdNQ6wtWoDEwcpDAy3Ddpy+kqyPO/7n2M+TzeebM7GDowACPrX+CXF5genwCTZYI8QjDFw9a4eUlX44OZP8cmvGVqJc9dnxHl6od66u9pP/2V9jhfo+NJf5iROefsZfL6Py/zf6ecX2B/WkQd7xg8aVgDC+KTX8ZsIRXajK+2HlfLmy4tu6HBMPPIM84+bhje148uo7FFUTh0O+HMPoCiIh16G54CBgrPN/msFTOYWmaF1B8I4B4iCr9KBjw85CHQ8H14d23ozO7QnjMT/2Yw/IuL3a9wpFxvbDZy3nmx7OjF7KjF+YQ/9A1H2c0R+Oaj0kWS5qF0rGYXGIhUmGYtuxG6DqZoFZiKlcgCFxSiQiaohC3EiQScQYHBwhDj7lz56JU+hAE8FPzMUwDwzTwwwBFkpBEiVg0ih9AZ3cPw2OjzF4wj3QmiaRIR92bwwDnECkQ6oGUABIgCQHC6LPQ2IKim4yMTTM5PkE0GkeRNGwvRELkQN8+UukEvu+w4+ltzJq5iO07niadidPa3Ep//wCNmQyhKBJICrolUbOLTI1nsUwLUVcY3LOPeCpNpqmNeCJBbmKUaCJBcbrI6OgoM+bOQQh9IhELBBFN10mlUghiPTCtVWxcp0Z2cgJFkInFoiiqiu3YiIeE4l3bhsCva4SKEAouZbuAJqoYqsDjazfw1NPbSacy9PX109XTQ6WQxzIiPPvMs7S0Z5DEel1tpWLX9RIDr05GJCmEgYumaiiSRiE7zdjkBOvWb8Cpusxb2EtTc4pUKkOt6tLU3MxvfvNrFi9ZTLZSpKerly0bH0OXBdKZNkxLprOrjUQ8wcjoKKlMEitq8dvbbuekk08itt/FcRwmmlx6enuIJZLYNZ/Nm7bQ3t7E2NgoUXeIOeddxYzeOZQqJa688goWLIwyNDTI6addharoTE/n+Na3/oOGRCNXXvVWSqUS/QOj3HDjDay65Cpal17G6idyJJNJMqkyv/jlFkZGthONipy46lXY1ZBndmwlDOowZiFU2bxlLb7v0dk+C8/32bp1Gy0trZhWHNv3kUQRLxTRdANRltBUC9+tICp1eSJNVYmYKZxAwtBFLnzdh9mw8WnOPn05XT1tjB3Yx56BIZLJNMXpHLpp8Oyze7nt9ocB+PQn38Oc2bOolR3uuf8+li5fzuJFixGFkCVLF1OtFnl84zrisWZSqRSz/Cm6EgZNi0+mVChgu3nsWkjEiuLaDuvWrmP2vNl0dLRTrRUJw5Curg7isSgdne0QCHz5mzcDcMkFJzFv7myCwKZSKSApGrrpoynTOP4iCqXFBF4XdiVB38g2PvTRa9k3MMl/fvd7vP2d72HDpm0MDE3SM2cObsUjburo0jR3/X498+d3MTqcY+nSWcyfu5RFyxaRzrSgJS16enScapZntw/y7M4BXE/i5FWn0Du/g9T2IUZG9jO9YB6GFef0M04knx9HVywUM4IWCTiwf4RMsgNFl8GXUXWBmuMSlD02r/8jDz+6lve+/yoyTQlK1QK6GWc6P801/3QF5eIQH//4p/j2t77Np677V+bMnUV7zwImstOcec4ZrFuzkeGhMc4+6zxaWzrI56dYteoSTjr5JP7pQ/8PQRji1HJookwp65DP5vC8EmAzNeGRTiaYmi7x8L2P8PRTW+lsbyOfm+aXv72ZK//xn9m+YwfFUgnLNMnlsuzp28PPb7sVxxE5acmpKCH4soJU8xncs4/LLn8jvTPn0tzcTcRKMnEgS0ODRVdPN9FMhhmz5rBp82be8q63cs999zI6NkYYhBiCyVj1IE8PbuXWDb9k8cyVzGyZRbmUp1icRrciSLKCGPrsHdnJRV+8iDv/eAcHp0cRENBVg7HpUbYObOWX63/G/M4ldGc6EBHJTmWJmCaS6ICs8d37v0OhkidqxEiYcSzdxNIjmJpJRI9iqhazWufw2hPejCDJhCLIooph6DhOFVWRqUv6GARBXf9W8KsEfgVVNhgenuDxTRtob2tDCBV27+wjYQl4tk+tViEeT6BpJpWqw95d+7nrzjtIRpLs2fEkre3tFCoFfM/lvvvXkGpIYeoKXrVahzuGPpoioJhJAiFEMwxkJcJjGx5g0aIlKIpGa1szQVhCCB1818azXWIRC81QkCSB1s4WGlpi1Gp5VLUZVVPwPRc/NCF0EHWVUrmGZ4Mg11BUEdcTiUbTKLLMlk0baG5uwPdAlnUQFDy/DsUUJRlJ0vCpBy++Z1Mq5YkYGkpMpmaDW3NJJGNUHZ9Q1BCdHIosoOoWoOKFMrFoknIhi2Ym2dYv8MTWEWa0N4LsUXEqiLLF2FCVseEyTS0GiC6CFyALKmEQ4HoV+vdPk0hGEHywRThYtEgbWaqOhCyKKIpSh4MGNXQtQBQCwtDDdmwS0Xq9sxgqOF4NSRCRZLkO6Zbq/0MUURUXSRDZ9PQoo6PjdLZmMEozIJQ+5OcvAAAgAElEQVTY3/pLvvW9rew7sI+etM3Xf/I47bNWcv6rl5BJdjAxNcms2SvZvX87T29Zw6lnnUdgpJAFEAheAPE9ehP8pYhFj/37L/WPXymf+njJHTg20VGXdBQloT63j/ZDj/H2/gTGe9SPcGzfQnCoyu1wX0d39BLwZOFo0cbwiN989Bjqvvr/jmwr/D3j+lfbX5pheyXsv2vn5r/TDte8/t+w/65A/3+jSZKELMsEagRp+Vuxl78Xedc9jA8PUs6XSSWayGanyWazJFIpdu3ZQ1tHF7F4Cl03DtX91QN4Sa4Ho3VBdx1RUqlWbIaGh4lGI5x40glHsoPHWhjWlcR8AqxYlEAUMCIWwUQ/YsdyQt9FTnaTTMRpamzAqVZoaGokGo2w9emt1Owao6MTDA+PsmD+AhKpKOeeew5z585DFCDTkOGZ7c9gmiae5+E7CqbWQibdQrWQJWbpdHa043ouTq3MwZEhNMNkanKSVCpJuiFTJ8HQNMrlMlCfo4VSCQjx3Rq1ahXHcYC6OPhUNkuxUEA/xCwMYZ0lUpYJ/DKh6yO4GjG1GV03KBQrxFIpRg6OIUkSHR1t4Lu4YYCiazQ0Nx7K+NoUi0V0XUNRVSDE83wC36dcrtQdEtehr38vzc3NvPrVZ7N06RL27OmnubmdbHYa23YQBYV5cxZBoNCQiEPgMV0o4oYi1VqBXC6L67rsePYZZs6cSVNTE0EQcuH557Nzx7MEh2Quurpm8MctT6LIGpF4hPGpSUwrQSrTimBmUHb+jP59w4yP5ZjOlbnkwm9w68/G2PXcY+x8bgO5qb18+rpr+MEPvsfDDz1KsVjmJz/+KR/58Mf4yn/eyr7xgLGhAd535dVMTKpc/oYlLFywmAsvugRNMajUijQ2NNDa2kE+X+T3v/8db3vrO+ho7+HHP/4Rv/zFL2lrbWXz5i1HCDt8z6trRIsCBCFOzYZAIp/P151Tz+HAgf1osox01M5xMplCEiWmixWWLl+BYZmkG5sQUNF160g7Pwzwg4C9/Xvw/ZDf/vZ3BCEsXLCIqckclhXjta99PVu3/pGf/+LnBH6Iqmj86te/RhRFZFkjlUnhE2B7DudfeD6zZs+kWCximjHa2urPMQhCJien2LVz15Fzx2JxwjCkWq2haQaSLCEJ45Sqsxg+CDV3Akkt4wVTzJs9D/yAk09cyVe//CX279nDVz7/Beb1zkBwPdKNSVwhRDRiXPuxD1CtFulo7+Q3v76LZCpOIpFi27YnmZqYQJUOEI2OM2v2bFKJOLIk0dzYRN+efi5eey+Rz/8r0ahFMmZSKuSwdJ1vfuPLDA0N4nshqVQKCLCrRUI8iqUK4GFYMrPmdnDNP74LXRURgoDGdIZqpcRHP/xBJEki09TEpz71KcbHx1m7di3z58/npz/6Ad/66le5/84/sHDBMnK5ab729X9naKQPUXKo2XnWPPIIj69Zw29+fiummaFsi3zjhhtJNbWiR9Po0TSbNj7K1NgkEcXioovPZd782UiSQN/PR/n4Jz+H53lccO65bN/8FLu2PMnq39/Faa9aBcBXv/U1fvSzn7Bv8AD4Er++7Q6e3r6L6z/3JbZvf46LLnoN/f0DnHH2q4jGDEIcVAXGxoa5/t8/y8jBEVLJJD+74RYGr8oz8PmDbLh+E+csfDVlu8wV334b+8Z2k0imaG3vRBFCZCHA9aq8+T/ewv7J/SStJLd84GaGfniA/u+MsPU/tnPBsosp22WuvPEdDGSHkBSF1o5O/BDyhcoLAoLrLvs0u27Yw9Nf2U7ff/ax/evb2fGNPXxkwb/ylcu/gSQJKLKE49iIokAYBEeCBlW1cB2vTsQkBoiijCpHEQQo5MvMm1eHxssKPLr+YaamC8iqSDSWgFCiUq5h6hanvOok3vfeK2hubGBW7wyCUKEh3U5TYxtvffPbaGxopVrz2bW7n/GxcRRF4Zkdz+DWbNyaA76LocMZp19AteLhuvX3TVMzCGIEz5PwEClVqlQq1ToxkxzBdyQMLY6i1IneVFVhYKAPghq4AslEklRSRQwlPKeeoZzKTuD5Lp2d3Ty+8UkmJydxHZvNj28kCAI0VcCuFfHcCkHg1SV/JImW5mZkU0WSOvAEiVg8yfjYGJoE02ODSEYUQdGp1ar1sUQbKYcWVtNsZLXG3B6HC89pQbPK4PtEdQ3RrdDVrbByZRuKIKKKEQTNpOR6eJKIYlr0dmcwdbnOaL+nwtZNO7GdKIYeRZQkCMH16vXOruvWS2RkGcPQUFW1TlYl1L//fd9HURQEQcDzPBRFOYSgCPD8KssWdzJ/wWyKRbu+YS0IRHWZrlaLS88/jZ7uLi487RT6n9sHfppbbvkN0ViC++67h/6BPqKWQdSy6vmHQ+udKIovCFIFQfgfkKT5n7PDmVnf9//m/Pi/Rfv/z8x5hexoSZvjBZMvBbk9OpB7MUgu8KJ9/3fYsec5dvE43tgOJ/yOd+1HZ5Vfavwv5/r+ml20w9dx9PGHF8eX2rF7sWfycs/9l4zxpT4/9v681JzzfZ8gCIhEIpTLZSpSmq3WOWSY4o8b1lItVxAVHV3XmMpNEolFDhFvKEiKjNYwD7VhLrFY7Pn5iUChWGLOnLkk02lmzpzBU089eWj++zwvi1O34JCjEwTBEQmdlpZ2xsdzBPlxJrXZDG9bx/7H70QUQgg8TFNnfGIMWZVJZ1L09HbR1NqG74VM5yapOSXyxSITk1kc30fXdWKxGLZtk06nse0yhB6RiEhufJKxkRE838OKGDi1IgP9u2lt70CTZWp2lXkL6vI5AwMDyLJ8ZLzRiIGAjyRBurGBVCaNoqnImkoynUI3TaanslRKBYTQJ55I4HgBkqBRzI8zdnAbjr2XcjGPbkURRJmVy5cxNDTIrp3PUatUSKRThKKAR0g8nsQ0LSzLqjs9rkuxWCIIfCRZJhqN1uvbBJ9MJk2xmEdVZe5/4H4kQeWPW55mxzPPMp3P4bgTLFsxl+GR3ezf3cfB4UHmzJ3DMzt2E4ka2LZP4AucfPJKJKkuXyRLEgcGB/E8j0q5jO969PfvY/HiJXiej+M5vPXtb2X/4CCyqlKwFYywQvfMWYyOjlMolDjppFcxNDTCqSvPoyU1i13bRtCFNNd+8mPMXbAS3UqgyAZrVq/jstdezoc+eC3t7Sk+/MEPkx1vo7c3wh13bqZa89EVjYbGBK2tbWze9ASjo+NcdtllfP/7NxGNxmlra8I0NRzbJmJGcH2PqYNjR0ATvuORn85TrVR4ZttzREwDQQioVWvousL3v3Mj5VLl+bka+riez/wlyxEJ8VyPoaERbrrpFnbv3n2knWUlMMwow8PDxKIxJiYmeOCBB1i/YR2GYVCt2qx99DFcr0ZLcxMHRw/iOA5v/4d3YEUj6HocpLr2bDKdRFJkCENEQcSpeciKjm5aGGYUL4Dunp4j5y4UShAKRKzooWxJuf7eSC1kGpJMZz0efnATd93xCB/7yL9gGvU57PtlfnnLTXzn21/n2g/+E1Ojg2zbtg0vcMm0dhGIPktWLGXhkqX84Ec34wYeN//0NpaesIiEFUUgxHEdFFOnoSHOweEhspM5VMnimzd+k0iskVnzZmHX8oiBxOc/8wXe9Y63MnPWDARUUqkMpUoOQwK7kkWRjbo+sF/CigocHHiSsdFBZEng4PAIyajBqlNPwfF8vFBk0bIllGoVntj6FFPTOd773nfyznf8A6Zu0dPTy+DgIB/80NUsWTqH1q4OGlrjNLQ0sHDeDFY//DAHBsZ44ultvP+a95Ir5PF8jUpFYf7sOdz1u3t56P6HmJg4yJIli5iczPLZ2z6NH/jM6u3ly9d/ltaWdkbGxumZM4ebf/YrVr3qFABu+MF/0TazBykMaG5q4brPfJEPXPMRzj/vQj70oQ8xa3Y3ekJCVhSG9vczun8Xv/3NrfTv6wfgS9d8kQufeDtutIKbrtDd2M1NV99Mb/NMKk6Fz/3qM2iaCpIEvk2tWuKmh3/MvokBAG5873c4Z/ZpCKGMKASkjDg3f/AXzGicQcWucP2vPotPQG46i6JpGJZF4PtHBQbBIXipQTY7jihKiFLA1VdfSTqdQFUFSqUChqYhCCGCCGEoEPggSBo12yWXnWRk+ADFQgnfq/M9dPd00ZBpJJfLYTtl3vf+D/LsjgPs3LUfxw0plqsEvk/ge+Smxrj77jv57e23E0+nEKQASRUpVqaoVEcwjBDDEunqbaSppRVRVpg5aw5urYIsQDE/TaWUIwxriLJHQBnEKkHo4HlldENA0zUUTUPTTBA0PK8AggNSQBjW8H2HcqnIooWzcRybiYlJCAK2b3uSgb79yKi4tk0qneapp7ahqlFsW0AWJe695w6Wr1hUh+oGApZhEPg2hiJi6goEIdlcDjc/TXZ4I80xC0lW60SIpQKmHCLKJqVyXZrJ92zwHCQkRkammKrNRVB7UM2ZqKnTiLSvxGxahpyciay2IWgGtUCl4rkEoYiuqyiiiISILHn1DVdRZN6iCBef183ASAHXriIgIooSkiQTIGBGogQIOJ5PiIjjQRAKuIGNgIChG9RqtSNQ1JpdQxTquTlFFonpNoIgsGt3H2FQ90dUHN71hhOQ/GEk2WD5kjhvuvw0dN3l3Ve8n0gyzpve/hZe/4a3U5zOMZ2bQMCDQ1DhF/Ol/7/aS/lLx7b5a+3FfDX4U1Te8Xy/v+Y6X6ng/sXG9bea/PnbBDj/jdrhSXh0kfnfd2deOTtcD3Dsy1gPxv5vjOiVNdM0IRTI+z5zV56IV5nLpe63sO0cycY2cpNjaKpAMtlAteYgSnKdpChySp0h99BNCMOwXncoyXieQ4hPoZDnlFWn4PkeHAdafSSIFUAIAgQEntu+g4aGJqo1B31kMyEV+iY8oh3Q0tbJ2OgYU9lJWrs6aWpuImLq7Nm7k86Obgrj+xkcHsaphcRiKWq2R3NjIxOj4/T19TFn/jymJyfp79+JZViIRox4ppmhPX209rSjCAnmzZmF59bwPZdipUrFrtHcmKGhoeFIsB8EAbmJIZJNbTiOhyH6hHgYlgUCuIGPKil10gwBatUKmh5B0XRGRg/S0phGV0Rq5RKOPY3tuigiDPXvJp5MkWlqwRPk+g5gCIaq4fshghBSKBSQZQnTiqOqypFNMdu2kSSR0PeRJJFYPIbnerS1tbJ8xTLWrl3HGWeeRs2uEvgOIgKdHV2sW7eZs846lVwux8knrGB8LEc2W0CRNVJpi6mpaRLJNGEIs+bPQ1NkrDuHqVQqLFgwF0mRGZ8cxzJMJBHaWxsIfBfRTFLNj3Lm61axccM6Vq+5j7e9/W1IksT2Xbv58KeuYWBoH7tH97Fo/iKu++xn0CMyo2OjqKrK09vu4l/efRrLLzqb6YM5tm95jNUPPslnr78EQdKZs+y1HBga5TvfvI6LzjuFG7/3S6760Ffo3zfIx6+/hbX3/BetLWCaBoQhQ0PD3P671dzz8GP07RuhWCyTTEQ5YfkCLn/N6cxfPIdazcMykgjCNFu2HeSjHeccmavnX/qBF8zd9tYGPn7NBVxy6et4ZN0TRz5/bMMWdDPGrXc8xtoNT1Aq17U5V528iC98eg7bnvwjsViEoeECb3nzhZTW3s7IwWGmtmznjj+s5v6HHqNQLDOVLRCxDObN6eZNl1/IFe+8DE1XmC4UMcwIN//0Z8yfN5/97sCRc6dTDTiuhwJIkoAs59i4pcqadd/hwYdWc2BwiKGhYRBgVm8vn/u3L7Ji8RLmzZvJv33lC2RzZb79X9+msa2Rz37qE6zftobJqSlu+MZ3eN1l5/ONG7/MRGWUFaedgO8FPDuwmes+eh2W4aIoCpPFKt+76Yf85o7fMzY+ThiGvP6yN/LJj/8zba1dKGaU/QOjvO2dV6OYUa750Af4xa2/5K1vejNf/Pz17NzXx6wFC/BQUZAR4yE/vu1XfOy6z9PR3s6au+9hz669pGIW6x5dy0evvZY16x/iJzf/nAcefABREtE0jVQqyYzuXk4+4VV87fXn8LOf/gxV1REFDU2VEWUVL7Bp7ulk0fIV9PS0EQSTJKMigW8QOg521UaPpjjr3PORLYG21m5EQeGuux5i04GNALzvXVdgyBaeALphUZrM84f7fs8nP/oxXvPG1zM4NMiDj6xh5fx53HDjN7j2Xz6MKmt0dDZx4imL0S2dsu1giCYdrV24tYOsfmQNADM6ZvDGyasQl1SJZjQIFFTdIzs5zaWL38B/jH6Ze574A8PjB2iMN4AgIMoqDz1Th6zPaJrBGQvOAqdM4Ek4tk08GsNzNf7x/A/w8Z9+lHufuJvJ3BARJY7v1LCrFUQzceS7LmJFCEIPxysSj6WxXZeaW0VRJCJRE8ep4vsOruNg27U6Y7CiIIgSVaeGZVkIoYUQSqiaQtXOIYkGt/z0R1x5xZXs2tkHhPzxj09w5XvexN49+0CCiGlRLhaQBB8rFufiSy9FkaLs3v0U9927hlWnn8kJKxdSnh4n75cxLAtNj2A7DqZpYloWlUoFRAHHhZrt0NDQeIQo0bZtwqCCpmgEjo9tT6MZUUoVj+//6CdccNbJLFuxlKrtQ1DF9xyi0RjF0jSilKShRUYIQ5avOANBCfA9CEUFzxPQjRh79/Yzf/4CPLfGGWesIjs1Tnt7J+vXbWT5yqWoWhSnWmFqagrT0GlubWV0ZIhkqpPR3CQRI4pm6BCERJMxcMqohxjrvTAgakaolgo0NTahRjQqVQ3X95meOIBuNuL5PvF4GzXBI5GWifkm1UquTgxVLeBUSyiSghIUsSslHKeI4OlElIC+A1nam0TCMI7revXNClWmUqmiahqe5+F5Ar4vYpga1VqBMAgRQwgI6zBxQcB26soCvuvjCxrVqoOq+axcNgtxTEAIhDr5l1Cke2Yb+UKMO+67l6buMyjmsjy8YS2LV85l7qwmtj61n8bGDKokIRDUz3UcFYe/29/tr7G/B67H2NFB5WE7drfl6AD0MKzy2F2YY48/nP05nBH8c7Texwtuj9f2xeovjz72eJI5L9UeDqHmj9Pu8HUcv5/gech8+FI7OccsZGLwgnO/YFzhC9uGwvGJsY7X7+GPjxe0/km5wHGGe7z7/lJz41irV/keFTAKzx/zJ0xuL0ECJkiHsstSgBXTSERbqNVqjFaKDDadwoLiU/hFiXhEoTAxRqWkIhkRDEtFkEQCQoTw+WBUlOrwS0ER8H0ZI2KSakrjBG79nh1dEnF4XKHAvt0DtLa3oykqQ0NDNKTS9O9+jgXNKRRDQgwnmLvycqbzFaZrUwhSSDqVYmx4kFQqTbni0N0zo86KW7JIt7XXIb1CQDQaYffefjp6uhHFkMBzaG5rJzetMp0r0Tt3Dp7tEs+kyGcLqJJMoVKlMjVNd0cb8XSacrVKIZ8jGm9AFGDvczvo7u7CiqVQJJmqXxejd10bU1colaax9Ah+4KJoIqYVx/O9+vsiQDqZwBMkFCuJYcRwBRkRCRmBU047lT1791KrFolbKh6AY5OMRimXy0SjUaLRGKIo4ochpmlRKpWJxJNIocDw8CjN7e2EnoRXctjx7HbmL5jDbb+6ndlzeigU88RjCZBi3H//Os674DRS6TirH1zN0uUrcAiYmMrRlEmydv16dFVlxoweTDOCYNvseuZJFixeSBgGR4TNS6UKoyMTzFk8H1MNKU2NIoUh8YZ2nIE+Dk6O8OFrPsQ1//wRPvqxcSaz49zwrZ+gGyYAg0NDPLj6ASbyBxGLIhHLolAssvap51j71HO86g9bectlbyKRSPDqFR9j7+676OxK4QceAFO5SV79mvezt38QVVVQ5Pra+dCaNVzzj+9DlBSeuPMhvv39L3JgaOzI+2aZOuMTOf5w/3r+cP961m3axte+9AF80UEzIyTTDTQ2JBmfyAGQiEdRDtVne65PLBblDf/wbpxCnoZM8sj71b9/iI/86w04jkckYhICo2NT/OaOR3hozRZW3/19WlszFItF/NBBN0wCLc45l7z/SB+yJGEYGrnpIo9t2s5jm7bzo5/8lgfv/gGaLOK6Nj2d7bQ2N9DR0XHkuKHhg+zbs5t3/MPrCbBRVYe3vPMzDA4NHbnuWCxGoVDg2Z07eXbnTlqaW7j9tttxBJdIMooZTXHf3Q9z43e/yklnnQpAPjfIuRdewHO7dtf1JQHXc/jNb+9i/YYt3P7zT5BMJrjg0ivZPzSEYei4rkMQhtz665+z+eEH+P2DD5I2G+loa2Xvvp3IukDg1Z+hJEpokszs+SdRLPtU8n20NDbx7PYnue+uRw8vGhRtm/lLuyg6Mr+/526+/q2v8O9f/eqR61c1lTAIOXBgkAMHBnlk7SP851e/i2lpTGWHKRbLzJ7XyeIVpzI0PMSKZYu54xcPks1msSIxBE2jUiyRSqaway4T/fv59re/yRe/9HlAZGhgP3r8eWKYM199PtHGNII/RWdnN3t3jfLk1i288U2XYegG1VqVDY+u57Tls7jtVz9mYsrFF2wCX8YuO4wMDvDeq67l+9/+d372qzu5+mPvZGBwBIA5wkJqHUVCtUpUiONKPpX8NKl0lNOXruI/Hvgyru+yuW8Lrz3ptZRLARFdYmiq/qxnNs3C1HTKXsCdt99NLGZx8qtOJNOgMqu5Pmdc3+W+jb/7f9l77zg7q2r///3008uc6S0zmWQy6QmkEFroNYCIiIBSLFjgith/Nq5XvXrtgkgTwQYKKr2EXpKQ3stkkslMMr2cXp/+++MkQ4jAjVfv9+q9rtdrv/KaPHuvvZ999tln7b0+67O48vT3U9AtPIEYRT07QYVQKpbIp+PIiowum+V8xF4PhmFg6CVEUSQcrcG1HXx+FRyBTDpNKBhAxGZsLIVPVVEEB0mUUZUIjzz6BNd86GokRaSjow1VVmioimEaDn39Y7RMGsWygwRCFdjIWMYIoqviCiXaJs/khn+Zil0qUswX8AarGBoa5vHHn8br9TNzzjRy2Qwd0zoQEFi/egOG4bBu61oWzprMzPkL8Xq9KIKNxxNk+/YuJk9pwx+IUsil8GoaN1z/EQr5HKYrIzoGpqXj9frQTQePr4LESB+y7COVMKhvqKKQzyDJKpZpYXlssArMXzyX5554nvlz2wiEovhDMX5z/x+45JKLkchhW3ks10/wIMdCMTlEJBIkV9KJRSdhZAYZHhlB9WjU1NVR1G1UVcEyXEzdQbRcTD2DrHkwiha2aaBpXpSKBnSjQDToAbtE2GdSSttkciP4AyGsko2eNdBCjaCGMTL7kAMRtJiKYIHrxLnorABWKU1J9CBKDqqmEB/TUVQvLgKyoiBLJulMAUMv/wbZRglcB9cWsF1wTRMJkd7eIZqb6nhmZS+i7nLeafWUbKtsMbgukuwQjVRRKBmY5gF6B+Ks2L6cSy+8lFhFkLaW6fz2V3exac2rnDQvjChruIi4ovtn2SeOlL+EQ0QQhLe00Q/X9VZt3u7ZO8nb2d1vZ4e/7TPsN3OnuG9/kP8z8idHeFPKyaOWd+jjUD9/r/lzj0b+eRVymByJw38nORw6+VYswkfqPbLOf9bXoeeHl/9JOXz8fw/j+b8gHo/nTfM8AYUWy6RDzZMmsXjpMnxn3IRYSiFmhrAnLSZSU40vFCgz5QJOMY5TjL8JWnNog/2z3LwHRXAFhMNYBFzXIRIN09O9m7GhPsZGBunZ30db+yxGxxPouXS5L8vCq6lUV1dRU1eGPcpKGSEnCDbbNm+lv6eX8bEke3btQJPAyOcY3N9LQ30d8fg44+NxTNNCcl18iqf84yq56HoO29YxjTySqhCLVTG1dTK6YTIyPELQF0BVNbp2b6O7axeNtQ309fQzPjTK3l07CfkU7FIO0XbJ5Yr4fAFsWSFX0rGdMiRbFN6IVXEsB9Eu5yi0bAkEBduFaFUNWjDIgiVLaOuYTsGyER2B4cFhenp6y2l1TBNJknAcB1mSEADPwZQaRcuisbmJUjZLrphl997dFPUiuUKBhYvnkkjE2bunm3Q6Sy5boKo6Ri6XRlM9zJozF9WjoSgyxxwzh1QqzbT26Zxz7jkkkglAoGTotE+fhXPwx0uSZCRJQlVE2toa8coqjiPij9bjq2gimTXBzNNRX4U/InDustPp7tmKZWf50V3fZWhoAIDHn3mcvb17+eAV19C3s59f3/VrNry6jtNn1QDw+qa1DMXH+PVvH8AblFiz2iUUHiOVKgLwze/cQyKR5t47vsq21Q/Qu+MpXn/2Xi5+96X84r5fsb93P7fc9ScO9I9w0vHH8IvbvsKKZ37Bb+74Kr+541N886s34Pd7+cVvnuCu+5aTShW546e/4BPXncfuzQ9MrN37f34ze7Y+yIEdT7F55V08+/CPCUgBYjVVlLk4y/Llb/yc05cu5Ms3voubP3c5nRv+xK/u/jp+n4dUJs/HPvV1urq60Lw+JFlleGgQWXA5du5Ubv/RF3ni999n88pfs3nV/fzhl//KN7/2MSqiIbbt6OaTn/4W99//e4oFg4H+YVpa2sqppw6KaZiksiOMxYdQ1CTFYiPz587l29/8JhvXriE+MsjGNSsZPdDL7x/8I/PmzWNoeIhrP3QVmbiJjBdZ0Jgzcx6CpiCK5ff69g9/Qj5f5P57f82Ojevo6+ri4d/9nopoBcPDw/zop49w1Ue+g2VZPHDvPTz7p+U0RJq59Xs/wSPJ7EuMcestt7Ji5cvs3LWD2bNn4/MGkaTyHbdl2eSyBbLZLIoqUF/XQCo+yNxj53Lue95TfjlXoHVSB5UVDWg+nd4DPXz3Bz8A4OMf/Tg/+Pcf87Pv3cm7z343XVu28qc//JGr3v8B5s3vQJINqqqqmDN7AaIUxjTLh0/HEfjJj28jkRwmGPIiugJhf5jdO7dRyKXo6enm7p/fgWUZxLNDFPQC69dvBiDmq0STNAb7BnH1Vq7/xCeJ1bjcem55AcYAACAASURBVOttRGMqU9umALC3ew9f+Oxt/Pa3y9E8UUKhEHfffTf3338/DQ0NvPDiw2gBidPPPJ79u/dhGeXDvKnoaI0giC6GaeLYEpoviCPKb/I2dQ7swnVdfH4N0yxxiIFPlMox3aFgiPddcRFnnr2UUMiPZVogKBPte1Ij2GiIsoZh6yg4ExeLd750N4tuXkrzDe1Mu6Gdc791Nj969AcUSiUsQ0BWAli2hWMZlIpFECy8PhXbsSjkMlRXxxBkF3/Ii6T4sWydc88+CY/iRZU1PF4/vkCQxilNbNiyhTPPOQ+EMJs278LIpZHNLKU8yKIXWZY5cGAfpVIRw3JZv249W7ZsRNNkLrnkYhRFYP++EQb74wiuRMkUOGbhEvbu3cuNH/8Yi44/i8qKBtat3oJteUil0kSjFWiqRtZwefTJF8gkc/hVlYBXYl/XTl568QVEJYIoBygVdJKjI4SiNZRMl+r6BlK5DLKsIcsKPp+G45aoq6kmmUgxtW0qVfVteP0xXMPmkmXLuO/Oe9m9bTeYDkG/jKGnsV3wROqRNR9+f5Af/+gWTC3MpBnzUAIVGLaIKIkUCnkE0SUSCZMv6fg9YVJjSVw8yDiIxgii0YdW3EdpdAtmchf5wW1Y8Z34St3og+sxiz245n6M5FZGup6lmB/DLMXRM+MIkoQlaLiBBsxgI95wM76KqUi+yQSqa/FEq3AkD4bloAsqoVg1qseL6zjgieBKCpIsICkqkizhYjO5rRFJgKXHN3DGaVOxBRk5UGRc3InlG8I2DQqFUZKJQUQBPvfxC1i6aBqS6nDGGWcQiUS49tpr+e53v4vP50PX9Yl1+1b28X/Vhjwae/tvJX/JGP9pE/+/lX/O9GFypGH/lgb9YXj2t4t/dRznTXXeKi70aPD3R9Y5Gvz84f38NX0d/v+HYkqPRsdfI39rzP1fGuNwNPGvf0lsxdGQfL2TnkMkQkfWNXGwRXAkAVELIgUriSz7Ap76GVR2PY6j+sppX5yyXmPvU+h7n5qIWy3n73NwXOfNnt/Dx+GC67gIroCIiCxLhCIhsqk4+UIOn8+LYRikkmkqaidh6QXs4GQUt0goGCCXK3sDPB4PlbEqduzYgaJqLFywiObGJmrqm5jcNoViSaemrpbtO3eSy2cJhUJUVVazY0cnW7dtRtW81NTUsnrVRoo5BwkfsYoGSoU8Q/1D5HMFHNdFFiU2rF2PLCvUVNcTCVcyNhYnHIrStXsPkXCU11etwbJtxscSlLJ5MvFRBMcgFPTjDwTLc2Ua5R8hQcQ2dZKjA+zv6cZ2XVzbQcQhVyjg8QXIF3TC0RjxRIre7h5iFbFyTBVMkF+Ioohj22QzGXK5HHqxhKaoiIJANBphasdUjl20gJNPXUo0FqN96lQWLFjIkiXHUVUVobe3h9q6arKZHPlsgXA0gs/vw+/x4PGoxOMJZEXEsmxilZV4fV6CwRCPPfEskuwh3e5leXIzu3bsQFFUXAdEyUAUTUwrT8nIU9tUB5LCzm2vEM+k+MA1H6CldRL1DXWk0llmzewAwHEtrnz3leSSGfr7+lm4cDErXlvNjadWM6u+THr0xyf/RO+BPoZG+2ifdgLde7PEKkIAmJbDI7+7lQVzp/Hss8tRFRVVFXEsg0lNzfzbd27nQP8wHVMbufkLV7Po2OmEwgHmzp3LtKnTCGgWH73qAgC+8/2f09+7n9NOPZaGugbMkmdi6TouIAjYjkN1XR3xxBjFbBLHtvFo2kS9ObPaue0Hn+NTn/ooHVOn4vf5Cfrg/e8tw4637dxPbW09pplDU1SqKquoqwhy351f5X3vOZsZ0yczHk9g2w6nn3Ya13/kCu6/9zsAPPb0a7zrXe9CVWU8HpUD+3uR5Dd+bie1VPGZz1xMc4uFS5RUup67b/sZH7/uOiRJIh5PUlVZz66duznj1GX84cE/UV1VReeePXTu7uRrX/kqY6NDnHH6yfT39L9pz/jNPb/Dr4YYGeznnrse5JEHn+XsU84D4KGHX+FA3ygrXlzFOWcv446f3c38ucewaPESrp+7BIDnX36BlpYmZs+eiSBIiKJKJpMtf4aGyfe//0MCAR+yLNDZuRfbdCmULGRFPTj/NkVzgMHhbkbHBrn3vl/iOA6TWyfz+c98kYsuWsaixQv4lxtuIhiuYunSU/nRd75L+5QOYrFqHFtEFCQsE9Kp9MS7nXjSYtraWolGauna1Y1j21TGong9MrZjIEkC0Yowpu3wla98g40bNwFQF2rg2WeeIxquYHh4kEnNbaiqB8PMY5a89O0fBmDFyrW8+7JlLD39WF5a+Tgej4e2tjby+TzLly8H12ByRwdLTz2R45ecRIvWBsCezG6KxSJerwdFllAUEUEAAZfOgR0T4x9KlGOkBUEgm8vSFGsGoLN/F7ZlYxgGhUIeWRZxsbEdk87BN2Kyh1IjlEomsijh93gRJJlDh9/O/l0kcwm8mo9UPsmaPWv5t4f+lUVfnM+aPasYG0/g2A7bt3WyYsUa4vE4pVIRRfZQKpQQECnpOpbj4Lo2llVC82hAidHRA2geKOgpSrrJggWLcWwTj9dPdU0NRT3PypWr2LZlK8uffoqH//gH2qe04fP60U2bae3TKBZ1goEQsqxw1lnnoKgW09onYxpZBMdEUUWu+dDVZLNpFL/K8Mh+5h8znZKVIxQKEwgGyWRyKIpIW9sU8kWDTD6L6vHTMqmZs845B0VWyGWzBIMBRFnEsQ1kSeTO2+/AsWCgf4xUsoimaQhumYTK5/Vi2UVMO08unwJBZ3Ssl4suPIXWydWMjPURTyTRC0kEu0AmlUAvZFFFi49/4oPITp6h/buR7QJWMY0gQDabwbatg2gXC03z0NDQhCQUwEigZwYxC3FMW8dyLSwcklmLgu5gOHY594BeBNtFk2Tig0NsXbcLyS4iuSlK8S7c3AiKlUcTShh6gmIhTr6YQPaEkD0x1EAzoZoONH8U2RdBUMPIvkpUTwRX8CJ5wliOhOUcIsIzcFwbv+IAWSRBwzZkxkYTCIKM5MiUcjlUWSIbzzM67DI4kOdrX/k2q1evZnx8nP379/Poo49O/PYdslneyUMJf1kMqCAIb0ke+d8R6/qXtPtbc9YcbncfrRyN/fxf5Xf5e5N/Hlz/G+WQV/at5O+NRfjwGyN10ftQF71v4plt2/9Tw/qr5P/CLZjrlm/1TddBmP1utNO+iN27Hqd3HZ6qGW/dhjKBjCiIuM7brEG3DD8r5At07+0GyonTmxrrqaytJ5svMHvmTHr3dpHJZJGwSeYsxmgmnUoQjoTJ5vN07tpDb88Bpk6dzs4dnRwYGiCvlwhWxCjoJuPJNEMj45x3wUU4jkU+nyOZSnPM/AXMnjcX03FwJQGvV0JVXRynyJYta9m/d1/5MFcsYlo2rgMeRSORSLFpy27WbdpG3+AQnoCPE04+iYHhOK2TZ2CjkMrk0SSR/V3bGerZiV7I4Ljl72Q57teipJewrSKWkaO+rhJJkUjFx9i+aT2yBImxBIqiMjw4zLYt20nGE+ze1clpp53O8PDwRB5ZURTRSzqiIOLz+hAFgeH+IRzbwcRmPDmGjUVBL+ELBnEc6O7uIZEcw7TzTGppolDIU18/ient01E9XvZ072Hf3i4SiTTpdIZoNACiwNT29om0SqeediZDw2Psk5LMveQUWlpayKbzdO7sRi/IYHnQ8BNUgphWEEmUqaycjd9bQefuvYTCQTSPwuypx5JLlSG4NVUxvvWv/873vve9MnlWyeSxxx5DAK45eRIAe7r34AjQs78XQRJ55ZURXMoXMGecuoA5M9vp3NXFaaecwqpVqygUC2zbsJ7xkUFeXrkVgA9d/R6aG1vKFyaqzssvvcra1ds5eekJHDujkUDARyqdZduW7dTEmslnXNLZoYml69gio2MJRFXEcLx4fSHCUQ3Jddm9642DxFWXnUfXnl5ExUs4GGRP1x5CwQg3fOJKAIolnUQqR9Aj8fKLL7DD28x46yI6pk0lm0uTSifp2deL3+env3+Q9es3sGjhdKqqopRKBpu37kCUXS55z0VMnlKNZSYn+t6zZ5jR0dk8uzzA0HArrls2yERRpLW1lXQqTy5jc8/Pf8PG19bw8AN/4ISDLLgrX1/Bv978JVTF4cEHf8X29dtw3bIX4oJl57P/QB8eLYhjCJxw8iyuvGoZX/7SJyf6XnbuMURidZhmmnedcyb7u/bSXN/CHG8ZRt2zvxfHtbjqqqsYHBzEsZnYJ4aHR/jBD35EMplkPD7M8meeY+fOXvbu2otw0DsqiRI4fj574w9obZkKTtlbm8/nGB0dx+dXufbaa+nvH6Jl8mQsy6KYy7Jz2wAfuOIT3H33Pfz0tltBcPjshz9JcmCQF576Iyefshifz8eycy8HR0CRVDRVwaPJLFu2DMe10DSFiqpGvvLVb9LUXIbZehUv551zPl/8/BeJVpfo3b+P+IiLKDmMJ/exZMlCACqrKlhw7BJUNcbe3eOEQiEWLVrEiy++yNKlS8mlc5QsGBmOc8ct93BOxbsA2D/Wy5ObnsQwTHL5DIaZR7QtRkcGue3Jn0zMe7qQxufzkU7liFVUc9qs8gVJ71gvD7x2P5qm4fWEsK3yBpwrpvnpU7dMtM/rWRyriFdVKGXzSJqP8+afwy8+dhd7frqXvjuH6b97mM4fbONb7/sGAU+AscwoV93+fpLGOIZpEAnFqIzVEY1Ukc0WWL9uC/W1ZcK8QDBCKpXDMnJ4vB4ExUcx5zIymEYQ/ChKGKPkkIynUCUYjw8SinhJ5XIsOv40Tl56HIuPW8BxixfT2dlJNpvFRSSbySKJGnfd9Quee+4lnl3+Ih3tM3hu+as8+8xKhg908dILT2G6BopHw8FLNFJJwBfG4wlhGCZr16zj1VdfwzYyzJo5jWw+jy8SolBysV0BU3BxrQJBv8qGTesJRsKUinEso8DZZ5zJpnWbsQwJowS2BZbp8tLzLyNLItOmNSG6Eh4ljOP6qK5rJZcvoOsQCjdy992/pJTPkovvxyqOsWfberaseRVJ1nFcC38giDccI1jVRDabprIqhigKqJqCIpXIF3MYjgvWGHp2ENcwGBlKIFoGXlFEchwCvgo8WgBVVgl4A9hGDssxQFVomTaFBYurwB1Hz6dxBBNXsMjn0xilDGKxiFDKQSmNmNyKE9+Ond5HKdVNSTfQDRFLCOAoMYp5C0fwIqgRVE8IBBVZ9uA6IKkygu3F4wkiCClUUaNlchDXNZClALYF4WCUXMZmMJdHl0r86dGfMXXqVAzDwOPxMDY2Rm9vb5mP479R/l96Xv9R5P/SnPzvtur/Sjnaw+XhHs5DMaVHelht235LD9w7efCOxmP6Tp7hwxmOj+Y9DtURQzWIoZo36Tr837cXEdcVykXgTeXN4ryp/Fn6VUGivDTFt9AjvkN5s17XtXFd++DfRw5VeFM58jM83Et+uByNV/btnx0+1iP0HTEHh7/zkc/eNHcUkLARkEByEGqbUM/5ItKMs8mu+CkEag//dMB1wHHo3LXz4K3wocDbQxNcLrbg4Agujm1TFatibHgUx7KJNTRT1A3ap7Tz8osv0TplMlq4BtEuMZJXqQvDgYEhBFFGExVUzUcymWVseJi21kYqAwE2rF+LaRQx9Dzt7a0EQz5yuRQeTWJoYBC/V8Oy8rzw7IuMD48Ri4SZPWsWI+PjhKJRGhubidVE6Zg9m4raBrIjfQiqROvUVgzDoa66iraWNo6Zfyw9Pd3Ylk11VZgdW7cQHx4nm8qwcdtO2mYuQPb4MU1wLJvO7TtIjI6RTibJJDPImp9oTSuGLeNYJrbjUNQF9LyJokHYFyGXHOTE4xejSBLhigg7du2grrIeyXVJxYfJJtMYpSKvr16PLHnYsnEr0YowfYMHsEo2fp8f23RRRY1Vr76GbtrMnDGbcCQEYgBFEqisqsJ0bEKVIVynRGtLC80tHWxcv4lSSaciEuOpx5/Esa0yw6crsH3nVmoqY+zcvoOVq1ZjOxKJdJLJ01qQpCLFYg5bgEQ+ie3qOK5D2kpSW1tPU2MD+3t7yaVzvO8970HSyt7U+bOP5dVXX+U3v/ktplXAEk2+9OWvYVs285pDE8nMP/TBa9i6ZjN33vJDTl16+cQamzFjIQ/96SEcy2Vvdw+zZs0mGq1g1pyZVFQ1kcmWmYG/86N7OeHsazjhnOtYeta/8Nmv38HNP/wtp5z3UW76t/soFEoAlByVVWtXMj7eRyz6xn7lDWgE1RCFTIEVLzxLOBjAFSSyeZ0DB+MSAU47+RjGR4dIjCeZ0j4Zb8DDomPaqap4wyubyRbo688wqXUK4/ERuvd1ks4afO0bt/PpL93OZ752J5NnL2P2kvdx5sU3UdFwKmMHY22HEw6a1oCsFNG0UUbGchN6q6qPo7cnwUBvH7gmXq+XQj7P008+w1VXXcvFl17M5BlN/PKhX3Hmu0/mczd/nocfexiARHIEQXGpqaumqT7KBVcum7igmzttFicefxzTZjYTCUJjfQO1tbXU1r2xD5x68tWMj/fikyPo9hAvv/Y8KDpz2tom6nRu20o8XsR2fXRu34LHW/Zor1+/ERwfAhZOqYTHG6B1+kxC3iiI5QsKx3WRXJVP33QdwwfGWbNiFaqsMjI6ynnLzuK6D3+cT914PTNntrB1/QbcYgZRFnj88d8RCfu57NL3cdIJx/O1L3yFj1x/NR5VwZaqcGRwbIuf3/k9OubNxhH9fOazN7Nt2x4+cO0HcUSFPz76GHffcguBkICul6G8gtfhgd/9kosuupD40DA33vAhXl/zPJs2b0cUK7EPHsqTiTSqx2V8tJdf33sbI+kUvT19DPWNgRZgeGwUxXaoiEbp6xrjipnX0FJdZoq+6b5P8ZuV91O0DWwbVneu4KrbrmQwOYAslr8XrmNjmg6RcBCzZHDN6dfQUt0CwOd/81nuXH4HidwIRSPJ8+tf5IqfXMlAoh9FKsOFFVnDH4yiWwbegAfREfnSBV/losXvIRauQZQFXMGmKtbCh8+6kUe/8BiyJJMpZvn+o9/l9Vdep6EpzJQptYBFVXU17dOnMRofJ50YwSwVCYQipFJ5CtkiQ/392K4Bgsvo8AEcM82rL7+MJxCma18vCgq93cPU1kxG00REAcLhMA3NTbS2TcGjajz+yKOEohXMO2Y+H//YxzD0Eg1NdSSSSa794Ac469zTcMUQoXAdesFAxkF1dRzBZTSZRPOEkDSVE08+gZNPWkQxbzE0PIaiSNjFIrlkHFHyYRSKFE0Ly5Vpa52KVSwSCtehqjEmt0/mpFNPpHlqFZGYhmXqZDPjnHjmSSiyQtEs5yOW3BzZsS6G928sx5Zv28HWtU/zkcuOI+hz8LgF3FKcUEigvs5PcmgbhXgXopVAxCCdSuDzBpElL4IYQLdUdMeLN1KDJNiYBYNQMEDJ8bBpVxZbCmJZOqIgISkmkmLhCl4MQcRBQRL8JMcz4Aq4hhdJrsLrjyIh4hgmEgUEExxKuJgMj2ZJFUQcUcUwi7iWg+LkEcxRRGMYtziAX9Px+z0MD+XIZEtIHgVZCyBKAorqwxKKmEYByykTFqq5Kch6DbZoI2seCkYcSfTx8B9eoq6qkv7hAv37BxBEg329Q0yf2UQsHAFfCMVVcKWjQwr+pQeut3JKvJ2T4q+z2Y5SXPHN5fBHR5Q/a/q2dvJb2P6CM1GOBpF5pJ4jQ8X+UeWfB9eDcgjiC/zZweXtAr6PPBwekkM3H4cvkEOB0G9FnX20pEtvBUH9zw61b6fraObj8HK0B/gj2/9X5VD7I2Mw36kc7bv8Z5vX3wJK8U7zdbjudzokH40c/vkcvhbl9pNRz/481sYHESUFy7BY/sQzrH7tNZKjI7i6TWJknKED/Qz09OHiTjDxikJ5zlVVZX/vfgqFArKmIkgSoizhmDqJ+CjHn7CYhqZ6IvW1KKLDpNY29mxawcyZM3FdUGSFkl5EkkVCoQDBUJCcYbBkyQnYpTyKJpEvZNjf042Miyj6aWiowixleXH588QqYhRLOfbv7yOdGMcuFdnX3YOgePB6fCTG92ObJaqqaunrGySbyVLfUE99fQ11dTV0dXUhChKvvPwKw4NjNDc3UxELMGVKK+1TpzM0OM6q1zazZuV6RgcGKBUN1q5Zh6oo9A/0IgoqG9ZvQRI1Muk8riMxffp0Xnl5BVs27mTH7m2Mp0p4NQVJ0dixYyeN9Q3kcwU2rt/C+rVbWLdmPc8+/SJz5xzDaytWMmfeHGRRpiZWiWGU8Che1r6+jr7eA7i2RalY5KUXnycRT9LXO0TA5yUSVhHFEgODfYg4YJk89fQTNDU1MLWjnhdffIl8vsDY6BiWaaOXDKIVMXK6RSQpExw22bVrF+Pj44SCIWw0iiWbVCKFR1IRRRdBlKhQbVLZ/QhSiZrqGgKBEMeffBL9A+UY1/HxFA8//Cjvv/IavvrVrxEN+pGkEscumI9t6VREKwBIpMeYNm06V1zxfny+IOlUOd5pervOFZe/h5NPu55orIrhkUFSiVHaOqZTst5Y0/F4mrHxJMlUltHxJPFEmvF4iky2wOhYYmKfXrNmPWefcxH7egZ59PFHJtrv3LmVjRu3Y1hlI9e0QRA1AoEAJy9dOlGvrqmGCy88B49so6kSk1ubUb0hvP7IRJ01a9aQTidIZ8Y57bRTmDp1JiefdS333b+cl19bTyKZxXUhGglQVRmkpjqMeBB+b5T66ex8inVru7jxM88R9Bw3oXdv53bq61p57JEX2Lq5h8SYyennLuOyq9/PI088Rl9/P5ZpEQmH0VSVylgM7SDMOV8skckXGBgdpW3a9Im8jeW5hyUnHkc4qlJyqvH5wzRPngryG4dxjy9IOBzFdEXOvOgy8EdZuWo1HuUNuHV1UxPnn3cGVRVBpkyfziF03imnnIxl6cQqamhubuaKKy9jZ+8gk6e1kkuPH9qUcFydJccvpLa2noceup9bf/ATYhUVxFNxnnj+Sa74yFUsPHUJn/zCTfzpyaexUJi3ZB7fv+2HeKMh7n3gfoq6QCZvMDg6TCY5Wr5USpt889vf4/VVKygWRrnt1h8yd84cHn3sYWRZ5tJLLydY1cAPb7mVUqEcW12QC2zZvIMHHvgd1Q2TyBZMvvcfP6ShppFIMMCG9esBqG+oY8mikygWTH7/8P3kk0kyhQx33ncnAVVj6rQZCLKEN+Dlmg9egk/x8ttPPUjME6Og5/nMLz/NlOtbqftglPO/dxFrutdxetvZtNVOBaAiGMVxDXKFEh6vB6+s8cCnHqC5chJ5Pc/nfv1p2q5vpeljrVz+s/fyetfrfOSM62irLV8oBDwBDKOc29mxRSTJQlRERMlFL6ZQRBnbkkjnSvz+gd8xvXYG71p4MQBPrn+UufOmY9oumhZCNwUQFUbiCTZv2oqAwkD/OLffdi8Bn4ZtZWisqyMYCNHW1gII6CWXM889D79HoaG2kmB1LdNnzSQZ76eUj5MtZHGxMQ2dPzz4IGOjCUzDwOtVkGSH0bEDnHX2yUyfOZWWSbUYdgFXlqmqrmTO7JlIggCyl5KexaN58WgBbv3pT8ln0xSKBUKVdax+fS2TJjXR3j4ZURCorqsCGTz+MD5vmEIxiaQZiGqQRLzEqlWrSaUSWJZJX88gquqlUDJQFQ2P5sd1bBBTDO7dQWZ0AEWEaDhEbW0jIb+HaS21WGYO1zHQNA+2K6EJfjLJIA8/sQOPCLKdITO8A9UYYmigH1eUERQF27HxaBIjw32IgoltZ7BtB1Usce6ZkzCNAqLiLdd3HVwHevri7B8skCkIrN3Uz4p1o/z+kc30DWUZT1r0HegDiTJMXFRwBQGrpONgkMhkiacyKB4PmqaAo4OtI9gG2CVsvUC2kETPxHl15Ub2d48gClDUc2ieMIZuIYoyiqzhuDIbdmfJpGRcW+aFlXvRnRDFgoUsubS2egl6a4hVVtLeMYs777iHKS2TiAX9WKKF4Rocckocaau8lU35X0XGHa7nEGnTkbbUkfbvX2I7HtnXX2OjHa0Nerg9+E4hev+Vsf9vgQr/k1X4MDnaA9rR6PlbyN8KSnw04zmcFc3Y+TwA6ow3Ukz8Ty30Q3DrvydY9d+zHJony7IQg7U8PRTjVHktRbWajo6Z5PNxZFkkPp4gVl2F45TjOi3LQpZlJLFMKIRQPng2NDRg6OW4TwcXBAFfwIfr2sRqKrElgeRgH2EBwlMWolgJEAR27dxJa0sLAtA2ubUcbySL1FSWCTFefeUVzr3oAlzHJBoJUCyk6OrsJhiIEomFiFYFaGxqYPfunUiSwpLjT8C0HDyaiis4+IM+bBtymSyi4bDg2MWsX7OCaKwSRRXJZDL09PTQ1tbKvHnzyWbzhEIhOnd10dbWRijso6//ALV1dbRMasV1LRob68okSB4PsYoaZEWitraGYqmAKIrIisu+ni4Ms8gJ805CC7o0T5pKZ+cmWts6aGlpQBRdRkfHSKWShEIhWlqaOf64Sp5e/iwNzc3kiyX6uveRyyVBkmnvmMWsOXMRcAhX+PH7NRobqvH7PGiqj1QyRa6QprKqDknW2LFlB7Kice65y7DMDJEKL3Nnx+g70F9OPyA6qIpIZSRELpfljMAMspkMOzWBbD5ThkO7Fpoq47oyoqphWyaoUVL9PTTWTcPQSyCA6zosf+4ZIpEIo/Ey22XfgX6ef/5F9u7Zx4HuAXbv6kK0DAbS5VhegEw2xzlXn0oikWL1mlcIhUNk81lymVpkOUll5Yv0HRCpqT6OA/2vkhgfLee4PCjd25+kujqGXtQZHR4nEPJgOQZPPvkCNZUV7OvuKbOkhsO8tuJFwuEgXV17JtrX1TQze14H9933Sy655FJWrVrDiSecyHh8mO59+ybq5QsFJEHisUefpq65hWntU6iIhFG8h8XBzp5NRaySWnRM/gAAIABJREFUpuZaCvtW8rUfPsXOzn3EKgJ8++uXc/7Zc5GlMKo8ie9+9x5OOfVKrr3hagaHh8hlm7n9pxu58ZMf47M3vhvk4IReR5S57qMf4ls3fx3Dhbvuu4M9PXuQJInP33QTl112OS2Nk9jbuZeQX0TRNP6/b36L3z30II7rUhGrQpZVBBFCoRCOXT7MJ1JD3PIfP2Lb69tI6RmaJtVhOyL2YdunKrmM9/cgCRJ7BwfYuukx9OIBOuw3Yscef/Ip/v3mf6NkGKi+IBwktaqIhdGtcXIFF93I0tnZRVfXAU5ZNBlfoOyZFwQBn18hMTqKaWr4AzKLF87jxg9/kpyps3vPLjZt2ciBvgMsf245y59bzk/ab+PLn/0MRiFLOFjBJRdejCpJqJJDcizOM88uZ+WKdUybNpebPvt5qmvCqKrD8ieeYs7sYwlUVeDx+BgZHuf8U5ZRG46ydes6AAaHBrnknHdx4UXnEgh7aJ8+mfde9m4+c9Mn+cmPf1ZG3QDNTQ38+Jff4TOf/hJ3/+ouFEymz+4gly9hlYoIqh9JEtBtndapdTglgfaaDl66+VUe3vw4L2x9mt6xHmRRZlrjDE5qWMoFx13Eoq/PBaA+XI+q+BBFMC0LvVRgRmM7L9+8glse+zHrDqyhP9GPKAp01M/g6tM+wNLpZ9B2fTkWdmrdNLweP4IgYFkGpVIef8CPZRtoioiNg2XbBHwS77nkQvRinmMnH8MfVj9ETs/hyi4b123h2IXHYpk6fl+Y1uZaIl6NDRvWseSkk/jYxz+MWcoRiTSQzuUI+oMUCgWymSy2T0RRDYqFDNGKCmwcSqU8tuFQ0iUCwTCZTJrB7h7OOG0pscpqOqZPZ3h4nMlTW2ie1EShUECVFRxRRnR1XNvBUxnGKOWRZBnN78Mo5LCtsn/qqqsuR1ZFAl4/juOw7MJzyGUzyIqKiEohn8Eb9FEq6Xg0L7KkoWohXn11HTu2bOYj112N49p4PT5EXPKpMWJBD2PDGWwxzkgii98bprGxhXzBIFvIEY5Ukh3tZWhwP5oQIBIL41gmWTL4gxVY6giyCxeeMY1S0UG282iKTCY+wKSGNlynQD5n4VVlEpkkFZEqREpIcg3Z3BBeTcIxSvh9Hiy7TM7lCGC7Ems29SEoYY5b2IHokUiOHuC8Cy9AT+1nX3+axromLBNkSaVYLCArLqLqA9NmzrRabMvCNkoIooDlgnwQZSXKCrbtoIgipaLOxefOQkAB10RW/OQLKXDLDOkSIlmzAI6O16shIHDSglaCXpdcUaa2tgVfdA/nXbiU39xzDx/44Kd533vfiybKbFm3hrPOuxjHPXgJJljg/nlM6j/l6MS27QmSx3/KG/JPjyuHUrtIf3ZwfSe3+pGu98Nvew7J2+l7J3Kfd3p2uP63Y4M9Utc7jf1IvYeKPbgde3D7xLOj6euQ3rfr483yZoivK7y5HPnO7zxvh8FmBemI8tfdkP01IooiruC8qQjuG+XIvv7sM3kTNPiI8bniRBFd+SA028FGR5RdBNtAsy1eeexxqjuOw/HX4LeTlOrmU9/Uiit5WXDiEgQkfD4voVCYwb5BzJJJOpXGsIwyXNl1CMcixOoq8QcDCAdvRf2hENUNDbiyhIBAxBpHnnISqj+KT8wjigLhiI90epip06fi8QcwDRu9VGC4fw9r17zK+Re8C9uGVDJHJFpNuKKGtikNtExtwrRh+vT5qBrMmjGDjvYZDA4OEAgHMXGQFRHRoyH5/EQjMcJ1Dezp6qK5sZXBA91s37ye6uoqmic1UBH1ky1k6e7ey+aNm2lsaaRYKrCvu4e2qR3EausxTQvLtYlWxmhvn8L40BA1lZWIso2iBPF4Jfz+CKFggEgoyrnLzqdvtB/BVRjo3UMumWXnrt0UC3lKhkVdYyOz58wBXDS/FwOJxUuWEPAEKWZH6Ok5wIxpx6BJEAvCUH8PllPEFQP09Q/gDYV59vlXKBkpdEvHIwfJF4rEqqK0TZ9FJmchi0VkSSUaqeTlV5+nsb4Zyy5DzAQEdmzZjl3ScRwHXyCAaZVYctwxuHYJF4lkahzVKyIpMnqpCKKIR9UwpAD7BxIMDgik82H++MijFPN5APoOdHP6Gadw+umn49GC7N65h65dnfQFL+Dlkfkk0ykAmpomEa6qon5qK4tOXvLGbboQIptZyE2fepRQSKC2fgOl4hBdnUk2rn8Dwrt7514cV2b7tu1EK4O42FREI1x6yYUsWHg8F154MY0N9WiKQMe0dkLBAFdcfulE+12dvTzz3FMsmH8s69duYGhwEEl2aJncSkfHtDe+R5bN6MgYssfDosVLaGlt5U+PPAqH7UEFo4RhDKF5hvHXVvDo02Xv3Ne/9HUuOOdL/O7eOMmxuTzx9D4+cdM3ufnmf2N0vOx5fPD3v+PaD19NbWMDixcv5pJ3XTih96UXnuX2O+7i7l/8kqceeZxVq18G4PLL3stHb/gkkydPAVmidfoUoi3N+GqqGBoZBWBwYIhMrgiWSXa8H7tYxHbKlwZDB4aZMqOdjoVzWXrm2eTzCcaHejAzb5AclfROKkJhFE+E6a1z+MDl78K1PQyEAhN1rnn/RyjqFolEAkk30Etlr7mumzzz1EvIjgdVjbB46amcfVwrju4lkym3tS2TbCaFooQplRKYpklJt7n8qiu5/iPXc/5ZF7PqlfVs27iLL3z2s3g8Gru7Orn/oftRfDKWInLckvkce/xCtGCUqoZJzJh1Inf/8g62bNrGM0++QAkb3ZKYs2AGrR0hZMmDZQhEwtV88xtfZGx0kA9c9X4AEskES05cBLKfX9/7B7xel3nHzOP+h37NQw8/QioTB6C9o51odQV5w+a1FWuxBJG66iCtDRH8viCF5AC7tmxjqDdOZ9c2nIAJRaiubuS6067lsa88zYbv7+Du997HvZ+4lyvPuZzB4n6KRtnzO695AaZlkE0NI7gukuzFslVs3eKzF3+GJ7/8GBv+YxMbv7eZn3/0Tk5oW8KGPaso6GUI/cLJ87GsEqapI0kSlg2uqCGpQUQ5gIQEro6syHh9HiqqaxHFN1iJ9VyceQvmIgjg8/sZGx0hNd5HdU0l0+fMxnFsXnnhOSzTZmx8HKNYLMc3Sw41da0UiyXyhRKBcIhdu7pIJ9IIKIyMZlm/ditrXlvL2tUbEUWZqsooo/Ex5s+dwdDQMI5j4CCiqH4syyGfHkFCRpK94KgoqoakCFhFB8VbzcuvrCYSClER8qGqAVxH5vWVqxkdTaBpfkRAEEoEwpW4goyDiIWEpvoRbJHj5s/guo9fhSg6eOQiViFORcyLK+oM93eBNUwhO46Mh9df30rfgS6KRglJk8kWxtm2axd+rwef5sUqmviDXnS9kqKhYxFiNJ4nZ0UxtXJoVL6QYyQn8OyzKykNdqEEBDz+BmJVdeT0ArbkJ1soYRoOgivj8YURkHEtC9fWsQ2dru4CJ554IssuPBdLjlLf2kLrlDbq6ybRO2yxqzvN1u4CKzcP8PLaYdZt6kdwJPIlg+df6cMRRDRJwXV1LNtFlsvs246rYNppRFtCQsbnkcEqIAsFHNPAsQqIokwoHMBxJIq6jl8JcczMKB6lzJmgeiwSoymsosnOzk3s3NpDY91kLr36Oh7+/X2s27gOV3ZomRKisrEOFx8IOq77xvp7KzkaZ9HR1jnSZvtLEYOHyzuhIt/Sq3uErXc4bFg4ovzZ2A8PETsSlSm6OK71BkT4beDIf67UeXM5Qv7RuV/+sUf/v1j+OxfWfxdp0T/6l+EfUZyDe6foCKiCCiWXu269i/Wvb+C0k05nxowZiP4YruyjMbOadCbDzu07SY0l8AcCeL1e8rkcFZGKMqkKTMRkHRJJlN60mR4upeQobnYEZp5DUohhZUfY19PLpJYpVNc14doO+XwBTyBIXnewbYP5x8yjoBcZ2LcfvVBC03wkkmmymRL5nE5lRQzbtFC1IJInQF1TA15NJZVIEA740VQZnzeMqmps2boR0zBIxMfZu3cPIDD/2GPxaBqO44IgoYoKixYtYnBsGFlWyGXzRKIRnntuOZgl8tk0kgCWIxAIRcgVCmRyOUwTGpoayBdMXMEhX9SpqAiCnSedKB9O/JEIrTM6MA2dweFhFEUlmUwiSRKSKB/MiahQLBbYvmMHVVW1TJ89jfFMnNF4GkvQKOnQ1bmXrp07EFwLTZY587SzqAhV4vP5CUejBAMBZEmmUMhjOw6ZbJ7h4VEEJKZOacewdYpGHkUW2LljGyefcgqaR8Pr8+L1epg3bz4uAh6PH9MyqWuoQ5FlXMdGVTUQRLyjLzLUP0RjXT133P4cg4N+DvTuPcguCrptcMl7LuSOO2/hJ7f8kObWRlSvl9r6egIx7wSJWzqeJJXKIIkKfn9wwmiQ5TLb5MyZp+BYJ9G9dwG7do1z4kk+vvqVYwgFyx67O+59AMfNMW9+Bz6vn5rqGmzLoWt3F2vXrmTTlrVICpx3/nns2LGL2voIAwODHFqaU9ubaahroX1aGzNmdvDe915GIBBBFFwsszSxdrv39RAIBJg//xjCER+mVeC4JbPYvm33RJ3KihId06dw5x07OfBSL7pZxjSfsPRUDEEmXQRR1jj11KUk4yNccdWlWFaZpOh9l11JrKKWX/3yAe64/R5qa+sn9F5xxRVAgY/fcDmJ7F4Gh8t5axvrm6gIVuCYIulUCsfW8UpBcnGdDRs3ABCrrCLk83H++ecSilTi8XhQlbKBuOzCM6itq8LjCWCbMrGKKhobm9A070Tf4ZBE38AAP/rhz1i7dj2nnnImnbt66GmqmqijeVT27N3LT392O9lcgYaGOgB6D/Ty0svP8uwLL/LqK6sQHQU8Vaxau56Vr796sLWAzxsglUrhD1bj9UXZv6+P3j37+O3vfsuKV15jf3cX1RU+PvUv/8JHPvghAF5buRavFEawLUxLnzAO/X4/J598IqqoUllZycKFc6j21+FXa6itP5bRcT/jI3H293QTDXv43BduIJ4YJhx4I2fvwPAInZ17+Y9vfJsNr6+jvaWZgd4uahsDWAfX7dITT8G1HR55+CEqKyowDIOAP0ysopY1a9aQSdlc/4kbqawKUzd5Goj8/+ydd5zcZbX/398+vW/vNdn0XiCB0LuKdCOgF1FRAb1eLyKI2Lk2FBUbKApSBC7N0GuAkEL6pm2yye5me5nd6TPf+vtjkxBCSIJe7/3d38/zes3rtTP7POcpM/PMOc/nnM/BMm22btpKLmti26BpKtOmT8HSJWTBw2+e+R0Apd4yTpp6MoLh4HFFyGQyWFaWbG4Yl0tFliWyuRzmPjZal8uDzxfk/jcfBKC5rJlpdfORVQ+m44AkoLnciNgUknFyyRESyWFcrvFzb9PGLeh5g1VtqwDwu/3EoqUoEvT2dJPPFbj//ofBcWFZOpFIhL6+QWbNmItp2GTSOVavfpu8HiccjDI0OIqARSwSRnIkdmzZBo7Dn++7l+qaclqmNDBr3kxmzp5DXeNEOvcOEgiE8QR8TJ46AdERyKYymAUdEYfh0Szd3f1g2yDkMXQLRfaDoGPboyw5ZSF528BWFFRFRhRtjjtuNm6/D0cSEVU3BUMkPtSHYJuItolT6CeT7CSf78WRkjj6KJnEAJYJDzz0AK899xZOoUAuO4AguggEovT0DdEyaSqO5COdymOksxjJDNGQisejYqk2/qIQ/UPQ3SuwbUeaLVuT5HIRdu9J8dST20lnVESgNORn3vRKZElHKIxiWzlAwisK4DiEiyL4wz5ESaSQN9DNJJLsgKCQtaLs7EgSiVaiyX7q6+qor6tj8qTJ7Ghro7SsgjPPOoEF8xayu12noqoOW9DJ2+NO5aITJ2EVLBxZB0fF0nUEJ4cjWSiKim0p2EIOXdf3lUcTMU1zH6In49JcjI0lGRtNjIcLazK2o2DvO7sNx0J1OfhCQYqrJ1JVXc/y5W+AY9I3OMD0GTPo7e2lkM4SLa06wPxrC/9Ym3A/p8w/5f8v+ec7vk8Ozkk93E3Lsdy+HC439nAo4cEI5qF69suxJF0fDqk7XJuDdX4QJHF/2w9CCb7/EDna+j6o/KPj84+Wx3zwXhwJrd7/2rGMdzgiqMN95o4kulkYJ8WxJNo27+K5p55jwbzjCIdi5AwLRVEQZ1+HefytiLaO16UwODhENptj3dq144ic14uuG5iGNV6/FQGHd0LHD4SRH1j0+MOyLOTRdsZK5lGw3Pj8ZVBIUMik6OvrB2QE20JTwOVx4w/FSGfzRIuK8Pjc2EYBLIuh/gFCgRAjI2kUWSObToKVR9dN/KEwpm1iWg5l5ZXs7e5BkhQ2rN9MX98AkydPJhFPEI2EKS4pxjBh7doN7N61ExyBbdt3Mjw0gsvlYtasWWiam/honGAgQMukCaQTcVKZFMFQhFQySSqVIpdNEwn56WjvoGP3djau3Uw+O4bH4yaXyfD2mjWEgwF6e3uJFcUIhMJYlkE0FmN0dIz29l3k83lqa+sBiSceexzDyPGR8z+CxxeksrqKxuYGKiqrWb+pFV13aKhtpLQoSiAQIBQK0trayjPPPIsoiTz0yF9QZAXRkfB5PTQ1N+AIIqFQBMtyEJBo3dpKTW0NyVQSr9vNiy+9yODQEJa1L9Qeh77+QX7/hz+iulRESSSRGMU2DRwHcIUhN0JVRRW7du7ktJNPprqqhKryYoKhIAA9fT28/PqrTJ8+nWXLnmLi5GaOO34xXXv7eOqFJwBobmxk6aWX8K1vfhtJkslmc+Sy44hRoaCzfPkKXn75Vb71rVsJR0oZGSrh7t8N8sVrn+ScM8ZZc59+YQ2/+dUfeeXlN3jkL4+wZvWacad11Rrq6+qoriqjeeJERsYSJBNJvF43tu3g3kcg1Lq5lUUL5hMIBFi58k2WLfsrQ0NxNm3agHxQKYVc3sDj9dPY1ITjxAn4e5kypZSaau+BNkODpZx66h0sWHg+2dTYge/js889h6qqtLZtJxwrwnZEnv7rc/zwjh8e6JvOZLjzl79m6dKlPPXUU4zGxw7878knlnHd524kGq7l32/8DiMj44ROQ0MD6Nk0X7zuC2iyQjqRxipk+PHtPyCdHi9Jo6pu7vjJj/nON79F33CSrq6uA99O28mhqvI4UoYFiOze3YEsvxOK7dgmg0Nx3l6zkV//+k4WLFjAv3zyM6xaveJAG1swQIRrr7sOfyBMXe14uOrmLa188qpPMHP2NL7yla9w8fkXsadzBMWl8MrrrwIgyzJ9ff1EIhHWb97KWCrNunXrKGQynHveWciyzIvPL2NsZLzmcSAwnlNs2zb33HUP2USc/qFB2traiMfjeL1e8ukUI8PDXH7Zx5BFg709GxhNdPL9224hXOTj6zd9jXAoiKFn8Xo1JrY0svj441lQczwAN916M9u3byVWVMIf/3Qfq1avo7yijgcfeRiAqopKliw8ASwo5DNkUlkURaNtRxe9PSOMjSV46YUV/Pm+v7Bjx07criBDQ8MYusHw0CCSKI+XlMnnyWazjI72s3rP6zy+7hEAvnbhDRQKcVKpXhySuDSZQs4h4C0FwUHTVNwuN6IoYOgmtuXw8qZXeHCf4/pvH/53LMvGth1kWcE0TWxHwMhncbs0/P4AAX+QtrbdSJLIhIkTWNe+mqfWjud+nz79TETRx8hQmpJYDEVWWLr0CiLREvr7+xAEKCstI5PNsbujk7xuMGXadHKZLKZpUFZaQllpMclkir6+AXw+H2PxES677BIisTAlZcXk9Rz3P3g/9933Z3bt2sP2bVtxcIiEfciSythYAkEcJ9jSNA/r120gl8siSg6K6uLeP/0Z3ciCLSAJKi7VC45KIZdCcAoUcklUJ4uTT6CnhlGdAgGfm0wyjSILuGUNl6wgWAYyNuQtEiPDvPj065y4eAEnLC7HzHcQjXjRXAV0fZjGxhixYpnSiiIiUQ3HjJMe3Us+ZZBL5+nqybKtfYzXVuxgNDvIzPlTiBRXEYpVICgOJ512Hu17B3Bkid7unYhOinwhQ254N04hjmXouFxuLMtE1vyoLg+FfYi5LPuxbBcvvbyB7oExSquqKZhZsoUkbdt3jDPR+30IksjEyZNwuTRM3eDKz1zMwNAwvX0Wb67eSy4XoHXrFkzbJKvnkEQXsiyTLUiksgIIJprsRVQEJEkcz5MWx8vgqJqGaRrouo4sywQC46XLCvooqtvHeF08B1+gFJeqkNXhxu/8iVu+9T2qqqoQBZ1Pf/4aikqKWb92LVs2bSZcWovtWIiAg3hUO/doNs7R2vxXppEdnFt6NDlaVOT+54frdyhXzaFypPHfr98HsY3/t6fe/dNx/af8t8v/jWVq/rcWmhbF8XzW119+jYfve4TGphZuuPkbdA2PYLvc46Vd5ChiuJ50zUcQB1qJllUxlslQVFyMbdvIssz6devp6+lDFCRy6dz4Rc5hOPDe5XAnejH1AqGW83jq/kf43q0/wBR9xHwajmEw2N/Pjg1rySaGMQtZcCBSXItpiYiWheKRcLlFvC6FTW+/TWlJKWvWrGLD+pWsXPEyWDky6TTZdJrdnT14AxEamqcwGE8Ri0WorKzktVdfJxgIsHtXGwMDfZSUV3DiiScx2D9AJBymtKKahgkTeOHFF/CoCrvb9xAKhmnbuYOKinJ8Ph8Tp06jvbOXgd69lEaDJEcHSCUG0YCdW9ZiZ/P0791B956djAwniURq6O7ei9fjxsgV+M8HH2HypBaKy0rQNBez58ymvKIC0zQp5E2mTZmK2+3iteWvjedRjaXp2N1OU0M9DbVl1NVWsX7jRtw+D8l0jlA0Rl1jLWeeezoet4ePffzjxEdGWPbkXynoOYpLS9jZ3s6O7W107OmivX0PU6bOxHFk3KqXTCqH5di0TGrBsi0s2yabz1FcXMJJJ5+KIIlkchlcmgsR0DQ3G9r6MEd3c8ePf8hAXz+TJpUjMoqeSyCr42ieqmrc/J1b+N4PfsgVV1zF2vWrKa+s4p5fXsfe3i4APnn5Ujase5tzzjmPnW3t+LwB5H1o4K/u/DWNDc38x20/5NZbb+HWW7/BBReczyWXnctNN/2I5qrFhAIhTNPi2z+6n+dfXUNZWSUV5RU01DWwZMnJPP7kS9z8nbu4+MqvY9sKJ528hGeWLaepqYGK0nFyqDXr9vD2muXER5J86MPncullF6JpEo31E8jnjAOf5ZaWKWxu3YIDaGoeyy7iuPn/QTY9/UCbt1Zs5S9P3EtVdRm2rjOjbpyd92c//xlvvPoqt//qNoaTg/zrl7/Kk88+S99AP8o+duVnnv0rjz/5EKGwlyUnHc+1137pgN7WLVu59guXgJwmEHJz+ccvB+CPf/4zv/7tz/nZz76HqRtc+NGP86UbruHOu36F2zWOmg4ND3P8/AW0NE9gxap1ZLNprINyoHTdZGhoCFHOYxgWsWgxP/nx7Qf+n0lnWLN2JyeeeDw/+sk32bp9Lel0EnvgnXI9o8lRmlqaKK2oYNkzL3DZhZfj9XoxDIN/+9pNDMQ7eOSRP7F48Xzuufs3XPX5q/B6vPvOCIjFinn5lZf4zd2/5Ve/vYO31q9g6871GE6e7377O3z03DNJj/Xy+3vu4ed3/gKAmspqNq59lcTIAA2NzdTX13PWh8/BHfQyY8F09rR3cNONN2MWknijVURiFdz45a+gmha33XYrpcVF3PvHBxAFD5rqpbQ8xC1nfBtJlOgfHGDdllXc+sPv8KM7f8HCk89j0Rkf4bU3VwJwy803s2ndWn76k9sRMenYvYdsNsuJZ53C9EWzuPpL1zB//lxuvvkWrrzi02iWSawizO+33MlYaISeeCeOY2OZ8OqKN3ho7cNc8pOLsB2bD80+nw/PvRRfMIYgaDz28IvoBR1BTPOjx7/BI289RFvnDkBAUWTGcmP88vlfcvkdS7EdmwsXXsyH5pyHLBQo5JPIAmRTGb7+0E3ceP/XeK1tNbuHxvjLQ08QCZUwMDrAXS/+mgt+8lEMy8Dn8vG5Ey7D0EeRZQvLsunYs5vnnl+GRYGdOzsAgT/d+wdSqTjRWDFbtmzj8cefZNkTb7B+/SqyuUEG+od48OG/UFpewSlnnIEsCUiCyO72Lgq6gEdRuf7zn+WqTyzFpTpg5hEcSIzEsQWRSCw2HuEow2BfFwsWziEQDlDISTzz9DI+tvQCvN4gjmOCnSaf2ktmdAeOkyWbGUMWBbRAGa5wKe5wMUnTRPN68IfC5HWDvt4xtm7eSXo0QWakH91K4/frLFowAb+7B5cooFgFMHPYuRwyFlY+hWBkiQ+OokgKsqiCJWNaBsWlMh5XmN6+PA3NU5g2YyqDvQKV1XVsad1OdWUJRRVeps85jc5ujaFRFSQ3juJHzA+RGNmNKpukHBVBchDlKI7gRlEVBElAN7MoLiirjuEWA/hdYfz+KLatMbmlhS2trbhcLponTkQQHLZt6cRxTNI5gUUnnExxeS1DCZORVJ5IdBqvv7YXy5QoFGxyts6Tz+9k48YEpp3FsS1sSxm/yN6X021ZFoVCYd/ZriLJDoJo4mCgimHWruknldbJFUxef3MTtiVRMFzs6QVRdFNWVobkGIwkxqioqCCTyVBeUkreUfaBGOBI71yY/VP+Kf9V8k9ypn0lXATE98SCf5ASMh+03wfp8371YA8mVDoWvft1HJqLerRbmv3kSMe6H0fS9y4E7xCE8mCm5GPPSzh4Xw6N5T/yrdW7xUZ4F6R49Lnvz2s+VjmY7lzgEMIC591zP7Je+0AbRXazeeVafvyd/6C0poaB/t18/NJLmDZpAqaZZNuOVmqbZtG+eRcVpbVsso9ngfs19ojNbN+6Bb/PjSiKlJWUUVZaQkHPEI8P4nL7Ka2qHK/5Clg4CM44j0leNxFMA3pa6fbPpUpwUVFWTGnF6eR7d2HpCd7etIN58+ZiSl68/lIIEgZ4AAAgAElEQVT6envx+tNoigsZ6Gzfgz8WxqVqxIeGUVQVXzBM04RJGLkkqbERzEIO2wEtWMz84xaQLWRIxkdIDg4SigZY+fprZDMpBodGEGUN07ZYtWoFxy86gelz52KZFolEkr3dXSxafAL+gJ/NG9cylEwxd94Csrk8keISNm7cwOxZM+jp3MNbq1YzY87xdPf2UV1ZT0dPL5MmT6Svr4e6qkpkzcXmDZspKauhqChEKpXnwkvPZ3Q0w/IX32Da9Gl0d3VSXl6BKEPnnh00Nk1mdHSQmTOnsuqtVYiSTTKVZrC/h+MWL8K2xtmKY0VR+nr66O3pJhYrpb29gwmT6jHNAtlMBo/fxbpVmzjh5BBz5s6hdd02wrEwLo+EqsoIgokh6EyZM43ymgri8X6iiozjwK4dbUxoaaG8ohR0HcEEQZKQFJWx0SFKaiYhZNfyqRnDdFdNoLSyn8TYTiLFQSxjPAfwi5//MG+8tYUVKzcyYW4DsiRT0AsHPpWf/uQZXHx+NflcgVDIIp/vpGMHyNL4z8wnPrGQ0vKtWLZBLOblK1+ZTlVVP729ewmFZ7N5UyuvLHuBpVdfxtbtu/jV3X/lV3f/lWDAg+NwoFwOQEVZMZrkZnf7OubOK8Xrj/O5q8/gSzf+gRdeW82rK9YSCvhwubyUlxfz6ctP58MfmkYy1X5ARziSYsH8cgqFAXAgPhLir08/hS/4Tk3Y44/3URxqxTRNIhfN547GEs74l1/SP9DPRVdcgqYpqKpCKpVFliV++J2r+ckvHmVv9xCnnbqQf7n3YZ5+5kVat7zCv335nAN6f3L7UqIl3cSK/EiyzJc+dw3Pv/gsO9t3cfO3v8st3/0+Ab+HRDLD2u1r+NSVZ1HQTe594AWi4QALlswGUlzwET84OWA8BNrjGcCtbWJ0uBMncwaqN0JyOMW1XzqLb9/+XQASyRRLr/gEjmnhcgvcddddtO3Yw40t0/jj8r8CcMXFn2Dr1lbiQ4OccNxMRM3D979xI9f9+828vX4tp537IXw+H3pBRzd0Zs+cQyFrMTo2Ok4kYil882u38vATD3DvQw+wfMWbLF/xJnzz27g0F5qmkkylDpynDXV1/OYXdzB3ziwKRoF0YhifP4oij5+TzRNbmL3geB5/6SFCgRK+9c0b+dRl51BwHKomTOe+ex7i+n/9KplCEl80wOQZ03hq2QucXnkB3zrlNr7+0g0se3oZy55eRjAQeNfY11z1KT5yxnkg2PzbV2/kpJPPoLdzK9vWuAiHgsTHRqmrb2BwoIe5s6dx0cUfYt3GDoTaLlY+8jbPdN4CgKa4UGWVVC554H0+uf40plsz8HrcmKZNMFzEmeedjmEY+IMlrOnYzLPrfwCAS3GhSAqpfOpA/6WLl/IfV/4csHD5/BimiCCIqJJJOpfigdf/zN0v340gCPhdfsRXRMYy7yD7Rf5i/nDdn5jeMBeQ+P09v+W8c87A0C0c0yQxOkzL5Mn09vTy6auvIZnM8uorL3DSovm0dxVTyBsIuHjs8af56AUf5dwzziSTjiOKEi++upxLL11KT882fD43saIoQwO9BEIhps+dx18e/E8ammeQyOhk8nvp7BriuBNm4hg20+ceh0iBXGoUWZE56cR5ZBKDGDa4PS4E1Y9u6Gi4kdUIpjWK5vOTHekgUFrHcF8Pgq0THzQIhcdJz3RDZsuuId5a38b5Zy3gtVc3cPLiqeze2UZdYwmCW0WUw+TTw4iKgl2wUDWJbF5HkUTiI8MIjNeEbaotRVZs0tksU6bNIhIJ4/F5yeZzCJLIzDmTcUyB5EiOSCyKrYZp62pj6pQSVD1L74hMqdBNPh1E85YDHgRJRXUXU9ATmEYa0RIwCwYlxTHaOvYya1YTlm3imGkMU2bqjEm079qB3+OlrKqWBYvnkkqmSaZSyLaJS5MoDgZIjhoMjnYgKn4krZoHH3qVs8+dxDmnNKAKFpgKjqgj2BqWCLIski8oLH+jjROXNGLoGSzDwO32Y5p5QCRr5amu8uDJj//WT57YgCUp5HOjLJo6CUeyGE6PsG1LCk1UuWf5i1QGBmiacg4OEopgkncUNEsfv/7+W6LkDs3jPEyu5v+kHNHOFffbrs775qMezlY+2CZ2HOewpuiBfu/xVw4ax3m3rb9/mP8XSuEASLfeeuv/9ByOSSzLuvUfp32/4/r+jtL+8N7/Kdbh9ws5+CDhAYdbw+EcYmP3+C200rDwb57voXI0Z/bQeR5KCHVs+35om2Mf8919j77e98v5fLfuI835kAPriG3ffw7DXUMYBYslp5zGouNPQBANenoGqKyqQJDAowZQup6C4Y0IsSau+sy1zDv9EhryqymedgaCmcPn8+H1u5AVEZfbPZ4HaZh4A34Q9s1UFBEQwBknh8p1bcTSQrQaNaxfv47nnn6CU047BTXTjumqxLFNqqqqWLFyNdNmTCcQCpI3DLLJEfyhAJrXi8sXRNHcuL1+QrFi9u7ZhihJBMMR0tkslmWQHEth6Vkkq4BjO4SiJXgDUUZH4zRPmEAwEEZRZKKxCKqiUlFRiW3kGB4ZxhEV+odGEEydfDbLWDyOYepUVVVjmBalpWWkU0n6+rqpKC9l1+69+AIh3lq5hpkz57BmzZvMmzuPZCKDZQpIikRfbx8TmieQzWQpZFOMDaWQVYFwOMaePXtoamhEUxyMQoFQIExRUTm723cSDIUIx6JU1VYTDEaob2qmqqoKSdCIj4zS3r6bfM5ga+sW6uvr2bJ1G5Ik4fN5EEQJx7bZ09mDYZqMjo3i9njRFI1wJMRjjz1CZ0cvE5qbsC0bvWDy1oqVTJ06FXX7uIEeXNKEUSjgmBZDI4OEw2EMw+D111+nvrF+nKHWNpGyvfhnX46m9COKInva9/D8KxvZ2z3MiYtn8JkrT2B4WMWyHdKZNIossnhuPT+55aN84bqr6N7bQ21NLYnEKIWsRduWfp5++XnSmSwfOnsBQa+Iadgkkgl0PU8gECSTTPH8s+s44ZRzmTxnGldcdAqTJmrjYZc5nUQyi+M4VFXEWLJ4EtddczFLL5qPbceZM7ceSTZRFIHJk8pobqxgaDjBWCLLWDJDIplCkmx+84tr8fosunsGeeCRtwD4xo3nY9t5LCuPQJALL7qByz/+KUShn+/96C4AFi+cgIRJSUkp2XgvflWhZdpSHGx2te8CYbwUzpITpnHHDz9PZZmXx55aRTKZ5YIPnYaTt7j7t3dy2aWn09BcxPd++GcAzj1zDlMmNqIX8iiywpYtSb54/fUUdIOhoR4ymRxul8rsmU1879ar+PcvXspjT73O5i17mNQylZa6FopjESxnANu2+OVvnySRzHDWqTOZNbOZXD5DsHgGibEUDz74EDOnV/PDn/4BgGs+fT4V1bPwejQ0j4jX5yEUDmOv3sAv170JwMMP3s/adevp7x9GU4PEykK0NDXTubMLxxHIF3JYlk1DXR1Bd5BnHnmSQNDL0y88g1tz87lPf47zPnoGqt9FS8tUaqob6OrqxjIMFFUmnckgIBDw+rnpKzdw3dVfZNL0iaiqgp7PoykKowOD3HXvvaRSadKpNJ+5+jN4fTLxRDcdO+P84LYf8eUbvsqW7dtwdIPf3vU7Tj3tVCpK6tAUD4rkwlwrsmjiEl4afpi5c+fT29tPOpshGokyffIkvn/r95nUOJ1UKonHo/DRDy/lyis/xVdvuplCweap558hk81QUVbKpz75MaZMn8a0GTPQ82mCjT6CyRha3kXOnSabymJaBhWRSs6ccRY/vvKnLD3uChYvXozL5UIQQNd1FFXB4/WO5xdaEqYBpmNSMPIYlkFZuJzTp53G9z/+Pa484bP87le/Y86cWaTjcdLpNG6vF1uQCLlClEXLkEQB23bI6lnyep6IL8L06hl89vTPcErkHM5dcga2kyOZSlJfX09NTTnBYICZM2dh2yLDg6Ns3rQJTVNo3byRKS2NuL0ajROaiEbLcWsaFSVRtm/exORZ08hls6xdvZbZM+fx5huv43ZprFq5ipKKGvyBEC+/8hpIGjOnT8HndxONhFFEEUl24fEpqLIG6IyO9OP3+NA8ASzLQRQlokWlSLIbSVKxrQxGIU8gGMK2dCTBITu6l7zhEA74kTUvgm0iCIyDD4rE5OlT6e0bYMbMWciFMVZv7SYezzK9KUImZxEfSRD0ulEQESSLdMbC7VERRQ1ZUcimU+j5PEYhT75g0TssIGAQjYZJpRIEfD5kWSYSCuLYkNVHsEyNrs4ezj//dB598GUqq0O8/FonM+fXY2bT47+dkgvDLOBSBfRCmnwuiyO48XlcJDMOa9bvobauAcUNXk+QsdE42VyWYCCA1+1BVlU2b9xEeVkZ0WgARVWpqptITcNkwpEALpdGWXEIvdBHQ20xQY+A3xVA0VQEsYBpSjgY2NhIhs22PQkMW6e8SEZ0vLywYpSGKg+2Y47bWpaFS3WQELAMmSVf/zznnVrPbT9Yj2/+VM495QLKSoupKa8mnrHxqHl89iCnX3gVgif0Lhvl/a2eo1o4hzz93xPe+vesGg7at/es+WD04+j27n47+uDnoij+LVP6h4skSd881rbC/5ZYZ13X/2ETFQQJHHFfTtB75ViRxsMhmu8d690Oz6Ho4wcZ61hzW/eLKIoHaLWP1D+/8s84joNrwdL3xOvvJ2A50tzeb/y/Rw63X++lCD92xBUO3YOD+/5t+Q3vneuR9uoQ9mTnvbeJR/ts2LZNYk8fu/bupaKulplTZvDCC0/x9a9/l7v/cBd9Q92UhIoYfeZ6goEA9+6pI5MUWbjgBCaUWcR2Pwy1J/PIyj2cP78cUZTI5XLkcnmCgQCe0PhNtuiA6YAoCON0+6kETs9qfrvFy8c/+6+YeYct69fQMm0Srv4XMAa3M5QWiI8Ms3FjK5dedgltO9uYMm0KuUwSj8dDQTfYtnU7lVVVALhcLiwzh88fpq+nm5HBAeoba9ALNqZVwMiNoPmCRIoqiceTBHxB0qkUwWCQVatW0NTUTFGshEJBR9dTOIKIy+0nm82hSAKKqrJnzx48bo1orAhRlPEFAmRSeRLxIcLRCJKikMvl6eroIugPksokqKysoqtrLxUVVbR37ERyJMJFMbo6u8ik4syfswhHyWOZCr6An4723WjKOOeIPxQiFIkiSgKypPLmG2/Q0tKE2+sjlcrSsWsH8+Ytpn+gl+HhEWLRErweGcMsEC2KIggSr736JouXnEjrpvU0NbewYvmrzJ41E83joXXTNmbMmkFPTwcde3poaq6ntLSIp556mhkz5lBXX4UggGnaGKZJZ1cnPo8Xv9+DaZrEojG6urqoqCzHtqF/byclqeXkKs/Cc/wN3HLLN7j+c1/g09dfzVurV/PVL13PxR+6iOq6ZpLpJB3te/jp7b/gto/A0PAA0z77PA89eD8Xnf8R5s6dz2OPPs33v/99WqZU8anPfApJVHjzjXXc8JVvMnlKPd/6zlfRdYuNb2/itDNOJRgN8dgTj+Hz+KiqbOT5F57hms9fQf/ePgYH4ij+AJgJystq8bjDPPnEM0yZ3kggEMKxJVSXgizLeL1eCoUCqiLwzW9+m4H+EX7wgx8wONJGaayYsZTAV2+4gZ//4if4fD5u+tqtfPe73yaVjhMOFeN1STz08KOMjqVAkBgeGOaiSy6kytnNE089yRn/cisul8YjDz9B/1A31157LTfeeCOTJk1iNJ3n+uuuobezm/vuvZfTTj2LO+64g7t/fyeirJBJZwGZ9vZ2rvv8F7n957dRXlFBbU0FkiJjORK6aZLLpXEsgXAgwJ49WykuKkdVXaiagykKFOKD5Ap51FiMr137DX76s9txHAtBypNOiGT1IYL+MlSPxJYt26iva6Tt7bcpqq7AXxQhFAgiIbFl63pqa2vxuqNot9/Nxg0buL6ng6s/+y+cffbZPL3sWUpLS5lz3AwcUaBnVycvPvU0iUKeL1x7DcMjvUSjRYiCTGfnXmpra3n0kb9y6ccuwhByFNJZBgaGKCutYu3aDUxobCCfz6DIHsZGM0RLfHg8Llo372TOidNxDJ3h3j7WrV7Fhy+8FNMQkWSLvqE4X73hJq699gvUN5bjU8MUCjlM08TtdpOI9xEtKaO/f5Q1b62jr6+PrVu3crX7i3h9HtqPW8nC4+aRHhnCFkr5ze9/xL9d+6/Ekyli0TJGRkZY9vTjvPrKKuqbmli97k3uu+f3hGNl9Pf38+AffsvKNa385nd3Eo4FkZ0cQ2NpopFK7J+7Ga0eoHd3H03NjYiyhIiApgiMpVLIoorL5UIUQZIlsA0sJDKpNB6XhunI9Pb0s/7tNcw7biHFRSEEwUEv6AwOD1NVXkleN9ne2kptUz1unxdZEFA0FVM3SKdHCAZKMW0TRZZIJRN4fWEsK48kuFAUHcMyEEWFXNZEkhxSqQQulwfHFnnsPx/lwx8+FxAREHF7fGRyWRKJBLva2hkcHOCiiz6KKIxfWPj9Xnq6B+ntHaaxqQ6waW3dysJFi5CwyBWyiIqMnsvjdmtYlkMilSLgj5FJdeGWFSxBxeMSSKdSiKoHPZ/F5dJwBBlLNwgXVZLNjyLaMiI2qkcjER8i6HGRdbw4eg5Rlhgb6cXt9REMxogn0vh8AZLJNG6PglfSefal1QTdEpNq84hqmD0de6kq86FJXjJ2ikTCj2FliET85HWDSCBMe9suzIKO2yMi+0spLp+MLKu43T6SqTSiaJMYG0USNUTVIRarAAcy6WH6+/rYuu410hmZ006qx+8RMFEJlU3DFoKkU6N4VYtXn38K0eNjTnMQ2xQY01VsIYI/Vo5pQyo+SlllOZZhkktnyFs2AX8AXTfw+L3E42P4/SFy2Ry5zBiZ1BhBv4t1b20nl+3muIW1WHaO4mgRFll2bUtTXVOEW3MQhTzZQhaPtxTDSLO7o59AJEBJ0I9ujJd+y+UtvG4/0lgFilXBjhm38+C9j1Jcu4iE7OHs8y5m97a1zJo5l+1b9xLQutjy1qP862/XYmO8y245xKg59vKGHxBx/Z9EE4/oQh4BcT1U9vsHB3yJQ32Sg3Uduh9HYxreJ5IkjZc2/L9MVFU95jfvn4jrvuRxB/tvciIPJ+/nvP0t4aWH9j+czqORIB38hX4/hPbgOcuV05Arp75H59Gc1veb898ix8IWd2givSCIhzw+SLkg4aDH3yeH1ylwJFR3P+L6zvsgHViHvf+Y2adGYB9bnwlbO3ZTUVVOwO3m6k9eiV7QOfucc5E1D6FQKaauk2t7kv6BPppPvYpFxy/h/vsfYOLMOaSDTXjHNtNCG3K0Gr3meJTcIC6PRk9nN/6wD0mRMQ2LfL6AIki0bdmBnOwg7ZlA7eyz0RUPTzz4Z+rrJ7Nj+05efu4JJvs6Gc55qKmtp7yino7ODhKJEQL+AIFoMRu3bCUc8tK5pxvHsejt7qGyoob4SJxIJEQul0aSRTyeIG5fAJfHw9hoFtNR8Hl95FNj+Hx+XF4va1atpL6+jrKKCjZuXIdLdiiurkaSZUaGh1AUCdWtsnNHG2UlJeR0i3wmR3fXXnK5HP6wH8gxHI+jyi40RUOWJXa1b2N4cJiS0lIcEYKxEH6fl+3btyMJIgvmzaWsspYNW1rxaW5CkTCDA93Eh+NobpnGpkYCfj8iIoomsHN7Ozt3bmdySx0uxY3PF6Kiupy+nn58fi8l5RUsX7ESnxsqK2owLJNMIUVNZR3Dg4M01NUjyCYuWUSSRSSXyFD/MOs3bmHa9Mk0NNQTi8UYHUswbdo0Vr71Jj5vAFVRUFURQdGIRKK4vV78wSAerxdsG1EUkDU3luUQihYjGAk0O4l/5oWcfc4ZGNkEDzzyKH0D/Sycv5imqonsat3GSy+/hS4UuOozn6L16Z/SPKGFlG82Ho/G4FA/X/7ql7BVmL9wNq8+8yRzTzyZ/pFhvvudW/nDb+6gZ2CQ6pJymqdN4Ge3/4yWyZMxbJspM2Zi6AYP3f0Q11x3IU5W4Fvf+DKTJlYxYeJCcEa481e/5fnnl/PAg4+xed3bJFNpAtEQRmGEioooppHl/vseZt6cqYyNDuFzB5g9Yz5VE6pQfD401c8pZy6hqCyKI0osXnIqO1pXEI0E+dglV1BZU8L0GS1MnTKZhtop3P7jHzBx4hTKJs2jbtbx/Obu37Pg+OOprq9m7nHT2b2zgwsvuISpc2aweM5x9Pd009Hey8a1raiKytBAP3W1tZxxxtlcePEF2ILECy8u52s3fRFPpIiaijJEWcDRPAiyip5Ko3kVArEIY8k03kgJoZCHrRtWEyuvIhkfwh+oRHOFkB2bU08/lXsefIDmuhoyiTSGHEPL+9HVIRRDxB+O8avf3c+Ss04j5A9iFfJs39VBsDxK2B/GVoKYQ60o63eTSiZwTpjJ7l0dzJ4zm3M/cjbf+t6tyI6KreUIhmNMm7KQufMm4wgO/nAEGRcZW6S0rIjUcAdBfxBRMXH7grgdF46dQ5QdFM2PiIPmEvB6A5xz9oe4/MqL0TQbd7EPxcqiaBEk1UdDYxVj6SwevxvTtlE1H1s3r+d3v7iDgBZm4pR6Xn/lNe76zfeYO20Ot995N9MmT2VscBerN67kxCWnsGzZC5zfeBFFRVEKDSp63iYUqEf1KdRULeTtNRtomdzIm8tbWbtmK1OmTuLRZY9zx+2388nLlzKaKeDxqMiOSHdHisuvvAzFr5FJDODxBRA1F6LHRcGfJPBiGcGrFTY83UpxIEbeyOLx+HBpfmzbRFYUbNPEzKTI6TqiIlMwdBRFpZDNUVZeSnlVOdGiEgRBp1AQ0PxuFFHAIo8gqgSDEQyjQCjowTRzyKpGPpNC1XwIioYkFrAFE8Mq4HbHgAKWnsDMO6iam/RoCpdHJZ9y6Onuoaqymu3bdhHwhgiXxEgkbN5c8RaRsItoJMTG9ZuprShGkrwgOOza0cHG1m2oqge/P0AwECaT6SWV1Jk4fTIURsglkzgWqC4PmqKxd283qqrg8/mwTQGv5iabG0CVXBTyaRzLwCVIuDQ3uXwGWx/D7/aSybQjSZXYbgnMAhIOppHFFvxkk32oko6h5/AEZERdJDGyFs0Vpm1HJ0VFxYwlxgCFoYEhAn6T+IhCLGoRCbsQEMnqGbBVenu7KS+rxetSsQ2RQj6DrAh43W4UUcLtDZM1fEiywvDQAMGgH01xY+VSKJqIy1/KYN8AqdQgwXAlsZIYph2kujKCL2RBoYAiyhh2Ac1VjCnqFPQCxbFqygNJHNHBFAzslInskUnlI2Bm8Xi9pBMJFMEhEg5iOyY7t23CH4zidQmomh/NLTIyOEpX1w4ikXJsR6SytgyXP0rO8LP8rR24Q2HK/QqRkIrgd9jUliWRtSmJyRh6GuzxC4ayyhCOaaEqKpZt4vW5yeczeMwqHN3HV5/+Ea2dY/z4l3dSV1+DaouEy0rIZAzMkqnsffY2KpdcxtQpU3HEcfb4w1lTH8wefE/vAw9BfC8x5uGIn/72sQ8jjviuOSC8D6km7Euw2jfX91vdQdGEB/sc77J7Beddbd+Vb3aIfXks0ZfvILkfYN3/TfJBENd/Oq4c3hn8oHI4J+twev+eW6Ejh6W+f5v9rx/LuO83xt8bJv1fFR79t7Z7v8PtH3FD9/46j+64vqPjnc/ToSRJAuAIAhIiYwM9GPkCkWgxecPEKNgMDA6QTI7StXcPQW+EbNsT1NXWEZl+EYW8SV1dAw2NtajBMELVHISaBQi9m1C3PIJVs4TBju2EAiEkCSRRZnvrNrxeD329fSRTGeTCAKNyhBFLJBSN4FG83P/nhygvK+PUcy4g2HM/Y2I1Gzdtpqe7m2g0SFlZEdlMBr8vSCwSZqC3lxnT51JUFMXn85JMJchkkrjdbgRBorysilwuS0E3SaVShPxBgqEIkiTTvXcv/kCIVDpLVXUl4VCAwaFhGhobyOUy+HwB9nZ2Ul5WxkBfH0WxIrweL4FQmFAwxPJXX8PtdtMyZTLpRALBsRAFCVmReeWVV2hqaqS8ogREGbfHQ293D6UlJWguD40N9fj9Xna0tZFIJpg0sQWXpuJyu1AUhZqaWgIBH45t8+yzzzJpUguWY+L1BKisqMTrdfPQXx4jHAuhKS6i0SIURSKXTdHS3ITX72PT5i0EfH5kQeKN195gQssEdrXvJuD3IUkyiiJjWjbdXT1kszmmTZuMZVsM9A+wpXULoXCIKZOn8PrrbxCLRRElEVGWAQdZkbEtC1M3kGSJdCqNqilIskAmk0H2RrD3vomeiaOHphANBXng0UfZ293N8QsXcP6FZ9G5ZyMNjaUsWnI6mqZRUhgnEXE1nUpiLEXLxKlkC1nC4Rhezc2mdWt59ImnWXrFx4lFQ0xuaWZkNEMhn6ayupK6+jpS2RQNDfX0D/QRK4oBIjUNlbh8Zdz34P1c/8XrOeecCznrzFM57bRzOO3002nfvYuv3PAVZs6YgUtRefSRxzn1tFN4/vnnOPHEJfz8jju48MILaGmZwob1m6ivr0J24LgFi5g9YxrhgJ+erh6+963bqG1o4IYbv85nP/clBvtHkESFVDLDjh07cbkcJNlFKBQhGIyw5JRFiCK43BqiJODoAsFgCEmT+dPv78bv91BeXsmmjZuYNGkSlZUViJKIacrMmTuDssoyamurwLFwezw8s+yv1DfUY2EjIrJi+ZtU11SgeTz4PV5GxxK8+vLLVJSV4vUG+OnPfsrcufPHw7tFkaGBYebMmwOWQ09XP9HKKDd+6UvMWXgS6cQoqqryxoqVnHn2KbgUB8PIU1Fdg2DLSJaNIImsfvlhmkZl/P4AUz5zFSefdCbx+BiXXnYpgVAQ2zQQZS+K5ICQoq9nAK/fRzKd4s033qK+qRHH0smlkuxs72FCS+N43WdDZXg0TjZboChahqqI9PR0Yxg2zz77PIbhMG/+bPzhIH17O/5sLrcAACAASURBVMcvTwQJPZcmGAnS09uNx+PCwWDBnBM545RzeemVx5i3cAm2LXHBxedTUlxPc3Mz9/zpHhadtJgpk6fR2NhCIBCkw9xJ3Sml+Es1bNFi/ryJfPa6y9ENh+u+cBUfv/Icnn/+GRqbyxiO72bJolNpa9vJipWr+fSnP8fnr/k0fX3d/PLOn3PaiQu55977KBgmkyfNwO31I1gGSiDJWy+sp2b9ZEpODhNvGaCwI4/mlgEL08qjqDKWVSCTHkGQVBDHLyZNw0Av5FA1FUVRMQ2TsXg/oiAhyaC5PbhUL/lsmhdfeIWZs2bi2A66XgBBRWA8mkSWJQTAyGlsWr+DopgHRVYRRQXTNkBUiMfHsB2BV15+GUWTyeYyCJLE1Okz8Po02ne2UxwLUt/YRCKZQZQ0BNGipq4Zr9/F7vYOxsbGaGpqxON2s3z5m9TVVeFyeZDVca6QoaFRhoZHUFQNVZUIBHy43Ro4AvH4IOn0GKbh4PNrJBLDOIKNrbowRQl/pAxFC5PMjmGZEpBGETSymRSypJDP59DcHtLpMdxuN7YjYxZENNmkUOgCwY0suQhFI0iyQMHIE/BFEEhTUerGtnJYlgGOgEtTkUSBoliEXDaFLAnoVoZCPotg22RzefJ5HRMZW9TwuDVyuQJ+fxBDHyUZ34atj6K4AiTGkhSXxNALJqrq4rlnniUx1EFjXRhZEpEkYTxf1+NHVlwISPh9Kvl0ChEbSRRwyQooApqvCs2l4PUHSSVTSLJMfHSMouJSsPJ4vD5GRkcRRBdur4Lf5yMQ8BDwB6mprSKbTeNyuVm1eg3Tp09n/erN1DRFxqO/CjbxoVEqSyNoiommujENnUDId8D9sR0bSZTQDRNR8CD1z0TQ/Xz9ueu46etfp7SiAllRicRK2bCpFVWW2bV5OXJyB6d+7Bp8gaojAn9/V6jwu+yjI/Q62Ik8CnjxweS9ocvvr1c4zF/HOMrBOoVDQDDnSHty7HbwPx3X/yb573BcD3XQjhXhfD+H7kiO5vs5Ukfrf9TVHMMa9se970d/jxSycPB8D53T4ZDlo92CHUkOLTOz/7WDLwX+Fuf/SM74+7U/Eip9JDlym6M7ru+MLbyr6bv20hl3XN2qxrrXlzNxwgQsR2BoZIzS0nKiRRE0VaKQT3LxRVdw7UcmYBgGWuOHME2d7Tu2UFVVheJ3kyvkMSWFMauKl1a30WKsoSB46e4bwLFMUmNJIuEofX19ZDNZahsaCFtD9FJF49RTeOCPj/Dss3/l5ptv5OGH/0IkWkKRvp6t+YmENB0JsO0C0XCYrs4u0skknZ0dhINhNm3aTjgSxO3WCIeCRCIRRoZH2blzNx6PD5/fh98fwOVSGY2n8Hq9tO/aSV1dI/5gAM3jxXEcsukUiOMojiAIJBJJfF4fguMgSxJj8THyhokky1iWTSaVoqWlBcM0SY0l0DSNnp4+/AEvjY0NFHQdUYSS8kratu+grLSUcCDI2+s20tmxB8syyKQzTJzQTPuuNrZsaaW5uRm3x0cimeS5556jvqGRouJiHBzc/4e994yXpCzT/7+Vu6q6q3OfPjnnM3lghiEM4wQGJUhUUMxrTmv46f7d1QVFV11FlBV1zSIoGEBFJA05zACTczxnzpmTU+dU4f/igDuwMwQX3X3h9fnUm36q7nq6qrr6vp7rDobJoYOHGB8fJ1lVQ1WymkQyRv+hAeJVVfzilpuY39uFLAhMp3PUVFeTmU3xyEOPkU6n8QSB7nm9qLKCYfrncrHyedrbOmhvb0OU5p4JXdepb6hH0zQOHTxIX988ardXMIZtKs06ggCVcglZlMkX8siKjKZruN5cPz9ZlsgXK+hiGa+cIRNZztGjR7nz7rs5NjxMX1836157MR3NzQyPjJCsawYEhp/8GUEriNR2Nl/5ynW8ZvU67r77T9RU1XLzTTezYNE84tEaOrs7aOtopb//EC2tXSSqonzqEx/jHe95Jx4ufkMH18HvN/nBT35MT/c8PvP5r7JwwUKqolH+eNe9XHj+xVz1lrezZu1qOrvb+OWvfoMoCGzZ9BSXXnYVN9zwLd7ylqvI5wusXb+eJzY+zpZt2/nXaz7PZRe9ntGjA5y6YgVPPPwInlPhQ+//EF+4+ouceuYKLrjoQto7u/nBd37CHbf/nny+wAUXrqc6GSWVLvCNL/0rF752LUUqZDIp/H4DDxFNMpiamiEUC9NYl0TXVTTNR3tXF9/5z++wZu05GGYAUw9RKGVo7WhC01Q0VcXQVFpaWyk7FQI+haGBfm787o84/4J1FFIZPMfFpxk0NrYgCjJ2pcLS5cvRzTlCe/MttzIyOExzYx2SZhDwGUxkh1m2YCE/vekP3HzT93n9Redx+mnLsKlQzKUwTR8HDh/CVCNcsH4tb7zySoTcEPGBIrlCkemuNv7zez/is5/7LCtOP52Ojg5E2cHOO0xNDOMPq4iOD1GW0Q2TwwNH6e1uZ3ZqkmLJYcODj9HV3Uk2leLWW38PnsiHPvBhVq06g6Gho3R29CBJEt///n/ieCKXXH4ZkuQS9AdAknFdD8vvJ1/KE4lEGBwcJBw1KecUVq5Yx7LT2onE6nEcEX84QCrj8dTGR3jnu9+JK0kcPTxIsZino6OVt3/grdy94Y+cd9FqCqUSn/jo/yNfKqAqCcZHRjl71ZmcvmIlyWQVCxcuoLu9m7aOBsbGJvn//unT/NuXvsSFF53HueetZvDwAYaOTXL+6y8lGAqRyeaYHhumODtOcGEYo11CfiJI4KEqcokc1mka8pSB4El4nozjCriOgz8QRFZVBEHEp/nI59KoPh+u5yGJIqV8GlXR0XQFVxBxKgKiUKajowfbrqDIMo7rUspXmJqawjQNPLeC5yrIuMSTBrNTY+zbe5hEsg5BBVnygShjGAaJRJT6+gZ0wyBgBXBd2LH9GTpa22hrbWB4dJbp6RQgkkhG0Q2LZ57ZiIjAwkWLUGUZx7GRJIknnnia7r5OBFwEWScQChOJRCnli5Tt4lzROBGKhRKmXyGbzVGdbGV2ZpZEVc0cATPi6JqPXHocu5LGCMUpFUUq5SGUioxu+v78f+jgoWsylXIZQVSBMoqcxymXqZTSHB0aw4pWoUgSoigwNDxOa1MdTukYphnAcWxc18Z1bCqVEq5dwm/KZDI5BFlE13zYxSKyplOyJbIFh1KlTDgcwzBDpLNZZMGllOpHo8zQ8DFqGtoxrCCyJOJ5Cq5bpqk2jq6BJLu4ThldkykU0qhqEEE0qDg5xifGUMQCiuwgIFN2CpiBaqZTafxWCH8gwMTEGKFwmEMHDyPYs0yM9RMMhzDNELlcGoG5rgKSIuFh47g24XCE7q5eREmiq7OOu+/fjaaFiAUzhCwdXbfnFtwcGWRp7tI6DoIk4nkgKxqqrpItyKjpZmwb+uu2cdkb3kguX8C0LArlMolELf17N1MZuIdAvJozL3gbtmAgvEhI76tFXOHE0ZGvVJw5ma934nDml09cnxfx9wrV0OfXd3khx/jLxKfjx/5OXP+G+Fsqri9MaH7e3q9ARX2pB+glZ/YqEdcX4vgKwScaL9z3DSqHn0RuWf48wnqi0Iu/hmJ5/Lxe+AJ5tYjrifBi9/2V4NVQXJ9PXF8w9ixxrRQrlMsynicjOEVqEwFyFFFlCUVUCfsj9C7oImnvRJQEvn37IIYp093ThusKBE0/iiAiI/C+930Y0arhjMs/hn/0YWLJBEYggiCIWJEIhhVAkRWeemIjjUGbW57K8q3v/oALzjmDy6+4FEEqcOqyxXR2diEWjjI0cIR8Jk1TSwv7Dx7ECobo7OpjcnKY1s52EFRmZiYIBgOMjIzy5JNPUy55HD58mCVLlnCk/zBBK4QgCsiygj8YYHJsmEqlSCAcRvPp2I6DLEnIgkuxXMG0Qmi6TrFUfLY9iIAnCASjUbZu3obgwcTUJIIHQ0ND7N63F9M0iCZr2LJlK50d7ZTLDp4jYpoB9u3ZSzyeQJJlfnHbraxfv4729nZMI4DpNxkaOEQiFqWzpxdJEdnwwCPUNTSwYP5SCoUyk1PTHOnvp5BzsKwAs7OTKIpEsjaBIgdIxgM4tktbRxuqbrJ993727txOd08HoiJRU1fHyNgoZ55xJkcOHmJo6BiRRBxBktjy9GaGhobRZBGfYaDIMq7nctutt9HW3kYwGMR1PQJ7c4hFh1KHxeOPPUEykUSRZFRVxRM8XEASJGRJQRQldE3FQcYb38Z0bA0trQu59Te/5OjQIGtWr+X0FSuQJYlIbSOCJzA9PUMo3oBatRA11s7qNWuQVZHPX/157r3zHro6OonUJUhGTEqug+vKBANVpHLT1DfXc2D7Vs4+9wI8T+Tpjc9w9513k5se5W3vfCcP3PkEF593OmGfyqYnNlHb1M72bU+jqD7OOGMVn/70P7O4pxfdMDjzNWezdcszrFu3hv/4j+/xzKa9+EyFs84+HTNg8vFPfIxwLMpPf/xDLnv7m1m9di3xmgTRqiTLz1iJruQRyVEppumb18nNP78Fywqw7LTF3H/Po6xZu563LvbQc4eQG1egKjqiqCArCsVsmd/8+g42PfM0t918G6FQmHe8/b2IissXv/QlZFnlM5/5HGefvZyqZIyhY2MMDU5w9OhhZK+MqvsJRaMc2LOVtpYW1qw/n5mpITRvTnGTUbBdiaa2TjJTk5x7wYVs276Zmtp6amtaObL3APV1cUQjyM6tj9LcsZSvXv3vfPrz7+Gi89+AQJGJiWOEorUIroDnelihBIIOb7rijQi6n5nhwyQHMqiagXTWMr5w7ef45reuI1kbRdNF0qkMU6Nbiceb2bE9xRsvv5Cm5hZ6evuobWmCUoaAaVF2Fe699yG6u9uoisfoW7SASDjGJZdcgCRkqKqu4cv/dh1LlizlyY2P8LObf0BFlNBFEcd2KDsVZmdnsIsuqs/kxm9/j9NPX4mi+JBFKBcK1Ca7WNjXxOTYFHUNVQT8cVp6GpFkEdFRmZ6apb2jCVUTeec7/oE3vO0qfvS9Wzl7xVJ8WoR//ORH+fFPfsr+/Ru54o1vY3BwgIbGGlKpNK4qU8z2M3vsCK2dDVzz+S9w/vkXkahLEK9qpCZay+/u+A2Ll3bPta8qF/GHQ0RqqvD8GbSzbEqtZczDfqR7w7hDIlJR5V9++BkqK3L0GvOxyzaIIpWKjYiEphhIsky5UkBRTSQZTH8EVwS3UsG28/h0C6hgOyVUVUZRJFw7P6cuiiKS5/KLX9xGdULGNCKYgQSJqiieZ1PKu+zctocND97PogUd7Nyxj9lUjlLJYWpqimxqlngkyGyqiCcrTIxO8Ogjj+E6JRoaa3FsqE4E0SWFaFUSWZYo5HN4ZEmlKvT0dfDbW28nYplohs5dd91DyIoQjUfxaT6y2RyeZ+PTImi+IA4lcEv4DI1soUDFc6gUczilAgIydkEgGFFRxATl8jSFQpqK7eABIiLZ1ASy6CAKLp4cwPVmEfEjFidR1CjhRAuuI5ObTBOrC2FXfBwbGEaVK7huBUkS8UQZUZIBEcd20a0A23fPYhgBPCfFTKrCU5v7KVVEeno7GDw6Riafp6o6SjHvkJ2ZJVkdRKWEZNRQcGRK2TxH+g+yYOE8fve7+zACUcJmGVEWKBRKKIJHrlBE1C0QdMLRGoq5acquwN79E4iiQy6Vx3Yr6GYIp1JGFiGfS9N/YDd1MZdExMMpzTI5NkOsqh5Z86P5dAxTRxBFfD6VctmmVHbwmwGmpioETIGtW/Ywnlbx6SF0U2cq56L5RDZuHsBxDfxGGc9TEQSVctnj8FCJhx49QltgEQEzwPwPNpPJ5fAZBogiI0MHMEWNaj1PfnQHl/7Td7FVC4kiCC/omHBSr+el8GKy6snT8V7S6suIuDuxAPEKFNfjIuZe7nc+kTj0cgownczOycb+Tlz/hvhrEdfjn8/j27GcSG08GV646vOX4OWuyLxQ8XwxZfBEq0bHVxY+2fnsZ6sKq20rnmfzlSiOr4QAnkgd/p+S/r8EJ7rvL9xeqijTi89NOG574cjz7XrPvVyE555RgbnwYQHv2bwJQRKojvsZHZ9k48N/YseGHyEKGoYviS3YoI/jeVHi+WcoZFP0nvsBqhvbUX0Wu595nKmZEq7roWk+envmccMNN5CsraN2+SVIE7tJT4yQbGwlUy6RS6UQBAdD10hIaRZf+cm5/pSvOQt/xCJTSOEPGZiWSap/O6XUCFY4wr7du+jqaCdkBRga6icaTxKNJ/EHTIrZFIcPHCEWjaHpCjXVMcbHR0kk4owcO0ayrgbHcdixYwduKU9zSwP79++jo7WdQilLKZNlYKCf2toaZEXDBQqFHAEzgOe4HDs6SMBvYug+SmWPTC5DfVM9U+Pj9Pb24fOb1NfX45RKWAE/UxPj1NTXky7kOHpkiJ6Fi5BEiWDAZKj/CN3dXQiSTNm1GTg4QENjM9OpNIqioJt+AmaAu+/6A21tdQwNDfH0xmeoqammvaOOyfFZJMmHoqhYfh/lcg5XVKhgMD5yCH8owu6tW+nr68LnNynkC7ilEouWLMFxSkSjUaqqwuzbvR8RiYamJgI+nenZFGXbpZArIYouzc0NGIaJ7Qr4dB/GwRweMBwpoep+gpZJOj2DT9eo2GUEEZxSCVXxkc9m0A2TcsVBmNnLplQPnfO6uPLKN/CJf/wEZ57+GsYP78Ufis3l2A5O4tPT3PfwJL2nnYokerjOnIp92aXvoGRP8Zo1a5gYOYIk+vnqtdfzp9//gbbWBA/d8xDzFi3nlJVrsNP9FIs273vfR/nm16/nHz/xaS6+4DKu+fw1pAvTNHe0cPpZZ9PTtYSH77ufydQYl7/5DWTKJVacchrZXJ7eBfNpb63hbe94F1/69y9z2upF1NTFSc9kaKyrRqLI17/1HZ54agtXXfk2HEFEVlS6+7qQNJtypYDtgqypOCWbeQv6uOptb0XVLepa2vjm9deztieALAmItaeyZ/tBZqeHuPqTn+GUU5aya/c+Dh8ZZNWqlfT2zeeyyy9l1arTkCWZt171Dr7w+WvpbG3hjt/8nuxMlp/+4CcsPXUhvX0LOTY0QiAWwrQsNFWnUiwRDAaRAhYDgwMoPg3Hy3DJRefR17McvyXRUF+H5whzfXIlH6PjU8RrErzjLe/iiss+wPd+8DXOWjyfj/3zNUwPDXFscIx7/7iZvnmNOLaLXSqy8YEtSIKEaFcIJeopN1bBkl7ymsUp8xfz6zv/xPrXnY9XmCUcS+B4MqWcy69/eRs3fu9bBC0DSaygeDayGOBHP/4J7W01/PuX/40rr3gD4CFbJv2HB/j81f/K2lWnEw5EUE2V9nndnHfpJRRyRYKWQqFYwaGErhu4joDu96MKFe6+8w+sW72W6cwRctkMy5Yu46P/+B4++PFPkCmXCJpBvnP9l1m2YgWlSoGZ7DjV8QiS4sOTVHIPuujDfrYNbUTVdRJ1IdasX83lV13MFZdfgSCA5tNQVB8zMymsUJSpVI7eJadhezof/sAHmZ4apaomzoO/+y2LViyjKmlh+KtQFRXL8COKMqXpCZSgn4Jro0Y97LZjlJdPIZ7iUdRs1lqvpX3nAryWEs4paTIHJHyqRGpqmBu//2MGBwZZOL+XmZkZjIAfT3CxixVyxRyGJlMq5qiUK2g+DQSoOA6KEUEUNfL5GVKZEn3dtej+ELOZEkKlyGxqBEWMMjLaT1d3F12dXeRyJULBasZGjjCvt53Z2RyG7hJNVJMrwcYnt9HSFCebzTA41M/SZct5/NGNqJJJoZghl6uQiEXZ+PQztLY0YXs2tfVN1NXF8PlUQlYUTdOIJULs3bOLQr5C0AoxPTlLKj3F6NgwsXgNut+knM+iyi64Analgs/wIysqqqGRnh5Cll0EJYJdziGqIorskSvOEAwmsT0bVTMwA0EqFfDcaYRSBSncgCiHsEt5RE3EH4gzOjbBvfc/RlVCJqAqCJrK7KyMptrgzIXqluwypuFD9Cr4dJV0toKmB/ApcGDfCEtXLMPwG9j5CoIrcnTgILpRRBUUZtMFNN3CsHRqa+vJZzLIosvE2CR1SR+GKuMJKqKqIAg2oWA7jmRTzlcI+UPkS6Ns2zVFZ1sdfj1LerZMTV0z45P9uMUK08PT+Hwult8hPVvGCEoEAxq2oyH4gkiShyipeAh4tkel4uG3giB6mH6FYChCS2sro6MT7DwwQNGNsmXLPtrqwzTUWoSCPoYnZO58aD8zU0UyJZmR4RkSNQkatV4ET+TqP30K06fTVFNNZnqCx57YhOiIPHDHN0kkqmlceg4+zYcjzBX4enlez0tA8E6+/Q9wIjHmv6LZjstjfQnS6Ake/Nnf+y/fDATE53y04/d/kcjMk0dxnjyF7L8bcp+ds/dnxfe/5jo3GVGS/g+WZZrD34nrK4DrPr936PH4axGkE9l+IWl6Ocec7DPgBBV3/2v/k/WFfQ724SfBA6l52V98Df5Stfh/cvyrhZezYvWXhkOf1O4LXycv814LqkQkkWTRvG7uuf3XtNUpPPn4zykWK9Qm1/LtH93I6d1hFCNCJbqMRx59lC9eczXLTj2Vz159NW9+85XYdplK2eXSSy+ltraam27+OfGeNXhHNjCbyjA6kSIU8FPIV0hNzxLTirzpX26lrbWVs1adwRMbnmR+dxdVkQS7t+8lmQgR5xgFT2f+wqVMTE0TSySobWigXCxwdGgIQzeQRZdovIp0NkdrSxuBUJCWtg727jtAa3sHA/394IFdseno6ubIwCB98xeyfceeuRByoCqZZHJkDElUOLj/EBPDo1TX1rDxiSeYP38eIyPD+E2TcmWWZKKOil2mvbODiu0Qj8fRdB+KrBCKRbGsMJqmY5omkixwYO9umhvqcJ0yjQ11uKLM+MQEhm6QqIqRSqeork5iBEzAJhCw2LZ1B7V19SQSCZYvX87OnTuRZAFBUNm7Zw9mwMf4+BS6YeJTTPLFIlVhi7Itsn/XPsYnZtF9Jo5jc/jwQQaHRgiHI2iaRjY3S6IqSSQSoVQpEg6ZVFUnCEYsCtk8yrOhmw9seJDBoWFqa2ux+ksUi0WUJdVEImFEWWTXzj2EwxF0w8Cp2ExNThAIhjF0nUwuhyy4CDMHqFv7aexSmv7De4lHwtilEjfd8iMkyU84FKeYz6IoKkuWLGFycpxDe/aQrKllNp+jqrqG1s56ZNGipaWDQMBi9ZpVXHTJBSiawmmn9WEEDZAcctk0/kiUt7ztHfzqV7/k4gsvo7HVT1/PKXT1zKO//yjbd+zg8OEBZFnm2i9/AUXT6Ozo4VMf/xhDxwZZe85axGKZhromDu7ZRX11FNMMMDE+iygqmH6LM1eezcWXXExHewfzOmsIBzQCusLg4QNEos14rkI+ZxOxdDq7uhBEF1WViAQjtLV1EC4epFQpM6m3cMO3buDiSy7i1LPOZf+Bg9TXxXntmrNoaGrFsizuuOMOgqEgdbX1NLe0sH37DgrFLM0tLSSrq0lWV9M7r4dAwM91132dtetew+x0ho9+6KNs37KZZWefjegJeMUZRHkcTbT42Y/v4OzVS/ApFhPjx5AkB1URseJV/PzH3+eM05bR02rxgx/+jKu/eC1VVb18+Yvf4JOf+iS989vp7G7DJc+eXf3UVLfQ2BJD1TTuuOOPXPf1GynIOvPPWA6eTSQU5/Zf/4b169aSzeR48KFH0X0S9XUJFi/txPAr6LoP1xHJ5dJ4OCxc1ItlBVi9/rVU19UgqTLlgoyqaPR2dxMIWHhWgJr6GjRVYHx0kKBeRzo1jiR5IErIkoptVyiXywiuzMqVZ6MbCroWwaf5qThl3vr2q/B8BuF4ElVTKZVLxKvC5PJlIpEaUCw2PbmV9uZG5A0G3hTE1gVI52YJWREcR6BcBrdic8H5r+f97/8gDz7wEA31jfhMA39Ax3U9PKHIb3/1K8KhOOFoNY2t9TgSRBIxtm1+itTsFIri4vMJeKKBPxqjUvFITWcIaAY79uznw5/8f6y+agXekll8C+HAj0YJP9PIQ7s3cPuxW6n0w5vedCULF84jlZ4iGIixcdNmaqpqcW2HfDaDIssgq1imRTqTxeczkCQFqCA8+36slCXMgI7uDyKrPjRdR9FMtu3cTUdnF7/97W9paGjEp+scHRygb147qipSXVOLrBgYuka5mMZvakTCVWzfvoPly5ax9ZltnLpsHpF4gHAsyVNPbsIwfCAI1CSrEAWZseFhggGTo0eP4XkutfXV+HSNfLZMpeJg6Abp7CzJ6iri8QQD/UfRFINU+iiVigOihmH4mZ3NMDWZxgoZuLaGIktkc8PInoeqyOQzeXSpRCmbQxMLOIVZCrkpHLuMIkkUcxNUJD8DQyN4rk3ACuN5AocOHCDkN/BpJfyGTKXicXB/P4lYAEWWcCgiiiKapqFrEoX8LAEzxKGDh5jfU0siWiIRTTI6nsN1K8Srq4mF6ijnxvGZCpkiaL4Q2dksuUIZx3GYmhyjpi6JoRWQRCiXbSQBRLlArphH0aIoPg9PM1AxaKjxEO08IgKBkM7Tmw7R07scXyiEFBAJmkFcN4fj5DB8flwnRz6fxtRMbBEyqQwikJqdxQqE2LN3PxOTEySra9ANC8NvUVvfTDFXoDqeoK25nk07xtACTTz05CGOjjucfdpSdDNIS2cfohJgYHCU+bFTkJDob9nKxZdeyuDYBHlbYN2KlRQGbqGxJYoVqqXx1HUISHi8OlFrf00IgvDf/N8/z/n4HNKXUjuFFxb3PH7Pv/wavJji+sJFgRfO56T7PWvypQqe/m/i78T1FaBYLCHL8ouSwpOtlDiOc9KiTC9XpX0lx7yUjZcaOz78Fk6cUwrPEldhro/rc/N6OSXMXy3i+XKO/Wu03Xk5YdavxM4rIbYvRlxPtCL353vpejh4iLLIzOQ0f7rtIdatms/RwR10zqtSlwAAIABJREFUz+9k5erzKcYXUfTP56w1r+WtV1zG/Hk9bHjwYb7ylS+jaQqCCE8/tYXR0VHq62uRFYmujg78zYvwH3uA328rsKCznt279hHzg18T+cmDhzn3defiD1rgpckWJhgcPkzZKRAgR3pgMzlXZ+eOnXiei2PbjI+NUyikEcS5dhEBwyAYjWEG/GiKxLHhYUaODXP40CFisRjbtmxm/rx55HM5JFliZjpFsVCmu7sTEAkGgqTSKTyvQi6fxzANnFIR07KIRaO4jsPQ0CChaISxiTGqaxrRdR1JUdA0H7hguzZTk5PYlQpWOMzI8DE0VcPw+5FFj6ODA1hBi9vv+B01dfUkq5K4jks6nSYYCuEzDWRZplKxAZf6ugbu+uPdDA8P09w8d75tW7cRj1czMTnB0qWL2LFjLwcP7qe6uoZjI6PMjI1gWkEMVaS5tQPdpxGPx3hmyxa6OnuZmpomHo/huR4T45P4dB0Ej3vu2kCl4jE1myURD3HnnXfR1NhCS0sLI6PjTExO0Ja3UBWV8WoHQ1epuC4NDQ1omoZrV9BUjYDlRxDnqjBboSBupQTT+5iuOZ+qeIxg0EKSJGZnspx+xplce+1XWLtmNVZA5+iRGeTpR4goNsFkOxXHxRNFNj66EVEsMTOe5sENd9Hc1kE2P0sunyEer2J6chh/OI4k6+gC2LaA7Th0tjSxc9cW/H4/8VgDVjhJS2sLuqFx+pkr6Orq4/vf/y4dHV2Mj0zS1dnG+nPX43gOH3jvh9iyeRvvesdbKeVn0M0gF5x3OYpq0NzWydT0MJrq473vfQ+z02MISMiShiIbIJcpV3JMz4zhFWVu/PaN+AMB4vE4Dz/wED09fcjjW5FkGaPrLFa95mymJqcYG09zbHiIZDKCJ7pksyU++tGPzhXm6u5B1w1isTgPPriB3995O+9+9z8wPTPDyOgwus8POFxy6esRBI/f3Pp7/uGd76GxIcnA4DGi4Wr27tzCzPhedNlkwcJlVOwCAb/F0NARaqqrUWSNYqnM735zGxdcdD5+JUFT6zxqm/30H9pFR+t8Tl25nEBYIRmv5qc//SFfuvZ6zj//fMIxg1LJ5vrrv83119/AKSuWkp4ZQ5Flbr/jDs5/7Wp8EiDJ3PKLW1l+6umEQ348r8LIyCR/vPMeenr62LDhYRoba7GsEPv3HSGbzmD5/eQyaTbc8wSq6tHV1YJuBtAUB11TwRGwyw7/9KnPcNqKRcRjMTLZEoah4+EgSiBLCulMDteR2Ll9J83NDdiCg+rzk88VcT2JqfEx5vf04g+EUFUT2/Z46vHHKeYLHD64n+qJBgRRxF3icM3nv8B556zCCkb5+nXfZNVZy3ndeecjSSL33XcvixYtxGcYTE6OYllBZFnEUHUaG5upuA6yJjMxNojfsmhraiUWDZPPZ4iEIyAplMoldFVBdSE1O02yppbamhbiiQSJWAQ1IuI/U8FtSBHNJjknfwkNzfWMVw/iLwcol/MUi2mam5rwqCAKJR584DHqauvRfCb5bAbbsTFMc67gmuAieCJI8Nhjm+js6iCbzSHL4LgetiNhGDK3/eK3rDtnHbbjMDMzQyZbIJmM4bgOBw8dZcuWrYRMjYAVRPH5ue+ee2lrb6G1tW2u7YrlR9cNMukczc3N/O53t1PfUE/ACrN71y56urtxBYG62ipUTSU1m0JWfNhlm4GBAbZt38Ipy08hlZpFlmRKhSKDA4PU1kaJJ2ow/AEKhQL5XBHTtOZ6EAej2JUSmuQi6UE8UUTzRxE0A5+ZwBOZU/dkBdUMU6qIUMqjmNXE441YgRiz6SlkSSI9M0khM0t9UwhFkkDI0NrchuvkUWQfjmAjus9GoXkOEi7gUV8fQ3DyWIEQDz/0JE0tzZSdNIFwhGK5BG4eRSxxbCyFFari4IEjVNfUcHSgn8npSTZt2kxfTzMiFXTdR6UCoiDj4WLqMfJFB9UXRJEClPMD4HnIkoiAi2V5iJLG4HAay0pgmgauW0YSyyiShqyIOHYRt5RF1y08WyBoRfEEyKSz1NTWE4/HmJ0ZRlVECqU8sioRjcaYmpggHInS0dXG0xufYsmixaw4fSmGEWTbjr14kkjf/CWomka8XI3gCbS+tZ4jB3bTVhtlvH8HN/3wo9QkZFaseg8HD++hduEqRElB8GSEv0AR/Vu3sjm5L3ucn/XCysU8v1PF8UUzn1NC/2vf5/uPLzca84XRfsfn8s75pic+Zm47/rgXkuzn2/+/iL8T11cAWVaAV6ZmPjcmSdJJCxu9FP43HqDjifiLlQp/LlRYOS7H9eX88P6WxPXVOM/JbL1aua6v6NwvQ3E9EXy2hyd6FHCYt3AR6849ldt+fBP1Va0MDI0QT9ZSyOfZ+NhG3v3BjzE9NsjShfNZsmIllVIO3fBx5Mgh6uua6e7uZmJijJaWZrZu28xYOo2qWyzQjjBalDANE4MMolfhik99mbqGRjK5MvFYC6ovxDNb9tHZtRRm9jPTvxnZSuKWy2TSs4BDZ0cblmWye+9+erp6GD46yjPbt9Pe3Y4iuUSCQdKpFCErMFcAxCuTzaZx3DKaojA9OUN9bS27d21jaGiUmmSSrdu2kqgO4w8G8Af8uE4ZMxBGVWTK5blFqVgyyZ69g9Q31pPLptEMHdtxyWezDBw5QnNdA9lsFl9AQ1dVPFdENUwCfpPHnniCxuZWFixajM8wmZ6c4plNz5DLl2hoaMRx4eDhI8QicR5+eANViQSnLDmNUNhC1WSikRitra3ksgUcx6apqZaO7m5qqquIRyNUXBHKBSKJGAG/Ryga55GHHmR2Nk1TaxshK8zk5DTJ6ji33fobHFvAcVxiiRjNzTUka+KYloHoeRQKZerrG7FtG1FWmD9/PureFJVyGbvPQpJAVlVst0IqNYuuqczMTKKbJh4i2WwG3TCQSlM46WEiZ3wIQfVhCx6CYiDIPvLpChdecB4eeTSfxt13PUln+Xfkj+1A7FiH7tPxiQo//u5POO3U+YwePUIyoRNJNlFbH0U3feh6kLFjY1jhBtIZl+2PPsCjjzxJc20Dt930M1538Vl85dqfce899/PaCy7ni/92LStXreBb//FNzlq5lqVLF/GWN7+V9pZOzjjzVKygxQUXXcB73/chDvcf4Vs3XMdHPvJuJidTvPs9H2bewqV4gkgqNYYkSVxz9TWIgo8bbvgBXd2L+cZ132XVqvUEzDjBQBXXf+mbnLb8DF7zmtV84QvXsmvHNvrmL8LKHwQBnLrF5PMZdu/eS342zYKF86hpaaKqvo6IP0QoFOKzn/0sjz7yBCMjI8TjUdavX8sll17C8MgwVjDIffffR2/3PDSfzMc+/hHOPvsszlixlqNHBqiqstBEjU2b9nDKqcsIqQKZ9BhNrfU89dRBItG5iq1jo1PoaghZ8li3fhWeTyRXOYwnCQgVkeJYkM9d+yEuueoNSKqDLobYuPFJDuwb4s1vuQx/MISiaVx2+WXkClk2ff5q+hSdcn2CRacsYOjwbnq7WpnKFVi75hycsszsdAbd0Fm35lKuueZqHnnkIWqr26irr8VxBK772o28bvUqAoaOXSjyhzvv4cLXr8O0VCZnZziy9XH8PgOkALmCx1VvOh+EErt37cMTVfL5PLF4hFIpz9jECOFIFZ/4+GeJhjUSVVGQFBwCPH7/Bu64/U7Sk1OItsPwWIpf3vpLTjv9VCI+hy3PbGLt+vXkN3rousnRxDATo7P4fXki0QR1dXVMTwygGQrVNXG6u9vQdZmKIxKJWDiOy8RYmqb6RjwqaKaE7Mr4VZGR4TGC/hiyNNcqLDWTImD65vpFOw6zQ8MMjh0lkUxSXVPHd2+8hUWL+sjmJhkcPEhByuJbmCPdfRhd8iP+KYaes6i0phhK7iGaa2d8dBJFkmhq78CxHf505z20ttchipDLz7ULE2yoVFxst0R3Ty+S4M0VLaJEoVTk9l//kUULWuntXICgyEQiEX7+85uxrCqeemojrS1thMLVqNiEAibpnMutt9/Dm6+8AEHwuPPOuzlrzdn88Q8PsGXTdlIz4yRrali+7BS2btvKbK6AXSnT1taCZpgU8zPYToVQKM7sTIFgyMRxKjQ01uB4HpFICE1RmZ2eRRRdYpEqHMcllZ1G82lYwSCyrOLaHsVKBlUS8YoS+fwouuLh2DY2PnBECoXZufGKjVMqIZYr2M4UshliYnyK6dlpQuEAHi5upYgs2OzcdYCRwRxNTRaOU8SuFHBsCdmnogoqrudRKRfRFAXN9CFJArIoIvkUovEoO3cdpbvzLBxHZHD4GPU1beSn9oNqUtfSQ1VNEwMDB2lrb6e9rRtd97N180aa6xM4ThFHLiGLOq4zRSE7ixFKYBdSOLJN0Azjeg7lYgbBVhC9EsVSGl1XsQwfqhllcmKSybGjBCw/CDqKJCJ4KYqZEfLFHLv37cEwIqRSGWzHRdd1VE9ibGSKqngdriPjyjaWGSAUrWI6m6e9Yz6gUKFCKl2id/4CfJqAaQUIBfy4RyVwBCa7n2T44L0M7r6FuLKbRX1LaVh8HvtHh5gYGqJt2XpkQUX0hLnG73+JD/R/glQd78OefAw4IXE9fs9Xxwd+6arCfx573oLB34nr/wn81XJcXfHPuYMv7Jl0MlL63NjJihW9EmXyZPb/N2Ef3jinuLYsf97nL3dV7MWuwav13V/t6/Rq2Ho5KvtJ1VNBfP72Ms9nS8+2xhEkHCTyksWjf/oF5dwwjc01HDowRG3LAuYtnEfEbxAKm/hMk3ymgGWFEAQZUZSJ1kYp20WSyQTjY2MsWDCfY4OjhOoW4E7uwQoEkVWNhJZHbDyD2+7bRkNDE6FQkN27d/DoY49w/vnnMjUzyp4nHyZQ2M1EwcC1SzS3tHB4YICOnm5KFY+nn3qK+QsWUXKKLJjfh+h67N6zH90fpK6hlgP792OXbQaHRxFEmWDAT76QZeGSU7Bdl0gkQHVVNU9t3sSy5cvBdbH8ATLpNNF4jFQqg98fQPWbpManmJycYtGC+RztP4xhmBi6TrlUQjd1JoZHiCarCFgWRw4cIBKJY7suR47089ijj3LmGWcxPjaO3/SjaArjw8dYsmQR4ViI4eEh4rEw4cCcg/TkE5vp7enk4ceewKepiKJIKpvlmc1bWbC4j4amBrI5m1/ecguLFy8CQUCTZQ71HyIRq6VQKiIpJiPDU8SjUWTPxm8FqNhlNF2nqakGXfNRU1OLpEooikouW0DTTRRVo74uya2/uIW++QsR8fD5BIyDeUZHxwmc3oQoiEiCgueBaZgIooTpD+K4NqIAnm3j0w2K08eQnAJC87nYxTRf/eLX6JvXi6oKKLJDKlcgELIYGxmhOqFizmxGkmUKVWciKRqCouL3KbT1zKOus4PRkRQ19Q3ofonJqSluu/VOlp+2AEnxcLwiDXXNdLTXEKuy6Fi0gkJZYPXatUiKyKMP/oG3XXUh3/rad1m+dDGSKiILGnbZRvBcqhssdEMmM+3wzqveSDgW5F0f+CBfu/H7nHn6QiRR4ao3X0FqeoxHH3yUlWes5K4/3Mm8eQt497uvor4+SSDgp66hFl0T2bf7KS54w5to6WwmV85x2hmn09o8n8997nOcMz/Mnl17KFldbHzgcRrqm9m8/Rn6+nqxDIsbrvsWy85cgiDZxMJxens6SCbj3H33nRimSirvErJkYrEqrrvhh1x0wbkkqsKsX/869GCYXGYaQXTwxxKUK0V65zXgUaRsu1TVtqNoIWRFRUSl/8gxOtq7GR4Zxh/RGR+ZIG7FmZlKc+Wl7yOfz/Hzn/+GH9z8U0KWD03RmZ4c4Q9/eIC3vO3ddPS2Uirl8Gl+pmcmQCzSt32IQNbBOXMZ5UKWxpYWMoUS0+MZ/JrAd/7jBkaGB6mrrWLV+nUkE3FKhRKdXZ0MDBzEMAzOOONMUrkZZNVgcnaSdeedy+jEGNXVTVx2yTv5yPvfxcc+cy3nXXAO6dl+ApEEohbl+9/5T558fBOve+06FFlCFnzYrkPArzCvq4eurnp8PosH7n+C6mSMcDDCgnl9bN7yNMgyC+Y10d7dy8TwMDX1jVTXNTE7W+Lwb48RCVlEzoB1a88ikIgRisT5zje+zf1/uo8LX7cKMxjmnrsf4je3/J7XnLMat1RmZnIC2wVR9UCSUaUgnmIzOZbhvg2P0rOwi4prU3Ed/MEgoqfiygKOCCWngj8cQNVNhvYeZMWZS9ny9GPs2XOAW26/n69d903e+8F3oAcsxuQxPnPXJ3jtFa9BeDhC1ZEOnso9TGHhOBt++ATdHW3opm+upZKQw7Ii6HoIUVLnCteJAiABHhWngqL4AAldC9AktKI7YR5/chOBuA+r1yCrTrMl+yjBdIT6pjpEsUQ4EuPAkQEK+SKNdUkE1yaerKVvfi+/uuXXrFmzkoWLe5EUmV179xIJBwhZYYKmysCRYWrqqlBkGQGPYjmFKgfYuWMzhiGgihIBK8nNN9/GvHl9eIKDqqvU19djuxKirLF7514OHxxg9659HNh/gFIhz9Zte5k3fwm25xKKVlGsyGTyLj6fjvRsBXnXmyMPZjCK7bqQnmaq6FHf2IuhW9jFElYojM+wSGfKBEzobTeQ1RKq5mdyokQ+X0T3OdjOnIghShKSIlMoFBCYa4MlOR6CbPL09qM0d9fjVso4zly+8d49+2itD+CKBoLsZ3xkGNv2CFgaqXSe9GSJUDiHrvrRZMiVKwgVB0k1qRSLqGYcV5DIVyQM3aCUn0XUJGwqmLqGnR2mODNKLtdPIa9RVbcUw1QRZIdyKYOi+JElGbecIRaJUiyBJAoELQtd13BlkUDIYnTsGIJgk5lOoRs+NHPuf7D/yD7qG5MU8zbBgI9D+/fS0NzO0KFBVFXGqzi4bonHD36GpJkmFgnSPn8VQ5Megwc3o5WPYmkhbFcnXFc/l/f5Mv2hV+I7vRRetQi8Z3NoT+yCPT83VhCey2idI7lzGa7esyLE8eG+7rNq6LNkeE7K/fPmPWda+G9084ThyifyIeHZWiieAN4JuqGIr2ZboL8O/k5cXwG842/ySSqVPdc25kRjfwlezMbLyXX9S/Fyf9z/U+L6Ynil4c1/K/ytVXJRFE8aav7Cc714yPHzX2yuo7Jm/Tp2PL2ZQwcOkJkepjN/N8KxRyhUn4mqK9iuy00/vw2n7LF37w4aGqsJWgGymTR2pUzFrqArJrFIgltuvpV9UyrLY+Pc+fQxeiNFrrllC2NTGbq6u/H5fCSsINs3b+Gh+x9kYe9ChidnaKo8zlMHZohEQgQCARYvXgKIbHrscaIRi0jYwvQHmJicpP/oUdo62vH7dXL5HJIk0thUjz+g09LWSiQSxRMUfLrO3n178ZDx+VSmJrMMDBwim8+j+XQO9w8iyRqxaJTB/gHitUny6Sy630TzaYiSRD6fp1wpo6oqkiwTjUQRFYVcNoddcjhw4BDJZC3jY+MoCrS2NpNOzxKLRxAFkSOHjvD4E0/S3dNDMBhk546dzEzPEI6F6ersmeux63oMDhwmGY8ST8SJhOd6/Cmyjwc2PERDbZK6hlqefPoZdm3fxeo1KxEFGdezET2RUqlIZ3cHZsgCzyWVyiBKKqIkE41EEEWYmZkmM5Oi/9BhklW14HhInkuhkKGurpo/3HkXHZ3tqI6EvyFGpVbHdh0QZRRNoeI4SIpMxa5QKZeRRAmf5sPDxSnM4uYnySRWEgybRCIx6uoSuE4eUdax/D50VUYTp0ASUCa2YrsCofkX4joOIiIt7fXYVPCbPmpqqnBxGR0ZYXRkhl//6k762tsQHI+Lzj+fQs7mkYcfZNHiRYzNjBHQLb534/dpamwkn7G5+eabCAWTLFrcR0/vcj74oXfx/ve/ix/98HvEI2H++dP/wr994avc+8ADbN66hbPPPpOVK8+k4np85EMfZ93ZZ/P6151Lz4L5PPb4Y3z4Ix+mr6+P2dkUum7Q0NBAsZTC9JtEI0lcwebeex9gZjqFYfqYnZ5myZLFxO0BdN3g+l9t4u4/3sO+g0e45ac/ZfPTT3H5JRdRX5NEVBTcssePvv8Ttm3fTktLC41NTSxcuJBt23bilEqEQhbrzl3N/t37CQYDbN2yCyevYNvj1DZVMzhSJjM6wvTkCPnsFG09SyhWoOyJKIaf9NQEkXCCo4NHCUf8hEJBfJoPUZIZGpzmjDPOZfuebdS1tHDWyuVkc9NIosJNP76Nt739HfT0daAZFXySyKUXXUlNVRM3/+w26gYGCYaCNL/lSt7+1reTL+QYGRmmvb0L3dBAkJi3YD5V1XHC8RiqrPKtb95AJBKmu6uX++7bgGUF+PrXvsGSJUvJF6eRRQVdE1Akj6ve9CbUWJi155yL4dPnwl+dAul0llVrz2X1uvVopkGuWEBQfJQLZYr5MoaucmRgiH/91y9yycVXkKxK8NhjGxAlgbNWrqSxoREzGERVTaamMzx2720cPnCAL331/2fvvMPsuspz/9t979P7mTO9j9qod0tykS133GTjgm06NoGQhFBMuQkhN/eGGtITkhACBGKKDXbcDe6yJFvNqqPpvZ/ed7l/DCaykGxhTG7+4H2eeR5pzlrfWnv23jPrXe+7vu8rvHvN3aSSc9Re7iWXLyKhUyzkWb9hGTsu34o/VkO+WCIWr+GeT3+anTe9nVJ5HEXycPcHP8HOnTcgK+BgUsgXCAT8tHW1IWJRLhUp5HOkkvOIiGguF5blcPJYL5MzRRrjMfKZab7xjQe4YFsXSxbXceWO27jjnZcjywK66sbl9nH5FZfia6khtegkllKmtqeL+HAzS99Zz8yJJA8++ASbt65DsKsLdkxZwRFUJAnMahXLruCIFmbFRNM0nIqAtU9FC6pMtfTR3tpOejiJdyxMR76bzcWLWeZfhYqGtkSk9+AIfr+fQNCLpin09PTR0dFGpVwgHI7y8kt7WbpsEeGIj9aWDkzT5vEnHmfRkk6CwSjhcIipySlC4QC5XAlJknnwwUcQHKhYeQaHJ4nHo7S0NKLrGrIk4VhQqVbJpLP4fAatba20tbfS2tZEbW2c9o4uREniqZ8+RaKhBdOCYDDGwT2HaWhKMJeaR3cv1NrOFzPoegDHnkHTDKpVNxPTU8RjYcbGxjArFbKpJL29JRqbHDxyA8VyCrdLwWXIYEmIqsLw0DAej3uhrrckks/n0VSDcrXE1PQUkhTiwKFX6OhsIRavY342RyQaRSZDtlClULJpbmqjXK5iUyFek6BcyOJYVUJhg/m0yf5DA7TW12ALFbCqOI6D4XKhGm5yOZOAN4xlZxAFGyywJRf5kpsHHzzA4k4/ojiGZDQjKQajYzM4eBAp4PGqYBewrDTxSBDLlDl0aD/YDulUGttxECWZmanpBQeOaTE9Nk4wGELX3eguHVHVCfp9CDhUUoMI5iyV+RwqEvaSpxifUSlSx+BkjgcfOcgF269k3wvPoykLCm9b5/mUdBPJ/i/b7H833uyYZyq7eIbov/jMcV6bJOqX25/9nOqpcX7JGvxLTc9MXF/znXNxi76F/OU3hd8S13OPicBC6u6Fh/b1M8a+lTibBfdX3RX5VetXna3da8iR5kaKtCL64r94SVVVOWvCpzeMdxrpOtucz+UafhNnW9+qeJZlvW6sU+/1uZRQOqs6+5p2r31+JAFKkoeV23awdPV6UjmHYP4Qs1MT1K67iUoxhUdXGerrpamlida2ZizLRhMF9u/fh+42qG2sZ7i3j7/9m7/h+uuvY/HSbvrmHS6NDSIK8OSgQU28hrGRUZ574Xli0SgbNmyivqGVVCqPJErUlnZRu3gbgWCcffv30drWxOjoIPl8npWrVnLwwGECgQATkxOsXLMKRdcp5QvkckUStbUks0kkFBTNoGqagEjIZxANB5lPZvEHfOi6hK6p1MQj9PX20t7aydjoOD6vh1w6g+5bqHmqqho2FqqqMTkxSSazYHd89LFHqWtoRDcMzIrJnl0vkkomGZ8YZcmSRbS1t736k0c3DDLpDC/tfpkb334zCAL/9s1/QxIlcARUzeDpnz3D+PgIq9duYGpqipa2NiwHsukcu3btJjk/S11dmJa2NkRRpLamjpA/giBU+c8HHqK/t4+mtlYSdTWIEvT29pFL5zly7CjrN6zD5XdTKRV4+umnWd69homJEWprY7g8Xg4cegXD0Mlks8Rq6lixZiWKqmHWGlQTKmapiojI0cNHCQUDCwqr5SBLMgCKrDA1MYXboyNUc4iVDP7Vb6diGUTDtUiAISsIikFqdhTNcbBkFdVbg9n7BI5lUolu4NjhI0TDEbKmjUt1UylWKQHVos3/+bMvsXx5N2+75nJCoRgH9+/nnk98gpf2Pc9d77+Lnp4BWhd10nOsh9aGNg6+vJ+fPfUMkmzy3ve+D7fPQdXC3LBzB7OzE3S0LmPT1m14fDXc95P7SWayvPvd76aQzzAy1Mff/MW/cP62C9h+2flIukOkJkH3yuVYjkW1XOCxR3/G8u4VlCtZ3nHL7XR3d2NLkMpMsrhrJXv3HGBZ9yJss0ggEODex15i3eW3s27bVibGxvD4PPz13/09N916E96ggT/sZf/LhyhlLWLhEH/6xS/w8U9+krqGevLFIiFfgL6eHppa6vB4FRRFwOt1UV/XgCfqoq93iFf2H+UvvvYFtm49n5Vr1pJM5ygWyhQLRUqVEi6XwsF9+0gliz9PtgPjo+PImoYJRA2VZ595mvfdfSPdq5biNtw88uhDtLd18uILL7B2/Uo8foXBoQE8Pg9XXn0tB185wE233ED7+CyWbfGdoWHWr11HXV0tsVgUWVYoV8vE4gniiRoyuRQuj5vrr9nJddfcxJZtG3nb1Tdx4kQvHq/OHXfcQktz68K5PEnEH/IwNTeBy+vCKpbxaBLDE8O4IyHMbIVE2IekSghVm0oxjWOWkRyBTC50ie/XAAAgAElEQVTFs0+/SM/xk2zYtpELL9rOUH8vdbUh/EGNpqZGcERuufVWbrzxGopzc9z69tv53Bc+T21jM21tnUiHDWKRCIXOcRRVZ88LB2msT6C5RCpVgWK5wszgOJVsjvt/fB+33PY+7rjtAyzuWsqyFavxeAwQoFwy8WgGGBKqIuDRdGRJwuNyMTE2RiQaRZQ1qhWb44dP8Ie/93tcdemViC4/l157OX6fH0XS0b0qudkZVMWDrOlMTU9g6G527X4al1shrRf54dC/s3ffS6wd3YFaNOhY2owa1ZlTC+SbZtGmDSTHomxVsUwLTTMYG53Gm/XhlB2k/X5yjbPkLptgT99ufMtEsrXjxC80+Nxj/4sL/tdS3vPXN3P9e66Hn/kpD1ucGDvGeGCQJdFupqeGqG9qIl+w6DlxmMsvv4yJiWlmZuaZnZrC8ATZfN4mDLdGIBglm50iHPIwM5dm/75jJOrCbNxwAW63h9qGFnw+NzXxKFOT4xi6hmXaaLpGKjWDpmm4XTrVir1Qp9gsomsGM/NJpiYXzmfG4rXkMklUWcQWKszNZwgGaxgZHUGSDFRRx3agajkUk8Nk8wVaO1dSMW08Xh+mWaW2poayNYqIgKQW0AyDclmhagogl5EUHY/Hi2OWURQBx1EQRZBEkYoDAZ+b+dkimu6htWMRqXSOubkZHNmPbE0iiCKBYJyBoVFaWtsYHRtmfHyW8dFeJicK1NbJHDowgyM61CX8CJIPWTApF+eoFHMMDk5TU9sEuo9KxUGwbBRFZnIuz8NPHGLrBXUkvDqyozAx3s/kyBDzySxjExPU10YQZAlV0TBkKBamMMtTeHQQLZNCLo1VtXC5vFiOTcDnQpQg4NEp5nPkUkkmRvrR1QqzI4cozp1E0asoio1YDuNUg/xg5iXO3/l+wk2r2fPSOOdffDHRpo3MzOg0J5YxMPQwKgFCTa2IyK+z0f7GsCyLvXv3UldXd87JhN4KNfHUOZ/RMeictmb/eXKm09dojuP8ou2Cm+7cS9qcWvN14es0p94ZrMJnu5bXTJ3/2YmZ4LfE9RwggiOBIy0kghAFzkRa/8sS8OZeiDciim/U9vRdoNPx6tzeahIn+mILXz9PyCQIAtVq9U2N80Z26zPhzdqJfx1Se2qfN6qBe7Z7cqbP3ojsv76aei5Y8JgspD8XQVhIzF6t2ui+GB2Ll1Pte5Tp6Tm8W26mWLKwbJvOJW1EIl0YksiLe/bStWQ1zc2dmFUHAYmDBw9TU1tL56JFHHzlIMeHhljcEOWZI9P428/n2hvexk8evI9rrr6O/hMDzKVm+OFP7uPw8R6GDu9mU2KMo2M2x44f4+Ltl3Ls+DEStREi0Tgnjp3AHwxhVcq0t7UxODCMz+tDN1yoMhSLZbz+KCePHSOgG4SiEVJz8ySTKUzLZGS4n5mhE/g8RcxSDlNwEwr6SacmOXr4EF1di8lkUvh9Abw+P7IuIjgCsqrjcmk0NjagqRoTExMs7lrG/Nwcbo9G67IltHZ10NBYTzAYwrJNRvoHeWnvXg68cpTlK5eSqK3l2JFj+MIGK5avpK21g6Dfi+H1oiDgMkQmJmbIZLK0d3Zi2jYj/eM0NMYwXBZtbXHc7jBHjx6jJhZkemqGUqnAoiVddK9cja6pTE1OYVsODfUNBON+2jtakS2ZUqWE7vaQaKhDc6nohkEgHESUROrqEqiGQqKuFlUzMM0qgmBSrVR5ee8BhgaGiMUiPPX0T+le3o0kSb94ZiVHRBAcPB4/TiGNmR4GbNTWq5BdbgRFwTEr9B47gisYRVTcyC4/kuzi8KG9hDL7EQWRD/3Jvbzvo7+HrtiUM2VcBkzPjGBIGntffJ4dl15MW2cHiq5TziVRVZNAUKWxuYvZ+Qxf+vJfsnr5Rp5/5nGWrV7BvoMH+f1PfYwnH3+K5Mwc/mCCaE0dWzdfgmAJrOzuoFgp09d3gquuuozuDRtQNYiGIzz7xAv09PWxbss6Wpd0UUFArtqU8jmCvhj55CCrt2yiWCmjyyJ7XtrNtddehS77cHkCGJrIl77wZ3R3rUYJBAmFo3QtXUqhauHSZdau28iWLZt46vGH6OpeimXDj7/3AypVle//4F6uvf4GZlNjbN22GccRqJRNXn5pP6rbRXNHJyYSMjbYbpZ0L+I9772TaDiOItrccevVvLzvELqm0dG2DD3kRZQUfvyjB1ncvgyX4tC+dBmbNq/njz/5MYpWBp+3hkpZZc8L36epuYa2tjXccN0Hufnmy/inf/wuW8+/kIuu2ITqVrFMi3ioBlHUUVSJ7uWLcbtVXPuOMzs9i7RpA3t2/5Q1azbgIKB7bKqWjK77kTVQNIH05CznX3wR3etWccm2a/j6P/0d3/zmN7nz9g8Qr4kzMV/hu/92L5u3rUSWNHzeMFWzTLqcJ5fOYXh8WI7IR//gE1xy2VUoskauUkSRBRRVw5Z1/JLO1EQ/Mh7Gp/rpOTxKc1Mdmfkq0UQMQ/FRzRa4cseFfOFLf8X2i7djWjm6V27EEwwTcPuJ5mLkhBTF1mFcUoADLx/G8DsU7QJevQHRKaO5dPpHRnnxxX14fW6ee/5p7njn7Ty953m+/Z0fs279ZkJRkW//4zdZvngt1YqAJUgMT5zArUeIRoPkq0UMQ8WxHcpmiesu28Y9f/q/mcuXWbqkBsuBf/3Gd5mZTNPaXg+qRDqdxJAkbMuirrERX0glm8qwZv1K/ua+r3HH3+/kRGYfoZAfKaei9wfwPtuAOOhGrKhQhl0vPkOT2YV/oAbFJaG0ipjXJ7n7azfQtmQxWy/YwlDvUVauW8fDj+zi6UceY/sVW0kVNKbEE3x9/7c5MvkCO7fvpKt3HZMnZuhc3w7LikzumWDZolVYlTwnTwxQW1/DieOHSSdTHH7lMOVyhURdEEXxUDFNLMsmFgsTDkaYn5/GtE3choggydiCRU1NHTgCsixQtfL4fFEyyRxS1sWjP32ELnkl+okoFCU89QraIqj3tIJVxjZl5pNT1LV0EAhEcCgQ9kdxnBxz83l+8sBjtCxqJBZqhtIkNhrFcglRiSDgkJw7Sk28i30vHybojyJZJppcwq5WkTSNSlHA7dJAcCiVKqhKEFGqsPdght27xmhr95KolbBMNwN94/h9HhpbWhDMAmULNCdN1TKINrQyOTFPJBohEnMzPThFa72GLJRobIzTWK9TNQUefeQAXR01OHYV0akQCv88L4MlISkuBEHGtsAlZlmzqI5QyEtZMBGFMt6AQSzgxxdyOHgoR2N9GJkiFTOIZVZAlHFEE1Gy0D0SXo9M0Odw/MiTWKkCcjVNwFWlXJgEM4cmJVEpIlUmCEdCiJofR/QjSk3YE1H8RpzE2+MM9fYTC3iQ7AKJ+gZ+fP+DFO0KgZomquUejHya2MprETHfeNXyOusdURSpr6//lYSMU+O+GbzeOvuspPE1WXwl4Oc2XUQQX7UCg/DzWjSOA6LwBuVoTlt7nmr/PX38V0vcCK+O9SqfPtPaWvifrbbCb4nrOeC/HiSwz3pDf13i+nq233NVG99o7N/kw/hmFNE3E/dX/fxs+HWSKp3a743ivB5xPtPmw3+HPfr0OIqykHTMFiWc3icxq0U8nZcS8sfI5hfKKOSKszhWGkcsUVPbTiaXBtEhEPJz8uhRDr9yiMGBfq684nL8gQBK7Spa1uxgbi7Ds8/+jCuvvByvN0BTcxOdi9tJZ7Js2rSZvS/t55IlApYRI1coE4nFaWiow+NzIykG8XiC2WSS5qYGkqkUjY2NOLaz8AvYcdizZy/xeBxVUcjl8yCK7N79HIahMzY6wbJlKwjE6whEWjFFFwF/EMPtJhiOoWouVFkgX8wjKCqS7kKRFGRZxMHGa4T5zwcfZWp6ji2bL2BycoSx0Unuv+8ntLe0UC2XCQRDOCKYpSrDQ2MUS1USiVqa6uvIZXOUKmVCoRBejxfHthkaGiASjfDsU8+w6bx1HD96gmVLF/PgAz+mqaGe+uYQXn+AaLQZ2/ZiCyaabiAIEIrF8Aa8qIZO1bRIJWeJxaJYlokggGXBc889z8jAAPsP7MdtuPB5vGBDKVdA1zSeevJnNDY3UyjkUWQVx4IH7ruPpoZG3EWZpx96nPMuuQi320V7WycONvl84ecbU+BQpFwpIIgCVtWmnByA+gtw169jaPAY/lCIqi0QT9QtWEaxyWRSZCdS1NTUI089D5LMBXfegy8YpZAv4/G4KRTy5PJ58oUSzc3NC1lLFY18Po/hcRNJRCmUSlRKFo8/8STpdJYvfvEr+DxuLrtqB16fSnNrFwf2vczBffvwBfxMjp7kPe95P90rVvPjhx9m86YNPPbYYzQ1NfGPX/kyOy46j+mZCdZtXM95F19EQ0MtHkXDKZvc96MHWLR4Ma+8cgzHKQMakiwzMTHGO267DcuyefCBR/H4/CTicdavW8e9//FDrnvbDj76e7/DRdvOIxTwoulB7vnkZ7nyyivoXNqJoEDVqrB0WTfBQIBVq1bg8Wm87bpr0HUdEBFFiamJcT7zmXu48513gmPhc+u4XT4uuuAieo4P88xTz3H5FZdzsuckxVKFvr4+fL4Qii4iCSLLlizhnk9+kot3XES5XObuu+9icGCARF0dg4Nj/MFHP8Z111/PkpUbGJ2e4eobrsCl2GzZch6RaBAHnUK+jKqI9PYcRtW8WKaFIC6USFNf2E9v3wAb7/k4y9Ys5/4fPUTP4RMYgspDjz9DfX0jsiQzOzvHn/3pF7j1HbdiU+WOd9yI2yNz2WWXMTExRXObn1R6io0bu9F0F5lMBgQLHJGQvwbRkbBtAY/Xx9VXXcV3v/tdFi9ehKKp6KqEaZogKXzpy1+he/UKNmzeSlNDC4cP9XLe1m5KpSzZXA7LEZgv5Whe3MbI8CSLlnfTtbQbn0dC1RVkWcBYBoXGMuk5gV3PvcDGTU3UNy5CVxpJzc0xPz9JTU0dNfFarrrqSpYt7uKqy3cQ9Ln57Mc+zOc/81mWL1+KI0BzfQKfP8Cu3U8TidYQi/twTJlMZh63z7uwCSQquFwu6pvauOaqq1i3shufW2FuMsnlV15HQ3MnmqghqRL5XIZMao7a2kZ27zlAPNaEyxBwuXSuufZqUtk5mlZ0IDRZuFcYFJZM8JUDf8zyu5tRWys4LgjGvOirbCbPO4nnkjx9HCfS4OWWm25GNwwGBvqIREJUSzN0Ll7MspWLiUfb6OsboK2jni3bzmO61M/H/+Ej3PZ3VzKQ6aFOa0J4JkioWoM4qyDNuagtt+DMiCwKrqBZ76TDt4S4XQ/jKsK4hmTL6KKBbrkoz1Xwa0GCLV5m0hOIqky1NolSb1H1phmcO0ZEaWHgkSlqk63IkszijV0o6ypMrj6Mp91LZcJG2xfBPKbgVGQe2/04m29dS7FjEntQwTSLKIqGgEMgGOHkyV6WLVoCkoHqcVGY6yMYXkKVWSQFfEYT85k52jsWoWkuHnlqHy2ddUiSgFWpMDObxOXWEQQbUXi1koLN1Eya5d1RfIYHCQPNcNi1r59ly5aTSqeoVMp43QaqUGBgcBxFD6LrNrIoIDoKyfIsz+zpxWv4qIk62FUbry9E15JWysUkkixgWguEtFwqomg+NN1HsVLB4wtQNgsUqwKKApJZIVfSyWQVZC2LKnlpbPJhaBK6ZmKaZYYGRgmHIxi6D1nyYBhuHFukUrZoamwnELZQXSBoApomIogqVUfEEv1E2teRLin4oq0g+pmcmyJRacYsmOzTn2Z8ZJRUMk1TcwfZbI5srsglOy5GEVRGRo6zf/dznH/NzSAov/J65a3CW7H+O+tnr0tcz1x+5rR/LnCK15vIKeTzDSGcPr9f7vvqWtbhvzdr85vBb4nrG2KBtL7qU389onKqvfVc1M/T+55ujz1T/agz7ZCcqe/pc/p1H8RTlcVT52eNHYbcNKIv/qbjnjrHX3Wer9f+zaiq52qj/lVivfo8nH7vzoXsnyuRPf1aX0+9Ph2vtrUFkcrxh5BFhx88sZ9NWy7GG6hBFi1c7jAKKqFQPalcBpfbRalSxOP10N29DN1lsPWCbViOTc/xXsbHRpmZHqe2tpm//du/ZNmyJSxZvAxJk/iXf/4Hdt5wA1Ojk0TiUTrVYxwdmKOmoRmf34cjOCiqysjwKJqiUFdfhyRL2LbN6OgYk+PjDAwN0NreQX1DPfOzM4QjEUrlMsl0mlWrVlBbW0cgFGJgYJD9L71I/8lBPIZBILhQu1BSNXqO99DU3EC5XKauqQkHERywHAvLtDjZcwxFFVi1egV7X9pNOBgkncqyfftFmNUik+NTHDtynHAkgEvTqG9oRlV1wkEfhXyenpMn0XUNVdZQZBlVV4hGY9iOTU0sQTQexesNMjIywnlbNqNrMqoSXCCKikDFLPLCC7uJhKN4vB7y5TyyrGJZNpIIPcdPEAqGKBWLiILI9NQ8LS0thAJ+mhsbsUyLvt4+spk8J06coK6+jlgshiIryLKMJIqIyNTV1/LDH/6I1YN+1vhaEVfGqFYr4IjoLhXDcCGKIqIooChuJElFFHUsq4I0tRtp6R3kTBldFzGRUHU3iiwxMzWKx21gW1V0JUWhnEaa3EW5UiS86saF+pgWqLqMohlkc0VC4RAujxtJVhjqGyToCyAZOlXTRjfciAhs2LCZtvYO3v3u95Kcm2HZim4EbAKhGF3t7dx28808/uTjrF2zhCd/+jSHDh+jWKkQ9Hm54fqdDA0Ns3n9KiTJoa4+Qaliorg03IrO3PQMt9z4dj792T9CUcDr8fDcrufQZRdNTY0YPp3Bvj6GBicJhULsO3CY9rYWBGw2b9rMQN8rBIMBWuUppPwUf/WtB3nXu96DP+hC1DRcqkA6OY/uDlAq5KmUqwSCOprhWjiOIkjYlsP4yDA7d95AIOBF0xWOHj5ITSLG3FyKf/6Hb7N+3Vqe/NmTlKsWmzZuoLW1ldGRCRINUVLz81RKZZLz86xYvQbHruD1eFA9XqyKiWbobDt/C5F4M9/73gNEYjXE6ww++J67WbW6m1AwRNWS8XjcqLKErsq88PzLNDY2LFjpbRv1+f0kamspbliGL+hn/er17N31MpOjE3gjUY4ePcjatWupVmyi4SjBUJBMap5qpYLXpxOOBGloaOD48REaahtQVA+yoqFoDrIsIgo6X/w/XyQQDtHW0sD02DAur5dgMEAoFKRUqTIxNkwgEMC0Bfbs2o0DdHR0YFZMXty1l46uOPF4kEAwhqLqZEp5+of6CHhcNDQ1ontdDPUcxOv3Mjuf5o8++zle3H2Ab/7L97nwgo0s6oqQmrf41D1/zl9+7QvceuvN/Pj+h/H6fAwN9zAzNUciEcPBYuPqbp555mliiQReb4hSKYvf76OuLoqieXCEEjMTKQxDQVRkQKBUrDA+Po4su9BkkbH+HvyhMIZh8KUvfoG//OpXeHHXXi6+dDuS5FBbEyeVynHPZz7F+nVbCUd0HFvA5XKzZ89emlrDpDOzmFYWykVWb9iM6nOTsUYJLg9SCEwS7PIxPDGKy6Vjmw66JlMoVvF7XMzPzdLY2sZH7v40u1/uY9v525kYmWdo/BDbtm0nGPLR0dHJe957NxddcgF3/9HtlBoLPF56gK+/8ucErnBI3OigXWBjdg/huUCGNXmUDXnSbXOIG+bJtsxTUJLIdQ7EqhwY240WkCAl4tNCaAU3vr4mhONetIEI5SM6L+17mZV3tCDfMEd//Qn86xRmhWEq5PAsDaEurSBtmkVfn0FOuGjxdiIcdCM/HEMeX7AHp0ophuZ7SerTWJ0ljj8yjC8awx+OUc30k04PYlkRBAyQU2iGn9nZNKl0gfp4FFWxsEplDMmkbIr4vC5Ms4IiK+BY5PNFmhoSGLKOrGUoVYqMDJYYm54hmy3Q2NRCNBphZm4O0ZxHV1Xc/npsu4Rtgaa40dQC2ZSFLooEgwKa5qFUKiLIFRyriqxISJKMbRZwnCrCz58hT6CBakUCSccbbCCfTSHYNhU89BzvxRdw8Lr8iEIaUZAQBQfHsgiGDETJRBBtJqcmEYQyDhVUbSG3hSK58LijKEoIS3ETjLThDtWRrxiUcvNoksDE8CBHj4wSCLvxpCPIgsQz5g+Ymp6iVLJwefx43D7+8q++xsWXXEImOUOhKmNXpliz/nxEV/Cs65tfBa+X5FQQhNfknjn1+78OXl3TnTn2a3mCg30Kdzid1J4S8/T1+utM8VWr8H+NeeYzrQsW5NPantL3lyzM/8NtwvBb4noOWJDdHYdfENdz6vUWKIVvhdL6676ctm3/Erl8FY7jUN7zPeyZAaSWDb+RHay3ou//L+L6KkRR/MXP8dQat7/uWL8O0T0TFNuh2PsAimxw8MQgpuzGlHVw8lhCEUWsUCgVMHxB/EE/wXAQWRGwJIHGtmYMvwdP0Ifq6LS2NBGPhyiXBTq72pibm+Hfv/M9LrzkIoIhL9VSmXwmRyE7RXv1WSpaPYFogngihqppZDJ5qFaYnhijWMjgD4dRZJnenl4M3aBrUTs/efBhek6cIOBxMz41TUt7G7quYVkL1+nze5hPzXLelgtQDJHauiaq2XmqpoXm8lDK5xgcn6N7+XLmpqdwuwwKxTySqlLIlvG6/czPpXjhhT10dS7BsU3aWpvIZucIRcMkaupQJY1CZh7LrrDn5QO4XQa1NUEkRaetpRnRthEFhZGRIRwsBFlGUxWy2QKKLpPKVkimMrS1tZHOpBgZ6KE2UYNlOVRNCPr8JGeT9Jw4zuTMOM0NLRw9dIRwwIuATDaTw7JszKqFWa1QLFaxbYd4bRQHgUgszvDIKBs2baZqVphPpnjumedobW0hmUwxMTFN1aqQqG2gIaWjKDJ97lkMl4bL5aZQKqIoMqVSCVVVqVQL5PMZFFVBrMzhpEeR1tzNzPwInmgtustNOT1HJTtDvljE7/MiCA5Fx8HvayDr3UJgyXVUJQ1V1FBdAvPJGXTdh8cTRFYFUtksu3e9yNJFS8B2kFUZ2RL51Mc+w/bLLkLTXXh9Ab70la+yctkSItE6nvnZHn727BNEAkEGentZunwZTYs6iEUSTAwPMzM+zMjYBDU1CXw+P62rluIPBwGBb/7Lv7O4rYEnnnySYCzGVddfS//JY8QTPhTNYWI6y9999W/w+NzUtzcQD0Xw+2LU19fx8U98lltv2clHfvfDXHThhXj8HpYtX40w8BQUU2y96W68PoODrzzPxPAcXskmPTNLNNaAImu8+52/ww0738bI2OjP31GJP/+/X2DVsqUsXtxFsZgnm03T2FDPxOQILc1dpKezrF23hBVrl7Jmw0Z+ct+P6Ojo4OiRE8TiAbAdBAfO37KVqiJhlXJ4vC4sWccqVvnBj77Phk3rMCuw67l9fP5/fZ5bb7yat12+k2QyyduuvoF3vv8OJFmkUqqiSm6efuY56uvr8Xo9ZDNZ6B1FDbiZq9GgUuLBB/6TTVu28vVvfp3OxV3suGwLgugwMzNLU2M9n/jYPciCm+mpDKFwgGxunkq1QKwmQiEzijugIoleUulJLLuKVVWIBTx0r13K5GQ/qlDBG4qjGxqqqiBICooIsixTrJj0HDjGLTfdzNhIP5G4j3VrN9DXf4iQP8LMfJoPvO9ulKrFtrVr+eqXPsfyFUtIZ1IYiLi9QdK5Cps3XsAFF27hPx/+LhvWreP5n73IkeNH+N0/+AC33Xwzv/PhD3P5pddRX59AVit4A3W4fQF0lw8jFKVryVImJyaxq1BT38gPv38fnW3NyLqHQnGe69/2dm666XoUXUPXdURRplwuU0ql+PCHPsSOy66goskYukwipHHFtpXsfMfNpHLziIKI3+1h//4DvO/uO3F7DMoFk2rFxjC8LFm8oOrpaghZlhk88Sw1zZ14AnGcchXNZZBLJ/F4ffgCIRTFi12VsCtVyrbF8MAJ2tqaGZ+e57KrdvLxez5OZq6H9esuZNvFXThmiPd/4P1IoovnnzvI8hVL2bJtA35/lKa2Ni6/9FK8bh+OY1Oq2GTMIbRoHEuyMcUCrrAPS81ihLx42iRynjnK/jQdmxu497lvsv6OdsqtBfK1M4gb56gsH+SA9CjS2iy1F/tRG/P4gl5sQcPtMti/fw8rli9GFgHBwUKiooscHn+F+GYBq3uYnvrn+M7Be+na2kLQHyeQjuHqjbBoZD1NgU6kqM0/7v8aK2Nr0SspkG1MG5IzFbw+HyCSSMRJJQcYGM3z3N5hwg0RAi4N2zEBC1mWKZcrVMsCjpVDVstYjo4gewnHPDQl6lBkNyXLwePzo+k6QnkKXXFIV1UMPUw2X0BSbFyeRoqZWU6OjjIwMk2iLoYmm2iShumYqIqG48hkMhUMVcaqplEkE1OoYmgqkuSQy+Zx+etxDA1FKtOQkHHrcSxmEZ0Qbr+bTNakUgJDlxEcKJVL+Lw+VElGUhSqVYEHHtiF7pLwGTLzUxNUc0mys+OU072o5hSFzByCk2dirJ8lHV4qlSm0+SZ0ReYLz36QqZlp5tJp5tJZtm+7hGDYS2tbG4XSMF3LLqO/5ym8aoxQS8dvXN07m5D0Vog5Z83Bcrqq+hoV8+zE1bFPE7Vel7i+Fqev1V8zr7MPeYbA/7PVVvgtcT0HCDj2q7sSzpk94ae2fguIz5s/w/j6Y51NlXujsV7dKTpTO3NgNwIgn5ZV+Fxw+pnON3PNb0TUXqMQI/wiJfnZ3txfVU09Ha+XTOr1iOap/QRBANtBFMSFgwun/9J5C5+PU2HjUD3+EAiw/b1fJjmXYW52jmJJIjnYA5bIyFiS9mVdyIqEg40gir/4o/DqnHTD4Eff+g41kQiTY4Ns3LCBcMjHphVtzCYL1Ib8JBrqOD44hGYVqLMOE1m8g5JVRlNc/PTxJ2lvbsSyHWxHYHR0hqnxaVTDRaI+QTQa4sf3P0htTYIdl12MN+glNZfh+JEe4r39AhgAACAASURBVLEwmVyOcDhGtWoRi8UZGRklEW/AwSZbLjGfyRANRxkeHWXF8uWUKmUkEVJzM3j9HlTF4IH7f4Lb5WZmZoqLLz6fSMSP2+NmYmKSoD+I6vYgODaWXcHtD+MLhtBVnZpYFF03OHz4MEP9Q3QuXoLuM4jV1LBv/yFaW9sZ7h9kbm4ey3SYm5qkUi4SiYZweV0EQm4ULcB8ep7+/nFETLLZDK2t7QSDPjTDB4KEhE0oHkYTBQ4dOUrb4qXsfvpZPC6DfQf3U9/QhO4OoGg2iqTw0p6X8fu81NbV09HeymD/ECPDY/T19vHiiy8xOTHKOq0Jx7HxbO1EEhUcQUTTFERRpFqtIMsKsiihGl5K+TzC7BGUpq3kQitRjQBCtYrbH8HtdmEYOi4jQjI5h665QDAoFIuEogGQwTJtSpU0lbLFt7/xb6xfuxpJlyhVKxiWRDzqY35+ilKpgD8c46W9R1m/YgmmWcFQFf7gI3/Au25/N5/8xMfZu/dFbrr5WlYuW0U+VyFR38iBgy/zf+/5I975vndRU5fg2aefY3J8ilvfcTOJxiiypCKjIIkqnR3t+P0xDh86jtcVJOQN4XG70DUdrzfK/MwYv/vRDxGOhgj6gxTyKU6cOMK9/3E/f/K5j/O1v/g77rj9fdTVJygUFmzU6szhhYybNd3IqoLtKPj9XoLRILKuMDczidsXJJ4IkUgkiIZquPX2O3EbbuZHx7jk2hvoHzhGTSyOWXT4+3/+Fm+7+kqOH3+Zw8d76ehaTCqZQxEV1m9ei21aTIwM4o/X0FCbIJWax1EMNFXDEU1ceoCDL/aAWWHL+dswHRtVlamLxnjHbTfhDrqRVIOB4Uk++emPIVkOjqIhW7NYksTS7i40TUJ0LMxyiVR7HeaKTlx+D1ruFdyGl7GpDO/+0F001zRiVkpUyxYDvYOkUvNsO38T27ZtpampFllRqJomkXgN5VyOWLyW+bk5HLuEP1wDkoJKllCiCUyTidFh6uvrMAUVy3EQZIn5qXE0TUOWZVRJYO2qdZimyZe/9FXUapFiLoksubCQ+f699/H7v/OHfPd7/8yVV23hs3/y9xw60MP6VWuoaW5Aljzomozv/ijCIQPveVEEWWF5dy0bLroCw5/AKs7z13/1bdasXcHX/+lv2b59B3/8qc9z/ra15PNT+HU/6Xyatq42podH0XSd+vpaBofGqK2JMjc7zh133ICm+lF0A0EQsSwTSRLxGjbbr7wOnz+AU3K45aY7ufLqW6lrXQ1uHb/hZmpylqroomvJSgRZZHq0H6+ngEuLYFoiJjlk2aFYzKDrLmpbOyjmLDRZR/WozKdn0BU/mu4mWypgZrNIqoU/HCeTKfHwI49Sn1iF1+3g94Wpjfq5+667KFVmcet+3C7YtmU9DbWNPPHYQ+zceQmRsEY+l8Pj1ZA1GZ8/BGIVSSricUWoVDKolTzz6Qxevw+fRyeXmmRsYIp//eZDbN26iWxhho3nrcMsizilCl/+6pfYtPUC5qdzPPTQT9n5jts4cfgg/mANmZyJqKTBKrN8cRcnTxzA6xaoWhKiKbHrkSf41n/8hI2rF/PwT37Clq0XsmhlCxPVYYS2NM6SHN6LROYWDTDtnsA/E2br/FWkXAX0raOkj8yAVSFWv4x8JkW1UsYfDuPyBBno76ejtZFMsszUVJJ4XEeV3NiUKeQdPAE3gmijKBqO7EW088wmbcplAW8ghKxp+IJhZienMe0SAZcOYgBXOEh2NoM7oDA/O0M8HqUmEmJsYg4HjURIw5YFNKBcKWILXorl4kLGZRFsuwJWiXIxhaiEMLwJTLOEJNok58qMjs4Q8GsoooQgipTLefK5KqYl4vYICKKILMvYtokog+04yIpAa2sEn+HiSO84jY1xZF1gZiqLLwCKHsFybCRZplRyiMchl3OhpWsxVJ31dx7hso1t9J7ooX+6yP79B7jtHbcxOjmBLgSpFnMIoovM7Ct0rTqPqiMiiCIS1oLr6QxrpF9lXfZWHa07G05f450xzikJlxYUz1P7vA6LdE6L90tN7YUSOo6NKEivWd/+knJ6qhq8cM5nQWl9owv8LXH9/4PfhFWYn9dufSuU1P9OnIsq90bk70xWiFfx6xDXM71obybGObc922GCN4FzIftvJs4v/n/qztkZiOtvAqIoIhlBxNhS1Ggn85kCdXX1vLz7BcLRNpavWokvEkH3uH+x6XCmuehelc7FS5iYTlEopfBFati7/ygtTR3Iuoyiqxw+eJhMMsXaVSuRRh9EjnWhajqWadFYV8fgYD/hcJhXXjmMpuvMpZKsWbuKxx59DFUUqampQ1V1vF4/ZtUil81hGAbHjh1jxdoVODaMj46RTqZI1CbIZrOEIyFC4RiSIDI6OIDL5SIYDuPyuBZK3ogStrhwlrFr8SKiIRc+nwdJlJidnsPl9mDoKqNjw8RjMUyzgtvjQlEUpqfGiMXjzMxMo2gSoUiA9o52kvNJbMtC1zSefOJRVixfgs8XIJ/Ls2vXC2y/5EICfi9enxtBAklUKeQt+vv7WLJ4KQG/j3AkzMmTx6lvakTVdPp6ejhycD+tXZ3IskzviZM01jcxNjpAR2cbHYs6OPDSy0iizL6X99BztJfNWzZjWmVO9Jygvq6O0bFRVq9ZTWNTE3V1tZy3ZTO+oQqSJFHqMpibncJwG5imhePYKIqKIEC+kEaRFXRVwxp+BnvlB7AUP5qqIgsL1sVitsT09DyBoMH09DSRcB0WNslkEkmSSKfT+IMepqZHCYUCLF++iGwhiySo2FUJy1pQsAVBJh5voFKBhx56gI3ru4nWNVGxHC665GJMCrzzg3ex49Ir+I9//xGdbev5yO+/n7s/dDv79gzhVUzO234hyVyGK666krffupNgLAyisqCuWBaVapUjR44hAJMTU6TTWWZnZ3ngvh/StbQLXyhMXXMrkgBzMxO4FEAUqa2tZ+OGbVSFMhdefCEujwdBkvD73OQLebS5o5imidi4Fsuy8Pv96E6VfD5FOl8iVtvKv/zDt1i5ciU1tXFm54Z573veRXtbF+effzG9Pf18/k8/z7Zt56G6JOI1DSiSgKqolEoWiUQNP/rRD3nqqZ9xZP8eahtr6V63ErfHjyIKnOzpoba+CQcHWRZIp1K86853c7L/KFdfexWpTBpNDvK7H/wdBKlKW9dCxuy2tlZMq0g6OYUgVjFnjlFJjmFEmlBkhXKxxI/vv5+DB3vYsmUrtiUgam7CsQ7e9a672Lx2LZLq4PV62H7R5ex7+TAf/t27iEbDTE5MMz83R6lcoq4+QTaXw+fxkUwl8fl9GG43hUKBQjZHKBShajrYZpVwNIojiEiajKLo2LaKKv/X3yZZluk9eYx4IsKFF20jFl/OTbe+G1uQ+dyf/ClRv5dAMMgtd95JtlrhxuvvxO32USzlGeyf4QPv+yD33fcDLo5egSqJdNzkIVbXzD9+9Z+IxTyEQwrHD/Txgd//MB2L2vm373yLmto6vnvvj7nr/bcx0HOMkyM93Hn7R7jikrfT2r5wvtswXOzYcRm3v+NmXIZBMlUgGExQMUvYto1t2yiKgl2W+Iuv/gOrutewZdtmvvGNf+Xee7/Pt771bc7btJapkWGG+ge4+spreN9ddyEIIiGvD9kV42TvGEP9fTQlYhw93k+ipg63y4sg+BAFhbs+8D6uuvxSRFHBNmcpFQW+/MXvcMmVO7DMMpn5JLueH+Kzn/kM69eex6qViznaN8DHP/Eprrr6RiamZ7jmuhu5/MprCYbjZDNJrt15PpWKjSzGkZ0q8/NJvG4Dlwz5XA5TkPEEIsgSpJNpgpEEKCkmR5MEAg187n9/kk9/4g+ZnR4mEgwgmBKax43gCFy04xIqpk1NLExzSxNuf4BEYzMBfxCPoaLqbor5KggKHm+IyZkZREdiZLifUERn8+blGJKJobp5+NnnWb9pKz99/KcsaW9HUf3MzEwTjsa5/pZLuOKjW+k1XqGhtBT9uZVYdYNkGv6DwnEJVQthRGoxq1kM3aCurpFSscr4xAy5fIWauA/RNnGEHLKgYwsyAhVEWwNZwKqU6O0tkCtBb/8oK9dsYHS4n1g0TjCgUa0WMS0RS1CIBGPYYpW52Rn8fi+Hjxxkefd6+gaHSYQ1VEOiUq0iSjqqYuPWZbCrIAnYooRgWohUKeTTOFYeXVMolRQUTwBBUMlmLcxKEVWrIKOhaCam5SBLDggLG89V0/r5++RgVi1kRUGQKxw+nCSdzFKT0FBkAUGwmEvm2LP7BC2tAcJBHbNawJAtAtUllIo2L5V/QCiYpbnZh1dUuf/B3WzcdAGJugivvHSMI68cIuiymR89wOrtN2A6C3MQcc5KXM8Vv6m2p+Lc8qOcTmrfKuJ6arWJN7ZIn1WBfd2p/8/iMGfCb4nrG+K1xPWtxqvk7Telor2Z+ZyKN3rwzYHdAMgtG87a5lzGfCMl+/X6ng2/tBN1aomZs8T5TdXFPR1vuAHyFpLsXwWivwEp2IQtaQRjMdwePytWriLR0kIyNYs/FlsomX3KPTv9+XBsE8Vw8//Ye+8oy+oq7f9zcrg5Vd3Koauqq3Omm6abbjI0UURBmyioOKKA4ziiIyozOiYUHd8xDIpjGP2ZGJCkCCiIAp3onFOFrnSrbk4n/v4ocJCBJun7zqzlXuusuvec+w3n3HNP7ee7n/3sUDBC2DBIpppoaEiBUyXWGEcPxBg8eJDy5DizF/QhHrkfrWUBuewUk5kME+NjjI8cIxqN0tHRyeDgEPFwmHRTmraOdtLpJsZHR0kkIjz99DPkckUSiRidnR20t7fjWhXuufseenr7SDen8XzQNAlBEBEkiaAhMzF8hMzEBPFkI6oxXSJB1YxpleVaDc/3kBUBUZKRZAVJVnDt6RIjqYZGHNvFY7q+qaYYFPJTDBwdZvjYGDN6elA0neGRYerVMq4PwWCIhoZGzMB0Lp9l1ZnV10u+UKBSqRAIhpFlFR+B79z1faq1PKMjx+jq6mbDhqeZM2cWoUCQzFSGWbNnkm5MI8sqlVqF1tZW9u7dQ73u8dRTGzhp9VrSjVFkVaezs40jBwfZu28fCxbMI93UzOTkFH19fbiei6pJmEETM2ii7y0BYPUF8FwXRZ6uX+u60+AAfOrVGqYmUxw/gFgdw1x5EwI+iizhCWWs8hjZ3BhqUGFqIk9zc5rsVI6Dhw/R1tZG5ckvEMjvRG5bTbFYIBKJUbcsbMujWqjwy/vup3/2XFRNJxpN4DgwPHiAtWesxXVAEGvUKx63f/7LXHzxeYwfGyFkBjjttDV85Suf49aPf5hoNI4sGfT0tVD3XBpTDXz3m99izvy5eJ6NqotUC3l++uOfsnDOAm6+4QN88Y7bEQSRRYuW4Lou669aj21Ved+730vdrjJjRjfRaATLdrEdC1XVeeD+h2lvjTOVGaVSKvDEY08xc1YPiqriDGxAVTXG5GZEUeTgwYM0pdMIImSzORqSKWbPnEG6OY2oqWiqjOgLfOTDt7Dm7FOxyiVcR6B/7lxCkSiGoTM+Ok5mYopZc2Zx13e+zXvf+x6WLlvC4gVLCUXjaKEwkiiSzUwQi0ZRtACyKqHKGkODR7jppr9h7VlnoxshRkYyOBa0NieYN38223ftobWlHc8VkGSRUCSGGYowdmQ3nidiJtqQJRnXcZg7Zw5Ll63kwQcfpKu7k4onc9e//4D1b1/P31z/Pr5917e4/j3v4qyzzmLt2unUgExmnCuvvIarr7oKWZHRdAXN0LEsh3+7805OXrMGNJ2AIlPIFRCUEL5dxwgGqXugmSGK+QKGGZiOEok+lUoFSZIYGxujrbUV4bl618g6vX29nHzSKtpb2nlq4yZ6+nqx7Do9M3oJxeK8/4b38e7rr2XJgoVkJ0f50he+iLtFJxDQsfqKGHqABx56jF8/8ghvuuhCKnWXeNJEFGDWzDl86IMf5Z8++UlaW2JcfsW13HDjR/nI330QxylQrFWIREw8TyAUjHDi0h4GBwZobuvE8qZzeHVdx3VdLMvCrdmccfZihgee4cabP0EikWTPnr10dnax8IQFlPM5embO5B3vejfxVBBwObh3L9F4mlg8TLq5EVFV0TUNRZVRFAFHqqGqVU5euZDs6DiBcJLho0O0NLfQP6uXY0cOIokuT/z2Ce746hf50lduYemShQwM7OHzn/9Xbvn7W7j6qitYsXwFN914Eze+/0YeuP8BLr7kTbiugKIGyRdKbN3xJN09LZTqWcbH8jQ3dfIPH7uVNSefSLVYI9XYxPhYjts+/lnOW/dmFi5dzh1f/QYTE2M0t6ZRNQMjEMYVBDzHwxUEfEGmWBynsamBUtXFNFQ8z8UXJQRXwLKruIKPZsZQVY3KVJ3GRBo1aOLUPBBd9IDBCSeewc03fYiFi5Ywe8F8HMthdPwIP/zhj3j/+24gl8tw2+c/wlk3ryG6UGfgJzoN2QspdT6JVhOJhKM4dZmJySy1Wo3G5mbaOjpoaGpmeHiATZsP0NjaQUATeWrLIOFwElWus3nHXmLxFFt2HqOjq4NILEY8ESSZTiOKGkcP70aXbEr5HHVPxbYkHMkiHW9nfLxELN7A4OAg+w4O0dmUJBgyEQFZ1rCtOr4gIgCu7SDJMr7vIGEjYqOILtXyBEHdwAjGCETCBGNRguEQ1ZpFzfbwfIFazSIY1Kb/XzMt0Oi7Poo6TWF3PfBcj6amNKlUGN+roesiiqwRCAdpawsR0A1qNQtZVlEkDTHbgSQoWHMeJJnWMTSBlgaTxSuWc/8jT9DX00JzZw9GQGPrxt/SllTpXX4Wsh6YpvO+DHA9nr2UpsvzgZZX0pr5y/p5L0acL6AVH1ec6fic3j+Va3rtQbRX8pdFUfy/6m++XvsrcH1Fe20R1//t9lojyn8Ert2vH7i+EXtN1Ozj/ObfaOT3uOO+nrYv++b/jgm4CIKIj4QrqlSdPLFYCE8QX4j/X1JcS/ElPFFEFQT+zxe+zJ59+9m+dSO//839LFq+AlHS2fLMBub19eDJdYyRR/Fjs5AkAUmQcOoWAdNgcHiIdLqJSDRGT3s7m7Y+Szge49jIKNGAiSRDpVojHIzg+S6Dg0eJxWK4tQqaZtDU1k6hXOTQoUN0drUzODQ0HdnDoTQ1hm4atHX24fre9Ln6oEgeMrBjx05qtkU8kUJWVDRDA6eOh42iBMATkBQVUZTJZnJUygUqVZsnn3wKWdWIxuIEQwEak3H0cAjX9wmEIvzwhz8hk5kgMz5KS3MTqcZGBgeGCASDGGaQfDFPOBRl/rw+5s6dSyYzhWlqNDamsMp1AuEAR4cGMQNBtm7YTHtHO3rQJJFIEDAVAgGNxpYG8F0qNRtdV5mYyCIIEi2tbZQrVTZs3EBPzwxkRULTFWRZAXyMfWUEQaDaE0AURERJBsGnWq2gKMpzFHYQBQdvah9i4xL0zlXomkalXEaRYkT1ENFIGlWPk4ynKJUnCQZNIrEEAOrRBxHtEl7bGTQ3N4GvUKs5VCtVUvEYfT2dSGoSwzQpV8tohk4yZqAYJvWyz+YNv6aloZN6yUWR4Cff+wEdHU2Eojqr186nVnN4dtN+Fizuo7mzmWwuSzIUJWmGicSSqIqI41ZQRZFUPMnD9z3M0YMDfPeH32V0dIxSqcKpp55KxauSn8oQkgwuvexCytUyihFENgPUygWmpnLM7JuHaBfxnRqKIBMNpNi0bROtbW1IY9sQBIFtUzL9/f3IsoyiBdm3fzd93e0MHz5EqZIhk50imkwjuAKaqNLR1UpjR5pf3Xs3fTPn8+nP3E40nuD73/sOC+ct4Lv//l3OOPMM1qxZgyRJxGIxHn/yGRwPGhuasO0apXyOwcFBkg3NCBIcPnSYluY0ui6SL3tc8qZLmRjNsmv3Vn78o+/xzndeh24kuPfe++hon4GqqsiKiSvp5CfH2DcwSXNbB+VSmcz4BA2pFOaX72L2ZIFDrXF27tjO8hXL6OnpY+1p5/C3N38AH4dEIkoyFUcQBEQR1q07n6nJSSanJtENlUKpSCLZyAkrlpMrZFGMALu3bWFG1ww8MQheBUXVQFZwfQFTNaZF2rDBnWZ8aJqGaZooqsnYRAZNNxGlOqri862vf4MH77mPi9a/g8OH93PxhWdTmMoQjMe49LK3EAxq3HXn17jgorMxjQiZRyuEoyHedcf72L9nJzd+5G95y5vX84EPfJQzzzuF3NgID9x7P7Fwgo/dcivxiEmqMcr8BScRDHWSiNuEwjaK0UC5lGViIsvKE1cTMqsUSkXKdZdwLIIoCH+s462qKjppNM2lVhoj3TIHx3aYmsry5jdfgmAIpBtTOJ6HqOjYTg7brpFOJigXCkiKgKgqlCyXWChAvV4GwUJRo0xNTGHIEf7zR4+xaPkCvJqConmg5uhraqdeL5NqaKWjaxannnoSY8NVdu88wMT4FCtPWMyHPvA33HbrbWQnJvjwBz/I008+ybKVJ7Jz+wibt2zk5/fexSlrL6Gtow9BMWlMt1CpOKxasQzPyhGNp9m1Zy9P/PYPzO1bQyIV5gtf/gzFokZfXy/xVBwXB9d3cVzwXB/NMJA1jWBAolDMowdiqH6NmuPhSzpOpYik+Di4iFIASYaYnmDnjn1MZPPcf98TLFwym0999h9pSXXz85/ew/KTVpNoSqAIEI7KrF1zOpFEku07t/J3H3gfkldjqL6D4JltRLUI8Y1r8MQi+5S7sCeSxJMtyKoCgkulVkRVZZqbG9m8+RCKGSSk2YxMiWzevJdZfS1IahNDw1kmsj6mbrJ48QkcOnQET9Gwqi6unUWXquCLaOEGzEACSffAdvF8OHh4L42pJCPjeQS7RDwWwPemQKriuB6DQxmikSh4Lp7rIkgitlXD90Usy0ER6+SmxrFdFVWLoega9brA8GCZnbuHmNXfj6TkcCwPURBxPR9JkvA9D0GQ8H0B27LRlRCKWkJVXTxXwfcsXFtAUgS8eg1FCYFUx/Nr+KKOXGpGxEdc8jMOH82h6lGqVoGf3f0UW3bmedslV6MlJNraW1i6YA6/uu/HnHTu2xAV/XUD1//mtwjC9Lm8ijS4/9vA9fkxX62q8Et28xcErn88/r8A4vwVuB7Hpldt+GMRJOEvKLb1cjz1v6Q9Lxr0whqsL865fCV7I8D19URYj2cvN/c/7of/qmP1Mm1f/PqNzOXFK34vpwb9khF34QXbaxnXf1HT19Be8ME5+ju83ABitOO/duIiSwquNw3uXik67YsCAj6+BCtPPgOr7jJ3znxmz55FuKkdz66zY/MOOnsSRCkg5nYixnsp5YtMTk7S2tqKLMoEg2HK5TKphhSoKuVKhXgsRjQSwbZ9coU8nV2dJFNJ6vUSuga1SplC2SaTy5FIpQiGI6Qb4xzYd4BD+48SCQWIxuMkWzoIxtLIikR2MoPgOiiShO+71OtlmpqaiQWiHDi4m0S8CdGfBvIgIwgioizy3e9/j/kL5iNLLpVymWQyQVtbI/39HUiCjCwpOLbN7u27kAWV0eFR5s+dQzQ2LbgUTyUIhUxGx4/R0dmOIHroikoyFkGUlOmagbU6HW2tOL7A009toquzGU0yqZQn6OufA8j8/snH2bl9PzP7pktXBMMxHn7oYcKhAAf3H8L3BZLJIB0dzQwPDdCYaCAUnlb+9Z+rKefUq5gHqgiiSLFHR9G16e8XB1nVECUJ16ojKQqiouAPbyCw9HqkaAtTuXEEUUZVBGzfI1coUSoUsF2bsdEi4ajJ5Pgh7HoBbewp6rUqfvcZ2MUssuihi+AjIQfDuPjomsvY2CDhYITDB4cIhiJkc3k8waGzZzb53AQd3Q00tLehRcKYRojJXIlEQwfBSIx0YwJD1/EkmR//4G7WnHEGke5GFEng0J4dDE8VaGlKsGfPER557Pecff46qlaN084+j77ebt55zeVMTuU4/fyz6WpvolCpMJWdBuCTE0UiYRVJ8pBkC83UERWDW/7hE5xz3jpsUSCdbkEZ2wKejdp6Ik51knBEZzJbIKRrBIMRwo2txOIxSqUShw7sJt3Wj6K61CtZDCVES3s3dbvKyatX8u07v8ltH7sV1RAZODbKnN5u7PoUoWiQXNXmc5+5g7e+5QJ0SeDwwSEOH5wiEPDwrQp1t0YyFiQQjlEXgtz1ze/Q1dzMCScs57f3/YIf/X8/wMWhWK4QD8RRQwKl/BROqUh2aoCzzr2WWz9yC5qhUS5XaWxsoW57qM88i4iAv2IZn7z1U1x9+TWMjAwTiegcPXqUaCROMKQxOLyPQqbEPXf/gu6eViLxFHv27OXaa9/FmaefRboxCY5D0NCol6okUwkODw8QjcTQjACiYlLKHMKoKxRKQ1SLE4TDTYiii2vVKeanqBZzfOIfP8fpZ6ymVsqjiAE+fusnuPUTt6EYBjM6koiCTVNTI8FQCLtWo1rJ49kS3fNSOL5ILNaOvjdMuVTAW+Rw9y/uZmxgnGDIp1J0KRUnePLxZxgZneKsdWeRbo1RKJcQTRPTkGluSWC5LsWKTTgU4iM338zJa9cQS0axPA/fMxk8NITgTCu7FnI5guEIngeqaVGqVrnhptuYN3c2B/bvYsmSuWi6iyqDUxPYu3MHzakoq1eezzuvu47xkVGUWCM//4976OnqIh7XqUkKmm7gqRHq+RE0VaZYLbLkpAVUqzauVOWmmz7BvPlzectlb+XKd15HJBlGl2s0JFr47WNPMDQ0yJIFJzAwOIyv+QwcmWD/kQ28+aIbmL+0iwfvv5+e/mY6Wxp563lvJtkQI1esYFkymmxh2xaaoSGqMqBx7NAhWpqb6ehooKWrkfff9F7K2RGaE1GamxOYoTCCYmKV6tTrNpGITinvYGhRsCW8Sp1ifpShgQme3bSFVEscxxXxPYmgKePUBHbu30pbdwuWA+eduwojHOesUy6isdngoovPBvNJNgAAIABJREFUpa21k0ce3MLefXuQ5CDJdAM4FolEdHpBTQqxa+MhwjGdfHycf7j7fZy/9DrSu9YxKT3CNvEh2rXFeKKELnnYto9mxFi0aCGZsUksL0k2X2bxkjkcOpoh3dJIqqmfvv4+WtvbcDyHVEMLpixQd3zaGyM4bhHfraAKYcqeQGYwQ6oxyVQ2w5y5i7DtGpokMzYxyehEjXSymSOHjqEoEeqOSjDkk5vy2bJjmN7eVhzXRxA9NE3AdmwURQR7EoQs9XIWM9BAJN5CR1eMqWyOaLQVx3EQRBVZknFsG98UEFFxPI2f3PssB4azuHWPoKqhGkE2bBygobkB0RPxcPAFB8dxmcoa3P+LbfT1NiPLUG//DQE1jKJVEHyDf/33x4inZ7Du7DN5+KFH+P3vNlMrFrAmj7DijIso+zoGFjUxiODZr5nu+8LteIJJL9f+L2KC/6fbC8Z6MXA9rqv33/Dvc5/0/9RffXEA4Q2VVvxfEJz7K3B9BftjtJVpcaY/T5/+fwNZxwOsfykw+3Jqwa/FpoGr/0dV4Tfy0Dne/P5c9lI5pa9EU369ubcvNdareaC8ofH+Gwf6NfQBVJ74LPbodrT+c19z9P35fS+8p2VFJJlI8elPfYo5c2ZSLDh8/Wt3kBmdYuuOjTSYdWQrgxJtQtFMVEVm4zObCBgRpnIZ8vkcDakEGzZtZN68eYiSzNbtO4iFwxi6waFDBwgFA2zatJWlS5cTCSco1+rMmtXPE088QW/vDEZHRunuaCU3NcKR/QdobkojyjLZyTxmwERTVTxvmnooazrFYoWRsQzJRBLfc1HVID4eQwPHePSxR2huSWMEwyxcuADXsUEQiIQTOK6HKMnUqg6SIvPA/Q/Q39fFyPBRKuUSu3fvIRaPI4giyXiUbD5HPNVMPJHiF/c9xMy+2Xieg12z2bBxIy1tbezetZ14LIysKsiSTTAUoVCYJBqN8Jvf/o7cVJ4VK06gu7sPzRCZ0dvHjm3bMQ2dyckpFi9eRCYzgaGHURSTaCROsjFBLjeFJMuAjO9DuViE1iDVNhPBlKlVawiiQK1SpFKtEgwEsa0agqxiF0bwM3vwlt8IokilWicSC1IrOxQKRcLhEOFwkM1bDhIKhwiGdeKBMPFokur+XwECycWXMHhoL8l4lMlSncGhQXRZZnx8ih3bNtLT3c9UpgyejKCIlPN5bv/cZznz9LORjRpGUETygpixKIl4gnA0Qr1aRZNkdu/axU9//BN6u3s4ceUq6naFcjnDrR/9Jy644K20tbVhaAqxWAOFQonbb/8sl6+/hh3bttDc2kBP/0wcV2ZWf/9ztGNoak5PU5ptiARS1OsemqYxMjlCKJrgwosuY2Aow4MPPMSM9na2/+anRJMJwnPXEokHyE4M0dDUjq6KSLIIksTRA7tpa+8kkmykXJwioCvohgGKwsGje0m3NNHc2kZrexf33/OfrFx1Iv2z5lKrWcSjMaamcsQTCUQX+vraUTST2z7+aZYvW0Vnb5pQNIoRMpkYH0PVA+zad4iP/f0tiJLFhW+6hCNHDtDS0UI4GuaUtadzyVsvRZU83nfDjbzpkktx7CqmGqZnZi9mUKdQKHLw4CFCoRD6M88iAGM9bUyOjTB7Tj+XvX09b7n8Cq5efxXXvvMKMpOjFPIF4tEoJ609mViqCc3QaWpu5tzzzyMSjVKv5qlWyhzef5Dbbv0kJ5+8EseqoSkKdatOWJdx3TKyGkPWRWKpFJbt4PvgeD6GplGr1TjjrPOpVWzq1RLhcJzZs2djBgy+fdednH72GubOW0AwlGDduou58sr1vO1t67nmHVfjShH+8NiTtDeFEXeZBIIh5l0xg4suXMeSpf2oqkpPbzPz5s2joaWPtWtORZN8fLtAKBZn74ED3HXnd1i9ehWSNC2cUszXyE5NMnd+H6FQCMGXAIkZfbMoVWuEomFC0RiSrDORzaJpAQRR5YKLLiIZNviXf/kmkViK5rYmSpUqwUAIM6BjOWW+c9c9nH7qKhJxHU/WmdnVy+joKMFwEFOGw3s2EYsqiJUoA0fHSaSacYD9eweYPaePCy68ED3gctll67FqdWqVKqlQmMz4KDt37eAd113Fvff9iGi6mTu+8A3ef/NFXHnF9Sw/YRWXrT+TNWeejivoXHvtu9F0hf55fRwZmuAjH76J/u427vr2nSxYvADb8XnLhZcwf95sWto6aGuLMZ7NYPk+i5Ytpbk5iazp7Nm7h717d7DurLfynr95N45XpOaKKJKDVcrxkx/+mEBAJ2CatDQ30dCSwLYkYtEU+w7u5H1XvJs3v/VifEmgs3cmmcwoNU+gUqkzNpShvaODE1eu5J3vug5D9JAln927tvLoYw+zbNlSRFFk4zPb+dG/38ny5QuZmJgi2dbNzHWNPHDgVyyzLqQtP5uJGY8jl9Lkp6rEYwkkRcJxpmt0Q52embMJhmKk0i0oukbAiKHrCgcPHsQIgKLouAjIqkEhM4iiCeDVyGdyxNMz8Pwqhm6i6QbZqRzxVIzmpl4SDQpbN41QqZXo7IwQ0CHWqHP08CiNaZm29ii2Pa047Hketl1DVY3nWDTgVIr4Xh1JAEXyQTTQ9TCypqPrJoKko+khRMnAtUXsapVIOECl4rFiUS9dnQ34go/jV9i/p0R7dwRD05Ceo5T6vk8opDKjuxHVjqL4ATLxX+BbFqouceQYTJUUFi47hcd//TDX3/BeUo1pUlGDbU89yMkXvB1bNlEFB1tQkXBfk//zekoevpQPczwf9NX28arn47+0z/2SvuHx377kHF5x/OPYX6nC/w/tfzpwhf+6sV5Novf/ZHqy3L0c6bn81r8EwP5z9/f8itxrAeyvF0i+3Ph/qUWI6QjZq3zSvYQJgLX3AVzXQ+k75xUFpl4NFcV2qpiGybpzzmHDhmf40hf+lY72JHv2HmHxssV0xlVSSh4t1snoyDABQ0U3dLbv2c/M2TNpTKewrAqaKGHVasiyguv5iL7H1GSWUrFIIhGhq6eXsdFxnnlmA3PmL0CWFTo72/Fch+JElkKuQN0qsOrUcwiEQtTrdRKJBKIkIQoCuWyORCJBsZDn8IHDzJs3H893KRezgIxiyGx6ZhPrzj0XXTNAknGtOo5dR9UN6vU6h4/sp7OziyeffIa9O/dw7vlvwnKqxBobaG3toqenj2q1gijLJOMRItEYmqHw7JZNnHLyKg7t30u1Vicei+F6oGgasmwSDgUAFzMoIhIiM3mMWDRNS1sr6cYmPN9h4OgxFCOAoqk8+vAvWXPyaiYns7S2NqMbEgMDR0nEk5QreaKJ2PSzzBcZHhzh6OBRVFlGCuoo0TClUp5IJIIoimRGcoRDMWyrCp6FqijYE7uRmxYTmXs+shwkEIhh23UkXyUYCKIbMqNjQ7R0tFG3KkSjSRBdPEGgsvchZEXBaj+LaCTE7r2HaOieQUMizo7Nm2hu6mD7s9vp65nPf/zgB7R3xAlFUmTGRlh32lpst0Ay3cvYeIWAWkc3AtjFItmpDDu278Sq15nZ28cjv3qYg3u3MGvRIjJTUyTMKGeddza5XJHbP/MpYvEUt3/hy2zcuJE7v/V1Nm3eRGZkCFkLku6exfanfsdXv/gFVq9ZiSxLaLpKoVikoaEFWbIQBBFJ0sBRUESDx379KKVCnjWrTgVkQj1LSC04iXrFAi1CKBxncmoCXRGZnMwQiEQIx6br5ZZzGSTJplQsETAjoMvonsK+nQf59Cdu576fP8QZZ62hu6eLas1iMn+McrFIIhYilx8hlQoTTcpYrkg8EmT9+qs55axTcDEJaQJhw6BWtZFkg6P7DnLbP32IZFMnd37737j0skvQDY2TVqzmzu98iwWz+3nXu9+DHkygK/Dkb57k1LPOAcEmmUyRTKQoFIrEt+9FFCWONMc4/y1vp1Qus+6c0ynnxrnlI7eQy49TKbkcOTRF/4LZDA0fwK3VGRwdo6u7m6bmJhRVJZsvsm37bubOPoFsrsysubNJNjRQd3xwqriVLMFogIptIMjgKxqqLGB50nM5ojXC0Ri2YxMwTWyrgCqHuOPLd7B8+RJWrV5BW0cfCBLPbNyIrEosX7qca699N6rmY9mTzEg3TNcI3hPF88BfXOO6K67lgotPo615DqJS5NJL3sXyZcu5/PIruPzyK/jaN/+NWbMW0N3bxbw5PRiaSmZijGKhxL/f9UPe/d73UCiOoKoyhWwOSQFFl0E2EOwSU5MZwkETXZWQPR/Pdihkh4mFYN05FxBvaMQVa4TDKTzfxzBliqUpvJrPihPmo6cCKKrOU48/zQ03vI/Lr7wcVVFRRBlJCTGRyzGjr51yKYPglpjR2cFkZpAjBwaoVTPE4h2Mj06STqTZvWsfwXiQtWedRqZQxlCifPiTn+HIoW1gmUxm8nzm9g/Q2tJOZqzG0MA4D9z7E/7ljn+iVDe5/oYP8x93fYVaPsfyFYtobGlDVoJcuO5UQiENPaQRCPsUyxUSwQRbn/w90dZWHFumpbmNhoYE73zX2wgGI9iWS2WyRCQk44s2M2fNZ9/+Y6SaG2lq7aKeC/D44/fRkNLxa1HmzeuntbWJSDTC6NA4iiASTQTIZY5Sr4rs3LWDNaeswfcF2jsbaG3vQlEjLF8+l3q9hiyrmHqS79/zELNn9jB79nyuuOYGzjntBJac1oO+NoxVEkk+cSIVdwfNVwTY9+shfMHDDISpVV1iySQgYtULuJ6MosoEwik8SUIRBOLxBoZHhnHzBcZHt2PIeTQ9hh6KI9gD1C0RRfGQNRPDUKnXa+iBGOVqhsyoTbZ4CNv3ESWfUFhGUmoM7JdoSGsIroRmKtSrNr7vIor+H8vBIYDrikiSi1PL4VlFJiYGCJhBrLpFzVFRtCCuJ5EvVNnw7FFSqUbGs3m2bB2iZ0YjsuoiSyJBI0Z7VwBVUvC9Go6jYtkummYgCS6y7KLaSXxbpTbzCXRVYWTS4aobf0qu5vPExp186bNf4De/+zWbt2yllBtBscdZcupFOLKJ7FtYKMjCywuBvlZf5LW0eyPsv9dOyX153/P1Atc/l/2VKvz/0P58wHWaQuvjIfwZ81vfyI/slSKTrwc8vphq8Xrn+OcGri81n9czvxee2wtp0c/391oXDl4uYv5ie/FYL/z8i8/v+VI9/yVb/vJ035eiA//x2r/wwKto9yfHgfqe+7Fti9Dci/5kHj4vL3Twwn5f2EYUBBTk6bwM0efA4UPkBo8xo72b3pntvO3SSzm0awNqYReOaKCIIuFoEgGBiZEjJJJJXNtGEVQK+TK5bA7HtZ8r0WISjobZsXMH8+Yt4DePPkpbaxvBgEa1XuXo0SOkW6dzk8LhMIeODtDT24dphvB8kBQVQZaRPB+7VkAzDDxRw3ccmluaEQSwcfAEEU1XkQSJdGsrluNg2TKZsWFUVcdDRNcNXF+kqbkF3/dpbkoSjcXI5yZ55qln6OtZwJNP/obOrhb27NnPvDk9lEplAgENT9RoTCap1TP4aAwNDLBtx3YWLV5IrTKt7uqJIqqs4nsesiERS6a59z/vp3/mXLZv3cTY8DG6O9ooFHP4+PT09rN1y1ZWn3wS4xMZYvEmWjraCESDRFNJRCRkRcV1HBobEuzbd4BZs2ej6RqlcoFSvkqhWKKUy3Ns+Ajp5hSyYSJqITzbwhvdithxNpaUwtDkaVArSWgBhUJuAt0I4ashdF/BqfmEAhrleh3DDGEf+CWiKGF0r2RkKM/M3tmItoVrWfzhqQ10tc9kxuxOjJBOV08P4Ugj5eok8YYUtigQTjSRmRgjHg7geiL4ErncYQQ7z8ZnNnPK6edQtCAejvCmt1zIA/f+ki3PbGbZCSfgeRUkX8P1PLraZ/Djn/2cT99+O3o0hOJLnLBmDdddfQ3H9u/nPTdeTzQZZMGCJRRrHgEzwPDAEVIxk6Hho2Rzw9g1ESUYRBBFOjo6CJgm37vrG6xYvpxUUwrLtQhHkti1MpqmIkoisqAgiSblmk25lKGey5AKRyi5MmYoguvUcWsV7v3x9ziwdy/z5i4iEDB4+1Xr0QI6oiSj+HUQBFTVIBxMoCpRFDHGbx75HUuXrWDhwoV87JaP88XPf5rrr78G3ymjxpsJ4bBgVhvx1Bz+5Stf5XO334IoidiOQLqphbPOPJkrrryKU9eciWK4LF+xhs984Ut4fgXJNLEdG0nwqBSzmJv2IEkS0tqTEb0AxUKBSCREqjFOuV4lFE7gCXDwyD5MJYChRfjlLx9l46atnLBsOeVSAVH0mZgokJmcZMbMLrbt3sucWd1MjB8j2hhDET3y5TKHDw/S3pbAVQ2sapXS0AEEI4gpQi4zhuXbeLKGqglIPpRrHktPWIamQj43TjgY5djwISLBJIUpm+9/7zusWr0QTZMZP3aARMsMXAFErchTw5sItkicdcYaNHMWZ59zGuvXX4bsyyxfs5KLL3wrkpinWrRobO+lkttJOBrlYx/5EmefcwaK5rJ6zUnUrTKRSBJEFc+p4csSgVAIu5ynXs3TmOygZudQ5Tif+dw/ccqpa6nVbXSznU/c9jlWrzoJWaojyiqWVWXg6BEi4SgLFy9A0kQ8y0ZyNEKhAE3NKebO6cclhxRqQJLCmKpHLjeFqmoEQzEsx8Wr1Wjt7sZSoqiWhKTK6GGdcEjGkSTyk1nCgkdTSxdPP3Eft3z4Zq667DJS7U2ooRiO5VGYGCJsGly+/q0Ypspd3/45h/du4OJLTiEZ1FGDERzHw63lQFUIxgMYpsnYeI6AGcN2fFq6mggYKuVyDqteRRB8gqEWjh3bT1NDjFLdQVJMfExcX0ZVfL7x9X9jZk8/n7rtH5C8MLPmzOL+Bx/l6NFhFiyezw9+9EPmzZuPEdKQMDCMBuLpCDN6Z+LUfb5z53c45ZSTefzeu3nqqd9z6unncvjgOI89+gSLls5g0+8209bXQmtLL6mIxYwZHXiSgaIJTBk1bvzORbx59lX4DzUTX1LgYNNhGuq9ZHNjBM0ItVodURYRBYdccVorQJVkdu09TDQaxlQhrOXRTBEj2ogox7F9AQ0PuzqEXTVxRAVdNcnni5TLk+hKmEQyxoyebvJTRYaGM2zfOYZVtujvTxAyI6D4CLaLJ0ooqjqtTYAEvofreIiaiA+IkgKIhIMKvjWFbVWp1XQeefgx2lrbiUTCRENJbKtEsqmLxqCBq4Ci1BBcEWSZumUh4FOzLO5+YDMNDSkMw0eRVWzBRRtajGSFmWr6CaqqISgG5fIRls6cz0c//AV8M0w1N4KpNrBsSRf7d21l+bo34/kCnmCieB6Ir83PfiWm4mu1lwKyLx7jeEzBV+UD/5E+/KebIILw4nzE4wDXF/vtr9f39l/gFAri/wLUyl+B6yvYf90Q/xOinq+Gs/7iiOJr7feNnOtf8jq9ESrEi0Hqa5UIfzUrY8ejzR4PuP7x9fGWuV5p1e1VXopXaicA9b33I8sy2sxz/+TY80rCr6rf5/e/kLosCMyYMYMVK09h4+YtHNxzkFg4zvhkllnKFqakRiKJJJ7vIyGwa+t2mjtmEAwF8PCpVLI0pBuIRKN4js+hw/vo7u6kt7eXcqVM0NTJFYp0987ECIVobm5DEsC1a4iyQmNDmq1bd5JMJcjmcpjmtADRseEhzICJZXsMDg4TCQfRDZ18Po8gCgQDIRRZYe/uvaTTaZ54/AlkSSUzNkzAmI60GrpBNjOJJqsUcwUO7T/EzFmz8RyPcDjCL+67j6XLFqMo8nT+o6bzzIZNNLW0gOQgYaLJJrqp0tbRSkdbJ+NjEwQCQfbvO8Dc+XMolfKEokl8QaJerTN/dj+iIRKMBGnr6kYzg+iGgaFrHNq/m6VLlzMwNEBLSxv33HMvM7o6CZkBrGqdZ/7wNJs3bSIQCBAIh2jv7kRRZPQtU+S2HuXhXU+Rz+coFvL0989H1w1E38OtWTj1CnJmM2PNl2JGYlTrNcqVCoIgYDsOIcOkWKriCTKiN73YcXTgIPFkAtd1EQYew/U89ldb6O3to1CcYDI7TDY3hhlQGB4eYuumrcybNQ9D1VEEiWg0iq6pyKKKokvgQ7lURlMMUDQUxcQIxFH1AAjTx0dHhtBUne999ye84x3XYZoa+3fuJhyNMXfxAsKRAGvXrqQwPsKG3zzOsuUn8ocNTzNn9iyy2SynnnYKPb1deC6YgSgbnnmGmTP7kRUFXzaJhEMc2XeU5s4O8H1EQeCGG97LWy+7iM7uDkRJxNA1iqUqiiLjug6uX2XPrl10dLTjix5muJFoOMyR4UECoSiaphEOBlAVmbmz5mCGIqw59Uzef9PNzJzRSbothRYyCJkayWQDiqoyNj7B4NAI6aY0d//n3bR3tNLb109DYyMf+MAHcF0PvBqWoLLpD79h9qJF7NxzgM9/6tNcdc07MYwArmeTy48RiTTwzW98i/a2Hnbv387HP/4JNE0jGgtTy5dQZJXhYxMY4QSFex4kFo9wuDWIoiicceZpeJ5AZ0cvhXKefL5AOBTlb//2g6y/7Gr++Z8/R3d3L4qs8omPf5zfPf57/v7vPsopp61h1eqV6LpGb2c7teIkuiagPpdXHYlG0XSDaDxONl/GUCSe3fQ0rTMXIEoqll0nGosQlEJYNZC0BDfe8AFA4vHHHufcdW9CUnzi8QSBQJCmpjSa7tHUHMfzHNKNTWSyBQzDoG5kSS/qJByLEIqE0RSNefN66OpqYfGiRVx39dVcfvk1VKwccxctJhjScWolIpEGFi1aSiIZxvUcZFnBCAQ4eOgQkVAYq2YRiaXI5rPgVXF8ETPYwHhuFCPQyIkr5jI5NUE0FuabX/0an739H1l3xikYmkgg3IGCStCIIokasXgIVVMIBAKUi1VSDTECQZ3Ork5cK4IkK+QLRwmbYVRVxTRNLMvCdioEAia256BpKrVyhlgySqVaIxKMTqciIDJweBhXcLjiyrcTNFNUqh4//897uPSyy/jI39+KZgbJFsu0dLQyVSxy4sq5XHH5VbiWxkO//hrzlixhcsKmKdVFpV5FUXTGR4qkIkEOHxpg9dozufnvPko5X8W2XaLRKJOTWb72lX+lZ2Y3ZjQEuOi6xpbNO1EUg9amZubOm4thaixaOJM77riDd7zrcn70o7upuAIrT1xCZ3sjiZBJrmBzxeVX0dfbT7q5gY0bnmbu3JksmNdHtSpwbOgwF15yIaouo6oqy5YuY3wsy85tu7n2PVcj+Cq66tLZNwszGGbk8H4amwKcdcHF2DNG8eI7EP/QQ/JIK/mZvydWb6aQz2PqKqGAjmqJhA0T3Aq14giNYagWBslmDkMgSWPrLHwhCMDoaJmJvEMo7FOvDCAKCaqOQdUq0trcSaWWp1Yrg6+yc+c2Vq1eRTabY3jMJtVkYppVZE+lZpfR9GmqsGPbyJKI5zsIogiChCg+p7SLgF2r4vkWnmsjikU6WqOEgjKZzCDBkIVhGIi6hm6U0TUT31OwXB+77rBl0xYikRiGbtCcihKLGsiKh1Wq4fo+RqEH3xNwl21GFB3KhSpd7f1s3JXjhFVn4rt1HnjgXubOWsDQ0WexK1mWnX4RnqCCACIeiH8+lt2fK3L756Lhvpqxfe9F/b8CcH3eXqvP/zzT0/f9P+n0fwLOeTX2V+B6HHshe+CN8O6PB2COt1r0UtvxVoJebt+L+3u5z75WuoTv+1gbfoR7bAdSy9zj9nG863e8PN+XOu9X6u+Vxn4l0Hq8a/788Veaz4u/+xe+fr7fPxHGOs78ff70XhFfPGfh1UWiXy1wBdBnnfen9+zxVjaf/ysI07UrX0B/94TpFT1fAEESMSNB5i6Yz+LFSwmEYiw9YSHVXT8i1b8GQVFwrDr1SoW645JKJdixcxuBYIjW9mYQBBRZRRBEjICG4/hs276V7u52JqeyzJ4zjyODA0RjYXTNwKrX8VyPUqVMIGCSSCRBFggEAqiyzOGDh2hoakZSdXxXQBVk9ICG67hYtkWtWpsWrqg7NCRT1K0aXV1d3H/fgzSkEsTjCTZt2cz4+AS9PV3YVp1tW7dSrVQ5NnqM9vY2TMOgf1YfgaCJaQS55557GBkdYf78BYRDIUTF58H7HmFkeJSuGe3Yrs/UZIG9e3bR29vGwNFhbKtKW3s3NctCEjVcxyOfnaA0OYVVqZAZncK3fTZv20pjYxMNqSgPP/woCxct5Gc/+znnnX8BmiozPj5ObnKSvpn99M3sIxgMYAZMHNenXq8T21Ik5pv0v2U5AV2np7eXUMykVJrC96oIWIi1DKJbYyx+Gi1d7QQDQVRFYfzYCNFEA0MDAyRTaVwkrEqRx594nBOWL0YzjOn7oZqjpsTpP/FCCoUq5VKZaLgNTY1QLvrM7F3G9h2bueWWjxCLRfn1I79kxYrl7N27lWAgjOXWcR2foBHhs//8RRYvXMDEWB5Jknj/zR/izNNPpakxSltnO/lsgZUnnkQuP0G5MsX46BSReBBP8DANE9vKMTU2SGmyxM1/+0EuvfxtnLhqJbVald7eHhBcvv71b9LT1Y6qKdiuhe3703VtZZ3Oni5szwbfZeDoYd553TtINDViuTbj936WQPYQes+JKIqMoshYjk06mebZZ7fR3jWDSqmK4DsYkSiaOp2rOTI8RKGQx/Yg3dIGisKqtav41Cc/yfor3owqe0iyzODgEJFoFFGUicSjjIyNcN75F6AHVErlCm97+1UsX3EipiGhqyJqME1TrIGpfImOGS1cc83VnHvum2hsTNPT0000GsITZK688ioUSadrRgeaLhONmYyNTvCDu37AgvkLiMYjSBK07B+mUMzjnbiUSqVEMpHk05/5DP19c1i8dBGRcJzvf/8/+P3vn+aaq67kzDNPJxIJc+DAPt5z/fU8+MCD/J+vfo1YKkQqlaRUziGLHng26XSafLFKIBjFsqYVZyVJxbbqGLJPPJ1C1YJuxHN/AAAgAElEQVSUy3XiYY1nn3qEgGlTqefQAhqnn3o6c+b2s3TxEo4ePUI4alIqVlEUCUVziceiNDQmAZlCtoaHxNEjgzTE02i6iuN5uL7Ikb27+PUjv2Le/AWUanXqlTLvvv5GLrr4XAp5B12zMINRnGoNyy9jGCaGbnLk6H6CsTjpZDuaCqJooWhhBMFAxEbVVDxXIRBWcB0VgQr5fB5d11m85ARuuvkG9KBCQ2MLjpvHdYvYVg5JrOILMpOZLK4DhVwd16tgGAYCOrXaIKoRIKCkmJocoVKpEA6Hp5/Lno2kBnl207MEFRkzoFEslwlHwtieTzk3QSwaQpB1WlobKRaLXLH+nUiBMFdd8Rbed/27uOiit/Kzu3/B/AX9tHU2M3zsGP946+2cvW4lg8M7+Ma/bKJ35moeevAeslOH6OtfwbZtO7nhvTdz6dvXE08m+NCHP4hTtwmYATy/guu4+K7BqtWL+f/Ze+s4ucqz//99bM4Z1511Tzbu7oGEEDRA8UJLixWe0pYiLe6keKG4tBCkQYs1QRIoJBB33WQ32U3WZVbGZ478/ljIgyRI29/36dOn1+t1Xq85M/d12zn3Pdd1fy7JGhYOpwdJ0NhX38Q111yP2+0hFHSTSgj4A25aWmo499wLyZhJLEvjmeeep6p/IRVlRSgSOB0Bxo8dRUlRHg2NjQzq35/NGzag2RR27a5n3snHYmBSV7ePUMhHU1Mzk6YczrVXXUNp/yIeffgpxo4ezK+vuJLj551Ia+M+CopCZAwNHY1etRVxtoUbDeeS8Vi5++jp/zhmvZ1sqhNTaiZlxD57xmn8OZWsXLedEeMO47U3llJQ1A9Vc2AaOk6fRriwArtagG6AlW3GMnQEXLi9TlrbmjENk3A4n2gsSkVFf0rLyvAGPWzZ0sTu7QmCIRWPz0M2lcKmiMi2Pt9wy7QQBJmO1i4U+bMUSdkMkgB2h4ZpZpDJYulpFFlGwkQWJD79aDNLl6xh9JAyLDONLKsoioim6uTm+lFkA0ghCwZul4ZhZUibEvGkijNaSiZj8V7XfMI5bnqiGUxyufvR14ilDex2hfFTJ/GXF1/GKfdSWlFC1aiZmKIC6IiCjiDKh5RfDkb/qI/r12SZ76Gkfh+rve/Rg29UXPke8vU3ybZfDGL1H8X1X4T+mYjrgU9/x2nGF3kP9XJ/XwXsUIjdd+H9R9o+FOnVH0Amjlw+4Rv9db9LW98HLf5Hx/6PlP8uc3mwcXz1PfgSAvwNqqvw1Xm1OJCrrK/Ad+v7d1Jcdy0CQUAbeMxXFNdvR1yj0SjV1dX4fD46OjpwOBxfMz2RBR3JJrNh+xbyyor44N2/UmFuZH+PA1MQUGWRpuYmyvpVEe1sIi8vTDAQpqm1A9Vmp7unm2wmw4oVazB0gVGjhxOJtBDMKUQ3DIoK80glerApKqKsktZNVJsNWYG6+lpC4VwkUSQej+NyOrFpKqYlUr19J+FQCBMDm2pDFEU8Hi+dHRH21NTy3rvvM2bcaKK9vSTiafxBL1lDZ+iI4X1Rj4UsNlXBHwhQUFCAZldwOR3YFAmHy96Xo9UEh8PB8KFDePP1N6isKMVAYtCAgVRU5qProBsCy5d9ytw5h9PSUks6Y1FWXMSGTdW0N++joKCUjz7+hMp+ZRiWiC8YpCseZ+eePYi6SU64EJumUVRQQE9vD7IsEwzmYLPbaG5qoqy0jJaOdrw+L9lsBqemUb+3EUmUkbZF0E0DY6CTRDRKc0sLLncAze7A4fQiKy5o34pSMQdXxUQERca0LCIdHRTl5WNKMmY2Q29vEktU0GSLnJxcBEEn+1kuWN3bDzl3KPV7a8gJlvDeux/R2l6L22Mjk41z/fXXccF/XcKpZ5zKgCEDmDx9MkYmQVd3I08+/hRjJozH6XCzeeNWKsuriEZa+hLa++HE087Dqcq0N9eTNA3+9OQTTJs2lcp+RWzfuY6qAWPYtGkVg6oGUVuzn1COh5zcEFu311NUkM/ceceStQyefuZpfG4PupFm7tyjSSU6SOsJwgW5aHaV3rZ92L1eEpaJLIhIoojf5yObySJoTkRBouaDVwgFwohlo9m9exfRaC/BYD562mDpko/pP2Ao2VQrvV2d+Lz5SLKIoijYZAm/34fmdBFNJHG4XNgcdn5y7rnEo63EOjpQPV7iySQOp5OsbuBwOfB4/BimSUZPoNg03nv3Ixa+uJAZ00fiUBWShoerLr2K6VMmEyrzE01m6Ght56ijjqR+Xz3BQA5Z0sR6eyguKSUYCKLY+nzUvZ4gl/zqSs4+6zR2V6/nqYfvoWrMZLQhgzjqnJ9x2mlnUFJSxvHHHUtJaRG6aRGLJZg2bQZ+v5/Nm1eDYLB23UomjB/F9u1bmTF9Bh3t7YwaNwJdz6BpCjanh7a2FsK5BZiKi2Qiiayo6LqJqtqRsUgmugjk5SLqOqZpYcQiuIiCVoBlqsioqE4DkyS9PR14vU6SyRSqzcnyTz5EknUUyYNh6Jx5+jmcOO9kWjtaMQyDhy75E7OGH0bKFkUUFF7+85857ph51O5pJK+wiGGjRlMQrmT96tU01XUycFAxlqiwdeOnDBs9jEhnD3a7k66udgK5BUiWQkvDHjJ6B053CEN3IIsC3R37cTu8xGKd2CQHmUwaj9uHqjrY1xLB5Xdis6v0xHQcshtF0mhpbMNl96HYZVSbHVW1s3FtDQMGlpHNWjzw+z9iZHRKygtp69yK35OHx+PBsqw+SwdBIWOqFOcU09awH1Fx4A8GaW7ZhyGY9HTuJx6N4AnkEOnoAQuOPfYYJs0+nL27NqIno0ydPpuLf3YRxcV+or0d5ISCDBpahN/nI+SrZNuej5k5exIFBfmEPH7eXbKa6l1b+NlF56IG8lAdMrIZJdndQWtXE76AysYN25h7xGn84MyjCHjCpHriPPjgQh55+Cl+//t7mTBhLI2NO7jishsYMWIEyz5+l6mTj6B+/z4W/nkRRx4+kfaOBvyhEKLi4MUXFtK/qgSX28bjjz3JgP4DefyRp6iqHI7qFNjbuBeH3cuOrTWUlBRTVJyP0+7l+QXPM+uomUyeOIOAT+X4Y+aSyGQRbRoBbz6mkAQSBOy57Pl0ASlnHHWaC3l9Pzy7j0YZ58NlH4xhOvAEB/Dehytxen2IikzVwCHoWZGqkv4IYgrNLpKIpXE5c8HsIRo3cYVz0cwY6a7tZEWQNRd5ucV0RXqQbQZOl5euSA/pdIqG2n1MnDqaRDbDqjVbKSnMwSaCaWYwLANVdZDVLSRRRc/oOF0OQEcQLFTNQUo3EQUZ5L40OKaRQiRF1kgSDjoYOLCIoFMnbVhk0l1kEglsNkdfPm9JRpFtIEkgiJh6lvaYm8Xvr2Z03gQU2YY8ajmClEZSc7jj3pe5665H8ObkUjFgEG8veovLLr6Ypn0b8fq8lA2egilKgImI8b0V1wMyyP+g4vrPbP/bFdfvUdNB+nRQGfs/iuu/Bv0zFdcDKNe3BKr51pq+4wvxXZDJ79vud0Vlv62eg5nY6ntWgQDyZ1GFv1j/wZDLb9sIvq1fzz67gEmTJvDsswv4+c8v+X+60A6FwH4fvi/2V+yDShEQvuRn8PllYcHBxifwWVofDmmne+BZWN9QTAC7XeW2225l+vTplJaVkfkMcVUHHfvf7X/LFIumQCqWYsfGarau30HdjhoGVw0glUhSV1+LIqooNg1BTmOYMgJQVVHOvBOP5d5HHgbLojS/gPzCHCRFw+cPcep1f+TG55ajubzMGDOQzs4unA47FgI5+QUMGDgQu1OmtmYXgUAIu92OTZGxENi6bSf5BQVIoolgGSg2mVhvHJfTi9OhsPKTFXjdXlSnDUmUsPQsbqeTmprd+L1eJM0GokC0uxOvN0hLa4SZs2bQsr8OQczidPnx+dyUlBYjChKJeJLmpkbaW7vJzc3n0xWf0K+yX1+qFFUjk03w8d/Wsn//XirKymhpiTBt5lTaO6O47Co7q3fS3BohNz9Mzc69hPwOcnLD2Bw59Pb24HQ7KC4oIBDMRVUVggE3P79rIb966G32NLSh9DYya8ZsigrCrFy1AksQ8HldNDQ0MWzESEx01q7agCyp+P1eGvY14HK5eH/JB5SWV/Dp8uUEg0Fm3r+A69avJuxzc9dLy7l94Sd0d3dx+NhBSLJEJpOC5lXYJ1wI9jxsqp329nbCeXmYEsiKjGn1+VgdNnsa195yA8lMjKPmnkDGgK7mzr75tdvoao/h87lwuzRef+19MmmDgoJCjj3mJM79yTkcOWcGhp7ErvblIMwtGMSUmYfhctvRs30IuGWZBEKFBINBOjqiVFUWUr17F4ZiJ9LSy+ixg5EkOw6Xh1BOGIfmobJiGJlsEn/AT3dXnNWrNpNKJjjxrDPI6nGcdgczp89m66bteD1Bamq3UFI1CJtNI51M0tLQwK4d1RSUVCJZdrZt2IVNS5NOKMyffy/DBpYTzMnDG6sGK0PUV4XX6yUcziHZHQGSjBkzDLtiRzd0/IEcdD1NY0Mbbg9kkxp33fkQE8ePJp2MkU314HcrRLqjBHwBdMsEwyIZT+J0OtHsDhr21hLweZAQsBQbimLnB/NO5Lyf/AifP4QvUMiZp53E6WeeyqiJo9i3p4H3F7/PySedSG44RCaV4rVXX2bE8BEokoNUOoZupnE4nCTiacxMhp+e80NMU2fAgCEMGzGOiOzk4127CQRCVA2p4Kfn/5Qf/ugsSsvKUTWZ7Tu2UlNTzahRw0nGMjQ3dbFkyRLmnXwiublhiopzGTKkH9GeTnweFxg6sbRBSdjD6pUfk1dSSVfzPhxeO5lMGrtiI22k6Ojqwu8tIJay6O5qxcQkVDgYS3Ojqi4EVUYWJSTJRjwWx+50gKTS29PNsMHDwFII5bjweL0cdeLxqJpGKBAiLxxmYmQ26b0ily74BUGPnynTRhEIh9m0eQt1O7YxZPRASor8hHNzceeGKSspoL21jeKyKlQ1gMNpp/+ASq68/AZkWaS7sxFLlMnJH4JuZOnu2ks2m+HZhYtQVJWOth7cLg3N4SCThXg8i9uhgpnGpsjYFCe6HkNT3WhOBxkzjSoqGBjYNJmSsiJ0M0NHRydHHDGHYI4XwdIJeIuwbBqCmaS2difuQBhL0BCyOmNGjOC6626keu9uVq1cy4jhw7Cy4PYEyOgSHncQSZFZu3YDeUV+zEQLOeH+qB6NsuL+JBK1bNgQoaqkhMOO+wGXnncRPT0xPH4ngyqryOrdFBQNIlSey8yZR/Oby25l3NgKLKuHTav34PDIuP15OP0BsrEYxeEc5hw5nYqKwWSyUZAMhvUrQzeizDl6NrJDxu8J8d57r3H6mSdQlF+GJLt58aXFXPabnzFgWD+K8wbQ0dpLXlkxDz/8GGeedSqq5kIQbOTmF2N3uRg1bgQBv4Oi4iqefPQJxowfSCrehd/tJr+slLKiQu64404mTR2HbLfT0taJlTXICaq0dXXStm8XJLtI6zEc3iIUTx6/vv56WoqaGT61HPXTPMz9IkKhRKyijUpHf3LD+Qg4EEQR0SYiKQbZzw5cJFlClARE0YaiiOhpHc0TQvOEkPQeOvZsRBcKCBSHULI2bKqIJVnk5ufj9uegOURUWWPY8MG8++E6VDVAbtiPQYod2zvYWdNKQaEXm91ClgXSqTSyZMPERMimkFHQdQPBEvoCFMp9KXE0zYbLbiOZNbHQkUwLRAFTT6HIAqahYxg6i9/bRGF+XwA/KRulX/8QvmQVgiViTliKmMiwsXo/i1dZDB81gpHDx9IdaWP6zMNYtWYLYmo3Q8fNwlVYjihYfe4WkvKdLfO+KOd8mwz4j8RF+abfvk/E4S8BTp+loDvY9bU2v3JrmV+PNfJ95PmDlv3s9h/Vcf5f0vdRXP/3jOo/9D9CCxYs4JZbbuajjz76H2n/S+YP/wL0z+jP18w6/n8m97yHcc97+Jv79JUUZYaeYf3qzSx660Nee+k9du+uZdP6TdRU78ZmqmTiSWKRLqzUZyizJJK2DKwvoLmZdArRkujp6KS+ZtcBkxjTyCIIFmX9++FyOwj43Oi6gWVa7N/XQH5eAemkzvbN21ixahU6JqPGjUVQJDKmgWhTEEURm6IgiGBZEuVl5YRyQsiySrQngiiC5nQwZMQIspZJKp1BlhQ0u5NMNsP4iWNRbApr120nv6CU0tJS/B437c0tCJKFO+BCke20traSyWQJBnL5y6tvkEwkyWRTaKKIXRHJzQviDfnZW1dPIp6kpztGa0s7wUCQ3HAQw8hSUVlAOM/PpyuWk8mkGTiwinRSZl99I1vWb0K0YP/+fWiaDQBFsXHKKSdjGBm6ejqZMmUihfm5IBhUVJRjGhlMPc3IYUPIpmJs2rCBlSvXsH9/AyeccDyiZHL0MUcRi/Uiy32n3U2NjX2+kUBOKISsSBhGFjnbBZaJFR6F5vXSGWnC7lDIZHQs00Y8lmHHthpOOfkMCguLAPB5/YiiyLL3P0aWbcRbazHa6inuX0pPMk6oIJ9gMMDmzVvRVDeCIPD444+Tk5NLOKeADeu3oWke4vEkKz75lOUfLOdnF/2MkRNHMmb6aIZPGsSFl17IHffdRRKFgopKisqLGDmiktr6bgzD4vWXXuG1516kp6eHww6fgWXKbN++nauvvhrZphDMz0UWRPQU3HHnnRxxzOH815UXMf2o6Vz4y0v57VVX0dvdg8/jJTccZsKUyZimTjoVZ+k7b6EKJkYqzsSxI/nlFZcxfdZ0Bp9/N/3PvZs5xxzFTbfdQkNDO6lMD93d3WSzWVrb95FOp9F1nerqakLuIN0d3dz/yB94+a8vUTliKEMnTGTm0SfwqytuQNdNmptbyGR0AMrKyshmszQ2NlJckk86kyCZ7iYe7cHUM9x6y3W8/vpLtO7fhV3J8MSjD3L8vKPQjT507/HH/0hDezvRTIZwcREnnn46zU1tLFu2gkQ8i8/jx8iauDQXHW2deL1eXC4XmUwG0zTJCQd588032L27mrdee49xoybhc3uor9vFihUrmT9/PmPGjsRCZ8DACqqq+hHtTWGZMsFgEEk2aGzaQyDoRtM00ikLh+YgY8iMGjMdl91NZWUpmurEZrORTEWRRIX+/QYDJrKQwu1WSWUsLMuOno1j6nEEU6KpthZBNxBtDrB58Hr9xONJamv2oqkO9u+tY/OadUiGjmpzMWzkcE4+6zQG31lB6W05vPjWK1x6zRUs+3h5H9I4bRynnHMmoiDj9jgYMqyMKdOHsHHjRvLz87Hb7ejRZlLRVpb9bSnpbIZktAeHLJCM9/DrK3/JpOnTGTJmMv1HjOL+Rx7gl5ddQXNzF/fc9Tg9HS385tJL8WgOLr3wZzTtbSaVsBBsIp2dUa66/lomHTaDyiEjCZZVMnbqDC7/zVX0tjUiCVlCuR7SQoJ4MoIoWWBJnHPuuThzShk2YRa+nHz84QCB4lxqI02ohQEmHTGLMy/4Kf6iMvL7VbG3dj8FuUUk03Xs2bWD22+5ntxACFHTSJsmiViSuh01RFo7OeuMn1K7sx5LN7j819cR8IdJpVLkF/Ud2pQW92PZ0k9Zt24TQ0dU0dK4hxf/tJhwwImRTFNfsx0jYaCofhIZi/5VFVxywa9xOgO4A2EUZzc/Pf8kDD3Jvtq9iJqNJ/74JEYqxsChw3jt9VfZtXMn2biA3eaiqDCXfXV72b2thkt/dgmioGFJAnNnz6Oo0M/YMQOItMVoau0gpRv816W/YOmSD3E63HR2dNHd3cOUGTO56857OPvMs8imdfILchBFkUTMwKea5IX8WLITwZGPzd+PT9ZsZ9Zhc3l/0WK6wjX0/nAt5pENGF0W7mcrsG0IEa8X2B+tJTWwE13PIEkyDocT1aahqXYsDBLJGLIi9imvph3JUYancCiBcDndre9jT2Zp795DMq0TChWQTGdob+tAVXyEw2EsQaKyshJVK2D9pmaa27JomoNJ4wYiSyayJZFI9sV5sIkisihhGSaGlUJR7AiSiK5nwLSQJAEwiMa7kGWLbDqJKOqIQgZZ7isnCha6nqFfeQlG1sSyBOrb7Lz1zi50o0/5SsVMRJeLvLwweZpCOKeQrVt30hWJsX3TRhr3VJPq6sLtCf63TPF3gCn/LvSvJrf+u9F/FNfvQN/11OJQqOQ/wnuwer64KA61QL6atPlQ9Xzx9OgAj0BfJFlB4NlnF3Dbbbfy8cdfV1wP5uP7fRbs1/v07Ujy37shHIrnH6nvUOP9tpO9L/rEfrWe7zqHBzNj/jaeb0LHFVEinUgiIdDR2kYqlmXt6jUcfthUjjv2cNasW89jDz/J9ZdfzboVW1i29EN6I510tUb5+K/vke2OIWSNL/hrCAwcOoi29gidXe3IMuR4VCoKAmiijmFkMa0svZ3NbN+wCrJJNm1Yz8jhw6ndvZeerigDBg9FVVSiXT3oqTRmJks6kcTIZEkm40iyiKrasCyTUI6f3mgHpqnjC+SQzepkUjEEM4nb5+uLEmyYWJaI2+tCtzKIsshJp55IT6wbwzB486/v4vGHaG5sRTTB5/MxcdJYdCNNRWUlBUXlVG/fSSYaZdu2asaPH0dVVX8S0ST+gJOurg7SmSTNTfXkhNzkhgO0Nnfy6quvEwqGGDx4IKomoesG9ft2IYg6YycOBiVL5YB+FObm0K8oB4cChmlgmBlCObk0NjaiSAp1dQ1s37aD9uYOdm3bxbadOxk6cjgOl4+zzj6douICLMvCNEFWRSoqSw8837y8EIrSp8Tqhk4sFkUUBTIdu7ENOAbFNJHNJKmkhdPhpa2tBYsUppWmsn8Jw4YPIicUpLysHFlSMcws0yeOJr8oiLnpAbo/uAk9HsVIpjnhqBM49ri5XPqry/nlJVeyddtmEql2RDmNaaUZP34suphCEhPs3LWO40//Aa+++QZNLS3Y7XYSqSSr169h6fIPufGqK+ja34CYzrBp/QZGVlWQjLcy96jZbNtVz44d1Sxe/Bav/2Uxo0eN4v4HHmDIiOGMnzGVdxYvZtTksdx9/z1s27GNRDKBw+GkoamRBc8/x6SZM3j9jTeJdvdgU+24vS5UWefyq65H8/jpTia55JpLee9vH7Bx88a+VBGyRF19PX965hkmTp/Ax8vX4HLmkEpIuF0+vF4vnZ2d5OXlUVO9hcOPnsdd999F/f46slkdTdWoq6/nmReeZ/SEsazfuJX8vCJM0yQSieD1eikpKSHao2NT7Bi6RcDnR0+muPOOWzn88In4gk5SepbSAVXIHg/d3R2oqsrTf3qGqy69kp7WCKccfxJS1iKU42fSpHHk5QfpijTSuG8XNlmnva2eRCJBJpOhtbUVVVURN23h0sNncd9993Ls0Udw5OxZ1FbXc8oJZ1FWWsVzzz1PIhGjsDCXzkgjAwYV8tCjt+ALqNhUcLvdFBWW0tbaxYYNG1A1AYwEoqahyxKxeCexeC+9PQkcDhcNjXtxOBzEYqk+Jb03jt1mxxIs4kYKI2MhCRlSqS6K+g0h0pvA7/IgG1m2btmOpjrQtL7rrrv/SMayo7lzuOWO62noaOHdpR8QSUbQFDsWFrvra7joN7/lxTff4v477+bdt5YSi8XIZrOsXLmWtrYIDocDVVX79lKHF0FzEszNQVMFBEVl6SermDb3OB594gm2bd+OrhsgCLS1t7Jh6zp+fuXFHDVvAu4cF3fcdxeSXeO+h2+nol8JsmXw7puvMPnwmdz74APsqN6FbhjIskxN7V4eeuwphk2bwdq1G4k0R3jlmRcJ+EOk00nS2W5ycoKEc3IIBgKEQkHCOSFcTgc5OSHCOTmEggEkSQIgnJNDUX4+tbXbUKUgRZX9eer553hywSucdMxJ+J1+Djv8CJZ8sgxvbi55pQNQPX4qhgzk1tuvoX5fLXV1dXRHTd588wMuvuAyJo87nMJcB4otSVc0xuhxR1JYEaa5Lc17S9czcfgUJMmP6gwSj/Zw7c030tzUQDbRy7JP9rJ3TzfJeC+F+R6MZJoP3/8EwwqQNVSOnnccjc07qNm1hq7OHq6/+kqOP3Yu1TtqWbNhIx1N3Tz35DO0tG1mw5odyARA7CTgyqOtsZNsLMPll11FMqGzdMnHPPfsS4wYM55xE6bw9B+foaOhjc72GB6PH6/PRVc8id0dwOcLE4/pXHv5tZQVFeHzWbz8yqPoosYNt9+BOSTJn3t+R/2ZH5D5YQNN5l5ymwrRHivHVh0glcwgDcjAYd1EIj1YpkAmrWMakEplSaeiRGM9GKYbZ/kI8vLHEml9FxJtODSDaHcnejJFSYkfSVTo6u3EHyrA5fSg+RUyopv1G2LUNXYjYJJKySAIrFrfzJ59SZLpKFk9g2J3Ykk2dtXUkc5kMc1sX6o5qS8gmsvlIpNNoygChp5FFMS+A1Ajg66n0VSZyv4aLpeAZRmU52U5bHI5AiZgoadbufXej/jpL1/kF1f+HI/XTkFBmM5IC3klBfRE29i8fT2uouIvycuHcq364v2hZJJDyVYH4/uqTPxNJrVfLPNdUNhvuz+YHPdt4/giHUy/+I/i+830f09xtUSwRAQkTOM7shxiof0zYPiDLUDTNL+x7Bd5DrXwBEE4pH/qdzI1/gb/x28by9+rvH9O36aIH+z+2+o7lKL395gJf5X/S89PABML8xscFw72Ph1sU/wm/s/fkc+DJCEKfZf5hXatr8ylaYFp/Xfk9i+QYSV49JY7MRWFTFpgx6YVjJwwkrIBpUycNIi8onxEIU1vVmf+726jq6uLVctXsb9mP3n5JbzwwkLqaqox9exnfTTRXE7yQkFkLUhHT4pHf3k8H9x9LhedOBVZMkj3tBPKzScaN6jdsYtRo8ext6YOh91BSUUZ3ZEuiouK8Ho9xJNRJEmheX8bDbUNaE4vltQXYTMb66B5/140m4aZ1Ukkk4iyiKLa6I72oidTiFjIgsDCF53jX6IAACAASURBVF4hkzRAz9LR0oBumbhcQbp7uknFM9TuqmXjug288cpb+LwO0rqBx+fF7ZIZO2YopWX9cfvDyIKPvXt2s3v7Ttav20i/fv3ICZUwevQQRo6axKp1G0ilVDpb9zB69BB0VDK6jCbaEEWBUSOGU1RWiqU62VvfgSRJXH3O0fztoZ9z0Qlj0dx2HH4X8WSKcG4uDfv2UNSvnPVrVuF22ckpyGNg/3K2b9rCqk+W09TUhYWEbmWxaSq93REURT7wnsiKEz7bryTZhqo5ESwTqXcfcv8j6Yl3Eo0nKS+rRJRMysqLMA0FEQFVVbjtjpt57JGH2bRmM1dd9guine109kbYvbMeSVSwu9zsre/Gsnm56MKf8uTTz/K7e+7k4UfvI9rTy6DKCmJpg85ojGw2yvatdWzZtpHfXHsTuq5z9FHH8OYbf2XnjhoeuvNPHD+3LwL2E88/zdota8lk4wwfOxZfOMTAqir+8IeHqOg3jFRGRrO5GTx8BLtqqlm/cg1bVq+nq7mN+fffSSwexeP28Id77ueB2x9k6yfrefutdxg+ZBjxRIKfX34FPVkR2amRTERJp7PEYi2ICJx05vF093Th8/p4bsHT1P/5emqfu4m/LfqAubPnkEgkuPjXl7NpSzUbN29Ac9jRFOiO1KOq3Zz9y4up39+E1+vhmScfZ+3yxezftpElb7/I3DkzSKaSnH/JxWyt20ci3Y3NpdCb0elJGdi9Abq7TOLRNJksqC4HgqoguwPklw3F4QlimTqqaFJeNgB/0EFxaZg33n8dh0vg5ut+QyKWprs9juyQMVJReqJxMqZA0hAYNnYKnd1xIh2dzJl1NNGERu6m7YxqjTD32BNQNTeCqFBYVMQfn36KikFluANeikvKSCQyDBs0GNXlQPPn0t3ZjSSpiJIdWXVRUF5IKMeLKNjIpOJYkoOs4EaxnHSnIZOOYxcVwv5iMpkMkeZaTEPA6Q1gWioBbxhNlhBVCbQgNrsfIxnnjBPPItKRIa0b9B8wgLzCAjo6U/zsgqvp6ummoCCfN15ZyF333QfAD0//ITt/W8vea5v56L23OO6Yo9ENg9/ecD0zZ41nyrTRuNUsv7//YZraohgYVFbls3HzWqZPn41umaxftYn62v20dTeyc/dmLvjFr2nv6MDrcfP8n55g5bJPmTLuMDQCjBk9hs5IhDN/chGxniyZdBJNg4AnB0G06En2ctGvfktHZ4SSkmLeeOU1/vTYU2xd+Tc+fOMVxo0ZQWckwqk/Oo+OjjQbVtfw4d824XTlE43r3H7zL9m9aQfPP7aAraveZvMHzzGhoopVixexftmrbFj1wYH/jROOOYk99S0MGjyE7p427B4XhtXLj884gyf/+FcyRoTVKzZx+g9PwGcv5L33b0HyhnnnrffoTSQprhpGWWUpjoDC0cfP49bfXYpNyWDpSTAFSsrH8snad5EkPyNGjOAHJx1LsNhHdfUGtmz+kFGjZuDz+3E7bfz64st5/dXXGTiwimg0hoBMPJVk3MwpBAtCGGYKVRN5Y9HbjJo8iQ8XLeX22++go72FWVNHcfZPTmbRW6/w3tKPwRGmO9aC023izx9IOFxGWY7F7l0r2FazlqSQYfTUqdxy63Ws3bSOISOGUL23lpfe+AsBfwFL3v8b9fX1aB4J1V5GKmngsaXRXF6qq3cweNQIFH+QsHcQl/7sD5x8wpmc+MMzkWwKzWI9eee4SZzRyOvD7sSa2YKc1DCfLYCHSnDm2JCnmKg2BQETSZDQVAWvy4mhpxB1G1lnAHfRTFSHSWzfGtB7EUgjyF5aWvbRWFcPlk5FRSU2xcXw0WMZOX4kDrsH0xDYWxehpVVmSH8vOR4RyaEhyirJbA+ptIRmDyAhoQhgiDb0bBoza6BnougpA8MQsWlOBCGDYWYQJZFU2iQZFRA/Q3I11Y6ktuH2BmlKNaErXSiKyrHThhOyy+SWlFNQVIwnFObI2Ufjk1xUDSmlojgX0ZV/QKY4lEJ2KIuz73r4frCyX5WJv4tMZ5rm1xTOL9ZzKJnzwPeWiGUKWKYAgnnQy8I4IKMZltknq31FDvvGcX+1zi/+dBDZ84A8+G9O//cU1/9D9J8Tm6/T/8WTrPjf5hP/2/xvLGMpbkQxw/aPFiNJAgUlpQwZNBhJEogmU6xcuZKOSA/33HMPiqJQXl7OlClT2LJlCz6Pl8NmzKStpfXA3EquMLIskxWgMM9DWWEuazfvYMuWrTQ2NhPtTdDbmyCTMQkXFeEKhojFeykozCUnHKC3J4Ikg9/vRZYF7DaVaE8vhmVQ2q8MI5NCkUQ2b1hPMmPiD+UiSAqCrGC324nHk5imhSIrKHYNRBFLhB/9+EzS6QTplE4olI8oiqRTKT5ZtpxZc46goLiQkvIyJk6ZTCKdwuPzYWIhyBKRrj5EprWllWg8Qiqps2VzNeMnjmT16vVYUgoTE1mTGTZ8GA6HTEFeHoMHD0EQIRDwY5ommUyGVCqFZVnIKKxfvRabJKKn4qxduZbSojKSvUlEQ+TNN96irm4fHo8fmyAyefJkZJtCQXER+xubGDRsKL5gAFnK4nIoiBbs3LodARlRkBGkvi3eNI0DQSBETBQyZGvexSg9HN1Tjk2ScGp2UukYiXiKdCqLzWajvaUVwbRIRGOYWZ2m5nqqd22nvn4vzU2t1NbuxjQNTNPkqt/+ps+vMZnklJNPZfq0GWzatIl33llEVhcI+ILkBMP09qb4y0svcPUNN2EYBoMHDeLBu+9h5sQJiNk0H7z7Bo/edz8zp80A4I5770WRVKq319LakaC1s4dfXX4ZPzj9JDavfIPnn7iTZx6aj67rDBs2lBEjRjD/rjvZW7cXgDFDxxLtSGNm0jQ1NDJ2+EgWvfYm5aUlJJIJrvjNZWTTIjabnZUr1vLpp5/yx2deYH9DIwBl+SUMqawkGYshChZvvP46C574E5XlFSSTSR58/EFCoRCdnZ3sb2lnwJDx/PnVj6irr+/r/43XMfuwwxB1G5H2fYwaMJynHniWirI+/ttvu5Wc3OGoSh6q5cIhONmxbRvnnX8Ovb29SDYHiH3CsCpkiUQiSJKEpmns2bMHy7JIJpPsq29g394WcoJ5OBwO5h49mwULnqe1sY3Wtm6CwZwDwX16enoJ54ZIpTKkUhk+/PAD9tU10NLSQld7MwWFQQqLQrg8CqNGD0ZPJWjdV0dnSyNOVWTXnr0IgoDNZiOvsABZtWFgYQrQ1tKGP1yA7PLS3tWMafXgsCeQ7L247V6CwSC98QgOt4wgWpSWlyNYOmY2g55OoSkyiWgvmVgvipUlE+2iM5bm6edf5Mbrr+ft115ClBO0tO+moNjBlVddwGMP34XLY+e3N90AwLSp07nlhluIdcQRJYkB/Qdwxy03MGjAAAzD4Oa7HuSaa+bT0pHg8suvYcKYsYScHrZsrqG0tJSrrr4cgNGjR+PzBskL9+Oll18n0hVBFEXe/ctC5syYQllBHldeeglbN69h4dNP4/N6ae9o5+77H0CSJOLxOLv27EU3Yf5d9xHp6kIURV56dgEzpkxm7hGH88qLH3DfHY/zwpML+4LgRTo5ct4sZs0Zx3HHHgmWgU2yQzafd955h8p+hViGE9VZwmNPP4poV7Gp+Tz2+NPouo4gCJx1xmkMHtKPru4OJEkkHWlhcMUIovEOysuK6OrswOv2sOKTT4knI3R1duHSZKZNnklhcQmSCWbWpCcSxam6uPue32Mi0dOTJJvNotrgxLmjcSsJBDOJpNio3dXJlOnHYLcV8JMfXcZF552LzWbjrgfuxWH3sWdPPSXFFaxetQm7omEZFpIk09rYjCqqRFrbEQydM//rJ9z/zJOUjx6Olh/EsixC4RyGDx9KS+MeRo4cRiqdZc+uPfQfUETGFJkybTZFOQOwUg62rd9L495OfHYXh0+bjEOxmD1jHCtWLmPxO28RDHlxO0Js2riFhS8vRJIkpk+fyuzZc8gLl7Pso/Ws27iUW+44j5tvvgGn00kwGCQc7vtP83nymDh5Buoomc7p2+i9aD361DaUGj/WXSFUp4IoKNhUrc+1JJ1BkiSyqRQetwtB0HD7CxGcdqL1yyDWhGbF0Q2dkeNn0N7Sid1uZ9euXTQ0NKCqGhMOO4pNe7pYubkRU9JxuL1IkgaGi0wqgU3UkCWdonw7NoebjOhFtZlIUp/1jmkJOBweVFUlk0kDIpKgIWChaiaqp89P1+l0kc1mMVIBejsSNLTvAQUsqwzZIfKHR37HKy+/jiQq/PWtN7n5xhtpb91F694tBEKFCNl/fdnqm+S//03yoWmahwS5/t3p/4ziejAThW9DTL8agOerJ0Xf9aU5FEr6TUjpF+nbAiAdir6LuenBkFepYCgL1zajaTaWLfsYgNtuuxVNs33pqqur+1qdGzdu4IILzmfQoAH4/V6CQT/jxo3hxhtvoLOz89t6/LUTtc+vVCrFww8/xJw5sykuLsTrdVNWVsopp5zMe++9+7Vxf37Z7SoOh8ayZcuIxWLccMP1jBw5nEDAR1FRASecMI/Vq1cflP+LtGTJ+5x99llUVfXH7/dSUJDHuHFjuPTSX7Fy5cqDzqtpmjz77LMcd9wxlJYW4/G4KC4u5Pjjj+Wll1465PMZOLAKu13l2WcXEI1Guf76axkxYhh+v5eiogJOOe0UVq9ZfVDeLz1PyyIWi3Hb439h4rn34Q/6KCwu4MSTTjgw5s/7EI/Bub+6kL88dT9tTTU89cKfOfWsk5h55DSOPPlY6ttraIi2Mu+UY3B5XPz4xz/mueeeQ9d1brrhBlLxBO+/8y6m0WfGYBoGmbSOoIgIZob9dbXc8uomjpu/mNsXLMGuOQnnFpHWweXzk19ajCSYbN6zj7tfXcGpt77E5F88xuAf38nE8+/jgt+9yOKV23F73CTScUQBIp3t5OflYXP4sLsDpHUL0+hL/P3npZspmncTo865j/2NjQiigCwrIFjs3r2bTz9dxfq1WxBMi0nn38uFT33KNQ/9GbfXzdDhQ0mkEtTurSeTSPPy+xs47bpnOPa6F+h/xk3M/OUj3PbaGl75aCOz58xFVGDUqJGomogggCAJqDY3D7+0iB/d8SaVP7iJwmOvYtAZNzHiR7dw9g1/4rn31+FxebB0g3Awh2w6xS/vf4UT5r/Fz+9+kTUrVrNsyYf88IwzGTBwEJu37qR2Zw02T4jfvfAhR/z8QU645TUG/PB27n6/jlsWLuf5xatIpQwqyitYt249XV3dxIwU0BdkSfwsGrQZa8Gs+SsLNimcdMcySquGkl/ej2BRAXklRfQfMoRphx/O1df/FlE00VSJUNDLSWecysDhQ3nl9beJxVKMHz+JqdOmULtnD5OveIOPVr3HLy45n9a2Dh558mF+fOEZnH7uqSxevpgzzvspi958k47WNp5a8BIjhg9kzbp1APzXBedTMWQgntwQSz98H7fbxtW33cS2HdsBaGhs5Myf/JSurm5eefEvOOwu5s+/DYdT5fJbbmf2Gedw8wMPsHz5ch5f8DgTZk/mxb8sBECSJFLZFCNGDKG1uYn3PviIaKQVMDnrlBMAWLl6JYl4hk2btrN46btce9vNXHnttQAoikJFVRkbNm8mGR5Jr38I559/LqlUiiNnHQnAO0ve4ZiT5zFo9CjGTJ7GpJmzeejRpwCoKC9jxpRJpFIpfAGL1o4N1OxZw/jDJrCnbg8AixYv4vpbrmb8lFHklwUZPKqc+x64i2uuvZyi0hIS0S56Otu55rprmHX0sYyZNI4BQwdxwUUXEovHiHR1sK++iXgsw6knnMnTTz3H0wv/TEOkiY9XLWXu4XN4c9FijjzmaMZOnkhheTHHn3w8v//DPWBJPP7YU7zx5ssE/EEKCgp4e9GrnHjmPCbPmcqNt1+PaSXZv3cPigyhoA89lWL4mInc94cHKSrOY/ZRcxBEEafLhQUUF5WiuQO88soLXHHljQzoNwi/L4f8ogFMmDKBU04/naeff55ENkUynSSeNWhs2INppkgme2hra8BmA0kXiHd1Ee9po6Mryj33/Z6cUICm/XVg+CguGIzXk8dpp/6IrVvX8t4H79Pc0gLAzo1bUAST4uIKGvc3oqdBEQV+cvaZAGzatp1TTz8LX7AIw8xyx/zbefLhP3HOjy5C0+wMGtwfTdPIZOM0NNZTvaOOd95dCsDM6dMZVFHF9dfeRDzaw5rVn+JygSxJnH3G6QAsfOUVHA4H0WiUYFEhqazOR8s/AWDG1KkUFeSSTkeJxzs5+8fzePSJ+YRy7EwcMx4Au8fFYbNHMWrkcBob6kkmeknGBX7/+98T6erEoeXy+uKV+PJyyckN0dTcxsKXXwdgyvhxVPUvxbSyNDU1EQrl0FS/h+62XpKZBJlUD26Xja7OdsaOGovdqdCvYgSy2Mkj993HjJlz2bF5E/vq9rFhzVoS8TgXXXwx3dFetu7cTU9PD/FYFMVK0NZaiyWk0OwSW7YvY9umT+mNtTB8xAB+cvaZmEhkjRQnnHAi69atZt++Bubf+iDn/vA8Pnx/GVu37CIbh2uuuJ7m/U2s/mQFaiZGSPGw4cPViNEU8d4kc447hvN++mPKi8K4fD6yFgwbUsn6jctQ3HlkDQ3MXvxegWFDCygssJFORtm0YQOCZSBYMHXqRB5++A9Ylk42mqSqfyXnnHMOnkAJQa+H5v1NpGM6g/sPpbsrzTHHHMOWjU3U1NQgiuIBRaErWk1xmZNUto1wQRG+3BxSg7oRLmyn+5SNWNtcGGscGGQwJ7ajKAq63ucmgJFFN0UEWy6h/LEEhs4kbXbSvm8LXpdIMpMlGAjS3NxMcXFxn6+ramPz+rVojnxmz5rNlh3dVFcnkDWTVLoHWdGQsCOLBpJlkNUdfLyijlTMQDf7og4rNicffLi2L0q6CIYuINnApqikU042bdPBkjB0E0mScHkcFBXKDB0SpjcW54kXNrO9rgtkGbfTzR233c6qFZ9w9tknEwiamD31DJpyHJKlf0lm/jbrwYN9910Q038F/9nvY/F3MOu+g6HG/6x+fSlDxb8h/X1xqv8N6PMFJfwvUN0/3zS/74v4eT7R70vKoFk4t3aSm5tLJBIhm83idDpxuVxfKve5P83ndPPNNzF//u0H2nQ4HGSzWbZs2cKWLVtYsOAZXnvtdUaOHPm9+lNTU8NJJ51ATU0N0LfAPR4PbW2tvP32W7z99ltccMEF3H//Hw5ZR0NDAxdddCG1tbVomoYoikQiEd55ZzFLly7h1Vdf44gj5nyNL5FIcP755/Haa68e+M7tdpNIJNi6dStbt27lk0+Ws3r12i/xtba2csopP/iSUuz1euno6GDJkiUsWbKEl19+keef/zM2m+2gfe7u7mbatCns2rULm82Gpml0dnby9ttvsWjRX3n4oUf48TnnHHLMzS0tXDxpQt+YFQlRUYlEIix+ZzFLPhvz7NlHAOBHp8MXomz0TI4/5WSa29oPzLXb7SYajbJz9w4ANu3ZQI7Xx5o1a/C4Q1hmhkhnJ9OmTuWtD97v49P8SJJEW/0+UlmTfgOGkIz3HYL4fF4QLGTVhiUK5IaCyBL84a9ruXvhhwesnW2yhE2R2dscYW9zhHfX7uatm05lUuFwdFHGGwiRTcZJp9OoNhsYOk6Xm7Se5uRZY7jpyUX0JrNsr+8iGPCjCBKq6qCqagCybCOdTrNk5VYaO3oQgKF5GkYmQ9rIsmL5cqYcNos5l9xHdVPXgTn1ODUivQmWb9nL8i3wSXUDix7+LU57hu0bd6HaVUrL+jP7wt9R3dLz33wOlWQqS3dWp7krwSc7mhie7yA3L8jocSNxOBVESQFAlESKSwpob28HS0ez25kwcTx/+XgTVz+xkPRnwXwUWUSVZepbItS3RFi8cidCJsFp845g5mHT+9aty0lXohtBgGRv38GRYeic97afxR/+7cDe8v+x995hUlTZ//+rqnOc7sk5kHPOGQMIiAEFETEnVMxgjmvedV1zQMEEgiJBVJAcJIPkYWAIk/NMT+dcVb8/ehgGRMXd/X5+n7DneeqZ6a4bzr116/Y957zPOS1JkiQOFxRwuKCAbxcv5IN/vEHvnj0JhWJCcCQs07ljHzr07kxtfS0DO6Q0192/bw8FJwooKilCaPJZdzQ2smL1T6xcu4o3//Yq9z50H3995aXmOsNHXtz8f4PLx/KtG6itrcWg1zd/v2X7Vq7cMYF7b5tG0FVD/i+72LJ2E4IqysjRo9n3y0bmzPuCgqMFvxrLtt1bGX/tpTz/5PPcduf9RHwV6A1a8nKzY+OJRJj5xMMsXrLo9O9CU1jGSCTC4mXLWLxsGccOHSchNRWzz4VareWbJQub+3G6XVitVtxuNwVHTvMQb7ORkJBASBZxu1TodF2Js9sQVad/eKLRKG+/8zZ6nR5BFKmuqWXJ99+zZft2Vnz/Iw2lRdz20MOUlpdjNBqRZZn6hnq+WbSQ3Xt2s2LZcjIyMuly0UAWzJtDalIcf3vntdg4RIULRg/lsWcfad43ZVnmaOERXnz1Zd588x0+fXcuR47mY+o7FFGE1p27EAyGANDp9AQCQTJbtSMU8KKo9USFCGq9sTlypdFkQlCrUEQBg9mEosC0O29j7twvm8doNOiIRMKcLCriZFERK9es4eJR40hM0KDVG0hKtONoqKFVl74ATLrqcma9/Qn+gBuTNR6jrIVIgJMVDbz2t6cRRIlgyEMgGGD9xhWo1fDkszFrq1ajxWI00FBfiz0Ys5TVOY4SZ9cxYvjwZp4OHt1Fp/bJiHoVr77+MuvW7+LLuZ+h0xlo364rsiwSCLpp1SYJgyWD8oqYBb59+7b4whomT72dhJQcbrp9GuGAkycfe56sVrE1VVdXz65ffqF/3/74lTBms4WysnIAOnVoj1oU8PtcpKam4Hb4sFgNHD1RRDQcm/f6hkaumHAd237ejdUGldVFCLoyHn30Ub74dCmZmWu4+4H7cdYFMCaGOXhgLceLimNzd/XlaLV6dBo1rXI70lBXT07nnpiMGsI18dTUlBGVXeRl9WXOp7OYcuMUPp21gBEXtcJqbM1bb77P6uVLueOum8hr3Ybde3bQuVd3AlKQQUP7oNMYqKus5bNvtjJj5gN4vPVodQI6nRlXo4sBAwbgaWvAnKjC09hAvN3CgIG90eg7UFFey7Rp01B8XhKzsnng/ocZO+pSTPEJJGVkYLDrOVZxnLyOHcls045bpl3LvE+/Rm/VYTJoKCk6SVabZEw2MzVVBdht2RwpLMdiEsjKTGH+rPk88MBDRAkSkny89/EsvO4A+fsL+Obrpdx4/bUIaGloKMNq1uOPBOjZczyD+7bn2admUnTyAB9//iUGTRyvv/46i5csQJZl/vrXv/LUc88jqVQkJmTg9wUQFD0qo0iDwxHzEVdr0OepMPZwETmkIG/WYfq5N1JHL3JXD1KtBZ/Pg82SRCAQJqozoldZsbZKpObEPjy1JdhSBErqvcTHxSFEZFwuFw6Hg6zsPOxp2WjEIJ6Ah6jPEzsPyjpUGgPhoANFViFoBETRw6B+eWg1EoIgEA7LCKoIbdtngiAiRcMI6IlGZGRkorLAwcJjdMjrhCAqgAQaNYKoRienEAoJVHsC7N5fij2+nmHDB6MTtSSkJvPzmmUUHKumY7v2dBx0CbIqioiG/9B/6P8l/Q8Q2/49JEsiKKdfqPPR2PzZwDt/ROeyJp5vvd+yzv4z9VreP1vjc+q7iRMnUVJSxoABAwF44IEHKSkpO+PKyspqbuftt9/i5Zdfwmw288ILL1JcXIrD4cThcLJlyzZGjBhBVVUVV199FV6v9+yR/CaPLpeL8ePHcfz4cUaMGMHq1WtpbHRRXV1LdXUtr732V8xmM7NmzeLdd39bcH344QfRarX89NNKGhoaqatrYNOmzbRr145IJML06fecPrS20PrdccftLF68CFEUefjhGRQWHqempo6GhkaOHTvBZ599Tv/+A854puFwmKuuupKdO3fSs2dPli79jvp6B9XVtdTXO/jkk9kkJyfzww8/8OSTT5zzWQC8/PJL1NXVMXfuvOb6e/bsY+jQociyzPR772HPnj1navFaTOWDDz2AVqtl8dNjKPrsBurrHfz885YWY57e7GshqQOY1SauufMh7CYjt199KT9v2Ej+oUIKtu9ix+rtfPHhbDq174TX76XMUUNVZR3pGcn07NUFlVrDrj0HMBpi75ig1lNWVkZWdjYWixG1QYctIRGIRRU+tP8goaCEQafC5WpgzvLd/HV+TGgd3bctXzwwgq1v3cr+2Q9SMPdRPnn4Mi4f0hkRJRYdV1GahF89Fr2J/fv3gahQfLKI48eKiTPq6JgRB8CC1btxO1w0OlzIsoLepEFrUFFWVslbc2OpgtqkWrnx2qtZt349IHDNlEnc9cYijlY20jkvjccnDuDYgqeZ99AYCr54jNfuGE+C1ciBMhfPffw9Wr2FLt27kdemDbMWrudotQudRs1f77qM2XeN4tBnMzgxfwb5Cx7hjbsu4dJBHUmKT8Jk1SOooNHjRq3RNq+/lLR0+g4ahKhWUZB/mGWbdjPj/aWEwlFyE428dN1QPp1+ITs/foSXJnTl45kTuXxIR7r36IggKAiiiEanOx0sq7EQrSa23X+yvpItu/dzxfhxyLKMxWzmrttvP+NQP+sf/2DQgAFU19Ry813TiUSlmMUAiERDqLQeAsFg09o9veY8ET/VNdV0btWBdd+vZmjPgWQnpNO1UzdkWeahR57g+qtvoba2BgC7zUbQ5W6u/9QzT6HT6rj+iknkb9tN967dgZgSTFZk5iz4kl+OFPDR7M/oM2gAAwb347MvP+PeGY9QcLQAq8XCK08+Q2ZaBgA9uvZgxNDhyIrC0y8+w6Kv3kenNyHLEcxxyc39frtoIbIsc9HwoXz37XxysmN7P+usQAAAIABJREFU24hhw/jg9Te4/LLxODwOZElE0Ip4Qx7atG7XXP/2W27jyMECCvftZeEXXzajZgqPn0RjMKJGJDWzIyuWb8HlUTj7p/e6SddSdqyIYwVH+PbrBSTEx1NbV8dfXnmJx195DYvFyvIl31FccIQTJ04wZ/anGI1GThYV8fIrL6HXqiiuOEirNimkZWfQq1cfAAqOHmH+4m+49Zbb2bd9K4/e/wTXXHEbjz36BIIg4A16WL1tOR+8/zZqUSAcDOKuK0Gjiq1Fq9WOId6O5A/idNYQDAcISaBGJhIJN61XGZVaiyJokRBYtGwJc+fG5uCRe27g8PYv2Dr/AcqObmPd95+yZO4spkyaBLKEVaei/tguasoPgq5ljAUV8xd8zvvvzSIUihIJSYwcMZg3//EcyYkWNq1ZS/6+w7icDuITzOj0Kn7ZtweAdm1aMWrURfh8PhovPUBR/5UkZcZTWukiIzOPxIRY5NOCg/sgGsBoSURjMHPRhf1ZsuhbFAkcPifuxkokghgNGTjrK5tZ83o86OLUdO/bmZDsRlSHsMTZePv9V0hOtTeX++mndURCUW6bcgslJ481Rz1wu+sxGO1oTancfu9jWCwWIopMty5tufjikc31b7xtGqJFwhcGa1waJlMOIy66mGdfeJib75yIx1WFPclMJCyzcm0MvWCLs3LxhSNQxxlQqcHvd6Kz6gk5a/A6G9AY9OiEJKxxBvYVbOH6W26l2uGlTdtc7HHpGK12OnTK4uEXHkNj0TPpmhtxNgDhEOn2dKIhPz5fHWHZxzVXX4y7sQqz2UwoJCCLKsxWMwg6TDYngWgAU0IyYY0BRRXFYLLRqUsPRo+7gBETLkGvCfLDsq+Zfs/FPPv4g+TkpmOPT0avMdO3b0fi47Us+GohoYgbMSITCkY4WVxEZfkJTDot3qCVgYNG8e2CT0lPS0YWZR5+dCZhSUYWwarSsG3zXgYMvJBHnn+aK68YQSjipK4hjKs2gqJI2KwCc95+mTc+epXWPbqx91Axqcnt6du3L2PGjGH0qMuwmuN4+tXn2LThELdcNQWdTkckasZq06EEgqgUFUadGUnWotKZCAcboKMX+aZavDcdIGx2oP4+D2WbEYM/kUhcA6q+dUT8LkJBFz9vOUi5x0RcUjreuoMkaOsI+ZyYTHrcDgcdclvhdnuoLzuBFBUQZQ19+g3DaOvLkuUH+fir7TS6BRrdfvyBMMhutIRRohLRoAdZiUX+jo+3I0tR1DoTGp0aUQ4hijpMRph6RX8UQUAQdDh9UZyOKBVVDeCxY8DGhUMGMv2+B1m2YhWt2+RgSUpn7ZYNyK7DyHX5dLzwOkSDHZUgnTPw0Z+JUXI+CMNzoRLP90x9vjFUzofX04XE37yaY4o0+bb+ylf2N3xY/4h+FRelRVYI+J+VCufP0v/ekZ1Foij+r36Q/yq1fDFldw14685bQHc4HDz33LMIgsDXXy9k5sxHSE1NBWJW2V69evH99z/Sq1cvKirK+fTTOefN12uvvUpJSQkjRoxg2bIfGDJkCDqdDohZMO+7734++WROc9loNHrOdtRqNStWrGT48BHNQav69OnDvHnzASgtLf0V5Hf9+nUsWvQtAG+88SYvvvgSmZmxlCCCIJCRkcHkydfyzjvvnlFvzpzZ7N69m06dOrFq1RouuWQMRqMRAJPJxHXXTWXx4qUIgsCsWR9RW1t7Tp5dLhdz585jwoSrmtOadOjQgaVLl9GmTRui0Sh/+ctvp75Sq9X89NMqhnROR6U615hL2L4jNmZJEFEAjVbNxtWr6J1rpWdeOgkWK5LJRnZ2NqMuGMsF/S/BZDARVSLYEu188skn7Nixg7q6OiZPngxS7DAryxLZmemEFYHklFS0ahUoTelYklJo26EjVdWlBPw+FJWGFz9dAcCY/u15Y9oYBvToQWZOLg2NTswmA5cM6s47942nVVYyFeXlBJwNiIpEMBBkx84d5GTnEAlKFBVVIkmx1Dp3XxOz5K395Rj+kITFamHnzh2UnDiBz+Wmtq6Ogho/ALddOQKr1UT//v2QFZl5K/ew71gF7bKS+OvNI2ltV9NYV01WdiZ6k5brxw3k9TsuQRDgi+U72HPwSMxvFThaGbNWT7ygB9eN7svIEQNYtWYtRrMVg0pgythBXNsnC7fXg15nYvPm7eh1JpyNTgBCoRC7du0iKkVZvvxHOnRsz98XbkFRoF/nXFa/N4M+HbMZNHAQ1jgTU6dcyWUj+zHryRvo1TEPnU6LoNYCAkIo9jzE9N6ETDFhzOvz8OJTz7NqTSyYy9xPZvPMo08y77O5pKWmIssym7bvZv5Xi+jQrj1Ol5MFixY3ryuDKQ5UyVitFgCikWjz/uH2uPng7Y/4cckaWue15/PPP2XjhpW8/crLZKVnEZWilNfms+LHHwBItCeQntmxue1gKMi8WbO575478Es+rOZYH8kJSRh0ejweDz+sXM3bb/wNvFUIioi7spbDR44A8Mm77zLzwfvJyY5FVK6qqWLe7C/p2L49AO/P+YyamiJ8/hDFpeVnvC8D+w5gznvv02v4aNq0jZU/dvw41VUuPnj3fdKEOrzH1yJJAgaDgbFjRjfXPX78BIocJSMzl9SUJIYNGtI8H9u270KlhuLCXXTpmssbr75KQ339GX2rVALhkA+9Vkefnn2YdutdAHz33XeUVZTx8Ucf0LVHd1Q6I2a9gSmTJnPfvfcDsP7njcgCoBIxWnRo9QLtO7Zp7n/Ktdfx7CNPIooiPXt146WXn+Phh2Zw2413AjDn89mkp8fh9bnR6bUIAqi0MTRNMOgh6KjHbjfg93gJByMkJyciKAJaTWwfVlChUgQijXUojZVsXvsTABeOHM4Nkwfh8/lBtlNT7CE3szPdO8Xz5svTUUthvHV+ZJUXrSmHeFvm6QlRBK67bgp33303BYePsnP3BnLzUlmwYAECWgYO7E+fPr3IzEzH43EhyyAT219yc1rz4P1P8c5bc4iGdYSCeqJBhQ1rN1NfVYfdFhMui0oq0NvTcXt9OGtLEfy13D39LhZ/sxQhokIjJiBiQRT02O120tNiyIITJ4sJeetpqC6GiIdooJHD+cfxecO8+fZp5anWoGXnrl3IET056Z3IaVL0niypRqXWIkph/vHSiwQiXhqcjdQ1VlFcWt1cv6yilP2/5AMi4WgAR10t69euRI5K6EQLtvhMFLWaWreTxT+uAmDilZdhMpjBWYqzvob8I1W4fQYstjSkqBa304UlNxFLQlcS7d0JhVzoNBFGjBxMMByipKwKRa0QkmROFFXyjzdf59LxY4hKQXx+N1qtFo2YRGJiMtk5edgTE6muqcNotqBE3ITDbhQ5iForYjIYCPu9KCEfshylsqKayspqVGqFRlcl06bdwf4D+0BlJhhVqKqqwtno5oZJ1+OoruLA7q34XZVIUQWny4GjsZ6MtDZkZuTg87tp1yGLn7es4u67p3E4/yiO+jJEgixbuhC1YoCoh9EX9OOu22/gxaef5/WX3qPwUCk6wUJqdg46SwJ+WaDfyAFs2fALa1eu46YbJxKJ1GCPN7Fo8dfUNZRCxAhRDY6GWl577Vncbjeyuh6Hw4Hb66G0qIQH73sMyScSCQWRFFUsXZtKRcjsQzPGQ/SB40jXVyEkRlG2pSC+0QN1YRIG0UD7i9Jp06Ybuvg8knM7o4QbibhOIgYd2GxmTpYXEYkESU5Jxe3yojXocHm91DY2cvmkSWRn5nKyLMCKdcU0OoK4PQK+sIkf1+SjiAno1QaQghh0EshRFAmUqIwsQzQUQpBlfL4AWkEgEhbZsLWIRqdMIKxFpdag1+vQxMXRZ/BgHn3qCeqdjWzdvIGhXXqQZA0jG1No27ErKkGN8n8hMtB/6P93+j8nyf1Wot8/ioj7W+Guzyea2Z/Bsv9exODziQZ8Nu/na9VtWTay+2tCO+Y3ab7+uO78+V/h9/vp3bs3F1xwwTn5U6vVTJw4CYA1a9b8xhycHvcpmPMXX3wOwP33P4BGc9pi3vJZXHbZZVitVurr69mzZ885ebzllltJSTkNaTzFV+fOncnNzQXg0KGDZ9T54osvAOjUqRN33HHHOa3vZ7cHNAvmd9xxZzO8+ux117t3bzp16kQ4HGbjxo3nfLYDBw5k5Mgz5xNi1qcHH3wIgNWrV+FynYaktuTxlltuJSkp6Yx7iqKcOeaDB1EUBUnUgKgQlSPY0vO48Ym/8fab77Fj3QoMWglBFbOuXXPN1djMsYPfgcP7efXVVxFFkc6dO+NyuVCip6xwMhq1iEgUj8eJIKqRmjDADQ43eqORtLRUQGTpxkN4/SE0ahWvTb+CxNRk0BtxuxwIgkw4FCAkCWg0Mh5nDRVlZaDSEJVkTCYT/QcNxGI2s3nTJtp3bEdubi5er5dLBnbGoFURikhsPlzG0cJCuvTsSmJiIhq1ivKgiMcfQqtWMX5QJw4c3I/RaECv0/POgpjf9M3jB9K+fS7jLhtDYkoqyWlpSFEJQa0welgv2mUlE45KnKz3U1RURCQcxmY2AXCitJqPZ31KMOhi7Pjx+EJRBDkGBb549AW0a98Guz2eURdfzJ49u7HZbUBMYTFo8CA0Gg3jLxvPpn2FlNXGhNrnbh6D1WRArYbi4hNs3vwzJ06cZN7cL/G63dTX1aDIEooUQSr9GUWM+Rxr0vtiNMSEwH69+xIIB/AHAvTq0YNRFw1HEKMghBk+8sKmZ9SARhC4bnLsnf1p1WqiUhNiRBaY9/lXbF2/i5NHjvDIQ68SkGPvZveuPZnz4QKunXI1NTVV3H77nWi1Rtp1aMt1E2P+hYcLj5KTF4NU2hMSqHd6mtfokH6DyGvVBkeDm8Y6J1pdrF2P10fntjEBd9kPP3D/tMuRnBupOJ7P1gM7mvruzvqV6zh6rJBxYy4BoKa2ho8/mcXdt9wW6/voUaoqqlHUet56/73mfgVBYM5HczAnpqFTooy56CIAKiorSc9LJyqpMFfvx1i7D51OQ1lZGR998vHpd0uGkD+Ayxckt20rxo057XbwwcezCYY8ZGXl0LlXL958761fuV14vC4cDdXo1SpUqJh4+ZXN966ZMIHeXbsScgfwNnhoqKim5MRJhg0eCkBpWRkqnRZZUUjNzMFgtaI3noZZz3joQTQGFZkZufTo2QWTWUQlqsnfswedTkc0GmXFilWYTCZEUYXVkkAkEoOsKgj4gxIeZxUZKVnEmS34XA7q60qorqpofte9Xg9VVWWs+HEZyfbYOquta6Rd+6m07XEDmR0HUVm/j9S8doRkK7V1XhISLTT4tpKbO544i5ZQUMJXW031iQJmf/wB1TXliCL07TuQwQNGk57Wmv79hlJf58Zo0tLorKO6ugqNVmTN6g0UNUFlVSIcyt/L9TdMJjsnla59eiFKbsaPG0Lr3HRscVYAwpEwOrUOV70DnQYioUYSEu307d2R2ooCVq5aTkJCbK87eLCAi0aMAGDr9u1s+vkwxwudnDjmIhq24fd7CUdCOFrsxT6/jwGDBtKpQx6PPfI4LkcMWbBl2zZ+XLEIiQD1zgZ02mRSkroQCpmYu2Bui/ohEmwWAr4gOmMCZpOO7MwkykqKuXD45ThryxDxsPi7Zfj9AQBunnw1GrWMu66SmtpqvD4ndhMEwjJqlZ7UZBPqqI9IsIFVq3/k4IEjKJEIgiKgNyZz0aiJKEGZQKOPVpnZvPP2h8iSCqMhjuKiClAMRCQXajUIIRchRyU2HQTqyyk5UobXESEaMuL3GXA66vhhyTfUlh5DkoNYLHbunf4A4YgPKaJl5NCJvPT8+zz9wlts2bkPo9mAxWTnyqtu4Zln3yEcsSHLyajVOvx+PxaLkbT0ZIIhP6KgoqK8Gq/HR8GRw/Tq3ZX0+DS0SFw+djhawsz96gcKCgt45IkH6dWnF9lts0nLSyE524bfVUd5cRVqlZ3Hn3mZ/r370aVDe/yeep56/CEKCwtZvWoDZrOBr76aQzTsAcXHyy8/jS8UxWxOx2COwxSnpUOnbB5/7DYWffMWSGEcHh8RScFVV0lichr+iIBao0ZId2IdLyHcWYX25RKkUbVEgzL27a3QbzeS/91haoM6VGM7YY034nMWoI56SLBlgCIgCSoUWaJt69Y4GhrIysrBaI6jf/9+dOk1lMuvnkJuh8FozK1YvGwnrdr3ZNueCkoqwuw/7KCwHCS1hR17SjlwpIZ6vw5XUIvTL7J8wwEa/TEFts5kYff+4wRlI4KoJhKOMv6yiZw4VkrZyWK+mjOHrAwze3d8zcFjlVw7/WkktTkmTIiac549z+csezb9Xpmz3Vt+L27MKWp5Dv8tK+q5ypyr3X9HACdFUf4txrSzZZN/V7v/nel/9+j+Sfrv4Ph9vnQuIfu/mrZujQWdyM/PJycn65xXbm42r7zyMhCz9P0RKYpCYeFRHA4HAHfccTu5udktrpzmKy8vpxl+XFpaes72+vbt+5t9paXFQrg3Njae8f327dsAGDt27B/ye4o8Hg8HD8YE4L/85Xlyc7PPmIOWV2FhYRPP556P4cNHnPN7RVEYMSIGKZNlmX379p6z3PmM2dE0ZrnJ2VsURUIKLNq0h58P5HPTffeRlZtHSus8UtulMXTcICrqYpaqcDTMggULqKysZOnSpUiSBE2CayQSJipFCHpd+DxuZEVAFGNWnJSUVESVOpZbNSpw4GTMQtmtbQZJNgP+kBdJiOBzu0hLTkRUJExmM5FQkPS0ZPr06YPeYkMR1fh8PhBV1NXXM3bsKBKSrBiNJuIT4jEbdIwf0hWAr9f8QjAUQqXVIKpF1DoNP26P+SJeMrATRq2IQa+npraGYFii0hkbx2tfrGbgtLfpNvUV+t/5D7pPfZm+t/6dblNfoevUlzheHuO9pKqBdu3aYTAY6JGXgiDAtoJy5u2u4fst+VQ0uNBodWi1ehpdDRwvyo+Fy1cUJDlK9x5d8PliAlxiYiJ6nZ5AIMCBAwfYdvAEAElxJrzVxVRXVmGzWhFEgX59B2CLS2T8pePQaNQkJiQSDQWQTq5CETWIUhO8N6xQXR2z7Pfq04etO2OW9sMFR8hs14nuAwbSvU8/ln23BIA1G9bSrU9XXnsjllqktLwcVdOPocfVyIfv/p0jBUWAmu35JegNMUTBoL49mXD5IK66+jKyc9J49dXX2L/3CIqoY+z4C5rXbzB8SjBSCEX9zesyNSGNg0cLyWvVjpeffwWTxdxUB2bMmAmA0+3mhCsOn2YAndvlkn80FsTJbonnySefxOv10K9fHzLTYxa8F/7+CtU1Nc0++YuWrWDStZOoqKho3jPtNhvJKekoiMjeOqZeOY7sJnTFg488yEcff0hJZS2+QIi161dz5/TpVFScnpNNWzfRoWc30rJTyWrVjplPPtU8phWrV/P1oqXUOcJEBA1b9+zA6XY1v2+xAcokJdjx+/3Y42ykpsY31x82cABhr4+Ay8PG1euJt8Sh02hJTDytlGpsdCCoROpqnYRDMkLTT3tGejoepwuH143BYEAUIc4WEyy/+GIWPbt1A2DfgXz890+ldMo4VKIeVVN9rc5AfEYmobCfSCTCvj37kaUIiQlW4u3WpjGAyWqiXZcuTLzxZjKSE9Fptew/sI/hl13IF19/RWWjis6dR+MO+2jbfhgZ2V3JP3qY3Kyx+JUDWLUpgIzTWU+czYzP34hKFXs2Wo2O9975nJoqLz98vxJFUaisrCQuLo5wJIggCGRmZpOUFHNFQJDoN6ArQ4b1xvuNgvcbBVl2kZpmQIr6UJqQH6JKJORxgRKhtrYOfyQWWCbebsTpLKX/gG7ISohIJES7th257cabsdtiyqV7ZkynuOYkpgQ9KhN4Ai7GXHEFPr+/GR2jUqtQaXX85YUZKHKQb7/6BltczH3h7gcfYcW6dRjsNqoajrF6449ccsV4PF7v6foqHS5nNQ0NDVRVudCoVbRuk0PB4UO89PyrRAK11FWe5Mt5XwPQqX02vXp0xGRUkZySSafOXejbtxPOuiP4/B4qayopKz3CyYP7KD62jRumjqN3n0EYdUZ83giCYGLd+h0EnSE8DY2EPG5qaxr5ZfcBjh4pYsKVkwkHBTz+CoIhHwfKXDiFONzqeFTJ7bDZoE2bRAKhOi6fcCFer5cpk68hIyWRxMR4IuEos2fPJhoNY08UmDL1clLSLGTltuenNetxOp288vJrXDXlIj796l3adMpm/rfzqKqsITk5GZ1eg6OxCo/HidFoBllPeno2o0ePJhB0Ew6ARqWloryIsrITXDXxNjJyWqEx6dDF6dmx+wQ6Ywao40mwaom3Wgn6JARJz5YtG5HkKI0OFz6fn6zM1nw171tqaxu4ZtI4gmEnU66dyLtvv8mevQeIhm2EoxJSKB61kMiOzfsZ0GcwSlRCo9NTWlpKUmICFRVVaLRGtBo9JUUnKS+rjPmkCmGUthKhiyrxXpeP68HD9L69NdoiDXEf9sZcNxKDPYo/bz5+TzFZ2Tm43R6MRh2lJ4vISEvn5IliDu4/iC0+jmg0gtGoptErozen0LZdN9LTsolPzkJnSkXQZrJuaykHDjeQnjUARcjkQIELb8DG8aIQOa2H4A0loBWS6Jk+iMunjSeuQxyKoKAyCiz/fiUaVDiqa4l6fKSl2Phlz3JunPYklsRMEE6Fy/mfIVL8GcHzn40Vc4rOPpv/ltD8W2jB/9Cv6f9McKbTC+XXuaNOfxDPLNEEFj+fhXtqYf6zi7ylZbflZ1mWmw83Z9/7Ff+/025LOrudX1kSf8fn9FxUWVkFQCAQIBAI/GF5vz/wm3y35LeiKRgGEAtUcx4UCPjPOS6LxfKb/anVMatOJBI5415NTcwPLysr55z1zmXRrqmpbtYGnhK6z4fnc81Henr6b9Y5JXhCbG7OtTYsFktsfDmDY/eaulCpVGiaxxxGEARUp6IBKzK33HIT33zzdXM7arWauLg4pKiETqfD6/MRCgVp3boNrfNy0RpsLP76O26+9RrkaKwdvcGMo7YWrV6PQW+mvKSMUPCUUOtHkIM4qxsQjUZKqmICVarNgMvlJd4Wx6FfNmNPTMeOBpVWJBIJIKHBF5LQa0EvKAjhCCa9hmjYR5zdShRQiwJSJIgUUfD5fUwZ259v1u3jl6PlaI2jCPt8mM1m6l1BNuw+CsBVw7tTVx/LRRkfn0Ct29vst+n0/vF6BvD4vICMFBEYPawb91VU8/7SbRyr9fHorDUwaw1pCVZG9G7HxJE9GdC5AxBFlmQUJYAoq9HrYn6FDQ0OAoEAKkEiLs5OfmFMgZKVGk+vPn0xGY3gLCDZZkbTqj8+5yIS49OpbWxAZzAQPrkWVUIbLKPfgIfbAhANeUlOTuBE0TFMej01NTFIYiAYIBD89RgjkQj1LaKAy01wMgBFlnjsycd4+vmHWDT/OxbM/QJMsXWXkp7HuAlT0askImG47rrr2LxlLYgCtRXO5vaaZAdCwSCmFkv/0qsmsHnVVj4pPMqMp17igUfujpWPRtnZFJUVwFtbS0qPIews3E1DfYzPjm3ao9LG8eIrHzFo2HC+/GQel149Dp/fy0tvvN5cd9ZnMRTHjVOmsHDJEvyBAEajAUdNFYFQPQadiD0hmYXzvmLS9VMpKS3lpZf/wulwUjFKSU6hpslXV5KiCALEWa2IoohKJeL2eAiHI0SjUWY++RdmPvmXX81zQnw8dfX1JCSlEJeYQnVVBaGwF50xrrmMMTGRWm8Qsz2FGs921q7bQmJyKoLW11zGUddIgtlEZckxUnLaEopEm3hMxWy2kpGUQjCsYLXakKUQGlGFwZZMZlY27NqFy+tC1Bkpqz6MyaJHUMeeZ8jrxlt6iKBgo1X71qS1zo2tB1FAZ2raU2PJCYkiIEtqJt90D46QyEt/e51t23ewbXvMIp6YmMiw4cOZNOlahvRqh10fC7Dkd3vxiQ7ibIn4ZTVOlxuzKZ6oScXPW7cyZPAIxl06gM5dc7kvYzo6M9xx/TQ+nP059rhU/I0+brtzKkZjTJAuLatCVKlpdDmwRPIIeQN4pFQGdhvOySN78Hhj82Y0GJB1Wo4eLsbj8TB+0mUxf385heT49rz+0j/46zuvEYp6efOVd8jMzeKrzz5j6q230tDQwJ1333PGsxQEgX49+nDwaD7RaBSzSUfAX49eY+S+GdOItyfxxENP8tpbr9LQ4OD22+/9Vf2LR45g646dRKNR7HYdHbt2o6bSR8nxQyQN74kYteH1iwwfno3eYKCorIRDh2Mw+ckTr0VSadFo4gnLETSIKJEoOTkdKaqoITMjh+KSE7Tq0JbKqlIUJOprj5KZ3ZpIJIImHMZiqMHn8bJnz2FOlhXxwYefsHv3Bnq068iSxV8gKG5+Xn+YURMuY+f6DVw02kBiih7BKxIX35qrr56G1ZbAKy99QrwthRpXmGSDEY/XSzgU4Lmnn+Opp56j6HgBLq/E9PvuQaeWEAb1wKDR8sILDyMQpaahntS0ZK65ejR6kViEeq2FTj3bcmj/XvSeAGmZVr5f+CnFx2sYf80k9DqJE2VltGs7EEUVRSU5cNb6CAQjpGem8u77z/DEw/cw49FXGTZ4EjsPbOftf7zO5KvHcvRwCf5gCK3Bwrff/cTPm7aT2zqXtPTWWCwyKr2JqFpg+do9bNq8nVGXXEp5cTVJ8SYCAbjptht59903GTb8QtIyE3j8tXd5+513SEpVIyghah31tG6VSVWVB4/HgMfnZOni1Vx+6Siyc/WEZJES/x6y7s0mEj3Jir+t5wLHxaQXXEdN0iJ2u96kLTPxeAzktGqNokRJTIojOTWJmqpKAuEIKBZMJh2SLKE3i9jiE4izZ6IIAdJyuxKfmojH4SclPZnq+gYGDbwIRZFJycwhGAxi9Seir7ATEstRHdGRq0lBiki4BBdxcXbMxhAXDExH6qZi7lsPc8lKWgaqAAAgAElEQVSYyzBnt0NEjcRp58p/t8Xvt86p50u/h5Q717np7DrnCowqCMLZosSZ1MJfVT4lzJ9qoqXIoZyOd6A615wp586Fey6eW/L2rwrb/93pf4Z65N9I/4xV8s8GUzof6PEpaimUtoQlnOqr5QbQ8t758HK+VtiWZZr7E07Bh/+weixHJHD77XcQCkUIBsMEAiECgVBznsBTVyAQ4ujRwt/kr+VnqUmYAiguLm1u8/eu66+/4ZxtnaI/+xxjf/+4/qmxtOR548aff4fXQPP11FNP/aq93+L/fO6dzau++xT03ac0fy9JEkqL3bPleD797FO++eZrVCoVjz76OHP+9iJl+/ey95cDFBVWsHn1FkZdEINhFhYWkpqaiUaj4YorrmD27Nmgjln4BCmK2WiktrYGtVZLWlYWWn3MJ06ORnFWV1FeVUGC3YrBYABAJaooLy4mEgyjyCpatW2LSqvB6XIjRUOoNHrUWhNOhxtFkvF5gxQWliCLKvQmM7Ig4guFETQaioqLCfoDlO3fTlqCFQVYf7Acg94MCMxespaoJJNkMzO4ayvWr/8ZvV6H0WQkKp1WYKx8816KFz5L/YpXaVjxEgtnXsy3j4ym+oeXOTb/EY58OYPSRc8z4/pLCIdlSk4U42yo5/6JI1j5t9t4bMpFjOjeCptJR1WDm/mrdjPh8Y+Z+Oj7bN2yA0GG5d+tZPf2fZQ05R1NSklGa9Sj0ZvIzM0mNS216ZmD0aTHXXsUqXIHfkmDtG4GJs9h/vHJD5iNcXiK9+Jx1CAMeh5RPA0XFQQFjSampwwH/ESblDR33nQL+Vt3UFdcjrOukZkzHgNgyMBB+CprOLh9H5cMvpjNK1ehUsfWttNdzaXjR3PTtdeDEmL7gocgGhMG1CoNO3fs5URxOWq9lkefeJLvlq3DWVuPKJ+e13A45ntbUVlBSDktIDvqyjlwcD8atcKjD0/n+LHYXtG6VQodO+Q1l5s/fy6H9x/m2wUrmxVFyRmJIEa5fupEUhMs5KRns2fzTp5/5lkGDxrUvLdlpGXx0VtvMe2WGwiGYpbf+PhEjPZ44lNbYc/sBJo4UhKSmffBR9w25WYG9x9IdrKdVmkJjBgylNtvvrVZaAW4b9p0SgtOsGXDBg7s2k7+rq1cfumlAHTt3JGRQweTkZZKdmYG40ZdSHwLWDhAelY2YVlGkMKk2PR4fafRH5GIgsWoo/xEPjatjjXrdvLlvFm88cZrzWU0gopQIEpWq07otGbEFkoqrVaLSqXCpI4ScDRy/MAR6kpLqCo9gdQUYCkcDiJGo9h1GlQhN3Iw9jz9Ph+puZ3Ia9cGSVFieYHVMX/5s+F6zb9fSFx1yXDy9//C22+/x4TLLyMjPY36+noWL1rE5Guu5uprppCglTDpZQzGREJSiOLySrRGCy5fEEWlwWyKZ/jw4Wi0CokZ8TjcDbicjQTcft56dzbfL/mRSMRDWPSyfsMuMpp8UEWVCotVS2JCMqKgR6czkpJopkPnXGyZ6ZQ0oXIK84/Q2BCk/8BO5OTFU1fjxeeuwd3oJK9NVx5/9lXCAYFwMML9jz7E4y88x5grrmDqtVN58oknGThgIJkZGbRt05qrrpzA0m8XMPuzd5uVt23btUeRomj1MhkZGdTVNTBsyGC2bNzEjPsfpm3r1mRnZdK2TRsmXD6Bv730Fi88/jQ+fwyB0CorA5fTzy97dtK5S3t69hiCPSUB9AEs1mwKT9bw0acfNc//My++RsHRE9RU5oOkRZIUzLYUnD4t9pQc7rznEQqP1tDgcvP53G9QaeKIi88EZARBwe12YrWauf/hJ2jTvgda0YYcceIPhOgzaBRteg7EH43w/F9eJhgMc+WVV3HieAWKpMXv9+MLeJn+wDTuuf9W2nfK4bopU6mrraXOHWbn7gI++HQunyxcwNRpN9Glbx8GDhuEzWakU+d2JCbFom//9NNqopKITa/H53BhNidRHQxTUVOHFJbw1JaiEyRWfvcD29dv5YKLLyWnYyfi4+Nx+bykZabx3bJvqa8pJag2kpiaws/rfkIMNlBUWIzBZOJw/maWLllGMCDxzFOvsGf3MQ4dPcCxwhImXXU9DVWNzJh+JxYt3HXLdVRX7UOrUtNQ08iVlw/ngemTUUtudCgYrUlojDa8QYWLxlxOUlISjY2NTJ48OfaOiCI6nRox6mfdpr1kZOYSDgRJS8zgyvGXYbXEoyg65KBIbm4H6jwe3IFKxj17MZppjURv300cwxhZ/Tkm3UZCuZ9RWVpAOOiktLiIaDgKqMnNbU8gIOHzhqiqrCc1NYey8gYOHTxAOBhGiki0zmtL5+49Ka+spW+/3ihECAS9RBoVkipbo/VZWKz9kMSZUfa0+onKYQfwWB2YUvQQjfDVxy8Qch5ky6bFXDX5WoZPeQyb7dfK9T861/1Z+r0z25+BHP9e2bPP+P8vUIxnj+NfMXL9Wdj1/zb6P2Nx/a+klj6qcO58r+fzsv0z9/5VikU5+3N1TvmOHjp0qPm7fwePKSmpzf/n5x86w0f1v4JSUlIoLi4+L2jzKUpOPs1jfv4h+vXr90/339Li/Ot7pwPLnO3H+q/Qwm+/AeDmm27lmWeeQacS+cttU7jh0RfYe6SI+pIqipvyT7Zr145DBws4XHiU7NRU3njveb5ftwkoZuf+I3hHtSXJbsWkU6HS6ZrfA4PJjDcUJBoMUllaTLwpZv0trXWiUquISBIdunQj6A1gMBkxG824nD5SU1NxOKuw26yIqFi/fh0XjroIrahFCkkgg0pREQmEEAUVGp2OKyZOZPmhj6hqcPPFjz9z+/h+mC0m1u6JHV67ZVlAkRg8uD+iSsDndWM1nt4Wt+49gqdKz6BB/fD4PAwYNARBEDlxrBidXkNcnBW324vdHsfevXuxWm2kWtNY+O039B/Ul4euvxiPw4mgUVFYVs/sZVtZuPEAWwoqGNytFcnJlYwZPxqP24XRuAvwokgyFSVlpKdnUl9XTbIt5jNbVFFPJBBB13iQ+tSrSBt0H7fccYIPHxvHnaqvkE5+jyFYx8mMqQhuHydOVjZrXTRaDdFoTHDUG80kJcci6u7LP0Rqq9Y4qt2Y/BLqU8hVFFwBH9Y4G0888SKrlm8kEopZ8XJz2uN2u+nfux8qNQgNexCV2L2GxlpuuekGotEoWqNA5+7tqKvxYkvMIDnjtC9r314DOHbyOA0OB6L6NCw2FPLz1jtvolIi/LxpHXc++iBEoGP7zkRUhuZyY0cPp12bNti1E/h2xWJq6mrxBgOEQmGWLl3Gk488QUVZAW06duGO2+7mppumkds6dsiyG+OQQyIH8480r8loJIJJp0FR1EgRiYA3QCQK6ZltuOKyK3mxX2fEX+aiEtXU517KHQ+caS27dMwl1NZWY09JQavTEfR4mnOKduvSlTnvvcnxY8VY7HocbifjJ9yAo9FJuEmBMLBXX+SQgsmaQmW9B7P5NEJEJejQadU4Go6jE7yY47Rs3lTOgAHtgViKqZ3bdzFi2BCCgRMkpmURicYE8orKCjIzM2O5KBU/JqMNa3wCMgGS7HFUVcfQMol2G9LseWhLS9jU2YKnCbZuT00jaIxDJ0VQhJhxVQZUgNt9Ohp0Szp0cC/Z8XqSUhOYdsc07ph6DbVVJezJP8x3X8/ls8Wr2L7nEC9+8C233uAkr+1IrPZkbAlqRLVCSlo6kgKBgBOtxgiKmvjkNCJBhZtvvIaxY0Yz+forGTpwEGVlZXTv1xVvXYDWeTFo95HCI5QUOfnm64VMtz2KKKoQiBAMxgTCU8qKgf0HYDSriAS1GA1x2JMkgo0KG9asZfH3y3lr1gcIoppg0I/elkjHju3ZtWc3BqOG6bfdwNMzHqS6vAy9Xqah3k12XiaffRUL5icIAt07tcNsjSMSjtDo8JKVlUEo4kKjSDz96OPMnDkTQSehiqoRBAW1Ws2iJV81z2OffgNJSkxj7LhReL0uFDn2jkmyiM4i0bV3B5ZMWnPG3AdCAtGAG0kK4Q06MVjiEEUzLmc9r734HB+//3dGjxvKTbdeRyDkR6vTsXfPAcrKyhg7diw+n4+CY0Vs2LCOlFQ7c7/5gqnX3sLnsz6k7PAeGusD/Lh0IUkWmRp3Fd16tEanM1BWWkJyip0evXpiMOmJKH7e/+AtkpKSkBEYOnwoG7fFkCMIAlqjAUEWSUtPQBBlfD4vf//7Pxg54kKstmR8DTWs37CZgKzl6gkXEQiE0KolZn82j7vvuZO0rHRCYT9q0Uz3vn3R6nW0ad8Dn9tHSnImhflH6W614QlEyWvdipoGB9lZaVx1zSQen3Ef8dYUXn3zdSQ5woUXXshTL25gx+79aIxalm/4kVkL5uDyulGAviNvoPTwQSxmOHTgMNl5HQhGRES1Ab/Pi4AWZ2MDKclJmPQ6tIYA3bub8Hq9JCRYqK6sQhDjGDrsAuqdNXy3/Ee+Wvgdew8cQqVWkZmexsihA3h05kPEp6TiqatGp1Hw+0CTHY/xkQi+dQXYN92JoVDmnYqHWFa4hrIaL5IskWJOYWyPMVzT82oKDhwnMzMXVHpy89pQX1uOSqXEorgLIZw+LwsPLGTlvJ+oaKxEJahpZWnL0C4D6XFBJharip+WzSclpQ35u7bRtSEOIWykyreMXl3i2bR7H6OmPEuXfkOQxTjCKhD4c9Fw/4gUJZaH9Ox0i/+h/9Ap+j9gcRUBEUFUEMQWYafPJ/x0y5DWf0KrcUqzIknSOc36Z0MVzg6mdLbw8Uehw892gm/pXP5HAnBLIftcZc+GKZ+LBg4cBMDOnTsoLi7+zXIt+/k9zdcp6ty5M1ZrDP61cOHCc5b/I2f83+r/fOhUKqDly5f/qv65YMIAdnscHTt2bOL5m99pXTzjEhEQEZrhvACbNm0843MzDwps2rgx1ooo0qNHz99dI5KzFMlZ2nzwbBn4T4Ezvi8vjwnE3bp3RRAEwrLCiFvupfhoCVatibnz5nH0eAxiW11djt5iQ5BDXDB6JJa47ObDbKfkCIf3/cLhvbuprCjG5WtAFGMdNzQ0kGS3YbeZMVri6JTXpPg4WY05MROLzY7L6cSgM1JdVYPepMWg1XKs8AhJyQnozXpqqiq4dPxY6mvqKKuoxOlyc/TIEQw6DUeOHiavdSZanYgcCTHzpsti/DoD/LhxJycrGth/PKYUeOTWK1CrVRw7VhjzP5M16AQdbbNiyoDVe44xYHA/NFoTZqsFrVEPapGcVjnIssDBA0fYtHEDh/Yd4uSJYlLTkokiM/HaCbRt2xFZkTDHWTFYDXRt25phOWrapsXW9PKth6hzVhMOBbGYjCQ0+ejV1NaRlJLOkiUL8To9tE2LCa4OT4CNG1chCCKB1IuYv3gBcz7+GEOXa1BfuQRVv5n4O97F+nw3Jq2eHr27NuugomgQhNhB4Ov5i+jRuTcAu/f8woGdP6NXBal21CE1wbklSUGvimPlD8vIa5XKsFGjUISYgmHL5u2YzMk8PPNxpIgWUDUru7Zs20wg5MdsNeH2/H/snXd0VOW6/z+7TJ/MpPdGaCH0XqQLgiBiQSyIgL1hR6woRz2Kxy52saAoqCCg9N47kW7oJKS3yfS29/79MUmI2PDcc+763Xvus9aslcy8fb/vu5/6fTzExMbTuVtbJt1xD5t3bW7csxf16tm4B1esPXe+tu3cjsdTSkio4VjhGbz11quk+FTWrIkw6VEWK4OHjkUSy+jYtys52RFX/nXr1/HFrE+pKa8lNimD9Fad0Ysae9ZvY9miuY3nY9qzjzJm3I2s3bipsd+jx49RUn6S2poqNq/bzI+LfuD9t2aydd1a2nfI5dabJwMiiKATJc6cOd1Yt1WLFuS2asukCfcjIrF25TqUoET+vv0AhAI+TpWcJj4tEY/Pi1Wy0pTXa92yBV07tcXvc2G3xZGUmIW7LtD4+09bv6Rgw8fkZLUgr21PbrttHIWFRzAK5xRWp4oqmbtgCYsX/giqgFKvpCgpLWHtyqXIqoqiBhEEiImyYTdG4XeXNY6xe89eGJ0BmkWncOktD9GqXRcACs8WoVdDjXeGoIFUf83s2rWrsX9NAESBYDhEq7xcyhzVOMurCPt9HNqzgtP788nLTuLeSaO58vII8NXGnQdITe2CI6AihN1IwXIUnwu/04niKiccUhHEME5XFT5HJQgKg0cMZMSl3ZGtdkZdfSWJiZmIoo0aXw2Hj0QUjB6PlwOHDjP+luuRdQZURUWvs2MwnFN8AEy6eRL7thcQCAURDQIoEjpzNKPGjmLWpzOpq6jg1VffIzYhE0nSyGyWTYuc5sTF2RB0MrVuJ+bYJHRRmaQ3y6K2tpbvFvwAwMWDB5CYkICnzkVIJxOdEIfP68JbW0p12S4CniqirFaCAQVRDfHko9MI+Wv5bPZcAHr36EFSbDMOHzoAqOiMsTidEWWCLMhoio9v5s3FUfdL5YE9ykBMTAYhgwFRMOBzepGMIpJSTVySicuuHIWkGjCKcSxbsApdSGXGqx/z+Vfz2bt9M1dd3JeVK1dwx513M2z4SIYMHoSjvJy83DS27TlFVvNYgsEKBC2K9DQLsjGIpDdwxcgbsVoEvprzGQFfEL1oxmQxU3D0JHUOLyhh7NFxZGdlk5qcgkEBl9eNwRiPq86NqCqMGz8efWwitY4SzpTV0POifgwd1ANVlvlp+yo2bVrBzTdNQA2pHDtylO8+n4tPc5G/YwfHD+2h8sQpDuzYidvtp0vvEVw3ciLpCQn07dObo0dLqa2rJik5ne8WfM97739FbEosimjk2KnDzJjxErPmzWLv0YMcPH4MR73QCiAIIksXb6B1dh7pqRmcOl2MDhNGi4jo96H5HciiD5e7mgk3TKC2opann3oOv0+jorwKS1QisYlZeEJObrn7fh568m/s/mlfvXcCnDx9hllfzKPXwOHs3Z2PyRZPwOdGpzNhFlW8FcexDkigZtIuLt3Ujxmr53CksJxQOAwanK49w7vr3ue6j64jNsFDQmIF1qzDVIU20LFVLEZ9mOQ0M0WVR7nhg+uZuWYmxyqOo2kaAdXHvuo9zNwwk1e+eJesbBX8+zi+/WOs6m7Cgz+iOO912rVJ5pIx93Lf83No12cUqj4KZPUPhdamvNZf4WkFQfhTofVfZXVsWq8h28SFV/4NeaLh0zQlTn0anMaUOOf1/8+mwzmfGnk78X+/9fU/QHD9JTV15fx3kyiKjRr937K6/l6dvxIfcH75PxNW/yo1pLxoilx7Pt1wwzhMJhOKovDAA/f/4RqrqorD4fjd35uSLMvcdNMEAL788gu2bNnyh+UvNKb0QmnixIkAHD58mA8//PCC6918880ArFu3jm+++SPh9Y/HvHXrVjZu3PCr7/1+P2++9SYAQ4YMbRTuf498G2fg2zjjD8s0kM0Wia1rAJgSBIEePXow+9P3yd+9gfTcFIL1iKMWi409u/ejs9rZk5/PD998zqnjEddOWZaJssdh0UPR8QLOHj2OUH9pm80WqmqcBPwuwj4Xl3ZMI8qkJ6yoTP9kGY7aWgqLClm3fjWxsXZOnijEZrcTn5CELBpQwxImkwlHrYOdO3cBCvt+2kuLljlUVFbQLq8DJ0+cwaA388H7s8hMTKB9TsR6v2JnAd+u2Q1A66xE8rJTKSsrJz0jnZ07dxEVZUEQYPzwiKV864HT/LDpIDu2b+PUoQMUFRxBCvrRG3RkZGTQpk0uffoPJLtZNpcMHc6B/YeprKhAREEghKIqVFZUI2gR1US/vv2w1iO+pqelclGv3tQ6agmraiNoTGJiAqIoYDSZyMxpRruseNLiI8/47SV7mb7YxZszP2L82BtwV9fx4/xFKGEVObUPYs4ouvXoidliwuNxE5Aid4NOBrEe7GbM2Cu4ddJNGI0GFEXhpbfeprq2ksysZKT62GdRFBk4cCCiZMHl8lBTXYrFEmH8W7ZqSb9e3Xjq6SnoDCpKE9fqnbt28tF7H6GqKrGxscTHx6PX63nrrTf45LPPABjYdxCtWmbQs1sEPOzzzz9rrL/wx2XUOhw4qvR8UI/OnZyUQmWlwrI1kZQfUeZojhw/hS8sEvR6uOG6cQDszd/LF1/OpuxsEXt3bUdVHQT8HuqcXt6b9SkAcTGJfP7RQp588hm++T4CRGWsR9Z96tnnsNusnDheSLu2HXh4ykP0G9Qbt9vNyy+/jCTJBAIBYpOTf8FY3XP7HURFWRh1+XAEZC6+eDCvv/ePCHAYoNOZSEtuiayPJiY+HVtCIoHQOcF08l23Iss6FCVMSHFSWX2SuIRzVuiuvSZgi+9BSPBRUrGZs2ePsmL1j2imc8jE8TF2XnrxeWZ9/SPvzvoaQTiHwP7VN9/hdFRjNCehN9h496P32HtwF3N+WEMgGESWZa4ccx2yTh9BPxUkOtSDNq1evbpxHk1p/fr17Nix41ff6/V6JHM0rTv2YsOmLbhOriE5O48OQ4dRV1VKXGZXLPWxqGhhYhNT0Ol0+P1+DEYrKhIGoxmbPRaj0UgoFMJqtWI0xyCLJr77aj7x8elEWS1s3b4FRQlRVlJMenILnn/2FSzmiJLnnQ9fJzbKgFavPHa5XL8AP+nZvTsxMTG0yk0nNs5Ki+atCQVlZEFGDcqE/BqhoJ/hw4ehaRqSoPHx2zPYsnw1Pdp1xWi0YDZbkGURnU5CkONZsX4nG7ZsRRRF7r3zHnQ6A05XNQG3gtvlx2iyEWVPBSGD0srjhEO1KH4wWGO47e57mfv9UjZsitR/8blnECQ/nTu3R5ZljCYdhvoYeBBQQjJffBlJa5adldnkCYgUHN6HpKl43D6irHa8zjoEyQ6CnoL9R6itc3LpiCGMHD2IitpCZky7kzmfvkXL1h24f8oLxMcbUIUy9HoIh+pITElkwYIfmfLgo0TFJqMzWhGUEB6HlYSY1rjc1ezZt4Srx9xNVXWQsqpaKmqr2bF1D21yWxEXa8HlPM3kO8ZwYOcaLh/anZNH8zHrFNx1hZRWVBOflIxOkmiRk020PoZ4ewI79xzAmpCKHpG27XvTvHVXBL2FJT8uJzMznRGXD8NR5eX1195mx7afiIqNIi45jov698Tjq+HH5d/x8/EjhJQQSanxpCQ3Y/WKzeiEJHZsX035maMIPh/uOic7t+/Hao3CZrbStW1HenXoSk56dv2eNjL9ucf45LM3MBospKYloNMJWMyxeJQwstVKCIiKjuEfM98kOSOZt1//G4l2jfj4BPL37KXwVAGPP/Ec6zdtR6eTeeXFF9m/dQtnDu7jx2/m0KpFc2pqarlx0h34fV5kyYRONlNeVkswoBF0VXLfYy9y4ORRbFFWXnrqPpy7T1Cx7Ce+fPQxEm3RlLqqmLzwDfQ1OSSe6U9KaRcI1VFZfIiakuM8suApil0lJNjtvHn3Dfzw90tY9NwgHh7bAYtRz8/HC7nn0dfJTEqgVbdLsKZ2ISHvUnpd/RD9Jr5CfOfLCNpTccv/dbHhPzE95X+iS++/i/6zdg6/dOP9KxbUf4aaWlMbtDm/Z6lrWue/4s/ftGzTMfyVvvTdr8PQ43oA8vLaArB8+fLfdV1NTk7m+ecj0CXLli1lxIhL2bp1K4qiNMZCFRT8zJtvvkGXLp1YunTJef3+vmX08cefICcnh3A4zOjRo3jzzTd+AdRUV1fHqlUrufXWWxgy5NepeP4r1L//AK655hoAHnroAaZNe6rRItmAbPnpp59w5513/GItb7vttkZE31tumcSzzz5DUVFRY7ter5eNGzfwwAP307Ztm1/0GRlzZNx2u53rx13P998vaGS6CgoKuPKqKygoKECSJJ5+etp/KR7j/DpDh0Zyn3766SfMmvUxgUAAURT528sv8dZHb/HhJx815kFs2649o68ZRedO7ZE1P0u//4rszDQAfIZUsnWnqc28im4DR1FU6SEQiig0amoduIOQ0b433y3ZSFWNj4euHQDAj1sPM+mFLzlWVMElwwYjyaA325i/bg/3vbWYI0ePM//beazfsJ74+HiuuupKUhIS6dG9O0eOFJCYnMaPPyyhprqWqspqEhMSqak+yfXDIxak7Ucr+HplxFI0ul97XC4fJ06cxGI2M6B/f/wBHw5HDWMGdKZNZhwAk1/7li/XH+R4mY/EjFYEBBNVNQ6+WbaBJz5YSL9738IfCnLk558xG0088M5iHnzje1btPIQ3qGExG1HCAcqrKpm9+id+OhkBoxrQqRnFhUVkZmaiMxpQ6oGtBKCisoyhI0YQUoI0z2nJ/Vf0RBBg12kf+XVGbDGxeL1+Bg4czHfzF7B100buuv9uyqsqGThsCBaLAZNZh1QvJDsdjiZnLkxsrJWnH5sKwIrVa7ntgQdZv3EjjtoIOndxcQmPTH2YfUf3M3LsZSxbvgy5HhXaaDLy8eefMu6Om0hunsbQx78lUJ8v1mgw8P5nH7Dg+wXU1dUhyzL5+flcOfYyjh47iiRJ5KTl0aVTZ6ZNfRpRFDl0+FyIgclk4poJE3nkmQcpr47EkE4afx1rti3G6/NgtVh5fcY/SEtL4aprryGjdSZfzZtHTrNI3tJiVyVdLupC89xMvvjiC155eyaTn7iPfQcjlsWBF/UhIVXPZ3PeR1VVxlw5hkfuvxeABYsWcekVo8jKTmHas0/zj7ffZOGqVWzZsY3JU+6jLGMku2jLK2+9zpn68ywIAk6nG6/XzfgJV1DrrOSxaVN5+4P3MZsjgr43GCYYCIDixe3w8trM96isz+PauWMHBvbrT0VFBYsXL6a4uBiLxUJYO6foDOq91KpO7Em5jLzqEZJ0Pgp2fE+XVpbGMu1aZrJh9QrWr/iRm2+8vhEIzWqxMv+HRcxd/CMWezIJ6ancds8dbP/pMM+/9A8Abr/jLlLTMiI7TxPQVImrrroKURSprq5mwoQJjfeez+fjyy+/5LrrriM29pxw3ZQefHAKN9QAdjYAACAASURBVN16P3WuKvYfO0hcYh5nyk6TmtWeBSu2MG9+xCo5cuggVEFCJ2gYzRaCIYG41GxiUzO4dsJtCIKAzWZDp9MhGCwc3P8Ta1YtpeDEaQQlTK3bQWpGEl6HA5+nFHu8zC0TbgRgy45dPPz4M5woOY4gwNFjRzhx6mTjM3v20YfIbN4Mi1WitOwsgUCAUFAhJjWB1JbNmPzwg0RbzcRGWzHpJIJeN1dfPobnX/sHZ0rOsmfPPgJ+hXA4zOnCEzw5/WnurM+re8ctt9KrZ288bh8moxW7KRqjTsbrdfPqzE/ZlH+K6PhUTh47SnKsmSMFh/jk8w+474FIirPJd95Bty6dOXnyOF5fHbW1tQhiEKPR2Hg//OPVV9lcD3o1euSoxrWX9GYyWuQi+r2Ikh5/IIxBCZEUH82pEycZP+kWglqIJSsXYIk2EZeYRny8OZJzdu8hnpg+g5qqcs4cP4mnrprM5FTMlhiuuOZqlv/4LY4aB/Ep2ew/eAS/ehx/qAKzMQG9lMTCb+dTcPgwixd+Q1J8FEMHD6C8+CyO6gpiYlpTXuji+OEiLrvsFr79ehVHj1RjNaWS2awFChIHDuwj7Pdy3+SH0ekhJTWB2hoPRWfOUusOUlRUTLWvloGD+lNaWIIUZUfWjNx9561MuOVWnP4wWS1asW3HdnxeFzXOUjKym3OysITsFtn4QrWkp8houlo6du9DdXkVr7z0ImnZqSz+cS53jptI+8wcBnbvyXtvvIPFFDlfoVAQo8HKjJfeAsRIPK/XQXVVLckZzfjhxxUEfCrlhRXExtkpKzuLJAn4fF5eevE1Zs/6nLKzx/l2wUIAnnx0KjdefTUfvP8+J04eo03rbL767G1MRiMVlZW88/4HGAyGRt7NYrGwYfMelq+OeIi88uLj3Hv/IxwK5iP1jOGyvz3HnHoX82OVRaxsmU/aS5nEPxND4s1tSLnWxjzHJ/xcFkGn/+L917j46itpO3oy7S5/iDunPs8b/3gagPxjZbiTBzHwmtsYfO39pLQbQSi6OVpYQqcq2FQPMWrtb2K3NE3F8mdYLH8Fa+RfWb8p/38+fsy/C8zofL7/j3jyf4Vg+58gHP9fjOt/AzVYW/9ZDdMf1Wto+/fcfP/qYRQEAdF+LrZ0/PjxvPnmG5w4cZyWLZuTkJCAwRB5ga5du470+pQR99xzL4FAkKeffpING9YzePBA9Ho9UVFROJ3O8xB7L/xgxcbGsmTJUq69diz79+/nscem8thjU4mOjkZV1V/EWTVv3vwvzfVC6L33PiAYDLFo0UJeeeUVXnnlFWw2G4FAgEB9rFSDdaKBDAYDCxYsYPz48axfv54ZM15ixoyXsNUjjtbV1TU+l4bUB79FTz7xJB/P+phx427AYDBgNBobLd+CIPDWm2/RtWvX/9L8Gl40Dfvo/vsfYOHC7ykoKGDy5Hu5//77sNlsjWMeNfQSzPZ45n33FaVlpbRv34nm6fEcPlBEXHwMe/ZGLLVHS31sPyPTxbqOLZtUunRsT93stZE5SzJJSWkE3F4G9e1HQkI8zVr68AaCvDp3IxsPFLLxQCHTv9uHJAq4fcHG8f791sFcdtkQZJ0VRVVYu3YdOkkmGAqTnJJKIKBy8eCByLJMVVUVFw8eyPqVSxg+8kqe/XAFta6I66koCNh9VSxbupwbrh+L1+PEaDTi9rjIyMggHBaZ/+Kt3PL3eWw7dJq5G44wd8MRoj5YiSAIuLyBxmcoiQKJyckkJCSybs1KfL4A8zceYf7GSLqdKJMBDe0X88hLNpNtDhIKBFE0DZ1eh8FgaHgqxMbHIel01FZUYEmJ4obL+qCvO8jURVXk78snf18+n837EIPByI/rfuTHdT8CcNMN48ltm4vH5UJnNTXeHfl7DtDg9KHXGzh69AS3TbgNJQzTX3yBXXv3MmbcDY33yJmi09x018TG8SYmJHOkHr3U6wvg5xwytV5vQB9SgBDPPjGNWV9+xu133xHZswYjdc5ze/bJKU/gqvZSU+nk+Wl/IysxlaLKUsL1XhrhUJgKVwUVlRHhXifLvPhKJCWPTqfjvZdf5avPP+Kpp6c3gsKVlZbQv1NvZFnk6LGjfPLNbL5cOJdwOPwLTxedrGP+jwsb/+/UvhtTHniKtHgrPl+A1995l535exkz8RqMBiOb9m4hrJyz0vUY0BuP95z10RYVhdPl4unnp/PM35/DarHgcrvRNI0br72WNRvW4/X6+H7RApatWIJOJ+Ny/dJ6OX7cjaSnt0AUwtxwwziKz1YSChiRLefGLWlRJCdkkJCTjVsJELC3YdA13aiucDeWOX70AJe3vZ5ty7/ElpKBLSoiNHfu0pnu3Xvw2muv8s4H72OPtuOsczZ6xXTr2o0X/jYdWQtG9IeCgCjKtGzZkkcffZSXXnqJpUuXsnTpUux2Ox6Ph3A4zKhRo8jLy2PGjF97coRDQb5f+D3fL4xYtK2WFxEEFZf7XNqjrp3a8OTUv6EIIpKgEVI0fP5za2O2WBFFkVAoRE1NLba4ZHKaZ/Dtl7O59qabMOl1aLF26mprqK2spKZSxBkIMOuDBSREx1LpqOHzr75itvA1NrONOs85j6HhQy4mKzWRz2Z/zpw5cyg4dhRN08jLPadENBoNWExmis6WU1lRRkjxUeoMsPb9dxvLWCwWNE3D6z03ryGDBjH1vkeZ+d7bLFz0AydOnUIny7TNy+Xeu25n0dIfOHjoUKS+2QxoeOpzsEqSRN/efVi+ejUffPIpVouVtnmteOCeyQwe2g+13mPF6XLiDUWQ+XU6HaOvuLoxJ7GGRJkrzH1T7mJH/k9UVFaSnJjIoIu6MmnSJDxaSxIS7YRCBpSwyMkT1Rw9WcC1EyJhMTVnKtl3aAf/eO0d9u7fQ1V1Nd26dGfBN7No3yGbM0VnWLx8JUuXr+DM6VOUlJcRCoVISoyjZ+fOPPLQnaSmJeCtq8RR7Wbrlh306tUXfbyP1z+cyTsffkavXr1Yv/hrav3gUSvRGeJ5+IlpfPXNd1w/dgyvvjGDpSuX8NGnX3Kk4BihUIhm2VlMuHYMbXq2xqKzkZ3dnLDVguIup3OXdqzfvIZufYehSRIPPDiFNSuXsWDhHO6553HsdoHSkmpS41swdMAoHAEnBmsarXK70bHDxQSNAT7p05aSonJaZGdxYP8R3pn5Lnp9fSqxcIBZH81j9bIVHDt2jMwWeQiiSnVtCXX7PYwbO46J4yYw7YlpBOpqyUzNoKisipjYNB586BGkkMZj0yejKAoWi5mtmzcyqGcnnnxiOqGwG1EKkZQczaVDB7Pgh6XM/fZ7HnvwHiTZQnyCDb3oZ8GSiOdVVkY6A3q2wSLo0YcrER1VGGP09O3Zk/79+rNx00bmfDWPCRMnoooGlKQo4pOiWb71CQD69+vDwNE3oEkamgKCJqKFNca3GsrfX/2YU6fP8NXchQy+ZASCqiM0VwQhjHaNiipIKFqDsuzXHoT/0yyoiqL8fzfmpiCt/0e/T/8RgutvCXC/KdD9gY/5+cXPt2heiBblX6XROb+9pr75TQ9jA4x3U01P0zb+SBsWOrIGpeQg6Rr88PytvPbtWvYUFFJdVUlYqQc0qbcC+ldH3Fbv7igx/L1H+HjJVjbsO05RRS0OhwObzUbz5s3p16Utl7a00j2hgsCatxr7Cx0+FyvVMI/Ajq/QXJVoQDKw5rkb+G5DHgs37WPfqXKq61xIkkR2Zibt0mwM75HH8B55+Ju0ez5F5nToV9+rtWd/9V1DOxLw2W19WNEphi9X7oqsgctHlM1Gq1at6NulLVd3SGgsLxDh/6zAgodHsOaee/nqq6/YtWsXlRWloEFKnI28rBQu6Z7LyF7t8K95Cym1Lbo2F9c/gAhTaSnZzarnbuT1b9fxw9YDFFc5iIky07t3H6Y8/hQ9e/YifGQtSsnBX40fIPTzWoR+AxoN2oG19WujgVobsZ4rp3bgW/0GutzBSGntiY6OZtWc93jxuWks2X6I0monkhqib/scJgzryciurbhp5qqGZuhnPEVMTJjL0tLxez0UFJ2k0ukmN06PLasP1sBGqpWLOJS/j6TYGE5WlRFrFIkOVBFWQsTYZfzOYjRrNP1yYmj30Ch+2HqYPScqKHN40DSRFsnRtM+M4/LuOdgDbjTshDUFvWxmRNdcXB4Pkihi0OsJlxdg1ekoLy9H00Vhy8jhklFXIYW9DOmQydK9EeTei3JTuP3yPoQCQeTqM5wsqaVD5y4Isg6prgzV6yFWlJj/wMWsOVjMt1uPsedEOVUuHyAQazXSsUUaF+cm0ifHjnL2CF6vl/55WaRE21l35CxbjtdwvLiKGpefQDBMcrSZDplxXNcvl8u65uB0uvB4y1HKBEhIa7xkxKAPY3UxgggJioJWfBTJfYyxA9rT58abmP7uHDZv3Uog6CMc9JGVGE1eVjKjenegi7ofddvPyGEFT95l4I8oV4a4XMw5HYkBlNdtpk2VB4PewNWdNC798jU+Wv0zm39YyPGqCoKagiwIdIpPZEBqOqOysuniOc1XmTa2Hqoh0WRh+LYDiPUxdxagpv4uiF69hjWPjOX1Dfks3l5AcVERsSYzvROTeLRTV3rVOKlzOrF98BGrhvfB1cvO7koLo+6NoBmHAgHiDEaidDq8ShhHIEC8wUjfVplc0a8FOc2yGZGZR6tFG9DV525ODQSZGReDo1NPPrPa+d5VwvHSWjyKglmnR1A1NCKAH6nWKC5KSmFi67b07NECpXY5oZhhPHHbvYzzmpi5bRUbzp6ixONBRsOs06OhEUIjHAqQlZVF79RmTEprSYeUdJ7ftJzFxw9T5nWjD6tclN2CiVMfpUfb5pwuKqW0rJwonQFBFQj6AmRHx9I3ozmrT/5MmceFFlZR1ADenT9hXb+PFgYDogiidM7VV579Nc4HJ5Lo8yBKdpIWryZWMlBRXtJYZkRlgNS533NVtz6Ehvdj85HnI/fRmVJe7p9Jtysn8N7uzRyoLEEviLROSuam227njkceRjToEJZuaNQnqkTun2nTptGyZUs++OADDh06hKIodOjQgYkTJ3LLLbfwwgvnJwiK0JSpj9GlQ2uWLltGUUkVJSXF+PwBEuLjadOmFcMG92fiNZfhqj5ClJiNTi+i01soKDjS2IYmgF4UUEIittgETLKAYrBw6aixrFu9hksuuwyDaMUQbaVVxxg8Tjfzvp3PvC/e4alnXuL1V//BJ7Nnc+DQYRwOB0mJSSiqQlVVFXltMpjy7MssWbUCWZYxmUy43S527dnT2L+CwFU3TuSu26eS17UTLpcLud5Fsk3r1vj8fiorKxGA5jk5lFdU4Ha7GdCrD1eOu4r8/fvR6XTo9XqcLhfbduxi+87d3HTD9bRq2YL8n36ivLwCQRBolpVF7x492ZW/l83btkaeuSwTDPrZsGkrGzdvY8bzz0YQnQGL1czcdyJKgaGDB2A1ndsr61ct5/Hp03G53VgtFmRZ5mxJCV98W8LiFRtYMn8Bua2ycNRVk5iYRHS0jM0e01j/2+Xfce+99xEKhbBFRSHrdGiEMEnxKJqTwcOvoNxxDgU8KiqKcDjMmcJizhQWs2jZSl6Y/hQ3jb+ZxCyRUcktCPr81BUWI9QHSgtqiLff/4Tx196C0ajHr9ShEZlDZXk5jz75OF9+swBRFLGYLfj8fg7/XMDU6S+w+9BB3nvlbVwOP7IaxlFXiTnKjKwJZGRHUsTdPO4GYmwGbrh6HPv27CKva3N0+mzc7rOICbG8//o73H33Pag6Pa+/+yr33jcZv0+PDpkuXZvhdIVo064txbWlcAiirDa2b1vNyjXf0blrNhXO/fTq3Q1JtmHWGSgpPsnfX55Owc+nsWd2hgBoYRdqOMSggVfwzddz2bIz4vFxUfeuvPn8dLJadeDAwb10bNeRmtoK3E4PI0eMZMEPSykqLuXwsaO0a5OHrLNTWh5kbX3I0PDBF2G1JXDy1BEMmsKWtfPpc8VNqLokhl4ylI2bNrJ121Z8Pl8kb3NIpdobYueeSK73YcMuRUMBpf64CyrIGogiQ4cO5cOPPmbN6nUIiggoaJUyIKEK9Qq8C4jD/HcJXudjw/xemT/zaGygCxVa/wr/3mAIaCiqado5TJEGnIC/in56Xvvnj+dfieD8P4WE/ym5foLB4D85UPEXguuFxpr+GTXdHA0C4r9rw/yZq2/T+TXNodXUVbnh/4b2VFX9w4PYILj+Vq4qISoBQ89z6VUaBNdGqa0JybmDkdPbAxA+e4Dwz2t/t0/jkPsb/24quP6ib0BKa4ecG3EL1lwVBHdGAC1+azb67tci2pKazOnXgiuAGJWAvt49GjhPAP5ly1KrQegyIlZWpfgAoZ/X/WJ8TUsbL76v8e/gzq9RXb+dj7ap4Nq6VXMKi87yzgNjuWFI93Mt1ltEdN3GNs7pdwVXAYSoRAzdrsO1OJJvUBfV+pfTadhWGkitByGltUMQBJTig4QL1v7W1EHTiOo4mpkffcHIy64k/6vpJNplJFFEUxVCwSB6gxGPL0jHIeNYvXw+3RIKqaQ52dF6/D4/FqsFRVUQBQFDfXyhmJBBYXkZGRlZSK4aNK+TYDCEJEkEAgHcbjcx0XYM1igCtkREQebnIz/TLsGIqqooioIsS4CAo7YOk9lEmSvE8eIKAsEAwwZehK+8EEEUsFoskfzIkoimarjdHiwZ7Th2+hhpaSlYA060UBABLaKcEQQkScTlcoPFjlvVYZCt7Ni+huE9OgEq1TW1hEMhkpOTESUJTVMJRadQXlXHyaMH6delPWGXA1QNvUEXWWcNREFElWQ8+igqyqvJzMlELD+NLElUVlahqhpa2I2dE/gTL8XW+QoqtTj0khmh5gim8j14PR4qq2rJyWmGooSQdSI6WY/+oknIL8+OgDK5Swn5PfWAIAKhcBhZlvGOSEVMzEVpPgD9Z3MxVtURdhSjqSphJZK3VwmHIceGO9eC2vZqQuUhTjz1N7rmZWMSFVyxB+n8/laK6vx8NGAIl13XDX98PM6MQTQ/ehbjkZOoNafrt4+GpoEgioTMGpUdDBzzx3LJXRHBdfHIa7k4KR5ZllAUFTQNSZI4mxhGaG7nk71wWXYLYnfmEy35MOrlSHxoWEHWyfi8XjyXpqBL64zYrA/6OQuRyisJ1RQhSQKiIBAMhTAaTYQzzYQ7xVIV2wN9yEDayp2o7goUn4u6ujqio6MRhMh9WdgSzC1a4s0YSPKh4+gPnUBARZIjrsJms5WwGkZKTsQ19hJMRj1BwYTxpXdRwiFMFguCIKIokXdFOBgiPKQLul7d8HvrMJwsRbd8O6FgEFkS69GgBURRQAmp1NxxOdHRNhTJhvPFV4lRRPQGM5ogRs5x/cWjdckjNLwfzz//HH//+wv0z2zB2vGTI17AiAioCGioYRXP9SMwNc9GlQSkpRsQ8yOCY/CJO/gti8qFkhKWOXFwF23aNKO82ovZJCCJGo5qN4RD6A0WbHEJFJeVk5ORwN79P9GhY0987lqMBjOCFLG0SqKRkKoRDIQJhmvRVJm/Pf0Cz057GhGwRUVTWV1IdIyZcFDDUe1ACSksWbOD7Ts28cQTT/DRh5/hqSnhkUcf5e6pD7Fp21aio6Pxeb307tabr+d9jslo5NjhAp589llWrluHKAjs3rqNhfPm0v+iUXTqmo3RaGTAiFHs+WkvUx56iKcevR9ECZfHj8UaTfuOHTlbUky0PRqT2cQLz77A6MsvRRP8nCg4ze33PcC+ffuwWCwcyt9HrN2GGgpiMhsRVI2RY8awav0GDHodLz03nTFjr8Nk1HO84DTPz3iJFauWI+t0+Hw+Xn1pBhf1HoDeIJOVkkBxWSUdenYDwG6LIjU1hZefe4kF383lb88/wcYtm5n65IucLS4mLTWZbau3YTRqmC06QGT+ovlMuD3ynrJaTPTq1Ycp995E29yWxCV2Yt/BTYiKgagohTnfrCQQDDJyxBBa5LSEeiX2itWrWbpqJfMXLcZiNrNuyVrSkgyYbHGIeiMhR5DHnn2cWV99Qa9uXVnw6Qc8P+MNHp46BXuClbvumsq333+H3WbD6/Px9JTHGTd2JO46CVuChWnPPcsXX0dyiy/4ag4D+w7A6Q8iCSEUASqKS+kxYCAAk2+/natGDOXZv/+N92Z+TjhUy9oV+Yy76VoUFNSwnxMnDpKcnMm6DVsZNHg4dU4XSxcsYvjIvrTJ68/xowd46ImprNu2nriYOO68/i4O/LSNtm1b0KxNa0aPvhKz2UxNhQuDSSUm1orb5eW5Z2fwt+eng0HA6XNBnR9rXAxprXLxeDxMvv12CPh5+OFHqCirJKCW06JlB16e+SmjB1/MwFEjAPjo7Tfp1rkjzZu3pOjsWdp2j4DZvfjMk4yfcC1hn0BWmkp1iYOQbCI+vROLly3j6qtHA7Bt62Y6d+6Mqqrszc+nb9/+AHy/YD7Dhw/7xXlt4Ac//PAjHngw4q5efLaQ2NhYAjMjXkCGewP8FfpX5hH9LQHtj3KZ/qtlmr8iuDaspYDUWEc7b4gi5+VZbaoM0MQ/De87fzyN7dSDMv1PRWPW6/UXLED9R1hcG6ipUNfUxfavbPT/ii+8qqq/Qum9EGH3/LJN2znf2vtb6MW/ZW0+X9A+/xDo84YgtB36m9ba86mpwPlHJKe3bxRi/4yaCsYN/Tcc9l/M15b0q/7PH2vDGunaXHzOqvknZLz4vj/U6jWQlNYeKa397/7edDxNBeM/pHr0V13eUIwX3/SHa6/LHYwu91xsr9pE0hRF8RcodvpBk39zfE3HCBHFgJja9ldlJBUUERAEbrr1Vj546zXSkzvz+bpNdOzYGq/TRf7eY0jGKDr1GsZ3769h6ODRBCpfJSOvFSUV5dS5vVSdKSQ9M5VgWCW3VQLlFWWk6fSkpKRz8uRJmjfPodjlJTk1i1BQYdkPSxg6Yhh6qxFFCyOLOpRQmL17dtPhpvHU1dahM8qIJiM7tu6gbbsOhEWRn3avonlOc/LatSOsKniiUvG6PWzc+RODBvdHQcNmsbF12Woyg3oyM9ORJHDKZhYvWc+QS/phtMYQFWUHWUM1Rqz8iz6fTW5uR1p1aE84IZuSs2coqgnTqnUr1KQ4NEnjzIkyUuyQkpqE3aJHibJR4we7NYqALBAKBzl27CR57dojCBpiwE96RgYCoCam4Q+DLSYNjzuAVLyKYPZ4xPYTCepVYpE4fOAozVrk4o9vw7CBw2mem8ecOS9QXlKEs9ZFp15tEUUDjzqKUFV4+KF7OHv2LG3atMHp9mDQW3G73VRWlRBjtJEohnFcMRSDHMWYMWN466232LlzJ116XsRVlw9j5jvv0LFjT0wmE2PHXklOTjrzAi4cjjrefeoLmNMD6ooJXXkl5iuvwyJLmH0+/JkZBIb2oSHdh9frxW63U+WsxFFaSEJiGn2MKVAvuAoTr2bmwdPcfc8kQiEFr8fBrh2H6NihB4Vnj9K6VRl1KRns8Pq5auRQ7nxsCiajhREjLqdjl858/82XDIrtR0pCDiZFQb3hCoLBMH5fkHdff5NHHryHRcvWoeGnQ/dOtGnTEqG8El/Qj/vuG/EEPEiiCiENByIGu52yinLefOVNbmrfDnvQRWBIfzwD+lNV8jMYIDuzNf6Qisdbh8Vqw4SGOwCa7CNw/7XYrVa8oh5ZUKguLUEQDejMdsrPHCLWUcWZgsMkpKWQOHkselHmZOFx0nNyOHr4MAmJqaDpiLUYqaooIykjlpjH70IVRQKSAU0QkaSm7yQxIsc23P1ZKYSeuCNyNwgSBkKc2L+XwsKzJIb85EkSKirKiAEoIwb86bvtQpg4vQgej5tapwtBMqDp9DidDjJSEzj88z7ibBLVzhK8wVpcLjNt2rTF5wuginLk/goH0cJBwnoTfl+AQX0H8OmcWaSlZfDMM08SDNWi09kjeW9lC5U1bt585Q3qakqZ8tjjXDP2cq697gqqq6t5cMJk4qItFPmL0OrH7nA4+OG7z+ne/iIqzlZTXl5OUkIiD979APsPH6asvJxPP/+cxx95hKGDr2Hthu9QBAmzOcLEB0MeyktOIeqsxCRko4pSIz/hdDn5fPZsOuS2AUHF5fRg1OuZP+8b2nXqiMfjYcGi+Uy88Tp0skBNbRnLVm1k1fqIRe3Fp6Zw5eWXEWOPxlVXQ1yMjbDTT7u8NuTvj4RhSIJGbfUZpkx5mi8+eR+TrUnqJElmwZzZxMdlcuLoCWyWVIYOGE2z2bkMvHQExSVlfPLFp1wxcjgpKUkUFpag085ZnjJSkvjg3XdIidFTVVFNMFyHLcpIelJbjh/PZ8oDDxFWQ+z9aQ/zPv2SeQsXsGTZUsaPvZ5hwy7D6XKzau1aXn71RR6ZfD8dOqRx4MAhdm7djEaDp5aKNSaB6dOnYTAb8AcC1NZErLh1TicvP/cM1191C5Lew8qVK7ni8hG89/Zb7D94kH0HDjF/wTxaZ8Tj8gm0aJULksjS7ee8tux2O2lpGbz75pv8tPsAl105mNFjMlFFH9Mfm8bEO+4i2hpHTVUtsdE2vJ46VFGjxlGHo66OF158lvS0VMzWyPPW0EhMjWFg3GD27dvHvQ/dQDjsoaziODG2Zsg6lTNFpVRW1FBYUk5FdRUHDv5MTrOWbN+6iov69m0EOEtPb84tEyYS9NWyb/dRXp/5Bms3ruO+m69gf35h4xxqHLVYLCZUzU+d65yFOyEuAYNRxW61cODAOkxSFHqznUCgjtTUxMZyJSWldOrUCUEQKCsta/w+LS3tnHB1ntdgauq5nKylpaW/G8P+Z/Svjhf9LX7l93isv2o8upD77Lf45wvJtvF7fTTl3/+o/IW229i+cO77/ykGyX+W/v9y8P430PnWSFVVf2Uh/b1A79+zojYNPD9fA/JH7rhN6/3WwfuzDdu07oUCOF2I8PVn/V0IM/PvsNHFfQAAIABJREFUdk9oOue/crCbHu4/+/xe/QuZ32/upyYw6IJ2/jNW/+Bz4ZdOQ19NFTFNFRxagzVG+OPn9GdzFAQBtR6V1iuISPHp3HDnFFav34umeVi/ehX+oEKzlnnoTSb27NnD1m2bWb1+NbvkayndPQfFVUpGehpdu3YmN7cN7drnUVZRi92eiBIM4yivoHlmNkVniomPSyYU8LFlywYkWUPSS4QRQNRDxNmJ68ZdS22dEw0JTZEJeMPo9UYMOjM//3yUoZcOI7tVDps2rkPRVEwGI5UVFXTt3h2zJQpNkfH6PfTt35f0jGQc1V725h9CNBi4cszVWMwxRNuSWPLDcsKBMF/MnouihJh060R69+tJdnYzdHpITkujZYtcNq5bSWXpWfy+MCarnrCqgqKht1jR63UkJiXjcPlxOOqIskbToVMHwt5qik4WEg7qkPV6NARCIZD0BhBFvKfXYJAVtOyrUIN1mHUWZFGiZetU9JIRDZURo0fyyntvUusLsWjxCvR6I26Hm0A4wMOP3MfAi3pijJbo1P0i9JJGXJIVQe8nNiGGxKQMPDVefJVu1LCVO+6+jenPPc938xezbcd2XEEvn306m/Yd2mG2SPhcxcxfMJuhQ4bxyCOP8OQTU5EJoNa7CisohEM+8HkxmUxIBj1mQxiTXqOu2IVeDZC/exfR1iiateyK0ZzEz8dPNO6zo0cLuOOue7j37qlUl/vQ6S30H9CbgqPbcdeVUVO+g337NzOw30Aee2gaIW+QI/tOsHrZSuJNOuZ8M5f4zCwCLjeBEHhcbl6b8QJi2M2kO8dQWH2CEQObM37CjbRp0wZZ0XP7jbcjCNC3Ty/MkhGPR6Gi1klYBFddNfqQxu03j6VL5zYkxKcRUsK8/8Zr7Nl3DL3BztETx3H53Yh6A8HqI5j1AUQ1gBRUMMpG3N4AakigorwKg9lKQoIFg1RDelY6BMK0zu2EUfNTfvoYFcUn0YkBPG4f2RnNsUbHEhVvR5Ts1NScRZGCaAYrgs4MovQbZ/aXd4gAaKIEej1mTzH5KxexcsUyuvfrh95qRJW0X9w9gqDVf/74jvyVe5oGMgKSorFz/RK6t+2IoyqIVaqDQAmhUDUVvjBJOZ3QmdMwWzJITemAUR9H0C0RdAUxGe14/D6q6xzoLDYCgTCBQBCPz0N8gh1N05CtduypOWiE0Bs1jEY9JqOd+x+5n1dnfkx6Vjs87kK0UJjEuCiiNsbA8hiatWiJVr8m3bp0YvDgYVgTU9i+5ScWfrcKizmavv26M+TiiBLwbHEhdouJ5CSRA/n5hP1uvPWxqHosxNg6EhsdR5TJjKSEUOvfTVeNvoJeHVuSZDOhBt2YjDbMyRlEGVV6dYsAxBWdOYMs6AiLMta4JNZvjOTiTU9L49Y7J2Mw2wloAjpbIrUuL++8/x5PP/Zo41qHwj5y26SwZfUS2rfNpPzsscbfxo+/idScPAKhGm69fRwSYYRwgNa5rbh0eATE6dMv5hCbYMVgDdAmL4/yJil1nnzySZJjklEEM6aYTFSvnyijjBoMYNJH4XSeRlXrqK4q5+bJd7Buw1qKzhQy9JLhCGEfQ/pH1m/N+vWcPFHE/oO7WPDND7Rp151FixdH1s9gwB8KY9TcyF4fhQU1uOuxKpISErlm5FD2799MaWk51914OSWFx6guLmDE0Ejbh46exhs2YomKYceubcx47kXad2hH+ZmT1Jae5ZEH78dmj8GemMKgi4dycPtWJMdaDKKPO++8k1nvvsvxIzvYvGEVgwddQkxcErnZKTz++FTKiv0M7j+A2V9+TutWuZFF0TSOHt7ExJsn0b5rG/y+agYPGkZKWku25m9DFTXioy2kxuv5YNYLFBad4IvPviYtuRmjR48Gk75xff3+GoLBGgorKvj7P17k7ZmvoNd5CPpEWua1bCznrq0kM6M5AbfM9vV7G7+Pi7OhD4ZRQ2aS0i8hqVkHHGd2svn714iznsvm4HbVEaIOSfHgcZ2LhTebTb/La5rN5nP13RHvHBo+NCzFOR70fN7qn6F/lVtxwxjO57cvlOe7IF6vPr2NKMiNfwtIjdbVpvOJ5LvWQBQa+T8RAVQNUYILToFzXpqdP1qr870v/zfT/3rB9ULov0Pw+u+iBsG8gf63zOv/6LepYe/6/f7f1eKZ+k/F1H/qv6xPWQsiawqEg1RWFFNR6cQXFimtKOdM0UlOnSrF6w/xwP0PERsbz+4DJ9lhmIhZDhIs20u1oR1VVVVoqkZ8XBx2mx2vx4toMOLyelGUIKGAF51OR05ODp06dUISInHcLqcTR00NAhAOK5hMRpavWM6p06cIBoOkpCSTv3c3e3bvRhREKisqOXHiBB63m9OnTtGyZUs8Hh+KEklFpNdZmfv1tyhhlcLCU+S2bo1Op6e4uJhZn3xMraOGuro6qqqruOP229i6ZTs62YRARCGhhDSOF5zm1KkjDL54BImJqciiSLTNxplTZzhw4CChQICyklI0VUVTVXQ6PWVlpbjdLmSDgf0H9+P1udm7OxJjFwgGCYfDCHUnsOuDhC5+GWewlppqN6tXbaD4bBnhsIpOLxMKBTh48CDRYogJY68kNTmJKHsMZeXFBINBjIYo+ve7mFMnigj4/ARCGs46HyajHWedhy5dehCbnIhg0DHyipG8PON1xlw9ljvuvJWnpz1GTrMsWuW25vDhw4SDCgZ9NJqmEWUzEGU1owlQXutBkiPMmSxJFJVUsX13Ph63HzWkgWZg1apN3HzL7ezfd4TcNl1x1rhACaOXBbKyMhr3ltlk4WzhCZ559knuvud2AgEfhYWFZGflopdjuX7CvYy5ZiyxSbFMuudmpj79JLPnzaZH3948+PBDzJo1C4NOz5mzRSihAPsP7OOSSy7B7fVRVVZKm9xWnKmoJRiIgNt4/T50Bj3zvv6Bs8WVFBQUEB9npEVOOl6Xk7lffoPJHk16s5bUeYOU19RiNhq54+476dOnN/Hx8aSlpaHX67HZbPhlO6dLI1Y8o8GM0WhEkgVkCRITk3G73VSUV+Fy+hAFIyazkbPFp9BZYjBHJyAao5DN0WiBEIWnzxDyRc612+3GZrP9phvYH4W/qAiIWhjJ5+SjDz+jrM7L7ZMfxhITT0ZGxr8lPVxVZREOZxUZWanI5jhs0SlYTdHYDXpkJYwQ8lN86hgGIUSt8xQGsw9voCQimMpyY3hAKOwmJtbGpAmTWLF0GZIkIYsiSiiMqoh4PUFcTj8CMnZ7NAaDgS1btlBZ7qa49GfCihtNk0BoCEmIAAR26dgRt8vL1i0bOHz4IDq9SJTNQm2Ng4T6XMolpWVUOrx88MlsTLZoFEnGXS8ALF++nDvvuo2KijICAR/V1f+PvfMOk6JK9/+nqro6p8kZGBhyDgqooKCIiBEw4ipm1yyYFVwVFQSzomuOKCiCoKBIEEQySM5MYmZ6Zrpnuns6h6r6/dFDkAuIu95797d3v8/TzzNTVefUOadOnXrPG75vw6G1t6S4BFXREY4LhIMRdJqCLqZgNlpIS3MCUO9uRDboMUhQW1nK/tJU3P2A0/ojCCImkwkhqYKicN999+Fw2tAJh4n8bDYn+bnF6KwGPE1RdKbDlrHBA04jFqzDbHHibQyycdM2alwNNHqibN6YCimprq2gvi7Mzm21lJbtwWY9nE6tS6fORKNRKspLIRnDaM0G2YLObCYzP4dgIMHmLbv5bOZsTh90Ntkti+l95gCWbVpHQceOPPS3xwHILchl8NlnUtyiGwajjrYl+Vx//Rgglc5t469b2LGvkudefIXGhmpatkql9Dn11N7E0dH31DP4/tsfUcIqKnZkUz7Z2a0AaGz0YjHaMOlNFBQ66N6rOznZLQGBqsoqgk1BFiz4nrhPxWBKkpmfh2BoQ0V5LXa7nSefepwOXbpy5133EAqFsFmNeOojfPD+J5x99tmMHz+eAWcMpqkpZSWNRqJcc811GI16rrtuNDqdjmnT3iAYDJLpdNDMckQ0GkXQzLQubst777+FIMWQjRKR5lzUABnpaZgNRkqKW7N02TwKCjMpKyujsEURWVmH8zK7PY2MGzeOG2++mXDssJuuJuoJhJpIJMOIQpxAUyPWzDZkZBRRW3GExbaiDNUVpKqqCu1PCI87emN3tJz5r4R/J3n+Pzg2/u03rkcTGB2pmTnSgncsbcuxrjmRBfJojc/BF/toLdWR1x1Lg/XP4Mh6TuSOcGQ7T4bJ7Pc0Pcdyz/09DdZ/l0vDie75RyzbfwTHesbHatc/QipwMnPDbDYf90MiOVsgOVsc89zR7f+9vguCgKQqSIJCVk4md4y9i2EXXEzLLr0pr/Nx+ZVX87fJL/HIE0/Q97Re5GbkEAkGmP7FLJaFBnAgYKVlxWTiFT/RlLByoLycZUuXUlFejt3pxGQyUliQi14WCEfCFLdpTcviVmzdsoW533xDPBZDr9cTD0dYv2YDNa5aBg8ajNVqJRwOEQqFMZlkhg4ZSk2Vi7L9+xg+fDhaUmHrtm2oqkooEGXN6vWUlZaxd08ZXTp3w+FwYreZiIRDKHENd52bG28cQ0ODhxEjR5CZkUU4GqBDh46sXbuRRT8uSo0HYDYZ6du3F3PmfksyqaAmYkTDITq070Dbtu1QkkkcDhuKkqDJ70MUZDRUjEYjqmDAZrfT0OimQ4cOxKJREvE4khZDrVqJddAUrJk9aVHUFZPBCZpEQUEBsiwxderzrF+/lrffnoZFUJj+/rvMnTcH2WKiqLAVoqhHFHW89+4HtG/VFYOcwGQ14bBnEwrEWb16NRs2rGN/WSmizsDCxd/icFj49LOPee21VwgE/NgsBvQ2Izt37WXr+i1ccP4o5n7zHUUt8mls8JOZmY5161SUSCofcSKeoKCoiF79+iOLIpKqkVAM9Oh5OgVFRUSTCq+88g6RoEI00kQs2oTBZjg0vwpbtCLgdbFj+xaemTwJhyONtLQsvvt2Icm4xJdzllBZUUFNTRlTXnuRrJxMHOkmvpw1k2envkhRbhEfvf0hB2rr2bV9K61bFbNq7QZE2YjDkUZDfT2dT+lHIuonHGwkGo/w3JQpLF2+hsfHTySnoACvx01F2X727d7H11/OxuZwEE9ISLKJtCwHa1evxJrpwB/yE4/H8fl8+P1+FEXBnltCZl4xbdu0Q2cw4G70Eg8GqNyzHUXRsDssWK1OjPpMlCS4asspKipAEezENQmdyYbBkkskEMRkMRMJhamvr8dut1NeXk4ikfgv68yx1vlD3y1g84pFzPnsQy657jaGjrqGpMFKRDt+uWO9/8daH45ltQgEArRqkUNYC6KKKqoos7+0DjVpINzkJ9gUJBIKUViQDUSx2QvwNMQxmrIJhUKYTCaMRmNqEyvE8TVUcfPNoxk1YiRCUsVVXYOogclkIRZLMGnS83Tq1AWt2U8uFG6iU9dedO3VFWQJg8GCKEkkVAVd86bf7nCiJBR6du3I/Q/cxU23XIVOVrBanci61FyUdDpmzJxDoy9Ih86dSGoKzrQUidF5w89nytSJZGTaUdUkkiTj83oByM8rAE0mHEkiijo+evd9Ev4m/E0RTJZU3l0NlVAoRCAQIDs7l/rm1EhZmZlE4xALx9AScQJuF1OmPIfP10jffr0PuW5qCESiMg2BAFZnPkbL4Q3P9A8/IOTzoDeacWRk4vU1UdymLTffcjeRQMqqmUwmEQU9yZiJFi0LyMo67GL6xedfIMsy2Vl2lFgDPyxcRk5uATq9jMlq5J5xj3PuxaOYt2ABO3btIhwJY7fZyM7KIisjE5s11UePx4O/yc0P3y9hxMgL2Lr5F4LNjNxmo5HT+w2kVYeeXHbtjfQ5tSM6fXN4jKDi84bYu6eMG66/la9mzSMhejBadGhCagMXCoV5+IHHCQV9dGzXluGXXkxGZhZet5e8nHw+//RzKvdXsOi7H2n0unnvs89ZvbmGRl+SHXt3EU5EKCjuRHVdA0uWLSIc9uDIyOG6m67l4fEP8eXsr9m7dz/r1qXyfccTCbKzctm8eSs1NSlCLaNJ5NNPppObZkWLhxFUjbz8QrwNCcLhOCohauv3Eo3HMMmH1zeP24uqxFCUCIghbHYjZrMZjz9IKHjY8l1Q2IZJE5+j3tPAux9+cuh4OBpFNNoxWPVEI17SLCb0zvYUd+hDIn74+2/LzKEu5KK4uBib7bAr+UGvgWPhSHZsq9VyQi/Eg3lYj2W1/CP4s2TAk5Fh/wj+iGfekdcffexoHJkq6D/4x/Fvv3E9CKU5Efm/G46XyPlI99F/JRxs778aDfmR+N9u3+7du4lEYvzlL9f+w3Ucrw9Dhw7BbDYyceLT/3DdCnrigkxSp6dzn76cdlY/HpzwFM9OeZOa6hDtu3XE4jSRlWNh9qyv6dq5C+3btublV17huTn1TCsdglZ8MXLFbPJi68kpaE2aw8a+bVuIh0KsWrkGSWdg5+5dJJIJmgIBunXtxvnnDcNsMqMqKjpRwuNuICcnB6PJyJIlS1AUhYyMdPx+L16vjwWLf+bKFxbS9aaXqajxMHz4cPbs2UOrVm2IRhN069aN1iVFFLduhdfrY+PGtcg6HcuWLiMnO5t4IorNZubXX3+lobERm81KcesiTu3bkx7de7Lsp6U0BRrIy3fi90a4ZswoZAMs/H4BBp2OmTNmsHfvPqqqDiDrJHxeL4qSpKHBR2ZmBolEAr3RTN/+/Wjbtg2LFy9G1utJS08nVr0RtWAgM5ZsJ0mChUsWIIgaJW1b4vbUEAw1cPfdd9K9R1cCwSbOHn4lqsHOCy+/giSLTHh8MrFoEo04I0YNw2Iw4G0opSHoIhBowmiWOHvIQKpq9tKhdQld2nUiEQkSCLsIhN288PcX6DWgfyreUBC4+qpr+OzD6Twy/kHufPhO+p8zkNffeAdXTSXJaJCVky6grsrNrbfciq/exf7yPQTDHrwN1UTjMTKzM3h0/P1EE0GuHH01l48ajV6v4a53EYo00eBuJBqIMHjwUOIRhWefmcLNt9xFeVk1v27cxMhRF+FuqMBhtTF7+hcsnDMfLWFi8YLvKduzg8suvhRvUwC9zkAiEuf0AQM556wBJBIJfv5lJR5fgJZturBzxxZcVftprK8hHo2iiQIvv/4Gr7z+PLX1VYwd9xBmeyEJzUyf/gOYMXsWK376gQmPPEykqYGmBhd9+vQiEA2Sn5+L0WgkPz+fjIwMwuEwumSURCSIIEiEI6kcyAZZIt1uaRasNAR07N5ZSSIZxmjUE4tCpClMXlY6yWgIs2wilIyT1bIQyWRAlmWSySTt27f/jcXjRHjiiSeIxWK8/rcnce3dSa9+fbGlOUESESUV+STYQf8okskkPp+PRDhKRmYuyaSESRck3W7GaDajGWWcWYWYHVnEERD0RhQ0nBnpxJUksiwTj8eprq5GkiQMOjOaGicYrMLjdmMxmbGZLUTCYW6+5XqSSpjxEx5mf+kewqGUImb4BUNxuctQk2nUVMVJJBNEorHU97853l9RIZFQcFWVkkhGkPUq8USEz6d/idicq1gURMbedSdFuVkEGusJ+WqRmlmFo7EgFquM0aTD6/VitzvJyExtKvUGiVDYh0wSk9nKu598wUuvvUockYNseEosgihoSBYnUdFy6FnKskw8oXDFFVcR8Hkx6iTatmtDQUEeaWnOwzFyKCDpsMhWrhp1NaGmwzGQ1914K/mFHQnHmghGfPQ7vTeqEOOLL99nwmPjDl3nSBfIb2FEVQSOZI959JHHicZjKIkIVhOcd86puCr3UFNezpKFS1n8y3JUVWXExRcx78t5/GXElWxbs4b5Mz9lw08reXRcim8iFIqwbesO0DVS3KoN6fZ0zM0b93A4QNTvQafTkV+QjV6vJxRO5R3WkiqK38/TT01gf1UpI8ZcgUVnYsZHX/PC5Jebx0ni/POGUFe7n6ryAJu372DrjlUkoglWLFtBnaueq68cTVH7bETJyfXX3siAAcVMfG4iOflZKKoOd2MAR0Yml464hFg8iGSIEIzV8ezkiTzw4OM89fR4WrdpCaQ8ZQ9UlfPsxBe46Ya7ScQV2rVvQ9euXYlHmiAZIxhswuNpJJlMYLPZ0OuNFBe34bvvFpObl4XVkkojs/znn/l+/ny8DR4c9mwkSY/DnobV6aTuiPz0n3/xNc9PnspDDz5M9z79Dh2vq6lCltNo8kdwOtOpqqjFYJSQDTr2VB62uHZo3xEddioqKigoKDh0vKbmMBP50TjyXF5eiqFZ6qQgdfrzvTL+g//gn8G/7u7hn4YI2m+5pw5qOo5l+Tz6uqO1JSdjhTsy/vTo+xx5/Hga7eO5bZ1Ik3TQZePoa05G83Q0qdORbT5WvO7J4njljzUGR1rCj27bf5c19ngW7t+zqh+zzBHxC+LRNOdiKtZB+61s0Lyh/O1P0wQEQTri2LHb/l/GSeCY9ziyD9HN04lunn7cMdE0DUnR0CNSX1UD8eQJrceaABIKogSZLYrp0HMwnqoyMrLNXHHPrdisDjKtViSDk49mfUS3fr3Iyilk5vRviKkxNqz/FZe+B0u5AvPAiRTpyrB5fyandQkfrxc4rX9fykt3oEflwP49NLhcSCJsXP8rmqKycf0aykr3YpJTKSNkWeT884ciCAKyLNO1W08MJpmzzz5MWrVo6WL8/kb0BiN79u1i4Jn9UdQEPy1ZhdVqYtasr+nb/wzWrl1DbnY6uTlZmMx2JJ2OgoICrGYb8+d+i9jM3JeemUbfU07FarEjGSzoTCbqKuvYv2sXZw87H4PVSHFxO0x6A8XFxTQ0eklLz2TVqg38sGAB69ZsQhJkBAF0okQkGGLYsHPRkipBnwc5sB+h41+47PJLkASF/qd0QpFi6CwxMvLSsNgLEHUyFnsmqijy8fQP2Lx5A7fddhvhYITHHnuMieMn8sj9E3jn3elE1SToc4mFJPQWmV1bdhFtitOjzyno7BI79m/HbDNjNNhQtMObGl9DPVpQZdLEydx5311UVx84dO7mm64kEk5gNNsxmMwkwxH27dqCwShTUlyIJFu47ro70GIB/N4mdEYT/U8bglEf45lJT6CTnCiKCaEphmzQ4Y2H0QkSjoI8vvx6Hu+8+Qbvv/o+NTW1NAQbOHfoYH744UfOH3EFl117HSNGnM/wiy/FIJvp3L0nTY0BZs/9Dn8wzNAhZ9PulO4MGDaIX35dwe333sSbb79OTl4+GdZ89KYMIuEwTquJSc8/i9Fg4L57xvL4Y4+gMypEwgHiwSBRv4cuPfpy59h7CSUU8lqU8On0z7h+zHX0PLUP2YWFlHTsxNV/uYZPP3mPxmAEWdbh85Sx7edvSDfpqGtsIiFCQ30dvoYAM2Z9zIRJ99O9/wA69TmL7qf3445xdzDrm2+w2dPxhby0atsRX2OAaDSOM7OIA3Wl5Lfvi9liw2w2YrGYMJkMmEyp/M4mk+k3v+tGX817UycSjvi54MY7KOrU51DclaYJzRbKo9eh4+PI78TBvw+uEaKggCCjqRKJUARjeibVtQ249qxl15b1GEURIS4gJTU0LUx19X7MJh06nYooyUiiAS0ZIBxrRJSMpKXnEY4GEXU6dOhp2bo3rQvSiEYrcKYJmC023vngQ7Jzs9DpokRjtQiotGndCjWZoLhFN6IkyCpIo7bGhYiIwSAfSidjNunRiNOiYy8qy/eT7nCi18Ho0eejJFJWvXg8SSAR4ruFS9i4cQ9mfdoh6gGTwYg/UE8kBA6bGR0KCM2kj4JEXlFn1m3bitGk5+9vvswjj43FZDKhNX8fNEmHTrQQafSiTwbIyU5ZPKtqapCFeqZ/9jpGs4arvgq9IOHxN1DvqcfbbNVNxKL4faVYTTLvvv0iavJw/ttoNEwg6CHQ4CXU6MeoN6EqEIv7UOSUfKHT6di3qx6vJ5GKhw8dtvSV7qwgHI1jchYhGrNxu6vREgmsFhO/rFmJoqq0adWKT955m+IWmUyYcD+xWIzHH5/KnG8W4KpPbb6caXZK2rejR+8eNDbV0bHvWWhqqv+ywUBECDBh3GOsW7GO2d8ubs5pC4pooGPffrz/2fvk5aZhElTSMnO5aOTF3D02RS6ok2Xy2rdCJ7bAkJZyES/Kb0PFARf9Tj+VvgN6I5gNbNpWRjyeJBhJMmj4VXwy/QPS01uQV1gMgoFYVGPi05NR4grRmB+HORODzsKQ886morQavZDabFosFozWIp6Z/Dc+/ewDVq5cxKbVP9CuuIjcNh157d0ZWDJaYMvJQwlH8TeEqaqpIBQWuWTkCFRNpn1JKse8Iqic0rcvTks6ohDnkQfHM/qq6/C63axet+bQc3jrrUncevt9THz6ad565Smc9pQ796+bt1Pv2oca8xONJMht1RmT3kRpaR2bN6XIu0RRxGpIkGEz0VS1l3DN1kNK7O07dgAKmnBY1jz4Tu/YmWIVz83NISM9CwEJeZCKPChF+fh7P1XTUE+SF+Ug/iw5709zD26OXUU7xnp4MM5U1BDE3+F90fgNt8lv+njkPY6+z1ExrX8E/8rGoD8b/3d6+v8xRFH8X7ee/k/c/0gr4f+21fPPwJHMff+bSFb8QrLilxNeI0oSSUUhLz8f4STH/eAzkk1mOnbuQmN1OXKgjrqGOuKCTELSIxuMtOvQjiuuGsW4B+9h5IXnI2sKk596krfemMYbX6xkR/ot+Nvcjq5mFdfmfM/afSFkowOH1QaJEA2uPTQ2NlJQmIfLVcOpp/ZD1OspKCxk9oyvKS0tx2Qys3PnLoLBMEajkdatWxM9IjYoIyMdq9XCrxs34nG7mT17Do2NfpxOOyBw3XXXkV9QSP/TTicvv4CmQJB9u/YiiTqyc7ORzXrOOX8YgVCEQDiIZDAgGQzodTLfzplLNOBFlCRatu6AQacHTeOUU/pQ664jGg5g0OuJRMNcesVFjBlzLZqWItCJRaMsXrRJOu3yAAAgAElEQVSIYDBAMBRiwbffonorQG/Hkt0Rf1MDAjJq0kDLlkVkZuQh64x4PPVIVhMWiwUtHGPXjkqen/wKkXCMWDzEzC/ncMVVV9Khc2uuvf5y4kqSX375BafNTkOdB7PZSjDYhA6NFUuWs2PTViL+UEpYOcK1bePGTezdt40rrxpJWdl+Vv6yisL8QsxGE0sW/4zXGyART6ChYrEYyMzIw2pxosRNrFm1iY8//hQBPbfdeBtCUoSEgBpT6d6tB/F4ErvNwccfv0UyKGCT0kgk6ynIbUP5/nISMYUb7nmES0ZeTUF2LrUH9jNl6lM0NNRx6SUjKCwoZuuWTfibAvi8HjKzMig/UMaX339BlaeSyqrD+Zl37dnNhGef5Ya7HiSmRKj1ushMt7Jt/RrmfPYxJrNAONpA23atIKnjkYcn8ObbH2K2p6NXVVpm5/La5Je46aabufuBcSz8cRFujweL2UKjt5EfFi3m/see5KGHHkBRFCSDkS59+tLQ2EhWuhM1GcdslRg/cSK33fsIS39ejdvjwWwy4fP5+XHJEq696Wb+evedmEwmfG4XdpNMflYawXCcygMucrKzyM7OITun+ZedQ07z/znZOTgcjsPz3WzkxquupMvAAQSSif/e9VvTgZBElkKoSh3t2p5CZlomBS1yyMpuQVLVqPPUoTeaCDUFKCluTZ3Lhbu2jtqqCkKBBrKz8pElHWhxjAYRm8WKv6mRtHQHyaRKXLEi6tJJJnVIyBiNZqKROCaTBbvNiTXdSWZ+Lhh0hGIhBCWJSaejRcsiREEjGvCiqSlhPRwJodeLxIJuWrTujMWZi6h3UFMfoLa2DoD9pftZ+dNa3n/7QwwGA6qkEAql3Cyj0RCW9NYksXHbzbdSuedw/tkP3/8Ad30Nffv0Zu+ecnr2OgVnRgaCpkKzQkhVNZYvX04oFEFVoUvnTgCsXL2aaBTiCRVnWgZt2paQTCYwm81s2rrzUN50UdSRZi8kFG2i0e/Gaj9MqrNw8UIURSM/rxCzxYgoxWj0l2O1pLFk6QoAunTqRHHrFpS0LQYUZPkweZAgJtmyYTX17gYSgg5HZjbVXj+WNAe79+0+VD4eS1BT1cC2rXuJhDXq63yMunw4a5rdaxsaGjCbjbQuLkGSDCDGMJlT99m1cx82UwnjnxhLp05d6NPnVOLxVPxxLBqnvs6DKOrIyclFFHSYs/Mx2CxoanMuUU2jS0kRRoNKzO9h89r1VLs8tGlTwmWj/sKgM8/n7b+/j0mO89B991KQWci8mT8S9iW57NIRJMONhINuJj0znstHXEReViY6NY2F33+OpnoYNOAsyvduIq8gtXGNRKKMG/sgLVoUo5fNLPtlFUnBQF5uNsuXruDO2+9i/bp1RMMBbrj1er7/fj6SIFLvqmPKkxNx7d/PwNNSVtONm7cRjUWJxLw8OfENHn9yEm+8/QFff76Yjz7+EoDc7Gy6lXRCTdTw2Qdv8sxjU2lVmAr1WbF6NWLcyodvfYanxoVRUvh10w4qKuvZsHkXAHpBR0m7EqKaSlFxF3qfchrtWqfK//jjj6AZ0CmHc/8eTCf3Y3P4y9lnn1zmhT8D/w5y3n/wP49/6xlztHb4SDrqI/8/WiPyZ1v7TsbKdyIr8Mn47v8jfvNHtuvgfY5u18HjJ4rDPVZs8LEsrEfXd6Lf8er+s3CiTeXxYhpOdOx49RzP8v7P9OufjeE9FhKoqJJAUtBQpRMzBh79bBOaisGeTnZOIV/P+JJMq4zNYQdBxWCxEI5ESMt0MuWVyXTp3IO0jBwuvPASZEHEJOu5/9772FShEek9CbHbHZwiryQe8FHQpjWa0Uy7Hj3JysqgoCCXjIw01q5ZT3HLQjLS7QwcOIBQKMzq1WtBg8yMTNasWUM8Hv8NKcbgwYMxmczkF+RT43Jx0UWXUlxcQl5+DqFghOoqF3qDAavNjtvjwe5woJP1LF/+M01+H5qaymlqNllQkwlCoTCRcIRgMMQ5Q85FJ4ukpWegCRL1tfVEI1H27d8LoorV4cBmS0NTNYyySDwRoXXrYiRJl0oxlEiQmZFJIpmgqGURwbrdiG0vIxD2k5Geg6KoZGRk4HbXYdDbiMcgPz8XSRDR6/U88vhjdOjYloFnns47776JXi+zeOmPbN+5jZGXjaCwRQF6o4Ehg88mGgojRjV+WLgIs9VMxNtA505dWbN6HelpmWzduv03G1dJsPL00xPJz8+nU6du7N9TwaK5i1gw63sEDHw96xtEUSQRj1NVXU4sqrJu7SZqqht47LHHkHRJJkwYz01jriUc8OI6UI6WiDFv3gLmz/8eRRFo26YLSjSIGmkgGAzjbawkLUMB0cO09x/jwIHNhP1RZs5YQyDoZ+68OSz9aRGZmU7atW5FRlYOc7+exZ133s6cH2ZR564jOyubVye/yvoVK6nYW8azTz+H1Wpl2/ZdjL7xZopbl2C0mEnPzuLCS0cQDKbcPwES8Si9evfmjnvvRGc2MP+7uaxetQqXt57Z36WYUW8ccwMHdu2hcv8+DuzdzX133IIs6/h8xkyefOY5TBYrkimNhKqRiAbQ6XRMfelVPp/5FQC3Xn8Dv/zwDWVbtrB1xTqeeuxRZFlmxqyveOHll1AVDVXR8Db6MOkEOrYpZtfaFVSW7uNAZSX7ymvYs3s/pZs34CqvpGZfGRcPT+WANOhlbr/nASK5nZD0ZnSy6dB7+3vfiN9bz47+X9NSzJmSCAfKy3AfqMTdVIbRILN/X4ykZiISS2BLsxJTNBrcHnyNXlA1MtMzSHOYSSRCVNfUYZazUaI6LPp04iE9BkMqb2mDx8/ajbsxmjJQVYhEg3gb/YiinkRcJRKJYbFYiEajNDY2IskipXt2o9NS4UGSJKVCZ5RU35ctXoteziPQGMdotFB1wMXgQecCOhobfQB07NCBt6a9yvVjxnDa6QORjQ4qKsoBMJkt3HX7XVgsFqZNm0Z6uhO1OZ/peeeei81iREAlmZTQySaSmoxRr0NtJodKJpOcccZZ5Obk4/cFueLyywE4UFXN/IXLSUvPJRKLk1Q1EskIfr+f555/+dC462U9mgZGQw4HKpuQ5cPkTF/OnovX5yMWiyFJEoIgIaBjz55yFny/EIDh5w3F7jAiSir+pgasVsuh8harHkmnJxKJoCaSiMh06d6HUCiA1Zhyo167fgMfffQZ3bv3JCszB5PJhF428NOKpaxZn2LANZvNWCwWkkmQRCNN/gg+X/PYduyMp6Ga+oZSHGkCac4M/D5/amxNJiwWGwa9iVAogqaBmlCZOeNrzKaUq7HX50XVkrTv2R6D2YJeFWhw1fLX229i7tw5LF78EyNHXcxll4/EaDRy7z1jU67hbg/FxcXMmzObnIIc7r1/HB07d6bBG8TqsHPOkGGEYnGSQpz53y/E05CyHmdlZ/HpZx9x4EA5Py5awF33juOMQReyeuUKli5eTk2Vi9P798NkNPDTisVccfXlTPzbkyz54UeuGDUSTYkx/LwhSJJEIBjkqUlT8fsbGHzWELKzHMSiPvr368nWXakc8xcOO59FS5cQS6i8+MqrPDnxSSY89igA5ZUHGPfoBPLyW5KVnceBqlq69+xBTIF1v/4KwLi7x7Jv3zZkVSHgr6Wqto5bxoxOzf1lyw8pF458j7+ePZuyshRJ2OjRh1MRqvUCav0fj1s9nsxwNE5G1j6Rd+T/BP6IrHYyfT+Z+k4ka/8H/+Yb1//g5HEyMbFHM8n9d7nz/lH8I1q7k4kT+7+Ig2P5h5JYCyox0UBmcSeuuP4OvvniPbZv2YCOlIY8PSuTjGwnHTqU0KVPfzSdmV1l1Vx44YVccskl9O/fn3nz5mFKM0KL04n1noI5WkV450KaEi2YtymLuro6YvEwe/fuQa83sfaXn9mxfROReJhAU4CqA1WAwNKlPzFgwAD27NnDgQOH3Vob3F7qahvZv28fo68ezaeffMayn5aTnuFg+fIVVNfUsHbdet57/33q6z2Iko7tu3cz/ILhbN2ymUQ4TPWBakhqWA16/O5GZFGHbDCiSRJGq52y8nKUZJKszEwEBFq1asmpfU8hKUqEIgm+njkbb60HvV6H0+nA5XIxb+5c2pe0RVEU5s+fT6cunci2KkhtBiGaJXzeCBs2bCAS9WOxWKir9RAOR4hEItTsLycZi/PmB+9iT1O5654xSDqwWKxMnPwYV4weRVZOIaLOQiQew+v1YjWZsRpsDBkyhJ27thP0NWLLyuSam24kpCTp27c/65vZjQFef/V9DlTWcd+9D7JrRxkuVx1Dhw6hqKgl6WlZ3HvP/QiCgE6nIy3Nydy581myeDlOp5MXX5pMxYFdPDfpCepd5ZTu3ca61cuYNfNj+vfvT0Z6Jo8++igvTf2Yt9+YxPfzPyIZM2PRFxL0K/TudjqjLxpHcW53Fv/wA3c8fi2NnhB2ux2TWcfSZd8x/dOPyS8s4uxBA6nxVB2yCk2b+gYlxT1Iz8zj5ZenMfrqm3jxuRcAWLV2HYsWLQfZQmGnzhjycmnZoi2SJLFh/SYMerjplr8g6TV0FpERV47CmZPO90t/BKB/n1N4ftJUlq3dSuk+F0a9kyfHP839d6fi+95+/3127y1FMFjIzytAS8Sprqnh9bfeAWDYOecw/oH7KGrVlXBc5Jv5C7j1xhu49YYbAHj19ddISgYc2flYM3LQJcKoIR9yMoIQDaAXk4hqkqr9O9i04ntmfPAyP/84n2++/Q6AkaOuoH2nEuyJeoxxGZ3y3/uZV9UksahCTaWb3l1Ow27pSHlpBXktTSTjEiaLGavNTCQSwWGzIwoCLQqLcNfVE/B6aPJ7SE/PJBAqwx/aSZJKZEPKGyIcDpOVlU2Hrl1xeerRGQV0UhyXqxafz8f27dsRRR2l23ehhWNkWR1EIiEsBj06BJLD6lEu8iMYbYi6lGJi0ODTkYxxZKmJtT8v55clS/ny049RQmHat29OgSJovPfuq3Tv1olRI6/iq68W0rlzRwAkUeaTd16GmBeDVSYiqggHXYVVBVkS2bLhV9qWdOL+hx9FkPWpCNdmodNsttDgaUQUddhsNnr06Mn5550LwL33P8ALr7xOJJbAYDJRXVPNveMeYO36jZhNKQVEXV0tsh4C0Vr6DeiKzhg/9CySSYXLRl/Lpq2b0Ul6gk0Kv24qY8QVI4nFYzidTi4feSFNTT4CAR/xRAT1iAil2rpKevc/g9ycLMJ+N7M//wo1puGtq8dOyiXZVV/Hqo3rCIS8dOzUhp+WL6bKXcH1f72T9GYCK4vFgslkQkmqPPfsFN57ZzpyM/M4gsaXM7/FXW3hqSdeY/HipdhsKVfY+no3Z545iI8++gSD3oSqgiEWocnjZcWKtQBkpGditqWxftcO9I5MunToyIHSPfy0fjVpLXLYsmsLrYrzsKZl8cBjj/LStJeQzLCzchfX3XYzIy6/mjJXHZLFxooNW/FGFYKaH0XMJo6VA54Kbr/3Idx1qf7G4zFmf/MFgXAD/U/rTVlVFXFVR7duXSnfV8k7b73DT0uXkt2qE+asHKa99xYjR46kb5++tO/SifwWebTr1pmRFw0FYM73i5i7YBkmKUlN5VYCTdXceO8NJBIJsjIzGHvvvZw++DSi8QwefPQZarz7OP303px91iAAVmxay9MvTiGqiiQFEz8u+4l7HnkAgJKStlx/8w0U5DqINro4sGcFToeJkZeMpH1JGzRN4+qrL2fh8oXEYqnY71lff80dd6TcsIeeey6DBw06NB/iM3XEZ/425O4fwZ/BQvz/Az/Kn4V/ZdbmfwX88zPyXxiapqEpAAKammJCS2WAPIwjNTn/COPrybbjWDGcxyNVOvJ+/915mY5s2/Hu9Xsa+GPFwh6LZfj3NrpHslWebJ+PvPZ49z76HseLqT1WO050XzhxxtVjad4OWnr/2fl0dP3HG7ujNX0cEYcbj8d59dVXmDFjBmVlpej1enr16sVdd93D0KFDf1PvQdTX17NgwXwWLFjA7t27cLlcxONx8vPzGTBgIHfeeRejbx3Hvm2baHIdIC2/NXq9gXhEJSkIzJo9nZXbfyEQDtLQ2MDT06Zit9lpU9yGSVNewOeup01RGzLSzuOK7l6KalbR0LCHJ14LsblGxR2IE4nGMMoC3Uvy6ZDtpkeRg8FnDiI31055VS1+fz35eVkoovGIvmvs3LENZ5oNjQSFhbl07tweRIlgKEgrUwFtilvSuX1HKiqq8TW4yUpzUl7lYs4mD/d9+DreYJR0m5kze5Zw0/mnozU1ceqVrwIw58nRnNKjHQklgbshTDQaoaYpzuufzsMV1mjwR2hoCjHx+/0UZVi5ZvhpXDmoB6d2yaUxHEI26WlZUIwgyFQ3hOnXsQ8Ay7/7jpqKSmbPnsX8hfNxe9w47HZ69+rFTdeOISs7l0QoiTPHSQwd6TYZnRomw1lIZVU1E5+fzPKfl+P2uMlIz2DgaQN4aOxYPA0eho+6GIDLzh/Jc889jsWRy9q1v6ITD7sOBqINaEjcP/YeHnzoPl554zkuv+4qWndrxc61ezGaBbQyFVXREDHi97kJawFGXDmMsopSgqEgVouV4patGTJoMMPOGcaHH3zOrOtG8/iTjzH1xcn87dGp9Ogu0bG4C+UVW2nX6VSKO7TCHfRR3DWHJu9+IuEgm1btpLqmgif+9hTzvv2OocPOJ93mZO7XswgFIzQ0pWIAO3fozP49+/niy8lcfPEQ9vy6m1tHX8GTT42nZVERFQcOMOe7rxl56TnUHjhARkYGZVV1FOUXYNQnqHb5WLVqFeedNxSzYMTlqmT9hg1EYykCmaFDLyIQCLB6+Uq6lhQTC3hAJ3HNmJuZ/NJLRCJRlv+8gjSnE7vdjs6exfZfNhCNpspf95crySgqItYUwNvYxKCBAyjdvY9brr6cae+8QzgS4fPPP+G22x9A1BR2bl/HKWcMIiEZEFDQYjHqynZRtmsrGWY9Iy77KzO/nY2/ORfmmDFjSCCD3okgqM1v/MmsOf+YQJjarGlogSoi+mLMUpiStu1w1dbjcOqJRiM0+fxkZmbiDoVxmDJJJBVy8nLxNQZwiAKRcBDZmUaavghRS1B9YB/pGUXEgUiokTRnOprXjyhKxFWBe267i/vGPsSDD93H0xMncP4FwwlEvNhMNuyCAUN+HFFOoylcSk5+G5SfDeBqVsZtNqO+a8eU7EpHbwuS9iQzvvqMW2+7CaMxtbnVXDoMXxbgqDPx4aDPiFWFmF77IQCxpIY72IS1KovEChNOMROaU2Xm7G9F4gMzOVVdSZwmcefdd6Mmm2BeOsL+5jjOXTrS5uUQUzUEKQuxY5zXX5hMl59+JhyN8NSzz/Lc5CmYZTP+qB9BEJh84Yu8tvwlwpFKCvKyial6pDV5JPfridcf9iyZct7LjP3mHs4aOhyLxYymqoQjqXlnNzj4YuRXFC06hVA4iNliwaiC6Kw9VD4v2Br9JzaUpAG9kMZwsR3JtzUydQ7+mvUJKzpezJadm5nx9SxmfD0Lu8FBKB5E0RRa29oypvf1TFj0KOHGGKpkYc/uLYw46zL4zsjn+z5LzTK3jjHyrTSt9DMqdgPL1i/C1JzrNEPNYu4dS1FiEdQPdMRVjVhcZozuLmT9+8zkSxRF4btvF3Fp4C8oKzSK1D4k3WnA+NTzWQfun4M4BggUt22BtNdG9UcBzjSfhyCKhLaZKRFPobHRQw9HP9xD9yFFFaa8OImX33j9v8zverebsePH/+bYo1fdw51tnuCN0z9Glg2UrSo9dC6+QaTTuady+/23MW/pN9TPN+Goy+ehzElU5vtYXbOSCc89j07QYdQbCcZSk8dsMjKl72tEphnILCoiIxGnoqKSvNz2JHTwym0vcLXnWrZs20ZTIEBJlx4IgkAkkXr+RY4ipvV7G9P0DErPruLNF9/iuZenIHznRNeo49MLvmbkhxdSWVPJBedfglk2owoq0XhqfnTv3J2/n/4Z0dcPe9wcTdtxrMOH5JpjX/oPyzpHy3PHkptOJPOdjBz3R6AdWh+bV1RRPeGe4bjtOBS72lz2GPG0h0ofVb0mKIdPHlXu/0oOV/g3t7ge7aZ6rId6LK3GsVxfT0SqdKJzR9dz8H5Hu9EeD0e7NZ9MX4/3O5bLwsHJ/nvuwMfCsVxqf2+c/mycqN5j9eVoCvejXXmP5TL+z7orH6znyGd/suVOxjX7yGPHcks+FuLxOMOHD2PChPHs3r0LvV6Pz+djyZIlXHrpxTz99FPHvPfjjz/KX/96G3PnfsPu3SnrVjKZpLS0lI8++pAzzjiNrxZ8T9vuPQj4q1n43WySkQCSJDHllRd44IlHKa0sw+1xI4kSgiBQ565j5dqVvPfJh1w35mYuuvh8OnZpwwpvO55e5uDq96qZ/auP0romYvEYBh0EYyq/bK/ivaX7WVDrRJMF9GYjEiDr7WiCRCR+mN4/Ld1J6zatuOiiCwgEAvTqdQo/LV1Bk6+JYecNYcO6dZitNiS9jjXrVyEb9BjT8jjnvml8+dNm6n0hRAGC0Rgzl/zKyAnvsnr7YRbHvNxcNE1BlnWYTAbqvCEuffRdFu+oY0d5PQ1NIYyyDn8oyrZKDw+/OZcr/vYhRqeN9l06IejglFN7I2oBEA/HH+3cu537xz/MOx++g7uZddLt8fD9woVcd8tN7Ny2jTdfeYOIKqLGY/g8LjwNPtZuWE//QQOZ8eUMXLUuZJ2OYCjIl3O+YuDQc9iy7XBc3rnnDcVodhCIBOjarQMdO5YcOjf98495/PFHmPnldN5+ZxrxxOExRUiik2T0HS7H2HkU7oZ6Hpv0BK+9+SobN2/A5/Oh1+vx+rxs3LyByS9P4eGnHuXZKc/y8utvUZjXmpU//8wj429BVbtz6fWPcMbQ4WQXZbFrZxlmsxmjQcZktbN8zWa6du1Bx7aFDDtnMEbBzI6N+1BFibgikFtQjNefSslz+SUjOK1fN+Yv+IaLL76Ud955m7+/8wpde3Vj8FlnAbBq7UY0zQhJDa+rjk7t2iDpDXTq2Z81yzbSrmUHiCfxu+swmUy4G+sPdfum669BL0spgikC1HtqyUyzY9VCFOTlAvD9D99SsW8jWqyRiM9D2f79h8p3696NaMCLXjZhs5sxmFTyOnaiVYf25Gan8oguWrIUo0nCaNTTc8AANE1ACsUhFGPBzHfYsOBjLrhgGO2H/YWkw8j7H30IQElJCQMHDvzDa8Q/szZLSYloMEAo4MHfWIUixYnEQyRjcWSDiiCqKEoqn69Ggnp3Naoi0uRTiESj6IwG0EmIsSS+ugZknYWCohLiiRDZ2ekgJFCSIg57ijBGr9fz0fS36du3C5OfeYT2LdNBDWE3WQgHGkgm45jMRny+RjRNIRyPsWzpUpTmGNFYLIaSFEgmElgsJtauWc2gQYNYtmwZc+d813xNHEWTUl4OdS7Ss9IPkSfOmP4VZsygCgiixNIlS1GUg6nvUsdyMm3g28WYkRcT8RvQ1ARKs2lTFEUQdSiqxtYtm4kFI2Rl5/PDgu+4/6ZxtM1si4iITtQxqM1gZt8wj5tP+2uK3hZIImCVkkSjTYia8BuimD5F/Vhy+89c1e8qHHY7yaRCfl4e1/Qew6qxv3Jq69PRBBGT2UY8qSFIOjz1rkPlM3ILQUgJ6cm4Qk31AcrKyhA0gazMdNyVbu699SHalbTFoDOgagrtszry8Fnj+ejiL7AYUu68qqqyed16nn5yIj/+sJSuXbqi18vN5zRMZhOqqlBQmEuPTi1pbPQ3j5+Cy1WDklRQFBVNFfA1elHVwwK7oiicc+ZpxKMxNv66KfVNMB1WtgEsXrQUJRJGUhJEg37SHHbq6mpTZH46mVAohMPhIBqJIkkSQ8+8gB1bd5z0nL/+5hswmk0kEs3kmOrhZyAJEk+Mf5SX35jCp5/MRC/oIalSWVHLrBvm8+LFr9G3RT8sBisJJUFBfj533HIzn33wOoO7D8NosFDrqqXB00gkEsZiNSHpZFoXtWbqU89yz1/voENRe0QkNFWjfWYHxg18gEU3L6F3u15IgkCH9u146e/TECSRSCTG2nUbaJ3ZluV3rmLsgPtpn9URQRCQJZmePXvy3HPPsmzOMpzmtJMeg+Phz5L1jhfCd7Iy2u+FVJ2MEeVEZQ8an/5Zee5kcDIy6P+VTSuA8P9LZ+Px+B9sqHiIxe43OIqp62Qn0/G0N8ezbh1qxRFakCNfsv/SrBPUe6L6j3fNHyl/5Et8MlbL49X3vzmXTqThOtEzOrj4HLzmzyBU+r2xPFmL69Ft+0cR+OZ2AGwXT+Pcc4fw88/LUx/taJQpU6YyevQ1mEwmqqoO8NBDDzF79tcAzJz5FRdccMFv6nrmmYkkk0kuueRSSkpKsFhS6Rx27drF1KnP88UXX2CxWNi8eTtt8jLYs2ULmiTjDyv0H3w6qqoy6qJRXDj0Erp36cW6NSupr6+ipKQFM+cvoCgnlzFXX82kSc8z+fkpXDV6NKFEmHMGn82wc4bhKj9AZelOLhjUinfefY0Pl+4jGFO5Z1AG4265CjSZsrIyRFEkhoFzHvkcgEXTxmO0tcTsW0FaZgFbtu0kFArTpWtHaqqq6NG9G75gCKvVQmNjI4Js5Jx7XqeuMUB+upXn77iEtrkWsnPz+PtHs/hg6S5CCQhGU3Fr3z17Az06FxONxTAZzJRVuXni/QUM6FyIXYwwqG9X6t11ODMLWbatgimfL6HeG+TGYT0Z1D6bM88ZiJDQUCO11OxcQb+nNwFgt9no0L4DQ84cyt6t23hswmMsX7WCp59/lnq3mz69+jDhoUc5ZeAgrFKSXTu2Yk3L4sxzBlPvdtOqVStenvoK3bp1IsPuZMOGDVxz442EIyF8/lTM2doVa8nKzCIQ9JLtLOTNt6fx5PN/A+CTt76gZVExohrH0+CiKZ7k2ltSMVDb1s65lG4AACAASURBVGzmkYcfZ+zYe+nVpzNLl6zm7Q/fYOiQ4VSVu7j15tsJhvyYLCpLVqzmyYlPUFtXx8033srD9zyOv8FLWdlWzhl6Ft5GjVvuupGFP/0AwAVDRvLKK1Ow2tJIKD5Cfo141EOaM4NEQsNosLFn9z5efPklxt1/D01BLxeMugiAT9/7hG5dOmM2G7n37nE8ev/jtCqxE06ozJn3Hfc/kooX27zyF3Lz8nA4HDQFA/i8TTT5ArRq1YWdO7ezafNGzj33XM4acDrX3HAtU15NuRrv2riVb76cwVln9MCWm0/LNu2JNAUJN7rpN+wCaly1FBUWsnfzOqLRKF6vl4+mf87fnp0CwO6tG5DVBEazDVHUYzZZCCPjr6tk0PnDqXHVUlhQyOJFi8jLyiaUbCLbksbSuV8hyiGyi7rQseephBXQSXrKSkvp3LkjmqYxceIz3H//A39ofTgZq8WJoCgJ4uEQa+Z9xmlDL0EzWhC1JCGvh4SSSvMSjcab4xczSKohYtEEomAgqUUxmwwgm9i9aQ1p6fk40rMwWvVIokxjg4sMezYJQcDjqcdiTiPgTxCMVtGqRUe8viY8DXVkOOzoDWlIsg6jqBKM1JKMWXGmSxgNVvbt3U1+QQ5xn4AhLcnDj77GyEsH071rD7xeP5lZTt6YNpXLLrmejIwM1q1bR8+Bp2FWVaqryjHlOjHGVGxOM+UVdfzwzTfcet+9NAaDhOt86EwyPy76ietvHEM0GSDRUE696wCFJf2IJMFisrP8p2UIWoKzzxtMBA29ILNx9Vo6dWtPvauRzCwnFosFRQuwcvluunRtj9EgYbKYSJDEIOpRDTKxRBw1FEXWGRASAsGEi0QyDyVRg9lowOOuJj2zA7F4gNycHGpdjXw2fTpjx95Gk9+L19dEYUEbPJ5G8gvSUSWIBKI4bEZqqvdjsWby/9g77/goqvX/v2d2tpdkd9MrIYTee29KFRFFRVFAFPXa8SoqNux6URQLAgKiglhQUXpVuvQaWgiQ3jbJJpts3535/REJRVC81/u95Xc/r9e8kp3TZ8555jznaWFJiygolBccJS6qBd6Ag1pXEFnQsXHjFm4YOYRnnn2FJyc9zjdfL6JpkwzWr9vI/RMf5uDBg+gQ6XtVL87k5jL69nv4ce0yzuSeYvnKdQQDWp5+7gHWrFjJtdcMI+/4drKLfCz+/idGDO5O136D0EoePO4AL776LpMmPgiiG79fw1//+hxffj2XKlcxRqOZ6hqwGI3I4SD5hXnYIq0ossw3X33NyBsHkpzUgA3rNzPg6iEENVBamE+t08OPP+1kzNib+XnHFkqKy7nu+hEYjXqqqisJBAIc2J9J5+49eH/qdJ6eMhERPWqDB8I2BNlNSWkeOq2FZ56awmt/e4nMoyeIjExAFH3s3LSawYOvxhMKoQgmrFER6HUWigsLUFQCKUnRFJ05TkCwEaitxRpjRx32Y7QZOHGiBqMks3vvfqKjY4mOMVFeWYg+IoYObdtyeP9xmrVIYt2KlTRMa4Y3JDJj5kc88vAEoqKMWGNTcJaWsXH9GobeMIz4mDjCIYGSkjIUBSIjzfy8aQ0tW7bGkpSBOcJCGAVB/FVMhAvpwMU04yL6cTkB0MU05J9lo/lH9q2/iV+kmIpyznPw2bpl5SLGGPkCwc+l6rm4T6Io1vMg9fcv5cH4IpzT8DtPY/Sicme9pv+nQqPRXPHk+M8e6e9AUZS6F/2La+lQuM4W5FKSwt/D5aSwv1fm4lOiv2fh/pZe/9/Tr/Nxfr/O7+/Z379lT3CxRPdfgSt5h2fHcamxXMxEnh+e50qll5fDlc6R35Kq/hnPVYxIRoxIvuBedXU106e/y4QJd6P/xXYqKSmZBQsW0rNnTwCmTHnuV3U988yzTJnyAm3atMH4S2w6URRp3rw5c+d+zODBQ3C73Sz4bD4+1CS1SaeiLId9+35GlmWibHaeeHQyafHRvPrG6/QfOJBuPfuwecsORI9Iw6TG/PjjdiqdLl5+5W0mTXqGGe98SMDrJ6VBCht3bOd4gYMqfUseevFbRg4cDMAXB3xkl+sIqm3kOQUsSS2Z//VP9f12HFuL6eS7mGsPos79jhb6EzS3FJFzYA1tGpoJVWWjlQIEhEg2HjExdd4ySitr0EgqPp48Gl9ZDhUOJwf2HOSBsaNYPvU+1OpzklG/z4vHHaCs1ElhgYPjmbuY/uBwEvVebCYRU6SNJi3akZySRJf0BOY9dSsAi37MpEWL1hw7cJwNGzYghX0Eguc2AXablafue4xxo+/i3XkfEJOcQOcOXXh9ymsA7Nm3h5YtmpO5awsur5e45FSmT3+LMocDrVbLgtlzaJ6aRtjnQxagVYcWfDHvPVTnfeRkn4hG0BFlicHlqyS3MLc+7f2ZMxk37m7ue+Bhli1bzmefzK9Pi4qL5b0PptMoIxWv20PrjhnMnTOPkSNv4q67H0IWBcw2IxqDGWdBEZ/MnAvAwkWfcctNo/ns87l063kVJ7IyiYjR0qZd2/q6bxlxDdnHTlJdkUeVI0xUgo30Rk355utVCGIQQVVLk2Yp2KxG4uOiqXSei2VpjbCQmpKAzWbj/ZkfcqLgNGFtHFqNSGx0dH2+2qpKXNVVlFd70KiM+LxeklNj0Bq0JDdIxRJpQ6MzsHHzTzRMa1hf7viJLIYOvRGN1oY1IoqqsmIK8vJR1DaKf/FKW1xSgk/RoDJYMUdGERMdX1/+wN7DxCek4w5q0ejUOJ25iMFiAkF3ffmS0hJio+14q4O4tm9j+lPjCKiq6DX0fhq160kQDWqVBgH49NNPUBQFSZK47bbb/zBNvvj7dDH9v5xt2Vm6pVGFUGtsiEY7PrWCz+dCkkSs9jhcLhdGswGLLRK9OR5JkiguycFktKPViVhMkQghEFGR3rY/VpuFkuKThFRqfIEgBksEfgFCQphIayyfffoVRQW5yIoKj6eEkuzTyFVFfPXpd+zavoWnJ02isPAMHpfAls0/IocEXE4fLVJicToOYIyWkPHSulk6QZ9AQXEucYlWzBF6HnpkIulNEwkqHrr2boYr7wg/b11Dw0YNMKn0GOKSKSl1YjFauHrAAJZ89RU1FQ6ik2MIytVcO2wwBHwYRNDFNSS6QQeK8rMwWNQ4HA66dWhLcryaMmcZejECJayhXedu1DqK2bJxHSpRi6w34QvJNG8Ww8Ed21DrjITVBjRCmGBARBUIU1NSjtlgo8ZRxdata/HVVKEmC4MlkgCQlN4Srd5DOBTAU1tDtF3k1OGj+KqqMKn1RBptyIQRJS+qsJNQTTl+IZJAyI8pIY4yRxFmrULRmQJSMjqjiwgjSHb0sXFs3rmZ0WNuYNmS9dw5fgwVlQ4m3PsX+lw1kOatmhBrj6F75070HdgFk0lBDgfo13MAffreyIpv1yG7Azz37FOEggEGDRlCWaWTxBZtUenUTH7yUdp27kFhQRY5OU6qastp0qghucWFWKNTePaJlygrzMfvriU6OpYwah64+160kooObXry/ecLWP3dEhYv+JJPP/6C7CMncVaVUeIspkYO4SgqwFFWhi/kplHjNrz7wQw6dO5CfkENJQW55Je4eP31d4g06Fm8cDlnThTw5ltPIeq0aM0yropaCNYyfNgtlBX7uWbITTz2zNNUOkswGhRKyopYsexLxtzzAE53mAUff4bdHl3n+d1fitrgJSmlAR63iKJS8eH097DHJlBRfAa/T8uuzSfIPnaYlWvXMey6gRTm5bPv8H569BtF+85dUJQwrVs1Ri4/TlpDNaaIFMyRQZ547H6aZbTDoLPiqyznhZen0qpRGmaTjZXL13AiK5OgHEQlmQkGg7To3p/c0iJkJYgi+5EEEDEgo0EWg3CeBL9+PwgXXGfTgAs0yf7ovvrPwvk07OIwPb9dsC4kjSLXmROeDXUjiMqvwvycRf0YUSGHqROQXRTi5oIQhaJQf9WFI/ttLdDf66+ACoFzPkj+EUnufyr+qxnX8/GvMOr+swysf6ue/xlxn8O/koH+d4ax72SMfSdfcC8pKYmxY8f9Kq8oijz55FMAHDt2jMzMzD/U1uDBQwDYvn173Q3ZRrPWPXE76+x4JLUaWStQ6XWh16h5e+pUVi1bjrOskuTkZA4cOEBWVhaHDx9m88YNvPv2NI4cPkxcdAxzZs1m8MCB9Oreg6+/XMK0aW9jUdet6TKnG0vHsVg6jSdj0OOEU4ZxzH2OWTd2e5pnfmzEMz825qVd7Sls9jeMPaeQ2uMehAbDWX4gTGW1grpoLSOjvmDnsToPi22SLQi+WiIjrBgMWvR6NV6fh3AoxI29mtbXb7FEoFaLxMXbiY6Kpl/f/giCQI8ePUhLS0er1eF213Lo0CGOHz9C55YNiYow4vUH2Z91CldNFe3atUYMuVAZz6lr3X/33ezZuwe1Tibk9uFyVPLqlBfp07kHklTnouCjufMxaGX0koTBYGLLzzsAuHbYMJq0bEJCWiwREXZQ1MghNR269WPM7WPq2/hg5jv8sOxbCorzCAbCDBo4pD7t00/msXX7embMeof7H7qPG2++vj6tIj+Pp598ArHyMELVMVSihqoqF5IkceTQYQZdPYgdW/eiFnQ0SE1Ho9IRYbHg9Xrp2a8jk59+AqNJg8ViQxBU3Hf3/Rzfnck1PQZjsJhp1aEFkRYr2dnZ+Dwujh05zrXXXotGbWLZ0nUEAzJvvjWV6OhoamvPxbLU640cPnSMrRt+pqK4lKED+nF47zbCIYlQ8Bx9yCkqwh5pQyuocFQWkdawIUZjNB5PLa+88hJOZwVFRQUYjUa6du6CVltn+/Xm9Kns2LEdd0hCCWsQRQ1hOcC096fW059QKERhYSF5eXmIokjXzp3qy78z4wMCQT+x9kgURaHWF8TtVpj36dcXlC86dYSCY1tZt3cj/UfcweBr7wPthfQtHA6zcOECAIYMGUJcXNxl1+afgYsZWUEQCMsa1GqJCKMZlSwhqfTU1LipqnYQFxdHcVERBQV5qDUimUcOERsbj8PhQCUplJWVEAoFyMnJQRDc+AJeGjZshiCrEVGQRAFJFKgsq0GjMjDqpuuRpADlBfmE/UHKnLUEVDquuronVdUVTH/3TWLj7cQnRjN46NUEw15kuZqfd+9Gp09GVCJ5/NEX+HbxakqKnTRs2BCv14vf7+fo0aNs3byPwVffjkQi8Y1b06XvIHxBkXBARAzUcnD/PtZt2kRcYjo33TKWZs2aIYgyjZu0QmMyURsCT1iNSpCocdUSFZNIMCxTVFbGyNFjMUYmoZV0hILVCGI1Pl8xIQRuGzuG6upqDm3fgaSoEbQG2vbsSq2rBlEOo5L0SBovLncRgXAlIdlJtd9H34HDSE3vSKS9OTq1GoNOh0bUUOMMkJzYAI3WiMcvEJQU9LYIiiorMEWYUOu0RFrt1HoC1Dg9dGvfjqJTOahCGpxOLyWlDhJTYgmG/Pi8CgaDiMVgpl/3jhw6cJDC0jJSUhJISIihoqKUw4f3M3jwANQaBVEVprS0FEe5i4gIIz/vWEF8ooWo+Ci69ujNgw9OBNmA36dQU+PmwL4s0tOaU1vjobKiBkFQaNy4MVqNnn79+tOpTStQwYx503nkyUcIizKe2hrEoJtFixawfMVSli5dyi1jxjP+/vvoN3QQn3/7BX2HjCAqJoPhQ2/j6m6DsdviKCt10qxpa/r17UbDtGR2/LwNQfATGxWBUQzSsnEDjHo1b7z9LCvXLOWJSVPwu/24azx8/MlnlJaV8/PeHfx10uN8MHMGoggREVYklZ709HT69hnAoi9+QNHG8ORLH6A1G9EazQQFidryEC6HG40go5dk3njlKWTFS0xqEvoIFVcN6cPevbsZNvRaCgpz0Oklrr/hWrQ6FSoZzpw5Q3FxMadyqoiNbcOJU0dJSkrB4/HxwYz3EVXgrCxn6ltvYoq0olYJWKPi8fvApIugvLSMYAAsWhNNMtoiuBycPLCTgLsaUZERCSAo4gXOuv5suvHviivp37/7GP5/wn+lc6Y61QWF8xUaFOWcW/y/h7n5eySmf88pyJXo3f9RleHLSfTOP/W5uF1ZPqcG8WeqBJ9VKzlfBfbsvd9Sob5cm5dSQzlfNftS987Pe6kYuWdP1H7r/tlyl7KruBKczXc5NZs/iwG/3Kle7959Lujr+f/36tUbSZIIhULs37+PVq1aXdCvQ4cOMW/eXH7+eTu5ubnU1tb+qo3CwsJf6vVisOto3ykNk0FPSWkJo2+7kXsmTOC+h+7hi4VfkNqgIUcyj6EUFxMXF8uPP66ndevWlBaXoBLhqy+/RhepIet0Nh8smI3P77vkmI4eOkTAm8Gn8+ejErU89tij3HZvnVqrSiWRlZXFp/PmsGzFcnLLarjutolMuH00IcpQ5AQyt4n06zWcMk8qJ8vqnHSMaK1Bqc0np8CPLbUFGbFV1LjdxMTF0rlxPHNW1rVdXFJMSrwVRVTQCDrWrV9Pv/4DWbBqG6t3HiPXUY2zxkMwVPeu75mzpb7f5S4P/a7qBEKYUFkFsspcn9amdVsaXdsERRXEbIrkkQceZuTIkYSDQew2G6VlZRQWFbBz60radehGfkElJ7JO1r3jHn2RwxKVNdVk7jtOy1YdMJj1+APQu2dvpr/3LgCPPflX7NZoQqEQ2dmn8HjOc/by+mtMfPQhGjdrRDAQJq7knD1c7ul8npo0mfCJ6YgaNWKXl7DbIpg1ZyZz583FK3u54/7bCP4SBuR8xMbb8fkCZGVlk5qSwJzZn3DXXXfj8NTSrlNnOnbqTF5eHs7Cctq0aIekklm3Zh033DiCnDNOBg8awr79e0lNTSQyMoply1bU171yxWq2bfmZp/76OHZ7FD6fjy6dOlNT48Zuj6rPFxFpRaXWEvILRNptBGUFRZaR8fPKa1OQZRmVSoUaEZPRz523j2fmvFls27kTndaA8t13fDpvDsXFRXzxzWLenz0btVpNMFg3XqvVilqtpqgwj5TkZMbeOoo5n3zGjt17GP+XvzD58Uk0SEul2hVg9rzZvD9z5gXlC7MPU1ZUyg333Ic1MoOAoCeseJEEdT3tWbt2Tf1au+OO8b+id2dpVd1avJDOXup78nuSgPPLns2jUmkhHCLKpqe0IJeElCagCqJSqakur8Gk12MwQFlRLikpSahEkZgYG/5gKRERFkQlSHxCNJWOImLtUYiihCiHcDhKiY2z4fe6kUSRa4YM4ur+/ejUqQX2yGgUWaR79x5UVuegFSV62HsSCPpwuiox6mX0ej1FJQ7sJj3ZeQUUOaFrVwNTXnqMkkIfZrMetVqNJJmQJBVxcXHcNf5OrrthMCdO7mPLnsOMGz2an9at5/HHHuXgoR20bt2S+LRGiIIOAYHyigpqXNWUFJWQmt4IBQ3zPvmc6wb1ICYmBknSUFZdSuNGqRw+kkmkLRVRpSCKAXy+GsxmPUoohkAwxNYtm+jXqwcnjp6ibeeOHDp2mHhLDN9+8QVDb7gOjWLAarFg1PlwlNYQmxRHQFYIeEO43X50UgCvx4NWFcH1w27gx40b0JoMIGmZPuMdarweouMTCASCqIIaZEVErzOjUdt59cVnkWSRbVv206tHZ0QpiICKIkcxOUdKSU4RcLvMWMwBDh88yFX9e6HV6nE4HDRq1IjSUgc6nZHMzIMkJMahlgxoDXZA5NP57xOf3Iz8Agfjxk7g28WLOXHiODU1Nb8ccArExcWi0Wjo07s//rCbYNCPWq3lVHYWJ44cpOtVfSjKz6Nj1/ZknTxD545tqCgtICY+hiFDBlFeGuCFl//GS6+8SEp6Glq9SEHZUaKscQTDAdp0akC5owpXtYdvFn9P+w6tuXHkdciyzKABgykrzmHNiqUoyLh9XtQ6hQl/GU925imyj+eQ1jCRfv0HodZb2L1rB/37DSHSZuatt6Yy7Y3XMRp8lDlK0Kh1PPv8iyQkNiTOHs3EJ++lWbNmWI1WVv7wBah20f+qDjRK1aHVa7DqzQTwYNCYcXlr6N2vO4lJdn7adICUlBTmzvmY75ZuZNWSr3G7avj5wHa6d25BhC2Dvlc1RCCMNdKD1WbEbDZTUeBj394DtGgYw+nsk7Rp346VS1ezYe0mNBJUVlfhdtUw5o7xJFi1lBQUodUbadTYAmIIUW3Cj4yihC65/i+mBZfaY11qT/R7+7d/F4nhH7V7vdz+UrlEnvoxntUQPvvsrmCrd7Fd78V9EAThSqr5r8F/JeP6P1yovvE/nMPZTdxvEah/xM71z7CR/b9AQkLCZdO0Wi12u53S0lLKyhwXpM2cOZNJkx67YH5FRESg0WgBBZ/Ph8vlwu2pk4CpZTMetUCHviP5ZEaAOx+ayOkzp3nql7h0FrOFpo2b06Jxa7q27USU3Y7VGoFOr8Fi0BBG4JHnJhFSzh0Da9QatBo1/kAQURDwBfwAPDf5efr26cvjj09k8dffo1afU6epqqpg5uxprN7yE8NvvIH1K1fz/GNPcuOo4Yy46Ta6dOpMt27t2b87E4ejlrPTQ2p0C7XqCmT3FqxVP6Pze9H5KzmWpSOm+VigjmFqkJpKSYmDlNQGVJQ5SUprzKC/vseZEue556pWYTMbEAQQRYEKlwdZVvAHFEpLy4mOtiGEQ5RLTYHlAOiMauxR0RRVlFIb8vPOrBkY1Hp279pTL3Ht1LktHTJUeFxOat1ewr+8G2dBGbPe+Zi/PHAniF4MJjUVFWXolCA61bk56vb4CQWd7N1zgJTkOFyu2vq0bT/tJCMjndvHj0NR6fH6z72HxIz2PDHpYT6eEEHA66Yov4SRo0dQVFxYn0cQhPoQGYIo4nQ6kWUZn8+HRrJw+NBxIi2RjBp1Kx999BFmnUi/fl0Ye8utdO7YFY1Gh6QxkdzITMgfQq3z0jA9Ga/Xj9kiER1jx+cN07Vzd1b9uAqAlJSGdHm0J226NsdojqCktJyQpODzVHPq9In6vtkibQQATAbCvgCCWiAku9HrtVRVVVFdXY1Wq6XW6WbVqjU8/fhk8vLzWbF2BRs216mhJzdPq68vLbUBQwZexYdz5qHT6bBYLIRCIZKTk3FVVfHgPXdSVFzMijXr+G7pcr5buvyCtZXRqBEDrrqaD2fPQi2pUAsBRk98mUAYFIKAFymsuUCVb/78jwFISEhk0KDB/CsQkv2IeMjPOUzzTr1A9AMyoaCKpPgkih15SBoVZaXFNG3egvy8QuJizXj9NahVFkJBH4qgwqKzEZY11HpcmI1qomw2VALUVFcTYbOwZMnnBH0CGpWK08VOJK2BAX27M2/u31AikjGaYxh7+518uugj1JKB6upqomNSqC3N4Z0PZhFhbUr3rjMxG3XEt0nAUV6AWq3G4/EjigJ2u50flqwnGIAIq8jiT77j9aef594H7yUr+yheRUSjr8BZkoMpIYFwUKF7tz7ccN0oRt/Yi/xsL6mNWvDutOkM698Nv9/Pvfc+ytQ3HkUQZI4e2snGHzcx9JoB+H1uzEY7znIPKqOBgNdLz57dkbVhMpq24IVnXmbSE49w+sQprhk0ALXOQm1FPqJaj9frRtII6FR6nM4CZCWILMtIWhNRNjvZWXl8Om8uTmchJpUVizWBY/sPIKkFEuLSUbQgqiUURUGt0VEjq+g3pC87Vq9k4aoddOrSAiEscOpkLo1bJfDuK59z86gGiKHmpKQnccOIkVSUFuJxh3FV+8nPK6Oywo3D6KFJ45bs2rWLjh264/EGmTtzIUMHduNUVh5b9x7ghzXfk591GNQh+vXvR3R0DLIs06x5Q+bM/RCdQcCojuCBBx5g6lsv061rT6a+8zoNGrfFIGpZu2QVXbv25tpho3nlzWdAKqSs1Mnttz7Iqy+9yp233cni7xeiFhXS4tLxhfSIkRJPvfw6BEMMu3Ywfr8fu01DZYWL0tJS0hqmEp2Szn0PPsDJMzms276HoQMGsW7pCioKqzl+eD9Nmqez/8hhZn/0CWot7Nm7H50hzLS332TlkpXotCZEvUSXbq3ZsH45So2b/KxjdG7dgQ9nzqJ9iyYcz83mjamz0UpBCvP30NAeiSwrmCSZEzmlJCfEMHT4AE4c3keD1Cb8sHgVd9w3gZAcy5yZs4hJsDPihusprdyHyxvEYgqSfdhBQkw0LVs248MPP6Rnm8Z06TKUI3u3ER1jQdQoDBk6AEnuQ2VFLhqdBTEUQq23M2fht/Tq0ZYIk5ljezdjiosnMbVVnbrrv/8W5t8KF+8rzzeH/Z8W4J+P/0q5t6L8csIjyL8pVfwj+LP19v8R29SLbZIuNb6L679Yqvd7dlAXn5JdbM/wR/p4JXVf7tme9ap8ftkrcTJ1Nu/v5Tnfnut8u67fehe/pS7yR+fIpdr/M+eZoijU/HA/NT/c/ysJ6x9t7/jxYzzxxOPIsswNN4xk8+atOJ3VFBWVkJOTS05OHn/725v17SoChFVB1CEfGpXINTffxrolPzB6+AiuHz6cjPRGuGpc7Nq7g/lffMS0uW/y6YL5yIKBpm17sO6nTXy4YC4hJUxiXDxDevShZ5MOjB92Cw/fPI6mtngeuGVsff+eef4x3pr2Mgf2H2H1mmXs3XuwPm3Bgq9Ys2oLB3Zl8u3ibxh/zx0kpqVy/GQ+bdu04plnJ5GaksHy9Rv5aefO+nJbDxbitA/iy4NWflZG8pPhflZLD1AQTsSU9XF9PpVG4lhmJkG/lwP7d/Dekm2cKXFiMWi5tVsau2Y9SPZXL3Lg8yfYPvMBDi6cTKy1TrIqiArJqQl8/8MyFG8ZAb29vl6d2kK5q4yKMycxaKE8/zjuqhK+XfId9buLYBB/tYJKa0A4z7tmTlEet429lePHs2nbugu+sEBMVCx5ubWcOnMuBEaNy80do+5ELRoYM+5G3njj1fq05AapXNV/CIqsIhTwIgnn1kVFST42iw2vx49KVPHGW69RVFyIzWrlDnKgNQAAIABJREFUpSmvkXvgCNnHHOQez+Xg7kPsXLeHuJg6VdavvvwWX8CDxawhvmE8BrOG28bcTgAjTVo34aOP5nD/xAe559H7aNKmAXqDjTWbtqBXJyCZLZjtBpJiowj4/Bw7cpRl3/9Q36/o2Ai69u7ARzM/w1Xp5MlHH+V0ZhYqxUxZWdW5Z6s1sGHlBsrP5DJ50mP4atws+uQr8k/nIfsVwl6BFUs2EPBWM2TIEO5/6HEmPvQcN10zir49+pCR3oiE+AQ6te/ApEcmsvWnbXh9dX4U0tMaUlxYghIGtzeMotKT0bwtn3+5hO+++YYbR1xHs8YZJCUm0qF9B56f/Bzr16/F76kLaZOaGEeXa+/GL8sghH5ZoxLKed+0utBUdcz6mDFj6g8y4ML1fbEGysV+DM7H732DLkXXBVELfoHayhBmUwPcVS7MGjNmexQ+SSIyJhlXrUxGRhNCATUajQaNFtRCPJWuIEZbAgGfB7+nBgkFrTaCsGiloryccEgiJjYJj0vm0YmTKHUUI2hEPpk9i6DPy/K1S4mIzsAWGcHaVYsYNrA/NbUeKspDzP3oW9QaI+aodObO+JgEm5YWXXrz/tzFBAUnJqNAwO9hz8blVOYVcfL0EV597XWO5WXjqq3htntu4ZW3XyYyzoQ7WENZcQEmczxh9Mx7+ws+nbGAdWuW8uyzfyWjYzdiGzSnprqa9d/NJMJmRZC0vPvBOxgiYvEqOgw2GynJZjwhJ6LOSEilwWAzoxUUwj4PUfENCEsaBJWa1JQG6LU6Mto0QWuPIhAIcP2Im6mpdqESJDy1AvvWfEZUZAQmYwQpMVa0kbE4awPER2mIjI/CEplCYU4l3qoK0pq2Ji69GYFgLQgqfG4nXlc57poqTIKMFj8Dhl/LUw/ehUGlRRcWaNMqldMn8nh32l9Zt/IQ8c2iMZkjEbQq4tMbEvCX0yQjBUkDzdumsH7DKsbccy9odOzetQNBCvDIE3cTGZ3Ioi+/wKLX4q32ojUlIIk2wrKINc5Ck8bx7Ni+iVE33kRleSG5uR5mzH4fndHIzbcP4/aRw0mI0ROfmsyxo1lIaoX5n8wiMtKKWRdHRno6e/duYPfezXTq0hqDSU+tK4iiMpFfcBKVUsO29cuIsJowGwQ0OhUeP3yzZC3myHgUlUhYDFErh1m1fBWn92fiqw3Qo3MPOvVsybR3XmLwwAF8+OEHuDxlmAwqnCVF1NS48QQr6dmrE0ePHmXOzIWIsoyWKkqdTmKbdicgFnJ1v+5069KZjz76AK1UzcjhQ1n27RYcBScxiF40Kg1WvRaDwUAwIJMSl4SrpoJhI/uhkUR6dc3gp01bGH7t9dTWVJPRoB+rly8iUC0y8ZFJBLwlWO0GPl+0lqbd+vDMk8/SvF0L7AlxOIocuGqclFaWYY1OQm2yU1JbpxE1ctgQtNogKl0Uhth48o/vp6Y8BzEcQFHOfkdkRFl72f3cleyx/gycL7X8XZ8mF12/nVm+8DoPIipEVAiK+MsFQp3Ra911HmSUOvtV4UKmtb6u8/aMZ21UL7ZVvRKcbzt78fX/E/4rGdf/4b8Hf49X3f9kW4SLbcj+WUG3z6oXXgp+v5+KijpnNzEx55zZLFmyhHA4TNOmTfnsswV07NgRjebCMAQl9aqkl1YPat65I58sWMiMt6Yz6+1pfPC3v/Hko4+i1WjIOpnFzoNbGNKvOWeObGDKK1M4cqIuRME7b7zLE08+x5yFc7nh9utIbJTOrePvoPeggfV1Zx49iqu2hs5dOvD5os9o3+GcivPDEx9ixcrVvPDiZBKTYqmu8rDws+/48utPePmVZ6mqruD48ePMnz+fT+d/ikpV90EJhAIkJSUxffp0ht0wmJ49etKqQy+enHWab8s61tf/w/c/0P/qqykudqAICj8dqLORffr2/gxom0Z5SQGlpWVIkhZXtQe3J4yzpi60jMkcgbvGQ5smjQCBtGbd6+uVfW4cxQWkt2uJKKjRGO3oLTYmTLir/qMs6dRgtCCo4Nuvvqzve/uO7dHpJBYu/AxXtZ99P+/B6wuyasVyamvOhbX58dtF3HrztZRXFLHok9V06dirPq1Xnw4sW76EkmIHRzKz8fnOqREbLWHemDqFPXv24PXJrFlfx0RdN2Q4E24cxOL57/HZ/I8YfftYtmzZQn7BKcrK68LKDL+uPyaLQJeuHQj5JERFwuupplXrFMI+CbPVhtmiI+wX+HTulzjLPLz95luoDZEooTBCWE32mUo87hA2m507x99Vv0ZWLF+Ot7qWW24bS25BMe/OmMX4u+8lN/cMJ05m1c3r6Bh8XpkuXbthibByzdCh7N61i7QGDbBGxrF5088899yL3Hjjjfzl/qe4c/zdTH5qIrZIFTM/nM5rL7zAp7Nns2PzDtZ8/wOTH3uciIgItu2osy9u364d0dF2BEFBEBSs1gh8bg85J4/Ts10LnrjndnZv3cqpY6fZ/OMmHnz2aVIMetauXQvAwKHDQWtG4PIHhQsXLiAYDCIIAuPG3XHZfP9siEAg6CWlURz5FaeJiLByJuckXq+XGkcOjtI87DE2ZJ2BUNiDKKoAGUH0E2W34vPU4qutRRHVKCqJivIytCpAFcDlrkJQa5AkkQkT7iQuLoZQKIDKKPH0i69QG5RBp0GUBIZcM4jh1w/i7Tc+4/CRTdx571WIgowgeYhLjmXO3PfYuvRjxl3XH1VIYs687xClMJWuGp5/YSo2a2N27dpMdWkROrWZuIQonM5ibDoNoXIHOUezaduyAyJ6GjWNY8K9t2GLNqGIARxFZRw6mEmkzUZcSgqSHKAk9zQluacQBS3WyFjGjb2Hli3aIQe9mI0SAkFQAsiKF1kV5PSpTGKs0ej0IiNuHo6o1nDLyFH4qssJVJ1h/vyXsVjiEQQ7NpuPtHb9URmi0FpicGNADPlQiwK26ChMETJ5BSfYu+cgckhPtSMf0evEYjKilzR4a91otVo0Rj35+blUVdXi9wVISY3D461BrREIhwSaNmrAydxjjLh5GColiKx4ibQaQZA5cPQo36z8nsjYKCKikrnjzjv560OP0CAllZNnThP0yaxfuw2H08WrU15k6VffUFFcyt9efhW/309pqQNFVuOqUViw8HvGjnuAxKSmDB44iMKCAtQqiZ82/EizNm2RtBqqXYW89vaTtGjbCIvZTJw1hT17d7Hhx9Wo1CGeePIRevfuyd0T7sNg1CLLUF3lRZE13D76XsrL3GzbupPikjzcbi86vUh0TARarR6tSkV1VRkPPnoXk55/hAPHjzJ44CDCtX4UdRBbQjyT/voMAYcLSRTRmxyUlZQiesMc3r+Px558iLfn/A0EDXZ7AwwmC++8Ow29OpLvly1F0KnwhTzojBoee+IhJj5xP6boRA5kZrNn/zHMkoJcUwqiH8Ucw8oVa4iPa0C3LlcTbWvI5KcfZ+/ePTz15NOUu8IMH3krVTVlzJn/GsFgkOTEDJat+JIj+/cyaeJ9FOeeAn8ItSKw6tuVHNx+gluvvZvN639Ep9FzOjeH4uJjNM5Io7bahcWioWmL7hQWFhL0VaBSZERFBETCKu9vE4D/Q/zPp8v/AP8fMK5/dlDef5Z32b8HvyU1vdjj76Wkspd15X2Zvv+e97JL9edSv//oGK9UMn2+Derl4t+ezaNWSxfYPF9KEnH+6d75z+D8fH8WLtf3i9u7WDJ8hbVzMSO5ZcuWyz7Hbdu2Evol5mG7du3rx1lQkA9Aq1at65mji8fw009nPfmee6bnPydJ0hBUS9ji4+nfdyB3jrmDR+6+h/vvuguA2kCAIwc3UpJ/kC8XzK4v17x9S9JaZmCJi6VNt55cO3Ik1988iuM55wK/9+rdC3OEBXtUBApBbFZLfZol0sznX81j1uwP6NylHRqdzKtvTOa+++4lN6eApT+son///rz55puEw2GkX2KpHji8lxkzZpCdnY3Hq+KZyS9TXlLMJwvfoTZ4Tm22a+cO6I1aEGREtZFAqC6tW5smNGyYRnJSMlH2GGprvaxY+h3b9p/AF6h7xpWVFYiiQHxSHAoi/tC596I1mHGWVHP88GlcTjcnThWhqHUYDRr8gTrpnqgx0LxdfzQaExMfeYCmTeqcRm3bsQ2jycDDDz+Iz+Nm188/4qwqZ9y4kSxdvqS+DZ1ei6ISGTp0OC9NeZ7kxJj6tKuuuppTp04SE2slo3EKavX5BxUygYCfXr164XT78PnrAtnfOuom1GYz144cyfIVKxk/fjx9+/blTH52/bxKjE/H7xPZsnknRQV53Hzj9QhKmKYZjSguzOF0YQ4Vzirmz5tJlNXG5p82ExNl5OSxI+QePci6H74n/3QRZlMkmYePkpSYQIvGzQHYe/gAOr2RJx59iKRYO+++9QbXDr6a5s2bs/fAXgBaNm9BSloCepMKZ00hLRo3pUv7jhg1OrRaNUOvGcQHM6YhiD4WL/mGmbNnkZyQSMDrJ7+giIbpTQiFVERHR5OXl0cwGGTLti1knayzL77rzgm/2OmpcDhKUakENJJC46ZN8ClaWnftB2oDiiAgKyEivE5efuU58kvLAbhl9BgE+de2wefjk188PPfp05e0tLTf/R6cxW9JLS4lgf19KayPwuIiouNS0ZljKSkpwWjSEAyE0ZtjMZmiCPgUKotKqXbVxdotLS0hEHTjqXEhKmH0WjVmaxShkEx8TDRnTh4nNqYhVlscgXAAk9lAm7atUEkCPr+He+68g5Xfr2H+7M9wVVSzd/9RPlv4BbHxydz7l5GoRQWjJpKwH/xuBU9AzYwPP6GwqAxXdQ2oZO65dxxBRWTI0OG0bd+ZpJQUVq1aQ2KUBVEls3nzNixmKy5/EKMtisrSAm4ffTOKotC8ZTN8QS8qtQaDMYLnJj9HuzYdCISgoLiMA5lHiElI4s133kOSBBSCTH3zdZYvX0q0LYbKsiqCviAalRZFkLDFxZF9/DSOolJQ/ERajfhCYb5Y/DVWqx2NpCUpJha/UoPaFKakIJ+Y5IaE/AGUcBhJrcPndqHVSOTlFVBeXk6zZk3o168P+QVnMBnNlBQV4FUkck6dRq/VEQyHUFQiCYnxfDR7HgaDAbPFgChCYVEeBQXFFOYUkZLakMZNmiOGVRQXO/B6QkiikaSYpqQnN0aUA0goCGoVLz0/BQmBqLgYNq7bREZGG9LSm/DCiy/y7ocfoDbouP/BB+nduycmk4UXprxMhbOSXXt28/b0dzh15jSjbx7Fto2bEWWFyjIHJ/POsHLlRjSSGa8ftm3bzXXDb2THlt3ExSbTKL0pLpeLkOymbdu2TJhwD4IYJBCsJb1RKqFQgNWrV7P/wD6ioqKJj2uAxRzJ2HG3kl9wGkdZBa5KB2aDhZpamZzcCrp2bM3+Azvo3KM9FcUnkBUvz7/8PCqtjCgHyD2TR0JCFFp9FInJjXjlpZdQgj5kUcvWnw8QFR3H5GefxKBNoVGj1pw8VYogGhBENYOuGUZhSTGRETZUgoTNFElIkCgtyyPz0DYUETp26E5piYOZs95DowvTtl1zGqSl0L59e667dijbN2/n0K5dmFQhrNYI1q/bSln5GVq368wbb75DfHIKHp/ED0tXcsPNN9G9d3c+nPsBQ/oPIeAN0qtnP+w2Cw/f9whbNu7kTHYuKqOZpKQUTmRmguJEFEKgiISFc5EWLrXv+a1906Xo0O/Rp0vtfS72XPz34PfKXs7XyMXlzv999u9vMdR/dF/3W338Z2rn/Sfhv5JxPTuB/syTmSthWC41Kf+v9dsv1eZZV98XX3KYK4ohdTlczMT/PQTrcvVeCS7H1F5Obfr8vKFQuH4TfX5dZ4nMlfb5j4zr9/L+0fl6OaL36/HWOXY/n9HNz89j4cKFv+qPLMtMnToVgKZNm9KqVav6PBZLBABHjmRe8vmuWbOazZs3XdjHX9RYfAF//f8CIKsEvGoBIiOIbJCGJSYWqPM6fMtfX+a5D75kxNgJ9fVsXbuKfasXs3PZIrylxaglqC4vZvbcj+rzaCSR4twTVAWCWOITsdgs53VEIjLSzEtvvEZsYjIoQYy6MKkNEomwmAn5/JQUubht9FheefV5Hrj3PgDKKosQBDc6s8SAq66jurqavJNlvP3qNJatXF1ffVRMDBAiPikWjy/I2Ue/6+BRGqalYItOpbCogFpHKaNG3cx7322uL2uOsGAwm7BH2xFFke9XnGf7KKqJjUkhMTEJUdHRuU0b1OEwcTHxuKqrAQj6QWXSo6g0CKi54bq6eKbfL/uBnKICYlMSiWmQyO1jxmMymfDJsPfQnvom1BEJtGrdgflz3+eBh+9G/0uYIwBfyMsbr79DqMZFztGdVFUWneu3PRqtRQuiglGvrp9vx7NOImttqKLT+W7xApqmp3HswD5mfTynvuye3TsoKzzG8CHDada4Ed8vWYzf70ZGizU2GbvVikFRcfhYHoOGDeeGW0cgqyE9ORZnpZeVq37iZNZRZr7/IZ2at2X18lW0a90JgGNZx9ibmcldd49m3671THzwAeLj07hm+Ehy8/MAGDtqPHff8SDuqhBiWM+AocM5vG83KcmJlBTmUFnjRGs0Ea4NsWrpDxw7fITZs+YRE51EXEwCkkqgQ4eWVNeUEBffhAP7dvLIow8B0LdPPzIat0SlMePzQ3JyGrXVtbhrQPEp2G2x+IIShw9mEtCq0bmL+GLak3y2rE7aevXVA+jcqU6afzl6tnXrVrKy6qTH48eP/4dMTy4ucyXlFCWMICgoShgJhQhNmIpaD6qAi6R4G74g6I0GjCYNXq8Hk04gNUmNNToFqy2GuNhYbGYrkRFmZEVErYuguroQ1BpKSx2kRhtRiQohnweDqBBCQJAMBGQFb8hNXKyRLfs2snfnPkqP7cZoMbNp4w5OnThOjFWgd+de/LhiM0sXL+L7RV8w+dG7iYozkdG6LZIxFhQdJ47tQPYqqHSRtO2SQU7Wfo7sXsuDD0/mWFYFbdu25Y2pbxIIyigqLakZTbh+xChee3EqcVHNWTR/KZVl5ZRUFvDR/Bn4gxWotSKpTdvQsWs/QiqZ199+hbp4PiIxcdH0Gdgbp0/heNYZykscyD4/4RAEQzpat+xCTGwyISVEMOxDrVeh00cQQIMmMg7R0A6txkJpSRFJGV2pLPVz6nABwXAhKp2ZomIHakmPPT4aozURt7cWV40Hl9uCL+DDEtOQk5m5THnhWcxGE1XlTlQhEbc3xNWDBuMLyiDq8cpBFLWJcbeMwx0IERI0yGIEYSUKu60B/upKKh3FlJRmIsheln2zkpyjuajFMKPHjGbHrj0MH3I9aW2aM+rmG5H8Aaa8PQVLgpn4BnG0796O0wUFXN2nOy2bJlNaWswH77+DVgoSFanizr/cRs/e/SkurKJ3z34kxSSRfeoE06bN5O57n8TpDDJowHAWLVzE5Fcn4/bpKchz4A5FUlkJFr0AoobKolOUFRTg9/sZMLgvjdLiSG2UiiJ6KS85Q97pUyTExRMbZ0cyRUDYy7YtP5JbkE9FRT6SRoWrqgh3WT4xtli0OjPR0VZyygroNWA4JquaPT9tRDKqmPzyK8ye/jk1pU42btyEqPag1pVRWX2aW8aPIDnZysFt2zhx+AjVLjcp6c1wlHr47tsVHD64h/WbduKo1mOJbEW/XgMRzQZWbNxAux5dWbt1CxPufRqPp5YhgzuzYfW3NG+axOJvVuKsiuC60X9Bq3azde02woqGl16ZTNCvMGHcXWQ0jcXjr+H9We/hDtWw/dBqTmQdIutUJhWVp5n81Gv0G9qNxIZN2b1zP/6gk5i4aN57/U0kSU1YpUarBC6gPZejE1dCOy5n2nal9OkfwW+1eTmG/Er7dCUhKy8OtfhHUF/uF3VlQTk3nv9U7cJ/BP/VI/53PpX4VzC1/wgutTj+bKnjH8VvSQ3+r/r1R9r6V8zFuvZ+be0RERHBww8/yMcfz8Pnq5OU5efnM3bsGDZt2gjACy+8dEGZgQPr1HKPHj3KxIkPU1lZJz1xu93MnTuH0aNvxW63cylMm/YW1103nEWLPqegoKD+vt/v59tvv2H69HcAGDRoUH1ay5atSE6uC2nz3rx5pLRqz4Abbsae3IBprz7BqDtGU+44Z6tZXJBNbHwUCTYjFoMOa9Q5NWdPsBJdpJ6AL8jeXXspL3fhrPZSXOzEYDIycOBVCKIPk1lLp45d6NdtAHarHUVROJR9lO07d9G5SzL3PzIGa6qBYyXZ9U6QAAoLi0ARUIkSCdHRNE+p81771uLtrNy6nyNHj3Do0EFOFzsZ9cJCMk8VY9DVSS99Hh/eWh+ZBzNRULjtlhvq6z1+9BiSTo052kppWQG5edmUV5RQWpZPREQdY66SoKy4hGAgQEFuHtcOHkJ0VDQ+v5/rbxrB7j270EsaSouKObRvH7feeTuSdE5ibokw0rZtG3r17IfP52Pp0qX1aaGgwPdLlnPqVD6pDZuQ2CC9Pk0tGKgqdyMKKmwWE4lxdbFKX3jtZX7asKGubouFSpeTJ6Y8x8HDh9H9EhLGGhVN4xYtOXHmDAcP7qfW7eKzRV+QkpFMk1bpuFwuagI+3nrzRSRVmJPHT2DUmnntralExkQx/t676TPgKlq2b83EyY/RsXtnnn7iSZo0agLAfQ/diT8scDq7kG7d+7BlxyZOFdepnXdu34mQL4zBYOD48eNIksS2rZv5ctkSmnZrR6ueXSjML0IOhvlh2Qo+/vhjqqur8QZ83HT7jdw25jZWrlzN6VM57Nu5m+0/b+GRZ58n61Q2MdHRPPbIo2i0KlSCgKLIEJY5dTKbLds38/QLz7Bm3Sq8PjctW7bEc+YIk55+nhcWbCD7TB6xsbF89OGHl1xD5+OstNVmszFixPW/Sv+/oDVnv2EVlVVUVznRqFUYzRYKCgrqvZJ7/QE8Hg8lZWXk5ZWgUavw+72UlTo4eiILh8NBMBjE5XJht9uRA37CoQCnzuQgyzI6nQ6/349KCuEP1KDVGPH7RDas34pRY2DO3A9p3LoxLZo14s0330SR9Ozen8XUd2bgCYWIb5DIiFtv5roRI7hm4GB0YpAXn3ua0rIKGjZpjaQWOHXqFPFxKSQnNqbar6ZHj+58/sks4uPjefDBB9Fq62z84hNs+AIVSNpa7n/gbtq2awGIRNnjEeQwVlMk/lofQjhETW01Br2JyMhISkoLOH0mGwCdTodKDNOuXTskScfBQ1mEw3US51p3Fbk5WagBMRxEFfQRDgcRxLoYvaJKRiWqsUZGo1arcVQUMP+z2agx43RUYTQaCYb8ZGZmYjPbKC0sIjXZjqM0m4pyF3q9njHjbub1196iurqG2LgYHOUlHM3cT++eXdBrRfJzs9FJRqKionj/w2k0zkjH5/Gyfu0aJk68n4rKIpAUEIIMuHooDVLTMehNGAwmPB4Po0ffQosWzfhp41qapzVg6dIf8AFer59QKPT/2DvvOCuq8/+/p9/et1dgC72DqGBBsGBQsCAWUFQkaiL2EkuMvZeYqLG3qIgNC2pURFFUQAVFOizL7rJ9795eZ+b3xwoiUpUkvyTfz+t1X7t35sw5zzkz89ynH7xeL5lMhkQowrV/uJoLL7gAXRCp6tuXZAZShkxp9564fX4cHjfPz3oZ3cjy+9//nmuvu4Y1y5fzxKMPk04GmTlzGg/cegvXX30ljzzyBDYty1lnn0JldSnRznYcvmJWra6hqb6B+g3rKSnNI5tNY7N68Obk4/QEUK0O2jojWFWNcDTOmDFjGD5kMKIo0twURJU9bKhr4f7772feB++TzuoU5lUSCmZpbOhkwPAhuN1u1qxazUfzP+Diiy9hxowZ5Obkk5tTjNNpJRkNEU9EKK2qxpuTy4a168jG49x6w3WM3H9/hh14MAeNPJCTTpxEjj+X+fM+pF91FVNOOgGLBOOPPIyqbkXk5xfi9hfz7bdLCQR83H//PVhtMqdNno6Ik7LSAUSiHfgDbgTBZOCgvgRbk/zjnY/46MP5eN1uhg8+Gq+7lNKSSjSLnY11m1j2zVLQYWD/apZ/9z1Oe4CR+w9n05rvEbIJdLR/Kh/5P/wy/CenxP1aCP8pylM6nd5jQrfIk/vSGrFlnbYPHf0l2HYLlp1ZefZE6NhjxXE7r+r2lnmEnVfC3VdWse3H3FdC1a5Ct7cP5xBFEV3f+SZlu7O4/SvflX25RuHXzwPAOvAUxk2/ngULPuGSc07m04/n8eXqZhRJxG6R6Yz9aFm98sqruP76P2GaJrH5t2KEusKEZ/z5I15b+GN4rttpIxpPoes6g/r3ZdJgJ1c99TklAQdf/eWkre3umP01d73yzdbvVk3Fogh0xlJsWdaqIg+vXHsUBWXV2A6+EsGEue/M5aSTjiermz9c11WAJpHKYlUlHrr6DM744+MAvHD7eRzoayYeSyAqCuGsytCZswFYdM/xlJ38DOGmzWSzWbQ1j2LJtpPV9R9Uep1MOothGCxcp/NdZABD9x/A6eeeTDLVVbXYqkqIokAsmcVlVbhgTCk3vbkegCXX9SffCaaeJpvJsqI5w4mPbCL+A9vSZAFZEoilDGRR4K4T8rnr/TbqgxnuObGACf1tKLIIosLanFMZfebVADx69Tkc3i2CrClIQDQaxWazkk6nGHnVO9S3xXjwgfuZcMx4xG8eIxvchCyJfLpiM6ffN59YsiuqwGZREUSZWDyO2+nktwd6uP3drnv65e3jCbhtZNIZItEIq+zjmTLzAgCeueR47LEVKIrE0KGD+XRFI5Nufx+AF39/MM8vzyWTSXLvfXezdNnXTPvdNBKJrpwoTVVRFJVorKtK8cwZM5n9xmw2N27mz/fex6knn8am2mYqSnPZVF/Dk39/gbt+MGDMe3ce/fr3RcjoxONxbr75Vm74043osgGIRKMxigpLqNm4Do/HQyKRwCZK1NTVcvwpk2hu7cr4K3qUAAAgAElEQVSlVRWFbFbHMLv4bVVFJZN+czynnnwmGzas47XXXmHV6hX89YH7OPfiC1i4pKsw12N/fgSv08ecV+fQb2A/jj12Io888Rh3PXg70MVLXE4XkUh4qwGjokcFjzxwP/369gdFIZ3MIAsi7W1NeN0u3nl/HmeeN2Pr9W6Xi1AotHVz+6qqal5+5TV6VZSjC13P+Y74WyQSoayshHg8zvnn/467776HneHXpmbsrPgKGNvwVZn1X7xJXmEBuj0XzcySNWVUu5dUIkkyHsFht5JNZ0gku/hv5gclRpZ+/D1t7WjEqjpQBIlEMowvp2BrVIypZEglYcmXaxg0aAgfvj2HAcP7c/HMy3nttb8R7tCxOnPpjEb4eskSVq/cyPRzzkBS46gWGyu/W05xXgEyKe64/UHeeH8BS5YvQkh1snjRUmTRTo8e1Xz02QJUIUVl9yJKelSQTqdxu92cdNJJ5PjLuXDmxRSX5hCORLj+uj9w7bVXkRFVHGKCUCjDx59+xuRTTkBUbUiSgG5kMKJhOqJpXH4vTotMNBpGEi1MnTqD22+/i+LirqrsoqQQDrcRDYeQBBOP24Vi68rpNcwMGcPAZnVgGAa6rlO3aR0WzYYqde2NHMixoxsZFFnDpnlYv+orRAmcvhIMQ8YRsBPvbKejNYpJhkCOl0wmQUFOPnV1daiqitvtRlTddISa8HlsKLKVcDhKLBonFovh8juxWWWMVIY161opKytDFGVOOP5E3n33VYLBIAgm69ato09VL16eM5cJJ5yIx2tD1/Wt4ZIHDz2AV19/BafDRtbmQhRFHJqV2g01fLtiDdXVZZgZk9xAIRtrV/L98jUMGdqfwkAhiUSE5154mgkTxuOSFVqCCS6+/Apeef1xLKqXTfXfU1nRlyVL1/PBux9w6UXn09leT8JIkpNbTDSuM2vWLE6dOgW704GkKkhmhk01mygrKcXQM7R3NhKPOpgz+xVmXngahmQnkUwz961XOHTsRC67+DKefPxBYokwomCgKlaCHQluvuFGrv3T1TjdNgwMYpF2NtXWM2DAIDbWB4lHw1SUFpNNJvj++9UMHLIfDS31FOQH+PvfZ9HS3MF555/N9Gln8sAD96PrWdraW0hGYthcHrpX96ajtR5RMrBYbLS3Rpl6+mnMf/8t3v9wEd16FuCwOoiFk/i9XhIx+O7bFTicGk63zCOPP8dVf7gMl0cmmYiwYnkzReU+yst7Eu3cjKxoWK0FNGxags/rIbeglITqR5V3zA+2jwTZW+wNf9pTmXiLzL+9jL0nsvVP2prinkf/7abZT7Yl22Y7nJ2Nv6Pj2+9YsWXM/x8dc78Eqqru8UT+N9X1fzP2VQjzf8sD+2uwJ2u5Jb/g/5L6f4SiKLxy7TiunjyUikI36ayBy6Yyqm8hz19xONdf/6cdXvfQ7w7hpqn70bvUh6ZIGLpB3759ueGGm/jgjRexW3a8w9bUw6r58503MmnSJPr06YPVohJJpPHYNUb0zOOmqfvxwa3Hkuex/eS6cUeNY851RzN2UAluu4quG/idGpMPqeKD245j4gknb20bTxp0dnRgczjRVI3Wph/DWoPNdaz8fDb5uVaSyQ5kVSISixCOhDAxMQzQ9a4fl8FDBjJv/jus+n4544YNZuLwEvI8VnTDxCILHDUgh5cvHcX+Ayu29u89+lGomoyYO5jVbQrl3St47YpDGNsvF59DwzAFnK4Ag3tX8dbsl5h89GgQf8gXdZWiFQ1F9/VDzBuM3f3jXqP9B/VH0VQyiSTRSBxV0cAUfrJJvJEx0GQFI6ujZ3USiTiDyj18ePN4TjywG3keK1ndwOVyMen4STx7/70/od2uKXQGOzHMDHl5eTz88MNbz5WVlXDAAcNxe93omBjbGH5cLhcjhg+joWEDAilGH3YIb782l6OPGo/f60M3DBxOB+PHH8PfH3+eSy++eGtxp5bGZlIRHdmUmD//A/LychGFH73ATp8H0zS5964HUCSN6665mmi0hWwyRawzzOKFXxAPR8j1OpAtXRWOsymd8ooqFn6+mBlnzaCiewWiKKFpGn379OX0k6bwl9se5JTJ07jtttuoqamhoKCAp556io7Wekbs/2NRrNLiMjrbglxz/Z94/PGnOWb8RKorejP+8An07zMAv89PLB7D4/Eyav+DOfGYCcx+/HlmP/8qekbEIjqo21iDKkuImNgsGt3LSjlv+jkMGzIEn9dLOBLG5/NyyCEHc//9f2bJokVUV3TfqrTuDLNmzSIe7yquNW3atF22/VcgrcOaFd8RbG1CkC1s2rQJQRBIJBJIsgXVbiWRTJNOaTgsKplMCtVqQ1SttLS0EAwGiUaj+DxuIm2NSKJJBplYLLbVc2saKqHOJNlslkwmxeAh/XjsoQf464OPcecDTxFNm5w57XRkPcWAPiXU1azghmuvQY9nMFMZysrLsfk91DS1M2vOW/jdXhLtQSq7D+Kdt+fxxhtv8MAD92JmZPY7cD/em/9+F/2ShGEY3H333Uw540TG/eYoHn/8Wa668k98vnAJq1avJCfPhWARqezTj1OnTSOmR5AVyGazSKLG5sZaikvzSKVSpFNZIu0JgsEQTzzzCKUV+ZhkaKyvIZpqR3K58OVX4AuU07C5mVg0TDwW6fJUp8Pouo4kWjFNk25lVeSV5zDvg88oy7OgajKhUDumCeFUnKLu3fHmlnHG2TOJxNpIpRKoqkZhiRO7QyUWTfLeO59S19xOYXkFmtPLY888T/3G9Wg2GzoSkVAbEgKyaOJ2S/jcfgTZjtMdoLgsD8UC730whw8/foupp09BkiEn101evoeskEZVJGKhMIlEhmQyjShBKNzBS6+/iq0gQGMkSOvmtYjpCDdedzWffjSPt2a9glvVIdlGzYplIBiUlHSjR0U3otlWkkKK8y65An9pbwp69kF2Krzy6nO0b65DEg18eXl8u/h7CnMULrv0tzS2NeItKsRh8xOPJ3G6VcYcsj9um4yZjtJctx7R0CksLaeuro71K5fjcjvIL/Ay5fTjaI+qbG5sxmFXOeo347F7NR586G5amtYiOuwoikJzXS0balYx7jcHI6txUpkQnaEOfJ4CXvr7q6xZs4kXn3iBk088hWAkSowsr7z1LhdeeBFvv/4yzU2bqN1QyztvvcuqFd9R1r0XGUPloUefJJow6DdsOOvX1/DcY08gSB5sjnwk1ck/5n3MX++/m2QqztDhwygp7kYsYvDMUy/z7jsfIkphhg/vi82qkePP5fbbb8dqtRAN69idBYweczgb1q5lycJF3HvHvUiijWgySm71IBAE3pv9FBY99e9mMXuFncl6/8seyv82/Fd5XLdYJUzz56Wzt5/ntsd35bXbHv+q9fqZV3QnbXZnRdrWgr433txtx9jd3qS/1Gq21xawX4Ffo+Tv63u+bR7tnloRt227o3Xb2VruyXO0/fE9LWi2pWjC9p7tXdGOsU2euLj7Z2tPaNgWuq6j6/rW8D5d1zHTWdYu+4K6dctJtDcwaNhIsqqHgrJKBNPF3Llzqa2t5eSzT0HTNATTRBJEvv58Cd2rKkAUcXs9kBH4ywMPUVXVm/V1i9mwvpnnZj+J1+Nh3KhjuOTS3+HJz6GjU+fhh+/jqssu4vRTpnHvX+7Gk+Nnw/cr+PjNOUy/+gbsdjvJZBJTTyLLGZrqGigr7E5jsJNwayeCrFPRtxuJqI5pmiiKQjKR4ZmnZnH29LOwWEXi4Q7cngDtkTacTiepVApZlkmn0+iJBH6/n0wmQyaTIZI0cLmcZDIpUrrBKy+9xBVXX47f4+Ox+56mb79etLQ2gNXFvLffZemSr7j5njtZuugLho8YRtrMEo2FKfTZ+cPFVzJ4xMEcfsQE4kaEG6+/jztvv4T2YJLNdW1s3rSRTCJJeY9SBuzXG6QsoqlisfiQVAmkJLGOGHaHhiJbaQ93IAgKVosDMEmEonh9PmLpJMsWr6Rv315YbRLNLfXkFReTTaXBMFmzajVVvcoRUMlmJOKZOB6Ph2QyicvlItLeyZtz/kHvPtV4vHY2b95MR3uEWDzEsROPJZ5NY5omDTW15BV2o7OjiYL8HASrjdo1a+lV0Y3vl33Nq28t5KWXXuDmm6/FbtW4555H2G//AcycORMsCm6XAxWoWbeWvKJiZFVBUGUa24IU+B10tjZgcwfQkwr2gId003Lmv/osUiCHI06/AtGUEYWd/z7tDbbr5ifX/5ItE3bGT7Z9b9OGwuJXb6WozwF4PaU4vT5WrFhBaVkRquohGd6MxaqSxQnpOJlsmsbGOnw+H5mMicvpJZON4nbls3btarp1KyOZShCLtFFaUU0wnsYhioRCYVTZzZefryCW2UhJURWFxR5efWEZU84cw3PPvsQx4w7m5ptup6Ghgb/85S8sWLCAQw8ZyeeLv2bsUYfx1fuf8+U333DouCMoKcnBFAWWr1jD5Vdcw+tvvIWQ6SDWFqSq/0CaNjcybdpZ3HLLrQT8uSTSrTzz3AtccfV1mJ0JLr/mOm679w5EM0mwo5my6qHoeoZErIl4WCcWDhELh8ivLsQp2mhtbKO0VzXZTJRgRxyH3Us0Eqeo0MasWS8wduxYnC4f9c0NFPj9qIZBQrSDkCKVBCUdIpIFzWZD01Nk7QHMSAiMDKYqYbXbySSiBFs60dNx/EWViFYrobY65JTOvPlfcejhB6PYVFobvkeV7Rx3wiV8+/27fPb+FxR2r0DzWNFb21DzPChClpaaBuyKQigZo7RnNXJGwrBK6EaSzqYogRw3Bglamtt4d+5Czj7rtwQ7W3E4FXTRQmswTLazlRuv/SMnnnwmBx3Rl3QE/v7CS5x55jnIikkqniTUGcPhcdMRrsfv6U42G2HevLlMPHYcbR0yf7j4csoKyzn3otMwFTuqzYkmGcQzVt7/xxscM34cZiZOKpFEz2Q4fcpU7rrzRkp79kJEQEolMQWdcNrEarViGAbrVq6luLycrAZk0uT47ESCzWiqSCzuIpkKc/11tzNi+HhOnHwEWaOdQCDQtUWKrBGOJ1ESMrV1tcz9x1ucfc40XG47ofZmZJsdQbOhxyKIgkY2I5KIwe8uOIsXXnmOYDDOcUcfzcMPP0WPinL+cMU1HDnuUEYesj/prMBn8xaSl5dHfn4+qVQKzBjxeKzL256FqqoqXnzxZYqLi8nze+g7cADt4U6ee+JF+vUdxHMvPMdd996CKircfPPNvPzyy8yePZui8m5cc/lVnDXtbLKpzTjdTjw+N7FkDLcrl3lzFzByzKH4ir20bVxBy7qVDDhgDM6CbpiaDVEyUMiS+WG7HNM0d7vlzO7klH1Z++TXeoB3Ne4Wb+7WMbaJZNwlbzV2Pb9t82T3Bv/LHlfp+uuv/yeSsu+g6/r1u2vzoyL3c8V1e2xf0ev/N+wJTbsL6dqC7YtK7a3iuq9De/fk2BZsT/u+HPffhV/KXHellG5J/N/dNXsCXdf3iIluabOzsXdIh7nN9338bG2xqEqS1FUZ+Id9LTVZwVtQTJ9hoyg74Eh8hT1QsjFSbZtY9O3n9O5dQm6ejdLcbuT6/Eiagmy3UFpehNVt44133mDUoaOQBJP9DxzOwMG96dNvALfdczNtbW1MGn88V868kO+/f5eiwnKcai4HDBnKRx++x3HHHsWqFWvoVVWNL5BPSY8+WBQRTZaZfuaZnHbCJJobG1A0DdnuRFNVNq6rpXv37mh2K267C1mUyKYzyBJ88/VXVPQox25TaGluwWZ34vG7EZBYtWo1LpebzmCIuoYWfIE8LDYnOhJ2ReTzBV8QD2dpaGjm1jtvpCPYwXHjx3P6mdN56525jDjwQC678CLGj/8Nvzl2PJ99uoBMCh566BGOOOooFNmKrhscdOhRfPTxIlwuB9W9K/nm628ZPrQ3bq+bl2a9wIIFH3D0xCMZfsB+iKKKRXMTjUTx+rwYmIQjYTwuL5FIGEW1YKQSuJ1WwsE2EtEEr7zyKtXV1cSSCQTTJBwJkpsXwGq1IqsKrc0tSKJEbk4ugihRW9vAOdNncMB+w5n94iy8LjfvzX2H1+fMoWZjHV99vYR4Msptd9/NzIsuw+qwseL77yguK0VRFJZ9/Q1nTjmHUSMOZNGnn/LRgoWIpkAikaGiRzVIac49dwbPPDObd9+bj6rKnHHGacz78GM6OtrxuLwAqBaNeDyOPxAgnkzgtztYvWIlpWVV6IIFi00lUfsF77/9BocdO5VeI4/ClKyI/Nx480vfiS1XbQnJ/Ek/+0Bx3bY2w9Zzus66b96je+/BOF05GHoWv8+LLAskkgZ6OoqiyISjaZwOO6lUCqvNiqpZsNscYArY7BqrVq/A5/dgtUmkM3Fs9gCSpGGaEoIuE4lEyGZT1G6qZUj/Afg9bmxWAYEYOTkVnHnmdL5YOI/7H7qfyp49yc0vJje/FLtPoFt5FcHmDhYv+5LOZJyjJ47H4VBwaTL5OX6OOmIsR4w5jOMmTOaZZ59h2IgBuN0eFi9azKGHjiY3LxdBTHP00eMw9TSRUAOjDz8Uh9uFIgkkw2sBkXBnB7Kewe3NIRbt7Co+pZvYrFYUVSEaiaLa/MiGyNLFiygvyKW1PcSQwfshSzZi4TS+gI9YPEI00gmmQaijHYsioVk0NIsdPa2jWjQEwUQWFTJ6FlES0LNZHHYHiuYkGklx0013I5oSvap7IFosXPD7mRx2yBBaW6MUFxfh9no45NCR2FSVRYu/ok//akwhThYRm0Omfu160niIpWUUmw9BsmKaKWRRJtqZoSMSQ9IUFM2Gy5vHpppNfPvtcopLCkmlYkSCLSRiKcore3LEoWOoqB6IahWwan4GDRlEOBxHUSWMbJZnnnmKqp6VuDxurHYRQYCC3BI02YViFTjgwBG894+5HHPk/uiiQCgW5ZtlS3n75ZeZOnkSa1csQ9JM7HY7zU0tOO0+Bg0ejCSBJIokEzqGLGHKKppFIJ51Y1WttDY0YFMtOBU7hqFhtRdiSj4smoLT6eGggw9h9epV9O/fE6fLRjweIxKOYpom4WAn8z/6iD4D+nD/A/cx+eRTSCYSeN1OkhkdxWJD1Lvky7b2Ju684XaOHjeWgNeBRRWZduZ5vDprFt8s/ZrDDjuEPn1709LajtPlo6jAR8PmTYTCHaTTcew2K4WFhTjsLvIKPLS0tNGzuh+LvlhKNJ7gq6+WsWbNBl59/Q1OOvEEenbLIxWq5/35X3DWWWcxfvx4Zs6cyQvPvMITTz7Ka6/Nolev7mhWK6agUFnZh862MAMGDUSQdSTNSSaZpbrPQDa1BGluqKOgqATTBME0MLeJjtkbxXVXx/aWF+3r9nvSz0/73EPeuhu9fE/kpx0TtiOa/nMhSdKOw/x21Pa/SXEFfqK47spztDcK646E63+Fwrs7YWbb+e0u92B3zGNX89md8vpL12J3hoVf0/eOxtrTNvv63m5rUfsl89rSdmdRA78W21s/d0fblvN7uqY/ec7YJgqCPZ/DzvLVd0bLlrXuUpAlkGQyhoAjG0QQTERvMUp+D6q79SKQW4rbW8DSJV9y8WUXMergkbjcTmbPfolXX3uVw8aMwWa3Y7NYQTD47PNP+O35M1i6dBkWi4W//vlhln79KZ2hdip7Dual55+lrq6WpuZWhu8/lEB+OcG2OhTFxGJ34nQ7MDEZdfAoWpvb6FHZA7vDTiKeJRwJEemM8/EnC+jTvz+KIFC3qQ67zU42k6GspAeYJooiEggEUDUrOlkUxUJOTi5Opwu73cGiJYt4+ZWXcDgcyLKM3aIRjyfZuGkjMy89n9r6WiyaxrRTp1Ja1p2mpkZKSsqIdHSwuXkzHr8XwTSIhKOUlpXiy/ETCgVZsPAzevTpQ8+qAdxy03WMOeoQKnv0BjNGICeXQw4eTffycrr1qUKzWEkmstx+y9306l2Nx+ckmU6gaU5MEzJ6BkFQsCg2IpEgtbW1RCMGS5d9jc/vJxjqRJEFNm+uR5a7jBJZQ8dmsWKz2miob+DLL7/C5XRx0kmTsFg0/H4/xcXFjBgxguEjRiAICkOGDOaYY3/D6NFHcO8991NR0YPBA/vT1NqC2+3G63LzycefMnzYIAqLcvniy88ZOHAgkijR2NxGXsBNIDefN99+l5kXX8r+wwfi83sZOmQ/7FYHdrsdVVPRRXDabKxesxqPz4sqyeQUFtPQ2IjPobBs4dt8+P5bnHLWTOz5lSBbunJ1BH2r+XyLELOz/KfdGXqE7drv9ORusLv6ENvSaKTDdGxcgtVbiGrzkk4kSSWTyBKkMiLpRAirzYLd6SeTzmAC0VgUp8tNNBzBbncSCrVTUFCMKApYNAvpTJpE0sDmdJBIxDB1HZfbholJUWEpdouNVCrGoQeP44yzJrDg06UsW/YdV195GTl5hdzwpxsRBJNQqAOHtQiLRaa1bRWDhg2n36ABJBIx9HiEZDqB2+ujszPCmWefhSpq5BWWYrXIWK0WDjjwADZs2EA2m+Xrb5bhdrn5cuFCrJqFopIyFKuCqkAyFsSTU4rb6aOlpRFJcpKIJZEEiYbaOgoKC4kn4zgUFbvdQmdnO36fi0BeAFlVMHSBj+d/ykvPP8/Q/Uf8UMFdAtNAQMFqs6CLAoKhcOHvZlLZuwpRT+N0BRBVBU0RyGayNDW34XTnkTWytG3uYP3qFVT3Lsfh9jNh/An0qCxHlUxERQNJIjfgIp1I0n/IMDbVNSObMjZnDjZNQpU0Xpszl5q6Zk465RSuu+JydCGDnoqw8vuVuHwe8vJzEEWJTFrEbrFQWVmN1+cmm03i9bhpbqgjJyef06eewlHHTCCtx5EEK4IoYBgCJjqRznYOHX0QggymKZFMRmjc3EQsGsdpd4Noohs6m5ubePO1l/HlFhPw5VCUl0NlZQV33n4vU06dRDASI5lIEovGaGneTHs4RioWpCCvgERWxu1yoSgyeqKdeDpKQY5Efd1Krrn+jxx3whGEo6043FZsVolUUiCdMVFUmaqexXi9HpKJNJlMCp8/B02RMTIJ8oqK0NGZeuYZKBYLne1BYuEIHn+AjAGibiDLMh6Pl6FDBlBbW0+3Hr25/IqraNzcRr7fxbD9h9K3XzWqauWYYydxww03cdQRYykpKaWmZiNvvPEmgwf15+GHHuPJJ56jX/++LFn8NVldZ+TIA1GtGhdecAENdXX0qKxAFkVGHjgcw0iQW9CdmpoabDYb/fr1o6FmAyedMhGXx4KeEVm5eh2CJKNaNZxWGbvHi6ZZeOJvT9Kv7wCiqTTF5eWoRgbN5kbWrOhZA8RttoTZhifsTKb8Z0StbYtdybs7ilj7JQ6Dn1+z7xTX7SM/dyST/bzb/66KwnujuP5XhQrDlpzHHz1B+2J+uwq3/Weu3/ZjbfEkbcGeFHnaFXZkSdqbcuE7o3dPsTtP6+7a/Jqxtqzbti/+9oLhFhp+7T3eVnHdmxDhnfWzBf8M5XpvFfxtc0n26JnbpjDB3oQu/ixMZzfY1mssICOgI5kGUcWKbGSxGAlkQyepWLZ6p+SsiWCY1G+qQxQEHn/6OW6++5atc3W73cRjcdKZriJWkihy5Xm/49gxJVSOOBojkY+paog0oml+YkmBpJ5CswfIdqzkm0ULGDX6KDqSEk6nE0VRiIaTNDfUUpSXi6wr3HTfLVSX9eWwMWOZ++F7DO5TQTabpbi4GNOQmfP6XJqbm5l88vH4chw4XT4EDTraI7jdblRVRZIkLrv0Av725BM/pT0eJ/3D3q+SJHHnzXcx/uiJzJv7Jj5fDpJo4ZmnH+Hciy5g4LAhLJz3MatWruGoo48kaXRVns7LL2RzR5CTxk/m43+8TTDRQmlxH9pbViJKbmKRFOXFBWRsGtFwBCGdRZUlrFYrkpYhnTWIxyEUDlJUlE82a5JJyTjdAqFQiIZNcQJuAVGSWLj4S4rzA1RUVOD1+olG45gyCIZJsL2DwvwCNtW14HY78XhcoHV5AZqamvB4PIiI3HfPQ1RUduOII0dz1w130rvXANasXcnp00/lzffeYcKECUi6ic3jQiCLnorxj7nvMGy/A9hU10iP7lV88/mX3PeXv3LMpEn48/IZvf8wgsEg111zMzf+6ToS6RQF5QW4vW6skkAsEUeyqKh2B4l0Brdq8v7sJyjUogycMIOYmINNUpD1JLpokBXkn8k9OzM07i60fleFP37J+7aj41to2fJ/zfeLsEaXoXurCRT2RfqhCI8g6gSjErIRJpNNgezF4XCQTiexWGVUVSXU2obH7SeR7MSieWlpacLjcWGzW9EVkXBnkGQ8SsDnZdOmTeT4yzl2/BTW1Sxn6LBB3H/384w4KJcVy2sYNmQ0XyyYT0drlHvvu4MZ557G66+/wtPPPoIo+fly8XLcjhSa1cGGdevIxjoJdKsgHE0SyCmgMxxj5JD+fPjJUpyaydPPPMz06TMYO/YIhgwexv4HHMrsF57j6isu4957HuTo4yZw4pRjwAihiE4Spo1EKo5VyfDsY2+xZNHnXDzzAt587XlOP+9s7HYLrZs24nSKqA4fq+saKSwtpcDtZsP6Or5fvpaRQ/tz0JFHM3XaOUw+/mQKyt1gakhyFpMsi+YtoiAvn279uqNlosRwkdV1WhvXEWzvpKS8O3UNIZxuGSku0N6yiSEH9iIYFHj8iZeZdOqJ2IVGsPqRFTtSNopkmgw6cBzRoMGF513A4eOOoKTciahprPx2EadMPY9zz5rOxKMOoqRfH4xII7opYJhqV+EoA6yaj2QmzeaGFu659w5uv+MGWjs6qcj3I6t2WjubcfvLaGhbR667GzomsWgSu0NFI4ksC6BIpJIynaF27FYb8VgEj9PF6vW1lJR2x2p3QlanuaWVee+9zakTj6Q1I/LGqx8wdFhP8vPL+Wje+zzz9EO8/vqLpA0PjRuX4vX4eXrWXI486CA+/eIjjv/NAeSVDr7hROcAACAASURBVMTUIwiylbRYQCRWg8Oi4VAtNDVsJiZoPPXE35l4/JGUljhxOwrp6AgRyHETi8VIxcI4LCrNkRh+fw4doSg2mwuHqmKk46gOJ1lRQTHiZNKgyHYSqRYScY2TTz6PjJ7hqst+R+P6bxl/4nE0ttQjmA4e+tuzXH7VZfzhsou55557uOOOO7jooouQxAReTz5/eeBvDB8+nHA4yMGH7seSJV/Ss98gwsFOEpEo0ViCp5/6O1deezV/e+zPXHTeJdx6663ceuutpNNpln7xHn0HD8bp9dLaAA89cj8XXjYDUU3TsGYF/uI+2DQPUjxJS0c7S1cs59gJ40gGW1jT2EFlv0G43U4EaRt5aTue9WvCgfcUu1Ncd8aztnz/NZFuP3a870KFZVneKodsT+vO5B7jv0xx/d8LFRa27McpYRrizxN9fiV25Zn8Z3ped2Y52tn3PYYpAgKYAgJd67VbS/6OLD7/JKV956EZP8eO6N6T8OIdeeq292zuK4V123G2H2NPnp1dRQ3sa/zTw3GELZ9d7z+7o3uzN9h2z7Sujc/AEARkU0fExBAksqKy9R0QBREkCVOWcAX8OHxeSkqKcTgcXXmypkk4HEYUBPJycxh78P6ccMggbHoHvYeNZfWKdjrDNaxZuZhUSsHr86MoMqqmgimw8tOXGTxkGFl3FQ6LhNVqAUxWLF7FH664hgWffM6AwYPYb8hQulVX4fZYMRIhvC4XomLD6vFgZNPkF7kYM/Zg/IEcRItCZ7gDm9UCsoQsiWzasJ5oZydl3SrwuB1kMzomdNEuipQWlzH20DHcf+d9jBo5mmAozIzp53HV1Zcz76NPeOud9/h4/qdYFRu5uYUEAj5y822YaZFN64IUFefw+bwPGT1qOMXdulGYX0zT5k0UFZXR0hzBF3DTEerANHSaGppwWG0oioGoaehGlmwqy6MPP8mwwf2wO1yIkkTthu/xebzoOng8dlxOjc5gmNkvvs74Eyag2ezImkY8lSQWbkKVHaiqRlNLPf78HGa/9ArDhgygrq6GTRtrKCnMAz1DNJbk0NGj6NO3N5FIhKqKSmbNnkUqG6W8spLu5VWoqoxiEdFUB6FQgnQoyofvvUXAX8wrL7/D0P0PpHtFBcefeDwlxfl4XVZOPPkM5n+8kNJu5dhsMoVFZfj9XjQFQEd1uTFNmWioBT0U4r1ZT6Inmzl06o0g2FAwwdTJSiKmIO7QWL+r6JYdYSvP+uGz5T3btrVhbleVcheGsJ17GX4OURRY/+3r+Cz5ZFWNtuZ6cnJKSRtpTLETM+tDVGLYFDeyZJCIRelo61JORDFNe3uwK+c7vhlFEjAw6Yy0IZsWNEXAbrNjWh1IooLN6uLpF1/iysuvxusWGTpsAK/P+ZIZZ02lT6/++HOcuNwKKAZDhh+AzeVn9NhxuHylHDBiANFoGBC55JKr+OzLZSxfW0OBNwfFELjjjtuoqWnk/HNPx+VRCQXTvPHyXG648UqOPHYqc994jXc++YxLrrqKk049CYczy0fvf06fQUNZtnghXr+PdDJGJh7lnXffZeSog+hWWcq4iePpaOvA6XBzzjnnM/33V5DWdS6/8Er6Vg7G43GgaQqVFdXY3X6OOvJIvlu6hMOPOIhMOoGgCejxNF9/vYY358yiT79uePNyMGQnQlqgo309Obk9MAwDq+am/8DBnDP1DDwBN65cL4ZkIR7vZP8DBiJLGURLN5Z8+RWb6xo58fizOevcc5h80jgWzv+STxa8yzm/PYPOjnqsTjdNjY2cPOlkhgweQk5hLsnOOvRsBmegP4YEVpsfq9VJKNJCbU0NPavLGTZ0CIKhomoKmjNAS6gFzWIhnEhy8x/vxO+w0NTYRDKq8/mCL3j4kSep6tUPU5YQZYXfTb+Ak06bxh233UH/nt3IL+rP448/QSIWo7DQidViJb+gCNlh4bbb78HjCjBkUD88Xhe5+blMPfNsTMXKG6+9wuFH7E8kGqK6uh81NWs4duJEckoK6QwlUO0ahmASD3fgcTlI6lmSSRmHywRd4olHnsJIw8CBVaQzGf72yFMMGnIgVrsDhzsXxaqiShasVpm2lmYe/sujHDr6ICwOCTOrYbOkiEdSSBYHGUnHjCdpqm+jdsNqTp50BLXrGynt0ZuqPtU47R6mTJnG8RMnMKBfNQeMGs6cV17kwosu4cprr+eQ0SNwef0M6NOPue/MYexRh2FxWgnk5+CzOXD6AqRScfz5HobuN4wcj5v+PbvhtNsJFJRhsVtYt+pLqvoMJNTZzrIl35GXY6dPrwocTgc2zYUs2nA5HTjsMi2tm6mtq6e8vAK7y4nscKFk4nz12cf07NMbXZIRhCzwc/61swixbc/9O7G38teWNoYpYPLj5yee1B8Yr4Dwo4iz5bO7CDbRpOu0+TMNeJfOnT2k/z8F/3seVyH7gzImY+hg0uWV3Otk57306mx/7X8MzJ96GRGMrXP/JUWD9jV2xVj2xHq2RXHdk/u/J17fX4pdMcd9rbj+2giAX+Lh3tee6e373VXfezPfnf2I7gxbvLWSIG61giqKgikKCIaOqadIZRXMRBhJkhBtbtCTWCwyqXQSIa0TjcboCIZwu71k4jKLP76LIUNHkFd8JIZL20p7JpLAMHSCne2sXr0Sr6McX6EXl1Plqy8W8NwTLzH9nPO58LILmTXr7/gCdpoaW/B587C53AhSmki0jTWr6xgyZEgX/8rqhKNxwsFObrnxJq6++mrCsSj+vAIee/AR1q9dx6WXXcGkyZN58uln0VNJBNGgqrIXkiIQiUTYsGED5eXl2GzgdhaS1eOsXruUsu590CSTZcsWM2DEkUQ72/BoIutXr8AUbfTqXcmHH77PYb8ZTzZjYqazdHY2IUomdqeHjKmAZEXV41gcTto6OrDZbGiKSsOmOj6Z/zGTJ59GJBKirq6WXgP7YhgGNTU1VFVVEeloZvl3qygqKkEUReweBxICofYgDouV6264idOnTaff0GG0NtXS1tZKWXkJpmnS0RbB6/XT3FJPJJjkrjvvp6V1M7ffcQPVvQbw9px3GT50AAvnv8uTTz9HWY+eBHJyGTPmMDY31mOz2Tj88MPpCMWZNOkERo46kGPHjmHx0iVcddMfEWQBRZTICCZmJovddFO/6h8sWfQ2Y6dei93m/mm1S3HvDIW7wk55xDaHBUncZYTEzry8uxsnk8ry1TsP4vN7EJ3FVFQOQkCltn49Ll8Am+pAFHTSyQypbAxBEIhGo+Tm5mIYadpaUihalkwyhMeVR3sojC/HjVV10Blqw6I5kBwOFMPAolqJJCAe78SupYnHdaIpkXyPj472CCNHjeCNOS9w0cVX8drrbxKKBrE63RgpHcmIM2/+5wQCfnr1qqa+YRPLVy5n0ICh5OUW8/qcNzntpEm0hlsoLMujafNaWjcaFJV4kGwya5evYW19K2PHjObZp57lxBPGkuPvhuyUicaTWG1O0rEQmXAr/vxiFi78ghEjhiNpNj77ZAGaotK3Tx90I0koHOHPD/yNGeeeT67fhqZpLPtmLQ63SrfuZUiSSCQaQtd1QqEgL77wCpdeegnhUDuCYJKTn0Nne5oH73mAy648l421UVLxIFVVFdTWbiSnMJ9INIrb6yESj+G3OWnvaMbnd7JoUQsWq0J+npe169YwYHBP2tua0WMOamq/5YijJtDaUYc3J5dE+0bSukyf/qPYVN9CtG4+HbEMnvIBXfvKorD22zX07dWNm267kylTJ1FdXU00kuKBvz7KpTN/h2DESCoqekpHMGVEBG694SpuuukW2ts6GHP08cx57e9odhG3v5hsEl6a9QInnjCBpx57lLNmXMw/3n+HQMDH4EH9SCQSzJkzh3HjxrG+dh3nzbiYSROP55RTJ+Px+fjjn27gzLPOxppux9trCIuXLGVQt0Lef/d9jjhuPwpK+2MmkoRCQRoaGgARf6AbVqdKPJYhkGMSC5pIkkKws4XCwkIUVaO+oZWvvvmWA4dV4wuUYigiipklnUkiSRLxWBLNItHa2sysF95l/IQDySatiLKF0u7FfDrvA2TJQW5uHiUlhQwbehCjRh7E9Tdeg0UTGT16NKlUhptuuoHfnHA8NauWE3DnUN/QRGl1ANUeoGVTC8899gCnTplCefdurF63mh6l/Vi46GOC7U3sN2IsCxd8ys0338T7H7xDZ6iNxUu+I9zZhmYFCT/HTTyGOa++xmtvzOHRRx/l8ssv5+STT+ad+Z9x3owzsEgGipYAU8Nq8bBixQoKfBpCnpNEKMKA0l6kXC50SUAwpJ1Gi+xMcd0Vv/pX4Ncorj85voMp/CJ5UjC26h2mseeK6/95XP8DsGuPq0GXbUPsSh4XduxR2xF2VLTol1iF/hVe2L3xUO2Iri3Y8v5svU78aft/txVn2/lsz2B25InbkQC2K8/ET7xxOxl/25yDfbUee+vR3lXb3Xle9qa/XeW1br/u+1JZ3hm2p2NPnvMtdOwLRr61WIIgIIhdfw2zK4xYN01MFCTVQLRYEDQVxCyCKKAbFkxkdE1GtthxeQJYbU4sFp2yqj5oFjvff/MZjY1tRDraUAUT0WJDsah4fF56VFUQyPXhybUSCQfpWdWPgfsNRbNbOee803HZ3SRTUQL+HOrrG/HmuIjHY9hsDoyUzvyPPqKwqAiP34ckSpx/7kXccdttPP/Csxw9fgKmaCIaBgePPIC8ghwmTJjAH6+7joICH5VV5QiCic3rwOqw4PG7Ua0Kpqlhd2usXLOC7hVVWG02Egmdv/31GQ46cBizZ82isqqaW++8i6KyYiRVpUdlLyKxIOFwGD2TprmlHn9+IemMiCpKfP7pB5SWlLJy9Wpy8/JI6zICEi6HHSGrI6syL700i9WrVzNo2BA0TcPr9SIIAnbViaZJZDI6k06YwtkzziIRD7Hsm+X85eHHsdoc9O/XByOdwmpzU15e8kOBkwSd7RF6dOuBzaoiGAIW1cLkk07ENNLIikjA5WXiiSfQs9cARo48AJtVY9lXy/nok49YvWotvXsO4JqrbwBJxB/wcOFF51FU3h1fnpOSkgJEQcU0BEQRpFSS7z55jg8+/AenX3ADsi0Hw8x2eUF/eKb29l3Yk3oGP7t+23a7SbbaE/60LV/eykdVlVx3D+o3r6ZXz5HEMgki0XaioTZy86rImo2okp9QeBMuVw6ypGDRrLS3BwlGwni9pehCgraWdgK5hfj8+WRNA5fTgqrKZNIC0UgciyIT6uxA0TQSiQg16zaQn1+AqMpYNdD1BKqqcMjBB7BuXT19+vanqXkT2USCZV9/zjGTTuX+e+8EYPr03/LsMy9y5mnTqO7flyVLv8Jh1Vhfu4EhgwchIWJxugn4PECI77/dTL/+JZSUlmG1aBx00GgcDpnr/3gLg4YPwm8VaGpuxjQNBEwsVhvFJbls3FiHYrVSVFxMSXExr776KgP7dUMQHRw5/hisTgvxSDumKfDRvC/Yb9SBaBYbptjljTezSfK8DkaOGsOq774lp6g7Tk8eqVAUp7+A1atXUl7egwsvvBUDHd2UWbu+Do/Hit8fQBQ1JNlChgxuf4BgKEWvSj+IJgVF+ZRXFpNOJ5j1wmz2GzqKeLKNz7/8msEjRtDW1EhufhnJTJILZ57L+rWr6V41BF31Y/NaybPamfm7Czlx8mlkZZmDDzoUq0PD6tBQLQpvzXmLgw4di2KzIllcLF74KVbZgsOdyyFjhxOMtvD96hVMnDCVG6+5lLGHjiBtqKg2B7KRJOD1s2FTCwP6VlBZUUZry2b8/kLsTpWCgjxyA0V4vAFGjx7JMeOPIJUK0dxUz37DhjHjt+cx7dxzEJJhzGQIT8DHkBHDcDq9ZFNQW7ORooJK3nrzA4YOHUKos5X2unq++mIZFrtIebd8DANycvykUskumUk0yCsM4PM7eP3V1+lZWUZ7RzvvvvMhAwcMRDfjWGwSmBoHjBhNTp4NUbTg87iQhBQFxd0pLi1i0eKvSKWzTP/tVJ577lkmnziRcCTG9HPO4Lzzp+P357L/8FFMmTyZY48/jsPHH43bYnLtNTfzwXvzEUWDY447gd/NvIxx4yby4Ucf4tJkBgwaSqIzy9JlX3PUMWPJmhK6KdCvqgJVk+k7ZAhLl35PsCNINN5KfnE3rvzDH7j3nnu57KJLuODcaVgtMlOmTOE3EyYS8OfRGWwHI4KnJEBbQ4ie5RU8+Oe76NO/H4rT91PD2A5ktn+3LLkj7EyG2Z3sIAg/LaK0p5Eyu5NPt8jf29bn2Zn8u11H/1WK6/9gcaYtoa9SF4MRflpeem8Vu23P7Y2QvG37PSly80ux1zRvCQ3eGj9mgGAiil1K6/b5AXuqrO2qkMjWoX+FJ29Xx7Znjnt6b3elrG7//dcqrdsrWzvKYdgdXdv2szua9/TcL2m7I8PMP0Nh3dsfPuEH5r1t21+r2O/0+q33EjDFH8KCfgi3R/zBgGYimF3tZEUiGAoi6GFs/h7YLAWo6RTrv/uAubPuQ29pY+OqxciyDYs3F0PLIskqkiGSjHZtZyMpUFJegOZyoCg6LnceG9bVIyBiKCaCmMSi2cjx5DFg2FAsDiciIvUb6znltFOoaaynsncf1ixfR2FegFQ6isXj5OZbb+XYccdy3PiJVA6owhuws/DjpXz+xWKqevQgHmoj1tHM888+yciRo8hkZUxTxWZVSSTi3HjLDUw5ZQbDR/RFssGYIydSXdkLt8eDoiq4HS5yfLlkkcgvrECVTFoaO/8fe28dZld19n9/tp19XOaccdfYZGLEnQQSIAQLBCuuD9AUKUUKBdqixVqguBcPTikQpDgpCUSJZ5Jxnzl+zrbfHyEQholMCH3et0+/17WvObOX7rXXuveta6HavOTnluHJ8ODyZ+GyOXjxyRe56tqr2W/MKNrrthJOwZzpUxlQPRQhmWLp0tVkZBciaCmaW2rJzMokIyuDidPGkl+YiyzbKSsuZ97xRzJ+4nhaO9ro6gkjC2mcdpXVK1ZRXlrBiy+9QCjgI97Tg03VeXnh3xk9ahTZOU48ThcPPvgAZUXlrPxmNeecdz6pdJqP3nmLmQcdwooVKzjggBmoqozqgvN/eQYZgSAdkU5qhlRjpjVSsRSyoKEl4jxy9dl8tHUDV1x7J0hZWGg/UtHvljHZ03m5Yx7rB5R+m+fZ9utb7Mn66s99mymjyDE2rl9HwGfDMDXs9gCiTSUW7SEeEbAwkW0KXR2dWJaOIBgEAl70lITLqaCIKi7JRHH5SCEh6jqSIJMyHDz9t2cZOngMNreAKacQZQ+t9WsYWD4JzWpCNUtobF6NpOZRv7mdwsoBvPvBJxw1/2iWrVzG229+wYknnc6XX37InGPm4PG5GTJwGM+89BLHzT8Rn1fGMmJUVpRRNTCfdDqFYRi0d4Q5/LCjOPbY03npxZcYO2EkXo+T9tYuYpFGPP4sJk6bgkMyad64Fk+GB28gA0lx8uqLr1JeOYi4HsbuyubdRa9TWVlMfsUA4mGNQEBF1FPIuompuFFVmSGDi7A7vZimTrinC4/HhSD5SJkmkpTGm1WBpNjQzTRdyQiGZWNE1WAU02TokELOvegirrjq90ybPYPzTruUt958C7fbjiLIZGTlAyJuWSQuNSOgYpNlajf/C7uzgJycTHKzM/jt5dcwe9ZUQj4/liWwtq6RnJCHWDxObtkQ1i3/kksvupCjDj2M7u5W1q7ewMIXX2funIOxOVuRHAEM3YELO+NmTsU0IBruYuvqFdvOD00niCTCvPX6Pxk+fAJ33fsQkyYOZ9jgCmKdm3jgodfpaI8xemw16UQ7XofIbXffxoTxByAqSepr23AHs3C4fNz/1/uYPn0agUAQSbYTT8UpLR9AKCuPX5x0DKJg0rC5hWQ8TkFpNqrqxKYESCSi+N2lzJ29PxdfdAZOnw23w0NCNBk5bizJKGiCieTw8dG7i/H4/Pg8NixLQLSF0GNNZGRmoLr9RFqSDBsxlJSRwO6yI+sBIpFObKpFU30XDXUbyPBlYEkevvp6PZIpUVe7BqdbZuELr3HV1ZeSEQrgdlh43F5ku4fuRDfNG9v49JPFPProPRTleUkkkxw85yDyi0IMHDycYNDDnTffyYxpVYSyB9FY38jNt/2JKftPo7R8AGVlFfj9KjabQCCUyTPPvsiEcVMZO3oISz5fytQDZ5KK6Bx3/KE889RrDBxSik0Uqavdwoz9xzJ8zCSSaQ2n28Ndf7mf8vwAVYNH0tBYh89rEfSX4HOH0ND3ZrPyPcK+3udkO/oSXPtsozff/J078PfkdE8U6ttdgbdf24j09/d+0JfewbLf8urfNb5DuvAfJLRC/wTX/6wn/y/+rdjZQc//xQ+xfZz+ewD2T0d/5tz28e7r+ndA0zT8fj92dwGmkSbS8xWLl9xL89ZFHHn4dOyhZpxBL+FEDzZZQtFsWIAhQiAnCx0T1esloQtgSFhpG4cePIdEMsL8E45FQaZhaxui5EBwq6QxELBY+unnBFwuUtEIpTm5VBYVMXpMDatXr8Zh95KKW9x15924vCrxdCeXXnApW9fU8vjD9zB61DA++ucHdHR0kJWTzaWXX8aKFSu48fo/4HE70HUdVVV56KGH2LxpA02N7ehJGVODt998F0sTSCc0XnhuITffeDNba7cQjYZ58/V3eO6Z57nmmitY9O4rtDZsxmuDjz94g9r69dx+200U5mZTWlVGKMNHQtNwul0IagJ/ELDaSBqdFBVWIIkOEnGDQQOH0dMTIR6PY5g6a1evIuDzMHTwYEqLC8kMFXDbrXfj9WQiCg5WL11LKi3wx1vuxBHI5Ibbb6WwqpwtLR18s2YrV/72D7z3wcdMmjCRJV9/xYiRI/ndH66jvb2dO+64g6qqKg499FDOPusCsjLz0TWBJR98jmDIiLKdjVvWk+ju4qNXn6R8wnRuuukBLOyYgo4lJv8tc64/2Ff0W7MlMOUMskO5LPl8IQF/FpYJAX8Itwo+p4xsaejxKE6XC92w+OCfn9Dc0oHP7yQa60LT4zi8AVRVRZWgo6ODeDyOJIkcedTh3HTDr1A0gfa6JPHuZky5gAHVpbz+zGIa694GRNDTXHb5JXg8Ejf98UqSXbUMKHDx5JMPUlu7hoceuhvRcIAuU1yUz6uvPsfjf7ufeDKBP5DF5Vdch5524HFnoKoqubnZvLPoLVxuJy8sfA5RUDFNkddefYO6LZ00NXbQ2FjP1q21eDJLsHuCCJZOT/MW5h42C1mWyc0uQUQi4M4mGtbwuLwsX7mKtG7wxFNPE40lcNjtNDY0Y3d4aG9vRdfTZGWH2LhxA4rN/Db+10JVRNBT1K7+ho4NW/GIJs+/8CyN3REKBw3j/TffYPVXS6kqLMTl1Tj51HmEQiFeeP4VWuvXk0h009LZxYXnPE4srKDrFmWFE3H53OQU5mHzO3nk6SdJW2kUB3R21GGLtRNp2YoVa2fR84+QmZfJw4/fh9MhYOgib775BtffeDmtHRv5/W8ewC17McwOotJWHIqMhMBnn35B2ZBqho4YRs3QcvIzVebNO4p//vN9brzxenIK81m5rpZQcTnzTjiG+k0r8DhdSI4AgbwyNq2NEY50UlJUzchRw7GpMopN4vTTTyWe6EYQNTQ9hi+YTVITiadMBMWJzRVg0LDhjJs6HcnpI5Zspiu8GZMoutrD1TdchivoIZLUUVWFYDCEoijceNMfcdtsSHqUKROrueTi31C7uQEEE9VuoscUvLYMPJIT02agejyozgA9EYjFI5jmtj0F6uu3UjN0FBddeAU33nArgweVctWVl3LYYYdRXVPD72/8A+UDK0AReO+LT4joKW6/9Tb8dhe/vu40Lr32PHw5PmJmCldGAeGuOG+++CbrViwlHetm0fsf4sksIb/Ig2KzePjhh/E7RW76/e9Yt3wtZ/7iXD784F+kkga/OOk4YvF2XnnpZcaOL+ez99+lvLycwsJCZFlEkgRqJk2hIRJnzMwDaGxsxDQMlvzrSy6++GKKK/bDslwYlptBw6cRTcRZu3oFpqH9dEL0X/wX/cR/iMV1Gyxru9bje5/x3bkd9hd7ogXalVWt97WrmNrducnuOXqX+eEut/2x/vXu15725+d0GdnZOO8qxmJP6tkT9GV539Ha3tfv3ZXfMa2vfvU17r3b2tu+7wy9PQn2Jfo7j/ZF+zuuv92tr71t87v1LacQTBWnlIlNyGfcIedQPPgICoceRHlFCQndpKWxGSMSxxJFZFlGlCV0y8RAQJZk0u31PPvYI5xw3Bxy84KccdoZxCPdWKZMIBRCViUQwEimeOGpp1ixbDmxaJSV36zCYbdjmholJSU4HE5M3cDpsHP/g/cyacp4vlqynO6uDo475iiOmHcYf/zjdeQV5IIoISkqObnZZGdl4ve52FS7hcbGRsrKynjtpRfJzcnmtNNO5+ij57Ny2QpWrFjO0Opquts66emJMHbMfsRjETKDIaKRGG+8/hrzjp6L2+6jJxqlOD+XkeMnosoKWzZtZtOWreTn55DWTN5e9BbBjGIKckuQBAVJDZAIh5EVBVGW0fRtm4O0trbgcbno7u4gEYvzxeefEw6HefutD9A1g0EDB9PZ2U1ZSRldPWGOO/EXOJ1O6usbWLhwITNnHMCbb7xNUXER8USChc89x8ixoznvl+ezePEXxGNJSktLue2229i8eTMZoRCSJLB8+SrGjhiK6vbQ2t5EaV6Ad15ZiCKazDzhDGTBjSDaMEUTSzAQkHY7Z/qaQ7tL+4EF4UeZdl13fy2ufUEXUwiWk0h3M+nuLfhzBhKJ9+DzB2lqWI/XGyAWTeB0OvBk+AGRsrIBCKINxWbhdDlIJhPITj+SAHo6QTKVxuWykdJNIuFuJk+oIRxO8PRTLzF5yjhWr2vimScfwUwoZOYY+P0F2FUnRx97GsEOygAAIABJREFUNJIQxuty8forr6DIIjl5ZUybNpFNm1ajKD4kRBacfz4ZoQC/OOl4QCQWS3LEkYehKi5aWptwOO1YgoXItvNRJ06YSE5uDmvWrGLYsBpqN9YzdEQ1Hp+LztZODpx9FGf/z7lIskBXexuGaeDxBjEsA1VVaWts4ZabbmHazEkk4hqhkJ/Bg4ZgU52IooSBhepwbbOyitu8odxuJ8lkCofDgaoohLs6SMdjdLV3ko4ncTkdZBXkkV1QRHNbO3qim8FDajjkkNk4nQIOpx23K4Pbb7sb1WYwuGYo7yz6J4fNPYrcfDs9kXp8Xi+WadDa1owkyTg9brJzQui6hiSYTJh+NKecfyGZReUoDh9ZuZk47DbWrVnFpx9/zbx5R1JcVoDb46axYR1F+Xk899TrZGVV09Vah93uxrBMHG4HqqqgCCZ6Osnq1ZspKd22aZCFybCaMXj8Hu788z0cd8xR9EST3Hzrncw69BBeXvg3jj72AEQRTE1AUhXS6RQvL1zIwEGD0DQdh8NJc2s799xzL12dYaqqKghHI7jsMrqZRpAk3Go26ZTAB+8t5sab76J64HBCgWLOPvdK5hw8DpvDj2XBYYceRLi7jXgyxqa133Dw3CPIz8shEo3h8vlRhAT1DRswjS4yC8tJJhKIggCaSTTSQ11dA4pNobAwB8uQiEWT3HLbHRx37EFUDx5AaUUlhiRiGgaGmSQWizFk6GC0tMGYUWNZtnQJgYwcLN1F7aZW3nz9AwZV1/D0kw/z1utvMf/oY1j48lPopkrlwHJaWhupHjiYZFqjtnYjdfVNVFYNYvyEcVQNGsgnn3zMoEEDCEe6GTR4GAVFOTx030NMnro/CCmi0TR5BSHKs13o0XY6GtcwpGYCqk3lkw8/YmBFJavXbuawQ+byP+ecg25aJJNR6jaup7SsAqRd07X+fjt/ztMT9gTfyQ79sOvtysOrX93/kcW1Nw+7o8X1/3tu2D8F/wddhb/Fd6Z9s8+P+r5Ef90rd1ZmVy6XvQ8m3vtn2bng+lMEkX3tjrq36K/b7d6k9af97ff6erf9dfntK31X86i/z7A3ioef03Xn342fu21BEDCQEASLtGxgz89AlD0YcgTFdJGWnHRHe6gozuaL995GVbxsXLcel91BLBrF7fJgE9M8+qeLqSpUsck9SGgkelKE450Ul5bh9jkxY0k0PU3K1BgzYSyjRu9HXkkhFQOr8GcFcUgOEHRkm4HXZePsc87k15f/Fpc3wOjx1UydNgOPL8Q5Z/wCQbBIpNJolkkknsTQNCTBomHrFqoGDyUrK4tUKkV+tgOv18m8o+fj97rIyc6gorKIxsZa3nj5HQ6aPZtNmzdQXT0IQwtjk1UsQ+SzTz5nxZo2nnjmRV5+7TUmTtufR+97mPpNjTz29EIK8nxUDayhZsRQHB6VN994AZui4QllIFkaaS1BV087DpcNy5Rwu5y0tzVhtymkUqltZ7P6A3y5ZAmHHzGXt99+k1BmBiPGjMBuk9m6fh1XXPY7crJCxCMR3HYvB8yeSSwRpqOrmSsv/S2Lv17Clddczbyj56HKdjo6Ohg0aBAej4cjj5lDIOihoqKMuNaOaVNIdDXy1aIXyS/KYdScE7Db/VhsE1gtQcDEjkj/rZv9pVf9EVz3tt3esGl2NCWOlkrit5eQkeehqWUrqt2Bw+MG0YnLs+1YlJ5oF26vj3jcQBBs2CSZ+romMgJZxAwRtDguVUFWHWjpOKrTg8tpx+4MYndLTJwxFs0M8Nj9N3Hz9ffzxqKH+OcHrdx++/XUrl/LkGHDENOdDB02hvc/+4aLr76Zx/76EFUVFTgdCm6fk4a6WgKeEENrRnPWuecyZ86R5OZnItmS2BSLjo4O/P4MIvEIfq+Pk086iUMOPgRFtfAHVDKCXlwON42t9WTnFLJiyWYGlORTvd9INAQsyYZHdRNLJNCsKLJikBPKYu6cg0iaPbjcmdjsEoqs0t0Voamxidz8InRBACtFPB5Dki1S6SSi4EHXEwgkcQkSoiwhe5zkDqjELnlxhgKIQppwSwOugAOXz4/d78Qp+bnqt9eQkRFiv1FjGTF2Eg6nD1nTyCywoxDETLuRZYNwcyvR7jYikRgOmx1UD6oo0d7WyvRxkykvLyPc2UJRphvDFkAwQbQgMzOPpV8tpnLAYD78YBk5JdVUFuXx1ef/ZNK4UQQCXtatq+Wv995PSU6IYCAD1RWgvrWb5sZGhtYMIZGO0761jkceeBbVaePMk0/GlZ1FW3uEgtwc8oIeJk+ZSnZwOJYlIYoahmgSjYWxdI3nn3udaCRBR3s3mV6VzpY21q1ayeW/XsCZZ5xOKtpM49ZNBIIhOjrasDsFfL4A06ZMxu8QuPH63/Kby36Fqgp0dKd56x9vM2hAKYZsINs9lJZUkzZbsMl2Hrj/KQYMGcE/3vqEESPG8sorrzB82H5s/GYF8a4WMjwyNqeHG2+4jVmzZ+D1OUgmY5QUlzBv/nzystRtaySURVQz+fL9D8gKeFm/+hvQdZYs/orS8koy8jIJut08cN99TJk0CqfD4oD9Z3PvA3/iyPnzCGYNYP9Z4xE0E8VK4/WXcNLxJ3HU0UfiyypAdXm55vpr0cUkkyfuR1FRIcu+XkVGIJeuZJpHHv8HF5x3MmefdR5zD5/F6FETWfTu3xk1ZgrZ+SWEEwlk0c6W2lq++PxzEtEYE8aPYnBxNp99/C5Dh1fj9rjQo2E8gRCyw7HPaMnPUX5v2ttXguu2tH40/l/BdY/wH+K3uEOMmfD9Oad9TabtO872hX0WZ9Qrz+5i7n5gAbbEb+PnpB8c67KrZ9nx6tOiLJggmAii9aMdl39ut0lBEH5w9uyeoL+xk7t6p9v7sB29XeP6GsNduc/tzNLZV57e9ews764s7jteve/viO1t9ZW2q/m6Y9ztrvqzY707G+8+27Z2fu3uOXfMu7t33F/0XlM7roOdbaawY57tv/vq+47rz7IspG+rE5FQTDuipVG/ro7LLz6HP1+5gPZ13/DxPz9m7EGzkW0JSstzcAc8BLOzQFRoaosyomYI6VgXDXVNhDsbUK0N+MxWln60kHUrltIWbiPR04nW0Uq6q41kMo7L5SCVjGJoMUSHhOp10BWPICoOrvrdlThsBnbRwqt6SaZ17C6ZpAWKw45NEdGjPficKrFwil/96jIG14xg7Yrl2GWZ+rpGyoaPp7U9yfIlK2lo7iK/uJB0JMaNv7+Bzp4WNmz8mv1qSuhprOPscy6muxsef/J5pu4/hfseuImyfBftW1tQkhZnn30SRxx7IG+++gKHzj0SQ9Lo7q4j2qMzuHoSRaUjsVkqaSsNpotEug1ZyKChro4vP19CQUEuvqwgf77nCUzBjyfkYd68eZxy8hl8+M/P+OUFF5NKi2TmFfHEwhdZvXEzY4YOpGH9WuobWjjrlNNQbQ6mjJ1CUhYpLCzEZkDt+i0ceuRhWILBAbNmcMFFCxBtCpKskozFkJNJ1n36Lss++YihY6Yy6uBTcbv8YBlYAt8ddyOxdy51u6Ptu1sTfa233nP/p64tS0wgGi4Ey6SrcxkYMjn+HFwuH6IJ8WgH8WgbNglsNhtYMpaQwBA6MDSTvNxsurubkS0NWdbYsmUt0UgPDlcIdI3urnaMSCtdbV3EYwYicS44/yoqi9wcd8RxLLjkZD7/8hN+/6c7sdIpFj7/AQvOu5yvvvgMIdXO/5x3OqeddgYXnH8p0Vg3jz72CgceNgONdl584RkaN67jqouvJJ1w0t2dpLSkhJ5wlFee+QexcIxZBxxNfdNmdMvCpnpZvuI9MopL+fPt97F17QYmHbAfn61YTjLaQ6y9gebaVSCDV5WJR+LYsEjpEdrC7ahKAMmIsvyLtdRv2cr/nH0RspDENDvQ9TRpPY3H50UQbah2N2hRzHgPlqjSHdXo7mkn4BRItdbxxBP3YaTSdLdGWLX8GzC8KKIESYO33/qU8vJKzjrjlwyuycfpMUgm0zz7/ELsqkBCayCQJaJbkLDcXH3d/Xi9WVik+fqTLxC1GE67g3EzxxGNN+Hz2WnrjJHoasPULRzuTFasXsHCF99ElZ3cd//veeWZJ5EUgZLKgTz39D8wJYVYuJ3ZB85iv/GjaO1oI51I4ne6qSgtobGxDpfqp2LgIOYfcyBZGQFSio6iqORlFXH37Xfyr88+oKunm3lHzsDExBIEbrz2ekiKfLN6MwfOnMDYMaO45JJLEKQ0k2dMp7E9zPwjjyGhxWlrT1A1dByazYkkaei6SSArRH6hF39OARddeQnFxYOQXF6IJ5gwIh9VBpfNjipYKIqEhICqOnjppWfpbFzLU088iKTa+WLZJkRVIr+iglBJJbZgASgqMw+YgsvtJi3YcIey8eTkUjKkiM61i9FSGq2dW1BSKSbNOIDHn3qNm268m6L8GqZPmUE6FaF2XR13/+Uuxo+bSDA3n+rRI3nk8ccwNJWnH3sEuxIm4AoSzMtA9Lj45P33uOOOe3j0wSe46bq7yAwGuOcvNzN68AR+ecEC3P587r7nAYR0mIqSIoozbbgUhV/98jQuu+gS9HQXU/Y/BMUe5A9//B1ZwWLq6zpIJnUOmDWTidOnsmnLJhZ9+g1xw4thWFhKiMoRo3j7lVdRDJAtAXEnJKS/tKVPHnYvyu9t3u94KYwfXr2/9d/y1dv2tuhH/5CwTOG7a9eZJRAkLEQsfsx//F/Ff4jF9adbsbbj53CF7BesHS3Fe7dD7M6eYUehZF+4XO5JecuykHbjSrK3de9p2d4CSl/u0b3z/bvnx964qO5pWn+8A/bWcgs/9hCA3Rh8dkezd/zdR90/BbtSQPT2ROg9f3YUGnbcGGpPx84wTILBIAccOJMJ00aiqBLRrnaS3V1YNhdt7Z1kBDOJRiPYZTdGqpk1q15D0iAQDIGpEQ23E8rJRjR6MJNt2GQb9Q11FFdWoYsSzS0tOGx2At4Q3R1hYuFmFMFEBixEPF4Hqt1GOq2jKCa6JYAh4vK5sUyLVCpFRjD47bElecw9bC7RaA/5hdl0NLdy9a8vZf9ZU0kn4/T0xFi9YhVZ2UFamzqorh7KUccfTm5BLi0dbXiCAfy+TAYOGMiy5Us59NBZXPzrCxENP80t63lr0UuMHDaZv9x5H7MOGUNcMwjHdUKhbLo6w9/GJYPH46a5vpXr/ngTxx0zH8nUCWb7cdkdJMIRTFFmyuTprF27BodTRVUkhg8fRklJEatWr2DKhAmccOxxHD7nCA6cO4usDC8JLc0TzzzNXff8ma9Xr6C5qZGerkZmzZrFn+/+KzNnzeTjzz/hqOPm4QrISHKc5qZ6Vn76AS/89U5y3Uk0w+KgUy9EyClHNjQ0TdvGWOxjMrEnbr17s976XLf9WWuCBUh0t7WSiHVjyTKGniClpdDTNlTVjtfrJp7sYdOGdWQFg2xavxZFEujpacemSrhcboxElGQiitMXwhAd2GxpGhoayczNRZSdGKKAw25DC/egGVF6RA833nwLVyw4h0i8DY/bS2YoRE5eISNGj0Q3I2Rm+/EGcykpr+KEk0+hOM/P+m82kpvjxWlz0doWJiOYQU+4B4ddAXS8Thd1dc1UDSxDshn84drrOf+XJzNv1mGM2W80bo+HgKeUQ+ccxqW//i1DBtZwxOEHIhoWq75eTUXxAF58/nXy84qI9sRxehS6e6Lk5RVQV99Ee0sbt9/2Fw4+ZCbDakaSV5CLqmYhqxqSKGOZFoIgYpoWqmhDkuxEExp+j4qiSJiGjGW4KSwczpKv3qUgv5SXFn6E0ynQ0bWBcKfAkw88xBnnzOGiBRex4NyLGDC0FEkSSIZ7KC4uRxZtmIZBPBHGbleYOnUCOblZmCbYFR92t4KS4aOrrYNAIIO2ligLzruC40+aBwLouk5GyMtpZ5yEbLM4cNYMjjzyCFpaWygtruKVl99i0vRx3HvPrRxz/DHYbQHuvPN2Jk0ehyQLnHLC2UyfsT+RHpPuzkbyC4rxejPREgKReCc3/OF67rzjFmLJME63jzkHH0QoOwNFVvjXv5YyY/+DaGrooGb4IPxBDwfNOYCCgirsdjeVFeUMG1FFVl4mnZ2duFwuZEnAbffidHpZ/OVXmFYTCgXomoDLAw53Ni6PRVckgss9mHC4iczMEPF4Erc7QDye4PgT5hPM9HPMkYejKAL7T5uEZYi4nR4wBTAFwrEWAl4v/gwfmmlgJqNEI/WIhsWm9W+wfHWEsVP2R7Si2O0uykoLOGDWVOq21HPRhb9GEN2MGT0Nt2rx2edfIAnwpxtu5sSTj8fQNaprRhGJpkilDdyeAHanl88/XUxFZSVpI0bNhCoyAllkBkpQ3TKFgWKqqnOYe9QcPvpwJYW5MiWlZcSMJEOHj2DKxElEI3E2bKrjkb/exfU33ogh2Fn8+ee43HZqhlWzZs16LNMgGMxiwoSx2B0KXy39ko72RgYNqqC2voXM7CwQhB8ZDP838PN5AvamkTum7FyQ7N2EwA/DA3+Q3msAzV78vPBdGWGff1/+t/F/0FX4ewazN8O+O+vqzv7+XNhdjKzA90yE2MsVYGcxr31de/rce4O9EXp7C8194efaRa6vvuxt+u7K7k67uDvBZm/GdfvfvoTV3Vmi+3qX/dFW7tbis9eJP0zeE51tf3YM7p23t9V5TwR/m81Gd3c3qqr+qKwkST9619+Pt4wlCpiSSFLNxBkoJLdiCKGCMvL9Tkgnaahdg13QWL34JT5Y+Aw2MvCVjmDQ6Blogp1ARi4rVn6Dw4pjmBq6JhMqGkhME4l2d1FUXIIiWqD1kOG1kdCSeDxeNM3C43WjaXF0PU08lqCjox2PPwNJNLFEmbRuIosiHR3tqHaZZCKFZRm43A4cHg+yzc5h847GIUq4vR7y8zOJd7XgDahk5hYgyzrhrjCBQC75+VWEowlam9soKMziuOOPIBLtRBCdiIg8+uj9nHHmOTQ21XHxJQvQdZ3Fn35JaUkp6DE6u+KUlpayevVKMrNC+Bxeph88GT0u8dZLt9G4pRFdt8gpLcMyJSRZwOt14XS6ScaSvP32ImbPPpjZsw7BZlMJZHiYMm0cYyaNweH1sLWxgct+czG5xfmUDihn8JBBVA6pQpadTJk4Hpc9TWVOJqmUgZCM8u7Lz2I1NbC1eQsX3XgtwSEzKRw8AslK4jCTWKLyvaKuP7LfbmjqzmLpf1S+11FnP2ykf/3ZU1iCiWhJdHd0UTVkJA3NjSQiEULBTDTdxG5XsSyBlpY2SkoraWlrIDsnD78/C6fTgWkaaHoSu+xEcbhR7U4UQ8fuVHB6gghKgAfuvIUxY8egOp1EwjEc3iBaOsUJ8+chKTItTS10trSQkZ2FKxggM9PPq6+8gZZQCGQ7KS4uJSsrE0NPc8klV3DiSccydcqhbFy3gaOOPYZgZoCagVUIkkHdpi3MPXw+C36zgJaWRs48+Vyu+e3FXPG737LwxdcZNXIyEo0kjQ6OOf4wnIrBiSefTXd3hKlTZhDuidPU0UXN2JEsW7acaKSb3NwCTFPC7vAQD8eIRlOMHluDgEgwK0g0EuHXF17K5GnTEEUZWbaRSKSwKwaW4sCu2LCMGFu3bkGUJJJJgxtvvZu//uXPnHb6qTj8Tv5yy194+m+PcdGCi6genE3JkHLq6uKopJg8fRJuj5NMfwjLNLAMA8EUaW5o44ADD+PMM0/FZlM48YSTiXQbDKupZEvtFlSbE5fTiaEblJWU4fbZURQZRVGwq5lIsg2QsauZRJKd2O1OYokEkmLh9rgZOWIQd939KAX5RRw4ayput5PXX32Pww+dhWmFeeTBv9HY0IIuiNx2+5+YNW0SpqVz4IHTsNkVSiuqiIQNMnx+RJvMps2rGTCwjEDQTl6+H0lWcbrcSHYHGgJGOolLVXAHAiQTKQrLK0kldO67/a8UlRYiySJ5hTlkBkMsWbyW8y84i29Wb2DyhOGoko1A0M+xvziT6VMm4HQ4t53fLYBhpfB4PcRjBjY7tLa3kpWdg01OIgppLCtBV1cTTo8bPaXz/POvMHrsJFTZRjJhoqfD5OfmMmbyEUiqRWdLG4q87YAqp8tLbq6HadMnM2DQQJ5d+DBzDp/HsJFD8Hh8jB45ns8++ZCyqiKSKYv77r2PocNq8GUE6OjqJCfbjygp3HX33Zz7y3NxiBYP3nUrsw+dxV1/uZORY0fj9/ooK8zHboNQZi4uj4c0ArIs47C7uOiiKxlSPYRkQqO9vYtBg8oYWjOIVatWkU4KPP3040iyxX6jR7Bo0XtMGjcWj8uF3SljCnaCodC2fW/3EevWl9fbvuIL+6PI73W3V54dafDOeajeVVm9Hm17+ra6evH8ver7r+D6bd7/JMH1R3f7ISDsiTDzUxeOruvfMTU7r2vnE37HvvxU/FzC4c7GqT8WwP9Vi/e/of2fQ3Dd1f2f8133dmH+Udu7rGA39fcjb+9+7Wna7ubqzvKk02k0TcPn82EYxo8UCDtabX80Lpa4Le5RMHGmLBTLQDE1JMkgoQRwBnPIKqrEn1OMx1tAfkEh4w+aSdGgaaj+HDJzC9la10JZXj6CFscZzGPNhlYGDJ+AaSlkOu3UNjUSi3RQV7sSSUrgCuSh6ZBIavh9XuLxCH6/H9MQKCwoprauHsOMg+xElkRsqoplWoCBLKl4vV7a21twe0LogkhPOs0bz75CMCuI3W5SVpRNW1cLdm8GgpnE40zy5eJPKSzJI55s4/NPVjBhwmg2bVrLgIFVeN1FzJo9iWf+9jwNDZ3MmTuFnmgjlu7lw0WLyMvPpau9lqXLN/LRRx8RCPgoKS3m9VdeoWxwIbLpoCQ7jhYTGVizH+8tXkxxXjE2VaGubisfvP8hmCIBf4irr7oOELn9rnu44+4/4QupuNw+VIeLgYMH4bKrCDYFSxZRJJmkKJCM6dx1681EOzdTt+YtBlaXcuN1l1CeZWPamVdQM/EgUqYXlxBHtww0yUVScqBYO4RF7OM5u0fz2mLneX8mwRXBRDIlfL4MTEEkNycHK51CN8CSNDo7O5FlB8GMXJKmgM1pA1GhqyeFaAqodpVYrAdR9hBNp9GTcVq3bASbHZsjQDQp8uHfn2LAoIEIDhdIDhJJGwtOOpJjjzua+u448w87mnPPOgNJVXAHM7Ask6qyap578u/MOHAYkZ4I8UiMxuYW4nGD2YfM5KulG1n+1VKOOXE+5WVFdDQ34fG6+N1V13DaqeciOGwMqqrgoJlHcOJxR1JUU8m0qbP4n7MW4PfaKCsbwObaZmKdSWYdPp/1GzeRnZtJflEepYMqwS5TXlGKKllIsg2ny0N9QxMLn3uBJx7/GwMHFVNaWo5mpHA4LUbWTGO/8SO47LLLvtuF3qEarN9aR9DvA1NDktnmTWCz0dzejl1wM3hoBX9/71l+eeaV5GQX8Mabz1BW6Se3dBgbN4RpbV7BgMHDcDld6DGLu+79E7NmHYQoqHz6yZdcd93tqA6RZDLGA/c/yNFHnsxvLjyXRX//OyeccgYOu0IqFWHIkAEodgW324MsS8S0bu6+7xYqBxVimAaqakdPGbhcdkpL8wgEMvE47SxYcC2zD5qC12dDke3k5VThcaaxOdNMmzqLJx57AbvbzoILz8LnEEgbGoal4XK7icaS3Hv3E/R0dmJ3ebjs19dzztkX0NnZgz/gR7cMonGDa6+9iZHjhpCOx9BTady+LGyKioaE1+mjMr+cQI4XSzBo62zBY88lEu3h/F+ewkfvr2HO7KGYSSemlOLo+UewfOlq8vKzsSxQnBKIJqAgCh7aOxsIZuWhCwI2y0FjQzsOuw/V5gEZXKqHEcPHIcgqr7/5D0bWTMfmiBFpNXFl5JDQOvCpWaS1HlSHl9VramltiPL31z/khhtv5/obbiBhmbgDTmRRQrW7KczNR7LrCILEEUcdTiIRI56KYwomqmpQX9/G3LnzkGUPbimOkG6mYsBQ5h57CK+8/CFmysApR/FnF7F+7UauufpKho4ejcfh5MF7H2JzbQPXXX8TiXgSGwayKqLYZGRZJhrRGDiwjMlTJvDRRx8zYMAAmuqaKC4uYfyEcZxxzgXIioKsyPtMcN3R+2lHmrQvPN72peD6Hawf0uhdCa4/HqQd1fL/FVz3BMK+Povx50I6nd5FR39spt8p07hD+nbsygL4c7mGbteg/1zj/4N6rV6aeox96iPf1xjvKm5zdxbX3nXtrs3tH/l9jb76sLv5sGP6/8ba2pt5vrP8fZXZcU3tysK5U4v/LoakPx+9H8TI7kG5nVmH9/Xa7l3fztzSd4adxUD3nneWZUGqB0VR0HUdkQTvv/spY0aNwbTSuPyZdLSHCQR86EaKjo5OHA4HHlWns6UZUwuTTKcwFQ+ujCwsQSYjOIB4tANFUYgnovj9fiLhGC3NzThsKm6nC7vHRSwWo6CggISmU7txA++99Rozpk7B0nQcbhWb6iIRU1izdhnVwwfgsLvRYwkaezooKR/CsiXrGFyeT0dnI95ABrJq51//+hcTxoyjdtMmLr70SoYMGUpLcxsXnXMqumInr6KSd195kVWb1nH55ZfT3tJKZmYmv7/2j7z9j4/4x9sv4c7wk05qNDe00FDXiKIo+HxucvOClJWXognbFAwPP/wwJ/3iF9gdDjRMLLZtNmMJJunuLrZu2sCSxZ8yfOgQ4t3tbFm7mG/Wb+TyW+5D8WaS0qU+z/D+KdgZzdhxje0YV72z8r2xKxq0p/sC9O7HzvJ+l0eHcFcTVjqK3e7EsrmxLAnSSZpaGsjOzsY0TVKpFC6Hi8bGRvwZdixNprOrmYL8EsI9KRxulbQooMXTZHokHL4QbV1J/nTjDcw/8TSaN3UwZmIBKQ1cNhFRsBAdbsIdLUj4mX/8LG6+/jGGjqhizNhJ/PEPN2HorYRyCxlcPYKOpkaeevpFzjr1BLwgFGSGAAAgAElEQVShNF1hgYnj5vDBB+9jUy10wcDrdOBWZZYv/RLVl8HgQdXouolsk+iJJFizejmDS/NIWhYbNncSCmUhpMMYqPgDDrzeDHp6enjqqSc54cT5dHV1EI9bLP1yOaeePJdIWCeuhenp6KSwcjCSIqIoCqapAyY2UUI2oa6lCZtDxe8XaKiNIgppPJ5tRzI99tgjnHraiSRScYLBIMlkko3r1lJYXAQ4OWTOMZx16lSOP/4abv/zxZx7wRV43TYMzeTaq2/giqt/xZZNjSRjPRhGmpKqCiJxi6LcLFK6wfJl31BTU4NNFVi1ahml+cW8/9HHrPhqAy1tm7n6mt+weWMj32zcyPFHz6W1rYVQbj7pRBJNM/B4PKTMJKKhseid95gxey56Kkw0GiMrKwvDEqivb6a0MI9UqgtNUxBFEV3XcTgcGGmJ7p4WLFMilJ9DPB7n3rvv4sILLyQZi7NpYx0PP/wAd955F4lEFCSZf7z1IUuXfsiyz7/i1jtuIqckSCzm45wzTuGKy45j2JiDqFv1Odnl1YSbN1FcVcPqFc2ozhj5eSUkYhHmHno473z8EWgxECTa2nvIys3j/j/fylnnngOSSKK7nbq2doqLyli1dBU1E8ejGEla2xrJzi/gkgv/wNmnnYRL3oontxCXMojPvljEpEkTSCSjrFq5AUV20tbWhtfjx+tz4XRb+DOycbu9bNq4jBef+5BfXXgunV3N2FQB2Z6FKqUQBYnsoiqefeZxpk2ZQHdHB08++XfOOXs+uhZjY20PnZ1tLPviK+xOldP/5xSicR0FA9kmYRpxTjv1XIYOrOHIww8mqUmUFWWRMnRUu5sDDziYQCDEgw/9FUV1cMettzFx7DimTJpMV7STE489lDf+8Q5ZPg/3PfEk51x4CUkTZOl7uqLrOrIs75TO7Ar9pXPbecF94VW4rdL+85R9Kr13EgP73fN9286eeLBt53X+E2NcbTbbHr+w/wiLa+93vSvr6I4f2T0RHHfmitlXW7trd1/Fl/a//Pf92xZUvnth/Ody292VMuF7V8ofC8B7Y1ncWw1dX255O2ujr7Z25aa9O4VKf/FT5tLOFA19vYe+yuwsbZcM8S479MN/d/Xu9sQau/0Z9lSB8CMGfBfrfVfj05e2eHfY2YZQO2tTEAQEyYkpqCA5sGw2iosriPR00FS3DtmdiWp3gWAHwUHAm0G8M8zKZR8Q7Y7Q3PA1DruOR/XRuG4Ffllny+bNZBVUoJugOpzE0ym8qgNJlgkEM4gl4qQ1jbz8/G3CtCwQCAUZOXYsGTnZODxBHnzwYSrLS/G5nFQOLMPl8dEVSWOg4XTYsdtUUmmdP11/PYfPP5xoKonqcOIPBEgmk9gdDurrW/D5Alx44SVkhRzUNTbzwnMvceIvTmH6IVORZYGWhnrKigrpCcepq6tj/xnTiHbFePG5V6mqHMxNN1/H4qWfI6kCk6ZOxu50YkkgSCIjR41CkEQEcduRFJIoohlp5FSCj958GcuMM3PGNJqamthcX09h5RBOPPc3aPYgmmBHkX5oUd8bBdf2d9jX777mwU/9Zuwpdved2xNFmCCA0+Ggu6uHrQ21KKKBJKRJJMNkZubS09ODy+XC5/MRS2t4/CFcXi+aFsUXCJJIaqS0JGnNwOZy43Z7sUyRZFpDUiRG1owgOz+IiIubbryNA2eNxumUsRQRTbOIR7pQ7SKzDjiKUKYfUUly8uknUTlkAEX5QWTVhsvjJdzdjs/h4/EHH6O0NERhYSGnn7sA1RHH6dTR9TgOu41wOE4qBXfdcz89PT2Ypsklv76Qg+bMIRDMQpJEFn/6BavXrGe/ESPJCWWjOp08+eRzPPDAgxwy+1CmT59KR0crZWX5RJIpRo0cTVpP0NbaQygng0AoiKklae+oJeBzEe4K43F66epuIx2PI6kyqupGFGSWL9mCokAwFEKWFdo7mqmsKuWmW+9k5oGzUVQHipgklJnDDdffybJlq/G7A2yt28qWLVEOPGgaAgY93WGqhwwjnooSiSRobGqmrKyYVetWUDWwmoaGNagq2FQDf0DFspJkhrJQ7G6ys0pp6ehmwUUXI9lE/MEA++23HyIiLY0NkIyj2L20tNRhWgkMyYZTVSkvH0AkqWH3uFFVlWQ8RtPWHs449TQOOfQQnC43pq4hiy4a6luIx6Occ9avqKgo45ab70By+PjqXytormtkxNBKvlq2gr899QRX/+4qJJvKpi3ruOqqS7jg/DPZf9okln7xOUF/FpGIiSR20bS1idHDR5NXnI8e7SBmGLhVi3jM4Orf/o6ZM8YTCuTiCngYPmoEPrcTwTQxNJO/PbmQooJypkwaRXd3hIcefpSRo0cgksbjdrDym2+oqKokHmkhM5RJ7aYmHn3oQRw2icKQB1cwmyWL1zJiZDU2xcMLLzzPonf+SXl5KRdffAnnnX8eql0iGPKiqg4iPd1kBX08//TLOFx+srIDhDID/OqXVzJm1FAMXeOb1espKaxixddLGVBZRHaOB5fbgWzzcNvNd1JcWMr0yeOxzASFxYXYnH7e+vtrVFUNJhZp5cRjTyQrGKRm6BBEp421K1fy5ptvMHjgADL8firKylm98iuWLPmUCy+8gFdfe438wgJCPifrNi5h1qEns/CdN6jILKS7rRNXSTaq8P2eJj9FwOoPH7+7evayB3vcn77wXb92oq3/rr5+aez7d4zh/5/wf87iKny7UHbcWRXoUzDdccL3R3jYGVO+4/1dMe57Yo3cl+jL4rpdI4Wwewtlf6yG/X2e/oz77izmuxOE+2vx2l53fwnDjm3tSnDtnefnstT0p+yO5XfFjG8v09vi2p++9MfiukvBdQ8srv1dc3squPbuY+/03u7T/aEv22nYnigIhB2CZUxBQTAEBCuNIidZs3wDjc0bKSsro6G+hea6b0glO8ktqmbczMNxCDKfffwu2XkBoq0ddGz9EmdOgMzs0aQ0k4KyagTFweYVyykqKyGeTuHLCHxrDeodpPMto2KksHSJ1rYm3B4f0UgHRipBU0MLA4ZVU7t6NfmFRSQMAUW2Y2hRWptaycrO5f5772P82LEMHjiI2+/4M1dccSW33HIrhiWRm5XD0q+Xc+mVC8jLySUcjZCdl4tm6FhJC0GwWLZsBUOqq7j8yusZMryG8351PBK2b/u67TsgKfJ378a0LCzTRBVlNm3cyOrP36FxSx3nXHwh61aupieSpKB8EJn5haQxERU7gpHEjkZaVNE0bZeWhD0VXHcVa907709Z6zvrY1/t7GmZXeWVLJOe9k7AxGsz2LJ1PUVVg2lrCePxeEgmk2iahiBa2BQXqVQCm0NGkbyEe2I4nCKKoqJ4PWhJA9GQiOthHKrER29/zMTJ4+hKNvHRm+tJhDdzzEnHookpFGSMhEBrxwZyQyMxpC14fAVoiShNjQ1k52bRHUvh8YWId3eRTCb55J2lHHb0dBzeDDQtTWfzOloam6kePZ4N6zdTWlZFW1snK5dvZvz40bR3tLB17SoqBw/DGwjx1ZdfsOjNdzhzwemIgk5XSzPlg0dy3rmXsN/oEcycNhm/308qlWLLli1kFVdw9pnn8Nzz96DKLuLJBA6Pl2S4BVlx4vF4AOjs6Mbl8eCQFBraWigpHUxL0xbCXToZWRFcjgK0NMiKiKxYhLvimKZJRkYG4WgzluUklYL27mZseiknnTKRy377CBOnlOF129BSOuPHTGXRx2+RiumsXrWS/adP5JQzLuDPdz+K351AT6XpCW/zbnjm6ZcYMLCGofsNIR2Pkk5FME3w+QKIIrRsriVmqMycOZvi3GweffJpPvzwA1544QVefPVlEuEOVq1cyxdLV3L4nGk8/uSz/HLBxVRX1bByzVdIDh3F7sJKtLJyWTMCEnkFAZYt20x2rpd4TOeMU0/g+efe5NAjD+et956hongIrW11xKJJsgsHYRop7LLM9dfczKnnH0/A7eShBx/nsKNPRja7+X/snXd4HcX19z/b7u7tTb3Lstx7xx1MNabYxhB6c4CEEAyElhBIgV8qJBBCCykQIKaHAAGbEgzYYGPANu5NvVnSlXR72933D2EQQpIl2aS+3+e5j8qdnZmdnTl7zvmeMxMOixQX5fL3d9ax5NjppK0ehFgrkqqQTgp0hOvI8A4lGGrB6XHQUllBLBYlr7CA+gNN5OfnQ1rCQCEcTWNzOhBSLaRTcSSrDxMriVAN9XUBGptSjJ9QhGz1Egy0kJXl4rhjFvP0X+8lmTDRlGwqK+qYOn0UwXATmzftYPzYaYQjQTILCtBTBg89dCc2OZ9lZx6HrAifyh0HzQ2V7Nq5n0cee5Fh5SXMnTOdDL8Tq02kqGw0jc1BpFScS79xPWcsPoZ582fgzMzi1mtv5Ue3XsMzz/ydi65cTiycorqyjqqKPRxz8kJWXHgl5513JpkZGk2NASRJoaAwm5yCQuobWrA5fbzz3gaGDVHY9nEVc485jQ3vvc/vHv0DN3//eyxatBBDTQ9K7+qPzOlJ9gxE9x5Ywz3vKdDf+j43XPvedfiQOwt3LSsMfsPTf3f8zzGugvBFqr3rLol9MWdHYmF1ZUC6oifFpevfh/LY99bHgXrfO8uZn2r6nYchH2nvvSAIAwp77o1V/WKfey7b0//745nrDw4VJnsoHJx/A+lPT38fSuntOgeOhBLb05wyDeHTSAYBUZA+tQ4/9Q724UHsrb6Duzl3TkB6/HQ3+Lrnt3xhTD69pj9nmfU0nj05Jw41n/rzTLo+//48y97q6V9h8dPxFBAwQTQ6NxJBwZudTVHZCOyeTHKKSskoLGbstPkMGTEG05BIY5JdWILLl4evYChlI44isH839c37KS0bj92aCeF6tAwvNrcLzWFHlC2dJ5EKIggisqGAIGBiIkogYqIIIulYio/e/TtlQ0oQZCteVwbJSIKMrGwEWUK2SGxcu4WC0iH86Y9/Yv6CBYwaM4GC4nJuuuWHLFl6Nj6PjD8rh+LiYTz48P386PbvoVnc+Ap9OL0uovEoqmbB7rGhOjQKhxRiddk56ZTjmDxlLLJoAbGTVRVEofMnaVJJECUBEGnYvp2t761B1EOUjpnA0CnTaA8kqW8JMnnWHJweD6bYuUmeYHaGGeuChCAIX9ivoCf0x/HV33VsGAaSJB32eh+Mo7anaw/VZ0OwYIgKMhHieguSmo3myCUQbMLryyWdiiFYVGSnm5aqKlxuG5FIkqo9m3E73Gh2B6ZoIkoWzHSCaCSAaYkhJ51E2nYTDQucf8HFnHfWcvIK3MxZMJNQuBEzJhCNybz80mtMnzEDwRJGEC2kJYWKyn2oVglTseHx5LBm9TrKhpSy/v0PGTV2Cp98shtVS9NauwE93M6QMUcTCsfwev0YhonD4eS1N9fhd7r42c/vwZdZwOrXV1Nalkc0FqOjIcK2PduYftQsoiGBdWs/YvlFX2PU6NHY7FmYoo4gCTzy6NMUFufz7HNPM2rUJEpKh2G36xjJGBZJwRRTYPGRTqRwSHGaDnSgiiKyYiGaDOPxZiFbZOxOL9FgFI9XIRzqQDBVRFFk5SOPM35COdFYB253Bha7A1EWyMmROW3pCQwbWgxmknB7HElow6HaqNx/gJGjCnC7Laxf/yFXXvZ1RKmdYCiE7HLgcGegGzKjxo6jqaENm0MhLUSwaBnIiMiSSDQJ8aREOgX799UxdtxRFJdlMeOo2Sw4fg52qxVTMMnKyWTSpHE0NzYjy27KyoZw5TU3snr1a4woLyPQUI1gz8Ln96FpMm+8/hrzj52NpFj4YO0Wtmzaz1UrzuWsM84mEU3g8km0NIeprWki05vFccfO4cJLzqGtPY2ZclJalklmho9wII0vI0GG38G2zZWMGpqPpKZJJyLEog7Skkk6ncJmcaAqAnaLQvXu3WRklaJIEIqG0ZHxZpYQTQiIkkQq1Y6mKSCKJBMS5y67hOMXLULTnHyyZTszpk5BsYW540d3MHLYRFyZDv6+6hXOPe8bqDYnlXur+OvzrzB16mSMVJL84iJUp0pNVQWVFRUIYpwpk6czZuxIbJIDQ4/gtDswxTiJZJphI8ZQXVXBqSfNZvi0GSxbegYLFkwhGYvzwdqN5OZks+GDjdxyy220d4RIxhK88OwznHL6EiZPm4sgWFEsVrw+P6Vlw4gEDjB52ngmThzLT+75E0vPXEJWXgZ7aloJtUWwu1X27N3D5EkzKSjMx+n30Va/lWtu+B7zFhzDsjNOZv/mNfjyCpEsNsBAxsAYZDJmb0ZoT7rjoXTEL8mog85XQerUcwQR6HyPfvbO7nZ+X9eNUw8Jwfi0yn4cT9iD571Xwob/TqMV/gc3ZzpouMKXldQjYdD0hYEouF1z1fproHT/ezDGVHcc6TADwzDQ9cHnzR50NHxV4cmDweEY9wM1VLrjqwt96b2+g+e5flZ3l80GvtTeIQzX3r4bjBF3qLoHymj21Z/+MGQD7etgQtX7i/7et6Io2KxWRFHCMExEUf6ikY2JLsg4PT5itRUcaKrCmZdLWMrA7dQQJBkTCd0EC3FE0oikScopDNHAwEQ3TQxRxBAkXnx1FbPnzqIjnsDj97J504eYZhK7w0EsCbFYCrtFx253Mbx0KJqqsWfnbta98zZTJ0/mqWeepry0hD17K9m+fS8LFy6kqbGFBx54iKmzJuH3+3E6nWiaBvDZi3z37t3k5eV18XR3GwxTRtBTCMl2Nr27jscff4whY8Yw+ehjcbgzsdmsVO7awbRZs1EUBR2zVza/84ievo5AGPic7A1dnbFHylE12DL9uVYTBdL1n1Cx/yM8vmGIUoxItAWfq5h4oh0jlUZRPJjYcLtkmlua8bi8FBbmE0/ppJI64XAIPQkupwtZlAlG6khEQ7zw3FNMmTEdj8uP3+/jqquuYNkZSzBNg2BblMbmFiyKhMdrAzFJc3MzfncpVs2Fx52JKKkkEjrz5h7NjdffxJNP/YV4LMmmzR8ybvxIHL4CEgkDp7uAquoKsrKyEASBaDSM0+Piow1rueLKK3jn7Q3k5GTz/e/fyqOPPMmDf7yPSdPHEepoI9bejivLjqwksTo1RFHE7lAJhYOcfvppZOXksGzZMkpKimlqaqStpZZ0ykCzO7GqLmKxJKKoY7OLKPZs3l//MaXDh6OKdi447yJOXngSVk1CFBMEg0HSKREBDUE0yPL7MWQRh8vFgeYAGf5MBAFi0SCtTWkSCZMbb7qaC8+/lJbWOqZPn43NY6BaJXyeIWzdUk88UU92Tj67dlbjy8hBMAwi0TbaWhsYUjqMpqZqsjI7z5pNJyM4HFaSusE9v7qXefPmcMay05k9dzK5Ofns2L6DoUOHsPySqzANCafTidVqIT83h8LifOxOlWSkmfq6/eQW5BLXU9gdncfX+Hx+xo0bTzgSJivHx/ixw1i0ZAnRVAuFxcN5f8NG7DYLd/3yXqZNm4Hb7+bS5RciIrLyieewK5VkZzpxewu54Lzv8I1vXUgsnqC6tpr9+/YxYtQwFEXjgvOX01RXxcQJ47F7nIQTUeLROAfqG5BkG87MLCSLhTdWv8qw0lL+8cbbmKkEyViQaExGFAzcbjtHHz0bh0/GMEOMHDUUWRFR7FZOOvlUHG4nigizZ87F5XAjSwJnLltKQ0MzS5YsoapqDx6/DwQBn8vLtk8qKCooJsOXhyhotIarSRHBYpMRTQVR7HQmuz0u7HYVb6aXyv17WHLqOSQTEu+99x4nLzqRE46bQ3NTHXt37WVIURkXX3IRVpvGkyufwiLpFOZlUVO5lzt+fBvjRgwl0BHCl53Pg/f/hWGl5bz41xd5550tiEKQ7Tu3cfKiRbR1tLN//25ysrORBIHzLryAmbOn43JoGGaauqpGMrJzQREwOzcPGLCMOpRc6q6v9LQPRF+y6mBZUZK/cJ3Q5xGUA7iPPtLx+mO49lbW5L8zvxX+h0OF4YvbaPc0cXoK4zvUy7insIfePNK9tdu1vYNlutbbk9HW/bu+0FuZvkInBlL/wXI9Mat9hoYOsI1/JbqGwB6OV2sgz+twjJq+FNnB1v9ZfV3Cy79UT5fQl97WxkCed2/hkoe7FroK+IGECvfWZl/OlZ7q788z6E8o/FcNwTRICRKiCZKuU7ljHfWf/IPN6z/i2EtuITcvH4vNidVqJYZKIpHAalVRTEhG4gQONBEPh8kvyyYSS2FRrVglCUFT0CUB2TAIBlpoPNBK6ZARmIJINNxAsE2mqaKSt9e9w+gxI8nNzcEw0rh9fl57cRUOj59/rHmTtkAHeXmFTJ4yjlPOWoTb7e7V4WMYxmdzUuJz2R6LxQgHozTWVrJtyxrGlk9h9IzpJGUFA6mTLTYMIsE2bC4vxqfBBSYDUlf6Hud+zIOuZbuurYPHK3Ut25+Q9r7mfX/kdn/KdoeRTLDjnZVU1e1l4RnX09C0H6vVSjKm4fQIBFvbsFj9yFY3hhnBTEfoaO3A5cmmo72VvNxcOlqD2D0OJEnB0MGi2KnYu4PG2hRLzltK9e6PmThxMi///VmKS3KIpwVOOPoUnnvpOWLRKP4MB8lUFLvNTTjWjsvloCXQit9fRnt7gLVvvcuso+aR1mN4PB4sFplUOo5pKqxd9w7fuHwFb615DZtdA3RUTUK02JCSSWIpk/FjZ/Lii89z8803M3/eCSxZdixufxY2i0RrXTVZJRO58OyzePAPj3LdtRfxm3se7HyOskkgGELTNCwWC7FYjFBrBXZnNqrdCbpBR6ANQRLJLspBMVWiCRFZiBOPBRGFTmZVUQ3SqSgOu5+G+gNomoXbb/8pP/vJj0nLMqlUCkWC3Tt3keHL4i9PruT005YgiTYkOcqtt/yan9/5Xfbs3c87/9jJBZechKiEiURiFGYVEYoIJJI6/mwfqVSCZDSIQBqrK4to6ACKFKexDcoKC9i7Zxeay83OT3Ywffp0tmzZwsiRIzn5xMUMKR3Kr+7+KfUNTaSSIsuWLePdta8RCoTZtHUDpy0+jT07t5Cbm4/mcCKIMhbZQJRU2jvCaDYXzQ21nSyzBQQ5E11oRpPzUFWVcKiJDH8uDQ11WL0OZEnimSee5bSFS7n1Oz+iqX0H//erH5KR7eeBe5/h21df1nlGtdPL8suX89Of/4xgKEZudg6mYGBIJmk9hWyKiGmDX93zEOdfejFOp4xDs5CIG1RVVGORwTRipAU/fr+KrkfwutwgOEmk4siyg1/dfT/fuvoc0mmDWCyOKkoIWJg0aRqvv/4qNs3FihUrWL78UubOnoGgdjrLXnv5FZoaA5x40gJuvOFmLrn4cqbPmUN1dS2lpYXIQpgX//YSs2bNIpFIkJ9XRsoIUVW5n/IhU3niL4+w6JRj0XWdSEcHyWSKdApEUaZ0RBGVe/fjd9uxuz00NjZ2Oul0nXBLkFVvrmHUuEkU5uewbct68nMzyCseTeXeXYweO5Wnn3mGpWcu5Vd3/oIzl5yGLyubjAwb+/fuISszl0A0RaojyIRZc0nLOrIsYA5ik6Oe0N93f1fZdUh9VfiinifQe1ivafQ/slAQB6Dv9jE+X9KNhP9ew/V/NlQY+p+D07XMYJiWgTClPX3XGwM1EAZosOjRGBngtV9V+X8X/LOEw+Earr2ha7j8IGv/QhtfNFw/zRPsZTfnI8VUD3YtDPbeD+Wc6qs/fTFiXzXD1S+YnaFQIHyJMRcQQEghmyaGLODzl5BdMo2s8dNJNteze/tWqvbsItzRRuO2j9i54V2ijdV8uP4dWut38tbLj7Br82o89ix2bt2MnozhlRXisRhJFNKmQjqZQpBEHB4bBmksDi+tLQkq9u/ihEUnUVhahMNjR9EkIuEQk8ZOpaa2noWnzKWpsYn8/DzOOXcpTp+nV4dkOBzu3GH502chmCa6rlNZWcmat97CjEXRrBZmHz2b7JLhJEQQBbCmDQwxjWyIiHYPJvpnRqsh9LRn/eAw0GiDru+Hw2V3B4rBOHMPIi1ZyC0fjWoYbN7xAaVFY0jFJUyhDVlUcDksROIhnF4NUbFjmkmSkQh2TzayDDaLQkNdI82BWrIy/Z0BfGaatev+xh0/eoDiEdmEWptZuHAho0YPQ1EFkkkRt93P8FHlHD3vWK688kr0tIlgavjcXqIxE0FyYLUpOJwWvB47K//yFKtXr2bq1IlYbSqpZJq2+gqy8/M557yLeOrJp5k3dy7hcAeiaFDf0IZD0xAllRUrriIry0d2TjZ5eQV8vH49pUNH88DDDzPv+HnU1O1l2RmnotqsnHj8CezYXsH99/8ORREoHzEcWZbRdZ3W1lbMZBiPL4eWtjDpdAduzY7d6Sdu2kiHDrDx4y28//Zr5BRYsFmt2Kw2REFCFGUi4RRpPU4q3UF7IMHocSPQJRVJlInGQ7hsViyiBavNR+lwjazMPOyaBaczj4w8HwXFhZSV5+P2adismahKNpFgG5rVxV2/+iUen0ZxQT4SIqFgBIvNgk0VaajZSyhm5ZqrruG8c89Ds3kpzM/iby+8zNjRk2kPJGk90MDkiVOJRoJMnVXOrp0VuJ0ZTJ02hTdWv8tTzz7OSQtPIq9kGKYpIpoC1Xv3YVE7jw+yOlyEozGsFhmvN4dIMERHSxKHXUA0ZSr2bcWf6SYQaGPd+/9g+ITRJKJJ9ITJs089xcnLzuC8Cy9CVdw4bVmUlQ+lJdCI15uJmU4zaco0vD4fikVAdjhIJROIug5pHWQLpq5TWjYCv0tFkkR0UUHUPLhcGhlZGciqgMvlxWaT2bJlExIWItEGFKuJoIg8+vgjTBxdTn52AXt37sflsoMpsvzSy/jwww/45hU38MCD95CV7aKp4QCKpmJgMnLYcIoL/YTDzVxwwdn4fE4aGqtY/eoqRo4oYf/eCmbOPIq/rHyCo485mmuv+SHzZ8/Aolpp62hl5pxJbNuxhaeeep7Zc07i3XUbmN7Q6NIAACAASURBVHrUVGRNoqq+kvysHNLJEBFdwOX14fFnkDIM7rn7d1x88SU01dZw110PM27UWNa/twFJ8lJdvZ/rrr2VMWMnUj58KMcfdxyBliYkqxsBnffefpvs7AKsniJyctzsq6mlMDsbRTdI/xMNrQHv9i50K9/XifFm/0iuToJnIDJ5APqB8J+rUx8K//OMa1dvc2+e557K9AcD8UT35OnpzVDuzXv+WW5gL33obaOcgeBwQ9D6Utb/XeZXb2xedwb+4HeDPapooOz4v5sQEkWR3bt3M7RsGNBlTMQv5rj1pLgO9lkPNrd4MGG4/Z0H3fNre+srfNmre/B3Xdc/Y+/7Ymt7wr8ibL7H8UymP7u/eDyORdSRZEink+gpC4Koo1kFwpEObCJs3LiRSCSCHG5BlCy0xwQCoQSK6qUkx8mQEcPJLBuLHteJpaI0NLRSXF7IhvUbmTp1KpIkg5nGTOvouo4hJjFNE6vVTiqVQpJspNNpFEXpTLcW9c/G2YJINByhoyVAJBwmiYZVETjQWElBXi45BUWImoW0CCLKl+59MOhPdE1/0Ff7fR2D04mu74fBK4lHSlYf3DRMFEUS7c2IzlwijTuRPRmE2tpx+TxYdGioqsWV6SYYDHYysvEUVpsdi2onZejI6FhtDgIdYUjupanGSTgZ4M+P/J3rb1iOoRh4HTb0aBRdUYjHTGKxBB6PC4dDJBhsx+nyY+oGitXAFG3c9I0buf6Wm0BK0tHSRGb+REwjQkvrXvK8E7jhe9/itNMW8+ijj5Lhc/Dr++4DDEJt9by/YSeLTjmR9vZWqqpqycrMIRwO43C40NOAYOJ2u1m1ahUzZ0zHarVz2223ccOt1xILdBAJhSksH8K0ybNYt24dDpeTaDTKPXffyxXfvAiHw4FssSErOiASDqWYOHo0mzZvRraqSGbnWoxGo7S1B3ln7QcsPX0Jo4aXs2v3J2guF6H2ZqwWJ7FkB26Xn2QqjqpBIm5DN8PYrDK6rhAKhTF0sFrtRMJBTEnGKhskQ61U1EdRFQ+rV6/m0q+fg27EEASJ9e9tQpBTzD/mKILtIexWDVVVSRspwuEwRiKGiYTX66e9LYiqZbBn1zaK83P44x8foWzkGE5bfCp6IkgiqdMWkVGENA2NexlaVk4sqqMoKqJV5rpvX8GDDzxEVBdwWMBM69TW7SMRUxhSVkRtTSP1tR2MnVKCZtHYvXcTbm8eGCbxWIwMr4/6pjjeTIFUPE2oQ0cyLIRDbeTmyeytDmBRZSZNmoSiSESCNUiWbBob91OcVU4k1UIsZeJy+7BpGg31LXi8DmLxdkQkvn7FzTz44C94buXTnHb6ifh8XtoCYWx+H3oCaior8Gd4EDUVm83Purfexu2y0NDawZzZ8/jtr39BUX4Je3bv55xzz6KovADDMEgmE7jdbtram1EtDiwWC80tjdxy7U+5/ec/IjPbw7tvvM7M2bNZv2Ez4XCUOfNnsOnjraxd+x5XX30lCcNAlmXUtEEwGGXN2neZftQMIokEK//wJxYvPZ3C0iKaWmL4vAqKZGARZGxWDz+769dMGDsCl8+P3+kkw+Pml/c+QElOCaefexJvrt7IzKnDWL1qFccdvxBDjGGkVX7yk58wc+ZM5s6dj82hEgy1MXziZFCsCGb8M3nQo7zop/45GMb1YP3QaRscdBh99t7v3pc+K+9dtnbfVFEQ+zi1pHs9XTdv6qWNz/R8gf/aHNeBMK7/nZzzIHEwTn4gOKjId//0VI+u6z3U8O+J7gb2v5uB9b+IwczPgUIQBIYNG3bIfhzufPh3cWh8ldC0zvy2VCrV49r/d1xT3de9LouYFhlDkdDcTtI2PwnVh+HIBo8b3H7Ckg3FX4DoK2XC/NOYf/qFzD3jYuYuPZfJc2YyccpoMj1paiq2sv6t1/jpTdfx3O/v5OO3X6Vu7zZqK3YxcmgxiimiR01MQwRFQrIpyBY3kuLCwIIoa5gmqJKCnDJREyYdrW20NbTQXFXBzs1bqdlXQUN9fWc0gB6hsLSQKXMXkDd8LKKmYSAiHKHQtf+PvqHrOlbZCmKMioqttFZW4XFnIMl2oukUqsuCpjpxuzLAVPD7/UiSRDAYJBAIoMejpGMR4uE2Pty8jpqaZnzeUp796+MkQu3U7KvCxMb9jz6NVRbYsvEjWusP4HV1MleSItPcWIWpJ4mGo6iyzIrrriU3P4+29hAjR43n13fdwYP3P0hzUzvzjj6OZFxmSGk5M2fO5LvfvZVYLIEgGoQizcycOYN0ysBu87B00TIeuOc+SgtyuevnPyS/IAu73UpVVRUfffgx+yvq+dMjjzFv/tG4rR46gil27a0m2BFg/UdbCLSFWTD7WFprW7nu6ssJtzVjlUQi0QDRWBjdSCArKV5d/QqhUASP04EhqpiyA68vh6H5Wbz04ivotLJj1yaMtBVJFvB47URjHbicPuLxFHW1jUTCcSQjjiRAdUMrHc0B3nl9DU89tpJ333ybDE8BH77/Ebpuorp8PPbnJ7FabZSUlLBh/Wa2bd0FQoop00ew8k9PUlvRjNPrpy0WJhSL0drYzjuvr0PLKEFzuAm0tuPy+FE9FkaOH43V5+XbN17L0ccdTeuBGrZsWIvDo/LkE7/H43aTleWjNdCCptk5Y8l5BAIBHnrooc783XSamor93PnLXyPKVnLyc+gIB3H73Nzz23uo3FONaUo4XV4kSSY3Nw9MgY6OIKUlGWiKDYvFw2lLzuWqFVfz7RVXISk2PO5sfvbTO0mnEySSQUTZx/lnX87smQvYuquSjz/aQagjybe++R1CoTAPPfQwsmzBbneSTsNdv/oldpuLpWeegceXQSyRprk1iGlY+L87fkFmRi4up5u2+kZu+c71TBg3lgkTJnH++edjEOXiS8/itNPPpLWtgx27txFJp0kiIWk+WoOQiKa5+sobaW82WPfWDr529hlcfMm5tLcHKR49ipSpU1u5haJslcaWGEkElnztTNpaYuzeupu1b73L08+9zB/++EdmTD2KubPnkpvh4pJLl3P7j/+P9999j8cf/g0WRA40tdHcHmLDh1u48uprufQbl1OaO5IV13ybhsBeLjh3Geectxi324XH42DTlvdZftklRBLtlJUPpa2jkR/9+AdMmjwOxBCRRBCnw8Ibr/4NMxn+V4uhz2CaZudO5l/Be/dQex78fxxZ/Mczrp2TsHeP9GBy23pCb/mdvdVzqHYHwqgcZLgO7Xn/vOyRwkBypfqTA9jV+9Wf8MjDZZIP1tEf5r2n3Mj+4kixzoeTF3kk8aUt2oUvH9PSF9vUrzaO0No8UuiNje3Pc+w+Zw+uhYHkEX6VONzIEvj0MHlRAjqP1BKQ6Or7NLqmbAgipgmiDKl0EswUgiGAnkYWQCJBU2sjoqjRsGsPra2tRCNxCgqKMBIhVIePpC4SDsaoqamiuCSP+oZKLOk0gfY2kskkJSUlBFs7GDJsOgXlhYQSMYpKSzBEofPoGx1EWUI3DAwBpK6pTf2IFjiUDOsJg42m6CtXvbuH/csyrOs8Ozzl6UjoAwcZV9M0sZrVBI0hJJt2U1uxhtziKVgc+cQTKWyagGq1UVNTQ15eHqGOMJrVhiiphGNRgoFmiopLCceSNNZuZf9uk6EjMzn66MWseuVv7Nj0EbPnzqS+tZHm5n1seH8X555zEfkZNgJJnT8/9ke+fvYyduzeRn5BCdl5uZ2h5BaZSCyGTdZwqGmSKTubtn6I113OFVecz4oV17Jy5UruvefXyFY78XgMixgjjcyjjzxBKmlwxTcvIJVK4XS6CAQCOF02opEU1VWNrLj6Ov78l5W4PCqyDGa0g7aQhQXHLGT6xNE89KeH2L9/P8/99XlWrFhBMNxIRqaPdFJCc0gYuoIsywTaGvB4fByo68DjVhBTHQjuHHRBRokFUFx+BANqqypwOFUUtQCrFiUS7sBhz+Xpp59n4cITOxlcUSStJ3DaHSQSAmvXriUzI5cVK67ht7/5OXoyQm7REHTFikWHVNLAogrU1TWhWcHtsaHrJvt21fHu229x1tmL8PhySCUNLr/i29z6/R8SjjYyrCCTv720inMuv5ba6m04bW6S8RSC3oLVnYnF4qSloRabz4uQSCNrVgxdorHhAOeccz533XkPoyePIB5qxdBNJJuLjup9fLKnkmVfW0YoEsBqVQgGo3z0wS4KfJnkFBdh88lYRJVYNMrO7Tv47o03cc89P2XEmImEEyl0QeSXP76HmTMnMH70KL5x1bf424t/paOjo3P9SBqb1m5lxPh8OiKgmUnyikqpbzhATraHPXsqGDlyOIKYpKGhgrzichKxCNFoFLvdSiKu8/vfPcF1N17HxvUbGF5ehN0hs3PrHrJyirFn+oi1tqDY3bQ0ByjM8ZPUYcXV1/Hj23/A22vWMnbsGH7wgx9w6fKLcagCw4eNI51OsnXbJpIJgzkLptPUFMHjtfHhBxuZPX0qz6z8C6eedR7lQ0eyb18Ft93yY4YPyWXeMbPJyCvjpuuvJyejiAMNlSxeMp/p807i7X+8xvy5c4klJW647nq+fvGFOJwG+6trWHT62QQDbRyoq6C6oY3iIcP57V3/xw9/+GPWfbSJV19aw23fv4gHH/ozV151JUndgial2LmjiqysDESlHVNyYZUFKivqmDZrPrpq9nl02Gdy4zD0pYHU84V3dffv6IMB7sHheVAv7/5uEKUv9++zSDW65dWKXaImD8G4Igr/tQbyQBjX/2jD9fMJ2Pkg+zLY+lJCejKqeouVP5Qi2peR1LVcb/mBA1F8BrrxRvcQyK/y2fcVitkdfY17b/UevK6vEM9DXd/b9709l4GEePYX/Q1h783QP5RBPlAcqv89Ga49KfT9ddwcCv8KVnIwc+BwX7p9hTAfqWc8UGdZT2321X5/nHs9hVR3Rzwe/+ynR4U9e/ZgtVpJJBJ88sknjBs3DpvNRnZ2NobqAvofPnWkwrX7a8QeKpS4P+vtS6Fv5ufvOlEUMej5uKfu/RuQbDK6le2qXHX+45BViKLIiz/7HnPPvgRnURb/ePlhppRNxppdjmj10NEWwEaI5tY2soqHkQhGEWQFzemkrqmRbJ8bq5kinhaQLCka61NYrBr1dREWnz6Xxx59lldXvcR3rr+ajo4GcnIL0E2BZ597im1barj0orOJpioYNvwoQsEkiiKRjiXw+KzEYiFMw4IsGSSSYRJxA6c9j7rqXcSi8NBDD1HV2MQVV1zBjh078Pu9bFz7EUefMIfdO95l0vTJzJ97MhZFRVACNFXFcWaWULmvkiynhuK3IcsyNpuNfVvex5NTzosvvUWwsYELL78YwzC47LLLuOuuu8gssCMpDtLRIImmKgx7Dr6sXGTSGGacWFjH4YCoYYKQwq4VkjKaaG+LoSlZmEKIQMd+HKoHpzsXRc0gEYlgkqIj2ILH40JIxAjGgtjd+SQ6wrjduYQjSZoDLRQXOkkmE2CqrF61huHDisnOzu5cz4pJVfVeigpL0VQP9c07GFpYBrLE7q3b8Wfa0AURm1bI5u27KSsdQiCwnWElY6htD3LeGeey8vG/0BKopKS0gFBHkmC7TklZERY5zO4dWygeNoa9u5s4/6xLKCrJYOXTj5FIRlFVlbZAELszE8UuoyTDSKaFWMrgldX/IKegmCd+dw8/f/A+nn3meS44/1wSbTGWnrqMHTU1vL3mCZz2XD7++GNaA/WcuHApr778Om+8+jqz5o7mrHMupinQgi/bQ832RpxuF4VluSSSESxYqa9owp2pYKguLHKSUFsTGR4/uiAiCTbSRoSOSC2i5EFTs9lXUUPZkAzqamsoKcrDSOuIkoZuxMFQ6WhvxW53UV3ZhM+XhWpP8fEHe/jlT+9g8ydVbPzoH7i8sH37drKzy7jzl7/ih7ffgCmEIe4jFoXv3Licxx59GqsjzY5dH+LzZqKn7ax+ezML5s3nqgtO4+uXL2f0uMlYtAwefOCnHHPKYlqbIjz/2LPMmjORZRcex9vvbMNrlTF0nTGjhiECacXJnXfdxfkXfIu//v43DB13FLffdRPvvvAUL7z+Lk88upoLLj2OU0/6JnW1u9m7bxu/f/gRfvPAL9m/r4bMTD/BSC1J0STLO4S3Vr3D8KHlzDppProidp4q038JNCAM1mF4eI32rEuLoviFzZkGJHfNbuRUtzNgRUnpfsV/Df5nNmf6fIIOXMnq6f9df++vV6OrgtCdvTvUAhpsfl5/+nOk2jxcDFRJPlxW6EjcX3/myleF3uZjb2NzOH3t7mg5nP71t82B4l8VTjvQcT3cfvY1ll2Z3yMRvj+QNdkT+tr8qj8yr+t9dP8bQFEUFEXB+ukRPhlZObi8fnyZ2YweO57M7FwcLg+SooIoD8oDfSTkzOGOY3+v/9LcoJvjtY+6Bj0vD5n8deh6U6kU42eU8/sH7yJPs5LpKqa9rQJR1TBMGU21IKpWsrOziad09JRBNBYjHA7hsNuor67GIolYFAvV9XtRVTeyRcBmczFnzhzGjhnHJ5s2Mn3yeG688RYWLzmTSDRJaeFQ1q3ZxLy5x+HzZuDxOImGY3jcnXnSsXgETdNwONykUynaO9rIyckilY5TWdPEU88+x09/eTu/+Nnd3HTjDdxw/XVcc83VzDt6PmUjyikvL2T1q+uYOnUqsiKQjMsIUhDZIqJqIo0NFeQXlKCn0yiSjE1TCMfSTJ40BUkQKSzKoa62Go/bydQpk0jpJpJkh6SOzaaieTIQFJVIJEIq2orN7iEYjZFOmtisKm3NMVLJCDarn1D4AKqm4HHlEgy2oapO9LSBICYIh8K4nG5CwQjRaAq314tFlBGkMPFEFEHUcXotxCMRQuEOFFlDliysWrWKTz7ZyoQJk9i6fRfjx49Ds6kIAmT681jzxrtkZReRmZVHKBbH6XYjq3ZycrI4fsHxrFjxTe78xYMouk6gNcCIESOQZYlQMMovfn43kydNZ/PmLWRm+xGR8Odk4PNl4HS4WX7pebR1dPDoI48xauQYTBP2768gNzsTU09jKk5eWfUq2VmZvPrKC9x22x04vS4mTRxHKB5CkkIcf8IkhpWVMXHCPETs/PmRpzh2wYk89Pv7Oe20U1i8+HgmTZlGOg1GGiRJwJOpYXOYtDbVYCTDHGitoaDAhoGIYrGSiIaw2VTC4QiBtjasVjvxeIRIKIigK5iGgd9rRZRlPB43sWgUTVWpqqxGkWUwQVQVREWiuq6OkiGl7Ni+nRdfWE1jfR0WTeW444/B7/eQk5MHpsmY0WMxDRNZtKAnLZx44olc853lDBlSzoYN7zF2zEQE08aWTRsZPmw4z61cydcv/TrV1TWMHjeGy6/4Brd871by8gvxeZzMnT2DEePGkI5baKyvpbRkDJKgsmHDFvJySlA0hbIh5bzz9jpWPvE7rrr6Rp57/jnmTJ1FVV0rubkFTJ46EhC4esVlHH/CAi6+eDmJZBKHw4nL5SQSCeLxlIAuEwm3UV5eSEZ2Lobw1Rmt3fHP0xl6l7mD70L3SLduzmrxvzO/FQa2OdN/BefcW0heb57y7l7/nhTCnpi9/rCtB3/v6Zquf/fEFvbUl0Ohe1t9Xd+1XE/szWAMmZ7q7eu+BEH4fNfPbn3tjwLa3UHQUz96Q39CqL9Ko3Wgz/YgDsXc9MauH+pZDuZZH4pNO7ir3qHQ0/Pvrc7e5uxXhd7WSV8GTH+dVT1d2132dF2H3Z0Xg5ER8Dljf6j50JUJ7G28+5K3g2IQe7lfAEPSMCQNU7ZiylbSgoWkKaOLKmnB0mdbPfV7IBjseu3t2u4G+2Db6D7P+vN+GmiEQ9e5OdgxkGWZNmkYly6/nvp9m6jaswZBD9NRvw2NEIqsk0QmFk8ii2Ai0tpyAMFIIOtxivMLCcXiyEISRVFxOt1U11Rw73138sSfV3Li8fMpLSqmPRBBT5hEgzFWvfQa0Y5qhg/zoGgRAsFGWptbcThE9HQEm10hw5+FaUg0t3Tmf2b480mnTMKRVvILSrj9jjvYtOVjigtL2Ll9B++8/Q/eW/cm721Yg2q1sHXHHl55aT3plMi+fftwWHNQ1AySERNSGn976QM+3LiRhvp6mg8cIBQTcdqsNNZV4c3MoLmxiWgozN5du7FIMtFoJcHgXpBaiEkarc2NoMeQVA1JEoino6iObFz2LOLRGC6nHYfVh64LmCRRLQ4k/Hj9WSiyDUVMk0hEESVIJFIoihVPRnbnZmq6jpFWcTmyeeD+R6ipaiESDeHzeUjrSVwuB8ceu4Bzzz2HVCrJ92+7g1hSpznQiimZJBMCDz30MKcsWkI0nsbtziaaEIkk4nQcqGTxqQvpaAty3HGLqN6/hx/cegsbNq7n5ptuo2zIGC6/7Fu0tDYybGg5kqziyy6kqTWAoMApS05EsMi43U7y84Zw/Xe+x6pVr/D0449TX7mXYDjB3soKTj5lESuffIwbr7uaiG7w0foPMJJxPBYXaV3GEB18bdkFvPnWC5hiM9+77QpaAjVceNE5FJVkopshDrQ0k06mWHTSQhyyjCk6MQWN++5+lDtueZCczGF8sH4LjXVpVDOFSBIBE81mx25zIohpDB1I2Pn+zT8CI4VFTSBJKqmkQW1NPXpaoLiogKqKagR0otEwomgyZepYBCmOzepi165dLFx4Ii/9/Sk6gu18ffm3SSVFZFHB0BNYJCstjVF+8IPbmTV7CmPGjKamdi+TJk6ntqoDU7cwY9p0XHKCxYvm4czMZtYxxxCLxbj1lpvYsnU7f374IbZtfh9XpkhTUwMnH38mTotMIFjDeRcvYc7RE1EdaeLRMB6Xl8WLT6awvIinnn2G0089g9VvfcCoEdMYMbKY99duxWKN8vgTf2DM2OG8//46Fp9+NqZpsm3bVhrqA+zbUkmGI4PRo0fS0FzLj3/0o84QXGNw767+4HBlVW/ob9pdbzrAYHWW7vL3q7q//1T8V4QKm2bPhkzXSdSbsdP1u77QW2jYwf/3dV5U97Z7Yk16K9tXP7sqit13NTu4KczB3w+Fw1lsgnDovNq+HAODwWDY9b7yavtz/ZHqV1/hkl3L9DUXBoKB3E9/jc6uP3tyBA0EA7m/f4Xg7g9r1ptDarDoKex2IGGu3TGQMPyB5PIPFD2N00H50aNjwOx5R/WD8sYU+u977Sqnvup51NM86Gs99zbePSorxudhu6Iodh7dc4h3zUAMV9M0uzv6MYXP81Y70b9xl4UkaVQUTF764/1o5gGGlZdhyy0ijAWPPRNDT2GoLmRUJNEg0FxLIh5BVX0Eo2FcagJfXjmC6SNFmI0bt5Nv0zjjnDNJYuPGm36AxxrjxZf/TiyR5pKzzmHy9KmYVhOnzw4JAYMwkUiIaCxJQf4Qmppa0I0o6aTJNVd/l8cee5y6+ko+2vg+xYXDyc3L5qf/dzfX33A1H2x8l5mzJ6PIVpyebH73wD2MHDmNDz74mGMWzCIrV8aVkUF7fRNvvP4+J556HvFIPYFAgNzcXOyeLG6/5Ua+dtZZlI6ciNNu58orr+T222/HZrNhtUdQNSeBxnosHj9E2lAUhZghYYppfL5MBNNBMhSlqn4jedkjiMViaG4NRfSRSMYwzDgGSby2fEQhhC46AAPdSBCLRbFgYLV5ietxgq11uFw5JJImml0DPUoo1IFqcYGpkUx0njPb3NxMdlEZaT2GpmmkkhALtdLeUkMsKZHps5Lhz+Hxlc9z0smLiAaqyMoupi1aR27OCBJGinQszZRJU3nzzTf50Q9/wooVK/h40zqOO/ZkUFK8vXYtS5aeRTqdpqOlHVlSWb16JccevZRLLr2Ap5/9Iw/++g+ce/bp2PwFmHqc/ZVVFBaXYCIiWlVsukB1dTVeRy2hhJ9Va3Zy+uJ5hFrClJTmYugCpqGhSx2k4gZGMkVcj9DaHKQgO48/PHw/377hZto66giHTVoPJBkxsoAXn3mBabOm4nNotIfb0Bx2kkkRv99PLN6BproQ0PjNvfdz1TXfwhRjWGQ3ppEmHg2iKhYaaqpobGymbGgRXo+faCxMMBhEVRXs7jzQZRKxVuJ6HD1lYcK4o1jz9hv85dGVZGRZOfPMM3A4PERiSWx2hdq6CvwZTjra4hQWFtPSWkdmVj7h5jo+/mQb8046GYwU6ZjOnKOO5dU3/sqzf36MJUuXEiFJe12AhJ4m0N7C/ONOwUinkESora7kT3/4A9dd931SRgpRSxBsFnnzjZeZMWMK1377Vu68+2Zu/e5v+M7N51CcN5ya2v2MGD6WcEQipbcTiwfJzSkgHm7h7rsf4rgTF5GZnUFWbg6ZhXmoigVDOjI6zT8DB9+Dvfa1Wz7qwXeLLMvwJXnZT/S14zCdocL/CWM3GPzPhAqLooyADEL/Gdee0B/WpzdvR1eGpOv/DiqKPbEp/e3LQDwtPZXpbwjdkVC2+/IQfZVKYvd2enJWdC/bm3F1UBEcaPuHYuX6W09PDo2u3w1mLAdT/lBzVhJEhM7TPzENA3rp96EwUGa2N+fKYMZ8MEZg17lzJOa1aZqkYwlkWcbERBe+GBnUX5b5SMm5I1Wmt7V18Lve5GhPMAETAQQRBAETocvf4pfmR199Gyxb3R/01IfDld+9/l8QMEwTQfw8THig43roG+r8mJifttG9PyaCwKef3kPHEykDSRQxBYEh4ydTWJTPnx55iNJ8D6lYM3n5eURx4vH4qN76CbF0CJ+/nAyfDc2ZiWwmSIk6LqcLw0hiihr+zGzOPPtrvPTKY0yZdhLPvvgqr616nXvue5gZU0ZgdXp49e23mTB5IhqQFqLUVOwmM2sIDquFlgMN2F123F4Pqs3N8UfPZs2bb+BwZVBclEugJYZmFVl8/hJUWWPzR5sZMW44iBaSyQDjRo/F7nISTzYxdtQEZFEnO6sQRbUxddo0QsFW3D4PL7/wDwryslGVb6OT3QAAIABJREFUNibNmEVh2Vhuvek2Zs0ay0knLkAWLTzx56cYOXw0qsWGZLVjs9kwRAs2uwebZkey2BAQaW+pQ9WsBMPNZGS5EAwfiqphCnFUVcUwJBRFRhZ0aut2I5opHDYHgqkQjkSRhCQmEIkmuf22+zjl1OMwzThN9W0YBricHpqbD9DQVIUsW1EsVhYsOIFzzlpE5f79nLH4bC684BI0RSInZygZGT4SCZ2OYARElemzj+dnv7gHQ1TZu78Gi03Aofppa63l7DPPICeviBNOWMgFF17Id67/Dg6/neaGIAfqmsjLtNPW1ITVYmP131cxZ/6JvP73l1iy5HQCoTBtgTCjxo/g2af+Rl5JDg6HB03TsDsUFFEglhZ554015LlaGFI2k6uuvZnzzz4bu0ujobaKJ//yJGlM9mzZR25hLrLLh2Z1YtXs7PhkD08+8RxTpo7Fl+khGTmAS4shq27qGuqYMGEKaSx4Mu3YXXacTj8791SQ4S3A6nKik2DCxAnIsoSeTtHUsA+nN49EsgVNsWHzZGAm0+yrrMCXW4JkmDQ1HMDhyUEwYfmll1FSMoQ8vw93dhYXXnEZjz74ILfccRvXXvMDJEll0pQxeFwOzljyNa5YcRWGbuF3v/09E8ZNwpuVS9KUcXhc+HzZiEmFpqZWFFUi1tbAUccuQLY4KCoczh0/uIup0+aQk5NFoDVE/b7dZGbkcv8DDzN75gxGjx6FRZVxuOz87r77cGpZFJf4ySwaysiR49i5azeRcBteVwn+/BzKRw4nqVuIp1uRZJlLL7mMBcccz87KambNmkNRbh53//IuJk2bTfX+/WQV+BFEuU95dyRxuG2YhkDn2a0iAiI95U9010M+O8+dAWyQ2vWM9S9B+OLnX+C4/2dhIKHC/9GGq2l2fgTh8Dw4R0qh61p2MMxT93YOZ9H1pDz1Ffr3VQuRI43e8uy6G669MeG93e9gDL0jZbh+FTjcenu6XuxuQH7FjokjUeZIXNt1Xg0mNLin+rZ/spWMrMxOI0TomccajKE42HJfleE6kPoP97ruqQj/LAfaV1Vvf+TcV92vnqr5vO7eZWlX1kIURWRnLnNmz+feO3/OkLx8GmtryMjwkRIdWCxWvJluRMlFINxGMp5CUwSaWhpw2PJQVRupZBRJ0vlg/YeceMKxNNaHONBay55dW/C5vYwfO5bv3/ZjXA4P+/fuwe1xIco6FlnDZvMRCbchywoOl5u6+kacbjeaJFJYUMjpS8/knK9dzDe/9W1GjB5KQWkOgq7z/LPPM2bcJJKpEF6Xg0BzA2XDxjK0vJAn/vw0gbZ6NKuVZ5/5K5s3f8JRR03D7vDzwvMvcsbS0wmH28nMLkKQFVx2K4XFuaiahUg0it3upKS0CAMD1a4RDoew2+0EWlqJRWPYNIlEIo7q8iPQTpa/jEBzAuQgms2OIKYIh0MIgolVsxMNJfG4MoknQqTTkEoZJNNJbKoFWdYQZYVjj1mArJg0tzSRn1/A/LknccH5F2O1Ovn+LT9k6pSjaAuEyc0uJDfPR2FhEedfcAGmILDpo48568xzmDFjNi///VnGjB2JL9PLUTOOIi9bpaG2lqb6RkYMHU5j7S4kxU7aVDGJEo1FWLL0NDIyXbS2xvE4M9i1cyeTZk6hsbWFjJw8CoeUsOXDTcQ6OhgxfBiqVeO39z5KoL2FxUtPx2qX8HpyuPTiKzl54ekIosSTTz2N06liGmn++sJ6rrvxemLxJpyOQmoqq8nLLcDlySS/MAdFNDFCcSJ6O5m+DPz+HOJRk6FDMjnQYlA8tJxIKkQ6YWHCxHHU11eg2Gzo6TCR1noirY3c9ZO7cdraKCsqQpBsbN70CS6nA02T8Li8pHUBh02muaEDi6yQlenF5fWiOO3IFpG0YXDTzd9n9IjR5OYUUFtbQ3FRPm3/j73zjpOyuvr49ynzTJ/Zme2N3aUjKCAIFlQUBUVFsWBssXcsiSXR5I2xJLEkIsZXjIpd1Gis2BWxi6JYQHrdXqfXp71/4Jp1nNmdXTDR5P19PvNheZ57zz23POeec+659waiuJwuJozbjZYtq5h7wYUMGzGcqQceyNQD9qWqvBy704ai2Bg1YijPP/8sVTU1OBwa6WQUu83Jy8+/wGuvLmbaAVOorqpCTxkseX0J7739LgcfNI09Jo9l4+aVrFu/mrLKQVTV1bDbmGHIepDC0mLiiTjtHR1MHDuOQo+LcEcXXe0JKgt16rdtZOjwETzz7GL2m7o3mpqiva0DI52gpKSE6QfPwBBFwq0RHE47KSPGYUcdypmnncf++02hbtgQDPqWWTsLO15GJq99bvz/jmOvv+XklVL8aenp/UF/DNefdKgwiIiCjGFqwM4LqeyLTl/GUH9WczJDAvNVHPMNe+1ZTn9C13rmy5evHyL/zkY+fZtv2t7K6NmnO0IH+h/u1zNPPul6C13MVraYIdCNPIV0Pidp98ZntrT/ynHVs6168tNXaG0umKaJkVJBErdf2yJ898qW/vCVjXaud7nS9kUzn3f5oDcH2s6g343evpve3g2kL/sri7vzDHSuySwzH1qZ+fuH764gfNdpI37vXWa6b9ub7asLFi3KM088jDu1igKPlQkzL6Sl3aS5cSUjRuxDRIsgqBIlBTbagk2Iop9EMoap6nz+2afUjtyV915fgtNWyrwF1zH3gl8xpLqSrkgXsmKlorCUQLCN8XvtRjjUSVFJFfGIRpFf2X5qtWTFYrWiGhqB5kbKSsqZe+mvGDt2AkcccQTJZJyiyiLsokm4K4DdXcSjDz1JMhyitXkTF199JU4nNG8LUV7hIqUbmJob0zQJR5vZa+9DWLv6CxKxMFs3b2X+Xfdyy7zbqCj2gCARSwRxOT0kEzpIMgY6aT2N02ZFANKJJFpaxemxI8rbeZZMA4vkQhAEmtvWo9gK8RY40DSDeCyFx1NALBjF4RDpCjRTVFRFa1sAr9+LoOrEEnG8hX6MdAqHw04w1IWqptDSFhxOG6IImqaiGyq+giI2btyMJIDXV4Cv0E9jSzPxgMGgmlIMU8NqUUgko4RjUUrKamjYugZF9mK3O7HbLehGCJviJRQN4HQ6kSU7uq5jUSCSiGNX7KQSXeiCG0mSkCQJi8VCZ0cEPRZBtsr4ygpRYwaSbKIoMiZpDN3Cr3/1O2666Q+EI0H+NO+vXPs/VyOJcVrqVSCOqrZz082LmHfLdaTTcdpDIVQtgV2RETSBipoqUkkNp8PHeedfzO+uuYTS6iqWvbeCCWMnYnepqKpKINDJWedcwv/ecRtuh4VYNERZ5WBSkXZkp4tgp8myZcs45NAD2bLtax5a+Hd+c+21WK06j9zzPAvvv52PP3qb/134AD878WdYHArxYJKXnnmdI48+krVrNnLBBefx3LN/Z/26Tdxww/U8suhe7HYbiBKRSAJ/YTF2l0xXcxMudwF7TjmIF55ZRCgUQrIWYKZClFb4cXn8pJMKr7z4NDMOnYYqurj64gv587xbueb66zju+DlUlZRhcxgIyKz6Yh3jJ+/Nc88/w7hRdVTVVZFMwutvvoNu97HXpDrCbSlmzDySZxb9lcLCOrZuaWHbtm3sPWUsd//tPm74w3WsX72KsqoqPl+5ir2m7Es6mkRLp1jx+cc47XZGj9kdQ9MIphOMGj9mALJnYNhRvan7SsB/yq6Mu9jN78vmb511mWl7Qx/3ineXIUkS5o9Djf5B8F9zHc5PxXDtS0nKZbjmUuSyGa59lTlQwzXfNLkM6Z2ljO5sOrnwUzNcexsj+WBHDNdv0+bZJf8qw3Ugjp188EMYrhZEVEMHUfiXGa7ZZEM+NPN51xdEUcx5gNfOdpJ961jpsf8+n1XKfL7bzDH2YzNcd7ZhPhDDVdd1BEH4zlVFihkhLnqRrDLJcIIn/3Qke4wuZ02Hl8OPuxKL1MnmjWEqhlXT1hIjGW5jyKga6lu68Hv9SJrIhtXrcZaX07qpGUVycewJUxlUM5F/LLoff4WPSCxKvDOMzS5h81tRZIWuqEY6kiYeaWP48OEkVJ2UmkY10nitFlqa2vH4yxFkHVm2kIiZJHWNJx+9l0vnnksortLR0kxlaRnBwDYchbXIcho1IeH1isRSaY6YeSp77jmJ3fcYxpR9DwUjhtOusO7rRoaN2Q1BEbFbNMKxNF6fjabGFsrKKuloD1NcWoQuGFiE7esvelpFS6skMLEIJi6rSCrhQpTjiJJGJKwhWR3Y7CK6ZhKNpPEWuDHVJMFgPVarncLCSto7QticNvSEisNlJ6mn0BJJ3G4PoVAQQVRxOFyEw0FMNKxWK/cseJYTTjgJXTPRjU6qBlWz/LPlDBs5jFRYwRRCmKQoKhhMZ1crmqmxYVMDg4fW8f57H+Nw2thr74k4bFYEVUUUgthdVZiGBUmSSCRDxJMyTQ0NjNmljmgswebNmykrL6GsrARdcSGpKcKxMKJdxohH8HqKCIWC2KwWTENG11UsVh1NFQjEwe1woklhPnl7LbsMqcTjEWlo0Ql1bmPS5PG0h0LIsoWSUh/xpM7W1VvxFRYSTyZwuVwobhsNbV9x6N7Hs2pZK/Xht6kZNJgtmxs55NDZrF6zlkceW8T9D97PfQ8tYGTNWBJEEGIC1157LZf+4nx8hRYaNodx+tw0Naxn12H7M2vWfsyb/wdG7DYZIxXDtMoE2qIYIVj4xAOcd+7FrFmzEkmGyrIKFIuMTpz9Zh7Ju2+9wSfvv88B+x2AvdBJy6Z1WG1eIgloa15DTU0Nu42fyop3P6Cs1kcsnQRKuPyX57LwvgU0B03aNnxFSWUpnkIvpmCybeVmXn/zWU4++TQWP/4s3vIq9tx3fw4+cH+WLl0M2IjGTO5e8HdmzRrBOy9/zPqN65j7+6t48eklKIKFU08+ni9Xf8CDDyyiorKMDV+v4i+33UZDZwfVdYORRZ17FtzN4NIaqsrKGTpmBOeffyGT99+fX1939fdk1w+Fn6Lhmo3n/zdcv4+f/KnC2Q4FGmhYWKZxl02xyHzWM2QwUyEzDOPbZ9mUj+582ejlUjhyhShm1rln2sz0PcvNRisXn7l+vdHYWSF6uehk46e3PLnSdiOz/wfCe8+2zWUU9EU7c6UiGz+99Ut3+r7Ql1DPOnaFb4xVUch7tbWvcbYzkausfE8I7I1uJnqO//7WTxAENMFEkLaHtsoDuDCg50TX83vsyXMu2dOTRs8xk6seO8N5lK0PMvnp+f9c31A25JKB2b63TPmY7XvtTebBd0OS+4MdnZ+y5e+rj3uTR/lB/PYnCBIgsn17+/evZ+jmT5Kk7/GZFtzIpgGJFDaLyJ6zLsEonIrd5mfNJw+SCLZQVOFh3bp1+FwGg6qLiaVkyspqUSQriXSSypEj2W/Pgxkyso6KqhJuvvlmOlobOGjG4ewzZSarN6zC4ZRoaNiGINtJpiRkXcTn9lBY4GTdpjXIFh2LkUKSLHSE4lTW1hEItNLVXE8klsLukIiHg8yYMZuEqnHTH6/DIlkxbU5c/jLWb12HLHr46vOviaZlJMXFI4/fzVGzZ/Lx+19hk1MoioJmOPl8zadYFIFIOEhKEHAoMtFAhKICH6aawiIKWEwNMR1ATadRVRXV0JFsCi6rnVAwii44CIYbaWtrB9OKKILNYSXc2YSajhJXUxiGBrIVf8lQbO5Cwok4VoedYDBMytRpae2EtEo01kQ6IRCLBolFkujYUex+LDY/Kc3C+++/y7xb57P3PpOwOwpQVZ0xY8aQSCQw5DSGaGNLfRfIBjaHjMthZfzI0bz/xvt0Nrbwq4sv55brbkE2DKzWFMFABEHWicZDCJKI1ebA7ZBIxANs2LiZ2265HT2VpqSkkLSmEgk0oRomDocD1BixRIp4Konb60eTrZiyla5AhPa2DjpaGpFScT567y2cmo9Sv4ei0hIcnkJGjRzEloZGInEdn9uPqRvEVBNVtTBr1uGsW9OAIKZRbBYS8RDD/INY+cUqpMogpZWlmKIFu8vNy6++hNMpYBfTLLr7XqpKq0ioYeKhGFa7zi8uuwTRYiNtWqkbXkt5WRFjx03EsIa44qpfY7P7iasJlnzwBYYuUFBow1pscMkvL+WcM0/E6RBZ8vbbhBJR7D4Xdo+Pe+68i3vvvI8Na75m6RvPkghGEGQnKVWnees2FKmQU068gFeefwHTkqZp6xbUuMrqrz7hk2XLuerK3xFv38rI8bshW1S++vg9Ig3N1DeHWf7RV7zwwuvccPt9NDVsw2rGeWzRU0iij2QiQWv9ZpyuFKFYlJPOP5nbFy7goYVP0trWwB57j+aTL94l1BVk5PDhnHfOmcy/5x6u/u3NRAOtdGzaxH23L2DcrruzrbGFu/62kONP+jkTJk+iYdUa1JiBYGqYgv5N9EVu9EdOZpPxmXNNb/Sy6oqiuf0+VsEAwcBE/M4Pts8BA50HspXT2wLT/+Of+Ekbrrkm4d4Ulv7S702J62uA5TI88uUrV/6BKCC9GeR90eoPn70pe9kcAf1FX8qbIAjfCpN8+O/Zx5npuh0POwuZ/dfXik5fdPoSmDvS1vn0V3+M0XzGe29tko8zJ5cBkukk6q2MfJFPuX3lyfWsP8hWt1yGWl80sj3LtlqZ+fdA0ZdTrLucH9vEndkOA/3O+vr+M2nviPzf0bmwJ7rLzuf06Vzt0/1uyMQpjNxvDoef+hviEYWn/v4gzZuXU+UtwJCsrNnciKCniSdCqFqMtBrFZhdZveZLHE6FBx54gMMPn8VzLz7OfvvtyfzbbmXMiEkEYwKvvfUJWkLBMDU++eQTJuy+B9NnnozXUUKgvQurzYXL5QYEDMOkwOtj+RerMdId6FqA6qpiREsbH723gksvvgjTiBNsXU88nuL3v74WQZDYbY9xxMIBBL2QohInRSUuzj/3CgxRwOp2YyuwMOf4Ewl2hfjjtX+AhEogGsTq8BIIq+imE09xIVpaoXHzF2ja9ugxwzDQNI1AsJOy8pJvwnpV3G430WgUl8tFIpZEdvhQrG6qSsvRUzFkIU4yGsEwNERRQLGKFBR4cDgc+P1+0uk07oJCFLud8upqSsorsFqtWK1WZFlGURSmHbg/TofCyq++wE6IeKAZm82Gze6hs6WDa666lt/96k9s3rIeu93F3AsuY+261Tzw0AJmHDqFr1Z+xtGzf4bd5SaddrD0rRWs/nIDjz38JAfsewB/vulmPvnkU37966uprq7hzLN+jt0hs+rrr9BUg2B7EC0ZRktFaWtsxya6SEVjpGJxnnjwPlq2beOqK/8Hw3BgtRez/37TqSobxLnnnksymeTRRx8lnU4TCIeYefABJKMxbrtjIZqmoSYSGMkYix5/il12HcngYXV8tOwrvly+hnhaQ3EIKEKCRDzKpo3rcdo9DKkqpaN5K9MOmkJVTQmKVSIajXLwtFnIMphCFLtDxGq1EYxso629nkgkjq7JHDpjCpWDSiGRYOrUqaiqSjKZxO/3k0qlaWoPMGTIEI4/9mg+fO9dRFPDZhGpb2zgyGOPZo99phNJ+WhpilBcVI2voJhwOIzL6aO5uQ0EDVXXUKxOEimds86+gKf+8SxnnH0qVTUl/Payy9GjKk5RorhA5qH7HmDWzMMJd7Zx2JHH8NKrL7Dso8VsWvsqRxw9C69Pwu2WOOrIo7nvvvuIx6OsXvMl199wBaeddiyjR9ZRXV3KrJmzmH7ggbQ0bmHxc09xycVzqa6uZlDdMPaZNJZFD73A6eecwfFnH8jJx8yk1O+hrraKr1etRxK7rzHrXbfK5kjMlB+5ZFO3fMqUQzvDLuiNx8wys5WRy4naGwZyV/l/Mn7SrfFjVGp6w457vbejv56oHxN2lJ9/ZZ//1MbXTx3/7vaWZXmHv82fOvKRTztqbP8noD+Ox3/3uP4h0N/65HIAiqaIqNgRgD2P/wVnXPY3WppSfLz0GVzEGTZ0MKJgYhoy0UiaAm8JsuSgK9BKV1cHbrebzs5OOjpj/OXPt+L3ODn+uDmcP/dCaocMZtfRY+hoi9LY2Mj7H77J/Q/fi2bECHd1IFjspJIqLqcHWVb4xS8uY9bRx9HV3ozfU46IQjrVyf77TuXJJ+/hg/fepLN1E2ra5KzTziQSTeJ0O7BaRExUGrbEqSgbziuvPYWaSJKOJtGTUaKxTmx2gWikk2SkE6+3kjVrN1JYVIQoCxjJKKKcoqh8LIqiYJomqVSKYDCI0+kgEgnjdG43PEOhEOl0mkQigRbuwmWz09nSRKqrmcbGTYTDbThsVhAM4vEokiQiyd9V3FOqTiKlohnQGQwSiUSQJIlIJIIoivz87NO4/DdXItospGUnvrJqBGRk0cLdC+7lxcXPc9FFZ1NSUkxTYxsPPrCIxx57jMUvvMagmnJa2jYzec/xdISaQbBy4EGH4LDamDB+LG+8tpjDD5vGpMljefa5JxDENG6Xj3m33sHwoWN54L4niQRUWpraEE2ZQHuCn598BqFgB7fdOo+99xiPy2bnzjvv5oD9Z+Ip8PLU009RWuxj3rx5FBYWsnnzZhRFweF1s/LLz/AVeKisGcbb776DLIuEO9sYvdtQJEWlqW0zBx40jb0mT8LisGIYEA8nsBgC5552DutXbiCe1nAXFuMqKkG3WkkkYrjcVt7/6BXSaoLiUg9WOygWG6kEOOwFKBYbCxYsIJxKINjtJHWBQCCALMs4HA6am5sRxSR77bsfJjbm/eUWTjrheJob65FFgaqiMvxuO+gpPvt0GZdffjnb6jcRCrczYXINVrvBlClT8Hq9LF78NgYCpeVFvLPkWSpKHAyrraKjqYkbb57Pxk1ttLSHWbN2LedffDa7jh/LQYfMRot08JsrL2P38ZNp7Uzy+H0LaWlponTQcNpaI4wfuzcF3mKWL1+BrqWY/5dbiUdiXHrhpXy5ciOPPPYP7C4vh804iHg0TGtbB6opMmyXcZw/93SSsS4sqszQocOZsu9+7LHP/lx4waWoaRMQyLzq5b8d/2lzxA+Jn/Ae13+uqun69njy7o7PVqfuvVU7C315e7KlzeU96q2MzL163fXI9Hb3Vvfu5/3p6+5ysvGZuU8t0xM2kIOjciGzXt30e/NAZcvTc4UrW9k9lctcK+k/5LfyY/sOc61uSpL0vX7vbTU/H/oDad/+5skn/c6YOPKhkWsFqht97V/vT3nZvoH+tEVvUSXZIh6y5c/cw58ph/uKXMkX/YkcydUWfUU69FVmJr3eViV7yuTufD1luyRJO3XO6m/77Mx9+tmuh+stj6ZpfPb642x89+8cftEtGJ5hKMQR00kQCzDSCXRDQ9dVBMHko48+Rk2axOJhPl+xEbfHxulnnIQkG5x3/qXcc/f/oogm4WgS1WinsnwY7Z31iLZCCrxOREMj0N5GUUkZ0WiUbQ31rFm+himH7cnmTWFKnKsYVLc3hsWNio1EVwKXy0F7RxMlJUVIsp0LzruIKy67BL/Pgc1hY+P6DxkybC82NUWoKvGQVuPY/OWkQ21cftmfuOPu24jGWyn0DEYS7ahaDEVIoZmQNk1EWcEuaCQSSaxWOxbZSTTWhWIV0I0kjfWd1AwahomKYahEw01YbQVYrT4SiRRWqwXFKqOqKQJtQbx+N6bTjQ034cRm7PZyDEzCLZsoLhrMF18uZ9xug1FFF5oKsqKiJbcbtZqm0dXVhcPlRZcseK0yrz77Irf/dSGL/r6Yv92zgEOnz2BQcRy7tZr3vtzIuPE1PPPs4xxz9Il8+OaHjNtrElVVVdz0++u56prL+GjZ1wweVoUsOIjG29i2bRNrVzfzwXtv8teF9xEOJJk9/QjOPOdUZh93CC63j47WKPPn/5VLLz+R0qIRRKU4T97/MKNHj8Zm8TBm7FDSxBFlP+loA257CetXr6ay3EtKtGLzlrNy2dc89fRdXHnp73j9nfs5bPZVWAQdyWJgsVj46suvqRlcyQv/eJFhtbswalwBblcBomAjHk8BOsFwK76CEqyKA9M0WLt2LaNGjUEVYsSiGg67B9PUiYfaWf31JgbVVGJzSLg9Dpw2H/vvfSjHHHMcR86aQVdnI6W1Q3D7ikgkI2ihTk486Rcseedxvly+jWgkSE1dBZddcT3/e/ddJOONNNS3s2njVo4+5kiWvbWYuro9aGpvYsgudTjsCrFIDLfDR8uWrQwaMY5zzjyLKy4+n1vm38Ydd92EIYi0bNzKnBNO4tW33uHxx59k+t6TKK8pBIsDTbcR6Gzi1effo6Lcw6jxY/B5i3A4FJoaN1I1aAibNzVSVORHSHexcUsrF136K5a8u5SNa9azdt0WqgaXMX73kaz64BOsMtTsvidbPvsMyeNi3N57YZgChqj1S55ki4rL1AVzyfKByPjvyL1v9qL2jHDqmS5blJ9pfhMGnEkrT/QMSe4u9z8V/yX3uH4/ZKq3Tt3Znd4fWt1pv73jKU9esoU15Mr/QwzoXMZhXyEc/W3rnu2SiVyGc2/oGRKSi0Zm2b2l+08WFv1FXyHYA2mrzP76IfLkk35nhQ4NhE6m0ZBv2w4k8iJfp9mO0OktXT4hpjsTvRlM/ZGjA2m3fGRPpmPy34VMPnamM61nCF0+fEiSxOChE3AWl/LSP+5hVGkpKd1ALihFMtKk0iEsFguKxUF7exBHgZvykkKqyzz84cZ5nHzySdQNHsS5552PKMnsu+/eFPq8rPp6HXWDK9BUEUk20bQk6CqmqZFKJ1GsLqwWBxgKVVU1FJfWEmhPYZetOB1+Pv/sCxx2hUCwBVWL4/P5MQz4avUXHDlrNu+88wGTJ09GsfkQsCDKBVx20VxsFgWnzYWAzG9+dQv33HcrsUQMr7uCeLKJZDqA1aEiKh4MNDASqIkAisVBOBwhEAgiiBKalkbTNQRRoMhfQTqtU1+/EX+hC11TsCh2AqEgqppAlgVMVETJRNBD2CwCui6SjsTo7NqEzeJAEU0a8aa6AAAgAElEQVQEUeewQ2Zx6s9PI55KIBgazfUt3HvXQsZOmgiSgmx1ICt23PYSZNGBYEqUl5Vz9Jzj0I0Uk/YcS2mZj4bGr6gbOoKfn3Uy5559CRMm7obX68Ljq8Dp96EaJh9+uIx4rIsP3l/BxIl7sWbNCkaOGoK/sIC6uqEccsgsGpqauOiC83jq6SdQbAqtHS1UVFWxauWXrF69jsFDKli3dgu1Q2vYdcQoBg8ZQnGpFwBZtBMJxbGIMoGuLhxOC6JsUlxWhWlqlJWUcvV1v+GMUy5lyetLmThhKAUeB6aeJBVL4XMVYrdbuWvBXcyefQSS6MDQRWx2K+l0EsMwKC0tR1NN2tvb8Hi8VFZW0tnZjsfuIxVLsm3r1xQXWbFYCqisrKWwsBgtLWDqIm+/8y6/v+5axk3eA19hMbLVhZ0k8265lan7TyeV1pi613hM4px17mWs2byeaftM4dhjjqS5cQNdnQlmHT6bm2/+AwgJyqvrOPfcC/nq84/Yb9o0HA4bdpudPSZO5uAZexFPx5g8aRwut4X99juEM846hYOmT6O6spbXXnuNQ2YcwsuvvsKM/SazesMmNMHOcUfPZp8pk9hz34PZ2tLOW6+/xOLFL3HXXXdyzJzZWCwiX3z+Ff5CL6ZFYdu2FibsNo5YqJVAoInSYi9FxW4ikQ462oMMHlyN7BRZv/ZLOjraGTV6VwTJgtGfQ4yyyI/e5tts804+UTK9vO01Xa45b8ems+/qpv/Juuh/yXU4/5wId8Qrnc8KUTYjKJ92yzXI8vnYMuPms51gmc3zk4tm9wmP3W3V10nG+dYls159pc+k35eC1NN4z9XPfa2a5LsC2K1c9cXPzlTq/p3fXz79nulV7LniuqPoD52dtSqXSaPnuOrPGM9nRbK3Z9ny9lVmPuNzICvLvTmM8nUm5VtWX+XuCPLxqGfLk+kU7EY+bZBNnmWLiMksM/N9f1bDdwTZomF+iD7KNcdl1rO3+StpdGG1FmIPaSy89Uqqho+gevQ4KivqECUIdIWxWT1gSsT1NHosQSzQwqcrtzB16lR2220M++23HyedcjKHzTyYxq2bsDl8WO0pCv1VmCSRUOno7EKUFSxWGzoWPv1wGX++8SZ++8creOv1L7jo4lOxSVZeXLyYtrYWjj76KCSbBYvFgqaaJBIpvKUlGKpIMh7G6bAgiBop3cBIp0gHkgSjKgVF5bhsVibssT/LPnsdm8sJpg1d1baPByGKiRXFIhCLdNHV2UZZSQ0Wi4Kq6qQN81vlW1VTaMkEsuTAW+CkpbUel9OHbLEiKlZS0QCKYsEwNRRFJhJsRTYl7J4KVn/5NbXDvPh8daQ1FZ0UKz/6kgcW/YMbb7uVQOsm3K4CNqxvYPDoISiKQiqVwul0kkoFiHS2kU6nKSofTSIepsDt4tWX3+D662/lnXdeRJK8hGP1BNoTuAsE0imN62+8jb/ceDPxeBy3vwBFT7Bm7RasNid/ufU6brjhBhrqGzn33At589132fD11wwfMQJDEjDSCaw2D5F4hHS8na42GDysBIvsoKOrHY/dieK0Iyk6LU0RIgGVyion4XAUJI1EKklZaSXPPP0CRx81g0hMwxTdrF+5gm0bm5h94l5IgotYPMLtt93DxRddjtMh8PIrb3HLn+dz4YUXsfvuu+F0y5SU+pBEhZtunM/ZZ5/NylWfMHHCPiiKjNWh0tyymjde+RKfezh/vf0uHnv6dhxOK7FYnHQ4xvMvvMxRc47FV+whoarYLA6+/nw1laUe2pq7KC2pIpgK40TDlDUKS0aDkuT9N94GU+XB+x7G4y3nq6++4m/33EpKDVBcMZwCtwddTeDwFqCmEyxdspQvV3zN3Euu5NUXFxMMhPnjLfN4d8liDBNeX/IaRx4zG7eo8OhDD3LA4dMp9igseWcFU/Y/kMZtm6mocmO1l3LMMafw8IJ5vL7kbcbtMZbKulI+/WA5f3/iWU444Xh00iRjOo/c/zDnn38astVg2LChbNxaz/ARozn62BN4cOHddAYa2bB5G6lgjOq6Iew38xAMYWD6WiZ2lkHXq05kfn9lNzOyKGveHCHR+RjhhvnPRa//dPxXnSq8o+gOM+4vug8AyjwIaEeR7UCgzHCInX1o0A+Bnc1jX+HBwE7ri53dp/+PHyd6XtPxU8BP4bv/sSOzDXfU8ZkLPxWH8L8a/ZGtDqEMIZ0mZDc4/cqbiIW6aFu5FNkqYRoyTqcbTY/T3rmVruYObrv1LjZs7eLhh+/n3nvvxmKxcs7ZFzB9+vTte0I1jYcefITCwkI6OwK0t7ezdeM2FNmOx12IiB1TENlzr/E89+zDjBy1L88+9SGBrjhp1cs+06Yw69hjSWoC7769Aru1EMMASRLQNBuioOAtcGEQJRw0iCdcnHPWL7F77Lzy9lI6ojG6whHeWLqISMjANCUEOYxBHItVIxBqwEzESUQSiBYP5TW7kkqlvnVyOFx2EAXiiRSK1bn9Ohg9STyqU+SvIa2HQTYwDIF0ClJJA5vVTTKhY3VXowlOYkmVwcN3AdlKLKkSjCZIaSlsVpl1q9eQSJqIVidRNca4ybvhsSkYyTiSrpIIBYgEwessxeOqoLWzA6vTQSScwmEr4fWlL5Aw45iWFEmtkbb2Zlpb2in0V3DH/JuwSxodTZuJhdtYcOc9jBhVi7/Ixh1//RvFhVUUFVbz1JPPoZlhyksLeeYfzxMIp9BRMQUJySLT2dXE5ZdfzpbNW1FVlVQ0zl0LFhAKhVA1ma2b2znvnLkkYm0UF3owjDTlFbX8Zf5DzJ93L+tWrcfvL+LjpStIJNcycc+RxE0bglKAbPdy3iUXkDASbN30NXffdRennnIe+0+dRFGJm4suupBQMIJhGDQ1tvPcsy9RW1vLzTf9ha6uIMFQB27XBIaP2pt9pk3ksefuQFQE4ukQNpcFTW3jlFOOo7CwkEQyhddmR0GnqtKHvbIGXXFitduoGVSGq7CKJW8v54vln2HEwkyeui977XcAs485jcl77s7jjy/i0UeeoLioghKvi85AG7LdRVNTE6IoMn36dM4++2w6wg1M2Xc0p5x2JK+9vRiEBJf98iqGDx1H3YhRbNm8mbrqKtweByENGppaWfLqywyqHUJ9wxa2rvuce+ffwJ9vuplEIoGkWAiEgry9dBluVxEPPfgEPqsEWoqfn3EGZ198Oes3NRNN6YzadU/aOzUeeexx7M5SFKGAQw4/Ebvio7mhEVWL/8DS5qeF/9c588dPt6VMEdMQMHrYnT3DrjJP98qFXPdK9vz19q63EMTeQv5ylZGN35xe6W/aINcFxt20u73s3f9mo5etrn2ht3aC79+JmtWj1IfSONCwy8wQ61y898zTs716W93tbztly9NzxSEbr73x3/OdruvfKoO5DLHMMvr6JrLl7clzNwzDoKGhIS86/S0r17vMNN191n0aZ3+gadp3+jnXtz1Q9PzWMlfXdmTrQm985cNzf9L0Z6z0RK5+AnLe4zoQXrP1U648ueqTz0o25JbNPZ/ls7+/vzKkp1e/P9FBmXl6m6eyjfme7ZWtP/PhOR+Zk+udTgoTGQWZhCxz5DlXUjl0IotuvYbOjZ9g6HFM0UFV+VAWLXqE5rZ6mlqaeXDhA8hCmssv/jVup87KL1bw1eerqRsyioeffomNWxPYHVaMtEp57WAM0aSrqwtZtOJQRDo6W+noivG3W//K+q1LSac0IslGzvrZyTRs2oDbYccqS3yx4lOWvv0eHl8RJjKCECYSCiKKVah6ilSoiQfuWciKT5fx4bvLqa7y8/lXX1NeUkc8HGXj118hpGNIkkg8lqK8ZFdEp4akeJHtSVRVQnF4CIXSYGroWho1EUXUk4TaG7FIbkxTp6OrHkFMYVG2HwqUToWx+31E1SQmaQQhhZGK4fT58BRYkC2NpJI20kIYSUwjajbKh9by92cfI9BcT2dzK6W+QvREgoSuI1usNG3ZxtKXXyMVDRGJh5FkDa9k45bf/5FIqJXJe9WwZeM6vEo57731HMWuGsbsPoqqulpSZhxTsGBa3AwdtRt6Os4FF82lqakBh83Bu299wLW/u4F1q9cx46AZiGmTLVs2Ew+2orY28skHa2jYtgG7TWJY3T7ce//dWG0uLArc8If5HHX0aTyx6GkikQjNzQ3cv/BOgu3N/O3OeSy462li6SSnHn8sTz52H/P/92+AwcGzprH3tGN5+NHXSQa62LZuFVZRwuv14iv04PaUcu4Fl/DiS4/z8Xsf0LxlNbMOP4m05OSLz1fwhz/8hnPPOYPyqjL8RX4QJKxWN7KiMmRYCbJFx2q1YqQ0/K5S4sEkpUP3IG7KSCLEOwIYmoFhmMQTSVZ/9AlHHHIkhpJEsCisWr+GJ/7+NKUVdhLJMOGudkwZdh1bw+57TsLjL+att97G7pCJhluwWDxs2rieS86/BDSDjRu+xmoDp9OJxe4gkUrj8bhZu2YTd8z/HdVVDl574hGKqysZN3VfPlr6Bk6HmwOmHUpx5RAOmzGBAl8lVUN2xV7g4Be/v4Z9p+3Bkw/fx0sPv8TpZ5/Fis/e48qrr8JbXcP4iWNJxlq4d8HN7LfvQSgWN4tfeIYCvwW3VWdL/efY7CaBls2IFiuDa4fx9jPPISFsn4d3cL4daN5+6UTfXIvz7a/nK9HcfnfrN++6r7jp3t+arcxM3jN/uq7/v7M6B36yocKG3iNeXfhuqF/3sn1PJSKfevYWMphPeFUu4yRbCFt/Qh9zGj30MFSyhCNkq3M2xSofJTqf+ma+yxY6ka2sfEM0cx2wlcuw6otez39/SPR0GvR8lku57n6f+axn3m50e+Pb2trw+/1ZHTH5tm8+73uGOCqK8u21DQNBX99Lf2h0dXVRWFg4ID76Qra+yMVrZh/3lidfAyZXmh0Nj8o21nKVkenk6Qu5wr+yfQs7wmNv7ddbCFp/6pApK3r2WzajdyD90tu4yjzYKB+5m41e99/5KELddczVhvk6Xvrqt97kXM//i3zjgDV1TNPk9t+eyII7l3L7g8+j+KwMKnIx57gTeOWV19BVjSVLX+bhB17g7oU3Mv+2BTzx+NMceugMXlmyhF133ZXPl3/C5o2baG7dRHlFES+++DIHTJ2OYrUCaVQ1QSSQxBQFEqkkNbW1bFm3khdffBOLzcqJZ5yOx27HLsPWLRtoad6K1+2ioLgCm68UPanRuLWN115+mdvv+gPvv7uGpoYVKAmNQbvvimLxAgbBUCcl5YOIRCIEg0EKnF6sTgHJJqJrEugigqnT2tSE21+GoSbB1MBUMU0nPr+Tdeu/oqa2ikhMJBaLUVZWRjqt4XY7SSSjSIJJZ2srxRW1KLJAy7Z1OL3DiKa7KHB6CQbaKSoqYsP6Lbz88qsceOBUtmzdwPDhI3E43bQ0NfP+ux9w7OxjKS73YbNbkESZ62+4meOPP45Nm9cxatRI3nnzPY475lgSiY34CiqImVbC4TBut5ubrpnPqWf9nPK6IhJaDI/kZMP6rVRXDuXKK37DcXOOxl/opKKyCMkh09rUSnVlDemkyrW/+x+SqkhRSTFXX/V7ln/0FhP32BUUmfaWVu6Y/wC6LvD58lU0t3zNE08sYOFdj3LwrKMZMnQ0Cx+4iT/dMI9UIkZaVykoKiAcjeKwKSiSg+bGJkpKK5Fk4Zs9lyaxcABvYSHNWxq5/i8L+fOfLuPu2x9k6rRJuHxu7DY38XiCiy6ayxOPP8/kSVNYsuQNisoc3xnXgrn971gshtWqEA6H8RcU0d7ejtvrwjS331db39hAaeEQtmz9lBFDR7F8xdcMqqohHOmgbnAV8aTAFys+Y/jgOlLxZk7++YXcefdjzLvtNn7xy7m89fp7GKk2Wjui/O6aXxNPhGhoaEaUHBQ4rKxatZqWzijLPn6PqhIfl119NaedeA5dgXYWPfYAVhus+rKZzZs30tC4lTlHn4Rpi9He1cgLT7zPqNE+mhtNYrEY4yfVsscek/nw7bd5672P0QSdmQdMx0gbeHyFfPzpMtau28hvrvk14WgARdMoKi/lvDPOYsbhP+OEE/Yn0Blk9uGn8f6aFVhsVgRRHMAt5vnLm4Gk71MnMnoYoELftkMu+yKXPmAYBoIoA/8dq7H/FYczmWbPQZN7NWsgq2P9ed6N/ihj+RjGme8yf9vr1fOk0N7L6U0BzKfsgbZjpqI6UKdALg9+vvX5jhLUx11bA11l6g39GRu5+Mn2rltJtdvt36649suLmAPZxkum8DQM49u90zuCbGOsL5o9+RMEYftl9TtQdm/PMpX/3r6HfO4P7s831R/DrDt9LudQtnoNpO96c8j1xlv384GsNg/EqZFPG3QjXyM+Uw71RjuzrpnOvL7K60+avtL2HG+CsP3wo77q0JtRGQqFsNvtvY6rfNsyrzSmiSBImKKEKSrstc8cmhq2cOypR1FQW46SVjnzrDMxDH37lSaJCIcfdiy+Ihsrv1zJhRdcyj+eepbzzz+d/abszWVXXIrb62TBgr8wYY/RlFf4Sadj+LxOUqpBZ6gTn8fN3IvnMuf4OTgcbiKRBvbZdxrFZX7KS/2Ew100NTXj9RVR4C9CFuzIspVgJEh9fT1zjjmZP/7xGo6eM42SkgpMI0iB04a1oAZJkhEEAcVqJRpL4vV6UKwSdoudpNaIqPtBMJAtMpoax2pRcHtLETCQJAO7XcZiURBEg6IiPzabDcXqxmq1IkkSDkVG1zUUmw3NAIwUit2JrpoUeBREuQBDSKHIViTZAFPBarXy2Ypl6IbMoTNnkEprtDW3cNWvfsvcC3+JKNv5x1PPUFVditPlYPSuYyjweamqHkRhUTGjR++CzW5ha8MmnNYKDp05G8GUSSd1pkydQtWgEpLxJLFgmnAwzJ/+cBt//OOfuGfhncgWkeLSIrw+L62NQUxNo6K0kKeefIiLL56Lz1/GnOOPIByz8Pbri6kbVIqnrBQZgU+Xf0FjYwPXXn8NdcOqOXD6NA494kiKK2p47403OfmEI1n80jtcf911zDn+Z7S0tqClNaJBE81oo8BVxoZtjbS1tuGyWQkGulAFk5Qap72pneWfreagAyazy4jdGDyiDreniLaONmpqazhwyjQ2rFvDGaf9nKOOPJw5c45GsVhYumQJXo8HUZRIpVI4HA7UeIhUKkEgGCatGogSeDweDMPA7raxbVMDTptOIhyiwO/CZrdRWOzHFFWaGkJEu7oorSzB6XZz1OyjmTPneObfNo9UOsatf7yZs847lcMOOwZRgnA4RG3NUFwFhaQTKZ548hkeWvQkU6bszemn/xxTlNi8uROHIrL7uF0wFYXyilqqasqprKpl6RuvM27iJJa+tYx33nqXc884i9audk6beyrukkL+8cjjjB45gpGjduWDjz7jo3c/YMb0aYgWnW31TUzYfR/GjtuNxS8/zfjxE7G53Rx66GH4C/3YLA6aG9soKSli9332RrLImL3IroFiIHIzn3ng2zw9AlYFsW+9szd9NZsxKwgCJsJPbkvTQNGfw5l+koarruvfrjZuV9y/68nI99j9gSDXAO+P4Zkv/VyK17eem4wPpycyr6zJBVmW8zK6u0NSe6KnIpYZVpatTpnoqcD3doLxzlBy+2r/XGGEuXjO9jzTsPmhxmBP9MfY68/4y2Uk93yXq88FEwS2/0x6N256M6Ry0RS2vxyw0ZWrjMxnvfKT8S7TkM40FPoqc0fQk54kSTQ2NuLxeL6XZmdHFwx0PPX2vQ+kjL7K/qHL6a3MvuTBDy0jshnb2eawXHxnjuVu2O32XsvcUV6/R2+7ZvhNGkjJBuMqZdZ++iFD60aQMgSEZIjNG5qZe8kZjB8/G6fNjt8VobR8KGedeTadnRGu+OUlFPl8jBg2iHQyzIR99sHv9bL681XYTSuhUAt2bxEOqwNZtDDzsFkEw510hbfw6fubePyRV9hzz33xOuKougtPsQubqJA0Czj97Is5+OAjScYFCgorOeKYg/CVFmGx1+B1+mhr3UooWUgoGMMma4QDq9DDLizOQtJqDKfTQ8pI0tQYw+t1EAq04vb6SaVAw0AwwnR1hkindRSriGGRMHQHsmQnnVKJpWWsVgNJ0DFUnbQuIEsOZAN03YbDrmOaaRKaFUHSscgKpmCi2Lxs3rgVqyQyfMhgxoypZZ+9ZjHnhJMZMriWM888m63b6rnxTzcx86hZjBy9K+s2bsLrc2IKBhIgiwJ/f+QpKmr8+EvKwepkxvRZ2G0WVn3xOROnTCQa1pgz6yTioQivvvwKXaFObvzzjVRVVyF7bbj9HgRNIxjqpKsrhsNlZ9CQEnwFlVRWVhIMtvHym4s5+fifsXbNJsqqBtGybS2HzZnBlKkHUlRWRN2wanx+L6FAAkNQUY0QgwfXUez3c8ChJ3H5RZdzyLSJiC4Hd/z5USZOHskb73zEoJpadhlaxt0L/8b4vadgE1K888I77DF5ElN2n4xAmFdff4cJu48lnozgtVuw2vxIDg//u+B29t9vAldccQFqOkJHZ4jdJ+6J3eOktbmZQq8P2UwS6NqKx1OG7PTiLrbhEGTSCTA0jWB7CzXVleiahClq+EtLkCx2VFMgHE3w11sXsP+eu1A9eBdeXPwmY3bbhdNOOwUBmTNPO53H/v4QI4aPpaW9FROJlZ+v54hDjubgQ6Yx//Y7+e3//B6H3cHtd97L9Ol78MYLbzJzzlHc8+Ai/EU1FBdX8MCdi9jW2ILLBeu2rWbChAl43H4QrfgrIB1ro66qnGRMpXVbO4WlldQNKmfKlEnossSosWPR1AThRIxJU/fA1NLUlVTT3tpJa0cnrcF6KmprCQfaGbPbGDxFJWzZsIGy2nIkwYpJ/ock9iVD8qXxvTlRkL5RpgUwe2ocAqbw3f9vDws2QTCzytRsvPXFS6a8Nc0fZiHlx4j+GK7/EevP2ZTIn0oIdH+QrV65BnU+4WCGYRCPx/P6KLJ5fX4IZfjHhP8WgfFD4r+tDf/ddTUMg6qqqn9JWf+pcnZn41/lxMoXmf2WTz/2x/n6r4AiCtSMn4qvtJyXH12ArKbBXcyvrrma3//mWi6/7BSa2taDVERpmY9HFv2NL1ctQbGarF7zFWtWb+Bvdz2EbDrp7AgzcfJEqodUojjcGIaxfYVMTRIIBCj0VWCViyitlvjllaewbt1HtHRuJhpvRdcCpLR2vI40I4YUUVZq59xzTuT42UcwqKyUeDDACT+bw7IPP8br8VE3pJZBgypIptN4vOWkjCRWm4AgaqhaHDMdxWW3kdLBXVxBIq5i6CKioGBz+SivHoSroBDZ5sEiu5BkAUFU6ehsxiZAKhamo7WJeCKIzS6TSIZoa2/EoijEkylMYft5CLIsE4lE0HWddCxMXV0FDp+D0poqPvrkCyZPmohkJLnttttpbWvhzjvv4HfX/JZRI2tRU1EG11ZgtzuwWm0oipWuzgDPv/AimCKCKYJuMGXfPSktLeW5F57nqiuvwmpR+PVvfsUhM2dw0PQDuHXezdQMqkDXNKyGAIk0Tz76GBUVFYwdOxqfr4DGhlZS6SRtbW14PAXMPuJQAsE2yquKaW9toKpyNIpYjE0qxGYTKPR5aWlqJJ2K0dnWyeTJk0lrBm6vh58dfwzLPn6fxuYWPvpwBXOOn02Bt4iJEyeyccNaEkk464yLKHAUsa1+E9OmH8zGTfW8/fkqlMIqXn73U1rigGnhg/c/pb6+EdlIcuMfbkCxu0nqEk5nMYm4Rv22zYikqBo0CF20oMp2KmtHIsh2Ljj7QqSUyIcffkh9/VZefvllsDiJpU1C8RTRlMGKTz7GUNOk4xGK/W6uv/5aKiqrCQQ6ee/9pbS2thIMBnE4Fa6++mrWrVvH8uXLOXbObBRFwutz8u6HS3j4vodo2LqJ9patHDFzf4468mCefPwVZhx6IE8++ij7TJqIRUizZuUy2rs2MvWAvbjjjjuYe+EFuJxWqipLOP+80xlSuwfTpx3LQ/c/C4abG/50M5og8fTzL7Bh7UYOO/RIigpL+cvNtzF66HCKvT68fh/vf/YJJVXVtDS2UF1SjdflRlEUGrfVI5gmN/7pNhwWB7lO3v134t8p635s8vbHhp/cHtdvNy8b2w0pSZK2b4rugWyrlj9EWN4PiWzlfc9o7bHHtXsTeM8V2Wx5eiISiZBOpyksLPw23w9Vz1yroP1Brj2umYphrhXfngpaJj/Z2qnnanJ32+TyqGUbcz356/nvzr4jsS/0tsqciWz7MPJdjf4nkR5KcY4s+Y6Db9s7g9VcdLMhW79lcwD1J0woW9v11UYD7fMd3eP6rzacMsdO5l73gTi8uul0j8/MvZy5kCtNtv7vyV9/+epJT5KknHvxc8nYH9s83JPH/s4L2b6jnTUPd0MyDRKiDVe6k3XLXqOxQ2PMlEOwKgKkZT5ctpiy0kFs25xk3fpNHHvckQTDrdTU+LFYFBrruwh0xbjiV1fy0MN3YJoxdF2jqmYIrY2NeL2FWCQN3bBy110Pcc5552Jx6JgpAUGHdVtWEg9ZGD9xCF2BAHahk65AjHAsjcPpocBdRmNjI36/l6tvuJGjZx7PjbdcyZL3PkOLdyGIEtFIkliqk0E1o+gK1mOxWHFKgOjGUBwIFgGLDpgysXgIu8ODpie3h3kjIUkW1q37gkFVxdRv3UaRvw7ZEsPjsJPUdAzJiqLYkXQNFRumqVLfsJWy0gpUVf12e4mQSrG5YSO+omoCgQTPP7WIUUPH8cLzD/Hn2++lsamBWCzCmDFjEKQkFtlKOp2msTVARUUFKz5ezuDaOmx2F4IcwyLJ/PnmBZx19mls3VJPaXkZ0XCc8vIykukEBQV+Vq36gqFDhmAYBu0dQcqKCrnud//D3LkXUD64BlE0UVUVi0WhuWkrdbW70NbWQioRxldShGEYfPTBh5QU+SkoLuO+u+/n9Ka4ci8AACAASURBVDNPpaKiklAgTDwa5r33P2Pm4QdgscooFifNTZ343TaSehKnZxhvvrqIfadMw5AlSAWZefgJnH3mWWAmOHLOQQgUoKY07rjldxxw0D6kEwWs3vAZVmcZjyx8kD//9S9sXL2aQw+bSVF5MUlN5eXnXueII45AN8IIYhrFWkRCNRAsOu3bGgl0Rehs72LZh+/zq19fiiAIxGMp3nznI3afMJbKylJUVUdW47S2d2FIBj6/m00buxhaV4ZqmigWmXRK5Ze//CW3zZ9HIqmi62ki4SS+wiISiQSiaWCoGj8/6Rye+sdjfPDhEhoat3LUMXM44ZjzefKZu0gmUxiqRCjQiSSlqBtSS3N7iisvu5K5F53DzJkzWbnqSxRFojMQRY12MWToUCSHi3k3L+AX/8feeYdJVZ1//HPL9L69F2DpRVEQFCmioihiAVvU2GtsiSb2aKL+YuwF7L2hYkWKKGqUXqUjne1tdnZ6vff+/iCLyzjbYE0s+T7PPjsz95T3tPe+7Zzzl5v5av6n9O3Rl1vv+hvuRg+PP3w/S5Z8y6TJp5CWn0NVQx3fLVvH0088zWsvvYA9x8pf//wnzjrrLAxmB3/4wy288/5rFPYuBlH3I77RVV5x0HtBhVYydQcyhyC0kifboetA3r37ZEZ+Ozdc/Cb2uKKJrUKCOz4g5WDxc1Bcf5Smdaiw8EO+zgpBRqMRWZb37Xf6KQXc7giTa0+Aam/M2wq77git9wu2/G8rDL29+lvy/LesZ90RMtkl2ltPvzaytHWPcJt0dfhDO3k7wQ8OlmdomvYf34vSWTr/0y++FgWtLYPHwYSSdlUg6GxdBzP+qdZ7W4aNn5v3tS2k4n1dRaooqO5ru4ReixGTdFiL+2MQIiyf9yHOtDQ217g5pN+hVGzZzqJvv+LDeZ9y5KgRnHLqydx4ww3E4hrz5s3nvvvv5bVXXiavIJdAMERGdjGhSBi7UYco6SnfsxODycKIkcNRiaBJNsKhJrZv3UDP/n35fM6/6N0zB6PNQNjXRHZ+CUZbGgabCyUBF154Nb+/6GKGDz+U/mVDSMuwUdq/D011e7DaXVgs+dgyVHSCE1FU0etMIOsRJROocdSoj0DQh94g09zcgMviQhQiaEoEEiKaFCeRCNDU6KWkqA96swtNTBAIhBCQ0RmsqKqEllBBJyGKBhxOB2gaRqMRnU5HPB4nEhcxGGR2bani6cdf5fRJY3j22Ve4596/8u3CpfQf0J+8vGyCIR9KIoGgCdRUN/DGW+8yZMihSEgcOfIoho08ktzsNKwmCzkZBfi89Zw0eTJ9+w1kwZyvmXDCGDQ5wUezPiU9PY91323EarShmXWo8TiD+/cnqzAPQdzrRZZEHfGYgN2hJxrR0On0/PlPN3PY8BFYHS5KcgpxpGUiCVZERcCZno7HHeTB+5/g+puupXdpGWV9emKyWgjHFJ6d/iSDB/XBYLazaOE2+g9wcMapF/L7iy/ilWef4Kpr/sJxE47EZgqRllmKYDSR5jJyxBGHkFtQyDcLN3HeRedSUlzCRb+/iOwCB8WlQzh50iR+d+5ZGCWN/NIy3njtTawmCxmuNMJRhT07NpNhl4j7BBoaaxg64hB6D+6Pw2xm46a1pKdnUJBTiNGgoZdVQv4gcz77FxVVDQw4dDANTW4cFjtz588lzWXHZjciiQaOOuoobHY9KiLReJicnDx27W7krr/+jXFjxmJ32DntrCnoTEZuveNvnHbGuWSnZzJoUH8++/xrhh05EIczjfr6ZgoLe9HkbsRqz+SjDz6kZ0k/3p/5AevXf8e4caN4553PyHC6qK6uwepI57DBA1ixfAk9S3JZvmQpg4YM4dprryEn005aQR5FOXn4m73MnTsXb72XiRMnk1NcRDjUzNFHDCc/L593ZrzH+OOOBiVIjz790IQftiJ1Ft0uW7Xac9eRzNG6uvZqPji6fjse166ECv/iPK4/7NtMbYlIFm46a5lvQUfW5ba8aQdqXf4RtNb7Vtv2BrZVZzJdyZ+ThYkDQao2dySUtPaYHKzA2VXvWFv0pPrcHeiIphYm25b3uOX/wQqLHaEr7e6qR749j1ZX0Fb6VHOprTpTlXewHqTWv7WMoyRJKaM82mt7V/hTVzyvbSlOB4oDHb/OXjXTGu2NUev10dl+a1lv7a357jRwJit7nW17Z9N1dS225Pmp3/Vd8SS35oGtx/tAaRQEAYMWZO6bLyBbMhl4xInobSqB+hD1tXU4nJn4Iz4qd+5g8OBDOGToSKz2dC674Az6DRjKHXfeybeLv0TUhfDVNyDK4MpIp7KigeysPExmGVW0owkhfN4A9Q21lBYVYTHqaKyrJhH14UjLpckbweZI46XnXmfcyP68/tY7rNi0jrtvnU7/wXayXb2od+8gqjqQ9GEkxUB6ThbRaJhYLILZYsTT5MVqdaIkNIwWHaIgo2gBouE4ZiWALAnUhmVMFtu+A7ISiQQBtwedJGNyOCAeobGxHqfTiV5vBJ2AqsisXbeCgb2HYDAKxONxXnnpHc694Pdc/PvLeO6Zx1HUAJJsZu13KyktziOtqAc6SUBSRTQFwokQDz3wCPfecxdz586mqGAQgVAVZrMdd2OUPn0KCfndPPiPB7ngkutIy9CRnVXMptVb2L57PcefdCJnnP57+vTswcRJJzNqzOHo1QTl1bvoVdYHVTPh9blxOByEQhGee/YlbvjzTdTWVWK26HGY0jCZDGzdtoWiogLCoTgmk4X33/+Qc888g1WrVuFMT6O0V08W/2sVr732Gunp6aSnp3P1tRcjWoxIgoCv0ovHV4NklCgo6U3UV4uqGVi/fgeyzsTQ4YMxG1T8/nokzYi72Y3Rls66dVsZPfIwdm9axfZqDw6Hi8yMNARBIzs3h507N/DNgmXccM2NbNuzgHpvBueddT7fLvyUdEcGp005g5kfvI8GBINhjh13DF8sWIAjzUooEERNaMiCTFiV2bZ5JYcePgTJZEKK69m6fhnpeXmk5xSQSIDBYCDodyMoAqtXbSA3L50e/fvQVF5BIhTBnl9Aza4N9Bh0BNGowOJvviUr24HFbGTBR18xfsJR5JYUoWoCu7bs5tvFX9Gn90CeeXYa06c9TigUorCwkBUrVlCY35uZH7zOqFFHoqkSJT2KefHFF7n00kupq4tSUGwlrgSIR/WcO/Uc/vngIxT2zKXJU8clU66gV1kpk886lSED+/HGG69x44038thjT3DxBRdRXVOBMTODoYceTlwW0AQQtR+/c1JF8qR6FovF0Ov1+6VNfgfs4zPJRsfW35OumeyKx7VdtHF95X5JWugThf94hN5/C13xuP6qFNe2wjR/qYprSwj0gXoZkz935VqFdkn8LyquyULbL1Fxbc+TcbBC3G9ZcW1vDRwMHf9TXA9M4T/Qun8timtyO1rmSSqDa2cP02sp76fc1nGg6Mz6a502FS/vyh2/yXUZJBElEeGN155g4cdr+fsDt7O+uoJVX6/lbw/8gzWr1yDrDfi9zSz4bA4XnX8+1193E6edcSYjjhqOySoRFWKogRjNgQhqvJ6CvJ40NflwuixEohI6QwIQ0JstAAT8Xmw2G0ZRY8XSRfQuKSIS8iM78lGiARIJlY3bKrCanLibyhkzajSiEuarxZs4Zvwwwt449txsdu3aQU5OFiajE0FUUdUY0VgIo6BDlSxIJhMBdzmSGkc2moibMtAlwgiCsO8e75DXj14nEdUULDodAX8Ei8VCOOKn3uNGwIDDaSLdnobb7cZqsXPRRZfx8vPTCcU0kIxEYlFsuihxDZwZmYTCXkhICOh48YXnOO/8i/ng/VkUFRRQXGonJ6sH329fRkZaPpdedg0fffgeq1etIx6GmR/O5C+3XUO6K4+YoqLXK8RCYWyGNGobG1E0gQ2bVzNiWG+MJgv1jX4MBgc5GSbiMaitraewMJ+AqqHX7z1EMuyNI8kikUiIzMx0qiu9HHf8OMaMHcXVF19AUVERskFPAo0mbz3RiMr0aS9wxPBRnDJxFM6cTNSEQrM3hNluwGDQEVcSVG4pJxiO43Bm88ST0xjYrzd9B5Ux8NAB2I1Gmprc2OwuImENs1kkEfCQkE3EZAuBrYtorq/ltqfeZvqj0/jy8y/Iy8pg8OEubGlD0BSRcMSD0WojEY3x6QcfMW7sWJyZWQS9Pu7461387b57ycxIIxIKs3vndnoNHEhd5U7yCnKJCxJawkAi4CbNZcPnqaeyppmbbrubmR+/jxLyoql6fL4AwVgjRlHC1+ShZ/9DESJ+FNnOww89zueffkplUzW7du2isbyePTu+o3TAECSDgxeff5lLLj2PmupGGt11lBRm4HK5iMViqKqKL6yQ4TBhFGXmfjKXoUcczp7yHZiMNl59eRZ5hWbGjBtGXl4eC+Z8zYknnYKoF/AHPDgs2axdt4aMgjwiQR8OexoGg57yit1EExqD+/Zm/bpNZBcVMWjYUBLiwSmuraM7FOUHGbq17LuPJyfxmp+L4rqPPrqmv/yS8atWXFuu39A04ScLgevohZsqbXtChKqq+4Tajitv1aYublhPFS5xoApaMmOQZXnffZ0HK8QmI5Vg31VBN7l/Wz4nL/r2GF13oS3au6JIHaji2hUPV1eV5K7Q1N18pbvn3MEiuX0t6yX5c6q0HaGtfu6MQteVMjsyNLVO05Hy3vq3VOV2x7ilUgbbQ2fa116eg1EQU/V36znRUm5yHck8sLvW0YHy1gNBe1EQHaVvK09nylH/fQqoGpORItv59svXeeu1rdz69zvwNAfJKcxmyOBhXH/9tZw1ZTJOh4UxR42j34ChqJrGi688QzxUT9jTSENDGFtWIU9Pf4Hq6noaGmr4dN571DXsJjcnn4aGBjKyMokpCmaLjURMgXiQiL8eSY0hO3N44B9PcOG555KV35cx4wbz9YLFxGNu9KKE2y+RmW3EKJmJiXpCoQA6nYRBbyMSDaGqMWSdSNhbjtWZg6ozICZkorEw1dXVFJf0QtB+mEeapmHU6RFIEBcTaNE4Rr2LRCKBzpAgFEuQiIvoDSAkFNB0uN1ejEY9sqRgMJl5+dX3+OrLxTz+2F3YHQ4SgkY82IjJkMn27ZX06lPCU08+RLMnzLDhIzj+2LGoikQkXoWm2GhsbKTZ56ZHz3488djz/PGGq0AMYjGn8ca7Mzj/3N+xecNGivILeOutN/js83/x1ow3aWwsJxyKYbaloTfpMemi+L0an3/+OedfcCY1bjcWixWzyYpeMCAIGu6mBtLTXSxbsg5ZJ9G/f2987noMJiMNbjfFpSWYbXr8vjCSaGTXzgpcNh05RQWEAkHQy+hlAygqkhSnocpDQ5OHPn0HEovH+XzeXHr17U1mdi5Ol5Wg34PH3YQsmLDYZGprq3E605BsGdSu/5YBvfpQOvxEVi5eyl13/oUzTjmdzFyV9Nw+FBX3QFVV6urqsJjN7N65C6fNjs3pornBzZq131FQ2otBA/uz9fv1DBrQF0WvJxHyoyIgmyxEvE0407OoraokzWpENtjxBCKYHRaqd21HkgScjkw0TcJiNNDsCbF23TaGHVHE5q17KOvZm8bKciwuB470DIwyxEJB6j0x0jNyMcpxKuvKMZsciJJGRkYGXq8Xs9lMMBhEECX8Hjeb128iFtSwuSxEol4+m/c1X3/5PcNHDOGmm6/BYpOxygorV2/A7WmiR69i0tNykCQd6fn5NNbvZNmSDRQXF5KWYcJizQBBIVjvZeGiJZw49TRySov28oWktd+aH6ZSYls+t3xPJBL7KbGCICDLcjLz2f/rfkyn64prstycku+2obim5Pfiz0Pe+U+gK4rrb2PX788Yqqp26gTg/zZaLG8/R1pTKa2dNWr8XNt0oOhKe1os9f/DzwetPbi/JnTXOvslz9lfG6/5T6GFn7c37oIGopZA1qJg3UnE0otjJ1zIKUd5iSf8FBZloWphtqxZynWXX4LeYEAwmpk3/0MeeeSfrFm9gSNHTOC5N79CdhVz16NPY3FEGTAkj+NOOIxnX/wHDz34ANmZGTR73MQDjRiEOBU7tqLGIgiiHkXUExGMRPQ2FEXjimv+jMORi5IQWbLsS1RFYuXqRQQTETLyskhIKuu2bEJRFHQ6HaFQiITqJx4PI8tGDDonzrQy/B6BSEMMVdZjMtvp36sUtXEnRp0eUQMtoSAhUFNTg6aphCM+JElD0wSqqmoIhXx7FVidDkVRqG+oZu3a9eh1ez2OimzE423i6OFDmfHyC1jSs4kkIjjMMn53LSF/gNNPO5NoIs4Xs5cR8Oq45+7pPPB/TxAKJjCZrOhlGz5vmEMOGUooGuLiqy/ihhtuwGQysHHjeiYcfRxvvzaTBx+dTtxopP+APtx++60sXLiQjeuqmP3pUsaNmchnn82lrtlLdmEZZ5xzEVGBvSHCDgeCIOAPNBKKeLA7DHh99fTul8PLr0xHQyGzMBe9w0JBWQk6u5lYzEQsIRBNRMkvyUSTTdR5g2iyid3bdjGk3zDWLF2HXpFxuiyU9shj9pyZGM0aY04cSVmvIm654QYCwSg6o4GePUopLS7E5XLQr/9AGhrq0EX8TDz7Op75YCk2vZ1dezbw8CP3cuSRRzJ40DD0OoHGpho2b9/OnJkfsmLxUnr16U1GYR6JaIxpTz5JmtOF0Whi8eKl3HTTTWz5fhORcAK9zoKgGUEz4anZTjAax5lVRGNcT1Q040hLJx4OEQ5Cbl4Wbk81ft9OAuFK9NYoNTXfM/vLzynp1xu7y07/If3RFIVwOIygU4kbbNR7gjTUVGMhgFmKUr5tHWrYTVNTgLVrNxOLQTiskPDHePzRJ9myrZxBw49m5dqtZBeVkJnXE0Oajz/cfCFZRS6MDh0zP/6YRo+XUeOOo0//Q4nGNebN/5rPP19EvbuOo8eMIys3D6vDwtyPPsEfDJBbXMikEyeyc8cOYrFYlyK72rtKsSWCo4X3/tT8t60DRDuD/70bOo9fmAQgIqADTbefdzGVp7EraLHKHIznLbmM1n+pXP3JlqB9v6MgiNq+/a375VEFNFXYa7FJYbVpTX/rRdtWXe2hdbhbSxsOtp9b09kW3e391l7a1s9ah4gkh56lakOq7wfj6Uimsb151V47W39uy4uV/HcgdHa3F7W1N6k9mruC7pp7B4t9/dWyBv/91xKKBD9eO22hLc9pe2HyyWV3dvw6s5Zaf5Zleb+6UoXbthcW2xbtbdGSip7WvyWv8c60O1U/tT41O9Vc7My66yzamrOty22vju7ytnaE7mhnKn53sPS39F9rwTT5Lul9fSxqCJKIKkoIiSKMughhvZMJ171M7Y417F6zCC0cRjZJKGICpzOdU06aQn1DiNtuu4NBg3oy7an7GNg7h2PGnswzTz3K2VOv5NTJU8nKyuKpJ17iovMvoWpPI7IgMuODTwlEIhSXFOBt8qDFYwR9flzODFzObELNAXIceqKql0h8C6piweevI+bxY3eUIGoR4n6VHsVleBpqMRtUzHoZNAlZlpFlqKsvp7GhDrNFQGeKoyNCbeVuVE3CkFZIVV0FMTWCbBRJECMnP4/6xgYMRheqaCAuK6Rluwh4wpj0BqJhLwZRQqe3sGLJUip37yEuCNxx211s2lRFTo9MPDEfl/3uYjatLsfriVHVpCOc0PjyXx8ja1EeevzvXPOHc3jhufv5821/IK650ZmdGDOs9B5cgmwSiQXdzHl1OoP6DyQW1ejdtwyT1cQ5553I2tUbsBoNDD58KMUlheRl5tGrdxnnnX8Gr770MOecMoHNS9cy44WHUH2VnDb2FMo3V1C3Zzv+xkoMVguqKBOOq0iymab6BiaMP514XKTZFyXojrN24XrqK/cQ8nmx2dPRS0Z2rt3AxBMn0VztYd6s+ehEiS8+n0deYT6btm9n9mcLUTUL1TVNhIJxnpv2AnX1zTz57JNsWbmaj2Z8QiCq4UnECMUltm4r5/ln3yASU7n+mks564wTeXPGy9gtTnR6J4pe4p+Pv8afrrqbtd9VMOmUKfTsN4Rjj5/Ia6+8iBrz4sq0MvG0SQw57HBKstOo2r6Ld9/+gOKevaivqUWToKnZTSwYIrfPMMySkUSomUybiai/GUGJgBbBmWYgrllwpuVSVNwTqyUdvWDj/PMuYtd328h22TAYZRqbIuQUZ5FIeJFFK7IQItdp4//uf5Bmg40P520jEExQVNQfsy7A6JG9qS3fgBhLsHv3TgryynDZ07nxhkt54403SIRlehVn8OL0F7EZTET9QWLBOK7MIpauWAeaTFNTE06XlVEjD2Hak4/Qp+gQnn/mKb5bvRxRsHDKKccz+8O51NdWUNlQQbZVz/LP50MMNCCGigaIWurD/jp617bm96mMX53hU/v4DCoCKqKggaaApv1wr3yr8gRB2Cert775Y19dgrr/X6t6EPf+acKPPbz/ww/4xYQKx+NxTVX3Km8ggKD8ZIJse33SliLaXWg3vE1NUrDE1Pe6wsFZfvarsw2BN1UfHIgy0lFdHaXpSp3tGRA6i44E9M7k7+4Q687WmWydTDZydPWk345oa1FgU+3t6+r6aU/p6WhOdHYttDXXWgwh+z1PNhwJaruW31Tlp0rTFbS3XrqLP6UKFRaEvYfBJCsUHY3NwXhK21N2W9PZVbTXX23Nh5b51NX3QPL6aytNd6L1Gm9t6D2Y8g7kwK0WdGYNtO7nlu9tjdMP31utb83w7+97hUQVhS3LV7B5zXeMP/EEjEYjgk7PkqXLkVQr/lAFffsMYs+OEEZLmGVLV3LkUUfgcmZhtdrRNI1QKMCu8m288eosnnz6LnyNjWRm2dm1Zws62YDZlkFauvPfkYcqYX+I6moPBUVFBLQYDpOeoMfD0m8WMvTYU8lLN9NUU0PIF8aS4aTZ24TTkUkiEcNoNBKPxxFFEafTiSzLRCIRZJMBJRbD29yILAlIxr20xeNxbDYb/mYvWiKBJS0TYmE0nXFvn8cjGGRIaBK+SByzAUTJRiIh0+Rt4t1XZnDVVVehSjV4PXEsZgeBUA1ZGT35ww038vijD1JfV4nNasZsc9DQ0MB9993HtKeeJhjyYTLK1Nd5yLDl4An7cDhsRIIBFEnCkWYhEApj0Iz4I/UEfRYMVg2b0Uqz28MjDz3KxRefTZ8+ZTQ2NaLX63GmuYgnwqiKiM8bxV3dSF6Bi3A4TDgYJLewmGnPPM/V191AIhRk/NgJPPrYQxxy6EBWL1/G0MGD0HQSVU319OnZn5UrltCjRx52Wxqrl1dRXrmJl197jPfe+QS93owgKCz7di1vvf0qN918Ldf84QpeePFjHnnkIQJBH5s2rOXJadNwe5oYN24cxcWlbFy/gZA/gGgX8Lm9pFmd3Hj9H6mpq+bBhx8lOzePjz+ZxYi+PTj3yhv5yx13U5CZgc1upLgkm0g0SEFBAaoiEY0oiPq9oa2bNmwmOzuXhroGQMHdVMPoMUcjmXS8+fJ7yKLEOedNQVVEamoryM5xImAgoki4nFbc9VWYjBaiEZV5877g5PFHUxdwU1rWm9EjjuHTD19AMGXQ3BBixaqV6IHDhh2OMy+X1594hhNPOZnM7DRk0UBDQwPfrVlLMBhk1HGjkTQZQYnibtjDgs/W0LNXMf5gHa7cHow4YjhPP/4QU08/Fasrk/fff5+SkhLGjBmDoiisXbseEFESzThduRQV96LB7WfuZzNZuXIdk48fSa/+vbGbTAT8UaKqiVHjD0czGFBVAVHRiGk/XHvZGV7Wwhvi8TjAvjDhFr4tCEKnQoX3ybtJ1262h/1kdeHHVwzun7iVXNQSTdyJd8WvDf8LFf4fusXi/VOjq16jg62rOxT5n4vnr7No8Ty3h4P13LaH7lTU28JPRfv/kBr/iTH9OePnzld/qeiudSwRRUBBE1QUAbSExOARR3PSmWezc1sFq1esp2dpLwYNGIjNAWOOPpH58xbxt3tvQScJXHLxeTQ3NfLgw3/jpZee45RTTmbTllXk5Bbw+VcfEQwqZBaUsG1PHbIpm2df/ISPP5hFPBJnzcrVqHEVg97M7p21VFd5kBUXJESqa+v55NvVVG+vZOPGjdjSHTjz0qlvqCUzMxNJNGAxm6itqUYUwKDXkUjEURQNnWwhHpVBM2A02FAVEb1ej06nw+l07j2cKRCgqrwCQZWpq6omFAgiyjLhRAx0JiSdDptBJtpcB2oYSVZxGPS88sqzxGMRDLKF2qomQqEQuTk9SCgRnnzqcXQ6idy8bMxmI5pgwGSx8cS0p2hs8GPQW4mGE5gkA9/8aw0vv/Aehw8dw9/veBg1FkZUFdR4gqb6Rp5/6mk+fG8mH743E1kv4cp0cu0NVzBv7vv4A02kZ2Zgc6WT0Iw0eWNIehvRhMRf77qfme99gtcT5bo/3sH27ZU8/eTTlG/djijpePu9l8nNcSAa9Rw+8nDiYgyjzUleUSGNdbX06dlzr/eysZbCQhOLv13EA/94kIqKGj75eC5Ll3xHcVk+V19/FVank1vvuId/fT2P22/7I5JmYN78+ehlmX5lvamrqqZHSQ8e/udDLF+6nJCnGZ+nidnz5/DPxx5izpw5RCIR8vLyCAQC+H0b+OKzT1j0zQpqaup45JFHsdkcZGRk4ff7CYVC6PV6fn/+xYT8zWxevxgl1ERuthOdqGf9mu/xewIk4hInn3wKo8ccSVNTE42NjbzxxhuoqkrI20hTXQUhTx2KIiGIOhqb3IwbPxa900ZOQT6rly7nd6dNQVYVyivrOfGEU7nnrodZu3Yt/oAbAT2iTuPNd95hxhvPk0jomDvnGwxGK0OH96GpsQK9QWDOF/PJ79WbseOPxGA1UdngZdSIIVSX72JPRR3+qIyvuZkzp07mTzdey6yPZiHqVCwuGwP6l1BRUYHFaiCeCLHgy0/53Vlncsstt3HcSWcgtuYY9AAAIABJREFUCXY++nA2Rp1MbqaVWe/NQIuGiIUjRKPxlGu9M7KjTqdDp9P9Tz74FeEX43GNxRJaa8UjVehad6OrZR+sQNdeSGhKeto5nawl1DhVH6XyonTk0egqUtXxU6Az5bYVrtfe958TutKXyR6uVO1KPpE3OU/rdXagnsCOwh/bm5edqbuznsW2+i5VX7ZFd+two2S0LudgIjG6a/51t6e1vfKT07R8b8tAdCAW5M60p7V3v63nLXR1ZMnu7LzsDN9pK2S+LY/tgVxx0/pwnta0dmbtdAXJXtDk3ztDa2fLTva8JqOzJ/+37pOWPHpNR0NdNTs3r6M4LxvVZMagt7J1WzlmiwtRa8biyOPCc8/lqkt/x4rl6xh66OH0G1DCxp3lHDZ0KI888CB/uffv6OQEWjTElNPP5twzLuaEyWOZO38uv7/oSnZtXkdYsvDZzJmcfd5pFBQVI0o6dpdXU1BQiE6nQ5IkJEmioWoV2bl90OldnD/1bO5/7HoSMRtZOdnENYmgrwGrzkhDsBGXI59EAqIxH1nOHLz+emRZRK83IkkSgUAAvV6P3mzB7/VgNIhoSgK9JYNETCahBtCZDKxZtY3P5n3NTTfdiLtqD850K5pej9FkZ9U3C1m6bAnX/OESVBW+WrCYsWPHEo37WL9mG7feeitvvfUW3323DoMRRo89gp3bq7jm6j9y5ZVXEo2GOfnkk7HlupAFEVUNIhpEgrVhliz6jKyswWiGOOmZFjIzcrFYbIRiUULRCHpExLBKVPVSXRnh1Tee44LzpjB71jeIosyG9Zt54eWH8DQ3opfSkO0iMW89dmca8Rh4mutJz7AjCRa0hIYiqhhtZhJqHDSJcChEU0MjaZkC99/2HNGwxP9Nv2fvXIkrfPTOWww/bAjOzBx0kovdu3fyxcKlPPPUkzz56EPkZqazfNVyJp86hZkfzeD3F5+FQW/D2xxBlkw0uetJJGLs3rOTwYMHUl+9mcGDDmHRt2u49a6Hicb8fPDh25jMeqord5JTPICxo8bz3DNPc8TIwdQ3VJCRnoeMgKcxSJ2/gryiQXw191NGjBxLhlNEkwxIsp6mQCMGq4QWEbn7jvt48B/3kVBlgj4vD913N401tTzyzCMoqojeaEFDxltfjmy0gKxHiYlomoLBKBFPRPhi/iKOHDqUUKQOR1Z/7rrzVh64/68Iavjfp2jrqW+qQyXK9o07+cf909HpVT6eNYNHHnqW006dAkKUNd9tpqSkkNy8dCRZQEQgN7sX1XVbECU9iUSC9LRcZn86j6KiDLJ7lCERw5SI89WC5cyfP4fLrpqKzWBnxaatXPCH6zHbbSTCoU7xk/bQ0TtiP+9nMk9N9py23h6h7u8B3u9GkBTRWfuhjW1/oij+psKFfzMe11/bZubfWmjA//DfQYvQ/FtAV3hEW33ySz4Q6D+Jn+vhQz9nun5p+CkPOflPjFMMBVdOFoeOGkmlp5lZH89GScQ4fEgfslzw+GPTkJAoKenF48+8QkmfgVx+0w1gcDB+/LGEgmFuueVWDht4GOmmbKp3uznhmJM56YxTMJntnDLxVOK+IH+59W6OP/543p35EUIsgVHS0ez3UVzWE6+vkYQSBiHO7j3bSM8qJKGorFq1kgsvugxNMWIxp1FX20iwqQGn3YZmsJKZmYPVZsZs1pOenoEkGnE5s3DYcohH9VRWVBMMhDHoTYRDMSTBSCigotc5CHqDNNRVoRN0CNEojz9wLzadipQIYTTYqattYv6nX9BU20xmZjaHDDkUSdKhKiDrJOKJGPM/+4L8giyeePJh9AaB8j1VVFXW01AXoKiolPHHjmbY8MHIeoX0TDORSAhNUZE0CW9DmGAgRlZOJjffcj25mQUU5pYiqjr6Ffcm4Yvy2D8e4eqLr0SUo9isdirK63jttTfJz+3N/Plf8PobL+JMF1m24iuMZgWbU8MoC4iyHkUVKK+sICMzG0Hce8VNOBZFVVVi4QiSIBKPxTDq9BTk5SMmnPz9/ls56YyjqK2uoaygB3pJJK+kGGduEQ8+Np1A3E9p3yIuOGsy7898m2nPP09+r34sXbKWE44/nQt/fx1VFT4k0YzdbuWNN1/ko1mzSMvMot/AAWRk5+DMLqbeG6XK7UVVVf7v//6PyspKRFGkduduon4Pr7/2PIOHDCAWS1Bb28jy5SvYsLWayy+/jixnGqEmD2OOO47P5n+CoATY+v1iVq9chE1OJ1Qv4XY3ceWVV1JTU0eTu45QOMBfbr+Diy6/DA0VvUFEpwejWSAzNw+rw05ampMmTz0Go8SaNauw2WwcPXo8a9dtIL8wn+o9FYw+ajQLvviWYFAjFovw8suvc/21t1JbHea4445n6tTTePDBB9i1o5rcnDzeemsG27ft4a23Xiczy8Wy5YtxOm2Ewh6iSiWaKiNg4JOP5+H1uhk0pBeZaZmE3c1oEYUaTx2nnDmZh6c9RVGvgfTo3Ref14NBgrA/8JPyha7g5/o++S1Buvvuu//bNHQKiqLefSD7pQ4mPCBV3vas7V3dc9hR3o69yu1ZsTu/B6ur/ZPslevI+v3f8rYqitLm3ZotaGtvWyovRlfo6o5wyq70Xes9H23la+tZstexNZLnUOu07dWTXF5n5nt76GpfJLc1OX9XyuvMGjpYxfZg51xyOZ0Ju2yrTzqqu6vzK1WeVGuyu/hEqnJbfutuA0R7num25nxbUQcH0v7k+d1d/D6V1zl5rnQFneGHnWnDgfLVH7wmGhqAKJJdUEjfsn40NNSx8Juv6FFayISJk2morqa8soYJJ03io1kfc/df7+HyK65h3Lgx6GQdSjzBlNPGo6lRbA4j48aP5KPZX7Bk0VK2bvqenj2KMFsc/PnmP3L5ZZdw7rlTOe/CC5H0ehAkbBYDfr8Pq9Wy9z0t7FW8mj0e3G4vPfuUYjJnYbRJCPEYBpMBndEKmobbXY/FakFAR13998QVH0aTjMmsR0DCarWSSCgYzWZkSQeaSMAXQRA1nE4bkUgUPTomn3IS/fv1YsnCRfxr4TKyMtIw6Iw8++TTpGWk0b9/f0QRmpp8FBTkYTabsNtduJwuNm/egtVqQ9Ngw4aNHHvscTQ21jNhwgQQFEp7FGC26NAbjEQCUQJ+H7WV9dxy0+2cNnUiJ02eyvy58/H7vTz4z4e56bpree+DmYw+ehQWvYGhhw2mvsHDpJPP4pjjhrF08Qpqaqr4+72387tzLmPggEPRSTY2btiG1QQefwib00VGhgtJltHrLaiagiTraPK4EQFNVfA0NWPUG9i9cxcmWUc4HicjO4uC3FymnDaVeCJCSUkv1q/bxtQzp+JwmIknIjS7myjp2ZOPP/2UCZNOYuSI3lz5h8vwBRq55c/3kJmZSXZ2FsOPOIzrr7+ZqVOn0tjgJhqNkldYSjgao6i4J9u37MDhsHLMMaPR6WXKt+1CbzZTUpqPIIKiqBTklSAgsWHLdrZv3oYohjnkkBFE4lEGDuxNIhJm5aomXn7xLU4/fQx7ypeRX9iPb/+1hD5lvVG0CIl4FIvZisFkpdnTRFZWLj6/D71Bh6KJNLrdrFq5jL59e2OzWcjPy8dkNLFs+Xr+/Kc/cuU1lxJo9lNYVIiAyFXXXM+IEYfSp/cQQqE4Rx89mkgwwEsvv8TZ50zloQcf5/gJxzLumLHEYxqjjj6KtPQ0VqxcxuGHD0MSNaprKhA0KwgqDz/0OCOPHIHDaaTJHWD+nM9ZsnghJ506iVtvu51xxxyLzeYkpqhkuexs3bKNwqISRJ30o/V8IGhXXmX/ffX7pRX2f58ISfn2L7f1Oy1JhyA5giu1bCoIQnsi/q8OkiTd09m0v9hQ4a4qZQfTztZ5u0shaUuBSiUctEl7O6HCGkqn745tT1joSIhoTWdbZf9U6EzZLd7FriquHaXpiK4Dvf/xQOnoTF2dCddLlSfZSJEcyteZ8U8VytiVfu3KOu7uOdeZNXCwClFLH0uStN/37kJ787wrimNn+V9Hik9nFdfOzpFUCmCqOdfdc6M9xbWjtK37pLvG+6dUXFv/fiCKa2cPL+vMejtQSJoKmogqiCAIqLKIFo1jECSUaIwt36+hdvdu3pw5h+bGMNdefzmqqmCzZDJn/mxefeUV5n7yKdOnP0uPnv2Z9vyzvPnOi3irapjz2de8+c4bnHfRGfzuzPOwW8CRnolqkDHrTOzYvA0lonLvIw/xwAMPMGPGDP70pz8RScQJ+/1YjTqi8QRRxUdeXh9C8VpCPo2Atx6dKmDNyMZslQgFI8iiA0FJEA4HsVpc1FQ3kZVrRFVVPB4P1jQjOlGHGhdprHdTV1fDsOGHIIlGFi1eR0mPbIwmGUEzoaoaiXgIk2TgjVfepmzQEC6//HI+nfPev72kNqxWK+ecdTHvzfiQ4cOHM2fOHHTGMBs3bGPEiJGYLBqzPlyIrFcoKc3FbNHhD0VIRCWWLl7CSScfR98egwnGPSxYuIWjDuuNKMWIxVSMRhlNEoipChU7drFl3U4GDBrCKZPP5PV37+ewwUeik42EIwEkScd7771HXl4eQw8bSNWO7RQPGoGkM+BtqsKgt2O3paEJYRQV1FgUJRajcs9uevbpR9AfwGw0Igrl9B1wNkeMOIEXn/8LEaxIQpA5M79gYNkwrJkqihrjg5lzyetXxpmnn0402EwsHAJR4u9/f5gLL76U3Mw03n//fTIyMujRowfL/7WU444bj8Np47bbbuXJ55+ivr6ao44aw9QzLuSOO/+MIMaIxcOMGX8y1113HWdOPoGIEsLlzOG8cy/j3ffexNNYxa7tVZQNKcZgyaN87XoqfW5GjxrPX++/m1tu+jNOqxFVDRFNSJj1Ds45cwpPP/sQOp2BeFxAkGRmvvEOp54+GZPVgMGkQ5V1CGoULR4nFo/Q7PFht6fh8wbJLS7GXxfg7RmvcPjgXjz62FM89uRz1LsDzPn0XcDAJVdcxNbtm/hq3kIuuvh37Nq1g379BiCIMaZNe5pXX57Js8++hsfTyNhxRyHrRCrLK7jnrw/yx5svpbRXDhZjEZqmUdewk6zinmxcuo5lq5cw5sjxFJfkoDdoNHubCMYF9BEP77z3AVf+8XZc+en71vFPp7juff+meldoSSG++z1NvvO1nVDh/Z61ypvSafAbUlx/laHCB+qe76qA3BG6Q/Bpz8uXnC5ZINvfAqT+6E9D6ZLS2hY9nUELPe2NS3v93/LsQMcoOX/rclroOtB9danoaquuZLT0R+t0BzJvOqqrtYervbStFfe20JZCmTy27c7HdtrQnnevrVDcZEWnLQNSZ7yLHaGjfY/tlZuc90A9Qq3HsbuRqu9Tfe/I43Wg/duW9zEVPS3oqmGjvXYll9lWnV1R3lPNz87wu1R5DhZd4XOdqTN5TbXMi66s+VTldIaOVOPYMdRWf21DEUQUca8QqqEgxqNIokpCiKMZBQYMGcbxU8/lhVdf5K9/u536yk0Y1Hp6lNopLC3juRfeZvKU87jg8ks578JT+XrBTAoLcug1oIylK74hHo2xdvlWon4FuyMfvd6IQ8vE56ukV9kQ+vQv5oMZT3P1Zb9HiQTQiVGa63bjsCfQhAihYDWyaqWmYg8hnw9N00hLzyctuxBPU4h4WEXSQI36CIUCxONxorEAccVDJBxg0aJVZGQXEg8GqNz6PUo4RJ3HTUaaAxAJRPwUFmbicqShlyxYLSYkIYHRZkKyyJx21iTenPEyL7zyFCazlasvvwyrJY1pjz7D0w8+zMcfzeD+B/7G5u0buPn2OymvaGbjppUISoxjJ43mqDEjWLVmNQX5xRRlF+Gyx7n2pmvJLe7DpLNPIxILc+TheXz99dcEAiHOmnIJ/mADJikNIgq9epQx9NCRpGcamTP3Ywb0PQpVtKFoKpoq0xyM03/QKB55/DVM1kIyC3tjRKJu+26iboVEwEeguYpIIIaUCCPrzSiqSs/SDMK+RogGCccgKpaxfMmX3HzDGQgmC/UVa9m1bRcFJX0oO3QQrox0PI1VfLVoMUOLSqnZU8Gbb3/ASy+8g8nk5PqrrmLp4m845+yLKS4s4bGHHqaxqoklKxdRUJaDLctJWkEBiqyQW1LAqnUbGT3mCGSLDmtaGpUVNWjROJMmTMBstVOQVUJTfTUvvvIooiyR0FQGH9qbdYtW8vX7M8jMy+Ghv9+LGPdz0tgJvPjMc3g8burq6ojGYzS6q7jiykso37WbLRs37T3sS5I4/5xTkAwJ9CaRuqoaSMSQgaryXRiMZnJyC7HZHThd6exau5bVaxZQWNCDu+58lHjcSDAQw2Iy4PeJXHjBFB5/eDpDR4wk5POweOECZn8ym7/ddS9NjVEuu+JG5n39OTfeeCmNzV42fL+C56ZPw2w28s+H70AUNdAMxBKNbNy0kpnvzqZ+9x4MJj3HjB1FLO7H7jCzafOGveHwNok9dY0cOmw0v5t6FqqmERd+MJp3xgmRiq90ZBhr04if9Lf/w9RX3AD7ZPKWv+Sr9FrTt+8anH9fi/M/pMYvxuMaicS01iGqP+WVNMn4ufRRVyzSXVFc20Nny+hISeyMYNpd3pAWBqUoyn73/qWqsyt91BkvSlvpfor5miw4t/Wss3Wn8oJ1F83tKQltHX7UkRKw37H2B4n2rsxpHXLeFh2t0dHLsXXe9ryD3Y3OeMu6K1oglfHkYMs4WLRuf1t90ZmxSzXmXVWykz8fbFsPJH9Xxrgr86Ktfk7mQx3x/1TltN3O1mu383NN0JK8KIK0b73H4xIGg4KaiLBjWzl125dht5aQk1vCwGFD+PrzOcQifhxZOaxesozRo0dTW1tLIq5QlF9ARNJjTEsjEfZisdn5fsMW8lxmVq1Zy6RTz2Xu/M/wBf1MnnQSzc1NGAwm/FGFYFMzeTkuHFaBmGTF3+ylobaOgLeaXn37oWJixx4fuRkCaWlp+Hw+QqEQFmcWQjxGwNtALJogMzMbVdJo8tYT82kEw2F69ilDL0tcffV1XHn59VgtLqZNe5AF3yxm7uxPueSCc3j1zRmoagK9UaF+9xYqGnxk5pXSt1cZNRW76d27Fwgqm7d9z5KFWzjn3IlIkgA6Gzu3baNvnzKa3A04srLYuf07cvP7sHPNZmSjnvS8dAxWIy8+9RIXXnQuH73/JbIhwOKF63n48Vux2+2sX72TnAIHmzY0cuNN1zLrw9fJzM8lFBVRgx6env4iV111FTp9Ap0tDS0exqAXCYT8mM12YlGNWEzE66nFmVHMOVOn8P7bz1PT7EenSSz8egEjjxmDxWTGbrcza/anHH/MOGrrG9mwcRujjj6am6/9E9mZPbj1jitwe6tYu24LLlchZosTq03H0EH9aA6F2LWznNKSQupr6zj5hNO4485bOOHk49Dp9cg6EwklRE35TmxGHVt3u+l/6EDMFj2JYISW143BYEDVC0SCPnRagmgkxJ7dzWzfthsElcMPPwRbVjYOhw1VTUA8yI7NG+ldNoDt5bVccvklLFiwgO+3bGHzug0MGjSIv//jft56+22+X7GQfsOPIi5IGHQym9evZUD/voRCITREotEYkiRhNptRNJXGxgayM0s4b+pUrrjiChwuJ+s2bGD0yNGsX/UV69dXEcHP+FFjqHdDTqmTTz54H7PZTFlZGSU9evDZrE8YNe5k+vXL5NQTz+CjT2cRi4cIhSJkZmXh83v4+qtFjBszkeXLl7Ni5TJOO/1kPE01jB9/LLFYglmfzGbq+efib/agiyfYuXUr1oI8Bh12KJr4Y/6ZzCdSrvXORN4kKZL7F9B5x1lbjoDWdaSiQaVtfvlrR1c8rr+YPa6JhHL3f2sQuzu8LLnsjv6S6eiM1TtZYetOpBI4OuvRa+tZZ+nsrLKb7JFLVWdLmuT/HdGZamxSCcJtpevOMTkQr2Myre0J8t1NZ3v9lExfaw9PW33fnuGgK21pz5vU0Vo60D5L1Qed4XFdWS8Hku+nmAMHSu/BIHketf7tYPBTvg/aqq87+UbyXGvPAJacryvlJ3/urOEvVTnJv/342Q8h+10ZYqGVoKiqKogigrj3V1FKEEdDE0RyMjLILy0kElNYt24lJ447DofRQHNdDaFAiNvvvJWS0gIGDOxDJOrj8WnP8M97b2fycUeyZtFCLjjnDwj6RoYdVsbs2V9T1n8wJf360qtfGYKgoDNYEWWRWNCP1WrAYJRo9HgRBZlwMIRB1qEz2dny/ffk5ubzxitvMmbMcCKRME1NbgwGPbFYAFmOYXfZ8Ta5kYxORNmMQSewfPF3OBxpTJv+DMcffwwnnTQJr9fDhRddwJo1K4glZIwGPeeePQU1EeOl518jOzOTzLx0+g08gnAkzisvTWf8yedyw023MHzkkbw/4wUmTphMOBbGYHKwYMFC7rjtTsaNPQZJlFEElaXfLGb2rDkcf/wEpkyZgijI9CvrT1ZWFgWFuUTCGhabysWXXIiCF02VyHQV4PHXcsEFl/Htoi9wpbuIxEKgqOh0FgYOHoLOIBOMeDHZ7ARDYTQVwmoMRZMw6q34mt3oDSLBkMp9f/s/jhoxDE3V0BmdDOo/iFDAjSs7AwQRp9nJd6s30X/AAAqLszBZRSafOoWR40ahKBGiSpSRhx/Bn276C+W1VRwx7AhkKYImamRkZ6A3CIDGrl0VPPfMC5w+dTIOp41YPIYgwMJFy+k/YCB9+vZh645t5BfkoiZiqJoKmobH04zFLKGTDOh0ZqLxODt37ODRx57hL7f9Gb1VZNnyNaSnpxEKBbHY7djMevQGAwZ7JhOPPwa7w0ZWfg79eg3go48+4vY7b0UTVOxOFwZrFjt2bEdU/ZSV9qSmrhGrzUVDQyMZGZkYjXo0EjS4vWRl5KIpKpNOnkhuXg7ZeTkUlRbjSnfy9ZdzGDhgOK50J/k9yujbrwdWk0B6di4jRoxk86ZNGGQdkyZO5F/fLCW/wIVBNCLq9OzY+T2DBw2juqYKo1FPaWkZzzz9IgsXLuLW22+goDAbjztIXV09u3ftwWQ2oNfrQIElS5ZRUNiDt19/jRHDhqPq9p7G3dV751MZ336cr51nQmrDdVfqF4QWl2obRst/F/NbPAzyV7rHNfYjQtvyUuz/vXsnQGde7C1CQVtKVncKIW2GNaRQStorozOCXSQSwWg07pen9bUOLV6pjgSU1uPUmpGkEqa6y5OQfAXMPkGlVZ6OPNntKUmp6j8Qr86BKpDJ6VvKac0AWyvo7eVtwcHsu+usd6912vaQ6qXTuq7u3PPeXl3djVRrILnuXwqPbo1kpTHVi7itOfJTtVcQBBobG3G5XB0aszpCV+ZcV2lM9Vuq+fhT1H0gnuOfInImOYKn43dqx/dVQyrZ84c6FEVBlIWUz/5N1b5P9bV1ZGRk7NuTnrwXTdFizH57Jtk2J6rOQ7+Bh5HARHpuKYFmDw11FTRv/QataSfFI0/FXjSAuvLtZGX1QkWjyePB4rBg0mchEeeB++/kT7fchsWiIxZXCCgy+mAAjyeE0WFGNAg019bhdDrxNStkFsrM/3g+R4w4AUdOMZecP4FTTruQGe/PYtqT92Mz6dm2cTOrV65BMApMn/YcwUCMZctWEAh6+Pj9d5l00hju+8dLXHLZmcyb+yUD+41izfK5nHrO8bhy83AZy9DpGtDLDq6/5VauuOgqsjLzufueO5l40jh0UpTikqHk5udhshpZtuwLxoway7tvfUZBtpWBw8qw2DJZ9e0OHpv+BHfdcxfN9c3cc/fVfLFwDpU1TVTXJOhbnM2u3TvQNIXcnGLmzf2KmpoKpp59ImaTBZPJxPIVyxg0vB86xcb3a3eS3yMNiz2foLuCsN+LxeEko6iIbxZtZea77/CP++5HULYTDwrsqahm9crvmTjxVOo828jM6InBHCMRjyAkjNidOmSdSnOzj7/eeT8ffzyb5SsW0thYR0FJLwx6E3PmzGfC8RNZtGgRo8eOwhfx4nDYsOhktmwvp7C0CKuUIBAI0NDQgMlkIi0zh/WrV5BfXEKaRULFyuYddfQZ2Bc5HqG6YQUZ1qP5fvc8Di09hFnzF9Ozb3/yynIxyUa2bdpO5a499OxTSO9DDqOxeg8ORwmxSABRCJD4f/bOO8yuqur/n9PP7W16TzLppEBCgFACoVcRlCJFFEWxga/KCz9fKwgq2MWGYkEQQUBAQKlSFJRe0kidmUxvd24vp/z+GCa5ubn3zr2TCRbyfZ7z3HL2XnufXdZZa6+19k5HuOkH93PxJ4/EqR9IRlqLbAXRFC9DI910bolz//23ctllF1MVqCEuCPzspl9yyqpD6Ng+yGGHHklvby81dR5isTgDfRHiiTFGwl30bI9ywgnHkc7E8fjr6OndwmN/eZXDVi3mlefWsHLlobTOCHHs8Sv59vU3M2deKzf+8Kecduq7eeCeW9hv0SoCzQGcqkRVqJH77ruP+hofCxfsz0OP/plVqw+lbeYi7rztbmQhQ0tziOaWJpLxEVYcczIZRUC0AcveoWpOt0FgIt51Aru9r3IssKXknYmjcsqCKBT06HknoBKL63+04pqPfYpr8bpMRqMcgT5XWCulYBYS6P7Vimsh5fHfUXGdKsqxBr6diut0o5QyWWgcwdQF+7dTcS0H/yk8Ohf/joqrae7cFKOcBZVS2Ke47l3FtVBZe1NxnaAtSLvf24lxfmhZFljjhIoproJgo6kaZjyJKBpkLBtB0bAFBclMkbVEUv3bsCJ9qDVtbO0dos6tkRV1nE4XXdv7mDVrNinDwjIzdHWup6V1Pk5VwLYF0qKDcHc/99//ACedeAxjkX6qq6sZGRmhY9sAhxx8KGMj/dQ0+Vm3ZS2P3f8C3/7uj1lxxKHcfOP19PX1ISkytbW1CIJAIBDi5Zdeoa6ugYxl4nU7cTgEujsHCQR1xsainHTC2bzw4tNYRFFUJ2bGg2Vtx8xq3PuXx3jkvgf64cdwAAAgAElEQVR44YWXeeqpJ9jes4mm5lq+8MXvEk8muPEnP8Q0IsiiSmTEYGCol1lzqsmmLda+0s1HPvlx4qkITz32KMlMCsMepbmxCSPjIB4L43a7SaVSpOMxPnLJxxFFkdtu/wXhWJT6uiZAJI3Ic08+TzKcYPmh86lqaCIzNsDWTRtpm7OA3p5hLv3kVVx39VdIZDKsXNFE1+YBbElGVx3cdNOtBKqdDA9ZnHv+yVQFA6xedSy/ueUX/OmBu/nqV79KJg3h8BCjo6NEo1Fmzp2NJCo8+ODDnHrKaXR3d2MLNk0zG7FtE00QWLNhCzNmtaGRZXh4eNw12LLw+AMM9nTR1DaDbHIIy9IxBSeWKDG4fRumMERT9eGE4+vxKApf+/qNvP/iDzGjvZlsOouRzHLRhR/gF7/+Dc5gkNHBXjzuKo4/7mhuu+3nYKXw6C30h19gRsvRbOl+Gq+zEdMQqa0Lkopl6e7vZO78dkxBYWxwAE+wjvjoKHf9/l4OP/wIBAE8/nF35jtuv59zzz2P973vLD71qf8hm02zePF+1NQ18ehjD/LN635OU4ufkYFhRobH+MIX/x+R6BBbt3Rw9jlnUFfXSDaV5cXnnyKdcTB7cRvr39jAM08/z7JlB9DaVMXcOYvY3NGJQYo/3HUv77/gA9RXB9i0eR2LFi7koT/dQ7B5Fse+65Rd5xvTy3fGLaOFw8z2Ka57B/+VrsKmaX55sjT5Asn4b3HH/4WuXBRzoSwmTOTTmfic2Gwm39UxN28xVGJxK+XeWMkk3r3NJj82pXBbV+7COJW6l+PSm59+Avk7DJdT5z11o50oc+KaToEzv/6FxvBUx0IxpXxvK3TF5l0p5Xwiz4Qgmft/qfFdbJwXK2s6XKorpVFqjldS90rS7Any51WlimIpXlKK1mQLFlPlUfmQJGmvz+NC94vlKfd5Jht3BYWuPRCictuoUh5U6H2ZSy+/XuWSL9CKu5a5i2abnzon/kzYdUM5QczvB4GsZZKRRcCJLamYgoAtGEiY2KID1VONI9SK5PTjdfvQFZG0YJFIJFElDTNjozoEdF2lqjZEOmXR29lFKpnGyNgEQjUM9g2y9tVXCPk81De3IorQPms20bH1uL0BhodSXPHp/6Nz2xBXXHEVF5x3FlvXv87DD/+Vhx95nMXLFnP9dd+mtXUGH/vYpRx88EEcd8LJnHfBBxFkBUWRiMTGcHs8fOKTn8BWBLZs3koknOTaa6+lbUaIgK+e9rn7sfrww1m6dAEf/ejFNDe10NhcxxFHHM9p7zoNSYHhwWEC/ioefeQxLr3ssxy9+iiCfj9up5uu7m6OPf5oZrTW0BdOMq99FplUElU0SWWyPPvsc4SC1YwM9nDCCas58YSj0VUHHr8bTdORJQ1JCfCj79/IPXfdwVnnnoHDqbBxw3p0p4e0rSIasGz/Jbhlg7UbNuBQLUZGMsxZOJ+tm9eSzdo8/tfHWDB/GfPmzuVP9/8Z27R44ql/cPXXruXFl1/B56/BthLIoouuzh78QT+aptHePhPdoXL++edy0skn4PH7kCSZbNrCylqY6TS2aFNdW0s6m8XpdjM6Oorf4yYciaA7HPQPDqDqCuGxUSKjYTJpm1CoenzXZQzmLtiP6mo/ZiZJeHiEaCLBGe89g5/ffBvLly5BFERsM8kRhx+My+2itr4Jj8+D1+tAliQS0SSNja2Eqvz09w2gyEmaWptII2HJCiPdXdTU1JARREJeH7/59W844YQTcDoVnvnb0xx++OE89uhfcbtCLFmylOaWZkKhEPffdy8HHbQ/Tzz6d77xja+watUhLF68iOeefZ4XX3iDSz/+Aerq6unq6qS+OsC2rg6qa1pIJQe5554/M2tmOw8/8hCPPfogJ554Cp+74krOu+A8jjtmFYKQpamlkYHhYRrq65ndPps3Xn+DpQcsI5lIICkKAGKeTDfxfZeZXrEctKtcv5usxa6Gj6L8roKtgSdqvLdlrH9HvGNchctD6Zdu7vMXEvqLue0VUo7yX7ZTadtKFddSVr3pQCXPMLGpxXSUOSEUFCp/KoprMeG4UP8Xo1esLpViOplSMSW9kHJeiSstFLa47i1LU34dKrF4FnKLLpamlEKaP+ZK9fee9OFkClYxlPLgqIT2VMsvF/nCQzHlqpy2LOeZc+8VsspNNyYWSKZbcd0TlFOXchTXQu09Ve+DPVFc8+tbaHfzXee7VR5/K+EqDOQdeVHcVXg3OmL+uBQRbBBtsOQswlvWG9EWMVEQyDJ+CsD4/5IIli2AKZOIjtCxaT1jA30sXrwYZAXZoTCWzuLAoKejG4e7mnVrXmLR4pVoTjdDQwNUBXzIioXD4eLFJx/h/A99hnv++DDxcC/nfuD9HH/sKcyZNZNzLno3d9/xMG+8tpazzjqBhqa5yIpAc3M9Y5Ewkm3w5DMv8v8+/wWaWlo59bRTOOCAxSxbvpShvs2E6hvIWDaqoaJrY/RuT/LcyxtYvnw5TpeEZRtYhoJbi/HJT32Z//viF/AGHUi2wprX12Fk01x51VX88U8PYdoGqbEOgtXt3HzzXbz8/FN893vXk0ynCIS8GKRJRWK8uWErAX8Nbe2NiLKJkbWIhA1USSAQdNHZtZlgQy3hgSGaampAVgiHM6x59TXa2pcwHLP5zGUX87vf/xyHFSOVcSDaCZ57dhPD6WFOWX00/kANY4le1q/r5YwzT+erX/oakXA/37vxlzzw0B9on92K0+kmPhLl3HMu4qc33YDLF0TTFDRdIp6IkMlk8PqC4wsVhs1Rhx3F97/zXX70gxv42a2/JBaLAeDz+UhEowhGGluS8XhqGRzqJhQIMNA/xnnnXEwsGueXv72OGTNaGR5OUlfbTDwWBklGVGRMQQZB4o93/IGVy+bT1j4bTTJIptI43EGytsCrL73KxnUbaZ9ZR8DVynCim8amGnTNA1YWh+4nlTTQnTaiy49ix7EVBdmM09UxhKaEWL9uE0v2n0cmG0WWZe65+0H+9sw/Of74Y6mqDjAWHkJ3CPzkh3/g2m/8L3Nm70c0NkQ0kiIWTeNyqxy9+iSe+duTJIZ76BoJ889n13PySUtZs76XX//613zpy1diGRFEXCQzAs+/9AJrXv4nP/jJD3jp1fXcddcDXP7xC2lpbOKSiz/EFV/+EksO2J+0YGEJILHr+2bXufjWnK2UB5XYRAnYcaxNbppC/K4Si+uEjrvP4loa/1UW18KwS16CwI5r4rdtW7vcH/8+ufVgT4XZSi2ApepTiaBYqeBbqM5QnuJQzoQsx2JUuBARENi5p/juz1WoThP385+nYBF7IKzuDUveZEy62GJKoZ1w8xdoyh1XewPTYaHJRX77lKNc5Vrni6267gnKqWe5ZRdqg2JXsTyF6JXTtpM9V36cdX4ZpcIDym3vQgrWVOpeLF+x9iiXXqH5VMx6WAyl2mmyPBP5CvGDyRYBS9W9HF5dDu/Nz1OoDrmQBHGXoynsSY7B2Uks/7JBsLGxsLEREXYedyHkywvF6eTPUVEUxmkK9luxcuMJbYG3jsUAhNx5Mf4pCjayqiA7nLhC1USGI6Sj60llLVyeBkRVQ9I1FM1m7twFqJpAf18vXreXdCKFaRts7Y2xaP8DOe/88/nFzT/hySefpLdvlJdeeYE3t6zjtJPfzQ3Xf5Pvf/+7/PRnv+LU009CtNKsOOhAvvO9H3DWOe/nl7+8lZ/e9EPed+6ZLF2yEFWWyKYzOB0ORFsiGR1h+5Yhevp6EdQQp515MmedfiJ/feafvPziK/z8h9dz7LHHsXTRQrZv3krDjBae+MuTrDpiFbpfpdpTT09HJ5GREeprW/nWN6+nKuBm/dr1rF51Itu3/oPHnxskEXmT2fMOZGAkxheuupIzTj4Ol+YkYxh4fA503YktQDAUwqmrmEaGVCKOLoGoOGmb1Uo4FuVdp5zC3GYfS5YegMfjAzvLIYedxOpjlrPthW6OOe0QwokIIk7qgjWsOHABrS1VVNe4SUdlTjxlEalkFlG0WXHw0fz6lpvxekBzOxGMDMl4lIHRQaprW0GQSCaSOBw6B69YwsJF8/EHa7jv/odZufJQHA6FVDoGaRUEEafDSTgexuf3kzVNZE3knHPexf6HHoJpKtSEavEGZFK2xvrXN4GVRpJkXG4XgiyxZL95rHn5dURFRfcGUXQ3WdMiFovxx3v/yKpDV/PyS5v5wMc/xRWXfhiPRwLVS3/nRpyaxoZ1r+P3aiSj3aRFJ5LqwshkESWFbDpFW2szvb3bUCUfV17xRZYsXsy7zzgdr8/JM0//k+OPP5HOjn4EyebAAw8DIUkqk0JzKwiqiSprHH380Xz5qs/yngvOoSrQxKLFswnVurnzjj9x7tnvoyrkpKunhwVLl7N5WwdmOsFRxx5KLBbmAxd+kKNXHUd9VYDrvvZtPnzJh9j4+uvUVFWhu92YtoRUgH3m8+xcnlWULzEuQ9pMKAY7Z7/wFq/YcdkigiAiIO5Yycovq9LN4hDemUor7LO4Thn5AsGubTO55XZPFddKjxsodq/U0R0TZRWjV6niOpU67zXlJ++g59wYhHIErNyNpooWsYeK62R0K22bSizuuZaL/OecSJ9/NM1/Cn/IRTntnG9hzX2RFVMQculOR/xvKYUgF1NJU2k9yi2zkBIxGe1Sims+7cnSFEMuLyrVf5V4HUyHdT2/brnIHYvleKpMh+Kaf28yfjdZ3cvhq5XWq1D75883Mc+N16K8GNdi2CFo5tCtwMOv4DOUOuar0P8T5VuWhWEY6LqOkYgysH0jvUMG2bHNtMyaT6C6CVPUycaTCIJAPDGKP+AhlRBQJZOUrWJmslimiaaoWFmD7r4w4dEYn/nMFfz21h9y6aUf4+vXfZNTTjmN5195ho6NG7np57fT0DSL8GA3RxxxBH964D6+c+M3kESN0049k1VHHM2C+XMxDThk5Qo8PieSHOMv9/2dhfNmsfjgZdxz7338+Mc/5o9330U0ZaFIMv989p/M2a+RWY2zufuu+9nU2cntt97GLbfcypVXXkUmkeK2393CmrUvsWz5EkwhgpSJ8pXv3cUnLjqD197o45prr+emH3yX0MxWomMRNq9dz7YtWznx5COprg6Nn12v6WiahiSYdHd1EXQ38v0ffYvL/ucytm3t4RffuQ5Tmcnnv/IJ1rz0OLf/bg1XXPUxyHahuf3UNNfx5vr1SKZNsCpENJJg/fpNdG0d5ICV1ViWm8amGfR2dOAN1DJzThs9vdsJuj04nTppsmQSKWRZxjRNdF1nNByjqqoa2xZ4+fl/sHDJEtK2jcvnZdNrawgG/di2ha8qhGmamKaJw+Egk0yiaG7uuusejj/maNwuDVVzkU5FyRpxFE1HVZykDQNNVsik0iQSCURVw+Vy7Zjb2bRMX1cnPp+b1zau4c4bf8yXb/gyrupmyKQZHooQDAaRFZvIcB+OYDNPPfkMx65eiarISILJQP92FNnJ+875MAIq6UyCW++8F9OO4XbrhPsj9PX14XI7eOKJJzjvggsQJJFkKoMvGODO227hiCOO459PPM32ge00N7VxxJEHsnHzy4SCbdxz9x9YefAyPKqHH//yt5gGvOddp3LgEcvQNI21azbS1NjG40/+lbPOPh1JNnjivj8zGktxwcc+StJMIxXY+b+cd9huacgNP8hbgM1zs7CtHOU3/+zWHMXVqoA12e9gxfUduznT3sXkboS5q66lXBamC8WU02IDvxL3wUrrXkwoLEfAKSWY27aNZVnluSCXUFwnK7MkWXv3TakmS1+qjNz/p0s4LoRCyqllWWVbeHLrN92odKGnlIJerI6l2rkQvUL1Kbbp01TapZKFnlLYm2OmWHmF2rLcvMXc/qdS/1J9PZU+qSRPuQt0lZybPPE5lRCLPV1gm24FfU9RSoHdrY7Wrr/LVVwn5c05zVaJ4loOymlvkZ3u7oIggGAg2iKy4iC6fTODo2EaWtoYjsZxqTrh0SSSbKBoBv3dWQZ7OqlpriMUCiAJIqlkksG+fq674eu4nB6++tVrkQRwOFxY1rjVqKtvC1s3bKChcTa6M8Cba19m1qwZ3HD9d5EcAldffTW2bRPwB3G7nDz4wCPMmTMHt9fFI4/ezbeuu4nbf/drhmMJzjnr3TQ1tzBvvyX886VXOP2UU5jR0syqow+nNuDnhhu+zac+8znWr3uVl196jdt/9weuufpqHnjgfj7+iUtwOCXiaYP/94nP8Yn/+xI9b2ykbX4LWVPis5+8lM9f+00uuugiqgNBvn7tdaxZ9yKXXPIhBMFmeDBMPBlj3oK5aE6NjjUdONwSsqbz6qvrCPdtY+2mQS6++Ax6t7/JWed8iWeee4SA1yQWTePweVAVidH+QUajYVwuH5GxGOGhUQJ1cdpnHUxv7yiCHSdU1UDfUD+trW0IWQPTzCLoEsloHEVRSKVSRKNRausbMLIWuu4gEouMK7XY6LpOKp4cP/JFsDDtcZ5hmiZOpxPbtomMDBEI1JI2wUhHcapubDmDJAn0dvchIuHQnVhY6B4XDlXDQtqhANu2jWUq3ParX3LOuWeg+pwMrN9EVV2QjoERFsyfS3/fCAF/iK7uTTRWh4imx3frTWeTeD0ejEyCeDSCqkn849k1zJ+7lB/96Ef8z1WfR9EsOjq20tfRz8KFCwiPDWFaaZobWxiLJPj+jT/jxRdf5ulnHiWTtdiy5jWCVXV84Qtf4Otfv4a/PvkowcAsfnnzTZzznnOpqhKRdB/9A8NEhgZZfthSrrn6m1xzzVfp7etiRttcOjrfHG+feITNnUMcc/q78VTrWEb5nislF7ZLGKjyFdfcXYcn3IYLLpYWcRUuKC8LTEu43X8i9rkK7xWMt2n+RjuF3A7yX7hvh0AwoZAUc4GYDOVY7CrJX8n9iXYq1F6VnUebl6bAuVvl1ndP05fKU8waOt0opeT9q4XUqdahknFaqp1z3YBLpc8dj9NheZtOfvB29OFU+Uk+jUICxXTW/+1qi+lMl4t/xSp7qblQDHuTf5QzH3f8Z+/628535a2wrB3/F/2x5yiLd9m7bv5liWAIMhZpVEctr63tQFIsNDVN2sjgdFShKE5M2+Kf/9hAe2s7Xq8LVVdw6Dr9fX2sX7eOU07+INd+7ZssO+BALDtJKBhCVTVkWeLpp58nm07x2Ss+w+133sZZ555LY2s9jz3xFGvf2Myll17Kiy//DUk2CFXpzJjRhqYLvPHSZiRFZMWhx1E7o4W2lrnUh6o5cPkh+Ktb6d66keaGGtLJKJ/+9FeoCnlYtnwBbr+LWU1B6qur0RWFo447jJWHHcxYJIrL6cfhcfCeU84g0CjS4KumaWYDM2fO4KRjV6FZ8L+fvZx7/ngnJ55yHH97+m/sf8AB1NTUUOv14HE60DUF2zbIJqJ4fV403cedt/+JQ45cyUGHtdLk8+N0eTn9rNPICEM49RaGBjoRJJ1XXtzI/115NedfdAHJZJxwZJCWhiZGIx0Eg804nV4MySKdSlNf5SVrCRjpNJHIGMlsCocvgCWKKA4HDo8XTRZRFIXwaBg5UI2iSljJCPHBPlzBKhRVJpGKo6kOent7yWazeL1eBFHENpLoTje24iCVGMGjeugdGESQZXTFyTN/fZam6kaq6gIkrAyibWPbIqlUagc/cXlUmhvqiMfjeAMBDCtJKpbiN7+4maX7LySTTDHQ341TlxiLDlPXUI9gphAUmZHhEXTFTSohomhJomNpujp7+cMf7sbtkGioqeYD51/Cgw/9mRNPPIG582ZQUxvg9X88z2OPPMyZp5/JJz5yKY8/8yQOj0wk3Mng4BD+gJdQsJ6f/vi3vOuMY2hvb8DtcvHok4/xq9/ezoZNW7ngwvMZHBzgxBNOJWuk2bxlPZookE0l+c3Nt/PqK8/R1DyHZYccQiw1iiQqZb9fS98vJU/kp8zl2SU83ypy3XjnWlwrcRXep7iWjfx4l90vQZgY3LvGzub+v/tVXLmpRDgopkSXSlMoTyElfE+ElFL5C8UcVKrU7XKvQAwCO4KQdncRreQZCn0WQ+6O0oUwVVfPSi1WpcqZrA2my9JajpW/nPvFxmWpdi44libizSbioHMWN3L7N9+tqJD1uljZk83BQmmLKQ+FyihEfyrjeqrIbfvJvDvyz+Is9DmVsiu9Nxm9XOV6soXJyehNhvw5MZniOB3KYv4CzFRplTPvpoodSmgJq/VORRVy48/IDzotco2/i3fW27bz0uT+nOIzTGUM7vguCtgTavhbQq/I+LtMAmbOacWhu8gaMmQEbCtD57bNWFmT/RY307F9A0cedgwfvORSfD4Pn/zYJznx+NPImAlOOuk0rrnmGrzeag5YvoRIbAhRklAUgYcefoQPfPAS3nPWuRy84gAcusLBBx3MRy/9EIoiUVvbQFWoDlnUSKXimIbM4NAAGzZ18rvf3czFZ5+GI6DRPm8ei/afT0ubi5UrlnPmmafyxhvrec+Zp3PKCccRjaUIVTVjCilGwin2W7wfPVu3E6pq4qrPf4lTTzicSz/+eZ578SU+8eHL+egnLyWVMvAFPZgksaP/YCimcP9fnkMWI1x80WU0NjXx1yeewOvVQDbR3BqWrJMx0liCiKZrNDRV879XfZ3TTjmDoXCYNzf0sHi/eaTjaaJjYQTTwOuXOfO9ZzNz1kJOOPloVAccf+w5fOSTF5Ea6MPfNItMMoyEjK57QZbp7e5nZLAHhybjD9RiJMYwkTANE00U+Pa3vsf+S5fh8wX4/S9vZeacKob7k3gdThRnkGQyjqrJiKKCy+XC53Ig2Sa2DRnDQBLATMdwuTykLBu3z4mYiWELBjPntuGocmOLDhTRQSoNsmITHhvF5/dimgbZbAZvMIDmcGFbIi6nj97ePqxMhrlLFpHNgqbq2NkUdfWNxCNJRMWJKWtU1YbIZpL4XW5eem4T8+bP5KIPXcBd995NKpnCX1NP+6wmDj90Japm8f4L38/c9gNYtGQRVfV17Ld0Pn9/4RkaaxuoC1XT2NBGVXUd0Wiaj33847TPmcWCBfPY/OYmZrTW09Q+n00bNrPyoBU01gXZ3tnBDTd8n8OPOIqhkTD+6mp++9vbWXXkKuYuPJCDjjgUp0/DxB7fUfkt77yK5mD+uxV7x8VbW90Ib8W975AZdsgO1nj2EgaScaJ5cmmJ/XIEsfAi7zsB+xTXf1MUnlDlC9252BOFYLryFKOzJy/uSlHaLS9PqS1QXiVCYSXC62SCXVmr79NUn0Lp96aFarqE/HKV0kqUOCHfFWgSxbVUXUsprhP3i+UtRje/3hNuQ9M5PqcLuR4ek/VTpQtSU8Ge0nu72y+33Lejf/dkwaAUvelCOfxpz8vMf1fk8+E9o76nfLzkAgYCoihhA7rDgebx4vL7qWls5L6HHuJD532Me+78I888/Ve29fRQU1fNvIXzqWts5q+PP8rrr6/lhzd+D1WzueP3d1IVauL4407jc//7GRbOm0vQqeDXFTz1IRKZGMHqamQpy0MPPcQdv7+Le+65jx987yesWHEwH/3oR4iMJojFE3zxS/9HNDbEfQ88zOYtm2hsqsftdiOSob9/Ox6PB6/upb+ni4VLF/HFr19LvT/ExR/8CEv2X8KKZfvxj2ef5ILzzmRgYBubNwxyxacvpbbWzaErD+Lqa77BkasPxzCi9HSsZ+n+h9NQ38La115h+UFHUBPy8NhDd9M+Zw4+v5eEYSDpPhySgiSpWJaAy+nh9ddf593vPhmnqtPY2ML27i5EQcTtCoAqYpgGtTXVrF59BJs3bUFXQnzw4rOIJUbxKCDrQXwON/GxCJYB0fgYbrcL28ji84QYi5oIQhbd5cc0LDLJFEuWzseyBJwOLwsXLUUWszz+8HM4XDouh0Z/Tw+KKKE6nEQiEWzTwOnQ6e/uIBCoxVY0BE3FQkG2BaxMjLSRQZIUHE4XVtbGNrMImAz197H6mNVceOGF6LqOKIoYZgLDzL61YGOTzWTw+/zU1jfQsbGbTCZDQ3MDWSxIJkibGTSPAyMroGkymXSKkXCURUsWcclHL+GBBx6gpjqEYYncecfdnH32ubQ019LU2Matt/wBAY3ly5cQi6W47dY7Ofuc8zn37HM58z1n4nA42PDGK2zb8iaf/fTlHHjAUmLxFIIo89ObfknQX0VLYwt//9tTrDhkf0ZGExy1+ih+8rOb0HQnx64+ikMOWUlnVxdLVxxITUMtogSGkUUU3zpP+a13/9QV19wJV5pf5i+ClY8SeYR9ims52Bfj+i9H+btJFvu9C7VpPqqk0CYa5dI3TRPLslDeOmurGO1KJr9hGCiKUl4dcmJec7cunw7GUKxP9sSSUYp+ufmmUqYg7NyYKn+Dm6mg3LyljjyaDhRaoNhti/sCG3iVG+c9WbzqZPnz2zl37pYTK5kfC16o7HKQW8/JlO5SceylaE+MsanUL59esY2xCtV9OmKKp4pi8yi/3yaLaaqkL0qVlds+ufsGlOLxe9sSXAq51t1iZQOMjo5SVVWFaRaPc92ZPn/s5Iei7Pmma8VQqv/KW7goPE4mYiPttASWzQN/uoOr/+9a/nDP73F4XDicfrq2baZjWw8LFswjWKVhGRrPP/8iyw/cH4dDY2h4lLPPfh933nUPmpLA53ex8c1tWKZIW1sbw8PDjIaHqaupxbZUbNsm6LYYDMeoampBFW3GojamHcMwDFTFjVsTsSyD7u3D1Dc00tO1BZfXg+4JoJgj2FIQQ1C47dZf88HzL+B3t/2C9110AaKlIKpJxuJJPO4mEuEuOrv7mD93BtmMQFdnD1XV9cSTMV596XlWH3sksgxGWmV0uAeHUyYZTxKqb2R0ZIxMJossq1hmiubGWkaHYqiak3gijI1J0F/PaEJksL8bn0dFFi1kWcDtcbJp4xaqW1pI967HEWoiOdpL7YylCIKGIC7c4eAAACAASURBVJtg2cTHBtBkiXAyhd/rwJAdyLJMeGgAp8OD2+0lEongCTSQinVgJR2IDpvh4WE0TcPl8qA63SiKgpVJkYhFcXrdCLabNze8hi8oU101A1F2gGCQzsaxMib9PQPUV9cSifWMew7YIoonhN/vxzAMRFEkHo+Nu4RLKoZhYRtxXG4ffb0DPP/sOgJBhbpaD3NmzGZwZJjhkRG8AT+h6iayRgJbtFEVF8lEGIfqIRkdQ9ct+oazXPqBT/Gu976X977rWB5//CmOPvooZDWNbZjYgoJlq0RiCb78hS9x+eWX8ZtbfsWFF55PW9tMBgeGefLJp9iwbj19/cNc/tnP4VOTXHfd95g9fxENTbX8/KZfsfKIg7j801dwxx338eaaf3Dxhz7EWeedy/qOLViWgSCaCJZJ9q2Yd0mSdpHvJEnaZZO0fItsyWWsvD1TcvmdKIq7yJQVoQhdAFF+Z8a3wr4Y1/8wlO+CPHHlH9czPgfLtwhNoFzLYKnV71L5RVEsKZTlCyblvLyLxcoVzLuLe8Y4proRSm7+QijkQjcVwa5cy0u+9WSqiksht+bpEETfLmWhYsVRsBElgXEfoMKCY/542uVFl+dCXGnfFrK0F6I/8b2Q4F6svwpZPyux+ubPxcmerdA4nIBlWaTT6R2LVvnPsacLLoWu/PuV9E+5Vs/poJPfbpWkh91DLKZSx8KLd7nvFXHKC1h7Ze5bdl6Ezc66Ohw6lpXb1xa5iXPflyICtjXuWiggvOWUa+fcl95yDRQo7QKYE4aCgGDbu3oZV9AE5bdXfrqc5xIFRMlCVGzmLVzAiuXLmDtvHo8/9jiDA710rtvEl750DVV1M+nq2MBDD/6ZUCjA3LktPP3Y/WgunQvffyZONUN4OIophFAVDYwEggguj5vOrm5mz52P4pSJZ6Ks2zRC0+xZmFYc3bBRdQ0BG4dLR5BN0uEIKdNCdDlwyBZurxNNF5CEDIPdbzIyGsMmy+FHHgyyhSUoNDS2sfnN9bidXgRLwONUUXSB5qYmQEXAi7/eBVKKWm89LfNmE47EsQUVl+pB9ekorjo0IUNv5zZqWxrRXQG8rjrcATdZU0fQLDTFD6JMIpVkw+Z1nH3GqaxafRTts2YhWAa2rBCPZdA0G020EFUXsiDh9lRjkCaTNpAEFcEhYAFj4TF0RUHR3KiSTG93F/V1dWiqhGVlsKwMmu1EUVM4nQFsK4vH40PXHGQzWdLRGIlIBIfbxWhkDBELLJWamhC6Q0RQncjZLLFoAhsZGxvNKaJ5ZBzuOhS9CqcvgE81Ge4bwuMKkjEzeDxOsFUQTAQpiaSH2LrmNXo2vE7/SIqVKw9lLBKjZ6CXhuYF1AWdhGOj+J1BEpEYfr8P00qiKRq2ouJw6mxcv5btnQleXb+WJx5/kPeeegKvvbqWhhkzSCFgZlNE42Es0+bZv/2DzevXMNQf5ohVh7Fo/iL6+3vICgKvr3mT97//VGa3z+W8c8/mkFVHM6+9hVdeepFNnQPMamoj5K/iC1d9DsFM8olPf45Nb67jvIvOoamtEUl6iz8J43LmRGx47ryy7Z3R7xPu94Itkn9koiBMuAPnzuu38hV4549fZU5be1degWDtIpsK5By79w61tsI+V+H/ehQS1iYmWiHBuBSdPYlV2tP8E6jItaNIPSotb2+ikj6YLO9kaUotKky1vLdLcd3b5VTSNlNRcKaiuJZb7mRzojAPqJxOpfUqN40gCMiyXFApLpf+24npqs/byYv2hG8XRm7/vP31KkbLsqyJKLOcG/lxwrmLkSU8AHJ27R0XevN4da4HVEnFNT+fXep2SUxdcbWL/qxvaUZ2aMycO5vqhjpUUaazYyMXnHUa/YMxfvPr2xkLx5k5cxapeJjaxmaGhodobW5Cc4dIxuO88vzf2G9RO1nDorOjj/b2+VhmBk3TkBWVWa0tWJkYf7zzLras7+CZvz1DdTCIYJr0dW5Hk1Nk0lk8Ti+pzCipZBJFdtPRMX7ubHNrG/FUFEVWGB0ZIRQI4fN4efihx1m6/2IikREsO8XGN7uwbRuPRycW7WLjhn6yWYVUug8Mi4DHjZ3NkImNIMopEskUklOnpqoJQ5aJp+KMRfoRbRtJgFQqhsfjQFFEvF4/DfWtnHv2e3D7/Jhmlmw6weDwCKIg4fM5GR3sxrYEappmkrElMikDXXciyVnM1Bjh8BjBqhoMWyaVjJLJpKmpriMSiWFbEgIypgGSaNE/sBUBhU2b1yBKIqJoo6oSbqcHp9NJ/9AgNbU1hEdH8bj9CILF5i2bcLsDREeGEeUsmi5hGllsS0AWHIwOduNUdXRFZKC/D3+wirHIGG63zlh4BDObRVNVhoeGcMoiqu5AdXqQVIm2mU3oDhndqZA1xkgl4M7fP8GMGXWMjY2hOXU03UEqmSCVMdBVhbrqIPGxOMcffywfuOA9PPfss7TPXcgjjz1GIhnHqWv4/X583gB/f/ZZLr/sg1z2P5/lIx+7mEg0TCQ+itfnwuV088C9j2FkIZON8fOf/YSvfvVqdN3Fa2vWserwAxka6mHhfnM55JADef6fL3HRJR+kac5MxhfXygtT2X0W5fyfc/5q4Tm2K71dNkCdLLY1p8Rdfxa38+5TXMvDPlfh/xoU3yRlT1y6KomlzU0biUTweDxFheI9deEraE0rgd3cPCoY9/krbhPfp8MNsdLnqJROuda36apHflmFMB0LHlO1fE62iVGhPs69N4F8d9W9pfiU0x/lWsaK1bGccIBcBTT3LODJzrOd7nFVCUpu7lPGPClGs9DCUaG5NdkzTzYWi9GZSpuWNz5yj3nacwGq0Hgr9CzleItMnG+6456406V+9/oWPlOxEJ38DT8FW8y5V2ps57WPtetxGBZ7vqg1aZn5bs3Wzue08hYeJMNi3asvM9zdSd9YmJWHHI4sy0RjQ3g1F9GsxdjYKGYmzozZ+5HJZPCoCmPRML5giEgkQyBYRSYVxuX2Y5gCtfUhTjr6GA5asYKTT3o3npCHbDLBA3+6j7amJpYfvIDNW3pYsngFY8lBAv5qEnGTO++4hxXLD6B9djNZK43L4x1387Yl0uksuuIikYzgcMqYVhqns4rh4QFUTWR4+xoCtUtIpGz8/iy2pTIyMoIgCGQTGZw+E6e7Fkt3kByO4aupwzaTjA1toyo0A0E0dnhdbd/eQyhYQzplMjrUTV3zDDLpJNlEBENQqApWMxbuGV+UEETShoSi6oi2SCqVwOWxScbC6A4Piu6jq7efhmo3kqSiyA5ARNdVEonEuMuqkWR0rAePsxGTURBcqKoKQDKaYWRkhIbWZhRNJZvOEIsm8fm8yAqkUhmSySSpWD8ZW6a+rgFFdpHNGth2Ekl0EA4PgWijaS7cTg9Dw91IsoLT6UTX3ZgGGOkIouLCtAQkWaCvr5dgMEg8EWWg0ySWHCIQ0vC7PYiiiOp0YgugyAKi5iIRCbNxzcusf2MzM+cu5aBlM+nrH+PYY9/FY489ztbOLSw/4AB+c8vPWbVqFdd/83ucfMrBhEJtBEIhFixYQDwaZnBwhBOPO507br+XT132Cf7yyN10bd2MYcuIkkY8nuC2W37G/vsv44UXXuC1197gx7+4mXnLlmCJFlKBxaldlMrc//PnWq6rrrDzXQaUPHN1go/s2HdC3F22Lshn7V3Pi9/tzNec43L2uQqXh30W1/8alLbc7A0LRymamqYVTTMdisueWBumw1IxXdbmiYWF6VKAy/l/b1lZy0WuErSnkCRpWiyfsLv1a6KPix2dk6/kTgemMh72xLpebppCltNy6vqfYlmdansXGhfTUZ/pzlMe3V1+TYmGLMu7xJRNXmaZ/Ik8frtbktw/Jre4FqMjkPN+qMDiSr4Ay9THVNlllrC4TuyEOnHZkk1tYyOzFiykPtjOySeexSEHH4koaPz5wXvRXT7qG+rJpJI88Ke70L0eHM4Af/rjX2htnYnHpxJNDPLYXx7F5wtiGvDhSz/NiSeewGGrDkIO6GgeDw6Xg4UL5lNVVYWvpg2n200qk0SW3PT2DOB2OzGtFO1z5qDrMDQQxu12MNDfx9hYhIDPTyI1hGlapFM2sujCFtOoqo6AjhXJgJJC80h4Xa2Yooju9KA53Oj+NkZG+gm6fBhZk3RsCL+njh996/vMa2pA8/qANJIkEYsaqIqCw6mMHw8UCJDMZNBUBZ/bgaw5SacyJJMR5EATpiWQDA9BOoY3FMTj8SGKAorHh6LqbN28kQWz2tBdGqqqYxoCoqCQSI0CJuHwMII9vqO9y1GLZcfJZsd3EzYNG01VEQQBl9fDaDiMImn4Ax6GhgcxDYF4rBtEJ7UBL7pehSjKWHaKdDqG7gmRytj4g1V4Am4sy0aRBMxsFIfTSSoVIRqJIVhOTEVEFASGBwdQHR7iiRRuTxBJdNJQJxKsa6QqUEMiPowsyyTTGQRBxeFQkFQdn8dNU30NXf1DHH7kyfQNbaWmtoHLLv8cN1x/A8esPgqHw0tbWxPPPPM0TU3NrD76CFpbFyLJDhLJLNu2dTDcP8p+85Zi2FH6+no55phVbH3zdXxV9fziV7cwZ1Yb27Zu4dhjTuSZp//Bhy6+lENPOAxTBNkqMBUYf3+XdY5rAYvrTgPP5PNw5+7zOWRKzt+890U+X8lZPdtncS0P79xW+q+DVfCybXPHd0GwC14T6XLT7siDjIAMtrSLa0YhJS4XE5bNfOS7W5QSJAtdE8i1JOfnKYVyrVOT0Z0OZTOfXq5CMJ10J1CsDXdxnSujfpWUOZX7lZQ/sSFLOc8AO62E+WkFQcAy31r9tMUdq6SlXoSTWRvLQaG5NDFG97S984+iKRQrW2zMlZp3+elKtUMlz7G3kduu+c+X75lSjPfkfhbqt/zyKoVlWQWt+cXqWil2rWf+u0JgXCQoTyzIr4dt21OaE5PxpfH/zB3vqvG65rdB7rMUh4UNorAzxK1Qih3vwl3rk5+uUNrcZyq3nwQbbNPaxWJaCLu/o3fWz7KsXU7q2O09bo+PrYxh4G9y8+wbj3Pg6sUsWLEANdTARR+4hPSYwWWXXkn/9gwB1cNw72aOOuEQNJeNIhr4dI2UYeF368RiQ1Q7Rfq2r8EiipCEaG8vkiGRShl4QwE6t27D5Q7i8/kQBJtQKEAikaC1dQaaphCJjxJLjpFKxKirqaGmtgEkHV0K4PW6CYS8jMVSxOIpJEUmYyaRajSGxpJ4nVWMRbeTHBvFsiARHkHKhmmsa8UQweNR8AQc9MUNrvneTwjUVtOxrRNZcWOJPsxshkwmg2VLCIoLQ5BRVAtJkTFEL6Io4vQ6CNXPQ4z1YiZGaGxrp6plHkgSGWBrbx+KYWJmY9Q3VRM3bJJpkUQ6y0h4EKQMkqyQNtP4fB5k1Y/TU0VWDJMxVVS3GxMRt08nkgpTVV+LadgkYlFsWWSod5BglQPVU43bU0040o+hhpCkJJadRJQ0PL4asrEhRDkNZorB7k6wM4iKjrd6NmnDQpJcBH1BTDOM36WSMUZxOjQEQaK+rpmVhxyOKCj0DxgoyGiagicUIpYw+cWNvyWbzYIgY6RjRCIRTNHPYUccTk/PGtpa57Jt4xa2db/JV7/xFURZYnCwH0mEE48/iTNPew+6sxaBNGJ2jLUv/J1QVRWq08GC+bNxuNycevpxJFMGvmAtf330Mdqamrj1jtt493veDU4nDz72CIODXWRtC0E0EITCZtGy+Y9gjW+sJFhFeX1B3i1YO/LamLvxvl3m+oQMYYs78gmivZu1FXbOWUHap46Vi30W132YxCo7MZlsislhxRTXYmknSzPZvT3J8+9mAcrHVK2Re9qWk6XZ0zjkqZQ51TyTtUXuosMOC4lt73ZUzmRFFXKxrRR7czwWsgjnljfRp/kK22TIz5dP998V5fCe6bReT4VOuX0w1bImFm3GFzWKx1pVSnfis9IxUW6aPYkhrQS7Gp3LX4gQ8tOUbY3Jy1sibTlx7/k0C8EwDGDcOm7bNvstWsxHPvoRUukUJ55yMoccsYLBkRGaWmaRSiSIhKNkkim6O7pYdcxRvLn+dWbPnUNv70Ya62cSj0t0bt/MjLntIElIqkQ8HUNXJXSHF0mQsW2Dzs4OamqqEQQYGxkgPNqPKqs4Ao2YJkiCxZtrXkFwOsDOsHXjOjwOAafby0B/P8lEAr+3keqqZuKxOKom4HRWo6kCo+FehseS+INBRFkha9pExsZwuYLsN6+dee3NaC6dSDRC1szi0DQ0TUcQZLJmBjMtI4kyqWQCRRGAFJ2dHbjdDhRFxe0LMBaOgCBhCuDWXYR8GpIokM4YRCIJXG4Pw51vIGMRqK5hNBrFqTkQFBXLzCDiIJlM4PX6UGQXsViYgNdPJmWiO22ikTiyrONxexEFE6/XT8aIY6bBVmT8bhfJyAiS6gVRIZlNgzy+MVg6lSAeixMeHqS+vpFweAywMZEIeIMMDAyhKSq9XZvwVDXgcIawM3EEO8ull1zMdV+7GofTRV1dDYaZJmuk8Xt9LFq4gFBtNamxMTq3bMHOmEi2jCLrhII1JBJpEtE4DS2tmIZAOpHm4x/5CB2d2/nOd27kwIMO4Ytf/DKLFizBH6hl1ox2brrpZvZfegAP/+UvHHvCsTz04J9paZ7N5664EqfuRsoaxIZ7SFsaL734KlbWpn32fA498mBM20S0Bey8eZD7TipnvhUzrJSeOTtdhSfnW7tbdYtTLbwY+k7Dvs2Z9mHK2H3l6S3LrLhzp8li+cqhWywOoVS+UvTyv0+V3nRbUPNp55ZdqqxCCsZ0u6NOhqJnoOYJqIWs0JNhQnAupFQVQiErYSEFpNwFkdz67xbrvNu5baVjJEuuzpZ4nrerH/NXhPOV1kIWxslQSNHNFagnfv87WFkLWSpz7xVKWwm9SsZtKZqVotw6FMuTU8td7lWqDea3a6E2na66i0IevSlMoVLlTShxuVO+WA8WoiPmj7FK+BE587HE4vBkKFdx3a3fJJA1GW/IR6A2RKAmSENbKy6/n6q6Bppa2vB4fRiiQDKRwu10oOpOAj4vlp2lu68TfyBEJpNkbGQMn9eNYaRwOVwYpoWmiaRSSRxOB7IijzeNJNPcOhtBUnGoTsbGRpElkcHhIQJ+B6riwucPIGsiki2iSBIjQ4MIsogiawiCiMOhkTKyDHRtxOf14PW4cDs11r3xGj63m2CwESsTw6EK1NXVMxaN4vNVozsdyGIW29KQZJVkZhQzFcWpORkbHUaRTZLRJHX1zcQTY2ieIKYlICDi9bgxMmMYWZNoJEoqFSUQqMPh8GLaBkF/FdF4GqfLTzyWQnE4EWQHZjaJZWUxzCSKomIaFqoqEosN4XZopNKgqW5kWSZjRImNDKE6vPT0bKYpVIOFSDqZRdYEBDOGQ1PIpE102YGk6IhmDFmR8Tp9DA70U1UTIp1JoLsCZIw0kmyStdIItoiiB5AFAUk2yWQzyLLCosX7MX/efBBMNE3BsLIYRoKqoAdTEBgZGKSpuRGnw4WiOOjt2sodd9zOwYcdTMjv4fmXX8Dv9/LjH/6AC9/3Lg4//Eg2betgNDLMBeecwzN/e5aO7h4aWxrw6irz57cTagwh2Ar7L1tIKh2lc8sWLjj/Qn70459yxf+7gvv//Ai33XYzP/zBjdz/0CPU1/ppaGnEFgRsu7DBZbJ5Mrn8ufP9vrscVMkZsZMrrjv5plhCkX7nYJ+r8D7sFUxF6MjHVAXafyeXw381DMOYFjfVPcVU+qTcOJR/V+wbhztRTAn/dxib/474V4+dvbWi/99gKdi2bdsOS+Q7EbYAyBKWKJBKm1jYWKTJAPFsFlvXaG5vp621HUV28szTz/LM0y9i2nG8QYNs1qDK68WlKgz19DLa38/aNRuwMens2khvbzeCYJNIxHA6dTSPn3gGnP4QpOMotsVYJMri5QeiCybbNm7DQsOQdPr6exBEG1WTiScH6e7ZwujoMFu3dpIxE/i9LlwuN9HhXno7NrJk/myy8QgXnH8x6XiUGa2NdHV143R4GBmKE4umiMdjjI6OYVsCqqrg9sLgUA81NTUkk0mSiSzJaIZYJIktySiajsvlAsukv3MTvT3d1Na3UF9fS29vP4IgkUgkGE1pBOraEVCpCtZgIxCLpjAsG8Q0mg6pdBRFFZFFCcuMs3nra2iql3TKIpNNYVoJdFVGECRaGptIJmJY6QSJZAbZ4aJr66uMDm7DKYgIWRtZ0rGyWdLpNA5NQ0BkdHgQEZtkJknGSIKQxeGWkB0eMMFMxUgYBoKmYUoirkCAjRs3EovF6OrqxOv1kk6nGBruxzAMdLcL1enAlkXuvu9eQn4v7zrtZDLZJLJiEapy4/ZqfO6Ky/G4ZQYHe7nq81fwwQ+fjyCaHH/ScXT3bidrpbCtNOvWvcyM9kZSqTSx+CgNTV6uvPJy1m5Yy613/4HaGXO5/lvf5KnHH8Ef8GALFssPWLZjvE4Xz6k0JGe6yvxP55f/auzbVXgf9hp2tWbJO7++FR9QTIHJndjluiAXLTcPE2VONc5yKumnYpnMtxCVSldJfXZJX2B3vUL0ymW008VLClmby0mbnyefTiFLYO44K8cbYLI44Eot5aIoYprmtL3Iis2bQmnyMVk/27a924HuuWXl5p0sTTlx0BN9MdXdu3P7PDeW9+1UtIo953TWo5w5Mp4mf0GhOC+0LGvKC0xT5UmFvCt2ugCW2O4TKGdXYUEQSsaRiqKIaVsVzaEdtAsk3ZFmmoaaIOTvOFp8V+Hdd0venV7RsVnCWDQxlkzThEyS0eEROrdsJZvOEAwG0XWNvv4e5s6djSUKqKoTSREJD/QRrArR3d2Ny+VhbGiErGUSrArgcDiwBQ2nO0TGTiNaJpHROAIGXo9CJJagqqqGF154if2XLSYeBV13kkj1Iws6yVQCTVMQRTeyYqGqCgIqsqwSSwySSqWQRBW3q4qhwV6wkvT29jJ3/mJM28IkjccZIJ1OIisCmUyKjCUScPsZGdmOUxJB9yDpbkTBRrbGLZKJTByX4CYSGWHzljepqvbTOzBCe3s7o6OjtLW1oeoalmURi8XQHSrx2CjpZIr66iZMVUESbEaHh3B4AkRH+nBpEkORCAFvLZJsEA5HqK1pYCQSQRIg4HERj24kmUxj2wIut5e07SEWN/D4Q7jdMtHhIbwuL4msQDbai+AMYGRBFiyc7nH+vX17JzNnLub/s/fe4ZaldZ3vZ+Wd08nnVK7q3HTTSpQ4zqODCgqKoAg4KoI6V8cZ4fpc587MvcMdHRR1dMZxMIEKpjFxtb2YQEID3UADTceqrhxOPjvvvfJ7/9i1T62zztpr731CdXX1+j7PeqrOXm9ab/79vr/39wpfQpJk1terfP6fPoHpp3jDd72GJ0+f4uD8AjISGd1gfa1OrlJgZXGJSjrHxJFZfNfjb+//G17yspewsrJGJp1nYeEg555+kre+7Qf5xV/+b5TKFQzN4fHHHuHpx5d46w98P6qq8n1veRv33ff1/OiP/gA/+WPvZubANP/uvf87xXyBVr2BZZo89NAjfPazD/DGN76RjY0Nfud3f5cP/+WH8Txv0/ln9DgJjV8hb/k96pzptc4/eE4UeKhqYB+7R/sdcXXu6juafK5iHK/CieCa4Drh2sZikPAQ540yzhwt/C6K8YkTlHeCUTbiez224gSFHSFCcA3nNVZy+zCXDBP6owT83dZL34FTXD+Mw6jCWT+sbdubC+I4JoFhYaxf9j4GXdkzaJzE5T2KMmEUwTUu3jj9Ovjto8aJCz9KOjtV3oxSX7vFaGMvWnDdeXo9jPMd/X4RpwAJpz2q4Hotna1ht5i2i62/hbFTIXO3guto/S9acI0SngcJrnGKgqi44e/yPG/zjJ+r+Cg+KLZHt97k1NNPUshncc0u66srpFIpHvjiOd7+zjdTO/cIpuszceA4qDopNYfnmthWi3NnH0PRMiwcPIFsqCiOiyRJpFIpllfWkGSNQqFEKpXhypWnmZ5aQAjBRnUZXUnR6bZpt5vccsvzUDXBUyef4Pbbnket00JTZexuF4RHWs+jyQpLi5exHJuJqSlkVcb1fXRVQ9NUXK+DZZukMlNoqJw//wSKojE7P4frCYQso3k2V5aWKFQqTM8cvlovDooqIaFt1tOpU6dIZzQmJyfxPA/f9snnNVaWF/FtSE9MYHWayAgKlQnq1XVk4aF4NpniLOvVSxSLeTxPoOpFJEnC8QS276FhkfFbrFw6Q6qUJZuusLK4gZM7xOG5GcxuC9nI4trryCjoWpZGvU0+X6TVWaHd7iB5HlMLR5FQcTsNZByevrTIbbfdQtdxSakayxcvk0bhm1//Nh766hc4f+EUd544gSX5SIDZ7rC6fIGZiQV+5qf/A8XsJN/79rdyafFRVLnIZPkExSmPv/vY/fzZn3yU733Lmzl06ADve99/4afe/W/YWF4lo6WpNtvc+7KXks/mMLtd3vlD7+Cff+O38o53/AD/9Mm/o9mqk0tP8P/949/y/l/7r5QrxS1r3aC5A9hy3QzQc5I0CFf3RFHrvyRHK793i77g+my2RNsLJIJrghsa4QU4StO+Pc5gBja8iY3Cfgmuuw0zDq6H4LoXjPRemsI8E4JrXBp7Lbj262qcNo3qB+G8ou5YHVauZ5PgGiW8j4JEcA3i+guuAN1uF8MwNoXXvRJcr7Vh9HrybBdchQgrp3YnuA5SYMUJrq7roigKiqLgha4SEY6EiqC5vs6Tj36NqXIeKWVRrMzhuJAvlDBdHz2Vwdyok69MYfs+vmTTqjYpplRWls4yP3eQk2ef5NgtdyDI4AsbVUmhqjrV1ctIsqBUKqHIGmeePkNlokypVMAXMr5wcJwuupan1m5QNCp0auusLJ8hV5klnZJZXT3LkSPfQMtcp9luMD9/As9r0m7ZpIwSKSONK7vgeDhOgwblkQAAIABJREFUEymTJyPZnDt3jqmFQ9Rq66SzOaZnF/B8n57S5OqeRlhATzHjOA6qpCJJEpZl4XUlms1lbLvBZHkS33fIpA3WVpZYXj7Libu+Hk/KofoujuPQateplGdoNkx0uYmiZzBdH0Wx8FwFVc3hC5l2a5n52Ukunj1Nbv5esprP5UtnmTl4EF+kEa0lGvV1phYO4lgOq+sXmZ+5Fau+iMhMoepZquefZGJ6Cl/XsG2fjbVV5ufn8TyP9fV1pqdnUfI5UDTwfITcG0uS57NabTCRz3PmyZM89ejj3HHP1/FPH/8keDYPfe6zvPf9v8IDn/kUx48soEgNrlxe5RUvfzVPPXWaTCVDwdBo2TKf+oe/5rvf+EY+86lP89IXvZi/+Nu/55u/6TUoioEsqazW1vieb38zH/jgr/Pib3r5vgquUWkmguv+IhFcE9x0GMSqSugDwxJymz7upBNnpjhOOlHsbF/Y2I0Qulcb3+C39C/X3sn3hX8bZu48joAySt6jmPiOWmeD+kqctcBOFrVRhJph9RiFzQvVI6wY4oQ3SYp2rhRXf3Hs5zgCa1yYQb/H1fu4rOwghctuGOFwOkEhYafjN8qMd6AgFhTadtCPdoK4evI8D9/3MQxjy/wXjBfEtTSGnZsOXP0ktob1A26Whjj4jBUyJXFtLA4zxd0i/A1QkoTN2OMwUr+M24/HCKPbxnpEHQTLHE5nc5xdjee6Lp1Oh7WzTzE1fQDPE7hCRtV80uk0EgaO3UT4KdqdKtlsGoSK4zhs1BbJ57Pky5Oce+rLHKrouJljGIbBpUuXMHQVXc5Sa7Q4dOsB7Hqd/PQUFy9coTy9gKpIdFsbZA2JrijgdFfJGwYf+6t/4Btf+y247SoYeYp6GsuyqNfrzM3N0e3W8SUVPZ2j1TXJ5XUsz0c1UlTXGmQ08F2bruNz6MgRXNftOfRimEIlANnHMwVXzpwnn9bQUwaXlk4zMTVNLl9h8elH0RVIzxxDv2qWWqvVAJibO8CVlVUmp2ZodVtoVhXPBa18kPrqWcrlIrbTxbV798GWy2WWl5eZnjyI5bVwXFCUAo6ygVnv4JhVZuZux3aamFaXUmH26hnvniPOVk3gijUy6RK20ySVniRfKuIJn6Ac6Ps+jfUqqVQKIQS6rveud7FdHv7cg1TyRRYOzPFT//b/4E1vfguL5y4yd7TABz7wUR596nG++7u/i294yd2cevKrvOmtb8G2BKlUCs836dbapNNTfPAjf8jrXv9tfPpj/8CxE0cpH5jmBS9/Ma7rBu5UHb6+jYItY0FsnWNlZbuF327XN+gJrs91M2EYT3BNvAoneFYg7M2tvxGL3mn0BdfdMXH9iWk/2MNtZijPoOAaxF5q/YaVby8E1/1Kb9xwe9lPwvnvdAEeJtQP+m2nrOO4Vybtpr3GqfdxyjVKPe2mncPenHeCcfpa2OPz9URUfqqqbpbJtu1NRdnwNIZt6gLjJRRWRIYamkzkq83yhAXXmHTi6n3U89sj9cvYBEYMNyBA1Bga9M2KoqBpGhv1Nvgu60uLTE7PYNtdFFlmfW0DSeYqE2lSLlcAhWazxczMFMIDs+tQmpjh4lKNhYUJ2u0aMzMVcrkOWipFZWIO4Sosry1RmJghnS1Ap4ZwLbKZDBcuLzFdzFHIZWm3TY6duIN6bY1SqYTwBY8/cZL5Awf4uff9PC/5hpchUjq+77K8dJFCViOlyCyfPUXF8HGaPTbYsT0OHbkN8FBkGeH7I1TmNfjCQ5N1NFWlWltHyBKzc3OkUxkkWQbfI5/NgKKCJNExTYqlEqlMhvXVVSpTZXwsUukM68vLTExN0+ha+LaDrulIkoznOxQKWeqNKumMQbvTwBVtVMPHtKvkUhMU8iXyxTKO4wECz3WpVRsUyzr15gpINhI+7e4KvidTKORZWalSKBVBkrYpZVKpFJquo2oasiLjKRKqoTM/P09paoLPf/4zLC4v8sqXv5L7XngcoTQ5eOgQ73rX9/D7v/8HfPaBh3jXD/84P/IjP4UsCnzg13+Pe+5+AalClp/92ffx0AOf5vSTj/L4EyeZmJ5k/tABOrbZy1fTNssRRn8N3Pm8F2Zqx1uXR8838SgM43kVThjXBDcNtpsNbjX72M/JYSdMW599UFV1ZMFiPxBkR/eKcR0UZlxBb5hZW1TYQXkOK3M4r3CfGcaOhBUdQzWtEYJlFKM7DlM2qA6i3oV/72+io874hpmxKAE3WN+78Sw8Tr+IYzDDFhNRQkJUvxzE4I4zHvdzXR2F2d6tlcj1RJzVwbW+v3PGtb/RFkLsmnEdFC6Ocd0vbOvvIzKucQ6qtoWNgRza2Pts7Ze+kNDwOH/qFNX1GuVKDtu2mZ5aQFF12p0aS0urzM0uYNs+hUIBJBNF0aivXcFI66ipLLposbKyQrVa5Zb5e/FyBq7cYfHsV7njjm/EUiRc20NqN/mDP/4j3vb2t6OnUzzx2Fc4fPR2uh0T02ozNz1Dy7QQjk0+l2N9fZ2NjQ2OHz+O0BR820KWfLqtJq4j8eDnH2B5+QIve9VrOHLoAI88eZpDt91DIWNQKBRwXRehjjOuPBBar6dKDo7tsrK0SjGTwhIeqgxet0V1Y43i5Cyqqm6yiq36GguHj+ALaLVaKJKMpqXxhYTs2bRadfKFLGtra5TLZdrtNpqmkdLL6EYRy7HRDBnPtXB8m5SeBzo4jsCxPTRdsL7qUioVqNXXmJ+rsF47jyaX8YWLbpQplEs9b9OBZhdCDL426uq/Tz76NbJqlg9/8CN8//d/P3/553/E//zvH+YP/vh/UKrkefzxK9iuR6ki86EPfgTH8Xjlq17KK175GnzXpF1rMT05w7/7v/8jP/tz/w8Hbz8G8fquSGyatIvRrrUJmxjLV/Mc1aJoZEij3At78yMxFU7wnMT2zf9WoWM/TeV2kq7v+/i+P5B1SATX0c1tgmEH5Rn1Li6vvhAXjBO3ye4LRs82wTUcpi+4BfMdR3Dd7RgbpV/EtV/YAdAoAl5U/9xJueLKt1dIBNcoJILrjSa4IhwUNYPrCWrnT2PZLVZXV9G1LL5k4IkWE5VpZCmF70nk83lst4mvCLzqeTq1VVbqdWanj9Jut2m326TkFqnZW8gUDvGxj/w1r/qmu1g4cQxV0bl4YYX/9iu/zIUzJ/ml9/9nCoeOgCnRrq4j0SRXmqXrK+Q0eOTBz6BpGp7n9cx+JRmh6Mh6iufd83y6noSHxPzhw7iageR2cWwTV8hoto9lWXQ6HSrzU0OtBq7Vl4cvtF79Sg4IhW69S7e+jpbPYBgGXreO165hqbmeIA+sra2RVl0KpQP4QqdaPU9lcgbH9vBdD5kOptnBcU0cS2Nubg7P82g0GqRybcxuhnJ5HsuxUHwLOa3giQxOt4pjyeRyeVqdNdKpAqmUiuPaSG6ZjnWFtdUGM7MlXC9FsVJGUuShgqvqX+tHvgSeK7F0bon3/MR7eMePvpl7776Di0+vsr7+OEdO3MLJU+soKZmvf/7Xo8gpNjZqGCkZYXVRDRnLT3H//Z/g6+69hftecB+piTyxnoEHwHXdLYrJvpOxQUgE1+uLRHBNkGBMbB0HozOzo2x4o+C5vXB9xjXuOpqdYJzyhM/BDQsT/m0U7IV55G7iRzkrGp5pyGmC5O/JQrXTM217jag+EsU6j5pOH3HX++yW0QwKx4OuNxq1zw8z291Jn4vLO/hunPPQe3Fmaz+VdrtFVBv2zvFe+3t72bfO0UFhNVbwihHafN8HefgcGC7rqAgrgqLMDsdqIz/mSrkBgnVU+lFhN8PJg4XjUa7cCX9X/7svnz5FpVJhaWkJRcD6+jrZbJZut4siC8zVCzQtkyP3vATJ67VNuVwmLTtcXl7l1rvuZaNpIptdrixeRFEk0PLksxnKuRRWq4oxvbB59lIIgeT3lHKaptF2bYQQm97c++xmv3yyEtMWomch5TgOirr9CrRRx7YvyaieRre5SLvZoNGsMVEqocg+ipEBodFuN+ndwVoBz6ZVr5OfPoJCl1Z1mYlChbYn02xtMD01x8raKsV8jrXVJSbKeXwM2k0XI6WjGwLLsnBdj6nJGSy3jUQKTU1hWm08zyGbKdHpNlFVFUW4PP7IVzhx5z206i0ypRKZQgFHgH5VivvEJz7BK179qkhHScG2dxwHgNWnzvPkk48iawqHjxzEyBSprq7wN//vX/HWH3wbK4sX0BSNv/jT+/nX7/5pHv7yFykV5vjrv/p7hNskk8vwLW/6To7ffmzz2EGzXieT6Qn+ruviSy6youEjgZBRJG+TJAgqZGVZ3q6oH+BVWAiBqo3mV2BcSLI6siL/ZkYiuCZIMCZGEVyjNlA7FVx979rmVZZlfOFuSWe3uNkE193cKwmJ4Bq1MCaCa7TgGmZuh9VJsG8lguv4uJEEV0kZz9PyKG3St6qRJGnT9HMvBFfh9ZSeowqjg9K/noJrf43pmG2KxWLvnLO4JigIIXAEqMJCSDIilUdG2RQ6FB80Q6HVbSOrCrojoacMHMvGkxQQPgoC37Mg1Tv/2Hek5Fi9fxVFAV9s5tlvny3HDgKeZ7eNd0nF83p30UvyzgVXgYwkZFTZpVmzkbG5cPYRFhbKIBdxHR/X612Vpuo5WvUNCrkMrizj2F0mK5OsLdUozx3CEw2azTqO1SGTSiOjkk1l6VhtLMumWCxy+fIlcvkKwpcpFEp0uutkMxWEEKxvLKHhInwVWQZfS1PIppB8h0bHo1jKc/nKEpl8nsrE1JY50mOr6W3Unqj/m1lrcvHiRcxuF9e2aK40OXj0GNPz8/jCwvMsZFlmZbmB5Aok2edX/uv/4F//xLv52mOf4yN/8L/4iX/7Hu55we2Uy2V8WeLcuXNcePQ0ly5d4stf/jLvec//hiPg0K234ErRgiv05uBttyhECK6b4UPEeiK47i3GEVyTE8EJEnBtQY17Bm1cdjLhBNMLmpju1QQWXCzi8g7+FixD+BkFcZvjQaale5H2IATrcjdnLoOL3vXCKHUzbv0Nit9vm3HO846bV/DdoHTDeYb/HxawIzfhQ8o8bLwG+384bFQZwukGnQ+FyzhsLhmG4HiMUwyMWgdxdRF+N848Fww7LN6gNtyLcTuobP08wnU5TDEWtSb0EVRchNugL8gElW/hNHYy3nbSj8Ztw93MA1Ho10MqlcGyHHwfHAGeJONJMr6s9Ng8JYNQU+A6KFYHzTHRXQtZOHimSQaFlAu+6mA6HXxFQpZtJMXFVwToOoonkBwPHRnZ9dEUFUmA73pb2qsvvIbLOejbfeH2rkZRIsy1x2wTIfm4KGj5DI4sMzk9x+mnztGod9ANiWKxiK7lkGWFdDpPp2Pimi6GptMxO0i6jOrVaK8voToe0xPH0NUSmppGliGTqgDQbnWZnT6CmtbIlXN4sk86VcJ1wDRtKpUSajpPaWqOXGUSoWg4ns/TZy8gVIWNRp3JmWkc08K4Kmj1+3PY5HbQmFcUBU/2mZyYYK4yx5ce+AoHDs3w0EOf5aN//lHe/B1vYuXyKktLa/z8L/wSmi5zZfEc73jn9/GOd76F2+9+Pl9+7BF+8l+9i0e/8DBffuiLyMD07Ayf/fQneO23fBOvevlLuHTpEl/8/IM8+PFP8dQXvkK9Xt8UUvvjL/j/KAyaw2F3a+N+pPNcRMK4JkiwBxhtg7V/eqJBGvvgohy32R202MTND/20d8LSBcNFCbTBPOLC7hSRmnGx1bX+tu+QRvMAGsxjS/QdsCpR8YPp73X9DGqL4NUdu6mDuDD7rXGO69/j5D1I8ROVbh9B4WXszW2gjMMsDwYxyHFCfrAPDauHQYL7qOUZRdnQ/3urGd/oAmzcWU+frQKJJLYKrLHXxlx9J0nSplVBuE3Cc2IQO7L6iMDmmCT6PHowzLhzejhM8JuHYdj54cg4gXIPZOxisu7nKUnSlrPM4Xee520dNwPOSI4zH+yVkrnXhi5IKo16HanbJJXWqFXbyDK02lWm5w4ifIVsNodpriNJChcvLDE7M4/r1SilSpi2jZCzVGtrZHMqjttFUie4/NSXuO+lL6MmcjSvnKeUEahpA1eZAd9Elm2sbg09Nw+WgiIcWs06uXya1dVFpibnWVy5zPzVMliWh2m2KE5Mo+Zg6BXLXBsXrudx6cw5nvraY1QKRV70spdz//338+KXvoTpwgKdbp3TZx+jXMlQqBzm8Ucf5MFPPclf/sVHaNY6/PC73sHc7CHmDk5T31ji2K23sHDkFp548hQSgie+9gh33f0CPvzBX+V73vhaFo7fzT/e/zHuesULeN599yJ5Lr6sx+6Frv1xjY2VZXmThR/n6rth48/zPFTNGF6BzwEkjGuCBNcZcdr464FhDOt+lOfZbN4yDvOXgB0zzs/EWBiEvWbv4nCjfPOzETdSn4nCTueG/ZxXkvlqMDb9SIyAZ2rthl45dV3HMAzW19fJ5/Nomsbhw4dp1Ko4dod6tYokKbSabWZnp9ENFVnREMLHR2BZXfL5LIqikM/nyeVyHL/tdmq1Gr7TZWKigqJodDsWnmWi+OB0TOrrdWTfQ1HB853eWWNFIl/IAlAuTeC4Ju3uBrZbpVFfp9tuIrzx5lRd1zl6/BgvfulLOHbrLbiuy2te8xqmp6d5+sxj/N7vf4hctsRv/cZH+PQnP8Vddz2PdCrLkWMnuO3OE2RzBn/xl39CNptlcnISx3FYXFxkcXGRiYkJXvnKV3L42HF+6qf/TyxJpdrs8OnPPIRrgiSpCLQbZm5JrsDZOZKaS5BgDxAluAbNU4KmJztNe7dhwtjCPIxp8hQloIfT26nZZpQJXVxeUSamo3p6HIbdbAjD/WG3G9eg+dogpUFUHjthSPeirOEyDCpH+F0c+z8snbgyB1njqLTjxsOwcoTbJoy+0DzO2dZg2qN8Q7/c4b42LL+o9IZ9z7gmp3F5Ryn8gpu6uDli3HlvUFrDEFZ6BM/0BdskTpkXfrdbJec4zH24bw9rk1HG/7iWA3HpBPtsVPmG9ceo9IJ/7xXTPa7Fwahp9tM1DINLly5hGAamaaIoCq1Wi2xWo9upY9tNZEkjlyugKBKKIvCFyrnL50ln80iySzabxnFcmg2zxzbLOpZlk1N69ybrWpp0qkRKlfAdG8mFSr5CffUyVmeV9eoqlYkirmtj2xayIigUCrTbbXRdxvXaLMxPYugyq1dWIr8jiH7bSpLUu/sWKE1PMjk/i5pRePirX+DC2afJZFW+8pWHOfnUWd76lnfRqrb4nd/8HVarVW698y5e/IpXk8nn0A2VD33oQyiKwqOPPoosyxw4cIBms4nv+1y+cJ4nTp4mXZziz/7Xn/KzP//znPzak3QaJuh6bHtE9b2o/jRqHwzvS4J/9x1WJRgfieCaIMF1QliQjXoS7B6SJO3JoiBE767dBNdwPZidvkltFPrnjQe928vN5H5jp2VN5ordYSdz7jBF2M3WJjfb9zxb0D8jX6vV0DQNXddZX19HkXzy2TTlYo5uxwFkOt021doatgtHTxxlcXkFy+7SajdIGRky6RyO4+DLGkYqRX1lEQDfB9+T8FQfOa3hqRLoKbKGRrO5SjpjIEmCeqNKPp9leXkR0+qgqQaqkkdXJvnyw1/A7LS3WOI0Go3IPhOcr2XRuyJHKDK+KoMqc889z8PpdlldbnJg4QhTU1N87vOfppQt8vzn30epMsHtd92Fnirx8Y8/wNFDJ1hYWCCdTjM7O0un02FmZgZVVVldXeX+P/0IB+enqBQL/NgPvY3PPfRpqtUlVM3HwRq7TXaibBwV+hBBOkE0kpkpQYLrBCE8hPDondeKfmSZzUeSBJIkNuP1/0YoIBQk1IFs1TgsbVT4sHAQl+4gDfluGIUwOzBI4z6IPduRUCD5Wx5J7rnAF3gIBnvK7ecZVbawhn7cco3LbO2EcQsjlmlH6d1vJ7YvHVH57lQIDJ/LDqYZVyc7tUwI/h7HmG0yB0NYz7j4wb+HlRW2sntRZZYkaYtFR1Q/GLdfDhrvu2EIo+IPa8thDHkUhLT1CcbB7z0yUu8eUvnq2UhZ2nYVTjANf9ttldHlGWfejWJBd8okD8oj6u9hYzIYr19PkmDb06/Hzb9DiGqDbWFiyhFmsbe0TWg9GGmeCc7vQzBszRkr3xEgSSoSPRbu6F334jsetdVzuE6d6fl5rI6HpGbx5BSKmmZl/WlkoVLIpCmVCtTWGkxPT1PKVVAkH9dpsry4iKE6tGrrpNN5ihOHEJKKKau03Q5mrYrk9VhZWSsg56bJZqdQZA3JKFOaWqDR7FDMFRGKBpqKJ/sYeZ3b77qH5UtPk8/kadaaSL7ElYtXcEwnUvHYr6fNq1GFACGorTfZWG9SKFYwLZkjR45w8omvcNuxI1Rra3zsYw/ygrsP0rn4KC+67y6qGx1e/6Y38/UveQEf+6dPccsdd2OZHTrdJgcOzSFpKm/4vm/D0EoUcmn0vE5RaXL81jsxu2A4XFu/hIyALc+WNpF7XqP7e4H49oued6MsCYZZZiQYjsQ5U4IENyiiNu0AwleuvR9hER5njIfzDP8+bj6D0hs1rXHih8Pu1cLQT28UpzijlGPc9hhXQIrLe9cIOrCStis3BrGh47RjcFGPEoYH3l0p4q+iCMaNu+omTvCEaA18/9vDAkJcOsMwqO0HCbFxfTD4/0Fj+3pupoYJLH1B/Fp/2nm/iroKZjNexOfuZk80UnnGmKcGCe0AirQz3uF67fniHF0FMag+NvurFLMuiWtpeMLfVOIA268+GmGt3Cz7mHW003ETFmj6sJtNOtUNjLSO5fkYem88eD6YJihag2J2gfW1M2QyBbLpDI7j0bFcsrk01eoGlcoEpmWhaQatVod2q8v0dAFVMeh0bGTZx8fDSOdQ1AKtTh1D9hHIGEYK13XodlrIskwqnd0sW7vdRvUlDEPF12RMq2eZZBgGhUIBy3G3MPaucLfMs8E1otM20YXC+vIqn/j4Zzl8cA5ZlnBtF1V3+OVf/k1WryxhWU1e/4Y38PKXv4qnTj7C1OzhzTp7+OGHufv2W+naDq99/es4e+YJJL/E5x78O7pdh6mcxf0ff4B/9Z6f5hX/7FVI6IG+FVrDQu0S1bajzMnBvhy3D5BlGZHwh0DinClBgpsCg5gRWfGRFR9JvubZchDbMmr6gzT0UexAFAYJLDvRSIcFhDh2aD9YoWA5drOBGcQSjFuGqDyiBLq9YABGEV4G1e+WexDH7D/h9PtlCTuFCp99DJcl7ixblPZ7UN5R8cJ3/g3Kt9vtDmy3cdomTvCNYoDiwvTzHzRP7IfQGpVesO4H5Rcs116N5XB54vrjKHkOChNX76OkMeo43o3PhBsNO+3P4ffBeWO3wvle1mtcmw4SyI1CjlxpBscWqIrAFTKtVotmdZ1cPoOh52nUuwh8yuUitqTj+BLlySKrazVyuUlMy2JlZQXLsigWi2SzWRxXotXpohvGpgMny7JwHGezDhuNBr7b4sypk6RSBertDusry5jtFq5lokqQzqh0HMHa8jqqDFa3TUpXaTfrLF5e4uzpc7i2x5VLi1vM7MPzTCaXRU2l+YM//HO+5TWvprrR5D/9519EzxcpFKfAdfjN3/s9XvrNr6XrSfzYT/4bSjNTvOYNr+Pb3vh6Xvem7+Q//Nx7ed33fCdnzl/h9FNPcvjwIWbnKrzghfdimS633/kS/v3PvIdXverl2MLYrPe4Nh6l/YfNY4OwF/3zuY5EcE2Q4FmKm2HT8mzA9WSi9gr7uam9ERbevb5Xd5RvGkUhJMsyqVQqMt4zgRuhrYbhZhHAEuwNng19dicY57t8uedboVpdZ2NjlWw2SzqdJp3S8X0fs2vhOj6FQoFqs8NG20LLFlhcXqIyMYXnS7i+x/z8PI7jYFm9s51qqkymWMYUNpIkoSgKjuMgSRK5XI5qtYqmadSrq9xxxx10OialShnHscjnswjhoWkK5y88jZYyqJRn6LRaZFIp6tUq58+e5cDsAQzFwLM8VKK9OffrwsfDQ5DO5PjqV77IL/zSLzI1PcvXHn+C9dUWly9e4o/+5CP89od/m2/61tfzx3/xUb73X/4gUgZ8w0PKAGmByKV498/8DJqiYDstFNVleqbMD//wD6PKeZauLCOEjKb1zpTuZM5J5qkbB4mpcIIEzxGEx7rvydfM8gac4YgzZxtk2hW3uR/FlO5GQbiMUSaqOzX322+MY4642zz6iKqvUbx5hhUDcf0ojqUbZp7Z3ywFTX3H7bvh92HTt/43h5n3Pnbj3TRc9v5vwQ3VjTCuguz0KA6zrtX9VnPwIBM8bD7BDzBu0tZ0d/MdkXkRP/cNCxOV3qA8B5Ur0lzeH65gi1LCxTKZoeSG3ZEbRj+vQXfijmThMWIzhssqEy786MdqxrWOGGV+HdqHA5CFjCcE7Y1LCLNOm0zvehtFx0UCTQHXwm7UqVpdSmkdywO3XSU/OY8n6xiyT7fZIF2awja7OK0NCrO3ISs+lmUiSQLXtlElDUWW6XgumtNGAKlyEdeRkSWDbreN4jZRs5PggWe2kIyeua1lWWhqGlU4tNtNhJpB+Bae5+M6MDMzg5JSe+fEB5jl+0JC1Lr87q/+GpMHjzF7+DDN9UUmJqb523/4NL/1oQ/yOx/8TSYnCswcnmB6fg4Rbmxx7Z5sWVY3nSrqus7q4hW63S7Hjx8HRcF27M0x5AfMmGH7Ode4doxr8f6cHDXfi0CY3r97cwPCsx3jmAongmuCBM9ZDBbExllkd7rAX6+5Z9RNyCABSohr1+v0N+JRAkpcuvuFYd8WFALCpq5RG+thAlAwv356/Tj9RXq3DHVYMIwq6/XAoLx3s6m9nnfJjosowbiPUcZ9WFgPpjeaAsOLzGuk/hAQ2uIcKV3PfjQKg7/TuJHnrEcV8IYI0FsUIyMIrpvh5cFzR1iI3A/BFXk+acErAAAgAElEQVSrcmpbvDHOuPbLNkqYQWfeh6UbF0YW4KPytS9+hqKhMn3gCK6SImuoPPCpP+JFL34DrU6bfLZJrZlCFzaFyiSuZXH58mX0TI6pmVnWTn6Rwtwx8uUJXLODUDNcvnyecqWEKwxy6TS21cWxTEqlSXwBlmXhCwdDz+C6Ls3WGuXpQ7SadbLZLEgKbrsBXPW2LRv4dpONjQ30bJFMKkW3a5LPlcmXSnStNrKqbAquiqJsCpZe26TVaPP4o08wMzXBzNQ0H/3oR3nRi17E2UtLXDi3iCpkfuu3P8AnvvCPGGkVX4pwVhfhLHDzlbK1XyqBTu35DoqiXJs7QnNNbB8Yc70M53FN+ZQYvkJyxjVBggQjIejRuIfguY2o52bGqOda4NlpPrzXJnhxZ7f2Oo9Bfz8TeKbz30/s9bf5vp9cKfUcxajz4yCv2QngzjvupViYZLVexdBlzj39MC98/qtw/TZC8fDFBNlMnmymgGN7tC2Po0ePMV0p4/oS+dmjOLLB4tIKK0tX6LZNjhw6ju9ALltCkmQcx6HRrOKbNSzfQVIk2u1VdN3Hdz2mJmapV2ukJYdzpx7Fshv4rk29uo7nWFh2B9s2qVRKFIsFFEVB0zSEEJx68klc193yTcGr6k6fPIUmJMoTFb70+Gkee+JJ3vt/vZcHPvslJLvB67/9X1CcyfLbH/6faBm9J/yKaPPjTYRvBxA95cemJ/Fg0DGVkGHcCOvRcxEJ45ogQYIdITx3RGuSBzu0GZRelBZzECsQZ046iplzXDmCf/cZ13GY6FHyGhb2RtnQxbGykWX0Q205wEwsnPZOyxWHKLZ5NxjFbH4Q9uqu2Z3mv1OMY14ajDPIXLxn0idvc+gVCrWZV9+cbvD4G2wpEmTe4q5meSbRNyscdSzsinENmVL3N/N7bVq9BXL0nCGE2CZM+ISZ94BDtogsgmvAFmuQMRnWIEati3q9TqlU2mYWOo7JeDh8uBznzp2jpFWRyQM+ulFAMXzWN2pMVg6iqAYrF55ieqYCennzPKuiKCAEqgpXFi8yMVGm22yRKU6hqhkc4aB5JiDTUbIYbgtPz+PZHQyp5xVYURTW19fJV6bpdrsYhoEQAl2W8DwH13VwdR/VEjimg5RN8/SXPsnhO1+Enq7QaVRxWg0OnTgGusqZr3yZo3feh5JS8bw2a+frPPT5B3nhq1+O3WrxsY/+FflMiX//3v/E+9//fs6fehqyGj/yUz+OIg+vr8g6FVstg+IsCoJQZPC8wdfg+QF93CbLH7M2bh5XkUb/hucSEsY1QYIE+46+y/vwk+Dmhu/7Q00/k76QAIY70drLeeNGNsNOMDqeTXNHuVzed8YtnU4jYVAul5EkCT2TplZv4zkurtvGt5vk81mWNhp4nodlWaRSKTRNw3EsVldXmZycQlV1itMLKBI43Rpmq4Ht+nRsB0W4PZN+p0tWNzCtBpbdpGvWyRcMNGzSqo/im6QUD8/zaDabCCHoNJqsVzeoNRtk0mnuffGryWZzaFho2Pzt3/8da2tr1KpVPN/B911c16fTEpi2zbvf/W5Smk42l+PVr341RjpFtpDnsUdP8b5f+lVe9ep/jq5kdl2Po6xbCZ4dSBjXBAkS7BvCThTizquFfx8/r51ptgflH3a6M07ecemOenYqjFGcHY2qid6PeT/IagZZFN/3NxmXOIT7RhS7Gz5T9kyceQ2XddRy7EWde563rS/uZx2MUs9RbGzcfbrD8roGP/Du2vni6Djbx0Xw/Otm+GeA5BjGVseNx3HYuZ06Mdp23+mIGNQ3Iuf4iCJvjvFQ9uG7NYcxrmH4vt9jG/eJce1bC4yLnVotNJtNFk8/RbGUwTRtilPTZIwUl8+eoVg0qEwfAc9kpVpnqjKPbduoqkq1WkWSLEqlMgiZarVOeWoCXJdLFy5w4MA8aBks18Wzbexuh3xGo93p0up2WFhYoFaroes6lulQLpfZ2NhA0zRS6RLnzp0hlTKYmixheR7IKlgeqm7gmi2MjEG10WayNIHjOHjC59EvPMKL/tlLqTZbaEqKVr3B4w9/ldPnz/Ft3/Ft6Mj4rkTTNPnQb32QhtPh137j15GFjy+7W+pl5PqOO/8ak4w04O7ofrv5oRMQ4avahuWZMK5bkTCuCRIkuCEwiJW9kTXqN7tmNuiMYi8RrLe9qsMbqS1uhLIE70R8LmHQnHGjzyUJrh9uhPG51/B9H03TyBcmKJZLFIqlnnMfobIwP49ndWh7MmsbNVK6hOd5mKbJ8vIy+XyebDbNxsYGpmlTKJSoLV9CUlTmDp7g5OOPs7S0jC9pSL5HJpdl+fIFdE1lanIByxQgdHxPBT1F1xPkJ6ZATyFJEsePHyebzdJpNDFtG1XXyGezZDWVXFrDdHyyMwvIam+9qa9vMDN5C0uLK0zPlJmcKpArFviGl7+MRq1GKpthdmGeCxcv8sHf/RBve/ub+MAHfw3HbyHL9jPdFLHYrzU1QTSSGT9BggT7BiG8LU/QIZQkCSRJIMtsecJxhPAQvozwZRBK74lA34FU2GFCnHOpLVpvIYOQkVB6T4xjqqg8opiUuPhxCH5L1P/D6Q769ijnEa7r7gn7F3TMtO07ZQlkqefhdQjbGlXGIJsTdU5oWNz9cOgUrONB74J/7xfCeUU5yAqy1cMQZrajxk5UGfZaaNxet3LgCaM3h/Tnh94ZWBlJUrbXj3SV5Qh4nR2nfsZBcCwMQty8MChs5Dux9dmCq+Nv89sHlDWuL4f787ZyyAJkgZD8CJb0Wr1Hsq2CnidosTVcL6xMfNsPwJDyjINh7Tdort8rBPuorutICIRl4XkSGxfP01o5y8rGBum5u6hduYQsyzRqDrZdo9VaI5/XkGUHSc2QUcG3anStFpMTc1w8cw4ZjxPHb8OQbBorZ3EFrC1d4p0//h6eeHoJX5IwDIVcXkMvZFF98LsO7Y0Web1At9nAtlqk0jmy2TxzpQlSkooj+SzW6/hGDl1RMcwmlmPTsU1K05PM3zmFaqRYWazRadv4bgfZkFhYmOMvP/pXdLsev/Frv8qLb5/n4KFpzKaFJqc2PYWPUs/b+nTIWdMWx01sfYL7k2Hriqxcezaz6pcvJs/9mnueS0hMhRMkSHDDo69IH8ckcxSHPNsE1yACm5+o+zPD5RnVhGycjfMo4eIcJu2nSe2WRXwXAsxeO0y6nnUwqBxRm9u9XmvjzEglaauzn2Hp9Pv3qObswe/bK1NhGOy8ante0eakPXP6rV5Mo/pGf6zuR5uE5529MCOPPDoQd5Nk2BlShIOqqHcwumOhsHAoidB8G6Ow2qnDrPh7ZL3N/BVFib1ncxQMM9+OUlTFteM4ysuwIqm+soKOxXq9zi1HD9NsNlmt1qlMTLG2dolsJk8mk0NCxfVsNE0FfDqNJqtrG9xx9904rk9jfZXKxDSr61Vy6RwXL50mldZQtSySkUERHnarweTcYRrVFXzfoTC9ALaJEBKdtoVhGGysLZMvZ1nZWOVwaQYlneXC0hoT8wcQjkk2bbC+soKuq1y+ssSxY8eQZRn3qnmtpmk0m000JcNTTzxOKZclnfWZmT7I+QuL2C7I+Nx+391IutwzFY66BmdA++xUkbClRUT09XiR7UVImR6jOPGFlFiJRCAxFU6QIMFNhT4b22dpY5mIAezjuAgKmMEzloMWxnEWo1EX1VGYm2C5osp+PQW2ncbdbRmjWMe4cHHxd/st/fRGDT+KYiLqGRZ2nD4W7t87QZCpC6a3E+Z3UNrD0HcGNWjD2U8neAfxqOznKAgL9OOmGcdwh60r4jBKO+6W8d3LOLvFUHY4gGGKzJ3UyThzzzhh+33VR8axfbrNOhcuXMAREqVSidb6IoVCgWymgvBlHEdgmQ7dbhvTapGWXQ4cPkyzY+F5Hqoqc/78WXRdxfIEx07c2nPmpMlMFIqUCnn0bApVVijmC1QKRXRFpdGsoWkKqbRG1+zguF0UKcOB+ROcW27wK//9Azi2ieqaNJtNfN+nUqkAcHBuFkX4CMem02zQbTU5f+Y02ZRBWlO56/YTtFtrVCanuLh0gU9+5pM8+dQZvv9t77x6lZaPJGl7smaOg3A6Ue0+qK/tlZVPgmgkjGuCBAmeMxD+ds3o5hwoQlduSN6mi/u9vMZkL+fcuLT2g1GKyrNfR+PmFVYKjCv0DcIom9Zx2jKO2QxjEMs/bv/pM3ejXpESDLNf7T4s7zgEmcjBrGr4vld527tr8QYribbX1/ZrSkarn615bC/D9nR2wghFWXJEoT9WdjJOoq68GcSMjsKGCiGGX6Mjx80JvTbpfdPo4yKOcZWk3hnPzXPg0rU8djN/j1LPceNut8owABWXJx76LCduu4fl5UXyJQNJleh0PfLZHKZpous6upal3dlAlU1kATXbZbJ0K0IITGeFtJqj48k4rSqK4ZGRi9SqFyhN3YGidmk3XVbXltC1NJNTRVJpjbXVJqg+VrvL7OQMVqeLnFFYXamzMHeMRqvOmbNPc+utxzl3/mkOHTyOpql4voMkCTQjxeriKq1qgwOHDvLk40+R1vK4tsvx5x3h5MmTpNNp7rzrDjzP4clHTzFROsiDDz/Aa1//WpSsjifczeM7wFhsepSSYVB7hBnXYPxR+sFIa4885B7a5ygSxjVBggQJohA+c7IFIvQk2E9cb1amn+d+5pto2p95jMJI7wTPBJOYYHQ8k+MuTnG3J0w+OuWpaZ4+/QR9w56NjRrpVAZN0zAMo6foEhKO4+H5cPHyMoVcnmZjA1URaIpOtVoll9Jpt9u4Dqyvr9PuVLHd6qaDoZmZGaamptA0Ddd1yWQypPU8MzNzgIuRVbl48SLgYjk1fOFy1113oWkaBw4cQghBtVpF13VM0wRfYBgGt9x2K1pK5eDhBb701c9x/NaDPP61hykX0lidOmdOnaTTalCtrfO+X/gvrKys8JnPfOamc7iVYPdIGNcECRI8h3GNBeqj//+gSeF+IGzCGP4t+G4vGN9hbFzU5msUVihcR+OymvvFuO5GQBkWP86kNQrB9ttp+fZM4z/E/HzcskWZz42TxjXm3Qv9HqyvwVekDEfwWp1x+mY4jwgHRDtg8OMwivDTnw+iwgyML7aGC+YVJjxjz8MG4/rx3x5MdxALHse4RjHbcYzrtqMRu3TQFJfPsHfB7x1YP2P0HUVodDobPP7lz3Hi2HEsp4NmZMnlJ3FtC9d1OXPmDEeO30qrvYEsPKYqs5y//DTl0jTpVBbdUGm129TW1pg/dAjLcrCbNppeRUpVaDU6lIuz+MJB+DKqJlhcuoQiZ5guT9Bo1SmUCywuXSabyeP5Dpqm4vv61SuIVDKZHL7vYhg6rXaDjY010kYGkFE1nXanRiGXx+r27qHdWFklk8lw9OhRzp67QKFcIJUrI5HDtjqkcinS5Ryu7yC5kEqlEELgIWL7exDhvhc7RwbjDWmnUdbvyDU1YVwjkTCuCRIkSBAJP/T00POQ2jtHqygSiiJtmsDG4Xpcx7GXZsoJ9hfP9is59qL8z/Y6GAfP5et4nsvfPghRdbIX48GTHCQ1y+133EerXUM3NGzb7QmYqk63a3H8+C1oKYOJ6Rky2RKerzJRmiCfTdFtN7A6FplMBll2cBwHy7LI5YoIP4XCBKqqYhgGjuOgKAqNRoPJyUkKhQJCNLDsNr4vMzF5hPWNVQr5Cim9QrGU7QmTnofvQb1exzRNcrkcU1NTyALyhQJGLsPMzGEcF9LZPJqhI9Q0B47eyhe+8hgzkxN0Wk10XaXeaWKaJleuXOHChQsoioIiydimhdU1kSQJx3F2Vad7iefSnHcjIJl1EiRI8BxC+KqF7ULsNWctguC1Pf2/g4/vu1e9mAav+bnGFEVphPuLXJwTliBzMEyAHtW5TPCM3KjOTKJMK4flNch5yU6E752enY1jroaVYyeOVsJxwr+H2aNxvml4+K1XOAz79t3Wz6DyBb81yEAM+9at51avPVvTkOhfeQNyRLphhdT2Ohm3H0nC3/IEvzfqG4aNw0FhgmUbFD/ctyRJ2nYdzhYGKPQunNaoYbeV/WoYGWnbNTbhJ3jlTTida+042jw06J2PwEeM5Zl4P7GtbgPtPehdMN6gseR7oOoaim7Q2lgnlS6j5YrYThMkBYGJpsPGShUsF8+ug95B1nJ0bY9MoQSqhiM0UrkZum0TCY9Gd4N0YQbP36BYKdORBGomi2mapNN50qkCltWm2rbQ8GlsPIXsq0zPHkbVUrRqVYSvoOs6nufiC4t8oYQsHDqtJqqWRk/rIBywu0iahFAV0NMsVlvcde+9VM0Oz7v7+Xzt8a/S7tog6UxOT/PjP/6TzEzM8Av/8Rd44G++yJ99+A/5oTe8jk/c/7GrDK8SOe9GIShUbgkfeqSrj/C37wfCCI/ngfPm1Wv2Np8Eu0ZSiwkSJEgwIvoa9d2wDQlT8cwh0YwnuFEQnEdu1vOz+z3P3exzad9LNoCiKLiuy8Hb7mV9owpWB032MM06+XwRWdHJ5TPIskynY+J5Ej5t0sYsqpzn8uJJhBDk83kURUFTU5RL06hKmnbLBNvHN1ukFBtVN1hcWqbdMdGMFB0HsuUFGraEkskiSy7Ct/AVl+WlDfK5CqXiFK4jYZomGxsbPe/HjoNpO0iKSqvTxWrWSMkC1XeYKuZYW7+MrmtcunSFTGWeE3c+nyurNWRV54Uv/DranTpve9tbKRRyfN+/fDsf+KM/5Jvf/B2b53ETPDdx8474BAkSJNhjDNKIh7WuQbZ0HLYnqJnfPIMWo8WPOl8YxabGaf6j4o+6kR6VqY09fxej0Y5iiKPSHxW7FRBGjSuE2BSQd8I27/T74uKH+2wUW7zbfMP5jVIuYJsyIYqB7G/io75hUP5RfXAQoxmug0FpR7GlUXGGWUoE+0hf+Ar+O0ygHcUa4XoIxFFzTHgOGiXuTsq8l/111DzGrdNhc2pc+YPrCECxWKRr2WiqRLmYp9Y0UYSDpmbomBa5XI5Tp06RSRdAaPiuhmk1EHgcXLgVz/PodDrkcjlUVaXZbOJ5DhMTE/i+j66lcD1otbtUJmZIZTJYtsvUTAXPlzl65BZa7Tpmq43ruugpg5OnnqTTbaHpCvlClnQ6TT6f55ZbbsEwDArFMrbjkc7kMAwD3/dpt9sAZDI5crkMqbREeWIC23PRNYXq6jKv+/Z/gaoJVtcuc/TYASwh0PIFXM/D87yR230n8++o63aUlUn4fR83q3LqmUAiuCZIkCDBPuJmZwVuNiQbjGcWQoibYrz07qCMx7Dv3K11x42Km/Gb9ht9axGrsU5WhaXVDZTSLK7dxfdBVg1c12FhYYFOxwKhkEsdpWsv4tPCsybRNI1cLkej0SCdUemaDS5eOoPnm8gpFUuS6bo6xcoEHcvEdn1KExNYnSrFTJrVxUtkDEF1rY0iZ8hmJ7j9juPIiofnmzhuh1qthqqqnDt3DlmWsT2PfKmEKwSmUMlPzpGfnEPPV+i2wXVdCiUFCY+UIuF36mhum0w2jRAez7vnTpaXF/EkkIVKyn1m/bRKUrRztATXD8nMkSBBggR7iuizdsGzsv2n7xCq/7cQHuEztZv/H3BWJu7MXRDXg52Iy383ccPljmLcdvJ9YaZMVdWxWLxh39HXxo/DDoxyZmtr2ODZ0OgwUSxl1FnLOOZgp98QxKDznb3fro2TsIfh8LgRwrsaZuv59GHlGiosXT2TKYntZzbHRT+vUcZCsA9HnXuMjCOBpMi9e1jlkFVFzNnTYYgLO1Z9yNKW867h87ibrHro3TYG9upZ2b4X40GQZLHl2Vb2wBOH8HwSd0Z1N9ja96+lGcnOSj6ea+KpGh4Gy2tNsgZY1ZO0XQ3NkDFbG3iej6QaaCmVjZUzKMYGleIxfFdntfoIwnaobtQpladotU1mZg8wv3AYH4nV1Sr1lSu4VgOrs0ou7YPXQfUNStkpTl04iWJUuHRliWbHBqDVqKKmMihGipbZxZU80oaMI6c4cvxWPLOJhMLypSsYEqxcegqv00Z0TXThoigOsmQgpCKyLON6HnMHD5IulvAF5GcWcCWDTCaHhI8v+diKEq7KyHGyafHiSwhf2rJ2+l7v9/6Z1v4zylnU/jwyquVHMF6iEN0bJIJrggQJEtwgCG9cguaC/Q1Z7zIAL3LjMwiDzJp3azY77vm8UTfxUaaicemFhb2oTX9UmDCCnioHpbtTM8a9Nu0ct/1GMbONqrNBfw8LO6wsuzGBjUpvmIlvXLxgXe4V4z5KecYxEx0nz6i0Rh33o/TRUbGb/hzVJnHfEBb4h5lZx70bVp5+PrvBuH1OVXvXqBw8cReOpyOTZapyGMlrsr50iclCCbvbJZdOUSlPkStO4gsLIVza7RYHDhxC0zSmpqY4ffo0SysXQXLpdLp4jspspUhKFqQVSKfypFIZTNNEUQWdVp2jh45TyJU4cniOI0cPsLKyQqvZJZ8r0u3YlEoVhC/hCwskj27HRiKFInwqkxOksnmOHL8NWTWQdRVZl7l88qtYrRrpbJbLly9jWRYbGxu979UMZMtldrJMo7vGA//4T7iWHbvmhBVzg+ancF8Z1j5RYYPz6DjKqQS7RyK4JkiQIMGzANsZ28SkNUGCmxn7aSUxUEG2h3PK9bTyeK5ASWvMHpina5m0mg0Uo0xhYoaV2gbteg1ZQKttUSxNc+78KXxhXz0fLtFut7EsiyNHjjAzdQDPlchk0jheC0vIlGfmkYwMluWiqT1T3Xa7Qa26SrdlIaOwvHiJT336E0xPT/Nd3/lmHEdgWQ5m10GSFDbWmyiyjqwIqrUlVKXX1zyh0GzbOL6g2WljZAyOPe9FKKkcrUaDY8eOkU6n0TQNSZKYmZnj3MmTbKwvYWR0Di0cwLFsXNd9pptgIJI1+fpAerZMKrZtPzsKmiBBggTPMIKsWB/XtPvKlndxLMKw9aFvMjUIQc32OAgzgqOmEza1jCpL8N1+bTKC9a9EmLYNiwfjMY+7+R5JkobeFRyu01HZ46j/B9MJ/39wf4p23jQuBn3jIJYy+C4q7jWzwfD3eQMZwXGwE+Y5jGFjNIzg9TX9z4qKP06fC4cd11IgDv3+q8jDww9r/7h5ZpT5chTsdE4Mxq+urWJ2O5idFhOFSdIZnU63cfVamp6Zveu6pAtlTNNG19K0Wia+c4Xpwiy+XsBur7JRrTGzcAhfVhF+b57qdrt0Wh4TUxlcu0qr3mFi4iDV2jqFQhYkl267g6FmWF4+R6dVw9fyFCqTzFYmaDRqZCszdFvrCLOJb+TI50sIX6PTWMf3ffL5PGtra6RSkDEytF0drVNFUjWats3soYOc/sLHOXXuCt/6XW/HETKZQopLly4xPT090ApBluXh508DZsDbxmiEifm26OP2g0B+iqLgDzVWf25C1/WRJ4VEcE2QIEGCmwxRm6NrC64SGSZKeEkE150hEVwTwTVs6ruTMt9ogmv/W4L9ZZS0R6nLQUgE1+3xZeFTr1VRZXDN3l3iuq6iqBJra2vMzc1x+vRpjhy9C8e16HTaKKpE3lBxXYErgw7Iqo7j+QhkNE3H9/2e8CeBLAtqa6tkU0VM28EwNNrtFpNTFZqNNpqi4TsdVBmEnsOXNWTPQlYUfEXGc0yatXXKlQPIimCjusZkeZput8v58+e57bbb6HSbnD19hqO33UvKtnngcw9yx/PuodZsgd3gwLGjFGamEbIEnr8plO9q3k4E1xsSieCaIEGCBAkGIN7xRNTfUZutMHsyzuZ/lHUn7hzkjb5uBb+3zwJECW+72fzH1fegOKO+G4Q4RmOcPjJ+PxhuCXBNiNy54BIXtq9IiWZ7tm6Ge86j9s6cf5CgP6i8u1JkRAiu4yCq/XdbrlH6iTxCHxlUrmCckVi7EdHvA1Hjf6djUwiBKkGr2aDTaiB5Hqqqksnk6JrNzT6XyWSo1WwKhSzrG8uUKwXsdhdZy+F6HTKZAq1WC11VyGQyVOsNJEkilUoh6TISCo995TFOHD/G/9/encZIjp73Af+/L686+5zu6emea3dndjWrw5IsWbJiO/GhIHEcK1KC3ThSYjuCZciBDMc2HDtBjERybMNCAANBYn+QFDgWHMtyEBkOkENSIjsQdKyu1UbaGe05s3P3Vd11k0W++dDNKhaLZJFV1d3VPf8fUJiZLhbJYrF6+PB53ueVmgbH6WB7exul0gxy+SIq2+soFYqwoGOn7UBaBirrt1CamYdhKLiug7mFRbQbDgxTwrI0NOouOp0OCoUCms0mpGbA0AXy86fw1b/8IsrlMv7zH38S73jnu/DolcvIzxSgNBee8GAobTK/9yMaL3U/G+EN/izi+Af/nnQuK6W62/NvYI7ynXoQZAlcOcaViIjoBPKn0Mj63KTXN8q2pg2ncKFp4bouPM/DwsIC8gUTuq6jXm8in8+j0+mg3W4DANrtLdRqm5ifXcD6nV0YlgerPAfLnIHtAVauAMuycO/2KzB0wO20sFPZgGMDnmvgNa95HerN++i4LeRyFpaXV/CZT/9vOK7E4tIpWLkSmg0X3/99P4R2q4OZ8iwK5RkULROmaQJmDpXKHbiOjbu3N1EoFDAzM4MXX3wRmqZBCQuGZUEJ4Ht+4E147NWX8cv/7Bfw6OWLKM0ISNGG7gGmO7mbCVFG/f3E3wdHgxlXIiJKFJXlG8wgaJlKTsOZiO66PYVr167hscce25vuA9mygtMgmFlKyjaOkon0j1vcc8dB9H5GlwPHlegGnxulFD1K3/kdXqUc/NyGbcMvvQxvI3heDPvOxC2TVAof3nc/yyOE6E4rE3vMZK8MXCK0zcA/J1H2m2V87LBl0pQKDzPq+TTKeN9RSbRx8+Xr2Lx1F489cgkb2zehWcuYP30ayqth514D84vAZl1iccYAOgY8tw27XYFWWIJVmkGrugkAaDSrUEpgZfkimgkYmQgAACAASURBVK1d5PN52LaNWhPI5XXo6GB3ZwOeV0ShYEEpCVMv44XnvoZHrzyKah346he+gLe85S2ot5oQlgEhXZiaDkPT0G63USwW4TgOpJSoVHZQLpfheR5M00TTdTG3uABPKehQACSeeeZbeOjiI8iXrcRzPjhcwf+7EAIqlI8b+B4nUHC7jcoGnhvxc1OQmYeMPIiYcSUioonxs03Bx6T5F/O6rmN+fp53s6fYtGRPj3Mm9yj2/bgeK+qxlYXT5x/FpTe8BbvCxKnT5zEzW0S9WsHdm89j+fQ8tuu7yFkepJHHTmMX9zfW4SgN0q0DzR0UDAOGNoelU2dhWRZuvPIc8vkiarUGGo0WbKcOTZO4fv065udPIZczYeUMVCqbUPCwuHYe9+5Vcf/6XXzu80+h5nbwzLe+gZJqonLnHpq1GgAN+UIZ9Xodpmmi3W5jdnYWGxsbkFLCcRzk8/m+4NN190qJc7nc0ONwkP8X0XRjxpWIiCZg8AIiTSZiIAuTMMZulEzbuM1QRuFvS9NGG5eV5TVpM4DD1n0U2dr+be4FVaOcM1HPpcn8J60vKeMat76kbQd/Fs6gDjv2SWNco8a2JmVK/fcVt69KBJ6LOQbD9iP8s0zNoVI28gobNsb1KH4PZJW0z92/7z8npUSz2cTG9etwOjWsnjkH5Wzh3obC0vlZ6EqDqwpoNjZQLhWxs1WHkDacZgtnzl6G7Xhotnah6xKt5t442VqthnK5jKZbR61Ww7mVs7h98xaWT5+B67XhOC4k8lCihcpGC7ZtI69JzKwtwRMd3H32OayurcCFDhh5GIUCpNeC67p7pcMQaLfb0HUdjUYDuZkZFGfKUABMKWDbHXzrW8/ijW94E9puM3bMeuLvhhEyrt3vTYqkaNYx0My4psPmTEREdCz4FwHRFyPJd9OzBK5pl096fdp1RDXxibooHXbxv/f8sIukwYu78HvO0qE4fj/SB7dx2xtcTy+Aiytvjd7v8LF1E/dlkqJuFAwLsqNKxqPENYSKLF10986LqK7FowT93f2LKAfuLhNxUynNe4+T5jswjH8TQIRLzb1wQB5ovJNpC4dv2A2QYOBk2zac3V1Ua9uYX5zDbmUdOVPAhsBc/iw81Uan00G5dApblU0UigYUOqg1NBTyLtqtOjQUIfMFGNDRsavoKKCYL+CbT38V3/XaV2N7p4qvPPU0Ti2uYqa8iN3Nazh76QpMTcK2XTz77Wu4cuW1eOrLX8Pb3nwFX3rqa/j+H/5ReErCyjvYra1D1wzU2x5mSgW06h3kzFnkFi3Ytg3LsjJlTsftKtw9L0X/zbI0+zCsqVY4qFWQseXH1MNSYSIiOhYm1XmVpsdxuSF+nJ2U782w93ES3uMk+Tcz/AcAOI4D0zTh2AKGXkCrqVDIzQPCBYSDaq2CF168CtM00Gw20W7ZKBRyACTu3r0PXZfY3b0P12uhbe+V9tq2jfn5edy8eRPFYhmO4+DVr7mCt77tzZidOY1nvnkVGxtbEDBgWXlcffY7uHz5Mn73P3wMd+5t4lN/+gl47SrsdhuuLfD0155DdctBo2qj1WpB0/fmjD2K8nWeU8cbA1ciIjoy/oVr0iPqYi382rj1Bl8Tt/6k/Yr6+TDDsmpZLpyyLB+1bLBxSdr1hI+3EAKGYQwc/+CyadbnS3uxGtXkKsqwrN8kA+msY+qCGZq47PcoQWj4NcH9Cn9+SqmhxzzqOCV9T9Ls8ygBQjhLGy4VDu9P3OeR5vdK3O+ZYefaQQc+Sdvwx0b7D8uyYFkWOp0O8rkZlIoLENAhpYnKzgakBiwszmBpeR5WToPnAZZVRK2+g3bbwaOXr6Bt15HTgXarBtvt4OrVqwCAlZUVlEolAMAjlx5Gq1XDr//6r8LrmPjoR/4TOo7A+v0KPvw7v4vPf/7zMAwdr33D2/Ch3/owfuxH/zquffvraNdtSM/An/3p/8CXPvdl3L+7jlKpAFd1YBgGisVi5GcY/p6k+R2W5fdbVFVK2tf6+xW3nnCFBQPlyWKpMBERTanoi9KkMlRfuKQra/nkKOWWSa+P2o80pcL+HKbx25RD32PfGLkR/88PXkhGvYcsx6tXSp1cKuyX3g3ue/i88Ia+r0ldPE6ivDW8jqTPLe7CN3y8osoUo/Zx6OcvE96Lp9Itl1LcdyFpbGP4RpT/2nCpcHi+zjSlwv7xS5oPOGvZ/KSFm3p5nodOtYpXbr6E5dNnkTcldM1Fw3GhI4ed3XUsLS2hY2uwCgKADsd2ISzAswVcx0GrtYWF2QW0HAPC0KFcG/AUTEPAddqQegGtVgtKubh9+zbcehVf/sYLeNXlK/joR/4Qly49jB95+1+DldOhPB1CF7izfhsXL57HW978RvzFZz6D5eUzWCjn8dKtl7CwsorS7DJy5b3pe5JuHgaDxGE3jVIFifulwlJKKLjdYzhKOW93PQnniqf2Gg5SMo5xJSKiB8qwKWKESNcoKRws+evOclGT5iIr7XrGCTjTjKeMXsYLLTu5xiLBYxk8RJO+Fhk3uAxLuuGQZpmki/OwuBszwYvkqCZL3Yv80Cr9ZYUQ8KBin/PX1/17zDhjIUT/OqNuLqQIbEcJFIL8JlRJ507U/vhjoru/GyL2KepmS/DPVJUXwfUOXXpQ3Pnkum73354S8Np1NHY20PJMzM2WoSkXu1vr0PIWNE2DaZpwXRftpg1DOlicncNLtyo4tbSARqOGubkZuB0NnU4HW1tbWDy9hsrOBnI5A4ZeQqe5A+ms4zvPP4vHv/ttaNdnoWka6vU6HNHA7k4N+XwRr9y4g//47/8AZ04/jPf8o3eh5dzDl7/4DJ588iewvnEbc3MmHM+ANEysXVyFFzi/sv5+DR8foBeApuV6vZsUUspug69xbu6FX68gR27S9yDhGFciInqgRE3ZE7yI4VQgNI5geSY9eA56OrAsNE2DruvQdR2WqaNUngE0E3OlAna3tyGEgFWcQc4oA64BSy+httPG3Nwc2o6L+5u7WF1bhq5LmGYOSu3Nwa1pGlZXV+G2aihZAnZ9BwZsKOWiWH4Yly/9MLbuasgXBJxOFZ5qoAgdJWlANGz8r0/9OX76H/8D/PGffAyQTZTLBfzJJz6Fa9euoTyj46kvfgm/+aHfwMLcfKb5VcPiPoOsn0vWDsHD8PfD4WD+moiITqxexrV/DGDwz2Bn1qi7/+Hxg3GydKdMY5Llrb7we8+y/WGlceFl49bZW8/wTHaaTOew5yYtLuMzznFJI2vmP3LbMS+PzNwOWxcG308365Rx36JKsKOW6d+JwWOSZn+SyviHDTmI3ZcIfRnAId+HpP1Kek4phQ6AxeUzuPHcVVj5AiA0KM1Aq1mF53nY3KjDNDTsVnawuLSMZlOh3thFZXsHq6vnAaWhXq+i3W6jWCzC0AxYuRKEANptB8+/8GUsL78OrWYHMwWFVsuClDpmZubQ2q7g61/5Kl71qsfxjh/723j2uRdgWsD16y9hdq6IJ554AkopXL/+Cs4sn8Yv/dNfhFCA3WxBK+YSj7v/u9gPqrP87hom+F3ojU1FzNCEdKLOibS/Lyk9ZlyJiOiBctDZk2azOfF10vSYhqzbSTNuUD6NDuMckWp/ShfNxMMXz6NUyKPVasG08lhcKMA0XBTyAsWCxNz8DG7dvoNKrYHyTB6mZaDjeLh/bwvz8/NYWFiAYRhwpAlHGnD1PBxp4HWv+kG8+z2/io9+7M+ha0X80i/+GirbDXzz6asQOROeoeH0+bPIz83gX/+r38THP/5HWFu9gDe98fvw4+/4G3jyySexvHQOt2/fxmc//Wn8n89+Fh3HGThWwUdwuIXnDR/DnoVSw5uV0fTib14iInoAeN2HUu7+ODev7yGESvXovaaf303SNM2J7fXgvsaLavoTDgaSOnP6z0mp749rlQheJqTJioXXNWxbQHQZ96S7cYY7lI7bpGrY66M6jiZloaMeQRICEntjS4Nllv6ySqD78JfxH8HnhlECe+NBpRhYT/i9BR8D789TA6+LOkbd97dftuln2MJNmPYCmd73Ye8ROMbCA4QHIRWE7P8OeJ4Hgb0HlAsB9D8SztOxzpXAI7g/cZ9xeFvDvkMA4PmVJMqF7czi6reuIi+a6FQd3F+vo7Jdh2FY2NqqoGUDxZlZLJR07Ow4mJ87BaCN+RmFtmNDmAaEacDrVNBuVDGTL6Jd30XLFfiz//r7+Bf//Geg5Yr4wAd+Evfuvox/86EPwpB5PHLhMTSrHejIwzY8FPM5SLeFzc2buHbtGi4/dBHv/oc/ha98/WXc26jg/IUVfPELn+sr1fXfe7DqxT8WozQ3ij1uSkJAgyaN7jkhxV5zr/C+pNnGtFSBPEgYuBIREaV00rJCdLiiLorHCY6iDAt2ppUQAu12O/XNgeMozWcz6nvX8gpXXvc4Nnd2kZ8x0Ni5hTNnVvDSzdtYOr8G6DrmZk/h7s0bmJsp497d29je3obtAW5tG57dgpImcqYBXQpUdytYWlyEVjAg8zpyswXoRROPXXk91i6cw0f+4PfQsjdhWC4MQ8P73/9z8BzgM5/9v/jp9/08rj1/C4++6nX44G/8Ns6eu4DzZ1fwzr/3TnzXW9+Mt7/znXBdN3VW+jiez3Qw2FWYiIhoJL2xsQenlwUIbtOXJQsaZaBT6wGMyQpmzvyshq7r3e6uUfuRdr3B/c08RjJh20dxoZzYedhLfm/BbsFRUwuFdcdjhwe9BrsBh7bpr0eIvexvmqzzwDrRfz70xqCLbglnX/fkvmMSysx7gedE//dEINQJW3hjfVeC55i/f+OMf03aRqqOxRHvw1MapOegsbsDZeQgOjswtAXomovt3ZeheQbKSw/DbtdQ37iF5dNn0HYVGq028poGM5fDVmUHOR1YX19HsVjCwvwymo4LXdfRaDRgWRbu3dnA2tra3jIFD3duryOfL6GyvYu/+eNP4L984pN43/t/DlvVHfzyz/8Cfv/3/h3+8kt/gfn5ReQK1l5gLid/YyL4mcSOFw5Mk+RPhxOeCidpv4JdtJM6UHfPEclWQmmwqzAREdGBy1ZiHCwzVsqNKD3uL2fe+/teua4Q2v5jsNSwV+Ir+/6dJG49w0qNswhnjvwLS03TBsqDw2Wpacqc+xoJRQRDcfsTfgzb92DpatJjFMF9DZcqdkttE4LW8LLhkt6oEum+nwnElhLHPRdcR9yx8KC6JcdxJbBR+xRsyjP4Oi2yhD18PIUQUHD3ApP9EuKo45F0TAeOb+g7lmV9aWX53kZ9162OhCc1KEugfeclqI6N7fVvo92uwCytwVMWvPoWoBVQKqxgfWsLLtowiiXUWzW07B2sb7wIrzCD0w89hLbnoN7cgG23IQSg6xqU8rC8soRrz11FvphDq2Xj7NnzKBUXcGblYWhC4szaWfzMe98H3dXQaTTwkT/8KBbXTsEo6HDhwhPeQLl5Upn0sOEGwWMSXn7gM/LPB+ENrD/LEICkqoDgOUyTx8CViIjokKRtCjVKY5dJN7iZtukdJt2kZdpMenqO48zPWoV/dpI//3FIKSG0vT8L+RI8zcL6xjbyuSK2t7ehS4H8bBmN5g6q6y+iphrQTAM7W1WYHYVcfgaWNYuHLj4Ord1CfXMXi4trsGbOoFQqodVqQSmFGzduQNM0PProoygWi5ifXUE+V8LT33wKhmXjk3/0cfzID3wfZvI5/NS7fwINp4m3vvV7Uu3/UTc8O64l9g8a5rCJiIgOSZay1L1lk8sHg3f2swQ+UWWJ4dK34L8PalqHXmln9M+Dki4qo7KzcevJun9xZYHB4x3M/kbtZ9QxDT8XXI+maUPLg4fpbiviZ3HSHq+smctRBLO6UWW+Se8ktlQ04mdJn0ncetKWlk7KsO+DUgqu9CAUIDUTS+cfglXdxtbt6yiVSqjvVDA3V8Ld3SrKOQ1mvghdFlAuLEC4HlwPcD0NnY6JvOmhWq1jfX0Di6dX0dzdheM4WFxcxOrqKtrtNizLQrPZhNNswDAMvOENr8fNm9fxbz/8W/if//2/oVZr4PbNl/GT/+S9MHMG3IG9jzYsuzrJ8zPuNZHnWkwjraTfi3uZf5o0jnElIiKaWsnjaMPjurJm7IIX7Ulj9kbJ5sbtc2+MYKBENMW4zFFM6hon7tj45Ymu6w4sG7Uf4TF44TJZ/2dpA9dUAWRovspJSOoWHNxm32tS3HhIDALC52VfRJ583odvDgR/lrTtUQLXg8japb0RI5WEqwSgSTSqu9h65XlYpoZGu4OV+TL0mWXYzTqq1VswzQXMLZxB3anDc5sw9CKk1HBv/Q7KpQLyhobNe7exvHIJtm3DNE00Gg3kckU0Gg0Ui0Xcv/scTi2exvWX72Bh/jRu3b+JjY0tzM0u4Hu/96+gJVsQQoPC4I2GUX6fpH2Nv1ya34fBebz9104icJVSQrGwNRWOcSUiIjoRho+j9acH8bxO5LJRU/6EBdcT5o/H7b2+P0ub/gK0fz/SmJbSvbgyVc/z+oLWtOWOUesbGDsaHGMaM161ux/BMaVJ41ZDY1HDosbKRj63v63uI2HZvrG6XvS248uAo87d/qmhlFJ7TXeCj/D+RIxljBozHRegZNvnQXHricsEx+3HMJ7wIKQLoRzoooO55WXouRwuXDyH+7Uq3MYOpJbD/PwF7FY3sbV9Hc1KDQWhobZ9Hx27iZWFBRT0IiRKWFq5gK3KNhzXxZ2769D0PJRmotWsodGoolC6iI1KG1I3cP3lWzhzehWNyi5mFmdRE639McnJ2fHI4xV6AAm/C4QA9rObw8afBs+RcW9qaZoW+XMF2X3Q5PGoEhERHVPBMbOHMU7Mz2BMw5g06neYY5L9bU3bOGjqsaxZQOSxuVlHq6WwML+I69evQwiF7Z0KzqyeQyFXxOysha2GA92w0GlU0W63AQCu66LT6aBcKqBUKGBxYQ6GLuG2dtGpVeDW6zA6DQi7jWJ5Bm//W38HN17exuu/+21YPbsGOSQLTjQKlgoTERE9IHr/54eDTq/vuf7xm+H/fuMD1qRrCj+bG+7Murf5/mY8wUyhP0VKmm0kSVMaGlw267jecbPDceXEQC8DGjf20ksYTZdUAtldv7/NwNPhbG3a54YJvjaubLf3fHx2UkRkVrvPSRVb3j7KZzrKOZd1HOykqws8VwJeB7duvgxdSJSKOeQ0hVrbhVHMo7nbwHwpD6e1BVcvQ2Dve2ZaedSqLQAaINqwNAlNM9Cot5DPF3H9+kuQbge2LQGp49TSHF555RZsW8fte7fwd9/9BDrCgeh2Rc/+PsNHSyS8ToWWAwaPd28svdZ7TnixN9/SlArHnRsKg92NKRlLhYmIiKgrPHUEL6yS+UFrlnJQ30GNceTnRVlIXUEawNLSKbScJqAkdF2HaeoQugalALej0KhX4bZqqNVqaHcUqtUqCoUCisUiyuUyms0mqtUq5ubmYJomVs6eh5kvwyrMYb3SgGEWIDwX733Pk9BNB21VB6SAFp5L94Dx+/FgYMaViIiIBqS7PkhuHhVeX3+Gwws0fgpf5MaXGcY10RnWQCpLxjWNSV0oB8e1AoPjZKMypRL976Evixl6W0nZ2OA2xnFQzbXiOjoD2M/ohbabohvwqFn0YOY/bQY1S7Y7jkKgGZAQfZUASevVOwJtvQNdOXjlm/8Pa488jju3rmJ57SHsVurIFcrY3LoPw63i1MoSpDaLZsuGJnPQNA22bQNSA7wmAKDdbsO2bZQXTkG4Hdx4/gW4dgdCN+B5Bq5+5wW86+8/AWgeYOzNoZuUFU8rues69sa4+suGnxsirqpilIZb3e8iJDRNG/v3y4MkS8aVgSsRERGNJDy8ManrqghddPcHp4Oly8McxPXLsHXGva9Jbi9q/tKBZTIErsGuwmFpSmmTyiSHbXNUSdM0dX8ebtCUsJ6DuEmRZptZth83/VRUKeyw9XieB6kAV3rQAdjVBir3N1CcMdGWAppjIl8qw3YauPvSNXQMCU1oWJg/Bc1r4ubtu7h05dVwhQnN3QuaDcPAtWvXsHb2Amq1Grbvb0AIga2dClbOrOHKq18DFwpKeHD3x7emmbIoTbfgpO9amlLhpO1PmqcEx/9nxFJhIiIiOnBRzaHCF21s5PRgmtRnzgZQo/GEB82T6LgaRHkGC6unsVupw9mtQmouGs0dQDg4vTKP1XOXcOGhc2g3azDLS3jk0dfCbjRRVE53vLtt27h06RJquztYv7eBX/uXH8Ruq4G/+kM/iIevPAxHswFhA+gc9VunE4z/kxAREdGIPERNWSIlBqbrAbzulD2D0+54oUd6UZmTUceExo0FjlrfKNtIKu0MZ578aWQk+rOPQgh4UH1T4CRNY9O3/ZgpapJe2x3nG1g2PL3LwFQ+Sg0Em8FANk2GLcsY40mO4Y7LrganWUmaxibqWISXSdoW0D//qAg8ovY1/F57r5XwxF6jKqk8GHmB7WYFs4sLkLpAdeM+8p6EIwuwRB7V2g6Ks/NwhACEjrxewvZODffv34Zym2jWNvHCd56B1Mv4lV/5Hfzsz34AhYVZOBogdANKCbhCwhMydn/DxyttJjzp8wwen2HnTXiKnUkaZTw8ZcdSYSIiIpq42K6bSg1cwI8iaZzfpEpEJy08Fjcc1EgpIzv8+uNUY7vwegldhQOlwnHBaXe9IqEENkVX4W7gJpLHmWYZa+qfKwM3DjLc4Mg6rnVYCXdUBjhNJ+qBMuDA92BYh+W4fQ2uO/jnALeDVrMJ1XGhmRJbd+8jZ5gwZ0tw2w0UckuwnTocZwc7m1s4t7qGBgC32YaVL+LGjRuYnZ2FWZqF8Eooz+YgreFjy9OYVNlu+BgOdvztkRMuFQ6OcWWFSTYc40pERETHRtyFZppmS1H81/kNdSZ5rZOmEVQWwX3ru+ANBKPDxowmZVr7XpsQ4A7bTqbpcOTwwHTcjGiawHWUzz1yDO8R3AhJGlebpVlQ99+QkJ6C07bx8otPQ9kdnF1bQ91pI2flUcwv4/ad6zizsgyntY1nv/0NnL38OOydFqxiCdAsLK+uoeM2oUlz7waFHL9zcNR78b8HwRsEad97+MZA35+B59OcfaMcbyH1FGumoCyBK48uERERHam4bq3H5eY6nWy9OY2P75QrSnQATcDMaTg1a+HujXXs3HdRWJhDIXce1eYrsHIalL4MPSdx7tw5CKcNCIVcoQgYeXSgAdKAJwCldIgDKbqNzmhn6egc+9rxdqsrPLc0HR5mXImIiOjYSJq+YtQM7VEJ71NUxlWp/bGsCGQbVfTrgWwdfbMek27ZboouwrquRzZWyhL89WWjESqphdv9d/jz97PiWUyiS/QkRZUBRz0X/HfacZaa8NCxHVQrO9CEhKdsOHYdi3NF2B0LOztV3Lm/jtVz51Aqz6LdbqNareLChQvoKC+2nDpNufRBHV+lFETEVFJxpflZ1+2vD+gfvzvw2TDjmhkzrkRERHQiZZmahI6ObdsDc44etGkJOqedEhJWLg8xL3Hv9h2YugvLMLC5UYHSS5iZnUd58RQ8JZAvFWEV8iiUS7DdztRkGqd1HDsdLGZciYiI6EQLN0EC4psHBUUtEx4DGZVlGrbu8LJ+VigYFEj0fu6FihxlxAi97ji+FLFbbAOmlE2TRpm3NSrQyDTP6f4ivbLPXsY1LPwZp1l/ms//qGRp3JSmUZn/NwFAugodKdFutqApCXhN5EsleErAgwRk+MMe7UaE/z3J+prwtmLn9RW9wuUs3/FRJL5zMf643wcNmzMRERERZRBVWpomuxs3HU9UsJwkfGEf7ircl71M0YwpVTAYbnCkZLoA2AsF70nNmuTgisLNrVIFGF5/12U/cI2SJmBNdXwSOiMftKRtHVRJfPCmTNLNjUlK6gqeavsqMPZV9jdjCq9FBWYBDZ/7STdUEt+zCgXjEec7JWOpMBEREVEGaS/IJxUURa03yzQxR2mc4GUSUyGl2cZxNy3ZXqJpwsCViIiIHnhpA4UsQVHarN6wMso0AW1wyo+k9STt16SnDYran6zTvPjPyVBgLwKZrWHZwaQy4DQ3IEYNIg8qQ3tQ6w2fZ1LKgUqEUbedpnw3TYZ72LkSnPM3Ilcd6BCdfV+jthXe9+N/y2S6MXAlIiIiSik8LcdJyO4RHbRxprOZ1PQz/K4efwxciYiIiFLKMh4vrilTVAZpYNmI1fbG7vU/6UF100tJjZMGtoHw9CEpL+7lkDGAIj7z1P+a/uyXUuFxxoExrcrdf4/+8YrfvTTZwDTv0x+LG5UJTDMWNMt+xC07rJmVP/b5IIKyrFMKJcnUIGt/3KgQ+3/KwH4MZDb3xzoHxnbHHUspFFTMmZmlEqDv38Lr7s/eZ8ES74PEwJWIiIjoAISzRMzSHi+apk00eIsyTiZSKTXQ6IoOHo/50WFXYSIiIqIjMmyMZWRX2YisancsKPqzclkSQMH1xr0ubQOpdGMh4zu77ukF/lqoUnRS169HfR08zpQtSR2HR31f425/IsKdeoUXO4Y0uAcDZ0+GYxs8X0fpqNzbv+mY5/Y4YVdhIiIioikXVTJ8nIwbJNHRmHRzJ54HdFgYuBIREREdgaSOqlE/C2dRu88Hx1z6y0Zsb1h2Lzk76/mbgp8JTQpU0gRFA0sIbWC9QvidYA8mOBon4zkJ48676ssSPE5iftrDvukyOP51//0GxrbKUCmCCr22Lzsbes/B45c0j2t43LO3vwNSMNN6GBi4EhERER0DcYFF+MI6bplJBBh76xl7NZGSSjSnPZuXJXDUNA2dTqfvdeMYd27cpKAt634E13eY9oLJ/v2Ia47mLx/1XFKTpuDzvZ+la8JFk8HAlYiIiOiE4EV0j5+tPYxjkiXQ8/dp2oNxomnDwJWIiIjohEjVQCZFd+PBjJRfCikQP9lN/LZ8weZRSgxOxxN+jZ8FFCJ7N9dRMpFRAeWkCBs9/AAAB6tJREFUM4lR6xsl0ymw1/VYKWCcnkBpGhNFveagbgh4qhM7nZCQ/rm7P5VSoAA4vOuDpejDvxt76+ENhWnFwJWIiIjoARI3BctBT/1yXI0zZQ1llzQHrn+OsrLgwcTAlYiIiOgBEheABeedTTNO0JfU4GggwFC9n6uYzG14zOXevxWklKm2H3YQAeekS31HHVM6icznuK9PykhHZfmDn2PU/qepGghvG4ifNzmLUV7DIPrwMHAlIiIioj5psozM0NIw/jkSvhFyEMFe+HxkQHnyMHAlIiIioj5pMk9JGa64xkh9U+6ENhHepoAHAQEpZHf84mHMGZpmG1m2nyVYi5qKJW5bCi6E9IduTrY7cZr3Nywb72fLg+dBluxq0jZTZWXD7yUiOxu1z+Ft0fRg4EpEREREY+NY0Gg8LtOHY2WPJwauRERERDS2gQ7CcoxWtwCgehnHcKZt2HybUctmDRyjsp+xuzqh7CzQ3z05PAZ0kuXZUe9r0uN2/XV7ntcd25p2rHJS1jntvKv+Mp7nQaZYT9b3P/Y5TpkwcCUiIiKiQxdXNtoNzoQGrxtH+IGFv2ygLDlmfQc5nnKUQDpSxD6nbXY17vubxFRBw/Q32BpS+hxz4yFxm6qXze5NlRNfwhx3bLOWfvvvg/naw8XAlYiIiIimhqZpAIZlF1l265t0h2OiacXAlYiIiIimRrpMYiDzmKF8NqlUNXZLCdO8pHldlpLcpGzrKPuQxbAAeNgxm3TjrKwNopLKgOM+i1H2meNijw4DVyIiIiI6tuLGGXK6nsM1bsOjYBdioigMXImIiIjomOkFq3G5MjEQ0CoAan/cbFxwFZjCZ0KZw1Eztv5yw7KB42Y4ozKTo6x73Exk1vexvr6O5eVl6LoOx3EG9yfwZ3Ac9CSOlxCCjZmOAANXIiIiIjrxkkqEg1k+/++SJaGHyu88nHbZ06dPQykF13UzbYOlvscXA1ciIiIiOvGSMm1Jc60eRvOjUcZa+uN1x92/pE7FcWNDD+J4ZMlgSim7NxiGdSn2l40a6zoK/3hLKdki7JAxcCUiIiIiQn9WNlhe6nkeO/cSHTEGrkREREREAJTqjYhU3Z8BEFp4ytX954bPSRqcc7a3wrT7E+iaG3ouPD9q0v5ELeMH5MGM6yS7744qaVtJW/ffRVR22L8hMYn3oYQHpQQUOMb1sDFwJSIiIiIaQdx4yf7yW3f/z/5MbtTrR5lCZ9hz/nqipotJu/6o/c0yXc0o40qDx2LY6/tvFPQHrFn3Obxs1Lb9uYbpcDFwJSIiIiI6IAPB6RHtx1FgIySaJAauREREREQHZq+kNE0M52f5VERRbPj1UkRnGZPWmyQpyEzKACdljeOm1wmW76bZ1/DPIvdVhUt303cbjhJ3PJQnAE1i73PlnLOHiYErEREREdEUiOpuHJyqZ5okdWImOggMXImIiIiIpkBUEBieJqa3jAr9++Cmr4nKPsZlQaOaPkUtk3W9ScskmXRgzfLno8PAlYiIiIjomPAD2XAX3fDfiU4aBq5ERERERMdEbxxsd6bZ3pP7f/WTgpFjZoXT95xQ2v5rho9x7XQ6MAyj77mocazjZCXTvDZyap/QeFMpZDf7Gzee1n8eSF/6LITfUXg6S7hPMgauREREREQnUHQwthd4+sFsOMhNous6XNeduulgPM9L1/2KjjUGrkREREREJ1B0MNrf5VjsZw6Dc72G/wzPjRr82aT3cdQ5X6PeaXB/o7YRzA6nzRRzjOvRYeBKRERERPSAUggEdqFS43CIpvbLatONpO2V0iaFeqMGquFuyzLQ8Ml13cQMbNxUPhwjPN0YuBIRERER0VB+iXAwaPT/Pi2ZSL+j8bTsD00OA1ciIiIiIhoqKlMZN941av7ZqNfHTeET9brgv4OlzcFl4kp+w8tHSbMMHR0GrkRERERENFHBsaXhqXsYHNIoGLgSEREREdGE9QLXbpgaGkMLBILY/Z95Uc2aYjofC+HF/Dy5TDju+aSAWikFTdNSju+lg8DAlYiIiIiIjkS4629UWXDW9XF868nEwJWIiIiIiI5EmnGncctGjYtNmtZmnICWwfDRY+BKRERERERTb2BOVo6ZfaAwcCUiIiIiouNH7HU0DiZDw42gek90en9X/QGw/5o0HY3p6DBwJSIiIiKiEyG+8ZKM/DkdHwxciYiIiIjoRIjLkAoRnG82NMdsiqxqd45XDnU9MgxciYiIiIjoARLKviYEo+zJND0E67aJiIiIiIhomrHYm4iIiIiIiKYaA1ciIiIiIiKaagxciYiIiIiIaKoxcCUiIiIiIqKpxsCViIiIiIiIphoDVyIiIiIiIppqDFyJiIiIiIhoqjFwJSIiIiIioqnGwJWIiIiIiIimGgNXIiIiIiIimmoMXImIiIiIiGiqMXAlIiIiIiKiqcbAlYiIiIiIiKYaA1ciIiIiIiKaagxciYiIiIiIaKoxcCUiIiIiIqKpxsCViIiIiIiIphoDVyIiIiIiIppqDFyJiIiIiIhoqjFwJSIiIiIioqnGwJWIiIiIiIimGgNXIiIiIiIimmoMXImIiIiIiGiqMXAlIiIiIiKiqcbAlYiIiIiIiKYaA1ciIiIiIiKaav8fRGxtV6Ik1/kAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Run object detection\n", - "image = skimage.io.imread(image_list[3])\n", - "results = model.detect([image], verbose=1)\n", - "\n", - "# Display results\n", - "ax = get_ax(1)\n", - "r = results[0]\n", - "visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], \n", - " dataset.class_names, r['scores'], ax=ax,\n", - " title=\"Predictions\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Figure 2: Performance comparison of SeBRe with commonly used brain registration methods\n", - "# .\n", - "# ." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Figure 2(a)- column 3: ndreg registration on rotated brain sections" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "ndreg_results = os.path.join(ROOT_DIR,'DATASETsubmit\\\\ndreg_results')\n", - "os.chdir(ndreg_results)\n", - "image_list = glob.glob('*')\n", - "image_list = natsorted(image_list, key=lambda y: y.lower())" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAK9CAYAAACHN5VwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXm0Jcld5/eNiLz37VWv6lV1rV1dXd2tllrddKslkGCgJTMYDx7DMQckYSR04Jyx55hzgDED42GMBDMMNsYGw7DYyIyRaWkG+QybZmBgWLSBoFvq1tb7Vt3VtW/v1dvukhkR/iMyMiMyI2/mvW+p9279Pkelrro3l8jlZv6+8duY1hoEQRAEQRAEQRDE7obf7AEQBEEQBEEQBEEQG4fEHUEQBEEQBEEQxBhA4o4gCIIgCIIgCGIMIHFHEARBEARBEAQxBpC4IwiCIAiCIAiCGANI3BEEQRAEQRAEQYwBJO4IgiAIgiAIgiDGABJ3BEEQBEEQBEEQYwCJO4IgCIIgCIIgiDGAxB1BEARBEARBEMQYQOKOIAiCIAiCIAhiDCBxRxAEQRAEQRAEMQaQuCMIgiAIgiAIghgDSNwRBEEQBEEQBEGMASTuCIIgCIIgCIIgxgASdwRBEARBEARBEGMAiTuCIAiCIAiCIIgxgMQdQRAEQRAEQRDEGEDijiAIgiAIgiAIYgwgcUcQBEEQBEEQBDEGkLgjCIIgCIIgCIIYA0jcEQRBEARBEARBjAEk7giCIAiCIAiCIMYAEncEQRAEQRAEQRBjAIk7giAIgiAIgiCIMYDEHUEQBEEQBEEQxBhA4o4gCIIgCIIgCGIMIHFHEARBEARBEAQxBpC4IwiCIAiCIAiCGANI3BEEQRAEQRAEQYwBJO4IgiAIgiAIgiDGABJ3BEEQBEEQBEEQYwCJO4IgCIIgCIIgiDGAxB1BEARBEARBEMQYQOKOIAiCIAiCIAhiDCBxRxAEQRAEQRAEMQaQuCMIgiAIgiAIghgDSNwRBEEQBEEQBEGMASTuCIIgCIIgCIIgxgASdwRBEARBEARBEGMAiTuCIAiCIAiCIIgxgMQdQRAEQRAEQRDEGEDijiAIgiAIgiAIYgwgcUcQBEEQBEEQBDEGkLgjCIIgCIIgCIIYA0jcEQRBEARBEARBjAEk7giCIAiCIAiCIMYAEncEQRAEQRAEQRBjAIk7giAIgiAIgiCIMYDEHUEQBEEQBEEQxBhA4o4gCIIgCIIgCGIMIHFHEARBEARBEAQxBpC4IwiCIAiCIAiCGANI3BEEQRAEQRAEQYwBJO4IgiAIgiAIgiDGABJ3BEEQBEEQBEEQYwCJO4IgCIIgCIIgiDGAxB1BEARBEARBEMQYQOKOIAiCIAiCIAhiDCBxRxAEQRAEQRAEMQaQuCMIgiAIgiAIghgDSNwRBEEQBEEQBEGMASTuCIIgCIIgCIIgxgASdwRBEARBEARBEGMAiTuCIAiCIAiCIIgxgMQdQRAEQRAEQRDEGEDijiAIgiAIgiAIYgwgcUcQBEEQBEEQBDEGkLgjCIIgCIIgCIIYA0jcEQRBEARBEARBjAEk7giCIAiCIAiCIMaA6GYP4FYj7vf1zR4DQRDEzULBzCrGSQylEyB9Impt/sLAAK2htTL/4hycMWjFzPfM2RhTZpvOU5WZjUEDYCywTmhM2qzDGUs3MBx2P/YYqr6vw11fKY1ICGiEt6k1oLSG4OVtjzIO7ZxEFthm5XraPc8MWitzDQFv7Cx0YmvOizve0DFxns9PK6UqP/PGO3CPzr4rPq9cnzMoKb1/Q2lo6PCxcwbOOBgYtLL3cXm8nDnHE/hesMAcfcX1V8x8rln+PQ+sXzeOOhhjpRNVdR8Ptc0BhO4Pcz/q0meDkMpcQ8FF47Fl+1DhbTPOIbUE19Xfm7+Uzzv0xnwwgpOZPwqtdnuEN8HOga46QRAEseUoAEomkFLBWH7MGFrWDqwwSIdFG7UBDiN+gObi6lZmGEHnrZca0KFzzFxBELi+2hERLCAetCvOdtk1FExAchm0128WGnYwzc+lYCJdd4jfpwakSrxrNow43Cy01lBaDbXvmzFOgthsWNUMH7E1kOeOIIhxhHEOrRQUAME5GGPgnKPTWYcyrrFsWaUUOOfQWnrrK6XAKwxP6/1wvSCMaSitR7b7rbOKMwZAQ2vf4cDS71zDNl8nMMYdKEDcd/xWji/kndKuiK+zNTY4tsxjp1PPUyryy2MK7Nrx9llBOaznTmmVHq0RCK73ywoGLgSUVlBSZn8XTOT7tL8hZ93i/Vgk6LnzBpx6DxmHZNIbjx13cZyjoFT+W+ap10tJBS540IM2LCHveJ1nd9B23HXqPmuK8zjz7qnmKDDOoJTKj3fD2+Qm+mGENW9lyHNHEARBEA5JkiBJEmitMiG3lcLCDcscxQEVxzGEEEYgpMbdKKaoko6hLG4tc8oNgeQjGaE7i0yQVIjEUVBaAUoPJaKEcMIDlTvJsINcgkDwHNnfADkRCGJ7IXFHEARBbJh+v+d46PIcLCEiL/xuS3CNxxEMcRFFWa4eT9eXIxiko82sjwfjduxCcEhpvGjBnLkRUFKaPDvOG4c5unl8Qjgmm9xZ4i4kWK1AHjY0kiCIjUFhmdsMhWUSBLEbYVxnOWyAKcChtYaUiRdGBNTP1NvtuCFl1uOmlBFYquAx0Y5gtAhYL9vg/eVGppGdulA8JeT526g3cKOeyuI5tP9kjGWFS6r2ufFQTBtGZ0PU7HXSjR1ZWmkopSEiDsb4AIFfDtvkXAztmbLewpAH0f1M1oQhWpHq5vsptwBJWhTDC2cMDWjAtgFzz3LOAM2y35F3o6UePnc/LRFBygSM8eyYNFfmfCmZh0MOEWpphRdjLCsm4q5jC+24OZlNC66Y0GvznGDpxA/nPJ0EAiQr/26FV3TE+V6UC5xY4egWP9mKMOTQNu0zpSrf1N/A4GvghuVuBMaYCeuUbi6rggZDJCJTlKpJiDRBYZkEQRDErYFWGkpKSDcRxBrnQzCK0RUSLioTH4PXVcrk5Rn7lBnfIt94HtB2YAx3BaWkMSgBcK1Hquq5EaRS4IyVchBDMDBH8YSF6G6C1xSGCecblnEFIxcCOr0vtVLgBfGiuCpV+0ySGAwMSktsxQ0QFGhpaKVUsvRdHVb8KK0gRhrvzrWvN5Kbt5XIOBk7LzoxPCTuCIIgiFo6nU5W3VIwAakkEqXAYQxZMYRBYUMfh0tss+LOKTbB3G+qMYYYM54SWN3Bhh3ATUFKCQabe2W8BMbA317BFAkBrZUReXWuzLQUvl2skXdjB+OKt6CwbXhs7jVTifn76toaZudmEXEO95JyzbLJC0uvF2NycsJ49AJtHjZKaAIlE3UjhD5bYQedh2oPg3uf7bTpgc0sFrNZJEnsh+4StywUlrnNUFgmQRA7CVvd0iJTwZbIBFLKPIyKydTT4BtpxZAl6+Gx/w4tZ+Ge0VzG1RAy0COKpWu5y2ltxKPUunk4Zdozrkq0hLbphm2Ges3JxFS+c7dZPAdKA8IJD3W/t3/NKzD6HrORqvlts7ehVhSlAtttg8DTqqmD4j/dcL9hkUxnIY88MvtNnLy2ql5klqa95kIjy0Ig06qYohUh7vfDoZPpfePm3DGdh+UCZqKDCT/Us8l4qwj2vEtD/DTcUD+Whc42zaVjqjw2HfjdhJYzg0vDZYf4DYxyv4d6NDalsr8k0nYSjiCv8641DdUMjdPzJDMJIK1ejIjCMhtCYZkEQRDErkWkhqZUCloraK3RlzI1iBiSJPErBwJe7h3fgFDQI3gDXPJ9b8xYUVn4GBspvy4EF+b8jVpskXMGWWXo3sLIVOxshkBN4gSAX6hku0JIFdNQ/X7al7HZOlbY3QxvEfMyC7f/vrSh4FtdmMWK4d3iaQ6dD3LaEOS522bIc0cQxHbChTBeDqXSipDIq/UphTjpe8UzAEArxxtg3xHceXS5HiYbGukaQ8p4wTxtwvIcnEGGk9fHDrnHbOAxurtWRk1ViTSlyoKyPsqwWW+sunWK35tzYQNb62laLILBePnsuR52P3WYsFD/Wg5jCwerT4Y2YBvS82ZhiMUCJMVJiSb7zIqwwHhFbPuC4j50OjbGGURgaLLmXDcVKcMWRxm0H8UCeXNNJ1gSBXATEhye0Cn82IvfDuOlC22dl6MBQhVDQ953NcTNWfdbbrquVhpccEgls2swjGDMnjNwisUM4fkLwbgpjsRqCrwQ5LkjCIIgdjA2rItxnhpDGv24b5obaw3GzH8rTbOGrzjPmwc/bHEn4Ymu0bawWUPZtah0MmBTz8QWTDRnkwmbuE3FtJkgsfeRGi2fbCtxi7PUhmU2FBxCcNi8VbVTf9wEQQAgcUcQBDHWcCGQSAnZ74Epm/djy3gD4INzl+wsvVvcwZ25tx4Kf9Y6rQS/A0ObNhoKmovDW9fAVUoN9I6OQm3u0CjbbFqqfhicfD2VVo/daUg3T8/9Ipja53j2BghBqTQ401CKFbdKEMQOg8QdQRDELsYWZyiiYMJ4ev0+kIboZT26rCHNcg+bNYI5ZwjZeNwuq3UwzMn9JCvyoPOeddZ0Z7aHHerz9TTyZuIMvrGehX1qDeUVEEiP0Ull8naTihIbuliF2xuPe0UcwsuWxh4sqlgO1dRapaGyVcVcRijsgEKFSg3TB01U5+f4x8DS9gsq9dj434vAdkZBOWGjlfeCNgLK3uc6LTFT7I0HllcQtfcJZzVtOrQGS0M+WSH8U6bFQgQXkFxmos4qWpuv58K9fmuBkEEhECcxkjgBY0DUbiHiUVAgNi2EorS5Tu32RFaB0xd0LO+Zh9H3A2Z8tYMFt/XsKTAu/DBCp6G5rc0iCvecwb3fy/EEXmhyzZAzD6MYoqDKBiYC3HVZuk+3B99I23JOgdImNHbkvENtQ7RHW53YPZC4IwiC2OXY/AupFLRSSBJjeGqtvGa7mYHkdej2t6HUJofbhcY7inVhc5yseFP1lUqyBsyucac0FGdGsG3hgbpiJUlzg0SFkam0BlPhfKHNgHGWFsRolk9kQxm3ul8WZ1YI1O8nF3Y1y9mxD1MhMbunNlZMpU4oJSqBEAKtqGX+ncSA2JgH2AhOs+2txAoxNUiIbwh77kKCjwCQCbuqCTiCsFBBlW2GCqoQBDEs1gsXsTTcEdxUtlQaSZLPxtvnubSeCMaC9RK8xz4z4ZkMqQeFMyi4RRzsxjlMbQo/zE2zspVhvWz+h80MNddD6PW5Cj05rQeQc+MdLAgFuzpj5nxlM/mFkMK64idKm201Lb1eJNQ/rLh9tyVC1TbrxhlarritqsIqRY+M0hpK66zNQ9NiLsMQbv6ty8s4pf/htE+whYAEj6BCTbadlhxaKXOPuLvkDIIJICDqimeIcW4qNg7INxMiyoqweC0VAv0z3Ps06HlnDfvLqfJnVQ3DJR9eEUQ8SnNyK+7t7JicsG1nosgyWkEVMyHFOQv4HMO/h5CfbJiCKnVse/PyYYqfBJ7FIQRrjziYWwcqqEIQBEFsKRwAiyJwKCglkST9TNwpx7hjjjHL4As7YHDNCmvAFRexBtooTqXa4iUbzH+zqBqDSzvlzYPizam6VxUeuRE2Nom6PTaG67XSMF7EiIttaw2wJWShr/n9MUr/sq2gbhxZ6J3ndN7+a6GhU+9q8/uQCq4QxM2FxB1BEMQOhnGOJEmQ9PsQTGV6SNkS74HZa85Z2Ms2QARpaGiloYsepC3sY6e9svXD56bY8LDMU1lsv5CiVJ6nJ2XAa+WFBW6+YWrHtFGBvJVFXNxzwACT66bl9nkotgAroHRa3bKUp3cT8VocBAS8Pe/S8cyHCqJsNXnF0WHugyzDdiuGRBBEDRSWuc1QWCZBEE1QAJRMvMp3HO7MvSlM4vYs0ihXBnTz6xhjYBzBfI04iU0+h+AA/AWMURy2LENhmXbJWj9DQPyZNgpGtGZ/h5+PppTxJtiS73WiyRV37jtvkOiyBVl4A29PKOyyVlSXa0UMxaB3tzv2nWxf2zxQc15qznHzTt/O9m2BFQAwRUVC/edaPJ/ntqJL1vSXq/Ki2T54TXrScSHy1gI29teOXUno0C+IMa+fn3Y99+l/3bBM996VkGDgxoPJNJg2/90Ig1MGnWvmFuHRpil5y63Umf4YVRqObfIxdXj9QTheePvMUIxl/ebqJitMD8fqJ1fdb92yaWHMheeuCS/O7y9vYqomLDMbuxJgnN+MuYJdA4VlEgRBEBvGVgNMZAIpFaRMTA6PJ4CabUtXhEUprcBUuOJdFEWmFh7DoLSiRmQ977bK65NWNmxKZuSpnVMpzusLuFMGNQIyvVnEFoSzjsIoE9ajhDt6veRGaIfAhTDFfRxR503kbOHpZJwh7ieIWqNVctwsVOBaccZMddcdEj5LELsREncEQRA3mTiJEccxAH+WN477EI4R2VTcFb1cFsHNzHUwJ0an+TU7vFS2trYwC4dghrAFVTa959kGGBvTNTPQd8Z5HenMjpD7WdlLriHWY6e0Ak/LgHh5bVsYVaW0wsREO29NcLPwKzsBMO0klJJQaquqchLE+ENhmdsMhWUSxK2HNZ+iKDIl3ZVCnMRZLzGbc8PSWWsrQmyRE5aGroVCIGuxIY4sD08MPYRcu1IFnYV+WFX+V2laLtT0c3JDLINlO2sMuazgYFbgheV90iqOA8iPJRRiuREHI2MMUipwzmpDtUapsBd6N5v10/YBgU2545BSIYrqPTN1gtdW2PTzI/PlZaDgzlYI6MzbzMICSCOQH5iGtLnX3G5HiAhSmvYBbhXJLJzSCXdUzIR0MrCsIqtdF0jDIIvh0M7frYByQzVljahiXJeOkXs/l9TbFzrVFXYdz+73IYqjaBMKOEpvw7xvIAtXy3TCJbPPKmZsQm1CVOA3NowvcpQqmtW/y2br2tzPkfpXjhLqGQqnZzIdR5T+HvK+pISBwjIJgiCIgQjOIZVCr9uBUqr8krZ2nJMbln6bLmMrPW7zwOEaFGUDeaPUVtOsoaqAikVplHKZwvsfIZRPKkRCIFEq65HMWLgwS/558/10u120Jya9oUtpjOw6u05r+B7fLYRv4ByOgicynfuQcd7IOE1Sj5udNBkWGz7tjcm4vWsN7pvqJSMI4paBxB1BEMQG4UJASZl56DjSvlhKQckEcTcG57w0W8tsE2dtkvhF6v2y/cazan/KzOSHvGuCM8hEIe3cHByfVhIqFRi6UGEzXygvZOIi0h5ySmkIIYy3Uavcm5j1TnOOKw33cr15KuAO9M5GyI3meB1t9U/7vXI2UJWfxBmD4mY7xkuQt0SIoghJGgqr0300mVHnXGBtbRWtVjvbnmARpNbgrCDas8NQkFIiiiLns8Gz8O2JycC+8/EN6p1X1wzdXUcrDSZ42j1Olzx5deckX3QUTyUzXt+K5YYSX3aMmgHcVJm0m+VpSwd7zxpvq++NtGQCzOlTx2GEo4bOPG7CFjXhDEyXx1nnmWuMdx+l3mftTBC51yodh1cAyP0+sPnQtZVaQzDT+J6hrg1CSNznOa6Dgla11nlhkBEmCYK/oS2eAQv97pre73X9LpvuezMwQ1AjVSkmdj4k7giCIDZIIiU4cg+dCbnUvhFWw6gvbiN4UB1uyTmUZkYEytENTpaGAxZ3wlJjkzlhm8ak8wUfF/nxbXYbLOW0N3D3E8LmOiVJkhmtw9haUkpMTE5BuE2otRpYec6IiuHC2rYrJiivVBneow3l3Uyy0NotL8JS3r6drJBKNi4Co9yKkqF7ZYeEs2WVL4cYjna9nyhMHNTXu900MoG0bXvc3Wx7M3ViV0HijiAIYhPo9fvp3/zZZOudG4SGRl3p9CpcQ1kGVJNOw0DlRgtfM2Q5Zv7nLG2tUGyf4O/P99xtrkEyTINlUwjDVNu0RTHYEJU3dVqq3fX6KG3DEyusalbOyaqDZwb2Fnsi6rx8SmOzJ/ezaq5bXIs9ZPjagkGCcTRWQTWzETulMXr2ExziVuOeZzDNW2MMMu1vJ7ZJPFiPqSB514jsfJHnjQhABVW2GSqoQhC7G85U1idOKgmlpNdryuL208qT/aut2exlzbkJQUwLRHjBToHk+FCxiKrCK6H+c3abrg2noACts6Il2b6UNmKgEDqZNTpmDFpp8LpCHrZ3XUV/KKVVSRx6FUB1vo2iaAoWbnG3ryQ4N/3FZKLAhS2IwtIwWompySnESb+wXn6mTRsGnR2KBrKwzjDWQxguSuIe+6DvXau92+1hcnKiUFTE/F1pY6DbnmGDsaG1NYvVjNM2CnfDLKsLzNjPmu9zI7jhnTrzUmp0u31MTU5A2jOXhv2WhsUZoMwEjIYa2aOltWlDUjQCQtMCjDc0FUJhuc5H3qRK1ExNc+/wdCmfMQ/drZrQGP3Cbr03d3i8wiv23uW2sJETKu0e9008DL+Xpyr393PeI4znE3Gh98utChVUIQiCGHPcnDoZJ1AqLcqgbd7IYDGT54NUfW/yekYquFBOdalkkOjxek45X1tjizEGxYxRpwJGO+Pc2MBDNEUO9bnyRrYVVRcZh0Yabmh6KqTGkAaUxszMNF588SWcOHG7s47J47I5T8Yjy9NqpzItcjI4t2gzcLczMdHy8gjNODdlN2ONvW6cMUxMtM1Jc+9n5I3IM5SZvFBQANtZLTXq8CZFGq7jRhrsRLG1E9BZGwu3AmreHoM8asTNhMQdQRBEDf1+D1JKKKUQcRtqqbMqlnVRWfXijmUV94bFLVEe7F/XlAqRaPPZGEfamsHHHJqZxVaZ52ZzDJstsSsZA0uPQ4jUS5qlKilIqXDHHScKgiwtGM5MH0CkM/YMyIrMMDbIEN6sgA0/9yspNM8mM7werU2+ZVU1Uc648VQ5+am2/yNnDFBmUkLU5HbuFEYRoe4zhaK7wpjntRH8NqRe1LSDIYjtgsIytxkKyySInYk15bKiKP0+AG1m+Z2cLB6a/w6EswQiNf1wKc9bUF6Y8fJ+tFuVL1ChL69C6aybhpq5vapseKURg+YzW2iEM2Y8FAMo9louVeDM+jkVQiizcZYr21lvSBYKWgiP87agdSoiy+c91F6hMljSKdCnYENizbErlY/B3fcogjNkYLv5kXabxdBFe48YYclq1ZtdZ6M955RU4Jn4CeRx+hej9P1O82pdvXodCwv7neIxBhtKKqEhGIfUKlj70YWlIc9Jkgv65n3Omoe92f141TLV4LBeS1VEZ/ZMKq6rtWkebkPD3TkEXQ7L9FctevHdc7y19wGPIsA2PN/kmSBvoqyh2N3O+z4LwQ+E/1eNiWVRCtz/nmkILoLpBbcqFJZJEASxy2GcA2lz8U6vmxbNKJbovvm4Yib0Is/Low+zzdRIUGm+25DrbwQvB40LI+zSkDlV9BI2NqDLhVuqDDJ77EbYBZqDB1o6bBZ+vuHumvNzJyZ2Q9TekSOHEMdJ6fMsX4pp9JPYeHLzbwduU6ShuqYq7PZcP78C7c69Z7arkqNKEnDOIIQItrUYZ6wQH+YcZ3nRO/fWITYJ8txtM+S5I4jtJ1QN0Rp2/X6vVM1SKQWujaeEF16GXHAT1uVsM+Tpsr3ZpJSZF0QwkRYfKY6v2hvIuM3tUvAjycqFMLLZ5poXvpYqOzaltTkWdzupt42nBV2K74lScRO7XZVXogR881OrPITQiiXbD4+neXClAi4Fg83mQlmPS3ZdA+8x1+PK0/L3WqlS0QOd9hcs5hEyhPv+2UO3LQLcc1EnIsuFPXyqC5WYtaVSTuEWVjo/VVU7zfGwxgZh3TjNtrR3/w1rZJa22XBMGrLie1E5Xpfg2s5NnLdHaC4Wmjo8qjx39ooxbgoSWc834F/JiLm/DV3ed7qO63nz2p9E5d+L6+XLJ4/stc092VXXRwY+FllUQUWstwaY8JvB299RVWi5+70Q5vcabv7SHBU4ptC96T52NZh5lgXCeqsKCLm/veD3NZNQIXTgRq6KhreTlXXbF6zdeP/jDnnuCIIgdjhWyMnUO5ckSa3RUkXT3nVSSgghzKxytq7Owhib7tf2liuGlCntG4HDYCtemogcNtR4zJjK3rHSmBEW1UAeXubtk5WbZRfDLrUGhIiQJEkqwJ3jGYCUCRjjXi4RYGz6kfMD00IcUubnru4U+gKyZtmsxQVPq3gmTqjk5hHqOVc3TttOoEnT980iC1HdApNrp3gfbYuIzfR4DVNQxZ7jrT4fUklw7J6iNCHqK9uOtq3NJqs+rOrDuonxgcQdQRBjjymIorw8LSEEpJSZCGuKW4BjECZUyPfcWWGnoYN5duH96bQJdnkgRqCOYPAzE+DFwNIiIZv73g81JHZDG3MvXr4ER8D4dGe30+IF1hPBOR/ouXMRIjKNq2XBc8cZxBAC5ed/7hcxPTWFmZlp/Mc//TOza9Sfu+mpKax3ujiwsIDv+Z7vxic+8Ud4//u/B5/+1Gfxoz/2Q8F13AkBwRkEb3mVMTeLikwq5+9h74atGKpDLoQtYesM4B0jMrK80xEr5wYY5thyT9jWng/BRclzt9twr89GK2NuZRirMvH20Kz5O4fY/VBY5jZDYZkEsfm4HiLrnbMetmLIpe+lKoe2WbhTsCT0ztU6LUKiNQDfm+cVJ3FC+9yy2Tr9PzMelXnS8u3zTNjlx+lU8NPOdopjRyqUtK4MoQwdkO3bZJLsmW3vlQpJp7BC6rVywzbd88i5FbNVRRiUdwxmnYbFJjTSPni5Z8+O24YeueGdVYVXPNIT/0u/+KuI+zG6vR6++tRT2df/8oE70ZUJOnGCtxw9mg+kWAW1znZKLzoDoBnDX7xyGg8c2I8PffU1TDLgaj/BN7/rEZw9ex7/88/9VDo0ls6+m03YsMxQ8ZT8cMKholXG42aX9nf7fsl0jP412MhrsEoQNLt/XClqjzi8Zng/2adewY2mEzVVY9TpLEFNnl9gTMWQUAYON3PQ63lmQ7mdYWhpiitxdwIpUMRltLDMKjQYFyOFZW4mobBMi3veXOlmx6cD49nWPnehe4nZ52rz35d7XSksM2e3h2WSuNtmSNwRxNagACiZpIJOwwthVOF8BzenpMhWiDt3V8Ybl1aUtE3DvfytweJuYH6dNgKiKBgHiTuGVCQmpGDcAAAgAElEQVQ5Ao4zsx9bXdMcLzJhp7IE/XKOlxnjYK8Od715Td9FNeIubyyc5uaBZWGbTz7xJQDAz/2vv5Bt7jtvm8Ncu4VJwfHIyTuajcEOBLnQMv8YuGj2DyvugssxoN/toj3Rxi8++TyeXFkHYwx3n7oLq+tr+JVf+d92pbirGt/wjKG409Z1vrXiTtrwbrcXZfob4TZJGOHfIom7dJ0B4s7z5m11WwQSd1sKiTtiKEjcEcTGYFxDMzPTLJWEkgpJopAXAWCwHjkWaKjtN+hNC394Qi4Vfq4dxTS0SkVbwMASTGR97yzFR6vSfkEUL23NFk9x1k9kbPonFfsOpKLLbt8KSZ1+z5hfZoAj0CycmXDEUkXKwOBDRpU7dg6khT6s0NVg4NCwArCB56wBWR6fJ3Zzz1km+LjA97z3A5BKeaayYAz/7yNvQdiA1o59Hf4ejGUi135UgtnPdVb0pbQ7660dwVj9ysULmI5a+OmnXkMUmXvuwx/+VczP76lcp3mZ/rAIZGA4d/4cDh0+AmhdqkwY2n7IrjDFXvzlpdKN2zyEMJMz/kSOPe/m98/yz8zBpPeKue+j9PefBGpkundsXYGZYpCxbhCsa4unKFskp1L3OWNzvNs6nYjhATHEHDmiPI/6wCEF92nXrlp1NKFeXicTdzotfJQ+x4vfbxRfPGrwqAU4k1C2EJO7XEjI1bHVob6jhHLWr6PBEKXvxWYh7+MKiTtiKEjcEcRoWMNG6QQyTiC1qcwIAEiLguQtDKrFnfvMyx0uZdPF9dzViTsGBuhiWKW/T8YZmKMYQ+LON7CV6UXn2SLbL+7CcZ+F917qKbTizjorbe7QZoi7DMbw6Ef+TZp/pvHH//FPAQDvOzqPmZbAXLuNtxw9ko0hsIHAZzXizt1YbsEHFtPZl/WhoIO/bsrV5WX8oydfBAB853/97VhYWMDf+7ZvyXezUXHHuMkbTcN1Eyk9Q3s3iDur6qwn3N73tjJmnTdvK8Sdm18nVVIp7jwCD5hQT7vdLO6yapSFZbZE3LFiS5Kw55DE3a0HiTtiKEjcEcRoJNL0qVIqn2fXWQheLu5McZRqcediC1RwVg4PFK45UyPutAJsA+58O87qzKbUDBZ3frVwlee8uRvdBnFXlx3lRxmacFKtdCbupNQQgo0k7q5cvopOt4vOegcf/NC/yD4/2G5hgjFMMoaf+ro328OwQwAcg5q5bpoSo3nutIbvbQurYiDLa2K5l84ZZ9Cbt4n88Qsv40onxp8truG/+wc/gGPHj+H+B95Uu94gcQcAiZSI+zFarWjXiTu7nFTKu++zthaep9Kw5Z67bNTa/G6r1VPlNrRSEIH97GZxBy6y/nWu0Noaz525Cl44fEBckri79SBxRwwFiTuCGAzjeRU16bQtyF9IblER+3PKTQ/GWBZaYyv5Dco1AgCVirPcGGTBGXGz90Aujk18YbkhGNplcF0A0AxKKq9qp2aBZbUpXMIZ94RGlgdiw1Kdnbt2iVuUo/hZ5glIjV/OGaRUWT+/kkAs4Hruit/Ywiv5eM2x/cb/9a9x8cJlvPb6Gaytr2fb+fDXvQkTkYBoTWTiyO7eGsWDQmBtHmClE64wylyIqYp7hQ1vTLmLNdGYukIQVG3H8yD6op5pU48VWiFJYnz/557Cgf0LOHL0MH76n/+z4HCb5ObFcQLO/ZYSg/KzkiQB56KUTlYsaMSYuf+Nd3v7bapQZqibMdVU3Pnk+bL1L/0Bz6lBNzqKfersLIJbuMm9roNHkj8PhxdVVSJfg5W8Y0hz7tynQshjtiV5doFjqzveunqwoT51O6UCa7h3ZtU4NThvpfctibubPYaNQOJumyFxRxBhWNrPK+73gDTB34gA9+9AnbjzGVzpLTfYhT9brRRaFQnxwZw7HqHb6UBpYHJywmyz4bpmWZYV/8jGFhB3LB1z0QBxjZOS524UcWf/7aqqGlxxZ709JjeL4dd+5Tdw4cIlXLpyGcvLy9AAFtot/Kuvf6CwBXtN/H3mHppm4i5fr/yZK+7874uhfMXvBom7TFYVDye8WOj7UcWdu76dnLDizhGALM0bfPL8BfzCCxcAAP/oR34Q3/TIN6SrDzZMtTaFdTTQWNwppTMPjLtJNxfOFoW5mcbwzRZ3LDSR05CtEHejUCfu3Mkhk2Po526GThKJu40znLgDoAEhWiBxR+KOGAISdwQRJpFJ1nPO9DKzxq5bKAWoE3dG/AhImWRhSPXiLsr2Y/7NwSuejSGBxsEBxpDESWb8lmerq8WdWR9eNc2QuLNhmoIxz2izxon1PhYNqWy5huJOw1S6FCIqVRqtwoq7X/+1/xsvvvQyzp8/D84Ybp9o42TE8N++9b6B62eeuczrlgqqPF4y20+duLN9BJuKO+0Iq6o8vYHizvOiFT4Dws2pN0ncZV5IZ/VB4s5DJXjfZ74CAPjgT/6PePCh+8vjzIanMw8bbyjurCySSgXFnVLpb46xbOKi2Gh+O7jp4s4qtMC5rBMMWyHuqqqtDqJO3BWL8JhqmaFsxxwSdxtnWHGnlUYUtUHijsQdMQQk7gjCECcxgFA4jvvvjTW5DRqejhGR5dyEZo2BrI2Bm7dm81k0bKU77oRzmuNhPP2vDfUMbJ+liXNVj2A7di54ZsCrQMNoFiiJzRyLzwuntNvkxlPo7brmXWC9cG6I5d/+zeN45unn8Cf/yTT0nmlF+I1veLC4Zin/0JEkhX3ky+R5dNmazvqF5dP/G3wIZfFUJf7cEZaXGfTOL47Xej/zjWugXClTl9fL8vOCx+B+X/ByAqbNgj1/gXwyV1BZ+r0efuBvTG+//+rvfxu+/wfe561V7yn1P9yMRtxmgoYXDO7BXnoff1l/AiHspc0FWdikDxnIYXU/WKS6Z1+y8r6qwsIt2XMz0IaBudV/K6QlY9y0MvHEX7XxX2UrjlawJ/fsh8M2DcFKvVuQhzcKoXFUicCtEHqDJlVqr1VFSw6bDsEjnl2j0PvlVoDEHTEUJO6IWxVbEAUApFRe2KXPxsSddFsdDDDezPfpXjZJ3NmQSaVzb2OVuAOMwWxyBAc/FhIpTe5bwOIbRtx5JqhVd1lp/2bi7r3v/UD22aN/5wGwqFW5uhUfuVDLhYITRejsI/sbvP5x+agLXoXy/vx3mv17JtWAgDEbGsNWiDsbclrMi4SyJyMk3orbH13cmbxCGyLJ7P9KIweAj3zpWfz5ksmD/Oij/xpT05PZdzKUH1XyzPnemlEgcVeNtuMMeeNkWADZisOmENX2irvifWi2SeJuVEjcbS0k7oihIHFHjBvWYJBKgQPgQkBJCcY5+v1etlyxv1AzaozDPK4OjDHESZKVbJdaZ+YVF8IISa1N77gBhOyFYE+6rEKkLd7ihnWydFssyzsy2zGCapBRYpcJCg8nVJOnY5BJGuZkhaLW0HAFrjP2dJtF41wrmYkFW9Dmqa8+i7/+q8/h8S88gdtVgm8+vBfvOHYEjAsEr5/jCcyHnhsbWtlwPjfEEchFwCAPUUiQlZunlwZUKV2KbSvy743erb4+rkAo7m9QPl9pOU+YjWJHOG7O8uBG2F5502ZbwKvXr+Mnv3IaAPDzP/+zOHXqjiykMi8C1FwQNCUcRji8uGMwYcxG2Jrc3qjQr6/Z9tyxuZMMzcZZFQ6n7O/a+YwHQnlD+0mUMiHIIp8wEM5iw4QKjnK96oVLMWfa/66I+2ysK7LSVOhVLTdo+3XbrmuZMMy5zp/L0pssbMJIoaBu2G7humQTADC/bRJ3uxMSd9sMiTtiXLGiwHrOkiQZsPRmiTt/cyptjWArZmaLpaKHAY3FXZUzrfiy08jzw2yeF2Msb+xdIe4qDY6iuPMmvJ18Q9voV/OB4q7CpeZ/r81xPPfM8/ipf/6zABgW2hF+6R0PpIsP8q7mH4VOWdm3ZI1WDivAmok733DKC69UvYOrvjOfDw4zLO6veEQ+DDq7X5qKO/c4mP813BzDakLCMPDZCCaKdu7NUgipUvi+z34RWjN813d+B/6b9717+B00ZCvEHQBwLlJv+KCTcxPEnbt2YBIhtB+pkbdRCIg79zlW5+jabHGX50qXnwLp2kPvb6Pirun2SdyRuLvZY9gIJO62GRJ3xDhii6HYWVrAvvxCoUtA+EUfYrCBpTJjLS30kFdQyTx1dizGxmAQTcWd565zXtratgYw4srmoFnPnRVaWg/23FWdmaK4cw0LWci54wxQkg0Wdy4Fz87nH3sCf/AH/x4vvvQS/u7eaXz7qaNYmNtTWm14cecaHDz7zIZi+sOwIXK8tG5Y3OV/z9cP3U+jibtyaGeVc6ysyHQ6gdBU3BXHaToyMMcoHkTD39AWhITBGd9fvvIqvrLYQXzqHvzkB38cQLhwzyhsjefOnl87uVDF9os793uR3eM1+xECSitoqY33Dr64G+a5u9nizobfVy9T9fus/n7j4q7Z9knckbi72WPYCCTuthkSd8RuhAuRhdbZV4FWClqrtLKlX13OIlnYg8RtaGOd4bKBEuEeOs+f8zZv91sR2saZMVCY0/2Xg3uLuWM34ir1HgY8P25BFOFsU2vmrJ960phtsJ7vx20EnZ0vdxz2v2m4qA2zdI/tgz/5M3j+hRcAAL/88D1YmJvzwgRdAVYZOmiUqzl/ISMn/X8NGMGt/bw7P2wz3+cgmjgg8y2GRtTsXR2SscGx6fw7rZGF6Qa3E/LQFfbq5cIFcvfK5yh0pLlH04QKZ0eQLZ7tZxjRp/JCMLrQ1iBX6wy/+oWn8aVujINHjuAX/o+f80OCnTMSqjjZlGoDtrrtif9s8duTa629MNx8bBVtS1jkeZoNeZ86rbUJWQ20UhF1k1XubylQKMXNwzOFm3iwYErdc7XqHIbEWL2N6E66VG/f9eLl+csaXETme1VsBR9mmLDNOkINy0PirvH2KsQdT+8JxjmSOIYQYigh2Hj/Q1zr8AbKQk7waCND2rWQuCOGgsQdsZtRMKLOhFzmOSzALhV3WpviE96yg8UdrBALhecxs59iEZVsF87xeN4i5OdjkLhz180EY8gIYcZoYcy0aHjPu9+fbovht7/pLd558PMEXa+SFWLNZ6Dz3Yfy6rSzzfzIB4m7utdTfl4dd2DJg8ic/9aTmarOKvXizvwOvFl0f9GBWso//mbizub3FTdcvJ7ZNhxxl3+P2tNit6KV6/WqMt7ztRZXVvD45St49OwiPv7x38696uUhD8VmijupjKfVm2hpKO58b2++742IOxcVOMydKO78npaDtw8UwkTBwEUxH2/7xF3TnLumVAq2REGnjXDiXh+TU5Pee4fE3c6DxB0xFCTuiJ2GbR4u0pw5hbRSJFwhF8IXd6G+cF4uifOSEYGXiIYxEDzR1FDcVeWVuOFhJko09SlpBcZFVgXTz3kbvC/rucsaNOu8n5VbZMXz3GXRosbwM+LLiEbOGJQ0y3AuoKQCmM5C0jKDMR2/1qZCp2scmNAaE0bzub9+DL/1W49icWkJP33/Hbh74YAz+qqDK3uBChGclRRDGqvCnqpDFv1l/TCj0H5Cx9DkPVw+vrx6XECJFz6rmgMIrlLQkoPEof3eG0+TY8h2av7PDxcte/TcQdn7k3kGph1/UQg7AjE0Dm8f1Xzky8/iL5c7OHjgIH7t13+xcrlRhYkVY25ftXBhl0B12aBX0RcrUmtAmR6a5THZ50q+H1Ws1AkNUfH7Y4whUQrCC9UsL1dXQbNq24Pwxqz0UOJoo/u2bxqptXPs22dTNw23rMVOnAzw3JW2HejnOIw9XjWJYYt7jUSw8nJUU/d1PCFxRwwFiTtip8E4zwSEFXcyiZ2cuapn3C4Vd65XC2llxMA6VdgcBLftQdGLp333USbulJK5F9BzvzEYJxs3HhLO4BbWLgrTorj7zQ9/BH/6Z38OBuDRb3wQTFTNtpYPrlrEOYIgcxMFtjhQ3PnLDRZ35e1VLFG3QACn6XvJSxYegB96aA0m//fgeyWr5c+WiLsBRVrK6/jizhtvurzr/KwXbyMIbOfr7/v0E9Aa+KkP/gQeePDN/mI7RNy5oaOcwRF3UbZkPqaNiTs7encNK+5CeXjDsLPFXbpf7T63d5+4s8XEbra42zAk7jJI3BFDQeKO2IkkMsnCiZDm64yruOOcIUmMcOJCZJ+FthXemfPSLog7t8iK+yK34i6OY7TbLVjD0JaTZxBmGc0ApsGZgEaSjyf12JnQv1zc2XDLRx952OxngEfMUGWUF71a5roPEmv5ss6WCssXb4lB4i78Ktq8x2VRxFaFguaJi85n2e2aH1/+y3COOfXKMlYomLMl4s4f0zCeO7OpwglgCOZPhoXwxsSdy/s/9QQA4N/9u4+m+9sZ4s7fjc7EnRC2r6Pr2duYuFNKQwjf42IfMzanGQBafHgzeyeLO5k+O3kxhHib2CxxJ4SATCS0kyd5M8SdrRI9svAjcZdB4o4YChJ3xM3Amgc2t0TpJAsfNFUuEXywA2gssGwuWnFdFsgK4cp6C/J1JIBSY2HHgMrew26lL8dg1zrwcrRxTM7n2qmWmYfl+cfIWZ70Xzokp1qmRXDuNS7njnHvvmylNP21GAMYZ1Ay75PHmF+QwzjMjAKwIhJM48f+h5/Aa2dfBwPDR9/5Fnieo0rD3ifPm7JG6WBv2iCyazB4l4Vx+ut628skk3PttPFauItrraGEKYYhpYIQkfE+Mw2ZKDDBIWOFVrsFphV63R4mpybQ6/bQakeI+zHaE1MA0ip16Q0mmICWGr1+D1OzU4iZAo9NDhXjDCqOAaUwMdVGv9eHhhHaLBKIpLkR7b0RJ31MtFtQ1vvpeA+zk8DyvE/upqg6pzIsiMueu7BRp0vC1hWEg64FUMyvG6CGK/VeegQ1N9gHPv0kHn74LfjRf/xDmJhoA/D7MQ5uWzAYxmxRHx18noXPmz1HoxncVVUM7SSaEDwTjDpgPouGMZihfTLG0kkG7hQqaU7dMat0GTHEQ6OpaNdaAZyZCSxv7KGs7qZoMC6y8HWA1ebuDQdLQ/Kd95W7/cAkg/+eM5WQeejd5B5FzXWxea3ecqGJVLdNkDthUPGu50ykvyFWdPGPLSTuiKEgcUfcDOwDPEkSJEkCxlSaquNadzdb3JV/GjxQgEA5nrMs180Rd54RERi7Dhio3ghrlI4Vd5koNhsw47XFBZCLPCv6zDiZV1jCije7fDHqzn7/C//7L+Gxz38eGsDH3vmwv1M4Rh232yhsqPBXKyJdz8ZGxZ1LlWfOFRfaETvMCXvMNlfIwdGwItn2xQN0V0MIhvX1NUxMtiGVRLwS48Kla+j2+sYDqhQEZxBCYHq6jWuLK5iZbmOt08P83CzWuz2srK8DHJhotbDe7SBiAp1ujHvuOIa+Ujh//hxurPcRtVoQQmCy3cLUxAT6SYLjty1g754ZLC6tYOG2vRBCoNVqQWkNwbk5Nhv6y81/NTM/q/xYjcAL/dSqxF0o5y8ovhhSj2LVtSjjhmfmEyDuOMpevOr7oJm4syT9Hr7/c0/j4x//iNMgvYlXsxpf3O48ccdYwGMSbAPRbJ+mlmcqYEaw8eqOWSoTws8Ebyzwbq64Y+A8LY7F7L+3Vtx5v7cKL1u+wOaIu5CnmgXOG4m7ekjcEUNB4o7YbhSAuN+HUhJRlJadZiqdMXZCtW6yuEuyXmfObL1j4GSGiyyHvrjizntpo1xxUuqykeF+71aZDOHm3GXrQBtjJDUGbXiT4NzTWjZsUztevuycFA08Brz73d8LAPiG2Sn84Fvv80SYG4bnz9ij8PIdbFSZ9YIfNyLzNjL3ugT34gk6ew6EiNICH3bY6T2ZGmGZV0trKKmgtILgAv1eH88/cwavXbqC++85jtMXL+KuY4dxYM88hBCmsIACVlbWMDM9BWiN9kQbWitcX7qBAwf2QSqFfq+PftzH/PwclpdXMNGOEEURup0YSgG/9xeP4233HMSxI0cwNTMD0YrMWJkAF6ZaoYz7eO31C2i1Tc+xJNFY7/YAxXDy+BHM7Z1B1G6bUDvOoBnAbWEdALD3eeA31ETc5ed8sEEYund8H2FxHfceNW0+eCqwnT0Ex+OPqbm4s0v9whPP4smVDn7zN38V+/bNN1q3CmPUW4N+54m7UJGWuj57g/ap0iS2YTxrLk3aHyilSqGkw44z9P1WiDseRYCSiBPbuH4bxJ3zHrOvrErxtknizuJFlbBWeTsk7mohcUcMBYk7YivhQkBJCZn2oMvz6AqEHuKeuMtDV5RuGNYTEncVBkqoFUJTzx00T8uA5/tkDPlnALRKQxmhSm4K2ySac5F5gEqeuyLui1blxTkYM/3scqNKgXHfO2fGky+vtRHVfh+8fMb1//z1D+OTn/4MAOCjjzxczIarNOLt+qwYvqYr/2H3nq1rC8GY8ZeX9cRXaZvME5qlvTB3/XxN5vyXMQYtjYiQSYJWK0LS6yNqR3jx6VcxNzuNfj+GEByccdxY7+Lo0YNotwSiljBesYhDxhKMM/R7Cf7wk49h/8ws3vn2r4GI0vxQwdBZ72JqZjIV4kg/5zClSxnAOJJ+gpXrK2i3Gab3zgGMp72qEjBmQ2lNqBdjDC3YMFwOJRVWVtYQxxI3VlewstbByeNHsX9hHkoDQsAIPXt/BkNq8+sDhAxknZ13/zrl3/nXoNxvz/MA2rWGMmvswmmYp3MUldtpugMN/P6zL+ATi138zu98ZJhBVaIcwRDKuaozqm37BHfdcG5fGbdVgr/v0MTaJrWBqRiHZRhxZqtaunmAm5WjZ73ybiEpO7GjpARjUToJN9r+OGdIpDK5j9kk4iaNPS2o4v1+tZmgYpxDBX7XzcXuBk3GUNnVClilfmamJQKJu10DibtthsQdsdnYVgYqK4riNtiteIHdwuIOjJeSzkPiziuY4M6sp+LOeCTNzL6dcXXFnZ/3gOx4q8TdD/73P4wr167i0UceLhR48A4+E3d+nl12IKWiGL6xOlg8+N7EQeLOXz8Tu6V7rTh6eE4ce2nyS8QgY1PNdG15Ba++fh5MK7QigTtuP47JqQlIqXD27EXcdnA/2lOTAACZSLTaEaSUEO0I3U4X5v7lWFpaAVMMvX4fBw7uh+mpro3XLfW2MgaAA/1uH1optCfaiFoRdCyxurSKmX2zYCJCHCe4eOEKjhxeQMQFVlfXsWd+D6Q0kymyLyEik1MJBvR7PUxNTyHpdRAnCnE/ATTDpcuLmF+YxdFjt6V9FFOjqcLjGfzUsbHChuD2iDs35NGKOwy4h+B935x/8FdfRjeR+N3f/ejQ67qMIu7c8SaJhFYKUVQOGR1ncQekBVDSCa1sW1XXeARMMRynF+gmiTshBKQ0vz3zrDJtYzbusctGCn9aAyTudjkk7oihIHFHDIu0/dCcz4o5dIMYNfyEc1YQijkilMvm5sKlLybpzMJmFQS1Bk+Letc+fypEaCi/Lvsa2hjMcBLMnZer7e/FGDIPJ2PGE2TDWYohklJJCC6yfTLOvJy7UEPz4OFwnQlwzjn6vR5+6Id/HIuLSyUvnRfSZo8t9chwG+5pPizkFAEh6z0cimf3UR1GNijsLhthFpppr3PIMDWz5UorMFOkFBwT0ImEjiVOv3QarYjj8eeeg1LAm0/diamJCRy67QCgGdozk9k4pZR47Mln8aY7T2BubhrtyRakSsA4EHcTEzrJOJJEIUkkVlc6iOMEBw7sBwC0J8zxJXGCs+cu4fbjR7G2so7pmSlEbQ4Fhi8//QIeuu8UXn7xBdz9hntTb5zEjaU1zM3NImqZ30d7YgJxPwED8EefeQz/5Tu/zhiOUuHCuSvYvzCP6dRD+PwLp/Hm++5Cr9fD0tWriBOFgwf2Y3JyGiyKILmGktLct8zcmyJqGTGaHjtLHQQq2O0i7HXKL6d/XY3YCF9Xdzl7h1vhV5/vV7whgVoNUPcTSnf6/k8/iV/+5Z/H8eNHalYA6kTTcKX681xPIK8saXuE2u3ZRuDDEKqWuRHcsMxiNUxRqNLYdJ8yzdtsEuo5qMF67bpamirG5h8Dl2WeGrHPKXO/CsELzdGztUqf+O9I5RRfCY3P7Me/xCzbTuidaVskDFO5NN+fqY6cTQykYekbuVeahA8X1gCDSVXg9uE95ux2cXcrVjgliF2FSIUd4zzz0vX7PfT7vVpht5Opqka5URgzuW7CmVnnqXgrijYj8sKPQZsTlolIGzUEI2aqtjkI+yLt9/r4h//wh/En//TH8Stfcyc++sjDVWukQtZ6t6xXEID7ZwOY8F2Vngu3/UGzjWvAWDrcFYms9IeDQycAUxxCRxBa4OyZs/h//uBPcfq1Mzh0eB9Em+PeO07g7Q+8CSdPHMUddxxD1GpjcnoSnU4nNcKMkXnbwh6srK6lQtt4raGBqB1lx9RqR4gExxPPvAytFT72h5/F2soKtFRgWqGz3sXFK0vQicQff/pLkIkyRp3W2D83Aw5g/569+T2ggbm5WTCGtDARQ7fTBQPQ6fTwdffdjaXFG9BKQyuNWEp0Ol0opRHHMU6dPIrOegeccxw8dAB79sxivdPFxctX8PknnsLa8ipakQkN1dJUXLGCXqXuTc1QmR4bIpskuBn22Cbdoy4fe9fD+P0Pfgg/9qM/uXkbHQHO09/KiHltxW1tx0T7du3nZmKfX8NMZCqlsz8EMQ6Q526bIc8dMSwKMA1SbYVAN2m+ATvTc8ehZIOeSiN47jLvG+eZR6nKc6dhhJotiOJ67tykdCsYVSog3O/sNptw5swZ/OMf/wn8q4fvwcLcnHNMqTDyDzRwfH75encEnodmCM9drfOUDV6O8fyezMIuMxXsLKeAfqeHixeuoJXmhi53u+glMd5w13FwwcG5AIeAlBKJNG2dRSSglIJSMUQUpdGLxnvaXe+h3WqBC4HVlXVMTk6Ct9PzpjSWllbQakVYudHBZ598Dt/69Q9CcIbJqbaWGqsAACAASURBVAivnDmHE0eO4erVJRy6bQGMM7z48lncc/dRrK6tY9++Pbh0+QqYlLjt2DEAGss31iA4x+e+9CxO3X4b7jxxFGtrXUxPTeHq1evYt38PVlfXcPC2g5CJhFIaE5NtXL5wBfP79+LJrz6Htz34JvNbbnHTN41zMABry6tYXl1Fp9tDL05w5/GjiGOJuYN7shBgc6UHXq3Kb4qhwNviuWs4tiZf2526t/bvP/siHmvtxS/98v9SsdLWee5sjpjUeUe7UT13GiZ3c7Py16o8d3Y/rvdu3Dx35lmo0hDP4FqBz/z9kOeutAZ57nYZJO62GRJ3RBH3FcILn2mlvByRUWYW68Vd+rLyGpe7MGe51MTTylR190RE2ZCSFdW3RKDiZBBn/SzyT/Os75sNu3G9Z8UqlkDqaRP5Pq3Ay5ZluafOHpMQAlrpXASm4YBZqKfXpDx9eXu5cvl+nnn6WfzMz/wsfvPt9yFqt5Ht1MHu281rKxrffnn0aiMlF9LOoqkwLa7qX4LAAkHyc2XvCqV1GgqlETGOXrePick2VlfWsLS4jBurK5ibmsKhg/vQX+9hdW0d0zP7MDHZRix7EFEbSaIQcaCfJGi327ixtIyVtQ7uOHkMUsaANpVfpdZot1vg6fl9/IvP4U13ncDszDRYenq1NMUflpdX0YpauHjpGm4/eghRK8KNpUUkUuLs+SWcvbyIb/k7D2F9vQOpJGamJ9DtJ0hkggMLe7F47Tr+/PHn8fff+Tbs2TuLtbV1tKIICiptdyBw9vVLeO61C/jP3nE/olYEzk1TYyEiE4Ir0okGZs5b3I8RTbURRUbkRmnIZ7/XzTyzV67cAGcMx+86CsCEi5mwV+4JdA2YYptWdDF79dgQ6TH2KtZTCup1Hw/uQsU96OLEQtX+nOdMMayT+TtiAGTcxwf++in87u8+GthW+TlT12JgIy0XXOqebe6zeDMbhw+iKo9rs8NCN0Z4DDq9bszJ7a6KuigTPr9ZQS3vmuc3NHcm9AYz+J6uEndWrNlj0s69OUxESJFSddYBgrDZ/U7ibrdBYZkEcZPhzh8ASGRiDNgk9oTd1uHEG5Y+8196Uu6sMFAGP7kfsKGWLEv8t14et6plcdns3ex8nYdlpkJOmz1KqbIiGPZP1dgA4N3v+V70P/4R/NY3vsURdkXysD/GcuE4/DvUXDMr7Mz4lT3YBhFyoXshNNp0WW0abzMFCM2g+hLXL13HhdfO4/yZczjzyhksX19CZ20dxw4dxsTEFDSL0NPA/MEFiAkBxRVEiyOJJT77V0+h2+mjJSJAKTz7yutotTgAZSYPNMfExDQm21OA4oj7GlICi6tr4AJpF/AI3bUYTDF01rrorfexsrqOEyeOop9IgDNMzkxicWUV999/N771nW+FhMTc/Azm5meQJMD8/B6Tn8cFJmf34Dve9XYIxtFZ6yLiHDJJ0O310VnrQkmFfpxg3+w0eCTSynkaV68uYmV5BdevL0Gl/bVEZAysREqsL61AxxJIFHq9BJpFgG5jbTWGiCawZ24WUzOTuHbhGnRfosU4dF8BUsGtZcpSNWc9up7/TOc3ts6ufvgOsBGGo2qbwVt3x2T/bI6BKFptfOxdD+O7vuv7KkO9/ZDjZkitsz/EcEilvQb0m8Gw1+9mbXMQbqh/3oaHQ0NV5ClvfD8hnDfjpu2T2FmQ526bIc8dUSRxBJNbAdGW699qz135e+2V8leZ0FCIIlORcKd47kKWZCAiMfOiSSVz0ZeGZpp1WCbklDOba718bthmdsyuEMzkjvnuR37kx3Dh4kX8kzccwQOHDyPzpQzyvGlnO144lTtT3cxzZz0feQinL2z9c+R7bQa1M7BIKaG1glIal85dwf59e7CysoZICDDG0Bam0ipnHEJwxHECzaew3jH5ZlMzE5iankKv34GIGGTSx5NfegUvvnod3/1ffC1arRZ4ZAoiKG2u2ZXLy/jsF1/AN3/tfXj5tQt4w13Hcf7CNcRxjAfuvxMsYlAygVQRIs7x//3RZ/Dub/16XL+2hH2H9mcCXXAGpROcfv0c7jxxEivLq9g7PwPGGXr9Hh7/wkv4pnfcjy8//RLeeM8JPPPiGeiewoMP3IVLl6+hFQns2zeLi1cXcezYIXDGkSQy9SyptHLnBM6evYhnXjmHTj/Gt7z9azA1PYlWO8rCZ5euXceePXtw/sIVHDt+FBoMKlF47bVzuP32Q+j3+5iencTajRVcvrqIqelJgDEcO268j4o5IZLM3nu2uI658PZ+tC0uwnasWY9VeL/DSzv/tj8HXf7MQ5svzGQDy+7LigVRGnCF587llWvX8LMvXsTHPvab6SdpoRPPoz54wiwLKXfK/ReLkDThVvbcJYk5x25F0eZUTz4AxftsY5678D63znNXDOfnhUJe7vcb8dwVt1P03Hl98II9FouQ5263QeJumyFxd2tiq1tKJ47fhlyGGty6AqvKCGgq9IKP7tpWCN78f+365jniNGBtOCNoK86pNJ/DeK2c3QSEGuNlwecNDU6IZXr0ppBA2ajJvG4Voi5EFurpbMu+iP/Jj/9PePXMq3j0kbcGw7+0toa0NbLMFgeeL++rfJt5mNsQBJ73uaDMvT9gTs5JukpvrWPEVqKQ9GIwzfDKmfM4emw/oBNoaIhoEnN790L2FMAYLly6gvm9s+BMYW5+HhfOXcbU1CSmZ6aNUcHN/a+l6R3W6XTR6XbRigT2zM9CaaDbScCFwONPPIMrizfwre94EH/++Fdx/113gDMNCIZTp45BS41XXj6LE3ccgpLA2so6mGBotSJMTUxAKoWJqQlcu7KI1y9ewdzUJIQQmJhoYWl5HXfdcRTnz1/GntlZzO2dxsraGh5/6iXcWI7x0L1HcezwQUzPTOHa9SUcPLgPZ1+9gOnpKQjewvTsJJ5+8TT2zE7jwP55gAEXLl7DyZNHcf3aEhYOzINzoNU296NMbE+sCDeWlrF37xwUErSjybRQCwBu+vHF/QSCCfS7Es+/9Bq++NrL+OaH34RTd59KL5jO7imb7aPtBUXqzEynN2D7EBfyY4t98VyBnxvV2t26s372N+82K+fm1Qm5wNde/HD5o9BTimmFD3z2y/iZf/EhvOGNdwMoGMqBZ58r5Cymsbj17Du/O7cPG1ja1N1Mfo3aYiBE0wr2PLAbt0n6MBJBKmXM+CHEptab53ECALcef90wvOqlWW6aMzFp3xkVXrGsxU36HK7K4w6tE2xY7oaMunmNDSNwpHtv6+qoEMAcr2Aie35vBsFjD0zaCh4s1TtW7HZxR2GZBLENSKUQx30omWR/kiSBUjoL85NS5TlkfPf9NFn6Ym0+m7o12FDEJsbVoNCV6nVUyaD5wuefwHve+z78zMkFPPrIW4fa3qg08bAB9SE6NhbPCE/zXwVl3umMQUQCy8srkJ0uVq4tIel2kfT76Pd7OLBvD9rtNhYO7MeBgwcxv28eALC2vgYwjceeeRnLK6tm/wpYWNiH2dlZPPb5Z3H+3GV85emX0e/20Vnv4itPv4zJiQksLOzD9PQ0AGB5eRXtiQhRJPD2h+/F7Izpc/ft3/wO3H78MI4fPYRDC/uwttxBHEtcvraMl06fBwPDWreH3/v0F7G62sGZMxdx+vQ56ERi795Z3HXnMdx1zwnMTk9hdbWL6YkW1jsdHDp8AK9fuIy1tQ463R4mWy182yMPot+P8fQLr2JtZQ39Tg/d9R7m9+3Fyuo6EpngP3zqCzgwP4dPP/kS9uydw40bqzh66CBeevksTp+5hKQfQwiBXreX5nFyrK50cfXydSwtreHDn/hLaImsf9prr58HFxwykYhaHEwAnANvvOcOvOHoYUxPTOHqhSu4dvEqVC8B18j+QFkHlxFMmmljc6Y/y6qUs0wcDTBp9BC5eZs+cdwsYhhgHL/9yFtwx3/6fXz3d39fo+eRrUTs/iFuDlqp7M9mbWvU78PryEZizS7XVNgRxGZCnrtthjx3twaMcyRJkomMkJdNiHJoYpNQHVuRrSm+587OzDsexGzWcZj66oM9f6EG2+6xbSjNwdm3zaMzhT00kkQ6Hihj0RbDW5o0GrbLqdTY9q4fg+fZe89734dHv/EhoBDewpi2AW+l/ebVD23RCz8syEasFYfqnzd/nVxw+ic3dzw4npn0c6U0dGLWEy1TldIUchS4duUaOus9XL6yhFO3H4aKJDQ0oqgFzYBOL8FnvvQ0vuObvh7dXhetdgtxT6LT6WHv3DQ+8enH8PAbTuHQwf3orncwt28G6+tdzM/vxfKNVUSRAJcc3X4MwOSoHTt2GFxwiIhDa4moHeHKxeuYmZmBhsTLp8+BKYa77zyBv3rsGdx18jb04wSHDuxD3I+xst7B7ScOY3V1De2JdtrMHDj3+mXcc9dxxEphZm4aoh2h3+8jXo/BOccn/uIxPHTvHVheXcfUZBvXb6zi8MI+RBHHkcMHwAFcunwdz54+h4U9s5idnoRMNI4dO4gXTp/Fm+89iXa7jcuXryMSHC+fuYj5uRl0en3cWO3gofvuxPLqCg4d2o+JyQnIvgTjEZ744nO46+QRPP/yWRzYtwcLC3PYu3fOFGBh2vTti3toRS3IvkbUaqPX6QEAFhev4/zla4gijn17ZpFIiRPHj6I92YJoR2Dc3GPKzTfV+T1p74RQqF7RY84AKJj2DsXnUshzl6+b3+PVIZiFvweLW9STB9P5n73vU0/iwQfux4d++p+mnzarlmknO8qeOzMJZ8MYjXgc/EwphtuXm5iXkXXZsdYzG/COVj3jNlKVszKCRBvxsln5W1ViPFgZWcnS90XPHWfV3sXQvkLvrsJagXVChVmao7WpLupe842EZbo0bZbufl+XbsF4BMH5pgjwncpu99yRuNtmSNyNJ7b/HIfx0iVJMlSuW2i5cRN3m/ascceehlpqpSEiWy4aab4iQ5bOWBNlCu/rdOypAFNK+XkJDPjob/9bxJ/7JL73/nsDO0g/Ye7OWEDcVQ2oWLAewX/5dkS1uAshOEe/30e73YbqdBEnCZ5+/hUszO/F8uoaji4cwNTMJK5cW8S+/XtNjpdWEFEEmShEooXF66tYX+9gYd80JmanTK6ZiNDr9NDr9zA9MwuVRh/OTE+h013H0uIyXr94Dfe/8RQYY1i/sY6lpWXcdngBizdWcOz4Yax3uuh0Onj13Hn04j7uO3kC3U4fe+b3IkkSvPDyGbzw+mUc2j+Pe+88jD0zM7h2ZREXF5fRlTGuXF3GG08dxm0Le3Du0nUIJsBFhImWwIED+yCTBP04Qafbw/yeObQikwfHBQcXAnHcx/XrK1i6sY6L15dw2/4ZPPzQm3D96iJm52aQxAmU1pA9jU6ng4OH9+ELX3kBJ48ewvOvnkUvTvB3v+EhXLp0DQsL81hZWcOrZ67g4MIspmcmMDM9he56H4s31nB9dRlvuPMY+v0EWjJoptHt9XD8+CFE7QhccMT9OLuqNxZX8IlPPYG3vfEk7jx5FGfPX8KddxyFEBztiRa66z2Tn3jlKi5evY7jt+3H4WNHICKORClollaBtXeTDcMNTAgU70nAiJJiK43B4s7d5vaIuyre96kn8Tv/9rfQnmgWUlYl7sDNedBpGF/UwMu3XeLOPgGqRrSbxV22P3fZUmuKwvqMpQIkfC5HEXfhVIA6QTgYEnc7j90u7ij2gCA2gTjuI+730Ov3oZTM+t0Myou71ZqmjlKxrhabW8cZoE3ujEo/s4aoNcKGDcHsx3E2bss/+4kP4T3veR/+8wsvOMKuamjGa1EZDWmWql4/X2iDhLyo5t48d/YCHv/S01i5sYIH7j2FQwvzOLR/Hn2ZQEJj34F5TM5PA5MCWgICHN2VPl587nX8yZ9/BU89fdZ4x5QporC6vIqJyTaWbqzhmedeBUtbIlw4dxmLV1fRbk/hzffchfNnr+Hjv/e3WF1Zw7OvnMf6WheT7Ra6nS6uXrmOmZlpMDB87f1vxMzMFBgDnn7uVaytruO2/Xtw9+0HcefxAzh0aAGnz5xHeyLCzHQbD9x7Em9940kc2r8XrVaEhfk5TLZbOHp4P24/cRhKKSSJxOzUJJ545jSWbqxgYnICn37iGew/sA9Xry5iYmoCL5+/jL0z0zh19DbMz87gqWdfxr4D+/AHn3wcn3/6RfTjGF955jQ455BS4vjhA1hY2IeLizdw36ljSJIE83tnM+/9iaMHsbB/Hnv3zEJKhU6vj7mZKWimsbK2hrm5aVy6uoiLVxbRbrWy3n69Xg9KKihpPEWvnb+E937bN+CeU8fR7ydY6fRxfXEZmjMkSkMzhqgd4eihgzh55DZ0O31cvXQNn/mbL+H551/FjaUVJFJmxYN8r24FjEFKiZWVtYCXeTD5PXfzn3Mfe9fDOPfz/xLv/u4PoLPexag/LsY4eOYJ3YLw042gdG1vuN1K9r50/9ShsYk1KA3MSGTvD0HsNMhzt82Q5248sC8MJZPKprV1XriqUM2qMM4ioSqXYkNqwHh/rFAKfW+Tzr3QSFtdLpR4XVEtM9isNT3mkWaV5cZUkNKmaAe0TitBAsw20JYKn/jD/4B/8zsfx6OPPJytUwpd84pQ2KIssEUCgwwKu8y/yz0lGirzKHJbeEDnKfWM5X+3x6BSjzIXHCqWWF9dx9Wrpurj/J4ZRJMz5hwohSROMDVtCo3E/RhgDJcvX8PBA/ug0mIwX376JczPTuGF1y/g7z3yNizfWMOePXN4+ZXXcceJI+j3+uiud/HkM6fxNW+4E/sPzOOV187h7pOHsbi0gjPnr0Aphm4vxtc+dDeeffE1PPDme/C3X3gGp24/gtWVVVy6fgNHDuzD0SMHoTTw/Etn8KY33A4GhtOvnUcURdgzM43L15bw5vtO4bEvPovVTg8P3nsSi4s3MDczhSNHDgJguHDhMpbWlrF3dgYH9u3D2fNXoCRw6uRxdPpdgAFXryxioh1hYf8+nL94Da9euII4lvj6t74J//6TX8Dxg/O47+7b8YWnXsZEO0I/TnBwfg9urK3j7Q/dixuLN7C8uo6V9R4euO8UPvv5pyCVxGq3h2986F5AAyur69g7N4tLVxdxY20dOhHYM9dGJIDJiQkcvO0Q4l4XV64v4e67/n/23ivYsuu88/utnU+ON6dudKMbQAMgggiIpEhqTJETVLJEBVIjUmk0ll16sMsPLtd4ylVy1XhsyzXyeKakeRmPbFOamnFJGouyRGkoSmJAIAEid0Ln2zffc09OO63lh33Svffc0EgkoPuhDvrcHdZee52917f+X/h/C1H+raaBlHQ6LqlMgjAIaDZbJFPJKDdSSkIZYllGlKcrxABwKCJmUBWGdLsuXtejvFMjCCVKhCzMTZFMJ9ANg0BKdNOIvNYjnqoo7FBHIOh0uhi6TpSHebh3bRem2xderEaIjEZ3jLE1j0sQHCGt2E2ucnzV+t889waPfvIT/Op/8Ut7OjzSp4MiGTTVI8MaXu8gNs1QRSCkP6f1PXZhz/AUTbVDP/64eX9vmOlhogChiQOt9kd59iRRkfLRyBDR89AcVR9wlNhjF0vrGDm2l29UF4wdm+hZEkoMHovRbg70zAHtjDM0Hhl10jPc6iPEL8Nw2JGoEhH9xlF/BmXuB8Q7UcjoMOJCaNoevdt7Bw/wDIvBc7p/34CkDEUo2FUE/ThyHAPsIMdeabvmjA+KvN89dyfg7j2WE3D3/pRRiCLDYF+e3DsF7vrHHif08p0Gd/38ETXIEtsr33/gbjCEx6WWO7CdIbjrKyqlBPVanf/sV3+NL3388WiRM2AV3Kv8GYZvjei5w8DdKNvlbnr44f7+dfqLdaQchBppug4olCZ7i6UeKFcKiTFYWMgwQChFt+2yvLzCmdPzBH6AYUbhaSE6QkDgBxGZBNBqNEmmEtxd3WR1e4ePPvFItBjRBCqMGDs816XZ6tBpe0xNFhBC0G13uXLrLg/ff4o7dzeYLOTpuF3yxSztdpO1zTILM5OkMmlq1QYx20CGCs3QsWyTP/zqs3zqBy7g2BbxZIK11S2mZyf43S9/nZ/44SfxvID17QoPnT+NAK6+eYf5uUlicZs//Ivn+cTjD5DJxPE8n1QqiQwVW5tl0EJanS6nF+ZwPZ+LV+7w5KPnUQJc12OrtIPvedzZKvH0hQdIZpJsb1W4tbJBLp3o5azBwtwk7XaXMAypNdpkM0ny+QwXr9zg4fOnCQLFd165wlQhQ6gkSwvTuK6H0ARb2xUa7S7rOxUeO3eKWq3D2dPTvHr1Bk9cOIduOoShT7VSI5vP8LXnXuFTH30coeC1i9d58NwiUkpq9SZTUwXqjQ66ruE4FmgCw9AHuZr9lW6700EXYBomQBQujmB9dQvHsdip1EjEHWzLZHpxBtPUo9w6BOi9AvVBtIBWKjIQhH6A0I8H7vY+w72tBxg73jtw15cvfv0lnnziCf7Rf/dfD9sZdP5wcDc6Sx40Zb1fwd3ebnyvwN24Nvfu74O7PtvxaDjjuwHuhIiA5O5i6vvBHZoAqVBCofWSI/o6tl+P8e2AO8JeOOyY8M0TcPf25QTcncg9yQm4+/6XvqVytGzB2y0mfrgnLjJv9ydkTRNomk4QHF4wfHTB0JcRW+Kw9TF5CW9bxtGJKzFQXoM+sj/hfVQOygEIpepRjI8BgWOGUiitB4B6irmXK9MPyTxqMaEIBmArDCWaEPzs3/9FPpWJ80sfemD0SiN9Gt7ruIT6AXgTDIqSj/P2DQDzEAruyoPqh3/5vs+//+Nv8dkfeZpUNkm0FFMo9GjhrWkoX6LpgrDjUq5UKFfLxB2bdDxBEIQ4yQSWbRHKiCBkfmEW3/PQDQO36xKGEtM08bodAJyYzeZGCdu2SCSS3L27zuzMRFTPThNsbe6QSESev5t318mnkzi2Rb6QplFrE/ghTszi2p273Lc4M8iHdGIxSqUyWo+kQykNT/osLEwQuiHNdodCIcfOTo1CMUu34xKPO7Sa7QgMahrNZod8IUOlUgcNri9v0HY9HntonlQyQRgq6tU2uXyWv3z+JT7yyHlsx+bVSzd46vGH6Ha6rK3vMDmRJZl0EEKytV0hnUqjaYLAD7BtC9fzsS2bZrNFqVxjZrLA869d5YeffhTP8+m6HvVGm5urW5ydnSYRd3A9D8PQee36HYqZFDPTeWK2TSIZJwxDfD+k0+qQySTYLlcRCgJPkkzHuHJ7hR949AGEFpVx8DpelNtlajQbbeIJB13XePalK8xO5lhYmMYwdErbFSYmclQqdTLZNPTqUgZBZLgIZYiuaUSwREcpSeB5dFsdmq02nhuyXirz2IOnyE3kCIXWW6DK6PnVRO/NGnnLjljT7X3l++Qs/UX57pP3AkZ1AJo5yPR0tGrtv2WjUm93+LUXLvP7v/+l3eQoB4G7AwxWsB8E9KVvqDvIcNXPhdvXV01E+cSaIFQKfbRNGRmE9FEjX+/fdyPfpp9bt1fGAbnR+Xa0NqhSqle0++DfalyJmfdS9tYsPUjG5wYO+77rPo5VS27fBaJ2DtDZ4pjht+oejKXRZY9zvAIiwKhhnIC770M5ybk7kRMhUor9T9gDdn3K+3e8js8hMgRs7yB9shDDz/tAwlCiZDgoC3EckSryN7zVHMbIChkptl/4hX/IF7/wy3zpE0/sAXaHtsDeZeOAUOWQLu0tID7qHd2VJyjAMAx+9kc/TjwZRwZhROogo5DU0AtplBs0aw2alQaNcgURBhSzSQwtAp+pVKK3yI+ueeX2Kp1OF6Ria32LP//GiygZoqEwdJ1KtUar0UZKRS6XRtM0/EBy684629tlmrUmb95Z44+/8V00XXDh3CkMXWOjVKZSrlMq1zAMnWdfusx0MYtmGFiWSTaXwdR1mq0uiaRDKp1garqIoRuUSnVur2xQrbdYWy+RTiXwvYCdcg3DMKhUG1iWyc3ldZ559U18z8eyTL758hWyyTirpRqpRJxEPBqjqak8vuvSaHl03SiH8qnHHwRgZ6fGuXOLGLqGpgt0w2Qin+XGnVVsx8awTAzL5NKNZRCC68sbBFJxe2WTz3ziw7x2+Qa1agPbspidnuD80iyFQgY/CLhye41qo8mnf+gJHrx/kVQijut5+J5HeacKShIGAVJBsZAjnU6ilGRtfYdzC7P4rken1cF3fXzPx3M9XnrtTQzTwPN8Xr14gycfOcfC/Az9x2xiIocfhGRyKWQYAlH4mCY03K6LoemESiGDqMyF0kC3TFKFDDPz08TjDnMTeVbXtnjt1St4HRfp94qij4RRjixf33fruXEL13Q8xu9+8kk+97lfpNVqv632RzOxdokmji7adgzp551FRsDIwDK67QORc/c+01cnciLfj3LiuXuP5cRz9/0pu4qLH7NG2r3IcT13o2xqR8lxPXf7r/UOyLvouQMGZCjj9Pu4odGENvAK9T119+K5Q1P877/5Wzzz3PN86ROPH3LgQZ67/Z65aPues3d57qKFctT3XvlpFdUkG+2vEKLn3VKDsMx6pYFlRTXf7qyusjQ3wa27qyxM5XE9F+mabFUrzM0VyOTT+IEOSkP6PslknDCUdDtdDEOnVW/i+T4CQavTYXZmkvX1bebnp1ld2yKfS0clDHJ5lm+vYlsm1XoLhWJxdoJSvUYxn8G2LarVBqlUgjvL28xOFdkpVWi5XU7NFdFjMbyuS6PZot3qct/SHCvb68xNT3PndonFxVn+3Ve+xdPn55koZAmlIp/P8OrFG5xdmh14V3fKdSzLpN7oMJFLRx4u28QwdP7kmy/xd37wYYIgIB6PsVOpYlkmKxtVpopZpqeLNBotWq0WiUQcy9FxLIvrN1eYLuZBwcpWmdmpIvVmi9On52i3Ohi6xfb2Dn/14hU+/fQFnJiDYwi2ShU0XefZ167z2c98FBlEAPKVi9c4vTDdCysUrK6XyGeSZFIJXNejub6NYgAAIABJREFU0/XIZdJYMYdnX77EQ6fnsTSdRqMdkd0oRcfzyKQSaJqG7VhksklM06BUqpDJJNEtOzJqKIWUIYYReXCDIEBognqtSS6XQeuFrGm6jhSKer1JLp1AKUHoh+iGET2nQqHCgFaliq5rtNzIxze5WEDvRRP03yeENvqEHvy2fJ947nr+8EMIYaLr/dqzr1P3ff7gD373LXnudvdtTIjlAfPdcT13o00KTSCDcE9NvugA/V2o0/deee7eKdbNtyonnrsTzx28/z13+q//+q9/r/vwN0pkGP7697oPfxOlT4a89yOlpF/0ur91lGmxL0qF+85Wqk+7zyAsbtc1pRrZ1wdu43rXV3z9mPx+bHy0XespREHkau9/hIo+o9uGvVSDxYE47qQr5LDR0c9YJSf2faK+RCqx39++N+xAhbGreR0lRW8RFrUUeeT25KKN9qJPWiLFYEc/v6B/cL8dxJgwHxGN1ec/90X+8UyKz59dOEK5jYKuKITrXnRaP9oyOkcMFhCDdBYlkCFoaAitv7jV8HuhdUFDUdup0Wl1UH5A0PGoVcsIqTB1Ddu0SaVTxDMppqcncewkhDpCgW2btJqNQdivpukIoYOQpFMZlBRsbFVJpWI0al3KO3Uc08YybaQvKZervHlnnftOzVAsZvj2pWvcf98c3bZLvd0mn80QT8S5en2Fla0tJgtJpmcnSCYS3FmpYmqKrz3/OouTkZeuWMzhdtpIP8DUdTpum2LG4fZKlWa7SyoZ52vPXiSTjKFrGsWJLO12i1q9xuLCFFOzkzQ6LdY3K1FuX6fLTCFJKp3E8wOy+Qx3VjaZmigwPZ0jHrfwfJ96rUGp0qSYy5JIJVhfL6Gk5LtX7jA7WSRfSIKAbCqBjsZLr76J57ksLc0yk0uyXa7TarWZnCnQ7brMzEzQbrVZ3yiRzTsEQUAmkeHmrS1sxySejGEaGsVinjAE24nxxtVl1itVlmanCH2f2ekCW+UK+UIW07a4vb7N2VNzJJJxfD9gc6dKPGZhxyyq9RqJVIy1lU1its2f/NULNBpNluYnonlOCu7e3uS7r93i1OwEmgOaMPoPOxpgmBbNRgvbcQCoVuvYCQdhGDiJOIbjRHUINbhzawu32SWViGP06+8hkEIhe+k2A7wjek90bx7rvy7735H++9qrwdcDVxHRSn+OjZ79wRwj+nPNQS9cP2x0dF4aee+OIT+6MMVPnprhZ3/jt/jc5z476IvYNR8eUwa5a0NdEvZyerU9c0w0V0bz5K6CJmq4r89wipRRbqyiV9ZAG9ytrmn72h6VcGBQGgFfI3qq38/RbUqInj58q1ERQ2AnhBjkb/Y27jtu97jc+/r6KFbmccBylzFtZF4+XMatKMb3Y2xf1MhzesjldqljopxIpIxy8YTolVCIngn6v5XefzHfPj45rN7f8P60Dxy403X9f/he9+HtyInn7j2WE8/d916CcJjLtjdnKvq+vw6RGmO1VHssu32my7681RDBfhmFUXB3ONHJUMbZVo9tMzzIIn3M+nej997HbEI7egxkzyulif09lSrsLYZGt41cs2ftFuxnLhvXt2gMh/t/9u//AqaAf/2xD9HPJjo88Xz34nIvccRblf6CY4SvBeWHBEFIzLIobe/gewEBAZIQ2zIw9YhAwzQsbMeh3e6SyWbodj10UyfwQ4TSqTei8gS2ZaJpGtVyjVev3eLjP/AIQsDW9g4TxQKlrSovXLzBVDHF0kyRta0yQRCyMDNBLpuiXmuRTCVIpZM0Wy3KlQaFQpbnXnidh8+fIl/IUq+22SnXsE2NIPQpFrOYpsUrF29SyCS4s7HDhTMLaEJwe20TXZc8+sBZfF9y8dodzizN4PshO+UGZ07P4boeUko8z2d1a4dcKkY+k6DZccnk8mysb7G+XeXpxx4AAbZjsrVZIpGIs7axjaHrbFVqPPHIWXw/YGu7QsxxuHRjmVQsxmOPnkPTwO14BIHEMC380KXbcVnbKPPIQ2cI/JBbtzcAyfRUAUVIOpNCCKhV69RqLWamJ2k028RiGr4vCVx488Yas3M5QPLm7Q0evX+R4lQBJUOazTZXbq5Sb3b45FOPsL6+xdRknhu31kgl47Q7Xc7ct0ClUmdyoohUki/90V/xY594jEQ6jud6oAROzKHT6iIJSWcSSF2jXKqRTWdwXRfHNml2mqQSScJAEQQBV24s88iD92GaJr4f0Ky3+fNnX+UnfuTDBH5IIhWnVm+QTifQDR3PC3E7XZr1BkIIJqcL2LZFQMTm2SdXESEDcNd/HYZkQAd7z4fHj/PmabsP7B03XsTuww499mj54tdfIp1K8zv/5786sp2w1+fRnDipGHg6+7Xw+vOKZHdOzOj5fQ/d6H1EJCyRThgAOk1D7AlFP7J23rh+jjl/l+7qeQ/FoR7L48uukXwXwN0o387YnO4x57wb3sLR+zmsnt7eY8e0tOurJqL1QZ9oJcpRDwdGTRnKIRvtOyAH16fsee5EZCT8oNW8O/Hcncg9yYnn7nsjQRggleyFiGhjrGm7lcCoFXPc/kh2v/t7FetuvTJY7hzZ172eu77l9jhn968yBJoK7biK60DL7L3PcVJGDI5H5cMLoY2EUmr7x5DI0n2Q544+kcnIUmm3Uu0b/CNPQd96/C//xW/zz37zn/N/f/wJfnxputeG2Hf+mB6PuYeDjt8N9PvXHvssiGFbQilWVzb4wz//NrmYDUHI2nqJbCKGHTfpdj0y6QTJeAzbsTEdB6U0JBphqNB1nWj5KNB1g+2tMpZpYpoGfjekWW9xan4KKUPC0Me2bRzH5oXX3uTM/BS5dIrn37jCD1w4i+t5zM8WcX2PbDaD6/lcu3kXQ9OYmplgY32Lc6cXCWVIu9Xh6vVVdqpN0gmb+ZlJfN/HMnTqrQaWZTE7mcc2I29WPpMmDAJijo3r+hQLadLpJN2uR8wxUUQ14LbKNWZni2RTSZLJGEIIUskkpmmSiDk888pV0jELXdfQNDCtiBlS0zRSyThz0xNoQlCt1InHHFKJOEnHZmYyj27qtFsdOh2XZCqJaZuAIp1OkozZ6LrG8y9fZjKXxfMDLNPAcgwq1RqmaSJlVDpDCIHrusTiFvFYDF03yKQT+L5PvdHm7OIsG6UqE4UM//ZPv0Hc1DGEztmlaS5fv8NDD97Hd165zFQxjx8EPPf6TQrJGEpJDN2g23FRQcDsVJFatcny6hbPvX6NU9MTODGbWMwBpZAK4skYArBtG8uxMQ2Neq1JKpWgUqnz/BvXOT07gWma6JqGZVsszRT56+df48H7lzAtA9uxQAeJQjeMiL3Utmk3O2yVKkhfEkvEonemPzcpBuCu770bBkSOf3f2bt3/Lu1/Rw6W482Rx5WfPDXDj87k+fz/8lv89E//xKHASUVIbs8xKmJFHNkezVPR9lHvWV9XaEKM1RTD0irReOuaGLTNnuMOk4E/dMy1R8/fHS0bzZ1v1XM3aKbvset5L/vXO8zL9tZA16j1bwy4e4dA5FGyWw+N0xvj1iFjW9r1dbA+GBnDvm7ZFbXyDsnRnjvtxHP3fSgnnrv3WE48d+++jNqP+takvaQoQmgEQTC2PpEQGlKGA+9dRHEveyGCw6l2r+funZeIFfC4sfUw9NyNLjJ0+guBI9o50DKr9xgbhx7E0XjKsXa9wbHjGT/3MckJEVEq7z1OG/Woskup7ZJeKQTVG7PhSbv7pFB8/vM/z7/68AOkYvFB58cPzfjwnfH5IoeDd0XPGi+GI7fbPxF5LBrVBvV6E00IDN3EMAyQEtMw2NgssbQ0RxgSlRFIOoRhSCxtI31Bp+3iey6ZXBLHsei2uth2HKWg1Yq8d7evr5NJxTEdnZ1KjVw2wUapPvCSdTsutumwsrlOo9NhYapAs9MBFEtzc3hegBBaVDhbwbOvXeeHn7ifZDKGbhisru0wMzXBtdvLaGjkMwm6nsv8XBHLjhGGIbqh0253Ke1UmJ6ciCj8NYXv+3RaXeLxOEIIrt26y1Qxh2UZbJeqLMxNo2kC3TBYWdlgciKP1w3wQp9UygEhUEqwU64yNzPB9naFZCKGputoQqPRaBFPOFy5scy5++YplWvMz01iGBp376zjxGIYpokKAq4tr3H/0lwEgEyD9ZVtOp7H3EwRkJiW0QN2UYFxy7KwTJNypYplmtQbba4tb1JpdDg9XeS+xSm2d6pMT+Xx/QDX98nlsshQ8uaN5ajouqUTjye4c3cDXRNYhsGbKxt8+ML9bJcqaEKQSsaJxRyee/Uq5xZnmJoq0O10iccd0CTxRDyKPCBiIdUNizCIPLml7TK5TIZSqUoul6bd7pBKJQeLTLfbRUqFE7fQdL1nmIkKoytfIqSiUW+STCe4dWcNAUwUsuSn8oPaXwjRo80fWCvGvg+735v+IvVoA9ohr9jAZbP7ku+Muv0H33qV/+k3/gmnTi0MW1aRP3I3q2/0vb+v71k70qMmhzUx+545BYd7YA7RC/vL5PT63Ou31rd6iYNZ9QYexAGZzuEkX7s8UT3G6QHY75eRUWpwXChDDN3Y187R+dEjwPQd8ha9U+DuQJA6sHIO69y9xSsMvh03l04qeWgphLfWl6HnTkntXcnx/F7L+91zdwLu3mM5AXfvjuytQ9eXg2rWaJq+D/D15QTc7emF6k/icgDu+qEfB+V3GIaJ67loB4RljlqIhYgAnhipBdQXTR9ZmIwBd/3rC7TIM7snV3JUaf/M536OT2Xi/PKHHhy2eSgoOwjc7cqKOfDY/W2qwf/3+ScU1Mo1As+n0+6SzSRpdDyy2RSeG3mMul0fy9RRoWBnp0at1ebMmTmkkBjC4hvPvEalU+c//dSH0bUoLLOy0+Dly7fJZGIRW2NHUsylmJvK0vV88rkU9XYXhUQpmJ4sEgZw5+4KK9slnnr0HEHoE0rJ3bUd5qcnEEIjnUphWBaXLt9kppjCsg1cPyCfy+F7AcIQhIGiWq6jaYKp6SxBqKKFmVJRWBHQqHdIJB2azQZxx6bb8Wi2uszPT0chlZs7VOpNpicjUHRnbYsL504B8NzLF5nPTzA9kyMgwPdDJqeKqCCk0WhSr7eYmMjjdrt8+7VbpOIOH37iAYIgQCHRdR2BZGVlg3NnlyiXG2i6TqvRIpVKEISSRDJOo9Hijau3mCnmcGyLdDqBlBLLNlFKYVkWa2vbXLq1wsOn55mZjWrhra6XKJdbPHh+CVSAZVsEgeTbr1xhIpvmzmaZB5amCcKQB+5folZrEASSv3j+DT719AUAvvP6dZ54YIlCIcvNW6sk47EeMOtimCbdrguAaRkoQjQ04gkbzdC4fXeT04sLaDqYtoEMQ3wvpNNySaQiD6jnBeiaFpVMkAGaENiOFRVH9wN0I5rjKjs1dE0nnohhOJHHUvoBy3fWiSccCoUsTio2fHd7Xryj18zvILh7h8My98r/+uJlXm11IrIVjgZ3o/rjOOusiPFSRkY0Pco17BOqjJPDhvYocNcHbfohAGEfgctRYZl7dMEo8Br1LvUNZEHgY/TqL+5q5oiH5jAylrcqJ+DuXuUE3H2/ywm4e4/lBNy9MxIRB0h0TRuULejLuFj248e3DyWqTbTHE3SA9Ouj3YuMy4W7l5y5sceKfpjiKJjdFeDT3zrc0lMSo4uIYQihQKkAqSJ6/OO2ubm1ha4bTE4UCcIwKn4tFUEYYpoGfTi+K0dRRbkgiii8DKUQY+5+d4hmVA7gwOR5pfiVX/nPaTSb/O4nn9zd3eiA0X967e+/n+H+XfCeKDRlEB2659ohumbQJ4QJwwAZEJFSSD/quxBsbu0QNjws20IKyObSGKYRlSxQCsM0uXr1NprQmJnMEYTR4sCybWKxWJRMrzRC12NrdZO17TIPPzhNpdGm3pRMFQv4nsvmdpmpqQK3VrY4uzCLaZl8/bmLtFWbv/uxx5FSsbpZot7qcP/iDKbpIDSoV8rI0CMgJBlLcuNGmR986mGu3bmNF3rE9BhzU0W+9uzLnFossDg/RRhI8vks9WYbFHQ6HtVqk+m5HJpm4LYCcoUkm1slUskEQhfoukDXdTqNDsl0glKpjG2ZxOMJhNDoui2a7S7ZTIqdnTqFfA4N2KlWmJrMsVOuUcjnKW1tkUokCUKJbpnE4zFqzRYISKZiSClptZrk8lla2yXQFJVayH984RIPn53h8UfOo/WePyUlzUaTetOn1e5w9r55VlbWSKfiZHJ5qtU6f/rsS/z0pz+Gaei0K20QYMUtdFNnu1xharqA9KKcmLWVEoViDssxeP3yDR48u0ir1cFxLDwvWuzalsXq6hab5RooOLM4xd31beani3S6HvV6h7br8aFHz/TKWsDlq3dotrs8dHaedDoJwNe+/Qqf+sHHUaHAtBRCV9QbHRKxBAqFaRqEocLturTbXSxTJxa3MSwdBZS2ahSKeWzboNVsY1lWb4EoESjQdPzAJ3A9atUqNiGZiRnMZBJhCpT0ETLKCxMqjLx7QkcJgdaPqBjzzu56v9W47WM3Hirv5CrtF77xMr/3b/8NljUEJuOMiKP6YDSXTdc1QqXGesyOKmJOz7Cm9eZiFYYRC+rA29frx+j8P3p275nWdH1Xm7qm7fIwHsSMOdpOH6j1wcPuXqre/cixoYdKKXRDJ/AjoiihonOklBim0eunOhYoHgUte78f1PfeAcfOvztuMXXtAG3dX58cxaB5b+uUMf0YA/jGGYfDEUOKro3q9WOCP7U/DWJczvz7Wd7v4O4k5+49lpOcu7cuuxgve4AulOEIENkv42Pdj/fOGqY58DIcdc5xrbOjcjiR8uHHHXis2K/cOfB7b0v/3tS47QKhqV7u2uHtjEo8Hsexnf1jInqW7jFWejHS7NAOflTSHr1wx/39abc7/PzP/xL/+gcf4adOzRFZ1Mcr50GU0rEeDbHn31EZVd4aKEEYSJSU+K7H6p112o0WuoBOo02r2cHSdSzTIJ6Mk0wlQBN0uy6GYSBDiVIC3wtYXJzFtE1s28I0TDzXBwmu77OyvE6z0cIyDc6fnWd9e5tUIkE8nqBeb5NNp2h3u4RScv3uJoszRa5eX+H2VhXTEDz64BlijkPMtmm3uiTjUZkFz/WYnSkiwxDHSaAQ6LpGKhXn1uo6U/ksU1NFOq02Dz94Gt2MWDi7rtsjL7HR9Sis13cDNAOSyQR/+cwbdLttzp1fwjQNarWoXtz2VplUKoEQgq7bpdVxQYHvRaGMxUKOtfVtJgtRse4bt9dYXJik3e6Qy2fY3CiTSjhcvHmXyUKOFy9eZyKXodVpk0zEsUyTZqOFLjSajQ6ddisqlbBe5fziLH4YUsil6bS7uK5HaafOdrkOCGanJ3jz5jLnzizS6XRptbqUynWmcmlevHidhakJ1ta2SSRiVJtN0qkE8aQTGU9kZL23HYtut8uVm8ucv28+AumWiW3bxBMx3ry+TLGQJZtNIf2Q+5ZmcWIWlmkQc2xMw2BxYRZTi+abTqdLs9liYaaIrouo+HsuTbPV4b6FGQxDxzAMhKbYKpUpFPPIEHzf6xWCb7O8sslzr11nabqAYeiYduSZq9VaWKaJVJFBZsAOS2++6+Xb2JZJMhGj2+1yfXmDiVwW3dAjll6tXz+yZ0QRPYa/Q+bKg97B/nz0vQB3o739yaUZfu1f/B987evP8nf/3qfH9LF3jmAwqQyjPSKgN857399/uPTa60VS0MvR60c0DKJh9+Yq9j4CEbGg9uZhrae3on9HjKHH8I71wd1xB3dvDtpu4Bdd0eiX2zgmsNvb7r1sFwcYbY8sgXDA/mg8jq+tx5dS2N3e4TLOqz1Gt40ZRqEN8/2Os7Y57NqD8fweFJx/N+X9nnP3wfo1TuQDLUrK4WekFt07nUA8ej2gR1DxN1cGCdMHyKDQ9ogYho5uGhGLlyYGNM26fkiNIyEOSyPZd73DlP/PfO4LvPFP/3v+r48/0T8L1HAhMfz029z/OUrGehJG/tSFgdf2WL+7SXWrzM5GiWTKJpmyqdbqOI5FzHJIpzIkMknshIMbhighsBwbjejZ67Q6yCBEhSFhz6tZ2qnw+hs3uPbmba5eus3qWuQBu1sq4RLy5to2f/rsq1SrDfK5FFs7ZRYXpmh3Pf7Ox5/k9TfvcP7sPB86O83ZmWk6bY96rU291iYdjxP4HoHvUSrXcIMQVwqESHL1xjb1oMWt9bvMFQu8fukuQpMkcwkabpvcZJEbq9tMTuSZn5sikYyzXaqQyqRwYibZTAJNEzx8do756QKdVovt7RKZVBJCQSFXoLxTIwhCPD8gl03g+R6hDChOFalUm0wWchiGThC6PPHYeWSoiMVjANi2gekkKLc6oGuUGk1WN0tMFbNI30P6AbZu0qh2UB4kEykMy2ZuepJry1ucPTVPs9oknYjju5JMOkOjGfD869f4va8+w8xEFB6aL2RJZ1JcvbPO2aUlKrUujUaLV28u48uAmGOxsVWiUq6hpGJzawfXdQlCHzTJYw+fYn1zB8MwMC0TwzRYXd3k/jPzgKJcrjI7N0mn26XrunRdl3K5gRA69XqDru/x8hvXWd8okXAsfL/L6cUi9WabMJTEHJtWs82rF68jQ58bt1aYLBaQvuLa9RWkkuiGTjxmMzdT5Mc/9RQ3bm9w+c27yCBiYJ2cKPK1b77G1lY5yi3sGdJ83yeQw7c4VIBhkpud58L9S1y9cpna2gbCC5FCIoUiFALZyysV95AnNYJL9r2z76WIkf8Afuujj/BPTxX4qZ/64oHn6EIMPu+kGPowf030wj77i/Uj+yGi/L7Rz9sWIXbNyUdFzvT/1vQewOiF2wuiPLxRYHecuX5vP448TDseqPkgy3GB3Ym8f+UkLPM9lpOwzOOLZHf+3DgRgwLQQ3krIZgHST93Qtc1wlD2yhSoA8seHJTrMNIi0CtYLnefLzSiBdAe2Q0te4QeSiFF5B3aVcR8XF7ErtzA/SGH0V978it6Vk0ZSsZh291hmceTXXPNIfkbu1i4R+xPY8dT9CzhEnzf5+e+8IvM2Da/8fSFgVV5XxFzAYctEkeidvZt6/0Fe3+nPfOoEBqtapP/8NXn+czTj0ZALmaiHJ3Q8/E9D8eOEUiwbJtGrU48HkMBvh+gpCIec2g12phmFP51Z3mdmdnJKOsvkARuwNUbd1HA4nQRO2aTziZAV2xslGi1XVJOjEw6RalSIZGIkUlneO6lSzz58BlA8OW/foHHziwxO1VgfbPMdy7fJlSKTz15ukd2YlJvtXHiNqae4M7yCk4ysgo6hkOz3mFqLqoxl0gmULrJ//vVF3jsvgm6ns+5+5Yolaq8/OYyn376Ah2/jW6YbG/UWVyYYKtSxnV9pieK1GsdnnnlKo+fX+TUqVk0TdLpdLEsC9M08ZRiY62E23aZmykQ+C7L62XuOzXHTrnK1ESOG8srKGmwMD9BPG5TqTRIJRKYpsD1AkrbVV64coMfOH+WpcVZrt28wcx0HsdOI5XAD1z8Toc7a1ucPb3EtZsrgGBxJk+92SafS9HpupRrdc6cXuSPvvZtPvl4VDTdiVnEbDMKHc0laTZbmJaB49hUKw3S6SStdod2u00iaaNjA4qNzR0SMYep6SJd12V1bYtTS3O0my5CEzRaDTQ0lld2SMRtqs0WF84tUtqskM0kyOaTrK5vsVkp89hDF7izvE4oJXPTE9G8JSXX76yyODNJOpPG90OELrFtE7cThQN3Oi6GMGh3OqQzycgzhIbr+hhGP4QzHBi6VN/j05sPhaahhIYZurjtFlulGm4gWTgzjx2zBy+e6Idb9xfiYyMr9rzg+w64dxX6bi5hv/j1l/j93//S8frRC9/vj9te2aU/4MB8O4hCMnuNDtvvEZmIvkGtd/7A24pCBSGiV0Zlb+t9Mpdx8/PQOyjGWr+O0rsHhfwN2JLHAUHFMG3gHoy5EeCNygIc95zBuW/jaRk1go5eU8r9Ya4HhWUOPdSDrQddbf/5xwzLvNfC5rBnDMeSnxlRVco+mc77XE7CMk/knuQkLPNg6YddSil7hCbhMSbl3YoB3nmrVH8NEoXUaGMjgYaAQOzbtl/EwGK57xpjJuzd0+jusB8hdhdG144kJRg/JlG44shRvWK4Ud238fcwbls/ROjIsT9kgTa6Z3fu4JhmeouDN167yP/2j/4x//Kjj/KZhanBuQP2zN2N7r+m2n/AwbcwDiCP9FMqms0WayvrzE3kmZ6ZQLdMfKnQMPHcMCoQ7kQFwn3Px7IMhBKoUPL8S5eZLRbRtaikhW3ZVCs1suk0X/vGq2i9XLzLt5Y5c2oG09K5vbbN4vwUrtdFSUmmUORrz12kmIozPV1AN3Qsy+DuyhZThQyXbi4zN13E0sFxTL716hWefPgMhqYoZGK0vZBWu0MmnaDebJHPZ1hfXaGQTbK9XaeYzeBJl8Jkik43wPNdVCgxhImD4P6zc9imiecFNFodLt7awHNbLM5PELNtNrerxB2DdCpBMu7gBz7ZbILT80U0dBLJGEqFbO2UsUwDoUG326XZ6CBDqNabFCazVGoNvvHiZU7NTpJKJ7EMwdLCArYt6HbapJIxuu0uUuhYlk0sbrM4U8S0DEzLIJ2OYToGhmHT7XZwfZdEIkbX9cik41y5fZeHzi6wurZFzLGRSvHC5es8+cg5LMfANjQuXV/h0Qv3IZWPZVls7ZRBSXRdi1g1w5B4LBY9I1KQiMWxbZuY49DtegOQpJSKCEt0jXarSyIZJ5NN4sRMZCipVDt8+8oyTz18mlQ6Fhl4lMS2HRrNDqARdAOWFmcJ/ZBuxyWVjKMCgYbgL79ziccePg2aimr7uS5CaOiGjm1Z2LaFYWi4voumR++yYegIFGEQYlommqH3HnuFCnxE7z6DIEQHpKbQbJNMLkGlVqVVbiHdgFgs3stdVhFw6BuH3hK4O+i9PFjezVXaT56a4fO/8dt8/vNENLwCAAAgAElEQVQ/eXQ/xJBYZNx8Npp6EB1wcM9Fr9bdaENKSmQvX00IbVB+QPXKdQhNRHXrVMT0KpTaHZ7Yn7tH5udRL9phAel77/Oo/aPA7qDQeqHt98YdV6+/VSPv2wN3+8MV9/ZluP+AsNAeuJOqHwJ9cE/HnLx/09glwdsEd2NTG6KiSweB//ebvN/DMk88d++xnHjuIulbd8J7tPAcD/AN5ShmzHtpZ9iHg3/C/Z67ISHLaGHy40i/mLl+tCoFEd1n13PR99BLG6OKeiThPkpgP4imu6985UDZvSWWMqWD6OdQjLSuHfP3GLEQjpuq/vqvvsH/929+h//xBx9m9MBxsGuoKA9Xuv39Gn1K80hhSfp05dGiS2hiCMY9Rej71HbKtFotTE2QzBci0gUBoQ+R8VbxyhvXsSydRx66D8PSkaGkWW+iaZBMp1C6ju+HGELw5rU7GGhYhkGj1SGRtMmkktxZ22S6mCOXS6PCiNTg2u0VFueKUV89uLteYmYqTzaX4s1by5w/s4gMQ24ur3Hx5go/9bc/RqVSp1DM8Cd//R1ips0nnnqUWrWBpoMmNNrtLp4fMjc3ie9LatU6thWBDbfr4jg2Ih6QS05QKzfYKVWptVo4tkE+k+LFizd54NQs66UqTz99Cq+jiDsJhKbRaDYAaHdc8vk0uiYIwhAv7KJhgtQw7Si3yHFilMsNMpkE9XYT09CJOXHcrk8Y+Oi6xs3lDZZmZ5FhhyBUGIZBIpmg3XHRLI244yC9EC8IqNabzC9Os762AaEil05jxCKWSeVLwtBnfWubhblZttdrhMrHtg1syyIIQyzTxPW6ZLNpVlY3mZos4LoeKtBwbBs0jVa7Q7aQpNVu4wUhhtD5f77ybX7shz5Evdlkeb3Ew+cWI++zqdPxusSFTaggk03xnZev8sSj50mkYniuh+d2WVvf5pXXV/j4kw8g9Shn6ZnX3+Szf/sjrK5vEHZDXM/HsUxmpoq8/MZ1FmemKNWqzEzmyKZTuF2fS9fvcHphOvIwtjromkW369LqtMlns9y+vcGFh5eQwkconVa7SyqZHIAOhU673SIej8KHw0DSaLco5LOAiIp0azqdZhXXDSiXaiwtzWLEHQzLjBhVdQEaCCkjvHeAN2EAKO4hH6yf59Y/cm/Lh8OmtyavrK+T/sKv8NCF8/v2HSeyo1/7bpBzJuxoftIgCCWaLjBCtQsYAciw0zM6DrebwuyFAEOoQqQWjZ8W9vthEKoQXQikiOqj9cdVKRURW0lGgGgULq7RM24KevtDlKahCS2q99gveH4AS6gchFxKhND3YYzj5K6PI2e5J/A2DgCN6oRx+XHHfFqO6sduwDni5euth/rsq4cxavbLDI17uqN2wl3bGFPu6Z7GuOf97K9HQIxtE2VERuFDW37/yInn7kTuSf4me+5GrZIyPK5nbihvhUJ4mGP1zslh8+I4z93ucJN7U0JKHbcIuaDruuiGDuxWdrvXTJFm7vmmDhnPYX7a27FkKsVgkaDro0Vb9w9irw7w0ZZ7IpD/uc//PP+V4/OphelDh3W0vb3g7oAz+r0fkCKowTiMhqYohAKhFO16m6vXblOtNUgnE+QySTwJlm1GDHCGybMvXOTly7d55NwCiwvTSBWFHToxB4SGY1uDAbh67Tb4kolCFiUllXqTM0tzrJfKFLIppicLZDJJVlY38bwAhOD8/YuYpoFh6rSbXTLpOIViFtf1yKYSWJZJaadCJpVkcaZIrdbi4s27ZOIxHjl/mtMLM7SabVzPI5WK4fsBz7x+lacffwgZhKxv7fDNl6/RareYmyqQTsdxYhZKQWmriue5FCcTWI5gcWEWz/cpZFM4js3mTp2luYjtMZQhmojIOEzTxNA1pJRslsok4g7xuIWm6bSbbq8vSdbWd0CBE7NRStLuuISBJJmIYxgahqHjWCapZBJNF6TSSTwvwHJsbMuk43oIBI1aC8/1mJqeIAwlge+RSaUo7VRpdbrEHIvADzGMHhGIgj/71mtUWnUePLOI7wfEYg71RptEKs52qcpEIUepXI3YCkNBtdpgY7vMi5dvMjORwXYir1it2qCYThCP2yzMT1HIpKnUGkxOFojFbExDJ51MEU/EePWNa8xO5slkUqyubJBOJzBNAxVKVKhotrucPjWD2/FotjrMFLNkMnEcy0HXBJulKoauMzdVYH27Qq3dIuE4xOMxWs0OhqYzNVng0rVbzM9OoRBcu7nKa7fucm5plu+8fosH7p9FqZAgUCSSCQIviIxCUqHpBp12ByFgbX0by7RwYhGbZr3WxDCNwbwTj8dwLIur15dBSlLpRNSGEZFniL5H6IC5aN/WY02HB1NK3Usz9yLTqRT/7N/9ET/y2R8bA0D63RofidCf9wa9VqCpAKEChArRCNGURInehwApJIqIkTcIQxCRB1VoBogobD+aU3u5gkoM5rB+iKYmxLCwy15gNdofeiGZRKQtkVEQRJ8AhWER7X4o/F5RI79z38uz90c4bsjlcbbdy/lHnvMOgbuDjh16u0b07iFtHeRFG21nIG87BHMYDjtYw4xts6ff7/lq35/yfvfcfVBA9om8D2SUEOUtnT+wWB1fopy8D7izNFoVYFsmpmkdSgAzsO72vutj4v7f0a5pWi//Iwoz6X/GyjGYTC6+cZmf+dwX+G9/6R/yu594ArT9RXB3Xf+A8KcxR458et3RFeg9c4QClECFoJQGUqApgfR8yhtbBF0XxzRYWpghFk/gY5CIxWg32xiaTuB5fOzDD/HjP/JhtneqrK5uoAuNi1fuUC/X+Y/fepVmq8Pd1Y2oLUPHNgxefPVNnnn9GqdPz/L1Vy5SbbawHYvVtS0CP2Bhfpp4zMGxLW7dWsE0DTzXJ51JslOpUS6XCXyPnZ0yOopiIY8MFYZukk4m+aEnHkFJjW4noN3u0Gi1yBdSaLqGJOTTH3kE33fxfA/HNPjMRy7w1IfOUaqWCfCQwke6grhtcfn2MuCj8DEcjUqnycLpGWrtNsV8ChlE7Kl2TMN0NEqVGghwPR9N15mZKgKwWdpBKkUiGWdissD2dpXpyQkmJnNomka11iYRi5NJp5BS4ro+3371KkpCq91GjzlgGmimThB6+L5LKpEAJfjq86+Ty2b5g688Q+CF+F6A5/skk3Hy2TSl7QqlUoVOx8UyLTpdj89+5mnOL83iugHpTAapIobLTsejOFGg1mhTLOaJJeIEStIJfFZKFR47v0Q8HkOGkjDwyOdTnDs7Ty6XpFQp0/W6fPf6LRQKz/WxLYdmu80zL75OPptkeqqAEIpWs8XK8jrbW2X8IORDj53lwqP3oRsmruvz1MP3owN3b69hGjp+EJLPpMjn0nS6LnPTk9xY22Fyqkip0qDeccmkIg/eTLFI4IdUazUunLuP01NFUJK/9dQDbG9W0IXOpat38V3JN799ifW1EgKd0Av58l++hO8GvHTlLqtrO5imhecGIMA0NDzP5Y2rywjNIJ3LcuHB+3C7Ltev3qTb7kQeu0ANQzQ/APJPnn6Iz//ML97zeUrKfQAi1ARSEwS9fUpKUBKhonBKjZ4uVYJux0eFApSGCqGjQgJNEShF5L7TIBifriCVJAj8fSQmAAep2yiMWPS8RMNz5AjRWZ/JevCRUey/pkU5528VBdwTycr3sM0TOZHvpZx47t5j+SB67gZMXb2JUdN1wl44m5Ry36TZ98Adx8oVhVNGC+yhRUvb58Xrh1/2c/B29e+Y1rRx7Y4/Thz42d13gCHF9LBfoqccD+9P//yj4OwwF0IMwy5H+zU2zGT03P3/jWR+DBPp++GZSkVFURH7FiT7+iaH19sFn3qhon1vnYJhwfgRkT2TduAH/NwXfomf727zM/ct8J/MTe65ociiOKi/NBKiNN5zpwZ/Dy3m0Tbd0FFSoZs6gedjGkZUj4kodynwQ7yuy/LtVdY2tkg4NrpuIhDYtg1CQ4ZRaFOpXMUwdEI/pNN1sUyDqak865s7pOIxJgtZtndq3F4vM5VLEIYh6VQiYoP0JHNTBTQNMukkZ5ZmSJhmRLgSrZMwDJ1ms8Nrb95mYXaSIAhotjqEoSQes5FSEo851BothIrKe+i6hlSKP3vmFU7NFKlVGziORa3RJAhDEjEHz/dJpeJRoW6pMHSDeDxGIhmjtFNmaXEW04rqnDWbLWIxi6W5SUIJ7U5AIhnD1HUcxyadSmDqGol4ikanRjqbpFxu8OLFm9xa2yBh22iawDCi/K90OkFpu0Yuk2N1bQPP93EsGyHA7rGICi0qnOt2u3Rdn6TjYBoGiWQc2QuFllLS7bgkYg5oUS2wCLxANhXDidkEgUcsESMMIrIQ0zD5i++8TjGTIuZYJJNxul2XfD5D4Es2NnbI5dPYtskrl2+QScZJJGNouo5lmjgxh2qtwZMfeoB43CEIfYQQlCtVkok4btcjlIp0Ok48nsDRNUxd5/rtNaYKOcJQkUnGqTfbFAsZKpU6d9Y3eej+JRzboVprYtkmlm1w88YKhhGF9a5v7lDMpYmnktxcXmOykOOFi9fodFwW5qdIWgbJZJxEMk4ul+PajTtMTuTQdZ1nvnuJc2cWePnVG2i6YH6uQCwWQ8mQWNzGMW1s26aQTWGaJuVyjVQqwcNn5zEsg7OLMxQLOWr1Bk481jMy6agwpNVxKU7k8VwXXddIJ+N4rk+92SL0fBLJ+HBePGre3ffloAOPbmfEH3WsJo8rSik+e2qG//m3f4fv3ljmqY98eOi165GoaEJE+rFXCqAfntmf+wRR+FugxwmUhmXHqNZaSKnzZ//hy0wXpojbCRKJDC988zneeOVF/uLPv8LMxATrd5ej+cgCGfg9ECgGALpfkkL264zSDw8Ug7xPAB2t5+0bRpwoeuBMCEIle4PXr0sqB8cPx1kgkQMD22Buf5v46aC1w2F6W/VzC/fkgw3G/AAdPnJgzyN5D9FDWvSbC4aezN3XGfG4DfYN+zU+kmX0PvdEkkQ3yu7fUrxt24k+Mi4DvTp2DKL8z35pjfe7vN89dyc5d++xfJBz7vr+uDDwD2CCkiMg7HgyLldOCG1fSOdobt1bTqQe0+5o+/cqozkVw3h16E++h+XujcpRozXKsDWGxArtLeQbjuYd9D2more9D+7GHbuvHXmQsjxen8JQ8A9++Vf5LxezXJicPvhAEfVE7u1bf2z2JKcrFSneHgMMo8BYqahwuNvs0u26WEa0UL1+a5kgCLm7XcXzAyayKVa2ynz66Q9hmDaXri/jeh4f+/DD/Ps/+SYfeeQsgQxIxh3yuQxSKsrlGm/cWOHJB89Q2qmzWaphmyaptE3cNpgo5jAdm+s3V5mbmaBYzLG1sUO11qDV7uJJn3On5tkp14jHHSAquSCR3FrZZH4mTyoZx0mnkEGIrmk8+53XefLCWXzXo+V1KeazhGHIq1dv8tQjD9DpugOmzkq5RiaTBgWu16HruRQLBXxXsrNTIpdN0ep46LrG+laZ8+dOgfRotFokk0mkUrQ7XYKOTyIRwzA0PN8HwI45GIbB3bub5LMZfD/g7voGxWyaTCbZW3cpuq7HN1+8wiefeATT0bBtHd0waTZb1OttXrp0h48+/gCaptANMA2bWq2JoRskElHumCIC6UEQkkmnCEIfKRVB1+drL77G3/rwh0ADy9CxYza6aRJ0fVqNFrFEAsu26HY7BIFPIhmj1e6wvdmg2XJJpRxmZgq0mk2SiTiVWh3HtkjEYwjbRsmI5fUPvvJNPvnkA0xNF5Gey+ZWla7rMz1TxAs8DNMg5jgEfsiXv/o8n3z8IfJTedbWtmg0W5w9NUen0yWWtBFC5/KlOzz80Fm+8Z2X+cjjD+KHISjBV77xMo2uy+f/3kcJvSBi8pWKTqvL1k4FyzA4dWqWcrVOGCou31jDsEMePnMKQoPbd7e4/+w82xsVqq06c7N5wkCyVaqRyyaYnZum0WgRi8X4vT/+JvPFDOdPTTO/MInn+Zi2Ta3aZHl1m4ceWEKg2CnvkM8mUaGG0DWshI3nBpiaAVLhey3WNnawTIul++aQ+tHB5+8kuBvMD8ds8rgyNITB71+6xmd/8zejHEwY5KPpWg/chf0c7JFeiEhnNRtNwnaT5VvL4Pn86Zf/mMuXLtOp3I4MF0phmRaWZdJuNWm3XaYmo3zb/P/P3ntHSZZdZb6/c72JGz7SZ2X5qnZqdcvQcgMSIAmEBAKhQcDAAx4wMAtmeDDzEGvcGmCtefPWegMzDAghCWEkYWRaXqCW6W6pjdpVu6rqMplZlZXeRGT4uO68P25EZmRWZJluSahn1e4VXVUR555z494be59v72/vXSjwXW94PW9685uQuoliWFiZPN3AXxI120Gr6wGX7UunDEIEXbUqpEAK2U2tiFE0befF7JOYpMF5zxnVv+Tzlf40h+sprrJVOOb57A96a8aXN2zfU7p5jkJyGYDvTnrF8+htD/ZmVe597v35cc+nMma/DNp/xIOum9xm0ah79BB8McmNnLsbcl3yv2Pkrhdba9RraDsogbuVb9IQ/HrA3SCLsR2REbveVy4bf70c+OtNzr6S7Ehf2BW5u3a64LVxp7c8gQNOfVDk7nplN5f+mq/RXm5DsW3s9vKYvuMdP83MF77A77/8Jkpu6or7gV5Vz9203cufke6fvcT/7VDi1phWs0W73Sb2wdB1lpZW0YRAVQSKgGq9xS0HJhgu5si6DqOjQ9QabSbHhpkcLRHHEs/UOLh/Et/vYJoGT52Z4YsnTnHHkQNcWFzh4PgIvh9gaDoLq5vcftMUuZyH74c88ORzZNMpWu0OnufSarZJuTaT48MMlZIeb74fkMt5rG9UEFJQ3qxxbn6ZW49Moekqqmng+wGNaoNmq816ucbYSAnHNfADn5TnMD5UYHl1HZBUaw3SnsfC4hpnzy8wMTpEu9NG11U6LR+/HXLPw0+QskxGRoqEQcyXHzlNxjJwLAvLMYmIafktDFOBQKCqKpVqFcvUieOIWquOZdhYhkUYSjqdDqoiGB8fZnF5DdexMAwdwzAxhUahkCOWIW2/xfp6hWIhj64ZXJhf5fjhSYQA2zZYW92kVCjw7NlZ0p5NxrNxHBtd0wCB7Vi0/RauayMQeLZFLpdmc7NOyrEI4xhV1wg6Ae1mB8u1CfwATVcTiqGh0m4HGJrB+PgImXSKTqdN0PHRdRUv5aB2N9xSUalUqtiWRdzxmV1aZmK4SK1a56Gnz6BpGuNjJQzDwPEcgraPIhSO7Z9kfX2TbCGTzIdACEmt3iBSEodKKZ+n0WixvLbBeCmPnbJQVZWp8RGOHxhPHu44KbPfafs4joWMJY1GE8810XWNsxcWabR9GkGNqZFhVlerVCoNHMugUe+AkPhRB1WolHJZYiSdMAHzjz9zltFiphupyzAzt0Aun6ZSrmI7DoV8DlUThGGAY+k0my0yXhpNVwkltNodXMchjiSOpbG4vE7bD9AUFdMxr+rt/1aAu2ud8rqkqytvLhU4/49foDK6j0Ix33Uy0S2akkgcR1sRpVgmbQiWFhd4/PEn+Ms//G986P1/ygP3/AOy1aCzsUY6HXFgahRLk6h00JSQ/eOTaCIm7VjUqhWCVp1z58/xuU99mi986UvMzE7TjmKGx0ZQhJro2x0tF3qR7mhLf8q+/3qaP5YJDTSOulE7AYpQiWUEe2SGy749wDcb3O3++/Ucd93H93kFr/2Ybbs5KOfyauBua7fwPMDdjvy4F7ifGbT/2DNy1/vbjcjdP7nciNx9m+XFGLnrebz6c+X6q1z2ol39z9L1ALg4jlAUdeA6/fJCK15eTbYM2x7r9HreDa4uOWg+sXXMoKtxeeebq0fpBkkcJw1hE8OzTXHqr3TZk35jvVuk7NJSFbETlIlto59EwHblPm7lanS9m/TRUPY4ZymjHRuMRFQ++ncf42/+7mMcsE1+95W37HKzX8nPvtfPSvR93k/T3Pb+qpqWeEnbHZ548iS3HD1AJwhRdR0RR9Q2K6Q9l04kEKqGjCStVodMxmNubplDByfxgxAZg65pRFFIo1FnYWmZwwcmOTezwFAhz+nz88R0KGTS7Ns3QeiHSCn5x68/SSpl8Zrbj1Op1mj7ASNDeTrtpEBOoZDlmVPTHDu8D91QmJ6+xNhoUr2y0WglOXe2gaIKLs0vk895RIFgbn6FZ2YWeMvr7uDuex9htJDm6IEiqtAYHh7CtE2kkFSXN/ByHmEco2s6tXKNVNajUa9hGRqqbjE3t8r9J5/ira95JY5pE4Qxm7UGhqGxuLRKKZ/l0VPnufOmKSYmhtisNJm9tMSxQ5Osrq2jaSq5TK7r3BGsb1QRIvEwZ7IuumEgYpW19TVKwzkuzK6wb2oyaS+gKMxfWKYwkkcIWFpZY3SkQKfTgSAiQCfotEinXFqx4PRzM+ybKKJrCq5j4QcRKcfEMA2Wl8pkcwngqNXreOk0ge8jhEBVdaIgxm93WF5ZZ2ysSCwkQdQh7abZ3Kzhug4ykiwtrzE+PkLgB/ihz9LSBoamM7l/pNubLNET1WoN0zISsBdGtJpt1sqbTEyOIoOQuaVV9k2O0Gg0kUGM6ZoYutEtNCLwfT/pEycll+ZWGB4qIIBatYFUYyzDpF5vU603GB0poCoKX3n4aWzT4PDECPl8hjiUpDIm8/Or6MLGy7icnjmLaztMjY8RhjHr61XuPfEM73zTa2m1WrTaHTJpD13XOH/+EsV8Gk0VzC2scfzwfs7NznPk8BQXLywQyoiF9XVefedtdNodwigkjEKGhvIEoUTTlaS3Xvf3qOkqEkEY+Ji6wqnnZhnJ58mNl7ait0kgPt7aRO71i98iqIntyPs1bWZfgBNvkBaSu0+oT37l60/xgQ9/AEi2v5GAWCSOTi1MaG+xohC02nzwve/hk3/xHjxToxV00BSYL/uUCilW6iH7Mg6+2sZxUsxfXOf4wQIvv2mKJ088wbHjh1AUDUXRaAQdGvUmawsb6KZHR3Fo+gHv+vlf5nXf8zrSQyWa7RBNT6PIHk1TEhMmeXaxguyyK+I4RgqJitqlkcZbFaAhAYdCDK7pvLtHXSx3Rb6uthsSfU7XgZ/vZO8kb3X3IpIBNmb34VcASF02x14O329F6ZDBAPRq7t3rP4/rieb1+uTtqPQ68Lol+Z1JYR0VIdQXdb+7G5G7G3Jd8mKM3MW9ZOm+/Ln+XDhIlJKiqAl97zqLnvRofzKOrsJp/9bh4u1m6FdeY0fuwFXn7Bm2PbxfA957PmSGMIq2S2Hv2OAMAHJypzd1x0e9+8AuwyUGjZdbr62xirojcR52e2u7OSeqetl9/uAHPsTv/f7/Q3P6PP/zNbdv59TJvqS8a3bd93+nnecrATSle94STVVRBDx94lkKKRtDEUgigjBAKDqGYaAIga4bKJpOGElMw8R2LMqVTUZHi0gZ8/5P3ssdh/ezWa4RdKsLFvIu6+ubaJpKs+WjCIFhKOiqhu1Y+J0ARVEYzXuAZHgoD1IShgFxHFNvtpCxxLZN5hZXkXGEmtxWnjozS9Zz+eqjpzl2YIRWq41uaDiOiaoqGIZJqZjB0gVeyubQZIlSPo2maaRsh2azycbGJrqAdquDbVsIRWFttUzacxGKIApDltY2SHspGo025+fWsDQVISJc1yTlpbGdFCnLoFjIE7Z9JsaH2dxskHJtVEXB8xyyuQy6rlHeqCGRRGFIrpDB0DRStoWuq1RqDRzHxUlZbJQ3KeZzBEEIJMUjAj9iYWWdjJeiUExyxXw/oNlo8eAz57n9+H6EgDMzC6yV69x+yyEMXSeOJYZhUGs0UVWVTjvg41/+BscOjOGkXEI/QNM1atU69z70NFPjw9SqNZ48cwHL0IjjKMk9NAwE0OkErK6XSadT1GoN0hkXx3V48vQ0swtr3HRwgpWVdbIZD1VRCIIAyzSJY8naagXD1MnlMnT8DqZjkXYciJKNq5fzWF+pYNsmC4ur1JtN6s0mmqpiWibtZhvXtfnCvY8xPpTH9ztYpsFmtcnT05dodTo4hsmxg5PsGx3miVMz1KotMimbS8vLOJbFlx44zc3HJnhqepZz8yuYXb3r2jabtRpjxRxhEGIYetJ+wfcxNJ3V9TKZdFLkJYokhWKGpaV1MmkPL2VjaTqu7TA9u8DCchnXskilvOR+R1ESsVKUJFptGl3KmURRBdlMiplLC6RTLrqhbesVZace2utXf5lauE79fJnOuMJaA9eFnZzGXfJD+4Z51//7x7zznW/fAq9RFBNHEkPRiPwAy/D4vf/0bj750b9mPKcyNpxh34ER9k2N8orvuoPv/v4389UHHyYODH76//gX3PWq72a4OEEcS1720tsQikFxZIjP3vMoq6sbHJzahwxjPNcjDDroRkynXWb6uZM8/vD9LM0vosSStJsHBTRNSyj9QiNGSQCopJszLSBWEF2nnhA7GSK9vL2B4G7XNdnL9lzpIg+M/G0vcMU1ryV/fi/Zyt/eg2L47QN3Vw1VP5+Frn3ogKjj4Mhdci4JE6e7D3wRB49e7JG7G+Du2yzfieBud0GUnsR0vXYDQNcgOt3VlNBOQNg14F1F0D/noHH0GZbBhUxeqBK5Gqi7nDOvdMFM3O3htvu1RQEUYmAj0ecD7nbk13XfU5VtwyqJt4BdTwTblSp7IHBwL5/ufSDZiMnuBixpJBtfNmfvv6255LYRVkS/ku9bo/ucKcp2MZZ3vOOn+Z2SxTsO7uP14yWk3E4s7z9LoSQUk20q5e4Rl4vYYqWIrbOWikAVSlKCXcK509NMToyyXm5gp1zMlItqWihCJYolmmbQ6gQIVWNpeaPbkBokEaqmgCo5Pl7i9PkLDA/lWVheYbNZI45iPM9NNk5S0mr7DJcyjI6W8NJpFpdWSTkWT5ycZv94kWajydBQEt0aGsoTxxFzS+voQpDLeBhGUmwklXa5uLDM6kaVTjtOmeUAACAASURBVBDgmBqGrhGGIc1WQn376sNPknZMvJRNvpBGEpNKOVxaXGNifBghQVcV6vU6wyMlmu02Hd8nk0ujqiqxH+KmXeqNFum0x72PPc1dNx1janIYy1KI4hDLcREI2n6dSm0Tw1SJ4phs1iMKQ0zToNn2kQJ00ySVShp0oygoQrC2XiHohHR8H8M2MS2HzWoVx9HZ2KiyML+Ol7JRNJXnZuaRSGbnl7ENHcNMeoCdn1tEqBqTY0WiICRfyJH3kvMKo5gLc0tEUcTQUAFdN3BSKYJGh9JQnvX1Mo5tIEVCvz0wOUq73aFWq3NoapSR0RKGaaDrGvVqHcMwsCwTz0uhayqzc4vY3cbfpXyWO287RqvR4r5HnqXdbGGqKoZpJGCpm3dl6DqaoSFUBalAq9pidWkDx7HxichnMwCkXBvXtdA0BS/tJZTRts/mZp2RQpZiMctmdZMojBkZHWYol2b//vFu4RnJ4so6xYxHPpPpRtsjhocKrK5v4qUMxop5ZhfWeOWtR3ny9AxREDA1WkQRgvnldQr5NNVqg3wuQ7vlUyxmcT2Xhx4/jYLAdY3E8aEI3JSTFO1pVAllyIXVVYZzGVIpm04n6YWoGUk+jqZrNBpNDMMgKdcvQREUsx6LC2t4TnK/hSKQqoC498vd4/e91z969mwvm7Sbrr3XnF2J42Qupds0fPeYLdr6Ti7+1l9/dP8o/+cfvJe3veOHE1YFAsKIsN7k7r//GL/5L3+ZxfNPsW84S71epVxrYDkjVOqC0zM1dGuYixc3yeQP8JnPf4b9+4+j6Xm+/LWHWF/fRHfzfPHeb/Cq13wPxZFDfO3+B6jUAoojY3zh/tPccsjmlqOjOGGT6uos64uXmDt7inPPPs3GyjyzZ0+xf2wYGUt0RUOqYdLfTIIiNHTVIJJhV92KLXZHcom37feOi9gzQ/2XpM/rtzW+OzaWSTuHve7p1cBdfxGt/gMUVb0qyLgWULU71/x6wF3SduJ6K32LPc9t18jrmrc76Y51rlRM5vmAuzh+8bdEeLGDuxu0zG+zfCfTMncH0GUc76Ao7hWR6425WsRur+Io1zLuavN/qymbO9e6/BYOKo7ST2MQAz5/PrTMneDucuqjpEehvHw9Kbe58AOLoOyoxpJY5qRQTW+2neBue80euEt6Hu2mPG1RW/qOiaKQ//Dv/wuvC8q8/sD+7kABxDvA3R5XYRt4XqMHsv+WxYAioVVvsLmxiQByQwXCIE4awKsKMZJmpY7nOTx39gKlQoZMJo3v+ywurDFUypLybIQCrXYLXdGpbDZ4+JmzHBgt4Tgm+yZGUEgagddrTRzLJEaSyaZZXSlTrTUY7lZEHJ0YQghBx/c5O32Jm45MdSm0Kpfmlpk6MEbHbyGjmM16k2Ihi9YthS+jiM1qHd8PKeSz1OtNTjw3w/H9Y5xbWOJlNx3G8xykjFE1jVq1AVKysl7GNBQCP+bw0SkUVSWOJeW1ChfmFrFdkyOHJqnVmshY4lgOkphGs4aXcmj7MSkvTRA02ChXSXsujuWwWakRxxLTMkilU9TrDTodn3w+y8ZahXwx281DkRBCJEOkAgIDVY3xgzpRoODaHqtraxRHCsSRoNNpsb5WYXg4iZbqpgFxRIBK0Kjj2haBFMxfWmJkqJT0WlMFzWYTy9RpNNpYlsO583Ps2zeM6zkEfrtLRVawLYcwiIjCgKdPTrPZaPNddx5HiKT4hWmZaJpGq9lG13XqjSaKIrAsHaSCZdusLq2jqipOyqLdpShapoHjuRBLlhdXyRezBFFIvdYk8kMMVcP1XNqhT9pziKIIP0ioorZtoSgq8/MrOJbFZ+9/lLe//lW4rkO700DXDcIocdDFMumBF8UhpqkDCnGoUFnbIFaD5NmOVGzPpLZZxzQNei6WzUrSmw4heOzUed742jt56PFT5NMuI8UcURyRyaVptQLiCOaXFylms5i6gWVbtFotPvXgo+TTDv/sjlswTR1NUymXk0b1CysbvPTWI8nvL44xDI1IJvRE4pig0aJcbrBarnLrbYfQTB2hgIz2YAEwIMLWcwh12QnKdRR1uNaN6NWienIPcNeTn773cT7yt38BSKQfElXqvO0tb0ULKjRbTSZHc4xPTVEsDeHHNlJxeONbfpyP/v3djI+OUQ1iVhefolYp81Pv+kUyOQdLlfze7/0u+UKadrvD2uoGP/C9r6E0NMzDD95PMZ9iNB/RqK4wnM8zMz2N7qRpd2Ki2GB5o0a95fO2t/84q9U2b3rzWylOjXYZCGmEYhBJgSTpc5hEs3pfeLsao+zzYG4BmT12O3LA5UnSO9TrAnc7LvcuCuj2bbj63b2WMT1wt213rxO+KFy+ybqGc/pW0zJ3F6a7bPbnQcuUsfKiL6pyg5Z5Q65LvhMjd1txsjjeEXrqVZ68ugfp8qjWlcb1y+BjBluEK8//rcXM/VHDrfyBWF723s5j+hToNylytz1v39y7Zh3kcUx48NfnAUzotyAUeRlgHGzY+ryaYtvQSiQy3n7vHT/+U3D/l/jlg2McyGV3rd8lhW5t1PrWFP3j2DHuekSECmtL66hCwTJNLNNE0xWiUNKst/n0Fx/h8NgQlqkh4xhd09B1jc1yFUPXCQIfxzSYubiAjGJUoRJGOoZmMZLJIoOYC5dWyefTGIZOFEYsr25Qymfp+D5nZuZ5+NkZ7nrpMeq1BqVijnaU9FxzPZeRkSKra2W8lEWlXKdWb5P2bCQRjmMhSKiUqqqi6xq1ahPbtHn06WkuzW9w5MAEByaHicOY5bUKw4UMrXYH0zQRGhimge06STn+lI2QYFoGoZS0W21Snour65SG8sTQBWYeQdjBTTl4Tpo4hJAAw1ZQpIVjWSwubhC0JQsLmwhdMDxaYmF+CUvXgJgoijFtA03XiMKQVttH1VTQBb4f0qq2+ey9D3PkwDCWbhK0AuI4wnSTVgO6IXBcE6EIqvU6mqai6zqxUFBlTHWzip1K4aUsFEVhdXUD1zVxUiazM/Poqobf9jmwf4JGo4FtGQRRkNyjKOavPvNVjkyM0qg3cGyLY4f2gUgKsuiGzuLCKrZt0Wy1sW0LGceouoJlm5TL1YRqJ0EzVO558AQ3H51CM3RUVaXZbKEIhWw2TdB9HpR2RHGsxEa9xme//hhHh4aJ1ADbsTBNg9BPClW02x3aHR9d17jz5sNcvLiEQFJtNPE8j2a9haGrqEKyul4GVdJoNnFdh2ajTaveojScRSgKmWyGMArQZIwiRFJ0BUG92cZxHTLZNAtLG1i6xlA+i2kYqN2eZBvlGulMmocfP8Ph/UPYto2u6/z9PzyEZ+kcHd1H0IwYHx1mba2Cl07jeTae5zJcyhFFSTGtKIoJWy0azRaaqqOg8NypC8wubnDrsQMszK+Qy2YTHaPI647cCcGeVLo9dcJVPu+Buuva0O/Ww7HkbeMF3vf4KV7+sjt48Gtf59/8y3+FJgVTRZ+piTFiYTO9qtIURXLDKS4srVAcHuVtb/kBvvCJj1DzFc6cfpj/9vu/y3v/9APYrsWhI3dQHJnkh3/0HZw6M8uxm+7gE5+/h9DIMj1fYXZ+lcmRIWw3w+LyCqZrMzLmEfoVws46BU0wlLF57snHOPvss9x3zz3MnD7F6sIijqnj5XMoqmCraU6P8i/ErlKOcsffrpzfvVPP997bTe+MiekVdhlkv4QirmiDeyfzQuiZe427rmehV8DrOo75dkburjj0eUTukNey3/jOlhd75O4GuPs2y3cKuBNdeknUD+h2j9miTF4O3no0vSgK0XTjClTKweH/QTQAoST5H/1Aageg2AIMg9ba43v2cgS+KbTNnWsN+m67K2T28hQHZSQoA147T57L9HZSWS0xhLqmddcTWy8xAEUmlCEx0JO89e228ivo0jB79xyiqGeUejx6MRitdkftuC5Kcs06nQ4/+VM/x0c/+nH+6rvv5HipkFBzeka+79omHkJ52SO5Ra+U9FFCL99y7Tisa/xjkqIzkZTMnrlIaWw46cUVBuiWRceXmKaOqgkmSlkCPyQSChIFQ9fRNR3XcVCEgpfzsByXOJAsLVUp5Aq0m03a7RZL62Wenp7jyL4R8tk0AsHM7CLT86sM5dKkHAvL0ChlXfK5NDOXlikN5SmXq5yeuUSz0SSXSWHqGp22T2WzxvhYkVa7Q7XW5uETZ9g3WsR2bU6eucDFSytMTJZQVIHvtxnKpzBNFcs2abVbHJkaZmltnXTGw017VNYqrG9UyGRS6LqGJnQ0VdJuBPj1CCVWkmiSK9BUC7/jk84ZNJpNTMMAJHEcUd6sYmgGcQCGIbl4YY2U42BZCqYtSHk2mlBwLJu5uWUcy2B5dRPPceh0OhimRqPRwHEMatU6jmVimTZZyyVfyFGrt6jUquRLWaQMqG6WEaFAV3UqK1W+9vApXGHgZm38ZgtN0fnMPY+zr1Cg2qjjZVKkUjZ+x2f+0grjY+N0/JB8KY+iCExLJ45BVRVUVcWyLEbTGXK5LJGIcFwL0zZZXVknnfKQmsByLBRDZaOS9OrTREwUBOBL4hhMyyLo+Di2xaXFVfZPjHDfg08xnM+S8hyiOGRhcYVWo8NXv36WO+44iK5rOKZJ3nEYGitR3Uius4yg2WhgmRpCUcjm0uimScf3STkGXtpGUwRISSwUKtU6TtrFMYxugR2b1eUyXibDEyfPUsxlaTTbmKaGqqqopoJhGMxMr/DFr59k/0SOQqlEq9VmbDjD6ZkL5FybjOcgY1jd2OTBk+c5PDGEbggsW+C4aar1BmcW51ldr5IraNxxy1FWl9exbZN6o5HQSRtt1tdqeGmPMPLp+B1sx0EVEr9ZZ2V5FU3RmRhJIt6KKjk3c5HRUhGp9vSD6PuzX+MM+Me2Z2iwzttVCv9atqBXc0H2ItFbdkuIJOIhxBYwVABF1bi93eBPvvoUn/urv0O0z3B4MsRKp3jnz/0Er3jtXTSagmKuxE++61185lOf4mf/xU8hRExpbJgTjz/Cv/613ySTH+ahR77B8MgQQzmFO15ylJWVDS7NrTMyNsXayjSNzQ1+6zd+g0984tO04ixPn63QiRo88Pgs05c6PHZqjcjKYtmCYtGiWDDQhaDaDDl/4RSVmRm+cvc/8tcf+jve8RPvQBOSIAiJdItAgoKPriXszR5VVZEC0WVeiK2rNHhfIHr3ovtShYbCzpQBIfusm0x0/w7WycAtwK77u9uGCrE159VvfNLbdDfVc2tpKRGquPr2Ql4bGOzfG23b4J2Mml6+quTyPdTApbvpDP0vEScpCSL5EtuvQfP1HSfF5T3utounqfTsc5IeIrl6l97vXLkB7m7Idck/NbjrwaIw8Ls/ymuhtg2KzCWNjYMgQFXUrSIZu+V6kqd7+Xa717l8rmsHas/nmBci/YCkV4QGnmdp4AGH9HocbWyUsWzr8oEDQRdXBHc9jyn0DNbOpRVF6eZYyKQM9p5TDTIMkl/6xV/nQx/+W/7qdXfw9n0jOzg5vf+L3uJbQFzstkdba+yklF7N65gYGyVONh5fvvdRjh+cQNN1ZBTQqtfRdJ35hTXSaRcpJamUi6Yq/MNXnmLfaAFVVVAUQaW6ydzCMtOzi2Rcmwvzy8wurbG4tk7WtYmlZGJ8iMmhHLZtML+4SjaTIooibju+n44fJMAqnWJhpUwxnyGXS3KsnnhmGgmMFLK4jo2mGbQ7LTLZNPV6E8e2SKc9Tp69yLFDEwRBSD6TwtBVsikXx7FRFZHk82VTRGFItVonm00jAMMyCf2AMPDJ5zyqm1XazTatZhtUFcMweObsBaamhkFNKop+7stPMFLIYdo6pmUnBWXCCCkU0pk0QlFRNI2lpTVKhTyFYgbdVjEMhWbdp1ypY1omJ2fmOHZsP/mch6apaFpS2MR1U8RR8kw1W20MQ0coAkOxOX1qjmwmjedlePbZGZ49s8iRQ5MoqkKlVufo4XFsxyAOIkzdIAwjBJJnZuY4emgcv+NjWSbVzTrFQhahxQShj2VpdPw2YeSj6YKgHRP4ASBpNFuYho7tusRh13kVh+hakmulIui0fAr5LHEQEYaSc7OLjIyU0C0dRVeRcYhpGYwPFzAtg9X1DQ4dnNj6HWUyaVzX5uDEEJu1Gq5jU280EQIcx8ZJOYmTC4Ho5idqqka74wNJiwPfD1he3cAydNbLNTJpl8/c/wi3Ht7H7OwCnusQRzGGrtNp+6Rdi1TK4XNff4yX3nQITVdZXlrHMm3OnF2gkHZYWq8wVsrx5YeeRBWS244fRNN0Uuk0fhjghwG3HpzES7uU8llMy+D0qUsMlwoUXQsVBQ2D0ZEsUdwh7TnUqk0eOz1NqfuMKyKJxDiujd9qYxoaK+tlMuk0pZEhdMNEAq5r4vsdTp2bYahUQte07u+/t4vv1x0DVIEQ24r4KpvVb1ZsoT+esxVB7F8/TPLXglaH+fklfu2v34cWrfCWN76BSqXDpdUU03NV7nr1DzE6+RJW1xoMl7IcPXoTo6NjtFsd/u1v/d/cessr+MAHPsjHPvYxfvVXf5GP/M2HMTQT3XRRVY2XvfwO/vzP30scavzID7+TUyfP8e53/wde/z3fRyqV5WOf+BLf8/of44kTs2Qyk9z16h/knvsXmV9p4maGsVMxhw7miKMhMikTRWkiwiYf//CHOPHICU488ggvv/NOFAGqqhFLCZFA9Jqek9Azr2r3B34udvxxmUgGfH79EbnrK+iyM6984Hy9fqnfBBl8vjvBXf8v4Jq+y6A59zrfK8x31QjfLiCXgOgb4O6fSm6Au2+z/JODu16kjkRpaKq6N51hSy5XbEl+TlISWVFVojB4wYr0fzdw18v5EEJ5fipukNNZJFUMHdtJQJiq7nIhXz+461UKjeJkox1FMaq684ylTKIcURwnXPo9Inf98qfveT/nPvhn/Math/jRqbEdFJqdR3S3BX0AbtuL2P8adFGu/HwpQNAJaGzWmbu4yC2H9ydtI4Qg9H1EHIJQSHXLvoPkzNkLpFyXjG0xe3GZsZE88/NLjI4WsU2dViOpInj40ATPnr/IwYkS+ydHaTRaNJtNavUWiiJ47MwMcRThORauY9Fqtxkq5ZFSMj46TK3eRAhBvd7goWcu8P2vegkXLi3jOTblcoV02sW0TBaW1igUcmi6RtFzSaUdhCDJx0LQaXWI4wjLNqlU6xiGRm2zThhFnJ6Z46ZjB5FxzENPn+bg+DCaquI4ScVP27Lww5gwihKgmPMwTJ211Q2O7NtHoZhjZW2NcrmGbdkgFJqNNguLq6Q8F5AUclkURaFarQERhqljWw5REOOlUxw8MAEKtJoNDFNHxpJnT80yVCigqSrVagPHMTEtA2SMYVmkPQfL1tF1hdW1Mq946U2oRpJD5zgWhqmDkDiWRacTcOLkNEcPTXLk0Bi6rmGYSbGPh06cJGWZGIbRjTwKVlY22CjXKeRzVNbrWLaFqiukPY+VlQ1SKQ+B4MLFS4yPlWi3WhBBEIQ0Gy1cxyb0QwzbZmiokABLtVs2PZLMLywjhGBhaZVD+8YwDI3qZp04lui6DoDtOiwtr/HYybM0mm2qtQYCSS6fpd3xqdUaXd0MnbbPM2dmKeYyzM0vs29imGw38prQhCNGC1k6nQ7DpSIX55dZWdtguJSnUU+ajwtFcPzABHOXlki5DqqiMb+4yqEDE1imjq4pPHv2Aq+45SD1dptcxiPleZw+PcvQaJ5ms0WxkAUJlfImlmOzWWkSRyGplMnBqQkuXFjjzKULTI0XWVndQJUKL7n5EO22T9vvUCrlsGwTRVUxNIVyeRPXcbFsi1BCvd5iaXmVXM4jl0tTrzdQYgU3nYBtoXRVw14xkMtUwx76bpdG+WbIlpXppwB2nVW9qN3FmQXOTc+xtL7GG0c8PrG4jhEFjI8fZvpSHd12efixE/zxe97Hj//zf84H//y9VKs1brn5Nn7mZ36WP3nPe3jk4RO84pUvZ3RshKeefpzxiVF++K1vZ25uno99/GO85tXfxf4Dk+TzeVKuxRve8N08+eRjzM6eZ3nlEoePvoSllVX++x/+T2YuzjG/uMLP/+pv8slP381mrc5P/PiP8NGPf54nnl1gY7PMa+86gKGEqDLiwuwCNx87yvve/35e9tLbyReLVDdrmJq5Zet6eXfPD9x1wfteTsgBbKAb4O4GuPtWyQ1wd0OuS74V4K5X7bJXiRCSPnTbbQu2X1vHbFEcJaZpEu4BzhIZoNj6qkfGUQjQbYWwk3bZT6EcNP+glgo7vtvAua5yPXbkx13bMcm5XFsfu4RuufP79Cpm7pwPemr4elL7ZffgvfzKvUhaEuTqGcPd93fnnFs5lOwInO04zwSoK6jq4KqkyG3AeiVw9zu//Z/44/f8Gb9dsrh1dLj/o92L7u3B7QPl20P7GrNeQaSUXXAqWLqwzGPPnGGkmMe2TSzbZG2tgu3YbFaqCBnjxxLLtImiJMcr6ASoioKuKMQyIgwCRkaKqKqGbhg4po6iKiwsr/G6V9yCEDGOZdNqtRkaztPxfSIZc9vRKWQcYxo6nufQbLWRMZw6P8f42BD1epN0JpWU6q9WcU2d40emmLlwiYP7x5IKm60OhXwWw9AJ/ADXdQDJ6uo66bSLYSXRGcs2CYOoO59GykpaCsyvVdg/MYKqKhwYH2ZhaQ3LMtENHaRgY6NGLpfG0FXCMCTl2gTtCDdlgFT47Fe/wdGDYwyVClu/b93QyGfTqOr273Vjo0wq7SQFR1odDF0nDGMqlSqWZRCHIRfnl8l6HvVGi3qtxcNPnUMXMDE5zEa5QirlUKnUME2NzVoF21UIog62aWLZBqqm4fsBqpo8+4ahUWs0MU2bfDZNyrMxbS1xpiiCdqvNxHARKSX3f+M0B8ZHCToRX3rwJFnLRUbwyMlzHN4/uvX7TXkuUoKmdglicUwYhrRaAc1Wm3wuQxiEnDh5jkeePM/+iRFm5xYoFvNIPyKKYyxD5/4nnuXlL7kJtVsptbqZ5AjOXVwinU4hCUm5DkcPTOIYBpPjw9z32LMc2jeCrquUy5sUCtnE4SCTvMfADzl6dD/3PXSCfCqFqunUGm0q1QaTkyN4aZfllQ2mJkcZLhWI4wjb0nC9NEL02AMxhqFTrtSwLBPXc/B9n6GhAnnPoTRcRFcgk0nRaXVIuRaarpJNpzj53AyFfAaJxHBsmtUWKcfEy9g0Gy2eOrvAsX3DmKZBOuURIzg7M8/BA+MUChliGSaqKJbESLxUCtOyaDQ76KbOMyenmVvdYGp8GKEo5PMe52cWKGSSiC/d3L+dxZz60r4GqpLnD+GueuTu4im7bPCOTXgEjzx5mvX1FfxOCz+OefPoKJ+tajh2jn//u/+R0fER3v5jP8L07HO8/vV38SM/9FZKxSLv/p3f5nfe/ducePIE/+uDf8T3fc+r+dznP8W56TOMDA3z4Y/8DZlChv1T+2i26miKwhNPPszNtxzDtCQf/sgHkUqbV73mTh554nFeeddtnJl+ismpYerNGq+4ax9vfstb+dDff5bnzlW5487vJdYjfuht/4xO7JPxVNIpA0VKzpx8HKVTZf9oiZlzF5h57hyqppPL5gjjKIk277j8/Y48hR6dfqBNlgnk7jVJFyLZ2wRBgIKCoqnEUcIqECTpCVEsoZuX16vyogiBQmLHeswZVahba+9gfojLAdIOu7frvd3PR88ubr/3wlwGout47DkFBq4reu/vfFNRunuHXacQIy+b53rA3dY92+Orbc8tdhyD7DmF1R2/ixeL3AB3N+S65FsB7uI+8Lbdi+7KoKpfwjCg0+mgafoeI67sjbtyb7tBkbfr+Xzw2CvJXpG/QRJF2yBYCHHNFdZ2Nza9mt56PnXbBl6PgQB5u6VE3AVwO2mgl/999zRJFFYbaEwGn+blX/j8uVl+6Zf+FW8wQt79slvQNf3qO6Qr0XMuG3qlXdy2qKqClJLlpTUc3WD/xAiKrmJYBrEAyzB5+MnnGCnm0RRBOptBUVVWVzfo+D7Tc0s8enKGiVKWSr3B4UOTfP6+x3AMnXqtxdBwHs+zefK580RBQLXWoJDNUKnW0LUkoj0yXCCWkkw6RRjGpDwH27ZYWlrnG2dmufnABJ22T6vVwXZsJkbyGIZGvdHENjVSKYeFpTVsx0bXtW4xisSALi2vksm4RFESJQujGNM0QICmanRaHcIgxA8CDu2boN5okfJsOu0OhWKBIAySiJAfEkeCMPTx/U5CP5UKmxt1XE+n3Y6YGhsikgGdToDrONRqdeIopuN30DWV9fUyrutg2SaariFjCMMIyzIIgpD19QqZlEPo+2QyHhcvLVPIZUk5Di+55RCWpaEbGpapsby8wdBQoXsPBYat02x1WFuvoQsNyzEIwyC5HkFEGIaYXQprNzOGcnkDy7JpdKOiSyvreK7DSDFDKGOclM1YIcPhI/tQhEBVJcNDBUDwkU/dT8Y00VQFXdfY2KiQzXgsrWyQzqbJ5tJEUqLpKo5lJrly2TTPzVxirJBn7uISpmlgWRaHJ8eYubBAxnPpdHw+/bXHODg6TBBGxFGMaev4nQBd1zFMnVarTb3RYrSUodFoksumiSPJc2dnSbk26VSKTDZNtVJjYWWNfDqF7bmYhsHS8galUg6JxDR0HnzsWQxF4dLCCinHRNMtLl1a4u57H+GuO25CEYJ6o0mxlEUoguXVDTLZFPV6m43yZlLJMoqYu7SMjCJmLi2Sz3pYpoEfhkkhG9Pk7nsew9LBsTVSKZesZ1Eq5Fld2eRzDzxLJENeefsxNF2lXK1wdnaeYj6bFKIxNHql9GUco5sahXSKQtolnfFQNBWpQD6V4uz0HKOjpW6hQeUybdaf53aZPvlWgrtrWKfXRmZ1aY1zs4tEUYtYCgzL5dW3v5TjGZebfvRdfOEzn6Faa6GrJuOjk/zhH/wPFhcuUW9UkzYZOY1mtAAAIABJREFUQYf/7w/+O7/+qz/Ln3/wzzh4cAq/E3Du/DmyhQzzC5f40j33MH1umouzF2k0Yj5192f55N2f4RWveBX33fc1fuBNP8jQ8Ci3334rcRTwkttvJ/JjmuU5iqV9/MAPvp0HHnmMs+fPsLJW4cDBm1lbbXHy2ec4fvNLyGR1wqBJznM5feokppHm5mPHaEWC506fYfLAPlAUhKL2XJQDHMK96Nzl16qXJhLLOIETQiEMQ1RF6UaoAwzdSMBfd/54R72A7twRRHGUVN9UeoBv2wL3g7uBLsoX9My8wHiw2L5GYstWX1t0Tggx8PtIwWV2/XrAXbKnuJZWDoNt+dae6ga4+7bKDXD3bZbnA+76Y1tq4i5PIjvd/Cs5oCjKXkVLBokQ4grAbrD36Frl6udx/eBuUARycLSuT4lLiaKo9CJcPTCUKB65Rafpjbls5b5jRDdS1l8ts+dNU2SyzVQQSR81EpUXi+2SIb3XXqpyyyPY94aUSZ86kZxMcv/7lXXXc6Yog6uK0eftu/zj3vfoN759r0FKW4ikAiYqEsGv/PKv84PL5/mJI1McLxZ2eD77X+yeTYjeF+7z/vUnV/Q/Pz2vbby1eejV4Y70MKGohioiFpx65jSblTLFoRKdToDe9dxKJEHHx1QUQj8km8lSXq0mvd2CGEPTybkOLz1+gHTWJQpDNEXh0OQwKytlPMckDBNP5sGpMTIZj+FikdAPifyQTMbboq+GIiAKY/L5LHEEiqowt7TKy246QBAE5AtZypUqz5ybYWpslFCJ0S0dy9RZWlyjWCximjpB6FOpVphemMMQKiPjJQzbotPx2Sw3yOY8VKGyulRG1cBydSqVJlEsyRbSWI6JVCS6bVBZK2ObJhtrVXK5LGsbZcJOB1XVqdU6lDfrVKo10qksQdRBtwQIhWwuh5QxmqbRbnWoVOoEfsTQ0BDogna9Q6PWwDEFqohYXK6SzWfIZJ2ETqloqELj/sdPc3T/OG7aodlsoNsmzWabx546w3ihBKjU/Tqu5wAqhmGRzWbQTG2LKtxsNtFNgziCRq2MiAQKGqvLGwRBSNrz0LSkv2I2lyGOJJbp4Dg2zVYDL22DCNEMgePoSEWiaAqernL/E6cwDY1SMYdp6KiqhutYmLaBrhnUN5vIKNG/w8MFlpdXObJ/DCmSgjyGmmxIdU2j2WiRzjqommD/yBD5QgbXtVFVFU01cF2LT33pAUQUk/VSCBl3e/Vl8IOAII4YGRli5uIc+VyaOBRslusgYGJimHazw2alhqapuI6N3wmRsYJrWtz76HPkvBSaoWJqGrZrkLJV8vksKCqOYaBrOqvLFe75xmnuuHU/i0urTE4OY1kmhmlSGsrTCQJGxwt02j6ZlIMQAttzCYOQ8SGX8ckShm7Rbgesra/ieRqKquA3IqSQ3P/YWQ6Ml8hm0wyXCmiagqYl1VKT3nFJP02/HWFYOoaloRsKyBghE02aSZvMXpjrnrsOxFfeQvcruWu0W7v11O7Y0mXuwh5jYoBC3a5LISCKkVHME8+cpeUHIANefeft3HT4MGEosQPJz/3Z++g0G9x2y0v5X3/0x9Q211hfXSJu12hWm/zDPfcRo7FeqdNsl3ntd72ch75+H+984+tYuXCG73/jJA9/dYaRAyWWF+u89vuGuf/eGTYqm2SyaaanZ3njG9/Kk8+cpZiPOfH0U3z6s/fypje8hY988G/43je/iYXZGSZGSnhuhvsefIa3/+j38cnPfZ7fevd/5tCtd/G3n76fr371UV7/vW/ANRt06nVOP/0kp556kDtuv5242eTEiQcYmdpPLC1UQ6fZbmIaScXhSErsIERXVOJAoigmMlSoiya+DLEck4ZfJ5QdgkaAJhTmnz3Pg1+4h6ICs08+QbVZ5/Of+CQvu/lWHnvwIfxOnY3ZDUZyDnG7hm7ZtCMbNVSSQlFSQROghDGhVJJIqiSJ6skYRULYtcuKIrZuvCpFF2Bui9Jny3r7D2WgfXue4K5LOe7f7G2zqwazsLYd6r1xfdP1pUBs9THuk5hk/ygUJQl99157nJqC6Ha1v8JLYee+QSS7nOS6v7iAHdwAdzfkOuX5gLsdBkdKoihCSonv+y/6crPPB9wNAozXEq3bXfmzn5qqKEoXrPXNsksh7T6mBwj38oht0ycGe9Suh42+FVUcAGy3/y6u4JK78txXvvaDo4VSQrPV4tO/+a/5tZsOdHOaLh+389+75ttxwXv/E1sbpIE2oQsG6W6gpAAlFGhAs7ZJGHawDIuJ8XGkEFi2iR+G6KYOqqBZ9clls6SzHlEcUa3XsV2HxZWNLjhTsV0bGQuWVjbIpF0c1yaOQ75x8hyqAkOlLHOXljG0ZJNcqzdI59M02208L4lk6brK6loV27LQDI2VpTVa7RC/E/DAk+c4MDaEaRisrdcYG8kzN7/EUDFHq9Ein8+wsVHl4vwyGc+hNJSjmE2DFCyvbZBJp5IWDqrK2kYZ2zCTwkaKRqXSIJdPk815CCSGrhK3A6IgRAjBwuIaQRjjtztksh5SSmrNDg88M83F5Q2O7BtGUxWclEm11iCXyyClYPbCPK5jEYYRtUaT8bFh4ijiudOzDA8V6XQCDMtA1Q1s20ZVBc1WEwEJbTSMGB/KJtdWRgglefZURWWslCcKI3RN45NfeYSDw0MIQBUKmgJRGFJeryfgwrFpNtqYpoUkwg9jHn/mPPVWm8l9Q/htn47voygqcRgzPbvAU2dmObR/lDhOqKKKEOi6Rnmjjuu6tJsdCrksGdPi2PEpgiCgUqnTaiXPUifwCTohH/3iQ7zk2H6Wl1dxXJts1kMIJSlek0nj+wFexkPRNNLZFKiJ5zvtecRRzHNnLzB9cYlMyiGKQjzT5MDUOIaZVEctFvNoho5u6Fh20tIh56YRUrJaXqE0lCb2k56Duq6RyXoEvs+9jz7DTUemCKOklUIh5TA2VsK2bE6enSHlWoyPDKEoKutrFeI4xE3ZpLNpbjo0iqYrZNMpHnz8JEJKcrk00zOXaHU6lIpZwjDEcRwURaBoCkLCfY89TcF1OXdhgaFclrTr4DgOtu1w6NA+/E4TVYG1jU3GRwpJf8BuM3NFTSh6S0trzMwtMTKUBwG6noCBzc06oCD0JIoqpeT8zDwZ20az9MFb6C3v0R765QpytVGD19sjWtfPMJCSoBNQ26yyUqkQCcnE8BC24xCEIeVylV+87Tjvf+48//U//z5LS0ukHJNHHn6Ag8dfwufv+Tz/5pd/jJRaZTzb5tQTZzg6UeDIZIqCt4atbfCyWw/y9FPTfPfrplic20BDw4gavOoVN9ForKGqIU+fPMnTTz/NuRPnOX/mPGlHcvtt+2lUZ7nvGw/zuc/dzfGbjvBH7/ljfuFXfom3vPEHeMWdd3Hu7Hm+8pX7WFle4yd/4ef5r//jvRw6cBtLKz433zZJJMosnT9NeXmeUsHmk5/6B44dOEYx56JIEMIglipSqgSmSltKIk2CFhHEbepnp+ksrxFVqtgh/Kf/69/xhc/8Jf/23/1HvvzFj/KP993Dgw9+lqdPPsLfvu8voDnPI/fdzT2f+iif+NDH+Mjdf8PnPv23fOHTH+cv/+xP+P7XvYalyhKGoxMpER0FQq1LxxTJK5JJx76QrfqOifR7XsUg+7o9bPd71/4k7SG9w/rsXbcW2J4z7gZ3Oz/rO99BbJ8BVM2rndpVZSA4VLacvC82uQHubsh1yfMBd2EUEst4i3KXeHKSYiZRFF1Xs9bvPHk+4O7yVgkvHNyp220Lukqql4fTD+KuB9z1w/IXAu5k93wVsbOXzzcN3PU49VcYsVs2Nsr8zM/+AtlHv8abDh+8BnDY9WvuHtZvhKTsA3SDzFo3ctst7dzzlAopEQEsL66CCEDG2E6KKFaIYkkYJPRFmSQNUi+30E0dIZKN95cffZqxUoFKrUHg+yytlrEtgwsXlzhyaJKN8iaKIsikPQ5MDDG3vEYp65HOeJx87gIZ1wUFXDdpHRBEEYqSFL6xTJPF5TVSroNu6Jiqzsnz8xyeGGJ5tcz88jpp12ZkKE+xkKXZbHL+4jxD+SxnL/z/7L13sGTZXef5ud6mNy+fN+VNV3t5b5pFDiEJIbQTCAkkYAONWW0wEcTODMvswg4gELAwGgYEyFsQyLTU6lZL7W11l+8y79Wr523mS5/X7x83n6t61aqSWgIi6leRUflu3nvOyZP3nnu/P/P9LjDYmyeZsjaAvWEaGLpGGMYsj6qqkM2laTXbeG7A0ZPj7Brup+N0CMIAp+VAGLKyuoYmy2iGjmkYFPJZao0mtq1j2xZf/t5T/NxdL+PwvmEKxSxCGHLi7AT9pTzVagNJFMlmk/hBwPziCqmEhWnqQEQ2lY5lJoIAx/eQNYVqpYZhamiqjCzLgBDXnUmx5p0ky4iigKpqRGHI0ZPnKGbTKKrCzXvHNtIqozAkCgOOnjrHuYklRgZ7CMMAp+1iWjaqLqEbJmfHp3nx7QdRNAVD1xAQ8D2f6dkl9uwapieXQtfVDW23OKVVi8lTBJELF6a75CwuhqVSqzWp1pqslusYqsrFuQVKPXlmFpYYGyjRbnfI5tM88tRJkpaBbVtIssS58UsU8hlmZ5fwfB/DihltW40OiiKTTtgokkg2k0aWJWzL4OKlWYIg5OkzE0zMLDC1sMhgbwHfDZAkkVa1gyQJJNMa1WqdbCqL2w6QFHBdDzthkTIN7n7gaY4cGEUSxTiVr+PyyNEz3HnzHkzTiNe4IK65czwHTVO4MD5FPp9CEOKU3uH+EqlkTJTzzNkJDu8ZQdVk1io1kskEjuOyVqmRTiYoJC0kUaSYy7BariIJEifHJxnoKXDP947SV0qze6iP/t48USQgyzKu6yLLImE3HV43NPpKBXzPR9U04iyKEFmK9fAuTM5RKGQwjfi7+55PMpv8lwvutkb0uqlszXqLUxMXabdauJFAEEZkUymWVirU6k0sTWUwgs8+9hRDg/387Sf+B7lCmnbH4+DeARYvPsWrXrqf+sJZ3viG1zLcb/HUk48z1m9wcO8gQ31FDu0rkEjqPPnUBS5OzNFp1/nAe9/E2O4BKuVl7njRS7g0eQHDTDG3MINu6dz97e9w620vZWllDVmU+e53v8cvfeBX+au//iSf/8zneNvbfpY/+qM/JkLil97/yxx77iQ///PvIZca4NSpCUy7g24F9Fg2gdtBkANMI0vQCTlx4knWKhV0O4mh63H8JgyQ8AnbLX7nt36TfMLkk3/8Bzx8/7089eiDfOoTf0mrVkEUIvqLafr6h3jD617LA489w6tf+TLwJExTAcFjbGwfopKjMFhECB0MVSJt2Xz8Lz7OAw/cz/zUJP29vVTXqiiihCJLEAUQhUSCsBEgk3a4X0ZRiNit6dv8qX/y4G7jWeUqbd4Adz9euwHubth12U7gbidCFNgkRbkSAG0FKFsv8h+vXU8d37Uef73po1cWF+907Nb5Wp9bcWP/7fvFwC4Gy8I2MpWtkTegS7Yisi75sNOYJUHYBCeCQET3N+xGmS6bkM1Uy81NV7S9se5H0bb5ihfouL5s/f1O4O5qRDpXdLDNtsSLBXEb1FqYX+R3/sP/wcdfcQtj6fQVNyZhYw7WYa2wAdy2DOSK0Nz26bysYHxjBAKRHwuLh66PiECn0aTZbAMhrUYT27QQFA3XC/CdAFWSaLWasX5YKPDIY6d5/OQFBovx2G/aP8qDT53E9z1mlsvsHe6jWqtTb7fp7yuQTNk4jsf8/CpOx8c2VNLpBE7HIZuy+daDz3L7kT24jsc3H3qam/eNEkUR80urZFIpzpyfYWm5wtBQCVkSGe7LUyxkyWeTJE2dgb4CbaeNKkuUV6uMDPTQ6nQoFbLd2rtlJEGg3XZBANPSkQSB2blF0pkkIhJB4NNpdziwfxhN12nUGiRsCyIIggBDU3E9D1lViKI4EqYbKoauAAI3HxhFVmVkJX4Iqtca2KaBZZnIsoRpmYiCgOu6lHoLGIYGEbiOS6PeRjVkVF0BQUQUZRRBotVs02k7BH5Io9bm4WfOsn/3MAICS4urzMwvo8lxJGd0ZABFkWi1WqiahmnpPHd+ksGBEguLKwz2FMgmE6iKjG6oTE4vkM+lWV4so2saCV1DEAR0wwBC7n/kOMvLNfbuGowjZ+kYIDtuLClgmAYCAoEf10MNDfayvLJK/0APepdFNGmZFPMZpmYWOHxwN77vYSoytmnQanQIo5BCJsVqpUpPqcBapUa75ZBJJ3E7HomEjSgKNOpN2o3ORmRP07Q45VOR6HRcKms1+noL7B0ZYO+uYXIJi+WVCmEYYpsms3OLRFGIIAoYelxjuLi0QjafjlkpRQFVU8nYJrlcGkmWCKOQpZUytxzeFxMkIeA5AafPTvDY8TPcfGgXoiSSSacIgojA9wiCEEVTELu1Tq1mO54720CSFRw3YGpmnpQdi8obloZpGwRBSMK2WFqpYpkqqqwiI1LqySCrArqmMj21hCLLLK2sEvoBiqoiShKapuD7Ps1WC13TNzIUwijii996lJFSPpYLEUWK+RTHz56n3mhRLMQSJdvWz6uHOK6SAnDForOtGWHLv62r0I7HbQN165siJEQ6bYeLU5eQ8HnR4UOMDJQwTRNVkRnq7+HZsxfpTdj89+NHCZpl3vSmV1FdW2Bm+jzve/dLeePLh5H8JVJGiJ1pMTKU5sCeImeOPUfSLiAKbfIFHz1Ikkr6vPKlr2C0p07KDvj057+OJlYopFTuvGUPYloinZVx2y7zc6ssLoeMP3eCl91xJwvTMzz00MM4nQ6HDh0hmbCZnJxkdGyUVDLFT/0vb0aSFe6+9/v46ExcmiCd76GQjGuW2/UZGuUK+4eHSNoBqhhw37e/SWX2PMce/Dqf/djHePKeb3DPlz5Da26aE48+QDpjkE4ZXJqZpFKvUnc6VMsq7/6FX+Xn3/dhvvath3n9y9/IypLDuz70v/E/P/X3eHKGN/3cr1BD561veTOeK+K2IpZX1njrO97O/ImTTD73HJ/7209z95e+SHN+moe/fx8HRocoLy2QtgwCzyNyHTTdxHNdZCG+RsR1Jylxnd5WEpaNoF7UrT/bCdtvOyXi+/41QZvtj3nbzr9t27bc/4V1+tgdEoi3Pj+EOx1/VcDYFVvfwWG9NdVzpxTQnYXNY6fkv8YMsxvg7oZdl+0E7nYmRNm2TGy+60oFrDPXwbVEvF4ou54o24/j+Beqn63zeW2RLmEjarZTpHDTRDYXvvXo3vqNQbgM4Enrv98VfV37/GyOi6uCu+2Rzp3buNw2v2sMqtb3ede73suB8eP84v5dXdx32bEbYw9hCyS8oo/n+X5X/6gLsv0Qp92hvLLGxYlZdEVGtzVarTYpK4FhmASCgB+FnD5+kWajSbb7cF8p1ymmbfryMVA4e3GG3mKepKFiaSp33ryPY8+Nc+TAGJmUjes6hJHAsVMTDA/0sVZtMjrcy+zcIrquomsK88tl9K53OJewmJlbppjPkMkmkWSZnnyWS7NLSFFILpdicmqOZCKOeoRRhCwJyIpCq95AlWWanTbJlE0UxrUfia7unizLqKYKfhinFcoSAO2mg+d6ZLIJarW4BuvCxCzZdBJN11AUhVqzhW7oLK5WSKcSiIg0Gi0ajSa2ZRAEAbIi47Q7MVOoJBGFIXbCxjBNBCL8bp2UosisrVUJwwBREEnlksSitaDICo1ai3/41hMMFNJYloEgiDTqbTRR5uzEDAlL5/4nT+N5Pvm0jWkYyKpCtbKGJAqEQoSiyiS6RC22ZdFuO0zOLDG2a4DJqVn27R3CdX1kRNrNDoosxxFGRAQR/I7P+ellbj28C9eJNT3XqjV0TUMgLh+pVuvoRky+4nsuSldqQVE0Tj03TrGQpVJeI59LgSDQcRzyuTSPHj2DhIgX+pRKeYo9OVzHQdc1mrUW33zgKJOzy0hRiCyLGLrGhYtz9BSzTEzMIAoClXKNyloV13UZGepH0RROnBlHUxTspEXCNjF1Hbfjks4mSGeTCIKMJCkoqkqj2YxF6EUZ0zIQRYFsLk0QhF1yJMhmU7RbHSJCnI5PFEaUChn2j/QjajLtloMiKSwvrlKu1MjlMjiOg6apCAJxrZ6hIRBhmCYgcM9jJ8gnDVKpBIgRnS5TaxCElEpFJAmIBGq1No8+e47+Usz4+fjRCxSySS7MzJG0DbLZDKIg4LguUpfABkRESYjJgwSR3YMlirkciCDJIlHok7ZMzs4ssHu4PybTYMv6+Xzg7joWmyvdas+fHrfezhWfiwJCJHDmuQlWV1ewTIlUIoUqywQhNJptZmdXuOXQHgQh5MylaU7PjnNp+hzveMdbefnBDAnDo5AVkcQQ07B55sQ5ZmbmGBvdTW9fiUwuhaKpeOEytEuk8gKmmeDITcM0WzWyyZAX3XmEnkKRz332bh5/epwP/vxdvPimMd78xlegqyGV8iJnTj7ByFCRdNbgtW94Bffc8wArqyssLMwzODTAd+75NpWlFVrNCucuXuD9H/gVBvoGuf97D9NbyLG4vEIhK9Gqt5idmiWTN2i0mhw6uA/BqeJVZ5g4f5618gKHD+3HTloMDQ/yxW8+SrPj8tq7foY3v+M93PWmd3Lq9HmypRJmoYd9Bw5z37e+TW+hj11H9jF+fpr9+25j/8HD/P6f/C6vf/WbOH78DMePneG3fvu3+e7DD/Ebv/oBzl24wB233YzntZidvcTc5ASf//TnqK9V+N6995JKJFhdXMSPRGzL2uIgj7acE9sK4LadFYIg/EBwt07mcjn52o9i27N1dnLqX3m/3TamHzCO9eeJncDdtjaj7cfAzhHCMIw2xvCvDeDdAHc37LpsR3C3AyHKVrvcW3N5Ot4PE1HbTjpybcduixr9EH1eT5TuahaGwY6L2vbxXEmucvmcPd84rgb4dooaxmPaEomMQhBCIuI02o3ooNCtl+tKLWzExa5oc4d+xajLuhaw7TeLYo+0wDobWBdYRsK217aybyEujxY3HZQ7RvO2nXMI/L+/91E+9if/H59+ze30JhKbgT02m962beOPbgSze8OIukRAMRHKlfIR8ZFbGup6/URE8CNkRBanZoCQC1MLjPQPosixREEYgmFZMc27qqBKEoViGjth0mh2UFSFZqtJOptiaWWVXNqmkE0ThRHnzs1wYPcApy+Ms2+0n2a7jef6WKZJo97h9PgMmZSBYcg8ceosNx/cRSQIaJZJJmWRzdqomsRipcKh/aNMzc4jKzKarNJpt1lcXUVXJCzTJpfL0Gy28AIf09ZZWl3FECWqjRZ2wsKwLWRVo7xc3hA5D8KAwHNoNZogREQiNFsOgReSTOrousY6QZAfeHhhRDJlx9GpIMRMWAiyhN8JsEwDUZTRdIMHHj/DwEA+rpcMIibGZ7B0g1qjTraryReGMWCQAoFO20GUQ+qtJtlCBkVXCdwQSZIRIvBdF01T2D1YwLYNRFmKyUh0GZDYu3eApaU1DgwP0pNLkComQQypVdZIJpP4oYiuKtRrdQxdJwwiXNejXK7S05NCkxU0RUMURALfw0ylUHUZ1ZRJZxOEUYhiSFi2xshQHsuKRcKtpIFlGzSbLVRNZfrSEvl8nsBzcF2PMIwoFLI0Gs04Oqgp1GsNWm2HbCZNp+2gKzERyK6RAdK5BJYpoZsqARGyLCOLAnbC4uDuQfaMlMgX0qRSCTodl/7hXtqOy4WpBQ7sG0UWod126e+LGTS/+p3H6c9nMQydb3z3SQ7vHkaQBLzQw2s5yJKEH/jdmjUxFpXvkkBIkkAQ+FTKa4gSLCwukkxZeJ6HIsn4boCVVFirl7FtkyAUkCWdpfkyqZRNIm2TziZotRuYCZ12u42oSBiWjqrJGJoVR2ibDe68aTeFYhZJBVk0+dsvPcCtNw0REdBqebiOh6yIaKqIqoj096Zjh6QUIYgRF6ZXaLd8+nsKuK6LqstIihQzLEpsrG2yIhIGHpqpxpG8LrxSFBmvvkY+lQRZRxBlRALEyCeKG9hYSLetretRtcu3bcmy+KFsw7F25fGiGOCLMknbpNVYI/AD5msO86trjPaXMDSFTDrB4vIq33/yLLdm8txba/PSPTn6CiAJNbTIoFOZp5AVCcIKg/m9KEqNpKXguBrfvOc+BnttUsk8C2tlzl9oEwgRI73DBK7DrpEEithEszxuvbXEgQGXQ3s1VhZdvvPt73HLnYOIzjzv+bm7KPascKD3dWSTZ5k4f5GF6WnwoVZr8oa7Xs9LbrmFXcOHOXduire97Q34QRtFTWJpEWFQx3OW6Snm6evPkcpn0WwJw7nA2afuoVrrkM7rPHtB5NnxDp6Z56EnTtPGIte/l1ff9RYee/IYuWKJD/36b1Dq7aM3l0FXBO548e089PhDjAwP09/Xy9BAL5Pj47z1rrcwODjA57/wJf7bR/+Ep48+x1t++hdwpDav/+l3Mbr3FubmKxw7foZXv/h2Wm2XMxfnOHnqNKcfvZfTj92H0/C57dAdRFqIG3YIBJsg8AnCEFkUumUaUZdLJHa6i4KEIGwIMGx7bSVZEQVh4xX+gBTLazYxdqgKXO6A3Xz2iZ95hI1HSqkbuRZiT3P3PTu+IEISBQg391kvg9ja07br6apRu+6zS/exQ9h886PNwU/IboC7G3ZdthXcbRD6/shMQj9MRGynCM/1XHQ/qSjcZb1uY4m6lvE8f6Rtp3m4VtsERZvvt1bXbfdubY55Pdp1rbO2vl/QreW68pP1/rtg6irj3L5tp883EdrWz9/1rv+VX87IfOjQnmsc8eWjX0/J3Pq918d6BSrc9j1ESdrQPZIEkZmZBTRZRtVVioU8a5UG5ydn6S3G6WiSKMZ6aukkiqJw5uwkpWIeURBoNlokbBPdMPGcDuemZhkZKKEoCp1mBz8KGOzvQdPjaFEQ+JQrNXw/ZO8NdaD8AAAgAElEQVRoP8uVKuVandsOjOG6Hp2OiyTFTIWPHzvN6EAvuXTMdJhO2lRrTaIgQlVUqvUGhw+MMjWzRC6XZm5+kf7+IuXyGoODJUQEZFlC01QkSWStWiObTiJ2ZR1kScRzXEzLZHWtRi6bQZFVNF3Hcx1WV6uYpk6r1ca2DdLpNIos06w1kWUZx3UxDB1VFpFkkepanXJ5jSMHdqEaMpIkIQoSsijy0NOn2TPaH+seijE4lBWZMCSWTFElbMsi9KMYfHVcarUGUUSsnwc4LZfP3vsou3oLAJi2iWlahKFHJpMilUwgyTE5h6ZqiECn46KqKgvzyyQsC0EQqFRixr96o4Gqqvh+QKPWQjM0yuUqMzOLRGGAlYjTLEVJIgx9NFVFlWWiiC7rpYgoiCiyDKHA0uIa+VyGSqWMLMuxTp0AUzML2LbJ8kqF3lKBM+NT9JcKhGGI47pYlsHC4irZfIYwCKnX2swvlEklkrRbDq1Wi0TCRhDiuaiu1ams1UgmbcIgJGEaSIJAMmVvXMvNZovdQ73k82kUVeb2m/YwP7cEQkSj1cY0DIIwQFIklpZWMUwD13GRJJBEkVPPTSCLEpqq0mp14vNJjFPKoghUTeG585dI2TZrlQaSIEEk8MBTpxnuL1Bdq7G0XKbUmycKIzRVhwh8N472RUGEpqkbdd4IAkHoIaByZN8wbaeNaRloqo5lG6yslMlkkqQsE0WVURQVz/VimYTVKstrDfqySeYWl0mlzI3fJozCDaGDddKwDbY9UUAWY0bf0HE4dm6cXDqLqmtx1DiK4PLa860PoDt6kbaslz/qPWz9+G2LfkiEDIEPnRaO2yFEYyCfQ0RgpVJjeaXKE2cm2D1YYGZ5lTs0hZmczZE9SZ5++AJuC/btGSNCwXWTCKJDsdem1amTy5cYHspj6CKSDAgqU9OrqJpAqbeBbnpEYcDMTAXb3Md99xznNa++CfBxOwrLS2WSOY3RwRKaLlDID/BXf/klfuZdr+fITft5yUtexMGDewjEkLn5S3z9H7/O//zkJ/nQh36d+793Dw8+8ACthosUtchmTe68bT+KJFKt1egfGSIQApamz8dSBnaRbGmAi7MhZ8anePFL7+DffvjD9A+N8MEPfpCJiQu85a1vQ5YlapU6H/nIRzh46BCzs7MoisIzR49y2x238/JXvJyvf+1rJBMJUukk/+k//yd+7dd+DUPX+NM/+zP6+3q59Y6D2HaaL3/5Hzh08DCXpiZ5/MmnGNm9j2dOnyeVtNk1VGJkcJCllQp/9Ed/zJlzJ1icn2P/3sNouk7oB4iSFJdVXPa8sQHfdnLECpffk7unxbZjf5TzrOt4vdrHG06NywIAWxu4hva3XS7X4PT/QY1uTyP912E3wN0Nuy7bBu7WI3Y/st0Ad/8SwZ2AsPNie53gLiKi2Wyh6/pl471+cLdxk9kB3F0e0fy93/0oH/vYX/CZ19xO3rKucbSXjf2yWjthI2S481i3H9zVMQphYnwat+3ED8ipDM1WB0VTOD8xh6IoFHNJ5K5weTaTprJWx/UCVEEk8kMeeeo0lVoDS1PQVANFkhgb7KPWaFBvNdFVlVQmyeTU4kaNj6YJJJMWHcclk0lgWSp+6GGrOmvVBlEQUa81ESPoLxVp1Fvc/eBRDu0ZQZJkFueWKeYyLK9UGBvtw/M9CsUc7XabxXIF2zRIpWxazTYRsLRaRpElojAg8n1UU2NhcZVEwsJ1HBRJ4uzEPEnbjoWgIwHPCxElyBfyBH4sVdDuuMiqRKvZwtA1/CBA1XXCKERVZYgiao0Gvf1FVlZXQRDQNA3P96jXWxzc32U+jSJc16fZaLNWqaFbBmEUYRoWjWqbmeklVEFmfHqWwb4eZFlGQOzW9EVoCIwN99NqOkiChKyILC4tdFNSJRAiFEnBbbsbhEaaplBfa9NuOzTbHQxTQ5YFTFPDtGwMQ2d2fpl2p41p62iKQiaT6LIsQuiFNBttnLYTp3tKMk88c4b+Ug9O20FEpLxapVxu4DseyaxFGEZU1upExCLkhqbFtWuKRMLQ0Q0d1/XxXCeuo5NEJFnCaTnU6m0eOz7B/tF+ZEXizPlLpBKxGLtlm8zNLzHYX2J2ZpZ8LkW77fK9J09QTCXRdQXdUKnW63i+Rzqb5NNfe5C9g0WSSQtJlkmnk/i+h5U08QMfWZHQdY2Z2QVy2QQQkU0mkUSJaqXR1dGLWJhbwbJsLk7O4XptStkeVNnkG/c/y3B/jkajhakqJJMxSLdtE8/xMQ0zBuxtj3bLI/ThsWOnGB3qZa1aZ25hBdvQiUQfVYmJacIwQIhEZDWu11FkhaWFVdptB0XWOX9hllJPHqfjsndXP/vH+nBdh1zGxjA0ZFki8P0NR4bfZU1VFBlCiWq1gaHrgE+jVsfWVDwvwHF8MulEHFmQ5I21d7387YqFbmNNWl/rtmz8sdzDBCIEZCJOPvssjVqDw/sPsVZvMbtYZnJuhUbT5Y0vuYXzM/OYpsTewQxfmV7iSI/HkVsGGd2t05HG8ZQOcxWVUjFLx6sQRSGaqBB4DWRdwBc8iqUCmUyWvoEUkl/i/NkFXMejr6+IoHUwkx49mR5M1UCRfA7fNIKVkBksJQijGk89VOOVbxhjabXJSKZCozqNabjU1qo8c+xZhob7sSybvqFRGo0qe3cd4M0//U5S+TQPPPh9JKFBpbKA47VIpEzy+TT1lQUiZDpSH4me/fztF+7jk5/5IqP7R5hZWMQyLBRVZdfYaEzwc+E8d3/z27zvfb9Eu91ienqKV7z8FYyMjNBqt7FMk5sOHyKRsNi1a5Sfeftb+dM/+xg333yIWqPCL/7ie1lerdNxA/bsP8j/8/t/wO0vfjnv++CHqXoCH/53H6HQ08uZUydYrVRp1xdRooCE5tJemecbX/oak9NTvPSlLyFCJEQiEmXErZVrm0jtyl/8nxncARvpoFvHcQPcXb/dAHc37LrMD4Lf3ghtv0DaH9eT7riZvrj1+Ct1ULZaXGsTbmPlfCFSLK9mQpcZcL2+8PKx7njMVcaz07ar6eDt1Na1fMdtCzrRBqiL6NZSAl3luy65wWVxKkHcWD/XF+Ktee+CEKGqyuZ4o60gbet8bP8OUdTNgtjSm+f5GzU58aK7Rdx1S5rHu9/9i/y3vb28Y6R32/FRtNn5xi1jw2t9+cRsg5+b+21zcgtXvCRJIggCJFkicD0atQbNVoeEZXFqfBo5kkhnEqiqRF8pTzabotPpdEXTRURJ5Oz4NO2Wg2VoTM8uAzDaX+TE+CS9hRxnzk+RSVpohoIgCjQbbXK5dEyG4cQslJ7Xod0FCUEQUq03GBooIQCGrvHQM2dYWK5STMdpqul0kpSpYVsmjuPSbLaYXVhF11S8bkqdqipIskwmaaEbGuXVKqIoYloGtmEgCgKe6wMiuqlTrTVYWa0iIJCyLabmVkknLRIpG1VTkWUZ09RwHJ8giBClODVTkATCMI6siQgIkoggiISB3yUW8dBUBcsyUBWFKIpQuv9LkoTveLRbHcqVGvc+foJbDoxhmCaSGGuPfffhZ9k92EsiYZMvpBCEuL+LF+e499ET7BvtZWCgB1mJo2YPPn6csaESyWQcdQKRqMt6qWoq5XKVdCbJ8tIq6VSaVDrJPY8c5eCeIcqVNTwvwDAMOh2XYiGHZRtoukI6lUSSRC5OzqIqCidPT2JqCrZlIgoirWaLkeF+nI4bXzdRxFqtTuhHFPIZ2p0W6UyKRqNFqbeA1pUhUDUV3/U5fe4S2XQiZqnMJAl8n2a7g52wkBWBVMpmIJ/GMFR836W/1IOu6yQSFk7HYWZ+hUIuRSZldbVEBUb7e4iiCMvS8FyPdCZJGEbIssRgMYOp60xOzXPh0hxDAyV8P0DTNWq1OqIo4rkB6WQM7M6ev0RvTwGBmI20t69IImExObVIbymH73mk0hZf/c7TjJQKVGsNhgcLZPMZ8rk0oiRg2TFpzvceO05/IUu75cRXdxBx36PH8fDYPdSHpmk0ak3CMGK1WiFtx/V0ghBRrTbpOG1USelGMNvYto4kKDz8zHn6C0lS6SSyIiFKIvVGg0wmjR+G3TUvBCHWh1QkCc/zEEWRuZklREnETlpEQUz0o6kqhVyGizOLJEwD3TIJo2iDrO/5gN0Vmy9P1bxW+wH37mg9zU0Q8RyHermCoWuYdoZSPsvsYplG2+ElN+2h2epQLjcRQqg1V3jGcTnUa/PVrxxl39gR8vleLk06/Nc/vJ+0VuPIkX2IkYwYmlTXGhT780iyiKzo+I7A9Mw4UmRy6tRxbjq0l8lLkySzSZBACg2ajQ6FQppqvUwQymhaxMJCmfOnqxy4Jcv5sxPsHSjQ7jjs2rWLtWpIu+7wqte/kaePHmNgeA+79oxy/PgJokDkU5/7BIO9OTJWiKEFDA32USgWcbwO9XIZz5e5+6Hz7Dp4Jz//nl+l2NeDkRD5whe/TLvZQpYVZman6e/v4zOf+RT1WpPhkSEy6TSvee3rWFlZ5uChgzz08CN84QtfZGxsmIce/B6mZeB4Ae981zsRRZE777wd1+3w7//Df8T1XIaGBhnbNcaevfsY2bWPs+fHufXmm/mbT/w1hUKOnt5+irkklm4xOpDF0GUunJtmZn6WV778ZZh2AlGSECQFQg/WywPEOGJ+xb06jKsNhI173XZH7AvCGfkDwV387LGV/GS97u1agdUVp/ZVnL9X9HzV62iThCWKfjzPjD8OuwHubth1WbC15u4FAnfXZ9cfsROETUakn4QJG2k0L1wh8na7tnn/YfreJnrQxSsRcd69IFytze0ePuHyvreQpMTpS9FG7eHzLbQbBG5b2hclsSsGHfd0+fEf+6M/5w8/+qd86lW3bC7qO9wUIuI6wKvOkcBl5/fOaSzbN27uHxN8KMxdvES71aGnmEPVTSanlujN5vin7z1BLimjKzIIEqpuIEoyzUaLwAvIpSzymQSGbcTi0YZGLpei3mxQyCYIg4hKpY5paIiiiG0prK7WePzZswz1FQnDAMNQqNXb6JqBZmhIkoQkySi6EtdopRPsHRsgnU4SEjAxNcvZqTn6i1nqjSaDQ30UC1kStoltGSiSSKPdQtcVfD/WIxMEAd3QWZpfjinDRZmv3nuUw3vHmJyYIWHZ3PPEGW49tAdRlinkUri+h2npRELE0tIqpm4wO7tMuVzratJFNFpNFFmm03L49qPPoksKyVSCZ549h6XrOI6HacU1aKfPTGLIMrMzi7TbDgnTZD3TLZ1KMFjI0Gm7mGasL1ZZqTIyUEKzNJ488RzDAz00Gm3OT8yyf+8Yz5ya5ODePlRNQRIFPNdloJSjUW0zu7hANpWkutZmfHKexZUlBvuKqKrO4kKZh58+y+hgXCtXTNl4nk+r7VDIZfHDkOOnx1laLTPQX2BpZRVL05lfXGagVGR2bplD+/egmzqqrjFxaZbZ5RWKhQxO20MSBSICZEnkiVPnObh7gFqrRTqdjM9EKXZkSVKc/phIWCQTJomk3QXsDr7n02h1CIIAXdcor1Rp1FokUxbtjkMQhASBD4KArMgUcrG8gx9CJIq0mg6WZWDoKp7r4wchhNBodkikErFMgx9g2yalQgZRkhBlBd8P8YOAKABV0ZidXebk2UluP7IfURAoV9ZQZJFULoEsKSwurhKFAblCiiiQ8P02Q4N5enJJUqkUghQgySKCEBFF8fvBngICoGoqy0tlFpbL9OUzHNk/RBiEGIaObZnk8lks00ASZTqdDrIq4nt+zHaJxANPnERVBfr7M0iixP7dfSRTFjOzC3i+h65rJDNJBEkCQYodD7IIEciShCzHa9Ti0irZbAJJllA1hcANMHUDH5EggqSmMj27QG9vPO4r1pdrWb9/jPc0MYiIRAFFkXjoyWOYVpLz88uM9BdIJ0xuO7SberNJNpPg7IUpFB32jeb5qazOf7z3NP/+l0dAXKFQDNCNOnfe0s+dhw7huStksmnml2q4gY+oJFirtahVWqQSRXpLBWRzmsNHBvE7Hp4n0WwpnDp+iZ7BMY49exE7KXPy9En+7rMnOXzrCKeeafP6nzqMrXY4MNpD0zNJ5y1a7Qq5dIJ9Y0P8zkc/wcte+hrK1RajuwZ49ujTvOF1b+D9H3gHF86eYHXmOW49OEanWcMLYH5ugbnJBWp1hX96YI7RvYc5cvg2pibPMjicQZVlXvHy1/IHv/8H/MJ7fwFRFHjFK15OpVLl1MkT9Pb28fWvf41HHnmUkydO4Echv/yBD1CtrTI3P82u0UHS6T4WF5b58pe/zNjYLr74xc/zf/2f/xVdEfj2t7/B+QvngQhTlPj+d7/Dof17qVRq/MIvfpA1J+LSzDIHD95M4CzSaK2xtFKjJ6EwfuYkFycvsXtsBEGUt0R6uyzVsI7ktgC7Lpv1Vkfm5on2wpxU1wjuttXH/ch9boK759/t+cFdPAfPH0j4l2Q3wN0Nuy771wnufrLeln9ucLeub7e9vu3aTLjCW7fuHH6+RW17ZEwQhI3oZfzxZpthN81RFGPygOsFd5t2Jbh7z3t+CXdhgf/+ylu23Zx2On6DJXMdjV7xjS7/4FrA3aaJosjU5Ay6AJl0EgEBLxJwOz5r5Tq3Hx4hmzHQVJUwEum4AZ/8p4doNRs8euI8PUmDVNLGjyK+eu8T7B/rp7xWpVTI0Gi1ECORTCqBoeuYCROn0ySZsOkv5mISF0lA05VYWzAUWKvU0XQVRVEICJFlCd8LMA2D6lodx3fI51KM9fcQEZFOJxEkEacdMzUK3XBrvdXCtk0ERAI/iBkfJRGv4/DEyQsM9/VycO8Iqq6hALKisHckTvmTVQVFktA0mZn5xZjJUBDQNZ3V1SqPnZzg0J4hBEFAMxTCIEDXdIZ68uTyWdqtDoVsV1/NNmJWRAQef/o0B3YNkS9kSdomsqzwjfuf5NLcEntG+rFsi1arjWXG+0uygucFaLpCLptE1WQsy6KYzxL6IbsGiqSydhzxD0KWl8vML6zSWyiQSmkoqoqmmjhth7nVRWxNwzQtqtUGN+0ZRdFFBFFgrVonl02TzaZZmF8lmU6gKwr9vQVMS8e0dBRJ4cyFSUqFHLlchiAIuefho+wZG0DTFPL5FLquoSlKTGBjaCwsrnBkzwiWbSEqEgIxEcrS4gpaNxoa1z7Ggt+6qiKIAqoqU6s1+O4zp7jjyH6+fu+T+J0AU9Eor9UQBZF6s0W+kMXpOHTaMfNkGEUohk6n4/L1B57GkETEMD7HRElC0zU0VcXzfJZWyqQSNuMTM+SyKSqVGnYyyVq5xlfuf4w7Du1maXEVyzBotzskTJ12q00URqTTNlEU4TouuqaSzaUwTBUimZHhIrFwvEjoQ7VRRVUkVstrpNNJAj9ARGBqZoFGo8X4zAKWobF//yhRFNDpOFiWyXcfeYaUYSDJElEg0Oq00U0VTdNix0AiyehAiYSlIskCqqaxuFQmmbJI2BbBFvY8EOg4HogxS6YsxiAxrhWMSFgmiiIhijKyrOC0HVRZQdJVFEWmVa2z1mjguX5MHnQFc+8/L7gjCEBWCMOQsxfGqbc8XnX7TciKTK3e4sL0LD25DEsrFQxDYmJ+iYTtYusqeVWnuDdHb3EEKRIhlKmu+chRnWxBw/McZMUmFHyKhWGazQbZdJ5Crp9WqwqBjdOSUBWVfCGJkXHoG0sSRQWOHT3D/gMD5ItFhgcOYKRl/vLj9/OGu0ZJGwYETZbrAXZKRDMi2u0OM1PT3PXWD/HMs6e59/4H+PCHf42hwQEW5hb5i4//PkcO7ma4aCEGdXaNjGCm8lw4P0HQCRifWCI9/DLe+jNv5e8+8Xe85CW38Td/8+e8/WffiSJZvPOd70SSYrIc13W47dY7+PSnP0Nfby/1ZgNd13j7238WSZb567/6K978pp/izOmTtDotLl5c4r777uPOF91JqafA2O5dfOLjf8273v12Rkb6ESSJN77+Lv7xy1/mjttu5dixY/T29rJca3Dw8M0cP36KJx95hOlLp8mkTWYWKiRkkXq9zvTCMgEi+w4cBGkz6yR+15VWIo6ShWG0BXj984O7KxyrP1KfN8Ddv0a7Ae5+wrYV3O2Y/vcjAr6dWDB3YlPalg8ehVdNd7zevq8AJj9cQ8D1Rc6iKESUpI10zs3vezVgs922/w50Uxsk6KZWCl1v3bbXDhIDkSBsvOKGRBDilDgEodv1egs7jOGyOeh+svESrnh/RSPxA1yXlTOKQJBiHb8oZqvH94Nu1C3us1qt8W/f/6v8j5fdzBsHep5/oukCu2gLuNuW9dFlwNw2NOGynaI4PYN1b2j3944iAtdHBh5/8hijxTyhZMbj72p1CUHIfafOsFarMTZY4uL0PMdPTjLS38vK4iovPTLGLXuHCIhYKq+hiCJ9+QSiGJLPpei0fTKahSDLfPeZMzQ7bfpLeVzPix9+hQBJUpBljRAIQ9A0hZXVCknbIPR81soVMgmb0A9QVYVjz43Tk8+hqQqCENFstVFlFb/VRtJkIiFE0xVazQZOOyAMAgxTxQ88ZFnmsWfPsG/vGEP9RVRdZmZuDkOXkOSISAjRNYWpS/PgBbRadUzdwNQMhDBmrxREAcPSufXwro1Icb1aJ5VOEYoCkiojhAJBEDA5Ncez5ybZPTKAKMcshbsG+jFTekz4EEEYijRaTW45MIZm6iCCaev4AZw+P4VhKIhyFOvtSQKiKBOFIUIUMXNpgaMnJtizuxQzw0rxepPPp1lr1kllMvh+fJ4uLZVBVti9awS33Y6dFpqAnUgiKzId18GwNJy2h+v5LC2t0NuTx3W8WApCkVlcrLBvTyzcHUURTqfNvn1DCH7I3KUFzl+aIZUwMWydEB9REUhlssiaghN0UBQFVZUIowAroRGEPp7ro+gqEbGmoBAFuF4HRdeRZZX9Q/0Q+uzfN0xff55sKU02nyaRsgmDGKwblhnrzXWvh9D1uTA+xatfdBMp28SwDNrNDpIqIysyTx47zWhfCU1VOH56nGIuBna5VAJVVfA9l5GeDKqqkEomCIKQvt48siwzt7iCJMt4YcgXv/MEN+0fJZE0CbyQU6cuoWoCmqrjdSJaTQfT1mk22siyyrOnJyjl80xNLWBZcf2bJAkM9OYZGikRdolc7ISJ7/uMDJSQpDj9WRIh9DxadZfnzk5TLCSRJYHl5VXS2RSKbtJca+G5HrV6C9u2WFlcI2UnOHN2koRp8fXvPoPXapNNmnHUTpJBiJBEkWa7hayqyIpMu91GtXRQJMQwJBAFFE1AxiP0RRTVQlZlRBkQo43VWrgakcr6a1uB3nXY5cdc9rcgQCgKeI06lyammJ9fYVd/kflKlZVynbGBfixVJ5m0ePDYaaaXKuTMCE2QKKWTlMSAX/niUV5/e4HAX6FZa9KuQypvYtkpyuUqYeDSV+pjdeESqYRKyy0zMTPH4kqbr3zlO+zbXyKTt3CDDqEbokQKfmeRW2/uQ4h8irkMpUJIFIa86hVFenImsghLC6toZp61lXk0ycKyhvn6t76PU22TLOS5/VVvpq+nSDFno9oqY4O9rC5NMXn+KQr5FJZlU6stIdRXqEc9vOrtv0xP/xAPPvwg6VyS2++4g89//qscOnALuazO4uwkUaeDpij85Sc/xb33PsXpUye4//6/56YDg/i+wG/+5m/xhX/8e2ylTFivcOrYOT752a9y/yP30WxGvOhFL6K8Nsd99z7FB3/9g0CLs2dO8J1v3c2ePXu5444XMzQyzLnzF+jpKTHU18+Fs2d4//v/Db/70T/lrp9+D4KeoicvMdxfAr9DY22V5bkpFEth/94DRIhEotK99fnE+q/d54MtWSzxLfEyhu7uazODhw0GzfjzazsHNzRzI2HL88cmYPpBmUE/sH1R2H59bP0Oz+NIvuqzWiTRvSnFfxJcUSryL9VugLsbdl0W7CCFsM1eQObMnSyO6ETd6FS0GSl6QYTQN0W2f/JRyWgLqPxBZC/XNrb1uRFFCaLwyh2u46FgYzH7MU9LrLYQsln3B47jIgrr6Zjr0g0xCPjm1+7mD3/vD/jzl998jR1s+V9YB3psADvYac6FHd5vBXzx3yIwdWmO8koFTZZJJy3W6h2eeW6c/mKOMAyxLJPetMVgKY9t2Zi6QRT4ZLMZ8imTar2BYWjMLa2yf88IkiTh+QG2ZWFaFrqmMTE5Q66QIZ+2KBXTuB2HyHNJp2wcN0BUdR5+8iy2KeO5Lqahk87EtV0zs0sIohSzSIYha5Ua+8YG0XSVSABFU3HdgGQ6xepyOa5nUlVCP4AINE3FNHWqtTqO6xP4AUnT4MLFWbLpBGEQEuuKGTRrDVzPR9cNUimL+aUy+WyaIIjpyVOZWDxYURWcdmejXk8URRJ2TBSCCIEb4LsBX7z7EYrZBP2FDIahd8F/SOCHeIHH/OIyYRCRSCQo9aSQFRFVkQk8H1GUaLccVspVgiCgr7+HTrvDxNQ8MgKyLOI4LgIiI4M9+IEb1y36PoZpoCoyvu8TBSGe51Fdq5PLp+nrKTI3s8jTpyaYXS6ze7QPURDpOA62pROGIb4fsLhcRpIEkgk7rj/tPi05TQdDVZmbWWR1pcLRU+MMDZZo1Zu02h36enLYSQtJFGJK8yAi8uEfv/MYh3YPI8sSUQR+4MdnZBiRTKSRJZlGvRmfP66H43mYlhWTfSgyhq7idyVQoiDWAASQ5fhKF2WRwPdRVBVJkVAVmVTCQutKVkxMzKDKKqlsfF7pioymykxPL+F5Pnt2D6PrGpYd9zm/sExvKU+z1e7q2kmYhkaj3iSRtEimLJrNFj3pJCk7Jj9aq9SIgoiQgEwmxfJymWefu0jK0Mj35BBFkcHeHhRVJpVKcXb8EkNDvZy7OEPKjtlKVS1mPw2DWNrF6bgICKiajCgK2JaJ7wcMDfUyt7CCrqhU1ur4foCqxTp8upsu7PoAACAASURBVK5zcWaRXCZNtdLAMk0sS+XRZ8/Sanu88sWH0fQ4wuU6Lq7rISsyqqIgSdJGHagkSQRhgNCtY1YUgXQywfileVbLNfr68vFSEhI71dbXoh8AxF6Q6N0ObUQCNKsNFpaWCX2PhGVycP8uVFkiCGIHZNtxmFxcoGAn2DNqU8iaaLKEqZssRjK3HEmgKSp2KoWdSdDf10/HaaEqCoZpxRdB5CFJkCvmsOw0oiRxYFeenmKBSPBwXQdN0RFEBVUS0TUdU1fotGu0WnH9KbjU6mvIokbbCfn4Xz7OwSM2ntfm2acmed1dd6DKST73pa9y6uwkr3zJi/kv//m/8Lo3/BS7h/v41N98nNsP9+O7DQZHBmnVKwSdDuOLIS957dt46MlT/O8f+XccOXKEv/+HvyeZSnL4psMEQZtcPstDDz3O//27v8eFiYs8d/Qx3vvut9KuzVLIpjl1+hwrK6u85ta99GZ1sqkcX/mnb3Prbbeiqw3e+64P8ccf/XMuzkxz/PRZSoUMDz30XULf421vfwvFUg+amaJcXaPVbtLf34sshoxfOIMXwPv+zfs5dGg/37r7a+we7ePsc2fZu2+EUiHJ6uoK37//aURZYnTvvtiJxKZzd/Pn39lZ+3zbrszxudZTTdi4v8Nl2T47H3HNbT/ftXD9tXY7973O5Psv3W6Auxt2XfaDwN1O0bzriextL3rdDt6iKNwgDokikLrsZC8UuNu4yH/MwG6nyNzWudmp8HcnEpWr2fqxm5G7cDs8Ea9MLYgjZeIV2zbGEa4TkVz773c1j1gsek83RaPrPQzXj938n3gXpK7g/bqTWhTjYz78Gx/h/VGVt48O7DgO2FIszuU/6zprabQFr617+zbfC+t/b4tWxtuiMEQWxFhLJwg5fuIsPYUs6VSChGWhqiqhALuG+lBVFRAIooBEyiSZTPHMUxcI/YiV5ho96TStdhtV07gwPc+hPSN02h0cNyCbyyDJMqsra0TAwECeVqdDLpem1WoTBD65Uh9ICpEgIIQBbqdFrdGir6fA+YszpJIWgiiQSFokbJsQaDabyIqEZWl0XJfnLk5hmAa5fJYoDDENPZ4D4MzZS7iOT8K2iIgor9XI59KYpoHvBfQUszGxCRGGoSOJAr7ro8gKkiIjKQrpTBJFA91UMJP/P3tvHmTZddd5fu65+/a2fC/3zNoX1SKpVCpJ1mYZvGDLgG1AhmZwgzuGYBiCgR5memZiCKKhp9v0DE30NJsxS4NtcBvwji3JlpAXSZZKS0lVpZJqr8yqyuXl27e73/njvszKKpWskpHUdIx+FRmR9d695y557rnne37f3/drIDRBkkbIkoyu69RqTQxDRxaCeq1Jo9HGti1kWabVaFG0DWanxymWCgz6fc5fXB4CkExYJec4LFXrlEoFosgjjmJarS72UJxEVgSmqlAo5tF0DYGgmM+jKgpn5y9SLDggSbgFh8HAHxqGS3zl4SfYuWUDQmTCQM1mmyiOGa0USRNYWKwThVmGcqSYo1ZrYpk6uqFmfUSWKY8UGSnlMtNsyyQKM0N1K+eQyAmFskuu5FLKu9n5yoJGq8Po2AiKphJ6fgZmo5Snnz3JnTftobbSQNXkbNEjlQj9GFXVSFIfSU5RdIHf7xHGHgW3QJymvHTyHL7nEfohhmnS7w0QssRn7/8OSpoyM12h1x8AKZqe0TmRII5C2p0uiqLQafeYnZlCUgSLF6sosoxlagRJiIyMaeo4rk0qpURJhKHp2LaJrAhc16bX8/D9EFmW0HSNheUqpVIeTVcxZA3HtfA8j35/wOTUOIWiTaPWGq5PJWzeMk2y7nEMo5jl5RqPHj3Ors3TjJWLKEMwbhg6gRcSRTGWZaCqKt1uD1VXEAhqtSaQYDkGru0S+iFxFFOulJBVmYtzy0RRzMhIkYcfO8zxcyv4vQFbtk5wem6BvKMzNVYiiCIMQ0XTMoEjIQTtdgdNVTNxJVkmiiI0Vc2AZhgShDExAiWNEbGP4+YQQkbICkkScxlz4yqZiLXPryEuY1RcbR/pksLg2mtQEhgynDpzln6ny/T4OL1+ytnzVcbKJXK5HGfOLlMwXRrdNiKS0YWObUGSDrglp3HONaiULHqBj15S6TUDhCJod9rEaUx1ZYVCwUHIEgOvRxwFqHLM+Ng4UeyjqjKh7yMJgzCIqVc7rNSr2LaCZWf+n7apI+SE0UomuJOgcv3tY5Ts7TRWeoxOSJAYtHoSP/Ce9/GLv/RrSMGATVu2c/T4GZSoy7ce+hp33DyO6dhodo5euwlC47PfOMpv/+Ff8ed/+VkGgxbl0RH27N3Dpi2bKFfKGEpCr9fn77/6VZ5/9immKxZ7ZyS2bbDJaT45M+E7Bw9z/c5RPvgDFTbPysj4HHlxgbffXWH/9jIPfPnbNOpNUOHY3Al6zRUir89P3feTNNptcnmXYmWKlVqNHdu3MjFe4ezp40xPTvDNbz/BbW+7k0KxxPHjJ9l34wE++dkv4tqCqL9IuVgk7qdUF+fodnps3bYVhIosq4jhu1dKszq87G9/qW8kr8JA+n7AnbQuCyatLWC8mgrl6wPuLt/se4urrAnUJbBmuDcUY0uTBCHkfzzD6w2Ot8DdW/Ga4lUzd68Wr+lhuBzsrFeEFEIg1slHvz6ZuzcnXm1guXp8P4NIupblvLq93HrKwlX2TtdRFl6nMWwNWK7NWYYZsPTVVtAunedv/ea/4/d+/+N8/MDOoYLf1bZ7Oc3jcrbG6nElkNLL7CCAK1mYvPwGZBO4KIg4d/YinVaXjRumULXMtFiSBP2+j2ZqSAgGPZ8vPPQkgefRbnfJ2xZJHDMzPcrkaBFSMEydMIy5uNyAJKHbHTDwPWr1FoOex6OHXmJ8JIeQJSzL4uSp8yiyoFjM0esHGJaRPQ9RiD8YEMYQhSGzM+OEYUi90YIhODYMDdvOBFF0U+fs3EWu27GZXt9D11SIIoIoymhtimCp2uC5E/Ps2jJNvz+gUikQJzEp0pAaqKIa6prHnaIq5HMOQRTT72XXkM8XCII+ipYtOkRhRKvd45HHD1OwTSYmR0mimDiO6XcHPPXCKfK2ies4pFHCzPQYCRL9Xh/bMSFJGRsbIU0hCEMUoVDIZyqMQhbUG22eO3mOrRumWFmpo+kajmvz+NNHmaiU+PSXv83W6VH8gcf09CiqpuCHIaZtEAxCPM+n1+1DmuINPFYaLcojBXI5lziIaLe7aJpMqeQyMzuJIkEcR1RGCrTaHVzXYtD3mDu/ROCHWGZGlex1B3z5m08xOzbCoWOnGa3khwbYWY2XP/Do9QeMj5eHNW8Jpm4gy4KXTp7jhdOLbJqsUCpnBujZwlcm4X/89Dy2KVCUjE6kaSqmphGGmXF8IecwUsjUNS3byrKmXsD2DZNMTY4S+gESoA4XI6I4Jg5jPM9D1zQkKcuGCllCVmQUIaEpCovVGo5jISSZfN4lDEOWq7XMekESLC2tYNlG9ndZadBsdXAsi0ajzWi5RBCGLC7VePL5l9ixeZr+oE+5UqRWbWBaJoZpoGkauioTBD5CCAZ9j8WlFVw7E43Zv2szElmdZ5IkmKaJoijDrFlWBxlFMaZpkKYpvfYAUlA0mdNzFzB1g+XFGo5rYVg6SAmmYtFsZbYQz5+YY8dMmRv3biGOYrZtmMyUTV0LzVQQw/HD93xUTcUwDAIvQFbk7DiKClKmOxyFIbZrk0iCcNAjDQecXWzQanQZGSmAlN1fkqsMvN9Hpu5V9xgu4qzW/aVpSpKmRIM+nWabOIroBxHtTkKn77FpeoLQj1haamLqOnNLC0S9gIJrYlsgiJGQ+c3HL/KOG0zcQo4gTug2Qzq9JtOz0wgpZWx8CiGRLUpEWb2lqgg838Pz+rg5m06nx6mTcwRBjOMUCeKI0YkJglAQhRq6pZLLuSRJjG3atBotjGINV97M//uHn+eOu3Zy/KUa//5PHuC22++m3hzgddt0+z2+8tWvsWvrJHfevIGC2UM1C0zNbkdRJBrNLh/4mV/l13/r/yGOBE5OZ2VlhTAO6fa6mJbB8wef4O+/8lWeePwxFClGizt84IcPMDNZYNuWSUK/zR237Oa6bTPMjMZoeszk1Cb23zjDlq0VHFniqYPHuOGGnfhxh7xbJIo9jh0+ym233Q4oTE5t4OzZOU4eP8n2bVs5ceIkN9ywD103+fuvPkihUGR2dgOyLPPA1+7nJz78Y7i2ia1J6LrJhaUFup02585fAEnluhtuGipQpkNxlSvfx+u7xfcAQJf1r++jT17znO2NAXfXFOnVtxPDBee3wN0bF2+Buzc5/qmAu9W20vS/QXAn1tW6XfP9eO2DyCqwg3Rt4gEZVz4b1C+nZaxm6i7t//qDu9XzWvWPe63g7o/+8BM8/sSTfPqem4aN8ZrG/kshXcrqpeszdJfOMdtqNYN8+d5CCFaqdZ567kV2bduYiZ8kEMcJaSrhDULmLlZ56Jnn2blhmjSV2Dw1ymOHT6JHKa6hoRuCVreDphkoIuXCwgq2Y3Pdjo206i1mpirkHJtSPkfOsZHThImxAjHg9QIqI0UMXce2LdoLFzE0mV6vT98PMSyb6YlRGs02nu9DCpWxErqu0W/3kYWEJGRa3R6pkJidHKM38LBtg3AwoLlSozhaotvvY+gqURRz20276XV7WLZJQoKmabTaPUzTRNMVqss10iTBdW1Wag1SSWC7NpqqsbhY5+Czxwn6IeOjZTrtAbGfIlDZOFGmWMxx7uyFTPjCMqmttNi/dzuFUg5I8QcehqHx4ol5PM9HIqU8UiCOIgxLp9cdZP5wns/RE2eRURgbHyPyA0rlPIqqoqkKg77HxaUaOcOkYFtMT4+ThBGmrdMbDKg3WuiGSq+TASxZCDZvnMZ1bIo5l/NzmcG8EBKWYZDgoRkqrVafCxdXOHj0DFOVHH4QIgQsVmts37IBy9TRDI0oTjg7t8jOjVMUCi6PHTzO9VunSPyAdqNDv+lRLBey+6urIKW0211UxSAMQkZKebbOToFI0QyZarVOLu/ywrEzlAoFCvkcYRAgSyrdZkBzpUfQTzl7YQEhgWUZAMiShOGYa+OqbWfm3YV8jm5ngKYbnD+/RM7NkQKPPX2UbZtmkERKFAUEoY9qaIR+iK5pCEnGj2LsvIOsKnQ6XcrFAl5vgGZoaIpMs9lh4HmUikWOnz6PSCTyeZcHHz2UXVMqsW12jDiJsByDIAjIFV2WFlcym5A0RdUUDFMjDHyEBMW8s8ZqECLLjq0CP2/gYZg6aZLRTuv1BmEYYtkWSZJgaDqyyOoVx0aL9NoDwihkYqKMrECcxgQDiWqtSc8fIBS4YfcGECmq0Dl96gLTU2VSkaAambn86hgmK9kChqpqxGk6BHbZcNVtdbFMnQRBKqvoaYieBpQrE0iSjOPYGS02jq8+Jv6jwZ30sk/WVr3WZWuSFOrLVYJ+n06nSz6X47rrtjA5lkfWUlRNUB7JcezcPLISsvs6G8eJSX1IQgWEYDz1KO4AWYDXV/H8GMs2kRWJKAkBCP2ETrtH4MdUSiX6vTayqhEEPoNBD1VRmZnZiqbqPHbwBXbs2UWcaPzeH/4tUeCw8bpp4tin0awT9joYAlQxi6TOc9uBbdRWJtmwfRMDZZbHnj3Jve/9EU6/dBhNh8nZSSaKMjs2FmjXTqDb04xObKMfB4xUpuhJI3z3mWNYQqBYCu1OG0VTMiaGBC899Sx/9ok/xet3eO873sZs2WP/rbPkczJ+Z5GJkkHq1Snnoe/FTE5tYHl5wPPPHmZm3CWnKezdu4XNmx22b5/g9LELKK7J5tltfOwPPs5MeTPn5pa4/4uf49abb+bYiyfZvn039XbAAw9/h73XXcf8xYvccuvb+Hcf+/fs3L6HZreGgs1DD3yD0alxbn/n9fQutlmo1hkEIftvvwtZ0YaMHol104D/KuDuShunq2z5Whq9xs3eAnf/1OMtcPcmx2sBd+mqyfn6n9cU62kBlyiCqw+mEPI62t0bpUx5Kb4/UHaV+L7ux2s/3iq98VJWKvu59G+V5rn6c7kwzWX3c233S+kv6aqndDVBnKtMLaT1E4x1f9OrvEwyVmjCT9z30/zmdIEf2ziVfZFeK7ZbBWpXkCsv+2WVdnop4ydJ0pD+ld2tZOhplcQJiqZSrzbYumE6u2dpVqPUbQ9AUvjmE4fZMFVi58wEtmWSpim6bqAlErolU6kUAUE+75LEMUiCVreHlASYhkyxUkDSVLx+n3anDVLM+HiBKInQNJM0TajVGxSLDlESoGh5VHOYFQ1lXMdCmDJhFOL5AaOjJZqtHqQCIWXKNIqiDimAMrWVBnnXRVM06o02uqmTxmCZGp7nM1LI0Wy0+fZTJ9k4M0k8FB/SDZ1UgtALabV7Q887C10zEIpMHKSQCEpFl9nJPOPT5aFwhIxmaBiWNqTZQrlSwrQyY+lSMYesKSQik2N3HBOAUsWlXCkiS2qm4qhltYKhn/DE8yfZuW0DZ84vsnP7LJAwMVkZggKZXqtLFEfs2DGLUCSmxsp0mh2cERdJKLSaPcrlApquo5kq+RE3U/QU0Ov10TWDXNFBUgT9wQAhC9qNAYZuoCoS4xNldmyZoVAwsCwDRdfxBgG2lVk2qJqGpuuUKyOoqky1usLN+3ciSwJTN0hSyI/kSYmpV9vYpkUQhAR+gK5ldWJJnCBJKWEYYhoGiiKQUolSLk+r3cKydPoDH0UonL+wQHnExS3btOOYduDTjyJ+4eALPDi/wNxyg1/5h+/whYvLPFBt8WCtzefnF/jSxSpfurjM/bUmX764zF+dOMuSqvGZ+SXq1Rq78jkO15uUDYNUAs0yiOI4y9IJiSSChQsrmLpBp9Mnn3Mz5VEpJldw8IKATZumURUZyzXYumkMRc9sOkzXJEpShKKgmxYLF6uoioKTc1FVdSidr6BrNoqqoRpZNiyOE0xdy94JksQXH3mSqZEctqmTioSUBMe2Cbzsvp0+PY+myuimmtXJ+SHF0RFURcMwTQbdAYokIaky3V6XkUKBg0fOMDtZRDNUFhfrDMKQQimPbpg888wJxssjLC5WMQwNSchAxiyRJAlZESRRjISEYqkkApJEQkQQBR66bTB3YYVu5FEZK2YLTtcyuL3Wd94a7fx7b5amINQYgUG7EdCoLzM+XuTQqQtsnBwnClJ6vQAhFJZWWjSaXXZPlVBJSITGM8fPI2kK2yolHmnD9hkX0x4lP+LiFCQWFqsoSoVnnnmODVt20vUjypUK3qCD4zgEkYuqmpQqNj2/B6gsLdf426++yE17trE0/wJ33rGTvTfN0LpQxbRB0w1UtYBhx4R+k7xRYdDroJRMvvT1p/ibrxxhYmKEJOryoz/6YfrdFTrNeZ781hF27ygikhUky0S2UpJugySN+OSffYcRZwOf/tyf0D3XRtUiQi9El3N88e8+Sy6QOPTk4/zq//AuDlxfYmYqoWiVaNQbTE1No1omTt4iSSM0U3ChcRE/rTB/vsFoMaUz6JC3crhmQqncZ9vmPdx5wwyVyjiLczUO3PYOjh9/kmon4p53vpOJiQKqIvg//uW/4sd+9IPkKzbtVp2NG6e5/4G/55f+p18kiQX73nYPB59/kX5nQFJdxKw4VFybxbPH+frXHuHHf+yn6IkuQiSoEiiJhBQrxEQISR7ODlZLYC5fHF7rI+u71bUCMLHa3uUiKi8HkVe+ra8tpPTafq6G2STktWNm+fXvQbsUq2U1meAcqyUe/4TiLXD3VrymeE2Zu9dJXOWVC3uvUHR6o8HdZbS9N/tB/v6P9zLK4TCu/CRdq0O7trgauEvS5CrQ7hVW/ob3UF4HmpOh2MCqeXoK/Pqv/xZ//PFP8Km378947lcBf6vtvfLK3yudw7p7s46SdKmZtcYzEBInRGHI0vwS+ZyNIsskSUIYR8iyQFGVzMQ7Tig4JoVCbmgiHnP4hVOcuriEoSsMvIBKuZBdZ5KgqDI516Zab6JrGo8//xJjpQIkCVGU4PsRruuiKQbImULcWGWEpeU6x88uUCrk6PtdPM/HMkxOnJnniedPsmvbRkp5G1WVkRUZ3dLwPR/NUBkMPFRFQRYCXZMJwkxEREgpjVYb27ZRNZV6o00UJbiug6kpFIoOmq5Qr7UglTA0Pcv6FFyElIHgTFHToNPucfiFUxi6QrGUQ5IUQEJR5KyvpAneIKBWa+Hm7IxuLUkcfPYYi8t1ZmfGh3YOCbWVBk7OIY1TVEUQBQG9fhfT0TIaYpwwUsozOz2GJEGr1WXQH6DpGmEQsryUeb8pqoIsZLqdHkEYZpNvWabT7pKSoOuZCEsaJyiqBpLAME00FWISZEWgqRrHT84xMzuBkDMTa01TII5ZXmpgWTaeF1CplBAiIYpCkjRFNzUkAaoqY1smSQJJHGXCN7bJykpjTbTkzLkLTE1VUDWFKEzQVJVOZwBIWKZJp9NHViT6PQ9dz+rcDi0t8XdHT/LXtQ7fjWP+YWWZJ7sNfuwnbiW3qYCzIcdH3nU9P7R/E7fs38R9d+zgF95/C/fumyY3qPE/f/hO7rtrOz9+x3b+2T3X8QO7Knz0Pfu49/Zt3La1xB13bONFyeOWu3fwpbPz/M7T53gxaPCnxxc4s7jE5y9Wec/kCEIW2I5JfzDAGtYQimEtmrzqBSfJHDt+lrzrrAm/IEkosowsZMIwwnEtRAoryw1c18HrZ7WU/iDkqedeZHK8lLUpZJIkq70zbYNdW2dwbCOblAqBIivDujsTSZYRaUoun1kvhGE0PCeZNEn54oOPs2fHFg4dPkmlmGe0PEK302W6UmC0XGR5qca3nj7O7s2T9Hp9inkHkSaYpsZIJTNGXx0afc9H1bO6O0kIBj0PTVZJooTAi5CFiiRSluoNGu0ee3dvZ1VERbqWue0b+M5LIwlNl5FFxNm585imw0179qBpGvMXlmm1eiytNFistZAkjw2jVrboYBkUXJO8pSJLCX9wpMrb9uhUuwGf+fSjjI3PUKsFjI9tI1+qMOIktJs1Op0BhlUhSk3SCObmzyHJUCxUeO7QMSbHZ3j/u/fiGDGSiHFyOSRFJ2eaLC43mJzaQhh6hF6Pc/NNRgob8HyFoycGWPYuNm7exUd+6j7+5rN/y/TUFnbs2cGJMye55QadTvsF5DjEMDegqXleOn2OSOS49e33ceMtt3HwuSf56Z/+Gfqxx9cf+g6nXrrIp/7iL9m94Sy33jrBDXsmCL0WSqojqTESMfVmFdPU6PdbWLaB4+RoNCN++3e+zo//8DsYePPsuG4HvW6XJAmIIoNjRxo4+TEWVlpohsZn/+5ztDoep07P8d73vIeca/Hlr3yJd7/7B5menaRYHuETn/gE977vfRw6dIiZmRkOHTrEbbffzV988q84e+Eiu66/keryMt1um16nTavXZ2FhgRtvuZM0lVEUk3Doc4eUAa+sb70S8Br2j/Xd8FpB2HAd9dXLUt7YudzVnpv1TKa1eIV53qq6aLbP6oP6Frh7PeMtcPcmxz8VcCfkrGBeUdUhLectcPeKe76Z4O4q5/lKA3+ydg+llycyh7//8cf/lHf2Fvj5Xdu4RKW8ov2X/f/yDy5Rd9etBkqXBuSr1efBcABnLZeHREocxSwt1pi/uISuKJnE+tD4WVVVSOErDz3DgRu28vSRE0yWR2i1ukNxlICbdm0mSRKWG216vQEFx8J2MppYr99nZnqcQd9jpdlmdqKyRq01dYOnnj/JqTOL2JaCY1mcP7/Icq3N3p1b0HSVKPbRVBVV0SmVciwsN7A1lWLRpdFsASmdbg/XtWm3u5TLBVZWmhiGxsAbYOoGge+vyetrusHffeM77Nw4jSRJ2I6NHwREUUS/P0DTVHK5HIO+R3Ekh6ooqIpCmqZohk4UhJiWiSCT2o7iiDTJgNryco183gZJol5tsdxoMZLPoekavh8wMzXG9OQoSZLQbnXwvYB6q0PBdagu1bBMHUjI52xiEuIwoVjIoeoaaZKgqQoPPvoMecukVMwhhKCQz6EbOv2+RxRFWJaJYeo0mm1yeYecayMr2XMQeRG6rhEnKXPnF7Adi0a9ju2Y2eQnlahWG9i2iW5oSFIKSeaJt7TSxjFN7JyNrAiElGZegHFmIyEJQb83IA5jnjt6hjSNGR0rEUUx3/jus4wXi0NREZ9iKU8cxaRJgiwrxFGMqigIOQOYQoaLvS7/8vApHqyucM6r8a9/5QN88K7tvOf6ad61byPvObCddruDYeioqkwQhji2hRACx8nUImVZsH3bRhrNJjnXZW7uApIkkXNd0hRWVmpIw6z8eNGm1WozWyjwnr3j3Lptkp99z15u2jPOPfsmUTaW+NUvPMQFzefPzzZ44vwSf3PsBPtMg1IxjxCwvFzDsTKqa73ZwnVt4ijO+pWqUqs3UWUZ09KR4hjfC6mtNIiThGIxx9JyVgO6c9Nkdi80jV63i2WbpGkGqkxTR9VkQj+i3eohAbqhE0Vxls1VVVqtLrquYtkGSZKiKAqbpsbotPskUUq/38tsKzSFXm9A3rVot3tIaUqllEfXFPo9j0LRzai0qkKSpiRptmgly2LIVBAkSYKqKohU0Ov2SSJo1tvIqsDJWYyVRkDKvAOvJnp11XgD33lCUkjTiHPz5yAOWW72kcgEYcYqRVrtLooi0+722LlpFK/fyNRgdRUhp6hCQhGwVY0xtls4hVGqiz5jU3muv34vmq7j5DVSr4ZhGPh+QpTq/Kvf+Cw3XT+GqqpMjI/T7fSYnp5FVjS69TOoakK+WMK0czQabVQ5ploL+c6jT7Bt2zRxmCKrCkvLTcIo5eDzc/yXzz/M+fN1cjmb/+V//TW+8Y1H2LFrK4ouOP7Uw0hxh7zlYLtjpGnM0TMX2HfgHYzP3sDP/fzP869/8zdIkfj4n3yce97xLn7n3/4uJB7vvavAji0z9LtVyiM2ciPvnwAAIABJREFUqpzQ6GSeouVyiSAYgJSQpBHeIEDC5dHHT3LrzduYnXIZBJmlg+f1kEWB+7/6GGfOX+S5519At3QGYcDAk/C9zDJm797dPProo9x8YB9xEmLbLt1el4nxSe6+6y7GxsYYGSlz9uwFvnL/g+zZez1ff/ghgl6bD33g/QhiGo0mjUYTVJdyeQzDdohSQKQIWAN3QrwysIO3wN1b4O6NjbfA3Zscbya4ywaA75XuTtdqola3f71iPQXzqgPR6wzuXsnbbvXzyz3pXn7sy1VDL9EpgFe8jjRdrb7L/olXVa26ZJCeppdR9Yd1dADJJS6/dAkWXS1WC7nXfy9J2eT6J3/qI3Qfup+fqThULOfyfYZXKEmXj9GrZNPhfy59PrQ7WK0vktbopdlnQki0211kIbLs3Oq9HDaUxglxGOENfOIoxjINbF0nl3fodT2iOEEIgaro+H6IpQpcx2D7xgqd7oAkSXj44BG6/QG7tm3E8336g4CBH6AIwbkLS0RxQJykKHJGN9yxcRpZkvjM/d/FMTSmJkeZnqwwWsojyxILizUsXWPLpplM7KAfIpSUB588RKPaw7UMtm6ZolhwWKnWKBZcTNNA0zUM08C2TaIwxDQ0Op0Ouq4TxTFJklH+LMtE0TW2z86gKuqacM3iUg0JcHPmWv/SNZULF5YRQqLRaGMYOmKYgRkMBuiGimHpWLaJZWUA8uJiDVPXCf2I0kiBsXKJZrNNHMVEUUwKaLpG5IfomophG5RG8gx6Pm7ehjSh3/NJE4lOp4dtOQgh8D2PxaVlfC+EJGHD9Bi6oRP4AUJWmJtbpNvuUamU8MOAJI3RVJlomL1JkzQz79YM5OECUjHvZnL/uoKkCBDZxMcydSzDoFFvYhoqve4ATdOYmZpACEGvN0CRFVrNDrqmMfB8dFPPVH5jaNZ65B0b3dQwrQyUbhyvYLs5dFPDcUxqtQaqqqypPEpI/J9HTvLnp+Z4vFXn3g9cT2lrmXv3TfMTd+3GCgbomoJhmQhZxjCymjNd10jTmDAKiOMYVVVpt9oYpkG91sosLxQZ27YJgoBiMY88zEqfOHmWfN4ljmJc14ZUwrYtDMOiUMzz2JOHmBgrY5h6VgNpmNx72y5u2jHD+2+e4Y69E7zv9h2M3TjLk50qB5sX+b+fnUNttxBCIq8aaIqCqitoska91mLQ89EMBUWVCIMAJ+cMKbsJvh9QqYywZ/ssg0EfyzbptHtoisr933mGLbOTJHGW3a5W65i6iTfIRE5ULVOUVYRAkrO6mXarh5t3mZ9bwDENJFnCtExM06BUtAmjTKo/n7cJwwRVURkrl8gXcxi6hjUU99ENjV53AKlMkgxHJInh+CARhiH9vjfMzKaEfsQXHz7Enh0bhv1CJg4jjhw7xchIfihuIl3d3PzKwe9VYm3L9WqZ69u5GhsilUiIWVpeod5ocsN1u5iZmcbzfFRFEIQhI0WbKPJZbi5jKHDidI1K0cSyFeIgIEkTRh2HP36hx83XWWzYOIabG9DvL+F7bdqdeaJYQTddJEXD833u/aEDGHqKaWo4jkOr2UASEjnXxnE0Wr0Bpluh2+1Qyjt4YYvAn+JTn32c2++YJg0tupEHiYpmmrw4X+MH33cfH/zQP+e2tx3g/gf/np/88H0kSRNZGfDlP/8r7rztVvqdFoWcypkzz3PL3T/DkRc7VGY3cXbuJJ3lJqbtct99H6LXavGpv/5Tfvmj7+LhZ9p87tsXefjZFp1TM9TmpnHtAwTdrfRbW6gtThD2d3Lm6BhSspOnv9PleNTiqRMrfOEfzrFpcoxq4yKbNpTweoLZTUXufsd+Dj95ElNO2bytwNmzZwG4/db9fPZvPse+G2/ixv37cIs5/urTn+G9730vpmFw+MgRTMsiXyxjWg7vfMe7+KOPf4KZ2S34QUht6QybZsrs2bmRC+dOUimOokkp5ZkNCEVBpMlwQXOVRZOs1cdfeueuMlnIShZe1s9eje+7fpt1cxGunGO9hrmcxNAW59oL8C8rsVmNdcqYV6WMrpvzrTKSLil9vgXuXu94C9y9yfHmZu7WGnrZJ5cm6pfAzOsK7l6trdc9c/dKRcVXu7ZXWE26Avyttze4+vVc3s7ldXCX9llt50pRm6vl+DIJby7zrPleA/6VXP40Tbnvwz/NJ++6ib1jZV42WEuXzvrVFv7WhHiSLHN0WQZvfRIWSKKIKIozuXJNG15r9v2g5yFJEnEU4/V9VFXBLjogCdIEdEWj3egiSyrz55c5fXGRE/PziMRH0zRW6i1uv2kXtpIpwo2Nj2DpGjNTo9imwdREBdvSqYyWUFQNb+BTrzXQFZk9OzYzNTlKtVbDtg380Md1cihInDh7kWLOotXrsrzcoVi02TA6xoapKeIwxnZVwiCgutIg51r0ewFhmDDwPYIgotPtogiBrqtEEXS7HqZhkWR/CKI44dzcIg889hy7t83S6/VxTYd83sWydZI4JgwCwjCgVCqiqiq2bSALBT8IOH9+kVIhl03adY0kTTlx6gyj5SK6pqKrOk8+e5zxSpFms4WmaeQKDoosE0QxURiiCJmVah1kCUWV0S2DhBRZUVBklcNH51iptZkcr+D3fSQBlqVhGiZjlSKdbh/HNqmtNNEtk3ary2K1TqWYw85ZyKqMkGJ03aDV6NDreji2Q5zAi8fPkXMNBv0+qoBez8dyTHq9AVEckKYxnZUuJAlJnKJoGrph0Ww2M286RUXVNHQ1A7GqpiBkmShKUWWN0ycWODO/zJYtk4RRQLPZplptEvoxbt7E83xc10bXDb585AgfO7vMI80G/+kX7+F9+2Z4+64JXnjxJOPjI8RxVos5PT2ZzdWFRCpJyEIQhwlRHKLpWdblkUefYtvmWTRV4cSJMziOQxhkKoWargFZ5gspxfd9JifGcOwcKysNGs02pVIJkGj32ii6ylhlBFXXUFWdOAiRRVYb2O50MS2LB77xOFMTZby+x4axElsn8/zcu/cyu2OKz73wEvfXW3zssUOMxD4ThoVjO3zju4cZyZk4roZm6iiaTpqmmLaFbuocO3aGfC4DXrquoSgK9ZUW3a7H9OQ4/d6Abx08yvU7t6LIAsuxUY2MYhuFESvVOqqmoigKpmWgKAqlfJ6TZ8+Ry9tZfSMJ1ZUalbEinj8UZ0mzydxitYHrOJydWxjaPkjEUcTyUgNV0fnS159m1/YZZBk8L0BVFeKhvUgsUoSc1dRtnqhgOTYCUHQFfxCwYWaSdqeT2XVIV8ngfR/vucv2uMb9hZxAImistGl3+5xeXmJmfBzHNTl8/CRxHNDtd9AUiRfnWly/ZYJud8B42SVOvCyrIQmEUPjMiRXu2AGF/AiaGtJtdihY42iSSqi5IKvkXBtdjVhaPIUiVtWDAxzXIYw6CDlB1idI1Rx2Lk+30wK/iWqpnD2tMjVZZmaTytzpOkjjfOqTD2A7o+TGdvLHf/JFnNEpDty+nwvnT3LuzEnmTh/EdSJmx85h2k3Gy6N0mj7dVofNu++lWNrFoSPPs3fvVh578FEe+ofH+fgf/C5f+cYj6KbKfK3HL737v+OePbdw584DjI+OYTo2QhbESXIZhNEtgSwrTE2NccfOvdy54yb2T91Ee0ljsnQbv/GXX+dbzy0jKQFbppvo4QxqKnP9zZNoCswvrQAxU9NbOXz0Rfbtv5l2q8/k+CilQpHqygrT0xnD4uTZeY4+f5SNU1OcOXmcn//oz/K1+x8iGtS49cBOOvWLOJZJNOgTeB3c8hSlkQpep4tiqJeBu0tdZhXUrVdVvVS9f6mfvYYFhyvA3D8G3F2am1zbflfVSUlfPve5/Pt186U10PcWuHuj4i1w9ybH1cDdeuGU10JdXKOevNp2V2SeLq2qiMu+/37jqudxpRDMNQrDrKq1XcvxLoGP+IrM3LptV7e5LLOXAdo0vRqlcD1IfIXjX9ZmFkISw8H8UrXcpazhpUHz8pWs1exbdu+SNEGRxdDkc/2isMgWjMWls0uS4Wp2FCNkaUhlivnwT/4Mn7x7/2qT2bGHYGx1/XBVKObKuNyr59J1rN0jIV0BJocWCAxlyknRkqw+JxYSUioRDUKSKKS6UiVnmwhFRdF04jii2+qjKzpJCs+9cJZWvU3OMdk0UyZOYjbOTIIsyOUdbNtC13TmLlRxbZ0wCMi7DkEQsLjcQEEmChK8/gDHNrFtC2TB6dMLOK6OZWaTfFmVUDWZpWqD3Ts3EwY+pq5g2yaGptNp93BzJpKQMsDQ7uHYFmEY02p3GSkVUGWBaeggCVrtHi+cu4AUS4yOjhCTYpgGqqYReQn5vMl4yUFTVPrdgEHYJedaSKlM6Cf87YNPcP32Tei2waDnc+ylOc5eqLJp8yymqZOQEAQBmqYzd3aR2cnJrDZRSMiyYHayjCwkVFPDcrNMVaPeQhGsycWrug6pgkCl3+li6jpCBlkRWKbCxm0zvHD0NN948iiz4yXcgomkKBBn/bo36FMo59A1HcPQmJ6uIMkSYRgxGHhouk4SJliOiWao+FFIr92DNGVhpc6GjVPImkYSXarBUxWVfs/HLZdwiwX6fZ/jp89hqFJWlydLWJZOr9OhVm+gGyp+v0+zlVEQO90ei9U2o2MOxZyDlEoUiwVkOaOPtpodTp65gKYKPnrwKL/8kf386IEN/LN37GN5cQWv3yfwPUqFMoViCcvWGHTqhF4bP0iIosxjMElTkIdm7nGIHwRMjJWxbRsUNfME9D0URTC/sIhr2tSWG8zPLxOFCU7OQtMVoihb4BkbGyOOY3qtJmka0W0OMHSdwaCDpptIUUJKTBzD84fOMTpeYWaixMLiCoVCAcu2kTUVL4ggTdg5W+ZH7rqej773Zv7o4En+dqHO8soKP33nPizLwLBMYj+l1+mzuFRDkNH9TFPDtk0s1yKMIlIhEYcBm2YnsCwLUti5dQbF0EBOM5P3VMLre8hSJkJTW2kiSWAYCmkaEysyBddGSBJxGCMhsHM2g76PImV1fUJR8cMQJQ4RSYKuajz57EkMTUWVdWQkVBWi1GNiokAUhYSDGMPQIQ1JohQZmTROkYTAdIzMnH4IBoSe1evVFxvkDAtpOJ6uiT1dkcW7fDnuGuKVXgpXeafFSBAnLC4soqWwfWZjBnI1hZFCAV01OHJ6CSHr7JrSyekRU+MucRojUhlFHfqsSimzSoS6tYSl93GcPIbpksg6dq7CwuKzqIqEpurolkQYS4jYwnUKtNpNDMcmSRN6gz6Ok0MRCbqc0u22KZYmaHfajE1EyEqVkfwo/X4HWU246W13oeen+Q+//1n23LiPu257F4bRo9mYw9VGqFge7eqzjLoqYaoxUylQrSccPLLM/h/8F+TKKvmiymhljBfPnOKeO2/l4PFT/NwdP8yP33YPP7D7tqxmUkqJ4pS5M+eJUWk1LjA2MUu70yZNIV8sohsGoeejqNqQmp6i6DBSKqBrOnduv5nbt+9j0t7JscddvnjyWRb9mB/av5Ebd82QLtZ5/7u2YrgTPPDA18jpIfu338X0lln8gcev/PKvsOu63fzFf/4ks+MzvHT8GDfdsofKWJFDzzzNnt03MDtegCTGNFVMx6HZ6CELhaJZ4rknnyC1U8YrZSAiJiWRIJIkEllCRBmzJxlqbSdDkZXV/nclyHstXTEd0oCkV5BHE+vmS6809UpXn4+1LN6678QVGepXeAYShplLkdVQZ+lJLs1t18/bVudDItsTktd8/W90/LcO7pT/2ifwVrwVqyELgaRl9Kr/P0Ucx2uoLVk3ql5NYWt9HD36Ajuv24mExO//pz/kqe8+zqfu3v8qR7tkZr4Ww0Nmn72c8rG2WTJEclessq22p5gGsp+QZLkr0iQh9ANSJMbKmZk0cfZiThOBazkkcYyiSNxy83YuzldByiaFuqwjo9DrtnFdm7NnzrNp8wy6IdA0lTPzC8iaTKHg4hRMFhdrFPIOYSgY+H1M20QgMTGVZxB0yefydPstJDmh0w0pj7h4/oBjp8+zZWYcO29QrVcZGx0hDAf4kU/ecbEtg1arh2UamKaRCTyoIEkKSRDjGBanz6yw954NhIGPZZt8+6lDbJ2epJDLoQiZsdEKcZQQpzGjlQqKbmTm3dUVfvzet2HaOkmcYFkmmiqTkhLHMZqqMnf+IhtmJ1lcqLJh4xS1pTqGqRInWYY0CDMTc6HKpBEU83kKTg5ZFoRhVqfy+Ye/y7tuvR5dV6nVWjiOSavdIZfLDL9JY3Zsm2HXjo30ej08L2bgdbE1KxO3CFOCfoRkhpkATpqgmzq+H2AqBkISDAIPRVEJgzDz1mp3GR0vssEcJw5CJGlV4W1YSyUkCvkczVYLOeeiaQpeGFMqj2S1Y4MBepBN6uMkyQyuVRXF1wg8H9cxqVRsur0euqEiSeD7Hm7eRhEyOdXmj0+F/Md37uDT79lBnIQIIQjCrM64Mlah3+tRXWkQxQGtVodWo0Uh71IsFVlcXEJIKZ7ncXKpzSBMCaKYv/j2WYQkEcUJlm3hez6nT5/kB+66ixNnz/Gz9+3ku0+/xNcfeYSp8XEkVSWMAnTVpNvvUcq7JAmMO4JfuPcGvvjNw9yzc4Jd181AAm2vi2nILFdbvOMH9zHwutSqXbZvm8W0rCFNVyGOUgzbAUkhTRIGA4+PfeRuwigijhMO/PLvsXfvjfz29ikKZg5N0VBEVuOZJilh2kdoCmEQZFYMQtCREkxbp1arcfDIce6+dS8KgoWFKpPjo6RJyuLyCqosc/CF01S7PT7yvrsQUqZ+aqsGiSyTJjGarhBGMe1WL1NqjROCKEbVFGzLwNYVzswtoGsqt920haVqg4efOMM9N+/CtA1uuG4LEgJVBtU1QZLwwwjXdoiSBFlIIGU1eWmSEoaZnyRJQhiEjE+M8s2Dz/GDbz/wMsbEZWPaq4yW/5gQSERJzLmlBRyRsqu8jaeOnWNkZIQwDiiWCnhhxPELy0ztHoHEJ4pjZFlBTiFNQJZVwjjk+tEy/+I/n+N3/8cN1Bt1UkDWBSv1AdNTB4jjBMcZod5oU6lMIKcNBp5HMmRe2FYJWXi02y3iOKRDims7LC2dxzByyDJMjI8DUCyU6Ccl5i50+ORff4b/7X//Tc6cW6DRWUIxR1B1g+Mvvci28ZAgiDDzOqHv0Wo16MUS+++6hb/7/Kd4373vI0kEL710hqcPn2Rf6S5uG7kB3wdZ0QkTH03JLDtSBGHYZfPUDtIkB2mM62RU8X6/ky3eyhL1xiKuW8C0beI4Ig5C+r0utp359Om6wfYbNvBr+z6KLBS++IVv8Wz7GNumZ1BKBf7Nr/wZQhvh1MoKz8+fYDIocOT5I0xMTbB9+1bed+8PUS6WmF8sMjc/j2mYVCplBr2Yp148xQff/3Yeuv9v+OAHPoDCWebnTvDMUzrzy23e/qEPESUGkpSxckSa+RWSpGt+mLIqX72zpJe9hF/XSF5l8f/y87h63f+1xGqt4Ss9a2/FmxtvZe7e5LgqLfOVfEquISN3Ldu90fF6nUd6jfYGLxf8SK4h83jlPf7+qair+6RX0C7S7zEoXlVoZR1/XkjSsF7t5VQOCfEyQJamKaWREUzD5IMf+jD/dnOFH54df9lS9OWAbfW3V1rhG9ItV9NxV+y1lvVM119ptgKZrR4KiJJhKk8i6HsMuj6aqmQ00zQ7uTCIiIKENE545LvPsWl2lE6ni6Gp6LrG4ePn2LtjE/V6mzPnL1BwHXKOzUq9wczMGKqskHMtWt0uxrDmrVypkCQpX3jkCTq9AaOlIiu1Fo89/yK7Nk8RhSmyrOCFAYWck13DMDmpaxqarmBbFsdPnadUyGGYOr7voyoq7U4P08xe2pqu0u/1UBWZfi9AIFhZaRNEHpoio2kqRdemPFJAKArtdpczcxfpdgdMTYwhyYIoTIiTlGIxT5yEDDwPVdYQkkSv22Pr1tksSyoEedcmimJs26JZb6EqKvmii6zICEkQRTHffvoFNk6P8+yRE0yOVdB1neePnOT8QhXT0Ni/ZxuWpaMbGvmcC4Bp6pCmaJpOEId02z1s0+DiYhXbsjAMhWazi6apfO07z3D9ri3Eccx/eeDb7Ng4mQFLP8C0DVrNLsdPzVPMO5h2lgmyHRNdV1EUGW/g0e30qNc7FEo5Aj8giWN8z0eRJVRZ0O0MSNKU8YkynVaXIIgQQiIIQmSRgYdTZxZw7Yz2qusqI6UC5VJhKOKSZGqlqspPfvMg8UjML//IPgp5F0kSdPsDDMskTSUMI1OBzKjGMd969Gl2bt9ELufyrUMneOzFi3zsi8/xyIs1Hj66yE/9849S2nwHM7sPIKVw+623Ul+ucuz0SRzbYXZ6lvmLC2iKQrvb5ejxExRLJVQ1M6Xfe90OavUmM1OT3H7gZi4sLLJ79x5uuPu9HD7T5u0f+Dn+9IEnaOkb+L/+8n6+/PR5vn5kmaXFRfZvm6IzGFAq5glDH0mCc+fOUyrmaTR72I4NaUq3081EVeIE0zDZPWLy0XdfT2HHGP/9l5/m33z9IX71bQc4+NxLjFeKKLqMUMRQaEYmCiK6/S6OY6GoChunx9eoqLZtkaYpURRTLOSwTJ2lap333rEPTdfWJnOtZmfYnoTv+3T7A8ojRbyBh24aKIpMt9v//9h77zBLzvLM+1f1Vq46dfLpHCbPKIOQwJJAiEWAwWBjG69Z2QQv9vpzwth864QXh2sTtvlw2MUYm/UCxrsYTLKNAgIJCQ1IGmVNjt3TuU+fc/qkyrV/1JmeHqmlkYBlvdenZ66++pqueOpUvfXez3M/900cxxiWTrmSx9BUllbqDFWKnF2qs3fnBLKSMReiKCbwffr9CEVRkOXsmZWFRBAEhGFEmmZKuULJhFgkSSLwQwxDZ7RSIk7ijcrFBUPZ+YF080D57ccWFY00hSgMODUzy3i5iNA0dm7bzuzcEq5r8+ihE9Q7HWRJYqyooispssjUjNOBbUyapgghgyzxubkm/+KqAr2gB7KEbuUJwxQkB6FKHDx8EE3L4+RsJBHQaDVZWVmmUChhmTa2ZdH1OhiGgWVqdDrrWKaFouRQFBnbNogTidmZRe64+yAzsy3WuwkzC01+6Ed+FNUUDA8XqZUL7Jqe5Pd+9/18/81X47Xnyedd5CTGqe6gOrWH2sg+NE3nlnf+LA8/foz3vfV9NJtLzMzNI0UhlaKNaRuAhCSDrpuUykNESYiqysgSdHvtjBUQR8hCQBKjG+Y5XgwgkSQxmm5sUArPtTWomoYQKoWczc1X3ciEu5PPfvEAJ+uL7J7cxRve8FLu3/8AY6Nj3P/g/bzh9a/n6NGjjI6OUK2W2bVrF3ffcy+vuflmrrzsUg4dPEy32yAlIWfb3HbHV9g9WUbTVYRmYdg5LnnRdSiqgZRKyJKMTIosZSIrZ+fmcd38Bfff071zn9985IJ1pfM97hfZ6qL7Pfccbd73cwlZkrOqZJyc73O9CFVzcz/sC5W77268AO6+x7EVuHsm0ZGtGlE3l7Y36Jz/myN9Ct1wM1VvsML3FmA+heL5bAPi1oIq567t08VTNsczisEMQt60fDO/fuPYF5yH9NTT3rLnThbSQPJ8E+10E7A7h91kKXuB3PKT7+QDe8exTGOw/Bx823z0Lcp0mz/jU9Y4P5g/9X6UN5ZfMCQP+vFUSeKxhw9RKbpESUoSp6iSoN3pESUpcQL9jkcYRHzm9gfQ0oTL90zR7nRRFMFqfZ3xsSHyjkWz0aZczlPO50CS6fb75PM5up0+cRwgK4JUkskXXTQgiRV8L2Lv5AQrKy3KrovXDyjoFqVSAcNwOHVikdv2P4khp6iKwM076IaGZZm0Gl0c2+XIkTlIoFQqZP0+voeqZiDlXNXJMHVOzsyTsyyW600u2THJ2FgVRVFAygRl4jhBMzUkZMqlIpqqsv+xg3jdPqau0W33sKxM5TMKIoQsiPwAN+fwxNHjNFvrnD27RLPRwc1lfXTfevwQjmFuWB783R3f4Mq9O9i1cwLihErRzawUSBkarlItFzB0baBEmtkXCEnG8zw0TaHf9QbVAQUhSfR7PUZHayiKysryGiMjw8Rpyosu3UXQ91BVwSXbJ1FVhTAMUVSFZmMd23Io5jMfNSmTiyP2Q7x+wPJynThJKORz5GybU2fmWa43GBmqkEQxkKIbOt2uzz2PHmZqqEKn28HN2eTcHEIWNBtdGo0urV6f7dNjWLZFHCX0un26bQ/T1Dh++gzlYoF3fvNJPvS2q3nF1ZdkGXQhsoqekyeJY+IoxPd7eH2Pb+x/hO1TI+w/ucqH/vEwn77vOD/+c+/mqpfezI7pac7MzNDzff7hjq/zxD33cPC223nn9A62ewEvL1d5VaXGtY7L2150NTeVyvzElZdz89gUheU13v2KG3jTtml+cNtOrjEcfnjvHl4/OcGLNYPrXZerzTwcP8GJkycYOj3DwZMnMM6c4Vjfp+8HRGFCOy5Qu+SVFPe8mPf80Sf5+Fef5B8OzDBactg7OYZlmURRxOzsImtr6+Rdl/mzS+QLOcqlHKVSiYcOHOJn3ngNP/9DL+e2uZN8/Gyb7brERDHPerONaegkUYznefT8Pm7OIYriTDjI0AfelFlCZ329jRAS7U6XqbEh8oUccZygKAqSJKMKmRQJy3GQZYFhGPQ6bXRDJ4ZMmTmOsG0ThDRIyqWs1Fv02gGXXzpF1+ujG5nfXvaqSXj4sTOUKwVUXaLX7aGqmZVApVJEEYJ4QNFMJJCSbGyM0wRFUzh9Zp6hocpG9eJpQ/mz0MykTT8XjS3eH7KUld8OHTuBKgtiFGqVGo5l8Njhk1xz+S5cXdDxOrRbdUZLORIyM3mSBMPQ0Q2dMIrQVJ3H5urc+Ko9CE3Cdl2EWiYMLR54+Dg79kzT97vUVxRqI1XavSam7VKpVEmSmE6rDqQUK3mELNPvt4kjnyjyuePSqqWDAAAgAElEQVTWhylXc0hSAqlAxuYLdx7i0SNn+YmffBfjU9uYX5rn2pdcyeToOItnDvPpT/wxv/C2lyH5q+hajOMUaNV7hPYeajuvRVccGo02Dz92nPf88HtYXl2i3VplZWme3bt2k7cUJBIQoGkGaZIQhH0MXR2wOZSBqJQMyKRxNu+QhYIQCrIsiOIYTcmqzkcPP45bKBJFEYEfoWoa/Z7H8vxZdN2mlLPYPlbjxeOXc+/xb7H/wOMcuPvrnDxzhve+91cRiuAP//APKZUKmJaMLFQ6bZ/Tp07xVx/9M3Zs28Po1DQHjx5nfmGFvpeiSBGGaZKkfZaW5uh2EtqNFQ586z727d2dtVFICkgCyzaRJDljLwz+pZy3Kzo3l7jwrf3sd97GXEYMkhfn5jRPuZ/jdJM9w1b73KBibn5Gnju4S9JkA9jBhYDtmcDdU+eum6ma/1ziBXD3QjyveF6CKufi26zsffdia+Dzf0dcrEL3bNW2iwyuF+zlYt/FFpWyLY+5xR+37F6Gt/zYLfzFS/bhOPZAqVLalIjeugfxwnN5Sq7vaas+PRO99RKJOI448uQxYi9kuFYmliVIJFRJJoxiDp+YpVYpoakqEjAxVKDR6rCwVGfX9gmEIpN3ctz5jYfRFQVJhpxt4eQddFMnl3Po9wMc2ySXM1EUGUXTWZhfxe972DmLbqfD/PIKl+yaRFFlZBls20BVJYIgolhwcUyZU7Mr7Ns1sWEGHicJhYJNu9VlcmyISi1Pr9dFUWXCICSJExzHYmlpjVzOJohjxkaHiKKYpZU1HCsz0E4BRVUwLRPDMvA9D8OyaDXalCoFHF3l0eOnsVSFWqXC7Mw8jm3j5nLcfu8BFKBUchkeLpPP2Zi6wem5ZbZPjpGmKeMjFQIvQJYlVENhx0gtq4iK7LXo932iOELVRJbpBhYXVygWXKIg4olDp5idX8a1TTRN4dips5SLeeJEIg5DHMckCHzm5pdRJYXPf+1BrtgzjaLIrK7WAQlFUQjCEMM0WF1Zo1LNDKPve/AJaqUCSZogFEF3vc8/3fMQ33f1peQLLgkpR4/OMjU5QqnooikK3U4PWQiarQ7FYgFTkamWC9iWhqapeH2fVrPLgSdPcvUV+xgZKZLEWdLgiYMnGBup8YU7HmRiuIBlanwxbfHmfTVm5pYYHxvKLB10lZSElaU6Dz78JNsmh5Alibf/8e3cc7LJlx46y8/+zC/xE//yzbzy1Tfwi7/yPm677U7k06f4d9ffwGvHJ/mRfft49badXL9rJ5qhccc997Fn+zZsyyAKYyzbIefYeF4fVTVwDJ17H3qIfTu3017vIoRKruCyurzGenOdfi9gaHgERVHZYRUZHxlmUlG4bu+lvHF6ijdMjPNT11zDa8cn2f/1O7jzc19kLor5qVt+jFt+/EeZ2vdy/vBvv8pXnlziw1/6Jn5rhfHRGkLKJoRJnCnu6rrO2NgIlqXT6XbYNlrh0rJMNOzy23cdZLtIsZGIkxi36KKJrAK2uFjHzdlklZBkYyIdBSFIYJoaQha0210ajXVyrkMURqys1imVi/h+SJrK/O2Xvs5YNasUR3HWXzc3v0TBzSqMspBpNtucmF2m34mZnCwTJwmmbZEmCceOzmIbGl979ATjlTxuwUSVZZAEXt/H0HWUgdCKhDToOwJVUTPTc1IsXc+SYYPn4fm8tp5x1edY7VOExOEjp2h3u6ysrLNtfByvl3lh6ooMaUKaxJiqwmglh6mkCEVgGiZClgnj7HqnSUZBvaZg86u3Hudll5komk6vZ3L/tw6zbdtLEEpKEMGhx1us1uvURvJYpoPfbxNHAbWKS6fTYH55iW6nTaVYJI4jhCKor6YoSki+YBOGEZ12RDPMs2vXJbzyX9xMvlQhiiM+/rG/5KFvHUBOehScgJyyhEofWZHJ2UXk2ODYssLorqt57y+9l9vvfYjf/PHfQFUFspCpLy2QSiGx36JWLGRJTEWQxglJkmwIcUVRuMGuEUJByCppKoGUDhJVOkEQ0lhbQdOy5FVtaCxTp40zamachAC4+Qph7BOGMYqm0Wl3edH05eysTKJ5YzStHu+45a3c9bWv8su//MvsvWQfmppg50qcOj3HJfv28qY3vIbFuTrFapk9+y7llTe+kuZaE0uTsZwcUdTh5MnjxKHCzp3TdNebhEnC0MgwsayQSDJxFKJpKmmSJbQy2s7Tgc+3A+4uuA+Tpye8z4HHc3t9+o7YqBJLsthI5mw60LOex3ml8K0WPkPlbisl8hfA3Xc1XgB33+P4TsHdBRWr5yio8p3GOfEQWRbPWsnaHOcrZt/ZA3uB5O5W1bWLXIOtzndzJXLLih0pEpCkMenAKFps/H3zz6ZKGhIy0jNCPEHm6CIPfktpiiSnZGZ3GQ1SkqXsRZ4+5eeCc4e//tjH+Q//8QN88hVXZebGG1z3TSd0wdicXtALfSHjQtqUnr6wj27zFclmGZuzcgmpnKm5SUnCQw8+Ts9vsn16jPVOh8gPUWQZP/JIpZSR0Sqdbo/jx+fptT2GShXqay2svIFjGLSbXdabHq5lMTZaAUmi3w8wchZPHjyDrmg4toGQUk6fWUZVMgAQBRFHTy5TX1lnZLiaKUX6Ea12l1KhQLvdxnVdNENFFtln3D4yjqqnNBoNTFUjiULiIMIwVYSAueVlSmUXzw8yEYhEJolT8qUCiSwTeT36PR9ZVnBsk3wlh2nZtJs9HMdBkiRiKSH1JQI/YmGpTqHkYOUMpoeq1IZK+KFPdbhIkkbImsxYrcx6s4tp6OiOjtAUkgSEAoWig6IKFFlhaWGN+to6lUqBhBihSEihSpTGmK6JbqgEfR8/CDP1zLyDLEksLK5wemGF6bEapXIBoWobdg2qJFhaqWceZnFKpVJDGII920dQdYHn9TlyepapsRopCYqQ8Hp9NEVg6CqSIjNSK6GbOmEQc/z4WUaHq4xXi6RJwtpqk5xjUSxYLK82qdfXeeCJo5RzNvmii+2YeJ7H8FCFMAiQpYhOt49TKNLr+TQbPZ48MkvY71EtOMycPcNSY5mdO8bYt3Oazx05gnjxMK+9ejd512F6eogwDGmsrdNqdIjDlFq1wMRYlbf+f7fzlYPLvO/X3stIpcyN193IH/3FR3EfeYTdTZ83jE9zrWHx0rExNE3O/N4ME4mAlYU1ZmbPMj1Wo1wqkIYSjm3z2X+8g0rRpVgu4fc8DF3HNS1yjpPJzVcKNBstbNtEVhRqQxWajQZLC7MM1UqsrtapVmsoZuY15zgOvZ6HZihcPj7O9bv38vrJCYZW63zs7z7Np267lZXGCppm8l/++A956U3fzwNHV3nPn3yKThSx1Opw8LHjjA2XyDkOZ2ZnkGUJw9TRVIVdU6O88doJavsmuPGDf8v1EyO4kg5xABK4lSKSoqAAa0trWK5Br9cnX8yjqRopEkIWrLc7VIbKyJKMogrcgkOaQOgHzMzOMVzJsW1iBMs2BxN0IIbl5SZ516FRX88qqn7M3t3TGQWz52PpKlIMjbV1Go0er7h6H07ORNF1JFUhJSZfzCEhBoINEVHkI4SKLMnESUy/5yFkgTpQHpWFjBASqZRu6S/67dAyL2hH2GL7IIaw06XfbaKpMopsEkYJDx48xsRoGTfvcODJUxw7U6fRWmOiVqLT6aCqMqkkQRyjKDI9L6AfJCy2Yj5/doVXXjuFZVk0OyHf2P8IzXYTJzeEqg7xN5/+FPlShW47ptlcZ3xihChW6XQ66LZJTtUpOC69/jpB0CNnm7jlFD0dJo0EQvdZrqscWdS4997HePWr38hwrcauHdPs2Fbl1Mk5rr76Cpr1Q+yopoStPlbJIY5bHDrZZvdVb+bszCpfe+Ag/++bf5UkzhgtK8vL3P/QoziKx9jQCL12IxMHkpVBr65PEmf9w5KublS34iii4/XoBz10wyFNFBRdIMkJmmINqlUScZwQBD6aYZCioCkGYRyiG0omNKNrWJaVVf2EwpFjZxgeMnjZ9NUcOTDDB//2z7h633bGd16GLPX46Xe9i5tueCW7d+7kv/75n9Py+7z8hhv59V/7Deycxd333U3cXWHb9u2Yms3aapPZM6cwRER9eZGb3vBmhG6eI49mVevkXGdC9hI+N/dQhEIUZtTTDWGgCxg1zyHJPJhGpOd6DTj/xwuB19b72hBUSZNNE4kszhk+bZ5HbQnKtpi7yIq8IbJy4ZxkMzMp3bCQ+OcUL4C7F+J5xXcM7jbF97Ln7vmYc2frDx7e5wjOnnH5RSqV3941uEgv48Za59eTn+PA80x7Pr/95gHywqOeU9B8tmi32xz/xMd43zWXbbzYLnYezzRvOZ/M29rcfPO5nfuVJpk3oiRn9KH52UVs0+DEmTletHc3tp3DsXMoqoGiaGiaAAkURcGyLEq5HGfnl2k22lTKORRVwuv5VKvlweQrplRxkaSUTr9HFEZsnx7jC3feTxD0qVYLlAaqiP6g72b79ASlooPve+x/9AhhFBLHCaoiMm81SaLX81BUBcs2cSybvtfBNHQUkfWOpcicODNPpVygkM9l9J4wxDZNms02xVKBXt/P+l+SGDeXQ1FUllcbqJoKaYrt2FlPUZIJjsR+hCzJeJ5PoejQ6XRxHJvADwZeXRLKwLRZSBK2YWDaFpLIQLQqtIFITLhhbv7wkyfZs2NsYDCtQAq+F/LwoaPkbIMwCImCmM/edT+XbBtj7uwSrWabiYlhRipFqrUijQHQyMySZaQUDEPFNHVkIUiTBEUTKCIzjrZtk1q5QLfTp+9lFRPPCwbKroIgipAkmThKOH1mkYLrUCwXSJKMOjk0VCYMQmRFkM+7dNs9rty3k26vzyPHjjNWraAbOk8ePkk+n0MI0HUdWag0Gi327JpkcqzK2EgJVRUIIaEPsveGqnOsKvG6l+wmDELm5paoVCpoqp5N7hWVLz1wlD/40uM8vBDxq7/wdkaHK3z2S3fQvf9Bfnx0gh/evYvpoWFM02S91c56I2UJP8gqCFEY4/keum7S7fUz9csgQjcNAj9gz44pCsVCVi0HVE2lUi1nIiMDaXdFUTgzO4eQZdxcDqEKDEXn6IkZyoUSQRBiGgaGqRME0cZTd//DjzI2NkLg++Rdhx26xY/s3csP7dpJ3Fjji5//Iu//8F/w+7/9Pt74qtdxzSt/gNq2K/mrL3+drz4xg0h9XnblbizTpN/3MAa9b8vLKywtrvJbb389VBT+1f+4i9cW8yDJqAM65np9nVzOQlLljN4bJQPvLgiDAM1QsSyTJE6I/Ag/DLKJapQwOlrDGvgjrq42sXMO/b5HFIRUa0WEkimmdtpdHMdiZnaR2lARx8l6NmdmF5ARPH50gZGaSy7vgJRkFghAv+eha1r2PJJ55EXROXoYAxq1hFAEaQqt9TaGZQyUM7cYZJ9XSU96CjV90/abMmipJBF0uvR7XVJJYve27eQLLrVSnjAKSVPQJEGj3aOYUyi7GpapkQ4SfrIsNp57RVGZW17hq2vr/Nhrd2HoEopisG3bbmTVwcnlEUJjz57dvPZ1N3P65Emuumofhh4S+h66lhAnfSxNpdfrIMsymqrh+z6W43L44GnyeZNWt8u39i+y1MsSje94x9s5M3OSvtdhZuYEb/mRH+cD/+E3yRk9xkoycipRHCqzvLJArXY5f/9Pj9IOBW+49E20u+uYpkkcx6zUV+i0mmzfPk6pWKBUKqAogjD0kWWRfWdCyVRZ5azlgDgmJcW0HHRN37jecRwgkVXwIc0SfaqWXfMkYXFplny+SBT5Wc9ektDvdYnjhASJgwef5LJLr8CyDJBllteW2emO8vd3fpXP3fFFrrv6St52yzsYHp7gwx/5MK99zc30/YDdu/by8htegaFrTE1N8q63vZUPfvBP2b1rBwsLC1iGSuh7zC3MoxdqlCpDqKaNJInBuV8oVWJoGmEYMnd2jjiJURX1vLn3Bffjc6zgPcPfns++NmV6NyLduLUvsu0WDKM4jkmSZMAAePoccrMS9wvg7rsbL4C773H83wruxMCc+rnGOdB2gYvJFtuLTRmqZ+p724j/n4O7W255B/kH7+UNu7Zv0JB4BnGUzTvaakw+LwqT0T+efeA+f+7ZKaZIZCp1lqHz0CNHuHLPDlTNRpJVklQCWc6ED7w+iiyz3uwQ9H3CIEAREvm8hWFmKoemYbC83OT42Tl6gYdj6nT6HsO1CiSZmualuycoFXMsLNfJ2w5ra+tomoJbyAyyG+tr6LpCKW8xOlzG1HV0TSXnWqh6JpjS6/ZI08w6ot3roCkap04vY2gasmbytQee5LLd03TbHVzbIo4T4jimkM8jK4Jez8MwDKREYnZuBVkSuLaNqmoIBRQhuO+Bg4zUyiDLPHHkBGvNNlMTI2iGhqooIGUN65quMz+3hN8PSZOUbq+LpuscOTZDtVyGVEZKBmBaSlG0jNpUyZuZYbam0G33OHp8ltHRKuOjVSzTQNcNkiTlJZftRAiBm3PIORaKLNNe72A5OqZlkJDQbXeQhITn9VlvZ+I0zcY6p86eJQlihASWqdNd7+B7Hs21HsVigdWVFrfuf5Q90+NEYYxuqaiqShhEfO6eR9gzOoyiZvdU4IfoRjap9kOPznqf2cVVpiZGIU1RhUQ+n6O+2qTV6TE9NUp9tYFlWviBTy5vYRgCISdESULfDzBtm6HhGu995ATJhMIbr92T3ceyxPzCMt12j0LB5fZHjvMbn7yP2tgUH/j932VtrcGnP/ZJfm58ilcNj3P15DbWmg0cJ7O+SBKwbRuhKyRpgqkb6IqOqiiEaYJlZ0qTtZEqummhqjKNVoN2p0s+X+DUiTPkyy5CFURJhFBkel7m6+h7PkNDVfJ5l5XlVRQhsJwcIyMjKIrCF26/ix0TI8i6zonTZ1hYXkFOEko5B03XcF2H1eU6BbeIncujKgY7q0PcsG07b5rexuJd9/CpL36O/+f33s+v/uJ7eOuP/CCvuOGlnG50+My9p/hvtz7A4uIcL941jqoo9Do9TM1AyBKHDh3m12+5iXd8/gGe7Pq8arhK5Ed8+tb9XL5zijiNgKyvWJYlFEUgREoURZiORdiPaay2cJxsItvv+QiR0SXnz65QKZcQioJQZEwz67VqNNaxHJN2u4vr2hiGglPIkUogFMHc8ioPHZsh6Evs2FbFcU2iOBgkI2RUkVkeJElC4PsoipJ55cVxJgw1GPhkWSaKI4IwQBFi0MO11RD33CeWT5/+btp+Mx1Ogqjn4fc95ldX0DSDZqtPqZCjXC6iKgrtTg/b0Fn324yUbIRISZIIRRVIkoIfZkqzipAYKbn8y+lhFtyAnBaiqTqaAofnWgyNjlIqlFEVmSgMuPPWL7N9xwhpukyvV0emi+83IQpBSkkSCU216PdigiClNmSztl7n7FKOr969zq//zq/w9nf+BCdOHubwkYNMT43T7QQ8+dgDTFY9doxZWEaE49ogoNFqo7mX8dX7z3Li6DI3vvQ6Tpw6ktHwpZRGfYnVhSW2TVfJ2SpJEhIlmTJoJhojCKMwe6+l6aCClL2nhJT1hEVhgKoIhCSIo5gg8LJ5xmBuIkQG6B3TJk5DLNslCmP6Xg/LcFC1TLlWEeD1uwwPjbDSWGZ1rUW1PM7Lr7qOg2eP8pV77ue1N93AkaNHWKvXufLKK7j8qis4fWqWn37Xv+GH3vQWSFXc8iiXveh6ZMUgjSNGSgll10UmpbXeZd8ll2LmhwljkKUkwz6b5ilxmqIoCm4uh2GaG8yY/5PgLk6TAc3ywvv4qftJ0nP1vE0VvS3AnSwEsiw/o73VC+Duf1+8AO6+x/F8wN3FBFOeDdicU5CUnilTudXxLvCCe0r2Jk2fdfkWOyNTJDz/8wwfYqOpeMsK3mYFkmc5znP5TOd/Nh9+IIiSpJsG1fN88HSgubIZ3G00Dm8xGG3eu5DkgfCJdI6PsdEXJ0lwjh+UHffcDs41RV9IKf3r//YJfq2osqtazTxyNn+vF1ArnwqSz+3jqVMSaWPZBebkPP1ynoOP6eC4aZIiZJkkjOm0e0yMDhGEMVGcSZ33+j0UNaO1CklGyDIkKZqWmQqvtdqMjdaYnV+iWinQ93zGxoc4c2qJq/btJAxjnjw6RxKktLsd2t0epZKbgTRFxVB1/umeAxTzJrZpIAmZOA6wLIOcY2PoGrZjEUcxqiYIgpAoihBCzmT6211c18Lrh3z9/qMIGSYmRul0OtRKeWQpIY4iuj0/E4zQVNIkUwu0zEyWXVOziuA3HnqS6bFhwjijAY7VqshCRrd0SnmbuaU6o0NV9h94gtFqGaEqmbJfnJJzbPx+gKlr2LYBksz+R48S+wECCHwPy9YziffB96TrCr4fIAFhEDMyVEVoGZ2n0WghSxK9no/tZH07URBm64Yh9xw4yJ6dE4RBgOf7ODmHOIrQdR3HthBCoGkKw7UimqqhqyqSJGEaOp12l6GRYW79+oPsmhqhYBoUcg66oYNgQCeGq/ds5+sPHmR6vIJhGvhekKmnIaEYgjhOOHJqjqnRYdrrXSqVPJqu4eRsnEE1M0liPM8nScGyTEgiOu0uQRSTL+aRZcFb736Qj/3ya7lk2zCqqqGqKvPzS+zds42HTy/wW3/7IB7wzrf9KN986CDhPft5da7Iq7dvRzezni9DN7Btg1SC9vo6pBLHT57BcSxUJQOrshAsLS6RL+W5/av72bNzG32vh67rQEx7vUPOcTANk+WlVYqVfEYTiyLSNKXX62MaRiagJGUqktYgcZAkIe31Dnd/635e8/KXYjsGMRLFvEu5mKeYz9Fab5Mv5omCkDROiZMEWc76HrvtDqaps7y6yuTkOHvyZX7h5Tdx6J47+fCn/oa/u/1OXnvT1bzpB97MIw8d4Pb7D3L7k8vsHjLZOTGC7dh0ez1c1ySXs/mxG/Zx7e4Kt3z6Hi4LQ26+/kWoqoYksveIomSAShaCXqcLsozX90milMCPsF2LXrfPoWMzTIxnyQbXsWm2OhimPrAtyBQwc65LHMV0e32arTblUoEwzpaFYcBwrUIaxFy2cwLdULAdkyAMBmNJBjBJE5ASNF3D8wMkSc5EfcjEKmRZpt3uYtkmpmlw/8MHmRof3jp/ttUEeYtRk03/39jPU4HduQFUljBlmZXVFQxdZWJkjGKxSBwlPHb4FJ4XMDJcpd5ocXp5hbweU3CsbNwU4tyoS5omaKpK4PdBlvmfp5pMlkNkWaXd7XHNK95IZ73LyZOzrLd6HD12grf+2A8hST3ieAVdU5DSCDdnk8QRvu+jaxZhGNFtdzCMPFHSZ2GpxYc/tp+JbS+hOl6gvrbCJZfso1DMUy6X0YTFV27/e6aqfSaHXXx/HTtnESUJfpSiu5fyydse45fe/PPohkqxUKLfbSNkmSce3s/o8CSlooGqyggy8CrOKUQPrp0sC6Io63OWFXWDIRiHAULJKnthGKMoGmIgdCVLEkJRCAMfIQtIMuGVTrfP7JmT5NwigqwfOowCcrkiQZApz0aJTKfbp1oZ49ATj3Lzdd/PDftexoc++heopkBT4NbbvsKNN93Ebbfege+FvOPtb+d33v/bjE6MMTm9gwMPHuAzn/scl24vIqUSC4uLeJHEeqfPpVddS5ykyPKAeniB59xgJrHBcjr/vj83H4IsGZhKW883nhbnLB0voEA+O+tqsw8e6aDdZHNO/dxtvemfvEVPf8J5RqbEpmfhOQnfPUvf3v+heAHcvRDPK55X5e4ioOzZwN13WtHa+kG82PLnH1vu57taiXxu+5I2wFTW6L6x9QDrbVW5uxi4SzYPhmzqi+OcgfpWZ5KBtngTjeFH33IL/27YQla0bI2nVlE3Z9me0isnZb8u+NvgzfH0z/MM36k8AOBCiMyjLk04deIsigQry3Us0+LLdz9KzlQhSTnw5DGmRmpZ352mE4YJoRexsLhGbaRCr+/x+JEzTI/XWFhewbR0LEdncrRGFAUUy3nGR6qEYUS7G3B0dhFbV+l2uuQsk1On57n2qr0YRmaI3Giso8gapmGytFTH8/zsHM8uYJlZpUoMem78voemW6RJiqYaTA5XcHMWJ86c5bprLkVRJbrdLpKcgXNdVxG6iqqpHDl6hpxpomgqvX6fTrfD5HAVVVFQNJU77n2MvTsmMCwdWZVYXqmzc9skJCnLy02SMMR0zAy4Jym+F7C60kATCkEQMzO/wt4dE1TLeaIo4tCpk+TtrG9DVXUGKArDyOhUuq7R7fWQ5ey6O7ZJEIa4xazPbm21yYNPHGHX9DiksHN6LLMWUBS6XQ/bsZEkeZAsUDJqXd8jDH00zaTvBWi6RpwkWLZNvd5k97Yx1IFXU77gMHt2Acd2SJKUKIzo+32uvGw7URIjI3HH/kcZKhXQVA0v6pN3XVzLJOdkVKsw9gFYb7Vx8y5REA56tAS5vEvoh6wurVF0M8+rOEq55i8/yZd/7630uuvIQqHX8wdVGcFb/uAfefH1r+LXf+UX+bO/+jT+I4d4//U3sas2gm7o9H0PVVHRNJ366hqdXocw9Ol0e9SGagReiJQm2FZm/l6vr1EdqSDLEtPj46iqgqoJup0uQsn6hXTDIPA8KuUi84sLKLKMbVkkcULOzmWKjlFMmqZ02l28vk++kKe1toapm1SLRWw3h6Rkcu+GoZHGCX0/JF/II6WZRUahmGe91cIpuPhhgG0aJHFMqVwAWcb3A5ycwbEnj3Opnefnb7iBW2+/kz/+zBcYGh7hv37wP/Oiy/Zijezj5z7w33n4+AKjBoyMVPG9jGbqOBY/et123vn33+Bwx2Os16NYymcAXWKgzJciITBME03XB5RkkzSN0DSVSskly+ck9Lo9hCxh2hZe3yMKI0zDoNXoEYUJuq5RLhXo9fqsLq9RKuWprzYxNI3TM0vUakVyBRNJpKQxpBHMnV2kUHRZX19H1bIeKteEe/oAACAASURBVEnIqELdmDCHYYiiKBk9Os68xoarJdIoRt7Ka+x5Vu6eS6QSpH7I4uIyS2vL7N21k24vo2T73TCjbAceURKzUF9Hl31KrosEWQU+DJBkQZJIhGGEgoykCj55ssUbrt+DU6ihGDrLi11OHD1GbWgnd933OF++cz9p9wwTkyWE1EROFWZOLePaZeIwQFMtIMHzu6gqHD68SKUyxpHjXSZ2vJbCjhw7p/YwNjbM/v33US6W+cZ9D7B72yUUXZ+ifAhTitBsk0iJSTyFVOR54lSM29/O6MQ4pmmhCIWCkyMOfZYWTlEum5SLLooEYRgjKZlPYTSo2EmDSquuW6TIeGGEZtrEcZhVbCWBLBQUxWGtuY5iaMikqLpOFAYYpkUcRyhpQqrKHD92kJXlDuMTY1iGRd/rIkQmuGNoBq7rkLNMOp1lhoaGSRKPRx4/xVCtzPVXXY/RK/J33/gHfu+3fpNcscQXvvAlfu3fvhdVizl48ABCjimVq3zmC7fx7ve8h23jBZbXmszOzbN9agopjvjyP97O913zEoRpXgDezt92z8yauUBkRXpula2tQNLFwN3mtLfE0+cBW+m5bV0t3AwSn9s2m+MFcPfdjRfA3fc4vlfg7hyN8rl5wG0c8On7fl7Ln3/88wF3GbCTZHmgaDXY+jsAd2IzJSE5v0b2vcBWY1kcJxuyyKQp//md7+ID33fFxsrnKEcXgMMtqatbAbvBGW694CnfxflP0un00NTMLDklpdfzcCyTbqdHEifEccr4cIVyqYiu66wutxgqFZmbW8F2Ler1FgU3RxhE5Io5TNNgpFxifb1DtexSrORpd7uQJCzV1+h2e2Q+fgWqlQrLK3VGayU0RaFebzE1OZZZRShgGBllzbYcut0+5VIBy8oqMkU3h2EZdLtdkjjKKKVJgmE62eVMZLrtPoWig0RKv9/H0FQUVWR0OqFgWgaSEARhxKmZRU6dXcL3AyYmhpCllF6/TxqnKKrGZbunOfD4UUxdwcpllgUSWVZ5fKSGBLQ6HWzLBKDV6lArF1hba6IoKrfef5CVRpOJWpFS0WViuIJlG8iyQJYFcQTLyyuYhgFklURZljgzs8KDTxxlYriMLCT8MMj6NySJyZEaSZoSBmFWpbMsAEzTHEyEJVIpu7+XFlbRdRVdV7j9vsfYPTVOv+8TDqp/3b5HsegSRhE5xyIIAoaHKiALvnzPA+zeNo7jmFnlQVFBktk1MYKu69x57yNccfkUSQymYXLmzAJpkjC7tEitXMKyTE6dnkNTVaIoYr3TQ1VV4jCiVHRZXl6jUMjzlrsf4P0/eDnVSgE3ZyKrGrqq8QO/+xmOtVTe/TP/ig/82V8zc9d9fOj1b2SHUeQfv/JNpsaq5PI5VlZWyRfypCnUV9eIk5BczsHNOcRhgqoo5HIOYRih6jqaoaFogqDfR1MNFheXMEyVKIjR9KzS2O1kPoiqIvADn36vj6aqJHHK8vIquZxDKoFhGJw4PcPExChxHBF5IaQyTs5ldmaBYqlEt91EVVSCIMR2bJqNFkKWiZOEhYUFJqfGWWu2sGyTteU6OddBVs8JXQm8fpep8XEmx8fwvD4v3b6Nm8rDvG5iko9+5CP83f77WVqp85KX7OVf/8y7ef9ffp7T8wtsL7t0e21UVSaOQ97+6iu4/soJ/u3Xj/DD41U6PQ9VU0jiiARQB9VDWQikFAI/4M4HHmJhaQ1DVUnTBFVTiIOIbt9jbnGZaqVIt9vDNHSWl1vkXQcnZ6MoCooiUFWFTrtHtZxHkQUlN0e+4qLpAkUVhH5EGstYpo6iCnQze1bjJEUZ0PuyMXzQQ8wAYKVpNnbFCaurTXIF5+kD78XeQ5tpbk9fc8tIJOg12ni9HrmcSacfIuRBlXmxQRBGGLrCiYVlRktFRso2BcdCllL8IEBKInTDQJIzG5Ner4tuWXx2Zo0337SPWBaYloWmunTWe5Sr2+iFKnfe9Q32Tphc8aLdmGZAEslIkcrc2XlGRqoEQUCcBAgBXa/N/EwX03H50pfuI5RG2XbFEPu2X8nJU8epVMoMDY1w/zcfpL6yTrt1gh21LkG3hzB1TNekuxZw+uwKPWmMG17yZtYadWzTgSQl8PosLS/QWV9l27ZJDE1kcxNJQqgKaZJd48z655wfocALfB58+HGqQxV0TSWKQmwnTxiGdHshjz/xOJqh4NoWaZx5GSZJjCwLktAjTCKK1TE0zSSfd1BlkVUI5ex4reYalmmRxiF2vsDs7BHa3R5gkyQZzXdotMorLr2BD//lx/iTj/wJ/+nf/3vuvuur7Ngxztj4EFHggyx48dXX8/FPfIIr9w5z1913s3vPHlaWllhaXgXF4jWveR2xpn9PwJ0sySRpcsG6z08v4em16ucM7jhv83BR/YQt4gVw992NF8Dd9zieD7h7JqGRKIqA9BkfosHGG7TMbGIrP2vfXJLEhGGIrunESbzlgLBZ4ej5xGaK6NM+02ba5UUols9dHXQzffQiSdnNtM2BNPUFxxxkFBMBSaoSxYKgH5EpQQ3WkC4cSM9ROTdTUi8cbC+kSqYpRFGChLwB3paXVnjnO3+GD1x35YWnu4mJmQ56Ejan3jZ/XmkDxKWbfrNxzKeGHGcgNJUlkCVECo3VFvfd/wjLS3UmR4bodT16nT5JGHF6ZpUHDs5y5b5tuK6JaiiQJvT7PSwrqy6dPLPAru1jxET0fA9d0fjWQ4dQhcToWA3dNEhSGVVoHD56mj3bp5DlLKPbbne445sPc/P1L4IUTFunUHBQLAVJwOrKGlKSYhgqaRqDlCAMQcqgitT3UIVEv+exuLyGIgsc22JmbjGjiaoyQiT0ul1KxcwjSVFU1ho9Tp5apVJxiKKIJw6dYaxWZWy4iiwlRCEUC1k1I4pSzi6toQqwHIuRoQqWaeB1+yiagpA0kiQlVUKEptBr9TE1nSgNKVRcPK9LseTiOA6WkLjuxZdi2BqJlKIIweJSAzefH1SKUsIwwjRMZEkQx3H2f11htFrm3gOHcG2LUrFAkqS0WhmlL01TEBIPHjzG2HA5U2klIfADiFNaq2tYukYu57C4UCcOZVIfUjlgeLhMHIBqaOScTDyj1+1hmjrtTpf6WosoiNg1NYospcRByKnTcxSKFkICz/PRDYWpiUxNs98LWVtpMTO/zOhwkempMQI/pNfzKORz2DmbNE6wLANVV0Bkz0YUJ/z0Qwf55HtuZu/unSRxgpBkkjTiJz/0FT7+kT/l6/fexz/cfhf//XU/wCt27yRJQ4pll2oxR7lWJAhCCsUislDwg5CvffMhNBRGh4aQkeh6PoZlInQVr99HUwVB38P3AtZWVnHzOQxDRxEygd8n8VN83ydfcpFkGd8LMJ3cwMBcQzd1bMuk1WoRx+D1fcbGhvH6feIownZd/ChAtww+c+fXuGrPDmSh4Xse8wsL5CwLyzbRzIxmHIQhlm1DnNkcKJJMFEUsLa3Q6/TJu3l0TcXOWczNz1OsFvH8EDtvAykv2badV5QrvGp0mD+67S6GygX+zTtvoTw0xm/9xee48cpxhsp5TCuj6CqKwg+/bAefOnacx0+ucPVwlijQVIHvZV54JAlRlNDretRXPS7dsZ3b7jlIz+9SLli4bgHTMsnZJkJIGJYOMplwjqYQRiGe76NoClEYous6d9z3GPmciVux8fs+vu/heR5BGJLLGVg5h6WlVWRJoAiVOMwm90gpQRAiywIxkHSX0hQplQAZWQgsy2buzAKFfOahmJ4bNJ9JZOWiL5CNkXnTdtn/40jC67Q4ePQwvX6CF8L2nVMoqqDdazM2UiKMI+ZX1mh1Peg1cYs6UehjSgaRlCliI2W7FIqCIObBpTY3vXIbftRkcWEJrVJjYVHjH+74n7z9Le/gB19zHS++SqCJEN9bp9lYpFzRqQ0XCLwWlq2TxjFxGJGzXNxKnm88KHF2zQY94vIde6lUh1lda3PkyAmePHA/aa/Fq142jMoSkbeIH0XIioqi6nhtn9LwHv70swd52e6XZQktFM7MnKJQKnPXXXfQCxTKBQPXyW/MB9JUIo4DUlICP0BVs7lHIkUISaXfbpLLu+iagiZrpFJCIkEcKiydPUttrIJjmJmvYRIjZIkoDhGKjpAUhJRSyFuDhESW3NM1cyAglSW5gtBH1jQWTs9hKwblkSKzM4u06g1GRoc5deY4e6avoH62gTtk4liCyy+/lLVGk527r+D9v/P7SKnCT739p/mnux5nrVlnqDbKow8f4MbrLssYJMePEIQBo2M7iURCSogeCRJx/r4SG/53DAS25A2MlRmin6vKbYZfW9yX8jlq5Sa6pCw/TYD7+cAoeYufLZ+JhKfN4S6Y810k0gGj6LtTNvjO4wVw90I8r/iOfe7kTHD/Yg/MBYCD89WeZz5EiuPkaDSbGKb1XaueZVYC6ca5b1rwvPf13Kmm3x4V9dlClgQkgnajw19+5KM8dOAhXvp9V/NUcIckbVT7NsezDVnSYGCXRQbU6vUGJz70H/n5y/dsfcYXJJSfsl9Z2pTlkzaN/5vXe+q5DO6PzKMhm88MGtQbqw3KRZOhSgGkTMDg0aOnuPvhE1x7yU7Gh0rYlkkYR/Q7fR4/fJJL90wjFJGp8q22aLU7zC+vUnJzRGHMWqvDodNzyEmCbeg0m+us1hvs3jWJbmbUU1VVMA2dyeEK7XYXVRWs1JvYlkGSJnTaXaIgwtCyfps0SQfrKUiA1/OwLYPPf+V+Lts5zan5JfKOTZokVGqVgShEZkhuWAakUuZDlKYsrTQ4Mb/McDmHhIyh6sRxsiFQUq4UkGQJ0zZRFZWSmyfnWnzrwEFGhyqst7sD5cnBqzBNkQTMziwhJIVjp+eoVoqoQqHb6WOZJkIRWT+hZaCqCoqSmfWapkmrsY6ha6zU18i7OZqNNl/95mMIIJezsC0TwzAIvQDbMjl5ZoH5+TpBENLv9nFdh+Zai53TY6iqQn21iaZrg8SFzPziMuVSnrn5FdrdzMg8jRIsJ1Mj7HYD/CDAsnTW1zusd3ocOjlDzrYYGani5C0CLySKYgzD4NCJWUwjq3rqhkqchMRJNukizSi+O7aPMruwiG0Zg/V0NE2BQTN/p9vDcTPaqCzBT9z3CJ9496s2quFhEHDnI8f4nU8/wgd//zf52V/+Df7s+17KTZUappWn3WpjGiaB76OqAs9PSNIUVZfwfY/YT1CRWKo3mBwdZrW+huVYG/dPr9tHQsIc9HQ2Gi3KlTKNRgtJksi5OVrNNo5jE6dxJvmegqrpRFHMyko9A4ydDu1Ol1qtmnmyDRJzcZJs9PkausZVe3cxN79IpVJCyFnXGDJouka70yVNEgqFAgBr9cbAMyul2+9RrZUxDAOAVquFEIIHnngCS8v8IVVN0FhdY35+gVIxT6fT5a1XXIF5Zpb/9Im/Yabe4mP/5Q84MNvht//881w1bqMgoasaQRBw9d4hrrl2Bx99+CBfO7rCteUycRKj6Vl1WEozNdq9+6YwdJ1Ldo5TLeTQ1ExoJ00ZAFMTIQTz80vknBxhmKmRLi2voaoKQshomsL4cAXXddA07X+x995RkmXVme/vnHP9DR+RkaYyy3e1oemGNviGxknIIJAQIx6SECAz8np60sxorSc3Gj2NZqSZkUFaMksGPZCb0WCkBwgQNLTvpmlbXdXd1VWVVVlV6TPDX3/eHycyK8u0ASSW/uizVqzKCnPviRv3nru/vb/9faRxzNpGh/ZEA8/zDAUTTDKgXmY0jHBc25w30vQ4p1lmTLClOC+KNW7esh2LNI5NRcySW4voMy3Ml3/++QwhcGybuN/l3OIiYVjG90qcPLtEyffJswLPdXAsi4XlNVo1j5mGh2M7+I6DZUsKDAjK85wt5U8h4Gwn5rpX7wEFs3P7+OQXjnDr697K8ZPH2TszgdIb2GqVbneVRqNMnsTYVkCRQ2e4ghAWSeJg2T5CQVid5b//zkfwSi1+6Ed/gC/ffy9XHjrEY489xtT0FFcdOsQrXvEK/uB3/yOvfc2LscU6Jb9EudamP+xTr89ycmnA4RM5r7/xjfR6Pe6/5y6UlLQaTZSC4XCVKw8eQArDJpJSmESB4yCFwLG9cWXLsFds5VBrTKCsLSBifP90DlIWzO2ZxVYmca3GfXqmJ3yrh1xgO8YQ3bGdbcVGIQRSSaMIbNtkwqLT77BnZo7pySnOnn6KQQw33/wqTp56kuuuuwkhLcpOyON3H+Pv7vkU6aDHb//WB4jiEd/2rW/jZS97Fb/8y79Mv9/jXf/me5mfP8nrX3OAM6eOsbGyyebqGrF0ueGmV5GQI4RG4qLl+faPLeUBMW6BkOL8vbsYg7VLE+6XLaldAu64jJjJ11wju2yl+7nYQM+5UbOefPWz+mcdL4C7F8ZXNL4acLezYqbHC9QzlvLHmZJtMZbnLaZiDEJNgHuhCMlzXaDP7ml3/nk97mXbWX17LiuEi3b0rO8ptqpuuiAvMqS8TG/F9qaM1PTO/rpLtrdTEaoAkQsEko9/9OP8zE//FLZvmt7FjgxvMVb5unhsLVmmX+4yr4+P0Xvf+0O0H7qLl83u2uJjXOa943Ni67XxvvX2u7dKeFtfdkfN7gKwpy/Yd6ozhASpNSvnVlg+s4wuChrNJmFQQmiHJC7wlcvBmTZKSaQlCUouru/y8MPHqAQeYeCxcG6JSjnk6fklrtw3y/REA4SgVq0yUa8x3aow0ahTZAVCFtQrAcK2QAg6nT5KKT5/3yM0SyXak3U2NjtMTjQQwoCyLz/2FEdPLFAvhVRrFZJRhJSSwSjCdWx0XuC7Ll967CSTjQrtRo2JVg0/9ABjQZDrnDjL6A2G2NJilER4nksYuFx31X4C3yNJMj5156O86NAe/NAHBMqWuJ7DvfcfZqJeQ6AYRQPa9Rr2uDfQ9oxK3NHH55lo1YhGQz5x14NcMTvNfYdP0u/2OXV6malWw5g2C2Piu3RuFdexWV1ZJyyVGA0jwnHVo1oqc3ZplcmJJrsmmpxbWefk4jJ7dk0RxRntdpPDT8xjK4sr9u8iiROePH2O2XaD1fVNquUSruvQ741IooxP3/1l1je6pHnGZLOO57nMzLQZRiMqlQqbvQ7VapWlxXVarSr9fp8wDEjihIN7ZjHViZxer2esHaQkjnNOnllhtj2BJW021rtjER6x7bUWjYYopWlPVHEch+FghONYrK5usL7RIY4yWhMNsjGb4H13P8bf/dxbkbbN4tIqlpJ8+svH+LMvzvO+73sf/+13/5A/f8u3MhyleGHA337kc+zfM0MQBiwtLRGGHmG5RrfTwXIKut1NqqUqgesxNdmi1+8zNT2J7dkGUCmJsmwefOQoJ06fpdWoUW80ieKYaq0CCLJcG2VNS1LkuVFS9T0efPQISkimp9toNIFvQNfKyiph4LGxsUmpUkZrQ409c3aRUik04EZKVtfWKJcCpDDHajiKyJKMUslQCUfDCIHA9RyePj5PrVo2/oRZZrzxXAPIG9UKYRjgei5KShylKIchYSkkKAUUSCxp8y3XXsMt9QY/+D9+h1NnlvnxH3gPf/z39/NHn/gS3/KSOZRUuE6IQHHjoV289Pop3vt3d/Cug7s5cvQ4jXrZVGqUxdr6CkHgc+zYaT57z2FOnV1iz0zLyLw7FtEoQgBh4I8VZhVoTbVSHtPyCooipz8YEpYCw47AKPJKpRBCkSSGhVIq+aRphtYmaHd9I9ZkegMNOBZyq6IzVlOUkjQzCaFRNMLz3K0mo8tX6b7G1oM0Tnjk8GMoNMO0YG56hiv2zuI4NtVxD6llORw+toBjDZmpu9zxpbPsnWuiRYQU0iQzhEBZRsjK9i2uCn3+nztOc9O1FdLCJWzezF333sWbXvtWSu5Zhr3H8d0c37OJR11sy0ZqiyIrqFerFLrCU091+I3f/hTXX/dijp3q84V7nmZ67wH+j+99B7unZ7nq0H7+/C8+yHvf9176/S5Hjh5ltjHAdyJ82SHwQ6RTZnF5mU5f8icfO8L3f9O/x3Y9pBAEoWTP3n14tsfqyhKNUkizHpJlGUKq8W+VkxUZruuhwSQ8MEqeylIImSF0hpI2QiqGgxFZAq6r0TrCLmzT9zoWt0KY39goegjyPEOOe/pcxyOKRlj2WDHTthkOu2SjmJUzp2hPTBInEXg1RnHE/PwpDh56EUEQEvg+S8vLvPqWV3HT/pfy4c9+lN//7Q+wcGaeW17zOj7+959g18wuvuM7vo3P3f4ojuvzT5/6CK942U14Oqa/tkiqFa979RtMXy2CtLBRwtAntS5QW3GbNgleY0mTbzOHzt/qd8SClzvp9GUSyZc5jyXKrN/6QmXMy48thpGhPRca4xd5cRz6Arj7VzVeAHdf5/FVVe52jq+hD+/ZN/vMIO65LtBnryLqy7/3IoXG8SSe93wvmcNYPXJLEEVuKU4+R8Xs2cDdTisELYxss7Is3vSmN+B61jjzduF315dfcndUTwExBowXze3xw0f5xpWTXN1ub32IHYjt/Oc5//LWH1vZyu2pXHBcd37nSz59wQaFhuNPznPPI0cJXZe9c9Moy0dKi49+6l7KvsuuXVP4vkMQeni+jWVZDPsjWrUy8+dWqJUClJScXFjihmsPMRyOqNXLDAYj8qygPxhhOwrP9/jYbffzipceYhiN8FwPAWRJimUrmpUyw1GEpiAMXON9JhRRHFErhVy5d5aV9S69wYjpdoNcFzRaVbIko8hz1jc6vPTaK1hZ22B2V5tef4BlWeMbVLHdFxSWQgSSosiQSnDqtPFq6w8GaA03X3+VCUSBhYVFypUyw8GIJElAa4b9EUma0OsPefjICfbOTuJ6DlBwxwNPcGBuCttVVFyXqakJXnxoD7OTLUbDiLm5KRjTiSzb+IYNh4Ntg/aw7HNifsH4+sUpjUaZz9/9CEdOLPCam65h/9wMCMnphSUatQr3P/4kr33Zi/ACh1azyty0MYu///GnOTg3jR5T+tbWOly9dzcT9Qqz0238wEfZxm/KcW0GnT5SQjyK+cL9R0nSEbtn2mPVQwOw/cBHAGsbm0xMNLFtm431DntmJ6lVK1i2wnFsbNshCELyIsNScrvqtL7RJQhDRsMRWkO5FFIpl1hd2cD3HLSA99z1CB/+qTebHjjHw1YW7/+9z/PKN7+Vb3/721n86Ef5ude9kdvvup89u2eIkoiX33w9x4+fpFIumXPUc8c9iylKCUajFNd2GQ4jTp9b5OTCIuQ5E1NN0jSht9klzwrKpTL1aoV6vWI87UajcTXICEIoZSqIw8EAJRVe4DM9NYFjW6ytrhHHsVFgbbeolEskWUa33zceX65NkRe4jo3ruSY7LwQf/afbue7Kg8TRCI2gVApxHIcszVlcXKJaqxgVzsGIuV3T9PoDPM9DFxrPC0xVQJrfRkk1ptibRFAcJ8RxQpplSGXheA5bCrhvnJ7hde1JfubDf81/+Okf5/vf8z388K/9Ca+5eorQc0nTjCeefIqJZoW3XN/ivX/3AFIJbphscuzEAs16jVq9xKAXoxAEjsWLr9iNH7iE5QA0xHGCbdvIscqm4zqsLK3jhx4LZ5aQGsKSjx/44/4pic41iytr1GtlNIIsyTB2Joo8yxiOImxHmd+l2AqUTSKhKHKUZZHnxXYfnhSCLE2J4oRSOaTYprY/Ay3zaxhSKfLRiF63S+AHHNy3h7sfOspgMDJKs47LifmzY3++hJlmwOxkHa0ziiLBth2KIh+rARvl1jRPEVryD8s9XnF9lWpjF25wgH0H23zio3dwev4LHDrYxlMW3e4G6+sreK5Dd3ODSqVMkRUMukNcN+TGl17Jk0/O84nP3Msrb30bU7OzzOxqUvHKHH78CEmh+f3f/wPe/tZv4eEv38f84S9yxf5pRL7C5kaHcqOFciXDvuTj92xw04GbWVxaZKLVwvddinFy8sH7vohvu5RLDgWGF5imxi9To1HKrMlplpjqq7Ioigwxrm5rBFESUQmrOLZLUcTG104rMp1tA3ch5biCV4wrnTZpmqC1JksTpDKeq7rIKXSBbTvoRFOrtxFSs7axypH5BbI4plRp0ut32LtvP71OB6EU9WYD13HYU57lv37wd/mRH3wf6+ub/OOnPkO/3+eqq6/kE5/5JDfc8BI2lpZZPLuMKoa021XOLW9wzx1fYpimTM20EZaPlPl564OxaVTBVuyi2VaYvCDfsDPWeJ7jsuBu+8XncZqfzxKfB5V6HJq8AO7+tY4XwN3XefxrBHfPJbrynODuWXvhvj7gTm1VrqREU6AsC50/1/d6/uAuVymZLihEjrIEhcy3ee9fCbiDrV688999aXGZ9773B/l++oSue8kcLuzpuzTBrNFjP7Qdx/MrAHdjvInUkEYpJdflqt2zTEw0cHyPODE2B9XQZtfsBEIW6DxFWZBnKcPBiHsfeJKnzi5yw9X7ObeyzkyrydMnzzA10cTzPdI8Y3Vtk+XVDnc98jT79rRwXI9dEzW0yDi7usxgPUKnObku8DyXTq/PTLvFp+6+jziJUSh0Bk+dPo1n21QrZVrNOqVyyL2PPsbuXZOkWWaqp0CtWkLZEiFMw/5wGDMYRnz2zi9TD4PtG0m/N8CybZSCOEmYqNcYDUe4vkOWZ8RJRhTFCAnrnQ6tRgvHNQbjjm1RqZWoVEtUSiUm6lVGUURe5JTKAVft3zOmrxVUK2Vs32Z9bYN6pUytErK+2aFSLSOEoMg1qytrIAvqjRLkBXE8otEyfXNnl9cphz5zUxNcc3APAKMowg9LLC2uEsUR+3Y1efCJo6BTLAXD4YhWs87+6Slc1yPNUuIoZXpykqLIuf3BwxzcO8v6RgcpTca80AVFnDIY9tG55sUH9zDVqmA7hp5q2dY27TaOYqqVCp2x3L1f8nF9h1MLpyiXHQqdMRwZ6umZs+dQQjIaRgz6MUmUQQUKZwAAIABJREFU4/sevu8jtCBNTM9jo15BKsV77nqYP/mR16G1xnVchqOMN/3ff8Hv/fqv8Zsf+EPeXkBDS+rlkFroksRDhE5RrmJubgbbssizgtEoQpByYv4UJ08sMRgkBiRJTaVc5or9eynygrTIcHwH33ZZOLtEo9WiVC7R7XRRloVjWQx7PTY2NrEdiyTJKJdDRoMhaZqhLAvbs0iSmHqzimUJLMtQf6NhRBSPDNV2XAF++NEjVMsl1tbWUUIyjEZcf9WVdDY7OLZDGIR0O328wENrQzuuVqusb2xQq1VYPreGEJLFpRWSOOXJp+bZPTcJGLVIOe5bDcd0aM/zcH0jEJSmKUWR47oOvV6PsBSgheAdV11FbXGVU1/4Avd0u7z2He/jgXPz/Lvf+Sj/9ltfgedWcO0S77zlIDffvJffuvchBoOMa9stFpdWaNTreL5PJXRptqrEWUK/1zc2JOUSRYE51mmOEFBvVEkTY1NSLZeJopg0T7BsRRzHLC51aLfqZHnO6tIaR47PMzszSRonuL6D69oMBiOC0PRS6aJAKkmepeRFjlTWuI/Z9N7atoVj28YiIfC3vfv+JSp3wnLob2xwduksSihmpyeZnZmmXi3z8NETTLebVGtVut0+m70+ThHTblcQZPi2h1CGQojWY4o3FFJjCYu/ObnC625s0I8VzcY+7r3n7/nkxx/izd9wBdPTASIx1+bsTAtBgaUgTYd4MkfZm1hel1z3Ofr4aZqzN6OCCd73Q+9n/tQTzE7uIWy26fR63Pr6Wzn11GO87CVX8/Sjd3HtNQco0iU83yVG0x10OPHkKld6b2du/wE2N9dQAh566Ainzs6za3aasFzGkZJy4GFZLstL52jUm2NFVUiSGBC4rkeSxts/Q5FmONJFKElQ8knTGC1TpGUUfLUsKPJ8/FsbAI8wiptbXm0mEWUe9lgUTFmG2pumCYudTXrDPtXQMV6CM1ey2Vun14t41avfYMBhkVOqVNjcXCMslxgM+rz5xjfxix/4z9z9xdvYNbObbn/ARKvBF+7/B/6vn/l33PnFp5GyRmtCE9YVXlJw7OhxnnzyKV7+ypcxMTO3LfaTZ/nYwsCoahvaqLkz/0uBO7N98TyqduZ9W3vcAncGco9jh+2Y8wVw969pvADuvs7jawV3F4iaXIbaeDlvvMv501mWtZ0N3NruzuXiAlnb5xi6yC8BiMVYlGXnfC8LPHcIqWhdmPlc1GO49dqzzWW7n1CPDba1+Q6GZ68umoM+/30Nx+DChzS+Ymb+5iG1hUJtKzoVWowrcJynbgox3tf4c2NvO6G3QOcWd/68oIoGHvjVn+cnLuivEzsqdhdl1sSOh+FgAIwz1WP7hIuBtrh0kTWiL4avWWQZRZoRD2O6nR6u6yIsi6eOn6FcKlHoAqWMv5TvByhlEUcjev0Ro2HCiVNLlHyHm647iJIaz1acWVnjppdeTVHkrKysU6tV0LkmDANecePVLC0t06iWx55iilqlgud5hOWASjVkfaNLKfTwqgE6gr27pqk0fMr1Mp628X0PN7TJipRkOCKJIPB9fLfERz7xAMqKcV0NQlLyQ6TQ1Opl4lgw7A3Z7A2II+On5dg2yTAxFMFhTKlcpjdI2Oj3qdfreF4w7sdStCcbYx+2CCEUWV5guzZ5lpEmKYtLa9zx0DFecvUVbHY2CUs+nU6fNM2xbYuoG2FbFtKzsFyLwHeIhwMQwng7SUm5UkZKhVYmi+06HmcWVrCQeI7xZfN8FyU1aRQzGA6ZnZtkdX2TWqXGgd17mD+1wt7dc9iOBwJsS5MkQza7Q84uryKFxnUdrtgzS3fQZ3KySXezi+fYyELTi4a0mk1jR1Ck+KHPZmcTLTWW7TIaxRRZzGg4QApJmmsDkBGkUYxrWwih8LwAqQWn5xeZnpogjiIGUcTUtAHIXmCocd1en1KlTL83oLO5wQ8/fIzffe8rqDVaxKOYlZU1fuKD9/C/PvQX/Pyv/ip/9PrXk8cRjXYb23UISgGu76IsC8/1GPT7Ywl1CEo+Qjq0J6eYajVYWDzHwQN7sGyLsFJG2pJSNSAMPEb9IUra2JbFJz97B3tnJwlLDgUa27VJkoxatYbQAtuRDIdDHNfjzLk1LGlTKpXxXI+lxWV63T6O5ZAmOV4QkGYFlXKFeBizsbbJw0ePMtVoUKtVSdKMeqOOzjLK1RJ5kaEcizzPcXwPy7GI4xjPtdlY7eJ7Pm7gEIQBtVoJ17VoTVSxHBeksfwQCCwlKaKYzqCHX/KJBhHLZ5ap1SusLK9RLpVQlmJ9dYNyOSQajuhtbFIPylyTK97+S7/IL/3kz1MtV/iVD36Sd95yEKXEmC0AL56boDRd4Uf+/j6+56oDxlQ8ibF9B2lJiizHdRyWltbwXJsM+NLhp7j93iO8aP8uBJrRYIhnu5xZXaLRrGBJG1EIOus9KkHAyVPn0JmmFAQ8fHSe/XMz+L6p7iVJiuf6SGmjpQYUWZKbNiMNUjnbglaOa5Prgl5vQNn3GQyGSCGwLPuyRIZnAnfby+9lnz3/kFlBkSb0+332TLXIhEQXCtd1saWi1x8QlnwePHocG5t6FZQsDAiRAkvZ5h4yPtajKCKPQcqc/291yJteOcfsroM8cWyNLNYc3DfkZdfNkQwGLHcy/tN/+Sj1KjiuphyGVMIJOsOU7prCshKGqea3/uBJGq0KJ+ZP861v+TZmWnP846c/Rrna4NC1B2g2m9z+6X9kcf5h3nhrk8FgEccyyq9auxw/dpoPftHl7W95B9JyWV09S3tiisnJFlPTkywvrHH2xHH2ztZAgaWgWqlQFCkUGmWpMbgGtAFj9pblDlAIjdBQ5IZmK5WNkmrsg2fRGfS5647D7Nq9C8uShK5HlqU4lm0UadOEIkuB876zaRyR5ylKKerVKqXAxbJdciTJaINTp5fZt38/WZawsnyOZmsKz3VJ4pRup8P05AyrK8u89to38Ol7v8gVV0zyoz/2fuJ0yNvf8C7Kvs/nbv9HXD/gbz7+jxzcv5+N1QV8X9Ibjnjo0ce56ZbX4TkuKJtCKBA5ggyEMsnfcWvFBeDpoqHHwO+C8OAyMdfOs1IX5p6vlPyKcxdb8xDjMAkhttU5t6uN4x0ZT7+t6+Iycx/HqRd+Nw26MJ8TGsSl7Kav53gB3L0wvqLxNVfudo7nWf2SShkAuMP4uigKLGUakc836u4Ed1/JRXXpPLb42V/Z0JeYrusxrehi0Pe8t3jZeegL/pTqIhVR+RyVSrEFuC6tSpo5bj3Eha9dRMXUwHd+57svAnZc+DlgzNh4pnXSgPodlcDLWjRoLpizGHP7RVGwfG6Zs4srKKFMrwuCY8cXOLW4xsxkE2VJpDA9H0kS0+32+Ke7HyJwHALXZf/eGdoTdZZX13AdG6UkUZziuw6dzpBhFNNsVOn2BggpSNOUybZRp0zimP5wSCkM2Nw0dMRef0BWZDSbVdIsR2nJ1FSTXr+H5/mEvstwNAShsWyFLmB6po2yJMq22Vzvsn9ukmazglIOqyubbHY62EoQBgF7d7eZaTdoNaogMD55lo0beHiuQ64hLAWUy4Hpyyw0UhnKV57nFAWcml/k9Jll2u0GSsH6apePfP5LvGjfHE+dXuboU2fYO1Mj8H363QHDQYSUggcefpp2s84TT88z2W6aALscsrq6iWO79PojKpWQMwtLlEIftBEeCAKXerOGspSp/CjB+tomAOVKmZXlDWZnJvFDHyFgaqLOuXMrBIFnKpPK2EaUymXarTp+ECCkoNsdUK2F5LmpoglhqpeFLgh8n15vQKkUEicxQSlASYs4ykiSjCzL8DyPwWCE43mUSiFoY7tQroSkWUaW5zx+bB7Q2EriuA5h6GPZNr3uAMd1jOBGbCpLOtf85tl5fuW7bqLRaLCyvEqWJvyHv3mY3/vvH+DHf/Znebnv8PL9B4yoTamMxqgkpmlGWArJybEdQwUV2AhhI6Sm0AVRNGJ6qkWhM6QtQJ/vUd6qfAskrusyN92mUi1jexZSKbI0N3RHyzK9c9UQy7ERQtLZ6NDt9SlXAhAQxxGtRoNSuWLodydOMj09aQQgLBPAzkxMUKlV8IMA23Xo9fqIce+zshQry6u0Jlr0OwOkVPieCTAH/RH1eh0lDeVwi06bpim25aCUIssyolFEEPgoIEoTHNelVC7ju0aUqFavgtamr7MUoCxFd7NHKQz58D98hltediM/9MpX82//+I9INfzKf/oF3vIDv8ADjxyhrI1gUbVaod2o8M5XH+I9f3sn79w/a8SALCOOk6QZJ0+f47aHn+DmF11Bvxsx1Wxw5e5JpCVxXBvbcwwo92yktJBCsLBgenYtyyKOE/xxT+d0s47tWNviR0Wh2dzsEfg+SRabxMm4euM4NoU26tJCmOSXkuYclFKysdGl1aqNqz6XuVc9C7h7PmMrfbe+tsFTx0/RarQ5sbDCRL1KkmQ4rotlKWYnmzw5v8BERVKvhDiuJElT0JDnGbZtjYVBLHzPJy9S/n6pzze/di/rmzGW22Rh4TgvvX4vsuihiwhlKyyxwc03XoeUCRLJ8vIqYTkgjYcEVZfFlR7SugLlT/Bd3/09/NX/+isynXHdtTdw4vhJpK05s3CGq/fsYqrpINLT1GoVhMiwbQ+hXGZ3zfGR25e4ZuZqllfW2LfnIEmaUmtWkdLCFj7HHz/M3K42rmcDkKYxlrIASHQ0TgKY3kkjXGWSslt3sqIosGyHJE2Q0tgn9Ac9bMvBcxxkoalUSwhRIAvIdWGSY9p4mRb6fP+l0GBZNkpZhu6cJUjMOWK8Mm20sEBreoMhk1OzLC4tU6vUkEpRKpe5657b2H/gEK7jcPXcIf7hS5/nm954K5//3O1kicZ2FU8++QRfvO12fupH3sNg2KFRC1lcXGZ6eoZjx55m//5DVMt1bNujVCqTJelYvfXC+/rOfy8ehd5B3bzoM898Usod8ctXPwzjdqv373Leels7eIYdXS523Z7izvjnBXD31Y4XwN3XefxzgrvLVtYuB4B2VMe2hmkuT7Et+7ya5cUVtmcZF1YDJWlq+PKWUqYieBkxk+eqwm1VES/8DuPa2Liq90z0z8uJwGz53ly8b/N+ExhIBBeriG6xCwyotMYZ4sT0hEl1XrjlInCn0Qi9A4mNt9Pr9XHH6oRgGse11rzzne/mQ6+7cRsHXnBMBNuVwQvB+wVHdPtQ7MyqnT8mlxymsR+QRiFQCIo0JxnEKCFpthoIzM3PtS2u2LOLjc0utWqJItc8/NjThIFLELgsLa9y5d5ZhBAoWyGVol6vYEmJbVk0alVOLSwxOzfFyTPLWFIwimI+9+DjvPjgHJalOLe0SqUaMopiHjp6nPseO0nZc2hP1qmUg7FBt8mu9jpdgtABDd1el7DkGkqL1pRrFXqDAX5oBChmplpUqyXW1jcZDRPOLK5zYukMB2an0HlKPx7h+abCYbsulmVjeQ5pmrG21sX3POIoMt5ZhRHniSJjfj0axqwtrzM3N82uXRNkWYLtKGzLxyoKZmenGA2HvOqGK2m2Ktx298PsnmlTq5XxXIf2RJNP3f5lyr6HhTECj9OUO7/8BBtrPVZWO8ztmjSm38OIKIpN5UkptNR0NrooWyGUwPdcfN8DJOVKOBYPyFC2IstyHjp6nP1zbcKSRxRFIARRnDIaRkRxTDSKufexJ5hqlE1/klKgDeALApe19a6xfCgyPN9D2S5CKL705Se48+Fj7JlqGYGOwMMLjTG8oMCxFTkglQUa2q0azWaZwPPxAg+lLNN3FSf4fmD6KKMEx7Z4910P8sf/5zfT6/aoVEt4nsstP/NH/M2HP8S73vt9/PjMLN/+ilcilcRyHTSQ5QUaCEohcZpC7lLkRvp+aWWFsOyTp4LN9S6hHxAEAY7vEkcJtuMYKp80FRxr3P/z9PGTTLRbFDpHj68bsXVNC0FQDsl0QRRFBGFAs1Gn3W6RkyKkIPBDfC+g3x2wtrLB7NwMhdacPXvOqIJKQEg83+fJp44zMdHC8z1OnzhNs1nH8z1K5TJZluPYLvEwxrZt+r0hk1OTfOIzt/Po4ycohz5xnFBrVMdJqjEzYwzwwjDk+Ml5piYnzXfVMIxj4miE7/msLK9SqZXpbHaxbAfPc7Edm5uvfxEnT59hot3kHde+iNe2Grznv/wm73nnd3DTy9/MBz72Bb73TddhW9Z28PyOVx7kxz9+D9/UbsDYesdyXSqlkOsPzJHGhsLt2A6eb8QwnMA1fmcWFGmB73v0O0NqlTJBEBBHCcNRRKNZQwjBRqdHe6LOysq6UUHMCyqVkhF3GseXUimKQhNFKbarxpR1hdaCNM4QtgJt7BhOzi8gBHhj78nL0jMvGs833DT9Y4rj82eQWtKqtWi16hx5+hS7pifMPUFKPvHFB9g9VaEaCCwlsC3jNehYFrZtmQSsNAmIJE1RUnCFSpl8+SFK5RZpZuPaBSUvIo2WCTxFtSpp1kooJFoneI5LvTZFoXvYLmx0IgZJlafmE/7uY3ewuHmOH/qxH2Dvwf20mrP8t1/7dV7ykqsYDbrsarl8+IO/Rbsam+qZ5aClYjQY4iiFPnsTE7umGfYjJtpTFELR647w3RK3f/6TVCoWjWYZ27HHQiHj+7UArV3SWONYgfnOttpmMICp8AgEjuMipYWlLAb9Lq7j49gOUheUyj6+52NZEp2ZHtK8MCqaBiQypupmCCnJ89yslXkORU5R5MZrUZoEcjQaMhr2WV7rEMUZGxtreK7HqdPHKZUqTLSn8IOAxcWzCAlXTuzjN//fP+RLd97PN7zlm+l11+lubvDGW7+RN77lGzl87Gk2ewmraxsMNxbJ4oTh+jJTrUmmZ2a464672HfgIFKaWGPbq258Dl6QLr6INnwJI0ebmEA+gwXBzhyx5vnFepcbW6GFHmeNt+a8zWLa2stOe4QdD6mU0b25bCJ6Rzz6Arj7qscL4O7rPP5ZK3eXG8+3urUFki6qlH0FO7rgb6UMHfFZK3bPkq254PlLwN2l23j2+WxVs87P5cKq2vlNXc6cfOspsw3T1L2VPUyTZMf8L52L2NGqLMeeM+5FfXRpmvKud32vAXY79nnpcTFL8XMtb2L7sxcQNC56l5mrAbUFtpacmj/D33z2bq6Ym6YUBKAElmVRFIayBxCGIVJijMULzdJah8lWjbLvsrC8RqNW5m9vu5+rZifRwhicb2x2qFRKnF1aZ3qmxZcOP4lrW0y3m8zUK4xGCWmacfdjT7J3qkWeFwSuxytechVxEmOPxUs+c9+DXLV/N73NPuudDlme4XkucZzQ748olwLSLCeKM8phwGg0QkhTncuThCiOsJRidnqKyWYd17NJ4oxao8ooMg32RQ5bFNzN9R7nltc5fOwk0606FBrLscdKfgb0JnFCo2kk6Yu0IMsy8jzH9Tya9QrKksztauO4NufOLrN/9wzd7oAw9JGWwC8FXH3FLO1GlU7HqExatsWhvbPMTrcJPYc0TfnMPQ9y43WH6PUGhOWAPDM0pkrJgDghBDovWF/tIC1lAkUxpghrY6p+x4OHaZV8atUQx7VNn5yyCStGAc7zXWbbTUajEY2G8e3zQx/LNkFGrVJhOIywlGQURRTa+NbFo4i5iRr7D8wxHA7p9gbc/dDjtBtVRJ7T7fRMdcp2WF/r4Ng2ShZGxl4olpbW6HT7TLSbbK53OX5igYmJGu+/7zE+8vNvJysKqvUKWZLwk3/4eT74p3/GqYUzbD5+mPfecguWY58PwPMcZUlDLx5n/g8/dIzHjjxJvVqmNVkjSxOU5RIEPo5lk2U5cZoahc8xbUkpizzL6feHLJ5bYveeWWzHRtkWWZqNA8Zi23cMIQ211XHRhQlWhCVRliKNU9I4M9fueJ6ebzy8avUqg9EIJSUSRWejw+zsjBEYsR2qZaMcefbcOYbDkRGiSY1qaK/bJSyFjIYRvX6fVqNCmqXs2z+HBpLEUIPzPMf3PPzA56ljJ9i7dw9e6BOPYrNOS0EY+ESjEaVyCGDEiiyjVjvo9xECqrUqtusglWTU6/P2/fv4jU9/ltff+jq+/7v/De//5d9n74TPdLOCVBIlLN5y415+/tN385FjS3zjbHvbQsQZi+sEgY8cJ3qC0GdzvWso5blRTSwKjRIGnK2uboAUNBs1Cm3OzVqtwtraBs1GjcFgRLc3pFQyiqS93hDfdyi0uS7l2Dqg0KCk6UFLkgxpSZQ0148uCvrDIdVa9fxi+lzr7XO+Y7ziFpo0y6j6Lp3NTRY3euyaatMfROyaaXP23Aq1WgXPkhw9Oc++qSqWAGWBbdsUWU6R5wjGEv+FJtemwnx8EFE61MJ2ypSrU/iuxeb6PDYjknjAaNAjHeWmv7QS0u12kJZDp7NGKXDojyz+5n/eRmP6OizX5rvf8z3s23+A279wB+loyExriiTvs7q8TDOAmUmXWpCS5xmlWs0oXmr4q8+u88qbvhXXK+E4IbbjMIhGdMdsiN17duG4NlKC6xgz9jRPsaRJ1FqWz5OPP0y3s061VqXQGcqyt4FJgTGo3xJKMQJAFo7tkBcpOtcUMicIKoyiPgJjgZBm6TiJZBSsbcvebl0Ak9yO4wjXccc9emIb+K0sLzIxvZ9hUtDZWEdnI9oTbXbP7cHzPLq9Do7jEfgBTx07wr69B3n60ae47uXXstnpcfNN15NGEfv2XsGv/cZvcNU1V3PkyHFKgceN119Bp7NKkuc8/OAjzO3ey6GrrkRbtjln5flq2DOeV1t388ueq5cmeZ/tTP5qwZ0cJ+jkWIlWXkQHPT/ZZ4j1lHjG12BHoeEFcPdVjxfA3dd5/KsBd1vZk+KZBUWeYwMX/E8IQ/vURf6MFMqdZuaXe/25wd2FfYPPPp+vHdxJaaqQYGg+eWYa/59pn+aj51/XW/SHixax7/qu7+FDr7vx/EJ4ucrd9ve4eD/P9J6t77vzFb39GT3+b1Hk5FnOkceO4dkOeyYnmJyaIk41QWhvVym2st/KUgz6fRzb5r5Hn+amaw8ShB5xmrJn9xTd3oAiyogGCb5vI7Sm1agatcHQpzPscdWBXbSbdXQBd9z/BNdesQ/Pden1Buze1UZJixPzSyxtrrF/zzTzp5eYmWpTcQI8z+bTdz7ENQfmCEMXx7JR0lSVGtWy8bNybFQBnW6PsOSBLuh1O2RZgue7OK6HtC2yQuPYPpsbPcqlEr3u0AAe20YJSTLKmJmcIBvFTDZr+GFAmiQ4rskm93tDSuUSWqc8duQ4U+0maZrR7QxwHAsv8Dh+8jSua9Eb9KlUSwSlEN/36A0GlMoBlicZ9HusLq+ze26aLC9wPJd+r4/rGLNqz3M4uGca5dgm+NYFQoOtFIP+EGestBiPElZWNqk3jOBKkiSsrm6Y3sIk48YXHWTQ66GEJslyUOZsHw0ic1oUGj/woMixHRshjdiJ63soZQCv65oKZ5ZlaDS+a9OqlqiWA7r9PlmR02rWadaqeK6NbSv6vT4UAqVsXMfBdSzSOCKKU+I4w7EdKtUymgLHsanXSpwc9viB73053e6moVQVBfcdPs7CKOAd3/kd/NTP/Hv+x5tvBaGNIIJU9LpDnj52jIlWEyHH/TqOTb3hcfDgHI5jYUkHCsUo6VCQIkSOJsdyFCjTD6vzcdIJgaUUlXrVVKQtSRQZClmR51i2CWgKbahDRZwamX1AKzGWoJMIofj4p26n4vt84ot38pJrr9z+nbUAx3OxHJulhWU2Nrv4jkulUuXJJ54GrfF8zwjVVCt4vk+WpmxsbuAFHuVKiBf4tCeaVCohExNNgsBHCGE8w6TJ3KdJgud5VMIQ6bqMBpFRikxiOt0OruuilCRLM9Y3NrEtG9s3MvZSQH8wICyHIAT9jQ6+a2MpwTuuvJKf/LM/5+Mf+Qh/8Wd/zG0PL/Bf/+ozfPsrDoLWdDY7vOXlV/G2W67iu//6dr59dorFcyt85v4H2DPVwvIstATXdVDKghzICwa9AZ7vs7a6yWbHMB3QmsZEnTNnljhy/DRplDAcjWi1qmx2+ljSptGoMb9wFttWiELi+BZJkmC59liYQhsgVwjOnFnmgUePs3/fNEoYgGcrwdmlFdqTEzsX02cdzx/cgbIUR546xvzCIi+9+gDL632uvGI3a2ubTLQa3PfQUYZxwjAaMVMLWVxapFErg5QoDDDOckPRNPdOk4h4aKXL9LXTlMotHn3kBCsrS0T9ZXwrw/dcXMtCEvDJT36e3btncHzTs1ktlehsLtPphSycK/AbB/jhH/0WXnztK7n3zkd45ctfRbmc8dgDR7nmRfs5u3CK40fu54brdqNHS7ieR64Unh8w6Gxy52Mxh2ZuoDdMWJg/hV8uU6pV6W4sMjnZoiDmrvvuZH1pRLNpbDmkkNuxgPZy6o0JlGURlj0k4+tJa2NjISRZkVPk2bZPpBTGyqbIU5Rw0LamKBRYRuK/0Om4/1xsJ7u2ql6ObY9ZCha2so1yrKXI8gxtYDQIh3PnFuj0R1x//Y0okeJaijRJKIUhRQHVcgW0ZHNjg36/y62veQMfu+dTPP7IYe68/Taa1So33fhKPviX/5Mf/LEfQYgat9zyKj72v/+ca69/EZu9Hvmgy5333kut2WDfoUMIOY6jngPcbZ+HzwLudhbKnhnAfQ2Vu50tOHzl4E7DJVTOC2b2Arj7mscL4O7rPP6lwd0lzbTPQGMEvsqK3eX3c357l/bN7dghWxTLyy4qWxzyC+ibBmhs0Sm39r01toRbLgBAujABMWxXXUzG7sKeQinHhuNizPMeP6QuDBzSBTueRgkxhknF+DYgLnnorebwrUPCePsUIDTv+M5386Fbb7wgQtguum1zHbYoGOcPi9zmoZ9/4/lDfP61S/GxQG/1OmvN/NOneeixY+zbu4tavUqpEqAsie0osiQ1WxKCJEmIohFoTZYRhMICAAAgAElEQVRqsixjslHmyZML7JpscvT4aUrKZTAYcd0NV9Ju1AjKPklSkGUCZVsEZR+dCDzHJc8zCjKuu2YvaR4zGI64+so9nFtaxnIEu2bqVMsBWmuq5TJB6LO2sUHo+ISBi+052JZDHCWMUk2SZdRqJQSCYRTjOgrLkmxudghDlyAoEUcaLwiQFgyHQ0qBT55pglqAUAWu7bO8sInWCaurXeI0xlKCdruG1jkFBa7vUhSCzc0BlVqFR488Tas5CRocy+bYiQVmp9vYniLPC+o1YwFwnuYItmuTpqmp6oxSolHCnY8+Qbfbp14pIYDO5oBKJWAw6COVRo6lsLM0I0+L8e9pMYyGuJ4RfrnvkSeYaFSp10sIDY8/cYLZqQmKNGd1aYnA3TKGdvnCfUdpl2vYSpuqQAGWkiSDARk5nh+Q5xLHMz6ASytnCTxTJczzhDhO+dy9jzFRKiGkwgs8HN8lLPlYjoPUcOz4AvVWjXKjNvbwUkT9Ea5jc/acCaAtW+EHLoiCNElwPR8pCs7s9dg3PYHQAst2+MvPPchTyRS/9Is/xzvf9b385dveimV75qoTgmQwwC5iBIaOqaVCKEVRZORRhO+HKMui190giruUyw3QgoIUy7OR2MSDHEiRSiExtgFZkaI0RjpWWAhhKp7CkthCEw/6CKERUpGlI3w/QOdmgShyI2ACmquv3Ee5FvLiqw+ChLzISOIE13VJ4xSBpNFsMDnVwnZttMhoTdbxwpD+YARKUqqWQQlGwyHB2Ojdsm0TTClJKQhM4sWTWK4gSvp4ftnQbxNT6ciKlPWlde564CFmJiaI4phGs4l0TM9TGiWkcUKpXkZkOeura/iBj+/7RKOIIs/xPR9sF+GY/qVvm9vFy8tNfuJP/4w3vPqV/PRP/wQ//Au/xdtedgWO7yGVZHFxhfe/5Qa+60Nf4JpRysGZacqVsgF1QpEnIzY7XSqtCsJW3PHA4xzcN4vrOHiOhW0rvIpHEo04/OQ8J06vUyn5HDy0GyWM1UOn16NcCbBtk0TwK4byG8XxuBpr+lUH/YgihcB1mZ2sEYSGHpgX5h6xudmlUa+Nr9dtnvul9yZxYagpuGCpv2QoBXme0yiXOXnyBPVqldbEBKM4YrWzyWA05KoD+2g3GpTsAYGd41oaZWuTRNTanI9j43bjC5ghkRys+PzOI0t8w63XsLhm89KX7qMRLOMIjRaGfpjlI+otnzD08F1TMY2zdXIZop0D3PfgCQ4/vsa1N7yRtY11brz5xayunCNJbUaih6ZEkQnWTj3ARA2klWJZEkdpyDP6/Zi/vm2DWX+WbnfAVS++AWEpQj+kUq6AkNh2wOr6OhvDDdqVKdxA40qPvDA9yCIDW0lsaysJK8niCMe22bIHUNIylXJt7C9yEigskAWpEFjCQuoMkY/v8XmO1IIsjZFKIKSpGJoYQozpmjl5kVMAmbaxHdNaMn8qoRw6jIYb1JqTnDh5jMWNDqXqBAvHj9HrbFIITanSwLIL6vUmE80ZlHTZFx7i3T/wjXzb276dkbaxApdvetNruOu2z7O2uki5OsEDDx7j+FML7G1XSXTB2maHs+fO8fJbXw+uY2KIYisA2DoVL43pDAA8//r5k1KD2FLO3snquXRskT5N/PRsZ/JlPqvPP4zipkYXYgeH1FTmdor9XSjy8uxVOz2mer8A7r768QK4+zqPf/HK3eXG1wDivoqdPQe4M+PZMkY7q2zbC9kFlgUX9tZdWkHb8f/nmZm6oCn5eR6vyy08+aX0cgPOhObd3/UePvjaGy6znUufuGA+0iyaW1m4S6e34707bghmaHRmzFDXVjYocmjXazQaDUNRwmRSi6xgNIhIkpSlpXVKYUiW5nzx/sdZOLdKHCWcWlzj6n1zeJ7J+geOS7lcQrkWS2dX6PT6WMri9i8/TrMS4nsuw8GItY0OZ5ZXSNMMUYDjOFiWoN8f0p6oI6UySpdBgOd6DAcRugDLkvS6A2ZnJymXfeT4PAhCh1Lo4NqSKIooV0PSKNv2sDu7uE6RalzHwXIMDU1o401WaJDaIU4ik+3XklNnlqmFIZ7rUKuXcXwHaSm6vYHJ9GqN6xkRhl63T63iU6mE5GNPrWqjilKKNMlJ4pQ8zRkMR1TKFRzHIc8KNjY3SbOUUhjieR5132f3rkk8z/it3fHwYa45uAfXdcmzgl5vyMryBvV6lTzPGUURQehiKUWvOyDwPSabNWq1MtEoRuuC6ckmw5Gp7GWp5uTZJXbvmeH4/Fle9tJrObe0aqT5A49RNBz38mgsz+fc2VU6mz0qlYAsiVBKYQmXtbVNPN/B8wKuvWofjusYi4GiAMv0W6ZxBhpDSx2LN507vUSlXGLh3BLVWplKLSQvChzXIc9N5tz1HAoNP/voEd5969WGTSA00pL8+v9+hF//z7/I973/R/nTN70Zy3ZAaoo8QwqIRiPiJKLWaiJt20h7a00ep3ieQ15o4jglDH0830MojBF0LlHCHvsKmgqAHqds5BYtWeQkeQxobEuytnoWzw3QRcH62jqlapUsK7Bd06NYFAVJPMBREi30dmBS5IWpThWaosgIQp+iKEizjLNnFo1XoO9TUKAsRTSKsCyB5zmMBgMsoUhGMb7v4gcBo1GMsiyyJMN2LKQj8H0fS7hkkSYfSoRV8P+z995Bll33fefnnHtufrHf69wzPRk5EcwJDCJFK1BamjQlKqyCZclleU3LlEp20cutlWUreKVVuWySolamKJFLLSkxiRAjCJAIJAACgzQz4AwmT0/n7pffTefsH+d1Y2YwSBJFSVU4qKlq9Hvvhtf3nnu+v983FFnBxuoGSjgo6VAqlZmbnMD1XTzfpdPvEoUBeZYx6A2I44gkTXF9n26nT7lcorXZIgp8fE/Ram0Qhj5GazbWNul3uvgq4seuupL3fvozvO2fvJnXvPqV+J1TFDqzLqRRQJHn/MTrr+U9X3uYt0zUkFIQxj4IQ1EIwjjCEQKdF+ydnaLb71JkGUvLGzxx6jz1SoUg9Nk5PcnVe+YYb9bI0gx/ZIiilGM70f2EMAowI2quUnYx32n3cB2PZJCyuLzC1HSDbq9LHIekqY2K8H0XoQ1xpTSiXjvWqOLS58aF8/HTPxIuGlLY2IfF80ssn1/i+iv30RsY8twwOzWO53pEccitd3yL4ydXacTWCTKOQhzHxqcIBIUpRjR5MTL+cAHBiWqJa/bvYGWtoMg3MYPT1Ks1NjbXR+7ANZTjEIQh/UGXLE1xmOSBBxf5qy98hzDeyeEj5/iZf/EuJqdqHD12mJW1ZSYnxlF+wLUHruTqA/OcPXY3e3Y2cFVqdamuwnVdBsOE3epHqUxNMNaYIowrpFnO2toGIi9wlcvp06dob24w0ZhmONzg/LlTjI030LnDYJAghEYp11LKt8xBhO3qpOnQasektDl1ygVHkSPIjUIrF3SBMNoWD4scbQwSS1+1VEtlO3fGkOc2V87St63JTr9nOHX8CRqNMaQoWG+dZnxizFKUTUg5apAM2ngyIdGCXfuv4diJIxx/4nFmJkcZeEqjlGCjvUaiVtm5a56du+b59//h17jppmv40Ifej+sF/NAPvRUcl1MLyyyubzI3GdOolYkCxcTELDPTs2jUNjjbuuaezTDlsr/jmT9z4TAX/HvujTxxmR+f27E965a3zvsFcPe3Gi+Au+/xeAHc2fG3AXcXGqDIUUXu4u1d2MXbRkXPeNTfLXD3dCTXd7z9J/nIa296mu1ceiwXgzjB1oLxUldT8ZQtbJ/GFt1z9PnDh0/gKw/f86hWywyG6Yia5fC5277FrtkpothWwe996Cj798yxudFm5/Q4kety9ZW7ue+RJ1BS0mzUGWvWWDq/ytpmm/GpOosLK8zvmgVAAd3+kI2NNjt2TFGvl9F5wdRkgyiO0LlBk1OrlbGUV2uoURSGfm/I5+54gKv3zBGGPqU4pMgzVtdtsHWSJKRpSpqlZKkNZHakwPMDENYAJw5DfC/A9SxNsNcbUq6WUVJa4wzps7qyRhRZS/+JxhitVscCn8BHKAlS4KuRc2dh7dzzPKfZrNPebCEw+KMuhREC13F44okzTEw0cD2PILC0szTJMVoTl0KCwDpEup5r3STTjCLXRHHEjokx+t2BpZlKiS4Md9x/iMlahcZ4Dd/zKIqcQhfbuiXHcciynM/d8S2u2bcT5TrbC9QwKjPeHKM/GDI1PcH586tUKxUqlZAit+DAkRbQlKo13FEodBi4jFKi6Pcyxhp1ev3eCIRYsbzObXCwG7g2OUQ4OFKyvLSGF3qcPbdEJQzxA4/mRB3HVQhHjLRUml63bzU70uFn73yQD737LXheAMbQ7Xb4hfd/nf/3Yx9keXGVE3fdzRsPXEmRF+R5inJtZ8x1FWEUYUZaX0cppIEizen1uvhhhOtZmnGeZPQHHZSj8FRAkRuSpI/yHLLEminoQpPn1mwmGEUPCOMgjcRTkOWWFltogzfSpw2HfVzXOgA6oiAdJqggoMhTbOSJHFmEC7xAIYSgyHJ836daKVszHCm2dXyu59Jrt0kGQ+I4JgxCPM/HoClyjev62HiXgvX1TeJqmfZmiyDwUY5kOOwTxj6OkPiuTzpMaLfbDAeWzqiLgo3WJlPTEwwHQxxHoRwH6TqUyiWk6+L5HskwoVKO0SMNUJoOSUdOnHmWUa9WGQ5yOt0elaUN/t0f/C4/+dM/yae/dZw//MuvcsvVU6Ogeqt9+75rp/g3X3mUn7hyHiEFvW4PpQJcpUiHCQJLmaxWYwLPo1Iq8djR01x95V6M0biO4onjZ7jzoSNcvW/nNutia/79yjcPcsWuOU6eOk+tWsbzrGbLD3yksFq/WrWElBCGds4TjjX/SodDSydt9YjjiEJfvLB+yhxtnk4WcJlhcrTWdNod0n7H5iB6ZQSCOI5YWdtks9VmdmKMZJixf8cYUhZ4niTNUxyBpQ1KB6UUeW4NwgQOudaszpSgyGh1HXyV4IkViiwhyRKkFJTKZZJkaPMNg4BSqURRlPiLT3+VsLKfSn2C62+8kfGZJo1GlfGpJuPjDTzPY6w5xebyIqeOPUYt7HH4sXuplhSu55JnCUp5uMrn6GMxk7vm8fwIxw2QykMIh9BXBL41fHrk4L1gChAJV+y/AeVBOihYWT5HpVqxZmlbWlZjUNIh1zmeF6C1pt/vUq5U6fWG5LlmbXOde771MGEcUS9HSKyr6JY5k5SCwhhcNyBJ0tEfT9Dvt3Fda8TleVZTro2i1W4xVq2CMMTlGmEQ4DgeD377IZLuGldddx0KgfKq3Pfgg5RKJdJBQrXctNrkRoVhMqBRn+CeQ9/gwIG9HHn8cd785jfx8Y9+hN/57f/MxMQMX7ntdl7+itfQ7g0Z5JqffudbOPadQ2TpAIRHpVQnbk4gt+eNrUf53y24u7AD/dzB2Avg7h/6eAHcfY/H3ze429LFPesNf5G75DNp3dh+z6Ug61IHy4u2PwJsT0vP5IKJwVzcobuYDmq22/jWGfOp+xp9aPvHonjS9nzLMvniYemgWxVcrfVFYZ9i9J/ZOscL6Dr64qmS++99gHf/m/fw0dc9tWP31HN+ktZw4TFtu09ddJiXEoQuHkpZ2lGR57SW10mHmka9ThhHLK9ucOeDh9g/P4PBsGduEtd10LlmY6PF7rkpW30vxbRaHWZmxji3sMj0eA3PU3i+S7vTw3dcxifqKM9hfcXa8t/50CHKcciu2UmMgVvveoAdk2M0mvVRhxC+cd8hZiZqPH7cusalaWpB1eg7vnL3LMM0IdcZruuhi5Q49PB814JAU1AuxSg/IC6VGPSHpLntGAgsUJSjAOnNVodSHDHsJ0jHwfUVush54OAJ+r0hMzsaDIepzQmbbGAwFIUGI1hd2aBSKo2omdqKwAUMBwmVaoUiL/B8l6/c/W12z06OjCNcwNBud/B9u8BN0hw/8EkHGZ1+j1Icsb7eolIpIwQcfeIMG60uM9PjnDpznsXldXbsmOTArlmiUsjayjqra1Zb5/oKnRdsttoIIdDacNXuWY6fXmBifIylxXVKpRJGWhv4KPYp8gJHCu595Ai7d0yT5ZkNty5FOK5H0ktGgDCg0+0SxT6rq20q5SoPPnSEWj0iDAL6wyGB79Hv9vE8S1fstnt0OwPCwCfLcsq1EvV6jTAOEI5EOIyq5fYSLwpNEIUo5fDjt3+bP//1t+A4DgYBRvPLf3gHv/8Hv4cx8Du/+l7e9/o3jCiSBuU4DHt9Bv0hYRhSGHCUZztv2pAOE8LQwxiB9JQFdmnB0tIqtVrZ0ryMvXNdV43uM2sKgLQdBNdV6NzSLoVWgEQ64LkjPapjKWLWuMEh7WcgBFmeoJRLf2SW4vue1QdJO885I7pmkqS4rkIqB40Z1WAMUjikSYrWBeVKhSLX1mhOa84tLFAqlRBG0trsoikoV2KU4+EHHlnRZ3VtgV6yQZ5L/CCg3+tTKsdW22g0U9MThFFIrV5jfW2T0LeRCV5k/04riyuEsdVaUmg2Nzvc/s37qZcrjI036LS6eCOAcWZhkSfOLjA12SQMPH7sRS/lh973f/CKm2/klbe8AdE5R70UgYFev0u5HPNTb7yWt3/kdv7pzmmKXKNciTGF7dQKQalSpt3qEPo+WZKTDBPK5RA/jKw7sdHMTYzhjEwvOu0uatRdf/ENV5ImKZVybPMnsd95v9e32jpHItWoI6S2HHBHXVVj5/bCGKJSeEH36Gmej89joYywnaNKKeTY8eOEYYx2FGNjZc6eW2Z2ZpyTC4skecrRM+eQZp1GPcLzBMYU2MKXPf6i0GRZiue6NvRdKf7TnSd4y6uvpNt3kaJPNegQ+gFe4FMuRXS6bcqlCpubG2ij6fa6qMAhcyp85Z5jTO6YYcd8lUp9hpnZKZQj8fyAPAOhyrQWj3P88H2MRV3mZus4ssD3fHuNIPjU7etcOf8y0gKypKDV7VGt1CjyjHZ3Az/0CAJFqVwmCEKKQrJ0/jtMjE/hOgqkoV6t2cfeyAOg3+/iKo80SzDa4Ho+YPVuq6vrLJw+zszOPfQ31tAmY7zZxFMOeZaSpwmF0egsJxew0e6xeO48lUoNTzko12r+sixFOQ4gcJQgK3qUowrCCLSwWZ0Cw+5dO5mZm0KpIb1Wj9XFBShSlHIoRzVOnjxCtV4liiI2NzeolKr86Zc+ybve/jZqjQkaY03+6rOf4fu/702MT88xMT7OeHOciclpNvsZf/35z1MJob+5hMly0iRn300v29aiidG88LT6u9F1erkr8nmBu0vlNc9pXH6vTxkX0Jee6/ZtLM1W1/L5xml998Y/dnD39/fNvTD+3sb34obZ0ssVRUFRWBe7y71uHbD0JbTLfxjDPlhtV+JvMg4/doT0Ux/jz54jsNsCdFsicDsuP3lvicSfrseYZwVGG3rdAVLCVLNu6YHrLZrjdX7glheDMHQ7XTzfhvg6juDbh46xtLrG6TMLdNsdwihAFzlxHDAz3eDAFfP4gcdYo06r3eX4yQWWl9YohT5xHPGDt7yUF11/gHK1xGa7x4/9wGvRxmpICm1t5VvdIeeX1rnuyn2sLK+D0STpkEF/QJbnhJHPWKNCtVayFD4p6fX6LC+vWQ2bsrljXhCSa/jiPQfxQ8/mGEmI4nCUeWdpV3mhCULrqDccDDi/dJ7XvvxGep2Mhw4ftTTPWgmNodcf8LHP30Ge5oyPj6FGIEC5avvbHp8YxyDJEptN9JKr9gGGsbEKaZayudmiVi+B0CMalaTXHeIHITMzk9sPrq/d8yBKKWanJ9gzP0syTNm9a85qEReXERK+dfAxjp9b4pFjp8nSgtZGi/WNFs2JBmEYoFwHz/dYa3cY9IYo6fL+T93GwYOP0+/20YVmZXkN31O88RU3YrDOgYEfkAxzNjcGeK5Dv9vnz//6Dmr1KhutLo1GleFgyNVX7hpZiEPo+5hCEwYBRV5QZAWVckylUqLb6RFHIaYw5HlGrguEA512h16niyOdbcomCP7ooSN84t//MFoXDAYDkmFCd5CCG1CvjfO//sy/4jff/GaGgz5FkZHnKf3eANf1qFYqJElm/wbDjDy1bpbKcxkmCV4QkGUZSZKQFwXT09MIYy3Yk6TPMOlR5IbN1Q5SStIkpdfpsr62AQjarQ2Mzrer/rnOKfICo63N/hZVrNfu43k+rusTRCWE6xFFEXmuWV/bQDoChMZxGEVR2PD5J+9vTV5YgyNtDMrziOMK1pzK4eBjh2m1O+zePY/vewwGQz556+2j0G2BzjKEgSI3jE9MMTOzk3KlgjaGWrOGkQYjC+qNKmmasr6+wdrKBqW4xNrqBo4j6XS7bDnomjyjvbFJURQ0m2Pc8vKXUquPkaYFvh8QRCGDZMiePfO8+lU305hqsHffLqZmpvjqz/8SH/v0rezfv5/3ffxBMJbiWi6XLSgfpnz8V3+QP3n02IiWLRn0ezhKIF0HoRwa9Rpnzi7TanfYt2uGQX9ArzekKGzne2LCRrV4rkt/kKBclygK6Hf7LK9u4HkufuBh0ORFTr8/GEW/FKOgbIkF6xKlFAjIRtrEfn94kQX/d2NogzXVkg6DNOfI6bNUKgEnz51jkCYkacqNV++jUS0zPdFgfKyBQGI0uMqzc7JyaHc6I4MQSZblI7CXoyQcP/EEu3bvIo5LJEmK1gajNVluTUUGSR/XUwhhKJVs9mSjOU0Uj3Pb175Fa7PLi268mY997M+Jogrrq5vcdtsdfPWrt3P33XdRKfkkSY9We8N2D4scpayD6hfvW8Noja88jh45iO959LptlhcXqI9N4IcxWa5RyufQow9jtMPM3E6y1BobjdWrZHm6HSKvdUGpVLHPXalQykMXVn+mtaE5PsE1N7wYTMpNN7+Ua6++dpTpaIuArufhSGnNgVyfo985zrA73K5t65GDpuv6gLXvz5IBM7M7Ua41j3ri6KPkRYLrShxldclKSAqTUquGXHf1ASLfoBmSFH0QmsOHHyWOKjzy6IOAYPH8Mr/2q/+Bxx8/xn/5z7/D5maXtMjZMTcLecpXv/wF3vi6Wzh0dInZub3Mze3k1Klj3HXnHWxublBsRy29MF4Yf/PxQufuezz+vjt3l3bxlPNkFgxg9QojYXmSDAFBUdjAYse5sDN2+Y6c3YXBUa7Vx4yocE8agjw55Ghi3mJNPjvofHq6pByJpLerrpf+u+T4trp2hcnQRW7pbK614DejHDpxEeDaAlT2YI15svsHT0IwISQSwQf/x4f42J/+Gf/y2v2j7Yy+861D2T6VrZPf6mZe2J3kon3YL+rC7YjtipgYifKkFLbDhGZlYQW/kKx1elTr1W3jFNeV6MJWLwM/YnO1RRyHbG62mRkfY2ZmnENHT3PfYye58ao9rC1tsrrRA2FYWllheqICQhCUAqr1GNd1GZts4HqWZnXq9DlcxyEMPXIKNlsdylFsOas6Z89cg2GRUq/HRKFH4HtsrrepjpXRRYHvhxw+fIr7HjxBFLg0J5r0k4x6o4YXevR71rUsGyZkScr89DgSq1fxAkVeZBSZHnXxBsSR1QXmeYrWCWNjE0inoFr12TU/h/QVDpJ81GGba9aJ4hAZWfqWQLG6uIEnFQqHrMjxAhepBEuLq4zVGwhlu1TKkwSBh6cCtCm26Y6tTodas4ocFTm00cxNN1GBixu46NQQRD5CWjMbz1MIJPv27qDIEsZrZaTRVKpNGOUUtlptwjBA64JGtUy316daLXHNzhlmJsdY39iAwtI487xACHCkx3eOniWOYjzPI8uHOMJmxu3fOYPve/aYTUEYuyglCYOYc2dX8HxJMsxpbfYoVyPWVluUS9WRTkzheBItrZlO2u4SeB5ogacUUmjQGUqAzoZ86Nwqb33ZLoRwkULhSMXP/MEX+a+//T4+8MGP8L5rrsCRLq4fUBTgegFCOCjPI9cglccD3z7Etx/+NvtmZ2m1NwnDAMd10XkOMkPI3AZWO64V/0uHIisIwhihFE4QsHBqEdcNCMOYOI4QAgI/Qqc5nitYW1/Dj2KEI9FFRjIY2O5JnhNEHkZo0kGK6/gIHJIkwfMDAj9ECMd2Eowm6XfQeY7vuqwsrVCOY3Ru5z/lKaQ0bKxvEkQxZ04usrbSIk80cRwjhKXmOUrwohv34DiGQW9AFEegwVGCojBo42OKwlJFhRg5e0qUazh5+gwzc9MEfoBSimozAiFwjIfJBX7g4TjWsKVUiSiwnaIg9um2BpQrZXoDC1DTLMUPFL7r4zguC2fOc9vd93GTU+E3/+ov+ZMP/R4/9x/fz//y8j0I6bG8uErg+3iO4sprJvndT9/DKycb9LpD4shGMaAEIsuoxiHd3oD6WJWoEiOVLQQO0wwv8HGUIh0YJA6DwYAoihASynGIdAxKubQ3bbcwCHyUKyzQ6w1HRkIabSzYGw6HeL6P64cYXeC6Ckc5WMdEiXiG581o9n2yS3cZwxWjDMK45MMey8vHicKYPfN7qUQRg34PtCYulwnDiIceO8RYGNNqbWL0kMgPKHRB4Pvbjtae55KnitQMKJAcq8fM74oYm9hHGAwpmQUCP2CYQyjGaK23cFyDcMDzYgb9jMApc9tX7+Xo8VWuufYqfvYXf4rIC7jpRTfzxLHjjNcrXLVrkjNn27RWNljfPM/LXjIJOoVsgBECozx6g4Qv3rPOG69/FcL10dKjXB9HCIM2ObVyldOnTrG5sckTxx/npS97FWcXz1MKXWrlGEFuM2FzA9quMXzPt7mhToAROUmW0Onn3PXAo0zs3E+A1Um7roeRBrDPWqWskZIjBHmSkgsgh6nxJs2pBpkZEparDJMhgRvYwHDlkOUZvhchtXXFNmjq1TGkchn0C4SjyYs+jgyIQ4/x8QkGgxb1WoOzp06wc+9NrK6s0V4/zdRkk7F6k7/4+uf42Z/+Ga69eh8zU+OcPkuVBloAACAASURBVH2aw4cfZ3JyGulI3vcb/4m4VGb3/C5e8vK38O1vfgSTtUHXiColXv/qH0I1YnAFKgM9Wh9saeMv7OIJeVmv76cZF6/ZntZk5W9Ay7QsL82z9oou6OJJZ8tJ/IKXR/QOcWGBRdhzfHqpz9/d+MfeuXsB3H2Px987uLvk9+aC182IotIf9CmKgiiKyfOcBx54gLm5HZcFaBeOS9v7rutdEPh96XvlCFSJEQB8auj5ZQ74Gfe9Tal5lvEkVjLWynyUn6O3HDov2ObT7evSCXL7sW4Ev/M7v8dP5xu8fc+Opxz7pdu0eO3yFIqn7P7SX4zshy2/7MnPC2BpYYU4DHCVhxGgHBcpHVZW1onDgOEwwVWKtZVNhsOUYZJQq5VRrkO306deidF5gSMgCnymphosrqwzPzfFufMrSASDfkKeF5TjiGSYkCQZw+EQYwyVSolypYQfuJRLMWfOLFEqRaxvbDI9M2EX/sbqkr598BjNeh3tWP2ZraoKltY2ufaqebSxuijPcxEI9KibhwBXOXiewmiB6zqcX1xBCmkrua6L71vDjDzTOFLS7/VRnk+/1yeKQpRvc890rm0cgBgZvnjKdlUKDQV87rZ7uWrvLK7v0un0cV0r1E+GKeVyjJDCxia4HmfPLnPm9DJjzTJowaA/pFqr4DgSnRfkWW71gJ51/xRS8vHP38m+HROUKzEGbcOChcPCwjLjjZp14XQUGxttSqWQJLVdqSiKcByB7/tstrpEUYjvuQhHUK9V6XR7Ix2fzVfsdgesbbTRWhPHPq5nTSmUcul2B/YcPEWn16dUKoGGEyfPcffDR2lUI8aq1e0Ygzi2GpcsT9FFQavVIS6XyAuN76vt69X1XDqdLn6pzKA/5NceO8p//4VXkg37KC8iTRLe9buf44Mf+L9xHEH9/gfYMT41yvayfzchsN+f1uRZjue5TIw32TM3gx/6lCrWJdII0FlOkiS4no+QyhYVnK1MJk2v18f1fXvbFIZep8vmxiblqg3DZitkGYPne9u5W1IIAt9HG1CeixCGbreHMaBG2ruisBoxra2BA2g83yUIAjqdHkEQUi6XaLe6VhPmAKYgSRLCMMRxHMIg4OHDR3jJS65DSE0Q+2wRGxxXcuLkGWamZxj0rX6z1+mwvLpGGJYosmxkLGQZAI6y82wcRbbIpK2D4/r6OsN+gsBhY32TldVVGs06g8EQISHPM0sTzTXDwYDBYGDvZ89DCLugXji7RJ7kfPmu+wl8l9e+7MXU19b5lQ//CR/5oz/g5/7jB3jbK/cTR9YMSZuCIAr41EPHuC4MmG6O2XvdkRgBJ0+co9XpUa2UWVrdICqF29b5SimcEdPjy7c/yMGjp7lq7yxB5KOUQ1bY4oXODUHoMxgMbSQPYLQhjEIsZhN0u12CIADMiJbP6H62Bcetwtqzjae85VKKnDTWSTVPWTp/jtmJWTw/Yml1nXIUMjnZoDCQFxpH58Q+jI+V8V0HRyoc117vjlI2smd0Pwz6hsceXeGzqz1+/d0/z/JySujlbCwcpFFvIpQiGa6iXEO1VqPXH+D6PtIVGCPIidh/9av5vu9/E3HN51Of/Cz7DhygVCrzhVv/ml6nzdjUBNMTFZaXjrBvl6DIu/jSRQvwwxAD3PmtIS/Zdy1La+vsnD+AF8SAoByVKLS1xy/FJYIgJE1Tzi2cZdBeoV6r4qBxXY+CnNxkhEFAnltDFGu4ZCnnyTBncXWdHTumiV2JRhOEEVmagXBIkwRMgeNIzKir2O7YYiXSAg6lIk4ef5xmc5Yt12rHVSN9vAU7eZGjje1Q59pw9sRxHFcSxWUk1nXYcRRRWEJKyfzOXTx0+BEGvS5jjQaVyhid3oDB2oDCT5if38GpU6d49LFH8VyXcrVCt2fXVT/+4+9CF5pjx0/z1jdfx6C7wX2PnGe5Dx/5zJf47Ge/wCf+/DN88pOf5RN/8Vnuv+8g//PDH+VHfvQHL7sGe3ZN3XP/zN8I3AkxWkM+9653URTb3egLt3Pp/sUWuNvex/duvADuXhjPa/xDAnc2oHsrSgCUY6tZckSdMkajXJf5eevil+f5M+5mK6NFCMFg0L+g03f5fW9phrbu52efWL5b4M6+R2vrk6e1RioH13FtdWxUKX2+4C7NMt75zp/it3Y3UMq/9ENPrexum8Zc/vgubNhd9jjk6Jztu2wCBIbF04vEykUpF+1LdGL44tcPMjvRoFqxgn5rImE4ePgEwzRlbbNDc6zC+cVV8qwgDAPyoqDXGxJGiiAOth0tu50BnXafIi84dX6Zahjiex7aGKIwsE552gbbD/sDa0aSFjQaNZ44dQ5XOYSBR7fXxxjBwsIGU+NNys0SG5ttHKUoVUo0G2Ucp8BVjnW7THIEDt1+lyCwFDyDsdoMN+Yjn/oaN165hzCM6HWG3H3fIXbtmCTLckxu+OQX76HkhdSbVbzAw/M9skHKoDPACzz6fWvPfeg7Jxhv1jFasrneJop8rtk/R6ffoSgymhPjJIOMLM0YDhNKZdvxcYQDWnD48TPMz07brC3p4AUe6TChtdmi1e6idUEYhTa7znU5c+o8r37JVURxgJCGZJjgOALlupQr1lAm8D2StEDLHDGiewokjqvYbHUIAp80zVBSbgOL/nBAuRxTFLYrEZcjojgk8ByazSraaJSSrK/b77xSKRGEPlmSUq9VKbKCxfMruErx0uuvoFqLLL1SKXv/Ssk3vvkwE80K/igUXWtDr9PDi32SxNIGjYEw8Ci04Oe++Sgf+ldvoNveQKBxgwjlKm7+Jz/F9PQkP/PP/zW/ePNLSZMUUxiUUhS5BgPpMAWwDqhYyncQheTakI90tMNBinIUjgwRxsVxbO6VcF00tpjjOg4ri2t87LNf5sXXX02lUmFsfIyiyNnc2BjdHw7K89nOytzqrDOi2wGmyMAYolKEwTAcDGwQtzH0+wnnF5ZoNsdwHEWeQ1wq2wKSkEjPwZEaU+T0ez3iMCTp2zlzOBywZ/ccnjL2e3IVXhAgkAx6XVyhiIIIL1IURUrgx/hehDaab933MDtmp9FG47jSMhGFxPdtxIURgm6nR6VSIQpLdDt9FhaX2Lt3F0pJpCMw2i6WPdfHVS6+B+VyRJ4W9HsDAi+k2+kwMTlOt9djcXWVW15+M2fOLrBzdoqpQPGxO+/nwN79VGSbqUaFIsvo93sYND/4yiv4xU99m7ftnLbFjkLT6fSYmBinXClz7NQCc7OTeL6H0DbrTQB5krO4uMowTdkza80sHj16gth3GWvU2NhoEUURve4QRzmcPL3AWK2GF/gkqXU/lUrgSIkzuk+2nBqF0ayvbVKtV7blz882ng3cCYHtCArDuVPneeg7i+zdNUspsiB+o9UjDAOOn1pgs9Ujy1apVX0C10OiKBgxX4QFqFpb7aYb5DSaMV9sJxx54MuYbJzjRx9jpiFYXVnCcSGu9hgME4b9GuvrOVEpoNPdpMgjBmnMf/n9j/JXf/0V/vkv/QI7d84wSHOiUpk7vnYXB/ZdyfiOKsvnznLDtbsZdo+QJQNcBINkiOv7tHuSGyd/ZOTGWWNxcRkvqtDr9qiUquTkI7Mhuzg/deoJet2UK/btoRRF+K7tQmXG5lYWRYZA2xgSR9pua7ePclymxss4YojEMov6wyGdTpsoLNPtdUEYojiiKDIKnRP6EXkxRDmSXDucPXOWM6fXmJ6ZQTg5yvMojENeCDD5tiZYCAcjDMJIOu11JqdmR9eJdfnt99p4nosnBeiUzmCDUhyQpx7HT55gcW2VP/36n7Jw/Du84qWvolar8+EPf5h//e7/DSkVH/jAB6lUq1y5/wDv/re/woNHH+VPPv5Zvn14iZ97w8+yu7qTt7zih/mB1/wwb3jRG3n9da/ltTe+jhvmb+Q1172Gx+86y6/91q/ziU98hre97a3bwOgfI7jbordfuu8XwN13b7wA7r7H47mAO6M1jng2UsjzGJdQMbduFHszXRC6PVrICGGr3FvvS5IhaZravJ0LunMXmprAxRODUk8P7IDtqo0zcrsT4slMFKMLngv90+5z9JmnM2e56Ny2zneLlmmryfY87TEZo3GkFVsnidV1aHNhbswW8HoyJN2MKDnvfOdP82e33LxNJbj4QNmm7mz9v3XUe0p77jLnai55XVzwM+jchlBjDMP+EKkNZ88t02zWWW21qUQl0kFKp9O3iw3PpdvqsrS0ztR4je5gyIHdswSBS7VSIopCPnXbvdx05W6EgPMb66ytt9i5Y5qFc8tMTTT5zqmzXLl3J3NTTZCCE6fPE0UBSjm4rmI4TOj3hsRxyNmFFSYnmhRaU6vGbLY7rLfWqY80dXMz40SlAOMYwjBgY6NNGHq4nku/18V3PYSQ3HHvo9SjiCBSRHGIcmy2nC4MWaLZPdMEDEma8Y37D7F/5wyOsl0tKQVXzM9Sq1YQyl5jrXYXz1H4foBUcqTpUlRKsdXsOS6lUojjWD1IpRqNgp/t9X3w0aNsdrrsnJuk3x8FgxvB7FSTYGTzv1UssYHaDifOLTE5Pgbadv30SHNVrcekaUpRFGAgy3KyvMBzHdCaL9x5PzumJilVQzzH2qW7no+jnJFZgEuaZlQqpVEwu2OdEJ2RW6PvkibWVMZxJGvrmwgEvutTrcZ4gW8X2W1rmT4Ypts6Rd/38AKfVqdNqRTbDpDQZFnO7p22m7l1gyjHgiekLRalaYbnWzD4S/c8zPv/xaswRlOu1fGiEkWhefjYWa54xQ/wL3/5V/jg615rQ8qFHGXsFUghGQ4SdKGtI6i1X6HINcuLqzz+xAm+cve9NMplms0xdAFpmpNnOQ889ChR6BOMDD6E1hht79vrDuwjGOW5ZWmK8mwIuiMFy8ureJ4/6thZmmqn1UEayHKNlM6I4uySJpbmtRXFkQ6t9ml8oklR5CNgqNCj9pt0JAaNFGa7kGIKa3ojhCKIIuvYWxREQYAXBzb/T1rTG4lEayjIGAy6SOHhevb+6ba6TE1NkOvC6gnTBFfZ8zh96hzVaoUwCilyzeLCEoePnUAKwfT0BJsbG5TLMUkyHBkZGbqdHp5vA7A3W10ee/wJds3vwHMVeZ5TKsfs3zNPrz9g1/wc5XLM3okpho8c4X/e8w0eXBjyjlftRwjotLuWquy6/NhrruL7/ttf8o75OfK8IAhGminlMNaoWhBcFAhhdcOuaw18fM9lx/QEpSgEoxmr2uy8LMspxRFFplld3eTM+WWuvWqvNbDxlHXJVWp7/3lhYwaksHO9znN6gyGlcnjBHHvBvHuZZ8tFv7nM6xJJMuixsrzC2vIqUhj27N6FkBKNIM8KSqWYJ06fZXFlk52TEaEv8V3LaihMOnpkyBGjwHaEC52SZYa/Wuvz3373P3D7l+7jFS+7lkYtQ4kC11dgDFmiWDiX8IH/5w5uvG4X2jh0WvCnH/0STrCX977vN1k4v8S111+BRpHnhkceeoTQc6nUxghkxF133M7enWUUMOjaIpIfxYSB5PTROn7gs7SywuraKpPTu2zXLtckRWLnVSnpdDpUa2OEQczxYw8z2WwghWVj5JnDxsY6UWhdfKXDyLFUEvgxjqMIAhffdZBCUmhNEEQgHEpxBS+IydIBRZHbIqBwMKbAES5CuCRpSliKmJ6exlFgRoB5c6PH8ccPMTk1BQJ0LkgGib1WBFRqdbQuMMKaL+V5hnIUeZZisDm6lfo4gRdw4sQJKvUKg2GPvCS45aU3sXfvVZTiEldfexU75mZ44MGHuPGGG3n00GH+5P/7BNqRfP+eW3jLza/jn97yIzgSep1NmpM7iKqjzEU9ugJHl2NU8rnlhlu45YZbWD3a4pff+29529t/+IJL8MlrcGtN8nTEzWcDcVtF94vfJ7b/bclSYAt0Xbguefbx3B1nsUWT7zGwgxfA3QvjeY7n1Lkz1kHs7wTcPVs76DJDuS6OUs/wmctRDp95+8r1Ln+c5plsQp46ntzns3/mUjBqd/lUIxf7zYuRw90zT0RCCH7j//xt/vD9H+TDr73pyU0/OQ9iME9Oe5fblrn0RzM6gsvtV1z8XoHtThQFR46cQBUQRD7DPKNcjolcH+lIGmNVMIYHjpxg1+w4h4+cpRQFbPa67JweZ3m1RRS6eK6i0+kRuQolJVOTTeamxqiWY6I4JE2GuK5ksllHC9s9jMsxrpJUaxXEiMrW7Vqg5DoSYSxA0EVBWAqoVkoUqQXVXuDhhz5IQ6/bx1MWpHqui+NIeu0eh46dYnJsjFLgc9u9j3DjVbvodmxVd9BP+eaDRzmwdwdKiVFot6JRKTE2VsH1rE280TmDZEAQR2wub1CtlQmiAOEIsqzAYIG957mjhaBjnS4HA4wocJQEbKxCliUcfOwJ9szObOeIBYFCCoF0BP1eF8cteOCBo8zOjLO2tkltrIYxghMnljl2chFHGEJfUS55RKFLDihHYYwgCEPy1IaoG12QpSlX7p7H9WM6rR7tVo80zQjDwBpLOBLX8xj2hxw7cY52u8v4RAM3cOn1B/i+R5KmtDo9siQnzwtq1QogSRNNkvRJ0twunkcmFVGlzOrqOq1ej4npJkiIR/TAIi9IkoHN5CuM1UVh6dUmK1hfWSdw5CiC2KCF5sGFs/z8T76UMI5Rng/CA+OQ5zm/9mf38+Vbv8Z7du2mWmmQJAMbdK4NWhu+9NW7+NZDh1laWUbnOfVqmWRkYX/rl+8jcByu2rWTswtL7JyaZmlxnc/efgc3XX+AqfEmgWujIySQJinDYUJYLoEjOfTY4xw9foq9u+cRIxDvuy5CKoK4RL874KtfvxuT5TSrVbI0I/QDKGB5aZVypYo1wbAuq0JaQB+GAQiDwZr8CLGlS4Fuu0vg+4zaariux3DYZ31zBaNz/Mil223jK8XBBw9y7twZQsdFAlmakBcjWq/vMhx28b0yUjjkos9kYwLlOkjH3gtCOiMqpiYIbMQDAkxu59p9+3YwOdnAkYIw8Gi12vT7fatnC6LRAtMgpWI4TLn++qvpdvsMuj3iUjQ6BUG5Wubjn76VHVOTOMJhZnyCvzx5nI9++I9513t+m7fevJuv332Qa64+YAOlkbz9lVfypTseZn9jzFKRR0XFNBky6PdRxqAdQVSObDTFyAhFFzm+7xHHIeeXVpmZHsdxJKfPnCcKI0pxzESzjqMcTpw5QykKcF3X/n2wxk6OfFJfLaXEEfDEqbNMjjdsruhTam7PAu4uN3JJoXucPHUST8PYWIkjp1fYv2sHyvXoD1N6nR5KCBZX29Qin1IYkOcDwNhCmVJkWcqWllxIicl87rv/HF/ttHnjK29g8dxJ5naUmJ5UJIM+ggLHKeF6EfVmmde85gBBXKJcbVAUmo22YWLnDUzPzXHzS29gc6PDRmvAQw8/yg/94FsYq8Xc+qUvMjuxk/WVZe6981Ps3jFHHIBwFFmR88efWePauZtAa5AutbEZVjc2qFQqYDRpocmKgmQwpDne5OBD95CmKa3VVfbu3oUUmjRNOX/6OFJowjDA8z0MEs9xrSGT64AySCMQWpIX1sBK2z8cg2TIYJgRBAHGGPs86PURrmXNpIlljQhj8D0XJY3NHtT2esYRBKHNXVxbXqXdblEZq5AmQ6Rj6f+BF9jsRqGsdERKjJAgHXxpKEchjfEq480qM+MNHjh6HwfvvYtTJ5b45jfv474Hv8Utb3gtgV/iN3/vD3C7Dj/ykh9mUtXZs28v5KB1hqs0ptAkaUJtfNoW0g2Yp8FMQgped+Pr+fwf38pv/eHv845/9qNPXaeIp48SeDZwZbHhpcXni9d39rWne/2Zx/PpEG5JTb7X4wVw98J4XuMfI7gzuniWztjzB3cX0kGfPMyt6ITnPv4uwJ1E4EgH5SrbOZDyabf/hVu/zE/0l3nr/PTT7OuSY31mbLddDRv1By/a1lMnb2k5YsDCuWUOnTxLKBxKlZjcFJTikJXz69biXNncISVhbbPNNQf2gtaUKyHDJGVudorV9XWGSUq9WiEOA5Is4/S5ZTAFrlKcOLNApRRy10OPMjc9SRAEF1ArhK2IZxlnzy2ysLLOqcUVZpp1ojDA9Twee/wEWZYSl0J86SOFJC80g0Fi6V+uIs/swq3X6SGFwJUOs1MTnFtcoVousW9+CtdT+J7HYJBSFJpBL2VyYoxcF3ziK3dyxfwMcRThOA7nzi5RKvl4njUJEo6CVJMWGcpXWBDvYLSNNRDSfs8b623iOGRjc5NSObSdyH5KuVQmL3Ii36PRaFJkOafPLoLUJIMUVwnC2ANRsHNqmlNnFnnw2EnWV1vMTk6QDjLKccjePbOUSxFrG+tW49YZWkBgIM+seVEQeWAKWhttKuUSq6sdyuUy37j/UXZMNpGOJBmmNp5g1DlcWF5j3645DNYxtdvr0+n1iCKbyee7PrV6FWMMnuvRaQ1s5mC9RlEUrKysAwY/CgnjkPpYlbyw1vRpMsRVLtKRuJ4CrHOhjaHwyLOC9mab2+4/yPrqGvVSTG40nz5xjmJ/mX27duCMApiFtp2pH/u//po/+h/v58//4pPUl7p4jsPEVI08zZCOIhmkHD15lqlGnWsP7GHH7AyOa/MIjYZrrjjArp2zNOpVHKy7XVSpsmumQbVewuTWTbLX6+G5il6vZx0lhUAqh1MnztLuDpjfaamMWmsoNP1BQpKkLJxf4qZrrqRaKYM25GnGvQ88wtLyKr3hkIlm0+q7Rq6bUmKz4voJhdaEkc/6+hqeay3ki6IYacdsd1ZKh2GSEMc+lVpMEDp0ej38wKPfblONrPa11eow3mjiuAIv9BHCGdFSFTpzcD2PnCFKeBdES0AyTLe7ukEY0G51bTSAkChPsbGxMdInKpaWlvE9l/HxMRzpsLa2SafTRTgOURwRlWLSLLfdE9dFU9gFuYB+b0g9jnjs8ScIXJdzi8u8501v4r9//et8/tbP854ffzO1SkypHOMohyLXnDpxhtNJh9ncpVKKkY6iMAWraxtUShF5khHXYoRj42qKwsoITGHItSYbdaptnp2Nn7CdYo8z586PWAgupWqJ06cXicIQpLTdX8PI/VSOWCwGiSAuRUjncsyL5w/uTAbSyeh3O7TWNpAu3HTdDZw5t0y5bI/73EhT+9ixBWQxpFGLiUKHJB3iey5Zlm2zU2wRT2DUkImpMrcNDN//+n3U4zGSdI0sWSRUHuU4RioH4WiCEviBQSqP4XBIq7VBTsDHPvVlao0a99x3O6991fdRqtZZOH8eo1MCF+JqRC2qcGD3NNdcWeahh+5i366dZEWOkYJzqzAdHQCgwMHzIjr9Ac1Gk6WlRcJyBd/zWVtfpVquMD4xRaMxzubqcSrlEnEYkmcp9cYYtXodjWXraC0RWywbZddAjlAkwxRHyW2KtFQulUqV1fUWlUoFISAdDmhtbuCFZRxHgyxwpaK72cUPw1Gn1j7/hSOp1Kv0e22kA/XqJJVqg9wMCJwQKSWuY3W5QhiyJAUESnkYINMF/kgDWlDg+QqpJalYZH7nHjo9zY03vYj//Tfey1v/2bt4SfM1jLtV3vDKNxFHJRqNcYbJgGQwJBm2kWZI0htQGENzZh6lPHuNystzhLco4nPz89xywy28+33v4c3f/wZ837/wTS+Au7/FeAHcvTCe13gu4E58N4EdTwUHRZ49BVg9l88/Nbfu0i7bM1MoLxx6K8tE2G3qIr+gYvo0t/Jl9m/Mk7EBQtgQ66JIR9x5SLPELkD06LPGuqVtxS9IY/U7QkiEkaOf7TaL7TxA20F48jDs6+94x0/xK1Xn8t04tn69pat7MoBcGzN6aGxRO7dZbZdg7mfqGI646FrzjbseIHJ95qcmaYw3CYKQQCkGg4RKo0q33aPX7dHt99G64O5DT+BLzexc076nFCIknF5cYaxWtQ9U16VUijl2+jxr3Q77D8wRSIWLYmZ6nKTbI/B9up0eYRAigZMnz1CuxMSlmGajgTty97rv0FEaccTc1DgPPX6CmeYYynNIs5zzizZMvFqLEVKSpilSSqI4IBkOCaLABvLGEZ7v882DR5if3wnSIU2GlOKAWqNCGFhdzvVX7ScuxSgHpNA0mnWOHD1NKYzxgwAJBOUQR0LaH2CKwtrUFw5ZVvC527/JvtkZoiCyDp6VCoeOnGSy0aDQOa4rCXwXP/bQFIRRwBfveIQXX7+XIAg4e3YJKRXKD+n1BzQbdcYrZUq+T6kUEwaC8fEqQsLC0iqTUxNI5RHGIZtrLaI4wOjM2ud3EpJBzsRMA8d3yBLN0soq11+xG0c4LC6tMTs3hVCO1Yg5DpMTY/ihv80ADj1FrVrC9T2klNz1wGPMTDYphLHduFLA0vI6Y/UKWmtqtQpB6FsnO6NBa3SuyYY5lWrZVs3lSPOW5QhjkOS0Wpv4nsRkGVfvmmPP3nmCOOTfHXyCn33nS3jJFXtQsqDINOvrm0SlkCNnFmnsfxGHjxzivfuuYrpR5/9n782jLbvu+s7P3ufsM587v/umevVqkEoqTZYtzwZZJiYYEhxjbHeYDQmQLKC7MaG7V0IH1mKFJGSFhKRZ3XFDCJPBOGAbbGwsjGXZUsmax9JQc9WrNw93vvfM/cc+71WVVJIlxxErvfSr9dZ697x7z7331D5779/v9x22tzt0t3qcOb/C7Pw0hjK4dnE/rjL50tceY26miu9XKTID0zHIipQs01YNzakali05/uQZZva1QEokimefPYHnKVzPxfVczVcsCk48d4r9C/Nce80CjmeiDFsLYORaFddxLP7irvupOiGGyImTmGqjCrmgUaszNzuFaZp4rkuephgm9PtjbOViKd0pUEKwubpTCngI1tY2qDVqGKaGx2qBBIEQiqKwKYSFaVpMxhFhpYJp2bi2ocdDNKJaq5LmgrQoSKMhyvLBkCRpjMgLlAFxPGHQG+K5DkWcIA2LjdV1nnz6eIP6rAAAIABJREFUBIcO7tOKutJi0B/xpa8+wEJ7ms/deQ+LC7NMT89w5uwFarUanu9RrVfodvp4no8yTJbOL5EnKbVWlW5vSBKndLc6VEOfVnuKfbMz9LsDOr0eBxbnuVUppu+4g3/1e3/Jh7/jNnbV/oqs4Oy5Jd76hqP89Bee4NtbdWTpZeg5PpbtYJciMP1eD9tWSCRpkpPGKXmWs7K+TbNR5ZEnTuDYNkHg4AU20SShWg2xHANpGpw9tcy+2WlMy8SwBOS6Y2qYRmktYBAn+Z5gk2GaujujJ+lXsBG9ArBBYQqkYeEYivNnTtGo1QjrDTzHIU1jXE8LQfl+hQsbF3jb6/bT7fRYXV1lqllFlp5+OrEzydIMYWgoqWEYfOrikO9+1x38+q/9J97y5rcw7K3jKIeg6hMNeoyjMR//1AN85jPHefMth3HVBmeXbL5yz0muue7dvOG2b+X9738fluHwuc/+CW+77SampupYdkgrbBBMhzz+1Fdoqw6byxdptaoUhb58v/GJJW6//jayLGMcx/i1BtMLh7QwV7XKY088Srs1TSWscv+D9+PZVc5dOI5t1LEsF+UUXLxwllqtsScSYkhtO5QVKYah9PfdEzjTCbht2cRlwhvnBbV6mzyNSZMJju9z4sQpjj93lgP7ZjGQmNLAdBRCSS2wk+coU5IXOUWe41u66ycRZOkES0ot6lwUDEdDpAQpTeIiZXn5ojZqN8AocoSpSPOC088+jeuE/Pqd/4UPvyfkM3d+jeNn+yz3dwjO1/mu29/LYLjDgcVrmIzHOLZiMOrSrLVQbsDW1hauIcnJyAqFX6ljex6FFHv7hBcfbTq+9Zbb6Z4d8dP/7Gf50Ifehyy9OAFKCMUVSOOvN6b3aDlXjOpLkWvL0L0fKQ2NUHjez4ttBV/uPaU7+uUeTwKieNGE9ZsdryV3r8Urir8RQZXLYtDv47juK+rcXYpvXsqpJw8NZ9LJEqV55yU7AHg53UBtMr6zs4PnefpZRXapaiW0nPDlE8IVcsIlCVhKsZsuXjVX04mYxrL/0//jl/jN3/xtfu+dX8e/bhdceVnCqr/nlcdefJ57qU5pQVGqAoaOT7PRwFKW3rgJSr8fkyRK+eJ9j+JYio2dLocWZplvVrn20ALRJGKnN+STxx5n0BtzemmLJEo4fGheJ5sGtFsVDszNEMUpk8kAx5F0hyPa0y2kYWIYiihOQMKgM+HZc8sIoFbzqdVClG2SxhmOskjTFM+1CSsBq8vb1GoVwpLTZpgG/X6/FBzRwj3KUEzGQ5SSRJOIre0ORw7OMRrFPHvyPIsLM6WMPMRRVkrdp1AUbG11sG2HwhBUKr7mTtgWhjLI0Ka7UZRiKhvLdvjDP/8KC+0qR/bPaV88x8YLHJRl0mxUUbZFkRfYtk0UaRPhLM2I44QkiglCm8B39xRHMTRHKs8yfu/OezkwVSfLEqqVCqPhGNMyaTQqdHtdlDIYj0Ya1ip2pb1z+j3dbRqNR5oT1B/RHU+YnW7iBy5B6CGVwfLSKqFnMxmPyfOcLM8wbQNRFjiKvEBKm+NPn+W2m6/XCpBCd89OnzjLwYUFNjc7hLWQQkAGiFJBNkkykjTFDz3yLNNdjXLAGqaAIiNLY81VM0wMS+GEAUVh8PDKOj2v4DvedIO+rwqLJI0IKx5FLvhf/t97+ef/9Of4xG98lNsXD/DwU09y3ZH9zC3M0ChtMaSUmIZiOBwz264ShgGe61Hk8Jd33ku96uD5Hg8//jTTM9MIpWg2qxhKMOyPMIRBe6pBkiXkWU6eF2xtbBMEIbWqhlT6gQcUxFEKBXS6ferNGnmRc2RxH9PtJqPRUI9JZfHs6bPMTLeoVQLWV9YRUiJNiVQGjtLXASnJKUgKQaXe1NxeKai3Grq4Iy8JBRhS2yZnec44HmIIB9v2EcJgOB7huB7nlpcJKg6iyCiiDDMHYUiiaIRyTQxpIIVWhMwLgRuGCCFKYRV97pWNdRbm5tne7HLhwhIz01Nce+ggjakGR649xIMPHkcUgjuPPYwJVMKALM9YXt2gPdUgyxKSJKI9XSdNNZTOcR0EMBwMsUzJ6soarXadg4f28+kv/DVPnT7Fp597hl/9F/+CYvs5bCXpdjv4nkOtFuB7Dt/z5gP8l88+wIJtEYZB2ZkRJEmMYeco4fL08QvUaxWUbWivMkuhTM0Bf+SZM9Q8F993uLi8ThprlVvXteh1RtSrVU6euUizUdfJu9gtCuo1J8tylKkosow0012YvXXnal2DF/javMiMXSowK0My6mxjKcnJlQ4SA9PUc5Ftuzz0yAm6gzEy07XOQwcaCCODQuDYji5MCr3OFXlOQYHrenx2Y8L73vMOWvUZ8rzP/nmLmXaD7Z0NLNsgCGaZjJpEw4yjN8wwGHUxrIAzZy9y/6PP8tCjX+P1t93EufPnOHv+HLe98U08efw5Lixd5NGHHuGao0epeAaj5cfxfUWvu0lYrZDmKcXSDczOtqHImaQJXlhHKp/lpVWUYTEc9Wk19d83Nta4ePEct9x0IyvnTpImI2oVn/bUNFkWI00trhEnsRb0ERDHMZ7pQJ6R5do43DCVhtSW644QJoNBF1lY9DpdPNem2ajjuxZh6JXq34aGtZZS+mn5e5qjoeFodU6NljGQSqvB7tk3SaFhyYXixDOnaU9P4zq2hmHnWsClNTXDXfcd4ye+3yfKAp49vcmJzZTv2PctXHPdQeq1Jn4Ysrm5zlSrTZ5nPPbY/Rw6fB1+4GmxovEOQgqqzVnm5vezdPECjXrzpbcBV/nDHbfewU/9s5/lQx/6nsuG4a4C1GWYoK+TXL14x6485/MOybKj+sInvpzzv3Tsdgj39A5eS+5eVryW3L3KUWTZLz2viPKqhrEHQ/lGbpCXFjV55d9If44sy4ijGCGNPRLv5Z1GLa6goXPP9zuRUsPDsixHSn0u0zD2JoDdCpYopfNz9ERXgIa/lsldgZZu1kTksrr8vARYCPid3/4Y7+pf5CdvvPbqX+ny0u3eJHTltdnbN5QPrp5nX4Kb7nZhCtgTgygKMIXkS8ce5fD+fTpZhpJvo01ukzRle7NHkqZM1atcf80i55dWCX0Po/QjO/b4czR8H0NK3nzDIeZnW2xt7/DYM6c5tDCreRLdIUJIsnxCteIRVjTfbmOjQ7NZ59SZC3iezbGHnqNVCziwOMdkMkFZBkmSM9WscX5pjfuPn2SqXqFWr/Dg4yeZadZQlhb/GAxGpHGO7zlUqxWyJOeTX/gaB+b1AjcYjqlVQ6QU2LZLGLi6myoElmUSTRK+9tjTtOtVDCG56yENXbRdLToCWmmtAKJIWxacPn2RY4+e4LrDC8w3KrRaNZTS8NUszfiLex7g8L5Z4ihha6tDpRIyGIy59/5nOLBvlkF3RBiETE81CAPtH7a8vE5YCcAQxKMY27Z4/ZFFzQOcqrNycZ2pdoMkTTVPxNTjVxkGw+FYJyAUXLi4xky7he/5OJ4izzPCIKDRaqBMDckbDscgBbbSfL/tnR6eY2NZNnlRaA5crgVmTGWhTEVnp0tQ8UliLXWfJRnVqrZp0JtqiTQNKLRKoVbMNUvLkILxeIKpLC1AYgh2tjsa7lYYxFFGURhIQ/ErDx+ncl2VH33Pm/T9VCSAIi9SiiKnN4h41/f+NPfeczfvsSw85TA3M6W7hlIr1iplaq+2rCAIQ1xb8cDjx5mfbaOUycGFBcKqS5EWzLTbROMI01QYotDfBYMvful+FmaniJKYak0bJLuut1eZzvOcPMtAwLGvPcrpM0vcfPN1JGmmzdvLu9CyTCqVCsqyaDXrBBWfQadPHCd0+wPa01MkWcLm+ia+53P61FlqjSrs3qu7PM7yXtZy71Iri1pWWVSSWgwjl7p7RKFtFFSA74VUawGj8YhoPGRp+RxhpYofeAx6A1zPp0CbVecFGIbJLqAry1Icx2W2PUVRCJIoYTge0mo2KLKCLM0RhqBVq5OlKbccvYZ9C3Mo20QKSavZoNft4QcujqOhgoaysJQFRUGWakuOfq9Pq9XQfKUCjhw6yEJ7mr+7/yD/8P/+DT774Dm+920HtTdjppPDOI4Yjce0D04xObVFo1bZUwHOi4LJeAi5iW1a9Pp9woqri2wUe+q2izNtarUKUhRsbHU5fmqZc8sb+LbJncee5ObrDjAzNwUUfOXex1hYmCpn2NJLVO4mTpn2mHTsEkXyImukePG/XZncgTQNNjc2EemYnV4HTA/TUBw4tICQMB5GTNVrPHNmidlqQDVUKJVo43G056UQej4XQhAE2p5oa7vDnb2cH/7Qd3Lh7GmkOaRRG9HrriKMFNeeZXOzg19NuPnWGYosx7Va1Js1Fg4c4akTa/zAD/wwb3jj6zlw6CAPP/QIjXqTY/ce4299+7s5+fSzeJUK/a0V1k7dS73m4Dqmth4wBHd9bczRg4e14rYwsdwQDA/XcnEdh0aziZSCNM2xLJtarU4WD9naWKHRbGPIDMeySPOkRNUILGWRZroIokwL8hxpCDIEBZIk1eJElu2QJAlRnCAMha18hsMhnmdjSAiDKkrp9VAZ2qKkEDmGNDUUV5oMhymPPfQIrfYUlrIoUtje2sR2K0h5Gc1kV5hEGtQbdQylu+ii7Oqq8j77r499nve/a5qt7Zz//Cen+LFv+zBz89Ocee4pvKBOqzWlRYFKaPb+fQdBCKI45pGH7qZZDbTvaFZgKoft7S3CSl13G180qbny8e5+6Y5b7+Ajv/hPeP8H3ntpnHMlRLMooBC7MNWrDfGX3h9entzJq6DALtF/rv76l7v/FCW8HCjtgcQLM8v/TvFacvdavKJIs+yXXplkyDc3zJIU/M3s3L0S3ttuZJnuDEhpMhnHOI6Wh9bqZc8/T7EHCX2+JO6uWqVRehpZlg1X4dHtfsZiL7Mrj1/Gbst3bQXEC7/HqZNn+Imf+Bn++UzAdFh52d/z8ne6aqfu616yK1+jDdG1CMDp4+dp1Wrced8THJhrUZCytd3F8zTHLk0yTp1cYX66Tui52I4NWU6WZpi2xfr6NrdefxijSLn1hkNIU7K502FuZorJOKbVrGOZFqvrmzx9coWbrpvnzIUlLKNKRoJR6L5nu1nDdkyOLMwxPdMEoflEruNgOUonLGnKVq9PreLTaFSYa1eJkgl+4LCyulVW1VMMAxA5aZqxsz2kWasghMHU1BR5XnD6/AqV0Mb1bEzbQQjJE0+eYnamzfLKJotzbY6fOMvbb7sZy9I8p91lTUpJEsUURUY0jNnc7PHWW4/ytYee4voji9p7p8iRQjIcTdg309Rj0pBaajsvGI8ijl53gPFwSJ5neIGNck2SONabEsMouXulWl4U47jaz0zDrGKUJXFcmzTJiSYplrKJJiOCUBuR266NYUgmUQqFlrPvdHt4rotha15jrzcgR1siBEFIURTU6hXiLMdyHW1qnWb0ugNcx+Fzdz/ITdcfwnV1Iu1VAkxLMZnEhA2XKImxHS1mI4qCPE8Rwii7fpLBYIBl2VreXOpkJ00iDAmm42JKDTM0TImQBZ/e2ORnvvutROMIiaAoYg1nkgopLH7k338Bx4bf/r0/5AdvuAVTWZiWKtU8deKwtrxOPInxKyHrGxu4ls+5k6ssHJxCmJkudCCZjGKWzl3knmOPsG+qgTAKDKnYWu8iM8lTz53g5puOkOcw7A/xPI/BYEin0yuNgfV4O7S4yKGDi0Tjod4Y2jbSNDCUiSFFWUAydOdTGQgDas16mdzquVUUBUsXVzl0cBHTFKRxwqDTwzJMsiTlxIlTOMrCMk2yvMCyFOPhGKNUfjUw2dzYwHWVHi9poWXlbZuisLHtANuWmkOaJahC0OuMiCcRjudo+fiyYCAp6Hc7FIVEldfWVCaOY2FKyXAw5MSJszx76gwLs3XCmpaWn5pu6oTeMEnSjDzL8QIXcsH2Voc8K3A8h63NbVxH2yKMR2M+/+UHObioRYb63T5pFFNvtnjw4Sc5e/I0Ty2vcWi+woGZJpmkLNjB6tomh+an+Zdffpa/vV/7GyIE0gBTag7hn3/5figK9u+bpZBaUdF1Hc2NNkyKPMNUJkHgcnjfPg4vzCAEXHdgDttVSCVYvrjGmfMbHLlmHlMaewm1RECu4X9xHGufS2V+Q2v05VO7RFssKgnxsINlGvSHKZudPlXPJ04Sqr7HsDNkFEcsrS1zaCHAUgYGFlBCMk39HXWioW0CHNfjM+tj3vH6a3n6+EUOHpgjGp3DNj2kYTOINrn//sc5f3KJ/YtNgorDOC6IxkNyadOcPsq/+be/xqGD1zOz2CZLDQ5dcz1vfds7MJXJM48/SVBrkk76LFRGGGZEzbcRoiBKU66Z+XukSQQFBGGbcZyj3JCiSBmOuvhBwNmzZ9je2qRRa+gur22xurlCnucEnqeFRCyFITUP1zBViRZIUaYiz2MKKRhHimefO0OzWUNKqS2ZigLH9jHdAGX7WJ5LkkyIRiNsU5BmCVmmFXMpCx67TEqNThDsdDao1uuYyiDLYpaXL+DXW+TJpBTVsvQlLwyEzHBcF8MUSJFjSq2Ma0jJvffez3u/Q1APFP/nR5/hJ77te9nY7tCenmZ6dpFOd8B993+Fo0dvZBKN2dxcx1QWJ0+cJMlT5uf3YeQxSRyz/9B1bG9vU63UkYbS+5nL1v6rjrbLDu/uc77lltvLDt77XqTTVd5j34Tk7mrP/WYld1e8puTDv5bcvbx4+cSr1+KbEsUutCJ/YQLyakQO5NlL+9W9GqFNQSWWZbG6uophKrTGwgtNz3fJ9C8VpmlqQY+v48V3lZNDoYGaeQl/eX589P/5z4R/8gf8/h23gXG52frL5xhe/XkvUR3ee82VoWGXkqULKywuzqNMxR233aA9frKMaBwxHk8YT7TARrteYTxJqDVqCOCLDzxJXPJM5mbaFHnGYDjmzNkltjo7LMy3EUCzFvLk8TOMhhOSVIsYRFHMXHuKSiVAGpJqLeTsuWWiSUSSJux0exglpLDerNHt9EFoSJhpmhycbQMF3e6AJI0ZxxMQOa1mnc9++X6ULTGVoNvr0uv1eMut19Jo1gkqIWmeUyDZ7A6wLAPTMpBSEE1iAsflk3ce442vux7DkNx647XYjo1pKYocBv0h3Z0+3U4fy7JKCJmJkgauY7O83iFNUi3GYFnkeUG1GtJs1bDs3YRDQ4cazRppFoHMaU2FZHnEcNQjTTNWVzexHZvReMJ4NOHTXzzGaDRBCNje6hJNtFG8skw2NzsMh2O2trpkaaGvW5ZjWxYXL67juQ6NZh1lW2xsdahUAtIsI0lSev0hlUqgbRtqFXL0RnkwGGnvviQlSzKyrCAMfFbXtnjH64/uDbXeYIg0tNVAe65NFMfaY08I8jwlzzUUE4o9wRzbsUmSWG/IC4gT7fPnODZZkZKmMVkaMx73+aGvPMy/+4ffzniUcM/djyMxSSYZUTKmQPB9/+az/NHv/i5/9hef58++7/twPZe/+vIxkjjTXo055Lkg9AOCwAcB9WadjbVt3nTb63BsS0NBbYMoSlCGyVSjwWyrzmQ41nDkOGM4GLNvblbbBmQ521s7VKoVPvvFL6OUiWkYDAZDHNclS/V3fuKJZ6AouOverxFHMUmSsrKyyiNPHOep4yeIooi8yMnSlCRL6Q8G5X2neW5hNWRmuk2/32drY5NoPNZdJSnY3NgiSVLuvPsYq8vrSKkN7sdRRJLojW6W5LRaNTo725ofnOYIM8GwBQgTIW1sN0SZLqLIiScTQtfDMhSQaeSCqSG5aZJgSIHneTqJKQtj0jCoVALqjRoX1zY5evgAQeARJxEz+6YREra3dxiPJxSFNgU3TRNDmUxNTVGr1TEMg3q9ys5OhyAMsF2b73v/d+H7PoZpsr2zg+c4DHpD3nTbrfzrH/gh9h3az299+dxekknJbzt86ABKWawkCRTQ7w/1XAwUuSDPMz74ne/g2sU5kjjVa4GAzc0dPvXFY5imwfr6NlmWs76xw/ZWhzu/+iimaeC4DoUoGE/GVKsB7333WwHIi5woismLTMOYS95qFCUl9JG9teEbK4ReQmZIU5JmuhPsWYpDpRjVc2cuMB6MWN/cZml9h5uumcZUsoTpak6yWUJP4ziigFIF1QQKojhmZXWN+489waHFG6lV5zCFj2s3kWrA297+Ng7MfyuKRYajLpW6/lTj4Zg/+IPf5ec+8vOsrqzytfvuY2FhgSROOXHiJKKEXi8sLLK2tsGpM2fLomlBHEf86sc6WJalbT4oWFlZJgyqbG1vkqQR7Zk2OztbzM3OMzMzT0FBXmQMhkPCSoMLyyt0ujsaNl9ocTUNn0yRholja16sNAzNw84Fnd6EPNOm81CUfMmIcRSz3dlmEkcIw8A07b1CnmU5pUl9DuUcYJoSaRYo1+DGW19PparneNdxuP6GW5BSYFk2WZns51nOxfOnNIy3tFEBUZpwZ/S6Yy6Yz7GvLfjZ/3iSX3jfP6bZmuHI9TcxNTXD8soF5vct8q53frtGUpRc/87ONgcPXsPczDy9blfz/8I6F5bOsrZ2gSzLCPzgZe0sduknz49f/JFf5IMf+PA3NHZfi//x47XO3ascWZ7/0lWVD1/F2PWT2/scL3PxuprH3dU4cZcUJndf90JmrTS091Ucx8zOzRJH45K8LPZgnldCM3fPg5b3Lj3mKLLdehxQSh0Xmpdw+T8ptbJkUVzGuBPiMlKwJuwWFHsVDyEEH/jAD/HDXs5srfbCC7KnU3z1yfV5Vw8Ql+A+u53EFzjmahcvKcXe6XMKzXXSTG+Wzi3TqlVBmhimwLIN/vSvHuJ11x2mVg+RUjIajOns9LjnyRMcmJsmCH2EITh6zQK1WoWVlXWkEBw/cYHFfdPMzDRJJym1akgcT0jTlErgcnFlg32zbY5et0AmBNKwEaYoieeC5lQd5VjkSYYfukBBEkf0e33CisfOZo/xOKLV1HLReZ5imZJKGLK+sYMBFGnC0YNzxGmKNCXkNhQmliPJkoKt7R1cTzGOI669ZpHCMMly6G32+cxdD/L2N97M8voqN1y7yP1PPEO9VkEYAj08ciaTmGqlwhPHTzE91dDWAbZiZr5JIQVHDs9TFCmmKbEdi36/TxRHKFuxvdHjnvuexrUNBDlKmqyubSGlgeM5pGnKZBIThBWqjSqFBMe2SCcRRw8u4PsOWZZpxVJpkCQJ5IJokvD0qXPccOQQf/TZuzmysIBpCSBn1I+oVSpsb3Y4fuIM5y6uQwaOaTEYDwgDl8FQG1Gn5WbUMAzGk4n2QZMFWZKwvdPBDT1c16W33ccSBklaMJ7EpEmiBTeK3STAIElTTKU7RqZSRFGkryMFG+tbVCoVbaacaLiikFpqH0zyLEcYBj/+0Al+7yPvAQqUJTh8ZB5hgmFZCGmDTPjEPSf44Ps/wJ9+6pN8+/w0plIc2LeAsmXJHRMU5CjfxnQsDTcuIaK1ps9wMMaxPQa9MWma4YcBlqM4fO1+lGMgDK3GWK2GTOIxt9xyPUWh/R0nk5jjz57lhuuv4fizJzh69FrSJCWNE3rdHo6tNGQ2E3zhyw9xZHEBU0jC0Cf0XCqVgI3VTaJxrGG3SuF6lk4W4oTxMMF2LPxQbxDvfeBJHnzsWW655VqUrWi1piiygkOHDmnIWZyipEGn08UPPJJ4SLfbIwh9oklKlmbYlg+5oCh0FyLDwPIrFGSMkj5BUEMqH2yJZSmGgz620rA+y3JB5EijoN/v6A5kmmJYFtKQXH/kIAhY29jC932KrGCw06derVDkaSkdn5OX8EsESMvUCpZZiioNp6U0GI26JFGMYZrESUJQD8nTCGVJlKv44A1Hqb3xNu6//15uOTiHIUu/rHJOfN8bF/nBj3+V75yqE0cJMpMYloYEa2hcgSz5clJIlGFxYHqKTreLsgyCWoClTJ4+d4Ga72MgabQCdjo7bG/0uXBhi6l2FQm602capFmmYdsGWphIGMgcDPtFOneXrXfiKj+Xv0ZIk2G3p1WAJxNG/QGb3RFz++ZwwpB2vca5i+scPLyIY44xREEQuAhS0jxht7hiyBLOiyCKdaJkKoO7RuDIjDu+7d2cW3qKVj3BNCLidItAVrHNnEojoddfwvcrnDp5mt/92F3smw9Y61zP3V87xrRb4x13vBuJzR/+/h9ikvDcU49w+txZrj+wj2S8wsJcxPrFM1SqLhkFj5/KuK59lFxKpKlQXpUklyihCwBpof3VHN8jTiPCaoUizZAiZvVin3FvzHVHFqFIUWZ5z5ees6Y0SNJ4D6IphYlJxr7ZJqZlsLq2wnZ3jO17BG6NQkp838U0JP2dLaqBz1Y/wg98JqMRk0lEVmjfYEspMkzSwsJIczwE48kA8hzTsDQSw1VIw8Q0LdI0QymbSrVOLgqUNDAKSt9L7fP5f33xd/jlH9vPR37jPP/b3/tHRLG+F+IkY3lliRtuuo1Gs87y0nn6gy6VSp1avcmFixexXIunHnuUQX+HSuiSJBFFFJMXBTPziyjXLT0xd8fblf9edJvBpS6f5uD9r3zwQ+/b229c0hXYRUTB7v7p69k+7cZVO3f53maq3Ktdfb8ohNDNjefRg4Rk796+ujp4sXcVXo34H71z91py9yrH37SgylXjm2QQucu7M5W1N2ns8taK593IaZqwqxZJsWuaKUpVyksqmJcnhpcSPXHZ+V742YurHNOwy/xlVcIkcOrkWX78x3+aP7jjDTRKoZarnvQS2vIVx/M5fQBa+mV3Eiu/d1FAXmBIwaA3pNcd0KxXyTPNScjznNcfPciTT59iqlUnSTKWltZxbIv5Zo0oSWm1KmzvdOj2BoShT+A55OTUwoBaPeSuBx9l/8w0fuCxvLqJbWvjcIEgrASsbWzRbFR09ViadHa6SCHo9oaIokAprVzY6w+0zL6lkwTXdnjgyeeoVTyCio/2E9oCAAAgAElEQVTjaQ7ceDRhbn4Kx7HwfI/xKMI0IEkS4qggy8B2HT71hfu46bpFTKVwPa04qNVGc3zPZf90E8tRHJyfBgFnLqySJinT05qrl2d5yeMSzM20tMS1JUu+juZDbW3tEAQeZ88vEwYeQegzmUQYhoHn+SyvbHFqdYUbr1kky7SiZFDxKYqcNMlQyiyTnKKEzArdYaDAMPUiZQjBeDSm0xkyHGlLgelGHc9zmQzGtKdqjMZDfN/H9z2G/THN6Tq1wGO2VeP86hrXX7OIaWkVVM9zIddOGJ1OjyLP8AOPvORQOa5DvVFDGgae51JkOUpZfP6eR3jTrdcRVDzNyxMGEi1oY0jJZDxGmpLM0DBl7RMFtmmT5RkUumqu+Q+y7HZL8jTjpx54mo/+1B2YytDdh5LT1u10cX2PLMn4d5/4Mr/66/+ef/Jzv8AvXHs9UoHvhWysaMuJaBIhdosb5VjLkoxBb6gThkpAVqQgdAK6y99avrhCGAbkecrTz51lbnZ2r9uQZRnRJKJSCTl96gJvfePr+Op9D3LL0SM8++wp2q0mOztdmu0mrutw8sx5br7pOgyRs3//LJZj4DgOge/zx3/2BRZmp5mZmy4LKxamaTIcjKmEFU6fOc/6xibNRo1ed8A1BxZZmGkziSd4nkcSJVSrFTo7HYJqSL83YDyZsLy+SavVwPVdlFIabp7kXFxaodGqEseR7lbECaapOZZKKZQw6He3iJMJtl1BkDEeDzGUYBJF9DsjlIQkiognEUbpyYehjb3zEh7/5HMnaNSqBGHAxYsrdDpdWu0m0jDo9XqMh2Ncx9Z+lWnGeDxhONB2JVmeYxiSwHfL4oBO0BHQ2ekyGUfYrsvOZod/+fm/4MTakO95y0EmUczqyjrVWoU8L1i6sES1YnGLV8e2HIQwdGIqBJPxBMexEQKUaXDm7BKWYfHpux7k4PwUM3NtCvR43TfTInAcLEvPGXmeMhlrf8d2u8agP2Y4HGOaCse2SZJUb3ZFQZHlbK7vENaDq6MqnpfcveT8nhdMxmP6vT6WkTIa9Tm32ufI4cOsb/dxHW3R4lc87r7/ODtbI9bWt7i4vEPDb+E4+d4aIaVESG3iXVBgOzZ/fK7LLUcOc/vtb8FxYrJ4iTSK6HS2cS1Fr9/BthW265AXAsuyeMPrb4Tc4ROfvMDMvjk+9D3fxcK1iwS+x9vf+lYOHTxAnqa889vezplTz9Fu2Yj4BLXQocgStre3+K9fHXP70TeSZZo3vLyyRpQI+v0hURLTmGoTDSdkeYFta6iwZ3tIM+Wxhx4lSwoqvqkh3RIoLQV2C0xCiD0eV4H2/xRCkAvB+toKW6vb7D9wgDzO6A97dDp9RGFSqVQZjnoc++qDhDUP13NJ0gRlWwiZYxgm41HKPccexMhTKkENYZRwaqk7iOSCJIs01w19LM9zRpMEw5Dk5GX5VbC1McYMzvNbn13lI9/5oyAEDz/4BNs7Hda3di7Ne2mMbXs0ag2eevpxptuzOI5Hvdlke3Odw4cOkcY9DCmw3RC30mA0mWAoC6WuhGVeube52vh84aE7br2Dj33247z1bW+8bBhfPo7FVY+/4NRfL7krXt559HOLFzzvEsXxxaCiZYPhteTuZcVryd2rHH/Tgiq7FZP/VsjJ5bYIQpTmqnm297fLkzld1R3vQUykYV5xc1/+XFGSl58fe4ngZY8BbWvwvIrTbrfu8kng8rTOKBeTEjfzgvf64Pf+IO/rXuQHjix+Axfm6/x97+2KKw4UV/xW/l4UGEJAmlFkGePhmNFgjKUsXWXXGStppjdXMzN1onFCvztgeX2HiusQ+h6VukeWJTSaFTzHYX1tCz+wubiyTqNeoT8ccO2BeZTjYBiS5bUt2lNNXM/h8VNnCW2b+bkWURKT5Rm2ZTEZjRkMx7TbmjjvWNr3aterTSlVciltfEsRhh5PPneGVqtOXuSlkIpJp9PVFekkxXMU40lEtdbkrvueZGF+isk4wnddDMOks93VVVqlIYy97S5CQFDxyLKc0XDMoQPz+K6DaSnyPGc8HDMej7WUupScP7vKxtY2U636LoWFai2kyDI818G2FdEk0pBh1yaeJBzcP08zcHEdC1NpXki32yOaaJiiaZgkSYplGUgKsiTDVKrkZUk2NrapVkJWVjeZm51mPI6YRDFBoIsGeZHRbtdxXIfBYESeFTRadTrdDkHoMRqNmG03mUQ6IbUtmyRO2Vjv8Ed/fR9vuvEgYRgihCyTTYsM3UmSheDcuYv0BiOmputce3ieAr1B1GIeijzLLsEC81JApXCYdDsoEkiH9LpbKLuCskyyPCmV6ExA82R/9Njj/MY/vh3fd6FcgA2pOXuO65DnOaa0+a27T3NwYY7Txx7kfa+7GSdwkMJkdWmTk2fPsG9uhrXVNTzf1QJLwKg/Yun8CvOLs3pzVSqzJXGGZemuoe+7CAH9QR/fDnAcmzRLMZTB+fNLVMKQzk6P0XBMrVZlut1gNBpR9X2ePXGWre0ek8mESrXCE0+fpFWv0mxWsRwD27UQppbJ95RiZq6tN39FjmkabG92CIMKk0lErRZQr1cwTZMgrOB5Pp7vo6zSw9GxtWx/6BMlMYHv85kv3s3S+iY3H72W7k4fy3KgEJiGSb1WoZCZhpNJPaNNxlFZQACzcEEMMVSGzDwee/xJ2s0WbhBiGi5b631q7Tq5kFSbDZTtYjoueZ6VgjkwGo44tDhP2KiRpRm1SpVKJWRzaxvX97CUIgh9Br0+SRSztbFFrVHDsi0QgslkQpZl9Pt9lGlx17EHsJRJJQxxbIcg8JHC4HN/fQ/jzgZv+zt/h1vmTBzbwrIsoihCSkm16nHz4Xl+7KOfIz6xxJHFWaJJxGQSsbyyQatVJ04TRFFQCXyyHFqhh2VbWgEavSatrGzguRau5xBHCaZp4LsB7XYLaWYoU/GXX3mMqudimia2YyMoyIXQiXp/RG2qvgcNfeEc/jI3l3mqO915TpGOybMYabgUwiAIKjxy/CSTRBd2BqMB9ark2kMt5qZtCjnGEEJ7iQqpi6FQKmza5Lng0ytDfvof/CCDwTq2k5DH63jKw/dCbDNnMh6hHEVe5HS6E6an9hMEO2ysrfKXX9okbBn8/Q/9LXaGE6o1H+VIPvHHH2d9bYvpqQW+9IW7eeMbbmL5zMOoosAyMyzLZnLuehYX9wF6jObCRyiHA4uHibMUx/FIxhGPPfYQ+/YdoN/r8dSTj9LvFkySFW64+RqKTKtp6iKi7g7v2gIps1SxLFW0TdMgzVOEJTFNm4OLR4iTXslHNHGdKmkGvUEfx3Oo+T6V0MQyBBUnQAlFISVpkiIxcByDsObiB7bm6yuLOJtoIZVU5yiiLC5LKZhMhjzw8DMsLs5jGJKiyEiSnN954GNs9VJ+5m//CErZGMomVopYZGTC4NbXvx3Hshl0u8wvHGA4GjI9NcPq6rL+HLZJv7NKf2eJqVaLOI7BClGOT1hr4AeVS0PtqmPupROxyzt8f/z5P+b9H3jvpe7Zi3QAX4w/9/zjl6O/dnnqGklVkO/aVzx/n3mVPecV5y14wee58nO8lty9kngtuXuVI7+sc/c3IqryTerSXfnpixcc28XGZ5n2lPM977Iu3tUXzSuhmC+s7Fz+vL133u0QXua7sqeu9CKTQJ7rDfDVOHYf+sAP8pEjMxxqNq/+tf9bQ1z5YPft9w7vetvA3v/VsD/iuZMXaE+1cF0Xx3FIYk0q7w9GusotYW1tC0spqrWQfneAv7vBSWLC0KPfH2hFriRjMBpSDQJM02QwnFCt+Fi2wjANqkFAHKcEoUuzEpRm2x3C0MNxbJRtYRm6+6WUyebmDrLIMUzFJ790L65pYZT8tLzICUIPZSma9QpKmSRxSuB7bG1u02rVMA1FkeVkWaor7ZnAdxWer7j28CJPPnMG33VoNCtIQ+hNfwHJJNaQRFPS7w0JQ1+LmihTGyVnGWtrW0y3m5ojkeVYpk29FvDMyXNMTzW1UAGCLMkQZVdQKYWy7HKR0obPk8mELNeqgFIKHM9BmSaGYSCE1O+XxPS6/bKbVI7THOq1Kt2O7pg6roXj2CRpyufufYjFmRaOY5GmCaZh0u0NaDRqJEmiSxQFeJ6LZSk63QG2pbtV58+vIoTk5oP7cFwN/VTK1DYKWUanOyAIffIkxfdcWu0GWZ6V36lAmVqYwLZU2X0uLrtvJGQSW+VMRkPiZIxlmUjTLws3+v4Z9sYoU5GkGZNGxltvPMBoPEKZ2r/LKDsNecm5/JWP3cWv/od/y+zcLLd3R8RpimEpwEApxWPPHefo4YNUwlB/DilI0wzHtmm2ahimRErIEp2Y5Kn2vsrK7myWJgSBh+sFIPKyGyCxbRvXc1jf2OTAgf3Yno3jWtrMWkhOn7tIo1LD9xwqlYB2o0alFpKkEXmhjdrzXN+atWqVJEnpdvt4vsvmxo6eZ4qCXq9HvVnFtjS0K40Tep0+Ukq2traYRDFGaQCfproLqkwDXym+9S1vYDKJ6PcGuhO5vFbCSiNsxyLLcpYvrlGtVbCUqXmg0kBIE+VI1ta38CyPdrNGgcSwXaQwCEOfKNVS8gWCrLS3ME2hOUxCsrOzQ5Ik2I7urgWhT5HnjEYjHMdhNJoQRwlhNdRcqzQtRYIM0jwnDEM62zulobjDvtkZms0G4/F4z7Q8HkXcfPRa3nXLzfzCJ/+Ezz92kb/7+gWePH6CxYW5UsVZ82oP7qvz9sYMlqVYXl5nfn6aRqPKcDTEdmzyNOfiyiZFBo1GFQRYyqTb7eG5lh7fyqQo4N5Hnuaag/NkqSBNMgxTd9QGgzGPPrfE6244iJAFhoCsRMs7SjEeT1C29SJz+MvbXEoKtjZ7OJZCFrpzl2WQC8nM3BwHZtuEnk2/P+DJE8uMR11clRM6Ase2MDBBwHg8RkidyGR5iqlM4iTlz9ZGvPMt13P48HU8/PAxHGNAEaUkSYxlGozHQ/wwIE5SPvWpu5htz2PbOziORz+5hsZshfnpGTAcavUKP//zP8dP/vg/4MyZ06SJ4NzpMwgmyOQCMk9RxgRlWtzzYM51hw6R5RlxHLGx1cELG2xsrDM3v0CaF0yGQ6rVOr7vE0cRvheQjEEafVqtFqIoSNIEpyyWGYZBmiT4XsA4Gu2thxqeqb0sEQVSaFXNjASlfCzHx3EDDKXwPY+8SKkGHqZRYEpBnmj7k8FwgG1a2JaFG/jYriLPIgpMkrTAsEwocixpasGeLEOZFmmmedizc7OkyYQsjTGlyb/68/+EaVn88Jv+Po6r1YlzJG4QMh71GfQHhJUm7dYctu0ySRMm0YRBv8fM9CyPPfowhsrorJ2j3Z6hKFIKoXDDJtNz+1ClWNhkEmmBpG8gubs8vuWWb90TWNGvfLHu2Evvty47uPfrrtI45Tz4/GL7S8Urs0R4Lbl7JfFacvcqx/8fk7urwQu11LeBqdRel3I3abva86E0wty72V9Zcnc1bZMXmwRkWW26vHOXZzm//OEf59fefgtz5ebyv0tc5SNdwbrbvViFXpyKPOf+x57h8P55HMclSXOE0Ca7UghOnLrIY0+dYzQaIQ3Bvvk2S0srrG5vc3hxlsl4Qq0RsLG1TVBCvgb9Ee2pBmvrO1xc2SLw7JKPNGZ9fRvX0mqNSkmKUpnNkJK8yHAch0F/yGQ0xvNdbMvG9xygYGNjgMgkw1HE/vm2Vv9zTbIi0xzLPMcQkmF/hGVriJmBIBrFWtnSsZhMJriOjZQF40kPaVgszE3j+y5pGoHIkEJ7zn38s1/l8L5pTGUSxQmu69DrDnTXrtDdzO3NLmHFpdPpopTCslzNxwoDDGmydHENz3MY9SLyXC9Sk3GsFUWVxJAWKxc3+OoTx5mfalAJA+I0IU0ShsMJfuCxsrxBtRogBFRCl9NnL2JbNktn1zBLw2GEZGOrg3aRA0sZ3HRksTRCt3XiInY7KWOt1qYsDMPENEziOGUy0lAnU2plRVNqkRfbdul2tVhMt9vDdkz8WlX7RyZaZANTIgxBFkUIckSRYgJ5mpMJLdyQpQWWbUMhye2c8WSAGzhkuFj+FKapRZDGk7FOoKVFPEm5/j9+lN/+378figLLsRCG1AUKKZBSlgp3GX/yWI93vfsd/MAP/SM+cOPNRMkEU3mkcYoTSGqeje+G9Hp9HMchKzLyPKHIU4o8QaBho0X5/3T+zBJ3PfQAB2b1ODeVQZrGWsAijTFMQRynOLaLNGDQH9CebpIkMXmeIA341F99me3OmG95823UqhXOnT7PwsEFDMvA932k1ObxUumiS5Zn9HoD2rNt8jjj1JkLPHvyAtdfd5Cw4jGZjLBsmzTO+P0//TxzrQZTUy380MO2LXq9AWEYIIRgdWWFQbdHNfCxLYXtKIokJ6xUsAyLtY0tpqanELmAXBD4vv4MmS7s5FmMcBW5EfDwIycw0g5h1UIYBoZySfIY5AhP2RRZhMgTzpw8zXSrToYkT3UCPB5NmJltkwuB49hEwzH9/oDWdAshJbbnYZRFmc2tbapV3VGQpmLQH2IqA9s0SNMUy7LL4nyBqUxGkxHj0Ygzp87juQ7b3Q7vPDjHT/7KL/M//9Kv84F33kgYBlpYI82xHY/pRo3v//iX+cChaeqVKoP+kDRJcQMPBORo2N5XH3mGRuBSCVwcS7GysUUldJlMJtiWwrIU++fbnD2/zFfvO0E98AhrPkkyYWaqxaH5Nn7Foz/oYRuK3NTjNR7F5HmO7dovMoe/zI1rBpOJHre10KLf62KbgmEUoQwX2zQYj0csb2zRqjoElmS2WcW3FGaZ2BlS4riO7jpJWRYvC5CSPzq7wXe/5xaefnKDIotwzQFPPvEEQeAxOzVNgUEhMibjhCzxaNT34VsJlu3yH37zq5w6v8yBqTfiNwKazYA3vP5mpts1HMfG8STtqRBl9FmYGVANBSJJuPuJlLff+F7iJNqD37ZmDuCFVbq9LkvLy3h+FdsU1Jv10hgelCmI4jWi4YTNC12214cUMqMSOlopNs+xS4sDIXWCQCEo8oI0S8sCYIGSpubjOgppVJFKMYrGCLPAUgbjwYDCVDiux2A0xnQcMjNHCRNTFOTZhEKAkjZFXFCYHn/918dwHBvLtrANs4Sry73/5izPgAgTiaNchsOEzeQ0/e2cd73hzRr2HU0YDoeIWBAPx1x/w1tYurhEd9Bn3+IBbNvG93zW1lao1xpsbmzgWTGh6zIZdmlM7UMYPvXpOYShyNEq4JZSLzHmXn5yB3D7zbfz8KlHuPbIodeSu5cRryV3r8Uriqsld+Vt8epANb+B5G5X4WlX0GT32C5U8lJSVmgPJEMTpK9G2IVLHbq8lFnfI9kWOc+HXl7+eBeCKS87354/3eVdw/KxKDlVzw+x9yMwgO/7n34E554v8eGbj7C7durnXZ4pXgkf2DvRpQtS5ori8je49HPpaZddh93TXkrv/j/23jxYs/Ou7/w8z3nOft79vfvtfZPULcm7bMtgMAN2Ag6YPUCKwJBQqRAygUwBM4FJagrIVKYqE4oZaqYCBRkgOIzBgG0WW7JlW6ulthZLrVarF93bd7/33bezPWf+eN571ZK6bYnBqaJGT9e53f2+55z33Pd9zvP+lu+itKaQCl1Ixv0hvb029cgl8F2G43QaPIO0YNzrs7www9Zum/l6g8eeXGVpvsbMTJ3luSb90ZioWuH62hpHlhfIMo2lHFzX4/kXV6iWI1qdLrYjqdUi3MD43bnKqLFdWd2g3qzRa3f44pPPceKQEUHY2t3EslzDURDmM0cKPEdRijzOnDrEcGjMx/NMo4TFZJAgC0GaxkQlHyEUnuOTJRopISj7gIWyXHQhEcIi9CuMukMuX92kWisT+Ip0NADXRlqSU8cW0RT4kUc5qNBpDdjabvHM81c5eWQBS0gc18Z2fCydUWQTgqqN9J2pcfiQRr2K0ALpKsKyj3IsHNclSXLcwCHJUkqNkNtPHsYSxtpAyJwszfnEA1/m7MlD2I4JBJRlo7XAsRWIlPmFOQoJtmcjigJHWYSBCWBAohwH1wtIEuPkZFvmnglrFQppIbXGcSSTeDSdIxbVUo1UG7+neqPKMxeu0m31WV6em/oWSSws4/WWaUbDFCUVg+4Q13awHYdUpzhuiJAOypaItEAXFrYbAFO/O52itYVSAbbjkscJuTBCME8+c41BP6ZeL/NPzz/H7/zMh6jVKlhKIQoLtEAi0eRgaZIs56d+/T4e+cIz2NLiV+46Bxi+n0j0lEkiiMIy3XaP7rBPtVZmMhyhlE2hC2zXJY4neI5Da7dNPEmo1uoMOwlHji4zHPWxBGxu7hLYJZ565gIlP2Q8GhKFPkIpbMfFVg55khtuvoaS8ijZAVmR0FysMzPfmArUmERSUCAVfPTjf0XVN8URz3exbcVk2KPZaLC4OIftSMbDMbbl0tnrsruzwx2njtJcWEC6NuQJ7VaHp5+/xOLsLKPBiGqtyvX1PRaXl9lpdShXI6Sl6PfGfOYLXyLwFJHvGTEaS2DZkpwc2/XINQx7PWwJ5CnHDh9iay+mWlIUVorr1BDYCFcRTwaMRiNsy2ZuYZE0L8gmpnNoOEVGXMQoqAqU6+BFPp12Gy9wEHlBv9PHsW2UbeOFHrJQjPoDRsMh8WRMEPnoqcdomuVM0hQ/DLBymIwn1Gdq+CWf/nDAkYUF/vVH/4jtdo/vvOcoQRhMlWo94iRGyoL3nm4iXuphO+pl1U7bZm+7A0WOkHDHmSOUq2VsxwIBe3sd/MAjDEOG45jBcIwXeEShgWcuL82hXMlwmOGFNl5kTwtWLqPxCNdxoTAG6usb2zQqNSPuIwWFEC8v5+LmovSv3qQlGQ8H+KEHlmR7extGA2abs2SWgZInacrxY4fQMVy+ep1GNUQpwz/TmO/WJE6xPRfhSNDmMyqKjD/bGXJm2UXmNotLFQp6HJop4dtDknxMq7OD0BqJ5tSpOfJ8BxzNWrtHms5zeP4USyctHnv6Av31bXq9EdWFo5x/4Bne/Y57GCea7fUXmHW2SCc5l65c5fe+kPPe02+ZQhclndYOSI9COkjLpl6vUa1WENImS40AT5rHWK6NH9o4dsTVl17ALUuWF+YIHcdwfKUgywtTeJISmHo9FjmF0BRCI7CmwlFjJA5JFuOGARvrbUphxNbaNoEvceyCySDBc1zSvAu5SRwznZt1VUrSLCXTmpyC5cUm9bKPa1ko5ZEWqVHZFJoCjRSOkeGXEjT8uz//LfZ6Y/77j/wjpLRo7XSQImSv1eHZKy+x2425du0673r3+4iTmNZuhyAyqsK91pAnn3iMO99ylFLg4/k+pWoDy69Sbs6hLI9CTpEgWcrKS1fxKxFQIPICax9KWUztfW6cc8UN4Ye4MfSY/pSC/+23f+2ge3ezcWOM99rnXp71onh5k9PjjJLo60vY9mGdb2hMi0YIY2rxas/jv+nxZnL35nhD42bJ3StyhK/3Bfw1boY8z9ne2aUURTecxnAJjCpm8SpI5de+wYWQB8e+9rmbH/tyAveyCub+/jcmd9YUbnUru4kbz37p4ov8w6TDyUbtFa90k4v66ifa/+8brES9+mSFkEid097cQomCLC/wwoiwVMKeQlikNiIDcZrQ6vbIsxyd5ZR8m4WFBukkJs9SLCmxlcKxJI7rEMcpWaZZWdvittOHGQ5HRIGHMzUk1kVGkiQGqtXpc/jwEjtbbZq1BodmZkkTzcbGHocPL087ei6ua0QO2p0+UbmC6zp0ugMTdCkbx1Wsb5jOltZGHa3X65NmOWmS4jg2BTk7u3tIuyBOxviBOzVCzgkCl91Oj2vXNzm8NMvuXpdSxfgMuq7HsD+iVArZ3tyl1emy0+1z7zvvpN3qE48TytWIQkj6nS6VSkQOZGmBzgwfxnZshJQoSzEejMx7mWo++qmHSPtDmuUSg06fve0Oo96Y+WYd4UjGo5h73nYHlm34mwa2GlJoY64cuIZPJ5WBJ+tc47kOvcEArQvK1RKj4QSKAs/zKDIDl0uSDEsamX5jTN4lCgOyTFOKAnZ3d8h0ajp7lo0jLGxHUCobuKjrKJIkRmfQH4x48tkrLM412NjexrEthNA4rg0YjkRepIzGPbzQoRCa0aiPbQt0liOVPfUi0yhLUqB45PHnWJppcPjQAuicv9za4oe/9e1IKYknE5MYSoDEGBLjoKTi9x64wL3vfRuPPnme77njNvK8YDxOkFqSJClZnpqgVWtqtQq727tUqkY0aN/cXUrBzs4uszMzuL4HwGy9ikCDKIjKJcqVCkJIlAXNmTrD4Yh+b0AQBXi+S7vVJioZ+Fa72+HZF66SpZpz506xtbVFKSqjCyPAAqBsxaDXJ5ukWJYgTTP+9P4HecvZ01NxE5tSpcxXLjyPb3usrG0xNzdLtVohjEKkFAe2L1maceLYYZOoeIZX12iUybKYSqXC6uVNqo0KOzt72LbkzMljDIdDsiShtdc2Aj6TDFkI4nGM67hYSpFmmYE9N2sUwKSf4topSdLFccoo20VJhyTOSZICy3L4gz/7JHfffpo0S3GdKfQtS3BdG51q0tgUBe7/wqMcnp8nDEMG/SFRFNDr9ZCiwHZtSuUSYRQwHsYEUcRgMMT1HILAJ0tTHD/ikUef5sHzz/G2c7dRjsqgBaVJnx//n36en/yf/yMfec8JskyTJQZyKIWgFHj8xJ88zocXm4Shz3gS4/sejq3odUYEQYhRpRcmIQCqjQq2UqyubqKznPmZBtpIDDM/08RSFmvbm3zis1/h7MllwwGXAktYOLYin8IDlbKwp4qxSIFQU3Xm6Spd3Ky7cZP1XSPI0wzHsUlGQ/Z2Ngkdm0GS47hlGo0ql1fWTEHNdhhOJjh2wYvXVmlWA9zQmF6jJUmckeeSNI4R2nhB/peVFr//e/fxrd/4DczOVqlFGtIJhU6o1BP2fMIAACAASURBVMqmg+l6VKs1JpMJlq0YdEM+8cnH+dL5Llnhgyj4gX/wo5w+dIjTZ07zv//mb/Ket97DFx/5UzImWOyxUN4mTnrMzx3iwa+Muefk2w36JS+M3YAbYfsROodev0epXGE8GeH7AePxiNZei62tTSqlJpcvXmQy1hw9eYbIdxBFjmbqNyikSRYs64DLZb7HBUKYNTHLM8Pp9jwsyyFFMNdcYjju0213GA73sB2P848+hhcYGoDvRSRJTBxPjGF9oXFsj0LnPPzQl3Edn3IlRCqLXGhTpLAd8txwi5XlkOZGAObf/tn/hc5zfuE7/zFC2BSFJij55MSUm3Wac8v4gUNYClhcnKdSKtPptKbQS4Hv+CwuzlHoMcmwT65zhFR4YRXXC5EU2EqQjAeoImNv8zpzswsIXVDkJlnOEOSiOFDUvnH7arEF7Ktn/otbJnivN7l79Yw3fsO3PPRrnOuNDbGf3O0rsHydxpvJ3ZvjDY2/jcmdEBCGwWtufAO9cYwnjZQoZXgOSZIcmIp/lQvhVr/t107ubtiX1yZ3aZoa0ZSb544H7/f3fe+P8JHeOr7zKvjNQUvthu0Vl1S8vN+rz/v/MbnTWhAPBpCmXLq2Rr1WJSyVybUhIg/6Q1zHqFW6voNA0KiUOf/sZc6dOsT69h7lyDMdJiGIyiE7ey1sZeN5LlDw7OUV5uolksSIDXzu8Wc5d+oonm/jOjZKKeNFF6dGIc9zSJKYIPIplQJanR6NhoH9TeKYNDGG5Wmu+bPPP8bdt51gEscox8ayJHme4bnO9G0sjFiGEPzR/Q8ROQ61amQkwKWi1x0S+CFpkjMeGePrhYVZZhs1bKXwPdf4P1mKIjewFRNAC2rVEs1qGV0U/NUXn6bfH3FoaQZhWYS+YjKZoLwAiUQpy6g+IhkOx3z56ReYrVexbUW33afQOW89dxIEPPXCNe46e5LxcEyepWigVArRWiMQtFtdosjHsiz2djr86ece59yJIyBgNJ5gO8bIvd8bUipHBIHPeBzjug4FBUpZJHEGQuC6noE3Og55lhKGPmmSTs9REHiKMAqwLIudrTahHzBJE0P8j2PDCwx9LKWwpEWWpJQrIZYlqFYj8iwz3n3ShkIwiYf4vkeSGGhmPI6xHYc8NRxKwymELMsoCkmjXOLzX7rAqSML/NhjT/OffubvYCvH+IVl+RSa5xAnAxzHQ2vJfU88z0/+7M/x/g+8j/YXHuLtR46iM43vewx7Y15auW7gkvHE8HBcj3iS4Ps+RVEQ+Kbb6bjOFCkgDW8xSRmNhri+S1Q26oaWUowHQ3zfJY5N0lQqlel0u/R7A5qzddI0RSqB77k89uQF3nLbKQpywjBgd3uPUiVia2sLIcRUCMrm9MnjBJ5Hs9Hg7OnjjIZjI3YhFXleUC2HXLx8lQuX17jr3BmUrdhY3ySKfNN9yDEeilMkQ55lTIYx7a5J5Aa9MZVSnZyMSrXE4cNLDPp9ypUSUSni6kvXydKMWrlElmasra0zGI6pVio4rhHCMZxEhSNc1tZewHEtRkNQtkWaJHi+h+04IAV3njkOAlzXOVD8TNOYdqtLGJa4dOkKTzz9PB+49x6kEpx/6ivstjrMzTYptMYPDSd1MBhi2y6DwRA/CA3/SOdGdVVIklRz9OgyZ08fRUrB1sYGn3/0cd568iT/54MPUamW+caTprDmeS4CSZ7lWFLwsYcv8T1HltC55pmLV4h8nzDwUbbLf/7kg5w9dXiq8gqWEhRSUuSawHOJfJ9+d0BWaPr9AZ5joM9h2UEkBeubuywvzBqURzG1mpkqUlIUpEnC6tq2SZjFyyJXr1yyxatW71eOXIOYwv+lyMlGfSQQlSqMUnOtiwszDIZjKlHE81dfYnGmwkLTx3cd4mzqcyjMd6Xt2lBoXNclSzP+op3w3tsWOHPHW7n4/FMU6Ra+FBQkCKtgEk9QlsUkjhkM+tjKRsoqi8tnOf/MOgvLi/zkP/lxSo0ZvnjffVTrNT7wd/8O/8f/+uv84A99B+3ukOeffoy08wyLi4cZDsd88rEh955+i/mNp8qG7d4ALA8pbeYXFsgLc726KOh0ulQrVZaXjvDss89QpAla56xvraBkQq1SnVpdQKExa7SyyLKULM1QyvAfixxsW6ELbbjCbkCWa7Bs0hSE1Mw05qhWy1hKUK3OEU/GlMslcp0i99dWiqm1RIG0FLYXTIsRtlHOVPaBgA3CeEL2Ol02N3eo1St89isPc9xf5Nzx0xTa5sWLz+B4EVlecP78M1RqDZYXjzIzM2eKfrt7NBvzZFqzurpKlkwYDTpMhi0alSq6KFCOi3JN93rQ65DGI7Y2V9nbWCXwPJTjMeh1cW2HvdYeYblk7Dt08TLcS0ytk25KZ3nl7FySy9z+jSduEZO8mdztjzeTuzfHGxpZnv/rV6c1N9LFvt4Qza92QxSFnqrAmectKQ+ULMW+wuQNSdm+KeeNik5GMVNMYZmv53pMBvby67wSivmqK3wV0nHfOOCV+0s5hWkWt0ZIft/3/gi/+/634TuvJc0f7PfqgwqTnNyAp3ztUQcf3CuYdEwv51WJvHlESnlgBSF0AVqTJBnVcpnecIwbhKRxSjyeEEU+aZqzurmLbSl8z+O5Syu8/9130+n0SbOXOYjPXVllZ6/L0cPzDIcTPNfFcW2OLS8w6I6YadZQjs1srQJa4yhFvzegOxgyO1s3QZFn0+q2iUouk2RCfzRCaAijgF63T6VaxrYtU3VFcnl1ne3dFqePHmI8GhsT8cHYKE1aFt3ukEILbOUSWDYFBeUwAARZalGr1kkmGZ4fsn59m8ZMGSksdGaI8YZPZ3hnvc6Al17aYLZZo5AQxzFRKaLfH3HuzDHa7T6LC000oHMjWFJYNr3dNn7gmW6FNl0UJaHRrIOwaHe6HD2ygHQd3MhnZqaKHTgEkUeqc9bXWlxd2aBWiciSjDCMTFAgLdrtLu9921m67SFByePStevMztSwhCRLMoZxjOu6vHBlBVlApRIxHIywbJt2p0+lWiJPU7Y2t/CCKUxMWiap9x22d1smSBEWYRQaXtZMjQfPX2C2UqYUBiAl7VaHSi0CDfV6lVIpZDJJCEqeETIRCiEKCj3GskIc26HfHRAFITo3QY6wLHTBtIIuTMJnSb5y6Rq/9twFfusXvgOlQFgSKa2pGq6FbTukSYKyHWyl+B9/9xE+8sFv4Rf/zb/ln529k35ngO/57O3uEQQBc3NN9FSJtVwuMR7FuI5Dp91lPBoTRqEJ+JXEcVziNDVemqIgrJi5s7W5QxInBKFrlFEtc4umiTFIbrc6xig48knimPE4wQ8Dzp46SZqmVGoRaZKiNfT7PWZnm1QqZXzfR0mL1k4b27F56tkL9Hp9mvXaFB5X0NlrUalFzM/NsjRj7BQ0BeVaGURBv99D56YrNBwOATNXG806ru9QKpeZjGMeO/8MJ88cJ8sSut0ujWbd2GxYgtnZJp9+4BFuO3mMyXhEGPh4ns9eu0OlWgFpjK6FdLGUTbkUMRxOqFcr7LR2oMjxfWWgslN7AWlNpfW16ZAIIahUKkzGMZ7jcuLoMgB+4DHbaLAwP0s8iSmVA8MNHU2IonCqYCqYDCfoImc8GZHnmlJUQrkF8WRIrlOGwwFzC02OLC9QKoW0Vq/xU7/8r/jBf/nv+c53niCJY7JU88d/8gCL8zX+/jef5kf/8GG+qRSy0+5RDjyEEAyHI+695yzD0QjHUSRxTKvdNUWKOCHLMmzbJgh9/Cgg8D2SODc8VUdwbWWL00eW2NpuUS4FCAF5sS+uJZDCdFtHwwn1euUVRdiDAt7+9+gUonmzbyyJwFaSdqtLoVOG/S62rbi+2yLHZaZWJsk0M/NNht0hVze2WZ6rUg4k/V6XR57e5OhCE6U0BTlKYdAVcUxeZPzReofv+/a72Ovb7O5e5di8hS1Sk9hNBjhKoWxTrFOOTaE1nWHCI49coZfCqTuO8OyFF7jr7e+kEYRs7e4Q1eqMWwP8wGVx8Xa++JlP86H3nSRNM7zA4lOPdPnWu9934H1YaI0TVNja2aNSmSXPc3b2diiVyjx/8VlmmnN0ez067TaJTjh9/DjjcZfZ+XlmmvNYokDnGUWRMej32N3dxA9KKKWM6m+es7F6DdcL8TwXpRRaG3pBlmtQHkFQQZPRbXfY211DWQW+7xCVPGwlSNOJKTQkpnBlbJbM92+5HuA5AsjReU4SaywpUMok0qZjq5gkMb/26d9BWRb/5Dv+gfHatWOq9SYIG2krJpmg0xmxvHSCNMvx/ZAr116iUplhMp5QCit02qvMzlQJbNu8juebTmUB5CmKnGFnm7i/RzIZ0GltsLV2jZ2NqySTMVkyoVqtYQkOuMf76zPCzLl90PD+vCwOatPmZ2OuPvW++8jB/gd/bsG5e/Xjr6TTMI0Zb9hn38/3FqHc/vnyPHs5Ufsaw4gkT19PCGMR9XUcbyZ3b443NL6Wz93Xu4tXaH1LrLK0LHSeHdxoWuevuulu3WmTlkLnmTnP60zs9o/9auIpr7r61x5/05rprcdwMOKHf+jH+N33v216/BsbX7M7dws4RHHDz1c+Kw4+CsuS9FsdCmEhlc1wFHNpZZ35ZsNIRlNw9doalUqZerXCCy9eR2pYWpjl0pXrPHlphfe+406i0OfClVV6wwmH5mdwHcUnHzrPfLV0IKJgYdPrj7j00hq1Soi0BJevrFMpRfihh+s5WBRcW11neWGe4WjC5k6Ly6ubnD19CilN8q+1ptXqoWwj/HHb0WXSOCYKPILAw7ZdgtBAYHr9AfVajcefvsjFq2vcfdtJPMdhY3uXchSibBdpSYajAVmaMDtfI880eZrjep4pHph3DJ0XXLy0Qn84wbMllXoFxzbefBsbO9RqZT710FMcna3R7vRIkomBTQqbfquLF7oIJbGkJB4nOJ7i+RdW6HUHPH3lOnfefpx+Z4DrOHiBRxondHY71KolXBXwzKWXuOPUEQbDCXmmGfRGBKGHBP78C49zeG4GZQvm5ppIIVhf36FcCgmnSdb8bAPPc7Ck6Q5VaxWC0NgeBJ7C9xwc12U4mhiFt8Cj2+1RLpdQjkuuzXypVksUheDo/AyB7/PS9U0a9SpJZgRvPNdFSoutrT3icUJQDY1ZuVQUeU487iEcB3QGaBxXMYljbMe83/v3Z56lFNqYiV96aZWHbcWPf+guWu1dgjDE3IkSZdk8/PCXOXrkMEJK+v0OX1oZc3huid/+6Ef5oTvuwpIWyWSCPQ0+0zRh1O+TZil+ECARrKyu8fkvPcnZU8dJ4oSHzz9lurJAEAUoZRGPxziBjxASRylGwyG+7yBEwWQS4zg2WaLp94dcX9vixImjFKLAm3JdTChUoJRNv9ejVqsSjxPCyMNWNlma0ev22Ntr8/SFF6hEIbONOkJgJNgjz9hmCNDCmLh3dtt8/NMPYFsWtXoVZStc10BT19c2aMw08X2PNI2ZxLGBBCsbqRTLS7PoQuD5Dn7osbu9y6A/xPEd0jTj0OwM2zu7zM/NIITxDJ6dm0VMeUTSmgZTqqDQNp97+Dz10CaISjiW6faXy2W6nT5aF9iuQ5aktNtdwjAgzXLT+XNdXN874ODZyhxrWdOCwtYO3W6fcqlk+Im2ZDwa4ymXXGdM4gmVapVCSJSAbqdPlua4no/OxXROWyxFZf67//ibfPBbvoW3LXmMR2N838exLZaX50Bo/ujRa3zk0DyLc03K5Yg814SRS5Yl2L6D49i4jrFVGI9iRqMJ5VJEmqYMR2OkNMmfKCR+6KPJWZ6f5aXVLdZ3Whw5NIuQGuU4gFHL1bn53lPSMt0y+XJo/Jr1/yb8uxueoshyhBSUSz47W9voNCXR0J/A0uwMTzx/GVHA0xeuMElTVnY2OVz3UVLQbJZxHUUxhSLmmeGT+36IZSn+4No2P/o938xeT7K0UOLEkk0pcMEycPY0TUjSdAqrNqiaza2Y++6/SC92qDdnOH3mnUzSmF/+pV/i2z70QdxKhapX4aXVZ7j/c1/g1LEmc6UdChLieMDWxWVOHzthipFgOvvKJ84kyvIoV0qEUYks0wRBQL/fZ3FhEc/zmV9YIo8nTMYTrl+/Rnd3Z+qNqHCUheN4lKszuI6BXEvLFImjqIZSNkpJU9SZKhxPkgQvquI6AaNxnyzNKJdDfNtF2TAZD7GlMurYjrH50UUx9SQV9HsdfM9HCQshjI+ssqbWDJlGWqaLlaU5v/H5j7LQDPjpb/tHxsRcFBRFDrni+WeewQ1LRJVZlpZOEUUlUp2iZc6RI8cYDIc4tsv69TWkHLMwP8eo18H1fbywRJ5nZGlMr7vLsNcmjYdIAaVKAy8oIyioN2ZJJhM2Vi5RSMPhjsIyw37fqLruw4YPJuMN8/JVyR3AuYW3cfRt86+Jn16voMrNnbRe3m9fh+FWhfr9c+5rN7yuTl7BKwpRf/3e3+sbf9uTu1v3YN8cX5chb9huNvQN29caxbTq+kbHfoJ3AEO54XEwSZ2BYd0oiLJvJioP/gbYNxp/o9chpnAYrfMbLBKK6WMvb688xkIIi2IquGFJ+6bnllK9Yj8hDER0OBjxiZ/7lweJ3de8xhu2/Qdewbcobrbt/0O84gkhDfu4kBxsslAUUoBlFDyHuwN6rT55khq1N9vj6OyigdaMJ1xZWefwoQUGnQEihzRPaPX6KGUxSRPufetpHjv/LA8//hznTh2nUS4x0ygT+SHf8/57mGvWKFdDhK3Aysl0ynavRzDtTpw4dRSURUHOYDBAODa333GGcabxgohD80ucPXqUybjPuD+i2+mTJxlKSlzbJksTBAWLzTrtdpdOp0ORJKy9tEmeQOBGCEvw7nfdwT13nSLLUwpRUKtHTLIJygWsBGFleIFDkSuEVGghiBMDPZTSdJE1ObedWeK97zlDfTZkEhu1y7yIWTxUpiDjW992O0HJ4ciRWer1GsJSFFmM4wu67Q5FkqFzjS4yZKZZWqhTqQd883vOTSFnA0b9EXEnJu6lXLy8QZ4JghK8/123kSYZlXJIvRnx+aefYdAZMx5NmK1HNGoV/MBF6Jx4MmFpqQlWQRLH2LbpOtq2w+5OC8+1Wbm8jsgLlFSkhcRyfAotGA1jpLBAS3w7JO5P2Fnbor21g45j+p0e6STF9mzcyOHkqSNIZRH6ZfqdEUjIRUIQwexiSJEIAjsiHg9Isy7SHqHyCePJGDeM0NIhCEKkzCjIyKcqlY7l4bg2Gk2xUOUT/+YH0MKh3lyCwogdZXmCJuVd7z5LlmnICn77L77Mj/3gd+NHkp95y51IW+CHBkaZ6ZyNlR1aOx2EpZidWaSz10NPO0itNGW300ULwW53gCgg7g8Zt/uMOgOuXb3Oxuomm2sbuI5Fo1ZGAXEu8P0IJR2CcoAdKs7dfQKsDImitdGjyGKE6KOLjN6gTVAKyChY39vmwQe/giVcCgmZSDl87BCh7/HA+af57BNPsXR02bwXqen6elGI4wZMRjEaiS1tzp4+ybgzIBnEfOa+h1ld22J+eQlLWWQ6J4rKpGlq1lmEgVlJiecW6NzAyJJJjBQFFqZwcm19nS8+9Syt7gAnCGk26riWhUWOzlIKIbCUWVyErbjztts4//wK0oqJyiUa9Xn6g4RStYznRaANF7fRrNPvjei2+1OhGW2gjgIsIdAayrUKQSmgkDC7MMvS8mFcP8D1POLxBGVBb9wjrJSNAIUWkKWsXV2l2+ry8Pnn6PUmbKzv8pefexxw8LyQrb0eP/D9P8BP/PtPEJUCiiLn+UvXjPw/kn/x4TsopEY5kuHQzGdpOThugGMpdJYxGadsbnUYx2Nm5mo4vkNvMOZPvvgEaZxSFBYfv/9RNta3kLnNsDfkxfVNBklMlmaQQxanCF2QjRJ6rSHDXopDSjrsG4TFjfncvpgEAnFrdgFCa3BsLNej3x1TKkXUyzaD7h6hG3Bh5TpvP3eCxUaNb3zPnVSUwzfefjdaOGBZVEMPdEphQSHFgSVAPBmTpQlhEFEtLVOQUm8cpTNSZHSxLUUyEWgCouoiWCFpf0RFOGz3EzaGGQv1ZY43j3DHmbez+uI63/Sh72Tp8Bm++Bef5b4H/orG4hlCtca5Mx6ZEIDFZlvx7d/yAaRtgyXJtbE56g9aJONtopLL6vUVCl3gevbUBkMwicesb6wxHsekUlCqzxDaIeVKhWroYosCChsKhS1y+nHMOMsoREGuE2xbopQ8iDWEBTkZvh/R2euT5glKOVRrPq6CLB1BXmBJw0e1lMM4HpmkMNcUaUacTHB8j0JrMp2gKYjTjDhNQGdoMlOuEhI/9JBFzvbeyBicO5I8zhllVS6vtagu3cWFFzZw7IhKo8Zed4c0GeJbNvFkjLA0ritw1IAj8zP0djeQjiQFeu1tervrjLvbWDqBIkHLgK3OmGGh2Gh32Oz0SQrFeNRidmGenWsv8sRn/4rP3f8JVq4+z6Of/xSWTtF5CggKIdHCePuKaQb2cixnJmxzrsRP/sQ/n8Y3xcF2s1FMO9SvevSG7ebH3BqB9bJqwoFZ/euMH/fj1UJr8r9G7Pv/p/Fm5+6/8vibtEJ43RWPG0dxky7ZK27ClyGXrxZHSdMUKQ2H6sZrAINNv5V/3a2u/VY3/40P36pqdKPC5k3O/ppj/4ef+yU2/uRjfP/Z0zfZ829wiNf8AzCLmRCvXD6lkKBzlLTI4oQrV69z5foWV9a3OXZokctXrzM3U+dzjz7DmROHmGlU0blmbWOPtbVdTh5ZpFqK8APPKFWGIS9tbDHXqNLpDojjlMPLs/T7QywJYeRzdWWdMPSxLQvHVRw7PI8lBZtbuzjK5aGnLnD25CGyNKPbHeF7Ho6j+MRnHyNyHRYWmgxGY4LAw3Vd8qLg//nMI9x2ZJnhaMR4nPDAl5/jnXefgaJAKYckSfjD+x/l1PIsrmtTaGOvIC2LF65c5+TJZcOVGhkLgjA0SnJZonnoyWc5cXQJ27HJsox+d4DjKmNVoAzPc2enTTkqsbq6SaUcYlkw7I+pVspGZVBZxHEKBfiehwAC32cwND5cjuOQTFKSLKdaK+O6xg+pWi0ZXp2QfPKBJ3jf229HKQmiYNAfI6VkY2sXrXPeedft7Gy3WVqeZaZWZtAfYfsOg/6IIAjY3Wnjey7KcbCUQucFe3sdXM/Ax567tMry4ixZmnJ9fZtyOQJdsLJmOnFaawb9EVHZZzSeMDvbQEyhkI7rkmapEYXIc6S0ePIrl/AcB993kRLiSWy+yC1BkkzwXBtlSZJxQoFFWK5QSGNXgRBkSWqCBG04KgfrhpT82somH7n3DHIKBTIGy+LA+sAoMyriOOY/fOo5fvj7v4uf/cVf5WfvvZc812zv7E2PFShLIpTGdS2yNCdJJ0hpEccxdxxZxrVt8ixjoVlH5zntXt8ICRQFzYZ5rF6rgoCXVtdwHAflOKRxOrWFcFDKYjxMGE9iPNfB9Rxcz2Jza5vAj9CZplQq0+v2mZtpcvHyS5w4dhjHs2i3W5AJzpw6wZmTx7jjtpNkqREwUZZFkiQ4jkOW5uii4MEvPYkuNDPVMpVqmedfuMxbzt3BTqvFzEx96q0Jw+GIZrNmbCKmMveWUug0I0lzLEvhuS62UrTaHaIoolGv8a63nCWKjEfkvmVGPEmMiJSUZHFiVAbzwqjmzs4wHPaQ0qYAXM+bdjX3O+EFQgpcx2U8HmPbtoHgZoY3d31tnWq9fmAfE085pHlekE+LgMqSxHFKGIWIQuA5Ltevr085qQUzszPcfvtpytUylhS8+x13kescx7X57pMn+POVVX7v9z/OP/zQ3VhKEfou5XJEp9vl1JEFfvQPH+a7D8/j+QbCdn1lk8B3KUTBXquD4zjUaxUsJbGExdraNtVKmbfeftJALKVkcaZCs1Gl3e4Sxwm3nThMyXNpNmpIAbbroHPNYDDiY/c9xrmThyGP2djt0JhtmHLdQY53k2+NA+j+yyu8KAqK6fdoNp5AkTAZdWnW5ximinN3nDBFvcEEx1EMej3SPOXC1Sssz9QpdIYQkt6UM2j8OxUCY7b+xxs97jre4A/+9I9533vejs0mSrYYj0bEoxRlSZzAYhL30GkfoRLs8A7WNzIa9Rrf8fc+QCcd8m0f/G+4++47yLMxFDHvee87yLTgXW89xubqRfqtq1gC5uqwsXrcFBCY0jiERDk+thuinBBLudi2saJRyibPcyrlKp7nYUlF4DtsrK+xdX2F5vw8lmXR7rTZ3N1gMBoShSW2tvdo765TikpkSWrm6ZS7aEnLeEjmGbYdoqWDPfXq1GlMHo+n4k8GZWCUj2M8PyBJYqMmbFkUAhzHJYtjtNY4rk88meDYpsCglE2aZRTAr/zxb3BqZsKPf+CnpkVpi5XV66ysr7O1tU2eSd7y1ndTqdTY2dvh6Wee4NDSEfbaLfywRJwkKHIC32P9pedpNGaxXWOgnoxNkc9SLkUh0MJmZWUNXShszyfwy4RhnW6nzbC7y/zCUbAEST4iSVJG/RaNxhxJarjOynYNcqowk1LAq4RWXv7PsdLtHH/Hwqvm8c3bDl89zhSv+vuG/W+V4B08/3pf42avZ4riX6/xt71z92Zy9195/E0md/v8vDd0nteZ3FnKPvj//r6WUsST8VQ4pXgZjqnzabv8jcExv17JXVGY5+SUOP3T//Rn+OXjTe6aa772Ol73Fb/OcYvk7sA2ArPwygK0LMi6Iz7/wOPM1as0lmao+SWOH11CKsnCQoM4mTBXqyIQXHxxhS995UX29ka89dxJgsBne6fNC9euMz/TgEIwN1tiOBlz4ugy4/GYv3joKd71lpMIIej2TGJkWabCnxfGzFiIAj/wiKIIR8BwMGa31aNaLpGmOVHgUI88bMemWi/jBwGtTtsYeTsud546QTzJqVR8Cl1w920nSeIUIQRaQqkS9jFXRAAAIABJREFUcahRRYqCctmj1+uihcR1HeZmm1y9skGWgu/69PtjXMfhU194nONLc5w4tkQcx+iiYNAb8eTzlzl2eAEhMUIeeYHv+kYav1yi0+lSijySyZgwCtjd7TEaxmzttBn0hji2zbAXk2soVyuMRmOQgvsf+QoWsNfq8umHvszOzi6HDs2R5TmWbbE4WyXOEqJKgMQyKqGyYKZZIc8zer0RWapRSuA4CstS5IWk1e4R+j6OrRgOxkTVMuNRTJLmrG3tMTfXxHYcLl5ZYWmuQa8/ZH5+Bq01tqMIfQ+BIE5SvnzhRRbmajx16RpLczNMkhQ3cOl1+4ZnJiQIQZKk+LZLo2kCV1GA67ko22U8HhJFFp32DlJK/GAG5ftMJiaQEZYCJJY0PltqX458ysf9xw8/ze/87N81HnrTWS6nsECATqtDURQ4juTpS9d434e+l5lmg//7ox/j7x09SVEUlKMQx7EZ9AcgMmwbXNfm4See5tr6KieWlhhPxniOw3A4mCat2YFpfLvdoVatkGUZgevS7nTIM00QhlRq1YNr+vIzFxBFQRj45LHivgcf4+zZI2idsbfbplKpIrXhCMbjmDAMsC2LYycPs7uzRynycGyL0AuQSjAeTVi/vk6cxIRhSJZmbGxsoSwL13WwLIuTx5ZZXmhSrVVp7bVpNhpEpYBqKWQymvCHn7qPM8eP4kc+WZyQZhmO6yCkNBYZhWAwGBP4Ad1ODyEk1VqJNEkOOECbm1uUSiEIKFfKrFzfYGa2AVOIaTFVMdZag5SUwjKFKHA8Ra4LHNuIH1mWEUGQlkWuc3zP4/raOo1GnXarw58/8BD33vN2hCUOYjGlFAWC8WiIUsokppaNH0YIBJZUDIdjZmYaSCmo1Kt0+wMKnbG+tka5HAA5ylboIidJUn7xY3/EJz7+MZ5+5NMsztRoNCrYrkvg+7R2WjRDwUnC/VYivjMN6CkIgwDLsik0rKxsEIUhtVoF27bZ3NglCG2SLCUMDcy0EJrID5DKolopo2zJaDgmnZrK+77HHceXmEzG+K7NyuYuiwuzB/ztffGKW6/7NwwpQZpuk85SHEeRDgdoIVjvDGhUKuR5gbItlCVIsjHrnT18x6ZZquM4mtEo4dmL28zPVrCcHLRibWsbpWx2xhln33M7h06c5K6zdzBsX8MSLQPhTMaEkWck/3PNJA9J8pBeJ+VP/vxBfvpn/xlLx+Z4YXObz9//Oc7deTtpkkyLQQW/+5//C0l/i4WZMjJtUauE/C+/3+Ltp96OlAYJo7MMKQR77T2iqM7q+iZhVOXqtasMekNWVq9y+tRtDIdDnnv2GeZnmqyvraEsm+bCMi+9dIlLV1YJymWWjxzF8310rqnXZ2g25ih0guf5aAqjOCsMQwxpIYSNcqt41RpxmjKeTAhchdIpuc6MtycFcRJjOy7jcYytHGxloXVm5kJhTNF9PwQkynJxXR9d7K+FFr/+qd/hV//5cX7v/iEfuO1dWAg6o4SnL16hUlvgyPHbOXLsNNVqjWE8oVapcOzISSaTmJ3dPYIwpBSVsLIBWTokCkMjDKM1Oh5RaEgzTZIrgmiGTJaoNY/TH8SUShWW5o+ws7dDfzjmnnd/kPNPPUFlpsHxM2cphVXyLKWzu8H29WuMBn1cNzAFTLFv3SFumdxFJY+f/9V/xXd917ffsMObyd3+eDO5e3O8ofE3mdx9FUTIK/fT+rUA6RtA01mW3tCBU6+sPh4kUAZCua+CeSvM9L7wyte6UW/V5TNYbQ4geDc/dn8rEOK1bLb9QLMoCr73u/8+v/GO0zc5y/T3+6pX+dcYtzhhsQ+Iz42YAXlBa7tFr9Pn7JkTCGUTJxrHknS6PcLQg1xjWxa+52HbkjiO2en1uPctt+O6Ditraxw7Os/8XA3LshkPY5QtqZUrdFo9Di3PU4881jZ3aNZruJ6HFII0yeiPJib40/mBEqqUoCxBrRJRiUJW1raxbQvLMh2WmbkaySRBFOA4CrT5nJI44ZnnrzI7Y8QwfN9nMjFqc6XQNSa1mTbqlMKQ1fMsRwrQeU7geqyu7ZAX2bS7UbDUbOD5PsqRB5+n4zgcO7zE1maLx558gUNzs6RJzsbGLoXQeK7Hx+9/lNtPLGPbNtKy+cwjT1IJfY4fXSbwDZfo+SsrHD26aIJbYbpR1TDgC1++yPveegerGzt88BvvIc1iPM81xuaTCY5j4bk2WZKT64z+wFg+5KmmUi1TKldA5EjbBCHJOOYzjz5FxTe8tyDwEZbFY09e4EtfuYLWmsPzDdIs48hCg/Ek5cKVFVqtHksLhlelLIteb8DG9h7HDy8QlnyOLS8zGiZ4gYcQMBmPCALfBO6eTZLGhJWSsUugYDQcMkky3MDH0gWTYZ88G2G7NmMEyjJGwmraZSiEuY8FOUkco7Mc5ZhK86iWcdfxBbTW5HnKeGx4TUVRMOwNqNfKyAJ2dtv89G89xFK9zHA44Ycdj+cvrbIw20Ba0G53sZVNKaiiNYwGE9JxQZFDFDp4jk2SpKRZihQSz3WwbWMlEQYBYRDQ6nSRmG6hso1Z8mg4hjzn6WdfYLZep1GtkqcJYbnEuTuO8+jjT9LvjZmbmcGywLZ9+v0BSZoA0O32CMKAKCohZUE8SRj2J1iuoMgLHnjkPBevrnLn7SeBgkajTmuvjR8E9Ht9xqMx9XqNotBEpYDheICyBH7gs7G+xfZOm2alhK046BQVhQlSLKWM8mVmuh7bWzs0ZxpYjkIqC0spbMemVCkhpSQIfOIkRQjJ7u4u5dAHYVAAliVJ0wzLMUI5tuuSTExHQgiBVBopNFmWI4A8Mebv9WaNOElwPZe7z95uFi5p1nNj7GyCYteoe6AsOTWqt5iMYpSlaLc6CAnD4QDX83AdB4qcndYu84vzxGmKRJLEKZbt8GeXL/NdH/52fuE//Ce+7xuMPUO71caybLIs5e4zx/iRj36RjxxeMBCzzEjC245CTzv825t7ROUA11FYtklWHceCwijW+r43vU7JoDvEUgrPd8nSlH5/SLVWMd8posCywPNMF6RerWBZwth7TAVXbrrG33Tdtyik6TiRQ64LZBoznIyZZAmO8nEchycuXuTo0iK9/hghLAa9HZabFQoyPMfl0GKdfOrt53oegRdguw6f2Ys5e9cpLLfJZ/7yc2xeu8y5M4cRuWKkc9ygRK89ob2T8iv/7nMcWjxDeS7gvoeeY3b2KM3aIhdeTPjuD3+YYW/CQw8+zs5Wi2QC3/D+d1MLJN29TUI1Qlk5f3D/Dt909t1G+E1aplAJ+EGEY3v0BmOWDx+nXm8gBURhiOc6XF9dYaaxRL1RxnMNHDMq+6xev8ZtRw+be7GIkTojCj2yYoyQGZbEQP2ljeP4UGjiOCHVOa1uC6kilJJ0Ox1mmk2KZITORia2KF5WvsyzdGrxI6DIDJwUQZ5rpCiYJGPTwbZgNO4b0S4gzXLOX3+KT35xl5//8H9LPMnYa7WRTsDs3BLKcfF8n3q9ys7e5pRzbZzoJpOEUhDiipQLTz9INXJIk7HpvkpJnExQlseL165w6PhdTLTi/FNPkeQxhw4fo9qo4vo2o9GIja1L3HvvN9P/f9l77yDLsvu+73PuuTm83Lmne/LmiMUCIBglUmKSSZYAkhJFWq6yRNlSWbZLLkkuSTblUlG0S+UksSRRKpZEgzJBigRBAEQkwi42787mmdnJqXO/1y/efI//OK97ZnYXi12Ipq2qPVtds/1ev/vSveec7+/3DXHK2bOXkNLn0NJxXN+nUJJubwfbcSmTMRs3LuN4EbbraRCuxDS6dGq0cut5KuCLz36Jj3/8J29RlYiD4vntGxh1cO2L/evgdtEK7wXcVewHxd8eofXuxm1oVb+K/xcy794Hd++P9zT+OMHdux7f5qSXpnbUQuicqSxL9e83DwDsAy+DfYfLtxv7Hapvd7HuH+u2kPJKTzFVtc8Rf/vj3N7ZexuTlWn16Z//s1/jH6403xHB/YeCu7e8xm91wOntxlSnkSU5WZzhRz6VYVCWis9/9QUW2yEI7ay3tbWLhcFWt4s0BbUooBn6fPqJl7jv+ApRYDGKxyRpihQ2WzsDFhbabG12+drzZ1maabDZ7WGbJi+9cZXlhVk++fknuPvIIn7kE4UBSRwzGE4wDRPT1k50ZVZiSpNWq0aSZVjWdNOZZ3oDPYrp9gY0GzWyJGNnt8ddJ1bI84wg8Hns2VeYazbwXIdL128wP9NiMIjxfI9ub4DtOgS+w3g0JklSojCgHvrUGv5UFG7Q6w4IA4/KqLQlttTaScOQXL2ywdp2n0vXNqh5Dtc2tzl+/BC2Y3NscR7LNpGmxag/4cH7T9BpN/U5belcosWFNqYl2dnp4ocBYroB+MDdx+nt9jm2uohpWVSlfr9VUSEMQZ7nuI6FZVs4ro03BX6WdEAILp6/hutZxHEMCtY3tphr1mk363zthdeYazewLEk98Ln/5GEOL81RFDmubR5QGmeadSI/IIxC+v09kjil1aqzvbvH6soi8WQMpSDPSy5fXaNZD/E8C8t2QCniJMH1XQypuwH9Xo9Go4ZhmggpybMhRZZgmxam5WKHTVACVWr7+QPDJRSokjzNGA5iXMflFx4/xf/0C98/Pe81fdO2LQb9MV977DkW59pkacrm5g4zM3P8b5/8CncfOcI4LTiSlrz4+kWOrS5o4xRXB4pncY40BHv9AUsL88x06iRJSl6WTOKYZr3BcDzRBYKqOuj89fp9TFNiWzZZXnDu8hUsU6JK3YG6fG2DM5euU488Qs8FKTCkoBXpbt14MmZmroUSpi4kSYMwCqhUxWPffIHxYMTcXIfdbpd2Z5ZK5VBClZccW1mi02nT6+1RlSW1eqRBRlHQarWmG0upDU6oMKRAGhbSMLn/7pM06hGmJciSgnanRVGUgC5eoCqqssK0Tco8p9fbI2rUSNKULCtwXIeiqLBsm8sXr9BqNzl3/jKrhxahyDEdF2kIkjjG8VwqwHFMLl64RpYURFGgreGl7m4IJabGSArD0kYT5pQ2LITB3t4Ax9XFGN0N0KDs/NnzhIHPeDTCdixGwyGO4+rsM8vik5/9Ih/94EOaPm0YDIcjDi0vkSmFtCyEMrhy+TqNep0fObTKf/5P/yn/6Jf+Pu7o0pRNYOB6Hl7gIgzBF164xI8tzFFVCts2mYwnU9q3yZmzVzm8ukRY8+hPu9h5lmpKrrT0OZLmSCkp8oKqUtqgSuj8Qd93mIwTPvvYs5xYWWBtfZtGI8Q0bVAwGA7xPBcx5crcmq/6lnl/Sjfe/xFGpT9TQ3efx90ddva6YJrUwib1RoPDh+bZ3R7w9EsXsW2TJNljoeVh2iZ5nuG4ll7nBNoMybTY6fX4VC/n4XuOMcomlGlCMd7grjsabKxf48vfOM9oXOCYFQsLLT72se9jkm7x+tmY7a7kxIk7aDQCDh25i3bbZTzq88EPPkh3d5MPPfoQa1sbZMMdPv/7v0sjzGi3Aj7zZJfvvevRKYXYopzSscuqxHYDlOlhOi6GKdncvM7c/BxxPCGOU6TQmmCUpD/s4XkmSwur7Gxc1d9LljEZx1i+h2VIVKUQFUjDpFR6TqqKAhAE9Tp+WEdIBylgPBrhux5lPkFVCWIagF7kOZVSSGkShDXyIqUssqmrr+5AC6WwLW+a2asp7pNJjFKCX/7Uv+CXfvEDRJsP0+zUeeP8ZdZ39hjnJYPBiDvvuF93xlTF7OwcptTFhvMXz7N+4zqzMx0mg01qgY8UJbal91hJqtlP3b0hCyt3YrkhjlvDMCyOrBzm0qWLzM3P89g3v8w9dz3I1YsXabbmuLZ+nXvvvY/+Xp8zZ87ghQHX166xeuSk/g4sHXy+s7PBzPwqjuuhNLJDiP2m8+0blO9/8Pv54lNf4v4H7mF/h/KWc/vg1NYNgJvg7pZzX9y++fl24E4JDvR2733c/jxi//neB3e3jffB3Z/weLsohO90qKpCim8lg705bq2OHFRJ3tTFq/a7ezANdzWmQtzqtuPsD0PKab6d4NY4A2BK21CU5dRKWLx1srj19/3XpI+lK8WmlIhpt1DzGPVkUFXT8E4F0+nqNtCpAWPJz/z0z/O3OzaWpemlb641vbnmdNvn+rY33mKSsv/ahb5dGOLgfd40gdknzOr7TKn1TIaEM2cuUmY5nh8yHMaEYYCUBlkaIzGYn+uQTBLa7Qbd/pCt3oB2s0aeZTi2iS1htlNHKUWeVbSbTSaTCfW6iylLpLCZb9awHIOZTp0gDHn9wmXuO7HM8mwTPwyxHAslctLJiGbQpioKJpOERiPS4ASQpsv5CxssrTTJkpQXT11mZXEZp+kRBtpSPssyOu0GW1tdhuMBVVkx06yxsd3n0MoSnY5Db2+AZ9lsbOww06lpO/q8pKzQlJksJatyHMvHkBYbG7t89cXXyMuYpfaC1hNZWuv5+FMv89C9RzmxusB8s81TL5zjruOLRFHA5sYOjWYAsqKq4KtPvMLe3oD5hQ6W54CAU6feIPItpGURRjV9DlQVXuBTUhLWA4IoYtif8I2nX+Cuo6v0RxPiNKXd1uHpRqUY9EZ4oYNCUSkJps5e8xyfLM5pNH2yomR+bgbXdTmxvKSDcg2BbUu2t7o4rknge9o9ybawHQ/H8cjyAiEk41FGrV6nUoLQ96DM8Xyb7e2eDj8W0Kz7lOhNqgZbto4CSTIwFKZjoXIDy4FRvMfrr7zKbGcW3AjHqyFKUKLEkJK8KLXhR5ZjYlIWCpTktTNXEJXiC7s9fvZ7TtLf62Eakio3qHKDp0+9yPVrA+48tkRFQlGO8II6n3niIj/54z/L//Wp3+Vn776Dhh+ysDDVgAqL189eojvpY1smSRLjujbnr12n06gzHI2xLVe7pWYKx3LxAhvbtMkzbXygjIKzF24Q+B7jeIJSioW5Dmvr2wgUq4tzhK5HmuYkyRjfmYayU9IfT3DdAHPKW61UoZ3/gCPHVnFcm7Du44cRGIK8qBhPJhw5tkKj3uDqpevEeUwYBDz59MssLczpCARDIaSek7M81xssBUYlmYwnJFmK4zk6YqLMKLKSIAiI44SyKlA5SEdw9vwFnj31Bg89cDemCbajNTmqAtPQIfOe4yARzM+29XksTfb6I1zf09c3ld4Q2w6NRoMwDDANHQuSjBNMaWlTLWkgLZMyK5DSBGFgSIlRCcb9EUVWEgYBaZrxm5/5HPfffYL2fANKqedXUU4t9y2gYmtrmwfuPMF4PMH1HZSq8MMIpbTDq6EUCoN6vcGzz7zMU6de5ZnRDv/Nf/3X+Hv/+J/zQw8fx5q6qOZJzqA/4aP3HObJTz1F0o+JfEEYeMTjjO7OgG+8+AbHlmeRQuHYHpZlY3qCOBtjGhYb69s06g1GowmWbZJnEzZ3eniOjTIE0rIoKOnUQxzXodWsYxiSsswRVMRxih94YAlKUemO1f4SMO10H6ynt61zCpRAKH2OGZZJOuxTqYq5mSUazVn+6PEXGfb2MF2DMLBpBA7LbYcsH0MpuXJ9jVYjnOZNKsoqp1IlgRfwg1GNzVbI/Q99D7NzgtWVbZpBSJmX3Hl8keNHOni+YJz0oUqo8hFf+9oGcdZiMLzKx37qP8NpVzz+lcd5/ZXTLMzPcfXKWcpyj+dfvsL2tQ2akc2jD80y3Ovy5VNjvu+eD6EMg1JVlFVJJUBUGgBnuaIeNjl39nUOHTpCnKY02rNEtSbra2u0Wi2SfEytHpEmOU888VXGmUl/FGNJm/GgS7sxg1BaApKrilwBpoHhSEQlpiHkQtMyLZdJltNodoiTEZZVIkpFVWZTajKISmAgGSdTbZttk2UlKJtnvvkMy8dXMYSNdHRYep7lmELyv3/618l2LrGTzENcJxE21zd2qbcWuPueB1lYWMJ1fDzPw3MdJpMxN9ZvIGyXZqvNodVD9HobRE5F6FpUUmIJAUWJwmJnqIgzk5mFVSzP153vJMbzAprNCNe1WDp0GMtxWFo8TJrlPPP0k6RJzN333MfW9hqOE7G2tsX83BLtziLjrCKd9CizhOGgy/LiKtL1tAP6tItnKIFRQSXUfi+Pf/Hb/4qPf/wndDbwvqr0bcHdraDt1tCu/f9/037pTWBL3BKf8E7AriyLA7bO249bjOqE7owrKv64/TPfB3fvj/c0vl0UwnsaU874ewGK6hYQ907jJgC8+bdqqvlQ0wvXcZxpSejm391ssd8Ee2/fdn8Hp6V9F6XbW3QIbtIC3kmX9/GP/Ry/8b0PHQA7+OOiXx6s6NMXqsHbPuNyH//dzJnZ16qI6f0VVV7Q74+YbbdZ39ihXq8hhCBNM2Y7TUxpHDiInj5/hXajxqGleYo85/ULV1joNLlwY4uZep1mI0JKPWGWVYnrumxsbdPfi1k6NMvlG+usb/dp1UIeufc4eVZg2Sa27ZDnOTu7u0RhwGiYETYCtrt7mIbA9zSVMo4LLl7fZGevhyNN7jx6nN/9/NOUecZMp85kHFOrheR5QRj6RJF9UBVfObTIzk6XvMiIohDXcmk260hbUpQFValwXYeyrLAdB89zOX32MrMzbYLA487DiyzMNpHS5tqNNVqtGqpUGGVFvR6y1xvw5W++ykc/cAdpkSJNg3qthu1o105pSA7Nz2EZgiDyEUJQpAULnTaGqbWilm0xGU4QqINAd4Bkqr+quxZRLWAwGDMz00IIgTQkvd0+eVHRHw4JQo+q0NlYv/XZb7A4dcksyozA9ymKijwteOH1cyzOtqdumSaOZXJ9bVsbOhgGSTzBUPDYMy9iIbh6fYNnT1/kgbuPUuQ5oHBdizTPiaKIVj1ibqaJ7TraXVdp97H9BVugdLdqqsEa9bucuXQeV9osLy9iOp6m7e0XcuCAJlNkOefeuE6r1UCaBsPRiH+y1eXf/q0f1p0TxyaOM/71J77EykKLpcUZHrr3KBUVjm3iOA4/979+hV/5H/97amHAh7d3uH59g0OLi2RFiue5xHFClhZc397i2KFl8jSjFoW8cvY8szNtarU6vudh2TZFVRJNnRqzIseZhpp//elTmIbN0ZUlENCs18jyHNdxiIIQ2zYxTcmZ85do12vsdvuaNjgY0KjVOH3uPK1Gg+FwqK9bpcvbhpTYtqXNQywTVSmKPKfeqGkQlusctWarhuu61IOAOI6pNyKSLMX1tO06CKqyOqBdXrtxg85MCykNLNvGlAajUYxjOxhSYJoSy7QRUtFutTh+eIUb19dQlDiOg5SW7q5VFfF4Qhj6vHH+IlEYopRiOBjiR8FBhxohppElGrTqtUL/Z1mWzhGrdIdOV6YUhoCi1Jo9VSqkYfDZrz7G8SMr5HnOIw/co7VKUmCgTV96e10MQ+shEYJmq4FrW/iBT5LGIAz2egNA0Ov1cGzdaVYVBK5Lt9fjTqn4wqVr+PUZTkYpCLAtC5Qiz0scw+CvfPqbzOyOWJyNiMKAySTlM4+/yE/+wAep1UOkNDBtm0k8mX7GDlVWTq+vjHo9QgG2ZRAGPmCwsdmd5iJKbNPCdmwNDIQ4CJy/en2d+Xmdl4kAA+NgDXjLuvZOjBWhKIcDdna7TPKSrd0Rq/NzXN/aoFGrUWaKl85cJXQqfNfGd21m2k3KqtBSKKFp2lWlkNJifZKTHz2Cafm0OzZx/yzZeIJtuYzjEbatTUEs00IohywtSY0jfOGrz+GFOXlact+H7qbTWCSOJ2xsbhL4Jlk+4fjJ+yjHezz/zJd48K4Gk8mQI/InCWoOar9IDKAqDCEpSugPx1TC5Pr1SywurWomEPDqay9xx4m76A/3CIOQLE24fv0qzcYMe3tdxuMejpGwevg40lAYUk0zGBW725t0d7bx3DqWIXBcl0oZdHtdGs0ZRuMRYRBSZAlVEWMKQVFkGFKbS+kcXLh08Swzs8uUhTZDEkJQa4SYpkQYgiSZYJm2BkDS5t77B/zIj/wov/qbX+YHHv4+SqVYOXSUe++5n+3tTUaTEVEQYUrJlWuXaTU7NBotTEvrvUUR45qCPBmAUFimRZbGGEJy4eJZ3No8g+GQhcVlhGGwtrbGYDhgZ3sLP9DmL0EQatfwomQ0GWGaJktLK1qecPg4ZalIkwl7/S4rKytsbq5Tq9V0Fmg8QVoekyTFDwOmXPuDbYwSHKwVHzj8IZbvn5nOD+8E7t6egvmO5/y3fPy3HkpV3wbc3f7UB5Kg98HdbeN9cPcnPP6/B3e6E/btLrS3A3e3dsiUqtjr7REEge76vUdwd+t9b3mNt4A7Y1pNP4hc+Dbg7pf+wT/io8TcPdO+/f2888fyLsebwB26knhrH/DWIFD9EU4Rn6rod/tsb/ZoNxp4fkg81YIIIbAdC1UqkiTBcR02tna5+64jSCkZDCZMxglUgq8/f5qP3Hcnu3sj3Gkm2deee4UTK4vs9UcsLiyQ5yn1ls25a9dQE5MjR2a1vmC6+Vrf2KbViPAch7yotBbLsWg3QoQQDMdjTNPgwrUNpJScWF5gdrGD9BxC26QTejieje3qkFnHcxgNh0wmOb7vkyY5T774OnefOIzr+ki05q4oC7Z7XVzX4rWzV5mf6WA7Dmlc8O//8Cm++9G7sSyL189eRApBq92iLArq9YB8qg3S+ipBEPocXp5hZq6JYSiimo80Tcq85PraJpa08TwfQygc02Lt+haT4dRkIC9xXK0hU2WhqU5SUuQZhtDdBVMa9Id7gKIz26bIS3o7fQLfRwkwTYeyKHQ2YX/CcNDjkXuOEUwzAm3XIYlTbUgTBWzudvEdizBwpm6LNmVV4QY+wpTEY52pd2R5nqqsOHlslU7DIy8yev0+u3t7+J7NeFLgOA5b212Gk5gg9JCmZDgYEUWBrlYbQmtLhIGSBlQpk501ZkOPhZVjVIYJhoUxNU0q8hJp3IyzrQrFZ77+MnN1n3ojot2u8VvXNvjYR+/QuiHDxDJtWpGQbiSGAAAgAElEQVRHpSqeffY0J0/MocoUCpMiE3z2xat814NH6O9dY3mv4MqlHaKaw0ynxWQyQUqTWhThWxZCaF2UYZrMz8zgeAFe4OOGHrZn05xt4IQO0rQJ6h62ZxFFdeJexeGj8ywuLzIYDKg36mRZjjQNTdm0LVzHAXTEhO952FOtWLtVpxlFSMMkCHySOEEakskkoSpKhsMRYeiztb6NbdoYSoct+4ELhsLxXVReMhyMDuZJ25JgKKqqQCkYDcb0u0OEEliOgTQE48mEMIqIJwmb211a7RaGFOxubRP5Hltbu7iBM51LtOmQZZq4jouQBuvX1siTnK3tXWzb1romz2M0GlOr13E8hyLLdNOoUpRFhahK9nXMQkqENJGGRb83xPO0CZJA54opQ7M4DKkzAKUhsKRElRW1RkSRFTiOjWFKqlw7KPuRd4vmccJn/+jr1D2PIPDp9wc0Gg3GwwmtdpOq0LrtqlRkacb65jZ333GMYysr/M9f/jK/8Bd+mnT3Is3Q0bpeBFFUY2d7h41hwn/1XY/gBzqo3bIc7ju5giEFVVVw6fIaaT7hmy+/xmJtHpVbpGlMrVbTlNFKsyuUKFGVDjP/5ssXWJ1t41guTz1/mpXFOXZ2eqSJpnUahqQWBBjGTfruO5pAvMO6KoRAZinbO9sIJK4X0mzUMahoRXXOXdlElRD4sDDbwhAFwpgCaYGm71agkFRK0m7M8Tc//RS9q69Qj2C+XSEKnT1n2dpJ2HEcJuOcPHVYW9vj//iNZ3Drh5mZN/n5v/iXefqFJ1CF5OLFizzy8ENYpgAK5ufncdSQ3vZZfGeHRj3ka48POXJ4BWmYCAWqyKmKkrIqycuKcVqQV4KHHnoU13UoykJr0pptpGFQFAWO7eDYHp3WLM8+/Thzs4fwXMnx44cxZYVlGlQKyjLHthyqUtDvdpmbXUaQ64YQJlGjQ4lJUeR4lo2gJJn0qIpcd/WmhilKaKZNGM7ojpEppm6vGa7vIQqJMCryRHetBsMJ/+CT/ycvPn2Gf/mpZ/mbf+5vcNd99zI3t0ij0eTCpXP0el3uvvsBlCrY3Nmi3V4gKxSGYfD0E4+zdf08Zf8qoWOgTHCCgCJNUBhMconfWCKszzI7O8/OzjZxPKHVbNJqtGg0WzRqNTbWrxOFmimSxAlRVCMMa2RZSp4X9Ps9+v0+OzsbPPqhDxP4AZ3OLK+8eopGc5adjWsMh7tYhqTZ7iCkAcK43VxlCocc1+Tffe63+chHHnkf3N0y3gd374/3NG4Fd9+R2+Ut483W+u/lcd9uFHl2oMW7Cahu5qRoQKI39/v364qi1KGhpq6G8i1one8kotXZQfqdVVWpaUOm1BVwQ9z2+P1jVJXi5/7CX+Z/WGnw4OLcW4/5Ld6n+lb3Vbet4NMfvu3ifVAcu+3PBGWWs7u9R5bm1KJIdxFMOe0mSOI4Ic9zdrsDtnf73HFihVdPXyDPc2amwceuJTm8OEOa5SwtzpGmCb7vYSKYm2nhOjb9/pgw8kiyMSuLsxyaX2Jtc5NWq06lKqRhEAQeVAWO4yKlheWaCKFNUwbDMbXIo6gqFubnaDdrVGWKYSqEYRDVfOLRkEpAVI+olDb0sAzwvYZekAsosoJpv4B4nPDimXN0GhFzCx0qFNvbA85cvEbouLx+7iqNyGdpsYNpSmZmGvi+BwricYztOJiWyc5Wj0vXNug0awhDUxGrstTaJqFIY+02WKuFgKDISixLU8fyqd5oHE+YTFIduuzYGNLAcbW2ZpLEuJ6jnSpNE993piDQQBqSeByTZzm1Ro0kKaiqEte18X0fx9J28IPBCNuyiBMdlRBFIUmccGRlgSzLcGyL0ViHNXu+7rqZpsTxXB09oARnzt/AtiykCe2ZFrVaSLMRYdsWUliYlnaBbbb0bSiB7/soVZHn2kxDmgYYJoahiAc9ynRCFAYIr460bDC0q6ZlamMEwTSWAL24Hppt4boOlm2yOxiwcl+LY8vzjEcTHNtlNBzRakX0+wMC12I42sM2LV58+QKGkvyZP/+X6Ha3+F9+7bf56TvuwrFs6s2Qsiy4sbHFaDxhptPSOjlgeXmZeqtOGIX4tZr+zm1JqUr2PeirEkajIa7nUhaKxaUl6o0Ay7FwXRfHsXFdlzDURhXaBVKRZBmqrCjLiuFopLvVkwn1Wo3RZEKeZaRpytVrG8y2O0T1gCj0UZUOtHZdV2tkej0qVenNoapIJzmObWM7WoNZlCVe4JCnOUIJzl68xMrSEnleYjsSPwyIIm2GEicZnU4bx7bY2+tTr9XI0gylwHR118lA4rg2ySSZhoWbRLWQve4eN9a3OHp0hTRNSZKEeqOONHTI8852l8HegLIosW2H9fV1OjMdsixDSK2rO/3aG3R7A9rt1rTLiI7GyHIsx0apijItiOOETmeGKAoxDIOvPP4khxbmMCyTL3zhcao8p9WqUVVCXx95zmg85tjhVZLpnJbnObWoxrA/5MzFi7i2hWFIvMCn3W5h2hZBGPL9UQt1z538zh98jh/+0Em9nkxNmFzPJzJy1MYQVVU4roM0TaQpkQLSLGVhcZYwdMnjjK21ATOtFkJWfOXxU2xt7RL5Lt1en1rNJ8tKAs+jFfrEaUKn3eTa+iaPnzrDMJ7wwF3HEaY4YIwURYHl2m+e8N/597dZbQY7OwgU23t91rsjHMtheaGtv19TsLG7S6cOrbqHaVTkRX5TE2loF9tJkiEMSW+Y8c1U8NH7D7Gy1OC1l77C3Mz81NBMIU2T8XiCKR1MM6AW1UnkPXzwwz/MoUWfC2+sIx2XDz7yMHOz8ySTGEFJmiX8zic/ycbl0zz8wGFMYwfPdYj870aalgYASlHkWo9tSAtpu0zSkkZrlrIoqapSh4y7PkopsjzD8z0AsjTj1dde5siROxgPRwx6m9RCB98LENoLZRo4rotOM7PzKKGdOfM8x3IDhGEhLZ80S0jjGEsKUDlVVRG4AXmRU1EhYBoXY6MoybKUqqwQwsRzAoQwSeKES+cvUyjBv/nyp6jyAY9++Me4uL7Jz/3Zv8TrZ19mdeUYSlVcvHyeB+5/hCxLGY36rG3coNmcw3Ndut0thnvrHFpcYK5Zw6BEOo7OY6sU/cGQa+sbjJKcldUTWs4xnWNqYcTVa5fZ6/epynwag2Kzvn6Dy1evoKaRNPV6g0a9zqlTz3H82AlOnriDq9cu0Wy22NzaJvBCfN/HDwKyZEKeTgjqLaS0ptTeW/Zg052PAn7jM5/gYx//CTB0Eepb7W9u3dO8m/P+VirmrcZ+B4Z8t5r9TX+MqWnfuxpTYz3tfPrHG9v9Prh7f7yncSu4278k/sSMVeBdi04tU08GpqlF3W9+lYY0b6uU3BpLoA1R3kr/fPeOSLe4dUoDKoWq1DtOIr/yy/+EXz42q6k8bzPe6ZnffJ9mUk6BoxBTPKtuMknf9fvQR0vTlK21HvOdNlLpzooXeRhC8tjzp1ldnJlSM3POXLpBpx7SqIfUIh/b0hXj4WiENAWWZVKvhyihpotdQatZo1KKUlXU6iFFXlGWBUJAUWQIoTU7+90qSxqM4j5CGZiWgzQKdje6CKldCREKe+oYJm2dKWRLSdyfMBxMaC81GO2NkZYFhoHn2hRZzNragOsbW3RadZaW2qTJhPXNPWxLMteuE0Y+g2GMIUzW1no0o4DFxQ5Hjs6zMN/QWXZ5QVEU2I7D1rrO8ur3x/iuz/VrW9x98giWbU/zirSVe78/JogcpDR5/KnXqfkuKMGVqxvMLrdIJjmf/dopVhZaNGYj4nHOtY0tlhc6mLbJZBJjuz62ayNNC2NaSJCGJM+rqYGCwrUNfM8CaROPMx57/jUm8ZhDC7OUhoHre9r8wBCEYcBgONZOp7aFMCBOEzw/xAsD/d2UBYahGI2GWNLCskzSJOPC1XXm2nVcxyJNNQ1RTbWlL72o4xCqMscyjWnnXmtehSGwpt9XVYHERCYjrl4+i99o4TUXEYY9Lbpo7ZahyqlmQaGqil63R1QP8QIX09Hg4hefeZ2/9bGPQFWxu7VLvzvg6994ntWlFoKClZV5HnvidVaWFzh/dY2/9+mX+Mkf/0/4Z7/6b9hYX+fP330vYc0mzTNs2yFJMy7fWKMW+Fi2he06+M06SgqEKXVXwGCa2acz1wQGO5vbzM8vgNLFHtMGaVtTmqCJQrsJCktiug6GNLE9F88PiOoefuAySdNpN3yMYZhM4phOu8X2dpejq6u4rkc8GSMQXL5ylXoUsb25Q6PdxrI0lZcS+t0BSVKClISNAMM0cDyPIi2JY110CVyPeDJht9vFsT2uXlun0aiT5/p9xYMxeZ4xiSecPn8Jx3KZW+igDD3XSWFOA8V11EReZtiWxXBvzEyjiTAFZVXhuS6GqYEZUzv/er3O57/6Te698yQvvHYG19amSFVZYgiDeq3O48+9yL13HGUST3AdE1Xpc8mQBvFEv4fRcIjlONo6vlKcOLKKZZogKiLbpbvXw3dNQt9H2hZVWXF0dRlTSkwpicIQ0zC5dm2N/mDEfXedJE1zXNemKAqKIscPfBSCWj3iy1/4DDeskB+8Zw5DOCTp+CDHb9jb4+988zz/6f0nkdJkNBwzHk0QQs97GgjZzLTaKJWz3dvB9xxmW3WOrM7j+jb1hk9VmAhlcOq1i9x/zxHarRDbhnrkceeRBRY6LVzPQ5jTAqKCJNHOudyit3vrVP9OlEz9jypKtna7mKbF4uwipTCZmWvR2xvSH405PN9BZT3qgQ1oWqyUNunU1dOeuo8awqBRa/CJ109z72qdQ8tNVpdrOIaDMvRm1/M88iIlyya6SJD0ef7UFX7vU7/H8eM1Hrr/Izz8Xd/Pv/vEv6bVaPOJT3wCpRTLiwvsbO7w9S98ig89cgeu1efXPxtzx6EPopRAmtP5SFTkRco4ThmORiwu3YHrRVy7fo2lpWWyvMS0XMqyYjIaYjlToxQ0++elU09iGGOEylhdPoYqKiDHlNb0Y9ZmKFWVM60/IIQkLwVIB2kH+FGIgdB/IxUISVlkU1ChqeZKQaVKqrLAdryDfUhRZCipUJXFa2+cYzBOSKMRZy6s015Z5O/+zH9HniccWj7MaJRiORYLC4vTeAUdfTK/cAghDKSoMIsBM5GBZwOWQDo20pCUWQamh5AhYXOF+flDvHH+JYKopV1nS+08PBzukWYZly++hm07nHrmG9RqLWzXZzQZY0qTF049w+zcAsvLK5x/4wyu57C8rDNmHccnHo1Yu3GFqFbDdX3SyYA8TlhfX2NuZn5Kwd4/JW8Wyh9efZSVB2ZBGN8yXuA7Ane33vcmF/Y33/b2z/Pux/vg7vbxPrj7Ex7/sYA7Q2gKz2Q8vqUbdfOi0/q7akp1udlF248yqKqKJNH6ov3xnYC7/U1FpXSY9NuNF547xVc/9fv82UNv7dgdPPc7PNub73tz/t5bzGje5VBKw4Kd7S41P+TqlTV29/osLs4gHJPt9S4P3XMcyzKZTBKazRqWgNlOA4Wm4biOzXA84ZXzl1nsaIv19a0uz7x2DjGlw7ZadeJJzOVrmzQbNb76xCt4jqTdDBmNYxr16GDzW+QF/b0BritwHG2dHk+GBI5LNTWXcF2bOE0ZjhKCwMexHVzTpkwVjUaDUTohsB2urm3TbNUZDYYM9vZottts7OywvNyhqnLiZEKnPccTL57mnjtW2d3ts9Md0Go2mG02KfICDIUf6EBilIEhBf3+CN/zef30FQ6vzPPMS+co0oK77jzK1sYOQegBgl5Xd0JnZ9vE2ZgiVxxfXcX1bBSKmXYLZSiKrOTYoTnCeojpGfhuxNJ8m3gS69iJKMAwLMwpMELoiqMq1NQwQi+DliXo7vawXJ9kUtDt9Tl5ZFF3xCyLPMsQQiEUrK9p7YSUusuWpInWVdk+SZJiGIIkSfBcC9exWVvbRAJpnHLH0WV8z9XOl65LiS4spHFCkRS0WhFJHFNWJQYCy3WnOZNaWK43hSZlWhL3trGMEq/ZxvRbCKUoCl0RN4Qii2MqoUPOy6IginwEikoIDCnpDgbM3tnk5PIsRZbz+597nM2NLg/ffwxUyUy7TpKn1II6jXqD5aU2f3R2m+/58Hdx7txVirUbfOzRR0EWtFttxmNtB744O0tRliwtL+CHgaaQCoUwoJyGehtSX2/m9Duo1SKKXAcnX758lVY7oqjUQc6eMd3QYehMOgW4rs43M0RFnMTUa3XdwRIGSZLSHw5xHZvRZEI8SkiTjDRPCUOfOEmo12p86bGnOHb0yAEdfGN9kydPvcKZc+scXV3A8x1d85G6C+pMYyN836OqSl4+fx6pJN949lXuOLrCGxcu0um0qNIcz3cJAo9Dy8t4fkBRZBRVpjePhsnG2gamITUI9mzKssKSFlEY4kUejmMzGk9wHN19dh2LbnePMi9ZXVpk0B9w37134noO9rRTbWAgpcldJ4/Q2+3SaNWQUpAl5ZR6qIt6BgLLsvji15/g2OoKVy9fnYZuj/B8hyiI8F0b17UYDsc4noeUBkmcglJYtkWapEyShDwraDebKPTa4gfaobAotRuuYZokccy9S4s8F4/4nhMtUAambUzjGwxarTrXt7b4cKNDpTgo5LmeRVkWmI5FHutrZTgacGR1Dsf1KIqSIHQxLRPDFLz44kVm2k2KImd2tsH2zi6qKggCD993CaJIz/WGvu7TOOXK9Q06nZamZX6n4E4IHMPg2toNlIIoarJ0SGc6pnFJmhVcubFBywNUjus6CCEo8wrTsrGkhWFrimylFINhzB9sT7j/cIPv/ujDJKM1TMMkTsc4lk2SJkCF6zjEkxGIiu/63j9He36ZS1dOcfnCDVbvuIMf/dEfpFFvMD+/yKOPfAAhSs688jo/9WM/wKd+799y18kZbLtOaJ/EDyKE0EyPqkx0nmKpdblJYTAcx8y0Z0nSBM8LEEJHA4wnI2xb6i627TDo95lfWCaebLKyegKpwPNcdBJTpTWGSmEa2llVu+Lmes2SDo4fkhUgLQPKElRJkgyxbRem2aT716tmFGmHTIGm8EJFXiQg4YXnnmdx5SifefUJ/tQPPUIlBP4k5KH77qeixHNcTNMlTmMQWg+4vrFGLaprfachefb5x6h5Br6lzZnKfUfRLMM2LXqDMXkpmF88ot2iAw8vqFGkKb3uDqaU7A32uHLlIoYqMaVBd7eH74ecOX8O3/eZmZnj5Mm7UEoXBKOwxsxMhyTT5khXrlxlb2cLIaDdaWs97M46WTyhNbNIFNURpnWzeH0A7vQ19NlvfI4HP/DA++BuOt4Hd++P9zTKN0Uh/IcAOwMNot7TxfAuwV1VlQwGA8qyxJ4KkNXUVbOahuTe5nA5fS3aZUyL2G8FdvBmWqZx0OnTYePVLc+9D6iMqfvkviPn271OxVP/+B/yNx648+ZtZQlokwvBt9HbKV0hvG2CUtNHaYHG/ivmgMR58MXddEirlLbLV6UGu2WW093c5crF64S2heuHtDotOgsNKlVRxlBRUBUVFy+u6e6kKjh98TqLs02iWsAknmBZBs++eImV2Rls26LXH3H08CLHVuap12t84amX8Q0TS1rMtrR+J05j0rxiZmaGqNlkPI6pipzhXp+yKOnMtAGPx59/jdC3qDfqGLaFtG0MU1POgjACvWZy5fI6l2/s8OyZi6wuzxB5DhklnVYTUwjKrCCMAoQhWFicQwmDOMlpt9uMxn3uu/MwaVzg+T5BEJAXBY5nEkQ+rusw2BthSovxKMZ2bHzPpapKlpbbGKbk5PEV2p060pIENZ+qrDBMg7zIKcsSU9ooBfZ0U33+0jUdPh05eiNrCvzAQYgKKhCiAAVb23u0W20c26EyFOl4gpzSOyaDCXE8xvUcxqMEhHZS066CCgPJ+u4Wdx5fIctKdnd3qNdChv0xfuDiOY6mD5b6vLYsG1EZ2JZBlqRUVYXneVy6vE6j2SAIfRAGXqA7IBgGnu8w2BsghaDIM5zIIwod8qLACzxcz0damia1H/SLUlSlQrkuUuSsXzmH7QYYdg3XtkizVGd2oTfVjuchhY1pSuIkxXZcqkpSlBkCg7/6zGn+9sc/gqJClRWLc03uvfs49WYdw1BgCKoSFAVRzWGrN6B16G6qyYCrmxv83Yceodfv6bwpVWKaklajjrAknbkOSkqElFP3RomYOvQKY5/Gwy1ddIM8L+n3h8wvzmmqnNSW7FLquaIsFbZhYpgltmOiyqlZjGli2S6m7RDWI2qtBq7nEg+HGEKy1x3g+jZKlLRn24zHI9r1NnvdIYcPzenOWZpRlSWdTgdDKY4cXmJ+YQaqkiLLKZOcyhRYro2B7qo7gcfxo6tErsNsu4bn+Tz74mmOH1rGdqWOnpl2E/v9IdfW1jENC8/10SY6LpWCvb0+li2xbFNrkh2DPK9I40R34wxJnGZkWYHnehRliWVLgsAjjlNc3wWBzpu0tO6wUgVh3SMd51RFSlpNdHcvB0NqYyHb8Thx5Agg+Pw3nuTuk8cIooDNjW3CWsgrp99gpjXD+voO8zNtyqrAdE1MSyKUYHdnl3otYjQcYRiQZjGzc02K0sAwJa7rAoI8zvjNT3+Rk6vL/MunnuZHHlnBUDmGYWEI2N7axjYlUij8jQFR4FFWmiIrTIFhmYyGMaPhhGYzIgw8JkmiKZ91D4FJb2dIvzdgvlMnDF0sR5GkE1RpUGs2EYYOeT9wT1UVe/0Bvd6I185e4757j1IaFWJ/qRLvboOrVw+9pqhS4bsWvf4OFQYXL29SZTm25/DM2QvMNCMWZ3xMSysaRCUxZKVp8baFkYOwJMI0qQyL373e5a/8ws/QH3TpNB3SyZCyGFPJinZ7hjJPGU2GGOYyu72Ap1+8wvzCYT7+83+VBz/0Ac6fvkoU1fna17/BXffcRdiokSM4vDrPV//wd7j/zuMsz0f8yv99ke+781GUYSIMSZlMEGVJUSmkgQY6k5SdrS1tCCYdPNfDkCAMcD0PAxPbdRCGZPPGFmfPvEaWJdT8kMgBxVQbKqVWc1RQVAVKCopKYbsOeVlSKYssg8owGA8HSDXGNEpEUVJRIlVJnKQYpk1ZFXiBT5JMMC1JmRfkecFub4iQPufO3WBzc4zpRJzZu8hf/y//C/7g81/jF3/iFzV9QBlsbG7hWoJRPCEIIqS0cS2XzbVLDHubjPeuc3RpHpMMy3EQhokljam/gaQ/GGNFc7hhkzQrsSyL7l4X35esr23Q66/T3brKzEzIzsYO991zlE49xHZstns3sC0T2zK5cf0cnuewu9uFQjJJJ9RqdXZ2tpmMRywtLhI1W1y4cp677nyIV199FaoJzVaLbm8LQ9rUG62bVMkDToo+f//Vv/91fvrjP4VS3xpgCaE1keJtwN2tFMy3o2Lefpy3ymvea/H8zcMQxh9r3t1/7ODujxfqvj/+fzmqsjj4ebdDCIMwDKlF0cFtWoNnvSkD7+YwTe3Stq/heMfXVJW3xAbcPvYfv78xfqfx0x/7i/zoiaNverzUcQl8ZwBaGNOq7a0aO6W0FfktE8fB8ZXWQ0yXbwa9Ab3dPkmac/TwIcIoQqiSMss1d940EdKkHkZYlsVgHON7Dr3eiO/78H14nkMcJ/T7GvTojaumBy7MdTCmjmkbGzuszrc4tDzL1RtbnLlwlbJS3HfXcY6tLKEqvUGQUhAEHp2ZJlHkU5UFe7t7fOTBuwk8d8pZr9jb7mECKi+5emkNU1r87peexPcd3ri+wThN2djcIc8yiiIhzxPKIidJCqgsfMfDFNqyOvB8sqTAsXVV3XJsLly+wXg0wXVc0kTbrpuW7pYJQ3H1xiZVoSM08rwgz3LG45jf+cNvkKUpo8GQUy+f1t9tqVAKOjMt4jih2x2gKsVoOGZrtz/9DFPyIsOUBnmek8Y5Am00UJQli4uz7O0NeP7F01CB63ts7/S1/X5Z8cwrZynzkn5vyKe++KTWvhQVQeQSJ2P+1EcfwrQMrl3fJAoiVAVhoK3vS1WST10upSkZj/TmIh2nfP6x50gT7Qh4aHWBckq/mkwSbS+utKw9nqTUG3W2tnu6A4XBaBzrXENpIgRkWQb7XavpjwJEnjHY7RJnJZbj4wcRVSU0pVWaICSm41BOXTZBEEUR3Z0+r5++SFVW/PpLp/m1v/6nMQSosqLIE8LQJY7HCFGRpjnPvfA60rZB6K7w3//kS9x5eJ44HfPKG+fYGwxp1htkeYkQJo7jkmaZrvhXJWWVU5bTGAIFVak/L5iG3kupaVwYOkbCtWi267ro5OxroPaDbAUvv3Ka9bUbWouTJkx3Kiilj2tMQ7fLoiAIfY4eP4zlmJy44whz8x0WD80TTyYMhyPW1jcIooD+ZIxAEccxvu9z5co15mZaHD6yhDQFtmuTpCm2Z2FbFt3trtYkZTllpp1hN7e3OHZslSDy+JE//VHiOMZyPWzHZW1zG1WWfPrLX8cyTYbDEQaQpzllUeJ6LvNLc6ytbRBPEg3cpO40d3t7eIEHAj77tcd55dXTJOMJZVngejojznEkyWTCZDjS7p9FNTWtqCgrgRv6OJ5HFmd0t3tIU2pLeNukROf3geLjP/5DeJ6mBcaJpr7Vo4jf+txXcB2bGzfWDoog8SQhiRNqtQghtJNtq9Vmfn6eLCvZWNvk6uXrlHnJsNfnmede5oc+/DCOY/N3Hr6Pv/arX9dAQECWFywszBOEAd/7wEn+2zPX2C+y7VN2UQLPcZGGJE01hXF9fWfaHSxAKDzfpl5zCCNL6xsLgzCMeO7shVvWDlPrWBEIw6DRrHNoeZ4/890PUhYF1btYk95xbZEmO90+M80mx1eXuffkEZbmZ5ib7xB6DnGa6etD6AxJx7P060dQZoIcSZqVSNMiDHzKMqfbHTIapXR3e+S5olImpqVYW7uqAaIyeP30BS5cuM4TT77B/8PemwZJdl13fplnN3sAACAASURBVL9779tf7pm1dFV19Y5uAASIhQRFSiS1cGxpQuJooRZKMYvD4ZBsjTVbjGWF/GHCIc84wvY4bFm2JmJkSRY11kiiNkqkJFLiTmIHGw10o9Hovbq79qpc336vP9ys6m4QAAlSoxg5cBCJrsqsysqqfO++e875n9////w3/57NbUMUH+Df/dbH2drcodls8aef+FNu3riBA7xy6Tw/8Xd/iDgW5MWQgzMB2lRgrITQoKlMZSW6CMqqYNjfotFscfjwERYXF6YqAthYX0eXFV85/cy+JHzlxnUefvQxur15kvEAY2wBTGsoy8zKLB0FUyAKUk3HPSAIYoIwxnVc4rpPUaVcuXSWIk0RpbbybN/Hcew+IssypFBURYWQitIYrl27xmhsWFy6j7jW5eNf/jN+4Wd/hoMzR/jgkQ/iqKkBuIGlhYMkZYpUDmmSYfKSwc42ZbLFTLdBt1sHUjzPQzkOEqjyDImhEg6rW5vU603GYwu9chyHK69cYThKOX36CfIsYWNzE1OW3HffMUJf4XuSXrfJIw89wpGlBdZuXOfB+x/j7OmnGfZ3yYuUrzz3NKurt6jFdZrNFq7rsLG+xpEjJwBhffuiul1LBYzHfZtsTWX4rz6S/8vv+plv6th+K/7jirc6d3/NYarqX7zZbtudjiJ3Jiq2qH3387zWgOrXWxWxg9hi6i1nf4K+o6N2G6hio6oq64t0BymTOyiZe/dJqazB56vgKntwlL2v3xsafyOS5p3x4z/29/i377pv+hrE/u3OXtvX7NxNE7g7v2bv19z7fe6krtzVfdzztzPT98gI/uJzTzHfbuF5Ho1mg7wwnH35GnOdmCAM0Gj6/RG3Vnb4zBPPc//JZeZ6LerNGhubfdI8Y3auw81b6zTjGteurZNUOQ/cd4SPfuZJHjh20JLHqgrPUxw/vMQkSawpr4QzL13DFYJzl65x/NACq7fWEUpQVVYCZTCMJhPCMODsK1dYOjBr0dESAsdh0LeAl3ockeUlyzNd2p0ap44d5G0nDhKFHpgKT9XwfZ/hcEytGeAGkrX1DcLIY5KMCUIXowtGkwTPdTFa0KjXSdIU3/f4sy88SycOqNUjavUQIQVlqhmPE6LIJpyu5+JI69knhCYIPdY3dzgw1wUMnuthNNy8tU6328D1XOJajAO0Ok3U1LjacWwleHVtm06nTWVylLSYfK01UeASxxYnn+W5JRMawfbukNj3UUKw2LOJsbVucHFch6JIQRiioMb1lXWeefEiywsz9PvDqc+SxHEdqrKa0l8FRlccWzqAUgov8EAJyqpCYU9X3/coy6nvXJKjHIdOr4VQiv7OgFojQgmJ67qUZTkFbVjipJ6Wu3VV4esJK1evsjlI6M4cwK/Vp91yENJKlrK0wPGsOX1VVtxc2aTVatBuNhBK8L+8fIMPf9s9YAyT0ZAsTWAq+9RVxXiS8tzzlzl+dJFms44U8LtfeoV3P3icYTLhiTMvcyi3cupjx49OZyUFQijW1jZQShFEwfS8dygL628p1R4N15IJrW8mgL4DqITtkiNRrkIbi69fubnKwaU5gtCxs23CtbJOrNRrT07uug5pllOUOY1uEzfwMEqANOxu9pmfn2Fjq0+r3WJ2aZZkPKLVbJIkKa1WgyxPp76FU+uMemTx7VMzeM91eOHseXzP2nyMxgOazQZM170bt1bZ3hkxO9ulFoas3LzJow/cS7fXpt1uAoKyqPbXmfFwTKvdRFcGx3FJkxwv8Ka2Ag5+4HN48QCxo4iiEKNt8jtJMgLPkmBNpfFcn2Q0wfU9kKBcl70GqasUr1xcIRmndGc7toOlNZ//4pMcWl7Ada2CQypJs23JpL2ZLgc6LeYX56jXI7tOSmmTT8edAooM9XqDwXDEeDyxhRij+YvHnyUZjdneHeA4Es91yPOcuWaLT1y/zg9960mMMftrxl4R7aNfepkPtBoWi1+Z22h+Iyi1PT9XVlZp1WoEsaXaorFJZzYkzcbcujlifnYWLQxHlxfY62M4SjIeT/B9K4k0UqJ1gZlCQvzIv80I+wa6DMbY+axs3Md1Aq6v7lCWJZMkoxWFrG5s0vAKapG3TxgW0mCEZGMz5fEXb3Dy6By6qigKwx/d6vOTf/8DYHZo1MZkyQZajMmLClf5UPnkWUGauqSp4N53fy9Rs8fSkQMMxrssLy1xz8lTzM3Osrq6yvXLF3nqy1/gkYffw+nHP8O1i+dpRII/fnLEe049bKXHyoGqoCoztLGJguv5eH6DRnuG3cE2nu9Ti2sUWUm9XscYTZbkxLUajnI5cvgYTz7xOU4cW2Sm16bSCdJzbfHFeEjhUhZ2HSwryQunn6XT6aGRKKdBfzih0ayTjkdEriAOQgLXJa8SDFCUORJJMi558otPsbx8GCkUaVGRl5KL13ZpNBe4dOUCi0vLlDN9/tYHHuKH/8E/4oPv/x6GoyFlWbG7a1UH9UaXyA24ee0y2fgWoV9Scx1cqRGixFGSIKijdcVkPMZTPgiXYemwePh+sjSnOztDXubcunmLQ4vHOf/i8zjOkMj3WJqfJwoCGjUPqcF1fVxpCByXsNHAdSQvv3yVSWHYnYzZ7u8y3+uysLBkk2zPo6gKbt68wZGjx9ne2uXSxUt4noRygqNcdFkh3ICoNpUd3zFzBxA3Ambv6UyP09u3u/dhZrqnuruAL/b2ba8CprxeF02jX1dGuU9Lf9Pn1tfY673J+JveuXsruftrDl1V/8KYr21FcGfcfWp9jfimWtJmX1J591OafWPyu16XuG1gvvf5a73CqtKUZfE18bZ30jC/Vvz6r36En5+Lp4nd3fGNnOBf9T3iVYvafnJ3+zc02A3lXgV5PBwz125hEBR5SZrkrNzYYGN7QKsREEYRhqm/W1qhq4KV9XW67Rqe69DuNHj27GVOv3yR5bkeySTlyPISiwtdjDa87dhBhoMx2hiiMCQMPNLEDvo3mjWazZgXX1nhvhOHOHigS1kWCAFVYU2GgyhCKUvLdF1FuxHbmZLpsH6tFlv54DQj3tkZ8uePP8/RpRmiWjTt2GocBRgPqUBJcANLVFVC4IU+GoPjKsajMbW4xmiY4PsBQegThB6ur6jygqWFWYS08kpHOZx7+RrnrtzgyOIcKzct4fOjf/Jl3vnwSaQUuJ6i17bUT6MNrmeTwDDwCKOAqixtZ1kpK8kzhvFoQpEVlr7oKNvFK63k0JL4oNVuoEtNqS3qPktzlJR0Wg3biZaSbrfJOE0sHl0oyqIirywuvcgMnucw065TlRVh4JPlBUVVsrm5S6/XZntrgB947O4MaLTqjMeJtb8wljCbThKkkPiBT5rYztZwMLQXOsfOnW5t7dLptCiLEsexXU/HnRZNjEZgGA/HOEqgygkrKzc4efwkjV4PhCQZjfB8f7pGWDqm0bYS77oeH//Mc0SuNVb/pefP869+6v08/sTzrK6u43sOptIMB2PSLKVRr5EmBc1GjXa7znA44vr6NiKe4dTJe9AIwmu3+NH3vo96o05Ujyl1iZKKF8+9zDNnX2IwHHP40EGUcjAa/v0f/hknjx7CIGyCO920a2MR9kJYqaMQgjzLUa7Hy+cv0Wo39gstCwvzUGncwLEJcAHPPXeG+QM98izfn6E02LVG7wFL7iDJxVGEVIILl64zM9NDepIyz0mSnGazSVmVRLUQIbBd7GnCZQsolgqoywpdaRYWF0AImrWYi5ev4nuB9ZiTkqfOnOXwwhyVLmnUawhHWWuNwQhdVYyGE+r1OuVUfpymthOGEfzOH3+K5cU5ojBg/dbaPh202aiztbOD6/rEccytm2uAIQhDtDZkeUkYRmitcVy7plspU4VyHGZ6s4RhRJZOKIoMV7kcO3pouvYJ+rsD8qyws3lYEmGz1UACeZ5gKcq26POnn/487XpMmqYUuV2LsiyjXo8t/AXDXLeHlJKlhTnKoiKOQ1rdFr/5/PP82PvehlR2HlQ5it3dAWmaMhoN+Jb27HQuU9q5q6liRHkOUkk8IVFK4Psur1y5zuPPXeTe44eo1wJQILVLXI9BGq5cuUW7XZ9SKTVB4FuZPRKEPfYcgT1nQ+/2xvYbSu4E6WTI+uoKQRCjjSIrCo4cPYjnWGnufNtHUhKGIWhwXQetDe1Wh5l2iOeIKfnU4zcvrHDu6U/y7nc/SC1I2dlap9mKieN5ttZH5ElJs9VknJXMzs3xr/6336I/nPDhv/tDKFVy8ugJoloT33X4H//l/8A/+Hs/ThS4fPbTTxLIIfMzEUsHGnziiQ3ee987kY6Lkg5FluzTWfOysKMUMkB5AY6jGE8SarU6O9s7lGUxTd5DVm5do1FvkYwTVlYuI6tdmo2mvSZOCzR5Lrh44Sy9mXlsQcdaZ7TbHXaHA5AhrVYHI0oCx6VIhwgsKTio1WwBzvUwVYWSAVmW4IYBlYEvPf4Ucb1Fd3aJZrtNb6bDR5/9KD/3z/4+v/b//CrL8hRVWdBsNNne3qTXmeHGrevcXLnJ9uYNQs8w2r1Ku91CIlCOg+t5uK5HWRp0kYNQjHPNIM05sHgUXUmazSbD0YggCPEcl421W9x85QW+5T3votVsEXo+qzcu052ZZTRKKMoK3/eoyoIkz5mMh2hAyAI38BmNRihTUms0aLbaRGGEclxmurO4rsv5c+c5ceIkcwfm8H2PdDJhZ2OVA8vHiaLabak7d+9z9pK7u7ZCr3Gcf1VyJ+4mt3+t5O52we614xuTZ4rXnRf8RuKt5O6teFPxH3ty57guaZrcJb2U0tobvHpm7s65OXvfayd3e7CDr+elfz3J3T//pz/H90zW6ETxaz7+zSZ3r9nlvCO52/8dpxvKIssp0pxkkrG1MyKOIzvEH0c04pDjhxfxQxchFZiKPMmQRnH11iqPPnCMrCqQSlCUFQe6sxxbmqXVqqGrimSccGtri16nSb9vZR2e43D9xhqeIzGY/dmTqqpY6LUZjse0WzFFkTOejNnZmfAXT73EvccOIpUkS1JGkz5h6DJJC2pxTByFFADT7oWcdjnefvIwQeRNqWMVu7t9PE8xToZoUVniowioCouhR7g4KsBoieeHZJMCz/VYW9ui3oxBVKxvbHJwcW66uRSUhSZPCo4fW6YZBrQ7Ldv9cBxuXt+iEbsYYajKYlqtLxFCsnJtjcFgTK0R4fkeWmv+7e98iqVOg3ozRgqB61ipjNEVYeSD0Pi+R5bmgN04bW/vooRA+XY+TynFyvVbtHtt/NDn1uo63W7L+vpheOH5y7SadcLItTM/KMI4YDgc89QLF9naGbI0O0O726DZiBmNJrTbTYqipN6uUxk9lX5ZywhXSjzfw3Fd8rwgimM7j+RKSl3iBC6j0Yj52c6+FNj1XEuQNVDkKa6rSJMJuiqoN2J21lYwaKJWDzeI0KYi8iRlaSurprK+gbqqcHwFRnHvsUPMdNtsTkbszIJKUma7LY4eWcD3HM6dvU7o+SwdnKffHxJGEVJKfNeeBz/z60/wX//kf86VG7d47swFfvr+hwlqEY7nID27Ca+Kkm6nw4OnTnF4cQmkQmClWm9/2z1ICVUBn/z0l/EcRVyLMFQ4nsJoK6sUQuC6PsJI2u02CGOTXG2rwY70yYuMqgKlPHrdNo6r9pO5PdN2a/9hyYlou05ZCZghzzN2tkdEfkAUB7iBgx9EeL4/lYsKyjRj0B/SanfIs4LReEK9W6PS1ri83miAo6i0psoLoriGEArX8wiDgOPL89Y82ZU4vouRku3NbQtbqQy1WsxklFgQkKMYDcfU63WKvGJna5dTxw9R5QXnX7mEMoJ6rYaKPKRwiOMaWZrz23/+OR6+9ySO5xFGEV7oIR2HnfVN/MCx65oWSGEojO2gnj59lloUUAsDKDXSt3N+WkMcR6yvbdBs1tBlieMoBjs7BL6L8uxM5HiSUQsjjh9axnENzVbTblS1ptGoUW/WqTVrLB44QLvdYvHgARBQj2PanTZCSeIy4577DlhPQd9HCqx9SBhwqOPxkx97jh9YnrPrn6msObqrbPfVaL7y4nkaYUiZJ0ySFMeExGGMcBVRHON6HmmekCQTnnnhCscOL+xf84SYzo8rB42x9FStWV3fpt1u2HX89sXgTYXjebjKcOPaZWpxnTBqcGtrh8DzuHD5GtdurjLbkPi+tCbVWUWS5JYkbEo8ZZCmQAmDlh5/vlvxq//7LyGRpINtfBEjhc/K9SHPPf0yO5s71BouYVPxmc99kpW1ecrc5fv/zveRjcaUE40T1/mTP/4YP/B3PsipE0c5d+Y0W4M1lhcMRw5GaL3Knz414v33fwsIu2ZTVVOjd3CVixAKz2/iBhEbG6u4fkgU1QiDiCgKGI52cd2I7d0tWq02L509yz33nMTkI2phjUF/F9ePUUaxNRyztXmLTq+D60qqMqNeq6GNoN7o0uwdIC8LkmyAKccU+YiqKrl86TLCbeJKB0yJ6ymUL5g5MMut9S3KUjDqj4lqXboHeiwszeJJl4fe/SD9fkVJjQeX38nhg0tMkgm+bz1L2+02g50VDs63aMQOjVpE4PrklERxBEjSNMWInCop2NzZIegeozGzRJmWiMqwsbtBFNZBw8c/8Tt0uw1OLC7hhRkmz/EcjzBsEtYDRuOS1bUbNNp1dFUSOIpOs0XowcJcj169gRluYVyHne0NHD+i0exgPXZBG4PEYzQcok3B5tYauijJJgnjyZhOdw7HD2zBzGJJ9+Onf/4f8yM/8gN3b33+AyR3+5Lb19muvpXcffPx1szdX3PY6sub+7OXVbn/fRL2b68VSkrUm3z+PamSELaSHwThVz3+VfLP6fe8UVhzc/Z9SF4dVaVfUzIq9Gvf9mL75grHez2+WqRqb+auz944IX6tpcDs/WfMFLaytwi9WnLqAJLVlXV++0++SJlpwihAuQ61ZowXuXg1l0E2BC2p8oqtW30G2xOSfMygbzAVFGkKU4mdY0o8N2B9bUilFXGjxsLMDFobGo2Iza0dHNfj2OFDxPUayahAVYb1tS1Ov3CF9fVtFudnuHp1FUd5dFptDi/P8tDxOfJkTH+rz2iQ0Wl0MNpCGFxPkiVj+9qlZNgfU+YFUmQYOUYawXh7wObNLQY7E5Rbo1bvUOQVcRCjC3B9A9IgTEWWjBDGJg/DQYIxsDHYodIlUrnMzsyCqFCutAAHbag16ly7epNWq0aWT2i1Y/Iio9trIJSd1fKCiCTN2dkdg1LMzrUZJWOySYYoNf3NAQ8uL6CURErIi5QiLXn8iRf5yy+cxmhBJRVlqtnc3AVjyPKCdrdNVRSoSnLh3HXSUU6310VnGpNDu9W0fmKTMY6A6+s7FEXOsD9B55rN9Q2KPKPZiHj3QyfptWp89pkXLdJeurjSpypKwtAhTwxKBGxtDqcbfZckzUgnGcPRGOlIJJrdzS2E6+J5Pvkkp1mvY4SgkuCELlpYmEleFAhVIYzBcQL8KCYd9kEaZmYXqDfmKEuQSCZJheMFgMvlV9Y4f+4qwmiqAqTQPPX4i1DBf3P2IovK4cbNbZYOLuK4Hi+ev8Kjjx0jarpoXdFsNjBViZKGZDQmdl1MWZEOdnnsobeTZgYhFRprU6A1iMpBOi5e7GNcUKGLUgLQSAVoY2EEnuS7P/BttLtdjFRQashLSp0jHesFqA1oDMIvUcJBlyVSWumldjSOH1q7FmXwQhektVmQSqFc5zZsSQqEAxUllS7Js2wqIYdHHnk7X3j6eXRp0JlECsjzFCOsl5wb1ejOz2OkwA19Op0WpgCh7YygUBIxtR6JYpdGPSAIPEBjJGTlmLgWs7M9wlUeoSep1yPyIke5kt3+Lps7W1S6pCor8kxTFIbxeMy3v++d7Iz7aE/w0MMPsnBoid3dATotqbKC8+deZmtrix/97vcSRCHJeMLm2gY6rdi8tYnGIZ1o63/lCNAS68CgeedjD9LsdFBRQOUJDJqizFEujMcD5ufaoATSVRhh8ELfgnWMhxcERJFvbQRcSVRrohwfIX0G/YRJUjIZF5gKJqMRuioo85x6LeLpF15EqxKjJe9sHeUPPvEFTJpDmUGVoosxyXiXxQM98jylSCaYPKOaJLSjiGF/wsc//VmkKXnXYw8we3CW5vw8R08c5+FHj+G4mmqUk4wLlOPgeQFfeOoi7bhuZ7KqqacixiZ6usDB4Pshfr3O7EwL15kWAPa6HlNZ/utdW159K8uccVbSC0K2tzYppcuDRw/RaMX0dwuaUZtmLSIKFI4riGs+ypE40kHqCtd3QHggPJSE4XCblbTi3M0d3CDHc3co8wGzB+GR9xxk/vA8cXeO9X5IP53hvntP8OD9x3n2yS/yy//XL/K7f/gJTp95nr/9n/5tzp05z1987nHe9T0f5NFv/TC//KsfY5hDGDZ478zDKANKG6QA7UorhTbano/ChSAgK+Hg8r0YFZBkJWmZsNPfplWfwZGK++69j5urVzl+4hiPf/5L7PRXwXXIK83KlZeBitmGzzseeZQo8KAEVzg40qBcl6zQ5HmF43oYLVC6IvRjXCeg0Z2x88iyRDqSyoApYLI7ZKHXZXP1KqlocOi+t9NuzKATyS/87v/EI996D8vHerz0+ZcoyyHnL7xCt7dAp9lBViWMN5lvxaALW0xwJKko8YMmZQV5NkJSkk0qLq0NENEseZFzc+UaQRyx3t+k1+ohjeTcmbM8cM/DkE5wGwYhfaJ6DUOK72vSdMhMp849x+/BczyQ0lKslcD3fWpBRL3mcc9993DvqXsZDTPOvnie3Z0dHv/0l1ACPCUxImFmvs3N1VUqpZhbOEyr1SXZ3SYdD6cz/AIjJEYLhDb79O3X3XjdEZUEoyQohZmqK6RSMKXt7oVUavpe6P2ZcCFtkU+Xr/3cAvGa+8WvJyr9zc3E/v8p3urc/TXHnbTMNxN2pmAPdP76CcttkOObOTlea8btGzm5zJSouWd6fneH8m4rBfNVSZ2Vf4rX/9ECPvRDH+ZX3vvQ3Xe+Ydw9h/fVr/iNn0G8xkf736s1ZV7w0oUr+I5L6HnMHWiTFwWea416hZFsbuyyudFnNJjw+WcvEHoutzZ3OH5kFq0rup0mQRAxHFqgxubOLpdvrrI1GBB5LlpowsgjSVOMMdTr1ift+RcuUgsj21lwXY4dXqZW81i5ucrC/AxnL1zDc1ykEPR6TWscPdtlNEpwAzsT4/l2XnF3d4QrfK5dvgWVYjhI6c3MkmeGorQzRZ7rkBVWuug6IY6EtfUthBG4gaTIS4w2SGGBDLoyXLx0iyfOXODdj55CSPZvrmPn5bQxVLrCca1P12SS0GjYDsdgZ8xokrK2s8PCXBfXc9lY32bhQA8MhKFHrR4SxgH9wYhaI6bVqtGd7VAJjeO5TJKU2V6Tk0cWpt0uO9cVRyFVVSGmF6MrV24xHEyY7XZIk5wwDHjm+ZemCP2MXq9tJX0G7r3nEFHs0+8P8KfeYY7rWoP4Wky9HnHviWUGwxGm0Ghd8eLLl2g3a+R5wbNnXkKbkrnZDsoR9AcjGs06jueysz3Akfb1CWlBMFVV4Qc+Qkr0tFBiu3ZW0plMEhzXAgRMPmIy2iWIQryghhbB/l7U9TwqkyGVoNWMiWOfosyQbmiBOv0h//fNVf7Xf/x+5nodTp5YIs8z+v3+1ITdQpCSSY5SDuNxSi2OcX2PTzzzMg88+C4SI9COx6/99u/xo297AGfq8QcCtJWY7ku/p51+MR0qNgKMsXM2ylG4rp2LVI5kZ3uXIAi58spVHCXwfCux1aUhT1OEyHCUoMoV0hF27mMKRpoaXe1LqAfbA0tWA6rKSs6HgzG72wPiWrz3QpA4HFteptKlhbdMd/EWyKKtFxrY41eqaVcQsjSdqhosgj1NM4qyQhtAM4UMFSjlI4WL63p89M/+3M7M1RoYY8Eev/+nn+PY0iIrN1bRleHp589SjwIcz5JUazULyTHacP78RZr1Bo6r8HyPzz/9Fd7z2COWXum6hIHP2uo6o0nC7Nwsv/fxzzLbaRDHge3kCoPRkE4yyqLCcS3u3nEcdGlhWnYdlZR5heeH7G718Tyf3d1dbt5ao9vrMpkkpGlKrV6z1wG0NXwejhkMBvSHffIsZ2t7m9nZGaSQZFnGeJwwGkyY6XWnr9fjIy9+hfvmW9TqNSaTBNfzCPwQKUN++wuv8KGjB22SFti5Pl0IlmbnCYMa0rhUlUQIW4ScjBJrw+EoyqokzzMCz+X44QUG/SG9XgtbZLCKlKqsKLJkKp8OEEgmk5zAj0DdcW0T4nUvIK91twRc32fj2iWazSZRa44Xzr1Cu97g/I3rzHcaGJPjeSEKa/fg+64dAZCGoiqJ/JAszTBS8pcjw7seuY+1mxdohyN02bc+oSpGVgFXL10jS8bMzCzjqohr128wGvRZOnqY9twBBmPJ+77z3XzqU3/OOx57BydO3UPUalLtrsH4HAdnXVwmdGvvRyhlJdRAVeWYssR3A27cvEYQNSm0wnF9rt+4TqvRIM+tRDmq1cgLjfRKhPbY2Rzxystn8fyChx96CGM0URRRrzdQChzlWOm8tGRG7UgqBVVpKCuoNbvT4nKBMiVFnuAoSRyGNOIYiZqe2xXVVG5cGYMfNWjPztNs1bhw4XmUgquDFb7rfe/lu7//x/jex76bQ8tH6fVmQZdcu3yG/tYKzVqAISEMfIwp8VSIK1xMmZAlI5TjU2rF7lizvjokjNo0WzMcmFuyHfxak6IquPDKWS5dPM2pk4eoRwLf89C6Is/tdV+5DlK6VLrCmBIlJUI7vPDcC/Rml3EcbFHFsTYXeVkhlWRmfo68nPC2t92HQDEaj0mSFM/1mZmZ5/Tp04hyQFkMaXZnSNKcmflFe3zuFSmwx3On7PHAd5y8+zh+jfk3I/aIm2J/r2lhXnfv+YzW9tmNvlu99XVyFd5c2Of6q+re/U3v3L2V3P01xzeSdyZZOAAAIABJREFU3O2dAIa7gSmvdWLsP/6m4q8mudszNr/dkX/95G4PnnLXq/gayd2HPvRhPvL+R1917xufyDaBfIPHeeME742SO1Fp1lc3WZjtsTjXw3VcNJow8NjY2OH0uUsc6HapigowzM/1OL40z+b2Lg8/cALXl4SBz+raDl987iUGw4T5mSbdbpOl+R6z7TpB6NFq1SxNEEEUBeR5yWg4phnX2N4Z0ek1cKdgBM8XRGHAH332Sd5+/DBpVuIqRaMRgTBURUlUi/CDgPEkodmus725w8xMl9EwodttcuX6Kk+fu4ISFd1uGyntLITjukSx9WlzVMB4PCAOfbK0Im6EOMpl0B+hAd8PKIqCJ05f5Hu/4x0ICY4rp1JMcKTLZJKwvr5FGFqTZM9ziGNrMptMUlqtJnNzXWqhZ73tjGF7q0+/PwBtAStaVyjPmVbirYG4M527sYASl7gW8uyZ8xyYsSCWwXCM77usb2xTr0dsbm6zMDdPkZW0Ok3CKGRlZZWZXpPFxVk67QbJJKWq9BT4o9nY2GJ2tmNnRMoS3w/Qlebzz5zh+KElHFcxmUxwPZe/ePw03/rI/cStOtsb28z3WiwtzZLlGULYuSAqa2dQiyMcpdhc38EPfEbjCQZDmljppZr6j0lhqYSu66CLCtcPwFSUaR+jC3B8fC+mKCSOo6zMyPO5dPk6cRAymWQo5XL9xgbNZhMvcPg/rq3zX3z4nbgqp8xKdFVRlgW1KGBntw9G8rkvnmZupk2n3WZ9fYvnzlzg4PI8/+1HnuCf/5N/ytFTp2jNzPLJT36aHzx1D0LJ/WKTnJI8LQ13r+CiScaTKfTExh4oyq4FGmEMcRwjjKDbbVvPQCGmM58ejgJtbEIljTVx1rq6rZAQgslgguu6Uwqhx6g/QsmpHNJYw+fHnznN8aOHMZVGOQ4vn7+CqQyf/PKXue/kMbY2N6k1a2DYT/T39vZVpe16Jy2pryhKPM8ly/LpcSkxRvDpzz/OwYVZrl2/jiM8ojimLCuyLGV5eQElPaR0kEJyoNOh0WzS7bZJkox3PPI26vUYKTRe4GGMRJcVnudR5gWtdhPXU1SV5u1vu5eiKEiThMkkwXddWq0m9XqdwXDIY488QKvdBGMYDgZ4noNSDlmSMR5NiOMIM7W9uT3XLHCk4syZl1hZWcNzHcq8YGa2R7vVRAhp4S6et3+tyvPUeipK+971el1azTrXb9yi3Wzuv+e1WsRsb8ZKqLH03i9cucH3ffsDCAGvXLxC4Pt4nk+WasZXLvM7T73EO+dnKIqSza0+9TjG9z2K3Mq2r1+9QafbtGuXY5EpYRQxHIxoNmpkaWY7q47DR//yCR65/9i+7F5ISZln9riTdia0vz3i5uom3V5z/9ryOpeGN7jbgFRs37jGeJLQmVtittlgOEqII5fTF64QeZKN7W16zRgjBAjDcDwkDHxKbTCV9d/MdcXH1kb86A98DzOdkHKygq8KAt9nPBqDMSzOdZibrZPlFekk5cDBe/i293+Ax973Pj76h3/IBz/44ywfnuHw0UO8/MrLhHHEaDTkd3/tl3nvOw8SyBGhqzn95ZjWbAObBljljjP1S/SjJtrAYJTSnVvE8TzGowGzM/OkRUqSJCRpTpUaKgq6M03Gox1GOzu0WwFhGIHROK6DUpKyLFCOpCgr8rzk7NkXaLbmqNcaVEaxtdsny1J8T1EkI4TRCDSmKtCmnCqFbFKX5xWjcUJ/OKI7s8hwkhJFMYvzC/yr3/6f+e//u5/l13/jt/mpD/w0YegzHPRxHcX62nU69RBPweaty3S6M/tAOKMNWZYiTInreCSFZmN7h5KITmeWq9cuc/8DD5Ll1sPOdR02NzcZDLeoeTmzMzMEriDNMrumK4mQ1lvS0rGnVjRCUhWaS5evM7+wSKkThBT0+2M2Nzbw/ZhLF1/B8TxmunPEkS2ouK7H5cuXWFo6RJ6XBH7I7FwP13Ps31b5tHuzOM7Up2LvXRUwszDHP/z5f8KP/Mj33z6Ov4nkTuvqNkn8zo3YW8ndf/B4K7n7a45vtHO3H8ZeeNSrNM578Vq+IXdJH1/HNPLVJ9ndcsm9E9HCU15Nw3Rdj6LIp3NZt73rXuvn3P74tV87WKkL7CVd9r4P/fCH+cj7H7H37H/znTN+XyPJ+xqPmSl+3rxKg74vqLnjPiHsIjZc28JzlDXKrQxxHDEcjtjY2KVZq/HUC5c5f+kG0hiOHj3AeDyxeOvpIuu44Pkh5y7epNdocPLIAZrtFrdurLO9O2B+bgbf99ne6WO0YXNzyGSS87nnznJ0cZ7xKGXp4DzDyZCyLPBdh43dXaIw4P5jhwjjwMqItARZEdcD8qKwsJesIgx9ijShXq+RZxWuD69cvc6hpVmOHuxxaHkOY6ydQakNju9bQuKZS3ziCy/gOBm9VoPRKCOOI3Z3h3Q6Lf7oL5/g/uOHUEpxbHmWSpcUuiCOI6rKvqtloa0dAIJGs4EUkrIoKYoCP/Qp8oL+7pCnz7zEXLeJkpJknFHkFcuH5gmjkPE4IfADHMchGVtypRdYCV5ZaKR0qDIrwTow38MaAle4gU+R57Q7DVxPEYU+41HOb33mCR48dpDtrR3OX1thdqZBGHjTQoTi6rVVPv/0OU4cW6DZajIaJniej+e7FFlpff56bfzAs7RC10VJwcG5HsPRhMB18V3JYDSmUa8BguFwQhCE9ncvK3zfx1I1taVAakOr07RobgFSOPb4q7QlcgqBSUYUUlAWKTIdkVWaRm+RrADPt0ABP/Cpioozz68w0+4ghMPnHn+RFy+u8/Z7D/PPnjrDT//g2znYa+K6LlvrG9TrEa6rpmCPiMm44Mjywj6qPUlTkiRlYWmOD//Uz9Gdm8OrxThByO/9/h/wofvuu33u7XXppqJyC0sxCKVwXXd/3lYICVJQVSVVkU8hF4CUFEWJchR+4E99NiVGMPWUS6drjouQZloMYb8Q5gWBfQ0GpJIkkxSpJFroKU3VcPTQ8nTdMZRlzvyBeTCah99+D1VhrROElOjKsL21S55ajzlTWbLraDDEC32M1jb5w9qyWL8nu1QdO7KM47k0mw38qIYRBuUpDi4dQAiFkLaDffalCzx5+iUef/4l3vHAKWr1CMeVGKYwIccmMZ7nkuc59UaNPEutjEtPk5OypN6sEcYh67c2MBqi2Hb6tS7tDGKl8TwPXVVcuHCVwPM5/cIFrl67QT0IePaFsxw5vGzXfCHIkoz52RnmF+bo9lr4QTA11Ybd/sB6e01neapSs7GxSRxFDIdDMJrVmxsWWKTshs/3fb78zFdsAaoW4ygPLSuKKuVb5udIghQ/cJk/MIPnexRlQRjGPPLQPfzKs1f48MllHOkQBiFZlhHFIWAoyoTeXIM8K8lSuzYoJfGjkCgI7FVDGDzPw/M93nZ8GYSV4zuOTeakcixN1EBVlhRZxvZun8XF2Sl1Vty2RDV3XS2+6nqzd5VylKBEkOxsMNrZYX75GJubferNmNm5Lmmak+UJ9x07gjApnudghJ56fxr8wKPMSyQGrQQfWxvTVobAlTiqQOgxuioxyiEMIsqyj3QmJEnC6edO85GPPsNTz73A4VOn+M7v/A6OHDjIX/75x3jp/Fne+dg7ee6pZzlx8AjrV87QDkf0Og6/8WfrPHL/e9GIKXzHwpsEgqLUpEWF4wYIFeDHdUbJhHpUR0rFjVvX6bS7SCTNTogiYGdjyKXzzzJ/oEenUUdN/y5VVVqLJIHtVGpBVRiuXLrBzPxh1teukhUVs/OLhGGAqwymTDG63O/UK9dDU6CmXnnnz1/iwsvX2BqWHD1+P4uLyzjK2so0FwTveuzd/OK/+RXuXzjG4sKiVZSUfXxVEagK31U0Wm10KZHCKif0tMumtYNwQvoJLC6fIowaDMbbLB46SFyvI5TBUTCZjPjK459l6cA8Rw8dxJV2r+G5LspxwOzZTHkWgsaeA53GdwPmluZRjsaRArRAiYCyMNTqEY1axPrqJqs3t2l2uqTphJdefhHfD0mSCU88+Tj33vcAriNZW1tBGJuYekFEHMa2mGIzr+n8neCzpz/7tZM7Y4/9OyXJlpZ5d1F/r4D/evvLv8rYo0CbvZ/7TfEn3kru3oo3Gd9scucohRTCLgJvcrYO+AYP+Nt8yD3Z5Z1G5tanyqEsy6kETOzLMve8aaZ7g/248/5XI3eNNrcXG/YSu72O3V4n7va/e/e/UXw9y4i44/9wxyK1V6AV08v2lN7XX98CYJwUFi4hBIEXoqabtKIoePS+w8x0GwxGQ7rdJjdureP7CiFtl2ZtfcCN9V2OHZql0464eXOX1Y1tjizOkWcWrpGkCc1mgyuX1zn90go/+J+8m9E44czFy8x3W3iBndPyXJdao86gP8Lx7MCyF7qkw4IgklS6wvVc1jd3GQ5T2s2YdDJmPJygpGRrJ+Gps1c4dWiZCxdvkI4n1IKQoioJogghHTwv5KWz1+k2Ihbma3TbTapS8vwLVzl16hBFXnLP8gK6MpRlRRAq/NBFOVOT6cJinpUDWZ7TarY4f+4KcRhx8dINlpbmMMYiwKM4oBGENJs1+v0hrVbDIs2NxvV9XKWsvE4LJuMEKSWeb+epTCU4c/oCN66v06zXMNJacghpuwtFYTe3RZEzHo1ptJscne0QxwG1WsjygRnSPKVWC9na7NvuhTbUg4BOr05ZaMIgmiZ+1lPI6ArXs5AKISEdZ9ZPLQ7xQ5tcOBj6gxFJYj38Op0uZWmm1dvpHAti+rkgTTMr4zOaoigQKKSAsiiQEpQUpDtrOLUawpTkgz5Ro4nxGyBsJ8bz1fRiJ1iY7SAkxE2f48cXeOgBuzn+xOpVfvg99/L5z36FdqtOHLhIJONxytraFltbfeLYGmuHoc/axgZh6HHi2BL/2S9/nu/6tvfgeS5G2S7Nn/7xn/C9x0/Yk94qc6YbQtvB2pts3fOwK/M9WxWBkXZ+o8gS9om80sot7bZIYpAYFMYpMaXEcX0rJwxc0FaKt+cXKAQYoabSTwtVCcIAqdQUJmPYs2yx+xtDkoyRQhKGARpLE0XuyZckL5y7wOFDi9Z8frrpdV0XbaYm4XesmkIInGn1em9GRfouRlcYYcmylTaARCrr89jrtlman+HRB07i+YrhYEAQ+dafTQvKUuOFHtpoqrKgLHKCKbRpMBjh+z5bm1sox8KwWq02pjKUVYVB0x/uEIYeZWF9EAyQTXI+9cVn+Fvf/m6eeu4cRw4dIHR9mq06RVHgeg5KKdCaShRTyasmmWQ4jku9WcPx7AZLSCs763TaGG2sFDqu0Wq1GfZHNFt14jhmfX2D8SQhyTIUmnq9SSVKvNDFlTEf/vWP8RPfeS9bW1sIaf+iuiwRouTorEN9Y4Kp7DE23i25fGmVqtCENZ8gDFDSwXMVritACvv313YtVEqRpBmVMUSxJQnrvaSlKEjyCqHsepJOxsx0Y/JsTKvdmR5TYs+t467k7g2vMWVBKR3cfELS75MQst2f0E9HNGtNHn/mFTxnxFwnwpXV1MamQkkHoxVVleMIhTa2SPX7N/rcf/Ag0sDNm5dZmG1QlRlnXpzw1JMXuP/e+3GcCKnmWLme8vC3/gDN3lGO3XuCe44t8S9//mc5cfgIvdlZ4jDkyNIh/t2v/AauqZiMr+I5Ob/56S3e+8C7UMpBSoXEyqcFEqMhKyp8LwLh4dXqBGFInpX4QYQwFVIKnnnySyzMHyevUsbJNmHg4CmHyBN4rkdlrJefUi4IH0c5KApcB3oHujRbAXHYJohqjMcTa09R5ShTkmUJjutSoTDCxRQGRziYCta3dyil4p63vYtWr8369hphGPEL/+8vcP/9DX7xl3+Hf/R9/xXr6zcwxvDSueeZa/uEriJPh/b8QSJcayOkjcFxIqpCsD3KUX6TNJcMhiPm5zq02j2CqIaUDhjB0088yc2VG5w8sUCnHaNkgaFCOB5o6yFZVRVCSJIkRcgSYRyMNtYD1BS2mycEVBVpOsYLJH4kUC5IpyKMWmxtbjEpJszOzNLt9piZmaXX67GwuMiLZ8+wevMWrhORJ0MrTdaaeqOFFwTTI/52Ee7bH/p2vvD8F7j3/pPT9es1krtpIvh6Ay9/1Ynb1xW2pbyvErnTVusbib/pyd1bQJW/YWG0ptL6NU+4vcfNNzhUaoxdbF4NStmbH7Ef242nmg7N7iVAe+bl+wnaFMJiN763Pe32wj6HvOvxvW6fULZ6byT863/9i/zG+x+9o0u51zncA57YKvHtf8Xrl095A7GpEFMJzO2v3Ovo2YR4WlGU9oK2vbrF1fV1glqAF7rcWF1DegojDbc2t1BKsNhrMRiMOX/xOvPdOa5eu4UXSJqtGlUhQTrMdOo8cnIRoTVGKMLY4Z2PniSrCsLYYWd7Hce3OvrFxQ7f9sgxdrY32dje4Dve8whh3SdNK5RbIysk/d0BtWbIYDQCJGXm0pqpUWmF0Q5VKTi0NM+Jk4fAEbTm7Gaq0hntTsSHvvvdSCW4sb3LbpJQomk2m6yvbWGoKIqErWTATjLiwOw8pRZIF97x8AkqFDg5JROkEgyHQ4TywDh2Rk/50xm1AmkktSggLxLWB7u4gcOpew8xHg6pspJ8UgAOvbkZkA5RVOP3/+zLNkFTwkpkpOIrL1xgMO6TZylCa/JMU5WGwe4GD9x7gAfedoT+oI+Sws6pCIXUkCcFwkg8J6Dd6jAZZ7TbTbY2d0iLHBW6NJsttJG0GhFKVCwcnGXh4CzPPXeByXiMNvDyy9ehgiQbM8pHOG7ExZfXoLKbXydwQGm2t7dQEm6ubfOpp1+iNzdLs90Ck2PKEYPRCCVg5doqZV6AkCTZmFq3Do7BcyV+XMdxBDrPAcHllS1QDmGzia8M6WiA8HzcqEWVa4TR7GxvsbO1C0YhHZfhqI+R2m50hSEZjfiJzz/NL/3DDxLVIh571yk+/skv8gd/9BXSNKOqMmr1EM8PefqZl0gmGa4X8Mzz13jiuSv4cRslHQ4cP4iIJboqCb2AJK+Q2iC1QWiDLCXC7JlDaxCVvaFtV8UV1s+LCllJRCVw3Ig//tQXKUuNMFAVe93KvfQOqrHBCI0RoPwQgwLh2O8R0vqUIa0XMgDV9OdMC0iVxJ7YGlNVmEqDEPh+hBd4aFPhSZ9Sa4wWGG039I8+ci+u61MZqDCUWnP23CW7/pQCrR0QkqLQVKWgNAUojda5lZBlGmkEw93hFC5QICkps8LOMnke7XaDJJmgpUZ5DuL/Y++9gy1Jz/O+3xc698k3h8m7MzsbgN3F7hKRAF0MIEiRFAUwQQxl2WWXXS5allVly6VSlWnaomiSsktSKdi0SUGMEgMIEgSJHDbn3dmduJPnxpPP6dztP75z78wCA2ABSCja3m/q1oQ7J97uPt/7vs/ze7BxrQBJhRYlQoCWEktbOK7HaJJT5im2LZiOh1hSkAxjLMshihMqKbB9B6E0rbaZEglZ4XgK33cJQ8Vf+55HUKLiu9/1AM1Wk0ajRpma/LcsMUAJ3AqtTA6cthVBwycrcrI4YePqJlpqpsMpaZoyGUfkucCyfQajMXlZ8NLp13jupbMMhhPmF+Z521vvo7s7ol6vURKZKU5ckmUJtmUKrrn5ebR22drYQVs2Qljcf+wYVwaJIdba8PyFsyyv11lYNd6tLE0QoiIvKiaTnBvXe8gSpC2ZTmLKtKQW1qjVQ4SdUZAZeVpRUKQ5vZ0uIs+gyHFdmxQYJDlJNDHH7azYlNUtDcEv+9r/eJl9FcpFkhDlNqkd0B1cg0Jy4o51LEcQNDVxUee5cxMmSUyaJObYz3OUpUjzjEJkVLKkSEumkzHv/c5j9Kdjjh1/D0n/OrKIeOjBJd7zrlU8NzeScjGmN32VP/yjP+XBB+/i6OGD/Ovf+n3++3/0C3zfBz/I5s4urdY848mYIyePsHhsmWsbY4qqTStwDXBDWORFSV5VmCz3EikLglpIb9ijlAX5dETSH+K7ijydMhgMiaOER975dkaTHYoixXNdluYXiEfbVBLyqkArFypJWeZomRCnU3LlgKXwXNc0OptLSMvHsi1ajQW0pymKAkvb5HmJVgJRxPQnm/RHKS+9copDJ47zjve8j3arRjKJIBVI4fDIww/xox/6O7y9+U6yomRleR3PtZlrueRJyjSZ4oRNKmEjtaLMFXEKJS7b/Ygbu0OUP48XzrG6ts78/AKjcYrMHXQliOMJTz/+FEpJwlpFI3ShKMiLkqIEJayZFNPCsR0EBZIMLSwEOY6jCdwQhUQLo0IQUuI54azYk0ihmUY5UZ5RWjn1eot6q02rM4cXhly+foW8zGm4xkrhuArPtZhGU6bDPtF4RHmLSurW9fv/9o+QQiHF7SMLFAJVGpXV/nbrFmDKG13VLb/e8G1m+9uvLCBNzquQJWWVU5TZG77P/y+uNyd33+b1rU7ubu0G3/4/fB0t89foZOxJMG8nqbydf+7f92j91iISzHTv1371H/MjB5e/+m1u54WTt8pQb/2/b2yC95XPa++GhiolEWzc2CHLK2zLod6oY2kTc+A4Dr7n8OLp1zh512HCwGN5rs25166xutRhY6dHq1EjjlKyIieOEwLfww89hqMJrVYIVWUkYAgjYxQC2zL5bZalcByLdqtOWRoJ0Z6szNKKMPCoioLAt5FSYNuKJI2IkwSqil5vbCRHVYESpggPwxrKMlS2KIpxbIsTR1dZmm/SGwyxLUVYDxBCkKYZdx5Y5p47D5HnBXGS0mw2iKMEbWu0quh2h9TCGvVGDST0+0Nc1yFJUrSliaKYj33mcY6sLVFVcOjAGkopkjgm8D2kUkYeZVmUVcZkmPJvPvoo9x87wNJik88/9SJNz8N1XOY6bVzPxXVsnnz+NFpIAt/D0haWbYPUOK6FpQyZs8gyyqJkNBoT1DzyPKfXH/D8qfOsLrSo1wNEVe5L65Qy9Nlub2QkXxU4WmA5Csd2+OKzr3Ls0AK2rU0URGniBSbRBMsyz6ssKprNBsPBmP5wxPFDK3iei5SCosjwfBek8d55rsNgOEIrQb87xrZslKhIphHK0rNmgylc5hbblHnKeBjjeQEXL20w115AWAFZnmNphec4BL5PFCcMR2PiKDKbWamoqpKPvPIav/hffQ9lWVIUBf3BgENrCwiZc3BtjWiSk8TG2/e2t53AshT9wZB77j7M/Fyd/+xffZ7f/chv0u1u4/sB2rJJ4oSXP/4xvvOOOymLgrLKQMYIpakoKQrj4zJ5ghZCmOndzlZ3Fl+h2QusPnb4gAk2lqYZZPw0Zr4y6A159PFn6Xa7rK4t3uzUCnMNoCypigpZmuvVHr23yHKqErRlvG15npNnBq4DkEQ5/e4Qx7HRSjGZjKEyRZSRj6rZBsZcL5WWPPH0C0RJzOrBRZBmkl5VKWWREE+nTCcpruPOshXFfmyDlBIlFZPxFCHMMaq0Ip9JUPOsIB6mWEqBzOkOulQotO2SJgllWbK1uY3WFr7vo20bkDi2jbYtvMBFScX585dm13BMDtl4QlivEU9jHM+lzAscz6PfH1JrNPBrPpajCeo+n/rCY2zubHBwfZ2qFMbXo+39azSVYPPGFkkSs7i8iNKS6XRClmUM+l2oKnzXZjodIaXgyIE1Ll+9zmPPvcTb7r8HpS0W5xcoipSiNE3CIisRQDzscc/dyyip0VIR+j5lhfGeCviNT7/K/a0aWivuOLKG1iYuw9I2VAZ8I4SgLEBJRRJnKG2C55MsxfNdKkooJaKSaK1n8mBBWAsoSiNbLYqKqhDE04zOwpzxHCFM0+DLZSmv+3x6/apKiRAFoR1w+ep1SpHzlpP3kVcpWklWO026O1sEjsKubLKsJAxckxGpBRvXTTyHQFDKio9ujVgMYHntGJvb29x/ok5R5eQCgpqPqHKqKmc0iTly9A7uffv93H3fUYLaAp5XpxEuEkUZmze2eezRJ9i4scWF85eotxusLTcIA82ffPEC7zzxNqrKAHaqysQgGAmuRFkBSW6omqPRlGga0Ww3EQgm4zFznXlA0B/sMpmkvHbhNUaDG6wfOIhjabTSXL/2GmFo5OdJInnsiWeYm1vG1RaiAqkctBeiLU2ap5RZRZaPqLmOiR6h3H/DdWXjeD6b21s47hpffPQx7j55kosXL3Do8GE+8gf/F+99/yO8/PIrnFw/ies4xJMho8EmjcBBS2av0ebK1StM45wr17boDyJK6ZPkivVDJ6g36gxGA4o8o6xKBsMeQS0kr3LiOOa182ep1eHg4XVqlp55phVVVVCUmXmMWbZimmY4tktR5pSFmaYbRZQiLxOUUqSpoQUXe9TOTHDh7DnOX+pz5OBJsiJlcWGZza1tlNT4Xggl7O5u8+BDD+EHLvFoG6kVRZbTnlsibLZmbey9q5lZn3720/zYj/31r74nunUutO89/cZ3V/Kr7NW+5roNjO91z03c3P9+dZTe119vTu7eXN/Wtde1+EbjDt7IElK+4WJtL+fuq00Qv9VVFCU/8aGf4jfe88A3fuNbtZ63/Nu3psAWUN6836deOc9r13ep1UIefeoU9XqAlpI0TrC06bRF05jHn38VoSUH1xexHJuTx4/Q64+oN2qG5pWXdHvGxO15DmVZMh5PybKMF155jXqzQeD72JaF77szGIXZVG1s7jIZT6EE13eAkt7ugOFwzGg4ZjqdUJYpjmfTaIS4rs1r1zawLAutYHe3S5pkRFE6+9lDWPcZT8f0+n2kkjQbIYPhmKtXN4inMbalCesB2lJE05hOqzGDVBiYThKnpGnO5csb5gNoFsaKEERRDIDnudy5toxlOzPvjblQW0ozmcaUM8pgVRScOX+JZ54/y5wX0O2PqKqS977tXs5dvAZlxXg04Tf+8NMkacbxw+u4jk2eF2jbAqGQWqO0YhrFlEUOZUFZlrQ7jdl7aaTDb7sTvVrHAAAgAElEQVT3TrRWFFlKEif0ugOKLKe3O0BIRbvdpLvTnxXDHtJok/jA+95GVpj3cNAfIyVYjiL0Q4IwQEoDuJiMjbfx2LF1Op0Gw4F5LWVRkhcljmvT6w9Q2kwlh+MJy4smUFpipFnG22Qy8rIsRWtpJg1KUmQJvdEQ7TrklLies9+VEFIS1gJa7QYryws4jskt/LXnznLi7QdMNpw20I/l5UXm5+f4jkfu5vyFq3z+S6e4eHmbJ549TZ5n5GVGsxniuBa/8qcv8i//ya8QxzG25ZlJqKXZ2t7gP3nkYbY3upSFIIoS46GbhXFrLSmKEtf1zcS8ND+Dx599kT/8888YaZw0smvLstiDXJRVSTnb8CglqTfqPHjf3dxx5NCscDOF774cU0qKPKfICrY3d2YgGonSBlpQFKagrcqKLz75jCmopOTM6Qt84gtPkaWZgdZoje3YbG1sz36eBXvgKCEEaZzx9ocf4N3vfBghLagkVVGhEDjaoV6rMbcwvx8JASCVuc7atgk/DwIfx3aIoxgwm+gsyfADj92tHp7rkeUpWgvyogSpsWyLNE7Ispzf/dhfIIA8M/EGvd6Q0XhKiZHFHTl8wMjGXQfL0gRBQJGZzWV3u8tkOqU3GLOytoYzizaIo4iqqnjfOx/ikQfeQjSJZ9oIQ2jN0oxq5qFdWlnE8z3yImfQG1Kvh9RDn9WVRWxLsbOzS1HkWFqSZSkHlxb52Q/+IOPhmCzLuX59g8FghOO4SGEC6C1L89OPvIuf/cd/Ya7fZUWaZlQVjIYjur0ez0wnOI6R8Rn1iCKJTIZlFBkybJ7lTKcxjuNw48YOAmi1avSHI7IshbKkzCrKoqSqBFlWoCyF6zq4rplQ2pZFrzviC8+dpSj2Plpmxd03IJSRYuYN0hbNehNLSk6fOc90EvH0C6dxbM1bjx/FUZJr2xu0WnUDpRCCIi9YXujMpIEaSsG737rCyXtOYLs2rU6H7jiiVB5pIRhNYkoMzr5RbyAQPPPUS1y/vE2vO6Ld6ODYmjTJec973odWNs898zzvf/8HOHzH3bzlgQd58qmnzfOVkgoD1RJVRVXO6K+Yhl9ZQFkJ6rUG2zvbCAFJmjDXmUcpTa/bY3l1jTCss7W1y87uDlme4DouUTRhfm4FqMjznNFkSpZVPPqlx0nThDiNEFQkWcJgNMTzfRzXoRb4dHu7lFVBUWSza7k5N9MiRijFoB/zPd/z15hMxjSaDYoiZ4tt3vWud/B//t+/RVaUs2aFYmFuAUtKptEEpW2kcmm115lMUhbWjnPHybexuHyIeqvDzqDLaxfP0W61cTyXMAhot9o88dTjjMdTXnj2Ge46cZI0GSIlJGlMlsUIwHN8pBT7x6sUBpBVlhVa6n1wS4lpLFQVpElGhSQrSiztYCsXqSSO7XBw7SCnz76K7zucPXMGx3J49dQptje3GI8mbG9v4Xgug0GXLI2pqgLH83Ech+k0uu1x+vd/+u/z2oXLb/zA/mZXJW5+vbn+va43J3ff5vWNTO7M1vP166bs8falyu06Gq8jbM4KuKos9uWXtwZO3iqrvFVgsud9uZl5d+v3DN7c4Imr1035vhbcZS8yYf953vKaPvTBn+Q3v4yM+bqXtdedv83b8NVAM7ObvYH1en7mnm1IAVQljz3xEmvzHdphgOe4nLu6Qc11GE0m5Glq5DdlweUbWzi2Ta8/xtGG6AiCv3j0eaqy4PDBFSbjCNvSWLbNZBoZ4mZZMp0mHDq0yjSKyKMcx3EYjYdoLVFac+X6DuevbbLYbOK6NmWV4fk2jmMAIJ7vMhiNcT2L8cigord3+lzZ3mE4nrC60CIMfCaTFD8MKasSrS2yNCMMXTzPoSoqkiSj3qjjWva+X6qSgqooubqxwyvnr1CmOY5jwDKUBbUgxLJcpGWmXtYsYLosTTEjpSCNcxNMHJg8sjwzuHKlDLZaaUkcTVleXObQwTkOH2zz2KmXObq6iOM6dJp14iglzzKOrs3T6NRNBhSloeG1m1RCUqQplpa4vj0rAASWbTGZTBGYKYbrWgih2dnpEYY+2jIb5153QLvVIC8r0iTj1PmLHFxdxPVs4igmjc2k9sbuNouLC2g0WRYRhi5FbvLairIkyzPCWkiRF1Syoj8Y0WnVGQ3GBPUAbduG6DejzYaBj2VpNje7OJ6DZSmqqsJyPCbTCa5tjpeiLJBVQSZSdq5fxVLgN5tYjpr5+BRlXvHxzzzFeDxmeXkOQYmUil96+hW+67vu4C0HF02+FxVFUZBnGdevbe5PhweDHkcPr6K0RIoSJRWD4ZiF+Tl+4/Pn+bEf/WGk1vhuYAA2pNiW4O/9i4/w/YePzZoSJofKwEs0SZKaom12jpVVQVkUHDtykJN3HEEq9o3xeW5ANXmezwh62Wx6YK47gWczjaa4nkue5GYimRSUeUFVljiOSxTHhLXAYPfjlHF/TJ5l2I5lsAVlxQunzrE838H3XdpzHU4cPYDr2hR5bgplhJnaKcmli1eoN0IzSaRCa4OqL8scgSKLM65dvETgOpSVQCkXqUwVUJYFQoAUkulkguWY43JrY5taPURZiqoy01/LslFK7YNEpKkM8ByPP/r4p7jj0Brj0RjHsrn3xB24nk9JzsXXLvP4s6d46P570ZZk2Bvz1DMv8fTLZ3nLXceI4xitTYFfYULC8zyjPT9HUeZMJxMc2zJwk6zk6rXruK6F4/r89h9+gntPHjPXIakZjyK6Oz22tneYW+jMKK4p0+kE33e5sblJs9kimiQ0mw0zUbZtWu0GaRLT6/cJAo+XT58j8Dymk5haWOP69Q0sLXE8j19/6il+/B3HeO21y4RhwJNPneLU6YvccWyF4XjEg2Hb0BoHY3r9IZ5nSL2+75HEMWmWk8Qp0SRmcWGOaDLFsm3a7SaW1uRxTkU1mwybXFmpFVWxZ3OoUJbCti0WWyGuZ6MtdVPRsWfsvPWvX+WzRlBRyRJRarIkhmLM0fV13LDBdBLz+EtnSdOUZr3BwQN1KpEipSlYtHDIidFaopUmSSv+1YtX+cD3nKTeWaQSNlH/CpevdfnUZ57n+PF7KYsRVAVgQD2f/uyEz33uFH/ysc9x9uw57rv3EB/7s7/A0haXLl2g2Wjg+S4vvHSapSY06xWff+Y67z35MKW0kALIE4qyoNfbxnYDrly9zmg0YRyl1BoN1lbX95sm48mEMAgo8gLXttjZ3qEoIo4fO4StQUszvdGWoipzpFB4rmZ5ZZFjRw8jSLEsm7ysCBqL2E5AURVsXLuGJRNsyzbXhllxL5XxPI+TknFcME1LFpfnadbrOLbDS0+/yN/5hQ/zEz/98/zcuz+MxLyXoqrodbfJ0ohC2FRYvPTyKdrzB5hfWqfWamC7HlpbaFszN9+h3ehw6fJFOq3O/vXKsUM2N67Tv3GO0JOUSZ92owMUCC3IU0Gc5JQYBYkUgiSJ0ZZtzndtVFNKmTiONMsMZMwOeeLJp1lZP0CVFyRRiuVobN9nEo/oLLSI4iEH1u/AdWy0bbO0tMR41OfYHcfZ7W7Tabcok4nJpJM2blCj1mzfVGoZShDMmq3/8nf/D777u993273c647ub2Fy982srzeA2FMoGOX9Nz98eHNy9+b6D7ZK/t/1AzIddbXvxwNm3fGv/Ppa6x/+4v/K/3DX+lf8+576RUizLazKb20W91WX+Mr4BDkLeJcIHEtz+MAKKwsdWq0673rgJH7g8eiL57hwbYMw9FhdnOPI2iJvOXmMe+8+ynZ/hOM6nDpzife+7R7uu/soZVWS5TlnL99ga7vL3FyLS5c2eeXcNVrtpsGqezaXrmxy7eom7myT53guRw6tcv+dh5ibbzEYjkmShF63T16Y7BuhNI16je2dPo1GjTwvmZ9v8V2PvIXveOAkO90hRQnNVoMiz82lujId6qqE0XDCUy+cZjiMzMZCWXziC88STRLStEBIWOy0OHFwjQPrywRhQDyJyPMCKoHrGBlmWRkT+mQSmaLJ0ggpeen8JUBQFRWjwZjPPfocUkiuXd9iMjFY+2gak0xztC0YTLq86/7jBIFHbzCi1gyJk5jdwYBuv09ZlVi2wvMdFhZa9Hom76nX6xFNI7a3ugAoy2YwHBHWQpI0YxJFWLYFQnBpYxs5y0TStkWrEZiiSmvysuRt9xxnc3OXLC+oBQHd7giBoNNuMhyMOH3mMmVRkKQxZWUKk/F4TBB4+xv7oiiYn29RFgXNVg3LtmaFb0WW5Fi2ZbLRooyl1XmUrc2UyzNEVj9wDWI+SajKgmg6xfcCNje2CSwXzzU5bUopyqJka2OXg4vz3HPyGFCxu9unAp6fxjxwxxpFUZKkKadPXyCaRqRJxsJCB9t22O3t8Na3HMb1NHccOcDGxi5hGLC4MM+Hf+0T/Jd/62eQUpNmKcneRGUwxPU83rvQIWg4pPmENIu5eP4qQhj6p+e5CCry3EBhAKQ2CHRtG0jO7DTEmuHRLUvv/z1NUyMHBPIiw/Ps/aiO7Ru7/OknPkN3p4sAplGE7bkoKUlTs1F85oVXePXsBdReFp1U/MB3v5cw8FFao7RASGYbfkVZGqT3F59+BsvWHDi0aoBF3KTD5VmOlCBI8TyF71sk6RShKypRkBUJRZEhlbm2VBWG7EqJsiQra4sgYNAfUs081RUVRVni113CZkAQ1vHdgN3tbY6tL6KUojPXodGoE00jpuMJZWGiKx6+9y5EVZHFJrPxofvv5fihVS68dhmtNRvXt0CIfTnqaDQmiWPyNMNzHXa3d9m+vk0ySbi+tY3jGirtT/2NDxhf5CyncNgf0mq3OHhgDW1bSK2oNUJqtYDubpdmq8V4EhMnOWlWEgQ1U4BTIbVgeXkOz7N41yNvYXl5mRdPX2Djxhau7VCv18hmHnApK+Y6Dcqy4J3veIDv/e63k2UZ733LIUb9EVIoGo06KysLJh/RkoaaakmUlnzpxVf5k0efo98fUqQFN65vk6YZSZxx5vwViioz0STSeNqLGY1WWRqhBHEUI1SFH9r0dneRstqv4KpvaFNbGhGIEDQaNZIs5tFnnmYympIXcO/hw5y71uf5C9e5cr1LnopZU60izdLZxFiSFwV/sdXjf/5v3k5ZTQkbNteu3cDzW3TmD/LE0zf4xCceYzCIcRwfpQSuo3jf++7jgx98P9/x8EP85I9/mNBrMRjscuTwGkePHuYHfvD7WVxoc/niZX7vd34LJQokBmKDEAacVuRIoDNn7BJhrUEUTZmbW6Tb7zKNp0be7xjpeVkZGMlkNOXGjUtIkWNbiloQmpxNKQDT+DHRJymiSBgOd1FCopWD6wRkSUGem5/N0uIKQphMVdfxoTJQq7LIqYAzp06zuz3lwYceZGvzBmfPnCFLUn7v1B/QaLTI8hytLXr9LkmccGNzk3GUUm8usbJ+nFI6uIHJhB1NRly9eplLly5y/do1Qj+kv9tlPJ6wtXkDy3LY3t2l1+3iuJpzZ1/ggYceYn6uxl3H78NRGi8MkZaN0i6XXjuP49bMtRqBbTtoyyLJYtI0xbZtoxAoS1zHw7YU6Sw2x7Jtk80qJINeDyUV0dRM9teWj9Fs1imqgvGox8WLZ2m1W/S6Pc6fP8vzzz2O6/oUaUKSRIzHw/1GGXxlM+LipUvfwHH95vqrtt6c3H2b1zfquftmy5dbp3VgJEpaqZsnspSzzvnt8/JuG6PAnhzzVnW2eZZ7wJS9uASlLSbjicl4mt1eypsAlb0CT1Z7vgXz9c/+93/Og9uv8daVpZns6eZj7PdG9yQxfPnzmD332/zilt9fN5S83Zqhz/bVAhIykUEp+PyXXiBNSzqdBueuXaXTqUMF0+GUlXaLy9d2ObK+jGUbWZGyJEiYn2symYxZXVzh6WfO0p8MmQwmHDq0QqvtsbDYJJ5MQGhefm6TKJrg1gSO7TIej+h06qR5Qa1eYxJFOL5DrzugLEoc2yGsB5SUbGzsEHoBVJqykNTqTSoss5mSgvEowlIarW0cJ2A6jrFdSZmXxNMpWpkJhR96NGoBUZpQC+ogBTd2d02hoWzcIMDxFY5nppESl9Fosu9hkRI81zXIe6DITTSAmVwI7jy8DhWkcYZUkssbW7haG+nolRtsb/U4dGgd7VREk5Ra0KDVqjOOJjTmW6RZSr3mMRqPuePwISpZoaWiSnOKPMcPAhDgOy6TfkGURBRFhmN5nD17jaWlDo5j0e32UdJkn4Wujes5s6lhRJVXeK6Dmvkate1gz7xy3d4IJS3CeohlF4yHMReubFMPA4RUOK6FchSO4zEYTI1HyFJMhxFZUoAwAKHxyPjrxv2U/nCE6ziICrIkx/EsBr0+ru/w5POnWF1qg0rIxxEUFdr1mUYJuso4f/48ayvLOLUGZSUokgolNXEU02gExJMYWQrCps/f/MKz/PbffT+j4ZhBfwQlfOFLr/Lq6Uusr3Rot2tEkyllcZMqmaQZu/0RlqX5z3/9Mf7e3/557n/gPbzzO76LH/6B99OaC6kosIM5yiqgduolmn4TZbsIpWi26xR5gZSQpilaWQgUJUbjVpbgOi5UgkrsZVVBnhVE0wTX9aiyfL+5I6UycIKiQmkbUQqUNLmRSljMLXVMs8L2SeOYx596gThOmZ9vsba2yMrqPEVZICoT1m1ZkjhO6HeHhDXfBAzP5MEgkbrgyPo6ZWGul0VeIqQwr0VrtGU8MXlmioOgUcMOAoSSxOkUhSKaTqEq9iEEsiop84I8TimLCseycAKPCrHvuzPXWkWFoKgKJtOIWrNOq9XEdWyK0sQ8eKGZ2iltIYRibr5NFMdM4phed5eyqNja7XNwbZXNzS2KKqXZrBNFEePJFM/xcDwbS5vmXJbn1Fshft1jeWme8WiKbRufHaUpaKSU1Bs1ovGUJI6pRIHtOFSVaS65QUhRwM52l88+/TStMCAMfEbDIfW6x3gyZjKeYluaLEmwvICt7ha+b7G8Mj8r8i1+4r67eWrrNIcPHsAP6mRpShSNabZDQlfxn370Ob6v0+TJp18lcGzzGP0xw/4YbVs4nsPBlUX6vRGHVtcYj6e4lotjO7ieJqg52EGIZVnkeYlCQml8fVtbu3i+A8JkGEolkFWC7TqgtDmPqxkO9is+h263JDIHoQryqmI6GLHc9LEac3Q6LTY2Nnjw+GFcbXPmapc0G7DcrlPmBdiGkqkq04D75cs9vu/tHZq+g60dVu98H4UQtMOM733PIR55+E5eevFlysqlUTvIxz76Gf7oiYjm3CpH71xke2eLaLzIffcd5NXXzlNvtciylP5On6WlE5x68jd499sO8mePbvCOux5E2xohQRSmSaWEQIoKL2hTKZt6e57F+QUuX7rA0vwyKInUFlGSEk2n2MohS2Omwx1WFhZMfMleM81ySNMErTVFIQiDENvSCKXJSkmcZuSVTVXmuBYIErKZ57SSM1lmKXBtnzSbMolKLNdj7dABmvUWhcio1Wt0DvhMxwnfe/wDFGVBLTSTwEarCVJy9cYlfLdJUSmO3HGcIPTZunGdg8dO0G62zGQ6y5GWg5YViwsrKDSvnHqeLI2Z7G7SDKT5fLE0RZ4gREGFIE8ztJJsbFxirrNEURkaKkIgUSgBlnKYRD2ytCKoBWRlTJUbQvLi6iJlkSKkQloKIQX9/oAbGwOu3tihu9PnjjtPkqUZS8tz1Ooh40nKxWuvcOeB4/S2tsiyPk7gU5VQa3SoNzpGdktlpspij3QO77n3Pag5ZpRksycsCgNyup3nbh8+V91+T/ntWmJ/j8h+o/CbWW9O7t5cf+XXHr2o+CYpmm90VbMMGOMlM7KYL//+3tftCJoAn/rsZ3h4beU/6PP8mrqZ26yqAlUq8rjiyPIypy/uYCubE0cPUhQlnu/QbDUYTxNsW9EbjNjc2uXqtS16vQFVXlEUGf3RkDzPeOAtd3L3nYc5cmiV/mBIs9UgLwpKoDccc989qwgpaDVr2K7NwdVFlJK0O03iOKEsSsbDMe1mg5fOGVDCzk4f13HptJoMJ1MuXbrOn3/xaarCEAkd1yZOjGR0d3dAnmVcuXqdK9c3ybOMwXA0w7obiW00TbAsi5WVBZQykp633HmEwweWaXcar5M4Xt/Y5p//3icYjox/ZjAYG1nv7CK/uzugKIyXUGnjMVCWQimT5+P6Lt9x/wm++MIZ4jhlrlnj3PUtNjd3SOKMsxeuUlUVGxu7+J5HWUA1g2SsLM2R52ZqVJbGVzkcTwEYjyYIAc1OyGeeedlEeFQl8+0Gk8mE0WjC/Hyb8TiCqqJWC9nc2KXMS5Q0U8Y0y2eb9oyiLPjiky/yZ597kna7wdx8mziOGY3GNBoB/9F7HmRhoUOzVTcFS1GgpKReC6lmsrEsK7AdGz/0KCoDbSmqilfOX2JhvgVAmuREUUIFtFom4+/+u+/EsjRJlFEUGbajSJPY5Av2huR5SZrmjIZjtNYmkkFCa66J57v82Zee4xNfepYPf/55fvu//QAgCEKf1fUlxqMpQsDyYgutFN1ez0gnbc1wPOGVMxcRUvBLn7rEODfn7y/+yv/GT/7ch6GmwDLd/JIS8gRL5fyDp58EVSFkaeiUVb4P/nFcZ//ckkKxs9MzmXOVIWdKqfb9XFJKqrIiyzLyoiSKEna2umbzUFb7EKbhYESe5WxubDGZxrNGFnS3u2RpzoP33cczL55jd7tPkVVoZSOEYntzm9/56J8Txwme79HqNGeh4sm+AsH4suS+f7Isq5kMvdqHtJRliWVpPM/Q/Az3ZibvrgRCSeoNI+0SSiOUQikj1XZ8D8d1yIocMAqILDUF7mg4psgL0wiJUnzPxXUdwjA0xakQbG5sI2f+RCkErufQ2+3z0b/8LO12k9XlJcJ6yAsXLuMHLlmec2B9nSIv2djcpl6rkeYZ+Wz6Oh5PCMPAgIcGI4SUuLNswbIsALh6+RpZas6JWqPGwtIcfuDPgDNy38NrWRYHDqzyge98N4sL84xGE5I4Yac3JKg3mFtaBG0jLYciTXnkrfextDALM5eSqjIRGee2YuM9SlO0rWm32+R5juu4VFWF67mMopitbp+t7V38wKfdaeI6DhLBUy+e5sbugDRJ+Myzp7mxvYsQgrwwt63KgmImHX/m5bNcvb5FXpYEoUccxft5XVIpdnvmHOOWTeQb/+yZydoReIGHbVnsdrs88dJprl3fZL7dxHMdXrxwlShJOXrgAHmewUy2rbWe+VQN2TrJYja2drh06TL/9J/+E2p1n93eJmWZ0et1OX7iGJ12g+2dG1Tk2HmNP/jtP8OxNd/9/Q8hw0uEtTqdTofV1VV+53d+l4/+yZ/wx3/4+/zMz3yYvMhwLAstlfHVZQVKWWhlMRj0ARPjceTQHVhao5VieWmVSTRh0O+htca2Ler1Bs+/+CSvnHrWqCayCY5jmaaZNhM3JRV5YTyuSRLPmoQSy3bo9Xt4vouyzDkopcmxE1LMJOsOQgnSPEbKks5ci8XlebIiIi2mNGpN/seP/C/8jR99P7/4K/+MvMio12qEtTqu62HbLu32HAfWj1GUJY7rMplOKMqcw0eOmesQUFYVO91d1OzxozimKFLCwGU0vEYy7XL4yJ1IJUiz1MifpZGMGtWK4OQ99yOlwPU8tFb0+jtARZbnTKdTPK+GFAY4JYV5j9QMjqWVosjNe6S1Ta3WZGFplbvvuoe777mHoiwYDHpkWU5VgWXZnDxxP9rS2K7GclzyLJ3laSZfU0opleR/+oVf/gYP8DfXX5X15uTu27y+5RDzN7pu8a/tBZ4buY/4sv/zzXZZbjMxm91PWRr/luny3Lzv12fezeZwt9zNfp7dV3k6b9w197X/z9clfYqbv4nZhK+aFkwGU8IgZKHpEYYetmuhpCJLcobDEdc2d7nv7qNcvbHDp146w5HFOeJpQjMM0C4EvoulXKSQXL1xg2BGSbQszWQS0e+NOHJknaJM8QILKQWObYJOsyzHnnnXTGaUZzKckPSGI9qNGrZtoRybWi2k3apz/OASVWkQ33mWYSnFeJzw6SdPcfeJdVzH4drODo2GSxD6pIkJUJVSIaVCSYsiL/ijTz/GdBpxaG15Nn01H6q2bTMdT2k3G5xYXzY+JG26+ZPx2ATJYiJZPdeeRV8YuRkCk9UoIE4ToOLgUoe5+SbNZo177jyI73sUWYWooN1pEUcxtm2jlcN4OIXCZL9NopgwCMhzI2tMktTgsdMcpSviOOHo6hIXrl5ndbmNH/iMxiPKqqReD7GUySTa3u7xyade4u6jB7C0xWAw4ur1LZqNutk4S0mrFrDQqIOoSOOMsOYS1CyK3EyElRbs7HYNHCOJZ++nmRr7vovjumbypCWj8ZiwFqKUhRIVzXrI1uYu41FMZ64zM/YrtKX3iwmBJE3HFGRo10MrxWBnB02J4znMr66TxBnSMYWzVBKlFRtbu7z/vY/wh1c3+eGHj1EBWkt6vR0+/pfPcf89hzh2ZIWqLAgDD8ex2Nnt7ndt/+HvfJofPFrxq5/d4t/9dz/Ij7zjGB9691383Pc8yAvPfJZDb30nVZkyGWxSJgNGTz7DvaurCCSiLDnzylnac20QEnlLZ6XIC7I4w/UcQ4NTwgT1Kk1VCaTSXL1yjVotBKVxbJdPfu5xDiwtce7MBT7+2Sc4tLRIFMVYjpksPfHsqxw/doAoinnymZe5sb1Nu1Hn4OoCc/MdXj17nka9hm07uJ5HlWesry+bPDatZlEJpkgxGVQw2J1gaYvhaGxyEZs1hDBAlLKsYBY6XxXccg7p2TFhU1aGxySQM1KpBKGphAQpqSSkWUaelzMyqNo/76eDKePBiCDwTJByYeSgvV6PMPBxPMdMGbXkzCvnWFyYZzKaEjgOge0gZ/CYg8vz1GohSRThOiHPPHuKe+8+ge3YDAYDBsMx7U6L4WC0HxRvPECGTOq4tvHElgUXLlxlOlfxG3kAACAASURBVJlSCwPj6xsMcRx3v3NflaUpSkuxX6Dbtk2tXqfRbOD4LlIokiRHSkWvZ+JKwsBDOw5VBUVZsb29gesE/NLnniWc7NDrd1lbWZoRBlOk1PzuF87yI2tLHD26RrvdMD5GjEx2d6vP7u6Au44c4MShFdI0plZ3WFmeR9vWfi6f0mIGLSlJo4zrWz0Ori3Mmkbl/vuutYUtHaTUSKVmR/HrPdpf61OolHr2PRPNMtjeZNzv89BDD9Ge6xDHCUpJzly6wR2HmvhORWAbObOyNaIyZM+sKvl4b8qPvf8IrtVEiIDDdz6MkmMsOSEdb5LlEdoCy1XYlmXC17nBB//6D/HHH32Md73r+wj9Jba3rrC4sszGjRv8yA/+EI9+/gtMe5c5tBJhiSHL8fdRb3tUpQEaydnkRmibGxtXKFVAVkCz1eHsudPMLyxh2xZ+LUBrI6uOJmNGwyErix1qoUur7qO1kY+ncXTTtiUlZZWbCaFQVEITp5JWZ4UoK0z+nYQijRF5QikqJJo0SXFdx+SOVjZRInj+6ecJwxWUcIGSTz7/WX72wz/G5c9d4/Dhw7iOzXa3RxRHeH5It9ul1epQ7QFrMJ64G9vXcb2Q8WRKu9UhSRJsx2Y6StnZ3uKVl79IHve59+6TzLXqlIVplmVpzjiKkdrG0jO6KAaIBZCkpgnp2LYpZJXGtjzyIuHl559naWXdfFZWFVmWoKVAYCTbaRIj0Fy+dIErVzdozy9x5MhRzp8/b4LYq4IwrHHhtUv4boilKzzfhiohS3LSJKHeWqDZWZipuMzxWolbVVrw0c9/dJ+auZddLIS47eTuy/dYfxXW/58nd28Wd9/mVRXFP9g/kd7gbfbAKl9RnH2NdWsBU+3dx60Uya8XmXC7536LnnFPfilnRua9wPK9YHPzwSv3C7m9LLyqqphOp4agyM3i7kMf+il+8z1vNV3J27+ifQDDG3j1X+d1vF5SelNqundz8+e9C0NVlJw9fcHg4sucznwdIQuUsikL08l+/pXzXNnu0Qgcjh5Z555DK/iuy9Jih/5ghOfbTKcxL798hSeeP8db7znEtc0ddvoD5uea+L7p4gL4oQkOjqfpDIJjaImj8YTxeEqzUWc8nLC51aPRMNj7wWjMYDihXg8oy4qtzV36gyG1mkuSxJRlZb5fq7E816QSBfVGnfl2E20LLMvCtmyDmk5ztLLMpjCvWJtvsTTfNp1TrZBKkBXFjCNgEPGWZbG93aVWD+l1+2hLc/nqBnNzrf3NqrY0u93+/nRBa82zL57lwNoStmsbwIrvmQiEoiTPC/7kk0/z8AMnkEoyGo6p1UIqJH/8ycc5uNii0aihtGQyjvB9lyzPDOEOQyzUljnuPN+nEYbE2RTXcfE9B9s2Gw/TITUyl+OHVun3RjSadSxLUws9JpMIz/fM605SGo06nm/jOi7d3QFFkeA4rgFrVDlhzaPfneB5tvHuVOVMgjmlzM3GdzwZm0lpJSjzislkimtp4jhjeXWRsqoIAsfkW2mFmp1XSkA8HSG0QtkuttbkkynXNq5y+OBBhBvA7Hg2tzWeipW5Fn/ryZf41//19/LKqxe4ePE6y8vz+IHLUqfJ0uI8ge9y4eIV5ubqMwiJT71e49z1LpM04/0PH+An3r3OJ1/e4sSBBcAAltYXWvz43/5lfvSHfoCySPADl8tfepYjnUW0sunvDHji6ZdYXV3ED3xDjayK2akm8XzPbKClNBO8GYHR+N0K2u3mDG9vMR1PGfaGuJbF+uoKvW6f+XaTxaV5hICgFnDn0cMIVeL5HofW11hdWcCvOQShCxJqNR8/dCkKA0CZn28TRRGWNhLNSpRoy4TWS62IooS//OyTKFmxtraM69kzhPfett549IrchBGnaTbzD92UiCPZ96mZ65OcFQ03r3fa0pR5iaVNMV8UBcPBEInk333y89x7/DCWZTEeTyiLkstXrxF4Hq9dvEqjXkMqQafeNLEIYYAWgsl4AgIazQa1eghAlqSkScbTL54hzxLqYUCzVcdxDL3WcVzU7DkIxOxY9FHSFELRNGJ5aQHfN00hoYTJBMxnmadUxFGE1gpLKcqiIE3NZDDNzHuTTMfE0whLKZJphO86TKbR/nuoLRMJQVVQFoKd7jYP3LtMGDq0W02S1BAxbcfhhx8+xEc/9yKtosJ1HEMgVGDZmloQEIYBm9u7M79rk06ngTfzYVq2ZaA9ojLxGFrTbNZZnGuhtJhRXR3jNcvNdKnIC6bT2ESY7On7b7fBvd1nj5AmOmH28w5txc72Dq25RdJS0GiElHlJuxZw/vpFVufqiCJDCUkpTBOhLCUfu7LJ8bevcXBRIoXHlWtb/Ns/+hx3332YMACSAa7nURYJQgoGgyG1WhPpeEjV5oc++B+TlwVXLl8hTsa02i36gwHPPP00oR8w3jrH+krO+kqDX/3YY7z9zgeQlkbOwEFlVRAlCY3mHO25dQbDEa7n0+/3KIuSWj00flfbYTIesbO1xaULrzEZbHDowCFsBXE8NVMppfaPGyX1rClojBh5Aa3OGjc2t2g0OmRZzu72NQLfRaocpR3OnzlDvdYBWSFKQakStKNZWFnC9lyCmsPW5haZM+Ff/Pq/4cMf+LCRPecFc/ML2LZpJoRBaKT9QFUWdLu7tNodgjCkrGDQNz7u0bDPwtwcj37+UfzAZtS7zoEDxwg8C0uBtgx9uCzh/LlTzC+uIGU5O0xM/A1i75phvNhSK7S0SNMUZQn8oInre1QYgmtVllhKGrKmVFiWIV1OpxHtxYMIaaZ7QdAgiRP6g13SNKNWa/Pcc09zYG2VokxIJn1zTPt1FhZXCRttqj376L5/9CZz4L1vfS+vXD/FocMHZtfrvRb7VxZ35Ux1UWI8ll9eWL3OKvRtkm9WFchv8jHeLO7eXN/QKm+Z3L3R4m6/EPwWTgbBlxc138x6fVFkJgk3y1Qjybn5/LRW+94Z89imiAh8/yZRc3aX5/70T3n7ysJtHkfc5k9fb31j79FeR2r/lcmbUzuJ4PrlDZZXFqi36/i1gCSOmE4ibNudZc0pFueaNAIHVRq52AunX+PooRUmUUySpUSTjJfPXabuBtx75wGubN5gfXmBw8fWKcqK6ThCColAISwT0H3+9CZPvnSGQwcW8AOPqqxo1EKY5dvVax7IEs81m9JWPcC2NEmUUKuF1Oo+4ygi9GzyrMT3PLSlcH2bIAyoKtOZT5KYNC3Qs41pkVfEccZoMDUoflXheWZqsLvTw3b3utZmwpenOePRhGa7huu6nLtwlZWlOZQEx3Z4+dULLMy1iKIYP/CQQjAYTkijlAOrywhpJG+WDVlupocIyLKcxWadP/jMY9x1ZIWKEtuxqYB24FKrB8Z8rm3jQdOK8XSKG3icOXWJzz5xipN3rLG12+XcmU2qrGJxpU6RGYLlnq9JSom2JEWZ4zo2zWaNre1dQy9U5r1VSpLNGhZZFhPHEWVR8YkvPMdCu0mjWWNrq0ucxvi+g5KmWE3ThLAWmIlOpehu9knjFCEqfN8lnWZ4no/nu0wGYzzPQVgCy7OoSgPHGfSHRr5kafIsQqKp1TsUlYAyZ7S9Sy30KASEnXkTPovap8BRlfzcoy/wmz//XViWzbVrmzz17GXuv+8Oiqqk5geMR2MD+6AkCFym02g2Scr5ux95hn/0N+9iNIlpt+oMx7t89ImLPHjiAEIIPvf5J/gvfuRd7Mg1OktLDMYRv/SR3+WDJ0+iLQvLtlhZnKPeqqGknvnWKkOYpDAgFf3/sPfmQZZd933f5yx3f/t7vU9PT8+GHSBBghAXcZNik5aVkijKkuVUqRzFSiynyo7jiiuyUlFciZ2Sy04sObFTipOKykpsF2WLFimaJEgCJEgQ+zIYDGYBZu2Znt7ffveTP87tngEIiIuLKivBQb2axuvXb+m+957f8v19vg4YwaOPPcnm1hYL8zMWDFSBK2xHz0o7F+bnqTcbTKZTjizNEUQ+F69cRmuF61vfLKkNjmOPT8e3ZEMrBb5lJaJ01VlzZNWxs0WoQb+P5/ukacbG+gatVoMTq4dodxsYYWE7UmrbwT4IhgRlYcmetkO934oQlvApJXmaoZTiC1/6OisLiyhVkmYpRWEpgRhBUeSWzqjse/cDnzhOefjBe3E8B6EFfugDII3C83yeP3WOE8dWGY8n7O7ukhuDcBRB4ONISZql5GVBEPoUeUEQ+CRZzL13HaXdrOF6Lo62IJ/pNEY7VYBdGra3dvjC157gnpPHSbMMIe11PUun1BtR1VkQlCU8/dQplg/Ns7e3izEl08kUJQxplhBEPgiD63v0h0OSOGFz28p/jQHP9/FDKwtP04zJeISSJY6O8AKHujbc+/AROu0OhpLRcMQXHnmSfn/AkcNL/IOvnuHHui2uXNrgK986xfJcw4JADCAFjUZEmqco1yCRTMcJ5y5coVWrE49jBv0R9VrNAqGkNWdXBzPiFmokhUIqze5gj6s3brI437Nx7f6G8b3sQqZEUIIQlEbgakV/OOLqjQ0yo0jilMB3GY2m7AyGzLZCQiXwAo/CZBRJydr6LjUBW7MNTh5uUBZjdvb6fPQjP01Z5HaWLR2glEucTFHKodWcYTIe81/96ue5up7w45/6CNc3XuGJx77IXXe/myeffob777+PQ4uHOHfmLD33JiuHQZKwmP5Zai0PURqyLK26twalI/qDEf1JjnZ8hoM+q6tHqdUbGAFparuyZ155mcD1KZgSqpRup0Xganw/IM+TKrFQxPEULwgpq6KU1B5GaJRTI6g1mY53cB37c1JJ0jSmKDLWLl0nSVKaXQvrEcZlb7fPtUtXmYwC6rUO/9tX/wmf/qk/xQfm/xT1esjm1haO43Lx9ddpNVpcvnyBQX+XRi0gKXLSNKmKFRovqKEqD9unnvw68XiPm2uvs7ezxqFDLQ6vLPPisy+wunoYrWWl1rXxzaFDh8myMb7rV/Pm1teyLHOgROEyjSe4vsdoNCVJEqSWZKlha/sGnhcyHFs/UOudWVJIRVYUpGnO3u4O7d5hMIK5uUUr9VQuvhswGA4YDSd4keDC2Ve5eukCc3MzSAmT8ZR2bx4/ahxIqG3nTn5HneI3fvvvf4fn3VvO3AkOCLzwFl2zt4g/f/gdPvFOcvfO+uNZ/19J7vY7dW9Wed6e3CmlD/ynrNRB2UCmqoIaYw3BP/2zf56/9/77/4h3/uavvtv6/pO727821YWuyEuKLCeexPhRRGGwHmpCQVGiHY/pZIrjKG6sbxJFAWVWMj8/gxIwncbkZUFYD7l2dYtJnPLQu+7hs19+mofedYSykuwVecl4MiXwfDzPRzg2EW74dRqBQ6tbR0pBlmbs9UcUhYWTOI79fbqewtEaKQTD0YSL127QbtaIGhFSK7JpjDGSMLQzMePJ2FovDKdWbqitcXSZl+ztDWk0G3zliRc4srSAALxAHUgsw9BHSjt7IqUlMha5Je65npWpNms1siyl2aqR5SWPPXuau48t4wceRVFQloYwDBgNxvT3xoRhaM2dZWn9fEpDlhWMRxNmZme47+QySEMQeBSFnVNzXev7Z+dmSgLXRUhJUAsxpaHbbNKthWhX0WrWUIXm+vouQU3QbDaZxvGBZ5qd3TAURYmucOgSQVGWJElKo1kjjRP6gxFh4FlDYSUI/YhmGLAw1yUrcnzXeg16gYcSLoPBwHrsVRYX8SRBo/jCN1/knhNLTCcxW5t9mvU6BSXJNLYdCS3RjiYex3iuS1QP0VpZKVoypkzB9SOMkLgOXL98jVYzotFqIrzIyhmRUBrGwzFnrl3nl37xvWRJjB+GpNOUH/vYwxRFgeNKzr36Oq9dusHZcxdpNiKUgqgWYkzJf/nPnuF//vklHK2p1esUZc7yXIN/8IfX+PSHToIQLM30CIKIf/SvHueDH/kQpTH8/u//Gz5910mEVpTGENYsXKcsrB2GUIKySta0VtX1TXJocYHFxRk7t4algkplu68W+KMRUvO1r3+bb77wCu+99yRe6NNqNaxht1IWSFMkKK2qyngORlpMeglKOfb+Yj+JEiCq6xnghR6mKBgNx8zOz9hkUQqm8YQwCiiNTehsgFbN1gnbmcuzFKUVpakSUmNliRU3ASUVvtKUuSGIKuiSUlAdc+PRGD/wD65JxtgZRSEl2lMHAZLUmt3NPZTSPPn8WXa2d1g5vESn08QNPKSjyJKUrc0t5mZmcFzN5SvX6PcHzM302Ovv0mw1Dubkisr/0croFOOxnY+t12vceWwVg0E7iq1NK9X1fI0QskqSrRH9fK+H0gLH1barZcD3HcbjMUVR4IcBylHkWUYQ1QiikM8/9iSB5zE3P0eaWVm1AMIoQCnB2tUtsiJlqdfh9NYFZns9Ll26TBgE9DoNAs+j02nx+89c5GePLjPb63Go18R1JUoJxnGKkgrtWssT6Rh2t4bEk5SnT7/OkfkZC4apR0gpDpQJ2EMCYX05eOaFM/T7Y2Z6HVxPkOcF7XbjVif2e0zuBGXV7pVIrRGUbG1sIYRgZn4BrRRaSVrtFtdurCPLmGboUBYFhSgJ3QBHh/zatSF/+dMrlHmG64NUIV/7+hm6Mz08X1BTie2EaYkStoiRpilhb5kf+ciHuefBh0kmkvn6u1g5NgtSkJcFn/3X/4qNazd44HidpSULhiqzO+0xh923He2wubVBVkj8sEm7O0+71UU7mnEc30r+lGZvb5daUOPV0y8xTXZ54N4H8F2FoKiOucIadRcZfhC+oVusHRfleOS4KOXguiWDwR6BX7N7URCSZiNmZ1bxAh/Hs/umVjbBiupNXjlznlqrxkvXTvGTf+bH2Dw/4eKVc5w8fhdKKq5cvsj8wiKdTodOu0VZpPhRxLlzZwjckFq9ydnz58niIa+ceQmMwXc0rlY8/L73EEQuWksW5ucPvF4dx6lUUgCl7Q5ntuu7Py8pq3nS0LfHUFakUCpcHSAVTMYpnh8ShBGvvvoyQVjHd3U1l1hglEShaLbnMcJjt99nYX6JrZ0dGrUGo9GA0hhuXL+JUQlHD59kfm6RNN5DaUWt1mVxcRmhXYRSyP3us/hOUvhjLz72TnL3J3C9k9z9Ma+8KH79jwI1vtXaf6wQ9pT6fmWd+8/xdn5zGMMt/7q3X2+QehqD67hkeV5JlG4BUm5/jDGwubVFo9E4+F6RFwfP+R//xV/mn77/vjd80gMp076ks/q8CIPZ30sPJFHf++eHW/KD/ZsVrFa0s/15QCMwGZg85sz511hZOUyW5uRJCmWBUBLhOpjCmnQ7rqbVqtkAcGplFUHkIoXm3MXrjOMJjqN58F0nyPKC1eUueZ7ghT6vvHKJUX/M4eV5hC8gg2SaMh5NeOXS69x5YgWBIEsL4mnOZ7/xPO+7/ySurxkMBhgBXhCCkjiBh+sGdDtNosgnjhPiOCNs1ZkMx8RjKxX0fY/RcEyzGVrPJ8e+V2NSwjBACsV8p00YuUhpcFzJ+voWfkU+pdjftyyq3fVcpFDkWYwpS7Isxwt88tLgOoq7j66QpSVSOhhZMImnKKF44oWz3Hn8MGmW4Acu27tDQr/GjWtbdDstPF/w5POvoqSgUa9z5uxlZmc6ZNkUP3AwpaAoDC++dIFer4lQktFwBGWJQBEnKTs7Q+YXewhlWFxoo5VkMpkSBSGu65HGtmskKYnjBEc7rN3Y5qlTF1iea+O7riWSBj6e53H+0hqjfkq91uC1S2ucubJGqxYx6g9ptBo4nmc/p8lwwxqulkwmdgYjjCKkp5GqZHGxR14WzM31uLa2TrPdoDAlnZk2jpQIY2Vb48mYfWeRsgRVSkQgEY6ijEvKLEaKmP5gSLPZoZQV+KKA3KRMkyk/85k/4Jf+zIeJ6hFlaeWavu9QFhmf/cOvct+9Jzi8ssTlK+ssH5qj0+2wcWOHX/onj/Jbv3iMdjNirz+k1qiScCHZ2dnm5JHDhK5GOg5I+O3PP8lP//RPsrOzyxe/9BV+5s57MEVFuTX2/LXdOHsmSqmYjK1XlRDWOsLxFEJX3bW0xHFcBv0xfhihpYNRho3NG9x//x3cvbqCFzmUxpCl1jtvv5hUFlQdVyujk46uEkh7v5aKNE7Qvg3ETCEY7k04e+4SM70OWVISNX2Gw76dgzEFQiiUoysppcFRljKX5nHlYSlxq/lNg6z8GvezBCvFtGS+BmHdR0hNnpsD4JURgm998zmOHjuMVILRcEyeZBRYMqcSCmEkG9c3efyJZ1mcnyEvUj70wfuZ7TUJfBepbfeV3PC7v/cF7r/zbqJmRDJNadUbVrboOiSJPdb7e0OmkymRHzAejcjTlLTyiEMI6y2YZowGI15+9TxHVg7heh5ZliGFlZ4l0xjtSigFn/3CV1ns9fA8j9FwRFRvkiaFnccrjC1gTBIoShypmGs1SJOURhShpOLmjQ0+98g38bWm3elaOWtpacT/7WOn+NgdbebmW4ShTy2q0e222dneIcsm3OvWMOSEdc/K4ozgsSdfYnNzQCOoEQQRyTilMIaZmR53H1+hJKfRDtjdHqIcQVZmuNohHk5xvOAgHp3ptpiZaSEEXLr0OgJBp9fBCGF96wzfIc18672pCqAP/lfi1+qcPvMyJ47fSb0Vsbu5R39jSJkq1m4keLUpjmPwRZ1BEhMGij/Y6PPJhxv4UUC3cYJTL7/APQ/excLc/exsDWkFGePJHkUxREqXIssoyj6vv3aD++9fZLzn8Xf/+9/koR89Tq0+g+dIQs8hGSccOXKC3/jH/zs/8f4TOOWI868sUGuHFGWO41SJmB+RCh+/1kZpCzoxQkBRsrVxA4Hm6qVrCJGysb7OyRNHSUcF9SY4WiBxKQUoafeUsiwoixxH2sKpESVxrvCCDsKRJPmIixcuUOKyub1pj3WTINIcITIcx9r15FmKUApPamR1/o0nU67svMLnvvwUn3j44ywdWrCvaVKSJKHebICUlMYAiq3NDY6snOTFF09x6bXTzLVcptkOw/VtlhY7HD2yipIlQuY4UliIlARDAWTWN9Rg7VSMocix8LAyt0Vh5TBNJijHpxRFFdcpPM9FKStNjUIfJcFRklrUJgw0SpeYwjAdTxCmJM4k51+7yFNnXkUrK+duNpuMxiM2NzeJwgjHFSzOr7K3c4X5mTbZdMh0Okb7IfVmGxVECISdtcNKYc2bVMYfe/dH+ZVf/av87M996iBRKhH7guSDLqWN2cxt8dsbmxFvR2D//tftUfCtm5C3/O1unV7q+4oTb19/0pO7d2iZ76wfaAkhmEytGewftYwpmZ+be4O/3b40CmA4Gr3hOX/QE97cdvt+f3JfNrq/PxdlgXYUz75wil6jRp4Z4iTl8tV1ppMEiUALyZmzl3n82TN846lT7O0OCAKP5UMLFGWB4zhMpzFnr25wdHnBwiqqDmaelyRpjqscjizOs7w4R5aVSKPY2t5ld3dQ6dNtgK+rDl2WpfzST32c514+x97uiHqjTpbmFFmJFJp4bAEDruOyvdNHOw5B6JMmUxqNEM93SZKUOE4J/QbbG2NcN0IIl73dEWlWIKRkNJpQq0d4vseN9U2yvGBufpassFr6rCIE7k9BjkcTHn/6RZTQjEYxZ89fYfPmDmVREk9TbtzYoigNX378GaRSNNsNtFZ87P0PkBc5tXrEdDIl9DyefPY0SZaydn0d7Wre/9C9NBoRxpQcOTyP0oq1G9uMR3aOsCwMZy6tMxhMEEgC32cwGJOXGfWmBd/kWY7nugRRSFSPrLRTYnHejoPruWjPrTqIFpzy4x96D46jyUs7W7K3N0AIwfEjhzh2bJmXXr7I7s6UB1aPcvF1C12xxs6K/u4AISTD3T7j8YSZmS5BGLK5tctnvvI4x44soB0Lxbl2Y52FhR5Kaba2+8RTaxAsFezs9MnzwkIdqhks7Spc12cyjtGeZprmhKFHlufkZYGuzMHLMsfVDn/11CX+6X/xaWqNWjW7YXjksed48cWzGAPdVovJZAqm5Mc/9j7Ov3YVpQT/+HNP4o+tQX2/P6LTaTIcjKtuDfylT97DX/lfvowp95E5hrZvz6OZXq/q6hYHdFx7LTAURV6dczYJi6KgmksUaEfbLlJlqi6l5LULF+3fqzQkcUKRF8zOzZLnhZ3zKg1pRbosS1NVjgWu54KBuJIZlkVeySat9Lc0hqCSCJtqrvVrTzzN+ta2lXd6HpSCWq3BjesbrK1dx/Nd8sx2HPIsJy8yxuMxrutVc7sKYzSgEEi0kOTxFFkU1n6FSg1QFPY8ylLrxyaq34sp+eiP/ghFbv/WYeTjBT67O7u3KIkYGs0aH37/e5mZm2Hh0AIIgR96aN/aS2RxwdrV6/z5P/sfEIYuQgi2t3YOPCcHe0NqtYgg9Gm2GjZhV5Jao8H2Xh9Ha1zPoXLxxg8CWu0WkR8wHcckUyvNm0ymxNMYz/fIM/uZTq4cIqyFCClptixVNwh99vb6uJ7L3l4fKQXXb2xYMm6vy+HlRfIi59Tps8zNdvnER97HnXccRUro9Fp0Z1okecr61ga9mQ4YUFKyubmFlBBFAR+65zB7e3ukcYzAMBoNGQwGfOQ9D7CzO+Gp586jpCKq1Wg2I4rSHgt+4DIej/FczXSaVFRI+8c6c+Z1hI3QLelQCYoy5+477qBRq1UbzlvP231PO09ZUhrDZBxzeH6Bbzz9grXGKErWtnYZTxMa9QBXh/h+RJan9AeDg4JnEIRsbG6wtnaJ2bkevU6bC+dfJs1ixtMJG9ubICAMAwwpk/GIZ194lbXr29xx1z38+t/+dYq04D//K3+VwKuxeXObD33wwzz33At88pOf4PLVG+wOUloLPmkaY0xxMD9sUIRBnek0Jkli8qLAcVyyLCNJUzqdNnfccQfzswu06l22tq5jypQ0jlHSzpbbQNxCsVzXqzp+JTkFRiiCqG7ncwtDyDQG8QAAIABJREFUlmbcd997WV5e4cjKKr7nWXqo44KwqpEsS21BR9oOo+s49Lpd/sd/8T/Q9EtOjO/gxZe+xc7uTfKsZDDpW8/MHDzlIUpBEk84e+Zl/uCzn2G4t47Ih8z1uizOzvLehx9ieXkRU06Y7bYZj601zD54SEppqcFlQYk9p4W0xR7phCjXw0gLEnO0ff9FXuBol6LiKZiyIEtj0mRq1TrJlEarhpSghUOeFzRbbdIsZu3KDbY3R6wuLvEjD3+IQ8uH8Dyf8XjIXXfejeM4+EFIfzDg5toVMIKw1sRzAyajAePJ2MYZ3+vxWl3L9z1G95cUFen4nfXv1Xqnc/fHvL4bLfO7deZ+8CTm7dc+7OT2xOqN8BTxHfeBRXabtzmp9xM1z7NADyFum0Opvv+zn/4F/tlHHrz9pwC4Na5yS5pkZQxvh1p54+32Zd7ue8bcNjxsH2VsuR+tNadfPEu75tEfTZjpzYOCyLMSjBdefo3FuS6vX7zBQ/ef5NunLrDQa+A6jvVyMyVpYgOXe08eJk5iXM/OdSVJycbmHk+fO8/JQ8to12Vvb8RgOCbwXDrdBmHo2XkyqVlf32Y4HOMoRRh4SAGXrt2kGYXUaqFFNo9iXnt9jcDzuHRlndmZDo6jKUsrhZLKMJ2kuJ6P6/qVTxV86dvPU/NcgsgjqLlWfiYs5a80BqkEge9SIquAV4OUaKm5dOk63W6bJEltgOW7NOohSjr4rksQBgRhwPbWHvVajWdOnWVnNObOY4ds50Qpbq5v0e217SyCAtdxmek2+MKTz/Pg3UdxfIc8K1DSng2+b0EWrWYT3/Ot1EVrjizOgCzxXOuj5zga19NoV+F5Hts7u2j233Md7Vq5sMHinuM4qQb5HaSWeJ5LlmZgyoOutNYWWy+EYDodEngOi3MdZubajKcj5uZ6JLGFPASBT1oUNCKLaU/SDCMkYRhw+sxlHjh5jGE/xtEe9VqdOMnJ0wzfdy3owdFkWcYffONpWkFIs14nz3LCyGc0GuAHdUojUNqaO+fxmCwtCMMawotsl4eC33zuVf7OX/4Ys/NtHEdjKlLjZDTiqRcu8tCDd7G40KPRCJmMJtSiEEfB9c1tfvfb6/zKB+dp1CMWlnrEcWwDKQPaccizjA/f2eDpC32OLs6Qpxlffv4SH/n4j5OnGX/vf/qH/MTyEft5lMSwH8Q51ieqIihaqqStmkshDsAqAhjsDlhYnK+6YgAlk8kU17FWA9qxVf99AA9QzbPYbuE+mMH+oSvZZG6947Y2twkC/w2KujtOrrJ6eBEQaO3w6Dee4sjhJXw/pFYL7ByQtFJLpRSlKGxxy0iEsfIfsT9vI20VPxnvYcoEIzykEhZKUh1TeZbb342hkmbaOUA7+2hswmQM9UYNrRQSYRHmec5gMGI0mhCEPtqxHUUhJZcvXIEClJA0WnWSNKbIS+qNOqdfPcfKyjKUJXlRorRma8PaBkzHU4RSRLXI+pkZw8bNDQLf49Lr12g2G8z0Orxw6jSe49j3pBVxElfS1urvWQ3vbG5sEUWRnbNzXNI0wfc96vUaWknOnLvExatrrCwvMhqOaHUaPP38KxRZQmkyGrXQzt0WBaYsaLVq/NzJ48h5zfqNLfr9Ie1Wg9IU3NzYZLbTZP3cDrONHqdefI3A8+l1O0gHluaaHDrUxvUkqJI0TukPx9Qin7IscT2P0POqv6+izA2jkfX1833PglXKwoIyHEWZA4XdQ1zfBSXfckP+rilfta9JJRn3Bzxw93Em44SoXmPhUI9GFPDMmUv0J7scnpvFVQVRrYE0BY/0Y959zOAHAcJJmZudZzJO8EJ7DWs0A6K6j9Sl9RKUAseBTu8utH+IRHeoNSI+/9k/5C/98l/jiW99k899/nOEYcAn/vQnCX149blHeOpyxNG5ew6gWHlRIFXAbn9InEuajQ5Rrc6F18/T6XSZjMfM9WYxQnB17TLNWoNvfe3rrB6fQ4sSQU4Y1iiK1BpyY+ey0zyrSJmikikKvGiGrDBcvXKRQ/PLDAZD8iyjzDNbeMuyKmAy5HlGmk7xvYCSEqkqeSYppzfO86c/tkTL9OjMRFy/cYEXn7zC2vqrrBxa5fJrZ3n1pae5fvU87W6LWqCRjHj3/fewsrKIkimukGhlz3MhMigLPDew0myJtTeRuppdEwgpcDyP6SRh7eolUK71gCxypnGM4/rEyRTH8cgzC2lRysFzLKDOdV0LT1GSUhZMJ6OqAx5SUHL9xlX8Rpe0jHn3gw9TGlvgzYuSKLTF0Os3rrO5scHW5h6RLymKhHQ6slYzZYHnRTQ6PVvAEPsx5/5RW6GiKoXTR9/1Uf7Kr/41fvbnPoWS8rbH3daRq6Bf/+6due+23uZ5D6Swtz1S7M9YlwfgnreSh77V+pPeuXsnuftjXt8tufthJG/fy/pOWeatd3Dr/u//XRVFbmd7HP2G+z/9M9b24K0uBG+e4zsAnnyPcw3fy2PMvq6zatcZU1aQEMGrZ15jdeUQjWaNWhShlGflj47Dl7/5LIPhlIVum2mc4HmaZs0CDkbjKUVWUG+E9Acj6rU6337mNCuHZzFlQZplBH6EqxRHlnqsXd1kptfmsede4dL6JiePLLB+c5Nms0Ycx+ztDamFIX/w5CmOznZJ85SyKFhenCXwXbzIJjiOoxkPJ7SaNb741CmOL/Uoi9IiqKepRelndo7tmZfOcWhhBidQLPSaRDUrt/FDF1NQETKtn5hyJOPJhFqtfjAAXhYWRz0aTgmjwG5iWhMElhwaJ3bm6MkXX2V1eZ4/fPwpTizPc/zoIebaNRt0S82lS2s8deY1TiwvWl8hx2E4GNFo1Di6NMvNzR3arSZZmh1UBbWW7Oz2iaKw6k4ZpJYEgYdUhjRLGQ4nhKFFsiulGAwspOTr336FVy7dZHWpbe0FpJ1f2N3pI4Xk5s0tms06RZZXPkcuElsxjpNbno2T8ZQLV6/hOy5KKobDESdOHCJLCusLNhxZjLzSKClQjoNyNFpabPq9Jw6TZ5ZG6vo24JdC4jiKLMu5vr5Ju93C9TzuWF6k025Z4EWVuLq+piw0SiuydEgymZAnGZNpgtIBQbMNAj57+hXufP8Rluc6aL1PZLR0y6XFOd734J1VwmO4ub5BEmeYouAzT7zCo6cu8rd/apWXz99g5XCXWj3EUBIE0UHVSQgr4/pb/+Isn/qRYziOw8fuO8TpTcHK4WW67R5Hi5RGvY4xJUpbaI6didGMR1M8z7PFAWGphebAOsVgCjsvcu61iyzMz2Kw0iatFefOX7SBe6UAsMUfm2CkSVq9jk2yyqLk81/9OnceX0UIO7eqlIUAKWUTLak0YFBK2v8XiiTOeebUae6566hN7B0Lh1JKviGAs1/JSn6VgyyZjMY4nqbIM4o8RSqJ9qJKEm6jqP3Xl0odFK2EtATNPEtRVTdAaEmR2tk+KRWlKXFcFyUlz718mtUjywz2+pUBPNTqNf75577MseVFolqI9jTDvRFCSWZnuyBgb3ePRrtZFd88Hnn826wsLqC1ZGtzm7Is8SpLFeVolNKMBtYeYXNzm6WFObSzb/5uZyZHwwmu4/LUi6e4ubnNA/ffTWkMyXTK9vY2jXqd0XiEoxVCwqH5eQ4fWkQI+Mwjj3LviaPcsbrK4sIsSllP1jCqoV2XorJM0W7AqcENDs22qdcbuL6D1g71Rh2E4lvPXuRoo83lKzc5cmQB7WqUFkQ1H6UEpSnJiwxXuzhKVTRW6PdHbGxs053pUBaGyWRKq1knqocoJSkx6OpYyfOC6diSZK9eu2HpltVR8P3uTfswHq01RZJw9uJl2vUGaV5aWb8RpGmM5ypmWzUoYoyQ/PVXbvC3/9MTHFpeYBKnKCcnzwRZUrK5t01pHB792ld597vfRZoMUcIjnU7Is5ivP3GRRx8/g6rN8OrZV7jn5L1884mn+ehHPkCn12b18CE+85nP8J53naAYrXFytU2ZHEZLSVkUVu6elvSHI2bnVri6dg2kZH5ukavXrhD6AadfeZFOd5YknXL50gVqYYNOz6VVb9BsNCuZ8r5XXUmeZxSmJI5jlPLY2LxOrTFDrTlPVuRIU+K7LnmR47oO08mE1197latXX2dudp44nth9SKqKkKzJsvRghjRsrfHZRy/xcz/2M9SbVv6bTArmZme5evE0ShQcOXKYQ0tLJMmAWuDTbNTxPYWUYExGnhYkWc61a2s0Kh9TRykKU1IUcOXya7ieTy2MrNoCKEyB43i8fuEC3dkZHC2JpxP8ILLqjMo3ct8f2PV8ijLHCA6Ac1meH0iypbEkylIIpPLZ6feZTsa0OrO0W12+9fiTLC8vc/bcKwxGA44fO4lSDqPREM8FV1kYUprGSO0R1JrUW523Se5uJXb769EXHuPPVdLMNyd3t//7w19v9zpvEZ/ud9fhwKvyneTunfVDWd81ubsNF/vH6RXyw0rubAvfHFTkAf76X/ub/Npqj7q/j5I+eKXq9W67R9zWuXuL1/9Bkrt9cudBUCVu9UrXb2zScF3WbvSpz3QwUiLLAqE1k9GElfkZTp2/ymg44cF7V1m7ucXx1WUeeeIMzSDkyMo8n/nSN7jr6DI72wOubmxjypzQdQnDgPHEouI3d7dYXVpEOIqjK/NEjmKvP+Dw8jxZnjMeT1lcnMf3fU7OzlOrRQzHQ2Z6LUpTkKQJSHBcu6H1Ok2Ukjx03ypFlrK5tcdnH32Gd588jlSaZ54/z/LiAtPxlPm5DsPJgGargesEBGGEMdDfG4ARuK6V9vmhrVyT247teDggCHyKtMALAp576SzzvTbaUVaOUuTUGzXSNOPuu46gtOTkUo9aPWA6mWCKkrPn15hptOjNtFmZn+P5ly5wZGWB0XBMpxORZilKO3TaLYoMPEfiuBqtJEpb+w3b9cjI84zT516j226QFTFRLUDse6SVpYVQaOvxdezwMu+68yi1uocoIU1ShIF4mvD1Z1/mwbutUS3GsLuzhxQGJSVeEBwkilJaO4aVhcM06y2efe48J4+vcOPmTdqdNv3dAb1e23aOHE0ap0itKoN5l+HuHsovELJEuRLtgNEF27vbBI7LZDzlpfNXWD20RJ4bHMfOP2AgyzIcLSlFjjQ+gpLx8CaOKbm6tkszqtPp9igdhyLLeUoP+Mn33YPjuqT5FNdzEcJFqsp/DAPCUJqCYX9At9Pmnz/yJO87DO8/FqEduPPEIrUoQLkOnutQFPC5Lz3F7s6A+bk2AsFPvbfH3/ytz/Fj77sXrRT/9HNP8IH3P8yRleNsPvsUnXodKSFLU5Sy8sr9zleRlzzxzPOsLC8ddNsEtqNlgyfNyvISg+GIl06/ysLCDK7n0et2bGIlYH+wfzwcAYL/4/f+gLuOrFj6pbBJ7YnVFQszMDaRVkqzubHNi6fPcnhlySYOWlMUOc++cIp0ktKb6XLvXUcpTMZo1Mf3rHxUSWWvZ8ZgEFaKWYIpcpQjEEZXVXcHKR0cHSCosP5VYmz9B5UF3wiJRanYqrfUCkfZOTetLZgCUyUX1ecpsVYNy7M9BIbQDyjSEgpBUsQ8ePcd1OsNhJY4vosnHaRjffMcrcnTnLAWWbCDkhyam7WddtchDDwmE2sYHmc5rh/gaolSko3NTe666zh5nvHquYt0uk0EhtJAGAQoJVlZWmRhtsfGzS0m4ym92TatTgsqQ2opYHNzh/F0ZL1CPY97TxxFac3/9S+/xL13HQFpqDcbCKVBWl+zJE5ZW7vJFy+/Th3wAo+gFlQyDwvL+Z1vnePHV+aZX+zghQrlwWArZu3aJts7fbrdNtJxUEZVxRJ7LNZqddaur9NqNImTjCgKuHT5Oo12aGcYRbWLlPZf7UlMkWPynHqzjtLuW8rbvtveZLkqkrIo8T2XZDrhyrUt2g17/g1HYzrtBqfPXSdyXRwRE0QR397Y4+MfWmJvb5sginCCBFNoIrdBb6FFEPVYWjzG9u42ly6eY2ezT6gdoijkjvs+yv/9mcdZOHEXP/3p/5CTyyc5tHKYz/ze7/LzP/8pSpNy8vgqVy5fYKHl8nd/52nedfg+lJDEkylxnDKcpCA98lJRqzW4vn6VvWGf5eUVHO0wnUwZTcbs9TeZjgeUaU531kWRk6QJruchpag6vZCXBY7rIaSiKAX1Rpd6Y4bnTr1KlifMdtvkaUqRJ9a6o97CSI+scFmY7VRyboOrHdIkg1JSIkmSlOeefJlP//w8X/zGVX70znehpKIWBvS6IYOt69x9z3uZ6TYJvRIpU0LfxxElrhLEEzuPboQtTMe54dLr16h1Q/zIQxYFUim002Dj5ia9mR4CxXA0wPU8SlMgtcvM7AL1yMXTmjQpCcMaylPVlcsWjLTjkOcZUmmEkiDt3K52XOLJGC296vwvmMY5zz1zmtHIY37+GIPBHlmec9fdDzAaDVg5fIR2u80LLz5HENQYTYacOH4U33MYj7YQArLScPjwcbyobqOqNyV3txK7W0fxvfPvQXZz2u3mn5jkzphb6rN3krt31g91fTefu++npb2fCP4gJ9WbPUfe/BxvhKfsyzFBKk2SxGjtvEUL/vaE0HYJtGM3PlVRIX7tv/51/mLNsNxu7z/ytlv13r6jt15Jnd7iv/2fvdXh25da3roP3uydd+tiZL9vOwtaava2Bmz3B5xdW6PlOEyHE3Z3hgR1B1e63FjfphEGhJFH6Ae4WpNmKe2Gw0yvRr1ZxxOKqEIf33f3Ko16SKPVACMwRWmx/Ti4LddCWvIxrlMSuT6O7xHUfFzf+mzt7fYxsmR7d4/hNMFzXcLKdyeLM/b2Rvzbb5zijjuWES4M90ZMk5TZ2S4P3LFKXuQIYDqd0u028QKHIApQpe2OIG3yk04SHAXG5JZoV2SoqmMRJxnKcSqz5BLtCbZuDpibaeN5riVnKsXmxi5SGeIkpizsPJyQPkgH6WmcwMNBMRxNaHWb5FnJZBzTbYV4nmaaZvheyL/+/JPcsbrCI19/juXlWTuLUc2mGAOe51IUFumexzmtZoM8zax/V5Hi+ZZWqJSivzvB932kMnihhWEk04LzF9a4urbNwsIsdx49bOcayxJjoNao4XkeeZ6gtWY4StndHeE6kijyWd/YIkljjh5bwPHtfJLruSRpShCF1jBeK5LpmGSSUuYFSgnSIsXRAVlucLRjyZ/KRaIY9sf0FrocXV1ECYMUJXGS4GjBdDrCcQWFsYbuUrtgcvLhDmWac31vl5XVo6BctNT84jdf4L/7Cx/A8ayMUEkHaRSmzMmLnKK0qG/fCyhzRa/X5hf/4Zf48TsMD5xYwg8CPMeh2bJzhFlWMBiMkTLnxOoCJhd0Ox3ieITnKv7hV27yiz92Hxg48tAnaTQa1Go+Fx77GrM1a93hOB4YKE2G1AZhBEVumO02cVwHqnkwIQVK2uCmxJCkKX7gsTg/i6PtrI6lUuY4WmMQlMWULJugleS+4ydxowrwUBWVtFaUiMqQ20p0oihkcX4Wz9UHHQSA5cUFonqAUBb+gpH4gSVKHnTeEFZmTkaexEhpUMqpMOL7UVF1xZHKEhelqMADkMYxUmCpmmUBwiClJQSSFaAUynVthy9LMUgLclEwnUwQRuEohwLBk8++xPLSIkaUKF3iOj43rt+k1WoynUwIgoCiNIwGI7a3tmk0a4Shz8WLF2i36uxu92k0m0gpiacJWVYQ1UKyNMN3HfI0RbuSkpJmq42Qmq31XV48e5ZrN25wbOWw7XwKwXAwxA19lOvQatVxlCU02t+JwvVc8lLgRxH1wEJ6onrEcDAmywu6rZCZboc0TnFd1wa5pfUh1Y5Do1Hjt546xX/yZx5ga2ub6oDC8xRKCX77qy/z8VqIKEs816VIS/Iyp9Nr0Om0AIlEYpSV4idZgjDGyrKFpCgzajWf4XjIwmIPKbTtylbzn0ZaCw9RHYPbO1ZFUGBQQrxhJ/uOguIbdp7bvq72XqVh5/pN7r33OMIPSGODQtBuNYmTPlEgGQ/7RI2Qf3Zthz/9vga+75CkY8zUxXE8SiXZ3Ulxpcu3vvYU3U6bYaz5P3/nUXwX7rr3KHEyRnmKT/38XyaKGmwPLuM5AR/9+If4+jcepeaH/P6//hwf+uDD7A1TbtzcxOyVCK/OMIH+NKM3e5Q0F7heiJSKldUTLMwvIpSkLCV5KUmnYxzH4eqlCxxa7GGKKbWohqNclBSUpsAUJdvbe3huiGs3H7RycPw2jutSCwJmu11KITBSoF2XwXCM79cra5gC3wusv52UFKXgxRefYTiY0JntMhxP+NXf/fvU6j1+4YN/wRZUSkOZ5yTTMYvzi3i+wJicc2dP0+nO2ejDGLT2QEOaZ1xfu8Hu3jaLs3McWurha40wijy3sv40jpmfmUVqQ5KVvPDMS/Rmu3i+j8kNxsRQlAzGAybTlKIAKXLkgX+dU0FYSooy5vLFEcLUCN3C7rdCURrBtetXaNTb7A3HFBKa3S7b25soV3LPPfcxGIwQMsdzfZR02dzcpCwLtne3sL7pJZPBHmVpmFk6Tqc7A0pVBRKbTCLgwI7zTSus+fytv/ff8HM/96m3TO7+qHgSvjPmfPPtrePYt4KnvPUyxvouH2SrvCmGFRU5853k7p31w1hZlv36/mDqv2ulQ1UH6w8k4fy+bBHsY4uixHUcOwNz28/vSwve3PkrigKnmpexkATB3De+yNFu9wd5xwc75Nv93t5O2vlH/56tTjtPcy6ev0qz2WSm12Z1cZ4g9Gg0ath5L4fpOKbXbXPx2jr333Oc7Z1dXnrtCoszLebnO/ieJfstzHctNGBzi3anhlCSzZvb1GohpoRTZy/iOpqoEaCFZjDo4wcuSVowmY5xXDsbFIY1kmnOcDwizhLmZto4nk0mxpMpv/+V51hZ7PDgfcdJpjGT8ZSoFthZlSzD9TSub2VV3W7rYJbRIBj29xBSMBxOqNdqDPsj/NBDSRuElYUNYIq8ZDK2Ekx74VdkWUGr2bSzbb5r9f7SVvdd16lkkxLH0Tz/0lnOX1xjZWmRNMlRoqTdqllppOtw5vwl5mdbaNduMgLBytIMWkmOrixw8+Ym7XYdKaWdb7ERNo6j7ftoNxBCMuxP+OK3X+DY0hyO6xwYSXuOx9Mvvkq3UWN3p8/mxg6ffew53nvPCZaX5vjCY8+y0GtWA/lWsqeVtS/Y2tol8AOSpODbL53jvjuOIIQgakRMpwnfeOY0SzMdpLTyY89z7TAjkjTOMMKeM61Ok9FoQr0R4bkB8SQljKyBuVTW26xej8jyzHrbVUh27SqLMq+q+2Vh0eZGWIR6NtlDIHC9iHq9idKa/+jxF/l//sYnUI6kKCyyTUor/bNzlAolJH/4pSd4/oXzHFtZIk1j7uzs8e5j85QlTOMMIQS/83vfolX38DwrfdNakuUZtSjiW0+9zMpKD8fRfPiOBq22nY37lb/z2/zCn/80RhT8jf/1t/mZO++ySb6t0FSWDjZRz9Ic7Wik1lXluqjm1iTxJGE0GltTbd+zwAJtEyc7q2fnnIy0gXrge6RpRlRvVHJT2xUryhIpYTxKrFm9kuzs7FJv1EjSxBq9O7YbJ5WsuimiUgrsKwfg9kDh1qqk3OKWObkUWBqoeZPsW1RQmbK05tme9fVDiEpCbWW7Smv2WcL7wYrj6gMFhNYOWtmZWIxhrtdDV7Ogk/EYpRzq9TpFXvC1bz7F8dVlrl6+RrvTpNvtMJ3GSCnpdDqUJQR+SJEVjEdj1tc36HZbeL5PkqQWuW4Mk8kE13MPjM21ktx39wmaYUijVa9onwLPsYUeGx3aebTNm5toJRmPx+S5lecXWYbne9ZPT1rbj92dPQ6tLNqu4GuvEYU+YeRBKW9Be0rDU1cv8Yn3nyAKfGvaXAsPqvOXr67xnrBDVIsQotqXigLPdQ78B3f2+lDtY47W7O0MiauiWRC4aMde/ywQyFRFh5KiLFDV9VAIKPOC0PcZjsaEteh7UpDYo+ht7jcla1cv8vy5Mxw9tEoU1nEcxdkLV1jodfn26XPMtpu0Qo/P3tjlEw+3SMsE6TkEbpMoipAKlOOQZjFH7/sgvfk229fO8Kmf+DjLqz36ox2yFH7jHz3CCy+9QpzkvOc97+b1166QZjGu6/DII1/hV/6zX+ErX/saW1tbfP7xl/nk+3+SOM05snIXg+GEpaVVxuMp8/MLtDsd1m9eR2vF7u42tbBOnEx56ZnHESLmnjtO0u20aAY+BsNkPEYIa5MgpOLiK+cJojratQXCwgiUFzEcjfD8gIuXXyMIAsIwJM8KfN+nNAUbm+ssLR7G9Ty2t3dw3QAlodVuMx1MaLYa+K6Prg149txNPnrPQ5W6xFotBIEdR5DS+lM2mm2UsHuYdj3bmRfgex6O4xPV6ihtZ2GVtlTeUgguvXYZpR27zyIxomBp8TCe72BMQVlQed8ptOsznU5p1Op4riBJk4NxEGujY0nCa9d2cB2XTifAGJv8xXFCPJ3QbLZQToAfNFm/uUUcZzz0vvfjeT4bNzfZ2dkkChtcvnSJPM+ZmZ1lMoqRIkMKQxoP0drFq7Vpdrq2+HS7ZYH4TiuE24/eyXqfD/3EB946ubv9kW/1JN8l5nzrOO37iZEr8vBbvo793v+fkrt3aJn/ni152+2PewkpDwAp+//aIVlZVbMqf7rSmmnu3+y8i+0ACSGrRM5WyPfFKkop/tzP/gLHez37vLZs+Ta3t3l/B1UY84bz05S3EktbOL89eX6ri0NF8KueR5aG0d6IXq9TUeIkUiiuXL2JEIIgcNm+uUeZFxR5xgceuoetrV2+8eJZPvLQPZSm5OzrV9BacunKDTAlfs3l5IlDuJ5mPB7je46d93EkD9x7zEIqJhlZXOA6HghFu9Pm7NmbKOORJyWjaR+/bmi2QpaXeszMtmk0I/r9IY1GxAfvP0F/MkIIG3i0GnWEcXB1RJkamIa0AAAgAElEQVRptA4BRV5AaQrWbqzjOg7SCIQRNGo1PFfy+uuXrYVBWjCexLZb4QeUBTz7wjk8VzMZTsjTkjQtUdonno6ZTifsSx6MMQfG6GUpmU4z8sJw54lDfPhH7mNvZ8g//zffIopsF63Ic7Ik5kfeexclIJXD5Svr5HmGH2qMKknSmGYtIEtTBv0BeZ6jHM1wOGE6TVi/uYVQ1iOoWW+QxQatbYIVRREgyLKU99xznHiasDA3Q+j7tJqBTUYdzSc/8qDdsJU1jAabkHmex2xvluk4o91p8BMff4g8yzGl9S+bne/ysffdR60e0qhF5Fl20P157oWz/NtHn2NvZ0yz1UQ52lIJlYuUkla7yZnTl4gnCQAbW9vkRcZwOEArQ4kBJckSi+pGGBxHQpGihLUygJJaPSIrDEFYx/E9JknMP/rlH+WRr36bPAOtXfLC+vcJqaqijCCNc95z950M+xm/9pv/kl/+x4/SC3xGk5zhMMaUOWUh+LMfux+tNVEtQklJltpKeRi6fODhO/A9h2k84f9l781jLMvu+77POeeeu729Xu1VvU0v0z0rZ7iIpChSsSRSi2WHVmQ5jOREcQQpiwhIQIIYMZJASIAEkARbjizDsKwtlqJQokKJpCiRNPchOfs+09Pd03t37VVvvfs5+ePcqukZ9syQli1DAk/j4qFvvXfffe+de+5v+S7Lcy2QYKgw1pIUCZVJAadc55IRFyCXpbMpCMKA586+xJ9++SHKer1wKYLAGtC+z7Xr63z2K48cdIFBkKWZg8dZSVVaKlOriRonYFDZ6mC9MtYZmVsL5y9c4uaau567vQ7WVjQaIUEU1Nw5p8aZZa5IciDmZGwtquNEG4x1irEWS55VSKWpKgdNRIjalqGgyN3vZjEO8iRc4aLIMsqqIp2mGGsQUKvhuudVwl0b1hgQCoukKsua5+fWJStcwvXRT3yaCy9f4tKlKwBEjQabG1uce+llLl26yt0n7qAoKgdhzmuJdiG4fOUa43GKNYLRcMJzL5zDk4LjJ44ynkwpq4ogChFCEcUN+v1Z1zXHkBcJUdN3iXQzwlSOa7ovPmRxXqBpWpCkOQvzfZfMao/A10gEuhbVsdayub2FFJbFhVmqAvLMcvHyFtNRzs7NXQchNpYb125y7eoN7I01nn3mRYIoQinF+vomRVlSVZa3n7kDT3lsre/wpYefZjicsLO9h63cuUlPMNPvEmjF5YvXuXLpJhsbe1y6tsm1G5vsK8Eq6bjXxjjlQ8/znAqrcVBtKTyUp9GhT1kZ9q3r3mh7s2GspN1pcXyhz3B7lzwpOXvhMnedOU4UNTm2eISXtwry3K0ZaeKh5Bl2N4+yvTMkyyt2dtaZDG9QpOuoGY3fjJhtB/hiHcsYIzSRVvz0h97OvadWuf/MCf7Vv/zXLCyt8NE/+hgrq4f4sb/3IXQYcXM34akXrtJodhC6Sau7RIkhrwom2YT+fJ9pMWUw3aPb6/HwY1+hGTfQShB4ktN3nqDX9Oi1NKEqwRQkyQTfD/E8n6LmUd711gfo9FtYDyqlkOEMSgf4YUxpDEeOHEcpRZImWAvb25tIBcfuuIPJeMr1GzexIuLp515kZ3eAoOToiRWkLBAi4/5TEZ4wJMkUXaONpHIcZ2MryjJHCIv2vFowBSpjqWxVWytUhIHjlFsqlO+sUzypsD7sDnaZJAOMKl1nSEqyPEVrjdY+YRAihCQ3lmmS0Ww0yfMxVZYdcG7zPGWaTimrkjKVHLtrmfa8YDIdgbCUVYqnoT/bR5AjbcrL559mMBhw9OhxHn/iEbI0w1SW40dPo5XGDzRLy8tIIVmYX2Rve5PR3g7t7rzzyY2bDgIqXxEDujW32m+yvTZuOrV83zcI2xnxip3LGw0h5Rtvt0Gs3Rpn3m58Q5xqXvm/uuWcrLWYqnzTc/zrNL6d3P0lj1sn81/HUZZOCa+qnOKTqdxNfF9A5d/NeKW6VNPn3nC8kXm7lJLdrQFra9v4vo8f+CTThI986isszvepioq93THX1/a4dG2DS1duYI3h6fOXuffYKsbA/Hyfu0/eAUjuOXWUNC1cpV0IbGWJfB9PKdIkcdVDa/Ajn7IsCePIGf4KSZZVHFlcAKtoNFpopZiMxzTjkMoYxqMJ4EQQpFAcP77MnccOsbs3IWo0QAnSNGft5hb/5mvPkU5zxuMUP3Ay00eOLjt4YJYhhMeVaxvErSZLS7P8wRcfRvseWrsOlrUG7Xs8cO9J/CCg2W7yp196mDzNkFg8X9PuNimKgjwrGA7GuLuEC5CcT5aTSZ6Mx7Q7EW+9a5Wd7REvv7xWd7jAU4ovPvIc02lGnlXOn8oYpIBW23UGtK+JowhbWbZu7lBkJVprVlcWqXKnHJjlGT/2Q+8hrO0elNo3XgfP95idm3HkdAQ/9L530OzEjIZDqrKg12s6Sk3pSP3D4ZgbNzf42Ge+VkOyBGnmDOmHwxGT0cQJT1hDMk3IipyNjb2a12WZn2nzPe+6l9m5Ga5evQHWuIJIVVFWOVAx2++glEeeZSwvzSOlotduHXDRirwkywvyrKQoCowpybMpk1FS8whL9vaGaE9jkQyHQ/7h8+eYacWcOXmEK5dvuKqx9EgmKWmSYipnCv7ZLzyM53kcOrXKP/jbZ/iVHztMEGimSUZRlTSigDAIAMGh1UWSaYK1lihqMZ1kBzfOnZ1hLbIiWdsZOe4ZMBpO8HVIWTljbCFFLahSCxfV1eEH7jvDB77zHQS+pCoLAIq8cNA3Affec5ofeN93gZXkaUlVOLl1UwsQaN+rRVAkCFmbad8GXi4FZ+46wYlTx9C+h8BxgYWUTgG17mhqrQmDkFa7SVV32A486IytRURgP2T3tCZPCweZlLJWrFOuu+a7eSwUCGlrdVZLGMcOhirqzl59ulLtJ5MCJR3fR2IQwkHGXSfKHqx5cSPk1NFVTp08Rq/XQWmF0orZuT6PPHeWo0cPsbK6RDKdsnp4lUazwahWGzxyZJUsSTHGsF5Dt/wwqK0SzMEak0xT8rwgS1PanTZVZWg0mzz73DmkkDSazfo3tuxs7R10RqTAdeyEK/p5vo/2fSaThKKsqEpnueIHmtl+j93dXcajEYHv0+l1WJyZ4dGnz9LudMiyjNIaFhbnOXx4hV/8L36Sr13epcgLgsCn2WygaxXT99x9hJ998gWMseyNp7RaTfd+xjAZJ0wnKckkZTAaEwYB5y6vMc0Kbu4MWZybwVPqwHokywvW1jcJAveb76uaUsNzTW1jYPYVQv+iQ0qWFpYo0pKXr13j6vUbnDpxhGQ8ZW19i0YYMBxOeWF7h3ffu8jeaIonQ37pl/8lOzu7jMZDrLX0Oh2krTCTDT7xRx9Fx/MMM0O/P8f8zALtTszCXJv16+fpNHxmZmaYThPe8c53khUlz794lr3BiLe9/V2ueCYEVy9fpCxLGnHMnadOM52MGI4HxI0IU5WUleG97/5e2s02Fy6c5dq1i9y4cp7V5UMo4Sas8Bw/L45jjK0crNLzEF7FaLKLkB7j8YQgaoKQRHGjVkN2lkJlXmAq9zmiMCJNM/I8RVhDHMfcd//baHVmCMMOpa2QnuYXP/HrfP93zXEyPESz2X7l+jGWvCjwlOt4C+WQA9LzMFisKZHCedju7Q2YJInruGvfWSdYS5YmUMH9D7yd5ZUjKKmpbIlVPjfXrjOeTkAIB6s2FcIKvviFx3DG8gqQBEHoxIJqJVIAHcHF56/z4iPnEMJxcZESlDooaCjlMT83g8By/vyLBIFDz1y6fJGnn3n8wOaj2+1SVRVh6NPudAij2J2TqWg0W64gZW/pwN0SJ92Oc2et4Pi9x/jZ/+5/+IvP99sN4Xjgf9Fh6/vtrenggcjWt2D98Fd9fBuW+Zc83pRzd+tz3+RY+8/9dwXLfLUlgn2lknIAI701IbWvet3+PimdSbTneQe+Mx/5f/6QfzgXv+a9vvVT3lckeyWxu9058Jp9tube3e54bv/jT7zIvWeOOwVNKdjY3CIONcvzc2ys77CxOWJ5YQ4pLe1mRJqmnDy8SDIp2NoZsrgwi5CCmzc3aTRiJklK3IiwxrJ2fZPZTpc8zx20TXuAYDgc02xFYAQbG9uEYcS5c+vMLAS0O01uXN9kb2uCKD2EB81GgzwvUdIjCEKGgzGeLqjKitBrI3yJ8CBsKPpzXZ67cIX5bgPpWYbbGUWZsbu7Rxhp8iynEfWYTFLCRoAONHcsz9Fshq4CryTjyQTtO26bCpxK351HVhAYlHTBeVm5RB4hiWMn+59Mc65f3+ATX3qSu0+soqWiqAqsyFlanOGFZ2/wzDMbnL5zkcHemCAMkUbQ7/eJtINd7nu8xXFMXpR4WjPYHfHw42c5srjAy1fW6LUaSAEbG9u04pDKVqxvbSEVtDstysJQlZYw9imqiiTN8LTnEl3fVQk/8eWvc8fyHJPpmDx3CpllWdFqNiirilB5zMy0kRp8X2FNRZKk9HsdtKeRniIpMsJmQDLM2NkZMjfXA2tQWhIHIYPBgNBXvHzpGq04prApWns0Gk2SJCMvcoLId95PtnJdaE/j+QFaOuiqsQXT8QjfMzRaPRCS0WiAliWmAj9q8T++dJl/+l//DaSQeMrjjz/xMIeX+wSBz+9+5NM8cO9JlJBYKqqi5Fc/+kUevp7yn7x9liIvuHR9k1YrJA4Vg8EuL760yUNPXObwcpdmM8LTCqzP+fPX6fc7KE8SRpHrqCnNT/3aI/zoe+6k41vu+a6/SZEVfP/3vZ/imaecEiausq1qYRwpobIlDS25ce0GcRiipOK3/uDjLC/0HGwVwWOPP0sjaPDnn32Yfq/J+vomDz3xFMePrDIcDPHj0K2lxtZCJfsy3W5tMMbBsJTerww7FIF0xgJY4zpiprJI4URXjKlQnlcnmm4dKYoCamGnqnTBqcApRdoawlWVFQoXuLkgxQKVU6dT+iApsPs+fsr54VEjhdxyJZHG4GtFkk7qzqOhqhyvD+vW6MlkwtHDyyAFUSOiqkqssHhSMt9r02g2XAIceBic8ubNtXV8JfE9hfYkyXTK0vIiVVkSt2OwFj9wncyqMjzz/EvOlB3HURRCMRlMaQQxm1vbAEjhEYYhntYUZeIUeicJ/U6Hm1euEzZipyocRejAZzSe4ochpiwZjSdsbGwS+D5h4FPkmRMtSse88533IrVB+5HjJuK+482tbT55+Sr/0X2HXDeuhoMnSQqi4vcfusDfv/s4y/0Zms2Ybr+D1B5a+5SlocwNnZmIqNFgZWGOXq/LnacOEXqaLHPJrHYEJbod57+5zx+XQjkpfOmsEZT2GO6Nabea33SZ/PVue8aT+MLn2uWrdHodVo6soqSjNASe4Mlz55jrRoRFyZeyiu97zyzD8Ut89/uO0usvIoRTLZb4KKNJtq6ysz6hs/ogcb9HureJmRiGo6tkec7Z82tcvX6Tn/pvfx4dtjh16jgWS7/X4+d/7r/nwx/+eb7+lS9xeX2TD773bzEaD8mSKWVRMZlMObR8BFNBI2oyHI3Y3Nxgd2eHjbUrjIc73H/3KbQC3wvI8hyha5iiMfUaIKjKCms0UgQ0G/O0u0uUtZiQlB5Xrl5ltj+P72uU8jC2oiotQnhkaUIQadpRhFVgpQUjyJKCaWLxvSaPvPwU73nHIvPRe6mq0iXkVUXgu3uVFJLKuhuOMY6fKTyFqgzOukWwtztABQGB8hBCoX2nxKw9D1kFaF1R5RZNg2k+gqDN1x99jjuOHaascpR11jm+jun3ujSbDabJmNBvOMEV6e1T3hxMFJ/ecpe51VkClEsks4o8Nw5WLhTGKHb3Rswt34HyFPff/yDNZoOFxWXmF+YQEtbWrxNFDW5cv4GxKVHoURRT8nSC78f0l46ggwCkPEAuCHBm5rdJ7PbjKSHgpY2z/I3v/e5b/+CEod4kHnuzsY/Iup3y7Osf89VxqjvObcSNalSahW+6GPNXHZb57eTuL3mYW9Qyb5fkfSvJ3a2QD2uMqxC9SUfQ3r7f7t57H4q0Lz2vXIdACHezl7cc+3aCK7JWkts39hTCVaR+4X/93/g7R5duSbBuWQRuu93+3yvvfes5vE7iJl79eADTtPZVX2xVWIppTqvdRHiCsipoN1oszffJi4KrNzcZj1OaTU1pKzrtJt2ZDoPhmG67w/lrN1he6LC9u8f8bB8/9IgaIUVWUmQl3Zke0zQnjANG0yFl6Tzrrl3cZrbfZjyeMDc/TzLJmSYpF66sceToEl4Y8vQLlzlyZJ6wETkLgECTpymlKRlPpkhb0mw1nXqe8KjSCql8iqrk2NIcrUbM2tVtJmnCTK9JoxFRlKWTQ85yOt0GeZoTeD6RDjDKQVL2vba0hmk6RiqnDDcZ5yipKTIDCsrCEvgBwkKWZWjPoyin+IGlGSlCz6coK4rSGetNxhlHjy5z+NAMn3roce658yhZntHtNYhijecpzp2/hK8UM902RhnOn7/GbL/N9s6AE0ePEDUDVg7NugBcKbT2yHKXvHbbbSfdrgWiqBhsDwkDzXgwYXNjj36vw2A4JJ3mNOMmqzOzSCVpt1sobbDSI2w2KbOCyXCM72v6/R7PPX+e2U6b0WjM7FyXEseJE0IQ+T7CCLSnaDRDpMLNoU5EISHQPmEQs7U1ZGFlgdALGO6N8HzpNu3j+xHSZOwM9kAK/CB0HDspyZMEUWSEniYtIYiaGE+hJcg8JWjGlDn84H98irIs8fwGfuTTaiiOHFnCCsMD953ANcYUyhM8eWWT9z/Y5Ue/Y4k8LQgjj/m5Fq1WRJaXKC9CC7jv9CLWlmhfOdsGD2YXOiDFgWH6vgjKP/3Dr/Lj3/sAoySle8d9YCvKvOTX/vdf5uTcEnHUPDApN8bBt5X0sHi02l22dwZ88gtfod/rMD/TJg5DpFA88exZ8iLnA9//HqJI0+608KVkfnGWINaIyknrJ9MpOvBriwGBrUqKIifQvuP2edr56FnDeDxxnLf95pkUeL7CUmGFwZQ1zFAJhHXroZK+6zTI+kXG8fnYXwdrAR8l6sqxsBjAkwqFQlgHOt33CxOyTuzqVdAFR2ApQAmMECjlI2qlPoGok8AKgXTG6crxX/f5aF6dBEVR6AzkMURRgMlLstx5pH3kE59nYaaN1iEg8TyP6XSKsJK4Ezp+X1lQ5DmHlhZIJhNm5xa4eW0NYQXT8ZRrN9fo93vMzvfwtLNv8JSiNAlKeURRxN5gzPZwSDvqMBpOyPIM7Umm0yn9fo/JOCEMQq7dWKPTapOmGZ6v0CrAZPDYE88SeZZWt0meuoKIQBLHMb/x2LN875kVrl5doz/bo8hHtBo+Wke8dOkK3zkzi/YlWENpK9eNE6C0JIhDl+wrCdLg+xJPCdK9hO3dMf1+H+GDtQXSU4i6+y+kqq0qIJmMCXwfjKAoSqIoRKhvLmB8fc6dk84fDgfECgIF19YGNMMG03RKK4zYXCv4R2ef5v1v63L62EmW5rpMs4Q49oACk40QGCrpih2rRxfYWh8y2zzMXD9kOL1M1GwwPxdx1+kTjIYpH/3Dxzh1/E6eeOYh7ji5iik9nn/iCp5nmWS7nNSnOHLHMdcFEgrhefRmZ9FRyCidoKMQU+RcvPIcF188x4kjixxenSUKPaQnnJWBpzDSghX4SlHmGdL6lKXF8yL8qEGmNJUQCFOSpQmeJ8nShE63yzRJybMc31MkSY5Fsbe3Q7MR8MTz5/H9AGkscRhgjSXqzqACjycufZ0f+J7TXDvbpNeJ2draYZIJpB+ipMHXHkoHmKoi9EMUzjRcKc10MiUMI9rttiuG6BhjC2dVoAQGCcJQlBVZUWCw+GEEacqJO5bxlSVP0gP4p6d9PA+EEVR5iRcICpMjqxglPQqTYK3guXMvoaqKlg5qf1BXSLhx9TLaaxKGPoWWJBg21ta589Q9tJo9XnrpLFIZ2q0uV65dY352mcAPeen8M9gyhWKKwhmoh40Onf4ygfZr6KKDEFiHH79NPPVqekv3cJNTd556JQbcr07dZqK/XqJ2e3EVdyqv1U54Jcb7RsDzwf4aceBeI285hotNxUESyGuaFK8/vp3cfXt8S8Pcxgrh3za52x8SDrKYN62YvAFE8ZXqh+PpVFVJGLqq8D5s4HUO+qrH/XOQUvCjP/Kf8juvMip/zXt+C3v3T33/8ZspwNS1nDooqzuQtxx/OhwzM9N1NyAElXEVRef1pOm2mygEUUPzlWde4o7lBYajKVI6s+tjhxfZ2RvQ73acMW6zxbUra7WhtiGMffzAoyoqwiB2aom5YXa2hcVBU3zfY3tvj7l+ixOHVhlNpkjpMd5NsKaiEUc0oojBcEwQ+hgMs7NdLKo+hsJUBUXuVExHwyntTpOqKhmNx/T7baLYRwgIgxAlNWmZEjdDhLIo7fxzhCkdFE1IPOVTGeGMvcsQKQLAUJqMIAasIs1yxuOEKA6pqgIlnXBBFITMdLoMBlM++aWneNs9J1Ge4E++/Ah3Hl6mO9PmzPFDKKWIa2XD0WBEZUoW5nqYyjKaJLSaTXrdJp4v6bSb+H5AaQo85YLSyTghCgMazZAszQn9kCwr8ZQkSwq++vhLFKbk8KEVbtzcZDye0G1FNDux87sKJMgCi/N4q6wl8H2k5+CVZy9dI/AUZ6/cpBVF9Pt99nbHRHGIFM58eGtzlzAM+eifP8yZ44eRnquEjiYTPKW5ccOJVMwt9CnLks31beJGiFASX9edGGMR0jIcT+l0WqSTlMD3UKZiPNjDlCV7owmtThslmyhZkidDkmlKUXn8Txdu8P4HV2k0m4Czgej2OjUc0mOaZvyL3/kU73jrXfz4L3+SD727w+JMC095nD17BSkVjThiPEmIwgglPBoNJ1BgrKXTaVPhAlx37VmUVAeG4AKB9iQP3nmSbjtmFB0i0AHKCzj/9Yd4zz13OYEXY2s+E9j6ZusSJsnNm+scWlzg7tMn6LTbeNqnqix3HF5leXXecdcA7Xk0Go26u1ShauPgMA4c1LLm2ylP1fA/Z0heFE5MRUqJV3vI1SsD+z5TVWkOki+EC5C1dhwbIZ0Ru7UGjIMvKk+54/JKVxDrFPRK6+B6AsjTHBU4FTdb1a5owqlnYh003FpLWdafB8f5cpostuayuUdwnaOyqJDa8YeElEgl6sRPMRxMCIIQT3lOHbCq+LPPf5VkPCWONMeOrNBqtdjZ2nFJlfJIshRqXvV0kpBlBePRhLn5WZIkxQJFkTPT7zE/P0u722E6nuIp5eC/2iObWIKgwWB7hKlgOBiztDzPn37+yzx4/xmElIR+WNviuO9maWGOIPCJogilAs69fImVlQWSLGV7b8zq0hJa78vAu4T7yYvn+eHvuYuZuRl37ViP9Zs7BFHAze0Bh1PXDU2TDB+f6WDC1to2g50hlBUVhrKo3PWHm+PNlit86cBDK0k6mbq1VXlOhEhJh0SRuMSu5hlXpXGw+r9g587WNhGBFOxubXH+0kXuuvt+dBCS5RkLC33G4ylfNpKf+OB3MB5dgmoHUxUgZykzS1XkCCXxfE1WefhRzMzcIr/+G79B3PUIWx6x50GVMt4d8cxTzzKeVLTmJG99+ztQXsTXvv4QP/Jj38fDjz7DD//tH+af/O6vc8+hu2h3e8SeZu3mdZYWlnn53DkUEl8ozj33LCvzh1leadNoOKVfT9SCQVbg6wBTVEgklXWCJJUUGCUZJxWdmQWyEqZpxmQ0QQqDRNCII4aDHbY2rzM31yfPpzz68Od4/oXnuO+eu/CUAZNRFVO059bT7e0ttPa5fm6bD/2X38Uv/vOHOLNyLzoIuHLtOs++8BK9uWXG0zFh3AWtQflUSIzyCBot0jSntBalfdfZ8hQ31i7S7S2yuzsg0G2wEiEcdSHwA0bDIb7W+LUSq7GCIGwxmqT4YRPIMZSEcYDFUTOk57G5ucHOzjozc/OAR7M5SxyG+NojK9IDSHtnZhYhIEmmXL6yyQvPr1FVCWVlaDd7hFFEt9NFKY80SenN9MmLnPFkTK/dZn5u3s3hsmRmbgU/ajkV6ddaTL1ucvfK+Me/9Sv83R/7kTeZ6HU8+noz/s3i0H+rcfvO3muP+e3k7tvj38v495LcSenw0t9UtvPNJXfGVMRxg4cffpilpWW+0QfvVQetD137iSgPaw1//qnP8HOtNz6nbyW5e+038k0tAvvfy+solL74wsssLsy6jkLdoaQytfG6osgK8jRnmqacPrpCp9viU195nMOLs1y7scnnH3ue00dX2NjeZWG+jxCKRiN0XnFSsL2zSyMO2NjcY2N9jz/7wrOkacJML0b7EXt7AypT0Z9po6TAUz6GijAMuHhpnafPX+H+O48ClvFkShD4BIHP3mBIs9GiqgzTJCHyXVW80WoThAF7ewMajZBuJwYBQeijPMV4mKI9x69qtZuON5SVlIWrYk+nKVlaMhpOaTQb5FnJY4+9yKPPnOeuU0dcUCYFUiqU0jQbDaQS5FlOlhQ0mjHCuoC63W7xljPHXQVcWO47ddSpHtYePqYW5jFVRRgFZFlWS1xrur0Ov//JL3D/mWMURU6eFaTTnDDUGGuYTBKiMHTqfwIazSZCKsbDqbNJCEPmez0WlmYRQtLvtZnptvC1wnlCuw5HnueEoc/29i7tdpu8KJ0hc6A5tDhPHEecPLZK6Adsbe6xvTtGKlubmjsoSxgG3HnsMLu7Q6JG4NT2lEuMoyDAjxzc1FSGZivGD3yqqkQqRTpN8X0fKyxh6IN11dXA15g847FnnyeuuUWtXg/wgDFpMkBJxf987hr/7MM/gO87vhDWeT4hBZ7vAiwpJe948G7+s1/6BL/xM3fSaYTOygRYXuyTpSVhFDBNMh5+/ALWCHztOEbTJENIQRg6sRmhHPxG4MRDrHFQyOWW4Jf++EW+760n+Kn/5Z/xkz/xn2ON5Zf+34/wo2fOUOnUs/8AACAASURBVJYZZeGCobIoDzpeZeFEK2b6PbrdNmHgu06QdqqQbj64jmORFhRFwWg0JoxChKilr4V1Zsh5gfZ8ysKp4EnlfOicgmWd9Kn9Dow5gGbt26ZI5UzWJY477EyuDXle1MdyypZSuTlclRVezYE5EKIyTv4fuS/M4TrhxrhkUFB36Grux61oCKcA6srUFveZBI6zaPcr2vWjg1I5z8L9YxSFK7AEfsjO5g7nX75Mu9VgOBhx4uhhHn/2LG+77zRzC7PsbO/S7/e4eXODZ166wN2nT6A9Fxg6NcGI0XhCo9EgjAKarQZRHLG5sYXWmkcfe4bl5QU8T7O16dT9wihCeS6AjBshvY5T7Tx1/AhF4fzjsjRHe5rhcERVVmhfMxqN8f0AhEcUasJGwOLiPHP9eYJAuwS1/v4AXl67zqnjbcI4AgSf/eyjzHQ6tDoRWWFYyhR55gRdPCRBI6TVjunP9pznYuVUO6c171D7jkLQ6jjPL1tVtQeg8yzM8txV/KWD3kqlan9CiKKA7c0d4ma0f1N6w9vRGyV3wlri0Of6lascX10iaM1w6dIN+nNdRuMJNzZ2+e2nnuCuYy3m5yN8lRL5EVLOuAJkoAnjECEF12/mZHnJzm7Cgw+8i4tXrjK7uMTFF56i24rpdWdYWVnBC5oU1nDu3E2KTNDpzrK1fY1eb5FOr0N/cIjVQ8tgYTgao5RmfWODw4ePEvghX/jCZ5jpxLz84tMsr87QCDWhjpHKqeJaDEk2dZYvnoe1kryyXLh0npVDp4jjHkprJ+9fVfS6PSgSfO2hPQXW0O20kMJgq5J2q8OxI0fQWmKqjCjwaTVbdfwDaZbiKZ9f/tNf4cG7jvLJLzzC2048SJpMMHi89a3vYzAcsLJyCKE00tNs7ezRas+g/ZjSQJ4V9HqLztpEuvuRHzQoCsA6hdeoEVNWGcpTlHlBs9HCFcUzZ6GCZDAY8dWvPUF3pk27FvgqjYN6Z0lK3GoRBk0azXZ9/Za8+MIzLC0u1YUMx9+VOJSAH/iu+BjMkBWWd77jXXQ6fc6efZ4bN6+xvb3B8tIhPE9z7doVoihmcX6JjfUrJONdqiInSSYI5aPCBs1G8xun6zeR3N3znac5dsfRN5zn307u/sOPv56qHn/Fxq0KmeaWTd5mu93rDgKF1/z/duNWRczXjgOlISFrzlzB3XffdfvnvkbFaD9xEsKJI3zx818m+twn3+BTv7rV/3pjv2O/T4a+dR+8umd4e5WyGkaFqC9q4eBUwNUrNzi2uuQa9wq0UqSjCX/w519zyohVRTKZYquKmV4HpRR7eyPefd8plFKcvvMwJw/Nc/naBnMzXZ4+ewEhjEtU6oBA1TLhq4eWWFlZwPMEd588QlZUIG3tRQa7u7sILHmR4nmWLBlz5sQKSgnWNtaREpKsZJqWrK/vMtftMRpO+Z2PfxGtfZQfEsUxeTKhSBM2NndJJillVdaJiPtCGk1Hym43u9hSkieGKhM88fjLODE9hVYKW5V8+gtfIwoVh491OX1inqqw+F6MNI4/GUVhrbJZojxFMk3Jpjk3rm9SFA7CIj1LWWZYYdjY2MZUsHZjmz//wsN85iuPOwVRz3Vzms0GOgyQviQvc/7O972bLCvrOQtZXlIUJUmaEccRSZIeJGhFVSCVxPc0UeAznkzRoWZvZ0A6zfjdT3yRKzc2wNdoFSCtosgqGlGbKvdYXl4lTQqKrKTVbBD4Prt7Q6grp3vDEZfX1rm0sU5/1okQWOOSheHeCKiIY5/1tS3KvGQ8Sp1htqeorCFJEoSwjgtY1cqzdcCbTCaUZUFVGDwdYIBKwHQy5ejSAgvzfRrNJgZFQcp0Zx2TTvmvHr/Ir3z4A857Mi/qzo8AWyFVhTW5U6UHfuKXP86/+KkTaKndNVC63ydJEvyaY6Sk5L4zh5mf7XD24jqNZsxwnPLo0xfJ0pKyLCmL4uCiU8pxAkHQ7bZ5YW16cEWn2QghK7CvdLm09urEzauh3pW7RjxJMk2YTqcYW6GU48olSQLU4hUGwijk9/74M5w9fwkAT2ssrjgA1H51oD3HK7XGJcoWmE7GtWVF5ZI/4Thz+2tXVRqElUyGU5JpUh97X2jFqxMviZQaU7kUUKlaaMNAWTixns99+au8+NIFB9H0ZL30CBfsVrXIkrAI75WkrCzKg/NAWhAGaytXIKitZLCWLCteBUm3ViClB1ZircD3A4xxMKSoEfHS5WsIIWj3OmRpyve/9ztYWJhz5yosN26ucejQKh/47ve436YyBH5At+t871YPrzqRCVtRFjlKCWZmOmgtacQRYejj+R4LS3Nsbm5Rmpy8mBI2JEpXbA02iFoRWZFTVSVpkjEZTUnqznRVlVSVodVuszcYMRmNacYNHn3saabjCdKXB59VKY99PdV/8K7v5rf/zXMuD1aCd7z9bvpzfTyluefIHD/z9edoNGLm5voEvQgRSlTkYzyBiiO0coWDdqtFHDvbFoElTTKGu2Mm4wyss32oqvLAdsVT2hViEJi6Q2utwVOvww249Yb1JkMYZxVkdIDfaLK9M+Crjz3M4mIXY2FvNOFt953kLW99Jx//zIt87M8uMJj02B16FOUEKyvGk11GowHXrl3l6qV1nn70aU4eXqahA14+l3PzZo/jpx+g1Vtma/MKoT+iLJ7nyuNf4k9/79f4rV/9PzHTjOcfv4HvpXzsYx/n0OE5JqMRWTJ1BaQqJ4w0z7/wGDduXsDaPebnG5w6c5hYe1S5Jc9KdscTxtMcI8ALPEpjyAHrt3jupZe5dGlEWTQpKkOWFbQiTTv0aPgGW44ppntcufAsVTaCcko63UWJkl4rpBmAqKZoBYqCfLqHlgYtSmZ7MZvXzrO3fZ3V/pDdvev0OhB4lnbDR5gxK4s9hHCWFrub28RBg+HemL2dAWHQxIiQrBBsbQ3IMkiTius3hgwnOQtLh9CRxogSKTRlXhEEAVWZI2yF1tqJqFgnTPX2t51mbqZLVQr2dhPyQmCFohE6b1ZLgTE5pijxpOSBtzyAFSVGOI5tnhdUhSsMpvmUylrWty6xNb3Bs889xebmOt/xjnfxne9+H8eO3cnZ82dJs4TdvS2MKRkMBvS6M6zfvE5RZOiwwdLKERbmF0mzlK3t7W9oLrzRdDXG0n8dK6tXiQUa67bXm++3Ucv8ZscrSsbfvDjKvv2YtZbqNWIrf13Htzt3f8njdp27W8frdfG+2b/DK4nW677HG3bh6mML4YJqY18Hp3x7QZZ9Wfxz/9cv8q5Dq2/0Dm/wGV5n72t4dPtP/YZnv8m9VKm6Wm8szWYTpCBNMoSxBL5mrtskDHyuXl9jptOk1Yj58tMvcv+Z47RaDaSUjMdOuXJlcZbQ93nm3CUevOcEeZ5RFAU7u0PntSYVw9GEKGogJRxe7pEXBa1mE+FBFIcInLTydJpQWktRZLRbDZJpwVvuOkYj9kjznE6njaksjzx7njxxkti+liwvzjm1PgODvR0azZggcFX0fSP5LM3Y3t6j3W5hjOHsuUsUaUqjGfLpLz/KlfVd7r3rGA8/+SJ3HFmh1YpphYpGrGk0WvR7XT730JM8/PQ5Th5dRGnB1cs3efHCFVaX59Fa4esAIaDTbdVczVroS7tuhe9r0qTkubOXubS+QzP26bVioiggLwqU9JCeQnoOBmWKEmtBKYESHqaCm+ubNFsRYRAcQAPHkwlRK6bMDZPhhNnZDjfWt5idnWE6mTKZJBhrePCBM0hPooRga3uLRjNEKUWRlaA8zp6/QhT4lEXBzbUtuj0X5LqOgWF5sc+h5VknYhMFVMawu+NU6sLQYzyZsjjfx/MUeztDfE8TxCFSuWNsrG/RbLnugFKC6XRK4Af42kco8HQAgKmTCluVXF/fYGFu1nF+PB+kpRzs8lNPXuE3f+4HiRsdrIW8zAjCgKp083syGRDFEbaCn/7VT/Ovfvo0mxvrfPlrL3Ly+IrrvgpBVZQ88/wl0jRhYXEGYx10cmVljjzLWV2eZ2lhhqefv8z8XBvq7peT/Hcm7+6aUvx/j2zywXed4N2nFwhX70RKyY988IN84vd/jzv6c7VISUlRd7yEdHYPylO1aIKDfeZZglQCT+lasMdd4ZPxlPvvOsnK8lItaEINW3JJmluvBMY46XNP1ybuSqED7Qo+NTfOORSIg4qZFApTGb7+6FOcOnm07oK5rl+Ruy6rsM470FSWZJqgtaLMSkxpa5hoybFDh7BVRavTdDxlAdPRFOVpxzE0hjSdYijwVFCf9y0eeqKiLIs6AXaqw/vD87yDVVPUC+HvfOTj3HnsKFo7GLitE+GiKLj39AmC0EcKxfmLl8jTjL3BgG6vix9q2q0WpoKLl65hbUW73WIymrC9s4sfBCAEVy5fY3a2SzJNmExdd6UoS5aXlxAS8ixzpvDNBlvrW8TNyKE3pKQZN+vug/O5c75yAybjCb1emzAMsaY2c7eW8xdexkOwNL9A3IiQvsAUJWVZsbG5TaPRwBrL1772JJ9fv8YH3nEKISGOYrTnUZmSsij5g69f4IOriwwGI8LIw1aG8WBKkVb81h99kXtOrtT3Efdt5pmzGHnkiXM89NQFji3PEUQBQezmT1mWBEEAdr9jWgeXpfMB3NjcptPruGl6682pRo28qmvwOvckgYPrVki6gWZzY53Dh5YI/YibG3vMznSQCP7oxiaTYcLGzV3uPX2UTisGNUEr8GRFEEbEzQ6ry8ucPrNKOt1hZ2fAxSsD9oZDDh2KkVgCr6Q726Pd67HYneF93/MuhpNN/tEv/GNi3aOqNmnHDZ556Hna7Q6bW2t04wBfwd72Neb7PeJAcuTQKo8/9giHjywTeBqpPIwoeeG55xysd3HBdeFlgNAxyIBWZ57TZ+4lCDzSdFJz8AowGWWZooQTHBJQrxOOM+V8BnNM5Qqntua6CuvikyJPcf6fmtD7HEdXmly/EPPAiTNoT6CVK3yZMgVhUQK0hEArwihAe4KqyjBAEAVoTxFFAVLA3MJhwsjHihKEpSxKyrrYUlU5wjo/uzx3FgdYg9YaJXGwfwMvvfA8g/E2/f4snnBwYFMWBNp3sPAqR3qypnyEGGMdPSLPHcLVSJJJQVYF7IyGLPYWOHbsJF97+CvEjRZx1CBuNBziQXv0Oj0efvjrdFshzTjEVAVWSGbnVwiiBlEcO3uI12gp8JppfOus/YXf/gU+/OGfuW0xQ7x27r9235uNb/I1rjP6DSfJ7a+u2wWD+1zBNx5/1Tt3307u/pLHmyV34pbN1WBf24l6Zezvu3WSGuqq7i2EVSWc/5A15iBpe5Wy0S0eI69SHqrV4fbf6cBT5DXPrWq7g/3nfujv/X0+fO+pb1CpfOUtb239i9c8vvrzvIpQe8t28P9bvox9zsvBt3LLayWlg5PVlVcFjAdDdCOkzHM8KSjLhLyY0my0uHx1jbnuDFlW8tTzV0AVtGJNGHiUpaHdanPjxia9bosoCug0I4IgZJJlNFoNup0WQRDgSUW72WA8HaO1xA81CEOjFUJZUuQ5Zem8lJqtBirUbmGvYDAY0mxEbG7vMTvbxpqCdJIx32tzaHWWTrfF0aOrVJXl9/7k88RK0ox8pLBEsWaapIRRw8mr1wGwHyqkssx0Z1zX0FMcP7LIW+87TpKmHDuyhKchTaeEcQulI4a7O4SBh7SGdz54Gh0FVGXJeJzQjN3NL/ADkukYjPM2s9apaebpAGWhyI3rdGiPbrvJHUuzrCzMsri8SDLMHbwocJLv0lrKokBrhdQSWyp+74+/zEsXbnDy0BLtOGT95haddpMiK3j58k1m5yI8JRmNx1hR0e92kEISxJpev82hpVkwhnSaYKpaWc5zAXRRVUipuXZ9k4s3Njl59DDb20Pm52YYjyYEoQ8SJsmUVqeBrxwPazpN6M92AcimGb1ui6LKSbOMdreNkQKtFFQWYUBrHx1rMAJbGDa3tujONknzgiIrsJT4vsKTHrYET1gGwwmzc3NUFY5zOB7y+xfP89a3LfCWE/c6fqConDS3NS5ZUY63pYTH3/0/Pslv/jf3UuQZjTjk5B1HHM8LWQerHr1uyOrqHOPxlDzLCQOfZ1+8jJCCmX6PmxvbfO3JS1y+ts09Z+5ACon2PLQKuXppnUbTQTavrA14732nafohH3vkEmfuOk1lK3779/+A7z15CrC1KqVkb2dIFOiDjnyS5JRZiZIWHbsAR0qPLHPQJ6UEWkm0rzBViVRO9cwqn3Q8xdcaYV2HzApLEIaAQHkahGS0u4cUAq0dbNXUXR+sxRqBUK67uLq8AtZxT61QGCRCOZ6rKWHt+iaf+sxX6MROtn9vd8hDjz/JkZUVtOdjjHR8VzsFU6BEgKcDnEedxGDRgQuCnYudM3a2lUFJhTWCLBuSTseEYaOGZ7olrsyLg0QQIcjShHtPn6iTWOdD6GmJ0pKz5y8wvzDrINEI+r02Qeyg0uvrG0wmI9qdFsLXDEZ7LC/NY4zzqOt025w7f4m5mVmiIEJoS5KmRH5AMpkyPzNDnmVIHOJABwF+GDAeD2i1O8731ErGgzE61C4VNR4vvvgyWzsDTp68g8FghNbaGW8LSZokLB1ZJogCwmbMZJLwqc8+RKQEZVLQ73Zch8RY8jTjkcmAH3rbCcq8YDQaEAQuuVNa88dfv8T7Z7t8/tHn8EpDf6aPlZpPf+kJ7lycZfnwLJEOePrpc4TaI27GbK9v021H9JoBSwt9Njd3abSaGAs69CmKAqk0xgqoCiosRjn47PbGNrMLfUyd3AlcwnHrze/NcSrudRKLChtMSkWxt8Hiyhy61SVutrn44kU+kyScvHOZF146zzPPrNPs3UHsXaE/t+IQDQ2P8e6U7swKRTKgSq7SbinWdjr86//7M7zvPe+kqEZ4eog1lm73MDZICf2S2JtyuDPg1MqAk4cEf/Qnn2NeL9KJfQY3zxPFiigQNEIPYTM8VeGJioXFebRUCIwrTAnN3OJRWt0ZCixV2aI528fTXQQCJSxFukc23aMTWWw5QpBjTQ5VibQCayqarTZ7wx20JymKrE5atOuqmwpTlQjPw/ckVAUCgZCaX/n0P+dDP7jI4cOHODX//e5adngIlLSOS5yl2DIjjkKyZIgppviexeQpkgryBCNhOBniC8HO1lWGe9tEfkRVOouGjfU1/DBCa43n+VRVgScESignxFTbtQjjvICXFueZ7c2gpcQox8ndh9Aj3dolfIEtK0RlXdKKxaiI8XDE3taIvXHB2pVrBFnGvW97N1evXObY0RNcufgyUghanTaj0YBOr0er3SZsNciSjGS84UStog5xp0fUaGIOYrZb5uertBvcZuwrsecLN17gB/7mB9zfZR1cHWgg3Ap9/EbPujcbB82BW2JXIdQtZ+c2a/mGfW6/g7K+uvXo/iZqs3bnhVcd2E+8kU3WX/Xk7tuwzL8G41Yo53+YIQ4EV378Qz/Jb3znfbd/1sG1/moT8jca1tiD7U2eSVWZGpZ0695X4JlCKWxZUeU5mzc2CLXnVMpKS5aVaD+g0WohpSAMNIaKyTRhttfk3W+5iziKWN/cZWt7j8effYlz19fQ2sPTimYzxvMkpqxc8Lo3REoH50NKGnHs8PvKwxqYjBNG4ylBGNBoRIRxSFlX+suiYGtrh5mZNkJJ54eWl4CgPzvD9Y1dNrYGWCzDvSHj8YS/9d1v59iRZbq9LghFmpWO6A+YCkwpGOxNyZMKayRCOlVTZzDs4B/TScrm+i7j4QRP63rdNjRaMZ72OHp0hcph0vCUx6FDi8z0ujSaDZIkZW9vxHg85clnX+La9fXa00hSlDCdpGxtDzBVRbvVQErB3PwMQgp+91NfIsszsHDz+gaDvRECQVUa9gYjsjzne77jHsZZwThJefLFCywtz7G+uUOjGVFUJb6OmIxzFhcW0Srg0195iiKzVJUzlZbCVeDLsvZH82TN/XJQk8qWvP2tZ3j/e9/G1tYOx4+toj1Jp9ukLEqm44R2s+F4VLU4j681VWkO4IbGuGptHMf4vnYqekIwHIzY2d47MDofjycMh2OWFmadiIdSRHGI53ns7gwAGI8mrhNTd0EMlrIsyaZjPrWX8YNvPeqU2wCsoCptzQNyAieB9vlHv/lZfvdn73WdeinwA58sTW+pzgqUEoRRQJq6inOr1WQ8Seh3m/S7bf5/9t40yNLrrPP8neVd75r7UplZlbVIslZLFt7dNovpAAMd2GCPg2EgiKGbWaIjaAKiZz7MAO4PHQM9M91NNwT0xDR2GzCLYWygMUbgRbZka7NckkolVamWLFXlnjfv9u7nzIfzZlZJlGzZEG6Y0YmoJTNv3rp1833PeZ7nv1VVyeUr27SbQT08sRSlC1ff29vnMw+ddciHkixNKYxxjddXT58BBFppzg9dALGw0pnuoLl44UV6O67AT5KEwWDAxz75FwyHI9Jx5s52Yw4LB2st/f4AAYSRQ7yKwoV9R3FEnjkk2xhH0cxqRBCcTqrVaeEH/mGOmayNV66trVMWVR08XqCkIBmn9R5VIaxBUOJpF2q9t7/He777baysroAVdCY6/IM33e/CvE1FniXkeUbgR1SVQ9CkcMjDQcYfgESQZwVZWhCELtrEGENZVoRhiB/4mKpmWDhoAi/wDxkU1lrCKCQIfacllIIgrOmupeH1d99Ra8lKlJbowCMrCrzAo9Pt0Go2nX5QCFaPHUXgqLHtTgutFTPTk2RZygMPPsywP2JqchLfD2i1W7xwcY2dnT2kkswvzDpnTmuZnZ1xzXt9j8SNkKoyZElGoxlxfHWZveEAIamzGg1FXrC7t8fE5ARaKkd7NJZ0nPKe7/wHjmmAu7eKskQowS23nGBtb3xoqhPHMcPhiO3tXXY2t7l3QaKE5J1vuJPjq0cYDAYEoc97vvONzEy1KXOXHfm6W48RxRGmMiwszhIGAVe2d8mLkjAMsLXBTJ4k5GmKEAYpHQ3Y0wpPK5SUHJl3aP6rPtS+xjLGXSdzs1PsD0cM+0MkrqFdXpyht9Pjbffcz//6sz/DD37vm7ntRIPQ9xkPdrFVSqA94tjn0qXnKYqEyiiqCr79Xffz/g++Gz/2ObpyiijoMBiO2ett0G7FYEtWlhb4zm9/B2950xs4dnSSrazFffe/gfn5WW6/+z4ElrIsMFWJUs6YCGpHWKkwwuJFIcLTBHGbTneW6ekFut0u4+GItbXzmCrD8yStZkwUeKSpi5pQdc6kxVLYHKEhzUa0Gg0AAj9EKsfUcHmMNQovJVmWYaytY4YMlTGcPHGMUbLP5rU+WZ6SZ2m9Z2RYHFX80oVnKYoMP/BBWPI8q/cPg5CWay9eYdDrU1U5zWaTwPewpqS3v4uSgrm5ReI4drmUWUKepRSmoLIV4yyhNCV5kVNZS0lFJd3wrbIGU1p8HeB7AUVeOMZBBUUisFZTWUFpSnfe6oqoFdCYaDC9MMXSyRVuvffuw//TxMQEd9xxN3mREwUhM9NzdNtdsjSj1WiS5WOqqiDNxgSBY/V8s+vn/vnPABxSL80rSHz+Lq8b99D/L6/XkLtv8fp6yN2N69Veei+ddNQd1A0XrqyRu1f6+k0nLC+58F/62Jc/3hinH7l86QofHK6/dGL5NYc34qZ/fykj4Ebo7pWXtdRucjdMnQ6RPDDWUbFMlnH2zDmKNEML6XRqaYXnOUE/1qEEYejTbIZoT6C1QElFs9VAS0UYBFSly6I6sjALUnD12hbTs5NEnkeROf3TOEmYnJkgzTMuXriGkpI4jrh6bZvpyQmCQLO723eKj3oalScJQjgK4zjLiJohYRATxCHK8xkNC9Kk4NzVDSbbDVrtBnEcoJUiz3MqofHCAK01UmkkkgsXrhJFAY+cfp7bb1111Lc8Jc8crU6hGY8yPvPQGe66dRVrS4qyxA+dEYiQkjwrHMUq8BBasrXujBXiRshomBDHIa1mXEdgQF6UdLsd/DDiyacusjg/R6fdxFOKQW9Eo+0aH1tVvP62VaR2uqHRMOH5C1fp74/Z3trnyNEFfN+n0Yi44+QR8qLgxHGX79Vox6xv7nDq1ArDfsrVF3fZ3h6wuDDL5bUtZrpdWt3QUW7r0OS93T6PP3WO4ysLqNq+3FMK7WuMqciylEYzoqwKxkOXM9bvDSlLg6d8hJGkWUpRuuZZSkmWF0RRVId0W3Z29vG1i6SwpcVTCiEgzesAeK3J8wI/8tC+TzJMD7VscdxwQbmmwo9CZmanQQqKssD3BB868xV++UfvRApFoz0DytFxg0MUTPEnXzrLv/vjx/nF968ipXONRDia05efeI6lhen6XrFUpqIsMucCGsbs7vaJGyGmNAwGI5SAyPd44723cPK4o0MqJcizjEazQZFnLC5No7XgdcsNPvJXz3PX6jS//slHeN9734vve/ze73+cf3TipDM/MVBkOWfPXaDdbNBoRkSNiGarxX133k4yGmKFBSPIc3cNmsoilCSOIkxNByiLsi7KJELUU25Z7xfSRVMUeUFVlni+hykNWZbX90U93TWWv/zsY8x0JogaAZ6nwIL2azqoyaiKhHzcpygyothncqqLCjyEJ5G4gtQPPKQvEEqgA7cZSXyk8PACyIuxQw5qQoSjj9YB8+OMzz30GO1Gk3a7g+d7lGVKGIRUlXA5j9pFzMiDfMmyrN0mXbSDlA5pV56kKmzt9urafF1TaIUShHGIHwZEcUgQxJRFxea1LeIooiwqLJY8z9nv76O1JAxDThxbYrA3IAhCt59ozcT0JFmS4QeaNM1oNJwGV0nPRQ4oTVnkFEWKUNK9/zXl/ZaTR5HKvQe+7xGEgRsCGUE6HJMlKf29Ppvbu8zPzhE1IxqNBpevXKU71UVIMFXFA5cv8gNvWnWZhUoQhRFxFKGk4up2n3uiSc6dW2NqsoXna1dUFwVRHBBGgRv2mAqlpbsufJ8k+NOVUgAAIABJREFUKVianyUIQ4qiIvQ8TFGCKAkDRVEkFEVymD8nLCTDEb6WCKlRWh8eU+KQSnKTM+1rnmPXXWTX1tbotpogNNeubfHU2lXu+b4foRtbzj17mice/Tx33nmUbmCZnmqzv79OqCJGox6zRzqYKqfVWGCcVKR2i5O3RGRVRTIu8VWXVqNLMr7CeJgT+DAYbDLR9tnYWGN2qoVSAXONkyBKpCjxtMb3FEqrmpXjhkme9hDKQ3ghqfHICkEYTzPOCsq8pCxz1tcvMTPZwJMVRbpPnvZRVBwwWU1VHg7NUFEdsF0iBeiaQp5mY4QQlLWb9d7uNkororCBVIosTwHD7OI2tx3z+el/9SzvvvdNWGvxfXcmWiymKgmCiFZ7AgSUReq0v0oihUB5UOZjNtf3OX/2eY6fWkAJMKbE2pJ+b5MwiNBKMBrvU5UFg36PTnsCIwxlVeF5IcYKjBVUBjIj8cMQa4v6evAwlAjlOfq3coOnhx58HC9QNFoNPK2oTEVe+px/9jRxc54nvnKaq+tDhr0R+6MeS0vHiOKYS5cvEDdi9vtDQHB5bY3zzz9HI24QaIOUlqIomZo9xtT0nMsuv4GaeJ1IdWMNVV+T9Z+/+OFf4Cf/8Y+7e71GvUztCvzy7/kbrZfUpt8I/mT/Givt+vNcf21KOOr+a7TM19bf6vp6zd2NVEy3db60yTskSd6YE3LDOoCcX5JDV3/tZrD5S27iV3jO64+VN72BDz73Ez/xj3nf6qJ7rvqQuvlw5MbN4CY34sHr4WbgOy+9+evfDxq6Gxu7Gx1ErZVYY9hd3yRJU2YmXaCo9Dx83xXp6TirTQsMaZKCdY1ru9VEa83Fi9cYDBImJtpMz0wwM9lhvz8AQGmN0oo4CsjSnCDwaTRjlHZxB1de3GKy2yaIArrt5qGuxqE+lrJyDbKSkv7ATaWDMKAsSsIoqhEnnzKvOPvCFd75lntcoS2ddqusHIWv023jeZokScmzgjAMaTYDgkCzujKLlDAajYjCECxkSeH0TkLSbcZ0J1v4vnI24oGPkMpZ2CtFMkqdPirwiaOQ7e094oYzVpBKMeoPEVLQ6bRoxDFffeo88/NTPHb6Bc5fvMrK4iSPnj7LVKeD8AS+79Hb67OxtXuI4knh9I/TEx2WluYRWhwiiFEUIawliHy2t/bodNsEgY/SGu1JirxkdfUIlSlYWpwiqREDqaTLyZKSMPA5vrJIfzBwtE+lSNOU/mCEVpKqqpwpSxQigUF/RKfbwvc8siwHIG64UG8hBMPhiKqsaLaabGzu4PlOyzQeJSjPQ9dNlOcr+v0Bvq9pNhqkWQbS0Vk97btJuOcxGo2J4pBxktJoxmRZUevPJD/6ucf55Q/eVhs5SHTQBKFAqEPX0d/+qyc5u7bFz//wqptkW1E/3uUCxoHvXGALZ0DjKNgGJTXjUV4f2K6wbcQBay/uMD8/weW1DcIwIAx9TFXh+x4WwZEjs2AM1pYMBiO+fH7EW+44xuXLV/mO7/thnnv+ec6fu8B3LswjhNvdjLWsHl1wGpbabTMvSqQQblChPfzAd1l0OOMQcXiz29qptS4wlcIUJbJu7FxMgCsUpZJ1wSaxUuB5HgjXmHq+z3g45tSxY6xdukZZZsSNiIPYA4Fl2O+jpUM33b/nDE6kdAWusIKyqjA1MmqMM0GxpqYha4WQhrIsSEYJQRgeFsRCCqj1Zu24QaPZoNlqUJUlo3GfMAwpC/CDAFPT3g+cMa1xkQ1SyEMzI601CBca7Yxqrpdtnu/VuiVXPGdpzmiYkCYJM7PT9HsDzp27yPLyIvu9feJGRKfbQSDZ291jbnaGne1d+oMhOvBcYLh1pi2D4ZCyrIgiN/CyxoKAPEtJkoQobnL+/CU8qYniiNFoRJqmtNptpITdnT3iOKLIC3ytOfv8OVaPHcXXziimKHOkcO6deZExGo0JA5/PPnWa73rLKfb33Xs1Go1RUvLZLzzOxPQUxdlNR1NrxVx+cYOJrkMkfd+rz1TrhlfW8hcPPc7xpUU8TxNGIXma88SZc1y4vE63GROGiv5gSLvdAGvQXnh4Fmol0Z52bsOhx0Ha1kEu4Sudba+0bjyXW77HpSsvMjszS7MRowrLhy88x62vO8bskaNE0Tz//j98lLfcvUi720TKHEyDKA5JskHtMlrnM3oZnldgbMjs5CyPP3GGlZUV0mwf359AKZiemcBaw+zMPGVa8Wt/dIl7V+5CSVlnRDotsPb8+oxVGAuVtVg89gYJzXgaQchwvM/5c0+jgGYzQliDJyuwJcIaVN1MUTeyxjrE3VQVzzz1DMYI2o24/klZRO1Q6gchWEPgh4Rh7O6TsjqUNnzo9/8tP/GeOaQs+dMHd3jH677t0B23qk1r3EDA5c+5O93VE7Y2I0JYxoMe8wunkApaTQ8szr0TaLW6YA3GlAS+27sDP3L3PnDh/FnanWmuXDpHFLfJs4LTp59hZekoUCJxuZY68Cir2iRJKrSn6UzNMjnVRoiKPM+RQoMvmJicRPk+43LEiVtv5ejqCieO385g2EcqxWDYZ3JikstX1jhyZAUhJHNzCzz3zJPsbl4gjCKCqMmR5VN4QeDMiG5yTR7UjjcuC/zJn/0hP/2//FMmJrv1dXrQRF0HDG5WGx5Kgb6Bxu+lGcrXRUmvxifiFdHzg7r2Bh3syyVNL19/35u712iZ/z9YpioPf/1N1ssdMm9c73vvf8VH3/WGw4+//s18cON+4+tmjelLX6cjiR/K73CmMJ6nuLa1QaAFQaOB9QOMcA56jz7+DHmWcv7CGgLlwpyVcg589UTI1/4hB3w0HDFKEpIsx/M9Wu0GfhhwdWOb7d4+VuDoFoWhv7PPPXeepN1tIISlrHVZeVEyGqeEccje/pAgDkFrut0uaVox2Eu4urZDno2xFOxsbaK0ZXIiZjweMB4UCBRxGFDkBlNJ0sEIqoog8PGDgKK0h25UQRiClTSbTXq7A/Z2hmil2O/tMxoOmVuY5iBvqyrd80k8FApbunwnUVmyQcJwMGJ2boqyKKlKR68KgsBpDITTo9126hhSwLvfdg/vfse9RM2Yk6tLtKe7NFstdrb22dzs8diZS7UrJjSaISvLc7Q7TTxP40nJ1uYmipIyG1HkCVpKJifa5EmGQDDqjxgMEi5d2+bc+cuUVUlZlbQ7MS9e3cAa93rAstfbr2lsElO7NeZ5QbfbdsHQuCJ+f3/Is+deJGo2KKqKsBnSmmwSNn1n414ZyqJESUW73WQwGjE1M0FZVVRVBQb82sZ6c2MHLQUTEy1CT5GNE1rdFmEjwhoBKId4umMfKV38UpqkBFGAEIYPPPAwv/lT95JjQcUoL2Iw3EMIg8WhN0+cv8L5a3v88/cec1bvw3GNpDq3waIoardDzWA4RNbNkucr+oOEP/zPT3Lx0pajGAqnDbv99hXiRsCpU0uEvseHf+czVFVJVmQgDGVV1PeJptudIMsFVJqttXX+8ON/wvzcPP/Nj36QF7avkaWZg9eMrYsrW78213w/8eTTFHmBVj62crEDpqpq5Ko+jKWiqOm01rq4AKWlo2vVlEylhMtrtJZRf1hrgiUWp7kIgog8yVyWny84cWoZKVwEgrC4kPYK4kabynoUpcb3m1QVlHmFNVDlBisNUsN4PKrjERTCqHrYAMbk5FmJp0Pa7QkEGlM63aE1lspWaE8zOd2l2WlQGteoNRtNVE1RBA6HQNpzDpNOj+hQuyAInCbPSmzlYggOIhMOWQtFiagsVIZxf4SWyul5Ww3ydEyRpxxZnEUKTbc7RRjG2Mr9bLoTXda3tmhPtFlcmkdJQRxHCKXY3esxPTPFcDigKnKU58LgszRDa48obFAWhsEg5akz5xiNErRUpGlGlmeUlUNVi6ri0tpVhoMhd95xG1mZ0uq2GIxGjAYp58655lAJ6HaaGAz/xw/9EF985qJz7LW47EMt+e7veivf8cbb+e3hiKWVefZ2hwwGqctZkwohPcajhLzMqUVu/MO3v4Eiz9nb7WHLktFwwE5vn94g47GnL6C9kG53Ams0UoZYqUAqisKig5BCCOeYa149QvdqVnd6hjTL2Ly2zrkLl1hYmOboyjIb2zt4UYt3fvf7GKYhF69Irm7lyHACKxcZZiHF2GIqQSn6ZGaXWHmYQUHXL9nZvsCFa2s88NBXeeR0ylPP7uA35hmkkt1RRj+TDMYF/XGJ8nxKY1HaR2iPygqywlChCaIuwmuSiiZBd4H55aOMRts0I+jEJZ2oZOvy09hyn07DR1JhS0d9lkKQ5xkSwXg8cEZAlUOpZ+cW2d28RFkkWFOi/JjSaKR0e5ixhrxIkUpQFhlCKHr7+4yGY3zlEfsVgfSY96dcE1VTsEXd2Akpa8Mv1+b72neXQj3ApjBEukVpt1k82ibSTXyl0UKCKV0AupZoJGWeudftKSpTUOYZp269kywdsbRyAt9TdDttTp44gikzTGlQ2sNIdyYJoTE1Ao8QdJsSaUp8oRFolPZRpcIjxBaK3uaQ7fUBD33+ES6vXeH558/TbLSZmVkgjJusHjtGEPp4vo9WknYjphG1yPOcRnPC5Yd+EwKexza/yuqJo4cfHzq0f83849fWf8n1GnL3LV7fjFvmyz93QLF8pWd4ua3sq7ab/TrN1o1N3Y1w+c/9zP/Er7z++Mse+7UnLeL6KP6vf+0V/n743AcKX/vKz3Pj5+tejwvnL7K7s83S/CzNyQlnmFC5RsZXkizN2B8MGY1SPO3cD8ui5LFnztFtxPSHCWdeuMpzl6/yulPLSKWoSqeF29npcf7Sixw7Ok8cu8nusD8CY2k2G1gBaZo61zhP02hGWAtxrYvzPY3ne/R6Q+I4otVqEAUh0xNdkBVeXcC2Wi3azZC4EfDHn/4KcSAJfFe0fPIzT3L3LQsEgUdvf8SlK+tUlSXQHgIFVpClzpUyCkMajdhNHQOfXr9Ps9kAXJ6QC2i2jIcpp589x1fOvMDJpQW01mRZ7sxaAp+ychPTNM341Bcf5ej8DGmakSQF7U6bIh87TYanQVqabeciiIUw8GkEEUePzLjDyKN2zZRkWUGe5OR5ytRU273PxhA3IsrSHroI7u70aDUb7Oz2ue3EcTqtFtpzyGMcN5HSoLUmjALyrHT6q1aTfr/POEnZ3x/Qbrfw/ABbGYLA5aRp5ahX7XYLP/TZ3+/jh86MoyicvqZZO6eORmOiRuzQkzpIezxMKMqSzc0dGlGA7zl62u5Oj3anja1z2MrCIKxiOOyjpCYIAxAVSZrieT5SSf6HR5/mQ//oKO3YheoqHaI9D6QmCBoYofjv/t1f8J67BG897uhHSh3QxJxTaVWV+L4mS3O059FsxAghSNOUdJywuztm0EuxtuLo8iTnLqzX9DDpGggc3a4RShpNl+WntI/FousgXIHgVx+4xvvedhvvfOMd/M///mNsbqzzzm9/O//sV/8D77/zbjACrGQ8HLO9uUO72yLLHS2u22wRRj5F6dA8qVxmXFU5GpCpKoQSdXNT6ybq35V0hVmW5XVEhcQYp0uzDuLjIGjc5d1d313DIKLfHxA3I8eYqLVUFhcvEITRoZbMIX+F06s5INA1YdY1npT1ZFhakM6F00UoqDojzWXiKa0oC0d1vhGVU0JTlinGVIzHRa1DcpRSz3PX5HAwdGhczVKQ0t3bouZ1GGPY3d4lrjWipnD0t2Q8RljI0ozpuRn29noEWlFVFZPTU1y5vE53okOWpezu7BFFEVeuXGVldck1k8YwHIxoNmN8z6Pf3ycMAqdNrFkTWZazsbGFEo5Ga4VkZfkIRxbmeeBzD3PrLat0JjpoX7Pf6zMajZmYnGRmZhotJf1BH6EkH//0Z7j3zjvxtCLUHg88+DBz091DlgBY/uzZx9m9tsHJ4yuu0RcW7XlUZcVvP3SOd020UUIxM9WhKB0ynKQFvd0erU6DaxtbRGHgKOdC0uk0KfKCOAyYaTdZXpjj9XffgtZuKLC31yeOG1jlzIiUcMiTH3hcvbTB9OyEo7sdnDzfBHJ348qShN7uLv3hiKyy2FLw6199mp/9H3+Kk8dWuXj+LMtLHWaaMaXp44WGP/y9z1KRcNuJo4xGA8Kms+aP/S7txiSjUZ/SWm656w1kueDY0Ts5//xznLplBSENX33yK8zNLuHJDKVhrnXnIYJiEWjP3feVgbyyZFlOiZM0GJPgyZJ03MOanEbcYOnISbRnXeNrHRUuy1xMjOf7h4O2A1QeCzoImJ6ZJfDc9XzmzNMEcQdP1ai1Uofvr7CGojQEYYM8y7jv7n0mWxWPnil4+63fD+Z6RLdSirLMXSNlnbZRWEFR5HX+aj3wQ6DQyBiULzEjsFSUpjhkDIxHA5TyGI0GaE8zGg7wfB9PK/I8ZX9vk+7EFJYKISyNVgNTFY5uXbNwisxFsqRJWrOxLJQFwsg6NkXSHw0QsgRKLl86Q2tqhmHS4+6772ZqcpHpqRmCICCKYtI0Ic3GjMcJ6xvrjIb75ON9GnEDL/CYm18ibnYQWtXN7k2uz5vUbL/+u7/Kb37sN7A3VKIOTZWH2uVX+t4DKdDfBmXzb4v2+Wrca+HvP3L3WnP3LV7W2p/H2kP6xsvXS+iHr/C5gylTXakc8oydW5D+2v/+jdTLl//6+q8dZ3P90mnNXY9+jrCeMh++5q97I9qX/PHS7zsgttyMlPky1O6QdmkPG18BWOl4BxJH+3ji0afY6fW49dgRuhMdrPLJ8hJZF+vWWs69cIWj89Ns7O3jKcXy8jzNVoPQ95iYbLOxu8fq8iynVuYZj1NaYYcsy+kPhsxNzyAtREqRjfOaR6/xwpA/+osvceepo+zt7tFo+LVjXoxU0N8f4ilNFIT0dvbBFqRpPbH0JIM0IfRDPvWFx7nt2DJZkRPEESjNLUcX8T2J7ytUEHB0aZrI086xTEpMYRn1c6amO6TpmCD02d7eJQg8lKfrQhmsreh0G2xsbICt+K1PPcTiRIdOOyYIFItz88QqQHrg+ZrTT18iKRIW5mZrOpJPWRVMt5qcee4qK4tHaLZjpGep0opLV67VxhKS3d19Wp0mee1KpkSJwZJlGZ7vaKnPPX+J/f6AoysLFBRIqZHSY3Ozx/ZOn3a3g/Y0T589x8qReX7/T7/IG++9leGgz4NPnubW48vOvW80RFpHEwujkP1en9K6Bi5uxCilSZKMbqeF0IK97T2qosDzPVSgaLdbzpIeh4RUhWG/NyJPcrrdNlmS8YkHHmZ1cQ4lFUWWMh6OEALCRozJC5pxgyiKubaxSxTHxI0W0tMM+0MCL0BYg7ElkoqK0mk/MRTFmL+8+CK/cnmT3/gn30UxztjtrSN0m4nZWdI0g6oiy0u2hiXvv99DYwiCEM+PEEKR5xmVyVywbk1l1DqoD2ZXrCsEtjRMTjRZPTbN3GwHITwmOxG+r9nrD2lNtJCewtMeE1MtlHJC+jLPD2mVB/fqx7+8wfvechIrKz72+bP8n7/0L2k3Gnz4o7/DB+66m7J0mq4vP3aa02cvc9vJFWxl0UKiPYHUzjUO6dwp+7sJH/1//pzXHV8iDMPDXaE4CJY2gv29PqLOFFRKIb3AtZpSYREgJILCvULjGqHxeOQ0cjLEYmhNtcDCcDji2toWE+0uJTlWG5LegLJIEJUhGYz447/8KxSGyckueVJQZfbAtYjKGqSq8+eEPGy4MAdZdw7ttRWHtFhPa2cOUhSg3H6uPL9u4BQIZ6pkEUih8MMAt7O5KAKphMtJNCWb61s0W03iRuT+3RqdMtblOyGFc4GU0Gg3CHwPPwrY3NxmYWmW/f4+URzSajWxWKZnJinykrJ0lLV+f+gavcoQ1ZQ4PwjwfR/tadYur7N8xFHzpZZUVU5R5PiB5sTqEnmWI4Tk7LPnmZ+fdREGVQmiIs9y4igiTTLecMcdCK3wIo8gCFhZcmZR2vdRfsBokPDkcJP/+vve5eipRUkQuPdICMFHP/8sH7j1KEoKmo0mWkMY+2RjwZWrG8zPzPDMs5fZ2Ohx+vkrVEVBVaQYU6A86RrjQCK1Q5aREDdDrDDIqqahSafDSkcj4sjHjwL3SUCIm5O+bjyjXn4avvxznucz05lhMF6n0/aZ6q7y6f0e7ShidfUE61tb/MIv/iueOrfHM+c2uO3kJPfds8wdt97Gi9cuMzE5jdYa7YX0R2NUGDJO9mhEISIfszgVsf7iGe66607+/NOfohm36HQXGfQF19YL8qpFi2NUFeRZSVpAXhoqA1VlaLZazlxGlngiwRRDRFnUDA+3Z0rl6IVgsVVJb5TxhYdOM7M4hVYCKTRlVR5GllhAGxwt0VQIFaN9F7Ydhxqp3H2dl6WrQ7THtStXmZqcwg8ETz/xCb56YcQnvzzkHbffj6c9Klvh+aFz3BQgjURqTWkKTOnQQikkWnsYU6G0G6jkRQqZQvoGKyAII6ilJr7nU5iSqelZiqKk1epgbeWif4Si0exQ2fJ6lIu1NdU6d4Ojyjhqr28RUvPYlx4nzTKmpqeQWmCkpTSSrZ0dorDJaJxR0WBra5conuXZs+e55dZbUEowGvYRSiCURzJyrqKR7zMz0WV76xKYHBk2mT9yDOn7L5HqHEpZXuZrcFBffegjH+L/+u1fewlb6rqjOi9hX30tyY440BMdrgPR0df+dVP5kL256/urXTc+lzHXTa5evv6+N3ev0TL/jq1vJNRR1Y+TB9/3DYlPv/FljPlrVMr3/eAH6DYb3/Rzfj2K5Sutw5dxyMm+4XUKVYdoGkRZ8vnPPUIn0rzh9lO05xYodMS1tXUCa7CV5Y8+/TDnL15lqttifmGWW1ZXmF+YZXdvACimpyf5+Ce/xMrsLL6n6Uy1aE82EKEiaPgsLc/z0U98nv39IfujEc2JBn6k2drdoapy3vc9b2G/32dqaoIoioiCkDLPKJICgaQ0hrQq8JsBE+0mzTCgqp0VO60GeVHwXW++D4QgCHyScQLWsrvbw/NdQeP5HhMTbXb3BiRJgSnhoa+eY3l5nj/51KPs7TihtVSS3d09SpOTjMdkWcGon1Fmjtcfxk3e+843s7Awz7XNHUos6bjPg08+7SbtwzG3nTjGLcdWKAvDc8+vsb3RIwpjup0md91+FKGdq5wQluZ0i+Wj82jtofHQpcdzT17Gs4LQ99jp7dGdCGm1nAGGtYZTJ5eYm+2SFxmNRtOhMdbS6TSYnuyghEQiuXV1leEw44ff804uXbrK5GSXU0cWKEuXsdfutmh1WyipGPRHbGztMR6kDIcjsizHD3xCP2I8LDFFxtRUi+5EGy/ysUKQpxlXr6xT5CW7Wz3+7POPkqYpF69uURaW4TDlu992P622y38bjhI6k12abafRbHYiwqaP9hSPPHOBZJiRZglpmhyGUwuh8LRPELcJgqbLlSwMl3eH3Peee/g3P/VOlHY6EB3ETE9NURVDyqKHNBn/2+89zNb6ecADFEppqsKZGDi0C8KwgVI+VYXThwmXX6nqDMYwDtgfDNCeIIw0fiDwPMVub8Bkt4UtDdJKyqp0+h2p8X2HHvqBQwYc9bm+D4UlSwo2zj/No19+inRsCfyQxx5+kmyUMTU5xX2vv53vftf9hGGEUorLay8yHo9J0gRwaKMUgrgR8ePv/R44cJzEIqQLPpdSUhlDs+MorlIdIJWmLg3cIEtgMeUBVdtSlaXTt1UGK0pKUyKsQAtJIww5c/YCw71dylFKPhiT9LepxiOHSDDmH/6DN3Hy2FFsaYnCiCLLuXLlGvv7/dqh05k+jIZjN2CSTvOXFyVCaqwQWOXeJ6dxNFRldZhtp5SHYz2JGl0wjpRaD/DyzJkymMoQhH4dmO6QyU888CWyJK/3U0NRZkhTIYUzaQobDQpjydMEZV3kiMkLpqcmsCZnZqaDFgJpYXt9m+31XbRSWGPY2thhbnaOKGwgkAz6YwI/ZHtzj8984TGqAq6sb5Imbpjwpw98niAInVYWQZ7ldQEpWFvbYHdzF4Wgt7vH3s4O1lT0ensoIejt7fJbv/dHlKnLLvvcQ1/m/LkXSAZj8jQjjAI+e7ZHUWTs7Gxx9epVChePhpCSTuyjEChPIHRFrz/AGEPcUtx5x1GErFiYadONI8gNS8tTfOrh5wjDLsqLUYFH3IicNlLU5xSCYX98uL+sr2+7n1Et1bI3nEV/G0Z8Rmh0I2ZxdpHh3oAnH/0MeZnxtm//ds5cuMwdd9/LP/vZn+bf/uZvEUy9nv/0BzucvTxifdDndSvHMeOU3sYOgYxYXFhmsD90xjBZH+0ZBoNNVpZnePSRv+Jdb/82FBXdZoip9nn6mfO88fXLfOQv/gA/CvBCnzAIaUYxka8IVIXNe1D0ENWYKhuhTIUwFbYsMbZESEtlSrTnjEyE1jQbEwTUkgUgy5LrmZdl4cLqReXMx4IIQUGn7TPRicBUSEBag7QGYQzDJOXcM5dJEsu/+PivcOLoG7h6CX7s3g8gpSAvc4rSySOkES4vThlMmaNReLV+sKpK0iw52L4wsgAb8dRXnmFsSjdAyDJMWWKrEovB9zx2dzYwZUFVFkicKVhVudfvaZ/KKozxkNJFKFXG0S8r43TCVV6gsNz/bW/g+OpRcgtGytoJFI4tLdPr7bG1uY4RmlZ7lgsX17jvDW9mZ3ubJEmJGy3W19fxlGJmdoq8SCiKMaOkz9TMHGFrgrjRRfsuu9J8Xedxt37+P/4Cv/u7Hz78+JsJHJdKuiFI+ffPVfPv+3oNufsWL2PMzwvhOOc3PQG+DpJ2KNiuCxu43tq8mgZJ1RSLG01XbuoudJOvX2/CHIL3/vd9kI+8894Djeo3tG7W0L3aBu+lDebBlOc6DbSq475sVXHxwhoTrSZH5qfRvo+RzmSiGQaYynD2/BrtOEQAd95+ktE44c8fOk0nCuqGooXnaXws83NTtNoNEKA9xaifYTF4vubk4hzsDIFrAAAgAElEQVT90ZCllTmuXdum3WmRZzmNRshonNYhzZJ+b+AarL0+7VbLOZCFPp6v3WZfOmOKMArY2NzF0wrfD1zwOo66YWqB+db6Hpvbe8zOTtY5Lg7vbHZcQ6SMZb83RCvJHXedqCmYHlopyqoiCF3+1sbGLloojDBopWi0WmRpxuRUl8DX7Pf3uOvUUdqdmGYrBKGImxGXLl2lKCoWF2eQWlLmOVEU4oe+c1SjdtPSiiItaLdbVHmJrzUGZ6cdhp5znmyE7PfHzujFGMLAx68b16qoyNIMqSStdpPRYEwYBjx79hIvbu4SKMmZi1eZm2wzOdkBXMZekqR1uLNFIhmPUo7XqB7GUFUlf/TAlzmxMMd2bxuJcxlUvk9ZGTyl6LSbXLpwjcXFWY4vzZLlOTMTE4yShE7HGac02w1ETW8V0k0Uk3FGfzQkDEIQglhrZuemCELPoTB1bALCFemmRgdNVfIjn3uM2++a4t7bjpHmYwIpOPf883S7HeK4jfIseTbmoaev8sG3TrEwPY2QtkZUKkxZ1Qewm4xXlT3UtwkhybPM0ZuEQGnXSCnlzCay1JnGlGXJ3Nw0+/0R43FKp9Ny9xg47VT9f5DK0UtFjZ7cvRIyO7VAkuZ83/238U//9/+bH3n/B/iB7303P/efPsIH77kHKQVBFNDqNg6pjjNz02hPOmdD62haVWVcdIIEMHieX4dIOw2tsdbRT5WqiybXSGGpHfXc45R0lKuycEXa/n7fIRpaURUlQrivZcmYMs+4645VqjJhMMx44cKL9Pf3mZ6dBq3wGw3iZpft7X2Xf2gBK3j2hQucOrVaN2gOhdCePnQq3t7c5pGvPMXxo8tY4Rpht5W6zVNpWTcRdf6gqClPuCL2gBonpXTmElJCTVFztE6nET65vER3osWgP0Rrp2XEQGUMnu8iJLRyuXjWWvq9feIoYnPLNVfuPdcYC9vbu0xPTyGVZGNjk0YjJoxClFIUuYsLuHZtk6XlIyzMTDEep9xy8hiVqfB9n5NHl107buuhoIA0ydFasnxkGiEFjUYDT/s0G22SZMzk1BRSSqIwZHaiTVhT3I8uLbK5vcP0ZBcvCNne3OUPnn+WH3rLCTqdNs1GhPY9qvpn/sATF3j33AxJkiCkJQ5CR421JZVJMVXF1FSHmekuJ1ZmUb6itzdifmqqbuoOwpKvM0IQwqFSdZB5u9MC4/ZMKZyxiPK8g1Pqpofiy1k5N37+ry2No+QmI9J0TNtX/Oa5i7zr7W/hrnvu48L5i8zMTPP4k+c4f/EJvvqVRxltxZw4cRSbXsTYgonpNju71+gPdvF94fYG4ejGZVWR5RlHV1bAGOZmZhFYWq2Q5ZVFGk3Lb//lM7zl5N2EUeD2GGEwVYHAYMuKwAvQygProliscWeQxdHhHU3YxQOVZY5WHt2pOfzAOtaJDg/pfta6yAtjK8Iopixrh2ZPY2s9ra2NUWT9M5B+QKsxQRgpCv8ZvuP+2/iPn7/ED77rXc6BU3hoFWCMoT/s17pLhRQKUxuFHbiTWmtryrbE2ApTas48fYGJ6RatMHTnLuIwz9daW5s2uUFdURYYW6K1TzIcAopLF69QmpA4UjewkjjUQssbairtSdDaDaVxQ4WyKGm2JpiYnqPf77O5dZU3v+1dTEx2ef65MyjPYzQeszi/iDGWNEuoKsPC/DxXXrxI7HtYqVlYOurcOpH1fnr9tdx4mR5IXn7p93+Jj/3Ob/ISE70batMb60ODQzblTcCFA/+Dv17bfYMF443feePrudnXXym3+eXfX//9lYxVXkPuXlvf0nXwAzsQtP6XWhvrmyz5X5sC+rXWq2SCvup14EIHoExFlSRcvrCG73nMzc9ggpDCCmxZuMmfDkCFnFpd5vYTS8xOtnj4iTMIpVmdm0RimZ+dZDwYcnVtndfddZzBeERe5M4lLzFce3GbP3/wK1hjaU40ueW2Y1ihWDyyiKksE90OSmrytEB7in5/hO/7hH7gNHRVgdJAlTPq9cgGQ2TcYnJulsE4w9iKLHHTxKIoGY7GSC0xOJe5yYkWK8vzCO2Ki831LZrdhsuYikOMqLj11iO8/t5VKpM57V6gXVCwHzlKTF7RaTb5wuPPkI/r/1uaoZWkt7vLxvomzWaTygq8MADtgsWHwwHLy3NMT7WcNX6eEoYR4NwK86ygLAxlXiEq6HRb9Af74BtaUxGNRkyeW8JGh53dhDSFqckp8rwiTQvStKDXG7K2tkEYR4e6uRevrpNmCbs7u5xcPcLsVJuw4fPO++8mTQtntoHLF4saPkXhCs3//LlHicOA9Re3+L1PPojBgDB87zvuIWxolleOEsUtpPLY3djDw4nn8zRjdmaKLzz8NHt7fVqNkGYnYmFpBi9UeKF2OVyVQSgFSpMVJVmW0e50QEiqytBqxZRFzrCfI3DmG0VRUJmc/rBHv7cHFh66doV//ZNv58233+KCycsUUwywxbhu7DVVFfHwk+t8/MvXMLYgGQ1wLuKGPE8oy8QVV55iZ6fPhz/2RUzp9F/GumJ01B8hcGYdxioGw4w0cXTi/d6IUZLR7w+ZnGg5O/2ixFpDWRqefOoy1tZFV61fEQI87eIkTG26tNPrM9Xt8Eu//C/50L/4BYzE0UGtwVYZ6XiAoUSHkiRNkdKjKJyessydu+e4vv6NqUDWuXFSuMl/VWEQWFG7T+LMcbAGXQeUS+FCcW1l0dqjMhV7vT3Go4SizrYUUqGUxNoMIQu2t65gzIg4jhmNCoySWG1ptKfwvA4bV/f4zJceY29rl62NbT79mYd5y7fd5xBR6woyS/1v1xTpmekO3/G2b3OBxsYgbMF12hHXKeiuiwBbm0AI2Li6TpE6h0pTN3pZViCUvCHX06HyE9NtjDW02k2UdpmChQErnLbOVFWNPDiDmbjZYjjOaHe6TM8dIYraVEi079NsNesQdPezbTQD8mJMku7z5FPP8GeffZCl5QXKqmA0di6veZGR5wnPv3Cera1th66WFYP+sH5/DOPRmCCKmJicYJSMCeMA5Sta3S6jLGdnb0BlXY5kGEWgHe280+5y5cVNdjd7nDt/mXeMDOtXtxmPEkdflaCUBQy//BNv5+m1S3ziM49w9doG1kqE1Y4CrQP8KKKoLPv9Ac9dXKNKLN/5jtdz+oVzzvK+cA14UeSHxZ+p3Gg1yzLAmfk42q2jBLss0r/FVVWgBM2peY4sHSdsaBamurz1nhVM0ufsCxdASUabl9l98TL/7U/99zx3ZZ1/82sfZ8ACO1mXrX1LUflEyicfDshTSzIokUZzde1FGmGMLXsUaZ8rl89z9fI5inSHyXZJMlirnS0tZZYiqhwtIcvG5EWOVZqsMtd1bEIcxoQcoDtOLuEGLr7wECKn3ZA0QoW0LjcvTceOthhE5FmKkYIkKxiOSoyR5HlRsw4ApVF+iMHttWKcMDPro2TGj3/vLYjmZX7s3h9y+XlWOgdX6dC6uNnl8pVthGrjYmM9ijJHaY2x1lE4TenuMeOhvYLX33eCue6UG8CVlXMGrgPU/cDH0x6e9pBC4GsfKT2stXi1i2ZWpDxz9jRlWSGErptLN5g3ErKiAuEhPYf4V0WJp32n1UVSWgOmJBv18ZSrFQJPsL+3yYnjtzAzPcf09Cwbm1tcu7qGr32++tUnePbsMwwG+1TGEMZtlPY50B1/rcbqFz/yizzZe5yPfOQ3XvVlKutB1Gvr79Z6Dbn7Fi9jzM8ffvDN8IVrnvE329q5YfHLzE5uhtzd9OvXH/dPfuIn+ddvvfuGx3+jr6RGA/8GE5yXPFtNiTkQaD/ylafoNmPmZmewSAorkFpCVVLmJQ9+6QwTnTaPnz7LwmwX39Ns7vapypLbTx1F4oJ2pRREoQ+1df/2do8iLdjZ6aGlZnV5Bs/TZFmJH2nAbdxJbWW/tnaNubkptO9MR9Y3dui0G246rGDQH1BkGQKLshYbNLDG0IhDhv0hjSjACMVonOB7Dl3xggA/CFi7uMH84jQIFxI+OdHBiLoARHBkcQZTVmRlhvYUWZbh+z5SCIrc0bvGo4T+YMTdt5/ghctX8KSi1W6SjhPa7ZjA9wj8hnPQwyEAe7sj0mxMoxETRSFJmhBEPooD/YzgwUdPs7q0CJUlSzPnjKYEYRygPcUXH3mK1ZVFiqJiYmqiNv9wJgV5XjI52SHwPVrNJuC0fnmW0YgjotAZjfT2R8zMTBLGPp7nEwYOAe33h4SRfxgIXRQlc502WEiSlNWlebqTTXq9fdrtmEtr60zOTCOFo10pJQmigLLIKUvD1maP3f0Bp04codmKyIrC6XCgfl9zknFKGEe1hsrD1wrt+0ghUVoThR6er3n08edZnJ8mjHyEsAyHQ1qdJnEY8mNfPM0PfM8pQgyBFzl6krZ4VKxdusTK0WMEjQ6VEWxuXeBH3zqJlRBEbaQWOH8H4xCbwLkIxlGLFy5e43W3LrtJs3bxAJEfOKRICrQOCIOQNEkJw5AwcGiZkpLBMKnvA8W1jS06nRYnjy85aqBwdL9xkjrtgpTsjnLmpheQSnH2uYvcdWqB7//gT3LvvXfxpce/wvefWMVWBlPlxLFPUbthauXVu4EzBrE4+ugnPvVZTh47QtgISEcZURySpqkL7xa4++3A+r9Gtsqiur7HHMAuxn3c7w+YX5x1eXc1epWnOZ6vGY32CQKNsoIo8hmnlmtbe+znm6wuLaJlBFZTpCm2yji6vMSBA1+n28YLHVLhDE5c7maWF2ilSMcjl21XZ6EZk4M4MHGwh0iEe9m1bquW68RB4FxDff9QGyOlG+gIIajK6hDlsHUrIoTg4JBwSJ9DdXe2ttFKInzf6ZvkQZPuKGXGWofMak3ciHnosSdohhGTk13GyYgoDiiKnNWjq0x3O2jt8jWjKERISa+3x/TsBNNTk7TaLcrS0fKiKKqvEUUUhSgVkIwT/Eizt79LECkEHoP+iE89+GWGwyGTnSajJOPR02dYWT5Cd6JLp90iDEKOLM5zy7FFVu6eZ3Nji1azQSUcvdXVmZaN5zd508lTpHnC5UtbeErTnAiQ0rkGCyS+5zPV7eB7IYPxgJWlGcq8+H/Ze/MoS8+7zu/zLO9291t1a6/uru7qVmu3LMsey6vAeAGzyYAXzIAZTsgMEBgchoQkx2MMOQlDJpNhTsg4ZM4BGzPGYxtjWxhjG2NbsiVZ1tLqVqs39d61L3d99/fJH89bpcUtyzKGQI4enTqndbvr3lt13+X5/X7f7+fLsDfCq3m7x76QcjdfzXFVOVW1jYNhf4DrKFY3tmm2G0859q4+uft2lzCCQkgEDkmYoEn46IUrLJ16hLGpfczuO8i+hXkef/Dr/LOf+WU6nWnmFmJ+9Ed+gM21DX739z7B9Ycn2bdngWg4JPBqPH7yCQ4uXkOaJrTbY+SFoVbVKOmhhSIIXMY7dUb9GEzOW753njNH2/i+g5aW/ms9oQ5KK7q9TatOkLaRkaSRjQXJCqtO0NaLL4RC5KB0CaIhQwnrS9VaEyURGDudN1IAinNnTtCZnEZKhdY2NgBhZY8ARkg8o0Am/M6n/oCffMPLeNf77uZHX/M660g15YRSZBQmR+By5sQpaq1xLpw/RrPVsYVrmtprfZGhlfW5ZmmBkRGOo1AKpNC7Ieu7MKdy0mhlmIqisN4+WwgmFKKgOTHD1Ow8ipwwGmFMjtaOPY2VRgkHx3GJ4xCDzdO1lgxj4xG0y9EHH6Beb9DvD9mzcJhRlBCGI3vPH58AYWFdzXqNC5cucnDxMAIY9Ldp1Go02h1qjeaTPIZnHIRCQJrm/PYf/xYf+9iHuOnmG3dlyM+2sXs6lER8B/u4786+76rPfLX3/FzewKs8zz/2yd0Lxd3f83pqcffUsXGe599k7NzJvHvaozsSSZ7pNPv2lilf92qZdk8dZ+/kkxS7yOAn3++Pv+Xt/OFrXvzk932L87Tci3zTv7l6B+k5fiIjvvm1xJN/V+SGNM74T//l81wzP0u72SYMEzY3uzajKDeMBjF3fekbHJjv8PDxM7hKMT3Z5isPHefmgwvUfCsTiZKEPM9pjTVRjiJPDY6SZHFCvVHFD1ya7QrVik+WpORpijSCKApZX9ugFnhkWUqjHtj8o1ygHYepmYnybRtyciTWyF1tNNDVCt2VLb5w78Mc3DNLJXChMCRhwWe+8iDXLM7j+h5JGOJISXtqzH6ehUQWgq31bSoVjzyzaGblKGsE96oWNiEFppS0KK1xXIl2FZVqHSfQTE5MEFR9hMgRCqTjAw5Ly8uEYYhGo6TEdSR33f0It9x4COVoWzBKSZba6csf//mX2D85waMnz9FpVtFa8ZVvHOO6gwtWviEVs1MTNouslLi4gUdaBtn6nseViyucfuIyzZpDXhT0ekOqjRpJmrF6uccX7jvKjTfsIzcpo+EIqXL8wLGhyVqjHIXnenZq0B/SHmsQVD1qjYBms06WJ3iuj9I+lcBBKcquvpUZAmjfI04y2u0mnfEmWZYSxykVz+PypVXCUYwWCq/M/ovCIcLkJFFEnhmUIzGZnay5vosRknpV4QeKPE9JkgTPdTEF/OTdD/Phd/8QY4HPYLhJZ2KOR44cYW1tm4orKYoc4Xn8zZELfOb+E9z56v1kUhJUx8sppLSZhJlBKRclodcb4LoON12/j4IcpQUShSkos++slCozKblJkVISjiIEkvWNPv1BxPh4k0qtius61BrV0vVmbBC1kAihLOjE5MRRxHgz4H/+yKN8z60H2Ld3lrmxBid7HtfdeJjNzS1uNgXS9ZDKxaCtLyXbKW4KsjQlTSNc1+XRR05wx6tehtI2+LxWqyDYkUHZi4oygBIIociTDCUs7KkwOY6riaMUz/Uo0j5xNKTVqhOORmjHsVOpAk6eOMvd9z3AzYcP4DqKDAejXQLfSqvHmx2a9XG0dtjubpLlCddet4j0HLSrcGSGoMD3fIRjJWkmtaMGqa3sVLrOLpwnyw3K8RHYbr0FGhiMKLAVq9mxpmEMSMdBaoc8A0EZ2o5t4iRptiu3dbRTEo0FWjtEccxw0MdzXCtTLyi9kh5pGKGFLYQfefg4R46dYGH/PK5ria2mKBj0B/iOQ7NRRynNaBTh+VXSNEcISbVmPWmFMVSqFQaDIYFfQaLZWtsmTzN8P2BzY5ugUUEqiec4nD9/kTQLKYqUWq2K57jEYUocJxRZyrUH9uE5DmlukEbiKElnrIkQBdu9HtWmT2Eylq9cwTQz9i3uwSgspAJDnmRI4NzRy+wdGyMOc8bHWjiuPV53gDDDQchgOKJS81Ge4qOfvp8XXbufOA9ptGuEQztF6W50qVer9AcDKvUAgbQSTGkbC93ekAeOnqFZDWi36nZSvEN0fJbb1be1BEhjMEWOG7ioaotPnzpL292iVs05evQEW5sRe+b3o30H5ea86MabOXHiFI8ffZCf+emfYKIzxfZ2n2pNkJMw1ZlgY/ssORWErFOoEWmcUK006Pd6KJUxCrdxGhrH7ZAWOe/90Gc40JgmN6mlGksQpoC8IAiqpQ9OkmUxrvaouDXyLIeSAyBLP50QFuqjtCbOCpTrUWCjAVztlj5bey+TwtCe6ICwrzPo9SwsCUrJv5WVG2X48j0P8uu/NMcffPwBfvZVP49SkiSNkVKQZQnSlDJIkzM1NYkSOf2tdcbGJq1sWQhcx92VSmJyhDQo5SGF9TLnppzolR2XLMtsUVfKwnekp3ESY4TB9e1xojF4ynZZHKVRyhaIylEUuVVaFIX16AlAKEmSFozCGCk1p088hN9sIb0mV1b6nDt3gWF/iKsDOpOzFCYjCgcEgU+W2/3c+uoFtBmhRU61OcHY1Gx5HSr3Yk89Eo3hfR94Hy9/40t497t/yZJgAVPaC57Ms3vGeqpE8/l39in17M/4ev7PY3YMr0+x5VwNFvg0m9FV1v8fi7sXZqn/H668KHZ9c1dbqgy1/oe0Hv7Gw7yuVXnaY1ar/vye5zvx6VH6N57+iH19rSSuq7n/wSPMj7WI44y7HzyO5/uMjbdJ4oQL56+glOTO77ud2YlxDsxO4rqKi0ur3H7zYXzfKzH9Bq0V9XqVpaU1LlxYIklSLl9ZpdVuIrUmqFVZXt0iz8FxHZIsw/FdXO2QZdbPFoYRQgjWVjYtyVRKBr0Bo1FEFMUkqSGMU1zXK6VjBY1Gle9/zUtxHIc4zoiTFMcTvP72G/E9h+FgaLO2DESDEUkYITCsrW/xma8dodcPcRybfZWECUpYIiaF7ThubfW4cmWNLM0Y9If4vovvuzZ7yLFSRdvR9lhbW0O5hla9zpXlTYZhRGEERsI7fug1pGmKKTKgoChywkGEyA2vvfEQLoqGCrhweY00y3nz977cfn65DYh3Xc3WVhchBXEUEw9C8iwjHIUkcUKtXuHC2jqFETiOS7vdQklBliQsLM7xlje9Atd1bJC566KVw2gYYQpBFCWcOXMJSxcUjI03LY0Qu1EOw5A4jhGSko6pLXoaQa8/RCnFxuYWG+ubVGsBuclwPUVrrGkniGnKvoVZ2m2bGTcchOR5RqVSQUv7uQ36EVma2ID0wQiwOPyxsSa93oBeb1BONRz+xf2P8Ue/8j0WpY9gfW0DECzs28P11x/GdV3KbGi++Og5fuFNCyjhI7A+ESUgjiLrnXMs7juKR2htyIsEqQqMSTEmAZMDdgIRjhK63QF5nqOVg+v5VGtVhITZmQ7zsx2WVzaIRqEFsRQZjhaEwz55lljfTZERRRFCSPwgQCmHHXam0opqpcKx4ydII8mdb34dZ1ZXyHfoeWUzR6onMy8d14ZdF4XhJbfdvBt0HFQrZAZy8vJOXCDIKURGkadgcrSricPYZuVpTZrmeJ5Hltu4ksEgJMsyXN8jjIYYk5KEIZ3xKq+87XrCOEYqjwJp86Uch8OHD7F4cL/1LCpBu91iYqpDURhGwxApJWPtNo1Gg8FwRDgaYkzGdm8TIwpL5yxk6bG2EwmtHExuoSXCXsAwIseoZwT+lpvdnUmFkPb3FMcJWWYfcx296+8bDkd2KpgXRGFMnhYkSY4pyuzK3HD69Hk+/InPsrS0SlEUfOqv/oabbryWQ/v30O/1ybOCQa/PaDii0agzMzNl6bvaQnikgUG3z2g0QiC4cnkF17GQp0ajzpfve4CiyBmfGGNtfYNz5y5aaWaa7e7f9u2bZ7zTodFqgbGFe1Iev/VGg2arwfyeaebmJkHYEHglhJXZxRlpYhsRBxYW+bn3f5GlpRXSJCXNcowReEFAlhv+/flNlFZ0JpuMTdapt2r0tkaQGSSKarWK5/tIrYlGIe+88w5cz6VaCWxOX9VDCIiihDCMqNdq5CVZOc9sILaUknq9wktvPsz87BQAWf53YZmwyhFZb3HTi25AZgOqKuJNr38F++b3QZ7RbHqEUcIb3/Cj/NK//Ld88q6H+N3/40OcOt/l5MU11oY5iSioNGbI8za/+O4PoGQTkxZ0e12aY2MYrciFgkwTDUZsb2yTpzHzs/tp1No2/7BQCCNJ85Q8T9iREytpC5Y0sTmURZ7b/LrCoKVGSY2jHKIoxFEKYQxFWpBGCaPhEAps87FsLmul0dJGoNQqVYyQOG5gJYuFQZCTFYavrD2I4zvce3wEWpKnOVW/TuAFu15VYQye65VKFM3ioRtwtLSESyBOrde4KOy9NS+b30IKXN+1vkopLclX2OaJ63oUxhAnsY04EQLft+/PNs8hL+y1R2mF1PY6YH9P1vuqSv+rlDZiwU794OSxYwg0B6+5henpPWhpG9u3v/IO/sntr2bvwiLnLzyBUprTp09AYagEAb3uBq1GkyQe2eumF9hG1jPIkr/1wffxvg/8JuFUn4997E94+e0vRQjJT7zlnfzEj/8Ub33LO/mxO9/BW+58O8cfO8HW5tbfwTH9t19S6d2vF9bT1wuTu7/n9bTJXYnv3/GGAFfvMDxL5bQrliynbDuusx1fxrdc3w7M5Spdmff86q/xGy+94WmP5bnd3MsS6vH81k7H5tutDp/c+FiWgUAag8xzHj96kn0TYxw6tIjnatqNKrV6Fdd1WVla44HHzrBvapxBz2Y1JXHCwp5JG3qd5VQrVVbXttnobpPnBWmaUeSGE+eWmB5v8/l7j3B4YQ6hHQoEG2vbnD53henpcQsw0ZJwGFOvVWw8gbJTuaASkMQJvu/xsc/ew/WL82hZoIMKVd/nyuVVsjQlCiPSNEUIzcZ61+aVSYXjS6pVDykkYRgTp7Z4NEnC+YtLfO7eI9x60zW8+MZD+L6HUg7Hjp7h6KlzzHaaZGnOyTMX6Iy3CXyfeqPO5+95gEMLs4AgGiU4jiIvEoQEk5VABweMyTh/Zo1TF1ZY3DeD67tILa0nb2sbz7cSkygcUSiF9jWNdp3hKKQz3uS+Y+eYHmvQbNestEwqJLbz6fuevXm6DltbXWr1Co6jicIIx9XMdsbQjsuxU+eYmhxDUiApiJIYyHF93/pcCsP582v0uiPGOy2UUtRrVRztMOr3iaMYUUp7TDkSiaIhSWQ3JgZDUQiWltZpNWxOnu+51OsVK5HBUgkRgjCKURK06zKKQoSA/mBIvVlFCsXK8iYTE50yXDnF8wOCSsUGUKc5RWGlokppjIGf+eqj/NGvvgHf0yjhsnz5MpOTdXy/jtYS13MYbK5z8swZ3vPJC/zuT3VwnTEKo8sJY8Fga8UWV56P0orhcIjvBeUEz2c0SmyxolzAgmT6vSHVWpVarY4ROUrafD/X0UTRkChKGYURWttzOowilDK4rkZrSRJHSEmJMHdLDaH9bP/gi1f4kZctoLViY22Dt/zqbzIWjNFpwv/04U/wthtusJ1hIRGldFJaraL1rJXeph2Cnuu5Vm7nKCvaNJDFMdFwiNQC7bm7GyNHabTjkOX2uXRJkZT4eG6VPBekSU6tXsMUEA66+C40mwG5UUjl49jS6zIAACAASURBVFYrGANJbNha37ayX8/myg2GI1swZjl+EJAlNjojyword1U1pJEEVYc4jjB5hjTYTMDcIJyMwsSgQ0SRIGRBGIa4ToU8FUhZ0vaUDfuWZUGHsP66SxevUK0GSK3KvKwnAR5aKSgKi1rP4K7PfZnJsTaNRg2lNAJDEPgkYcThaxYpjOGm668paZ0ZExMdMIZwFOI51ke0vdVFuy6mLC662z1mZuw184mzF3n8jIU2NBo1MDlTY22iOOH8hcvs2zdPo1FnFIb0+n0q1QoCWFtZp1Kvocuc0NFgSJLEjE9MEIcRCIOUEMUx7WadRnkuh6OIL937II8/cYZD+/bx+Mkn+F//8pP88x98BbVKBc/32druWo+g4/CJe5/gzdMthDTWo1kYKCQf/PQXuXbvHMdPnOMrDz/ONQuznDxzgUuXVpmebiOkYXV5i3qriilyBoMRgecwjGJ7LU9TXNcpN+8Fvufhug5ZlrG8vEpncsxSb/+Wsszd73mKwucj51f49V/+pyxMj3Hlwkn+4lMf5faXvhzfzclEzAc/+HF+//c/yG2vuI1Xv+6N7Ft8MR/4z5/lq/dd4i8+f5IobnLpSoV+GDEzU9BoKw4s3ExWwJFjR5mcmUEoH9KIwWiFakVz5x37ec8H/pLbr7kZY3KiMEQoiXAUhYQsiQGJEaAd14JFMGjPozCQFQXLK1dwvYr1yQmJdBzyPCMvFMPRiGqtbmFxUpKkofUvC01e2GMhNwW9qODS5UsEfrMkymasnu7ys2/v8kv/5hj/3Zt/njwLdzomRPGIwuToMvPSUk7t8xUmp8iTMnfSglV2dyPGUoV16cWzFE1j/7/03Alhvb5a2/MvTmKU1qVqxmEnEkNrF0xhwWJS7uYw6pKauzNFi+KwlD1XrKLE1QhpPdFRFHP2zOP0hhnze/fTbLXZ7veY7ExQCQLqtSa1Wp2iKPC1ochjhCmI05SZuQM4gb97LH3yro/xp/d+lHe87a3c/vKX8Sd/8mE+8icfxX2izeaFPq9/6eu440V3cMctT34Vm7B2qssvv+dfctttL2GsM/b0/eNVJmXPNdUTpR/56XLOb+/seGoUwtUUaM/yTd/y/e3sQp8ar/CPfXL3QnH397yey3P3XHrhpz38lL8X4snT5LkCxL/Vc36r9WN3vo0/ePUt3/S42qG38Z1M4+B53/J2J/imnBIYht0Bx5+4wMLcFDqo4Jabc1MYHM9Oieanx2m1GviBy/Z2n854i8FwSBB4BL7L1naPA/vnqQQuWiuOn73MDdcusn/PDOEw5Lr9c7iuJhpZP50GJsabVALfvpdSp7613SNKI3zfYziMCYe2IBAoNja32e522TM7Trc/IvCshM5IQXu8iVYCx/VZWd3iy984znUH9+AHLkmS0e+NqFerVOoVojhmNAjxfY9rF/eSFwbXs4WRlJLOeAtRFIyNWdqnyaFas7EKCFiYmUYKweXLa/hegBe49gaERAlhqXnaBmFXXJ9T56+wb24CpQRpGtvCaVQGmacpfuDjBH4pJzNMTLRRUuArhwOLe8izhDiOydOcIAiQJRlRAMur6zTL+IAkSWzeVbWCH3ikccrU1DhFkZNnGVEYUal4JKktnISQbKxvUwtqVKs+eZHjuRrH0UhlC+xsJyC6DGxWyuXRkyeZGW/zmS8/zGSnyaAXcveRE1yzb84S8BwFBSVi3pIZs9Tw8c/fy6G90yAgCHy0lrTaNdLEQmQC3yeJY7QjiaOYPDe4nrdLVkvLm//Z5VV++u6H+Phv/LCFmuQJEk0ajxhFXSqVBl7gsLW1xb//2D38py+d571vatJoVfDdNkiF1PbGlidbGKNwPY8C2+HNkhxdGvwd17NFkRDsxBVcurLG+HjTblSUhEIShzaAut222XyOo2g0qpbkqhSO4yCkpCjA8yzFMC8Mp05dotGooxyNyTM+/NUr/OQd12FMges5GOHy1nf+HHsP7OETn/osdx4+XBbZ5eSuDMI1xpAkMUKWn58Uuyh6qSxYwRSQlqHTfhBYXnhJl9RKsbmxhee6fO6LX2NyrI3rOYD97B586Ch/c99D3HTdQZS0xVLgOyDs5h/p4AU+ubFQl+31Hp/54n3MTjfQSuN6Dlo7pElWUljtOZIkKcMwpFav4ghFnhesrm0wHIzwXIXrKqR0CcMQ5QiSNGTQ2yIchmRZjtaaPAWtnDIj70k/5+7l0dj8rHqjVvokbfxBkRv7OWQ5UilGgwGu6yGl5NprDlAJrD8VAZubW7TbTWZmJjEIPvSxv8TTgunpSeq1Kr1uH9dzeezxk0yMj7O+sUm9VqXeanDq1BPEUUylEuD7LoPBAFc5vOjG63Edh7MXzlOtVHBcTZ7lTE5Nokupm+u5NNoNu/HVmmop4RRY+EySJkx0OpY8qNUucdb3PXq9PkHg0+31qdUbVDyH2150I6PhiNn5We7p9vnZ77vFFvDC0mYDz2U0GvGJ+87y5pkOwkhWVrbpdQdUaz77p8dxPZe52SluPrwAoqDqeczPTdvzQxi6XRsGLaWk1awhhChD7s0unVVIiRL2nFZSoR3JytoG4+0mqKdnwX6Hd7pvWh8/t8R1+6e55tAhVlbOMz/XYWFhD+9//+9x/NQlfvhH3kFnfBIZZKRZyuTkPM3mJP/8F97N9Tfcyg03/BPOndvAiA1uuOkAk50pPvjHd7F46BDVWpUoGuA7HklsCGqyLOrHed3Lmnz9SynTMxM4nm9jC5yA0Sguc9jCMjuuYDgasra5zePHjzMcDckKQZLkrG9tMAxDtrY3cZyA4Sjk1Onj5CXw5+KlM9SaHc6dOcFYZ47TZ06wvb2F9gM8P+DUE+dYWV2nXm8yHA748F99mntXH6ATfj9veNkrENInqPqAKKmbdmro+dXdZrAQkBU5Smp7Lqc2nkMIqyXIc3s+2l2F1UVbMJE9B4uiKPP4bLG2A7aTUpAXOY52EUJSZNnutEwqRVEUZHlmp5kYQJZFoj3XJZJatWGBLsbgeS7a8djcXMf1a1y+ssQNN9/OVm+LeqNJHIYl7VowCkOMgXPnn2Br7QJFnpJmMYuHbqTe7GCU4MgDR3j/F/5v/sW/+q+492v38fCRI/zgTT/Cy699Oa+8+dW0Juolnbo8Tp9xoGotuePF38PFr6/x67/zr3jr237s2zpe/y6Kux0J5rOR3p/Pemag+VOf8x97cfcPS/P3wvoHux47epwfGK9d9e+emX33d712pJg7r51nBfceOcHNhw/iV2ogDAXWRI0qSJKYzlSbe46dwvFdwijh4/c9zCiOSZOCTqeNwTCKQ3qDLpvbPVbWtygKw6NHT3Pl8ioGwaMnzmGKAk9LeusbFCah1QrI0phhP2RteRPHcTl5YZlqNcDzHbRWNJoWLKCU5IYD+5jtjNPt9mnVPUyeIKWgVqvQH0W2KyUl+/bNMz8+hpSKLAMKiatdriytkyYZ1VqFsekOk3NTtDsNmmNVjMmo1zwcbT0le/fOUJRyjorvs76yyfb2AK01p05dpNcdUKtU6G0PiYYxWajspCcasLq+yle+eoxP3fUgQSPglS85TKMREEchnrIUsnariUCQJhl5lpNsxww3ejh5wfrlK/TW1/nrI6es5FHYGZnneQwHIyvpNDbja3Z2EtezkyPKx8IoJC8yTJEhjJWVeUGA0g7IgkrNZzgYkmc5ruPwqS89aBHqVQcn0Gx1u2RZihGKarPOysoGvc0uZBnLSxs0/RpKaF7/8luZGO+wZ36Wt//AHXiui+e7lmiWFsRhwmgUkcQZUmp+/PWvpl5r4AcVhAKhYGNzHc9zrSxRS4KqS3+0TTIq0MojSXOQhiyLLHIb+A/Lq3zqPT+G5/vYy3BOXqSMwgFCpGhH0B9uIySc3vb53++cxHNrkFVKFVREmo2QUlAJDJiEaBSipIPnVREqIS+GFGZEknZJ8wFZMcIUgjwz7F+YIctioniAKQqSLKNSCWg2a0SxBaSkScry6iYASZIglIeQHkK6RIkhLxRxbDh1er2kMRZAilY7N96Cfn+TV143wdyeBqGuk2EhEbsncvmHvCzAtePgui5IQZIk5HlmNwBG4DoaR2lcL+DMmYsY4aBxyTP7XGmS0mzWMAYm2m0LejCC4XBIf7TFjbcc4Md/+DVInaFcQxQPSDBsbY/wnBrK0SAN8ShEIqjXqvzI61/J5Hgbv2rBPFam5ZWyckkapyjHodFqkOcFa1tnGYVruNLDU1W08ehvDYjjAWtra5jcxRFN2pV56rUJ6rUxKpUqUsQUeXe3yDXlblRKWXp6Cgrs/ydxUoJZ7O/IUNgoBQy1eo04jMhNxqC/XYbYpyAKJqfHSy+ibca96tYbubS8Zj8rKRifGGfQ7XNg3zyOo/Ecl8FwyNKFK9T8gJnZKZCC9e42nuswPT3JlcsrCCHYOzeLkli5ahTiBz4FBQ89coytzW2kkPb3VhSYwtDvdu2EpDCMjXdAO4TRkDiNiKOYIi+Iw4x6o4FXCWiOtchFwcyeKRytqdfrCCWpVQI7+d/YJo0jRoMBG2vrJKMRt04bfM+nyBw2VyK+9MAppJsyNtO2lFuR8/m7v040GNFsN+z1whREUcxnv/qoPc+9gCIvPw+R22BrLMQmTzM7HVZ6l1rqlNOev6t7oisVyxuGvpwgaDTYWjvJn/7pb3HwUJUidti/cA3f96bX8pKbXs/M5A0gXFoTdU5dvJ9bbt/D6aUVLm9u8fLXvgqp2/zqL3yEwt3LkceXefCR01R0hZVzF7n7nmXWtzy++MUz3PPVZVxvP5+/cjcPfP0xLi2dJzOKU6eWuP+e42xupTx+9DSbmyG58Xj8xAmOPrpBt1ejO2xw5kyX8xdHhMk4Z84NOHdhxOWlIZeu9AkahxgkFU6dXWFpLWVtM2d1I2KrJ8iKKZZW4dz5VVJTI8/r1JrTbPSHPPjAE9x9+ii3tF4FEz73Hj3K6SvbHL90hd5gRJwBIiDLHLpbIVGcAcoCaqQiLaykM8syjCkncYUpYy0keZGTpRnb29vEo5g8L+wx7PolQEVj8pw8TUpeqsApm1RxHFEY64lFwHDQQ0sX1ykjjQQYY2XVWW6LcKU1YThC4iIkuJ5DGI6Ihhlb/SFpAcsra4y1Jli+fIlWvWF97llGEFQ5f/4c29ubDAZdW3i6PtLxWbnU46P3f4SN9ioAvUcy/vt3/Abv+el/fdVGvJSi9D9ffU0vjPGv3/VevvB/3c+/+7f/4bt/gL+wvmvrhcnd3/N6NqDKDgFTXG2k/ZQbhRGF1Q3sZiVZKMLO6VhwFWDKcz2nsXlJ36oL8qu/+Mv8j8+QY35zTt23/tl3sp2e8989478dv63Z9R/uPFCgXJdjj57i+oP7qNarpBKkUdaHoq03QAmJKATz4y08rej2euwdbzIx3sQPPBxPkhcZlcCnEng8cWGd/QtzLO6bZnq6xekLF2g2KrhaEgSuDbnWglqtiUGQmYxmu069WcP1JdMTTVzXRWvXZplhEKqgMBnKlShXU29byaExBu0osizHdW2gs9SQFzET43VW17d49MxpFvdPM4ojtHJY39imWa8ghKHIC0xuJzWu42FKA/h2f4tqzYVMMhwNuLK0yZcfOM1tLzqEchSB41Gr1/BrPpiUcDCicCRe4JJEKc1mg4mxNgf3zyAM1BpVCqwctN+N8OoSUWjOnV7CdXyClg02rtQ0YTik1qxTHxvjJdftQwqDki4CjRNopCopY2mGUBmQkcUJUWzzAB2t8VyP9dVtmuMNCoyd8imFdh2KJCcaJQwHI7I0YaLT5pYb51GqKAOcJY7r4rgOYT9EIhn2Q9pjY+Q5XFm6wsbmiGrFI2hYYENq8tJLoZGOQipBPMwZDRPqjTpRGOO4EqUhTzOKApTUCCO5eH6FTqdG4WhWL2wRaB/Vcgl8H8fTaMfOl6XUvO++h7k32uR3fv6NJGle5k1lCO2jpGJt6TKbq2s023X++qFz/D933cdv/lCTy8trbGwNqAQGY3KCwAUjMHlOf3PdQlt0gVAuSgd2Eig0RaFQ0kFr1/o8HBuSjbCbGCFsgHea24mi0pIojBgMEjzfYTAY0euFuI6P1HJ3EySFpMgK/vJzD3HjtbPUaw5xFOF6DW6ZD2g1phBC4Ac+++dneNuv/R43LVzHj7/lB/nyn/8Zh6Zn7HkhLLwgTWPrPxEaU4aP7ygCjCml5yVQSciCZquKIQeldn3JAjth1UrS6TStZworFatWfbR2cJRHkduuvOM69FeXabXrONUKyqkxHKSk6ZBKxUf7Dm7FQyiPeDTA9630TooyG1BLkixBKgCXaFgw6GU025N4FRflCKQj8Coe6TDEV5JoNLQTUN9DYoiHPUa9LeJhH5HnqErVRl4U1u9jKGwMQpFTZJnNArT0HzJj8epC2uuqKTRZGtuJktZ4QQXl+CihyFKbgyeVjZEA6EyOsXduCkRBnqYokZGlsSWmBj5GCiZnp6lUKoxGIypVmzFZ82ssXV4lSXNOnr3AoYP7yZIM5XtIrajV6+TGTk48Bc1mxfJPE1skFTKl2W6BKYiGI5QA5WmSJMNxPFzHod8bUPE88iJmc63HpYsrjI93ePzx0zSaAVFsVQMfPf44b331dbiey7DXR7su1XoDt1rla8fO8cqJGZQWjHXqzHTqNOstNAYhrUenWQlojzXssecawjDEdyocOXaZQwttgopHkmY2Qy8HKR3sPIvdjLQdWbGV8ilq9Somz5/zRvedTPE+fmGZF99wC7e+5FUsrV0iDQfs8wMunj7D7L4Jzl5eZnWtSz3IqPgOEHDtDS9GOFU2tmMmggbNVosjD56hu50xM+nzPT/0Yn73tz/O1MR1nD57H/sXDxM4AyqNMb7ytfs5eeYEs3Mdvv+NN3L9S9v83n++h32dRerj80zs2cv03Cz1TodKvY6jq0zOHGB67wzXXX89nu+wb/8Ci9csMjM1jlAF+xcXmZiaZmZ2L1Ozs7TGx9m//yCTUzMoKZnaew2d6WnGJsYZ60wyt/caciRJmjI3t0AlqLL3wAIvW3wRW2t9xjrj9LY2GA5i+hsjVvvbXLx4mX4YURQpcZSwvbFMozlG4GrIcxxlgUajNOfkseN0pmdts65wiIsY6TjEBZw9f4ZcVLly6SKVoIbJUjvTE4I8T9HaSsJzU4BQGGF2oVZSSduckspOz41AS6fM37QAuB2pJyVEKRqNEF4NRzmYOOHM+bNsDyOqtXG6W0MWF6/hkUcfYX7PHoajAfV6g7Sw08YkjKn5Eq0lfrXOv7vr/WyyzpmzT/CuO/4Zr73lDlzfsXNDKXaP3acuY76947La8An6bS4MnuDAwQPPOkX7VgqybyZsfntnxHPl3D2f9dT3tzM02HnkH/vk7oXi7u95PU2W+dRldiDWT66rHsTiKicQTz9Av+l7nuM5n2u8/Vef+St+qfotnuu7vJ4Nqyspw3B3lOpSk8UpjWqlDJCWOzu83Z+nMAVRHOG5rqU6KsmJM5eoVwIajTqXllZKepohHKWkScGXHznJeNVnanqcza0uiwfmyZPCGuozQ5YZ/KCyG5J84dIyrUbdUuECH601ruuwubGN57lkWQaZwXFcgsBDK4EuJXppkqKEIjcF2nUYDiIcrQhDi3t3HM2Buf2Ew4SKX+HihXWkUHiuwyiMqFQCtKN3w6hR9mfP84QiL/C9Cq6n6HTG2Ds1ZqVljrIFrckwAlzHo9lq8Y2jj7EwP4WrJP1en1o94LN3P0CRZEzPdIiiiAsXl5mdniCKQrqbAy4ubzA/N4VyFErlbKx1yVNBkVm8chTFuK7DQ0dO0mpUWVvfpFarlhsji1F3lIvrBBjEU2AFxuKrjcH3Pa5cXsHkOZ7rWsqk7+G5rs0iG4SlP8luED3XIeyPMFnOMB4RBJrWeJ0kjdCuoBZ41CsVpmcnyLMMCkUUhjaGIY6JRiGOVhQGKlWPPEvwAg9DSRqViifOXmJ8vFVmrsWkuQXjfOoLDzLVqtEca9Df7OP7LlIKRsOQX3vocX73V76P19y8HyEUWim0KMjiGKldktGQcNCju7nKeLvNB/76GP/LO6/j4UdPMz8/R7efsrI+YHpqwsIIspg8j+gP+tSqFh6QZAYv8FHSwQiJMQrlaNI8KZVilixZlICdIk1BaFzPxxQ2wFpJS9SMk5T7HjrDxFidjY0+X773OHtn2riuwzceOsk9Xz9FkhUcPjjNxMQYjna4eGGZP//cI7zm9lvZvawUkg98/hif+OhH+emf+Uk+c9ddvPLAIgix25iQUiGlxhSQ5VZimKcZQsrdIHBdBp7HYYzreezIr4R8UtaptA0othPvzHqBtSAcheUkD/I8szAbrfF8lzQrGI1iPO2gpZ0w2UGMlT/meY7vOxTGTtPSOENKxcrlVVZW1mjUq/iuizEFn/zcV7jumgVcR5NlOUkSW1ATCU7gWIKqydFakmYxWZ5TbzRx/RZ+rUNS5m6JcgqQZxmuZ+mv1u9jr4F5nuM4LlpIhMgp8rSMEUnxPK/cuFk9p8Bm4D2Zifek3Fgpaa9BSpEbQ1CtkueGLCtIwhQK2NzcpFavldOMlErpKW6NtZie6pCmCaPRyIJwyvfme9azF7gVXNfK4D/52a9w6MAe6+nzAiig3x+Q5SlRGFKv1Vm6vESSJvb9UljvqHT4+sOPcXD/Xuq1KmkWU61UEELye1/6G972imsZjkYkSUKtVrXFs5IcO7/GbfUxhBT0twdopTB5TpxEVKoBUgk8zyHPUvI85/zZZWpBjZXVDa47OE21WiMcxlSqFUajED/wLPwnL8izAsd1iGP7u9vx60ghrAxcqd3sxWe/zz3/9dFzS/zgG1/F0toFrr/tNvYvvoTUabAd5ojBJQKR0KhI7j1+nr37F/mF//oXWdy3h+MPfpXPf/Jj7Lv5OhavP8z84iIze/Zy3Y03o6rTnLsYU+gad77jpyjcSQajgoVrX8lNL3kdew7cSlCdZ/7gbRSmxblLV7h26hVMzE7QHh8nTTIajZY90qSL4/gIqfH9AL9SI0lTDJLCZATVOp3xCR585H72LSwyHA6J4wjP8zly9BssLByk1RgDbKTI+voaANVqBb9SY2Ji0hKXlaJSqxNUKkzNTFIYGBufIjMJe2YXyFLYXFvhwMEb6Q0iorSHX2kgtSbOMta3ugjlgslpd1oITEnaTXGUa+0JUtk8WGOYm99L4Fsare95NjNTuCDdXWn1znZICUUYhbiuW8Kq3N0Qdlvs2agXKRWu65fXIgchJKMwQmqHU48/jHKqGCeg2xtw20teRbs9zmg05PrrbyArCqIoJE3Tcso9RIqc//KFD/OZY1/m8Y3LvPsNv86rbnsVr33RHd/UaPiWRde3eWDWWwHv/8P3U4iC62649nkXd1d55efxb78761v5Yl8o7l5Yz2t9N4s7uTv1+1sWd1LumoSfucJRyP/5vt/m9Xumnv25rv5KV/n69jotz5qZUpIydwJS8zTnoSOPMTczab1ABusFcRzb7ccwGo6oViporcnSjPW1TTqtOmPtFqNhSLVm85earSYXLq6SZQV33HYjWkmGw5GFFziSWrWGMILRKGIwDNFKs7W1jaMVzXoV3/c5e36JbrdPNbDSjXqjSpHnuI7mngeOMTfZIY4jhsMRpsjZ3B5QDfyScifRrsaRDkmSUKkGhJH19kk0lZrHYDBgbmaK8Y71Y8VJajcy2ONgNBzhBg4YgdIWgEChSJIYY0rJhZLlxilDOZosyfjSvY8yMzHOnvkJRsMhSRjjls+7d2ack+evsLBvxmbpNGqIciN9eXmD3iDmwMIsxhgGgx7CKE6eucK+PbNkWUq1ZrsCZy8vcc3iXpI0wfd9sizF9wIQho31LtWgSp4XOI62vjnPJYwjmrUaw8GQRr1Go1m3Ia+OjUdIk4zRKEZphef5mMJQr1dJ45StrZ7dtGpNGlt4S1HY58/SjEpQIY4TqrWANC5wnRLpL0ArRRwlGFPguLrMKLSfm+e65GlBo161PjppQ9vzPMULAq5b3EezWScchWhl84cQ8DNfO8L/9nOvpBJ4DIYj6zuUgjSOrCfSCJJoxMULFzl2YZU/vPsSb1gYMjc7weTEOCefWEY5PnEMUxNNlBI4yvDE2fMs7JvD5DlRkiC1Y72SjksUJdbcbwxKC6I4xnMs4W00sk0EAUjt7AzC7WRK2gywStVnrBnQrFdpNKpMdmq0WhaLr6Th1psXWdw/iedZP16eG3zPoVZzmZqcJUljDJIzpy/wbz70Gd77P/wGUzOT/NFdn+UH9++314QC8qzA8z12ZvY7mHHX3cnIEuXmSJXqAywgRNjj2eYxWYmfFLaxYDdVim6/jx94aGW9cYUpyqm6JktS64NTmkoQlGAqkGU3PYmtZDopYQlpYuEuopwmPnHmIkIIGo26PdeAW248TJZmSCHQjsZzHQvX0AqpNI7j0tvuEUcJyytdtNJUqjUyI8iFJM8SOxV9KpBDFAx6AyrVyq4XFkAYYamYRWrDtgvbeJDCNrl2pYFGsLXVpVqxx7zrOgxHpWdHCJIotTENSls5clYQjiJ63T4rV1apNWtsbW9Tr9X4k7/4PPtnJi2UoihYWVtDSBgfb9mpqaNLIqD9GXpbffyKj+u6PHLsNAvzUyX0yHp14zjGcTRB1WdjdZOp6UkQ2BB212FzZZNwFLO53SUOI6YmO0htsyQRgp9YXORyvMK+fXPW21h6QwFuu3YvX/nqY+yp1/F8n1qtius5NhKkbBTIsgjOspROZwJHe+R5SmeqQRoZoijBDzzbPCyl5UVuyccIaYEXYWzBGkLQ3e4TRhH1evU596rfyVb2z86v8LM/dSdHHnsIrz1Bu72Pzp4FGo0maniFwIFvPPQQL33ZS0mGXd70+jfz+7//H/mV//bXuO3lr6A92eHhh48SxQVHHnmMeq3FgWtfxCtf9b2g1iapqwAAIABJREFUNAcPX0fQ6HDz9TfQnl7kLz53Lx/80J/xrp/7b+iOChqNae761Ke55Y5r+dhH7mLxwEG2N7fJcptR5zgeomzcraytMhj0qVRr5bVXUq3WiJOYA4uHyYucwXDI+Ng4aZpQr7eo1+uEYUyv38VzXcbaHfzApz/oUa+3yPKMURTSarUJAuupHxtvUanVmZvZw9h4B89x2drc4pprX8SRI/cRRhn97RGVWofRIOSxR4+xvTXgwhOXmJgesxEvhUFLF2SOKKzySUrrPw98H9e1TdE0jclzS0wttM/DD91Ls9XBdR1MUZJUSx8swuzKOGUZMZAXOYaCLLOZeHESI6UizbLyfuKW1yGFDppcuHiOwjg0Gm1a7XG63W1a7TaDfo/RaIjn+TTqdT7+yY/y6eOfYc5p809f/05+7Ht/kmanQSHzqwaMfzeKO4Dbb34F1bTNg6e/zjWHDz2v17nKKz+Pf/vdWS8Udy+s79rKs+y9z6Rh7phyv2lI/RzFndn9Ert/fur3Xu0LeFp23c7zP9tJ+Pa3/hT/8TUv5pnv+bmWkIr7v/4oE+PtXbDFM2MMnnU9tVg1O5lPtuQzcgdtLFg6t0QlUNRrDetrEhLPd4ijjBOnLzA1MU6a5iWVLUdIwdLyBjOzk5w5c4l2s0mlGljjfndAs94gTTJcR1Cp+ggpCEcxlSAgTTPOnbuCU24ePvHXDzIz1kAJiZKC7vaAPXMzfOHeI9x4cKHcRGl6vR5BxWO6M4bWGoQ1Jw+HIV948DGmag3WN3soLVEOLF3eQCmBUjs0QUFWxKR5iOtZbPLm1jaFyWm12nbqWG5Kg4pHlhm6WwNbVBjIU9je7FKpukhtf58ryxv4noWZrC1vcebiGtce3IP2bUFoMsHSygaVmodXcVmYm2Z7u4fSijiKGIUjROEwv2eaVtMWOZcvrRD2E6amJ5mbmyQOYz731YfYPzeDEIL9e6bJ8oxq1Xbcd4Jfsyyh2awzHIQIKdjc7FKtBiRpRrPZYHOjS6PZZBTFuI6LUIrt7V65kXCp1io8fPQ0c7MdVtc3dydSzVaD1fVtjp1c4sryFgcX5ul1h7iuT1DRDAYjmq0aQkGSppw+e5HpKeu9NMagpCLJUjzPZenKGmNjLWq1KoP+iG5vQGe8gSkDbKWjCbyA1csbNCaaGGnor25RqQVkccgf95d57zteTr0WAAW+74ERZeyGDbbO8wRHFnSNw96xhB++pcXc3CxLK1t0Jqc4cnKZ6w8ucNMNB2k1ariOLVYmJyfwA/telpbXqderRGGCVMZmtiWp3VgUhrzIUdJuQqWUSCH53F8/zPyeCRwlMUUpOZSSRx4+y/Rkm0rVo9cfIqWwwexSsrnV5fNfOY7jwdzcBK5jpcBC2jiSTqvCu37/67z9tdfjaJexsTbvev2tnOgqbrn1Jv7sk3fxlmuvI4lTHjlynK3tLlOT40/eVJ0SFpLlpc/N+s7yLC2lhRJTlNdHYZtipjCl74wSLW4LVc/zMLn9PLXSFLkN1TaF2VWrK+0AktXVNbvRk6oElkgcpUvIglvSO+3UTjsOk+NtZmYmSbMU7TnkRU6e5mjXAhjSOMEUMBqFeH4dhIMQGt+vsL62QX8jp96o2U2kJxAKtNRlQPkOoKrEqO9QBpUuQT8OSkqkstPAPC/w3ApRGGOM9RI5O6qBAr56/0PMzUyVjQRLPUXYAlFpCw+SWlPkNgi81qjh+z6T0xM4juaJ8xdxtOLg3lmmpju2YeY4TEx2bEGd5wwHI0aD0AaK5wX9/pBKtYrUEsfRXHtgga3tTSqBR1FYiWa1VsH3fFaX1pmamiLLC1zXAyRXLi3bCYpWxEnE7FSnnBzWuHDhCq1mC+UIOofb9jPybNGbpqmNFTGGi49dYm+rCVjMfRSGbG8PKbLcyluxuZtb2327oRfgVxziOMZ1fIoi3wVXpElK8v+y9+ZBll33fd/nLHe/b+9+vcx09+wz2AHulCiRsigrVsxIpLhIXiRZiaTYclJ2VJVyElvlWP4jFUdRHCWhq1TaIpGxRNGQLIkiCQEkQYIgsS8DDIDZl56Z3rvffteTP87txgAcEAAlpZQqnKqumX7d/dZzzj2/33dLc1yl9wLjS4Pd6z0HKQW+73L1+irT3dYb9n+GG6/9ttjcNUV7dcP3Dy5e4+9+5Ee4+657cNtdSjxyo6h3ZghqdU6fv4QT1Fk58zB3nThIVhhOvXiSR559jFvuvgV3sMlv/don+em/92M0AsUf/O6v84577qTRHHL8+CzJxCFoBCxfusA416xtjpiZO0KtNs3jp85w5MQdtOttWs0Oc0dn+be/80k+cMf7bXNNWAfJy1cu0W42qdVipIR6zQbPl2XBYDjAdawh1srqCp1mGyEE48kEx3XxvBDXcVlbu87U1BSOdnjx9PN0Op3KndnH9wPWN9bwwxjfdRHVtbIoYJwM0Y7L/L4DxLU6RrmMkxy/EbHT32J9fRnHd1g6eiu9yTZSBGz1+mysbyJ0QJ5DKSRpUZDlSaW/tjFFo8kIP4hRSu0h3Vma4nshnudRljlaadt4MAalJEVhSCrX26LIkdJG+/heRJZnpFmK0g5FVlgUv9WCPGd1bY1nTl9mPDHMdvfjezZTMq7FKCV5/IlvMtga8anHfp//81P/G3dPHeeDd93JiaN3ENRaTM8vILRCQ2Vexd5+cuO/9pDFXkV30yPezbQ0u7cJgXYkv/o7/wcf/7GP3vS8+Z2sgr/K8UYz794q7t4ab2qURfEtxd2bQdluRst8s4ti10r29cZkPOaHrr5kN6s3OYSQTHdadiFRUYLesH2PueHr5dsMAiMt18ukGdtr2+ybn8IIhXLcqotfIoxme6tHp91EK0We2+InTTJajRqnXrzI8aMHSMYJ2tEMBkPrdOc41Bs1hDZcvHydZJJYpCbNUK6iHttohbI0mCKnEVlb7Fazzhe//iQL01PcdctByqIkCDw2Nrao1UIwhrQoierW6p9KT3N8aZFWs0HoeygtCCKPWhQRxQFgUMqGPAtlTUbKwpBl8MDDz7E428UPXNvJryhXSZKidcDnH3iCowdnybKMdFxQq4WkeYIfuijl2KBhAZPhBFFAp1Gj3ohBG3tIFoqr19eZme0gtYQSvvL4sxxe2mcLkTwjnxi066A9bYuV0vDMU1coRUYQOJSmZKbR4I+//DgzrRq1Zkhvp4/vBwhsZ18phXIE21vb+L7HJEmYmm6RZQUY2NzYYbrbwVTGC9pxKA1oJfc26CTJePrFixw7PEe9HuN6Lq7vIYSm0W5wYN8M+2bbFGWG7zsYCkxRUJYCYzKyIiXwPObmpknTFDdwMCVo18EPQvscpc34Go8S8sLQbtfp9wfWwERrwlqINIrB9hCv5oGCUEh+5skXMFMFP/VD72E0GuH7/p7mypqKGLTSFEXJsN/jC0+8xH987AI//O458jyn0agyFaMaRw7OEwYRQhiUFFy9vsbUVJusEGRZwWg0ZLrdsIiPUkzSMVoLpNDkWUFZGhytrb+sEBVtsaQeBgS13WBiMMLOuy89+AKNWCMrPVEch7hK43ouZVkSBg5L+7uVFb8hTTJWrm3QbMUYU/JHj2/wo+89Uq1ggx+4/F9/+HV+6Ac/yJcffIgPHTpEluV8/quPcvvRA5WmUlqnxN2DhrQo88vf724Fdm8wxoC05hZaq70DsRDWgKffG3Dv57/MHcePVQ0iEFqwvbnNyVOnue+hRzkw36UsrSlGrWkpZNpxSNMMKtOUchctkwK1F00ACGPp1I4tmJW2hz4hBePBiF5/wKA/oF6v4WgNEoSSlGWO5wpm52fxPUWeJ2RJilaOpfJVhX+Z76KXotoKrd4xS4q94kIgQVIdEA1/et9XmGo2qDVrZFmG67uYAg4s7rPaMGXXHfKGQ16lb9xFztM0AyFYXV+j0W4wHo6ZnmpjjGFqqo0Ugv5WvwqpFmil2NrcplaLQVgt2qA/pChy3Eq/19vuMegN2L8wy2RiEQdjQDsOw/6IZ559iQMHF1lZWSUKIy5duMzjz77A2+65ncC3rIV2q0maJDi+z/K1FR5/5jkW5qbx93loR5Obwmb8TRJc10UgeOnx0xye6TLsjxj2hwSBTxjXcB1NMkkRSJTj4GqHMHLJC0sJ1drS+LVjo16uX1/HcV183+fqtes0mvW9z8NmS2YoLRESgsBFCmF17G/0ennD1Lb63Jet3m+8Vn/24jXuPHwM1wlx6wFaFoi8QEiFPzVHqzPP97zv+/HaLa6s7qClSxwIyv5Zlk8/ilMO2Fw9z7B3jWMHW7ztzv04QtHbeY4i73Px/AYPP3wfZ184ydy+Rb7xjW/y7ne9h/7ODu/5wHdx5fJFFmbm+Vf/8l/xD37iJzl28BD/+tf+Fz549weqiAhNq93i0sVzRGFomRR5xmgwwNGK0WjEpeULxFGNdtNa6qdpwjiZ0Gy2KDGcfuklDiwdoCxL1tbXmZ2bx/c9HOWxvHyZwA+p1eo4jsvZc6fpdDoopTl//gJxPaZWq6EdDzAURU67NcXhw8c5cvg4U9OzLC0dJarFzM4vMhoLzp5etvuedjn94guVIY7AdTxc18YIaGzTqyzLqilpszR9L7AB7NJq6rV2KAtrpJIXGaEXsbmxQRjZ6A+tHYrCztO8zC36KzXjyQjH8UjzlDJL2dzaYpRHPPH08zzVP8njF57kS898hScuPsWfP/UAV8cr/Cfv+UEWw3k+9F1/i/0Ls2TJDsKtcdc73kO5u66NsP+vhhTi5nThb3cevNnPXlUwvv/uD/Bvf/NX+f4Pft8bnvM3udO/wN++iUd5nbPvW8XdW+M7GsaYf/nq215trHLDL1tU7cZOg9klL73CcuRNER9vvL8bH/PVt3/iY3+XTxxdvPG53+T13HztT8YT8izD9RyEtPS13QPKK7o7rzZOsW/I3pdgtxi1By2MwKQFL7x0DqlKmu0p+r0RQeDZrDWTgTE0GjGPPfUijz5zlplmnW889gKuFNTqHnOzbX7nc1/ltkMLfPaBh7nz+AKOI3EdF6U1WkhcrWm364BhmIypN2rs7Izwg4CiLGnEAfVGwPr2Dvc/epK7ji8xnIxpdWo8fvI0nvJodzpIJSyNpFUjGyeYvMAg8MKItNdnNJqwvj3AYLty/Y0NJAbHcSxVShiScYbrBujAQ3uKowdmiOKAPC3Ji8Lm65QlUmsKM+b4kXlcHZBNUoxI8cLABqUbwZVL16nXAlwH/MDnK984xdFD+3EcxYsnL9FuxEBBFASEQYAUkCQZi7NdRGnwXJ+nTp7jm49fpiwnzM20eeTJU0w3Oxw+0abTblQ5YBm1ZkggHKIwxPd9kiSlKDKENIw3Bzas20BYC3E8B+VUuoOBpT9ub/eJ4gaT4QgtDBcuXaHdqmMSw7A3ZjhOiaKQW4/Oo4QNSM+TgjNnLzI706TMEgSGJJuAMpU5hraFpRa4nmtzywKXkuoAXwquX9+k3qhx/doqnuuSTHKiKOILDzyFKxVxzSdNCxqtpkV0jMTIglozRhgY9ob80ovn+eR/80HuOr6EERKlXDbWtrlw8TLtVhMlJEWe4UiDI+Fjv/wF/vuPH+GDd86jtcNwPMIJAmvtLTy01ly6fBpHRvSGQ/YvzjNJCxw3oCgKolYTFUQYNHHYwAsb9DY2iZ0CoxVKe7hSYKQNhUYKjClwfYXvBIC1d5dKIQUcWKhX1FNBHNbp74wZjCcEYcR4nNJqxDRaAZPJgPu/dJKjR+fwfIVwXBCaex9d4WPfc9zuS9Va/tQDJ/nIRz/C2TPneVcc47iaYwfmmJpu4ygPUUqru6Ow+x7sBRrnecFkMISixPEc8iK35gWZpRdLYSjzlCvnzxHW6pjSZp3VAo9mq4aQBlNK0lFOWIvoTHeZqrdwPQ8/CBkNJ3i+j+O6ZKMhnudUfTRjKZl5gVS7gesleZajA0maWLe6LE9Rys4fSoNyJKfPX2JlpcfC/gWMsmYbVUnFeJIjlUFgUYEgiCgKSLKicrtNGQ1HNvC8MlvAQFmFl2ulAGmd8aqCUyrD/tkuzU6TssSi8JQYU1JZmaCcaq/Autwmk9R+5lJSmpLh0MarCAG+61WoaclwMKDRbFBUodTDXkIU+5RFSpZllm6X28JoNJ4Q12sEUWgbGYXB8z2ieoRBoByfnWHfugI6Lhtrm8zMTKNcj97OkC8++A3uuu0oqAndjo1IaLYaTNKcsFGzuXtFQbtVpzM9zX/92fv4oXcesPVqqVi5vsHn7nuEEycO8C/uO8WHZqYIfJuVGMYxUuSMhiO2dnpMkjHJeETYqllHRGUbIFIoRCExZUa/3+cbT5/mmVPLHJyfptmKSJLUvjZjtVOOVEwmYzvP8hyNQCj98lVZCox47eOrvdJVTaRxxvXlNZJqf7MFn73QfmGjhyzX2Vm5yG3HbsFId88MzRSCuNkl0yGf/o3f5+//zD+mvn8fcXeeu97+fSweuofCrHPg4Ayby08QOzuUg7MM82XEZJvh2gWWZguW5gOakWZnW1CLZvnS/V/m8JE5HvrKE2ytbfDZP7mXf/aL/5yvPvIcKmjy4x/6GP/wl/4rbp85QqvVRUkXR1sE3cZnRORFRpEb3MCn2Z5iOBwgBXiOQ15Z9y9fvcD01Cz1eszK6ir1uE0ysWyCixcvUWs0aLenEUbhaofJeIQQGiU0165eo9XuEAU1klQwThI8P8TzIluAOYKvff0BDh68BaV9tjb7REEDqQxHjh/l4JFbyUpJ6URsbPS4cmWNJJ0gnZCNtQFOqChyg+eGCAxFmSNKe04w0s4bN4gp0hQpFUVhcJTDKB1Qb9Ywhb0+Z0XJ6sYGaa6IAxdhBEZkGOOhtIPOE3JR48LldXpbY/6zv/23+eB7/ia3zNzKbbO38P1v/15+6O1/kxkxw8LhQzz15EM42Q5alhhyFg/dTlaW6MC35ycjbFNp70gl9s5tN52Hr4XcvepcdrNxuH2c/Xe8Wr6zm778Rr7+6sZroXU3Mx40xtL73yru3hpvarym5m53vJ4o9XUcgr4j/6Dd4u6Gx/nID3+MT33f29/Qn99srWtts6p2F9TLhWGVKWN2v7vZHb76m922u0VwBjsDGnFIp11DKNuhLQqbTTZJ0sou3SUOPFZWt7m+vsNMq8bC/hk83+Hsxavcc/wgWisOzVvExnGtVuml0xeII5/tnT5rm9vU44giLwnCgCwrWF/botGo4Xg20Pfg0jz7pixCuLB/ljRJWNo/a01PfJckGaOqvK5eb8jK6oYtRJMJvqMpjSCOQl68cIVup0GrWSNJLR1wbW0LJSXj4cRabGM77BawsJ1ha2NuO+B5aruJwigGvRGuowkjz1KOjM3OiUKfsihJs5TJKKEeREx1O0gFtdh23p94/iWmW22UkjZfKg7QWlEa29nPkpS33XmU/fs75EVGsxZy9vw15uenGPTHDPsTLlxeodmoE/oBn3/oSTwN09Mt60KoNTtbA+JaxNeefp5OrUYYBnvGKJ7rsr6xzVS7xdmzV/Yy8xr1GLBuZLvZXXlRMB6M0K6i3xviBR7d6Q5bW9uVvsZBaYXve+RJjkAyGY0slawsieLQ2v5neTVXJXEUVpoIS68LwoCVlTVuPbZEs1nH86wRh9aWIrqz1SOuh6RJxmMXLvJLF67zyX/yA5jS2DDtEv78S9/ktluOEASaMI5BCJI0pcgzfupXv8Rv/uzhis6nEJTUaiF5VtpsvtyiOY2GT7+X0u40SJMJpYH1jW3Onb9e6Ts0vuczHic4viKdDBEiIyttV1qIgrygQuLtxU4pxx485G6hYI08tjZ38D0PpTTjUcLVa5t0uy2efuYckzSj3Y7xPAetJcePHrAGAUqitcO/+637mW4p3nvH8T2tCRhmapLFu97Hu979Tn7if/43fPjYMRzHatIee+JZiiy3hkOOpV6miUVD8qywBWwYoKooiV3DCtvYMGhtM9660x2EdpDSrpNmq4HSGqkkeWZDzqFEu4oojohCF4zNLHS0pCwLsjTBcV3W1jcteu44wMuIXZ7luK7LZDzG1R7J2DYsKO2BdjQakYxT5mZnmJ2ZoihyHE9TlmbPYdGvnCUxZUVXF9z7+fvxHU2RJkgBQUV9FMJqCLO04JuPP8V4MKbTaiGkzXYzwux12XazCO3+UFHhK4RsNBzjh76NfKiIFK7r2nkvRZUFKW2xXNG9syzDc138wOYaOo5mOBxBYZ08tbYUVSmqTMksp9lssLm+iQBWVlb3TJ92rfi0suYTrutWweKGVqtJgSEKQ+anWrRbDaLA5oTGcUSaZnvr+NHHn2a60yaKAsIw4M8vn+GDdy0hEBgjGY8n3HnHUXzP4xd+5bf40OycjUMEHM9FSGs6VOS5ZU5Eoc34FII8s9EqGMPKlTUmacJUt0m31YCioF4PCAMP13X3KLoIgbK1GVpplNRcunSNZqf58rVRvKaSfPeqSFXCoR1Np9O0FPqVder1mKqvy6dfushPfOJDUBS0u3NoP3z5mi8FWZqipOJ7vvu99j3zfYIootuaRmmXsxfP893v/yDtmX349Wka3UUmuY3XSLOCAsHOcIQqMxYW5jh35hmaNbh6/mmy3KXdDDl2bIl3vu1ONlZW+MPP/D733vt7fP93vY3PPPR5vv+e97O+sUaWWxp9mpd4XsC16yuM+gPq9SZXr12lETdZX1tnNB4w1emilEccNdjZ6RPEPvVGg1IawnpAXmbkJuf6tctMTU0xGO9QmBQ3kGhtddubWxtMTU+RFzkXL5xlONxhqtPmiSe/jilLms02++aXrCZTaZTS1Op1tre3ybKcoizpTneZm51jdno/nhcRxTXW11e4eP4iBw4u8fjjTzDdnefC2RdwffuZFGWBBfUsymoKq792XR8pFRubq2jt47seWZ5RlLCztcH66jLTU9PkuY3AKTKBVJosG7HdH7Kyco3CKA4eOojruzTrTQI/YDDYJssKVq+vEdUDDuxfIPBdjLHobb09S73RtPrZ3aPUDRPvdVGrb1fcvc5wXMWv/f6v873vf98rZvZfh/Gar/s1ztNvFXdvjTc9/v9Q3BVFwd+6/ILViL2B8VrrZtfG/MaO0W5xt/tMb3rJe8VNpnpOuUUtjeH8+SsYY2g0G5SF4MLFq1xeXmNmuoNEWVMBabVxrVrIaJygBBxcmqPXGzAaJ8x0p4hrIVJafY8feOz0euybn+b85WU67Sbz87OUBcS1GCFt0GivN6DeiJDSamkazRpSCoLAw3E0k3SC4ygcR+O4giwdU5QFvuMjDczMdqyznTaMxjagy/cdFuY6aEeAUmR5UcUkQDJJcT1LOxIV+imkzeGhKmivXFmhUYsQUjDYShj2J7x49jIz3ZalCYXhnk4gS1N6vYHVjjgOBoHraYwBL/ApTcEDj52itzWmWbcU0cGoR5KmZEVOlqVMd1tILShNZql/SuC6kiAICKOI8xeucuuJw4DB811uP7ZIp1PHDzxLwRmPcbwAz/c5MD9PkZacOXOFTrNGOkkJ44gwiiiF4JtPvcT+bgs3cJFK0Ov3aU13EBUFL4pCrlxepTlVt9oYaZEJ13crYb9mMkqgMLjaIx1nOK69uAMMh2Mw4HkuySSr3E0LSy+TtoAYjUbUagF+4JDnCaZaI9qxB38bOKv42YefJV6M+RefeA+O62BKgVaaLE1p1AJq9ZAojmynXdi18VP/+/381n95lOHYht5LKjMMDP3eCK0krgoY9Ed4nsfmZr9i1Ak+8yePcM/tBxn1U+qxdSV0XA/lWB2KF/hkmc1Ey8sSkFXnWTCZZDiOu0eZltIiZBVWTr1eo98fkuU5g+GIbzxxniiQPPncMvXIY3qqgXYUw+EY7bpoJSjyHGGgESocB249dmKPAi6lYmmmxZPLOfNzc3z23j/iY7fcSjax7pBzMzOsrK7ZRoOWjAZj/NAafpSlbUxIoSrw33aD88yaQC1fvoqSEs/zSLKMcT/BlBYtEkqBlJgCJqMEBSSTAa5jUMKQTSYUeYpSgslohKM1TuBTlhDX6yjHoUSQJxmXLy1jCkMU2tgPV7nkacFv/97nWJxvEUUhhbFa0i898CQHFvcjnRw3AK1dsizb2zANVj8MtlDNswmxr2jFNeLAJcsSvMCa35TGasX8wGdx3z46rbZtBMhyr++1SxdVSlc5VYYsy0kmGaOdIY6jieKQwm6ikBurxRFUFMoCY0qSSYKqTJeUVly5chWB4tnnTxP7du70e4OKDq5wtMPW5jYYQZImtrkwGtNo1hEYmp2mRTrz3KKtZUlWZIRuxNXL13j4sSc4sH+ewaBHrRXj+55txBQFURgRBAGTScpoNKYsDZQlhw8dwA88i0wWJZ9+7kV+5F2H0MpBK5d+b4ApC+r1Gk8tj/jJO46zublDq90AaRiNEoQQhHGEVA5FITFFCoWlqutqLjTbHRxHkpc5tThmbq6J44KjPYvkSmmNY0yJoASUPaQLzdrKNp2uLe6+fVm3d1Wsrplij6niONZRVylZmRwJvjLI+Nn//B/w9Ycf4ba77gFtre2RAlUV3whBagQqiCmRlEYjXR+jXfYfuhPhTyOiBdpLb0d1TlBvHSJoTBO3ZgnrDcJaBwipN8fMzGQcX4w5MFvnliNNRHqF2caErHeG9UuPsdhN+RvvXuTQPsOHvncfX3/ufu794v3cvbDEsL9OWeZcvXKOrc0VFAXNRpPezhbNWoPry5eIWz5RFLN86Rq9rT7tVoON62PK3CBFgSM1vgq5dnmFo4tHOXf2PEVhqNc7FIXk6acfwZQlMzPz+J7P+QvnWNp/gG53hs3NdWZn5jl97gVmuvuZpBm9nR36wwF+EDAaj5hqTzMaWdM1KSUbm2tsrK1z7NitBHHM1Ox+Fg7eSlxrsdVPSAvN+taE0+euEIYw3d2HKUo7D3LbWDYGlHLoDXpsbm4Sxi20ElB7CihOAAAgAElEQVQKtPIIw5h6o4ESUJbguB7PPfUsw3FCgWGSSw4evZOd3jbT3S6B51mDJu0QxXX8wGdzZwNNwpULz1Jm1im20V5iZn4BlLIsp91Z9f9RcQdwbOYEv/0ffov3fc937c3svw7jreLurfFXPr6T4u4VsPHN7pNvVai9ekj72Ded5K+Gqz/64U/w8SMLNzz8ty8Z3/jav8ljv25x9/LjF0XJytU1tBDMzkyRG5BC0W7XmOk2yfKCzY3+3sVwbW2DP33oaQJP47mS1fUt5rrTNBt1HFcxHI6Q2m6aw8HYcuIdzanzy1xZ2aAe+AShj1SCayvr1GuVJkdLi8pNUqIoYHNz27pqSoHWstL3GAb9Ia5nEZ6LV1a477GTHJqfJaxHpJMJYaNB6DsMez2GoyFSC3xXsbPdZ2trh1pcs/oxaRGlx546xZWrazac3BjKKnS3Hse7MiQ811rvD4ZDmo0a2nGss1dhXbOkUtRrIUEYkqQ5UWx1g4Up0VrguIo7Dh9gtqKUur7EdzziKGQySqnX6wihcNxKsyIk270Bs7NTZJl1fuzONDEUOJ49jOdZilLKOkhq60qpJSgtUEqRZhme6yCkRVoMJcPRCNeR7O82qLfr5FnB9nafmdku42ECQlDmOVJAmufEUVBl/bn2sXbRzrwkDG148pXlFT7/9Sc5cWiBNMkIwqDKGTI4roPruWRpTmkKev0hQWD1ZUHgVxdsxa6bY17Y0O+trR3CwOfj9z/MJ3/uezk22+KPP/8Qt91yAIN1TATB/Q8+yi3HD0NZMB6N+Pl/92VWV87ziz+ySJ4muJ6PlAaBLUbSPK+6wClaaB548BluObFIsxEDVmf34rnrtBsex48fxJgSJQWua19/MjYI6SER9Ld7tOotChzKMkMIgVNpjowp+c3/5yvcfmI/o9HYmpJUxYcQcg8Vuv3EPkLPodMMcV2HcxeuMzvTxPNcylKgHUGWp7iey9R0g6OLXX78f/0qH3vfid1VDMAv/PLvcvfdt3P1ynXePz1lYxcMpGnG1FR7Txvn+R5FXlpEqUL/8rJAakWeZQhhL8C9/hjfd/FcB8f3Ecph2EtJ0l2TC9sQQgpOPf8SZy9eYnFhltFkgucHiDJnNLLIb1yrkZeGZDyhLHLAakPHlbPoxvomvuPZkOIipzfs43kehxf20WrXkUoxHAzxfZ+jRw+gXUtxlVJSllSOi4Iiy/dypqRSFRVWUIt8PNelNLlFq7KCIAhtxEdiIw4MptoPbI1rLdVt1MOuc25ZWpdXIQSXL17lcw9+k9uOHrJzsfo8d51FR6Mx/cEAY2zmluvZplI2SXFcl8tXrtNqNtk3N0vo+wyHQ2pxjB+6FGVBv99nanoKpa3JjaM1YWTNM1zXYdAfURaGIAqqrD3NrqZMO5oTRw9XulZFlmYM+wPyoiAvMrygQj82tiiLkloUcvLUi3iuR61WQ0nJH/zpFzlVZHzo7YsYUyKFYGNjk+5MG6kMv//QWT6yNE+zUSfLMxzfYbJj3YiL3IaQX7xwla8+9RyH5udZXdmi222zvrFJrVlDKisZ0MpjfXWDLEtx3ZCdrT5C2qzEyWSCEJAkJZevrFKrhYSBJoyCl6+PxkZSvOZZ1wj72VjdxR4V13EdiqLEGJiMJsz9pz/MwsISy8vXiVot4nptL+d2Nw4EYyikBFOiStBCUmAwUhKqEo11X42DqHI1jUjSsWW9hB1qrWO4rWNkZUmSSzI8ZpZuQ6mrhLEhSXbIsx0cd4fptmQ+HOKJTchXOD6T8n33CH7p977M6vVl3nHkEDVf0m2GhKEiT3tsrLxEHDo0a5ogEAiTQDEgcDOyyQaT/kWKZBVPTUgGq5TpFp4as7rxEocOzjEcrLB86Tnmpru4yuA5gquXXsQRglY9ZjgakWWTKhJEs2/fATxXkaUTwDZnAi9gdXWVJJ2Q5zlRGOFql+FwCLIkrtd46exzzO2bRylrlrO2sc49b3snrekuyytXicKI/ijhwvkzSKfGdm8bz4vY2t4kyws8L2Bz7RqzMwtMMivHOHv2eeqtadbX1mg2p9kZjBBa49cWGIxKzl+8yspKD6183vPu7yHLcja2tvADnyzLkGg8T5GZEa3QQQlBVhgaUwssHDqBdF2LJt94nJLfanDySvO9l3+Hm329iSEEfPpzn+YTP/bR3Vve1N//lY1XUS9vJnl6hUxJCPRbxd1b482M76i4e53xhnR2sGc48O3GRz/8cX73A2+Mjrl333+B9ft6xd3Lb4dBK8XVqytMN+s2d0zKKgvLGigUecEfPvAkUzUf33OJ44iDcx0OLsyytrXF2247xvkL12i2aliTB4/S5KysbNKo19jYtAd1Xzsszc/QbNXJ0hTHc2g2anz+wUephwGddp2yLIijoMppKgkjH6UVk7HN7BkOR/iBZzvGzbrNdhOC+fnZCoEzSNeFIkcLgykLHFezvrJKLY6Ymm5hhEZIxebmNvVajCcVnWbd0qaURFaoyKjK/dpY3yJPM1xPU6/H+KGPwcZcSCnJsozxaGwVjkLheg5lWeIFnj1EZAlKCh598kUix+fxUy+xf7bFyvVtGo0aWrv0t0eVs55keXmVVrNBo15jc2MHrRySSWbRoMKQJJnV7KVphQbYQlpKSZlOGA5GGEpqjZgSQ7PVoCgLsjzD9xRlmVeaFkmel2xs7FCLQh5/+jTT7SZnL1zGdzX1Ro0/+8qjdKKYwPf59H/8Mi9euMKxxTnGwzGbm1s4ribPc9599y0kSUatFlVGGapCh0obCI/VegWVNf9u+HOW5aSTnDTJ8EOPILCH1StbW/zCc+f41D/9QWsWIwSOEsRxgBe8TN06ceQgSmnOnjnNz/3aQ/zGzx3jXcenKbKUIs+Jmw0G/R6+F5CXJY6rKPMUTIbEYX2zx8JCl+3N7T0E6+7bD6C1xPFtduLGxhaXLl9neqplkW4p0SJD5ENLCarW2y7FS2lLwYx8h+50izDyLVIgJVlRxUBoRa0WMRyOLOVMSc5dWGNupkkYekipuH5tk1bHItij8Qjt2TiOex9d40ffe3hvz8nznD985Bw/81/8NBjDgfGYMofHn3iW85eucvTIkjWlUJIiL+zBuqr2BLtGAKaaD7ZACqMY37N5kCVQAJcvrvDnDz/OVDOiXgtttEUyYarTZr7bxQt93CCgNJJBb5t6s4YfhiRpgRAKz7HF1rA/2suazLMc13Fpd1r4gQeUeJF9/UEY4fjaouCOWx0aQApT0RWdvfd8d85JaR1MEcKaBGkFGJTr7FEiXe2zvLyKMYKoFrMbvSEkCGHI8swGystdg6FqvxRUusCCRqPBiUNLOL4LGERZMuoPkUqjlN0DwjDADzwc7dLvD/n3f/RF7rr1OFIqutNTOJ7G9RyyxDoHp2mKESWe61Bv1CkKa14zHIzY6fUQAra3tpESDJIwjhBAnhcMhmPiKLAUb283zw9Gown1Zp3xeEKtEeO4DmmSsnZ9g3anSVEU5GlKaUriKGZlZRWtFMcPHeDfP/8cP/7+W+j1dhBCMjs7xXDUJwhcPvP1s3x4/xzD4RiDAWUYbyZ8+dGn2N9t4/ketVpEqBSdzhSTUYKjFXEt4PrKBvVmTL83RmIL97Isue/rz3Di8AKOY0OrramQYNCfkCQptXqI60rW17dtgXcDa+W1z7o3/EyY6tvd3E+bqTcaTvjFP/4CP/5jn+DC+YssHFjE850KpXnlMMogDGhjvbRLAUjr7ik9F+06KNdlNBxQ80OkGaO1JAw7NNqH2do4i5nssLl6Da0FG9sbuG6A47dotfYz3V2gXmvguBEgMH5Ea3YOLwjRnscPvrfFB99X57/99S/w/lveiZI227UsMqan5pAmx9nNZM0SAkfiatDSENUjwjgkyxJcRyOlAXJ812c83Mb3HZpxTDbp4zgS31XEUYCkQMkSUSaURYLvSMbjPjvb6/i+x/bOFpcvniPPc3a2e3iuR73VxPd9HMdlZ2ub4WDAvn37GQzGtoGgBArN2dMvMkkT5mbnEVJy+PBRPDckLyWjScHm1ibrGyvU6y1qtTZS2LNWo9ZmNB5weXmZWrNNFDfo9XbY3tgCBM88d4ru7AwPfu0xRoOEuYVFpqanabXa1Jt11tdXmZqaA2WbiqdOPsfcXJc0GzLqrZGMxzhenQOHTqCi8GUEWIi9RtnNG/qvrN3+MjOLl89e5Ac+/MGX5/Vf43HT112dk98q7t4ab2q8urgrytJ2lm+CzBlRVhv9y183FkO7iN2NktXdeyiLHCXl3m22E3/zhXajqPQzv/cZPrw094qff7tYhddYGzfc/jqoH5aGsld4GjBGIoxAYJBKUJCDhN61Hp7vEXdqFKa0b4lT2VIXluJQJBNazRa1KMBzHU6dPk+zHrEwP8uV5VUazRqPP3OGbqvNZJQzGI6ZmmoSRL49rCpFPXK5fnWDZqtNaQouXD1HK2pQpBlb/QGNeo3JOMN3bM5UmRnazZhhr2ddMQMXYUocaa3Ltesx3Bmwb24KI0vKIrf6pNI+97yESWqgdAg8xXZ/SKNes90jRyGN5bNL1yKGDpJinLKysUktriGMBJWBzAnCOl975DkOL83jOQpBhilya4Wf2ULJcRx2ej20I9GuJEsyhIHReGhzeEoYT1Le9c4TTNIx9VrMAw8/zdK+ee5/+GlGwwEz3Rm+8fQLdFt1Rv0xjz1xjkMHZshzwWf/7JscW9pHHMUoz9IWB8M+ZVngBx55lrI9HFJv1pBSU5bQ2xkQNSJMaekrvuugtEESU2Q5axubzMw22d7Z4ezVdQ4vzrC+scni/jm05yMLw+zcFFmec2RxliOLcziuy2iQsLk9RAlNd2YaISRhzefKleuMB2NqzRpCKTZXtvFDe6iXxidPDMqrAtVLhTCS5Wur9Icj2m0bwp6NJ9ybbvCv//734FTh8OtrA9bWtnHdjGZzGmlyBDYwuygNP/+bj/Db/+gWPM+rLNslw3GKpzVBUGc4HFNkfcb9LYwocYIG6cTDd1ykK/E9D1Mqri5v0WhEuI5EC2uzvYtabm8PCOM2Shh02Wc47JElI+JAUeqAUoCRGqEcykzQavmV+YYhL3IAXE9RFopHH3uJbrdDlhT4kUutEdOdqoGwiFEUBbhBZDVUjkMQaEaDPp7r8pmHV/jY+46+vFdIQTLq0dp/OydO3MK5B+6nU28yNzfN0sIcycTS5SgFZVHS7w2q/Cj7WAiF1SUJG19QFUilyZmkk8odVNJs17nt4AyN0OYp5qXB9UL8wCctMoTSVRxCiecECDTnzlxkanoKBGxvbrK+sU2z00E7DtkkwQt9tKvZ3rF7kOO5yDzH8xxK+bK7pXZUlWtlXTyVVhhjA4d1pbezMQ0JlFYbJzBkec7Ojn29SgYo7aFcW6T5fozAZldK8XJESpYnaErK4Yj166uW9uUFSCSjXh/HcWxoczbE8/3KndZle6tHrdpfjCj3LNsno5QwCLnt2EEcV2FkhvaAHNbX1nDcqoD1A9bXdojimCzLyfIJjq+pN6aYTFI+95VHOLS4j7jRwAtdsixHKmsBn45tqHue5TjasgqyLMMPPIQwuJ6LkhZ9Gw5HzHZnMKIgyyd0pqeIwxjXtY27tbV1Wu0G/qTPidtnqLfalAbSNKfeqJNkOcdbgvYA1ja3aDRjtOOy0xsw6E/o1OtVmLmk2enw5OPP0R8MWN/qMTM7Q6NVYzSYEMex1WJmOcPhhLVej/0zHYLAsxpCrZBCE4YejUYElCjHoZhk+EFQhVZ/K0XuldfYl6/hexZjSqEcRZqkOL5Lkk64MDXLO24/wZUzZ/Fcj85M9xX3s4sIi4qxWwrBruDQkYrAjRkPVlm/9Bh+sYM/GdB3FavbCZPUQSabnH/yPxD4bbRrEdSoFtHtzlIqB+G6jHMH5c+ytbGJ60uyIgUh2Fi9jinHFkF1W5RS8sPvn6JvzvE/feZ+Xrp4kXfe+jYbUyEExgir/zQglLTGU67GUSESRRRGSKFwK9Oq2LPaNaWs7EFKcByNqxWB7yIdjfY9VJnjOQaKMbIcEmlDlg2phQ5aG5Kkh+tG9Ht92t2ubVidO43v+7SbLZ5+4Wnm5uaJwph0YuMNzp4/zdGjt1aGQC4nTz3P5YuXWF6+hhfEnLj1bZw+t8zZc8tsbA4Y53B9fYtJIdB+g9OnT+OFLdLccObMaUqhWF5ZoTU1h+e36A+26Uy1edvb3sEoGSK0oFFvMugNiGoReZpRJAkXLjyLIyeU6ZDJcExiJPPH7sSLayhbyVX7re3yvJGi7RW/8ZdQ5N156938o//uH1fonXmNr5sUnBWK9p0AHK89buS13eSxXwPNA94q7t4ab268urgzlSvcTcdNYg9uLO52LwavuL/qX1VN0LzI9ybra45qMf0P/+wX+ZXbl771Mb+DBX9jR+jbZYrIXW64ENXT2N2UKvpQRakypeHpZ8+wf37a5jJhnaCElhYFqw48c90OX374FLOdmNFoxGiSsH/fDHlhqXuNZp1+v089jsjzjHa7Tl5YK/WtzR3CKODMuYvsm+8y6A/xQ5cwChjujJmdmWJ2qo3rOsS1CKmkzVqrRQxGY5RrdS2TcYJWNpQ8SwtMadja2qHRrCGkZDAYEvo+xhRkmdWgNVo1PN9efOqNGuPxhLwoSCYTPM+GtWZFWeXqSbSyiMrayjb3ff1Zbj9+kDzL8f2QxX1dqPR6eZEhpWQwnBAGAaNhwpPPn2G63cRzPQB76EqtHsj3fXzHQ6JwfY12JKYoWZibQWuHA/umWd3cIHB9jh6YJ45DBv0Rt504zPrWJvVazLEDs/R6ffzQQ0qrxQlDvzrQuaRpju+5JIkNT+71hrTbDQpjIxCksE6Oq2trCBzu/fLD3HJwH3EcEscRRw4uorXE14o0y/GDgCSxjqRJmuC4qjKAyZFG8tSZC0w1a2glGU/GlrooJI7Wdi4JCPyASTpGCEk6Lvij+7/JaNJnaf8cSllanKEkCgM8T/N3vvIkS/d0+ZHvvgMhbXB2aaC3NabTaTI7266yyQybm5us9Sf8w09+hf/752+1VJosq1A0wXg8YWVtg3q9QVkWGJPjagftuCjtk6fQ6w3Iy4TA9XjgwWcp8pKlpS47vR4bmz2urWwyPz/NyVMXWNw/TZJmSAyIDM9zKHIbdK3cAIzAcQPK0mbh2cLJ0gfTNEVrRZaVFIXhmZOXCD3FzFzbfqaeS5ZmBKGH57o8c/IcX/3GGZLJkJluA2NsTllZwo++q8vTF/rMtRvsOuPeujjHz/6Pn+Qd97yDf/6pT/PDhw5V6xk+86f3MdNsWofAsuSRJ55GIWg06nZO3LAX7e0vRiCU2LPyt5QkgetYpNYNfLTrVVRTSz0UwganKy0rpN2jXquR5bmlGW/u8OQLZ3CVptVq4FVURaUUYRhYSqiUmCKn1x/ihQFUP6e0WjdrYqIxVFlYoc1Ku7583eo0fQ9M9X47FhHdLTSUcMjzjO2dTfr9Eb3tIXEcUZqyogZDaQR5mdv/l5byde99D3LkwBKe61gdnlJI10Vg3Xd38yWjWkhZlHvaZ1Ptn7vh367n2nW5s0MYBpSFzb+0jTi7ZzcaFtWYTBLGkwlaaR782hPceuII5y9d4fiRJfI8R+0aa0lRRct41mDGdSmKgmRic/muXF5GK43nW+OWNElts0IqlBZ4gWf1gNrhc/c/yE6vx4ljh9na3OL+507y9rcv4LoeySTlzNmLRFFAEPps9gqe/LMnmJ/uEEcR44FFCCfDMRtbPTxPMxqNOfXiRVY2tnnvPbfQaNhm1uGledbWNglcG7PjaM14knD3LUfwPPsemyrWZjyaWGRQUJkElVy7ukJnurUL0H774u4mtxVFgSlLO4+MwXUcPvnoM/z03/tx8qxgfWuDqdmZV2jjb+aGaCoIpywN3/zSH/In9/42rbgkm2zz/NNPYowgH49ZXJxHiJQgdtHlhOH2MqFX0tu4zIvPPonZ6XHm5GO4IicfbLJ+9Ul21k8RyoLB5jK+KhAmYTzYxFWa/sY6niNQ5YC/cVfA+96l+JXPfo0vPvUQXzv1CDtXNzi8b4krp6/RakcUeUKRpghTsrK8jutBmoy5+MIKQc3u9XmRkxdZdRCHNEsoS4vqyqo4cMMI7fogXRwvBKXJ0wl5nla5e3UU0G7WKdMJ6XhIu9O1zRDHo9VoU6uC1yfpBCHh4OJBJpMxp55/htFoyL65fRxYOsTBg4dZXFjCDwLmZuco8oxJMsZxHdZWr1GUGXlZMhqOGI+HTJIJO9s95vcdxPVD1lev47gBd9/5Tubm9jEej+h252g2WxbRHo/wvIBkMkaKnO70NKP+FqPBNsqLWTxwgmZn2ppGVbyTPbbDd1Kn/SUheA+ffIiPfvwj3+6BvvWmbyM9+s7Hze7v27/G3TX0VnH31nhT4y+1uLtJp2MPuSut/oDXK+zskwDgvt/4TT6wv/stP/6LFHevt1bNLo+IXZqAQIqq21Id6Exq2FjZJs8SZrodsty8nCdTvX95XnDuwhWEgHvuOEySJsRxyAOPPce+TgM/cLm+uo6UhtB38XxFFAcIZYuJ9bUtoijkwsVl9s918EKNF1o6nqdqQElR2gPhcDiyeVDjCZ7vohyJ9h2yIgfp0OsNoLQGDoHngLF0L0vnEnieT54UjMZDgtBHCENZWovzAklhwPHs4XnQH+G5IVtbPVzX4dOf+xo6K20IdyOg1W7S9H2CwOdrj57iyKHZSoOTkKUFDz/xEoeX9rGzNWRlZYvPP3ySWw/Oc/XqJkWW02jECCWQWuEqDyEVn3/wcc5eWGNpfgrPdymLnKgeUZQlxhQcWOgShr59T6+v0Wo32N7pMTPbYafXIwg84lrAE8+9yL65KQTQ2x7gapfVqzvU4yZGlGjlkGU5vb7NQBL2pIoU4LiawWgIRnDn8SUQgp2tIVIqTr54mk6rYemV9YiiKHjk5PPUPJd6I6bIc8LQ3zM96bbrdKebOK7CdTVCaMqsZDy2HWfXs4itdhVIRZqWXFvf4PZji9bkREm0q/A9l431Lf7pqQv8zj/5AQ7tm2VtbYMwCNjp7RDXrBFMlqbEdQ8hrIbz7/zyF/nB2zU/9b37Mcaa6CTjhI3NHZrNOoP+sHJ+1SAk62s94qiGcnyMkKyvbrF/3xSOZ7hw8RrLK9vcenyeMPKswyPQ6TQs6iag3oiJHHua3BikhM0WvgODfg+NwJEORaGtCYdMEUba7MYKRXEch3QML750mXe+7SjNVozSEs8VXF9dRytFkResr/foTjU5uNDm0MF5EJISRZLmbG8MUVJz7zeX+a47lqqwXusO+28+/UVOPv0cq5sb/OTb7yZJJiitOXZgCaXt5+D7HnMzXeq1eG8zsWYTr6QTmbKwRiLSgVJYC3tlUcKiNDiuD1JSZBlFbim266sbxBWFyXE9VlfWeegbT3Px0lUOLuwnihscWlyk1WlaWq2jEaVtNMkq60oqm6sXRpE1dkFUhbFXFVICIQ1CGgpTkCUp4/GYWr1uIzeMzUQz1QvKK7dWO6z5kesqvvbYUzz9wiVasU+jHpPnGbuursp1EdKaBqV5ycHFBVwtrIup5yG0tqilq8jT0t7zLuVVgFCVu6LWJJMJrm+jEx574lkuXlrm8KEDmMJSQB3n/2XvPaMsy84yzWebY++5/oaPyIyItJVZJZWThCySANESagaQkGhountgWD2LmW6YaVCbH43oFrBAuAbWUuMHWi2szEK2hIRKpfJVKptVld5nRGbY6+89fn7sE1lZpSyVStKw5kftXLFWxLXn5j1n7+/b3/s9r2Ycml7GPMsQiqs2AMP+iFKpzH0PHeHA0gLL8ybIDXyf4WBkeiPbXYIgYNDvMxgaaqcQEI7HlMsBQbmEbbumFxDzmkFQJk0Tnjp+At9xDRhKKiq+R1DyieKIoBzwzNYGb3jdPuNPqS0mJ5tmEyKOOX5xk8luxuREzcxV1RJRnDDoD9m7NE+5FqC1olYtM9Os0R+MOH7mEuM4Zm+xeTUcjgzYyNY4tkl8jWUCJqguLHpMVdbAaJIkRRDhlVyEKioq8IJx5fVulsLQW5VSV/vlH8HmbW97Kw888ABPHTvKa177muds3l4XdZ+bayeOE84dfZDXv+524qhPo97A830c6SGTNn7e5uLJezhz9F56l+6nv3aU4cYZvLSDHK4jeqtUnDGaATIOSUZt6hWPYSelVKqy2RmRUAfdIo0laa7ojgSj0KXdLeFoh9cervJdN1f5rlstbnnFmOPrz3Doxos8cvYEf3P3vUw1z3D0ytM8dOFpDu9f5Wx3lUevnODwKxz+4I47uOPxB7nvxGPc+8zDrJ69wqHlZRyl0EoQRyESQao0GRaOWyaTNtrzcS0Hy3aRArI0xlY5aTJAxn2SsEM06rG2epb25gpxFCGlud6TJCFDcuTJx5loTbJrfhFL2wR+Cakl/X4P23E4dvwZA9ixNQdvfAX9wZBMKDqdAdVqi/XNHuVak+1Ol6XlGzh5+iy75pdZ3nMIy3JIs4xGo8HRp54kzXPW1tfxfJ8oDsnjjE57Hd9NuXT2KQSKSmWKxUO3UqrWC8sNo2nYSe6ejb9evBXnuSfitye5OzR5C6VdDqWS/0Jv9DW3GGrwSzzeFx0vJ3cvj3+kkWXZ+6+VYn7d06xI7vIsL5IeYRqvd0bxGtcDqogiMfpGhhCCn/vZ9/Ffblq8bpXt2QXjG3vFa/PNa7Xdz2nsvXq/uCZYM3KCHWlKJswCp5GcPHme3fMT2I5JQCiqfFla+D5pi6DkGV+9Qu+OgIOLs5RLPnme4zoW7W6fqcmmAVAURLidRdl1HC6vbTEKx0y0qggpeObEeVzpkpLw4JHjNKtlyuUAx7bIopBBr49Wkl6vR6nkkeXgl0qk44jRKERrWSQZdnFskhMnz5MmKaNRRKVcQlsWW1s9XNfHshIpQHMAACAASURBVByk1AgUWxs9XMfF8TxEnuP5LgcXZ6lXAtY328zM1oiiEL/kYrsWU60qw/4Ap+hBsh2bcT/EdY2MSSKYqPksLEzzxQefpuzZNBqmYuHYNptrHVzHZrpZo1Up0WhWyUlxXYf19TaWbaOVhNz0xaVpRjkIkEoaOZk2dgS1RplwHLJ73oBflJQMBiNsbXHk6XM8few8jYZPo1Hl1OkLLMxPF3JRRRTFaK1IkgStFZVqxVRMAt9UHvtjHjl+igOL81Tq5aJCopipN1FCk2ewenmLkuvhuh4nz5xnolkz1bU0LfoqfdI44ejpC3zhoac4tGzM2REZcZhw5vQqr77tIAJDaYyTGAl86uQZ/mCzy5//7NuwLJvVlSuGUGlppMpQ2pyHjmsxGnWxnRL/8rc+xx//1F6alRJJGGHbmjAMAQhKnpHdeW5h2G0oZyXP2G4o2yLNoBqU2VjfoFr3qZYD9i7PmB4WrbAdm1LZ0FAd18GxNXGc4Dua4ThCuz5BUCZPRvR6A4bDMZY23lhZlhHFIWkqDI1SyqvXQq8T8skvPc6BpQlc35BKRW4APLZlPvN4nFCrBYyGIYNhyHgcMR5H+L7Hk0+e5e6HTvDlS4J3v35fcX1LpNB84cgV3vmOd/LZz3+Gn3rtd6CUQmttTIFdxyzygudcmyb5NDKsLEuf3eTKM6Q00Jpne49S0iS5SuvN8xxtKcJxiLY0nusghDTnptKsrqyxb3k3251tlhbnQZjESykDzMgx/Uu93gCtTWKrpCTNC6uL1FQRtFYIYcAg2jLJ36DXx3WNlMxxTOInhTRzGM8mibqoPCqtEUjCMESQoZCsbXW55caD2K6+2t+V58asPolNdcx2HJRlEY+HuK5LWvxP5EXPlVLKyO8LIIss+pUNlbcArCiTAMxMTzM9OWHkhlIxHg9RhUrBcWyEFHTaHVNpc1yU0vilErumWnQ6HbTWSCVwHQdta6JxSK1Wpd8zlM1ypYQuTNh93yfD/P8paSrpWxtbPPHMCVQOE1NNqpXg6jm+vd1manqSQW+Abdn4nsfhiSn+5K4vcOsNy2htERWgoCxN2T3T5O8ePsVrdk2RJBGVqk8uFN1un1arTp6nbHe6lHyPSjlAa02l7DM72UBbprL7kS/cy3yjShD49Lp9syZpzerlNfySR5alhGFMFMUGSJOZNcy2jLzd9Tyubsu+lDgbUyHeWSdXOx32/uC7mJmZolQOeOt3fxe2Y6BPO+O6xY9C+SLynNmFPdhejYmpOdbWu0xO7cJvTOHKERdOPcpo5TFE/xJpPqZSCpBoRsOcL3/5YWb2LhBrQWw1qDQPcM+D55maPcxjRzdYPPBq7nzoJHPLr+dL95wkVTYHb3kj1ak9lCdvYHLXqzh1tsOJc33Kjb3EsoxbnWf/4Rv4n39zB+9+97tI+ufZf8OtvP7Vt3FozxRTi7eyuT3k3NnL7Nr7Kv7Vj7yJ77x9ju84qHjLLXXcSszj5x/jL+6+hzccuLVIZMy1kMUJEkGWZyRxRCYcLMfHdjy05VAKqqRIRtEQZTmUPBdFSrNaRTk2UTRi0B8yP7eLSxcusbi8jON6ICVX1tfxgjKrq+cpBxWEyNlubzE1OU2z1cJ2XQK/zHg0ZtfuJVYuXeLNb3kbi4tL1JstpmfmWZjfTa/bIUkTJien8TyPx554hKmJadqdLouLy5QCn5Lv8dX776HRqCIISdMYx63SaE0TNCeKzXvxbCxZKCR2zrPr9tshnnOOCHlNkHZt4Pb8513bO/oiww8cfv4D77sGrPK1R3G91/96id03J9v8xpK76/ngvZzcvTxe0siy7P1ft1p37SiSu6vJFc+t3O2Mb0ch+5GPfJjvmJ24/mF8Czspz3nqtb/vzCHXEZaKrNDkC1NN2F7bpNfrMzszRY4kSXOyLGEcDTl56hKtWgWp1VWKXLuzTblaRlsax7YYD4ZsbZvAYnKiSRzHZHlOFCXkpIaWqBUbm20WF2aplsvEcY7MNVPNJuWKj3Y0CzMTVCoBG2sbBhJi2biew3anh+f4RKMUy5GQpPS7Yz5+z6McWp4jTjMcy/jojccR9z1xjLlmk/mFCcLIoMfJM1PFk8/utjm+RxgbeZ3UkjhJ0LYmjWIatYBef4jvG5+fTqdHtVohHEYoXRAoXZvJyaZpukfgBz7NVgVEzr7lGeZ3TWG7CoVZ+I8du4TjKJqtMuVKQJrFKC0YjxI+9eVHuHH/EmmSoLVEyhStjOxMKoWyJXmiCnP1uLA9iJEY6RZ5huPYkGaEScTi7inCMKbZaPLU02f40gPPsH/XlDGk9z2SJMO2PLrdAaPRGHKTaCmlmGtVzblTeJ2FwxHkgjRLEcATx8+wZ/csaZoyNdm6WkmxbAO70JaRbc7NNLn18LKR5w2GROEYW2lqlYDVK4YSuL3VJU5CPnDkND/146/hn33nYTbWtxkMRpTLVeIoIY5iLl/ZYHKySRRnnDu7wuz0BD/2G5/j939yL0mSIskQeUaaJrTbXYKSj+3YrG1sU62USSJhcOZakqUpSWKka7kUiDwnDSOUZeE4FnEc4XgWcWSScoHgzJkVKkEJrUyCFI4Ter0xxBmO1my1h1zZGlHyArr9Lo5rzjfLrqB0QQCNEyMpyzPC0ZCFmRLNljGYF0JCHhvC4ig0vbGZwHEcur0R3d6IO+89QTgaMT/dYH5XjdmpEmU34dDyspEsClNle8+bDrAmmvyn//BzfP7jn+Dw7K5i8ycnSXeSe1OxkEIiZZH0WyZBMT148ioFM4lNJQqZIWRKEo4YjwwtNRxHeI5DLkxCqJQiTzPyXJCnGWurVxAIWhN1Kr5AZCGWZ2iucTRGa9ML1Ov0CMqBQZJbZqc8FZJuu88nPnUnt7ziIFIJIEVISJPEmGb7vukFTnKUlkUFJUZJSRiOjAIgio0li9QILcgzYy8itaBWrbF3YR5nx/9PCMajsaFNFptcRv4rioTKRljaWEDkGXkSkmXiqh/bTrCrpSbLYW1lgzTZIXnKwrojKZD6xqw5zRJsxzHnsZQImRMEFYbDMUopBr0Bnm8gKRNTTaI4otasMhqNkLlJVDfWN2m1GmTkhOMI17NJogShBIN+n9FoiO2Yc+9L9z7ERKPO0u5dRGlo5KpSEccplqX56leP0GrUuePLD3JgeZFLl9aYv2maqVaFOEo4eeoc585foNfrM9msc/rRUyyWy1RqFYRUWLbN5+7+KlZm+nT9kk9nu4OUina7Z2iXgYtlW1i25hXLC9SqZYTIubiyxvlLGwyHQ3YvzpFECVJLLGXT7/WN1UmxiWkJzcZml3K1cv018MXWzuf9XXZdPvCZO3nnD7yDUqVMLosN3BcJdvMctJJGuiwlSRZTL9ucefoRXHr0Vx7n+EN/R/vSY1RcSaXWJJM+jz61zSCd5sGnIpzWrXgzb8abuIWZfW9ke9Tk4OE30Rm5XEmb3Pbmd3L8fIfl/W9ibvFVPH10i1e+6ruJ7RbC3c0wmeV3//Av+cmf/gVOXBxyw61v5cEnV3ndW3+cV3/nj3BmJeHV3/nDCH+e8tTNTO6+hdxrMc5KvPV7f5B9h29lcytkav4g51c6RNRYWjrIrTcs88ZX2PzGx7/A3x95iDfd+HrycYiQGVE8QCoLIRRCmzk/TjKEsslyiXZ8/EoTZXkgbbQXMIgiPC2IRn2USDh+5D4mW3XisEuajJEiw/U9tJa0Wi0cxyFJYiYmJtFa49gOcRiTpglKSSpBmT179xDGMZCzubVGvdbg9OmTzM3NMDExQUbGdqfD7Ow8tuezvrGJkppLF89yZfUcexZn2Vo/j8wF43FEY34PU/O7yYXxuRS5sbDJdyTr1yR31z+vnrvxf9347ltM7gCGl7u84Z2vf8GjeKnj6vv/f5HcXefzvpzcvTxe0vhmkjuDC8+LCt51yFjf4jH983/2L/nlVx164cP4R07uZGagCSggzzl+9DQTtTLlcploHHPXV4+wd3mewaBPe3vA/OwkcZyagMe2qAQuYZiQpCmbG22UklxZ7zI7PYFlP2uurpSk3e0ak11tU6tVGY7GbG93KZfLJJGp7h07eRqv5LG92SGOY1qtGp12F8vz0Y5tAAuWi225QMSwP8bSFq/cu8goCmlO1hG58VSTSrEwOUGtUqHT28ZyVCEBMQE9JMRJgrJNguaVjD8e5FxYvWKqkEmKX/JIYrPzjRB4vm/kg1KRJgmub0idSlk8+MgRploN+v0+eZ6xvd2mXK+YQDMao4BOu8vi0iKlwCXNYmP2amuiOEQrh7lmnaASMB6NsW3Tj+M4DtqySbOMOIkZ9xPGYxN4KqVYXd24in9XStDrDQlKPtWSR7VhgA6b621mpyap+y4Tkwat3+sNaXf6WJZFpVxmNB4RBD5CCJI4ptvtUa6UaHcMwt1zLJQEt/DCm5tsMByNcB3NcBixtdVmY6vDaDim0ayhtKJTyFyVVuQSFALbNgFknkG57OJ5Pp7v8i/ue4Lf/7++i4sXL9No1g1K2/d57NGjeJ7NxGSTj3/qPm46tIzA4sf+8x/xwNk2v/Xje1CWkW+5tkWv26VU+HONwxjbNgj/ja025XKVYyfPUa14pupqW3S6PXNfqUSWpNiuTRiOjdF30acmhDHPLQc+kPPIoyeYmW4wGET0ByMmGlWOHj3L5HSTuflZatUynisZjHpYlk2S2CiVMxqOCcoBaZoamwhHU616+IGpRhvqakycxCRhhuv5aKm5dGmNE+c2mJyocPr8Jt//vbchhTCyZluzZ6bKqfWUiWoZZH61t/Z3P/oV3v727+J3/vKjfN+efWYWkDnhaIS2CmNtoRBF1e7zX7qHpV0zV6/bnWlDKpO4SCUZ9AcIkeLYNrZjkoc//NhnuO3gfiAnDEMsy6DltdZkec5d9z7MjYcOYFkCS6aMhj3coEyWxgz6g6JfzHhmSimv7nBLKUkxViyL05O4nsPKyip+YCxRLMsiSUy/cxyaik4YhihtYDHGZD0jSTIc1zEE1Dyn1+vjOp6p2igY9IfYlmPMxZVgNBqhtcaybaNzyHLSPGN7q20SfSURRQ9WGicoMpRlA8+alAspGPRHSCm5+/7HeOjxYxzev4jt2JALtFIgiwRTguNYhOPIkHAFRVXUNv5eSuF6LlmakqbGVsIr/s7yzHwWIajVaiSpSe5d3yMpNtjIc/r9AY1mg/F4jFaKfcuLTE40AYFfcRmNQqQw5uSu69Cs1QnHEdONBuVymUuX1mjuLdOoB2hto6VgfsH0/U5Pz9A/tclUuYoU5vp+/MnjeJbmlpsOkGUZucjxPReQ/MMDT7I0P0mWpuTCrL293gCv5DHsjygHJTzLxvccXM+9mugPB2OGgxFB4JleWgkiF6xc3qDZbGDsK/PrBs0vuHY+7+/BaMj0934fC7vnr3qeym+okGHUPQbwM+DJR+8lXD/OTMPm9JF76J55hLBzgWpgszUYsz50GYcJDz92nv0Hv4MTKzG3vvZtbK57nD63zqte+xp+5Zd+FZGO6XYvc7kz5MYb91OvecxOzJLFCXvm9vLkU0/Q7XdZXdngz/78Y/zmb/wiTx05wuqli+zZs8DpkyeYmz9Aya/w95//IrfcfBu/9sFf4+LFS9x2+81cOH+S9vYVNq5cIo0G/M1HP8vrXvd6pmem6PZHJLnGlhbNVol3vHGO2w9KPvi3X6IxaFGbKpOSEaYYeWY+KjY1lPkecoijiDwx9jN+tYHQLm65gY7H+F4JJaDRbGJryKIQspQkiYnimHqtxrkL5ykFQUHHNjCkrNjItbSi3+/RbDQIxyPanU7Rj2z6n23bwfMdPM8HIanW6riuS5xmDPoDpqdn2VxbIYtDHCuDPCNNMvYfvJlEWbhB2WzKXnM+5UWf3f9fkjsnqbH/DYsveBQvdbyc3L208XJy94884iR5v5LyuX1y16FiInJELq+W0MVzZEfPHeKan+udyrK4/Voq5rUn84f/x0f4ocWZ6zyzeP0XWZC+xkPleX0xz96eXz1GsXPAX/NBzGqViRyRCQhTer0+XsXFcUsgFXNTLbS2sLTFzFSLKI5JkpTRYMz6+haVoGIMi4Vm0BsjMklMQrc7ZOXKFvVGiWPHz9PbHtGoVfB93wAolMRyNPE4olR2OHfxPOWyz1Rrkn5nQK1WphT4bG51aDYajMMhruMw6sc8/tRJPNcQvsjB8SwcTzMejUijqPi+c5I4xfdccsDzzY60FIpBP8L3A6SwuXD+CvVqlWRkgCBJnNHe6vPpe57EAWbnmmhHUyr5DAYjojDhvseeouI6WFrz6a88xJ65WTbWO1y8dIU9u2cJyiVEnjMcj5iYrCOEIo0SxoMIvxTQaQ8plV1jsJ1DjqkGep4HUuB4Ft1OFy0VruthWW5BhbQYj0b4voftKjzfNhYGWUKl4psFzTEWCc1WnTAaUauXGI0iAr/MZ77yAEvzTaanW+RCEEUxn77rYcgzlhamGY7GVGvlArpwmWqtguMEbG32+NRXHmW+WS8SW20oq1KhtIXn+Vi2w6DbQ2tFtRrQaNZI4oQkHuN7LkIa6uKobwyiM3LG49D0yaC4uLbO//HYcf76372DyysbVOvV4nGCKI5YWp6jWiuTJDG3376fLM358d/6HL/6E6/k+2+toWwHS2aINCaMhviBD5lNu9vl6IkLTE9Oce+Dxziwd544iSmXAtIox7Yt4iTBdl1TKVISoQ3YRlsWcZLR7gwJSgHr69uUfIdnjp3BsTXLSzNIKdja2mBxcYbeaMjSnnnW19bxLEUuHaTSjHsXCLwqqZ2TJ1DyXLrtDp5vo2yN1AqwSGLJyso6nmOTxiG2ZaG1IoxDpLbwfJeqr9Eabn3FPLbj8d//6k7620Oa1SqfvONR7njsPG95zWFEqgrMf8KffO4R3vuuH+CXfvO/8a59B03vqtJo27pKkQzjEWma8IUvPsDe+V2E4Qi/5CGKyrQs6JFJZKpytmMkzeE4QWuTxB1e2mV6YqWBx4yGfdIoNBL3JGX/vj0o2yKXEI5HVKpVNjc2QSjKjSZpanzCEBZCmetC5orxaEQ4aFP2SziOR06M6zrEUYxV9CRqqUjj2MhLlcCYr0tU4T0pyEkSAxXKRY6yFHmYoLQqqLU54WgIwvRMpXGGpTUXL17m8uUrNCYnUFKQJRGf+PydzE/O4Li2mfOLBFRojZA5eZpdnZDTNMMpEuil5V3MT7eoVIJCByhM/6/AEF7TnCwrWgO0SfiEBKEk2rKMhFWZbp9Bb8B4OObRI0fRQtFsNNnqdXE8B6EE/V6/8MkrkWWmImvbDqWghJIaqSWDQR+pzTpnOy5xGGE5gjxN8V2f06dOMzndZDAa4Ho2lqNZWJji5z77Ff7JzXNIS2I5FkmUQyZxA5ef+buH+dH9i9z9wOPMT7WolQJ2z8+gLY2wJGmWE4cJaZJww755EBlC5NjKIoljgqDE2uVN4+mYZoRhgmM7PPjocRbmpsgLT79qo2wkvMoE11ESQjKmFviGNCleaIV+3hJ4naUR4KHVy7zlX/+U+W6LeCDPnvt6efFkYfwyUDIvvlZJmsJ4NGKq3qLlZjxw1+dwsstUfIejmw5royqf+vwJXvN9P8dNb/hhDr7iDey94WZQNt1+j6WlOq+6/RW8990/xs/+zM/wPW9/M4vLS+zZf5BklHLX399DFg/xvZz1uMfBm27gxLFjtBoVXnPbHhZ2L/Lkk4/yhu98HRkZBw4dpuQIer1N9h/aR7vf5ezFLm976zv45V/+NZSy+Z63/VN8b5I7PvcV6q0GN976ShIl2WqPuHxxi1prib/61IPMH3gz7ZHD2990GGu2w6/82Ud4495bII4Z9LeoBDWUMP63SZoQxyHlSkCUxuTkRGFMKaigLAflBISZJBMat1QlzSWJEIg8RuUJIgvpdjdwLU13aw3b9nBtnyQXZo4QIITi2LHjBJUaUZIy0ZzAcR22t7dwHJcrV64QhTlnzpzCdmx6nTYl12fl7AXCqM+FC8+wtGsW18oJB302Ny5TnlqmNjFDtVZDkpEXMLqsiLl25pWvjc+uc55do8R8zgOuF7h9k6PaCvjp//hveO+PvIfnntnPvr6QxqrphWLMa+WSV+PXlzSe/74v8NmupWW+3HP38vhmRpqm75fP1w1fB5wC15dgvth4oX2K58s3dk7gX/rFX+GDB144sbv2sS/l/hd6ys7tV+++5prLd44+F2aRynJGvSFpElMKPCztkGNId8Zw3PgMKanZ3uywudkhjhJWLq+TZYYsGRYSwcdPnmWqUeXeI2c5tDxDEqUsL+7C8Wy2tzqUKwHhOGR7q0O9XmYcjpiabBBHCXmWc2V9i3qzhpSSIPAhz4p+h5yVixs8cfIiNx9aQmuJ7VqMhga2YmmFYzuEccJ9TzzDVKPJI8+cYuXKJq162ciohPHw6nQHOLam2zMB0HgU0usNcFybWqPM4eV5Gg0jo9uZxJMkodcdcGj/Iq7nMOiNWZho4Qc+tVqZZrNKUC4x7A+wHc3pc6tUygG2Y2PbGsuyiMPEeJpZmiiMTMVhJ6lQEiEktmVhWzb9opoxHo2p1430qlI1foBpmtLt9hBQyAVzLNcmzzJGw4hwHFEOfLrdAb7vk8QZs1MV6vWKCSZtiyzLCSxlqjQ5htIncwaDAbV6ha3tLqWgRBjF7F2YZGZ2kr/47Jc5sHvWeGfZFuEoBHLjXSdyao0KltaMx2PiKKbsO6xcXsdSkq3NbVzHQmrLeEkNxwTlEu/45J28+0e/g5/47psI45harYrtOgyGI8Kx8fvKUhOAJ8VO7Ht/7TP87r9YYn6yQk7KeBTiOYZImufC2Gd4LlqrwvfJwnUslIagFGA7LoPhEMfW2JbN6dOrVMslVle2KJd8NtY7eCUbx3ZMElrg7R1b06hXWVnZIIxjgpJHvRYQRhFhFNMbDJicqBGGIa4XQJ6g8jbjfoztScAEBZ5nqnSmHJCRpQqlHILABZGQpTum25LhcEzJ9xgNx7iujeta9IdjhsMRtx1eZHnPNJVaQLu9zW9/8jF++ofeZK7rzFTYb9pVZ+bw6zh39hK32A6lso+Qz9IYjURV4NgO060JJqcn8Mve1QqaLCYSg9F3r/bWpWmGthSjwQiv5KEtQznsbW+RZylpnJAlCXd86U727FpgFEUGdCQE4WiMpTSOX8J2jUeklLKouiiyLEZJRRKbHjbPsxmPE44cOYHr2vi+b0zgKWia19A5RSGLE5IiIM+LPjaz27+xvonjusbWRprqWpZljMOQclAjTwWrK2t85ov3MdNoYCmLSq3Cjg9aPShTrdYKJYC8Orea3rO8uMatQsYpIctIc7NZUK4EKGFseXaOXUjJxtomtm0z7BuptNYWSWwgRVkmUEKydnmdcBxSCjxc1+Whx49waO8ytmWRJCkPP3aELE2ZnGiRpCmlwEfZpjcWYY4lDEOkBik0Whti59mzFxj0+sV80UYg2d7sUKtXEFJQqVWwHIvhaITSise2zvKWV+5mc3OAFBrHVpQCs1781VeO8U9nmqZPebKJXdAvL1xYIU0MsTMzJpAMRyMGgxG1WoX7H3mGNE4JhyGe5yGV4q/vuJ+T59cYDUYszU0ghaDT7VKpBUXPak6ep7S327glD2enz9wyVg8vNr7eSrurWuUT59Y4dPjgs49+frC7s77utGLtbA7nGVkSE3UuceXs03zlsx9GRJv0ts6gvGVGepbXvfHt3Hzz6yhN7cfWLhfOnOf+++7nhsMH2LW4i5NnT3H3PXfz8+97H/1BD79cptsfISxNtdZgbmYBLXNmZmYptwLSLGRpcdfVc2c47NPtdrnvvvu47ebbeOjBR6g0J0FabG60ed/7/hM/+L+8i3JJ87rXv5qDN+zD9x0++7k7+OH3vJv7H3yQ226/le3tdZaWlulu9zn8mtez75W30QkzWtPzWF6V2dZe3v7GlP/8x59gT7CbeqvJ9sYmtrbJhcB2XHJtMU5i0swkRRubBmAihEZkAtctFVJmC2U5lGstRsMBcRIRRgMzr2QZSkGYxFxYPY9fmUSrnG6vg+cZm5CVlVXm5xfobG/Q73W4cP4001Nz2NomA0p+GUu7nD93iunpaaJoDITMTE0SDtoMOm2GYcLc4g0s7b0By3HJRH4VlLdThQuLDauXEot94w/45seXH/sy7/2RH/46b22ssF4wubv29m87SfOFjwleTu5eHi9x5Gn6/q+dkK9/0u4Q7OSLXHzXA6ooaQyKZXE/PFthu/aC+e3f+p3rVu2ufew3AlJ5rrfdC+wWyZ2y+tc8+2tvkkCacf7MJSrlAK9cAiRZaqQNWUHJyzEG5lpp7nv0ONO1KnNTDeIkpTsY8IVHj7M81+LQ3jnq1SobW9vMTteZnGjx4U/cxdxEhfWtNrWgjERSKvlcXl+jUauaPqTEvF+rVS9stTLyPGM8Cun0O5R8hziJefUty2gHVq9sUgoMwGV7u0up5NPvm6rN0twslm1zeW2Lo+fWuWnPHHEUGbCD1vi+IS22Wg201vR6A0ajkEbLSCjJwfUcRqNRsTttfOOUlsY3LYpxbCMTvXBplWazgrZMX9rW1jaQ0ekOadYb9Ps9A4VIM8bjCFGg0KU0gXG5WmY8DrFtG5GLq9AHrQxxMopjjp8+z9RE0ySgtosorAJGgzFaGpx5kmZkGbTbfe5+7BkOLM0zHoX4gU8O2A70h8OiL06hlOT4uYssL8wYAI0UBZBGcebcKjNTE2RpThCUsLQJvA/vWcDSNqqg1I3HIYPhiKCoRuTkROOIKIyoVsrkjk21XkNaNuVKBcuxoSDTtUdDfuqBp/nkL/wwyXhIKfCRWhvSYyZ4+OGnjAw4itnY2Cj6eOADv/8Rfud/fzWuren3B9i2i62EgeEIxf1fPcby0gJCCLa221QrNfJU8sQzp9i7OEmSCSzL1NiV1AgpsbVNHCbce+bqdQAAIABJREFU8+AJZiZqnDi1Sr3hY9s2pZLPiRPnaTVrbG+1DVCobDy10jTDcYzRuVcqmceePIdlKUp+hRzJ1uYFSCHNBpAa2eFoHF/tS8xJUMrg+oVMSLMxnl8z4BcpieOIrc0Ovu/QH47Y7nRoNiq4jmuS+KrxmNu9a4pX7JmkYpWwHa+o/EgmagEfu+cU/+R730np3Imid9RANZLYEEXzDMIwxinOcakMRGZtdZ21K5s06nWUpYmLqnuWZiip6Pf6hby3j+e7hGGI43mkQuGVKuTCYnl5D47no3RWAEYUWZLjlQIoAC2qgKfEcQJZiNTGpkJpC6nyQn7tsr3VQcicesNg73fALVJK0txg0LWl6Wy3cV336mSZCwjDCMuy8P0SWpqKaUZOliRYjoPtuPQ6PVZWV7mytc52f4sb9iwwPzdZSApN72O9mJ+0VoXE9dlNPSmMxDrbmaTz4n4hjEF0aip1quhb3oFvlMolVi6usnp5nWajgRSKLM2JxsZeRSlFKfDN51MaJAwGA8ZhxNKeRbqdHvsWd0FmjL6zLMMvl0iTFLuQx0ajkCtXrpCmMb4XoC2LLEmpVitUKgEawVZ7k3JQwi+VzXmAQ5YILO1w9OgpHO1wpH+Z1x6aJwhqrF/Z4s5772f/3jmUZfOJ+0/y3r0LNKtlXNcE+I89eYyZ6RbVSoDnOoyGEafPr9CoVUyFP02ZnZzA8zxsx+HK+ibhKEJLwUyrzE37d6O1pBQ4SJWjPZskiRAYo3nPtdGWg85hbb1NuV693sL3dcfzl9DHV1d527/9N8+5/1kLoeevtRT9ZTmPP/IAcrRCNljlwqN3cP7pu8l7l5Aio9HazcpwiS8+uMrc7tuYmNgNfpPTJ84x2Wpx4003sr61CVoxOb9Ec3KCkp0TlFxOnLvM/oOvJBx3iWOzNm5ePkur7uI4TeJRiufWIXM5f+4KUdRla3MTz/FY3L2HmalZvKrLcDDgF3/hv/LffvO32bN7F449olpxcT0P1/fZc2APuUz44hfu4tW332Y2EXtDDt54M7//od9mNBpzw/5D2MLhUx/7NDe9/lb+9A8e4D/8259ktf85/vCjX+aNr7wF8oQkjtHaQekAx63h2D6W61Gtt1DKQWYKoXNykSMtG2XbKNslU5pSuUa1NoHEIUkkcR4XMVaEIxKi9hqO7+HamizNiMOIidaE8epUEiE0llOiWm/hB2WOPvMYexb30u+0WbnwNH7gcebYY8h8hJIZeZKSZpJ9N30HjYlphG2TK1EAUIzs13zXRgYupLlvpxh33SLctXd8o1W6rwNZebFxePI2ll81/8IJ3HVonteDm5i3F1+3yvdtG0UFT2v9cnL38vjGR5am7/+aG19oR08UJ/mLvOZ1q3V5ftUO4estKa985qtUPfdrn/9NXkDmac9RdD/nvmucDzCP3KFjXvsaJjJJw4iNtW2mplpgKSQmeL98eYNyuVTMTQJLW2RxxsJ0CynAK3lUa2VqtQo3LM7iuDajYZ9up88N+3djWZKtzTbLsxNYts3Fy5ucuXCZmVadc+cvs2/fPFJIoigxO7bamMD2B6bpX1uK1cvrzEw3SJKUXn9IueIzGg4plcpXEyDHNhPuOIrQhU9SFKdcWFlj11SDVr2M7Vi4vlcQ/yRr65t4hbQqjhI6vQGNRsXQ7ITkwoXLpImZ4Pq9MZalUVLx2JPH6fdHxnS25OKXXOOZpU3Q6vumyjg3N4UQii899Ag37NmNtjTt7S61eo319U2ePHqahblJdiiFZmfQkCbHozGj0ZgsM/00C7PTZFnGp+96iIOL82RZRpKkVKpltNamCqMstNJ4jstNB5Yxhs1xAQexiZKQIAgQuSoQ8xIF2LYuJn7NlbVNpBAsLMzS7w1xSx55ZuSeaZLQ6fRwXcdU6gpfqGajxurKGralyTJDGvV8F6kVSS6MB2CckGYpaWpADWk85i96V/jgT343Sik6W1uUK4HxPwOurKwzM9kiKJfodjo0m3W6o5Cf+J0v8uv/681Azna7SyUo88hjpyj7mm6vj+04TLZqJHEMShrvwEzQ7YbcdHh30fyfMxyOSJMUx3EYjcNCLhwR+DbNRqWQqHq0i00DrSWddp+pqaaRC0pFEPimh0sKojjBsh3yLDe0tTxHWT5pltOo27h2mVHYo1QKyHKJ7QYmEY5C0qSAasiMLIshhwxFHBfnsqXJkpxOZ0ilGmBbmnAck2WiICEa78g0y9k9WeWDH7mH5ckak5PNq9ftB//nFxiPU+7+hy/wukMHi4qTSeZVUfmSUhEX3ns7W0ACwUSraRIKQVHxM/PIieNn6bS7NJsNglKJLMsY9Ab4tQpxkhLFOR+/404OH9iHsi3a25uUy2aX3XYMtTRJErrtDr7rMhwOsSybOBwRJxG2bZOnEKcRWhsrglq1QrUWFMpryVcfOwJ5TqVSRkmJ47lX5z7L0gwHQ1OdFOba0rowchaCXHK1ly1JUpI0Yzga0GrVmZ1uMdWoomROmkZorVHSyDxNsTMjDOOrfXV5npuEV0lyjNRwp6KYF0nIxpV1sizB8z3GkalMXiuvqNaqTE20rhI121ttPnvnfexf3o1tGy9BLRW2bTMaDpmYaGFrC9uykMr0g7qei+97KEsZ+xoEZCkXzl1CIlGFn2CWQzgYEUVG9jgOQ3rtNn7JNf3WYUqn2yGPBX9/570c2LvE1GQLx7b5vYeP8EOv3QNIKtUy+/fMGX9CJH/9lWO8Z3nuap9qlkOtHGAVf+cIPM/j0WdO0awEpm9OCJQ2wCjHsanXKriew8LcFBMNY36+udUmKHuUAs+QVbVGFNI/hGA0irCkYGu7S63V4FtN7n7v6Qu87Ye+/2sed21yp6QwHrdJims7JOkY0gFycJG1C0+zcfZx2usXmZyYYOVKj7u+eo5//TP/hdSeIIoE/3DHJ5ndt8jhwweIwxFByadSrXPkqeO4Xp2F6RnWLp3CtSVzu/byD3d+hWbgoW2XEyeOYudtLl86QSXYxZ/+0Z8wGA6YaDSYnZ0hjUMe/uoj3PzKm7G05oknnqBWzhj2Oxw6cIi77vwSt7/6FoaDTePBKjTrG1v8xV//NbfefhsH9x8iHA9xHIc//fMPU221ePOrb2OiNUnZL7GxskJgWzR3VfmeN/8oa2sdbr69wZ5dJT7w53/J6w/caiBEWU6UmI1vrW0EElCQGdJkroyEeWee2pEri1wgkLhumVKpTrXZJBeaJAqJxkMcKRjGIWQZly6dI4nGlEo+Sub0BgNOnjjGzMwc9953F8tLS/S7m1ha0OmsMTnRQmQxvh8ghFEk+OUWy/tuxHZLSG0ZRYUQV3sGrx7bdc6HFwzfvpXE6Jt4rtaKuRunXlI8+fUe+/WqfN/u8XJy9/J4SeOlJHfyGxRmXu/Zpscu/bo+d8eeOc7ulbPXve+bu4Cuzdx2Urb8uXfDdSeka99PSEmWZ4y7AzSCXCpSoNfu8/ATJ3j02EX2LUxiO5poGCEQrK1voS3N6sYWtu2gLUOmtG2F61qIeIzIMSCO7TbVckCjUcPybOYmW4TDMfVqmVolQGrJlctbDAdmco6jhEGvj1fyyPLcECOlIhxmaGGTRgLXddFSGy8daQLRXr+P59skcQhJhih29WdbdSaaNUbDEZ7n0O0NcD0PoSzqVb8gCwrOnl/l8KG9bG93kVJy/PgFzl5aZ7pZJ/BLfPSOB5ltVfFch0a1Rmd7wMxcGWWJwhjZoNLTRHDu/AXmZifIMoN0r7h2Qb60+Mzdj9IMSkxPTzA10cDSBuhxeXWdB548ylMnLnBgaR7bsQqMuUkc0jSj0+5x6+H95Cnoom8qz4UhBKYpSro8c/QsDzxxjPnJBlkeG8sAy2I8jvB8G3LN9sYQ2zXVvpLnYtsW/f4Qzy0XpuaCbrvPVx5+hjyNmZpuQZYjJMZQXkgEYNmG7GhkpaqQDDqEYUSuBFEcM+p2CTwbW0uyKGR7Y4t/9cARdh2u8p633lIYxoKtBcPhAMcxiWPgevS7fXzf9MI9dPQs4egSP/nWOZTMgQzbctDaIRpleE5OtV5Fao22IErG+EGAbdskMdx7/zHm5yoIlTHsJ1SqPmmWIIXGtizG8RjXd6jWSjiezeRUnSgKmZhoIISRz5UrAWtXNnFdl95gyMbmNtrSaGWRpBnaMqAIKSWDwRhlOQhLMxqP0KpMmEQMem1yYSGUbbD6WqG0A4zp9bdwHQ+wETovkgiQUtPdHjIzPWW81gAySRRm+J7PuXMr2LaF47tYtsMf39vmPW+8AW0bcIiUkl53ix/93/49H/rUx3nvjQcBQZYaw+00y4o+qBTbsbAsTS4gjmJELtja2MbzPKIkQSkTiGVpjms5PPjoM1R8j2rNmMK7jgsiRUuJrR1eecN+yDPIUzzPotPumMq16xDFCUoaSI/MTN+vQKGFg+t59NojHKeEFEYWvgPPSPOELMshU6ai6XkE5TJKGSBMHEXGM1GaiqC2NCgjd45D85mkkKRSkEQRQlDAinLKQcDFi6tMtBqQp7ham42MdFwkwRIpMkaDLl5QYcc2Z6evOc9Ngp6TMRoOTZ+vLAi9tjYxo9aG2Fn0C0oliyDR9ODtSGE/9rkvMdWsMd1qYtkmOYqThDTJsD2nkOAZ03IpJFlRRkjTjCgMIc3pbncMqCfNSWOBZTmcPH2O1mTVfOYo49LFVer1GoFr0R/2GA5GeKUy5UqJrc0NZibreK5mbe0yw2GHz1w4y1v2T1NteAiZMuqPEbmNUDkfu+8kPzA/RbfTB3KUZWFZFkpL+t0+m5vbhMOYPbtniZME33PY3upgOWYeXN/YwvULKxslUJZAKEGlFqBsRZolkCQkcYrSNqBIMkF7s0Pg2Zy/tMbk7IRJsl+CtOz5y+S8A/2FPTQateeuute8ZJqk5EJgRYKTx47j2Cm9jdNceuYOti89zvbqeWYmajx1coMbbnsH0ze9i5WVs7zuLd/ProUFmhWYWmgidYoiZWNzC61qzM0d4P57H2Gw3cZOO3z+s59mY7vPfQ8+yEN3fokHH3iYD/3B77CrNWayIfnj//4Rlhcn+Zu//WPqdcnaxnHe/wu/x675Xfz6b/46+/cv8Ud/9CE+9bf/D3vnAv7gQ3/I+fNn+LP/8SdYAi6cv8QTR06xvtHlzd/9VrzAx1Uu/U6HRqPJ0r4DtOZ3Q6T4+f/4i7zrvf+c9//iB/Bcj8nJfbTHxxiGEb/6X/+OW259Ne/93r38hw99mNcuHUKRGMVCNiIs1C5Ii1zkoCPy3NiNCIS5/nOQOYZGqSSpFmRakGUax6sSVKfRbo1eMqZEzLC3Rclx8F2bXneNi+ePkY5DqoHP1pVzNKoeg85l+oMOtaqH6+SUXIt+e50wHlOpTlOpzlCbmset1VACU2lXJrGT2U5c+Pwel6LoxLee3F17nj7bQvPNJHcS1RSUysE3LKt8Obn79oyXk7t/5HG95E68wL9r5ZYCk/Rc7wLJ8/SaRxY/Ql41N30hkMr7/t2/5/tmGs+RYL6Y18gLjZ1drqu7Xdd8umd/rvO8IoHNi98BcmlBFHPpzAU8z8cNyljKot8ZcuT0Rd79ttvJ85R4HGH5RjYoUnAdBykEm2ttsizh8uYmjm3huh6uX2IwNjYB5UrF9JcoSb/Tx3UsJibqdHo9gkqJLEtQWhb+cTYogefbjEcRa1c28VwXqQSeZyO1QOkc17fo9wZYMqfX7gDgaIdOZ0RQqpDGMRkZlqNwPItOb0B9wgT+rmPocuSRIdHZglxI6pUqUmV0BwN6vSEnz63y2psP4JYsUmIO7p4t+tDalMo2rckqnfYIVzsoISCDOMkZ9kamumVrUOBXjPeZ75fobvY5vG83WZZy7tJFpqfqJGnIcDCgVqkx02ySJzFTEw1yMpIkYRxGONJibW2LmekWcRjz+NMnWViYRggjWyVJkELQHwwISi6H9i7jlwLSDByvZKwklMKSLt3tLrW6b6ARaXY1uHQ9BxTc/8gz7F3ehet53HBgN54lkHlOFI6JwgglBL1ej6DsEccheZ5y5coGzWaNeGR6El3XghS0MgFamhc1Y2Xx00+c4iP/99tYmp0wlb3USOLyXJKjsGyn8MFLKFc8slzy9l/4S/7Pdy4wXffMnkWmUMpCKkUUR1RqHmnax3Ub5rvPhly53GXt0jbNap21K1vs2zOFUgLX83FdlyRJ6XYH5LkkjlOi3ggtBMeOn8Z1BIgYIRTxeMzRo6eZnGgYCIm2jD2AyDlx6iKKlHK5QppmkCfE4Rjb0kaSlsZYMkEhyEgJKi0uXTjBZLOOEBZpJsi1j0wluQqxbZ8sKZn3yUHmAqE1aW4AJVEUGklwHGNbFpYlieIxeZ7hew6lkstDjzyFH/jctDSPpSVpnuJYNgcXpvnEA09z8eIlvm9x+ep3nxdo7wvnVnjo8WfYu7TbyCbzFHKBUhYf/eyXuemGPcX3osgzo1RwPIuDexfISXF8Y+RNAbPIkUXSYaqDtmMzGAwp1+tkQpOnBliSZdAbjLFkThxH/y977x0l2XXfd37uuy+/ytXVYbp7ckYOAsEAAowSKVCURUok15K9tna12qO1NpharWzZkizJR8dLyytRu5ZEimuRCswQBBBgAEGAJACCAAgMgMk5dM90rq748t0/7uueATCDQEubDu45dWa6qt57t1649/5+3+/v+0W4PtKW5CInThMczwKl6PfaOK5FrjIGfa2kmOUpo2MNKuWCQmhqM3OlhDZhzxRhnGJYbkGr0r5zwtT3ZDYMSVPdN2EaZFmC7Zj4ga99EKUkymNKjTKO5RLHKa7joPKcfj8kCMp6FBU6UCZfqxk0kIaFZTl6zBUChKGRddslV2ijbOOiWbw0JLnSNYzRMCIOU7ZPT7Jz+2akZxPHCV7gEQ1i7vn6d7hq11bSJMWUks5qh8eefIbOapctm6bX6YNeKcD1PZI0Z2Wly4mTZ4iSiHqzStJPqNcqGDYEJY8sV+w/eJxTMwvs2r5D37FJQqwyxibGwDBxHY/9R0/yaGeV9PwcZd/UQIupwEg5duQcp2dmePvENJZl0e32sV1JmiQ6qJaCkVZNz0FC4QUeju1SCsoMO0PaKx1GWzVtP2I75GnO0twKpi2xPEmeg4lDqrTqaZpmFDEA+4+cotms4rg2dpFse6Vs7cvNln964Aw/9fM/d5m595J5u2D6JKnDmZnDZMtPotorqKjDan8JQcxq7PKtp9q856f/W3Kzwsx5mD9zktnTRzl87AgT49PULIPf+d2PceDgCbZunqDfOcPDD32dT/7ZJ/nK1x+hXG/x5S/8BTvGch57dB8jNZc73zXJni1VVuYv8OyhCzz0yOP86i9/kMHSaexohXMzbWpVk3rN4czpWWZnF9nTqHDHHRPs3jXJm2/dTWf5DMcPP8PEyGbu+tJDQI/PfeZPqJoB3/zm3/D2t7+JuQtt7r7rC9x0fR231KJUspneOMY73vF2tu3ehWWnjNY3c+TAMebmTvPeO3+CRx8+xj/40Tfz+3d/hhMnZrl6yzaSwYA4DgmHA7yghhAGmdBqmkbBKFoTqFHFukrAerAn1v4QCsd18IMahmGz0ukjpCCO+liWoBx4OK6rxW1UQjnwSaOQkmcTDfv0uh26YYR0A8a3XE21OUqjNUocJbimjZJS82yLzihxie2BuASpExcpma/YrvSlYn35wrVg8VqjdK/dqK+mCfjob/8KP/Ohn+LS9akw5EvXnGtr28uImwDkWbret//cporyGqDwl72kDCnX62nLsl4P7l5vr75dFrm7QnsxufFKBo6XqVjTg8H6F14qpALwrc99nndOjb7a7rxse2m3Lh0FXhsdxQCMLGX23AVGWyMYlonKUoIgoOpZmKbBgeNnePLASXZvncaSJp3VLralC+wnJkZ5/vgpVgcD9mzfiBCChYUlSoG/biascsXZc+cplXykJZmZneOBp55ncqSGY9kkSarrY/TIjlKKQT+iUilz78NPMNVq4nsO/f6AarXE0WNnGWnWGAxDPN9ltdMnCDycQkHPsSxdvB9ndDoDWiNNomFKtzMkK6hLWWHOnClt2NzvhihySn6FsB9z7e6dnDp5nnqjymNPHeaxZ4/RLHmMjTUBA5UpXMdmOAzJ8hzHcVhtd6k0y4w0qzpznClsy8RyTLIkxbElCIVf9mjWq5jS0EbSeY5p6nO979AppsabWmBFgOvqIObk2fP4rkMQ+LQaNQbdPkmSYFkSJQTDMKZa84jjiCiOsF1Jd9BjMOhTrgTMXVjEc228wAYBcRIxHA40Rc62ME2LlfYKO7dtJFM5Ugog195ShtBeaKZezOUipd8N8d0qWSrwfYski1he6jEyWsd2bJaWV+n3NI0QBHcdOs5vHzzJ53/1Tl1PpFgPHlBa8t22LQxTU2YXF5fJ84wPfex+PvfL1+G5thbEyDOkKYjjqLA+UJjSwAlclNBKiYYwiEOF65mcn1/myClN/3V8/dvzNMOyDB2EeS793gBTKhxX13sGQYBt26wsd2k0K4w0qpybmadaKTPoD7UfG4pGpcxIs4nlWEhpEA6HuK7LMBziuBZRHILKUblG39JMkfRMzsyep1yRCCNDSAOVCSCl3+3rWhHbIA4Fi/NtfD8gjTOWl1cplUq0VzsMBzGmqSlxSZJgmyaG1AmmyfERtozaLA0d6iUtAqOUpuz89qfu4c//z0+SPPkkQpp0Oj2+/+RzbN2yiXK5zNbNUwipUCJnzVPRlJJr924ny1MUWtwEWEfv4iimUquuZ3mVUqSJNjVPYi3Bn8QJQhg4lkWa5nzv8WfwLQvTMEizhFK1RBYPcWwLw3EhV4SFSJJSiigKEUgozqPn+YVIiFq3ZtDjohZ/EtIsaJIpjmtrtAxBksRI02DQ0zYplqNZB9oIO0caQhvaS0Oj08LAsV3yRDEMY60IO4wwbXvdDgVDEQ4HhZiLDi6hqMEuUG3INZVVansR0zIL770YaZoYhmA4GOLYNnPn5wvbE4llSYRUSEza7TauY2M5Fnt2baW9sopjWygBrmNjm5Jtm6cxDR3YmqbkxPGTVEoBriOplAIMBNMbJ/FLPsOBriU2pOasWLbJ+Ngom6Y20Ov3sR0bwzAKUSKLhflFPN9lcmyMB8+e5n/+R3eAUoy2RnBdD5TBsB/xxSfP8VNbpgGF61n6flGCx585xEq7w0itogWNPE0Vz1XK4sIiIyN1pCGwfQdDGFy4sIQfeGRpSqlUJksMsiTHtFk3iTekQRiFDPoDNm2axDQNXMdGWibSNF5xJny5ZesfHz3Lhz70Uy+7/do8XHJi7v7Uxzjz/IOk3TkunDzANTs2c/BMk33Pt7nxDXdy/bVv5Omnn2Vys8sN12/jqqt3sv/wMW584+2cPH2B5uhGPv/Fu7j/ni/SqHg4qsMdb76B+QsHOXfmBL/3r36G227dwY+94yq2bmxx/uwcTz5yDjPfxPs/eA03XTNCsyoQ2YDxVpU73riF0VqXN904xo9cV+VH79jEzl0Dwn6f7dsbeE5KHlv8+HunOHf2Wfbs2csT33uIt77hLdx31z08+f3n2LVzE1k2zzV79yCTKZySxdjoKM/ue5bpySkOHjzIgYPPMrlhmn37nqc1Nsp1N1zHw488xU9++B/z/ve8g8/c+xWShYTpzVuwTYMsTcgz/Zxa0kDIYi5YSzZfQki6ovCH0jWrjlOm0RzHcsq4fo0wFrh+g0pjlNywSHKDBBNMB8ur4VdHaY1vYXRiK+MTW/DKAUFQAin1c1hQhy97zLWA7ocJdl5pm8t8nl8SRL6W9vAzD73EzPyyyu+XVfoUL/v3D98uCWIvw24TQryO3L3eXlv7f0tw97//4X/kVyarr7Yr69teDtnTu7/8tLVuwP5yPPC1/VDQ2xFEvT5ZGHNyZoGx0QbPHjxGo16l3qhgWZKJVpPxepVSJWBxYYnA98iyjGGYUC4HfGffIbZuaDG1oVWIgZh0ewPCKMKxbRaX2kxuGMP1baQp8X2X63ZtJYoivvzAE1y1fZqZ8ws0GlVMU9JeWcXzfA4cOsWbbtyrA0SVYppmUZsGB4+dRinFaKtBmqaUKyWWV1YoBZ7OEguDuYUVVlb7iBwq1Qr3PfQkV+3aAgaYtkE0uEhbzJIc19X9q1TKhMMh0hR4gcvkRBMVZ2zfMoXtOiwuLGOa2sC63+2TJBkApbKPYRsIpSk7y8sdXR8ThiRJguc72La5TuMVQpAkKUIYxFGCbZuYSjAyWuexp5+n4nsMwhCVKzZvmmJ1tctXvvMkptK+Wq5n4/oOYs2LLNO1PaVSQJrqgDkIfCxL4tiW9iNLU9qdLoHvFGIELktLq5jSICi5OjmKNkPv9fpYponru5iWxcLCCr3+gCSLqVUqzJ9f5alnjjI91cD1bHy/RJalCEOwtNwmzxXlUsAvPPYsWSnlP/6zO9cDAD15GSwtLBOUAob9PlJqs2dhCL7w7Wf5xAOH+NgHp6iUSyilEUYhBHGozeh1vU1RPwUYBYXumaeP41oOysiZnh5n86bxwtR+qBfWQuqAQQgsyy7MxFMsx6Ld7hEEPs8fOEkYhYw0aiAEq6t9LEvy3KFTjI5UWVzsMNKsceLkLI2mNtw+fPQco606aao9ysJwiGWaGIapExClgLLnc/DIQTZsqGMYFpapvQV9r/BtKlRhhRAIqTAtHRyUKy7SFCRxyvJKl1arRrvdwSvUK6M4IY5inELB9Ne+cJQPvnknJ46fLqhlgudPnOX2d72Xv/yLz3Dd9CYc2yKNUuKh9t2TpiRXKUrlZHmu6YuGFp5RKi98xgq5dynJswzbcwpa0cUBRxtLa2phnmtxIO0dCsNBSOC5eLaFAXglnzRNUGlMp9NF2jam1J6IAh2web6LWSC1uj430QGrZSANSRxFmKZc97Rb64pV+B7mma6ncxyLXOXawiBXIGWRsdb01yT7YkrpAAAgAElEQVSMSbIcKc31xHd3tcfSUlsL65QDHF8rOaapftbWxuIojLCd4lzkCoxLggtRKFUOw/X7H1HU2a6xL9YChXKZPMv57uNPsnvXVjqdVZJhTrVW1rYYcYwXBNimqcWPpKmTXpUKw0GfTqfL0uISppS0Rpr0ej0kinMz55neOKkTYGmC72k11LV5Q0pJkmgWhe1YhZx/hiElK8tt0jSlWqsSxykff/RRfuG9N+MHPpapv5tnMOiFfO57x/jwto3Yjk4Cur5G4qfGWkyOtxCG5Kl9h2k0KhhS+yiWyh4rSx2Csq8RTanrWYUU2JZNdzUkGqTaK00kRFGKXYjohMOQSrVMrgSmaWCakuMnztBoVF9xEny5T08vtbntJ9/38nNocc0sMeT5px4j7i6ysDDP6PgE3/jWdzi9WOWOd/0EC4urDKIBk1MtknzI5MQGPvtXn2duocfffuUh7r7rc9z7lXtReYqVdzl78hDvfMtVPPjA3/K+O2/n/e+9hYmWZKThkUXLlH2fL979DX72Iz/N9PQkrjdPo+ZiqCFx2KNR+ByGURfflUgzolwx8bxlKu4mDh1+mpLnM3umz3XXjjM2Osbk5Ca2bp0ij3u87fYbmdo0zoFn9xMOu6h8yO5dW1CWx/79z3Pvvfdy21tu46//+rO8811vRWWKqalpSqUSI60RmuNN7v7KV/j6A4/x2//6V9l3+rsE0TSep/lRcRTR63UwTQvpuMW1EC94Xtbuy8tet6IeLssVyjBwfR/H86nWGpTKVRy/RLlSx/XKNJotNmzYRL05QqXWwC+VsRwXpNSJ7CK5KwzJC0exlx7z0vXYq1ljXdz4tQd3hjQKsa3XFt/9XQV3L0H4/rPalYO7teO8rpb5entN7XLB3aX0y0tfhZrxxffU5c3PRSG//cJo8OINe7mg7Pf+7b9bV8m8ODi8+ofm5b/60l5ekQXwoqBQACQZp0+ewzAku3dvB2kwPlpHFVnoNRNyz/XJsgwh1LoB7lPPn6TsO2zfOIrjWCSRXnRfuLBMGCU4tsWxU+d55sgZqp5Nv9envdLBENBe6VAKPDaOj1CtlQl8hzxLSaKYNNMKb3mW4XkurmtjmYYWbOiHzJ5fIooz2v0Bnu1QqfgIAZWyRxgO8VyXMNReZtVyiXK1hCBn9/ZpnELQRkgDMkGchtoDT8h1vy9ERhQNcDwJBriBTbNWwXEs4jhhbm6Z1kiDPM15+sAJtm+d1gIGaYK0DQwE0pB4nkuUxDiuFhg5c2aGWq1CrztAK4/muK6rEcQ8pdPrUqvU6PUH7Ny2kXLFxzJN0jRH5dp64No9Wwl8j+ZIFccxieIYlSsWF9o8te8EI5UqM+cXOTu7SKveZPbcEpBSKgXa1sKWeL7L+XNLeJ5PkqS0WnUMoWspbdNidbXHoD/EdWwMKUliHbAFvqcDcEMyHEY0R6psmKgzHA7pdLRpenu1i+3ZVMol/u2hM9x8+zQ/++7ruP26bbrGzZQkeYJp2MzOzHHy5DmqFZ/Dh4/TbFSJk5SP/Pv7+a/eGPAzt23i1JkLlAMXwyxk3KUkDmNczyOMYyxLU9Zs0yEMO5imyfjIBN/+7gG2bm3g+y5CmBw7fgbLNrUgUAbdTg/TNHnw4WcZb9WRllyfBDurXTzHZtN0C9OyiZOMPM+I44SRZolGo4Jjm5qiXdBHMQTd7pBmo4YiRVrgOi4LC6tY0qLd6eH5JvMLpzl47DxRmDE9MY0hXKQrEJkgiUKklSClRS5iLEvHH3mWYDkWihzH8SgFDqZpEIYxaZbS6w007dbU1ypLc/bPDnj7tVuo1+uagm3AW6/dxImBxyfu/Sof2L2zsNCAxkitMF02iKMI29GiSbKgYB4+cpyRkboWW5F60U9eBEGXqK0ZolCvtHXQkGda6EXlOXGc8OB3n6TVqFOrVfnCfV9jtFHFcz3SNKPfXcVzbLxKBVmoSyZxomtZo3Q9GKJYIJhSYkjtJeZ4dkEBNTUaLDKNGOYaTTSk9i3UJtQajdaJhFQjbNIgCWNs18UspPtVnmNZJqdOnuPh7z/LmfPnmZ4Y04hsGAGyQCdT0jTFLwXEYcJgMFjvq6av6uBR5TqJJAxDK7SiPfCkoZVj19DHNFWstjtMjo6hFNi2zVe/+Rg7t21EqZzO6iqWKTEMyXP7D7JhYrwwTJc4joVhCBzHQZoSQ2obkCRLGR0fJY4TsjTBsQzyon+L84uUS4Gudw08bVqPoN1epVQuYRiSNE2xHUmSJKRxzngY4zYN7r7vETZOtUiSmCiOaTbrPPq9x3nb2EaE0IhgkiXIQhH19Knz+I62KdCIPtz/8PeZHm1poRTTQKnCTsAsPP4QdFd7fPORZ6kFDrV6mU57qG1l4oRKtby+aBz0+oW3Y06pFFxxIlwjv11uWl3b4o+OvDrkzjAEZANOnF7gT/7Tl3nLO97JyTnFXKfJb/yv/4Etu/Zy8Ngh3nz7rSx3Z9mx5Q0898xzbJwY5xv33cP3vvsA12wx+LE7buKON+5iuhnzi//kvRCd5f13vgW/FGJbPVwzYXHuNK7p8dz+g3zgQ28B+xxKnCWQFtJIMIyMarVEnmecXRL8wZ98gzfcegtJprBsHxOHaGgwMb4RU7qUPBcjsYj6fWxP8bm//iw7tpXYus2mNWJgJC4PffMe3viGKQb9Q5yclVyzdy+7duykXCoTRyG33HodSmk6/fSmzSR5TnPUZtfunYyOT3Lg0AFuuXk7m6/z+Zcf/yOu37AX11KkcV8jxn6tUJ28PM3xsnYDa+ffVGBALpRWsjU0R1cJTfS0bBvT0urMytQFzMrQlGAhdW35RRrkxX8URYKq6M96F5RWVF+7cYQhdEIxy4u+vrij4sqLMdbq9V4cQImLN9faXz9EcPdCBXZeQL/UvyMvfHYvOfblKJp/B8Gd7odx8bde5vU6cvd6e03tcsHdlW5VcZnPL/dMKdYe5Es50VcWUhkOhuw5+CStILi43Wtsa2PE5Tf94aBzAaAUaZQRRTGu42B5PkmuaUnSNInjuMigGyhlYEiDStnn4af20e4MWFwZMj5aY3JylFolwLIEvf6Q0VarQDwMxlp1Nm9oUa6U8CyTSsknHET4noNj2TiBi+WYLC2toFSO42oaY5pm+L7H4soK5bJLp9OjUimRJjmWtNi2ZZqJ0QaVcsBgOCBOYtJE+8ZJQ7Da6WkaW7vLN554mrG6p820pcSQOksolcQwIUlSVKHe5dgew16Ia9v0eyGlUoVwkOK4EssxNZLg2riew/JCm21bprA9mzRJOD87R7nsEA1iPNejHw4JaiWEMonCiEa9jLYg0BTMleUOQRDQ7fQQUuEHLuEgpVwO0BYQIZ1uH8e2sWxbB+dKaBqlqzONlmnSXx1gSZOdOybByMDIOTR7hq1TE9iu9hLqdwdYtk1WpBwXz3d45sBJrEJ4IMtTquUKprTwPA9LmlSqFSxXi1B4RVBsSIMs1tpBYdpDiZRGfQTX9jh++hyTk2MsD3r84vcP8fFffidlP9ALTUMShkPyLMX19bm9657HePfbb6JaKyFyHej+T//pu/zK2yqcPrdI2XcYa1UpV4JClEI/A48/dYQN4y0GgwjbcvVCPYwxZIRSgiy2MURGGPeplQM6qz1GRhqFX17O8RPnGRttIqXF1k3TdFb7ZLnC831UnlEu+9iWVnJcWO5os3bD4Ny5BVqjNTzP0YEBOgDTgiQJnqvrPaK4DyLHtnzyTHvauZ7EcgwkFjdddy0zM4sk6QAvGCJNDxMbUyoWlmfx/QoYNoawSPqKE8fnue+BQ1y9eztKxXie9hRzXbugEuY8+J397Nw6sR4wWMML/Na9Z/jw7VeR5znDcIDt2PzS7/4Zd/74e9iTRWRKIEShhJppc2HL0mIf3/7Ok0TDiFq1ihQGf3Xv12lVAyrVckGd1h55ap16qMjipLDU0FlnKXSQJNCS/7bl0BxrYTsWu7dOEQRuYYJu0qiVMQ2JMi1WVuZxHJdhP6Tb7rO62qVU0Z5tURRqZUUBeapNyMPhEMs2EWgK6tL8LJ7vIW1H18sIrdGXKz225Wmmg0SVkmcpKlM4nk+3OygsSgRZFpNlCY1mjVatwrU7dyKlIC1UPPNMgdAWBbZtg9LWEpatBVzyTOnfrRSWaRf/18GKUViBSFPXn2RZXqAH+jPHcbBtl6987TtsnZ7iqqt3kSttI+FaFkkYI6WmUaZpqimdjsOFC/OMjI4wjGJK5QDLtrTdgzKQjk2eZRw7fgJHQDcM8YMA3/fp9wdE4RCvFBRIhmIwCHFdB2mYmKbE9W08z9W10FnEnmunicI+mzdvQBjguZpmudgPudZrkGfQ74X0hz0CPwAEtUqZZ547xq6dG8EQDIcRVcfnb775A6bGK7iuQ68XaiRdZERRCBg4jmTH5hG6gz5lv8yz+88wPtrEKvz9QJDlGb7vgFK0V7uUK8HlEYtXmDHXPvvO+UXu/MD7X/K5tkzS939eLHx/8K27+MqX7uX08bO86223EA5Mpjdcx/NHzjA5uY1vP7aP3XtuorVhC/Pzc3znm19ibuY5rtklef97r+I9N0/jGqs0SiE3X78BIz9POGwTlCR+2aZU9on6CbZdZrEb8YOnT7B797UYmUTFLo5dYXW1R1CtcOzckFOzQ1wj4rFjkuePLrG8HPHJLx/iwAmJHUR89dFFbthtURlpI5FIJwTLoVnbxrNPzXLdNbdw/MAczbrNnR+YZGX5HAtHb+Rjn/hDLszNUa/XmZqa4hN/+gluuOlqyuUa8/NLdMMIwzTpnh9y5MAJ5udmecdb38byTEjcdfnI+6b5lT/6Y27dtheEwvdKGG5lnRp82etxmWT42ntGJjAwCo28SxQUDNYReVGk65WSRcne2jaXBJRrL/HS47646WdYfzdJM5aXlvE8r9jmJZ2/0m125eMI46UI4g8Z3L3cDgwp0afp5VlgfzfI3Su314O719trammW/eYaEne54O3S9mIET5OhLr5/cftLsz2GfhjXMsSX2f+HPvhf8ItX73gJmvdaBVUu0jHXjg+Xzz9e8kuFeMFzLYofJNTFzYwk4dTZGUbqFUwDThyfpVmvkxvaDy6PMwyhWF6ax3c9lpfbXLVzK1mUUQs8miPau0ibYmuZ65XlZQwDLFdnkH3HxHMsLiysEpQ9njp8nPbqgMnJMZYWV3AsC4X2Z0qSBMs0mZ9bYWSkTqXss7i0RBhmVCrlQl48x3EtXFey2l7FsiWe6xbZIUlc0NsczyMchKyuhlx3zd71gWxleRXP8cDSdAwQGKZ+ZSLHDTwwJOVqmSzVBb9ZohERy7FxPIdwGGLZFrZnooh0nZVv8/DjBzl5ZpHpiTGSNKG90iZNUh56Yh8bWk1sx0apjDCOqdbKhL0B5bLPameI7fgMBz3iKCKOEl1H6Jj0uoPC6zrngUeeJg9zym6KNEyGUYrpeJiWTZgNsR2HCxdWuO3mG1FGju1ZmKbJM/tP4AiL1dUlPBPKlQrdfo/x0RqNkTqm42BKh96gxyAc4PoWOTmrKx1EUXO3stLBcz2e2HeIOE4YHxtDSotOt0Op7JJn8DfHz/KJ2UW+8C9/nIULS/i+jyFhOOxhWw4qA8f2SJKY7VvHqNbLpGnKv/ubJ7jnsQP84T/ZTZZE7N2zmVIlwJKsowAIwaAXcm5mmU3TTeJkiO1IDMNGiBxpBaSZwHFNmqM1mo06UZTi+x5K5UipSNOY0XEtWGPaJkuLqxw5fp5KkJMkIWkGaZwT9nN6wwGjrTpmYSS+YaKB5dRIkxTH84rMvY20te/U+ZllKoEWFDKkQ5rG5GnG8RMzbBifYHm5R73ZIFXQaAQcOnyc8bKLRUwalEnJSNuLuK6NkL4eH0yD5miVq/ZMYAht5I6haXDxIGXYj/HKJUZHKhrlinOSOGXL5hZ//q3T/Ng10/hBgJQWUgrOz8/z3//ab/K7/9vHuW37DixL+6nte/Ygi8ttRlt1lMqYGB9hZLSBXWS/d27cyOhoi2E/RJgmpqufWVMI8iwiDAdYtoOQJkkUEocRlqPtE7IsRYmc5sgItgmrK4sYtkOnF3LPNx7h2t07EEKS5iDyBK9UIokVtunwwHcex7EtxltNwn4f09aIFBiFR5PEtF20QE0OhsBxfQxpMuwPcExTK71KAUpn642Cgui4LkppGX5Ujm2b66hdFCWFRLygUi1jmwJJSr/To9sZct8DP2BqtKlR+oL+GSd6cZtGGYYyaC91iMMEyzFfsPBUIgYKYS6hk2aiQO6yDE0dNk3OnpthOBwyNj6CKSXzc4vc/fVHmB4fxyv79LsDomHM/Q8+xs4tU1SrdVAC37PJci1YY0pJlsR02h0EBq2RFsMoQ0gbz3coDovn+EhHojLIEkWeJqgsBgOkaRD1Y1QOjuPw4KHnmZrymRofIY5CDCPH8x3yTPDVp07w5vo4g15IGqWUSi5KpbQ7q5TrARMbmiwsLmIIRbnkUalUaHgeQWATlALMAm1MczSSKgDTQFgWjWYDKUxOnp9ly8bxi/XC0kSJYvZVStOFDQvDunIN1dpM+eLXWvvM8ZnLIncGhva1MwVCmoBkeOoHHDn8GO94+9v46v1HEM4k195yFZOt7dQrFeYXThIEgkF/gWcfu4dwcRYrDblmd4NqdRXhVhn2OqThkErFIlUR9cZGMDJUHpEOtbVGp3+BXm+ZN928Cc9OuOurh3jmrMeTB2f4i2+c4duPDtj/dMwtO96JnV/FW/bcxE3brmdj82q2VCb4kR03UmIHO0av4eTBFr/x6e9w76NLDLOAm69yaVRMbr5+F6YZErTq/PrvfY63vuk9/OWnv8VNt+7k2h2KamMvv/Q//Bse/tZDfPSX3k1j0804huLCzAkGvR7DYcL4hnHmFhbY9+wBrrvpJtrDRXAzjh4+yh03VDm9tJ8zz8dsmJomw8ZzSyTF+C5IX3QlXni1hCjQXQqxk0vWPOuU5wKRM4ziewiEUIXZvGBNmOVyF399hXUl1PeSJLttO6RJgkDphE+B0r/gy69w/71gp0Ks//mSm7Kgj679zivtURuZ/8xldvCitoZCXrr1JSyMdWHAv8OW57p85XL9fz24e729ppZdgty9UnD34u+9+Lsvt/16dukyn33us1/gA1s2vOT910LLvHIPrzQIokeI9UMU3G314q20otzMhSVMU+J5epHsWoIsz5HozHSew/zyKpZh6sVJrvB9j+WVDsM40nTGKMbzXOIkQRYhsjQlCwvLLLfb2JakVNJ1PbVSwGizgWWZdPs9HNfCMvVrtT2g5HugwPNcut0+/UHExo3jqFyf66DkE4YhKs9Js5wgCOh0BpBLHMct6EwOAkUcJ+zaNs0Xv/IoeRozOaWNTpcWtZ2DQFMoVa6IhjGWoalpUhicPXOeRqPK3Nwi1WpAfzDEELKYPAyNIkgQ0sB1XTzXZ8vkBGPNGkmacvfDj3PVto2kcc6WqQl8z9WBmiERmAgMDKGIwphas4JSOUvLbSbGR3FdV5uzJgnhMKFS0Zn4Hxw8zs1X7wRTgZDaCDvL+dS9D3Lk4CI3XbWdkUbAcweO4EqfwwdmqFQctmwepzES4Doulu3S7fSZ2jCKQOE4DsKQLMwvFKqLHqZpkaeK9mqHcsknDCNK5QApJVMTo9RrVdIkJU1SSoFPrhT/9PsH+J1f/jF+8tZNpEmC6/goA2Zmz9NoNlBoalqv12VmZpYkSSiXPP7h73+dj965kQ+8cZKTp2a0jYS6uDgVQnDw6CkatQqmbbJlelzT2ITCNC0MYZKmw0KYItTiJtGwoI+GxHHM0nKbJEmLLKteZK+sdDANk8EwYuuWUZSCcsVHGArfszl9boFqJWBufpmJ8RZLS6vUGhUefuwHTLTqmIaJ43gYhsSyPEqeh+M5DIY94niIZTr0+0PyNF+/f2zLIU1THMfEdyTDQY9afYLM8LAMiYXAMLXXklK5NjIvqIVZoTCZZTnSlOw/cArHtqhVXZI4JklSavUyCjh6/AKfuO9pPnLbNdTrZaJIU9n2bBzBGL+Kj//V5/jArl26Zi1MmJgYZ8P4GGmasbCwRBKn1Gv1orZRYLs293z9W7RXO2zaOKXHEEOQpymDwQDH1XWZea4wDYlpa7QqHEa4nl9kigVRGOKXfBzHRZomJ07MsnP7Jgxr7XpKBgPNJBDCYLRRZWxsBNPU6HWuFMNhqP3l1lFDPdyZheEweY5hSm2bkOeYplkogyr9zAujEG0aMBgOcQtvvH5vcLGud32/gn5B91tZWUUaJt949PtUSiWEUgzDIfVGBbm2jTCwpA40Hvre9zh86hS7t2/RnnZFP7M0LcaOIrFkyKLWzFhHGvIsY+uWKVSeUaqW9HPquYzVyzSaNQzTwPEcXNdhx+YprRLpGQgjI1MRcRKSpgmGCdK0cTwXx7ELL78hDz3+FDs2TWsFVtchjmPyJEYi8QKP5aVlqvWKFgKKU7q9vkZq85xNfpnW3hZJpMWkGs0652Yv4Ac2b9g9zsr+szRGKni+TZzG+EFAEPjr/qHlSpk8Vyy1VylXy1SqJe1PKA3SJNFKrKYkTzIGgwGu7ZOEsDK/gjQVWzZNEMUxQclDUYj/FLWhCLQfoSkRLyOQcaXZc619+dT5K9AyFXkRVJhCoPKUx+7+P3BtwdadNzBMDarjo+y+bhf1CYEyh2yd3szzzzzHJ/7wz6gFIbfespVTJx7n5hv3YskGF5ag0XRpjVVR0sRyRsiyVXI1IIpCbUjvW1h2Tmtkkr99eImPf/4s1zfuxE8tbrvmXdy291ZGZYmJoMLExs1Iqam+UpqQGSwvLlKtVTSaaxgEZYc3776J23bfwsb6Xo4+X+fM4RF+46/v5k03RHi24K1vnGRi1OHqayZo1FOqtQGB0WZTUxHFVfYd92iWXL7w2c/zpltv41Of/nM2bd3CxPgotUaTpaVlSr5Pqexz7txZnv7+D9i8cYqtExnfOnyI3RNXUypVCzEofa0MpdbVKS93ta4Y2LxgvXNJkHTJx+IlHMeX7uvF6fOXa1maYVom8/NzlErlF9IZX9yBl2uvhc0lXj64Wzk7zx0/ccer398LunHJfv+eELsroemvB3evt9fU/u8K7qRhFIIBL/UFmb//Xm6caL26Dr+q9mqDu7W/L1baXRrcrVMblCBPM8ZGmwhDaOQojrAsh067h2U5yKLA3bFt2u1VqpUSpmVhSZPRsTor7Q6NeoXFxTaVcok0zel0elyYX6JS9sjyTMtYWza2pcUVPM8lzxTlsoOUJlmmiIYJDzz+HHEcsWl6AkMX2lIOAuIoxiy2NUytJJdmGZZtEQ5j8hxOnZ7DtWyCkkev2ydNMk1l8l1kCuWKR7Xq6cDBkjiuS5bmfPf7z+IYkiDwWV1pEw4iKuUScRhpb6xYi6HoBadGDT75pQe5Zsck0tBS72uiAlq9UeKXXPZsnsSyLHw/4BuP/IC9O7bw0OP72DQxSqetxUosu6B75oowjCgHASiIwxgB68cNh6Gms22ZxrZs3JJDpmXG6HX73LxnK9s2jOP5Fp3uEuOjVVy3RKvZxK84QEa7vUypXGUw0J53pmliFGnCKEoQItNG4lGCaWrqWaUWgFIEpYD2ihbwMAyzqJPQynVPnDnLv9h/mi/+2vu5MDuP60qSNMG2PKQtqVWrevFaoBR5mtIcaRAEHh/+2Nf4g5/byESthFI51UqA42rhGSEESWEiXyvM2kGLP5iWSbfbo1wqoZTAsrT6YK8/IAh8AM6dmefI8Vl27pjCDxwcx+Hs2Xl83yXPM1aWe4xPjJHECRTWE6WKj2EoVJ7RajUBmF9oU60G+J6rlUgtqWvrlEAaFs/tP45lSrrdIeVqCcPItIKn7evaS9cq6olybMfVYhBC8fAjT9AaqWCaLpbnIsiIoyHCsBCmtf4Qx3EMaNNkLbSiPQQnJ0Z1LWA0RBiCLFNkuUJgkMQZ77l2nI6s0qo4WLZFrz/g6OGT/NEXH+bH3/OjZCePMVppFPVymoZ65uwsU1MbOHjoOK5l6fq7XFsmSAU7t2/RFEhDaPPuPMOyNDqc54o8U6RphmVpqqLjFJL1FBlhFFmWYpra+/G5/SfYunEcL3C1FYJhkKWqGBNSglKAbeugEaFFMyzHQgiFIcx1RoNQilwpBr0elmkRR/p5SdMUpcCyTT0aqrxAXDX90XFdjYYKoYVW0M+zZdvEUYxlWTieg4Fg9sI8GzdOsXlqim1bN3F2ZpY4iZmemiAMQ22pUNDE8jynWatw43V7SJMc05QIw1hXeRRCWzaoXFw0hr9ExCBNUyzbwi+UfdfM1xvNmj6HKscs6uF63R5pmrCwuESaZgSlAAEYQgu/mKZdWC/oZ8QPPCqOR71ZxbZNLNvCtCxWFpcwhMS2LeI0wfVdskyxutqhXquxutohHA4ZGRnhU/ffx83X76BdBGiBH+B6LgdPzTHalwwGIUGlTJ4mzM8vUyrGcFhTOJXEUYwf+OQqKwJwbWgtpUEWJRgoLNcmHmb85Zce4YartxBUtOLtmrdovzfAMNAJMwMttpErZmfmqDZeXsTshwnuhCiE+oWBLSWSjL/909+kVK5w5PQSH/iZf8hSv8fS8iLXXX8L/c6Ab9x3H1/67F+xPHeWqSmHViPhumu3kMUJR47M8WefuZ87br+aoGwQhikPP/Qk5CG1WpVKuYnIPdr9lH/9p2e468FZPnzLP+LWHTdQb9ZoNif0eEVOudJgYnIjpm3o+m9hkBdCRqVSRduE5Nrbcr1OrFgj2LZBUHZ5655bWJ3bwaHvufzB/Y/xE29tksYDSr5JNByyaazOxEgJ4U/y2Xuf4olvP8D73vc+vnzXXXz0Vz7KZ/7qL7nlR27RSYDpLfR7PVZWl9iwYQOrS13yLEFlHW69ZoR/8cnPsbW0RfswKgPbthFK189d6Wq9HKJW/JQXImCXfP5qghgBgaIAACAASURBVLv1yE69csxlFMmZcrmy7qv4/3Rw9/nHvsCHPvzTr35/L+jG329wty6ocpl9vx7cvd5eU/thgjt1yety7192m7Xi1xc9dP/lz/1T/tWNu15dZ1+hieKhfoUa3cttuUZoKGgPOrudF4IxeRSzsNSm3qxjmBaGUuSFYpwhdL1dHMf0ewOyOOPo2Vkmx5oIYHllFdsyabUagMC2TD1Jq4xKJcA2BZ3uAEOaPPjkQfZuneLUmVlMU+L7HiilF+/omhzLNLl692ZGm1X6/QFZlmCZFn/5lW9zze6NZHmGNAxmZucplwOWlzu4rjY8loZkabnDhg2j9Ho9bNvi+MlZyr6P4zq0xpqaImQoLRqgIEtzhIAnnj+GLSSuaUGmaNRrLC62qdWqSNNkMNCoh2VZDMMIRc4NezahMm067Pku8/PLOmDNcy1FXgh0qFygSNk6PUaWZmyZHufg0TMcO32BiVYd29cqgBKDQT8sfLTQSnZCsLS4olE8lZHl2bpn2GAwwECjFaYpMR0b25VICzq9NjnaD0jammKRJYk2P3Z9lGFgOZIwjPBdlwvnl3js6SPs2DyOY9tkSc7jTx9g4+QoSuVYtkaLKpUSSZIQRTEry22UUvz7A8f52Z+/navqMNpqEgQBWZZohcRcIKRWZM2Lc73aXiUolcjSjH/+iW/yxz+/E4mivbJKqeSDMEAaxFGIFAohnXWkBTQSk6sMYRj0e0NUlus+5ymWZWE7DoYhMU2LkuexaWoUw1TMzS9RqTY4d26JNEkIfIckSamUtBKnaRoEpYAwinA9D5XDYBDx/IEzXLVnM6ADFSElgeeAgJlzCwS+R57nfOOh/Vx/3VY6nS4qLyisTlkbvRuKXKUY5CRpUizscxzbZeP0NJnItNJd1MX0XKIkwXa8dUXVtSBcq6vGmnLnWAgBfuBhmtoQ23NdhsOIer2KaZhYluDT3zrIG3ZOUSqVEUoj8Z//7gF+/df+Ob/08T/mA7t2a/EAQ6FQlHwfy7HZf+gYI/Xauhm4aUka9TqO6+jATuqARGUJpmlpNLHwFpOWRtiE0CC3EJpClUQhlmORJBmqqEnbuX0aacJw2Mc2LUQuCYcp3/3+U2zeNEm313mBIqyBgVIZg36P7uoQKbSAhjT1glYY6LFLGuRKCxHZtl2osBrrwae0TFSek6SZRj0LBU5ZyKKvLK1QKpe0gqSUSNOiWq2RJDmnz5yj1aoxOtJkbHREIySmqRcuQiCUorfaxXFsbNvRi2mVE8cRoNHmMBriuG6B4gstCZ/n5MU1tyyt/GoIA8PU9/rKUhvHtbkwd55qtUa309dUMLSfoOeVWfPY662GpInAlA6GgNmZC7i2xczMeaIwxLEcwjDECzyENOj1BgQlnyiOsT1d4yylhVUkeU6dOsPoSIMwDKmUbKaubgIprmvjBgFZDkmc8/ihc+w7eI7rxzeghMSwcur1BtoqIcSyTB24SgvHtjk/M4fvOeRxQp6lmI7F4sIKJhKRC5CK+blFtk02yfME0zaxHZssy4mG2vdRK3auiWUIhMpZWmrTaNX1FHgFacPXEtyt09VkjlICgYVUMYPOAuX0CEoETO++HWyT666+lqnWZr5+10Pse+JJ7vubT/I//nf/gDveOsWbb91OvSSoBhbRcEhrrEVzrMrkeIBvSwb9AZVqjfZSn2ZjjGHX4L/+nYe5pvbT3HHNLbz1qh/BKJgmhoCzpw5Sb2gbCUQGIkOpDJlrT848yxBSYZgKy7I12yVN18dUQ+Ra7QfJzNmzzM/NMzo6xdhEhbfsvInF2Q38608/wFe/u8Cdb95DpzPEK1epj1ZojeRM1qc4evI4P/2Rj+BXKvzYu99NFPV47vnnGWmM8tWvfY0NExsYHx/n7OnzbJjextGjR2nWq7xh4xKlkZDf/cwXuf2Gt2MVgkOXCr9dqXTlpbL9V14jXXnNdPl7QvAq11jFGIfghcmZKxzwssHfS37HFUp1XlUZj8DpSG7+0ZteseuXUjBfQsVU6rKfX+71moPAF+17bfv/rwd3V1bdeL39/7J1Ot2/t32/tpq9IhX1gne0otvC/CIbxhpaVQoDzy9h2x5ZqlhYbHP46Gk67R6lwMc0TW66aieARkh8d/345y8s4LiONuJ1JKYtCXyP0WaNfi+i5gcM+kO2b5um0+mTJRlLS20GvZBP3/vtgoIGSRyR5znVWkCapRgS3vum6xkOtdy5UorJDS3a7VVao03ufuhxOp0ewzBk585ppG1oafnApd0bUK1WmDkzx8y588RxTBrrTH6vOyQMI1QOH3jXW2jWKgwGIV9/7DkuzC1x8twc3e6Abm9AY6TBoB+xOL+iUQuhsGzJF7/6PUzTIg5jJiZGtEm265BlGVmmKYsry22SNMH1HAyp/aSu2buVt7/5OjzPQRZqpCCpV/ViRJqSA4dPAoJGs8bKyioKheu52I7FuZkLOLZNr9dnOBxqkRRDYDoWSghGWxMEboUsV/QGA5ZX2kjDouxXtAiLe3ES7XT6dHsDtk2OAYKzp+ewLJtrd29hYWERaRr0en1ylYMA27FxXIvHOyv88oFj/NY/eycChec6nJ85zzPPHCBJEkCxtLCEylKWFpYxkMTDmLm5RWbm2rznNz7P7//jvWQ5eF5ApezrBS16AhwMhiilSJJEB7V5jiFNHMddV8Sr1yp0ekOefPoAWapAaX+yKEoxhOT48XMsL7dJ04SJ8RGyLGPnzk2UfI9eb0C55LPv2cO4rsNqR9NlpbQ4c2aONNU+btdfuw3DkBw7MctwELK42CZNNVLr2JKVlTaVkscH33cLeZ5TqZXxfR/XdrlwfnE98Oj1BniuRbfbAXJmzy8w1hpBSBfLdEmGCY7pEIYKxw10nRqKPNdKnWurDiEElmMjhCBXiiiOEYZFvx8zHMbYlkkcxliWQZqlHLgwpNlosO+Zw9z3tUfZtGmSNMsZDgYFEqjrBZM0Ji/sIOIw4h23v5FyJcByrEIyX9MHQRWInWJNBCFNM0xTB5tpmoLKybNUB1cUQU1hZKuU0mhNlhMOhtiWgWNrKmOWZpw5NYPrujSquoZwMBiQ57p/mcrIlGLYj3Bsl0ajhuf7eJ4ehyzbKqwnDPr9PqZp6ERIb4BG5DRd07L1+TOkVt10fZeg5K+ja2mSUKtXNR3W0AmcJM1QCFaW2uzcuQ3LMoskmU44aVsEXZ+Wq5zl5TZ3ffVhomFSMAU0CiqlVqn0fO8F47FSmlooDalFO3KNvIEgTxWVSgXf01YBY2OaQjzoDTl7ZpZer4/n+0gp8H3tDVcfqbG8vEKSpDz9zPOM1OuoTAe7rUadxaUVLMtCGpIkTjRVthxQbTUQhQASueD+r3+buQv6XrUdh3K5RIbJcBCSpIm2z8g1GmfZBnf+yHZ2Vz0cX6JEtk6JTVM93n/+/oeRApYXl9n37FFUBpY0GXS7dDpdhBC0xpqkGfQHMShotapMTtdZaLcJQ137bBpa+Ofh7+0rKH0XK+OlaRL4rlZ31pPlq51WX0VTmIXqrmkYOKakH/fZtms3Bw+dYHR0nD/6D3/Ab//6bzFa77L/mXt4z7v30mwqdmwbwRB9TT1MBI16Hb+U8eY37YY0IQkTSq5Ha8Tnqr2b+a1PHebf/OlRPvq+X8DxczKVonJFmiRYlk2ep2zfvgcyRRLFCKX9Gk0hEUbOcNDTSSH0faXvMS0ApBMSOkgEjcBPTG5kx+69WJ4gyVOkZWJIwf/yE7/AR9/33/CHf3yeP39ghV5e5ouf/QJvv34jb3rjNfiByfiGFlEcMxgOOXL0MNu3bwUUlm2zbes2up3+/8Xee4dZdt51np83nHTPzZWruru6W90ttbIsyTnbyPY6YRzwLJiHBZZhHwwDyzBDGLPzmFkG8OzgB8bAPsvAAGOCDcMYPMZRDrKsnFqhszpXV666+eR3/3hPtVpSy5II9gB6+7lPVd0699xTfc497+/3fhPzu+Y5dOwUw0iyvNJF5gWb66v8x597P7/5qd/csj75OzxX35rxfP0T/j7H5x//0rf7EP5Jjheau2/jKMrHs26XZ3YF43kMUxRPemztZ9pznv+BPnXf5pm/33o8yx7KrwJZgJGSXEqyNKGztMqZc8toKYjTIZlJyA0EYZUsN4yPtXAdh0ajZu2sPUGn02VztcPS0gZnVtb5iy/exbHDp5hsNTi/uIIOXCSCw0dPIhzNKM3YtXuaN7zyalbWNlBSlnlTKfWGz/h0i+956yuoVAM2u12C0Gdjo8Ogl1CvNTDGMDM3hlKKbm+EdDzSNKdaqWBEwXtueQUKyJOMr919gCSJmZocQ2vBnp0T9Ec9DJIzS2t4QQXt+hgk9VaNar0JxmroZucmmZqbxFWSSuBz2a45lKuphQEyz6mENW6/7yjk1m6+KHLe/7aXo7VmNEp56MBxlHRITU4Q+pZSFTogch4/cw4kuL61ZRZK0et2GQz7rK2ukec5R4+e4OzpBXxHQp5QDTUUCUoJxserZBEkI8HH//udrHX7aCEpjMYPGyjlEvcjsignS3Jyk7M56NPtDsniAgpFmhuiLGV5aYk8GdFdGxCGNartOrv2bOfya+fxqiGtyRZoEErSaNTI85ywWiFLM+IoJo5SHjx7jubldf7Lj72RLM+5/74D7Noxw+zcGHv2TlMJq/QHKeMz04jCoVGvkRcZfuCzc8dOPv/1W/n+Ky1y2u8MUFqB0tasyBgwBfVGHZRD4Ll0NzfwPYE0BeSS/voQaSRZkbKysc7V+7dhVI7QDnku0FpQFEOuuGIHG5s9ls51iPoZJBnZaEizHZIkGd3egLm5NidPn0VKaw4SuAHtRgupXHzt0tlcAWJqYZW0kLQadVzlc+DBk/hegFIax5e4vsT3wVE5w0GXINCsdzaR0lj92lgb4wRMjDWRUtJsjeFW6hSqggwrFOkIjcH1qyA0jhYUOSjhlQ1Yztp6B6lcpLEIl5IZWmfkRWq1hMbFGM3y2hrdfofxdp1Ws40QivntM1yzfztxNOITP/NWPvThX+aj/+GX+d07vm7RIWlpUVIKG1ztSqv1UtK6gZYUZ62UNSgprQoc7ZOlGYa8RJFs2LgSFpGSQFGkFEWCVA4UBpNlCKm48/7HWF5aY22tQ1E4LK/0uPf4YUw+ZG5qjDzJMJkkG+VIo3CViyoXGJR2rGNpkYExjPojkihDoCkoqNbr5JmgyAVeECBFgVZQpBnJKEbkhjwR5BkUOYxGI5QDg661aM+yjBxLEev3BxhjiEcxwoAsCpTJ8F2BFoYsTUjjhGSUMOoNEFKy47IdfPe7vwO3Ku0xAkUhEMohMwZpHIrEIvs5OShTUhIdi+aJkq4pwXXsglG9VUO7DkJqjFJIR3H3o4cxOfQ6A9aW1+hvdpFCkUYpO3bOcW7hHI50SbOCIAyZnJygELDv8t3EcYIRAtfz0a4iizJ7H0kyJqfGiaIIFcDGcJO8yFhcXMIUYHKDG7hIEaJ1SLezjlIRhpTUpOxtNxklMTgFC6dXyMlRvmD7ZTO8+82vQEhBtVFh92UzSF9iHEnQrtEYayBSQdJLqTTqDNKULJVIWQFV4Yor9lBrVcizjOGgz+bGBjdddRlCFAg0Ulvgv8ihFlbIMkOWmycMxEoEGSMQBp64ii/gNU95XDzfWgOKZOCxdmaDzuommdT0e2scOXqMEwsnufm1b2JtWOX6l9zE2dWH2LfzLD/4vTdy8/X7GXQ2ybMMUQgKIcgcTTeOyHPJYPkYrqzQ6YwwckDgGn7i1x7mPfvfyQ+8+T0oR1u9eklrdj2X3GQIJciKFFP+E1KBUURRSioUuZIkeYorXYrINoUIyHIb32GvcciNQSqB6xjIh5h4iJaSIkvQEnKTkWF455tu4e1Xv4ff/b8f56FzLZA9vvjVh/j0pz/FIw99g1oFvvj5z3H11VczHMbMzc1Tq7RQymE0jAgaDd76XW9l+65raYztQjQ0rZZgZfkY/+pffz8f+8RvYJ5SJW/9vz/13DwXwOibgGjP/qKnjOKbvd+TirFnvo6e3vw9fdsn/t5nPdBnfJ/nMp5as5qStm3/nCfXsn/X46m18j+G8UJz9w9gCGFd2J7Pybr4Q3HxmHwWQfe3ehhKagAGR0vWNjoEnkevP7Ir0WzdgASDYUR/OOK+w6c4ceY8i0sreK6L6zrUahVmp8a44rJ53vHqG1FKcueDh2g2a2RpymgYMb99jjhK+fxdD5EmOZsbfXzP5dTp88zOTJLnNuctGtnMvEF/SKNphfb1WhVH27Db9Y0uKyvr5FmGFIIsS3GUYjAckmcZ0SgiDAOazSrXXb7zwrkYDIbMzEwwGsVMTo1x4/VXXKBt9PtD8jyn3+tz4OBhhCrI8gTlGK6/YicLy2tIJTm9sMTjJ8+y2enj+ZrXvuwaet0+f/mVe/js1+/D88pi2Pc4sbgCAjSSbqfPaBiTJBntdpMrL98NQJqkCCkY9ofWHt/3abcbKCWZm51gbLxBrzcgTVNmpsZRJQrR7fQtemMKbtg3x7apcQaDEbVaeCHsOaj4IItytVox1mrj+y5B6BEnCYWxweFTUxP0e0NaYzXyLEViUVhyw+b6ZkkFhMB3LdWpoKTmWsv47739AW78rhu45eUvIkoy/vIzt3H1VfvIioKNza6l/yFoNlv0NnslQmLNWv7Tn93K//rLf8y7XrWf93/Xq1hYWKLZqlEUVidksM6KT1BQKN1KodPpE8Ux3U6fvChIkgytHS7fu8NGFSh9QZdlCmOvrzxn394dVEKP4TBiYXGVLM8RQlKrh8zNTeN5Hju2TzJT6mK73Q7D4ZA8SxkMRgxGsc2QczRuibIWxnDDdXvI84LDx84RRanVuglruuF5Vqe6fW6cXqdHUR7PoD8EYZ03XVfS73Uo0iECQZplDIYDijyhyHOSpKRRkZKlMXmSIo0ord+t81ieFwyHEY7W/Nmn7+K+B49ampzv0m40SJKUsVDT7/WphAGXXTZ/AZ06feYM4+NjfGllDUrqZ54XSGlz7IzZQugKinIS7vf6pXZSkGcFSZxQ5AW+75HESal/KgtmY+81eW41eXGcIIQgS1OiYYTWil3bZzh+5iztsRaVwGfb3DQvu/YqhBTMzExiTM6dBx7m8LHHy3gCG9uiS2pfEickScLK0ipKSbS2z4PNqZJSXqAADfsjtsQ8Sim+cdf9LC8t45RUcj/wSZP8Qo2kyvuhUpKwFto4gMBnaXWVfn/A+voGURQTxTFCgOs6eL5raY7l9auUJo0z0jS3rr5a2fMn7N+SZ1mpjRPWJtMYssRqbYuiuHDPO3z4KEuLS5bmagyqNBmanJ7ke9/zVlpjTYqi4Mjjp7jnoUcBWFlZRUrB/M7t7N23i163R55lhKFFyLudLifOnqPIc+I4Jksye20XBUpJsiyn2arzihfdwIuuvYawGjIxMYaQ4PkutVpIWA3Y3OgghGR5aR1hHBzl8x+PLaGli8kE01MTtpHKCygKOpu9C6hhtVphenocAEe7mNw2HklqqcvjU22WFlcQAs6cWrD3EiFQ0maYTU6OYYwhS+1iW5Hn5fErPNdhdXkNuWXg8HTyyt9oaNfjj//4j6jVQqLRqKQaz3HosUUOPXyEYafPgXvu4EVX7uX04yOOHd7kT/7wcyycSvmJn/w42rH6RlkW+kWRU2AoipRqLSQrJJ/8/So/950/wuRcHc9x0a5DlqVsuUHGUUSR50/8XRjrVFte847j8NBdD3DiyBFMIenHm+CkKKXtHIhECbuY4zhuafYjKIyN87g4fqAoCpS085DJFFGc8K73vY2fftcH+cmP3MXtB45BWsdhkn/7bz7G//jUPRw7+jgf+9h/4sSJE7zlrW8hrIRMTk1x661fpFqt0R+MGI1yqtUJXCcgjmJ2bJvlt//gV/jFP/h3f/uT9LcYlhr9HAR3/5MOJV9oM74d4wXN3bd45JfIuXu2sRVpIKR8jisoZdcuRKmXsMXE48dP8ubB8vN9+2c4pkt//zz2AJT6l8IgiwKRpIwGQxqNBrVGrbTiFiVNw1BrhKRpyrFzy9x09R6kkriOZuH8CnludSxaawLPw3Vd5qbHkVJyx32P0e2MaDfqCClpeB6tZoNms8HmRp+J8bbV2wgIw5AkTul1h/z5l+/h8m0zDHoj0ixhYXmdeqXC1x8+zIuu2oPvavyy4VhZXmOz0yUMK7YQylOEgEarwXA4QiItNVAIGo0GrudhTIaUkixL8X0Xk1ua4/hYjV6nS6Nds3TQRotOr8/0zBh5nrO+2WNivI0XWBOEbnfA4RPLvOzKvVQqns2xcjX75mf5+j0HqLs+a6tdWygqiRN4RMOhzR5zHEaDEaYoOHt2hUatWrqPWvqa0pI0L6jUqhgER06cpdVsEAZWlzfoDXj83HnGmzU63RGNRh0pBb1uD9fR9AabBL5PZz3GcwL8ikTpAt8NcF0H1/H4+p0HqHoBo0GXim9NL6SBqB/hiIJKxWd9ZaN0G5Ro7VHkEPgB/+Leg/zCd15Jq9UgyTL8IGDbtimGwyFhNcT3ApI0Jc9sSPiZ00ucOr1AUHEJayEHT57m3/6za0myBEFBxXdIi4S8yMiSDKmsM+SWditNEpTUeJ6DUposzfnU5+5jvF0lDH20qy2NzQjyXBCPYoocwsDqOWVpm+94Do7vUG/W0I4miWM2NrpIAWFos++UIxFKkOcZaZqwURatjisJgoBarYnjSlbXOpw5s0irWePRQ6fYvWuK8fEWWZqjpObcuTWUUFSrdVxbM+GVMR2e7xMNY2uC0d2kUXUQJkLJEK0y1jvrVIIAV5dRCIAQQ9bXztOstqh4NYuqlgWdkArXcel0hlyzf76kSru4rqVe9XpD/ttDXd558zyFyTm/sERYqVAIwztfsoe7Hu9RrzXYk0Zo5Zaf/VIjV37NkhylFF++/S7OLy0zv2OONMksbc+UYd3GxqY4nkee5gx6Q/zAA2xQrqWClVpSbc1YlHao1WvMz8/ZcxIl9Lpd1jYXGZtoAwW9bpcdc1NMz0yWtHFbfMnyXiWAhYVFBFCrV60bptJQUiS3wpGhLFqRVkcsJFmSUAl9XHfLxdKGiyttEbMtLZuQT9CtZDk3PH7mjL0XKUG9WS/DkUW5KGGDy6NRjNb2unUdXVLWrfGLVookzfi9T/wPrr5snuGwx6jXo+J61khHgJI2JD2OYhrNsKSaDnEca9oiJdZ8oij4+F98jtFwyKtffhP1aojWlppuc+oERV5QrYcWiSsXHJVS7NqxDe04pElSLgrZAHS7AGL/5lpYZdAbIIBOt4PnOWhHsaK7rC2tUa1VGY1ipmdmkUbwhS/dxerBs7xi905EYVg6u0qe5/iei1aSaBTRbNYZjiJc1xrVmAKKzDrppnFi4ygECGF47OApTp9ZYm5mjKBizXmUkuVCUojSVu9ojGEUDXCUYtgdIrVgdXWdifEmQqsnjHfK+fCpdM2nTqsbO/fw4pc8XbuUI9mzdze+76NUjmOGHH5okYOHF5EIds1WOHTPn/DW1++n0Y4ZG3fZdVmbySnJK185Q63WQGsXz3XL+2WCX5WYXNAdGX7qow/z3d/xDrKiwABSCXzXJ0mTkiasnvjMKW0dTI3dVkiJVIooHtGcGKfRbtuoCO1jIbEtdM+SH+N4hJbOhYUYRztkeZkbaDIQW4Hgxi6cRJKDj91Pa6yNEAVvuO5VtBXcfvYA3/e+l7DZ2+BHPvgBJia2ceONN5c07ZgjR4/QHm8RxRGdTo898/uphRU2Vo4TdXssr3SYnNlLuzXNe977Pfzoh36c11z3mkvWMM80nkGm9izjmbRtT//NRT4tz7LL5wUTPo9tn9trv/zAl/92hirG1n8XuwV/0/F3ZLzyD11z90Jz9y0ef5PmDp5AuJ77+2RWM3aRSPSHfvCf8+5ds8+bh31p8fCTv259/wSD4JuLbA22UFFaYbIcaeCOew+wvNGhUa9RrVUt4lGaqWhHkyY20Hj/7m14rnXbO3vGrh4rLanVQpI4Y2FhmcW1DeZmJ5FC4CvNPQdPct0VO8mzgtvuP8j+y3awsdEhDAKGwxHVWoXRKCKOYrRSVGsV0iii3azhei71ZpWNjR47d85x5e7tgMDRkuFgRJZZR0VXS2qtOhTW0tx1HKI44fziOhOTY0il6PdHeL5XUh1sA6W1U9ptGxztIYyNgygKY6mnQtFuW2exZrPO9NQ4jueRphFCChrNGrtmJsjSnLDqox3NaDji7MIy1165h0oloNFskGd5qbGTVMOA4TAijmM8x8FxHc4trHFyYYmdO6Yo8pxRGTVghHWUSuKMh4+cpBlWiKPogrFFmiTUqxXCapUizxn0h9RqIVJaik6vO8TVHhSGTm+TLE9RaB4/uYDnah45eortU+O4rg1Dd7RDt9un1W6SpjFKSvzAQ2uNUJKFs6vkecGPHjjIf/7JtzAYDGg26xYxlBLf8/B9l+FggNKaaBSRxBnVaojEsHvPTn7xT77Bg48+yI/8L/spjLEOjHmOlJLh0CKQQiq0UrbBk4I0TRGA1po0s9lHvucz2a4yHCZsdns2FF4pS1WUimgYo5TEdRQL55eo1sLSrtpmskmhGAwGuFrRatsoBz/w6XT7BBW/NBKS+K5DvVbBLzP9dm6f4dTJRaKRdeJ0teLY4+e5+sp56vUKWZbR61lDkDCwBjCu45IkCesbXRqNGiur61RCG8OglSAMXLq9PoNeD9+vIERhKcAY+oPI0jMxZOkIz9MMeymO9jDK6mO2GhCE5Bt3H8JzFPv27aAS+ni+x8b6JkoJ2kHK/PQsSRIzPt62AdsYXMfh53/zz/jpn/pxfv7/+11ePzeP53lWr+fayBNRhnSvrW5w9vwSr7j5BnRp/KGVJkkSDJDECa7vYrDOrXfee4Ad26YBc0HTk2UFGMtusOhgYREMhdUQCauXm5lpg5AM+n0mEY0CiwAAIABJREFUp8YtuuB5ZEmO42gMhr/64le44rKdKKmo1avU6zUM1m1WSlE2f1woWou8KJu6rYIFqtUqQWgRViWl3UZasxappL0faGUL3Nw2UXleUG/UmJoco8hzi1gm1qhISptNl6VpeY7VE83hlhsmkOc5qjyOG6/ZDxKKPKEahjZXVMiShltyCc0ToNOfffZWrt5zGceOn2Ryaow4Suh1+szPTrFj2yxhLaQocgaDIVPTk3Q7HXr9PpVKhdvvuR+T54yPtXF9D1HOC9YwybFI4wWmidVmjQZDTp88w8T4GAYbf+P7Plme09hRodlqgIFP/OVtTLWrhKHD3j07mOxDICHLRtRrdXr9AdV6eCG/89DJs8zNTJbupJJBf4ijXfIsZ3PTmsbYe27OuYUVdm+bpNWukyYpvu+DgCDwkOX1KcoFIaVt86Okg1SCbqdDrVKhKGnHT5s8nzRLPnl89LZ7eN/73vU0LVWKolpxbaZkFrFw7GGa9TrXXn89e/bMsrhwkL07BNMTPkJDnqcsLy4wNTNGpeIwGqY0GzUWl85TmIJev49f9VCFy+//Tpfvf8u7QSh6/SGVsAomt6hneRXYzE+rTVNKlSZBlua8hZR7vo/yLKNECOz/h9ClC7A17ZFC4Xke/UEfpTTDQQ+lNa5no1q04yCEQkht5+myJhifnEBpgev6mEzRGGvz5pvfxM9+7Lc48th93PKmN/PfP/V5br7pZsJqwGDYY3Fhgbm5OVZWVnnxzS/h/Nllbv3CZ5jfpjl55BDVegsnGGPXvqtAVnnf+9/Bj/3CT/Gaa1/Dk6PGv/n4ZhTMSz9/iSefoezb2vJS+3nqS566cPDM4/k3d5c0NblonO+f5Y23vOG57++p2XY8UYMqKZ/0t11suHIp45Vna/S2tr14u63ntFL/oJu7F/DSf6TDonX28Xe/70s/v8XNfu5NqCE3OUWaEg1GLK2PWOsXjM9MIF0HkxtGg8iuoqcJSZTQ2ejSWeuSxQlRb8j2uWmajRqDUUwUJTjaYXpinCsv302UZGAE8Sjl3be8mDPnzlOt+bz6pitwPEmapXgVB89XDAZDqtUAz3fo9ftkWcJVe7dTCV3qjYCNzQ7bZieRUnLvgSOcOrtIXhgyA9JxiJLUoiG54syZZRaW1qxdegonz1gTi7W1Do0SPdzodOh0u7iOJosTlFT4nsdo2MeYDNe1mXXalRRFShKNkEXKsLsJ5BRFWq4YW1fBai0gDH063Z6NdQgDdu2cs4YtKkd7irHJNrVqBc+xFt/SUBZ1BZ1Oh+tu2MsN1+zGZAWD3ohatcbm5gDXdYjjCM/VvO6ma2hWq3hBBbTCr1aY3zFLlGQYU95UMXS7XaSWhF6dwPXJTcxaZ5Xx9hgVXUVJyWXzswSe5qXXXcbYREiz2UYKhyRN8QOfOEvwqjWk57PRG4K0FKgPfekr/PAdX+dX3n8jWZ4yMzPOcNClSOMyHHkD8pQ8TZBaUm/WyIsERMHkdJu3ffiT/Ku3TPF9r92NKl0wi8KwuLiBki4bnRFKu+W1bul8aZrZ4PDRCCEEjtIcePg4cZwShi6PHFkAYGlpHVMIskKysrxCs1lBa8Pq6gq93oAiy0mTlAMHjlKkOUWWW2RNKfKsIAh8Hnr4KNVKQJrC+kafO+4+RJ4b0jhDaslrX3E9586tMjnZZmKyRSWsgIB9e2ZREkbRkJOnz6K1YRQPrQmJo1laXsMIh7ASUmQZzarPysJ5PNdlfb0HwsX3GwxGmqi/RGdgWF0vWDyzQODmZEUHSBHU8IMpvGqFTBaWdiOMDY8WCmE0L71xPwePnbOZi8JSqbST02pX+Iv7O3Q2B3zyr+5ibXWdjfWObWKKgjzLqddrrMYJa6sb5Bn4FUsrlFJSlDEU9WaNN776ZRZ5HkZo5fAXn/kSf/Bnn+NPP/V5tKOJhxFplBJWq9zy+lfiOC6Oqy1V3UjiYcrnb/0G0SimKLLSOrxg2B2QjhKOHzvDgUeOMohSlOMiBUQDS1mVUuF5Lr1uHyklb3/Da5FKkiYpWlkqppSKMAwRwjZqprCGLVuxGVJaVC0vUkajAdoRaGUR8S1jGksptbR1ACmsw+NW7p3SEkOB1BrHC/D9kCAIcbyANC1I4txej6k198myUg91EUW13+0hheH8+QXyPKMoDGGjiQ5CjPK2btXl+bHFVm8zIh5mOIVHZ6PHXQ8ewmQ566trtMdbzMxN0WjXGfQHZHlOtRZyfuE8tVrIRLuF57u87hUvZu/e3XQ6PbqbPfr9Hp7nsLneQQpBv9tneWm1tMi3xdooitkxP02cDHEcxdmz51ld6wCan/mtT3HrV+5iOBywb/ck/eEQ5XqgNL90Ygkv8On0+hQqZ3JujE6vh1AOUzPT3HDtFWVmoSCNU/IkJ81TpALX0ziOAhRf/drDbJtoWUObNLZf44QCixSnRUZmcozAxpKg6G8MeeSRExRIaoGH52m0sxVybtHObzaf2h8KfuD7v++S20kHMpOTFRmuliyfX6A37LLeXebjH/8dpifbBOEMn7/1Ae75+nEeuf8MN1zzcqZau8lHVYLAZxTHeK6HlJJ2s82J8xkf/MgDvP073oQSDllmuOPOh1laWrf6wHJhtoALFEohLDslTRK2GDeO8hAoTF4gUgdHBJhCUVAgXNuw2xgQS73Mc6vDFFpSCasIKRmNBmRFVlJdBefOnqXb61FkBu3aCCMtNdLAKNokUB7riyu8aepm3nDZB/iJf/0R3v/e7yFLc5KkTxAodl02T7/fY+9l+zh+/ATHTh7nn33fd5PrjJ27Zxhva9aXDvPRf/8hfvvXf4PF84v81z/8bT78hx9+jrXNt25cyuvgfyZDlWOPP/53sh8h5XPyqHhh2PECcvctHn9T5O75jktZw/7Vn/833jE/8zfaFzyje/Ol3/PZ9rlVrkgBWcGd9z3KRLPFi2+8GikNWWI1Nr7nUpQIpDaC9bUO7WaDOx44yO4dsxw5doZa1afRqJbZawm33fsok2O2idJS0W7V8UKXVrN2IQttOLDoEtgVx9W1DaZnJmxmlWP1TEIIHG3RANdz8Dyfu+9/jDixDmFTky0bR+B7aKXodHtkqWFjs8eDR44z026BcBirVRFS4Do2DylOEtuM+R5xFON4HkWek2UFQhn8wGFzs4NQpnThd9hY3wBy+v0BlUppmuEo8rxgeXmNsFIhCL0y1Fty7twSrmM1N0bYYjaJU5SEQb+P51kkbEvXGAQ+Uqsy7wyiKLZhs0Li+oo4ii+4EaZpSrVZt7onAdEo5uDxM9z32GmuvWKesOKjtUJqSRrZ2ALf17iuJo4yRsMEz3PY2OwShB7NRmgtx7VrswXTlMXVNZqtGnkuKDBUgoAiy3j7X9/Gz/zQG3nxtiYT4w2qYQXH1QSebcaUY1GPfq9Ho14tdWd2PdJ1HN7883/ItWGfhldwxd7tF1AVR/topXC0pllSJeVF13KRZ0gpLjiJ5nnB5HibNE3xfI8r9++mWnFotxtIpXno4RNMT9ZxXU2n26XZqDE9PYaQCkcrxtoNOp2+pZyud5iYaFo6rymYmmjjei4IezxTY3VGo5ilpQ0MMBwOaTbqHDx0jjPnz9OoVllb67C8skmzWeGhx44zv32SRrMGhdUGnltY49jJ8/iey/TMBMtLK2xudmk1KviVgCRJMUZw8Mg5rrxiD5UgBllDCU2gMwbRAKMknhtQGA8QKFcitbJULWzYd15Anhf4vs+ObZNQNnaO45BnI6TU3HFoje1Vjyv37GBisslmp0ujWUcIwRuumuKXfu/TvOWWW5DnzzHdHCtXvy2SLUoaWJEXNusx8JDKFog7ZqfZNTvF1ft24wUW2S8Kc0G7px1FUWQlYmKD0gW2oa5UfIyQZQQIaO1SqzZ49OBxdu6y98xhv8+wP7BIjHYQSLRrtT9ZnpfImB1aa3sdDgZorUrUy9L87L3UlLwqi3YUFOVn0VL6MAbtlDEOStLvDfADi+Q6W9e6lKWjryBJUpS0WW5SKu67/xHueegQl+/dhVPm/X3t9ruZn58hiSNMQYmKGTzX7q9aDa3zq7Kf3TjNyTPbWBZFYbMBBaXlvctoMKIeBoQVn+NnFrjhmn0EFZshmsQpjuOwvrZBFEWMjbfRWpImMZUwIC8KNjY6DPtDGo0aAkiTiGgUXbg3KaUIggCpJGdOn6NaC6nWqiwtLiCEJEkzitwQBCEry6sMagVunrJv7w727tnBoD+g0WxRGMHBe0/yitlJ6tWKjZ5xdBlwDya3Bh0rS+v4votW1k0zSWO63R7tsYbNS8wkt91zlH3zY0xNjaFdies69LpDvIqHEIKVlXWr+Qx865ZWUhVvu/swoa9pVTTLq5tUm01Lt9tq3C+xCHvxXPrJx47xrp/48S1275PGqCgwaYwoBKNhl7Wzx/j0X36GfXuvIM8K7r/3AR5+6BHe8Po3s30+4aqrt5ObDdJigzTfZHxsjiiKyPOcarVOkib89Ecf5IOvez8SS1cW0mFicgdhpYLvKaQQRHGEdhyyJLULG2liP1vCNn82YH6LmilRJVtBCIXvhmQpCNILTYnYcmbFoMrFi635V0qBkprCCFy/SqVSQylwXRdMqWkuUrQrQRZEccL2XXupteu8/Mqb+NBv/ArXX3UVR44/iu871GsNQPDZv/48h48e4zvf+XaWFo6xY1tB3uvywIMPMjG1kze86e28/s3vwws9DIZ3v+sd/Nj/9VMlRfNbhNw9y7h4aeDCPi+FAv89InfP9FqTF7zhPa9lYvK55yo/qX68qGPdiph5pt8/2+u/6XtdjNyVz/1DR+5eaO6+xeNb1dxdPIQQLJ47z3s750qL5uf/evv1iecu1eg9/XN0iQ+7laZYhzcDRZyxvtFj9/w2xsfarCytUg1DhBCkac5X7jzAdLvNViZee6yF5zmMNaso34aJ9wZDbn/oIHt3zpAVKa4jmZ6Y4BOfuZPeoMvsbIvlpRUa9SoHj5yiXq9SDX163T5BWMN1HCoVr2wCLLUsx6A8Bykl0giUzjh7Zpn52RkePHSSN77qRQwGPVxHlfqcjFNnlvjyg4/wypuuIRrlKKGZmG4RhC6BbzOcPM8lrFrtUpolaO2wudFDa4fPfPU+rtq9kyROqDequK61BS9SzdfufpRqJWDbzm0IrTFCINFsrnbJk4JqIwSJpbIoRbvVRmllDRCQSATDwQCnDAjOEaR5TmEylFREo4QkivE8l1EUox2HOEmoN6t0N4clRcs6mj56+CTTU1MsnVuhu9mjPdZkdnaCK3fNsNntIJWwWq5Bgldz6fYGNhw+DLn/4cPc+8hhLpvfRrvdYmO9ixtYt9DOpm06A79CI6wRDRKSOMFzNUWR8L/d/Rh/9NNvY7rVZOf8LK4jWFlZwZEO584t4CiHwkh83y8LZUv1W19bRwj4wEe/yO/8wBXctH+Sq/fvBAxRlLK61iGsB2RpUq6qywv0MCMobfQLut0+Dz58lNmZKU6eXCBNUmq1KgWC48dOMzM7wWMHTxL4PnlS8OCBUzRqlpJohFXXZJliaXmDu+8/ys75aQLfI00SiiJFOQbIkNrmCUqsfb92HMJKhfZ4G8dx6fYivvDVx3j5iy+nXgkJq5KxsSZjrTpaO8xOj1Or1xgOYpTWllKmFY16yOxsm9WVNYoiZ3JqDOH4ZGlM4HlsbHS5Yv8uclmQiRquyul0N6m2mmRJilYeWklG0ZAkiXEdtzSlEOQGCiPRokBJQ5LF+J5zgUYjkCjHJcsMf3JPnx988w00WiEmK+j1hgSeR1AJCIIKH/jZj5COIr58fpF3X7HvQn6dkLZgxFjUQCr7c5qkOJ7Vv3q+g1+xiyhSSrRWdLu98jlLgzVlLe0FDuMTLbzAxyBKBAIGva4NL1awY/s0Wrm4rgYcksTwudvuZrbdtohJboO9TWGNdqS0zVu/38cLPLTjYgzkqaUPGWNjGZSy1+fG2mapldIW4ZAS8pwkitjKpzJG4Lg+IJ/UBEhpGPWH5KmldjuOQ5HEuI6mVg2ZnWjZRRsJaZxw610PcOXuHbiui+dbRE5aaBWpNIWxGujBwObhKWlQCkwKZ06c48TJc8zMTqMchaslYT2g3a5RbVS5au8utNTkprDIe8UHDBRw5NhJZmcncX2P3tBSpYeDqMyCLHA9F+1Y/a1WDpWwwmA4QDkglD0njWYdrRT9/oBGq43nB7ieZzVuyq4RBts1M62Aahhw8LHT3HX3cfbsaYMp6Dx6mj1jTdvUSUWaGZS293elQCHpdQbUajWklmhX4UqHMKzQ7w/xfZ8kibn6im2IsnkIwyq9/pBas8pwc4TrONSqIZ5r3ZkLlWMK27Ds2zVBq+6DMBw+dYb57bMXzZGX7gAufmbM09zeidl3+d4nXrP1yCPWl3vUfIeFw5/jyMPf4IrLv4NP/skneP3r9hMEQ97w+v243ggZp3Q2uwhcMBVMUWe9s4lWhiyL8D2XD/7K/fzzV7+fQ489DtqlOdlAUhD6Eq3y8r4o0Mq10SGezQI1GJT27CKM0lAGw1ujnpyCHCE1yvURShJnozIH0mowhTHkeYqhQGDR7tzkVqPsBPbzKw1K2mvflJEfSRyV59HOd6Bp1AMckTMa5hx48H6u37mP3/jEf+H6q1/C/M5tiMLBpUluIl5684uZatV47JFH2NxQrC49jsn7uHqKvVe+irRdLYmY1iDp3e95Bz/2of+T1173mqeeiafVPFvNnSkLpIsbj79Jc3ehF8Fe8+Ipj0vv8SnamQvvc6nH30avZi48tszH/sMf/So//KP/+9OP6Ztk1j2Jannx3s0T+usn/pzn/vpLH/Iltiuf+4euuXuBlvlPYBR5xvTstM0e+3YP8+RvHClYXVlDKyuuHsWJpXCVKNLlO2aseYVWnD2zzOPHznDs2Gk838XzPKp1K+y/etd2ziysEFQCLpuf49GDJxivVRhv1ksEqiDLU3bvnsMPbMHVbreI45gTp87iuR7RKGZlZQ2wVJPups05Wt/skqUZ7XaVKB3x5lddS2FSGrUKpjCsLq/x2dvvZte2Kd77xpeRZSk7ZyeYn58mTRIcrTh2/DT3PnoEIQXLS6vkWY7neXQ2e9SqIVmWsdDp2iDcOCOJc+IoZTSKiZKYN73uJubnZ6EAUT7WVzvc/sBhpqYnkFJx7vQSjmPF6Flp6GKM4Z4DhxBK0Gw16HT7KKUwRU6/3ydN0tJq3jZ13U4PrTWra5t0ugPiUYwjHQS2+HRcByfIufu+R5maHmd6ZsJmc2mHKIlLUwfJxkaHux46xPpql3qtRuD7nDm3xK5tU3zPd74e5Uo2upuMTbbBKDw3IAh9ev0+o2HEl+94kPW1LhXf565Dx/jU4By/83+8ksBT9Po9pLJ0vcmpSbzAY/u2bfiVCkopBsMRynFZ3+jS6fRoNpv88P97O3/0Y1fTaNaYm5um3x+SphnGGOZmJlBSEMU2DD7PrTPeYDhAYO26Xc+j0Wjw4huusg5/FZ9mo8b9Dx3l9rseZu+ebSRxzBWX7wBRMD3dpN30qdcrVHyPPC1wtEc8ilhb7XL67Aaeo4jjEfW6T6PZsCvThUAiOHLkFGmS0e8Nue2OhzlxeoEHDhxGu1aD9bZbrqVaC2iPN3D9ANf3UY41ekmTBIzB8xwWzq/gOi6VSsDkpEUEa9WASuhz4NETnDm7jBHWiTEIfIosQwvbOCVRRK0WgMkRFOT5CJMnhEGVarWOEJCT0eus88jDp1DCKZuRDEc7RHFMFMVoZc0lpFIkScqvfO/NSCFwtcvZs4vcdd8h4jgmTVKyLGXb9nl+7ud/ppzEDYaCqKTDmsJqxI4fPVGijQa/4pPEiUW5HJsLqLWDMYZBb8AnP/sFirwgS/MnCgQpbOanMKWZiiIrc/AarTZpZp0OMYUlF0QZZ06d5/6HjnD17j1MTE9b86aKNcrJ8wzXdVhdWuPc2UXAUnlHoyGbm5ucPn2OzmbPIoOOLsPDodVuWlTPiqoRBqJhZMOTS9aFkAJMwXAwsD+X/4pSy+R6bqnNA0rqYr1Rp9VuoUuqqXIU3/eut1CpVi7cip9UEJUmTEJAWA0vuKmmSU5RZAShf8HoZ2uhzQiDLpF/7WiOHD2Oox0qgY9WknQUU6tVedlLbkRr28yOtdt2YStNGZWLXY7j2NzA0kH3znsfpFqr4gcBSlrkMk8zlpdXCKsBaRRBUVi9YJGjHZd6s8EvfuJ+PM+lXq9yzTWXMT0d4roelSDgz3uWLru52SWJrfunjcTILZUwS5mZnWTh3DLnF5btNXb8LKdOLtBs1lhcXLb3nMAhSXLGJ9rkWc7qagdhFPcdOkKSJhe01LnJbbyGKSjyHKUVgyjGdV3G6g2LQDyP+fjXD53hbe948yV/5wUVdu/di1aSB+7+Bp3l89zz0J289NU3MzlZo8g2iHvncEWHWr3J9NQcSrl4fkiaZbhOBe34tNoT/MtfO8DPvPOD1GpVXv2a17F9x3aSKCLLcorM4GqPvMitTb1R9LtDNocjoixHuT65KdjorNEfxRRGEcUpSZoSBBXb8BYFYO8FWy6YQlhk7wIsaUDyBPonjUAUkKVZ2agYbP6FIYljKpWQJImsqzHgaJ/cZAyiPqeOH2d8fIZao86//6Ff4Asf/wIf+MEf5dGHjtLZGLJzx2XceuvnOXP2GNVqyM/97C+R6jnqk7sZJRt89St/RRHZKCojLI0Z4E//9Hf58B/+4nM+f/9Ux+t2v+7bfQj/ZMcLzd0/gqEuikmQPP2kCiH59V/7GEo7Fz333CmUl9LQPTtq9/QhSgE/BoqsoMgKHnvsGLWyQNKOsiG0ymY6KS3ZMT9TFhAFE2Mtltc22TU/w+Fjp9lY7YAQPHLiLLc9/Dhzs1MEQcjZc8vMTbd45c1XcM2Ve5BCUa+GDIcjlLQGCllSEI8yTp46z9J6ByEFaZIyOTmG53vkaUYtqNCq13EdTTQ0BF7IWKtNpRLS70VsrvfJk4xWo8YbX3wtSRZTqfj0uj0814r/KTLOn19i7555XnrdfouqjbUQUtLvDmmPNRFK4vkuP/TO17G2vmlX54XGD2r4XoVK6BLFI6SAPMvobvRYXljF91zefsvLUK7D40fP0tkYIYTi5KkF4shSnIrCELgexgjOn1uhUa8RRTHCFNQqPp5nV887vSETE23qjRrGFGzfPs34WBOlFHHeRcqcIlNEI4gjxdRE066cKltwx1GC71l6qhSCajXk1S+9njCo0FnvIaRiGMWMTTQZxCO8wKPZrhGNItZXNjl/ZoXcWKvz4WhE1Q+Ympnkgw88xqEJh/e8/qUIbJjzxESDJEnIc0NuAKUohEY7Hp5njVuKAsYmp2m3m3z3R/6a3/rALqJRiikMa6trLCyuIqQ1xFFKYyhoNKq2MMttQRuGXkn1cVhdXccYSaczQCnJ5NQEaW6YnRnjVS+9Cq0leZFz+uwilYqL4xl2bG+xsbGB6yrCsMpjjzxOxfPYMz/N97zrJaRJjKMleZYSRzFpDEUqeejBY4Sux8mTi9SqIS9/8ZXMzY5z3XV7kNKwY34K15UsLy8DGUZoiwI7AkNOrz8kTyKUMExPNImjqAx69xn0e2hHEoYVpiaaVHwfx3HJ0oxGvc7p00tQCIosBylQWqMclygtGI0GFEVGkSWM+n2Elhgh8BzDPQ+eZuHsKkVhWFvfQCltXRldjzhObWyF0aA0TpGxtLzKHXceIMty3nbLy1lf2yQaRRZh+sgPcP9DD/ILP/tTfO3YIYQQVMIAm+piIw++eOeDONrBSGHpeVgqgXIsYoBQCCRxHPPaF12P1KoMSC7KxQ1DvV5DKUmaxqWpClZ/aQyu7+EHHq6nUMrgurBjxySzsy0uv2o3uUlJkoLVxXVIM6QxIAVhtcrnvnYvQaWCEOD7HtVahYcPnSRNbHHa2ejieA55XpCmmXVCFoIoijF5hlfxkY7V3kWjCIl1IvS80jmzbPCyJC9t0u1+jhw+huP5aO0w6Pephj5pEiOkuOAoORwMbe6aMXQ2uxYRFYKFs+fJ85wstUZBAoGWGq0dpJY0mlX27t0BeUo6ii7Eu2x2e2jHNk0z0xOApc8mo5g4GpWNs2BxcYnlpVV7XWhNe6xFs9XAcVyWFpdwHM1Gp0u1HnLtVftJ05zRKCFLU7Ky+QrDCnmW4mqJMAV5lpIlGetrGwC03AzX06ysrtDrb/K2t74M1wkoCphzrGNpo9FACM2gPyApYwMQhm5nQJ7ljI+3GGu3wAjmZqdY7wxI0pTpmXGktvrmNMtJE2tYtH1uimE34hU37kcpaZs2Kej3uyTDiCJL+fLd95EDjXYb6Xjs2rmdPMmgKMqwsmefg0+NkkvMwfYcxHnKYDggjmOrpW22+NodB7nxJd+B64wx1txBvFngZiGDUZ9+lNAenyPLoVIPadYniWJJWvgMY8PmoEdzbIy0GCEEOE6dOJPk/jgnV3oU/hixbrAyEBw+s8a9Dz7G2eUeyh8jyV28yhT19jxR7qL9BkFtnDgXCF1hMErJcuh2e+RZgetW7H8DNuhdlqZZaZFRkGNMjpAGIQoc7ZCnKVpI8jyz1E0pSNKYSljFFNYQqZAjls9tII3PtTfuo4iXWDqzzIkjJ3jTa2/hJ9/4r/nsl77IgUN38ru/919533vfS0bO0dNn0JUZtu17O6m8HKFH9PvHOH/0iG3a8yciP4QQ/Juf/ZesLvWecla2kCsoGar2XMHTaq0tgOnZxsXI3AUK6zNsewE7Mxe9+KnblIZOz8eg7/mOLb3opw9/5tK/f46ZcmIrOuaix6X2c/G+nmnbf2rjBVrmt3j8fdAyZfmpfwIUf8owhl/91f+H79o5820V2G7RFuwhCLSSLC6t2cmuDKz0XKfMarMTpaUf2Jup5zo4EoajoW0gwipxEtEIfcZqFbzyxut7mkarRpzEGAxra5shmZqIAAAgAElEQVQkSUatVmUYRbiuy6gfEwQBa5sdJlp1Go2Q0SjCcTSjUYTnOjzwyGEeOXaKfbu3E/gexsBjh09yzyPHuXb/HqJRZG3AHYXrOnaFPzOcXVxhvN3i9PkVpqfGCMOA0TAmL6yuRipBmtrJaQtNiOPIoonjDTzPY2lxFcfVSK1YPL+C51h6HcbQ74/o9gbUagFSStI046v3PMqebVMEFUvBy4scz3MIKgHTk2NgrFPZ+fMrtNsNVlY2iKOUsFrBIHC1x2hYollYzV1YrVAUBb4vSZOM4TDhtrsf5RU3XUezFUI5SRw8cpI8K2g2a0RxfEGv2Nns4fs+fuCRZamNK0jTchXfOhwO+33SJCNwXSr1gF53iOM4fOX+Q/zyyiq//y9ez0uu2mMbkLywzZsp0NI6j2ppi/aNtU2UkKwsrbCxsUmtXkVKyTs//Of85x/Yw59+6l7mphvUG1Wq1ZDRKMZzHUaRdbN0XE2eGxzHYWl5jXqtdoGKs3Wt3vfAYfbu3VHqQSRKuyglqPgu/f4QgcT3rPFGENhYjiiKre7RCCanxpCmYGl5jThNWFrZpNsd2ND5YcIXv/ooO7dP0GpVmZoaK5HlhFNnFqlWfP5/9t403LLrrO/8rbXnvc9856HmUpWkKqtkWZLlQRgbAx4IDmYwBmIgdJo83ZA8dAId0umnCflAeJokhNBNp5sEMDwYbOMJbPBs2Zqn0lCaqlRVqunO59wznz2u1R/WrquyVJLMYGK6tfQc3Vvn7DPcs/dee73v+39/f9c15EPLksRxunMFl7YDWjGJJ7ieS71eY9jrce78GlEUMB4nuJ5X9m8ZkqTxl5JUqlXW1jfJ0gLPdUs6Kmih8WxTBcN2saQg8H2GwxjbsZC2wJIuCLPQvv7wHqJqiG0JwiAkyw159ImnniPwHaIo4tlnL/Azf3CW97/lWh58+BnOX+rypluPINB4vkevPyCKQnzf5d9+8HO8/4d/gF/+4Id476FDCPH8fABw643Xm34zSyKFNDJDYRZQxndPc+rkaUajMdcdvoa09Lq8TKrd8edKkx1/L9txzALRssv5VNNpbyOlIM0THNelVo3I84ww9LFtl89/9R72LcyhtCplfhb7d83jh055vjtIITm0fx9B5GM7Es8zfUKXKcBSljJgZSoSGkGhFJPxuAxqpaEF2rLseTPfgWUbyVu30yOJEza2OniuS14URFGAFIIsz8iV3pGtgS6PRwjDYKeHpVavmpwSgJDkqSFsoo2FSKUWYdsm6HfKAFqpgiAKAMq+zRgnCBgNx2ysbzI3O81gMDKy1LxgaqaFVrrsiTXyTMexTRVSa6amW8RxguN6ZGmG5dhYAtbWNhkNx8zMTKGU4vz5S7SaDeIkNRXCLMd1bTZFh9des0CtVkEKQZJmnDp5kQsX16gNMg5PtUz1VEhc20apopSPQhRV6G4PuHhpg2azRlEUpHHCnj3zpu/Zsmi3e9i2Tb1Rx/Vt/NCjvdll2J8QNTw810MVml6vT61RIU9MgmRxZoogCMrecYlG0N7sUKtVTATw/MXxKtdLMz723Crve997v+7xQpkqai4ytDJU6COH5jn59NP8yE/+b4zHI4qkyxMnHuNjH7uL1998FOkpo5QIKuRKEadjettjHC/gkWcm3Lb4dpqtOeI0ZzDoU6k00MKh0+kytbiXqZl5EDa2GxJVmuw7cJhGY5a5mXmElFSiOpMko1JpIG0b1/PJlSYvFP3RmObUHGlmKuKu7eCUhFvK70ZpyErPUK0xdh1FgUaAUkjLJs9TpJBGEQDlMSyZxCNsxyFOhlw8dY6lXftQYkStOsVkmLG9dYmw1sTxLG7YexNffOQLzLamqVQqfP4LX+TaQ0f4iZ/8SdJU0Yxc1i89wjMnn+H1t7+HsGG8Dy8H7wDzc/Ok0Yhf+c1/y5te8+aX2HMvP14sp7xKMPYyz33xfZc5C+XjLyH31QhTKP0mrwdTP+aNb37DSz5+1fXoVfrfXnK80rZ/jQD277os89Xg7m95fNODuzId9MKm0g//8Ue/BYI7sTN3WVLS7wyoN1u0t/v4weVMt1vq083/ClXQ3e6xsbnNRnuDasWjXo9YWd/myadXWF6oMzPTZKpexXVdtNZUasbPKi+MbCsIPFYv9bjroZMcO7qf7nafh0+cZv/uRWr10GDvNUbSlhd4rsOlSxtcWN3itYf3U6lFIBM221tMTVc4tHcZ13P52n1P0OkOmJubYmOzTb1RxXE9AwiQFvPz00ziGNtz8X2fJE7wQx+tTJVSCGkMix0T5FVqEXmRUuSKv7jzOPsWZ/A8h4rjGjmUBKTA9T0s2yYMXbQEhebIgd00GzUQAqULgsjIEqMwMiCUEtHtB6bx33dM759lWUjpsLXR4+Gnn+Hg3mVOnbnI/NwM8SRBCEF3Y4yQgq3eJosLDRzX3YHOqLzAd11aUy26bbM4z4ucOI2pVANs16bfG5QeYwLLcZDS5g//+G5GwwH7lqdxJESBi+UFBGHAP3rwCf7Rj9/Cdx2dY3q2Tpop7r73UU49u8LS0jzjQRfbslm9tMlkFBNGAXlWEPguriNp1qv86H/4PN9zg8373zSPKqBVC5mfm0KpnDTNiKIAxzEywUq1ghICx3JJ45SoGhmoBBYKQZ4a37t9e+bI88QYeWsBwsayJCdPnWF5aRlL2hx/9Ay7dhmz6yzXNFpVQzN0LKQFw/6AWqOC63osLS3Qmp7C80PyScz6+oDrr9uH7UhW1jYYjmOCoITuODbra1uEoY9lOcaPSwi2tweEvkeemaDLLLoFoSto1qt4vk+lEjEcTcrPbSohg8GEdmfA8RPnuGb3HJUoJEkzskJh+w7k8ORTZ5iZnwU7RNoeUtkIWxLHW3ieQCufeKwIalUsR5gqp/QoUoHrmcrTzHSTRx47zdxsi5/78CU+/Avvosgydi8vcGDfIhtrG0zPtMjzfIf6qRR86oGzfODHfozt9jb22iVmak0sW5SZ8zJz7xjxVlwG6Jfx/tI2nmtTrSbNaoNPfvrLVCKfer0GmOAWbapXruvs4NsFxg5Bak2/18MNPKq1Go7vYjueQbcLC8/xGHT7ZEqwMNVidXWFhYV5FOA4DkHkkWW5CYKUREjLfF7bBKICC7TEsiQb61tUqhHJJDFgHymhhNQEoU+RZfzeH/wFjoSZ2QZCGkljmqaGumk7hEFIEIXMTk+TZTkf+eyXueHQfp47f4FGNUKUfpZ5nuMFxr4kSQxY5kocv7AEUgpGwzGe57O+ssFH/uzLvPGWY9iOhSZnY32dWi1EY6MwNh1amUDDqziAxPV8Y90itLGNcF2EgI2NrR15rF0atSMMoAVhgtV4Up5fQnD2ufNIDdVKjVazxX0PHOfA/n3G1qXcd1KA0AXJZMJ/eOApfvBN+5lM4tKTz+LTnz3OLTcd4t/dc4b37llge6tPEHj0e30zN9sS13dJJhmD/oh6tUq1VuH3PvFlZho+9XrE2uYWYRgShRU2N7rc8/iT7N89RzwZs93ts2d5GceXaG1hWzZ+4DEcDqhU62ilzX7Mc1SuKLQJbre2Okw16oaYKcRfKbgz84KDtArAQmmLJOnx0PHH6Y0UN9/yGn77t/8dh6/bx5EjC0wvLoEasbHZ4Ytf+gqLy0tYFvheg7Nrgv4Te5CuYGV1Ayec4dnTT9Ga3sVwrKk053Ck4tLFiwR2BZUpkmyIJQuqlYjxeIDlOJxfuUSl2jBSVMslVwLbCdDSxYumsByf4XiCznOyxNgIObaLtI3VBxr8cIYnTzxKENaRoqweCxt0Udp/5EghyIu8pOya48f3A7IswbcCZhcXKHRCYHu4FjTqIVFVstm+SJpDrTHLvvphZg5UWF/Z5jve+h6UFpy++DjNMCDSPudPP8iRG67jmbOb7LvutQYStpMBMX3EU1MtRuMJx+94iGsOHr5iffX1FdmXg6q8YnCnr/7oVV9TlFADra8a3BnldqnakvLq8IS/oTHYnvD3f+pdOxCpq41Xg7tv3vj/d93yW33o4hu6FUrtIGKvVo6+/O/L2epvxsn89ZPUS9UQny+dF1nOeDSBwvSuObapDmVJYfpZlUZoAZnGtz2SUcrexT3kqYXjVZmbmuK73nYzqxs9Vlc75FozTmL8yCPPQSlJrzeBAlRWsPfgAm+65RC9/pBqLeKm11xDqgviyZiCAuFKs2BXMI5T6s0a7/iO23AD43UkCJifXSB0Q2zHotAZr71uD69/7WFIU1r1qskk5hmuJcjzmCQemT4epcjzFD+0OfHoKTqbfRCmYics875eWRnstIeA4D1vv5WgarPd75CKFGVrTp5Z5bET5/jS145jlZO3zhSh69Pr9Thz/gL9waBcTJj+lvZmFyU1whJ0ewZ20ul0GY5HxElCkiRonTMzU+Xm6w+jgeuv3Uuv1wUtOHXyAjMLTRQF+3btZbo2Teg75ElBnikG4wnVWoX2epuZuRZB6JEkKZNRwsZah3Scc88jJ7l0cRO05MyZVU6fvsRb33SAG1+zBzsKcGsNcjvg/HMX+IHP38nv/ZPbmZmucmDvHtAeWZZx7DUHmJ+roNKUWmlYvnvfMgtL87S3OniBTYHCr1boFzBVc5GWZn2jje1KDh6eJ04H2J5EiRikYrs3MJASV+JIm7xIcAIj0xMaijJJ4ngeeaEpENiuR64gy2JQY+J4hOfVGPR7jEZ9br35II8+dpLO1gDHNU3q41HM6oV18jjDCxz8wCGsusTpkDgZYjkFK1vbvOOdNyHsHGFplpdnaVZ81tc3mZ1r0ppqsn/fHsLAo7PVpdsZ0u/F3P3AaYQwpEPHDvjKl55GIiksWOt0yQqBFjZ+EKBQ6MLBtjyGozEra22+7ZYj2F5ApzvmjruexLNtHCEp8oL9exYZdDpkgw6WLvCiGrVGA50psnFBXoypNgXjQReLAkdqkqSPlhPSfGK8qyzBbbddh+NpwsBGOjZ+FDFJEi6triFsibAsskwTj2MkikFvxP/1U2/md3/vg7z3B9/FR589gyiDVlWYREWvOyRPCopcEQYhQoPKC7TK0JnpDxJCIl2H73nX22iEDYa9AZZVEHgOyXiCVAXJKGbQG1BkCWQxg84WeZ5QazXQGAplHidkk4Ljj5woJZAZlnRw0ExNNZlkirX1LbIkIRkPydMYaYESCmwBlsB1bRxHMhz1UTojzWKyLGNucYrJZMSFS6t87JN3ECcFljYBy6C7TZ5n/Mj73s71Rw9i2x5aSZNcKXvYNGZhWxQ5aR4TRS6333gYqRLmmiFJ3MP3XJI0wfacsofOVKJN5d2g/OPxBJVqVKaRaCxLM7cwzQd+8B0mYVSAUjazC8toywSIrmObiovU2LbEzi16m9s4ZcCmhM0kTsjyDEdaoIxdQKEVeZqxub5FMk53Koq6yLEtUEXCoNvjzntPcO7SKo5nIx3B619/IyurK+RKIWzL/HQc0kIzSXM8x8K1PSphxHiUEIURP/UT72B2YYobQh8NLO6aI6yHTC/MMLe4gJQed9/zBLqw+PRdj6CKlCLP+I5bj3B+axMhBI1aDas05p6arnHb0cNYwkIVgsXFOXKdM+yNSZMJWhQoVVAUpkEiTuPyPDBeonlqKtqF1hRSGGCTuGKBesXtqiqcK0YQGGiNn7k4SqMdRaUyw8Wzq1SbikFa53u+/ye496v30rRCXLnBoDdhOC6wWCQZ+EyGF/nKnz/Mb/zhHey9bgbX81jZvIijJ9x07FYC12Yy2sC3ctbXtpibn+Xeex9gq7NNVKugipDhKKY5s4gT1JhuzeA4DkkWIyyF63qMx0YaHDg26XiIJQXrW5uEzXkSPCbaohAuWD7CslD5gGM3HqNRcZA6QecZaTIhUwolStP00iTe0EglAs14NMC1XDKVUagUrYydheW44AikXeXZM2O2OgMCX5ImXf7vD/4+737vd3Bx8zHmd0XcevObGSeKP7vjAW68/fsYxD4rTz3B9qXzFHgIaeMVCfKKpfOP/oMf4p/9x5/lM3/xqStiiRcEVVfhduzAUfSVe/7lx8uoLcsNVHlOXrEgK39efu7l721Hynil5Ub5Oa600rp6+4540e2FrT7//pO/ih8EL//3XCGrvHx7JQmm0s/fhF32aoqrSz2v+jri+RtSPN/r+f+x8Wpw9y0wLCl3bt+s8W1V/5v22t/o0AYZCBq22z0GwzFRLSj7tgoc1ybNEoosp9PuUuQmcH3q2fM8c2GNzc0Og9GYBx55CtdzefiRpzl8eB+2bXP6uUusrrfZbm8TT2JWVjaYn52iWq8wLo2EG82qMdcWEtuxCAKPMIgIwwhLmmoISKq1kErFSJY++dUHEcIiS1LSODbgjckE27Ko1QKePn0Wy7Z48PGTnHjyDFlhPKcqlQq26xJEIUhJv9dH5Tn79y0xNd2k0GA7FnmWlT0wxsi1NVUnyzKTkSwEzUYTz3UJPJ+l+RmOHjnAzTccJKz4FIUmTTOGvSHVWtUsRLMCtKAoTBZ0eqaFbTnkmaLbG3L/8aeoVSM62wNUruj3huRlFr/erFHkOZNxTKvVxCC6ddn/aNFpd0kS45P1iS/dTZFnpEnCoNfnT+85ztraFrqM8qenWzTqNba3uxzZv4Tr2GRZShzHVCsBu/csEEYhw8GIBx55ii/f9TAftyd84n/9Xnq9LtVaSJpPKIqCatWQOq87fIDjjz2FEC4ayWZ7HS1zqjVTtbVtmw994SG+cv89/MY/PIxSivm5aUajEUmcEoYR66sdbMv0JbUaNWxbAAqlc4oiA60Jo4AsS8vz0aDKg8DHkkb229lq02lvk8QTosDlwP5FwiggCA2B1fOcEu1vKkujUcz8/AxPPv0cFy5sMB5NmIwmJBMTRAoNu5ZnUUVhghcETz19jjCM2GoPcX2XNEu4cPESa5ttZudnEJZkNM5459tvZnV1m067R56axn8hBLqAhbkZTjxxmjzLePj4ST77+Yc4d34V23GYmW5w+xtu4K77nuBPP/sQqtDcftsRXNdDKTh3foMgjErjYMjzlHZniz/51N24rk+c9CjSmKRfGKhI2WQSVirYrlcaymP8rND87H95kv/6T75rRwI5NzfDs8+t8tX7n+LscxdwPSMJXVtvEwYBn/nsfXz0k39G5Nc4NZpwORuNhlF/yN0PPlJW6nIu2yTkWQGlhNH4wymUytEoPvG5r9LrD9jc6KC18X376Ke/hBYFnm/jBi5xGjOeTCgKAQUUuUJryn49yfLSvKEo+q6h/aUZX7v7AQ7s28Pi0oIxsHY1tiuxLQcLIznL87SsqGt831gNWJYhCY6GE0OvdGx2LUxhWxZ5YczVgzDCth2SJMG2LNI4MTAQIXB9lyzPDSzFtkoAlYXvuRzYu4wXeGx0eijlkibJjt2BZUuKPEcIsWNvoDF2K0or8iLHcqwrGn2gUPmOpNBk+43Je5pkjIcTwMAutIZGvc755y5iXFIkUS0CpdnaahMGpoospcSPQhqtJq7vgZD4QYAWkl5/SJqk1GsRN12/n+FkYmAbWpMlGbVa1agdpGTQH1AUOWHkMTXdwBM5a+tbSGkThj5pmnL+/ApJnPF/fvELpJMUaUnyJCONE9bXNhkPh9x8wzWMxmPe/cZj1BsVkLB7zwLffttNpHmBVZJEizRnPJzQmq4bkEfFZ3OrQ5zESEsShAFZlqM0RFGA1gLXcxlPEoQwXnBhFGDbNo1a1VgF6G+s5+5lr6vCAm2DMsfItdcc4A9+54OIVLG8vJ+1jW2eu7BGd5BQn6pSa0ne9o4bqTSg1Whx+1tv4ade/6MIoekPNrjldTchZc5w0CVPU4b9bQNSinzOnzvNvv27CAKbQbdHkox2EoW6KDh95iSWkDRbM4wnMZPJmEoY0ttuMxz28fyAZrPFgUNH8aMqSgtq9RaOH5JkBcL2yFRGko7Lv06QxTlZqvBcr5QNm7nAcVyUUhSqQEhJEEYUygTP0rIJQwM8y7IMx3bwHIeluWmS0ZjN9TaD/pj/5f2/yM//d/+KhblF0BannjnD7oO7eMNb3sKJk21m56+lOVtne2vd9BtfDoIu974JjSwDzvP60l9rP34jY6cY9woJ+r+85/Bff/w3ec9CmWnKejWUeeF4VZb5tzyuJssUl9M6pbRSYjT+GrWjn77aEPJyluTFJ3pZnN+5/ervfcjIMkuz4FfCyb7SuGzuLF+Q9XjxU5+/QyuDd0cVrK5usjQ/y8rauvGqKnvsXMdBKGF6R/ICKUyW+cYjB5FCUK1GfO2Rp5hrVLn20F4efvxp9iwt8NSpiyzMNKhUfRxpGeNmzybJUgqtCHyXdnsb33UZDSZUIoNWTrIxwjIeOfFkjB/YbGx2jB2AtHjd0UPkacF4NCIMfJPtLv22BDAYjrAsi12L8yzMz6CFRlo2g8GopNiZnrDId+j2erS3BzSadXKtyNMUZIlst6TpodBlEFwaDzuOy6UL6/iuz6W1TSqRT6XmYNka1wkYj2LuO36Sjc0Oi3PTfOauR7h+/5IxHo9THnjkGWZbdeM5tdllq99ncaaJRFCrRkgh+Mr9j7A43UJRlL05dimR0bSaNTbbHarVgPsffZZd8zO0ux2u27tcZpc1kzghchz27t9Fmhp5mZAQVkJ816FaCalUQoTWVKKAdqfHqfOXmG7UCQKfn33wUa65fT/vuekQrh0QVWq0t3qkWYHruWi0gdR4Lnv2LKO0+U6VTqlUAoR0ScYTHNvmd77wBP/4u/aWR53x1XIcl81NU4ms1+usrrVpNasGsy3Lpn1h8PRpluM6RqqXxhNjJVHSFCex6YusVSoM+iNOn1lBYKiaYRiS5TnVWoWF+WkEhtxY5AW1eg2VK5qNKs+dW2PfnsVSkuty+swlHn3iLPt2zTMajvnCVx/DQrB/7xJPP32OG45dg+NYpeeZYmqqSV76aF1a6TAepXz5rlPcfNMehCWJQp8gcEgnGaNhTCUMOPHUc7z22CFmWjXmF6bwA4/HTpxhNJowN9Ng3x7jQXTu/BqTJKZeDxkPYyrVkDCMGE9GWFLiejbDXsr+fcsMRh1Cx8XBQ7gmAWA7DmlmMq9FkZk5rFA8cnaTNxw9xGyzihQCyzIBwnSrysZ6mxuOXoMX2Nx932OcPbfB8sI01xzYzb75GnuOfjuqyOmceprdUzMIYbGyssbNNx1FaYXjSrKswLZdPv7pL6JzRWuqZiSQUuyYo1+7bw9TMy2q9YjxIGZrs8vy7AzNVgvH8YjHGVmi+MyX7uPY0euR0licWLZkOJ7gug6VqpGNCjASLemysrJuvDFdlyAISNJ+GYiAKsDxbCyr9DMTBgZjWZaxRXGfJ0Vals3uPcvkRY7rOWitjD9frvDDYGcqzfOi/P4MqTJP85K6aBC6RZaDUEyyjDMX1jj+2DlqkUuj2TTU4DKRdJlEOB7FrK9ucva5FeYXp8v5yi7VWrLszaQ0XBc7/YqgS2mlkVxZlmQ8MAtyx3GM/1lmjOEtKfE9n852l1qjxmNPPsPDjz/FbKtBGAWsra7juh5xnJAXBVNTDdIkYXlxjumpJpdW1ow6YKtDo1lHX+6XjE1iqVKNWFld51f+/M/57mN7SzCSZjQaMTU1jWXZ3HlmxDtaNQLf3lGGVKMAx5bESQzSojVVpVClfNay+OQX76Pq+XzpvhOsrm1xYPcig/4IL7ARUnDu/Cp79yxRlMG45Rjzeqvso7RsB2FpXN9HYJlrgzCUU5TC81xs13k+YLjadbb8+VBh8d3vePvVN1KghIUWFqHq8+cf/31m6zXuvPMJTjz7FN92+5t57PgTzO+Z53f+nz/htTffgEIi8clj+NMHLnJw7igguXD6FAuzB/BDhWe7fO2OL3PwwD58z8KyBEWWs2t5gaKYUKQF/X6bdmedRrVKt9tmaWEXo/EQIR2yPMXCQhUFly6dYW5uidX1FSrVGnGSUWiJLR28IGA8HuN6FTSSc2fP0mjM4diGzjwc9XB9B8u2yfPMWGjkpm+v0MrYoWTJFe0oJglUFAV5npWV0hzbFuTZEMtSTM/tZmF5iUJl7FnYwy//1q/xY+/7IRYW93Bh/Sy2V2FzM+fQ4evZWL8fV4TsPnyMNFd4FuYY3FllmXXPu9/9XXzmg59lcXnpip3zjdgfvLz80HAHXnynEIbHc9Vqnr6cn5E7JcMr14NfR2m52prv8nPKc+35837nE3/dtqJMhF45vvcD76I51bqiD/AqYL4rLBGs8rNcaWVwtXWqfsH7mE1NX/GLrBCuWjJ90ce4anrl77os89Xg7m95XDW4u8rvRj759VmiFz1v58B/8aH5wns+/OGP8n17FnZOsr9K791ljfbVT/aXfNbX/16WztfX28xMNfFDH881QApVKNrtLr7tkKdGznjuwhrn17eYbdVZXW8TBi6LUzUW5meYTFLOrK4w12iilWJzu8/+/UvESUIQeuRFges4FEXOZBKTJBlJnAEQRj5ZnmM7Asux0NrIrRzHJowqVKIQ13MZDcbkRcGn73yIXTNT+L6HHxlfn253wKnzKxw6sJfxeEJQLha0Mvhy17aNZFYrBt0BYeQSBaGpArkWWZLheZ6Ro5ZVt067z9lza9hC4gc+T588y55d83iBT7UaYVuCeDLEd23iSQ5S8uTpC7z+2GEazSrX7lvEDzws20x0c9NNwihgfW2L5V1zzLWqOK7Flx98nE63z75dC4YMWgm4uLZBq1EDJK7r0e8NCKOAWqNiYBaZZnqqiecLfC8wwBdh+qCmmw02t7ZLbyxppCHaGNamWYZSGj8K8AOfeq3CriVjYYDWvP3d13Ns7xytqRkee/xpet0Bu3YtoTSEgWdQ6EXOsD8kCALSNMV2LGNgKySWMNiT9/3vn+HXf3QfaZrhuA4C4+NlW8bbz7Is1jfaLC3OUaiMPE9xXZvxODb9SJ6PKjA9URhpnOPaiJ3Eg4sCnjjxHDfXC0wAACAASURBVI7tcHD/LipRyGgSE4Q+586vMzXV4OSp52g2a4CmKBRFViAtyR9/4m7eeMshfN9jOBxz7vw6u3fNs3/vEpcurlOv1wg9BzRcWukwnIzZtTxDoRXj0QTfc40/V4m3r9cqVCoBRw4t8dyF88zONIgiE4wVmcJ1HZpTDVrNCN8PCIKASyur1KoVFham2VjfZv/+JcbxhFazRqsZUq2G+KGHLS1Onb7E7GzLgIKyHNd2aNaraC147vwG1cghz2Ns1zbVCQSeFxgYh8D0l1kWP/+H5/iZv3eTgREgdrD9YRCwtDBFEAYMh0Nmp1tstnvMtGpIKdi7OMNdJ7vcfvvr+fUPf4TvOWjAKp/76r3sWZrH9RyKIsNxXIpcMT81xdLyPLZtgTDnoZE+G584IUGp3NgHuC5+aEihwjJBjESwf3kJL3TJ0hRRWoKaxbmZN5M4NskXBEoJfMfhi/cd5/pD+7BsiyyNGY9iqrWaAZRIQZEpLMvMg5Ysq2Lonb4wQxV1sC3jy5fnKcOhMT+3HceAfcRl6ZEup1ETyDmlFUG/10NahlpbAGEUMT89S5GlTDVqhFFkEjETQ06VQlIUhYH5jMbc//gzHL3+oPG92/GpkuXfafDvoqw05Zmphpp9ae1AnQb9IXmWm55VKY2JvC64DGVpNhvEccri/CzXH9xnzmNLolRBMkl44tSz7FleMMCgScJ4YqwDPnfXfRw9dICoGpEmpvqWJAmVSoUwDOl2BqhCcTwrOFSH5aVZXM8hCHz8MOL0s8/xuU/dyY/deiPoDMvzysqpqay7nkeeaU6dPcf8TAtVzhtLrRZ5ktGshCzOtHBdQ/nc3GpTiSJq1Ygi1zi2i+uZeULaBiYlLWGI0LpAFwopbePjll/+Lg1kxPR6ipcs3l2++3dPnOSHfui9V98ITcmhJumc5fEHvki96nPHXY+z/8hhbKH504//Be9+z9u46chhZufm+PX/+AegJPv2LPCfP3aKykBTqdbYc2AfRT5BCI3neiwvLRpJZeCDUKxdvEivv4kfeKgMlpcWqVQiqlFIFIQkWUa90cCWFtVKBNpUiB3PMeAu1zXenZaBQ1WiiM72FrZl4bk+J04c58iRW1FKI6UiLc/DIIpKYmVBmiYmJpHSgIxKMi9CmMpdSRGVlgVaYNsOQkiSdEKjPk21NsVTzz7Lrr37eeqJx9m37yCXTj/HDbcd4ZlnnmX/wQM4nk2rPs3+3Qs8eO/HWD2/wWvf8k6k5WKRo4Usg7tyP5U76vrbr+XOj97LzMLMFY/99YO7HYWlvMK+5Irj44XFvJdZGr78B3nBNlfzOL7aC+8E1eX417/7S/z0P/4pLhNdzR9yleDuyu/m8iu8Qh/dC4O7F237SpXDV4O7V8c3Y7xicFcGUApzAQD+RoK7D33ow88DVf6Kwd2V2ZznT/pXep2vr9xZQpneFyHxXA8p7XKRYxMEAShBf3vAx+98iH2zU+zaNc/njz/J2QtrHD2wm6gSUKtVDCHNcWiEFvVqlTPnNjh24yGc0MP1TQbVdR1QGqFgs7PN3j1LoEVZVbMARac9otFsoJXEsz1c22M0jpmMDaShUBlB6HH04EGiSkBRKCzPM7JKbXNw325s22JlY9Ms6FVBv9snSzM8z2U0HBIGPnGSUakFxrxdSlSRM+xPCIKgpNFVsW0HS9jc9eBJJuOEJ0+f59veeAw39MnLbJQUGpVMGA8H5NjU6hF7FmYIImPS7Lo2eZERxxNcz8G2bcajCfV6hFIFjiMYj0dce81+Fmen6I9GLC3NISzBsPysuhBGOmZfnm7NIrnVbGLbFpvbWwgcXN+F0rDccVwqkcd4NGJqqoZEowtlemE8D9tzefSJU0xPtUBKbFvyP375Adr1nFsPLVGtRViOwnZgcWkeyzbee2mSGXy7gFarxXgyobvdphJGbG+OCIOI7e1Nfvw/fYX/40eWSdKcShQaKqmQrK1uU6/XkMJUWzSKShQgbUWeG7mO7wfGHxq3NKE2q3pbFnQ6XdK0JHyW0I6t9QlxXDA/N4uQNn7oMx6PWVg0nn/jyYRKNUQKCzQl8MPmwJ4ZgkpAXhRMkozp6QaWa+P6LtvtHmmS0e9PuO7aAzx+4jnecvt1YBlhaBiGCGwTsCiThY4nYzzPpbc9ZHlXjTge4wcBrmfx9MlVFhZnsFyB0or/+kd3csPRPVQrPkJKsiRndrZFlmVUqh6XLq1SrQRUayFb7S2q1YhaLeLZsyvMTrXwbJfnzq2S6xTLrlAJl/CDhIx1bBlSiUKTMC+M55m0HIS0ueORc7zjlqPMNas788Dlc1crZWxFRiMsWxL4Ifv2LpOmo/LcGfFvPvhn3HBkP1+8817+/jWHKQrFwT3LOJ6DlOB6nqmQOQ6e7yAtAcIiTTLiSWICPQTJKOfZM2eoN03g4XoOQeSitSqrWQV5mhGFPnZgoQoTOAlpUWiJRBjrgjSnyAs+8ukvceTwNbiuy8MnTnHdwd04notn+URRxGC0jWWDlC5CC7I8wbaNj6FAICQUhSoJmRqlFNIWdLvbSAuqtdBIJrVCY3ogL0NjjJw7RxUFjuNAKWkvVI4bBIRRjaIQWDY0apJuZ0RrqoW0bIRlAglRUAbZmnqzxvWH9mA5jplj5OUKnaEXap2hiqJcWJpAGF0YkirCUEulIAw8KtUI+7Ikt/Q063eHBL5veuuEga9srq4zicfUqyG9fp9kkjA33aLVMhTMWrOBRuLYkusO7sf1XBOMujaj0RjXdRBI2hvbVMIqX/rqw7RrNh945zFq9RqWbTEeT4iThH5/yOcvTbiJnFrVQ1s2o9GEdqcHWuCWSZ2FuSkEgq2tLmEYsfbcBpdW27R7Q6LAY2ZxytiDCFlWCQyEp7s9QqNLQIyR3wohsQBLamxLkoxTpDS4f1OplbTb21RqlR364ktdPU+sr3HT+/8Be/bueomtUrQAITXdlUch2WBhWvLYkxf52X/5L2nWa6xf2OLZs0/xhlt3MRyPuO22b2d6psGvfPAB/vkP/DRzc8sEgYegwLcCUEaqjsiNXUuRIyS017doTtdxHIt77ryL+fk5LJ2gciP93Wh3qLdatNdXydKY0XgCArzAw7F9xuOhMXq3HdqbawS+T5oaabJre8zPLZFTsNHZwPddXM9HWg5JnGFbRi3keb45X6Rlem1VUSZyjJeoUWJItDL9+3meoXMLx3ZwbZsnjj9ELms89Nhxbr7x9biuw2uuu4Ff/Pf/msgXLM3uI6cHOuf+u75C1WnTWdtm9uCNRLUGtlAm0XKV4E7aFr/xB7/JkYVjuJ7zojXSXze4e2ExSpbCrhcpNUvwi1Yvsdb7SwR3ZtMXbv/ywd0dj3yF9/3wD7wa3P03HK8Gd3/L42rBnVLKnEgYgtvlQ/Oykachal3l9jJNuPoFtz/+o4/w/fsWgW8kIHs+gPvLBIEv1Uy887gUaJ2wvr7B2vqQuYVZtCzQCkNeVAVpFjMcjLAtYWRsF9Z5w2sO8Zpr9lKr+zz02Cki16dWr9Addphq1hiNRwyTEbsXZxj1hpw7vcLi/Ayddg9pGYmN7/msrGzRrFdMH9QkoVav4/nGS8oqJ6ckSwncCs+cPEezFiKExPV9tIzpbrUNfVI4DHtdvKqH40mSeMLsdIMsSdGZwvM9nDBAOqXxt+UaqZMymXqEplApo35CluU0mlXy3Fw8HeFQDVzq1ZDrDiwRBi5pHDPsDnBdm2F/jONGuEEV1/UoCgi8gIcfPkmzWsd2HLJJTpyNCKs+uuzlHI9ME3ia5khpMZ4kRFGI53rG6FgVBHaA5/sIu8DyDb3McRxwBFoa+7Ber0fTj3AbVSM9EhZCadrrWzihgxc4pHmG47tgWTiA5zsgJHlSGACMH/Dj9zzCb/4Pb6NpC/q9EVOtadrbfYLAx/WMrCnPNL3tNkILalXjv5fEYxqtGu1Oh/mlGQqVkyQZ7329Txg4RJUIz/dRhaQooFqNKIqM8WSC73u4rktnu0MYRLhuQJoXSMsYWNtWQDLJkBSofMIkTQl8D5WbRb3jBFiWS6PlMDdXBZHT7nao1iu4loNSBZPxECkgCkKE0Az6E/7w4w9Sr1o0miGO7YMEz7MNuALJaDDBkYLecMLe/fNYjsXSchMpBUVR4Ng2WZGDhFF3SBhViMcpUaVCfzCk1ooIXI/tdh/XNv5u9XqD4XCE7ztkacZ1B+YQWtDZ6hGFHq5nCK3trQGOZZPkmuZsi7zQeLZDt92mWq1QZBmXe68ePbGCKiT7981x5333cmDfMnHsIXUCeChlyINK5ahMkeY5n3ioz/d/2zG0UkjhIMpKT6FMr5jWmdm+MDAU3zeU0sHABHxbW2u8/Xs/QC2qcecXP8ec7VGrV3Ed1wQZqiBNcrQChSArFA7wRx/9PE8/dZ59uxcIIh/Hs3Ed2/TACiN9FtoyAbuQWFjkRYIXuuSZwnY9A6bJC5LxBEo5qZQW43HM3FSTMPSNUfz6CnOlxFApjeN7IF0QNuQFsvTQk9rM8WmWoFRh5JdSUihMpTEX+L6D6xgZn8pNFdkpq0GFutwPZ57juRZCasaTMRqBY/vkhcYugyhhWdh+gKsKLMtiPBohsJCWMXhP08x479mmB9CxtPFBtExF3uDSTRXKltJgTMullW2bZJLpbSx9vcrgMctSiqxAaEE6yUovzYzBcITOJX/6Z3fTTbd57Q1H0Agq1QpRzaMx1WISp6b6m+VoCorxEMvzoSR7FllqlBNakI1jM29FPsIq+PzmCt/3xn1IW2ILj3E/Ztjts3vvMp944DneFIS4wsX1bYSGeq2GFA7JJOOeE8dZnJ0GyyKMAiSK2kyLpeUZJAX1Wojv+UhhYXuS8STGsRxQoAvN+uoWltT4nsXWxhaB7aDLapXxcDNz/iTJSvsHSZZkRNWQHQ3dC6/B5c9/9tBJfv4X/ulVHjf/ZdIyi3ztUK1NcfcXPkd/7VnWLrb51Gee4fobjnHi8XvY3igIG3UCV9MQp5lvwh99YZU3738NtjD2OcI2PZaytB4RlJ6zpQZwZnoKR5rAdXFhBkcopGOSdePJgGrkkIw7hIGDRYbvSkbDbaKgyiTeRioLRzoIG/xKyKknngTAr1bKgHyMbwdGeaM1vt/kwuoWG50OTp4w7HXxPcMPUBjvudFkiOt52JaDUIpcZdi2Q5EXSCxQAsuTSGEhhcXc8iIUOZ52cCsNXM/D91yWnX288R23QK74xV/4JW677Y30RgOePbfN2TOnuP21b2R+aS992zLnRrnbpBRlBdastf7e976T/+nf/HPecuwtV+zJK4El5W9fV2kz/7hSZnklUOfKcEWIqzNANGVlTxrlzAvf48rXeSFN/YqD6gUf8xvonxM77w4I1s52+J9/7Z+atc5LSSMxc4m4YpWqNC/e7oXySq1fuhp5lfe5Uva5s54VvGhtuwOgKSuiCHD+jgd3r3YhfguMyzSfV7Z0/NYeV8q4rzYsYfpfXNdlGCcopeltDylyTTLJmIwSwiBifn6G7nDCcDhhulXDsc1ifzJOuOXYdTSnGqRpRrNe59zFTTzX58jBA2xsbGPbLgsL02R5wdpGx5hWt3tGgrhvGWkZb6g4TUEYkEAam54dy3JMIOYWXHPNHJajsOyC8aRPluV4jsu5C6tkeY60bCylGXQHgEAIm42tHr1RjLAdVF6gsgLPseh3uziOQ5pkZgEkbNAWzakpzl3YoN8bIZDkacFaZ531YZu91y5SafmMkxG2C1Hdw3ZBWznSVViO4pEnT5EXOefPX2J+rsGpM+ewbYsv3/sY5y5tkacKCiNZE8DGZscAC9Kcqak64/GENMlQhcKybYQDo8kYMpve5oQkjil0hqUkIhdY0qFarTLKcnSSIzUMB2N6gyF+LcSzQkKvishtZOHQXR8yGacUOSilmZpu0B8N+cl7H+ZfvOcormuzvDxHa7rBdnebLE0JgoDxMEYXGseyaU1N4/kBWa7Jck210URpwcLCPEmJwP+537+fih+htPE+2u5ss76xwXa3jSjpdaBMH5gNs9PTFEVhKj+OTVEU+F5Av9/n83c8TJZlFIUmjlO8wDdBmQdZPmQSb1PkAik9pHSYajbJ0pR+f8y9Dz6N7wcoZSAqBRBWKtxweJFqECG1ZWAf5aK51x+CMCj/7nDEruUZHMvCsWzam13aGz1c6ZKnGZ5tkacTwopHt7uN69tISxOFLt2tbUajMY88eQ4tLOK0ADHhzLkLqEKgC0kY2nhBgeNYFEoxHMZYlqRS9bnrvqeYbtWYDEdG4mq7JIni7Ll1qpUKSXncnrnQxvMs1tY2eN0N19Drj6jWaighSfI+XlCQpQWWDClUwX//28/yL97/NobDYSn3K8izFKUU8XhCkRdkicZ1Q7JcEUUho9EIYUlq9QpKad5yw34euP9BvvM73srnuwOmplumAlZi0bUlcT2P8WjCb3/o4/iWAan84Hvexju/81aiWoCQGrSi3qwhpSSZpOa54vkeHSEhCEMDF7EsijwnSVMEEFUiHMdClNVfz/dY3rWI57vkec7bb38DUa1CkRVY0pBkTTALQpqKXBwnHH/8CQpVYJVSzEKZxZCQkvsfPA6FgStN4gntdhvHc7AdaWxQhKlQpEnCqD8yPm6ThO3tPq7tlj1GagfKZZb9gBZUplsM44QkKygKjcpUCVPJ+ZPPfonOVgchBXkK6VhhUHJmgZgkxlZgOBhxuc9aWMJUcoRk0B+WNGHBZDwhTVKKQuH5LpYtWV1fN2bwvkOtXiFXGa85spt3vfWtqBxGgxhVaFw3YGNlk2Q4YX1lHZUZk+84zel2eztyxjwrSEYJrm0bwjAaN3A5cHAPRQGqEKhck6YJtUaFqbkWWsDqY8dZXGwxPd/E83zCKDLJNE+gZMpbbryBUX9EZ7PDoNNnc71Dr73JZNhleaFJq1XB9iS5ysgnGRfOr5PlBViCJ86cY3l5Hsdy6bQHhF6E5wXILKeIM4o4ZzJMse2gJIMa9cx4Eu/0/73ceG3l5YmDlKAyiSZXMLOwFzvweet33s4v/fIvcujw9fzYT/4csY741KfuRhUttDXDJPX56Vt/HK1FeSxKUKYfVqNND2GRY1um/1RrQ302/ZeG0Ot6DlJrhC6whEZlCa60kFmKVWTYRUzNFST9dVwUOuvR3z6P1BO6W+vsPnAAx/MRyoZC4nsOg9GA9fUN8lShtWR2ep6jR16HHTRoze0hzgts1zNAL53x1bufIYltMlIypTA2HQIsSUqKU3HLSlvBKB5QqJSp6Tp+EPP4Y/djS0mea6pNn3/9q7+G53scvOYg8wvzLO/azft/+AOkquCPP/QhSGPIi50gQmtzbdPq603BP/yRD/LLH/zll99vf0PjynXXKwFN/rIJ+7/K+M93/Ccs2/6mvser45XHq8Hdt8C4fEF+Icb1b3R8c8/nb2ioLOfc+TV8z+eNN78GKQRRFLK6ssmHP3M343FCrztAac27v/1WFJrzK5vEkwlFkfPks+fNRUcKXNfh4qUNdi0usL7ZxfVdpqdbZFnOdm+A0qo0lJZMtxpEUVBStQRxlrFreR7Ltlhf7+B5xnz2w5/5Gu2tLnGcmF4t22E0TqhWqhSZMr0eacrq6gaPnzzL6so61ShCK4iTnM/ecwLLdRiPYxzHwXEs1lY3qNVC0JqoYqRr4/GEySTBsi2OXH+QXnfEpQvrWNKi2ajzumPX0e8NcVzPNJ4XGj8IiMcpjUYDz/NI04JbX3cUP/RZ2jVHp9fn1MoaWZby3W95HceuuwaBxfZWj/sefZpqvUquCk6dXwHgz++4H9918VzXyK/ynKDiU69XQUlCN2A4nCBQqEJjS9tQlhFE1QpZkjLsDUFrao0aYTUiSzOK3MjZ4nFMtRoxmaRordncaJOkKf/qwhr/5We+nYOLLbRWeIFHrVah2aozOzsDWuAHPpubbXq9LtIyWVKlwXUdlAbbctjYbCMtm9/61D381j88yHAwxnF80iwlSTMa9Yjp6QZgjLtrtQgpIU0S8lzR7fbIsowsz5DS2oEDve3NRw3m3XUZ9BKSScHaepc8B88L8L0AXWiUgkuXNul0+lhS0Gw1eN0N1xDHKY16vZSgmX6PPbtm6PZGDAdjBDCemOr07EwL13HY3OqxZ98C1WpIp73N1kabp0+ucP/DZ9ju9HEclyRJGY/GaKVYWdvizNmLaK1wfZeZqSoCmGrWsB2XSrXGaDykVvWZjBLO/7/svXmMZdl93/c55+73vv3VXtVVPb1MT09zNorLUMN9Ec1IjC0pIm0Jsh0HcYLIkiIBgQ0pCSQgyD+OHTtGAiGQFFFLuFimKImkxJFIcYazD2dfenrfqmuvV2+9+70nf5xbNT1kDzmknBFk8DQeGv32fnc75/f7fj/fa9sIoVhdvc7MTJe93pDd3SFRFBNGMXMzrSo7TXsjBQaTKGV1fY/e3ljvB0Jwy6EmhiFptZs0W01qtTpFobAdl6JIUaqoJIZw5to2P/3uZbIq8FspPTm3bAujQldLKbEcFykNms0m27t7uJ6nowZMg263zZ3Hlvn9z30OVU3udVafnkjleaZZnEIQ1D3+25/5cUDn2ClK6s1ASxjznEIVlEqRRCmWbbPX61cS9VITPAUgJFmqP0cTKM0DoECW5XriJCCoeVWFHLI8ZTKe4Fi29teWGrhkCLhy+QqgJ8RBEHDqtlvZ3t7FsE2SOCVLs8r7lpPnmfapSonnu3SmOoBeXGV5dqDsoCzxPEdT4qTBaDgmywosS3tTpWHobSh1/pyUkkJKGt02buDzh1/6KhtrmwB4gcdP/WcfZnZuupKKK/b2hlw4dxlQlIX2bQI0GnX6ewPyNLthoZXpkOkqXN6ydIdeCkMHyQvFLYeXGA51AcwwDaam25y641aKvGR7a5c4ThBKkET6d7x2fZ3A93AcG8vQeX/T010sS6Pv/VqAH/gkYUISJ/i+x3A0AgFHQh1/4Hkulm2C0N0AKSULd99Ds1UnL1JAcPXaOkmSoihwXQvLtnFtmxfPX8W2LYq8JA5jRAEbG7uYhkVZCNbXdylzxbNnrgJ6cn/i2BKnz13Bdh3OXVrn9PlrRHHKtctrjPojyiwny0rKEhzXrpQ6kOUFbySa6KlR9F2vrRK0RV+YHDt5J5ubWzz+5MN846H7EVJw7XqPT/z0P+ad7/wQf/KlB1nfCvn5f/009WkLpQQvvvhNrq9e0d5TUUVTlAW241CUhQ4aB6Ik1I9RVHTVDEFJEkcYUhetsjTWv211TrUdm7xImAx7UCY4tmBvdwMTxfaO3t7Dfp8rly8yGg8Ahef5RFHM6upVDNOiLBTN7ixRDrVGhzQvkVLiuy3e9757MB2Dc6fPgVnqXDUJlm3juHWGwwlSSKQ0MW2XNM1xbBtVxpgy4+GHvsb5c+cxTYf+oI9C8KEPf5C8zLh48Qqe36I9NUVRpFy7dB6hCr2gFTqKRGP51bc1nT772d/hf/39/+W7bru/7hA33NTNul9v8tj3Af9g/M2OHyzu3uQhb3JTZakJmd8ShVDy7d28G1/3PY038Xh/vcqRicBzXa2jtyyU0GHew0mI65g4tsn27h5rm7s8/cJ56oHPXbcfwbEthCo5NDvNk8+8QhTFbG7ssLykzd7dbkvnBhUF69vbzC9MY5r7kAINLpGGpD8c6ZBiKdne7aGUYnl5gT/+2uN88WuPc2plkamZDhQS23LJ4pJWo02eaRlSHCdMd5osryxybGmRbrtOFIY4QQCU/NSH30GjqauZf/mNb5JFGbPzM0zihDQJGY+GrK1t4nkefk0DDr7y4JMkmcZMb61v85WvPs+wF9KoNYmGGXW3zfXVHkUmMS0PlEWWSgZ7cdWRUkhLcNtth3jfO08egGGSJGGvP2QwHLG5NSZLMxbmp7j3rpPUghr3njoBpdKdgNEYQxpkeUmuShxXMBnvUfc9hv2I0SQkSVLWr20y2B1i2SaOYzGehFy5vnkAyJgkI+J0wnDSx3TBDiRz8x0UJZ1uk59/4Ry//8s/wtZ2D8vU2PY8S1GipKAEcqJwgip0IHmShqRJiiH1ZFGV6C6uMKjX6limyWMXBjiWSZzEmKbAtmwaDR0SLoSOLpDSJJzERFECCL50/5O0O00sS1aUVoVSGhrg+w6qLBkOJ1y4sEuWgOME2E6d8SBjtJdTrzmAnqzFcUY4jIASxzU1Sr9MKYqMPEvJspRmM2BleYag5mA7Nq1Wk+0d7eVL05Ruu06WpOxsbdFuBVy4ss5733cXH/nAXfT6Q4TUvj3dtbKY6rRYOTTP2to2RVZQ5AohTG5ZWUQpQZlndJrTtBtNtnd3OHpklq2tIcuLKyhV0mjUQGmJoeeaHDu6hGubJGHMxQvXURjMzXR5971vYWl5jqPHD5Fm+vedhCFJkrCx2UOaNo5XJ84sJAHjQYKUOaPxNv/y/iEfv++U7nhJoSVSsgSlCbiu42pypGmwubnNYDBmNEyI4xKkwLQswjBEKcWKF/LEI4/xP/7zX+F//8YD/Mn9X6fIqxBzVVJWYcZCCIQhGfSH+IFXBXaDFELLbpQukpiGxczcFFAiVEkch5SqoEQhDLOaHGkQRFlJfWxbB9bLyoNimJJSFQQ1j9n5aYQQfO7Lf4lSFVCozFlZnENg6K6IkFiOxdzSrFYBeB6uYVDmOY5p8p4ffju5UjrLT2nJbAnYnothSiqMrpY4phm2YTDsj3jm5XM8/MRzFLnOkDOkDlpW+ws8hV48xXpyXirF+StXKQodm2E5Wk4cTkKyLOX0xYskeaY72xVefDwag4BOp4XruweLR8PUUBLH0XEZCBBoCmyR5Qz6A0oFjWYD07C4fnWdvb2+hqyg6HY7PPrMi1iOjW1bLCws0Gw0GAyHxElMb9Cn2e2ilGJzfUvHXRQ6CNx0HfzARwhBzXOxDIOXVMFoOGIymtAf9Nnu7erCrQqWEAAAIABJREFUTaHhTuN+H8c1EELHWjiOwyvnruhIiijGdix++O4TGIZkeqbD4sIhXjq7xmiYs3G9hyokf/ngGT7/lcf5wNvewmNPv4xSJfV6jWPHFkizjCOHFrhlaY5Bf8j83DRxnPHIM69w8co6RRVzsk+LVXyf3vf962z1RyK1l1sphF1H1KbJQ8GH3/tOpusRVh7zu7/7+ywsz9OZO8TXnzjNb/zuX1axMiZpVtBszTK/eKSSMu7LCLW/0DIdpDCRhkGt1tTgGGlUAl1FWRY4rkOWJwghOH/2Rc5ceJlMQZSlpEWO5brUfZfAsXFMgSwzhnvrTHqXIR0QDVZZnGlhSINCpZw9+wLT3XmarRbbOxtIYXDx2hobuwNyGWA4TRQuwsrxvYA8T3Fcm2QsSJOIvAKUDfshjzz0HGlSkBcFe3t9nn7yBbIk4ciRWzlyaJ4s2iVNUlqtNkYGDzz0De64+w4t/zUMVq8P+Kc//ws4toEjCzxTkCeplnajqbNV6eU1eW0Av/TLP8/4hsX5d1M3vbptv8NjSss3X+3WvVaxqPalnTf7kJvKHN/gl3oD49d/59f4zOf+4KaP3Sy/7sb4hNfLaL7Z/QeP3yi5/A7Pe02W3g2f+Z/y+IHn7k0e5U08dzeO77a73Xj4fS+75o2eu7+pkYxjrq6vMzczjVKyMpKXdFoNFqZaOJ5Nq1njzIXrHD88z/R0B6FgOBozHocsLs1x5uIqi7Md6vWA1dUtwjhiarrNYDjCdiw63UZltpZ4jsOly9d59sxFjh89RK0WEI5Dut0mfs0HKYgnEXPtBoFjMz3VwvMcoiQkz1JqdY+NrR1M00QakjSOaTQbDEcRvutQFAnSsjBsG6EUZZEiTQMBzDQahGGCW/MQhiQKJ3ieQ1DX3YQszzAsi1uWZgk8B99zNf57tkt7qgkU/OlfPMbSVIfnL17i6OEFlCoYjcbYjoUfaO+WnjhnlGVJreYRTRKSJMMPtCyq0+0SmDo/cHtnj6npDpcuXafTaVAqxSNPv8yxlQW2dnYJGk2kgJ3NTXzfplarYTsuwpSkaUan2cAPXDY2dnBdm063RbtZJ5xEGFLiuS5ulWWF0OHsq6trSCn4J0++zKd+4SOYpkm9FrC7s4Pne5SqIEl1cLCsJs2G1BmEpcpwHZ/trR19ARWK3m4P39e00iTNSQeXOHmoDUJLYwzDwLJtrl7doFGvceXqBq1Wg2eeP8f0VAsUnLz1FpTK0NgiiWFY5HmpATJCUOQ5kzDiluVp0ixGWgLLNrBNW0cjGBmWbbO1PWBleYEizxiOxwSBi5SKOE5IKzjHaDjh5TNXOXx4BkWBNGx2d3pMTzdBaAmZ67pcubqBaSh832FheYHBcIIhFc1WgBICL/CZTCLSOCOoeXiejpcAydWrG/i1gEazwUOPPk+n6RFPFGfPr3HixBy7vR7T3WnyTJAVKX/+tWdJ05xOK6DdqfPCS5fJ0piF+Skcx8YwXXzPJMszhCEZjUbkZc7CdId6zSOo1XBsC6SBkFLj/FOFFAaTZMQvfmaTT/3iRw6Q+gBpEoMqiWMNFhkM9CT8T77yIPWaz/KhBdIk54+/+DjvePsJBgMdfTHsj7hzZZanroy4vrnLA6df4lc+9lFsR/+Otm1qsII0QAryouDChatcvrLKwsKstjNJSVmRIVWx3ynRM6E0TvACtwomN5CGqfdFKcnSTPvd9kO29yfk1eQ3mkywXZs8LzEtk5NHDmssvigpMt2Zz7IS09Rdvf3On2GaFDnkUVj55wpM28YwDcAgS9ODLLz9yYg0JJPxGMd2yJKMs+cvcf/j3+TeU6e49dgRXQQxNb3ywLddeWG0XFS/35FD8xw5vFzBosoqE0xqAJEh6LYaLMzP6oVb5Y+k8tQBxHGKW4VnCypMeglpUhFqK+l9XmRIQ/sAd3d6qKLK+JMCx7GJwwjX9zhxdIVer6fJlUIf+67r0h8OdEanaRGGkYZr2BbCNEAaPP/CaQJHh6kLpWmuX7hymY+cnKIWeFi2RbPVRGLw/POvMDm7zltnu6gyx7J9ilx3cmueV1F3Ba5rMx5PQApcXwdqLy7O0G3XSdIUw5Dcc+cRbju6xMbWLscPLzIeTXAdG8fTcssiK5mZm6rgPgaOY7O0MEu95uEFvvZNSoMkSiiLkkarXgEzXt9z9/nL63zyk69HyqRa3pVIBJkSZMmE7NqLZCpiexDym//3p/nYj/4kjzz+dd777nv54AfeTz0Q1LJD3H7kGLbr4rgNnnnmCWbnZrCqfQiU7hqXEIYTer0tBBLHcSkKDfuxKrBNqcqqUAbt9gzTU7M4tgllhipy3R1XOoAhLwqSJKbVniJwPWxDaumuYzOcpETxiNtvu5uz586SJCGHV27RROk8Z3p2EdMwiaIYx7DIs4Q01+fEZqONbZhYhnEABbIch0PLS5iyRBhguQGer+meQhYoDIbjCecvrXPqLW/hPXffy4MvPMIHPvhekOC7Ptsbeywse3z+9z6N5/m0FxZpNVo3tdF865xsYXGesdzjX/9f/4Z33fGu113M79//vczp9t1qN3tHIW+MLbnpJ9744d/Dp36nIfjoJz7E1HT35o++xuf37b/eAXzl9YAq+/ffxKuo7xav//qb+Qpf77tV42+75+4Hi7s3edy4uNOW0tfua+ImtxsP+BshKd9xVNXR/dttJ26le+XCX/Pbf5eP1KgjbszeU4WqJggw3t6j3WxjmJpqp+cNGqU/HI6Q6Inx2tYu1zd2WZmbY3d7j9m5DvW6x85un9uOLzMcjvADl3a3xniUEEUxrWYd09QhrnZgsr6+jeNYOI7J0lyL0e6AeBwS+C57/T71msPVa9dxHZN2u0a97lFvNCkKRa1uVuGoutITeC79nW0sW8sDL13c5tyVNY6eOIQqFVIJpGkRJRmuZWNYJrbn4NU8ttd2cA2LoN5AiApUoNCQjkRnBXmez/bOHp2Zts7SAkzD5sSxBfIy4+StKxR5TlEUWpLqmLozlCZsbW/jezZxmGFbDrbr4QUupmVjmzZxFHHhwqb2eO0lXLqwzUuX1lmcalOv12g2PYJagCqE9k+UJaZhYAUBvX4f3zOIBgrXsdnb65GkEbZr4QcNhsOxDkh2bEqF9sDtd9mU9gn5jYB/8dx5PvU/fAzDkPT3BvieR73dpCxKHMciiSZYpsSwAwzTpr83xDBMTMMlDCds7ezy7EtnufX4CvVGDWkalKrkH/2b+/m5D8wz7E8wLS2js2wLpaDd6XDt2gaWaVIWGo/uug6mozAtm0kY4jguWUXCLPIcWxak4YDxcMLG5pCp6Xmef+kKC4sabiJQWJbJ5nYP33eo112iKGI4TJidbZIXEbZdR+IQBAFFBhcvruH7Nq4jaTTqSGEw2BvSatWJogjLkURxyPRUF79eI04yvMDB93WUg2WbhJMJpiHxPZutrT2iKOH62hZRFHH56jpHTxyiLAWmaSPynGurWywtz7K0NIU0LK6t9eh060gL8rTg5MnDHFqZQhqKNAqJJjFz89MIwyLNS7zAoSgzUBLLtBkNx/i+x9bWDnMzU3z2C49z8sRyRfJUmFJhSsnLp6+RpQmjsOSdt81hWTCZFJjSxbQEQloYll4AOK72YZ04epgHH3mWUydvwfUsbr11nskopMg0Ac/zPFzH5l99/kG+9Pk/IpOK//JtbwMhCBp1hNSkSaMqqkhDMDc7iyGh3qpromEpkGY12ZH63KQK2Nsd4doazCIMszqn6ufs49tLVVIUJXE8wbE9JJIkTnXFXnpsr+/iWBLTMjXhGMnVq9dpdVvEaY7rBTo/MY90RyuBcX/ChQuXaHUDwkmM59kIuyQrJSJV/NWDj3PrsRWSNMK0JEgHSkXNkYTDPmEYYRiSQzPTrCwvYloGlm3Q29sjqNWQUpBnmQYvoImdUkgMw9B5YZasunz6Po2dlyAVjuscdFR1/mqJaZRcvXyVZr2GZWpIiDCEPncjgRLH0YvhsAplN01Ty8eTlHqzRhxHBHUfKSVhGKNyRRxFeDW3kuiaPPLE08xNd2i06jQbDd0ZkZK1a+sM+iOatRbbazvEScLS/BymbZIkKb3eHqZlcVsr4NDxGRAGWaEl4pPRmJfOXebPdhU/e+q4LuJQcnV1i2arhW1J0mikQUKuixv4JEnJoD9GlRFJFOM4AYY0COoWplEShWPmF6cwLQvPdXn55YvMz83Q6/WpNwOQCsPWBQfLNdjp7eJ6FoYpEJigwLZNev2Bzu1DfMf59ecvrx3EIHzrZFb/0UA2JQBV0urMcq3/IufPXqKpBDu7q7z3ox8nHma8/b53Ytsljz97nlun7uDK9T0uru4yHK1z51334NuSJI15+rmXaDTauI6LYQq9PW0T33VBgWVq6aoUev8pEaRJgSELTKMAKVAiB2FgGjaTcIxlVdlwBpSiJAxDzr10mqnZGaQtiZOQJx55FNe3CYIaq9cus7x0lLzMMUyhu3pZiu24JHlOionr1ymLGEqFLWwKEvIsxTQtnCr+xDQFpm2DEpS5VsnsX4eTNKWM+zQDm5mZeSax4vPf+GM6tTZTjQ6mtHj+xWfZ2ZW8+1138cJT30CVCqfWxasHVbf61W0ihfi228zMFJ/9D5/nHcffVRVwqu13023+xhZaghv8czfcXkMy/47v9bpUkje42LvZTBVOvfu213/JDd1CIXUH/cbbQT7djZ9y4/5+EyCKuslC7sZuXqlK3WG+4WsKdZNvL+Srx1P1WtMw/lYv7n4gy/wbHN+XvPL7HH4QUGTJm/RpNwzxanV3FEaYlu4IlKgqgBSUKnBsC9dzCXyPmWaTO44v8/VHn0MBu7t7KAXdbovRcEKjVUcIwdrGNnGaMDs7xdVr65RlyWg0IYsybMPCMExanSZ+4NPtNnV+l20xMz1FnpW0Gw0EktFoUsmtFIYp2NrqUVS5Zu12C9My8QOferPOOIy4647jvPXUUeJJhG1Z7PUGrF/foF4PdGZeqbSHKUmZmmqR5wW7u3sYlkGSag+a62ufH0B/b8jC4qz24WQZQggeeeI58oq8iYIkSoiihN29IYO+htA4jsPi/CwCge97pEnKcDAijhKyNKVUOij33nfexqHlKVZWupzd2OQ//8g9TM12UErRrAckcYxl67DZIi9IsxyUwHNciqxkdW2TJE5pt5q4jofveZSqxLZN6vXgIGTbskxM08B29OQuDCN+9sFn+bf/7IMoBeF4wlS3fZCb1uvtEccxnucTx1pKqsqSRrPBarU9pZCcvO0YH/vIfRoikSSoUmEaJnGaodAeqNEoxrJs4jglCiPKImNhcYogcDl36TpJouErk1GEKhW1eqAn8JbFZBxi2za7vQFPPHOWLC/JsoKnnjnNve84iWmZuK7LZBJz9doma5t7iAqH3h+MmZmb0hdSpTPcHM/FMDRlsNutc/LEYdbWe6RJTlnklf9PR4GoQmEYJmtrO0RhRL1R08dNtQ9JYRCFKVlaEEUZMzNdZqY7HDuyxMLCLAtzXVSp8D0PpUrGYcyJW5dRpQ7wNUyDY0cWME0DQ+pg7zjSMqEiL8mLgna7hue5FHlOve7pGABTZz+mWUqr3cBxLJqNOqfPXuWTP34fo9EYQ2qvpkDw0plLnDp1hF/4zBr/6IMniKrP8HwPy9bIfUUVA1JV+S1Th3j/vR99nyavGga1eo08y2m1GkRRzGQSIg2DW9sKwzT4iY/+KP/4S39KHMYUeU5adQL3r/FFngOKqZkueZbpC3uVDZXn2UE1Oy8KvvbwE5iWpWWGVYcPIEuzarG4HwkicSrvUVkqbNvGMHSo85XV68RJSl4UmJaJZZmsrCxhOzb1Rp39rpeUurOz70cJfBeBTeDVKXNNlRSloFQp973zTkBhWw5KGUiRsbe3xd5ejywruHp9h05zmpXlQyRphhQCy7KZmp6uPDc640sIiZCG9kUZN4b/6nNyeQMmvVQKaVSdOiFQhTp4r7woWVlZRlOaBUWptNcvzciLgjRJq86dTb1RQ0hJkqS6SGOarK1u4HkehjQYjsc4jk29WaM/GpAXOa7nokrFu37oLlSpCCchq6vXydKUIktZObxEt9sijEKiKOLqNV1EsEwD13N57PmXCOo1nrq6ype/8jCO5xD4Po1mgyDw+NB7306jLMgynSsahhGdTpMszVGlIklyHMcgzWJUmRPUHXaHA/b6E7740FNEcYjjWYwGIb2dEa7j6EWNKgmjiDvvOIqQ0Gm3Kk94teApSoq8xLFtXM+t8tdeXcg5llUFnn+HyXSR80P33POGL7emoXNFZ6dWuHZljYX5No2m5A8+9duYuvzBo49+kxKXUmlZea3eJEsUVy9fJU4UpuVz22136wKbaZHEKVJaWKYP6M5plMYoWZKrjCyPsS2DC2efR5QGZaGLl6KKEMmzDNt0NGy1+q+6jkuz1uCOu+/EMCAJR5R5xg/90N0cu+UY8WTI4vwhmo0GeZaxubWpjx2hUJSMJ0PyLMFx6tTqHSxbK2RypXMs8yIniiPdYURpGrUA0zQxpM4kdByHdrPJbSfv5pajJzhz7kWkIVldvcLUVJOgHlCUOe1Wi9/67d/iG19/gO3tbaamOgT12k1//9eDQ/7Bp3+bcjlk0Ju84W35t238+u/82t/0V/i+x7fKaf9TGD/o3L3J48bO3T6m9bsZYL8/ZfBrX9XtdnjxS3/KdBB8X+/2vYwbM09EJd8Z9YaARuQ7rkPVtqMsM8JJRBAEDHpjTMPCMrW0otUMaLXrpGmG57mkWc7m9h7rGz2CwKXZCNjdHTE716XdbnDm3GU67SZhP2Y8jum022SFriJiCMZhjOt6KCVQaPlePfARAgqlPSaGFLi2U4WtlqRZzsbmLo1Wi3EUUg/qlJmmLwaBTzgO8RyTcRhrwIDtMhiMqdUDPTFKcg3ZmGpoUqKhZVhCCLIkw/VcXM9he7uHbVtkeYLtONQcBz8ICMOEi5dWmZub5vzFVR556Rz3nDxKkZd8/dGX8C2b3b0BnU6LtY0dmk2NlP6zbzzJrSuLGKZkc3MbjBw/cLjrxAqWo3/7osz0oswxkIZACAPKkjTLcF2P8+fXqLs+c0vTbGzucP7SOoeWFhDSBEokiuFwpGVaQk9c0zRjd7ePQGBbFsfubLM8O609Zds9PNdib3cPx/MxDZ1vOAkjwlBHMxS5xuJnWcbXHnySne0B9cDD972q4yCZVHTRj78FXE+H1deDBkmsf3+drVTgeRamabO0OIVlyQPju6wm5mmWYVomcZRgGSZraz1cx2N+bpZOp4njQb3ukKY5KIlQBhKTw8tzgJ5INZt1JuMIEKCKA4hFXsZ4rkOSJNQb9YMsx42tDdotvU9fuLTO7MwMDz36Mne85RYcxwbEgURwd7dPvVZDKclknJKlIKQGasRJypUr6xw+vIQqYDKasLm5w+HDCwgJFy6usrgwhRAK05QkUYSUMBqFNJtNKAWWaeI4NnlRsLG5Q6dbrzo5OarUOZFpkmBbJmE4od2ZZntnQK3mkKUJrm1w+dIq09NtOt0m//Q3z/CpX/4xWlPTFFmCaRmUpUFRKKSh/VJ6UWQeLLLKssR2HISENNOfGfheVQwxyfOCVqvJO28/zIf+/i+ydv069z/4df6be++jzAss16HMFUJVi2t0B8N29omaqtq3BUWuqqw5HfFx4vhhTcys8t60wE0cPEf79AQoqm6WWU3MtV+jVIqVlUUsU+oFJjovzzAlcRRj2RZxpDvdhrAoy5IsSzFM6E41STP4wz/+K14+d56VxWksaSGtgjgKEUKQRBGmKSmyCXmWIJRkNEl44Jun6Q9GHL1l+aDoYDsOvZ0+juOSJBnD/hDLtLQEtEwPpOoCiay6bWVRIisIRpHrSBHTtAjHEf/vH93PiSOH6PX6eLWajk8QkkIJlDTobfVothvoRahFnueUJWRprqnIAn3MSpPJMOLhx5/l6C0rGIbA8WziaIJtmzp2AUkcJmxubeP7Ls1mg1otwLJMerublZc1pNlp4td9Fqe7mIbAdh1Mw8B3HDzf5/fOvcI//69+BFTJeDwiThKuX9/S4Ka1AclGj2bNx/VcsrzU5Nhch2DnacaV1Q267SZpnOJaNrYIMJRgYbENssQ0XT79J49hipIkTGg26/g1l1JlCEw2N3cqiaUG/8jKAGVbJkJpb1aS5ho8oxSWrRf8hmncsPD+liElv/n0i/zkT/7dG66t1XX2Jt2X/a7D0vJxti5fZq69x11vPcrb7/4ATz30TTLDJqg1+MM/+zo/8f5PML+4wnCwxXhY0u+nXLl+lYSC2U6HV15+ilqji2EHXFu9hlIW/cEIYdoMRmN2ejt4fhtBiSoLproLlEUlr5eWFosWGUoVmNJCGBoeZEqJKApUkWG7+nzj2gGeqwtBpDHj4Q6u7TIZD/D9BmmakCaa3Hn23Mv4Xp2lpUNkOfR6PSzLBSkoRfXeAEJVNgmdUamUqop8unAFICnIs4RxGHPh/DnOXdyksFI++Q8+TqfT4v777+fee+/jgx/8ES6ffYalhSm++uBD3HbHPTQ7Hf1737AdbtyON24rJQSLS/P8yr/8Fd79lvdUj9909nTz/eBmz/oOUt43+A6v89Ab7dy9On79d36N//BHn33jn/56fsA38rzv4T1vdlzd7B31/qCvAftFvr/tnbsfLO7e5JEXxa8daKVvmv/x6tjf3W5MtLvZs2/++Lc/8+f+3W+9Yd/ddzObfuuB9OrTxbc+EaFg8/o29ZqN43ratyINRoMxlikpCz1R7u0OWb2+zaHlBcpCUZQ5rVadWj0gzQq2tnZJUq3fn5+dIs1Snj59meMrC2xu7NBtNwlqPmmc0W7ruITN7V1anWaFQxcEtRogSNMUyzI1xlsK7S1QOqQ3iRKE0N4A0zB4+LmXSJKcVtPXOWymw6jyvxhSY6JNUxLUaxiVNLCoKHyG1Chzy7U0ua7QRD0pBJ7nMRgM8QNfLwaR2I6ecLx09ioUJc1GDQNNFe20m7zl6CEtr3IsphoNiqLQYdVSUgt8ylLhuDbHDs0fABHqQR3fd8izEtt2ybICKXU1E6EhGfp8pgORy8oD5LsermVhOiavnL/CrYcPaWR6nmM6hvZFWRaWrSuhvd09lCrZ2u7jOxa/cv4Kf+9ttwAwGY+ZnZvGNAziOCGOE9qdFgKoN+q6si0NoijCsW3CMGR5cRbHtlhYmOP69XWSNNEEznHEP/x3f8Enf1jvy6ZlYBq6exPHKeNxhDSgKHJs2yFJYixHS21Pn7nKwvw0oMizTEOMlCCahHS7HR5/+gLTnQa9vQFLix0tO7QdLl1ap9Nq0esNCOOYvf6QIHAxDZNeb8jm1i794YBuq02eF0hTV+1ty0JIwWPffIXF+Sl8X2ce9vtjpqfaOnzbMvB8l4cef4lr17dYnOvg+z6GoYmHcZzx5199kelOnVrd1t5CadCqOthlQQVK0TIhx3V54eWLLC9OMx6PCcMIP9Cy5na7yYsvXWCq0yRJUgaDERtbe8zPdqtMSO1P0w0cDZtBasnuU0+dZ2VpGssy8H0XIQStRp280ACO999zF6rqYBVZrL+L4+uigVBYpp7U5rk+hrMi136nSs69HwJtGqZGRShNYEzTDMs0eM/P/DMuvHKGQsLfmT9EkefU6gGWZROFiV5gKO1/S5L4IB9OSt1N1xh6PXfRMAt5AB4QQmAIo6IXvnr+25eYK1VqcmtZkiapDkc3JJTFwTFu3ODN0+cVie3YhOMQy7JJ0xTXswHFaDTGciyWZ6e49eghZuaami6ISZ6XWKZFkoWk6QRZWBjCZjCc4Pkepi04eeIWPNcjDEMNFpEmjusyHAz52sNP8NwrF7nz5LHKOwfj0eSgeLD/G4wqXyMVBMa29XczpcnK3DRBI6Dme9pTvH+e121IGrVAy6sqwMz+9cCybCbjkCiMsG2L7c1dpCFZObSEaZqYljyQ79cbddJEg15ePn2ebqepA6pVyV5vj1otYDIeYpoWtXoNhWA0mmCbEtt1GI0nlEWB43kYpsnMaMzCqS5pmuIHPo7jkGcptmXxrx65zD88cRjXcXn0mdPUXIdms04cJwegk8eeO8fRpUUsy+HKlQ0eeeICliUYJyPqgYcpLW4/tsT0VIvN7T3iOKJRD8iKlCTShTo/0HEHQgomownD4Ygg8IijlK3NXnWe1wTfLMnwW3XK4nW6BQq+ceUKP/oLv8j0zNRNLsL7f736Z38yK/OSpx9/kMnui2AqrlwZ0K232YsSpqanOGG+nb3xLo7rMzPd4o633MPho8eI0pT2VJfAtqm3Z8jyktMvPcX2Tp9Od4ZJOGF9Y5W93V2EbLCzvYdt7UvaSkzbwHIs4jTGth3SPEYJhSr1uUUXE0BSnbOrhVeRlzqnTiiyNKIe1BlNRloyLQ1MKZnqzqFKmJ5eoN/vY0oL6QhUXuC6LmEYMRzGWGaJZdv6t5EagmTuy66r30xnVkptj8hyNtbXSbOSd73nYzx28SF++u//FBcvXKLb6TA9M8Pp05d4xx238PW/+DLCsbnvAx8mqDcPNoW8QQr5qrzvhk1Z/ePHf/zj/Pz/9Eu876733VRy+L0U8m+6mHmjqsrvtgz8rm/y2sfPrJ/mR3/sY2/kgwGqgPnytQCUm805b5Ry7vsSv0WKeXC7yf/pjS7uXpODV33e3/YQ8x/IMn8wvq+xf4C97hpQCVQlhyrzApGV9Hb32NrYIg1jyAoMBYawsQyLJEqZm+1ydXuXhx99sUKhtygp6fWGnDl3jYeeO8fC7DSzU2329gYEQcDH3vs2kkQv1FzXYXNzm+Z0k89/9VHWNraZajVIxhGUBr3emCxOydMUoTKicMjGpq7smobJ577yKGUBlmNSFDmGIbA9kw/dexe3Hz9CLfABQaEUtXqN4TDl/MV1ymrCkxel7gqWupOgEBqLLg1+5pKbAAAgAElEQVTKDFCSIlNYhs5IKwtFq92oJHQ6N+rK5Q3SJOf5C9cxLe1/8IOAs2ev8sTTpxkOQr7+yHOMRxGWJ5mabZIVOUWpSFItSRMCpCGJoogwDCkLpQl1oqQsClxXy+HKUuE4HkmkQ6ANoc3xnmcSJyGtjg+yICsy7jp1jFanjhIlpitIk4RWq47nO+wb77XcULAzGPJLZ67yqx+/g1qjTq3RYHO3R5TEKAnNTp1Ot0mep4RxSJ5niOqiHwQ+hqEjIRzHot5wMExYWVlgdmaOPBe0Z7qYlolhmRiGgUQyGQ8YDAZsrO0RhznNehNRSooyR8iSQb+PYUjuPHUrZaFzvjxfb0/PcxFoKM1977ydqdkOR44usNcfcebcKlla4NoOSuU4ruTz97+AKXX24ur1TWzb4PDhKWwTPZlFEMcFk3HK6TPXyPOSe992giQJWbu+hxA2a+s6m05RsrQ0jeO61HyXd73tlI7gGIY4tkdRlIRhxE/+3bcxO1vDMg0d9irg4uU1xpMQJQVezcWwJGmUcPaVy9xz+1EuX95kZ3uEbTgUOcx0p1CqZGGmw/raDr7rcXVtl+VDCzSabYpcUeQllmGhCr2oLEuBxCScJHiWpN0MsG1IkohHv3kGaToURcnP/sYZmq5B3XeJxmNqjTqTyYQkDpFSkZUZqixJkpSi1B4ho4qgyIuccRhSUmqPhEDDMKSGLoVxTG9vwEfuuYXReMJnf/P/4ReffBTPcdnZ2GXYGyJK6O8O+PL93yCJM2zb1bZjJKoU3+bfL6tA7oPwWqWIo1gX3BCVB6OiGirFZBhRFoWm43o2WZ6TpbHuDipNM1VKYdsO48GEM2evQGlQ5oqihJISyzbIK3BQo9EkcE2mZ1o4tmQ4GiEsE0VBo+r0WhiYQhJGGXv9MU+/eJHTZ1e55/ZT+LaDMBS2Y2E5NkmaEIYRQc3jfT/8QyijoFSFlmeXgkarqbsXZYE09Ym72axV3VMtrUzSCKX041NzXVAFWZEiSr0QydMMQ4BQJUWuO5cIVXUFtRQxjhK+8JUHaDYbugssY6bmmtiWDvculeKFF18hjgu9bwnJsD9ieXGOoiio1XziOKHVajIeT+hOzRMETSzTYdgbUqY5ShrkpcK2LVzXwXdNdjY36RtQljnjcMTm5jZKKWbmZrBtE9HbIY0Ttrd7hIOS6a6W7ba6DRrdBkrA33nf25CWBEPgeBbvvu8W3vveO1mZX6Jeb2IHErcBlmdjmgYrhxYBieP51Bo1DQQZjnVOYlFgmxbdbos4jBkPQx548gzjUajlznGK4zgMdvuvv7gT8J7DKzz22JPf8/U5tG3e8eEf4/DRd9GoL/LOd6zQ23uCB7/8e/iE9Ie7zM7OYFsC23IYJxNSUk6cPMXS7BE2+hOi0gWng11f5I6770NaDda3dhmnJSu3vo21jT2GE8XV1TWiHPJSEKUl4yhHGA5pKsiVJC8lZ185T5bojLxCgTJsEqVIixLTdjFtk7xMKfMS23EphaLTaWEYGcPBKkJNiJI+wki5tnqB6ekpDMPAlAbtxgznXjmnKapmQJLoPMe8KPV1TVo6HqVUOtJCVXEJQi+6DMtgZWWFxcVZnnj4i4wnCXls4rk1PM/ja3/1Fb7whS/ymc98jktXr3Hy5EmEeO3EZx+2pNUh+qaLTd/iIZPyTc3AezPGr//Or/F//sb/8T29Zt9n94Px/9/4QefuTR7FjbLM7/LcVx0S337fjePmj3/7Mz/7mT/8j0rMfC1A5SZD6idFo4j+zpBu22V6ustwFJIluZacVUZW07K4trquc7Fsn2bdx7R158APApr1GmcuXcczDQ4fXsS0tEQqz0r8wMO2dQfJtiy2dva4dWWe4XhCp/Lu7KODsyTDNCSOa2JZksD3sByLNM1566kTFLmiP+zravdkQhhF+IGrK+qFltSMBhFfeOAxTiwf5vyVNZYWOgdSnzLLMQzJv7//YWYaNVRe8lePv8Dxo4ewLYsvfvVxJuMJzVpAnlcBvarQ1V4MWs0ahmHxlmPLuJ6N69q4rodlmiwtTOM4Ns+cvsjxw4vYrpaXlEVBEGj8f5amOqepKLBtG9vRQAzD1P4py7QZjkaYplH5xgwtnzIkRSH4/Fcf4pbFLrVmTftuihzb1yCJKIoJ6h5ZHoOSqKIgSRLCOME0LfIsx/M8zkxG/Iv/7qM4joPruyRxzPRMB9fVUqXReEyR55qaF8f0+n3q9RqTcUiWZezs9PBdh1aziTRKilLhOi7jcaQ9IGnCHz95iY+eDFhf32Zrc5fp6Sa9/pA0UeR5SaOpMemOYyOlwLRMHn7iRQ4fWtJFSaljIKTUod6mLBHSwnZdsjRBCO2VmZ+bxvUCXX2vKvVvfcsRHEfHQUgpaDab7O7u4NgmEougVkfaAsf08D0b17ExTIHnuwR+DSkEl65ssL69x5HDc1y+cl13X5TOlpqMdR5eUUkWo6pT2GwGmKZFr9dHAL7n8Mq5aywszVMUGcPhSHeopEmzUccwJM1GnckkwrF153g4HjEYTDhzboPlpWlmZ1pcvrLN1x95iTtPHcE0DV555TLT052KIlpgWSaj0YSpVoOr19YxbUma5Tzx3FWOH57jiZcv8cv/xXsP8qNQupJumZLhKML1PKRtUGaK0Wik4SO6MopCHOQK7heM+rt7ALiei+O6OI5Nrebz/rtv4/4X1rjt6HGefukF3t+e5i+e+CaL3Wls26bRajDTaVNrBMRxjKwIkftaOVF15HQ3T+scDiZfSpFUC7SyOqepqu6rlOL66gbPnX6FY0dXDl5vWJVmooJxFEpV/iSDx7/5EiuLs1xfW2NqqotpSk0fRU9sdrf7qCKnzDRFMisLpHSZhD0MYTAeTphMNFhmZmEKv+bjSIeZThfXcfFcnyiZ4NV8six/NZcPnad5x63HkIbENI0K2qX/n2WZY5oSUer9S58HBJOxjoOwHUdLNwUYlY+WQoe3S0O/S1GW7GzuYjsWcZzgus5BkU9KyV2nbmMwGKKUotUN0ItlC9uyME2DubmZqtus6Pf2CIIAiaQ91cYwTZ0FV+R4vsfG2g4b61v4nofnaRCGYZsH280wJeFoTLvV5MuvnOG+e1e0d7NWQ0qD3l6faDJh9+kLvHV5ianpaWY6UzzwxLMszXUwLIO8KPF8i+dOn8V3bfyaS7vbpF73NHRGWmRpRpJOMCxQpcHDT53myNIchiEoJUTDCMu2qu6o9jyqXPteL15ZY3aqy8JUi9XNHWZn2piGIMsLkjTD9b2bNkoE8OkXzvBP/udfvenl9TuBM6Rl0Wn6PPuNr7C2cY0o6nPsyDLjkeRT9z/Dvbe/navXLjI3N8/a6nVanTaXrlwkCWPCccjC0iFa7Sn8oM7y0grj0QBVmtx++90sLS/jBh4LS0vcetttdNpdfM9hONhj4/pVhLQJozHPP/c8s3OzSGmyeW2H6ZkWGPuHm8nO3iZBUCdKQoQoEVJgGg4FCoSO2jBME98LsB0HZUhdCJqM6LS7KAVpWqIyAZS4nsTzaxjkCAmOozvOZV5gVtJheSDJVPpvqaM8DNPEsmzyUvHEEy/ypfv/nA9/5IPMzk8TBC5//mcP8f4fvoN4vMvM4iL3vOs9CMN+zW+ulPZZ7mP2pdSF3rIsK+LuqwqrT3zix/m5X/3vef/d73/Ntvzrdu70/W/o1d/tzd/Q679XOebBq/ctSTeON6gWez3p61+nc3ez8be9c/eDxd2bPG62uCvRF8VvIwXx7TuiuMntpo/fSCESEoTkk//gE3z6t36bUzM3R9V+t/GtB+ONcpxvfy4ooSeao96YcbhD0OliOR6W7bK+2eeJ5y5yy6EZ8jTX0JA4ZXFuGpWVxEnCte0tGjWPMsvY2dnjrbcfpSxyHNcky1NKCta3dnBtmzhMsV2Hz97/ADtbE44fXuQvHnuRe24/QlD3tWS1UDiOixt4JGlCrhSTKMV1XA0gkApZBV57VZ5Tu91iY7OH69u4nqclpNLk8pUtFudrnDi+hOXYCCkqeaLAtC3mW3V836NWr7G6uc3SbIswmrAys0hva8j0gkNQCwhqPlaF2BdScW11gzhMaDRqPPrsSxX5S9KaapLEMY5rc/uxZSzb1N5Ey2Y46uM5NhQQxTp4PI4isjRDGAZFmml5nNIT3Fo9IM0zjfdGkGUFSgleePYi3XbA4VsWMIXGtQ+GE/o7e6Rpim2bxHHKcBDi2wZu4GNYNl7gs7O1g2EYXNrbY3fJo2EURHFIo1mriGUmQkjSNMf1fPJSV2gty2LQG6CKEt+zqddrejFg2mRFied5FJXUTxq6Y1SkKaemRsx124RhygNPXubUiUVs22ZmrotftzBtheMblYm/ROIRuAG2rTCkhaooWmVW0tseMZ5krG/0WFvbYWNnl5WlWaRhkWU5eZZhGRLbtghjLRvVvg0quU/J1taQ+fkFgmadEh14P+zvYVoGo8kEv5LM9vf26PcHHD9+iOVDs2zv7LG4NIcpJX7NxrINas0G0rQPsscMoWjWPcLJRE++hcRxXfwgQCho1B3OnF5nNIyYnqnRaNQRhvYcFkVOvREgDYOdnT3qNb1Qvby6w/xMi83NAYfmO9QDm2bLxzAlU90mQuSURYZh6m1WqzdwAwfLMWk0Wviez5GlDl+8/0n+/dmAn7j3OFmW8dTTL7C4MIcwbOIkR4iSPI2xhPZ5pdGE4WBAq90CYVAWKQJVZdHpWINCCVxf/1472ztIKXAdiyRP+atzPX72Z3+Gu2+/g//63/5v3O1P8457bserORgWeHUHKRVmJY3b776dP3uRLNHxJkIIKAUgkSiiMMR2LFCCL/z5A5DntFt1bMckS1L+9CsP8JbbTvDK+Sscv2WFoszJ0gTTdBHSOJBcSSEwzYI0ibn95DFsR8sJpZQYgG1ZjPf6qDzDMqHWapGlgkuXruN6LmVaUnM8ykIv0IRpEDQapLnAslwsS+L4BnmaYUqLYTihXq+TxilpmuoFLQLLtgBRBVJrORxSd0pN06o6v/8fe28abVl61vf93ne/e95nPufONdxbY49CA2okggRCyFbAGItIJE6WHRw7JsEOH5xge2kRA1kOtpMVZyULCCBsYgwIJAxCM5rVrZ6qJ3X1UNXVNVfduuOZhz3vfHj3vVXdXa1uKYisldVvr9Or6tQ+e5+zx/d5nv/z+5eG55RG046NZToUlJXMvYpmibkfDicoVVI3pWRnewfXsQkCvzRwLjCk1NfC5ibd3g7hbErFq2Ma2sTack19P8ohiaYoJfECPXG3XIssL0o/S13hdWybyWhEraal+RgCx3cZ98a4jqulXXnBLIwQUvKOI2t01bC8pyU64ScKkiTjI2cGfOjYKoWQ7O7ssnZ4ntF4jOfZGAKm44TTZ68ym0V0GjUdmCVaiYGU/MGnH+D8pXWaTkBQqXDy2AGkqe8vTzx+joeefpbD8y1tOVEayG9ubnP6uStU3QqVqkel6vKprz7L95zUvZ7KssjiHMd2QBQ6AH/JZBX+xfNX9kmZe8/gW4mIerlXPoOzAlAWB9aOc/7CNe65Y4Usn2GLHo+cHXPf2l30t68yP3+I4bhPp7NANItYWVphPOoxHg6ZTsds79ygUqlQrdaxgoBcQpYLxuMZ3d0ely5e4PylZzh64i08dOoUq8e/l8ef/CbD8YxplLC4tMTuzibKMJgkGb7tIYsCKQocu8Lmbpfd3W0Cu4FpOMSZTrDo6mdSSrwT8iJDZBFFNiVLYDCcsjvq6taBiss0ipBSYUnJtfV1fM8Dcm0TBOSZTqBqricY0tLgszQlTQosx0TIgu31K3zh3CP8n//yf+P5F57mk5/8BG+++1289wfu4Vd/89cJZyNOHDvCnW/6PgpDvfQYCA0mElLsBy83PdgUIEpwm3596EMf4Gc//HP7Ad7No/7aQ6embkqsb77/an1rL3+9WiB1m1nlbT+vx8LxNnfdcxdAScgW+8Hzt+qX2w/U9giZr8Nz7nY0TPJir1Xuttu7VWp52/nybbgXe++90XP3xvi2xu2Cu4JSs/1dMlW8da2/9Nu/+x1X7749w9UcIfTk+fLl6xhGwtzcEkmck2W6ErO9PWBlpc5HP/8Aqii4eqPLw6cvcd+9x1hanqNW8fE9jySMCWch0yjR5tOWwnIcDFPRqFb5wjee0JnVMOTt95zkxNoyUsLxQwukmZYqXl/fxnEsvvr406wtax+n4WBCo1ZBKlkaD+capFIUjIaTfaS377lYprUfhOZ5Tn804PDKnKYtTqc3g4UM0jTF9W2SJMH1TVYPdpDKwlQmrmvSavpEsymGcjRFchLytVPPMN+ss7g4h+c5xHHMkcNLui/LMJkMJ7iuQzQLeez0GVq1CspxSBOQStLrjlBSZ46TJMOxdMApDcUs1JWgJM2RQhFHGWEckWU51aoLAuI0ZmF+jpXlFmEYauJZlrM76NNu1bEsC2loAILjOJiWxcNPPIctFYaQVIIAz3P5leef5h/+5LupN2o4ru7LUkr7EhnGXt+FxDZt+r0hlmXjeQGe67K922c0nNDrjagEGrt+9doN7XvneDqosWxsx+JrTzzDyQMtfN9j7WAT2zHxPJdut0e7XcdQktFgjG357O72AUG1GpDlIaYpSymuQZEb+H6AEga1akAlcBlPJqRJSKPe5NnnLtJp1cmynOFgxKmnXmT10NI+4W57e5cwSqhWPaIwJstybNsmms1IwoIbN7rMtRt0uz1838FWFpKC9RtaJtZqNXSvYRjq6pphYEgBRY5tCYJA+3BZlo2SFltbO1hKIUXB+vo2c+0G586vY5k2Tz13hbvvXECIAtNQ7Ox0aTRrzGYR02lIs9WgIMe2HRpVlwdPneNtbz3JtfVNDq0tliASkyROkcICJKPxFNsxESInCme4rk2WpZiWIgpD/tnndvj4z/81kiRDCMn8/DxJVmBbWq5ZrVTI8pzRcKh9Ex2ber1GUXYKG4ZNlmtuCaLMtJbVpV6vy+e+/DD33LlGURR4gcddKzWorXBgaYnPP/ANfv6H302SaNuGSxeusbs9pN6oYpTed3sTjkoloNGq36zecbM/xVAmUkhMpTi2dpBOu4Fl60BGSsHxo4dwfYdjawfwfJciL2Vd6Al5sS//kuS5gWnZZW9qhlQSaQjG/R1tel6rkebgBlWkgsko5KuPPMXyfIuHTz3LoYPzOI6u1pqWiaEMxoMRv/fHn+eOI6sgBKPhjIcePc09954oVQ8Ky9b9So7rAuxXJvW87GaFJ8/zciKaMxlPME3FeDhFKXO/f04/i25WOUUh+Q+f/TJpEtFq1SlESqfTQUjB1avXMZSB41rkwkAaBq7rUq/XqdXrSFP3JhrKLLOBGl5jGjrZ093uokxtHD+bxfz+J77AocUOge+TpRl+3ScrchzXJgljijTH8h2msxkf/ewXOHrgAEGtiu3YfOzPv0R1zqTT6bCz09XAFWUwHI3pbE451mkRzUIc2+b8lWusHV7GVKYOXA3FsdVljqyuaGsNQ3Lu7GWUlFRqPidWl7jr+BqmsoCM0WiE5zmkSUqrWePC5Q0OzLU1cRRJGqd4vkOtEtDuNMqqqMm9x5fJ82RfxTDoD6hWPN3CwM1jpY+X9rh7eXD3iufybQKCPJdIFLYyaTTmWL++xWAC0+k1Hj+X8KNv/yEWF5a5cvEMJ0+c4PlnHqfX2+Dq9XXW1u5gNgk1JfXgGhsb65jKpD8YYpfndqVSodlqsbi0zNLiGmGUcO+9byPNcw6vHePI0Xvo9kccXD2KW2lhuk22ulN6gyEZJmGUc+HiefrDlCQJqVTmGAyHSFPhmLqvWBkmWZpiKgXl/VoicB2HJJnSrDe4cvk8htSgljzXEtDFpVU2Nm+UhE+BktqIPcu1emUv+MpyXckThsVwHGJaLvVmnY/++Z9y/cxZMgE/9v73sXH5MqvH7gCRE3iKPAm5963vQFj2K4+BuMVM+yUBw81+31vHhz70AX79936Do60TGGqPnvDaQ9z6/9cswn0787bblZBf+d7H/vT3yRZT/rP/4j99yXaKUo6aZZmW1b9q8r98/9uY874WhOVb/s5X2c7tvsfee28Ed2+Mb2sUWfaLexmEW4Ep363ADl6ab/na1+7nfe3qa3/m1qzTXrPvt/iO+np42b8L3TgtshxRJNQaLdJU85AffvwMNd9lYaHO0ZUF0jTFs20WmhUCz6YoCjY2dzSmXikC36M93+LSlXXGkxl5keMHHhRgG5K77lwrDX+1Ge32dhfTMvE8B2lIms06jmuz1KljOxZpomEORZ7hODbhLCSOEwxDkiTa+yzPcpRSpEmqJVsUTCZTXNdheb5NnCRIKRhPZviBD0KglKmlPEq/slIKMh6FWMpCyhwpC4bDCX5QYTYNcVyHgwsdPM+FcgJmWoo4SbQXnOVwfX2TWs1nMpmydmgZ17WQSnuG/fEX7+ctdxxFtzKVxMBCU5+EoaWnURiXvWWCy1dvMDfXIktThoMR1VqAMnQVME5iZlFINEuYxRHz8w3tI6cUUZwwmcxoNOvkRcFco06l4pMkKb3ukL//zTP82s++H0NprzvbsSnygizLSeJkP7DTE8dcG5L7Ho7jMBiOicKIrzzwTe4+eYRzL17ioUdOc2R1iVqthjQMRsMheVEQpymH6zrDL0SBZWv5qZAC21bkuSZuDvpjbbibJjzz/FWWlzok6Yw8K4ijWEu8DIVUCiUFX/zqU9x5xyEadQ8/0FXabz57iXAWMhlP6XSatOo6iJ1OtH1CpeITBB5CFGzvDHj2zBXqFQfLVpw7d4O1w4soZTAYjqlUfb2fS+lZpaJ9zmzLwnJ0RUVKLYnb2NiiVvUZ9EfYtsPZF67w2NMXGE+mrB5c5Nr1HQ4eWMR1HJA5rWaTWmCizAxR6EqM6zjkWbZ//ZqmwlDaZ6tSCVCGYGd3wNqRZU2LlZIkjkmjhBzBeDLFdRz6gyHXrm0zX9pnFLmu1Pyt/+ssf/jf/1UMqYjjmE//+UPce++x8lpK2d3t0Ww1sG2bbq8HGVilbO38hatMJ6EmiZbgnwJNb1QGpezU5e471vA8D2UqbtzYYL5Z4X/9gy9z1/FjfOn+B3jv3AJSSC5fvc65K+tUPU9bUxTldKvM6BpKQ38EGmhEDkIKokj3wCVpqvs3y+t/P5srhIaflDYfaZKUFE005bAoGA/H2kxdCBCqPMf3MssQziJGo34ZXAuUbZfBbYoSFm+65wThbMba4YPYnllOOOU+kCnLQnYHOxxYWsKvOAS1gIMHFtnrFdT9P1pmZhiKLM/J84zpZKaTTuV5VZS/xzD0n23bLoPSPcNysf8YKmC/F0xKycmjqywtLWi/RwkC3Q9Zq1e1ZFNKilJzt3edF3mOYSlm02l5Py1Is5Q8zfjcl+9n9eAyXuBT5AW9Xp9Ktcpb79GSTmUYuK5DYRQMB0MC32c21b5zru9i2RZ3Hlktk04amFMRFi8wpOVqCV7gu0RRSLVa4Ze/cpYfW2gh0FJt05A4jo0Qgukk5M+++hjhbEbV13CWIs+peh6j8YRas4qQgu2NXV68eJ3DhxfwPG3kHkcJo+GYu4+vUqtXiGYRUgpmswgEVKsBpm1iOUo/Dw0NhbEtDVa6cnWDdrsOUpaKG/GSCoM2MP/JV1TrXvU5XP6XlcG5KSRhGNHd3eHAwTWknHFMvYdGPWA2HeM4Lhsbl6lV61QrNWzHx7Y98jzHC6rEaUq9Xqc/7GNbFpVKBQlEUYhSijiJoSho1Bu6xzaO8Fzdy9xqzZeAFQfDcFhf36TVmiPPYXlllfmFQ2z3dxn2QhrtgEazyZlnn6HZbLK+fhnPq5YJlnK+lGX61ymJqUyU6WFbHr3uDrPplFZrDtOyieKYSlBhMBxgGRAnEaZpQ5FTiLy0pCi0b6xhIqXJ0089hu0EKCU4vfECf/9v/zXe/SM/ytz8IkSK+QMrrK9f4d/81q9yYL7D277/h5COlu2KsmL3klEU3Hq0DMN41SDsB3/oB/gn//LDjK8POHLk+Gse4/1jLV7pj3i7Vp6XL3Qrzfw2a73dhvS6b/mND1z6Bv/0wz//ikVlCZUCXhHc7SXaboWo3G6eebsq2que+7fu91t9KF4GYXn5+m8FZL1i7v3/E6DKG8HdX/K41Qrhthfid3kcPnSQqw99jfmg8t3dkNCTeJEK+t0hjYaHYXuMR+MSRpBwZG0ZIcDzPGq1gCBwsW2FJSKubd7A811dKXLtsn9EUg0cXNsizzIqgU80jWk0q0RRiGWaXL22RTTTgUwUxnzx4ae56/gqQgguXLzC9e1d5tt1drb71Gs1siwmnIb4vssffOarrLQb2LaD7Wiy3PZ2T2fjiDGkIAh8/ujz36BqObRbDaIooVarQgGj4RTHtUo7KKnx7BhMxzMG3QlPPnWe+U5AlMTUa/NEUchHP/MQd64ta4y/4zCdzAgjTTcsyJlNQxCSZ85dotOuEdR8RtMxpq10uSMXzIZjljpNBr0RjuPS2x0wmkwYjSc0Ww3OnLnM/FwbWU5Ub2zv0t0ac2Orz9rBBf2QjjOEgDiOcF096avVfLr9LtFUkwUrNR+v4lKInIwCVVY7v37qaX7h6w/xkQ9/AN/36HX7um9MiLKSqINmTUOELMvo93ZoNmoMR2PcsucvqAScPHoAqSRLi3N4jkGr08BUijRNsB1L0ycLeOjZs6wtN0vCo9CmqIChdLViOBjTaNSxbRPTkqweOsiN9W1cz8Z1PCSUPlwSaUpmsxGduRrVWgXD1BMvJU1WFts0agE7O0NqVe3BdvHKBtWKBr90ewN8z0Uqg2o1oF7x8D390O90aloxIgSVWoXtnQHj8RhlmTz42PMcP36IJ55+kZWVDjlw8eI6rWYdITNcR3vf1WsV0jSl3anTbgXcefIo3e6Q8TQmSXIazRpJMsFzfTzPwvNsRqOQq9c2mOtM1bQAACAASURBVJ9vaZljSXI0TXO/QiaEweWrm6ytLmPbSh/LAgbdAQYS23MwLZPLlzfY2OyjpKLTaUIOOzs9PnFqnffcscLa8gI73S7VeoX5ThXLlOR5QrOjt3366XMsLi4wHk7Z2d4hqPoUQuK5Pq1WC0mClEWJjdfXTZokZGmCYShtmyC0I6jrKPIs43P3n+IH3/NefvSH38PP/bvf5T+/514q1YB2vcLKygJ5IXjg4cdZXpzXv5WC3u4A0zQQUpttT6YzTKUr3dPxjLNnL9BsVhGKm0G/1IGeaRl6EmjI8hqJdREq1z19O9u7+L5NHEfYlkmSRChVkMYhn/z8l2hXK6wcPEiSFiCMskdOMp2McCyfosgxHYHra3l4FMdYlsVoOARyXEcw32xSrdW1PM00MW2bIksxTA3YydIcaSjC2QzbtphNQ/zAQymFLINQHZTuyZj27k/aO1JX/oSe7IjSgLkMuqfTvWtU9+dJoX0CzRJKkSaxDiANiSrNiCVgSFH6YVoUCYhcYJsm169c55Hnz7NQq9JuNzEMA9/XFcdwNqPRrJHnGa5rowyJ52kPR9d1dY8gkvFghOu4SGmwu7lLf7fPlx95ihNvW+Do4WVsR1EIDbgpioLBc+vc02xw5doGTz9/keNHDlCA7uGdJbzpjjXiMNKwm1qgE1CYPPT0CxxZXdRBbQ5GAc1WwHgy0dU3Q1KpVigoOH/xKju9HotzDW354Lm6GiMKwlDTY5MsIagFgEFRCJQh8Utvy5dX7gA+cXWTD37wb7z+x245m4izKYYQIBWWE/D4k0/z7vf/dbZ2YnYvCqSYIshxXIdqEGArSZ5MGQ+22N26AsWMqu9BFnHj2nlsWdBuNXn2mVNsbd2g39slnIU0qnXGE03M7PZ2CWdTGtUacTThxvo1lKnY3d2m2+vh2RZLywfw/BqYFikCKRzmFpdpt5tYtseTTz5Dq9OmVp/T177OEOve8qIADJIsJs0znnz0FNe3NpmfX+TwwUN0ezu4vofvecxmCes3buB5Lr7nU5DqRPpeFRndz29KSVYkbG1tcGB5FZllvOP7XX7n9z/FTuiwdvQ40XjG73/8E3zwgz/BtfNnkHnMkTveRKXVvhl03BKA7AfnQuy/5K1UyNuMD3zgx1FNxZ999BPcceLu13esbytDvE2h7WXV4NdY6+02tP8v0SzhVz76z/m/f/e3X7HYHv1SoAnF0jBeFjgVvK4kxeutxr1s2duNV6/2Fa+orr58vBHcvTG+rfH/dXDXnmvxT37j3/HjpVfXd2+UN7NUe27VqhYo7YPmBx7zcy3yLEcIyWg4RhmKR0+f4fiRFUhnxHHCysoSz52/gqkUfsVj/foG7XaD7d0enXaDi5eu88DjZzl+eJHJbIZj29SCCo1mA8syubGxy8H5NoPBCCkE7VadlaU2lm2Rp5SwBk25NE3FobkWjWYN27HZ3e3j2DaNRg1lGOx2t7BtbcR6/MABJpMIx9a6fS3FKHstuFmxStKMLMmwbZeK76MKwdxyQwMDUoPPfO1RDClYatX5zANP8eRzFxgMhpw8doDhSPvHObaD5TjarLrIsR0Lz3cQUhBPEj73pcd41zvuYTLVVZavPfwMS3NN2u06jWadLEtpNRpMRlOKokBZiuWFNvPz87TrVXJS+r0Rvu/T7/axbIXja9KgkNovLJnBdDrD9W0M00AYWpCWJxriceTgMp9JBD/1rhPapsG0qNWqSCm111lRYJZAj36vj2Xb+L5VVi999mwn0lQDa2bTKYP+gOWleYQhyLKMLNMVUERJdEy2qVT9/eb1vNB46yicEs1CDWORBlmR0R8McWyfJMk1fdR1uH59gzRNaXW0VDEMpzQadQ2MyHLSPIes4Junz3NgZR7bNhkMx4wnIbVaQJ7lfPnB09x5/ADK1NnKJEmJo4QHT51hZbHBZBoiDVkCEyTd7ghDCW5sdtnpTbjjxCEOHlgsvdBsPMfh9HPnWVpokOcZvutz8dINOp0GBQWVqk8SF1SqAa5j89kvnebuOw6zsX2DSqDtJGazKUEQMJ2GuI7FYDjmytVNxpMZzXoV9hIPSALfwfd9et0uSZwQRzHPv3ANmefMLem+3HqtQuA4zM81Wd/YplIJqFQC/vXnt/mnf/MHGY3GNNpN8ixhe3uXes3HkAJhKBzbod1pQ1bg+Y4OAgQYpsRxfZQ0yfIZk/GEJE60aXfpS6fKqrSWQRf6/Ii13cF733qS9dBnY3OTb5x6gndUavi+R71Zx1AGCMnFy1c5dGCpnGTpBNIeGdJQEkuZpaefxo3YloldUhCFlBilDYSWFUukLOl6ZT+JYQgEZilR81GGAFmQ5ynhbEyahkwmY06uHmZhrk2hbKDMtBcFkDMejVCGTgaF0RjHdfV9RBmE0xnVakCeZUSzCRQSKWykMsBQOjBQMB3PsG1HV3ylgZBaNu64tjZmF4IszfZhElJKbc1g6e8D6B49oY3JHccmTdKyp7S8t4nSCy7JdHVS6n69opR9GoahJ+Dl/krjhDTWyTCkoMi0HDxLM8LJBMsyeedb3kSzWWc8GjGZ6kSQYSpGozGz2QwpJS9evKQrbK5LHEaMJ1pBYJomo+GYz331Gxw5sLKvDHj7m45xfnCJ5cU2tmMTzqa4nk+v1+fJTz/KUrWK59ikWc43X7jInccOMR7NGI+nXLp6g5XlORrNepn8EIDJ0dUlokRLyvMopdNqkhVpeT/TFcMszbT0fBpyx4nDFEVeXtNuuS4N7onjGC9wiWYRStn6c6axDwe7XXD38Yvr/NRPfYDXO/aCO9PRgJ0i1RLpEyeOcfHiJf6PX/sjfujN72Q62iFJI4Shn1tJKd1vNjokaYJjwnTcp8gSwlGfPJmyubPFwsIyg/4ureY8Gxvr7OxuY1qCyXiE53pEUUy91mB76wYL88ukWUKr2WRhYYUiT7Bth2k4o1qroa1U2kxmXZr1NpcuXWJuYYE0CRHC4Mrls1QqdQxjL0DSNiFhHCKkwrQa7A77zLfnWb9+CdfzUaZJHGvT9d2dHWoVH9PSvb1WaY2xR8a1LBvymLRIaTQXcW2HfneHqzvn+fLXX6C1coKjR1aRRcjC8iqShDQcsX7lPK3Fw6wcObpfhdq3ohDsR1gv77v7lsdNCFZWlmivdvit3/wt3nLX2177WN9Wonub+eStwZ0QJWDp1c+g22wI0Let//D4x/iN3/rV236yKDQ1VyeJsv1K3S1LvBHc/SWON4K7v+SRv6zn7hVJlvKEy2/zb9/xNtnvOQUK/uAPP87fOLT4uj//Wp53e70rt37jItfVgf7uFsNRn87cPMp02NzcpV4NiKKEzz3wFEcPz+G4HiBpVjz63R6WYzPXabOzM2Rjp4+RGxhIOotzCCkZj8bUqj4bm9uITNJqV3FcmyzLyNMcKTJ6w12UKWk1W3Tmm/T62xhKIgwTIRSD3V1EnpBJUKaNoSxMx0IqicDgiw88zRcfO8ubT65RqBxND8/JMnBUheFghLILhuMJn/rKU8gio173SEPtyUWeEs9m5BkadmLmzOIZeVJo/Pewxz13HsS3TObnO7z9zce5Y22J1YNzTKczLl/b5PFnznPs8AoUGVEYaqmAodje6OLaHnEWcvLkAYQyiKKQWqPCYqfBbBaxu6tNjIu8oD/YpVLxEVJimibD0Zh4MsXzLZyKR5zk/MnnHuXgXEPLp0TBZDbDNCyUYeNWLYLAoYhTolmksehhgrJMDFPxJ+cv8Ys/80NkcYwyTb7x8JMsr8wjgDjJMAyFljBF5JmmlWJYmKbFdDTVwInSNmMynvHIqeeoVQOCqkcYJXiuh2mbpdm0YKM3YbGpGA4nuGXGnzwhzzKUZeuJqzQopCDPUn08RIbvW9iGTYHAD1wNGhGC8XCKpWzGowmuYyGLjN7ODo5rawPlMMar+PzhJ0/x1nsOEc4ifNfi+JElojjGti16vT62aeD5HidOHGZzu0c1CPAcB4ALF66wOF+nEVRpNuocPbZClmVcu3yVLNagjyzJaFQ9HUi7Dp//4jNsbA1YXqjhBy7CUBR5SCE0NOOuEweI44gwmlKrVhj0Rzx46iyeowg8n6JQ2KZFs+lRr9eJwoI8D0nimNksLPuaci5dusbS0jyWbXPowByeq8hzLdNL04T7H3mep565yjvvu5cki/mvPvIC//A/WmZxcR634vDimfO0Wk1qtRqW41IIg+tXN2g1GuUDvmB7d5tGq41tFGSzGXkSIoyCrNB9YqbpaoiHIbjp3HmzF09IUIZFrzciiWP+x3/zaX78/e+j4npsv3iOtfYitmsxnU2hgCefOcfRQwdIkoThYIhf8TXgSUkticwF49EUVZrbV2r+PiRHYDCb6R7I2TQiiwtMR978MmirhFwU2j8zzwEDISxAS8MtyyOo1imQSMsqCYAFwhCEs4Q4KiDNcAOfLM/xPZ9oOiONJhiGjaFspIQsCenvbOPYLm61DlJhCEEaThGGiWmbOrAyIJc55Gjj8rRgNJySpQWmowNZKQVpkuC5GhYlDUmW5OW9Glxvr59QlYFb6f+nNFHSUCWgKy/KoEWbluvgRNwigS1hNiWRFyERhd73yjKQBijbIqfAcmx2d3u05tpIaWBbCte22dzY4cwL65w8uooQ+r4FAtPSgezVq9e5966TKEth+zbXNjeoVqo8sHuDNx9dIUlCqtWA6SzBMl3+4NErvGtujvZSm3azwcljK/QGAwzD4I+/8BhJnHDPycMgCm5s7OAFPo+dep7Hz5zljtVligSSNMa0C5TtMB3FTKdTkijCNi2EMggCD0MajIYTJpOISsPX50YhMA0Ty7TJ4wyBwaA/wA9cZFGQRTHSUvr8v2UIoH/4OG+/762v+1m9F9yJrKBIC3IFMSmuW+HcuQt89vNf5Ie/70cRjkeaG9hSkCUJBfr4pMmUiufgOg6e7+B7FkHFp91uI4sZvmNQr3okYZ88GbGysMDO+gUsQ2JKgeeY7O6ss7WziekGeJUKlu0wGozI84LzF86yvLRCliZsbWwwC2d4bgXTspGGotVc4Nz5dS5cvI6yHebnDyDyBFHkKMsmz1M8P8A2LQLfYvXgIo4pmGt3cN2AaRiVkuuUTrvNztY2UoKrDPJcV/zyXPHgQ4+xeGABKTQUSxQS0zL5F5/6dR568FHCLORH3vt+hjtdllpz1OZb/Pt/+1GePXOW+lKNt953H4Vh4gdBKfMsx6vICF9v31t7vsM7f/gd/KP/6X/g3fe8+zZluJeeH694T+xLM24GmdwKE9nHsOy/ijIw5dbfccvnAbpbY/6Xj/8Kv/GRX3v17yPkS+SQexLMV+yP28gnyxvvbbf9yt/90mD1W8o69wLTV4Bbipd+tzeAKm+M/7fj1uDudmNfE8xfXHBXvOxvd991Fw987jOcaDf/QtZ/u2tQlg3E/Z0ujmUSBAFJCl9+5DRrS/MY0qBTDVAKZtNIY88tgzxLoTAwTYs8Fxxe1oCIz3zjaVaXOtiWRRRFBL6L75o8dvoqb3vLcQzDII61Ebntaepfo1FHGRZ5ntGo+URxgjS0h51tSapVn8F4huc6xHEEQuOLBTmdesDb7lgjSxOkKDCl7oGrVgK2tvr0R2MWFlsEQYCvFEfXljUKXwriJKbfH5XHsDSGLmIspXuebM8BCa7j4rsuDz/5PPXA0ybYrRp5VlCrVjh6cAmltOm3EBqlv7PbY26+pQMZW1EIrXNXSpGkCZap6HVHPPTNi4wmY44fW8SxLYSU7O70temzZUJaaJABgp3NPq5hsjPo06oH1JpVLWErtD+YMLTlRJbmWkJmaz88wzSwbItP9Hd4+7F57TtkWTzz/AUOH1zCcix6u1081ymx1ga245Kh5VfDwRjHshhPptTq1X3p5vFjh6nXA+3htQd62Hs05QWeZfLbn32M71lraO8iU5VmzVJ7p5WVnizPiUowhTIMwmnEA48+z+7ukEbNw/McncG1bQypj91kPGMyndEfTunMtRiNJjSaDaSU3HtiiSzNiBMNS3BcF8s0daXEsnW/U5YhKDDVnmF9zuUrN2jUKpimosgzNrZ3GU9n+L6LKDIa9QrTMCYIAkzL5IUXr+C6DieOHkAZBbMopN1ukOcaKjAaTwgCTSE1ZMG5i1do1AJ8zyfwbBrNKn7g47rePphk0B/huw52YGOaJtNRSK87YGerz7Gjy4wnM5RpsL6+hRCQpUL3mMUJ1cBjsVPHVIr/+t+e4/f+0V/hwvl1Dh1cxFQGo4HuORsORzhl32iWJiRxgjIUV69cZ2V5kcFgSuD7PPjIU1QrPrZtYTsu08kMy9Z9Ovl+pki/ktJaRGIwnUxot5u4rsNs1OXEm99Jo1rlX/3Zp/jra0fo94f4vocfBMw3NRTlKw8+wqGVJVzP3ZdG6WSVII5iTNsgz0vj9SxDGtpk2zIt8kxnoj/+6S9wx7HD7FmHJIn21ZSljFEUOQLtJTkajgiqwb4kyTBNsjRDKqX9PoUkiVPuf+AJEAmB7+O4Dmma4dgWSRhhOx5KKno7OxpE47t4QYVZnCENg3A6wfF1/6woK2lFluv7fAl8ytOcj37yixxemsd2dW8ZQkNfwjAiSwX93QF/8umvcefxVZSh0KU+9q8z0Gbs0pCkSaqXoeznLZfLS3P4It+rau49EwxAIAzBZDQuJ48FUmqLhckkxLZ173O1VtH7UYIoCt37Vqlw+NCK3q95xiwMmYUhf/TpL3HXsVUGgyH1elVDZ6TURta2w8SbsLYyh2WZWnZp6X270I85PNehEGBbislkjDIkooDVpTbPnb/BPScPkaQpjXqNIi9YWuhwaKmNUgZJnBHHMb3BgCCooAyT4WDIlRubTCcxlZqHpXQFbjAY70vI0yQlSzNyAXEU78vVP/alRzh+cAFJTpZmOIG7XyndG588+yL/5S/+wusODOCW4G4vlSu1jFjmBedeeIH7H3yE+05+H57vY5q23kcShCFI0hTXtjGkQZxEWEoRxTNEGQBKkWNZGq4kyOi0OhRFjB9UcB2b7a1rSEMSeB6TsZaKK1tx7sXnaLXmiMKIdnuBK1cukeU5lWqNeqWOa9tcvXoF36sQVOpEUYQQBjsb21iWie8pbEt7S2Z5QZGV+0nmZWBSkGYxYZRgKper1y7ieRX6wwFH1o6zuXWdTnuRJEu05yGwsNTC9SyyJC/7nBUCQaSu8cEf+wFOnz7PI49f56f/3n/DsZMrJAjuufMefvsjv86JEytcuHCFd/3wj2Ca5r6B+atOhnj9wV0hBLZj88EPfYBe0eWX/vdf4t1v+sFXOdavbzuvFiK94m+3BGO3jl/6nV/kJ376/fy3/+BnXscv+Bbf57W4Eq9zH90OIASQZ+krqoWvDm4pXtVA/Q2gyhvjOxq3Bnd7FbWXnKrlSSbQGYT8ZY2538kQt7yQMDff4Rd+69/zk4dfRs28NWNy6+s7gr0IKAQ7m1uMxmOanSbhLKVimTTqFQ07CTzGwxEvXFlnMplgKYVtmthOQK87Zrc3xHV1g3SUhCx32piW0mTCKCZKUySSWsXDMg3OX7hGq9Ugzw2QBUUh2N7skhdalhRUfCxLsbm1halgPJtgKRfLVhRFBhTMZiFpFGHbhm7kFiAKgzSTxHFIrzdifmGOzlwdoSTCMEjCBIocx1ZMQ93r4jga8287NgjY2exTrVTJUkmS5BiGCUXBxUvrvPne41iOieeZhKHutwFtwnrt2iZzc22G/TFpUvCnXz7F3UeXQYKRCcLJDNuykRlY0iItYigMtrcG1KoOzbb26BsMxrTLYN5yTEwrJ81idnsD6rWApYWmzur7DkWeEYcxeSG0DAzodQfYjq1hBp6DMgyGgzGe53LfDx7B9V2kaWEYkiOHl7FtGwpwbQOlDC5duoZSpoZJCEE4mdJqNvTEw5BYjs1g0EeVfkAFOUkSMeiNoIArl6/RabeQAtIk5Xf+6FO8975jGIZRVhS03UJelP5dplkCRCQSUEjG4ykPPnGRVt1lZamJAA20cVzGoylJmlKr16hWqrRaTS6cv0qn0+Kxp86xdngR8hylNETCtm1m0xm73QFPPXOe69d38V3d89br6ooACHZ2+qyuruB5mqymlCAIPIpC+y95rqMfMkIDT/qDAZ12Hdt1uHZ1g5XlOQ13KbR0OAozLl/eoNOq0ut1MU2DVrMKRUGcRMwttOl2h7i+S1EIXnzxEp1Olel4ylynRUpRVkgssiRjc6vP4lILz/dBSCqBh+NYPPPcVSqeDULQqFUZT6b8yeObvPeeZaqWwVyrybXrNwgqLu1OkzTJ2NrusjDXJpzNqAQ+w+GY8XjC9nYfx3KYJTOq9YDVI8sk8QjPlUymCdVqdd/3TCv5DJJYmw7naY5SJlkJPsqznI0bm9y1usD9Lw65761vYzQcc1+1SpqkCGGUCRXB+o0b3HXyGEHgUxQ6QaBlmzqzbDnaf9BQN2W1Shm60mKZRNMEy7Y5enAJx3cIS1iGUkobf8cpWZIwm4zZ3d2lWgtwnACQJElJ4hMCIcV+A38ap1imzeVL6yzM1zGkrvZKAdFsiu1IJqMhs9mIPIuwLYnpNFCOi7JN8lx7p1EU5Jn2CiSHyWiGyAWbG5va8sWxOLl6EL8a6MSHoXtSKaWTwhBUatrOIssjTMfUE+Xydj+d6t49YQgoz5m9qkCBhsRYlrlPjRUSfQ5s7uD7HqKQpUxNqw30dzWAnPFwXCb7UiiKMugu6O7sJYI0DRkDrly+TqvVQEhBtVbl4PycBgXl2uzesiyiKNb9VIUkOOxQ9SyyVJvLD/s7bGxsYJ7vMteuUqQJaTnJn01nJElKo1Hj5Kqugjuuy/bWLp/96hMcXJrDsg1tTC4VWzs95uea9LsjxqMZp86c556Ta7SaLSxLJwnyXPuuOp5NkRasb2zj+y6WrfvGA99DSMEdqyuYpr4Oz1+6Rnu+tZ9Y2BueIeDu78F1nVse0beoYwrdC/3SR7jUVde9ZSQIQ+IYFleuXOa5Lz7B9xw5ThbP8CyDLImJcy2Jth0XilxTJIUG7yBKkFqRUWRQ6AsV39XnLHmKH7iYBvieC1mEZYDnm4STLoHr4FoOp596llrNx3c91m9c5+ixk3i+hyJjNOohlKDRanLh8iUsR3LixAlanXmee/YJbNfAdhziJGHY7+E6HkWRoSyjPB9TLNMgCiOyNCfPUxy3Qq3eZBpOabZ1MrkQgiQMEQiG/RFKOuRCEicRskCb2s9ts9Cx+aNPPsowqfCud70Hww859cgp1g6u8fWvfoHBcIv3ve/HOHbnXfuTt5vJxxxR9qoKKdjzOi+4aVLwcpXT3nHdk0zujXanxQc/9AH+wYd/jmeeP819d9/30rnc7cbrDe6E3J/fiVepkvW2x/yrj/3P/PGf/CHtzndmn/WSytxLNi/35Zt7urKXBFu3+8rlzekl18AtFbnbSj5fxWbh1nXl2S336jJh9wZQ5Y3xbY/XkmXeOvYIlX9RFTy9Un2iX3zxInemE2zTeo0PfGcjzwvSJCcajbEtk2qrBoVBu1XVmeA0JYojxsMpFc9FGQatRp2z569TqfikWcpcp4Hr2RR5zspCS/szlahd27FwHZuFuXbZEwOtRhXDVNz/9aeRRsY3z1xke3fE4QPzGIYgjhMEBa5tMZ2FLCzOMRhOSJOYvMiZTSO+/uSzyBzmWk3COMYwDK5e26ZerzOZjhAUZCnYnlNWGXWVzbQUpmOWnmauRtobBjk5O90etUoVy7YJZzH97oCgEqBUQbNZ47NfPUUex9RrFbIsw3Z1RUmZpqatWbov4s/vf4q/+v1vZhqFCAoUBq7nkqUp4/6U3e0+9XYNy7KpBx5znRrS0P5anueWPWuCOI4oiozxLKRWr5ElKTs7PVYOLpFnGUmaMpnOcFwHZSqSOMHzXJ1pzzNkWeUwhODvPvoM77trgUqtimmaOnuWZZw9c57pZEq1GjCZTOnMdzQ9S+oJjK0U6+sbtFpNLMcpH4Raore708WyTCzLJPC1JcLubo96rcr5Fy8RRTGumzDfcEtgiglFzmwWlsbYuvKdF4WWewKnn3mRlZUFIMMyDZo1H6UM+oMpljLxff1blTQohP68a9tYlo3rmEynMzzXpt8foJShA41cBwSrB+cxJDRbNQajCePJjC/c/yw3Nrq85XuO6T6nyQSvrCgLIXniyfM4tu6z2+kOGA6mOLZ+uJnK4uqVTQ4fmieKEzzPI0tTiiyl2x3rZ3Kec+HyBkopGvU6lmPpCU4U6QlampEkKXmeYZuSVqtFmoJhKgSSM2cusbI8R6tVYzgcsbHZxbR0ACAB21TUGxXt7TcLmUwinn2hz3/yI99LtRawvdlDSt3HWhRgOxa+52IqxQvnLlKpVPB9j7zIsW0LQxk0WzWE1BS1OBpTZAmm5ZcVSUWa6X64PIfhYMQ3HnqKE8fWOH36DHPt1v58pFarYkjJP/vIJ3nnW9/CeNTjH3/s4/z46hEeeOSbNKqVfQ+zVruJYSi++vVHcEyFX/H1bbCUERbln6XUIBfDUEwnIcP+mI9/8iuszDXJi4wsz3T1T+jkQ5bnumpkKmzLxPd90hKYIhBIw2A2CbXXZElApUBXCNOUwweXqdU8bM8lDCMs00RKCKdjTeE19LVSbzSYRRookxcaemQqRVEU3NjYpFqpUBSC9esbUGhCb61RQ5naRkGZSmPYiz1VAnR3ezzzwovMter0utukaYLr+yXpTgNldILp5pDy5sSzyDXVVAhR2j/kZFkOhQ7wzNIHErSqIE0zXjx3kUajxnQyI00zkjjhxsYmdmk30+8N6HTaJElKGMZEUUQUpyzOz5EkCbZr6fu+bWMoxcXLV3niubOcPLbKXiJMCskvf/F+3vumAziuzY0bm1Q8m1rg8amHX+TuZp0sKwijCNuyUcqkUg24fGmdNC24eG2DlaUOnuviKUVnQhUzXwAAIABJREFUoc3u7i5Ly3MoZdGoV4CCarVCrzukXa8wt9BmZ6vHE8+dZWW+A2hZbBRG5HlGJfDwAk/3IyLIU02lnUURruvo/Zek+NWgDO5uTkT/u1PP87f+9t98yXF4LbnfHgnx1uBOSt0HuXF9iwM0MQzwLEU0HTEZ7hAlIUpIwnDKbDLGsd1StquVGFJq2wqlHKRhkhc5aaZpxQB5WbE1pMSxbJ0AMZVWZYz6JHHEdBQSVPR6260OWzvbdLu7nD37JGtrx5nMxijLot5oUa/XEYbkmWef5MChVSpehTyH8XhIpzWPkvr8Swt93yhyLS22bZckiXFdF8fRyg9l6Wr7bDZmNOoj8rT0JrV4+OFHCOMR7dY8RZpAbnD45Ijubo/HnrzIaGbyvve+hyTu09vq8vjDj9PrbnH42Ap/5+/9DMJ8qaoE0IH1Xh9eWUUvioI0yTR9ttDL6KDqlcfxdmn0D33oA/zYT76fn/3wz/G9R9+JZRm3WWp/Ra9863Uud+vYuj5g3T3PP/+VX/6Wy32n4+XVtVcLMF/xmZcFd99Z4eGWcbugsFznG8HdG+PbGi8J7m5joHjr+G4Gdz/w7u/n7/zr3+Qnbum9e63eulcbt/tYgaC71SOLIiqeTVTkuI7Lnv/ddDbFq7g40sFxHZrNOoPBhBsbPQ6uzuE4Frvd3r6MiKLA8Uxc16bbHTCdRgRBhTTXZsvdbk/3DBQZg+0hB5ebLLQbnL20wdohDeawLZPBYIQqH1YCnbWLk5hK4OF7FY4fPEjgVBDKwHZNJtOQJ5+7im1KDh5oMexPcN0A23EQRYwhIE1hc3sXZRpUqtqEWAiDPMsZjSe0mjWEKUjzFM8zESJlOhkhDJhMZpDpQKJRr+H62rR7zyPONE3yIqHXG7K2tMypb57jmQtXeNMdRxG2IpcFwlIYlonlOBRZwebmDgtLTT73wGOsLi6jTIjjDEMa+1YOFDaOU4FccfHiOoHvYdoKyzTZ3emz0xuwtDiHYSpkqcmfhRG2Z5d9UQVFlPDev3JU2z5YijRNGfa6KFGQZxnVwMdyPWxbB2+GISnyjDzLKLJckwXTFGHoyTBZwWQ0o9FoIA2DLM0wpKLX6zM/3yHLMoLA56nT5/i1b+zwd993VAdwZeVFCqF7pWyrlNoIcgrCyZS5VoMkyZhf6uCZSssV+0M67Rbb232kkelA0Ta5fmOLne5AV0QmM2r1CuvrO7TbFRAFflBhY3ObWrVCGsdsbfVZPtTCtE1c12Fufo523efEkSU836PfGxAEHsowuHT5Bp7rMd9qM+hP+PrDZ+m0agSWiTQE5y9cpxr4NBsNRqMBvu9xY2uXRqOGoCBKCpbm21y7usWR1QN4XoUwTFCGrnZKmeH5Dqaw6HdH/PnXnuPk8UUefPRF5jpzOjkSJ8zNt8iylFkU4nsuv//px/nee1e1VUGRc+36FgsLDQwJu4MR//hjl/jln/6Pdb+UIel2hxw4sAAUhHGE4ziAYGN9E8+x+dxXnuTokWWCqqcJpZ6HKgySTDAaR7RaTfIkJckzLaErs7iGkiRxju/7HD1yiDzL+fyXHmVxro5f8cpEbEFRwN0Haqze+y483+aLX3uQ1u6IXj/kjmOr2szed/U9toClpQU81y2D63JCtlf5KHQ1uLvTpyigUqtw7uwF5ht1HNviK6ce5c4TRzS9r9CTNWkI8jLTnkQJUlhkuSgrdnpyZygD09LV4yIryNOUJIn0uakZJKRJhlPateRJguv4VKo1lLIxrICksDj77FWkNAgqWt6cxAmmaVGvVspWFclXHniC+WaL+cUWpm0RzUIN+ik0tKooKC1SwHFs5toL2tvRd7FNC9P2tdgiL4jjpJQilpYwRc5kPN2v9mqKqQaqFEVBFEaYlsm4P+NTX/4Gdx8/glQ66JOavsT6tS067TaGIbl2/Qbz823mymCuKHKk0DLRJE5RyuTpZ1/QJEffR5n6HpDEKZVahV63RyUIeMu9d7Gz3aXeqOO6DqZSXMuusdrx8VyH2Syk2V5ga7vL0dimXm+Q5BLT0PtMFJIkTJiba+F6PivLcxrelOZ85mtPcXChSXu+wWwyw5Aa8DMajVHG/8PemwdJkt33fZ/3Ml/edVd19/T09EzPufcBYEkQJAgYJkWRokES0C4IhknKDpmkHGFbDlt2BMMRpmTZUoihkOiDZkiCLdMmaZoEIQIUcRAEsItjgcXe95w7Mz3Td3fdVXk///Gqe2dmB9gFgWCYjn0dGT1TlVWVXZn53u/4HhZKuaRZhh94PPPCZZqVgEPzHUbjKcPByKA2ItOVLwuNJSQb17cIwoASjeeZDmWRpkwmMdV65Q2R/cdfW7vJ4w7+osmdhc4zppOYcujiBQFlMmLQ30bZICkZ9nbZ29mkWV8gThKTwJWlQULoEi0lQjnYroPn+2gBtnIQloEzFkWBcQgxiVeRCyyh8T2LMHSpVAJsJQzffNg31h8rx5lMSoRU+H7E9uY2G+ubVKtNQHD8xEkCP+S5p15md2NMWQ6Y63SQIjcKyUKhRQkFeLZrrjelsdGsra0Zj1vLzBWyNJ/tqhJhlcRlhhv6XHhtgyOLC3iuzT/+5G/yQw9W0YXN8rGjvHz2Iv/J3/klvvnYV2hEVZ742jeYxmPe/YEf4M4H3mnUY7k5SbsxuYMZRLooZrGVptSGkysFNylofrvkbv/tH3nkQyzdO8eXnnmU3/y93+J9973vjZ2q7zK5+/v/+td46sKT/N1/+Cs88OD9t93nezFua1HwVl7zPU7u9hEVtzwIvJ3cvT2+w3ET5+5btIwPnqZAzHgKB4UN/d2leuKGn9/93f+HDx8//Hp7nptvtjcQVfkWmO6Dh14HmUohmAz77A37LC4vYjkeSDEzEBVMJhOSyRTLUoxHY6LIZzga0Wj4RK7PMy+eZ22vx7mra5w6uohjK5TrUJYljVaN7Z0u7UaD7s4OtmNRadawlINrKTrzVYS0iKcZF17b5q4Ty+x2t6lEAWjDh5pOp9iWQAuLWq1OHGfkWU6pC/Z6fdIkZTiO6cy1aTcjGkHAMy9dol6t0JirUegUkGgh6PfHvHRulZXDh5HKBiFJk5SyKPA8w90ZDxL6u2POnV9nvtMhrEQomWJLie/5VCsVhHBI4wTbccjLEtsSjAd9lOMQRSFh1SNNY951zyl0CWka47kOZZLj2S5fffw5jh3pgChxHYvji21820K6ppLe644AbWTHi4TNjQ163V0OH+rg2A6jSc/wLVKbjY0RR492ELoAbMbTKbYjjUJoUUJu86tPvshHfuJdTCZT+t0RjqPod4cI26bd6eCFIcbWrqTIc/I0o0hzXKXo97s4to0uNdOx8QBUrpr13IxE+ebGNlnaZ3dnwKA3wfddRqMhp+5c4dPPXuenH2qZ4HKa4NjWTJnUYV8VEUqUZaG1xFEeRSmwlYPnudjK4WvfPMfhhRaO6zCajFFKoiwLz/FoVhvkRYIQEIYOnmshpUNZSBxP4LgGxmE7imotwnUsxr0+ke+A0LihSx5rdne6NNp1ww8RmloQABrlu1RrISeX58njjEa7wnAwxbKMn1pZFNSbNSwpcWxJPIkJfN9YdGh4+exVfN/mwmurHF5oMx4Zk3utJXlWcvHyOkePznNipY1t2xxd7qDJcJQ16+CYYMz3Fb3dCdvbu9x9ZhFdFiaRiHxWr21Rq1f5D//lef7JR99J4FnYtsRxHZQjefnl81xb3eDo0SWmk5Q8TwiikCCscOb0EZRt0+32qYQReZbiBj5XrlxlcaFNnhcoL8K3oLu5husqtFtFFIUJSGcQPgQ8cN8pw6sU4sD2YjqZIvOM3/jDx1icX2Bza4d7Io97V47QqNfM+2mNtCXMbFQOErtZ0SxJU2x7PxGzsaTFn37hK9x3x2nSdMrJM0eJqiFL84cIggApLMqcmfiPBF0itTA2CbaNzuEP//izLDRrDAcDarUKllQkcc6o16dSDUFrirSgzAw313ccssnE2IW4HlorxqMBQmi0sMhTzdmzr9KuR9RqVcpCo00jD0qHrCiRFkShw/zhFswCbcs2XSBb2bN5VyPkLMjUGqWk6aI6DtJxENbMvHw2lxdFQV6YRDUvUrzAo9AaTYmmOOhgSmFhWybxcX3JytKiMYC3IM8TbKmwLUGtGuJ6Clu59PeGhJHpYmd5juv6PP7151DCIvQDXMdhaaHDYK9HVIkYjUZUwpCwEpKXJY4F47FR9vQ9B9uyGY8nKFcQV8bcc3IJrR1cFbK9vcn57RGndECe5Uih2e1tYQmJ4yq6ez2jPqwhSxL29nrYrsWD968QeSGj/ohSlyTJFGlZXLm6NVtfNE+/fJ6VpXmOn1ygHlQpZYElFVEQ4VgFptixg2MrbOUhkNgqYzwaUQkDmEFLr2/tMN9uGlQDhncogD+6sv6G5O7mddecrNeBbVDOZlBpZHGRWiC0mfd+6Vf+U374vvfiWILx3gaOtBiNRsTTmGp9gWpzEbfWprB9bL+KH1UZjgZ4yiGejI1PYRoznQ7QZUGR5ehy5qFIieV4TJIJWOBICy0KSi3I8tIUHdev0mq3Qac0GvOcffVl+tMuy0vL2Lai2WhSq0UMJyPCSmBgrpQcP32GYTYicl0qvovl2hRaYOU5QnqMRwNAIyyHr37xG3iBw/zCEr4fsrs3wPMiKn5Ev79LJQpIk4ze9hrtZoOjS/O4fsQzz7zI55/9Cr/wN+6l2oqYjm0+//kL9Hs5tufx7/38R7l+9htsbVzl5IPv5dSZ0yhLHhQ4tJhFP5biAJOlmfHUbwRTCkyBW75egNQc8Pa+XXJn7jfJXffcwcOPfIhPf/XT/MuPf4xHn3uUH7zrvQfd9JssGb4V1eaW8ff/9a/x6LNf4uOf+H1+5kM/NdtlBpfcf79b1D9vJ0ZycMzfYt9vl8iJN/m58Zo/GG8huTtI4LRmX+34pnj2loRx/xjf5ty9Pb6j8WaCKjeNWZft5krF966P9/BH/ibDR/98pkT2Fg/pLVRYtIYy05w7f4XFTseoNgrr4EbKspzA80iSlGqlwnSa0O0NeObVqywvzLG2vo3Wmnfce5rDnQah79Pt9tnrjmh1mkxGY9rtOqPRhCzNsGyF53oG+pCXXLu2hbJsA0+sOjSbNVzPCBtElfBgonCU4uyl63SaNVxH4fhGEnxvb8DLl1c5efQwjqPwXIc0TXnu4mu0a1UajSpZUqJsizwrcB2H9c09vvTkS9x35zHjsdaqE8cptrJmEuM+ArhwbYNWLZwp4RXYtoutLBzHYXd3l2TGQZPSLMzJJEMqE4xOJzGVyCfPC2r1CAuI4ylSwtb2HkeXD+G6Cs/3KSXEaYZUNru7pgO0tzcw1U0JKJ+gEtKca4FlAuD1tR3CwKfRiVg+2ibPSgSmxeD5LkoZ/kmWFgy6Q37v/HN88IfuIYpCosgItUQV06kKK+FBB8AkW6abN50awZI0L6g3GzDjlTquYyTQhcD1fMbjEdValcirEUYe7U6NJIsRwvhCffyr5/mpd7axpPmulGsEZbQuGU8m2LYx5JZCoktYW9/h7IVruI7FSy+v0qxXOH50kfX1XTzX5fr6Hp1mDctWaEpG4wnKcpjGCbYtCEMHKcALFELbiFKwt9sj8Fx63S5BJWI0jim1QEibtChIJymf+OzT3HfnEQM9dGxefPk88zP7hSxNGE+m1GoRyrGpN2vkZU6lGiFts/AXZcnq9S2iyHShLMdUqBv1Cp25NtNpwrnzaxxZ6piqcKmRtk2e5QaKO/MdKstyZmQfEO+LzChJUWacu7DJQw8ex/MdsqxAl7DX7VOrRfzy/3aBf/Ur72c0ntBoGF9HWxnvsOWlRZYOL7K1s0W/O2R3r8ve7oBDhw6xtb1BFIXkWcFoOKHeaIIuadRrbG5uGZEUKSlkgZSayXAXP/DY7e4SVWcqm7Oq+L4ZrlFt1JSlEXYIfJ9Hv/EE7/9rP8k9d9zNP/rkp/jxxaPIGWzLUgrLsilzE/JalkWe5yaxVMpwwITpBOZpjue53HFyBUSJckySLW1hkhUpKYuSSxcv02zVybMMrQsjNjGDKJe6YKFZI04SDi8vIqSx+BDAY994ipMrRxGWpERQFJo//vwX6dQrNFoNbKXQGiwFeVqaTmBhCjijpMvx40ukWY4lLYpU8M2vv8ji0tzMhsOY0h+Yp2OsJCw5szOQwsB6NaxeuWaMqPcTiRum8yw1cFBLWjNfUdsEPlggbISwkdjYwvASNftojxITsFo4rmegzRj7E2YgaeUawZayLGk26wg03W6fyWhCpVJhefkw33zmJWzbIkkTJtOEta1t2u0G/cGAKAoNR08I8ryg0WpSYoLnbq9PEIZYWPznf/woD//gGZTlcPHSZTqdGkcXmpx//jI116HUpfGllEYhsSzhwqXrlEVBfzCiUa9g24osKSjSEoFkGhvlTWlLOp0GeZpjSZvDHaPwmSQZUksc36iUfuIzj3N8uQ3aplox3EIpNI5rvk8DO57ghx5alDQaFbK0wFK2WWNn5+OtJne3C2/lLf2arCj4wz/4BD98x0Nsr13m6qUX8So1anNLVFsrFMLnxVdeYWXlLsBmdfUqzcZhXj17kXGS40UtrDIzHWVsRCGgzBAUaJ0jhEZJD0u46FJSlMZ3UeuSKAhxlaLd7iCkZjLpEwUBlUpIt9cjDKtMpwkbGxt0uz3q9RrOTAjNtmxeevEFji2vMB5v4/uKgpIkSRFlCQrytEBaNtIWpOWIdrtDVK1QFjmT6dTcC0pQ6owsi0mThFq9RQl4toMQmjSd8vBPtgmdlN3dIVElYG6hzf3338E3n3qJJ5+/iJWMuHL1Gr/6D/8HbGUUnm84GbNfN/PGyhl09eakRs+sS2a8M956crdf/BRS8MCD9/HIIx/ikUc+xPrkOv/9b/4jHn3uS2xcusbHn/gjmnmT+cV5XnjqBeYPzYEQ/Kvf/y0uXjjHZ5/8DJ97+s84t/Eqc6da/Df/7a/ykZ99+KZr69ZE7FvGft+K0/aXMd7MCmFGBXl9X2NeDyAt++D1tzvet5O7t8d3NP6/lNxJIfi5X/9f+PDK4pvvvH9It7kJboVzajSD3SGPP3ceX9lcuLLOQruJUjbj0dSIS2iB57kUWU5UCdjY3KVdq2IJi0Yt5ImXLnJq5TBlqdnc2KHbH/PC+evccXKJy9eu02k32ev2qFerxrfKcbhydY1Gs8b2Vs+Yy0YB1WrAn33tKQ7PN4mqIePxhDzLZ+baOSCpVgMcz0Hrkv5giCUt7j61ghe4jEcTLFvS7fU5ujDHocU5owxXzJhdwkgoHz0yz1Krxng6pTUL/uyZgqOtbOJpyvnL13no/jOcv3yNx559mYbvE4aBUc9EE0TGd2x9Y4svPPkc85UqT754kZVjCwaW6rkMhmPabSNEUmSZCXJrIUHgG++72NgRCNvC9VykLaiEAXlWEHge1VpIluW4nkue5xR5BhifqIX2HNPpBOUJNje3ZzBaSVFkbG3vEkUBSinG4yn//uPP8Mf/8BcPBBW63QGOq9jb6ZrkxJLGcHwmyLIvRJEXJdVqxcA9LQtlK9CmU6OUbfyjhFH/lLNAdnXtGhojiBNFFRCC0wsB8xVNmmXm9dJwafzAR80Syj/53Nc5ffIo3e4AW1ocX1lCuQ5feOwsp47NMxyMaXcaDAZjjh07RJab4LbICwbDEUFQ4QtfeZE4GbPQqTMcjbEllIXis3/+NEcPN8nSlEazCpYijEKksFCug3Ic1q5t8UPvvoPtnS71RgUhJa1aBFIzGI6IIsNBCQIP5TkkaWrgZfuJhTDdl2o1NN3uaYwb+KRJjuMYTlW1XuHIYoeXXr3EkeV5hJR0uwOqYYguDfwrz4vZ5wR0d4cUeYEQRsmzPxjSabWoNyK2tvYoctNxCAOXTz65zv0r85xe6tBqGXjapdeuzRIKgUQalcdA0Wg2sG0xu59qZPmU8XhMu9NBKZuLF1aZTEbU61XyPCcMZ+qVlkJZNul4gON6hJUaWpikS86CiyzNAONviBQHcKh+b8D7HzzOs9dTVq+s8mdf+CJ3z7Voei7VShVdasaTKY5jAsWyKLGUjbJtyvJ1VTUpTPK7P4tJCwMVLcuZDx4HfKhnXzrL8WNHZtxYI3x0IwwzCiKqtSoIU9EvipK93S7nLq9yamV51j20SOKUly+c5947zuC6RrUQKSjLFNcN2d3s8vFPf4mH3nknC+0OWgvTuR6PsW2LS1evcWzlsCkCSZMEC8soxX7x0a8T+T5ZluMFRtBpv2dQb9Rn/DkxCy6NmIkQkOeFsTEwk/js+dl/uKFKX5QkScY+V1FIyNIU23bMkjXj1QrTXiTLMqNGPAOq5LmBYY5HEzZ2dnGkJAgD8jRn5fgylZrha/qeKWS4rqJSqbB2fZ0nnnuJdrNhhKpm3EalbOPr6Ptcia/xjuML5toSEFUCzl3bZWkInutiWxaWtMiz0vhSpjlJmtNoVJBS8LXnzrKydAg/8Ll04TpJkrK+vcfCfAvLmhm7a8nG+jYXL6/j2IbH/PWnXqU37LM4P89dJ5cROmc8yphM4hnsuEQISOOMKApxXIfJZEqcJkhL4CoDXd9H0MD3MLmbdap/53f/gHvnV7BEQVSpEFUbuPUOcSYZDidYtke7Mz/r1mbUa23ac0uElTq1RpPRsE+13mF9fYNpnBBGEUjBqL+HbTvs7e0QVao4rsKyHPI8QwgoixKtc9IsNd+/Jel2t1GWBOmyvXWdRr0zmxeq7O1uE1UqTCcTPMel054niRMgx7EVeYnxphUWWpbEk4wkSZFS02y2cV2H8WSEZVlUKjXWr6/ieIHhoaJ57tkn2d1epz1/GFuAkPCbX/gdPvSBI+hsSlooWo0KpdB84xtPMrdwJ1ZQ5/RSm9Vr1/jrH/owjmdzk/zJmyR3+/eoCZW+m+TOJHaWsLhRnfbQ4gKPPPIhPvKRh/mRD/0oDz/yIe77wD0s3DnH1155nB/9yL/DUA5YOLbA3/4v/zY//chP8ZGffZif+Mkf5/SZU2/8zNvYBPxVTO72dRFe97TTBk7MzR3Ht5O7t8d3Pb6T5M7AMW9tQ7/xIrzRx25/wngrFQ205v/+/T8gGw24Z+4vpoZkPubmY9LAuDuhU4sQQnDf3aewLct0L6SRAi/L2eJfaJAayxY0WzVePr/K0nyb+VaNWr3C3m6fhfk2zXqV40cXUK5Np11HSEng+Ti+mlWlS+r1Kjt7Xc5eWuPFS9doRC7NZo2VI3NMpglRJTJCE3mOP4MZ1eshaZaRZRnKcXCUQ7UaMplMyNPMqDlqzZeefYWlThvXcfizrzzN8kIHgalyo8GyBZVqiOv7pmtgG++noiiwbSOuMj9Xx/UV8506dx1f5itPn2W+VcfzHKQEaQmSNCcKFA/eeQKJ5sTKYQRGOlzZyojN5AVpkpkqflHS741AC7I4J8tTgjCkyE1VW2iIpzFFUfKlbz7PQsskKbLIkbrEEiXdnR6OZWHZLn/65W/iCqhGIdVahRKNcmx830j961LjuQH/dmOXD37fUaMOhiCMQtLplDCKsGaJmWVJw9koSoNARhCGIfE0RgjB3s4ejmMhpZ4ZwAs+9ZlHObmyRJ4XDAdGPKRaD7Fthet6ZiWWgvlGhXNXLrPQrMxuFhOgm26DRJSgLIv6TNny4qUN6rUI1w+wyoJmo4KQmjD0KG7olimlkJZNGEZsbfbo9ce85/vvpNcbEgU+8TRlrzvm2JEO7XaDtfUdotCnFBJLmsp7lqYICtrtxoH4im3bMyibIfiHvoEjV2pVSi2AAtd1D7ij08kUgWB3t0utXqM/GJrujCXQRc729h6WFHieYjSM8X2F6ynysqRWq/LU0+c5fvwIpS5Zu75NtVoBBGVprv08L9jrjvBcj2anQVHkBL7H6rVtdjaHNDt15g+dYMG3aTaNDYJyHQ4fXsDxDEy4KIw6oK0MpLEoM1qtuknsHYXrOChlkyYpl69cp9moGDuP7T2qldA8NykQlsfWTh/PsnDdgDibWRKUxQH364uPPcErr17hzKkVtNb80Se/yB0njyKF4L/+Xz/Be77vXayvrvK13T1+7q47SdKCrz3+LC+cvcgdp48ZDzFh0g0tDDT89dnKzGF5lplHymI2jxr7DqSmyI2x98mVo+RFboR7BEaFUxiBlX3eZ5alxn9OGAVXz/NYmusQRh7okq2NLSg1xxbnqdVrWI5DWZqAvCgKpK1Qrku7ElCJQsrCprc7Iqi4uL5FScrJE4dIM9Nh1GiyvDD85EnMYDDk2LEjhJUAITUGiWT4droskZZgMopxXGdWoDJdO8dxjBDMZApAPuv2pYnxAxRAkaek6ZTPfPFxji0dMsmqNL6EUkpG4zGu55h5QVgzOCgkcTwzUbdMIKsFeV5ybHnJdFWVZH6+Q5qmBr5pS+IkMeIwszWtWqlwfHmJqF4xao5SkqUZZZGzu7tH4LnIOU1VSQLfN91Hy+K3Pvl13tsyCV+/PyaNzXzv+Ao/Cmi1G8RTo9p6x8llBr0hUkN7vkWlGjHojcjSnDRJcW9QHpUCjiwfIoh8WtUKC/MNlO0igOF4wHScstPtUQ0DfF8xGA6RlmXMszFrhB+ZwpuyDW/6Ro79H69u8fDDP3Pzun2bjsqNK/1+En9r505KyeHpCbJsiJIaWwimWYkfzVOtN7CUIs1SsiLF9V3qtQYvvPwsi0tLTJIpaZaT5jZO2MAJm6ioRbVziLOXr1GvzqNthyCskmQjCjIsobBtm6LMZ4mPMDFAkaNsI4Zm2YLAcyjTMUkyxbYlXhCwtHxsZmeTm063FnR7XTyvwgsvvMhwkjMcJay/9grzhw7juTWuXrloRMoEeH7AaNgz6sLTCb7nYamA4bBP4HjMdxaJqlWkhH53B8/3ePzcM3zgwQZ+6DGKNQhNf5QxjgV2ZZlqK2LjwnP0BntgfzKvAAAgAElEQVS878c/SBAaeP0BpeXAQuDW+Gw/Mts/f+b3fuF3/7HbJ+oaccv77ddaDE/1dtBHU6x5Xd0W3vnQg1iWRavd5MSpE7ylcYPK5e3sEd6wL+aYxOy7+Ja7liW6LN5UGfPG/W9Uw3zDY7eBf3672PdbPn/j3zv7nLeTu7fHdzS+k+TutvfTbZK7fez2TX4rb5bczS7yR372Ef67j/3Od9S9e7OhgetXN5ifaxqBAWF8r4aD8cyXyEZakvE45rXX1ggjBz90yfKcl19bZWdnQJrmrG/u8uSrl1EaGvUqcZYQhB6T8ZRzF67SabfIi5g8zWdVZ4HyFK6UnFpeoNWqoTXYSmE7BiJi2waalcYpYSVkt9elXjNQnL2dPpVqhUIXTKcxoe/h+y5ra9vUK1WOHD5koFlX1zi2OMfqtS1c12Fjc5tqNWBre3cW0CqS2PiIVSohQsDudg/bsVDKYmenh+/53HHiKP3BkCgKjGKeq5DSJs9SBv0+tXqFoizo96b4vo8UEts2XS2lbECilE3g+6xe2aTfG3FoqUNZaOJJxmcfe5IjnQZCQhRFHJkpVtaqEZZlI6TA8TyU5SCl4uvPvMSPvOcd1KOKMd0NXKbxBIAkSXEdRVFCOp5w7IE5FhoBlmXhOIq9vT7VSoi0bIbjCY6jGA0HWMos8rZlgnTLkkwnMWHo47o2vV4PiWY0GFIKwUKnget65vXjMdWKR687pNloopEmYZx5Q/3BY2dZaUAUBsYyREgojYBAmRv102otQtk2rXqNi5eu0+sNadYj4iRlNJrQalep1iKSJCFNErI8QwiLeJIRJzkPPnCGssiNvYDrEQQho+mE9lyTLM2Yximfe/RFjh9ts7G5iy4KptMJaTxhfWOPqBKwu9fHtm0jrlCaRODFl8/RadUpS8FoPEU5xlqiWovQhem49ftj5uc7CIFRs1Q2Ozu7RIFPrRqx3zVau77L4aU5JpOpKSYoxfxMuvratQ2iwKcoS65f30ZTUqkEKFvheR5hFJHmRuJf2Q7VIOC5Cxv83tNDfuY9d+G6DpOJ4fNdfm2VWr2CBtPN3uvyqc98jZXlBcbjCVHk0R/06e71CYKQIAjp94eEUcjKyhE8z2EyHtNo1ClKo7a3tbFJVImIahHj7jYAfqVGliYzuLjpKrXqFe65+8ys+1swGgw4evQIW5u7HF8Ied/f+Cjvf997UZbgXzz6KO+utvFdlwfvPUOWp3ihfxMHxSQYUJbFQSFGa2PK7c2QBWIWPEmJEQPSrwdgUkrGo6mx/MAoBZrk0XTSssxYOUjLJAOechAS+v0e7U7TmEQHLsJSiJn6pS41lmWbTpslqFerUGqyHD7xmS9x5HCDqBIwHU9xlYe0zTxKObNEwHQPFw8Zz8lSl8TJGNt292d9pAWIEiFtU1DRJSbReF0gxbYMLNPAKs3fJqRFURjrAaHhzKnjphshDQxUSmMxoUvjS6iLWZAkzP3oOLNgPzeBp5SCyXiCHwbkRU6v12UynJLlGcoy/EilLK6vbbFwqMNoYDrO2zu7aGFk6x1lMx6PjdhQWeKHLv/Fv3mM/+DHHqDfG1CJIsajKcdbEc1YMZ0m6FITzXxGbWVhKWXmiww2NnfwXAffd3B9RZpl2ErRqFf50tdeZGO3y5njRw74ifVaCMJwJ8MgwvYsdja72LZN4NukSU6rZfifjqtIk5RKrcJkMmVtbYcg9E20riGdpviVwHSUgTSJuevn/xaHDs2/cd2+zXp78Pzs943JnQb+p9/4TU60j+O6ium4Tx6PKUvJJBFs72zR29uj054jzTIjjlQINrfXaLWaKMti7do1PCekGkUGHaFsVlfX8LwqQRBRaAi8kLXrlwn8ChJjzaKUsVPRGGiwFDZ5kc+M7iUWpeGzWjaNRotXz77A/OJxtna2aLZa2MoUXPv9HmFU4erVKzTa82hdsLgwR7NZJ0kz8jKj1WpiC0ESJwRhiEbPlD9L/LBi/PzKFCHA9SykDUmS8MoLF/iFh6vkmSAXMcsrd9LtjbBEm9bCae5994/w0A/cy961CywuLnLvu38YhMC6yfNb3HIGeH0+EPsQaDFDsFgHarK3vv7WqE3MXv9WeWuvdxBv7fd96+vnzcabvuYg1vwWdgSzURa5+Q5uFTB5S+99w3G8Scft1ue/07/5/y/J3VtLn98e37NR3rC92dCleMP23Y59DPK+jLHEzAdJksxU6L4z9SGzfmu0FAjbotQCXUB/OMRRiqdeusLla5vs9HrU2i3Gwyl/+OmvkiYxjmdgRJNhwvMvXcL3PH7i/Q/xfe86zTveeZpJGnP6yBwrRzoMBz3C0KXIMso8467Ty5Q6J5nkCGnjuh5ZWuAro6jZbjbwvYA4zSgl+L5LPJ2yub6Ja1sUpWnPu8olyQBpE/ke1y5fw8oFgXLpD8co10E6Fr7w2FnroRyH++5aIqz5HD85x+rGNZaXF7GUy9z8HL5yKJOM8+evosuSeDImnkyo1WoIFGhFo9nEUjZpPEZnM66LFGSxII4TuoMJYa3BcJwTT0uCSoVPfuFJ/uBzX2Y8GpOnMVlseGXxOKHb3eLY8TbHTy5QWjaFEGDBX3vfg6jQRTm2EWywLDY29sgSsH0bYUt2tvooZSCaw0nO9fU9sBwKIenv9bEB15bUawG2JZBofunZc9xzvE7ouIR+yPX1HT77uafo9fpcuHgJ37PJkpgwDBns7rGxusb2+ja2tMjzBC+QxHFKfzCh3mjhhVWcMKJZq7Iw38FxLPIio9WpUyAIooBpkoDIKcop6STGEoLHX4tpt+tkeWq87CybbFrwb//0SUqtqNfbJHHBuXPXef6V1zhx8jAnTs3z+LOvUqv7HD22gNawvr6NkKZrurq6zXQ4Jk+mNJsBf/7oN9BoDi3OEdQitns92u066TTlhReu4ioPy/Y4f3adw/MdNre3EXZJ1DLqe5aEZiMkSyesrq7OhD0sGvUWJYrJNGUymTLuDw2kVlq4roWQBr6aTjP2tga4tmM84pYWcVyfcWyu+6uX1zmy0qYsY+LpmCjw0WVBnMaGAzZvRAr63SHLix3arTpFXrK318N1Fcl0SpY4ZJkkzTOurm/x2y/BP/jF96MciyDwuHZ9C2nbNCptht0ploAyz+gNBjzy4Q9QrdfQUmMpj2ZzgcNLy0hRUKRjdrc3+MYTT3D16mVjGq5cRiOjPgg20ziju9cFKajPH2IwHDHZ2yKwLaZxToENaJrNCEcZaxFLCb7v3fdgWQlLx+d57wOn0CJia2PKQmOZl69dp9ao4foOvhfgqYDB7oQXnj7HoDtCF0bgRwiNkDZFoQ8gm0HFJ46zmW2IqeBnWUGWGdGEUmhsZVGKkkoYIEoo0xIpbHRuKvdSWijbocwKyEtkqcnJKLWmVqsjpE1WZBQIlGMb7hCaUhgYqJAlyhJkWYHt2rhOwd/8yfdQq9VA2AT1OqVjY9lQFBmlLkjTGNBk6ZR4OjFBpLRRlk9ZZECBkAZ6mmUlyjFCKWmSzLoBZv7WQiC0jdQW4+mI0jLqlVKAsmwoBVIJpG0M1YVlUVAc2BtYlkJgzb4/KEtI4oyiEEipQAj29vb4xKe/gB8GbK5tIqXF/Nw8nbkmc/NN0jRmbW2T7s6Q5aVl9ra6CA1RPaLWqPDJTz9GPI7J8xQpYDKOqVTr5FnJQyumIBanCUmWMB6P+fxzF0BrxqMx43FMLiFOC8bjjDw1wiBe6CJtieM7CMciKUp0nrK7tUVvr8dP/Lvv5Ie//25G0zFxnPClJ55na6dnxKKKhCSNZ76McPbVqwx6E2pNnzB0cHybwWiEsCz622POv7LGF792kekopywk0nbIi5Qiy5mdCpTn8bGP/TblLcvx/hp94zptARYCW0is2XbjsGZwXaUMTzVPppRSsb67SSEKDs0f4sL5V4inExbnFhGFxd7WLvfe+yCW8ilSyZkTJ6nXfUQB/d4ul1+7iCuq2FhMpzmjCQwTm+FUorw5itLAX5NkhKDEVh7KiSilMN24WXFHKAvbtYmqHknSZeXIEeJuH18q1q5fpcgTxqM+S4cWWb1yBc/32Vg9S29rlZ3ekNXVa9h2wcryEiIvycnR0jJ89OGAooCsVHR3riPKBGGD5QBakk4L2s02n159lAJFJjxiRkwmGuXWyUZ7bF+9SPPwGZ567CtUFk7yYw//PKFj4d+SoOiiMFuZm3uN0mxSG4VhZWMr+6DIIYRR293fCowwjoEDmE0KGyEsg1Z5q9vBdVIebKZItQ/Bfotx3SxO3I8V9+PF/SFv2Pb3k5b9bTtyt3v+xjj01s+49Ti+3WP773Xre9y47+1ec+Ow3uT5v2rj7c7dX/IobvG5+27Gt22Xfxt7hVuf/+jP/Swf/fX/mQ+vLP6FsdJ6ViGRwMbaFsPBmE6zQZpl3HnmGNVqgNaStbUtrmzs4liwsNDClTYFBYcPdRgOx3i+SzxJmE6mnD55lFajim0ZiXHHc0iTlLwoKArN7m6fdqfJ5voutVqVojR+VIEfME2mWJbBuivHQDfRmk6rbuA1vmfk9osCL/AxKpoWrm1jOWby3ed1KKVYX+9x+doWy0c6+J6NrRRFkdPptA4mhEIX9LtDPvXYE7zv3ffjey5u4CGEZHe3zxefeJ4zx5cQQrC5uUOv16dZa/Cpr36d++84TpIY6E+zVUMAjrIZ9MdE1ZDTK4ucngmmJEmC67qkSc5kPKXRiLi2toUuTSKUxqbLpsuS3l4Py5rxtZSiXq9SFgVbOztorfmTx57hjqNLjIZjTp5YwvNdHMfBdW2CwCXLcgQGXjadJpSl5v86f4WffHAJJW3KEiZxzAN3nUI5gko1wvc9o2A3GuO4Dl/+2nPce/cZLFuys7dLEHiUpcDz/Bkn0Ryr4SjlCCkZDUdsbG4RhSG+589gcCV5lqEcY+or8zGnFhyyLCXLcpRtMx5NUJbhUT7x9KvooqBWCTmytIAuNTvbXe6/+xhalxRFwWQa02o16PYGtBp1phPzPY0nMaPxlHe9406yzAi1CCkIAp/BYESlGhH6Lp7n0qj7JEmCJeDQoTaB76Fch6eeOs/S4hy7u33qjSq+Z7y1hBDm+w0NNLHRqOE4NpWKkbbv9QYUeY4f+Ni2Ip2mhrNnw6ULq9QbNbq9AcqxkTP9Qs9zZ8c2JgwD8pn597A/QgBB4LC+vkO9WQUgDH02NrZ56exVpuOEdrsKuuR9v/onfOWf/R3SPMZRiq3NHU6fPkFZajaubxJEvuGkuQ6+64MQeJ6HM7suJ2MDAR6NBoDhOd1x+hSO41IURtTk5VcucuhQhyIvabc6KMcljEImozHPPPMy1VqA4yiU5xvT7izFtmyKQsyKFCaAHY2GCEvx1a8+ywf/o7/Hh37qp/j0n36S86uX+ekTJ2g1W3z6z79M6DpUahW++tTzPPXKWVYWFwhCH80MUjWDRUlhulBFUc7MzjmAyUlLHqhJGj6ZYDIeIm2wlEVRFpS6xBLC8EAFKFfNkrVZGKQx0F0tTDdNaKPAqTWWtJiOJ5Q5JMkUpRxsW1FqYxrtOA6WssgzAw+VQpLEsfEjM+0447uYZijL8FZ1aXjBpTbf+2gwwvNdDqwRLMtAqPeDPmH+LqGNSunBc6UAqdEFFIUmSaYmmGO/41kSTxL8wJ3dyzeo0WG+w6IsDjiUr5y7yMXrmyy2mlRqFZI4QQtNnuU4rsMr5y/QbjRpt1tMpzGT8WjmnWZhO4pQKeY6LSaTKZYlUY5DkefYrsKe1xydaxBFRpnUVQ4PnFpGrE9ASOr1KlmWUq1V8HzD+R4MRniBTxR4lFqTJRme7zLoDmi3mrxy/ir9wYg0S+nMNdnb7fPc+VXe/eCdFEUxs9KpIiwoC8GV1U3ibEol9PDDgOnE+G9G1RBXWTSbEc2qy/yhJrYDWRrT7w5ptJsHSdvvv3iWv/c//rMbeI/fZi2ffdPfCnKmtebX/+lv8P13vBtR5qxfOUeepxRC0VlYxnFctAbX9XAd10CDteby2ms0Gi1ECbt7G+R5SrfXRyrTwY0nGQUJnc6c8dtsNBiNh3Tac5w79zyNZgdl75ugG66YlPsWGXJ2venZPSYQSLq724wnCZqCxcNHyHOTnOR5ztyc4YQfP36KeqPN3u4WnmPjeTYHfS8hUMoxRUTXYzAe89zzT9JptUEKbEsynU5IkgRHOUip+frFp/nxH3yQ62sxlmrgOALX9cnjhKeeeYXK0Xfyg++6k8NLh4miKrbjIISkFDckEvuS5rPz8kY45etq5Afn5bZnVbIPrv12CuXf2dAH21t9r5t1Ht7IudM3bN/NuKljeavNwXc63ir371vExlLcbCL/V71z93Zy95c8vpfJnfweJXdCCK5dvc6TzzzPQ4fn/kLHooXAEhJdlHzz2VdRwuLQoQ7NRpXpdIouS5TjUKtVOLE0Z7xfypJef0yjWaNaq5juyTQjj433FloYRavQw/EdwsBDSosszhgOYhrNNkWW88TzF1hoN1CWQgiM4qGYYqscJS0mgxjbVTPYqlHrdFyXPC9Aw+5ul7X1LcMrUza5LrAcRaGh1x3iez7PX7jIa+s9HrjjqPHrkdZM3UyQFxlSmqC8Xq9zZmUZWylTeVcOpYa93R6OLZmfa2LZkigKqFdDlHJZmquDKAmCkLIosIBkamCdL126zKG5qlFpFAaGJ4Q0sCsBlNDt96hWK1SrNdI4xnMcsjjjtcvXCXwHx7WoVCOmcYzjKnb3etSqVarVKncePcLW1i6duSbK1yhH8MVvPMvhuZaBK5UcQNbyokBJyS/84g/huRHXLq+zen2TI8eXyJMES9rGqD1JGQ5HBJ7LaBTzwP13mqApz6jVa6bLmmQIYThueV7geT7XVq/PTMjBcRWtVnMGaxPs+4uVWuPNkrs7jx3i33z5We5Z6VDOOD95mlGvB1y8co13PHgcSrAsm43NLpevbBKFHq1WA1s59PsjfM9ja6vLlcs7HF1epFKJsKTNZ77wPOPplNPHl9CUBLOO2KXL1zi82DKiIqLEDxT1eojnGH5fmcMXv/wyJ1aWKdOMyTQhTnKq1QqOchBScPnyGo6jmE5igsCovFpKMhnHnD17lXolwHNchLIQaNI8w3Ik4/GQLNM4jqISBRRlwWA4Zq7TYToegzZm4lmWQym5dPE6z79yhZWjcyhlEVVchsOpMU+2peEs5TlLiy2ULflb/+IsX/nnv8T162vUG1W+8pWnWD6yOFNy1DQ7VSaTMXlREMcpruujLMV0OsayLM6evcTykUUsS1CJquRZTpGXrF7bpNXu8KUvP0mapBw7dpiXX7lEe67J2Vde4+zZ11iY71DkZv9K1Zp51BkYkyUVZa4pCvjTz32Ni5dWWTl6mCAITUdICD72ucf5ge+7n1/65Y/y1z/wo/zHH/vf+eCxFVqNKsvLiwhbcM8dJzi9vEStWsG2jY+itGZB5g3zqGXNFEa1PljwjS8mJnGRgjiOQZekaYpSBuKcxFMsW5BmMZ7vMhlPcZRLd7ePoxRPP/cSnVbLJFWzKnFZAEg217cIo4hPfOpRTp88YmCeemb9YJluh5wdg8RAMfe5rUVmfOimk5hqpWrgYJYgTRIDt5xBLcWMB7vPywGBJfdVL0uElggKsmxElsYoy0doC01Bkc2SRimxHIllKbQ2x1EWOevrmzQaNdLUIASMMI9Zox5/8hl0VjAaj6nVayzMtXngzlMEYYDveUSVAGYKiI7j0Gm1cF2Py69dxXXtmRm7NVMK1LRbbaSUuK4pPqHNfFGWmv/s41/gg+86hus6RjjL9/jc0+c5qX1c16EsjHm6JWBrcwdX2QitsZWi3xvy6vkrvHxplflGjc9//VlOHlmkyAsOL3ZoNmvMgHY8dN8dXL26TplrQj/k6efO0WgE2JZiZ6fHmROHzVzlmYS3KEvKQpPEY0aTMZ35GlKWFEVOkiRsbO/R6TQPrsN//PJVPvrRh9+gaHrbtdz8z8zT+2qKN0QX0rJ48bMvcu9d97G1doXBzhq2F7K8cjdh2CCJEzrtOS5eOs/83CG2trcYjXtsbFxjrj3Pq68+w+HFRS5feY2LZ89z6vRxwijg2Wee5d777iHLM6bxBD+IZkW7iGtbPU6evId4MkKXmiKdIB2LshS4TjATWSkQJVBqpJBIrY3lT+SyvX2V4TBlb6/LcDyk3WlTFDnNZpOtrQ22t7fICo2yfBrNKlqUpGmMrdQskYSSEmlb9HtbHDlynDQ1BStpSVzHM0boecaRo3t4YYP/6h98jJWVd2LLdZASJaA9vwBBi1oUEFWreH6AkLPCz41wxxu0Dm6X3O1DK298+LZCODcKmdz2PH/nQ98U6721ztSbJne34cL9Rcb+TLTfcXs7ufvejbeTu7/koYvi10xd5vbjdipF5Wz/1xV/9ne+DcH0NsnbzQeg3/ic1rznB9/NP/k/fpcPHzt0+9fdepw33jSzf5Z5gU5Ltrf2GCcJh+YM/NAPfSPIoCT9wZggCJhOY4bDCYsLc+zs7BLHUwa9IULDcDzkiZfOcWJ5iUJrev0hUgjSNCPPM5Syubq2zTOvvsaZk4f56jPn2Ov1OXNyCcdTbGxs06iH7O0NkELieB5ZYdTK8jSl1ODOxAN0qbGFplGv4IcBWWkERHSpSeOYWi2kLHIW5+u8444T5EWB1iXD/gTXD02iZUviSYIuDKxKWoLu3oBnX7pIxfPp7Q1YXGiSZRlXrq8z16qjXJsizchzk1Ap1yZNSrY2unzz5fMcXTK8mYVmnSgKSOIU13PRpabXH2ErG9dz8TwPW0Kt3iBNSuJJzOq1TXzPJ00zHnv2LPffeZzpJDbcvmlCkma0Og3KspyZftsMRyPiZIqjFKdXjmLZjuHPDSYoaeGFPrrU/NpTr/D+h1ZIsphmtUIYeTiBiyjhhefOMRyN6HSaSCHo9/vYygMhWN/YoFavUs6EVRzHWB+UZWk4T4DvKRzHwZkJkGgNO9t7Rj1yplZYFiVFadTGtra2ePH6mLsWFZZt+Fm+b7pd7XYDIS2iuocXuTTadY6uHKJSD6HQXL+2yfxCmyRJabcbXLm6yeJCi42NLRxPESdTvv8dp0kzI/AwGY0xR27U35TnECex4RShScuceJpy+fIGti1Jk4ROp8Haxi6jSYzWBdWa8eyaX+gY6w1HGWjb7P7JM02jFhFGAWmW4bieEUuaVbxty6LVbpOlKWtrmxw61CEvSjw3ZHt7l2olYjgcEoQBu9t7tNsV7jizzBPPnuXokXmU61KUGn9WJJlMpiwuzjHodfnl377M//l3fwwEVOoVLMvi6NIhLGnT6w3Z2e3iBy6e75FMMzzX47GvPsnK0UPYyvBnalGEkNrAheOUCxeusLS0SFGUrK/vcP/9d9Bs1gmDgEo1xPM85ueqCEsznYwMP8m3mUyS2fkvcJWiLCV5bsRDThw7hCU07VYDaTsgSlrNOj/7vnu4MHQ4ttwhDDrcfeY0//z3f48P3nsvu3t7hGGAbRv4dpEb+wXlWCRpZvjKlumgyZk1h9ba8DvL8kApU0hBnhmREeXYWLgUOdiWg5Q2ynERUqKUM5sXbLLEqLwiMxbmmggTzZKlMUhJnhoeShAYg/W77ziBZRtF0HNnr3D5yjUajSrKtpHC2ACYrpqZu+RMmdLzPNBGqMGyLZ559kWGozGilIRRQJIk+J43m64NB8pwDs3fORqOcHxjcTEcjPC9AKQ1U+eDPJ0ST2Icx6EQr3OBQINOaTVrMON+CyEOxJe0Ljm8ME+r8/+y9+bBkl33fd/nnLvf3pfXb3+zYiW4ANwpWaIYUgsdy5ZkkU7FlVQ5S1UqdpxKpZQ45TiqWK6Sk7iicqlKcUW25MhWJFEGJVOWaZEEKQAkQOzAYDCDmcFsb5m3dL/eu+96Tv449z0MgIFEUEsiBWeqq9687td9ezv39/t9tyaVSrnQkyW4BWqWpRm9bo9qrUz/cIgtLA72DvEDn3qtwmQ8pt1pI6RVoIiw3+2agWFuAqqDwKCaSkEUjvjA2RXmszmH/SHVZo2/+Qtf40daxX4XTWnWKkymc9rNOlEUE8UGyctzxUKzxtmNVXrdAR9+7z0IKQ1qLiAIQ65e3eSFS9couzZr60vMpnMuv7ZDoxzQWWngOC5ra4tICZ7ngjAGSsPRhGfOXWZ1cYksg1q9imW52NLD90qMxyM6y53jQvzh68Yp88216R+subqtiL+twlBaMXw5plQPSMZ9tMqw/Qqlaovz5y8SRxHNRpMgCHnhxWc4eeo0lbJPp7XC9vZNfNfmiW/+Po5TodPeYDzaZzoacziIqLfquLYsKMOCJE7QGmqNFkK63NzeYXFpAxC3OaYa7TuYwUWmcoQw0RvzaIJnSRq1Bs12hyAIaLWWeOKJx1ldWT3e36VlUanWuHnzVSCn392j2eogbI1QGNMjxyZJItrtRfygdOwuadgThio5n2fcfb/EDW7xgz94mmjWo16pkkubPE4ZjSa8dOEm6ydPsbSyao7VctDCIJGvvxeFuYrWhcZOmzxYKY8HKG+um+5Uoekj4yP9+m3fScNzpBO+3UnTmKu8M1rm7QYjr9/3GxvOtxj73FaH3uly+22P8El1+33f4XbvpIm8o6HKnY7jbTL43vx+/Flv7v78EEzfXX/k9fBvf4H/8OvPvvM/FKZQsB2bJI5xLSPu1wgsR5LnxjHLaMskj3zrRfYOBview2AwBDS2kPiui+dYnDq5wo98/0e4fH2TPMvwHZeHv/JtJpMZ01nEYX/AXadXOLnaYP+gx+d+5GN8/MF7yPOM4XBEu1UlSyFLJX5Yxg09HNtMy63CeOBIyK6VwvM8g+pJYUKPi9/HcYQUmoPuAWHJBSAMA774jSd55JlzTIZz0jQnz3J81yVLFCrPSOOUeq3Cxx+6nyQyRh2j0ZilTpNWrUIcRcync7qHfS5cumZojIVJyua9nDEAACAASURBVEKnTRTnpKkiCALKlTJS2NjCZjqJsGybhU4Lz/dQWjHoD5nOI3rdPkJKojhB5bC9c2DMHrTF/t4h5XKZW7e6lMomJHh/r4sQgmoRLtxqVaiEJSxhs7N1QDSLeOnlyzz8yNOMxlNm4xlJmrJZGD8EgcNoYkxfhDB0ucvX9mnUayilCQKfUink6WcukMQpK6tLBoWxzLaeJAnlShnHdYusOqugfebEUWToZ7bFQqeN49hYjiRNEzzfZ/fWHmmSMBiM+I9/8MM8c6ULwlDQonnClde2UNpiNjVZSDpJyOOERx55inQekStI05xed8jLr9wonDBdlM4YT+cc9gd86IN3c+m1LXzP49bOwXE2TqNWoVKpgDafBcdxGAxGBL5PvVGh1SyxsdpEoMiSFIHmvQ+col4vmwIx8KFAIPOi+H3l4jXyJMN1HNIsI80ywrKZboPEdT36/TGO7RLFMb7vmecax9RqFebziMXFBc5fuEq5HCKEYKFTZWdvH8+1+eD7zpJlmkF/jB/4BQqbUW/UmE5n/Fe/tsWv/7efNfQ4DVmeMh5NyJVmNBozm82o1atIy2Z3t0utVqPfH/KRB+9F5SnT6ZR4bjS7ruuws3MLPwhYWmoTRRHthSZn7z6JZdnHjoyVSpXLl6+zvbXPQquFwCbLNJVKnUqpRqVUYzqeMpmMsQqURqkc25ac3FgGoVFaISRocpaXF/idf/cV5vOIPBP4bsCNNOdgb59Wu4XKFBcvXOFXfuPfcNg9RJEzm08AQ/lGvG5Hjn493kAVejhTZAisIldO56bR/+a3nwOhC2qnoeXlmSaOUrQy+Y1plpOn2hhJCfv167VCWAXd0DE5XaBQKidNMpaXFlloNommc6Q2E3jHc7E9xxgIWYXhiyURosiVE4bafO/dZ3n8uVdwHNNwHhX7urgfURSPhjKqKVXCIuzcotFoY9keliPJdGIcg20L33PN6yEFWZ6ZHV5A77BHHM+LBlgWDacqmmMTpJ7nJooCIXD9ookcTxgNhlzf3mE+m7Ow0EZaFq1WkyAIeOmVV1nstFFKo7U5Nq2hVq1Qr1UpVyu4js08islz0yh+7ZUelrSZTGYsLS2ileYvvn+RKzd2jKFJxZgL1epV0iwnCAIajRqWJfGLXL5HvvUijz13ice+fY7trT0OD020zq988WskScanP/EgS8sttFaGMn92nfk8Ba3I8pQsy4iTlJcuXCXPTXB8GIYsNmu4vhk05WgynZNrjSqe0xHa+ce9nvjmtznz3lM4tkMSG23ufG6Q3katSbu9YKjnSnP3XfeRJgmHgx7D4YCdzRvs7+3w/vd/gqBUYmd3GykUjmORZTNeu3aBYb9PmsSkScTBwS7z+ZT5fESaJczmGVp43NzZReCgtEJhXifHcVACRIEqC2nheT5ZkjDsHzAYHlBvVOgd9vjQBz/BPIq4du0qlWqNtbUNVlbX+MAHP8ZCZ42w1CJLclSeIIV1HPPhe0ExGDT6s3k0M/UImjSJee65F5hPR0idULI1i5U20+mcp7/9PP3hiK2bm4SezdrGCcNccd0CtXtjo2Ecad/YHohiD8nfLJz8U1jGtMgqKNv/31u5UoXD8LvrT2q9i9z9Ka8sz3/6dr7y0eUImbuTzasUhiIk3jR1OF53mFS8eTqB1scI4NstAfzGb/wrTrqa5UrltivEW4xW3jDFwRQLSgOZZtwbc+r0AtVGHZ0VIlfHRlg5ru1QckyAbGehiecFtNo1EyBuGWGx7Zl8tdDzcF2LKIpZaVVptGuUq2W0gtFoSqdVI/R9hAzwyjZOIHGQWG6ZeTqj0a4QRznjfsI8jilVAnIVoXSGkA7nL97gufOvsb7cwHYks8mMku8hhSSNcjO91sJQ5xKF4/sIy6JqOwidsbTQ4uXzV7EygR/4+L6L4/nYlkO/N6RSM46GvufRaJvJpu95+IGHZVn4boDnW7iOQ3dviFCCsOJx9sQqQWiQt25/wDceO89io061UTLFrDCamPl4zGQ6ZnmpRZLmeJ5rMrNUhu87BIHDhz9wF45rkSYKpQTSdfFCH9/zsKQkiyMApO2SpybvrlQ1KEK71aRVCvBDh6AU8C+ffYm//7c/S+/wENeGat1QwARgOQ7ve/9daDTSthC2zebWHnedWaS9UCfNjP2x7RqN5Ww0od8d4DguUTwjyxPCUpU0SaiUfYQGS3jk2kLpGKUSHMtDZYJSLWR/95C19VWUTvj5373ED95XRuqcOMnYOxiQpBGlkkt375DpJCaapdx1et3QqmROueTjBx4SQWehzfJqmyuvbbK2ukCtFpCmMRvry2R5huM4eL5PlmTMZjGuH6IUaGXQizRNDbIiBdIxyO/2bg/XcalUQroHfYOIVcs4wubJJ8/TapRwPYfxZMxCu8blq1t0Oi1GkylB2afXHxgtiZSoNCMIPDIV40qJ7XqGPuo6RPMZtmc6i0q5RJomuK5kOB6xsrLAZDwiLHlYrotfCpjPUubTFM8XIHL+i1+8wD/9r38QEHiWU9iGW+jIhC37gU+lUcXxXVCKQX+E43pUazWEFHihT5zE+L6P73sImWG7gnF/RlguYbuG/nzz6nUa7QYohc4U0Tym0ayzs70LWrG43GQwGlOpVnHskDjKuPTqFULPI8sTHFeS5hmua4FW7O7sGcTGdsmyHCksOmULv/MgB4dj/t5P/Xd8+L77+b8unud7qjXSJGN7b4/771lneW0Ry3JxHR/XtcizrEDcjXmLEIL+4YDp1GgrKazFldaYKAuDJFqWxdkzGwhHkuWZiTJQRRC4bYM2NCvLNp9523Xp9fvEicmi9H0PyxLEUWTcbxVFgydxPRfbFTRaVRzPgyNDACEKVkFiBiUCpNCMh0NKoYu03WJvltzc2uGeMyfwfd+4e45nx8MVo30yWr80yUzYe7GfywKhzJOMeBoRhlXTlOoc27ER+VFuFAhpEZYrZHmO6ztMRnOeefYcS50lrCLTzOgY8+IcIsjSHCE1vudSrZRZ6XSYjCYE5RoPf+kRoumEShhgOxZZBkHo4bq2Qa9tBztwsGwbC0iShFKtjEJgW4KLw01OlAUra8tYtoUjbP7Rl87xX37wXhxb4Dg2UrpYloPtuIynE5TOGXQnhCWTDTiNp3z6+z7AqRMrhOWAIAyYTSPuPbNKe6HO40+9TKteYzAYAzCPIlY26mze7NFqthFS8uQL57lrcZmd3S7VSoAXONTrFVThJiqFLPL2UixbMJ1M8AO/cB2Fb81yPvsXf+it5+g7oBc5b60nbr9U6zUOXjUN6my4R1hyWWyv4joBmWvhWTbj6ZjDwSGVSg2tBc8+8SqxOuT0qbPE0YCdq13uvuc00WSHjbUTVMsVNDFJNGM4HFFfaJBNU9Aulu9Q8gJsKWi2WiRZTnNhHa2MmVSeJkhyVJaCNOd6JTKyPMFGIGwbPzBGQFmW0u33sF2HRnuBg24PKQSe5/PSC+dI44i9vYhXX3uN02dXEVF2HFVBMXQMvJA0jRFFQ5fGEbbtkqYpj517ioc+FID2yNOARmOBoASLq01cGuSizk/+zb9DWCqb+kwfvaoKq4gbMC6Yppl8nVZ5ZGLy9g6Xf1RaptZHets7o2vfzbqdXqq1KpglBbL1h6Bod0LD3u65v93vrDcjaEaoCMLsIUqropN+++f65rr3zcsqapZivv+WdfQ8bdt+F7l7d/35WQ9/8df5R6/eemd/pF//qiiVo4XGsi3iKCZXBQVDmgl5rnKWVzucPLlCludsbu/xK//6UbLU6Hi00qSJmXxSiLwHoyknNlZwPRchDN1lYaFBvVFjMBrz4rlLCCnI0xxh2aTzKb5tM+5PcITg+YuvMhrO0LlACBu0xWF3QrtW5/33nMSybZQG33dJ85zZdMZsPufFV65w8cp1sgK1OdpK1jeWef/9d6FUxnvvO8kjz5xHSoHSijiOQQq0UExGU7RS7HV7ZGmObVlkeWYQyOkMBISBfzwJv7XfNdSVI92EENQrZX74Bz7M5u4BX370abTSjAdTBr0RaIuVlWV6ByNKQZk80/QPhyx02tTrFSrVMoPBCNcxVuTlSohjWUVGlMV8FpnQ8GK6NxiNzQQfjePY2I7F8mqHWt00+rkfYlmSIPAQ0kYpzWAwwraMA1iaJCZmQQhsIThzdgPHsTns9hn0B4ChNEoElUqVzpIR4lfKJVzLOqaY9bqHaA23dm+htHHrsyyDGggpcIVFJQx54ZnzDA9H/G9/4we4tdcz5i6ziLVV4woZBD7LSwvUahVs2+bgoE+aJHiez2Q6x/Mc0Io8T8nznPvuPW2ykmyX2SwGIZhMZgS+x2Gvj+O6VMplur1D8jzn1cs3UEpx/cYelmWTphnlsIxSmuVOi3kU0+0OcV2bnd1DkiRBacU9Z1eIE5O1VatWCEshJ9eN5XmzVce2bFqtBhoKV0fBjRvbOI7DfB4xGU8QwgyCXN/Fsmwc2yEIQ/wgIE1yyqUqWklKpRKzWYRWRt/je46JoXAd/v4XrvC5j540jYWGyXSK0posTXn2+Ve4dOkq+/sHWFKisgytFGvrK3z995/h5ZcvGpqwNkHd+3sHjCdj+v0h8TxmOp8TlkJmU6O3XVhoFWHhmhdeeIW9PXO/73nP3SbLzHbwXIc4irnw6mUQiqXOImEYYkmFJXJ8z2M0moC0WD+xbpqmPCfPc4ajMZ944DT/0z/8WTqLTX7mH/wMp06fZjKf0WkvEAQ+9991mvXVVeNKqDVRFDMbzxkNTeCxUjlpmppmdPsWtXr99YzGolE7Kmwcxy4oc2ZXcBzHmGvEydGmaJpBAVmaILTF7z/2NK3mApPhnMuvbRpKJpI8U0WmnNHw2bbJrzwyarIdu9DKmSHb64ibod9F87igXiaGjiUFtiP5sc9+iqAUcJRlV66UCt2eOJ6a55mhryml0GnOyy9d5GDv0MTrWBa7+wdv0BcpZfR9VpEbiFZIAUEYEM0NqvzRjzxori9un+UZX3v0CTZvbiOAvd19dJ4bp1ApmExnhKUSWZ7y8Yfu44H33IO0LDoLbdI0QSlNt3vIeDQmzTJUDv3DIQf7XXzfMxlxQjAeTXn/epW19WWuXr3B3u4+SuVESYplm5zV7sGAnZ0DvviVb+E4NvV6lVwpmq0aKsu5ub2LazkFtVbQPeijspywFFAqG2rvxx66D9exWFnp0GrXqdcrCCnZ2FgmSzMeffw5tvZ7VOplTmwskWY5IEwkj+2gclWg8kf7vKEkut5RZAXs7u+/s3PwH7D++5/6H3E8Y36T5TlZrtjf2zbxOhgase24nFg/aajLvst977mb+Tijtz+m2VrhoY89iFRTSr5FPB8znY6ZJZpMewRhiaef/hYXXjnPhQsvU63U2N/fM/thqUQYmv3GD8tEsWJvv0uWgWUVLqyOjco1KjefsixPzTnItkHldFotWo0aSRxxauMU48mY6XTK8vIKtmeyHFuNMjrLQBp30KNmwHVcJtMR0rKwbYdarYEfhNjS0OH/o7/8Ob761BDHcYiSiNl8TBTFlMtVprOZ2dez9I6vq9KvX95df/LrKPj9j7reiWP9n+X1bnP37nrL+sf/+H9/R/RMTZHjYkkylaJEjs6M45xVFO0oXRgYCIRUuJ5BDpY6Lcgll6/sMB7NsaTN/t4hW5v7vHJ5ky9++QkalSrD/pQ0TrGEZDCY0B+MURpmccSJ1TZ5nCK0ZHf7EMcV2NKjGjSQls2p1QYLnZppnHJB4AU8f/4aaZKzcXIZpMANfCzPIVc5li2p1UqcPbHC8kIL27LQOaA1585d4sKVG7hhQKkWoETG5370E+wdFBldJQ/Xk7QX6vglBy9wENIUFWmaEYYhlXKZMAxxQg+vFGC7Dqsnlrn7vhM4nsTxJFma8NyLl9ndPUT6FrVGiaVmHa1AxfDYty4Ymk2UUqlUyFJFHKe02g1UEdSeZ3lhBKLJ84QwcLCkQsWRQQts45bnFGYzlWpIr2/y+JTO0DrDsY0+zrIkj4zm5LmiVCoxHs0RWAR+yG9+8WvYlsN8PuPa1evkaYwUmmg6RWKjtWBxoY2loXurC5kgVRqkZG9vlyxOuHF9C5VpfM9nNouIk5haswwiJks1eWphWx4qT5jNpqA1Fy5tYUuJzhS//vQILJPdFvg+WsEjj71AruHWXp9mq87GxjLXbtwiSxXVahmV50yjGZvbW0ghiJOYg/0ulnRp1BaYT2eUSiGj0ZhGo0aapAwGIxrNKpYlufeek7x2dZt77jrBzk6X2TQmTRXVSpVWq0mjWWW/N0LlmgfuO2VMBIBKo4ptGURaK4ijxBSOlo3QgsuXb3Lj2g6WsFF5Dig2NpYZ9scIy2IyjVBKcWvnAJQiTxSjwYgsSRgNZ+ztD3nhhS3QPlo72JaDVcRYWMI0Sn/t517k737+e/mhj9yPLV1A0OsP+coj36S33+OBD9zNmbtOUKtVsLQgnyfGEVQKPv2pD/PAA3fTOzxkNp0RhiW8wDtGtKrVBiurS8yncx599Dm2t3bxw4DpdMpwMOClCzfwfJcbNzZJtcILA7TWlIKQPM1ZO9kBx6JUbuL7NaaTEXk6Jlc5fhAalBmBlKZgDYKA0XDE5o0tLj33+/zcz/0s3fE+v/f7X+Xf/wuf5PNf+m2ktI0uUxudVjQ3jrPj0Zwkys2ASpi8tyzJuLq5gzGNtECbQlAVjq5aFxNu+frkWCmF4zhYdmHzrjWWbULjLUeglOCujZNkSU6n08GRRjeUJmmB5EuUVsYYpJiaz6cmY/JoYn3UpCltaHGi0PL4YYB0HPxSiSSJEEKjUSA0lg1am8YxyzIG/TFJnBNHsQkA18alEkDmkniSUC6VQVgoITl55jRKZYZu75uAbsd1TEErjFOr1sZF07aM+YkQ5joTYG0Qhk9+4sO0202UVqysLZHMZpArptMZQTlkMo+xLEWlFuIFLo7n8I3Hn6HdbnOw3y2MNsrYts3e9j61ag0NvPTKRYaDAUrl1Ko1/u+nd0mynPX1ZZaWOwgpqFdC9nZ7ZLlBGhutGj/0PQ9ya3uP2XRGtVphc2cHhWL7YMCVG13m45SnX7xIrVbBD32EgHgek2UZKkuxLYFAMZ9MGQ9HeKUSewd9LCnZ7Q348R/4MJYjiOKIa5vbhuqfw/UbW+Qq58rVm0RRzHQ2BzRJknDU7PXGY37ir/ylP8op/A1rv3vA0Ryi0miTpDnT6ZBvffPfEc9i+v0Rs+kM1/O4cOkcipy9W1dp1Foc7O1x0O3y3EuPkqJZWNmgXAlJkgmBC3edPkWz0SaPjbvrhz78QfYP9nEcnyzL2d3fZR7N0CgSIZimDo2Fe/GCNrM4I0kmJPGcwKtgCZdc5WbQh8K1wCbBFTE7N84j8oR4PqFSreIHPrVaHb/SYjTcpl0NsbVGOCY43SDTOUopfD8kjuckWVxQu81tlMqJohmPPnud6XSKFOB5gmq1iSU9Dvb6LC+tkCTTtyl83qpLe3f9ya2315q+s3UUmXCn6IU/T+tdWuaf8rrdLfNYVKrU69TL2298uwj0Dr+7EwVTFtSBt4hSeSMlUxTGAUfT6NtXrV7l137tCzCfcF+7+RYL37esQlCshEbkmtlkRnuhhrRdg9RIgSqm/7ZdCOMROJbF9tYBZ9babKwtcXXzFmvLbXr9MaPJnEros7JQPw5D9wo6YxB4VGtVk5MjIItzHEdg25LZJCGsl9je6hGEFUaTCe2FuqFLCYXnWmitOHNyhdZCjVxl2I6xp8/SjMl0jlUE885nMd9+5VXWOi0cx8GxjSaw2ajhBb6hl9gmWDwMA1zfLV4Og+JZ0ujE2u0GpVKJIDQB7FIKptO5sXt3HZSCLEvRaBOMqgRpkrO2usjCYgslFPVGleVO05y0Us39d59iPB8COY5j3svXrm9RDgK6vQGdhZY5URZBxLZjG/RMa2bTiCzLqFRLzKMElWvSNMULfcLAx3Ys4jjBkhZ7u91CUyRZvbfMiaU2GpiMJoYiZdvce/cp0jxDZRnVahkpJcPhmDAMjUBc5diuw/nzl1hbW+XmtR2anSYqzwh8o7nr9gY0Gg163R6tdgPP95C2VeigTGC077tIy6CcYaXEe+4/TbkaMk8S9vpTznRcXNc3Datj6Hul0CcMAqaTCK0VJ08skyvNufNXWV3u0OnUCQMP2w4YjUfUaxWU1pw7d5XVtQWDWilTdFtSmlB6S3JrZ59arcygP2ZldZF+f8Tq6iJxbIq02SzGsiXNWqnINjIUof2DPvW6cWsMAh+V54xHE8IwYDKdc7B/yPraIo16hX5/SK1WRamc/f0ulXIZ23P51S8+yQN3r1KtBgbNSPIifkKauCMEncUO12/sIDAGIEornn3xMiXP5W//ykV+9q89aJz8LN/kgs1i1tZXWV1e4IVzr3Dy1Als21iQp3HEaDQiLAc8+s1nKIUBjUYd17XxA99oLH0X13N4/FvPsb6yyGxqzBPOntmgFPogjSFJuVzClopSGLC+sYq0JKPB0OxbSvHkt89x6swqtuWwtblPvV6lFFj0D3uEpRqWbaMLY4A8MyHTAI5t8+K5y/w3f/2z/NuXbvG93/Mxtm/t8pf/0o/y+FPf5kNeWFAkJXGaYlk2lrR54aVXWFnqEJT8oiEysR9nT24cO++pYyoWWNI63q+PqF+5yo9NFY5QmGJjNDlyQiIFlGslLEfierZBw7U57iN9X57nSCFJopQnnnmes2dOHqN1xv0yNSyIY/MBg4QnSVq8LuYYTKNoXCyPNMaT8QylNDvbe1y+co2NjZUCETRNYpZlfPnLj3Pm5Br1Zr0wUpFIab6/ru+isoykQL6zLDdsKQl5po7phEd7uyycTg3l02gKHcc2KJtt4zrGcMV2XVzPXLTKjE5YSA72uxx0BxwO+pxYXyEMA65f36RWq1IKQmzHJghD6vUqAhO5ARK7NeOB0ys4tonmyPKch5+8ymc7Dcql0GiOAw+pzWfWsi2kbSImbMvm7lPr3HtmAyElgScZDCeEgc9r17ZwHYdSOUSg6ffHRqcX+lSqJTKliKYx5VKJ9U6Dw+GQ2Sym1a7R6TTM4wiB77lIS9JoVJCWwHWMUY5tSRzfIHeh4/CF17b49Gc+9QdS247P72/635udGr/wG1/k+9//SUCQRlOGg0Nq1RpRErO7N8J1HGq1Op7rsrS0jCUlK50V3FAyzw5pNZeYzxOubW0zGg+p1yrGHbgcYJOhpcvebpf3vOduLl15mZvXtzl79u6CZmrMgTzPx3IkoV/Gtj26vS1KoYcRYoDr+AVqF+FYNkJIrKOnIYyZ1GA0o1SqYhdZca7lsr27y4n1VTzPod+7hUbhuz5pZhBwDcdxOyZORWFbNkoXWZfS5luXnuNTH1nD93wQml5/QpbBSvsU43nO8nveQ+CWzKHYVvGCm+/aMY3yuBa641t0vN6JocoRdfrNb7sQJq5FSnmHezF71TttgowkKD86iDdkwh3RFO8oCbr9kd9kqPIWiuV3sL6T28uCDgtvdNs8+t0bjuO25/eHUUWPb1tc92fdUOXd5u5Ped0pCkHr2yy3v4v7fDM/+83N3Z0mS8dFw9vwkj/3H3yOn/7Ff8FHGyHVwmXt7Q/AFBrCsnCkS29/QBA4RqMGxw6HtnDIkpTZPMKxLCzLJo7ntFt1SmFAsxGS5ynNVoPhaMy995ykUgmZz+cEoUcSZahc4frmRKCFoBSUsJCUSjbd3iG24xKEIb/51SfIk4ivPXeBAJuD3gCpjZublJLRZILjSebTOTozJ8QkTggDz9D1AD8IuPf0hnGUrJUQCIIwQGiJ8VmwkZZjaCRCIS1BnnOMVB5t+r/z6LexlaQU+Ni2RZxkhGEASpNGWRHALRFCkaaK2SQiThImkwlB4IJOsaVG6Zw4jvnmcxeME6kFQRAwHs+wLZdOx1DfQt9jMBzR74+MDjAIkbYkKHmAplqtGgtwKRhNIoLAo98fUipVEEKSxAnzeYLQ0Go0kJahoT0xPOSD924wnU6LhtZHSLBdC9c1tES7oPh4vskRdFyT+SZtQ7f5N19+mmatykKnAkITxwn/9vee4uMffQgpc3zXwXF8Dg+HBKUQoR0QOdLKkVLwyvnXWF/vGKc8hUGkpM3GQoP/7P98gQ8uahr1KnEcMZtGtBbanL9wg6dfvMZ9d62S5ymu77PUafHtpy+w2F7g/PkblIIAYSmEzJEWrC63TGGr4dZul3q1ysVXb1CrlpjHc9M855pGrUqe5kDGeDJCYah1jXoVvxSCzqlUykRRzN7eIQuLdRzXLXL9YH+/R6UUGqMOJYhmEdPxtHifKty4sU2jVjLFNBaO57LaqRKWAmwLQBF4Hlev3yTLE1qtOghwfQ+lEqrlACGMJfvSQpOf/q1N/vMffoiVhRqO4zCdpjz2zRd44IF7yVVGHM0JXQcpDP32woUrjCdTqtUyXuhy5vQJmo26yXJDk2UJh70RtmMS986c3DhusM+9dInufp+Tp9ZMQLRnkLNSKTgeLPX2etTrNebzGV7gc+r0Br3dEZ7rUWtVePyJ5zh7+iyvXdmnHFr4gQfCaJU8S4BlmQByafRvs+mMLz9/g09+8tN88jOfwvcdar7D3/rnv8x/8uGPmUbCdUGbrL7OQg1pm2bIchxAFMHDZv9MU2P88HrjUpz8Eext7+F6DtK2QSnSNEVKB51rsjQnz1VhIGOayixNDXOhQAE91zdRAlohLYzGRUo81yP0fDzfJc9yVKGWPh7cHbn0QdGcOMbgQUhUnqFyjW3bJq4A8xkOQ0OprpRDVlYWsV3bxC3cdh5YXVvm6s1N1teWsaTJLBVak+u0GAIqoyMUFpkyiLLtGa2gEAYpoaB9isLwBl1ESxR0uTRLCwaHXURNQK/bJfBczr30KoudDlgWz77wCnsHQ9577ymqtQoI08AJKbGKvOZUKaJ5QuiHbN/YpVwPOLm73wAAIABJREFUuPdDS2jg0W88z3JnEcuBh594jR9bX6I/GGNJiyTP6O730Co3ZlqWTbnkMZ9HBCWzd169scWJjRUazRqj4ZilpQUqVVPge4GP5/v4pQAhJbnSWJYiiXL63SGWY9Nq1/H9ECFgPJ7g+TZCaGOgY1nkShVGUsZZUcKxrvJnn73Az/z8/8rtodR/0Hrz2futzd3DRXMHnuuTxTnzaY9mu8Pa+j2UKxXK5ZDDfg/PD5jNZhwM9rjwygusrW1QCgLa7TK7m9tUSiFryx0sKbBsowVFa3p7m6yu1/AcD5WYXMmdW5sstDu4nk+ea0Sm2NzeodvrcfLkSXb3dgksIxFIVTG40BRGU8bE6AiBi6MZ3f0DBqMhtdYCCMGLzz7PXafWKLfqxNhs3rzFSqeFYxsKbJLEHIV4ayS97j7lcs1kokqbo5zLT9z9If7uL/4mn/0L9zOfz2g2O6S5xY0r+wSlOkv3nsFzq8ff/eJFLv5fNEDaUEq/E0fHt3vf3nDHHEnN7qxtM3q7t3+sd9zcCVG8VuKtf6/1W393p/WmOvLN0QJ/XOv2z/dRY2dyaOUdjwO+Oy3iu83du+sdrT8rzZ0AyqUy/8vvPsJPnFr5Qw7ANHdIC6FApJreqE+lViNPTXTAaDrHwmI2m5pJvjITmINuj+WlDtdvbBHFEZVywM6tHitLC2it6B0O2O8d0qhXuHhlk7XVDsPhmDw30/Jf/eJjvO+uE8zjKWHo4ZdKWMCD954g8Cw+eM8pVhc7BI7Pxde2uef0RmEAYhDEMPCZjGbs7HZZWW4Zq+40MmYZ0kx0fd9FeI6hO8YJru3y/Auv8rVvXuD06gJBycV2TcHpFhlsSWTs3OMoZm2hzdLiQuFmB1mW86+/8SRnVpeYjKYEQcCNm9solRH6IWGphOs41JsVUxTJoiAsdDzNapWgFKIyjcpMBluaaOOMJzRJmnHp+hZLBQKWKYjiGWgThtzt9nFtq8iQMzpASwhsz2cymeG4NuVSSJ4Yqtl0PuNfvnqNn/jh92FJY8Hue16BaMDVazfY3NxmeWUF2zaZTvN5zGQyRVo2mcpQKmU8ndGsVDl5ap0omuJ7DkmS8p7778GyHA77+9RrNQ4Ph9QbBj2QwgZS0jQmyxTj0ZxS4KBz2Nq8xXw6od1oYrku565s0vFiNtYWiaO5iX+olnn+3FVOri7QbpmgbiMSl7QaVVzbZT6LaXdaHHQPKFd8pDQN+nhsGo5GrYqUgsP+iHarjhd6RFHC7q0e3W6fLMuxLKg3qji2xeb2vjGrUUY30j0wVvzlUoAX+gYpyDJjDFBMoW/tHnDx0jYnN5bZudUF4OWLN7j/ng1ylVGtlFE5WK7DQXdAs1EzBbgEC0G7XSUMPXZ2u3iehx8GBIHL5uYtVGbMdr703B5/6698H/XAo1Qpmf1G2ywtNLhw4QrVWtlEPmjFQqfDs8++zP33nqbRqB2H2ytlok4ajTq9wx4XXn2Ns2fOEsczSmFArzswVGzLZF7WqxV6vUPKtTK97iGbmzt4rktYCqnUKtwq0DnjGGmakWuvbpGmCbVGSKNRwRYeSZSzc+sqrhcQlErYtmTQ6+F4AVJILly4QqtV5+aNHd7T8Ph7v/Sv+Pzn/ipLnSa7t7bJMosvPfcUnz51msl0Vhg2KGxX4Lg2k4mJaMlzhWVxnIEnCwMSjSoQ+WJmr4vvQK6wXRuBCQrfv9XFsmw8zzNugEXDE89jExZdOD/atoPKVAHCGYfLLMvQysQIBGFg0CTHOnbTFFBkPt6+v4tCs5cjbQuraKLyTBk6dqaQwmhqpTB5ebZjv0G3p7UGIXB8j+XlDlrnvHLhVXzHIQh90tRk+WVZjmM7oAW2a6NRhWGKKcpNnVvEUcsjPZ9TfI/fVDSKo8w9GA9HTMZjzl24zurKIm7gs9Cs4wg4cWqd8WiM57s4rkOaZKgsYTgaUa5VcWwHC4udrT0qNZ/fvPAi7z29ynJnAc/1GIwO+d0XtvmxtUWCwGc2jZinMa4lqVcrTOcRwrIYj0bU61WSNCUMQ2q1Ep7vMTgcGSpskdN69Bmg0I9GUWL2UZGTxjlJklMqhViO5JcffhyhE1qNCnmhIztCHWzbyBWiKDaZmUrhFk62/8flm3z+cz/2x9bcWZcCWotNABzXI3Qc4nhUvDc+zWaDVy9dZGnRxCA99ug3WF1fYmnhFJ7rMxp2qdQdNpZPsNCoIYTRUc4zm5dfeZmTq+u0F9cJwhyUza2tPv1pF42mVmuAFpw//zKecClX6iwsLmJbFsNBHxUNCUtllFRkWYLneORak2epof0qgwo7tovWLgtL63ilMsPRgNMn7uZwfxPlutSaHW5e3WJ0cJmV9XWyLMFxXPI8w3U8hDBunLa0jT48MyZCGnBtl2w/4cGPtEjSmP2DHrmWNMpLDCYz7v7oh5EEx6/t66Yjrzd3x6/9H2Nzd6zzvcN9vNvcFQ9ZNHavm8u89Tjg/5/N3buau/8Xl4JiEmnehu/2zVA6O75onSGkPhbMv5lXfAS3a6UMpH3b9epNl8/+6GexLMmvv3zJ/O3bfUGODFWyHEVO0A6phgG2MJt9nrl89bEX6O33ePyFiyYPybHJFUTzjBvXtjl1ap3+YMbBwcjkZM2N4UWtYoJR9/cHPPjeM8TR3KBYaUwyn/Djn3kIbadIx0I6FmkyIUuMYUK9XsH2LZyyTblm8/GP3k0mUrQljoueOMmot6usrDSJ05Q4zQhKBnWxHBvLcYiSnHSQEE0SskyhRcZHPnoPH33/Go1W2Uwlc8XosM9kNOG1yzdI4xSJwA5dGosNcpWQ5RkvX7jKyxeu8v3vfwC/5NNcaPDlR5+h3WxRLdfI0ozZxGiTkiim1+uTK0mvOyaJFQJD6RoMh1x47RoaxWQ6xXEkWuckacJ8FtE7nJJlOXEyQ+cJZc9nPpgxH0fUalWiNGdrp4sjFfm0T+BBGk+wrRwJXLu2RbffZx7PKdWrfHWc0Gw0iKM5OBbCdnC9EISDLTwOe3PGgy5Cpeg0pRz6tFo1wsCnHAa40sbKbRrNKrNoRK1RJ0lyqtUqkpxB/wDPL5HmgnqjQZKkOJYk0wYN8b0Sju1y9p4T+KUKg9GY9fUlkkyRCsXe1i7/w09+gi+8FKGFyUKslktIIbjv7AoPPngX0hbYvo3OYTA8JCjbCEex2z1EWhkayf7+BNcto7WkdzBCZ4qtzW1GoxGe4wEuSpmw8OWVFmfOrmK7gv5ojuuV+b2vnCeeQjkIsHRGlsYMRmMODrqcv3gNWwqSeUSapCak27FNpp3js9Cq4HgWq2tN1jYW+MTH34t0PeZxxl53yN7BAKkzTp1YYTSYoFTOufOXcV1J/3CEzgWry8uEYdnQnTQ0alWa7Rb/6S9d43vfez+eY1Eq+aRxxt5OlyeffIZyLWBtrcVTT71IEPi02x2SNKd3OETlGQKTDaWFwvMdFhc7JhOsvcDKYgelcyqVGlmqqZTLSCGI5gknT6/RWKgynk7p7w3Jo4yl9iL1WgvP9UmihO3uAWmesXvrgHgeY6F534NnWVltc3hwSDSL6E+6rN21wCy2CfwAmUeQxZTrFWMGogXbu4dMpnPuf+AMH/++9/KFn/oR/skv/AKH3T3O3n2an/uH/4CelMxmUzzH5vDgkOeff5nxKEErC50b2uOoPyJPNbblEBfodZYm6FyClsYRMzduj5bj8su/+WXIC5p7YVqjdAYiR5MhpUU0jXBd7zhyQQhDwxa2hXBsbM/Fsh18zyeOpsgCkXU9FyktNDYqB6lFYY0o0FgG6QHSecSv/daX0ak212lD23I8hyDwTL1ogZKqCEU3DYbGUL5MkahJozmObfb4e+89S7VVYx5FuJ4PSPJMo6UE2zS8KocsNoilkJArg3prEx997NypCot/IUzDp3Kje1KF+cvCYoewVOX7v+dD2LbE0opKOTQ0TssYZVlYRNM5WZbQ6w+plCvoLGU6HpKKmJP3rOAFJX7ooXuwBZQqHlgpk9GcNElxPJt5PMfywEFTCgMyNHmqcG2LZq1OlmuE7WC7Dp7nMZnOKFVCzp2/xuaNPbI0QqmYPImwRIZn2SSzhMloQBTFhBWf1bWOCWVXgh//gYd46IF7eeniTUK/isSHTKBShSyMdNLUOL0qpRCZ0UmCMIyF72qJt7hl/s7LDx+7A+ZZjgrLaOlyuL+HbedM5jNOnjzF9etXybKMT/17n6FZW+LVSy8zns64dn2TyxcPuPDy82BbKHIc22V0eIvVpQ6oGb4zQ6XguzZn7qrh2Yo8HuFKlyce/zprS6tIXxKGPp5js7O3RVCu43fOIMuLpLHDfJKaukUpHMdHa8PK0MrUNfWaTTzb5WBnl8X2KodRl7C6QjqdIeOETM1ZWV0nmseQa1SaYkuHKE5Ikjlh4JPrjCiN6I1mXL62g5AOSMFnPv19/J2f/yr9iUK6Ja5cG3Dx6i4PfugTlMM1KJBWAUitkVqbaA6OWJrFF/tt1lFNld92eeO7dtTWmcbk9sbtqO5Stzm3HFG/jQb4dWOeO+XZHWXeiTs0ise3UeoNf3cnXdp3olU7qmeFlG8xLPlutG7iDv9uvx8hJdIq9NS3HcMxrVQKY3B32z/gLbXvm4/zz8N6F7n7U163I3fA2yJn72iJ27jFR7xjLe5430cBvXfahu50FJ/7/E/yP//Tf8H7Ki6tMPyODkdKSZ6mponEIksSmlWXpc4CN3Z2OXtyBZUpbt7cZqnTpN1psLWzR7nk02hUabbqWLaFH/okSYrKc1ZWOly9vkmrUScIfbI0NWYhwoQmu56xI/d8x1g8Z6nRjVm2meqg8QPPuPdp8yV3bBvHddjf7xktkGWm41Ecm4wyIUCAJSV7t/r81tef5e4TS5QqIRpI45RyJSSaR8b1y7JxPeMONp9FaBTSlsznERRUres7e9w6HHLXxjJBySeax5y7dAOhjMZOa4Hrmsm9EJJSGDCbzJhFCeVyyUzYbQfPd9m5dcDSQpOw5KOUydgbTabUKmU8W7LQaeL5DpZlkcQpKG0c2bTJqau3Cov47V1arTbCkviBx3Q6Y2GhiW1ZzKI5frnMF2/u8mMfPWns+R0blOBrX/8Wy4tNKpWQtZUF/JIPwmhvXNcliROEcFBKs7+7T73WwPUcwnKAECZ4eTgYkaYp/f6Q5ZUlE06+d0CcmNw02zMmDmhjOiClQOea6ze2cF0HrRWe7xsqZKPOpz94mr/x80/wow+1CEtG59FoVAstlEUSJ9iWb/SOjkOSJFTLPkpDGmesrCySJsah78qVHZaXWriuw+NPXeAD772Hra1dgrJbhGybwFrfc6nX6yRxyj1nVyiVHPqDAZ4fEIZhgYKHzGYxjXqZVy/fZGWpTZZmxs1tPONweEi7WUYKxWAwZGtnj87CIuPhiLAU4jgO1WqFNInx/YDJZEocG9olWrDfG3Jj64B6vYztWghp0CTHdrk1mPPXP/MxWg0TNSGkRZ5rHMfh7Kl1HMdoRpcWW/iux/b2LqVyyMpym2vXt0Bo9vZ7NBpVDnt9wjBkb2+/iP8wU/Hr125SKod0D3rUahWEJTns9xkOh5w5exKVZdRbDV69dJ219WV++0vfgDzl9MlV6vUag8GQ1kKTna1bjEdTZrM5lVqFRqNOHCUEfkCjWmZvfw/LNo2PxoSQ+77HqRMrBEGhm8PkKf6z33qEH/rhH6bVanHj2ib/5Jf+GXubN/ne++5HSosnX3iFm7d2OXtqg8FgQLNpPp9SHgVxv454Ka2OHRdNmHmKQLDcrFFrVAuqpaZaqxZxAwbJO6pwfvW3vsy9p08UqJlx1zwqutIkNWigglI5IM8LV9lCD1cAa6AVaZoZ+qjmeG93bYeq71OrVU3zBkjLWKRHkXHvFGAQMM8z6KQUx8X+kW7IdY1GWin9hgm+aQBNpIMJLxcgdIH8S2zLNtTCI0TjuMgt8gHF68ckpYXjOGRZznAwQuU5aZJSrVZxHYcoSegedJFSUq8Z4wyVa6Io4iuPPcmZE2s0mvUi51PjeZ7JCLRsrmzdpLRoAuGTJMH1XNqtFl988gp/9eQqjuNw5doWWikWF9tIIXFch+FgTLc/pNmsEcUJUkj63SH1hmGe1IKAtbUO/cGQZqtGrhRplmBJB4EwP9s2ruPyu19/irMnV0CabLv+YMBdZzcYDiYMB1OiaIbnuuRKFVpciyw3dHSlFMKWPHx9l8//5E98x9PeP6x6sK5UaCy8TisUQuBJQRpHJMmMWZSx0FqgXm+yu7eLQOM7HuVKiWq1zK3dTfIMylVJvd5B54YOXymX8VyPLJ1j2Ubj7LounuvRqi1SCj2uXbpJpRISBAH7B9s06h0jhxLGhKdaabF5c4fJ8JBGo000Gx5rubM8JVc5eRFHk6QxpUqNJLdwXZ+D3i71UotoPqZcLWPZmnrZwg8qRg6ilfnMigJpVsY4SQiLNLW4fP4ilaqP67pkWcqHTr2f+tKMrb2Uf/6rv8szT73ALI754F/4fqbTGaUwPNYGmxfzTqjaH/IevZ3O6w0/FdED+o1NntkH7qwZ+4PNRvTr1/8xmb/c8bH061KUOz2KJcze8UdG9PRb6913skSB/b2F4fb/sPfmsZJl933f5yx3r315++tlepmenTMUh5QoOY5oCaakiBIV0ZKdKLChyDHgJAqSGHbkxAbsBDDgIBEc20oISLHkSJFEURYpkhL3nTNDztoz09P7+val9rr7vfnj1HvTPexZSCtMlMxpXDRQVffWfVV1zz2/33ebDUtr4jjGtu0/18jd28Xd93i8trg74GofbHf7qRZv8vztxd3B6ySvXsjFHY+bY9ztmOJ1tg/9/If4W7/6YT54bPHN/jbKvGAymrC7s0el4qC0hVaKRt1jd6fHfaePYmkLCVhKMpmG1BrBjMKjqFZ9pNY4jk2WGYODRqNOXuR0WnUuXbtFp2Msyvu9EZQKSoFSNpaymYxjhDTmNEopLEtRFka34tjW4eTjBS7MogsajSpJZLr0xlyFmQjcZm19i2rF52tPXWRxvsqJe5aBEoHRsCmtiKYhz7x0mZWlJSgEWms+8ZVv8cDpYziui21p1tZ2CMOIRjXg+9/5AJatQRgb6HtW5lnf2mOx22FzfQ/Xsw9v7Gla8EdffJLH7j+FX/FJophwOsXWGvKSTrfNcDCiJMeyFUEQoB3LUOyicEYfs82iTGmkMpSpcb9n9HVpSZGC51fI8hwlBXESkSQxfuDh2DayzPlmf5N3H/MQeUxRpEjpELiaVqeOpSVJPEU5AVorppMpSRhx49oan/v8i5w+vUKeJ9y6tcn8YhfLlihlXpemKY16nTRNsW1Dment96lVfFzPMXQoJVACY7hg25BDp92iWq+ytrGNbZscPjAF9z1+zm99Y433nmmBKNBaztCSnF5vjK0t0823HZI4Ntl6NVP4uJ6D1grXdbC1uT5rjQYL3ZYpggIPLQp6+33yzNzkpdScP3+DosgIKjZhHNJoVFDKptcfUqkGVOpV5haM8ypFQbUSHFrK7+z1WZqfYzSMSeKCVr1FEhdYymQg2q6xZpfKxIsoS1OpBfiuw621nVmR5dNpN0xWXNVBCE2WFfzyrz/P9z/4IO2asXHv7/cAQZaVfPSPvoIsMxaXuuRZQb83ODTvqNYqCKlYWV1Eakl3ro0oJds7+9RqFYJKQFEKHM+nt7tPURa4nkO702Sv16dWD3Adi2ajNjOP8UjznJXVBePcGMf4nsP8whxZlvGlrz1HLXDpdtt4gUuz3WRzY4dms4nneodNmm63yaC/RxAEUCqUbUORURYJUCCVNUPHBH/pkSP84j/8l/zAe95FpznHzvotntze4ecfeJDpJKTbqHFseRElhMkNtBRplpFE2cwAY2Y2JeDAqfIAecszk/lWrVeMYVRhtHAIc30JYYJ6Df1WMugPOLa6jGVb5DMb/CxLDqmJUmiEVOzt7eN5nolCUKbzbNYfJYKSOIywHJsS4z6sZpqkZquBtDRSvLrQK4tyloUnEFKY5lVRGn1vWRwutA5m/ywzf7dxaDV3BjUzcJFCztxCOaR0ygMJgDSOr1obS/vRYIznORQzg5g8L2aRFeY9syxja3OXP/zsl3n80Qfo7w/RUmN7FoPBECFmsQ1S8uKLFxmODUqtLc3RI6ukcczlq9cB00Q6CJBueAHno20CbYxKKA31/8Of+iY/e3SFQW/EkdVlHMs0vDa395iGEfV6hbnFOcrCzBVffeosR5cWsbSitz+kM9dmb7dHp9MkHIfc3Nii3a7P7j0wmoxwbAetLO49uWK+K2W+PzdwSJOUSrXGaDjlm+cucPr4CnmRm8W7Ukg5yzq0LVCSf3Nzmw/9+x980+LOLE7lGy6UXz57jobVeHUfcpSQRGFKKSSD7cu0O0uzJmpJr7dvDKiGU7yKyZmVymJt/RbNToV+f8zFly+wcuw4SmSIssSyHdIsnYXWZ5RFRn+6x2Qc0pprUW+1uHrjBY4fWUVKRV7mBLUKtuuSpSCkRW/QY35hCdtWJEk408S6CCHJSxN3YmmbJIkZDUKa9S71apveYBfPcc0awPIY7Y3Y3ts2BljaXA95nps7ttRQFkbqoGFpdQnyAtdxicIJSmn+t09+mm9+8yVubGacPPUgz509y0OPP8rxo/dwYJr06kRw5xf0BizJw+/o0HjpdQQ4t5uF3NlgEYdNp4MjfntB93pGKmaldzvt8rsZr2eocmBgctCsQhi9blHc+X63r3O/m3FolHL7OX2Xxd1r9ZFFnhlAIIrY2t5he2uL+fn5t4u7t8dbH68t7l473gxRe7Pi7tXXvbYXdOe+b3rM17z2M5/+HB+7fIOfmOVxvd5QSjEeTdjd3aZe83BcjzwvSfOcRr1mOmdSGfdLxzaOfVqTJilPnL1A1XXQB7ShouCl89eIpiH93ohOu06t4hNNE5IkxXUcpJihXMjD/Dbbsxn0xzMtWoxlGX2ImRdKRpMpnucY3r00XXJm+4LRw4TTGKUV1YpPGEacPnkPK8sd/MBhd3ufMjdh3aPBmCzLCByXZrvBdDRmNBpzdLlLpRaQpzlFVlCddUHj2Lgo9ntDgqqPkMI45hWgpKbVbWHZipKCyTQiiVPO31xntduizHJsyyLLMsajCd1Oy0QTVALSJCWaOfOZTCND3RiNJ9hakiQmaylJEpIkoVH12Nkb0Gi3EGaVgW3bTCcR1ZqHlJL9vQHD4ZRq4PEjP/kwgWcRTUMq1SZSWgwGAyqVgCLLsWwLIV3SODU5QUFAmmY89Mi9OK5CULC1tU9RZNQbB0iaRmvFcDCi0agxmUyYTkI67RZpliDKkmG/B3mGZZnCBiF47plXWFqeJ04T2u0Wge+BkAx6I6Iw5sjKMv/tb3ySv/KDx3AcmyiOZ8W+JI5iLCW5dHWdubkmAmNqUq9XcBxNnmcobcKhXddCW4rpJMK2jUBfa0lZZNTqVZTUWLbNYDii1arSbFZRlsBxbDw/oChyPM/BcmZdecMFMS6ZZcH65u7MSdWlRNJuG7Q0z6HZbDKZTnjh3FUqvo3nOOxs7+P7DtoxCEuaJPiuS0lOo9UCJLfWtvE9C9tx+al/8hT/3QceRWQJaZZx89YGx4+topQmnCZcu76JBJaX2nz6c9/g/vtPsrm1w+rRFbY2txlPJlRrtVk3qKDISsajCbV6hTTLGA7HWNrixvWbBIFHUAnY2dkjCCqAyY2cjCdIqdjf67O728dxNaPBCMexGI4mzM93EFJw8vgKZ1+6xMkTRxHCxAI06lXiOObWjTUcxyaOU6aTkEF/jG0bPY12PESZsrm+QaXqI6R1SFNSWvOTjx/jb/7j3+AX/srP8c7HHmN7a4t/9rWv8nNnHqDbbbO/16feqBHUKggpGA3G/M7HP8eZ46uHvwMhxaGJyYF5S39/gGXrwwVXnhczdK0ky3NT4MmZtq4oOHZkxaARaXqYWafVAb2xRGpThLmeZQLStUaoVxeTQpr5UFvK0Cpn850QJXmaoW3rAN6jLCEMI7RlmZgDYXrVWZIbWqqtTe5hlpkGT5IibYNwFEWBtjRlaRpPB7rsojDHLWYmFyaXb2Z8UZq5JksytDKmN4cLPUBp47qprVnhKMAPPO4/cQxRlvR6fbOvpUwzpVZFCAinEWmec+zYCo1WnXazNkMKFc1mnb29Ho1mA6lNs+ilqxc5fl+TTrtldGxlycVLV3ni6oifWOjg+a8ag7meS7UaEFQ8HNeBUnP58nW0FJw6fsTo6kqMdtK2uXT5JhJjAPP8xRuszHewbZeN9W0arQDXcwwiIEyWnHGtlVhak2c5+7sDqpWAxXYVz3OxLBMbcXAnVjO/Gmkp/uDqxltG7sSboCDd+S7PfPwV6u1gdi8vSaIQN6iy29tDZRH1RoesENiOy82bNwg8l8FwxHQ6xHZcgiCg250nDkco6RDHIV5QRSthCsU4xbadw+ZGWZakQnL18gWCeo293S2kBM9z2esNyQsYTcYEfkAax6RpgpSSufl5ijIjnAwQ8iB+5CBWxOSoJmkMWKyvr5NkJe25Nns7uzSbbcIo5ZtffhLlFBRFTL3WIIlDBJIcKPJ8hiSXs2JU4dgOZZkT+BXiOOILL32Lv/kffojeOOP8+Uv8yI+8j7/2i3/jEJW688N/rd7u9b+HO4s7Xre4ey2l8vZ9Xv/xN0Oy/u2QrrdyHod/l5SHP9vXQ8a+6/FnpKW722dfFIbBYFk2nuuS5TnNRuPt4u7t8dbH/yPF3e0dl9kF8p0Wdz/5U/8ev/uRP+T3L996XQTvgJYTTiMClWA7Cm37ZIUkTQRlkaEsh7IUPPHMyzz54iVcqWg0aqRZjqMUy4vzrK9voZXp9rdrVS5eXeP+U0dBmgWHUpoLV24RuC5S59iOYhpNGAxH2LaglPIw6wxybFuxsbmLNXOIcx2byTScOWdCfzBhfXOXFy4X1+uuAAAgAElEQVRcpVOr8cUnznJsad6Eq5Ylk0mI51rs7uzgWJJzF25QcwN++xNP8M6HTlILPLyKyzRKqFUskIXJMrM0ZV7yWx/9Ivfds0yW5ziujR+4VGoVQFAUOXmWc2t9h831PosrXZAZcRyitaEwPXTqGJWKz42bG1AYe/9K4IEyxbSSGhDYjoNUir3dHtoyZhCu61JkKVJbxlVvRnOZDPp05joU0hRYtmvx/LOXabXrxHGE7dhUgyqWtsi1xVfGA04szZOXGuXUoUzxPc84Pm7uEk1TpqOc9bUt2u0GSZJiOx6VukMUj5Gy5MLlm9x/3ynULKQ5CsPDxeFwMKLVqh92ox3HZjQaMe1vs7+7y+72Nrbtsbffx3cDXNdlNJmwtbNr7OlLSbPZYu3GJnt7A375r/4ov/AvnuKHT7hGdySNDtP1XLJ0TK3mUxQ5w8GESuChLMGVq7dI0phK4BBFIf1BH9dzuHVrhyDwzG/JkWys7zAaTqhWK8RJaqhJWUyJMS4pS8HOzgDX00RxRJalWK4mzRKGgzFpnmHZFp1ui63tXRrNOkk2IS8yPN/hpVeuUK06jMOQS9c3ObLYobc3pN1oMZpOTYFgSWxtY1kOST5BK5vhYML8XBtLa56+uoeWDvcvNLnv/tM4roMfeIiyZDQy4bwnji3huxa+73D8mPl9Li3PkxdG8+S4Li+du0StFkBZcOn8DebnO/SHAzzfM2hvUeJZJVJrtNJ88atnuf/MScrSIDW9vT6+5/P0s6/QqATU6xVTHOY5Fy6vceKeVTbXt4zGUivq9SqTaYjWmrV1U4BPpyPKIsX1qnzzqfOEk5zTp4+T5GOUU0GWKRQJnh+Ql+qQniBnkSbvOtXmH/7z3+cv/tAPsrzQ4Utfe5J3aId+f4Rv20ynoaHglQV5kTPuj1ic6+IHvkHtCkNBpDQIVpYWKKlxfftw8pS3zbFZZvSUURgaymJRUmLYBEVhNJzVagWJmnWRy1nbv5yFqYNQEiFm6jVh0L00il4t4qQ5l4NutpwhdAfzuQC0ZUw7hJJQCtIoZmtzi3otYDQcmugFpYxRyIxuVs7MQoTANKKUoixhc32Lra0dOu3WLOLFFKlSScpZJaSlKQaLoiAKIyzbBECXZUkUhQZ9UOJwTSwUuK5DvV7DtmyMGVRCvVFFSnPutVqVrEiJkxAvcEmTjK2NbWq1Kl7gm6acUvT2B6zMzXEp3aVTNc2p6TTEdTWfeOYmHzy2yHAwMpT+LDdU+RITH1GWTAcRO3v71Co+luvw1W+9DHHG2uYuQeBRqwVGZ1XCxvqIhbk2cZRSq1VwA00YRZRFebg4N5E1BVmWkiaGHZJlKfVGlek0otcb4vse0zAyBkSUKCl5amOT+z/wQe49dfLPpLi7evk6fvFqUWtZFkqUxFJTbbbpbawx6G0TVNs4jodtuwSOS2t+jtFowmg0olmrYluC/Y0RaTblwXc8xisvv8xgb5tWp8uly5eYhCGtVpc8y1DK4txzF3jokXfgKYtGxcdXAUkJ+3shuzsD0jij6teYTnssLy3TH05x3Ap5DnncB4wu1bYdpBTkWYbjaGxHmyzTwMcNAkrl0Wl02djZQgcWflAlnEZE030azTaOZSGlIs5CPC+ATCCx2N7YxdJ1kCG2tkjiCMt2eezoQ/yT3/7fef8Pfz8f+Omf48ixI6yeuhctDdpW3I5+vV3cAa+ywQ4QOzFzUP3zVNwdmLEIaRpFjXodKeXbxd3b462PuxV3BxfHW6FLlmImur5tE6X8NtHpHce5LXvk4HF5l2Me0ImEgKJ8VZh9MH7mZ36a3/vdj/BQYNEObtPfCSilsTAmh7VrmyAzGu0uubDJM/jdj36DoytVXNdQ4lbm5zmxvMTzz1/lyEqLMJ7S7tQBQbfdmi0qcqbRlKMrczPrdM1oMGVtbYeTJ1awHUWlWSVNC/Z2R3iOi+d5RjehSkSZYylJb2+A40g8x6HfmxJUKri+TSkLtDad8oX5Lsvzc9iuw6A/pt2uYbuW0c0JSRRP6czs75dXFkEJljpVavUqUml2tno0ajV6vX3iOKUW+GgEZVaw3KlTaQQ4no1j25R5QRKlDHoD/EpAHKfMddu0WhWG0yGe7bB+c8fkKtUqhIMJeZLhuDbasbErHoUQlGU2c2yLQRQoLentDfnmC5ep2i6TUUS95mN5Hkop4jjCD3wcz0NZLghtvBEoyLOUhfkuL5+/wny3Q54WhFGIbWs+9sorfODHHsUgCJKySMnTkn6/bxDQIqXVbTOe9FhensNxbJIkRVuawLMY9kZo24Rcd+fmSFND383TjDiMaTQb7O8PyCn42tfPstCZQ2mbQkqa7UUmwy32t2+gtcP6+oh6t4EXeEilaLUaJsMIwXAw4PqtDVZWupRFwXuP1fg7f3CJH3+kybNPX6fmV3n2W5fI8oQkSrlybYOjK3MoKVGWolb1TGEaJzi2w/rNAc16nY2tPXzfGFMoy6G32ydOUtqdBp/+0rPcf+YEeTqBEkSpDR2r5sxiQXpkaU7F97G1hWNrevvDWUDwHr5nMR6PWbvZp1kL0FLRqAV4rodfCTh+dM4UllLQG4zZ3d9neWmBJMqMnb0tcK0apSjQlsCy4D/5F0/y44/fz31dl+MnV9G2Nr8XIbh+aZ00iqi363zkY1/mB99zLzeubVNrV3AqJmJk0BsjBETjkM9/4Vkm0yknT5+g3arw8iuX8BwHWQp+7yOf55H7jgOKrZu7LMzNc/7cTe49dQypJcP+iLn5DtpSuK5ifrmDtAJKZeH7Nq6luXTpGo2mcfocj8doS9AbDKnXKjiWzfXraxw9ukwcRVy8cYsT9yxz5Mgin/3iExxfXcC2JUIJLNcHaaiUolAIjK5YCkkzqPKX7q/zax//Bo8++BD/52/+az65s8lPHT9JvVU3v3PXFBde4LC8MIdXMTEfBQZVE7lZEhhKZorj6Zl+R94m7hcwy8BTwmh1RSmNeUaRURbw1FMv0O+PWV1eZDTsmWwtA5yTplPi6QTXthF5gUAQT8PDLD8hFUmSGaplWc4KwwP3PjnTzylDQTtwZFUCKcxrlVbUGjWUY4PUeJWAktIUkqUJoA+n8QEAiGUp8twg/kHFID+2ZRpJB/o5Y0x14CiakkZmQW5bLkmUoqWDQGFpQ7kOxzG2ZSMtxXgwOSx+R8MxbuCSxPHsViW4dmWNSs1iNBgTBBXUzBCn2WohLU0cxuzu7ENZEAQuVzeuc/qxJRzPBwlFlgEOf/CNS3xg2dB//YrLqNcn8F2KIje2+LaNthTtbgPXd4nDDEco2t0a890mL7x8mZcu3eAdD59gMBlz332rWI42mjlLkUYlTsXhxvk9KlWLKJkicNhZ32djbQ9bKZPRKSXSsojjlF5/hO+7RPGEoOIwGkyxHJdfOXuV/+ZX/g6FKG6jzL46yvLbF+qvfez2vT78v/46p+buffUB4+KGFiWyzMH1Gdy4itMIOPvKCzhWk263jrI1lmVTrzepVhusb22ztXaDBx4+Q5aP0GjKTLOzvUZ3fpGlxS5FFjOdREhh0Z2vYwmQGE2scgRpGdPfsOnvDTnx4BwUJW7QJcsK8jhEkOFWfXzHZW39Bkk0xPU8bCegRDEdj3G1x3Q6YhpO2Vgb0J3rIGeNlIoX0J3rUKqC7Ws3aTUauNpFa43Qs0aMzBHa5FumwqNVN8/v7fc4/8rL1FqrrLrHCRYcHnjw3Tzz/IscO9bF96szZPbAsER8WzU364vcdZQHC6uZgNbMTYrbTVDuVtjd/j1/+2/hVZfIN9Lc3U2jd8fzd2n+v/Z95Ex/fNfz4NV1opECvxoLURbFHXl3d6NrvtVxeI4HE/FrjnG3ou1uhixqFilT5NkdJjN3UEjL8s+9W+bbxd33eNytuPuO6JJvgtK92XHKuzx2cMw7OdF3efeypOIH/M+f/vKd6N1BI6sUkBdsbO2xemQey/URQlFkGYGGajUAobBtCynB9W3mW3WULdGWwrFt4jhjOg7xfWOOkOcFtuNw5doatUqFJElZXp7HcW2iKEIpQX9/SJ6VtNo1+oMhfmBomUElYDgOcVwPgcNwFNKer5GlEfvb5gbluDZamSDZPM/oD4acPLWCsow1cBwl+EGFNEm4cWuLs5dusLIwh7Y0fsWI+SlzXjh/hSJNmF/oUqvXyIqC8XSC5WgsVyGE4uNfeIKVTgvLsphOQvKiwPVs4sS4O66vbzM330FijFS+/uw5jizOo7SF7dj4QUASGrtoiSSchnieT56XJFGKkpJKJeDeE6vG5KNVpdcfEE9NAHiWpFiW0bplccFwOKbIC4ajiaFsjUOOrC7ieS5CClzHIQpj6q7D0E4JfJfJZIpjKbbWe3ziM08xP1djcWGBPC/xXA8Q7O8PUEqTpRmT6cSYTGhNpeKjhCKMQiaTEUHgmQV0nlGtVUjThONHjf6jUvPwfJckiwinCcNJjl9pcOz4EdLMZMd5nodSJvBYas3Ozj73nrkHz/ewbItWp8U9bYt/8JFLPDoPy4sdrq9tUal4dDtNjh1bngXIG3fZIKigpYVUmjTJqVV9ojhmdWWeoigIqj6u4+JYAqUFQdXnyHIX23GxtODatS3CMKVSCQ41SWtrO8x3mziew81bG1y9tM9kmtCoK168cJmluQ77+xPuPX2EvMgZjcdoZbGz28PzLVzHpixLkiTjjz71Ij/07pP0e2M+9dnnGQ6HdBoVhBBcuXKL7lyL567u8b777uHI8hKNRgMh9GzhnzEdj/nCl1/g4QeOYjsujzx8ilF/n1anMzOY0RRFwdmz5zl67Ci2ZXPm9BFsLbC0pD8ccvrUcRrNBq7n8shDp8jLgjSbsD/o02pVOXVmFVRpigPbQgphcvIqAUWZkqUloiwoi4Rq4DPX7dLvD6jVqywudhkMhlQ8h0oQMJ1GLC0tMhpPEUrRrNZpt1qURcn8XJOd3h7RJKHiVUgTsLXP3vYYNctwPKTCztpZv/oHX+WXfukXcbyAF89f4Gcfvp+K59Js1ZmMp2hpIZAm7qOEJDEL/7IEE6FhFgUHxjxSm+KnLA310MjzJMxol0ije8yyA92noNmoMT/XpCSnUjfNrDRNicMp4XRCpdoAoUyjTAos154ZOBhqpqHyGbOFna0dqrWqoVPOaMflbD4XFIdoXlkYjaBSkiRJZnRofficlII8L5mOQz72mS9z8qihkCqtyVMTCZEmKWVhTHiAw88iz/OZ0YrJq3Mcjyeffp6VxQV2d/dM8WQp4wA601GVJaZpJtXMrGqHoOKjpTbRAlLiuDaD4QDH8rEsh2eefpnpJGZhfgGhja7ZcRzKvODcxUssL83zvzzxJO/7gdOkWcqzTz9Po1ahUqvw/HO3+HcWuzz38mUaQWCcST3P6KvLgvFoTBKl+J7D5vo2Wgna7TplWbC7P8BWilNHl9CWxPc9sjTHtmyiMGZvp0+1XmF3t8eV65tYljAuzdrM1/W6Z6j3rg1KoC2JZWlazQZKKYMOI7Bnn/e/ubnFz37og0B51+Lujtv2QXF3l8cOxrve9U72LvZvQ3UPbtZmoey5LkIodnducu/JM9RrLXLLYTwac/XqFWq1OtNwTL1eo9np4LlN1m6uUa0HdDpVdnduUJYl9bqJgXEcB9vRiHKmV6WcMTVyfNdnFN2gOedg2x7PPP11motzaFtw/fplms02lnbJihwvqBP4FYo8R5QFSgmUZbSmUoOtNe12F7RGColju1y7foMkzdjtjen1BnQW25TYXLl6mblOnSyJoZSMxxPSdEyrVafiuQipsNwKg+mYzb0BzVaH3/zsx7GxuffMCR557PRsHn0NsnaX7+cNi7vbXmTqk7fmmPPdFm1vddwt9uDOUb6h0+YbjvLVmC+YgQl/1oje4bHf2jFFWb56Pm9wHn/ei7u3oxDeHoejLMrD7fXGj//kj/F7H/lt/oMvPnPnE4XZP4liGlUPqW2KWUSCpTXz83VanSaUB0gT9Hb3+dI3zxKFEa7jsL3dw7YsqtXAZLHZttEn5QWrS3NsbO6wubXP+voWg8GI3T2j1eh0mswvtCmBRqOKY1s0m/UZda6K63t885lLjMexsbR3bRzbwnd9KE3uUxhGaC2pV32UNn9QfzDCcR02N3aghNXlBX7onQ8hhCCO4tlkbwwo3v2OMywtdgxCZVlIpYji1FDwXGMJ3vB99vaH7Gz3qFQDXNeEKfuBx2g4ZnGuQ54UjMchJZK9/oQ8K/jyky8wGIzZ3+3zJ195lp2NPcrcLFjTJOepZ1/hc0+eRVs2aZozmUxN5zovqNdrQIGUgiDwSGZGFnv7fRqNOtNpzHA4pdVuUqtXEMDGxjZJnPC5rz6DVIpfeeEq1cBQpSqBR0nJ3HyXxx89RbfToURgaRvHcbl+fR1LW/R7Q6bTEH/m+imFZHt7zxi1uMbtNMtSopmRQJGbLDfHtenMN1HaLEQtR7OyeoT3vOcHmJtfwAtcBBjdU28ACNrtFl974nmOHF02gdGWxq8ExvBCFPzEg010rYYXuLzn8TOsrs7TaDfR2uITn32G0ThEKc3FS7fI8oI8N1Rcv+oZYwdlCpTpZMr+7h5hFOMHLlEUUZYFSRIymUQcPbpEo1Fle3sfVSqSJGF+volUijRJmZ/r0GrWuXhlmyiOeei+IziuS6vZmNHhjJutZWt2eyMuXrp5WKR4rsvqQpU0ScmzjJ//4A/y3nc/dJilduKeFb7xrXP86p9s0O228IIKUjuA4Mrl60zHE3zHodXyWFiaJ89zXjz7CkVRYlmaP/6Tr/LM02eRwLvf9TAvnb3IuZcvMZ2GrK4s4NqaTrfNYDQiydKZY2CKVBIvqPLwww+QZgW9/pAS+OSfftVoSaUk8H2UZZGlJt5CUjIaDNje2ubylessLS8y6A+J4xjfc0nTlN2dXYq8ZH+/T6VaYXunR+C5vPjCK4RRSLVeYWV1Ga3VzE3P6N/++FNf56WzF2fXx8Fiq0BIxW/+8o/wD/7x/8Aj73yE3/rwh/nbX/4Kw9GQwWBIlmYoqfjGE8/wmS9+gzzNsC3rkEqRpilFXhxe+1prommIlMJo0wqzuMiL0tDBhaQsjEFTmpvGiQCqVY9mq06tXiHLylmBVVIJApIooSgMrV3OirgDYz5DTcsP52kwZkpJkhx23MuZ6UqZ5WaZM/tRKWkKCmCWFZeYQvQgwqY0CxzP9zi2OGeC16UpVm3HaKI936XRqqNtje3YjAYjPvLHnzbz4OyD7nQ7aEvz4uUb5GXO/KJBnS1Lm8iKopwhgUZf5tjG8XJ+vovrufzxZ77MZ77yFGVRsL/Xw3Vs/MDDdW0efOAUrWYVZ8b8iKYhw/4QpRXvfc87KYuSv/roO4weMElY6LZnWsGC53b3SKKE00eXAYm2jH7z1q1Ner0BtYqPbWm2t/botBtUApfd3V2KoqA3GLE3GFOWJYPeGCUVUZQwmYQ4js3i8hxpYijqcZGYWIhZruBwNCJOU2rNKnEao2e6XTFz3tCz31c0TUjTjDTJvoO79Vsbf/LJT7+u04dB/CTCcYnCKXuba+R5zO7eHtWganSUWUYQ+Di2Tau1iNCSSTimvz9lOBpx+sGH6CzMgYIszcnTksko5Ozz35yxYjLSNAEhuHbhCiuLKywvLJFMYK51gt3tHW7dWiMvwHF8tFScO38ey6myu9+jKCV5liApQEjyoqAoMrQWCJFSFjmDfo88z1iYX6IsBEdXj3Dk+CrVWhUlD1xr89l1ZHSf9933MPWqMWoq8sywQNpLbO32CMOE9x97HysrqwyG/Zn5mQAh/28pSr7b8UZo39vj9ceBGvi7Llj/nIy3kbvv8bgbcvd6LkKvpWcCdyB3rwaf3w2OvjvV85Afffv7lIWhlMnbO0F3R+7A6Ame+PqT/Kuz5/npY4tmbVBIyqzg4oUrLM41KZQFpTSUUFHiBTaFkNi2xdVra4dOmfefXqUsSy5cvsWRlUX6gxHnLt2g264zDae4rrkRh1HMXLdDHMX86RMv8+533EvgO8TTEFGajvZ0GpLmGQiTYfeRTz9Jw7Wo13xWV+aMTbxllOtSSBMLUeTEUcx4HPLFb53lvhNHmUxCpJSkSYZA8PEvPstiq06r3UQpxc2bGzieWXgcfC5hGGFbFqUQMxtzacxilDJOeqVkrtmgXq0wHI4JKj5lmTOaTLEdB9932d3u8fuffZLVbhOpJd/3yBkEsDTX5MKVW6yuzHPvPSvUG8ZowvNd8jynVa2yPNckihKEgCBwgRLLMQiUZSn6wzFaayaTEG1p6vUKlqPxPJc8y/Fch/1BD9tRVGsBlqU4dc8qRZHz8c1d/sb7H6Usc/Z293Bdh93tPqdOH2N9bYN6vQpAGEUkSQKixHEtFha6lMLQxnr7A2rVCpZWWJZBTNfXt1hZWSJNM556+kVsaZEXOZVaQJpklHlpzHYKiJIUx3VYW99ge7vP8tIccZzgOjbRNMKxFc1mg3PnLhFOQ4LAN1EMRcljZ04wLTz+/q/+Dj/xF+5jPJ5w4dIt5jpNzl9a5/Q9i+RFzvx8m63NPYbDMXGcElRd8iLD0hae67CxsUu308T1fbLcoH1aWyRRiqUFtmNz/cYW3XaD7Y0dGq2aMUHxnFmAvUDpknc+eookThkNI65c22J5sY1QkiiKEEIwnkTUqj6eYzMeT/EcizzLaDUD2u0G40loqE5amatblFCU/M5Xt/l7H3ycheVFiixnMp0iJSwtLfDcCy9z9MgyZ84cY3d7m0arhRBw/foNFpYXOfvCVU4eXaRaDciKmDLBRIs4xqDEcYxz6fr6FnNznUN0y3M9sgSef+YVFhbmZ4HBEs8WNFsNitIYcOR5QZiMee6ZC3RadZQypjG27SIoGQxGVKsB2rLwXBfHcfnYp75BnqV4rk2zWSeaxti2MrbnSiOlhZQZaRZjOyZ/q9sNWFlZZjgazmI9Jkih2Nvdp1GvcayZ4S6dNBb8ccbf/T9+k5+85zSubbO+vonn2LSbdep1E28wHo3xXAel1GF2ktLG7MFkTZUURcn+bp+tzV2azfph8LAUgiIrsSwbJcz8Oh6NsC2bPDUZb1KCZSuyJGU0DPmTLzzJvSeOGj2blrOVyIzKJTikdR2YPymlKA6zEkDKkiyJ0DNzi+wgyFwZJoLSCq2Nhb+Zms0CUSlBlqccPbpMmqaH3zulMeFAYFC8wwxSlwfOnETPCnjAfMfTiO975P7ZYtg0DsTsvafjKVubu1RrNaOpU4qyKNjZ2iEKIx5+8Iz526VGawvbNrrGnd1tHM+i1a4bfdw0Zn+/Z2JMalUGvT5B4PFHL72I74Q0a8YgR1k2SZrye189zweW51BKEUYRn/nKCyx16liWolYzKLvrO7iOQxiaWIPAd2dUbR/Ptmm3m1TrFa7fWOfpl69w4sgSQkj2dnrUG1WKXHJ0tUG33aHIBGmR4bguL7x0iU6rbubqwmg1xUy3OeiPDhuNURxTrVX56PWNN0Tu7obWHFL+7vL6e+87zUtfuEql6vLtd3XziB34LHRX2Ni4yf7+LaJJTLM9R6fdIQgCBoMecRwzzfbY3Nhmce4kYTJmMJpy+fwe21sjarU2vmeTi5BJss989whlkc/iaiDPQFkSv2LhOBJIqNds9tbH9LZ26XTnaTZb7Pf2UNpid3efSrVJHKdYehbYLTRFluHYFmmWkuUlRWlTrdQZDgdUa00qlSplOiIcDwg8hSpzGpUKeZ6iLYesyHFcZ0ZVNm7Zlm0xmY6Jo4TpOKbdXeK+Bx/GX9LcvHWVR95xP0j7dVGyO5CpN0Pu7qD+iQO1zB3HLYryjvByE01yN5TJrOr+rQvO22Q7dxsHzaPv5H1ud7YsZ8c+0Ifefpw75EHf/V9gzvMtIndvdfx5R+7eLu6+x+PNDFXuNl6vuCs5yMl74x/1m1E9D0DqOy/e1y/uAP7y+3+U73/Pe/ilX/tXfPD4EpSCeBoTT6e0GxWkPXMPk9KgSBKKIiOKInzHoVGvoYXiyq01apWAI6uLZFmJZVtoMHltNd/wtwsTOnv95ibNeo33PHaGPMuYTKf4tibPC/Z7w5mTnKF7kksWG1WW5poMBz12+ztYCny3grIcoiwGXeA6ZqETTmNOrqwgSmmyehyTr/TRzz/Bj733MVqNOh/73DfwtMXq0SX8qs/21i6j0ZRavYJrOwip2N3dpVLxyJKcvZ0+juWihCKZ0Zpu3NjghUs3OHV0mSRJcFwHbSkm4xDXsXn03mO051vYrg1lwbA/xFYmzqFWD3B8m1wUIEGKkiiMqNYCbMfC9Wxs21jBS2Uc/JI4Q7s2lUqF8XhKrVGfhR9nDIYjhsMR9XrV5AmREgQuYRSys9c/DLD+vWs3+dEHO1Rr5hjGvczCdiT7/R71Rg2pFVJAs1nFshWTcEKaJfhB1SAAto3j2ITTKUkcs7c/YGlxkek0NNqOSkAc5iwsL4KAnZ198rjEs32kDQUJrmvj2w6tVoP9vR67uz2TaRUndDtthr0hqyuLdNpNLl+8SqNWY9gfcePmJpqcD7z/3+V//KNneceyxT3HlpACFtoV6vUq2lZGg5OkNBoVmq0qpTSZN1EUA1D1XZ55/gIrKyuAmGmNJBLNXm8Hz3cMCuHaqDJH2JpWow7A1s4+fuAg5YiSgouv7JOlkkbDpdH0KQqwbYVQAtd1GU9C5rrz1GsB0+kE19U0mgEFAs/3KAVox6BVWin+9q9f4L//j36YWr1uzE1kjqUUUhna3/LyokGDyoI8S4iTjEajQTwZU2u1WGjVCcchnU6DKJlgobi1sc39D5xGWxZRlKCVpBoEFHnOuXOXuHVzE1trhMioVV1u3rzF3HyDNI3QWmNpzQsvnqfdaqBtG9u1CJwqZV4yHA+pNerU6nV2d/ZYWOhiWRZpmrKzNySoVji2uki7WePrTz3HmVNHuXZjnZWVRRzH5tLFa6ZqDoUAACAASURBVASujxA21WqdJM9BSFrtFgioVDykBMfxEChc2+jwHJnwH/+j3+Cv//xP8d73PM7v/OEnub8SsNJuUwk8mvUatXqVPMvxAw/bsWZT4UG8QEGapGitbnPxy3Ecl73dHs1GFVGWrN9cI5xGWFrzh5/4HA/dd5LtzR2eefEV5pttPv+lpwnDIXPd5kwLpPCDOvceO0JepJR5hpiZbCRJitL6UCtyEJhuGlAGPX112i7IkgQJpEmGtl201MSxMTgpZ8hiURRsb+4yGIwJAh9Eyd7eDtWaz4FrptLGpj/LMgzLVBmEUxkNXZZmeK57aBQjZsiz63koddtybRYnobWF5wXYts3TT79ANA3pdtuMRxOm0ylrm5t85ivf4sTqCs+/cI6rtzZYnlukXm8YbV4uGY9CCgq6cx2ajTp5ljMaGcfif37uFf7WT3wfpYA4LUmykutXbjG3OaatLbIspaCgYTmkeTYzUtIUlChHEEUpSlt87usvsLzQZRJOZw2WkKdfusTG1i73nz7OfSePIqVmOg3pD0e02w3iqCTORpBr4jDn1uYGzUqdFy9c48TqPGVRGqdV5UApDGo4GNFuV0mzlK3NPdqtJh+98cbF3Zvd3187drZ2YXibJu/wfzlD7gTSkmjtIbTFcP8mLdfn0sY6jXpz1leQhkq/k7E0v8Izz3+NxaVjXLt5i5Wjx0jEhKtXL2CrOjevrVENFnFdgdaSPM/I85IrF89hBzXWr9yk3VhAiBjPsem2KgQBLK2uGnQ/F6aB5npcv3qDoihpNiqUlCgM1TNLEoS0mEQ5G2sbeH6Nfq9PKQSu74J0Cfx5nvzW13Fsn3qzia00pSjJFaAkGovpZILtehRFTpFlWNrmgTOPMre8guO5/Ff/9O+yutTl3Y+/C2k5317cHdZr30Fxd9tQsxgM+RpktSxfP98uzwuzn1KHjrTfKzTxO3mf2zPt3ijb7vUkSd/V+b1d3N0x/r+NS/6/fEje2hdQ3LaJUt6xlcXrUC5EcbiJ27biNcczDCJxSBV59QD5t2+vGatHV9Fa86kLlxEUTEZ9as0queuZBQglKJP3RCHQaG7e2MJ1bYq8pMgFr5zfII4ykijm4sUr9Ld28LRNf39KNMmxtAtCMA2nzM/VSNIpeTwhmU7o7/VBu0jLZmHZmK7Ylk2R5qAKFle7pAK073Pi1HEc36MoUvp7+1TcKrYMmIxDtvf7dJe61FpV3IqLkpLR/oDRYMT7HnuQcRgxGo95/194Dy9d2EBJTZlm6FJz/uIaeVqQk1PInGa9ymQ4ZTyY8OknniOKp2R5jGULpILhOOR973kHWZbjN32cism086sO1bkKTs0jyzPyLKMQ0Og2QcPSSgdExsb6Bjvru5RJPvvujWOdUortrT2ef+ESILl+fRMlNUFQIU9S8iSlVq2YBSOgbYWlFe1miyhMeP7cZWpBjSKT2NKn2+jgeS62o3hgpUG7PUeaWXTnFykpcX1NrzfhwoVtpHCRSKS2SIuSfn/CdJzQqDVJw4g8TekNegglqNQqeIGPH7iESYx2XSxb02zXWVptI2ROWRbYliaKxgjbZGQpYQwsCiFQRUa14nDy/ntwqj43b+2CElQbFW5eXyMOU06cPMFwPMV2bZZXuly4egOyiH/01/8y//Uf7iKEYjyKuLW+x4UL141tvaXwAgvbs7BsG4nFdBwTTmJG/TFhknLmzBGiyZh4OmU6jnjyqVe4dPkmoig5f+4m62u77PfG7Icx00lGkhRmcS4Kbly7iRIB+7sT5hcq3HtmkbIouXLFBAdrqXEsG8qMTjsAEXPlyjVcx8JxHTKRI5VAWwLbNlpWUQp+4V+e59f+8x/G8jV5OaNHhzHbW1tcunTVxFRoSSkFQtg888x1fNtBqYxTD5ymyAouXL3KPWeWefnCRYJqi+p8je97/CGEMJS+StVje7eH7XsUSE6cOMY9x1dpNOt4FY9CSY6dPIqQFo4TUK1VmEyG3HfqCLvbO4aWu96jXneQKmUyCsnTnCjJaM91sCyHOEkRSjNf9wn7+2xs3qJa93n80QeJw5zeYMDm5hZKGiSo3+8zDUMT7zEJiSdjlCqgiNnf30MqDUIRhjGf+tOnKYWL5db5g7/30/y1X/ovGWclH/2N/4l/dvkV8iKkXvdxXYsSCOoB02hKlsa8dPYseZFSlBlSS6ODm1HvsjSbIXmCVqNOKUFqC8ep8tFPPUlWSB44cYI0y5hbWKAZNFjf2OaHfvARHrz/DFJp8iwjDiO0EmjH4ZOffxIhHUoUQivzfmVJHk9RRUo42CcaDSjzKVpqQIOQpGlMmUscv4KwHWzfRyFA5NiOmXNNBmjBZDwhTRKeff48wqSi0ml1yZPCGJ4IQZnnZGlKnidGWzijUiaz786yFFmeHBah69c36G33yKKEPMkos9JQFIWC0oSgu4FNViacOXWSiucRhWPa3SoLi22WugusznUIoyk/8P2P8Rff+y7G4wlxEmI5AttVZHnKpz77DWQpSJIIbUsWFhe5fGWNluswCqfkZc54MDRzT5Hza9duMR6HJHFKFuVIT9JuV9np9clTcw0Nd0Omw5hPf+UZfuS9j/H0cxfI0pw0z/E9nxMLy8w3G6R5wmQ6RqoCKUuOHV0ydNkiYbAXYzsWSRpSdYzD7A+/92GiLMYJHJI0ZzztgUxZWZnj3tPHkNLY8adlym+de4X/4j/7T5GlJJevGlgcOArfvTX7xuNLX/zyHcygV+/7xQwyKSnzglKBX2+xuHI/o8k+97QaXDh/Fuk6XL1xA88JUJ4NlqLa6LCwuMw7Hn4crRyi3ohHHvo+nLrFRm+Xzf0e2i3pj7YphUQ7invue5BKpUJvb8gkishFQhiPiYsEt1Ll+votLly6xOatWySphbBs7n3wIc69fI3ROCKKQ7IsRSmbXEEuUmwFi/OLFHlBu72AUraJNkpSzl98gTR12d3fM/sKwW5/QH8wpsjMZ+raFaMHLGE0TekNx1i2S5lDEiZE+2M2bm3Tn0woRUkpTCO8lILyoCib6V3vNu5AWUsJpUQKdbgZzWrxbftJKe4wyTGPqRnCLo2RSvHqfsZYpbgjfuTNxgEL4WAry+JOc5HXPH8QcXDwvgf/375+lbdtd1tncpfXvt7zb3jur/PvAAIsb/t3+zn//228jdx9j8ftyN3BVP2ddCze8vR+F+OV1zuCuNtr77r7t+/7sx/6Gf7+h/81P70yz872Hq1mHWmbgG0BTIYTyE3XrSwkFd/j/KXrBJ6DFzgMRmNazSqu5/B/sfeewbalZ53f713vymHnfXK6OXSUECAJGDDMYBiNGEASYBcu7PnAgPEYmypXuVzgDy77gxnjGddMTdkzLmCsIQ9ISEgoIKTuRt3q7tu5++Z8cto5rvT6w7vPuedKtxNhqobqt2vX7Vpn7332WXuF53n+yXVsEILRhErouhbXbm9gGAbjOEPlilqtwtrmHrWpKoPhiKgY4Xg2G+s7lCtFDFPSanVwbQvLsRkORzrE2xCTqXVOtzfAcV063T6B5yAtC0ROrlLG4wG2Y2ldlefzZ8+9xsrMDLdXt/na85f5yA98O1IqsjTG9R2m6yVd3KFNUwxhcOvOJrZpU/YD5uamSeIE13V57Y0bnDq2gO2YKJUhlUkWK9bv7lAqFGjv9XB9W1/cUShyTFMisVEIkjgmy3Lq0xUsSyOW/f5QB7ZKLWZfXJghy7KJdT984YnncC2pzUxMrf0yDIMsBUvaPPPCJZbnZ6iXSziuzaA/RAmBZVtsb+/h+x7GrMnJxTppNkKhMKWDyrUG6ZGHTyHI2d3ZY9Dt4pgmQRggDW1P7jgWtm0RRpG+kSntIogQGIaB5zlIUwc6m6ZFvzfAcR0cx9KIolLIiQthlmaH5hG27x0GAFdLIesb29i2xc5Ok3q9zO07q0xN17jw4kUefeQsy4vT+L7P6t11zlYs/qc/vMnHPziLaQrm5iuYpk2WJpMcMwPD0GhrmmYMeiNu3Nlm5dgsfuDz9LOv47k2tVqZv3j2KqNxzOOPn8T3PQqFIpZl86k/eYGbt9aYrvqUykXCQkBUKGBa2oTH9wPSLKVQ9KjPlBHKYHdvHyEElmUhhMHzL1wj8Dw63cHEpEWjJZ2O1v7kueJHfvVZfuPnvh/HNXSRlgpee/Ui1VqNLBcUC0U2N3YoRCGmYRDHKa5tkaRjEArb8TClwcrSHAaC2fk59nabOLbL629cZ3qqRp4l7DX2qE/V8TwPpfIJdUjoYmMymXVdF5Ti0pXrzM7Wef31KywtzRNFEa1mm1K5SK5y1jd2OHFimY3NXaKix9b2Fpapw7ht20QJCycIqNVr5FnOy69coVwMWVqaZW19m729FosLs9y5u8H1GxvMz02xv9fCcz0dveC72rhj8rkc2+bkiXmEoWmLCsWg16SydIbd3X063QGVZMR0oUK3N0BlGmWxHAeVG3zpL17g0TMnOMjJFEKiQOfVGQKhtA7vU1/6Go89dELTWF2H9z1yCsuSTM1UMC2T8Thmc2ubV67c4vGHT0/OAYFp6Sw8KU2QilPHFknSFMuxMJgEmaOvXbt7+3iej2XbZKlGDjFyrf1VFgdGfkmcHE7asyzTqFquDnVoUhqEgc+pkytIUyDkRJ83yRw1LRNDSvI8n2RY6uJSpRm/85nPUyuVCKPg8L4gEOztNfjS0xc4f3IZ07a06coh4UqRptmE+m9w+fI1otDH9VxAoJSmu548sawp62j330FvRJqndDtdwjDEDwMeOn2cTqejKeWZLnSjMOTf377Bj33ncfq9Ab3ekE63CyjMm/vMu9rdeTAaYU3cKx3bYrfZptftMzc/jeu7nFqeI8tzlhbq2KbDq5dusjQ/y9rGHkFgEUYOlmUDYFuaNu24DnE8Jgw9lBJYlk27NeDq7bvYtqRSLpIkKc1mh2KxoKMuhEGSxEhLMBoN6XR79CxJMr3EmXMnyQ2lG/Mj9943dU184Fa9zj98jle+cJWo7N+3/eg7GUKRTcxybMclF5KNzTs4lsQ1TaqVKWzHx5iEvwe+zjC1peTm9Ss8+vi30W51CPwSS8vHsGwLRYJtRpimptoP+yOC0KM+W8JyTFRiYho2tmmwenON7Y0xi8tzWI5gNBjz+usvsDC7gO/7bK++wdzcvGYYKTVhK5hIwyLLY2zXQ9omSZoRBAGXL15iYXGZ9bV1ykWfQuTh2iGN3QbXrl5lenoWQ+akeYxAYkiTOFWUKjPYXkSWK4aDAdvXtnjsex7iw9/9nQhhTmqqe/RXIe7te513ef++vz/AW3zLNvhWlO6B36/ikKZ5EIKeZdkDX/dO0bVvpkYqNNp2YLTzwNdwzwzlqJnPA6U+b/f73+Hz3s3KJ+6h9/9t4i9t4PIfO3L3XnP3H3j9bWvuAD72iY/x0//Hv+RHpisIaeiQ5TjjwstXWJqfIUsy4nFMHOeMxyP2Wx2qpRDLNJmqV/jc119kuhwShQGjcYw0JLNzUwzHY67c3eTy7W12mz1OrsxMcqC06Ui9XmV9c5tCFDCOYxzHwXEdbFPSbHbwHO00Z0iD/f02m9v7BJ5LFAY8/fIlVhZmEQaYlo2QkGcJptQgpe97tNoDymHA7dVdTq3M8dj543ihqzPGbMloOMR2bLI048lnX+P40jx5mnH77jYXLt3m2x45hZQ6rFshCD2Pja1dKpUCfuhimTZZGiMNQSEKyNKcwWgAamKrrjTXfjxMeeobrzIzVSKK/ImGKaPT6U8MSzT1zrJM8iynPxjQ6w3wPY9zp1fwfR1DMOjr7DxpSvJY65xc02Jvv0WtWkYIuHlng2IUYJpS01yF4Cs72zx+corhsIfreQgsLl2+SrlUQKmcu3fWWFleJAy0fs8QBgjJSy9fpVYr6my5LJtM/wSddgffD8hzxc7uLuYkuksYpg4UZpITlefkCKQh2NvVWj8UmK57eIhmccyoP8D1A4IgYHZ2ahIebdDv96lXSqxvbFGfrmrHy9Dn2PICn/ius/zUP3uSHzjj4Lk2SZLjOtrAJ01zRsMxaZbjui6lUoFjy7PkSofdu6bB9FSN8XjMQ2cXcW1JfaaKNHVUR7fbZ2+3QxAYLM1XtcOibSFNXRwJYdBotPBDD9PSCMSVK2vs7LUZjxKm6mW63R7T9Sr1qSqOY4MSSGkipXa4Gw5G/Ny/vc2nf/nHNW2XhGarQ6lQxndtHC8gz3M2N7Y5eWJFT3WznCTLGA1jPvvFr/OdH3iILFMolXP75l2ajTaWaREVCnQ7fch1UHq31+bu6gb1WhVDGgwHAyxTxxgUChGWY+k8xCzj+s3bnDp1DJWllEpFPNdjMBjSnYSf66w4get5jIdj3MAj8AP2dhps7zQpFYv0h2N2dxtEhQCBwcJcnV6vj+PYzExP0W73mJqqYVuS4SBmqlah2WyxuDRPkqSkaYLre4emICrPdZyBgINok0eOzfBf/2+/wX/7i/+Eb//A+/lv/sX/w99fXMaybRzLYmNzmyefe4mVxQXe9+h5sjTRzddBcaeO+AoLbcr0yLlTKDJMSweCZ0k6GdDoqBoFVCtl3vfIGYQQSEuSpRkKsExLn/OGdhd0PYc8U/zfv/1pHjt/CpQiT1I8z0XaNoaUSEM7V2Yq0ecPFopMnyOWBWLSfE4CtQ8Q/jzPJ0xQY0LtjCf0MK1bti2L0XB0GGaexDGmZaEQDAcDlqanqE3VsSw9bBCGQbvdpVQs8tjZkziuCwYMB8NJpI3OvBr0B3iOQ5qmzM3pPMXRKCaOU1bXNlhcmmVrc4sg8Nnb3UMIKBZLxPFYa0ylzsdMsxTXddje2qXX71MsFhEC/ujaNT76/qXDY/rG7XXiXFFcH4IBg/EYx7JwbAvbMhkMR1RKBVSu8MOj2Xg2jUabMCzw58++jqlybq7tM10PqdWKGIZ2G93dbeC6Lq9fusHcbA3fdxkOYsDAdwNmZqLDsPUwDHV+n5CHtN40TXFdC0MKfNflV29s8yu/8j+CyMlEjnkfLvKXa+4Adq41cVzrTe/kYkI7VkI3TeVKjTyHfmeP9v42thvgugGZUqRpiuc6qDyn2djl9Okz5CpnZ3cP2/SwHZNvPPcUQozYWltnNOpTm57l1vWrGMLCdDTb6NprlyhWqxgiI4oq5EriuA5RISJwQ1ZWjmNKi9FoRJb0qFbrxPEQy7aRUpLEsc5bTMf4YQElDHZ297Fsj3qtRhCGbKyvcfL4cSxToYgpFkvU67P4vq8bIwWjUcxgOGRtY51ieRo/LLK/10QaBtVqiS+++FV+4hP/EHUYf3Avy/D+5u5bzVb+Jpq7PNcDTtOyHojU/WWaOzH5YwxDeyS8mf7taHN30BCqPJ/c0w6uiZPP/Ha//x0+790sQ4oJ6nlk23vN3XvrP9Q62tx9s8nJOxGVHqVYvOXhelSbl6sjL5qI/Y/87kNDlaMn/H2Ugsk2Q2u/vvlEyfKcx849wj/+jf+Pnz5zDCaoQrkY8qkvPY1vSlSWcXdtD9M0OHFsHpSOTCgWChQcSZ7llMtFnnnpGudOLRDHY7zA5uTKHEv1Oo29HjO1AkmSUixF2JaJYUqkUMSp5vUbwqDfG3Lpyi36gxG+YxMVfYaDIcVSkThOtbmFZSGEIAp9pJT0+2NMw6LXaeO5NmmqNWVKSKqVEuWCz9rmDvPzdaRpMB6O2Nrcw3YsTNPEdhzyJCXwte11niQ8evYEv/3Fr3NuZRbb0Vlmve6AO5t7TNd0IyUlpGrMKBnoG3qW4fs+43GCO9H85bnClJKl+Tp+4CAtyWg4whA6eyrPcp1nJQSj0VhbsueKu2s7lEsh0tTfnyEEw6EukrI0w8AijEJsW3L1zjoLMzXicUapqFHUPM8Iw5CtRovv/wfvQyhQuYHreJi2Np3oD/sUogjXd3np5csT58gEL/BJk4z5uRr7jQZRIZwgDSmD/oAvf/VZlpcW8Dwdxp6murEzJhbyWn+tEKbUN51c0Wt38VyXF1+9TBpnvP7GdY6vLBwWxRvru0SFENMxGY6GxPGYre09KpUyi4vzDAYDbNum1WqTpmOCIOAT332a//63LnJ5s893LEccBDD3OgOajR4KwYuv3MC3TdIso9FsEYQ+ltTnhes62ta8UiIlQ6CwHYkwFOfOLFGObKanawwGQzxfZ8gplevIjWaP6zfWqVcLeJ6L73lMT1UwBLzy+g0qxXASmAuW47Cz08BQ4Lp6mPCP/s0VPvnf/SDra1vYhkAZilKlxniUsXZ3gzD0WV/f5NSpFVZX1ykUtPZRGPDEUy/xDz/yXbTabRzHZ3tnmygoMD01Ra83wLQNnnzyVR599BSlSoFXX7/Chz/4bZiWSZIkdDsd4EAb49Dp9HFdh0ajiec5+IGPUIrd3SZRoYiUklajhZQGfhgiDD3w6LTaVOt1pDC59MZtLrx0G5VkzCxUsCbXjCzNGI5GlKtlBDqe4LnnrnLixAKtdotBf8SN22vU6yVu3FylUimRZwlB6DMajzBNidAEcdIkodMe4DouhjT40Q+e4Jf+6Sf5jg98gL//936QX/z1X+ejx4+xtrbFUy+8xvLsFNNTNd0EKYNuu8v29h7lkrbJ132ebhoRkCaxNhARkGVKXx8sqeM+coW05ASplnzjuZeYma3pGAFhkCQp0pKkaTLR02ik67GzJ7Ed7V6p4wn0dQlDIjDIUsVoONBZjdKeZJZq+lee57qZPUK36na0A7B5EGqK1sMO+yOdw2YYXLt2U+ucwwAhBLbjkCbagdNxbKShsGz3sLi1LIud7V2K5SK2q5s3bdwiGfVjrl69SalQ4MLLb7CyvKBNplCgBJ/7869zfHmBNE0IfJ/hcEShqPND+/0+AoPXL15laWEBQ0qeeuYCx5Z1DI9SEAYBUgoM0+BT167ysQ+dotvtMxqPQCiyNOWLz1/hdLnMKEmYqWpn2v5oxMKczuSMogAyPYAMQ592q4dA4DgurVaLc6cXWZqtUy4X6bR7uK5LmqQ4lo1pmjx14RLvf+TU5Dz3+NKTL1IJPfa7DYpRRLVaIR4ntBpdLOvgmNDIpBAGe7stxuOYL7V6/OQnPoYiJZc5ppJH7sVvXRO82dpY30I18sP64uBxX6lwiETpBi9XAj+MKJerBFGR5v4O/b7OlouCgI2NdSqVKoZl6qGVIalU6sRxwtb2Bh/84N9hMB7T7aQUqxWQgt3dMcOuwgsjLlx4mYWVxxlnCY4TkBkJUcnnlQuvUqnMkBNz89ZNeoOx1m+aFqbl0W5u4Ae+bpDHMagU25ZkSrG7t025MoNre7Q6TYajMVEY0WluE0Ue0k4RRo5pgJSCTnfM3TvrdAZjcmWxvPwQvq8dodc31rl984Ye8KomH/3RHyZXYmJqcsQs6d4ORHDPCOVBxisK7jsPmTxfH8fqPk+To7WXmKD7Wgeb3fd9HR0uvdtIhPsbT+59Do7UhXDPGOUgn+/gWJk8jIOm7kiG8jtp2N7x8yaZeAef5y2fe0hfPrrefr+82Xu/19y9t97Vejc5d2+33mlzd7+jinG4SWl+CPcuEm/yjodq4Qk3+5ueZ1o2Ksv49Kf+mCf22/xArYTt2EjD4PzxJZyJ25jvuXz+6Zc5d2yW4WhM6Ps4rostBaHvYRgmo2FClo0pFLWbZKPRphAWufDyLaoVm8BzcF2HJMuI45go8tneaRAG/qGwuRj4bDdazE3X9NTZlCgkYeDjONZhaGcQBUjD4Nc/9QRnl2apVQp0Oz0c18W0HZIkwwtcPNemGHnYvoMix7JsDCXwA480TUnTjFqtMim+BMVyEc/3OX9sjiDS0QGuaxMVQ6YrZVzPRSBoNDpEBV+je9LCdXWz5roOQsBoOJ7Q71JMS5KpFJVr84ZOu0eSZpP8O4/RaDTRyFk4rsuNiSOpHzhkSc54HOP73qE+qLXf5dU3rrO4UGdxto5pmXTafRqNFn/y9ec5d2wepQQ//+xr/MBDdfq9EZ/9/HM89ugZ2t0Wju3guDZpliANk4WFeT11DQPdbBpiUrhCGIUIqTU3jq2DvKu1CqaUNPYamJaDNB2EMaHydjUimeQZea7pImt3NyiXi1RrFYqFIoVQB34/9/xrLK8sUioU9M1Tav1oFAaUihHNfR19YdqmzuhSCse5Fxr74eMlzhybxTFiOs0mjmOTJClzc1M4nsvnv/oGj5yeY31jj71ml+npMo5lcmd1E9vS2rw80y6CSTLGNHVGV57rRvG5l64yVS/hODY7O3v4rs5+C0OtfyxEISjIFPiuS55lnFiZxxCCG7fX8TwLz3d1US0l4/GQn/i/XuV3fumH2d3RtNnRYEi5VibL4Q9+/wmyLKUQWVQrRVbXNgkCl3TSJAWhz6kTxxAoOt0uQRDhex5RVOAbT7/M6bPHMG2DQhgSRh7tVouTJ1Z4+cVLTM1UAT1ptmyL8XisIz9GMbZrU4hC2u2OptXlinKlxKc/+zUeeeg0pjQm5iQGhmly68YdCoUA2zFJkphyKWJmqsCJU8sEvoVrWwz7A65du8P8wiyWY9NutIjHKcUo5MbNVZJ0zMPnT5HnKdVKiUJBa/3arSbD0YgwChmNRtiWzWA4QuWC3/+jJzFUzvR0nTzL+OSfvcLj589xfOU4n/y93+WH5meYmpnl+Nys/gzDIZV6GZUo+r0B23v7OBOE94BmfEhRNSUHBhRK6SgSYQja7bZ2BTU0ohQnCfOzcxhSD97euHiN2bkpPdBAv08+YRzYtjUpLHVxmWb5REuoKbHxMObp51/k+LEFFDDsD3T+28G1XenG9qAGM6XOMpSGzh4zhEGe5eQ5jIY6lmSqXqNcLh4O/PI8QyG0cYvKsa0JTdMQk/cQFAoRGAYINFUUXWj9wR9/hXqpyMzsFKUoZDwcY1mWNjLJYXVtg7OnT1Crl4lHCcVSUf+taCSxsdfitau38G2LMArY3t3D92wKhQJJnDIYDMmyBEMIuT6hwgAAIABJREFUPnvzOj/86BLNVof+YIBSOdvNLqfHNpZpUpggNqNxzPL8NO1OH6HANHWsSjxOsUxJu9VFqZzPfOVFHj+7yNRUhY3NXT7ztZf50PvPkMQphiEZDkZIKXn/I6cZjxJazTZ//uyrvP/sMS5dXyeTMXP1OmmiKbeGaSBNg3a7je872kkWk2ajy3S9wqc3dvnJT/wYSmTkRo6pzHdQBbx1zRAVQv7f//Nfc/b0+Td/0uTYEodvpve947qYlk2axIyHXfywwObmGlNTc4zjBD/QaF7o+Vy9foX5hQX29vZ59dWXmZ2r09rvgpHQH/dZv9NjeiaiUp9lb2eLODNoNHdpNTs0Ow2qtTlcN6DRaDI1PUWlMoXp+NiuQ+B5vPjCM6wsLyAtA4nU0Uskmq6MpFqfI0kF5VIVx3G4fOUi8Tjm+LEV4nEPoQT9ThfT1MZZW1u7JIlgdWMDYTjs7O5Tr02jAT3BQw89wtWrl7ndvcvHP/EjZNn9jpVHTVQOdtsB3fnB39G3Nhl6mHKANqnJtoNz/V7LkWX3BjQHPzvQyR1se7fr7V5zWBUe6Za+Be37pnV0f8hJzus3awff9TqggfLuauOD9U5MVt4sVP295u699a7WfchdniMnE6B3OsnQxib62Qf/aehPgdDFg+amv8mbHslFOTyghcGhWONBj8nP1ZGT4KDJy/OMPDdJGz2S3i7XNrb51Oo2jw1SapUqKhO4nk2738S1HXa39pgtF2nsdXEti1t3NylXI/zIJ8szfNcmDB1GwwTLsghCjVqcPT5Hngs2NlsYQlIsRvzp088xUywzOz/FaBhz9eY6125ucfrULJVShD/RmRlSQpogNfxElqR4jkSojNwweez0PEJkdFtdoihCmBrd0nQgm0azhW24qDSBPAcl6HbHuIELYlK0GookSzByU99wRIJlC7Z39rSttikRStJpDRBAko156sJFTizNkedgWg5KCFrdAW7gYZiSwUC7yEUFnyzNMG2PZqOHNASOY+FNQl5bzTa265Dliv5gBMJgulKhVCpi21o3ZBiCW6sbTE9XyVJFPE549vUbnDuxzOVrd5iZreIGGiGIbIepepXG/j5ZlvDB7zxFGAa4DhRLAblSXL18d2IXb2B5JkLmWLlFrgyuXL7D+voWyXhEfW4aITX9LB6NiZOEqakacRJjmRZPPvkCp84sYlsGxiRsOctSslzhWjaGMMnylHK1jO06WKaFaduEUcitW6uacpgqsmzInbtrlAolDAxG4wTTsiiEDjdu3qTf601OEQvXCzjQRzb3WngCfuFffY5Oq8kHz8/ilUNanQ6+GfDo6XnCgiQMLZYWFzCFA6YiDAOarS6FYgGFQOUZnuvp8GkESuRkWcyx5Rk8z8WQFmFUYG21SZaB7ZgEoYNhKpIs5vkXrrA4P4Xjedy6tUGrOyDNIfIdLKnNkAxL8Guf2+LX/tH34Xou0tLBx5UpHWRtCMHpU3PMztUoVQJycmr1CmGhgO24+GGIyjOyLKY76DM9M8Vw0MexQp555jlG4x7VcoTjBDiBS7fbZTQeEUUes3MVBt0xfuBjuiaZUkRBkSeeeIHZ6QJuYNNstigXItZXNxAGSMvkzJnjZFlKPBgQRAVAkacp7Xafz37hRY4tzZClOVExoNvrIlBYUnLnzjrlWplytchwNESaEsvStOs3rlzjuz78CKiUYqVMsRRpUxeVa7fRqEgUuZiGwrZtcqVp1H7osru7xfR0mWq9Qq8/4D//Tx7lhY0EScJP/PBH+YVf/00+fvosuVI6XHwcIzEYdPVnuPDaZd73yFlQmj4pTfOA14QQOmNRKQFJxme+8FVOnzqBH0ZIpZGqNMlwHQdDQK8Xk47GzNQqdDsd/CgkTzM6rS4GBtIw6DQ7etBxqJXV+jnybOKGKRFKUSgWdDi5ZZPnOYPBYBJKr0hHMUKapBOnPXMSQ2NJC8PQVNMsTWg02wRBAAYTimhOmif0mgMsUyINOTHKQiM8eY7l2ORKaTbA5D6k61IdIH/m5Byeb2s9pgA3sBFSMRyOcVyL06dXsCytYbx14zalktZNH2ge3cDkzKllCoWQwPepFgp4oU+n08PzA0rlIn7kMo7H1OZzpooeoIjjhP5ghGkYPPHyLU4UigSeQ8H3qZUDbEtHLQjTwHYdipUCeaZz5prNLqVCiaWZMl989iLnTswxNV3m8XNLjEZjbFMPi9a2tikUfExLkOU5lmVy5tg8QeCzsjTF3PS0dtXsDYnjhDhOWF3dYWG2rptuQ2IKxfbmBtMLU3xmfZ8f/Ykfx1ACU93LMFNvUmAflgRvUzLcfmaVmYX5e6//psdRxAbU5D6vnSml1N/NKInZ371L4HnYhs321hZhqYYyJOlwRJInFColapUaszNz+G4AwmBm5jiuVabV3mZmYYXNrT3WNhsUSiWG4yH9RLLXGDEcpfQHQ0rlCliSsFhk0B+yt73NVK2i3XZJkdJGmAa5SsnjDMuy6fZjDOGwubOjtaKGyezcLNXpKnEa88bl19nZbaCEJPQ90iQHwyJXObd3G5w5c55qrU6pVGJ9Yx1DSho72yysLPLM1Wf56Y9/gvQQp7vHmzrQ2R08DMNAIB9YQynuURoftO5H64xD+iUc0DbvbyV1/fVXyN07ChV+E9WSI/8epVu+XXOn0Utd096rE9/66Hw7ZO6otu9gHUUV7/9ME2OVXFNn73E2JtezN6HH6Ub9W3+7Kc33mrv31jtf9yF3Sr2pReybr2999n0n+NuSnf8KBqnq/guMmNwY4hjizoCo4PAzP/NTfPkrT/Fn+03el+kT8MadNcqVENvzmJ+qMBiOcD0bZQgKoYfnORhScPvuJguLM2Rphuu4DPpDTeXyfP7i2ct8+wfO8WdPv85j51ewHIvZSgHX1a/1Q496pUjBc4kK/mFw7mAwBLSlPQjanR65UnR6A+I4xQsC8izVIba7TVDg+TqCwXUd9vab+J7LCy9fo14r0my1CcKQy9fuMjNVxJQGCm1PLqVEKHHYGDqujWUe5PykXL58m7vruywtTmsjj0qV0XikJ/SWjVLguzZCZbSbLWxp4Ds2/cFIUx1zhee5oHQhkabacMWUAiEltmMzHsUEvs9vf/ZrPHp2hTSNUTnYrkbNUIp4FCMMg8fOHUdKgz977hXed/4EaZKglGJuuk6ucobDEb92a50femSW0XDEwsKcnt4LweyMNiAwpMHG+ibj0YjVOxsALK3ME/i2Ru2KBVSeo/JJMWzIe9NHBAvzUximgSJDKIMkTQiCAGlKxnHMAQBh2SbjkW4I04n9eTxKCMKATqdLEE7iNUytR0qThDiJ2dvdY3FhlkKhgO04fP2ZV4lCF89zieMY2zZptTr8Fx/5EO87cZyf/Y3XOTYFy9NVNtZ2KJUjnnjmFabrFZJxAuRYtkY/KpUSKMVoMEJKQaPRxg88hsMRUpqoJNO0UiG5u7ZFqRThuw7bO/t02l0q5fAwBHtuegqVaypepVqiXq/Q6fToD4a8fPEmJ47N81/+6+v84g+colwusnp3g3KpgG1ZZLnCEBb7ey2KhRKvvHSZSjXC83XEgiklw+GIZqOF67psbu5Qq1W4evUm83OzJHHO0sI0gW9TKpVQaNOavd0Gy8sLIA7LGS1aF7ogGA9j6rUKUeST5YpWu0uxUODipZucOL7EcDTW9FXHwZKSYZwA2mxkb6/J1k6TPEuYneiVTFMyGo7pD0YsrywcWv/fuHWXVrPN/NwsKstZnJ/BMCRr61s4jjYO2t7eo16vYtkWaaoYDwfs7+5pcx8p2d/fx7Fsjh9b0KYWSmGaEsMweP75v6C+dIbtrW3+7vd8L7/wb3+TT5w5i8oVe80WSRLzzAsXOXViiZWFGdI8w5pEsBxO6icaHp3plHPrxh1qZZ2NKYTQeZ/o4kflOWmWYZo2v/XpP+XE4ix+6MOEFuk49uS6zqTo0CidEPf+VcBoOMQyLUqVImmcTYws9P3gIH9O5QrbthDywPVOEI9jTGmys7PL+toW1WqZ0XiIadm4vnPkXgHxeEy5XNTTbSkmsz49SMjSdHJL0frYA4gwTTNNQzUllm3RbLQpFkuaYm5JnftnmbSabR0Ar6Dd6rC32yAKQxzbZjAcYloWWaowhKS51yIZJ7TbXdI8o1bVTIksTcmyjH5vwO+8cYkPnZmj3e4CMBrHZLlitiVoD4ZUoxDfd8lzxV6zzVS9iiGMyefNsE0TFLSafT3kKhXY3t3nzMkFVtc2MRAEoU8cpyilqJSLjIYjPN/FlBLT0q+Xppw0+TkgaDY7fPprL/DwyQVmZqcwpNZBGtIknWRxeoWAH/qV/xnHdTGUDqN/UED1X6a5W31+n1K98KavP9qGGJPCXCE4AI9cz6VSrpKmCbs7m6zdvc3yygmyPCXPEjzXoVQq62uNadLr9ZCGqZkCfoFKpcLi8jGSNOHypct8+wc+iDRNjh0/xdmzD7O0uIQhBH4QcPnS65w5e54805Edtm2isjE3r7/GdLWq97HQ55DIdUzSOIFMmezstSgWq7zy8stYjkvgh2xvb7GzuY3j+qAUw24Dxwt58aWX9LW2MsPS0jGuXL1Er99jfn6JQlTg2aef5AMf/BBPvPoEH/+xHyH/Jl3cm9EgxZv4n6vJHn5bxOxg/78jnZhuNP86ohDeEh17h82dfqq6j6r5trXtXwKZO4oqPvBvf8B7vqsaebLea+7eW+9q/W1s7nzH4cJTzzA1XeXm+io/+49/nj/81B/zvQtVrl9f5eHzx/AChzTVhUoY+HS6XYqVAq5jkqQJwhCUyzo4+KU3rrM4O8OzL15lqloiiXPq5QKQE7qSmdkKKs903pJtMhwO2W80cWyTQiFkf7+F7dpYtqWDxZWi2x3iuA6Wa+N5PoY0SHNd4MXjMd3OgHq1woWL10njhGqlhLQMxoMRnucwv6gbnHKliGlb1Kcr2JZiPB5iSsmorymUw8EQyzYn34vUNCuhneAq5SKLC9NYjqmpmJYOY40KIcIQjIY6pHnYH2BJied5ZFmO47ighNblmAb7uy0saSFNyXAwIE0TLNuaTA4FeZby/oeOgchBpGRZiu2a9HsDojBga3ufar1InIwxpeT08gydXheRaz1YrsALfKJSxO/eXONn/8EH2NtvIoTAcRwsx0IZBmmaYpomrmXhOw65yJidn0IpjT7MzE6TJmO2tnbI84zA9+n2eti2Q57mXLt6i/1Gi2qtRK/XI0myCdJqkKT6/8WEuqKUotvpY9s6/LxYLhAEPo7r8Nxzr3H85AJSmjz9zMsEvosXOCRJgi0lF6/cZH5hDqXgxMkltjZ2QeWMR2OUymm2OxhSsLvd5O+cqnKrI/i1z1zjx767hm1bLM0uEI8y9vd32d7dZnpmCmnIwyJ2PB6ztd1gbn4KIfQxIC2TLDGwLJs4iRGGNnwe9YZ8+cnX+PAHTjIYDEjiMaYQ5Lku7J985jUKvsP+fovl5VkC32Vupsr//pl1fvVnvotiFFAohBQKIdtbOxQiH8N0GI3GmhqH4sq1W5w4dRyEZDyKQcHTT7/M/EwNMKhWKhiGpFQoIqTBxvq2pkjaFndXN7Bdh2888xK1SoEw9MlysGyb1btrRIWAVrNJvzfg0uVbmKZBuVQmGSdY0iJLM5aXFrEdnRWJ0BPV4XDM2tomo9EI13Uol4t4ruShh07i+S79wYAoDLFtm9urW1QqZW2MIyVTlTL1apn+YECr1ebypbtkWc7x48f48ycv4FgmszNTpHGKynNG/ZhiFLG5sYOUCkGK6+iBz2gcY9kHmVUGhoDzS1MUz3yAWq3G2sYaf/Klr9BpN/nu02coFSOefuE16tUieZ5Sr5XJyXF9lyzRNvIHhYQ2QdLIWrlSpFIpazTr4LopdKP9u5/5AudPnUAIwXxd/52f/PxX+I5Hzx3Rz+jCLYm1OczRSbgCOq0Oz734Ggtz0/o6aFmkmY7KQGl2wZXLN5GGie1MrkeICTKe6dgP36NYiDAMzT7wAhdDoCmbaaYNfAwJ5BPdYE6aJaAUvWaLMPQ1d0QYdDp9Nte2icJINyiTxhwlKBZLZFnOJ//953no5HH9SYTW72mqqKZwRYHPYDBgMBwyjmOCwEflguFwRKfT5cIbb/D4I2fxHJ8kTknihD9/6lkWZqbwXI9wOmGqFAGQJCmd3oAvv3qTs2bAVLGA5zo4tsm129sMxwn1cgnTMFhd26JcDknjBMfVOZpe4KNUzomlGX1vKhVwXZe9vRae7zIea7q/67qoHPb2GggBzXYbKQXSFBMjDInnuZxanCIIXQzbZJI/T26YmmUwGBEUA7LHvw37b6C5++V//st872Pf96avP4o+TWRgqEkzo4RACEmuDBzbJgiKKJUxGnaoFHxKoc1+p8NoOKIQFOl0urz40jfodIasrJwiCCOuXr+GQmGYFufPP0q5XKHX62HaFq+//Dwnjp/EMCTTM3PMzi3RajYoFMo0m/vMTtdI4ja1ShnT1Hq5PEs0soUiThIG4wwlLIT0cb2QpaUlyuUKhjC49Pol5qaXqdSq3Lhxnfmlk2xubVGuLZJkkocfeR8XL77G+XOPUi1XuX37FsN+l62Nu5x9+CG+7wPfz2Z3lem5mW/5Ht5NcyeMd6aJezfNnTpsuv7qiWZ/3c3dARvtbdd7zd3f2HqvufsPvO5zy3zXjR088Mh8EAVTaDTprWiZ72blWXr/yX3IPTcYj2JuXrpKqRTgRhFRaYqP/Kd/j1/6zd/moZkip6eqgGLUidla39UNk2VhIHR4tNK20s+8fJGluSlWFma01bKQVCpFoihgNIxZ297h3JkVdnb3iSKt7bIdC2kKQt9FGpLbd9aZnZ/CtrQ7WKfdxXFsbWuutN0zQmBMBP+avK8olopIw6QUhFimpN8f4Lk2fuDqC4VpIaVgY2OHMPS1UYPKyTNFlung3u3tfYJAFzaG0NPs8Tghnuj+4olL2mTHIQ0DL9AF8IGQejCM8cMQw7T4469+g+XZaazJFN4w9fQ99D2d2ZRlk98HlmvrSbhpMR7H2JZFPBqRZoluOHojxuMUyzSJxzFJElMoRGRZRqvVpT5VwbFNbMvBcpwJz0Twx6vbfPzDJylGIUEY3KMCC6FRyzxn2B8wHsVUamV63S4qU1QqZRqNFu12i0q5hOe5WBONGgJGfY2oLizM0h8OKBQjjSiYByJ9jRBKIVBo0xihBONxguWY2LbFK69cplopcuv2BqdPL5GmGcUoYm+/iWVJhv0+hWKBUqmA47jcurWKtAw6zR7rm7ucPLXCcDikEAVUqmXq5QqWY/PY2WU+tFLkn/y7K1y41uBDxzT6WKtFhIHN5maTze19qpWSNrGR+jt1XVfngaFwXZdBb0Sep5PIB5sbt9aYmarx2EPLNFptapUippTs7LWwHQfb0jlNtVqZarXCrVt3eebaDr/65Tb/4uf+Lr7vkSYp49GY0XhMlmc4tk2mMoajIa5rMRz2OHFiHkPabG3pCATbtlBpyuraNlNTNU0LThLGcczt22uEoU+eZxiGQRgFeL7HTL1MEAa4rsv29jbtdofFxXksU2JKiW1ZLMzPUakU2d3ZmxhNOBQKhckRIhgNB+T5hAbteVRrVaQU2I4+RvMspVTRiM7VKze1mY/rEIYBlmmyv7NHr9tDKTVBSLSxx1S9RqvVYXZ+ikopZGa2jue4gKLVbGnXz4nRTbfXoVQKUUjGcYJta8fVfOJEu7ezTxD6/NT/8M/58R/9KL/3+3/AmZWTvLS9zRnXxjdspqtl7qxt0e71ObY8j+M4mJaksdPiDz7/Vd7/yNmJVEk7u+ohjD6OURCPE91QSUmaZcxUKkQFTcEMohDXc3n8zAksqeMH7lEbtdnJ3l4Dx3HotLsYQusdbcfm2PLCYUapaZkIdP5fnsN4mHD1+m0ajTazc1NaAyONw/gKAJUrLNPS2WzxmHE8xrItsjQnTlLSJMMwJFkaY06Ck0Fg2Sat/Qa2Y08KTJ2/5TkuXugdDn1AN5Qq02jv4+dPI00T27EBxbA/JM91IZaMY/Iso1qr6OPOcQ4VAYYAP3RZmK3TajXIEsFnv/wUp08scmx5QUc1IPiX33iBxxYKtNs9jXrminLgIjYGeK6jkTkhmK6WmZ+qMhqNGI1GVKsl+oMh/f4Ax7bY3mtq2rNh8MWvv8DJ5RntAIrgytW7vHrtNqtbu9SLkTaikQbWJGamUi0eahFbrS5BEBAnKaY0MG1zEmuRk6Qp0rQYdge4lsn/8sZNfugTH0NI+S3N3X3mZg9Yb1aQC6nv/3/w+3/0ls3d0Tc4QPAQB8+duA8KMbkfRkxPzdAf9Ok1dwGFYdk0GrtUShXiJKZem2Zmdp5CVOClly7w0PmHabfbmFJSKpVYXb1LqVzG8zwc22F/f4/+oE+xUMIwTSxpcvHiazR2t/ADF8tISJPhZPCgT4wsTZCWlhFkwqJam6VYqXPj1jVMCY1WgzSNiQoFwjDAsARrGzepVGrsNbYJwhKPPf5tbG9tcfrMORSwvbXJ4uISF197iVIhZPHEMQzT5MbWNZZPHKPX6+O67qE75NGy61Dh8k0OpwePNNP3gTRNNco9+S7yXE1ceI9+N+qbaq2jhin3U3TvbXvzxwOb0KPGLwco25s0SweB5EcR3qNSooNX5HxrTftmtMuD7Q+iXb7demDDdvRve9B7Htkl7zTs/L3m7r31rtaDDFXe3XqHp8HBxfmvqbl7kJHKwUqGA5598hvMzNWZXV5hlBnkvQ4/+bEf43/9vT+kmo1YKZaQhsX6+i69CS3z+vompSAgCCNu3digGGgKlTRz2u0eMzPTSFNwd22Der2M75hICY5jYQgD23K0PXOccnt1k+lqhXIUYZgmzVYbz3MwTRPHs2k32hOjh5zhYIDjWIxHI1SurchHo4Rue8jOXovllRnC0Kfb7WFZJu1WR9M34wyVKqLQJ09TWq0Bn3vqRU4fW8SwTKJiiBA5pmWyu9XECwJUnpPlOX7osr/fJCoENPabmNKk2+6hUMRJDEKQZ4phb0iv2ycqBJxYnNM0l9aA1Y1tooIPQuFYLl956iVOHZ8lHo9J4hghtDGAlCam1IjhxuYel26uUvYKXHj1Jktz0zz76kUWZ6o4rk273ceSNp3uQAu2TYlhmhiGduTsdTv0iilTHniey8bmNpZlYlgmWRKDEpimxLJthGEQJ4LPfv4pzp8+hjAMxklCpaDzlcbjGMuySJKUu3c3SAZjvMDDi3zCwNOaNd/HNM3JjUM3kEJo++csTRHCZDyM8QONZHiug2FKCqFHUAjJc8Xrr1/j4YdO8fuf+jLnz64gMGm3ehSKRYqlCMuRhK7P3bUtZqarRMUIDIFt2+xs7TE9N8M4HpMnCT/y/uN8z9kFPvZP/5R6WTBoNDh5YoW9/RYrS7Ncu7HG3EyNQX9IpVpCTChpe3stokLAfrNJtVrCndBzC6HHKE5ZXd/F9z2CMMB2HE1DlSZJonPeLMvitTdu8lsXuvxXH/l+fvyDJ9ndaRB4Lp6v6XumaWEYEtt1uXNni/FYRwKk6Zgs1UYD+/v7FAsRuVK4vku1VsbzHPb29jFNSakUUSiGBFHACy9eZGlxllu3VilVi9iWhSHRzn6keK7W962vbWKbEse2NO1TwfrGJoXAZ3tnD0XOKB5x/coqhSjAdW0MQ4IwyLKcXGU6qsC1cR1nMtAYEgURQehx/fpN6pUid++scfHKHW7f3SFJcur1Op5nYQhwfZdxPML1bTzfQamcfrfD+tomSTzm+PFFrl27Q6VSplyM2N3ZISqWJnlvhqbDZRkXXniNne0Wc7PTfMfpaV5aG/LRj36MU8dWOHn8OP/sS1/mY6dPI4TBVLlMtVwiiiIdBzEcc/GNGzQ7A86dWpk0TApy3Tgalm6SVJIjcrBcXcCZpokfeCil8FybTreP7Tr0ewMae/t4fghkh5dplYPre4fXc9M0D6/Dg37/SNyDprFpR1SJEDBVq7BybAFjYqJ0oCnT5g6KTreH6zhkE3MqhKZSqhyeevoCx5eX9bH4+iVc28W2bNIsx7QsPNfjhVdfJ/S8ieuw1q4pdC6lMECRa52rIVAqPewakiQlTXSGZHRgsmLbhKHH1tY28TjGDz3ieOI+ahhIQ+JYLp4b0O8NOH9ymbAQYFoGz7/4Cotzc8yftqkV9TCj2erQ6vT4d0+8ygfLdVzHwbVtVK5otFtIKZidq+O4Dp7vQpbh2hY7e03tcDsaYxoGZ08s4HoOSZzS7w6p1ypUQo8Ti7PYjsPaxh5PXbjCw6dXsGybNEknzqYSL/DJM4VlmdiO1niJXJDFMd1uF8syGfS6tJpN/rDZ4yf/s59ECd4SuXvgvfkB2zT6o3f5F/70y3zo3IcOt7+TdZhdptCKMQGZECBNlDSxHA9TWGxsbjDsNYgCG5UP6XQ6bG6skomUQhRRjEpsb2sq58LCAtIQpGnMoN/TGZRugGnZNBoNfM8nS2Jsx2J+boFSsYBjS4bdHYphSKZysjSBTN+zMSRJotjc3sX2Cjh+gbmFBbI4ZmpqGs/3MYTgtddeIEmGzM+tUK/P4/sllpZPEMcx1WqZTqeF49iIyfBja+0qnmsyv3IcQ1p8+qt/wo/++EfwPO+Q6oy6l213dJd+a3N3+IXQ6/W1QVKeHw4/7sUcvFVdd68zeZCG7Z1QPd9y29toOh/07uoBPz/a/B3+/E2QubfS2f1Nr/eau/fW38j629jcpeOYW1du8ujj58ikhTAcjHjEcNDnB7/v+/j5f/Vv2Nlp8qETSxQLAZ5rIS2DleVZPNdlbXWH+YUZLNPUVvN2juf5oAxW1zZ59eZt6oUIx7XpDYaUyhFJnLC706JYKWJIQa0UsbvTZDyMcQKNoFiWDh7tdfsYiElOUqqnZ1mG6zoMR0PCMMCxbWzbo1op02m3sR0Ld5LnE0y9LWmEAAAgAElEQVSoad1WRxdnnkuWZzRbA2xpEngOtqt1Mp1WG8uyuHl7i2QUs9toMjdbp9VoUZ+qkqUpSglazQ55rvAD7XBpGLpZtQSEoceoP+RzX/0Gx+enCIJwklX3/7P33sGSZfd93+ecm2PH9/rlN3l2ZnZ3FotFECSIAAWAJMQgEYEibatYZNlVtmVZpZLFMiWyzGJRluyypZJMyTYlUmXSJEwzYJEzsbsANs+GmZ2cZ14Onbvv7Zv8x+n3JuzMBoBUlVX72+qafd23b3ffvrfP+Z7fN0B/MGT5xjqH9s6z0dwi9F0c12Zru43jqkwx27LQNQNNCBzDRJcmB/bOo2mSNImZalSRY0qRYZicPHsFXUrqjSogKLKCLEuJopg/XWnxt374OKN4RKVSxnYdtra30IW2m0mX5wWmZZKnggeP7KO5vY3ruViOTdTrEgQ+o1R1b6Sm4/seo0GkupChvxvFkWc5aZ4ratn43I3jCNM0x658GqM4wbTU5LwUhqyurBENRwyGA8IwpDFZI4lHvPexI8pN88RpJmoV/MDnxRMnyfMEEtizZ44XTpyiPlFC13VlQV9IhlGM5Zo4poGhO9i2yc9+6CAPHtzHP/zDy/zRsxt86v0ThIFPpRyiGwaD/hDTNmm32gwGMY2pOkIIPM+m1+uja6qL2+0M8AKPcjnA0DWyPFe290IQDyOiKKbbG/I/fnGVz5/q82/+zo+yvdUiika4jo0mBZqhQF2eZ+Puk8C2fM6fv8bCwgyapnHp0jVqtRKOZeL6Ls1mm2deeI1Dh/YyiiNc12FtbYNKtTS+RgRzs1OcP3+FwHeo1suceu0CU406eZFhaIIsG7Gx2WFmdgqysZmHYbCyskapFDDoDTiwfxHLs7l2fZkHjx7Bsg2iaMiZs5eYmKiTpzm6oY5FlqX4gYfU1WKE7bicO3uRxYVpbMNgMBjg2Db79s6yuDiP7bgM+u2xlbxBu6OcZpPRiOZ2k6WlVYbDiHIpoNvp7mov43iIoQuiUYrnebtgSErJxEQVMkGp5DNZDfmV/+Nx/sW/+Jc8eOggj3/uc8R5jhn3OTI1QxiWcGyLOB6xtLRCKQzYv3cvRw4s8pU/+y5zM5OqY2upTMlCCEUb/PbTlDwPyzHHwKkYa5skSTxC6gaGZaFrGq5loZsWuiGI4whNSKJBzOaWup4Mw0BKpYcUKFpjluU89cyLkOWUSqEKjc4y2q0233j6WfbMzmDaNtlohK5JklE6jqJQpiWDwZAv/dlTPHz0EI5rIYQkTXOefek0rc0W8/Oz1KvK/XdjYwtduwUup+p1bMdi2B9i6Bppnu9qkKFgNBqRjlKyPKPdUTEiAtUxuHbtBq7jqKD0TMXACCmwTGu3q6A6cjo3ry+TRCmDXszWRpvl9TX27p3H9kyuXrnG4tyc6jyEfZaW10AIuv0BmqbxW998jZ+Ym8W3LXSpOqe1kofUJK5jqw5llkGesbrRpD8cUhTqtT1PuQuPRgkgsG2bVrPDRKOKZan4iMnJKvMNRXO+cOkGlYqiuUZRrLSOO9NdAXmWIdCIo4iJiQoFMBoOsQ3JV5t9Pvmpn6YQ4s8F3GlCkuXKyfRzj3+R94/B3U4H5s3qVjB1sfP2KaQ27lBLLNOi5Jeo1ybJsxHNrSXyfIRthayvrzE9N8fqyhJpklGt1mm3WlSqVW7evMbs9CxxrKI3ypUammbQmJpCCkGruUmv32VzY40L51+lVq1h6gWCHMfxGKsBAYFm6ERRTpJpeH4N2w1Y21in5IWkuXK3TUYJhmEhihzX9nGckFp1gn5/wMXz5ylXS2xubZAkCcNBnygeUuQxhq4xs6jAnbEhefCHj40XUJUT7A7N8u6O6v3AXQEqpxW1QKNCyOVbAne3A7o8vzM2oSjePCfvPxi4u60buPue7wPu5Hj7H9hN8/uod8DdO/UXUj8wuNtxtrzrVhRKK1HsOl/uhG7ete296jYHzlu961vb3u1KtHt/kVMUOZYUfOXx3+b4+x5GN0roieT8+XPMzi2g6TaB5fPHL77ApyZCNrZbbLc7HDiwiJQa3e02papHq9uhXPGJ44hhLyFJElrtLqfPLTM/VWOyUcZzA8yxDXgcJ1SrZUaxomv0B6p7Ig1Brz/Asy06zQ4CRekpUOHGhpC4tkWW5/T7QzzHJY5HSAQb69voUnB1eYNapczq2iae64xF5jqWZXHh6k0q1RJSNwjKPqXQpVT2SKMRhqbsvS3b5uS5K0xPVHnl3A3qpYDaRIUszxCaQZbkrN5sUp8MieMIx7bQhAa5JM1jhK5j2jYH9sxhmQZFkaEZUtEwXQcNQRB4fPmpl3jk6EHSrKDT7iOF5FvPnqIequNYqYVoEkr1kDRPkZqgMVklzTOkbiKFZNDpMT1ZQmoFtmlBrrLVNE2iSXj0A3PIIscLfCzLZtDtsnr9BjML8ypkPFOidik0ZBHT7fUo16okSaoc7xylCTMMkyxXk7iiyAgCBdajQYSum4zihBeeO8O+PQvKtCPPSLMR3VYPz7XptNsYpo7t2JDlbKxtUS6XaLe6VColyuUAURSsrq5TrpQQUnL56g32zE/juBZb21uEvoMoBE7gMEpiFuenyIscL1AxGoatqLe97gA/UAHt3W6PUrlKmgo+9vAMP/vhIzx/tc8vf+Ysj7+4xV6zRa1awnZtut0hpTBU8Qh5ytZyC89V7n2WpRNHQywnZNAbIsnZ3moRxwnJKMPQDTZbfX75s+vMlzX++588ju/6DPpDfN8hCDykpiF1SRQNcWwLQ9fJkpTm1jbHjh0gL3KyJGeqMY3UCnTdItc0wrLH3vkF4n7Gv/u9r5JGEcePP0BRwImXzhAaNpajUa1PsrXV4xvffo6/8p5HuHFjlVKpxKAfYRgW8TDDtV0215sEYahyJnUN27IJAh9N03nt9CWOHj2IIGOURFiWyWSjTpGB7RkIITE0A1O3iQYjLl66ohwSRUG55BNFIzq9iF4/Zv/+RRzXRpMFo3iIH5YZDNWkeRTHxP0+paACwmB2bob5xVkgY5TkaLpyhzx97hp79+3HEDFZkqHrOqN0gJQGrWYP29WxHAtN13n33hr+4rv4sY//KI+95zF+6sc+xq///mf4aKNGFI9wXZtvfedZDuyZV8YcslDgHZ0zF69wYP+CMujIEpI4wrYMZqcaVKoVOoMOlm2TjFJltiEKhNQxLIM0TdAMQS4L9Z1mGYZmIIRJnsOffOlJHjq8D/KC9naPL33zCfbNT3H92hqu47K8us6hg3uxbUV3zLIMx3E5sLCAaZjoejF2EtV2KeNplmM7NrquU/F9giAgiQrSkXK9fOjIQWamJ0niEZquNMNBKWTQGxAEPoWArCgwLUXjFpquKJRSjunVahFC1w3SJMH3LAbdHgK1KKRpgm63QzkM6HX7kILtecTDmK8+8QwV18OxXeKkT7lU4ubqMo3pMpVqiYmJOsNILYY0phpYjk1OjpySWLqGbZloUmM0GvHdc6v8SH2K/jCmIGdqsozlmlQqIaDMjoq0wHRcLt1YYmF6kjAI+fbTp3jg4KKinWkwGA6RUjAYDFSMQaYAupSg2TmO5xGGLpohsUwDw1TnXxRFaIamgJ0UCF3lBmapoN3skqYZlXqFP725yc98+qfRxjQ6IST3GJXvebvnkF7s2OnvgLsPsIvSGIOC3Vm5eN0tH8OoWxb+YseQ+1bQtZQIyyIs19DNkNbGBhQxkxNlkmEHQybYloR8gG2BZwmkGOHYkiwZIIqU4bBNMuoxioaUwoAXTjzFwQMHGA7aDAcbeJ6L79i7JjtZkaMZKs5oMOgjDZObS5sYlkelVkLXBP1+G0NaKk+0s0VQKuN6IWGpQq/fZXt7E8d16PW7mJaL55SRaKwsXaffWkZmMdKymF08iJCSxvwM/+u/++f8tY98eJwdOc6dQ+4eI3VThkWqsVfc4dB4S8ai/t3Jw3u9E+br63YQKcTdf4sxtZk7QJXcNS57Y+ri3fu/11zvbvrlzn27z7910u3edjp4ty8mvI7WeRew21lQuBsEFtx/DnrH+xxn8t0Jtl//373qXtu9E4XwTr2t+sE7d/ep78ucZffJr7/rdiB439UVdb9WSP7Pf/Wv+NGf/EmE9CkSgWGoHxpdN5mZmeGf/c//lCdHBT+3bw9zcw2SJGFjcxtnrK0oV0JFhdF15XpoaAyHMQf3LVCpBORFSjrK0TRBu9VVQvYMiiLDNA1MQx/nlUgcRzltBqHH1nYbz3PQNdVhkbKg1x8QhiWybAxiNIlhKprY9aV1Tl1c4sDiNJomcBx7rKFQPxq1Sog5Ni/JCyjG5gS6YdDvDhBSYBgGe+aUBf7euQaOY9Pr9lS4s5BsrG9TLZfZbrX5+gsneeTIPpIkIctUyGqWZuMgc4PlpTXSNMNxHWzXQdc0ut0evu/gGLrSoJkqC80wTI7sm8c2TYJSQDSMsRxHgSxDhSX3+wMQYDuKshINIsKSp7ID04xkrOmyHYv/4plTfOIvH6Rc8kmznLyAJBlRKwdopqV0kaYyReh3+1AUxHGqJo62jRwbYjz/4kkcx8R1bLa2m5RKIekoURMMTTIaJWoiqAkcV4UjS03DNEwc2ybPM3RdI01VxuAwipicmiDPC/zAI0lU5tLa2iZTUxO7pixKW5hRLpcIAh/XdalWy6pDYCjtz0svn2VmpkEcxUrX1Onyp59/ik6ryeLcDIauEw0juu0unU6PcqnMvpkqn/jAAR6ua1zsmfzG45f4o+fWaF+7yMOH5zAMg1EUY5kqsNi2ba5cWaJSLtEfRqyub1GvlSiFPkUBT59e4je+tMVP/9V389EjdX7kvUdxPUUhth17TLXTkUJjeWVNnT+VCqdOnaNaLRNFA9IsxTAMrly5gRSS5eVldY7nKlqi2+mztLSOLnKmpyrUJ6qM4hGmaSIoMD0dXbcIQp+zFy7ywIFFNE1nZWWdicnaWGeiMRql3FhaYWKyRiEKbtxcUZlxScarr55lYc8sumGg62pVdjCMsC2LOBrR6w8wdJ3Tpy/y9DOnmG7UybOUIPBoNdsq7N4w+OKXn2FudgIpBKdOXcC1LaJ4hCCDMZ0wCNQ5e+KlM5TLIaalk2cZaZJg2TajUUKj0aDfHzAxUcUwDIbxEN2S5JkOQsd2DBzbVqBZSALH4Le+9Bw/9zOfQkgVGP/QoQP8oz/5LJ88dIxrV28yMzlBWFZa1V6nSzoaUamUOHrsAJopQaTohsSwNJJRDBRqwm9bjOJE6dxMgyRJlM18MXbcFGpCMYoTpBTE0YgsywDBuUvX2TPXwDJNXnjxFAcWZ5icrGJaDnEc88Dh/WM9rqAoBOko5cWXTnLq7CUO7d/DMB7iet54MSZXtG0pdsPGgzBACMn3nn6RxYU5dEPjy996kpnJBmfPX8K2TTzPRUiV4VgUSqu4Y+AzGtPCd8YJTVf6PyEEuciU1laa9DpDut0utmVgOraa/I1dhm3XJcsyvvSt7zBKEs5fvcl8o0654qFrJpVyCddXWainz5xlbnYayzLZ3mpiWSqPcKvYoFar0O32kUKQJAmPv3idj1Sq1Mo+pcDDdgz12zQ2G3IdTzEa0oxvv3CS9x0/Qppk7FuYYWN9a9fJ2TB0NtdblCslpF4QRTGdbp+w5KEbGq3NNr7vkBeZmpFqIFLY3Gxh6DpFXhAN47GDbYEUEse12Fjf5Mn1dR79m5/kyNHDd1D8frCexq0d/eRP/TiXnruBZRt3UgjfYK4sb8N696rittm+lBpFnmNZLlIz6PUHZFGfLEmIBj1G8ZBsFGHqEpGnDPsdknhInoxobm9Qr9TpdJucO3uChx58hHTYwzI0wrCEHwRYhk5eKLJ+livDIhU9YWI5AVEMq2vruJ4HCCphmdEo4/Nf+BxHjx7FsT1WV5cpV6rKNdm0cF2Xen2CLMsV2M5SZqanabfWgIKZ+f2E5eouQP7sE5/lE5/4G8oJcgcI3QUUboEV8brA8nt+Q2+RIvtmtaPXV2BRe0sd3/u+9hvFNdy+2X3uf6t1TyrxffZdvMn7urVT9cw/r+P6Drh7p95W/UWBu+/PnGWn3hjc3SG8vcfz8jhn1B3wyGPvo9A94n6ME1jKCc20GAwjPvD+D7KvPs8vfeWLPFTA3FSdsOQhhM7SyjqVSkkFlpdC2ttdBZIsbTz5FERRjOvYpFnK2maTjY0WnuvheCb9/mA3cqDV6mE7NqMo4cRrF8nzDEPXsS0fx7UZJUPlxCgtbNsBWdDtDLBsZZziOhYP7JmjKDJ836PV6jIcKKMBTZPkRUan08d2TCRSBViPLcY1Q6ffHfDFJ57jwUN7SJOEYRTxjWdfYu/MtBosgX5/iGmqLtHGdocj++fH5jAaUW+oVsNNgySKMQ0NTVfukYDaThckaUy9MYkf+ly4dJ1GYwKpaWysbZBkCclohOspOim50n0MB0MGUYTnuvR7MXmWj0Gnw8XLN5moK7qR7arJ+PM312huXOfoA/sQUpKlauI5SpQZgJRyDBxNet0elmVz+twVpqYmefqZl9ne3GJmdooXXjzNRDVkMIyYnpqgyHJ0bRyArms8/oWnOPbAPsq1kF6/z7Afs7q0juf6KBaMxNBNdKmcVb3QZZQkpHmGZZtYjo3INbrdLkkao2sCQ+psb7dY2DOPlBq9fp84HnHt2jK+79Dp9rEdh8tXb+JaJs3tFp7jqEUSchbnpwg8l+2tJmmSkqU5mtRJooRuv4PvqcDsY3un+NkPHeWn33+AV66s86t/fIavnGzz+Ze3+OpLN/m9pzfY6gx535EZfu1PbnJ2uU07zvinX1zh8RNb/OHTy/zM+w7zE+9ZZLJWwXFtojjGcWwuXrpKfaJGrxvxtW++wNREjdNnLvPoow8iEPS7PSqVEkHo0uv3KZVDKuUKaZLw9AunOPrAQYqsQIoc3TQIwoBOq8nxR47QaqtMs+Z2m9nZKXJSslytYB57YFFFkAQBjuPQ6/UZjWLCoITj2DSmJ0izlCRJmJ6aQApJu9lmYXGe4XCIaZk8/rknKAc+lmVy/foyYejyzW+d4MGjhzANgwcfPIhpGfiuyi7s9nrkolBW53nORL1Cu91l3955BsOIer3GpcuXmJqaxHZddb1KwUSthtQFhSjodrqYukUUx1SqFc6cuUxRFDQadfLCxLAK8myIY4YqGFxL0DV7fA2rkO7PfPs1Pv7xj6nzytLRDMlnv/hVjgnBK6evcvTgXhxXmSa1Wy1836dUDtFtjTRL0YRUJkspGLqFZdvkWU6SZhimCqKXUuVYKao7ajI2NhaRUpDEKc3tFssra0xO1jh2cB+2a9HcarG6vkW1HChwDXiBCxRqMlkoWphpWczMNDi4b4Fms0VQ8um0OsqwR9N3NXaWbY0dYxVFana6gTLDyTm0bxHLtjh15iKh76huuABEQTyK8LxgTBFVTppZrmjcxtjIamfMGGURmmHS2xpw6cIN9h9YQNOgP4jRDQ3TsUkSRfEVwN65GSq+x/vf/TBCCK5ev0q9MkGn1UXTdS5cuIplavi+R7fToVKtIBBsrK4x/+g0cRSjSclgGJOmKWcvtvmxhWmlIZUCqQksw0bXldlNEiecOnOFUuhzbM88Qqjg+N5gwLkrS+xZnFIaQgTxKKXIC1zfwjB1tYg4GOI4No5lIWRBkidKpyp1iiTHNA1s00Q3DGzLJEkzNte2MTQNKIjjiGtRROWRRzl4YB93mMfvTFKLe9z3pnVrOykFN19ZxXKMW/eJW1vdoZUq2B2n7tjbXd2iu2cBumXjeCGG6WPYIdJywfAw3ADbr6DbPkIYoJl0BwOk4aDbPmFQotfv4Xsu1WodTUK/vYFtWwRhiJCQZglZkaGN35iUEl1TnVnLK7O+vq0WQx2bSljlypVLSGlx+PADipnh+pw98xqW7Shd35gGjBAM+gMcx+W5Z55kcqJKt7VMnGZMzezBD6sgJQj40CMf4r/5lb/Hz/zMJ259LbdRMPM8JwhClpaXqFYq96Ub3n0Mi6JQmmTub2giNf2O3LvXPS5v5d29qf5uvO1Ol2u30yaUJleOzcHuVdnYFAbuPGfeqG43Xrn9dq9U5Z3tb697mafcN+fuDTqV30+9A+7eqbdVf2Gdux+o3qRzt7vZvcFdt9XClpJaY4qkgNOnXqM6WWU0SgiCEKEpLUWtXOW555/ld0+/xi8+fJROWwmMS6FPt9WlVArQdMlomGLZOo5nc/bcNer1KrZj0u310XWNRqPOy2eu0Nzs4jqSSqXEKEmJoxHffv41Ziar2JZF1I84deUm7zp6kGEUM4wizl66Sm2c5aW6dgLDsOh0+rieTRTFOK6hNCl5geM6aLrO2toW0TCiVAkxxgYFRVawurKJ45owXqm2DBNb05BCYNsWmi548NBehFQaHE1KHNvCK3lYlsaemUk6rZ4S9QvY3myzvLqpNCTj4cMveSqHybTQNZ3t7W3q9QpJNnb6DJUpwcuvXWBju4NnW4QlD9O2YJy7l2Yplm1QFDlSCmxHUf5WNzfwbJvA93BcmyzLd7UAv3N9lX/yX/6EiiiQkuFgiOeplWfNUMYfhq6Ckj3PU5ELpkGpHHLh0lUee+QIV6/e5P3vfRjLthRdyVBC8izNWd/cxHFMymFAuVIhy1IuXLjG5GSNp773Kg8e2U9BSjxKAYlpmkRRBKLYNZbI0oxep8drr13m0OG9lMouQhTEUYSkQDdN1tbWqdWrfOHLT/HIQ4cwNJMkSfBDn7mZBpVKSLWqYgFs2+LipevUa2VOnTnP/n1zXLp6g717F4hjFcJOkeO6rnJPc22SNOHSpev88Psf4Rc/9i4+/sgUP/tDB/jg4Tl+/kce4f3H9mM7VQ6UJO89PMsHH3uYjx5r8OkPHuJvf/gYYeCSCwgCj/W1DWq1Kr1uj+mZKaSU9Hp9Xj19lSvXVnjs0UNsrG+iaVCrlYjjmGE0pFKtYBgm0WDI2bOXede7HuDatRU0WeDYaiJrmTZzc1O0Om0q5RJZUSCERqfVISi5rK9sEfg+8aCPZakw7jyHMPBwPZunv/syrmPR6XYpV8tKAzg2Shn2h5x4+Qz79y8iNY0kikiSjCgaMTvTwPVtqmGIbZuYloE+zqFcXRnHWvguS0urhKHPxESNdrtNqeTTarWZmKiwtb3NwsIMQuogJE8/fYIsTRn2I0bJaEzlLeh1Bly8cg3HsonjhL37FhAURLGKNGltbpJnCmj1BwO+/PVncSydSqVEQcEn/8oh/rNf+ud8/K9/DENXUSvzjSr/yze+zS9/9K/S6Uf4Y8v+WrUy7iinIAqSKFbZmbYDqMw+w9ApxtpKtaKvzE40XRINo7H3fIEoBEWuKJWGaRAGAbV6heFggOt56JrSDO9dnFea4yTCcmySUTIGhRKJUBb9mhxzosB2TFqtDo7lYFrqvD956hxzc1Mg1D53XJWlECSjEYapgVATzwP7Fllf28BxVA6h1FTHzzBNBeyEQBs7RdpjR8kkVc6gOyOEFAJNaDSm6mxubjBKEgzdUFl8Qjnx3bi+jKFrhKUAAaoz2u8xPTPJb//Bl3nkwcNcuXqN81dvsn9xBstWi4e2o6II/DAkCZTj5WAwxHZsXMfmD05c529MNzB0RWkWFHiuh2EaXL26RK1SwndtBsMYQ9NZWlrn5soGpZKPb9lYlgKdWZ5RZCpnVNnwq0nyqXNXmGnUkZpOlqeYtkkSZ6SxkiyYlqIQZllKu9PDtGy+/NRLHNk7O9bzRfxvS9v80i//d6ordFtlO5lhd4zLbx/cCSG49soq9m3g7n57Kbg/uHvTlxMqKsd1PdywRLk2Qbk2geX6OF5Ifxjjl6p4YZV6Y5ZkHI24sLiP3qBPkqb0B5EaI6TEdFzIc4o8YRRH5HmOYSgdY5arxbbucESvP+LQ4WMUFDimS5an+G5ANo7u2NrcwvU8ZqZnOHfuDEEQ0mw16XU7XLl6hdWVFY488ADt5hqD7jp+ZZqZ2UUMyx4fbwV+fujhH+LJV57k2INHxsfqzgVwNebbYz3dm9Mhd/6+ffv7OVu+ES3xboDzhl/TvRYM2KF05uq34D6l5g5vz7PhjThfd1M932j72+ttdfN+gHoH3L1Tb6v+YwR30aDDN7/0FQ4cOcxLp17l4N49FFJimBbDYYRpWUihkacx+/fs4fzVy3x+eZO/OTvNYNBH5AWtVpvSmOKyudri5voGrmMwNTUJCC5cuk69VqLT7eH7HmXPpTFRIy8SNjZbyELQ7Q1ZWmty/uYKNdelFPo89vBh0izD9k0swyC0AsKwTKGlDEd9TN1CoGHbFqNkhOPadDpbIJRFsdQ0NMNUJjCaVB2wYYSmSS5euAkU1CcrimMvJJqUXLhyk8WFKYRQnbYdK3/bMijyVAEtz6IoUgzdVBRJKfnm906w0JikUisTlkKGUUypHNDtN3E8BylVjIOp6QgpWFvfxHVtRAGu51ArhcxMTVKthSRJDGlGOkx47dw1BtFwV+xvWTZZKviTr36P7V6Ldx09SJELpC4Z9COkELQ7fb7T7fAT792PbqpVb8e2yIuCZquDH/gq2kHTOHnqHJVyiGHouL7Srx3cN0cUDZibnaPIVRgyQllZX716g3p9As+zx26bDq5rMRiOoCio12t0Wi0ak1WyPCEZpZw/d41ut6fcJ00Fvof9oYq6ME0WFudBZPR720CKLKAUhuTAKIq5cf0mjx4/jG2ZLN/cxg99hCawHZ2iSBmlGUVRkBcF8/PTrK5v8sjxg+RkhOWQJE2wHJvBcIjvBqRZjuur7w0hmKjXMHSd7e01fN+gKAb4fh3TNlU3pEgJQ5dBu0fguTTbXcrVCqapUZDj+QFCCLabLVzXxnZsZSlv6MRxxHseewAhEhbnZ3Edk3ani2VqOLaBriuhPgKSJKYxUcGrVrl2bRlDCBzL4JVXzzA3O4WQ0O10cX2PdrtDpVJhNHI/pdoAACAASURBVEjY2trEdwOG3YhOu0WaDYnjjDRJ+da3n2F2qkLcS7i5tMbhI/uQUrK+soEoBO1el9NnrjI7XadUKVEUBTPTDer1+m4Uw9bWJqZhEQ2HrKyuUar4pHlKUAppdTo4to3vujQ3W1QnKmxvb+P7DmHJgyLHD1yiUYZte/S7fULXRWQ507PTuJ6F49hEwxjP9tG0As/zqU/UOHnyLBOTFW4uX8fSHHzLosjbFKKgFEyyf98ClUoZOTa9kVLwx9+7yM/+rU8yGHQZDocs7l1EI+Z/+vq3+fTRowz6QzRNZ7vZotXpqHgBoWEZFrojSNIRWaombN1em6s3r1OvTarOmhBqBdwQ5CPVbcjznHazi+e5SF2gwuJ3IgCUs2YhFFAwDYOClGE8GOfJjSe645iFV06eIQw8TFtp3SDHdVySLEMgWFla4+T5yxzcv0BRqCB6wzTIx3l9pmkouqamzDPyNOPJ516i1Wqzb+88o1GM0BSgQ4hxtp/A0A1GSayyKcfjhxACEhj2BhQk5EVCUClj2Q5Rp8+wr7q8FHD+4lX27l0gyzOlEzR0TMsiyXJOvnaNwDKp10q8cuYi73n3g2i6huv5LC+tUq5W+NqpV5ictcYdRkE0VHpP+/IW+0slFfPh2eiGZG29iWOb2LZJmqVsNVs0JicYRSM2NlpcWlnHd0zmZhsIYJQo+nK3M6BUCrh6ZYUgCOh0eizMNRQoLmDcgCHqR0TdlCiNcDwHpEAaGq7vkqdgFGohxzQkV5aWeGaU8clPfeL1QE6K3e/l1rj8/YG7v//rf58PPfKhezz6+hH97YK7HTfNQip2j5ACdG0c1K6hCQ3TtAj9MsMoplKtY5gOjusjDAd0k0ptEqHbNBoLBOU60nCQUqPTbmIJEFmGYdu78gVN6CRJQmcYITSbUlBiGA3odyNMW8PQTLIsxfXsceadxurqMgsLe9UCrq26t7X6BJMTU5x6+VlsW2PU32Zmz1Fq9QZoapFDZU6qxdvf/P1/w6c//dPjY3VrjrST6yil6r4rZ957ALXb7tvp1KVpckf37XXP+Y8R3I07h3ef8++Auz+/egfc/Qeue4K7exma3GVq8obb3rZdMhpBkY9pF29Fjl2AUFblb2688vofhCzLefGJ75InBTfXNvnd/+tzBGaN/Q/sQ5OC0XBA6DuQxjRbfZ757reYqQT8xv/wq/xX//dn+NShebIsVwLn7pAsy6nUKqrrF/rkeUa/22eqUac/iHnqpbPILKMUuuRFSrnscebyMvVKBd93OX50EUto7N03xyhLsR0Tw9IZDmPsMTgRAga9AbVKmXiscdna3EYTymVMajbbm11OnbvG/MwUGDuUJzAs5cKnmwalwKM2UUUUkOewurzOsyfO88EPHCfPEtWdkBJd08mzYmzfbqDJgtZmE9fzybOClZVNHNuiFniM0hTb0ZEyx3VNhCjodUd4rofQJK1WGz9wkLpGuVICoQKAm80OvV6fLz71PPtnp/CCgCwvMAxJ4DnIQq0yT03UMAyDwSDC0QWH52dZWdugUvIZRDG2Y5IX4Pse37xyio9/4Dj9VotBv4ttm/R6PUqlEug6uhSsrawxPVWn31caCl2X6IZkfX2LaqVCRkJ/2FMTUU2jyAXVWpX19VUsy2IwiFX2XwGGKfADFfewsGeGnBzTtHFdh0o1YHKywnA4pNlpIzUdy7HxAp8ClJtev68yDU2L7VYfzy9RSHA8Gz90CMoBcZJy7uwl9u2bpchSshSaTWVGY9k2hmkiybD0At0w0TQD1/bRpOryer7FxsY2CHWNra1vsLK8ie8ok55SOaDf65JFfXTDRuqSs+cvU6/V2FzfojEzwxe++h0OH5zH0DVAp9uNxqv4MRMTdUZRSrvZw/E9pFCaxCzLmJufIstzTFsZNgSlgLWNLfzQxTB1KHLW17aoVsrkmcDUJFNTNUZJSmNmCsM0yTLB+fM3qNUDwpJLngvStGBtfZtKrYRpm5y/uMzinv10e13CMGT/3j3EcYKmm9Qm1CTKtHQoBF4YsrK8woMPHqU+WUOXOdeuXaZSqdBsNvF9h163j+O62J6H7VrYjolpmuhCpz8YsjOVzPMCqWm02l3m5mYQms6p0xeY2zOn3O86fXRdYlgm8SimkLC2sY7vuixdX2Njo4kXOrx66jIz0zW2mk2SPGdufpZep48feHSGEaXqFMNeH8cWFJokz1OEkEiUm+WPv28vn3v6Cu9+16N4roOuFxx/6FFuXl/iN596kkdtl5NnzzNZrnH52hKWqWOPczR1y4Fc/X5KXafb7uPYLrYpKchVPiaSfifCcm1AkiQZfikgSRMFinQNoUmEJsmLgmjYQ2rqeTmAFHh+QJ7mSKkjxl1BhGB+dgYhBIZlqH9Ndd0ZpoHUJEEp4MEjB3ePuWnpbK1v8buf/TqHF+fRTR3dFCpk2rB44jsv8LEPv58DB/YqfaCuoUlFQdWFxurNVZUjpo0nuJlyMxwNR+RpvqtltRwHIXXSeISmCfzAw/McNte36Pf62JZBuRxw6dJ1vLGFvW4qWn7ZNzl/7QYPHT3E0YN7iQYDXMvh7JnzHDqwlySO+btf/zr/6YcfRteNMTA0kYbG9qVtZgIPN7DQTR3bcQnLAb//p9/h+KEFut0e5VKFrz/5MhXf4uz1FT7ylx6hEpbZ2GhhmiaGayB1DctzyIB6NWR9dYPtzTZ5nhOWA9ZWVklHKaKQxPEIzdQ5eeYKlcDFdU3SNFMgWEiqtVB1HpOcdqfHpUqVj3/8Y68bbgW3DCl2aZNot/31Rrc7x+k//MM/5oeOf4gdj4+7NmBntrDz+O0j/c6w/0bwDsSYUydu68gIKCAfn5uFFCrWQ6rzGgp63Ra+55ImKUJAf9Cj2x/iuT7dzjaCAk0HtLGLc67OwWgUs7mxTVCaYhTnbDfb1KqT6Cbohs2lSxcoBSFra2tKn6frDOMBo3TEyuoSg06HaDhkz94FXjrxBAZDLMtgav4QC/uPKTqm3OnaSYpCfcYfOv4h/s4//m/55Kc/9bpjfPffOxmObwTKhJDjSAUxfp189/9vmZzcAop302Pv3rccZ/Dd4YB5u4vlDh3z7irufK871MfbfTyFlPfsuN2deaeYAOpZd5uj7J6dO+//rv0Ad1BG72nkd9vxe6t1e95e/hYFTO+4Zb5Tb6vu3bm7z8l2T5D1xl02TdPQpXYnd//N6q3GI9zjRyHPc9ZXV2hMTHD00Uf54Ic/Qr1aw/ZMsjQlSxNeeO55pqenmJibp+R7fO+p79Jtd1icX+SffPu7/NTMhJpEGYpHLzQN33fGVJYueQ7DYYTj2FQ9l8WFaXRdxwtdVpY3qQQBjak6tmMSR2p11XJMKDJM2xi7twlarS5xnOB5Hqau83uf/xb752fI0pxSGKiwcCSaaRH4HlOTVaSmMpvIC3TTIM8KyAu2t1vYYxMHKSXD3hBd6sw2JnBchzwtGMUZ587cYKJWx7CgKDKSJB6bbFjkuSDLCx7/1gu895HDOJ5FGAZomrKxFgWARJc6WV6gaRLbNhlFfcQY5LebLWzHxrZUSPjB+QZxogw0Op0+RZYTlkIcx6bfG1IqBXzrmZfZO9eg0+2xZ2GKajWgPxjieYGiSknJ/3v6LP/1L3xEUeikRqerMvlcz4NCIKQkz1Js2yKOEyzLYmNjiyzP8XwP3/OU1X8hMU1lcDEab6frOogcx3GU22W5ogYe9YHHup1CTSLTBDE+r1eWV/EDn1KlsqsxKvKCS5eu02iUWFldxXNdDMNmeXmN4XBAWCqzsbGJZZoIlJnN9nYH2xwPgkh0zcAPHa5du6loYaIgz1NuXN+mXKmQJBH9fo9Wq8uZM1c5/MA+1je2sAyNeq1GEiV4vsPG5hZ5kVHkGXE0ZDiKsBxXifg1B1N30C3B4cMLaJpGnhVE0QhnbG7T6/WJopitrQ5JkrHdbFKtlkEoG+0oivC9AF3XuHzlBtVKGc9zGQxiNE1nNEr57nOvcGj/Arph4PsOoCI/DFMny3N0KZmeadButXAchzQVdNt9kiRhYqJCkiSEgYtt2Vy5ep16vcrmZotSNcDzXYLQx3FMWq0WtqXMWKq1KlmhchYLMprbLXwv4NVXzzE9NalcBvsK4LVbTUxTJ0sz8iyl2VQAUtd0VpfX+NaTL/PwsYN0O10MXbIwP6uuMSGJBhGbW9t8+WtPUxmHl5fLJYo8p1ZTbrTlcolup8d3njnLu44fZnamAWNNWrPZwnUcOu0uE9Uy/V4P07V3V6STJEFqEk0K/uyJJ3jPB3+U7eYW62srDPoxP/YjH+Uzf/I4//l734cuBVNTDaqlEMexqNUrKmRc6nTaHTqdLrZlEZZ9NCkwdIuN9S1sx+Xyxau8dOocM40ahqmcOoWAghypSYpdanSOFALTNiDfccAbG1gUuerM7UzIhFpZH/SHWI45jlxht5sgxtlzWZqNtTPKdAjAsiz6rQ61SokgVBRwy7aRQpInCZVqON5WIKWuKJxSIAqBbVoUsiBJEoqsoD8YIoVESIlhqjiZ7WaTNElwHEsZyegSgWQ4iJRjp2kwMVEjTjImJyeUPk4IOu0WlmUThCGLs9N02h22t7cp8oLhMOKZV05zeP8elm6u8PW1Ff72Rx9mlIwUfTqK+eqLF/loeQrbNoniBMey0XQN3TA5MDuJYWpcWVphfmaaehiiS42HDu8lSTJOvHqR2ek6rVaH0HcUZTZJ6bR6UBSUywHlSojnuYzSFMtWNFBD1xmNEkxDZ2ayhmHoaJp2azKb5+RCuZcOuj3+3msX+M1//c+wHf+tDcG8vc4J3Anu7rW8Czusytfrl3ZBxVt4nXuZsOwAxTubj6q7VRSKIpvnhYrpiGK2Ntfpdns06pOMogGmLomjHlmSqAxXXVcRD1ISBFUKTefVkydoTM1Tq02gSXWs8zSj1+uytHyT+YVFOq02rVaL6Zk5dF1nc3Od5aUltprXqQQexaiHphkce+T95GhjRob6BELc9sGEAnhff/ZrPHz8oTs+0911u9HJ/b6XHYfLnWv69vtv29NbOPo7r5m/LraqGOt73yjO6u7PsaNpu1+n+H7vbvc8uge4u9dz7nXfTmj6928QeI+6TyTDG9U74O6delv1VsCd2LXHffvg7tYWb+cHgbfW4i4KtDENbefizfOcK1cvE3gefr2MMHSC0B93uiS9bpd/8A/+IZ/4xCfpxENMdDRh8ru/8+/5hZ//eQ4/fIxf+9I3eLRQmUuTk1UMy0DTBYPhgHI5wLYckjilUgkIQpVRlKuAF5IoZmmtSa0akqYJeZ6imzrdThfPd1heWScs+ZimhmUZbGy0+fJ3TrBvforjhw8oa/284ObNNV47fw0NwfdOnObQ/nmErkwW2q0WpqFTZAXdbp8ih35vSJomeK4NBTS3OhRFQXlCrWILWfDy6fPsnZ1GagJNGnztiZd57eIyR/fvI8vUj2cyyji42KAocm4sLROGgbL11iTd7oDPP/kcp88vcXT/ApouyNIEy5Q0t7dotVq4Y11dnsPq2habzSZzsw2SkTJ+WZifVhoYw8CyDIJywJ7ZKXRd0mhU6Xa6yprcMkkTZdrSbLb5lzc3+U9++Cirq2uUKlU838V1XU6eOk+tWqPIR4BgMIi4cWOVOIqZbNSU42Y8QjdMoigmTSBLcq7fWGF6epJ4NERqgldePUetVlYUG81gdWWNcjVgJ3h3pzRtTHdBjPUWoOsGcRSTJhma1CiFIYI+moCi0NGkMnsJwgCBwHEcTMOkKAqCIGRxvsHm5hZ+6DMYxPz+Hz3Bu44foFIt8+KJUzQmqkgpaNQbbG+2cUMTXRcYmsX05CSWZxGWfHzf5fy5S8xMTWG5SqvnuQ7TU1NIYWKaJeJhhhQGz734MvWJAGQ2XonV0aTO9esr3LixzOz0BFtb2wz6MdVaHdO0aTTKtJotHMei1+sRhD5pMgKgVq0Qj0Zsb7WpVCtcvrJEuVZlfmoCqalQ9jiOiaOhmnAmGV/46lMcPrBIXsDzL51kdraBECal0KXT6Y7dXAs83+Hc6SscOryI6/tcuHCN2YVJEAWDoTIvWlvdQNcUxdB2fQzLIM9TokHE1NQkaZJRq5exLAsKGI1iLMfG9x00KccRJhLfD+i02mRZQWOqwYF9c1y7fAPHMjEMk7VVlaMnELiOg22ZHNg7OwZMiqYceA7nzl9ilKgsu+s31/jIh97LK6+cZzDoU60E2Lamgqxtj5WVdayxrmyUDJVuLsmwHaU5zXM4vn+Wf//ll3jk+ENUKmVKpTqFkLzy6knCfocH9+0DCoQGIHn+5VO8ev4yk6Uyz79yhq1mi4P795KlCVeu3aAUlPjaU8+yf2GeWqPOgX3qet5ZuYdidxFpx+BFjH9zi0LdLzSl20Wo6z3LU5UFJ3aGAZXPhmCXXtXvDdE0pS/O84KCDH0HcFDQ2u7Q2m5x/OEjOJ67OxFPEzWBrk9UFRgTIIXSF0ohx/o1wYWLV7BNFQRumRZbm00VlVAUKosxT3EcS3VbhkNM0yLPcvJCsLnZxAs8LFvlhg4GIwzDRB8fjzxVOYDqdTM++/UneeyhI9QnJ3Bdj4ePHeb5EyfZ3G5zMov40UdnlTbZUL8n//sT1/jx6RppmuEHakzq9wcUeYFlmmNWg4GmaWw3m5QrHmsbG9TqIaYpeObVC1i6Rq8zwLVtsjTFtSyV6VkUpFmm8uwMHd2waG61KfKcMHRptzoEoY9pmaSpWqiCQhnuiALDlMTDIZ9b3+YXfvHnEOJOI5r7Aa2djhcUKkJDu5VId7+SUvLwgw+RN+/AKK8DYtxnTzsmK/far3L+fON3sHMuF3e9ggJNEiklWZqiaZJBr4fUTMJSiX63Sb/XQe7MZYoCKXQs20QIwXDYR2o65eoEUgpMy+PihQucfu0VDj1whImJCSzLplquYDkuQqrfgG5XUf4nJiqkwy0VfSA16rP7KE3O7UYYFLcfoN12lYojWHllmWMfOrZLK9z5vm7v1u105HYev/17vRVfIMcfLb9jP6+H36+vne7evbe59fzbu4BvWrcH6I3/vl/37F7vTk0li/s/dtf9+RhA3v4p3vyTv/26HbS+1fr/O7j7/hKt36l36rYq0pxGY5Lm9hZC5ESDHteu3uAf/eNfoSgEf/AHf4AmNdZuLvFvf+t3+Le/9dv86q/9Ou1uh/e++y9x4+ZN/u6Zy3iuy9LyOkWhLvo4TklGGa1mlz97/jTXl1bG7CPBSycvcOLEWeoTZd51/BC2a2HZpgoeL3JKZZVjZJkmeaoCTddWt6hXS/z1D74byzYxHZMiy7lw+QbPnrnEnrkG07MTHD+8qAT048+3QxPSxoPU//OV7/LcqUsEvk+eK4fOKEn4wlMv02632dzaIoqHPHb8MJajDFDSJOd9Dz3Aj/zl96DrJnkhFOCyTeWo5lrouqLg5VlGnheUSyWOzs/z4x96jKWVNYbDGDSNLC+YnJqiVq2hGSajkXKdtEwdXdMZxQlhyefwA3sY9PtsbTdZWVkjKHnKxUso+sYoVvqFQgg0Xcf11cq2mjCo0WxqqgECkjSj3elx5IGDbG026bRabKxvous6hx/Yz779i5iWRSkI8D2fNEkJwxBQNMKFhSm2t7fRxh2Jxx59iE67h2mY/N5nvkaaZONIBHEXu0gNLv1+H9u2GQ5HKjtK10Aoa+zl5VWeeupFoiihUgmJ4wGbGy163YgsSzlz5gK9Xpcoijl79iJZlrBn3zxSQKVW5ujBKaW3EhLPdRQwimI0KVjfWCfPQTcsPM/l1KmzdFptTEMnTVMaU3Uc38bQDR568PA490+iWx6m5WM7Hq7rcPjgHKYJmmYgpUGvM+TkyQvs3TvPoUN72NzcpFIpMTFV4+lnX+Ubf/Y8g8GAwHe5dvUmuqbRaraIk/j/Y+/NgyXL7jq/zznn7vfmnvm2eq9e7VtXr+pWgxZakhFiBGgFNEHYY2JgxoExtmc8DhNMYGLssGMmTHggjLE9YXaYgRGaRmokBGjrltRS71291b6/evW23Lebd/UfJ9/rqu5qdUtCbYP7V5F/VL7M+zLvy7zn9zvfjXAyJo61M+HsXIM0jnAdi2jqVthqtlm7vsHJU+e5fPm6Rr5HEQU30Octy1lcmEFKiWVJojikXq+QZzlKmoThhNvuOIJQkslkwl33HGMyjsjSGM/R0QyLi7tAGPT6Ywb9IQK4cP4ylmnR7fR33DkRkGQJxXKJfndAEuvIhjTJ6PUGZGlMuVzE8xw21jdI85z9B3ZjmAaf/+Kj1Bs10jSj1++RphqN8n1Px2S4LnEUc/nKCnv2LHBg/26uXLnOPXcdIk0T7rzjkKbOrq3Tbm1CrmnD5VIRv1jAKxQwlCJNkilyl04vaDkyz3E6L1Eul4miCcPxhNF4zD/+h/+Af3XieZqtFkmWYExNQDq9IcvzMziuzW0H91ApBIyHI7I059CBA1i2xfu+/z4sx9JNnSGng528qePIsxzTNHf0OJ12d8dAQtMiJaPhGMPQ+juBHvR0Az6lg07jBQzTxPd9AG3egkYIJmE4tZaHarXC7uVFkjgijnWkgVRTl2Ippvt4OmIhDMNpr5sTTSImk5h+f8QkiomimNZmm2qlzNrqGlubW9i2RafVxVAGaZQQjiPSOKW11eZrX3+S50+ew1Qm4ThkY20TQxn8m3/7Z0wmMd1ujyTLtcPo1LClXgq4vr7BeBxq7VWSsndpgXe9417SLCeeJNiWTbfbRxoGk1ibSBUKPqPhmPF4QlDQxlGWbTIejabXTsni7llW1jaoVHyEyCmWfD743vs4cniZ7mBEtzvA8xx6/QFi6qxq2iaFUoBA0G11+caJM4zDCeE4olot0W53kUJpPWScaJfGRF9nsiwlzbSjSBKlb3itvXFIMIztIf111uc8Z3nvbrL0lV6E33mJ6XFfa154NTn01gNlnmVkuaZjK2WwuHsPvu8zHPYxTRPfCxiNBlOaY0YcR1OznT627WBKKPgeWRbxjUe/zNbWOobUyJsyTGZmZ3n8iW9y5uwpRqMBg0GXwHPota5hiohSUEQZJqMkw/ZLN7+BV70ZsfPa7/6+e/nff/03v8uz+HJJqaaumX8zpQc6yRuJRXir/m7WW8jdm1xvCLnb2Y35zpC713zca9bNu0+vWTdm6d2A3H31C19m9/wc5XoNgYIoZjiM+Z3f+W0++pEPYyiDT3/6Ie48eoSFxiK+W8B0TcZZxIGDt/PxD36Ez/zFQyx5Fodn6ihlMOiPKPgejuPyF196ho+8/52YviIMJ8TjmNlahZlymXE8RCqJEJrmFkWa+tfvDRBIXNcFJIYQPPHCWWarFQrFAoalGI1GhL0RtVoJJeHgkWVyQxA4NrnIUJamIOVRToa263Y9j4bvc99dR8gySZYLms0utXqFO47toRCUcGyHXmeAbVpsrLUpl0s8f+YM33j+DDMVH7/o8PCzz0CUEfg+tmNhGJJSyce0bKSSxFFMngsa1Qq2LQgKLsq2QUhGwwiUhWm4IBSTSQRZSuA5VEplXM8lSRI2N7YwTUGxUtTGFJqFSE5Oc62DbZq4nsvaepNCqUSSjDEshWkaHL9/gZlyEYQiE2LHfjqJElaubTBbL1CoVMhyeOhzX+PQvkWUqdhY22Jjo8Xa2ibVWkWHaVsKKSHwPb1ARwkIwZ999qvcc+dRSoFDsVTC8awpPSV/efNwStWM4wRygWM7jCdDTCUJJ7pZKwQ+o27E/n27GYw6NNtNVld7JGFOsWwzP18nSSKuXF3l6NEDTKKRzrtydeTD8vIC/XZP54AlGQ999mE8y8APBJVaEaEcoijj+so1HFcR+AFxFCENSVAMSHIYDQZsbGyxe2mJq1evU65WQUxYvbZKIfDodAcUiiUM5TAcRqyubPLE0+c5fGieqyvX2TVXI0ljikWNTh86uJsknjAcjljYNauzGg2FUhmu59BqdygEAcqQTAZd6jMzOK7HZBzSXG9y7tI6jWqF/fv2IoXJg3/2KO994H7SOKbZ7NKYKTMc9vjcX38T0Fl0nhuwem2Daq2CcjQSd/78ZaqlCufPX8RU+m+xud5hZWWD+kyDUqnMM0+9yK7FGWrVMs+fOMWBvXtIhEaf01znuqV5Rrc1oN3qkuc6LFtJE79ga8qm72GYBq6n36eUklLRpTsY0JipkZFx9tQl4jjmwsUVlncvcOK5UyzsmqNSKZBEE5578SzHjx+j22/jOi5JnGCZUK8V6bVWOH36DEu795HmOX4xIM1z4vEIKSWm5aAMe2eX+8GHHmax5PAvf/+zvO+Bd+IXa4zHY1ZWrrJ3aYk/fvA/cKhcIfADHvyLh/ngf/QuKuUShamWLPA8HMfh/PmrpFGKX/CwHBNlaaMJnW83DdW9YbdeCphMIu2wKQWu55KmTF05Y6SQWLZDmmRTlz1jug0zpU1O9TpJohHI0WCCaRna+l9/+TUlOMtQUpGmesCQKidHDwzk269riijken3RdEpNH1WGAWnObKOOZWvToHA4IZpMmJlpkJOTJInWCiNIkozRYMxoFPLSmYtsbvR4zzveRnOzRaVUYHOzSa1Spuq52JaJXwxwA5c00c6UaZqxe2GW+fkZwkmo40J8R7+aPGf/EYvDu5cQUuec1mdqPPn0Fd63q4ahDKQyNHo3bdTTKGE0HuIXHHIEEoeS7xN4AZcvrVGt1hhOhgyGI5I4p1jwSJIIP3AZDMfYrk2GZjkMugMsZXD88B76gxHFUoFMCBzHYjyakCU5l69eJ44jCl6BOE2BjFGnz8XKDD/0gR/eoci+rgnHTcql/JbyqVss21iWyX/xz//Lm0xVblW3RO54TXbea/cMN0xxN1I7Xzn0SSm0hERo/WuuFI5p0um1CTyHOApRQmvm4nhCNj2eYZg6F1ZoJlGv02TvvkM4tk0UJfSGfaq1Ou1Wi1Zzi1avb4qxSgAAIABJREFUxfLyHpqb18jiASpuEw02MYRNs9vlyH3vZ27XbmSuNzt3XqXY3uacBojf8Nr/4KE/4Cd+8uM3vcfXo2LunNOdx+0Y+/PtYlU3o3w317b27pX6u++kvpemJd8JXfLNqr/tyN1bw92bXLcc7l5lZjLtwm9Z33q427n037Bzk7/y+K+4CbKdHdmd2y0GRnEDB3r7oiEEeH6AkUO1UEFaHoM0xVUmH/nJj1Oo+DQqNoOVF5lb2EOYmzx39iy//du/zSc+/jEcWxIUXCwEf/jUs1xrdbmrUKTV7FGfqXJ1ZY37334EYYFjOyRxQm84pFqvcvrcVeq1MiIXPH3iDEsLcyRxjmG9fGHudHu4ro0wJUtzdXzXZG11DdKMwHF46JETHD2wm/mZKoN+H9+1SGMwDYtwMNGIna0wMptJGiIMScEvkqUjSCAjozxbxPFMsqlmJ4kiXjh7icY0gwwJC/MN7jy8D8eymIwiap6vG0BPQqZYvbaBZWstm8zQqFqUaL68UlqbIyVb6y1qtTJKKq5cvEqx6OIFDsKwyKWi1+vg+T7ffPIktx8/xCQaYxuSfndAq9XD83wMw+LM6RXWN7vMzNQpV7RuKcsS0jhj0Jvwq5//Mu+++wC2baJQ09DxHNMwKFcCEDr7rd3scM/dx4iSiDyC5148x5Ej+1laXgIBhtQBvu1WVzd7jott2SSk3HHHIR1QLgTlcoGtzTaPP/Yie/csT2ldCcNxiCkl169dx3ds8ixjq92hUChx+eJ1Njd0LERlxkUakskwZqY+g5A5e/bPE01GSCF5/oXzHNy3hx0nQmxWVja13k3CxYsXaLW67FqYZW6mwvx8A9P1sSyXi+evUquXKdUKVGolkjCnUAzYam9hKUEWDVGmgePZCKUolUs88siT7FqoUKlVEUrRH/Q1hVcpDFMSeDZ33bEf23eo1EuA5OzJq1iGRbFUoLnVwlAZxXKAMAydm5ULJAqBwvcCpDKmwe4G4+EIQ4Ikp93tcfvxQwRFh0kSoQyTixcvsHuxQKlaJc0SbMvlytUtfMdmpl4nnqSUigXK1QBlG4SDEZZh0qhXMCxJq9Vmdm6OcBxRKFe4fn2DXXtmQWYUCgG2Y5DGMY5j66w7U9OF40mMaVhcu3KdYtHVqJtl4QUBXqEwpVdN2Nxqsbq6Sb1WJpxoZLZYLBL4HkIoyATXVteYX5hjbn6WJE2ZbVQRloE0DNIUFhbmyPOUlWtbzMxUCMOBphMHReJMcvTY7WS5zrIUIqTb3sRxA9J4QhL2MWyPFCAVHNyr9cG/98UTXL9wDa/o4ToexUKZgweP8t//H/8nHz94hAuXr/AD999Nf9DFthTtrTZRFOEFOjICFF9/6iX2Lc9AnuHYJmmcsn5tk0K5iDQkWZJMqUkCcolSckcnl6XZ1DAFxHR3X0yHLkNpqqO+T7tsIvKd67SSAss2dvIo8xwMw2ASTnSkBIDS1NIcraFTUk4jGfTjpVCQ6TB1hEZXSHOi4QSB3vR58aWzuKZNp9/ROZf1BnGSEJQKCCW0u6apsF2HbrfPrvl5Tl66xB3HD1AoB0jD4OkTp6lXi+xaWuCxp0+QxwnxJME0LbI8wfU14jkajvW6hoRc4nsBf/78U9x+W408nxDFEWur65iWy4GVHqXgZbfKNNORLiLPCYcJea4HectwSOOIS5evEYYhuchpd9t02gNs06TV7mnaaBRSLvkoU9Fpd5G5oFQs4jgeL56/TKmsNa6eYzLsDnFsA2lYGI6LrQyefP40uxdqWK6OgdjqD3nJMviRD72HNH01apNMpQc3t/6voDW+wcpz+OS//xTvves935JCeatxYcfV/xZ8zhze0PGA13RilGhkWAodB7K5eh1TGWxuXCWOxqRRBLkgJ8P3PEajIb5boNXtsLWxBSKlWquS51o/3AuHOLbNc888SaVUxjIN+mEX08ipOpAMmwil8Io1euMRSwduZ2ZhacpqeTmcXEy/k9u2H1LcfF6W1DJHHzjIK81TXmmIsu1EuXMehLgBcf1uRprXHgh1XMfNZizfab3R5+dZhpoirG/0OUqIW37m3uwSt/j3t90t8y3M9q36risnp9VuEycxcRxjKINS2aFc9LCVSa8Xsrjndmw/4Nlnn+K+u+7m137tX7NybZVf+/VfwzQVH/yRD3LPsWOcSFJ+7+QZFnbNEI4nBL7LiefP0m52GQ+GOJZB4NpkScxcvUSaTbAcwe23LdEbtIjTEWkOkyjRNtvoncFms4+QBnGaUWvUiNIMaVt8+AP3Y1gSw1IoAeFgBEJw8tQFwskEhLY1TkSOaWvLeWlI2p0RWZ5hWiZ5mpEm6bSx1fd//723YVoS27WQEkzLAiBJMyrVEnPzDUrlIqZp02p2GQxDkjTFkAZJnNLrDAnHEQ/+9ePTIGpJkqRUqkVazTb/159+njBOEdKgudUhjSaoPKVSLtMf9Lj7rr1srG8Qj2Fto02cZywsztDttJmM+uxaLnLX25bJRch43GU07tFqdrEdm//q+dPcd2AOQ0kMwyCKw2nTmDMOdQC745dx3ID5+Xl67R6uZWE4Bu94x92srq7zG//mUzTXt7h6ZQUhBGmWMh6N6Q8H2gxiEpFPrf4rjQq5gKdPnGb30ix5nvKpT38BZSgKQQBCMDvX0JEMSmo6bJoyN9vg0KF9rF5bI88VQpoIw+Tp504zNz/Hn332q5TLNS5cvMby0hxhNCFOQk6fuazpgnGC52kjmuN33Max40foD0acubDKYBQx6vdobq6zf/8i4XCISOHUyYsYtiRJU2YasxiWizID8lww6I8AwdraOseP7d/ZnYWchYU5RqMQAZw9cxHHtQknIUkcI3KBFCCNnJNnz7G5ucmuxRlm5xcwTAcBJNGEqxevMOz1iKOQfr9LRgoKMhSray1W17bIhMHe/fsQQtFsdTFMi/5ghOM5tLtD4jghmkQoQ3Bg3yJHj+5nZq7OOBwRxSOiOGIw6KGU5NFvPMNgMKTT7rB7eRfjMOXSlXU21ze5/faDZJMQmac0ZmqYysCybEqlEp1On4sXrgDw7ImXSOKY+YU5/t2DX2UwDDFNC9e2EHnClctrmIbFnuXdHD68h6srK4xGY7rdnjbfUIqNjQ1azRbPnbyMOUX3PN+futFqtFgpkyuXVrly+TqXrm4wGozwpmYNQggqlRobm23yDDrtHnGU4zgBkgzXsbAdi8m4jyLh0uUrvHT6LKVakc/8yk/wlWef4r/9Z/+c3/q/f48PfeijSAUP/9Vf8MvPP8eB3cuahleuEEcZpVqVYrnIeDzBD3yub6xxx6ElkjjGtiyNQAMLi/Ok4Zhxt0eealpekqQ6kzJJEEoPWUpNzVby/KZGWUptumS7etMHtqmX2yj3zc2mOc2YjOMEx3XYWmsihYHCmCJzCmVKwommb1qmSZ7kiFxr6/JcawHjWLsxC6l1lDkZRw7vZTIZY1smc40q6xsbOI6tv/cJiFySRAmtZpOZ2RoXV67wY+9/B4apTWySJOaBd99LpVohS1Pedf/b2Gp39GvIIZ6kkEkMZREUCjz8jWcwTZO/fvhRwsmYSxvrzM7VKFfKFAoBjusglaRU9EniXLuXZgIyPcBCjmkZeJ5DFMdIQ7K52aZcKmhn3nKBPUvzHD60TG845ND+JWZnqsw1ahimiaksioUivd5gGv+QEw8zVGZTKdbpNidcvtQkDCdsbbXod7vYrsEP/cA9OzltUkh+6cwKb7/7GONJ+L1doG+o18OHsnwavXjLJ+c33/jWg92rnn6DU+OtaJtRpGnBc4tLpELQHw5QSuvrlGFoA6bWBpZhMBp2KXgetVoJUylOP/8E3dZ1yiWDfYsz2GrCkYNLhINVZhs+R5cX8WSCqSSNmUWiOGer2SJKFbOzSwgk3y5+5JfKr7rvZQTv1hRYZWhtZZa9cSru65UOZde3t+qt2q63kLs3ub77nLtvjdy9Fq3iuznmaz9NLxWLuxb55B/9EceO3Ibp+sRZyrlTL1Cr15BCcunCFcL+BNt3GfRDlJT84//sZ3nggR/gYx/9MGtr6ygpeeCBB/jIj32I33joz3mv69Du9hmOxiztmsV1HOJoQn8wYmamQnOrQ7VWYRKFSCk5df4Ku3fNYRoGuZS4rk04ifADnyzLdOiyMlBS0u8NiJMMx3M0TYqcbqeHYxk0W12yDHbNz6AMtWNQoAxDn6d8ugRMqS5xEmPaJuOhNohQSkzdvAST6WKlDEWWwme+9E02Nzv4tonn2YBiY2OTICjw6LOnadQCAi8gDCNanR5xlHDv8UNIY5tOJTENAwQcW15gYXGePMuwLQvLVJim4vr1JqWqj5CgpEHgFekP+tTq2oDDc222Nts4rs620rorGyEljm3T7Q746mDIL//MD00XVU2JarW0UYJp6Yy9LBdEUcJoGFIs+BhKIgyDVquN57vcfXw/IsuxHGtq4w7FQkCn3aFcKbFy9TrFchHDNHYa2r17dhHHEZZlcGD/4jQDSy+4zWYb3/PJczBtEykVzz1/hvn5BsPBUOfWCUm73adWq9Bp97j3bcdR0qBWq2AY+jPhOI7+LMUxw+GYVquDlj1JmlstFhYXWF5eIMvB9wz8wCeeRFi2PkeNWo1JFKEMOUVMptopof/ejufieT4iF4yHQ0xba4aEEIg8w7ZsTEMxHI61PjTLsUwLyKnXqywszCAkGErS3Grjeh6GlIyHI6qlAltbTUqlAoZpgNI76EoqnZtlWRiWxfXrGxSKBZ59/hQH9u/BMm1Kvk2jUUFKky985XFuO7YP07IwTRMltTHG8u55pKF0xl6UsmfPot75lRLbslCGTRInzM3VcRyTixcvUS4WePbEKSqVEldXVnE9h3K5RKVaZjgc4diW3m0fj9m7PEe1XpnudCcMBwM+/dknuP22fVpLNhqSZimNegPHcRmPxnS7fRqNOqPxhHvuOswTT7/E/HwDKQSj0YheZ0CtWuXayhq7l5cIgoD9+xZRUtBqdjh55hJB4OF5Ls+/cJbxKMQwtOusaVgMB13iOKbfG2hDGaBSrzM739CmCEqw2erym7/9Jxw7epT3/9D7cWyTTrfLgw99Fm+lSaNS5InnXuLA3mUs1yEHPM9FCUmlEDA32yBDx72sr21qh0il2Fpfx/Vc/Z2WAqkUo8GYy1euUquWGY1G+pqlNPqmiZN6WEviBNMwGA5HKEN/h5Sprw15ps2+tylv28MZQDiaoqIlrYfNSUkSHduSpQnD4QjLtLhw/hJplGBbFmE45vKVFWr1KtE4JIomJFOXYKUU5y9colbTpkvVcomZ2TqjcYg0FMY0kzMjxfNdWq02jzzzPAXXYmFhHqUEV66sYFsW7XZXm504DkpoPWCew3/4/Fe4fHmFhUaDlZXr3H/fXVxfXWO2UaVSK/GbZ8/w0fv3ItAa0aBQ4B/+b1/gPz6yVxsi+R5ZnmMaJuEgxLQNlKGRwDSLNI11klAsBnzpiedYnKkxHIVMoohdC7NIqfB8TweaS8lzz11gplGhVC7A1AhnYW6G5maTQX9ILsA0FJarKBQKPPvCOWbrZXr9Hr7vkwtBHCc8eGWNH//w32N2cQEwX7W8blMQX7Ewv/66/Bo1NzuHM9EazNcCVrYdL2/1G1/ZJQi4yfb+9Sqbwnxi+wXcQNfMAUMp8hyUZWCaFnkSk6YRZNp1G3KUUighdj6zSTLBthxKpTpRNMb1HKIwpFatIkkxLamNeUh1Ft5owHA0ZDAaEyUpBw7fQ7lSJ59ukNwU5PCKE/HK8xKOYvbeu0ufm+lGnjLMqTNlfpPebfv7t51/KbdDEf8Gajtb75XB6duUzzcLuduR7Xwb+XM3Pur/beTulfW3Hbl7a7h7k+t7Pdzlt7i90WMK+fJO7xtaRKbD3dq165x76SXuvPNOhO0yHI+ZLdXIs4x+p0MSZ3zpq9/g+J138uRjj9Fc3+Dnf/7n2Gq1+eSf/nt++Ic/wFNPPUOaZdimwbGjd/PeX/lFfu5td9OoVfnTz3+DsmszO1dDCIHt2qRJhmGYmMrGMh1mazUmY20rb1iCcDRmMg5xbN28KmWRZynddpdytYQ/NXtIoxjQJg1plmPZFn/1jWdZqFWwbRshIE4ihIQnHz/NTKWAEDG2bWHYJkmS6gBj2yYKYx556jl2zdTwfA9ysCxb78QLyVazw9nVJt9352E6nS6GYeEXHKQ0ue3QHoolF3JBkiYUAp9atcRjJ04S2A7hONR6QsvQToGmgRSS7ViCNEnpDwY0ZquMBiMs29EN8mDC1554gX3LCziei2mZeLZNmhg4tkuWCppbPXw/wDC1Di2sxBxequmg8HFIrzMm8H2kUlMtIEwmIRIICgFZluncK8MgzzLCcUipWMRyLJQySJME3/eIo4hiMdBW9I0qObkOB+70ePChr0yt4RWOa+G6DlKZiFSAyPEKntbjbX9OpWR5aRdPPvk8uxYaKASmYZGRkwuolksoIXQOWuDT6XSpVCq02l0a9Rna7Tazs3VmZmpsbbYolcucv3AF8oSgEOA6HuQZrWaX1evrWjeWQqvVxfVN8ixFTRfPLM8wlUmvP8QPAj34myZKKpSpLa4FgiwFy1TYtkU4iXjhpXMoJGmkqTOjUIc6W4ZJEickccqgP8BxHW1wkQu2Oh28wNOZdUmOoRRC6r/TF778OOWCT7VawTYM9u9bJIoirq9u8FdffIKjh3YhpU2jFuC4JuPxmGsra8RxyqDf12Yj5TJgsLa6RhB4XL++Qa1WZjwOEblgc6PJ4tIsL7x4inqtQhwlLC/vQgqlXVQF9PsDPM/TxkalIu12Bz/wybOUYrHA+to6/W6foBhw9NASGdoK3fc9XNdBCEm/P6BaLWFPaZ6bmy2UkuxZ3oWQknZLO8W2mm2UElSqFU6fukC5XNK5bobBaDhicXGOXm/I1maT+fk6szM1XNdhMonIUh0D4PlF/KDE1maTQuCTs503pRHadx5f5qd/6X/lJz7+EeqNOkmc8VM/9Z/QXFnlcsXjE0dvI5xM8F2HYtlj0OtTKBZJpwHU4STED3xGozFhqDXBSRLTbPYoVyoIZZCLXDtUCkmxGOC4NmmaYlnm1OWSm9A4YKeRMk2L66vrXLm6ysxsXedaTbVoQoqp5i1FKYlhGtPg8QRERpbFTMIR0WSC7XgYhonIc80A6PUY9PpYloWUEtu2sCyD4bCH72lznizJIBc6kgLdHKdJjF/wEVKytbHFX33tUR0LYBgUSyUaxQLlko6/EEJRLBQYDAfYpsM3nz7B0sIsQfAyAlcNAs6cv8bxI/tIkhjPd7RbbcFDiIyDx1yqgc5Kk4bCsi3+/Jvn+ZGlGcLhZIoAC+IoYu36BoYlsU0dLSIVKKnIkYSTiAN7FvEDj+EopFDyyPKMR596iaLn4noOGxst9u9bZjwMp+ZTijiOiSYDCmUfr+AQJRN27a6ztd7DsmzOX7rOrrkqpVJhx6pfKsnvPn+af/oLP4dd8MiyW2ymbjfINzXK33mjvrxnN5eeWdWZmNPDvtbouO2Q+Vq/bef+1xvsxMvj0rf6fdtvMYedTUdyQbvdQSmT4WiM7fhMxiHRJNRrqlRMJiE52oRIGQZ5GmMoRRQOsSyLLMvwC0WkMOh027R6fUy/wv4j93LgyJ0ExbLOtGN7yLyVMvDWw7BfdPjMVz7DPffevRNC/mpETvdIL28E3nj/rU7Xjc6W+jH5zvde3vJ5N+bj3epn307dmIm349CaJt8y3Hyn8nxniH3DVE6+nT71e1dvDXdv1Xdd3+vh7rs5pvh2F5HpcOdYDt2tLRzHRdoOz71wkn/3+/+Wu++4k6888iWOH7+NX/ylX+YjH/sY2STm2aef4uM//nGCYoEf/sD7eenFF3j3u9/NzEyD8XhMudag6Jb51Ucf5b2ex7vefhxDCJRp4AaODosViosXV7EtRX8wwDAlfuDSardRIieJE6qNCkkUMRqFRGGMbZlIKRiPx9iOTRQnbK61qFXL5HlOmucIqTi2ZwnbsfmjP3+YpZkqiBzHsZmvNvjMF79Go6xzw6S0sByLJ556iblGHakUy/MNgsBnMo4IxxGmadLrDXBdl0alzOHFWeI4oVT0+caTpxiMhtRKZQzLBJnSanXxPAclJYahKHgOtWqVU+euUC0XMKZOlldXriNy8ByXPM+J04Qky5Ayx3V98lQihWI4GHD7/mVS8mkiqdBZWLaDYWr9TWO2QpokdNp9fuvMJX7mJ96OaaqdXDrPL/K1rz9NMfAxDAPbcRDEdLt9Op0eQcEHqbOFRoPRtMHUDYyhFJ7nk6YphlK88OIZ5udmGIwGGIbBYDgii1POX7jG3XcfpVgMdHSEocN6k0mMNNWOJklKSbff03TRMGJ5zyKWZfCFL36TXq/HwUN7cSyLrzzyGGkc0xuOKBY9ms0OQRBgmfaOLTki16HHhg58TlOdxWXbFsPBkH5vyMq1DQ4f2Y8X+MRxQq1eJ0snxFGEbZuMhkOEgiuX19i9ewEx1UGRQ57ldHodIJ+a/AxZu76G5zkUSkVcx6Lb6jM/N4tpWpiOyeZmkySOSaIYJSUbm1pjKYSk0+4xvzSLkgZSaTpi4PlMJiFxnHDb0QN4nkeaxEgBmxsbQI7reNhmxtWVqxRLNebmG3R7HcJwQrVSwfcKjIZD5ucaCCGJkpyvfu1plnfPUSwWGAyGeIFPHuecO3+JhYU6GxubzM/Pa9ogOadOXWR2doZLl68yOz/Diy+cod8f0Zip0+10qddrjIYDfM/Fti2yHArFIpZl8MRTz2kN38Isw6EONR+Px1N3vIRr19bZu3eJUqkIaBvxYiFgc2OLWrXACy+dZzgYcfz2I4RRxOo1fY7r9SpJmlKplEmSiHK5yGA0xDINTMtiPJnoZkaaKGniOBadbg/btnWItjLpdns88eQL/MKPfx//8+9+jh9833v51f/lN/jmY0/SqPj8y//hf+SXH/wkP3XbcbIspVj0aLc7OLbLaDgizTMs22YSjvE8n8FgRKGojXAM08X1XG0ogSDPU5QwMEytqzNMQztjmubO9TadWqgjBFkST5Fbiet5lEtFLMvcaTSllNNNhRTTNLUj7PQ+Mt3ACoTegIp0ILpUisloTHOriWUosjyjMjWhklKwsrKKYxkYysK0LOIo4cSLp3nh1HkOH9xLlqacPn+BSrmEaVm4ns2Rg3tJohjD0BrRSqmM57l0W11Onb5AIQhottu0Oj3mGlXWNrZY2DWvaaYiJ4kSJDm+61CtlVGm0kZCk5AkHOEsehRcD2XKKcIJZ5+9zL2NCpYyiOKYYjFgdXUdxzRwfJvmptbRlSoBaZox6I0Jwwmr61vMNDQKaToaMS16Ot9xfWOLRqPKypV1CkWP8XiMkhLbsRkOBsRRQhxllCtFRuMRgVNgdXWDell/172CRzxJUKbiJ7/8BP/oEz/F/v27MVwTMF5jVeZvbLgDeOqh56jMlHcO+5rD3S1+fquYhtetG9C5N1LbGwTksLWxgevpWI04y+m3m5iWhWVOoxDCkDzTm39RMsG1vampWoTtBSAkaQabm+usra2C6XD73e9gYXEfluOiTL0ZqDdDXnkGbvk2XlXegs2+/fvY/mvdyOa4sVf7VuYnN/+eW2NZrxz4XvmcV6Jl28jg9ibVG61b5/Vlb2i4+57k071J9XdxuHtLc/e3rJTSuT/cePtua3qcPJc7N5jOAtmtedzb9wshiTPFuUvX2Fi9gmcaHDxyjPWtIW5Q4+994MMI5fAHf/LHyES3MZWZGmE0oFEL+NMHf49quYHMbcJ+n9//nd8g7K/zoz/0APONWf7Jhcs0Wy0cz2LYH6KEQggLKS367QmnLq5Sa1RxXIt+vwciIUdiOQ69zpBuL8TzAoSUDAdjXFvrffJUGyosLMwyHkxIJgmmzDFVwuZGm05rwOG5OVzbIY0T4nDMKB3y4R99AMstM5noXb44Srnz9gMk2QjDTBiHXXq9FsoA05bEeUSh4gFgWpJSrUCx4pMC737bHeyq1fjyk09x/uJFDOVCIvjsl59ESoNoohvTbnfIvt0LFCs+ylEIy2Dvgb1YrgQjpdXuYhk+z524Qr85gDRBmZCKBLvgE4kEpQSGVGRpSlAKUEo3e8pIWV9fJ08TavUiX1zfZDyYsLmmHQeVVETjET/4vvsxDKERhSxFGB7lSp35+XmyNEVkCaZjU2noRlpJQRZnnL98gXa/CXlKq9nirntuI7cU5XIJxzYpeC6W7/Khj7wPZUuEAtNUpGlKnMRkIiKJE/IkY+XyFVavXmEyHGEqyV9/8ZvIPOP0qbMcPryLO+48SK874KWT53ngPd/H8sE93Hb7IdzAZXn3PGfPnuX8ubMk4QAlFaNRRKvbxbQlzz1zkoW5Wc6dv0oOhJMQ07E5dtthpLSJJ3D+7DUmYz102baNMAzcgodpKfYs69Ddqxeu4FkWo2EHx7UxpMHli6t0Wm38wCIoeFy+vEIcRogs4+ChRYQRg4xhKki3HY9LVzYZjiJq1SphOKHX6+L6NlkMhjK4tnKdxkyFMBrTWW9x/swlSFOicEyh4BEnOUGhQr8fcfL0eWqzJd75nrdTqVd5/PEXaLeGFIslbNsgJWbP/t10+yPG4QRBwh3H9nD65EU819uhINsFxX3fdxtRnHDk6GGefuYkrh9gOQ7Ly0uQw/69y+RpRqlkMx4PiCchxaLP6rWrFMslkiThzKmzPHviJELk5GTcc+dRvv/+u3juhVM4rsNw2Kdc1mHp4XjI0aN7yXNtJa8MhUTQ7QwICmUGw1jHc7R7hGFIr9ulVCqS5xBGCWtrm8TRhFFnzLg3YdAPsV0fw1DaqEEY5Ej64yHScijV6kTxgEnUY9CNEYnHqfNX6LT6XLl8gQsXz/DLv/JPeOyxL/PJzzzEXfe/nXEc8c+eeBTXD9jcbFGulBgM+3ieSzRK+dTCg1PKAAAgAElEQVSnvko6yWluNpmdqyIVpKmgWnbI04g8zYAcZRlkpAipm6MszzBtNZXECbKp1OnEMyeRqR5kbNcmU6AUGCKb5qBNr9F5rnOkJNp2f7uBkZDm6bSBV8RRSjSekEUxw04P0zSZmZtBmia26/LQ5x4mHIyJxzFpnGFavnYrTGKGoz6ojPVOh8koJE5Sjh05rPPsEu3meeHcFYKgxKXLq1y/vo5QsLG5xfpWk6tr69i2yfLybg4e2cv80hy1aoFRr0s8HvK5v3yEaqXEuSsr9AcDLEuj5tevraFQ/NPHHqe/ucnZs+dxDIFSgmfOXeMXjhwgGyYIU1KulkBIFncvsGv/LlyvzNyuGRCCTmugUXYrp1ovMEmj6foGWZQQjSbUKmUuX7rG1dVNDKWIk5gz56/i+S7hJGIwHFGu1Oh2QwpBgWicIVObR77xInmmWFiYp93uM+6PMGyL8TDENgzue+f9eKU6Kvd3/mbbejfxCuOSv6n6w6d/56bDvoyq3YwS3jK77ga93RtGXG7Qit7qOa9kGQkBQkmEEuzas4e5pd0s7DnI4eNv48DRexlE0B3FDMOMUW9EmOQMw4gkV0wyQX8U02016bU7pJlkq9Nj+cCd3Pu+j3L8vvdiBiVSqcilJM0zENpgK+NGI5WbQdMbz8V2DqsA2s0h73nfD9zwVnO2w8Jfqbl7OURcfsvbjc/fHspeT8f3rVC77XiF7QHt9Qa1PMtedZPq1RsPt6o0y3Zur1Xfqqf8Tmr7WHqUfmP/bnmcN/i4v031FnL3Jtd3i9xJra5/Uz56Wlv2GvzpG5qINAOZpNQKPoV6g8x0eN8PPIDv2wiR8Lt/+Ae8413vREQp5UqRSqVKmqVUqhU211uUSlWGwyEiTzl8+AimZfHYNx/jF/+b/47JeMyvP/EE7y8XqNQKCKmbHssykHnK8p557eSI1p7leY4XeKSppmrozLIIx3U5fe4KeZZClpGkKYWiz2SS8cSJUzSqJQxDsL7R5AuPn6RgOZw4f417b9+PMsBxHEzLYe36JjONOpapQEqk0hbJaZoyCSMCL0BJizjKME2HLM2YjGOyNMO2LU6fu0y320cpycVzqyzvnWff7nmCwEMKTUk8tGeR9fUttrN9HnnsBRZnq9ieRTSJMG1N2XJsi15viOd6mKZJ4FoUiy6GZbC11UEJiVCKzY0tikWfXm9AnuvMP0MZZGmMYSm2mh0sw8R2bTasMe++cz9ZntPr9XE97SaZ5xmWbdEf9AkKOvcvjmLOnbtEGIbUGxUmcaIjAgSQC9bWNlhYmtOOd0mK63r6nElBlmSMwwn9wRDTcjAtG8uUCCnod/vYjgNSYpvGzsdNkOF7LuNJjO/7zM3UeObEae648zCuY3Lh4gqWaREEHmEY4bqa0heOJgSBR7EQMDNTZ3NjC8fzKBQKmKZkEkb0+yNq9RJzszVMU6OTtm1x7vwlOu0uJ09fQEnBlSvX2bd3kZVrawRBASEN0iQjiiNM08YwTC5fXmF+fpYsh82NLfbsWSLPMwb9EaVigWvXNvQuf5xy7foa3W6fcrmClIpSqYht2ziOyexsHT/wsCwTz3UYjka4rksYTqjXq5oqKQSD/lhnxbkOl69eA5ETFAqA1mnu3btEoaBRV4QiDEcs7ponmeaajUcRtm1jKB0dIpWg2+mzd88Sw+EYZSosS9M4bdum3eoQBD5B4OFYFoNBnyAocurUOeqNCt1Ol0qpSr3eIM8F3W6PcRhh2xamoXAsi9FoPNUOmozHIa7jIMjxPFfrbqSi3xtMLeRjkjjB9VzC8YSNjS3qjRqQUywV+PqjT3P08F6iSaSDsaeZl/3BgCiKKFVK5Ck8/9I57nv7naSJdqF97PETSCRf+upTVIoehqHwXIfxSJv++F4JxzW5/bZ9eJ7HR995kP/8f/otPvqhH8O2bFzXI44nfOwjH+ZTn36IT770Ip84doxer08hKHB1ZZWXTl/krtsOaOMHy9BotmkShhGT8YgkzfV5dR2SdEr1zaHb7uDYjtbLTVtL0zQxlIE9zceM4gjD1FRoIbQzqWFZCJgGoUu2cy13WtJpF51luTZiyfV3O8syHUXhuqRpSp7lbG22cB2t0U3TlDzP6Pb7zM41uHr5GuVKiTiOWd61gMwyKuUyvV4fMUVee70+pmVSrZZ58unnufP4USrlEspQBIWAeq3Cvt2LGJaJUBIlDZRQFLwA1/Vot3vsWZrn/KUrvOv+e7AtC8d1iKbU8F5/wJOda/zgncvU6hWUgktXrvEvPvU8H989T6fdwysH0+FFEseJdu/MBaPRmPFwjOvY+vqSZSilWFyY04+NEshTXN9lNAxJ4pRyQdOGi+UiEm06k6Sp3txC4Pse5IJms8O165ss7Wowv6BdUoUEP3DI8hzLMnnw6hqf+MmPYztax5dPI192BpzXRD++u2HvS1/4Mm8/fP+rj7iNsH0Hw+R38oq+1XO2e45td8rtoHbX8/CDMvMLu5mZWyRXFuEkBqkYjUeEk4Q4zqnPLxFUZnC8Isv7j+EGxR3dKmzLT157br4lG/aGn23f7XgWDz/zMMdvv41bs59u9fzXO1uvRPu+s07v1b8nv3m4+zbiEb4d58vXQ+6+ZU/5ndT3MErhrSiEt+rbqr+Lw52UEpWmNNevUag1GExifEdimTmXL5/jbffezSRJ2Vrb4Atf+jL33/92Tp89x7nzF7j9+Hu5ePEklp3SH4z5mZ/+ec5fPsPP/uw/0kNjJnj8mSf4s9UNPrZ3DpSELCUKRwgSvKJPkiZIqdjc6mDb23oabRFvmAatVpdiuUSjVubc+RU2Wl2q5RKO6yENyWy9QqHok8YZw+GEI8tLvHhhhU/86LtotVukecqgnZDEGaVigS99/WkqRR/HM3bsym3TxjQtXnjpEjKXjIcRza0uhjJ5+oWz1CsFXNemUgoYDsdYpoHjWnR62gBkfW2LP/7C17nr2H5MyyAo+EhT78wPhwPm5moopZBSZ1FJITS6F0Z4gUuSxPgFF2VZJGnKZDIhixO86UBmWSaO66CUgeO6SJkhldYIVEoV1q43+QePn+Bf/acPIKXOwaqUy0zCiFazw/pGk3K1rGl/aQbZmDzPmZmpYdkWpm3RbffwHJskSXEcR5vZ5BlKKCbhBNfzSJMUQxl8/esnWFiYx/N8/vBPvsTxY/swTb3omJbOuxNTakmaagGIaRhcuXINx9NokeO6rG9sYZkGjWqFRq3G5nqTUqlEt9OhWi0hM4VrO6xcXUUZJq7vkStBp9tj5dp1Tp+6yEytTKHo4Xq21iQJ2NzcwrINCoHL1x9/jqVdM9x3350s7GoQjkI810FJGA1HSGkhlEGGxHEcavUaQimyNCEcjykWtQufaWpaWqNRp1wqo5RJvVHD9z2+8c3nOXxwD/1+n+FoQKHgkRGTJBF5ntNsdSgVi5w9d2VKw3N54okXKJcKCEwef/olOt0Od9x5CN+zdkxfsmnT2mn3efbZM8zPl/F9B+2gaCGEwjIczp29SL1ept1qYlsGlVoN23UZjoY88/xJ9uxZ0PpOIRmHIY7ralRIaKf8R772BLcfPwACer0elhPwpw8+wmazye13HKRQ8hh0RyDAD3xa7Q5Luxc1vdXRr8dxHIRQXL50jUqlgpQGM/UaruPyxFOnmJ0rc/HSVZaW5phMJniei5QCxzapz9RwHIvJZILvGdiOSavTYc/eZaa4GPv27yZJJygJ585d5ND+3WSpoOi5LMzP4DoOrWabclBgEo2IkgGWY2KYDnmqr70f/b79/Nf/4l/zgQ/+CP1Bm8Gwzyc/+Wn+/k/8fT7313/Fr/7lX3CgWuXI4iKlcpFyKcDzbT79hYfZt3uX1skKgWWZOnrF97FtR2uTUp19R86UgqxQQiGFmuprtabF8UwQukkbDcdYtg49d1x3emmeXrOnQ50QKSITkEESaY2czCGJU5I4prnVxA8chGGQ5Vozm+c5rmWTJimHDu7FkBLT1IPaJJxQbVRRhv5eDwYjDuzfi1/wWN/Yolqt4vmejvTYbGOZJo16FcMwaHe6SKEdiHNyhv0Bo+EIr+ATDgaYhkGWC/7yS4+ya36eakNnB9qOjTS0qUy3PSBJUnYtzVPcLViaLeqYEQRJmvH5E6u8r+hRLBfodHv6cyIESskbjC70RoLruVPtnMnq6ha1aoVzZ6+SpxlX19YRWU65XCGOYlzXRUnB1558AdswmJ+rYyhtGnP56nVMpfj8159BAvfcfRg/0E7JhiWxLEP/LQz4ywsXGdRnefe77sN1bUxTkE1Hhu/1cNfaarLgL776iP8fGu7kK6iJet2TJIDteUjbBcPCrzZY3LWH2V17aczvY3H3QWYX9lKaW8QOyrjFMpbjkmQ5SmmqMrk+/jb6dqtzvDPcbb+C/OX7b3xlzbUeP/rT779pCPv/83D3RtDct4a7N6/eGu7e5Ppuh7v8hsFuO9PuVh/qm6NO9f+/nfwR2F5oXouDfoPoFknJc3npuaf/H/beO1qS+7rv/FTOnd/r1y9PHmCQSQBMEkhKIhWoI9GKVlpKK3sVLMnn7Eq7h7uU7D2W6aCjtAq2rCPJS4uWlkEiKYIEQBIECYJExmByfvNy7n6dqiv+9o9fv8EAM4NAUbLlgzunMOjpqvpVVXdX/e6934BbLFFpTGEbEMchly5epDExwamz58milDzPuP8zn+Vd3/ouyqUqre2QLz76IE899Tj79uznu97zXooFB8/3+eIXv4zvefzYD/8gf/lXH4c44Y5Gg7AzQAhwLINw6L9mWha5kP5jmirlgbebO3ie7GqlWc5//sQXGCsX2G532Ts9TpZlsmKeJuR5hqpqlEoBumZQCVw835YKacCps4vMr6wxNVZlslGlVC4QDkIMQycKY06fvcz6WpPpqRFGxqq4ri3Nikk5uH8S05Smq7ZtUfBdgoLHyfOXURVF+rSVixyYGJE8liSV1fdcPtjG6uWh5LlGHKdSInwo8a7pOs2tJs3mDqVygSyXE8DAd0ji+EonYJezlqZD3o0iyPKcPMvpdULq9RHe/M496Hk2rEjnPPrV52hu79Coj7G1sUO1Uman2eXpZ04xOiqhnUIIVN2Q4g0CDFPHcWzSRHpjqZqKpqpopuS1zV1aoFQsUiwVuXhhnrDf58hNMzjD66UguWq7ipxZkmBYFnmWoamyOu4FRZYXVzFtg5mZCTzPY3tji2ZzhyAo0O50aDRGeO7oSVZXtxgbG6HT6ZKkKZ7ropsGnusQeC5RHDE1NcEXH32Gm2/ey9bmFgoKzx8/x9Hj57jl5v3Yls6hg3tJkpQ0TTFMlaXlRUQeU6mUmbu8xPPHL7B/3zRLSysUy4Wh+bIUFDF0nTRNSdMM1/PotLuEYUyxGLC2tk6312ekWsGyZHesUCxw8uRZev0+tVoVRdGkOIuuoypQLBUxDIPZmUnSNKNYKnL40B4uLywxPT2GosK585epVStcvLRApVbGsR1GqhU0Q6CqKnGc0G53KRSLnDt9iTTN6Pe7VCslHNcGRac7NGSenqqTixRNld9h3/dREMwvLKHrGg88+ATf8e1vJU2GkFXbxHJMbjkyS6NRJor6KFrO3KV1GuMjhFHE+PgYaSJ/D1ku2N5qEkUxKytrVCsVhJDS6E88fYID+2c5eGAWyKjXaxi6ycbGNoVCMBQU0TFNYyg+kqNpsuC0vd2mWqvQ6/ZIM9nt11RI04RKucSp0xdYW22TZzlLK2t0Oz3G6iO0Wi2CwCPJQhA5qmqT56Ao0g7gu950kPe9/7f4xz/8XjzX4+EvfIUHPvsQH3j/+1lbW+e57W3OLszz5qlpHMchzwXT9VEcx6bd6XJ5YZli4GOaBhvr8rxNw0DXVPJc0N7pcPbiHONjoygKJFF61R1Zdh7iOEbXDeJogGHo5JlAUTTJIQJazRa2Y8tngSJhhkmScvbMJR59/DkmRivYtkmz1SLLpOBRnoOmqPT7Awq+z/mLcwgEjuMQhgMM0+DcpcvUR0fI0hTLdlhaXCEoBLi+5KA5jsvc3AL1eo00S2VCpGvYpiX/tm2pdqupqKjys7NMVE0l7HdY3VinUitTq5RwPAfbNodQyBRN14aiLjZxHPNTn3uAH7l3Bts26PX7mIbF6aUt/kmhhmmYDMKIUiW4Ak1TValkDFJZUAjBTqtDFMnvbRB4ZGnG+vo21WoZzzGwTAtV0XBdh34/RNNVZibqaIpy5djX17aZnGzwNw8/xXe87U5sQx+qicoOqmVLSwdd1zFMgw88f4Hf+c0P8q9+/de59543YpomDH0HVfUFTtuV5/pQ3eS1sdeuH7ffeTu/8mu/zNtue9s1siFXzyWux/x66bov3Z6rEtLrHeXV+cTVCdSV5So+35V9D4vZAOqwTMPQX1dVh1BlRSpSC0UZJi65FFFTBIoQaIqEXUqI5QvX9opojLL7Qo780inPjbp8D3/5s3zTe9525Qq93NxqVyjlRiEhl4KrBVWuB8N8JXGVq9a8slxtZv5qTc13oZ6vSkjlNcTLzSlf9T52LTV2z2NXyOUblDAKIWQR/fXk7vV4LfG3F1R5Ia5Ull7mvd33v+EVk6tDCOJ+j2ef+CqHbr0NYdgoecbW+gb12hitVp8/+uMPMTPZ4NbbbuPAwUNUKjXOnL3E7/7hB/nVD/xLPvCBXycIAjQt5p573sjk5BSlYoV/9ou/wPt+4se47aaD/Pljj3Nxo8W9o7KLlWYpimpgWhZCEdiujaKp5KlUs/R9jyzNpTiCY3DzngnGamX2To+jGhqWbZEJVfLThhwvgH6/T7HkY9sWrVYHz/OZmK4yMVrA0BUMywCExKILWQ1c32zSCQfs3Ts5nNir6JqKqglELj1oPM/h8489RcX30FWVqZkGtWqFQXdAnmdsbW3T3O5QDAJ0TWN1eR3fdUlFLMUFhMaHP/UlAkOjEHikWYIACsUAx7EJ+5EU40hjec66garpmLqHyBR63RAvkN3KNE3p7PQwdKmQ+fCZs4wdGsUxDQqFAggFz3FwbBvbMTh3aYHx8RpJllCrSRVD2/EYhDFPPXmCfbNTLMwvUSh4V0gKQlGJ+3JSKIAojum0e+iqxiOPPc3+PWMUAwdVFYgsxfFdet2e7ExqkgOq6ypRlBDHCcvLa6RJAplCbaRMe6fJ6dMXuDS3SK8XMjM7SbcX0tzZoVIrMjpWwXVs5hcWcRwTQ1MRaYrjByh5TpYl1Buj5IqCkudUKiW67T6DMJLcIsNgemqcWq1G2B+QZYK1tS1pTC8yXMuQpt5BhSBwUDUIfAtVlWI2WRpz5swFPM9lYWFVwiLJKJYKzC8sUa4UKVUCAt+lUi6wuLjMyKgUNRmEEbZpU6lUOfrcSepjNTRNwfVtdic4q6triDwnKAdE0YCpyfpw3Jx6fQyAKJJdYk3TQUj11pXldSrVCo7rIoCdnRYHD+/BsAyCgk+a5Qz6EbZlYagaUdil227jBUVZIAJaOzuMj9dxXZsjNx1EVQSQs7m5jWVZmIbsOu1st7FMiyhKmJ2ZpbnTpFQukueQZ4InnjzKeGOULMsoFouUyyUuzy+hkFMoBBQLLufOz1Eq+aRphmlatJod0iRja2sH33f40mNPs2dmAhSFbrdHuzuQwje5wLMtsiRleW2Ner1ClsUogG67lGs1qqUSjmMx3qgxPl5HUVX8gk80AFXJSZMQ27A4dmxOwrMdC91Qee+b9vGr/+53+aP/8td82zu+nXe+89sol4oc3D/DL/78z/D7H/kYn7p4kQlLZ7ZWJ81lYWFru8l4o46iCFRNflaf+sJjKFlGpVhEU0w++cCXGAwiZifqRNEA17UZhCGapg5VAlW0oQiQaWqoCPJcgKZfue9LGxFBHCcoMOwAKjSbTTJSRssB/X4f17EpFgtsb+3gWRbddg/XsdFNA78Q8JWjRyk7LtVqCYHCI088x80H9qIZspui6yZ5luN6DoKMaJBiGiaO79BsNtFUnUEYYdkWSSILcWF/gGHqtHdkF8+0DQzLkP6FtsOgP6BULqEPxVE6nR6dnS6VWoUsl0JI4SDkzrtLjNWKOI5LHKVkKfz4b36CHz9yiO2tFr7nYjhSvEdRVHIhpGiNJsWaNE0lz8DQDdrdNjttCTl/4vg5HEOnVApQFJWt9Radbo/PPX6C0aKHpqrS4y5KQSg4psWzx84RpykH9jSwbRPXtYh72VDZV34qnW6frY0mD2zt8APv/T6WFpaZnZnFdX1pY8GLJ74veq5/g5I7gA//5V/y9jve/rLrXG+UVzOyVEu8NkHa3cEVKuH1tr3BOC90Fl+wFFfYFYwYJla7/64IVAS7Gp2Kogwf0cp1x30BgvlCqvpqp0geFQ68ZeZVrftqO3Y3ElR56b5eS1fv65vzvViZ97+ruFFy+g061jzPEAIM3fgHndy9LqjyevytQ1MVfNelXCmzvLQylH5XyTJBloNlu7z//3g/b3nrmygUCzi2zWAQ8+cf/jAnTj2NaZh87sGHee/3vpdvfdc72NjY4MEHHyQchBw4cIA0TSkUi/zST/8IT7bbpNGAKI7oRwN0VXrXCSFJsZ1OV3aI5lcYDDlJhqmzvrbJIBqgaip5nqHrKu1OF3LZKdJ1Dcex0E2NoOCx027T7w84fnaOC+cXEaQkSYQgZXurSZqlgIqCSrfb58ihvRyYbpAl0O9G/If/7yEGgwRNMVAVHcMwSOIESzewLHNY5RTsKl3lWU59tMJIrSyhSVmOikI0iF7w2wO+/c23Mz42gqpIDo6haaRJyk5T8uMsy8S2beIk5avPneTS5RVA4elnz5Ln8OUnnqe9IycmnudKg2vb5M+afabqtSt+eJZlU66UGRmp4bgG99x9GEXNKJU9dEPyLJMkwzBM7rj9Jvq9kH17ZySnr9Mb+gLKDmqaZKytb2I5DnGcsLa6yfe+5z727JnCMiV8sVyWHLFut4+uaxKapiiyezmUN9+zZ5pGo46my27gWH2EW4/s567bD3Pb7YdZX9/CciwOHd7PydPnAeiFfQ4e2stYfYR2u8tXvvosWZINOzwqcRyDArVqddhZtel1Q26//Qh3v+E2Ws0OqysbqKrGn/z5g4hMEA0yquUanuuTp4JokDM6WiMeRMRxQpbEnD17HkWBQ4f24rgO4+N1qpUKuchJ05RKtYQQOVmWkYucXr/PxGSDneYOIhNkqWB0tI7IZVU6iRMQclKrqgpb21vUx0bxCx5JErHT2ZG8qzjB0A3CfkS/N6BUKkp/REOn2WqRxBlTk1Mw5F9lecre/dNkeSY7NIOIMIw4f26OzbVN5i8v0NxqYZnG8IEnlerK5ZK0wEhTFueX6fd7qKpKuVLEtEwWLq+iKhqL85vYlkcxqJDnOV998gQnT59H03UMQ+fee+5AVRVcx2VpaYU8zzhwYBbbtXj++GnOXZhnvFHDMAxsx2F9fYtLc0vUx+og4Pz5Od7+trtpt7vkWc7IaIXRsTHCQcylyys88uWnWFla48D+WbIsZXNjk+1WCxQN3bS5OLfIdqvNIIpJs5Qsz0mSBMtysUwHQzdobW8zMlLh8adPoGu7AgWCD/zo2/jLX/kOat1n+aM//U/kec6//bcf5PiJ4/zR7/0GtuvwO8dO8S8f+TyqApphUB8dReRI2LWqcHFhEYDVjW1WV9ZYXdlAEQpH9u9B0RSyLGVleYUkiaUnomXJe10uOw0b61usrW6gm7pMAIbdk34vZDCQiWyWpuRD77tDh/fxzW9+A+EgxDZNkiThMw8/im07nDt3CdMwMEyDXOQomsJ2v4eiSoSA6zq86613Y5kW4WBAnuUSJu3Y8r6rKhSKAZVqmSRKMAwd13PZ2NyU0OLNLXZabdrtNnGSkKQpqqYO52oKp05dxDBsLMthfXmDeJCQJhme5zO3uMzchQUUFAbhAN1RuXm2QRAEgELg+7iug24Y6LpGuVxAN3WyTNpLhOFgCM2Udiq5yOn1QhYWVxC5oFjyGR8fxTA07j6yj14YYlsmYRhhWSaB7/ED734LpmlSKPlMTo5RKRcZhAPW1rfQdY3vfMc9GENe4OZmk7W1Js8cO4/IBc3mDo5rUygFjDca6LrJPXe/iampGWm78j9A7MroqzeYY1+323f1+6+QTOSKJhc0pEK4VH5VhMLVf1AUhKKSo5ArKvmrEJ2TY7/iai+KP37sD17bBq/HP4jQNH2o1v0PO17v3P09x2vp3L0c7BKuxoRnXGnBq7J6paBI1SJFuZLB3xBrPtz+yraK4Ma34GsjTxN67ZA///OPMN2oMTtaQHHKOJ5NL+niBjaKqnDs6afJ4j779k7w0Y/8Bfe99a3cdOAuJsfHOfr8k9xyZC/HnnsWr1rijjvv5Mknnufnfvbn0PSIYsFkZt8t/ND3fhff8+9/h80o41Yv4MmTp7G0lKyfENjeEL5n8NnHnmPPeB1jKCPumS6aUBFIE1GEoB8OsG1L2g6oFlkq2NxuIqIIyzDQDJ3ZqTEcx8AybXTdAtXEDwoSFqEoKOToilQ51HUVy7HRdI27jsgJqm7tGhQrxEnC7PQEWS4wLIt+N8SwdAxTl555Wc4nH3gS24BKrUih6KHqGiKRMATV0PALHlE/Qtd1FFWj1+thmCq+HxD2Ip4/cZ5GfQTdsJi7vE6jVAJLsGe2gRe4rK5uYukqhWoB27HwXYfv+9zj/MWvvAdDt4iieCj8IBMz3dBpbjcJfB/LsImjCMNQuHypybHjZ9m/bxJIMQydrWYbxzGxbZNeu0Uc9llZWadc9LBtgzROqDcalEcqpEnEIBqQo+L6Pqqm02ptMzJaJc2kihliSNBW5d+5ELS7XZIoYjCIGAwyer2QOO7hOj7PHD3FLTfvA5FTKng4to3rB+SZ5Pk9+cwp7r3nTnRNk4k9Cp1WH9dyOXX6DKZpUCqXMCyTKEmwHIszZy9Q8C1c18Z1NKZmx4kHA8ODv9UAACAASURBVDa2d/DLZTTTxvcd1tbWqFSqbG5Iy4Vz5y8xMSkNbvM8RyhCiu+kKefPzVEpl+j1Bziuz/LSBtEgQggoFPxhEULBMKWf2+zMFJ1OF9uxUHSb1vYqrmUABqou/Q4VIeWvbcdiMAgxDIP5y4tUyiWa21JJcnl5nUqtQppkLMxfolorsLneZXtjk6DgoWBw5tQlRkdsJmdm0A2ToFjiyWdOS7GXik+SRlJpMs+IhlYZgW+xsrIqfe6EYBB26XZCgmJAUHLp9XtkSYTtuTiGyt490+R5AkqOEBnra+uUy2VMUycaDOi0dnAcm7F6lXLZZ6ReI44HhH15Xo2JMXRNQSFjfHyCU6cvyo6MLrkkuiqVIKdnJ5idmUTVVbIswzAtdN0iilIc2yRPYpaXVrjrrpuxPRtFM9A0k+ZWE9u10CwDw3Lohh3KBYVDhw4yiCIsW5qGK4oJispY2eVthyv8xw99mI2+4Od++ifZaW7wTW+6i8XFFc6srvGxc2f4vgMH5HcAyXfLsxzPcig4NmMjJVzXpFh08ByTRn2UPBf4gY9XLLC91aJQKpHEMVHURdUEumpIzp4tJeAVkcvEL5OCNArSwmvQb2NoFqvL67RbOxi6Jnm1gGM7zM0vU/J99s5Osrm9LcWTdB1EzuGpSaT3Zkav30dVNY6fOEdgWFxeWsL1bBQFXMdCN03CXoggx7FtNje2CYqSayqEQFVUPva5h7nrlkPomoQga4aGYegsLawwOzvJIIrJMwmd3NzcQogcyzIYHa1gWyat7R2KpSI//cCDvPdN+5ibW8D3fD7+iUcRjs3/UqqRDGGmQpETtSzJsG2LTruLZZiyqyMUVpfXGW/UCcOIB776JIf2ToOqoSgKY6MVsgjWNjYolBxOXViEHB564iSNWkBQ8Hjg0ae5/ch+iqWAJI4oFj1EJosDxSCgUPSYmqyDohInEYoG//SZ0/zh7/8enWaTza0NJmYnyXSZoAzhDlcWZbioirqbxnxDeEU/8IPfx6kvXcLxLQn/Hz7ur6ATr9PhelWot6uUMV9tvBJM78VQUHFl2d36apXNq9dUeHGXcPfcrt7h1dvsnt/ViekrJaOPHP0iP/RD3z/cl3oFSvmCDcHVEMrrnPsQivni2djLM9d2i8Ev3s+1UM0X++W9/Niqpg2hjS/QdlRN+3vv2r1aJYmrz01RFESeXbnuytf550XHMYR5GvrrsMzX4zXEa0nuXg52+eL3X0rClbe3Kz/662wrrvPqNfvcDcO2HTTD4J433c3xZ5/Bd13MQoE8TUmiHEVoKKjMnVnkwoULVCoVFDIuL1yi0w7R8hiiHufPnuaNd93NuUtz7Nu3n9mZWRQE5ZLHgw89xMTMBMePHeO5x5/hyZUV6p7DPY1JGo0axVKJNEvJRUyWw5F9U0PxEQ1FhY9++lHCMKRWLpBngo3NHVqtHsXAZWFxnQvnV2g220yOj2K7BqZro+oG3Z6ELiUDEEKKUKRpwqmzF6mUA/I0p7PTk90RywRdQQy5AepwEiUERP0eeZpzeW6VR58+jaMqjIxVQAhWljewLYudVod777qZ+ZU1GvUKWZYjckE8SKXipJAqk57jsLy0ju87w5uaQhpn2I7F5MQIO602YT/i8vI6ZxdWueXwJHme89Rzp3nr3bfRbnXJ8hTbkgbrf724xnfeMcGpE7JyP7+4zNb2NpZl4Lo2n3nwKc5dXOLgoWl6/T5ewSPpJRy5eR8SDWbS7cd8+v5HmRqvEYYRtuWQJBkzM9PML65QG62gm5Ibs76+gWXIhK3bCdF1E1XVsT0bgZSEbrc7mJaNqqQw5BGlSYZjO6hCwbEdsjylNlIkT/p0O12KgUOpVODCxctUR0ZA0Th17CzTkxM8/OjjvO2tb8AvBAx6PdbWNzB0jcpImaePnqTgeUyMj9HvhURRhB94mIbJyEhJKiiGIdMzk3R7XQxDlTBPw2Cn1QSRYZgmmxvbPPbEcW49sp+Z6QZhfyDVTXWD1nYLXdVpt7v0w4harYamatiuTalUJApDarUqucjRNZ12p8P6+jZjjTqmaZKmGRsb2wQFF9+3UVBRsPjiI0/TGC2hKor0j0PIrphmURupgaJiDQ3txxp1RJbT70UYtoptGyiawtnT8zTGqyiqzhe++Cx33LqHTOQoisA0dUZHiozWK4hMQurCXoRlOjz5+Ekao3XQBIapMwhjWq0dUATV2iiKpqKbGrZrkmURy8sbTE1P0Gl3hiqzKmmaExQCBGDYBo5nEkYxpUqRcDDA9T1aOx2CYoG1lQ1s22JlZYPA9xiEIZ1ujzzPME2dQqGAYRi0OjsEvo+qqDzz7DEqlYBKeYTtrRbbzTZjYxK+mqYZ4+OjaIbG4uIS1Yr0e+wPBhjW0P9QVXEdGwMQIkGIvuRQJhqm5SByhT/+z5/mvrfdzpSv8LPf8yaS5ef56Cc+wR9/9Av85I//GCeeP8a3vPXNfPDBh/jomdO8ybXZ6fYJii6ub1MoeRQKHkLk0h8vDKlWyqS59IZsbbfxXI8sTWm2mhQKAaqikqaCPBP0e30c25Em3opKHEZSETiJMTSVKJH36F0F2BwJEQ/7fVBUpht1aV2QIyHJucB1XRRV3r80XaVULrDT6lAsFXn86AkatTL79++hWimTJCmO69Jvh4T9AZ7vsryyzNT0OEkaYZoGiqLi+S63HNyDbmhoqkWhWAABqqrjOT5PP3ucwPMQAr7wtSd445238NQzJ+h0O9RHavJZ49h87fxpfuHH7kbJM3lvjlJmp+p8y//2e/zPd9wix1NVmts7eK7DxsYmmiYngoZl0Ov2EbmgNlIZQlsN9tRH0RSV9dUNdFUwGAzwnIBOp0etWmZhfot9s+PcdngaP5A8yrLnIjLBI48/T+DYVKslsjRneWUDf+iTt7S8huva+J6Prhv89eIab7/vPtaXl/B8l7GJhnxOv8zz9oZQzb9F/MoHf5n77nj7lULvbhJ09f9fGX/4n7+rqf43Iom40S6uhnpemwReu4/XMgO6OrmT9gUvJFZXz6lufH6v/dPcTRRVTX8RJ++lUM3XItyym9TtJnmvbvv/dvHS34qivmD58I2M15O71+M1xWtJ7l5JeehK1Uq99iaioFzp1N1o22teXV00uqra9EpiLFkakw/He/7pJ9k7O4tmS1lo2/JotzskccwH3v8viZKQd779Pj75qU/xg9//Axw4vJftrQVmJmucP3+KA4f2YrolfD/gQx/6Lzz2lS+zd+8MtuPSbG3TGB1npNLgvd/9vfzJlx/lRw/uIRcpYS9C1VQUNcNxfdbWt4aqjSbdTp+7bz2MpauYtoFAoKkaz56do1Ep8czJi1T9gErZw3Y0VF32TLNUYJkW62ubLC9vk8YxIHB9m8BzeOLoKWxNpxD49MIBXsEDdUjG1Q3iKEHkQsowk9Fsdlhca/JNdx+hNlImjmNEDoXAQ0HBMi10w+Dy4grlYoCha/zVQ48xVa/g+w6qoYAi6PW6jIyWQJWVQtuRRuaapl6R5g4CnyxJaXZ67JkewXVcxmoVciFQAdezQQj++uQZfu0X3s3CwjKO5YAClUoBTVUolST07vDB/ezdM06v36VYKoAQ2KaD5Zj0wz66YZIkGXkieW8Xzs8zMlLGsm36YUSpWKTd3mFxcYXWTptGfYQ4lnDTSrmCphuEfVnFl5VJWF1eo1jwSbMYTdPZ2NjC930AaWqsyc+y025j6AoX55YJwwgUlVKpSLPV4dLlJQ7v20M/DDl4cI/0M8pBVxUcx6JaK7O6ssGePVPUqhUuX15ktF5DIDsfaZbR3Goi8oxjJ84xMzOBqmkYmsZXHn+OqYlROdFWJdVf1zVuvWkfpmWwsbGBHwREkbQbMA1TQsQ0DUPXWVpapz42wk5TdqmyXHJDDcOgtbPD+QsL3HLzQcJwwJmzF6jXaxQKAf1+D9s2WFvfxrZ8jp28yN7ZOmEYkmSpHMsyWV/ZwrJM2jsd5ueXaXekLYBhqBRKRSDFtA0UoTE9OcnG5gbtVk/6IPompmWiGwZ5mrG1tYWCwHMDUBROn7lEnmbMzkwQxwkXL1+m0RjlxIkLVColKpUSeS4wLFNWwzUVREqtOoqqKgwGA2zHJokTut0+xWKRLMtQFMlP1Q1TcgSBKEq4PL9ErVYh8FzanR7TM5Osrq5jmQalSplKtUS318MPPBbml/F9l5WVTaqVCgo5nu/SanXIs3xY6ZVw0q0Nyf8TiKFVSIcsTamN1kjTDE3XURSFNEnJ4gEgJJ9VVVEVCxQdhODmQ9NkecpIrUKSxFimye37Gvyjtxzgf/3NDzMzu49/9jM/wz96z3dy/4MP8tj2KuvtNvcdPkQ/DPE8m34vxNANNjebFHyPMAyp1io0t1pkGfzVQ49w5OCe4dgKcZTQ7w+kCuMQkp5lGZZpcuLUWQqBL4WGtrapjo6QC8HG+iauY2HoOpqmMhhEbG+30DQN3/fodvqsrG9SH62xub0t7Qw6PWq1Mmmc8amHv8LkSI2bDu4lyzLK5SLrq+ssr67jOg4LCytkImO0XqNY9GUhyPUI+zGaaiIyQZ5Dq9nG832SOGZtbYNoEHP+4rwsUOg6AsEthw7Q64dMNhpMTjaIBgMUVaHX7fORxee5a88ovu9KC5oopVDw6T01xzvvuGkoviKFnRg+yjxfQsJ13SQcDDhxdo7GSBVFUWjvdCTH1LFod7pUqyWW1jaoVoq4nsnOThsAz7OwLAVVl53INEoplguMlgpDAauUXAjK5SJCwOLKKvWRqhRMURR++7nTlPfv556730jY6bC+vk6pWsb1vOs+6K+XGHw9yd2uSMvVS7fdZcKfHI5z9ZjDv198INce2/UGGkKCX0ticKP9wEs4eDfYp3K9t6607JRr/nk3rm5+qbtNU8EVfuRLj+2aLp4QfNN73kJjaJ0h9z887msSJHHd5cXdtRt/si/tAF4tjnIjjt6rUe28ernmolzlaXi95Xr7F3lOnqUy+XqZ9XbXfbn3rz73l57TyxVCbjTOazmP3WvyuqDK6/Ga4hspqLIbinLtjeGVfgDXTe5etIMXkjsJaXi5H6IgUVV0Q4dBiIhiquMNRCqIw5z7/+azfPDX/xX/5l//a2ZmJmk2W3S7EUcO305PUZkdH+P5o8/jBhUuLmwxMlIfqkTWqFZKPPjgQ7z9vnfQizJa2308t8iZs6f4pV/6WX7i9/8T7yh4uF7AiZOXcG0NRZHKZ7ZjoenSTkDkKa5vYXsmuqZgWBaj5QKmbjDTGCHPMhoTRVQjo9Ps4/s+uqrz7HNnIMnBUPjSsdM8d3Geu27ai26oVP2AcqmAZUiZ7iSNMQ2FeBChCoXNtSanTy8wVq3Q6nR47Og5vuVtb6AX9jFdFZELHNtCQeXLX3ueufk1JifqNMaqaJpC2BuwsrbF1FgVN3CJkxhFhSSO6Ychum5g6Do7O21M02BldYNCwUfXNExdx7YMbj48i2WaqIqGrutsN5tUqgV0RWNru8X92YA7pkqUigUs26A6UiYIPKIoxnMDjp84j+uaOK6J59tkSUYS56i6xnZzm2LRZ2N9gzyJQUlRBPi+h+O5tNo7bK912NpqUS4XsAxdQkYVBd2wCAcRq6vrVCoFojjCtHQpD+/aFAOP9ZVVKuUqW1tNPMfBsgyyLAFFx3QsoiTCLwREUcLk5DSlcpnAL7Kx3mRzfYebDx/g+PEz7Nk3TafXw7Edjj13Bt3QKJSKEsYhVM6fm0cBHNseWmc0CYo+qqpSKATYlsFIrYym6/S6PfI0Y2aqgWXZtJptzp6+xFhjlJVhxT6JYxYWV6jWqggEnh9gWibtTg/Htrk8v8qBA7MoKOiaSpLE6LrO4uIKhULAIIo5sG8Gw9RwXINKJZAQ1lwQBEVQoVAo8fnPP8m7v+0ewjgkjCKqlRK6rrG8tMLY+Bhh2Mf1HPzAYbReAwV830QAtmuTpRmW7tBtR5w6d46DB/YxOzNBt9ORCoaKhLkUCgE7Ozs4fpGvfu05goLLxNQYlmugGTA6OoIQgnK5TKlcRDdVnnryKBONUQzDpNPqIDIpwa1f4Y9KS4/Ad0DkbG82cRyHOJYTc03Tae90yJKUrY0W4/URNF3j/Ll58jzDtiySJMYr+HKCH8eUSiUqlTI5KrVSlePPn8V2LIrlIr4vjctdz8Z1HRQNHnrkCQ7unxnCfiUU0bEt8lygCIVup4+GiioUVEvDNgt0O31MS0HVhITwqQJNV67Av3VDJ0mTK6Id3/2GvRyuavzGH/4xv/UnH+aXf+6f8t7v+W4+9LmH+diZ83xlfp7vvvkIg35CuylN5A1Lp1SUXSM/8Bn0Y1ZWN6iWAyxTx7U9bMdB06QHmG6o9Hs92p02vU5PJiNpTqvVZGy0htAAkZFnKXF/QNgNieOMSrVCqVRA1RWSNOL+LzzO7TcfoDpSxnZtCsUCtm3Ra/fIUsHe8Ulsx6HT7tCYGEXkgk6rTZSk1MfqRGGPKI4oFYKhn5tJnuaASpZmfOijn+Xgnik0VUM3dDY2pf/m1naT2ZlpxsdH8TwH3/P5688+wm03H0I3DOIoQtWkAMr7HvwM/+6n3olf8FB0FUVT8YOAZi/kXrOGG9iYhky6+32ZEBqmSrvTwXEddM1AEQrj9RogId+GoWE4NrqmDrmbcHF+k317J5lfWOH5M4sUHZ8oGuD7FoqmkSQpX37qOHEY8cSx8zimSaVUpNuR3NMkzvA9j06nh65r6KbKf7y8xPve9z9Rq1YoF4pMTU/hF33EsDB67XP9OhPol32qXz+ut58733AHl55awrSub1B9Tb70Cq+HA91wvFcVN0gOXy65+3pCiKHm10sSuZeSUV52REVhLVxh/4F9L0rOVFVj15D8lT6tVyOe8uL1bjQHu8787++483ajpAghXl0H8OvoEH49yd0rKYO+3PivJ3evx2uK/1GTu3T4oFy7eJFLFy4gLBPPL7K2skW1WuM7vvPdZEnKP//nv8DP//zP0e2EnDs/x/t+/hd5z7e+m1tvOsL5C4sUq+McOrQPQ9eZmm5gmia333obZ8+eZXV1kwP7DlL0AzKRcWH+DD/x/T/Ov/nYR/nO2WlOnL7M9EQFoapYtsX6+haeZ5NnGd1uDxC02m1QJInfcSw+9cXHWVrd4pZDe2i2t9GMHJHpDAYxru1ScB1GKmUqoyVuOzjL4ek6hq6TpCmGIa0AvvbUSWzLkJ5YGgz6EY7tcOHSMtP1UWzbJien5LoUij6WbaCZIDKIwpgkTnEsk9uPHCBDoKpgmrLrcsvhvdi29HDSDKmuZ+o6YV8S/bM8l0ICpk6h6A8NiKXFgeXYqKY0Oe53+iwurNIYHyHPU3RN57Nnz3HvG+qUiwG2ZZOkMZ5rk6YppmmyvdUmCmNKZR/bNlEVaG63MHSTTOQUSwGqohD4Lq5jY1s6pVKZcDDAtKRwTKVU4+mnTzI+XsW2pJl5p93BcqTnXbfbIwz7FAo+6+sbVKsVlGF30bZMMlSCwEdVFeI4Qlo4KKi6hmaoZFnO5vo2hmlz/Ph5xsZGeOgLz/C2t9zB0WdPccddN9MPQ3KRc+7cJVzTpjHVoNPpousa585cxrVscpHTaIziOA5ByWN9fUOaEisCTVUwTIMkyeiHA86dnaMxVkfVpLn3oD9AKIKxsTqdnTZpllEfrYCm0+v1iQYRuqFx6uxFZmemKFdKEh6X57RaOzJpK/iUyyXW1zfQNQ3HtQnDPhsbm9iOgW1bqKqOEAqKKshyganpFMs+pmMi8hxj+FlXKmU2NpvSBsQ0MIZKfHOXF7AtVSoaWgaaqtHvDFicX2NisorjStuQjY11yUFDYX1tk/W1DSYnxxGKTLj27Z+SPFENNptbFIICzWYLVdXldzJLKXjSQ0wIAbmg3WzjBC5CCD7/xceZmRxD5II8izl54hwTjQZpktFq7hAUfE6fvkDR9ykWC3z+i0+zd6bBpblFjtxyiDiO2W7u0BirXVFiLRQLxHFCmmbohsHW+jZpklEsBWT50NAbKZyUZSkiz9m7Z5y19S0KxYC1tTVKxQKbm1t4rodhWVyeW8ZzXXltfYMozPBdj1wMGEQDFNWQvyVdJxt2i0AQx9KwHRQ01UDXNG5pBJTjDscvnuFP/+pzvPOb38TIyDiXVlb406ee5tsbU5RLFebmFxgbraIbOnGSEIYDSqUKNx3ci+vaQ1GclE67i6IKVtbW0FWNOEkoFQM812NiQna6RC5htWub6xQCH8s02d5s4bsex89cwNRklyzs9UnShLtvv5UojnF9l43NLfzAw7JNoqE4z1eeOM7axiYz0xPYnsWgF6KqKr7n4XoutWqZarWCEIIsywkHAwxDTvTSLGNpbZVbb9ovHy1CoGoqjivVOvMsZ3FpCdd1aDbb0r/TssmzHL/gSZ8yVeGxlUt8212z0mw9TzEticz4nY89wvxj57jz5llQYGeni2lIIStNV9E0BduyQGiIoajRIIoxTUMm4qoyRCsEpElOrVLC0CwpoJPAzNQkjiU/b8M2GfQHzK9usLja5F1vuYORalkq/OY5l+ZXSdOUbidkrF7FcizCQZ9Pr23zMz/zsyioXL5wnptvOYJmaGiGhsiulb3/u0zuAD70B3/GwQM3XX+bl4x53YTr2oFedrxXiht1/V5rcvdK10hVX+gMyrnNC4ne1dzClxvx4rHLfNdPfdt1Om8vz5m7Ol5tcrcLwXzBo/Gl8d9HcrebzmpX8QJfT+7+28Xryd3fc4gs+xcC2S7+xv0AlWuWV9rz1WsLRQVFRdN0ydV7yQ3klaAWQoAqcrIkZXLffo7NzRGoOaVqBbfg0+5uUw5sSmMjPHv0GOMTs4zWJ/m1X/u/+a6338u5c6fZd+AghqHgORquHfDk1x4ncCz+5lOf4MjBm1leXEFRTUrlKptbLX77t36HhUsL3HHnQT7+8JdZX1nhXTftxXNsLl9eoTZaBgVMxySOYuIwZRDG1KtVet0BfsknFTkHxsc4vH8GgaBSKxMPcoRQKFdKKJqKZpr04wTbMiSHKk7xAg/TMlEUlTCKaDRqmLaB4zicPbuEppnYtsvE5BiKrmFYOmTw6NOnCUwDx7GxTIuTp+bZ2GozPl4nKPigKVw4P0+5GCByges7KArMXVwGIXAdm3iQEPZiLs6tUa0WUZHecr32gPZ2F8sy0Q2TPBc0WztYloqiS0+p2kiFbqeP5Tj8zQNf43En5c0HJ9jaaqFrGmNjNdqdLq7nI4Sg22mxd7ZBZ6eH7Uhz+CzL6OzsUC5LC4Nw0EfVLVTdRLdNdnZaJEmErhugqKiayp6946i6QDd0cgG26wAZoDIyMgJpgueYGJaHZhiga6R5Dkg/L9XQhkIHGkmUYTs2WZLwhS88wcRoDdd2SJOInZ0dLEPnjtsPoGkqtVqJ+cVVVFUlSzI0RWFqpoGigG3b6LpBUAywbJPy0AMuEynNrSb10THyNKHT6WJaNgIF3ZTm8bVqmVQIdNtCMyRvr9/uomvqFUji0sIGnuuSphHlSpGw12ff7BS5EPT7fRAxp0+fpVSu0u3I72OWZxSK0tZA11R0pH2FZbkYlo1qACJEUSQXqtlq0e/3UVAJXA/LtFCEwsVLi1TKBTRV4/KlJTRdRzd02dnTTNrtLsvLa9iWhevZWJ6D57psbqyjqDljk2OQw+ZGk1qtRrlaQjN1ol6f8xcu0RgtcfL4GcYb42iKjqqpJNEAy9CG6qtSBt91XXLE0JZDlwmpYTA7PYGmqESDmK89fpy733A7/SjFdiUPzHUcTF3H832OPn+G2dlxxhqjeK5Jt9ehUitRG6mgmw6PfuUolXIR17XRVYWN9RVcu8jpsxeY3TtOUPDwXI8kzYhiKZefpTlpmjAIQ1TFwNQs1tda1EarrK5uoGBgGAbFkovjWRiWRdTuYXomOQqaYhOHIYYuJ3VCkd9rVVWu4jrLJU1SmtvbTExM4bsm77nvDu47UGFPRef//ezj1KpVOt0u959/jvtXV/mFd9yHZVu0291h0cdGVRW6/Q79sI8QgqAQDFUbSxT8gLDbR1dVVF2j2+uRxDHlShnDHCr1YkpY5uYW41NTXJhb5vz8HHfeeoiUFMdzKBbKaIZOUPDphwMG4YBiqYSiSMXeB770JG9/y53cfvtN9Ptdjh07y2SjjoJgc3uLYjEg16XBuBAKqgpht4fr+uR5jq6CRs7SyjrT01O0dnYoV0oMBglzcwuM1kfxXJeHH32a1nabN951hDgNOXX2EvXRKv1eyE8+9AD/zz+5D2/o4dlp94nCBMu0+INPH+Obiy5TjRGkmFgmYZ6uCwrDjqstfdFEhmkZZGmKqiosL63h2ubQLBtUTcG2dVaW1wnDAZvtNrWqi2oq8h6WK8zNr6Ip8K5vfgO99gCv5LK9tYVtm5TKAeValdGREpqhgAKfOD9HpzzKu97xrexsbzIIW/R7bYJyiUGUou/6iQ0RbaqqkF0lGCKQlgqvbFEmhj6mL4HcXSc+8pmP84b9b7z2Wf6STXZfvjC5vnFc894NIJLXe/9G3cFrkrvdDt/LHMM1y1XXQwpmDP0fdw/hqu2HTj4vSpleOtbvfva3+aEf/oHhqxdDLK8HtbxecXxXgOWl2710EXl2Zf1roZ0vFnG5et8vjJ2/aP3rhUwedwsMrwyXfNH+d6GPu8cLvNJ373rvX1fq5KrrIJUbXqOo0KtN7nJx5bIqijpE1WivJ3evx6uPfJjcvRq88d8mXsued7/+6rCt/pqrg0L+KmTFNqNULvHUVx9jz559rK1vMjU1SRIlOEHAu9/17dSqNVSh0Ol1uXjhFL/8y/87n/zk3xAUyoRhwh/+hz/kH//ID7O6usBYvY7nFahWanzygQdYXl3j4x//OP/nr/5ffOu73k4p8Hnv93wvf3D/Ayy3dtiv61SrBbr9vuRcCNBUHd9zWd/cZmVti5FaGVVX8gCtZwAAIABJREFU2dxoYhsGumGgqgrNVmvI48hBSBPxLM3o90M2N5pUKkW8wEXk0Ov1pWKlomDZ1hUD5YLv4TounXZPytIbOq1mG9Mx6XZ7zEyPSW6gplAfrVKvVzl15gKe62DoGo5tAYL/ev+XODg1JuXFAwmPUjVIkgQv8BirV4iSGM93rxxLuVKSvJKrTM5VTSVPc/IsQwFcz2Fzq8W/WNnggz/6TUxMjeG4FvX6CL1eF9/3yYffn0G/j21bxEkiBQZ8F89zQAhM0wZFxbQM0jSVfL+hXP/C4irRICbPcmzb4cmnjrF/3zQIaO908P2AKIrIspz/+pHPc+8bb2J1bZ3AK9JuS0l1wzAxDBNzCOGTDzkx9JcaYNkW9ZEyaZLQ7fXY3Gxx+PA+lpbWCMOQPMvZ2m5xYW6ZW289iOc6lMslnnvuJGfOX2Lv3mkUJJwu7IeUigHRYMDjTx2l4AfDQofAME10XSeOEzRNJYlT/MBF1dQrnVtVERw/dpHBQPKysjSRn7GiSMuDXPDs0ZPU6zWyNCNJIlZX15iaalAolegPQopFCftqtzv4rgMILi8sMTpSo9XpUqoUiZMYTZNJrsghjiLG6jV0w+HPPvxpxkeLtHfaTE2Ns7HVIggCLl9eQddUFHKePXqcen0EBdkVXV3fpFwuYhgWza0tFldWqFRKdLp9yKVUfJ4LojjGdixsy5FG2wgajTF0U4rKoMrCg24YWI5DLgQ7rR0830NVVEzLZO7iPKNjo+i6Qau1g2EYmKZOt99jZLTCE08dY25ukT2z4wgEc/NL1KplxsdHCXyPJE5wXJv5xRV0XSMaxJiGybkLl9m/f0ref3KBYVpsbbRZ29hkzx4JMdVNA1XRMA2bv/iLz3P44CxPPX2C8bERnjp6hkOH9vDs0TNMTdY5c+4y+/ZMS3XXLKHX7SGEwPNcFE2RarKaBsRkWRdDU0G1ZRcPcWWSrqgyKUrSDMMwiAcpfuBhGDqfuv8r3HlkD+++bYR79/gsbbSoTB3ijXfeym889Hk+efE8n1mcZ3ttmfuO3ML2dovtZouVzU32750hGsTYtkW336Pf65GlKUmakuYpgevTC0N6vRDTNLFsiVywLINwMAChUKmUCBwDU9epjJRRVZ2oPyDPIEszjp04S7lQxHEcVEVjbWWdheV1aqUCnuNI+4vldSYnxvj/2XvzKEmyq8zzZ+89281899gjI/esrF0qIaTSgoQktAyCaaYRdCPUwGkOTdM0MHRrWA4DQ8NpOH2YgZ6ZBtHANMM6SAi0ob20lVSqUi1ZlZVL5Z4ZmRmrh3v47rbOH88jKzIrsipLAh1mTt08fiLS3ew9s3B3s/u9+93vczwH27QQUtJsbtLZ7DPoDymVCviBS5rmjEYReZpRr1aZmZnW10zXAvT1oFQuko2BVjyKqJQKY/Au2TU3Q5qm/PajD/E7/+ZNKGVdq2IkcUocJbzn//gMf/gt93Bw75wWwjEVcRyPr5mCLMuu3QtAJ6PdzgDbtknijM3N7vg9dhkORtpmIodSqcxjT51mOIqolQvYjl44HAyG7JqfxHdt4iih3xuSpimu6zAcDikWC1rNtz/QYj+2xW+evMh73v2DzM7OIaVBd3ODQ4cPkUvJKIq0OunWjTvnWpL8bGwBkxe+Hd9qXjFRryO71g7733Tga4d4y/FCx3KLIGI7mHuxfX03m2f7UzupZV637Q3/3y6msv04r4/rwdaNAG8LrL0Y8ZPrj19cA2Q30kBffC/e9ZW0FwPuvlkiLFmW7QiSnzduFdzt0Nv3Erh7KV5U5Hn+K8Yt6Qp/g/Nse2yfKQOEENd9mK81Lm99ScfbCGMsyjKWOL6u2rdtzK0vg1Q6IfZcjz/5o/+G53mEXoDnBxTKdaIo5uTxk9RrVXzP4fChA/zNhz7I3Xffw3e89W3ESc7jjz/JB/7m/bQ2W9TqFebm5qjVJvj3730vv/Srv8Lu3buRphr7cy3QajTIcsl3vPFN/PnnPsvrHItytYQQBralsB2XJNZUxzDwKRUCsjxDCIHr2mMaWYZSQosTGGA5LkkcY1kmcRyTxAmlUkiapprWlY+tCYSmS3zsCw9TL4akSYof+kilJelt16bfG1CplkDkTE/XsB2bLNfqgkmUEMcRJ85dotvtUSmFeL6HaSkOLkxdo9NFw5TllXWEBNd1yMm1omOhAOQYwiDLNJixLYcL5y7zwMNPs29+CikFnusiDIPRcECSJBxpbfBv3/O6sa+fwg98sjwjTSN6/R55buC6LlJoNUPTNsFAV7+kwrJt0sxgZWUN13Ux0KITSRTj2C6jscdVuVTAEDbD/ohypUCvPyCNU3zfBykYDEYc2DPNxcUlpqYndD+MYdDZ7GLZtgaZhr6YjwYjXM9DKan9uYYa2H7lkSPcdts+PFeD8l0Ls1iOTaEUcvTYKerVAqPBkLDg89hjT7OwMMPh2/bS7Xa5cmWZCxcuUy4VWF9ex3Vdzp69TKvdZ3ZmUveGdvo88dRJlBSEhQJJHLN1H+33ekhhsHhxkdXVTV527+1gZKyuNZjfNYtlKrJM9yBkWYqpJJ5vI6WheyMtE0NJCuUCeaJ998rFIhfOX6JYKqBMiyAMdQUsy4AM03TJcwMpJIVgTB8Ni0T9HlOTVTzfIctSStUqUgotFLLZYaJeYvfCDIahtP2HktiWTRLr96pQdCmGHkopbNvHsiTFUhHXc1laWqFer5DnEi/widKIIAxRytIVVTLiVItJdDa75NmWqIReIc/TnKNPn6FY1r2HtmOPzwcmpnUv4GazyeGDu7Eshe3YVKslLpy/zMSEPo9Bf8CTT57knrsPYzs2ptKLMgf2LQCpFm3BoLnRgzzn8OE9bDQ22NzsUC4XGQ26uK4iy0bEcZ+pqRJT03UMMqq1ElOTFaJRytHjFyiHJp1uG89zMJVJEqcYQpJmMbal6ZZpnjDsNcbXTYnjuSRZQhLHKFMzIJrNDkHgYTsWtu3w5//PZ7h8aZn9e2eYnK7i2B5plPH6O/dw/+4iv/uRR/jxH/0hdu+a4/GnjrFiCB44d4QHGut8+NIiP/m612kPw8EA27Gu9WxKqT3uStUy0SjGcxxMy2JlZZ3p6UmSJKY/GFAsFrFtG/Kc0HcplgrESYZl2aRJilAgRM6XjzzOPXcewrQEUgmESLnnzn30R10sW3Lm4gUWr26wf88cm+0uQRjwwJceYffcHM1mmyvLK8zNTdPt9hFKsLi4xKe+8DUO7duNIQSNRlPTvIXA87RVgu3YpEnGZrvNwYN7sRyFY2twZluSj54/ypvvO0QUxZw4fpZavYqpLJobm/z2+z/DT7/2WxkOR/S6fRzX1rRjKTRQyhn3wUVj6rIWTBKG4JmTl1i82qRe0bTVaBThug6jwQhDSPbvmaVeKZImKXmaUyyGVKpFbeJOTrvTY6Jeo9cfUC4XSVNNFT1x5gLtbpe5mQmkEnxwcYV/+1P/GiMXtBoNlpYusXffPjJhIE0bcV0CPr4vG9vvuDvlqbpKd504iHgubW+nKl6W5czOzfDYh45RqgXPzmI8u89WRe1afsC2XGKnitzNntshto/5vLFV1dsOim4Yx9i23Y3z7ZTaG9sO68bzvpXIc8gLKa++/1VsLWpvzXYjeNtexXsuKNl5v+cc77YK3/UCI1vVQnHddtfNL8R1j5uBnWfHeS69dMdj2y5Msm2MW41bFVR57jEa14mkvOD+L4G7l+KbFVmW/crXVR37BuLGi+FWhW77czdut9OX97qXn/PE1rY5hgF3HjrMV7/yZX76p36GN73pLbhBSfuIFQo4rsMv/sLPc8/dd/GOd7yDialJwkLI0tIS977sHn7oh/4F99x7N6VyyKDfo9cbUKtN8MSRxzh08DDTU9PMz81QCH1MKfnrv/0If/5nf8l7f+pnePd/+d95z223IcgZDEdj418LqQTNVhvH1tWGR59+hslqmSROkFKxuraBaUkwcgw0gOl2+2xstHVPmmPT6/c1JTBNsF1Hm59LSa0QUqmUGA5GSKWNcrMsQQiBbVvE8Uhz+nNorDYpFkNG0Uj3xdkWj504g5KS+ek6pmnqFcQxN2TQ11YBg9GAiYkqhtAcfCGk9rYyDAb9PrZlUSgEjIYR/cGQ2YkyE5NlTEtx8dxVXFsD0aVoyOmi4NBMjQsXLxNHIzzXJRpFOLbS0u9+QJblnD1zkWKxgBs4mKZJp9PTnxMheOjhp7jrroOANkxeX2uOAYvuc/EDF993GA4zqtUieZbguDa+5xHHMdaYBpXGKQu759hobiKVrv5JKfn8lx7l4IEFEDlJlOjEK4pRlmJ9ZZ2wEGAIQwtGkLOy3GCz3cPzXZRSCGEQBC4z0xMMB0OGwxG7d8+jTGucxGpp9qmpSa5eXWFtrcXkVB0lDJSEMPQgh9FoxOHD+6nVqqyurhNFMXGsVR6lVHiOzRNPHMd2HObnp1i8fJWpqQld8VhZpd3uMejp925zs40XuFiWjRQmcZxoMQUpSeOEXreHlBLHtsa+fqCkIs9BSkm/3yeKIpRUdNtdbe5umZw8fo6X3XMbjfUNJiZrxGmG41p0Oh18z9cgW+oFgCtXV2h3ulQqFaIoIgwDfQvPE9I0odns0OvGNDbWcCwbx3NwHZtmq4Vl6j5Bb1y9zbKcCxcu4VgmaRaTJBnFsMCxo6eYmqkTJ7of7UMf/TxF32XvgQXIwTR1H9rp0+c0fVApioHH8so6k1Oa6qdME993x5VRg7/4wGd59SvuwLYtcnJs2ybNMrI4Y72xNu5JlFiWxRNPnMBzNYicnK4DOaNRjygeMTenqZphMSBOYhzHJ/A9kjTGNE0qJR/Xc6hUS2P1XUm/P8IwIEsTBsORfk/QFNM0MxhFEf1+H9e1SVJdqWMMwC3LJE5iBAa3HdhFq9Xm0G178HwbJW0+8cmvcubsVfbvmeft985j9K7wf/7V5/jxH/lBbGnwP/67n+MvPvgRXNvmdHeR3338OKN+h9vrE0SjGNd26Hb7WLaN7br0Ol16gwHRKGYUR7i2g+trsGcYBqdOn0MAcuxjadqasmkqSRyP6HQ73HfX7eR5RhxHY4sXxWA4wPUcHMfhxLlzvPX1r8XyLGzbotlqk0YxU5M1TFOxstZg165ZbMdBWZJSqcDB3bs4d+6S7gvOsnHVGzbbHYqF8Fo/Ua1aJo5jwCCOYuI44Ze++kl+68e/i36/h5Ta3sayLAwjJwZeb5aZKxeJohjPczAMg2MnzzE1WUVJSZrmtJpthBB0Oz2yNGdpaQ1hGASey+xkhfpUhdXVBqViQVf0bc3E6PcHeJ5DY6NFNIp5/Nh56pVAv9fjPsfRMKZQKGgAmOcoSzE1XaMYuoDBf3z8JO/4/nexe/c88TBjZfkqp0+d4N6X3UsmBLkhrgN3126pt5D43ljNu9VkOR9XB//D7/4q99/x2ueOu9NctzTycw7w+t+3wNotjvd81Mjrnr/Jee80zze6rP5bf/6b/MZv/Ro3Wh5s//ncePG9X1mWXvtePKuYuYPK5Q5jXevNu1Eh8gViJ0rprX6mvp6K2tdV7XsxgPIlcPdSfLPi/yvgbru95vMTDraeyLdRBAxqpQoPf+UrvPM738mr7n8ddlDUKmZkmKZiaqJOuVxg7/5DGALSPOHBr3yWoGgzPbULQ4JtSuZ2zdLvDpiZmWG6Psm/+tEf4/5XvZq/+LM/ReYJrhdQLNVobmzy++/7XX7sPf+CX3/wEeLjZ3jV3QfpDgZIKciylCRJKRVCNltt9i7MMopiIMO2LAxhoJQxXvF1yDNQQhJ4LkoqoiTCNBWDwRCpJEkUY1oWFy9epTZRGdMzLYTKSbNUi38ItPhFmmDbNufOLvL4sXMc3rcLA2g0mriuw2175zm0bxc5EEexTn4shTC0+p4hBdVaiRztofTVJ05S8nyWl9bIk5R+v0/B9xAYCCUoV4sUCwE5Gcsrq0yUa3S6HTzf5meOnONHv/0gH/vYwyzMTzA5Pvat/jDP9zh/7gqWaeK7LoNen6CszXkdx0FKRW4YzM9PkyQJ62sbdNp9Lp5fZX5hEuU4GFIQxRFRNKJQKHHx0iInT53F8ywsU9HvD3ADreqZJQnKNLFsrchpGDlkEHo2lUqZXOSYQrK+toEhDGzHYeXyGstLDSzLYnW1Qb1eJ01SKpUilmVy5coSQehhAN12h35/wPTMFHGcMByNxh51io1GE9NSFIoh0zPTKCm5uHiVOw7vZjjs0mh02X9gH4P+AMu2MC0TP/AI/ICwUMS2bBYvXWGiUuK2O/fR6/Wo1aqYpo1SDuVKgOd6uI7L+YuLhKGLHbpgSMghjXWVe32tge+72JbFmTPnSJKEMAwwTYuVpXXiUUyv04c0wzQlnuOyvtEkNwRe4DNZKXHkiacpFgOCUhFl24y6mywvrWLbthafkZLMMCgGIaZpXhNaGQ5HGuTYEm0JUKSzOeLhJ57itoN79AKGrSuqWZwQRSMGgz6OrcGCa9u4lolQkixNWbmyxu75WZZW13QfVpazsrzG7Yf2aN87U7G4qIUzlFK4losSCgNwfY90THNdWlqmWCxiGJDECdWyz/T0NGmSIi2JYUAcp7SbA1zPIslilFIMRwmT9QobrSazsxNgoE3ekWBI2u0hnl/AUCZpmvO1h4+zZ/csiIzBYEClWtagyHMBgVAmXhAAOUkyIgxCohHYrgtGAccNMfIORhaRRTGmo4WCYGwuLwyUKYlGAxzXoVgIKJVDDCMlTTMMI+H+V9+NaUqGowHDXp9vO1CjJDr8xu/9KZ968FH+9H3/G7YUfPqRE+xb2M3nz5ziE4uXub9SRRkSKRTtdg/TtGlvtpicmCDPcxzbRkk1tkyBxtoGpqlwbItCGOD4LsNhjJKK1ZVVCgXdk5lnBlma4zgeUpj0eiPCQhHLdrAdjz3zezBItQqngEIhoF6tECdDzi0uUquUKJVKPPPMOZQJSZoShiH1WgXTNcHIsKSDkibkOXGse4rOn71EqVxCSsWVxas4ls17Pvlxfv37Xo1lWfQHXTzfwQ98TEsr5/7L//I5fvqeQ+SkXL68SrlSJMsyJmplkiQlTVOSOGGz2cFzHYajIWFQQBgGruuQJCMK5YDMgFKlQJZrpkIOKGXQ6/U5d/EKe3fPkqYZrW6XfXumMU1N1e73BsSR9rkcDocoU4DQdglGnmI7Lu87e5lf+IX3IiQILNqbTRZ2zVGfqH1TwF2W5ddy+2s0x/Hvr7jvFXQvD3RVh+cnFO1M9Hv2+R2B2E0rWS8w2c32udlx3ez1Hap53yi4+/QTn+H7vv97rwNB/xDg7lnVTbaBu+c3J7/29xpX6a43Sr+FXjrxrBn78x3brZ7DTeMlcPcPHi+Bu29ypEnyK/BcauPfdxiGNiE2jDEvZfwQ447t7V95AHlDyf56QoiO3MieHWv7RWN8wdHz6otLLGHXnr1cPHORhV27GAx7FE2LKBkRZxHSNiiUQ3KRYwjJo197jFe+4nWcfPosq8vPUPA8ooFi1M/odDv0ex3iTHL0+DEOHTrI/gMHmZ5dwJB96uVp9u87yOzMFHtvm+Gp4yfoeDbfNlmjEBYY9kcY2RDXshFSsrHZZNjvYiQZfsGDTOC6IXkuEKZWvOz1enQ6XfzQ55nTF6jV6yRxhO/bDAZDbMehsbpJtV5BWYosTtlYa+KHvpZ/b/eIhzFKKMwxIKrWStx2cEHT+oSB6yuiUYoSJoPBEEOCwCAZZZBLcjJykeIIweKlKxSCgMD3WJifQpmKyak6fiEgKASk5BhKkqf6TcuybEytFTxzfIk9t03yo186wn/98beRDAbce8cc9WpIkgzIs1RTt3oRvhdgWyb9bg/TNnWFzBBEowSpdD9Lv9tn0G9jWw6OZVMuF6lNBGS5wLZtpKHN1qVSJCNddQs8l3KpwuLiCkvLDYpBkWNPn2Zyskar1SQIHRYvrRJnCaVqkXK1DLn27cuBURxpo+dM+6EFoUetWuGxJ09QLHvU6hM01jewTINCwSfJBRmaeouQKMscq+TFPPnkM/huQBobjIYRlUoJISQnjp+iWi7gBwGFcoWwWGR5eZVavcqF8xcpBB6DwYDz568gFUhLUqmUaDd79Acj+t0hnXaLLIvI5YjFC5cplQp0uz2mp2doNLoUAh8lJKvLGziug1AZti3ptPusLK1jWTa+H2A7DgiBMiVJljCKRnS6fRqNTWr1CkKAY5vkecp6Yx3H8ZmZm0bJlCxJ6fdiavU6lmnSbnfot0csXV4jybXYRp6CaVlkeYogw7Rcmk0tgOGHLgf3zeP4PiiFQLC2vI7pSPzQR5m2pvKlGf3ugKWVFRzHxrIsfD9EKJM8j5DKxpAWvucwOVUhy7S33PzcLBcvXmZmbgppGMRJglACaZpIIciMnGIhZNjpMewP8YsepUqRhx4+wp49u4hGKaNRyonjZ1i8dIW9e+fpdLqaPp7FuCWPeqUMKfQ7PdIkZmlpA8/zqZQLXLhwkWo5pNNu4/mKsByQGxISgzwzMM3xSjmgTMlmq0k0jDl3dkn3YEqJEIJee40sTZBOgEHOsLeJYUVYVgCZBUpgyJQsE6Q5pFmO47nEcYQhcnIRMzE5ARj87UcepFIM+cJDR9k9U2G2XuQH3vwK3vPmu3nfH/8Rx58+wlo/p7nZ4qDv87+87JWUCwVMy2YwGLG8to4pDCanphCmgeUIomiEZdtsbmzieT5ZmuEFLn7BZ73VIEtyTNMiSYdYtkIZDh/5uy8xNzVJsVig09nEcUx6vS6mtOh3h5iWSZIPWF9dw1I2/c4A1/URpkKYBhMTU5SrVYwkZW11hWplktFYNXN9vYVAYJoKA0mvN+D9H36A/bumGY36mpYtIEkSnnrmDL904ih/9d7/DtsyiEdDfN9HKJNzZy9Qq5YZDvu0jl3l5RMTGBiU65qOL5QWclJSYghJLjLCgotl2+SRpN8fstZo4no20lI8c+4iw86QZBjz6JOnSIYxypA4noOSEme8+FQoBZQLPmk6xLEtpLKwbId+f4QwEnzf5+KlVSanqkRRD9N2WG+3+fRai+/+zu9CGCZVR/KZz3yKb3vbW0ikgUCLkSGuv09j5GjN4Oe9y18TX7mlhN8wNE1ciDHmMSiVS/zmr/9HXn7nfddhoK3OkZ3ygJvlB9c9twOousnB3fq2O8RWi8nWIvQWSL1xzJudx/PF9r/B9t+/ePSLvOtd/wM3Aju9WAPXN8Vsz7KedzZuBr62KJnb59p6/sZ5bgQrN1bhdprn+nG4Rnd8IVC9w4E+5/FCn8kdh7kJ7fIalXObYNALUjR3Andih8/cDp/Dl9QyX4oXFdk2K4R/WHB3E271Fn//hudvrObtvPO2169bpnuW8731kFJQLVU48viT9Po9du1aYERKIgxyqahXJli5vAZC+8IFfsCHP/QhXvPa+1Ey56mjx5icmOLBBx9kamqKZqvFJz79ab7lvlcwPTNDtVpGKkkc9fngBz9MoVDk1fe/kjyPmZua5fGz5/jNzz/I9+/ZhevZGAZstoeYtvZL019iiW27HD1xlrWVJmvtFpWKTxIlmmrYbGPkObt2TZOkCcPBAGVIhLA4f26JqYkax0+cp7nZZmqyjBAwjCKEIbCVieO4CEPRbnZxfZcszVhfb2o/QLRlgm05GEg+/MDDLEzW6XWHrK21cGybI8dPMVEtsdFo6R4RIbFdGwxBt9PFGldLskT3u3W7XTzPY21tA2EY9PsDlJJ84dHj/N7KGv/rv/l2Fi9cYWa2jut5XF1ex5CKSr1Grzdgo9HViT85juPgeDajaESaJiRJShxrURF7rAyqxT0EaZKgTIVt27Q225hKcfXqCqVyib/56AM4tmT/gd3kZBSLHrOzk5w+e55d81N4votjO/R7Q7xx9QogSzOiONHVT8D3XLI0Jc+h0x0wNV2n199gdqZMa6NHoVhGGII81ebTo8FQ90yZJt1Ol6ePn6ZcCnEch16/y+RUDc+zOXX6HLYl6XTauI7N2loTJRWPP3GCUjlkamoC8hzT1J5vDz50hHvuvg0vcLVEvlQ8c/I8hw/vx3VsHNsBQ2LbPv3+CMfVdEPHtalP1pCG7vexbUvT9YTBoD/EwCAsBJRKIUHo02g0cD2PbrdLtVIhDAPqtSq1iRKtZotisUgSZ/THlhjNjZ7ufxQZSZzRarUICz6ra6sUCz5B6BNFIyq1MlKqsZ+cJE1TTFPR3uximRbPnDpPoeDjeS45mq43HAxQUuB6Lp1OF3Jt1ZGmGZZtUauVcVwLKQzOnb9IuRISRyNcz8WyTAwjw/VsLGXh+R5pklGrV0nShDzLkUpyefEqylTai0wJkjhhMBgSJQm245Cmuu/Uc2wcx6Hb7TK/MM3CwgTKUjiei5CSD33sQfYs7EKKjE6nSaEYYhgSv6Bl/QF830MKiee5hGEIOQgBtq1IkhG2o3vtWpttbMskSTKkMJiZm2A4HNBoNMYVIrAdH0OaWJZFngmigUGWjpAqQQlFnpvkpKjc5JMf/yonjy/y0FdPcPcdexFKIgwLcsHaSoNDB/cyO13SADdJcX0PKSU1W/K9b3oV3/vq/Xzvaw7Sjnv8t6PH+cvT5/jYxQv80H334noeQeBqcQ7LJIlSlDSxTBfH0VR0LbKkgc+onyAMi7/8wGeZqpapVmvkckSpaDG3ME2SjGi3W5iWwLE8rl5dYTAY4Tg2tmPjhwHDYcSjR44xPz1BfwyulVQ0Vho4ru6b7PUGlEoho3ikAfKlS0xOVlGW5JHHjuC7FnMzU9i2RbFcJh+b2f/y8ad4/89/N/FoyNUrKxQLoV6gAWqVCp1uj3/9B1/hJ3bN0G0PcCwbZUukks8mjoZBMhZqSZKEK4srVCtlTFtbHhiGob0sPY/JiSpSCDzbwpSSQiEkiiPyHILQ58y5S0xMVLFMk35PL+4ZBjSbLapVTclvNDaZm5uy+PjXAAAgAElEQVS8dkuUSvKvHj3BH7zvd3Fdl/5gyFNfe4Qvf/lBvuM730GSpdsqXM+93b4wuOPaffdWYwsMbr9fn7p4mt3lvTuM++Kok9dt+3WCtRcb+Y0L0n+P84oxANaAUc/z1CNP8Gvv+5XnbLtF0fxG5995/50rVbdOoXxuXnf9dl9f39ytxE7g7IV65W4KLHeq9r1QFW+nnPYWz/ElcPdSvKj4/zO405IG+tHv93Acj6IfIIQkz3L8UoDlukRxgiUdjh09TqVaot/rcenSJX7nd36bH/zBd/NHf/SHHDxwiF275rn9jtv56Ec/RrVa5dChQwSBz32veDkXzp8jjkbs27+XC+cu8ba3v40kHtHc3ODee7+Vt377G/n05z6PiPrcMzPF6toG5VKZdneAH7qsr7coF3VfTaUYMlGvMDVdJc0SJArPd6mUCliWQgpNWVNS8tCRE8hc8LWnL1D2Haana7iOiee7LK+sUa4UtYqmEGw22+QZDIcRjmcyHI4oFXVSoZTClCZPHz9LrVJiulLkytU1Lq80WJidJgh95mcnNI3KsugPRyRJiuu5CAziNMU0DNqdLkHokcQxhULIYDCiWAqRSuC4NoaAu/bP8IVui+953V3U6xWuXlnCL4SUyiVsx2GjuUmpVMKybT79wMPs2T2DaVusra1pcRjHQQqDJE2uJe3DobY72Lr5RbHuBfM8l/PnL7N7YQ4Mg6nJEhMTVS5eXERJQRD6rK83qNbKRFGE6zhYls36emNMfdRCEZZtXQPBGFopc6Oxge8HuEFAFI/YbK3i2AoyyVNPnuXgwQWSOOH8+UUm6lqIo9vpMRyNOHhAUwwNYTAzM8GTT51g9+5Zpqcn2NhoarNyx8ZSivpEjVqtih9o9btOp4PjuLiuy/RkFcvRCWCv09V9WuUS6+sNHnviBBP1Ks2NNkYumJ6d4tHHn+aOOw/R6XRxHIs4jsnznE63i+e6NBoblEolkjTRlYJxcmq7Dp1Oj2qljGFAmqYsLa+SpBGObWMYBmtrG9SqNRqNBl995DSr6+vMzU2QZ1CtlNjYaFIuhpiWSau5SblcxHK1XYJpmrqHUWnQ2m53iJOEhd3zSKnVODvtNpalUIbA932SNNXASEmGgyFSCC5eukKn3aFSKRBFEaVSyPLKKhvNTeq1ChlgmpJ2p40QEmFIMAxNPVaKjfUmvW4Px3OwLAupJN12e0zT9QjDQH9fpGJqso5t2Zx85hyeZ2t1w9EAISVSmZDDwX0L5EgsE/q9trYTcH0MaZAmCb1xf2q73UNJ7VdpGAb9XnfMcsiQUhu9m6ZWw90S2ZDSwLLMsSfjOqVSjY3mpq6y5mBZNoFXotdvYqoYJRyyVJBmI/I0Z3VlnVe96i5edu9+XM8c0+4ESZxRLoRYtkkcR0xPT+D5HktXV+kPNHBxHAfyHCkVh2ZrvP2+vXzf6w/zljumGIUxP/bBB/jI+fOcX77C3TXt15ilcP7sIg8ffZK9c/NkWUa316Pb7VEqFiGD4ycvMD1VIgg9lInuaUwzsizHsTQlvd8dcmV5lVIx1KyFsdCJXjjpQZbiurqa2+v0+fgXvsrth/aSk+M62o/OsbXq7NmLi1RKAbZtMzM9wcL8DL7vkY+Fh372Ux/nSPcyv/eTb9cMkCgiCDw836PZ3Bx7T0o++/hp/qkTUCuGbGx0WFrZoForIJX2mtNiPrnuWTYlo8GIzz92jKrvUyi6RKOYQW+IO1b/3NhocebiVdabbXbNTZHnOatrDWr1CvEoJgg8ep0ew4FW+Q0LAXmW4QceaRpjmxYYEBQD3QPtmhiG4G8vrfBP/sl3kWc5o/4Q08gwpGT3gX0IJf9RgLtXfusreOoTpwjK3g3j3hq42zER/yaBuy1At1XB+3sHJzf8/P3P/j7v2qaSeW27v6d5Xwy4S5JkzNAxdnx9p/133u6bBe5SrlUOdxD+2YrteeR1R/4SuHtR8RK4+ybHPxZwZ9zwuJVm2+3g7vrVlXF53DCuFfdNU2mJfGXxuQc+Tz5MWJgvYIgcCQz6Ec2NTTJSpqdnWF9f4/ve9T2MRn3e9pZ3IKSkWPC5cP4cpUKN177uDSAi0izG9zyOHnuaXfNzpHHGXXfeweraKmfPnsF1fEajCITB29/0Jn75z/6S11g2M1M1Tp29whcfO8WB3dPYpsnFS8sUCwHLq6sIQwMK01ZIQzEcjDAtkyxLydIUZSlIcyphSLlc5M7bFvjYFx/h5XfsxQkchDQIw4DRINZUukR7KTmuietpMRDLsmg223Q2u7iOw9KVNb72zBkOLUzz1SMn+ZZ7b6dc8Pni40+TxENq1RJXLq9QKhcJSyGu6xLHCc1Wm2BssB2GPlmq+1aGwwjPd0jSVCdCgYsUBu956HF+85+/Gsd26fbblCsllGmT5jkGgmg00r5U/QG75qZwHIc4SvBcn2Zjk3arw9pak8FggKkUUTQkCAt88MOfI44iarUKUglarTaWZVGvVbQ9g1R4rrZ2qFRKFIohV64sMT09gWFAFMU4joNhCExlYlpjhTxD0On2UEqvxGep5ppuVS+lyIhHI0IvYDhMKBRCZqYqLC8tUaqWtT1DGuuE3DQpFkJarRau5/HU0ZPsXphjdnaSOI7oDwaUyyWU0hW4udkpPvjhz7NnzzSOa9FobKCU4sKFy1TKJR57/Di7dut+wzSJtRF4fwBZzuHb9+MHPqVykSePnGByuq7NkJVJGiecOXORTqdLsRCQZgkGkKXgBwUsy6Tf6xMnujqplMKydPLcbG3qakIY4PkuWZZrMZokxTCgXC0xWSvjeiaer3vhsiQnS1LSLCWOYgLfI0sTlGnRbG2OfQgBctZW1qlUKpRKRaTQConHj57h8pUlZidrNFtNTMvkr/7mc0xPVHEcPYdpK8rlEOCa8f3ly8vMzc5QGNN5+90ehiEIigWS0YjLl5fpdnqUKgXiJOGxx49zYXGZvXvmcFwHANvU4ye5Nro2MOh1+1q6Ps2o1csEgYcQOdKQCCnHlLMM2zRRpiRPU5I4I8kyDCmwLUGaJcRxQq83wLY8kiTjwx/7Ertm6qwur+O4Fp7nQy60sTU6aUziBNd1aTTWyfNUV+SlQgrFRz/+ZfbtmUEKRZRkfOqBR6jXyyRRHyVyhsM+eR6TxANmZ2s4no00c5AJeaab1oQQvP+Dn2M47HDXnQf55Ge+yrkLV7njjgPaUsCzSNP4Wk5iCA1mDUOQZhme5/Ldr9zNGw6VecvrD/JXJ57iP3z2a3zswnm+c26efbvnuXJ1menpaYQh+OtPfJHdcxWyLGVtc4P9+2YIix55opDSIk1yRsOYdquP54YICfV6GdOWuK6NadlkWYJhCKrlErVaTd8LlCRLUl5x7+2YSvdzmqZNmsRaaViYFH1tSA76e2OaJjk5eZrzk5/5BIlK+fV3vwZhQJJERKMReQ4Zhh5DSrI84+f+7GF++LY9SCmpVMt0uz0KRR/dk6Qr/wCO5xDHCZZpUw8C6pNVsizmsSdP8+TJS5R8G0PkzExP4ds2phQsrWxw6coq05MVTNPEdresbnJsy6RULZGlKZubHdqtDga6Gj8aRSip7WGEEPzIQ0/xa7/6yxg5hGGRMCxw+thRHj/yBG995zuJkug54G77fTW/RRLhDmy46x7bk14hnmXZjPcG4H/6T+/lDfe+YUf1yBeCC897lDdLpLfyjZtR47Y9tiiX+dZx70Tl3Bpviz954/MvENflQjc5LwMYWANe89pX73A6+vMmhLzuPbz2Xu7gRadPWSCkZLvH3I3UyRvHefZ1btjmWcB0/XY7efBtP4avg4J5i3GzuZ6vgnczMuvXc+zXmGTG2IrieUDljfESuHspXlT8YwF3LybSLX+Rm34vjOd8UUU25sELwcvveRkf/sDfcOn0E3zyU5/mzrvuQioH1/XxfAdh5EzW61SqRdIsod8e8swzz2CInCtXLhMGZU6dPsvuPXOcPHkSKRV//H//Me/6vnfx2COPYtkWR59+ig984P2cPXeePfsWCMOQ06dP8e53fT8//6GP8iolsJTJa77lLixb94198pGnObxnllq1QL83wva1abiRC4bDEVmmk4lRHGEIgcC4ptaXi5xDuyYxBJiORZ5r24g81wIOWaZpnDkp0jTIUr0qbqBl8NMkIY1TXnH3AZqtNof3L5DGOY5nMTtRoV4vYVomrmOhHJskTshz7RlVLhdpbXbo94d02l3CQngN+KysrBIWtZpbr9fnRx4+xv/1E/dRKk2zvLSKMHMsy0YYkkF/QBKnSAOyLGZjo6XtF3IIg4BWs0O1UiMMAwRQqZR46tgpFuZnUKbFwf0LlEslpDRot9sIBFLJsc9UQrfXw1KKbrdPluUkUUyxUERISb830Kv5psIwoLGxQbFcIElSRqOIbqdDoejrY7IslFT0OgP6vQHLy5dZWVmnudHlKw+foDZRwDJy4jji1LlLzM/PaHEbYXD06CkmJ2scO3GGiXqZ3Qvz/N0nH2T/vnkMA1aW1wmDkH5/hKkUDz70FJVKwJ49syhT4Lqaujc5USfPwbZM3MAlGUVkSUaOFh9ybIcHvvA15uYmsGwTI0tJ0oQwCDh7+jyO7WApk/mF6XE/kCDHoNHYxDatsUE1OK6LVkfTgMl1HVzXIY5jhCFot7UXYZIkKKkpdo2NBmFYYGKiglDoqifahsF1tFdgY6NFEAZEcYLvebSabbIsw7KVFlHpdLEdizRPabVaPPTIKaJkxIG9M4SBR5Lm3HPXbfS7XcJiwGAwREgDIQz6vT6+p60oDARZBr7vX/OiW1vfwHIcbFORJCmTUxMYwiBNE6brdW47tBfbtsiyfGwjkCOkAqGBTJ5pmnAOrK6s4zgWkGMqwcZaS++nJFcuLxP4LnEypLXRoVyuYlkWypL0+z06nQ6lUoVPfuZhjp+4zPREmdPnrnLXHftYXW1gCEkUxZimRbvVxrEdVlZWydKMNM1wXZvBcKDVTg3F2TMXuefO/UCObWuLhL2HZnEcH8sQRFEX21UkSYbnBXiejyEVUmlAQ6YTsixLueeu/dRqBaJRxN598zQ3OyzsmiGJYwaDTQyhGQCu6yCV7tG1LIter48f+EghME1JEse8/MAcb71zmn/2bYdxd9n8zx//LH+3tMbfHT/OK4s1Li+tMVkvQmZQKRaZmtIqvVmKXkgx8mu07g9/6ovccXiPtmEJtLLmcBgjDJ2sLl1dYW19g0KxgGEqbMskHkXEUczS0gq2sjCVYnl5Bdf16PV6bLQ2uXp1nb17F1BKcOLUaX756OP85x97PW+8fZpC6BHFMXmeEYYFTNvGkFL7yA2GPHHuKj89u0Caaw85A7AtCz9wtwET3VuWZdlYkGhAbaJClqRkaYKRGRxamMVxFH7osLy0QaVapNcbsmtuisB3KVeLYzuFXFvCjEVURnGEUoI0TrlweYWpegXbdjQl1lYIIdjsD/jEygY/8APfj2la9Lt9EIKP/vUH+Nl/97PEZOTbK2PbwN1W3Cq4e6G4kcq3U9x++DD5xs5J8k573DIg+EZfH8+Vbas43sIOt7bdCw1zw///8P3/lZ/71X8/9l7VPXZbFeJnQdbOSdKW6uX2rC+/Dni+UHXtudtpIHm9kuZO2/1DgLZbjZtV2XZ8/R/yOIAX65H3Erh7KV5UbAd32qPmhSHedq7yCzWryvGYer37uf+2whCCLM+f43m3U1zzu9v2b7vznRhvs331Kx2PadkWcR5TnZukt9GjFDrs3TWJG3g4XoAjfEbDjCyVdLsRS1eb2L6iOjHFqbOLtJpdeo0V7r/vLs5dOEMSxRw7dpIf+eF/yeceeJA77qgwWZ+hXJnhzW9+K/v3H8BwJeV6iQuXznPwwGH+5I//nE93u/zzg7vIslj/nZRk73SddqdPsRxg2QaDXpdoMCTLBWHR1ys+UpElBp/83NcIXQvPtxFKIYSJNLRJuLIUJDl//dEvc2j3HEmcYpo2rudjGBIhFHEUEceaemfZJoNhHz/UKn626YOQSNvAQPecKCUQQtLt9Gi32my2OgSeg+c5LF1ZpVQqUCwWCXyfLz/yJNOTdRqNFo1Gg8CyiIYjfubIaf7gJ95MoVIjTTO8wAdDYZoWSEOrlEYRtqNXp4UhqdcqDPodslSDszhLEFnG0soqE9N1bFtX1wwpydIM17H40Mc+z0y9Sn1iirW1dYSUWLaiWAowlO5Bi6KYONH0rW6ng7QtbNfBEAa97pDBIMKxtRWFaZpARnezj+tZKGVpKqFl0e0MmJ4NOPnMZSpBBUPETE5UUG6A6/s4lkMQFsiA0SiiXi+DIZmenKDRaOF4NocOLlzz5KtUtF1Et9XBDmzuvOcAtUqRaJjguQ5pnCIMg6efPkkYujQaTSq1EpajZe+VGvvGoeh0usztmQNgfWWDUjkkB8LQ19UD2yQFlpZXCXxP21eUi0hT4do+nu9pKmm3w5XlFcqFkJMnzjA5UUdJheN69Psj1Liylec5lm0jhCKLR8SjAaQGvc5QK1xKwerqBp1un4mJOhgCy3To9wYEgYPtmKAgTzJMS2CQYyrFqZMXed3r7mbf3llM2+azX3yEAwcWMPKEKIqQpsNoFPPQQ08yOznBZrdLvT5BHGf4oYsQBlJpZcw0TymVQ3rdLq5bwPMDtAl1gqUkQimkFESxFvXIshTDNBkNR8hcMwIycrKxGJQXalqoVAIpDPxAA4Y0SwkDj/XGBuVyBWWaILSFxGAwwrFCgqCo1SCTjE67x913HeKuO+YZjobMzE1Rr1VJ44TO5pBSuUiSJESjmGqlShT38Xwfzw3Icn2dffSpE+zdO4flOhhGjhwvqEmhUKaPaXpstlZRKiaPDaRtkyuTJE1Qub6ud9vaT6/T6RKEBaIo40sPPsGrvuUezp9fxMCgXKuQZtoCpd3uYZkCy9GLIoHvMhr1MchoNTfHSpCSzVYXyzSxXcW3330n3/2te3nna/ZzJlul6ff5tS88Qbvd5LOnn+Htd91Dv9ujPxjQHw5xQ48kTcaV3Iz6xCTG2E+v3+7Ta3Yp1SskcYTr2VSrZZJhhJGDNLXC79pqk2qtRJKPkKZk8coqT504TaVYpFopM79rgr87doQ/PH2U73jLfv7p/bdh2xbRKMNxA9LUIEN7iUolyDPtL9kZRfzOnzzCd8xPX7s/RXGMG9jkaNXNPM/0dTvLEIYiz3JcT3/uncAlSjLOLS6TGzkzs1MITDY7LcLQJwg8kkwD15yILEu5enGd48cvkiQxG5sd4qHup/zY546wst7l3jsOcGlxkTBwWW808VybnzzyDHv37eV1r309X/vq4+yamWFt6QqvfdtbMANfV3Eyrt0x83GlLkeMf95KErrTfVvvJ+U4D7gBEGlBFeM5ecfE5AT/+Td+m7sO33PT2a6rmr1AznCtyna9lOd1v9+0irLDPjdNym+o4l0bc5vIygsdp948v5YTXQNqN2z74Uc/wrt/8J9dA2lbf18hxDWglWXpjsd7oxfds+BY73M9ABfjbXb6+zwfaNte9Xu2WrdlqfAswPzG4/rK4LN/+1utEG49tlMwd6Ribp/z6/DG29Klz/Jc1yCeUzndeq+f++8ltcyX4kXFdnC3laC9YNxkm50+5GKr/PwCQ27NfUu9djsd0vaxdp5AX1hSfWGp1SdwDEmjsYzneWxsDnD8kI31JleuXGZ5aYn9+/fxi7/4C+zaNcv+A/spl6scP36cN7z2fk6dOMH03DTDaMQb3vhGkjRh74EDdNurKOVx5eo65y9cZHl1mZe9/D6yJGb56lWqpQr//Xe+kwe++Hk+sbzO9+yeZTSKcByb42cucmj/Hvr9Pq1Wj8D1cV2PwSjCdiy9yptlrK5uMF2rMDNTBwOyVNPipBBEUYTlWKwub1ArBJQrBYQUDAdD3Q8XuOMkXKFMkyzJycerykIYbDS6HDt5Ed81EQIuLS5TKoYoafLg145yaP8urLGpc5Jqo+tCMUSZiiRKGfT6HNg7T5Sk+J5HtegRhD4rnQ6XxYA33LOXVmuD9fUWppIEgc/aeoNCIeTSpSu4ts1jR45z9vwi87NTtNsdisUCwtBy77Zt02m1xyIKHp7r0Gl3NVDMQUnJnoUZTNMizVLKlSJxFGNaugeq0+4xGo4oFkMc22JtdY1SsYAyTYbDIZZlYlva1Np1LTC0T6AwBEmU8KnPHKHgO4TFkCxLCIsuSqWUCyWuXF7j7rv2AeB6Ho8/cYJqpYIfeORkCCmQQnLs6VM4ts1gOEQpraL3yKNP0e/1qVRLWuK8uUmxVCDNUgI/QErJ0tUlSpUSplK4nkOeoy0V0oR+r8/FC1cxcjClZH1tjQOHdpNkMYNejzDw8FxXV9GkQkiDIAzYbG1Sr1XJUl2hbLXaOI7DE48fw1SaetZsbjI/N0OWZrqvbDjk9OkLpKmmWFqW7gVTSo7793oUCiFLS6sUCwWyLNdedKB7oUwTyzLJ0wypBOfPXqJar2iLkBzyLCdJYqKxx6BSWiUVNIiZm5uk1WwR+D4bzU0KxSIbjSa75qbByClXy/R7A4b9gVY0FBAnsa5UG4I8y1lcXKKx1tZV59YmnqPVNqXU5yCk/j5kWUaawbmzFxkNR2N6d4pl2/Q6nfF2WiI8Gg7Jc/A8bXvhjyl/pmWjhKTZ2sRxdC9flsUkSUyaxhQKHoWCrSmswHCo+wePnzjD7Ow0Z85eYm7cd2VaFo31lu5rTWKiUUy73SFJEg4f2ovneuMFnJy1tXUsU6/qNzfWMS1BWPDJMojjAcNRH9fxSKIUgTbZtmxH0/0chziJGfSH1CqFscm3XjyybIll2ZpFEI2AHCkEhqHYMopXUpFm6Th51+JGtmOztt7AMh2OPPk0szN1HCPjZbft5Yff8jLuu3uWN7zqAKeGK/zk336ezyxd5dT6Em/cu4e1dpOCFxKPIkajeKyaO/bwTFJt4q0EvW6PYX+kmQNKkaYRhiHwg0Cfn2WytLTKhUuX+fLZ8yxbGX+7ep7w/2XvvaMsue77zs+9lateDp27p3vyYDgIBJgTKJGSSMUjkaJke7VaySvL67XlPfI58tpnJe9KlnxsBe9qLa1kpaW4EoNISgwgCQIEiUikQZxBmJw698uhcu0f93WjZ9ADYCCQlHbxm9NnZiq8qn6vXtX93u/39/3OpNx8wwQ/8o7DrC6vq35LTXDn1x+hUs7j5Vx8f8hg4BPFKlvScR3+29+5nd++6RCmoWOYKitPMzSiMCSNM0zTJE4yyARSSJI4xTANOp0e5y4skxvl4E2OValVS3SaHVIybv/mEziaxukLyzimSblaJEkSnj1xgXqpxPRUnbGJCkLAzMwEQsB4Kce++QkCP+Dk+SV275qmXC6QZfDxMxf597/xK3h2nkajxR/8/u/x+GNHeed734NuaGi6+uxerAe8FibjymHxdvml2JGp2N5zd2WdXj7DbH7uJY92LfWSfXivYszxSlm+y/7/cttvbrMDiNy+79KZDX7hV39+ZBClIMiV2XOX186OlJvjru1yyis/pxeWvVJw9/KM2Gstvdzp9V7Na2dX/LwUuNux5+5vWdvB3ZX1Orh7va6p/v8C7jZvmlKoXqk4jhgbH+fTn/40k1MzLOzbj9B1li5c4KGHv8ntt3+J973vVt73vlupVYoYhk670+fjn/g4Rw4foT8YMjszwT333M3M7jmqEzWEq0GQcPbsBa6/6UbGJia4/oab+Acf/ke8++1vY8/CAp/8iz/nf/uVX+Ev/5//m4995q/5yrlFvqdewbQMOu0+tWoeyzJwHZs0FaiUcPCHCgiQZXzjkWPccuNhVpY3OH9plbxj4doWly6tUqwUaDXbgFCDUFuxVkmq5E1RqHqrhkMfXdO5eGGVR586yWS9isx0dM3AtS0K5TyGpXH2zAqtdh9D17lu/8LojicRUgGVNFOzr0makSUpa6sNur0eSZKQz3v4YcjDZy/wZ4sn+fWf/2GG4ZBgOMS2LGzLAgSeY7O8ssrEuArbvuvuJ/ng+99FHIekaUocRnT7A3L5/EgSKUbh4KpnIOe6xElCp90hY8QWpxm2o7OyvIqX8xgOIgb9ANswcCwTTQguXVxC03RynksQRaytbeA4pppZdyxloCIESZKSxCob0LZM5uanMU2dXr+LlBJDgyiKmJqsEYYhwyDk/oef4h1vuZGLF1dI02TUkyUZdodMTo3juDaFgkuaRmhSZ2H3HLlCTg2gUQytyr1Sx11cXMF2bdVzlSS4OY/jz56iVq8iBfT7QyI/ZtAP+ZsvPsyb37QfoamAbk2qSQ3dMFlZXuOeBx5naqJKFEaUSkVCPyCNYvI5j35/QBTFFPM2+XwOy7QIhiHhMELXBcViEcM0WF3Z4O4Hnua6A7sYDodkwNmzFygVcpiWjaZpOK6NaalwZcO0WF5axXYUcE5HeYhLyyvMzk2iaQZhlKBpBo1GC9dVQfaKFVTM2KOPHmPX/AwgyOXzkEnCMEIADz16jPF6kUq1gpASPwgpFgvKeEhXPWFKpglSk+RyHvV6hSAI+MKX7md2apwnnzzJ5HRVyee2teBkqUSXkkKuwOduu5fr37APTdfpdVuYlkUSp8rW33GJI2WIokmNfn+gXDyjDDlyK1Qz46nq/9U0hv4QITMMU5ArOIRhQi6Xo9fr43kOjmNRqxfwgyFBEGAaFn/+ibt44/V7lEMim4HyQ1obPS5dXGY4GFLMu5ClpFGCIMHJQxj6pJmL69WJ4i7EISIaoCHAcCATCKkp10xd5+TpcywurjI7O0Gn0+H0uYvs2T2HadgsL61QLOexbIsojHDdHEtL67iuy+rKBlLT8Lwcw2A4cpiV3H3PUcrlEppIWNto4Ng61WqFjY0mmobqa9VM1pZW+bnvv4mfet8R3ve2PcgxgTUmOR83+IHf+UOabsJ/efhJvnjmFJ85cYJ7z5xiwbP5nXJV6psAACAASURBVIceIm8IFkpl/vToI0x7Of7p17/Gp597js8+9xyfeOYZPnvyJF9ZvMRP/uAh3vGeg9z6roN84JZ9uDKmWCriDwM63R6VcpFup8PRp05yy00HSNOYVrODEAbFQoEkSfmF37+DX989j5dzCPwIoalnmKarvssoSJBCI4lT+t0hJ06ep1LJb00clIo5pVIwTXw/oNVoU6mVSeIYLRI89vxFljc63HhoASEFYZRy72MnmK4XubC6xthkhXa3hzNy4B36AbVakV6vx+FD+1lcXCVNMj5w2x384v/wLzh34QzzM/NMTEwwNTnB297xVqZmZ9A1lXOpCKfN/rqXepruXNsjEF7oyXph3bWCu5tveSOrz228omO/krN8KXC3xaq9zED9snHGtwDcbbJ+SranHDJ32ve3Pvcf+Uf/zU9uO8bO4O7ydVf2wG2yct9ecPet6KnbztL9bUDXlao0edl34cqNXwd311LiFYGL1+s1qygMX/SGpztt+Cprp9tBOloupFRfpm3/Trfts/08roW839zvasferCgMcXWdT3/qrzj0hsPUJyYIugmaptHY2KBULmMaBuGwgdAM+oGg1exwx5e/zJveeDNx7HPu/Fn2HdyL57nM7JpFhIIw9nngwQfxg5g33fJ2xmpVut11igWXh775EEcOX08kYoaDAf/4X/wiP7swwffMzapQdalCw23bYjiIlIugH6FpAjfnEgwDGhtdLNch57r4QbjV83P3g09z/YFdSFKK5YJqjCZRZiyGSRInZJnAsi3SREmFsgzOn7tEvugQ+zH18RrdXh/HMVlrNCGCSrmI5RgkSczKWoNyscDiyjpPnTrPD3/329F0jc9+9T7ee/MbKJfznD+/qNweHRspBPc4A3Kxz01vPICmpWRJSq/rk8vl0Q2Tr9x5H9/zXW8nQ/WpmYaOP/SxHZtev09+NLvd90PcXB6/31P5VkmMbVrEYYju2LRbHcrlEo31FpZlkSsqNi9Lodfz6Xb69Dot9u1b4NyFS8zOTqIbyrkRoZHLOSRJRBzFuLaDNPSRfEKJirM4oes3sEyHMEiJQ0Gn3WdmrsCg32F9bQN/kLF3326iJCSOE9JMUiqVCCMV4bB4cYliqUChWGJlaZWxSonnTpzlyBsPkQnBQw8+zi03HSHJMtrNJtVKmbvvO8p73v0WTp48xczMJLZtc+rUOfbs2cX585eYnZsZXdwZURxz6cIi5WqFXE5lBPZ7AwSj/jkJYRhgGMpxNcvUw/Di+YuYpsHE9CRxnCJQEs80TRFS0mi0KRVztDtdmhttZmamlAR4JLseDAcYpk6z0aJWq7O2tsHqRosjh/eQRCHdfjjqXwPTVIAzDEMMw8S0TeJRv4hlqH+32y1WVzfYs2eBz/7NN5jfVecNb9iPPxxSKORH/bYG/nDIs888z769cySZArOu6+D7Ic8+e5o9e2YwTH3kICk4e/Y8xWKeUrmo5Nppyue/eA8/8L3vwh+GNLvrTIyNIaWJpmckScTycoOpiXE21jYolUtKQiwgjkKEpmM7DlmSEoU+oNi+dDRIaLU7nDq5zJvfcpj19TVKpRKf+sw3mJmo85Y3H2HQH2KY+hb7OQwGSKnAZ7fbo1wu0Wl3UGZFBUDSWGuTy7s88uhT7N49zdT0OFmaMugPuHhphYXduyBLWVleYXJyAsOQDIIOruuRxBZZJjBNSRK06XWWlcTRdrGdGlEQoZsmIMkyQeQPFOsNW4wmqfruJfEQTddYvLTOqTOLvPOdN3Ps6ee5tLTGB7/vXWRJQobE90cOkYGSHieJj2lb6FIy9CNWlzeojXmYpoMuHU6dOkehZFL0PIZ+QL5cYGOjga0b9HoDPK+AYZokpGgSWs0W9fExpIA0Tbjv/id4w8F92HYOzQzo9/s4lupXy0TM+lqLnJfDy3k0mw10XaNcLrGx3iDNMqrVMlmm2F7TNBgOBiRpyp998mv87E98EMc1+ch/+gJ/dMt1iEwQRmqCoTZRJY4j0kz1RJq6SRQqUHjfY8/y/d/1VoRM0XSNMAjJsmzLyThLUpaWVpkYq5OmCZqUDIcB/jCg1eszOz1BJiRhECJRmaGNVodSqYipS6IwUn2snoNtW5w9twYSbm+1+EZ/yJ//4R/heZI01QmjmK/f/Q1+8Ec+iG4ahEFALp8njqJRa4TYCixP02sfj+0E1sRokmwTAGZZtiXJ3Fy/09jvpz/yM/ziP/yl0fUHl8nuXuoktoGUq04uv1Lm7ortMl6ihWUn2efVpKBX2edqY+BNFmnp7Abf+wvv2LaLGulsSjBfWL6zFFMd8qVHea9ULrn9mDv2R75GsstXW8qb4LUd076aytIUTUqSl3G22PzsdSFV9vPo+QtgmeZrhyK/A/U6c/dtru3M3Wa9lvB6p6txc5bsRbMsV+jSVei1uGY2b3PLqx1769w0gUCyf/8BhkGA1CWm8MhSuOeeeymVypQrNRprF+kNhuTLNQqFArvnFxgfH6dYq7F3336mp2ZwbYeH7/8m5dIYpqWz78A+KpUqCIPaeIFme51qrcrszDxZpnH06IMkWcZjDz7AfesdKrHPnloVSzcxTRPDMNE0QzEXWUacJGgjPb2Xc4nCkG57wJfve5zrD+1hOBhy5tIqC7MThGGIkKq/EFQwMAgCP2J5aYPl5Qb3PPIs46UCDxw9xg3X78O2DTRdAwGOa2FYBrZlKfYjS/noF+7i8J4ZavUScZRQr5XZt2taHSuDYX9ItVRA15VLm8rZSvmnTzzHrbN5bjhykMcef4ZcziAIYhaXN5icnODc+UVuufkId37tQaYnxxAa+H4fIVEz/4Mhd3z9ARbmZ0fmDxrr6w3yeSWzarc7eI5DlCbkC3nIBHGkegZ8P0BKnW6nh67rbKw3iZOIUrmg8s3SBM3Q0S2TC2eXiaKQXM5jeWkNz3NpNltqYCsEw/6Afm+Al8sDkjROWby0zMzcJIYuCcMhpqEjhUGWabiugWEYPPvcGcbHa0RxiOs69Lodjj13mj175lleXCMJYyAlV1Ly2cnxMY4fe55avUrOczl9+hw33nCY+7/5OPv2zGAaBrZtYo0AQT7vIaSx9ZkbuqBUzpGN3MvWVlYQIkNqgsEg4NKlJQoF9d4laUImBGEUYpk6lWpZMcVC0O/10U0dqWkgFfMUR/EIPLn0e33lFhlFtNpt0jTBNA1arQ6Li2vML8wxNlZj0OvR7rTJF4tYlkW/2wNgeXlFBZq3e2w0WxRKOQLfRwo4c/oiU5PjBGFA4IfcdMN1FEs5yODEybMMBspRNI5SPvoXX+HWd96AbVsYloWUGkHgo0kdL+dgWSrO4NFHjzE1NUalXCIasaFCCtIk5dD+eYaDAa5nUyrmlKxQN0FkpGlMtVohimO6nS65vEuSxCwvr5LPF+j1+9i2RRSFdFotoihFkJHEKY7joBs6szMzCKHs6qXUOLh3Ht/3GatX6PZ6in2VGufOXmRiqo5lWwghcRybJE1ZX21hj7LukiTl6WMnmZocx7YMHjr6LNWKyiLs9NpMTo2B1NA1dd3bts3QD5BCJ46V66maREvo9pUDbBilGLpFkiRYlqkkyHHKcBgwHPbI5z2yLCWKlMtklhrc+bVvcvC6ebIso1KusGt2GqELmq0WSRIzPlYmikK6nQCpCXRTU66mEizbAiBKEnTdJAxiDCNF1000zeTs2UuUyh55z6PT6eG6iqVXZkh9HMdFSo3+YEg+7+E4FkmUMgx8VlbWOXL4AJqmfl/LVmC721HXTIZyGxYIcnmPKPbRTY3Geptc3iOfV+ZASaKuEd/3MQ3FbB3cPUPLT/joxx7g1998mCiM0Ax1vytViur5Mho0b/Y/CQS2bbF3fkq5pmajYOlMmfWkaUroh+paixPIMjrdHkEYICQMg4DTF1eYmayjC8nS0iqOZSCAdmvAiVOLPPTE81y3b45Gs00URrQ7PfbsnadSKfIbx0/wX37rt7FsE8fSSVPJvfc8wFvf+RZK5RJCCFrtDq7jvGBUBqQjtufaxY9XG+S/ALY212fZNqbiKuyH7TkkqwauZ71ou6ue2Q7szSYbKa7c7pX9Qi/+d5a9/P47rX81+2yuGv39+1/5XX70x35ka7nqGX5lUsjNkpqmJhWuAvI2t325/jjVSye50pzlaufw7S6xyYJ+R8+Cl2cBr6itbbexqH/fmbvXwd23ub4V4G57U+pOtbV82w1p00xl+yzb9htDOgJ+22/QWw3HO7z+1Y59uXxTkAlAk3g5jzhOCMOhGsxqgvGpSYQAw8hj2TlkCmHgc/zYcdycy49/6CO8593voF7J4ff7iETw9HPHGQ59bMOmUi4TDLrkclXarRZ+4JOQEcYxWbrCdQf38ZGf+FnypsfHn3yKH9tVZ63RxrZcBv2QJBYYhkkqUjTDQGg6fhCqWW9D0ul3qFU8KsUCn739Qb7vvTdhOya9zoCHnj7J/j27QEQEga9klLrE90OmpmtUihaDgc8NbzhIY73F08+fZm5umlQoWWMSJQiUPCtOE47s34VlOwihY9oW6ej9bzU7aJpgvFYmETGZEOSKOZCCX3z2JL/zU+/AdU1MS7K0vEK5WKBcn2C8XuEb9zxIHPtMT9Xw+0MKeQfP9YhTyOULJEmE1DT2H9hLJiRSt7h0YYWZySmef/4U1XKJ+x58mpxXIpezkUIniTM2NloIwahPSCOXy5EmGXfcdZQ33XwQ13O3JJd+4DNq9KJaq/Ho0eMcPLSHtfUNxifrShUrIYlico5NmkmyNMTQUjxb5+tff4ic50OWYdt5bNel2WqT90z6vQG6sIjDDDeX4777H2Pf3j3s278PpKRWr+IPfaIQlfFnKXZ1anKcNE2IwpCl5XXGx+ssLExv4i7COKbX7yEz6Ha7mFJy9Ogx5udmSeKENE2wTIsTJ08zOzdJnIQYls6F88tMT40jhTI4aDZbkAZAimk6nDh5jmqtiBCqed4yTU48d4Z+b0C1UmNjvUGxmGd9o8HERJ00TdGkRs7zsG0T3/dBZMwuLCA0CVlKvztgfa2F1FNazRZJDIuXNri4vM6uuSk+f/vDlPIu4/UaxPDcsfPMLUyxsrLG2ESdfM5TskVb9eo5psnjTz/P3NwEpqFz5PC8iiyQAk2TaLpAE5JGo0WlUmLgdzFtyVi9RhgFKifPUEY5cRJiGDp+38fxPOWYGUOWCZqNJiCU4cugqVi0an1k+Z+Qz1nolo2uaWSjzypfruC5Ns1Wh2KpQLvTIQojPE8FTAsgGHZxbEmlXEGIDE1Xd6q7vn6U62+4jjhSZiRSyxgOVXbj8adOsG/vPL1enziKeeSJ56gUPGr1Cgf2zyNEhmHoGKbJ2so6pUKRZ4+fJl8sEichum7guXmyTBBHIYapAHAU9SmV80jDIpEeg9ZFdHRMTZBqKZqdIwsHkCSKFRM6mpVDipj5+SniOKPZaON4JroJsR8j0ozJiXFc2+XShVWefuYMjz35DDPjRXK5PGFicOrpswz6fZI4xtB0nnjseSYmK1imRRQHmKakWqkw7LdJ0hRNOgz9BMO1cfIet9/5MGP1ErZtYJkaq0tLPHNsmWLeQ5MqB/PMuUtoWg/bdgn8GITEdAzSOMXzPLIsodVuYegG/jBibDxPo9HAtpSb6xe+dC8LCxPEYYztOARByH//h3fzYSPPu+en6fcG2J6FYZvkCvlNtToIiKMI09IJg1AZ7eiKJU+SeOs5l6aC0I9wHBfTMhn0fTzPw/dDPM9jOEwolYt4OZt6OQ9pguWY5HMuQTCKtfEMZqYrFBybS0vrCCnZtTBNruSgGZKPHjvBspD8xE9+BMOEKDRxXEml6jE5MQZCkpHiOs7Wc/cFMAQSxXps/lx9XLD57H7hsb75s1MP1JZ5xStwm9y7bw+//B/+LW8/8o4XrXslz/jt2wrUM2trEvnVgLvN/bZPOL8aAPMyIG4TO26d92jd3Xfdyb/9rX+jJmmyTRMVJUlM0+xF7/vVetCyNNkCdlLTt9a/lPHIizvSNpnRlO3RC7qmjT6Dy7d7pXU1E5hXVaP3aPON+U6Bzculzles2/7nCln09vP9+w7uvrMc7uv1d7a2P2S+FSWEoFQuM+j2iYKQ/fv2kUQx7VaHIAxYWV7lR3/sxzANk0OHDuAHAb1ejz/54z9lOAz4/Bdvo9HpcvMbb2LX7CxfvO02LNPmmw8+yJOPPUoUDCnk80RBwOlTJwh9ydpqn9bGANsqcsuNN/PfPfQclWJ+q/fwk1+6j8CPGA59siwjCsOt2d4oiJmcGGNhdoowDDmwa1xJplD5eLe+5QY1Qx8JNGkSBSm6ZjE3O4Nje5RLRaamxvjcVx6gUi1x85H9IDJsyyBNlHvfX33hfo4dO8H6WoMwCPEHQ0I/4KOfvYN+d8ADjz5NrV7Gsi1s26KQy+E6NhvrLf6nx57l93/+u1lb36BULuK4Dm+6+QgTE+PougLx+xZmufnGNyClxuHD+2h3eiyvrOK5LoP+kF6vr7KndANdN7h4YZEv3/U4S0srHDiwl5OnzpFlGceePY2QgiiKOXb8BGtrTcqV8iiHLCZNE1ZW1pidqtDr95VxhpS0Wyozb3V1HTfn8tDDT/L8qSWyLGN6egJ/GJBlSk7U6XTpdHoIIQmCiDhVPWxpBlFosLzc4dnnznPq5CXyXpH1jTanzyxSrVc4c/4icRwxPVUjA9ZW18iyjE67QxCGzO6a5OyZ8zSb7a08szRNiWL1kOv1egR+gESFecdxPHJMTPBcj9WNBoWCx0ajQX8wICWj3e5yYN8ejj9zkmKhyMZ6g5npCTYaDYa+T7fXI5/PI3UD1/XQdZ16rcyg30eSYVsW6+sNKtWSyhmMIsbG6qSj46+tr9PpdGg2WkRRyCNHn8axHS5dWoU0od1sMhwMSbOUuV3TlMslTNOgWq1w+A37ecstR4jjhCRJaXd7DAYDMuC5kxfRpIrn8Ic+a2vrrK+tj2ZgBRuNJu+79a0YhsGx4ycwDIMoircmhgJffUcKxTxplqq4hSDGGoVWb5oHRXFMHGeITA1OkjTemgEPggDXtUfXT4LvR9SqVYIgAJRZiJQaaaIGDsEwwHU9snS7Y51y1rRti1a7S5KmDIY+juPR6vS2HO0cx6bRaHL24gaGoWFbFn7go2k6pmUhELzpliMcO/Y862sbZGT84AfeSb6gwChk2I4FApYWV9B1g2ajqdYDjz3xPP3ekHvufZS1lQ3F1LTaGIbF+lqPdmuIxMDUNArFmur9ajfpttbQ0oh8uYKZK6DbOUxDJ/Z7akJNCs6ducjZ84tomk6SZIRhxJ33PEahkEM3DBZ2z+GHIfmcTblcQNMEhql6iNcaTUrlAmma4DgmmqZz4eIiWZZRKBQ4f36JlfUGYZTw+dvuo5DL0213EZng/e99E84og5BMUCzmOXBojlI5Tz7vIjWNPXt2Ua+PoUkDf2TA0mg0sR2LJFV5i5WKurZr9SpCGNRqNeUaKQTvfvsNGLrBw8+d5yf/0238z398Px996w14lkkYhHiegyZ1Ij9SGXaj8SOZYkcFAmvUU/y5r91PEieqX1jXkUKFoeu6hhCqPcAwNJaXVlVeZJJQrZXodrqsrmyorEfNoN8dkiQZt919lCwTDIcB/b7P0A+olgs8efIiEoGu6Ygs42udPn/2J38KQpAIgWFq/Nq//zXmdy98S0dam9f/1cDbJih5pS04/Xj4mp3bVhvItezzMud7rb/Pq60M6FR75PLuju/xy73v366KYhUbsgkar7U03UBq+jVlwL1ef/frdebu21zfCubu1dxaMl5svnLVJtxtkotXYtZy5XF2PGcpSZOY8VqdP/qDP+art9/Bv/vlX+GvPvkphBTs3bebSqXE3OwMuVye8xfOYaU2N990E7sP7KM+MceZi8usLF4kS6GQzzM7u4ujjz7G4YO7KRYs8p5FMVfg2JNP0+v12bv3IHfffT8HDx7ii1/8EoMo5JNnLvJmTTA+XuO6PdNkWcLK2jqubW3ZZ2tSIjINzdAJghA371At50HodJpdPMfG8ZTbXRTGDIch9z5ynLmJOsvL6+RzLo6rXPfmZ8coFD3SLCGOVOD50SeeIw5jDsxNMzNVpZB3cHM2pq7hD31qnstYvczkWBXLtlhe28DJu6R+wOLiGr908hK//COHWVpcYRhEPHXsFAcPzPPkU8+jaRLLNkjjhHzOI0MiNZ0zZ89RKhaoVas8ffwEJ06eZ/++3SokXNMJwxjXdXnLLdfRbiubcMPQ2LN7jvndMxi6hqYZtFs9isU8+XyOjJQ0zRgOhyytbLBnYYbaZJUUaGw0kEJiSI1yoYBpmRTzHrPTNbycw2AwwB+qoHcpNOIoplAuoVvK0j5JMmwnx9TUOP1uwpPHLvCG63YzPz8zknLqxElKpa7CvB3PQtNBILlwYZFKKc+Fi4vMzExhmoJh6FMql9CEQbfTYzgcUCjk8Yc+oGIULpxbplQusbrawHYcnnzyBOPjNRzHolqrYDom3X6PYrmISJXr4yYgu/eBp7BMjV27pvmLz3yVQs6hWisjNAPdtIjCkOFwgCTFMnQyoQBMEIbUalWiMGRtuYWmabQ6bRAZk1M1xY5qGrVaGU03KRWLWKZk0BtgGDrLKxvKSj1NcewRY5plPPDw48xOj3Pk8B5mpsYxLYsoilhvNlhYmEHXDTqdLrVahTRLsW2b48efZ35+VuUiSo16tUIcq7xFTVOD5jRNGQ4HDAYDdE3DMG1M0yIjU6zJSFpkaCo+ZFP23e60sByLQX+I57l0Ol3CMETXdTzPASG3zG2iIEQKiRQmSRxjOzaN9RZDP8I0NCzLIklTDMPANE0c1wWg2+1juy6W7dBqtrBskxMnzzE7N8XhQ3PopgYjy/HBwMc0LTrtNpcurjA2VuOpZ05x+PBeJXnOEobDAUkaYdsm3U6HcqlMLudx8tR5cp6LbZvMz89iOw5nzixy7vwq42PKsMPNudz59cc4fGAfoe/jWDHSqKFpGXHSQyQd2isb2Pkc6BZRpvgDUyrWIghCLl1a47pDe8lIR3mUGTNTdZqtNo8+dpxS0aNaLTA7PUa+kKM/6GMYknqtTLmSo9lsUijmKZVzSiKbZmjS4I6vPcJNN7yBQqWA1AxkCmPjNbrNLv1On1zRxTRNhn6Apun0uwMsV0NK9UxYvLRGt9vHc/M8/fQJKuUStq1k4pssp+/7GIbOoBfRaXc5dXKRcrnMoD9A0zVSTfKTv/klfiS2+anr9rJ76FMqFWm2Wrg5d2TgoG0FQcdxggDiSGUrkkkeffwZPMtm18QYaZJhWTZxEgEChEKCmq6RpimGoaEJFf+RRDGDbp9KtaDCyhE88PizECcq63C1hSEEp86vUHAcxspl0iShXvRwbIsojPmDp57hV37nt7G9PMeOP0O1PkbUXGd1fZVb3vpmojTb0bThhQciL1r/UuOCy81T5I4M0GbtxDC9VP34Rz7EP/s3/5xbb7z1ylN8xbW57Ss1Trls36swWq90/VV2esnVGS8wd5v1v/7Zv+N//93fVkYrO7zHL+cYefn5bTNCecn4qZceDb7A6G3+X91fsywbfd9eWnZ7tddMR5Oyr3XP3ndaJrpTvdKs57/vzN3r4O7bXDuBuy0CftuX81pq+x4vpI9cLovYcZ8rgNrVblybM2SbN7iX6sdLtx1XCIHYlJ/w4tuWkBLCjHqtjufl+Lmf+3ne9Z538973vpu11TVufe+tGIZynhRSMFGfoDZRY3J6irMXL/Lr/+E3+cadX+FDH/oQe/fu46knj7Gwe4GHHrob3ZDcecedjNUmaGw0cQs6ug7/9U/+iLmFKd769lt4/63v4Rv33seH5iYZDocUCjm67S62a5GlqWIG0hRd0zhx4hK2pZMrqCwygQAp6XX7PHf6Ao5h4Lg2aRbjeTa75yawXZNyOc/ps+cplYpYlkmu4NHtdlldb3Ds1DlmJ+qkUcLMpJLtaIYgy5TUb3llA13XGatXaDTaOK6yty8Uc2qAIgSua/PhH38jlWqZqckJ8nmPI4f3kWWQyykrfss02VhrIKWGZdsEQUitVh714gjOnr2EFALb0AmDCNux+eRn7+DG6/fTabWpj9cwDNVDhxTYjs3a+jqe4zE2XsPLuXS6XTUzjuDc+UUmx6t4OQfDMQnDiDROKBULREGIaVlsNJvU6jV838dxLDRN2af3uqpfTzd0dF0HoXqPTMsi8ANyOdW/Z+gZxZJJ4A9YXl3n3AU1C6/pAk3XsEzFPpqGCVnGiRPnOHx4P3ESs7Kywvh4nXPnL5JzXSzLQkrIyHAdG11XzpmBH9Jpd5mdn0FKyez0BEmaEgQBnucSxSHnzi8yPj4GmXLQ1A1lqHJw/24sW1MgNmdz9wNP88YbDyi5q5RIkWEaKk4jTTM0Q/VHabpOHMekWcrHP30vN9+0n2q9jK7LUXC5ge8rYxTfVyzC8soKhqHOuVDMk/M8PvXZrzM9UcHLOfQHfRbmphFC0O/3qVTKBMOAMIrYt3cXmqbh+0NK5SJZluJ5LmRQr1dHuZmAEDz77Ckmp1QsguM4SE0NlJ3RRIhiUCRpou5jUkilncs270OSLImVNM11EFKqXlcpRyyL6pHSNXXMwQgQtJotPNdVs8tAY73B5778AO94242kaYzUlBuv57ksXlrC8zzl2KlpCE0QxzHFfA7d1CmXisRJjDXqo9Sk6o3MeUrabJomru2QZinrjRbVahEpJaur6xQKORzHZjAYKPMiqZMBhqGTJjGVagWAVrPN/v3zBL7PRqPB7j1zSD1j/545LEsnjAZ0O2s4bmUkJxwg04CgH9Bur1Msqd6sTGhkQiAFGLrG+Hgd21bvMwh0XWI7FvlcjoWFGSzLpFguqPcWZejTbDRxHAfDUKA5G/UEa5rE9TyiMGZ+15SKzhDKfGdttUG9XsHzXAa9Ac89GiUXCgAAIABJREFUfxrPdTh56jyTk3XyBQ/NgMZ6m253yOTUBEKTPPLIcfoDn/n5yZHTLKyvNymOoluWl1ZZX2/yjfueZmW1w8EDc8RC8HO/9zW+y4d/uHse17WRUjA2VlXAT5O4OZcszbaeIJsRKlLKLUfjLM0YG6tgWSambSlDH0DTVZ9nlqYEoTLK8gc+AjGaoNLodvtoUqPb7ZGRYdkW8zOT2KZyUR6vlDn69BluObJXhdWPerLr9RKGaWCYBr93bomf+PEfI4pSKpUSrmty6qmjzOyep1ipInR9y1BIPft27s/azkZlVx0LiMsewduZrKv13221YFwh1bzyZ7Me/OYj3Lhw02Wvsyld3KkzcLPX6soWjSvhzUsCvU355dVq+/or/AKu3O6luhd3YqiuBHZplnGhe4H3vf+9Kgv4sm13fo9fvHy7pHLb0iy9Yl3GZq7ddrdNlZ334s8nGTkxb4IUtU6yPdvummqrN/O1A3aKSdSuaZ9NKXKabKo60pdlE6/MyUtfyRg6fbFsdLtr5+s9d6/Xq6qdwB3wombOa6md54fY0vTvxMLtWJeL9y9fzrab4ku8hkDJBKR4Majcaa9MaqQSxiYnMV2b+sQ4GgmlUhGpCfWQlhme5xHLiMmZceIo4GMf+xj7F/bx9re9lWq1zrlzF/i1X/01PvzhD7Gwbxe7du9hYmqGL91+F+++9QPc+dXbGAwiPvDBD3Lw4CEqlQnGxiZ561veyC9+8jP86Ow4WZqQZgnFUkG5W0o1MBQCiiMb7ShS7Jzvhzg5Cy9nMz1WJ8vkiLUwSFLVv9PvDWg020xO1Pn0l+9HpAmuY5LLuwgBCzOzmKaOZWrEUcTXH3mSoR8wMz0GUlIsFDAsk0xmWK5qcF9fayKRNFZb5PI2H7nnKD/05nl006TVavPss6eZnB6jsdEiV8iDEFi6jS41pBQ02y10U0M3dIIgwDJNXNtk/555NENSKuZBZFRLLuVqHmd03DRVGXuO62C5Nrm8Q5zGaiY8S7BsnY21FoVCjlq1jOPaBGGAqZsMB0NynofUJOEIuHg5FZTs2Pboc1ZufouXlkiSmELBI5EgRYREksQxQkiajSaZNBgbryAJ0A3JpeUmlWKRjJSZmXGee+YkrmUz7AYUijksw6Cx3mRyapz+cIBrq/y+QilPlsZoGvi+AmzDwRDbsdQMfhRx7Lkz7N8/T0bGmTPnGBur4dkuWZZAljI5PkYSZ2gaNJstms0Wy8sbjNUraAZEYUStXuW6A/PKqVLXIE3JsoQkS9ENC8tySMjQNY0wUuA3TRMW5sbI51xlbmFaihHLNEDS6XSpVEu4noNpWvS6A86ev0S9XCSOAgzNYKPRZm5unCgMkVKj0WizuLhCqVhENwyV5UiMrplcuLBItVKk2WyrHrksJRMSzdBJkwxSuHRxhVqtjJfz1Hc3TZBCMhwomZuQYkuGKaREzX/IF/plhEBIJSE1bQdQ/XOIjI31BoViHgH4A5WTqJsqC84a/X69fhchMoLAZ6JeoFhWWWThpqEQ4Lku6ysrOLZFlqrvqW2bo/0CokjJ9QbDHroBhmaysrKOY7sKXGsKaAopWViYxTBN0jShVCzxzQefIO+55At5BqNMv3arrXIhJaRZgtRVr2ulXKRYylGvFeh02hRyJaIkAkNgWjaOVaDXW6LZGGCaDpoh0HTIFRz8zhpRbwPbVN8tKQ3FhKaQJinD4XAkBVMukUPfx3Fs2p0upm2gaQaBn/H1ux7h0aMnmZgoYI4Y1SRJiaKQVrNLlma0mk3KlQJxEqJJgzRJqNaLWJZOp9Oh0Wox6Ibs2jXDwPfJ5x2Gwz6O49FY60CmcdvtD7EwP4HrGcztqo+uKY1ep8+Xbn+MPXtmkCKjUMxz9Mnj7N8zyfXX7+Fn/6+78E+u8u9uOYxjWQhNKjZVCoQE27WxPW80GE4hSxAiJiNDN6SakMlS4kgNBg1TyYCFVBmQKmMV0kw5Ztq2MRrECzQpOX32IoEfMD5Wxcnn+cbDT3Ld/nmSKEKTGoiUVrvDNx9/npsPz3PXw8eZGSvz+bsfZ3q8iGHrmLbJTz/4FIcOHeK6Q9cRDXoYRJw6/ghf+syn+Ac/87OkukmCHIF0XU1+XAXcXfZsfDVjgZdgu64Edy9V3/t979uZvbsqLntl5/qy4O4a62rg7qrreGXn+qsf+1X+6x//3hZrd637v5p6AVxlV/z/hcqy9DsuA31llV2zzHM7AfBK2dntEFnAVSc4XrTTtuOoZdmLlr0O7l6va6rvBLjbdOV6OUnlZazfdqC3+XovA+42WbsoipC6/qLZsx3BnZDYjsNaY4NMSITUSMMh6+tr5HJ5Ws0GhUKJwaCPMFWWV6/b5Y3X38inP/EZfvYf/zR33303hWKBpaUlPvj938/ZxXP4wyFPHzvO933ghymWK+zdtZfdC/s4efIs+/cf5q//+st85jNfxMvr6FLyuw8/wYd2jWPoGt3+AM91iOMY17EV8DCUY9pgOMCyTDzPI0oClpfXMTWTv7njYTxdJ+95kApM08K2bTzPRdN0Di7MMDVZV2Hmuoauazz2+ElKRY/HnznB1FiVhelxZuem6A+HDAZDojhGkxq6qYOA5UtrCCFYXtlgarzGzzx6jL/8V99LGCUjJkEyNztJu90lX8zz6c/dxaNPnODIgd2sLq9iWyqIfDAcYhjKlVIgyedyLC+v8PzJswjBiNkwGA6HeJ5Ds9XBtiwcRzkBIjJ63Ta+H2AaJt1uD8e1cR1HhXOHIVIKDMMgCWMGgwFCE9iOQxiF2K4z6o+yMQyTOIkQUrC+to5tK8dQIaHZaUMSM+gPsW0Ly3EwDIPTpxepVkt4jsGJE2eYnpyjXC0xVq8gRcbEeJ3zZ5eJwoRh0IdMUMh7rK6u4+U8sgS8gkeSxEgpSOKYIIixTMUgWpZJnCQYUuPA/gUyoQLRK9USWZbxhS98A8tQvRZRFBNHKb1+lySJsW2bubkpLl5aplD0sB0HKQWartPcaJEmCZChmxph4AMa3d4QyzZ5/IljTE9NjPrQQqrVMmmWMegPMS2TbqdH4IdYlsXzJ04zPl4jU8NZ6rUKtmWQhCo/cP/+/ezaNYVpSPr9AbZt4bgOszOTDH2fZ549zcREDakLNKFYHU1TPWmaro0klxlCk0RBxF9+/A7e8+6b0HUd3x9imiYAcZxg2zZCZgwHAzTDIMtSwjAmjpXb5+bNSGqSQb9DPu9BJrl0aYVcTkkoy6UiaZKq8HPTVPdBoTLl0kSxTbmCSxJHaBLGJ8awR+HlpmmQZhmmYdDrDxj0elQqJXRdV7ElAjbWGziOi2XbW6x2r9dFCh3Hdmg22zzw0BOM1cskYaIcNKXYmoEO/RjL1Lm4uKreNylVHuKSAnLq+t3Adiw+/9UHuP7QXoTIcB0LXZcMesnIiAbSBAzDgbRJsTiOphtoeorIYlLTIgt90sgniSKVt2l7IxmshpBK/huGIbqhjdz11PukQuNTpNRYurBGtVyk0+lx/Y0HlBxWanztGw8yMzVOIZ/n8See4ZGnTnDk0AKGodHt9EfgSF1zXiHH2FgV13Tx8jmq9RK2Y+L7A9IE8rkiX/zSw/zQD76TXN6lWivguhaGoREMA4qFIvNz04qZ19X3bN+eWby8yz/5w3v5+Ltu4obxqvo+6DpZltJqtlnbaFAqF9A1SRwl+P4QTZPESUgcRwz8AF2KrX49OTJGiJJI5VJGMf7QVwoLIem2e8SxknxHUUyvrbIl8zmPgucy9AOGfsSBPbO02x26vb7a35AUSnnKnotj2xw5sIt7Hz/OTK3EoUPzuJ7N/ecu8KSf8Jv/+bcp5AtYMmOsUuDxR76JoQmuu/ktYFikSGSm1CBRHGHol/dH/V0DdwCWYVEWlctA1w5j4RGh9v8dcPcf/+I3+MtPfYxNR8qdDE++FfVKwJ06H/ktkVC+tvXqwd21yG63M27yimv8JU7thWO+Du5er9eqrgbuBNvsWK+xrpRBXCaN2CaLfLmvSgaj/rLsRfJOgCTLlMzyKlLPNE1HN9YMXWovlm5s+9ncO40Uy5fGMe1mC0OT5PMulVqZxeUlyrUK3V6XVquJFqeU8yX8XkSlUmf3vr38H7/3n/ln/+M/YX11mTfd8kYqxQKlQoH1lQ3G65N89fYvc+TwAS6cO8ZX7vgyR25+K1+47Uv8wPu/m1PPHSPwMz78ke/lK3d8ncc2unhrTWbHp0gS5URlGAbDkYwnjWF1paVCrV2bteUm1UoFwzTYPz9BrV7i7LlFvnz/Y+yZGcOwdILQJ4pC+gOVS5Zl0Ov6tFt9LlxaZe/8NJW8R5om2LaB1Awsw2LYHfLoUycpOS6e5yEz0EVGsehRLOdYTgN+8H27cRwTkcWQpniOTZyEmIbqTTq8f54DeybQZEJtYpwwjpFCcubMeSbGJ8lSNcvdbLYxdIs9e/aiaTrlSp4sS8l5Hv3eAE1CmgRILSNLY2zTRpdKItrrd5Whg1CDlW6vQ7mSJ4wisjRj6A+pjdXQNYM0S4mTGMPQkbqBEIJ2u0maKhAtDRM3pxg+MsGwN8QrFBGajmW7pEnKyso6riPxcjYZOpVqnWariR8NiRLltPf4E89w8MAeiuU8UuqcOXue2Zk6jutw/vwy4xMFnj1+mscfO8nc3DTHnz1NMEhYXFlm18I0SZzSbvboBwOcnHLjPHvmIvkRY7Vvz+xocK/MHlaWN5icGceyLQrFPFID29DxhwlxmtLv+7iOw+rKOq5rcmlxlWp1jChM0DJBKe/RaHZYmJ8lCnx0XWLoEikk1ij3y3Nd/GEwCnAeMjFWwbRthJToQjIMfDW4l4J8PoduQRgNCeOYXC6HSAXhwEeYksXlFfbtm8cwLdZX26NeOYNz585RrZUY+gOQAsM0IVM9O4evWwChzF36gwFezhkxXQJNE0hNxx8G6JqOJiWdVgdDNxgMBlsxHaQJpumiGLuMfN6l2x+gSY00U4xSEIR02i2iMKLT6lHI5VhZWiKXd5C6hdR1HDdHBsRhSJYKlSup68RxhBRgmhaaYbG8tIbjeoRRtMUcp0g0XSeLMzShHC+jWF3bu2Yn8dwcfhQQRSFREPLVOx9ibrKOH6qIgLPnlpmZncS0DQb9PsVCga/d9SgTY2O4rosfJOzdNUWaRTjuKFBeN1lcuoSX8zB0CxVzMCTTNNJM9Sn6foxm6ZhuDU3qIHQgRcqMKApU1pquIWSInkkMqbLxDN2m223ieiriQNNN0jTDcS1OnTvPu95zC1mWEMc+WZqyd/cCkBCnAdXKGHt3zZFpEUks+fIdD7BrdgzHNXE8C6Ri0dyCRbe7gT4CjrruYdo6mqlz6LpdGKYkTUKEppFmIKWO5TogwXElYTigP/C5865HqRbL/Kv/82v882qRqck6QRBi6AZZArqhY1oGpXIBgVR5me02uqa+C1IamJaHqZvohgWZoLHexnFt5IgpdD0XKQS9zoB8Ps/Gagtd6vS6AzzHwTJV5M09Dz/NrumJUS+npNPt0m51sUwLfxBSKBSI4oyv3vs4Rw4u4A+HDHsBvbbP9FgZyzRBaPzLR4/zhU/8OVoSs77RxHA9Ll5aptfqEeRLXHfD9WiAlmWITILI0DTl5im3yeiSzeetEFs/r6auJhkEZQCy2X+3fbOrDYYPHjrAL/wv/5J33/Aetb/Y9hzfNqAQ25a/5LltbnwtRig7ndumkugqu6TZi2WWW5LOK48/GnNlo52yNOPRM0f5oR/+AXYCdmqXF5Ztyid3mrreLpMUmtxyG79yXLX9tbYf46WOfTVgl20fZI1+XisoulNw+ZXLLzvvK4DWlYHlL1r/as5p2zE3geFl63f6swN43GnZ6+Du9bqmuhq426y/Lbj729SmyQoju98rM++2+viucoPWNDWrbOjGy97AN9fqukaWpuTzeYqlEmmasbx4EdO08HJ5pBA0Gg0s26JWmSDLBMePH0czNHKew00330SlXKFarfKv//Uv8b73vw/LcgnCmP379zNWGwc0JqfL3HzLm8gXihw58gayNOZtb3sTc3vnKZRtvue73sYnbvsadx8/zrvGJ3AcC8e1+H/Ze/Ngu7LrvO+39z7zufN9M957GBvdQI9sjjJFsTXYIiVGUkhKkatkK7STSqRIkWwNcWQlGp3YZZftv5KUZCuxJIqiRFGkBpLNSRLJ7mazu4EeADTmxvTm4c7DGXf+2Pc9PAAPQDcHlZPCqrqFh3vP2eece8+wvr2+9X2D/pBnXnqVsWIFoTSOI7BsiWUpyuUylmVvS3LbjkWtWuGxIwdAaBzXwZIS1zMJnenPcVhcWGVu7x7mputIJXA82/ifjUzPh/0BtVqFLEl46sUzTNdKtJttypUiQko+fvoMm3MFHjswQ68/QAhBnoOSiuEwxnWNqfTy8iqFQojrOlw4f5larcaxF0/wyIOH6faGvHLiLGP1Kq1Wl/GpSb78pa9Rr5WMB58UrCyvMDVRRwNRnOA6LlIpWs02x46fZnKyRqlYoNfroyyLYTQkzzL6vQGDQYTv+3i+RRzHIORIKdGcWxvrDVONKRTwPJfl5VVKpRIAWZqxtrZOtVoxhtMj38A0zwgCn0KxgGXZ6NxU1EqlAlIpwiAgSTLGx+psbjQBSbVWZny8ghiJKYyNj5GmQ1qtPocP76NUKtHtdJjZM8nkVG1UwehSrVVxXAchJGEYEvguS0trVColpFSsrm8wMTmGZTtUKmUEml5/SLPVplQq0+8NkFJSLBbwfNdU44YR9Vp1pCwJaytrrKyskqYxlWqZhauLhMUQW9n0On0KobGUcB2bhYUlisUAISTRMDJJtJJoNCdfeZXx8dqo2qQYDIa8+PIp5vZMm4e7lLQaLfqDIYVikV5vQLli9nFhYY1jL57igcP7EQJarbahGSobIeTIX66IZRtqoDFaz/BcUxEbRhGWZXH16iJhGBiKpGuqekHgbV/ocWwsAZIkxbJtU4HpdVGWpFAM6PcHRFFMrVqlUArxPA/PM31gQcHQmKUwPX6Dfp9Wo0Xg+TRbbVzXxXYsNjeauK7LYDAwBs7CwvNHvXwGdbCysobrOmid0ut3THV3EFEsFgwoVBaebyMQrK83OHJ4n6FOhx5hoTCyhDDjObbFxkaDgwfmOfXqOc5euMzh+/cShh46T4yqJprLl69x4MB+stxUAZXa6gc0SX4URTieixQOOYYhYNuuAcuOix04aJ2jyGlsrGNZHpbjk+RDpLRNtVXJUa+zBdokijMzk4ZxoDWua5GluRHHUWA5DrbtUSgFSEtjWQ6PPHh4h3CKPbrPS5Q0VdE8z+l1hly+tEy1HpAmCfFwiOvaRjDFcVGjnlJz3pnnhJAWljK9qE9fWOYXDh1lZnrMnFvlECEkycgrU+t8u9/5+ItnGKuVtq1UpJBkWcZfP/0Se6cnkZYkCD3jn2mZ/k2tMzPx4rhsbrTQuR5VmyOCwKXXG+D5PrViALl5ZjWaLYqlArVamdMXLvOVUxd428P3ERZ87ts7jTXq4bVth3qliOMo1jaafOiFl2k0Nvm73/EEyhNEcYrvhqDh6pWrfP8PvW/0TGTryYmQO5LLXZ6H32jcDYzspu54p0rHe7/vPZz5yhXCknfjJPJogvcGkHiXfdumzr2OZXfs3Otd8pZV9GhDd6zkbH9m9uxffPg3+b0P/85dxr/5+7u751y+i7rnzlFMf92N43xdFcJdVvmmgbud+7NLpeuG2CHCt9s6d1z3P5O4B+7uxRuKrwfc7dbsefM6N88G7VZ5u+0+jZaTcP0C1EbtLs8yA/B2jnM74LZF+3wdM3NbS2idjf7VKKkYDPs4ymE4iIiGEa7nY9suhUIRMEagK6sr9Po9Dt1/iM9+5jNkScLmxgZra+u87a1vZWllnXNnzvG7v/9h/uTjf8q73/UdZDLi3LkLVAoV+u0uw6SLsODMpbNMTowx6A1499vfxuePn+TL3T4/MDNOEicILTh5/iqT5RrlWoAbGNGONMlIIzML1+uZqpwQguHA0KW0yEaJhk0SpUilyTPN1SvLCC1wlEMmMtrtLQERG2VbBJ6L4yiyPCNJUt788CE8WyHQhOUS0XBA9NA43/P4YZSQaC1ZX21RKVcRyjwgBsMhfhAwGMYsXFtjbKJGuVTEtixm90wipGTYi+n1BkxM1Wh1OpTLRaanKgQFnzxJ6HX7TIzVWF/bwPF9fN8k7iY5lUxNGkU6ZTt0Oz2Ukniui207eJ5naGRSosWItodFq9VBWQpb2TQaLcql4siEPYFckCQJayvrVGtl85ltjyhnJqmTwnjyRJGh+0klGQ4HWLbCsowBvURy/Pgpkjhlfu8sWRaDECjLJo4Tnnr6GAcPzhOMBEBynVOrV3FchecamX/Hceh2+1y5vMDYWA20qQYFvmdAgyWpj1WJ4tgksEJw6bWrJGnK/PwcaZrS7/QplELTMwmcevUs+/fO8urpC9TH6whpQE0QOPi+C0JQqZTpdvqcPHWB/fvnePH4afrdHlE8pNXq4nkOtu1QLBZZuLbE+PgYaI2rBN1eH9dzsR0H3/NwbUWlUqLT65PnOYVikUKxAELgufYoEYbXXlvi3KUl3vTYfWitaXd6FItFcq1ZX9+gXCqiLEWWZsTx0PTWCUGWmevVthy01vieh+d5+L6/Ta+0HRvHsbEsC2UpksQIwSRxguPYKAm2bXqjkjShGBYM1TXNQINlOwbE65xev49rOzQbLTY3GkxOjCGEwA8DI0hjWaOkWWFbFutrDep1QynLstzsr2VhWUalN8szA1qVy+XLiyhhxIQs22I47OPYNuVikTzLWF3doFSrIaWg2WzS2Njc7hV1XAN6lRTMz03ih2aCwvV8BAolXUqlCkIKlGXEkrTWaCRCWOTkWLZCSRvwkEKhc4lULpYXgHCx3AoSl7jXQud9nMAmJyVLh+gsRwpBu90g8D1AIJVECEiSGLTGUg6ZNpRGKQ1QREmEEuQ62QaaQhvBj153wHAQMewPKBaKNBobuJ7Pl586zqAXc+SBw6RJjq3M+bi6tE6n1adcrZAm5trM0oROp00QFkdtAQKlFL/9xQt84NAcWmeUigWEMInvJz77DDP1Cs1mm3KpYCi27R6TM/XRb5iNaJawb3bGHCO5sTBJYqRkBEhNwri2uskwirm8uMLszASNRpvzlxZxLIskTllda3B5YZVet8/e+T2kWcaffP4Z3vrwId78oJmck7k29ExpLEGiKCZKEiqVAj/w5OcZH5/k//4/fot6tYz0BNVSnX4nIopTjj72KJZrqium//xmzspNFaDRv3IH+LvbY3TnsjurDnJE3d11O3dIsLMsuyW/cBybX/yXv8B3PvbEjbnJzvF5fQBCjCpnt6vWiOsLXn/tss0bvPNuty12VBTvVC3cAbQXzq/xS//+n972O9qusmY5WxYs+UjoZ3eQcj0z223rOyu310VWbtymOezr2dyu+d9OgZZdgdad13+9cWMVzpwrt6Ne7lZ5vPlc/dsEdmokKHSzaOGWIEt+T1DlXnyj8XVV7u42S7Ijtj7d9aZ5l23eQhMYbVt+Cy7C7f0T+Q7QmKMsi367h+cHlMoV88DB9E4gzCzs7NwetBB87WvP865vfydfefpp9s7MUqvXWVtd461vfwu1WoUn3v1uyqUSDz30ICkpOpP0OxGtRpPL1y6x98A+wkLI5moDPyhQrdb54A++j4/8ySdRvRYPTk2wsdlgbmIMz3PxQhehBYPBECEEjufS2GxSq5UZDqMR4FBIJYjjCNuxyZIcnQvESPzg+RMXePn8NR7Yv4dut2eMn3tGxt62LF67eBVLGRBr2YpiKSQeDun0BsRJwk+8cpEffds8YeCT5zlRFPPs82fodrtcW1hlbKyCF/g0mg2kUMzMTHHl6jVajTaVSgmEYHFxBaFh//5Zut0WUzPjI/VGi0Gvz0f/9K+YmRojKAS4fsBmo0kYhtuJvBxZEwghUUKNZs0t2u0OgR8ghfG0KxRDsjyj2x2MehYFlq1IkxgtNGExIBoOkcIARlMNLaG1JsvMw1NrTZrl9Pv9bUGbXq9PWAiMCXaeb3UoGG8r2yIMjDpgr9vj8pVFqtUKCFhd3SCOE4LAIQwLLK+skuemKpGmCcoy1Y3NjRa+51MqhthbVcMk4aVXzpAmCcdfPs3s7BRJHOP7PmmaUatXkFLieTaWlKRJbBJ8ZR5+oe+jlKRWL5MlCVJZOI5Dq9lCSlMtdBxDp92/fxbQtNs95vfNUqlWKBYLlMolslxz+tXzLCyuMzc3RZwkpi90BBCzLBsJ5VgMBsbuwXbs0Yy9SY5tx1RhbMdhemaSRx/eb85dKSiXy+SwrRgqhBh5xIkRrdjQyiylQBh1S+MLZhHHCcvLq6NeSjVqcM/J8pxWq41tKdLM/F5q9Js3mi0CP+CTn/ob9s5O4XkurVaHbqfLZ7/wNV58+Rzzs+N4rouQkiAMKBYLbGxsGqsD10UpRTSMQEvOX7jC2FgFncPHPvklHjg8Z5QVlaLdbhP6RknSsl2U5RAPI65cWWZlddNUrX2HXr+PF/jko3O8UimTZiZvWlo0Ngm27SCVSWsty8FzXVzPJUlMImXbFhphKL7NLuvra4SBiyYxKnJajRLD0aw9AjRIkaOUYHVt3VRQLQedW9iWQ5JEFMsFTp46g+d6tNsdKqUSadpjYeEanuMjLUGWpdjK+LhVqxXiOCXPI1zPQwoLMFYWhsiUmyQTA7LSNKXTGTA+PobvuUTRkKAQECcp9913gLGxGlcuLxAUini+S38woNnsMrNnhiRNuXJlgUq1RBwPjRqvBssyypbHLizwg6lDuWRAvBhd30JDNQyojVVMJVEK0jynXq8hLdNDJ6Sk1Wqj82w03nXxHsu2yNLMgOmROmqxWACgUiogNIxP1jn32jXKhYCZmUlqtTKkGSubLZJBxNpmk33T44x6m8poAAAgAElEQVTVKzSabUqlgOWFNTrdHmmasri2wVi1Sq8/wLEsvhxrfvc//EeyLMb3LNZbLTw7xPMDomiIU/SwrZ1CZrdy5HYDOTd6uN3lWX/bKt3uIOFu49yuX6leq+MNwxsqft+KtPwGcHenuAst85ZxX0flTgP/7i/+NT/yIx+46xhbEwg7+xhfj/DHzXFjXnWnqtbd8r+bGiBv+fgbrAbusq5R9/zbBWjfSGwB9pv3dwt+3+u5uxffcNwDdzduU+vM3CwBIYw0/LAXmUTddY2MtYbBYIBfUKR5Sp5LJDYf+kc/wd//kf+SVqvN4fsOsnBtgXK5xNPPfImHHjrC5auvkWZDqrUKcSaJo5xqUGXYj9l3eD9JnrO5sMz4xCwXLl5hfGaak2fP8aP/xXv4jT/+JM9udPjOWpWVtQbj0yVcy+c/fuSveezIQRzHQosMy5K4vjtKLIyMvVQSaRkaYKc14GOffpaH799LnmT0en3e/dajrK1vcvHiGr1un+nJGmkSIxVUi0Vs10IIDJ1PQJxG1Gpl/vELZ/jwz72XwHXRSYIWguEwwZY2jzxyhFqtguMqpNQjWqlRUgwCn1KxQLfdZW1tk/0H9/GFv/4aBw7MUCo6DPubRIM26+sNlJI8/tjDOF6A7Yd0egMcSxJHCb3uwBgCpxFxlBIEoRF5EOD5Np7vs3htBSGUURzNc/JMUyqWyTN49rmXmNkzhrTMsUlh6Hq5NqCsudlgeXmdq9eWkFIQj8CTVBLf99A6x7IUYcHQ9YyCpxGaSJIhpicsIYoixsdrfOWZ40yPTWC7Hl966jhH7j/ARK1GoWxAZ7VaxnU9Tp48y8yeSbQW6Ezw/POnaTQ6jI9X0WhWV9apj9WYnppgfLxOtRTiKIXnucaEeqNFUC6So8nSiCTqI/OUdnfA+sYGQcHYZ5hKpx5VEk1CGgYBvmt80cbHq5w6fZ5aJUTZktpkHS00aaZxPZ9cj2aYr67w1rc8BMKk567ns7S8ar4n10ECV64ssGduhkxrA66abeIkodncxHWtbQVBI6ufk44mUZRS20q3BtiZi3PrXqAsi16vj5Rq249wOByMwKJNoVig0+kaS4pRxRXAcRyUtEz1TJoevPXVTWzLVIW7rQ779u6h0WhSKhbRmWbvnimmJ6qGcmrb9KIhjusgpSAohBSKwcjQO+PypSWe/toJ5vdMEYYepWKJhaUV1jcazM0a0ZJoENFpt9EZCOkipU2706BaLnH48H6KI8EWv1AcScebiqhluzz1xZfZbDTYMzOO67tIZbG50SBLjZ9gMhKQCYo2mpQsjxAiB6FxPRuyFCUzdBabe51ygIwsAaGNOml/sElzc4ViKcRxHdJMk+caSc8IzRTGGMQCFbtUgnH8AIbDNv2+8dNT2gcZQ56yurJBs9Hmi198gfn5GZSdmwodlpkoyyVCp2gylBhROUWGZVsUwwJCaIw6pUbZLpbrkGlNrnOKpRA3sEGmKEtTKgW4vsWffuLLHNw3RbFYwPWMUNKgN8CyLNI44uKZ83jNjErJWBsIYajFSimjlKoEyjb2FXI0wYU01ibKsvA9F9d1kJYBdkmSkOcaS1n0+xGe53Hm7EWGw5hhP6JSMQIvnu+RJRn1Spnp6UlOn7lIu9Vlbn6GqDdks9XjgUN76XR7VMtFigUzETNoD7m0sMrcngmG/Zinjp9nZaPD/77RoFoq8a53fhsvHPsqe+fr+OE0IlWsLi/jlTycqoOl3zi42+mndrfK3W65gKna5XddbrfPbwfuDh46wM//xi/w7Q++cxs8fD0Zwd1yktcL7rZh7+vMS14PAPm1/+dX+aOP/cGoH/F2oPn63zd/Z/fA3X/esVWxu5lAu82K2xH3wN29+LribuBOjgRNbrgRvoEy9vZMxM71X8c6O9fd7q3j5hvQjjFv01y7Fbc6udz42iqHa73jwYcGAY4lWF5eIelBc6PLH33kI9y3fz+lao14aOwKtE5xXclDDz2IkjaeX+bVsxeZ3/cAg+Y6f/NXz3Htyhrf+30/wE//7D/lXe94C+P1KidPn+DYiRd5/LG38OLzLzM1PU+rkbJv3yE8X1OrhbhhiR/+wA/w0T//FE9uNvnvHj9qKowq56H7p3A9Y+Cb52BbppckLPikSYIURlhCYpElmiD0OXpoD9IyBz09OcGZs1eY3zPNwfsnqVQDkizDD3yGgxhlWcY/S5v+Oc/3kLbNP3zqJX73p95FFveRlmSYROjU9NrNzk2R6Yj+sEu/YxQupTQS4Y31Fn5g43ohp05fItMZY+NlHnpoD71+izTP8bwyjldkcWmRsfEqeZ6QRkNs4WEJG2kpPN8jToxdgLBdli+v8LXnTrC5ucHkRBWdZkhpERR8iqUCaRobVU7HYTAYjuTZjS3AVqUijjK0VnieQ5rGZJlmYnKSQljC932KJZ840STx0Iiz9Ac4rovOBFILBIYGHA36oFOUAOV4OCMPs/F6gdpElSB0uXTpKsurG9iORdJPaDbaPPvcKQ7sO0CeSM6cu8zEpE+aJeSJxdFHDuMqgRBQLofEcUROilAaPwiwbNckqAg+8akv89ADB2iubHL+1FWUcrm0ssnBg/spFYuQGVrIiZdPs2d2AiHAUpI8S0Ym4AMKlSIrS+vcd+gAThAiHReynCxKiIcxrWaLHMh0hBKSdqPLpz77VQ4d2oMQOdVKGc/zSDMzgbC83mBiYtw81ND4vo3v2Xhe2fjR5RbDXgxiSDxI6HcHvHLiHJMTdRA5rm1z8uRZajWjEIoUCK0wmkmG+jcY9Gl3Oni+8fpS0kLnmvX1TWq1Mmma4jgucZSRRCmu65AkCefPXaRcKaKUot/rEoYB42NjREmC6zlYjoPl2HihS6laJMkSoiRG5aZ3MI0SfNcjTVKy3FCRC0Wfh44eJCg42G6AVIKlxWUef/zoyBMqwXNNog+Crz77EvNzk1x+bZFyuUhQ8AwlcTDg5EvnmZocI8tTAGyl8APF3PwEK0srBJ6L0DmO7SOlxHFNJanX7ZFmCYEfkKcCtGTQ7xnKoCNx/QKWE5IkxgPwpeOnqdeLSJmBAM8r4BVD0sQmzzSWgznDU0meg+NYrK2uoSwLN3CI0qFRDJXGIsMLPTKtsB0f23WZnpni6IMHcayYzfU2QVBCC9BSI8hJ82y7mgvW1g2ZwaCPlEaoxhrRn5MkQWhwbGNPgWa7N87zPVqtNoHrs7bZYM/sFAjNSy+/yvlzSxw8OEec9CiN19hHCcty0TJDKkma5QbzSI1AIbQgT435uVSGzimEMNsC5KiHzVSTjaVLmpleQqEFySDDtRxsZ4tBkZGlZiIjLDisb6ywb34MJOb8KoWM1wu4o8mjzWZrxHCQ5Br2zk8Txyn1eo1+Z8C/aW9SCkN+83/5ZQSaanUcP6wSRQO6wxYTe+oUQh9PWmht6JjG79FUeTYbDYIguIWop7fBwvXXbrGTirnrs/wufU035xJ5rrcrcjdL/u9c5wMf/CF+7dd+nbc89Dbz3s5tbi232/7sHGfH607vjTZ622N8I3Di5v28WUwG4Ff/06/ysY9/5Ibv5Wb64O1ortd/DwMbdgqs3PCeEKN86rqWwY1+d7vs+y7gbrdsSgi5Dba2qYXs8B38ZtEgd5ycUqlvOrDbvXPxmxPbYPym99VW9XUXk/p74O5evKG4G7jbukC/mSf56wV3b2Sduz2F7rb/27et3YRZhMVzLxxjds8cl69c4Td+/Vd57/e9lyRNCAKffreP47o8/NBD2LaFZdn82I/9OO9//wd4/vkXePHYM3zf+97HX37mL/nqs0/xK//r/8zU1BTNdgvbcXnLm99Cs9lkYnKC1aUr/OL/9Es88V3fRbPfRdoOjiU4/epJ3v+D38vnvvBlnllc43HXpVAo0Gn1SZKM4SAmCHy01liWqWDYjs1GY51KrUhOim1Lkjwly2OyJKdQDLlw4SqlMODkucu4lm2EHFybjY0GlVqRjfUmtrL5zJdfYM94Dde1+fGvvMi//q//DkXPZ3OzbYBFBmmeUi6XiJOUXGv8wCfwPRaWlrFti0F/yGAYUyyFgDEGnpkZJ4kjup0evl/AdQOSOMeybNobMROTMwB0e126gxZp1qfX62JbkmIY8vwLJ5iaGCcIA5QleeTRIziug+N6NJrNkaiL8YrzPI8sS3EcY0her5eN6TAw6A9Aw1efe4W52Ukc18VzPeI45ZmvvsT+fTNE8RDX97EsgW0rHMdmOIxGpt8WudYkWYplW8a6Qypj1G47ZFnGa5euUSgYn6w9UxNUSgWq1QorSyvsPTBLnsX4vsWZCxd4y5uPksZ9JDA+OQYi59z5y4yN18nyjIUF4wN37IWXqFZr9Pt9LNuYSR85vI9rVxaY2z9LPqrUlP0Cjm9jWZIkjXFsizxPRxYMOXlqzvuLF68wNl7HsRw+/eRX2Ts7juf7NNcbOI4kiROKxZDA90jiiGKpQOAHlEoFLl9dYm7POGEY0O12WVlZo1IpY9kWhYJRYN2yIkjiBKVsjr94gqnJOv1ewqsnLzI/N8PLr5yl0x5wYP88ruviOMYgfWy8jrK2Ej6BImdzYxNBjmPbnD9/ifnZabJc0+8PzO8gjSekke2XCClIs5Sg4DHoDXAd4/OoRxTASrlCFKesrjaoVMo4jvH4s9SWT54w/RBAGqcEYcBmo8XS4orxdXNtsjylUAxIkpjNRhPXc4mjPvNzkxgrA4ljB3S7PVzXxfMc5ubG6Q96TE+NYzs2aZYyGAzwfA/HVob2q8wEggSU45CkGXNzs6R5vt0PKqUkiiIjkmJZuJ5ZTkpFFMUj8R/TsyilYtCPGAyGFAoF6tUynueQ5TkbaxsUC6bXUWoL23YRCpRyDG1SWaR5jh8EFMIQy7axrBDL8rCdAMsOyXObOIoQmKqpzjN0ntDr9qhUK8ZHMRqaZIbr3nF5ZuwGPNsnTzVJovnox/6G4y9f4c2PH0Vro3CbpKb/Wo88L4UQRuk004RhQL1eYmqqDuTYSrFnZpqxsSq2YxGEHhuNLsFqMhJCUgz6MSdPXWSsViFNM3Kd0u30tg23k8j4aMbDeJtyLYSA3PTamYkLwcsnz2NLSaEQEIQBnufyzEun2D83hec7aDS97pBBz3w3i8vrXLi6wtpKk7k9U2ystWi1OuyZnURozHllWTSbbUrlIlprPvrpp3n8yH4+22jzb37j1zh/8SKHjzxAUAwQyqh8uo6L77lIa6tKNwJNo2e6EBCGIUpKYzOy4yH7etUxv56E+k49d7dL+neCv62PP/zHH+FdD73LAK/dtnO3/XhjO/1NBw8CbvEX/OznPsV7fuR7OXTfwe33pFSjSYTrFdC7AaSddNjrwii7UQE1uwG6nQbmty575zA0b81OQZZvdUXtWzH+6zIg/yaH5vbHcg/c3Ys3FP9/AXd3E2z5RsBdHKeUy1Wef+554njIz//czzE3P4eybLI0QykL1zXiDbalaGw28fwC5UqNf/tv/x1rqws02y0efvgoWZ7y9re9lVznBGFAFCd89I/+mHd++7u4dOkyf/GJP+bNb/s2FpcXmZyZodPrI0k5eHA//V6Ht7/5Ef7sr5/hr1p9fmhuiiROabdNr5yyFZ/+0nP4I88iJSVhIRz1f0hAoqShaypl+pU8x6FULDA9OcaVa6uUywXiKKJULjIcDimGBZRSnDp3hfsPzvKhZ1/hl997GEcISqUihUKRhWvL1GpVNGbm3YhJSE68co56vUy1Wh4pvHmEhZAkTvj4J/8Gz5bUakbcwbbtkaKjRTSMGQwjmq029bEqnXabIAzNdxb4uK5RprSlxfz8LM1Gh0KpuD1Wro11Rq/TJSyEIzVAORI7iHBc0+N17doilXKZq1cWCMIAPwjYv3cGZVsMegNarTae51GrlQhDY3IujQ8D62vrKFvhBwHKssnRo1lT88CWQrK4uEKpVCSKhiipqFTKBL7PyvI6q6ubTE6O47oOnmeR5SlB4CGVZnysTJ6mZGlK4PvESYJlKar18VHDeI5tWUSDAfOzM6S5oRn2un3+7C+/zNH795PEEWExoFyv0G62uHppCduTlIqFUTKtqVTLW3wiI6KjDC0yzzKSOKPVbNPudKlWSqyvblAsh2bCYH0Ty1J0Oj2SNMJzfaRSTIxVzPELWFxcYXZ2muFwiO95XHjtCtNTE+a8HImN2LbNxHgNrTMcy+f0mavYliaOE65cW+ehB42oiha5USeUZl+lknQ7XSwpyLOUdqtDGARMTY5jWRaDYUwQeORZihCMlBvl6B6gjTedkvS6EZqMwWBApVLGdV1azR4ry2ugjZF9t9Pl4mtXOH32EvOzU+R5TrvVRknjeZbrHNd1qNUrtNtdpmbGcRyLLDUgPxyZXq+trpPEMfZI1VNnctvAW0hBnqejvkCFkJieV8f0hikpTI+oEEZgZdAjLBRQls2xYyeZmppA2QopBYPhAN/3iJMUpSTKMr2GSZTiuMYAPckyPNcliRNs2yHwfQbDgelLHV0vYcH0mqHUyBw8ZzDo4dgOn/38V5mfn0ELgWM7puo9MqZnVAPSGuMTqo1dQa/XRec5fuCwsd4kyzIsW9Hr9SkWQqTUxFFMHEVorQkCnzRJTb+Y4/Lg0f286bH7R4bgjCaxTL+eEMIYh2MqEXEcAZDEQxzXJh4Oabd7KKlwXReE8T6tFEN+7KNP8cH9s2wpSAaei2VbuK6DZRvvOktZtFs9wmKIFEZR2fgdGmppliXGQ9GyyXPNRL2K73pocnPflYKy7+EFLsPhgE6nT6VcRimLPAPfc5mfmSaOYkLfZ2OjxcyM+U2jYUR9rEK32yOKjCBNnmuma0V+eWEVz/d43/e9l8P3H8YZqdPqUXVmY2Od2lgdNbpnILYEVcRoIsCcV0mS3qJY+bcF7rasELboh7cbb0uUxbzM8h/84ffzM7/yT/iOR77j/5PgbnvMUc6RJBn3fc9B3vkd33bDYlmWc7Mp1U5bg9tTKG8Ed1uUTamsbaB4e6Gb/BZa7O36xG4OrU0//9a1+XrW+UbjWzG+El+fFdg3EjrPb7vde+DuXryhuBu429ks/M060XfOFeW5UVcTN3D7zZa2qJJbl+2WL8vroVtsGZhvxdbs6532yeS5O/sSzPKu5+N6LuOTNab3TBIGBYS0ENIkuK5rzK+HUUKWDJHK4u1vfQdPPvlZ9u8/wNvf/m6arQaOa3Nw7z6e/MyTFGtl6mNjtFsd3v6Od+C4LsePH+e/+tEfplqr8MADh5gYr1MpFvG9IhKFUqCkxdsee5Q/e/IL/MmlJQ4PBwgE1XIRKQUH9+6hUi7S7fbpdvtsrnUpFkpcuLBApVgizwTDnlHQ/PMvfpV90xO4rgNaE3g+YTHkY08+TTXwjD+ZkgwGEYf3zfKPnz/Bf/on76Hou0xNT9JqdvACn6tXl6iWC/QHQ9N3JgVffvo4jz16BCXNDN7LL58hjmOq1RJRlHJw3wx7ZqdYXFqmWikTJ0Yq3nZck7QJgeXGFAoeKysNisUyvlfEcXxcz6HX7aHzEVBQFkliVCq7vQ5+4G+rHQopDH3SMf6AQeibiojn4tg2/V5ElmqqNQN0sixBSoulxVVq9SqWYxOGoamaSEkUp7iOs/2bR3FCq9nC81ySJCHLMhzbRghFmmU4yqLZaCGlBUKOPOMs8izn6sIyvU6Par3M154/yaED+0jTlDDw6ff7nDh5hXKxwFpjlV5viOcYwLK4sIwQEIQFXjh2ioOH9mJJk9w/+sj9JEnK2EQdoRRfeep5jh69z1QLZ6e3K1T9vrFGULZlBHQsmyiK6bZ7FEslBv0hhx/Yz9zcNBfOX+LQoX04vgtSUiiGOI6DoxRaZ3i+TxTHRqEVuHptifvvP4ht2yilQMDYWI0kMRUXrcUoQTO9frZStJtDquUiVxeW2bdvmjRJuHJtkb17p7Fsy1zfo4eeEoo4jrl6dYHxiTphWMD3PBrNNu1Wh1q9un0/MaBQ0ml32NzYxLFtEMJMyDgermdjWYJ+b4Bl2QRBQKEQ8vKJ8xw4OIvt2DQ3G0gpmJwYA6Db7jI2XjfKuaNz1fd9pCUZ9PtkeW7M1F3fUOCAMPAohMYgPdca2/I4dfIcSRJRrhRpt1uUSiUG/f5ICCVFYHz8dK5xXI9ca3rdHlE0wLIFvhcwVq8xGPQplkKGwwGuZ2Ms/DSu65HnKSvL6/T6xndQWRbNRhPH9uj1h0gklmPR7w+wHYXn+4BgbW0dx1WmAu/4BKFHp9PEtl0O7p83VTIlQGh63Q7tdgvfl2R5jLQg1ynSUkhtc+HiFYSQhIUCSZbT7ydMzkwSRRGFUpEs2/I6U7hugJQWcRRhO4Jh1Ecq6PW7FIo+6+urRMPYANg4BgRxFAGabmvAF774HBNjZaQ0Ex79/pDTZ17j+InzPHz0vm1j8Y01Q0f8gy+d5kcO7CEbqe1du7bC1NQYli23+6ubjQ7FkqHWCi1As01ry7Umy2IjOiUk/e6Aj3/2q+yfmUConJdPnmdirIaxmDBm4YUwIBrGWLbNx//iOUPXrpcpFQIuvHaNlc02Y+UiGxsNo3ysFJ7rMogixsZrKCX5H06co93r8Qs/+dMcPnqYZruNF/hoaa4TJSVTk5MoxUgoZkvefpRsS7NMmqbblbAbaH+7PCNvp4b5RuN2YiB3ip3AYufrve/5Xv7Zb/4z3vnIu66Pya35irjps50Ew53He8e9uFvTIcbTbnuS+Q6D7TYJ/Ru//+v8jz/zk2acHaBXjUSwduYvW+BpZ+wEcdffuzVz26nQqEYWPjd//0KIGyiyW+9tUT5v/h1u3s7WuXLjfoy2v9Uft8Of+HYKnFvv73Z+GBbEVpXwmw/udr0GuPX82q6L3kb58g3lzVrfAqq34h64uxdvKO4K7nbEt2QWY8T/3vJdueHGdNOiW8Dv9YA7eZOx+c089ZtDYmS3b7ioRstn2jTZO54gTxP63QSdm/EajQa93oB3fNs7+M4nvotC6BGGRdbWNpiemqZWH+MvP/U3HH/heY4ceYDPPflZjj7wCPsf2E+1WmVicopnn32WPbNzzM7P0Ykifuqnf4K3vuUxZuoVPv6HH6E2to9avc7xF46xb+8BatVxDuydIU0zvrCxzp8vrfKuwKVaMxS41ZV1llY3mJ4Yo1wvIC2YnKqRpBGub5OkMe1Wj6OH9lEsmkpau9UxRtFKUSsEzMxM0Wp0iaIhtuPw3x47xcd+6QdxbItoODCVCcchz3Pq1QLLS8tM79mDbSviZMjk1Bie5+A6DutrG4RhwNTUBM1Gk3K5gmUrpIDjr5ymVDCG2J7vkSYJwzgiCH0KXpXV5RYvnrjAoUOz9IbraAYgvG2gb9sWyrawlCZLU2PsLQR5liFG3ojKsoiiiCDwQUMcJygpWV3ZoFSs4vsFGo0NCiPFy067y/j4+KgaIs0M/OhhpKSDRJAlKb3egG5vQCkMSaIY27IQoypYo9Uh9H3SJKZUKrLZaOMXCiTRkLBYpNvpMDU5jlIK17eZHB+n1ejSbvZRQlEbq9NrJuyZnWF5bYlCWKIYuKMKiWRsYhJluczN7iFOIrTOGQ6HdFodM0GvBFdeu8pktYrruYT1EmmUIYViY22TUqlEvzfA9V1c1yWO0lHiGbK2skZ9vI4bemQ6Z3pqAoEgEwKhjJH0cBixsbpBuVJAWjZaQJamZGmG59rmt0zT7QoHAixLbgufXL28SKVSJolTENBu9vijP/8KB/eOUa2FHDq0j8nJurmyZQ5bkzOakRy8pFqvYDsOGomQFhqJ5wZESR8hBO12B8f2uHp5kfHJCkHgYzsuaZIRDWPazR69QZdSuYCUkizNWVlZJo4iqrXSyBIhYs/MlKmOWeZ8ckfWDSBYWlqmWCqSZSme7xEEAUooLOWQJCnHjr3K/Nw066vrtFptLl1eYnbPDI5rU69XqNXKrK6uUR+rm1l1qbfpQHGcEAbG7y7NNGdOv0apVEBJyNIBUihs28G2Fd1OG9uxcF3X9H8piyRJaWxuMjExThCEWMoGoSmVisSxqTQlycgGQinAWDREw9jcF9II17NJ44zFxUXCgofjupw5dYFiwcdyFGma0G42gZyCV2A4jLBsByVttJakmabT6bFndgZpOViOR6FYIs1SbM81vXy2EZMRwuK1i4sUCkW8wEPjoJSLEBalsAy5oBCE+L5rJgWlUdVUloXOczbWWpw5v8yjjxwiz1Msx8d1PcYnxjlyeB9CKRzbIc1SfN94NB6d8uhebVAvhijbolYrkWUJ3U4XgWJpcR3XsymVQnJSrl1ZYWOjRalkqKivnDjLZrNJrVJCSYvTZy+TxBl7JsYolF2q5TK24+A4Rp3XtpzRNWxUX2fHKqQ6Y2V1Dc+xcByL80sr6Din1epy9MgB2q0u4Yg67Acew/6AP11Y5cO//dvM750nzgw9+PzFi3iBb3pwkTTbTYLAMyBDbPVhmchH/Xa+593wjNztebrb599IfDPHsR2bH/rAD/FT//yneeKxJ8z7Oz5/PcDxBhDyDe/T9dddlx2tkCQZ/Yk2P/8LP7v92Zb/n5TXrQ5uBD23guIbq3Wv75i3Kni7GZ9v2Svcbt1b4/b51c1U0Jsn0Heueytt9Hbb1Dv8Df926JO37tkOAHfTfoiblntdcYfq6D1wdy/eULwRcLfbjBg648ZanN6mf7yuMUezZrvNiNxyet8E7PRI/Q2hETtfmJvGDSIquwC7ndvMufWCun4DyjAS3Yb73hm2SRjiWjZpkuBKxQ9+//fj2Zow1GAN8YouqYBXTl3gj/7gt/jQhz7EkfuPcPXqRS5cPE0W9XnHW97KpfMXOHL4PkgzXGX25Iff/w+RwqcyFnL08aOsLF8iDB0OH76f8+dew/VClq5d5kM//mN893c/wZ995rM8N0z4e/UxokGM77ksbawzNzNGc71DpVRA65RkODSiGGlCse3s1k8AACAASURBVOShZE6r2WIYRVQrRVxH0e31qY2VyXRGuVaiEXX5mZcv8tFffB9x2qPVahOGJX73Dz/HwsIye2cnQAqq9TFsy+G1SwtMTE7RbXT50098hUcfOYzn+TiuZUyURzS5JIp55cRZHjxyH9WxMWyZc+r0eT7/9DH2zoyj04zjL5/k/gf2cfi+OQbDiOEgR0kPZeVYlsPqcgM/CEiSAd1Gl067i+c6dDpto9KpbLrdLgLwXY+la8vU6hWSZOQfFkV4nqI7aGO7lvGA0zmWozCCNQKhcrROQWdkSUYuMqQt0UoSJym1eo0nn3wWz3MplYo4jsPK4jJesWCSZgRXryzwwkvneejIITKdg8ixbMHK8iqtjS5jExN86SvHOHr0IMVyiOe5vHLsDHsPzuIVfOr1MnnaIyiWUZbF4uI6OtOcPHEadEql7NPtdDhx6iwHDszh+x5JnDExOWEAj+8RDwecOH6WPTNjuK7Na5ev0u9FuJ4RHXEc14hFKAs/8BG2hCwjiQ1VbnFxiUo5RKcZC5cXcR2bcr2KTmFtdZ1Go0GxZFQ1i8UquU44c/YclsT4ncmR71uekGUxYSEECZ12F6Ucmq0WTzzxJmpjZV588Qx7985gKYHWqenVio3fnLKNr6OlQGtDOczSlDxL8TwHIXPQAqEEhWIBhUWv00cpk8DkWU6v2wUtaDY6PPXcaY4cPYQYmV1bloO0LMqVIlIJ/MAHbewW8txI9lsjTz5EiufaRAOjwNgfxCRxD6kEruMgJExP10FoPD/Atl1KlRA/dEl0hFQmyd7qK0QAtovGgkzQ73cJQo9cw8bGCsVCiOu6BAUbpQI0RnZfKollOyyvrFMsFhFIouEA1zbVJNdxWF5aplQukOU5WWoEU2xb0ev18APfCCdpYQzWdWZEi7yAOIqwlDSiLdj0ugOeee40p85e5pEH7wMNx46d4+DBgyglGUYRjm0A/MKlVSwrQ4gMx1OIPCePc9bWFykXC4ZqJjRZlpiquc4oV0LSzFS4Mp0jLYEU2UjgRIPOQSjOnr1IpVoxFERA2pJiqcjERIFqpYTtOCRphFImQU6zbDQ5IIw/5ujmP1Er8c8/8zJ/b2bM0GZtRb87IPSKfOmrL1H0PJI4oVQKEeQcO/YaV1Y2eej+/aR5Sq1eohQWsWwPaUnGx6vsnRvHDWz6rYi1lQ2KhRCd5Zx49QITU2P0Ryq/ZBrIcFxFrVSj24potLscmJ3g0IFpZvZO8XtPfom3P/oAK0vruI5Dlub8g2df4r3f/XeZnZtlcWmJUq2IY9v0ehH1yjikCs+xCQKfKBni+DZaahxbsXZ1lWyQMugOuHL5MpPTUyBuFSrbLSG93taut8FFnufbf9/83NytcnNzb99usbNqtdVHevPnW++ZCRFBPIio6DFDQxa3HsPdEu07Vft2snreUIxym1vWEtd7BBcvrvOHz/8+//1P/jdmW7vkKbvRIW+oEI0qsltATQgDCHfbXfN9XQdyN6prXt/2zvd3irIA5KOrTqNHvqrmIAV3o4ne9PdNk++7AfG79hVujbHjhNkGrnfxY75b7MwPd1Z7t7e/4708z2/x2NvKPW8e8069fHc63nvg7l68oXgj4G4r9B3+B7whcLe9yi4j3vVyFLvfqrdunXebMdltm7vGjpuQUhZhYPq/on6M75lKXRD4TM2M43oTCHzAw3WKDAcJjz6yjze/6c20mg0+/OGP8C//t3/Fd3/Pd3Pt6iIg+OQnPsnBQwd5+aWXmJmdo7HZ5rd+6//iyJGDCDTlcp1+f0ilXOXKlascPHSQcjngzNlz5LnmH/34P+APP/5JPvPaNd4zM4bruczOTJBlmjjN8EKPZruNsCS26+CHIesrbYrlGp32kOdefo2D++YZ9IcM4xjHsXE9h0avzZfcIb/y958gy00SYlsOSgre9Ogh9u2dNP0xoU+7ZUQl5vdOo3VOIfQ5fGgG23XIs5xOt0scxQSFEC2N+ffEeHWUlHQ5/epV9u2bp7HWZqJeR2jF9J46SinSNAUNhUKBwWBIlmZEw5RPf+55xmsFxidqKNuYU3uBz7A/IE0ybMfFdRyUlPT6fcrlEs1GB9831K/AD7BsY3xs2RZKmmR4xAEErRn2hyMlTEmeGJsMtEbkJuEnzzm4f5pyKSDLUyxLUqyUEDohjgasb2xSrZaZnhmn2e7wwtfOsH//PJ4XQK6Yn5tjcWGJI/cfMA99KVhcXGZtrcn+Q/MkaYplCQaDwchDy6Zer+I4Nr5vkSQxge8jhaJSKuH7AZcvLVCtlXn6mReZmhrD9RwGgwHDfsTYWBWpFPV6lerIcy6OEyxl8corp3EsRalYApFvXxhKCMIwwPU9Xj11DtuySJOU2liVVOdUqmVKhZBoGOFYDotXV6hWK9RrNZI0w/V80ixHYmap8wziOOOpp49z38F9tDZbrK83CD0HIXL2HzBVFsRIgl4YkRBNjuPYI783tZ1k5nnOmbMXqZSLI1N6hzTLyPKUNImpVkqmz3J0b3BcB9d1qdVq3HdoDiWN+uLSwjJxEplEXqpRBcqi2WogJbiObYy4R/edxobpyXQcizhJjLefFihls7iwQhiGWMqi0+3QbncplYuUSiFGNj8HLUkTje8HtFtter0BtlRsrK5TKZeMj6UwfYWlUoDvF1HSptfv4TiOoZt2uzQbLXzfo1gqECcJUTTEc40thhr13/qei7It0jglz3PTE6Y1Ukjj95fENDZbFEsFWs32aLsZrWYf1/V44YVXcRxFsVzAcSxC32FiosLi4jIPPXQ/AoHOTFI4GA6wbZtOp0u5UqZUKvGpzz1NIfCxpE0cRwRhyKA3xPX8bXBgSYXAXFdZmmELSZYmGCeMnDTPyXSOzjSe63Dq1XM4tkVxJNaTpTlBEBLHMZ7njo5PkWWaPIfGZotSyYBfQwXVZGnOx569wAf3zWz70zmuw9mzl3jL40d5/pWzHNq3h8FgSFjw2btvhvsPzSKVpNftEAY+jmMqokIbteCV5U1cx8VzXD7/zCvUiwGO4zJer/DSyXN8/oVXefS+vabqqCTSstlsdCiWi0RxxNzcFHmW0mz1eOyBg+gsp7nZxrYtfuWlV3nmxEu8+OzXeOKJ72R+7zyWayqvExOTI7CV49iSa9eu4oc+juuS55pPf/oLfO2pF/CcIh//xCd4/wffP5ocvXVi8+7Vhuv2CHei4N2y1utIsnfim90qR1vb3BmPPPowP/MrP8u7H31id1Bz163eeZ2vC9ztst2RlSQCWL7S4Pef+x3+w+/8n7esZ37H3SiWt8bWcjf3x+22/G5A7s7vbf3/ujjKDQB416rnncHd3eJuJul3i9uBxzc8zhtY9nbf925jvt5lb4574O5evKG4B+5u3OausRPcSeOVpaSk1+7juD5rK2t0uh1OvPwi+w/cD1Jj5rdSxsfLPPLwISQ2e+f2cujAIRzH4dSrp/jd3/t9vv2dfwfLsimVSiwuLTM5McmLL75CvVblTY8/POpbck2vzTAiSY2aXK7/X/beO0iS/L7y+6T3Wb6r7bQZu36BXQBLgABBkCJBeHBhSJEiQFI8UaJIXRwpEjiA7ijd8YKkFAroFCdHHSjgSBAA4QhgsSDWYb2d2R3ve2bad5c3mZVOf/yqe3pme9YCCF3EficqYro7K/NXWVWZv/d77/texO59e/niF7/MgX3X8cbbbuPRgwe5e22ND8yMkyQpjUabUrlAJoFhqMNgaJEhpZsmiqag6Rp75yZBQpgIKAqarvLNEyf5q3MrfOLON3LkuTOUSjkyYiRpaJqQZRiGjmHopJkwKFhaXmNivLrl3FivNzBNk9pGDUURgeCqqiCrMlEYYZoGsiQTxxGlkRK6oVIp57BMA4mMXr+L57k8/OhBOp0e+ZyLbdsgiaDmnGMwu3tamKvoGmEQ0mp1yOdyaIrC9+5/gt2zkzQaLWzbQlEUzp9fII5ilpbW6HX75HI5klg4GG66FwoAKUxLyISzYxzFNBttJCkjCAYYukaj1sA0DVqNGhu1Ojnf28rDypIBYRBQHa2i6TqO5yHJEpPjI+IcKDKtRotWo41tmzxz6BhTU6MoigipLhZ9YRTiOQT9PvlCjjRLGYSRWCGVJSzbxPcddN3kru89wo037CdJMjzXZf7CJSbGRwS7kSRsbKyjKxp+zh3ayYvV3iRKME2LoN9HlmB5uUa5XBA3dxCfdUkeylxVsjShXC6Rz/tEiXBFlWWZ5aUV8vkcg3BAIV9kbXVdhGlbFpkkDYGzRBwlnDo5j6opHDiwm06jzdmzFykWPM6cu8jM9CiXFtcplovDFU7R36FpCmmWoioKiwsreK5HEPYhy7AsC0mGdrONaZqcOnEe2zWIoxhVUdhY38B2h9JZXYdMYm29jqrInDl7gWq1jKqIfkhZyjBNg4VLy9z9T08xOVHBMGQ0XSwehIOQJI6HfJFCGARCkmmbwjFS0cTCwrDXTzfEAoNjiyzEjHQIOkQQeL3WQpEEYx8GAe1GG99ziZKIOE3QDE0A7Syl1Qr4/N99j717xuj3+3ieYGxMy8IwTZAkFEWh1eoIwC/LtDtd0jTFMIVMth8EdDtdNEWYCp09cwFNU8jlXUzLIU1Tgn6I47qsrW5w/4NH2Ld7knK5wLn5S4yNVxgdq1IdKaJqCoVCnjTJ6La7HD16mqmp0WEGpDDs0TSdLM2Ym5ki7/tcmF/kyUMnmJkeF2wx0vD7FhOGAwxdSC4HYSiiRBRhqy56N4XcVEYiSRJm53aJflgJVlfWcBybIBhw6NljjI9VABlVEYDt4MHjdDsBruNw+vQ89z14kL27p/juPY/xLz/+s/zH7zzJTSMlojBGVVUMXUNVFcarxS25tqxIoMrIssTa2gbLy2s4pk4mQZoIYy1Jklm4tIZj2ei6ytRoiTAccPLcAmNjFaqVAgd2id7XbrfP4vI6ZxdWuOmmfQyiiJHREkgSi4sr5HKCgfzCNx9kZqxEmmb88X338S9+87f40Ic/wm23vR7Hc8TYhj2mcTwgDAPiKKRYKorFtCGpYRs+v/+7n+S7d3+XD/78B7nuxgOkWfKqwN32PqwXMtwQjN1LjE/adnCRG3kl07ETuAP46C98mN/65H+7Jc+8crQv7Zjbh/dqwV3GDudiSHR1OiH/613/E3/7d3/zAuO5ki+61rnTVE24xG5z03z14O5Kt8wfPbi7PI6XW6+Bu/9/1mvg7kdcPyxw90KuPzvR3TslrPywwd0VYtIdxrtToKS4gQmZQrcXIMliFdj1HPbsmyOS26yuLVHbWEbXU86cfoblxTUMzabZaJHLeezdO8PGWpOcX+DEqZO88Y1vYHVtWbgJZjq12irFos/q8jI512dxcR1DNzENA9fzWFtbpd2JsSyXxUvLSEC1XOYDH3wPs9Nz/O4XvsZ7xkokw74z0bwvgu2iQUqWSkhKDHJKt9shCHpYjkGSCJDzsYef5c5338x7bhxhvdZgenoKXVeRRO8yEhlRFKMqKs8+d4IL80vkPI+Z2UnSJKHX7YuJSrWCLMuYloVjWxw+chrLNEkzCW0oket0eyiqSipF2LaObeqoGsgq2LZNo9FkrFpmemaS1dUNLMuk3w9pNlrM7pkiy1K6vR6GbhEEA3K5HI1GE8dzmJ2eBCRsxyIDLi4sDU1WZEZGSuSGfWeqqggDmlYXTdW5574nSQYRaZaQy+UFa5dk9Pt9VFXHsW263YBGvc2Xvv4g85dW+LE33Uo/EKyirusokoSmGdTqbSG5I0XKUpIkxLB0+kEXy9bI5IigE3FxYY2J8Qq6KWITDh46RnW0BEC71UZRVFZXNsjl8+i6gaIqZKQsXFpCVVXGqmXqtaaIgTANdEOlVCpt9btZlkFGhqbpHD12htGxEYIwpLYinjMIe5iWyfSuSZIkQZaFHGd1eZUjR08TBgNK5TKu6zIIB9TqdUzb5LHHnmN8dIR+P8D3Rdj28uoK1WqV//C5u+j3ulQrpSH7kiEjMzpW5amDR5jaNcoTTx7l9tuuR1UligWboN/mm987yOtunNuaLA7CCEmSaTabpElMPp8nJSMMB+hDoOoMozAa9Saea2O7Jp5rM+gNBFPl2mSZkCSlaYrv++iWQbmUJ41jGo0mubzP2soGhq5TLBZJooHYl2OiqcKtUtd1VEVFURXiNGN1dZ18IYeu66TIkGRDtjnCMHR6vS6abrCwsEiWJUggejXbfY4cOc2F+SX27ZslDHt4roWfz2PZBu1OC8u1kZHJ0qF8MYZ+t8eB66ZRZBlZEYYnaZIMTQrE1c+2TDbW60iShO3YlyWfGXz1Hx/ghuvmUDXhlLi61mBkpMQgClE1k2arzXOHTzE+WqHb6XHzLXshS4nimJnZKWRVQZUVomiAogjThUa9SbFUZLQqgEyn06MfBNRqdTqdDn7Op93ukiYpOd/mlpsPoKmKCANXZGzLQlWH0rIkoVlv0W51sBybDNB0gzSRSBOZNAayGE3Ttl43wMrSKsePn6Pge1x3/V5SUkjFuWnWm5RLBSxLp15vsGfvDPv3TRP0e+yem0SSMv7y/uN8YGoMRVVZW6tRrBTIEhEXUa810DQRTK4oCouLq0xOjlIs+IJtz1Qee/ooOceFVCLveyRJgmaq6KbG/MIyr7t5nzB8aovMvm63R6mYozpWYnJslEEQCEDn26LPN02xLJuN1QY37NmFbZn85nMneN2Nt/Ljd9zBW9/2VmzXYWNtY5iJl7G4cInVtRWhZFAkTFMnQyJLM8JBTJbJfOiDd6LKCm99+5soVnJXGpRJQ9XrNe7b2++w4l54edL8Qv3scO3J9WAw2FHCuV0SeCWIlHYEdpv1oQ/fyW996rf5iR0A3ubId5TYSeKx/WVsDkniSsbt6rrWnOVao/yf/+NfYk5q/Pm//R/E83eQJ155PsWIt/fZbX+kWXoFsINrm99cSxb7fMBxeTb2POC3Qwbbla/31YE7ASxlNvPyrpqp7Qxat41pE4ZeS+r5QnW1iR+8uBM7XDZY2v7KdzJU2RHwX2McV8s3XwN3r9XLqh8aczc0Stnpkv9iF8gX2u7KDV4duLtyADuM9xo3LHHhgQyFfj9ElVUsy+TSxXkkNUXTHIpemY21OlMTU7huARkV27bIeRbf+tbXGR/fjZ/zeezxR3n00UeYm9vFxsY6Rw4f5yfe9hZ0Xee2N9xGt9tjEGVMTu2i1+9SKObJ0pRwoGHqJtWxUaZ3jWPoMk8+c5jZ2Vm+9q1v849L6/xnFR/HsrFskzROBQsVijiBJItRJAVd04SdeSaRSRl/8MRRPnrHGEvnLnHHG26hPFLAMGwURWZtbRXLtNF0lUE4IIoSxsdHuTC/jO97OK7D+bOXGKmU+dpdD3P9gVk6rTaqohDHKV/79mPMTFRQJIWnnjoigB4puUKOTJLIUrh4bgHD0Mnl82JSbgnXTlmWsEyLdruNbdsUy3lWVlZwXZtwMKCx0eQbdz3CxFiRQqnAII7oNDvU600cx0LRVLyhy2O+4A/f6wzd0Gg0m9z//UMcOnKB+QuLvPddb6NcLuLlPdrtHo89dpjDx85x6637MSwLWVFRFIVv3PUEN1+3i+v3z3B+fgnTEH13WZKwuLiC5/skmViJTMKQJI5otbqYpoWqG2JiCNTWWviezYVLS0xNjRKnKbZj4HsepmlgGCbzF5YolwSwk2WFZ54+guOYuK7IqfN8l1zeH4I+cB2bc+fmyRfySEjICnieI5wU0wQv55MkMYpsiJgKU0VVZdIEFhdWSJJY5JcpCqqi8P1HDqMqMr1Obyu/q9fvMVkdpV6vUyoVUTUNRVWwHIM0hVLeYm5misNHTlAoupw5M8/8+WVsU6fRajI+XuHgoTNcf90cqjrsryPhjje8jjhOaNQaGLpOlmWEUYJjGcSRYN80XYMkRTcM2p0Oui6s/fv9kDSOBKBPUwzNRJFVZE2cl1azxfz8Aooioxs6aytruLaNbupC0impdLuih84yDVJSDNNA1TSSJGV9rYYiix63JE0pFfPioiCLQHUZOH36HOPjIyBDFA0YBAn5go9tC4fVdqeL73mCcdqoMzc3gWEoZGmCoutkUoaubkaWKGSpcDi1LZd8zkX0aYmg7kZdSCk77S66LgK+0ySltlEnjmNy+RxkGUmacvLUOfbOTVAqlwiCLmmW0ah3KZULGKZOr9vnnvuf5K1vfh2mrhP0A3JFdxgjktAPhOmRhEQUDQgHIboumMPDR06iyBmu62DZFvpQPqxpsjA2khUs20AsjMkkaUqaJgwGg2GcQIKqKCRJiuPYSFmGZpni9WewvLhKPIC7736cOO5RHSmRZqkwwSKjkMsxPjbKseNnmZgcJSMlDPqYhoFh6mxs1ISc1LGFRDeJ8XMeuqETxRH9bpM9iYFuGiKLURa3l3seeYbJagXPczB0jUEgjIc0XSNKEnRDQ0GlWirQafdYWV0nl/OIogjDMeh1eoyPV6jXG2iGyupSTcR/pClBEKKbBqSZkGdKoCgS3U6PQinP8sIatmPx+METPLK+zPFBwqd/9/coVcrU1jewHAfP99BMHUkCyzaojJTRdIVWvQbIpAhDqSeffgZNUfni338RmYz3vO+dREkAkrL9xgnZSwF32++Fr0TweOXzVVV7xeBwp+3e//738dnP/DX7913/fOD4Is+XpctAb3uJSfmLP//F/r6x3OLH73wT73nfu645frg2WH65YOXquhbruf3YL1rX2O4HBe6urJe2ryuYXV55APnLAe871U7bvtJxXA24XwN3r9XLqlcC7iS2rSpI8vMfvPAN4op1mCwZSpwuP7Jhn8+Lj2Pnf9uPI/PiMQjXGu/WhXTbcy+vJIGtG0ikvP997+OnfuqnmJiaodcNGKkUWF9foVwaZWWpxyc++S/42Z99F+EgIckUZnfvw/NzrGxc5O0/+WPMzFxHqTLLpz79xzg5ixtvegOf+/w3uPeBB9i9b4ZHH/4+JT/PA3ffQ6O2ztjsGF/+3F9z7OBTvP3Nb+Yz/+7fc9Otb2SsWuLgk49z57t+mje+8c38m+/cy70XV3EurjA+UkBVVVaXayiyQrvREU57uoGEDHHGLzzwFP/8g7dw854JbrxhD8gSUgLdbgdZkfBcHzmTSTLo90POnLkIWcrUrjEsU6fb7lEo5AkHA67bM00SJ7SbAb6fQ1EkXn/LDKohJqmj1RJ+zsexfZr1LpomEfQDRipl4iQRQEGDfr+3xT5pioqmquiaxsKlRUYqJVrNFp12F02zecsdN2EaGpoq7N2jGI6dOI9rCxCUZhmpkpFJ4qKpaCqSpODYDo31NtWRHG96w3WYlomiCqc/soypyQp79+4iHKSkaQMFl1ajy/U3Vtg1XcXUFHZNjuC4NsgSMZBJyZApU4mTFMN2UFQDUze5556nmJ4YI0tSLEvBKVXxbYWNjTpjY5M8/vBh5nZPYxg6G7UNLMOkkPM5Pb+AoWvMn7/A1OQocZShqQaWY6KpOksLK/ieS7O5gWGaW4HpWZagqBrNVgPDNLm4sEylXCAjBTnjkScPMjZSgUywRJcuLlIaKXPyxFlmZnchKwq33LyfoNslCAIKJR9dVzFNDUWTqTUbOK6FJMsM4ogoiOn0OlSrRWzHIZfzWV5cIc0kpqcnCcIBOc8hl8uxd/8UGRGm4aLqLprpIaUKZ8/MU60WRW5dPyCKBLCwbHvIvmXoui5Wd9MMVdEIggGO42DZDqqqo2oyUSJ6L4XjqYyumXzvvmc4dOQcN944hef5YgKsSMRxhKZpSEODkjgdUCr56JpFvz9A13UsUxeB9UmMpkgEQYCm6vQ7IY31HpohU6mUyKSUVquJ7ZjoikEYD5BUFVmSsU2LNNjAd3Uc1xq6J6ooqoamQJqkSIqCpGrEScripVXK5RFhpa+pJCQokkq306NUKqGqKp12D9uzCcMQ0gzf82jUWhw7fAHPcTl96jzT0+MUyj5pFou8SE2jkBPGJpKikMUZ07sqWLZBtxNw6YKQGl+YX8K2bSxLp9vuYBnCdEWSZPq9kF5vwMTEKKamEQ4G9Lp9kCRq63UyScJ1HCQ5o98PWVpcx7Zd0gTazS5ZmrK6uo7nWLRabSzbJEoSOs2IKOlh2zZJJJMlYFqwa7rA3f90DNs0yFLQDQNNN2l3Opy/IKSPhm4QhkIqK0siJ9DLWdi2QZzEPP3MYRYW1nFtC6QUyzKYKXv84t/dx88VXUxLJwgHxHHMzMQYDz1xlMmRMs1Gk363z+LqOiPlAqpukCIRdgP+5usPsHu8SrvTpzpaYGV9nXI5JxYZ4lSw2pKC54uFpjhKsWwT3dBYXljHMFRM26DTCdA0gwceeY6bb9hDr9tjz+w4f35ugf/7r/6cL/z95/B9l+r4CJbvEMai5zYIQ9bXNyjkS6yurKPrLt04od3ukoQxQa3F/tFRbFfnfR99H5EMmSSjSLJghOTh/XQTXLzo3Xfzfnj5ca1J96Yk85r33W2T2Ku33ZnJuvy3q7eTJAlFVXjre97Kv/yjT/Gmm+4Yju3FXwdcBnHZDn+DK/cj5i+Cz9kEfs+TLG6bV/zpZ/+Ed/7n7+D1t916xevZdH5VVG2bKcr21y622w7KtjIltxuI7CBDvNoMRch3r2TeXjZg3P6mb388T3t1Wd75SvvotmITpO1RWTvEI1xlqPJyAdUmy7YTS3cttnfrNQ6du9Oh+uvqbV8JuEuzFEm9ct6qKupr4O61eun1SsAdvHLd8A572uF30vPcu17pniW45s3hpe/oamJdVJqkmIbFHW++A9Mw0XQdy7bZ2Fin0+nSaXeolEe48aYD+H6RMIz4xCc/wbvf/XOcO7uA6xjIKsiSwdFjx/iN3/g4t97yehYuLfKv/u3/SL/T5OfvfDezM9N0Wm1uuuEmltdWkRSJhx58kE/8/ic5cewkn/qjP6LbD5jdPcvrb7+NixfORDAAKQAAIABJREFUc/HSIrfdfgePPP0Mp2WJd01WhUwTmWgQYzsGhmXQ6/VRgF997BD/2z97GzPjZaIoRjc0AJ584llW18Vqc6fdIY4TZEWh1+sxMTGK7/ukSUqj2cKxLWzb4stfv59WswVZxvGTFyBNMEwdw9TRDZVnnj4hHBBT6HQ6lMsF+mEfTdVo1lssr26IjLihtXsUxiwurOK6NhsbDdI0YWysKtilYRaf43nUauv4nku9URdBzLbL9K5xHNdmMAhFxpwmeuUsy2bx0hK5fE6cFynl1LkL7N49iq6LcGQyibXVNbE6ryqEYYjjGsShShgGrNfXMTQNMlhcWkU3RJC463pYtolhmmSAoesCNCBu0I5tcPLkPL7v4LgWKDJRv4XrWEiKgu9bHD12hlLJx/c9lhaWOXbiPDfeuB/d0CkVchw6dBzXtYXLoSJ6bizLot1pUyzmOHHiHLZjcfGSiBxoNpvYlkUURlSrleGEQkhHZ6cnRX+YbpClGcdPnWfX1Djj46MMBsIqv93qoKkqhYIv3DQlEbprWRa6IUxpJEVBVTXmz15kYnKMw0dOUqmUeerJo8ztniKNEkZGRrAdk263g2nqw5BuAAlJVkhJyOKMR554jtnZMWRZuD3KChimQRiEkIGiCsYhTUXWkXB5FMHWum4QhgGZJAxD0kSGLCFNU9Ik4frrpnndLbtF+HwqZJ/60ClVsJzCQdSyDYIgQFF1+v0espyJvlVJBKlfuriIMoyPyDL46tcfYtdkEcs2kWUZ27GJ4wQJiVq9ge97wxiGgHjQo9XpMz4xOWRwJZrNFoahiW4+Rd2S8OiahqpqKMNYjvW1NXJ+TkhwNY2Dh44yMzuFmJqIiZ8sC6lquVRkaWmFfftn0DQhE5RlmUZNfB5qGw0ROyDDU08cYWZuEshQZI1HHz2OZco0Wm1sSyef9+j2eqK/TJYxDEsAbFlG01SiQbT12fA8EWeQZimqKiZmiqxSKBZI4gRZhowUz3dwXYdBGArWznMZDAb02gGdfotSuQypxNrqBp4v4gBue9319Ho9cgWPSwtLFIs+uq6R81x83yfLMr70tfu46YY5JCmj1+tTq9fI0gTP96mUi8zNTiMrMhIJqqrR7wfcsitPpYdwWVVVdE18DvK2TRRHmJYh+oz1oQGTJj5zvXaPLE5otXsgwcR4mWarQz7vkaWXJ9hJnBBFMUma8cBjz7FrfARNV+l1AzRdxXZtNFWh2+mxstYk79hYtsUvPfwUvuNy6shhbr/9dvbuO0CvH1IsVwiDcPh5Ed9fED2oWSphWAa5fBFVlim4Pl/70hcxfZfJ2RmxeCBJyFtyv8uKlyvvci+9XgjAvdTn7uS8+XKPt1kze2eonehiucaLgrvtbN3V216LzRtu/aL7BgHsvvTlv2V0rLrDsbeDq+yK34nHyz+3V57DyzzW84Hcq5gXvYS6+nVdPbaXtg/5qp9fGIy+mv66l8PSbVa6rdf0parSXryGTqTbnvwauHutXla9Bu5eyo52BneKohKlMZMTE3R7PQZxhCoLFsU2dVzH4uKls8zs3YskqZi2w8+882eJk4SRwhj5ok+3U6fT6TE9PY5hZfyrP/4LJqZG+NVf+TXe/d53YNoSxbyPruk8d+Qkp0+fp1Kq8nPvfQ9nT59jdnaO3Xv38ra3vw2/WCGVJHbP7WbP7C6mRsu85z3v5Qtf/wb3LK/z3ulxVFXBtA0MSwUJGs0G35Ia/PY7b6RUKpBlYJoGayvrOK5DNAhxXItCKU+aJLSaHWobDR5/6jh790xjGgaqrmCaBq5v0+v16PZ6nL+4wU+89Tb275vk+OlzPPz4UQ7smSYaZMzMTHHv/U9hmDKzs+N0Oi0syyWJU3J+jtWVDYqFPKZtATJRFDM2WmV9rYau68RpLABHpyNW8SRISXniqUPsmhohSWIs1x5KG4TDpWDyItr1DjIidNr1XZIsIY4jokFAkkXsmholDEU4chIEKBJDkKmhWzqGahGGoo+rVBLAUDWEdLTTCQiDiGcPnqRQzqOqGsNMYfqdDmHYJ04G5PM5Go025UqRTruL7ZlE/a4ww+j1qFQLFAo+SSpy6dIkY6RSxvYckXsURxTyHoVicTjB14kGA+Ikpl5v4nkuuZxPHMeMjFS2Jpf9dgdDNyGFZr1Jvxfg+R5xFDOIIk6fOsdItczERBXDNFhf26DbaYvzIWWYhkGz2aJQKtDt9tENgziOaTU7uK5LlkESJ+T9PGE/4v7vP0fBE8Hdvufgex6rK2u0Wi0yEjzf5tjh0zQaNUqVotDBqSlZnJLPWRRLBeIoQZENoihAlUVOWRgEYmKqSENApwxNN1SCMEBWJBRFAI4sVeh3IxRFhI9bpkEQ9NB1Afp6nYA4TiFNSdKMTqsrjIVUkfsWxzGKKgtHRDLSLBn29jUYGRkV9vSpWAzZv38CL+dy6dIynufxf/z1N7n9ddejqgq2YwtQKsuYpoGmSli2DYqGphliZRqwHNE/FcUxsqQM2Uax8r66uoptG7iuhaJoAlDFEd+9/yluvG6WNBGup1kiGJAkibn7nx7nzPkl5marOI65lfGoyBpJnKJoCkkS0+t2mRgf3zqP9VqTYsGj2W7T6nQplXwMw8A0DC4uLFEo5On1+liWyX0PPIFCRrGcpx8EhIMBhqmzvlGjVCjQ7XaHskuVOE7o9bv4eZfaxga2Ywl5ZjggXxAS10a9ja4ZlCo5DN1gY6OGoYvFIVUR8k4v56BpMvm8cJhMooSNjQaWZdJudbj99dcTRQGarlGr1ymXhEmQrhv0+33RC+g5yIrCpUuLlEslKnmXj//DY7x/okoYRkhyRhrHpKTYrincfi0bJOEQnGSi50+RZJ44coa333EzU1NVkDJyOZcsE5/DQRixtlbD84X5SafV49jZReYmq8iSxFPPnaCc81BVlWajTT7vMz01ztPPnuSPT5wmyODP/uAPcSyTOJV43W1vIJcr0mx1WV7ZYGx8RLjIDhmgcBAhAaZjMxgIBvLR7z/M8ZPH+MWP/TKZKvo1Ydif9EMEd9tjC17Kc3+Q4G50rMrv/evf5cdveCuy8sJj2GRbNpm7F9ru6uNvAYOrGEJJkjjz3Dk+c9f/wpe+/LfXHPP2cPnLIOz57NrzxiJtZhe+GKv5ny64k6Qrw86Brf66a7fN/IjB3VDFdq1P2GvgTtRr4O5HXK8U3CFJZC+Q1/H848TDp129/Q4XJlm5Sqh51UV1SINfvc3Vj829v1Jgt5OhypUrauLGlWZitTfNUoJ+gDW0nq7Xa4yPV2k2W5iGzYWLC1imyakzpwm7KUHYJpc3mRifolIpcvjIIWamr6PXb3DrLbfyvXu+w+tvu5mTJ06wsrxGqx0wNj7G1MQEqm3h2A5f/cpXGa1WKY9USKWUu7/zHaand/HE448xUipxZv487/yZn+Kr3/ked6/X+OmS6DdLk5jfe+gZHht0+Z0PvgkpA8M0h838GbZjD89bSqGYx7IsAFRFplIukfMsbFtMpAaxcJjLspRmo8X11+3lphvmUFWFerPB1NQonXaHmZlJvv/AQUxDJp9z2DM3TZzEmKZBmkmcOH6WJIrZNTOJ7QrnPjJhQS8+NhmKKpMv+NQ2GjjOMDR62J80PTVGv9cjn8+TIRrvJaBWq6PICjISiqTw8GOHkMgol4vDjDCVeJAxOz1FGA6wLZe11RqqLImfHQtkCVXXSQbQ63dRVBnbdtANXazyGzqe6+E6DhcvrnDk+Flmp8eQJeHi6Lg2mqah6hrNVpupyXHSLKHZ6uD5HrqssrS4wcjYOGmS4rgmDA1A1tZqdFodDh0+iaHK+L5Ls9nmyNEzTIyPsrFeY2VlnUqliO+7Qyt4k1azvSVrtCyLJI4wLZsszbj/oae56cZ9rK6sC7YF6HZFXEQ/CJAlIVOsjJSxLBPD0FlaWsWyTJGLpqgcP3EG33VQFFm8H65LPIhRVY1vfvtBbr5hjn4QUCrmyBV8Wu02584vcPj4PG/5sZvJ0gzHtun3uziOI5g0UuRURpZB1wSzlyQpnXYTwzCG339JMHKZAF+qqhINYrrd3pbbom7oNJtNNFXnm998hE6nwfTUOPIwi800NTIUokHMU08dJedbOI5Fkm5eYwQbIhYQMkxTB0nacvBM4hTDMEHKhhLeeMuJU9dVFFlFVzMKeR9VVyHLSKKYXj9ANwwUJWMwSFA1gzhJiaMYWYJwIBYWskxidWUdx3GIo0gwX4pMrd4QCw2aSZIkIElUSz6e75IlMYqi0qi3qdUa5PI+u6aq5Dyd8YkqYRii6drw/WqiaqJ3rB8EmKaJLKtkWUan02NxcY2ZmUl8z2ZqsoppmUOmV6NcKRIOBlvRHFMTo+TzPkhCKmua4n0SoBshT9Z1ZEXhuWdP0mw3KZeFk2PQD1AVFSkDWVWQZZV+L6DT6ZDP+8hDcJTLewRBSKfbI8tEv55lW+IKLwk31lKpQBCEZBkMwgGaLmRugjXPkBWZLJPZ2KjjuKL3TpYUTFOn2+2TxBEf/fH9/JdfeZwPzI6LPjhFxnHE90PXdYIw5Kmjp5mZGiWOIvHeDxJu2j9LPIiF82caYxo6YTCgVmsiSWCZ5lbUgu06LC6sMjM5iqarTFSLmJZFp90ljhMc16LXCXj25HnuDzu0Ftf58J134jgWpVKJkdExwsGAJ59+hj17dhPFIbIkU6vVME0TVVEIggGSMgQIKfRabaqjI8zs34ukyCBtAprhvQxJmKsMZZQ7IZxNk46rowqe19d2Fet0dW0eYzvoE9LBF5dPXr2f7ZVl2RWyTkmS+OhHP8R6tMaXPvsFrj9w04vuc1P5KF3j8bwxcHmucfXYzzx7lrsufJO/+dxfi8m/rLA9i277Q8jnt8+nni9z3L799tf8Qn8X/98O7ET/7OYxrgSRLzxP2lwkvHrsVz+uErXucJyXWVfP37ZkoDvXKznG8wWlz59/boLMlGH24jaLVeUqAAqXJZ6vqHZ4O14Dd6/Vy6pXzNzBlr75pZQiy9e4cu/w8d/B/vbqFbNXxcS91HqRY2TK5SDPNBN245qWMAhjamtNKuURsiTBr5RYXa3h5/J86R++wqf/6FMcffYgn/n3f8lHPvwBRirjtFoBYRCwsrLMm37sFhzHp5Afod8LOPzMIRTN4o63vIWJ8RG+8ZUv8juf+hM++L73kyYpP/H2t3H3d77DvukKN990A6liMDoxwdlz55nbM8Ho6Ch3vv8D/MPXvsFdq+u8ayTHrz92jH/3Oz/Nz7xhL2RihajVFrbpAHEUiyBox8IwdZIsRVFkDNNAziSSOBZGCGT4eR8kOPzcaVzXQTc1dEMhzWJkWcEwdDzHJEszioU8uZxDuVwEJJ49dIozpxeY2lVlfKyC77u0mk2azYawn9eUYbi0giyDZemkmYTtCGMHSYZ2W/QPpnEMmcRgEBMP5VBrazVGq1W6nT6GYaKoGjIZe/bOsLK8im2ZqJKEpquCgdE1ZFnB1HUSWTB+vSAQJiiqRppINFqr5HM+p48vcX5+CddS0VV1aPAQMzpWZqpaoN1q4vkelm0LsKmKSb/o6QNZkbBdkVHXqTc5dWaBkeoIuqGiKCnPHDzB4cNnmZsRURWKpjAzIxxJ5y8scOst13P69Dwb601GR0sYto4sK6yvi4iGeqOJaZgAqJq2FVuBJLF7bhLd0LEMIcU8dvwMU1NjGJZFq9XCskyCMETTVGEgoioYlk6328PP50mSlHsfOMTuXaPYtnD4S9OMw8+d5NDhE7zrnW+lVCrQaNQpFF1sR+PM+QtMT42ze3aC9fUGhVKRTr+D65j4XpGgG1Nfb7G2skEQDsjnXYIwGFrTqyTxEHmlGYNwgGEIkBlFKZ1Wj1xemFrYtk273UbTxISqXPTZd900kiKjqDqNegvLcbfMKzRVYmpqlGgwYGW5Ri7nISuin8UyTeKhA2qaQjxIgM2w84w4jQXrIQvnyn4vwLJMJCnB8ywc1yDNMpIoIYkSVE1FVVXiJEZWNZDF5y0ZRBiWiWkbIhC9G/CVbzzCntkxdE3EK0iSgqaoQ4a2geu5QIbjOmiqgqrIDIIBq8t1DMvAz3uQxFSqJeo1YbCiGzphGOK7LrqpgyTTqLewTcFI333PE+zbO0McRxRLOWxHGLe4rsvp0+eZv7DE2PgIiqJiaBq9Xp+lpWUsU0cCVlbWMDQRWD8IByiqSpLEJHFCBoxWR4iiwVDeqhBHKUEw4Pz8BYr5HIqqE4URFy4uUh2tEA0iFEVEH0RhTKVcRpKF9HAQRiiaJoB+KqKVozBC0zW+dfcjrK7Ut1xrVVWl1+kLGa1ro2pDsLxRxzQtwiDEMk1sx+bBJ57ireUJSDNUVWN1eR3f9+i1B9iezdyuMRRVZjAIabXaWw6ymqZy4swFDEMFKcNQTTIkrM0e3jgmSVLarR4zk2M8cegEtqHR6XZQZZXHnjnJ6YVl9s9N0Ov1+YvaOrfffCu//mu/jKbL1DdWMW2DSrXCen2dAzccoDJSJssSIV+P4+HnNMO2HB594nFW19aYHBtlY2WN6265Aa+QQ9HVrf6g7SXu5RJIGdkOUGY7u3b173ba7oVqc5vLEQmv1ALj+WPb/P8mEKmOVslPFrjny99l9+69L9w/9YpHcGX96Wf/hE9/5g947/vefQVg2xngXAZfr6Ze6nnfrrp6uSzeS4smeGEm8YddP4xjbSrAGJIK8jbm8OqfN+sHPUN9Ddy9Vi+rfmTgTlG2vhg77OnK+k8E3CGLW2ASp4K5QkKVI8IgxXPyWKbF0uICtmdjDoOzd+/ZTXWkwrt+9mf4lV/5KBNT42SJSq3WZHxslN/8r/8rfvXXfhlddzB0m34QUPTyzO7Zg2boLFy6yFglzy/++m/i2S7/7998ln175jhw/QEaqxdpNZt84o/+jE6nzzve8ZMYhsT6+jqm4XLL9Tdw3YF9/Ok/fpv//TffAZKEpmukUYwiK7i+R5ZlGLpOP+gTDWJURSZOEoIw3HLuu3B2gUqlhGboSEhbIGB8bBxd15DkDKSERrOBbXqkiVhlbzU7FAoFNF1ED9i2TT6Xo1wuce9DjzE+Vqa2XuPQ0VMcOLCbWq2OY1vEccSlSwt4nsPa2jqO65KmGb1uD0mS6Ha7mKbN3d97mH1zuzBMi+MnzlOtlvBclyiKMU1LMCGuTafTxfddTMOgsVEjihIkNUNV4OKlS0iSYB100xKZXWk2XL5TyJKUQdwhTWB1ucPBw/MkaYex0QpxkgiGQpWxNEUwdZpGEA6QVZVMkpAy0Sw9GIQoisymgbJtaIRhiFvwidMQiZSRSoUHHzmKZxtUqyVOnLnAzK4x0iTm4HOn2b93liRJ6PdCSqWcsOePRV9Ro96kWMyjahqSJBMOQmGMIyssLKyQy/usr2/Qa3dxHJv5i4tMToyBLGGaBoos02q18Vx3i/EBeet89IOQm2/cR7/bIU4SQCKKYkqlPPv3ThNHMQ89/DSzs+OUKwWCoENlpIzv+eiGwblzC5RLRTJJhLRHoXANNXSTSwur1OpNJqcqNBoioFvXdFRNGTIo2tDRUASdS5LM008fwXMdojAiThIWl1aoVPKY5mYGXIasaHQ7fVzPG04ChdS0VMoTRRGqquA4Lp1uF9ezaDSaqKroPe12e0jIrK6s4edyDMKIKAmRJGHqMQgHKLJKr9sjzVI0XUGSMzRdIUNmEIR0O0LyKRjAmAyJKE4EsDBMknTYF5immIbJ+Ege3/P5fz7/HW67dT9BPxQunraF7VgsL69uhXVLkkTQ75MhsbbapFgq4LgW589dwLYMev2AKIrxfOHkuLCwTLGUJ5Nk4igmi8FybY4fP8+NN+wll/MYDEIWF1doNNuYhk6xmKdQyGHa5hbzYxgGrmOjqgqaqmIZoi8tDMKtv3e6PXzfRdd0+v0Q13PotLtYloUiC9b1voeeZqxaxLLEQoHnmMPvdo9er49pGkhIhGGIYWji9/0QRRa5frqu0e/3cV2Xeq3Bdftn8RyHyalxTNMkiWJs12ZleY1czkeSRTad5/r0+6EYRxyhaipv3D/Fr3/9ST40M8HayjojIyWSJOXi+RVkVUJWBfuhayqWJYLue72AoB8yvWuMXN5BkWWiKOXMuUtIWYZhaCRpRtgfcP7iCr1uwOtvPYDr2ui6QhjGxFHMmYV1PFPBsAzu74SsLFzg1KmTfPjOn6fXbTMxMcmps6eRZLA9Z4sJyrKMNBPXrZXlJcrlCl4+z/59e7n3e/cQBwNuef3NJDKEgwhVkZGyq+7d0jBmILtGs8QPCNylaTbMrxMM0mZG38udDqdptkXibJqNXB3PsPkYHavyY++6g//mk7/NgdIt2L61M6v4skbw/PqLz/859x66hy/8/ee3xrTd/OSyBPPya938/sqKyvaMt5dbr4G7H96xXgN3r75eA3c/4nq14O5ql6JrHmdHYAc7um1mCVeLLDNJvvzTjwLYIRw7xYVQZMNsSgO3pAaZuEHKm9EPZKDquL7DIOpSb67S6XUp+iMoiPBdRZY4cGA/o2MTmJaL4+cI4wGNVpv//vc/yef/9kvoqoNl2Vy8eJZv3/UtNMmg3w2567vf5ZZbXs/Y9By2qqNqCa1mjem5Gc6fv8Dk9G6+/JVv8nu/87uoUoIsJdTW1ij4OfpBgOM5yKrOf/Gxj/Orn/4ME3LIrolxLl5cIF8QzFSz0cYwTBr1Joahopsu7XYLx7Kob9TxPQe34KOZxtZ7YZkmzVoDXdc4feocYyMV1lfr5HMFarU6mqZx8JnjXH/DPpaXVzBMjWazKaIJDJVB2CcOEkrFIpqhMzs9jmVZ1GstlpbWqFTKwzgEGdfzkFFoNsSKuSJrrCzVGEQhtm2RL+SQFJlqtYAq66DIJGkMaYJlqKxtrDM5JcxYZCXDsk3iNEJWdGRZwzVdTNtGMw2SKGVteX3o9icPWcIGrlNAllQqo0X2751gdLyCJMkYQ+lqq9nC9VwkVSEFDMtERfS8KZpKlkmkiZAOJqlwSuwPIvyCh+taaIrC+dMrQvppaNTWuhQKDkXfp1AsEIR9dFXGMi0uzi8zs2eCfN7fMsy5OL+I67voukYUhjTqTXTdppj3aTZEVlyt1mBsbISHHjlCoeCze88UaZbS7wWCEZMlHNdBlmUGg4FwVZWgUW9imRYXzl/ige8fZP/+KZI0xXZsWq02hUKeJ59+jiSK2bdneigXraCoGqpikCTZcPIYUx4poAAb6yvoqkx1rMx6q87E2Ag538TzbMJgIExONAVJ0hlEEaqukEkyUdxH08T4xkYrhMGAOEl54MGnecubX0ccQ5JmKLqKMpSPqZrCwqVFXNdBljLiKKXT7rO8skG/H1Iq+5imQZymWKZFEscYqgaZhCQpgiWzFGRVIgtC2u0utuOBJHP42ZMkUYbrmWRpwupqjTSSMHSTIAiwLJ0kTcjSjChMUWUZOZM4dWyelbVVcr6BqugcO3KGNMkYHSuhqBI337SHDIkvfOk+dFXIRW1bx3c9Ibk1TBYXlskVcyiqykh1BFUFpJRcvkSr2WV5aYOnnjnD/v0zmJaFLMmomkIaRximRqfbQ9MMdF2iXMmJPkPTEk6zjoOkSKyt1sgXhIGSpqrUG0021jfQVJVer084iPB8nwcfPsjs3K6hsUtGlsZoqkbQDzl18gLVkRJnzl6ALMXL2aiawkR1hDgW8ldDF1mNg16IpmnkCjlhKCNBt9PBMC0hfzUM0jjln777JIamMjY2QhD0sG0RHF8o51ldWqHX6aCqwgU1SWKiSJgEZamQWKVpguMJgKoqKlE04Jfefh0f/fx9/NKBaVRDQ0Li6MnzVAsex09dRE4hGsQ0G20UVbDbWZYK0IREvxfwje8+yU+++WYUVSZNYmxLJ04kJsZGiKKIb97/JPvnqhiGyDAtl312T5RZabf4yLfv5jc+/nF++h3v4Dd+7Z/x0IMPs7SxzvzCIm9529sEMxqE9Ltdzpx6jpxnI0kqUQSOU2SttsrM5C5WLy3x4AMP8KEP3QmGgpRlqLK8lSJ09Z32+fdpIUqTZWkLTG2v7ff8zb9vnwbsxFRtBxib0swrg6tfOJ/sspRxuyRR/F5EZ2TX3M9HPvohLrTP8NnP/QfecOMbn7/vHY53rT6s7b9/8qFH+T/v/b/4uy99jg9/5E5kWRoCOZntUsydBICXwejOwG5zH9eWvu50PqQrnDIvA7or52lCDnol8LwW0L5y/Nnz9vVCY/th17Wy966unTKWr361mw7rUpZdyfJufq62/X+nn7c237a/DF5WG9NO9Rq4e61eVr1qcLetfnBf4pfG5v2wS2JzVe2FtriyZEUW0iBVwfeFXFGSNGRFSAhtW8jkLMvGNA2iOKTf69LvhVx34Hpm5nZx4cJ5nnjiSf7w03/If/fb/xxVUVjfqPHRX/gItVqdIAz4N//6zynmC4yOjaIpJo1GG9e2+ZM//TMKxQp/9Vd/ycc+9jEuzF9EUTQ6nR6j1XFcL0+/F/CTb3s7H/jtT/FbH3grjmNjGBrhIMZ1va2eC1WR0TUdXdc4dvwMlWIJXTeJ04S11XUsw2R1dV2YSsQJhqXjuhZIYBg69VoDx7EJwwGzs5M89NBTWLpGpVrC9z0azYborTJUxsaq9Ho95ucXGBsfQZIlfN+lNDRCkGWF8+cvkWXQ6/fFhFOSmJ9fYLRaoVgqUR3N0+sLF8Z+d0AcR/T7fQxDZ32txuNPHmVmV1VMtGxbGA9ICpquoygqaZxg2pboOZNlZElhfb2G77kYhmDkyIRro6woyMjUNmq4lonjOPR7PTqtDrKi0O10yTLwfJc0Tel1e2QZqKpMu90VpBMi6kGSVZJYBDOLm6yM7+fIiDF0lWIhj5ezOXrsHKPVIvPzC8zOThOGEWtrdSqVIqdOn6fX7eH7HqVSiThKWF9dR9d1oihGkkWun+M65Ao5fN8T30wYAAAgAElEQVQFSWJ0dATPd0izFEUV/W2qqqLqOs1ma9ijpUCaoqoahmHQ7fUZHR3Bd00uLa4wNzdNqylYPjKYmBhB1xQeeuxZRkcKFIo56vXasBdLWJU7nk2WpYT9kGLRI8skZEXD8W0M3UDTRQ+OYRj0eyFhHGBbLkuLS+QLLkmSocoqSZIS9Ac4rk0Q9PE8m9FKjmgQ4bgWzWYLKc1EHEKWIksyru8R9PvD8chcvLhEu91lbLzKwoVlRkYqIgZkGJnRbndY36iTz+fQdBFmLpGhSCJAXdMN0jjh3NmL5DyPOB6Qy/ssLKxy6Llz7J6bQtNUOq32EHTrqKrOkWMnURSZb//Tsxg6TO0aJU0zSqX80LFRmKx0+z3Cfoipq8zMTRKFEZ7n0O502FivD3sCTUzTQFV17vneY5RKOdI0QTN0bNskSyJuv/16IGOjtoFp6JiGIcxI4oRczgckxidGkCWJRlOA+GgQIcsKruuRz+cBhZWVZRzHorZR597vP0ch56KpOo898xwz0+NMjI+Qphnnz11iEA3wc6LPd32jxuzcLpqtFr7vUK4UURSZbk/0eubyPv1eQG2jjqrq/N1X72ZuVxVJzoZ9cR2WllZ56tBJPNcil88RBCHFnEsun0PTZNbWNgSbCaQpqLLMc0fPMDpa4t4HnuTWm/djmEKaGkWRWCRyXHq9Hq12B0VR8F2f/4+9Nw+y7LrrPD/n7tvb38t9qX0vqSRLtizhNuMB3AYa2tiWDQaCZZqtp5sJIDoGBrN4Zjompt0Mjm7ATDNMdwPdMMZEyzZehGVJtmRZ1lqlKtW+Z+We+fb37n7nj/MyK6sqa5OXbiL0q3iRFTfvvefck/fde77n9/19v4Ef8b5HdvPRv/4q3z09Rq/TZ2p8hDiLGBmpkpFy7PRl9u/eyrlzswwP16TRvSK4cGmWarVIGkXkPJssy8jlPQB0Q6Ox2iBOUt52724CP6LZbBNHslb18Nw8v/T0swyVq/zar/wKI8MjpGmKrms8/I534Ac+ExPjWKaD6zrk8nkKhRJnTp8nn6+yutLE90MKOSn29ORTX2L7tmm8nI2bz6+DoLW43TKptBFaW1C9dZZOUZQbPNTuJIt3vTjb7Y65SrsU65+17RtBzs3Os23Hdn7gfe/hl37jf+TlYy/w9nseuXruW7Y8WMdmAHkFfOXJL3OB8/zib/08H/zQB7g2I5d+S4Tnrs+23ekx8ue1YirXxxoAvTEjd2cL6N/JjNyt4k77cbO9rgfwa1k6gCTdAIDv4nrXzrkOHr/Je+FNcPdm3FW8UXAnGKSi3+DqTDbg/G/+CPnWg7s1cZS76ad8gF+7rnPtatQmL7t0TWQlQzdNVF3DD31SYuIoRBMZmgK+H+AHPbIspN1qIVSV7du3oxlAmnHo0L2874d/BNt2cHNyYvCxj32MLVum+dLjT/Dss8/ysz/1Uxw5fJiPfOR3ec+7f4harcx73/s+7r//LSAEO3ZsI1+sUSgNkcsXeerJr1JwPcbHJuh3evzUh3+S3/zE/8d/t7dGkqSoqnzQz80ucPjIKWpDRVRFcPTYGXZt3wZC48hrp6lW82QpuI6NoanYlvTqsm0ppLAwv0i5XGRhcYlyqYg+qMHp9rpMTY2jGRrNljQXT7IYISQNzbIMHMfEsm3+6lNf5MDeHYRhACg8+7VXqBQLDA0Po6qCleUV8oU8liWBFSk0GkvkcgYIsAyPLJPeZHEckyWC4ydnOLBvegC85Mq/phtkmfTQS5JEgnAEvW4PVVHx+z6moaPpGn2/P5AbF4PxUnA9ByVJWZhfYnZ+mampcZIkw7BMcrkcy4srREG8LszQaDTwe30pxqLrpJm0hNB0A03VSJMEMgjDANvW6PX7dDt9SuXCwIstZnJynGNHTxNFIZAxNFRlZHQI0zDodLqcPTPD5YszJEnK+OQoqqYiRMb8/ApeTgq7nDp1Fsc2UQe+bghpJmwMLCuiNGJlqcHyYp1XD59gcmKEwI+kLYEihUWKpQLlcpFGo8Uzzx1hdLiG5+W4MneFSrnE2EiFjAzTMmXtnKpQr0vAv7i4iOvaKKhEcYhh2ghFJUkihCoQSCENKYqR4XgWWSrIF3MIRSo6ZqmKECpJHKMZGqoq0DQFz3PIyCBNKeS99cySokoKoqbriEyQZpKWXCrnGR+T2RRShf/ymWfYu2dqIEghqW62bWPZtqSoahqNeoMsUyU9MwgRwPTUKLbjEMcx83PLTEyM87XnT1Atuti2gW1LkZx2p0MmBGNjNT71mWf4iQ++mx07pgfqn1JcxbYN5uYWZF2kbdHr9Xjyq8d4y3178DyXen2Fak2K3fzV33yF+w7thgy+/NTzPPCWfbiuJWv/1AxVAc+zabfbFMp50iShvtogX8yhKOoAvCsIVZCkMWmakKbSozHLAubm58jnHSSzXtalmqZJtVJlfLRCp9Vjbm6Ftz90AF3XmJufJ5/PsbhQZ3m5ydjYCIoqsB0JQNvN9kBcIqPT7VIo5DF0KX7S7/vMza3g9wPm55rs3j5JqVQkjlJU1cK2c+zeNUWxVKLfDxEZ6LqK57ksLS8xNjZEHCc887VXGB+u0en12bFjmmazzb337AaR0uv18YOAVquL34+oVCrS4sBco36GtNtdDEPhrfeM8/OPvcijO6YkzdoU6KbM+m2dHCdNBWfPzjE6UpVCOpqK51nEUYxlaBRLMhOcpgn11SaGpePlHGzT4sKFWT73zBG2jdfQNY0z56/wW2cuYBgWv/mrv0a1XOHJJ58kTmKWV1aZ2LaF4ZFR0gwuXZ5B1TTSFEw7R75Yxu+G/Mav/y+0G2327tmNrqs89ulP8cEf+wClSgGhaDe8/243hb+6fis2FVS5lryTXSOwciflE28ky3NrKmi2adsbz722/dEPvp/3PvrDPPHiE/zRX36C144f5m0HH7pl22mSsni5zr/5249BIeOf/tYv8NDDD60Lolxt66rf72Zxvf/c1X7eSFF9I+Bus6zhRlGTzcZ6oxfdncbfZ3C38Wo3ZvSAaxIXWZata0ZszFvediHgup/XLIRsaO9OR/tNcPdm3FW8YbXMQbxhguRgFeQ7Be64zWrebQ6+yfYbz6UO2lFUVdbe6Dqe50GaEoR9FufmyOdypEJF0xW63RbDI8PYlivl1jMhf5/GNBt1HNfi9MkzKLrOU089xQff/yjFfJ63PfQA+/fvRijw6itH2Dq9lUuz51hdrTM+Ns62bZOUqgV+6L0fQAjYOj1FpVJicW6OY0cPs2V6ir/9/Gf5+Z/7J/zC//4JHn3nXimzn6REYcS+fTtIBxSm8fFRms0OrucyMlpDCHAdBzLp+3X41eOMj48QJ7JmKF/Is7SwxNjYKHGSoGgq/b5PqVRcn6wbhsGVK/N87RuvsWfndjlRE0KqdKYZ3U6Xl189xY5tU1w4f5lDh/ZRrhSJophPfebLNJodsiSmWMgPatcyGs2GFF4IY0QmWF5aodFsA4JCUdaCaZqkduqGTuiHNJrNdYVFXddIEURhiK7JjNVaZsQcAPUrl+dIkwTXsfF9mWUAcHMe1UqZKE44f+4KyqB2zXUcVFWViolk+P0+pVIRUzekel+a4vsR/V5/oFoppOiGohHFfYRQcJ08585epFzJo2kq/Z5PsZhnbGKIV147ga6qfP7x59m/bwtkgvHxEbLUZ+eurbRaHYQqOHHiLHv37+bU6XPkcx5RGEjqZc6TEvVhjKIoxFGIogriyCefK2AbFsW8y5mzlygUC6RZxosvv8ZQrUy71cbLuei6gUKK6zp02h1UXSoI2rZFr+vjOA5zcwsUi0UajTaFQoFiMU8QRvR6PZI0RhlYAnT7XSzbRFVUNM0gTeSkSdEU4jAjy1KiKEBVdcIwIktTDFOXLgqGFNeI4phet0+cSkGfJEno9fsYhsHslQUMXUMgWFxYwXFNQNplWKZBs9HC83RGx4dJ4khSJ1VVAvEUoijCNKQNgeU4WKZBfWUVRUhfMV3XcBybV4+cYnpqlFrZ5djJC+zcPkEUR5KWioJlGmRZwszMPFMTY2iaQpJEqKqKY1sDQC7QNSlxb9s29x7cQZammJaGbVskSUqaZoS+T7VSxLQMykWPfNGT3wkBSRKTZRlJnBL4gaQc6zq2LWm2qlBYWlzBMGQmLlfwUBRZI60oCu1WE0WVKn+aoZKkCZpqUK83B/2yKFeKDA2X5N9JEViWVMz0+yF7D+xGUcTg2hMajRakGTnPwzANHNshSVNp5C4U2u0OzXaH4eEKO7ZNIuemGS++dIyR4RGefPJlqjUXx3FYWWrwub97noP7p9F0HS/vkiUplm1hGRovvHicI8cvcu/BHRSKeZI4QSgCUzekimzP5/XjM6hCkGbyfm21mtiOTRj6Uigqy3jH3hH+/Asvs69clGqpKRiaShjFqIqC65gcPXGO6alRfL/P8nKdcqWIrkr7DCGQ9bQ5lzSRFhe9bkChkCNnaZy4OMepC3P8cRzR9/v8s5/+OZaX5zmwfz/79u/Dchx2790ja1uFgqIoFIoFsgxUTQcBnXaH1aVVqtUK3/Oud2Hqgj/8o3/LR377N0GRSpiqqt/xm23Tt906OLr5Ptdn7u723N/qfW93jBCCffv38cEPvR/Ls1hNl/n9//Bxnjr8FE8dfoojxw/zhZe/wNOHn+Lpw0/x3p/5R9z/7v28/9H38baH3joAXdeKwdyK2nht2zeKyGwEqVcj2xSs3j7ulll197O5v8/g7mZ0201Ovk7TvONjuPVo3qwft4q/7+BOfKfqqd4MGVEYflMD/kbLf7M0RVWUzY/Pkhu3CfUNtnS1PZDc7Ls/eJP+ANn1BemAlkImMhIhyATEpIg0hSTl+eeeQ08FY0PDBOgUSwWS1CfLMvxuiG46aKqNImJmLl9gqJrHMA0++ckvcuieQ4xUa7z26mFmL89guAlve/vbeOJLT3D82Hne/X0/yMPffR9CaJx4/SSmrTM0VObM5UV2bt+OoQrOnjnNru1b8ByHIIroB30yVeHZ577OX/31Y/zFr/xDFuaXKZcr+H4fREbY7+M4OTIEhq3LkshYrtCePHGWfXt30u106bS75CslZmfm2Lp9Cr/Xl+Bdk2qZSZINCucVgl4HwzDpdHo06x2mpscJoz6NeotCocDSUp3R0RFWlutUqiWOHHmdLVvGKFWkJ1un0yOfz3P8+Bm2bpkkCCIsG1aX24yNjZJkMaqWUF/sUB6qIBSFbr+PazvSP2zgFddqtDAMDcs0WV5p4uRdvJxLt9GhUMiTDChDvU5XiqS4NkE/wDBl9ipOEumZ1e0yMjqMgkaz3qLb9smVpfn47p1bpXKjrWNaJp16gyCIKBaLUoUw55Kk6aA+SaHZaskFAdfDDxpYps2J12YA2H1gkjCISKJMKh4WXS5emuG1o3O86533IVTBk0+9xNhwlalxm0ptCEW3paG5bTC1bRtJGGCaJr12i2Ovn2Lnru1Ylk2vG2DoGpevXGbb9kn8zhJhaFEqVTj82gnuuXcPva7PmbMX2LNnKysrq9SGKpw4eZb9+3YRRTHzc4t4nku+WOLJJ77B933vw6QDH8Jur41jO2SZVFG0bANFFega9P0uQtiYhkm300YxUnTNIQ5SIEVRZa1c0E9ZXlrGdFQqpQor9VUK+Rz9XoBt2whFkRk9JSWN5bpsp9mRdYr9/sDGQGVpaYWxMbkYoZtCWhBEIaZhEYcRCIjSBJEJslRK6GuaRmO1BQgsS8dxpdBPr90jSTNs10azTEQSSSEi3SKJYxQh6Pp9Pvf4s+zZNsmeXbtIEiiWDBaXFqhVh7lyaYliOY9hyrriTlf6N9qWQxTJjLrreXS7XXRDxTA0uu0+YSApj4EfEgQRXt4iiiJsx6Df7+N6HhmCwA/odfromkauUCCOY8gk6NNUjeWlOo6bx7J1Wu0GuZxHlmUEQYiGzerKCogM29Pxch6aKoFhp9umWW9SrRbx/QDPy+MH0tPO8/K0Gj6KLtA1FUURtNodCrkiL71wlJ4f8NYHD2LaBiBYWVqiWCpgWgarq6sUCh4Li6vUqmXazVUK+TxRqhEEMb1uk2p1mHqjQ6/TYWpqiGeeO8wD9++WtiUC0iSjsdzm6KlzPPLw/Vy6dIWc7eC4DrZr02q0+JvPPMtYtcJb7t9HbTQ/qMNN6XXb2LaOUBwuXZhBV1W+cnqBP/v8ET75nncTdNsEYR/VUOj0fQoFSWVPk5R8QRrVC0WhsdKiNlwkTROiOGS10STv5Gk2uwRBjOfaaJpAM2x+7pXXUYTgF37yf+AP/uAP+PVf++e8duIYU9NTtLp93vOD3w+KKu9xRaXX6/Hqq69iWSYH7jlAGsdoKJCkPPvVZylXXO5/4AF0xyFTFEzLIgqDG95Xm7/ZNo814JamN58yqNf5yd3pfO5WGa473fdWx16ftdu4PUnSa6idN7Z39ZqurQ2UwjprFgfX1vop3EocZS1zd/0+a21t3L62bxzH69uuH+fNru3667mdGMobEXO5M4GVb3/c6bxu417pTbZvetygljNJrx51u2NuNZo368dabKZQYRnmfxtI+g3Gm5m773B8WzJ3GwVRhJygXf9VENdl7daKTRUg20xk5S7j+jWxO6aObiLmglDX+yGfnzKhLhSFLE2uOW8qIFvjuwMqAulXprN9xy6K1RrtIGDp4jxKKrBUm6X5Or//+/+GJ774BPcfPIBT8MgVy2iaRRILdu/bw/iWCSzT4MVXXuTshTO85cH7MYwCBw8+wFvuv4983uRTj30WkQkOHjzIp//m05x6/TQf//gf8/F/+wdUhobZt28vWRhRX1kFx8OyHSxDpVqt8oP/+If48V/9PX7yew+haSorKw1OH7/A+NTYQCkxJQwCuu0ubs4iTSNyeRshBH0/olytMTc3x+j4sFwdtw2ZudQM6ksrzF6cRxMK9XqdUqWIqqqDDITByVNncHMO5UoRTVPJ5T06nTYpXVzPpFSuYNk2/U6PKIoG8vIpQ0M1dMNgcWmRam0IXTdZXFhieXmZWrWEnSuQDVbO0yQljEKWlhaxbZvIzzh75gpCkWa3cRSR81xURRtQFVV8v0+SylpC0zKATFLWBipvaZoyd2WBWmVEZoyiQNIpHQORadJgOe4PMhoKvU6fDIVcMc/y6iq14SqKpg2k2uW9ZOgm3U4PdbCYcerUZbbv3M745BD9bhvLNPGjGCEUbNOi1eiwf/9W8oUcnXaHndvHGR8r4Xk5Wu0+npcniUJs26LT7Ejp+X5AnGTMz9dxDZOjr59ianoYRVNxHZ0sDVHpkmQJrxw+yUNvf4Aky4gDn4nJMY4fP8eWLVNEUcrrRy7w8qvnmF9YYdeuaWauzOFaNhOTQywtLWG7OmQpc1dmqFbyANKX0JBKl2kcg6KgKjadTo8TJ08xNDRMFEXESYRhGYRRiK4Z/NWnvkitkmd0ZASQHnkrK3VsxyROImzLJMsSFudXUVUpYIQQaLqOomnr96XjWfhhgOWaJJGCECqatiYcoRGGIWQZhqoPVD9fIQkjnnzqGFsmRwj6EYZholk6li0zuJqmrkvLa5pJFMaoqhQtEZnCwf17sEybbq9DZbhAnGT0ewGGbWHaBpqp0Wq1abU76LpGqVTkxMmLlIpF3JxBHIeoqvSZC/wQkhjTNlltNigWi7SbbdqNHl968mUmRmqYhkWWpJAppIn0hcuXPKIwAiCOMxRF48rMAn/7dy/y8uEz3HdoO67rrqtS+n2fQrFAHKdcuDCHYWi4rk3kRwS+j21ZfPoLzzAxNoSmafz7//w4D96/H03XpYCOofHkl1/k6y+e5OLFGQ7u24GqCkZGS0xvGeUzX3iKvGuR8xzOnJ1B13Qcy6Hd6qAoGcViSari9mNy+RKGbtJstOj3e9iWgetYVCoFlleaTE2Mc/rsBUrFAoqi4fcDVN1haipPFPi89I3z2I5JGvfxHJvl5RWmJmrsPbCNfMml02lgWQZxnKEbFkJIb81cPodhGmwbLvC+d+7n0b94nA/tnEY1dLq9gNpwjTiIcRyp7tlp9fi7r7zG0ddn2DJdI8vkWK+utPjaq6fZPjFO2I+xLZMgDKlUCvziq8cxdJ1/+Zu/zZEjr/E7v/M7DE1Ps3vvXqa2beGe+/YilJQkleOuouFYFquLc9x/6AB+P0YxDBZXVnAdh6Dj88prL/DQww+BDqmSEqYhcKN/7N3ERmXKzeiUt6JDbvxsrPO6E/B3/Xv7Tt7jSZKut3U7SuPGPm0+KpuP2I3AbEMt403avEq7XDvvzdq6/rxrom4bx1Bs+N1VGui1n2uFRjbSRyGTZvZZJucym4C7zXzw1q7tOwXs4ji+eu0b/OQ2iqisexLfZNzXaJAbQ2z4rFE0b1qTt3buwX5Zmq7X36Vr57nebP0Wn2vOvUl7YpN/mqr+vc7cvQnuvsPx7aFlbrjB12WOb/NAXntg3PScdxdv/Dy3oYTeoEh1ewUkTdNJ4ph4oNLmui5D5RFOnjpHs9GnXBri7OkZ7r/vIfbu3Ypq6kRJgm2YBH0f0zWIwwBdV5iamGDfvr2MTwzTaXdYnJ8lSQJyeZeHHnqEZrPFF7/4BT78oR9j+/at7Nl7kPe+90d46JG3Ua1WCLs9jh17nUMPPIBt6LSbDeqNFsNj43zgB97Nh/7n3+Mfv20bOc+lmHdJM7Bdm1OnziOEfDlYpok+oDYpioJARdc1XM9mYWGJfN4b+OBJ+lscJ4yMDtFpd/jGK8cp5e11Q2oUQaVWWhev6XZ7AxGNPqViDr8fomo6/b60B+h2ezJzJqTVQH+gQpgmiawFy1JGR2r0+j0M05JUpgx8X9Ie8/kCaZLxn//ySVrdHrt3jWEY0gS91WxSrzcpFKSqZK4wMDpWFMJAyq6rA5rfmnl2pVyi3eoTBCH9fh9N09B1g06nz5Gjp5kYG8Z2baIgxvU8tIEgh2kY6Lq8L+SqbCS9z4TK3OwitaEKZCnLyw1M3cR2TExTyAyTaeF4Lq1Gi9pQFU3XWVmpMzxcQ1VgdXkZ3TApV6v0/ZDFxRWmJsf53OPP4zkmX33uNQ7s24ppagyPDjM5OYRQFObnlikWc6hqRhwFqJrJjh07CMOEz3zxafbt3sb83CLbd0yTZRntToegF/DwI4ewTJ3nvnGUQwd3EUYR+YJHLu+hazqddg/L1nFdD1XVEYoqX9aD75CmqSRJRpokjA4XSFOZ3SsUC0CGpknBGUMT7Nq9DUVVWF5ZwTTNgYeYKmsilAxERrPe40tPvsj4WJVcPkcQRBiGwaULM1imiapKWmO71SbyEy6ev4ymg+3YpKnMuvT7AZZlsbS0ytTEOOcvzrFrxyRjY8O0Oi1s20Q3TYQQ2I6JqioEgU8cZfw/f/ZFdm2f4NKlWarVEsvLq6ws1bFsizAKyeU9/F4fQ5c1kpYlgYGmaqwsNel0upw7P8PePdsHdW8p7XZ3QKuTzxrbMgjCEM/Lsby4yvDwEIWiQ5YGFEo5OYkTYBgmYRjgeg5CKPi9gDiK12nVnueS9wy2TQ9TKkuKc6/Xw9B1At9H0yQFtdvpMjo6QpYJZq/MUR2qsLS4xIP3H6TZalIsFjm4fxtJlmDoOmSgIPBci263zT37tw3UT300Q6XT6XLonr0Yhkmv6/PV519ncrxCoZDj2LHTFEty8anTlmNRKRfJYGBF4eHlcnQ6HQxTxzQ0DMNkdLSGqqqsrtRl/Zwi0LSMlZUGjXqfucUGb7lvN2mWkmbIOlZdl+qZmhhYIug0VhsYmkkYBSRxzMpKg3xOUl0ffXgXP/6pr/Ho1gkef+4wIkqoVPL4QUA+78n6xSRlerxKdagMSOuOnOewZbRGGEa8duoS0xND1JsdfvIbr4BQ+aWf/ln+8I8+wWOPPcbXn3+eQt4mn3c4ffoEec+h1++g6CaWaaMIWds3NjaMQkYQRYRhSLlUwLYs/vaxT/PLv/rP0CyLME0GtUKyjvVbEbeiOG6WGbvV8XcC7jYak9+q/Y2xEYDcSb3ammDGt5ryefNtdz872QiK0zS5KvKxSQZwLTaqYV5VKL221m8j2Lv1NWxew/jtDDm/uha0blpicxvK6p1SKO+Y7LpBXGUNFG7s293EndMy3wR3b8ZdxDcL7jauRmx4XHDNfzNum30TG74o34q42Xlut8JzN+DuVgItG1eV5IRxIPssJKVCtSM0K+NLT3yBYyde44d/4PuxbJ2ZK+coDQ1hmCYzl2Z57fAx4rjHxPgoiiKoN+sUKkUM10aNI44fe5X77jnAlYVZhkcnGBsb4+zp02yZmuIjH/ktHnn4EU6eOs6Lr7zMffcfwjAMnnz6q+zasYdOq0W7UadaHeLKzBzzy3M0623++/1VojiWtRqJwNB1arUyuq5QrpQQQpW1PkGCrpv0+30EsLi4RKHgce7sZWo1SYfs9X1czyUloVD0GKrmMXWThYUl0jTFsIx1Ot3RY6f57Jde5MCerdi2Q5Yk6Jr0Bbt46TLDwzUp4qLbfPbzz7KyvMJQrYjtmpi2IYU3bJs0TTEtkyhO0Qa1Q6Yl6+oaq21My0ZkMXt3TWLZGqoKSZxQKhbp9XooqkLQ97FtnV63j+8HuI4r/e6QdEzXceUYZWAYDo999qucPn+ZXdsnsSybVqPL1OSoFCeJYrrtAFXVWFlewXZsNF0brATKeySKIuIo5pmvvcKR12e458B2Ll2eYWWlxdHXL3HgwDZWG0uSvjmoF2o2m7ieg2qYOJ6LEBlxHJPP2URpCopCmgkuXpqlkM8xXC2yuLTCO99xPyurq4yM1lheWkXVpcz9lcvLjE0ODXy8NISmAJIKdmDfNno9H9M0UBWV575+mK1T45QqOQmaCzl27dyCQPCZv3uGg/t3QgbHj59jassEtmMSBBGIwQRFkfVz9ZXVQVJcw3VsgrCNqpm4rgQfcZLQ7/axTJ1qpUDfDzBMHc91iP1170MAACAASURBVGJpCi6/Z1Cv13E9F5Fp7NuzlV6vj+PYJIn0JNN0nSCIcFyHNI3QTJOZ84u88uo5pqYqWJZFmiVEYYTfizB0Hcex0A0DTVHo9QOGhyugpOiGNDJfe8AJIEkkZdbWVMYnRzBNE8PUOX36IucuLqBrCpPTY6iqwszlWXRd5TNfeI49O6Y4f3aGSq1CvpAnCmNc16ZcLtDr9wmCGNMwEYrKX37yCQ7s2yFNy3WdDPBclyRNQCRUayU0XSNLM06dvsRQrYRhmaiqSn21Qbvd43NffIFD924njmPSNJN+iKqK7UlApAip0ikFlqRiablS4OzZS5ApfPmZVxkbLpEv5FE1qQzruDZJGmNbFvWVOq1Gh7AfkSu6svawViJJYprNJnGWUalKRdfAl7V299yzncOvnWZqYpShoTKe53L69AWee/F13vXOBwmiEMPQKFUKmJaNbuj4vnzuxEmEqknz7jNnLq1bTuQKLqQKnutSrnicPT/HlukhTpw6z/jkKIqirGdbRZaSpRlHXztNpVzm8S+9wP79W6Q4VpLypadfYNv0GJqh8/6Hd/LB//Q0v/zQQc5cmGWonCOX9xCKhlTIdfjKK6+zf+cWkiThxKkLCDKpumvZzC4ss23LGJWSx9/MLPJX/+HPefHll3jggbdSqhT58I//KAf378S2DKanJxFZhmvZ6JasyU3jjCcefwK/38F2HYLAp5T3yKKIZ556krc8eIjC8BBRkrIm5i42zVu8sdgoonLHtU43gITB92YTkHBjpu9qtupmAGwzUCnpozfWq13fJwl2rqVT3sl1rfVn47Eb+399/9ZAWJLIGt/NxuZmYG2tj9f3/3a1fdeP5aCVDe1d9Unc2I81z73NwN3G82wUbFkDnBszepuxm24XaZpc1/cN2c6bqPnczgohHWTaNoqobNxzfR6r3Cg6s2YPkm3Yb6NqpqqqJFkmrRMUZaAwe7WfN2tz/TLucFzeBHdvxl3FNwvuNsam4G4t/hvhZt9uheeuwN3t2lkHkVd98tY+iiYtAB555O1UK2U6rQa2rXHwnv04uTxBEPEnf/ynXLx4iXd/73ejqiqqrqMbJigKs7Oz9FstFmfnOH32HOcvXeKBB9/OlStXOHf2HA888ADlcgVT13nHO74LPw6ZnJxE10zGR8f54Id+lJ/48I/hOBam5eDl84xMjPDdjzzCD/3T/433PbSDIIrwPI8glCblAHGcIITClSsLPPvcUYaqJQxDwzB1SqUChmFQKZdAKCwtLA1ocSq6oUkDYkPHdhwUVSFNM/p9H01VSZOMsdFh7ju4A9OyWFleQRm82HVTp1QukiUpURQze2WBoVqRvXt30u10cByLKI7RdZPV1SZCCAzDoNfrYdkWWZbRarUHk20TTVVJopSLl+YYGSkTRfHAHwl008AwTCzHptPq4A5ULefnF8nlXEDQ7fQIw5CV5TqFQp5LF+c4dM8O7rt3J81mC8excL0cURTSarYoFvI4jku306NULqJpGqqikqapfOhnGaqq0Ol22bljC7HfJ5/3KJU98p7HwQO7pCefbWGYFilSrOXI0ZNMjA3RaLRxPGfgU9djYWGJLEuwTAuEwunTl+h1eqSpFHYYGqoQxRGOa9Pt9fFyLpVSkSiIGBqroZsGnXYPSFBUnXarK4G4aRJHCaZlUquWUFUV3+/Q7XZptTuEfkiaZQS+T2FgATE6WpMvNbFWtzDwoiKl0+5SrZTo+z6m6VBfaWIaCooqRUR830cgM2p+v4eu6+tgbXFpiUKpMKijE2Qp5PJ5el2fVrOD59lYtklGit/voxsqrUabJI4H94tPEMS8/MJZFlZaqFrM5MQoAjFQgvVIkmgg3qKQK3gMj9RAgKHrUgxHCALfJ00Saayu6QR+RLVWll5yirQ/OX7iAoam8eCDBwe1MhmVSokkSbjvnt2srjQ5dXaG6YlRFEXK5pdLJc6du0C1WkJVVAzLQEFw/OQFtm8bY3lhSaroCkEcRyzOLRKlEZ6XI0vl5ExkGa7n0O/3CcOANM2Yn11h+9YxvJxNt9sb3J8FWf9ZcGSdYZZBClkKqqrR63VZWFhianIMz3NptZts2zaFpmvouoah6yRpimlo9Pt9isUCSZpSX21TKBWI44SFhSUK+TzFYp5UKOiajqKoEnRrKrppMDpSZWFhmV6vTy7vYVkmh+7ZLesPbQvf70uqq6oOfPo0hFBwHBdN0zh9+gJHjp3jvkN7MAxpS9CsdzBNHUg4e2GOqekRarUyqyt1HMdG1VQsy6Tf75HLeUxMjtLrdRkZKeG4FqsrdSzLJu9Y+H6A7VicOHmOf3jPGLk9I/zrFy7wg9MjaLrO6nJTLiJlCQf3TGMYJt12jydffp2to1X6fZ9iqUjesUBJ+efHTvPv/uD/RiD42899no/963/FH37iD8l5HpZngaLw3NeeY9eevQRxTJQmBGGIIjReeulFhodq1IZqLC4vYOsGOdvmT/7dn/Dhn/wwkarK8oB11sy3Dtxdc5Y3BO7e2L5rIO1Oz7UGPm+XWbveLuBO29gIGu8MaMl21uxubgZsN8+gvTGrgtvFtVYI1zKubgbubuyb2DCW113TG8iGXs26fvP3zMZ+XC/gt+kR18q/wh2IqIiBOrpYO34ACDfL0a5tu3td0jfB3Ztxl/EmuLthhxs3vQFwd42ssLi+0iHDMDzC2IJEUClXCfo+oe8zNzeLmy+i6Sb33fsW3vFd74Akpd8LEKqB4+URmsFXv/Z19kxNMV4bZtv2nTz0yDt5/djrtFstXnr5Jd724FuxTJNWYxXbdfnrx/4Lh+6/D10zKRQKHNx7gL/48z9j+9atPP3U01SrwwjLQMSC144c5R89uAXNMCGLadQbKKrCqdMXsS1JhSsVS9iGQT6XQ9cV4iSm3WrTaXfx/YAwjEjjjGK5gGZoCFUQRyGR7xNmGZZtYlkWpm4gsozZuUUM08SybAI/5OixM9RXWwwNVclEShiEBH5Ahjy2VCqCkOqaAKquk6UyAxgFMaZlYZj6+uRfUzWiMJTUPTJMw2RqahzbMjEMnUazTaFUIoxidMMiTSGNpB9hlkkQ2mq2cL0clm2hDVQMl5cbjI8Pg8jQdEGGnIjOzy/xjZeOcd+h3URRxIXzl8kXcqyu1mXmKIkRikLg+wihSNNoXcd1XEZGaliWha6rGIZBmkK320UROnGUoZsWZBnjY1XiOKRUKKwDRcu20XWdsN9BCIFl2lRKOcrFPEtLDV45dpE9uybo+z0816ZQKaMogr97/GvU6z1GxqpohkIUpcRJAJmKa0s7AaGoaJrG5UuznDx5gaAfoBoxlm1RKBY4feoCly/Ps2/fLqk4GMV4eVve/2svPCGz11mWSn/EJB68RA0unJulWJDU1fW/m64PBA+kfUgQBBiGjmWZLK+s4nouZApJCsdeO4dpOFRrOTIy4mRNuEUhCPoU8nk0TSMIfJKkj+XmKefLbJscZseOCeI4QtdNwjAhjVNsV0czBCiyv81GhywTOI6LomgkWUgURTi2La0bwgQvZ6Oo0u/L93v0/R7jo0Ps37+bJE0lBTVNUITAsixOnbpAs9nlwQfuhUygmQkIaNbbfPX5w2zfMoamayiqpBwf2LeV1eVVxsZGWFxYxHZsWq02jm3x0iuncUxzQPOV3nWqqqBqKnOzC9TrLc6fX+K++w6QZRGXL89SKhZIk5RiIQ9qRhSFhH6IoZt8+alvsGvXFsIooFjODUQnMiYnJ9B1nXRQS6ooAtt2iIM+CmBYFnGcUK5WIFM5deI8X/rqEe4/sJM4SrBcjyzNaKw2+PLTz+PaGoZloemyhvHSxVmef/EY9xzcLaXnl5ZxPRvTNOh2u/Q6XVRNRVFVVE2j0+0zPzdPMV9g25bxgW9jwspKk7CX4Xo2ih6ya8cW0kyQK+QwLZMkjvnKMy+xdcs4uqlTrzdQdRXLMfDy0qYjDENynkexKC0NDNvEdWxKxQKri6u8Y88Qv/zlo7xvegzDGFCEdcH8whK25UifTNtiZKjM0TMX6TR7TEwO8SOPP81v/ItfZ3RskqWlOg88+BaGhoa45+A+VF0QC4Fu2oxPbaHZ8dFNF9NU0TUDVdHZt28fnmsBGfmih6Gq/MuPfpR/9bH/k34SkOrm4P0mq42UG9IGb4K7/5rgTmbFbzzmZkIs3y5wd+28ZEN7bwDcbZ6xTNfr+u64R/8Vwd1G0LUZ+LoduEsBkWXrmUKuO8c6uLstg+zGeBPcvRl3Fd80LXNQRLrxcZRlIBS5uroujnKz2FTAZJP9N9vvZp81xalNvkA3ewgpyC+cUK6Kp2wm5rIZ93vTcbmmHeWGT7/XxdAlPc2wTUKR4KcRuuGSU1MMkZDlTNS8I4UUHAPFyEjSkCyL2bFlO1a+QMuPEbrJ7/3+x3nv+38Yx7HZtWcPF2bmWG00+Re//ju89aGH+N7veZgTR1/ltVdf5UuPP87Jo0f5mZ/9JxSHxqlNTDA0PcLhrzzDyuI83/Oud/KzH/0Ejz6ykyyFRqPJ0FCNcqVIr99DFRBHIY6r02yu0ut3cWyTpbkG5UoRN+9ieRZuwUakguZqk8sXZ1larFMslfj8F15g185xVF1hYWGZQrGMbVr0un10XePU6bPs37eNofEhbMeGNOPiBSlZXshLcHXx/Ax5V1IRw8hH0zTiOCaOE1AVdFMnCnuQgSJUkgiSJKPXD+l3AmZn5zF0Bd3W6Pk9/F5ILu/KF68iWJifJ81isizFcV054U8V3ILMlmQCDNOkVC6gaQLT0ImTBNuxURUd27bRRMbo2BCrqw2eee4oz790Cp2MJAwxDYNWs4WCNPVWhGBltU6aJhimQZz2CPwQVagkaUyUxCgi5fKlK5TzhfU3hqYbKCjyZZxkPPvsy1iGRaFSJAgT7MFE+8TJC0xN1Gh2uuzavXVgSA2CjMAPMAyVqekhkiTGtR0QoAmFKAhIUzh37jKGmRLHAeVaHsNS2L5nCkXY6LrFSy+/zlvfeg9TU2O8+spxtkyPEocBWRKyOD+H6xWlxYShDiYNCkJoCCFrUtMo5OsvHmZ6fBjTtFC0BFUxSGNARKBomJaJYRhkZGiqSrO1gudYBP2Q1aU6+ZzDk195mWLOwO/5FPI5FAGkKapqoOgCVTd56isvsWf3FlKh4+bAyZt0GwFJlKLrYlDDB7phABpZEtNt97AtB01VEGqGEPLZ4vd8TMNEUQSXr8xApmCYOoiULEvwci62ZTMzM4OiZCRJPKAK60RhRK1WpljK4wd92u02fuATRxGFUp59e7cBGZpmySyaIrPLmq6gqwa6oRMHIefOXqFcrrC0vML09DitRpvz5+f48lNH2Ld3C0EQUSoVyOUctm2fII5DnnvhCIcO7SeOE+JELoZkyAyyUDJSMqrlEpaloioaURTj9yN0XWd5ZQnPdXn55dep1SoDM3iII+j3w/U6H9czaTdX2LJtgumpYdycC1mGpieQCSzT4crMMppmMD4+jKoITEtlbLzGrp3TiEzQanUoFvKcPn2BaqWEtCWxBlYSEEUpf/7nX2F8LM+nP/cS9+zfysLiFQQQBgmrrRVKZY8oygY00C5xEMisnaJi6RquLT38TMOg0+rgd0NULPzAJ4picqUCqqbRrDcwLI00SbEdm0LRw80ZPPqO3fz0p77O//v5J3CWeuzaOkGWgGmZBJHP9m3jGIbJC0fO4tg6v35uhouXZviZH/9ZPvq7/yv//k//lHIpz4/+6AfoBxEnTl5AxBZpFtFpNwiDLpVKRSp0qhooCXEW0e338IoFXD3P41/4LLv3bGHrzh2EFDhz6nW5mKHKSjshrrcdeuPgbqOgijQhvwqk7v5csv4rHfjD3izWQND1gGrj769/ryuKMjjvZvRLcc1510JSJsV1575RVETG1Rq2zSmP14741Zo3cQ2d8Wo2T10HVBtpmFfbvRnkuLO4+XXcbP8BOBmIsFwv4nItCJbiLNdTMG83T4rjSAKha65XuaN7aW2sJPXz1mBJjum1dMmNo7lZlm2jF93aZzPxlGxDlm7t50ba5ma58439UIW4oZ3NRuxNcPdm3FV80+Bu8OXNrt/GnT6C7jTLdxcPtE2Uo257CHA3q4KyS2989WwjlzwMA0rlCsViAVC4cPo0i8tL5EvSBFrJMlRVQ1Wkt5dhGKRZiKlrWLZOGodsmZ7kyswMExOTdNpdcrkc5UqZxmqDUqmIpisM1YaYmt7K+XMXeM8Pfj+el+M//se/4N4D+1DSmJFqjaXlZQzb5gM/8l5e+8aTTI9WMS2TMAylF5ttEyUJmmEghMDxXHK5HL2+z8zsEtVqSYqlpBI0JElKEidUamU8zyGX8yBN1rNSjuOgKConT55jZLiKbmgMDVUkbUWRtT8ig25HZpos0yJTVM6enaFQyGM5Frbn0Ki3cT0bXVO5fPky1XKJdrtDv+8TBhF+3yeKEq7MLnDi1EV2bh+nWMqTJIkURqlUZNH5wGOvWC7hODamZZBlKUHk4+VsVCHr8XRNlXdNmnHyxFkKxRxkmczSXbjC6kqT7Tum6fs9DENnanyY+w/tYnJyhCuzi3iuheM6UpEzTrEcc13sI0lSVE3S3fr9vpxAkZGlKav1FlGckM97pINtWQpB6GMYOvm8hVBTNFIs00DTjcFqZEaWyKxQrVpGVQWGqZPECVkGtVpF/m3jCN2QGRJVUUiTjCTLcF0H1ynQ7YY4dh5NtdB1e+CFGHLx0jy1qlQ73Tol60OTNMEwTWzbRtEMdEO7eu9nA+UzUtrtDrqmsXP7FKqmkmQglJQ4WnvRJ2iaCQMbBVXTiJOEfDFHmoJh2uiGgeVY7N27BSGgNlJBUQT9IMCwrMFXNaPvR2yZGkdVQGQKSRJg6AaKoqOaCmka02538XKeXLRKMxQhBVZ6vT6arq8LCXU7HWzbhkwMqIMmQmjomk59tUGxVCYcqNMODVUwBoB+dbVOLpcDoNvtkaUyM10qF7FsE89z0TRJ/RRCLgSpugR2Z05foN3q4zg6nW6bIAzYsnWCKAipVot4nodt2zi2he/3KJXzzM7OURsqo6pSUEXVNCbGpPjIufOXKJUKmJb0FhRCUG+0EJlCoViiudocZOZsCUx1dS3Hga6quK6DqiqkWUKn1ePs+csUizls12ZhfpF8Pid92QpSHOfwkeNYpsXi/AqFQoF8zmTr9ikE8n5pNqRXpUDIe9QyyNKUKzMLDA1VmZtdwnFkdrrX6wOCfF6j0+1Qr/tMT9ao1IrEEVSqFSrlIo1Gi3K5iKJKCqhpWetZ4HKlNKhXzNZrfVzPodlskst7eDmXKIpYXlqlWi6hahoIgarKv4ttm6RpxAffuZf3veet/PY3TpMePce+HZPESUroh8zNrxD0Ajzb5P/q9ciAX/2ffoU9+/fyzne9i5/40I8yvzjH3v17sByL3/rI7/Dxj/8+v/iLP4fj2uRyeUzTJo0hChPSJIMMcm6eMIhZvXyMv/nUf+LHfvqnwLDIDIfhagkhhASDA/DENe+2Nw7uNrLWrn+nvbHzSYB4K4+8m03YbxVrQFBRBGmaXgP0btWXG8HdrbNXG0VL7qRPG/+/EWitZe021ty90TG9Xdu3m09ttu+12cMbAfbaONytiubaXOjuY8Pf6raMrBvB9jV92PDzeiB2bYt8U+IpGzp5dX56k3aujzfB3ZtxV/HtAHdrJIc1e4Nbx7cP3G1cebnd0d9pcKeo2voqlxCybgagVCrTrjc4cuQoB+89iK7pCDKiMCGO5EQ+I0MRCY3GCn6/T5am5PMufj/EMA2SNOOTn/wU/+Af/APe/ra30u/3mZ2dZfu2HaiKyuyVWQ7dfy9v/66H+ehv/y6lQp5nv/Iktu0ShiE7d+5iYXGRj/7xJ/mRh3ZIClWjSaE4mARqmqwb0zVA1lApqsrU1DiGaVBfrdPr9rBMC6EoLC6uUK2WAFA1jaAfUBsqU1+tUypJWlilIoUgIJMT/CRmebmObUnvrnw+z8zMvFxxNwyKxTyaqnL23EW8vIsADF0jTWPKxTxJHOPl8iiKzKRYlk271abd6fP2h+5FiExmrcJIKusJOHv2EoVCjjiMuHjpCpVqmU6nCyJF11WEAq1GT4p9AK1GmzROePq5w9TKOTzPob7aYHx8nJHRIdrtNv1eH1VV8TyPhbklkiSWQMq1cF0LwzTwchIYdntd6qsNNE2CoCzNMHRd0hBtmyDo8/rJC3S7PhOTI+i6xuqqlP13XZder0Mu72BaOt1GC9dzUVQVXdOxLItyqUStVubVw8cZGirT7fWwBn/PJE3o9fqoioJpWtiWRb/Xw9AN6o2m9GSMU579+mF27dpCmqacO3eJ4eEqlm1h6iqVWhkh4MqlWeqNBvmci2W7LC6tYtsWAFEcog5WacMwJvClaqSiKZimOaDLJdTrKxQKJVYWl7FdAwWpMtruyDpIEPhBH9O01+v4VFUBBWzbJgwDVE0FwUAnUNoSkCl8+ckX0FXIeTkMU97DurkxKyhQVIWV5VW67S6O62CaJkEQ4joOYSTNxjvtDoZpDCirCqoiUIROmmZ4+dxAwVUljkK6vR6OY+PlPBQBtuNSX23gOPaAppvged4AAGeDRRG5MBJFEaqqyHrLJKXR6FAdylMuF6V8f5LSaXfwcrn1FepOp0OWZeRzLpVKEb/fR1EEnpdDILBsmW2r1sr4fp8sy9B1nXa7S5qk5HJ5Ll2c4dKleaIwpNfrURuqIESGIjTSNGVhcZVOu0OhmGN1ZZVCsYAiIAojzpy9xI4dW1BVjUazLamjjo3n2rhuTtbV5bxBLa7MvHfaHRzPluqhiooipOCQYej4fkA+l8NxHNIsY2W1SbfT47EvPMvbHtzL9JZxdu2cJpeXJuyvvHqKs+cuD2pqIzRNIwplnWmj2SJOEgxTl3V7AKQgBJZjy4mmIuj3eiRpimEYWKZJp91dF0LKyDBNKfakaYIoCiGDRx/Zw//x6mWeWlzl+4Zr/z97bxok2XVfd/7uvW9/uVZWVlVXdXX13mgsBEkQgkiRkChR4iKRlhSUpdES4+AMpYmw7JlxjMaa8dgTofkyMbblsEYRskVOzFDW6qAkLiYpkAQXk9iIHWgC3UDvW+1VWbm9/b75cLOqC43qDSAoyoF/xIuqynxbZr3Md889538OtWqFVqtJrRpyLhnyWHfIH/zB7zM5MUm33yPPMlQpWVq+zK7pSXq9Afv27+e//fjHmJqcQFmKOE5QSpEMY2zbwbHsEUMhSZOUx77xOX7oh+9l7sjtlLZHXGisEqSQJmcSA0a/V8zdzkKz1w5ENnPz3mhwB9dnB+G1gbtr9a1d65y2/341uNt0wtx8ftPY5HtRbzS4A27IwF5dV1jYNx7cbbZC7FRb4G57L+QO47vvFbi7GRB5db0J7t6sW6rX3XO3+eHkygW5+fPmvuxvHdztJMvYaftbETGU19vfNTd6HTM3r5KKmi/2NE/pbgy5vLDEzEQbT0myssBxAnRmU5aG7XAdC9cxTNZYvYlluyasOIo4feo0c3v2Uq1U6ffXWZhf4O1vu48XXniZpaUlPvyRD/Pnf/IpPvqzH+XQwYN85SsP0B90yLOShYVF5vbu4zuPP87HP/YxPvYvfo+P/sghfM9jeXmF+fklqpUArTWrKyvUahWMdEyRxDHlyLa63miObq5w9vwlmk0DxrQuybIcz3HwPY+iKFhfXyNJUtbXO9TqFZSURHFErVI1g5ooZaOzwfh4G8dxKSlxLJsiyxhr1VG2oOa7DAdd+v0NgkpINMzodoZUqwHKNgzghYsLpFnOeKuG6yi0Llhb7VKr1omGQ9ptMxBM05SJyXGkpSgLjVQWUih0ofE8n2efP04cJ0xOjjMYRtx91yHCSoBlGyZDIOn3h3Q6XcLQo98fUOQlURxTqYaEFR/LViwsLCGUwHVcEOD7LlJKVlc7eH4FJQVFkXHp8gKf+5uHufeeo+zfN0uzUcPxXBCmd8O2HXPJCzECToI8z3E8l9X1LvZoELux3sNSgpWVFWZnpxFCYju2cQEVMD+/NALvil63x7cfeZ5dU20eeuJ5br/jAN3uGp6nQGgaY1U83zbW7wKqtQpFkRtgnpW0p8bwfBddgut4CGGu8/6gP2KBTL+WkiZTzfNNb15eFAgkQeBAKahUq0irBG2yjGzbQloSRImlXDY6fZS0yTNjfuK6NvEwwXZMxIIlbROzUBZISxJHOWO1OoHvmr4/30IqSZ5j1tkmOXv22RPM7p7iiSdf5NgLp3n7228HSpIkx7EdqjXzvy7LETwoNZZtAqZdxyFLM7q9PpVKQBhWTO+JkCjLuCr6gc/K8hpFUeD5HnmWIaUgTTIowZImCxBhgJcuNFma0hyrjT5bmk5ng0q1SpYWfP6LjzA7M06lWsHzHFrjDSqVACmF6dnThhHr9XrYrm0el5Jz5y7SajURsqQShji2QzQYYDmSI4cP4PuOcfHMMqIooVKp0OsNefLpE6x1ehw6sJuwEhhgbFvUm3WSKKXVatEfDAgDn8BzAcHS0iq1WoMvffURpto1KlVzvNXldZpjzZFkzRi55HlBHMcM+0Nmdk8zjCJ838HxHTzHJ0s16+sd9sy2kFJTCUKE1HQ6y1y8PM/GRsbc7CRJklCtVEYDd0W1WsEPjPOklGDZFnGUQSkYDk2/cL1ewXUclpdXyfOCSljluWdPsGv3JKfPnGO8VR9JwQvW13sEfkiJMT36hR85wnvvmua+//OT/MZb7zBMpITf/u4pPvWJf0c06DOzaxd//Kk/4sGvfoX33n8/M7NTBBUfoSTT0zOUIgahGPRjhoPIZP4VMYoSpTBB9oMeRZbwxENf5P4ffz9eYxqNRKkCC+N0aqRogLj6PriTEG1TMngtodr1+Y3r3T9fKYN85ePmM/fKx64PsG6+NreTIxfDG+1n8/O/0z5M7XTPv/ZImspBJAAAIABJREFUY/tr2en1SLUpFb0SXr593atD06/e381KLK9+HTvtZ/uy6Rlw5bErYzIlzUTBppR0+3ns9P7tVJu9eMYt+rX5MWwd5+px2A6mKJvyzWvua/RTlyPXy2uAt61Xdo2x342cMW+03ubjO9Wb4O7NuqV6YwxVXudWN8nc3QjcveH1esDdNcp2bOq1McocLpw7xUR7HCf02egM+OY3HuWvP/tZ9u7bTbVirPlt22H+0gJSKE68dJznn32OD37oQ8zOzvGVB77CXXfdRhCEfPlvvs7efQd59tmnOXjwAOdPnuDIoSN88csPcPfb7qI9PYFneew/eJCwWmV2dg+9fp/PP/AAH/2RI2SpcQFs1Ov4vgndltKwG5XQJ00SKmFlNHjs43guJXDm9DmOHN5HEAQUhabb7VIJAmMvb0myPMXzHOI4Y3KyTZom2I6N73tkac65sxfxfY9qtcqjjz3H2FgDrXOWl1Y5efIce+emSdOYxUuXaTRCPM9BI3HcCt31HkHFpShyikIzOTnB2FiD4WDA4uIiWZ5RCat4no8ujY2zZVkm+iAMyIuCIAwoigLbNtl6RVGwZ26GRqOOshSO65BlGWVZmqy6rGA4jKlUKlSrIUIKw84EIa2xMVzPwbZNblu1ZkwqSm0cRddW16hUK4RBQJFLKHNjc96sM7d7io2NDWO7rEsjZ1XS9EgJQV5oHNs2VsxCoYXAstxRvpnpbXjiieOEns3GRhfLktQaNYpCk8YxnuehlKJaCdnY2KBWqTLoDTlwcI6Dh2ZRljJ27JZNq91CIA2oFAZIpkmCZdmUZUmcFPiBg7IkpS555JFnuHR5kdndU1Sq4Vb2YL/XpzqSva13NgiCACQIDZqMQT/G9TwEmjiKzWRCo2YkdKVG4bAwv0yjUWN5aYU0jfE8lzwtcD2b4XCAQBEPY/I8x3ZsHMfn5ZfOc/HyIgcP7SFOhjiOQ2e9BxjDE6UslFBMTYzR6/Y48fJldKHZv28XTz39XS5eXGJ8vEWSGMbr8qVFHNdBiBJlSaQyjIrrOFiW2hpjFGU5YknNgE0Kge0YVlVJiVKKJ558nkroY9vGzn8wGNLvDajXa2itCSshtmPh2O6W7bbvBfi+z+NPHecdbz8KpUaXmsFwSBiGpEmC7RgQ6zgulGA7iizN0VrjBx5JkmJZGlAsLRgnUsc2TESaplhKmUkZ30dK4zA5u3vS9C6OFAhJkhqzIWXRajXJN6MqgCxJQGv8IEBreMsd++n1e6N+RUUQBEb+HEf0en2SOMOxHf7i01/jzjv2b+UICmlYVV3AcJCwe3qcWs2nyFNcxyWKBiiVM9GuI3Gp1gMajTonT50FXdJoNoy1eWkmpAb9Prbj4LoeeVESxynNZp0sy0jiiFZ7zLxnumRpcZUz5y9y112HjREQwuRaWsbB9fSZc9TrVeIoYTAY8lu/+lN8Y3mef/6tY3zqxCl8z+b9P/ZeyDXfff67+I7H7Mxu/vCTn+Tut97JxFSbXn9AqUssu2R9pUuelbx04iRjrSbd9UUQJSdeOsGxZ58higZsbKxz7MlH+Mgv/CoZZpJIkiK4IoEeGfjdBHO3ObC/1tD05iWHO5XJq7vxNjs9Znr7bk76uMmkXS/+4FbqVhivq8/jWuubkHVeMcl7o/1f+9xvHdzduF49gb4ZdbB5HVzL5OVmJ/WvDv1+I+uGLO/o5+tl5nbmtG9+vesd8e86uPsBsVR8s75vJdSrl1FJIEsT0yy77XkhLYS0brjrzYup1DcvaxBCby2UhVmute5mX9i25UaldWECl69RUZqCzLj3nXcTRRF/+qd/Qbw0T7uiuf+dP8TH/+uPU6sFFDHkSQJlTlgL6A36zM7t4z/8yZ+R6ILChg/+/IfA0ly8bAazy/NLpFGfPOkyPbePxeV5fvXv/zwXz1zkc5/+Kv/TP/1tBoOYD33wZ/jVX/412s02f/LJP+SX/9WXKLUkTQo6nXXSNKPQIKSiWq0ipE2elywsrlFoCPyQ7noXBezdN8PLL59mGEWUpebTn3uIOI2RSnDp8gKuaww5ao06pRAM+jHryxusLXaQyjJB1YGLVHD/j95NvelSrdXwQ5d7fuhOSmnkfbVmg16UsLzWRQibsjRGGUIZyZ0cMQGWLak3GuzZe4CwOkaUxpQiw3NsBr0+tpKMtxqcOX2OMyfPGRMQWxEN++TREKUERZ6hy4J4OCTPMvyKgxe6WI6D7bnUGjWUbbHR77O8tMbywhpry6s88/TzCGmhS8EoMs9EL7gmI63eqNPvRayubPCnf/YVihLCaoVSwHi7yfT0bnw/xHVs1lfX0BmUmWTh0hKOZcLWLWWkqb4XGBZPC5IoxXV87nn7EZrtJnfefZRmu8VgGJmQas9DlxBWqyAkJ09dRFqCPXvbLC0vkA4jdJKRZRn1Rg1RQpHnCK0pcyiyEku6lNoIIGsthVIuWWI+snfefZBLy/PYjkLnEoHJJGy2qhRC4/gerbExKAQikyA1AgN6BJqiEHiBw/TuaZS00XlJkRWUsmBu3wxZLnjgK8+TpCVFKfGDgH43o7MWG7Boabq9runrKlKOHJ1l79w0g0FMtxOBhsBVDDo9ZCmQGLZMy5KgFnD3nbPcfacJbm+PN7nrLQfpDTZwHI84Thlr1rAtSZwm9AcDHMvGUmaSwMivJfOXlvE9nyzNSJOEL3zxIXQB0SDlyw88xvpqj85an+dfWKDeaCEtkzNY6IIHHnyaLM8RsiTNIkZxmdiWQ1kayVlnfZ2ZVhPHcrEcjySJaDYrDAYbKFshUFw6v8Tx754lzwRZWmA7jskMrAQ0x+q4doVSw67pGTZb/PM0wXIk0hb4FZ+S0rhilhqdJuRxTGd5A085PPiN75CnOWmc8/nPfJNHv/UsEo3WBYN4gLA1vcEKrieJoojpXbuMIZBUZGXGRr9HnOZ89m8eI6hUUZbiV37xfWR5jC5zqtUaaVyQJSndzhqdtRV6vS6ZLvH9BpcvHCdNz2E7TRqNNjMzTR569GmiaMje2d3Ua03ykTtrWcJ//KsHUcohjXOKLCdPEmpVjzjqIUSB6wcoaZFnGaXQSBfeevcRLNvB8ysgFGlWgNJYtuS2wwcpNegspxr6RMOIH7v7AH/xWx9hdmaW3/6n/xu/8zu/x3t/4iMcPXqERtNl1y6PSmjxuc98lgtnLrGx2ifwQlRZpdWqs7p6jpdefhbXVuRFHy+02L3vAG9/1/3c+Za34nshce7S0xotNEJDLCy0AC2gAEop0Nccam5n4cqRfPFaz7++2pRdal1uLTvV1aHbrwmQSbll0vFKdunm68p56K1lx2ONVDdCSKPyGC2b61vKoixLiuJKDtzmpByYMcHmsn1fV6Sem+ejd1x2Oo/r7efar/fKPq+1jZRqa/xSlnrHc79RGemjRBf5Ddd9LfWaxmWjZfP3Quutx/RVz++0zY32eaNjMzrmZklubdz6d6HeZO6+z/W3z9xdu7TWKMu+9RmrTUOVzTVuoZdOiG373NKX3sKcww1me8yM3bXPpRQgR2YF9WqNbrfLiePHuO3obVh2jX/1u7/H9Nw4vfU+7ckWL7z4Ap7vU6s1QMNHPvIRHM81NxDbwlElWarZt+cw7fE2p84c5y1vuRMvCDh88CBZlnPh0iV+9uc/yoc+9AEefPBBnnnmadoTbSanptgzt5sPf+Bn+PB/84/50dumGW+PkaUZSZyMXAVNXpttWVRrFbQuGA4G1GpVGA2SA9/DGRmwvOWOAwSBx+LiMo5jU61WtiR6Z06fx3UdLs8vMTbWIAgDEw4sjIPh6soautBYtk0cxygl8TzPyO+URVgJCcMKlIIiL43BxagNYnFxmYWFVbI0RmCiEQaDAa1Wg7W1daRSrKysoZRidXWdmZkpGvX6KJvNMHrDYTRyUBz9jxyHNEmNcg7jyimFMTEotTaxEZ6RkVYqIWMtE1mQJolhejZvktrc8KVUKKVYW13n9tuMGUulGowyuxRJMiCOhya7LI4IQh+hBJ7rGGYjTsjShCzNtmR8emS7naUpvu/hOg5f/fqjHDq017BFliJLRz1JWYKUgsmJcWxLIQUmFBxBkefYtkOv22MwML15CMHS4gpJnHLu/GXW1zq022NYjm0cPCmI4x5K2Rw9vN8Az2I0YFNQ6ILN+1e/2yMIAhYXFnF9l3LU65TnORsbPfzAA4z73XA4RFmSXr+P47gIJDO7GrTapgdtfa1DEAbkRb4Vm6CUjWFaDGgETRAGKAmO4xAnqWFoXRclJYtLK9iWRZKmTE1N4LgOnudRrVZI4oTl5XUmJsbI08zMwAtBtVrFto3MNRpEZFlGbzBgcWEZ17Wp1quUWtPr9mlUK1iWIo5ihCgZbzdRStKsu7RaDaQQbHS6CCE4tM/ky+mypCxKLGViCFZXVvA9ww5KJTlyaB9xkpCmKVoXFIXJJFRKjSIF1hEI6o0qvucY9nOT+c1zLMt8Bo6fOEVrvInnOWxs9MiLgrBaQQpJlmV0N0z/nLl+Jf3+AD8I2Ld3mjTLcSyLvXO7mJxqISywbAMgQYyMZMx2pk9Rkme5ya+Timq1xp237aPf7bEwv8TYWJM8z1DKYmOjR61eRwiN7/nU6zXGxw0bTlGSpJcJgwbKNYy4Y3vcfnQfYRjQ7w34m68+xtGjeyjyAtu2yfOEifaY6b1TNo7rIJX5XCulRgZWKc4osmNsrI7jml7FIi/IswJlKXSuieMU23ZI4hg/8JBCsrS8AiV89uHn+Sf/4l9y8vQpPvHvPsEX/tNnOX/uNPVajfPnzwGKaq3OU089xUsvn+SBL3+Ve+95B1CAhHf+8DvJM0295hAlGWvrPcIgxFaSeBgx6K7xlvvuA2EhgUKA2pravB6ou169Xobr2rUZnyGloCg012Pjrsg5r0gJb6WuGHy8jv6om+jt23bAK8vomMWI2TbmNrzqXK4l3dy20+/Jed64bty3Zjr+X7nO9c99p13cCsN36/VG7Rd2ZtluxLzdzH/UkLjbWnWu+hv+7jN3b4K773P9IIM7IcTW7M4tfen9AIM7ORrQXMu5afNLUioL27W57fajLC0ucfL0acLqBO95z/00mg61SoNCZ8zN7eHcmcvkqabTXefcufPMzu5GWBbDaIhjK8KwihSSaj3kzjtv56GHH+bOd9zNZz//OaZnpvErVSrNFv/8f/1fuO3IEX7947/BBz74QQ4fOkQY1vj2f/4Wpy5d5uM/8w6klFy4sGB605KUCxcXmJwYHwVTpygpsR2HxYUVao06ly/NA+B5Hr7vs762TlbkVMKQQmsuX16iWqswf3GBubkZKtWQ8Ykx/GrA+uqqkRNpyLOClZUNWq1xlBJsbHRptcZI0sT0tGkLgWEoBt0+585coDleN5IkBJVKaNzvwtDEFFg2ayNDF883zF61VsFxTX9RMbpmsjRjdXUdy7bwPI8sKxhGMb7nmcGxpbCEIo5SsiTn0oV5kigi8GyiYYS0FEHo4QUeaZ6hlJFIrqysG9bMcsjTEeDXJVEc4fkuQhbUGxWWllYI/AApBJcvX6YocjzfDJSVrRCWML1ZwHqng+24OLazda2VWptsONdFjq6tvXPTCGnYE89zQJQoCUkc47g2SRJj2zZxnOJ5Lqtr6yhlTEMuX1pkfLxp5I95Rq1eJYpiHn78BdI0YffuNhYuRR5DGTEYdAiDClL4KKXI9ZAo7uLaPlI6lLokiWJ836PX71GtVxCYPqii0BSFNoYYjj0y7pFG2lup4jgWlEbe6AcelmWMiUQJ/f6QsbHmKFeuxHcrZGmO4yiSLMFxpHn/R3JFSsFgEFHko2y9XNNsNhAoLNfCDwMjg7YsNta7NGohlVqF5aUVqpUKw2GE65meSV2YAPai0NSbNcbbTWxbkWcFAsWff/qbVEKHmekJxsbrTE2NYTsC2xE0mzW63Y0RAwRf/NLjvO3th83rKEwIuaU8Hn/maY4c3m9kj8r0jumiGAXKD/BcnyzJcD2XsixxHIdWq8ni0hKtVmNrYmHQj0wouxQIkYIwDp7NURB5keXUG0bK2O32sSybaqNKnucsr6xhuQ4Li6sUWtNsNBHA2uoq0hIkSUR1JFM8d26eWqUGpUUUx7x88hyPPn6Mudld5FkBWlBkBd1ul8BzSdOYmT2zFEVBPooHUZZEKYGlTIzE0tIyzbE6SZaycHmJNFrDdxsUwkKXFlKUDKM+QhpTln17d+G4FpZt+m3b7eYW+2B7HmmWGiMXpSiRDAcJjzz6LFqb69zzHCxp8/zzJ/jqN5/k7jsOmc+hcFhb6VCv1xkMIjzPpdAF4+Pj9KOUb15wuP22o8zu2cMv/cKHKYoEW1nsmppmbs9Bzl84w8//3M9x330/xNTkFG9721upN6qkaYYfBAx7Q6QlEaUmTnKmpmcN0E5ijr/4AlkWccc99yCxUKVAy9Kwz+aOco070d8euNtem0DvRvu8ZQDBpiT1+wvuXpFve9Xz2/vZXtn/tnOg+ZX6wQB3V3rxRq9FvtKV/KaPsi3C4I2QZb4J7n4w601Z5t/h2kxx+57uczSo3F7G/v3mKGuJaQB+vedWav09kxEUN3Huw2iAXwk5/vLLdPt9nnj2WRYWFkGA6znsmprAdT2iYUKn0+VjH/t14ihm98yM0cKVeisXq9PtsLq2guUoOhsd7nrLXZw5dZajR49y6uRJfvm/+mWEFAyHA95+zz18+q8+zZkzp3nhhRd45slnOH36JP/+d/8Nv/ZvvkSpS6Ym2ybYt1nn9tsPGWv63DB2eZ5TliUTU23SLGXX9CT1em2LURgbHzOz98LYq4P5H++Zm7niLmlZlLrED3xjOT/oMxwOWV3b4JFHjETNsUdmHqazG8u2+JM/f5CVpXVefvk8R27bjx7NCnc6PdI0w7YVJSXnzl3gxeMvb/W8WZaxSDduicKETStFlhUMhtFolr8Y9Ww5BL7Pc8eOQ7nZXC5wXGNEMjExTqs1xtLyClEcIQTEScLa6jqFNuKoPC8IQ48w9EespAEyjJrLbctCKYHruuyemaYsodvrMTszS6M2hk7BdyugBb31rukp1Jo8y1lcXDYgSAi63S55bqRAetTj0R+YwS5laQLAYQTMjURUYIxItC7xfA9dlkxMtgkqAUJKdu1q4zgOYGIfjBmIy0//1H186APvMfKckUHC+noHx7HJ0pRSQ5pk6FG/XaE1ndU1kihhcXGF1dXVEeiWxElCd6OLALrdHo1GfSs0vtQF4+3WKCbDHEdTMD8/b9hFy0ZIwVirSak1UkhWllYYDiNePnl2xDIbs4ly9L8pCo3jOkxMTtDt9njqye9y/MRZ+v0BWmuiYUSeFZTA8rJxfh1vt8iLnMnJNpa9KbsycibXcamEIY2GMT6JoxglFZaleOjhpxlvhdx55yEef/KY6e1Kk5HxhQlrbzbrrK91CCsh73nXnZSlptAa27JpNMw1e/jAHtIkGfWGmKiQKIrI0owXjp/Ftm2CIGTh8hIry2tmoCDh8OG92K7iM5//BsNBxAMPPkocxwgh2djoEvg+4+NN/MBno7OB53nkRWGAar0+mjgQxEnCeHucIAw5dHg/eZ7z8ENPbrHs8wtLNFoNtC7xfZ+pqTa249Lr9nFsm9uPHuSd77gDrWGj0+XLX30EIQUvvHiaXs+ASCmg1+szf3mZRx97lpXlVZQS9HoD0wM8MUaSJAgpcH2X82ciXEdQanAcA9Ysy7Dop06fB2B1dY0iz0ffw4bB83yPPE9RSnLp0jxaQxylxFHMj7zzrezZM4Nt23TWN9Aa7rrzNj76kfeSZ7nJqZSC5797kvPnL+C6NhqwLZsiz/kf/79H+eWPfpSHHn6YlcVFomRAnAx47thz9Ho9Hn30Md7/kz+FFLC4MG+cVF2brDD9i6KU/MyHP0yepdiOz1izTZJkKMs2+ZdpwuHDhxDqyqBQvWI0ud3s47VILMsdlu9tme++axx9m0Tz6nU3JaTbZZ6bUs9NOaXp1dOv2Mf1jnN1bc9fu7puJEPcSRb56mDwq89Db004XC0DvZHE8nqSzauf3+mx7fu/lgx1s58RXrts8PVuf6PaHB9uX15LbY4ZN7e/+l3ffP5ass3N2nx8+zh2e+rx5jrbn9/+9xsxrv7bqDeZu+9zfS+Zu816w1tkt2j9azy/jbl71aY32PU1mbuRzOKG+u3XORO1OejMS01a5OzZM8eBgwd493vew9kzC1w4f5Hdsw16nYg8Mxblw2HOs8++wAc/8ONM755B64L1jQ2aY2NIWZKXmqnpNkWRs77WYWpqmsXLl5hutxmrNdi3dx8nTpzi53/27/H8sWP86q/8Cmura2R5xtOPP8eZsy/z3HNP8T/8w9/kv/vff5cP3XuQtdUNwmqF5aVV4xApJKdfvkCr1UIpiyRLSbMM25I4rsPTT7/Irl0T9Db6JGlCEIYoy8gyLUuBBZZjmwBoTCjopn2949gEgUtexNz91sPEUUqtXiVJU4Qws/JlXnBw3wyVSsjkrja2a8AApaS30ceyJZYlEaUwsQGDiPHxFlCSZxlrK51Rj1oJpWD+0iJj7RbByETEcWwKYYK9pZRMTU0wHA6JohjLcrBsk0tmuw5CSaq1CmG1Qp5pLOWQJRqFRRC4uI6D4zpQaqQsiYYDsiwDIXjiiRcQpSAIfZR0kMKipCAIfXSpuXR5AVFo6jWfZLiKRQrSRilJpVrFsR1jAEFJmqQElRClJBvdLnEUMzbWZDAYkhW5cZ6U1tagKE1zA3A1SGVAbqE1lJBlOWjBysoacRIB4PkOrucx6A+oNWojdilDixwlbFw3wHU9hLRYXVnn5ZfP0hqboBLUgILBsMfK0hp752ZwXI9oGOOMAqot2zZA17ZR1mafLUbpi0SXgv5GH0rodfvYShENjakPoqDfGyKVMcChNPEIExNjiFGAsFIWjBwkpRQkUUaSZIy1GohSc/DQnAGmeYrIxcgddo32xBjSNsHyRu6Yk2cFg/6Qz/3NI9x2ZC9FlhPHMVme4Yc+aMnXvvEEB/fvodkI2L9/2kiKHYt6vUq/N6Dfi7FtF9u1KTaBNZqTp8+ze/cURZ6T5TGdToexVg3bcgiCkMEgwrIs1tc2+OLfPMHC4jo//t77iKOIM6cvsHvPDI2myZij1JTkDAd9er2IA/vnOLh/N1qbUHghFKWWhmEUUK1X2Oh0qdXrW66qQkjOnz1PtVrFcz2kUKbPslLl4uWLTE40qddrtMZbZGkOwjCrrmeTZwm6zHEcn0F/yOX5JSba4xS6pN70Cas+c3PT+GGA5/vMX7iM53hQaJ585hQ/fO9RijzDtn2iaEi9XhmpE1yqYw32z05z8eJ5/NBhZWkdqSwazQYgOXd+gVOnL3PowB6yvKDb61Or1UmTjDTNsVSOlILOWpd6rYpru0hVIpXk6WdO0G61SFONMwLyiwvLbHR6nDx1gXY7YHpXkyD0WV5Zo9loUuiScxfn+cWP/Rbzl+dxPd/0Afse9UadPbtnUJbg4qXzlEXKF774n1iYX+Q997+HZrNJnEcUmUBJlx/7sR8lzRI6Kz2CsIobVClLzZmTJzh79hTv/+BPUtgWSlsYC4+Scseb462Auuute30J5a3WzatqNpk4s/7m79fK29tcfzszeCvnaIDijSWjr6xXs187sXnX3s8rt9/uhvlajF2uvc2rz2endd9IFuz7Wa+pb3P0c6v38xrr3eg/YTwjBOIaY8Mbbj9a/q4zd2+Cu+9zvQnurtr0bxncmeOBbdtEcUyap8jS5Hftn5vDcXz+9E8/yf69h5icmqREcOTwQd5533sIq7YJwdYaL/AptSaOI7IkJRoO+cbXvsY999yLpSx2TU7wyT/8BPe/+90sL6+yb/8hLl48z9lzZ7nvvh/mwvnzjLfa3H70Tiyr5B33vJWXTrzEC6cv8MG7dxv3xDDA91zOnb9EqUua9Tqe7yFHPUBB4I3YTkF73Ei24iTBdk1Py+Ys69LiMkHN33r/ssTIO4UUnDp5lsZYDde1AY3n2czPr1KphiCg3+9TaE3UH/DcsZNUKyEXLy1guZI8L/C8gCiKCauGFSpyTZZmfOOhZ7nt8BxKGXt+iekfdB0HSmg2m+jRzVWNHCw63S7+qOdGl8adUlmKvChZmF+k1qhSAmmaUmLs65M4pdcd8LWvPcWwN6Ba80fOioAozf93BGKWl1b49qMv8e53vZVer48uoN8bUOicosi2LNBd20IKjdZ9pMhwwzEEYmtQbkLQJa5nzrXUJdVaFdexGAyGOK5tAsvTDMEIAGHkr9bIpr/X62E7pm9PSCOhWVpYodmsUa2GOI6D1gVpmhFWKti2zcULl8jyjJIMnVu4roemQCqF5/l4jsP8pTXzd6Co1wMqYWXU12SYT9fz6Pd7pt9WShzHHn0oJEIaI4y8KEYMmU2W5jQadVzXNf13QhInQ4TYtBgXJvtMSTrrHVzPQUlFnhdoRteaZTEcxriOj20bea6lJCWlCbK3HY6/eJLxdsNILy1pgGOes9Hp4fk+JXD67Dy3H92PNXrOfBYkpZZMtJuE1RDXtfF9F8/1THaiUGxs9KnXa7iOQ64NQ7i4tEK9WeMbDz/Dwb3To945QaNRI8tShv0YoSTD/pBKrWrcWT2Hd77zbWhtrsFvP/o83W6Pqclx1jtr1OpV8iKl0Dlzs3OjGA0TZJ+mKbZlGGrHcRkMB6bPUYPjuRRaM+gPOXXqHHtmpzn23RNMTLQ5c+o8n/n8w4S+xR2376VSCSmFNP2Ljjvq6YMkjhgODSDT2rCEe/bsJk0z4jhhenbCyGOFMFlZSmFLhW1ZpEnOgX1ThIEJgf/O4yfYMztJkaUEFZM5GWU5+XCJ8eYkncEykxPTSMsdfZ0KarUqB/btQVmS+YUlZmd3owvzGRVCYDvQ6/Zot9tkacaLL5ykPTlGURS0x8f5whcfwpIK11WUuuTHkQ7RAAAgAElEQVQ7T3yXu+48TKNRw/Pl6DvbJctz/CCkKDT/4P/+MqGwuP2OO3jyqWe49757eeaZpzhw4CBQ8NSTTyCF5sjhQ0xOTrP/wAH+8q/+iu889hgvnT7JW+58O5Zts7y8zJ65GcbHxomTHC1MluBku8HlSxeZnZ0hbDYpM1CA/jsE7m4lF+37Ae4M02du40Vh+oxvDpRt1rXA3bW3+dsAdzvFSb0J7q7aZvTz9YO7YvMkXtOYtNTaqJMs601w92bdfP0ggrvN8PFr7WfrS0/InZdt53FdQUlZ7LCGYku6sm1/2zXm16urm6Nf1Sx9E+BPAGiT5WZLC2mbAXIpBZW6T7U2yTc/+zlm9syifActBa4veO7Ys+zdvxc/8BBliWNbjIcBJ54/xqf/41/z4IPf5L533k97eobzZ0/wnSe+w94DB0FKLFty//t/iqN79vFHn/wkd975FhY2BlyaP8l73/c+LCfgyWeO8XN/7+f4h//yE/zCjxwkDCsMBhETky38wEVYEMcRypIUeY4EbMslimI66z1eePEsEsnU5DhnTp9DSQFCU60GRP0Ux7KZn59nvDXO+voGtmszNj5GFCVEcUqt1kAICyFKuhs9atUqaZwSDWIWljrc96634roWzWadUpe4yqLX66J1bsBuKehuRFy4sMDhA7PUG3Uza2+5pmfLVuRFzuX5RWzHGIx4noNUkrIoSOMU21FbEpaikLx8/AJf//rTLK+s0265xFEf17axPNv0H1oeUkpm94zTalWoNY0k1WT8SJSykcJCWcZePksimo0atYpHEqesrW0Q+AF5VlCp+Qih8D2bYdSlFDaV+iTlCMjYjjXKczPN+1EUGZMXpSgRaHKUbaGUhRQmGNoZWfWDsbq3bIlUoKRNHCU88eR32TUxTjyMqVZDgjCgHFn6S2lhOx5SCnrdLpXQp1ap4Nk23YEJpM6LkixNkQ64vsv4ZAvbVZSiRFiKJE5xPY84jk3/jQBlW7iOg5SSQmtWVtbwRmHh3Y0eaZzi2BZSCYQUo/O2eP7YcXZNT2A5Np5rQLQ1yjMsSghHmW/Ly6voQuDYNsePn6bIcsbbY1iOJC/gm//5CaoVSZauG7dIL2RsvLEV74GAUkhEUZLnOb1+n4WlNdJYs3//jAkiF9qEJxc5WCBFiTWSwyIMu7K23kEIaDRqxgCn1MTxkL/4669x4vg8977tNuZ2t3FHGZa2rSi1RlAShnWExISRl9DvR+Q6olL1WFpaZKzV4I7b9wOwtLzG3j27ybOMSxcXGWs0SbIM17Up0Tiei+NYxFGC1gUvnzxDa6wBZUl/aAx8Nr9Rx1tjIASTk22iQZ/ds7vYNVVn955phC3Jy9KYCknBhXMXiYcDfM8nGuZ8/VvPcPjQXixpIaTG8Sy8wGfQH+B7LukwYX1pDZ3lhLWQzto6fugR1kOiJOG5506xb98+JnY18X0b3xMUeUxnYxUHgetXKW2bSnUKpEOSZNieotAZtmXR6WxQr9ewlSLPMwMqypJOZ8N8rvwKzx17ienpKcbGGyhp86d//jXG6hXecc/tNJoew8GQVrtJ4FsEoWfiSSyBbTl01k2EQ7/X5cEnXyC3JvnLz3yRtY0+n/oPn+DXf/0f0FntkCUFYOPYPkfvvIPzZ09z6eIy3/rW4/zE+36aKM746Q/8BEWeEUd9JqenOH3qLI5fxQ18dCmQoqDqCP74//0E7/6x9yORYAm0AFkaQL1dhCkwipCr7jI3ugvtWGawa9bZngt53b2NQPv2e6GRVYrr9txt3x7YEahdDfCklFvRCVfOd+dzLMvyFYDuyuhDGIm3MNEmZiIrvQrsvXqEcb3+uWv12W1n9sz9TSLEpvxRACZrdfuL3P4+bgePm3ETWhsjrauPf2V5dej6fyngbnsQ+dZ7NAJIt9QbOFq4Abh7xWfsOuezfZ9aa6QQr5Jy7nSem6/hTebuzbql+kEEd1szJq/3RG5YOxzhjc7Ie63MXinJc+NuNzHRpuY2+fwXvsRYs4Ub+Niey+zMNJZUFCOnwUcefYypuVlq423ue9e7OH3+AuNTk9iOotqs8L4Pvh8nDLA9FyyLD/zUB3n8scc4dfo08ytLfPHLX2LPriniKOYv/vzP+eD7P8RnP/sZ3v1D7+F3/v1nefuBcXZPtil1zuX5eXzX48TLZ2jUq3Q7PSzHHrFnHp7nMDs7RVh1cWyLYy+8zMFDcyZrajikVq2ChEqlghTC5MfFKd1OF8qSaqVCFicUeYEf+vi+AU1+4OMHvjGJEII8y/mjv3iAibEKY+0m0pI0xpooy4Ac27LZNT3Bc8+fYHbPFGmWGJApMX13nmsy7JTE8Yxbo0BsZd8p5ZEmGetr6ywtreL5NsMo4kfvfxuNZh0pJWFQQWuBKGFtbY1qLcB1zWBQFyWObfa7uLCEPQpQHg6GOI7NxGSTzezqEk0QOoQVj7Aa0Nno4jsei/NLSFnieR5pUiBt01dUYvrnkiTZcmaTSiGF5PLFeeq1OkrZ6LIkG/UYiSLnxIlTdNY2WFpaMbJDYUATlMzOTLCxscHF+UVqtcCwgaWx0pfCIk1jHn/iOXbv3oXWGstxKAsD7Ck1/V6PMPDJtGFJKMWIEcwR0jgkqpGJRb8/IMtyVldWEIDnBgwHMdWwRqfbwbYtXM/FGjFOvY0hvm8yFj3PpTlWIc9TbEtCKdG55i//6uscPjDHoNtHFwUSsKRF4AfYjs3kZBvf91DWKF8AyVijRiUIqdXrpClobcxKnnzqGDMzU1uf485qj2q9hud5tNtjHDmyxzillgViZGajS7Ad857pouTsmYs8e+xl5vbsAqBarVAiGA4i8/ocjyxJ+PEfextZnuIHHuvr61QrIf3e0Lh+liaYurO+QRiGdLtdoKRarSKlolILsWwLhGFsd81MkmYJlmMTVgNc30NJk+fXWe/Q7/eNYYmyCMPA9ApKE7IeBpXR4FGztraK7Ugc22Oj0yEIHPr9HrZnE4TmNUbDmNOnzlOtVqjVqwRBwPLSKo1Gg9uO7EcXJSvLy9TrdZ5+5kXa7TEAgopNrjOarSZ+6KMLsKSg1+8bltyx2bd3N+iSPFug11tFKYXjejheDeWFCGmRFyVoiIZD/MAljYdkSYqtLGwlUZa9ZXwTJzG247C0tIJt24RhSHu8xYsvnjJuvyLjjqNzSCn5f/7sAY4e2E2lanIjgyBgY6MHwKCX0Kg38X2PeqNKWPH4Z3/2BP/zb/4G//g3P45SGb/2yx+l1axRbbSoVGr4nk+cxDTG6lTDOu32bh56+DFeeukk1SBk1642YSUgrPgkeU4lrMJIQi2kATmLF8/y0Le/xYc/+lFKKSlG/ZebvaivuoV8j8Ddlf6x7f1t1x84b2fdtjNvNwvubpRz90pwZ46l1BVXTiGuOHNeHbWw3b1TbXfyHPVICynYjAbR2vQu34pUcwuYbotHuDZbt0P8gDKxAdc+5vZevE02U289d/36LxDc7Xjxv47XcwNw94pVb2GfUogdCIdrn+eb4O7NuqX6QQR3m7MbV+bQdt6nkhJRlrd0vFfu840Dd5tzYqW+qoH6tQRj6hJKUJbpR0NAa2ycPXNzXLp4kTjpM9FumRwdjG2/kJJWs0lalkjbRlkWRw4fZs/cHPVqDcdV6LIkSVLaExNIZbFvbg///T/6R7zt7fdw4PAhfvrDH6JVr0MJR2+7nYsXL3H0yFFuv+12GvUmv/F//Gt+8d13cPylU9x+9CAb3R7NRp1qtUq9UUMqtTV7qMuCNDHxCXGUIEoTKGzZZqAuLUWe5WRphgaiYYwUgn5/SKtlBoBxbAZjpTDuf3lheqfW1zt0N3pm4G9ZHJibZGysAcqYtvR6vZFFvabUgvXVDidOnWfv7CTIEse1twKdlaVYWVklrFQAyNPMvAbByLbe5MgFoWGBJiYnOLB/N67rYLs2q6sdVlc7+J6PZVnGXl0KCm2mhksNaZaxurJKGAQEgY/jeEgl8H2XNE23mvj9wGO906FWryKVYaBc10NS4nkmS8l1PJCGmZOjgGdRCpQyodibl9sXvvIIM1MtgiCg3+vjeibGwbEV3V6fiYk2k5Pj+EFAEsdYjglat5SF69g0GrWRnFSOGDZpAtDThNndu/BcF6kUlm2zsbGBEALXdYijiCzLsV1vNBNu2CupBKU21v6akiRJzLFcl2o15NTpC9SqFQSCNM2oNULD5BWFAZGWNepj0iCMjM+yDCpWwkhyB4OY8bEqrfExut2ueU+kZGVllbXVDSqVwJxHaQLoTc9ggWM7DHpDhBJ0uxEXL8zjBx5753YjBMY0SJcoIUmSjG89/BRHDu+jP+zT7/axLcu4WEpJr9fHdl306NoeDiPuuOMQZakJAh9dmn639fWOySm0LGamJ7Bsi09/7uskUczhg3tRUpEkqQHtJUjLIk1SbMfGshSeb2StRV6gRkyDZdtIYZhmy7KA0mTKZZkZDGImHx74xhMc3m+k1lEUG2C4+T0iJHEc0+32mJhomQkBKXEchyxLDAgPQqLhkGEvxnEdWmMNHNdF65Lz5y4Zc5vSfF/rwrAUtmPTGm/hjLL2oKAsjWGDFIpoGLGyskJzrA5SsNHtUQ0raK3pd9e5dGmJqYkZut0Yx62QZAllCS+8cJJmo0o0iAgrAXEcEwQhL718GsdxRgZdRoVhWza9UYi557qUGHD68GPHOHxoDmWVlLpkMIzY1a4T+C6OaxFFCZcuzhNFKe32OPEwM9d6HOM6Ni+cuch7P/KL7N93kG5vnS9/+QF+8n3vw3FcSmxWV9YIwworKyusd1Y5e+Ysq6sbvOOeezmwdy/fefxR3vkj7+LbD32TmdlpVlZWcd2A3/7tf8Zb3no3tVoVJeGF557mice/w8/90i+hBZRCmc9mKXbEZuUNR6fbOYjrPW9+N/e1K8vNsHfbfzf/7xtvY5ZXMk+bbNv258sSlBqZUOyw302J5iuUNFeVVGZCUo/aMIq8oBxl3SplXRfYmWPsBN7Y+t7b6bhyi2ErX5XJZ8w8bo5x0qPIhc1YnZvKnHsVA/hKBvLq1yaVeu0T1K+htpu93MJGr1o22bNNZuxWWDy1Ddht7568kTLsego0sROwGx3ratBXao0SAvUmuHuzbqV+EMHdZt1IYS5HX5i3crxX7vONA3dbH+qrv0Re0xejMHptAWDcv3LfpdEIGKtX+OaXv8CFMy8xvmvW9IEJSWdjg7BSQVqmDymLjARPFjmWAMoc13HJk4yl+SVq1RpHDs8xiFIs1+dr3/g642Mhw+6Qp595lvvu/SEc5fB7//bfcvT2WYbDLvPnFnjw9Cr/5O/fz7mzF5md222cGqViOBgSRwnDqIvrWCwsLOP7Pq7rcv7MAjOzMyhl0d0wWWXrnTU830cKiyQxEkDbdag1aiRJAtL0kAklyLIMqSR5obFsC8d1CQIzuNWFYfYcxzYul1mG5zgce+44k+MtoiilLEvuuGM/a2vrtMYbRNGQNMnxAg8hBH7gI6RgfX3N5PDlJjOsXq+bwbMtcWwb23b4zmPP0e13aDbraF1SFCUT7XEW51fojfLZLNul24n41B9/nb27G6ytrtMaa+LYFkmckuYJYPrktIazZy4xPt5CSNMvhpQIJJZrURQlrmMziIckaYoXVMgLEyJrWWbgn2YZtmN6qfLCuIVJSvbsmdrKRFPSxrY9BsMu4+02YaXK088eZ/fuXQhlIZFG0iktLMtGSQslFf1Rz16aJjiOYakc1yHLctPnIySu5yPKcjTLLajVG1sW84gSuSkbkhaiLLeAeRAEBrjZLo1mg5KS4ydOs3vPLqBESZPl5/s+RZGjlJEsITZjAGJ8L6CUIIRClwVh1UfZ5pwsx5ioVOtVXNclz4eARmuN74eUGpStydOMPCtZXlmjVm/yla8/weF909i2RbfbG/WSajzfwbYt9u/bRxwbN9h6rbYlC8sLjR/4lMIEb7ueS3uUZ2fZppcwz4zcSxfauJcKjVQmd+7ooQO0W+OUQKfTpVqtQFkSxzFlCVlasLS4SqNZodAFliWMNFdrSiSW5bC6sEw0GBqzIAx42sxqLIqCarXC7bftHb0Hwdb3jJHemgw6z/PwXJf19S6eZwxrlCVIogStBQ89fIyJ9gTPPP0iDz3yXe44ug/bcdBa02zVsB1FHA3JspRvf/sZpCpZX+/x/LGTzMyMm0kJYSGUjbCMYYlru0ZO7Xn4YUAcxQwHEYvzS+zbfxhLeVSqDYIwJMsL0Bme4zI5Pk6R5ziuhXJspDKB8u32OIPhEGWrK0BXSTzfZzgcGiZuvcsXHniUKMl52923YTgwiaUkU7smqFSrLK8s0WqNMTExTiWsYFkWDz38HI4tieIB1VqF/+uvnuS22+4BWWVi1yQHjxzl/IUVer2My5fPA4pOp8fv/8Hv8zMf+gCNdoPJiXGee/5ZPv3pP+Ped9yF+v/Ze/NgS677vu9zTu/dd333rTNvmTf7DDAACJAUF1EESS2UVCEpibbkWLITO4mTiizZcVyqpJzITqWkKqfkiuSK4ySWmCJNkRIpkaK4QeAGgNjXATAABoPB7PP25e63t3Pyx+n35s3Mmw0iKUqZ31RXvbn3dt/ue/t2n+/5fn/frxNy6M59uL5NGJbJUsHzR4/yo+99L47nYVuCqYkRhNYcets9aAG6cO5FSOQ297abA3dv/flbYUWu7J+7ldpYd+PvS0zgJdburb6fVhujAsMqaq1xfW/Lffwm2iquI1O9BDK2toRcWs88VICSze3c3JjhLxP6Xmzh8n25ct83EPQPsLZKb78X27lS2npT6275+62MNW9lne1A4gYQvM3c3a5bqtvg7soX/PCBu415I3NxVWipSbVAqpxy4DJcKbG4MMfpi0vM7t5NWgQSx0mC7fp0Wy0unr9A5Ps40kIUALHf6/OHn/4Mf/D7f8BHP/IRFBm2Y5ik+97+NqLQphRUWF9Z41vf+Q5aaT7wgQ8xsbPK5M6d3P/+D7J3apZf/91P8Y9+9p0oNGjB8dffpFavEEUhfmiTJIYpqNWqZFlOKapgOxbHX32T4dEhPN8nDD26nR5CGqMW026wIWcxUpnllVXSJCUMA/I8Lyz/DbOQxDFOYb7RbnXwPBddAIdBf8D05A7W15skiWLQHxjpmi1J0oRSOcTzjZmGEMX6vmcGwo5NMojpD2Js2zJOpmlGs9lidbXJ/v278QObUhTR7w84efIszx09zh2H9hkzDt9j7sICvW7CHYd3s76+yvj4CGEYGhYEgeUKbMfMug/6CVFkXBDDkk+/PyjcLyVKKNOnJ8GyzOeT5ZogCDddIdHgODb9/qDo6zMh3dVqGWGZmWutzGuefOJFpmfGUVqjtCAeJFSHjH29FMLEKCg4f36OWrVCrkzw98ZMstkHA1S63R7tdo8oCpG2A1rT63axbQunYEU2Z73NLKQ5NtshLEWsrazjFUY7uTYW+EEY8M2Hn6NRDymVQoQwoelROTQMljBOpxsz1Ua2bMBNnBiA63qWye0regOTJGFxcYVed0AYWgRBUAS+m5l5LRKksI25imvMPA7vn6Jaq6C0NrlreUaa5+RpQqvZodPuFzEZDkk8wHVd3jx1Ds83zqW5Sgh8nySOsW2bTqdjGOfVVZ59/lX27pnmj7/4be66Yy9ZniCEMVRKY83LL7+BJTX1WhXHNf2fWZYRhhGf/8JD7JoepTZUwbEluc7NLK9lA0bGHXkevu+zurpKu90tokV6BJ5PmqVkec7zL7zK7tlput1uIXH1jQNt0VslRBGVYZvfRK4GLMwvMlSr0VxrE3ghgR/yzHOvMjJcYWpqnGeeeYnxiRG8wJwLtiVxHZepyQlq9QqVSpnduyZxPJtmax3H9gFBu9slS1JsSxJGPkIKI8v0XCrlCoN+H88PKVdKKJ2htAIJgWejM+NiaRhBByVBStuwp65bxHaYCZxms2X6gqUkikJUptEo7ji0m1LgMDIyjG055CrnP37uL5idHqPX7ZnrVLdnzn9p8+RTL/GOt99BvV4xhj9K8cdPXuA//+W/zz/6b36d+z/4Ph56+Lt0eylJoqlUAibGJhgbH+Mzf/hpyuWQUiUgDEtMT03i2YLl5Tkmp/ajxYDnX3iWqalZhHZ4xzveQblqFBHddosnH32Ij//Cz5FbFrkW6I14EMTfGHC3laG7ct2Nv68Ed1t76DaWDdB3o/eTlo0AkiRF5QppSTqtpnE3voVju9b76CLi4EoAas6nS/m3RWtuob64OSv/7zu4kxJdsIM/qLoZn4Ob2s5fF3C3Tc+dhA21ym1wd7tuvr4f4G6rWONmT+ztJJhKXdLIb1DjW5/XKisAmulDEEIjhAlwvdZ7X0ahX8eMxWxfkcQDbNu57DEhxKbs8lqlNuh/rr4xXbncEPBtkYIIYRgV1xZIIVFCUh0aZWRimqVTZ+i1muzeM4W0HVw7wrIFtpQMBjGVegUvCtGWwEHhl6rMHryDj3z0o3iuxnJtBArbchi0+7z+2nn63Zjjx9/ggx/8AINBj299+xu8+71v59VXX+Nd7343tm0xUhvh1/73T/Jf/Mx9nD9/kV27ptBKG/dC2zA/URSRa02qMtqtJn7gUakGhGUD5BxpkSYpWiuTrZUqtKULKY1Fp9XjySdfYWRoiCjyyZIcS9iAYG15ndWWMVhJk4RyuYJAkClFpVQhHsRYjo0f+tiOYKhRRQjo92MjcxQWKtcIrZHCIh7EoDEGK1lmMsS6A/pdEwotAc91qNcrKJ0TREYy2G01cR3JjvEhE4SeZ1jSyCl936G5vsKZc8uMjFQISjbCkgjbZ/niCo7r4dgutmXTXF8nHgyo1WpkScqxl08wMlxDYjF/YYGVxRaVch0vCIxFfSFnQ2vSLENaFq+8dBLXcQlLJTQKy9HFcSoG8QAhBY1GCeEY4GhZkkolROcZbiFPzPMcy5YsLi5TqVUKZrEAmJaNUoKTr52lUg43oyYsCZnKkErhOS6246KFxEKSDAa02+v0um1835h02NIiiRPK5RLtdoe11XWq9RLrq2uUoog9MzuoV2uk+QDHcfE8n14BpjqtDs1my4Rb25bJR8SM5v6fT3yNuw/vJigcQzcmA5JBRugFnDk7x46pHWhhozQGRKDIE0G71UWREYQBpVJIUIpMhAIZSTqgFEUce/k4jeFhHNfmkUdeYnpyFM9XBKWIJE348gOPEzgWw0M11laalEoR0rYY9FOEcMhTjWO7rCw3CXyfqZ3DRGGEZdsIBLZls7iwxJmz8xw+tJsgdNGkoGFpYR0szd7ZSSxpI6Wg1WpSLtVNdIYyRjQPPPAYu/eMY9k2nutRrpR58aVXGB2pY9vGodV1XIZqFSPvFRrHcrClTatlGHdp2Qx6A5YWVwmjgGZzjSiqGQdSxyGMykSlAC8UTE8Oc+Su/fT6PTzXplyJWF9tGtCsFI7vYnkuSsWEURmBxYPfeIK77jxAnuWoPOcP/+hB3n7PQbSGublFwlKAJSFJYqRlUa3VyfKYfn+A7wWcOzdHrVZBC4c4Nez72noTYVksXJijWo6MXBfJxfNLVKKIxblFwsBDaLCkJs9SXN8nCEKkJRkdGyLLY4SAc+fOs3N0iFq5Qp7mSAskFp4X8NgTR3nb2w6Q6dSYB2WKD/6T3+NX/+t/zusnz/BzH/1pJqdGOXR4P9VKid17pgmdiOMn32C5uciP/Mg76K6tMVQfZmVplVJU5vmjrzI+ugslB8zu2cfM7D4cz6XTb9NJEhOtkcZYWvPNB7/J++//cRJhJK+WFpgj1SghDJu3ZdlednmzUswbD4SvL1fcYKouyTk35JXXc8u8FljZ7vGtLM+G7NOyZNF/Z3HlZsz7X2qbkIWLbp4bNl1rjSUtgjCk2+1DwYaba4lxb772Z2Ck4leCoa37fTkwNeYyGx918RFxZSadEIWxm4JLL5bF57nFhGVjTHGNr+TyeIbLpZjX/B7fItN6vbohYCyOQxWOk1tfd7mM9MYTD1f1LW6VbV7v3N2y3Eptt852hMLWbr7Nc3eLfHSDwf3rztz9Tcjqu11voTYytbYGfFtSbi5/FSWkkXNd+Zjkezej9Jar+JhEceMeHh3hY7/wEZaWLnLitdfoD1L6aWb6plyH0dFhY01fZHxZfkiOxncEOo958/XX0JiQ5ngwYG5+nkMH9+N6Nk8+9Rh5nrL/4F7eft899AeKA4fvYmllHS0cLs4v8s0vPcAv/esvMzExZgZqSpMmKXmWQw7t9Tb9jpGHra43sQvbeyEMEM5RWI5Nc62LyhV5HpPGKSdPniXPjcX/hz74DqKyT7/fw/Udsiyh1WpRH6owO70TCQz6MWmckKUZjuOwuLhYMDkJeW6kZ5vZbUmCUopWu0OepyCFMbEIfLI8RWAYFKuQZXm+kZrl2szottsdBnGM0pokzQhLIcPDdSzHRtrGCbDT6xFGIdV6hZnd07zn3UeoVWskcdFfYSkzaF5vobRC6Yydk6PMzE4Bmrn5JcPCxglCSpaW1ul0e3S6PSgc3aQ0vY2WXfQvCsHd9xxmeKSBbVvYlo3AANg4SQxrKI0kTaUaISzWV5topUmShKzIcOt0u2RpaiYLLEGe5SwvrpBlWSH906RZblg5JIEfoHLBoJdw4o2zWI5NlmVICUmakGYp5XKFaq2G0hqNcSp0XAeEmaVeWlkjSXJGx0YQYLIJhaYUleh2+tiWTalc4ty5i5QrFRqNhvnOk9QY3ay06Hb6/Og7DxTyQ0GapMRxTBwnzM8t4Dg2hw/tIU/hy1/5Lg8/8txmP45W2pgABd5mHEe306Hf79Pr9qhVa3TafXbu2EG73SHLMpqdPp7n0m53SbIU27H5u7/4kxw8tBvbsRgZHQFhtj0YDLAsyQtHX6Xd6nDffYcZGqoyMjKE51vMX5xDSsjSFM91SJIU1zPn3fLyKghBqRyhNXz74efpdIz1A1gAACAASURBVLvYlkWlUqHd7pAkCQhwHYfJiYYBtGmK63m4rss9dx8uRo7WhrSAMArM4FvnRtqsNZ7rI4Tp4fM8j4cee5E0SRgZHTF9TRqSQcz8xQUWF5cRQlIfMlLacjlicmoC27HNb0EIsjzfZCWktDZZwUo54MFvPo5tuwz6GT/zoXcBNlLYNFsdM4gWFo7jm4F1ZpyDl5fX0AiarS4gyJKMfj8mTXOG6nXiQcL5C+dYb66SZykLF5bodzK0FoxPTOA6vpHBYkCAVjlxPChApsa2HJAwMjLM/oN7KVXLVGoVKpUqtu1w/twcb5xaJM+Mg6gUxszp0L497Nu7h898+lMsLq6wvtbic3/8JwRBiX/zO/+Ws2fP0Gqu47k+s7O72btvP/NziwShiQXZMTFh5MPCAPxSWGZpaZlms0mjMYQuQry1MEY9SptMUKUpGHhd9Iv9cJXALpaNaVz43ml8blzb9W1prbE3+oAvPYgUgrmLc2z0DSulWF1eMYYrlmR9fZ00TW78nqpwufweVZ6bcHOVZ8W9wiw3W0rlm8sPU30vP6Pb9cNbt5m7H3B9P5i7rXWjy/dGs+jG7MRlMzPXWDZvD5LNDLKttSlj3LJs7Ie84vErl5u53RhZ/PVfeb2m7eu+drt+gevNbgmBsCS5UCgVs3fvbt547ThS2jSGhxGF05bjuCZTrchyU7aNzlNC10LojCRNsdyA4fowcxfn+Me/+qsMBn0eevg73P+BH+P9H3wfy6vL3PW2I4TRML//B59iYmKK/+13foenn36Wn/zJn+IXf/5j/Na//b/YXffx/YA4jnEdh6X5JXrdAUP1OpaU1OoVKHLKep2ecY9UOUJYnD09T70e0e21CYIyo8NDhvkKPCxb4jgWfuAiJaysrjI0VCPPFb7ngxCceP0UrmPz0suvMzLaIPB8wiAgyzNcz6PT6aIKFsfxPHzPZI5ZtqDVbBGGPlIYR0dzHilanQ5hGBCWIrIkpdvrEhU9gb7no5WZAY7jHp7vEZTKWJaz6e4YJ4lhl4rML60E588uUKtV0SLBc3wsy7CEvV4Hyxb0+zG2Y1OplhkfHwMhWZhfYvfuaUZH6viBi2UX4ittTE60xrC5ShW9HRAPBgBkiTFjsYscRGkZ+ZbO4dzp87iuQ1QKsV1n0xGuFJosQVXMfDu2gx94JhpCGdfP+lANy5GF2YfD177+ODMzOxhu1MxsuSWwbIc8z4njhLBUKmy6DXCyLbsw8DCzmhM7xrAtlyw1PYTzc/MEgWtkgY5nmNU4ZWVlDc/z8APPmKB4Lr4XoBRYtmRqcidZniGENnJbS2LZNmmS8u2HnuOOg7txXZfmWotqOWJifJgsy7BtB6Vz06vp+wC0Wi1838X3PZSCs6cWqFZrjIw3KJUC7r5rP5ZlYdsSadsorfF9DyFMGDxYWFIgJGR5Rrkcsba2xu49JmdRCOj1OviBj+vYKJUz6A8Ig5By4FKpV4xRjhDYjkMYBoDgriN7CaOA+blFbNtmeXmNoVoVgYkkGRlrIISZAOh2Bzzx1FGmpibo9fosLazT7nSo1AzrqoF+r49je5w5fYFuu0+jMcSpN08jheTA3ikcxybLjAxWqQylNJ7nM1SvoVSOZdtkWc7zL7zC2OiwYTtzVRjwCIS0TO+lYNNcaWJihF27diIL5cWzR19h18w40oLx8TEEghPHT/PCiyeYnhxHC43KNI3GEK1mh7GxBgg2syLRmizNyLKcyYlpY/QjJNJSnDp7mkcee429u3cQRL6RvTm2MawSkvW1FqUo4sknX6BeK2PJwmDH80BQTDIJVA4nXj/Hz/7MewnCgEG/z/LSKp7v8fmnz/OLP/8xfvlX/g6f/NRnufueI+S5YmZ6N19/4EF++qd/nK997as0KjU8N2By1yzrK03uvfdeTp8+y/HXXuEnf/JDlKs1XnjhRRqNYSrVCisrq0yO78R3nOL6JXjm2Wd47/t+lKzALLJgfIQwYE8Iedl96vL7x9Vs3JVmI1cuN8KMl4iGq+9TSru8/PJrjI+PYkmLJBng+97m/m2NSbhsvU2XzKu3f6N77JX9WlfGHlwp7wS9mb1aH6rjOHZhzCKMKqAAg4EfbL6+2+3hupckm5d/3vKq+/kG27SVJTPLjSeLpZSX1mPLsW85fsuS5HmGKCyX9Za4pw2Tla0RCOYcUTc1Vnkrhiob61xzjLPxZdygtjN4uZUx1o3YuR+k1PSq997yO9yUZW6Jc7idc3e73lL9VYO7jZmyt9Q3Jwrb36uev/qHqjefu8Hu3MJ+fF/qms3gl7tubj0OJTS5NgMUbJu1uQu88PxRds/uIlUKtLG23xgAaaDVXMWWkMRdNBBVa5TCKvHAMFc/89MfZmlpkQ//1M+SKcX6Wovde/dw/vwFFhfWeN973oPvezzz1FMcPHiQn/jQ/aytrbLQjLlnzCaMAsIg5KmnjzK5c4LlpVW63R4IgRe49Ht9kiSh2+viuS46F3z5q49Qr4eMjg0RhiEaA96zPCscK7fKeSAIAiNjbLZN0HKeF8YmionxUT752W9w7Nib7NuzEzC9e4PegDA0IEZoOPnGaaIo3HQ3zHNVzJBqLEugMWyW4xqr+H6vR6lWRhU3LZ1rTp44y2vH32RivIbj2CBsVhbXcB1j+R/HMY5tDC36vRiBIAh9vMBF2hbLC4ssr7YYHm5QLkeoPCOIQpQqgIm0iPsxQRghhCCJDfuDMPb6G0zk+pphRG3bLpQ5ObZlkcQpp09d4OiLx9k1sxMN9Lq9TQdRpTPqjRpaKeNyWBjVDOKYXr+PVzBr0rJZnF/cNATRWiNsWVjSO2RJTrvVYXJyHMe1NuXEAoHjWAU40CijzkIIsKTFII7NeVzc1Mz1QCGFpFKpsDC/TLla4s2TZ6lWK/T7fZ47eoKxkSpRFJAXpi4g8QPPfAe6CF8XugAeLgIoRRHVcoAfBsSDmMmpceq1EgiI+31c18VxLHKVmWPMTZ+hZZuMOds2wdrlSglhC7TOEEhWV9dI0pggiIwrqDaA37AocjNaIokTpCUZGqrSL95PCEGr1aYUlRn0++Y34nn8xTeeYt++GbzQQ0ixGW+xvr5ugrKLrLYoDJDS4lsPPUcpdKjVqly4cJFHnzjK3r3TIIxrbLVSwvWMO+Wff+VJpqca1OsVssxMrHQ6XRzHw7Is/vTLjzM+WqLV6jAxPsabb57Ddc1khWM75HlGkiR85nPfZt/uHaysrDAYJKytrnPXXYfodnv88Re+zT137QNtzmMNdHt9wsAnyzLieEC/30doyFXGNx56krsO7+HMmQuMDNdRWjM3N8/09BQzUxOGsfcc0iRBCMNmh1FElqUopUmSmM9/6dvcdecePM+l31e88OIxpqbGyfOYUuRx372HUKhifzQqVyaaI1OkacagP2B2zxRx3KPb6RGEAZ12F9/zUBrOnj5HtVpFq5z19XWkJUwfoOfy5Sdf5df++3/F6VNv8MgjD/N3/9NfYXikytBQnVK5xAfv/wDIjImxMfbt3kuuNI2RUc6ePovve3i+hx+4nDj5Bs1Wh12zu6lUKiAl/+E/fAKhjXuv4xhTnGeff477f+LHSbO0uE9suY1sDv63yv9uLF27xVvTTW/Hlja/+3v/B089/SRvf/t9OI4kzXLkZqzCtaWWV7Ux/CXqWsB183mME7DcBF8SjcZzPRN4z6WMP9iIW5DX3P7VdXWrxls8kktLsa0sy4zrr2WxnZjw8ve8tB8336tnrs+35hugr1Y5/TAyyz8k4G67Vp6Nx26Du9t1S3Ub3G3/ur+yuklwZ2lduBNCJgRaaAbaRQE1x2HuzEmOv/IS+4/cB0C73aLdauMVbIQrE1558TlOnTrF7L4DxDLgzOtvkmYpvU6baq3K+NgIv/zL/yU/9/Mfp9vpMjw8Qq02xJc+/6e8/d57WFtZ5mP/yc9y950HQeesrLdYWVrmn/+7zzLpKiqhx56900hLMjLSoDHSwPU9sizFLcBSqVTClhY6kwzVSth+SrlaxpI+WdoDYSRSQko0FkIYR8x4ECOL3CfHdsA2PRW26xBGAdISvOPtd3DX4VmM1X2OLGyybdsEePcHZvbY8zy0UniuV0jnjKlJniWkaUpYioyxSpaZniTXRtoSS0h63T7nTi5Sr5aQUuG5DkpJpDbPCTRCAyiyNEXlkvX1NYaGS4VZhA0qYXh4mCzXLC2s4DgOOTkIQRInCCRJmvEHn/4L5i8ucNeds2ZQXLjjnXrzHOVyiXgQE5VLG60tGGdKo9s9f3aRqakxypXypjTHwI6YIDAAI0lSbMctbsaKPM8LWaphMLTWLC4s882Hn+fQ/pmNE5EsTei02ziuw9TUThQplmMVbLyNyg0IQsjCsECihQHPxgTFMvl4G4MMaYxLUMYQo9fpIySEYcS5M3OMT4yxb+80S8uLRFEAKKRkc4YYsk1JZ5L2TZ+UdEkGCZZtAJLQsLSyQL1WJk0TVpZXqVarhTxUmu1JSZIktNom3sD1LLI0ZWVtja89+BiHDu0utm16sAZxH6Ec4n6CJS3On52j1+kTlUqsra1iW4IwCsjSFMe1TeSE7bK0uEYprPL1B57kyN37QUhefuV1JkZHGB0fQ9qGmdKAVhrHM3mBqyurfO0bT7C21mR0eIj73naIaq2CbUlK5YiD+2aM06qwQAv8wERuqFyxsLDM7j0T+L5TPG8TDzK++MXvcveR/dx95wzVasTE+AgCyZcfeJJ6NSAMPJ565hi7ZnYgBBw5vA8BTIyPsLLcpFKpkSYZ5XKZg/t24boWnXbHMF9ZTlAKSQYxaZoSBB5BGCEtSWutzx0H9xOGJaKghOuGrDcXKZUMWNZo+v0uYeRj2x6PPf48SZziujauY9PtdYhKIft378R1HVqtFm4Jxsfr+KGH60T4fgk3ACnNAF1KienQtrCkwxsnznDm/EVmpsexHc2gk2JLi8eeeJHpqR04jsvIcI2LF+exHQsvsBkeqZMlGUrDv/rkg+zZs5f9+/eytrLMjsmdWLbixRefJwwCGo06r7/xGp60mD+/wOraOq+ePMnC+XnGx8dxHIudkzuoVctUag1KJeOEO4gTfuM3foNf+lu/hMoyhhpDtFpN7r73HnzPNZQd24O7y3Up16/vJ7hLB/Cj7/sx7r//xwh9jzRPEVoZhonrg7uNaJgrn7+ShbvZfdvKll3aZnFwW1xnNiIKNsgxXXRMbfS9bcTTXA7ubtC39j0Cd+KKyASzab3p1IsobgNbnr4N7q5dt8Hd979ug7sfcP1Vg7vtwNm227miwbT4CaC1uXFd8gkT22aRbFX63+z+bifhvNG+Xi/b5JrvufXYtn3BNpKCQh6htUJqjaUFnmUjEXhRyP6Dh4iTlAcffJDDBw4QRVWCsIxwFIicZOUMzWaTe3/kRxHSQaWaShCS9PtEkQlDtmyPn/qJD9NaWWB6xyieY3Pu/HlWuwmf/ZMv8tGPf5S1TpPHn/ourm/z7FNHsSyHo089w1PzbT6wbwQpJWEpZGFhkcD3saTAwSbXOdIW5JmitdbCDhxOvnmWwwcPkyU5QmqkDbZj+qY22R6KrCIJFy/Ocf7iIrVKDVtanHj9JNVKZEbuWChyHn7kWb77+DH2753E8z3+7KsPMzlRx7ZtHNshSQwrmPR75FlCkiZ4nuk3smwD6Oyiry3LcuJ+bCIZEEgB7WaL2b27KFcCpJUTxzFhucza2gpR5JkwdM+l2+lSKpcQtqJajYh7mjTW9AZNoqhayIsNSCmVy0hpk6scx7bJk4QLZy9y5PAO3vXOuxDCRdqSp595ifHhUYTUlMoRvu+ZvjGKCROTCYBG0xitUo48Lp4zYfOddpdyKcJ2jZNlmmXEaYLvu0bKo4yMdNDrG1YTTZYJfD9iqFwyUQUiRwoLS9pEYUiSDJBS4ziu+Z4KCY4QgmSQ02n3CDyPQb+PJSWu7Rp2zbKwhCAZDEh7AzzX47lnjrG8uoofuIzuGOHBB55k796dKDJqQ1W01tSqYZFNp3FdHyEtms0WUljYrkWap2QZoC0Qkgvn58xA33UMk62NQYJWgjCMyFLTSykwEj3X8RBCGOmtVji2kWVWKhUOHZjFlsYoJM8SNBlOkYMVJwM0gm8//AJTO8eo1n3W15qUKxXyDM6fW6BaKeF7AUJYuI6DtFN27KwiLYFj2wyPNGiM1EEWBhm5QmCxvtLCdQIcD/7oC9/Blg5vv3s/wyN1Or2eAS2WRJOjdA65xLIl0tYIoUyuoNKsr7aYmZ4iS833JaW5zviBYGSkRp7nrCyvE5Ujw6CWXKZ3TVIql1mYX2SqiMyI49iAzWIA9/qJ0+ycqpOmfR579BiVmk+lWiHLNXGSEvgBjmuRJYr15TZBaCZiyuXCvTbu0263sB2bM6fnGarX+cJXvsPBfdNFFIkiB3ZMjKFzc51wXUGpPITtmEiOKIoI/JBBt08SG4CmlKbf65MlOaVSjTwT9Hsp8/NL1IdqpGnKq6+fotuL2TExxssvn6YUlRhqNJidmSCJe7z22nGkA7VqDdf1qZarxP0E2zOs2xdfmOdjP/+zVKpjrLdisixmamqawI/wfJfz584TeiWCoMK/+M3/hbXmOgsXz/CRv/3zRKUSaaJYXVpAoPBLDkdfPMrM7Az9vuIf/MP/iiRuM7Z7CtsOOP3KG+y/Yx9EDuQUF0cz2WOA3a33hG8nfdwKoC7degp5+RW3qw1Z57YlcxyXwuHUMHYbwA6uP7jOc3VZbp0xWrtaRrrRy7l1m9dn0i6NEDbkiQh9abliFLEB8oxyJNsEU9fa5vbL9Y93uxaMS1LOK8HZFfsnjTvy5QMd0w9tPutLI5mN49g6aXwjgLMhqbzM2OUm2lOuHL8YqaGZOFTq5nsGv691E8YqcMVY7QbLphxYKfOdSmn00rqYBCj+XZa9J68tP/3rbqhyG9z9gOuvGtxdd91rgJ7tfoBXz0ld+/nrvucN1rkhWL3J112+0bfwKRUX2a03M41CCIUEHNtmqNGgtbpEt91ix84Z+knM4vIqfhiipcuOmT1Ytk8cJ8SDPtLSaJ3heDaubxOVAsJSgGNlXJg7w9TMJJ/6w//Isy+8yG/+y/+ZKPSJ+320yhkdGeOLX/gSFy6c57d/+7f42x/7BT7y6/+Cv/P+O0FDp9MhikJWV9ewLIfl5VWqlQppkhk2TmueePoYB/cZIxHbsVE5pEmGbW3kciXGGEwZuWajMcTw8BD//hNfYWwoBBS1emVzxvWZp46xZ9dO7j6yj063TVQKuPvIfjzPY22tSRwnKKU59eY5dha9SJVaGWnZWI5Fnhl3QscxfVSObeN7dmG/LshSZSzz7WJQIRSlSglwKJVKJGmGF3jYtkO32ycqlxn0cuL+AMf2aDZb1IcrZGmOsCS2ZeP7PnEc01od8PgTLxbB2YIoChlqVJm7uGTy5ciZnZlCI3Bciee6Rd+dsWPvdjv4noNSGVrleIWrpu/5fOIzf8Gu6REajRp5wWoGQWCcPXNV9C5thHtnhZGMLno+oFKN6PU7hKEHFBbeaCNn1ebmpXROt9vDcQwjJ4Xk6adfYmZ6wshfU2M8kmu9+X3HgwH9bh/P86jVygwGMVNTOxgMYtZW1xkdrROGAbZjI6XkzMmLWI5LmqrNvr0wCIqgbzOlo3OIBzFaK4ZHhgDTkyeEIElTgjDkwoV5wjDgkceex3MlURQg0GihjaW+VrSabfIsx3FdsjTj1OlzjI6NkGTZJjPs+xFpllCplJBScOfhWcLQZ329Sa1aw7Icjr92ijDw6fUHnDs3z9pKi5HRBrZtWOgg8FlYXCYMAuI4wXMcA5oti26ng+97WLYgzVLuvfsAjVqJHTvHWV1ZByE3+wRXV9cplUoMBjFuEUqeZxnxIMH1PEZHGzz3/MuMjw8TJzGWZeF5Ho1GjeWlFdbWm9RrFfzARQjwQ3fT2MrIWDVa57Q7HcIowLYlaZKxa9c0kOO4DmMjIywuLFGpVLAsizQ1bnVSQL83YLhh+mktxwx0Wq0mUSUkKGJRJicncFyH2ekxPM81zqiWOcbXj5+kVivRaNRNRAkUQM/m4vmLlMsh0nILQ4wc13UM2+Y5gOZLX3mYx55+lR97390IKXBsi8mdo3iepFQKGBmpE6eZcYF1bKQlGR8fxQ8jXNdj0DPn6drqGq+9eor1Xsx/+z/8NuWgzG/9r7/FH3760/yzf/bfobTpHV1cWmB0ZISnn3qGldU1PvTBH2etucav/9N/jOu6dNs9jr74Ii+88CzvfOc7OPriSxw8eIggLOF5Pi8fO8b+/bO4vo/KNM8+8RSH7zlEboOlrW3uiX95+WJxm9msrWDqyue2rrNdGTAmucHY+ZrrXklkbISVb33vDRbqZvbnyrpy3eutv5Xteqt1zXW33e7Nsn1mWnk7JdOV6yqVXXUMN388W5i+mxy7bLft/Er3yh+CuuH+3MpY7bKx6+Ws53bM3I3e/za4u123VD/c4O5SM/CNLkL/fwN3G8Du8plVM7C2CslJGJWolwPOnD1Luz2gVh+iXCsbFy/Hx7J9er3epnFAu7VGfWgIjaZUilAoXnnlJWrVEuiMqFLhjjvvZO/+I0Shj++5TOyYQGUZyysrXLgwx7PPPsu9b7uHR777Xf7l//g/8Wv/5v/lVz50hFq9ghCQpin1Rp14EDPo91ldadJc7/DYM8f40I/dhyVhcXGJUqWEVQRoJ0lWfLA5WZbgup7J8rMcdA53HpxhuFFnbHyYwcA4KioFjz7+CmmSkCYp1VqI57m4rsvZsxfodvs0hoc4ceIMaZLhuTZhFCJtieO45LnCtu3CAt9kKuZKkSYDhLTodnt4rkdeuNe1W01GRofQBWOmNIRhaOQxWlMqV1hbW2d9tc2g3yscLiVB5II2odWWbTHo94nTlItnV5jdNcHa2jpRFPLAN56kVgnwXI+lpVWGGhX6vRitDUvFxuBECCxpIS02Z5aFlCiVs7qyRhCGvOPeQ0SlsAgCl/ieR5qm2LaFUopMKZJBCmiiKCRJ081Bh0LhuKanz/NdstSErwPYlgFdCMFgMDDnUK6Qwswa7907jQbm5uYZGW0QxzFLSytUqlWWFpdwHcfkofmmJ65eq+C4DutrTVaXm+ya3Um31yNLM2zbxvNCBv2YL3/9cQ7sncSyJK1mizwH1zXGJJ7vo5SiP+hvZre5rmtAu+sgLYv6UJ0sz/nuE69y3z378H0fKaUBDfpSX9aFC/OUSyV6/T5//vWn2b93Csd1eOa5l0iTjKGhIRxHbmazaa24cGGORmPIyEG14E++9DiTEw3q9SppnNBsd6lWytiOw+rKOr7vEQQBruPg2C5JmuIHLnEcg8CAO8tCo3AdjygKTXZkKeTrDzzBnXfuRQrJM8+9RGOoiu8Hxjim2cRxzCSD53ksLS7z6JOvcteRPSilCMOQLE1ptTr4vm/2L0sMaBYml7Dd7pBmGdVKiYtzC5TKEW4BlqQlsaSNY9lojKuf5wbU68btcWVlvXBvtVlZWWFxfpl6YRSjtWZ9fZ1qrYLWGZaUBEGEUgpLClzPZW5ugZHRIZqttpEtZymjo8MkSYrjOahiAkFIQRzHZHlGGJTpdNomq6wwRVpbX2dleY0jRw5wx8EZXN8p9m+F+lCN4eEGSinKlTJBkUWZ5VlxPdfkClqtJn/21ccYHy7j+Sb37qFXzuFGY5RLFe69517+s7/399ASVJ4xGAyYm7vI2toqM9MzTIzv5Nlnn+Pi3AWGG3W0VgSOz8k3TjG7ew+lUsTUzDQqB9u2SdLMyDZtQaY1EsnxY8fYMbuTqFZGqO10Kd8PcHc5q3Ar4G6rvPJW60pSZDuG8G8KuNvetOR7D+42ZKk3wyZus5d/KXCn8oz5hQXq9foPD3NX1PcS3F3OuN4Gd7fB3Q+4vt/g7mbljFtrI7TxmhcebXLvrrz8XSnB3Lrc6v4KuKa8U2OYI6H1Vce2+dqtVPtbvGBczyVz4+JsZCG6uOnlCGEG+AqT81ZrNJiZ3cPzz77A8FCdvNdkanSIQayxhYVlCaQUDJIYlWuismGutBA0Wx1Gxur0uy0eeOAB3v3e94PlMlSvcezYy3zta1/n8MGDLC+vYUmHd77jPur1GtMz0wSBx+rqCvfdeRef/vwfcf89+0niGCEFi0trPP3MKxw8MItlSZ5+/nWOHJ6lXA7p97sMjwyx4TT2yrETNIaHWJxfolrkcWmtEFqQ5yZLyPVM8Gyv16UUhcUsr+DggWl2TozgeQ7VWhXLsun1uoyNjRCVIsIgoFIuMTU1DtriL771FDvGh4wEwrY2b4p5bmY54zhmZXmVqBQZ0xJt1PKLCwuEUYDlOigNEmOvnWUJ0tJmljTXnD07xwPfeoEwEsxMTVCuVoiTmEE/plSOWFk2jnvHjp2gHIYMNWqFq6RFOQoZGqrieT6j4w26vTa25XHmzTlGJ4YKqYs5+4ylvyriKBJazTZhEOCHoWElbbswfmHTpTNOUqS0kJZNnis+8ekHuPPQDFJKsiwveiQt44Dq26gsL+Q+kl63i+u5Jsokz0x/WuG6qZTGtl1sy7h4rq+vUSqZ0PXBIMZ1jQGK45h+tijwybWZBMjSnE67y9mzcxy5cz+WLXF9ZzPywfEMMzM7M0ZUOJm2Wx1835iiqDxDa4Vt2UTlgCzLisGT+V1ZlsPSwhKuY47tnrv2onLwfZ8L5+f40lcfZ3Z6nGarRRSFVKsVXN9jfm6Ru+/cTafTpVIp8cxzr3LHITMoz7McEEhLonJFrVbB81zigYko2LNrnB07xxEoqtUSwyOmz09lCq0l62tNavU6rVaLeDCgtd7Csi0EEtdxCvMTDOuZK774pYcQOqdWK3Pw4DQqz7AswezsJLZt47ouSivDYOWKNMsJg4Bqrcz+vTuwLIsHv/Uke/dMIy3F888fZ6heNSY60jDT7XaXUqmEFTMoQgAAIABJREFU6/igBWmaGKbP9/E8I5u2LOMIqpRxCN0A/DpXfPErjzA6XMO1bcLAJwh8SqGPFPCdR55m9+wUjz/xMo8+9RJ33rGLNE0YDHLePHWGWq2CtCAMA7I8J4oCWs021WqJXGU4rstDDz/L6EidfreP4zi0Wh1KpQghJM1WC2nJTUY3CkN830crA1Z6PWOGMtJooHLFmTMXqFTL5FlGs9k0weeeR7fdZXVlnUptCMuW3H1kT/E9WGRpwv/9yBn+wd//h3zik5/iwKE9VGtlLl6cN5MItoVGMz01zcryGr/2T/4p99z9Nu5///0sLc3xnW99iyCo8ru/+3v8yLvew9iOnUYKW61x5vQZw1q2m4SBh5YWjuVy8cwZ3vbOt5EJhbVtgtT17zkbAElKiZSi+P8lkHT5fWZ7ueX1JY9X1/Ucpo3UUW+7zSslmNda/3qTwHq7QfXle7e5/Us9fnJTuni997nR8Up5hVvkddbfHjDdJLjbcoyXL5e2cemNuOq122XJXXMft7zf5uMb4H9TVbQlfmILOncchzDwr3s+3EzdSs7dLWz0+ss1yiomNa8EapdJXreuf61tbjNmvO2WebveUn2/wd1G3crPWLBxYbz2jMb1TFi+V0T/hoX3ZbOBxV7JLT/W7fbDEgJZLDc89muBO3G1kcq1SgiQUhU3aEmuTO9FnOcoJHtnZzl36k26a/OcO3WCam0Ep5hIXVldpVytonLw/AApjbOd5wbkKmF1eYX73/8BHCdCYaG14pvf/iZowcEDB1hbWUcgmJgYwfM9JiYmOHXqFC+9/CIf/9jPURmd5Vd+8/f48JEdNBp1gihkrFEhjQcEYcCBAzPUanUThuxJBnFqgMDaOrt2TZLEKe1Oj1IUkuUZoNBaIKXN4sIiruvg2DaObWHZkjhJTR+RBbZl4Xkun/mjb1Epmfy6crmEXVhbK62I+zELF5c5fW6R++7dD9qYriRpSp4bWZUlLaSUBH6IkLIweVCsr64VMQIRWJJcgRQWLx09xuhYA6ViBoMBjuVQLpWI4y7vuO8gtu0AAmEJUMrEDIQmEmF0pEEUBGR5Sn2oSpopgjAkS01WH0KDzpHSIe5nRGWfl195nbHRBgiT67a6YRCijUOkLHpKVG5kppcxdblxD8zzYkJCQLfdYXS4RuD7aKGxLRuthQHSYiMewTHGJUWWmSyYPdPUb4xSlNKcO3OBet1koNm2+RxdzzjPOY5Hmmf4vpHPLS4sUqrXcByHfq8PSrN33wxaafrxAM91sCy76CszpiyO67C2us7C/DK79+6i2+0ShR5JEuO5Lr1e1/yGxCVLcyEEST/h1VffZGpynCxTLM4tYUmbTrvL+QuLHNw/TaVSLvIU25TLZVSu8IOAPFM8/dyr7Ns7xdhwFZUrHvnu81TKIUKYfsXF+UX8wISD93o9bNvmzVPnGR8bRkrodrv4gUeWpnz2Tx5ipF5GKzNhlGUZ1WqJZ59/hb17Z430VQiSON50cgW46879lKKAeJDgeIDQJHGM4zomty3XhVOrxnIsVJZj2y5KZyZfEMGh/bMopXA9u3AvFMwvLDIxMcwrr57Ctmw8z+PYSyeo1ar0+z08zzCIluVsypsNsHdJYmOAoxT0uwN2jg0RRREPP/YidxzeS5LEOJag3+9Rr5Wp1mvs2DHBwf0z2K4kHsS0mzGKjOHhIUQxCdHtFMY2hSzX9V200oyPjxEGPu1OF99zqZTL5EqztrpKrVYmigIc22XQT8hVThqnLC2t8/kvPsq733UnrVbH9OXlmlq1wsL8EqVyiTRJiMKI46+dZOfEOA9+6ylmZnbgeo7pY5SCwA/4zT9+kv/z3/17HvnuE1QrVXbtngYLep0Bvu/S7/fR5JQqFfIkY3h4BN/zueOOQ/ihx/ve9W5OnTrHx3/hbxGVKziOwxuvv86OyZ1kWU6lbhjsbDDA8jy0Enz7wW/wnve/m9zSWHo7RuzmBuh/1bK4DeWJlNc29jCChJsEHG/hscvfy9yL8zy/7P83u/7W2ogeuHz7V+ft3XA7lvUWjEyuro1sUX0NMHTzxirb1+WgbwNoXn2sSqltA95vvd4aS/v9qM1x3l/yO9qo7Zi92+Dudt1S/TCCO00x61HIyS5/xrA1192eMLIgM07RIPTljkQbWxNXNFBf+bqNWRQuZwBF8ZzSeSGC2LIUF7MbyUQv35EtF6kts183xfpxicXTWgJGAmdJC1B42kFKQeZr6uM1nnv0UQLbYXF5gdpIA6ISnh+h+im2ayGloNlcwy4yo1A5jcYIKeD4Nkql5Jbg4OGDzO6axvMdnn3mCXbvmaExPsbQ0BCL8/Ps3bOPPbOzRLUajuvywosv0Qg1u8aHkZZNv2eA3dpak6F6ldZ6m26nQ5rluG7Adx56nosXltgxNkKr06JaL+P6HkiBUCZzLU0SvvDnD7OwsMzM1Di245Cl5nzJ84zVpTYrK6tE5YA3zpxm/96dvPL6aWZmxmm3m7iBi+96aDTlesAdh2dIktQ8prRhIIRDt5XQ7w+wpcZyzEBXSgutzFkRlUOTi6fBEiZnqDE0zBsnTjM8WjEZZ8LBsh1mZsZpttqUK2VypUgGmkGS4QfGsfPi2XmSXkpYCwo3Ns2f/tlDlCOX4ZHhIsDahLFrpXA8ydpiB9+2DTDu9mg3WwyNDpPGiQGjQqClIEk6pAl86QuPsnNngyCwyFJlDD0QuK6DJQ2Tt3v3TlzPRRQGH4M4Rjrm3JZC0G628T1nExgaN1IbnWtQmvNn53FsF5XB5774KEfu3FVktW3EcRSyICnJsxzXdkFIypUKWTLAsi1yZXrxKKRKUgqMqY4ZJM3PzVMqmc+jXA65MD/P2FgDzzeOnINeirRcHM/HKUClLH6ZruNiOw7lik+aJni+Q6VaIohsBoOYl46d5p63zeK4klIppFot0W13eePEaVzHZmRshOnJISzHIlMZaZpyYM80pVIZz3dwHEkQeQipyRIb23GwLMnYWIPHn3ie546eZGZ6gnIlQqmcI4f38N3HXmJy5ygrq2tMTk2QZgnT0xMInfHGG28yOjrK40+8RL1WxxGOidpQGVIagNtcbeO7AZ1OFy/wcT2Ppbk1ypUyiBylsyLeI2fQj3EckzEoLInjO8S9hBNvnKEUhRw/cY7JnTsZG6sVfY4WWRbTbDZ56vlXuOPgHvqDgQkqt6Qx/skylpYXjRwZiWXZZFlCpVaiPlRiemqEXqfHhQsLDDUa+EFIEEVIy8IRElsK8iTH8wL8wGZtrUWtXr0MiNi2hW2Z31KW5saoJgzQGqKohFaglODxx1/iwMEp0iQn6acITISEIDfyzLV1KmWPeJAyObkT24J+v4MrQ1QK3Vbb5KjaFkONGpnK2Ld/ms999iHuOXKAbjfBdRxazSaffORN3nnfu7hw9nW+/c2v8r53vo/d07so1Wp84c/+lFJUYmGuxeSOWT7/+c/xMx/+MPsP7eH06TfYMTFO0he8fvwEjUadN44fZ6TRoDa8k5OnTrB7zwyObaNzgVct47keLornjj7He973XiwspJmPMRMshk+/4T1nq8RxQ97/VgbIW9m2S325V5ucbJigXEtOufH3dnW9x7eTY2633nagZauz5QY7J4VRbGwAM60Fhd3xZdu60uRlu21e71huZEqyodoxIEjdHGjYMlDRFMzZRg5wwd4Vc1xcn/HS2z5/JVN21b5vYaIuyT6vURsyf5UXoPLWDYBuhTX+ftRW2aW+AbN3o+1sSHE3xn9blV9W0Ut/G9zdrluqH0Zwt1HGwE1vXihu+se8TSjnduDuyov2NV93rbfZ7qg2cnu2LDfe0DYzUG/pQnH5drTWWEqgpSaXipIfIJKYC+fPs7be4tAdh8mFhdbGkcyyBGfPnmPHjp2m10xppNCFxbzcHAhoJK7jUo5C5i/Ocecdh/H9gFarzYtHjzI1PcU3H/wGuVIEYYk8V4w1hvn9rzzMx9+znzTNSJKUN988z/BwnThOsW0Tou35HtKyDAulc9I0YcfkhAle1ybQ1ipuKirPOLBvmj27J7Fsi4sX5ymXS0hLkqYZx4+fpdGo4Hsehw/OEkURs7sm0VpTioxsS2mTYWS7RqroOs4lBzQBWsHpk+d4/sXXOXhoF+fPXySMQga9AbZjwrkzlRczd4JOu4Msso+Wl1Yol0sINkLGNZYUpu9oaZWzZ+ewLYc0TXBdm26nYwZHSBzPNqHjjs2B/TPUh2rYjiSOYzSKXq/PoBcb233botfvG8fETofaUBXH9bAd24BSx0ELRZakeI7PocO78VwbrZWRtkrJ2bPnKZdLJsjbsgyIFmaQobTelN+BMWxJs5QwCJBSGhBW5PghwJI2jz5+lN27JknTlHf/yB24ngGQSWL2d4NhNiypAQgmZ84jSUxEgOuafLe1tXWEkPhFf5PZhk0YmjBhWUidJiZGSP4/9t48SrLrvu/73Hvf/mrvvXu6Zx8MtgFAAAJI8diiJIogKZm2GEuiJYXi0WYncmwp/9lyThQpOVakxMc+ipJYsnZKtIiQ4mKREkkRGwEQO2awDIDZt+7ptfaqt978cV/3NGZ6NgAETQm/OXXOdFW9V+9VveV+7/f7+37jhMFwQJ5pbMfl1KlzOI5jzHEKlzitTc5flmX4gYsf+KCNpDDPEnq9IbfcvJco6uMHAVrDcBBRKZcZHanT6fWpVCuGQVIS13HxXI84ikhT05/XH/TxXJPndurEAmPjDSM9TVPSJKHT6TExXsdxbVaX16hUKtSrpr/xhht2k+cZX/zyI0yMmsD6eqNOlmS8+NJxZqbHaa01qY9UyXXGM8+8wDeffonbD+wjzzNqjbrJlERQq9UATa/XIS8cMCtVwzRKpWitGWfKNMlwbJuJ8RE0sHvXLJ7nEg1jM0AH+v0+0zOTjNbLlMuh+d6ATq+H53msrbUYGxuj2+vh+x5JnOC5LlEcY7sOeaYplyuUSwFJmpLnObZrIxAM+z2azRaWbdFqdnAch1IYoizDCgtEAfSFkbhiMvPSJGHYH6KBP/nUX1PyLSYnxlhaXqbWCBFIPN/jzJl5pqbGi2BqY2M/OtpgeblJtVpBWjlZFtNca1EqBXihwnZc4jghzXLCUmgiMvKM/mDA57/0TW67dRcPvXgcEezkgz/wfqanxiiXK4xPTHL82Cn8ssfevbuoNxo88PWHeOihh/nZn/0pXnnlZebPnSGKIxzH4pGHH0cIzezcLI1GnbntM/zUz/w8//Tnf4awFNDpdOh0eijXxrZsov6AbqfD9j07jCU/l4Kja717rAOUa2HHtrzj6AuDbK31FoDn9VLBt7LeCJv3+rr0Lq0LYLzx7BaSxsvv6/V8h1fuW9tQ7bxhxk5f9P/Lq4O2XubKr19p26+nLoSqfyfWNcplr2E967/zluM/8Y5b5jv1Buq/anBXDIjXZ4mu/Qahi9DgC/W2g7s32HP3VoM7KU00BEITxTH1ap25Hbs4+toxksGAkZEauc5JBEhtbN6lEsWMoYY8J03N7Fo8TApJoovUgjRJKZXLOK6LlpJytUqlUjEDlNk5pmem+cIXv8KLL7zMH/7hn/CLv/Av+fVPfpkbQk2/N+TJ544TuhbVSpk4juj2uji2TXOtzaOPH+K733075xeXGRmto7VmOBjSarZZPL9EtVpCWYpc5+SZccMrlUsbg3dLWUxOjjEY9ChVQhACy7KNTK2wfu/2eibjrpAiam3AXL83YNCP8HyHxaVl6o0anXaHNI6Znpmi1+ujLIWlDODNMzby2oyBCUhhegtOn1jhwYdeZOeuMXzfRucSrU1f18hIDctW1GuVAhxp4jjBDz3SFHzfo9PuIKVGk2FZEss2UsrmSovz800eefQwd997E7VGmZyccrWykSsURzFnzpyj0aiRa42Fj1Ap3X4TpRRHXztDo1FFCEmn00Vrjed5JjTeUsW+ZViF+6SZbYYkSfFctzguBFJIsjxHYPrMhsOYPbvnULbph8zJSBPjoGgkhYpOu8twOMTzPRzHJk0SXNdl0O8j0DieT5Ya2Y6tFDo3Bii2ZW3KKzSmJ/1+H4TZXy/wEFgMekNsy0YqSZwktJodtNYEYYljr53k4UcPEYSK0dE6/d4Qx/E5efwsh48cpRyWePGFo+zeO4sQgjQSnD29SJ5pkiSlWi/j+S7DfkS71cX3PKLhgG6vjxDm2pNEKZ5vQONTzxxm1w7j/JhlKdVKmR07JqlUy0hhwsm7nQ4jI3VGRmvFbDZ4lk3ghzQ7bUrlMjrLmJ0Z5bXXjjG7fQrbUXQ6bbbvmGH3rhmULVC2kTWWShUEijSLEELT6fTwXJ+R0THyTCBshRSCwA9YOLeIq2wcz8ix/cJxUyrFKy+d4OzZRZSUTE2Nk22SNQ+Hw6KfzzWuqk6Zr/z1Y0xOjOA4tvnttaDd6eF5Pq7vo4G1lVW8wPTeGbmsRpCTZsa9tFIpE0Upf/PA00yOj7CyskbgBwwHxjV0YWGRSrWMUML00LkOtuOwbbrGyEgVZcHEZAPbdhgMhnTaHVZWm0xPjXN2/hyNkRqu65LlKaNjdTrtFmGphBt4IJWRR3saKRx8z2Mw6NNqtgl8n0ajiuc5TE9WkVLyb7/wMmNBmZXF8+zatYs4TZmYnaY0UkWpjMGgw8hIjXarzYc+/CHOnD6O67ns3beL6ZkJpITxyQn27d/D0WOv0uk10VJzfmmNu+56FwiJUiYuAyVRQpAlCXEcMbdju4kSufjewbXfb7/V4G6dFVTKuu51X63eLLjbiu17nUG3ZsMJ+OL1fmeBu8tv27cb3KktWl++c+ptAnfaeEyod8DdO3U99XaBu83Sxms9ja+mAd/KOKXgFi6VYLwJcJdjgOYlFzL5emmAEOt5e2zMtly7rPL1793KKfSqUo6CwdAFw2WWMZbuQgukUEjLxfIDDtxxO2dOHuXxr32Ne+++Ezcsm9l+o3lDSuMwp3OBYzuGuRNGavXUY99k28w0vu+TZSmZznnsiSfwXJ+JyXEz6CcnyzWNxgilMORrf/M1PvZjP8Ls9DZ+6/Nf56Pv2cudt+8lDD0Cz8MNbM6dXSSOU06eWuB933M3aWZ6blQRTn3u3HnGx0aQCDzPQwhJluXMn1uiWi/hOg5pmtLvD42tfOCYQfhwgOd6JtwVRbvVwbIVylKkSUar1cIPwiJLDE6eOMvU1DjKNiYWvu9Rq4SUKyU8P6Dd7OB6DlIJmq0WOtdkeW7y05BIsd7PpxkbH+HAgV247jqwsTly5CRhEDAcDEw+nhAGkFo2YRgglcTzXVqtJq5r4/leYXwC7XaXMPA3gMZ7v/tdoDR5nmEXPXRJkqGUotvpMdKobbh+SgzwtG2LQT9i27Zper0hZ8/MM7d9G7ZtF66dNu12yzAqwyGWZRXGKglpakCLZl06BGfPnKNSqaC1ZmV5jaMnTrF9+0zRE2dYSyVlIdEyLq+e6+C4rmEGs4wkTgrjkpDFxSVs20FZNvEwwvc8w+hFMefPL9NqtilXykYyhSxy9QRGWWVMXmxlPstxbcKST71WxfVMrl5jtM72uUnCwMNxHDqdLq7jsbbWRpOyd+9utm2bQioTH5DmOZYlOXtuofg9XKSlQGDMUvoR8/MmtHr+7KKRPDrWxjWg3erQGCljWZI0SQ0LKkzMhCVtdJ7jeLaJlhDQ7fZorXUolcqcOHGOvfu2IxBG/honbJudQioL13MKoxuJ47rFBVDgOC5PPP4c/X6fsbERdC742t88zbFj59izexaELmLpNEJCpVKm0+1i2wrHcZBC0C/YoWqlxOTkCAvnl1CWAX62bZjJlZU1yuUScZLgug7nTi1w8KVTvOv2fcZgJ00RAkqlUiH3TRBCUyoFhh0WEEUmhkFrA/ptxyWKExzPZf8NO7EshR/4OI5Fq9OhFAbUa9UNFl/nOa21NqVShSAICnMQaLbWCEsVHMeiWiszOlrnzJnzzM7NmONGm+tat93l1Ol5ep2Yeq1OGks++9lvcMP+Hdi2YjAYorWmUa+zurJGuVLFthUPPvw0//ovnudPf//3OHDTfp47+Dx33XUPR44e43d/7//lA+//Xk6dOM3I6Agnjp+kVhvja199gD/70z/jq1/9G7bPznHu7Dx+UOK//OWX+Xf//j/w+OPf5Od+/p9x+swZ7rn3Xvq9iCTOKJVDms0VRHEtcqSRfk9MT5Lk2Zti7tYXuZ4B6vp7jQzzwnJSmuvxxau6WDZ58T1zq9os8Xyj9XpJ4aUD8Yu3QxTXYVmoVszEA2w1aWpA7eU++UqSx4u27XKgZn2g/wZBz2ap6+bv+YIEl43r8YXtlVf5bS5sy7pc9Hoy77beTc2VgN21eg68VbW+H9di1vJWsdGv+50vI+98R5b5Tl13vV3gbnO9VXM0lzut3mpwp3m9gcq1LP9m91EUFvavv2heiwWxvugv87fEiO1zBFpIhCWYnRznsa99heWVNSr1MU6eOk25WsF1DJvlug6ubaRxtu0QlkJWVlaZnZnGcz0W5hfwA584y9i+fQ7bNQYHSkmOHztOGIacOXWG228/wI/8448iBOzfv4/7PvAhfuE3foedVcErLx9lZW2VsbEa1UqZUqlMFMdIBY5ter08z+TcObaFEoo4zrAsY+aQphlSKhzPBFh7no+lLLqdPlmeMBgMCAJvY0a23Rpw7OgpJiZHsB3LZNd5ngkqF4J2q0ujXjWASBnXw163i+MYQ4bDh4+T5xkTE2OkWYJtmzxAqSTDgXF/fObpl2m3OtQbVZStQZiZ68MvH6Neq1AqhSbAVed4vkN7rY3juJw6eZZytYSQYNlG7icKmWaWa/qdIQLD6EVRxMTEOCvLq1TrZZI4NuyfkLx6+ATj48b9L8tSPM8jThKUhCiKkdIyYIicc2cX6fcipqYnWDpvHEnR4AVu4appb9jhR4MBnusWA2tzpLVbHb7410/SabWYmR4nDAMmJoyjYJaZ3yZJUiOrzQ1D2m62sR2HjZVozCDe98nSlCDwiFOTk+f7HkpJjh07xee+9Bg75yaYndsGFBmIhTHNcBjjOg62bRvmWcDK8iqO52BZpq+v2WyZ40ZKLFvi2B5JkqCUYmF+mSDw2bV7lrwIhbYdsTHAK5UDRus1ytWyOc4R6Dyl0+niWC4nTy8yOjZCMkwoVUo4rm2iIHTGyy+dYN++OfLcbIPn+yCNI2iW5rQ7XUqhR5rG6CKzLMty1tZa3HTzXhYX5gs3NvA8H9txee21E4yONkCsm1Ks9zxZZFlGvVpmOBjg+QHnF5aZGG1w1923IkSOkDDod9G5LiSukqBwmV1dWSNOEkqlEN/3KZV9cp0zUbBxylLEwxjbNiZCvd4A33NRysIPPG6+aQd5nhlpdJySZSZGo9VsY1sKxymY52YLz/dodzr4vku31SMIAubnF7BsC9uxSJOUbzz2DNvnJtFAt9OhVA4Ni57lhaGLYm1ljWeeOcLZM/M89fxhbtq/nTD0ybVEC12wLIowDDcEaosLS3ieR6/d5/Brpzl6YoEb9s2YUPs0YdvcBGma0ul2yZIUZVl8+rMPMFavUimH/KvPPMe//7e/Rrvb4a+++tfcc8+9SGnzb/71/8TS/BnuuP1Wtu/cCwJOnDjN2dOLfPC+D/Hss8/z3vf+ffbu2ccTTz3F+Og47/u+9/PhD32YsfEp1tZa3HX3d5GT8aM/8jH27dvPjp3bCQKPVMPy4hL/52/+Jh//b38SrSRJlhay5DcK7q5/cLreZ3dxgPc68LkeRu1y718HWW+mrs5UXVrrTOTG5CivB3EXQNLV1/92gpKta+uj4ALber1RCJveuzEuuQoDudlD4A3VW+iECRs9fusPIeRGTxtsBlrX8728PfUOuHunrqveNuZuvU/qLVznZm385tNPCMOfbf635TZt8W8rkxXJZS5cW/wDjETtrbwgFJ8t1aaw2k3bYwKQcwY6NdlreY4jLMg1ObnZUrk+AACBJksytHJIlY+wA/bu3M3Y9A4s5ZBlGqUcwAIRowVEcUQUJTiOR0aPQTKgVC4jpcOwm7J4boVGdQTbMsHWoxNjCClx7Yzx8THOnVvksccf5eZbbiDTgp2zk/z2Z/6GH753B+OjNaRU1Op10jTn0IuvMTFWw/UM4IoGqckYqwRocj77+YcZqfkEgYNlK7wwIBkOCcISmYZXXj6Bb7vYjkcQlMgzI4WMIhNN8OLhI9y4b0eRWxdjOxbNZhPbkji2wvIUylHoLCfLU6IoptnqMDo2ju/7eL6NF7hYykZoiyROEEiOHzvN6OgIWZbw1MEXuGHPNjzXATSWFIyMVAxz4zhIafPpTz+I0oJjJ+fZsXObyQZzLcxPJRgO+0gpiIcR/c6AWqNcBJPnlEslms0moxMNsiwFjXEqHEbYlqJcD3EcB8c2eW+WTElS4/7peg4ISLOc2kiFxlgVqcAveeb4l+amt7SwiECjbGkAqmViFPKix1AIjWM76DzmwK378EOXbrdDqVxhZWnF9DXqnCxNUJaNUII8NazisN837InrIgQYBbBhb7LcyFZbzTb9/hDP8/irB55kfLzCXXffgtYZUhmnQqkEg2FElqVIZdPr9ul3+3hBQFgqGZMXJMNhtDHQUJZFluesLTQNi2QpypUAx7UMQ5pl2JZFnpqrVZ5BkmRYtiLLUyBF5ylK2ViOhZBQrfk4juL5g0fIdc7U1BgCk1+4e/csSlrEcUIpLCGEwLNcjrx2ijOnl9i3dxe2azMYDhkOEirVEtKCdrdLrVaitdZnbHyMYWSC35MsIh4MCHwXAaRpTJ6lZLHN888eZmbbCI5nU62XOXLkNF9+4Fluu3U7titRlqDdaeM5Aa1Wm9D3TY6fZSOkwnFsXNdBKiN5XVpcoFQOCnMfQZaDUmZyQEqB6zkFM+4UGZGQZ7HpO7VcLNdIPXWW0u/3jLxQmGB7y7bxbBcpLBzHIkkzXC82u0zsAAAgAElEQVTk8CvHUAhKJZuJ8QaO55NrcB0bWymUZ3pzhQChFJWRUWbnJggrLpWKC7kgDKrkaWIiczLjvJskCa5vm15Ar8qRV88wMj7C7j2z7JybxrZddJ7yxHPPs3v7KEraxMOEWq1KHA259ZZZfNfmn//W57nttnt5/we+Hze0+O7vvpO//MsvcMstd/LRj/5jPvjhHyKJNfNL53FkleZah7/3vpvJWWP+bItWs8fc9p3cfecBtu+uEXg+ngu2k7Nn3x4cx8UVOe//4H30kgFjU2MoV1DySgzbXZ558km+//3fz0Dm5JZAamHyNblSd9Xlby3rg/PNmanXxDpdw2tbsRtbAaCL2aLrvX9ezrBlnZ26dhVNAVgkRPHQRMZs+T5zbtuOu8GyXWk/1+v12WdX2I7NbSjrwGOL5y5X6wqJzTEM66Yx67+1Wc0FT4OLP/9iN8vX/UYXM6Fabw3kLsNEXWu91cBqvcfPmOUU27V5Av11+3VhUn2rx9UnCi64gl7rMleKv3oH3L1T11VvG7grTvpvlbL6LbsEvMk+PLj8bOQbri0kJZsvmBoj4zTSN0kUDQ0glbp426U3nvV+xtnpGaamJ/n85z7P3LYZhM5JkoR+r2ckXq5hOpI4xXE8hJJkecyg1wctsSyb4TDivg/ch+t53H77AYTIiyB1OHn8KNVqnUqlzv79NyAUWLbL3PZpvvfvv5ef/pXf5mc/9F1Yjk2WZizMLzMxUWdqZpLBYEgUxZw5u8ip0+dp1EooZbFn1wy1eoUHv/EMoe/SGGkw6PURhQTws194lE67y74bdvDZv3iAfq/LYDAgDH2q1RJ7d88VwN0wc2mSEoQBSZwQRxGu55r91wZQ+75PGIRkqea1V44xOlo1lv5CsLbaZnWthes6tFsdxsZGqFbLzM2MIxC4nsnzWVtroaSiPxgWIdKrZFnCjTfuZvfeWTrtDuVKCdBEUYxtO3i+j2UZJ8pBf0gY+qRpxpkz8+g8o1QuMX/uPEHJvK/X7REULom5zsiynDiOkUCv30NruRHqbbLrXCylNmIezIBdEkcx5JpSEBBHiQn9FtDvD3FspxhIacN6SZvJyVEjVRRFr6bWuLaDENDp9EyOneuhc+Mwl6UZaZriB0bil2YGOElhMvXW+/2C0DcZdJbFbbftY9eOGXQOqyurDAbDQoabcfTISUZG6kgpOX36HNtmJzYktloIXn7xNV597RTVUmB6taRACs2zz7yK40qTUSjlxvGzttLkgQefZnysSrvZplTY0w8GAxzXod/vo7UuWEJzfnR7fUqlkDhOsCxJrVbesMtPkhSB5Et//SiTE40iV0/i2Baddo+g5KMswfETp5mamiJNEyxb0WjUiYYx5XLIN7/5PFPT4yRJguNYCA1ra8aARGuN73toLfnClx/nu+7ch8aAsHq9xu237qLZbFGv14z00baxLIuwFNLpdAjLJTSQpSkIY/iTpSlZnpPG5lhcW2ujlE2Wa06eOE2tUUUKI9t1HMe4vQGddocsTekPY0qlcnGMKCzLotPuMBwMcT13Iz5DY/pu8twEhZ9fXAENjz7xIjvnJkxfnlT0en1ee/U4UxPjJFnGc8++wMT4CI5tmGSynCBwGR8fRQpFc62N6yra7TbVWsXIuBEoS9Bt9zn80kkeeuJlDtw4h7IEp07N8+KLR5jdNs70ZAPLViYWRkharTYajec7PHP0PO/98CcYbYzieQ71apVMp3TaPcbHZnj++YO0O21GRkf4+Cc+zge+74N84qd/infdcRNJMuTFF49Qq42wZ/cesjzlc5+7nxPHznLD/v08/sST7Nm7n14vohRaOEGJqZlt+IGPJRXJMEHnOSvLS9x5912kUqMlqPzNM1xbSSffinoj7NkbqXWm71KAJd/w/VgW18XLVZaZiarLwenL7fu1gcxL7/WXu/9fafnLgW0hLgXWF7/veiWRV5Wa/ldal9/Pa/uOr/j69bKAVzhW3wF379R11Tvg7uIVfeeBu7SQljl5htKaLE/JZIZxcRZsBe7iYYzjOCRZihCKO+56F1/69B9RLfm4js34+CigSTIjHVvvf8jynCQaUqlUsS23YHEk/+THf4wDB27dMFJAZwgpKFdKPPTgN9i5ezcIeO65p4kjM+t/8sQJ/vuf/zl++n/+bX7g5ilcz8XzXeqNKlprBr0hSjoEfkCjVqVWrzLsR1RHTPDznu0zoCEampwtx3bwXJeJkcDIwxC4jqRc8vEDl5GRugF0Um7c3Ey/gLFPXzq/RLlSLizibaSykFKRZzlpkvPM0y8TJX1mt42zttaiWikR+A61kTpSSEbHGqybjphBeXlDKqcsG8dx8UshQiqSLGHXnrnCcTBFKcWZ0+eo1eqcP79KfaRGlibEcUy72UVKxepyk3LFZK01m21c1+GBh5/l5pv3kMTJhrzELuzpybUxnclzXM/HtV1s26HX6xOEptcvj1Mzk5tkxFFc9DC1sKTF/PwiExNjWEqiM027adwsHds2M8O5MadRShHHsXFY1UaC2mo2CYKAOI5xXNsMwE3fgJHTWQqrYKLzPCOOosJWX6CKZlohTB6eUkVwtpTYaj0I2ycrJDZgwI2lLEqlAM2QLM9BCJS06Pf7PPbEUSqBSxg4+J4DpEzPTlOuhPT6fc7PL3F+YYVavYLruuzZNUscD6nVKwhh0+8PWF1uUq1VsS2HVrODF3hEw4ilpRXqtRpZljMyViMM/CKP0RxjZ07N0xipMzc7SeD7LCwsUq2ViJKY6ZkxAt+l3+vy4KPPsm/PTpQy5xnA8vIqnm9TCn3KlTKvvnKcmW1TWEpRb9SwHRtZTAD0+13uOLCLPMuxlIPWEqFypBI06tWCdTXfa5KlSGXhuC7DwRDbtbGVzcL5RR775vPs3beDPMsAi/lzy4yOjuC4DmTagJeRGkmS8vkvPcTM9Cie66I1JqA4CPjCl7/Bnp1zPPnkIcZHRxAIvvL1p2hUS0jLGPcoqeh2OygpaLaaeL5PuVxmcnqCO++4gSwzxjLHjp6hWq2wfXYbnU6XMPRwbYtBt08cDVGW4E///Etsnx4jDEOkZbO8vMbqygrj46N0On0G/QFB4HPyxGnGx0axFISuxPcsKpWQrzz0JI1GSLkUMDExjpI2a80my0urjE+MkWcZv/Q7X8Oauo0bb7yBXTt2cP+nPsWxV44yMTVDUpw/geca1rnV4qc+8VPU6w0++sP/iFqtTBJnHLjtACdOHOdPP/mfCfwK73n3+yiVGpw4eZpGYwzXC3HcEESXfpRgOR6nT57FRhG6Hi8eepHqSI3tu3eanm99/feni+tvA7i7AFrkRfvxxsGdkZ6qy/aE2bazwYZdbvlLnrtGmeKbBndbgNKL2VGpLHS+Nav5dwHcrbNzl49ieJPgrmDhrmeZzbEIF9c74O6duq5623ru1i9QvLF+tM3mKVstv5kw39L85FprC3AnpdqQlMprkEZcU3D59dTFzbabJBBCFG6CWvOTP/oxnn7qabZtm6VSrRkXy6zoHdB68+K89sqrNEbqhiVybDKdMV4Ouf/++2l1OszNbeP0qVOUqlUspRgOhwyHMd1OF2UpfNdHSBOhkKYptWoFZZmAa9u2yHVmWCMJu3btwrY8QDM9M4USHucXz2EpSSkI+Qf3fZCf/bX/h//mvfsMEMhzomjI/PwyI6MNVpebRFECApI4JigHtFsdpNCsrraYnBgny3N0njEcDKjVq0hL4vsB0XDI1MwE9UYNBLSaLTzPDGhXV9aKvigDwKQQeJ7LwsIifmAMW6Q0EhbbshgdHaEcWpRKJUqlECEEa80m/V5EEPponeO6Dlme4bouea6J4gQpDcNh2+tOj5owCAx7Sk6aGFt4wyxYNBr1ojcgZ2FhiQe/cYhoGBHHKePjo/T7fbbNTiOl4LYDNyCEYGlpBddxKJVMnIHJeZQoafLilLLRuXEcNUyLkao2V5sMCmt/KQX9bo9ms0OtVkVZkjAM6fcHnDu7QKPRwPNc0jTh0AuvMtKoFOyn2gBa62Ycvu/juEYCJ7RmMIyM6YcupME5JlAcI8VcW20WDFrhgJrnSGF6z5IkxbEssjSj3+vTXG3hBz5nzp7DsixqtSq2bW+wTpAZG/vITEzUalV2bBvDsiSdToc8TymVQlAWUgosSyKRjI2NooWg3+3z1QeeYm52HNsSOG6A1jnLKytUyiXQmrBUMvlutlUwcZZxYRUCq5CWJkmCkIrA8xgOh3Q7XSrVMsPBkCRLqdfriCKPqtVqc9vN+7BsByFhYf48YRBSrVSKwHLBE0++wP79OwHodNoMoxgBOIWMUgqB5xu58KuvnKBaqyCVptvtmUiCKN6IrJCWMb8owkDReUqSZFQqZUbqFRzHMde4XPCpzz7IWCOkXDZxAI89eZD9+3agLMXszDilUonhwBjfCCFIk4zts1PYlk2tVqZSraDznImxGqVySK1eKfolHVzPJdc5YWCC2AeRCZ7P04yzZ84xMtqgPxhSLhl33EF/QKkUYFs2aZKafmDHpl7yaYw0NiZjFpdX2LVjiuHAMM9CShPubltUKhXiKGZ6ehzHtXA9l907p9m1c5YwDIiiiDjKCErGZKderxJFCV853OFnfvoTzExPUS6X2L93P7/5G/8H77/vg7RabXbu2M70tmnuv/8z3HvPvZxbmOd//MVfYnJykpFGneefO8TMzJQxoik1eOzRx5mYmGZ0bIxjJ45x4PYDHHzhRXbv3cNa8zxBuYayHMphCVtJkt6Qhx95mB/4wftwfBdYN+6/0oDRvG5ibC59dXNf2+bXrzQIvZp882IQcS11Wfnfda7zYiC2/ve6PPFqo491MLf+OevSxitvu+kv3syGFZ/OJVK8a5QpbgnkNt/Ar1bXAh5f955N/XNSboC+rWo9e3h9Ym79/5uZwDcfUH75uhIAulqZ3mVBnqVcMJDZmp3dfMxt9biGDb3sMltlBprv7PJj13fA3Tt1XfWdYqhy8SXziu99MzNHWzF3xQmn19d9DRfYbwm4e902bbrxYS64/+ijH2PX3n24lk81qBA4HkmesbS8QrlUet1qbCmpVutYjkMqNFoI6mMz3HrHu+i2m7x06CC75iawS7XCAU0QhmVcz8ORJkR4dWUVLQSua7G8ski1WkPnGVE8RGsz8IqSGNfz0SiUrRjGA+JBzg9++EP805//OVzHo7nWYmpikl/9/c9z3+3TWIVcLYkTAI4dP8tzL5zg5pvmqFRCOq0OnVaX0bEGC+eXqY/WESpj2B+gs5wwCCjapQzbgDGOsCyF4xqmyXIs/MBHKcnq6ho6F3zziUPs2r6NVJtcKylzet02rueQ6xzHtghLHnEhUR1GJrMNLUmSxJg45Cnm/iFRtgKhDYMqBbbjMOj2UUKQJkYCSp7z3LOv0WjUAMHLh48wNTUGmBiCTqvLLTfuJk1SXnl1nomxmumXkBLPMzl7udaUSv7G4H1dWikwjp0gyTKJkoLFRWMcsrqyRhAGIDSlStlILYvjdmJiDKTEL5eIsgQpJHEcs7K2zNhYnVxDtVyi3x2y1mzheQ6WskzouQDX8zZO2OEwwrFtbNcxIe/KxCWkhTRTCPPWsOSbTxeghIUQkjwDgWRhfokgdOl1e1iWzeGXjzMxPsrq2irbtk2DNsyykVCZ/UWbWXfTO2bhBy7jk6NU6xXCckiaaSypyDIjBxTKsKsCE4URRxGz28YQSmO7NpqMifERsixjZXmNNEnINfT7AzrtLoFvzFnQgk63z8svHeeBh17klv27ePKpg5w4cQ7bMtlqzz13mDyHWr2CJjdy4EHKoDuk0qgyf3aekZE6nU4X3/dJ4wzbcRgdrVGumuNy4dwKU9MTWLZtBlOAJRRCC77wXx7hnnsO4DgWoPA9w3IOh0N83yPXKRJBrzPk1PFzVCtl0CbyQkqJ7TjoPDfsr7TYPl2nXA4YDgfMz8/zrtv3G2CuwXUcEwfh+yRxjEZg2S6O43Du1Dkmp8cQArIsJSz5KMuE2L9y+DTxMKHX61MuheR5DAKCICxm8HKC0JyrYTnEdixWV1cplwOSJGcwiJifX2F8YhzHtalU68RxRhKndDstJsbrJElMNMh4+eUTVCshjZEaQjmkmSYsBVi2Ra41juvie0Eho4UkiUlTc81L05i/ePQFfu2zB/lXv/jLNIIyTz35TcbGRllrtxmfmmVibIqJySmETMnyhJtuvAXLtnF9j4/8gx8iiSLyTHHPPe/h4MEX2LtnH1/4whexLAvPDaiPNbj73jtAaia2TSCkRgofLWx6vR5Z0iVw4JUXj1Cr1dhz6w1oARKN1EZ6fOXa2hXy4vvItYK7qw1w3yhL9mZev/r6pZnwuobPuZjpu9h4ZOt1XwqGLieNvLbtvXaW7s3VpvaOa/yczS7m+iIAc+E930qXywvRAdddoggI51vDIF97vZ4lvxam9B1w905dV/1tBHd5bpzU3tjJf2EZuXHBugDuNj+uNl/6ltVVwF0cx7iuy2qzi+8H/NknP0XoBCzOLxPWQxr1GgCW7RjjhSwj9I1JQpwlICQZmiQRuK4Lacxoo8qZE8eJhMPa6hoTE1NmxhbjWpmnGWFoZvItW+F7HjoXREmE57q4rksUR5w8eQKdC3w/RGsTlN5rJ7znu99NvVbl+NHjjI9PcOsdt7Nnxw6+fPAUd814+EGAY1usrbXYtm2aXTsnKIU+7XYbx3YIfNeEO4/USXPNysoi0SBmMBiilM3Zs4t86nMPsmt2lFIpxHHsjVlqy7KKfgmTCeZ5HlmqWVttMTU1ZoCc4xQB7nIjikFjWCfPD03gdZ4SxzHVWh3XcdAFiLRdyzCNGDtvx7YKi3Zh3D6jhJWVVV566SiuY1EuVQnDgEMvvEqUJGybHUcohZTgeS7VapVatUqjWqJSreB5BkQ5jo0Q5lgzbp/GNAYE5JCkCa12x1jRKwslpYlakLJwkbQY9AeGEU0S00NWMCFSWqTa9MIpKfF9j1LJM99hDpbjkMQZrU6HWr2C57kb32me5eS5Jk1STp8+R7VaQkiJZRv2Lc9NmLuSim6vW/StAAiyNCXPNcuLK5hYCcmpU/MopQnDkHNnFxgbHaFUCqnWyyglC7Mg00cy6A9wbI8sz8kLuU2v28WyFWmeGTMQYX7ILE6wHQuB2R8hFV/+q0e45eY9TE+OoRTYtkIoG1X0Zlq2RbnorXM91zynDDsqpWQwiDl06Ag33rCLG2/Yzvy5JW65eRcPP/YilbLH3OwUoe/S7g5RUhTHhsR3PdASN/SMyYstKZWM+YoBwzlpbhhZP3DwvRAhRbH/kjQxINxojDWvvHqMubkpM8MtjDOqbVn0el263Q461XTaXc6cXqJS9mmM1rAse9O5YfZJa4EfejiORansMzHeQChFmhowmGYZ3XaXsBTSaraoVCsoS6EzTZ5mIDSHXzlCFA9N3mJuMg+PHD3LwYOn2LNrmvNLZhusInJl3ehISqMKsBxzvCtp4iCGUYLvBzz0jUPMzY7jeDYL88t4rmvy9wZ9BDl+6KFzybn5ZTQ5w2iA6wecOXOO/mBAv9cHYSZdhJCmLzVP8VwPz/NJs4wnj84zc+dH+OD3f4C/+vLX2T41ya/8yr/h7u+6i3/+L3+Je979XlYW17jtjgMMhh2Wlxd55pmDvPTSYebmZjm/MM8f/dEf8xP/5CcY9Ifs2LGDTrfL0tIyOZrf+YPf5ed+5ucIyi79QRvbVQgp8Oyyyaa0LFwbOq0VPvvnn+cnPv6TDHWCtCyk1kjeKLi7VOr3txncZVl+xf65zZ9zreBuncGU8gK428xqrt9vvlPA3brJyiWff/ES38ngbiuJ67el/u6BO/GdGWb4nVtJHH9bvvAcDPV/hQtuXvSFKCk3elA219Uv1W+utto2vcV2XLyMzvO31BV0q9pqO/LMONwpAfd/6v9janqKvTfsZ2S0Tpb3cRyXJJE89cQz3H7XTbiOSxTHG8tHaRupA555/BD1Wo3GSJ3Hv/oZdu7djh8GbNt1A1J5kLtonSEwg/m1TpswDEjjrJA4StI05dChF5AKbrrxVhw7NH1TVs7S4llGRyYQSH75l3+VT3z8E0TZkB07t/PMM8/wn37v9/njX7qP9lLXMDoy4/ziMjOz0/QHQ5YXF5mbnUFIRTSMcD2PYdTDczykpUiihDTJePDRZzkzv8aP/8j3IYAkTXE8he8H9FpdPMcm1T2UJRCqhtaaXrdHpVohS1N6XWPC0u/3it44SRz1cb0AoSx0lpLrDHKNtCwQFkIIM+iSJsPLtiVJaiRoaGMm0m71yFJNu91hamqM88sL7Ni+k8Xzq0RD07s2NTtKEsfGqKXdIQh9yAxATLMUy7E3BhZpwRi1211AMzJWY9CLcD0D/oQ0IClLMpAC6VjoNCVNUtIoM31dnsPY5BhJavo3dZ7Tbvbo9wdMTDawbBuNJs9zbGV67pIkw7IEWYbpv3Msc4MqZMJ5niNyQX8wJAj94saV0R/0sS23GEAnG30JWRHeLYTEdZ0NqWqW5cYgRSgee+xZtm+fYGbbBErZJElcOJIZ+dRg0OfQc69y510HOH7iOHv27aLfjcjSiGqtSq6N3FNnOb1eEy8sI4REKps4ioiHWZELmGPZ0hzn0jB6WZaAFLiOR5blRMMhru1iWTbtTpckjqg36sRRRJ6ZEV6apfR7Riqc65xms8nE5DhZmrO62mRsbIw0TXnw0Sf43u+5x3juFhMJ68Y1y4srjI42sGxzPdI6p9NrUS7VN/UEaSQGgGoNStmcX1ik2qjguBY61xw/dpbZuUmEzFDSyBpty+Gll49w0417kZag3WyR5pmRnwojYxoMeygpcfwQKdTGBJFl20TDiCROKJVDkljT6/WoVELjiBpF2K6i0+qRRBme5/LkMwe5+aY5Go1xlFT0ej16/R6N0VEkAq3N5MGxIyexXMnoWJ1yOSykXphYDdchzVKS2LiHSil58fljTM00jNOoBMdxybWgudTm0W8cxAkE73nPLShh4fiKTNg88ehhbto/R7XioJWi3xsiRIogo92M+NOvP8/Dx4f8yR/8RwZJj/PnU7LBeUZHJ3jt1WO89upxPvOZv+DPP/O7LK+sUi/XsW2PXqdPEiUoJ+fcmXlOnjjDtulZOu0Wy6uL9Ppt9t90C2kqiGLFzXfsxHU9ypUKnXabVrtFtTGN50rIE8q2xyMPPoqsKd51xx3YjmNyAovaakCYXfLM6yWYJvPz8q9vXvd6NtpmsHLxc5er65VRXs96LtcjuDVw3TRpu5Hvdum6rmfQf2l2n9yQKW5e1+Vkf5vL5H2m1/TeS7djnYmSlzwvN4XHX27ssu6seSmgvVxdeG3zOrdcRF6Qt26879s4xNebft7Xq5/Eptw+uTGOgwvf4+XHfpd7/tp+y83H4pW+d8/zvt2I9E3Vt3q8/k69U39rS1iKXAjiNOUffvQfcuutN/PFL36BLM8ASa/X5/777+eRRx8CxIbpw3pZysWxHHbu2sWRI0fxXZcP/9APMz+/iG1ZvPD0N+ivnSYBcmmRCMUwy2m3migJaZbhWKZnznU95uZm2bdvH0EYmv4jYcJhXddlZWWFLEv51f/lV/j0/Z+mUqniuyHRIOGP//CP+NH//YtESB57/CBLy6uMjzeAHN+zmRgfxXEczpw6x8mTZ42hjFCcPTvPqeOnWV1ponO4+86buefOvdi2CQKvVMt4XogJBM0QKsG2PWwnJEszouGQMAw2nEIDP0BrI+FCa86cOmv6xoD12UNVAArTBwk6z1hdXS1cPudRliLLcrI0I8szkjTlxZeO0Ol02bV7O67nML1tkiiJ0GRMzowxOT2GkpJWs81wEIOWCBSWpTh69CRpmm1Qx3GSoCxjUDI6NsLo2AhCYCSnliInJ46jwmBEoyyJzjIzKNNg2TYz26ZojBrH0XUzluXFZUZGGkzPTJoPWmeuhSDNMqIoRkiQyvQtnDu3QKvVIY4TokEfWViKS1sQlEzAthAmJsT3fLTWZjZdSCzbRVkK13FYWlrk0MHDrCyvkhZh7Glmog9Ac++9t7NtZsr04+UZp0/Po/P1vtKcKIrZs3eOaNinXHKIeh0qBeOYJBFCGNBtZLRljCuFyW6TQlKthriuKvL1LNCSNE5RBYPrWCZbcWF+0dj6A6trTfIsp96oEScmAy5JY06fOUeSpKRZSrvTxbYtGiMNNBrbdSlXygyjiCiO+Z733oUSoDHZhAKBzjTDfszU1EQxAAMKAFQuVUxOXpYRDSOEEAyiiFzAwRcPo9FU6xUgQ4ic4XBIc62Dbdkoafar0+4jlKBc8ZCWJooHOK5FvV7Fsm2UssgzzaAfkxVh9VmWFiywmVhRyhj2JHGCzjWrKy1azS5CKPq9AWmaUa/XmN42Qblc4j333E65EoIwEkY/cJicGkMKRafT4w8/+SU6nS6HXjpJrnPTI1PIbOM4ZmV1heEwRgoL3/dIk5jhcMD+m7czNjqKxELniuEw4uUXXmVtbYXaqMu7330A1/MLd1EzkNt/4xxBYGM5smAtFJ7n44dlPL/Eez7yc9z3vh8gTxN+/X/9t1Rtl5WVDtEwZWlpifmF0/zBH/xHzh47waEnn+LUiWNkyYCg5LC0tsC/+63/izQXfOiHfpCDLxzitWPH2blzJ/XGCFPT40Rpj3vuPcDKyirRMKLTbmPZNrVqHcsGSYZrKR555DGOnzhNo94o3He/tfeRq1WWmcGoUn+3h2vGTVNt+dzV+vTejrKURZ6lJHFElibfks/I8nzj8Z1c68DunfrW1TuyzLe5vh2yTDCSxqsZj6wzZ5eb3bucRHIryj7f4n158fdmc5ItJQbrCdgXGZkIIYz063UbpTe2bcvl34AcYH35yzWYrz8yNIK8mFlNKVdKvHz4JWrVMkFQQUqLeq3Cvffeg+cbkJLnhn3TGuJ+wqCX8OM+elAAACAASURBVNhDj3Hnu27n4Ye+zvj0DDfsvwnfK7G2dJZjR16mMTZpGLUiG6viOUido6XF4tIitu0U67UYDHpIoYgGMY88/Ajbts9QLZVxXY9ms0lYCnjf9/49RkfHEQImJibI84wPfuA+Dp7V/NKv/wb/4mPfT7PVwrZtup0eYRiytLSCKswqFhdWcW0TpDwxMU6WGPlauVZmYnzEyPbE+vcviaIeih5R1MP2KuTamI0kSYLneYAg17nZD50bC38lCUshaZya3jIMWImjmDiKkFKilEOeZawur1KplIpeJkE0jPF83zBsCGrVMuMToyaqQuSkcWpYL3JcxyKKhqyurhqDDw1/9ZUn2bVzG1IJ6vUqnucZtqo4+m1hQrrNbHpGEifYjkuWpnQ6HSqVKsNBxGA4wLYUWWKAjGU5ZFnOyeOnsRyF7TgMoyGWZdHtdImGMWEpNFK6NMVyjcMh5NiOQ6ZN/EaWGbdKKRVRHJFEBkQNh7GR+WkTS2AMUQYmdFmA7Zh8Rp3nnDx5lnI5pFotUQrLJoIicAtcmW0YgRx++QhjYw2UMvlpa6stbNsE0Utpwrgd12J1dZnh0ARQ53FKLgxIT1Pz++k8L8xLbJYWV/izTz/AgZt2oCwYDAZEUYxjOUipsB0LkEWsg0OSxAghCht+QZZleJ6DJkcLcxxZtk25HOB6DpVqpTA9MY3zQgry3PQ9PfbYc8zNTmIp6HbahSTWAPtWs8trR04xNlouJLPWRp6XkQUbdjTLs0Jq64HWTE6OkmvDkPq+TbfboVwuU61U6XZ6uJ5Nc6XLydPzjE80qNVKQG7MaITAsR2SJEUKRX8QUyqVcByPMPSKAZBRUiilWF1Zo1avkqU5Stp8+nMPE8dD8jRhbHyUTruD5zoMhkPa7Tatdpczp5cZHxsv2EM4dOgo586cp1GrceMNcwShz4037aRWLZnjJ9FkmSYIPACefeYwoyM1tM5oNtuUSwFpNmRxcY0wKDMcRgShiyNs6iMlZmZGTZSBFwA5juVy9swC4xNVpNSsrjTptQc8+NBz7No1zT/7D1/i60f6fPTHPsrtB+6k21rhP3/yk7x88Cjnzp9nMBjwYx/7EdZay5w4eYS7b7kN13aYm5vl9JnTCAvKlZDXjp3l0/d/mo985CPcestN7Ng1x+T4OLVqjbHJCcYnxji/fIY9e/cjhQlcj4eRkXC7AltnxP0e/+n3/pAbb72Vu+59F1JIVGGec6kUblP/1JZM14XHemzAtRpEXHzvudJ96Grr3Ir1u9wyV5N/XngY6eTVHD/Nc+uTQVfpZS8MN17PrFzcILL5vvz6xo2tzFi2yrlbX/8bNQnZ6jsyhlqKPM824mukMsqSzQzh5uy7i9d52dKb93O9LcDa+PuiFRX7ZqSr68sLIV43TrueDL+r1RWzBC+zW+Z+vul7vPg4uuI2XXrMGUOaK09+XDCjkVc8ztfrO12W+Q64e5vr2wXu1uutmoR8Hbjb4mQUXHper4O9qwKuzevadIfc0JxvtchF23MtJ+/VPv+qEhfjiw3ogj1I2TYzjWO7vPLKUcbHx6nWyliWZHVtFcdxsG0zwFdK0m0PaK522DY5zdGjx7jt1pvxwpA4zhgOYkZHR6k1Rug3z+N5FsLy6A0ipE7RWYbjlyiVy0WPmrmul0ohAsn/8Av/gsZIg3e/+7tIkwjXdamUyygJg2iIkhLPc3npxRfI8oxXX3mZO+9+Fx/78Z/gv/vf/m8+/gPvwnM9omGM47lmkGq7NJtdduyYJdO6+EzBydPnmJgaKyYHNHEU0Wy1zLYoSZ7FKDJAIK0AZbsIofF8D7TpY2o2W7TW2pTKAe12B8e2ybKchbPncf0C9GU5cZRQr9cQUtFsdrCUhe95zC8sGDMRx8X3fAaDvmF/bIcwDDcYJMuWLC6sEASeCaPPcmzbJiyFKGkhpGDP7m3GaVMKI5mk6GnQoJTJh1tYWMKxHVZWVlESXM8nSSIc10YKiVQmO27x/HniKCIMSwhhBhNZZgDPyVNnqVZKCCkIfJ9nnz3M9rlpev0elqUMU2lJkjjGUrLobTJnluO6dNsdSuXQxCwoq5DP5QXAHeD5HkIoHnz4Kfbu3V7EJFgIJLbtMBgMEULz/MGjzM1NYynzWQgY9PooqVBK4roulqXIcwh8rzC/EevjCKSyKJV8GvUyeQJf/srT3HbbPgAyrVlbXgMNyrZASBzH4Zb9c0TDIY7nkGUZC/NLJjrD2NKA1v8/e+8dL9l51nl+3/OeXLlu3Rw7t9TdCpacMAILg/FgzJhkhjTAkjwwsGOSd0gDzIfZJczCBxbbBBNMGs+axYyzrWAhW8EKliV1t6Rude7bffOtW/HEd/94T9UNfTvJss3s9tOfUreq6sQ657zP7/09z++HaVqcOnmOSrWMaUrNgknt4SYNQTfokqoU0zJxbFP3GZqmZkhNSQqEkRa9icKYVqvJ7t0zSEOzkPl8TpcDoVU/n3r6eW7atwMpDeprjUxBVbG6ukq3E+PnXBzHwbY1m3j65Fnqq2vkfI80Tcj5vi4VS/SkguN4QEoQdMgXinQ6HarVUr+kVSloNTtYtsnZs7OUy7qXMk204qbn2LSaLYQwWF5coVDIUSgUALjvgUfZvXuGO27bw8hQRavQpgmFvL7WpSFxfZdisUy5VCbIrDsMaWJioFTKk194nkMHd2c9lIowCjEMg9MnZ1ldWSOXd0jShJ07pkkS3etoSn1tN5tdPNfjAx+8n1sP7cI0tQLrY58/yjPPnWT/3hlWV1a11Ya0cCwbQ+rf1HV8LNtkbGSQH373fXzv930///qbvouTp19guDbKt37bW/iFX/g59u+5hW/5tjczOTFOqVygWMozOTnBQHWIlfoanu8zMTnBsWMvYBgGkxMzvP6uu7h48Ty2aTA3N8vxF44RhDEf/einmBifJkkSbE+LCUkhQYDjOLi+j5mk3PfJT7GwvMSP/sSPY0htbXIt48jV+vBerp6jl7qejT1pV1rPta5/I2i70rLX19u3DmCud3+Ay7B3243lG0zQXyZatl+OqU80YTbh1mcV+9vZfnvXepxKsa5QfgVw16vagS1A6qUogV4lrphrXd/b1xjbTCioy9krbFhqQ7/itcQNcHcjriv+fwPutvGXeSngbl3ANmMerwHcXc3G4apxjeAuIUWhMrG5BFDkcx4IwT/+40e47fZXABGGVPi5fL83zjQlQRBw/uQF/utv/z7f9KY3YRowf3EWZUCaOjz86DMMju6k0RYsPPsRwnadTmpRLFdxLJug28W03SzZ17OWPR8g23a57bY7eOWdd+C4NipJdVlX0EWakgsXzlMs5wnDNoVSjkq1yPTMJHbepFjy+cZv+Dp+6Bf/kIvnL7B3pIbr2XTaXcIwJuwEup8MqK816AZd9u3fRavVYmlxOZNvl9qkPI5QIiKNIsJ2hGm4GK5HolIkmmEzTUmSJHi+n4G7PL7ncu78BfK5PLa0kKb2XVMpSCFZWljBc3ySRHsffeAfP02p4jA6MkSj3iZXKLC4uEipVEAp3VuWpimWrdU0c7kyFy/MUSoXmL+4QL5Q7CcrenyIUSJl/uIiK8urFIq+ZtCEbuCfPTfL6OgIpjQpFPNaOl9osLPWaODYtjYqlwaOLXEskwsXF/F9fW4Mw8hmVhPt42aZtFttHvv8cW7aq0tHhWGQRLEWmUHR7bRBJZiW278hNHsmCJMEx/U0sIhTLMPCcgxQEAYx4+NDWhQGRRC2MKWFZbnYloOUBrWBAWzbxJAavCZRhDQNhOgBquxe7oEnoZVFpZRasZJMvEWlgMsTT5xleDhHbbBGHCdYls3yYp3SQJEoipGmVh6tr6zq0j3TYnBwAEVKqjRrmSowTQff8zBtrboqlAZEcRTR6XZwPRtpWdoKJFWZT5xm2Xr+hz2jdKk0S2PbDinaMsNybNIEokAznqNjNdI0xpQOhXye5ZUVbMekUPCwrBymqft0tPCG5LFHD3Py1EUOHdhNo76G61iEQZL1qTncc98jDA8XiaIOhUKegVoZlQqSWHH29Dy+7+K4mtGvDhQxDEW7G/AP//hpkihiamIcU5okaUKxXOz3B8ZxTLmY55P3PczuneO4rs1KfYXqQJnV5TrNVhMv52nhCSRx3MEwEjrdBp7n4uVc1lbr3HbrPqRlsFJfxXElruNSX11jbbWL6znkCx5JErEwt0AcR3zggw/wilv3YxiSC2frtDprvO61N2PaBp1OQKfTpdGIca0cQ7USYbdFpEKiQLOMnU4TQ9gsXGwgjJgfetd9/O7//uv85fvey/xii1fdeoBqdZBbb72JnXt2MjWzl1xeIkRKs9XgySefYnh4FKcyxMmzs6yurXFu9gKmMBgbHqW5VqdZX2J1aQ6pQhbmzzM2OYUlfWam92O7ed7znj/l7je8HhQEUcjZc2cpl8rEqcnKhQscefppvv+Hv59cJU8mJntJf9S2Q8YNcPdFg7urMXtXC1Nu55H35QF3cRQhUHS73X5Jec8OQjN3G9nGS+PLDe62WgN8MXFFL8Eb4O4rFjfA3Zc5vtLgTsC2MsIvZT39uNJDeSPdjn4QJJmn1tbol1NuCMPQJTG97xuXeYiIDa9UJajsTz8Tvo7GaV1qyfqyl1neSMFQos+m6PJCXRJxx523Yloi65HSkunKUCRJgoHJxRcv8s53vJOf+V9/mlZrFcdS7N47QRC2KORzjI8M82u/+p949R138Nd/fw9fffdbOXP6eQYrLpZUWVlankgIEiPBUS62sghVRBAGFEs5VlaXME2TCMAUtMM2yBRMhS0LWLary3WzEg6BhRAS0/b41m99K97IDv72gx/ia2/ZydJCHUMYDI/UeO74cQaHK9RqNWZnFymWC5iOiet5urzS1tYNKAOSlChMcPIFDNtFChNSRaNex/Fc7X1Gikpj6nUtcQ+CXC6P43gIO8I0HaRhU6+38fM++YIHhsJ2bSClUvDIeTbVSgXX80BAruCTqlQbaCuFFIIwjGmuteh0WoyM1kjTiEIhr/vDghjXdVGJViy0TRuEolgqEHQTZs/NUS4XMYRBq6XVChFaIVJaZj+xCIKITrtDnKS4jkeSpDieR6GYJ0ljMARBGCANg0q5jJQmptRs1qEDO0lUgkoCgk4L0xQ4psHaqma+PM8nCENtN2Dp5EGaFo5tgVJEUcgTn3+GXN7F9woIITEkeL72NpPSIE2lVrA0oDfRnaYxjuvQamkRIK0camEYFkE3QhhG5nOWoBLFA59+gp0zk7TbbQyB7ldTWpwl6EYcvGWG8xfnqdUqBJ0ujzzyDPv27EYhsKRCpQHCQP9W0sI0LdqtNgrdR2oILftfX13NDO8TDEOSJCGGSPqm94tzdZAxnusjUomBxFAGmELL20uJNEySBIRMsV0bIQ1WllfI5b3MQzDFtCxWVxp86COPcOjAHu6571Fuumknnudhmg4oi+X5JeIopdVoU8h6Qmd2THHz/hlMR2CYBqZl89FPPMTkROY5V8ozMFDDMGws2yWOY4JOh0c/9wzddkCsupQKeVrNFo7joVKwbId9u0dZWJxjdHSQRqPTZ0kbjTanT59jaGiIOIrZf9MkjuuSpIpioUiSJPh5T7P6lkSlCdKUWJbuGzRNB5UafO5zz3Lg5l10uwFh5nNnANLSEwT5okcch8xfXGR8bIwgDihVqkyMjxCEEXnfBRkxPj5CtxOQKu3PKAybiYlBdu4cJQi6VKsDmI5DsVTWfatCM9zNIOJXP3iUd/3hb1OtFbnrq+7m1kN3khhNXFvw/OGjTExMY5Vs6ssBhQL85Xv/nN/6rT/mJ3/yHYTRKq5l8hu/8pvs372HsLtKt73K1PQM09MznDs3y649N/Pc8yd57V134+d9Bseq2L7krrvvIujEnJ+9iCEE4xPjdDsd/vzdf8o/f+YhXnf313HzwVu0+qjR63vdWgAo+v2wvdf6eHXt5ZLb+dfpXsTLe85dTRDlcgBrqxBLD3hcaZ298steKWFP3XEjsNt6jFol88olnxtfve9fi9DL9sdmbDqOtOdd1o/twZ2eEP3i8iBprNs9SNPUJZm2s/nY+xVHPTC1cd/NbP83tLVssztq0xR3zwT80lLLDYemJ4J0yQnaKwidD2WpiiENXeUhRD9XUqh+nrXRT2+7UBsTrt6hZn102sop25leqWw2KW8YBvIaruMrx9aNr1+nRqa0jbr09+1dK9cSaZpgWfYNcHcjrj2+0uAu5eWZRbzaGrYDd733e+bLl8S1ztxd5cGgtp3Rup5m9Gtc/rL7oS6RgRYIlNA9O4Yy+Lu/eT+mnWdm5w7mFxcYGh1DmC7tTgPbzGFIC8/x2Ld/DzN7dzGzZweGgMPPHGH2zCw2FvlKF2kkJImFMCMCmhhY2WBuZL07NiC1L5plE3RDLWpi2hgYGFIQRRGnTp2gWKySxDGObXH+/CwTE+Pc8srX8Qu//Se89XV7sSwb0zIZGRlibm4Jx3H58Mcfo9NuMjpSQyQGjfoajbUGhXwO0pQgDFherlMulfoP1yiO8TxHXwOGnvWU0qRUKCGkQafd5lP3PcKumQmENFCpPh7Ps3Eck5XF5b4ZukBQrpRJ4pBuEPK5xw8zPDiA5Zg0Gs2s9U9x7vwFcjkfEPi+BqGmaWXJVUpjrcvx46cYGx8GkSIMXdqmFDzzzDGKxZxmQdOEXCFPksR9Xzdp6IHSNC1s29ZKmwptVp/1WKIEFy8u4Hsurutg2qbeh2wwiuNQl7CmMVHY0cAjS/Tq9QaOY2O7HsKQmYG4NoeNoogkTbT/XqoYHx/Gcd2McUgzYZSe9YKNNAyUUpl5ud43I3vPygRLAAxDJxHaM0/2Zk1IleKeB55iYrRMsZRDqYQzp7VPXBQm1OtNarUqQ0NV7eFmmaRxzMrKGgPDFQxDceTICwAUS0WiSCtzPvPMc4yPD2uTc2lhSoOlpWVqtYH+LRlmSq3CMEhirR7quj6dVsjJE2fJF3wQKaurTXzfp9loIZC0mh0azTq5XAFDGFi2heto0K/78nTyNVjLUyoV2Lt3jJSQMOqinQ1SnnzqeTrdDjt3T4HQrI9jOywtLbOalWZGUcTk+Ig+p6bE93tCNgmmbWCa+pngOhb79u2iVCogTZMzZ2ZRaUqpXNKTPwIGa1XiOMXzPNqtAEOafPrBxzh2cpab903huBZSWhhC0u12dfIuUizL1EA/jAhDbS4PYAg9+WBaJuVyDtty6HS6OI4GuN1OiOf7hKG2ePB9j9NnLpDzdQmj5+d48DOf5/TZi+zeOY7j2nQ7AVIaeL5Ht9PFMLSdQrvTpBN0UCLB83Iszq9w5OiL7No9wc/9ycf55fd+iO/99u9nZnoHn37gfnbs2EmxVKJUyXHy+Ak6nYADt9zCxz76cYr5ItJosWfnTr7zO76HSAXMn3mRgufxDV//DczNL3DHq1/NxI5dfOpTH2fnrj08d/Q4tlOg202wPQvXdUnTlGa7heflaDc7KJXy6KOPcscrbscwJYPlGgcPHeA1r301URJm4kiXe75ffvS7nrF1O/DXA3pbwd31rPPa49IyyO32r5eIb7dvm7+v2SRdHnltybvuk7setvDK76lLGJxLwd0X3baRhSF0r7hmyZJsQvPyOcG2b/VbTno7d/Vlt/ZwXjZv6vXqbTjOniIwrP+2G89DLy+7Ksu14e3edwQ91nDDe1tNwtXmPs2XN9S64rr64ljJrBLqBri7EdceX3Fwl6Z65uSLXM8NcHf5/dhuRrQH7nK5PJa0ePyRJ3jTm7+VqalxJmfGOXN2llpthPrqAg98+rP4fp5arUZ1oIL0TJJsEOg2uxS9AgOVAR59/B5cu0g+N0ZipERxiC1dLbywvEKhkCeKIgzTYGVxmUJeJ5MCgSV1v1mc6M8HazXNIlm6Z6xarZAkCULAm7/lmzi6bPLe//4/eOXOIeIoyUpAFdWyz549UzTqLVQCtqOFLQSKdruD67rkfB/IBsNUC0moDCjEcZx52xk0G52+19zk+BCrK2t4njYLf+yJZ5mZHiVJU2zTQmWzpUkSIxQkKsH3PHzXoVQuIaX26LJth3p9jZGREeI4ob66xqlT5xmsVfuqlxpcKco9HzehZ4BN0ySJU6ZnJskX8gjIWEkD07ToSdenShGFMUeOvkAu52GZpvYvFHrSFKDT7vKBD32GkcEihXw+UyWEVKWEYYiUsu8hF0eBTtKFSRAEGWDMYdkuSgkQgjAI++dTGoKlldXM209iWmZWRgoXL8yRy2v1VNljaDPlzjAI9UisFEG3SxCGOLZNmiqCoKMnCeS6yIFKFS+8cIKDN80wUKuwtLRIPp9jZXmNUrGAKU2iOKbZbOL7bqbMaeL7Hvfc/3n27x1nfm6OPbtnMgN2rZzZajWRQlAuF/SkSMYMFAoFjEx8SN9vglazRRSGmaiLh2FYPPrI09x00y7yRZ9Op43n5gBFEifUV9ZQKQwOVbNSUjMrLU37ggPdbhfPdymVighDpyimaWJKzSAaQpuhj40PYdk2qUoy0KqZ20Ihh515voVhhOd7Ws1SqazcVQNpwzCYn5tnaGSIky+eoTpQZa3e4JOffoI7b9+XXS+6f9a2TIzM166+3MC0TKanRrjtlj10u53sNzE4eeKMnrBxJK6rk8v5uQUKxSLLy3XyBQ1otYG9oNFYI5fL0WkF+DmPhx75AuVigWKxSKoSOp0O7WYLgaBebzI6OoSXc7nv/s9hS8kbv/41iExbfXWlzrnzc4wM1ei2u5klgg0KKgMDGIap2UjTZmJymLf91of4iZ/6cd7x0+9gbGQHtcEa4xMjzM3NcfLFF5mcHMfxPIrFEmmq+OEf/lF2797NTTdP0em0yPkVygMFTjz3HJ///JPs2rOXhx55lLHJKYRhMX/hDONj09hOjmK+Qq02xMLyHM8//wKj46MUixo8R1FKIZfj0K2HiOKQbrvDWqPBufNnuenmm7TQSqQZ8u3j/yvg7tr271rBXU+gxJCXWh9cLr4i4O5lEhPZCO4gG8suazV16XY2vtPfvy8DuOuFlDKzvHmZwN02OZIppZ4IlWafTevZH7z8cQPcbYwb4O7LHF9pcNe/eb/I9Vz1lrlcs25Gz/duuo3Klpdbj06+40y7ZAtYzJLrzUUXG0CV0XtAXftNvq2i1TYPo02D84ZadiHEJv8dWAd3nXabVqPNxTMX+ejHPsmhg7uAmD/90z9jfGQHk5MjzEzv5P3v/wAHD92MbRl0gi6+l8MUOT74wY/y7vf8CQcO3sLE+C6IJdVyhXanSxwqPC/rvUq1iazrehgiwLYMms0GvuNiKOh0u1iOhe04JElMq9UilyuwWq/jZCVkQCYFrhgeGeSur/tGfuTX/ojv/Or9tJttup02nmczODRAtxNQGShTr6+QokjSlHxOm4+jBO//f+5hYqyG4zqILIntdDIrANMkThV/83f3YEnF0FAF0zQ1w2VZKBL27JpCKW0ebkpJfXVNl9ll5R+2qxUC4yhlcWGJcqWIZVmaVcnlkNKksdakXC7hujb5fJ61lQZRFBIEAcVSHiEUcRzhODZJojKLCVt7maW6rNE0tY8eQnvoBUEX29aiIPXVNUZGhpDSJAwDDEPpvrQ4JuhGHNq/i1qtrAG3ITJgmNLtdJAZYE2iBEtqqXjT8TDNrH8xSUkRNNc6WuSmZzQtDQzTxLFtHMcFlFYCJCWKIk6cPMvIyCACrcooRG+GVfRZx3arjeM6GGij8961s7xUx/M9Op0uoEU+ZmYm+n2GxXKeKA4YHh4kCLQlgZ+zKRR8ULC2tobtWEjLYmSoxKkz57GlRT5foN0JaDRbFAoFVJJQrRS1gbmh9ysIAq06pxRRlLC0uEIYRKyu1hkaqpFm4FQIxcfv+Tw7dwzh+z5JmvC+v/0EB2+exnMd7nvgCU6cvMDk1CCWbdNutTFtbawexyFpCq7jZMbkmZl4JGjUmziOhzQsBBLb0+byaaJLvtM44YXjJxgZGcI0bU6fOouf8/Bcl1azRS7n9Z8/+rox+88wx3Yol8oYUvvW3bx/hnwhl/XjGvpZkcLs+TnKlRKrK2scPvoie/ZMIw2J57vYWemzzPogS8UCYRQRBhGfuOcxbtq7g3KlBIb+LXslWe12V4NXy0RKSaVcIEkVruvyf3/wk9x+aC+W7WA5NoePnmRwsML8xUUqxQIHD+ym2Whi2har2eTRYK3C0uIKh4++iG25nD49x/DQMIbQFhDLK4v87Pse5qk5xXve9buUK1U8J0epUkRKhWNbVKplJqfG+G9/+3723nQz997/IP/+3/8U//QPH+SVr/4qTp86iue4rNRbWI5kfHiK/TcfQJqCsYkRbEsLM1WrI8zPr3DfAw/w6//5N7jra7+W3btmuOnATeRzOcIoJoojfukXf5Vv/uZvRhiC5toaSRozNz/PG9/09URpBAYY5tYxY0sN2mXiasnk1VijlwIOtRKmsaVscj22Y0o2ln9u3afN+7fxe1fez964eT0S99ebe1/KCm4olhU9Fc+t+7klye/lGy8R2PVKLNP+cWpAeSXT9vVzugnSbdnPzSWYW3+P9f/v+SaqPlu2zU6ur3fDVwxD72dvXb1/q4xR6+1Fr2z3ssezpfQ2TdO+n97G/e2V1PdypO1+o5cr+nnYxmN/yesybvTc3Yjri680uOvFlxzcXW35yzB7WyNFA9LLba9fWrDhvU3grn+DX8ceXyO427xMn164hLXTW9fgLokTivkif/UXf8OP/OD/Qqdbp9Ouc/8993P61AUOHdqL6+S47dZbOXL0MJYtGR4aIolShHDYt38/E9NTtII2+/fvY/bccWyryfLKCuVyCUNaGngkMZ1ON5NMbmeCHBpsKJViux4q0abPaRpTKOSpN1oUC0WUgiTRiZBlWURhjGWZNFt1vvdt38W//cXfIwmavOrgDKaly9ziY3D5kwAAIABJREFUKEGaBsVyHs93tcWBEJw+cZ5qtcLE2ABSGuTyHipLzOfnFyiVCgip2ZrBUp7JqVFtAp317iEEhqGTFtOwiMKEe+5/mF07JjAdW8+WomeNbUcrZdZX15CGBipxEmOZ2j/s4sV5ypUShWKBtXqTJ558jiQJGR6p0RtQXc8hSRTSMJBS94TMnte+g57vapEYBSpVzF2cZ6Cmyw9N06Q2OABZGZ62ebBZWlrSanyuBwhMS2JZmpFJEi28EUcRpmUjDRNDGn2VTjIzdMPQCZxukZA8/sQRduyYII5jfZ31EjqhiOI4s0uIMYSgWi2TxKmWzpfmejIl1ic9XM9leWkF27ZpNltYli5prVSrtBptcrlcVuary0KVgjjWwiiGEKRoMR9DCoKwgykFi3PLlMslhNSgyLJtKqUSju0QBjF+ziefL/RtH3rlop12B6TQ/o1KZV6ANo21Jg8/eoSBahHT0tfw/MIyjmNw876pDHBqddHJkQrFYp5ms8ni4gqvffUhcsUcprQyhlQSxV1tuZAaCEOC0qynQqDSGMexSNO47/u3vLSUAfzMb84wGKhVcRyXNFWUyyWUSrXhfdZ/OXthjlKxoMs+ETTWGpTLZQwhuXB+nk6rAyjKlZL2Q0wTlIA41CW/5XIJhMDPecxMj/Hs4WMMDQ1gSoskSkhJ8X0fx3HodkMcx8Y0LB565Ci3HtzJan0N19O+j9I0MYTBU194jnq9xdBwBcs2sSyTXD5PmqYMlD1KpSKG1EI60zMTKKWorzaYmRmHVJf5ur6LNATNRgsUlIpFBDAyPszAQJnV1VVsy0CQ8DPvvY/f/8N38aY3fiONxjKtZofZ80sMDRdB6MqAF154gUIxx8pSnUq1wszu3fzQD/wQOduj2Y6oFC2Wl1fYuXM/GILzsyuYlsVnHvpnDJESBREPP/gZHnviWd7wDV/Pzh07ufvuuxgarlEqF0mSlCAOMaSg2wmYnJhmYnIcyzZZW6vz2Yce5k3f+EZM28wqHfS9tNkG+KWzSxtD99n1ZPu/uFG0Dwiydem/9X20cTvbA7HLs3CXZeYMSb9H7IvOIF5aXGnb60Aj6R/7+jIvZ1xjhdFVl92Ond0ud7l0+fXf7xqO7Rp2rXeuepP/Vz2e7RjTbTbUY3NV1pv4P1PcAHc34rriXzK4u5w/XE99UqmEXhK88c+1Pjw3+tytb1Rt+lxx6XzpFQGgyvrYNpWxaMlvhUDPg2+UPLn6sNQfwDa+NkT/fGxaZn2g1CV3m2fdEpFqLzplQAJ5r8L9n/owY6PjpInJW97yVh548NP80q/8Bj/+4z/C8vI8jz/+eXbN7CVftTl/9iydtQ5/9id/yuEXnuG7vvs7CcOAfLHE0sIcrZULXDx1lMLIDhzpsHJhgTe+/mv4qjtuYnR4TKtMLi5TGRig0WjgOkUMaSJNgWkaJGmM5+o+NgRYliSOEzrtDqeOzzJQGcZ1fFrtLl/3+q/h4Gu/iZ/9g7/jwsULvGrfJHEcsnxxhXp9hfOz56nWqhjSIk67uDmHQtHHtCVxmJLEijgKGRwc1AI0CESa4uc8pAlB0Ma2bUzTJup2sKQPqaQTdjCkyZFnzzI8XMNxrWwG0WT21DwXzs9TLOWpDVXxizkMKbTXkCExhCSJYwp5j5XlVcoDumdsfHSE9lobx/O0HxpaWl9hgEqJk5SBgQEs2yFOYtrtDjnfJUkSVlcauI7L4sIqXs7Z8NtrEJ3ECt/P6atPaKYuSZU2pZa6mV4hMAwzEzMxs3WYCKH97VKVEoQxlmVlhvQS13K4eGGR+YVFRoar0JvMFtoLLkkTHNvRPYFZn2On3cX3/axcMIVMNCgKY0xp0W4F/P0/3M9dr7sdKU2eO3yCarlIrpAnCkOSOEEoSRhoM2xpyEz4RB+DEBbPP3cSx3HI5/O4fo91hW7QRZoGlmFhmpILs3PMLyzz4Y89wt69U/g5nxQNbBzXxWA9YbUtC8MQuJ5DtxVy4uQcE2ND5PI5BmpVbMfSHpBCYZmSxloDkUpyxTxKKPbtm0ERYzuCbrdDGMS4tkej0SXv5wFJlPk0SilBaWXZVruFl/3OYFAsFvWkiG1z+vR5LMvCdXOoFN73dx9lz65RPM/FtE26gVaOrK82SGNFu9khX/AzC4WYNFU4jsdHPvkwhw7uwHEswqiL49mgEuI4wbRMojDVCbURIqWiVitRr6+iYmisdfBzPkEQ0mo2cVyLtbU1XN/nlXfeRCo0EHVcH4RFqrTx8cz0FNWBKs8fOUGpUODFE6cZGRkgCNoU89rk3c27hFFIfXGJvG9Tqehr+PSZi9pL0DEQholfyOvJCEuSK2qRGduxUcD3/8En+L53/CZWvoxl25SKHk8/8zST4+NMjA2yuraAUjGHnzlM0I0ZKI1TqQ2QRBEnn3uR73vbD3DhXIMnv/BZpqamyBUsOp0Fnn/mNNN7doIQ/MTbf5of+rc/xqc/9SBpIpic3sk99z3Ana98FflqjlzRI0xiMAwWFxYplooYCPYc2EdnaYXG/BKN1TVuOXQLyiaz/DAxEBgYerzINCgMIcjs3S8zfmxkz9YZtR6RIITos06XA1XaHkNt+O5mFmTrMuvsy+a/YfOQeTUAd60loNtVpFwtNnuKre/UOvC69v63S5mvrbGRwdvMPm5l+K4lNipKbn7p0JZGMpvM3d7rrVeG2NuP9XLHTACkr3p5af/j1cBdkk3qpUrpcdDI2m2ELvfv52dKae9YYWwjRbLh+hYGWiFLbFq+D/iMzeI1G/dTs2bb7G3ayxk3H88VvfG2nD8hthGO+TLEDXB3I64r/iWDO7bcsP1/95e53IzZtYG7HnC7pERiw3aud26nJxCzdbntGL2N+/HFxKWP4Y0fbmwYXv9WFMeY0uD86bO4lk8UJIyOlhkaGmRodJh6Y5Wve8Precu/+hYsS3DkyLO84Q1v4N1//Ce4vk21PMCHP/hhfuZn/gN3vf5r8fwccZZYe7kcQ8NDOLkST9//flR3DTtf5Zu//Xt49OgZdu7Zje3nmJtfIJfL4boOy/UFHNfEMCRLiysUCmV9XNm+p4nCdR2ef+EF/vOv/yYTk+NMTE6wurKE63m4nsetBw7wyq95E//6p3+Dt94xQ22ghiJh964ZBLqEzbG10bjuZdJG3lEYZiWPTla2oQeov/jrT/CKW/fSanWIIw1QEqV49pkXefTxwxw8MI1Qij27p/A9hzTR3l2mlJgW1AbL2uhbasar2w2wTQuB4L/9909x6swsBw/swPEckjTGtiVhplypgFa71VfrRGlZa+2FpycqFQrHtTOWR2jfM9emUPR070KmBCuAVCmsjMHp9wlmZTTSzCS7hS43tm1LJ5XS6A/8AHGU0Gy0ePChL7B75zRSWnTabYqlIiAYGh5AqSQDinqADcMQ7bWm7R/CSPda5XI5ut2A5cVV/MznSwiTJFEce+EUw8M1XvOqA3Q6HQSQz/v9fr4nv3CEsbERDKH94S7MzlOuVOi0WwhpYGbbL5cLPPf8iwzUygRBFxBZWaIWaqnXV/HzPtXBMpVaiX17J5CY/N37P8n0xACe5/XZVtM0CYNQl5wJzcgNDZc5cGAH0pas1eusrTVptht4vq9BtQDHsfF8mzjVliMyU+NME4Vtuxw/fkZPZHgmtqMFb1AK09KJz1pjDdu0s95QgyiOWF5exrVd3YdpSXK+R7PRws/bxEnEzNQgxWKRIIxot7u4noeBZGFhlampCRzHwbIslhaXMQS611MaDNUq2rQ+STlx4gyVSgkQmXpoB9MyWVleQaWQpLqf1bZtPvPIk1im4AuHjzE9OUKn26XT7lAbGuD0yXOUMjPyIAiy+1lhZHlbkuhe0jOnzzMxMUJ1oNzv/3RcG9ux9O8mBOfPzzM0NESn28a0bAYGKggB7U4T1/WJsmvLsnSptDBS3vnee/nAY+f5vd/6r6zVu4yMD1IbGMCSNsVCCWkYnD51mmazhe/n2LtvH+951x9z991vREjFY48/xheeeppms8EP/eAPUq7mOHDgAE8/+yT11VlMKdm1ew/NRp23vOXNzM/NEYQdwjigGyb8/v/1B7iOw52vvg1pCVAGtmVx5MgRhodHMG2L5YV5KpUyLzz/PGES4eU9BocHs8R7/VEu0Pfi1uHtcs/+rSBlK8DSCf3lR5/tesWuFFcDYtcHmq4e/TH1OhiYzd/dBhBcR7xczM9LY9m2+VStC6ett3JszYW26fnbcOw9YHjtDKo+/1LKTd+59NrbnFdtv2/bRL+gan35/sT5xnLWjfdJ//NtVrfhOtzIqG7c7yvHy29bca1xA9zdiOuKG+DuCuDuSn4pl4meQMyl+/QlBHcZw3m5B3IcRZf40Nx7770cPHCAUq7AM194lo9/+FN0glWmZ6Z54MHPcPPBmzl89ChpKmh3G9xxxytQieJrv/b1TO+colgocO70WU6ePEki4OOf+ASHbr0d07IolYuYjo3j5ZFpm0Y74IVjp7l53x7CdsD4jkmSOKZcrSDQJRKlSpFTp05SyBfI50sEgS6z6z/Ulf61KuUSd9z+Svbt20PQ7fDww59lanoKIbTq5PLiEt/11rfyzAL8H+/7EG+6fYrz52Y1gEm1NHGSxKRpmil3GiRxgus5WW9Y75zFlAselWqFnOfh+Rpc2J5LMV8kiroMDZWxzKxk05IsLy9z6vQ5Ou0OpZKve2iaLXL5HHGSaiP0VKtITo7XcD3tWWYIA9PUSpcC0VeJVGmCaVmg9OBm2xbNRpPHHn+WoVoV05SaYTPN9aRZ9qTC9T1gSolpWlycm8sMr21UquWhLVuL1aQqzWSjNXBBCLSYhuhfN3GcYEgD27HZOT1BlDXrS1NSX21SrVXxPAeFYnlphVwmz3/kyHFGhof6M+z11TqLi6vk8znazRbPPX+aiYkR6qt17V0YRNSGBrAtfV6jKGJufp6R4WGt3CgNHnnsMGMjFfKFPKaUFItFms0mubyPlJp51BLYCRMToxhCIqVgdbWOn9ljIASOY+nz1S+BdTGlRa2SI44iHn/qKM01bVMhhC6rNU3tL3hxdg5pCaRlYDsWjuPg+bqMUCndSB8GAXNzC7iejWlKup0uKtXs5MLCEuVyiWq1guNYmWddwvJKnUI+x8ryirbO8FytHOk5KKVYWlpieGRQ1wBIPYNsGIJ8oYBSYfZvzWyZponj+gi0z1Wj3sR1XUzTpNnU/Z6Oa3Nh9iK5vM/S/ArVSplP3vMIUxPDdNtdiqUi587O9gV2XjxxmlYrZGR4EGHoiYLdu6YYHBrAkpLqQCXzpMuRJAn5nDaYX11dpVDIY9u6vLSXhLbbbUzTYHRkiHanw0c/+Rn275kmCAOOnzhFqVwABaZpY0mT8+cvMjQywFq9yeGjxzl9bpZdO6doNjvZNaNYqzewbIvv+u2P8Lu//7u87Tu+E0v6PPro4zz17JMcOngQlL7Xnn3maQ7depByuUoYBERRzL69+7nv3gfYsWcHs2fP8Z9+7df5nd/6HZ76/JOUqgV2795DpZRnYqrG8PAQ9XoX23E4/OwzVKoV8rkcN920n3Yn5Jd/6Ze47bZbwEiI4gDXdkmSlJkd0/2exzQMmZ+fox10OHDLQUqV8jpjv+W53ukGfTueq40fPcatVxa59bNrAXc9dupaQNT/3OBu/Vhf2rpeenwpwF2SpGihk2sHd733enYQ17afulKqN5nFht/kSw3uNjGZ27G925yujYBuu7LeG+DuSxc3wN2XOf6lg7s+Db5lMFNkFYrbUPCql6RvWV265b3+v7fM3FwyCF1DH15/n4S4pGhC9LaRfT9Je34uLx3YbSf8st2DSaVp/wG/cVZux/Q0YdDBERaf/eeHyHtFbr/jNqJEcOerXoPr5pCWRymX49y5U7Q7TUqlIn/0rnfxile8kpWlZQq+i+vajIxOcuedr0YKwUc/8hEmJidYqa/huB7lqTvwS0PIsEElJ3n8ng9heg6jQwN4jo00LQxpEoQhhUIJhGbTMo9uUMaG0QDSJNEm146JY5sMDg9SLOZoNhr4vodtO0jDYnJskoKT5+2//ad0opjX7JvENDQ4ieMYP+chlGbvLs7OkS/m9Gye0kxXq91mYmJUj1dSIlAYUiuQJXHK2PgQiJQgCIniiE43oFwq88l7n+SWg7u1QmEUk8vn+7+FlAZBp8vS0jLStJjZManNuTFAJcRRiLRs4gSOHHmesdFhhJD9WUbLlARBSLcTUq1WkNLg3JlZzbYohTRM1upNPNcDQ7NwKA1d8vn8erM6cOb0OUrlIlJqdq93goWhExwhNieQR44eY3Cw2lfAXF2pY5omf/wXH+GWAzO4vgNKA0TfyxGG2jtuoFLRDKnUzGUul8PzHE6dPMdnHnkW0zSoDRSpDpRxXJu/ef+9NOp1du2a1Psi6Ctdep5Lp90hn3MYGh4ElVKvN/jMg0+xe/d09vtoHzxBmtlqxJtERET/XjA0ayQlaaq0mbkhCLsJhWKBaq1KrVpieLjG+fMXyBdy2eSAiUoUru/i+jZSmqRKZSxnVlKUbaO+1mBouKa98WJdXqlSOHn6PNPTI/0yqmPHTmHZJrZtIw0tTLK6WqdSKWuGz5G0Ox0sy6JYLNBsNLSNhDSIorA/GdDtBlo1NlUE3VA/a2JdyqSvhZSFxUVMaWDaWqUzimLCIKRYylOpVFBJQqfdptsN2L17B4qEcrmE53lEYczo2DC1Wi2zsuixuwZRFPHPDz3FzNQotiURaCGaOIqwTBPLzAznlS7tjKOExlqLw0ePMTU5SqfdwbQku2bGszJhydLqGtVKheZaE8exwVBUBkp0Oh3KlRKDtRI7d05pNdVugCVNWq0Wn3zyGP/jaMjP/ezbGRoYodMN8b08I8PDTM+MAoJjz53m5MlzvOY1t3H2zClcp0i+UOD4sWP85V++j3/1TW+mVPbpdLr8x3f+b0xPjzM2VmFqxzgXzq3i2D4LC+cJuwm+U+Lk8RcJw5gwjNh/4BCLyyv8/M+9kwMHD1IeKJMr2kgpaLdDLFOXB9uWRRRHNBYWcHIuXrnA1O4ZMARmpoy5dfLRMs1LlJ21dQb0RpuecuHGcUGIS8e2S/qwN3y+DnRUHxz2Ev7tSuAul8j3SkHXt29su62Nr43b21wuaWxhlVR/G9ejcLmukLgV6KnLHtt2r+1iY5njlUb3zX54l4qW9N7bWEJ5tTCM9d+sd743HttWAJMk6SXHo8HPeknt5jLWbN+zksSNKpNKKdL+/m4QRNkur+q/v76Oy5qYCy5ZXvTPz/r+batrcJlTtvX63srgbo3N+7ZR/fLLEz2SwZTyBri7Edce/5LBXf/BcBnVp54E9iUrEOsD4/pbBuKKs5RXGByuciNf7TbfuubrnW3cfqOXbnXbdW75Xm/bjm0hgLnzFxFIJsdmWKnXGRkZQ0qbn/qp/8D7/vpv+f7v/Td0gzaTE+MoBQduPkAQxpw+dZJbDt6M53k8/uQzTM3s5P1//z7e9h3fju87pCpmcXGJ08dmefKxx3jtV72Kam0YJXMsXniRQs6nWq2w1gkxTIs0Mcj5+Sw5T0mTCKSFIXSNvZElxo5jazBECiKlWCzQ7XYoFApEYYRpWjx39AU+8pFP8L73/RVvfP3r+bl3/gbf9yu/zzfdNk6+kMPMRCzCMCQIIs7PLlApa6GJNE2JoxjP9xDZw1wIQavVxLa1TL5p9HqGYkzLwfWdTPXLZmK0hpdzcR0PgYHjOiRximlJDSYMiet5WLaJaUq9DmmRpglHjhynWq1y8cIi9foKY6MjGFLywrETFPJeZpIuqNUGcBwHaRpUqiWE0kDu4oUFyqUSCoP+RKphaOGNPrunJacdx8KyLVSSZsmhllv3M3VTspLNNLteBmpVUClxnCCAhz/3Bfbsmeb2Q7vxfS8TWUkQUoNV0zLodto4jkvQjVhaXKRQKpAmelAeGR1i/55pxscHNZOqtCfawf3TLCyuMDU1RhyHmJZJOyvNDMIQ13WoDpRRKtUgxbRI45RCIYe0yOwbJFmqgRASaUiCoKvtHLISP4SBAbSabaIw0lYcaYo0HWbPXSBf9Gg2tXhKqZTDdh3iKNaqmY72RBTS1D0ghkEcxYRRSBRoy4F2u0OxkNcA1RBIDIJuyD2f/hyHDu3F822iKMQQkkqlzOHDxxgdHeLC7CK5nEexUMAwdB9kmgZZ2bCXgSaJNE1AEUUBrWYb13Xw3BxJnPLs4WOMjY+wtLjEWr3B+z/4aS5cnOOWQ3uoVEsUizlMS5Km8Pjjh/F9l1zOZ2V5hTAMmZkZxzINOp0OCRFKoEtdDS1s8uBnH2Nmx4T25NNwFiEMpqdGcD2nnxymaUqz0cJzM8P0boDKGHOhDFSqKJcK+L6L6ziA0GqwmbDPQK0GSmgTdNsEAyzbJAo189futPE8l1QpTGlyz1Mv8pv/+DRf/83fzfe87Tup1Ab7JaWObTM/f5HRiWEEkrXVgBePH+Peez/G6+56LSvLHZ577iijo8O85tWv5cKFOWojVVzbRRomL544hjRiLNfi3e/6Gxr1BmOjQxw7doLdO/Zz4sWTXJxbZKA2zPziMrXaIK965Su54847KJbyLK3MU6+vMDw4lqm/CkDgOR7d+iqn586z/9DNxKlmp4W6csK5MdLsfG/0C+t/ll4b67Z1O5r5WV/2csqLV1uvkTHLve9eKzu2EWBsXHa7Y9n63SvFxu1vt+8vh0jLtRzn5RnEzcD1ejz6NkbvOK607EaGbR2E6Umq7fdzw3vqUiCm+v/dhkXbvOEt6zO02bdhXNrLti1ZmG5go/UYnW7qR8yO7SXUSV2Onbzy51/a6G3zBri7EdcV/1LAXX8eJd08o3blm0msvzaIjRhks+cbHxJXY996A9nGOu4tzNgly2T73JMrudxr6zIvxwPiajOJfWZvQ0jDII4TbMuiFSa01jocf+4MYZBSGhhgbLCIU3B515+9m3/ztm+j6lrsPHgzcZIyMjqMEjEPPfwgZ08cR5IwOjpCpx3w67/6mzRXm3zVXa/i4Yce4eyZ8/ierQ2HE5OLs3OsrHZIsSkNDHNuTjE0kCfprlKplUikzd/+9fvZvXc3wojQsr8eSbeFKQQYBu12mzCKsGyHbhxjWgamAcQKAouok9BudPjERz7KnbcfYnS4RKctuP222xmu1ZgZHWT0wF18zy//n0xWTUYrZYIgxsv5uL6W7U8SXdZ2771PMjk2QbPRotlsaUU+d12e/tjx04yPj/LckZMMDg3w/AvHGagOEEeKhbklRscHqK80dFIkBcKAKI4wDLAslyRNNeNiSgxDkKSgUAwODyClJJ/3WVydY3BoEMOQ2KZFqVIhCNp9U2jLliRxQKfbxnZt1tbW+OeHnuXJp14k55hUBkv9wdaQAqUSUPoaCIKQIAh1v52QJJHu83Idi7Onz9JptcgXcpnBrFZctCzZVxgTQjE1OUyaxFi2iVIJaRKjlCBNUu791BPs3TuNado0mi0MQ/DhTz3CrYf2IYQuPzUkCKl7Bl3Pwco82aQlmRgb0SDG0KWHruNgmDamZfQfFEZWaqiUolwtYDmmVrKVFivLy1i2JAy0r2EURZhCIpCEnQjPdWg11rRioxQEQRcv5yBNQRLD+z/4ANWiz/jEOMIweObwYYaHaliW7lULgg4YEHZSVKTwbIvjx05Sqw3g+7Kv4JidfUglYRRhSMnuPZPU66uapUYnUvc98Cg7JocplQqgBF94+jnGxwZZmJ/H8xwsy0EI7RUYhjFSZD2NBnQ6XS3jLyRpGtFsNThx6jQzU6MYBhRLZQq+xU17Z/B9H6XQkwDFEnEYMTUzzifvf5yDh/aRy9s0W21y+QKe5+LlXYJugiUtlAJpCGZnLzA+MoggodFYxDBS0jjFNCS27WTPb0Wr2UYIgV/MaybKtLEsB8fxUCIhSbVIi+06NJttDKloNNbwcx6WadFpdzGEwpSCbmYWn6aCJFF87KOfY+eOcTzfJ4kVQQjf/bsfJnBq/N7v/BpLK4tUBmosX1hieXmBoaEK0jQ4cvQIBAZRN2Dfvgl27R5lbLyaiR4N4/tVotCiNjzEyGSOzz74WcYnxzGkwejEKLGI8FOPw8c+z5/95V/xxjd+G7WBIj/w9nfwo29/O7XhHKur87zmjjsoeC4DwyMIGdJsLjM4MIyBRSoEqaUrS/Kuz9OPPI4czLH/wAFd+tpjRQTrLy6tBtnKOfRY+Y1MycZSTM2eXRvA64ECpVRfoEOvY50p23bM2QJItwMm25WBbv1eqleAQgtxaCZe300bGbyeSfdmlupqsRnY9crz1rd/KZtz1TVuC8SvtrzqKzf2zrUuoU23LLs+wbjx/e3Yzd5x9EC5LrPXLLpA3ztCiL6o1WZwtpXdMy57ToXQJumbe/l1Sb+RVXz0Xr0cSGW9xCiFkLJH5ZIq7S9rZH3lvZxFqbR/fi7Np3rXwYbzL9a/0b8XLnPeN567HrDsH9c2ojXbsZeXi819fC+TKmp2Xm6UZd6I64p/KeAOssfKy8Bq9UtZroM63w6IXS16a7+e5b5sZP42x66U6httW1LSrK/xmfse5J/+6UN89Vd/NRcvnOPC/CJ33303xUKJoBlQLA9Sype4cH6exkqLV93xGjBASpNjLx7n7Lnz/Lt/91PcdtutjIwNsnPHLnbu3EmShAzUqjzxxNMcPHgze3bv4ed//hcolSo8/exRHrjvw9xxx63EgO0XuOXQbdiOxerKAp7n6wcqaf9QHEerVSoUURgiDW2vQKqV+s6ePcfo6DC7du7i4YcfYnhoiJXlBpMTYzz08GcpFnwuzM7y0z/5fbRklR/7L+9jvOqzc2wQUMzPLdLtdsnn8/iuQ7VWxjQlURTh51w9sygAJRgaqtFudRgZG0YIGBgooxREYcLDnzvMyKiWl//4PQ8zMzWCaZma3zAlrUYHKWUQ/oUVAAAgAElEQVRmS7CcqVhCGAb4fsaaCcFgrYhhaKbp/LmLVAcqKGKSWIMopVTfvFopfQWePTtHmiq+5qtfATJTd7RtDYJQSGH2WaVSqYRpall90zRJ04Qk1UxoLp9DCd3PFScJSRxnJYU62TNNq58sSimzpERfY1KaBO0OpXIe0zJxHYdOp8MtB3YjDIMTL55mZXmV6kApSz504iGz82tZFotzS3i+h2FqhVSFyiwPtLcf9BIZmJ9bIJexsSqb0TVNE8uSmTpnz9MIzp45zz2ffoJHnzjMa155gFSlGNLA9dxMsh2ktLjzFfsolQr6fjEMhgYrmSWEBEQmYd/FdR2arbXsWi+RpjFpougGIY7jEscppqX7Go+/eIooCimVCpTKJQDm5ubJ53JMT43heS5r9SbzC6tYphZXGagNYFkW8wsLFLLy3sOHX+DzTz/PzPQoaZrg57R4Trcb0Gq1KeRyTE+OkaYK27JRGLRaLQrFAq5js7bWwHEcoijAtCyEECwtLjM/t0i1UiSXy/NHf/5P7JisUSjkWFxYodsNKBbymR1FhW43IEkSOoEW+Om2I9rNIOsB1L+lZWXMtFKoVIGCOIrpdrSvXdDRrCypwnFs6vUGuVyOVrPDM4dfYGZmkuXlZRqNFlEUsVpfY2V1jVKpyHCtQqlcIIljfuW9H+bWN/8kJ194kf/4zndkno4Rg7VB3v5jP8FXve41FEtFVutr5Pw8f/zH7+Eb3/QNzJ4/ixACz/MwLYvZ2UVcx8V2LOYvXqBcKROFIcVilSTR6n5pmrJwvs7Mjl18/OP349lF7njFrfzFX/0tb3nzm6mWi/i+z8c/9imKxSq5YhElIizbJp8v6PvHMUGBQNBptvjCE09SGx+iUCjg+9624OdaRpitzFWP5dr63tViI0N2OUasd+9faX3XytJt951NRThkJaUbzoHKSntV1sf7RecLX6SVwtVKNS+7XH8Ceh1Qbb8fl4LNHrjp9VRebvlNEwMbfjfFpaIpm9najdvdzNJd7rxf7fj752ib5baWGoP6f9l78zC7rvLc87f2PJz5nDo1l1RSlUqzLM/GGAhmMGAHO4ATcgMJodMPuR0CCRno0Om+nfvk5g5JLhnuJU060w2dhADGBmyDsfFsyzaWLUuWNc81z6fOuMf+Y51TqpKqNJghTrc+PfuRdM7ea6+9zx7Wu773e98LKFKeBehnj+f8fqzUm7OTH+dTRZe2fTnHtdL6r+d6uFhcAXdX4rLiCrhrbvM6xFP+tYG7KGoO1FUNghA1Evze5/4PYt/nqSee5Lb3vI/Ai3j2qV28/OLL7H31Nd7zrluZnZrhfbffTliJ6e3sZ3hqkk3bttLe1U62LYdmqERKROh56IZFpVpheOQUpqmzcfMgyZTLk0/torOji+npBT760Z9hx9ZNlMoVFE3H0KRJcRgFuG6SQwcPk8vn8b06o2OjzcGwtFNVFIGpa0Sh3xx8KJiWTluxiKLC179+D/lcnp/9Nx9h67bt9K9dw9jYKKlkCsd20LUU/WuG+NBPfZA//ruv86VH9/KhmzfwwguvYegabW1ZEimXIPCbQEZeF0EgPcZ0Q9ZcDZ8ZQ9WkaIZlG6iaSrlcY/PmfilqkXBY21ektFDGsi1UTW0qLcrfQlFULNtC16Qcv2kai2BCIGerFSFzwt9/+TV6u4vSgFvVqdU8We/U9LMLfAnQhgbXsG3reiYnp3Acm9APadTrVKtV7CbtLUYCtCDw0XRJL1U0aXkgmhKGQlGlJYGmSo8xw0AyYGRtT73mYRiWrO9qphcUoTI2NkUUQU9vW1N1VPrPuQlHKjuqKul0mmTSQdMEcRTheX5TFERZNKrXtea50NWmeqfcvxBywDk/O9+0k0DSZ5sCE7EAXZPHpKoaoDQpaypRGFCt1LjppqvIpCxs20LVBZVKtWm2rkCsIETUvNIiabHQVAyVZuIRURjhB9JnEVWgCPAaDdxEAkXTUBULTTeJouZEShQiREQ+nyGRcFBVnTgElLA5qFE5eWKYYlsRXbfJZpN844HnGFrfjeu6IBRMy5DgM4pJp5KsWdOJ41ggpOR4tVIlimKCIMLzQ2Zn5kmlM0xNzWKZJplMCssyCOMI13WwbQvd0kHIc93ZnidoeIyPzZLNZrh+50YSSYdyeR7Tcsjm0kRxRKm0gGEY2KaLZTsYmo5tJzlzepJsrkC5vCB9HoUUqamUK1IspplhVRVBvdGgPNfg3vufZGh9N4au8sL39zA4MIihm6iaSlshSxQH2LaFIgSNukcYRRTb29A1DU1T+NRfPMRXnjvB//Lp3+Dll55nerpEvVonCgU9PX006h4D/YN0tLcxNTNDZ2cniWSam998PY5jcejgYXbt+j6WmUBXLAzdYXziBPXGJIahUZ6F7u5OXt17gF//1G+wc8fVzM/Nce/Xv0Um5/Jrn/o0A+s20NmV54477mRmZpbP/OZv8+533c7AwBA/edcHeM/73oMQ8rqv1erNWtU5DN2gUprnnvvuY8u2rWy9aluzftJfVB1cHj9+cLdIzV5hmx8muGtlq86n9zW/V+V1v9xaSLZ7qfVtF4sfxvaXQzld3O4Swd3SusPlfZa+bXEUrbr9uaX5Z8F7dF7GVNZTi2XZwHOPU/YnWvG8X8r1IMHdCp+ff9SXAO6W1C2u0I8Vwd059OIfNrj7UQE7uALursRlxhsF3C3WxF3CTaEgVSlXu4HkLNVyZcqVPOuWb7Q6BXOZYMo5++GczyQAWf5QWs4GPz8WnWUucEyXHatk7jzPkzVDcYStG5iqSS5f4P133cXI6Cgvv/QSZ06f5rprr2NgcJBCRwJVjfnWN77Ox3/xFzh65ADrN28kCgOSGZdkwkXRdA4cOMQ37vsGtmWztn8t7Z0FTp85TT6bI4xiujq7WT8wSCqZJsYnl83S1d3L9PQUyVQKocmsiKrqFHJ5wijEdQxS6SR+EIAQeL6HpulozWMxLRsEjI2P4dhSECWZTGIaJv396/jpuz/EzMwMpmmwft06Gg0PVWi89tprnDpzkl/46EfZuXMnTxyY5QvfehJDh3XFBJqislAuY5g6X/7aw+zcsUFmlhTRpIko2K5NIploZps0Tp8aoa2tgKbpmJbB3OwsbiKB6ziL9EGBIAya2TZAxNKU/LXXjlAo5KRPsYhRVfniDJu0yP413ci6AmkzYBgGQkgbAN/z5P8RMkMiRNPwXEVpCsgYukGj4aGoZ1XNlGafZFZMQCQNxwXQqDcQAnw/bAI4KThSq9TQdYNvfvspNm9aRxzJOr2WZcLxY2eaPm+SvhgEgbRjCKNFVVGv4ck6qTBssqhlLaKqKDLLpaqIWDAyMiZVV3VNgi2hNKk9oGoajz76AooISWdSEjQ3azaiOELXVMIwXgSjoikykUwlEELBTThYpoHnSYGXMAghlhlEP/CkOI2qNOk9MDdXolyusm/vIVRVkGrWDmqaCbHg3vufZOPgOqJYIfB8BDRVTuXvEQYemqpy/MRpUqkkiqpQrVZIuGeNzCulKq+8chBdV3jTjVtwHIcnn3oRQ1NIZxPEUcypU8M8+PBzbN86SL1ewzA0FkoLOE6Co0dP8ehTe1jX10F7R7usdVIVDh85TqGQRTcMaB4XgKIpTE/NYOo6qqaSSafQdB1d03ASNlEYYpg6CgoLC+WmWJFBHEecPj1KIuFQqzV4cfdr5NIyE5nKJvjOw7tY39+FaVkQS5+5cqkMSPsVVVWpluqcGh5n7Zp2dF0jm05hGCbPv7AHy9Sa95W8NxzHplqtk86ksEyTB144wK//5aOoisGf/tEf8urevezcuYPu7j5uetOb2PXsLvr6ekimXAbWDzE9N82Z06fp7u1DKBrl0jye5zM7M88tt9xCPt+GUFQ+/vFf5Ja33EgQ1Cm2dVJZCFCUgOEzoxSK7bz7tncyOnKa3t5Ojp14FUWEDA4M8Njj36a/f4Cnnn6abz3wAJ/+tV9Hswzu+Mk76OzsoFSaRTd0ogAcx8WyLEQcU6vWGRhYz8CmIYQi6zblhMRKcfF3QivT1lrOzUxciMK/uJfFz89malYSGFkq2KKoMuu/HHhcmJq4LOOyKBhylhIaL1lnsb14OSXz3GNf+TguHpcLyFaKFmOgRfdrnftL2a5F+2v9f6XtVq6fi5e00WpvyZijKWQjowXYlmbulipGng9MV75mlmfwLpeyeLbxs/+MFlWaV8gCrjIeW2l/Qjn/2l6xR0uA8uK6K1zjP0qQdm4s9etb7N+Sz1rLlZq7K3FZ8YYBd80L+1IeswIWZ+0utl4rXk+W7dxtL6VNyWZYnWayUiw+Vn8IWcuzO115r7puEIUBoZCCINMTU7x6+CA33HwT0zPjOLrGdVft4NixQ7z1HW+jESiEkeBDP/Nhuro66O7toJBPkXAMvEqFI4eOkrSydBd72bx5A8lkmvGxMXp6O4iikKmpEpl0jvLCPPm2LOPjw2iGoNjeI2v9UknioMHY1BiZbJbyfB3LtYgJEXFArVZvAlKDhudJABBJOqYfx+imgZXQiENQdakA+NqBQ1x37Q0cfG0v09PTFPJ5Xtt/gH379nPo4Eu4SZ3eNZ0cP36MhJvnlT2v8fMf+RDv+cBH+Njv/jkbU4Ke3i5UJeaqHRuawiQqJ06cRtfVpiKnpBEOnxlBbRq26obOkaMnCP2Ye+5/lO2b1xE3B0iqquM1fCxbl7YCiqRIVspVOjoKxGGMpukEgUcQNIhiSS2MmpL+uqFL/7s4plH3CfxAZvK0syIhhiENtqPQZ3x0GtuWptdRHKMKqV5YqVQWJf0X6TdxTBzGnDwxTDqZxm8E6KYh6aStugEhGB0Zw3FsdmzbQBxK4BkLqUqpCEE2J7NyURQSh3Dw4EnSqVRTQCIm8ANMy+Tr9z1Ko16ho7MN3TBRFYV6oyGVO4OQhVKVx55+mc0b+2W9nK6jKCqe54MAEYMq4LFn97Jz+yCari2a3cu6tAbVss/cTAnTlGbuinbWiFkCxhiE1vRUTOEHPpqucOb0KJl0erHWSFFVHMvGMk16eroYG5tkdnaOXD6LqqkEvsfOHUPSYiOKmRobZXxsAt/zcR2HOJAD91q9TjabkRlhTcGybBRNod6o4TgmqhYTxQGZbIJEwuHMmWG2bRvCdmwaXp0ojHAdhzU9RWkvoLHEh1Alm8mwbeu6Zg1nIGsOPY9CPoPS9DsMgwBFFcxMzzI3O0s2k5EoQJH3jm0Z/MM/P0J3Z6E5KaFJIaBA/m5BEFCtVmlrT2PZOrbj0NnZRr4ti2nrRGFEV0eehVIFIQRHj52ikJNKm4ZuoGjSOkPXTYaGutFNFct2UXWLY8ePUypX2Tg0QBhGHD1yilKpRCYt/frqKPzSnz/MJ37j9+jNd3LPV+7lxLEzGLrFTW+6js7ePMQR1157DfXGApoZEzY0/uAPfp87fvIO3ESKXbte5OihEyQSWT72sY9x553vp1qdJ5lyaS9m6e1cQxQaHD5wiMGhLirlBXKZNJMTY+QyKTQ9JpnuZXzkFB35Do4cHuG6G24imdVYs7aHX/jYx4kE1IIK6UIG13DQdTmwNi0H23ZQVYXJ0XFmp6ZZNzQApoGySJFb7dl/+e+E1/MeWWmbSx3krlx3dnntrJSFWfyO5QPyywWuP664lKzmClsBS8DtKkqeS2O52ubK2Sb5XTMbJ86KY7WyZ+f38/JB7us630s2WawX/EF/txU2/5e9Ei49lp3DFbK0rbgC7q7EZcUVcHfxuCxwpyjyIbrK9ivFjwvcnX0xKuiGRr1WpzRXJplKkSu0MTCwloyb4OTRI0zPTNO7ro+//R/3SfqSleDzn/8T+vsHIazyf//lF7n5TW9m+NQZ7vnqt+gsdpMrpqlWajiODUL6uiXcLKZhoGoK83OznDx1nEKhwKHDJ7j33m9w43VXc/jQfo6eOo5tOeRyHcRhiFBjjh46iG2bRLFA0w0Mw2ChXGZqYpxEIkXUPHP1oEq5VCPhJgijkONHT9HV2cX42Gl27tzJ88+9wDVXX83wmRF6enMcOnSAQnuB8YlJdu68Cd+L2bJ9PYqi8bY3/wR3fup32XWiwgffPICh65TLFQQCQ9cxLR1VUQkjSWtJJByOHj3Jd598ie2b1uHYNplMhmt3DgI0QYIEFePjk6TSLrqm4QcB99z3KL3dRdLpJJVKjcnJaZIph0ajjmUmCMOAMPAXvckWymWEUCQlsplFoTkQCMIQRQi8hsf4xCSPP7MfVUAq6dCoN7BtC89rYBpms18SKIoYatUaAsHc7LxU6xyZoO7V8T0PhCxQn5mepb290ARSkaSpapKm6nkNBDKjpmkaDz3yFGt6ezh65Az7XjvB2Ngkfb1FrKZy6M4dGykWpQF1GEkj6yAIpACEEOiaRi7tks6kQCCziyhMT0/zne/tYn1/D66boJhPkEqnJBVQVaXUfrO/mmoQRRIAff0bj7N9+3riphCEBIIxIpYgVwgwDI04islmsiCkOiRCZlrDMJT1e6pKMuGSy6cRiqDhVdF0BUUVEEfopk7SMQnDiOMnRrAMg1q1gW5KU3ghBLVatSm2Iqm+uq4t7l9RIZ1JEwQhyWRiEZDFcSQNySs1hBDYjoOuS3aAUBSIoFptYFlSWj+ZShKFIafPjJBOpZpZbpNypYJpmmiahmvbTc+5SPpJCnkMubQrM3TE6E1FXU3XCIMQRVEoLSzgODqGqXPy5BmyucziINEwDGzbRlFlBj2TTjI1OYnt2LA4cBe8uu8IHd0F5ubnJchVdPL5JB3teY4dPcWTz+7hzTdfSyGfJQh8Pv7fH8fq2sZv/dZvSNpmpsCbbnorAoXb73gvn/rUJ7njztvQNVnfOTs7iabHzIzXeOTRh/nwh3+GQ4cOc3p4mM0btnLffd/g8OEDbNm6CcvR2bXrWXq6irS395F0chimxnPPP4pjpxgeHuamm24ik03znttupdC2lbvueB+7n3uFN938NvYfPMZ86RTJZArLThKEIYZtgAiZHZ9hZm6KQiGHKjTCKGbXc89RLi3Q0d5Bd183tShAXcyG/GjBXSub0wIgl7LNxSmHMnsThuGS98vraefSwd3Flh9j8cN58XrA3aIiqSrFss4d26xEy1yaLVwplp4PRQgQyiLbaXUgfAXc/UvEFXB3JX4k8UYBd4sXNRd/xLRoG6uFEFKxLY6lHHq8OPMVL//TpIAspVuG0dmHZuuBI5Ysy3ck98OSRZo1x00JTfmZwhLVqFWOhwscUxxJj6qlmmmSqh+vDggvUjs4NzvHvqe+z3MPP05nRyeZrjb2v/Ic2Vwvjz39Mjfc/DbiyOfVpx/i6/d+g7Z8Ox/9uY/QXkijm/CWt74Vy85iGDa3vuMW9uz7PqdPHmZ+doowlLL+xJKa53k1TFtDFToJJ8ezT+2io70Ny9To6u6krb2T+bExfvfXfpkbrtlMqqsfU9XJZZMQQTKZJgxC6X+nKOTaOkBVEQpSNl1zcEyTmbkZatUqG7cMYtiCtrZ2Th0+RthoYGgq+WIeJ1mgr2+QwBO05YsoeJRmx+jq6KRSr6AmTD75S5/g/e+7nVKyl5/97T/i4b1n+KmbB9B0C1UoNBo1TFNvUi1VHCvFgdfO0NHhUmzPSmsBIa8coUqwrygKjmshv5AAo70tQ0dnOw2/hmlYpFMuda9CIpEhikNOHhnj8KFTdPUUiGPQFbs56+qjagIilSCQNODx4UlCP5QiKpbBtk0D+F6DdDJBwnUJPI9dz+/DtUxMw+DgoeMU29oYHx3DNE0ECul0iiD00AxBPp/D0HV0TdbELJRKKELHNA3KC2UsS9o/TE5M4ziOpDR6PpPj00xNzzO0YS3ZXIKp6Wk6O3MU2nPSlqGZYROKRoykMUobgpgojKhV6+imSSbtQizBT9AclCQTLnv2HCXyAzRF5d5HnueaHYOomobZpKZGUYRXb6BpEmzomsLQhi5AZq2DIKRRb6CpCmFQxzA05ufncFyn6XHY8l6Cer2Orqs06g3m50s8/cxLDA6uRTekMqWIdepVj+mJOSzTJAp8FNMmikIGB9biuDZ2wkWJQNUUoijAth3iWBCjIlTwvCqBHzM/XyaRcFE0A1WRmci5uRKaruE4Nq5r4yZdkilX2lwIndCXWdwIQaNWI5FKSIpn034g4bpoho7SzIxalkkMaJpGGAcEYUwQIK/JOCAIfXLZHP/4le9x/bVD1BtlNE2CZim6E5NOp6nXfVRVJ5FwEQKC0KfRqBH6PqalExPgNeoIoaIoGuPj0ziuI/3dopD2jiyqInAcA0PXCEOPqbFxDF0jkcywYXAtszPT/E9feIyH9o3zX/7jZ+npbsO1HTLJFIql0dFdIJtxCH0Pgoj1Q+sRaoxqqeh2llikyXXmuO322/CjgGptgQ2Da0nmU1x/4/XcdedHiXyd3/zMZ/jgnXeRSwrOnD7B2OQEG4eG6Cn2Mluu0remH6FonB4eZ8dVN/KOW99OzS+Ryjvk2ixMMySf7yMKBTNzkzzx5OOs7duAoSZ46MH7Wb95CNU0EUHA8YOH0TXo7O5g7VA/XuijqiwTC1nycmGVtw7AIjVy6dISQFEUZYm/3BKa2iqD+lZGu6UcqCotaXkW3zcXfivH56l1rrTO2XfX6lm+syJLZ1kwrUmZs8e5kqKhbCcIgmV+fK1JmXOpnK3jPRcQvp76OSHECsDpLI3y3ONtCZeIJdmzFm1/aT3b2bo4zsvQXXrGMm76mEbNa4YVz1tr3XPPTXTO6KlpLnzOQnNwE63Q5pLWW/6C8j8Qx4vqmj9oiBWW1j5/1NnclWiVl7XN0s9b18OSYsnWOlfA3ZW4rHjDgLsl8YPPuzUB1sXmbpZI1bbWXCrje9EQK/S0+dGyl+pSpa+Lt7pCm62C6bPtqIq62M8V27zIQ0ZXFfa8+DJxELFucAPFNd1UF+axzSRf/qevMTC4nqt2bmXbjs1sv+p65uYXePH5XahxRGdvGy+9vJeRMxP09fUxPz/Hy6/s4Wfu/jCe53Pg4EFuuPF6vMAjlUzxyCMP0V4s8l8//3nuuONOdlyzhXxbjtGxcYY2baZSrdPbnaWvt0giYZLvHaRWreEYOnGsMF8q4zhJYiHQFJ0gaKBrKuWypBgKYqampvEaDb736KPs3HkVpVKZXC6PbVmS5nXsGLe87S184xtf58DBAwxtHOTosaMYlkE6ncS1E2SyOXa/sBuv4jE9OYXlmvzs3XexrreHv3rwZb74ree5+81DxMQMD4/h2A5xHKPpGuv7O/jOw7vpLOZwXIt6vSHr3oSkGqqqfClKCW8FIWIpehKFqJqKIqRvmapJVcZ6rU4UCB55ei9XbV3TtGqA2Zl5LNsAZG3ca/uP0NGZxzA0DE2hUa83fQF1jp84jetYjI6OY5oG3Z2d7HphP4MDa3AcB8MwCQJZgzk2OgmxkPRETdb1aZqG5/uomiYFSFSZfZqZnm3WQlUxTUk3baloOq5DIS+V/6IopK+nnc7OYvNekUsYhjJjpCqMDo8TxTGGoVMqLZDJphFC4czpM6RSiUUwEjVf0kODvVimTluxwDU7BnATicUspB8ERGHI/Q89RV9PEU3TmRyfIopDHCfRFInReeWVg3R0FKjVS0RxSCLpAALf84gimJ6aoV6vk85IRU/TMDENk/0HjrOmr11SH8OQeqVKGIZ0dXegagq+X0cVFrJ8NCaM4PjRMU6dHKE0vyCN55vCOkIRCEJqtRqum8I0LGIkUI9iKbzjJhwgQtd0hKJQmp9frLcMgoAjR49TKOTQDX0xO6ZqCo1aHcPQUVWFqclpaQfR8Jq1wDJTqukammrwxOMvEkUB2WwaVQWv4XPjDdvkYFiJpAl6HPOtbz9Be5sE/Katc+rkabLZTHNQr2AaZrPuRRqKW5bNzNQsmWyGVFoqp8axtOXwGgGWLbO4UkRHYaFUJpvNsv+14zyy5wj/7ZGj/Nkf/2duuflGkokEx0+cREHWVaqKZB2gCLp7evDikEK+jYOHD9PV2Y0QKvVqBcsy0VTB0aNHeOG5FzANjbGpKdau7SfwYn7rs7/J3Xe/n2xbjoWFEjuuvgbLdNFUwcjJY7i5DEJRcF1ZK1ean8OvhTz66MP0969hrrxAb99a6vUGJ06eYGjzIB2d7aSyWSBmYMMAmqrgmDblqWlmp6eJVMFVO68iVpTWPM8qb6mLsFJWeD8tzRq1hDFWi1Yd11nJ9lj6TYYrGXz/aGOlAe7yvraUauNV+9b67KyHYOtzZQkgvNB+V8qYrMR+UZr3j76szRa4bbWxGjhcCtLOHdwvBYSLgG8VkZWL/T5n6/RaGGyVq2xVcNcEyOfRQcWqQH65sMtKcf45/lFeZy3xlNWFWX5I+1kh83ZZ26wUK0yAXAF3V+Ky4o0I7gQXFky5aMSXAOxgRXC3UqwqqBJH504gSrpXU9mu9dnSDOHrCbHCbNhKbS6b7bmI+qfjuhzY/yo/ceut9KztI4ghm0kjhEY2n2fL1s2YtktdDenq6MTUdDK2y6uv7ufaG65hTd9aXCfNT7zzHdz+vtvJ5/O89OIeTpw4RXdPD7l8lumZaXLZHMmki2VbFAptrFs/yNTcGJqu0d7Zye/9+//ATW+6mUzWZmL0NBvX9xAYSVw3ycJciUbdo5AvEAONRkAQhESRRxyGIGJMU0chxnWyOEmTq6/ezsTEJK6TpjQ7g26adPR2095RZHx8nERzoNZWyNPwPTo7ipTLZbTYYPfzu7FUk/aOTl54/gVuueVmNBTacm1cvWM7H/jQB5mmk13HSvzBl77DUHeSWrWGgk8Yhhw6MMHeV09z9dXr8eoBnufTqDeoVCokEg6e10A3dI4fO0k2myEmXqQ3ilih0ahjGCpC1SSlEI2kpaJoMW4iAbGCH4SomhS5sEyDfD5FHAXoCgyfGSbp2AS+VKB87Ok99K9pp60tz8TEDG3tadYPdKc3YUoAACAASURBVKGosFCeBxFiaAZxJAFUrVonl8ty6PBxOruKhKGkJOqa2pxxjqnWauiGSjqdxPcDmW0SGoEXMjk5jWkaJNPO4pWp6VIxslarYpkyc+Z7fpM6qZJIutSbtNFkMoEiFKIIDF2TNYSqpMBGSLXF6elpisU8URxiGCa1em2xpgxAU1VsU+XUqVEK+QKWbeG4NvNzJRzH5ctf+S77j42wdagP13XRNYv5Ug1dtZmbqWDZRtPoXkdTNSqVKnEEMzNzbNjQRxAGWJaJrhvYtomh68TE1Ot1ZudmCWsC3VTQLQ0/iMhkshAFZLJpdF0qVEpLEpl51hSVMIg5dvg0yWQCREwQRigixjBUdF2FWJ5/0zSkemBz1j8IZF80XUNpDuCCZo3igQNHSLiupMuqKqZh0KjXMU2j6RsmBWMsU6O9vY1qtS6zbnGEpqmUq2Usy0IVMvve09VOtVollU4Rx/J3DwJpSL73lQPk8hkajRqapuHYDghIphKEgY+mq0xOTJFMuHiej++FEoiqCkEQEUdg2zZBEPG//9MzvOtDv8yvf/IXsR2Hk6dO0dO1hq6OHhLJBIqi8A9f+kc6OzpJpVKYjs3E1CT964Yo5Np54vEn2bFtG6oI8fwGURBgmxY3XHs9ne3dLMyVcCybv/sff8O/+73fZcv2TeTa8qzt62dsYobJySkSjo2pRbz06kE2bd5I6IdMT8+wefNm/sO//z1Gx8a58/0fwEmlmZ6Zpbuzm0w2Tblaot6oNetsQ9ANHFXDq1Z58P4HGBoaYuPV24gVQSzOMlVWe+pfKJaLp6xOh1x9+6X0vyY1rmk4vnrmpbXeyiIclxMy23XWbmF5Zu58QHGu8MoKvZMTZ6rWpFGf7d/ybZfWqi2XOlNUrSnzv/rbWmafYJUp1SXrnfVSW+nYl4LB1vEuPb+tPoehZBEstTxY2s5S8Cf3txRYtQRPlmcjlaZwz2pZo2XgS1n6u7Didq1QFs3fV45z+7u0raW/xaVex0u98FZZYfnfP+RojbFURcFr1KVK8KUex5IbeLXJinN/iyvg7kpcVrwRwR1wSTV1F9j60la7RHC3tLXl81wr7Kc1S7Zsox/UzHKl/azQ5kp0l1UebIHvMT01I4UOVI2IiDiKqVSqfO5/+11SqRQbBjeiOBo0AgrZHJMTE5weHmZo8wAjw2N88Yt/zfvvuIuHHvo2gwODXLV9Kw88+G1uuPFNZPMFOjq6UITg5T172LhxkMENQ8xOz3L8+DFc2yXhutx0/Y1NewYdvAZHD++nfd0m5uYXSFpGkz4rwYdQFaIwIJVwqNXr6LpGab5EGAQYRoIoqBMrIalkGt8TJF2H144cwnYdUqk0x48eZe2aATTN4OHvPcKGgQ309vay69ldrFu/AQVBX18fwxOT+FFIb183M5PTfP6PP48iVLp7ezBNh02bBvjgT92BWdzAnFrkt//8n0m7Gps2dDM9McP2bf00aj6HD58gm00hhMBxLBRVIQojMpk0URzjNTyppBeGaIqB7zcQinxJqqqKZZh0dhVx3KaKpKo2gRaYho5uaCCgUq4QRwHppEvDa6CoBtVag8F1nbiug2EaFNryCCWmvLBAGAakUgk83yMKYGxsigce2s2112xiYWEBXdekCmUYEUWhNDwXEAYxX7vvcbZvXU/UnEjwA59yucb01DyPPL6HXNoim0sThhFRKLOSXsPD0GW2sTS/QCqVWlTzjOOYhudhGvL7FqVMUQSaKgdBMaJJsRIkEgkEMY16HcMy0VQpjtKSkQ/DkFwuQyGfRVWlXYSqCHTTgBi2bRmgpz1FLpeR5xQVVagcPnSCOIyYnJ6Uv08zsygzppJKatsmvudhWRZzc/PMzMxiWzZew8M0Der1OrlshjCOUDS1qZIYkMm6uEmH2ZlZDFOK5rQyEYahE4Yx33pwFzu3Sy/AKApR1KZhuao372cIg0Cqkyoy41kstiEUhWqlKmsm5+ZxXBtVEWSzGVRFevhpuoqqyfNUKVfQDQNNlWby9XqdV/YdpqOYQzc0fE8qnJbLVTRNI44VHnn0ObZtHSKRcBBCejJWq3WSySRRFJJMuui69JezLJvS/ILMNgoWwabjOiiqxpEjx3nsqVfYvmW9VGCtNgDB3f/lfoa9LL//n/6Ej37k5/jAne+mWvd46smnGBraTBQLJicnmJ+fpVap872HH+a6a67lwKv7Wd+3lkiNURSDeqXOl//pn9ixdQu6pTEzM8N3v/MQmzdu4f5vPsDWzZtQgat27mBybBRVU3jisSeoLiywbv16Eokko2MjtLcVCGKDMIiZmy+TzbQRhTF9a7sRaOw/eIjB9euZmpjCtlNYtoOiQSKRoOH5xAgM3aReKhGHEalslo1bNqKYWpOyfbG49HffD5L9uJxtV6YAvn5w17qnL9aPi2X2ln+3PPt14bbOAUvK+UqcK0ULkF7qeq0s2tlM2oVB1XJK51lQtDK4W0opPUuxXbrOOb26vEzWsqTU6uf1nFUvEivRclen6l6onR91Vu5Csfh7tcp4loDmy72vLiWugLsrcVlxBdw1/3mJrf1/BdwZhk4mm+XY0WO4bgJFlZLofhiwZu06UqkMrpsimXY4efgooe9jWBYbd2xHUyIGBoYIAtmz295zG45tMzlxmnXr1/HN+79DT/c6LDPBl/7hbykWC/T29VKvNXjqiWfobe/j8GsHCf2A/XtfIvBqTE7D1MgofnmatnUbKBSLLMxOEBMSxiF+UEdRoFavoqlypszzGuSzOWq1CqaZptaYp9GoACpxZFAuzVDoasdwHHRNY3BgkJETE8zPltE1k8nxKY4eOU5fbz8Hjx2hb81a9u3dT8lv8Juf+xy2Br1dvWzZuJXO7m7KtTJ+I+bU6RPSNyz0GR0b5dO/+hn6Nl/HjJbkv33ze/RkLcwwpKenE8cxm8bOgjAIOHjoFLlcVppMGyZxJIiigOmpWZ54Zje5rIvrJhBqTBwpRJGPprcy2SFB1Fic9S0vLGBaFl61wcTEJLV6lWwui6IbzM3O097eRhSDbuicPjOKrhiEYUwymcb3IkzD5uSJMzzx7GusX1MkDAJy+Qwd7TJrNz83j2GZ0mC7tEC1WuPk8CT5jLOYjRUCSnNVHntiH+98+9XouoKbcPE96UMoYqUp96+gCJVX9x8l6boslCrSvkJVsEwTr+HhBz4Avh9Qr9XQDW3RL873QzRVqncKRSqDtszbwyDEaBpyt2au4zhmcnyGv/vnh7lqyxo0Q0cogiDwyWTTaJpgZmYGx7UQaozXqFL3qiQSCSrlKslUkn/8yndY39/FM8/sIZdNYlo6tiPrJquVGr4X4jgucSxk3Z+po5kCoZjEsbRAENE8tUYZRZEiRmEohVeefnIvfb3SiDyOBZsGe9B0qSY5MzNHwkkS+DEjZ8bJ5JKSbtasHdJ1DV2TPoONWoPvPf4i6/p7SCRdgiAkCEK8ekMKozS95epNxVnTseQ5C4MmDTVkYKAXx3FQhIau64yOjNPR0U4cwejwJN1dbU2Q3sAwTTTNYKFUJuE60p5EV2U9oZXA9yMCL8a2bTnYVCVVc3JyGtu2cR2LbVuGAChXKvz0f/oG39k3TsZy+eSv/Cq1hs/t77sNlQp+BLfc8hbuvvsjvPc9t9PV1UYQeqzp7WdoYJAzR4/z1//9Lzj26kHWbl/PyKkxRk6PkXbTTE9OoVrQUSwSheDXGnz1a/dQmZiCMMD3qpiGxu7vv8i6tf2s7+tGNywOHDlOOpsDTcd18pw4Mcwnf+XTXLXjavbtPcB9D9/L3/zNlygWO7n1lrcxeuY0k9NVbNMhigNU1cC0HIgUkobF8YOHuefee3jre97BQtDAcZ1FSxV4/Zm7ZWv+2MCdsiJYeL37jZu1yKtluFbr48XBHRfMmp2NHw+4W0rtOXsOz69vWwnoXB64k+q+S9u4Au5+dLEI7gCxpDZy8Xf5YVE0m3EF3F2Jy4o3IrgTivID1t1dPrhbJGKIiJYQSkuQRRHKYpHuMiKHNOpavsTx+btfAYhdlrdds+04lrV2sVBWLLiNm35Dy4w6V3nAhFEDS4255yv30NW9BifTSRRFGKZFOplgbnaafN7FMsBNGKi64J+/fA8njpzg9//zf+WDd/8MqXSaQ4cOEocBiqpx6vQIo2OTfOwXfoHuriKaCtu2bsFrBCSdNEqs8eqe19h54zUMT4yxYdNGeteuxUkmObRvL3v3HeOLf/9FPvxv3okaJsmYPnv3vEx33wAxGkqsYBsW41OTNBoB+XyRhhdhmC6q5lOrezhuGqEZxGoo1SZ9D00ILNvia/d+jZvfcgN7D+zhHe94M5XqDO94+8088fh3ueHqN3Fg/17iwOfAnqNcv+Va3nXbO6iUFtiydSOGZTM1V+GFXbvZ/cJuCpk8G9YWOXpwD5lCgoSr4poqt916C+tuuI37v3+Sz3/1e9z9ls3NujUDIVSe2bWfgf5eZsansR0L1QACBdNMMHJqBsu0yOezkoqnSD8yhFTDNBQdVdHwAlkzpaoajZqHUHWefPZVtm4apFbz8OsNCsUimq4zNz+P73nUa3Uc16FRa5BMuJw+eYZ0OomuG7iWxuBAL45j4PsyS9eoNQj8kJnpOZKpJJ4XkMnm2b55PbquEscQehENv0I6kyaTMmh4DTzPI/Jg755DdLTnUUTM6dOnEZGUwO/oKIKAwK+iKiGKKesWo1AwdmaChOOgKKH0ZRMKiqYSxSH1chXLNmUGK4oIwghVVyVdU5V3UxD4zM/NSXl9RVI+R4aHGVjXh6ZIIQNV0xAiJAwqWHZKqp4KlXQmRyqVZe/+g2wY6kfVVDZuWINpmnR1txGEPomEC0KgaCDUmHQmiRAhum4xN1vCtlVOHC4zNnmKYlsWITSEYqObGoowUBVJ9TQ0DUULSKdd4jjE9z0M00Igs3mKAroGvl9D0wSaqsistQKiaeqsaZqknimwtq8diNEMS1I+lVjSxmLRvE7UppE4KAiiMELVdDTVoFqpS4sRTUE1DKI4RtdjoqjO3GSNh55+nhuv28Zzz79CJp3AskxKMwuYho5lGRw6eAxdNdEUExRJv7UdHUWV1FE/jIkVSCQTTcsFE4I6U+Uq//aLT/Knf/yn/NUXvohfh0/+20+gK/C+297NnXf9NKq2QBjVue32d2E6OugOlVrA6MgE+Y4O8p3dHBkZ46Zb381T3/0a73z32+hb10V3Zwd//qd/xk03X8OBA4exDIev3/so5YWYdRs2oJkuDd9n98uv0Nc7wBNPPEMqp3Py5HHqCzX6e9czOjyLElTo7Cjwsx/9eb794Hf5j3/0R/QV1jO4fj2f+fVfxbINCm3t9PQ4IOq8vOdl8oU8QpUCNHOT04xNT/KhD9+NaZqUSyWpJPw6Ji5llnuV18MltrV04Hm52QUZ59YgvH5gB2cBUss0+1xT7XPjfNrhSu22qI2rHdvKfW9lXVaicJ4LPC4GRFvLUmGX8/uwcp9aYistWuny+sGzbUdR3PReVWgpZyqKShyF59QlLgWWEvxFYXDJdEixZFGEgDhaNh5aulxySA55c5EbCy7/mlwNQF2sJOWHFmd50av270ILcbOG9ALX9NL41w7uxGrSrlfiRxO+573hTrhYUkPzuiIOL3FH6vkfiSWmoFHzRbFkvYv2aqV9r7AfpdlWHF36zR1HkVQya/57sfnm9vKhrSxrL17lPNa9GrqI2Pf8izz79C4+8YlPMlWuYdk2RDEoQhpxuybEIc88/TTXXnUjItKo+g0Q8M9f/iqf+KWPc+L4SUzD4MyZU2wYGsI0TZ5++hnm5+fYvGUjf/iHf8SnPvUZ7r33Xq695lpe2PMia9b0cdedP4lp6VTKZUzXRotNRo4d4PTwbt57+wcIdVfWQagmgR8ivBpevYbqWERRjKYZVMpVTN0giiMUTUHTNOq+jxCgKyq1ahWAZCrFQqnEmYPHGR0ZBgXaO4qYjomqqRw7cJyRkSkOHjzCzbfswDAFo6cruLZBZ1c7u19+hQ3brmJkZBxDUxifHOFN11/Djh3bKccVbFPHjAUClYnpCgcOHuHGm27ky//0Zf7ki/8X129ax12bczi2zY3X7+TVfQeYmZvnzbdchapoCKFTXqjgJmyCoI5uGoum5EpL7r5SoVav4yQc/MDHNi1qlSq6avLksy+yvr+LhG1RbC+we/dBuruLzM4tcOzECG998zWMjU9QrdQo5DKks2nGxydpK2ZRNY3yQgXLsqhVGwihkM0l0DSV2bk53ITLyZNnKOTzJJIOuq5BLJgvVXATJlPjs6QzKXw/oNFokM1mOXrkBKl0gq7OdhbKsm2hKKi6SsNrYBoqcRgSKxpxGHFg/xEG16+V5uexTxwJpqZmaGsvoCgSqJRKC9IqIJK2DyJWqVQqaLqK4zhEnFViC5vG95qicubMCLlcBt0wOXFihLX9vahqRBSApquMDI+RL2SxTIOoOd6QtS5Nw2ZFJY5AKNJqoiWqUCmVcBwTXbMYHh6loyuJ10jy1Qe+xc996H3oqkHDqxIrIabhABCGTRuKKERRBWEYNP0NY1RFJYiCxRe/ooDneWi6DUSEkbSuUBBEcdhUEQTDMBgbm6CtrU0etyIHeuVyjURCAr5atY6mqdi2zezsHE7Tx04gOHNmmL61XYRRhKaaQETgN3jm8QNopqC3t8izL7zK+267EdM2qZRrmJaBKvVZCAM5g+57kp46Nz9PoZBjcnKK9vY2FFUOtoMg4m8ffB6leBVvvfUWunp6iUOdieExZkrTDAwOknASLCwsEAQR993zjxw9dpSf/9jHaG/vwE25EtRHKqMjowihkUqlGR0ZwbFCzkxMctXV1xD58Mu/9Mv89mc/RcJN4/sRPd39HD92nFp1jkJbFtvRyOZzGKrDgQOHyOVS2I5DtVKl0NbGvn2vMjMxylXXXs+BI6fJpbP81V/8Nb/x2d8hDKuMjg3T3l7kW9+8n/e+9x2ksxkqtTpRGGNYDrppsu/lPfQPriGfz+EkHTnZFIeLGavLiVaGa+XvLh3cvVFjEZw0gcpKIQHND8qCufRYai7+g8TFPABXijBcvs8L1UKe9cZTzjt/y+rnmmOD1jhB9m05mL3wcUQXXedSYiVa8kradK+7/UUBuh/PtXKp47dzI46iZt2gdknrm4bxxr2BLyGuZO5+zPFGzNwRx+fZBrQyXC0j54s0sOo3UrWQ5sBoJWrjEpGU1keXJYhytjhaZtFWntdqtXUpD/vFLF2z3fNmpFqywk3j5aWxGk1A0zRUVae3q5NjRw/z1PceYMOGTdiWwcT4BMMjI+QLRdmmAl1dUk5+dm6eTM4lCD2K+QL5fIHf+Z3Pkc/mmS/NE4URxY42ent62bx5M8ePHOSF53fzwAPf5VOf/hSprMu73vUutm/bymOPPkYy6dLR2Y6nCF5+6Rk29hSwNIvpqRFqWgLddGj4EaVSmZSpIeKYhVoV3w9Qm0bgURxRmqng1T1cx6VUlpmF2ZlZ8vk8qqJSqZaxHYe8m2VkdAwn6dLe1UVnXy+zpXkaFYN6XeOv/ub/oVKdR1FVetp7yGdTjI6c4bb33MYr+/ZRyBW56U3XcvXVO3CTGUIMssUCYQAijBkbHufAa4d5fvdLbNu2lfXr1/ORD3+Y995xF3/94C5mFqa5YXMfxWKezs4CIo5RNVkvFcUBmqYQhtIY3Pc9dF3WZClCAQVMyyQikuIacUy1XEbVNNav7SGTSVGuVKhUq0xMlPCDkK7OIo8/t59c0qKtLY/f8CgWC/i+j2kZhJGHoWu4rotAUK02SKWSePUqiiKYnZ3HMHTS6STTU9PUKhWSqQRjo+Mk0ykCL2iqf8LCQlkKmiRsUpkktm1Rb3iYpomiqQhFcPzYCYrFPAsLFUoLFRzDQhHQ3pEnjmOmpmaplivomkG5UiOVSmAaOpVyjWqlius6hEEoQaAX8sqeg1RrNQptTasFIbNWLXGIwPel2btQmZ9f4MTJUfbsPcrQQD++V4VIPhO8Rp049jEsWwIkJO06XBRpCCSIAf7q776NY2o8/ewrbNzQhxAqyVQCoQQ4to1tCnTFYnxsikzWRTVMQGZegiAkCs/6Hypqy3+qOUFDTOCHEKuL9/ur+4+QSSchjPDqHs8+8wr96zoJgoD50gKOY1NvNDh44AjdXe2oqo5QVEzbZH6uRDLhIhTB3JzMHEWt2XehMDszz33ffoFrdmxgZnaKe+59kk1Da9B1g1rVZ2xsjmJ7muuu24yiykeZYRkcOXaSdDotbTQU8H2PZDJJvVYnk0mhCAXHsfAbdRqNBrOzc/zPX3iS//MP/pjtV12HX69hGRpxHOImUqSyNpqhEsYRfhAQBBEL8z7XX38zX7/3Pm688QYMTSFo1JkYH2ZqcpqvffVeiAIGh9ai6Ra969ah6gaNRoO3vfVtdHQWcJ00qVSOUmmaIKyyacs6FDXi2PHDdHV2cOTISbK5PN/f/Sr96wY4PXyKWEQcPXoAr+5TaO9ibkEKxXR3FyiVFygUM6RzKd761reD0BiemGLzpq0EfojrJlHiiLnZGTp62unoKqLqCn4cENGU+ReXkvNYvk7r0d2yOhDiwrU9rSxXK8vT+nvR5qcJCMMwWsycnfveuJRYKvjxejN5rbiQGbdcLm0/LZCjavoi2LnY8ZwrOnK2Lz846ricTOm5SprLa/HOAWpiqTDM0m2UJcs5+z7vXFw68AxDOXmnaa3f4HWWzqywidYc152rhvp6aJe+76Gq6mL/Lm3MuEI3L5IBXPz+dcRZZdHl14XC+RnRGFAVBUVR/lVn7q6Aux9zvCHBXTOWla0t0ggu5Sa9wDqLwE6sSJdccdvLmgFa/rA8+yL/AeJHIK/bJIqjmxbr1q/jxPGjPPfci2zatAknkSCXK0DTI0gIKd1+6LWD5At5NEPB0HVGzoxSb9S56yfvoqu7h+eef5ax8XFGR0dBCE6ePEWtXKKney3rBjdy1dU70E1QFR3Ttujs6iQMA8bGR0mmcqztLfDYg/9IOlWkd90AR44dJ5tJo6rSdJkwZGRkmFyxgGXZOI4LAqq1OqMnx/n7v/8StmOTSiXQdRXXTRCGIZ4vs1wvvfwyCTvF2OQ4b3v7T1BeKDM6OkJXZze97X0kXIvTJ4/wzlvfwYaBTWzZuIF7vvYVTpw4ztjkJL19a+jvG2B2boJCIUO1WiWdzjI9PYuIBX/5hS9w5vRprr/xZm5773uZnZmhu6cbkIOyW978Zm74iXfxv/7ZV5iZGmOoO0dpvkSlViWZSGCaBqX5MrZtEyF9j1RVqqTFSMuFer2BaRkIoFapUC5X8BtSfXJ6eoZiexuqIjNLPd0d+L7Pji3rKLYXsB2Lbz34LH1dBY6dGOb53QfZsrkfx3EolcpMz8yiqgqaLrOpviel0ZPJJL7nU8hl0DSVhudjGCa25RBHcO/9T2CZKp2dxabIRoyu66iqxszMLKWFBWzHplKukM9lCIMA27apN3yef24fhUJK1tjpBrWKh2GozEzP01YsSJ+7IIAwZqFcpVqtyfMTRZQXKuQLGYSARNJdHPD6fkC1UkXXNBAKqqKgaTqJZJI1a7sZG5+gf20PjXoFrxEwPT1HR2cblmXhBT6GYaAImQUmbmZNwpBGo4GiqGwa6qWru8jWLf2omoKmmdJwPKoDAte1qZYDvvmdF8hmNPL5PDExqqKgqhqzM3NYlk0Ux5Ip0HxGBGGIqig8+O2nWdvbzfjoOEIIpibnsAxV1udFMj+ZySRRVGmFous6tmXR3tEm6+saDRQVqaKq65w8NUw+l8NxbClQFMmB2UKpzDcfeJ6PfeS9zMzMkkrYbNk4KDMohOTachTyGfKFFKaloWiKnGSIYzRVwTItFKFSqZSXgA35uFRUQbVapVap8Ym/fJqT9RSf/pWPk8sVmZwpo6kxe195icENG4lRGT5zChELSnPzjI2OUmwr0NHZiePa3Pr2txFGAZqiMDYyQibj8v3nd5PLtNHX002hmOKlF16i0F6kWitTLS2QSScpl2dx3TQLpQq1qrxWFuZnSWfSJByHIIRX9x6iWOykb80a6l6D/v617D+wn01btvD8rt3k8l185rc+x/XXXcfgwBpyhTxuSirfPvHkUxw4cIjPfva3SKSSzE5PkckkqFXLnDl1gs3btxASgpCgXSggFtMWFwN1qz/jLw0ksIwWuBolcynQO3c/lxKKIkFjFIWXnY28lDh/snJla4Bzt1k6CXopx7IS4PmXyHRekMZ3znpn4wfp76WDu5aCuaqeZSL9sMDdavV8r4de2bJnubwx4wrdXAKIL/j964nVsqsrrUrTousKuLsSlxP/WsDdZdWoXeDhv2iIukpG7f8v4E4ICFEpexGa5bBl21aiSoUD/y977x0mx3We+f7qnMrVuSdnYGaQARKECJIiKTGIpBgs2UqWqbyybHm1u87rfeyVvL7atWRrbVnaa69laxUcLk1dBStYyTIpiaSYSZAgiJzTDCZ27q54/6juwcygBwApKt0HH5/m4OmqU3W6uvrUec/3fu+7Zw9r1m0kiOL6GC8IiUIPRSrk8x0QQYjH1NQZNFXHtm1mZwokk0nWrBnlqR1Pseu5XVx+2eWk0yn+7E/+BxMTM2zYvJWxtWN4VDl25BRJx2kaYSvYlk3azJKyXM6c+C5HTvhc+YpXMz6U5ei+3VSrjaY/lothWoSEaGosNU8U4Xk+wlf54Ac/yA2vvIGxNcPYjkWpVCHhOIRRiKZrDA4M0AhDBlevolGvc+zwEUaHR5ifniX0TjE59RTbtvfRne+nOFfhBz94gI3r1vL0009w5fbtGJbN/mcPcvLEfjQtwLQkJ04cI2t3Uq/UuPrKKylVK/SPjmLqBrVqlUqlAlFMnQuCEMvSuOlVN9O9Zhu3vut3uWHjIIN9PbFIhqahGyZCUSmXqziOg+d5TV816qpNXAAAIABJREFUD9f1UXWNIPBQVYGpq0gFVFWjUq3iJBxq9Tq6oZNOJTFMHcvSY6qn5zI7W2Dz+tVMTEyTTNrMzpcY6OtCSpWpqRkUBWpuHU0T6NKgVmswN1em0XDJZbO49TphGJFMpvD9EM+PUKXGoSPHOXJygss2jjE5OYVA5/ChY2QyKcLAI5NJousmhqYyMzVN4HkoQsWte3zvwd3k0ybJpEMYRBBpHD1+nJHhQaSU/Nv9j5JKWqSSKZIJh0ce24nnufR0d6I7Goapx+qcnocmFELfB0ViGhanTk6gazqe63Ps6GnqjRpSVejv68TzGtgJnYYb4jV8DMMkUhSEjH9DnuchWzLgTX+1MAwwTBXTUmMjcalQd6tIzUTVdKQuUAiwTIuZM2W2bFzNwGBHnGlUBbVqFSkk99x7H7Vahe7uDjRdjek5zWyBV2+gRoJ/+fqTrB3tRddUujqzBL6LYUgM0yTf3YGuSTzX47Of+zZb1o/GXomaius2rRrUCNetoGk2iYSN5/vNbGEz6yMUTp6YpFxuMD42hKIIDh0+xMjIIGEU4Uf1Zi1MxOzcFKoWoWs6YQCVUpmkk8BzA04eP03gu6SSCQxLo1CYJwhcDEPj0OQsn98j+OAf/QE33ng9qm4xNVXga9+4j//5oQ/y5je9Dt0wKVZq7N2xlw/8wQe47Zab0aXAcTSqUY1k2ubZZ56mM5/nQ//9j+nv7SObcxgfW4eh2Xz/wfvp6LDpynTheQ0MTeXZp59gdmqCwdEuahWfq6++njVr1saKsukk83MFdN2ASOJ7KidPTOKkTYQqsS2bEycmSDhJ+npG0Iwkz+zcx6pVo3R1ZkjkEgSBi6qrvOIVN/Fr//59mEkdt1Ejk3HwvTpTkyfIpB1SHZ2gxGq/SvOviFrPkvZjdSvbdr76upcC3J3d74cDd61j/yiAXbt+vCBwR+t6XVybs/GTBHfinO9qcUbx7H4/GXCnafoLatM22k67mubtyzJ1LwbcBUHQrK1Wzta1vYh+XgJ3L21cAnc/5vhZAXcvhMbYVuhk+QAYtf53MQXi7fZrrsQqUUzlXNZ+yXl+SO53O1olxKn6RqOObHG2W6uVK9FQFg8oQiIU0CUoUQCKYNXajZSnSux95jksw8DqcGIqGCHlRo2kY1KcnaKjM89zO3eyYeNGgjDixKkJ9h3YT/9AP5dt3cTo2iE6Ozr5wcMP88qbX82jTz7Fu9/9ThxbpVycJp9Nc/r0cc5MTTA02M8Tjz/G6lWdVIoNCoUsnf0DDK3qwxMeTz7zDF6lQTaZwUjnMDN5pFdBogEaQRgQKh6JtMFb3vZmvMAjm+lEwSDwGyiigZAeShTRqDXAt9BUDc10qXsFst0OuiM4/vzTDPXl6e7vJzO0gY6RUbKZTqxMllQuy5p163j66SeYnZvj6d2H+Mu/uYcbb76LbCLNF//xMzz0/e/z5NO7uemmV/O3n/wkHfkk/QM96LqKECGGpnJm8hSWbePW6kxNnGZ68jQVZ5CPf/H7vOHaNbgND1WoHDp4hI7uDFIKyuVynCFpfl+aphIGIUIIvCBEaCqaLikVS8xOz2JqKvVyhXrDJ+E4TE1Pk0g4zJ6ZxrYtGrU6g0N9RKGCresokUe9WmV+rsTQcD+TE3N0dXVR8ypEoccDD+2gXHEZGRpAM0wiFObn5zEMg3qlgaqFDA9009/dQT7XwcEDR+jMZ3nk8Z2MDHWRziaJohDfCxFCEoQBhq5z6sRJErbOlS/bSMKx8QIPy7KoVMo88cw+xscGmZyciu9zKcnkEtQaDcbGhrAsG6lqPPLgDjoysfIlQkGRcaZueuoMScfGbbjMzVf59n3P8PKXbySVTqIQA23f86kUYyERy9LRdYmUUCzG/m6+5zWFXlqmyBGqbsSLHops/q7B0ExiylvA/EyJhOPghwpOJomdsJifLqMZKqEiEKqKlIKNG4foH+xBSmK7iSCgVChAGBGFsfiJInzyHTkM0yJSAkxT48tfeYykbZHK2QihIKXO+PAAyaRNFAVUKzF4LJdKmKYNaEgtFlVRlFiJkyZdS0pBMmUzMNCJEHHmM9+Ri8UOJKhCpVosERGRSiVQRAw4hJTU6x6GaaEI+Mo3H6KrM0M6nSIMXBJOAlU3+KU//Rbv+J3/znXbr0EVOqqmIRAcPnKQG269iZdt3sanP/lZ1m/cQDqXYv2WNbzuF1/PX/7V3/Lq21/Dwf0TvOG1d3LtNVcz0NdBMuFw5cuuRzdS7D98kFy2g0Q6xbr16+nu6cHOJ/ADyGY66cz38MlPfopXvfpGDKOD8dFNoCjMF2ZZ260ycfIIhXKDAIWh1YPs37+LVCrN/OwM6UyCbDrBgw98n/ENqzh56jC333YjY6P9PLPjcTQkqXweLwhIJB3KhVmEYZPLJLG8Bnt27mDeD9hy9TXxAoCixGIRiEXADpZO45bSL883l423R4uH+iWvdhTG89VrLbYiWPo6KyZytqbr7DFadMx2YPOF1Ji1oyEujqVUxKUA5zxHPQfAtutHO6GTKArPsRMQUiVsipVd8MzNc12ICroSnfVstmnxnKJFgWxvHr6UnnkuXTKmpi6tl2vtexb4L52jtKMkCiHbXIfWYrkgIjqHUyjaHGc57VBZ9LlbYOz887Hzh2gBxEX3VuuYK30nbT3z2vwYW9dFUZSFcpkojBkXCixYBK04B2sdZ9H9vpiK2XbfZl/kz7igyiVw92OOnxVw99N2NFgOFM+340u0qrlooImikDAKY3pXG9GUC4K7xdujeCBVDZ3BwQEO7N3LvgP7GBkaQVVNdN3AdwM0ReBYCSYnJ1m7bh0RcX1YT3cPDd/nycefYs2atawdX0sQQCqdYefOnaxbu5aNmzfi+S5SCGZnioShZHx0Da4b0N8/yJ99/H+x9YqrOD0xy1XXX4svwI8EY+PryefyzM7NYjsGliYg9JmbjUUhgsAnigIO7T9If18/vX19eJ6LKiW1egnLsgmCiNnpOUAgVIVyeRYhYwGLwBcokU461wG6iZ1M43oCyzBZtbqDer1AtVKKjZ4rVYSiMDA0yOOPPUI6YTM02M/Y2DCzs7PMFkrc8MpX8L8/8Vds2bKRTDKDoijsen43P/jBw2zbtg1Vk0yemWBoeIA77riNTZs38qY3vYF3/cHHuX3bCFKB6ek5ch1pFEXENU2KEn/HikQocoF2IhSBFOqCF102m46zP0FAEMTG2lKV1Ko15gtlUskkmqFhWgalUgHDlHhBRDqToq+vhxMnJ9i97wj5jEOhUMUyDcIoZGS4h5OnJ4iCML62qkCqKs89d4BcLkepXKWvv4eQgEwmiesG5HMpTpw8g2OZKIrk+JGTpFKJWObfSdLR3YVlJ6jVquw/eJju7jxhGFAuV7h6+xakqqIbOooCvT1dxPO6iFKpwu49hzl9eorZuTLP7DrE2GgvlmU2b28Fy7AozhdxEjb1RgPDVMhmk2gLx1QQikA3dKQqMW0T122gmway6c8mhMr+fUfp7u5BUcJYzKK5SOR7HoQBitQWapgUIkxTJwwD6m4N09DQtTjDJ2VsPg7E5uuqCmEU+8FJQeD7aKrk0KGjqFKgmxqObaCqElUVTZN2n1TCIZlKYFqxAqbnejgJp+mLpyAUSRiGJJIJJienkFKi6za+F+I2XAqFIpYZ96VRb2AYRvPnH09EVLU5EVNiT73CXBHdMEhnUpw8cRqAaqXGs7v2MjjQgypVNm1YTSqZQigSqalUanXe+Rf/yt/85Z9hawJVM5ifn2ffvn2cPnWaVatWk06lqVcrvPzaa3ASNqlMiiCIKBVLuDWXnu4ePvnJ/8Pv/ZffYuOGDSRTaU6fmkRKjYcfeYSvfOWr3Hnna3hu517e8pa3cvnll9M/1INjp/Bcj8/d8zm8wKOnI0U2leHQgf0oUYPrr92Oq6joyU76V6/nzJlZ9u/Zw9bLt9Dd24vWFBaamZln9apVPPPMAcrFBr/63l9j+8uu4PCx/Vy5bTuKKhGqSuAHNGo1IilwLItKscD0zCwvv+EVTTr7+QbzH01WaKVMzwuNxbVq7cDK4m3n78PF9/uFvH/ufuK8n/tCx1kKIpcZbQtxkYyh+DhBc/HtfNEC6GEYslwRs7nHC/4MK4PEdiB8aWbznNq2FVYZlt8HsfDLwsrCyn1+Qdm3HzIz2CYufD9enK3CufOmuO3C9/1i7v2L3O8SuLsULygugbsXHz9JcCekXKitOm/fVmjfDtxVAg9L1xkbHSObTvOpT3+KLZdtjeXRpYpAIDUdw9LRVI1qvYFlWaiajqZJfuc3fpdsNsf4mrW4nosUCsMjwwwM9BF4Hs89t4tHHnsUBZ3LNm8BRVAslPjd3/k9fv/970fXLd74xjfzvl//D4RKhGZYhFFcEG2YOnt27STpGJSLZTRNZ2JyAsOMqaEdHV08/PDD9PX0UK3XUISCZRoEQeyPZjsJDN2gUJil4dZiMQ1Fkk13YpoJIimRpsmevfvp6uihUa1y6tRBEBE93b0kHIfC/Dz1Wp0oDLjxFdfzzNNPcf111wEu3/v+A7zqltvYvXcvv/Xbv87O557jl9/9y7zjHe8gn88zNDiIpukIVZBKJak3qs3VP4Gma9x1+x18/vu7+fDff4N337EN3dBQaIE6JfYua8S1ZKZpAjG12Pd8PM+LJ/2mSbVWxzANTMsim89SrdbQNY1EwmZqahYpY6XFjs4MioDv/uA5ujoy5PMZSsUSQ/2d9PX34DgJisVirCDZBA89PT14vku5XCGby2DoGvd8+SGuf/kWpqenUVWJFArJZBpd1+jqzFMqljF0g2w6QaNeJ5VKMTtXIJFMMTE5RSrpoErJfKGIEILOzjyu6xIBlmWh6zqfvefb9PfExujZbJre3i4GB7oZHuol9F16e/PNVdc4ExZ4IZomCKOQfFeO7p4OBALD0ImieEKiqnE9qarFK+eGZcYiM7oRP6ARdHd38vkv3EcqqZLJpFCkxPd9dDX+7aFIZqbn2LPvIL29HQSBD5FCvdZA03Q8z2fnzgMUCxX+7XuPs3njKFEY4AcBURibgVfKVXRdIwxD0kknVhQVCoZlxBMpoSBkbGpvOw6pVDJWn5Qyvp8UBddtNIVjDEzLJIpCLMdGSsncTAnDMJiZnkXXdcKmmq9hmnH2AAXHsWnJkbdmGkJRMHS9SSf249yTECRTiRjYqfH1/rt7vsWGNau49wvfpUDIEWMTv/qet/PIQw8ydWaCwZHRmN6KwtT0NN1dPQghyOYyCKlg2WYMePWYFrtmfJzifIFXXn89v/a+9/ILb3g9bsOno6OLSqXClq2XcdMNNxEECn0DA8zOznHXXbejaCFTE1MokcQ0TK65ejv9vV2cOHaS7s4cV1xxGY89+jBbtl1DoKhMz5dYtXoMXQq+d/93yebzaKqG7wdYhsWZqRnWr7ucD334T5kvzPG61/08L792O46TjEVfggCBwpe++CU2XXYZJ48e5/FHHyORTtM3OADiQlTFHzW4Ozfb9kKiZbzdyna8MHB3fqC1Ur9fyPvLowVGV8qY/bjAXasvMZtm5c+uahoK0UL289x+vHTgrl1m7iy4i4GdYGkmc6VM1/Lr2zJpF1LSzvf3pwbcXdAe4aUBd4uzkRf7iS+Bu0vxI4mfZnD3Yn4oK8dLD+5azAFFLH6QtfmptgF3y33qojBEKspCLxdvb0sPaO57Lp3mbKo/Wn6eNpSCJUXnSkQQ+Pihj5NJcs21V/Oxj3+Uy9avw6/XcRI20tA5sP8AuY4uoihianqGVDaJ7Vhsu2IrN998M2cmJ6jW5jl1+ij33PM5brz5Bly3QRCEfOxjn8D1G/T39zM5cYY33303mqqhmhapZIa3/tLddPZk0SyJ4jczUyJCt006Ozr45je+ST6dQdclg4O9HD58GBGpJBJJFAFOwmnWRIUcOXKUhJOiUKiQTqQpVUpkc1l0QyWdTsUTdd1ifq4ABCB0svlugkaNSnGWZCbN/Pw8SceJH3aRz9joKuamTrJlwzirV63mO//6HUbXD9PT18Mrb7gR160T+g1U3cJOJEin0mQzWXTdIJ/NMzNbRsomnVaYlAsB9eochfk5rr76SoaHh/nSo4e4csiAKFZyVJrZOt/12PHsHgYGemg9UMIowDDj7FgEJFJJIkXBMDSKhRKGrsdZPlVF01Tm5gtAPHnTdZ3x0UGmp2fxPJdsLk294aLrGmempunq6sRybM5MnEHXVAxdp6e3i2QqgSol+/cf5dYbtyNFgJPQ0VRBtVKnWC7hNhooioLnBRw6dIJkyuLwsZNoukoy6cTebpqkMF8ik83w1NN7GRsdoVgsMD9fINPMQuq6xmBvlq7OHG7DxW242I4VG9l7IcMjA/i+h65pVCt1zpye5rEndjE81B0baMcqY1TKlebnVprUK9G0pYwWRGuklAR+bKI+cXoSx3HYsGE11UoRJxGL93iuR61SwTC0Zo2eQFclqXQKKQSeq/LPX3mADetWMT9XYe++U6zfsIrezhSOZeB7IZ4bEAGGbiz0r1ZvoKoaQsRCLq1s/FM79pDPZTFsA8Nq2knIANf1Y4ApIgQRmq6BkITNFXQhBBOTZ+jM5xBKRCabwjLjRZk4Q1qjUatj2TGtNPD92EutOQJ5rouI3fKalgkCXdeQQjJxajKezCgKWzas5tn9x/jMUxP8xgf+lLGxUTLJNCOrR0km0kQiRJUahUKZ9es38KUvfhUldMl155GGxA88krZFueahSQ3CACEUMukkh48fZ8vmyzl1corP/P0/sHHLOp7fvZOB3n4OHz7C8aPHOX7iCM/v2cmmzesoFSoYusXhQwdZt24tO57azbpNowg1QGqSocERfD/g8UcfY8PGyzlxcoJfec+v8PrXvxHHMXj6qac5fnySnq4+jh0/TUd3HlUq3HTTDWzatB4hI3TNRDW0eFFLqhw7epS1a8dJZzMcPnySV995F5ouiL1SzzdtW5kmGYOp8zRdoU07ut5i+mQ7umQLyJwLihbT4s7N1pw959L28V+x7DjtKJBL40IUtgtFu2xhbK2wsn/eOfTL5v4riXssv0btfPBa7YIgbNa4Lt2+0GYRHbK1z0oKne3N4xf3q0VjXNoHoOmbFy55vyXdv5QKeW775eeMRXPOfqazSqthU4SpzXe8aO5BFDVpnWfvj7b0TylZsAhoc9+EYdDmPrtAXIDvvGD+vmyfFl1zpd/XwnuKcs4vWgjRtOyJ2ipgChZRSC8iLoG7S/GC4qcZ3C2On0pw14ylq20XB+7OyaJFsUx21Gb7+c/ZPlqDx4r1D22OH0/tIoQmMS0LL/C55uptHNl/kHf/u3dxw003kcgkSaQyRCHohk4mm8F16wgpSdsmMzPTKArMzJ3mnnv/gau3X09nPouqakQhbN26nZtvegV//YlPsHnLZq666kpe+9rX8MpXvIK9e/ZSK5cZXTOEokZosVUZLiG6oZNwEth2gn27novrjIhIJJKYZpLjJ06watXq+EGmhBw7doTR0VFUYWCZScLIxzRjI2nCCJQQy7YI/JDJM5OIoIbn+USKikpAV2eembkigwND8TyNEKkJujo72PHE45w6fgzPDRkdG8fJGYyOjTEzPcdTTz7Jxk3rGB5Zg2VYrFq9Os4c2g67d+/ls5+9h7Vrx3nHO97JL77pblRpUyxOkMnGfnPZjg5eft01/Mc//j984aE93PWykQVQYVgGPT15fD+2F2g06qiqiqLEgh9CjaXkVU1FlbGAx4njE/T0dlOqVKlWKvT2dmE7DgoCTdeZm52jt6eDYrGMlCrZXJYDB48TBh6JRIIoDBER+F5AIpVAMzRqtRqNhhsrexoa88VZarUKShgxMTnD/Y/s4KqXbQYiyqUK5XKVwZFeeno68QOfhGMhFDh8+CjpVJZatcHefSdJJUy6ejro7MrheR66rjE7O08mm2F2ehbLsZBSYOg6vu9RLjf4zncfY83YIKVihVQySTKZZGLyDI5tYBoGUteQqgZRyO69B+nr6+H48ZOkkgnCMERK0RRPicGKFCogmp56CRQRkUo5KIDrBbF5t6FRLlcwTAtNk6SSSYQSU5SlprFpwxBR6GLZBmvXrULTVFQ1XmhRVZ3Z2SJPP7sXyzKwrBhcGXpMkWwBzRb9tlgsk8mkcRImqqqjCIVquYBu2ASBx9EjJ8h3ZPFdjwAl9tAjntAmEwlQfE6fOg1N2mitVkdTNYIQbMdGVSW+5yHV+B5qDV+aqhL6PtVqDdtOsGvXfnK5DNValVwuz8zMXCxCIyR//1SJj37kI+x+7hmkFNi2w3yxhI/C8889S7FUZPWqMRoNn+ef38PpE0fYtn0bUpeoisLE6dOYVhKAb3/r24yOjjI/N8M1111PGAmKxSof+Z8f4Q1vfC2rVg9RK9fYs3s3v/O7v8t//s+/zbZtl8W/zY4efD/g8KEjaJrksq3bOXRkP939nXh+gCIMThzYx0BfL6HQUaXKhz/8JximzVXbt7J6dIypM7O4rs+G9RvRjRBNk/T195PJpkinkjQaHooqCYGnn3yK6669Ftux+Nq/fJPx8XV093YDAaqk5bq40gjeftxemGj/cJTGlu1ByxeuZYewvE0rs/NCrAxaNMIwPFvfdXbSv7w/P1zm7kLbLnTMsyBgpazScuB19rWYurj038v7tRiYxIBkaZ3jxWSi2gPK87dZ2rZdG02N622FVBdl8c6XwTrPWRYBqvg4Z7etBO5auyyA7+X3dRvQJRWFcKFOsHWvBUuAd3zMl07EZ+UMY3RhH7sWUF/2drhA2W/TBM7WGl4Cd5fiRxE/i+BueZbr3J0Dzq48ttJrsZjABV/tjnqhtgvrMe23t1ZolgxMtFZU40+nKDQLkpsDyZJBLFrYt/WKmZRnM3+t67I40xddIFu3OEMQ90kgEBBGBH68SielQc/gIG9797t44MEH6O3tIaophJ7LmYlD2KZCcXYOVQgUx0RL6NQaHt3JHn7ull+gY6QXy0ny5GNP873vfo87bruVUAqOHH+O7ddsIpNN0dPbR7XeYGhkiGQugWEaCCS+cEEEKFEMMAI/IJ3J0D8wzPv/63+lv6uDjnwHjSCgp7uXIHQplYsEYcDQ4AhBGOEHxL5fUqFSq1Kvz1F3q2i6igKYpoZuCJL5XoRUSdoOUSjYt/8IuVSWyA+oV8soUUjSNvmHf/p/2H71dWzYspWdO3fz6tvvpDRfIWWneOaZpyiXy/T0jCIshZnZKbLJFH/4gf/GdVdew9SpSaykzsBAH8eOHuMV172CHzz0EI6u8fyu59F1EyfhkEzYXPWyK7jl5ht5zx99gtsuH8AyNKIwQJUGqmbhBx6mphI0AqQWS/WLJqtOKOB7HnYiidRUTMskaMTqh0IoeK7H1NQMnfks9XpIve4Thh75jiy6Fl+Xzs4slXIdQzeZLxTp6e2i1pS2DyMwLYuevi5UQ1Iu1UglM4CgWCjT39NDOpnCd0OchINlG1hWXBsoAF03cX0Fy0rypa8+wKYNQ6xZO0gqnUQIjZPHJ0klkzGwFFCrVqiUY2NsqelIzUAokiioc3piglXDvezee4hDh08zMDxAyk6gGwaqrseUR98HVTb91+JrpGsSaejxIogi2LVrH/l8lkYdHnzwCTZtHEbVBPWGi6IZ8UUlJAgChGqg62Y8zkQRpVIZ0zBiOhaxVYS/oNgWEEUh5VKDQwdP093TRRQGJCyNAwdP0NfbDwiEDEAJEIpEUSVB5KMLQaVYQaASRQqmrS/8FvbvOUIum+Nr33iUcrHCwNAQYVCLR6IoVvgUQuL5Ltl8FkUR+EHEP9x7P+Ojg6QzkiiKV08UIQGBBJQowm946KpOrdZAqhaaHtN6FRERESJDH8KQ9/z195gRed71nl9Gsx2iKCCd6aTeCHASSSxLo69rmFy+h+kzs7zzne9m88bNvPmX3kzgV3CrZXy3gWUlqc+X0IRKX99qCvNlpk6dIdWRbI5DBt/97vd55SuvZ8/evYyvXs+ff/TjjIyO8ta3vwUjoSNRabge+/cf4B//8fN0dg6RyOrkOrpQIpVapUq1UuDUTJlcZzdSCCqlEpdfdhlvuftuhK1TqZcZG1+NlCp7dh9haCCH7djkOvMoKNTma1S8Oo6jI0Kfob4+BILpuRK/+Zu/yR/+0X9BUVxQPCICQF0YWds8VBY/sJa9fz4AoDSzJYtaLANVscfd0kzD4n0WA7nz0QDhbLZqMdhZLoJytn1reyzeEYbtSwZaQLOVKVvaj3PZKO36dPY4LOnf4uxaK2O19L2zn+fcerRooe/nZLuWXYOVrl1LVXdRb5f0/Xz003bedfG2NsyfJeIp52YQF3/e5j8W9l+JrrtcxKUlMBLTUoNz+rLkuizKTrU861h8nsUsoUVzknbAZom6azOzFWcgo5hFsAC+X8Jox44S4qIMyheu9bJXa2bYts3i815kXAJ3l+IFxc8iuDsny3X+veO46MHgh2nbPlorNEupDyv0vi24W+more0rrTqtnK2TQuD73goPm7P7xTSuEF1TGR0fx224/OXH/4artl9JNpfiwQcfZHBwFVGoIHQDISSWYTA/Pcv37r+P/uFBdFVj9erVDA4NksvnKRYL3H7nLVRqJaJQIZftIJPvxPdckskEx44fRdVUdENtmlHL1lWMP5OU3P7qW5k4eZJnd+7iZVdeRaFYJooCTNtivunX1nA9fD/CMEzCMETVJPVKmXQ6S6PuUigWkapOGETUGi4JxyHwfHzfQ5WSyclJEo7D9x94kE9/+jOsGhklm8+TSWfwfY8tmzfx8CMP8fhjj7Nt2+WUyyVmZmY5ePAIpycnWLd2LZbpcNstt3L65ASjY6MIXaUj38G1111LNpuhv7+XVNJBMwwu23YFQehTq9dQVUE+l+Pn7riND33mG3ilKWzhk8lkYkl1GaFEIaqUeEFIEAYEfvxwjyODAAAgAElEQVQADsIQIvD8gEQTJEVhSDqbQtd0LNOkWqlRqzfQdZNKtUJnV5ZyqcyJUxN05nOUS3Emz200SGeShFHsi/b403txbINk0kFRBJoqyWTTTE3N8PVvP8LVV24CGWGaGoX5WYLAJ9+Rxg9CquUqqqou+L0JIXny6T2kEwa9PZ1MTc1Qq9Z49rmDrF07wtz8PMlkAk1TSdom1VoD1/VxXY9TpyaxbZO1a1YREdHZmSPwQ7LZDKah84Wv3I+hKWhq7B+nqhozUzNYlonjODENUVURSFzXxbFtlCjCsCyOHj3J8FAXvu9jmBZBGN97YeCjamqz/iZq/o7kQv1eFEW4rkexEIu5CCmannIhuq6TSieaYjQSw9DY+fwROnIpbNskFm0JUJtAMvADLNOmWq0hpEYmm0JV47FBV2MKrhAKqhob23d1d8QLAEC94SJlnHnzfRdVjX9HUQiXb1mDputAAAiiAGZn59B1nSgICYIwruu0TIrFEolUkjCIF8tMy0TTNE4eP82vffpRPvu3f83I8AjJZIo//MAH+PRnPsvX/+Wb3HbbbXztK19jbGw1Cgrf+ta30XWDyy7fyqaNG7AdgwifZ57dQW9PP7puMjU5RalSJd/dw6//xm9gmxpXXbed977313jzL76ZN77xdWRzSTo7OzB1i7/+33/D+9//fpJJBz9oUJgrEAXQ3d3LbbfdzoEDB+nuyaNrKjNTZ6hWy+i6xuj4BkrFMolEkkw2y0DfAKZlodsGz+/azefu/QLr1mzgM5/6B2wLhlaPsHPnLnzP5/lndxFK6OruQJUKpm5CJHjk8Sf4rd/+TXRNNDPArYl5DO5aJvWtrOzy8XulcX2l7ctpm8vBXczMPR+IOJdKeN4znqfNyudZ2Tj6HOBxnuNcTL/OTvSXAsWVAOKFrsFyELdSPd9KwHg5FXQllcuL/3znf0Zf6POer81K24EFYLUYbF4MqFqJ1tr23BcCN1G0cP3Fcjrpjzh+2PO81L28BO4uxQuKS+DupWzbPn4qwZ2U1Ou12Kj5nDi7X9jknAfEUvCaprJl02VMT88ghMaGDZexb+9BkskMppVECJUgcGlUCxw9fojP/dPnWTu2hkxHnlQuQ9V3SVgGp06doFQuMzQ0wgc+8N+49ppraDTqzE7PoEqVxx5+jPWbNqCI2Eg6FnuIQAHNsbETCVatWU9pbp5Tx44hDR3bTtOo+eTzWfYf2INhObh1H8M08bwGnuuSTGZAaLhuSCbbgYJKwknjei6aplEqlnBMC9OyMByLb3z7O+zdc5hnn93H/fc/yqf+7lO8853vIox87IRKNmdTmZ3Db1QZHOxFIeSRhx7i8LGT3PKqWzA0g8nJaVw/4PiJkxw9for3/ur7+IWf/3n2H9zL0EgnCJUTE6fp6uykUCxSrzUwDa25YhoxPj5KemADv/d/38trt48gBbiNCooSUK/XUTVjYQIfBhGaphMEAXpTcENKBV2PlSGjKK6rzOWzuA2XIAzIdaQpV8rohtq0I6iSTqeoVRtYtk25VCIMAzo68niey8hQH47jUCgUsR2Tudk5gtDnss2jWAmLUmEeogBdlVSrVQ4fOUE204kQKsX5QjP7pRCGPp1Zm+GhHgrFAuVyhR88toutW8apVKoEvk8qlQRFoApQDYvTE9P8y78+zrVXbcK0ExQKRRzbYm5mlo5cGoKAWqPGls2ryWaTJFNJIESTsbjO1JlZMukUQqgoQi64mDzwwNP09XShayrJpIXnu+i6QRBE6LqB1whAiVUxhQKe10AoKjFl1o/rNzWNCB8nYVOp1BGo3HPv/awa6UDXNVRN0nAbKE2fxqGhmCIbhQFSQq3aQLMsVFVimDpRKNB1M24rBZqmokTQaLioho6TTNDd20lndz6u+41ikRdd1/EDFyEVdMNoUvRANCmoYRDgexFh7ICCk0ggpEK5VKFWaxABumFgmAaKCJGqQBEKoQ/ffOhZ/tOnH+TP/vijdPf0kM6mOXpgH3fefgsDA2Ncf90NdHf38b73/Qd+5Vd+mXKpyJNPPcnVV23nwP79PL9nN+Nrh5vZwDQgYz/KbIpULounwB2vvZ1NW9YiRcTdv/QmNBWKhSkSCYvA91B1kze/5W7yuSxuo8LkxEmefGoH9VrA0OAqCsUSl1+xhfn5OXp6ejh18hQJxyaby1GrBaTSKRCSSrmM63qxr58fkUxkiHyVN9z9i4yOrMH15nnlDTcwMjpKpVKjv6eX3qE+VKlw5MhhUsk0zzz9LDW/zpbLNzdFZpqm9JGyMJa3AzOXwN1SquiLB3eLlR6Xg7v2wi4vFNy1xGUuJnPXAkEtGmT870U1WxeZqXkxQO1CGbEfH7hr71nX9twXuB6LVVtbgPkSuPvZjEvg7sccP4vgTjkvsFu+d6vRTw7cxQzK5QPnoodMtGwDtAV3S1Y6xblFvkseCBegu0gpKRaLWLZ9Trt2tBhFUYjCACEFqWSSbC5DreGyZ88+1qxdi6praFInIsK0dGzTIJvJ8OY3/RLTM1N09/XGk+vpGUQUkEjYJGyHTCbHpo2bMU0TXVNxHIsPf/hPeM3PvYaG7+PYDkCzdiR+wIRRnJ2qlkr09fYxOXGKiakZMqkc73nPe7nrrjtJZxzqjYCOjm6UKObi2Y5Fo9HA8zxs20bTNFzPR5ESz6sTBgFRGDE5OUkYBGS7OhkbHeNl27bzqlfdwgMPPsTWrZdz1dVXcfToEbKZJLV6lckTE4RRyFxhjvE142zdup3R0XXs3r2Hxx59HCKFf/ynexkeXsXLX341h48eo6+/j1qthJPQ6Rtejed6BGH8eavlMoapY5gmEbH0vmmZ3P221/PNHWf44te+zuahDI5tY5g2Le8yRRHUa3WkjLNDUrboMmdpSFKLwbyCQNNiE/BYuERdUGB0XZ9CoYzjOCRTSUxTZ/LMNJlMCse2CIKQYqGIqsaZPSEFpVKF3v4eFBTqNZ9SsUwmmeDUqVkcy6FcqSMUsCyder2OEALLNLFMAyljk/ZcLktXPg0odHd3EPix6lz83UfUXY9UOkVvZ4patYZj24RhhCohl8sQ+AHHjp4k15mhXmss/JRUVaJrGvVanc6uPAcPHkU3jDiT0izwb1Rr3PfgDtaND1EsFGLPN+LM3MH9J/nO/U+ydrwPXdcIfI9qtY7nBXEWrPl7CsMIRUTU6w1Mw+L53Qc5eWqOdWv7EFKgSoHv+1SrdSzLIGjKoM8XCpiGwbf+7TE2bRpHUSI0KZiemmdqcpaurhyx515ARNTMvMWTU0WJ720hBbHlZmyILqVgdnYe0zIhipBCJSKiVIqzcYEXUiyVsB07Fp5RYgsJ3dDizGYYIKWK59YWwMTXHn6ePbU+djy5ky9/+cu88Y2vQzdUdu1+ljVrx+kbGIrtOaTk4MED3PWaO6nXK2zdejmGYTIwOEBhvsj6TasplauYpsNrXvM6br/9Tnp7u7EdC0VVUZSIwK+hCY39+w/QaFTZf2AfqlQhBN2yEYpC4LqEYYAkIJHKYpsp7n7L27jiiit45JGH2LJlM9NnpkinUzi2iVAUNN1G1VSq5Sq24/Cxj/0vzkxMMr5+DYoisM0ED33vB4yvWcO73v1mvChCahqmYZFIOEhdo9GokUolCP2Ir3z1q9x6523Yduz7pywaZ6O2xKx2tEtlhfeXx1nwtuTdNpmptq2V89egLd13uYjHufTC89XpnU9A5WJA6MVEC6AtFhQ5t89nQd/idsvB3eKatNb75y7GLv9MZ2mRC6IizTaL1TVbPnMr+dC9mGgL/haVZFx0m3M+T2vfRcBsUcYyCIIVVWCXfw9L5iErlIeoqorve2fbLBJYaVFkF9Mwf1zA7qU4V+uOaXeUBYGZFbYvJsi2tl8Cd5fiBcXPIrh7UXv/BMFdu2jRus455UVm7i64gnYBakQYhui6di6nfNmDIVo07wijuGRaqA0UGWHZabL5HJV6ET+oI6MQy9JxA/DdkEQiw7FTR+np70OTklqliqkITEdDVQ0CP+Tef7qXq67ZThQERGHAd+/7Hldd+XIsw0TRdIRQsWyreQ3iIU+NJGGkIkyTQFUYHOklk0wzP1tj08YrGBjo4/TkETq7elEQRCgLACJUIlBi+mZEXK9Wb8TAQ9VUoiCWQdANE2laSE3Dsg2SaYvb7ngVd97181iWg2U53H/f9xldvZaOXJ50NkPN99ixcxej4xv4p3+8FyUSPPvcLrZuu5I77ryLcqXCoSPP09XRzUf//OP09Q9w/fVX4wtBOpvG93xEBI5j4wY+UhEEfqyG6VgWbmgzPDBGEJh86O++ye3bVkMYe54RRURhhG4YsekuIaHvNw1WJaESm3QHQUCtWsMwDNyGS7XqkkwmiRBIVWNupsLefcfo6+3CDyImT0/FnnsCGq6LlBLLspBCIQxCdMOkVKrS09MNUlIolkmnU0gB88USR09O4weQySb46rcfZf1oP8VCidOnZ+nv6+b0xAS2bdCo11GIaY3ZbB7bNmk0PDzP5zv3Pc7gYAfVWr0pXqIQhT7TkzNMTk5hGJJarUYQhtgJG8/zUVWVhJNAKJIjh09gmXKBEmknLAxd49ixE2TSSWamZ8hlk4wOd/Pt+x5m44bVBBEIRVKYL5LvyDMzO0NvT55KuYqmGlimja7FNhG1ag1N1ahVa7HaqKbjuR69vV2MreqJ1T3VeDHG90OiSEHX1TiTqkSYpoFlWAz2dqGICKlE1EoFHMuhMF+is6eTudk5HnhoB2vHR0Aq1Mo1pBQxSLEMwsCPfx9K1ATFGmEQ181IGWcYoyhqqmNGPPb4M4yvGYnBUZMuOHl6Kv5uVZUgjJCqiu+5BH7AW//82/yn3/8QN990PXe/4fVsWD/G+LpVKFrE4OgIoVRo1Cp09XQCET19eYaHe7EMK77/gjgDODg0RCMokkzkUFWb17/+F+nq7cEtF/DqLrquErh1Iq/MqWNz5LJZjh07hKnrlOZrDA+Ngh5PEHfteBZCD0nA4MgqpLD43L1f4u1vv5t161dRKtY5c+YM01NTJB2bwvw8jz/1DN3dPRDFNce7n9/NV77yVW698yZKhTKGbrF27Rhve8sbmZqbJN/ViR/GaqSaUCkUi6QySQRw/7/dz0DfAJsu2xhTdtWW2qKASMRj57kj9/nH7RcRFzsJXZzRuvATtR2YWX6+F/ZUXt7+pQF3L67dcnDXyhC9uPNE5xzvQu1+nCDl4uP8mb34up2v722yo+3mIYuus+u6i8BiC6iv3IcfZ7xU5297lNZ1WaFNuxz/JXB3KV5QXAJ3L2Xbi4+fOLgLfDRNP/eBds6y8OJN8bYwqjYnjzHtS4qIb3zz6wz19eOGHnNzBUSkEgWg6LFXl1/3mDw1wZ986E+4+rrt7Hj6GQaHhomikK7uLkQUMnF6gnVr1zM0PEwqlSEUIhY9sU2EiGhNXvEgiKChKLF4CA06knmSToYTx09TKM6QTuk4iSxCUQn8kFOnTmJYBhOTJ8nl8tTrVebm5uMsl1Q4sO8AHR15dE1HISKTTuER09iq1RLJpINhSipllxbOHBsbI/TBNDSK5QpP73iKjq4e9u4/wtjwOB/7+F9w26vv4qMf+yiZbI4v/vM/85ef+Ave+8u/RrnS4NDB/Wzash47nWr6iEmUKEIogigK8DwPTVVje4og4OREkfnpMm+6+/X87cf/nJ/79/8Xm1f3M9STpjXBEEIuUJRk86HpBwFCqgSBF9eIaRpB4MeZO92E5nVUFJVqucYjj+1j88ZVJBIO1WqNXEca244n/XpTYTMIQoSiMD9fxrQMGq6Hrus4jkMYedTrFWxLA0Uhm03j+z6b149w3/eeIOlYdHXkOH1qmtGxAVzPxbFNSuUKlmnhJBKcOjlJLpfF9wMeeWIf69f0kc5kYnqhEmEaBo5loRCSySYxTIMoEqQzaXRd58SJCRRF4cEf7GBkqJdGo4ptW9TrDRqui+PYdHTkcF0Px7EwDB3D1Fg93B/XxNkWxWIJVUg0XacznyGbTeM4Ds/vOkAUQhD52LbNPV/4Dle+bCOKUNA0lSAIOHrsFP/89R+wYd0whh6bwUspmJkpIBWJVGNlS0UKogi8hk8ikSAMPUxDZXpqimw2T0dnHj8KMA2D4YFuDhw8imHqJJ0EiqLwwMNPMdS0xvDcBigKuqETBjA7M0+lWsEw9NjmIfCbNYDQ1ZmjVqthWRYinrGRTCSRUqXRaKBrGkSg6ZLvP3uIf/cb76e7u4MICGpV5uZnyHXlSaSTeFGAauqYUl04T2dXB55XxTAsPNdD0w2e2/kcO555lvWbV3Hi2Bk68t3MzsyTTDgoXp1Dhw7T2dXB8eNH6evOoes5PvKRP8WxDEZHx1i1ag3JRJJTMxNYhsWeXc+TTiVJ2gaRajAzVeSO219DtVZi/4HdjI2tw3EshBDkshmOHztGV3cvYRDw/O69dOTyrBlfxy+87hdI52wUFCqlGv39vXhBnY6uHAgF20niuz5KSGxHQcD09DRf+PwXuOVVt5LtzKBpGr7vE4tqxdezrTT8zwi4O1/dVCvLtZKn3MX246cJ3AEL9OXW62Ipo0EQomraOQIy/38Dd+d7v137iwF3SnPRqZVVXiySI8XK1N4fR/wowV0rY7cSdfUSuLsUP3T8rIA7IQRKtOxx2U4VkxhMnJMQXwEMCVoF78rZ/c5Rw1wh2qpyXiwQXJQSa3OuJRSK5raYKtEcDNtQI5arYbaO0/bsywZOVUp831tQyGrTS4SixL4t6ERR7BMmVIGqSS677HLmC3Wmz8zyhXs/z8u2bqVWq3B07/PIKKKztw8rk+XaV92EhmB87Vr27N7D6OhYLK6h2+S6ujhy/Bi6reLToDxzktMnDjM/XyRCwUyYNAIPoWqxtYGMFf5UdEJVR5ERfQM5vvONLxM1XHQNPDeESKVYqGI7SZK2QzaTw/dCVEXFsRK4dY903kHXdRqui2EnCRVBZX4eA4XaXAXfDVFNB6FD3a3iunW8ag2hKOzauYNcLsOGDespV2rceMMdPPz4o7zvP76P+dkzbNmwFr88xzVXbEFVDTZvGGdsuJtbb70Zw0jy1MNPkExYZNMpIiFpuCGmbWAnknhBSKlSJZlKE/oGM9NnuONVtzE0sIr3vO2tjG25lrt//8/pSkqGe7MoSsT01DSmGfvbKSLO2gglglBBUeL6ESFjeuZCaZACYeijm5Irtq5G1zVQYuAUEWdtiSJ0XUcISbVSJQp9sl1Z7vvuUzy76xgb1g5TLVdJph3cikcQCEIfnnxmP135FB35DIYhmSmUmZoqMjLchx+4TM8USCQyscIjAqFqKEqA59UQEq69ahNBGKCqKvPz85yZmKGjqxOpRpiWQbXewE44aEYMJt1GAyWKKBZKbN4wDhFkOvIgJA3PwzCMJuU1NjpXVYmigqoJiCSlQjkWWFEglUkhlDAW91FVoij2p0slbFRDQ0jBFZevW1CdlUISBC6RL6kW6qSScea51jQ2r9drOAkL1TARUlIvVbFNE9XUUDSFoOGhaSqmYxFFgqkzM0hVUCjOk82nOHHyNLWqSzaX4MyZGdaMjTbrLSWaYcQZ8nosXJNIJjDNGLx5XgNVldx//5MM9vdh2LFBeRiEzcy2RCgxzU7VJIHfIMLjfX91H9tufRNr1owS+AGKgEDRSGXz6IaOJnVkCDKAYnkGKSPC0MU0Y6Gi0NcoFYocPXaYNevWcfTISdaMriH0QkxDpVEvo2uCRDpDZ08vXhiRTufwFZ3pM7O88sab+OD/+GPe+va30/AqIAIc3cT3G/T2dePj8+yuPViOQz6fxnMrHDl4mP/3ni+yfft2OjtznD59As+vMjTSTzbXTTKZpHegB93W0G2JbktCL7Y9SGUspKGgm83MahhiahpSRPihR9mr0SjV8Osex0+d4uZX30IkBUEYESkKkQJR87+2Y/2PIBYDknbAZIEO16IMNgU/zl93trJB+VnlxPbeea1autZi08VkxC5EGVy+/WKsG1ZSn4RFC5VNZdEgaBHhJK7rkXAShEGEgogXFM97nuazd1FfxaKyiXav+Nxnr+NPR5wVjXmxoH1J22gpZbYdZTTeXyz8FeIsHTiKoiXModZLLKJuLhynCZJWUgJ9MXGxx2lRcBfrpi/+ZS2eIbb6riyivLY996JX6wqql8DdpXgh8bMC7hZ42EvePd9D4+LAncLZlaMXHj+eLF8rwsCPBxEp226XTfAlFj10L/S5WuC2Xq/FpqsXZap57gDt/3/svXmYXVd55vvba8/7zHVqnjTPkmXLIx7xABgIAdtxGmNI3+QCgXt5SCe53SFpktshQ2e4HZ4nkHSTdJNA0iETAUOABmNs8CjJo2TJmkpTqVRVqqpTZz5nT2vfP/Y5pZJUJZUk28Qdf37249Ie1lp7OGutb33v975BQL6jg3K1yg3XX0ejUSWSIUeOHMJOJMh1duEFPiCIfA/Ltujp6eHIkSP09HRTq9WJInBsiwiJ41hkU0l6e/tJpLI0my6GbWAaBpFU0HX9zDYQtHKHIjZs3MTg8pUcODBCpVTnYx/9OE3X45qrr45ZJhXBxPhJEokEQqhIGWJacR7T+Pgpch056o0GnR1JGvU62XSWmZlZ7ESaYrWEbdpkMzlSyRSmaXFg3wFeemkXK1asYseOnWzbdjWrV60glXSolstUazV8X9LXP8iGDauplIq8+NIu1m7YzLGT06xZuZIfPvYouY4cvh8zddZrNVRVZWa6gJSSIAjRNYdKqcgnPvFxPvDg+/nYz3+Un/7p+7nnvnvxEv186o++xLuvXo7j2BDFhCVCaWkEyWgusT+erMSU6koERBFBEMQQPk3E50FM5S/i350iFCbGJ7AdGyEUEgkH04jfge95pBImuWyCZMImiCSaEKTTKWrVGoYmyGZTVKo1li8bpCufRdc0UqkkQhE88fTLrFg2iKnHeXC+72JaBmEoCcMoZroslEinElRrdTo7O9B0lfGTk61vVkG0iBUioF5r0t3dRSLh4LpeDNd0bIjAtIx4wAwlYRRHN+OFC6jXGoDASTi4LYIdIQSVcgXLtFBUlSAIeWXvYfoH+uLn28prFK0FJaEIAuljaBZT07MMDOYRIo5oGaaOApi2CUosSq/rcTRU0cD3mhRnKiRSDkEQICUkkg5qKxc1iqCvr4dUKoGmx1DUWq1GJpdGSolQaX0nOpEUrXcsaDTqvLLvEB25DM+/eIhc2sFO6GhaHGU0DA0pI9xGk0aj3oIwBzzy/EF+4T99lnw+jyZUhKZRq9YBSSabRDc0NE1QLBUIQ49sNo+q6ui6wyt79jN1qkAum0VGHoPLhpBhiG07/OD730ETgm9+45ssG1rB7hf38MMnHmP58mVouoGigFQUnnzsGf7hH/6B3/rtz+D7LoalISPJ3r0H0DWDTCZeENiwYQP79++nr2+AVDLL2PEJVi5fjR967N69C0PXSWcy7N79Mul0kkazQTqTZWamEJMueZKx0dHWeWnK5XL87Xg+phmjG3RdxzRNpqdnOHr4MMVSiff+5HswE/YiEbofr813tBZielxo34XLFOc4SQvVeQaVvXI2kdj5r13q8aVFH0+zXC5+Di1pificl3fvoae3F9/35+7lQmz48wlXLsY5uhxH6rWx03OGV69NS5uHLGoLopZOO49n7GshVl5v526Op+Ds3Queurj23aLFt/7/RnfulB9nGPZfo/me94Z74HPDS7Swjs5CFq9Kz7v21bBW/YpoD2qS09pGr54JWvT2Z5kiYg29y7mnaIFyL+r6MzDy8TNWpJxrlELAzGyRv/zS/+Sn7r2fjnwX9VKRIPBJppIxLM5xaPguuqoxU5gim8swMTFOJplG1XRqNR/LthkY7iWUHtFCUCHhEaESIYgUnVAqPPz1hxjq6eXxx37ImjXr6OjuZnDlMNVqhb7ePgrFWbq7umPnSQataGhMRuF5HpFfYnaqyCc//suYToLf/f/+iHxXBsdykFLiNRtYhoVbrlCt1RgbG+OfvvqP3H33XaBEDA8tY7ZYpquzhxdffJkfPfEEldkJbr7pJlK5PDfc/FakmeKVnc+y47kn+cQnPs6uPXvYvuM5PvDAg4yMHCTf0YFhKqQzGRAOUSQJW7l0pq7jJB08KZFByMGD++ju7uaX/v2v8KVP3olQFVQVKuUq6XQWVI1IhvN0sASFqWk6OjrwgwBV1+JInqJA6xwpT68/Bm4D1TBQVZ1ISny3SeCHmKbBTKEIEWQyGRpeA9u0qRTLVGsNTEMnCCWu62E7BkTQ2dnF8ePjDA93MjtbIZFKMDlximzKIZPNMD1d5JUDJ2i6PjfeeBUJyyAMg1jYfKZAGIbYSYfAD+M8QyEwDJPDh48zdnKa4cFuVqxaTuD7PPvcbjZuXBVDS4USR2SIcF0vdsoiiMKAarWOZVkcPXqCdRtW02w2AUgnU8zMFKjV63T3dKMIkx/96FluvWXLnGPpui5EEaZjgRLiNRQ0oTJbPkUu10lxtkQylUDX4/wzRYklRpquS6lYoqcvR7E4Sy7Tia6rFAqzZNIZNC0mQvGDEM/1CIKAdCZJGMZyDIqixI6dUBkZOcLgQB97XznC1i2b+Id/+gF3v+NqEo6D78dECJ7nk0qnqDcqWJbZYliVKEKgouC6TTRd4+RUEbnmbQytXE+xWCSTzaAqgsnJUySSJrZlU2/WCUOPE2OjbNq4ieKsS6lUZMWKVdx04y089dRTBF6VyVMnUXWVzo48k+MFkgnBiRMT9HYPMDFeQEqFQGmwevVq7IRDS2qT6myNZrNBZ1eO2ZkZ+gf7eeWVPTz5xE6iSHLvffdBFPHiCy9w0823UC6VCXzJi8++SBhGDAzmWLN6NU0/QLdMmk2XWqNAd1c3fgimnSAIWo6CbKIJFUkUS0AkEwghCMOQcrlCKpXk0KFDqGGEGwT0Dw0yuPayasIAACAASURBVGwo/mWcEdlZCFD1+lhbXByY+93O33fh61VO0863xstFtOoWs/hbfPUWOM83wW6383wOZxjGcOilzivj4VA547nNT6FoO2RhGJMhtZ/T6eML69NJGZ4nKvnaLQgv1p4gCFo6tyGqFi/SXcpc4EJ6fJdrC+Wttl/HfPTS5c5jlmpL0b07n0VSzqVLnM/m30373izL+peyCnBJ9mbk7nW2N0rkbr5FC/x1IZMRF71SudSWnJlg/hrk58GCg1N7teiyvPPLXkyZd70WixxDCIoERRIJ0A2TO26/nRdf3M2xY6MkLAPXdWnUG8gwxLRtDEMjCH0UTeA4Fpqh4SRSCE2nVmmiRJDLZdAUlXAhd1ZRIIpl2LUoQsiQ3uEBdu98klrxFFdt3UioBCSznWSzmThC5PlAFItraxaqULFMgygK0Y1YAw0Jd9xxGx/+6M+h2SqppEO9WUGo0PAaBIQ0aiUiwG1EDA8up1mvUZgqcfLEOE23weYrNhKKgNtuv4n1G65k7769aIrC6PHjZNIp/seffY5f+OT/TRCEvPTCAd759vey45nt5HJ5VixfRjKVoF6r0mjUcRIWMpIcPnqEoZXLaXgeMoSdz+zgn7/+ED/5vvfy9p94Bz/7q5/jls39JG0thosR07T7vk9Em0ETDMsAoaAKNSYiUWJGQkW0coZa+UOKUGg2GhiGSSS0GN4p1DgHSY1zzUzLAkWQtFX8ZhMFhVKljuU4dHRkyObSJJKxKPYPfvgca9csw216FEtVTNOkt6eT6ZkCummQz3eSz+awTY10wiEImoRBEDuItsPkRIGxyWlkKPn6t3ewZcMKapU6um6QcQwSSYejR0dJphyGBntj0XEUirNFEokEQRAwcXycSrlKKpWkWK7Q0Zln7MQ4XV0xO6VhGZimiS8FlmNhGQLDUFFVhaGhnpZ8QQPTjCUnGo0mhm0iZUCj5mE5DpYtUIWB67kUpmdJpZPxfTQ8FKHyyt5jjJ6YYXioj3QyjYwkoYxh10KNt2azSaVUxbJsHMciikJUYaAIhdlCEcuyCQPwmgHHj03y/IvH2bJ5BaYFs8Ui2XSa4mwV3TD56kOPsmHNEJVKlVQ6g4JChBKz1oXxBLQwW+bPt5e4+yfezdT4NIEfoBuxcPxsqcTv/s7v886734lp2tQbTQYGhhBCw7JNdE3n1z/9G3z5r75MrVrl5Ng4w0PL0FSdfftGeOqJHWy++mpyXd0ks2kiLSLblWWgt4eDIyN05jsJpUTVdaanRtCNiHQqS63mUS0H/OVf/B0fePD9/OqnPo0QKls2b2VwcJh63ecb33yIrVs3oZsuiWTE2lX9NN0a07NTaKaNZhrkUp00GwGKKlA1gaaD0CRRGMXQ5DBEN+KIrWXZCFWlVqkwPjHJmjVrkJUmu/ft5dqb3oJoEagsPqS8vnOxMyNz5+678PVnR8Mufmx49cfY2M7vGC3czktpi1DUBd7nuUiVM8XdFz737EjppeWxXZ4tBndtO+HzHflLmwtcOAXksmwh526h+l6noNBl32MUy3hd8LSz6lQU5Q0fuXvTuXud7V+Lc6cK9QLaeJfekjedu5aJNjzidAesmjpIUIVOf/8AfT19nJoYJ5PNksmk8TwPTdORhC1MfizILaWk7nrYdoJatYGiCLKZVBx5WuARxzmZ8fMQgJARkS5YPdSHFoUIVaVYqTA5PUtfXx9BEMTkH228vIi14aZnp0mnEkyemiAKQiJfUioWyPfk8WVMcOIHPvV6lVQmlgnIpZMcPnyEnnw/Bw4cxK03WLd2HYVCkWUrlvHw9x/m5b276OvvpadnOSOHDvH+++9D13WymRwDA90sW7aMp556muuuvZXjx8b5+Cd+nu9+59u87c47WbFyCNdtkkxnOHDwIJlshr7+PoSqo2oaqqrT19OLoQpyHR3MlGbp713BtMjymT/7Km/dMoAmNAw9hg9pauzIqS3nASCSEVEoY0hfKIlEFDt7qkrg+yhCYJktCn6htuBMAgUFGYUITUUIFVUzmDhxjNlCGUURfPeHu6k3mmTTNr4fUK/XkREcOTbBpg2rCFyJ74U8+cxeqpUKK5cPolsGzYZHpVRjZqZIMmFycnICBbBtm+mpIqZh0tWbJ51JMzo6wcTENKtXDsffYySpVmusWrUM3/cplyooQlCr1UilklSrVXRdozhdpFqpxdErYpHujpYguxCCTCaN7wcEKDF01xDUapU5x0sGsTSIrmk0Gg1My2Ri8hTZXApNNVFQaDQqaKoJRGRzGQBmpmcxDYNTk9M4iSTPPn+UKzYto1Ku4iRtfC+GXxumTq3WIJQhe/cdJt+RpVarkUw6EGlA/O2qqkaz6fO3X/0Rt996NVu3rEE3BN9+5Cn6ezro6ekik83x/HN7uOvO64CITCZe4CgVy+i6HvePmmBmepZP/MUz/PZvf4YIhXQqzXvvuY+f+bc/gyZUwjDiM5/5bbZvf5bbbr0VKWPIoq5rCKHgui633HILURSLpP/VX/1PrrzyCkIZUqvUecsNN4OpoekafhgiCfFCj6SVpKszT9jK0VFUQUfORMqQatXlP/yH/8jNN97O5k1b6cinWbd2HSgxVPiXfvGXuOXmt7JmzQrcZhVN9Rgc7mbs+HH6BgZ55cB+BoeXc+z4KPlcF6qmYVkmjWYdRUi8wENFwzBMgiB+9tVqtSUlEke0enp6AJg+Mc6mq7bS3d9LGMk4L+t/W+fu4u3Vdu7mNBoXiUCer81SxlIqYbh41OxsU4XO2VQ4UsozchnfUM7dItp3bzp3l9icH4Nz187le6MTqrwJy3yd7Q0Ny/wxm6K0tGvmYweUhfPhLscWghwsBA9owzdVIS74jBYrMwx8VC2G3bV1ZpbcznlCp/PZ1MJQ0mg0YmghENQlL+/ajSoUEpZOX18vgW60BtEYFhmGEh2JHwZMzRRwEgn6BgZaZYZz9Zy3PYQooUQogvLUNC/sfJ6ZwgHWr99MvamxfuMWzKSFbupU6yG+52GbFl7gAaAJgec2qJRnEIQoiiTRuYbK7EFymQ4mRiv0DXVTr9WwTAfPVQn8ECeZ4L/9lz8kkUgyMTnBmrWrMQybtWvXoqs2D33z7xCqz5VXXkOzLtATksDTue6a6/jmt75BuTxLLtdBJtdBMpXmmR3PMz4xzv/18Z+jv7+fiRPHmZ2ZIJ9WsB2NvjXXUSyWSaeyuG6TSqnIv3nww3zlb75MT183kYRNV13Fo3/4Ubo6k0RIFEWDSMQi9oqk0ay0KOs1Hn5kB2+/41qMhB5LVISgKhqhiFoTgnZ+gULU0j2KCHHdZpxT4AushMHRY6NMnZol8iNWLOtuscpp6IZOpVYjm01TKlZxHJtX9h9BURSWDfXS2d3Bnr1HWD48RKNRJ5dNEfo+07NlfvT0Hm6+fgP9fV3ohk5hukipVMf3QnL5VAt2KfjW97bzjrdtI5/vwPciAtfj+489y7vuvolaNc5TO3zoBI1Gk0TCIteRJplK4LouqVSSeq2G7dgcPzZGOhU7eXv2jXDTjdsQmoJAQegqoFApVvFdj1w2SdOPI4uBDFCAZtMjmc0iPZcwCBFC5fjxk3R35/H9AMt0mC2UUESEUBV0/bRmXiqVjplm/ZDibJVntu/lXe96C5HiI6MQGcZRBlWNqFcb+IFCOp0kdlUFzaaHRJJKJed+L67bjPMUFYnv+rFAe+CBIrFMi5/4za/yt1/8IqousR2VUkUlDDwsx8QydWZmpzH1DImkjYzceKIrdcIgQtUhUuI+Q6BRmm2giCa2raIQoKsaz+18ic1bb6A4dRzwef7FffT2LefwyEG279zJr//6f8QwdUxTI5JNxk9OkrBy/NFnP8+mDVfy+ONP8gd//DtMjI+RSTq8+MJuujv7WbZ6JQ8+eD8/9zMfoSvXzdr1XUyMH8M0MwwvW0mkgG5qBEosgaAqcR8ZhgHHjx9n+bJhFKHSbAQ4TgIFgQg90EzKDZekZXDkwCuEusKGjesBZeFJ5jy7OEDjj8fOdpraDku7L4/OcAguHup5up44tzl21lrfyEWU03aopIxaupcLnSPOgD9eaC65ZMKMRQjK2vvPhmaePn7uM1yMpObsaxYa26JIxkyllwhBPHvOEMunnB6vLxVWeTnXzpWxyKtYiMtmMTK59vNZsPwlPrOFntH8ezsbCrqUudbZ7TgblilpOXBCnLedumG8Cct805Zub+zI3eWZKsQ5BCQXYzEWf2nELZdli0TtztlHKw9hKRHKRcqMWvk7l5ac3GZja0fD1Lm/bcfB91yEIpBhyNBQHx0dGfzQo1gsYNgOKOB7wVzkb/T4MXwviKnpbTvW4JonZr5Y26QMiaKIoPVuNE3Dsm36hwZZt2UzqAblYoUv/Nc/oTIzjqNGJDJdaLpKpMQT9zCUNBuNllyAztTUNKl0msiXCHmSo4deYMXgCkQUoZoOMgTPVTh4cIRmvUFPZyeWY3HzLbeyZs1a6vUGu3ft4sSJk/zEe97Ftquv4fvff5SffPe9FMujbN64kYMH99GV7wQk199wI/l8J4cOHeLKq7bxrne+E89r0NnZST6XI5fNsPvlF3jhhRf45te/yhUb1nH42HH6+ocwE53ce8/7SGfTVMplfvf3fp8H7nuAZ8ca/NHfPUKHo7CyP4+iCEJftkhTYs26MJR0d2Xj6BAC1/WRMsQwVVAEtWoNzdAIgiCO9qgKrueh6TqKUNENK5bYUCLSySQpJ8FAbze6oeL5Pqqqohs6iWSCarVGvd7AsixUoTA00EO93qRYqtLb3UWlXKVSqWGaOqOjJ8nl0kwXivR0ZSnMFAmCkKnpIr29PQRBwIu7DpFNO2RzabKpBL19XUxMTNPR0YmUIY5t8NKeQ6xcOYQiVHK5DPnOLOVyhUwmhWVbmGasV2dZFlJG1Ot1LMOmVm0wevIUq5YPcPLkJK7rkkwn8b2AWqVGFElqtTqWbVKqVJmZniWVTMZC756LDAIC32dsdIL+/n6azVhr8MCBo6RTDjIK6O3txnJM6vUmQqi4zWYso6BILNvCsQ2CIIgd0HSCwJeYhk4UuYRhiGMnqJTLNBsNhALJVJIg9NA0FWJ0LZqmIoRC4HtUqnUM04x/K2HAR/70Uf77n3we27Z5Zsd2hof7SaQy6Lo6x54qROv3RYhlGUyMn0JB508+/2dcdc0WDENH01RkBI26S7VaQ9cE27c/ieM4rF+/FsvJ8Ouf/lXe/ra7CAOFDRuuIELwuc99no9//GOMjZ1syUJ4dHV3USqVWbduHf0Dg7zzne8gEiGjY8dQVaiWS5yanCaRyLBi2TCm7vD88y/R19/NwPJljI6Os27dBkaPHiYKPJLZHF4QEIQSVVXxXJfAD0im0oRBwGyhiKrFeZGNRoMQyGbSeF6T0aMj9C8fwrZicp52/7NYP/QvbdVUVUUrT2xhwq02DT3EuWrnkrBwzjVLtTbZyHwmz4uJ8rUZOM+Xzzc/ora0Ni3tvPmEKfPfanv/4hadcd5iUcYz23E+ApJoiYRni7RGhrTF1GO27JZI+GXkkbWvvZx2xQUsffeCz6Y9X1nsXpbYtvnPqLXnjPrOjhZeNBpsgchdewZ5dnT1bHujR+7edO5eZ3sjOndKa7vcwVOZxx19SWVFbbWS+YUuIVk2jMk7Tq+cXWCQaQ/E8yEWC53WKuuMrIl58ghnd1JnbzGl7+lO+mIH8XPbFs0NbJEMWwNzhKpGRIpEqIKpySkajTrJRJpmo4mhx/lLlVKJRDJDMpkmEhEdHVmE2s7pO3e11HWbnPNFCA0FhTACiUKoKGBkcVIdDPZ3c/fbb+drX/lrRkdG+C+f/QJXbrsKYeqEnheDa9V4kurYSXLZTjTN5OSBPUxPPEvG9qgVqlQKM6ipLoIwQqDzx5/7E37v9/4zD3zwAVauWUvCSbB9+w7cpsudb72dkxPjHD92jGQyRWe+k2KxyN49z6Eoku9+51tYhoOqGOzds58XX9zF3W9/B4dGDtLb04WmCjzXJ5FM4boe/cMDWIkUV61fiRJU0ZQAQzcwUl1oaogfBKRTaW6++SbWb1zFNduu5N3vuZvU4AZ+/j/9GbdtGSSdcHDd2OmKPzWJk7ARAkSko0QqTbeKVOJIlO/7RKFEhiGGqSMj0DSdKGqRESgCRYsjyGEYYekGTz/zImOTp+jpyaMZMbSzVo1z1QDS6VQrZ8/Etkw0oVKt1vG8kB8+s4crNq1kcKiPWrVGX3eORMLGsk3S6RSTkzPkOzpwmy6zxTKrVg2RzWUpl6sUZmf50VMvE7o+fuCxYtUwjz6xi+7ONOlMktmZAlEUkUolmZqa4ZV9h8l3pGnUG3Ni7E7SwTZtxk9Ocv31VzA1NUNfXzdOwo6/MRlx9OgoA4P9CC3WxLNtG4WYuGV6qkA2m8FtutQqVTrzecJAMjo2yuBALwnHotGs092TR9NiKn0pJelkgqeeeQnpB6SyNrZtUalU6OrJYxgGlXKZifEZoijAcVQs20QIjcmJU/T2dHPo8FGy2RTlaiUWLm+9W9dzYzmDQKIoKt/9/jOsWjHIn39nJ1fecBfbtl1DKGF4eIiG38BxLBQ1vjZ2hnwaboUg8DBMnZ3PPs+KZWvYufM5rrl+KyBptJh3T45N8Buf/k3ed+89bFi/Gts2Kc0WKTd9hgeGGDsxwbZrrqfWbLBq1Uo2rt+MaRg8+OAH+dCHPoRu6KiqwYkTY6xdt5p01kEzBSgSxzHo7e4i4ThkMzn+3Sd/hW1Xb+att93Grt37Wbd+HcK0UDULAE2LME0FRU9gqAYxEY0S52hmc/heEJP02FZLl0+gGgZECl6tzpM/ehSpuGzYtBVxVtTptXHuXn1iljZT3/yFzHlD4Lx/twmXzpqELuDczdeGuxD5SfvaxfLAFrKY/EmgKKdlC4AWodDp8+Kyzhzj2jIM7bHiXMbNi3cC24uVp6ObZzvAbeL6iDbF/5l2fufufM+lfUxdZDF6/vxgoa1dfzu6FUeKwgXvYyGbf945RDuXi7hbpGqxwD21YYrn5KWd5dgtJA11YTs35/Qc+Gd7PtViZ16szrlFjPn7WtfMv11lftnnsTeduzftouyN6Ny17bKdu8sua0HMwHmvUIWY6xjnqOkvYEsdCM937ZKuf9Ug0QvBUOaVrYASKUQIUokUI4eOcfzYcfr7BxCKwLJMHMsmCOMOsek1yGRSICIkElVotAfQ9mYaJrbt0Gg05lZ3lSjOCVNQWsK7EQgdiFDw8YOAu+56J7/7B5/lxutv4t0/+ZMIyySbTGOqGoVKBUM3icIQ1/XxvIC0o+N5M/huyPLh9ZRrFWqhiq7FE9Hb3/pW3vved2MlE0xPzaCpGvv3H2T50DDf+973ufHmmzh08CClcoGh4X48r0K9HnHk6DG2XX0tm7dczf6DI0xNFli/bg0nx8Y4euwImzZtJJFIcOTwUYqFErVGnWwuTe9AH26twYkTRxBRgyMjB/na177Bzbe/NYZZSpgtTGOYKsVSmVQqZgH80AcfYEbJc6yR5u6P/grXrsjT15WP8x+jWBqhMFXgq//8A264/gqCQGKaJgqCwmyJZCKB2tbKiyQREUKhJYYe4TY9VC3OS4tkwIYNq/D82EF0XY9isYwqBLZtUy5VsGyLQqGMYRgcOzZGo+7T39/DUH8HybSDpmmk00mmp2ewbQvbcQDQdY1arU7/QC+5XJJUOoFUIPB9evs6GejJYRkGL+w+QCZpccXmFShKRCabhkhSKpVxHItEIsGefUfwmy6modHVlUfRRDx5DSQ9vZ1ECqQzyTjPTtfw3CCW5ghDkqkE07NFvvfwTjZtWIWqCUzTIJ1OUW/6BJ6HYRiMT5yip7cb09IQqsDzAzryHUgZ4vsezWbsaAuhYuoaT+7Yw5bNq2OYZjo5B9sxDJ2kk8RxLHy/0VrEEGRyaaIQOrs7iYhIJBKgxDnHKAq6piGEQBVaLGgvFD7+3x/nl3/tN3nLzW9h//4RGo0mqWwS09LRW9p+k5NTGIbNkSPHyWRiuKhpGnR1dpF00my9ciuWo2JZBuVSEdu2OXDwCFdvu4burhxTp8YpzpZIJbJYyRS2btHT3cfMbIk//cKfs2J4Ofl8jmTa4c47bieVSdJsBnz5y39NvdlkcHiQp595imXLl/G5z3+Bu+68ncnxCbK5Tk6OTjBzqoCkyvDwMOlMnrHxUdZvWE/Cib9Tz2tQKBZIpfN4QUDo+biuh2GaeE2XSMZwWF1X0XUdRUAQKagoEPh89R//no987GcJIw1FOXdCfv5e8HLt9UdjLXRPCzl384eM1yLnan6+3Zl/nyeiMm9ffN7piNlFjYenWzFvmz8eL7QIeqEctKWhcBazuTz7JaJ5zqx64ejW0p/H6ft91WUcFovcLfQdssTf1mXmEJ6vDYvuXwCCu5Bjein2RnfuXjtO2DftTfsXYL7vIVQN34/zupaCBRdc+g9DcHnXvxYWSUGkaICOaTn09i8nk0rz3M6d0KL1RwEZQOAH9HT3YJpmi+AgnAfxOb0VZmf5m7/5yhmwHV0qqK1NSFAVFVUGqJHER6WOzom6ztob38OJo6McPXyYmdkZisVZZqYLJJJpAilRNINGw2fnjhep+RGWs4IgHGD3/hOEekgiqdHRlWTk8D5cv0ypOo0fRtTcJqMnTnLlVdtQIoWxE2PYpsX77r0Hw4TnXngcPVFDaP2sXHMt2659K4ePj7Nq/RZWLFvObbfchmlYpFNJ/vqv/4ogCOnq6mb0xBjpdA5fKoSRht25jpmST19OpT/jcd3qFMViAU1T0VSVZqNJvV6hu7sDEBi6RRQp9A/0sXrdIM/veALjivv4w4cneOAPvo2ChoJGOmNw33tuiJ0YM4XnBlTKNYqFCqZhxQQ2UkEGIUoY0qxXUPBxGxV0TYmZB22NoRW96KZBriMLxCusAwO9pFJJGnUPy3JIJjP0dPdw6lSR3s4OerpizT+jFd0rlauUSyWGh/ooFGZxHBvL1unsypDNJQlCl3KlRKNRw/OaCAGl0izJpE0yZbNuVR+dnVkMXSXwXBrVChJJd08eVRXUqlVuvfFKTo5Pt741jUa9gaZrFIoFDh8+QqEwTalcxPPqTM9MUa/XKUwXsEwd13XpHxpky7o1BL7k+PExwjDA9WsYlsOJk1MITWXV2mGCyCWVTYMicJIJPD8gEnGkyDIMapUaQRjSO9DDvffega6Zca6GpqAbAl1XWs5gSK1aJ2GnQGpUajWEqnH0+DjlSg1EnLsqFJV6vUGxUML3Q8JgDgjE5779LO+48x10dnYhVJ2OfJ50Nsfo6Bi6bhIECo16wJ6X9xFJg1/91P+LaSTJJDs4cvgwiiKRSpNESgUkQRiQz3egCpXrrr2GzZvXkMw4ZLN5Vq5YhwwMJqcmEbpJIpnBdpJohs50YYLnXthBJpsEEYISoOspnt25lyu3XksYKGzduo0glNx/7/sZOXiCE8dPIQNBKpVjaKCHW269Di+okM46XHP9NsaPjhA0GoR+wGPP7CDd3Y9QdQxNJ5lMA9BsujQbLjPTBTQ1poQ/eXKUIPBQDQMpI6Tnc90124gI5jl2b+j0l3+11oZHXlwu+bkRz/9dTBFibnujWCTl6yZ98GrY/DnYG+1Zv5r2ZuTudbZ/zZG7M9fjYmuvrMzfFq1HEeduF7D2D1sIgaq0EmEu1M4obPF3zduWODi1SUqWkouwEKvWme1YGnxj4dXR+StarX8rkpCQbD5JsxahoLH/4H6GlvVTb1Q5MLKPrq4s2VyGIAyREhQ0zl5BVRQFy7IZHh4m4cQadACRiOY25h51CEiIwNQ1ZFDnq3//JX71079FuVJnz0uv8MTjT7N23Ub8WoMDew8w3D+AoesMDQ6iphysZJpIKBSmjpJxbJz8JhTFpqOrC90yMSwLGak8/fQzfOVvv8Idd92JFAqbt13Jp3/lU+iGgWHa3HXn3fiBwZb1wzy/82nSyRSHRo6ioJDSmiRyncxUGmzcfBXXbruWRBYKhTG6eh0MU1Ip1gg9SX93L8lMN+NlheF1N9C/ZiNPP/IQJjX8RpFlQ/0YVg6JSaQ7eAgUFYQKtppgZnqWtevWcePNb+Ftd78Dv2sdv/bHf8uXH3mZ+2/dDAIa9RqWZaEIQU9PD1GkAAKhKgTSj3PqvABdtxCqgUBH0wwUJYbSagZESAzTIZFMo5smfiixTQsnGUsTIBQ83ydQJNmODIEMMAyNmalZ8hmH8YlpJiYLrFixAq8ZszFKFBQBTa9JZy7D7EyRarlEJp3E1A2qtQbFYplnnxuht7MD3/Pp7+0kkHWsRAYpJaZlUS5XEIpCOmmTy2WpVKqMjU0R+CEd+S40VSOZSBCFEbppE4YKhqaRTCSZmipRKddIJ2xUs47fMOjszhAELraZBlVBJc75C31JYbqCbgp0U0WgoKkmpdkCyaRBJFQSSYcoihgfn0QBEo5FJCVeo4mUEUEIe3Ydo7evi1OTMyTTGTTDwDYdZmeKdOSyjI5OMD4+Q19fjhgerVGv1dm/7yhDg/388ImdfP5bO3hk+368psd77rkXgY9hCHK5JM16jVQyjYwiVE1lcLAf2za46abrcHIxKU4+O0zoG0xPTLHrxZdYvmIFCoIoVKjXmxi6hmNZqIrg2LET5DvzVKoV/GYdXTPxPA/H0diyYQ0nR2apzFbYuGkd23fuZGDZCiIv4Nd+7VPs3v0SH3jg/Ri6xjNPPk3QLKNF0N/bh+/WqZQn2XbLjWhGiijSKRSmqRXLRIqF60b88v/zKdauWsWaVStRNYmMAvwwwLZtgjBkemaGf/vgx7jrjjtQVR9VREgZoOogfcHYiSLbrr+eUGuiCuvcPrYFhT97uzybPwK9/tbuu+fDLudDNWNo3pl3+lpE7ubXt1jU7uy6zyUwORtqt/gbakMp4+jUfA23szXtFr7vC0UGF4dLLtHaFl9DAAAAIABJREFUY/kCcMWFIIHtmGXbGWqP74tFOs8/B4haTTgNTYXT8M45JNIFIKMLHgeIJGEQogpx+utf5D7gwt/bhe9nIbv4yN3ZsMvzRukuGiZ62t7okbs3nbvX2f41O3cL2dKAFK+CXVQy7sXDP+dOW2QQaXdIF4IWnLlbxoKnF9E5nc5BWLx9APmONANDvfT29/Ktb32P4aHl9HetIAwEgZQYpokiQhSVOZ66+W0PwxDbcQhbeYxnHz97QG/nlkgZ8a53vYuurjzLVg+xZct6dE3w7PM72bnjWTZv3sTU9DSJRILJiQnGT4wx0DeIZThIaWHYecxktpVbGL/P40eP09MzwO7du3GcBKtXryGfy5HN5bj55huZnplGCJUDBw7Q3zfI8889x3XXv4V6o4kfBPzXL3yBerWAVBR2PreDY0dHmJw4wbp128h39pHLdTA1PUP/4BCmZdIMJXbSYXD5MKV6la6eXrZsu4aXdu0l8EN279pNviNLxpAIJIIATRVUikUEEalkipMnJwn8CKHYCEzefvft3HPP+/ja04f4xycO8D++8yxvu2oQS4+d63iiJQkCH1VVYgdO14miiDAMULX4+3RdnzCMUBQVBS0mXiH+fA1TRTM0JBLPdWk2GkQyJN/RyeTENN1dHYAkmbSIlAjP91m2bIDJU9PYjsn0qSmQMamIZRrMFmYRioJu2liWSaFQQldVwiBg1aoBOrtS6EZEpVrDbYBp6uiqwHddHv3RTrrzGXp6OzAMlUazSX9/D7ZlMX2qyK7dBxke7MayDcIoIJF0UBSBUFUyHRl836daq2I7DoZm853vPsXy4T50wwRCEo6NpqkEQTwBCH2P0HPRdIMgiChXamRyOSqlGqqqEUUKum6Sy2YplkrousbU1DTpVJrJyWme2rGfTeuX0ZHP4ocBhq4xNTWD49hoqsa3Ht7JsbFprty6kmbTo1qpk+vIUS5VSSRsHntllHc/+Is8t30HdsLmvffew/PP7uBv/uYrrF2zhlq9QTKRpOl5BIHfgnKKWABeiWjUmmiqwfe++zB/8Zd/yYMfeJCG66Ip8bOTUqJpKr5X47kXnqevt6vFBipIZxOxYHgUEEqfjnyWXG+ObKdDOmfS253j6OER+vqWs2fPHoaGBtm0cSOGoZNKJknaNql0DttJ4DabFEoz5DsH2L1rD6Zm8uTjTzE0tIyndzzJ+PgEPd3dfOmv/oIPPfgBEOAHIYZuAAJd0wm8gOuvu5ahoV4Ks9MMDa5AiSxcz6deLTByZDfrNqxBEWkU5dyIQXQRE3Qpw1iY/l94FGhu4roI7LINzZvvhC7VUbkUByd2MhdfpFzqvgvbaedvftvOhmJefj2XZ0uFBEop5/LqzmB9XBKE85ydZ117+hm1SVoWu/acvLWFK21Fxs9t59yTvwDz6KL2Gjp3C8EuX4sv4o3u3L0phfA62xtRCqFtr0VgfiGX6bWo56JodKMFSLWXKLkw/37m19Umc1mIOngxyMP5aJoXs3Z+4WIdpKZqhFIiAxdDNwhDBdOxmBwrcOpEmVQmhWZJsrkkihYgVIVInuvcCVXD9zwsy8Lz3HOOz0/obzt1mqbRbDZianQUDNMgisD3PJquS7lQ49TEBN29vdSrtZgF0POp1mrYjoOm62RzOaQaa71FoSQIQzRdx2vGeV+h7+N7HvlcB4EfMHJoP26ziQwD+np7qFaqRKHPzEyBx596hm1XX8eGDRt4dvtjrF67jnxnF9946CHe9ra3U/ds/vhzn+U3P/PvyWZTeJ5HJpvFSGVxHJNDB/aj6SqdXXlSiQT7d+8moQmqjRr1ZoPnn3iM6269k76h5Rh2glTSplgoYVsOri945AePc+TwGLfeegfrtvQjlJioJpQxPPLwgQP8+m/+Lrqq8cDNw/Tm0mxd0Y1hGtRqdRzHbq3oBwihoSiCwJfUaw3SmWQrdBrF35cStYTS4wGxXCyTSaWYHD/FkcNTKCpkUiadXVkgRDd1pATbtrAsm337D9OZTcU6f5qG7wcYmqBartLR24eqwOjoGJahkXBsUFRcv4aqRchQcPzoLMm0jqoKOvM5HNum3mjgBg2iSCGVTBEEESBo1kMmJ6bo7EzghwHdfXk03SCUEEnmoMAyChAoVEoez+zYxab1w6TSSdLZBGNjE/T1duM1A2zHoTB1ikwuiaabfO+RnVx3/RayHSnwJSOHjlKYrTDY30P/QB+F0jTNeoPurjyaodNoeuzcvpctW9agqnHum+PYhFLiez5uw8PzfTIdWRQlQFVVIgmTE1Nks1lu/9Rf8s//9E9Eno+h6bxy4CBdA72Y87qU/v4BSqUSkRrhNV2EqtLT002pVMJOmaiqThQIdNXkW9/8Njfd8BbslIXQVFAkgR/QaDZIJ2x27dpNPt+B67oMDg7S9GoknSyaqjM1NYmTtNAcB02AaURUS2UO7jlET/9GUqkUBw8eYNWq5RiWTmm2iG2ZPLfzRSrVOqapsW79Sgw7T+D5PPT1h/jSF7/I7/zW7zC0uo++nmE8z8f1GqTSDkKPUQ9CUdFUnempGZKpNJ7bxDQEzUaDXEcXUWQQBFWef+EJHEfhqqtvwpdZHDs8p0+RFzHJrNfr2LZ1UX3oj8PaUbK2/MH8fRD3o2EoL1kWoW1BEJxT9kK2WGTufMcvxemaX3a7nW15hfkSEWfW/fq/y8XkAM4+3uaWPntMvxA0cKE5QPvehaohw2COrKZNDteeS1xIuuliIJXnu4+LgTcutc6Leb/z27ZQm15t6OibUghv2kXZm5G7M23+r2ehmNNFwTbnWSRlzHLVrmfe3/PD+qqykDD5pUfuzoAKnQXbWGzVdDE4w6UmUJ+GcERnDLxtXaL2CqCMIFIg8AIkkumJaY4dP4pQJU889Thbtm7G87wF2c+iKJ5oSBnOo54+8x7bjl18PL5GaxFMCE0go4iIWEBZN3QymRxd3V14gUvvQB+pTBI7YWE6FocOH8ZwHAwrQbVWIl65Btt2AIUgiJiYmOSzf/RZUskUR48eJeE4DK8aJpvLMTQwhO9Jdr+0h+6uTg4eGuHWW29jcHgQiMh1DfDk40/w1OM/ZPnQEENDy2iGgq9/42tsvmIjEjh48Ch9fUPolsmHPvh/cO+999PV2QtoBFKCVAmlYPXadSTyaTqzSSKhEwaSKPA4efQII0eOMDw8ROAFjBwa4fCRw9x1520ITUXTYmkIGUrCUJJwMvz0T93HPe/7CZZveQuPvTTKd3dN8Kdfe5q1AzlmynX68tm5Zx1DghV++PgLdHd1oGkxGYVQ43fiNj3C1vvSjZjm3/N9fF+ybt2KOPqnKFi2jWFZeL4fO9++jyAiaVuEUmLZSaJIoGkqnh9gWxZ7XzlINpvG9QKEplKr1pktlRkeGkBTNXRDY3a6SDaT5tDIKJquoQhBR2ceTdOoVOo0600y6QSWbRJFAbat43ouum6gaRq1ahVd17EsE9/3sW0TERk4KY3VK5eTSCTQjQhVAdtJYNkJHn/yBSYnpzk1WaJSrRGEHuvWriSRSKAKQblUJptNMzM9S73eZHpqhoHBHmzTiCUVwgjLthno70LVVBqNBqlUguPHTmA7JrqmMjJyFBSFdCaFrun4XsDsbIlEJsPPfu5hCuNjfOSjH2a2UOAfvvr3/NRP3UOxWqa3sxtVCO6///3c/29+mmNHj3P8xFHWrlsXw1dNMyYo0QwmT02ScCxQIqSv8JGPfIyRI0e45tqrMQ0VlIjR40ewzSQgSCbSpFJp/vPv/SEb1m/AMpMQqTz88CMcOXKMocF+IgmlUgnfDclkelE1i3/3i7/I/T91H4cOHsK2LJyEQygjUqks1WqDfQcOsHzlMjRVoyOb4ZW9u/nFT/4CPT15xiaP0d3dg9A0xsfG6Orqolwp4/sBAg0QpFJZpk9NQxSgCIVEIoHn+ahCx1IjHn3ku9z97rdhmA6amYDIJ5Jn9pEX7v9Pn9FeVIr1ItvH/mXM2dqwy7nFCnkmG/SZUM1zHag2hHMhmOKZZcyPjp0byTvbTkcRo3nsmYvDMueXc/qai4muzo8Onvn3mXUu0I55sLxo3th2OdYu80JRq4WeoWyP+Quce946F4muzod1zjk97WjqeSCHS4vcLX7d/HkTS3TeL4Ut89x7Pou4Z6mwy9cgSPVGj9y96dy9zvamc3emnQ3kO9/xi2rHeWCYqqLM6e0tXOalO3dnt+GcYi4JnnFRlc6rZyFHsX28rRkUIaMQy9bp6ewk25HC9ZvceOP1KGoshCvaWP8LwCUWakd8PK6nPUDF55/rtoehj25oLUgoOI5DEPl0dOUZHh5kcHgAw9BwLAdVVbFtm0qlgm7o1GsubrPJ0089xa233sbK5csZHBzAj3z27NlLZ66L7U8/w9iJcbZs2cTU1DTFYhHXa+L7Loqeplaepa+rm3379rFx4xbqocdtt9/GFVesZ2p6ipUr16CqOr7rccuNN9KsNzk5Nk692iCdMtm/5yAbNm1Cqipm2qG7s5OTE9OMn5pi70svYWsq/UMrGDk4QkTE1qu2cPW2rSBCVM0AIXAbTXTDYGJigu9++wds3rSZCJCBZMsVm1m3dg0/fd/70To38dCP9vDfvvEUf/ejfezcN8ptm/ppNDzyuTjKaNsmYejFItrEpAYylC2nT6CqGolUimQqiWFqGJbJ7Gwxlg+IQoIgzskoF6t0d3cxPTODjEDXbR7+wU6EGtHf383Y2AT9/T14ro9tW+w7eBxkRGdHB7tePkgmnaTpNqjXfRQheOXgKLqm0t/XQ6lcRQgN2zIxDI1GrU6xVKazM4tjWySTCYJQopsWbrOJZZrUqzWEotBsNjEMCz+oIEOFyYlpMh0206em0XUdoWkMDPRy4OAx+rt6mJgusHnzajRNJ/ADXtl3gFw2SaPRZGiwj458mkwmid7SWezI5RifmCLXkaXZgj5m0imCIMQw4/xGIsikkmRzmXihIopp4//PP30UpWs9H/nZD/HBDz1IOpNlanKSO2+/A4kk05ElCiJkBB/+8IfZ+/Je1qxdy6rVK3A9F8u0aNTruJ4HioJt24DE0HVUTLZvf5YPPPgAw8NDqJpCpVIimXI4OjLO0PAyLNth+9PPsmfPXp544gne+5770A2DqVMFfuGTn+SB+99PLpMllOB7Ebt2HWT0+Ch/8cUvMj4xwQ1vuZ5sLothaJwYHaNUrrJu7Tqy2Qx9fV2oCjz//A5ufMsNBH4Tz3UZWNGPrhmYhkVvfx9+4KNqAsuysSwbz3WJInj0scdYvXIVrtvEdgwSiSQogu1PPkbo+1x55TbCCCJdRZHxM1YW7avPtTPp3M/oqeY5eT9+mz+BbztRC8EyF4NqCnGuMHnbETzDOThP3Ysdi6UPFte5O9/18Vxbnlcjb76pLWblpThA59R1jk7a5cM2566/FEjiUpytpdplfKiX69wt1I7Xeu7SjsLN10MW8/5+vX+4bzp3b9pF2RvZuZtbA5Tykjqr+dP5uShai7zkHAKT1jb/v/bK1VJ+4udb4VWIO5I4crRAlE3EAtLnI24RnMbXL5bTsWBEbt5K04Vw/Jdi8zH5QtXm8uVahTMHdWlF0qSM8H0fy3JwgyaJdIJ0NhlD+KScc+zi6N3i2P04SniaTKadE6fMcwwvOHgLBRnF8EFFUQjCEBSFIAiJiLXcFAGRInn2uR0YlsGpqUkSSZuwGVKYmWblypWsXrWS3//D3+fKrVsJQ5WufDfVep1XDh3kfz36MDuffoYNGzaw++W9KCFMnZohpbqMHj/Cy6/sxkzbZLpzXHXjlazbsJJUNsXgsgESaQvNVMjkEmTzKTq6MuS7Mjgpk6nCFH3DvVgJE0REFEa4oUJnTy8rVq9h7ZYrCE2br/39V7j2mq088dg/M9BhUx47QbMwRWTqCAMSGYvAkAhbwS9rdCc7wZR4BKQCh0xSx9JAU0M+9rGP8pW/+1s++MCDvOM97+GpkTK/8YV/4n/tGvv/2XvvMEnO8tz7V7mqq+P05DyzOWuDpF1lrRLKOYCQfLBN+mTjgAEfY47BBPs44O9zAAsDxgaTQQghIUCAAgobFFfanCbsTp7pnCp9f/T0TM9MT9ggIcHee/W1c1XVG6q6+nnf+4n89NXj1AUVnt3dy5KmWmQJJElAlpXxDW/RguG5ErIiAy6qrmKYBggyolC8VtN0RsfiBMMhurr6yeYKRMJhGhui9HQNomsGiiKiqwrh8SLurmPx1PMHWLWslapoCE1XyeZytLa2IYoijfVRGhprON7XT011gHg8wY6dB6iursLwG+RyoxSsAprmJx5PFVPoy6DpGqpeLNwuSApILoqssHvPYYIBg1DYh2M7aEYIRVJIxlPkshnWrVtOIOKjti6EgMCRQ314jo3Pp/KLJ19j1YpO8rk06WyKaFUISVHxmT5cB7q7+lAFFTMQADxkWSKVSqHrBrte2U91NEw8lSIYDnP4QDdXf+JbPHsky3987rOEgzqf+7d/5plf/YqLL7qSUDBEwbbIprN4toPu84MgMToyRjyRpra2juRIHkMT0HSwbBtR0NC1HLHRIbLpAo4lIEsGnuuxevVK/KZBJp3CLnjkMh410WZefvllDh/ay2VXXMb6des5a9MGzIBJLDEGItQ21rF6xQZeevFVmpqaUSSFHdtfQJd0fvDwQ3zirz+DqukcPdDNs089R3VdA7fffhftHe10dLQhawIKGju2P09TYwuqbhAMhfGH68nlsiC52LaN63qoqoHneWiajusWa6VlMmmefPwXLFm8BDMSwXJdbNHlO1/7Fv/rve9BMHWQRATXwhVEEMETvInPfJa3qXKmJHdmEqXZMZNoLRQla9z0z2RfxfkXvR5KyVNK8tMbn2Pl+LMSCSySLqmiS1v5MiNJ8oRCr7z+XHnx9Nnvo7K1bi45Pinri+OXirdPVepVIp/Ta9dNbTP32jFViXiyxG5KOEMlS9C0dbu0/ruOTT6XQ5Zkpif4OOl4tbI20/upeF2FZC8z5r7A9nPOY4HzXcicK40twoyC46+nZW4+vNXJ3ZmYuzcYb+WYO5j0wz5t6WUrxbfNAnE87u1UPatLKXKdk/TRlkQR27YZGhokGo0Wj8nKgtrO58N+uvzGS+TOc6drNcWJmIaSC43rOpimn0Ihj+M4lDYf5ZhtM1GO1yMWYvrcYfy7sy1ct6gd1jQdLA/HLhbytiyLeCyOIAgEQ2Fy2RyGoZPN5vAHfEi2ww9+8BBLly7FdV0S8Thf//IXaGxv4a8++QkEXSObSSPq2kRgvG3bSNJ4Wu+SG1VZMplKcrT0zErzzudzCIU8fcd6iI8cR/JcXnlhN5FwhHXnb6WmsQFkAU8Uyds2jz/yS6p9EZQqmYa2BjJdKVL5UZqamwiGQxztPkZ9YyO6bhJPDCFK4Dd9OE5xPslkippoA8eOHePPP/ZR1q5ewY4dL1DKy7Cy3sf7rt/Cjr1dXLtlOXgejuOSTuUIh/0MD48SrYpgOw62bTM8MMIjj+3kpmvOR9M0bMumULAQZZBFEUHwMP0+Cvk8vceGiVaFGBkbw2eoVFWF6O8fQ5YlJEksujQqMp/+5pN01JqELI+EJHLXFRtRRBvLshkbS+H3+wkFQ4DH4PAwVdEgmh5koH+YhuYoAgrpdAqfoSMKAgWrgONIHOs+zlPPvcY9b78KUZZwHBcPB0VWcSyBQiGLJMMruw6zbEkrmiogqzKZTBZ/MMjw8ChBf4BHHn2GczaswB/wEQiaJJNJXttzmP0H+7ly60aqqsJ84PMPM5yVqI3WoCshPvrRD5FK9uMP6ORSWWpr6zh46BhLli7BcR12797Nxo3rEWSV48eOE62uRlU0vvXNb7FyyWo6l9XhD2mkMjlkxUTXLGzbAVsmnc6jKn727t1PW1szhk8hm00TCoXp7xvmF794kv/8yhf54pf+nbraOmJjKWobaxBFiWO9vdQ31GPbNjufe5mjXYe55prLOX78OPW1zaiSxmhsDF84gGVZ3Hztjfy/n/0s8VSaL3/lP7nlppv4//7ls3z9G18hOZIhGA7S3d3N5z/3ea655mpue8c7GBw4Rr6Qo3PRMhKxJE888Tibt2xG1zQUVUWSZI4eOcySRR1Iskw6l0WQRbK5HLnhURavXIKjjLsQui6uMDNGGW9uOVMuu8pj2N4IzOaOODmPqeRuJkrkZ6ZVbiEo71OWy+pijpM7z3MXFLt3cmREnBhrel8Titnx85XdHCevmX5sNpzItRPXla27JRleTijnQykUwbZtZFlGluWJWMbXI+3+fHuCk4nnO5H2J4P54gBLeDNHwr7VY+7OkLs3GL/N5K4isXmTkLvZEqHM1t6lmAiktIDO9zxKZ503IbkDOHLkCKbfpKG+frz91Nd0IeSuHK9n0LttW4CAoqpYhUKx1IEkUigUcB23WBRZEpFkhWwqBTDh9gQejufiOg7aeNr4kdFRaiJVJJJJFE1D95vEEzF0VZvUIIvijGdZus8S2XQcB0mSys4J4/O1JzY+ojC+GShkkIDY6Bg/eOAHPL9tJ+s2nMuVV11DQ2MjBcvBVPMc2r0HrbEdV5IJiMUYMFdScD0RWRS4773v48673skVV11Ef/8xVFWhtqaBvv5+qiJVKIrOyPAw0doAViGLrgVIptMU8jmqozVksjk01eT+L9zPE08+RSgcJhFPTGzCqv0q775qFU+9cpjbtqwmMRZn0eJWCoU8hk/Hti1s20OWRI4c7iYU8qOqKrl0jmDAz6e+8RixRIqqcJCXj+dIJBPUVlfze3fewmuvvUpHRyt1NTXs3P4Ke/ft4cabruPHP3+GpYtaefRXT7KhWQdP5aY1nURqZHRDIRSuR5ZULDeHqvnIZrIEg376jg0Qjydobm1l585drFreiSe41NXXkM1lEQQPSVLIZ2xSySTBsIGq+hnsH6C+PkoylUZWFTwPenv6iUTC+HwGwaBJb+8xauuqsS2bgViOf/3vH/O9l45w43U3cO0VWzn3rHU8/OCP2Hr9dVRXV/E/X/1vbr75FrKpDH/50Y/xd5/9ewxDZ9u2nQiCSNAfYsXqxRw90kUymWblyjUkYkke+fGjRKoMzrvwXPyhICNDMTzboipajc9nkM6kSSUTJFNpIuEQdfU1FAp5UqksAhrhqI9kIsEvf/EEm885j69/4wF+93ffyejoGB0d7Xiey/DwCH6/yfDQAIomUlNTQzZrM9g7iKqrOOPxn6+9+DLLFi1mcCRGV1cvQ0PD3H//5/nrT36McLiKvfv2ocgyf/2pT7Jl8xb+9f5/IeD3FWPsBIPt217krntu5rmnnsb0+5EkCUmWyKTSaLqO4TPIZDJFi73jMtrXw6KVyxC1oqJMxMOpZKV7ncldkXhNjX87kbaVMB+5m0yo4s5J7srldqXzbxZyV3LtnLRkzk/uyhOElM95LpwMuStvM72Mw4kQRGl8DzGbwvZE9hRz4TeF3EkVxnk9E6KcKs6QuzM4IbzVyV0Jp+1nOA+5E8oWIa/Cor5QsVQ+34Vm6Dxdwnk2TNTCmUW4noqwm4+ITc9SZtsW27fvoLu7m5tvvglpfKEVxcl6Q6fDcud5LrIkV3yep3K/wizfkFdy2ylf0CvN0xUm9nIuRXcpaR73I0kUsWxr/NhkQoFKKG26PEFE8IpDiaJAIZdG1RRGjg1xxx338O7ffy+1dc34TD8vPP1TVixdxHs+9Gnedt0NfPC+W6mK+Mm6Cp6g4vcF+PlPf0w02sjSFW0EggbpdAZdK2bRlEQZ1y1a1NKZMUIhP7Yj4DoekiTiOg7ZXBrTqCKWHEEUPEzTTy7rTGTiLE+ms/uVAzy3/VluuP5qvvnt7/DYE4+zYd0adrz4MueffQ4vvPwK2VyO26+7nmQ8hiCIjPQf49xzz2HN2jX09nbxiU98knvvvYcLL7yYrq4uhgZ6aWvrIOAPEQ4HefqZJ9m8/gL2HXwZTxymvrYOz6nlq995iOdefR5FUbhkcZgP3HY5seQoZiCIJMo4to2mFmu5Henu56WXD3L1ZZsIRYPjZSIEbNsiHk8xcHyUTC7DksVNBINVxEbH8Pt99A7HqK8K4zg2Dz79Ki+8uJ/brz2PT3x3B36fied53HrD1SzpXI1V8ChIEmedtYpCaoTXXniBbDrHtXfewsEDh6irrsO2LJKxMfwBk5xtIyKiqgbvfvd7+NCH/pyVq9rYu3cfgwOjNDe1gyfz6E8f5tZbr0eUBdo623GBxGiSeDxOfUMN6XQxKUw4EgYP8oUMkVAVf/RHH+Sjf/5xZM1BUSQsy6E6Wsf5Wy7jkUcf5PDhw6xauZJ4Io7fDPDVr32V2++8HYE8mqZj6AFyqTzxZAJXFjB8fh7+/gNcc+XViIrMww89yiWXbuXuu9/BV77yRfyhAM888ywbNm7k6NEuPv7x/8MXvvgfVNeEsSwbAZVUMstzO55iy9lno/l86LpKbGQMRVXxBwNYto3nevh0nbGxGBG/ihkK4ijF70v0BJwKpRBmI3eVMk5OPzfb+bn6O5E2kjQ5N8cpn3tRuTRbP6eSBbNkNarUZyUS5TjulHmWY67MmOXWrYUq+sqViSW5adv2xP1OSZ7xOljuSpklp7aZuvYt6D5eBwLkOvYUT5DpWCgpW8h1JcI82zNaCE5mfa5E6N4qOEPuzuCEcIbcTcMZcvdrJ3dQXGQNw0ciEScQCJLNZibSLpfm8XqQO3dKnbxTWQhmI2Lu+DhzbwK8stgNcbwvd47oTkVR+f73H+DWW2+ZKAUBU5+rO+X7G9/MUFxgPVcGwUOQC9hugaCvBoBcMk0qk+HJJ55gSU2U1156mkd/vp/333cfDVUHOHqgByHcQeeqTch6hJG+flrbO0lnRjEMje6eblpb23Fth1y+gCDISJJIIjmMpiuIgoKhm7ieRzI5SlWNHyurULBz+AwNQZRwbJFYPIHuMzB9PvIGGHZsAAAgAElEQVSFArIoEE8lwAW/6S/ep1B0d1RUiWQswf33f5H73nMfnushSRZHDh+mtbUdTVMZHBxCVRU8F7p6jvHSi69w7TXX8p73/D5/cN//Q1tLA8e6jyKIAoYu0dfXz/LlyxgeHkYUBTo72/n6177D++57F//6ua/wjnt+h0cff5itl7yNT/3NP/DKSy8QqanDNExyloUkCkQCfhoaahkdGyNfsNl66UWMDccZHo5x1aWXsPWyzezY/jwhvw9ZUfn+Iz/nfff9IS889UtyeY8nnn6Gj338I4wle3hp2yE6OptZvLgTPInvf/9Bbr/9Do4cPkhVNMxA/zDf/94POe/i81Akhe3bdnDvPXfjeXE0TQRMguEIn/nMP/D0U8/w+c/dz549TxGJ1tHe0smVV97Ipz/5N/zvv/wzfvijh4hUhfGH/Dz08I/YevFF+P1+RkdHMU2T/r5BAn4/kaoQgiigqQaJRI4fPfQYa1YvZ+myDhBstu98Ab8epKmxjlA4jFUokEql2LlzJ23tS/GZOj9+9IfcfvttBAJRCuk8z27bTnNnGz09vfzh+97PF++/n1RylJUr1vDyS7sxfAae57B+yway+Rx+048kimSzWbqODLFkeQuDg8eRZYGGhsbxWGmBZDIFnofpN4vEQlJ54fnnWdzWQTAY4Otf+zof+MN3kXNc0HTwBEREXKECcXkTk7vZMZPclROsk9mHlRMjx5m5ea9E7uZLXPKbRu4qWQpPZp15PchdyQNoNszm2ug69pQ19M1C7t7KRK4S3urk7kxClTcYb+WEKuU4bQx1euKSaR/P9UAQEcdTg5SSsYiM17sqZXIa/3s2Z5ryvIyVMJHCuOxTHtxb3r507alm5ZoS/T7+KZVmEDi5BX/+IubFhbm8OPqk+6CFJEnjboSl4PepLjLTs26Ww3GcieLLs8295FY08YwliUQigaoqr5MrpzAemzdufQQmi27M8hGLVrzychLTv2vXdVi2bOl4jOLUYP6pSRSmv3UCgiggSoDggSciomBZFpZlgVSs/7dk2RKyLmQsnTtuuY6qoMuff/iDyFax2PWKZUuwZR9KsJpsPI7reDiug+Vm8QVUHNsjl88VM45aFoKggqcgijZjY6O4nkDAF6bnyBBBM4yhmmQzBeIjcaKRKK/tO4hIMamNoWt4QEh2kD2bTDaLous4goQnKkipYcyAycp1KzCiAWL5BLqmoPl0ZF1GNTSSmSRGQCRcHaGmroam1iaS6Tjvuud3OHzkMGdvPptfbXuG6vpaqmpa0fQwL+7YTSaZRXDSjA7288zzu/j2t77Hn3/ow9TW1TM8nGHDmgYuOe9sVE/ld9/xvxjuHaKpsZZ1S9q55bqrueHat3HbLTdz401XcfbZm1i1di2Xbr2A5556lOaGanI5mR8+/CANDdX4RD/Dx4api9YQGxvl8ssvwLMswv4wo/1ZHEmhur4ex82zft1K0tkE27Y9R2t7G3/ypx9k62WX4BV8pFIZ/umfP8t1N9zASDxPMNTCnt2v0trSTi5j88OHfsTGDWezfOVKxkbjdHR0smp5J52Lmrj3/e8jEq3CDPoRPIdUIklTfTM+PcDocAzPcampMynYCVxRB0+ikM6hSqArFu+49/e44/Y7EUWVcDBCIpmivslg18u70DQdXfcRCgWIjcXxmybpRIZ0Os/hAwdpbIli+jQO7TtKyAzx3Qe+i67p3H7bzTz77HOctf5s0qkcP/7xL1m1qoVQwGRw4BhmyERRRf79819kybJWGppqCYWCFCwHSVIQRQlREDh2vJdEMo7P9KHJMoFwEFGRsTJZjr62l3Xnn4esqAheMbkCnotXtHGPJziZno6LKb+tufIunExehhNpU0oeUvx7ZjKWUubI+ZOSzDw//dikRX1yEM8rJvspl7ulZC3T6+VVHldElqQpsk4QBCRZmUg2Uj6Xhe4AyhOjlNam8qQzUzEeazmtjM90+TzXs5mOiVpxE/HPJ19eaEbf00odnSjme4KVEvPAOFmb5bqKL2uFbJeT+4Spe5A572OWH0Ipu+VvGt7qCVXOkLs3GGfI3YkONK4tnDa2AFOEWenv0rkTRgVBOls/pdS8p/wMKgjLUrbJk7eoz5MZq5xcsbDYisoLaCUN70JmMBWFfI6xWIyA3/86kbuSxlmcmNl8dzx5n5ObmPme0+T58hiO2RfoUpu5spzVRGvo7T7GksWL+Ju//QymX2NkcAjdX8XwWIq6xjbAw8rkeOTHj7B27RoQJbLZAlbBJhQMkc/lSSSS+Hw+Crk8CA65XJ7q6ho8DxRNB1fgxRdf4qWXXmTRksWIokBVTQ2m34eqyCiKhG0XKGRS5PIFcpaFz/TjCRKC4JHPJEnncvj9QTxPQJFkCtkMVVVVE7/fUDCEi4PteHiuh225RKujSKJINBrB9PsYHh5h+bJl1NTWkUymiY2OsKijnfq6MKlMkr7BGHe/4+0UbItcPs8HP/K/aYiGwJXYtOEcopEI/cf7UU2Va666HFUWiMdj7N6zh1AkTC5XwLEFug4foa2pieaGJjKZAldeuZV0JoVtq/T09tHW0czK1Ss4dPggTS1NjCViHO/p5x//6R+48eYb2b7tWfa+tpdgoJply1ahiDqXbb2KpsY2/uNLX+byy7fyB3/wHtLZJO997/tZunQpizpaUVWdaDRKOpXhkYd/xNlnbyKRSBIKBknEEzQ3N2PbNi88v5NFHR0cPdJDfX09qWQaTVMZGRmlpjZKT88RQuEgiViGaKQKK2+RSacZHh5k6bK1RCJV7N69m1Q6zbve9S7WrV2FZXkc6+mjtbWF/fv3YVsuO3bu5I67bmfH9u385Cc/4ZZbbuJYbz8N9U24rsf3vvcdqqIRrr32arq7exBFmZ6eHl54/gVkzcUwfPhMk0AwyHe/+33uuutu6htqsG0LVdOQJWWiRp2sSIQjYULBIKFwiELBwnJs6mpqsQsFBo4dZ8XGtbiOgyAwmUFZKBK6SWVJ6Xc5l6rujcekIodpc2Xi2EJQST5UumY6wSqRuPlkzhx3MN7bpLzzPA8BYcpadDLkrnyMhbeZKXfny4Y5lbBMEsFJZZt3As+j0pxmDDj3+V8HFpqlcpZ3Y677qPRezbVPeqvjDLk7gxPCGXJ3ogO9MeROqPCZDXPbxk4AFQRxeY2XkyN4CyR3TGpV529TaVGd3X1nunZ1Lriui67rxXT3qrqgNieKXx+5q7wYQtHNS5KkCucm26uyTHVNHRkHLnnbtVx2w60c64mRzDnkCw4Bn0pIFxiLp1m3bh2xWBxZ9qEpJqJQLGiez1mMjIzR29tHdbSGQCiA6SsWuhYEAde18Rx45umnef6FnWzZvBld17BtG9sqIAD5fBbTZ4yXqoBQJIowXkReABSfjmH4yKaz9B3t4qN/9hHuuPMOBFHAsR0sy0LTNSRRJx6L4w+YOI7Lk08+zc9+9gjNzY3UNdRTW9uI7Xr0He+iKhrANHUOHz3Ilgsu4NDRXpYvX8GyFUvJ5/McOHyUG269jbFjI6xYsYahgQGqIiFsJ8fq1asY7O/B1FVisTEuuvBCrJzAdddcz0233Mo7776H6952I4cP9eBTLGzbZu/+IxzsGebirVcgygWGx4bZuPkcCp5HtLaG3bte4p1334UiCoSCEV5+6VV+8IMHWbtmHd1dvbzn3e/hyJGj3Pu772Tp8g5sJ41t5bjr9luJBH0ISAz0DaAqEpdfvpXFnR3oRpDe3uOkUzlqa+qpranjiUceJBoK09rUwrHeQfyBCL987CcETJOBviHGhkdYvGQRgwPDfPrTf8O61esIhsJFQuVTqa1tIRqtIpVO09TUSH1DI/msw65X9nLJRVux7Byv7HqJ5StW0N7Wis+ns2TJEs45ZxOOJfMXf/ExNm85j+ef38k73nELwZCOqYVwHZcD+/chCgIbN67n0OGjWJbDxk3ngCBTU12HLEpomoZjFUtUyIpSTK4iiqQScQyfj2O9vew/eID25lZcyyHkD9Dfdxzdb1JbX4c3zuc8vGKYrDiT3JVbft48USWl8gneaSR34gyZULpmdnJ3MsSu2L480UrRw6OyjP91kTtxXF7O9qVXchUteZsUz58hdyWcTMmG8lJWbz71yunHGXJ3BieE3xRyVxK/J1vzrhIqCQ+xgmZIHK9RJ5QLMm9hG/fZUHLnFBbg6lnJOcg7GVfNsnEmNiuUOUucZBzGXIRhktBNTGIhE63wmT5upTiM+Z+HJEnIsjKF2JVrYE/23SovbDtzszA/AR7/qyIBrrzpqvxcprcp9VfcCE69z8n5Fs/Zlo0gy0iqiiDLuKLIhrPWY/pDtLS2cvDAPlLJOGYgiiLL+Hw+dMPAHXfReuGFF2loaCIWi3PZNZdz7zvuxfT7iI0l0VR14qXOpvN0dnZy9qZNEzFRsixjWXlUTSGdTqJpKnbBRjNMYvF48fsSPDzXRpBUBA8MVSebSnLl5ZcTrIoUyaPnYjk2qqKSSlqEwyaCKODz+RgaGOYf//7v+eCHPoTtuARCAYYGB+nuOYzh01m8ZBF1DfX09Q0Sra4jm82gyDINTY3ohkldYzMKIo899hiXXXEZeSvPr579Ff/zjW/R23WESy6+kAOHD+MPhtn+7E5UVSEcibBp00bqaxr51re+y0DfUVTDQPeF+dljj+MCqeQQa9euIV+weG33a9TVNRD0+6iOVtPT1UVTUzPr1q7l2uu2EosNYttZzjprNUNDx7n59ts5eOgAddVVpFNJqoJhHnrwh1SFawiGgjS3NNHddRRNlamtb6K7q4vFizvp6e5iUWcnXQf3ICsaPT29RKrrsG2XlpZ6nn3mOVpa2vn0Zz5DMBigtamZ87acx3/913+xYcPZBCMBZEWiUIB9+/azYvly8vkCkXCEx594kuHhMaLRasKRIN3dR1m9avW4mxpYVgFJknnpxVdJJBLc/4UvsGzpUlatXkokEiJaVcfhI4f4wYMPsnbdWpYtW8a5m8+huqaGUCiIoqmYfhNZVshmcnR396KpKq7nIsty0Q1ZFBAlgdjYKC0tLXiOR//xfoaHh/jBgw9y6523g1ByORQm/vfK6tOVXB/ndpecerBUr+31IYFT3UOLc5zpfnkq66MzbsmcMfK0tWahCVmmukiWjk0+77IRJvqfeR/zP8ypxHDS3XKqJW22vUNlhVpJps/2PEuEdOba53EicXyV+37zkrty99BKqEjkyn5E89W5K+3LftvwVid3v1kRkGdwBieJ0g/hZJOYCOLsWa9OZ5tTRTnpOd04HZuZ041Tc3F941CpPpQniiA4yEIBhTyqZ2P7BdZftJklG9ZxxU23Ud24hB8//AhjI0NIokMq2QfEKVguizoXk89bmL4Arz2/G0XVGRmMY5ohBgYHcV0P27FRVY3ntm3D9Ju4jk0imaSQy+LXdUTXIRoOU8hlMQJBunuPAQKxeAzRdRBcBywRzxEoFCzqmhupbWmgYFmIooQkiAQDQVLJJPfe8166jh5DFAVGhodoaW3hAx/4C/J5Gd0wGYkN0NJZy9uuvpylKzvpG+6hurGKYHUdLYtX0tzehj/oxx8MkEin8AUDBBuquOXuOxhOp/BFa7j82hu5708/gmSGSdsiV153M9XNbVxy/jlsXLcSqzDGbbddRyAYoLW1g6aOxSxdthrHdrnjlmv42pf/lU1r15COxTh64BDtDS3E+mP09Y2QTWbo7z7GN772JWLJATKpDLl0lhXLVpBJpnn3772bd7/7/UTCURRZpffoMXKJLIqr8PDDDzN4vJ/Y8BCjwwO89z3v4uWXd9La3sCffvADxOKD7Nn3CrXtS2levITFy1diW1mcQpJfPfE4Wy+9hP179qGJKg3VTby481VMTcenG3zwwx8mmU7T1dtDMpnkU5/6FKIksWf3Hrq6u3GdPKlknLa2DrY99wrxMZtEIkY8EePZZ5/hlV0v4TN1ELKEq3xsWH8W1157HXv3HCESauDVV1+jtaWNv/o/f0k4ZNLVc5CClWL//tdwsSgUUngUyOUyJBNpbrvz7XQdPcbQ4CCCUEygoagKiqLS0t6GLCskxuL4dZ36mjquuOIKchSJ5lyio5iMZCGy5Y2yK7wx48zlAbAQOI478Xk95f+vA5Mx4fMRvzff2vRmhlj2OYO3Js5Y7t5g/KZY7mDSunS6BOZCeym5Fp5OMV3JSjefq2f5Vryk3ToRGjFvm9NGSqa678Dp1zTOZi08uXFOh0a02IfrehNa/0r9V8JUt8y55rTw72cuDTUUv5dS7arS++16xTIGouAi4iF6kCFLJpcrasE9hXCkhg3r1hBPxLCsHE89/TiBoA9NCePYDvl8gVAohCBI6LpOIBhClWUUTcbzislSuo728vG/+jg333QjjuNQFYkgyxJ5u4AkifT09lBVFcZyIBAMIEkShqbx88ceo6a2Gp8WAlwEScT1HDwPctkcuVwOSVGQJAlRkrjp+tswAiqS5KFpGj5fkM5FKxFFCdfNEwjqJBNj9Pf34Xo2iioTjkSxbBnDMGmoi+IPmnQd7WHZihW4gsjo2BCLli5BM3xkcjmGhmO4yFx4/hbaO9rpOX4cXTcZ7uni4ksupKG1Ad3Q+epXv000EuWsTWcRiyX48pf/k5bGeu66/VZ6e7pwHaitrSOTznHHnXdy9dXXceON13PbTTfS0FwHosML2/ZgWR523iOXc3j6V9vJ2BZXXHEZseEhqiNV9PX0EQlHidbWcOjwQdramskXctTW1dDc1kFNNMKWLZvpaG9l544dNHcuprunh9r6Onbs3E5nexuDgwNYlsO552zBHwjx40cfoaOjHccpsHzFKrZedjmhcBAz6ENX/CxetJiWlhbqG+r53ne/x1133sZ119zAa7v38swz23nxxRe58sqLqauvY8XKFfh9fhKJBB2L2mlobOTC8y9GVTXuv/8L1NbWsWbNKlpaW9i5cwfnn7eF1tYWRkaGaG5t5Hj/cfxBP0NDAxw8cBRRUlnUsQRNk1mypLOYuEkU8DwHn+FDUaTi+6NqZFNZvvPdb3PzbbfiKSJShbVkmrqjYrKS6RArWCJeD/1OJffQ0ylXS3Kgkvv2ibhGiiXLqVjZ1f/1JDxT3UynW+JObu8w9XudSlSnJ5qZbDO3depExiwbfO7zbxTmebmnzG2B3784i9vmbxPe6pa7M+TuDcZvErkruU2eTgoyl27WZTwTmevOSewEcTwc33PHGZRHuXNnJRfMim6dc7h6OtPcUed2ypt2H6X0/yU3zFmybp0u4TpdaznbQjRZNHaqtWthC9f0QPbxxWGWRaLkkjhzofZOaiGeHkxf1FJPvbfJbGkiE2aC8Y9QMYPb9I3J9AxuZVdOmfPMDJvzkbvyosSTBLz4v1N88fFEEQUFVVSQBAkED8spYIYNsoUcx4/3UROqJp8skE9Y/Nkf/ymGYVAVjRCtqyZbyGDlstiuTS6bwbEcDM1A9/m47fbbcAWXUCREwSogav7xGDuXnp5DmD6VQqH4nrqOx+DAEMuWrcLnCzE8egzdELCdAppmIgoykiChaBIuNrIsk83Z/OqXv+Cb//0VLjp/C7ppYgkuhiewf/erDAz0U1ffiGYEqQ5VY/rCGIaBYzkE/AGsQo4jvQcIREKksgU03cBzPeqrwnQf7gLbIRQM0NpYS6i6nmDET8Et4A/4iMdHaFjcgSXJ9PaOYJoRVixbSS6fo//AXizLY+crr+F4aVasWkRL8yLS6QQ+Xebo0UP09w3wyst7OHfLZlram/EFNZYuXYwgmjS2NKKZCh/9y4+z44WX+NL9/8zAseMcOnyE3bv309DcwkOPPsJoPMXV112D4dcwAwF0PchAXz9jozFampro7ell1cqVKKJLLpNEUxSOdfeSzxWQFQW/6Wfb9m1c9bbLOP+CDaQyIxzvy7B3/yG++Z1vcfkVV9Lb24dp+PH7TWRJQlGL7s6RaIhgMIrPDPCXf/VRNm7agGGoaKrKwOAAI8Mj7N13gJdf2kVnxxIkUeZLX/4SN910FS5ZzGAEzQhQVVXHh//3X3DDzTfQO3CIhrpO/v3zX2F4cIwtm88hWh+gri7MkqWtdCzqQBQkPCeP59pEQmE0VWP7c9uoilTT1d2DJIus33gWvqCPvFdARJrP+XsBolCY4rZZyVttvpi9IgmafYRKJQYqyatK1qKSsqkYWzhTJrju1Liw4lzcaR4I86825WULKl1blDeTdhlBEBZU3HyhqCy/p68RM5O1zN1nKU7YwXHcshILk/U4Z38uU8ed0bco4rkOoiRVXm/Hn+fE2r0Ad8Y3ClPeswqhHlNQKc5fEGbG0c3t+/xbgTPk7gxOCL9J5K6E0/3zn01UehTJ5PyaqpJVcXLBKCd3JQJ5KsTpZLWOxbbTUjLPt8CdVgE737ObuRk4Fe2q5zqzuMxUsuydHmtfsXhwaTM0dUGfbTGuPGSlzUnl+c13Hwux3M0a8zC+CStt/ErQdQPHsVF1A5/PZNGSJbR3LKZt8VJefH4nu3bv4hvf+B/e/773UhMJEfL5cEQo2AVUTUPRNXL5PJJYrIVnmj5isTiappIvZAEPSRQI+IPomgmSQjKewu8L0tXdS9fRY7S3d+DzGUiKSKGQR5Fk8vk8huaiqJBOZ5AkBU/UaGtr4+KLL0CQBBKJGAUrTz6bIhTxYwZ8+AMBBCCZSqLKCoII8VgCVdVQVRVBUsimC1RX1zI2NkYg4CefEfjsZ/+Nq6++HtsCWTHwZBdRdFEVie3P7eBP/+TDtDbXY/p0gv4ggWAIJJUDh4/i5pPUNjRx4SWXcMst1+N4Dp4rEk+Mkc3n8ZkmS5csJ2+73Hb7rQwNDVBTG2V4ZIRkOk1dfQ0/+tFD3HbrXfzRB/4Yf0BBlmUiVWFG46MsXbqY9RvX03usn7a2JjRNJZfLEw5XQz6Da9vs27OXv/nbv2P5yrUEQgaqqlGwbNauXUvBsmlubsB2bPz+EP6AyY4d2/D7/ZhahJ/+7CcMDw5y55134NM1FNXAdcC2HULhCLlsDkkSCASC9B3v5yc/+Qn33Xcf1VVVFAoOK1esoburhw0bNrJq1TLAQ9N89PUPEA5FOGvdBlRd54EHfsCypUv55re/yc0330AgZCCLBuecfS75QgFVlREkAc8tEgpZKcZ0KpKE6zgMDAwSGxsjWl2Npqqk0ml6e3pYu24tDi6eAKKwsILSp4r5LHqT8X3zt1/oOCWIojhhRauEEukrka2FKYlmH382C990b4YS0Tpd5O5kMD+5m1R+iaKIJMnjx4vhDQuvvVdZfnueO1XhO9s18yhJf62YxzNHEoSJhG2lzxlUxhlydwYnhN9UcneyiVUqJVGZDRMapfJj48lVpmp7K2yuy60wExM/edJ0shbL8uc0nXAIglDZildO/k7ZXWL8CZVZ6Sb6LtsITGqOJaYmJlngKBMFUysT14l7LtOYTi7O0/X3Uwla5YQrU4nS9MD68ix2FTcwXiXr6Uz3n5I2fOamaXI+5ddMJ5NT5z5Zz6nkBlPU7M+ce2nsSQ11MdOoJEnYngSSgu0KOJ6H7XksXbGIW2+/mQsu2MID3/02T/3iF6xevpxAVYBIKETeKuAh4ooi2KVfjYth6BQKBZBAEmXwBNKxPIlYlkgkjKKqSLKKgMgX/uNLbL30MiRJAhwcx0aUJBRZJpvuZ8+eXdTW15LLFVBkFc+xyWbzPPjQw3R2tKPLEr6whuHX8PkMFFnBs10sXCRVoZArEPQHyWUS+AyF/oEkf/d//57WlhYWL16MIEIun2DrFReiqgKJ1AiGqeDgks9nkESJ2mgz//2VbxKJ6Kxfv55oTR0Fz8MRJELRKtasWobhN0km4qSyKQy/n+bmFh5/6kk2blpPMBwhX3C46JLzkRSJ4eFhli5bSUNDC0d79rF82WICgQjV1TWYfgNkD1WTGRsbpam5iWA4QCDoRzMMlq5YQr6QJxSuIpXOcXDXLgzDoLGxiWBVLdfdcDNPP/skHR2L2XfgELpuomkGRkDleH8/fjPMy7teY9WqlaQzWY4e7uLtb7+Ta66+EsvKs+vVlzF0Hz977Kds3LQBBAHT0EkmU4yOjfCjRx5kdHSU9WedRSKeZPGiJZhmgH37D/E79/4u69efRVtrG8FICL/h458++2/s2XuEiy7aQt/AcQp2lnf//u8RjycxTQNN05BkmXg8TmtrCz5fAEXVURQVSQBD10gk4ji2g6ppmH4T0zSxbQdFlAhWRQhFw4iSgCyAN0+Ez6TLcsnVsJTR0ZviRjafWJzPKFFeYLtSn3NZ3k4VJUVOMcvjVCvjiRK78dnOOc5MK+Hs5ECU5Akr4lSZNnMtmZzHTI+G8nqplSx35VbH8nsvWuoqJQObmTClvN3kWHPUuSvdk+dRyatkyjUUs1oLFGXwm4rkVfj+yvdYZ7BwnCF3Z3BC+E0ld9NdCheKUxY447F3U8ihUMmh5/SLtvJRXMee1PzN2WjhVrp5LXtz7GIq1fyZaZFbWBmEWec6D+Yid+XHSs9tPs1rpQ1L5WMTf027TqjoUjV7nzOtcbONOfPcbJibTJc4uzjPe1S+MfK8EtGfVHI4joUkS9TW1HHJpZdwwQUXMjI2xs5tz3Dk4CGWLl+B3x/Asl1UWcZ1XcbGRhkc6McfMMlmC/hMPwN9A7z9rrs5//wLiFSHcByHXbteobWlhWuuuWb8u4OClS1aEm1wXQEEh8bmZrY98xyhoB9TVdEUiT379vMXf/kx3v72d+DYDg4etu2CJyILErHYGJ4sAyLxsTiOZeE5OQ4d3kfn0hVcdNH5NDQ0UCjkkUQJhDyqrmBZWRRNQlZlXFdBEiUUSSKTyjM2Gueed91NOBrFdj0kUQTBwzA0PM9meGgY2y7QuWQxiqYhSyqO5+Dz+0insyxeuhRXdNmxYwdr1q7Fb4YYHY1TWxsmFk9SXVWLpiv0D5U09jMAACAASURBVPQSjkTJ5wp0Ll6EofsYHBzCsm3CVREEWSCfzyOIClbeo6//ONHaOpYsW05DUxPDI0OsWbMS1/PoO96PZTusO2sdtpMnncnw2GNPUFUV5dzNm9m2bRs33nATgaCJ4zn4QwHqm+oRJZFCIUc4EsT0aeiGSiAYBs/h0q0Xc/DAIdZvPJv77ns/bW3t9PZ0s3nzuQiCgKoYtLS08vPHfo5u6FxyyaU8/ssn2Hr5hTh2nnhsjKamRgp5m7qGWo4d7yMY8BONREkmkkiyzg9/+BB1tXXIigyCh+nzoRs6rutw6OAhgsEA+/fvZ2hwkHPOO5e8YyMIILge3jxZDMs3/0VyNSkC57PGnQgq/YYr9Xk6N/XTScdCZPOpjlfCQuPw5lLyzTbfyh4N5ZmCZ147Vb5OXbsWtmbNZhVdWCmEhVwjlr2LbyZyV5r7GUJ36jhD7s7ghHCG3E3FqQqfUhzeFA0dM0nC603uYGGLwhtL7mbiRDcQ0zWvJ4JfH7mb1O5PblzmInaz9fnrIHfCuMa+siZ88hpxIq5QFjxEXARcBNFFEFw0xUe+YCNIMq4o4akqKavA6NHDhIJBDh04ims7KJKKafrRdRVN18jmMti2hWnWkE3nUGSVm264lta2FhDziJJHa2sLggiua2O7BTRNJB6LI0sKihwkn/OwRQ0BmaqAQmyoj3x8iOefe4ZQtJb7/uhPkI0AZiBEwF+F68oUsnkOH9xPwGfwsU9/mku3Xo6u6AwPDVFXEyAS9JG2M2iaTDaTR9NURBQEUQVBIZuxsByRdLpAMmWjq0WCJ4sy559/Hmo4SjKTx3VsNF1GFWxU0UXUfTz++C85f/O5OKKI5XoMDQ6yePliNEMjFk8iyyp+v05raytV0SiJZI5du3bTWF9NKFjF4cPdRKI+du3eQVPjcnbv3kd9YwsHDhzmp4/9gnC4BjNssP/Afpqam4nH0+SyDv/wb5/j1rvuQpQlmprr+cXPHyUYjlBX30B7ezutbe3YtsOu116gsaGZmppG2ts7UTWVffsPEK4Oo/tN9IAPV/QIRkJYhTSaIRGJBBgdHcRxC2hKCFn1+OUvf86999zLnt37WLZ8ETU1Udrb29B0hUgkTG20ky996St0LmpmzdqVZDMZNmxYj6gIHDt+lMVLOzF0g737DlNTV01NdZRUOomiKPj9ISRZp6OjHdP0I0lw+NARdF1D07QJK5vnuji2jaao1NTX4opFhYTsergLJHdFa8lU8fdWJ3eT9dgWTmJOBeVzrxQHWPkZzB7Hd6Lkbq5ryz0aZl7zBpC78f3EXC/Sm5XcTZC6MwlRThlnyN0ZnBDOkLupcF0XhBOjXuUJUYQK0fNChX/lEMSZbhvlArBEGGcTipWKmE8EY8+HCv49UwnXTBecKcR1npo2k22Km/+K7jXzBp9Pjjub1W8hmLkQz3SxLHeHKV/8KxHKSqSqkptQsf1E9xPkf2Y/UyY7+alw3XT3HphZt2mu9382TfX0zVIpa2bxkRSPTU+yMKGdFcfblc299M/1HASxaMuTJAFR8NBUhSVrz0bRI4z29bPnpeeIHX+RA4cOEglFKQgSgqrgq/HjDwSpqong4KBrKq7rYhg+jh7uIZVKo2sGmq5z/NgxqoJBbNvCc10S8SEcJ0NsrJ9YPEZVTQt1jZ0MxWwst1iIuKOlGcFzEAUXXAtFAUlxAYN0VuRf/u9f09bYwPI1S/BHdJDyHOk+RF3tSiRRR1E0BEEim82i6jKiAAG/j1w+Rzad5OILLuX888+nsbEJWRGIp8aQHB9f/o//5LnnnmbL5s0IgkEm55JOZ2iojTI81Iugq5jBAJqsMjw4gmEEqYrUkEpmEOQIqqZgaCKyl0YTXZ7fs5dlq1ZS11iP5Ql0LlqFJ7pE6yJIskR3bzfnnreZppYmPFHhbz/5jwS0arZv247u9/jG177BB/7wPvr7j2P4NWobaonWhrFsD58/iGXnQXUQLJu2zg7Mhjq0oEmiv4+uffvYcPE56D4NSVKxrGKsYDqVprq6Ft3wIckqCDK5fJHQtnd24nguVdVVVEWjrFm7ltqGeoZHRnHxSI6M8bOf/gSfEWLDxk0kM8M0tkQZG0rgN4L09Q7S3NRKTbQKyVBwHA+QkVUdRVWJJ3txPYt4fBS/P4gkyoRDYZAlBFkgHA5x8MVdjBzrZdOl5+EJxfccATxxfjtD6f2fdMecVMKczvwPlTbsU3//k8fK3ajnQjmBmt0qX67omZQvpb9nS/VfiXSVH6tU0650jet6SNJkHGC5rCnP4Ds5r8l5ljD3elIu80Um3SpnXlsiuCWZPj3GuNI4pXsWJ+LvZv8eJp9n2bFKRG6eF0kQRTzG9y7j108801mSo50uVOq/opXudP4gfktxhtydwQnhDLmb3nh8MTnB8QQ4aa3UfBYzj7kTt1Q6utB6dZUI5Qk9twXer+e5UxbrqXN4fbXCxTHmtvRVvudKz+NkLGaT/RQ5z6nGrSxknvNhYXOG0gZwqiWiErmbq65TedtSogRZllFkD7/fz6Jli1m9aT3DmRR9fQlyOYdf/uxJxgZGOHftRkTXJT4yQjDgR5QlUtk0haxVTIihGOiGj1QyjaYWk7ns2PE8fl+Qmpo6dN3H4OAw9Q1NSJKOIKj4fAFaW5oJBMJIskYu72AYJvFkHFVVAAGf4Sc2FuOZp17gj//4I2QLAn5fhEImj2uJGEEdURTI5yysgsfe3YcIRwwURcXzIJVKUVdXwy03305LcyOapuAJRVJt+Hycf8HZrFu/AkUWkGQRWRJ59lfbeeD7D3DVVdcQCFYhCDKa5uHiUBUJk0zF+ew//SO79xxm+fJOTNOgv78f0+dj5foNyFIx5tdv+pEkkUQyTjAYRECkpbUFWVKRZAXP80jEkxiKjCDBspXL+Z177iUeG6UqWsXevXtoa2tD13V8PhPLtkgkEhw9eoS1a9aSzhUQZIlgwCDoE+hc1IgrqUiihG076IbBc89uo6GhAdPnw0MkmU5j+kwcR0QQPXRdw7IcTNOP6fNT2nTrhkG0qop8foQbb74W3WdQU1tNtLYaDwHTMMkV8riux3XXX8s999yDoskMDg4RDIbJZXMkEikkCY4c6WJR5yIURcEDVNWgt7sXRVbpOdJNIhYnFKqieVFLkYCIIgiljenCyF3xvS4nd6cfcytqpv4P88uVcrFdKeZ3dnlYIo/zWzUrKcNKJG36OOWxddOf61QCOH+B9LnkcuXr5rp2uhysFLs8VWHoed4MBe6CcRIEqFwxuaBjpxHlz+K3tbj4G4W3Ork7U6PwDM7gNEBaILl7o4qDLmRD8HqiqDH+9WgNS+OKkjyhvS7//LZBluXJ+DwA0UXUJBxJYeP5l3Dn3ffgIPLDHzzAay+/xl995OM0NzfhFAoYioIkQl1dDf5AECtvFzMheqAqKkeOHCWdyVMouHiCSK5gI4oKnUuWYrsCoihj2w75go1te0iySiabQzNMbMdD0xTiiQSxWBLHdamtr+HzX/gcsi4jSh7pbIJgwKA2GiaXS5HNJpEkiRdfeJFbb7+Nr3/jW+TzOXLZLDXVUcZicRqbGlF1hUQqQU9PdzE7qC6g6RKKIiJIRUs7eKzfsJ7Vq9ehaiaKpIMDlp0nFAqQK2QxfBrDI4M8/fTjgIBle1RFa4in0ri2AwhIkoxtF7Bsm1AwVCyrIQoUCgUKVp5sJoOHyw3XX823v/stFi3qRNd0bMeiprYGUYBoJIoqa+NWSRgZGkJRZNasXsNoLIEoyhSyWbKZFAUnjyB7KIpGwbZQVIV4LM6mTZvIZ3NksjkEQUBTdBzHxe8PUMjbOI6HqmrIsophGBg+A88r1i70mSYNzVGq60Os27CaVDrJkcPdpFM5kqkUPtNk5ZpV/N573oNu+kAQqaurI5mIc/DgIf7uH/6efN6isb4RVdXJpDJIokgum6e+vgE7byEKMoeOHOXsLZvxPG88q+1bGeNy5nXKMFlKDFUs3s5plV2Tfb556MHUcg9FzCe3S8/nZAuzv9WKupfvHwRRXLBS+Qx++yD8ujZgv62wCoXf2Ad+ukTk6RRXpTmVky/HdWeMUS4kPbfynbjj/cx2vnw8KN6HO95fqf/ycZ3xfk5UQHtuqbTA7O3KF6yZC+b8C3p535OB9DOPzdd+odfNhkrtK2miyzeKklRev2lh8zjxun6VMfsm5MR/HZUy11X6DsrnXnKzKh0vd6uCcau3IOAJIh5F9yLJFZEEDydXYHhwhIceeIQVy1uwHZuj3d2EQiHueOfdZDMZEskEmm6gqyqu59J1tJvmtjZEQUDVdMZGRxAlCVERyGXz5PIWsqwgSwq9h/ezdMVybMcDUcZxPRShQCKewjACWFYO09Qp2BmU8XT5gmfjZkaIjwzRuW4ziXgaAQ1cAccRUTUP0/SRy+cRBLGYUQ8ZSZYQcJFkidHREfzBEK5rc/x4D1XRagp5CIejKDjkHRcXCW3cgpTKjWHoBqIkk80W8FyPRDJJVbQWRVZx3ByyDCDjuC6SKBZ/9y54nkMun0dVNCRZIZ8tIIoS2UIOVYB8Kkn/4BC1jS34fDKaVsxmuX/fIURBZN1ZaxAkh3Q6RdeRLto7liBIApbtcu3bruXz//avNDVF0DUFTzFAEDANP65LMWup643XAXNQFAXHcfjxj35BXUOU2pootuMxOpqktjaC4zhEo1EURUYUJQ7s30ljYwvJhIekaMVyC0GTkcEB/KZJwSogSTIjwyNEqoIYhg9BEBkaHOGhHz3C1W+7ktHRUc45dxOZbLroqut4xEbGCPp0HNcmY+VYvHQx3rjbsScKeOPP3fMWKgeLVruSZ8J061b5+146f6o2jukEruiSJ8x6fnLs2c9XkjOz/b4ruVjOhdn2deXycq4Y5NJYp0suls/r/2/vXYMlSc7zvDczq6qv5zZzzlx3d/aG3cUusCsCIEHxJsgCBIKUaRkiZRCiaZEE/MNQhBxhEyQDpEyLksggghQjHPzpCMqhkIK2FTQAkrBpkVDwYoAEFgsQWOwdu7M7Mzs7c+6nb9VVlekf1dmdXV33vpw+53xPxImd7e7Kyqrqrso3vy/fT0oFK/wBQcpg7H3TnTmuT5pRjbvZjBakDMC5GP43vu/hM1c/r9PGAUDx53q0zbwTxsR8sB1neWY+SkDfHuJUIzhfqptkIOXwb5mRMhj+xb0WBHL4l7b9ohCCD//KwLkY/vm+D9/3Z9q/MlFD3R+TuOsyvg1LHNgBgFQCUjIwqSBUAFtJgElABLAbAhuXzuEj//i/xubFTezt7+O+e+4FDyT++HO/D9fr4vzmOVQrAsxSqFRtPPLYQ7Adjmq9gkD1cf7COaxvrKC5UsP6xgpWVhtotw/hVCw89PD9qFZtNFdq2N27Cz9w4Xl9OI6DaqWKleYKut0uLKsBsCos0YCUNi5s3gO/z+B7Cs3GCtbWVsC4RHMlrKXW7YXC7vDwEACD73vwPQ+e7+Pw6ABra+H6L4DhvvvuR7OxipWVDbQPOui6h3AcAQkJqABQHmq1JvxAQXqA4Dbq9RVsbm3A63sIpAITFgIFdDpdCGGh1WqDARAiXPdYq9bAucDe3h5efukVdDodMM7w0ssvoNNt4Z3veAKCC9SqDjqdDgCFf/TRn8D6+gY8L4CUEo1mDe986knUalXU6jWsrKzgF3/+l9A+crG6soX1jUuwLBu1ShVKAZYVFgBnClBSoX3UhpSA7wV48aWXce+992FlbQ1KKvzSL/0SBOf44Ac/iI1zG+j3PXTabVTsJhhsbG5dxNraOrzAD6OR66sAZ6g4FdiOg8tXLqHRrIcpc5xjY2Md/81P/iQ2NjYhuIW7d7ZRqVTAOAOExLmtNXz2//oP+NozX8bW5U34LABnDKzkb9Uk/L2nD/KznGePi7h7aNbvuwzmvS1vn/T+i2xbhEU/H6ZlVEh+ds9tGfjDP40eryzTmIU4mVDkbsGctcidMme241CjGzzjOs9/dGOLu8VxywIGKRx6pisuYpYVZTMZn2UL+yTNWcuYWWUZ03fzc0nnI36f+ckTuRvrp/EQTV9Lkj7bm9mvhLUdabPORWaG46Jw5mtBICEEH5t1NvuhZ4WjUb60vsWbEgzKQ2REe/NELc1+phkzmP1PIy7aZx6vjiDoiF7aOfd9H0II9Pt97O7t4c/+w2exvX0XT777XVAMePydT6C5uora1mYodCyBSqWCirBx0O6AKwWbAZwpcKXgcwkmw6X/XDJ87Zmv48G3PYZWq41Gow7BBbq9Hup1C72+G6YWVqq489YdbJzbAEdo4mFbAoftA/jBETZWHsDuzh62d97Ck3/jcTDhotMKsLezi263h3qjgVqthoB5aDabA7MZiXanjXqtBhU4sGwLbt8dGnVUHA7fl4Nj98LoJgvg9wV+4qM/iV/91X+Bx9/5NrQ7+9jfO8DW1lVwASjlQ7E6AAUWAHdu38anfuFT+MrTX8b/8tv/K77/b30nfLmPw4M9rG+cB5M27u5sozKIeD700EPYP+qgWq2g1+2hWg2NY1y3N1gzaQ+KYHMctlqo16qAUuCWhb2dHZw/fw6+x6CYQuAHsOwwHdfv+XCqgCUYej0P/b6E4A6effYbeOjh+7G+vo5vv3QDb1x/BX/77/xtHLXa+Nmf+wV85Md/HE8+9STgKzSbDfT7/nCAy6w+HKuCfj+A49TR6/TQOerhuRe+iYODPbzzXW/H5SsXUXPr+OMv/Ec4KwE+8KEPQFoVgFm51zmVSXmcXJs3+b6Z7igEj52kiosAcs4nInLRdW1x/Yj+BpPWwo1vzxMjW1kmLklZFml17LKIPm/S+sGFNSgPlH+4kxXJnBXmOZ21aM16pieNR0jMLR8nPXJH4m7BkLiLfqCEuBNiTNgl9WWZxJ2+eZsRoUWJu2lSAoHp0nGKpBTpAVBS9C1N3AEYS6lJE3fRe16SaMoSd1ksi7iLu8dnibvhusXB+Xzt+mu4tHkRjmXjL7/0JfQ6XTAAFza38NyLL2BzcwMPPfgwrly9CiE41KCUg+IKYAoSCoJxhDl4HK7rw3Ec3Lp+A5VqVeflQSmJlcYa9g/2YNkMjmPh8GgPtXodtmhCDF3xJPp+Byxo4Bd/8Zfx9NNfxh9+/jO4cfMVXL16FV3XRbPeQLfXw/raKgJwuL0enIoDISy4PReVagW+78MSFsDCiJdUEowLeG4fSjIcHbZQrdVRqzLIQKBWq6Pf78J2LBy199CoN6GkgFIBFHxw0YAf+PBdDzffuIEXn38B73jiCVy5di96vRaEBdy9exf3X3sI3W4LnudhdW0NgecjUBIDlRhOVFgCYAx+34NlCSPFNlzPZ9t2eC44w8H+AdY31hEEAYRg6PVCseo4Dty2D2FJ7O3t4OKFS1AQ6HY8VKoOhJBoH7VxcODiw//F38PHPv7f4gd/6Adx+coVPP31r+E97343Pv1rn8YnPvGJYfomFwxQDJbF0Wq1AeXj4PAAXV+idXiAd7/nO3H37luo1uq48a0XcXf7LfxnH3ofIIAAAigwYJ/HerZxcZecsplH3KUxuf3o9TziTmN+7qSIu2i/J9vKt/8y4i5LvJW5l+elyDOd5NxyQ+KOKASJu+gHios7NhBt0ng/GkVZNnEX149FibuxbVPEQVQojV4v/iDOu15k2nV8ZhRNBv7YZ5LEnUnW4CRN3GUNEpZF3MW9nyXuQpEQDowcpwLX7SGABUsIBK6HwPfQb3XQ93xsrjXxn77wn9DrdfDQQw9je3sbl67ei3uv3QtetRAwBTAJC9ZgYM8gwSCEDYcptFttvPLyK7j3vnvD9Tiiina7hU73EM2VOhgP0O+7qFfXw/V03ILrdbG9cxs2b8K2qpAqwPnNDUh0cXC4j3a7hc3z5+H5AXrdHtY2tvD69dfx9rc/CtfzIP0AnW4Hnu+GDpW1GlrtDuq1KpQScHt9SMkhA4UgUNhYr6Dv9lGvN+EHHvquC7sKcAgo5YBxib7XAxe10G1XAhXHQb/Xw+72DjYunEOr3UbFcdA6amNz8yJ67hHeeP0NVKoOLl26HIrNQGH/cB9rKyvAwEbSdftwbBue58F1XayuraLb6Yauml4/vJ5KwbYsMK4QSAlbCBwcHWJ1ZRXSEwiCLra37+Dq1Xvg9nzsbO/jwqWLuHvnJr797et4/LGn0G4dIQgCNFcbsCsOnGq4rnLvzh7qjTqgFCzbhm3bkAGHH3hYXW2g3T2E4Axt38dqcxXdXg8Od3BwcIC/+rMv4P3vfz/OXTgHyRQUY1CKQeV06y0j7vKsdTONOJLuo/nEXVophGTRmEfc6d98VKycFHGn1/XFkSW6kva57GQ90813o9lGxHJx0sUdlUJYMKexFIKGGX/6scUYy3iMq/F/KoAzPmxHjl4eVTUalBGYeG3YjgpfH1htR0smxBb41JbIalB7abxn8VbLHMN2lFSAwsCoAhPHPLE/Y59FHrQ8bGy87YyCpaMaa6N6QJM9BEZnemSHbQ5CstMm462u00TJaC1D/EBnvObd6P2JsgaR8zhabD/qe1zpAN03XVvOfH9UWHj8eEbnaLJv0fMR/ZtsJ3q8yW1Fr1lSKljWdQqPa3JfejCpB7GaIAjNC8AZFCRs24JlWag1a2isNvDyyy+h0+2AOw58SLx24wY6nS6++swzYBy4uHkeyvdR4wK2Y0N6LhQAP/AQ9PuwLAvnN89BCI56vQ7P66JWd1Cv13D7rbdw5fK9eP21mzi/uYHXX38djlNDEEjYtg3GwnV4jlNFr+eGkb+VJjgTqFRrADiEZcOyKlhdW0On04MlbLRabdhOBbVaFdVKDX3Xh2XbYIMIX7Vah+cG+MY3XsC3vvkiHnvsAQgB3L5zE81GA2CA54UOmUoycMFgCx6KSbeHRi00EGm3DnHu/DkEUkL6wM998hfxne/+Lpw7twrf98GFjZWVNezt7qFWqeHNt97E6soqgkBh/+AAlhAQgwFyIAM06vXwGoPBD3zs7GxjZXUVgvPBelGFo/0WdncPcO7cJoJAIegHUCzs1+raGpRicJwaWkcHqNVruHT5MoKA4Z//8q+g1Wrj8SfeDt/vo1K30em2cf7cJly3h0rFQbXqoO/38elP/wZefuUlXLv3XjQadXR7Lj75c5+CIyzULAd1x8b1l16By4/wznc9BXAHUGFUkrORtNNCJ/x9jl4L/63M23Lu+2TMLXbsT+9ztJ+JFgBM3nPC7cefCqPPmX9hhsb4Wj82PDazzfD+k3TvG/3mozXeyt6LR/cibpx3mbBdFBX5S88QYIwNDJ4sxLknj/Y9/sTMuq9mYbYZL5rT359unxh+0QRjmPxmjEh6nVgOTnopBIrcLZjTHLkzyZ0IqCYXVXM2mtWLm93KE7lD5PWktW7xEbVBdCMjchfW0NLtDD7L0nP4p43gmQ6cwzYLRJC025e5iDuLvOIuac1dXge04Ws5nEvzEp21jh6DXtcSF8nKiirOOnKapxhy9POTfcq+RmlpqKnXSkkoCXBLjI1KKlYVnU4brtfHxsY53HjjDTAfuHXzJr79ykvY393FD/3wh3Dr2y/h2oMPgFcr2Lx8BZ1eDzW7PnR39P0A2zvbAPPAGMfG+hYs4eDunT34no9qk6HfC2CJGoQl4HlddLsdXL58H+6+tYNqtYZaQ2D77ltYW18DEJaBkFLBrtTgun14Xh9cCBwdHMKybayvr4Exhv39PaytrcH3fRwd7WFjYxPtloTvKTBlod70sb1zC1fvuQTP9eE4Tezu3cb6+nlAWej1OvCDPpxaHUwxtFpHWG+uwuIcgQzAeGXgvMnR6R2h3rAAJSAsgW67g0azAduyEbAAt27dgmM7qFQrqNfrEIIPxEJ4bxHCCtNAVeiQqSM7jHP0e0Cv10O320Oz2YDjOHj5hefwxb/8c/zIj/wwNrcuoNvqwbJrsCyObq8Nxjj6LsNHfvQj+OTP/iwuXD6Paw/eh27/CI1mA+vNc3j11Vdx6eIlCM7hBR4OD46wt3eAer2Oeq0Bxjheee0NXLm4hYtbm3jz+qv43Gd/D//0l/97MGZBehUIJqCYDwYJfdePS100XTDNoW/eKF7etMnwXIa/4eiau2T3y6i4G0cpOYx4y7F7V7y40/cfM518ss18UXuTrHvXtOur40hK/9bOmJOfz/9MKNaPYs/DWRDnhk2cbE565I7E3YI5y+IuKSUhCmNJg8ucBiIY1YHRrpRp+55czDyZlhklfECMHlpahORJy9DiLK+oE4PjiG6TJBTN9MRRXwfvp5QGiJtZNVMSh1bzCSlF+rPa2CStfXObeZIlyoYD4wKL+eNKQ0zTn9F7Kix4PUi7TRuAmWYLWpgmDQDzHm8WRY5X9yMIJDqdDt5443Xc+vpzeO4b38DB3jbqNnD5wha+64f+S+zs7mBvZxecc/RcF1XRhIKPjfMOwAOsrjbxwP0P4PZOB+tb59EJAFh1MNHEaiWADAL0+310Oh1cvnwZ7lEfUkmIwfq1dqcNv+JifWUNrZ0OPM9HZaUGxQDuhSUD9FpYy7Jw5Llo1pvwOwq//M9+Bf/ww/8VHn1qC+0jFxcuXITnubBsDhlwWNxCp9uFH/hYX11Du3cAx6lACIbDozZ2t+/i4qWLgEIYGWQMd+/cRa1RQ60eCtBOpwvHtgHGIF2Gz33us/je7/ke1JtN1Gs11Oou/H4A26pjb38PB4c7uHT5IrwgwOrqGnw/gOf5Ybpjn+EnfuIf4W9+z/fin/yTT8C2LHzpr76Eb73wPP7uB96Phx54CHd3tlF1wghgz+2iWqnBqdjYOzjAf/eJT+B3/s3vwLFtBIE//D4eHhxgZW0VXt9Ho1FHIBX6fQ/CsuC5Lnp9FzaA1UoVf/T5/wceB/7+P/wwMDbXFYq1kXjLElHRKHt2tCoIAmMfchg9mxR8ClkumtH0TiklpJRGVkBxouJu9O/RMfRC3QAAIABJREFUvTXKtKZTce8npd1H19qO92MyvXO87fTjKZKCH7dNHHkn3aLPQH1/TRPVWc9Q81lMou70QeKOKMRZFnd5maW4ixNAwUAkma6akU+E7SyJuEvsw4zF3VjbMevNssSd3kY7peXhuMVd3jWIcW3OWtzpNtOEXfiZcXEXfS99/7Nbc5O+n/A4LWHB8z1IKSECDhb0ceP6a/jWN76Ki+fP4cgTeNe7vwNur492pw1IBa+n8PW/fgaXLq/B9Xq4cuky/urLT+M73vNerK2vYuPCRbQ6fXDRQKNmodvrwrZC4VStVtBzXQRBOAjnjMHzPdg1AQ4g6IQRsLbvw3JscC+AZdnwvD76fRdCWODVCnq9PnZu3cXvf/YP8dyzz+NffvqTqFVWoCSHhA/LYlCBgF2x4fX7ePmlV/DAQw+g3qig1TpCs9lEEARYW13D3t4unEoF23e3sbm1NVwn5/scjAPVWh2W4Oj1+jjaa+Ezn/kcPv3rv44/+cKfYGWlidVVhnarC8GrkErBsiWcioVWp4dez0W90UTVqqDT6wEB8PnPfx5PPfkUGAcuX7oEX4UpxGura+j0Omi32rBtC6G5jUK33UW1VsXa5jnIIEC70w6jmJ6Pfr+Paq0KzhharQ4YU2g0mmh3evizP/1TfPd3/034gYeLFy7grZt38H/+u3+Pp97xDrztibfh3ofvhyfN+4Ap7gaTbgn3QClVKC7F6B6bJ3I3Hv2TSE56Kybu9Daj38/0960koTcNecVdkfqj5kSNJqtu32kTd2OvU5TuTEDijijEWRZ3ecsAzFLcxe3bD0KHPB3ZW3ZxpyJiNLpPk2nEXVKR2KKRu6T0wrg+Hbe4K/o587PzMLTR5y9afHz8c+PizjSIyIqYmm0UpYy400I/CCR4tYZAKgRBHw5nEIKhe9SGbduwLAuVah1QAVqHbUjlo16v4eiohVptHe0jF7/9G/8KW5vreOC+K1ip17F5/iJQXcfr19/Agw8/iDdvvomtC5uo1Xw41QpaRy04to1ao44eq2BjdQVuqw3LstHpS3CrAr/bwe3bt3Hh4gU4tg3fD8AsZ7DOUGF3+y5ctwenamPz/GXIgMHtd8EtwBEClm3DdT186lOfwq/92r8CmITreqhUKqhWHVTsCnp9F51OF4eH+7h69R50O2GR9q7bh5QK9VodChKtozYsbmN/fx/NZgN8sE5p/dwqOu0ebKsGphja3X3UG1XYTgW9rgspGRwnLBNRqTJ869nncO89V2FZNty+CxkIWMKC7djw+h6kUgjQQc91sb6+BiEEKpUqLNuBYBzeYGKm2+nAcRz0+x4cx4GwLAS+B6mAwJW4efMmmisrONjbw6VLl7D9Zge/+Vu/jt/6rU/DWWFoNGpw/Xhxl0YQBLhx8yYeuP+BMXfhImmZpoAMiW5bVNyN/m0WTC9OfFpn3sh7GdOppLbi2ox7Py7af9Yid3FRulkuHyCWDxJ3RCHOsrjLQt8qZcw6PGB8LZ4mTpzFRe50hC7PTVgliMuxzygJJeNv/kWZtvZdkQdLmbIIJlm15DSm4DOF4rJi9tFcAzMP4gRw1OXTFHdhupnMrEsXbq9it4mKv6TIrNlHs82085FX7CpYYGxgIqQHuXzytx5IBsEBqSQ4OP76669gdXUDDduHUB7++I8+Bwsc0pd44NH3oNvr4cYbb+B/+Pn/Eb/wyZ/HuaqPaq2OSsXBpUuX8Npr11G9eC+eePwxbL95A1evXMWv/sZv41O/+M/Qax/h1q03cc89V1Gv12HbDm7cuIFL91xB4PfhSwnfdyF4BZxVEHgBbt2+hQcfvA8SEpwB3V4PSirUqlUEgY/mahNB34MX+GAsrE+3s72NRrMJyxII/ABdt4dmcw2BDADG4PsBuu02LB6WW9AphrVaFX2vD85seJ7C//zPfwX/4l/+T6hVQ6Hmuj7q1To6nS78QIFbHrgQYVu2MzCw4eh0OhCC4zd+81/jYx/7OK7edw4HB4c4PDzEo489AiEEXNeHxQV2d/fQ7rRx+cplMIyMgJQCGGfotDtQHke328Ef/MEf4rvf+164/T7+8s+/hie/4wl8//u+C7ACKARQJeMb7VYLa+vrE+mDaQ6MccStv8tboqDI2r2sts33J9fuAQCDZVmZE3HTZh3EbZskhoqsAY6m4meJu6w+meh14km1RKP7mqUDs2Z5n1zEvCBxRxSCxF0y8xR3SX2Lu2mTuIsnbvF/HkvukyDuioiZWezrLIo7riTAADVwYwnjODFp02AQnCFQHpSSEKjB8wNUKw58rwelfCgFWNzBN5/+Jr74xf8PlUoNH/jg+1GtVPG//+7/hn/woz+GV7/9Ki5evBjWyLNr+Is//RP02tvY3dnH+UsP4dz5K/DcIzz9tWcghMDHfvqnQ7MStFGvN3Fn5wCr6xtw+x6kDwQ+x/adXTSaVdQbVdQaNpSSaHc62FjfQK/XhW1XYAmBvtcHlArX91Wr4IJBBgGq1RparRZs24bre+BgEFZYqDwIAsi+j9X1NbRbLVSrNfR6XTCboVZfQa8b4O5bb2Fzaw1O1UGv3YXgFtZWN/DsN5/FufPnsbG5Bi5G16rX7cC2HPh9H37gI/A87O3v4+oDVxBIH81mE5zx8Lr0Gfq+D7/v4fr167h4+TLW1lahpES73QLnHK+88ioeeOABfOXPv4rbd97Cs88+ix/5z38Ezz//HD70g+/D5QfvA7MZZOCBKQWF4r8jfY+ZRY27ZRF3+vXkNiejmnmzH+IoK+5GKZjBMEKZVHfU3D7al0WJO52pYpZuKSPuom0CJOjOOidd3MXbGBHEKYMLAc/zYFnW2HCD0inywzgHyzmgmDZCuGjyrHUjpiOwQrMLqdgwouPEfU1kuBaMQYEJBqYkGAJ0+i4YCydnGLcAUcGVe67gE//0EwMhJXH79m185GMfR7Vaw+NbF2CLsPwCWi48z8cPfvADuHtnG9XmVTz/wqv43Od+Hz/wt94H2xJ489abeOnll/HYo5ehuI037+xha+sihFOHzSzcvHkXP/XTP4Mf/fCH8aEf/iAefeQaGGfodbq42/fAGUejCdze2cV9994LLwhg2TYAhvZhCyurK+h0u+E6RM9Ds9mA67oIAh/7+we4dPkyuJLYPziEY9sQnGN3dxebl8/DtgR6qo977rsHUrpoNmrwey5aRwc4OjzE2sYqbr95C5W6DSEsBIEP23Hg+QHc7gEuXLiAu2+9hXObm1hZawICqFTDCKGCCiOPtQY6e3vwZYAg8LG22gRnDLsHBwgCH2AcDz38EKQf4L3f/V7UG1Vcf/V1PPvNb+GRRx7FQ489CFf56CsP4IAIyo2NGGNDh1BhCFU9OXESf6MjkROuA4wKVx3NMx9Hep5vVuvx8jAyVOEDQ5p8+44TeIsg8D1wLiCmnIujtEvitEGRuwVzViJ3mqK3RBn4Ri22cfRaPG487AI5+fApM+Nm3silCtd5KHPmNSFqGLd9LHHRyIyyCXkp8+BJWlOXup8Et7TouoWstWpZzNsKO+/2ccc4C0wRqQ1ooqUtdKQt3He6w14R8g4Uo+ct+v0+jsFO9LrcuHkTG+sbqNWqidvootOjiPMgXjj4/u/d3sHR4RFsy8bB4QFc10XVEtjZ3sa1a9fwwgsv4OKlS+gcHuGVV1/Fb/3mb+KnP/YzePe734O9vQ6kkmi19rB1cQPdTgt7b93A429/O7b3W3AqdVy4dAU9t4+t8yuoNxpoNFZw5627aDZXsbZewc7OLvp9H7YVrt2z7Apsy4Jl29jb3cXa+jpaBwfY3jtE8+JVHB3s46VnvoDe4R5Wt87j8qWr2Ntrw7Er+Poz38D3ff/34tr99+Pu/iHe/sQTOOz0UK+t4mC/g67rQlkBNi9uwBYKtu3A4ha6PRcsLDGP5557DpcuXcLezi7Wz23AEha6hy0wzvHyq9/GtfvuQ3NtFc1aBXfuHuCrT38djz32MB57xyPwVN+8WoP/xn/fkl0yk8ky8dBEyxoUbTPsS7SNyc8JwSfSRLMKqI+1aD7HcvY5mvoIlItOmemMwrKH62LjonR51+klrVuLcwGdVRZHWUGpo4EaitIRUU565I7E3YIhcZfx+RzizkTFmKyUuVGPLb0f7CdL3CVtH8uSiTtgMj0w6YEbt6A+7YF/0sVdXG3EWVJU3Jl1oqLHtghxp1Oi5lEfqghmypjtVHD37h2c29jI3E4fs+d5cJwKlJLwfR9OpQq/1x/Y23PUalUIx0J3/xCccXS7XQjLQq1aQbfTgRACtZVV3Hj11TC6ZDewtrYK22Ho9VqQLMA3//IrWFldxfrGOm7cehOBknj11dew5gg0G3V0e11cvLCFW2/egCMYVpqruH79BnpdF5wLXL12DTdv3cTVy1fwxo03cHh4iMv3PwpPAo+/6zsReH3U5BHe8eTjuLO7hwsXL+PVl69jdXUdL734CrYawO07d/DFL30Za2vrUErh8rXvwr/73f8D3/t934cf+nsfRKD6WN2ow7IsVCt1tNod3LxxC9fuuYhvv/wKHnnkUfS9PjqdLg4O93FhaxO2ZaHfc1GpVFGrVrB79wj/8U++AMUZfvwffwS+dIGxscRixJ25TVLNuqJthu2Oyigk9W2W4i6OLGfbuLVhcS7FWeIub3mF6PbR95dZ3EXvZ2mGawQBkLgjCnJWxJ1ZY64oSe6QWiAN1wtxNhR3SY+KIkYqw20G+xGCDx0zmeLTlTDIKe7KumkW7k4JK+zJNsbXYmUN/vXxBL6XuPg9bQ1f2oBAD1aS1mbMG71/E1MU5XXojEM7Tiadm6SyFNHXottEI7djfS/Y36hAnYa071vYt8mBYlTkppXkMI+tP7DqF8ZrgoWFx80MATmwweeMDwf+fHDXUVAIq7szMG9gPgIfFcdC328DTOHLX3wBTz31Tijmo9frou91sX97GyvNVdzd3saTT/4NPP/ci3jw7Q+jUnHQ67nggoMzBsEYwDgCLiCVhMU8QCoo4QCKGYKCgdkce9s7WKvXcOfNt/DGa9fxpS8/jX/7b38H1WoNn/3M59DruXjj9i7W1zfQbK7gp37qZ/Daa6/jL/7ij8DAYdkCRwdHuHj5El564QU89s4nwJTCV7/0ZTz4wAN48dnn8Nrr22C2wj/4yN+HqihILmEF4/ezuFIE2hXSrNFovjd5rUbrRWexBk/vM7q+bvIz+juY7e5ZljziLq14eZF7Z1zbceugy7pPanSEPC77IW5ycFjD1bhH5jneOMEY93vXE8UUmSOKQuKOKASJu2yWXdzFMau0zNMs7oDRAvgyDm1nVdyV68/pE3dJRMVdkTVKEjoqbaZoiQlxp1horR8oCTE4b3HfRp0mzuDB7/cRBC5eeuEFvP2pH4BtMXTdPhxHwPc9WJDg3IJt2Wi1eqhUKwh06vlgzRMAWIEb9oFr+xkFMAUOe+J4e9ICFwzwXPDBykamXBwdHeCvv/41/N9/8P/i4QcfgV3fwI/92I+h13Px5s3bcHse/uorf4qPfvSjUEqF5WK4ALcE3J6PTquFp7/yNCpOBW7PxQ+87++gsWbDqnAEXEGCwYo82aLiroxIOsviLnv78uIurZ209+M+lybu8uwzre2kbdIKvgvLHv4/iTqiLCTuiEKQuMtm2cVd3MMnKZU02vcxzpi4U0oORUBc6uNJFndmHzSzEndFhFjWjHmZNvP0dxHiLmlmPyru9OAyT6STxyRUMxZa0jNDmPSDAI7jwPN9YFAjjauwUDpU6P4JMPS4D8YALhk4A7gE+q6LlZUqOt0umLLBmAADB694kL4C4wy+D3i+j4rNw+sy2K9UClJxaEEHxtCHBcUZasHgtdASBQBgMwdK+XD9LhhT4FyBi/MI/D6k78NrKzz/7Mv43d/7N/j4xz6OdruLa9euodPpwQ9cXNi6gP2DA6ysrmBvbw/PP/c8Dt5qwbIsNNbXsHlhC+9+7xNoey5qNQuCA143gJIWILyx8xgVd9oMJeoEG3ddRtfi7Iq7rLTJacRdXK033U7afuI+lybukp4j5m85et+eJnIXTbcc7pvSLomCkLgjCnFWxJ0mTpyNkbHuLFHoDeCYLIcQV8rALIAuYZRdMNqJYrZiiq7hfmAMKPWDp8g6uhmtw0ur/xMVO3nNUzL3eczrr4py3P3NGuykkVdoa2ME/f+myBm1VX5mP8tQZ1pmITLz7ys95U1/RkqJXs/F/sE+tjY3UalUY7cx7fPThEOSmImr4RZnqKNdFc1C2nnXoo310+f45l9/Aztv3sHr334Vt2/ewuOPvxvnN7dw/vw5HOwfoFKp4LXXXsXWI1fwyCMP4/y5lVBEMpm5BnnZKLIWbrwOHRvWpssShHn2r9vQwi3qAJo1ETMritwP9cRJ0u/cvLdFa4RmlVwoWh4hzehp+Z9CxEmCxB1RCBJ3EaYUdxrzxp5H3GnBk1bTJkvcMRZzKZdE3CVFjUjcnTxxlyTOtHGEHhzOS9zFMY9zuGzijgtruD7U931UK1V4xnrRaHthf9MjTcXE3ShFc9gn45rGib+4/cT1Uzg19LouhAIszqG8ALv7B+j1etje3saTTz4JIRh6rgdR4YP6f2HUEkrhpD3Eioi70edHtefOsrjL29a8xZ2erDS3IFMUYl6QuCMKQeIuwhxmgONcNVmMq6aJFm6CxyVqjRZ+mwu2zefw8KE8Q3Gno5JZ6ZlxwnOsyRihl5UyGNvdHGmXae/n5Sw+sIuIv7wud6N2slM0o+/FbZPHBTUrVdcUm0XX5kwrkNPSUPX7UVMGPaCMM2aJPjtty4ZvfM50bSyS2qcH/Hr7Im6MWWmoYRsSweA+wxEayHCG4Xq/cBvjuslo2wxxXz1zP2nCM4vo99AUQ2mfjSPv+CZONI+/n272kvY5IP58xP3eihT9jhpUFbnnzuJenee3nPS7y7tPiswRx8VJF3dUxJwgcjCM9JlrquIid8eAuRZwUVGp446EEScTvTY18L2MT4bEDxhnL/j1oNoUceHAVeaq5yKlmlhjPK+1WtPDIMZibwoyDFKNPmH+prkHgEFJPjxPWaJJp4KWmTyOisRwfJ+cjjwL0oTdLJjHd+EkTHyNvi/ZfdWfMdev05OFIMpB4o4gcjBcXs9NcWfMdM9pUJAHLezCWdIF7XMssrOYfRInH6/fh1ISQuSLcJcp81AGM6o4FHoZwiJKNJqaZRZyHIRR1QC2CpMOJQAoGQo7ZVwTQ9wF6GE0zBYAWEyR73EBM83xjgssBSmBpOSFMrXx4hgJu4jKnRF5RXER5um2OyvifldJxJUtOItZHAQxCygtc8GctbRMnf6XdFsu4w4JjARNrEulke7IBg/3RPF1nMYAJdcgDj+a4DgJFF+onmebrO3LtnVaKXKOp0k5jG8vXgClmXwU2XeZwsZ6Tdne/j7WVtfGjD7S9uP7g1p0MdGgaVNTswpFJ/WpaPH4RZElgM3jja7xS1pPNp4mGjqFZqV/TpOWGd23Jp8RSvEU2BBzP4PU9ZhzlN2eHJSxyF5zmYcgkLCs9Dn4RTkFR3/LlmXl2mdaEXNR4JlPEIuE0jIJglgaRoO3Y+4IcSxMlwY335lxLRA2N7cKp2UWGWAXEX+zivwtG+Z6MCHyHWMQBEPhFvc9Co1F8p2z5U1JTWJ5+5unNMCi4ZyF/Sp5yygykUsQRHFI3BHEKWJWtvTEyWSa6IU53pqn6OEAZMGIW5H+ZNXtMkmqnXfSGRnD5D8uy7IhZZAYrWKMgfNRql0a80hDnCfLLEaTzuFxzkuYa+nyikzbdob/phRLgpgvlJa5YM5aWqZJmdt5qbTNuHTHJAzXOM08Hjsy8CdTSOfgHprmmCkDv5S1fB7beKBcWuc8Zp+PY51G2vnNQ5G0zFFEprxpRdSyP+v6RlMR48RW2VTgtDU5puOkPt6yqatatMSJv6S1fWnnZdpnp9kP89yatvt59pn2+eg2aSI57Xh0X6OlNZKIE3d5nD7jav2ZpQLSiCv9EYcurp4k6HQ/zLRh3a8ipRCSag2O9sMHn0t/XiW5hy4j0cLolHZJnFQoLZMg5oguBZBUomCW+9FQygixrOhBZp71arMiT6RmXszjOLNE6nEyio4tV79OOuMGMKywUNMCs8gavKzvrv5NzWp93nGjo3hccHK5JIhjhiJ3C+YsR+6AyShcUgFuzVjkLqX0ADOd2owZU6bXBhSZx8gZ+VPKnFFNMHdZMIuKVOWtOTXvGWa9oH+R0bqsKF2agUAaUQGVN2VQr5XSZg5liRZINwfA0bbjTDqyUoLnKRCTIitJx5RGUkQlWq8rWrcvD0WibPp85jFvMWvBcS4St8lrnpMd/RpFfJPuBUXNSLK2yUo5Nq+9rlkY+J4h7EbRurSIYF5TmqhTZ1qEMX+bk1HFuMidWY8xj7lR3syCtDRL3/fHirBrKDpHnEYockcQxJljWWaVae0GAGixkDzo1ZRN4UwznDBT9kbbLHbApwfDs5isnJUInfa8a5fQ41gPltX3kUhanGto1nnQacaWZUHKAF6/P3iHDbfPE62LKx6fpz/zmiiPS0026zGWocxvVe97GSYxCYJIh36lxKlgfEC2HMLjNFNm7d48WGTh9mUlHLRycJ4UNTCjNOUG42lRifh1a6V2U5roGsJpmNUgfdrzPs2aymnJ6vssz3f+PqULeF2nzhTFZsR5FHlNvxZ5z3t0gqtopDIvZnpnkbpxaZT5rXJhgQNzL7lAEMT0UFrmgjnLaZlxNe+y0jLHSHkoZ5oGFDEqGexnuHids4k6eVJJMEy2mdR3fZxFa/mVbbPMw1enlubZNquG27R19GbFrM7NvEkaME0Wxi6XTqdT3oBkoVa01puZklh2oDmLguRJx2KawJgpf3HGG1nmJXnNTYocQ16TEM/rgzEOy7KGwiV8L3lfSeIrLtWzTK3A6L6SPhtNiwUUlFIQQiQa6Ojvp2kalNSPaMFzja41N/r/5FTP6D6mua5ZxitF6vaFnxHDe0Oekgj6uuZxTTZFopm6abbLOK2fI84mlJZJEARBnAjC+lSzn1+aNpKg2wCmT/ld5nIgxdbnybH1TaawK7//MpM+5b8vk9tmmwGN1nAmfw90lE4IgSCQw7WGkZYwzyyOOPGvU0JnEcULBaKECmSq2I1uM90+jSghCTuCOLGQuCMIgjgjlDG6yNtm3mLZSeioxrTt6IjEtAYz86Bo5EYphX7fBWMMtm1jWrFSRqiVqZ0Y3VaTZsJibpNmOhO+robmI0AoqqLMYsIhjfFSB+F+fN8D5zx3+YY0dORZWPbAUCxbmE+bHRE1M6MUTII4mVBa5oI5y2mZJvpxMXVaZly65bT144y0zOHmMYOEsYFaxiLzMmmZWUTPnfkg1qUjktJ5ig4C8sz4L1NaZtQd7jhq380K81yaaVRlXA41cQPopO97Vj0uHVGIu75J6X9p/TT7Fv1cNDoTd26KpHqmRQuLumDmSe8rQhGr/qx20gR9npTUIJCwLGsilU/KoFRqY9y1yurbyFjE3MZMOS1W3sAk+nuI/r7ytpn0HS9Sry8v0b6a9eVMsu7F5HZJEJNQWiZBTEHcg+WkDL2X2TUsSdjpPhcRONq05LhqnREj9HqxuHIL8yKvI+KinBOjBb8BbZ6hMItxal63xHljCiCdhlgmEmmWqpjmGunvXFbB+zzkFWGmU6QmqyRHFknF40dtlr/Xmf0t8/0JhXQAy7IL/e70dYnDfE7p+74Z6Txpk10EQWRDkbsFQ5G7EbpAeW5KRO6GM/N89nXuCkUDddNSTl2QnWPy3EWFXHRmVn9eR7N0zSJzwb4eJOjBjZ6Z7/f7aNQbY4XeJ44rwbXSbHNRTBsdXebBTt5BZ/S+Po+6Y+bn8vTDNDKJDspN448ifc2bMhjto45ypNVrjJ7DtDVPSeYZszTXSCJuP0mGKkkRpDzrucqg7yFxzpLAuBNknJAzMWvUJdU0LGL6kka0L3F15+IicyazivymHW/43/TrRpE5gigORe4Iglga4h70wUD4ST9cv1FxHOzu7qBWq4VGBBgIIhkMBg/a2j40dHAc58REU4l4QjFz3JEoXfx78f2YhStnUWZZe68oeUxJFk3ceUiroZfEos5rkXM3rVHRrIyOZpn2TxDEyYXuBARximCcxz7gPc9Dq9UGB3DjxhtYaa7Atp2Jge7QFpvxMHoiLAjLRuB7CzoCYtYwput9Ha+L5FBwHEM6s5Rq+Lco9G9rkfvU6H0eh5BOIu4axL0W3oMm/zSjcg7zPa9x+077rHksRfs27fYaHvNHEMTZg9IyFwylZY4jixT3zZsGOW2bOdM/zQfnzCJb05rBxDU5iNxpB8FavQG310UQhPuyLGs44A58D8KyJ+odpVGkttI0zHNWOisVM7rvRaRuzsq2Pi4dssx9P8ssIm9/dFtZNfnKpmVmFZeOO46k2ndJ/YiuOzNr6kWPMS41Ms6mv6jhRplUwCwnyrh2oqYmaUY8Gn0vGC/fEB6zXh85uc0oLdfcX/T9uGMqcu70dTGvoZmmm3dN4azNUZK+a9HfrFmXDiABRxDzgNIyCYJYehjj4ILDBuD2uhCWHS7CHxQt12vuAKDTbsG2HdiOMybykjjuiNCiUYP1i8u4Ni+uSLXJNGYhWQNt8/08tcxm5Qa5DOgUZvN49GB91i6Ji8D8TeedZIhuE1fjTgvDuHIXcefI/B4t6hxmGUgdl+GOPr9Uf44giCwocrdgKHI3zkmP3GlXSnMWNfpaITL2ndV+nNkKMIre5TU2KVo6YLSeiicUFC6HFlFKyVinT93PuNemwSyjENentPcz285pMlMmchcXQcrfr/QISBEDkFHtu2IRPb2tRkeXw33qkgzp67TMKFycaYqOXunPmdEoM3oyvp+wYDYXFgLfKxTd0ec1KYIYBMHw2OKifVnGLHFkmXCURR9D9ByHxxpfOiApKpqEWWqQRz2IAAAS/UlEQVRh/PVRlC2OadvUk11evz8s7RFnADRLcWeWEYm6wOr2bcueej8EQRSDIncEQSwNaY6WRVjGqBSRjRbWiypLkEScgUteYTL+ubiUyGiKYzFGoim9nMT4fgZCLfAHgin+9zEP45bjNGbJQ5boKsooDXE+96D4um+D70Tg5zZ0mSW6XiAQpsnbFsXmCIIoD4k7gjhFzCpqllRWgVhu0oTHIolbD5Y38pf1uXHRVG7t4CiiltyPcROPwd6MaGCceDP7ntZ22f4uk/ulxrTs10zTTzNiNv76bI49qZyAGaXT6erx/Zu92OZcQFiUbkkQxGygtMwFQ2mZkwR5a7+lpCyOmZtMa0oyB1MTwcPLPlY/aco245CBDy6s4X+TBihaADhOBTII4E+RZhg/Ez6bYUre9NB5mK3kMVkpmp6p0wB1Klbc+7Nm2nt8nNlD0kDeNAsputYsLpUzKxIW134REZCUYhdNuyyynzghltckRm+XJOTKCL24fgaBHBayLvKd6/V66Lt9NJrN4WtxRiim+ceoH/FpjkWJir/QCZantmmm3pqp4+axZ6URRycskr4TcddZTwhEU585F1SHjiCWEErLJIgl4PhjFelkFehdNI5TgR8E6Ha76Ha7WFlZOe4unQkY4+BcnfhoaJ7UtaKiMi6Vc95W/ssWCRuJ/uNNq42DCwuVSgW27ZQqbD+rOoeT7WS7f46ntmrzm3L35DKTJb4/SvfkwhpORsatGSYIgpiWkz3CIIgB2vFxWR+SUknIJUiX03Q6bXj9PpSSaDYbeOaZZ467S2cClhFhOClk1QDTdbuKIOVkREfXXJyXGM5bx2xRBIEcRHiW516hkYE/6JfKcf0nr9ms6hyOooIDEyuebU5k1sZTSoXGOCUn3MrUobMdB45TQcVxhlkqEmHWyqzWSRMEQWgoLXPBUFrmJLndJVPSJcfcElnMKT7mtMwybSY5X07VjcF5sm0bnufhxRdfxKOPPQav3x+mac1kPzlTNXVK0jRpobM4P3GTAnlSQvM6X5bqk+FAOk06m9k3bbRStDZY9j7yRepM50ggu2RC/L6Knw/T2j6rFqD5/3GkOUFm1X/Lcr4s4oxprv2KSwNNIup4OdrGTDksnpIad13G6yFKCJF8z4s7h1nofZkplWVTdYu6u46vr+TDNsz0T8H50pZNIQgiGUrLJIglwFy3UKi8whnFH1jMN1ea8Pp92I5zLAOQTreDaq0O23YiBY+JaRivSbd880llRN08KGM+lFVLcNEwxsB5foGdRNSKP0r2esFg0JeRaIw7v2ki6iRhHkMQBBBCwHYccIQTQzoiR8KOIIhFQ5G7BUORu2SGj0BDnDHOjKKyxQcEeos8j9e8kbK4NvW2wKjIbN5Hulm7zmSeJiGCc/TcHqqV6rCfRQYhWVEtPbgzRUbeyGAZp85pz9WiBmBF6wcC5UxWkoxI5nm/j4tkTEs0Sjb5/mR00yQrwqTbzTrHZUocxG1T5vyXuX6mgUecsUvc9ckbKQz/PRnly2MQlFYHs0ykukh0M+440tDGVEopCMse1tsEwvuafi5ZlkWmKARxyqDIHUEQM2Megi6KUhLccvDiN17Evffeh7X19eJt5BQmZVI9T7rZSBqneRZ/HuYk5dJQZ98PU4wcZ6mJvEJPR+GSrklRF9OziAzCTALG2PDfWnDajgMgnJjjQkAGyxHFJQiCAEjcEcRSMVbSYQ7tayt+JSXe9ra3wXEqpdvRzFqMlYlunRROc/3AeYiAMucoae3YNCxD7UAgemzJgiLP2r4oSUJQ73NZzsGi0EJOH7+5fk6fCQlABgE50xEEsVRQWuaCobTMbBLXzM2hLlxSimX0tdNCxXHQ7XaGxZh1alE0YnjSRFVWxDNPzbq8n50VUaEXNV4YrlsSFrx+fzhYz4NOvStTZ86sW5ZUmy2rptmsyEr1ixMeSSmDSYXHi/TFbCPLuIMxPlxHmpUGabYZZxBi1meLEifkpFTDqPn4Wladipr+ezHb1OczrjbcNGjXTDPdcdbk/W7qc6sNf3RqqDZFIQjibEFpmQRBnBgCKWHboXmKacHdabdQbzRTtiTmTVJBdCUlbMdB4HvH0CuiLFqwTLv+UAuqogYuo5IKozFKnKiLW//GmIydcDhp6GPLEo9atFuWGEbotFg+ycdPEMTZhCJ3C4Yid8kMHcYWGLnT5EmHnKY0QVw0kLG4GeuY+ZaM89FuHaFWq4X7MWbDYzcZ9F2vIQGAnd1dbJ7fnPicnlHPSo3La6hgvm/bNrrdzpg1+jRpikmRt6wiwUrJoXHCNIPZtHMQ9zn92TTjiDwGFcn7GUV74rYZd9MM952Uyqf7Vibdsag5hjYCie57WkxzjPH+TR6bjlAxzofbmJEzUwxpURA1Z0mKtiWtmdMRoziSntHRMgy6ndTzkBGFDQI54Zyb97udRdx3hgsrNXJXtqyBRkdAo6Uw9LXR9weKzREEYUKRO4IgpmJ80Fx8+7X1DbSODiGEhbzO7oxxdDpt1Go1nNvYmEwJlLMZ0CXR77uwLPvY1/EwdrIjE0mM0vzij62M+clxX6tpMM0xsgjFmoQK5PD/TeLETpmSCiacs0J1+3Q/dI27rLbzIgQfm/iZlkwX0oGwy3Psce/ndcH0fX94HrRwJ0FHEMRphe5vBHFMKMWhZFjiQf+V4eWXXxqs08k/KJMyQL3egCUscC4mbgTDAeyc1pu0252FOINmwXh8ZOukM1qLFj/wDyMX+dfw6bb030ljtPaKj/3FEUZ51Ng2WYQpkOUdExljmSItykjYmX/xbee91lxYA5v/2VzrrHbyClQAsddMSjX8S0MXbbctG4KH6+i4CEXeMtyHCIIgZgmlZS4YSsvMpoyhihqkSxapL2dSxqUybhuzZp05aIhLy7SEQOvoCE6lAkCBc8tcHjNEyZFoGxugzThNNSuVMyvCFU0/0ylXw/YNEbWzs4PNza1pujsVOh0TSFnrpuLXHaWJwaTUxSIpq1n9ngVZEY9oOqWZxgnkX0cWdRycfF+OfTbanyJpnXnJSi/Na75SxKRlFvXtRgJGgXM+WE83jl5TF02xTUv71Ne27NpAM63ZJJrCmvXdzevKaX4nTFGnBZzZBhmiEARRBkrLJAiiFJ12FwocruvBsW0EMoCw57eucN4UGXyfO3cOQq+xJBZOGaE0yzp2aQP4cSEUnxo5T0JRfxKe6zNajzjldR3VgIsWLJ//OYz2fVhYXFgn3gyGIAiiLDSlRRDHhFOpollvYHt7B1xYEOJkz7VkpbuZ2JYNt99fQK+IOIpcq9E2xVM5k0hL1TNT7YZGJQv8bYRRwuV/NIaRqvG/Mkx7TXXkz0zBXNQ5NL+TwrJhCQu2bQ+FHRcnd7KMIAiiLJSWuWAoLTObYmmZg5RFlT44kVLBihkgmumUSe9F30/bJgpLiU5xAH7gIwgC8IH1tjmIHbpzsoSvzIzSMr1+H0Hgo1qrx76vZ791KiPNhofEpVVmOT0WSdtM229eI4lZUiZFMk865uR7KtYJ0nSfTHMCLdKnOHOUadrMcn2cNGcZdwgtYo6i28pyPk3rj9lO0VqAaU6g88S8VpRySRDEPKC0TII4RrKMIzRcWAikXKrBQCBDsXTcUYJqtRopdFyO4ygEvmwUWWN00tAD/1kWsi5CWTF30jHXwsXd57LejyPuezrrIuWzQJcyMCeVdHF24OzeZwiCINKgyN2CochdNoqNIkVjEbm4SFVSlC+KsW2clNJpPEnRuqhwida7M0VjICVUREjGRfvSXhsj4Rg5E1PV3dPGLxrtINfptOFUqhPmNPMYSJWNXs16/0UjZ1HiIjdZ0aA4s5G07ZMiWjryU2RgHmd+ISx7rBac2TcdoYmLno0fU766fUXq9Y22TzZ+KUJW5K5oH/PuM+qmOWmYMl5w3OjJwEBFzWzd47RRtmkjnZogkMMIY9w1WKbJOIIgzg4UuSOIM0CWsNHv608twl5bzmg/emDf6XbgOA5WVlbR6/XQcXtoNJoLMz3Rg99pa4YtC/OIgJgugWXdDXU7JoyxsVpw85j0K5fumFX4/ORGbiaLj8evm5Ny4D47w1tKkbTeuJTSWaVjmsJOX8tFrq8kCII4jdC0GEHkQBp/ae9rkbeIH5aScib74VxAcA7btvGtb30LBwf7YJwvVNjpfpwWYQfMpy6cWdusqCFKUt+0+UWRum7T7jMvWcYvJznzZLxGmzKEzvhf+Dqf6Zq2vPXhzM+a6N/qtL9XLewYD1MvubDAgeEfQRAEURxKy1wwlJZZjFLSIi6NMSMtMw5thhL9fFyfhuYnMbXtipDUdtr75fAHA3oOFSjc3dnFxvoKut0uVtfWIDjH0dEh6o1moXRMM30w7+c1WaYUWamPae1npT4WWS+YNy0z7v1oO3F19NL2NQ8jlbhnQFzbQSDH1jtNtlPke6JKr+8qY4iSZeyS93tkfjar73HnNUlMxUXs9DUoJobLbzP+2sg8J2sbLiwEvpfr+6i/74HvDSeVCIIglo2TnpZJd1aCmAGzSpFMajstajgtnufhM7/3e9jd3cXW1hYqjoNbt25hfX0DFcfJ389Bqpaw7Dn1dH6owTpJJeVgUFv8bEfXVGUxFAmGsJMyGP4pJREEslTZgnmg00B136J/Z4VZHa8QfPg3K/JGRrPKWoxEb44C7VLmigCGfQt/Y7Zlp04UEARBEOWhyN2CochdMU5K5E4bqCQZsuQlqW2zT7NhFLnb3z/E+uoaWu1DNFdW4PVdVJwK/IG5RpHUKy1I8g7cliVyZ742rK2WcNxJ/dPOfml9H3ttELHTEbyk95NE46Ijd3HlHsr25yRH7pLKGkxukx65yzJHKROF0+1ntZ3l6qpNcXRULqlvmiAIIDJqyumUSyouThDEsnPSI3ck7hYMibtizEvc6fVxZdKC0gTYtGmZWfsxiTpeRsVlEtevv4Zr1+4BFAtd+ILwv3p86/s++n0XjlOBSKnTF0c0LbOMG+a0UZFZOR/qAW7U/VE7HxYpexDnfDkPcWbWLIvbz2jNXhg5ypN2l7VPjSlcykSjdJ8XHaFM22feum/6fOQ5B6ZD5DSkicxpUzmj35mk/SRtp01RKDWIIIiTyEkXd5QXQZxpAkMYTYPefpG13vzAR6fTRXNlBe3WEWzbhlOppm5z9+4dXNjaGnuNCw4pAYHRukEdVXH7HqwTmGa5CI6jgHMcs6qtN20706YXLpuwy8IsHq6ZZYplGXSfypRMmOb6620Z5yToCIIgjhmK3C0YitwVR0enyqQkxqVLZpF3L1kpmGbtvDJtDkmpc+cH/shtLmn7DPS5lYE/LBbMOEff7cGpVGOjkvOueafJG4WL1n3L22Y0spg3UpNE3rpsaZG7aCrsZNkCPrxeaf0omvZYNqKUN00xbzrlLAWebrNsqrBZdkL/O838JAvz+ps1C/Nun9dQJysKN96nfJG/aIkMMkQhCOK0QpE7gjilZIm3qIulJQRkMBJi8y6LEO7TGvazrNyybTscuEY0pGVZJ2ZtzHFGzopQxKgifnsFQM7UXYcm+LIZrcM003NPynduuus75oxpCDo92XNS7hEEQRBnBZp2I4gETAfFOBjnwz8OjAk7YDT+5hlGA2XREUn9Iy47yPKDYCKqIQdmKr6fHB1aJpbFUTKLaWvJSalrxc1uQJ233tlZZmRUMvotn5TvXJGadnHoY9RrcLVzbyDlQutgEgRBEPmgtMwFQ2mZ5ZnlMCLq2iZjXjOJS7GUwNBwJGl4l+S4mdb2RBpqQlqmaRIzC7LE4TzSMss4X06+np7GGGVWhitZRGuFRdMk40xWTMrUCsxLVnpeXFpfnpTTvH0yPxs1pymDUnKYUhxNq8zTdpwbpimGzMmPaRw+41Js9drNpDTaPKm80b5n92fcIMhsX6f9apZbuhIEQcweSsskiDOAFmhiDjbe82ybWF7iDFmmFTlZxBluxDmbnhXSjvm4zVHmybgZTPg9tCybDFEIgiBOARS5IwiCIAiCIAiCOAXQJB1BEARBEARBEMQpgMQdQRAEQRAEQRDEKYDEHUEQBEEQBEEQxCmAxB1BEARBEARBEMQpgMQdQRAEQRAEQRDEKYDEHUEQBEEQBEEQxCmAxB1BEARBEARBEMQpgMQdQRAEQRAEQRDEKYDEHUEQBEEQBEEQxCmAxB1BEARBEARBEMQpgMQdQRAEQRAEQRDEKYDEHUEQBEEQBEEQxCmAxB1BEARBEARBEMQpgMQdQRAEQRAEQRDEKYDEHUEQBEEQBEEQxCmAxB1BEARBEARBEMQpgMQdQRAEQRAEQRDEKYDEHUEQBEEQBEEQxCmAxB1BEARBEARBEMQpgMQdQRAEQRAEQRDEKYDEHUEQBEEQBEEQxCmAxB1BEARBEARBEMQpgMQdQRAEQRAEQRDEKYDEHUEQBEEQBEEQxCmAxB1BEARBEARBEMQpgMQdQRAEQRAEQRDEKYDEHUEQBEEQBEEQxCng/wcl5BO/JBG17wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image = skimage.io.imread(image_list[0])\n", - "fig = plt.figure(figsize=(15,15))\n", - "plt.axis('off')\n", - "plt.imshow(image)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAKkCAYAAACj7sYjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXmwLNld5/c95+RS+93v21+/191Sq1tba0UCJJp1GBjC02rjmaBFBIbxMNgEXvDMmJkxhgiGGewxngUGE4wMaCTZYYmQHYHtgYGRhGgkIdSi1ep9f/t2t7q1ZuY5x3/kUllVp7Ky6tbd6v0+Ea9fv6rMkyezTmae7/ltTGsNgiAIgiAIgiAI4njDD7sDBEEQBEEQBEEQxN4hcUcQBEEQBEEQBDEHkLgjCIIgCIIgCIKYA0jcEQRBEARBEARBzAEk7giCIAiCIAiCIOYAEncEQRAEQRAEQRBzAIk7giAIgiAIgiCIOYDEHUEQBEEQBEEQxBxA4o4gCIIgCIIgCGIOIHFHEARBEARBEAQxB5C4IwiCIAiCIAiCmANI3BEEQRAEQRAEQcwBJO4IgiAIgiAIgiDmABJ3BEEQBEEQBEEQcwCJO4IgCIIgCIIgiDmAxB1BEARBEARBEMQcQOKOIAiCIAiCIAhiDiBxRxAEQRAEQRAEMQeQuCMIgiAIgiAIgpgDSNwRBEEQBEEQBEHMASTuCIIgCIIgCIIg5gASdwRBEARBEARBEHMAiTuCIAiCIAiCIIg5gMQdQRAEQRAEQRDEHEDijiAIgiAIgiAIYg4gcUcQBEEQBEEQBDEHkLgjCIIgCIIgCIKYA0jcEQRBEARBEARBzAEk7giCIAiCIAiCIOYAEncEQRAEQRAEQRBzAIk7giAIgiAIgiCIOYDEHUEQBEEQBEEQxBxA4o4gCIIgCIIgCGIOIHFHEARBEARBEAQxB5C4IwiCIAiCIAiCmANI3BEEQRAEQRAEQcwBJO4IgiAIgiAIgiDmABJ3BEEQBEEQBEEQcwCJO4IgCIIgCIIgiDmAxB1BEARBEARBEMQcQOKOIAiCIAiCIAhiDiBxRxAEQRAEQRAEMQeQuCMIgiAIgiAIgpgDSNwRBEEQBEEQBEHMASTuCIIgCIIgCIIg5gASdwRBEARBEARBEHMAiTuCIAiCIAiCIIg5gMQdQRAEQRAEQRDEHEDijiAIgiAIgiAIYg4gcUcQBEEQBEEQBDEHkLgjCIIgCIIgCIKYA0jcEQRBEARBEARBzAEk7giCIAiCIAiCIOYAEncEQRAEQRAEQRBzAIk7giAIgiAIgiCIOYDEHUEQBEEQBEEQxBxA4o4gCIIgCIIgCGIOIHFHEARBEARBEAQxB5C4IwiCIAiCIAiCmANI3BEEQRAEQRAEQcwBJO4IgiAIgiAIgiDmABJ3BEEQBEEQBEEQcwCJO4IgCIIgCIIgiDmAxB1BEARBEARBEMQcQOKOIAiCIAiCIAhiDrAOuwN3M77n6cPuA0EQxLGDMcNHCgCgdO+xyrWGUsq0eQ+eWuNUauRmaqANvoent9ajjxPj+wE0NNxCEZxxQCtIGUx/UABKpa4Nz7oow/txzsAYz9X3aWGs91vs53HS10EIAc4FlJLhd1CAVlBah9d9VF8x/vppDA8S0346+owZtjf1Of7t4s8m+S0ngWWcPwBoxsD0+BtBZpxXGp6jrbwow02/1/ZN1yMep1nHy9rPhOaG664NnzE1fpsMmGHcaJVxjaLjMc6hlYLWGhYTfZtI9PrEovPQMk9nJAAGxgSY5uEzfobj4bhiO85UNzdZ7giCIIjjhdZDf1T0R2uV/FFKgZsmSummZJD8OUo4hQIKbgFf/MIX4HsdtNrtQ+uLEOEETso8s7TjRThOeufFGQMYD/8mCII4hjBNyvjQIMsdQRBEfuKVYKV7QkxrBWgAbPhxGlvX4lXySS1D6e1nabmbpA9ZjLPEKaUAsFyWHaU0hBCQUu6bJeiooAasE9yyEguUymVmmK3l7jCJx7jpHpkazvsWS9KWKJ1Ys9jQZ1mWtcF+Dn6ntO6zfO6H5S6LaS13Smkw3r+YMPisCXeYveWu15fedUl+F6Z71zy+XwaPB0AM2IjSlruJ+kWWOyPTWu7ILZMgCII4FujIbVKjN3EMZADBLTCDuJt2skMQdwuxG/NBSU42pUU0q5+Dwo4g7nZI3BEEQRDHgnhNOL3SbAs7spDQ5I4gJiVeMDHFX+0HSRxWRnyriax+aq2mFo0EMY+QW+YhQm6ZBEHc1ZgSo0Rzvr53E/Ojz2aXZCPLzYvzMMZMKZkk28h0V4vc0CZ1aRvlYhazVxfJwYQbh5GU4yjBGB8ZNxjHFaaZdLxljak86D67VH8baXdOpTSgAS729zcbTOwxqStyLLjyJlQRYH3xj0eFQZfLSd0787qDx9vFbpl97pIYHp8mN8khcngvmHSARphECTp17jmOx1IJVjKTswzt2Gtbaw3OhPmc7zLILZMgCII4ZpgmC3rg74NnMCaLIA6CvrirjCHILQs4giKIIIijAYk7giAI4lCIE06kV7NNoXOYkcVunGVt+HsOrfV4i5xSs0lEgf5rMStrmkmsDn42bZmEvdCzGsYr9PtT/kCDgSHMpMo5M14PzRgEY1ESmtFkJSAZ/KxvXOew6hm/i2+ItAVlH4Vd3/nssa3EIpRzOMX32n6WwRjFJBbsSRMz5T2feLukNEY66YwaTkTT+xJQo1xTRySwiaqrjISBRd/riVxeTda62JU2y5LHBkrSaCiy3O0BEncEQRDEgSLjCTQbLj9AiRGODrHQGVdOYnbH2dfDZPchCMAMrpn7ciyp992lkiDSqPRCwxHL2ErMHhJ3BEEQxN4wxc4NLAsr5SX/n8zhDTrOtIK+11imLLJW4WdljTMRJoGY/XnFaeHzJ6zQYFwYt49F3aRWPVMfTHF/ve8w9F2hUIDndfOdwrj+DAy09Dn0jqn7fhNgfPr9cZ/1/zO2ygDXb17D6dOnx/Q5Drza34n44Dmmz7VXXJ1BQ0OLdDxVJMgHyo2k24wxxeqZ0v0nsWYp8bGf5QvSZMWgDvZBhwGP0XNssgLlppIJo+iPO468HFLfMzAwcGimoKWG4MOLE0lP0ved0KFBL+5Kjrg8xpkx5E6LgQQ5qY0Y54BKWR25wRIZW/Vk+syiNoUC01HcH+Nhh3OWKrnbIXFHEARB7A3DBGzaxAgHndhD9SUtIMYRX6/9LvLd6bQB8EO15u0HnDGsra8ddjcmIlABbOFMnOGS2H+kCsA5Bxc804+WW5O5khLHGxJ3BEEQxN4wB8pN19Q+WulMpCesB5UO/liTxFHt77WSSqPgWpBy2HX3OKO0hG1bx6pyh8WtoeLuVHrg8NFawxI2lJbgTGQX/d5nCzBxtKBSCIcIlUIgCOI4wxK3vahUQWrGygfE2UG9a0zucnnSjx8m+yVkx2X9ZJznssaYrKlZZRWy2pg0E+lBJnfhnI0dP4PfZ32XlTp+7G8zoR05LtkxLUrpoSyccSkE070bi7tJyyMkbQsOJSW4GHYJjsel1npf3TIPYyyq+HfN0ZTWGpzz0IUxx/Y85V4Z9zUwJjiJE1nFPrXZz0CtFIRtgRnGl8m9drgBHh3XUKMw6zdgGqGLJge/S90yqRQCQRAEcaDEiVF09MLtW8wfnNjSyvGRQysJckYliIMjFsX6OJluiWMHWe4OEbLcEQRxpDAmRokLiI9/XGWlfs+ykB2VGJC4j6aiyxYbbcWIyZt4I89+02JOWJLHapb+7fMkIMnHJBY703H223I3mOBCzFLs5ikyDfO1OQoZDSdNKBOT557Py34+G7LuFdN2WWPRlChlWqtj3rZyJWfJkSwlL9yKSxpk/CYDxzMlUQEAESViiWN4jRY8JgFwMMbBNA/fT3eZZiHLHUEQBLE3MhKjHAX3xcPkOF+HXu22jHlCX2a+Az42MVcwEU0tj3EClv56hzR2Z426y0TaQUPijiAIggAAaIOlwSRm4jT3WSvZeYo174dQmjTmzrhdxop4Vt+nPZ9JiyJnYbay5ZicsjA3eljku1+QjbNw5LcIGr5K7TqLQuqjfgOpZK4Mn1qrJM39fno2jbumeYbBpOMtywKXNa5N8XyZ9/AMRd1+lQsJE/VkxZJOZ8GblL2MeRn9JqYSCFlMmgxHJ9Y11V9sPM++SifWu6xSCKMsfMR0kLgjCIK4i+mbMpkmfwfWE+Iw0VqDsWNtbBlJr34dTRqJ+cG2HQCAkgeUZIRun2MDiTuCIIi7mL74CRa7HvZlRjnYDhGHglIa4ICYw59bKQ0h+IFlbCWIg+DARF2Ehp7P1Z85hBKqHCKUUIUgiH1hwO0mncI6fuYrPvySNqU1n5U7VDjBFpBSHnih8lkSn4cJo6ta7MaUc1I02IZMTeAmvW6DbmTDroDpfx/CbzLglglhcAmcwRxlEtc+pTQY57Mp0m5KqKKH+2Lq3yQJidIMpqZnhnGX5bpschHej/IimSUk0tsxBhUEvbGfdkGcsvTDpEmBBkm7JsaLY5ku6ql7i0UDPumDSF/vyFUxzqiZUYICiF2Nee+znMlT2OCDXg/3wYSGDo+XdqHMUZogjyunlqFrJmesl2Ql1XbcBlOTuaAedyihCkEQBBEy8IJWqYlUHE9FBbung3EOz/PgOE6u7XVUhHvaeDxupV7Te6hjRhxP5iE5ySxRQa+o/WEtEum++zBHHKcaFikEsZ+QuCMIgpgzBhOj9E+CIosABgrZInvVdq9wzqB1dhKWvCitwVlYcPqgyygwaEgpcyWMGfXZoFWGp6wRSV3hePs9/CTjr/Wo8gf9+4VJVnS0jaFNhnDFfVKLyD4Mt70m6Qmvme5ZUYS1L8Iqd0Iew7HzlRfp3d/CssOYyoz7O8t6mIdJS53kbZvp0FLeu1dmJ+ji5EGc8zFjdzDJCoviOPMlFeKch9YorYe2Mz1zBy14o7abNJHKXmFg4TjKELQm8aqTBcXRv3m82JjOosmFSArdxy6oDHeX5W5aaAmBIAhiDlCpP1rLvj/zRuwydxjptJXSua12I9vQuq/v6d+OIGaJ4ALN3V2IWbiZ5mRwfBMEcbBQzN0hQjF3BEGMJDUZi1dwFfzhzeR0JQfSsTlah5aKPGuisyzWSwwTx/Ttd2HzPOQvQJ6z5AKDMZZt2hTzsygFMPYYwgJ0MPxFjvimwfg3wBzXOinTjo1JrWtZ+2c9W7wggLB6T5Nxz4dx/TKVYtgL+e4H0zaDQaLxZ/3kuW/ibXytkri5PPPxrDIGpuus87iBGsZyVl8YDxcNlNZRCZWUdY4Nv0UGyx7k/S5uO90+hz2yX/MIxdwRBEHMKT0Xq5TLFMVuEEcEHo3FvSaqIOYDYQlwIXqZeI/F4s8ENSHHkOc+SLah0GdiHyBxRxAEcSRJJUFJxc/E0JyAOCooSRNVIoUGZBBAWMcnGcxsFyjyCMXjIHiJ4wqJO4IgiCOIMsTK9QXYx24wGW3kS0muewHrx2KFfX4wTiQZZl4uYhI3sXHfjepzrmOPyMdyUFkPp0m2wrSeehretxgzZczbtO6SedvKuiaDSVbyts04D5NvxK50Y/qXfBYlCGF9121v9QnzirXh7VIlB6JkHqKvVAcD47yvFEKcNCXfKke4Dc8oezALxpVTmKpNBSjW327iSaLT22W4XCb75etL0v7RXyc4EpBfD0EQxJFEG/4QBHGQzDLWi8hGBUFfqYOjgmXbsOxerFds5dPHdGwopeh1MudQQpVDhBKqEMQcMhBQni4inBSnhTe0W55n8bQJGob20+aVvYMuKxCTXjU/zgXOTUzu5hW7ODIIPtvEKrMk67ziYvWTJobJskClv5MYThU/baKSrKLfey2rYGLSouSD+5mYtMh4Vhvjiqvn2W+WzLL96V0us9wso6LkOrTCaa3AOB9ZGiS09smkLVM5Bh09A/dqYQMizwzGx3iITj/OhyxvzHCNteHg8fsu69Cm/Ux92EP/jzqUUIUgCOJIMPhyS9eRCycoJpE2X5KGIAiCIIjDgMQdQRDETBmMRUh9E6/kmtx59sFKQBAEQRDE3QWJO4IgiBmiEScfiFzHUmJPZbhkDbprGRMPGOx75oD5MULRVK7pEJnUFTN9HeLra6qVppQC46Iv6cGsyJvEYlq0UtCM7ftxpmXwWiqlk8/C2mShi9q0NeyyyOOu1pd8aILwk/1wxTS1b3J/NHFQLpHTtjGrMZkeP/1u2mpouzTcsvoWy8Lv9YyzX2aMt2ic8eSfHNAYWcSdQYOlXDDDv1lfv021RCdGh/dA3oQl05KuWzl4zlm17+ILlmwzorSP4ALymMY2HiYk7giCIGZK/IIbzjAX591jh5jLinEeZsY8xo6gfMqJ+yyRqeLxVHJwTuEcWgb7LvjudmJhcxyfSfGzaJSYOywYY2Cp7J76GJSjIGYHJVQ5RCihCkEcUUwrjYhXIVMTEBUmRkk/RweTPZgSNEiD2YzHlr6M1fhZTjKzkrPMMnlBHouNKaHKQSVZUVpHyQ8UBieXWcfdt4LdLJyIMcagNGCJ4ycsZvHbDd4H6bE/aWIhlpFuPm4rsbQbrCbxYoxUQWIRypPAJa91bty+kzCtNW+vSVnyWpgnteQOWeomHE99+zNMUKpgNKY+pI8zbdKc5Nk3peWOG8c3A2ci8Sgxkbaa9QrPG/rODG1E25kshHrgt5uFFdEkpimhyjBkuSMIghjClPEr/EymXyqRuwit7BMEMQ/ENd2A+ctcCw0IYfWd435gqvlGEAcJiTuCIIhBDCvPCmH9pbxCLrYEGAv4xla91Aoty7GavBdLwEGTx+oVbzNuErlXK2AmSXxM9mr8LEli08JSz/3H0fFvq8FZGDfILduchMfAUSgrMa11ZdR+SmkIkzE9J3k8lDLj+KJbTXBrIvc2kzVrlpb5eHulwzguwfie6/JNO2b63c+j55vJQyGroHXs2TAgMAOpehYblXaHHn29Rt27Ukqjd8AkjN1vgmY5D+NqpQyQx6LIGIPWGlrrzDEbX0vGkGm1G9ovEaYp1/cpr9Ms4/3iPqij/do7MpC4IwiCGEDp4UK6vRdkynJ3QP0h5hPG+cyLNh9Ha8tx7PNRgkEDSsJXEmJKN16VJIA6PExxa0rpvhhb4u5kvxPDzBsk7giCIAbQxqVX8rEhZgvTeuaZS49qds0s9rsQ9t2AUjqyUE4n7npZCw9vEm22iuq+At/E3clRTVxzVKGEKocIJVQhiH3G6OaUZA1JbRe5AanhDJcxpiB3kbHObQqqz5PWfJZMG9gPhC9RrdSBWFVMEzfOwyQn6YndpO5U+5EQJXSHAvLaOMYlXzAcIfwr9KdC5KfZnyEU4b8PUwyN+s1mTc+9LHZHU9CmmKYZHdqYXMJAnoQqJiZ9LmS2hWF31p7n99ERzKHbocx0u83PYJIOYXT/zCJr7ObpS/hs6s/wOel9nvlsMrxrBhNuAcOJuTLdNNMurHpgO5ZKBmMoX5DllpleDOCMQSp5ICEDnLHoHaXBjQnQ5gNKqEIQBDGE6aUUvrxUOn5NTRZPd1zgPHzpHYVFPKUULMtGEPiZsTJHnbB2FN+31OJJfa4j8JtlIVJBcPudoGIUfQJpgrgigjgI4nvksO6Pw4AxDh1ZkfkxzPQ7L5Dl7hAhyx1B7C/phcx4lTv5u0/cyei7YYtIkrQgZ/r1PCvleZIqHJXkKfux8j+t1cy4uh7/LoYmTYW2e2T1wbRYqvu+M1kWRx13HEPXoy+/S89yd5SsMSZM1yPPtZj0vEyWjTyFzWeF1jrTap+vjRkUHjeM4TyJmQ6TvbpX9lvNprPcZcEYhx8EfSVIkoWWjMPMMolQluUujZ52kWywfEHKcsc0g9LSXAoh3mbCc01b2bLaiLebFCqFMAxZ7giCmFtUajW/N5mKxd1wYhStFLpSwrGP/qMxXg0We0kjOAfMXSxG4vJ5HM+Hoev5sK2jf/8QhAkpJSVwIY499AQmCOLoY1qpT2JL4sl9d3gbg4HH9Ek6dsXhltFSxtRwrMxgAWQAEHu0ruSNk0vS6WsFJiwwraGUBOcilxvmXuLxpmEWCRGUUmBcIK/w6aVNN03WTCY/hh//T38KtuVgYaGGV157FQCwYNvY8X38xPkV/MGtBq50uvjOWgmfq7eS/T772U8m57ineDSd/KfXz6RcgzwQMT9poemYQAb40p89gQ996EMQQszoN9dJuvgY4xXIcaisYubJ8VKnHMcpCR06c2upknjLSQupD/dl7zF3x8VKlx5H8f+nHRXj38VYhHvkvRRazrWS4MIKy0EYBoHJipxnfBv3m+ECUvo6KK0ArRM3elOvjNa8gXeSaUwaSV6ehrIHCEt+KK2HLGnTLqRlbR9b8xgfttoxqcEFQ3jHhyPG5OCqtEzaAObbkpcXcss8RMgtkyBykiHuYjS8qZsfnFyZBI9JDBnFHVjf9ibyuKGNE119bpv7KO5m5QI4m2x3GoyLvni3zEQI0e/z2EceH9nimmPjtufj19/3FtxoNrHR6eJbz52bqFeMMfzUn30DDT/AJz/5MTiuM7TNrJK7CCH23S0zq05ZFn4gITiH1ioRd3tNsmISd9Myrbjj0e+jGUuSLu1V3KU5qm62eyVLRO1F3PWI289X7y6PuJs22cq041xFiYKUVhB8soWbwSQrucVdhKmmXV/7U7pJjmKcW+bQ8dVwTjSTuEsLRGC+xN20bpkk7g4REncEkRNmeOHGIirOcGl87OeDxF2+4+yF/RZ3jz76IwCAH/rBH8C1a9ehtcZfPvUUfuP9b0G5UMpss0ee96gGOAdS5zN4LX/5q8/gH7zvrYAKAG7hbz/xFFqBxL0XLoALjpdfebWvxULBxb/+9V/FwuIC/ubf/DH81b/yfWg0m/gvfvo/Gzr6QYi7aWP7ul0PlhVOUCcRd+Mm24ct7qA0OML4LiWDoe1iSNz1sz/izrSIw0a6Uh51cac5T4qSxyI177x8P8RdWtANirtBETUpJnGXZQ0UENBKRslZhi2+o/pF4o7E3aFC4o4g8qF5NPlJv6gHtxkxQRpM6T/tJDGrPELaPYpNIOomdc3K2n6a89Ja5RJ34ybpSqkwyUSGy+AoNyfO2J6E3+f++E/wW7/5MXzs298Z9xijRdqkx8n7Xh19zLzhO1r6+OgXn8YnHnk3Op0Ofv7rL2EjUPC1wrmzZ/Gr/8s/ARCJO8YAlX8xI+s3Ps7CYtp7OZ18ZXAOpBkHOMDBk5hd3ifkI9fbKcUdYwwKCGscDjD1b5G2+OQcF0rpsQsF05YgSbpl2M/klhmTZbfqreek+9vv7skYz/W8Mrcf9zEUWRoMUkrYlpVco/Q2g33Yi+UuD6aFiUExbEqworUOczKl+6cBJlIZf1NiKC264iQok4g5k4AzlVLI06YAC/dNLe5KPbw/ibthKOaOIIhjQDSh0r0pwVGKN0mXVbi705tMiI6vXfZv+bd+4qdx8cI9+If//d/t+/yXf+mf4cm//Ev82w+/O/XpYYwLFpal28NyHRM27i26AICCW8D/+IG3933/2GOP4/d+75PhP5ROJrLEbFFagikGdYzmhyoIkv8/iLqU44gXefZjfDKerr+2H+OfgXOBdrsN27YhZTDk9rn/fdhfGONQUh5ohtlBpo355pFnwHG87gcJWe4OEbLcEXcdhmKjGn7/v01uMRguLp7PdSyv1JJ9bfb1Zz8mKAd8nHElFzgXUBnFZ0clK5iEcS5NSin8N//1P8Ably7hR04v4kylhHsXF1Atpl0qoza0xK8++RJ+9r0P5hRUeftuSrIy+N1ku006f8o6n912Cz/zFy/iu777Efyd//wnhr7/syf+HN/6be8HAPzub//v+Osf+Wv4qb/zX+HDH/pW/MG//w8AANuy4KfEQMyb778fv/I//eJknT1AYkvTqLGYZRWf6Dh7cbccCgSerA97eQbEZSiyt5ksUU5SNiaxBvaep1kujsMlR4YTquQtl5FlPex9Fi4QjTuvrOdhut1ASnQ7bZTLVQDjr+usSTxCDBbmLEFmnM/HZQ9S+zEelfuJ3TEHxy1SLpt9bU32MBu0qE1SDB1AYjk01czLsgaS5Y7E3aFC4o646zCJGoQTzawHP4m7vR3nqIu7xx77KACNT3zHe8a0EvvksKGPcu3XJ9CyBNzRFHepmh34x199Ht93ZhGfubSJH79/HU/f3sbXdjz8+P0ncWm3ge+598JkBwbwo194EkJY+D8//bsT77vfkLjL5qDF3dCYH3lr7Z+46/UhPMa488pKFNRrl4WZG2UAxjiEbUPL4cWQ/eRuF3eDbZC4mxwSd4cIiTvibiN+Yci0S4UeHyPCMXrSMwtxxyKf/lkIrFlkCNwrkxZJH/zOxF6vTTx5unNnAz/5kz8DAJGYy4qRG+pF9Pfw9oxF3/a90/LMQLME3+h+meZYptfpTMVd1KWkyT6RO9vXyeOffxI/99/9LN7/Le8ev/EAWRP3SQucT4ppfE8i9EziLl2wPHPOxBSUBpLTSk0ys0TnpPfW4EJJVmKQvNfYvPgy+Gwefp6a4/H6Ex/N4nc29Y9xHgnPvcW9Td+fXhKUScc1Exak78PzPJRKpaiN8Hqb4vCykgFprcEZNz6utGFADwnElLjjiUutSSgOizQheK6MmpwxSJm6JzOuUZ4YvczFYIOH0HGFxN0xhMQdcbehExGVGvp5XgzHStyFL6K9Wrr2wrTZDmch7n79134Lly9dxQsvvTTYAv7bN5/Cw6dOD31+uOIui7tX3AHAk9eu4X9+8QY++9lPTrQfibt44/kXd6PuLRJ3Y4iuj+97cNxCXyKcwxR3Rotd0tjBiLvkcBmlE0jcZUPi7hAhcUfcbWg27F6Zx9XjOIk74PCtd3liS0z924u4e/TRxyEYw8e/410j9h/ZMkjcZbcx2KWDEncxj3/+SQDILfJI3MUb3w3izuSTTOJu/P5hfT6ViLpUW4co7pKPMtwy91vcxTF3WduTuMuGxN0hQuKOOLYMvBz63g3RO4GlJgZSqpEvPDlwFwjDZkoNxzzoHDWBeGpy1XMfCtuatAxBFrNsSyOs2TTLGDzGOPwg6E/rbZhAmOpMmfjnv/qv8adPfAlSKfzG+x8KwMIpAAAgAElEQVREtVjMOPb49iZ/DZkEXN79GDR0KttqRnxd35gd2C7nzzPy/FmY5psJHpl7zV3puza8ty8AsDGp6cO5GDOm3R/e1jAJHNjv0tYWfu6p17BQq+F3fvc3hrZPJnmp3czCI4wP86WEYCLZYS+T88HxnB7Lg4JKawVwAQ5ADlx0U3ydTsX7JIJlhm/vae/1aeuu5RNywGS5f9Pipv96j6pplydOMCZfGQYGzgHOLeM7Yz/Iqotn3D5jnI7aZhSD++ZdxMiqh2eqfZenvl1Wvbo8+2stwTgPx4eK3uuG65Al6np9IXFHpRAIgpicrMli/PCdn5jmY4/WgGXbuV6MWTz66OMAgPdWS/j4hx/ua38uSceGztIqwEKnXWGJsEag0gALJ8W5CtArfShpzM8vLeGTjywBCMfCv/k3vwYpJdbXV6dqzxYC9d0GKuXyLLtJHALp8gD5rOL7gYJSDMDBJkAh9g4XAlrrsEQDQpE3r6+Vg4Asd4cIWe6I4wqLlq3jVbq8Fp+Y9GrnoMVgUstd8m9DH7gxa9boBC7TxqodR4yrw7L/vB977PHk/z/xSJjJMrcDZfRz5C7irUe7Z8ZtGIcZi79gI49nfs/Ftel0byIRNxP9zYCwkLFjIwgkGELLQ781jSULGowzQ/2lsMyDiKw/mjGoIEAQyMgtS6FYLKDVbKFQLPT6HP1nsE2N2MVJQlgWoDW0RmgBBOC1u3AKNqCje4uhVwM41fGhS9J3q0TXMud9/fjnv4bTp07hX/3aPxu5TZ5C2NnWpvR2hu9zWO5MrpGDVgyTRc5k6WBqb1k50+yH5W7EkfrcJfsJn4tpL3mmp7eAcMtK4sj24iUwSOY5R88CzvlMMxIrpfvOpw8uoIIgyeSqtQJjfKT3xUFZ7rLcgLMsd7220rX8xlvejP2LCqHnQadr2MZeOanLPYlbptYMjPO5WF8mt8xjCIk74riiWVSbLnpxMGnw2c856dmrW2bybxJ3E2GaQPzDv/+LePW111DUCt9ec/HOtUU8dOJE+CXr+2sssxR3Yz0o0/uamog7kx4zUW2seP/EDUjHVjEGpUKnvU67A0sI2LYDYXF0O124xUK4X1+/NKRSECkrBotq+IVd6wlKKSWcQgGB74MzhsAPUN9pYGl5IeprGEQYTxYDGcBrdQHGUK6W0Ol0QzEYiTsdxey0dpsoVcvhCrgYmJz3JTIauEZ7EHfJZtLHR//0GwDQK7geN79ncZfK6GdQdwct7o66W+aII40Vdyztgiqntw7fbeKOcd6XRCt0/B4v3PZb3Jm+I3F3fCBxdwwhcUccVxQ8AL34CVPsD8vwe0+7lAUD+5K4OxjiCcSffP4J/It/8es44zj4lQ+8bfQOhynuMhKpDIm7DGee9Dc6EneMoc8FKBrRSY2veFutNDgXYBxQMq67pCPLX2/c+H4A13VS/Qstb2EPWWT505BKwhIWNAt11eD4jUUjFxzNRguFggOtAGHxpI1YjOqUhS/sG4MQAhKRJUGZrs2gqhm8qFOIu94Fw288+RyeaHTAGcenP/Nv9yzuxnHQ4i5OsjKLOdSREnc8PamfqlsA7j5xBxaKmTjeT2mdxKH1tXXA4o7z4dIGJO6ODyTujiEk7ohDZ/BFkxI+e302pC1y8YM5zwt90JIH9ARf/4t9fH28eSQu5ixleP7TTIjD2Lk8RcNTcJbyjWPGRI1Zn/UEiE5tFwkkaIQ+iAj9wiKxlt4+bSFjLC6sHk2wEVrCLGEBDGg1W/A9H7VqBUxwaKYhwLG9uQ3GOBzXhus68H0fUmq4rgsWDzLOwTQglYRSCrbjQCsNpRUYY9EELvRg1Sr6jDMonZoEIbQ0yShRivQDdOoSrivALIlWs4uiW8Dnv/w0vu09b0On24WGhFISq2vLePWVqzh9ahVBEIAxhoLjwPcDCMcCuAAY4DgW3ELYtyAIwj4ohXa7BSklatVqeO5SIdDxNdewhBNa+iwNFkRuqZxHCQ1Y77diSGaB4+aamQkko30/+oUnobXGZz7ziZHxggeV7TBr4p/XjW1acacMdT3jBBCTig/NVGjdNYq1GNMiW97kKVnZMkcvuIyzwDIuZlIqJs9CwSyTXU1KXpE2K7KEYt4YXYZ4IST1Wfx7xlmlU+Mts3RCTEZG7FgAxh4KWulcRc8zYWEGVcZEWNCcseyH1BGGxN0xhMQdceiw/iHIUy/cOA3xtBMuEnf7w17EXbpcwcSP/n0Rd/EEWQHJd6FViiXfD8TExe1DR3EtGp4fgDMGyxKpFOWilwSFAVoqQGtIqSAskVjF4CuoOFujFQb1h5kwWZJeXKkAOspu6XseoDUsJ8xHxjkP04ErjcCXUEpDyiAxJgYtD8WSiye+9BzWV2o4c2YFtmuj1eqCM45isYj6zjYq1RJ2Gy0sLS7i+efewGtXb+C7v+1hMCtMNc4Fx8btbayuLUEriU6zCS44/EBia3sXRbeAYtGFazN0PA9KadiWQLvr4YXXb+LU6iKKBQv3nD8F27GhbQEtQxWnbQ6mwkla4AdQMoDj2MnvMwtxF2/TbLfwU199Hrbj4lOf+ljftkdN3MWfDXoJACTuSNyNJ09G51lynMWd9ANIrSAYh7Ct6Dgk7kjcHUNI3BGHQfphrHS/u2P65TBpnaRBVDQZjhNWAGaXy0GyxF1f+weU6vo4E/+GP/zDPwqlVM9SF2omAzqMS+t7qWrDDqPFXRz/xQYmfYyzvhi15N8aELaA1/UgpYJtCXTaHbiFQpikQMkkBq7XDZ30LHFLZAATocsZAwutVlpH1jUergxHn0tfRm1rdHdbePbF13HvPadRW66iUW+i1Wzj6ecv4W33X0BtsQSlFfwggOvayQn7QQBLCHDBEQQBbNuG1w1we2MLp06sgjMGYQls3L6DlZUqAi+0UloOh1Q8itFhUFKi02mjWqtASgnpa0BzbN7ZwPLKAp5+8XWsLdewvLyAa1dvY31tCS++fgWnV6sQwoJj21hcqOKV166h1fHwpvvOQEqJS9dvYX1pAW7BRX2rAS44tnd3USo5sC2BZqeFlYUFcM6xtL4E2y2BcY5WowXBGRzX7k3fhYgLcw2MjfFkzSkf//zXAACf/eynAIyerB9mzUgg262Qp9wY45plWfHGJnE3eK/kJXYd1iZ3wYT9EnejyVOGIavOpqlGYZYwGzluRrlSHhCmcRPPuceJrcG5eR5xZnJFjkt9mPaP41jTMawml8jel6N/gyyRZ2wr2W+0lc7kBppL8KXEndYcgvMxCyBHFxJ3xxASd8RhkH7Ead0fOydSXuok7o4/jz76I/gv7z+J95050//FSHFnIr+4i7c1LZSGgi/aN46/0hIMDJwLNOpNPPPCq3jvux4EGOvbVkWCLelGYkVkiTtP+rNQC4bjr9PsoOi6CKAg/QBCcDR3O2jstvHGldt488XTcAsOOh0P9WYTtVoZ3W4LC+UFBIGGXWCQ0kehUIaWGp7Xxc1bGzh3/iSCQEJwBj8IwnPYbWNxqQao0CrIGKACD1s721heXkYgNYTF4XUlHMeB1gqe78N1CpDaRxAEUFLBsm1ABtBao9XsoFwsYLu+C8dxsLi8ACU1gsCDsC0oqWHbNr781efwgfe+DRI+GIB2uwsAKBZcdDsdbG01sLayDNu1AGg0mnUoX+HajTu4fGcDbzqzDksIlMpllMplVJcXwusdXdd4FIyOizSTNSdNrHmdFn7yK8/j4x//TZQHyiIc9gQdmDxmjMQdiTsgW9yp6HwEN1/TgxB3JuNrIj5NvzWJuwOHxN0xhMQdsV/wXu7z5LNp3SzziK28gsy0XR54JEn7X/B5Jhp3j+tmeoLz2GMfBQB84jvePbxhSgQNEX80yqqX2rBP3DHDjgPv0jg+LXbN9DwPlmNDWBa0lFEMHSAsC1cuXcPpMydClzOtwSwW1YLjkRtPAEBASQXhhEWwlR+6qzINBEEAr+tBdSR26w1UKiVom0P6AVzXRavRwR8+8RTOn1jBylIltF4tL+CPv/wUzq0v450PXQRnPLRCKsD3fbglB1rK8P9tAV6ww3mjFOBcQWkfr752BesrS6hWq3jhpTfw0AMXcWtjB6trS+AM6LR8bG/vYnmpCtfiUJyj3emCWQLbm3UsLFTh2jaYBja3b6NSLqHT9VBwHWilYBWKicWRcwbFJLTSkBKwRFj+wBYcm9t3ILXEyuISfI/jK08+i295+C2wXYHdRgPlcgldT6JQcCP3Xo2238KLr13B2dU11MoOWu0GbMeCxQQqTimMZywUAK7BbAvMsuD5AZgQYFpC696zRTMWJlnS0ZBS2lgkfZBWp42//ZVn8dnPfmpowp5+bu114WkWxBN3zgSUlqEoN7gCDu0X1WDjpti+1DnnEXxhiQ1rCuGTTl4hwnhSw1yQDQiP9GH2eu3TCYuScRO1PwtXylGut/G9M26/2O097p9KPzNFDldE9MRWX+mf1LG10n1JPwb71ffb5TzmqD5kjUnTNdbMUAbbIO6yEqcNtZke3wPnamplMNna2PaNYzg8d2ZMrnb0IXF3DCFxR+wXLI4VSd3f8cuUxN18opTGY489jh9cqeBH3v4AgBFhBhOKu3jcsL6NehY6IJ+4izcJ/ADdjge34MKyRWLZjceqRlTMO9rv1o3bWFtbjgp8h+fJLIAzC1pqqCCA1+3C63pw7FBw+J6PcrmIbicUU5VSAZ2gi7K7ALfo4vatDdiWgOf7aLRbOLW2HK2kM7iuA6kkiqUSpC/hdT1cv7WJhWoJtYUyGu026rsNXDh/BgCDlsD16zdw+vQKwDguX72JSqmEbtfD2bOn0PXbcFwbzUYHgjmQgcLvf+7LeOu9p/DQgxfD/DF+GIfY6XTRbXtQUmFhtYJOpwPXdRFn4ms1AhSLBQjbws52HZwJcItje7uO9fWwuPjzL1zBWx44C2EzdLseBLPgdwPUFsrY2qyj3e7ia8+/ikACP/DIe6C0hLA4VMDRanVQrZSgZQAhAKkEAt/DzTs34ToCjWYdwirhzKlVCM7BOEOhWoaSGsyyoHRsIdDJcEhGRp4FdxY+sz76ha8D0H3lFI6quEuTZyI9W3GXLVQG2+xB4m50v+K+ZByXxF3vIxJ3+8q04s7w6xEEceyJA59p8eau4NFHH8cDRXey7Jc5GXyz9Fwu9fC3Y4ZbnNmx0+mgXC2FLXCeJFJRUeZGpTUE55BSYnl1CQzA7ZubWF1bArTGtcu3sL62Biigsb0LwcN4p9tbu1hfW4IlOHw/gFNwYNsWikUXRWaj2wZeffkKbm5u4b0Pvxm2J/DC5UtYW6qhtlABAHhdLxSiWgPQcBwHz71+BUpp/OB3vg+ry4tYXKrAsgR26y2USyX4vo9Wuw0pgTOn1tDtBtAI++R5AW7d2sLayjIuvX4TX336DfzwD30Q7U4bWivs7DawUCjB8wL4XQ+MaTRaLZSCAkrlMnZ3GwAYqtUSXNeN3DYZvK6PJ558Fr6SeOR9D2JjYxuVShFL1Uo4mQGDlAqFkhWKRs9Ho9lGpVhCrVjCe9/xFjDBEHQlNBQcq4BKtYjA99FqNFFbKENqBafo4uSJdQAKC9UapFbwuj5azRbqzQYAjZXVNaysrYZucFqj381r8jH3yUfejd1WC4899vhQvbyjhpIKXPAwKYo+WFdxztnIemrEdJhFXVheYfLSEwRxOJDl7hAhyx0xa2QcID1oNklhWgHP2i5P9koF9Lncpbfp65+hrSSDYoZ/vel8dEYGrtQRc2yzdxgLBYlWambWBKXCSbJSGla0apv+vX7rN38b/+4P/xg/dm4J33PvxZkc00y/O2avrhx6mS0ZA+ccu/VdlMrlgZi7MPmI6zhQMo6FQBgTF22TNoJwy0a31YFlW2GMnCXgtTqQSkMpDSUVPve1r+OBU2dgWxa41nBdC54nsbmzi/PnT8IPAhRLBTAlwbkF23bgtZuoNzxwxvDV515GrVzE+lIN58+uYWOzjvXVRfiBxPbOLopFF4ILBIFEu+Ph1Kk1vP7GNZw7eyKsn2QJcESZOjtdvPTaG7jvntPoeh7KpQK63QAF1wUXArvbDSwt19Bpd1Df7eAvnnkF73nreYBzrC4v4OatDZQLLhjn2NrZxcJCBdVKCe2uD9d14Xk+XNdBEATQKkzSwhlHp9PB9nYrFK4lF25BwPM8SI9BaYVCwQGg0fW6cItFcM7R2G3Btm1oFYpWbmtsbe5gZWUZ7U4bnu/BdS2USiXs1ptwXAEtGV586Rpu3trFh77lYfy/X/oivus9b4clGGyLod3uwC1VsLW1i4VaGa7jwC4XYNlWeE/E42fKkJe/9+Wnca3rGUXeflju0vdYZuxYNGjTcyg2YFE0Zt7MKcSmjcPLQzpeedA6l2Ywlo/z0faArOtm+s5kuUOGdWWmmS7jc1Yyec4mZVbihCIZljttGBfpmLYkbs3wftXJ2Ii2l8PHMY27acsqTFpPMB6zylQlLrLcMaTHdfRVjnsxK66uLw9rbPFMnTNnLAktGUmSzXP4K5Exdo8y5JZ5DCFxR+wFmfHyIXGXHDHHNntnX8SdDotjh+n+w/N/9NEfwXnXwS9/4O1DKeb3j/AAfhDAsW1oDXS7XTiug1Cj9dyYGvUmKrXQAjacSUOntu1XdemJXrfewWtvXMWZ0yegAolABlBKw7EslCslXL16G1999hn8wLd/AE899ypWlqs4e2YVL75wHbVqCecunIbSCgpAZ2sLwnLwpa+/gq7fxfd++G1gnKGx20apGLpOaobQFVMqlEoFSKkQ+F1wxvCVp1/EPSfWsb66BKdSwO5OE65to9v2ICwBx7Fx9cYN3HNmHZ12F4H00Gi14XUDrK0sYbveANDB2vICrm/cwmKlCgDY3uyA20VY3EK54OLm9hbOnFiDgka5WsLtO1vY3WljeaEKqRQWahUEQYCu76NaLePmrU0UCw7qzQ7Onl6Disbdy69fwVKljKJbgOs4+NJTz+GBe87AcgtYXKqFtewEAK0huA1fdtHt+Gg3FNZWF0MXUYSC+A8/9yS+61vfAa01uI1QJBZsaMkRSAkhANtxwolxAHRaLejAQ2O3hZbWuO/+ewCmozqDDGxan+xohHz0C08OCTwSd9Nx0OJu3HU4aHEX91VHtSv7PRDifmW4bt7l4q5vzEeybK/iTge9sSbixcwJxV2SqMuwHYk74sAgcUek0QZ/dm4YIb30xdGDLO9kJCNOJYl1OES39PhlZ/KzTx728Yqe7L16etdhf1yi8rji5Lnu02wvlcLP/b3/AaWb1/E9pxfxnjOnx/YlTW/CkYr5iP+XJxuFAyASknHdrF79IQlojU67Ay4E7LKL1sYuHMsCBIe7UAI0UN/eQa1WRbIMnj5HxsB0aPWT0odtWQgCBa3C+DrpS0hf4vq123jqhddxz8kVnDu1jmtXN7Cx08A7HjyHzZ1drK0uIfCAa3eu4OK5c/A8H/V6E45g+KNvvoB333cBD9x/L5TS6HR8KL+N7Z0GlNT4s2dexA888i5YgiPo+CiWSlBg+MpXn8OHv+Wd2N6qo1RxoXSAYtlFu+mFMWsW4LgWWm0bnLfBNcPn/sNL+Cvf/zCeefklXDhVgSUAz5eQSmGnoXF16w7e/9Y3I2gpNNo70Izj1eu38L4HH0K360FqoFi20G53UXBc2HYRjEm02m04toBWQLFcxE69gaXFJXgdH8K20G03UKlWQiGpNTpdiYVaGa1WEzKQaOy2Ua1UEaCN167cxptOXwCzdvHcqxt48L5zaHXaWF9bQeBLdNuhNbRSKSHwA0AI2FZobQsCCSgF13XQ6XTBLQEWlXaQTIf3IwuHjgwkuBLwvA4KbgGe5+PyG9dx8uQKWu0O1tYXIRwBbtvh9kxDagmLCTAZjcx4fi3TJtx0bGjoArzdbOBnvvYSPv2Zj0f30eyy+07L4P0tZVhmg1tWXxzbYB29tFjJI/j2mlFzXFvxs3/SuL9ZkBUPlkVmIpmUMGBgCFQwFOdoEmTG/sWLmLrnRZF1vEnm1VmisG8h1lTKIJBhZt19yAiaru2YnE+G+I7PIy3ysjJbioEauzLXYm3qePHisx+Ai/Fxf3yC2MCjBIm7YwiJOyKNSdyZVvVi7iZxN7gqOO/i7rHHHocjBP63b384XyfHYCxbkPzWaddKhk67g0KhAK0UWo0W3EIhrCHHGbqdLqyCAy4BHSgwwcBcC0wDSsqodltqwo7IqqkkmIrcbywGr+uhudtGvd7Cv//q0/je97wNWgFLS1VcunwLZ06vgkHj8uXbePH16/j+73k3ODS63S7+4E+fxPd94C3glgu3UITvA34nQL21g0qxCAYOxjgazTZqS1VAAzdvbuLVGzfxHR94B2Tgw2Icna6PQqmIa1euoeSW8LXnX8EH3/UQtht1OLaF1aVlbGzuoON1USw6+NKfvg5e3cEH3/Egbm20cHJ1Hf/PF76Mv/bIO7C4WEXXUyhVi9jZ9FBdLEIpiW4jQLMdlkfw/C4cEV6fW3d2Uaq4aLc7OLG2AqkY2u1GVBohgJYaTsGF6zqAVtjY2sHSUg2WsLFbb2ChVoHv+2DCRqfTRbFogYOBMY6trTpKtQJ+/0+exHe9/R0oVxgCFWYD3dnexZWrG3BtByfWFwGu0Wi04BYsOI4LYVlgjOH2nU2cPLGKS2/cgGVxuK6DSq0M27bBGEMQBOCCw7YFAj8AYxYACd8PAMWwtV3HiRMr2K3v4rlXXsfF0yfAYOPEqVV4vo9SpQAwBsV0z3rLYLTuResNfd7B//cLL+PTN+r47Gd7lryjIO5YKuX6cRN3yftHs8zt9oP9FHfxHFcGEsLqn+Cr1P6mBDdJ/46ouBNx8pd9KM4+rbhDWrRlCLa9ijulFYQQuQud323iTvzCL/zCjLtC5EVJ+QuH3Qfi8GGch7FLKddDHaUR10r11YlLozWS9OOMhX+Uigs6m91GRtXKYWzYiy6rrczzyTzO6O8SUueTzEt0/x/GetOO+DrE+6T/jM3wMUB8zuk/Q91L9a8XM5bhwpNqI97XxG9/7BP4pV/6FVS+9Hn87MMP4T86f3KivgOhAAuzSuqkX0qp/mNGxcMZF1CBjIwm8floCEvA93x0Wh0US8Uw21jUJhcCPHK/5YIDgqXGZ1ggPCwqrpPfinMOGUggCPXkpTeuouQW4HcDbG82cOv2Dh689xxarTYcS6Dd9rCwUMZXnn4e68s11CoFrK4vQ+kAnXYb73zgAm7fvoNisYiNnV3YlgPbcqAZx3a9jYXFRWguAMbheV0wBtjCQrVcgNYaRbeAVrMB3w/AOYPrMtRqZVSKBVRrJdSqJSwsVuD7EsWCiy/85dNYKpfxwMVF1MoC1XIFq4un4RQsnDu5iut3NlBwSuDCguWU8NTTr+LE+hKEZeHGzW08+/JV3HffOViWALRCs9HGyuoSNjZ2sLK0CC44ul0PO7u7UFrjxNoyioUCNEJ3UcsWEILBsgWU4rizuYNyqQiLc3TaPjzPR9G10Gg24XkemAB26x5sCNx/32loqSFsgW6ng516C69fvo2Tq0v4/JNP48KpNVRrZdiWwPVbm6iUC2i1WigWXCglUS4V0Wp3USoXEUgJ27YBBViCY2erjsALsLGxjdcuXceJEyvotLsQwkJ1qRbGChZcnFpdxu2NLVSrLqT0IAMPW5ubKLkWmLDABO+N03DUZtbGA4C3rC7jIxdO4W/8yq/h7JkzOHuuV8cx/TwYJLm/AVi2CymDXNtnfddH8kGY5CS9n1Iqel7HE+T+Rbn088TELIXW6LZYzu32cGzGh57Nk7xjQiETP1zCcijG92NsSUpEx/Bx+t8V/SitwiQqWoGj19bg+yFxNZ/SbdLUn3gg9B3L0DxLXoqjUVqDczF2u0HMW48/R5aY4Q2itc+a2n8EnXOshQu9Gp1ON3we5TwtpRF6kOTb/MgghPjFqfYjcXd4kLgjAKTeEukVr/AvhvGCqO87zaKJ+my6NdR+DtRA4fI0edqS0f6j2kjaGmrbtNWEL7Qcm/evtA5/ltXm4HY//49+Gf/yX/2vuP/pP8d32sBHLpzChcXFifrcf7DkP8mxfd8PhUWvE+EXKnxBKimhlIJl9WISOONwXBuAhoziueJJWXIGvTlT+L8MSa4VhnA480jsMTAoX+PK5evQWkfJVTRkoFG0baytLKBYcOAHPsAYCq6DhVIBX3zqebznofvxzAtvoGALLC0uoNXqoN3yUVuowHZslIpFfOOZV7Hb6uLPn3sDD1w8gzu3N1FbrKLRqEMroFIpot7YRcEthIKJh50tuA4YD2OJHMeCbdvwu100GrtwbBuO4+D2xhbuPXsSri0gdYCFag1/9Lnncf8Dp+F5HhYrZdhOaNHq+hLPvnQF508twbI5SqUKzp9eAecAtxh26w00mx24rgPBOTzfgxBhyYJKtYjl5QU0dprY3mnCcWzYthXF1jJIX8KyHCwvLWC30UTX8yF9hj/52jN484XTaDXbqJRL6PoeKqUFrC4vQqkudnebUErDdSyUii4qxQLK5QLWl2uQUkMpBSk1igUXX37qeWxuN7CyUIWMksksLS3Ati2USkUwxrCzVYdtW6gtVCAER7HgolIugTHAdV2IJKughiUsOLYFwRhqyxXYthW5WGtcv7WBbsdDwbHBoCMvXtY/uMbwkQunsf3U1/DTv/7b+I9/+NHQrTgZ5uYFsfTw7UvNnrH9uLaGYIDWrN+KOCQk0sce3+bBiLv9O2bSpvH8JzlO+kfkSf3Moa0GPtPIfp8MH0VHtS51Iu5MzFrchY0ZBoKh/Vz2Thbeb5NiPp8c4i7nXGVqcRctDDiOE8Wj5z031v/+OiZMK+7ILfMQIbdMAuglkdPpIPfoITiYuMREegKRvGhmcF9P6+aUtV+e/vW5t2Sc92BdJsaGt53UXWVSF8w812jQbfbRRx/HgmPhHz10HqcNQoa/RNQAACAASURBVG7any7UbBp9K6YAup0uCgU3dQIsjGWKNu1LZpPUm9LJizOxRXCeMhenTxDRMXUvw6dU4Izj2pUbWF1fggoUrl+6g4sXz4QZHZVCo97Cv/vi03js+z8ApQIIznD1+k1s1rt44P6zKJUcdLtd1Hdb+OJXXsT3fejtaHW6WF9fwcaNbbx4/TLe9qZzaLU6WF9YxKtXbgIaOHVyBVeu38LFe06h0+miVCrB6/pQOkCpVEWn04FjAY12GwsLNdTbHQhwPPnsS/jgW9+EwPfAHAVLuGg2w+yayyuLAAq4dOUlnD1zAq+9toGV06solYqA34X0fXS6HpxCCdrTaHbqcAsWCsUFbNy6jtNnT6DR7KJULEMwgc2tDRQLJRRKDprNBgAB3/dQKRfRbHTw+5//C/z17/0A/EBiYaEWCWEFITQa7Q7+8oXX8MF3vQ2ypcI4PQdwHIFms40nX34Zm9cYfuivvheB3oIDF0wIbG5vYbNex/lTJyGVhlQaUAzPvnwZF06dRK1WxouvXsabLpwNRb/WeOHSVfhS4tve/RBu3N7EifUVSBlaNLe2d7C4vAAoBcasMOauUECz0cbtm1s4e/4UwDSEzeD5PpQWKBZcsKjMReD7YAjQbnews9uELwNcuO8C4tGUV+DFfOzrz+Fz9VaSdMWYlCK6F0P3SQnGRc+NMmP7rO9MxIk6hBidxCH9bDLFuw2y726ZObfbKya31EncMvue6VxABcHYBCRa69ACN8FxlFYQXEAqCZHhMpiEBUzplpkmK8mKKYlLHkdDxsKSMhO/x00iLUetOPNCyLDlbjBJmjGBi6l9HiUY0yx8vnAxPosmwsUWxnnOoxwdKObuGELibk4xrrDFbhbZgc9hgdXhlba8cXV5yCsU9wOTuJMIs0JmZdk0ibQkq1dyPnLou2ljEVRfJtLprkk6JrLZbOHHf+wn8U/fcRGnFhdzWggT/TVie93bMPqnjtY/NQNkNwBjDF7go1guhJuocMLW7XTCbJes333G3I/I9ZKHbr/pf+vU5FcGErIrQ/2nQhfOwPPQarVRrZRw6fINvHDpKr77gw9jc2sH1UoJ2/UG1tdXUd+qo1gqYmtzBy9fvo77zp/E+voynn3xNTxw4SyuXr+DhYUSLM4hhAXPV7BtgUqlgJu3bmN9pQapXbhFge2dXQS+xGJtAdtbO1hcrsILfAjLgg6CSFhINLseFpcXcOPKJq7evo56s473P3gvut0uags1dDyNxaVFbG7vAAxwLBfb2xuolsv48lNX8L6334uFpQpu3LyJk6fW0Gl1ID0Ju+igWCri9q1NLFXLUFzDtmxsbO5gsVaDkhKaCdgWR6fdgh/4KJTLaDZ2UXQdNFtdtNsKXtvDqdMrYDaD4zrhSrov0dhtotsNsLhUg+MIXL9+CyfWlyEDwOtKvHr5Ju45twZLMDiWQLftgQsLX/nGc2Bc4Z5T61hZqsGxXXh+ABm5C75y6SruO38GBceBEAKdVhe+DCKLRzhMlJYoOkW02h2sry/D88MxJqUPpQEnWkTQikXPOgWlgBs3t3D2/CouXbqJe86dhud3YVkCtuUCOpx4btzZgud34boOVtbWoQBYdmQF1P2P1VGGDQ3gjY0tfNJ38I//yc8n3+21PtmkMbVhhwCRykQ5fcxduGCSVYSZMY64QPegftmLQBvsl6mtrGLu6f4N7zd8PFMCMT1wvZjhmZ6VSVLOINlIlribJfGiQ9Yz+aBjStOoXHJyNGlxN/ieN72r8wq+fAeXAOJ6lKznwXLEmVbcHTcRSxBHn0GnfK2htRwr7IijA+Mi+bNXHnvscfx/f//v4nc+9C6cXFjIvV84dHKkWojHGCIXO6XAFHD18g08+9wrKLhu3+ZKKQR+/rEYC3GtdPgH/cJOM0AFCt12Fxsb29je3AGgsX2njif+/Fm0mx4YEzh/7iQeef870Gy2oZSC7wdg0Khv19FodQAAC0sLeNdD92F5eRGMc1y7s4mbd7Zw8eIZLC7WUFuswbJdaLAw3oIJKMXQ6gSo79Zx69YWim4BlVIFV6/eQaFcRLPVhWVbcBwHm1vbqO82cOPWJp55+RK6HR/b9V1YwsLDD7wZS2urqC4sgVkuqtUqbt3aRK1cRK1cAmfAQrWMZqsFT3lhYfC2h4VKBe3dduLK6tgWpAyiOnMMzd0OWs0OqpUSGNdgAtjc3Ea366FcLUcTc4lquQLHdlEsuLALGpVqGS+8dgVKSmxvbkN1PbRbLQAatVoJMgigJBAEQKvVDcW3lnjgTedRKDhQSsHzfTz/6mW8cuka3vfOt+Ct992DU+uLqJQcdLoeypUSAOClN67hjetbcCwHTz33Gr74F99EvdHEjdubKJdLkDIsXL60sIhGo4UnnnoOt+9sodlsQUNhp96CbTto7rbwxhvX0ag3oJRCvd7C5uYOpB/A63o4dWIV0BrtVgecc1y7fhPtjgc/UKgt1MC0AIPA7Zs3oaUPHa/IsyTKauz9cM/yEn5u1cbf+hs/hlarnXucE0cTpWX0R/UlQMmLYGLoD3E4xL/hNL8jMRlkuTtEyHI3n2imIrec3trJpLVmTEgZJlexrNEvp0E3orwr1oe5GjiYIC+v5W64zt3sxLPJUhrHEfWvquo+1640nDP8J4/9KH7nw72Ml4PDIHalNCdTSBwiDZ+Zt4r///qlG9jeaeDBBy6C2aJ3UTWglUJzt4VytQQmBJiOk0zo1Mp8eJ7pxc30mWtoyECi0/FQLLroNHwoKcEZw42bd2ALC+vrVbTaHTRbHZRKRTQbXbiWBce1oJmGJQR4FKf1yuvX8RfPvw7LsnDP+iLe+sAF2I4Fv+uhVCzi6RdfxZsunoUMFP74z76JN59fx/JiDUvLC/A8D5ZlgTMf3a7E5mYDjm3j+s0trKzUcPr0KhhTCIIAKuig1fZw9eYO3nzfPZBKwW97sGwOp2DBlxJQDF7Hx+JSBb7nYXOrjvW1RWgwdJqN0IJkuXBsB5ev3MKZk2t45qXXUSkVcObMGkpFG81WG4WCiyDQuH5lAxcvnkG9uYvaQhnNdgfPPvc63vW2B9Dtemi1Ovjmi5fx4Plz+Oo3XkGpJvAdH3obdja6cIsWqhUHt25uYHmxinbbQ7FUwJVrt9Fqd3D+9Dn80Ze/jkfe/yAWl2vY2dqFVAzVSgFXrt9EtVSCLWxUFytQUkL6Xdy6fQdry4uotzwoBTiOg2KphGtXbmGz3sS5kysoFmy02h1oMKwsL+CbL7yGm5s7uOfEKqpVF+sry2g0O9hp7eL82XXsbLbwpW++gLNrK3jozRdx/cZNnDt3GvVGE4IJ6ECh43tYXV1MhYUyaK7R7XqwhAVhcaiWguUwNLt1tNtd+J7GqXMn4RTc0JrOw5uGTXCr/+yXvoGbnj9QIy99H/U/RzhnkeWe9X02inHPWMZ5XyygsY0cC39pq1mWZ0Iea1teBtvq84g0uCMm30UPjdATxXz8dDbG+DBJqpnUgQbbN71L89aAG5zv9omMKPFI/FnahZOlH4LR/4TJVvQU4Wz9z/VJXX7zsh/vdBmZWxmfzi6Ufk9aXPRZmclyZ2Zay93xrOpHEEcZpqOHWPrBQUby+YQZhd3/8anP4NO/93/hk4+8e/qmOQeUGhBd+Wi023j7w2+BUhJKAKxvUsZRXagkL7feVCN9jMh9NvqXBiCDAIxx2OC4du0WAKBcLqLlBbh5vY5atQwGDR1oXLp1G+UFG/XdJqqlEhxmYVe1UK5U8caVGzh7eg2MMTQ7HpiwYFkCnCu8/8ELKBcLaDRa4JxFE3+BaqGEdrONWq2MlaUC7r1nHZ4foNNpolQugzEGzhja7RbuOX8S3W4Xy6tl/PnXXwa0xJlTy+i22uh02igUi3jl+p3/n703j7Hsuu87P2e569vfq6335i6SokRRMm3LMuVtnJnYcCzR9tiREiOJB8EA8T9BgvwzA3gmwEwmwCyYiRMgCeLIdmAbgccxJrbl2NotSuIi7ls3u9n7Uturt9/1nPnjvlf1qupVdXWTFCW7vsQluu563l3OOb/t++VDH7yfPE8hN+R5QpaAkoI8z+l3I5SUDNOIte6Q+cUFhoMho0FMs1FBak0vHnHi5CLDfsJ9d51EO4qg7GFNiuuMU6ulxPM0cRwRjVKqdY3jeHzwvlNgLUmS86VnXuOTj30Qz5f85I89zJUbK/Q3YqpVn42NDr4rqNXKSKlxAsEwSqhWyqx2+vie4Ec++gBaQq/dAQPlMARrmGtW8VwPITTxcERuDGEQcOFGm1qlgetoVta72P6IM8+f4fs/fDet+TJZko91/UBrENKw0Krx4H0nx+LAGTdW1vFcl1Mnl8jylLDk8MOPPUi700NKSznwSJIEx3WJBwkOgtEw4cqVGwShT7Ne5w//7Jv81I8+yrA3pDXfAAQbgwHPP3ueH/34o5RDw2A0oH2jjeM51OdqWCPQrsJwcM////6DHwKT8w8/8/fYcD3+3W/8y9v6lg6xhffKCSgmOqZjIevvNdKLdwIzZWDcygnwlwnGGrRwDjOa3iMcRu7eRxxG7r73IHYWBUxN7I0pJuGziuNd1yPLUibT5VmRoRkSTzMJVaQUE83pXdvuFO9n5O6dYrrmzhhbUD8LgXIcbP7uad9NR0V3evan8eSTn+G3P/nR2SeRYtMLvLvvFTsK7MS2TZv02JN11iJUETUsiNct2nGIRxGXz1/lngdOY7EFhfbOubAArEQIi8FsFqkLoQCBSTPUeKJReGszBt0Rg0FEs1bD2Izc5IyGI3JjGQ5ijizOceXaddIsp9WoUa81ePrlV7m6ss6PffRRvvryGb7voXuolcuEoWLQ71EKq2RZxJVr1ymFAa7WXLvZR0nJqROL9Ec9qtUQpXyi4QAlYaPbZX5unl63SzkMkErTH8Z4pQBXaeJRRJKkVCtl3rrwNtdW13jk/hNI4+IFDgjJt155g8c/+BCOo+ms9ak1SvSHA8rlMi+/fpH2yogf+L4H+fNvfZvFVoVWrcwL5y7zxKMfIPA8rl9dp9H0MeR4nsezL11irlHm/ruXcAMP7Wk67R7lMKSz2qM3GBGUfOaWmkitSHo9kiwnjQVfePYFfuiDDzA/X6Xb6yOVoFoukxpJf9Cn1agwGo4QthAXD8IAgCTNcL0Aay1ZnmPMmDQhieknKc25BiYHaRTDYQcrQLua0HMZ9Ado5eK4PmkKG50uVqQcP7ZIEqfcWF5jrlXDWLDS4LoO7bUuJbdgBh2Ohniept3p0GrVkQjiOC3q8oxBCsXVa6tcvLnC9z10P73+CM/3qDXKpEnMoB9RLpfQvsZaW7CUpikCyfpah/5wyOnTR7HWkqYpSRLTbXc5dmQBz/XIg0L/T1hb1DMLMEqP9cHsZm3pFra+tX/97df4RpTzu7/7G7u/sz1w0P5xVx8xdqDMIlbZXnM3IXXZR5R9Rs3dQSJ3s3DQ2rlZ9W17nUtKjTEZJi9Sj/fC5PdYM35XNtlVgRkachOZjM2/ZxXmZdvPvRdy2EasYmc4CSbd76117yaMzrP22+rjN4modp+l2OeA75a4w3F+Uscn94m27UWeIoTAWLP1vszQ4p2wwh4k03LaESooalInt2/W/Gcmxm0QUhbZIkohd1w7n+X8sZNod5EpI6TYt471uwWHNXeHOMR3AMbabcs22P2Lt29XUuAQtw8pBVLIYkCdEVF7L/E7/+E/8qu/9Hf2NuwAZmlj7YndVUbTBqEQApNlmzE2AeRpysWLVxnGCeaWRAJjDS8Ewopi8LMCYQoGsiw1bLR7vPjiG6yvbIC11Ctlsizn5dfPIaWgWi3jex4Li02UliwttDgy3yJNC/2zh+4+SSUMuHD1JkmacfnqMmur64yGEaUwJMsyRlFMGASEgU+pFHKjvcHL5y6x3u5RCsPCMZKn+L5HUApY7/ZJTIbUkhxDZjKqjQpKStbbG/ihR7kSkKYJlVLAYx+4j8D3CMNCOLs/GPHIPXcxGhV1fqM4pr3RRTsOz75yhpNH5jl1soV2JScWGjx0z0nKpXAsSQB5nnNleZ3X3r4KSEphwBPf/wgP3HMc7WjyPMcaS6kcFpIQUpDlOdYalJRoJXAcF2stn//aC/zkDzzGXKuGUoow9CiXApIkZTSMePP8lYIpMze0O326/YhLV24ipUQgiKKYJE7AGELfx3McXN8BAUmcsLK8zpe++TxB4CMQONphdXUDxkTk12+s8NKrb1GrlXEch7XVNsZamo1KMaGzgm53SJbkVMtlVlfW6XZ7hXiwtczPNQDoD0Y4rkOSFM/JdTRHF1sM4xjfdwlDjyBwiUYj/MCn0axTKpeQUhaTTmtRSmGMpV6vUK+WCweNlASBTxgENOpV2u0uly5fRxqDGJNP2fG7u23yu1dfKwR//2Mf5Dc+/gg//3N/i1/5e7960I/xELeAGbM9iz1Evjf3u82aqzzLD9CXHWIv2H0ckYf4y4tD4+4Qh3iXULDGzR6E8jwdpzQd4r2CRYBUaK2KSNZ3oGjbWsOv/oN/xL/4O/8dP7t2mX/+g4/coo3vLMoqhMQYQxwlxbu2OYkdy9lay7FjS/i+e0vyicJrbREoyARr1zYwcY5JDPEgYW25zfLNNt3egHiY8NprFxAGVlfXuLq2RhzFDAdDHKXJ04Rev0+nNyJJC+rw/mCA1ppPfORhLtxY5pFTiwyiPpdu3mB1dZ1oOMLkOZVKmVq1jFaaaJTyoQdO8vHH7icIHFzXJ0+BPCPNctLU4imfNDOUK1WSzOKXyiSpQQlLJfRYXlnh6o2bpKYQuXVdF2MhzTKWV7tUyyVazTrVapncGo4ea1GvVZAI3r62QqkccNfdiyiV86GH7kIpyXyrzk9+/yMEgUelWubhB47T7eZYoxiMEiQ5eV7cjyiOwVqi4YhoFHF9dYUTJ+ZAGvI04eql66RJhhKa04tzXLm6wjAaoV1FpztAIHFdt9DgM5IzZ6/guyFaO3zzpbdxtEccj5kRjeXpF19HAutrG/R7A4ZxSuj7SCEohwF3H1vAWsH1GxuMBhmVUgnf94iTlFarRinwWF9vUwo9yuUSr7x5jtW1DeIkQQlFJShjjSBLDe3egFLJR2vJRrdfeOutoFQKiOMYpRRxXLwLXqD56z/8MYzNyfOMK1euowR0NrpcvnqTOE7JkpQ4igsBczuekFioVsuAIEsz+r0+WPj6i2+MI4mWGxeu0F1ewyQ5CI2xqpAJtUVEaJYsSvHS280o0G8+8RH+z4eO8uSTn+H8uQvv6Ls8ROH4tIh3PbVQKok4nKreOcb1rYf4q4XDtMz3EYdpmd99mC4UzmdFfnbkh09rrRljcBwHawxZvj0N4iBpPfulZc7CQSUNjLFjkWoFlt0Rx32OuxUOmq5UpJFOU368e8jGdRpqv5vF7BSmzXPkBr3D47yZMjSjmP7JJz+LEILfeuIjm7VxWzjIPdlKvSzYJyViPPGcvIOzxHktRUTGcTRSKmYRvEyk7sS0pMZ0UENK8jTForDG8tRTL3FsvsnqWpeTx1qUKyX8wCPLcoy19Do9JJJKOeTq9WWWlhqkWVLUuUlNKSzR7XYYjDJq9QpKQHt1FaE9qpUycZzQ6fU4ujRHmmVICd3uEK0c6o0KSRIRjWJGoxiBorXQwJgcrRVKa7IkI0siUhS+7xH1Bzieh6sk3U6PeqNOtz/CkSlxmvLVF17j9NIiD957F9eurTDXaOCHipsr66yu9SkFPkeOtPijrz/ND33oIcJAUylV6PWGWCs4f/k6jXrIfKtOEPgopej3B7iOpt+PaDRqrKy1KQdlwpLLU8+/xMOn7sLzNUoJlKtASmye09sYUK6UiaIRQeCSp2CswHHH0bzc5fNPPcMnPnwfjWaF3OQMBjH1ao3BoM/KSo+nXzvPT33yMQbxkEa9SRongKWz0aVUCmg262RZRrfXIwg8EpMTuC6O1gz6ERaIRjHPvHqOjz/6MEEgWF1bo1SpEo0S/vwbr/IjH/sAzVZlTExTCDcPBkPiUY7jOZQrJZJoxJnzF5ifa3F9ZY0TiwsIIajVSoyiCNd18DyXNM3QUpEkKaVyyPpahyhOWZhvMRoN8XyH9bU+1WoZoexYKmREmmfMNeZI05RrN5aRUnDi+CLalVij6Hb6NJoVhMrJo5wXX3+L0PO57+7jeGFQOHfUWNRYCpgVyZuV8jzGZ7/y3A7SlYP1b4WOWLalxbAHlNqHCGs8rux3venua2cq4MFlFcbHvwdpmWyTfSh+z/5p8TPuxy2ifsUFZ7Rpn7TM6XHMSrGDRCUHIXeIaxdtmEi+TO8/SdUUt+zv7Wb63ywYuykpuo1YZqKtN2tefqdpmbNht6cA30LTbjOdcpwSm+cZUii0du68LGR8zglB3O2mZU5D7TD+90vLnIb8HmBOvdO0TPVrv/Zr73JTDnFQmDz/tfe7DYfYDmOLTnlvp8f29Wo8MAhRaFElSbJpEGwbMA7gzZx1xf3mFvv5ZaavN6HULzTK9h88dx53Kxw41dS+d2mpAlkMunt566cbsQeM3c3qtsliOf77tz73O/zP//SfsfT8N/jVD3+AT58+WtykXaxbB/+dlvEkwhiSNCtSSjeDcUUkWEjJ1ipRTBLHBtw2L7ko/ifE2JDeSxhs/LtGg5R4GPPq2Uustbt89OF7MXmO77ukaYqVhekZhgGO43D56k0cRzEYDKnXSggpSJOc5eU21VKJl85e5K0r1zkyVyOOBtSbDYwR+L5LvV7G5EX9n6MV3d6I6yttAs9Ba0WSpgSeT+B53FhZp1oJ6fa6BIHPyto60kClUdSAYXO0zBkN+uRZwsbGBloJLBlhGFIPKyw0mqwsd7hwfYWVlR7lsoeUkjy1OLqYPA2jiHtOHcHREkc7SKF4/a3LnLl6g/l6jUoYjttWpBamcUoYhpy7cJW5+SrRIMKajBNHF/CDEtdurBD4DkoptKOJo4JpM45zwpJPkiSsrvRI4gxDhpBQqVQ4Ol+nUg7IspQszymHJdbWOjiOoFIpUwl85healGtBcc/TjGq1zFvnr3BkqcX1m6uUKyF+4BVpyY5CIhkOIsqlsKhHs4ZXz13hoXtOEkUDPM+hUqtRCn0Wa1XCwEFrSZxkxHGCVBLXcXC0HkcTDa6rqYUezbkmjWqFNMuo16uFJl4SF9G7KCbNcpI4RSlFEmest7scPTKPQeK4miyJUULQ2ejihz5gKZdDsiznj778LA/dc4Kby+s06hXKpbCo+RGaa9dXCEMPKwza9Vmab+FIwc3lFbobHUqlMkrLInp3y+5g9zf66dNHuf5nn+ftyhxLRxY3v7dboTACzN6poGPsV/M0Mcj2vd42W3Xnfrc3wZ4pYj7LuLsNQ9HkBmuKpaiLs7cYRGbcj4M4C2c8WCn1nrVtQhXbhJRjaZnpfYr+e7txN2aEnGiyTu0/WScO2N/v9TyLfn9zp6n1ds9av1sOb7eJbWP9zHbOGD/Gq1zHQ0jI8vTODSQ7qSmd1D8eELOe/45nMNvBMeP9vg1R+/cLSqn/6U6OO4zcvY84jNy9P7CzPH8797EGDiBcOitYtKsQ/ha43f13Hrcfps+ZZfsXVe937M7r7bftds91sLZskmTv2rb/ud5ZrcYv/MIvk6Ypv/3DHwZ5Z+TCVotNr+vEMMuywtUsxxIIeZ4VdUxsDUE7Y3IFZrwjMx6pNROKlYJswuYKk+f0Ox3iYUK1XOYPv/QCj91/nKrv8ezrb/HJH3iEdmeDWq3KpasrnL14lb/28UfBU/S6MX/01ee4/8Q8j33oQW6u3KBZK2GRfPVbZ/nhx+/DJi4311ZoLVSolkM2VrvMLdTpdfsMk4iFZoPBYEip5HHxyk1KQUitVuXzX3men3j8Izz13Gv8+CceZbW9RrUWFjVzlQqXry6ztNDiW8++xenjLaQ3pF6qMUoG+G6Aq8tkJgGZokTI+fPL+J7D0SNN0rwQdQ5Dn153iKMD/uK5V3j8w3eT24RqNUTkmhsrqywuNEnSHGMk5aDEf/ri1/jkRx+kUikRjWK0o+h2R7x2/gon5+fxS4pWs84Xv/kyP/L4h3BczfXLNzh11yIbnR6+F3DzRpdS2cFxNI6nEUrgug5ZnBMPh1gh0I6L42q0liRpiskEL71ygWNLLap1H6WLN8F3A6wVaEewvLxGq1Vj0BuQZYZarYZ2fJIsR2GJkyFpGhP6LvEowQ1C8jxno9vDdTXVSomz565wz90nsYCSDtFowBe/8TI//oOP4vrQXhvS7gx4/q23+YW/9nHiOEIKEI4HeU40HDFMUirVEqEb0O506XUHOI5lfn4epGJtrcOXnn2dJx57mPm5BkJZ3jz/NncdO4YfBAz66/h+QLc7pFoqM0wL51gQ+gB0u30qYQmw9MfyHVop4nSIQKCURimNNdBdbzMcDqjXKtTmWxhpEbqQUBAGpM23T2JFMY3f6ubH/zCWz37lOX73d/89nufe8vue1f9skmTtWi+RB2X63BlpmBq39hszdrZnpiE3ox89CCPvrOPyGeukmZBeFBN/O1Uzt7Vu9/kn0c3bTak/6O+ZjlDlJkcKOSYiUptRMzbLJ/Yz4G5l3B1kfJuQWIlt63YevyW5sHfU+XaljyZQSpFneWEwjRmHJ+eYJnrZlUGyo/Z7+8Z9iGiEAGEx2VQ0VCmEFDMlLg4agRObJD23Oa84jNwd4r3AYeTufcKBXGCzp9Y7Mcse23RyHVh75/b233ncfpiVbnJQ7O7QD7btds91IIwdwTOzR/Y91535Tz7zmV/ht3/79/itJx7l06eOwjvw8AlTvEkCsJkhHkXIcV3gJH1HSrnrjZs92ZqxbuYqu3XPkPz5n32brz39BqeWmlTLJVZX21xtt+kNBpw6OkfoF8ZFvdHAGPj2mXOkZDxw9zEkCtdxObnU4NhSA9fXhL6PlhpXO9x1ah5rUi5cWObC8g3maiGh56Mdy8wh5wAAIABJREFUB2MFFkmpVCFPYpRWtDs9ji0tYI3FCwMCTxOWHY4u1UlNRJzmVKsl+qMh5WqJaiVkOBrRbHgYUlr1Op4Xoh2H9Y0RxigcTyOVRKJ47rVzzDWqVKshYVVjydjodnFdj2HS5/jRBkEQYBNBKazS63c5d/U6jUoFrVyiUcpad4N7Tx2hWqvwhW+8zL2nTpJlKUHg4zsOV1bWmGuUcB3N2SvXaJZDao0ypcCj3eni+z5CSNbbPY4eq+OHLkprQGByS5alSCnwA48ojvFcDzmOOg36Ed969S08R+E5mlq9QhQlxHFMksSF7t5ci8tXlylXQ3Jr8XyNISFPI1wlSZKYUjlgvdNHOQ6u4zKKYkxuaDSqhdFUKROUfaIowlWC1dUe958+iXYd0JZytUatEnKkVUMIS3cwoFotobSi1x/iux5JnOM5Pt1ej5WNLq1alUatTH9Y1NLVahUWmxVaczWyNEZJMKmh0x6QjJJxFLWYnDquxnM8+r0BWIHNDaHnYa1hbW2DRrPGaBSRpRnxwPLK6xc5dmSxiNxLheu5SCnoDUZ0NgqmUhhHtwW7O4+xcbf1/Uzy5Ioo3jf/0x+w+IkncBxn3+97Vv+zFfXZvf4g0bBt7dn8cyq9cJ8xY5eW5gEzCW5XbsVYM3YezUrnHBsIFIbXtn5t0pfODK6IA468t8atopNb+qJFRstm1GybETVZ9r/SnaBIzdx57Kzo0s43ZvY+cAfjqijGoMm/t+mtHjDzaPe2W+wrdhhh4+NnzqUOHIHb+nZvB3+ZI3ff/b/sEIc4xLsCqcRtD+DfLbDsTKd5b/CP/9H/yKc+9Rn+zeMPvjONuikIQTGSG8ulC9cYDaLxIFT8IjE27GCWR/QAz8vuXorJVeHtzRLDfSePECjNuQvXieMY13X4kcc+wPd98G780EUoQbNZpbPRR2vNEx99mO978B6SNCVNc771wmt4rqYU+oCh3x3iuR6jUYQhwxqD40iOtGrUyiGO1gyHEWfPXSHPLc+9eJaN/hApJK1mjV5/iAVeP3OZhbkWYVik1Lm+w9JiE6UVlXKZKIqJ4phyOUQ7lkY9wOSglEMQhtQbNf70Gy8hlcbmoLTmiY89TLkSFLWYQtIfjAjDEEc7aOkQBiGXr9yk3qxirGEQxTQrVcIwJI5Srlxf4ZtvvElYCkjSjNEoo9+PCMslXM9hYb7B3ccXi1TKPOMnP/4YzWZ1037wXIckzfBDn6NH5ojThOFoxGg0otsbkKYpUkrSPEcoiZQF+cygN0QgqVbL/NJPP8E9J5eYa9UBQRj6VGslarUy86061lqUUHz71Qs89cJZTA6ddg8pYTAcECcxWWZwHYfcFGybwgoa9QpRFHNztU0YBmRphlaKzkYHV2u+9K1XGA5jpNYYilTleq2MtRbXdcbcDIJKpUSSZgyHCaNBTK1W5p7Tx6lUyoziBM/zCEsBSivm5+tcunKVjU6HNEnwHZeXz12iHAa4noegiGZaazFZzlsXr7GyvE40LGoxpZSUywFJFJPnOZ5XyCZcW+8wGo2wGIQwCKWoNurMz7cIfZebN1axWb5Z23OARIxtePz4MT772V8hjpPbO/CvCsZ92jveZwqTtM7vBkgpNpf3AvZdM2PfQRu+A6Rjt2xDMWC93834S4fDtMz3EYdpme8PZqVlHjScvzP8L2Z8P/sNBneagjmNPN+eyjGLBGW/NI39SFNmtWuiqfdO0jLfPxwsLfOXfunvsgD8rz/w8K5td95FbqViJnGC4zpgbMFyKcUuj+xWAGEc0zvgdSevgskNUhdpNlcvXWeuWcf1PJ59/g0afol2f8B99xxhOIj46nNv8LEHT3Hy5BJSSTqdPpUgILWW5eVVjiy1SPIMz3NJopzuRg+pLGHoI5WH6wiwOUprBqMY15VoGWDJiOKIwCnTG/b54jOv8IlHH+RrL7zBTz/xkcJraws9Qq00r79xgys31vjxT3wYL9BkWYTranrdAeevXOfeU0cYRRHlchlEhkCQJ2CFRqoc5Th02zFuIHBUUSNmMDhaIZUgyyR5nvPnT72ASQQ/8KEPUKmFKGXI8hFpmpBkkuEgRivF4kKDOBrhhgGMdf/yTDAaxvx/X/kWT/7kDxapVEqQZwlZmuMHIdrRgGXQ61GpVLh6fYWF+RZKaYQoaum0dlDaIc8NWRKD1ONavmTcn0hWVjdYXGwyGAxwHJd+b0i5EqC1ZHl1lblmk05ngLUwP9dg0M0ZDobEWcyJE4vkeYp2IUss+bjGNjcZNrO4nkuWpXz+G8+w1KzzwKlTIKFaq9Brd3n+zAWuXO/yN370+9C+od+J0UoyGEY0mxWkUihXIawgThPyNOfp587w0YfuxytLvvXyGT546hRKGfwwIMsyKpWQjY0OpdDHL5X40lMv8IGTJ/nyc6/yU098FCEtSiuiUUwQ+KyubFBvVMFaTG557fxFHnngVCH9oAppBIDcFMdZLCbP0Y5m5WaXxaMLWJOjhCUaxayvbyCV4MQ9J7G2kA7ZNaHemf0447v7zJe/zR/8wXayFaE0eZru3//uiBS9k7RMM0XmdZAxZrOd71Fa5maqpVa7x5EDGWgHS4k7yFh5p2mZ264jJNbY24h47NC5E4zTGvf/7WmabZYZCCm3Rawmt3Fr3fRvuHUUS0qxmcK5lc4546ix9t3MFE+tkUA6Q35iK0J4Z2mZ23bbJGkpDGg1oy0HTcu8YwiFkvK7xqEwC4c6d4c4xHcAUrz7VM8HQcF4ab+LjajvTayttfnUpz7Dv338gZmG3buB1OagJUhBZnKkozejctP/7cZ0OG5vTAiAjDGs3FglSzNKXoAUik67Syl0OXl6jtMnW3iewvNdmpUyoeuSpTn9QYRSitfPXubC5csszVXZWG8TOC5rqx20K1mYrzPXaBCGJdKhpNPtcLN9HSEzXB0glCbNc+Iso9sfcfHKMsP+iJ94/GGieMSjDxyl2xsCBbW5lJLcWO6+u4H1R4yiDv3eOqNRj/XlNhvrPc6/fRWb5XhaoaSGzCWNBCvtdXxXEYQOJkupVn1yk/DtV89hoaDWxxQ6diLH8SU//kMP8xOffJi5oy5x3iG3CcIqJC4r6x2ef+ttLIabq8sMog36Gz2kgEuXr+AoS7uzzofvPQVCEJQC/MAlDEJq1RppnNPdGACKUjkgThKOLM0TJymD0RApXBzlY40gSRKiKMLzArTjgVCYvJiILS+vUwqKWjPX1eRZRqtVR2sHKSRLR+bAKpqNGguLTXKTEoQ5zXmfhaUqg3iA9DTDOEe5PnkmSKKM7kafazdW+YtnX0ZrzX/1+GPcf/IEZIY33rqCySAIKzi+xOgc39cs31ihEYZUy1WiUUpuCmbUJDZ84WsvMuhF+KWAxx6+B8/TpFnG3ceWSJIMqRRRFuN4il6vTzkMWV3tMBplZKnk4tU1pCvpj4b4gQPWEoYhUmieOXOeV85eIDOGzObMN+qAZX2jw2g4YjSKiKIY1wvIYkueSETu01tLaTUqGGvJkSQGhJYsLjbRUvLct14mGybFpPQOuu/ffuLDPPnkZ7ety5Lktpx0kxTAv2wwZj8Csu9lHKz/vV0orfd8b96b+cV+v2HGNpNvMlAf4nsXhzV37yMOa+7eGaww40Jgi53k/0s21+1cJvvMyh+fMF7OWnaGV+zU/pM0pell0m+bsWB1Qai4PSd+sn562yxMziHlVnsm/551rs17M/57+rjJMt2uXffU7l6m273Xfu8MOdsH0oP5nIwxhed0wtY2TjFRU2mOtxqYf+WX/z6fe+Iju645IcAs6kXGz2dbgfmWZ9iYfN/c/UK/S2DN+N3bi2lt8x0qJqBi/G5IJUlNjnBUQR6R5Yz6EVpqpFLY1LC+2kFLB0cWZB0mTRmNRviui6sVWhfPPk0M5XLA0SMNdOBhsoSzb7+NoyTaczhz4Qp3H58nbFRJUkspCHC1Js4NK+ttXFexcrODdhTVcpUkNiihsXmO4yiifkw5DHGUZOHoHFFsWFiaw/fLqLQwYpTy0NojTyO0FFy+ep1mpahXs1mGX62iHcVCq4nrh3zhudc5cWQBpQ1WGC5e7eAHDoEfMorS4o0RilqzgjWKIFRkUYTIITEjkijCVQqb52BcbA5+6OH6LkIqGo0aJxfnqJRLlIISEpdL11dpNZq8efYa7U4PAE9rqhUPISxZkpPkBsd1EI4gzVJcR5MlliiJir7GWC6eX8WaFDNmPXU9byx0njDotBn0u4ShhxCSIPSIk7gQW7eC1XaXSrUEQG8wJPBDhAtW5CAM1gjixDIYJGAEX37mBY7UK0hl0K5gFI/ASr7x3DkqfgljDK4jaDSbKOUxHA24cP0GJxZbCJtx8ugi9xyZJwhdHO2S5PmYUMRSKQdsdDYIQ4cbN9ZYatTQEhxf4AaSNM2wFm6udTh16gSudlFaIKRAuy6hX8Eay5H5GvW6zwOnl4jiiFq9RppkWGtZXW2TpTn3Hj9CEqe8cuYCD5w6hleuUA4D0igmy2Cjk1AqORiTc+36MrVaCaUFz736JscW5rBpQdMuAwVWEIYhIklYX75G3BtQqlSwunj2mAxhBdIUtbFWWrBFu63YcrkIIfn0qSP8wv/26/ziLz5ZdAczJuibY8YY1uzuUAsSBzFzsZNIy4xxQQi5uex3nBRqsz+a0CrtaueM/w6S9m6nLy0luQU5Tv8WY8JQta1ubd+zHWiZ/JbJuDW7xnj8G8zWodaK8fg63WiDwCKwBZmViIAcSaEZqYVgU/9TbjFhb92ayT/G+4hJFMsikOOfvX+tXtHNT8bx4vgsN0ghbkW4OutsY2bucevsROpo9/3f/kj2fj6bv2fq9+98r7fPj7a/j5J88x5Plkk81Bqza9JgJumpYlJ8sfXfXr9596qtueDORShRlMzPDHzmW6Q2QnIHD+A9x53W3B0ad+8jDo27d4jp/JnxPw9CJX3blPxTl9mdgrB7dznV0e48br/i+5mX3qfNdypV8N3nZN3ZoAOmdUyK9q0Ze+THxu+2dMfZP/ZTn/oMrWe+xj945P592rTDi7ptcKPYruRmYf4u7DD6ty1bO824tABbTC43i80trN5cpVQKufT2VUaDCN/3SLOM3tj4UFKyutpmNIqQSnFzZYNWq84ff/15SlqjtEZYiUEw6A+5dnWdazfb3H/qJHOtOZTQLK/3yLMMpTSf/9pzNAOPIPTJc4PWEtfRWJlTrVZQSrO+0SXORvR6vYLKX2TU6yW8kmZ1uYs1hbi3JkcqwWA05O3L17GpxXE0XuBw/z2nCIOAsxeuI4RDo1ml0+kTeC7acXjw7hPEUYIU4GjNmQs3efiBuzbvvefpca2bJvACLly+Sr1ewfNLOG6Io31MLjFG4ZUKspEsz3Fcj/X1LqWSh+NorLUsr6zhuhqlFF9//nVC3+Pk0XksloX5OnGSIJUm8EPiaISSgjzLkBQSD19+6jVGccxiq0GUZHiegyVnfr6oI5RSkCYpL79+gaOLcwS+R5xmm/IBrqsxJscYQynw6Hf7YCxZmuI6DuvLG4VcheshpWI4jPnScy9TD0M+9uEHQEAcx3jaRUuF52rmaiH1Zomji3OYzOKXXOJkgOt53Hf6BHmeoR2HLMsQgkI/0Vr+5KnnqAcl0iyjWi3heS5aK+aqJcrVElGUoB2PKCoM2zw3vHj2IsfnW3z7lTMoUUgcrLe7/Nk3XqTkahYWmriug+towjCg1xtSLpdQSpHGKSdPLKCULGoLm1XiJB2nluV4flGfVy5XkEJw/cYax48usbLcRknF8aUWL75+DomgWi0V6b+5RUtNUAooVyu4XlCIqZuMMPQwQmH1xHmz9T1uUt7v+DSfPH2EX/znv86f/PGf87Of+uk9+o6pT3nW+LAvY/HWAbc3Ts06bu+O/o5rr3cOf3aLLEUgNvvgd3OQ2TRUhRr3tbOatd/4CntFr4x1AIVFYrBYJTanFdNGxm4yshkG85SDz9qJ8Xfr+zw57naYrKeOHjubd/zNDOfAdJbIQR7/gduz8zozDMvJ/ZvxgKyYGIsHvNxM426fd30/shVR3K0tB8B3Hw6Nu+9BHBp3B8eUQ26rm7Zmd5+9h9dzcxu7t203BqZ2N4U3VMjdnqud59x+vvGmGcbdzMjgPpi1z6YHcx9MInb7nXMbM9aO44QQu2r73jvcmXG3K3oKY524vY27OE74+Z//2/yrxx/kvrnWtnNBUc9YeOT3MNYo0gqtseRZztlzF2k1a2wfL/e5Z4JJuHZrxdiGKyJQAikk+TgSggWb5SSjhJIfkBkoB2EhNdDuoF2FVgrfd4t6ESF5/s3zRFFSaJlVyjTKITdX1zm2MEetXuf5l89y/Og8zXpApeLjBy5CWaQ0fPu1yyR5yqljS9x7fJFaySfODJ6jubGyTin08UJJluQEQYgUEJY0oy40G00810dplzQrmA5feP1NQlcxGg0ohSFJFnNldY14WBgvXuihxjU7tUqFVqOFxXDu0lXmGzXCso/UEj8IwRikUMw1aoRBYXC+dvYCK2ttjh5ZwOQZw17MwkKDNMtQ2ifORiAsyhE4niIajRBCUK1WGQ0j6o0KEsizDNd3UEoSBB5+4HNscY6Tx5dwHIXnaTzfAySu4zEYjAhDj163T61WIU3SgngjlVTKATdX1ykHAYuLLZSSIIq50mg0YnllnUtXN7jn1LEiKptmSFnU4nmeSxTHCCmIhhHVSgnPd3CUJgg8Vm5u0OsPx5TxBY37fSeO0GzUEFIUE9TMMOzH9HojBBbHFQgFvh+ystxFKkOlEmCFQmJJ0wzH9xgOhihHo6REOw7H51o8f+Zt6pWQWr3ERrdHbnJcR6MdB8f1+MJTL9IsV6mEPo52eeD0cYSwlEOfubl68T6PBd0XWnWCwCNNEnJjydIiMiiEJE1SlBKMogjHUYyi4h4orXj6pTc5stBEO5ooSnnp9XNgDMYYrt1cJUkSAt+lVisReh6tVr34oMbfgxEgHRfheDiOi0liotGILEnxwxBEQWzDdJR+cxzZ/Ql/+vQRjhLzP3zu9/n0k39jWx8z6Zv36u/zcSRvEr3Z3cUcbFzYjRmD4D7Yz7izJt+MruzKSJg6zIwzEYQp7puY9IHvsvdw0galFGfOnKHVak63dtzmibNvq4GOq1BKYmxeOFXSBK31+P5KLIVEhlIKKRUZhhyLMtvfge3zicnYMMu42x3Zmjggcztm4tzjue6Vijmp6TNbgdldp5j19/S1N9u1T0BxZw2dkGpb5Gz/9/HOjLtJZFAKyYQ5urj2rSK/M74btU/m1VYjZpzq0Lg7xHuAQ+Pu1pgYdbNxAG/NjN13p7vsQU59G9HAaexn3L0buNOI3UHONX3cZPB+73Fnxt3m0ZsRPLt5tlne60996jO8/id/yv/1Qx/C20VvPrW/2GPqMzEAM0OapGBhYaFZpL9uG/z3wWScnZr8TSw7O2aWW1tuYzND1B+SxSmD7hCtHZIsxRpBGiWMBiOEsLi+w2gYIWBsJBlOHVmgWg4IfQ9JkYa5vLZKs1al2xvgOJJGs4LJM/zAL7TWlKTf7/PwfSeYq4ZU6nWKMdZw6doqnpY0G1Uc10UYSZQUJCrr7S71aoszF69jTM6bb1/GFYKbN1bJ85g4TWnVy5RKJXy3EKS+udHmxMI8nX4fk0LgO7Q3OmANL7xyjqWlRlFrJS3KkaR5Sn8wIkvTIlJmi7REIaBaCmk1mqytdglCj9fOXKbVLJNlGWurXZqtajHBywzRcITJBBudEcIIHNfBWEMyTEnTjDhOqdSKuq0sy5BSceb8JcLQpVav0OsMiaOsYMIMNEmakZkiNdP1PRAQhA7zczXy1DA/38RaQ24NWiviKCbwXQLP4e67TtHr9kjSjGqtxvUra8zNtRgNY8qVMr3+kHqjSrc3xHU9EKKQHwgDqtUSCEG3MyBOihq085evszDfJMsztKMQQnP+0k2UcihXAsx48vv8m29TdQN8J8D1HGxavEuVahUvcBDCEkUxcZxSr1e468RRfM/FYvH9IsK5ttplFKfEUcIL5y/TqpYoey6XLq3guJowdNGOQivNoD+i3qgy16gihaDXH2BzAwiCMACKSOZgFOFoRbVWxnUcsswSlsto7XBysYUfBNxcXicMfNrtLvVKyNJCk2rJp1YLKZU9Ntp9Gs0a2EIfr9Me0N7o4HlFjZM1oJXC8UPiLEdIxbmz5ylpBy1lIXY9Iz17Fo5UKvz0sTl+4Z/9P/zMz/z1TbmE/TItpvvTOzPg9sPtGVT7Ru62TfT3Nu42f+umEXFbTdgX087ciblgjKHeaLA9fW+SY1G830ptpRIak4IoZEfyPCuy7iii/SbPyfIcN98gjQcM+x08N8QaOZPmRezq3/c37qbXCTGOl0lRCLzf5o3aOT+53ft8sOjhdmOoMH4Peo6DG3dSFfdBSLH7Fgq71YbbNe4OMmU4NO4O8Z3CoXF3a5hxjvbszuXQuNsLfxWNO3Z4Hyfn/rmf+1v8zu/8Pv/hRx7jh4/N73GWqUnXXheamphNJhFSqylP4wFSS6YzROzYNzquHTTGMhqM8D2X9toGgetx+coy1UoJoQRvX76OQiIAx1HFJF4KPMdlOIrJ04LMpFwKcZTC9x063T6eqzm62CquYWGuVSfPM8phmcEwwfcCtCoYKl1HYY3BL5UQWuJ5mvm5Fo4sUlC15yJROI4ojC+hSEaWIydbfOOV1/nIA6eJ04QX3jjDXccXOHXsCFGaIKSDIzVCWpr1CpVShUatzKtnrlDyNbVqgO953H3yGAaLVqowsFRxr33fQ1hLEHrkxuD7Lp7n0e+PcB2PF1+7wOnTS0grCQMX11W023081yWNMwLfJ0syXNcn8HzOXbhe3J9el7lGE9fzkEqRG0Oa5oWmXSlgYa5BKQxQSlIKSpTL5XE6qUZKNRbbFpx56xL1apkgcEjilFqtwsZGl//8tac5sTRPqRwSRxGOligpGcUZy6trrK73qIQBlXIhpXDu7St85blXeOjuk+TGUApDcmNYb3ep1Cq4gUe5EpKlGa1GA8+VdHsDSkFIpVrGD33yPCXPwNMu860m2tV0O33OXLyC57qcO79CqF28UNPb6KAEpJlFO8UkNDe2YEmNUxAKKUBqiVIS7WpKfojrOqRZjqMEp44toSV888W3uOvEAoPhCKUEcZJRq1aI4phur4/nuYSBj9aa5ZU2lXKIMZZOt0+zXiXPc9bXOkRxyl+8+Ab1IMBxXbI4RrmacrVEnuY0K6UiVVNYGq0a1ubkecHA6miHOC6i1svLG1xbX+P08cWx5IMmiWKW17t4vk+tWmau4vPym+dRUlGplw9s3E02PnnXUf72//Gv+YX/9tOMP+nNPmInNvUs7aFxdyvYqVDVtGFljBlHB4tls6V2whJqNwmmrDC8+MLzhUC5MSilUKJIOU6zDKzl2b/4Y/74j/+EbqdHpdqkFNaRM1L87tS4m4TKhBRgILfmtglTvhPG3c6w3ntl3In9woeHxt1MHBp334P4q2jc2X0KXyeEJ4WY6KTouTCWJkW+OxIz97nQ3rvv7Kj2OtPtpE2KSV4dW8bd9m2Twuf9O8lJesleqZgHzXg5CFnLZL9Zxx3k2DuBMaZIT9kGuWM5+Lns1E2ZNsyElKyvb/A3/+bf5bc/+RGePH1k33MduP5/AjHlfbSwbWAQ45d2EpUbk/xYJvsXzINf+MpzlLVLNkq5cXUFVyp8zyUaRTiuxg80KxttWo0Kg/4A15FEw4Qzb1/j2o11SoFHGPrECXzhmy9w+ug8lWoJi2Vjo4erPSo1nzjJWV5pEwYBlUqIyQ03ltuUqiWUtMTRiDRNyYFas0pmC2mw9bV1gnHUSDsSpAIhkMoyShQXL67gK8nF5WWEsZRch2opoF4tsTTXZG5+jjTNUcphZa1Do1nB9X2+9vTrVAKPb736Jj/6Ax/GK/noUoB0XHJjSbMEgyGKE1zlc/atq1TL4VhywUc7GmMk2BzyjDRNufvuk2RxTrvTYW6xhXJcwrKPRjIYDBjFEXkGT79+llPHl3j11UsErsv5K8scP7mEUGDIaa91eev8NcphqTAox5ElKRRpnoCw5CYlS3O0KqJxUZTwlW+/zly5gu/6JGlClmf0+iPWlyM+9NApoijBcRQmTbh27QbNxhyvnbnGjbUudx9fQDigfUWjVuXylTb33beExZIkORcu3ODpV9/ig/eewqQ5GMWVK8toR+A4imq1QrlWJ8tTkiRGIimFZdZWN3jzwmVOHp/DCytcvbrOxz78EBuDDe66e4n+YMj80hyO59HZGGAsaOWglWZjo08YBuS5Kdg9/UKHzhpwHAebpwibMdeoE5QChtGIowtNms06YRjguIr2ep+vP/8695w4xn/55vPce3wJrGSj3cP3NK+ePcepk0cJgoBOp88Xnn6ZB+89QaVa4VizyX95+tsca1VRnsJkhmEvQmAp10ooZdBKstEZ8MzLbzFXq1OqlDAWkiTBdV0aczWatQqu5+F5IXlmiOKUaDhkbqFRfMOex1ylirDQbXcplcOi9klQ5NEKxpNOufU9b0bbiw7hU6e3iFb2GzMm699N487a/XNbgG21Vps1V1OYOPE20zG3tXlChDHeZrYWKQpT2IwHaSu2llkSQbvaNUXYYbFFuvt4fZJnoARGWEQCEo1frpKPhpw/fwGN5Df/1b+ju9Lm2W89w7/8v/8tv/+5X0cNr7H89muUtOXrf/L/8uU/+j3W3nqGZz//B6TXznHt7Zc5+9yXePWpz/PlP/gt3vzm1/jEIwsMrr3JF/7gP3Pz0oukgyElbRDpgP7GTeJBmzAIsSYmyQZYAcYWkWlri1q5PM8xyhmXS9uCoGVq8jGZvxTDwo75xxQLzKR+3Eg5Ppco9BmnFju17KoE3JleeUfvmJi8pNvOtffuO+Zx4xrG6WU/bJGsAEgKQqMI0FlOAAAgAElEQVQxcdDOH4/Ako9TXLfmksqKbc0wdoq4ZXOOsLfxPe0xuON61PcId2rcHercvY/4q6hzN1NjbiKkOaUyq3Z8X/m7eKcmWnXTmHjTzDv4HibadzvbXmwUGGtmMqxNtQxrxsbtu6Qjdyuq7u+0tIIxBrUjn/+dnAuYaZn94i/+Mr/xQ4/ccQTzHWHK0AcKQ89YMNBd7fLVp1/h+FIhSzDfquH7Lp1OlzSGOI25+64jRHFEnhXC0cNRzMVrN7jv1HG0o9hoD+gPR/SGQ44tNWk157h5faUQAXcdhFCFk0BljEZDzp5fZm6uxOnjR3Adjzy1DIcRQuZsdLosLbYAwZWb66xtdPjg/XehtcbkGUpClGZoW0z0RqMEVyXgBqy3O4QuBNUyad/SjwqSl0ajSmZyHK0KQ9VzyPMcNwjIs5w8MfiuJoki1nodOt2Ee+86gXYkVuWkowzXdUiSFJPDN196naPNee679zhJnHDx6jWa9RrlkltE8VwP7brcuLbOWqfLQw/cxWA4pFwpsbGyQaVW5vr1NXzP44svvMrP/ugPUnBo5KQmQzsew+GQSrnM6s0Oz7xwnkcePsZTL7/BEx95iKUjc+S5ob3eYX6hiTWGPDcgMrIsx1Eug37CuQvXcbXkwQdP8+ob53nhzGVCJ+Bn/uuPkaYp/X6fuVaVQX/IyvoI3/X4wjMv87M/9jiVUpm19ipSKJ59/jw/8WOPkufwh3/6DdI0565jcyzOVRHWQWnJF599lYfvXeL4kRYL8y2kVqTRCJOnuF5INEwwxhKEPsZkLN/s8vXn3+SjD5wmDF3KZZ/UWkqhz2AwolopkWQJ0Shhba2LlppuL0I5cPrUIrnJN+vnsjzFdRRKS6JRVkwipcOoH1OtF/WH2oU8L+qMOhs9avUKxmR0O4UchudJfM9FOg693pDA9/BcjySNkFLx9oUb3HPXcZSWxFEh1fEf//Qv+G8+/hiu64AwREmKEpJzl25w36mjtNttKuUypVJIlGaUxkyj1likVDz/0hlCz+HYkXnK1TJCCHJr0VJg8px4NCSKIxYW50AqrJok6O0x4dvRafz3T73E537vc7fsHoyx49rmd65E9W6IUBtrx0y+u88lZHEP7AzNMzsxVmf0sQfRudspKi+lxIicNM3xtI9WLi+/8CL/9J/8GpXA5eLFi3zggx/i0qWbNGoVzr7ybf7JP/6H1JsN/s2/+F84uhhyfDHg0oXzBK7HykZKa67JsNtm2Otz/333ceXaeU4dP029XiWNBwyGOY4fESc5g4FGl1I8WSbPDf3BgMWFgkzJDeuUayWM4/GBDz5Opb5Ac36BcmMBWaojpEOiPKQZ1x7mCUKkCLE9XRd2R0Onn+FmaYE6mAag2uWcnZW9crsYP1d5QONuJ25Th25aY25i8Cs11rPMZ8wXyZFCYac08NQOA/J29fGm54Ti3dTRexdwpzp3h5G79xF/JSN30yQo26Ie29/fnTbJJOo1M1f7thsx9mpNFe7OigXuRbSy73mlmET6t2OGx24WxHi/6UjdOzE8djqvdjmzvsO43QFnU+5gjzSn8UlBbFF5P/nkZ/nNJx4tnu8MTB+21a69013227btvEVsDuVoGKcG5VkhWh71R+RpTmetS8XzmJurUK+WWV/v0KiV6Q+GHDuyyI2VNWqVUkFcoR0c12EwGOJp5/9n782DLDnuO79PVlXWXe9+3a/v7rmAwX1QJHiClChe4mpJUBe1itVKYcfaYUfY4bB8RDhsx9qh1XrXcuxqV9bqWAW1lCVZK+rg8hZJkDgIYDAYDDAH5uqemb7v1++u23/U656enp7BDABapITfRMV0d2Vl5qtXlZnf/P1+3y+uY9PutLFtC8sysAwD2zYy5kxDYlsGUZQiDcmlmXlQEgYqZfKmRZTG5FwbKSUryxt86/nT2LbKifMXGamUidOUfN4j6AbkPRfTNlBEytZWi0KuhKqktDstTpw/x2DBw3ZdTF3DsSRhmqCmKrmcQxBGtLtdkjTl5GuXGCgXIU0xDEkYRmhSQ2oaqiJY36wzs7DK5bkNhkpFdF0nSVJUVdDzA2zLIkpiDo0PUyjks1FCCKSiMLu0wkClSBQn2I5FFERYtk21WiQIAoIgJI4iNDXTkXvq+BnuPXKAi3OLqHFMMeegSoUgCDINvf67a5oWk6M1TEuSt0yKxXx2/w0dx7EAstw300BRwe8FSE1iGCbDtSrlUg7f97ENk/uOTOAZklzRReoSQ5eoqkqz02OgWiXnurhSo1jKEfoRftjFdW1OvjbL0SOjKKrGeK2Kqance9cEhYKHouosra6RpDGeY3JwcpSgL6QdBQGtVhvTMFGllvloVEGr1SHn5Rgs5gmCkHzO5pVzM0yOj0AKva6PEKDrOgDPn7pIyXG5NLfCg/cc6APtgBTB1dllxoaHQChEUUZwYxk2M1fmeensZRypMbewQrmcywS7VcGXnnmRWj5PQkqz1eGlc9McGB3M8vgskySOMUyzr30YE0YRT584x0i1yOzcMqYu+xIJg6iqiuPadLpdcjkPwzDIe04mtJ53MUwTuf2s6RqKEARBhKZpDJQLGLpGLueSkVRk3gJNz0g2NKlCkrC4vEYh72Xjx3Yo9m3s5n9ybJD/7V//O370M59iezZRlEz2YPeUoCjqHY2D+zEv3o7H7vbr3x6X+3Phdd7J5KYTxfasvR+4ywqI/mdVdjY+r2/42hFFEYiMxEtJ4Ld+49/wL//PX+fyzDSpnxD32qwuL3HwyFEWNzdpNrcwjJBHHrmXhZV5Hn9khKtXTmMYCZapUSkVmDh4kHK5gOPY1LfWGZ0YotFoEYUKW/UGEHP+4hxH7juCZnhsbPncddcEna06cRQQ+11azTqGqqAR02vVEQTMz16ms7XF8uwMr5x8Gc/z0BQQmsA2bUzDIiUljn1EP4NPbHv0xLW1zn6OlR1P5vY9TbONiTRJbxLJeC1q5WZ25yBvJ/ToDdZ1Z+3tR36SrU9u8tzteNmumbKnzf03j2/Rr13P4lux6fJW2tthmT+E9ncJ3MU7i/TbK38juNsVZvAm5zS1H/7xeujmprl4N7N+HxWRxfi/mbCbtx3qmd3A+LXPuW37qZ/K5A3+6wfvvuk1u+12v547+RoFkMYJm+sNTp+d5stPvkxBE2hCYXl5HSk1ikUPCBAixdB1zl2a4+DkGOsbGwyU88RhRBwlmJbJy6cvYuoGQ7UqzWaHhBTbtGg0OkzPLVMt5pFaBlKEAMO0+PqzJ3jo6Dirq22UWEdTAwo5F5FmXmVdVxmvFXBtk7GBMqVSAd3QiRIoeg5xkmZyAAoZc2Pis7iyQm2wSrvdyzxF0sQ0TNZXNsjnChiuiaqp1LdabNZbuKbF8nqTQ5OjCCHo9nx0LSWNo2zy1FScnEPYSpgaLWFagigJkdIljLo4tgUoaJpKHEeEaUzoB5CkpHHK9Nwyk+Mj6KaRvStJmnmvAh/D0Hn+5dOMD1ZJRYQuJUemxkmImRqpUankWV1dZ3Vti2dPXuTAyCCmJdGkSpxG+FGAkkKhmMPv+SiKkgln6zqbmw1WVjdQhEIaZ3mSpIL19U1mrsxTruSzMUAR6IbEdg3WV+qoSUqv08N2XBqNLoam09hscPzMJYarRb7y5HHuOjiIoijcPTXOl77zPJNDg6yvbXJ+boFq0cN2JEHPxw97PHTvFHnX5dL5OdqtLlJqOI6DikacxAiRLZg1VUFTVRRNkqSwsrpBvuCgSxWBwitnZjCkhtQVNjYaFPI5kjBEUQXLjTrjAwM0W20uzS5SzufYrLdR0gwIfu3ZExRNmzSKGagVmRqr8eKZizz26FGEgM16nZ7vM1kbpFwqoffzFO87PEkYhqiKQpQk6LrM7q/UUFRBFETcd+gAS0vrHD97maJtMzhQRNNVpKYSBjGmbWVCywp0uj0UVeH4mctMjg+xtdXEsiQZqEpRNXXn5ZydX8JzbTQpaTc6fXKkHrouUTSJpqr02m22Gk1cz0WoGTi73SHgfaMD/Myv/caOFl6cJH0W293jyZ3OC/uNgW/dBHFtGN0GpLv13V6/nf3Andq/PtnWn32dajRdwzRNXvneaf6rf/xfcHRyEosATyo8/cIL3HNomI985IN88WtfZ3H2MkmwwWMPjVDOJVw59zK9jRm8So1ADjN19HFOX2jwwDvfQ4CHmZ/gwP2PEht5Tk2vUqrdg68VeN9HP85djzzOXCPkkQ98ikjUmF9Y4xf/s19Gd/MMjx/grnsf4sr8Mo6l4+YsDHx6m0vMnDvLuVdfRARNXn3hGV576Rkunn2Jg2OTtDa20B2HWE1R0m0ZB/oA/8aN7Ne7p0JkJDA3SVPrl/nhBXf71vB6YaB77E2Du+vafhvcvW1v0v62gbvtfLq9uXNpkqAq7OTPXTsy9qj9BpG9zj1NycTBBdeuZxdtf5IkGeGDyLTJdpfbPlRFzaixb3NivJYPcKMp/XPXZYsJFXEH+jZ7bbe3bq9Q+ffbFHE7OYFv3LY9cNvHdcQtZN/x7hy67XLbC439pDC2vwMhBE888Vk+/4GHGS/kd+q92ZJsP0/c3gVOVu9e716fwlxRdoB8IkCoCkKQUbm3u9RXWrQaHQaLRUYrOeaWFxkfHqDT7VEdKNPp+eiWjalLpAI5xyROMrkB00lpdTrk8nmazQ7lcoFyMc/JMxe4OLvAaKWGYZmYpsHTL53m/gNjxKmPYUiCMCYII5bXNoniNgWnwJmZWYaHc2hRSByF6JZBlGQLXs/LoSqgiRS/55NzXFqtLk+/eoLhosXmcoulhTqFgomumSAEtYEyqimRms7C3Bpz61uMjFTp9Vosr9a5urRBKZ9DWpIo8PFci+dfukTBy+NZDmkC65t1kiAmDRKqtTKqFFiWw8WZJS5fWGbyyARBnKAqglajyeraZgYs1tuYpkOqqszPrjFQKeD7QSa74LoIkaJpOlGSUMi5qFJh+vIaq+sNhkeqxGGCKgSGKem0uxkFOuDYGXFHHMa89Op5Tk9fYapWo+sH5MtFom7IxekFHFeiCsnFy0vMLm4wPJjH8zyWFzcwdMlqvQEJeDkHVapsbjSwHIul5XUMQ2Z6gVHC6QtXuHh5mUMHh7i8sEQl53HowAC2mUcISafb4b67x4gTsF2TibEBcgWPqP87acY0aVgmutAplQs0Wy3cvEuz1YU4pdsJcFwXREpChKY7/MmXn2Zxs8FdB4cpFHPUt+ocnBri5QuXODw1huu4IDRqg1U0HY6Mj2Nakla7Q961KRRyDA6UCKMurXaD+eVNBksF3JxBs+GjqpKp0RqKKkhRsHSJbZqYpkS3TdIgZGO9jus5WV6WqkCsYBt65vG2dMJGB8ewQAhePHOBd95/kOmVRYo5F1WVRHGa6eoZJpqqsjC7RCGXI41TTFXFNDVarQ5bGx1MU8OxTYJuj431LYq5AvmcSxKnJHFC6IckUYLlZBsJKKDoGq7lEgYRG6trFAoeQlVJlAygbEdlJEp/fBF7DuAzU8P8zK/9az772Z/e8VjtzmFOFXFd3lQq9l923uiduy7c5bbtZiHwSZqQ9ufNzHGXXhsM7yC0Q2yP6UmKSLMjIWNETeIEBChqhFBShKqiCIGUGl1hEXdaBI06M6dP840vfZMTT32P0ydPMTQ0zPr6Emma0NhY5Z57bc6evEjRtThaXuLusQHWVxvMzp5GlwkbrQJzawkPvvvjXJqvo7tVBmv3cn5mkVi1eP74LPnSUT704+/nzIVLfPLTP83cqo9TLjE9vcng4CEanQAjP8j07CYTh9+PXjzMr//2n/Cej3+Kkal7+PKT3+Nd738vV+cvMjJ1L5VahYkhmzTssHBlmpSExsI5zr38XQ5MHEA3q6Sq0idoibP7hNjRGk2FIEq30zjEdYeSKJk4vJIAESgJapTpnQoESaJCqqDsCaXNQn6Vnf+zNcSNmwPbEgvXzu0WIt/+YncDTHHTuvZ5IHaOHfWHvTG4r/dMKf15lhs5GpR0792CpM+gSv/dItlb4vbbfxvcvW1v2v62gLvtKUhcU//cMUVcP7HtNYG4rfd+v9Sx63a3uAa2btrPJMkmzNfJQ9upc3syvsW562sSNyl9e7Yfu+b/X+BuG1y9MSHV26j/hkT9XRPNtULZuX3K3Wof7tOf/jk+/4GH2EuZ9YaAan+RdtMrRUZ6k9FapwhVIYkzsoEkTpiensPSLUrFHLouSZOYyeEBgiDCtAyEqjAzu4znmIg+Rb5QVBRVw/cDfL+HYWR6XFI3ME2DJEqoFD0OjQ9jOgZJGhOEPvceHAGSbDISCpZlgVDI2SZTY0MIRYM0Ju+ZRL0ezW4PwzCxHBtNVVEVlSQJ0aSK74f4QUSaJowPVkgBz3Ho+j614RKGYaGomUc6jCNEqmKZJq5lYJoZAKiWy0hFo1jI47omCgqtTpep8VHSNCGIfNy8i6ZrRHGCk3MBBV1XiaKYZrNDvdFlYmKAJIxIk4Sl5XVGhwdYWlrnmZMX8Ts9pg6M0Kg38TyTQjGHbkiiOCaOIjqdLprUyHkuvh9Q8HKcvzLP+HCV6Zl5pKqwsrrB0FCFXM4lDEI810VRFDRN4+Vz0wwU8uQdh78+9gr3Hhqn0+qwur7F0FAJz8sxMlhhbKRKSoKmbZOPmAxWCziWhWEaxGGUgRqpkfc8LNviyRdeZWSgnJHNlLJ7dHB8iJ4fUMhnovDfO3Ya09AolT1arR6e56AbOnEck6bZ+ymUbAMrjVPOXbiK65isbm6S9xxECpZtIYTCyVMXcR0T3dBJwgRHqrzrwSN0e11cz8a1baSmMVQpITXJ8so6Tx87w5GD40gpWFupZ+GnIvNibmxsYVkGjmuj6xq1YpnqQBFVU/jy08eJuxFSVQiCkLnlVYYGyiRJDELQ9QNUUuI4ySQYkhRN0+i0fVqtFkII2r0urmWTprC8vMk9Rybxcg4lz+PEuUscHB+hvtXk0twijmEAKReuzvHKxSvUykU818I0JYoiWN/McknDKKTr+xQLeaIwIoxCpJ613/N9TMtga6uJYeiomtJns8ykQUxDpdnqYLt2BsDSXetdAeIWE9cnakXs9z2ejSXbx+4xZu+wsm8t39/Bf9ujthO+/mbyzdnzGQQ7UTYCAZpCkvZBh1AIAh8hJInf4fTJk2ys1fnd3/19VDVEqDHPPPt1PvOpj/LVr/w5lq5xcKrMlZlVllbWODRaoNOFelPgFcscPPwgpfIQueoI/+Z3P0e1MsRP/uTfZ+7qLMdePMYv/uI/5K4jR8l7OU6eOs6PffijzM4tcuzYi1QrFVSh4zgei4sLfPwTH8FzbXTdQVElY+OjHDx0gIW5NaIQCBMeffidpFg89q738t3vfpupg3extNZAUQXdZoNWs0kvUlAMG69SBZGlWaCoqKpKIjIpF0QMIkbZZ9UiFHYA4Pb2sUCQCEGaCoSSgfwbCVWyjeFsY3TP6kTc+Pv2jLvvXLkH3N2qrpvZTrk7BXfbz88+78C+GyE7zsbt9u6ouT1tvw3u3rY3aX9rwF2f7Wib6Wn3i38rcJfl12QCna9nrwfuVEXJCEtuMegoipZN3nfguYO/G+AuSRLiOO6LI7/19laDu7m5Bf7RL/6n/L3FCzwxOfImQkj2XnPzPb7seesL4KYQRjFplBIGEWfPzmBJia5JCkUvW9SSMD07T88PsS0T0zKZnV/hxMWr5HQFx7bQLRNN6pw8O0O90WZ8aJBjp86St11M2yKOMwHebSr5ZqOFael0uz1cx0bTVFANNKmTpCmartLp9eh2EjaaG0gNxgYHsS0TRVFRdQNVVel2e8wvrhKGIVJR0A2NmATT0BCpiiFtenGPweEC6/UOqqag9XXfqtUSvV7AxkaDSrVIGASYTh4pJZahY+iS1laLfLHMV595mfuPTOHkTVQt88DGUYJuZCycZ89cpVDIkRBjGjqHDo3y1PMn6LS6zC+uMVIb5OTZGTzT5uD4EJVKHk0qlIoecRrj5CxarRZSVQn9AF3XWF/b4tXXZhiu1Gi2mhw9Mo6maXiOjeVYFAseiJRms81AtYSuG5w9P0NtsMLS4gb3HZ4iX3C559AEiiJwXZtqpYDjOMRxwvMnTnFgahDDkGhaBiSl1DAtgySKiYKAKAzxe37Wrzgl9CMWljYo5Wwq1RLSUEnTOANMpoEmJUJRKOddVBXCMCBf8KhvNrJnL0mI44g0SfuiywobG1ucvTrHkQMjWaihphIEAX4Y02p1WVyps7SyxeW5ZabGBigXc6R99kvHNGm1etnzIwSqIjBMlQPjtSwMNuohpc7s/DLzK+uMDFVxHIt6vUkUJ+iWgWnbrG9ukhAz6OVwbYNuO/MAm7YkikI2600cx0K3dOIIFlbWkZqK69o0mi2+/vwpHr3/EGEcIoVCnCrML63R80PyxWwjQEkyuYe8Z2HbBpahkaYptqVTdC1yrsXI8ACGIZlfXKVUyvcX6BJVKvi+jyaVTGReZBqG7U6XSrWAAKIwxHEttpWik75epNUHfp1WB89z2Bnxt8eBW4wjUkp++7d+j0c++Qk0Vb1+ofp3CNwJBRRVIUTPoi3CkG6rha5Jvvf1/8jlc6+RhBGvnX6NC+fPce7SOSytQ9H00ZMGQyWXh+4uMXvlNe4+fJhT5y7zrkdG0AyH0UOPkhua4otff45Dhya5NLvKT3zyZzh79jwzly/wwQ89zgsvHuP3f+93+Ac//7PMz00zM9vE9gp856lneO/jj6OlBi8cO47jWmw11pidu8xIbYq19U1WVzdYXFyj04mZOvAAXn4I1xvh83/8DT74sZ9lZqFFoTJGO9JZqvd4z7vvx9ZSuo11GptLdJprjN/9IyiaJEYjimOiIARVz+5NomSEKPs8D5Han78SDYGKkmr42y4rJUakMULEOzl9O9/DHYK7WzJqvg3ufiDsbXD3Q2g/jOBuv/C4azuTN4b17Uf9u207SbPbQGlXmOXel3M/cJdc1wlu6rm7FlKQ9X43KLwVacqtAmB2QgOvbwnI8nCSXeE4tysrsHtufaPhmbciILl129fCOL4ftt2nnTDLXWGaO9//znd/7cNu9yfZoUtO+af/+z/ngZPP8AtHJq/z1u3X99v9OPuFal7ff0jjNKNZjhOSKOHL336e6UuLpH5EyXNxbBvTMOh2u5lHTggGygWEUMnlXBJSKqU8i2trlBwX13W5MLNAPu9R8hyGahVUoZKkAZuNBmkiME2dNEnQtMxDaOkWQqgYhsX6egPXyRELqG81MU0dqapoqoLrOHTbbUgyTSepS1QpUXWJUDXCMKTR6HDqwmXGalWk1LBck3YrxMvlsh3mNKLd6VEo5AmjmFPnLtPshozUyv33JqHR6qCpKuurWziOgaopxEmEqiioUuIoEsvSsCyVqBtBnDJ9cRHPsonDmLHJYVLA9wMcxwYFRocGMA3J1MQoILh4ZQmVDAyVS3lUVeNL332RB+6eIoljRCroNHvYtgNpimUZjAxUeOqZ05QqDpapA0kGoIQgSWM0XSMMI7a2Wng5i2q1CClMTYzQaXcxHR1VUUjjhD/95lNMDleRmoaiKozUyvh+j263l13vuUBKEPh87akTaIpCbajK3MIKvV7AwGARTdcYHxpE6gqIGN8PEYBtWZiWxemzMywsrTJYLdLt+nR7AcWiixAqutQhTZGGitRNWs02hm6gGzqHJ4ZJUlBQ2dzY4hvPvUzoR5y6OMf9h8YYHy4yMVym2/MRikIcJzi2yfziKlfn1xkerGSspElMkoZomsxE09MEqZpUKwUKrkNCtnn3le8d5/DoCL1eDxVtB2y6lgWK4OzlOQ5ODOMWbHQty1HM9BgzivS85+K6Ft1OjzRJuP/wJFEaZ57wSOAVXE6cuch4bQDT0CCJUTWVq0vLDFYKKKoKAizDgDRFl5JSqUgCGTOrKkmTLG/sWi5fBsJbrS6alDiuQ9CLkFInCELcnIVQBFGckXqoUs1yUKMY2zTotLpYuo6iaX1mduW2svAeHqryc//Hb/KzP/sEu2eS7Z92j1f71XZt4f3Wg7w0ifsEReyMq6JPfnKryUb0mY4VRb1+nN5bjmwO306XUGKfzvoS/tJF/vLzv8+v/+o/wV+9QG2gwtXL0/zJn/wxtq5yZPIu7pkoMl7WOXv2MrXBMQZLPUarRRwj5L57J6iUt4jjDk8+c4yJKY9HHjjAhQvnOXb8FZ5+6hk21uYhWucP//Qv+ehHP8KZ068yUHE4fuwpvvq1b/HNb36NleVF6htrDFZr6Ibgj/7o8/zSL/8yItWZvXyVbz3519x3/338wb//QzbW23glSZz0uDw7w8rGOufn1jh670MIxeGBRx7jne/7MH/1V39KpZBDJaW+ssjG6jKPPPwo68sLtBoNpk+/hBa1CZs98nYeXRiQGsQiyjbmNLnDnBlFKUQRupKgE6MlPoIQQ1NIogRV9sPrt8lZ+kzb24BuN2jbD8Bd2zze5kF48567WwLFOyZZ2d4cEDesC24F7q6FE98m+NxV/7V17PdnDfRG7W1w90NoP4zg7tbTzI1nbxUBKVB2hQbsGTBuA9ztLrJ9rbLzezZRZbsw11eW7hm03szUuR+4u8bGePPBcT/bb069Uw/ebcXE72OKUPbRn3vrLE1TNE3dldZxnZtyb+Fdp8R15T/zmZ/nv6yaDO/Krdtb9vq/vcmO73QnRUVhfnYJyzC4cmWBxdVNRKowNljG0CWmYXD67AyuZ9NstknjBNMyCKIIw9D7IV8p44MVWu0eqqZx/LXLjA9m3i/d0GnUW3g5Sd5x8HI5NFXJ8lagH8bWIYwjIOWFM+exNQ1VKoR+gJRaproQJcRJyGsXZzlzcY5HHzpEuxNgmAYpCltbTdI4plwsMpDLZSLpiiAh5eqVdc5fnicMelSKuey5kBlQHRkaYrBcRlXBMA26PZ+hWhXdMCnkXMLI73tGYtPCGoEAACAASURBVDRNIwojlERF6hD0ugRRjOXZdDo+CEGxkqfX69FqtcnlPZrNNqqqoJo6hmVk+lsIzk/Pct+RA8wuLSMEOJaDoSmUSnk0LRNf//JTL1EybIQCpqmztlZH1yS1Wolmq42iKuhSEidZKGWcxlkonqKg6RlhiqqqBH7A0yfOMDE6QNDLhOGPTI5m9yeOURWV1bUNXM/OALFlEEcxTx1/heFKCalIpKYipcbAYAVdagShTxKnPPviaVQ1xXUMpDSxLJPlhXVyuTzPn3yNWiWPZejkCy6FfI7NzU1UVWN5eQPPtWl1mhjSpF5v0u35FIt54jTNpEUSwXMnzvLAoQkmRmscnhjCkCpSA8eRmQxFnDB9eZGRkQHSJOXlc1c5MjWM49qkJIR9Ih9VlQgVtjbaCJHy599+jgeOTBLHCdVcDts0MA3Jf/jKc6ys1UmTmNGRQXRdpVrMEycx0tDodXxmF9aolPOoUmFhcYNSKZ+NBapA1yWrKxsUq5nXV1UkcRQzPjRAGie4nsnq6jq2azFSq2LZJrrU0FSJqiiEQcjswhqlUpF2u4ciBJZu8e3nT1HwLGw7E3uXUqPb9cl5LqqqsbCwSrlc5NL0LLZpYXkGYRSiSA0/CFGVa7QX7VYX13Vobm3hFrxrXruE21o/fmaXBt7OmKRoN8xLt67q++DB25ep8fU9eJm4dfq6IHCnGVKSJMFIenzxT/+IP/rt/wvRa0McoqVNIgEvv/IKzVaH2kCZtcWr3DVpc9ehCpfnFzl89B4kdSbHRpgYqyBEwKED4zh2kVKpxshgnm6zTq5QYnFxgyMHj/C+9z6KawZcWW6zMLdA6HfZWJ1na2sdVdd5x6MPsry0yPLSMp1Ol1QEDNYGMA2Hr33tSd75zodwPZPf+d3fodFo8qEPfYSXjx9D13Xm5uZ54tOfohuHzC8u8MH3vZ+/+Mu/pN3xOXxonPXFOSZGRrgyfYHqYI2lxRUMKalvNcjJlNb6IitLlwlCnzgJcPIFwiTC0CVpn4RNCIGKBnFE4rdob63T2Fym1dhCJCnStIlSFVUzEDsSFRn4udM1x7Vybw24u0Urt9WX3U2LvWE0twPu7rC9fT/H2+DubXuz9oMA7vYTFd8W4BRZ1Hemg9P/t+2zUsVemcpdwY6iHz7Q3+XcLW56/ZG9lGpfLDbth8WQZknGu8lQ9u37rp93h+9t548ladZ3satM5jXqe5GE2NG1U7lRSnu7/t390sT1JCrxrjbTba/gPp6z2/Hg7d492gsQ95tH9/PSvVFw91baXvKUba9gml47t5uRbedR2T523Yft8j/1mZ/Hee7b/MrD91CwrDsYgNObSiLcUHJ7MlGzfGxV0Yh7CaCg6RqNtS10KZm+PI8uNcaqZeYWNxmvVfj2i2eYHK6iqoJ6vYUudYqlAo16A8syaNab9Lo9Nte3cEwTXRqYlkat6pDLGbT9FqpQOX91nqFqFZSEMMg8hb1eQKPRJp9zMU2HTrSFkCFD1TyulSPtKjz33GtUCgFB0ERJE7bqLfI5k3sPj2KZFp1WE5Gm1JtdLlxZIgpTLEtD1zXSJCaJ+/moImFqYoCC5xL3mSC7nQ71zTZSU1E16LYTdGkQ+TFhL6S51aITdjClRNf1LCdEk+iGge2qpBFs1FuUBwZIooSCZ/HqhWkGKkW2NjYRiYqUFlLTCGKfqO0jYnjye68wN7vG4+9+BLegU6uVEEC306NS8hAxvHr6EgOlIjnLZGSsxvFTF7CkwZmLcxw5MM7a2gaDtRL0tZGeeuYUuqKgKhBFIZZlIBSVMAro+T1s06Td6DBQKUF/51hTBZqqEgUBCGi0Oniei6JoaFJH1VTGagMomqQyUMLLOXz3pVcYLheQUqHXp+KvlvLkvTyBnyClSq/XJuflWF5e4Z7D40RBxPHXLlKrFJGmxDEtVFVB0wWWY6BJjZQUz82TxBAFEYpQ8Ds9uu02U5M1qsMVvvTki+Qsg3Ilh+FaRGmKUDQ0TXJhZg5Ptzh28iKf+PA7UftMoL2uj2NZrKxuYFkaUQAvn56BMGKoVKRaLSIUgeNaJCIFRWGkUuCBowcpF4uESYhQdZ49dpqRgUo2j6gKlqnTbnaxNYv1jQ0KORdp6ESRD2mMV8wThyFhN0ZBpd1tYZkGqqah6SqpSGl3GlimSbvpkyaC2dkV6luZ9/LZVy4wWi3x9PHTHD18gK3NBlEYMDyQJwh8Tl2YIYkSBqtl6psNNEPn/OVZxoYqFPIeds5FUbNQa0VR0Q0DVRWoqkoqwLQtFKlSn1umG/bw8m4mHh0K2CeCfUdzedsUwRNTw/y3n/8LPvbJj+48U2x7zPq274L1NuQO9ksxuK2xcVfbqchCJ3fEpF/nOrHn+v1Maip+X/XIVbr8N5/+MVZmziOkRrXm8bGPvIe1xVlanTKL83UOjPj8xLtqfPQjD/PKy88zOlzh8cemGChmObuNZp12p4tjmWxuGgizxT/7V0/x8EN5Do3bTE0N0guGWLtykrsPWjTTDgMFjwNDOX7sXQ+ihF2GqiXumarSadVxtYBf+unHOHzPA2xttZlfWGV+pc5TLzxLuHSFP/uPf44ftTk8WmFABvzV088DAc89c5KxQwf5i7/4Dpv1JkPDVWqDA9xz9338/ue+wGc+/VGipIkl26hJj27QoTw8jluskKy8xMUTX+bVp1/g4tkXefobf8VTX/wCl6afpVdfobXe4dRz3+Vr/8+/5JlvfJlnvv6nnD/5bU48/xWe+84XeO3p4zTmLtJtrmDmHRzPoRdkWnqJGhIrPjLJ9N+EkoU4p4qKsvsZ6UfPbM/B12bdG233snD7keUmXsC9oPLGYxsr7qr0Fs/ptuf3GvAUOy9XKtIbCIkyDbvdq4g9HwSxr5fupm3/ANnb4O6H0H4QwN1+tLLbuQfbz/5+w/itPGli18L9diy94Yfb4zzZD9ztd3K7rp0Qv/TaALRdbL/l//79EvuXue6Pt9r5vM17chvg7mYsWHfSzvfDbqbfs/vcnewqPvHEZ/nDDz7KgWLxDfXn9trqD+kpkGQhmGEv5MnvvkTc65FzLFaWNzAMnZm5Jda2mowOlCl6Jq1Oh3fcfwApBZ5n4XkOrmejqIIwCpCaRrPTRdc0er6fhYIVMnHbnJPD7yZ4dgHd1PFMkyCMMA0dTRGYRkYQYdo2qqbR6G5S8GqosYupGfjBBgEthkc8bNfGsktouofl2qRpguPYiBSCMEKVknyxyNTUWLawtXXarS7TcwtZe/28sUazhWlJDFOh53dRVJlJM5gmYRjh5j3iOOLqwjK6rjE4VMGwzWyjQRGgKERJShL2UEjRpI7lWKhSBZES+AED5QJKKrBsg1fOXebCzDy1gQK2bbC12SJJE4YGigzW8pi2mjHwJTFSanQ6Ps++dAHH0Lk0v8LE2ADFoku71WG9scXkWI1qKc/Syjob9RYD1WJGShJCt+OTpgm5nINlmplGoG0ipeyXSanXW+RzDqZtEvoBhmGAAF0ahGFEuVxA9vO+giDIPFFSQ2pZqFoYBBwcq2U5eVLNdK/SFNM0aLU6fPelUxyZGCCKI0zLxvYsTNNAqiqDxTy5fBbCGwYRIDBNm9kryxRyBaIoJE3Ati1Ov3Yp07UzdSzLzNgeVQVXSqrVIl7Ood1qoSgqrWYH0pTJsSGarTZ3HRwlTAIMXXL6/DQjQwMZm6iiYJoGui4ZqOSpVIoEUUgKOJ6NqqnEfkASJnz92EnuPjiGIjMW4na7y5npq4xUi3iejQAMPQsVloZOuZIjSlMajTamadHrxUhdQ9NUpG4wfWmOarVIHKekCWhqFvYppUKr5eNYDusbWzz9yjnW6k2OHhzlyNQIYRBw9PAEx189w0a9xYNHD9L1faQuODA5iqlL4jgiSmK8nEc175HECVLXMjkFke6QI21HQWYh8Qqivwi2HZO1tTpxL2MhTaSyozG2Zxi59v+uYec9tso///qzfPBD7782Hr0OuHujHrs7BXfXyE/eOg9hL1HRVBWt0+C3/umvsrK6Sqk2ilMa42f+wT9meT3g1IV5vvHN4zTbDX7yY+8g7m4h7ZTBapmh2hChH6KqBj4hiqbh5PK0ez6FokbOO8Td9w7gNxXyVgFi+Lef+wL/+S/9KLYMuTzdo74mWF08z3vfW6M2bBPGG5w/M82PP3aYd9w3TKr1uPjqcSaHi5x84Tt0Nq5Qzaccv3SZD37kCS5Or6KbFlG6ia6mdJsrjI8e5DvPPENBCkarRbrtdR5+5FHW1td57LF3YusdlLTF8e99k5GhIbqR4NBdd9ONuqwtXiBNOmBJ7n/nw9RGB+gETTzKvHL8GPOzx3nt5DMMlQdJOos8fP/dlAolivkqQaDg5UMmD4xw7HvHWZheRQ9SivkyhmaRpjoCk0SRJCj9OJM+e+nux2Fn8zi9bhP59Wxn/r5jj90ta33d9vaN5tpvzXqLuqIo6jPC3uaa421w97a9WftBAne7vVO7tFuzc/tcti/4Um4O6NIdwCh28tx2t3k7YZg7Xd726uy+Jr3+uG6XZp9+KkJkXsXt0S3uL0z3VHn9D7cH7rbzDPc7btf2lr9ZyObNdtHeaO7dfrafJ27vsR/A3G3bZe7kPnzrr5/kf/0f/yf+3fsf3vf8bdW17Ul9Pe9df8IjgXa9zdryOl/81gu896Gj6FIj9AO6fsj07CIP33eIcs6l1e1SLmzv/KeEUUgcR+i6ztrGFpv1BpqShZ+FQYRpSHKezep6ncuXN1GFgu3oqBp0/BZrKw2q1SKGITF0g2ZjizCKMC2TKE4QqopEJUpbRDRpt5roqYWqSAzTJBYSzTDpBj1My0JRUqSuZnlWlkkYZQLRmqoiVaUf9hgzWClgWQaoKkmk8dTxs4xUyhiGgW07SE2SxBCnmb6ZUEBKjVIph2HqxGlCHGTAq9f1UaWGoqrEvk/QCxFoCJl5y9IkQdU0pmcWSKKEYjVPMe9RdC08zyb0A5566Qx3TY5hOyaGpRCGPXTdhDRleWWDc1fmGS6VmTowyvBACcOSKJqCaeqMDpXRTYkfBJiGwcvnrrC2vkUlX+Dq7DI512JwsEwcZsQixXKONIE4ToijKKPI70WsrteplApsbDaQUsWyLOI4G1xEX5al2WzjujZCCBqNVibEnaZ8+bvPcfeBcRRNRYiEXicgjGIsy8B2TAaLHoqIyRVypKgEUQgCnj1xigNjQ3R6PUzHRFViVKkgSPADn3PTVynlcvz1914mZ+pEccTwUBlVVTLxbqnS7XQolvIYhs7WVrOvWaijKGpG+JLE9Ho9XNdG1TPR6Jxro0tJt9vl6RNnODI5hh/4WeiqaSClRrPZwjR1kiik2+rieDYHx4aRps7a2iaWodPr+Tx0z0F0PRNdjqKEF149hyF1bMdE0bMQ2m67h2U7tFs9wiBCiJStzTZnZmYZq1UhhS8/+SIDhRyeZxOFMUkMnVYPx7WolXJUCy6OY2FZOo5r0+12GRksURso0Wi06HR9/Cgg7zk0O12kIbEsgyROIU3o9QLCIEQoKu1OC8iAKGSLQVVkOUyqpgEQKoKCZbG10cg0GHVlf7bMmwxHUkounLvAPR/+MFJqNwzobxTcKYroe+92eU7uENxte+JSkQHa3eeS/i7v/p7FPX1RFaI46k/BCUF9hf/hP/kFTh0/zjt+9GM88fP/iC45Jg49wsWZVR75wIewNZ0zp47x4fdN8eILL/LwwxPkc0UunJ9BaBoDtWGafodE0ShXB+j6IeVKkX/+a3/Aex+fYms9wpA6vXaX+x+6i4Fck631eQar93D47ojHfqTK6KBLayPHb//br/KjP3oPY0UQ8RZCjzg6UcCRARUn4mf+/vuZGFT48OP38ed/8hXuqUmi1iI/co/GY4/eixZusrERoLkFfuJDj7O8dIWPfvwjVAaqSKnj99qcfvkplhcu8uj9B9A1lXavSxz5eDmTUrHCwkqDQu0RNlo25cG7OXz4fqZPX8G1DcbGLGzbYWMDArvE+z/203z7+BViexRn8AGKToW5hQad9hquvoGtrPD7v/dbRMEGjisp5i26YUrQ65LLuaRx3JdhuO6b7n9vNwd2yj4erm2ZplstzG5nXr8+t+3mgOvaBgg3rA8VRbnG1Lfns+3/eTKtyr1rxOvWi7vXL4g9b9TfrL0N7n4I7QcJ3N3Ka3bbnrtbvdy7PFE7HrNbzF2vB+6AW7JsXhcmsE8/s/Ht2gChINjb/TcK7t7KQWFnUL1Deys9ePuBtb32euBu+++325//8P/+OX/wuX/P77zvodvr5E07dmP/9u2byBZFQS/k+IlzVPIeB0YGyBc8pKaQxjGOazM2PIgQAtuxqdeb5PMulmGwXt+ikM+hGzqg8Owr5xgbrJIkMa5tMT23QG2gTBhEXF1aYeZqg0cfOEhKRCJiLEvjG8+doZK3SdIk8+RoSqaJp0sQgjiKiXsBvbCJosakqcDUvAy4ipQUBcsx0bQUopQ4idCkSrfro2tZ7p6iarz4ylm6rRaOZRPFIZpUiOOUb754ivsOTTFeq2LoEt00abcycpg0EVydX8miyZKYXrfHq+ey0EpFUVld2SSJYkzToN3qZPchTgj8iF43ZHOrQd6zSaKEq/MrjI0M0e50URSBbZtIqZEmCZZlcWhimCCI6HZ9hJqF9yloRGFAznOI/IgL80scmRzm5TMXGB8eoN1sYVkmcRyxudFAahob9SZTwwPce/cUi4urVCpFdDMT+TYNHT/IWBR7fohh6hkLpVApl4oUS3n++pnjTI4M8OTxVxkbqCDULKQpiWP8bkDXD7BMiyiOSeJMz9Nv+wwU8gRhgACCIMJxMzbNjFxCoJs6oR/QbHWxLYeVlTVM0+Dg6DBJmuDkMgITVcDa2hadbg+AkaFMyN7WdYYGKxx/7QL3HJ7IwJuqcezkWWxD4noOzVabQj6HqqkYpommqSRxgqZm0hNxGqNJHU3Vsr9LDd/vcWB0CMvKZC8URaCpWsYEqutZvmcQohsSTWr9sVzBsgyefP4khw+M0W630VRBp5t9/rGhQfIFD90w2Ko3uTq/TM7J5A6+dewUB8cHkVJFlwbnZuY4NDlEFMUUXJt83iGMApIoI5tY29gin/fQTQ3bNnfCJ+v1LRrNNrrUaLe6VKolvvPSq0yNDGAYOrZlAVn+XKPZRhHQ6fQ4fekKfi9kdKSKrku2A8R3NEyVTNYhTRKEVBFRSq/nZ550x9rlSRDXjlvYw0NVfuHXf4uf/bmfutkwtXdUumV9202/WXC3uxM3ePBSgaLeXn5dFEeomkYSx+gE/PHv/CaXz5ygNjbOVi+l0QlIhMmv/Mp/j2FY/LN/8atcfOVFfvmzH8OU6zzy6I8gRY9Gs8faxiYTU2MomkK+kCeKEnTdZGV5mfp6h3e/+z00G0scOjBJFHfRdYcvfPEbPP7uoxhqglcYobkZcGh8nMbWVUw35VOffjeWLkmEhqYbhH6HwapHr90hinw0JaXg6RgaPPbABA8eHeUD75wi8depFosM1yr8xZdfYGmjzanTZ/nEJ/8eG40NgjBgcnKK5aUlxodM7jpY4+wrzxOHEeXBQQoFjyRV+da3X0IaBQ7e/QF+4zc/T6cLSaIhRMrs4gLved/7MOxB3vmBnyAxi2hWicNHHyVXqpEv14g6IQ+9493YjmSoanN19hJ3H72fOA24eO4cJ469wOraJi8+/xwPP3g/fhggdXOHpOV2Vyb7zZU7X/+bBHd7rnhDdSVpnHnar3dJ3mHbt2pPvAU1vnX2Nrj7IbS3wd3Ni38/wV1Cuo+nsK9ftp/H8m8Q3MXxG2e/hB8scHdbHjQyQPu//M//hM994JHb7uPNO3Zj//ZtM01IgoRWo830zBKKSPE8B9MxUVTYrG/hOi7dbo8kSYjCiHKlwOZmGy/n4TgOUZTwlWdOMDFQJW/bnJtZ4ODkMJpUMaRE0xQsy6Scz4HeZnCggKZJFCR+N+G+I+PYjiTpgwVUgeu5hGFIt9NFEaCmDURsY2kldOlxdWUOryCI6OE4OWI/RFNjuq1OJsfQZw6TIvOwxnFErZiHJMa0XUxTpdProkmdIwemkGaMpoOipXR7HQxL0qh3cFyXfM7DyznEfo98zsU1TVzHIY4Som7m2kuTGMs0IIWZq8u4ps3TL5xjYWOV8VKeKIz59ktnaXY63Hv0AGEUoRuS0A+ALBy20Wpy6fIiI8ND6LrGVrONJhSk1LLQUakzULSxTcnIYIlmo0Uu55EkKVLXMAwDTdMoFPIUSi5CEXQ7Ad869ioHxsrk8y6aVLEdg0azgevmmbk8R7GQ49KlOebmVykUPK7MLTMyWGawkIEk087CBBcX19jabFOultE0jZdOnmdmbhm/E/Dc8XMsrGzwwNFDaJqG1HW2iSq63S69bg/bMmi0ehkwDGI6nTb5Uo4kSTKAqWUkNklX8twL5zl66ABJmGIYJrpUODezwPhwlbumRugFPlEUo0qJkiRUy3miJEFT1R3ii8uX5ykWc8RxRK/XRddlRrwTq3RaHbpdH8exMC0VP/CJopSlpXVyeY9Oq4MCdNsd1tfqtBodhiYGstB7II1Seu2MfMe0TEhjHMciDjMdQ1VVUVSVMI4xNIOy56AoKXESE6chp87NMlYrkyYw0gff2/ITiATDlCiKZGF+jSCOyHkOhqWhS5nliaWZnE4cx2hC2SH6efDeAxi6iaqoaFIShpnMi+faNLaa2JbB1Pgwfi8giiMcx+qz3Gps7/KncUqcJCRJgogUWr0OmqExv7RCwbRRDLk9uNzmUCR4YqzCf/fHX+JjH//wfsPUHvubB3eKdgcyCSIjHdpY32D6+W/wtT/7HA/eO8F7f+IJVtc6vP/9H6I6NITtWPyr//s3eOjoJDnR4sffd4RqOSDRXbr1DUqFCoO1QYRMEVpCu96i02yjouBaLl/96muMTYJOGSu/hh9uESZ5Xjwxy6P3TVAp22iOQsFZJQ5atOuSq1eaDFUO0G7P8kdffYmzV9Z4aGqIlr+FZXkkqaBcygMRaDapssH4uE6SdhifvIukvUwS+ZSqd3Hmyir3PPoB/uwvv8gv/MOfp5BzyXse586fZXn2FHlXoddYQiRw4PBBZmYucnlmCVVO8O73/iSnL8/z0U/8NO9//McZH6uReBpWoUp9y2Z6KeLAI+9hfXGNjdUNeo06+G1e+O43ufvR+3n62Am+8MUnyXnj1Os6xBFhL2B+egHFV3D0kIJrcfH8awyPTSKkuWst9bcD3Cnqvpzod9j2XtvtylPekhrfKnsb3P0Q2vcb3CkiIRMWz4hRsnDB9Lq/7QCy3Zt1e47d5Caqcm1nc+9xjWhEQcmc7og0QXDt+iTtL/53h/xvh3PeAmDutp147F317j0EN6Q9XBemubdMIsiIY7ZDRq9rMd3JI9x7b/a/73cWgrlt21663cedhnPu9Lg/Gr9eCOVO23Gcnd99TZLc/DNu34992tkp02dW63+QndDHW4HVT3/65/jgzGk+e3jius+x/4Rzuy7NPr1xP4E8juIdseI0hTCIWVtaRxXQarZxLJXR2gBSV/v5OHGftRJMQ2N+ZQXXzlgLv/3iea7ML3FookZjq0GSREhF4to69901nsX7a4JeO2RpcZOrC2sMjQ4iU4lj2yiCbOHrWrQaDUSSYFsmvShma71Jt9Mk8Dvk3SJhEoMm8fIF2n4HoQXoioHj5DF0D7/jo6oQhDEIjadfPM9rlxa5/+6DXJ1dybwdUuXMhUXakc/w6ADK/8femwdZcp1Xfr97b+6Zb696tW+9ohsrAXCTCAJjDkVTtGiJm0jZHlkhhSTOeOwIhxW2R/+MPeEYzyKPNJqRqPCMhpJJm0ORFAmt3AAQO8AGGmj0gl6r1+ra6+0v9/Qf+apQ3ahudJNahhH4OjIa6HdvZr58mTfvud/5zhGKJE5xCx6ZSCCVJFGa119pFkoz6fd9TFMnTRO6nS5Lyx2ETBkaLrOx3uKVI+c5fPEMNa/Ed189yt137CJLFE++cIJywWDX9AgTwyO8fOosu2YmuWN2nHLRwXYtkigmiSMMzUEKjZW1ZSzDIk0yyuUCh46cYs/sFGEYoml6DuB0nVK1QJZltFtdbMfhxKlLFIs2UtcQmuL4qXlKjgNGLtzkOAaT9RrVkSpBFGJaOv2Oz/paB9Ow0GQ+LlarBUzHwrY1ZifrgKDT7VOplBAC/MDHdixqtQpST8iyhLH6EDLNGK6VuPvgDLqSvHpinpFaNV/QELk5tt8PKRYKrC1vUBuqgdL4+nefp1Yo4JomIpN8+3uHOXrqPHfvmabRWmf/vlmQAt/vUyyZ+P2IXTOTIAXK1An6MY7jkCYxhiZRQiI0i5OnzzBWr5EpjU6zhetamJaJkhogUZpBEkVYrk6z3ebqwiqPHTrFfXfvZ219nRePnaGkuTz2/WPMTQ6DzCiXPUqlAppuEocJ7VaucorIFUp9PyCOwbJcXnntDGOjVdI0RtMULx4+zrnzV9k1N4Zu6kgktWKRetlDilyAAxR9PyCJUgqFAp1WF93QIcsoFGwq5RJKU6yvtAmjkDCMkAICP6BU8EBIXjlxBsvQKDg2Ekm71SLw+2RZSuiHBGFAuVLAtHSEhFLVRSmNIAwQQuQU5AyEyEWUyAbjb5IglYZlu2RxTBJ0sUqFnB1GtvUiuUZLDK55AYkMkIoPVB3+m9/4PT7xqZ/ZNkLtFNdRN0UujSG3K21mm6PbG3+2RFZuJlyxYxH3JrviunY35O/l2U2VhcTSxDJcLAXf++Mv8u2vfo7J6RoPPvSLvHp8hZmpO/g3v/OvuXjxHI9/80nqlQIPzPj4vsAp13nmxReQiaBSKVCuVoiiEF3q9Ls+yx2PJ569jK5HZPEG73/4ATzHJIo7RF0Pzy6hiZj3vWsaKSM22g1sS5AFGSIIiEydbn+GZu8qY6M6e2emuGvPM1TqEwAAIABJREFUOEp2ySKBZUqEyGhHHoeOt9k1blEsuHS6AXGUEUURhraP8/MBqXWZl472WFq+ysc//l/y6Ne+wV0H7ubwS6/Q7q2jpRYH79hFHM1TcKc4ceYocRKx2prhUtehpRR37D9ItVRBV5AkMV/8D39AlgoefN+7uevO3Vw4fhiE4uCdd/EP/odfY2x6Nw9/4MP86aPf5O4D+/jQBx9GNz286hhT++7l7vsfxikWuby8gFN0SbqX6G+c5cr8ceIopTYyhabpxJvKmkq+qWxtOxVzp9halN/h8zf1e5O4yQ22gZjfVtJ7G835pnOeAa1051neTUJk1+hB3LB0ZlPISA76/C3DvLfB3Y9g/HWDOyGufznsMEHeAdxdH9uB1q0AjTdUvt680x0zXTucw62Au9uNm/UTA8XOneP2Mmc/qKHAX2E9+02Bz47f5UYD+1tw4t/qOG9MNMSbPtse/+Zff47P/6vf4vceegfWoPblLc/5luKN75XXeGZ0Wn2WFlbxXJvAz+ljhq6jlCQKQ9I0YXW1iaYkhWIBTdfJMkEQJqQio1otYZgGfT+kYOksrm+wZzIX0BipVVleblDyHPx+AAh6fh9TN6hVKxw6do6iY+LaJucvLVCrlHLqk1BYtiJJIzKZsbTaZmpsmCxN8VwH30/QdIUf5VQ+3+9j2zpRmGI7BmGY13XphkYYxfkiSpiwb2aCVqdDt+NTLjqkIsO1Xeq10huTUSG2MsQZeX1Q6IfoppmLSdg2URjx9EvHGK1VGBkZ4srSEoIE0zSZnZ1EFxlFt8B77z9AmqVkieTK5RWa/S5T48MYpsHxM5fYv3saqStMx0JKgaF0Xj87z8tH5tk9M0656pGmgr989ggT1SJpEnH6/CV27Z5E0zTWN5qQpAihkEIQhSFKSpI0p/L5fkAUJZy/vISl6xRLBYJ+gJIKw9QHKzkpaZbg90OCMMYtuNiOQRRHWLaNbhpkJGiaQmmKbq+PqWsopTANPRdYSaHf72HbNlkqsG0Tr+ASJyFKKQ7un2NtvcETh44wN16n1erw1EvHmR6p89gLrzEzPsTy4jrdTp979s+h6YrvvfAqH3zoAfZMjXLuwmWKno1m6ChNEUchtm1g6A7PvXAM1zJxnFw19ivffJqpegUhMpQuee7QKabqFcrVEpmSWEoilUaWQuCHeZ1kkuL7PRzPzmsblcad++YgS9EU1Isljp66yEMPHqRYdpGDeyQHPTpBEOJ5LnEcI6Rk/twCtm3zredfYaRcYGqyThxHW7U1kyMjTE8MIwS0W72cjrq0Qb02zDOHT7BrcpyVlQ00Q1Kpljl/YQHPs7EdizCIBrTRkCROeOzQa9wxO4Gha+iGycmzlxFCksZQLrhUSkWyJMlFfchVk3VN4RVclFTouk6UxERhjO8HuEVvUHPoE0cJuqnntFoBWZoipeTs2cu4rotpmxQLNqfnL1AcjA3XeG2+efjZcRz74/kFPvmzH79Rs0FcP7YOFsZufei78d5vOm7f2u6llPmzjkYmJHGvweHnHuf5xx6lrEtazQBpT3Pu8hrzZy/wj379f6U8VGXp6gJLV09RMlvcfdcDfOkbT/Krv/STlByHer2EkoJLly9Sq9UoFYs8f+h1jh8/w8f+iw/i2SaanmBaimbb5+pSl04/X7ywLRNNy+tPkyRGpRmWZtGMdP7pv/gqe3ZPsHevTRBmSJkR9lexTUGtMkSWacRiiN/4nT/hzjmbYtElTgIyUlzb5plnF1leaeLUFJk+TsvPeM973sN/9w//AXEacceBfdx1cA962uTsyRfJolUKTo0g7BGliu88cYIPfuRjdNpN7r33fh599C+YmZpmvbFBoVjk+MnX+dJXv8zY5ASrjSYXLizw2rHXOX7yLM88+zzfffxJfvEXP8VXv/5lhup15vbsp93rUa+O8Md//Cj3v+ud/PjDj1AfLfGV//iHPPS+d7K0eImrSxcYqe/HtExQGqmQpFKhrq/5vMUf/dYEVW4dbF2389s+n9sKcYv73cYyy7u9De7ejtuMHxbcbV+FSDezLgzWMmReiA/bVl12GNDTnTHYNbET0NqZhnfjh2CT8rjjoXY4h+uP+dZiHG+mVd5SDOR1k0E2ccf9b0vVCXFt5nJHsHqbKG0zY7dTIfPtAr5N8ZObxfbveLP2Uqkb3jfbLQ5u2GYbsLu+3WaR9sc+9hk+ujTPOwj5iamRHc/1rVYTbxbZoJYySzOCfkASJjz7/Al2z0wggOZGC01TdFqdgVecIklTxoer6EqRAGkqSBPB0eNn2VhrM1KtcuXiEmQwNV5jz/QoURRjWWZ+f6gU04B+0EPTBY5lYdo2G80WApidGMEyDQqOBUlMGEUoJVhf71IoeiQxHDlyiSgNGB8bzeueLI3XTs4zOzGBwMAyHQI/xLZLrK2v4Pv+QKFQoekGR07Mc3D3NF7Bxiu6bKx3WGpsIETGUG0IzciNmHXd4GvffZ4798wgBWiGSRiG6IaOblokScqzzx+l4Noc3DeLaRp899lXGR0qMTY2TJImCCWplgssLKxxZXmJYsHm6sIarXafu/ZPI5Wk2+txz137iJMEoQSGmRv2SiSGkqRhSrVSApkQBAkH5iapVIoUXCv/rQwNMrAtk0NHThL4MZcWlgiDkGq1SKVWotdsc/bSIqP1YWYnRyl4NlIqdC2vG3vxlWOM1YfQNA1NKRzXplQqgAQ1AHJxnHtNhUGAZZlIKXBdE9M2yJKUXjegsd5CqVwtMQgi+kGEpiSkKU8ffo2RSgXf9ymXPPbP5dlbXdPYPzuNbprs3zOLrqDX7iMyaLY7jI4NMzc1Qq/fRyjJUK2M0gRxlqs66oaCNKPZaOI4BtWKh2EpTp2+xL3753BcC83UMGyTJMg4cWGe3dPjhEmC3+uSJhIySNIEQ9eJowjbNfInNM1IogghMvx+n1LJI4kThmtFSpUSmcjo9/2c4qh0+n7A0vIqusozbbquITKF61i02m32zE3Q7XUpeAXIJFcuL5OlGcWyQxQkNBtdpJS0Wl2KJQ9dT7FsjZHxKpaZU3q7PZ9Gu4NtGQgkJ07NMzExgmFo7N89SWO9iee5+H7Mky+dZvfEKPOXljhy+gKXri5zYM8USZaRxCmFQk4PTdKEw0fPYek6oR/R7QcIIWk22jiWia5pRFHC1x5/jjt3TaGkygFMmuLYdm5sHuXqqAXPodNsUih6INQgY7dDlkzs/N8/PTvGz/6fv71Vf3dr4O4WF1c36dg7bJsUYTEQYtluRr5l47CdVXPTRdbcR7YfKXRCvvWVf8/CyUMEy2colzR2H7ifubsf5PzVS/zUT36cf/4bv8E3/vQvaK+c5+c//QEeefcstdoYH3z/vQgajFVrJIlPr9fFtAyiMCQTGbO7RnjgHbM0l88htIzVjTbnLi6AOc4/+60/45H3342pxxQKLn7QZ31tA9OwCDomhlVgLWsyOl7kve+r0NtI+fJXvs1wbYKx4RoxOXV6vbGCZvs89Mgs08NjKA0WlxeolIqkqWByf537Hpzl8uIS3/izs3iVCp/91V8lTmOqwzW6gc+xQ88xWtrAYh0dQS8KiCKdJ5+b5x3v+zCeV0QlKUkmOHb0FBsbLYbro/zmb/3frK42WLx8jqDT5Auf/0Oaa6dZWZqn215kZmqI1eVzdFavcub0GfzU4g//4KsMVSaQacLU3AxWsUYnlJw8ep5HHvkwWebx+He+w0PveZA/+P0vMDpco1IfwfMKpMjcHy9jK7N7u+Du5vOxm8wDr5knXMvK2RRY+WsBdpvndd0c702iftef3iCL/7cZb4O7H8H4oTN32wbt7fekYPDwkd6o5xu7uIXDvBW429rXIGG347OZ3QTc3cIx3/qBFzc+9lv1443z2n6cKAzp9/oY2zJJ14PpG+/x1mNzvLsp1/2W9/XWHW6pPm5bux+2zfZ22wfvQ7/+a/zqXXvf8nx/uBDEcUISJXQaPQylMT5WxjTzwn/LMmmst6nWbNqdHp7rUHALOe0rjnA8hySJabfatPwusxMjCCWI0pixsSpC5GqUQilQguX1DYqeh6FrKKXhFVzCwCfJEmzPolJ2c3GTNCNJQtI0IE1DND3Nz7EVUyqWmJsqo9kapmUjETS7G8xMjiF1CZkgiHx0KwdoaZRi2xZCSZRuEMUpz790msmRCrquyIDDx87jOgYzkyNYtk0YB4RBhGnbRL0ITQrKJZeEHIhLkYPcMIhIooipqRHSNKbd7TBcquYWChcWmZubwg8CyDKWlhpcWFnhzj0zHD91mZnJKlJXaErjmcMnOLhvHNPUUAN+dtAPWF/ZoB8GjA4PYzkWXb+D3w7wPAfLsQmiiDQDw9RzaqauUR+uUKuWKXsOI/UaYRghpEbHD2h0+oyNDaPpgl6vhe+HCHKjby3LRUJ0TZFmCb1enyRJMTXJyuoGpmXxZ098nzumJvjWs6+wa2Js656VUuXjVwzLKxuYpsa3nzvM3MQYXjU3mxdZxqGXL+Ja+TnajkUSJ5w4eR7PtnAKNpnKyERC6AekccqRsxf4sXfeReAHIDOEBKXlpPZmo0O5mpuCx0FM0A8xbYtisYjUFChJteSSZglK1zAsizSFUqXA/pkRWq02TqGIrWscOTHP+cVF9u2aJBUJUhMkUUIYpGgqV4OVmsR28uegVC1h2gamaW4JMjz/6uuUXBfHtfD9gFqtjGkaOZ1RhyCKqHgetmXl3ozNPgsLq0xMDGM5ev6qSjOSOMYpGAiVUamWKJXzGsgojBCZ5IkXX2X35BjDw2UCP8Dvh4yPDmPaOn3fR8oMx81tGYKez3itSLVcIE4C7twzjeeYVKrlQVo6v5ZSU/T9PpWCR0aKpklKxfy7hGFOHe31+timydzECK7rkmUpAkGcxLRbfYIgQEmJaZsIXWNjaZlSuYTQdAS57PybXkA3eRl87fzV2wZ3txJvCGi8ObYmqmKTgvmGWMpOS7RvxY7LyJBZxvrlU6yff5XW2iVcI8Ee2cu97/4EjdTgAx/4AF/8fz7PRqfBRruP8jfYN+mya8bixLGzPPv8kxzcN4opNbpBG89zuHzlCsWCx1CtRq/bIIsaeJpNs5dy4mJKYWgPh48us3+qwsF9w5D1KZZKtFtt4jihWCgR6R5hrDi7sME3vnSIh+45gNBiNMNl3549WEbKqeUVRobHMHUdU0ZoaZvF5WUMA6Ym5+h0AjRZpNsN8Pttnj90kbVghl/5hZ8h7LU5duQoG+sdZiZ3c8euYfzG8zQXT5IEGqqg0wsrfPLn/xGjB+6hsbbGUGmUkbEy5y9e5MEHH+R//vX/hY3lo3hmh594sMYj93j81Pv38N53VHn4gXF+8uEDvPPOKg/dP4EeLhFFGzz5/Av01hb5rz7xEVYbSzzx1LcYrg5R9spcuDjPmbMLfPnr3+SDH/4okzOzqGiVx771F5w+cYr33H8/WpKRaSoH+NkPDu5uHLeXuXtjX38zGbJrKaS30v5tcPd23Gb8sODuRuTHvzVwdzMRjx9BcJcmCb0B9Wr7eWxmnW6U6Xsb3N24nZSC/+l//HV+7/f+Hb9y5183sIM0hTiKScIYsiz3XtIEYRTR7/v0uwEbrQ6eqyOEYGllg1KxuJU1AXKfLk3x9MlT7J4YI5OCUrWAMiSXLixTLhZydUNNUSh5hL2YbjcXrhBCI0kCNMNAGbnrsd/3SRKIogBDF2QkdPpdTN3ANvOsSZJ1EbqOkhq9Tp9S2aTXDemH3Ty7IVMyESOQPPbcKwyXi7ieA0IBGXNjo7iOgetabDQ7EGeMjVQpVwvEUYqmS3SpoTSd6kA6X2QJSSZQUhAnCUrTWFxe4/DJc+ydGSdJYyDD8ypIoFYuYjsWaZaLhXQ7Ae9+x376vk+tWOLkxUvsnpvEK7hMDVXx4x6GkYPqNMpFYzrtPmOjNdJU8sLLJ9i7ZxxL03n8xSOMD1U5fe4SLxw/w/7ZcTRdJ04SNENH0zRMK89AvXbqPKP1Go5nMzkxTrfbRSmBEAmO4+L7EVIoFq6s4jgmhqmjG7nJupACv9PDK7h0uz7jlQpREBLHKdNTY2RpRrPZxjB1Ws02lmXx5EvHGRsqsWdynL4fIJRCAKur64xXhhiulbmytEStUkQqRavZwXNtNCPPHnV7PZSSHDkxz/veeTdCgmFaLFxdolR2Icvv24LnIlWeOdI1DVM3QGg88ewRJkaHB3RNH8e2UJqCgRG3EKBI8+sVQ2O9wWh9iPF6bhORkQsCZUmGYVpIKXPFSlMnA2zbJhXkixh+TJblNZizE6NYpkUc53L0aZpTHvt9H8OQuTiOYXJ1cQVTNzhx+hK7psfRdImm58qaX/vWs+yaGsW2NcI4RKFv1ZHlCaeM0VoZwzCJoohi0UEKxUajRamSq47mdawaKysb1GplXNtCkDFcr9L3A+rDFaI4Zn2jyWsnzyNTqFQKbDQauHZOuYMMTVe5OqntIAe15LpuEEYRtmOTJnltrlKK518+yYF907kK7MA2YGNlCcN0MG0n9xPLB7rrBr4bj00fmxvnn/zJY/ydD7z/RxLcbU4+/G6f5578JlHrKgsXztJrrzNzx0Ps2vcwy82AZ595lrsO7uPx7z1OKgyGHMlD7zqAxgpCFXjofT+GrgLiIAQNDMPMvQ81xeLSIqVCjST02bjaIcLl5ddXGZ+a45nnXuUn/7P34Ro9bDtf6NI0Hcu02Nho8tu/9SK7d9/H/OJJPvTwfVRLK5SGhlhda+AVTGJ/lfqevfRbPSzNIuokSHTKFYsgDGhsdDANlz999Fs013QmJiaZv9rh7KLGnXvrCAF79uxHSJMrl5cwZZeF+e+iki6aLNHLfJQ+jrAmiQyLsWqNV75/hKHRIu/98Yf53c/9HqfOnOTOfSV+6sM/xr7xjJlhcHSfSskg6DdIwy4FW1J0FPfcvZfa6BB2scyBPXs5e+ooX/ijr/LpT3ycYqGMa3k8++JjfPRnPobjOFSqRb7/0nPoWYvR8QnOnb3IpYtXcCwPp1JF04zBvfI2uLt5+7fB3dtxm/FD0zJvsKUM1B+znJa2uW2nbt4CG3Mrru9zPflkS1BF5tuO5zr45+2iJ5viLDupXt6KifmNjnF7ndjEhXls+5JK03Ac55oLpd7oMvge24VkchGZVOSD4OaWpNmbVDavPe+b+APe5vt9Rwru4HdXA5rldt+6m8WttrmmiP8m5wXwh5////hl0eETuydvus/r++2800E7mV9niUIMaEaRHxP0IqJ+H5FCu9nllWPzTIyP0um2aWy0MZWkWsuzdLZtoyuV+8pZBkEU4tg2f/69Q1Q9F9NU7KoP4/cDDKGhISHJBTjiJEFJSavdxjI1kihlZa3F0FAVZELYy2uPkiil0+lgGZLAb1OtVpCaQyZ1NGFQKJQJkxDL1klSQdgPsUwN09QJOlFu6hxLyBL8nk/USzh99jIH9uxmqF4lTWKCXg9dCEwnVylcXm3Q70UcO3uZ2fERDNNAahJdM0FIkiRCqXyEUJrB+uoGhYKb04SVxHVt7pibo9FsokuNNBJcuHiZqelRNhpNXn39DLMTI2jSoFh0SNMUMnA9i1qpglLZQP5fz2vdElhabNJodiiVXTbaPUqVEkoXTIzVUFJnfb3Jgb0zQEYapvzYO+7GD0MY1MHFYUIWBaxvdDEtB8+20ESGZhp0my1kkhKGMabrkoQxUgp8P2B8os6zLx9nvF5FqvyZ7LZ7vHR0nonRGkrm5x1nCUmcUiq4dDpdjpycp2Q7OAUT07LYMztORoZlu6RpRmOjSa3sQQZeUadcLVAtFQeT5wTfj1lea6KEhCQXzFldbDI3OwQigTTj5KkLTE+MYugGIsuI44RmszXw7PMREtIoIhOSNA1xHIOrV1Z54uWXObBrlp4fYuga/XaHy1eu4nkFul0fU9cRUmFbBosra5RKRdrrXTbW2lRqZRAJUgnW15s4bi5KojQtFx0SAilzoBAGIRuNFq+ePEeaJDi2zcZGG6/gcOzUPC8dOc/0WJ1SyeP1cxcYrpQREi4sLJLGCcdOXqJScLhz7xRkKYtXG4zVR8hkxPnzi9SqVdZWN8iSXOZc0xUbjQ5JnHHy7CV2zY6TZSntdgfHs2mudaiUirQaLQLfz3+3wZtJNwwaGx2ePHKc9xw8wLHTlzEUVMoOge9jGhqXrqzgmBYriw1MW6fT7eM4Tl4+J0A3NYTIa8riOGbX7mnIUqLAH4xLiqGhCqtrTUrl/Lrt9AK60Tt6c/vci6/ymR2sETbHvnz8u72XwCZdMhdgEWQip19uiVtl2YCSOfiym+NttsP0etAkn1dkpGl+lRNNYWgGvfUWLz/zHSpZSNQ8QRY3CSKHp19boFyfYHhimNdefJGT8/OcOHmKsUKPD95f5fCrL2G706yvX2Bk1KHbamDbLqVSjVarlXtzei7j4+NcWVzAME3qU+N4wyXu3ScwxQLvf98uNLOJYWaksaDTXScI2wgFlWKN2nQBq9SieblJ1FpkYnSYoNOg4OroMsawPCxDkPab9NqrILsIK8XGy39TXSeWBgfu/TEqdZ1zS1f4wteO8dGPfpJ6ZYz7Hng3K611oqjLnQf2sHLxm4TNBlGQUS66RIHOlWaRqdn7aLQTwrDPnv17iNH5e//tLzF/eoGDcxa/9vPvp2z18PtNvMIUqQwIUh2l2/hhiOO4CAl+lqCSHhNexh27Ril5AUtrHS5c7vG5//BHjMzM8aGf+BALCwscP3YUhYHA4z0//l40NqhYkqKR8MpL32D1yhqzd92D0C1IMm5BxHpwP9yKGfhbz3Xy7fr3+9vgbqd4G9z9CMYPCu7ytZYbR74SKt6EDN5qAn47cbsiKzvFZr+/KnD3w8SOV2YnBJxeqyZ2LX87b3+9t22WvRncbVfGvNn1+0FFVjYBkpL56nSSJFv//lfNab9GOOUmbQCe/q3f5IGJN9fWvVW/nSKTm6nanKpIAk888TKHj59lZmSYb3zrRYqWjudZ6KbG7OwISZbQ63QwdJ3Xzy8wOjKMU/SQZIgspdnu4nkunU6TbrfH3ukxyqUSQRjTbPfxHAevYNPz+3T9HoaV13XFQUS56BB2eyhNUCm6ZGlKp93HMBVRlt8YUmooqeEVCnT6EXESQ5riOiZhmKAbOlJKNF1HKg2pNNIsRbd0oiTCK3hkIsN2bcI4QWk6zx47wV37Zuj2ukiVq/zplrf1Ii6WHKbqwyyurDE0VCWKYpSuEYcprWYPwzDJspwqWSi6BH6AplSuVqgUV68ucXz+IjMTo5iWydCISxoLFq5ucO+BPTTbDRzHwTB0TMvEsk2ePpT7nq2srmMMTM11zaDT7tPu9FFKUa6U0HUwTG2LKpllKc8dPsHUWB3T1nFsjWZzg6OnL9DdiGisd4ni3GtsaWUDJQXFogcit0GQSF46dprzV5fZv3uKNM5FX5TUSdOUuelhTEsjikOarS6e6zA5MoZuKHRDp9VpUyp6lAsFOp0uvh+w1mznnnwpeI5Jq9nE80ziMKJU8vBcF6lraKYOIqXRaGPbFnGS/562Y1KtltCUwaPfO8Qdc5Msra4RJwmmaWA7NroucT0bRC72Ylg6SuSZCKUMOs0+juWSpRGVkosgIwwiGu0+40M1dENHSYlu6Ph+P198kopuq8/Z+atUyh6loocQuXjQoeNnGK26xAMgXK5VUECWJLSbLQxdgzgdZA4BBIahc+TMecYqFYZqVQxDsbK6Qtfv8cCdd+C6NmmaUXQcytUilbLH5FiNcsWhWnUoljziNMYw8hpI3dCIo5Rez8d1LXRTUio6BFHE4ePnSKIMUzM4euECc+N1DN3Asi2SKMW0HaSUdPsBlVqVOMnVoDVNo93qsNZoAim7p/P6v+mpEdYbTWzbZW29jRTaVkZXkuTgJQM0hW5oCClyNU6Z04qFyMiydFCbmVNwiSM2NlpUa2UypYEQt11v/XfrJX75d/6AT3zip2/S6gd/b2/m5MRAuXhrNN2aWL95nnBt/0F2ZVBRmAmHDImMfHS/yeFnvktR81m7eJr2xuuMjlQw3Rp77nmE97z3EX7zN/8Vn/7kZxiqFDh54gQEG+wadVhcWebuu3exe/cEK8tXGamPEIYxSZZw4dIlJibHCUIfP/ApVmo0G20M3WajG9NZ1+j7LsdO+jz66HFeeGGJB+4tY1sWUmp0Ox0s26biSGqVCs+/cIRSaZy53e9AGRsUS8MYhsPp0xcZG9ZpNzcYHRlno6tY7TooFWI4Ns2NFcqujYj7BEmFf/f5x3nX+/5rXnrpKT716Q/zpT/6Iqtra7z3Xe/md377N/nPHzrIyeMvUB/2QINAmkh3PwfuepCVxhpzMzMcOvQazz77fZbmX2ay5PMrn3kQLWsShk0mp3bzud//E+zaNLWCoNfvUywU8vGZjLDboOp5FIoVTl24wu98/il+/lMfRnCZ8xeucuy1SyRxkwN33EGtNsTevftYXVtneORB0DWq5TJf/OIf8vDD+zh/9hSmqjFcHQNdv3Vwd0tzh9vL3N12vx8y3gZ3b8dfe+wE7q6Xak0HohXpNpWsnR6B6yma2Q5Zunxx8XrZ1xuf36ZFwU7bdlGRzbh1afrB/n9IcPfWIiu3HtlAJvetHnZ1UxnPfNukLmTbqJu3IhCzkxXCDxpvvi6Dldpt9KHcDmALYb71TrfbHGwTW9laEb7us+u/43//D3+NXzs4c5Pdv/kLX//b5tlEtu7BNE5zb6oM2hs9wiBkvFai4LoULAPSFNsxUZpA0zXiMCZLYtY3WjimSZJlGLpGEkXEcTwQP7GQGdimhVI6p88u0O/HvHb2IkJk1KpFVtYbDFXLaLqB3/c5f/Eqrqnx/NETZHGKaeo0Wh1OzF9hcqyKaVggJevrbUoFj1a7R5SkeAUHTdc4eeY8pUIBPwjRNY2UDKnlnl9xHCNEDg7b7S6mmXt82Y6DbdtueTVUAAAgAElEQVS8cnSemdEhiqUiSmpIodHu9DANDdMyCII+hZJLsWDjh0FOzctSBIo/eewFPMugXq/RbDZRShJHCVJIdC03qrZsg7nJMZSmDTzjuiRxxuRELiSjm4ojx85SH6rQ7/Xo9foUHYtC0aPgueiaRhiGWLaFUop6fZiC5wwy5knuuyYlQoCmKabH6vzZU9/HMwxqFY8wCHj+xDnunJ2mUilh2QrXs1EI4iDG9WySdGD3IjWmJ0epV4uQpcRxgpQa588vYFs6Uhc5CNJzmmMUxXz9my/imIog8MnSjChKcGyLsxeuMDVRZ2y4imnk/oOaJpFKYBpGbgovJelAhSJJU0zT4OSZSwxXywgpchl10yIKY2zHwTUUtVqZWqVIqehuLbbYjo2mKbrdHrZt0Wl3cKzcTJxMsLS8TrVUwg/62I5J6Id4rsPU+CiGYaCE2KJw2paBZeVWHc8cOcn9B/fkCpBBiFLQ6fbZNzeFpkkcx8ll0pMUlQn6/T5xkosDtZodNEMniZPcs0/XGSkVGB6q8uqx08xMj1IsOgxVitiWveU753oOcpAG6vd9hMh9JDUtV7z0Cm5O/UxyX79arUyn00E33pBodyyL9UaHq6sNHnrnQUzTzBVd04w0yTAtk0uXFzl29hLT43VSIIkiFq6uMDxUQQoouw4Fz6FSLhAnMaWSi5AaUiouLKzwyuuXuPvAHIYmMC2T1Y0mCIHr2ggptgRVkjiGQYmDUop+rw9pQqfVJQhDqvXqwELn9sGdZRh8+cwlPvOZT77BuhDijZXCATC7UQbvZp/B5kKvvKZtRgZp/n56Szr95h/BAOhK+u0Grzz9OMdfeopLZ4+iywAjDQiDFfwwZPeeBzhxscWTT7/AZ37uZ1lfb9JsXOHJZx6j3VrlUx+5m7vu3ouuMmxTI04ikjge3AMGQ/UhNKWI4hDbdnIBEARCaixv9FlZUPT6GkdPzmO7Es9T7N1tY5oOup7f+1EUIFJJmilGpkrUR02ytIPl6ihpIoTi6uIShlJYRoE0Nbm6EvMv/+03+eiHHkBkkuHqGItXVyh6Fb795FFePb7MxO77+Omf/hBf+tLnef8jDzM2Nsme2Sk2VhdZuXyEkaqBkgEYFrWxfTzx/HnOnV9kcXmR3Xv28H/8k39Gu9nmgQMjPHjvOGNlH8tQICNMu8jxk4v0gh77ZmsMVYcIfJ9ur4OmDJKoTxLH2G4Jwy0xNeGycLbBvn0FxqcnMU2D6ZldtBttSsUilUqNsfEJvvPEYzgFyezkHpR08fs9HFvn2LHTVColxub25p6otxA7la+IwbxiqyznVvXCrwN3m+91IW8+L/2h4zapa5nIPT03v+ffdLwN7n4EY0dwt8NkVg4m0W+VrQNQUuZ0muupecD11gjXdNwhbgaa/irWMv4qwN1fVWSb+3uLZ/dWzivdgbx6K/3+OsaNzcnjJhALowhNqXyVefs9cgvX8vqFh8393+iz7fEzP/Npfvf+26+xu35fUskcNAPdhk8aZVy9dJXGegOv4FGrFimVXZ45dJQ79swQhCl/+cJh/KDPRK1KGmb0Ax/fDzCkxLF0Op02lm2jKUmr0yOJEwzbJEoSdEPhGAZKSKYnhhgfq+bCE6aJadhEoY9SijMXFnBME9e0GK/X6UchQ8MVzlxeZG58nHbXRwjFd188Qtm1MaRGJsB0TFCSkXod0hTd1DEGIhVkCVmS0/ZMPZ/Qnzl/maLn0Gp1sS0HITTumB1F0xVIkJqGUArTUISBT5YkiDSl0e5y7uJVhqo1DMPM67XCiLvvmMuVEx2DKAmwTIsojtGUxvLiGrpSCJVi6CZKV0glaKz2OXz6FLMzdfr9LqZm49oGjrtZv6VRqhSJ4whdM0iTjDiJMC0zz2aZMl84kgJDU6yuNAbG2pLAD1C6ztz4GE8fep2RoocfBNy1Z47qkEsY9SiViwhd4ZgGgjxjp1sGIk144sXX2DU7mZtcZ/n1zJKMpw6doOiZlMsu/X6AJnSyVKLrBrumhun2e5Q8l2KxzMpigygJ2L17CjKwHBPPzWX5pZ6Ljly5sg4amLaNFAqlIE0j0liQhCkXLq8yOTGKFJI4jBDAaydOMzJUxPNMkiy3FdD1vH5QSUWWQa+XewoapknYzzOsmcgoeBZZltcbdno9LNskSUA3HJ564QhXlpaYHq+z0WhhKJOnvv8au6bHmRqpYtkaX/7z57l7/xRSguO6KENHaTp+L+LQK6cYqRbJslwsJE3jvB4x04AMwzC2gGNGhmnqrDdauKaJZRn0ez5KZrQaLa4urnDuwhVMQ2Gaeq44KiSk0PMjkiTFtm2E0PKaJkuSJGmeydM11teblMoFbNtgbLTCnt3j9Ho9CgWXxkaXs/MLdNs+goRuz+fclRWSMCL0QyrlIp5js7beoFRycW1zUFeXEKfpgLqd+5btnhmn5BgIAY1WF1DohqLZbFGulEjiGCkVFy9eHSzSxWiGPlA1hnajRa0+QhgEXLm8QG0oF3D5QWTTPzY7zs/9i9/lUz/7MWDwCtqRmn6zxa8bg7vrh+N8Me72zjGMItI05fzhv+TrX/gcL3zrq+jRCmMjBq3uIo4pabbXSTWXWEzx0E98hP17DxJGPZZXWvzv//SfsbzW5KceuYcRY4PxYQ/T0Qj8ANd1KZYrVIeG0EwdqfKFuDRLKZRKIBVRmKBpNkFicOLMUTADanXBfXcVefi901iGQpDTawWQEGBoRQ6/cpq9+4fxDCg7FXpxXq7ieS7looPpVREqw7R0HM9j164JJuvkFNw4xjRtekGXs5cUl5ZDziye4tKZ0/y9X/h5riwscv87HuCFZ77Ja698j6mKRclLqVYLXFwOeOnoBpP73s0jj/xdZqbrPP309/mFX/gsBw5McfnE09x5wGG4ahH6Po6jsb6xzOjQMO96517SKADAsmyyNMNxPAzbQymN1sYyjmNTr3mMTNYY9noYRES9Br//hT/js3//7/Pa0eMcOXaCCxcX+OTHP0q1XuPQ4YukosQLLxzi8vnz3HuwxIVzLyO0CsPj07d0H+xYc7e5SDD4px8U3OX1wmKrDvA/mdgEdzuw4f4m4m1w9yMYWZb9450yHABZmr6RZRn8vbmWt9lqe7ZuE9Rt9tuss9puJ7n9YdqSgN0pxKA4f7Bqt1O/nR69ZHOXMq+jS3egI262yWDQ5lqT9M3tbzokb5ibb53D4LrntYE7n9e13yd7w1riumt7s5q7zdg+bmzaIvywY8k12VaZTya3Z3cHjXbsK7fx67eyfNv2e/3+bwTsPvHxn+MLD99/zTGvz/jeKEO87YBIKYmDGNKMi+evcO78FaqlApZtY+kaQuYTMs2wmJysoiSsL61TK1roCIquTa/bxykV0JWBY1vYpobnWli2QxrngiFRlIMppWn4cUQQRxSKNlahiMgUuoI0DiDt01hbJosjRoZqFCtFKkMVEpGSIbBtm5mxOoZhYpgK3VSsrDVYXu3S7Pe4Y98MuqGj6RphEJKlASJOCf2IOBXopk6z2clrClGkiaTTiBmqlIjDmCSJMHRBFIVoUiFEQhqlSDQyYizTpNttoRsCSxnUSkVS4NtPvczcaB1lQBwlFIsluu0+Uiqk1NGMXO7+8Ilz7JmZBCEwTIOg38fv5ZL43W7ASH0I3TJAgak56KYkyWIMy6S11iMlJktTojjCdR3CsD+YwLcxTJN2s4NXyAVOMgFCKZSm0+32cRyTvVMjxGGKoZkUh8qkMkOzcg8yLYnJsgQ/8tEMA6HpdFt9kjhipF4kTSOEAr8bYpgGRctgbLSGrusopaM0DaULmq0mluNRLhUwDIPHnnmZoBsxMlLPvaFERhRH+EFAEOZZNYFg/tICrumiScW3nnqZ6bFhdMNAkfvBXV5dZWaiThrH+GFAlmVMjdcpFAt0Oz5JFpMlOWW03+0PskTgOCZxFJHFoPSIF54+x9hEgX7YRYoSIstQSkNInT9/8jAvvvI6Qkupl4uU3QpPvPAaB+6cYGZ0DF3XaHba+H7KwtIqVcdFoGGYik67haVppHFKv+9j2yYytfH7AUkWoWsW3/3uEfYd3DV4/lLCwMcyNfphlIv/WO6WpL5h6FieR6VSY7Q+hGnkNF9dVwRBgKFpuMUiSui89P1TOFKntd7CsHVcz6Pd6hAnEeVCASW0gRponl2WSJQmOHfhEl2/z2i1zNBICcvUsXWNVsen2/GZGK0B+TFty2B9rY2uNOI4zT35kpRWy6dWKbK0vILjWCwuNdm1exQhM2zLpOi6aIaej4lZvnkFD10z0BBkcUKSphRrFaJM4tgma+sNHMscCN7IN9Wk3zC2MSa+Mn+FTw9q7zbB3VambZDF2/z/7Zk6ITMQ12bgNgFmmm6OtdsOmaaDieqgfGAHmv72fUkZE2s2StdJVy/y//7zf0tzYZF9u4aZGKmQ+hGu5dOPQ6QfEQeKqXveT8vXaPZ8mn2BbujMjOl0uiHT0w8w7CYILUJZMZ2WIo09vvf4k+w/OE7aarPcsDlzIaBoSVqrSygsMiOm5Xdw7CpebYxqZZR9Y3s5f+4c5aEqoXKx9BqhnxInMcrOiLJhjp++iG7XqY+O0A6atNeX8RyXOEnoByGjw8MoqYijiDRpMjoE/rrG8qVFSkWPhAxhG3zl28eZmt7FZz/7y0jD4oM/8RFOn71MdWiSejXjHXeNY0RXgS7DwyNs9KsMTf0ddMPh9OnT3HfPg6wtrzI7O8568zRnjn+bSsGg4hr4RoBhFikoC9vuEUSKJPIxdIPXT51ibHSc9Y11NnybbqAolCXtxmWKjoVj6MRBE9fWmRotMuoKTp6LePQ73+Ped85wcHwXf/Afv8zy0ipzc1OMTAyz7577+e5TTzI1rDE+WuHK+hXq9T0YpkEmdYTQkZkildmWbgAyrymVgzmRyLI3tgHdd3PLxPWcsWxHwKeE2NIpkIhttlz/CQE7AJEvbMm3M3dvx61Gmqb/+IYf7kRR49rbfvsDtTVAb+v3ppfM9pWSm92jmzSOm/TbCehck7Lfaid2bLM9/jbA3K3EzVQst9rc4r5uF9y9kRm7xQPcRtwqffYa6sV1meBbyZqeOT3PL/7SZ7eA3Wa/nfq+1f6yDJI45sL8FUxDxzJMJsfrRFFMlmXoSpDGIRtrbfpdH9NUZEmG49joumJ6cpRGJ/fVklrGN58/xPhwFbfkEiY5dS/LEnRdw/VcBJJmq4ttO1RKhXzyrQfEcQ9JQhD0gATbq+B6BdJM4BbsXFQIDce2iOIIKTNUBuvrDQI/ZG5ilJJrMTNRzxU5w4D5+cuEfkjPj3PD8CTBLblEcYpX9IjihFazyyuvz3P24iJDVYeUlHLZI01SyPLarDAKsGybOE6JopiVpSYFz6HR7LK61sHxXDIUJcfh6OkLvHp6nnqxhOt5kGa5DH4795h69PEX+eC77wNyaf4kSTBMg7X1BrV6jVqtuOUXl4YxFy8ukWUJrmcT+iGWY6EbJhfO5+bWWQZpkmGYBpqm0JRA1yXtVgvTslBKI4pipJSYpkUURSiZ0ff7lEoOggzf99GURtj30S2LJMsnDbrSaay1IcuYnh4jTVL8fjCg0AU5NVPkvp9Sl3Q6XbIsIwoDsizGtGyESFFKMD1So1xwSLKUbz53iOmRGpom8xq0VNFqdiGD0XoV17ExbWMA7BRh6GNZBkIKds2MI8hot1t0OxHlSplmq83a+galsodt2eimycLlFTzPRSnFiVPnqFWKBEFEGEZ4pQKVQhmyEF0pvvonz2EacO7KVcZGauyfnWSkWGC4UuSOvbPousnMeB2hQWejT5Km1IYKeIUC++cmOHn+MlfX15mbHUeq3Ji7XC5RdF28osuFKxfxPAvP9YCMublhesE6UeITBRESRdDLMCyDhYVVnv7+MYYKVu7XKCRpPusjy2LCOMS0TDIkSQygSIhJ4piRegHTkaByDz8pJYZhDGojJb4f0ev1aHc7WKZJY62LaRrUh8qMDJXJsjQH0prCtW1mpsbQpEBpGl9/4gUWVteZGRuh4Nk55dW1Bi+zjJdem6dWdKiUvcGCVYof+JRLRTTDIFMSqfL3XxrH2JaW1+OS0u92+fpjT3LX3t1IqQECTZO4toGm8ow1Ut7e1HQw7pXTkP0f/kg+1g0GvOuzctfT7Ld1v/bdwbXvjow843pNzd3WcW4+9qZCIZIILe7x7/+v/w1TLjA0ajI86tEJ+7x+9iwlz2Zscpruxjq9XsjY3nfynSee5b77HuDq0gqnThznpWe/Tz9KWFp6jTt3OXiuS5pIXE9Ht2KKJRMpDGTWY73V4U//8jvcd/csjqMRpQH/P3vvHS3Hdd95fm7Vrdz59euXIxIBkGAOCqRMSbSoYGVRwfLIM1qPbe0Zrz3rnd3V7szIa1u2196x5Z3xOc6WR7YsByqLlCiJFDPBDIAAQWTg4SW80Lkr3/2j3gORCIK0ZK/P4e+cOnjo6rp1q7v61v3e3/f3/f7+734Pz93I1OWj7HlmgUK+SKVmo7l5SrVN7HpmkV27n6N/eJRAK/Lknhbbtowxu3AKz3Mh8akvrzI1tgmFoK+vj1arTrfdRghFEAZIKRGaRlMsUahVWWjY/Mff+gqrnUG++eDTbN1+A29605uwDQPPLbNr915ajVWqXkTQPMnq4hFynontFljpuAxN3cj4+AZGRkYJ44By2WV+YYb/4xd/k7e9aQdjQyWkXMG2+mmsNlhdbWI6HpZn0mm1yeW804vM/f39PP74Ae761v1cf/U2bOmhkSOK25iWSzPwaPgWYdTizrsfYH5pkX/7c7+ASIu8/R3voFYbxPcDHMvlhf0v8Lrrb6M+d5L7vvcgaZCwYfuNVPr6SHVrTRAuveB9fCn39gWNzi8A7s6d9/3Tw6ZLjDVF2dfA3WtxyfGKwd16JuUCVLgLHfcauPvHxWvg7tWDu9/49d/msmce5F9v3XD2Dk2sLRu/9Lku3GnotnvYlkUUxqcz1XGSrtV/KlZXVlldbdNXLiINDb8bYLuZBH2aJrieA2ikScrm8TFcz0XTDSCbmK3U6+QLHlGaYuomrVaHJ/YcZLTWx9JyHQjR0EiilDBKcBwbzXDQtIxS1u30iOMYlYLUNYI1U/Rep0cUxVimSeBHVMqFbNlcpKRJTD7v8sTeQxRdj1a7Q6GQQxgauiYzYKILpJSs1lsMVvK4rkmtViYIw2wSqBlYpk3X76Cho+uZx978wgpCg0Ihxz2P7iJnWRiGSX9/hWMz89xw+WYarQ6u43Dk2Cx+N6BYymFaJhtGB3n2uUOcnDvF1OQIaZqQJim2bWKuAeYkjlFpQpqmlEpFDFMnikKiKCYKE9qNLvuPzTJS68O0TGwnM3nvdrpIMxOmyOU9ojAmCmIsyyJVKWkMSiWkKqPFCg1UojCMrIay2+5hWCa6rmHZNt1WjwefeI7x4f5Mzt40MAwj669j4/d8ekGw5qemZXWMUYzlWJimJPAzEB6GIY5r4wcBhUKOLZMj6FKj1eoAcOTYIjnPxXMdpKExO7dEt9OlXCmSqjRT5ez5GJYBWmaELnWNnbsOUfY8NA1OzC9QzLt0O5nPXbPVYWZukVq1TCHvZaAu76IJge9HPLRzH4O1AipN2LZhgmp/madeOMj00ABSSmzTYml1lWq1TBrDkWMnqFZLBN0Yy5D4URdUtio+PFRlamKYJE0Iw4i+YgmpS9JU0el0KJZtcp5LGmcU/o7fppAvYpkWaaLWaLMRUmaZ5jSJGa4VcW2T7+58lrHBGtLUkVLDtk3iJKXR6NBodOh0fHI5l27HR+o6T+x5nunxIRzPpdvuYhiSJEnpdXvousQ0DExTZ3WlxYNPvMDUaP+akXxCHGcLDUmckCpotzqEYUb7HaoU2Tg+hJfz6HQ6LK82sCyDJI6RUrJhcoJ2u51ZcqQJlm3g2Q5JmiCkjm4YaEIRRzGmoWdgs9Oj0W5jmgbbpidA6ZmAi9RBpZlwUruLa1ug6ZdWv/ziwAdAksQMvvm29aHuhwruUOnpJMpZUwXWX7vY801Hxj2O7X2WvY9/D9NKsF0HN1+m0j9GrjhA0QYMA1dmNOGNV95KGOv09Q9w5PhJwl6H7mqHozMn6RsQXL+lBhgsLy9jO5AvmCihMDSHcslA6BZXXLkdy0ghjckX+hkb34Qf+5QHhxjs38rJ2RP01RwGxjcQ4RJHZfr6S2i2zfxSjz/4o6/x9tuuYWp6A0EYMDpQpZDL49kup5YW6PV6eLlsMa7n97Ask2argdQNDBNMaSFEka1bt/Pwo3tppha33fZubrj+ahzbJOeUiKOI/v4CJw4+ikUbTbW48ooreHbXXm645QMst22ee24/Kk144cBexiYG8Dybb335izj6KbZvH8XQI4KuIE0iypUKUSyxXKgUK4Ainy+s1ck26a8Nc81VO4iiVcqVIr1uSLdXRzdsAuXxHz7zJa65vEK5NsoVV17F8y/MMzyygb/+whcoFoo0Gw1GRzPKOujsfvJ+SgWP+sosWr7K1OQEplskEQolskrH0/fB2s10KYTL18DdDzdeA3f/AmMd3J1JpbwkutsFqG3n7oPz6ZviFYK701nyMx4O2e4LVxaoc/64kJDImac9Ldhyka5k3BHxQ83US2nQbnfodrvYtv3Sp1Yv/vtSypbpJf7Y0yTNyAcXuY6zhHTWxFXW6Zlnbj9MquaZ9XiQqWvqWiajfeb7zz3upeJ97/sI3/3y1/iVDQMUz/AHPB0XoKxedHKxVqgddkJWlxsYUmYeXSkYloEuNaTU8Lsd0qhHra9EL4wAhWWZ6LqR1d2k2f9N00LFWgYMTINus4dtWIRhhG1q6LogCmOWl1bYue8AuqYzWC2SpjGddkga6iglKZbKoJlImU0SoyTKvMKkQRRFQIoQrKlhKpZWW/R6IZVKkeOzC8zN18kXbHRToGuSoyeW2Dw5wom5Uwz2l0lUgmVadDvd0+qCIwNVRJpiOTZuzsO2bYK2z8zcCuVSkSgJM7CLjlIKXUjKlQK6ISkaDpZhkst7HD0+y9ZN4+TzHn19RYLQJ+c5LCzVCaOQOIkplfI8+vTzvPHa7dm1aCIDeGmKrumQpkRhtPbQy4yes6ycpNvt4YcB9XqHa6/aghAC05Jri0SKNA4xjUyoIwkDSAW6bpIkCWHoM3tyiZV6g3zeyfzPUojjCF03+bu7HqFWLFAsFzEMSZqmBL7P9OgA0pB4eYckSfB9P6tdBHqBT6mUJ00VuhQEfpSJkMiMpqyh0el0cFybwA/WMokiA5ZC4Dg2SRJz+NgirmPiOBZpmqBSECITJel2Opi2SRLFGJZFHMUYhqTVaOH3EoIoYGx0iEohT66QR0oDTRPUamWGB/tJ0oR7HnmK6dFher0e3V4P30+ZnhzAMAwMw8Z0DBAwPVwDUpIoxvJser0uhbwDqeDY7ByDA2Wef/44zx08ytaNY2hCUm80+f7jTzNQLuDZLoZhEIYBQohM0dTUcFwLgUavG2C7Foap468I6istCiWPnt/DzVs8+tQ++stFtm6ZwLBM0DT6yyXyxQJpCipJ6TS7CDQc26aQ91htNOnWA5IwxXU9il4O23JIVYplZ4I6QRBxz6PPcuT4IpdtHEOlEXnPo5zzcBwDVEqj2eHUSpOc5/L1HzzO1HCNUyt16s0OgwOVjF5rGei6jpSSYjFPu9nFMiyCXoDSFI5lEgYBu144zGCtD9KUMIqxLAkkSAFpHBH4Ie12j/nlVeqdHqW8l6mSSgOla5AkRGsZ7aWlZcrFHEjjEkbg0wPf6T+TOOKTn/sT7vjIB7MxVtNQaXLOYHk+539dYOqsZjl7vF4fi84tGTqL8XNWt854LiQJi3ue4I9/77PUKgYdbYAjJ1q4uQmu3PE6Hn/8Gao5g17YwZUx3V7I4/tO8cLBY+y48ipGR8fIuw5bN23lvgcfoNFc4PVXb+abd3+PyzaO47pZBk+hsG1JGndBJRhSo9Xs8OWvfp+nnjnETTc65HMdmqs5tl79Ou66+y42TG+g1YmxrQKve9sHqNQGeOKJPUxMbmNxqcWWjWM4+QJSDym5GosLs/R6dTRNYTkmUgr8bsYcAEE+VyaJU5rzPcJ2D10azC0sUekf4c0//mGmx7ewujLHs888w+f+y39h86YprrpyhB2bHNpL+ynkbaIoJYolh+cFRmkTmuqxuLTApk2TzM3N4jkuV2xa4XXXjWIbIVGoIBDoRkQ31fn6159h2+UjaCoCAYun5jFNiWnZtNonKOYl0vIxrewLVEmc+bYmsGP7CFOjNXKOz86HHmRxQXJg5hiDfUWOHDnItVdfgVIxUhOMbahh5yzyRZcNEw6zx/cxUiugNAfT8VAk5wGyVKWIl5gHnRmvGtwJdWYN0Uu2/08ep+nRF9e9+FHFa+DuX2Cczty9QrrbpYK70y+dbvuVgbsLvVloWQ3Ahcgnl5KVOwvcrYOGi3QlXVNj/GGKp0RRjG276Lq+5vVz4bgQiDof3F3iSVW28n2pl3GxrOGPMpsnRGbwvU5NutT45tfv5p7f/Cy/etMO3j526VYHLxdCZB5lsR9jOzZSl1iWSRzFzM2foljIZSDd0llaWqDV8SmWCuiWxLYtEh/m508hAMs0CHsRnaBFkvRotVaIwi6nlhb43kN78SwNS9dptDroUlDvtLlu22ZQCbl8JqcvDQMn7xCrGM3S6NbbSA2iOMS2bIIwQhPZ/WpIgyhMMB2TJ/Yd5sT8Klumx0HAat1nfHIAoSukYbJ5aopmfZVSzkWoFKFpHDp8goFqOXt4+z7dTpfdzx9j15EZtm2aIolSIj+g0Q7Iey66AY6TUeSSOCJXyOGHPj0/oFPv8NTzR2i3e+gaFFwLy7GYnZ+n0lckCAMGa/2YloFlGiRJwhWbpoiCEMM2MUyDbqeL41gkQYwmBLqhZUImMlOZ1XUdTc/ucS/nkHM8lEoyYEcCmvkq5ggAACAASURBVMrsDuLMfF2XBo1GnShIOXRkDkPXSVRMf7lCf7UMCGwnh5QGftDjhYNztLsRWyZH+e4jTzE53EcYBtiuCXomrNJutbFskzAMkUZmIJ6mKY5rousSvxdiSgPbcTKhlziBJKOeRlGELjM1RaESFJDECXEU47pOZgJfyhPHMbqu8TvPHWeh3aEsJZ9+/hh7Z5f4i9ll9pyq82dH5qkvrXD9YJWTsc9UtQ/XcUFpfOv7j1Or5sjnXdI0odFs4jg2Q+UKpmGy/8hxyiWPal8fQqagGew9cAyhQ95z8f0erusglKIXBLg5A01kY9HExACKmOFajbxtsdps4jo5HMtg29Qohq5z6NAMqyst+voLSKmTzzmEgY/UXJ7efQDDAFKFabistmbohs21xRATXTcZH6hSKLpopo5mmfTCEB2BEDozxxYxNInrWHzjvsfQ05RC3mJucZHhkT5cL/OQVFqKlAJDWnQ6bTQNDFNiCcl1O7bi+wGdTgfTMDgxt8DwUDWrAUZDIvHDkO0bJ/j2w09zxeZJJieGECr7ro7PzBGHMc1WB9d2+MYPnmDjyBBpnJKIEKEgDhP6SkUc16HZaFMseLSbTbrtNrYhQSlM28bO5fByOWp9/Zl3ou0QqQTdNCBOEGvPEBWFdNpd3HzhVc1LPcvmzqPz3PGh964tpr60EfnLjpnndOBipuYvF4eee4q7/upP2TA2wA2vv4rXvfsTTG/Zzq5ndvH4Y/ewcbrEqZk5DEcj74A0XNqqn22XX00SJzz2+JOcWpinmDO586vfYvu26zh5YBebNk+Tc32k6OORB/cwPj5CpBZQiUYUBMycmKO/f5zp6U2MTlcwey4lq4Y0Vpj1DTZt2oIWunTrKxw6sIuRa66imKsyWKhRyNlctrnE6kqM73epViRpVKevnEeTPSxbkqYR7XYby5REYYhAoOsG8/OL+FIHN089GOAP//J+KqPv4P2338jS/BLtTp3x6Wl+6qMfwPUMwuAkqzOP4jeOYpoGrWaAZZcxiltYDT3yboRtG1QqVZqNLs8++xyrR45Q8jTisIvhxCTdFE326CYGOx9ZYGjEopiT+H4X0zQIwgDXdXBkDkMWMHRJq6XodTVMU6CiJo6lqPXl0CKTgtNl08QEz+xa4YXZA/TlC7zj7bfxyKP3s2XLBo4ePYhKbK649hZOLqwyOVpl26Rg5yP3kiuO4+SquI5Feg4gU6jT874fBbjjzJrS/z+l8c5c6P5nOP1r4O5fYKyDu4sJqqyng1WanpVBObcQWog1MZULxPpiiDonA5ftzMRTztx0EjTU6e2s39laweu5PnfrGbhzhVHOFBxRnC2est6vdK1oNz3jvevtr7cdpwo07YLveaWRGa2nFwV2Z577TDCVqBeFYC4Z2AHrUsEXOufFLBDOzRqm6x/Ay177+qrvmdtLX++LGcP0tHjKudtLDeg//Yl/yw1Lx3nX5umX69RLxDkfpNJRWnYvqkixfGKZ0FdYtoYgE6JornRYbXVotdoMDlQwDBuRwMziKvPLDTzbQUqDoBfQ6XZYXlkmiQPafotjJ04wUM6OcXI5ohSqpRLjYyO4+RzSEGhr9TzFQgHLtZGOCULQbDeRKEgUpuliuZIoiSEF3bAypUo7s1gA1mhkOiurbVZaHQquST5nMzbej4pTNKGTigTMBJUK3JyF5RhIA/J5j5V6E8e2EULDy3v0V4tctW2KNIlBF9g5j1pfkTjJKIXNVgvHNWi2urhejoMHTqKnGpWBHJNjA1RKFZ56/ghXbRtHpRpCCRzbQmoah48fJ2fZOI6NrmsIU9EJuni2S6ISHNcBJZA6KF3DDyM0I1P21DSdJEkQKJqrDVzbQjcsvvSNB9k0NogmEuIgypQ/bQtp2MyfXEZqOsutLoVijkolB4GPVcyRqARdS2muLmPoCY5XIA58qmWH/oEil02O0esGCASmYZJEKZqUp+v7ILuXn33mMNPjwwghaLU76LrEdi3anSa2m63YC01DKbAsGykzwaFut4tl6LS6Pj+/6wh/e2SWr84s8DeHZtjygTt4EoNjq21mw5jb/+df4qorN3PTj7+JW2+5hZ/46HsZHRrkde/5CZ7A46+f3ENj81a2fPQj/PyffYFvnDjG/e2Ivz08w50nFun2fK4ZHCCKUxzPob9axjAlpmXSa3awDUm31SGJoZC3cHMuiVIYjo1teBiGRKkYXWikcUSqS3RLR2kppIKc59DptLFdG13q2K6B7RpoqUYc+fi9HrbrIDSdZr1Hf6VKoWTi97rkvRyuk0fTDCzbQdMlvbCHJiUqMSBU1E81cfMeYdTj8Mxxxgb78IMQ09DZtGEcw7Hoq1bQtRSp28SBIvADwiCk2wkzW4Q4E2yxDA2lIgzb4Om9Byk6LnGqWF5pUilXSOKUJ/YcpNcLOT53imohx5GTiwxVKxhSZnQ71+bxPYdRIRTdHI5msFJvkBJRLpbp9Lp0A59yqUASCxrtLvliHttzsZ0cqSbQLQs0Dd/vYdtGtnghdZTKMti6pojbQWYVkUQYKBYWT1EsewgzE1YRqbrk2aAS8OVj89zxkQ+ynmbTeHUm5uc3/uLxmq5ltj+cPs2LoaUIlaJUguvlabRb7HvoXoKV3Xg5yI9uYe9jBwk7HTTD493v/iAhs/SabfKmiWEJTizW2brlVvYcPMrY2Bj33P1trti+g117DtOqH+fk3F5Sq8r4cI1Br0PBlVxxxRR+cIqcq6NUSBgoVDLC3OIx+gYMOm2dStHmrqdX2H8i4Pv37+Pvv/kgdz/0NN97ZD+j/RPs3PkMg2MT1DZt4vN//RUmSiVsR1B0Euz4FPWlWUxT0lho0uyGuLkiti5JRBcpSqhUEQifes/ks7+1m3f/WD9f+s5RfDGCGz7L5qtvQZiKy7duwzN1vvPgHjZv2MDf/dFn2DxWIIhSSjmXRC+DXaM0fg256jADNY09+55nauR6vv6lL/C5P/h9Ds6f5EPv3oBnZ8IuuXyOXKFC3tLZsd2jWsqBZpAmCl3TKRVLhH7ASiumo9XR4gApI2KzQ97JY1gFojhboA3EPKbsZ2BwC0/uPciWHTcyUnMYHtjC0mJMX3WAXJ/GIw8+xvjYJDsffhrL8Cnle+x86FFm9xxkZWEGlTQwBydBUyRxiEQilETT1+cIL9446/O30+IrZ8Tpea1Q521KibNz0ecnpl9R/GMsFIQmSOMkszs4L87omJZpy5xnZvwjjFcL7sQr9SZ7LX54EcfxS374ZwI1TddJk7NvPJWmZ/1fCEGaXNyrJFUX2C/0817SOft9yQV6qZ8D7uDF7M/FjtUv8JtI148/Ay2tv29d8StMIqRunAUwLtTWjyLSM/r1qtdA175PKc//vNNLQIkCQafbJedl/mBxFGceWC8ZF7oXLvb+9b689BWeC0w77Q4f/6lP8lc/du3LtnvxOJdXpNYeEoKwF1NfanLfzmd4563XYliZLLZpOqgwYXZ2nlLBxfcDFIqleoNSPofjmGhCEISCR3bt4babriZCMbe4iqEppsZH6PlZEX2WoUmJoxTTMrEsndm5JR7fd5i3v+EGUi1BaClxkGJKjSRNspo/wyBJY0xpkEQxvTDGy3lEoY/UNHSp0251ODG7jGvblEt5XNfNzHrTBMcyMWxJt9fFci1UmtX6rMvHh0GAseYzFscxSZICGaXUcR2SFDqdLsVCJqKSqUy6AKycapAv5QHFzMwcg0NlbMdDJToqiQn8Npbt8ZXvPsS733wDhmlwcm6BJ/ce4/Y3Xku93qC/VkAaOu1OD2lk2TnTsmiuNMkVC5k3mmkgdUEaZnVbhYJH4IckcYxumOha5gt2+PgM2zdPoukaYRyilMAwzExtTRooTRAHPiIOMb0cCEF9pUkURVQqRTRdEvshjUaLgZF+VJqJpjSabap9ZZIkJU5jhADDME8r9Qo0Ou0OnW4XDUGlWiGKI8IwwHVd4iBkPuzx6d1HiZOUrZum2bJpA+V8kRtuvJpCpchv/fZ/Y7XRIOoFHJ2ZY3llmdu3bGbWD/ivb7udP/vWN3GqRT7++pvpddvkS0X8no+maRw5chIhEsZGxrj7uWd477XX8dVdzzBsutw7d5LHVlYJowjXdQnCmHe/7W088OijJHFML/AxdY0tKqFnO/zajTsgjYiThCjKVBs9O0+320Ka4Lp5/E4HNEEUJTiuSxIrNF0nCbM6xZXlJpVqRj+78zsP8Jbrt2NIiWV7pCg6TT+rJZUhUjfQjIw+ur441Wy0sNxMBEXXJX67y7GZWXJuhfHJAULfx++FpKkiV/BIkgTdyAy+O80ms7Or7Do4w603bCOfd5mdX2Z8rJb5bKkUKU3iJM5q6Zpd7nt8F++89QYsyyRJUsIw+6x6HR9N1zl1qs7uF47zljdcQxz7pCiiKMZzvUzsMhV84av3M1jxeMebb2Du5AI/ePY53v+Wm9CEjhA67W6PMAgI44ihgRrdsIPtWGiaThwmSMNg774j7D5wktvfeA079zzPW2++Gj1NkI6N7wd4lsXy/BJOycIp9WWLYa9gbqUEfPzeJ7nzK188/Zp2uizgpcdkdQmzWXWGh5kS4kVV7fXX1lkia88HXaSEQY8v/PcvoM8/gWuE7N9/mFNxhU/8m/+FSrXI/NxJxmp55mbu48n7H2R6tIbtRTS6gt37XXa88TY2bthIoVDkd37n91habpKGy5xaOUGj1eNnf/I2BvLwzW98g4/d8QH+r798ijSN0aXkF9/2MTy3QrJWd6uRYkiTIAqIlUQ3XFqdJoViP0GQYpk6puXh9fUTp5ndetRuEXZX+JUv/gZ/+Okb0ERmf1PwbPbuWwZgw2SBTqfF8MAESyuLmKVJfvXX7+amN49g9Ioc9x1mFlf5j7/4v4MlaTYaLM7PkaYxGCb9BY3Wie/Q56wSpwGGpnN0waCbFLn+x/8HesrFCgTzy0dZOLXI4ReexMtplNJFdmxMIU3pxRH5NXbCan2FfC5PnCTEiaJUrrKysogmMpbDSjvh2EnBtZscevVZbHcMpy+h3epkv5swoZQvMjt3HDSX3/zDBzi8VEWpiN/73f8HlcY8/fRTPPTgw/zsv/tZav2jSOEgwpPMHH6Ag3ufpeQoVhotygOjbLvmrVz74x+mHevomo5DFz8WxFGE675YcpG+xKIvvAwTTf1wzcGFJs6aQ76SUEqdZitdrA2hrf9+/unAnWGar+pkr2Xu/hnjYjV3ZwmjnEPDXB+Yz/3hnCm2cvocZIuHSZpemBJ4HgWTzID2jLgUuuVLxbnHXlCI5fQ1n9kHcVY9m6bL8673zLbWs18XGkwutu9S3nNWJu0lW3iZWGskA3JnZ2kvVkv3oiWCOm1jkKYXzgCec8ILvPbyg6mua2iattb+xS0O/vhnf55fvWnHy7Z5wVgXVllv96z2JZrSSCPoNDIvO1vXcA2HXifI6jTSiMjvcnJxkVLOIQpDogTiNGXXof1MDA3iBwGlUonp0SFSpUgSwWK9zZGTp9g4OUIQRlimTZKAlLC03GT/4ZMcP3kK17DodgMOnphj48QQhpTYpskLh0/gRyG2ZZImEUkCT+99gaFqH8urLQBcxySK49Om3Qun6gwN9LFSbzAzu8SuvSeot9tsmByi3mhiSIlpOURRhKZpSGnQanbZuesAzUYb17GxLBNN15Fa5ovWbHZwvKz9RMUZ9dBxUUojDhNmZ5cp9+UQOpSLHoZtous6kR+j6QJNF7QaXWaXVhjsKyME9PWVGB+sYZom8wtLmYS9rhNFgpztkaYCTTN5bv9h+vsqWZYrTTB1jTTJBGbCIMbvhVmWRxPrCto8f3iGjVPDKJXRUA1DsnhqGdeyqTeaBL5PPu+tgYAuxGn2mYQKoZuoNCRNFNHa6mqr3UIakpn5U2hKkMvn0WRm2aBSddpHD11gWgae64BSGJbJo8/s5Sfve5Q/2/U8w+94D1vf/y4+8uH38L533cYN11/J73zuj/nu/Q/z/fse5rnv3c+v3HgjbxsZYawRcIXm8D/d8iaGkdw8OEitVuXqzZu5amIqq/Nay+QkSYKmaVQqZXK2g2kbbB4dIUoSJksVSl6RmzdO89ErtvHRy7dzS1+VD2+9nOHVJl6vgyfgZBSRpopP/Yef45kjJ/nDp/fxxQPHeGCpza2VIq7nIsmsMAxTo7GS1f353e6aSTgkShHHEULTicKYMIhJY0XQC9g4OYJp6DiuR7cTsfuFFxgbHqDd6uJ5Jn4vYGm5jYZA1wVJEhMGATomhmGxstTAkDoPP/sco7Uapqljmibtro8mVGavoOt0u72M0qlJHtq1j7fedCWmldkN1AZKa2MO60VgmchLnJLGCRNDA9ieQa8XoEsNXdNAgO3adNodyuUikyMDCMEaJVhgOy5oWRlCq9WhVspxxWVTmKZkeanBZROjtNo+fhASJRHzC0v0VYoIwDRMZuYX6CsW0YROEqeZ0E+Y0Gh12TQ1wtTYIEkc0e500A09U4xNBaCzsrJCvlhYEzu7JIrF2vgHdx6d48NrdgjZELluaP4qJ6xpct6xAtaA+oW6YJAo0JSiceIAD9z1VTaP2KSywId+6lM0gwIjkzs4dOwIR44f4+SRGTrNBVxLkYQ+/bUCCot3vudnKPZPs7yySrvb46ord3Do0CEu2zJBnKRMT2+kuXyYyel+7t0pmCi+kbdeeR1v2nYtt1z2OoKwg6Zn/o5pGmFoFmkKQRQRp5IXnt9LbWCMUqmMY+fww4hup00YRXieRxrHpEnCqflD3H71zfyff3In33p4kfe+ZYLFUyHfvns3syeb7Nh2Gbrt0/U7WJ7G8blVDhzo8va31/jTvzrB7OISH3j/27jzq49w9dVbWFiYZfu2y9g4PcnB/TuJ/QUG8x16ndnMm9J0Uc4EvbhIrjJJtVrmO9/5B/7uzs/z05/4Gf7zp3+DmWPzfOJdmzA1kFIgpUkU+yiVoOuCNI1xHBvXyzE3N4dbKJEKidINPvfne7nz7hXsSoeBUUFpYIygvYxp2ji2R5Im9NqKUlGn21ul0j/JoWMNeoHiqWce4X3vfwe6ZnD7W9/L5GUjnDx5glajR214itGJbdTGtjBz8iCmFtNrNglmj6GkzejkNJFKcQxIVVbLehbL7NWCu1dIcnzZzNw/Imun6xphGGaKzFKevf/Ma1CssZh+uMD0YvEaLfNfYCRx/JnzBt8LgLtz911U1EKdD8wySqb6FwfuzlqVvEDnz2zrUmrULi7c8fLHn9PFVxbn1FVeai3dS6lmvnwN4qsDd0mSkqaKNH1pGman3eHDH/5Xrx7YwQW/z/VIlZZpbyQKv9Pj/p272b5hNBNE0TWisAdJSK/XI01TllZbVPvKeF6O5XqDTeMjVMolvLVV0HqzTblUQCGwDAMSqFULaDrMzS3R6wXYtsnqaptqqcC2yyaxLMmGyWEG+gocPjZLIedBmtDfX2b+1CrDg/2kSYIuJQOVMlEY88Cz+xgolfEcgyiKMzpxklIplInikIFaBdexGeors3HDCL7fo1BwM7oXGkJTGFLSbDTJ511sw+TgiQU2jA8ThFk2pNv2Wa23KBRzSEMSBAECiMIYTZNoQmNubhHLNJBmluULewFhkiCl5JldL9BoNBkZGwCl0e326Pk+lXIBwzIQCObnlzg+v5RN/m0LTUi++PX7uGLzFELTeOSpfRyfXaLoOswvLJNGmaLnykqTNFV877HdTI0McfT4LNW+zBB6w8QIfq9DumY7kcSZcXW359NXLRP4QWZcjEIKgWGZxFHCPQ8/y9YN40RxgAa02l2K5cJabSH0VUprmaY1+fokRV/LjqtUZVlUafCxHzzF1+aWueyOD7Lj4x/m5z75SW6/7c20WnU++1v/lb+781vEO5/G3/U8v3zzLXzsiiu5Y/t2Xj88gi40el0fQ5dMTYyTz+dZWl5hw/Q40jRO14VGcZZ9EgKiMEIaBlIzMsuLOGbdp8yQJnfd+yC1vhIAcZxQKBbRNJ3vP/w4jaUmH7v5DfzUtdfw1lof2swc/7BnH0rB+991Gx//yU/wqT//G/7++DxfOzHPB8ZroCkM0wEUnufQavZYWW5y785n2Tg+QKcT8ORzBxkfrNFotgjDmH1HjjM6VAWlWFppgEjoKxaxLRtpwMEjJ9l/bIHJsQEs2+TUqRWq/WUEcm2cAMcy2TI5hmlZaPqa551hkCYxuq7j9wI0oRNHCZZtcdnUGM1WG8excFybbq+HEIJms4NlSKRlglK06h0cx8E0DcI4JpfPDJx73YDZuSWicM0CRWroUkOR0usF3PWDp6h4Lg8+s5epkQG+99izvOHayzP6fxJTKmW/57HRGpZlUCg6VEpF0jSzQbEsGxJFFCWsrDQpFHJoa3T16fEhDKnT7XbIF1wcy1nz+QPQ0aVkaWmR2vBAtlB4afz5tfEQ3j81jHHT60+/pK218KqLrF/xcSrLVgZd/uRzn0X5Da675gpSp8qu/Se4/4Gn2bzlCjZumuL+B+7juquv52+/9BdcuXWcvGvR6dbphSlBVGVow+WUyhXCMCCMIhbn5/F7DXQpuf/+B7j9x3+Mz//DXv7de/8Vtq0jUGviSWmmioue/aaFQqUiUwCWBlEsmJ89TrVaQyAQQhLFMXkvRxRFtFpNkjgk8ruZpUkccevlN3Lz1hv4ypePUh5v8tbbruTyHYNoYpHldoLnDrC62qFSrbGw2GS83+NLd+9hemID77ztNpTpcPCFPSilqK8uMzc3y+tv3M6uJx9GC+axzZCcl6Pb62HkN1Ds38jg2FYWF2boH64wODSEa/Rz3z3f5KZrtzFUbmNIG6Fl9b+5vLfGulLkcvmMmRMmKAR+nDI2MUWj3SNRozy5Zx+vu2mEHdtqzM7NUXQdpDTx/R5SN9GkgaZlNdGV/jEeeOhxrrr6SjZOT+L3Uu666x5ufctbiJIejq4xMjTKH/7pn/O6W97IY48/wdzJOTqNOnEUIcIOjW4X1zaoDAyR6tbprNY/C7j7EdTiibVJZJoqTNPCsMzzypsuLDr0Grh7LS4ScZJ85tzh/zVwt96H18Ddmf35pwJ3Z2buLtSfX/73n+bg332Jz77+ypdt66Jxse9CJkRBl6NHjmKIkOmxMscX5zg2M4uIeuj0UFGd5WaPqbEREnQOzC7QnysxMlQjX/RIhEQ3soxezrXodnvU602q5QLtlk+cBBhSkLMcSvk8mjR4Ys9Brr58E2EYkqqQZrtNlMRMjAxx6MgsA7UcfhgzOjpEp93jqd37mRofQSlFEsWMDdToq5bRRUom8CoI45j77t9LpexhWZlMfKFYQJGQJCGZB1Wm4Oq3u1kGI01QaUSxWGViZJDFpWUKRQ/TMTE0k/2HTjA1MZxl1qxMct40rUzJUupIQ6dYyGHaOpomkJpBrDLa5mC1TF+liB8GmNJmdKhK3nNw1wzeLVOytLTK9s0bMSwLoekgE67YMEwQheimYOPIOCO1fvbuP8GBY/O4UlIuueRyHlIabJoYI1Vw+OgcQwMlLMvA93sYdpaJNgybA4dm6CuXyOddVlbqmXeh65CoTFiDtWz15vERhADHs9CEoJB31/ZltXJhEGE5JmEUZB54UcQfP/Ec//f+E9z4M5/EvG473S1bufmNt7Br716++e3vsvP7P2DhgYf5Md1kQxjy/o1beffUBjb31ZisDmAYWXtCE3RaXbotnyhIEDr091dRQuG5NoaVWVUIsr7ajoPUJJ1OF0MaLMwvYRomSgdpGRjSpLPaJewGXL5tM6DIlQqgSXQk7VaPbZs2smPbBoSm6LZDPC+HIy3eu3Ezt49PcI1p89++8EUeO3SYRqOJ5Tf5if/0v/Kfv/UDPr/3KBVC8qng+48+x5VbNzE9UsWUiuMzDVQMzx48wjXbN+I4BlGU0lctoEipVEtUSzkMw6Tb8XFcA0s3mBodwrYskjSh1FckilOWVpY4NDPD2PggSRLR6fYAyOXdzBxeStIkwrJNhIJ7H99Fr+tT8HJEcUSxnCNJEqy1jLTUdGwrswkRUmd5qc7M7CK6EHieg2071Ffb3PPgM0yPDjM8NHhaNMQwNcIo4NjsSfryZcZrNXSh41kGIhXUV9uMVPuIQh9IOHxill4QUa0UabZbCD1b9PADP/sdajpJpLHruaNUK3ksS+fU8gpCEzi2SavVxrQkjUaDbjvMaMhBgGGZpEKhAh/dtJCGfMXgDvhnBXeKmFQo7rnrq3z/y3/OW2++jsHpHTy2d5a+oSluef0t3HPXd9G1hBMLc4yPb6HebnL1pj4aK8vkcjrNToBhT/L03hPs3/8CTz39JG+85fXUV1dwLY1vfuvbpKQ8uPs4n3r9T5BzM/CslEBKG6El+L2I557eTblawrQN0CWIGCUSNE2n2l/DsjRsU8e0XDo9nzRJMaUkjXqINMbWNXrdOkJAHPlEccLUxAQ7v1endWqKb9x9jHufq7P/SJ2oUeKZnbNsmh7D8WLmd4eM3LiBT/30L7Fn517e+M5r8SwPhGJkaJDVlWXi7gKd5hKe1sKUKbq0UBqcahWoje4gFQ5DtRw7n11gfj7gy1/8B0YGjvKmWysM9Y8QpyaHju4jZxskJGuZfp12q3Facdjx8ijNxMsXCRPF9iGfG1/vcM2my9BWQzyhsPMevt9jZWWVw4ePUBwpELQCdCyKeZfLdwzQV3T5wl98hWNHm/zCL/4SmhuTdiMee/Aegl6P93/oDk6unmB4ZJKB2jW8/fZ3gq6z1DhM1Jhl8fhzjE5dRpgbx1or9/jnAHcqXaNO/hABXqZVsQ5YOa0vcO57zj/uNXD3WlwkVJJ8RsAF/eouJFd/KZGpS74I6tbbzx5cGdUjq0XJwFF2I6tMS0UohFBniZYozhZBOS2Ugn6G5Mradsa5X+rYcwVWFFkl2Hp/1jfE2Z8BazK0AtC18y0WTguCCHF+/7WX/vzW6Zjrens21AAAIABJREFUdhFniqWsb2e2dZo99Aq30xTTNbrYhdRGL/adny2yojK7gtOUzQtdmXb+pmWr10KccUVKO+8854q6rMcdH/o4v3f5GNeN/OPVMFW6Jiss1icwa4Oo0NBCjZkTJ/FcG6V08l6Z2uAgB2Zm0Q3IeR66buJ4ZQzTQdNMGo0OxYJESsH8wgp5L79GoYiI45g0VRimiW3bzMyfYvPGCdKUTDbd0vGDgPGhKkJfe82UGKbEMQ1cz2Wl3kSlOq5jI3WIw4ByMYfUTSzbRsgEz3MJuxG9bgvTcUHTSZOY0aES9UaWLSmV8vhRF6np2cRFpXS6PjoCy87EWUzbQpMWGDpoCp0Uy8ioaYamGBrqA02QpJnw0QM7n2NiaJBWowVpTBrHWK5FonRarS6x30PH4Js/eILLNoxj2TaO40Aa4gc9EpVgGDqWk63MSl3HzdmkcUq33cG2XWZnlyiX8rTrbayChe2YjA73Mz0xyMBwX0YJ8oO1LEqCEAnTE8Pcdd/jbBgbynzxEoEmDYIgoK+vTBxFJKnggaf2sHnDOKCorzYy/zHLzugxWkIYB5gatNodTNMgVQohNZI0xrINQj/Ath0++dBuvnh4hnRwgC98/vdx3QK/8O8/w3//m6/wEQEfvGw7H9i8hTePTXDdxDhxFOJ3eyg9xXGdzC7DtYliH2lIdE3DdTyErvDyDk7OQWWoHT/oYkgdy5Rk46eGLiWNUyu4uTxCz7zgbFMHTaALnU6zh2mZdHs9vKKbeTb6EVEQkgQRQoNu0OPu+x9i+4aNOJ5FnKR86/sPMNRfpa9aQAi4eWqST95wPf/6mmvYVs3z6b/6Cr/7W7/Oe955G9HwGJ/+yt0YpuB1k8MYjokuTXShmJ4eYtPkELqVgeCRkSpxmi0MKCFIoxA/8PHyNnGcUG+1KdeKJEkISYRKUgwpWV1qYAqL/v4Sum5w+MgCp1YbuKaGqZlZttQ0SdNs3JkeHaJWK0HUxXZMEqUys3cUQmViYUtLqxRKORZOrtDfV6JcymFaOpZjkKqUIAoZH+zDsgzq9Sb3PrYbIhjo72P//pP0F2qkRDy97wiHTy6wbcsE9z65m4SUkVqZKInJ53NU+kpUCjlM00ClYLses3On6K9ViZMEKQ0MUyOfs+irFPD9iGK+QK6QQ6kE28mUYx3bJQrSNb/GzFsSJWi32+RsC2lYKMTZdXcXe4av7frwb/6/fORjd2TPshdXHDlTYEWIS4ONQmTPfaUyG3YpjdNiQ9mz/uwuxYHACxVf+7P/yOhAhdXVhML45TzwvWd5663voNLfR67kUK7WKOZq9BUl47U8i7OH8RszlAo5uqHOXNNndHI7V2zfzqYNm/nS3/w1feUq+w/Ocqoe0llJeNeVb8a0beI4QhMalm2R6lnVn+l6VIcG8GwXTWmoJCEVAik0VBxhSoFj2cSpIFYC27Lxuw1SlRIlMaVyiU6vgWfbpCpGGjqmpqMpwfDwIIaRcsWWy9g2soWys51f/oPf49+8fxuFvjp/+/f7mOs2eMub3kU7SVloLzM1Oonp6oyPDbKy1GPj5mlK4jDd5kEMfRXPrqJLSYjF0NStFPonODJ/Etcd4Dtf/lM+9cmP8sCuB7DjGd505WYMw6bdCyhVPGwjBiWwbJc4jnAcJ3tOSQPHtal3fHL5KkKWaXSXGarWIG6iFPSCGC316YYGf/GlPdz0hpspRykUdPyoh2rH9IRPEPZ4+MkFrGqBN9x8Lbm0j+pwlUS5PPjo0+y48jq+9Zd/TdkrUBntx8nrSFPj6PMH6NYXSMMec4uLXH3tDSiZQ9NsUq1LKgRxYqFpL69EcMH51wVEVi62ZU1c4oKJSM9v40LHnTOvWp+HnDsXP+s9gPYauHstLhZpknwGLiULc+mxDt40ITLp6LXaLKUUmjh/xr7+yrm84rPbPP886oJZoPPbvxSjykvJAp79jLxI1ucCqfuLtb/e7qUuBr3ab0qd8aAW4sLg7uLHn92WtlZ7cu6+i4bgLNXV7LWMCvNy9+D73vcR/uD6LVim9Yr6fdHurM0uxOl1eIVAUF9cQCAo5vI4ros0NcJYMT02TL3epNZXQdN0LMclihLSOKWQ93BcmyhO8IOYKIzotrsITSF1Savdxbay7E+llM+MnKMIw5S02h1AkMu5BEFAEEagJbTbbTzPZnm5zvBQP1+790mG+0sYMtOQNc2sJicMItIkM+Kem1vGc01MRxLGAZZpkyYJnutQKGQqkNLU6XVDojjC9dxsoqkEzWYbw5QILaP5SWmiIzB0nfpqg90HjrKy0mR0ZAhdzzzehAIVq8z4XFOsNhqcWJin4OUwLRuUYnWlgZf3sA3J0RPzjAxW6bQ6pEmYZSQsmzRVxGHmbfTEnhcY6q+gSOn6PXKuS6pibMfCsk2iMMSyLFSaZAsnZKpulm1ldUumSRLHxHHCSr3J6EAVyzEQWmaCbdvWaYqNZZuMDWQy90kck8t5p4/XZWY+r+trZtFKYTqZH96aeC7NZovPP3+M391/gve+5938+q/9b7zz7W/hg3f8DCsPPsKv3voWPrR1K6ZhE4YRhmEh9YxWqOka0jDQZSbSI6VBHEYIXWQKkrZNmqTEcZwZkyuIowRpSCzbwpQGQtNJkhRdSuI45sHHniSOYjzXwcu5SKkjNJ00Tnlo59MMVvvYd+AQA/19tNodXDdTdd3z3AvkcjmklFx1+WVIXUOTOnGcsG3z9JpYQEKv28EwJAsLCxTKBWqFCu/dtJlv/MOX+ZW//BuOHT/Jb/+n/5Ef+8iH+eQf/RW/9u3v8/GNU+RyLrrUaLTaGTXUNCBNSZOUIAgRgO93KPx/7L15lB3Xfd/5uffWXvXe69d7NxporA0QXEFwkyiKikRvsrxQciQ542NnHDkzsWeSHNmJ7Ykd2XMcj5PjScaxIlmyTW/abC22JdoSJWrhIu6kCBIEiX3vRqP3t9Z+54/7GgTABghSymR8Dn88fQ74Xr2q++pV3bq/3++71CKajSYaTb2vgkZRZBlxkuC5jhF/CT0Gh/rptttQlAwPDlCrhUgNew8cA4wlx+Gjpxmo9+F4CiENd63ZivF8j8bSiikJKovGSpsoDMkzzbFTM3iO8RIsyoJWq0utr4brOAaW7brkecFVWyapViJKCvYdOcnOqU0URc7QQJ0dW9Zj2YoXj5/g7Tddi+3aVCKfJE0QSpGlKWVecPDEaaLQY7CvZniijsPM9BzSUtT7a5ydW+Lrj+/lpaOnWFlZoRr6VGoRZV4Sxymnpufwfac3jxmxrFazieM4OJ7X695fMOG9Yg48t+TsvfWFYzO8/yf/ce/NizoIa33uVUKjKQtNEsfYjnPePl/50FBk3Pv5T9NdOUatf4DdN9/O+u27mD7TZHh0nMHRIc7MnCZJErZu3cb+/XsZHapDOk8t1LTaK2hhMbLhKuZXYO8LLyC05rrrr2H79inWTazj81+5j3fd8DbWTUwSN+eZmNiIlObcKccBDXHcNWsXISh1SaO9guNVEBqk0ugS8jwnKwo8v9IrKvW84JortJsr+K5juMW9x2RZlJRFgeVYxvYkT/GDgCjyefebfpD7HzjCpx45zE+9+2biNOAf/cAPMzg2wdTUDprNNtOnTnLo0H5u3n0zlmqxeOxpFueO41g5yqogXY+zTRDeFtqxRa2vxrEDR7jr7W/h9MxZvnDv1zh29DjXX7WJRlrhc1/4Jhu29VOpWKRxgmUpLGV4qFmWIkpNnOcMjW/GCWpk+ER2Rqfb7qmZW3S7HRwrJE1tPvqJR7nzlh2U2SxBvU5U6ae9uEDQFzFer1GpTXD/t59g98238V9+7484fPwwN924m1tu3s3hg/tZN97PSquBGwRYUvDgtx4g8G2O7N/Lju1TRvTLdRnfeA15VqKFRpcSKSyEuLyQH3xv17hXltyttSh6fWNYa+xvJHdvxGVDa/0b381Fv6YQyyVCCgFrqGV+L5K7c+NYK0U6rxPUK4yci9VjXkly92odzLLUFEV5ie/zSquBV3SnrrA7+l0nd9p0rdSrCKJcLPBycXKreSVM1yyYxaWTNV2s8bq87Pe+++73k3zzPn795mvxXMfANQWUhUZ8FxCJl+HHqxUzjdQwPztPkbXx3ZBmI2Gp0cH2FZZyKYqCvkqEEMpYYyB58dAphgf6cB2JtlySuOCxvfu5bmojliWxLcnySof5xSbVSkipS7zAQQgIAg+BxLIsHMfCrMa04X2gqERVlHJxHZc4Ttk4Nkye59T7q0a9VsDSUpPFxSZDw3UsJZlfWKG/v0YnbgIFAouFpQbKkkhlVnu2ZRu7hLxkaamJ7di4voPv+RiOiSaMQkQJeZxS5BlhFDJQrbA43+TIiVmGBvq578GnWVlpsnNqI57r0G538Hyb4aE6ojT2BEpKnnrhEOvGhjl7dolN60exleLxZ/exef0ISWISNYFAWTZCCcaG+omTmKgaYFkSQYkXBj0POEGz0YDSwMYWF5bwPYcHHn8BUWqWlpp89bFnuWrzBqSSRIGH67o0mi0kJpmy7B7nzrWNwIplul9ZmmPbNq2mUWwEc684jk1Rlj1TckGaJjiOx+deOsz/c/Qs//kvPsKPv+ud/Mlf/CUzX/kaOxe73L1tGzdv2kSn06HT7hBEAVmaksQZL+0/zPDIoOHmSUGr2SaKop7Yi2X8+oRJpizLdOQspRBS9iCj5rpNk4z5uQV838eyJaUu2bRhPfV6lSD0TGJnGS6WEIrB/n4QsH5i3EA4LQvLViRJzPDQMGElQkrF0tISghzH8UnTFNtR2LYh+Z89s0gQhNTr/VAK8rxECMWEX+XWSpVtheaXP/N5vvh39/Nv/uXP8dsf+nfk26b4yY/+Cd+emefdOzaiLEUSJ7RW2hw+foqBWgWhC1w/wHJcbMul20qYm12mWqtS5Bm+a5P0vANNkp5iKUjjjEOHTzE61k+W5qwfH8f1TRIxvm6EhYUlHM8CSpqtxBidFwWiyMmSFKEsOu2EIAz5i79+kBt3TtJXr7K42CDLC3PeMX6FfuAb5IaSPP6dl7AQeL7F2FCdIPDxIs903S3J39z/GG/bvRM/cHEcRbdrPBqVJSlyc++Ojw5iuxZL8w3yTPPUc4fZun6MXJQkSYbnBnTaMevHBtg2OUalEtDudFFS4roOlUpAFAU9iLDxSkw7MVElRFiWKay+SuVNXPSvm2se0ZtuNwWNNbYttZmfrpwWoVFCYtt2byyrWJLzxtWbxueO72H/cw8wf3KaH/0nHyC2HDppRJwWbN62lb+77z6W5mbZtGkTlb6I7du38cf33MPEWICjutiqIKj0s9DSBNX1bNy4kXq9TrO5zEqny0/9Lz/Pz7/jfzYFpSAizWKiwCeKKljKeBeWhaAocyxLIpVFqQVZIXjqqe/QXxvA85ze0M2aI80LlGUTVGogJKEXkMRtIs8jTlpkWYqlLPIiN/ObEGRpRuBFSKGIWytIJKODQ9y2/TYq7g383t9+kdvfdBvKdTl05ChlBiNDQ2ihOTN9horTRK4cI09XCHxFUBkjLuHgGY/awNVsnrqWz//VJ5k9epoN23bwV5/5HK0unDz2Em+//TY8UfDEt5/hlpsmqQclUrrkWY6QUGQ5lm1DUYJSLDS6dLo5eaFIu4uUeYbrGMXjxYUF+gf6EKrgznfsQOZLjI+FfO2RYySJYsNoQBrnLE+fJNMNTp5eZnm5jfRspqa2MzYyzIsv7OPkkUOstOe59vprOH78pBGwKSxePHqYyfWTJN2UxtxJpg8/y8S2a6iGAxTKNZ1fJEJcuYb49ybJe43J3bl/roGWWkV1rXGbvix0p1/5muiJzr1eyPRriDeSu3+Acc7E/PXGRRfdq2//ypvwe9K5u0w18OKPvt7k7tVCryYJ5yU8lxrDmnGFk853ndz14tWSu4s5gJfj4134Qbi0J92afdM1j//lv7uPf/vLv8Yn37abq4cGAJPQFYXxSlSWfI1Gf5cOXRpo7uL8IrooqNbqnF1YIapFRNUQIWyEzkHnNJttyrKg3emSZ3BiZoEt60dpNJtkqcHL52lOlmVUKhFCafqqNYYHBynLkjDy6HRigsAs3DqdBMd2cDzVS4rNb+x7jql6YzpEUkJe5tRqEWmccvzUGapBhB8EPPbcYQYHQoRVUusL8AOf0PVwLIc4Sykyk0jars2Tzx9kpD5EXmacmV3kyOk5Nm4YpywLdJkjlIHZSmG4W17okRcZjufjBj4DlQrdbozV68JsWT+KY0vSLEcpmzjJ8P2QPCtYWW7i2jZKKL7+8F4oNFs3jdNNYqa2rSdJMhzXxvFdhBJkRYouCmbnFqj3VXvCJwWOJ9HKQLrSNCWKIh5/Zj/TM0vMLjSYGB1Gp5qllTZxmvHmG64y6nG+TeAHSCWxHZvAD8nSnKefe4n+WmQSFglxHKO1USqcX1hmZnqBwYE+ms0mrusgpEILRZYVKGWhi5JP7jvCI6XNn97zexw8eJQP/9Kv8ys33chNmzYjhKDb7iBUSafVZWCw/9zl7wc21WqIUBLbdQCB57nkaYZSkizNED3F0jwvel12C4ECAc3GCrZjIVHYrsL3HbNrDWiJsiVKCbrdLrbjkPYEXkyn1yYIXaRloHLGJkAZOKAnKUtTLHjgsae4ZtsWIyBRJD0InSDuZgz09/Pg40+ycf04QoJUNkVRcvzUNEjNrl3X8L6d1/ATO3cyurjMj/2fv8NzL+zjnj/4v/i+d97Fz/y3T/Bj60awbZujJ89Sr1ZwHBvLUeZaV5IsSfFsx6hm9vlYynA3s56Jd9KO6bQS/MDFjwL663Ugp8hLkkTjBR5pZniH6J5vZqlxbRvdu78sS1H2lFNXaQnXTm3AcS3iOMWyLE5Oz3FmYYWR/jrTM/MMDNRIk5Qsy9kwPkK93kepUzzPwfO9num5YH5ugZt2TvH3jzzDNds2oXpFjiROsV2XIs1J08xwuqUgzwqarZjlRszE+ABhaPwxfcfDsyTrxgfxA49Wq4PrGsXidquL57mkiSlIKNv8xmk3IQg9pOOcJ6pyBdGbr2uBz2/d+03ecdfbXrkJnOPgXekiWaMRF5AJXn5nNaSS5GnGc49+lRef/Rab1l1NfdNuguERdFcwMFDj0MGXuPXWW6iGIff8yT28+31304m7/KM77+Izn/gj1g1VKJKYOLfZfdtdPP3Cca65aicLi4uMjQ2z1MhpPtfijjffwfzcHJ5fYX6hiWUJ0jSmKOHFfS/QWJlnfHw9tqWIsxwtJJRQ5F1GR0aQZYHleJRFjq2MjUUJhH6N48ePEkURadIlDD3QGXK1EyaNKIsQpghj2zZlWeA4DjmCQricOLNCis0P3fRDPP2tffzplz/L1Tu38cKeF7n+plspbY+VRk7VKViceZGo6mPbGseuMHPmFCrYiuWPogUMj/RzzY7ree7w09x+605u3j3BdZvbbBjuUg06XH3DVXRaVfISlOgQ+AFlocmLHBBo4eA4NlXfhzSm7DSw/RB0SSV0KTIjAlYUJUqC35cTWpClMX/66WfZu+8EN+4cRmmfpFxHtS4Y7Bvj6/c9xDXbIpZXCm7cdSPHjx7j7p94L7W+GguLK2zdtIknHn+S7TuuZteb3sTIyBinTs2ybrSGUh0cz2di4xSZchEiB4rXxD/7H5LcXe5zl+hJXHK3q+MXstcweSO5eyPWiFW1zNd9wV+I1bvkpL/aWSsv5shhRDOUVLzMaBMooS/kv60RF+xFmOOrngcI+jyuGb1752KA//nj40IzS83Lx13L4Hv1O17M37vU/q/k7FpKQXn+WVj779z3l6/kx5mJVq5pH34+dxBMR0KKHttwjQFeCQdzLfuG1cROrsnHW4OHd1GUZcm73/2TfLCqeM/G8Ve8rzXMzs4Zvz1e42QtzBiEFghRUmKqkzrJWDh5DJ21CKv9CK0oC02j2TaS6WgWZhp4vsR24OTpOYarozz4/H7efvuNdDsJSIj8Gq1uk/UTdfa9MI3v2PTVa5RlyfLyCq12l6PHzzDcZ5QywcZ1bIQs0FiUWYIUvQp8XlKkkizJ0VZClhWElQiljXea57jYnksYBmzZOIjjSRwV4joh3aSDsCWNVocojAgiG8d2sJRiebGFJYz4hECwc2oTy0tNjh+bpcjAtqxzCouu4xt+pSXJsgxLKWbPLhMnKaMjA+w7dIptk+soKbn/yT2IsuDo6VkmRofIUsMB/MxXH+Ctt+5g4/oBdmxfZ7h1roNt2aRFjuM4lFlG3I0JPBshLWp9VVrNNugcJQVZCUoI2q0WjmOT5BkjI3XWjY/w5J6j1GqS0aFRDp48yXVXbcByBE7o0pzvsLy4jCUkXuDQ6S7RTTqMjg1hO0aVTGDhuC7dToyyLaLQJwwN1yrLclzXM9dxllGWOZYU/NPHX+S3PvZf2LF9I7/0wV/nfdLjHTuuQdkSKRUgcVwXSkwS3+kgRInrOGBZKNvGcixEb3bKOh3m5hbwPQ/HDSi1RNqCtNvFcSxKoUmzFChwXOPdVxS9Lrg0PnqWbWFZysCmLAtlewipsG2X1ooRSUAI4jjFdjxKSizHMp1J10NlRiwgiFx27tiCFhJLgOx1/5rNJn3VANBsGB8hz3PiOMGxHChLKlHA0EAdqTWdThe0sU55744d3DU+zkc/dg//92e+yK0372LXB36G37rvAcZbbUJLUK9H2K5N0jX8J9uyKMrCWBtYJvmkJ+0vixSN5rlDR9m4YT1pniNsSDpt2u2UnBw/cPCUoBN3qfVXKQrN7PQilVoNIQSubdFqtsiLHL9nYdHtdjg7t8TZhWUjVmNJqpWAzZvGEUj666aosSr4VJYlnu+ipEU3SXoG3BgBIClRnk2/6/ONJ/aweWKYJIlBaKSw8SMXLUtcz0Ui8d2ATrdDFNqMjg+iC0Gz2eXAsZN005SRwX6KNMdyjKpjN0mo9tWwHcGpU3M8+vQBNm8aw/UcPFfRXFrCWxUjWiP06rPw/L/z4uNPPc973/eel6fNcwU+82S5AFW/xn8XTLnnEDsXPpEKKdC6NDYX0sJ2Ax699ws0Zxe46pY7UO4AT3zrMQYHh/iLP/tzJifWM9Rfp1IfoNlu01xuMjE+zh//yR/zzh++my8/+BSfvP8YpxdKdqzzcavr6eaK8W2b8J2AX/7Qb/LP3/tzzMyepdNt0+ksE6cJhW5TqQ4wffQgmzdtYXxyA7ZUlKrk7ErOk3sOMVr1mNgwgiZHSkmuTVHEURbCcozherNNrX+YZrNBWWYEjuHqCaTx00Scs0exBJR5jhaghENGyd4X9zC3kDO7dBLfc9mydStvv+7tuO0K99z7KR577DGGIsnktl08+cAXke3H8fwAC4vm3GnOrsRcfccPsrS4wuzMWXZsuxbLh7Kd8Rd//od84+Fp/ubeb/Kud/0oRecYjQ78wq99jlt37aIWtozlhudi2w627eDYDu12C9uJmJs7S1AJ8MOCMlesrMzTyBostTv01fpApjilA6UkLdbz5t1beOttW7HsEr+Ss/el42zbMkAQNrj55q34lY0cOJmya9cutm2fotQpSaJxHI/vfOc5dt10E7/+oQ9x884pSlXhultu5557PsKuHeMcO3KUDZPD2OEmhGUjZILS6oI10usVWNGlQR7Re8a++irsMnF+cnfuY1dYwL/IcmFt1FiOZhUhdem17fci3kju/gHGd825u4yi5lrbrVlj0Mbs9/z3LlbLvNKhrNVlWrMzeFGsjWl+eb+X2v57yZMzedeVf++1xrzqP3dZkELvGILzTMG/y59/LeGVy3X8LhVFUfK//U//lI/dccMljmcgQVEUomz12irIq5hcCbpHbhalJO2mHDtygkroUUpw3BCtjRR+GIZooNFo8+xLR1loLDNQDRmo96F1ydSWcTzXptvpopSk0844eOoU60b6qUdGBdDq8eP+5ltPsGvHFiphgNAlKE2ea554/kXGhvtNN8FW6LJEI5g+s8DDT7/E1MZ1CKswwg/amMff+8CTXLt9E3le0G53WVpu4DqGj2RZEttRxHFKEHjkWUGJptXuIoSkXqtx5uwSI6MDuK5DWZiOzreeeoHrtm9iZmaOWl8EQlMUmrIoSLMUz/V6xQPFEy8cYNP4MHEcc3JmjvGRfq7eOkkUhvSFAQND/aBLLNvixqu20ul08Dwj8GD1fMeklAZmKwR5ZroPeVGQFQW2ZXPq9FlsSxKGvuGV5QW+71MUBVluvJhmTs1xZm6FndvHcWyPDWMD2LbxQcqLEl3CVx5+mp1b1lOUBVAQhhHSskjjHCUllq1IkwShMV2REmzHVKRd1+0pkRbkeUZZlvzsE/v43Kf/jHe//2d5S6fDB265BbTAsm3yIsW2DSev6PHkhDTqoUoZQ2qhlLlmS+MAmqYZSin66n0IZTh+UBr1Pqk4e2aOMKoYwRRlkuwiNxDRPInRZUEYelhCmsIAConAkpr5uVnCwEIIizIvSJMUx7WNQLGANE57sDGFlJIsz5BKGgiqZZOnObbjGHuI3rjzoqTUGqWMAE63HeN6Do1Gg4WlJfrqNRzHIk1TTN/G3LM3TqzjfTt3sqks+V9//+N8+Pd/h4/c/yifOXaCM52EXbUIz3NxXYckTvA8F8txyNP8XDJlKcXc3AJZXjK1eZKi0GihSdOMVqvD8NAgnuewsLhMNQxwfI8iL1lcaPDEvoNMDPdjWwaG6tiWgR5LRRqnptvtB3zz8X3UfJ9H9hyg4vnUKhUcR1EWJXPzywgNUSVCSMmLB47huS5RNaDRbFMJQ0rg1OmzVMIQ13HYd/Qk2zeuQ9kKoQSO46AFNJttHNtmabFJu9nl4ef2M7u4wmhflTAKSLoJK80Og31VqpUQISHLTKfbsm26nZQ0TRgaGqTqe6ie7YjOM5qNFpW+ilF5XPsBdtm58vjCCnfc/aOv/NiayJgrQeysNQZA0/MwVHQ7Md8sZpLAAAAgAElEQVT8208RegorHODE6WV2Xb+LfS8d4C1veQtf/OIXmdw4yYc/+gf82I/+OP/pwx/hk5/9PNOzC9wy9mbq1Hnr1PXs2ngj/+Ejn+Yd33c7wgo4szDH7PQsfc0q9b5BZk6dIghDPN9nZbFLnjWJwojRkTEqkU+RdVDCQlPiuyGepRgaqGEg7tJ07rXh+OqyBKFIsxRleXh+2IPxFriWwLEtIxhVGhiupRR5noHGCLlIm043JSlLzp49S//gJHfcficjQ2OARkhFq9Xirhvezo2bd/HxL3yCF158kX/9gXeTLn+HQkNfrU6R5mTSZ/LqO+nvX8eRw6d4fu8LNDrLXDW1jhtv2MG+A6dx1Rzbp/oYqYAWHqODg6wbq9EXJvhBQFmUvbmvQOsCXUKSZIRRFaUUaS7x3ADfd0k6CVsmp0zCr3O67S5hUGGlO0eaNRAyIwgCdAFDw4O4tsNK0+WeP/sa9/79s7RTOD19it037qJSrVDkJXlZsnXrFoQQvO997+Pzf/VZ7r3vq9z+ptuo+hndlZOA4PTZeYbW78INq5SiQHFhEeN1q2dqcWXbXUl8F5y7S8E0LwyDEhOrk/kbyd0bcX68kdxd+r3/r5O7oigvA2e89BjOj3/Iyd3dd78f75Fv8vPXb7/kNrIHz7IchzJ/pSTy5cLw8zSoEi1Mz1fEXdqLiwSuDV6E2+NedJMEP/DQQJrknDg9R73PxhE2A311/NAlzlfwbEmnbcRQLNumLGBxucnpuXl2bJ0grLhkeUGe56wbrDM0VCfPc2MIbkts2+Pk6TPUAg/Ht9BFQaeTIISiUokYH6oTVnyypOiZnRc4lkWn06G/VsULHNI45+vffpGdWzaRl120yJDCQilpkg5llAiDMCRJDYn/2RePMrlumBdeOoJjWQSBz7qhPtIkpdHuMDoySKPZwgt9c+4QCG2SsJkzZ7lt11VIJRkZ7GN4oEZYMQprUgiCwCfPCywLlLTIUpOUpUmB47goJWl3unieTdxqGyK/bSMtRZYbHmWapNTrNaKKT7vdwVIOZWn4aHlWYkmF0CVpktNuxoyP9CFtaRbhZYllWSjLdOYGq6Hh2ES+kZwuIemmVMKAF148jOuAYytsy0YA3W7KylKXas10XLWG5eUG/+LZg9y32OK3fvMX+ee/8G/5xLt+kJGBEZOEOTaFLrGU6UaXRYllK7IsRVo2eWqkxi3HJovjniCMR6kx3L8goMgLpISk20KJAoUwSIQebLO13MCPfCNOkaRIqei0273znRN3u8TdGFkKTpw8iecq2u02nqNYWTRwviBwaDVXcF0LJSyUEkYxM0lIsw6WYyCeSkiyOEW5HggjjCWVRZZppOsYmX0pyZOESr1KEncJooChoTpCQp6nxmrAMwm7kBKBQkqbtJWyJS956Mtf49unT/C3n/koo9u28LtfuJ9be3BEISW251EiOXjwJH21qoF7lyCF6nUpLRzXYX5+iYf37OW6HVPosiSJY2qVAInD8nILZdvMzS8zVK0SeYo8y0izggKBRiKVPKf+u7LUYrBSpb9eY2JogKHB/l5Cm5DnOU/vO8z+EzNMbVhPnmc89vwBNowO4bgOQRBQlpIiLWk3u5yemaVSjVg/PEBYCVlutEwCL0uKPMexXUBx30PPQqnZPD7MLdfv4O8ffJqhasj0/CJjw/1GEdRSSNcsYDudBFtZ5vqwFWmS44cejucAGlFqKErcIDBY7jUnw8vPmYM2jLz9rnP/r897ZrxiV68zuesBzkFKyiyFtM2XPvURdt14PUNbbqZen2RiaIzB8RGyvMSyHNZvmKTZ6fBHn/gk//IH/hVXr9vGm3fchu9JHKUpsxiB5tadN/FHf/9Z3vWD38/mqR3877/4q9x+1e3U6wO0223q9ToL87N0VrqMjg1Qr9XJ0phaXx1LFDQ6GblWVGxNPZSUEiRmfldKGouIojBJWpEbtIPnI5TCDzxsS1DkMXlmOr1FT4FYayN8VOQFStnkWclDT38Hy64yPLIFAcyfnWZ4eBStYebMaYaHhsnylEot4JbtN7F99Bp+7jd+iR+6USEV6CIjSxV+3wZEuJ3lxZgoqnLn2+8gqrosnDnC048+w8zsCk8++x3eettmBtySiivZunUcWc4xNjpElmV0uh3CMKLdbpkCTZYQRFU0mkJrmu0YL5DG9y8FG83c4ixlkQICXQoyXeC6iihyybMUXSo8N6bZ8jh0ouQb336JbVdvZfOWrezYsZ3BwQHiOOPo0WMcOniQwcFBPM8jiWOuumoXjzz6OLfdcgtZtsJ11+3g+IHnUUpT69tAbXQrwnJRF2k5vJHcfW/jjeTuH2CsldwVZWmgjVcSrzG5k1Ii9AXucQjxynrg60nuLinb/xo/e24MV5DclVeYuazuXQojL73W8S4n1rLmPtfc9mV46aWipESLl3385CrJ61XifHjqxUIql/sea52i8yGl//gnfoovfe4L/Mlbd7G1v375QZyDlJZXdr4uwGqYBE+kAqkFRbfJgSMHcF1FtdaPtHykpVhaWGFxqUEU+LiujUQT+Q5h6DEyOIDjWCwuLOPYipVmQpKWOI5DpRpSiozRwX7m5hsM9Hs942iB4zrU61Xa7S6+7+HYDt0kRqKYGO4nCGySvMQ55/EnsG0XP7BJ0wRL+sTdGC90UUoxWIvwI5c0S4kin2PTs2yeGCEvcoLQQwmXZqON5xqFxi99/Wk2jg2aCnk7IelktDttrr16ilOnZ1FKMDBYw/c9vJ6gh+e5JFmKVAolbeJOwpGjp9i8aYLGSgvPM+qB3W6MEIKZmTl8z8DUzs7OIxBIZbG81DDcEs9FImg2W/i+ZzpktiLNMspSkyRZT3DC4sk9+4lcr4cYExw9MU1f1Zim935I4jTGcx10rnF9m6gWYVuSPDPdJ4Sk2W5S76vi+YZvqEuMymeRoyzJ0FA/aZYihMTzPdIkw3FsbNvm0OGT3Putp3ny0FF+6+QM/+k3/z0PPfIo993/EJ+6+8fOGbbL3sWly8wkesqIvggJypboHlTatizSJMZ1JbrMTZcFgeO6Zk2hDdytzHMoNXmZUEqNtCRFkeG6FggbpRSOY7pvth+hlYWQFpbr4fghuNA32I9yQqJqP0IFhIFLSW8h6rpIZWDwQkiTiDs2nXYLPwwRQpAlCVLkKNtBoonb7V6X00FITZFluI7psBmRF4c0Tc15l4LWSoNuNyFNM6JKBYRESQMBP3PmLGNDA2ztH+B9O7ez9Nge/sXH/5zJbVM8VRR8/PmD/JOpjSZxb3c4dnqeibEhhNYo20Baw0pAu9014iVCmGQrzY3NQZFjO6aztdRsEVYChoYGUEL3VGahUq3gBQHKtijynCxNabW79Nf7qPR5+KGNFyoKnRJWjPDQ9Mwcu6/Zwdb1Y0glabWbXLd9E41Gm6hiPMg+f99DDFeqnJpd4JqrNhJELpVqQF4URJGPktJ0wpOCM2eWOD0zz03XbmV4qI80S3FdhyIzfmrbt04ayLYQdDpdgtBFlxD4puBS6gLP885xJh3XMSbcaU6n08EPfKRtcdHD9ooWgQNhyPv/44d57/vefcHrZVn0YMfnT7GvL7mTskQLG40ibS6z74kHOLjnceJUc9u7fpoyLXnp+aepDY0gLQvbcfjl3/gN0vmcD/7kBzlx6gjr10/ieWae6LRXUDrvJc4OL+07wdhkFSeosbt+KyMjo0gh6av1kSYxQ0OjzC+eIKh4TJ85yfJSl1Y3I05T4jwjTTP8wEO5Nu1OE8d2jbG2pKd0a1RoNYIkidHCptXpmvckWAp0liCloiiMSIltmY62gb4rAy8fG2f65AxnZmZJiy5T265maXkZ3w8M9Nf1yHIjdoIuieOYH7npNn7zz77Gt/Z0+P5bqjhOSCN1OT7nUhQlu3bv4uSp09TrA9TrmzhzapEHH7mf2269DVusZ3K0IO8ukukVarUKcSchSWOiKOopNIcIkWNZRsTI9lwc26FUbZpZmxOnA9xAU8h5gqCfPO32VH0LvvDZwziOz/DQMGXZoCg7BNYEh04cY8f149x11zZC9zSf/+tnuPnmW8jznGuv302tUkMpydj4OpaWlpiemeHPP/UJfu4D/4yvfvWrRFGVxZWYxuIZkvYKZ09Pc9Ob70SLHH2xndJrLJC/jJhae132uuK7Ucu8gmWlKY6InmrmG8ndG3FRrJXciStUvwRec3K3yvl6tWv39SR3lxrWf9/k7srGs7r3VeWj7wWpd01uY288lxuWFNJMCKvcuCtM7i5Wy7zSuNz52/PsXh5/6GE+dvt3aUh+yWO/TIoU0kyAcaPJ3MwMeadLNapT6esnLwVKKgQlvh9QqxqxjW67S7vVwrKEEfcock6fOUs1CnAsl4f2HGD67DLXbN9Kq9kiLRMqUYWRgTquZ5QEXd8kNXFsuoGil4B3ky5SWBw7eZrQd/CCCF0UJGnCuTq5NAItjzx2gE2TY0hLkMYJtm1sCKQSxJ2ErRvHSJIUpSSNRoxrezx/4DATo4MUZcH06WU2bRgminwefnIvu6/eQf9ADctSDA724ToOcZygpKTV6vL3336KwSii0l9BCkkWFzz8xPOkeUbkuob/F/qUZQklOL5D/0DdiJ84NoHvs7LSYmWpyYHj04wMVvF8F43mgSefZ/vmDVjKwvEc8jSj3YlpNFr0VSOSNGfThnGC0EdKgbItfM/Btq1zsFxlOUCOVIokzhEKwjCg02wjlYF5KUsSRkbd0O511rSU2LbVW6RJlG3jOi7KtlhabhKEAVIKTpw6QyXy2bVjkv/WiLnnwx/lQ7/92/zh99/F+6+/hnKVG6uF4SI6xjQ7Tw1cUeuSPDc2F1mcms6QEKBLhChIkoQ8L4iTDCWlqejLVX6qIEtLlC1wXB+tJUpaRh1WWsTdjlGzw0BmLSnotNvGukAYq4Q8K1BK9Mo3xWr6aURjXOMlSM+DTPW4eH7gUBZmfojbLcoixXF94k4L17HI0gzbcUm6bVzXJe52CQIfISwDo/Q9I8QjFTrN6B8axOt1J7O0QFkSgen+ep5DJQpAKPr7BviJqau4pRrwscef4j//h1/j5+75S9452k8ap0yMj2JbEnRBkqR4gYcUAtd3iOMuuoRuJ8aSEqE0ec+MWUmLdjcmCD2SJMbzXHzPNeqsnkPcTVBKnIPZHTsxQ+j7RgBECGzbYmWlhevaKOmQxKnZR+AhlcCyzRyz0mybwk5ZsGXdML7vM7lhDBS0mk2jdiqEWXtp3Tue4MCR06wbGSCq+Liuhec6ZGnG6FA/1UqA5xsPNtu2cD2HhbkFsjTHc126SYwb2KuTKbZjn3uuuJa5RsJahVJcmHrplwnYrzp3fuHYzAW8OwBdFkh5YYHydSd3lBTSQQuJKhIOP/80R/ft4U13vIPqpuuZPnaEbetHOHB8hrGxUfK85Pram7jthptAg+M6lKWBTqdZQZ50sKQp+rluwOJik3e+504+8MF/z103vo3HHv82oyNjJvm3bV544VmuvvZWDhx8jq3bridOMmYXpmkuLrFjaitDtT60LpCWxFY2Wpdm7pESy3EoygJlu3TjmDCoYLsBRQ+ebVuKPIuhMB1721lV2U2xLJs0iQFNnHSxLUmnneJ6AcPj44yNbTDnuCzpq/WxvLJMUWRE4ctKto6OefOmnezecB2/8/kHeceNA6hwkKGJ3Wy/ajtlqfnil+7FdSqEtRpF0uDU4j7+7ssP8fwzR7n7h6eohQ65yEF7KGWSBNsxhb00ycjymKIs0EjanQ5BEBInXfKywv/xa58nqkomt9Vpzy/T399Hu9nCdQMGhtezYbJCUJFQxgjtknRhpbuIssBTFnkjY64VUGrB6elZFhZbNJsNNm7cyP79L7F//35u2r2bLdu3MDo4xPr1E5ydnWNiwyZG+30O7NtDc2kJ7VUZHhvEDfp7CrS9ZO11o5/+f5LcXVG8kdy9EZeJVSuE8y0NznvznNfLK7ox56wHXo5VxbE17RHOZR0vwztWPy1L/Uq/yDVvjAtjLTPyUhsD9EsRxeE1mIBfBlZ4roO1xufWGvm58WHGdvG4NWvf9uVltrtccscVdLWkOM+M9jLbrnbswHReX2tyeqnz9+M//n4+QJsf2TB6xfu6YFxG0vEcV1FQghSUvYlOCIFWhmiNLugsLjM/PUuRCizLwYsiA10SEuFYUBYIDXGnzfzZJVxLcmp6hijwCKKQIjc/uu1YJFmK7SomR8YY7a+hpMZyFYFruAntVsNUOrXhyQhlFOHa7Q7KluRliiVdHM/imT0naC2VVPsUtqOghMXFFn1DVVMNjXOqFdPFsx2TCGhZYtuKJElwlMLzfb70jafp90Ke+M5Brrl2I8P1YcpC4rgWU1tHVi9qNqwfRbmSbruLZUFJQavVZmFxpaco6dFudumvVHCkRZp0kCJjqG+QLdvGCaMqCM1Te/ejSk3oB7i+xfLCAp4lSfOcbhzzt/fv4Zpt65jath4vclHS5szMPDu3TRK3Y5aXV9BCoJTAsSWBbyNlgaVssiRFF1DmJU89u5964KNkgevbJFmOo2wjFe+5VPsChATPdym1wAsDsrxAKIGlJEUBs2cWqNZ8lDTJhbQdlLKQWqN7sMM8zXB6C+y+vipfnZ7h2M1vYsPEKL/xK7/CX/3MT6Nsywj+KoEljReekJp2exlUifIjSmEq9pbQzB47Rqc1S6e5DIByQCkXZbvYXkSaxGRZF0d56B6Jvyg0Dz72DJFXwfcD0k7O4lybTisnSbu4jms8+GxIu0VP/MBF64I0jQ2ENdW0VjrGe8tRlNJ0GTzPZWVhBVtZCMcBoXsMPfP9lVQYL78Q2wtB5qYr6LhoKWi1l7E0SBSWVEBJVhp/tm47RTlG4dUPIlorTQOjLTW276EKSdxNqVSreH6A6wco16JAk5cZruNxg+WyvtXlS8eP8vZf/AU+dO+3+Oqhk6zrNBkarhrOmu3QbnVpLrXRucQOXBzfBl3Q7WQgwLYlJRZRFOD5LkJolCOJkxg/8pHS8DJFbzHeaSeMjw1jOzZfe3gPA7UKtm2hBHRapjNdrYSGP1uWaLThifoutXqNuJHQWu5Qq9fIi5yvPPQEsuqjsoL7HtvDQhKzrm7M2LMkp9Q568cHCEPvZQEex8ENbGxfUWbQ7XYJqy7tXte0zCy+8shzzC0ssm3zOEKagtMjz+xlfHjw3PNHejZ5GqNcB9QrBU5g7efWxZu9c6yO/6Y7jLebkFCWvaKgQEmJFApjUv5KEsCqsIruPcDM2sD8rT4QCinRwkaU4OucP/jd/8jU9Tu54wfv5stffoBa5DG/PE/gV9m7dx9//adfgjxh3dgESRzTV63xzNOPEwQRlVpEqzFP5DnkeUqSdNl/YpYj7Xlmpme585o7GBgZRqDpNBscP3GUgaERJIrZxRnOzJ5h0/rt9FUE2zdO4Lk2WdZFoinTgrIsyNIM3zWFBaSFFppunPLsM89SGxgj6quilYXj2nTbDRwyhC7JciNEVZaFoZ8UOZal0ELjhDWSLEMFFkeOHqcdN9Gpy9DwIHHcIUm69Nf7OXbsKIKElZUlBio1Th17HsdzsF2L26/azQfv+TJ3/8g7OblQ8OC3H+XaG3Zx3U03E1aryFIztqmP/iDknbdOcc2US+g8jrY30ey08cphsJqUuqDTaYEwhTIv6CMrUmzfIqqGLCwtIoWk1bJ5/tkzzM2dZf2G7YzWHZYWGiwuN2h12mzc5IBuQ5nh+zXSNGN2vsH42CgiE7SXY9LU5sSpUxycKVhq5uzcOsr1191AmiY8+tjD/PCP/Ch+WGHm9Fk++elPMzW1ndGJcbS0WVxcpm+whm03OPrCS7DcZMOWHWSWRyYUUuToy8ArV9cvq4X2Cy/cixeiek2o5sWCJ2uFEqI3s7789921LC4Kbe7cUpdmPAaL8b08wrl4I7n7BxjnrBAuAS8UvcX8K+JyHbvz3lvrtXO7WN1mzc7Oq98Gl9visvy6V93zhft4LYIgcOU8vFcc7wr3daXJ3Ws53mUVpFYTu57ccFEWL3P1riDWOn/vfvf7+eTbdl/xPtYKIcWF145c7Q4b6C9FjpJAnNBabjI/v0yz3WV43TCu7yGVIu7G2LZtCOQ9i4XHn3+JahDw0pFjjA8PEKcZURQY9b6eh9VzB4+xcXyM5UaT/loVELiBT5anZGmCYyuKQuN6Pk8+fZD1o6MooVACAs9DI1hZ7hCGDkMDNQ6cmObwyRk2T4zguDZ9tQpplhtuhjQ2A2EYkCZZjweYmeSx0KTdmDhJ2Do5TlQN2XnVRiMbH+c0Wy2SxPDskjSn0zFCFaueU5ZtoSyFQFCrVo05dwmDtSr1/hoSRRJ30SIhqhgbgW6zi9Y527duwA9cXN9FY0RIbM9leblNVI1YNxiahDdwEUKystTmG0/uZdO6IfYfPUHg2QwM10myDCEM5K8ojN2FlEaEptVss9RoMTE+hG0rut0Ux3Upih5vUQqyNCWMejA9xzZFCynIkgx658p2FGVREPfUGMsCsjTjsWf2MTkxQqlNd08qc13/7ON7ec+/+nk2TE7yjU99lo+/571YQpN1uthKoPOcXCXYdkm3sUK30SZyfCwKyBO67SZxp01fNaQ2sB7X6UNohyLveflhURZgWw5KWHS6nZ6oCSCgv1phaGiYJI75269/g7nFRfYfP8bCXJPBvjq25eB5Hl7gUpQ5ujACD8qyWFpcYs++/bxw8AhXbdtCUWiEhDIvKPOCo8dOUIlCbFeiZEFzZZEkbmE5AcKy0OeqwII8Sw38tOdFKRB4nkOSZhRFTlHmxF0DVZPWKhdS0Vxp0m53QGv8wPAEtSrwQgdEQalzYwatDZJj1WdwZGSEEsEPb5jkdz/xl3zsDz/MLXd8H7/613/DdKvLm8eHUVbPzL3Q/PW3nmRq0zjSsih7Yj9RENBudmm22viei+hBcZfnm0glKPKCLM2xlLn2F+YWiEKPLE1IuwlXX7UFgaYsc6JKxPJyEzQ0mi1j3WHbJHHSg/4K/nzvIR46PctvPvs8984ustjs8GKW8ehKhx+/+S0cabV411u/j6dOnaEhbH51z37uGqoi8oK80EhpxI8s2zYLtlJw+Og0Zc9jz3VcbMfhoUf3cefNO8nzgtHhAdOpkJKJkSFsy+rNfQJZZpw8cYqBgX5Qau3kbq3p/qLXLMvCvuVN5/Z73sPlgmLvWjic1WO+zL8+781zBV6FsTMqOHXkOWaP72VoaIKCgK1TN9Jf62fDxAaefX4vv/1f/yu/8J6fZ2RkDNtzOXDoJRCS7dt3ElYiGq0GniXJug1WFZqHh8e55Qd2M97dytLKAlEYIqVkfn6ebVt3EEYRJ08cI88zatU6p04epSw6DA9NUOjC2I1Iw8lUShl4ulKsPpWFLlFK0d8/SLUSUGiFVA55mpDFHVQRAz0YeG9bIYzHnW2bYk6S5Dzy7edIckVjoaB/qM7Utu0sLM1T7+vD932azQbjYxM4jkteFCwvLTA21E+RJb19St56zdv41T/4Y/7Zz/4s9VqVbnOFtLnE3MnDZEXGwYNHeeCrj/HC3oe47oaNnJrfwoNfP8O2HWB3M0orNUI/pSaKqiyvLNFuNdFCo1SAkhHtlubkgsXGrZu44y07uPPWcUb7E4qsJIxCJtZN4HkeZ86cplqpI6VFo9HEtl0azWVsB6JKiOeZLujmbVN89u+eoBkLvvPsXu548y2sNFb4zjPPcfW11/HAgw+w6/obuP66azl05BCTkxs5dOggeaG4+upraS3N05hb4vD+A9x855tRYZ8pPAj7goLDd0+BWSO5E6+e3K1t3/XfJ1bXY28kd2/Eubii5O5ynbjzt30juTPbv7bNXz7eFe7rf1hyp0ylvihKI9ZxhXHx+fs3v/jv+P3rN1/x5y8VcSeh3eycU/HTmK6tBMgLdJ5z8tAxup2YNM3pr1UZHhyg7PFulDRmwkVWYFkW7U4XKQVnzi7iWBZXT00S9qCBpdZIJVhYbOB7LgOVKkEQkMQJUeRTlBrHd5HSJA1lXvQU7RImx4dRtunK5UVCmnaR0uG+h55lbKhCFPjUKyELi02mtk3QanWMImJR4ruGhF+pRShLGb+yQuN5bk9cRpLFCbatiKoReVn0uHyC5148zLHps+zcPkmelxw+eprAc3n+paOMDtbJkhTHcxDQg+Lk5FnGlx9+iuG+Kq5t85dffISNEwMImZLnJZWowspyk6ww0Dppm45QnhfYjmv0apSiLDWOI6gP1Mjy/BxMbmpyDMuS1CKfIHSxXBswnTMhFUIoHMfizJl5PNdGSsH4yACWY5PEMWEUgjCdg067Q6cT47oOWZqeg9LNLyxRCX0s26Ld7FKpRbieS7PVplarmK6NbaOLgqG+Ko5vFDGTOMF2HH764Wf5/Gf/kIHBQX7xX/8Kv/cDP2Bgb6VG9cbbbrdxnRpFnOA5kixeYblxFqk8bM9FC0lUrZqkA6en9ql5Zs8LHDs9je94fPn+Rzhw6DiUJWPrhojj2Ji0C2E4ipaDtCRTmybZPDnO5LoRNk9u4CvffJSnnn+J/5e99w6y67rvPD8n3Pjy69xANxqJIEFSDKJESZSsHCxbsiQq0PaOPbUer8vrUFszO7UzU+td18zYO+t1GE9Yj5NWku2RbMuSPLKtRIq0SFESRVIkSAAESBCpgc7ppZvv2T/OAwiCTQqiTO+6ir+u80f3u33f7dfnnnt+6fOdHm3arGFvgOO4HD36FGOjI3iBgx720kkDvc6AeiPElIbOZoejJ55m984dIKDf6VKvVe0c8EK7zBclCEmR59bxUg5g9feUlGS5JYJ6nktJie8FRIMBve4WQRCiUPztNx5gcqSFoxWu5w5TSsMckYHNjS07txHoYYlxkecYqRFC8MTxE9w2McnCA9/in/3hR/nsn3+c1/zwO/iJ3/4oN9d8enFMu4jy8X0AACAASURBVFplerRFrVHBdR2U1niux+baFp7rohRD+p/DkcNPs2NqEi90KIsSKS2lNMsyGvUKSZISRzHNVp04SnC0RkjY2ugS+gGOEmyakp97+BgfffwYf9tL6eclR7cifuoH3kq7kPzP73g7P3rdtdwwvZO3XX0Nb9oxQ1AJOTgzR5pkHH7sCXaNjvKTr7wZr9ri5+65nzdMtEn7CV/85iOIvLAU3hL+9sHD3Hzt/mEQBkxpmBofIQh9jj59htFWjbBiQToGSBI7d4UQ5HHE+vom49OTFEYMe0KfbVfi3AF88sgpbrjx+pfEuQNlNQdFCckmRx/5Oq9//Ts4v9TFq46zsrjISKvFvd/6Nu+/9naqtdD2bUrB+NgEXhDQ6/dwtMPa+iqtWghlShL3ATh/ZsDeV08SZG2CIMAPfLrdLo7jUq3WKPKCo0cfY3pqhrWVZRqNOhOTMywunKFaqVAJfYrCBp7kUIS9KAukkAhTXgx2uK5LFPfQbgUpHQI/pMhiNDYQ53s+xhjSLKYYwp6yIr/YJrC41qXX7VGt1ZidnWNx6RwjI2OkacLi8gJjY+P0+n36vR71eoMyT5FFHyUFWiuKvKQQHm98xZv5P3/rP/PGt9zK9NQYp08cp7uxwkqnw+LiKtdffQuPPnInq6snKXPB+bPn0f4ArXZSr8eUhUFpRVHmeK6HQOB5HlL6bG30OH1ygf/rv9zD2976WopkjaabMugs41eauK5Lf9CzzuYwo5xnVpMyzzNq9Rqer1BK4joeUTRAexXOrGu01yCKM1o1zQ/+4A9x1YFr+IM//Cgf/vAHqTcaOI7D+toaaxvrZEnGZz73eRbOnWN2coQnDj2CosBvBEztPghCI3BAPANYedm5+/7tZefuH6Bd1Lm7pPzy0t24uey17coxLzmY55zr0tcus4vlIH+Hzt3zptsve9/ns0tBHxffxzz3tRdy+F5q507J51+YLlzflYBeLn/eCuS2F3HxnENyoC3N5Flgle3s0nLOC/b+99/x4hy7C/vC4QnLsmRrrUMcJWipyJIcckOeFJjCkCUZ3a0ua2ur7JzZQVirgbDOUFGUZElKd6tPEPiUGDpbXfK0wBjD0/PLGAxTYy2kHFa2K0UW5xgDaZrje5ZMV6lbuEESJbZXKbaQD993rJ6R61CpB3T7HQw5STIgz1P8MGCq3WZ0rMlgMKBWDQlcF8eBIPTQCmQpWF5dxwt8lKuJBhFJmuC6Gq1t6aLWDkpAlhXkWYbjuwRhgClKpqfGcJXE9VwMMDrawnUdXCUJAw/X96w8gBEsLKyxutoBUzJWb3DoqTMc2DfLUwvnuPna/VSqAcoVKOlSrVao1gLSLOP0mSX8C4K+jqYoDEWa4XkuSgviKLH0VgNaW8iI62qCwGdleQNHK4LApyjMMJNie9Q81274w2qAF7gX+7Z63YH9e4qSIAgsnn5lk0a9QZZbpH8Y2s1Ud8tGjQeDAQJDJawMwQYKhHXQ6o0KRgibpXBd/sm3DvP7v//b3PFjP8P704x37doDZUKeRqRpinA8kiynWquQF1tsri5TJCmN1gSV5jTK8ylQuGGVrJSUUiOVDTxE0YA4jUjLkpnpSeZ2TFELAvbt282gPxhmFhRLSysM+rElUhrBuXNLGFMwMtoiigbMTI9zzf5ZvMAh8HyCIGRlYZWFlRXG2i3KElrtBrMzOwjCACUU6WCAq62m4tT4KFpbSI6jA6TUZEmJch3yNLM0WiVsWZHWCGxvsdKW+ielQmmHvLCAEyE1ju8SVkMkkmgQMbNzkjBwWd9cp9mokOcZg60ulTCEAjw3QCpNUZYIYeEgrmux/abMyZOc2dkZRusNPrB/N3/+8Y/z/3z5Hn7z1/8NY29+O2bfAfStr+PnPv5Jrg8ko5UQYwRFVnB6fgHX1TbYkRXkecFDR07iCEEYesRxSqUSYkw5lOcw9vPQViQ+jRJ+575v8lunV7i/E/Ppv/0GH3zLu6nXx3jb+CT/w2tfyweuOsArd8/xiukdCCGoNSrDQIUZCtGnFrIi7VqVZzl7ZmfQSuK6Dmma8s7duxkZn+b8qVNQCK7Zv4uwYumwNx7cTZKmnDx9niS15NFKLURpwdzMBFrbcmuDFWN33WEWO8sRCLQQFo6jnGcVgz1Pp8IzL15WrPkILje/8sZL9gXPOG3i+R7ePLPJ3HYTPVzDFQKMdT3v+cLnefjee7juhley/+obuPveb3PixJM0GzV6xwt275mlLEueOH6ELEtptlr0uh0qYQWMlQMYdNeRZWLXjbCCX23ijCWsnUqJoghRGpsp1w7dTpf5s2d4xQ03cvKpp/G0Q0nM/PlFtOszNtLGFbYcEwOlKe3cF9IGI0xhnao8RShD6IfESUpeKs4tLDM/f5KiyGg16lbAXAgQoJW+2BOaFgmiLPBrPtXAZ9fcJCefPsurbr2NMAxBGCbGrZ6k73lEcYRUELiSPNlECmMJv8IhLR2MdLn1ptvonU/4xV/9X7l63xyNZoteFHPra27l0GPH8ZySPVcdYM+OM9z2hgN4/gz/8aP38643TlGUOdVqnTiOhtUNBVLAwsIS1UqNnTtmkTjcdONVuDog6XWp1RrEWR8BdDobKKUoMk0Q1mjUm2R5ysb6CtVmnSK3xNmyBK09atU2f/znX2VlZZXRmsMHP/wB+t0eZ86scOONN1Kp+nz17rsYHxslzTK+/KWv8M53/iC+HzAzswfP86kHOV4A/c4CYXOa1vgkSgeUl9EzL8zFZ0/DK20vucS5k8N2kBfYXl0450vt3F1+b10INrwU9rJz9w/QtpVCuLyX7rs4aZfbCwFVtrXv0bm76DS8yAbSF/qtF8qGfTcC5MXXXtRVXblzdyUk0ysBvVx+lgsPoOezFwKjXMnxt9/+Y/zxG2/+7he2nQkbvb7QI5hEMcpIPMfBGDh7dhFf+bjKxcYfCjzfY31ri+boKGjHYsHLks5ah/W1LVzPIQh9sswS1nzXJc9LBoOEXdNjNGohcWwhJY7rsLHWt434p07hKkWrWaUcwhi2Nrs8fvwpdu3caVH8UtAb9BlEA7ywTr8bI5VDrVJHoMlMQr3SoChysizH931OnD1Lu1nB9TRJkqKFdYpqrZrF7GuFkpAOaZBJbDd9UquLoIW11Q7VapXBoE+n02dycoReL0I6CsexkJFmIyRNE5TWCClYWrLi2Z2tiInRFmmWcfWenUilOHjdTqIoQ+ITJT1czyPNzbBnyeHYk/PsnpqmKBM8z8NRms7WFq4SGBRBxfY3SSkYRD0cV2FKQzxIaTUttU4rRRxFQ8fBDHXmHLRWQ620km4/QQvF0so6rWaD7laPE6fOo5CEXsiRJ06za9cYg0GE1oput4fWmju/cYiJkTrVYZ9Vr9/Fca3OXhh6CAxSOURJxM8+fJyPfvR3+KVf+hV+/Zab8H2rbSVlxsryAqEwSGlI4x5xZwPygEZYw3FdYgll4CMGtkxJyWHR2bAxWAjb2zU2Os7cnmniKMIUOUdPnGSk1eTu+x9kbW2TeqXK6Oio1eKTkMQZWmgazQau4+Ion+WlDSYmp3Bdj0cfPUJnq8f09CRjo02SJCYIqhgM/X4PP/DAQHdriyzNbK9YnuO6GqELkjRFuw6lMORJiuc6DHo9yjQlTxKElha0o5V1wsp8CLOxXSRSSrJySKszjtULVAZjCqJBn7KwNNdet0MWbVJkMY6nSYsc5do5ZIwhS1OkgiK16HitHSuFIAxl0uOGXXOYpQX+90/8GW9/y2s5efQwc3tm+fBHPsCXTp/n3935dXZpw0S1wtSOMbyKC0bhBT5GCA7snaXZrrGyvIEQAt9zGUQx5xZXaLYblMaQJDE//vXH+fLKJv/01tv4iZtu4t279/Ejr7yV5eUVGo06taG+nQCEVlAayqKkwKBdBUZQZLanqt/ro1xLU+31eoShj+sq0jSjUg1RWpFlBceXzvLaa64iTTOkgpIMKSGsBIy0GlQqHqUpUI6g1+/j+Rqlba+bKYZRe2Ns9txxkNohjiKCWsUKv1/xGvvcI3/tznv5yEduf45zZw9/oeqY7/4gkRiMUUgkX/rsf+Pow49y6+tfzcjENKOTe3jtq1/JPffcTdubpFqtIgSMtEbt3JCKLElQUjEYDPB8nzKL6G4toqXClAV/8Def5N0/8kY25w31epPA8cjyjIWlBdqtEU48dYydszvZXOmwZ/delCvY6qQYYkYbNUJtK/1NaVsAtOOQ55ntuZQC7dhKBalsKa1QEjdoUhiPQ48fpjAZ4636xaoSgYVjDboJSVpQCesoBIFToUwktarHNQdvoZN2SAYxYRiilOT8wnl8z6c90iIrU4o0wqQdpABjSoR0CBtj5Nj1slFv8Ibr3sAnP/V55m48yL5dcyyunGbv3lm+/Ndf5c8//TespnXcRHNgd8K7bjlAYrbQUpOXOWFYIQhDyBV5nlCth2RZjyjqcPUBGAzO0RrdC55gPVkn724NqcwJeZ4yP79G4HkUxvaFu56LdgKUVBYKhabIJIE/wsJ6zsRYm3e+/nrakzP8/C/8Ag8/dIwffs8PMTbRZmpqEsf1uOerd/PjP/rfkeclIu+z2ekyN7eLRsPghpKN8+foZC6TM7tQro/Ypm3k+TJ4390unfMXAuEvMPf/npy7y9/z/4/O3ZXXd71sf+cmpLxYenlhPOeYC+UX27z23ezCOS+8z+WjBEpRPme8kEkpLEVP8JwhjUQaibrk6/IIR7nNuPhaaS6OfDguHJNv87Ntr+8KxnZ24ZxGiIvjSuzSa75g20VMX+gajDFDkefntwuf+6XjSo4H6Pf6/NP9E5e8KJ4ZL3gSe0xpCrIkZbA1YGNpHVVCUeYIxyHNDItLW6x3NyllhjEJWtlN6eTICCIvMXFKEaXkmaEoQSqHLDXMn1lCI/B8i5av1QKmRhoEFQ+kfagHQQWMpj3SwvVcdo1NoKTG9XxEAVlasr41oFqpAzAYxKytb+G7Ps16k3KI7L/z649QCoFRgixTZGWGEAJXOZR5zr65CarVKkUmcNwAp9KgNdam31ml31kljnuI4b1kpMbzfURpGERWY2yjG7O01qM0Cs8PaI+0KUvJ3d9+nPWljtWpyzNKAdrzEFLx8IMnaNSrGJNx7cE5nIpmcscoSktOnzlHZ3mNo08eY31jDS2rgGNR7aV1wl776mvpxB1Ko5ifXyIvc+ojNUpHIDxBmucUpUFKqxElEGhH4niahYU1vvS1w1AaAs9hfn6JI0fm+c6jT9Ld6iKkQ5ZJilJRJlbIenZmCiHs+aI4Y2JqkrVOh/O9LTa3BiipiPsxnnaphDVef8MBK0xc5JRFQaVqSw8rQQXH8SgMdFfn+c31mP/wH34DKTS7uh0LcyHHCRy6Wxt42hClGyRJl3qzQm1smrDWpJ9qFlczXFnByXKE5+CHFRzXpyhBBRKhNUmaILSVISmzkjAMaYy0eOubbqNar4IDYdWjPdnCKDDKYIyDUALpGfyKS1rkJEnC1x55lG5vk6effpqdo21alQClwPU9wlqVM6fOsL68ju+4FElKr7eBdjxaIyM8euQ4J8+cBSSmcGymrTfA5CXkJUWao6Uky1KiJCLqRThasbm2Tp6meI6PlMPMhUlJoz4iHVAkfaQqcbwAx6nghy2aIzsYGZ+l1+1jsh4ba5t01ldZPnsC8h55tIVJEzqbKzjakCcxRTpAiQxTRpRFBKagyCHq9XnVjjn+6G1v5M0/8C527ruRX/jF/41zp9a44yN38Oef+ji//uQCP/n1Q5xYWkOUggJjgx8CPnvn14mTgpHRBs1Gk3iQsxoP+Ny5RX7sngf5lQeP8sig5FM/8m4+9sPvYWxykseOneCxY08gHcORs09x19cfIE4jpFOilEaksLmyxUOPPI4UNmuYpTFRd4AWGtcPcZWHlIJ6o4p0BFleEPgBGE2WCjy/wh8sdyjJKcuMssgxRT5E6heApNdLbN+dDmg2G2S57XmWQiGFocgzjDRIV5LmKcKU9PrJMPl25dtJYcxzxgUz5sLTzlwyJGXJRXjKpV/msq/tTKmEWHskJWQbx7nh2jEianzqL75Io95i4fwKn/7iXdRqVTJTonyfrMypNWoo1yWo1girVaQrSOMUN/QJ6nWMKPEdl+VkGfrnaLXbbG5sMEhifD9g7649HD78HV5962sZRClu3WMz6vLUiVNg+ly37xriNLOBJSnJLaILk+cooRFolFGUWWrBMkaRpBHa82wAr+5y3cE5rt+7F1OUCEokViJFmJL5+UVW1+cpVU4JpMWAoOESZ4aVzSU87dDrbrC0eB5Kw46pnfT6PdZWV/GFjxZDqSrtIByHkoIkGqBR9DtdsrxEas0d7/0Io50WX7rzXvLEp9mcYG7PVeyc3sfM1BR+fdE+B1mFosBzFXGvRxr32VxbJU4e5O6He2RAPUxpqEkQtg+wHoZUvQaBqlBxG5QmJ2y6PH1mk/vvO0eUaLK0pMxydOGTZR3SbIBSCsdTKDenmxpu3Sv5qfePsmO2zW/85z8hKlxGWi5PP/U4eZZw/91fod/vc9ub3sT8wmn+6rMfZ/fVN3Lzzbdxbn4TXZnlL/76IeqtXayefBTVOYOn3Bee50Jsuz+y01tSlBd6gaUdl748nO/yBdpShLQ93wXlc8ZLYc/sz18q1/HF28uZu/8PLcvzX7akwee3C+nrC6TE72alsRGqS8/7fBESc5HN/Gz7bnv+57/YbTJvV/CAu9Ks2ZX83pXYi+0XhOdm7i79lzzTB7HNea/gur6bw/Zi7H3vu4PbN84xVatdcjGXZoOf/3dNaRBSsHh2iSzJ8RyLxI/iiPmzy1SrVVzPYdeuKeqNqkXUS0mSZgSVgPsefJzBICEMfJvtSiIcrWk2akitOH1uienJUQyG9c0uX3/kKNddNWepjHGMAPKisPpqJidNE8JKgBCwvLzB/Yee4KpdO5icGmV8rI2UCkdqm4HC0BtEeJ4HCEJH89Sp8+ycnkRLe28YA34YsrnVpVoJMaViYXGNRrNGYXIwkAwM9z58nOsO7MfRHmWhEGjWlrc4cWqRmbkphJR4rktZ5ASutphupUjSDE8p2o06cRyTxAmB51kqaDqg1axTqfr0e31WljbJkpRao4oQgkazSq1aYXJ0BNfx+OJ9D3P13hmSNEY7toxtc6tDq1VDa4/5c8u0W3XSJMPzffpbMY6SnDp1jtF2bYjn1+R5gZKaJEqp+i61qkdBSavZIPBCljdXmRxvUuYlhhIl4Qv3PsxorW7LOh2HarPG9PQoxpQEvubqvTsRUnH0yVN0+gN27JxGuQ6+61i5iCgl8K1otFYOSZShHImU8Jn2Tn76Z/4x/+Sn/yc+WMKrZncjREq0ucXKyROooker5uM3dhFUWiA8Br2UJ44fZ7Ozxe49sxTGYrgLU4CRHDv6NL7nkWclm2tdqtUqcijDIBAXM2FSC9IsZro1yq7ZHeRpxmAoPXDP17/Jzqlx6vUaaWThOp/70lf5yI+8Hdd3aLfqGCEYmRghjmJOnjzD8ROnmJma5tuHDrNzapI4ShgZGWVhYZlarcLszmnGRtv4gc/584s0W016XesUBxVbzpQkOafmF5mZmQXAcRzK3OB6HnmW0++sM4gi7vnGt5CFJE0y2u02G+sdq3UnbAluibG9pp7F3VfDBkGlQnu0TZampElMZ32FwJOYvCBNM7T2SOKMWr0OQhANIlQQ4lRCu3FXHj9925sxjx7iX/zpn1CkCW97+5vodjfpbKzyEz/64/zLP/tL/nJ+mb88u8RENuB3j52lIOP3Fjf5oyee5MsrW7SigptvvIWbZuf48etv4k17rmLcr5NnBUVps/6B67JzehIMtCsNTp5cYHqiRZFnlFnJvQ89RL1W4bprryLq9dBS2r4/z0NKidKKTqeLksrKZWiNENDrD9hY3+Sv7r6XHWOjfPqp43xw9xSe7+FoByUVfuChtWNLOnOrvYgYkmV9KwEgUFbWZgjVEMKWnEsD584vMT45ajN338ee7zOnFvjIR24HAwXmWc8eY8yzACNXbBeAKqIkFx6uKLjz03/A7Mw4sj7CLa96NUHYYmtjg4PhtUPqrebJ40/QaDQ4+fRx6tWa3WOUBXmWcOToEUZadTQlRZ4hSsN9x7/Du27bz5mnDMIIBlHExuYGjXodx/VZWV1mbGycSljh8OOPcOMNr+T8wmkWl1bZ6G8yOTGJ43mgbRCkpEQoRUl2sVTT0Y6FO7k+UrtkpSIIA2q1AF2meKGDdDRFUVBQILQgDDzarTamKNlc7aIrEzz44AMIVQXhMNIeA2NoNJpWv9BxOLdwjonxCZIoIok2oUjQSuNIRZFnpIWh34/wK3XSPCUIQlzPaqQGaZXf+tTv85pbXsED37yfIs+4995vcd3uq7j7Sw8zN7eLiYkqa2trVg/UsX3Y3zo2yX/6xMPs3TdCqx2SaxdhMrIkpt8vSXJDWKvR6y8idJVv3r/FwesPcsONI9QbOUb2UCq3xFwDvl8hTVNq1QYbm6scevhxDuyZpF7XPPSdY3zjkVO8/73v4Yd/8N20RkYZGRvl2oPXcubsOdrNFr1ejxuvv57OoM8ffeLj3HLzKxkdHeHgta/g2KNfA5Ewv7TAvhtuQ27j4F1plu6CFMoLZcGyzMrbbAuWE9vvaS+c/6U0IV6aXNnLZZn/AM0UxS9f0XQbOmuX26Wo/ouO3CXjwuvyYnThEsmFofO3XWTv+3buzDNXto2/9xx7sc6dkmJYJvrc+m3bo2aeMy6UFl6JbZuBu+z7SyNRz/TcbXOuK3if70Xi4FLbTuC8LA23f+DHty/FvDQAfPm5jG3sLosCgSAdJLhSoaVjNbSMIU0zamFAtV61umZaEg3ioYZZjhCgtGK0Vqfbj6nXK7iORA1140phcIeQDj0EPfiey47xEeqNCmC1szDG6o9hiYObnR5labj/0DFmJ8fo9Qfs2TVJb9BHKQ2mZHOzw6Af02zWCEIXuKB7Zul3lbBCHPWpVAIGcYLju/iBT5mXZHlJluYIYSjFgDiJ6Q8Krt4zg1Kw2e0Qhi79fg8hISut/tFTT88z0mry9KlzlEXB6YUl+v2I0XaLwHepN0LEcK76vsfGZgc/1PR7Mb5vNx+PHj3F7p3jbG50qdYrCKUQxlCWgi997WFef+M1+IGH4yqSJLW9IL6LMYbFhXUWVjeYnrRC6d9+5AlmJidZX99gEMUEnsYLQqS0unRxlHJy/jyPPXWWHZMtao0qWWZFmacnmygtUUJTFBlKgy4lc7umeeDQUTytqDUrFEVGnmfEUUStGqDcgFajyvhoC60V6xubRIPIIuZdl9IUONqjyA2O6xCnA37y64f48Ic+xL/91d/ko+96G1mSopSDS8nS8mnqoyF+ey9OfQbhKAZRjHIUrqcYGRlhbLzNIBrYcrhh+WmeF9x537eJ+xEPPXaME6fPcsN1B4azuyCKLOVOKbtCRv0BjXqDIs8JQs86Ao5ix+QYruOSZyVpnJHECQcP7KberGGMhRp5lYAzZ88RhiH1aoVmtcrI2ChT46N8+W/vZ3Z6CqkU1WqFOIqp1CukSQpCUK9WMKVBa4c8z8lzC0C474GHcZTL+OgYSZKSpTlBECKw2f3504s0ak2iXs7Ro+dISNg5PQ1SUqn4Q2Q+IBlugBwc7eOFFba6kS3tjWyQRWQDHGnIkwykxg+bpGlOmuZ4vkcSJ4SBx+b6OgqDMAV5mhJUK3zk4Cv4r0cP866330a9UUFKl507ZnnwoYf5w3e8nfdfdRV7duzitZPT/MD1r+D2g1fzntlZfuwVr6BVa+IGAa7noyQYUZDlCUpbbUELq9AX+5cFkqdOzDM53gBKKAW798xSq9fI05Qiz5HYQBDCZug++4W7OLB3F2EltHqHWUaSJITVGo6S3HTd1VQCn8+feJr3To9x7vwKT544TxIl+L5ry9hMgee7CGEDA4iSNEmtRqPUZJkV0x70LFjKzitJlqTUWzUsVWa79f7K1vXPnFrkR3/09kue4ZcO8+I6I4b7iDSNKQqJKvrMP/41Gs0Kr3nrD9EbJCwsbvBLv/p/8Op9ryTLc8o8Z6Q9QqtZp15poLTmzOlTOI6m293i4MHrUQKi7gZFliCF4WvHHsRJlql5Bxmb2GG1LgubLdvYWGNifBLtaNZWV1hdWWLXrt2AoYjs/ApVQdXXKAwFBiEcNtc79DoR7XbzIj26LEuEkGjPRzkVCznqrCOKmCRJMaVh0E9wHN8GeBD42kUISMqMoyfP4VebXHXgWtojbaAkzwpMaTPPaZ7bbHMU0+12qPiaLO7gud5wT1HiuBUGSYLyKjQbDTqdDUI/pNvrYgrD2295G//23/86H/rguzn+xFHe9s5buOUVV1GWGc1WgqdtGbC5sJdBUKmmzMw2uHl3jRFf40iBcnxMLvEDn0p7mqQIKYs1KpU2//pff4aJCcn+3U3SJCEM6mSpT78PyBIpFXme0els0Gg0mJ0aJagIDCUjo9OMjO/jb/7qs7zuB97M+kaH408e5/5vfJs33PZ6XKXpdLZwgxqd7gZvfcubkUpz6PEj3HTLbdzz1b/idbdew/lzZ5i7+gbCxiRlYSVLLsh5PTP9tuE/iGd2r1LI53XsLuxfpZDPlCpfAhssTGHPIZ8v6PGyc/ey/T3ZhZ67F2uXTt8XcpAuCKNvf46XInNnnvujF7AX69zJS+At2zXsbvte36Nzt917Pq8ZAc/T73tFcasX6dxtlz183/vueFE9dkJK8iwn6sf0O33yJEMi2dro4XkeeZHjD4EgQkrKvGBrdQPKgiNPnmRqrIWgpMhs9u7E/HkcKRltt3CkoiTHcx2iJOXc0hrzi6t4rkO9VqU0BXmes77WZ35hBc9xqder9AcpwmiOnphn7+wO9s1MkWYp++d2kuWpLYtSGqUKHEfR68Z4rod2XLIiHCdeRgAAIABJREFUIc0TpBJMjI/wtW8+xsRYG6Sg2+1Rq/j0e10GcUazVcfxFG7g4OkAR3mE9QDXccjTgiD0SQYxaZJRq9Zot9oEvounNHFqCZszM9OMjzQZnxglz232T/kC13NxhoLdXuCQJTnNRhtESZZl7J+bwR0CWQ4dfop7Hnicg3t3opRi765pXE8iHcnhIycZDBJGWi1836fXjTg5v0A18Gg2q3i+ZmNri0E/ZnJ6jEajiuM75HHBmdMLdLdi7nvkCYLQ4e2vvREUOL5rxaVdF+VY8M0Xv/owB/fPohSMTbQRAuZ2TVBvhMSDCHco5O24HoNBxncOHWPv3BSmzIjjmFojxHNcBv2EI8dPUa/4FGRIafjYI0f4462UP/vk7/A//vy/4GPvegtp1MVRsHB+iepojVpzGs+fQMgSqTJADh/agtII4l6O1Iog9C6S7/KsxHE0s9Pj7Nkzw8EDe9gzO47jKLsxEMbKWHgOAtuj5bkBpShgiNZ3tEdR2s2z4wRkacHhY8f59uNPsLa2wdzuGduDmheUZcnISIt+r492NGEYUJqSsix44umT7N89y/LyKo8dfYpGvUqapITVgCiKh+Lpkm89dIgdk5N0t3psbmyyf24Xo+0Gg4HN5nZ7PVqtBnlus4eDKGVqdgrPdbj26l3su2rORufzEoXks1+4k72zu2DogOZpjCOgECVBWCXLhe3pEZo0Scgz60DWW22E6yOUBYRY4ItLGqW4w4xnnhVUwgpZkdNqN3nzWIuf/d2P0WxoXvfaH8DzAnZMTvDA3Xexe8Tq1rmeQz+KQFqCaYGhWgvJopQ0TogjK06eZSmuawmeVh6lJIljwkqI0IJrrtpHs10jLwp8LyTwLIEUKfFDH+Fo2587BBhdvWePXXMFpEmK7/soJS2AxnOI+n3SJGXMlOitLtWwytLKBoiS8fER8jxHSps5vZAhy7LUIvqFBgRnzi3gey6uqxCipN/toaTtTR2daA+bhLZZY6/YuVvgjjtuf94e8xf1vLgAxcIK3n/jrr/h5CNf5bqbriVsXI9UdbY6CVf7VzE2PsbS4gLVsIqrNVILSqN4/Mhj7N17NVudDq32CK7rsbW1QXdjmWpYocgj7nvqUX7uH70TbQ6i/QqOkpYCKWB8bIJatUqeZ/R7PdI0Zm1ticD30Y5PN4mo+pp6pYa974FSkMYR9XoFgxU0LwoL4SpNQVaWZKWFNQWei4kjhCgxZUG/2yPLBmgtweQo4VCWhqXNVTY3exy46jr6/R6DQUScZmih2NzcYHx8nDRLGUQDhAFHO/S6K1Q9F6EkVr9asNEdsGPnXpygCmVOHPVxXQ8/rLC4eJ5atcoP3PwG/s3v/SZmsMU3Hn2CPbM5N163k5pOaLSaSKFwHCvOLqSkoiL27pvAyTK01Aw0yEJSdVtoL6XwxxD+BDWZsbl2jh98x24aocRzDBhNnBQYqej0u5SF7Qc1lFRrFaQ0uJ4kFQm9RNBojvEb//7j3HDdAf7g43/K4aNP8aHbP8DoxBx/+iefYHpynJH2GHEOh77zOF+5607Gp8ZotJqcmT/L5J6DrJ16lB2jTc6ePs/stbeitL7Y0/vd7FLn7krm7vOdw2AwF/QgX3IR8+2u4WXn7mUb2t+Xc3d5du/Zx7zs3D3vdX2Pzl1phj0O2zUPv8j3uxK73Ll73/tevI6dEXDk6Aka1QqOlGBAK0WvN0A7mqIo7QZWWu09KaDMMqSUfPPQE+wcb5NlGUpZjaKxkRZh4JPEKaur69YRk8L2PQUBu2cmCcMQKQVFWfCVB77Ddfv2E/UjQt/HDzy2un1CP2R2ehzPd4njhDD06XcHQ603F6UcOt1NAt/DVS6eZwWKyzLH9TSeZ7M7s9MTpHlBkiS2Kb6w9M2wZjOG9roh7hqEtGK3Vti7oFKrkkQplILPf/VB9s/NksYxh46fZGZ6gonpcZRSZJmlVJ4+vUCrWUe5gsEgQSAoTAnSEPUT7rr3UfbumsBQopWD9mzZq5KS6ZEmtZr9XNY3tkBYEqCWmsmJMY4eO4mrHWq1CiOtGrWKTxj6xHHM5MQIvh8QVAIYlnT3ezH3PHiERiVkbnqU667Zjau1bZYVFimeRinKsf9zp1Q0mxWEsJncLE3J84w0S4eO0pBaKxSO57FzahRTFKyvbxCGHgiI+glhGDI7twOtBK5vITK/9sQ8//E3f5mf/tn/hY+94x1Egy7RoIfveTSaLQrsZ4EsUIMUWUiMoyhzgzGSLC749GfvYW52nCD0AQvW2NzoEIQ+nm/x/46rSZKBla4QgiLPcX3/mXvG2M8GbXs5oijlvm88xM7JKfzARSA5e+Y8h58+hetp3vSaW8jynDRJcV1btielxPet0+4G3hCY4pAmKdOT4zQadapBQBD4jE6MEg1iXNchjmO0dmjVLPThgYcPcf01B3C04q/uupu5ndOMjIwNexUruL7L6uoaY5NjGFHihZo4sth57TporcmTjKt27cJxPcqyxHEVywuLiKLAHxItlXbJEis38NDjjzDearGwtMzI6DhRWuKHPhI5lCSwVE491FAsihKkBYqUZUmlWuP2q/fzrz75OT7wvveQZ4Zf/Of/kn/1pjfjeD5KyotLoVAKOQQgaalsyXVW8J1HjjEy0iTwA5R0SJKEKIovBpDKosQd/i/yImN9Yx3XCXni6FPc9+3vcGDvHFFi77csSVDDLC6FIStyosh+3mJYZiqURlCipOTUmbP83w8+xMhWQug4HLx6jlrVs2V1jibLU0vxtFBbsjS18gjDQEOjVbcZPQxQDrUfNWWeUa1Xvu/M3V+eXuTDH/nAS+LcKa3BCLL+Bun6CUYmxvjLLzxGuz3J2laPbD1lc3OddnuMPElI0oRe1KPTHeB5AaMjY/hBQFipcH5hniyO0NKgpMFzNXc9/g1mRjWj9VezuLZOs1bDcRyWV5ZwXZdz5+cRUhJFA6amdhL4AY7jcGr+HBtRn7kd01R9j83OFr7rUJoS33cpRUYlrJIkqe19lHIo46GoVEdsOW2eIvOM0sRopQmDKlpLu7ZLg5YeWWEQboXBIGf33H6yPGdrq8vszB4qvo9S2oK8tjZoNVtkWUboBxT5gIqryMoCrR0KU1IKj9xo/GoNU+SEYYhBEMUpszt2UhQF3V6Ha8b3c2zpCda2Mt791v3MTrbJtrYoSG1ww3MpS4PjaMq0ivHqkBtQLgMX4o0tROlQyIilrqBS20G5eR6lE1rNhEpQpSzTi7I9cTagWvdpVEeRQ1KsMQW93qYt0ZclWa7BONxww20ceuwIi+sxjhvyhte/jtndV7F/zxy//7v/haeeOsEb3vJ2Qq/C3K5d7N0/R3u0zeT0JEb6HH/wi3iOQLs1pq5+NUqqK57nf5fOHYYX6Ml72bl72f6e7Ht17i7IHFgn4tlmthmX27bHCPmcIUoxzELZUQ5dwGe1c29znwhh7LjkdBe5HebZRSWXjm3/1svGtre12b500l7Lc8slLx53yfe2dGD7COu2dln54xDIN/ws7UZZiQt/t7g4MFbOQCn7P7x0nbog8/Bi7dJz3XHHP+bjb7jhecsfzOUfrBSIwkBpSZDxRsyx4/OMtZoUhcFxHObPLNMebeE4Cs9zOXr8NK5QSFHgSINWgoXlJTxX4ZQu33z8BNNjbSgTtFIXHZbQdzn0xGlMafC0olIJ6fciBv0IpTRhWCEd5LTqFda7XSYm2jiugxAlWR5jhM2K1OsVhMD2GCmBdjVKKTSaNMkIqgFxGqNdRRZHlEXJYBCTpCmOp9hc6zN/boUky9m5ayel0JgipxAl/X4f8oJSlmhHkCcZjx4+wa7dM2ys2Ei9cj0GUcqgF9FsVzmzsMzeuR0IUdDrdihL25smpSCs+JiiQAlwtIKiHG4WBcsba4w3m2AUvUFK2AgoyoKtzQ6nzi8ys2OUsjRUagGOJylyq/eXZxntVo1KxSdNU+L0gsOQ4WgPiUYJAaWF95iywBGGmbEWc3PT1JsVpCvp9/pQGOJBTDB0pIVSFFlJu12n1IBWFtwglBX6FhJfe0hHo1wHKUGagiiKSLOM9mgLqRT97gDfdXB8l3yI8C+Vyx13PsjnP/OHfOJTf80/nxpHmJSF84vs3LmL3AiM6xAPBvQ6HXzXp1CSQoASCjHE533hnvuYnGxw4Krdtvy8KFFaUq3bbE6eFkPtvhLPq2DFmq3+nxzeo0VRIBXkhQXrlEVJnmacX1xi39wMQlrqpO9qDu7fzb6ZHVYWokjxXMXi+SWCwAqMF3lBYQpMqVhfXiNJUqYnxul0++RpyV33P0iaxVQCTaPeQCnFyso6rZEGWgl6/R7XXnsNnV6PvCwRQjE2NkYU95mYHLcBlSGOP+7HhNUQYQRRP6baaNierDxHS8izhDTqozyH0sD5hVWK1FBrDfsuHdu3VJQ5YyMT+L5jSatuBb9SJ09zSgr80EpkrK1vUq2HDPpdS18VhjS1mUcpBIWBD1x9gGTPNL4b8Ln/9te8f/9+pLCZ0TTJUI62Eg9akMYxUknSNAFh6Ax67JzZgXZdupub5HHBsSefZnV1nXqlQppZgfF+t0caZ2xt9KhXq3i+w4G9cwShj74g/yMleZYRR7bcucTgeT6ghgstOFpiCshSw6Afc9PECK/eO8noRBNDgef5dp0xUGYlUkuMAIXCYCjLwlISh8VjBsBIDAohrS5eEg9QQuC4zgtGN7/bkv/p0wt8+I4PUlBiBM/SzBPDLPYVBQ0v/Rr2B0JGWRpOHD7EkW99jQM3vppb3/BeSmP4pX/3a3zojR+kEtbw/QDhapTn0KjWoDS06jXOnz+LVtpmctOcPItpNVzKMiZNMw6fPcHP/9RbWJxv0qi16Ec90ixhcmLCEk2FYnlpEa01I+0RlpYWSJOUzf4CRIJ6NcRRJZ5jeyg3OptUanUoDSYvMEJw9MkzNEZqCFPgBBWkUyMvMooswqRdytKglAPCtqBIaYXb4zTB5Dkra1ucXliiFIr5c6e54aZXIpWgKHK2ulv4fmA1/FptkjRFuQ6Okgy6q0hRIJFII3CDEIMkDBp0Oh0WFs7jei6uo9ncXEcJicThxIljHF1f4J2vOsjeKXBVhF910NrF9QLy3BAnGXlhyE2E70Cc9NCeg0pShAOqUkK/IKjvoj29g4XlHkm0QVmWdKOBbZ9QFbQKqFZCinwAQiEoMcYGYZutFiYvWF3TfOK/PsRffOY+3ve2fezf2+Du+4+wf/erOHHiMI8ffpAjR0/xlre9jde9/gZ+/md+kRtvmqNerVHmmiefPEK9HrBzx26mJgKOPfkI440KTlinPrWbUgh0GZOIAFVY3U5hGBJVy+fcAPa7YTvPsKlIXIqfe0FMuhnOb2HL3aUaMoXtc1BYUcfn/Noze7VnxottkzXC6i9e3Py+6DNddo0vO3f/8Ox7de4uwFJears8o70dFOV7ze59v5f9d5pkF5c+JKHMyyt2rtTlNeTbHLPtZ2Mu9MDYxWq7UsoXaxfO9f7338HHbnvF868pwwsTlzjaJjMkUWL7E/KSQpTsnB5DKlvbXxQlge+xsLCM70iUKHCdkm8depR2vcKZhUUc7RD4FSZHRzl+ZpGbrtnN4adPs2NyDK1du+FJUoRQ7No1RRAMy/+UYm2zw10PHGay3eDx4yc5u7yGclIO7J1BOYI4TnCHpVFBEFAaw7cfe4JmtcrpxWWSJKVWDTG5QSpJURRorciLEkdJu/FXmihKhmRKqNVaBKGhWlf4XpXlhXWOnTjDRKtO4LloqfAcl3hg9fO+dfhJdk+MUqtX2ez0CCohyyvrlMCumQnmZqaQQiAE+L7LII5wPJfHjp5kamIcKUEpbeELUmIweL7PRKtJnhdsdfs0GnWkNCgp0VKyf88MaZyRJsVQwy6z1D7lkGZWmFYpSWerQ7NuhWyVlpxdWKDVrHL2zDLfOfw0jx49xYE9MwhZUm1UAMP5hRXqtRq+5yGE5PjT8zx4+Emu2j1DHEUoBUkcD8s+B1Y3T8lLgjtquCbYzSJC4Q37/6QxrC6uMjraAO1jhLTZzDjiH91/hE996vd47w99iF85uJ8kLXA9Q2t8lqh0KErI0y08v4nnByCs7IO9PwxZZqmb++ZmmN25E0dru/FWNoNvy0U9ssyWIeVZCY4gTzPyOGNrfYMyM5R5iVIlRZZa4fusIMtyXEczN7ODsrDyHGDQnoP2HYwWaNe3Qs5CUg2DYUYzp7DYQg499gRhWGFyegLpKPwg4Ctf+xY3XbOPqbExajULojh58gzjExNordGui+f7uJ57sa9ux/QESkmq1QpJnPGVu79BHMW0m03KsiAv7JxI4gRvWIaohKE/6OM4CrTG9X0MgsCrMOjHVEMXU5b0ewNkic2UBC5K+EjlkwlwTGmlEgYJUjl0uwOOHD5BrVLBmJwsTdCO1VtcXVtFOwJHh5S54J/9p9/hj//ic0hgdL1Lo1Ll699+mH17diGkoN/r42iPPC9wXUWSxDiuYmp6iixPKdOEJO7jhxXGx9qEoYfWCqQZljMr/NAnCAKqjRqlSZGaoRRKjzK3/XHa0baMVAiSwYBBr4fEoIRBYtBSo5C4vkezXecX7r2XO66aIU0SDLbPKh6kPHL4SaZG21a/0tEIKe1nK6yjaImZ1nEyRcljh5/i/PllpqZGiQcDpAA3DL4v5y7udbn5ve8ZVkjIZz80THmx1+i72fYuoL0vnnjsQdp+yuSOXZxfjfilX/tt/vvX/DTHTjyK4zj0ej2iOKZZb5MlOeeWz6O1Q6PZYm1liZXlJUpKRlqj9HrreK6LMIavnXiIY6fW2d2+htWVVRqNNusbG8zPn6FebbC+sc7OnbNkeUa90WJkbIIkLzh7coGwohgfb5IOMtb+X/bePMjS9Crv/L3Lt989b26VWZVV1VW9qVdtgFYkGWTsYWmhEWBMQMAAZiKIccRMePyHJwY7CAY7xmZsIsaesD0eAsaITQNoAwutjaTuVqv3ru7qrn3NPfPu3/q+88d7M7uqurrVLQmDIvpUfBWRN++33Lzfcs55nvM8a9s0uy2ksASeh6hKpO+TlxnnT5xlptshDD2UF2DxEFSUxQiNE7Wy1kybPxpTVWAM29ubCOnRzyrKSnL3XfdxaPmw89UDnnzqUZaXVhgNRywuHODEiWdYXFjmqaceo9NsUKZ9tOfQZyEkpQUjNDu9ISDodmfZ2d1xCp1aU683UJ7m4MEjvPee9/DIyQd57tnL+Mki8/MxRTpAah/P90FY/NAHkVJZg60Ua2tbzHQWyWxFaWuEfsEgL0AH/Nqv/gfe//5bkDYl0E2MdLqQWTrBSg/fj6hKpoI/JUpJhoMBQsYo49PsdlmcDVhqzzHTlczPj/jLzz3FHceWOHbHrfw3P/CDxKHH/FKbhx5+nHvuuccJeF29wt333sVwPIJxxZe/8BnmZpsoO0TqBnO3vAkpPKgKkB7yGu+7fXHAG3USrIMR9kRV3Fn6Gou7G0JdI7ayv9pNmVgvX/ebTlXFHnr3qpDE6443irvvwLDW/srLkKVXOYG/nWXdteIqSojrkbS/wuLutZqRv2z9m7z2ekuivX1fvy1xnfH7zcRNbvx+rhVwuY4aO92+FE484/ptuJvanviJlO7zG2Pce5Hf4GF/zTd04/cD/ORP/qwr7F51E+74XbLg0Ip0OEEq5dCH0nWqhRBcuLRKu14DIAg0jVrEeDLhyvomYaC49eAKnXaLJKpx6coODz9zmuMryywtdInjkOWFLlI4Nb/+YMSFK+ssLsw6U1kJg8EIrSTD0YSDszMMx2Puuu0IS7Nt6klCHMUIK4miGGtAe04wI01zIt9HSsXy4iy1mpuJswbXXdXOy0oIQVlVnDl/lfnZGZSUFEWJVAIpNVYUxJHHeJST5xVPn73AXccOYiqX6BeF83gLooCFdgOpBRZBksQYY5nttFhemqeq3Fyd++7BWjdDV5WGg0vzU0U98RI7S0BZlFNalGU4GPPZrz3L8UMH8D2XxFVlSa835OyFqyzOz+H5juoJgqp054vvexR5zjOnzjLTaKG1oqpK2q06xlSOSpTl9EYTjh85QFm6ru3Obp9Ou4FAkuYTEIZWI2ap2yKOA6TWU7TZUen8wCVrZVU64QLtEl1nDuyKL6ZiJgJcEdJpuEeb8sgmGVpLHj93jl/+v/4N55/4S35Wx0wyp+SmCBChj/AEWitCGTo6mzM02r9mdra3CbwAPwimp/Jek8VdDNbpZGOMJU8dqhpEAZUpUUrz/POn6Pf7LC7NEE7VWKMwYTRICWsxvudsJobDIelkQhD6lGXlvjtrnGKrEdgp+o4ANTW0zyY5aTqhKgye5zuzet8D4ODSAu1mnUajwerqBnmesXhgnnTimhZSuWLflBVlUZJOUvr9AXmRk2c5k/GEqqxo1uvs7PZYWJxD+xqEII7CfUZEVVUEvs/pcxfwgwCtfa5eXmWm08FYg7CGpF6jKEp2d/pO+TYIsUbi+RG7vQFPP/cUsR+5eRk/QCnF0tIM9XpC4IdoHbC1vkMUO9qiUJqysPiez/cfXeEjd76Jv7V4gG67TbPR4Ojhg242STClhLnvs6oqhLSEUQhS4SmB1NIpVvpu/i6pJVhrqSXJftL9wgtn6My0McYQRQG+76O1o6QqpZFaOnp3WZGOUzCWypSOljulmBdZyWA4JohCyjznj0+d4keW55yiYmUQUjAepsRBwMUr60RRQBSHCCXI8xKtNZ6vqaoSW7nnZ5EXzM606DTrKK2QGMckCPyp+MP1eeWNP79S/PqJ83zkxz700nPkJg9MC68iILF3y7nJzgyOHr67hulfIW7Pc/riLhevbnPnoduYn1sgiWPncSddo6IqKurNBqvrq8zOzNFutZmkE+bm57BCopUlCHxCpdi9sstd92lq8nZA0u50CfwAJRWe9uh0ZhinY9I8Z319FWMMX3/sIW677XYGo036/Q0CpfC9kGa7hqcEamoUXxkNomLugJtFRoBUAdZqPC2oipR83MfzfaqymqK6grJyiGEQ1oijhNWtbUrjENBOZ4YrVy+RxAkz7RnyPKNebzAcjlhZOcLV1avceuw2PAWhshhbTJEiqJBI5dQ6tadJkoQgCBmORtSmKtVO3bgHQvB7n/1DLl28yjPPPs8H3ncvSQjlFNmK4oAg9MjyCZ7yMZVwaLoBqTs88uhZYl8Q1+fozt7C7Xe+nXq8TZUNSEdODMrzPSpjqCV1ikKSJBFpmiJw6q55noG02CpnbqFDd65GEk7w/YDZ2TmO3XaQu+9+M//v736aT3/qi2xubHHv/ffyzu/5IAcPLVGvN1k+dBAU7PR2OXfyNL2dbTqdhLLYZZzCkfveySSr8KXFWHdN7N2nrWXa5Lw+XMNE7ovl7J+nr6IZ8UphKye04xrqN8v7pvv8Fos71/Q07OWR1u49l/76i7s3fO7eiDfi2xxVZa6/QX0bwhWBbimran/JioIHHvhx/v3b73jtx1eUbFzd5OuPPUc6SMnTHBBIoVi9tI00ksWZDpvrm/S2t0izHmtbmzz09CmSuIbyI4K4RlpYojjBVoIPvvPtfOKLT7K2uUNaOJ+n1fUel1e3eO7sRW675RB5aRBYslHKTKvB6bOXePH8ZaI45PjRgzz27AtEkU8trvHcyfNYC1s7OxRVhpCKoqwIwpAwcAlXaSxSKfqDMSdfvOCMiIXc7wwWRcny3BxrV7fJspJJmrtkKLDU6w1Cr0YUeHRmIj70wXc7pVBPEcQRWEVlJEIFtGY61Op15BRpsdOHsLVuoP8LDz1OVZopbcuSjzOHCtkKKQqMdciSmzFJkZ6iLCt2d/p0u23+/g+9Dz/wSUcTTOmQgiQOePrMZS6cv8rFC2torZFS8ud/+Thfe/oFxuMUi+Xu247gB24OSmntZtJyw9raBrccXeL933M3eZ4hhEealjRaMVkxAVGyuzMg8APK0hAniSuYcEp6eZ6BsSip6PcGVGVBWVWYaTGhAZPnYCqwFjOl2YS1GpXQWD9EKYGpJvyDhx/nyM/9Hb7/Xd/LP/nHv07YbNBYXCJstbFRgjIar5SIAkqloSyo8gnjfo9yUlCMcgb9CZ/8zJepcpiMMwCKwpkaO7qzEwIZjyb8f5/+Eo899Txl7vzjhLHcefsx7rzzOFpHWOuEN8bphKReIx1NEFO+daMeMzvfxvd8ojAkH6eMtnex4wnluIctncCQFZClTvmy1qwTBB4HlxaJw8DRsXa2wTqqZF6mlFXO/ILzMEyzCZcvXIKqwpYFVBWjwZjt7R6zc7PMzc/h64D2TIOZ2RbNRo1Hnj7BpatrGGN49ImnGY/GZJPM0TCzFCU0vZ2UQa/gqRMvMhmMqYcxF8+fp1b3CeIau70xQVzjCw8/jdIx48GEioLcZnQ6Xe6++166iwskjRZFXuIHCu05OvkTTz7HlUurdDodRsM+V69uIQiJIp9+f4vRcMJwOKBWi8mznPW1DUCQjiakk5QiL2BKdZZKkqclVQk2LygmGUVaYISHRRBGMWVhSEcpu5u7DHZ6DHf63Hb8qKM1W4stJWVuwYr9WaJ0kmKtS7jA4vsJeW5xirkSYzVfe+oESVJna9X58WWpO5fiOCGOEoIgoDXTZOnQAkePLOFHPjqY0o+V68qb0p1zhXEed37so0NN1IiRShIlETu7g2nR9c3HRxbr3/hN32RoFSCE5dzFs8RxxJnT5zl6+DZqg4TdnV3qtSZCKJ5//lmajQb9/i6+r9nd3GZpbon+oIcXBRw+dgu1eh2lPEoUg+GIoix4dP1p/p+PPUMcJcwvLPHpT/+xE/6pcoS0lFVOGNcIfJ9bbzlOmY1YWehyde15jq28mXQAfhwwqbYxZY6SUzqwF/LoQ49QloZ67BFMZx7LwjDq7VCkY6o8IwziaRNNURqnoiiEAOVhgaLImJ2ZoSpywLK9vUUURgS+76z49gHuAAAgAElEQVQ0lGJre5swCLl08TKNRp1TZ1+gMqVbyj3qtySMIjzfo9vtEkURWZbR6/VotzpI3Lzy2bOnaDbqeFKRVwrVnqUnQj73pVOsb26jgxpRrUZWZAxGA7SISdPSWTu0EpKGx5WrE/79b30VL24TeFClKQu3NAijWeKgg+85+nlWpBhRsbq5xW5vQp6VFIX7G1grnS1CIWhECcJs0W4rTGDxIkuoA/pbQ/70Tz7K/fceZzTYYHPzEts765w8dZKnnj7JYJIyGPcZpymeF1BrJjx3bpe3vOtD6GiBrLdOPnHForUCrvFOdqqWLg94I/5q4w3k7q8xqrL8FazFWDcLUhnzqmjUN9sP2EPprqNwXNMJ2YPIX5qnMy/Nzwn7Mk7yK6F2186f3Tibd7PZuFeai7t22TtMJa+dX3t9qJ2dtkr3julmPOubL2Ifxdhbbvwc1/2O6fcjXfJXGetmN6xjj187l7f3wa7d3t4tz043bKf88RubVvt/HwQf/vDf43fe95brBxhvcpzTl5FW0N8a8MjXX+Do4gKr/V3murNo4RQEV9cvUosMvd0dNrf6NFsR5y5vsTg7y/HDy3z16ZPcdetRdrZ6rG5sUYsDpG9pNkIOL7VJ4oBGvc5oMGZtvcfZqxu84747sbZCa7iyts1Mu4kUEPo+x44sY6oCrOWZMxfwhSIdp4ShRxR5YGA4zBDWoJXPxz/7KEvdDrUwRofOY8oPfBrNGrEfUuTOQy0vS/wwAAxaaS5c3uDZUxc5ODeDkgYlBf3ByNHbspzQE/T6Q6TUPPb0eTY2d1jf7OOhSeIQW5UvnQtauk6rUPR2B9xx/CiTbIASgnTozHcbzTrSUxghGfR2icKYrc1dgsCnqhyyF3ge49GYIAqwosLYCiE1eV4S1WLuOLjCaDjh1MV1jqwso5XiyKF5ji4vsrW+S+AFRHGM8iRFOZ0dM24G7eNffJz77jhK4HsEocRaweb2jkOBagmmtMRNHyqPJ54/xS1HlhiPczzfQykPYRXCSka9EcJX1KbiLFprSmuojCFLc5JaDEA2GuAFyrHWLCijKEdDfvGRJ2j5Jfes9Pj0I6t87Kc+QlqA5zvaoEA6gR6sQ14E5MWEtCrwVZu1y6tM0j4LS/PEnqbZrBNEMb3dLT7/4NdZ7M7hR07x0kxKojBgZ3eTq5vrHDu0BOzNAVuk1Dzz1PPMtDsITwMVeTYmm6REUeQojkJQVpBlKRaJr32UJ6ls5WbHpnL3Svlkaelk8bEUZUVcC9F+gLGws93nwUeeYKbZojPTYTgaE0UhfhAghCIIArSv8ENHI83SlHan6VAqAXEjoihKLNCd77C0MEMU+WgV8uXHnuW2o4fxA4Gvpop0SqE9ycJsh+XFeVfQS4EXaMrK4AcuadVScedtt6ADp9palsW+hL9wBEY21p0wUX93l7DWQEhBs5G4z6clWZ7TaNVQ0iK0h/IDvv74E3imQnmSZrdNvVZnPBqzenWdbJQy3B2CKPG0hzUOCVVCYpRCaneMgacZ7Q4o0pzPfv5hmknCcDgiK0u08ohj14CYTDJOvnCW2dkZZ5UgJFJqlGfdbKZwYk5KKqIwmVKHJYiKg8tz9HtDxpOUMAz42vlTfHBl3okFZTm+1mjhT69L6dRYp0JZairgIYRGoFBST/cvQFi0VgglqQpDb7dHs93gWpGF14rY7cU/f+4iH/nIh5wq6MuQi5du+EKp/XmjfWGJ69758p2qIMFnyFc//lG0tCwcPEBhZ+mfNiwfnHWNHSTK15y/cJb5+QWeePoxJpMRy4cO4YUBIDFFRZ5NyLMJ2WidTj1muLXB1849hUHx/vs+gK817ZkFalG8T5UsyoISS5anJHEMpfOry4uCshjTafostGcYbqwzt7CAtHr6WUrmlg7gex7GlNNGqkctTtjJShpJHVGVlEWG8hRlWV6TT4Cymv7I4ic1rlw8z8Z2QavVQnvaKVsmbTwPeru7zM3N40c+43zIZDim3eowGffwlcGUGUp7FGWBrCDPS7Z2B3h+wGg8od2eIfQ8yqJkOBoxv7DEsNdj9eplPvfkF7j/1mNcefEy//AX3k1bN/DUDnEyoZrMYeU6VaUJo4isyIimFPC5Gc077+8SRhlWRzQ7dfDnGexcpRY6u6LxoCCoCVrdFqvbFb/xm3/K1ctj3vw9d5EWGyRRjf66wIvrnNmdx/gJcXGVMKgzHo8pqowL55/nlsOzvGnlIE89/mUWFhUnr6a86757yMqSubkuf/jRj7K8sMAtBw+xtrbGuMw4fv/biULNmdOnueP2+7FG4EU1hBlRCYUVDrG7GWp3Y+x/Z9foN+zPk7wmlT7xsrxvL64dbbqZQN7rya/dtvaQ9el/wuKyuW9t3GYv3qBlfgfG3sydK4Km3f3XsN7r7nncTFHyhofFdQXLN9lVec3zZ69nm9ONXu+V8jo3csMF/FfgFX5d2JtQOl92SDdb8Yb13MZu/mH/t1/7l/yr3/g3zu7gptu/yWsCyrykKg0Xrmxw27FDzHZbCFFRFhOKYkK72XACGEKyODvHRq/HiXNXaUYJzUaNQ4tdrq6uIxB0Og3iJKYsK8rSzQHtoSdxFDM/P8Ph5VmkEhRFgZROlVEIQa83oNVuoqR0iNtU4e7IoUXCMCCO3fyMVopWs8ELp89TS2JOXVxlrlWn2axRVgXGOpTUydtblHY0nSiO2N7qcfnqJp1Wk8Fwwmavz4uXLzFTj9FKEUcRpnTJ2ZWr68zNzjCZZCwuzHHi1Fm+6947+MxDT7PUbVCUOWXp7BCKsiTLcqIowtce2vPQWjIeTIjCiDTNiJJwf8bS9zRFXvHMybMcWl5wx2gFjz5zkluPHnLFkDeV+a9wRsxCYsqCKPZZWuoShIo0HVNVLtFVUvLVJ57jwPwsm5vbJHG0L/JwdW2Tg/Ntuu0W1dRo2PN9wsAnin2yNKcsKrSv8HTIbLsBwuJpH4OhmNJa//gvvsKxg4s02g3yNMMPfAaDEX4YoIQgTiJMZTDW4nsSKxS2cg0JgeGjjz3CQxvb/Pb//j/w3/3Tj/Onf+/HUV6I79ccVWdvnk4wpTsDFsoiJ0oiygyeeOYEd991DO35JGHMo48/zUynQ+grnn3hLKH28H1FFGmnhmihXa/RbbcIQ58yL5zKXlVS5AVr6xsOefQkSgqnQKo0aTohy7J9+e7Ad0qHGxvb+IEmikIqYykrg/I8iqJyBZMQ9HZ33PwfDsj0PU29XuPY4UMoLRmPJiS1hP5un6qaiipJse8R6VBHD99zs6j93oAoChFSIrWzaLDGMNt1aoC3rCwhBQS+ZjKc8OzJ0ywvL3H+3CXW1jdYPDBHEIVIIQjCgFqSUJYFQRhM+0pOXRRpqUrXWJFKoaY+lmfPXeLSlascO3qQNM0ctXY64xdGIUEUUOY5QRCRTSnGi90Oga+R2pvSkwSep6klMUkSUVUVcT2+rthxFLECgLIoEFIQBB5aK5IoYn6hi/YUYRjRmekwmaRcvrzKZ77yNbIs59iRQ2gtp9RESZ6lTq3SGIwpGY4GCCxCCvI82zcgf+HUedqNJrVGwkfPnOYDrbprqIShm00yhr3RGSEFeVFhK4P2vf3Z6WdOnKbVqiMEjrKLu9b3kO0sTWnOtL6lWfM/OHvlVa0Q9u/rUl53t38txV1WGlaff4yvfOlzvPc97+XUxU3+5f/9MT70/h9hYXGeIIyI4xpBFDK/sDilH0+4/dY7HH11WkyeOf0CQRjga4/Ah972GqHSfPGFr/O22ftYPLCC1D5RGDGajDBVRVVVUzXfGnEYUhYF/f4uWImv21y8cJnBeJOjRw4R12soIfF8j7Kq9gt5KQVKCIo8A6EwSPppRqfVJJ/0kdI19Yw1rhgQrpW03evz8KNP0R+sovyErd0BWTFi6cBBDh08jJaaSTpgZmaWvCj3qcFlUdJut1HSsn7lNLU4Ji8KPM9HCkVaVNTai0RRTLvVYfXqFXzfGaA7sTDnYxeFIY9feIJ6WBJ5cMtywfxcg6qq6A3GaC9yz+PSUVyjKCZNnTfnaDQkiVsoXyO8GlWpCeoHEKaHKIcMh7tk+ciNPfQGJLU2b3/rW7jvnluBIZKSwAvZ3Rmx3c/59X/12wRezmJDoTxNHIdYAYcO34bnhXTmoR53OfnikC88cp73vuNubn/TfXzi4x9n5dAKBw4scvr0GTqtNqdOn+H4rbfziT/6T/Q2L/OWd7wP5ScozwdbYqezqq9VX+BV3/daijteOfe6Nr7V4u6V9guvQIf+JuKN4u47MN4o7l7DNr+Di7vrZ/VuOKSbrXjtZ9w3NH15PPDAj/Mvbl3kRw8feNl6L23/5a8ZA+k4xVQVx48ccDNKRcnGzhWErHjsuVN0O7PU6k4IoygljVadKpf4ys0kRZ7PJB3T6jQoCkMQhJw8fQWtoNNuoKYJWxD45DYHYZ3ZtrGsr++wcMD5jikBlXGqdMm02FJC4IcefqiREuKa64JGcUCnVUMowV23rRAGmiJP8T1JVZR4WjMejEmrEj/0ybKMfJQSaJ/hwBnSXljd5H3ffTd3HDtM6Cm2tvpooUjHJQ8+eoL5mQaNRg1jKrQS3HHsEEo7pExrSVUaN29nDVopfO1TloaPfvJBbl85CMIQByEYSVyL3WxdWTikYZjh+z6HDi5QFAVpmhNGIYcW5lBKkuUZQivyccHHP/t1ar7nkp5qjPIlSgvKssBahxQFvkZryUK3g5SaM+eusDjfdSiMBs+TtNvON9DaClNZlNLT2SWHMJjKUE4REe0JJpMJthRYU+7PR60cmCOpxUzSCUkSMhmnruhQEjlFLPboptIHW3oIo5HC8IOf+gvOpwN++zd/mc7Bu7h9PaNdm0OqGIMmT/N9TyI3G+GoO0oKsFNkRClWDs1PmQUST3s8eeJ5qqKglkTcccthFuZnMEVKlU8wxmBtSRj5dGfbbG5u8eCjj3Nk6QBeIMmLlLl2hyQOMFWOKStEZdGhawzsIfBFnpGPh9jK8vSLZ1hZOcgky6eiMQKtPYRUCCsQWJLYFfRhklDmBRsbGwyGQzozTcCyurqB73l88ZGvc+zIClIq6o3EIQtFyXg8IUkSBgNnbeD5GuU5pGLYd/6SURQyHk0IY6fCF0eRK0onBSdeOMvxo0eo8oLFhXlU4CGkm/sNPB+Tl6hgT5rc8uKLZxiNRwgkURwilcRUluFohB/4zC/MszjfBetUMz2tAElUS6ise1YVRYmScopEOm+6IAimM3aKT/7Fgxw7ukKUxEhfUmvGSOWhfR/teVghKcsKMPuIeFUZ+oMxX33iae64/ThZkVGrJfzxn3+RbDzh9LnLzHY6rG1s8wPvfxdB4FEU+dTyxOAHHlXpBJXcHJ7A850J+aA/YX19Gz8IeOyZk1y6uk6/P+Dn71wGK3jy5Dm6rZZrOEiDEFBUFZ4OEDgEtKrs/n11ptPct4QAd31ZY9xnMpbxcES93XjNiejN4hv53O3f67+J4s73PUZbV3j+medImsu8eGXC+uUe99/6FnTgCqnxeIKZWoZJIAkjtrY20NMZvEsXzqFwjbQqnzDcvYKvJQr46tln+KkP/hil8ImjBsNRn43NNbIsZXnpIKPRGGtKQj8ky3KUDtnu9ajUmMJUpOmIzdVVBsOSxbk2WZVhBDz15FN0ux18z6cqS5Ty8PyQMGlRa3UpJiOocpCOlq+VaxAaa/C0j/B8lpcP0e7OI6QmrjfJ8wm1pEGeZ2R5ytzCvBt/KAryPMda4XQHBIyHfZpxRJkP3XyydEh2VlnCuEtZViitybIJUehTb7SJohCtFHlRUEvqPHn+Ce4+fohAFtxz+wGI1vnXv7vGv/u9F/izR6/yZ1/u8emvbPDxL63xx1+4wqe/ssmffmmVtW34oy+s8t63HUAFXaKkS1oJ8vE2mAlFmSNUhlYNqDx8kaK4jPLGeLYi0BG7vR4bvVWS2jKHD3X43ne+mSQQlGbCZDKm1WwyHKbMzHS5vLPN8twxtN/iayfOcP7cU7znnd/HcDhgcXmZyoD2Az776c/wtre+jd3dHW5bbrKzcYrb73k7tXaX0iqnQHlNTvRa4o3i7qV4o7j7Doy94s49c69P5N0j4+ZFwDdb3O0Ppk4TsusEXKbJmmtY/s0p7vYu0D0hkld60F0r1PIysZa/guLu1aikxvEwbyimb1j/5hvFWmfE+dIN4vp44IGXPOxuqpx6A+3z2kiHE5QUmLJgOOwjrBOM0DKkFs2wsriCH3oYW5JNcrQO2djeYa7T4sHHTjLbSljd3OLoyiJ+4DMcjlnf3OauO4+y2+vTatbZ7Q0Iw8CZRfuuiBiPUiyCC5e3aLcSpBBTH6mKySQjriX7whJ+4OH7PlIKjAVPa8rSkmfuIVsZw2AwJPQ9JkWG1prxJOcTX/o6xw/N4ymJ7ykQjiqTZhVPnz3P+99xL4PRiMk4Y21jF2PhoWdf5OyVNd73Xfcy023CdKauKiqkkujAdyhEJfj6U6dZWGgThD6j0YS11S0C7ZP4ijgK0b6gSDNGg8lUPdFSls6C4bGnTnNkZZEiz/GDAE/7WAzDwWg62+S7eZ7SsjTboZEkPHniFIuzHXwvABQPf/15Ds7PIz0PJcGayonMaMVsq8mf/+Wj3HnrCnba8fV8n9FoRBD5SCzjcY7va8qyJAwCqrIiqkX0eyOi2KMsKx5/6gxZNqbdrOOFvkOZtCsA9s4n7Xv7NHJTVVOvKYf4YCxalaTDHT7wgRle3K3z/X/3QzzwM/+Yf/CO70IwVfsVFs+Tbp6rsGilpmIXUw896VFllrXVyzRbTaxRU1uLlMVuh0MrC5RpRpJEWFOSZROkEsRxhCNAQ1mWJHFEt9mg222R5en+XF5eZEgsvva5dHWTWuK870xVYUyFMJVTTiwtd9x2K/1enzgOMWW1r4qqlKTMSga9AaYyJI0GBsHpF88RhiELB+adL5rv0ZlpUZQ597zpNqqycKbqFibjMWEU4Pk++SSbqqJWBFEAU9q1xflelaVDCoVyr/Z7PYSQnDt/hSSKmO00SOoJk3SClHqK0Jfkac7lK6sktYRBf0SZl9TrdeIwIvAdNbQoSqqqJE4ip+iKEwkY9HtIqRgMRg6xzgtMVaI9H2thfXWDKIpQUjllPwTWuHvPscPLKOW859JJiucHSCspcicSIyQEoY+w1f6tygt8RrsFT544w5tuO0oUOirw4cV5Vg4tk4QBi4vz3LJyED90ViPgkDMpJUpIxpOxExcqLcJKlAoc3fyqYxu0Oy2OHT3E7ceP0Gk18GyKQLA0P4sV4Ieea3oZkMpzqquV8zSTCCfapBRSScRU90cpPVWYFi7hRzAcjGh0mt9Spvixc1f4yEc+9A3fZ6d+i/s/v4bibpSmPP7lz9PfXGVhvstXnniBn/07v0RVOlGZ1bVVPC9gY32Ncmowf+bciyRRwnA8xPN9ev0dsJZ6o06gBLIaUxUTlFB87sTD/MDbvo9RVtJsdmg0mpRVRRInZHmG1grfC+gP+ly8dIF2ZwYEnHjmJIOdMQsLdea6CcvLCwhT4Xk+eZ7jeT6h55gLntaU1uIHEQUBQoVU6QhhK4w1+NPrydkdKYypUKYkkBZR5ISBZqs/pCpL4qjBaDCgMiWNRpuicqJaWik85bw8kYIo1HiipMpTtOft5xpJo804s4zTCVEU02w02NnZRmufnZ1NfM+jKEueePRpPvz3f5BbDt/Nb/zm/8HnT4z41IOr/Ph9P8V3H7+dB979t3nn8Tfznjveyve+6bt5z51v4x3H7+e9d76dWxfu5913vIPe5iL/63/8I37/zx7nQz/4Xbzw/Bl8HTEel9hyTLPRYHd3lyhpkmaKMjiGLStklSKForABURJyaHGCJwZUZkwcJVSmIM1ThNSkacav/soXOX645NY7QggkNbHM1u429993P+3uLH5c49f/xb/kh3/oh9na2eJPP/UpbjkQMZOkbA8rjt5xD4XR7A0T2Sk1w3J9buTsRSyv2SduWtxdK4Tn1Jqub6IbU9107vXaXO31Cqrsiea9+nVt98dmvh3xRnH3HRivZoWwd+64brS7MPa6DN90cXdN3Iz2507Iv1nF3f62v1H38oYC7r9GcfdKYW6CNr4u5O6a+ci9921tbfOLP/Pz/Kf33H+T9W6ynf2aff9gqCY5RZ5PKWoZZZmTJHV8P3Y3LWWpyopef5fxJKdRbyCVIAp9lufaTNKcTquO5ysuX97EWMOB+RkQlkYtZjAcU08SjLHESczO9g7NRgOtNH4QMTfXRWDY3tklzwoQMJqkXFndottpsdsbkMQhWVqgPY9eb0CWl8RxhCkNjz93miIvOLxyACUFVgqCwMcYWOrOcOr8RRa7HfI8x1hQ04fyyoEZhIR6o0aeFTz4xEne8Za7OTjX5bZblolrEePxmKBWQwiFrzTD4diJspSG3/vkV3nz8cO05xpYaxn2R3zxsRO0o4SVlXmqyuAHkjzNSSc5qxs7BIEmDH1q9Roz9Trac95mSS3GGkFlSqIwoshyp1CqFCeeP0stiljf3ObS5hZHl7tYLNrziLRGK0kQRVhTkWYpQgmkUhRZznynhVaaoigZ9EaUpSGKfSbjiUs+kgSEsw0YjydTbzNFmVdOir6sWJ5fpNutuwRfOOqgtZaqMlhTIZVLopk+FPMsA2udkEtpkNLy+ZPP8mvPvcBTVw2/8k9+mZ/7h7/ORz/8I3jCZzwcEfgek1FGOsmmaAeOOlo61FUqxWSS8/t/9BesD9a5/dgx0nGB9Jkqrpmpj5gkL3IAhy75PnleOCsJrSgKN0tWVRVlme97LY7GGb7vaHRFaXnx/CUW5mco8xLf9/GVxlYGtCBNS/7iwYdYObCAqRyiWRUlo9HIITYG1tY3SJKIvCjxPI/tjV36wzGLC3Punq3E/hydlFNUTrsZKeUprLFURTFFUB0lVGn39zdTo2QhnAG3H3gYK8jGIzyt0YFPpzVDs5GwtblBGPvs7PZI4oRHHnuSleUlRqMRl9bW6bSaNFstTjz3IqNRyslT5+j1B7RbddcYkxJPK8wUJc3GE5IkcJS6JHYIYui73pFUbv9SEoYhlTFIzxX4Ve7UYz3taJknnnuBlZVDWCPIJhkCUFri+Yp0PMGUJXleEEYh6Tij0Why9NAClmLqK+j+7v3BkGbT0dd+95P/hTuOHCLPc/zII52kVJWj4QkMUqkpJa/CGENVltTrMUpDrVlHe5qiyBwSXo5QyqlfJvXY3Qf8YEoZVpSmxA895/0q3LklhEPSq8pZbuzJnwtcoi+spcxzonryis+I1xIfO7fKT/zkR1zD4xvE6y3usgLK/hr9zcu8+Z5j/Nvf/XPeddd78bVHWeRT1V5Dq9kEAWEY0my1qMUJzWYLqRUL8wvUaw1OnTnJpVNPU0t8alHMX3zxQdaKXd688iaaM/Nsbe5w/vx55uYWGY6G9Po7NJsthqMJtXqdmU4Xz1Osr19hfn6J8XBA5OUsL3YJtJvRkghCz4lp7TnDl6WzIdE6wGgP6Xtok0OVY6jcPUuq6ZyfdY9FY6mqEt8LMMKSFh5lURGGMd0Zp37caM/Q7+9MadCaLEvRfki/38fTMNhZJfKdarAVIJBIHTCYlNMBMYHv+c56QQiiMHQ06jDit77829x5bIWz5y7whSce430r7+WDd97P0qEDNFsJ0gqgQiqHRlvjbBwQgqJw94PRaMB7730X77zju7j0nOLf/tHHuXrmCVavbvCOt95Fmg8pKcjLgEcfv8j/9M9+n3d/9x00owLfj3js8TN84lOf47vesoy2irx0vnJ5mROEIXHUwljFPW+5m6MHIsrC8PBjq9xy8A6Ceo0/+ZM/Zbs3YJyV/MgP/whIxy656957ePGZL7HYEbx4cZuVY29Cha1pE8Ypgkvl/CKtNS8Vc3bPg/E1JmZ7xd2NTLQbiq69ov5Vr5vXW9zt52iv9ib+RhR3b6hl/g2PvQFUIfdSm1cPO70hXPtA2Fv/Zu/b/9m6nw2vDc6+WSjx8sWYb6F1eU1IKV62WPHSUhpLaSyVnQq7XPO7G4+pwmKEoOKl999s2YtXs0nY229pLBVQMe3uyKkYynS5Ma49vr1lb197N8Bq6g3zwAM/zol//s/4d++4Z7/Qvxa1s2jHaVe42QIrMMp9IdYaqrJgtNMjSweMJ322B33CWoNmd4Eis6ArKjJ2drbZWFtFS4+ZmQ5+rIk9j82NHgD9bMzCYgfta4qqot1qUFnQnntARmGI9AO8MGTQH5LUa0yygrXNHT7zl4+SjsY8f+oCZQWd2S5CelzZ2KUZJuSTgio32MpilcCTgiQKqTdbTIYj8qrgzXceZ3l+liIrEVoSRAFKO7lo39e85e7jpHlOGMTU6wllldNqeERK4QGSgvZMh7/77jvxdIXvC/xAYKyjG5rMCbekVUmt0XDIoaf50b/9NuaW25TWILWH7wcooei0a2hPgTBYFHGrSXO+xWiU8aWHnsOWgs21bRCCS5fW6bTbLmm3BX/22cfY3u6hfIUxJTbNpt3pkvnZLoGnSQG/FqE9wdxCByMFaIUOA2qNJlJpUAIZQL3tfMy01HzmkceJgoDxeEIURyRJy/mKeQohNLV6kzQtuXhhA1vB+bNbJFETpS39/gArBEY4E2bP16jp0HieF06QyAhMVaIUeKFHnmWUecFPfvYhjr97jkGh+JV/9CP4rS6/9f1/izITFMaQxDVMKdnZGPDQI085QY3CsLu1SxDuKatp/MDjv/3w+/jge9/D7/zn/8Kf/MmDZLsjqqxAK2eAm7RCrC0xVU6WpeTVtOAVJdlUNbFSFVpYtJB4UpFlY8pxji0Mnu+jtWC202DSTx0SVxR86WuPMxoJJzgThMRB6GRfrIC85PLlNR56/BmUChHSw1jJM2cuEMYxJq9Y3d1i5WCHfDxBWIkV7r6qtaP1DXt9TJlTleyC9MYAACAASURBVCWmrNAiQFiFVZa8dMbeZV6QpxllnlFkY4p8gqcto2GPKiuIoxqeHyKQFCYlboSsbm8xSQtm5+YZ9QcsdDoM+n2UVtx/9x2O4jyZcNfdb+KJky/w1rtv4767bsPaEh24JkhhXOFWZqmzW/BDED5FURD4CbZQULoZNpQkadYxlECJqAxKOLTbi0NUEnLl4iUuX1llNMwwxQShBZ/83JfR2hmLjycZUdRw6HQFcRhRqQIdKsI4YNTvU6UpVgharRaD3oTe1ogfevd7ieKQIAwxJVNBGMeYkNInmxRY4WYjta/wQkWYBPhhQFnmWCxBFPLzn/s8Ulmq0ikmpsMJYJikqaN2ZykCw+b65jRhg7KoAIkSHp4XUJWGosgpygymdE5jLP3h6BU7kq90779pmGr/eYeS+4udNrf2oqpKty1rkEIhxVRkZYr+3vgvSgRSj6k1FV4n5t7O/Tz5+MMMR31AUAsSbF4x6G+ztbHGaDQkTXOUF5BlOVVecOXqZXJbsdRts7Q4jz+1m9nIB1RlibYSaST1mS6333oru7sbtBoNDq8cxVhDLY54+qnHOXvmNKPBiLX1y4SBe14FQQNhFRKFUprSlpR2Kvjk+2jP2WBEtRq5AOknUBrG+YRCGIRxqI7Wjq1gzHQuXAcoL8BgwUC3HiF1xIULVxkM+hw+ditFlVFPEjbW1tHKww/rpIMd8skuxXiCLzVFlmMMCOno7v3+DhUVs90ucRQzTlOMlFSmIqnXsUJz7txZZrsdlpaO8x9+7z/z37/vZ7j91hXwAqq8IPF9ClviSeUaasJSWUOaplQFnDx9np3+eIp4C+IgoT3T4Jd+4Oe4s/vTfPU07Iwz7NggipivPX2FI0uLfM9bb+epZ15kOLGkRcpb33KIX/jpD6BVTImlWW9QmAbNxgrlEPrba9iqx3yroCjW6G1dZLA+5Dd+9xM8+8IJjtx6jN1ejzff+1auXNrgyMphfG3YOP8s2xu7ZIMdWn6ETkt0KRBKoXB5mDAGZUFdU/js5UvC2JctntAII/CERk3/7V9HN+a6e3nW9LqQQk4L7Ok96ybxqnnf9Liuu3ZfIZ+7Nq4dM/jrjDeQu7/GeC3I3euOG5C4V/rdzfb4ElT97SnI9nb5zRSKr2nbN3ntZvu68bp+iRbwSsTX69d7LSjdTd/3LfwZXVNL8KMP/AS/8557WWw0X/m9WITdI/JKLBIlLJSGMi3ob/Wc5UEOUZjQrLdYX+3z4FdPsnzAIW++r5xIgvYJ45DBYIyUgtEwxQ8CrDUcPjhPZQzD0YTFhbmpYbibDZpMxoRhQJqmKOnQmDCMsNbymYeepNuqcXhpAd/T+J5HlIRcuryGlIJ6FJHUIk5fuExvMOTA0izCllSlZXd3xOcffpJuO6HVqiOnptiTcYbvKzCWi5dXefTESQ4tzqCkwhjI0oKqsuz0d52Ii7IUxlk0+MpzapWRE0cRws0clWXlBDa0AiFQynXpwzDAVIYg8h2qah190vM0YeRTlWZqml06mqIxHL/lgKOYhh6XLq+xON8hjAMsFUJCKBTzi11830Mg0FJx6sIqM80Gf/7VJ3jnm2+n2W46Ly1jyLLUDbwjScdjhHBiIEI4xKUs3bD8aDji2KEFlCeIEucZZo2jagrpEr3JxJlfh7HPlx8/weGleWqNGBTUktghN2mO1gopJWnmxCiUBCksk3SEsAqtPDAlxk5QpuD975+lkST4B27lXR/8UX7yp/8RH77rTQhpsUZSFhmmqkjTjE67jh8qojgmiKZ0QykwWMo0AwwSw4G5Fv1JjwMLTfzAI8sy4jhiMEoJvMBRR4UgnYwJvYjV1S18z4msjMZjalGCEIo0rVDKozKSR599jm67g9Q+7XaXKIzxfI+iMiwtLhLXa8SJU77szrRRvgLl6NJRGLC8MIutCsaDATOdBovzs3hasXp1jTRLnf9hifOOpCTwAkzlzsla4pRKkaC1ZjSYIOQUyY0iANI0Q0qFpzw8zwfrKIJaO0EPYw1VZchTp4iptKLTbFKv1xxq5Sk63Q5SK5J6gh94SNy5nI1zVlc3OLR8wCXKU8RNSo3SYoowyqnnG5STFD/SaO2DEAxGQzeTaRwSUk0LV4Tzr6uMRSlFWVX4SLa2+8wvLCCswQt8VtfWmWk3CUKfMAooipSiSilNgfYkUjm6pVaKIneCFcZKLly4xMKBWbxA0Rv0aLQayGkx4fmaqqxQUpFNCv7gU59lZWEBPfXsVFMfT8/z3HmtNLay/OHJkzywPE9VGpR8aSbR04GT1h+lKKmo1xIsTghET+ckhXAKqb7vbBKU1i7xE9IxX6qCuFHjps+Xm85Ivzz2Zu724mZFoLguGVXXsT5e7QEkTMiFF87R38741f/zE/zij/4Sc3MHiJMaBsHG1jpCQS1O6PV36XbnybKUrc1NhJRs7W6ydGDJzX6SoqXFUw5t/uTJB/ml7/0ZdOgjVEQQRBhjGI4GlNYymUyo1epIqWi1Ohhj6HZn6c7MMRhsMx6nbG1cYGVpEWEtSgekk9EUnbRT6rBDJEsDflgniJvY0lBmAzzlFGyN3fNWs9N1BY54IJikE4yBCxdOI7wEC8zPzaLDAM/zydKUmc4M/X6f0+dOs3hgkTipEYcJ/Z11Ql8itUOHq7LCD2Ma7QNkWc5g0KdRb+D7wf58c6+/yyc+/ykWDzb42J99kv/lx/5Hoijk6up5DiwuEQYe1uQo38dW1dTWxvmLaqUpypLt7au02x13nSofz4uY5AWh71Nv+rz96H38z//xD/i+9ywzKCP+6b/+NINRjR/94DEOzAhqcUUQKidc5PlIDWmaOoucGU1Z9LFmiFRQVCVpNkSqIbVGk+fPTTh1dZNIz9DtzvLzv/BTCH+MH+U8+Pkvg8jJxrvcfes8fjRg4egdBO02fqdNaXM0+hteBzdLO6V0bAJ5jcLmTcdRbtzujUXaN6RS3mwzrwGle8X1HFL57Yg3aJnfgbFX3O2l5dcuez73r1875Jq5sxssEF5mM2Cq634HTGfyzKsWNK/3eF4p9ubovtl9Xc+8fGW08WXFnd270G/oHt1wA3i14m7vBiOnhsYv+wK/xfrYWvjwAz8xVcOUL/+ergkhpvOaVriboKmQxnD10jqj3pgvPvwMK4tz1Noxnu/ku+MkYOVgB+U5dCYbTQg8jzQrCUOPOA7Z2Rnw/JmrPPnCeRZnW9RqMWmeU6snbG30GAzHzlA4DIlqAQim4iOlUzcrnMDAXbce5uCBOYajMUkS89CTz9OMQmq1hHargRCGWj0m8BTzs20qW7G1tkVlKtrdLgdaNVrtOlIJhoMxn/7Ko9xz23FsVWGqino9Yr7dotmqOxpMFCKVYjBIqSc16o0ZhgMn228KVxDlRYH2fYTQSKGxFjzPJYGOcliytbmLMRW+p5DKzVpJQGvlDL+lm7HRnnaiC57PZDSh3WmgPIX2NUIKzl26ysH/n733DrLsuu87Pyfc+HLn6e6JAAaDKEYzi5Yt0UqWaUo2JVu2JcvZtXKorXWt0+561+t1KGtXzpatNU3JQbaspZfBpsQIEgBBgAQHaQhMwoSezt0v33TO2T/OnZ4BZgCCIlkya/mbeqjBm+7br987555f+IaVBaQWnscRKGZ6Ha/0qSTZdOphkcuHaHdTDi/2iFNv0myqClOWXpVTK5xxCIk3YxeK6SjDYZlMM/q7Y7pdLwrT7Db99KdWdXTOMp1OCerPG+eYFjn3nDxB2ki8SIqWmLJe11L4oi4K0WGAsxVKQpFnRI0EKTTCCaajff7Iw1/h9/zwYVAhf+vX9/gL//1f5Pf++M/ywR/5EfIs94m3CNjd26HZaRGGmpm5LqY2Rpfav7ejwZC9nT3OX3iRI8tLTCdDtBbceWwZ6wxRHPrCoTJkmaHfHyGEF+cJFJSF4fEnz7G8PEdeZqRJE2sllRV+LXR7pM0GczOzRHFK0mqhwxClld8HUeQl3qUEoSiNIUprrk2zUbP5LEWRowWA9f5neHuMJIkIZcDu/h6f+PyXuP/UXQhRcebZCywsziOkh2ttb+5hrBfVCYOEy5evkk0zms1mXVSHaK2ZTgrW1jZotzrgvIF9mHgeqNLerFhpDz0NQ8/pEUoxGY8ZDIY0Ws36FXMAI9Va00oT2r0OH//s5zl54hjDwZhGmiK0wlaWfJITp4lXjawMV65eodn2kOQg8SqiUkBZ+vOjMpYyzwmi8EBgRAhJKBTtRhOk8lYiUnLi2ApS+j2EdUg0xkIjbTEZF2jtp1Rbm9toHRAlMZ/63Bc5ddcJjCnRWpI2Y2/XUaud2lrJcjqZEgYh9528gzRNMbbysGcl0aGHt0aRpiwqPvaJz/HVYZ/vX14kTRKPbBEWa3zxIJVifX2Xc5eusbq0gLVVbQ7tG1pSea5pVVUHkEiv5gi2LMnzjGan6c+aW2/Ytz51mzPgYxv7/OiP/siNM+E236eun+UHQ4ubE8pXPoRcsc/5c2do9Tp8+L9+lq6VNFs91tfXaXd7tFoNijJjvz+g1Wz7a7l6aiFgdfUIVVkw2N3EmjFCOM8DVpqHn3+C1x15A0mjydWNbVaXDzMtC6RStFtt2s22N5rPcgKt6XQ7BFrXRtuOvb0+zgw4tLCAqmHgSZxQGQ+7RsqDiU0QpyRph6y0hEoRSEOejRBYbI1zus7N9MqZ1r8rziFFwOz8Ic5dPM9wNEJrRWtmlkBIQJKXJY1Gg16nQ2m9KuzW5iatNMAWY6Ty0EwpJJs7WzQ7h5hMJ8zPzdeKtIa1a1fpdXv0+31WXj/Lxz79ef749/wUO1ubFEVBWUCn2yAJA6RwOKl9Y7POi5TSHiIMzC8ukSaRRxk4jdSRn4K7EuEqpITfec9b2bvY5W984D/yh370dbzxVMjh9pD5+QQVequaylSYskBpQT7N6PWWKMqUfGLQSAI9SxgssL3Rpze3xPYefPrhHUo5z5/+Mz/CG990P2tX9/jioy9wx/EHaTcD7jt1kiQSLM1Cv19ig3lm5k/Q7B7G2RhnyloO4KY1/BqKu+u5z0v+6XZIqpsLvluu8/Xll9dzQSHlQf78Wh43qk//M18zh/BrxHeKu2/DuFkt8+XxTagPDhb8KxU97hWKOIF7xe/5ZsbtlDC/ru9/jV93u8ndy+N2XZrXMrnj+o3nmzfs5Nf+44f4G//T3+AD737DwXVfrbijnvL5sFRVwfrlDaJAo7TmgVPHMdYRNryaXBxHSAWjyYQ0SXjiqee96IGSTLMKrSXD0YjxJAcnSJOI+Zk2aSMhDAKMtcRRyMxsl1AHjEZTgkhzbWMH6RxB4NUWvWS/OuBGhKEmSmLOX7rGyeOrJElMnuWEoTf3VkqRJBFlZYmUoNlMUTog1DAYTdCBJo4jemlKs9nw0HvhyKY5cRSiwxDrvFdkZSqi2Ht7SRHirOeIPfb48xw9ushkmpGkCUJ4MY+d7T3KskQrCdZRlF4VM45DT6PAMRyMSNPYT2SMqX2UDEop+nsDpPP8qqtrWwAEYQBSsDgzQxB6Ptx1g+UiL5FaEgSKyWiCcPD0Vy+yuNitRUwSDz02Bmf8Z+aQDPoDP/WpJ37TYU7SjFBacuHFdSTQ7TWRWpFNcuIkQUhvRRHHEc458qyoPdBClFQEgaYoa+hS6Q2arTHE9SQJa+vppvXJjAwo8xyB5WcePc3P/6E7abW7/PQ/fpx/8Y//LpaQ3z3JUUGIM4JsUpBNp7Q6LcIg5LrKpvdeUxR5BtbRaKTEYczywhxOOLIs83YGVcVkmuGs78ZLKVhf32J9Z4+VJT9REFjGWcbedsbhY4s0Og2SsIkOPNyz3ev6Rox0dYEbYiqDwyKcqaea16E43qoiCL2svpSeG2itJUmSg0kVAoT2nMcwiiiqkjRJ6fY6HDm0TFVWVGXG8qEVslqKX0tFGEXo0CcD40HGI18+zdL8LGmSEIYh49GE9fUtXry0xlMvnOfUnce5cOFFBJDU4i9lURKG3n5BBwpTVqhA1zYOIUkSMx1PSZKYIvcNBSl8LzlpeTXXU3ee8Ou0FqhACEaDCVr6Bki/P+RDH/8MJ+84QqvR9lPzQCDxaplRElOVvugR9UREBxohfGpNVfGxT32OIAi4sr7GTK+HDuQBrNwai5Sea2itIwhCsmxCVZb0ej2KvMBay8k77yAINGVVYp0XV4ri2MN66zPMGluvb38zVtrvxSiJ/Bp2julkiqlKBv0RJw6v8uG1q/zo0UPs7w9IEm8TobVvyAgEn/jCU0zzkruOLaND7wN4wKurOUJSXU88Xf0eAg6GwyGtbpvbJpavsbj792cvf83J3fX08XqT9KXnwysfSs+ffoIrV9dYWFrgsUee4bsffBtLCyt0O71axdSvi067h62hgWWZUxQF4/GY7uwc21vXKKZDpCgxReH5t0rx6Atf5N0PvoOk2WFh8Qhr62vEaW3wHiVcuXqZMAiI4wa7e9vEcczW9hbGOsajIWtXr7G0NMtsp4EQjiCKsRjP15Sayvh71XQ6QUeJn94lDUxVYqsxzpao+m3w6sZBzRv2Z4NSAVpr+v19ysrigibTaUZlCvZGQxZ7cwRRRBhGjMdj1q5cotXuUBYl7WYLWwwJpEPUkzvhBEmjjYo6jEYDXjj7HN3uLKPxmGazSVmU/NP/8s94/CtP8Xvu/H7uvf9+otCrOp87+wKNhqSRNojDgMo5tADr/H7wKCM/tQqUwhQlSIkIIhAa62AyHVCVU6QUBEIiXclvv+8t/NOPfII8c7z1gSaVhMJWXu0XSZrETKYTQOBsyK/8yn9lPJ5y/z0nKUp44YWLILQ/42zCB//9I3Tnj3PkSJNOd4aV5bvQusVHP/rr/OqvfJBAB1w6/wKh6iOdwqkWd9/7IEI3cVYC5a3r8zUUd7crkG67ql9lmvf10oxup0fxmuJlX/5bXdx9h3P332i8nBP3nfj/R/zbX/r3rH/kP/Mv3/W61/w9VipcLYJh8py9jU2EsQiLr1BDTdJreA6DisBpbCnodbpMx0NGk4y7T56gO9Or4SDwmS+eptNq0kxTytLwuSefZ3t7DyGFhwBGEdk0Z39/wKcfewYhNN1Wyxd/lUPrCBB1UReSpDFBoLGV5c33n+T0mfOYqiKOI3QgEdKRJhE4RxTG2MoTyfPC++/N9GaQQuKEYW6ugxAWhPfVCuKQOE0xlfdqq1yJExU6hEk+YG1jjY9+4THSRsRdRxZ59EtnSJOUylisAYRmcWmO3f0BURRR5DmNNOXy1Q0v+54XFEVBq5GwvbWDw9bS6D6xLauKdrvlTZCDgIe/cpadvSHW+GQkCEL+3088SlkYtPa+SGGgoebn9Ga7ZFnBle0dRqMRRZljXAXSYGyBEI5nnrnApQvrNJK4VhK1vHD28oEHU5om3Hl0mTT1E1RbOcIgJp+UDPpjhKCW2nd+sik9FHQ6moKFzWtbjPpDPvDhzzIcTlFCoHVd0FnP46ysQOoYZ71dxbOXz/FzP3Ufs51ZKhnzZ//UTyHDJj/+h/4kYeA9prQM+eKjz3H+0kWCMK55Kt5LzCGxpqLKCgIhKScZ+WhCbnIc1hdBgVf+7LR6XFnbwFmfTC90O5iyYjAY0+n1UEFIu9cgSRs0Z3rIMMA6zfPPXySIYlSgkIHE2uLgPdWBwGFwlFSmQAL5tPDS78J7r2XjjDPPnEcREUYxyAAdpUTNDkmvi45jb2ZcFhhTkk2mCClpdTo0Gk0Crdnv91FKoGoYlLOWyXSKUJK9vT4LvR6rq8sHe+rTjzzB6uoKd544wm//bW/gI7/xaZ547gzdXoey8GsRAXmWA75omUwmtWiEQFgopgWjwZAyK7FFRWUKptMRxtSQVy0RSnL1yjqmsuRZTjYt2d3us7Pd5/zZS8RRynve+d1UlZ/YSMBMpt7vLooYDgY4OPB2M8ZQ5DnWOqzzPor3nTwGAl7/wCnCQKOUAqz3GJSS0k7JqwmVnSIDS6PhLR6MMTSaDeI04dc/83nG4wm7233OX7hMu9n1BZ21jIajmziNFdZUOCom0wFFUWLqQmU6zWr4ckGv16TZTPnJxRaj4ZCqtFy7tsVgMCLPS4wtGU9G/OC7Xs87Xnc3WnnFXFNZnBUM9sdcvHgNV08ovaWH4Iah8U2F3jcQSRJ/Yxd4lcj2FXu7gjA6xF/4fT+LMxWb65d59ukvs7F2jdH+gHyS+6ZFUdRQ55DFuQXSRsNDBquSRpLgKkeadoiTJvs7BaWBUX+fzfU1BuMxcwsLqCAgjhMKU9FqtdHaN/7m5xcIAu0/v8pw8cIFhJNMJ54vqpXEmAJjKqTUUBfWUZjQSJtUVY5zJZNsgDE5ZenXt6m8V+t1aJwQENZCOdYar5zamyFJUowxtFo9TCV4/evfyqVLFzGVYX1zg0BrVldWGfaHlHnB3u4OzpU3kDvST3m1DpiOx6Rpg2NHTxDXXqVl6cWcLP6+9/q3vomd3S3SRkiznbC4MstkOkJKzXg84cL5M95ioG6i2sorEgsBtqrQUnmVYh1gcUghaaSptyERgpHLcKFERJq//L4/y4/c/xP8qb93lrDVY1IqjNOEImI8HSEEtJotdra3uefekzzwwCn2h1eRYZ8jJzocOzZL1ICrWxf5gd/9O7EMWey+hTNf2SNOQuJWn3d/3wn+4I//EU6euJdzz18km0zJi21arZxHHv4QZ7/6OYTZ/Jat429lOHtDxPDbMb4zufstjMqY//mVegM3QytVfZB9vROur9WxuD52viWkqpV+PDzBOncrbPSbsOa/no6KcTdNM2sxldc6LTt4re460daP8ZWUB95W9jaj0oPft57O3fww1mFd/fZ9E6Z2V6+s8cX/5a/wfSG8bmnupS/ill+ozj6FTyakVAjnGO3uce3SNUIHzWaLsJESJynD/sgTmpWmKgtMVSAkWBwBgk4j5er6FrMzXUItQCoOzc2BhaXZNqNpzn0nVhhPJsx02wgslTXs7g544rnzvOHuY0gJjWaKjjRh7HlCk9GQZqdFZQw4i60KJuMpSRwz02py5uyLLC/NgFQHMDBXE6tlqMjyHGctRSUJEk0YxWyt79Fut9jY3ObZ5y+Qj3Pmem2eefZFhqMBvY5XxHRGEoYxZaH5zBNP864H76HRSombAatLKzhdgtE8fvo5VpY7CCFoNVJUoMmLEhlo5ub9tEcEGh0GKKUJwghTgZQBRV7R36qTyyQgaTRRMuCBU4fpths4a7Blyfr6jucjGUOv0/SHtQyYDMYEWjEejYlbDXpJyvzCvFcgzCuqwhGECiMsyyvLdGda9f1Acv78ZU4cPYTDECYxO9v7NNsNkmZMZXxXWSlNfzCizAxxFNBoNnHS72cqb/iutAIJjTQhTVKOLfR88SwdKIFx1hPiBUyzfS8uojS/+PhXaNzb5K7VBSoZ8ud/6Qx/9s/8Rd7/kz/NL7/3h0D4qVxZFZw4ucLC/II3ea4qJAIlPDdyMhgSBIrpdESeZWgt2dvdJw5DojBAOkdZ5MRxRLfTAmeweBje6qFDpI2UqBbywQYcO7HI3vYOVW4Io4CZ+R4oD2M1xnq7gbpxUOZeUdNZ/IQPh9QKJ2rBIuenm/MLM1hnkNLbJRRFgcChpW+ohEmCDj0nLk6bWGMQwnD1yhXOnr9Kr90hjROo/LQ3K3JsaVFSEichh1eXsNZPI6QSRIGi226iw4okbXP82Cr3njyOLQxC11Yf1qLCGCUF+SQnShLyaeZtAbSgLCyfe+wrzHW6JElKFCcEYYxxXlDjOnesM9NEaYEOAgY7+9h6Kt2fDFk5vECZT5ldmCMrCipb+X0Q+ES00WgQBAFSCEaDof8clMIZS6AUeZbT67ZYXJilrDx0tagqr3BrLHnui4cgUOS5V2icTsZESYRB0N8fgDUcXjqEtY7N7R2OHz2C0B7K69Vfa/VWrVDCTwG1CnBOMZ5kRFGCRNf8QkkYNUEIrHA8v36Z+w4tcfHyNR57+iyrMzOUtVy/V9oNaLabOEnNbdQ4BGVVEeiAQCmySeE5vcIhFGC8GFZ/f0Cn1+Z2/XNxm8ft4sf/7v/xit8nX3bl60rX17nz159zgJUFSIl0GoVEackH/s5fobOwwFvf/W76L04Y9vcpqpK1ay+yuHSEwWTA0vIyzz17muWlFeIkxQJlCVEUUhU5a1evsHLsCNpVyEBjXMXHPv9x1sebvOved2JQpK0ZhApQWExZkmcTwiDAOYMI/G+wvbXNzvYWWmtOHL2Lzd2zzPTmsFXJ3v4OQmqvknkAkXHIwENkQxWiwxQVdNHCEUqP0AiikLJylJVEGMPG1jpOpITK80SFkoxGY7Y2t7m6OaCoKk7dfRdahMSJR00oKbxPXhjS6swQRSnTcZ92LKmqHKlCpNJekEcGDKc5kgilIoIoIAhiyrLg7/6nn0MIx5/74f+OjWvX2NzaZu3aBknc5PkXnmJpbpYkCokCjdCKNAw8IqiGMl8vMKwzGEqCqIGKuugwIctHBMJgygmmzAnQOGH97+gUpTO8+9638Nd/8SP80NuPEsoGldhAiRApYobjPr1Oyur8MpUc4SJDw0aUVcbWlXOUwQP883/9GI+d3uT7v+/7+bHf94P0+1t88pOfYNSfcOquBznz1BMsz15D8yJLSy1ajRZXz30FPdli79IZLp99ErO/w/7mFaI0RmiJkZpAeLEb4wSRkTh5a7JjxQ0RIATeb/D6Sq9pR19bSp0DDYOXh6rzv5sfN+eC1xtmrxTO3khMX07tsX7s+g1rZn4HlvltGOZVBFWuR6C1T66uJ2Xf7HgFm4SXgjtu/ZpvtRH4y+Pl/LpbnnyVuP5arbuumiRu2bSvfqnbEOq+QUjpzfG+976f3719ibvm5279x1fAofvwqmmicEz6Y4bDIUU5ZVKMmUwqmo0UIRVRHKG0wgFhEDAejtnfG9LttKkqQxTHDCcTZme6DPp9sjyn0UjpzrSZre4f7QAAIABJREFUZjnz8z36wxGry4veGFZrnBWkaczxw0vML86itId97e0P6gTa1GbYrvbRMl7p0PnPwTlYnOv5SWDpO99ZlhFobxINtQ+W8OIO4MiznDPnLpNGIc00ZqbT4blzayzMdihyg3GGbrtxIDc/GWc898Il3v3m+2k0Y5SkToBjEBatQ7LJlEYa+US9NkPO8pLHT3+VIytLtYy2RdSwJ2eth6EBa2tbfPXFKyzN97yMPzAejYkin6wKIdFBAE7QazcJlKoVPiWj4dRbEoSaOE3IsozHnz7LysKMh5o5RxCGeKUvsBXgHKPJEIej2UwOxCuyPKfTbfukMwjQgcZah6lKqsrw8OkznFid99yjQGNKS5GVVGVJEASUeUmRF1RlRZz6ZF1pBU55meuaIJ7X60IYxcJbuty50qHV6XJl1/JH/9JfYntjwiOf/A3ec+I4SgW+EFXyQGrfVH7CYitvg1EUJS9eukS73SCKQ2+sPJrQ6XYoyoLhcAhYKlOxu9dHSem97JxARRFxo+HfXylxwtUFGjSaDZLUC8NUVUVQG4JLKerJkiUIwlpiXdWG37bmXfn7gxTyJfLyB9wKWa/PejJTVZWHFTrhIU/KJ89lXjA7O8PK0hJhHDAcDn3BUE8PsmlOnuXYuuD0n1vAYH/I6uFD7O3tUZmcJG0SxBIpPIpjNB4RKMV4PCFO4hqOp8iynEarAQ5GozFJknDs8DLPffUsM90OTljPiwKqovRcPOfht0p5LmecxAxHY2bnZ1k9suwn2O2mh1gHClcZymnmuYmRh7UKISiKwkOcncRZx972PnEjJtABCEVVWayDK1eu+tdSZ1veAB2KoqDIc6I4IYqCegrozeGVFAjhIc2Li/MHRXoYB5hanCeKfeKfj3O213fIpwXD/REbW9tIR21sLmofQy8Yc217gzfOtXEO5ma73LG6SJYXLC7NIZxlNBofWGtYYz0vOfP+bFEYEoTeKuFTjzzJ6uIcYRQccG2ctYxHI3ozXdw3kNr9s8ee5re95Y1f9/fdcq5JB1YACikcpsxxwx22xhn/6Bd+iXc+8A7KbMxktM/c/DKrK0eIkhQhBLMzs7x46UX29/cY9PcZjUZkxYTF+XmSOGJn+zKBdJRlhqtK/p/Tv87vnHsjx07eg0MxO7/MoL9HVkwJtCaMIkajgecvVoavPv8snXaXZrvL1vYWFy5eZDjdwVYFi4tL6EDTabUwpkJJb2FirMHWEFAtFEZIZNhCWEM27dd+kRWTSclnPvcYSysLdBpt+nt9up0WskaExHGDVnueF9c2OXnqPkINKojY3d2mKHKajSZFWRCEIXmRe2/PYoorhgjpqKxBBwGTcZ84aZMbTSPtsL27SxRH9Pf7/IOP/WN+x3e/nT/w9p+kKg2dbpeFuWWEkmxsXuXI0aO0WwmBEsSBREcRUriXCIlopcizDBUEta9ojFAJTgqqfIowGa7KkVJgCt+wwgmee/pJrFM0Gg3eceqN/NV/8WF+8LsPUZiMJEipbAlIdvoj5hZTJtUEYzTVZIxTFf1qhsef2eOxJy9w5NiD/PiPvZ9mN0ZHEffc9wAbG7tMp1Oef+ohOkmfmbZmebZJ4a6hnEbLkLX1a5x78Vmunn6cna0rrG9sceXqFRaXDiFcQRglCJl60rStbreYb7Ouv07Y5MEQ4Taw5ttsz5df9VVzPHebrzt4TtySS/9m4jvF3bdhvJbizjrnOTDf5MLuQGzlZUaQ1yVcpRAHQi+3qzBeuilerf/4jcV10ZWXb3L/Ol/bz7wdd+6WDfuqiko3eqYvn9S9/DpCvtI1bo33vff9fOU/f4T/652vIw7DgyJavOTPbV6rE1jjapNO2Lh0nn5/lzAMWZhbJIm7tFoxO/sD4to7zFGLrRiDsA5nHLs7ffLKEmjN0uIseV7Q6aYeLplGPiEX3q+qmSbkec5wOMYZRxhorm1sMzPb8ZYN9cdhXeWtApTi3MU1okDRSCK0UkitPdfJGJ564QIXrm6yujjPdJyxvbNLr91ESXjkS2dYmOnVct6QpBFKWhpJQqg0Dz35LPfddQzjCu656whCW9JGwNLSgr+RKw/5UlKShJo0jagqL8YgACMqPv/YGVaX5piZ6SClYjKcMJ0WOAuNVoOl2S6fevRJlme7VGVFksZMp1MvXFFU5HlBu9Xg5J2HQQqiKKLKC5796nkWZ3sIJFle8NATzzDbbrK5u+/9+bSXZ47jhCQJwVnP9Qs0dxxdQSlw1jDNSpIkYjgcMhqNSOLUJ9GN4GB5RVFEGIUEoa4NfgNsZf2egRpWWXJieYmoEaK0rLlHBc+fu8rSfNfzsCQ4Y0kbMULBeDQhimOE1AihMcUEIUEJTVWU/PQjp/mD7z5O0mzyaw9fYPntf5TZ+ZiP/uW/yZ9485t899PAYH9AFPpCSAjqgtF51UxrUFKQBNoL2RiDc16c49KVDZrNlCQNMdYShRFRHIMQ6CBE6YAgSf0EvTbPNiUI6f2gXA13lcpPJm9GPSitan89x8HsQwmkkphaB/t6IX/z/r7u72ed86gBIWrFS4WzBmccUmn2+7vESW14rvzXKO0bBN4zy6B0wPq1DTrtDnleECchRe793KQS7Pf3mZnrEscNHnroy3TSlNFoTBSlNBIPU43imCLLyQtDFIYorVHSq7xKJT2vSGmWFucYT4aEkUdj6Hqidp0XOx1lYAU7WzuMpiMOLS+go4DJZEKcerVVFehatdVR5SVBzW2TUuCw/j0QkmJaUGUl2STDOItUmvE0I4oThBDs7+7RbrV49EuniXRI2miilazvcxIcWFMCHoJmjaHIS+IkRR4IFEl0qL0gC543LpWHe07GfZCOKA754umnWZlf5MvPnWF1aYFGI2VnZ498UhKGAf/n419EZiN6wl8nTiMazcRDL50lCkOPRNA1ZNCWdWLtuXxSCJQKOH5kiTDUlKVBKc1wOCQMNIP+gG6ve1t+3U2Hx6s+3vnnfpYbqs6vHkLcdI4fPOev4yqDVCGVs4RYzj79NJPpkB9+/x/kg//2V3nnvW9jMtrH5hlJnDDJCo+UcbCzt8ORlaOMxkM2r13hjjvvJopCxpMhkXRIM/YqulKghOSpS1/hex94FxmGRrvH/nBMmqZEQUoUNdje2kGqgCI3zHY7WOtoNJo0mi3m5hfpxJrV5WVm2x0iUdKMA2/5wnVeIWjl93BRFB4SG4TEjVmqckqZjajK3MMYUVilmD80g7IF3U7XX8f6Yl0IibGCtc19NjY2uevOE8RpSrfTpd3uEMcxWmu2tjapipzhwNsJNUIP5w6jlNJU3vogL9Fxl05njsFwSLvdotXq8NCzn+fH3vT7uHrtKgJ//wjTkCSKuXrlMpfPn6fVCJjp9JCuwgKx0lTGG7dXZXkgvCXqgg+VIMMEcLgqQ9kcCRSlwQk8P9RZ5hdWkWGEkt4O5s3HH+Rv/bv/yrHFNkqFxFGJrQKas4fIp5uM8iZ/5+98lAfu+y6qoMtf//lf5/SZPZZW7uWP/fQf58L5Z7j7u+6l3Z7BFfDC88+wvLTIXHyRTjRgaTZhtD/ixfUdKrOKUId5/ZveQ1Ea7viu30ZRlvSvniGaXOPFRz/MJx96iDtWV1m7uk1zroUztlY2re+99f3sVoTXjXvzbQVVXh6unrDV98ZX0lW4/rjF6aA+D6S4jQO0e9nfb84Na4+9G7PG31x8p7j7NozXUtx9y+J2Yit15XJ9IV8vab7W5O66Cv+3Ap58sGdvKcxe+5Z5LVPG28EyX0vcUty9Rrjo+977fv7JW+7hPcdXbr3ma/i9pLMUkyl7G9uYUhKFCd3eDJWBsrKEjZg4Chj2h2C9kMd0lJOPMy5evcbMTBehJDO9Njc4MGCUF5GojMGUhhcuXOGRL73AiSNLNJoJ/f6QONbgLFc2tkmikLTZwBpbFxieFxGEAd1umyjUDAdDhBCoIKgnJNDrNOk0mnQ6Lab5FOusl0Y3lk6jycVLG5y/fI25XhsZwLDf97L3UrO9N8CWhnY7Ic8qgsCLlARxWjdBLBLvUZe2mqhAM6kFW4rCUDGhG89weX2D2Zk2UgR86alzHD+6wrX1LZppjDOOO44sU5YVjWaCwB+aXiJekNeqoUVREQQR2aQE69je2Wdufs4XJVFEleUkScTiwixp01tD+KJcc/HFK8zP9ijLEhkEOGtQCmxlsE6yeW2XZiOh2+sw7uf86scf4YG770BKRRjGXvhA1k5WzqGk5gtffo6VQwsYUwKGMNRIFAZJGIbkkwlhHLJ0aAGwBLEXfdGhxgqLRBLVyoIOgXWGQDn6gyGNuMWf++Iz/O0fXyVtzSFkg7/2bx7nZ3/m9/Cv/s1/4n3Ld2CdNyQ3xvHihcv0el0/GZLCK3IKQTGdEChJUeTEYYAxJUEUIZUiy0q+fPoco+mE+ZmONyg2EDZbJM0GaIXBIkR4sK+lkzx7+vn6ZwmsLX2nX9Xm0jclB856WQwnHAjPRZMqqEUyQNWiGcZ6rktZlAdeRw5xA3oDKKHAWNYuvgj49RsliRfeEHXyaCqk1lRFhQ40QRwhlKTdShFoPvvo48zP9Gi2Ys8FkoIojNjbHSBlwAvPX0IHjtXVJcIoIS9zr6invaF8lISAY3+vT5JGmKpCKcV4MEEpyUNf+CIn7ziK1n4CMBlPaDYaTMZThFN87JOfZ77T4tDKHKYqkALiKPY+ZVohBZjKIurJtlDiANJqrYdwSimgsF4gRysa7QYmz1E64GOffpi7jx+lynIWlheZTjOOH1khDBTFdOqT3SA+MBKXYUhpDNlkgtQBcSNlOpl6C4xm6hsEwn8arr7PCAF5lpFl3jrBSckdx48wvzjLyqH5uuBLSJIWXzn9HAvzPb73jmOshtBue5i0ccZDcsuKwWCItZY49oIx4NBKUZWGK1c2aLda4EBpgXElSFebnkukEmitmI4nNDvtV+/6f40DM3zr2+u/vZbi7tZrXYdlCqtA+EadMjlXz73AxMBf+5v/gP/h/f8jgVaM+vts724xv7BCVhZoGdRoC83m5iaHDq2wcuQoZ7/6LO1Ol8F4yOzsDNPxHmHgi6DRIGd+6RrL7XtJmi2k0sTNLgZR368qdva26fVmaDSa7A0GNJtthJRsrK9hqpyrV85RllPGgz2ajdgL8NQNUykUZVWia85xFPj1LoOAqXVISrTwQljWGiIF3W5MA+3h5bEXJKmMRwMEQYgTcOnaBkVhuOPYccaTjDRNPKKhLJlOp8zNzSGEoNOdIQpDcBm2qtjd36Pd7mIriw5SNgcj2q0ZOp02O/ub/L3/9HMc1of4rlMPEgUBczPz3nLDCaRzfoptxgRa0EpTsB4+K6zFCVHfw7yVglQK4yqMc4RJ23vrmhJNAVVGUcHlaxvs7O3Sajb8+ae9ABLC1mJfOW+64438/X/2iwyLKa9/YIFYtxhPxoQmpyqafPDXnuWB15/kY585z1a/yf/0V/4mpix405vvZvWODto1OPPUc+ysXWGua9m+9jxtex5TDVEq5LmLQzJez9mNitVTb2a/CEmaR1k59W5EOItUISpImRQFO5fO0t84w3j/HLGKiTuLteCNrtfvK/FWbzdue2175OXN99s1/l9e3B1YL9zutbzaj71JUOW3orj7jqDKd+IV43bm57eLA0z0t3G83Bj8Wxnve+/7+eXveRPttPGb+n6HY3tzh0effIo40Mx0Fykzyfr6HheuXCWvpiAlWmsCrdjc3uWZ58/x5DPnGI6nPHDqBFIKZud6BFphqorJaMygP6KsHGEYYSrDYDjmjqMr3LG8QJl7tavlQ7Mo5WXyG0lEp9MCoKq5OpNJRlmUWGNrVw1Hs9UgDANfYEnl4SPGMjvbZTrN2R8OWV5eqH2jIuIoIitKNnYH7O4PyLOCQPspXhxH3HPsMKNJhjWCVrONRNed3LKWKJf0ByOyLMc6R54XpI0UJwRpM0VrxeLSPNv7A86evwwI3vyG+/jkw1/mhcvrPH3mLODNkZutlKo0lGXlFQqjoDZNVmTTjKryE6dPfO7LNU9Dep8y4YuukydWSdPEJ97GMhlP/aTDORpJwrkLl2v/Mg8zKvOC6TQjikIOrx5CSsmoP6bdavFH3vu9TMY5RV55iKVWHk5ZwzGdc/SaDZyFQCuCUDMajQGIwpitjV2iOMQZ6/lKtUqh1PJAnVIqzXg8PVCmvC713mylCCH5yz/xOt8J1gFKBvzKB/5vrl05x6c/+km21jdZX9sA4MLFyzx4/z2EQVBze6EqK29BUcueB1ozGIxIkqRuCjiarSaHlxbYGwzZ3RtgSkO73UYHwcHETNTTniLz4iemMGxu7dUcGeUVD/EoBGteKkrlPxVqqCgY682fffPXce7cRR557Et+yu2cVzzlBiT3+lVM5f2tTGlYnJ8lCCRVWdTTEq82KaWfSJrSkqQpzjlvbVGVIBynnz7DeFKwvrFVjwv9lC/PCmZnZ7EYXv/gSe48cQRrK0pTeml/fUOgwVQlo+GIVrtBnucH3l5xGiOl5Lvf+uYDoQ8/6agbAUqRJCkCydy8T16VkiRx5OGHSjMdT72wUe336NGUkiIvsdYS1nBvYwzj8Zj+3j5IP01tNhuepyYFWZaTTadMp5nff4Gm2Uz8faH2kPT+fBodBIRhRLPdrhVjFVEc02o1mYwm3pQYr1yaZ/5eI4Rgc3MLJUMefvwpxqOpNzgXlqQZ0+q2KMqKzz/8BEns723/8NOf9hDsaYapKrLM84GDMKDVaqBquf3RcMxkmmErh1aa48cOg/Oqmq62DfJQ0Qpn/BQ+m+Y+if9N3d2/BVELIoFPnM+fPcf9972OHzj2g/h1UeKsYXHpCJNsSr+/z2Q68pDUyiCVRitNXpYsLhwiCiOOHDnuDcFVcNAM/Psf/+f8h09f8p9lPa13QLPRYjIdoUPJwuI85y4+j1T4gs94aOPc7BxKCI7fcQ9Xrl1mnE0xgJMaa7yCbxh6exhrTZ3L+2RdKuV5gPXaQHgeOtYQSAtFhVYRWeEFiKIoBIRX21SSublFhJC+Ydfs8PQzpymK/AAhNBwOSZOUc+fPkqQNysqjU+bnD1GUFZPJmCzPaTZbVKZib3+POGoSBJr3/9DvRynJ7u4Ozjn29/ZQBGip+PITn6XZTPw615LS5J67KUWNqPBNSyHrJpFUtSiMf94Lx3ivS6Rimhdsbu4iRUAUxlRlATjfEMGrn+b5lBd2LFfWd8mLDCW19yZVhrWrF/nb/9ufYGt/i4cee4q7T97H5ctX+WM/8zNcunKe7kyDX/7gL7O7vcszT53m7JmnaCQw223S7XbZH055x3e/h/te9y5++k/9aeaPrFAqwdET91AOM7a3h7zpnT/AfW//AcbxIY4sLRAyJe9f4bHPfooPfeg/s7u/7z+7/4bCWQvia5uX/7cW35nc/RbGa5nc3Uwa/WbaE9ws2HIzKfUA8iglon5eCncL6dQZbhBJr//5JrYKrsMxpbxurH7jZwugtoq9JW5HkL0uxmJdLYLCDYGU68/d/L68lnhFMZhX2f8//3P/iAe/8Cl+9GXTuhtwzHpq59zBL+rqpMrjTCxCwOVzlxBVwUKnQ7M3g5OSKI0oipLlpUUCGaCVoshKfuPR0yz1ZtjeG3DP0aMkScRgMuXy2g6L83NcXrtGlnleUneuzfbGDk8+cwFTwKGleYRwNJLgYLI2nuboIGA4nrByaAlTWnCGfr+Pc452XVxsbOwQaoFzhtF4ynCU0YgSSlMcTIesK9ChO5gkdHttppMpgRQoAXcdXqKReo+1JO4itWQyHdNshCzN+f/vD/aJIs95UsKQT6bkowKlAtJ2G4fj3Pk1ZrodAq3I8ikBEU44VpYWmOt1UdIhteDoyiIr8zMszs/R3x/SaqdYW1FUXjRBhQFSeC8wrOcvCmUo8ox77z6GdY75+S5ae+uBINCUxhBHIVmRIZQjaYRYY5iOx8RRxPzCLKPxiGYzQkchVSF54qnzvHBhjdXV3oFdQWUMw9GID33ice4+sYy4Dql2fh2a0rB+bYednQFHVxawwiFlSDUtaLSamLJgZ2ef7uwsUkI1GdYmvA4llJ82oalMCVjKzHpje5NR5QXZeMLv/+Tn+ZnvOUZr7jgIyZ//V4/zzne+kT/5F/9X/sXv+mGUkvR6PSIdMdPtICLNeDQln/oJXTmaMB0NMTZDCkEYBASh4vmzF0iCCGEdtixotxscW16h0WgTN0LQgrwsfWNASJQMsPhkR0pf6J244wgyUFS2QioPmcN5SKa13nPKJ+T2AK5mrSAIIsosq5NxyYd//WFOHTtGp9skGxcopcmz6YGxvb8P+12rnE8sRZwSxqmH9/b74AQ6DKiqAmcLgihGKkllPDRTSYG1kkMLc6wsLbC6uoLU+mA6JgMvsS6tpdFpI4MIqQIwOQ5Bf2fEh/7LZ1jsNtFKkTZSbOVQIuDXPvpJ7jx+lDjUVGXu+ZdIbFn5pDsKEFqzuzug2Uq48/gKuoYVJnGDbFoQRt5UPoy9jYRSnkPrxQMEVVUQpzECX8CWhaHVapDlpd8TWEajjI31Lb7rHg/j6++PeOQLT3Pq7hPU7iMUZYUSqjZSt+SZ57hdx2WYyiIQfOw3HqIZJczM9mq1Q4tAEugAZyzTcUYzSRHAlbU17jl5AuO8+TMIqtygpeTY0WV6C12SIGR0aZMiH7F4aJ4iy0njCOEEeTnF2oBGq0llLVESEQQeDuoAoQTT6ZSyKlGBRClFnpUEoT7w09NKU5UlcTO9/RlxHXp58xlwA/kPAp5YW+PY9/2ul5w1L4Gh1WeGFeKg6eFEfZ0aSuPq89sqgROWwFV84aGPc+cdq5y9/CJz6VGUclx58SzClEid0G7PMDN/CKk1jUaDfr/P6uoqG1vrdFotrly9hK0qWs02VoI0GcIZinzCF849iXWGd5x8g7fZiZs899wztHuzIBShDqCyGGNpNpqEgeLcueeJopg0bfD82a+ig4D1i+eIWj167RZXzj5LEKUkSUxZ5TX3TuGkpLIV1oHUEUK3cVWGKUYeqSIEVkpAUUk8fFj4BlIpJE+f/goXLlyjmXY4c+EF7n/wDbTiBlvbOwSBZHZmDoHgwoXzrK4cZpJN6HY7TEcjImmoTEmYxCDwasqlYX7hMNPJkHxS8mtf/g/8gbf9BEEU45DMzc5x+qknOHHiBFfW1mj3mvR6PWxZYMoJSZyQxLFXpHUSESl07jBUWGEJXEAQpaATCJqURYYSDpeNEc6CNSzNzzMzO4dUAis8RUQLb5MilF8nSdLgR97+vTz0wjne89bDRInmytVrlHqJ0cQQhwv86see54d+7x/mp/7wT/Mvf/EX+J7veTfTrGRx/gSvf9PriBpN3vTW+wmmpwnNJeI4YGMwhniFzpH30B/m/MOf/6fcd/JehHEcPrzKv/7AB7jr7ns4e36N8UTwxjf+Du570/ew2S8ZDtbptUswGS4fELZmiJJZQCHkrYrxEouos7jrD4S67T55yUPeiqy6kQfeeNyyXeV11+nbI7Vu2ZsH13A3HhIQ7jWhsl4e34FlfhvGa4Jl3jRN+mYWd7e7/k1P3jjM4PZl1G03wTf/Zb2qUtFtnvtGCbJfT3H39cSPve8nyK+t8Z4jS698zZv+e3D4ewIR0hgGewOefu4c7WabRrNJo9VmbzglDr15dtpIcMb7gBlXsLs/IMtyluZm6TQahLEmigOKsmRhrlvz3BpEUQDKw/bSpMnjp89xx5EFHjn9HKtLszQbCXHixU2mWc50mpPEMboWLtnc3iWbVmztDJhOcybTgm6nzXSa0WwlnvcnBFfWtphUGd1ui/FoSjHNyaclaTOp/bFqHo81tNsNQu3Nw6WUB9LQjWaCtRAEESrwRtpl6XlXUmuk8gVLEkeeS2a9CuZ4NCVNYi+UEYSgFEjF5voOUZzgXEGel7RaDf7dRz7HQrdFt9sijIMa5uNw1idz19a3PF8Oi0FSVZ6/JbWiKEucdbx4ZYOZXpuLl9ZoRhIhBUmaUlUe+ii1qlX2vCR9VVU461UkV5bmObq84A/lGlYotURIOHVsiaoqGI3HpHHE5cve5Ho8yllYnGV7f69OEPxkReCQgUaogFa7RVWVVFVFWRr/7/VUR0qBqSoiHaMDR1FMCaMGUoQYZ2hGkve+917i7hzOCS5u9jn5tt/FP/mFX+Ln3/FWjBDeLB0QgUJ4Ig6B8lM0W9aJmfKJabPZxFpHXvoiTSvfrZVSkrabZHnB/nDIzEKXylZEMsFUVT2xmyJlUMMuoSwLr56IOOAVejimQkg/ZbnBvfMHtXWeW+V5VP455xyrC3MsLs5jneFX/8snePDUXQSRh/7ZGrZeFF5t1hlTN2F8E8OaCucgz0vCMPT8DiH81GCSEYVhLZLgbRmqsiRtpd48vrIH9xWlfCHpPSAjz0sTXvQlTBKStMGJlUN0mg1vvh6EjIYTpFScvXiJ+++7k82NTZI4ZjrNDiZso9EYJSWBComjiMp4cSSv3irAwumnv8oXTz/DyePHqEpzgN6YjjMCHfDhj3+GbiOm3W6RZYWfpNbojiIvb9hcWMH8wpzn0ChBZ6ZJK0mwznpPPiVQgaLMvax8WRQ0ex1MlTMeTRgPM6y1qEBhcsMXnz7DyRNHcTiE8hLlxhiclZjSc1hH0yHHVg75CW4cYiY5wjmqqsDYClmLNa1dXecL65f4gQfuZjrJaKTRAS8zDGKee+FFnjpzkaWZWbTS9e8lDhoJX3rmebZ29+m2Gh7qnBdEceRfUyVw1gs3NdutV6Bw367ge+n/LjcahG97xysfKNfZ8OLWpFPUh+cBX91VvlEIbF25QOgy/ur//k94y52voyxzbFmxsfYiR4+dojSGjc0NhoMBSZyiY8+X7u/v4qqKzswMM70uWzvbNNsdQqUZjfqEgSZtXuT3v/EnvYplGJNlU46duIcsr4ijmOmA2OC/AAAgAElEQVRkQhiFzM/NUxR+rczOzQNemCjQIVfWLiN1xDCboOyE48fuJAj1DS0AqYmDmKwoGY3GtBpd9odjWr0lFAZbTXHWHFgnKKWQSmJruwxPH5EsLa3Sm5khTrqs726gtSaNE+YWVujN9Ahrj7lWq80080iK0WTkm1LSgCvrj83gKs8vnOQSYx2/8Ol/ySl9N6dO3UPaTGv7kpzV1aNs7WwxvzDHFx55mP5whDVDlhcXCMPAm7QHEZOsZJI5hCyxxOz3M5wwyCjByhAVJoSBZDzYJwwFCt/8LqspgRI4WxuGK4WhVlZVEufA1FPyzz7zBd7725fY3+sTB02evLLAhz/5LB/5ja+wtHoH3/t930er0eZtb3sbjz76CO961zsZDvb54L/+t6wstNm68CmKwdO0GyWDccLW/gmMPsIX/j/23jxYsiuv8/ucc89dc8+X+fZX+6J9633vpoM228y06AEaGOgZ+AMveCYYBmxw2B6PHYQ9wdiYxTDEzBhsPDA0NA3N1t1S05JarbWk0lKl2vf36u2ZL9e7nus/zn1PpVKpVBKMCUfrVGQolHnfzZuZ95zzW77LsdNYec7Bg/uYmZ5hZW2FWqXCyy8fY352jla7TWdjg61en+ePneXC+U1OHLtEs2kTrh/j4vGjxD3J/jvuQds3tiK4MTryjYPPV7l0RqDmrwMyu6W470ax8fY8fSe5+9YYf5PJXV5sTtsN++3/fyvnf837bHfzhOmivK5T9TeQ3N3MCiHbIddun/Ta0uYbXsJNkzsTbOWv+civr4i+/Wt+o/G9n/4Bfufj7+JTC1PXXNM1v+u2dMq1Xbo83/4hsaRg6eIi43HM/NwUpaAEQhJGCcpxINOcvXiVC1eWsaWkWiuTJBGVckDF95mablEuBwxHI+q1KpZSZFqzutGl1ajhuE4hGBIisWhWPKamJzi0b27HRPqhp44y1aiZzgUS3/MYjUxCGfgu9XqNiWaNVqvJhUtXeeXCZe6+bQ+j8Zg8zwlKAYPBiLn5SWP8LWB9s8dUu0UuIIpjHGUbbyJlkeWi8PIRWK4qpPMzhoMxjuMQRqaTc3Vlk5XVLjrPqdUrhOMQv+QzHodonZMkxgD8jx5+gjxK2OoOd1RChZR88avPECiLWt3H932ElAx7Q7aGQ8qeS5YmOIV0u3IMpLHXG1CtlsgyzThMuHhlhcn2BFlmeFVKWtRrFeI4od1q4PsGRpdlGqfgCGU6RQqLfs+oHyrHSPT/4Ze/SSPweebYKQ7vn8f1HIbDkYEY5hrfdclzTbVaIk0yNjp9BoMxjx19hcP75phqNwnKPl7gGXggOWEYkecWtqsKXp/E8VziKDaJZZwgCxgnmabf71CtVchzG2FZOK7Ff/a1Z/n+T92PlgaW+lP/7im+7ZMf5vjDj/CJg7eR69yIeiizeQopyAoBjqefO8pEvYrvO0YtM0sN7yVNyQWUfJO4+UXyjTIwsHqjTi40lrI4d+oSV65eZWqqbVQnbdNN3laBlZZAYAHG982yjGKoLJQwd+ZuEaCnSWKCnQJ2aua1xHFslGPjODYHFuaxCvPs7eA+13nRfTOQNWUb2fIsTZBCoByHNMl2fLssW4GGTmcLx3VI4wwhJLnUKGUTjkPiOOXPHn6U2/bvLQSuzLXatmI8GpvvhJyoUO7TsWZjdQOlLPxSgNbaeCy6NrvnprGUIvAdA6eUgn5/iOM6hcot6MwYJKdpguM5bG52DUIil/iOQ71aoVwqmWsX7MixHzt+ivvuuJ1Gw3DOHNdGWK8qwvW3hqyvb1KtVs3niozIj1IWWif4QUBQMnNMKkkcxyRRjOd5Bv6qNcp1cGwb3zP8Oiklw+GINM3o9/rMzU0TxxGWpQhHIQBf+foT7Ns9j+vb2MqYXCvHQeZG4TUIAlShZtnvD5lst7htapZvnjtJW7lkOiFJUoQQxFHC/Gyb2ckmtrJZWlpFCoHrOwaqmWumJyfYNTNljOGlxPO9oqOZFnNOMB6N8APvxrSGW0junlpcYt+nvuMN95SdfWgbgXNtnLC9x2w/l6doIdFIls4c55UXnuH5E5f56F0fQiBoNiYYDUeESUYQlKjXGwgsup0O1XqdPMto1JsMB30sx8W1baI4RFg2jrTo9dcZdBP6+hS7GveYIogQSMtGCwXSZjgYmDmnNb1+j37PzIdtmPDa+irNRhMhjaLyemedVs2nWati28oIp1iWsR5IEuI0JQxDXDcgqNTA8tA6ROax6YxnKcKySJIYEK8tYuSaVBtRoTjLWFrpkoSCVquFX/XJ0ozLVy4R+D6dbodSqUSambVmq9uhVnLIkjFSGjElkUtGcQKqzK986df56f/iJ/CyMpVKZceqQymzbrqeTxyPaDem6HQHVAKPamBUQI1Mi+TM6eO8cmKJ2d11xiOPI08dozbp0WhOkUsb23FJxwMkGVkWkid6x0pFWUZRM70GuorWZFkGwty/llR8+PADfPGpZ7n3jl2cvdzlN3/vm6xtDMhEmf/tl34ZyGg2J7GV5NDhQ/zxF7/IiZOv8P5330M6XkZll/DtCNd16IUNHnj/D3PoznvZfWgfS5cu8973vpczZ05z5txZbMfmypWrHDx4kIce+irTU1PMz8/RmqkQxinvfuDDKBRbGyepVRt0N0fM7D2AVykVol7XCQXdYD7cLLl79e/Eq+I013XZtrnUb6qZsI1We5MGgRCGoiGlKISnXr2GtzreSe7+fzj+Rjt3BWxzB7BxqzDON+GZGUjkf5zO3c2v77UJly42gWstDN5qcrcDZ3kbMMy3O7b5dTcbOxP+2ksRglznjDa7nD51jnq5RK05QaYFlhCMhxF/9fRxmqUAz7XxbEU18CmXfJI4IUkyoiih0ajQHw6RMieOjPT9H335aWZaDSYaVbSGMAlN5yQ3Xk3likOv36NaLTPshwihaZRLNOo1ut0BL526zKmLV7n3rn2E0Ritc9IkI881jquYaFbZt2uaOIpICjidshX1Wp00HFMKfIQSTLRb5FLy/IunmJ+d5oVjZ3Esm96wR61aQWeaLEvxfBehTbASp5mBv41jHNthMBgzUW9Qb1TYXFunFHjYvotyPGzHwXEsRqMh8+06kxMNxqOIWqXMKBwR+C5N12U0ipieaxmBEnKUBbft34OlJP3hyHAXHYcsT8nRVMolBNKoE+Y5q2sdWvUq65ubfOWpI0yWahw7fYF2s4brOWQ6x3Y8wnGM5wq2Now5rgTjbQR0O1sEpQovnbzAwYUZ7ji4i9wxQiRKWYwHI4TOefLF0+zdNYtV+HZNTNSpVgMWZhpGUdC1GY7Nhp9ECXmaEMcxF6+scvHyVSYqxsAcaeB2ooDvSAnheMSgv0EUjQm8suG75BkP/ulf8bv/7YOkWqKUzX/5v/8Jv/iL/4JGtcwnM4XQpgOWxqZibPiGAiUkzz9/jAtXVjl7eZE98y2EAKVshDCBcZZEpFmGtGzcIADLRmt45dR5pqenyXSGpRStyTbtybZJDKQxI4/jGFspM52FtZMEZVmG7TgFz8hMdiklcWQCPSEphAqK5CzH/G2e7wiEJIVNBAiUbSHEq51bs76CYztobXyzpLQK4Rgjla9kIb6j1A6E8OL5y1xavMr8/CwyF1w+f4VapcbGeofF1TVuP7ivOL8paglLMh6McIuutXIdZC4Z9gacPHueVnuCoOQxGo2M8ESeUa4EBa/RYtDvgxCUKiUDr1SSaBwReAEvvXSCyenmjhLscDCk3+tjuw6tVrOwGtAo2yZJDBTOEpLT5y5SKpU4e+Ey9XJAf6uDhVEs9MslGs06lm1RrhohnEefeJbZqSmULdG5NueyLJQyPCI/8IrOSobONcNBn/FwzIlTF5mfmyaJY5qtCguzcwgt2Fjv0GjWGI9GBIGPtAznp1IL0BnEYcLyyjqVWm0Hoy+VZYqdSEMxUBajfp9druKhx48y15ogTlLKZR+tc5AZudasr/f4xvMnCOOQhblJhBA888Ir7JqbBil2uII6K5ADUiItU2C4urxCa7LODWUNbiG5S9OUyU988uabC2xbt97wVDtG2yIjzyVaKPbPTfCHv/2vqUd7mGxN0Z6aYTgeMRz2mZ3by2A0ZDQeITKT6JJrNjbWWN9YZXp6litXriKEoNWsM0oyzp8/i++5/NpDv8nlq0Peu/9uwjimVCqDFHS2emgUOkkYj0f4pRIbG2vsmltgdWOdrW6HVqvN+QtnmWi2cG2XM2dOECYhd+zbRcVRZLnhO+o8R6PJshjHD8h0oRjs+2B7CJ0QjXrEYUSemt/Z80xXNk2MABBSkqfaCAwpn+ePPodbanPwwG1UKxVy26PX7bKwsMsosyrjkbjZ2aRcqaKEYKtzFd91UMo2sMosJ8oE//cjX2CchTzQ+iC1esUURoRgMOjjuJ6BwCsbVwqGW2usdq6yZ24WqUMEZl1MtcDyGszPz1HzTLGs2a7SqFQQdoBte2RpTB5tQTrGAtBZoSJbrO3CFGOUpQpbhQLFIKwCkaVBWPzGl/6SRx49whceXeR/+u9+ns/8/R+gN4aPfOzjtFstwlHI6VOnkFIyvzDPgQP7SLtHEOEZynIDtzTHxasJauI+1volzi29woVTp/jwhz7E0eeP4HoO995zN+fPn+MjH/oYW90u586f58y5c3z8ox/j+LHj3HHP3UjPo9nczcrGAJSPyhdZ31hhz97bsPzq31hytz2utbjZSe7epHHxujl2i42A60/5TnL3LTJuJbm71a7Sq0mQ6dhZ4vVgyuu7e+bJt5fcCfn6x7VG49uP65OtbY5ALoThwuQ3TsheN6Fv8D3cGFD6+sdr/8B8/usoDtclgGZs8/dMt6o4tqj6bJNrb3QuA9PSfObBz74usbuR8Mz2hBdZTi40yJw80Yy7IWE4pl6tUarV0RKEzMnTFCFyphoVNrdGVEpGNEADURgz6o+pt2uUSz6rK+uMhhEb3RGeo8hzwXSrTrVeZjAe0aiVUcLhuZfOMDPVwnGM6pvv+UTjCNtRdDsD2q0GUZzgKJtmucJko0yeZ7iugce5ns14PMZSdsGJzLEsjee5WEqBshknMb7rEIYhaRIjhZHFf+nsJfbMTOFIi053wGyrirQsHNeYnKZRhFDbYgs2juPwZ998inAYsjDVIPAstLS4fHWTiXoDVzlsrGzg+w6WY+GogCAo4XgWQlsk4ZjVzS6OrajVqtQaZfI0xPEdMp3hOi7RaERQcvH8gHPnV2hPNhgPYpSr0OTk0sjI6xDmpifQIiVJYg7tmiPwPMJBSKUUgCXY2hpw5MVTzEw0yBLjQ2R5PlGmsRybVJuOnCbl0MIc1VoJ27eI4gxbma6h5/pYts3Jc5c4vG+e0WCEFwQgFdE4phQE2EqRjBMC1+PylU0QOUG5jOP5NGplZqZaWEXX0/N98jwj03kh55+TjEMsp4xbqiIdG5VBd+0kz6c233b3HlzPI4nH/M5j5/nhH3yQf/BjP8X3Hjxk1N+EhCL5M72LnExrPGUx2ahw7217EMK8j5A5jmOTJSm2lETjlKBcx3Z8MiSu7TA51UYLTRqFOMoixyhXWspU34U09h7Ktsm16bohTLffth2jSlrAM/MiG7NdhRSKPM0QWWI8Cb2AgjxEmqTY0sUQirOiWCbQSY4UFnEU7agnZjrGtS2y2JhvD3pjlO1CZnhiRp5fQWb8sI48/zLhKKFeK1OtVdFZyonT55mbmyEIPNa7m+zbuxtkTpokxdpigpAwiXF8B8uC0SDk8ade4L47b6PRriLyFFupArJpAl6lcrTOsSy7+J1TBEaAp9vtMeiP8V2P6kSFeBiyvrpOtVZm0It57KkX2LtnDmmBco1qHZlAigwpc6anZnBcm6ePHuf2gwco16o4nocWEik10SDEtSU6l1i2ZG5mynRVhcV40CUIPOIowrId0lQTjcY4juGoOcoBmeO4Dq1WbcejLklMMH78zGmGoxGz7Rk833jb5TlUqhXT8bQU0TgiSzLjxefYWLZlOrlSMOgN8YMKSZjyqw99lQemmuzf1cYPTDIexxrISOOcLBM8efQU3/nxd7GwMIkuINKWkNTqNcP6ycy9oIUm17lJ5skgSRiOBzRaTRN0Fh22bQjvDXfy6578r4+c4tM/8L07PLrrH7rYSXbgXtciUK7lzwN5rgrRoISzLxzhyJNH+PYPfJrUVthSkA/6eBMt0gSWl1dI44SpyTbLa4vkacrc7AJGAVYwOTOFpWxkLkmjiKm5eS5fusSVwUn+yaf+EVmmsX2HLInJ0oxTp05QbS9QLpXIhWDxyhX27b+dk6fPMNmepNmeYhzFTEy0SeKEy2cu0p4tUfcl9VKA7Vima1YUH5W0EDnkWYrv2QjXJ8VCiiqWCsmTxHTUXSNok2aZmY9SGu5okmIpmyw3v9eLZ68QxxG7FvbxysmXqFeq5Ghc12Y8HiAEDPt9GpUKtrSxFVj5kKzgT+kkoRdFdDZT/vHP/zhf+fJjfOCe9+M4LmF/gOd5hKER7UnjmPPnTlOvT/HKifN0VtewxJhGvYJSLmudPom2WVldYqYeICxJLjRK5fh+gBU0UZZNMt5EZAloic5TE28gsG0HS0REmcSyPfIsJExyhIJxKMGKyERKJJtYacRcdTf/4RuP893f8T3M73oPd979Lu44vAeVaVYvr1CpgrAqPPvsSxzYW8a3zjI89zgq28CpWpy50sYtv4/dd96L7ZiC8wPv+iAbV0dkosfcwiyO16Yx3eZLf/h1Zud384lPfpSpqRbVZpkwFNTrNVrtOt1ByPve9x5iEXDp4hkm3JSXXnyePXffj29NIIVFJsZo6SMxCazpdcpijhnRk53HDWbZDWPp/Jr/vi5gvME0lW8ei1976utP+U5y9y0y/qNYIVzfwXuz195u5+5Gb32D565P3PIbTKy3a4j+dqHTN678FK9dc33b13XtV6SvU9W88UYt+IUf/XF+8UP33uL1FJ1IlYNWiFwy3Bow7HfwfB/HLeA9RRXOtmykNH4/o3HE5SvruEpx4sJlKmWXuZkJdJ6b6rbvGzJ6nNFoVI3Pl5D8+TeOcNveOQOFsxTT7QaWZXhTAMur61SrZQYDQyQfjcZEYcxjzx9nolJmc2tAu1Unz40kfJam16hyCaJwTKZBWkYS/snnjrF/fhbICg5FjiVtbOWwb2HaKPUFDq2JOlE4RgjTnQOLXEuU55qAVUqiMKRs2VT9Kv3+mNZEHeEo5manuHBhkXAc8eTxUzTKvjFfziRXLl8lyzNKXgDSotGoGxieJXnp2FlmZhrkQhR+YYrFpRVakw02N3vMzcxgKeNpJizD/zOG5SMa7Trj2NgdpElGo14jTjNqtTK1ZhXLVZR8F0/ZVGplbNcxUFNMkqrznCxJSJOYNMuwLPN8vzek5FkoYWAkWZqgHEUaxviebeCIOufq4hr1ijFlH0chlmMTRgmnz11mpbPB/NQEjq0ATRpHCAwHybEtkiTZuYZtdU9l54TjPuVSg876RX7y5WX+1ec+QKlcZzga8yO/9DD//rf+NSdPXeBH/UrRccmwXYWQEIcjwmhMlifkSUaeaSYaVURuOH62rRiNx0hhYdk2mbCwbBfHdZGWpL/V4+y5i7RaTcCIlxjopbiGH1fEyoXBtBCymJNGoVVrXXA1DDRGSEGaGD4cUpJT2FHkpjIvLIXOEl46dooL55foD3v0eiM2Oz1K5QAtYHFxiZdfOMuxExfobvbYvWc38TgySaUl2draMjDFAlYJhR+aNFzJXQuzzM5NUatX6Ha7BKWAVqOJ7Sgc12H37IyBiCJ2fos0zXA9p4D3SOI4xbFt5mdnqNYr5GTkmdjhLxkYo2A0GGMrhyg06phxkmArI23vui7dzS3mF2YZ9IasrqyRJCnNiQmWV1b58AfuJ4oivvbEM+xbWAAhOPXKeer1Klme88hjzzE5Uea+Ow+jRU6apwxGIxzHodftUynVzKoozDqpbBtlG3VUv1QiTTMDc04TPNdGZ3lRHHLRmgJ27YEWdDsDgiBAKsVwOOTQ/n3MzU4bv6+0UKYsCkV5nmHbLnmW89izz7MwO12oIhoYbRppLGkTRn1sV/Gxu+7k7NVztKo+lrSJ4hTXsZGWpFTx0Tqj3awSlI3RuipUCsvlgCSOSCID67Ns851LSyGFJEszyDTdXp96s2Huj+s2i1tJ7h5ZXOO7v+/BN987bhBoimv2p+0usxFs0SRbGxx76RUazi6CSsCw3yUcJ0i7TOCXDKf46hJB4HNl8QL33PMAo/GIi1cuMNFqE0UGChuFIdKyGAwGVCsV1pOLHGzs24ETk+dYyuHA4fuwvTKuFzAKx8zMzFGpBLRbLXzHJY4jhoM+tWqVJx5/GIFDt9ujs7ZJvRrguA5ZkjAaD4zdRDH5iylGlitsL8BxyyTpkDyJjF8kuRE7EgahYDjNphOdZZmhaGgo1edZX18lDCMmJ2doNBqm65ib4lScxCRJRhIZrnK3u4pnZQhlCrgyz3FLNZ7tPM2v/cbv8dM/+NP4nkdUoFZW1lYIw5DJtqFk1OtN0iSm179CEGhmp9v4/rYCaIbvWVTLLsoSO8JDgV9GSAehfGxLkicjsjQykFDxqnVAksRkseTS0ho6g8AzyIuV5T6nzywxMTHLy0ePcvS5ZfYdPMBEazd3N+/ngW+7jw9/6CCry2d5+Gt/yp333o5wcrBrfPkvv8SD3/NROpceZ+XsI5R9Cz+YphO1cBqHuO2e99FoTOL7PnEScXnxEuvrK7zrPe9ja2vMl/7sKzz2yDN8+6c+yR9+8Q946OGH2Ld/H61Wm7Nnz7J79y6GgwGdTpf19T6bW0O+41MfYbh+nt6gi1ufZGZ6v0mSZILQ6g3mz+uUFd5wrrzVLt2NzvF2x/+Xyd07VgjvjHfGWxjSkmZjuMn4mR/8HP/03be/5XPvrDMannr+OEkak2XsSOinianSDQYjkiRD2RYvnrmEazvYymZmos5Es8ry6vpO4H756hpKKdqtOlmmuXDxKpZt8Xc+9m6Usjjy4imG/SHKlgaG2B+SxAnTkxM73CLbtimVAtpTTb7ro+/m/NUVds1NEgQe3W6PtfWO4UFZFr1en1ybymdQLuG4DqNhSNlxScKk8IhLjDGtkIxGMWEYFiqGEMYhvu8zDiMj/axclpY2TJU0M9L2tqXYszDN0ROXyAtlwigMSdKUXbtnmGjV+NC9tzM13cZ2HJIkoRT4VMoBtmMEKP744af5wkNPEoURt+2bM5Lrrse24Mb83BRZmlEql9hY2+TpI8fJdQp5zqA/JEszms0aGUZuPcszqrUKf/DlR7EchVfywIIsMxYK5UrhcQc4fgC5YLA1JNc5nm/gNMq28XyX5eV1cg1KwrA/IAlDI7Hd6XL40B6CwAcMtHB2bopcp/R6PUpln+FoxJHjJ2k3Krz37kNIKUzwqzNsJRFoPNcmGo8Mb0wb9/k8z0FIbEcSBA7JYMjFzgr/9j//CDkWX/iTr/Nrn38Yz/UAm//1l39jx0Q9zTLW1zr8zhf+lC8/8gQPPf40o1GIThMcR5IkEb3B0HS+0tQEbLkmDGNs30c6NkKaa6hWSxw6uA+lLCxloWybODYS59uJXZ7nBYSW13Gasiwzn6c4fluIQdkmADLWFebvh8MRnfUOAkiShGa9xl13HGJpbR3fD5ibm8ULAmxb0Zps8YEPPcB3/Scf5v4H7jQm7JZNLiyyNGNyuk2axERRxMvHTtLb2io4WjlZahLgnAzlSBrNOuE45MWXX9m5xq1Oj6MvvEx3c4twOEZZakfIRwgLgziwsGyFH3hkWVZwriSdTo+rSytkqeHd2MpGCJMwOY5DOC5MnVNNHCdcurrMeDzmxKlzgGBmegqdaS6vXCVNEqq1Ct/9iY8aOXZLsrBrjjRJsYRkY2OABAa9Pso211OtVxECqrWqWZtibXiHluFKpUlKqVwi1cKo2hbPL19dwfU94jhmMBgQjkMq5SpoSX9ryF8+8gSD/pDf/vyfYkmLre4Ww8GQrc6WEYqxHcrlciFmIiHPUI7Fg9/1SSqVEt3NLklouJUrK2usrXVIkow0znjp9Glm/TLhOGEcRijL2lFfXV5ex3EU9UYZZStczwNpBIKEJXn2pRNsbHQNFDlJGY/DnQqgQJBl24iUtx9eXY3it/23Nxvr6+v8xTOncJ3AdO10huOV0YmxDimVyjSbTSzL4v773sv65jqlSpV9ew/SH/QZj0Z0Njep1WosLl5Cpxn/yxd/iWeOnsVxPSxlg84NDzQOWVlZIorGrHc2KFdr1Oo1Bv0e6+vLLF29wsrKVRrNJr1uh49/9NtxyzaOW8GyA1zfM/d7qUS5VCmEhl79LJZlINmWVCBetXuIo7CQDDC/SZLEZn9y3GJ9wEA0gc3OeiH6Y7FrYTdRFBJFMVu9Ho7jUvJLDEdD2pNThq9V9GJc29lRLP4ff/+XOH9phZ/9oX+203UPx2MajSa7d+1hfn6XgYq7Lr1+DykkOQnzcwsErilaaq0JfB/bAteSKEcZnqCQxGkK0ibXOVE4AowA0bZdS4757XJyrGJt7XQ3AImUDtVmkzAfstZdYd/t9/HA+++lVJug0+uy7669/Nr/+W84/coJfMfls5/9BwxHEa2pWR5//HHmpst8/t//H6xefoGAAeM4ZRh7bG75zO46xJGXXiRJNbbt0Ol02LVrlsmZGj/ywz/Gr/7Kr/OVv/gSTz95hKefeYzl1UWaE1XuuON2/viPv8T9991LmiQsLS4h8owXXjxGvTVLdwjHT5ykNVHl2NGnSKMR1rax+Y1wyO+MG453kru/xZFrfY130q0d/2Y/2HawoylUkq55WFK+5R/8+ut7O4Iirz1fvvO4lWEWvjc/9lZ86m72+vbn2j6PMZt+/XtvJxjbx28TZmWx+Dz44Gf5F++/6xY+2TXXVfwTGG+eeDxiz3Qb3yuzslr2Ow4AACAASURBVNbha0++yMbGFkpK8iTDL8xdpRR850fu58LyKmESMj8/hes4lEs+6IzROKIU+Fy5usZfPPoMjuuyZ/csvu8VEBfBPbftI4pjkjRhMBggpcD1jeHsYDBiHMU8d/Qk43HIcDAkzRIO752hPlEGNBOtOpnWhIU8eLXqk6YRnW4HnUXoNCEIHEZRTJJmRLGRZI+imCiKsZQsoJtGadJzXaRUPH/yAltbQ5BG4jseG1+0NMkIo5RRlJKQUKkGxJnGD3xyAZZjkWlNe7rJOBqbLnWeM9FuIIVgY6PDhUtXWJiuUS07bGz1CMo+/eGYrNjkLWUCY6kUWaYhF2z1x2gdk8QxqpDkX1paYWNtg1wbmfjxKOTjD9yNQBDGEVpn9Ls9XN8hzRKkykmiiKVLyyxeXiIcR3z+L79Bd7OPUi4Sh+FwzJ899TxZromTnCw3BsSu6+L7LkIK4iyhVPEZ9AdYQiAsi0qlTJqmBL7HxdV1ZmdbZLk2ptfCJDVJlqMcF0vZWLaD0CZBNHNR4ngeG+t9PBVwefkCv7mZUq5NIiyHzX7IHxy5wq//6i8jlU1/MAQhSbMcIRXffPJl3nPoHjZWQrY2Eip+gyQ1CoVeyWWiNUGapgxHY4QQ+KUSpWoFqSSOa5OLnJyMNEuNND4aUahb2q63MzdfIx6xY0tA0TEz/yNlIVCUG68+rbMdfMz6lWUunLkIQtFoTfDiydPGsNr3mJubprfV5+MfeC+TkxO4rhF/ARNTKjcnY4TlpFhKg22hHAfLtgnHEeVKmaDksXvXLNV6BU1eqHU6SCmJiqATcl4+fpo7bz9EmqWkaUKpWqY3HKNshVfyTfImJVJIVq+us7HaRVmOgQUpUK5RpUxzjeM5hHGMhcX68ia68KmJwghpSarVsuEnOg6u47LS6bC6tsbLpy8Z/8nRCMdx+eh73k23s0VnY5NBv28KA1mMsgVRErG4ZApD650tpJIGZagl509eAp0BmhdfPsGZc+eNkE0R/A6HQ3SWceKVM4yGITkCjaA9PWXgpK7DtgFCFMV8/s++jM413/bBB1BKsnd6mgsXFwHjj7m0vMLqyippljIahSjLxXF8RJ6TownjkKUri3z9iWeMSFCeM9Fq8szxY+Sp4rnnTiLHFv/2+VMkIXiui+97Zq4jqNcq9HpD4iQmjVMGWyNT2EEjBXzw3XczOzdJUhi9+75X3JtguzaWklRK/g3w+n9z45b34Z09TyBygesYaxXpWIg4JB4OWdnsgg6Jk5gwHDPZniQoBdiOwnU8s+YpxfTUNKNBn1JQYm1zg7m5XUw0m9x3zx2MximXr14m1QlRGGLbDrbtIGXOeNin1WgRh0ZkR2uNF/jYjouwLLrdDlLZrKytMjnVYGN9GdsZ4/sOWZqQZpmBlRYK3rbjoIUR4VK2S6fbZRQOsGShAOvYgCyKOCmiKGIlcYRj20CO6/okacLi4nl2Lexn7+79CCFYW1vDVg6VUg3bMuvcdHvGrMfxiEatVHjDJgjga498g7/z4RpeErC6sQZ5ztbmJuWgxNrmOkKapDJHcPbcGaq1Bo8+9hjdzS3Gw8hASIWNkgbOrtPMGMgXPEFb2SjLRSifnITxeINkNCDwA+IkLASqMixLYQkJVsKuvXvpbK0zCFMuLq7w0guniNKAzc2EwJ+kHFTp9vtIqRkMN/jMHZ/myaeO8cQTrxAOHLY2xogMFspdvPAF9k+u066OqdbadLNZtrIF3vdtP8TXHn2Ku++6l9F4yOraGqdPnyaJNBtrL3P3wdtZPHOafvcE0+WMr3359+iuniYebHDu5Mt84kMfZNjvkIYR/W6Pw4cPMDXhcfedh5g5+G7e/aHvYmsQs3TqOUiHJFGIwEJdp0Fx7TzY7tS+mUiezvTb9qx7K7Hr3/Z4B5b5tzjSNP3n8BZavQV86lZvrZud9VZhmQBv0qh6/TmvGa+DZd7CMdcOIeQbfj83OtetcBPfCEr5uqdu8p47C8o1B33605/l//n4u25MmL+VkQp0ErK2ukxrooHrNyiXfKabdRqNKklizLwHw/GO8pjj2sy061QqATk54ShC5MZUVzkOzYkmtUqJ+Vadv/jmUfbOTbG6uo7WGb5nc+rsIvMzbRA5jqfo98a88MoZKoEx+/Y9FzRYlqBUdnE9F9dxyHRCqlMc11QXHdvCdWzGUYQlc7ROCYcDfN8lz3OGo5izl1eYm2rhOCYA2ubEiByyxJjURqExgt6/d4GgHBjemGeTF5upclxOnL3C0TOXefBT7yXRqfHckoZTBAJZyK8rxyhtXbm0iuvYxq9OuUy3K0xNNjh8YBfVapmT5y5jK0m5ZlQA0XD5yjKlsm82Z+lw4fJV9uxq4noBtnLI0ozu1hbNcmkHBqUcmyAI+PLXn+XA3lnTDcgy0sLCQaAZD4Y4UlGvBQTlgNlmk1JQIhzFfOnh5zi0f477btuLFzhsdMbYtovtuFiW4ZzlBYUnyzJsS9HrDHALs2edZdhKsXeyRblWxQ0cLFuhbIUlHGzHQN/W17t4vg/bCYRSxjg2Bz+oEI9SfuKFY/z2P/0+sAXKcmjUff6rX/xNAx/VER/e3MR3PCxpI4Xi0IEFKtUShw/Mc2j/HMoW5ne2LcZhRI5EF0IfaaaNeAqCLB6j0xTLUqbb7JmuUzwaY0kJsuALkZMm6atKZ8XEy9LsVYK8yHfuAb1TnDGvZ6lJFOteiZePn0RISalaZu++XZBDHId88+nn6W72mZxsoHWMsoxH1NXFFWq1GsP+AM833V1LOujCeDzLNN/45rNkSUalbOTxwQQBJnkueLq5htyoiVq5EXDxArfgEVrs27eA4zsgTHHOKpQXXdfl5OkLTE9PIi3QeUam0x11UtezmWg2efSxZ3CkojFR3jEZT1Nj25BECcKysKTi0P7d2ErR6W5xcP8c5UrA4pVlvvHEUQ4d2EMYjtkabFFvlMHK0YnGDxzaky1uP3wAP3ApVytkqaaztoUjHSNCImB6eopGu2Z+O3J0pnE9FxC063Vja+I6CFuBtIhGY4SAfn9AuVJBKMG9dx7CtiXVWon1jXWWrnZ5z7vuwXHMvVwpl6hUfRzHWEAoadPbGgApSIHnu9hSMVGpU6tXjJ2KDXfcth/XVVSrJaamJ5j3EkqORAiLCxeWsCyLUslnODAKv0optrpD/vKxlzi40CwEeArl2xxTWClEuraVVJM0Ik9TxuGIaqN6Q6GHW4FlfvHSCt//A595W9vItVYIUkpDJSAHkfGPf+q/53Mf+Pv4VY98NEBKl9m9d5NEHYJS3XR/pCRJYrTOWF5apFFrcOHCecrlCq1mC9/3sD2PzY11kqHmkROP8Qv/8BfwXIklNI6wkEqRpgnVWpPBMOLMmVMmwUtignKFME6olesEZSP45fslfC9A5jlLl5axnRH1UpmKXyWX7HSpkGZvE5g9eDCOqTYmsT2HLEywrZQkCfHsgDgOyXKN75lOt+N6jMcjLGWTZik6y4lzn83OBoPBgEZzgkqlwsryKmmW4HkuSZIghGQcDRj0NqkGiiTqo/OczsqI0q7jtJ2/x/23v4dme5bA9XCUTZpllKoV1tfX0Zkm1cYMPvB8yrWAq4sXmZmeJwgEgpRMJ0glyLRGWDZa5yirWCv9MrkKSLMBUiZYaUaaJFi2sYjIdV5wjgU6hOMnzoBwaLTaSK/M1vqYd33wwzRqdaJwRKUWUPKqtOoNXDfA9j3+4Jt/yj/8sR/AUppe7wK53mB09ms0vDVsuviVGstbitvf/SNMzN3J1c4a99x+JxdPXcQpCX7mZ3+Wzzz4fXzuR38Mh8u8+NQl6mWLz/3IAwzW+tx13yEcK+fsiZPcedthVpcWeebo87Rak8zOzLPVXWOyHGN5Po8+c5x21Xgf3nv7HE+/cIW5vQcMpSQFfcOA1BSSri1mvG5e3EDD4e1ye95ug+Mdzt23yMi0/udvdpNcK9jBdYndta/lNzr+urF981/bi7tRpeP6R6YzU/jeJmhDYQb+BqTRa2Rlrz/uRpKzNxJBuT7hu5FYy2s+W3HOG4mg3AyNvW2Snl93njdKAq8vxm47Ruwkdm80ClPyIh7EUKDFDhlaSInQGb3uEHILv1xBWxlSm+qjX/JIU83i0hqutAh8n/5gzOWldcajiFznPHvsDFu9IYsrHfbunWE0HKOUJIpjLKWYqZeIopCVzhZpBH/11Cka1TJzcy1EDmlsiOthGLIwbzgCtu1QrVU4e3GRqckW8TjCVhbkFspShOMISyqCwKfbG6BzYwfg+QE61vSHA2zHYmm1S3czoRZIHCUNVDAznm/aUgbukqXYVs4oiXEdH8uC8biP75dJhanIJnFGtRIw3aziV3zDexESS0iSaAxZzokTi7RaDbLi+5yaniRLNY7jY3vCqKwFnlGJFIJaOTCVZOmQpykrS2uUXZckTHn8xWMcvm2B/fvnERo0ksFghO/Z+MrCcgW5EkjpQxqz1d1gYXaqIN/b5MDi5Q0qJcNnkVKahNYDnUqOvnCe/fvmkSqlWfVp1EtYUpDGGc8cPY6Va6amJkh0hrAkjhWQ58bI+8iLp/FdHyWMsI2ybZLYSLpLlZFEIbY0iRKKQqFQ45c8HFeCHxgTXDR5niHzkFzDjzxxhP/wz74TqVzSNMF1FL/w+99ExJvMTE1w5vQl5jaGvPLKGSaaDazCJFhakOsUpQTra+sEBddPZyYZCQIfhMD1S+Rao5MY5RtRGIFC2Y7h0+QSBCQ6wipUOLc9xqSQCFGIV2xz8KwikSjWlO25qdOMS6cu4SkXrxIgRMbS0ipprhmNQ2Zn2iRxhHKMbcLuXXPMzk8Spwm+76KU8Tj76mPPcNuBfbiei1BGETHLMywsRKHi255oMNFsoEo2mMvHskw/KstS0iQpRB0E/V6fp557mVMXLjM7OYHneVjkpGFMr9vDDzyjxFos5lIJ6vUyru8gBOTaFL2kkIhcIjSEo5BGrcpEq4FyXKOK6bqG26iMJ6Qljam3sg2crea7BOUSYZxQb9Y4dNse/LLPxkqHUxcWOXh4P2loDLFdLyBLc+OPLQVbW12CwKEUBPieawy7c2HEcmyBjk0AmmcZaZzgKAttCx5+5ElUBrVq2aiSpjG2CnBdn4yIqD9m1B8Q+D55LvFcH1fZBk2Q5TzxzFHa7Ql83yMNE/78ocfpb/U5fNsBY2kQp6BzbNfBLdmEcYRyHPrdIRKLNMsISsZw/meeeo6/uzBNFGaEYcjK+gaTrSZhP2VtbQsAZVuMxkNmp1s4vimyxOMUUoWUujCHhm3RFEvZSOXQ6w6o1MsIYd1SA+/a19M44jt+7ucp1yrFPvmWiUFmHhUBf6aNwIRE8Jv/5v/ig7e/HwvN0oVXqLWm2AxjY6+TWUgBaZpw5swZtJY4lsDzAjY21mm124zHQxzXI05CauUqP/db/w226/PRO9+PyIYk0Zg8ywp1UoGyPVY7Wxw6fKcxHRcCJS26nXWktMh0RrVWM2JJQjDodxlnKRvdPpMTTbpbazTrDbROC4fpnEynOLZjFGQ9nyyXWNIjCbfQydhAgdGmGKgM324HwiglEsnK0iJCVrBkSHtigX37DuMFHkmS0qiVCEplbNfDtix0EmJbNkk4xnXyAkLv8Ycv/C7feHGNT97/Sc5dvMREpWnWHQTCUqZjlxuBrpWVZZqNJmEc8eTjTyESi927ZrBEBLlAKYckjrGkhcCogkqt6Uca6VWwlSQfDRBaGK6y1midE8ZjbMsmFzZRojm3ssrE1C46vR77Dt5PqTJBpVrn9IljzEzPE0Yx7dYUuZUThjHLy8vGrubCEb7zUx/h+NMv0KBPvnWZRK+y0K6htKQfTVOe+ziN+btY21hnfm6Bs+cu8j//q3/JZz/7/ey9/U5+7uf+OYfbPt/17VU+8cABPv0d+8idHn/wJ5c5fLvFd37sAAcWpvmVX/stvvSNTUajZZYuX0FpyeG73sWl5QFHjxxl/555Dt55P8ePPo9X8nn6ka/ygfe9D12ex5IjU/DntSbmeS7N2rStOHTT6VG8fs20ulFc+prniuTxr4tceye5+xYZtyKoorV+nQXAzV672a2zvVG85WJFrl9/U9/kJDc/7jWp3hue41Y6fjf7u2v3w5sldzezVbjVafjgg2+S2Jk3es3FaMvI3EudI7UmGY156omnUFpTchTrG5s06xW0FvQL82HynI2NLdrtKsurmzz6/Cvce3g/MzMTDIcjtvojrm5s8dH33InnuUZMIUqwpOJLX3+GB+4+jOs6TLbqTLYn2DffZmF+kjSL6PVMl01KRWuiBrlG62IxEpLzl5eZqFUZh8Zj6tFnX2J+ZoKgHDAcjFhf71KvVXEdZYQflMMjT55ibavPzESbdqPBnvkpgsDGdhWjcYTtOkghTQCvM6RSaKSB4yQFh0VCFKbY0uf5I2fpb42Jw5iZ6RZS2ViWIopC+v0eju0AgtZE3QTFUhB4LmkUs7S0wtLyKiXP8MRMB0wgcthY7xKUSxw9eopy2cF1XcLhmHq9wu65NkpJkig02H9L4pcCMp2hXNe8j6Xod8fGKzAOaU+22Or1GY3GCJkzGod4riosB0wnRtoWL758jkvLmyxMNnBcRaNZ2+GEWZZkbrJJu90ACXkBtTt54iKBa+EoyfLaOq16jVLFwVKSJE0MDE0UcVAGtm2TJhmuq4jGIa5rk2cZo+EIgYUnJVkuSXWOUpIff+Rp/t1PfhDPa4BlkWYJ3W6f2Xs+xHve+1HOnlvlMz/8OT5z6C663R6WBEsJLJnviAjYluLrTz3L5EQbIUwy4dg2w/6ASrWCRqBcrxDbsRBYr4NVW8pI8OpEcOTIcVrNmvn+rG3oZQHkyzVpHF9TkBE7G/xoNKbRauBVSmba6ZzzF69w28H9zM/NkiQJrm+6SlYB6ZEI/MAvYNaCKEo4sHdXwYGxSGLDJQOJkPnOfSalMF1H5A7XSiKJ4wTbdYokT2MVMKrDB/dx56ED9HsDHNvALXMhKFXKCMsiTlLOnjmP6zjYjo3rukXH9lX/Ul3wDnNMV/LSlUWGgxHVehlLQhRFIDDddEvQ7w34/J9/lXvuOEAcRdjKxvM9lG2EYDY7G/ieS6VSYX5uCiQMe0Ns22I0ChFS8OdffZTl5RUsCe3JCVKtwZLkmbE46Pe2CEdjglKZ7lafcrWCtMx8l5Zk365ddDY6hFFItV7FdVzCeGCUbIXE9T1cz2V9bYM4DBkM+nR6A1565RQz7Rb1SoVyqWy6knHK5uYGH/nwu02SpTP8kl90ajNcz8NxHPIcfN/f4RCDgfRdPHOS22s1/ujhpzkwP8nehRniJKVSLdPd6tFo1fA9j7nJCZRrOJB5DsP+iC889BST9QBbyWLOmWQqL9RLdJpSrpfJbxRobt/nbxAknu9ssf/v/r0bb2ZvYwgMleDK4gp3OfczMz9N1N/C9ao02/MEpTbhKGGr16FUKnP+/GkqlRoXLpxlafE0w1HE1NQMZ8+fYX52gdF4TLlcBSl4+tST3FW/g3q5Shr2KPkeaRyZZIqcOE5ItMR2fGxlg7BYXV3Gth0atSZxkiAti2q5zKOPPoyyFItLi8zOtpmdalCrlkmSceFFaawFpFKI4p+2bErlOqMoxSIjT0ME2vAjtTacPMva8brUubFtqdUaxut1vcPa6hYrq6vMLSwQhzG2rTh7/gylUokkjomikN5gi8mJCbKkj+sofuNPfod/8qPzvGvye8mlQ1BuYnkewyhkMOqTZjGbnTUmW1M7NA7P9RmPxszM1YjGl5iZbmNbpgC27WNqKXMvkUKeClIZ4JWMAnQUbpLpiCyLi7UgIRnm2IHDZm/ARnfAxvqA6em9LMwfIIqMl+poPGDP3r24nkNQKhnBG8vAGCfaLRzP5ROHPsbP/sv/gR/6noOsrj5EpbRBXUmWRw4vL6WMxAJnz6xy8O77yLXmK195mAP7D/KuB97F177+CF/43d+nbGl+4kfvY37eYbLRQjkpo3iLtbWE99+/h7lWGa/sMbN3jpfOn+Q//Uc/yfzsHGEU0tla44677+Ou2w9xdWWFerNJyZGsXX0ZHQ+pTbSozx8iEznyBnMqfwtJ0w1FiG4Qs772uBtbi8lrmgH5dc/dOKZ8J7n7lhh/XSsESwiGwwGO6716/M1OtkP6fn3H72ZDymthiMVNe4Oqx85zb9ReKy5BFJ2qm735zZK7m3Lr8tfvhbeS3Olr5KNvdNwbjVtK7MyJzbXovPB1MvxJmSYsXlhibbXD3Mw0QVDm8vImKBuvVKbX6TPRqjPsDyiXPHSakiQJ4zhmsz+g7LpMtCr4vvf/svfeQZZd+X3f54SbXn6de3qmJw8wwAIbsYELLpc0SYlmWJFcMdkkRZGSKFuyXJKVSlWyrRJpVkllSzKtsmSTogJFUSotg7kMu8QCuyDABRZpkAczmDzTOb104znHf5zbjQE4i10uZdES91R1TU13v/tu33fD7/f7JlZWtzm6OMPMTKd+uEKz2cAJx/LcNM1u27sDCoFWAikgaGiyLCWJQ/K88HQ95xuSp1++wGy3SxyFREp5M4ww4NbqJheurXHq6AJSCMqyoiwNjz7zEscPLWKtt7pfPjzHdL+FdSWIEqlKn/djoaws7XYbYwzDwYg48RRIGQSUWUag/ZQc6Vhb3WV1Y4OpXpNjx+YJI0nc0DjndYdaKx+2Xhik2g+19vCJLSp0oAgCyVSvTVXuG3o4glAjhacvRXHCsy9fZGm+T6vV4JEnn+fk8gJxK0FpqIoCTEWe5zz0xHMsTk+j6sgEAfzKZ57k8HyfVreJrYx39SwK+tNdup0GQtbZZU7inIdk2o2E++4+inM+9FppCVYgpaIoc4QS5GWJUpLxaEwcR1y7ucqxo4tsbe9y8ugh4jhCh16vGIQe+ZJKIZ3X0GVpQdJsIHF1FIpvRsIgPAindipAByE/9Lln+ekfOkscdyiNpDQlYRDyoz/9Gf7GX/mLnHvhCv/y3/wK5y+8ynviHp12kyNHFkiaEVk2IQw0zcQ3+80o5ulXL3DPmRNUVUWRF3X2m0OGIUhvqCOcn4b6ps0dZNVZW2ErB07xucfOMTfTIYx8gyVQIAXCmgN6lles7pd8HhmP4ggUNZXLoqRifnYKa3wGYNyISdPsoAG9ne7pc5glYRR69z3tjZQmQ+8aG4UBUnuqqBBgrKEsSjDeuCTQIdZZT4VUnpK5n5Gntc/NUzogjiPOvfAy0zPThEkEUlBVnr46Nd33lFolEUIe0Oz2dYdK++8p7c0WJuMJc3MzJM2IdDIBIEoirwsU3uDjHWdOei1PoLhydYUiz0mShDDQRLE/voPhiFangTOGKEpqU5GANM2469QxluZmiZOIRqtxwMYosoy11Q3m5mY8mip9wPpDn/1d5qZnfBOpFUWWs7gwy8sXXmd2atqbrlAiJIyGGToKsdYRBJpAKySOfr/HkUMLrK6to2pHykuXr9FIIpYWZhhnY5JmRJkXNS3XO6zaOiLDM0gsxtRh77FGKsk/evUC3zE/z5nleebmpsjSrL4vSNY2tymKiuu31mnGIXHD75eokc97Ti3R67ZB1iZbQlInb2Arx9MvvMKRw/O82S1TvPHv20z/f/K5i3zbn/zOulH8yhu7/TGuEIIkSfihH/wxvuE9DzIY7LJ56zxGJ4SNFutrq3R6PRqNBOcsRVWSTsZsbK6TxJq8KNnZ3UEoxeFDi2xsrtNs+eidZ688y498+w/TafdJ4gDnDK4qvcOth3npTS+Ql955st3uMTU1QxyG3Fq5ycr6KgKQUhHokKTRRgDDnWscmp9Ba0EYxuS5Zy44U+GEz6yUQqKjBjpsIKMGghJXZUjpXXKdNfX1p71MQWlUEFDmmaf4hQHXb24xHFeUlWHh0CKNuAlC0O10GeztIIQgCGOsLdEYpEupTMnrey/yi5+6ygdPvwsdtakMtDtzhEGEkgHddpdOs82V61dptpresCtImEwyLrz0Be6/924kpWdp2H1k0db0eOePowxozCyiQo0rBmSjgXfKRqCFRglF3ArZHcHzL57nzL3vY/HQUcbZmFanRdKIvJyi2URISV4W3jnYWm7euIWS/l45Hu6wdv0lnrr8FN/w3hHzUwkuD4njHpPGvfzuK0OO3/NRQgtbw22Mtdx//7tRMmJ5+RhPPfEQT37ml7jvWMxHPtyk12kxHm1TmQmz09OcOD7LfD9DGMv1Gzn/9P/6NTBTXLj4MsPRmG/65j/OhYsvc+/9H+CFZ5+h1UxIetNcuXSJbqvihScfo9PvMH/mXeA06k7XzlvkO3dioEm1H2J/+8vuUFu/pblzNfKNe8v33vj2m5lrQhzUk79nN/8jNndfNVT5T3gZa2k0ml/9EP+Q1pfd2L1lOUBaRz4cc/HCFYbjCbMzfZJ2h7jVZmZmmvm5Wagd75x1ZHnJ3u6AmakOlbEEWvPHH3wvi4tTjEZjXnjtEvecWqbf9UYnYA90E1EU+jDtssJUJUrCYDgky3N2dwYk9YS70WhQFAVSCVqtBh9851lvLCJhdrZHkkRY5zh/Y4Xv+qYP0UhixpOU1Y1trLUYZ1lZ3SSOQsaTlDSf0GiEXuQeeMpWZS2TLGN7Z1jbxCs6HW89bY1BAmEY8alHnyLPCsajCRvbe5w4tsChpWmMM0Sxj4KQSlKW+4YXgkma89L5S5x76UL9sAQdhuzsDrA44iSi0+v4hrB+bVkagkBjSsPJQ/O0202KPOfB95xFakVZldjK4RwMRhmR9o3u3u6IqjS0GgmT4ZizRxZwOCpjfLMYxfS6XSajCbu7Q5RUjIZj9vbGDHZTysKQNCLCWHmnUiUZ7A1BSowxxHFIo9lAa42xjm6vg60s77j7JJUxzB+aQYWaPC+oSgNO1BNq35QEQUCZl94kQgrKymfaZXlRo2Q+K6ssvYPp86u3+Ec/8h501CCMW1S28MWg6gAAIABJREFUJIpChPPFcl4W3HXvaX7sx3+UZ//q3+CjX/sA9917hjiJwUG71SLQ3pwjCBRTvS73nDhGZSockDQbhHFCEIYopf0Efp/OhgVhfYajsAc0Kh34QOhv+sj7WDywtq+HQ3XRXOY5Uog6GsKC81NwJzySaMoSayqCQOGcqWtqx2997jEuX7rmM/rUvqtldVsxoOpGWYIS3vzKOa5dv+HPU2GpDfdwztOX4yTGGsPvfP4p8jT1+7qPtklJnhcIXF1k+CZWKsH7H3in143iwFmCQCOoM0nr89gYg6lRXVdndFHTuq3zCMXS0iLNVgPnIE4SkmbiIyCsqyMHNFIo4jgmnaQ89eJr3FjdQEpxEMOQZwX9mSmqojooRIo8xzk/sEmSmEa7QafbpsxLAq38MZWCqekpSmPRYYRzFlNVRIHm8089V6Odwutocbz3/nv9toscpQIE3pikzAqssXV4dESr0/WugUqwfHSJoyePECUhK5ubzMxN02w3SRoxQuBps3XxZYzxfVHdpPvsQd+Y+fOiYn1rg1/7zDOEcYi11oe9G0uaeuOMV6+u8Oq1Ve/uKyHQmjzzLsRKi7pR92hgWVUHjq8A8/1uHcfx+19dpb6i132xVVYl4/GQUGjyfMJktEeVT+jPLPgBVTZEKMmVa5cZT0bcuHGZ6zcuUxQZR4+epiwLsjTl0MJhpDDsbN1CS8FP/OufRCmFqQpwsLM3YDwZg/C1iTX+3joZDw8MVibphHQ8oSgKNjbWOHP6bqanZ4iiiF6vz+uXLjI3N08cx/X17JhkBZevXsI4P3wJtPbZjrWu1VrnmzitMcbUQxTnrw1TUVXeEKYylc9Y1JrKGIo8Z27hCCdPnSGMQrTS7O3uAjCZjDFVhVaKdrdDt93BGP/8dM5x+eYuf+aBHyAII498C4i0BmtxpsIag3WOpcUltrY3CYMAZy2f++xnKSZjIq3R0jMWpPBZnFJqTGXIswwnQEcRDo/Qjfc2DtAgW1/71jjSPCc3ExaPnGAyLNFRwNLSIZCudikeIKRikqZUlTlwhY7DiKlumzIdkCjL9EyH48kc/V6CcE2yTPIzv/ApFpfu4lv+2J/gnfe9k53hHidPn2C63+eh336I3d09/vyf/wu0wpK/+d9/jO//7g8RR5p0lBLGgkYzocxLOnGJVBWVK4m15Ae/59sw4zW2t1ZY31jlX//iv2VzbYu94djLOYzh+XMvMhjn/OpvPMKHPvwgo8Euoiqg+oOh2H+U1leRuz/E9QfNuXsrHAxfPpVwf305l4q4LUPk4P1un37cgcP89tv70mLWr5SWeae//8tD7t78/y+2rf31/d//p/jnD355OXb1hg+2b43l6iuvU6UZnThkdmEeHccUpeXmjVVMWdFpRgTCF0pVWdJsREjnauc/zexsj0ma0WiFOBzTvQ6ttm9ckKbWiqSkWUYchRRlwdb6JkmsGY0ntDstgtBn/ljrCHRIlhaEYYCQkGU5WeYdAMvSRxXkZUm70wRn2dsd0u97xLARx0SRYnlxlul+F4fBCUukNIHUNJstFCFCaCZZSrPRZKrfY29vCPiiusgLokjjqorReMJ9Z84wnkxotmIW5mYpTEGctChyS7PVwRiBcQVZmtdFnKCZNJiZ6rM4PwV4hMRaT5dDgAoDQKMDT0NEgKupbWEU024kGOdNO1SokIEiiCKscYyGGReurbAw1efE0iFa7SavXbhONh7SaoQsL84RN2LCRPPLn36C5dlZT//E0Wgk5HlJq9XCVYpPPXKO+ZkOSTNkko7rEGqfaxSFMUpryioHoQmCkFBryqLyiFASg/TW/UiJ0po8K/y266DhLCuwVYnDESV+H7T2/zocxjiCMEYGkr3dAUNTMv3gYXS+Tbt3GKEi0nKHIqv46Z/7FH/7f/kpnjn3JCIM+Ts/8VN8110+qkBrr5kJQs3u1g5aapQUjCdjup0mnVaT0hQYa5BBQJZVjLOcRrMFDqSHx0Ba8izFCa/TUcpn8OV5RqvVotluABBEqr4uPY3XFjnj4bB2z5No4Rjs7hFEdb5VqKAoEG4/0NwhnEfp773rDNMzfZ8NV2sR93MaPc29Rn5rwwLfAMJUr0ezGTMabRFE3sgmSzO0Dvx7Olg+vIAKJEVVEISq1oDUYfHs3/uE19c1o/rv9pNWZw3CGkxVeP1WTQ/1SJ06aB7kfiMhYG1lnVYdOyJqy36lFFXps9+QCip3YCxTlgVVYXjnfWcZ7A3otJsIIE0zWq0mZW0+o/BNrtQSpQXb2zvESYzBO1xiHXvbO8RhiIwin8epNA7BxuoKnVabmX6Xe+86w/bGNjrW5GlKlk2QQvsMvFAgbICpwFIQyoDhYEgUxRjjUUmUJIwi8iLH4RABnDq6jHMGpSRxM2E0GBOGAVVlsJU5KJaHwxEvv3qBfrdDURTe7KaWGdy8dpX5XHF4sUen06IqC5qdFlGkiJOIk0cOEwKvXL3O8SMLGOMIwxCpQAUghUbpmtGiNDivV5NC0W0lqEjfGbn7EuufXrjO933fx7+UdOjLXkIHSKU5o05BNkaZkr31dVrzp7l+Y5W7j59iezhhqtdFKUmr3WEyGWOtZTzeIs0K5hePcOn111m/8RxHlo/T6UzxyLlH+ejsN7Cw1PdygblpVlYu0048kygIAkxlCOM223sj5ucWGY3GdZao4tjyMe+oqxQ3b9yg02qzOxyyvnqDcrzDsSNHvAW+bnL12nVm5hZIopCiyA+0jE6HhFGTAo0WFqqUssjAQRRFpGnqtbzghzdK1eweR14Ynnv5HGHc4ciRZdrtNgrNJJ/Q73SpipxWu81rFy8wPzPDeLhNpCr+/q//DIvBNF/z7ndhkYRxmzhqsr52mU67gRAlm9vryEAQhg22tzfpdXqMJyWDnT3ufecSoSgR1lMj7f79xuH5B0IjgoCo2UdFbe84bVNkqPyzFQPOUlUZ166vMxp0uP/+95G0NUEQoeoIBWtAiwgnBIEOSdMJnXaXV199GecmFJNNIlEQMKHRaPLus+9AhpfZ3NlFR9A5+V1gmvSbXdLhHu//0AdodJrcuHGDD3/4I3zDR78ZJTXf++13sTxzg/lpRVrFtOIGRTnCWokoAwK9hxF9dBjS7ZVMTY/5yEemSN0RdoZD/vSP/necPXMXWSVpRQHXr73OO973Ie+4KxULnQAlFdOLZ+gkPaz60rTMt6Ve3ql2ffPGvvTv35G6+cb3vli9+lVa5h+R5Yz5n26nSH4pmqT8Er+zr8v6/ay3e19P43rzHnoNgUDsa5aEeAOifpv1BpVS1tsBIb3N+34W1e0Xyn5zZ62r6S5f5kVRU15uZ4bebjLz1q3sG6K89XP4Yu9mge/6zu/j577mHZ7X/+XtFcb5wtWVhmeefIZ+r0272yJqdxFS18fPEASK2bk+OgpJ08JnZFnDxuYO19Y2mJ2ewuCpirOz01SVJQoSLl66SbPl7fLzUUZlLGVhPO8eyb976Ek+cP9ZwliTTnzW2Sgd0G22/aEVDqTFOkOelcRJUlPALEL7B1CrGWPKkkgJZmZ6HkUw3r683a0bS1cRhJqsKEHVQdWVzx7zDy9JZUpMVfL4s+cZ72Z0Owlh5AuzPLMkSYzQgLAEgWI8GhLrGGscUnu6oA4lzz//OmVWMjvdBa39Y6+qeOXVK8z0e2RZTp6NKQvLqxduMD/dJ8+G6DCqg5Adv/Spx1jf3GFpvoMUkt0dj7INdnfq4lawvT3ihfPXmOk2mF2YpRLe9rzfiWm1Gj4HSwu0DijTivvvPo4OPS3ppfOXabdjkkbb67Uiw7W1NbqtFqurmywfmifLCm/UYXx2U1kUvjAylr29Qa3bCuoiYD/MW5GOc5JmQhBo8iz3RhnWoqUiS1MazRBjPbJZmIIoCIkCDc4Q6CZ5uktewq1jmqVeQLe7QOFM7TjYx5SKv/OLj2BVm4cffoqPf/fH+Xef+CW+dfmYR0kkCOVNG7QSFEVOZSo67QbWWvIsp93uEAYxYdQgTGKSJEFKvNW+khBIHJJABQihvJGI8MchCCOssyCcp8/gdXiuvm5L62i02zgUK9fWCKQkbiVI5Y1QFAIZBPXwQmMNOKVQoXek9JsTVFmOUMpbrTt/37PG1BRWWTcKUOQpOlAIBUHcOAhLD6SnMxZFhQwkKghw+ILKOU+zPXDPlhaEQUhFGAXs3wuVFFglcEr6kHulKYqiRmPdQUPob2+iNg9wSCdZvbnG7OwMQvo+UgqPMurAu7q+8tKrzB2aQUgfnyCVIohCyjzniadf4uyZYygtME4RhAFFnhKFGmvBVGV9jxb+PK8KdP25OAGNpF3TjC3WVBhT4WxFo9HCGoGzHlUNEsH6yjqDwYReb4qwGZFlKWVeEEQe/QmCAJxgNBzhqbmGsshRApwx5Kk/hxtxwuXL1zj38gUW5+cIA40QMNgbeiQZQRCEDPd2ySY5r126yt1nTiGUwJQ5YdJAqYg/829+ga+b7jLVSYgjhQ4Vo8EErUJcBaPxiCjUtJoJ/WYTayyffeIFjtVmU0IKqOmyOH+OKhVQ5gVFltHotP1t/S00THeHh83tz5HW136Ue+69+8B8S9ZaUG43dHib57zcf57VpmKVEHz8Y9/Hh88+yGQ8IW60iNvTOFOxML/A3iTlxtWLvH7pNSpbcfPqVVqJRNhdjh1aYqY7jaRkc3sNJ9ts7w3pTx3m2H0LTIV94naXqkiJG010GKNtVj9TFVJJjFCEYZPhcA+tAzrtNpevXCRImiRxwmg4YGZqisqUbK/fYvnIHIvz00jh0GGIxjI/1yeQzpu1EJAXeS1vUAgVEIYxrsqwZVrTDR3GVFBfS/v5dteuXKbXn8HYkjhq0G7N0Wi2MBYajQ5RQ3ttXJHTr/P+tBJcv/oaU70GtkqhscLHPvBxsiKnLKHZmaNCcPXyDXpT8+QGdBCRhA12tnZQShIFDdZXr9FqKebaPr8Pqfw5I0WNNPr7TRxGvmaIp8AYZJVSUVCVFcZCYC2jDB4/9wJzS/ewuHSI1fVbtNt+4BuGAaPx0A9dlCKdDLjw+isszE2zvn6Vhek2vQRwOUqBFCHOGSajIZfWXqY3/35+67F1vvE7vpulY6e5dG2FvXGFUCG/+olfQtHktfNf4Oorj/HR997L++8PKa3BOEGeDcixxLJPlZXoqMLoKWy6jbCWshSEukU2sfzsv3mcXvcIj33+Mb7uox9F2AlLy0s8e+55Os2YSCmef+4crVaTufl5bl6/RGN6miDpINGAwkmLk/sshn1Wx52rsgNfCuEr3rdmpL5xgd7271sus9u38cXe521LYeF+z9eXavi+Ssv86vrq+o+wvvs7v49/9fXvhd8ndUZKb9F+7fJNIhUxPT1NlDT8xMk5xsMxQgharSZFXnqaorXcurnOcDDxOXHWUpvVMT3bQQjHzZU1Vm9topUmqqfSFgdS0ZvqMTfTJwgU3/aB+5hMMoxxzMx4w5E4illZ3yDPC9I0x1Se4tJoJd5xrKp45eIVcFAUJcPhmDAO0WFAFDWIggSERAmNdYYkiUjTHGuh3ep4xEMKyqqiKIoDp7pWq0UUhbz/Hae5754TaO3dH6MoodlOCAI/lQ20ZjTOiJtNnPI0wqqsePnlSwgHU902UDfoxuAsDPYmHF2aRynhqShF5ae4gfbW/NLTyJwzFEXOd3z0Ae47vYx1PlC92Wpx/dYG070ezWYTpTXTsz0e/MA7OPuOkwgHuxsDn0eUhCTNhs9RQlCWhqyomExS0jQFAffe5UPHBYIoDlGB4iPvu5cjywucPXOMSZoSBIpzr7zGaOwD5E3lqErL6uoOrXaXuNVCBiEqCj3qUlWkE++EaqoSIb0RRVWWGFshJHXjsG884vOt0jQnm2QeiXcO4RRP9yvOLHhjCOc0QRB7zV+REwSS5ZP38P4HHuCll15iZ2+Xf/bN30yj2cDW1ECv2RhhTAkSothTcv05EpPlBWVVeeOT0tT7I71DpPKolnDeuc3tW+LWa5+CmGUZQoJxNWUJW1ubBxRZgascDz/+HLt7e0ilcQ6fnSYVRV6h6sm9VLX5yQEd1L9dGGmU2h9xvaFTknU+1r7mLYp94DZCkE5Sb35Qb8UYU9NIhd9ffMHmnMO6Ein9QMBUXofkkThvsqMDTVVaMP5Br6QCZG0G4m4rJN4wnfFmKYI0zRhlGWXhqXHO2gOqMjgm4zGHlxYZjyYM9ga+SZaiRu0rPvLBd3PulfM4JK1GxGB3jzhJMNb5Jrmm5JVFRZmXjMc5k2EKFkzhaaJlWdYOgpowDLHO1dl+ii889YJvelEsHTrErbUNbly/hUQShCFxEjIejVBhgK08JTJOQprNhFar5a3hBZRlRRxFrK9t8eu/+SiVqdgZDurQ6YzKeDdWVWusAFrtiOmZDl//4fdhjEdNtNY466hMxXve/V6+91s/wtEji+RFSVUamq0Go/EQR0WrmTAzM8WpY4d5+InnQQg+/J6z6MBHBTj88fb08v3BqvMIquD3lWF7+9rZ2fuKXvfFlsQdIOKNVoetvT3WtzdptXuYmob6jvvezfGjp1lePk5/ps/MTJ8Tp87Q73UZDW5SpAMWFha5974HMEbw6w//CrdWVlAyYDKa0G52KPKSdquLdT4k3GEpyow0HbG+sQpCkMQxt1Zu0Wx6t1Slpc9dRfD6pdc5deZurMxwTlGWPph7//wPggBjDTs7m35QFTaQYULS6jKZjKEeEhtjD9B3KQRVWRAEIUpKjp884+nZCC5fuYix4JxgZnqWKPIZeIPBHqEOSMcTbt64znR/mm5/Gq197Mu+YVIcJf7ZVlbgJN1eD+P8cG00GNCIG8RxRJI0eP6FZ3n9wotcvvQCxpbeQMVUWGuoKm/SJIDKVGSmJGr2CMMYW5WMBruUWYqwllD7AY1DEquA2Zk5AObnF6hMyfrmKkHg8/kqY8nzDGsMJ44ew5mUuX4HYVKMq4jDhDhIsMZ/TmGjyT/8xAWmFt7NBx74L5mZmePS61fQOmB+boY0m/DAg+/lH/4f/yvZaIWf/B9/mG/4ujmKbJNuKwSX0wgjWkGPRhwThwlF6kgCQbPVpdFo0mzFWFGyu7eFLUu67SbHjh1hd3eLf/JP/jFbW+ucPnOS4XCXf/Evf46Pfex7OX3mPj75yd9iab7Lc49+kmoyQAoHQuFQYFWtrX37dsZLAf4DweH/CayvInd/iMvegZb5ZnzrzkjSnVAmAb9nmne7devtEz/7lu3d/r63v/fbomXO3nGy8cXWwT7IN4Im9zn1txdUB/sg3vy6OwlU7ySavZPZyn+oy/k79xu7L2Pb7jZXUiF9Abu7sYmoDMvLy1RCgFS4uri1ZYmUmrIofZOGt/htNRKiKGB6qsvV1Q1OHltCa4WUMByNUEqxs5sxO9WjKFLKsqTbaxM0PPKmaie/qixptdtUhUNp2NjaJokT2k1vmCCkRuuAQGvSSXrQHFy6scpst0Uce62UN56QOFcyTsc898p5ep0GUimK0ptmBEGIDkNMWRAGgXfnEr74W1/d5erNdbqdNnleIJX0TY+McUiM8xEJeV4QxjXVS2qk8gXK6soWT79yhRfPX+FD77mb2dkpdBRQVCXOKn7nyRe5vrrBqaMLRI2QbFTwycef4cH3vQOtJVoFTCap10mFiqooaLdiHnvyArc2ttjaGTBJc/Lco6a9mR4qUAShxmmBzQ1V6uMeRKyRDoqy4jc//xT9RotOt0MYStIsw1QVSSP2mWM6oihyEJYoiinyFIRDBZogDDm8MEtZGp564SIvXbjGqeUlHn7iWYa7AzpxQBIrtje2aHVahFFAGIW+6ZASheKhx5+m327SrDVN7JMwnatNSyRah2itGA13+T9fuMTNKcf3fN29VOUAJTXOtXA4rPN6xr/5sw/x1//6X+NH/tSP02pHPPHU03zHqdMIKSgLr7fKJilJFFIWqdeVOLDG8fDnn+TM6VOEcYyq3Rhrop9vCIrS04ekzzl8w8nQHty3ZB11oJTCGG+tX9aal0CHCHzoL06wt73LocVZoiRCKHkwDZVa1/RFR14XeQDWeF1fVZSMhju10Y9DCeWbLOXp06oe4hR54RGvIEBKr+8TUoJ1fOI3Ps3dJ48jtdcI7hf7voeUWHxDLoWqzVRkjUL6e9bu1i5Js+HvqdaipPRNqX7DPGXfiErX9D8hfNQCQjA3O40UkqosEUqiVIBUXmulpURLTZyEILy+J8ty3+Ri6fQ6zM1NocKIX/q13+D08WPkaYl1/m9Is5RGkqCE5OHHv8DK2hZHDx/yqKgDpKhDo90BquhNCwwqkLRbIe1+A2NLbOloNxu1kVJFHHnEIIwiJAIpFE5UKK1I04yyKOn1e4AlCiOcE+ztDTk0N8exU4c5e/qEvw4CSRj6+5KpIJ1kCAFhKEjTlEYzQWlNFCVYC1VZYsuSX7n0Ot/QbaG1IEkigkizuzOg20lwwg+SlPbskkRrms2YMK4zOoPQf4Y1Icw5R575+5mpDNaUvlmo4wi+1ENj/1t/8fHn+Ts/9eZB/YGJw+3beRvkbv+39p+JD3/6c3zTyT+GMSWr62ssHTlGs9lhY3Pdsw3KkjBKqEzOzs425185T4ihmkzothv0+z2U0JR5zjPPv0QUR+z1Bmy8vMX9Z+6j1+uBdbha4yaqHKEcodIICVHcYmp6iTTLaLRatNpt7ybabpJOxkRRzLPnnqHfn+G5c8+ytZIi1ZiZqSmGewM/7BMeyQ2CgCSOvFOtErgwwUkfvWOKiUfvaqOlfVMxr4nzzW1RZmjvEEdaBrz22qu0OjO0uz0qU5IXGc2kxdUrl9je3mRhfoHxeITCIFzBT/77f0RjNMPpo0dxThA3p8kr3z5r7VH73b1dDh86wtrKGkZYoijCWUGv2+LM6bsJdIUP1fHNiHVQ1WYnUZJAEEHQxSIJ7ARRZeAMoVJUec4gN5Q2Joo6DCcpVVXRaDXRWjEzM4WQmiAMsFVBmQ1pRgpTjBDVGFdNUNIQBk2wjjxPyW2GdW12RwXP3brK2Xvvo91WdKfnePRzjzM7O8fszDSf/exDrFyXPPPY02Rbj/LAuwpajTXCIKIohgRSYMqKUELFFk5asjIibO6RjwPG2ZBxNiFpdIjiHvNL7+TTn36E5RMnWFvf4OTJY5w+dYKFhTmWDi/yrne+k2dfvEq7ERPqEFluEIltrl9d4djxM1QyAefrG95SL76JSnlb3JUfyDj2mUR3+lJKvkF7f+u19WU0h2/nlnnAcnO3oYD/HyF3X23u/hDX2zV3/yEakn1ntTe/gW863q65E3f43u9dvz/65xsbv226cnDxfPHmbn/ZO7zdl3OhwR/8WP7qL3+Sv/E3/3YdUP7lb1vVRg1CSIrhkJWbK8zPdHBJjLT4TCYhuXlznVa7SaADyqJke2uXSZoiBT5YWziGexPW1nc5ujDPJM1J85xup006KXjx0g2eu3iFe08sEgUBQgZI6dGEsqZEqjDg/PnrvHZxlf50RBQE/Pojz9KMQvr9LmHsg10xfnqolC+qF6dnmGTj284bgVAKZ72Y/cqtdU4eWSIME7TURFFAURYYU6FQWOOzsYx1BLGnjd5a22R+ZoZPfvYZlhdmcQiksqT5hChKkEFAGEVQBwNLBOl4hBSKdrvDPaeWuffuYwhbYZzz4nMl0YHm5NFFFusohCiK0GHAO84eQyiJcZaqsuRpyaWrK754ryfstnTcc9dhlhamkEBe5cxM92j3O552hWdRqCgkSCIeefIch7pd8iyl3U4IEIzHKbPTPcq84skXzrO8OI8UkiwbksQJlakYjUckSRtpLTqIyNISJRSrKxuEWqOlJDcFC3NdFqf7nDpxmCAMwEnKovIIXVEd0ImdsSDh5LEl0onXTDmLpw4GXqAfaM0z5y6wODeLkI7hYIdH8z3+2z/xHqrMgLVIpQkaTbI09Tq6IORnf/tVvuUbv4mpmUP8N3/hx/jNT/02Hz97lrKsCANFmZeEgcRUFdS5S3u7Ex5/5gVOLh2j0+96J0dBTU8UuP0iLfSh61LuG504TFVQVQVSBQeo3RvXmUTrAKV9yHlVWNLJhKQRMdjbodEImJ2bQwbau+rVz1BZA+w+5D6kyDJUfV+sioIg1BQTP0gQQpLnGWGoEPtmB/vonVaUWempr873YfuOrPecOIETgqqq6sLgYDxWD94kSvqcOWttbcvup8gCj3YiBc6WaCW8AVEY1kifv36DGiX0lul1d+f5qwBsrW1gnaPZSGr9pqMq62gK7RFjqbzjp60MURRRVoYg0hRFTpmWLM7O0ul2CVTIL//GQ3STkDQt6bRaKCnodZqcPnOCqsjBWfJsTNSMEQryLPcIQO51bZNRemDktH8cXVXR7rQZDYe0OglVWYCQ5GmOkKKmQcYIfBxFWeRUzuAqy3gyQUiI44jPPv0UhxcWiGOPiKfjCePxhEAHPPmFF1FC0eu3gdAbJsUhk0mGCiJ/3KwhDBWfeO0C33/3MWxlyGvzKeccSbNJlpfErSYq0BhrmOq3CEKJ1BKQVIU3wxGCA5v9IPJDOU/VFeg49K3f76O5e/jGBt/2J7/zzT/7Cpu7/fXLn/g1Ts6eREtoxjHpaIRSGiWgKjJu3bhKs9Vh5dYNVtZu0u10Ob40j6vGREnTR3VoyNKS06eP024kXLh5hY998Hto9QOuXH4dZyteu3SBJI6psj2U9EPiskiJ4xY31jbpT00zSlOsNYRhSFUUGGPY2dnm5KkzHo3dHSGE4fDhRRqxIoy8+ZJS/nrcb6R1HYGTNLoEYUJWlFTFBFflWOMdhquyItCBb+atxZiKyXhCIDVSBbx29TJOx5w4fZZuz8sMIh0QJwlhHNPv90mzlKTRIJYFk8kuYXuFb/nAd2HLClCEjWk2d/coTUG/N0NZVXS7Pco8x9mSRqfjIzlUyLNPfYY4CWhGQc2eoKZB8ZfWAAAgAElEQVR+e1qxFpK8dMiwSRh10IFkvHMTSUWFI1ASJUIe+cJzlAR0Ox2WFpcpq5Jet8c4GxNqyd5gQBxG2HJMKHKqYhdXTtDSa/xUGIGDPJ9QWosJ+jT7S0wywzfe9xF+6bO/yg/9yH/FcJBy5vRZdnf3aLQSVOC4+fJvcvxQxnd861nanVNMsiNYO6Hd7WKdQMiYcgy2YUhNh6efmdCfjQl1DMKRNKZZXRmRjlv843/2C3zNh97Ppx5+jOnZ41y/eoWHH3mUo0dP0mh2eOyxz6NCzamTp1nf2uHa5dfQquLK+We5+/73IJuzgEFQvbmuhLfX1X2p0nW/N/wKa863xTzusF9fbe7+M1x/0OYur/Odboeab0fr9h3e3moRK2/j7Aspsc69CSm03FmrdvDzmirzla03RiT7UoQ7vk/9Bvuau9t/5qxFCXlHwfmdtrX/9+x/3f4yW0/KzVt+Z//3/upf+Vv81/kG33Nq2R+vt3z51oNaH+FqZMLrCJXy6Nvzz7zIcGMFGQTEnT5BbXc8Hk0Ig8gfCwXDnSFFkTO/MMNgMAYriGOvvUqSiKWlWYqqpCorygLOv3aL7Y0RH33wHu4+usAondDptLDGeo2WgaryhhBhpFjb2KLTi5mbmyOOGpw5dph2t4Utc2ztliclrG3s0O11kArCEMKg4Z0dA81wMEZYQZqlaBVy9fomraDBixcv89rl6xw5PItQvhAfjQYUmSMM/OR8Z3eLOIpoNSOefuU8H3nf/TRbTfIsJS8z+tMdqtJiCv8JGWtQOqAydSC0UjgsUahQzuCEd0hzlSMIBIPBAK0Vk9GYZrOBFZYg0v54aMXO1oAgDJjsTtgbDgm0YH6uR9KImJ6b8UU2jqmpFpH2RV3U8PQyb1biwAm0EMQ4XJERxorJMGW2P8XUXB8nfBFx7MgiKlC1wYJHofKiotPt4bBIoXnl1Uv87vOvcubIIe9YGimmp1r0O01a/R6NZohQojbtKLDG0WwmFGXuaW0y5hOf+Rynl5eQztFIAizOaySNv76lVlgnmV+aRwh44upl5j68yAfPLtDozlCNNhlWmubUotdTKe8ad2Vli+X7P8r29hYPfuTrMSbnxPVrHJmaJS9KwiBiMsmxpddFZgNDFGqENMz0u0RhSNxo1HQwjVSQZzWV0Sk+8/ATXLl2i+Wlw1hrPJKkNFKESOmbp7JGrxz+PLCV4fnnX4bSN3ZT0z1koIgaMf2pLkp4vZes7zNSvHGVCiGw1qF14BEzuY+oCI+4OWqTGE2RF5iyINCaoijRYeCb0/2hBsIXp3UwuRMeIdRB4I0/kdgaabPWgrEIBxcvXqbbaaOF8iYqyt+H9xkVvikPfLEHICQbK2t0Wg2KPPOUbFn/bdLf34VzVFVBZ6pLo9Ugy3J21ncZjYa02k2SuIEUAWXp6alCSkLtzWdMaTGVJQxC4jgmShIuv36NySTjzIkjLByaYTzI6U63MJWg3e4ShgKpglp7KFFhgLNQ5I4q83EToVa1iYVlNBx5ExIR+MI6CkgaMb/18OOcOXEKJ0qchaSRUJkCrK2HGd60RUmFEyFB3EAHIY1Gwky7QbPVBemRuaTV8KwCrWg1I9J8gtb+vhwnDbACZ0DVZ0Y6TtFRwL8/f56PHZ5CK4WUmqpSrN/a5satLQ4dmvcZjhKkE9g66L4oCo/aa4mqHFVZoAOvidNaY/YbEGvI85zgtpii/XVH1k29/sXr3kwFbkMhDh5Wzuvo6vfwbB1/Duxj1Xd6LP+9v/8P+Lr3fh0mtaxeP4ctJ+wNK4IgYpxmLB5aJtD+c1y5scNefovTS4u0ow4bO6tsb+zR7vSphMEGCT/z7/45N7JdPvaN30IQaKb7M7S6PWan5pibmSGthmjnw8aDIKSqDHG7x2SSIlXM5vY6SdwgiUKysqLXn2JjfZXpTpvNtTUi5Vi58hozc3NoHaCV9Cwf4WsVf9/3DpXG+uPkVEgYKIp0SBxFVEXu9brUzWAdKRKEiqqyCALWd4ZMzx1mfmYB4WDl1g2EcKgwIhCOIGmjopjh3ibFeANtSn7x80/w4F3v9bFASQej2qhQk2gfJ7PPRipNReUcLzx/jqo03Lhyk04vpj/To6lBSYUxlR+yGOup2VWOjpvIqEWRF9hsCFWOEgJhHUEYMi4mhEGLxcOnmF08RJlntKenGY4GuLJkMNih2+owGmyA2UNVKVo5ZGcKgSSQ4MqKyhi2hwVRc4bOzDw4b/aEhIeefYT33ftu1q4/yuKRBxiMAv7SX/pzPPIbv8CPf88Sp46kLC8v8suf2uIn/8Ev8+3f8g7KyRZKQhXEdIM2trHL1m7I//y3f4Pv+oF3eb2srsiHY147f5FuZ5H77p3i//n07/Du93ycMyeO8Od+7Ec4e+YMX3jy8xw/coRWI+HM8Xt46LHPcH1lk8XpRdavPsF8L6a0kt7Ssr9uTYUU+4yG+gq4QxO1j5rdHk5+R3O/fWTtrRFft/3sAOWr0WHvYPrmn2nhsX0JB9fsm5q+AwTv7emkX9Xc/RFcURh6CsIXE4Z+hWv/hPyjsGT9wLjT+t7v/SG6GytEd3hA7y9Rt451brIv9CR1bpfgxtVb9FpNKiGZm53hlQvXGI3G5EXB7nAEztHptAl1SLPZ5PMvXPC5b6Gnj+3uDsjSjMHQo2daK+IoYmZuil6nwcW1dQaDMVEc0e926sZbMBqNscYSxxFxEjEYjjlz/DCnTxwhDANWVzYYDUZI4DNPnvN0JWvZ3NyrG1TI04LtnQF5PmF3b5dJNqHbb5K0Qqan+2gtaTcjzl28zAfffS/vuuuEty2vz0cpBY1GzK9++vNUZUWzmTAcjInCkAff+050oNlY32Y8zomiyFMslOLa1ZuMh2OPSsHBtFYgvD2/8P8vigIAXYcItzsttFT0+10PakhFWXo9Q56VdHsdhBB0um3uOnmUo0cOsTsYY43/zLwZhEUqyfTMDL1uF0mdX0Vt7CMFRVHQ6bSY5AW7eyPanSbD0ajeT0GcxLXLITSaDZJmg9E4pdFIsJXBViWDvT3uufs4X/vOu7H4DKgwjMjTgm63jXBeO2Iqw2SSkaUFk3HG9avr/iElHHmWcdfS0oERSFWjPPs6IJ+T5UN8Fd4c49f2dmg2EtrtVo2cCGZmZt547cHxFtxz9m7e98ADfPaRzzI7O8eHT5/l5vUVPvf5L7B6a40nn3meNE3ZWNtkOBqzurFJs92m2+l4XWUcekoU3po+qOl7ACePLnFtdQsnrM9rcx5pFkJQ5D4EOYy8fss5P4Rx1jLT75HnObq2PqdG0dJJRprlVMbVSPBtzpdS1udL6R/WQlCVFZsb20ghPW243kdjDSrQPjQcga4NWZy1VGWdR1Wjb0oqpJC1Ox23GVDxxsBNCD+AAE6ePIYxhqIocA5MaWp00jd4KtAHKND+anfaWGsJwujA6h180aG0dxWNk+TguEZxVDtlVpjSkKcZ4HPfcA5T+nM8z/PaXdPv32AwQDjLkcOLLC0teBOIMGR+cRpjSpJWhLX7tvLeIVTVKKCzlijSJM2YK9euYetzzhhLt99FCk9zajQbPoagMnzTR77G/4HOMwT2B5E68M23dTAcjbHA7vYOn3n08QOqu1beUVNLSbOR4IwhjkJwim63x/zcPN1OjzAJQBqkdgjp2N7dYmd7p4538XduHWjywn+un37sGaI45Ozdx3HG+gDuvPQ0TyfQUiNRTAYpGEFhjKf9IrFC+UYDn6mIgKCmtv9hr5/+3/83QFAaQ5alBEFEv99HaU0Y+jxR6yx7g212drc4e+oMUsHq2mWmenMsH19GyJIyL7h55SavbF7hL379X8ZkcPPKBkVesLW9SZqmZHle0/Z9nEVZ5FS2QgcBYRBQ5DlHl4/RarVZX1+nmTQR+IDvza1NpqZnmIyHHF4+wfbW+sFgzJ/z+1lwElPnkEwmY29IpDSmqgiDgLIqAa8pF9I33VVN5xZCEwYR23vb7G1usbZ20+tEjaUqS5KkQVHk5FnGcDRCa+XZMA7+3q//LN939juoyhKlAsbjEXEc0256qil4F+M48trcXm+KZqNJf2qGtc01MDlhnW/pc9d8LIewDltZcBIhAsKwQRBqrK2QUhwM7EfDEUIo7j77TqIoYTwe0+31SaKY2elZZmfmCFQEFlqNNtJRx6CAqAzOegfiEsv23oi8sCgVk048wt9qtdBa89c+/j/wf/+rn2fh0Ndwc+MVVjZfY7xd8Wd/7L+g1W7SbnUY7e3x7vsOc+poQjuJmZ+bxdqKdhIzGG6SjxVaSM7eM8O//flPsrNZolWHOJF84IP3snA4YH6uyce+9f28/vqLnL/0Mltbm/R7fU6fPsPnHv0dPve5R1ldW+OB97+fH/j+7+fY8WOMRhlKwusXz1NlKcaB1tEfzoWFd1529s0Ayv9f1h+VGv4/2+Unbl+ZcPuLLbEvEP8jsPxE//cev9fOX+S+SPOX33v2S2zB3tbY1WhiVTHaHfLSudfIJznNQHP05BmCRodRWpCnJUEQeCE2/sZ+5dIqUsDy/DSj8YRGM6LTaaK1ptVqkiQxaa0FK8qSqiqYX+zzrR+9399c6mJ4OE79di2srK2D83k+vU7ba8e0YrC7x4uXr7O6tc3u1i4fvv9ekJowanDx6grX17ZxTuCQ9Hpdmq2Gn+xHEWVRMRwMSScZ1lacPbXEB951grLMmZufIgg0SimkVCgdkuUFs/0WxlSsrGzyxPMXCHSMMxJTOm6tbbO1PaLT7pGPvfHC8qE5NJJiXHDumVfY29rxCJiSWOPY3R3xm489hdaKMs+9HsNAVVrSzD+ovFZKsLc5whnB6xdv8sRTLzPam/ALv/k4KEXloNfvo6IIUTsyGmcoipLJuCIdG0xWgTEo4WrYxKEDj7zMLc6Sl47VrW3ChsKUjlDEWOcIAlVHMVisUzRbHawTfqI/niC08HERSYAOJK1uw4v7kZR5hStydOBdSpM45qHffREtQ555+qa31HcV127dYqrdIQx07SrpESDp/f79dLiqcNagTMbffeV5fuKHv9Zn/sUxrpwgghhTGZRzOIJ9nhB/6+efQGrvqvjpT/8WP/in/yxKaWZm+rzv7jM04oh+qwHW8dqVq2yOdulO9f5f9t482NLzru/8PMu7n/Weu9/eF6ml1mIbbEC2Y7PaQ9hsswRMQhWVmjBDoKamaiqpglBJZmBCQsLMMJDJwCRMhmEmhM1gGzDYsrAsyZZaW6tb3ep977vfe9Z3e95n/njee9Vqt2xMQmAqflSnpKPznnPec9/leX6/70ZWGnQQEiYxQiiuX71Bvz90XgdCUGTOTGBp7xIf/uB/gaXcRTeVUjUy4tWKQWfYUuYGWxoGgyGdTpulvYvOmbMsdjPxwigiajRRXoDFFQdWiB3gDik0URS4ghfr9Go4J848K5B1dIBAQAUWRZaXWAOicu6UT33+hDM/qHV82aRkPEzd9tZl9e3ETWRpxkf+6JOOFVC5DLTSlHi+xyRNKXOH1FlbkReZu5PURfnuvckK4kYTlHPdLPOiNonJdrcJo7CmPTraWlUapma7LCwtgJDowAfpFr9l4WijpakojUV57j3j0YjA14wGQ9LJiGvXLtNqRKSjCVma4Qce6ytrdc5Xyeb6Jr7vqLOT8RghoMwmIEoMFetbW3URapmMJggpa+dPV2T7oXPxFAJMIfADZ+ASBgFIjVCa8SQnjBKE0kxPNfmmd30NWVZQIenOzGLynMlgSJFnaFdZk6aTXUaKKUsqUzEZT9ja3MILFJtbm3z2xIt4vtNNelJRZG47rOXBg/PMzU8RBNrp6rRHlpfErQaqMlDmVFnKyVfPoqoSPxAo7dwOJRKMK+58zwVN73bzv4zx0IPHv+z3fKnxz/7pzyOALE3pb7uCJo4Szp07445hmrK2tkpZ5sxMtVi5eoHS5PTmZ9BaABlB4KGVgmKZh+6fZXqh4uKll2g1ErT2mO5Nk2YThsMBSvnuGsEitIPhbVWSFxnzc/NsbW+xsbHO/PxeTFkhreTV0yeJ4jalyZhZ2ENa5Iz662ghd/WtWuldvaspC7T2CaIEpESi8bWmMgVVkSOUR1HmLsOxKhH1JK2EwkgoqhIVtXjw/rdy6eIFwLL/wEFuLS+TxDFXr10m8Dy219for96kzMdorbi2chGMYWswImlMOUZGlpFOXPzCcDR0OmjlgYU4jnnyqSfIzSb37d9DWzsXz7IsHNNHOAdXBSgvAh2SFhYlK2yVA8Yh2gJWVldYXd1G65hOu4snfba3Bwz6A4aDIf3BkNWVZYaDLW7fuIigrMkJgiodIbKMdJIhGnN0Zo/SaC8ynhiM65GysnqbKIy4cPEcZ85fYMtOsbqxxj/+qR9jX3eZQ91lNrdvYa2HbyVTwSn+3o8+QN6/ibQFka8xo00aPUVQ7SPWgv/qx4/x1Ke3uXH1OlSGST6gsCOEnxPrkqP7p9lYu8zH//hxXnjxJLKO7Zidm+cDH/wQvZlZnnrySfrbW1y/sca+o2/DiwJCXbBx7Ty+8LEy2j3XbZ1z+p9q7Fzj4m4d0V+B8RVa5l/iuBct882oFfd8/872d0Qg3E3BvNO4pKp1LDsdUMvrcPHddM47aZt38vtFDUPfGYVwN8H4yxWi3uuVXSj9i/Ce7T3+n7oH5H63Xu/u77tb/Pp93/OD/FCxyWMLM1/we+7+HQLrijoEojKIIuPyxctMJgXtpEWalkzP9LDa57PPnuYdjx7j5JlL7N+7QCOJWFvb4PrN21y8cYujB5doNSParYTR2GlW4iRi0B/WhgA+p85dpt8fEkcRWZbTSGIqIIoDJqnLBfN9n82NbaIoQEmHAFHrsLRSvPTqBd79NY/Sm+kQBR5RM0ZIQZZOmO60WFqcRfvadek9xc3rG2jhE3oJg35Kp91iMnGmK0kjrl2/eH0xbpz+yvN8Bv0RUsBs/V2HD+xFKcXVK7cZjcYcOrjE/GwPay2DwYgw9KjKkk9//iSH9y2ysDDNVn+bdiNy+kHp9DhH9+9hPJkQRkFN69Nsrg85ceoc9x3eW2uunHHFR/7kaR46sp/Xrt3g+H0HeMsDB8nznDAK68BbmAzHFIUh8AOk9hgOxrx67jI3b91m73wP6WlMadFCYLKUzc0+QRQwO9vDD3zipOFwL2swVQXSkqYTAt+Jvj/yJ0/RS2KarRg/9JyboFKUZUkQBozHKRKJH4VQ561V1tYmJZa9c1P80TMv8K3f+DZQhigMabc6hLFDSIIoxOKc4bRy2HuRp/ie5sNPvMA7/9oC3/joXkbjCd1Og631FYpJTtCaQUuFpMIqp/14/MVz/N2f+GkarRYIePX0WZ5+/jm+LukyO9ejkYTYyjI3N4PSioP79zI11SSKXIh0GEVuYWcFn3v+JE89/woHl+YJI99p2IzluRMvo4VAINjeHLC6uuHO3VBDJWq9WeHoLZ5POprwR595mr0L80RJTKuVILVCKWfQJK0AJXYRU1mbO7i4AlUjm65BYEyFVIIkiR0CJly0hNYeZVFy8eJVjLG0262axg5Uhv379rjCszaEWV1eY9Af0Go1dm8qQrhAcK0lc1NdwihwBZsQIGRthKLxAx/P83YRS6UU1jjUGMAUJQhnUkFtGODdkXMHoo6HqE1lhDN98XzP3cukQy+FEA6Rtg5JL9IU7fsoz+PW7RVarQZKCadfTBJsTacLfB9TWpZvbqKV4tQrF9lc75PnObMzXUpjkEohsZg8Jy8tYewzPdMjCgMXJ7I9oNVu1mYykslkjBCWPM8YDsc8+dzzdJIGYeLfYWDgNItB4DtjJ8/D2gpTgRSK3//E4xxcnCeKIxftYErGk4lrKGnLaDwmDH2Qkt/92KfZv7BEu91FCEm33eHw/j0IKZiMJnz80kU+dGgvfuCT5ynNOEAHHsIapyNF4ocu9iErxqSpcxmcnemQm4J0MKS/vc1wOISyJAw0tp4/s/GEIPRd3M/rk8cXTmZ3jjLnfT/5E28619xrfDFLdoD/99d/k286/D6ssIQ65Prlk0z1FgiiDlp7hEHIeDyi2+5y4/plhls3efj4I4wH2zQbXaQvUCIiS2GUDfnVZz7K+to67330W9mzeJjRIKfRiLh+8wrTU7Ns97cIA02ZDRzdVUhnJBQ3EUI5dL/RYKY3zXA8YXX1No04ptPpoT2fKEw48fyz5NkWb3v0bVRVhqz1po6GaQiD0DUajMFP2kg/wpSwvX4DX1ZIqTCVRFZureN5HpWpEEjSbERmoJIBt9dWacVTzM7O4XkaLwgACZVhYW6ercEmSahpiAzlSfYc6fPI3q+jNIKgOQvCY5IVRLHLZDSmRtiVCwq3wM3rV+g0G3TjgnYjdKgj1RvQSD/0yE2BDBN0EKM8n8HmbaicaZUxpVtzqQaTXCHDFraqaCYNhqMhzWZSXy8jZudn2Vi7ge9ZwtDlvCIgrxTjTKDDHkGyRJQEGFuxsnGbhfl5wiCi3W6zsrLMzPQsD84f4+Of/Qf8/r95im9918P88N8KiIoF/Nhppg2GpCHATEiSFuMspawqKA0bwy0Sv4svC7LsFh/8ru9jfq7P1vYNbBUwHIW88OImrSTm6pV1zpwfEzX3sG/vHPv2H6QS4Pkh09MzvPLqa1w4f4rzr53jve/+RhpTDa6ce5nhxhrCCmaOPoRRPmqnoLtD8LZj7nQnHXOHRvkF44usM+9F39yldso7rr8vsc58k6/5C6NlfqW4+0sc9yruvpyxQ6G6M/fmnjf6+jUp5a4d7K4t7L3ed0cxU9k3xkPuuLfdGWz+JQWqb7ZfO699ke2/iG78nsXdvRooX6q4u/Ozvue7f4DvX2hzpNf9ovu1+9xaEC6Lamt1neWbtzBVyUxvGis8PnfyPAszPYIwYGm2RxD4dJIEJOR5idYQBx7T3QZJHKOUqG2/fbT26G8PkUoSJzFSShpRSK/TpNlsMh5nPPfyOY4e2uOOrXK6otJUtJvOBa6qKnzfY319QLMVsbU14PbaFksLMwglSCepMwKwJaYoyEtDq+MWq6UpEFQ8f/ocs90OfuATJQGVLZmkE4IgYHVl002elaUqy9rcxEN7HqasuHDlBnHgM9VroZRz1iuykiRJ6PbanD57kQtXb7J3YdY5q/keg8GQ/UtznDl/lbm5HoHvaG/9wZgoityCW7pzdzge02gmpMOcP33uFOuDAccOLDIep/hByEc/+TTvf/fbuLG8ymNf9SCWCu155HnOyso63U5z12Ciqu3fT796kenpNnsXZ2j4muW1TbSE27c2+PxLp4hq2+o4ikBU+EEEVpJlYyQG7YcUpaO9YRUSicly5md7zu2xLrg9TyOFcwbU2mXV+VHowqqxaKUY1BEZYahZmunghaCUC5fW0nPBz57vstCki0YwRVkXj04b+fx4yPvfsuRoobbCkxbKDC1DRNhk2N8i8BVV/bs+9fx5HnnsGwnDmHSS8fXv/Xr++nDEUy+c4oEjB5DK6T8maUYYhwglmIyHbG33abXblEVeU70E+/YscWTvEu1Oo44bEGAlt26tsLK+wcED+3jhpTMsLc7RaMaAqSe7inScEoQRZVGSpSn7lxbpdFu1A2hFaRyFEiGwxmKti1qgslSmJBtP0J6HVB4Yi/Il6SR1xwUoS4ec72Qj5XmB73t0O22iRuSAUCyT0dBpzKRDYmt2Lo0kptlqOAdNIZ1mTjqoUEhJGAa7NNCdm8kOPVXUur80zXe3c7ldjtpZliWeL12xUL991N8mqCMkXIea3c8BRzF0hZ6o8/nq8HUqFwZeVWRp6poBYUjSTJC4QlJg8cOIMApIGq4hMeiP+fTnXmRxvsvSwjxRENCfDOi0GiitKUvjci8Dn1u31+l0W0xGE/I0I00z507rOa1aWRpUXXwrpYjCEIVgbm4GcMX2jl19kRfkaUYQ+JR5SW5K/CDk8Sc/x9sfepDTZ1/jcy+fZmF6mlanRRiHVBZ8L0ArHyU9lPJJAo+p6TYCiykLlCd3EU7f8/nlZ5/l6GjC4lyPMi/wPIXUmv72wKFvyp1b0lN4QYDvh84cIwjxg4gwjIgbMc1WEz+KsFJgyoprV24RaIkfBwil75gsvkSxJiT+177zTeeaP8946OEHWT6zARI217bZWD7H3n1HefaFF3ng2EOEYUgYhFy/eY28GHLf/UdpBKouipxGs6wKjLGcOXOai4NbbGxu8uDso2xub7F3/14m6YiiyFBSEfo+vieRZeoQN6CygkIooiihkXRZ31yn0+qQFQWtpMFw2McPArTnMxqMuHbjOg89/AiNUODVBkPWOtOnHUo01hJEEf1JThA3XM5dMcKTznDo7NlTdJpTThtrChdgLiTWVLz48kk2NjZY3Pcgm6vr7N2/n+WV2wRhRJI0uX37BmWeOfquKDHjdf6Xj/8aL13a5p1HHwU0lYpQyiG7WivyLEcIyebWJkp53Lh5nXarzd6lJSKtmOtElMIgvRAp2KWbOmYHu2HoUjp5gpYlskY8d7Iur1y7ipANenN7KE2GtQ65r6qSwWBAWRqiuEEcBEhhqcoCrEYrn+bsfoKog/RCokaTIk8Jg4DZ2XlG45HTRUtJXjhjpFOnXmRuccTDh/Yw083ZvySJw4QgCtGeJGnHZLkgjNqO0SMAqfCUotFqk476+FojkASJRVZO6xslU0z1FvmjTz7NY489wuXr11lYOM6kEPRHAx548EH6/QFnz57l1TNn+PgffIK/+2N/m0P7DrK6ssVLrzxLQ04oxgOysuTBx74Rg0bfY7X2BQXZDnhxrwvlixR399rui722M+61Fv1KcfefyfgPKe5cWlI9al3J3SfcnQgc3PuE/AK07i6UTlhbC/mdLuZ1YegOxihqGM9R1u78TLfw4A1C13uhervNlt2FkIs+uMM19p6Pew2L+ILt7jZZudtg5fXC7sP827/2Vo70urt/14aUqsYAACAASURBVC/4PRX1bxbY2tr98vlLmHRCnhmkDdBBSLPZQWnJwmybZiukvzlwHeiyJPA1+WQCpSHy3I1YS8E4sySNmKIosdKgQ0dFGY3GKKAqLZ72GI8yLl6+ycLcFK04dIvsIEBJwWQ4IfQDBqMBURRgjGE4HFOUJa1OE2MqDu1ZoMwm5JORCyauu15ladjc2sYPE0xhECYHT9ENfTrtJmVlmOQpMlBQKj7yx89SFBXdpEFnKsFa8JRGKkWW5VhtmJvt0ZlqoX2NFZAXhjOvXaHXaqE9xfR0h8n2GDC0Ok2shjhwpjDtVkychPiBh5ABFSlR5Czrt7e32NoaMjM7gzXOTfPogSWO7l1ka8NRYzwtOLQ0x9rqGotzXfwwwEpFno7RnqTbbVKWOUJahPDwPI80HbG0NIuP4OTpC5y9uob2JLPTbbQnycYpvW6E72s+9vgpDi21KMohpSnwg5jSChd2LT2UcHqzMhszPzdFWRToGq0Lo6g2RLAIC6PRhLjVRGCpipKqLKjKHCHBq/PO4sihin4UU+Hs6JR0rpNCOx2KFs7AxFrBZy5d5r6//hDf8rbDREGXShf4oWG8krM9Pkdr5hhUUJYCP4wxZYFVFZfkQR599G0Mh33m5mb5hV/8Jd7Z6fLwsUPOdbQoapqdozCWeUkUNvADwXgyxNMeUji64HOfP8nmVp+Z6Y5DRYTrVi8tLrBv7xJCWeZnp2h32wjhXCXTPMUY44LShWIyzokjHxU4E4VrV67TSHyCwKE6VZ4y3NqodZaSsqycEYMfIKSkyHK07/RqtlQoqUHU+i7AutUWSimKvOBjn3qCme40UStAWChHI1aXb3L23HX27lt0jY+8QAUa6blC/Pkr5/m/X3yBX3rpJL/z2ms89N3fwdObm/zK08/w6y+d4bdOv8pHzp/nN8+8yu+eO8dvvnqGj557jWK4zYMLi1gLRR23sENRTSeZc8ncWcyGEdYUjAZDwtDHliWlNWBtfcwtFWYXsRO7aJhAVJKtzT6//akn+Oq3HN/VY+5Quq1QSKvJ05w8K10xqy37F3pMz04RNiOSToNA+0jt7oue0ijpMZlkPHniFEcO7UEL14iJmhFKevQ3B7z22kWmp9qEDUctj5MYYyumpjvYKkdpt9jNJjlpOsAPPIo858LFqwjg6tUb3Fpe47Gv/WriOKQVhxxcWqLX6zqtYwnFJEcGPra05GnBpx//HAeOzJE0IrIs4+r1m0z3pp17aOAzHk24tHyL73nrMaqyQnsKU1XkaUmRGbTnOaSxknjSoywyBBIhFC60XTk6oFZ1rtpOsLyg2YgYDgfEcYj0/NfntS8yrIAff+ok3/69H9il+Svxxigjc5e22wrqe/e9NT/WVvzUT/40x5eOU0nYXNnAK1YIGm0O3/dWNrZX2NzcIImaVLYg0A7R706FeF7EyedPkPsNOkkExpLELb7+XTnvP/7DhM0GBkElDCu3bxGHCY1GTGkLdBhSZSOEEmgld+NLbt2+QbM9i9YB/cEmUeQRhS2Qikk2IokaLF+7gPQNVy/fYGaqgdIWcgh9D2Oc8ZKwlbtmhUCYiqTRZjQcE4iSInWmZK2pGUw5cf4BtVsrVBQYwqjBsJ9y/KHH2Ld/P8PxiKTVRmvFlUvn6XQ7tBptlm+exbMpyhqeOP88whjeef9b8BrT5KUmzXO63Wm8IEZ5ASYv6XS6BIFPtzvD+fNXOH/hDKdPf569e5bwFWhpwbh5HCkYFxVPPXuRrIKFvXsxxkMoQTZYR4ocigpKQUVGakK2RjnddpcsnbC1PSBpttjc3GSmO4VWkvGoT5rlJM0e2+OSRmeOUjcoS1jb2KLZbGOKHCENw/HQMRtK2NxeISsneLLB6tprmLTP7zz9DH/ne/axfOs19i4dADFmkk8oioxJNqq1ZprBeBtbGjxlCYIOWgZk5Qih3So1T7N68eUR+D7j4SaPHl/CEx5zMzNcuDLi4088hcldA+Gxx97OI488zPHjD/Et738ft2+OOXX6Mr25JsceOsjls0+xMB2DEBx4+F0IP8Krje2UdKBFZe9at93B9trRyMk7C717LSjrxeEbgQ/3rzvNUnYed4MI91qz3tn8cx8O4kuo475iqPKf0aigzoR6fdx9Iv9VEXgOByOMKb/0hn/J40Mf+Bt8eLH9JberBCAqBBXSFgzXt7l+a53KCFqtBnE75ubKZr14srSaCUoqmq0GSRztHrdJUWKlcM6GCNKyJGkLhuM+AksctBEmxljoTrVZ2+ojPQ3KhWHPz3SRSjI332NmpotUYKoSpZ2luO8FFHmF1j6eF7AwP0s6GqNrgfYwLYgbbZ558Qza86lKVwbvW5whjjziyMcUBb7WTHWnWV7dQklNI26AEZTWsDTf5dLtdS5cXWY8dtbQ1lqsSaGcEOqYQPuI0iGc6XhEFIbcf3ifs5TH4gcem5MBvekprBVQKedyGXoEcchkUlAU1Pb52uluTMXy2kaNQOUIKsI4pDAZjWbIlVsrbG0N8DyPuB2zuHceP44ZDFOKwt1Mo6iBEIowdB1YYyfkeUaSxGQjw/rGNvsW5ziyb5bcFCgpyfIJDz9wmKnpLllZMD0VobRH4MUEulnTcVyWXk3YpbKGwlaM04yolSB8hQ58jKnI8pw8z/EDj6dffpUb126AtWR5jheGKC9AaR/peZSVpbSWIPBcEDlOvG+MQajaxEdAZQSg+L3zF3no/Q8gpcAPFKVZocgmaOtTVWuUeQupNV4UECWhyyqTgieev8AHPvDtFHmGkpLhoM/jTzyB5yu0p5DCUYrCMMT3fYqi4HMvvcza+gploWgm00gRUlYZTz51grmZHg8+cAQvcAhGkdc6U1zA7h9+6k8dYlqzCFyGnQtAL3KDKQ1JM67NHzw832NxYZ7JaMTWxhajwRihfZJulyhMUNKrHWglUmqwAj90xlOVsXzs8U9jMWhPYurieQdWk9LRQd/x8HFaSYKwFlsJwqRFmLT5mq9+q1uk2wovUNiy4gc/8nt8+CO/x+9sj9nuze5GMPyjn/45jl69ynfP9PjB2GeSpVhjkEKyMDPHT//jf8D/+X/9Ch/+5/+EH/rox/jZxz/JlY0VirzYNZHxfM9ZuJfmDoqQJmk0MaWL0nBZgK6z73ItldvFOxkX1pJOJsSNiG97z7vcfcxUu3oR7enaCEnwB5/+DOsbG2hfE4YhjUZS/2awxhB4zriiKJwOKM9zGs2ERuw7baf2sPU+KC2Zmp5ieqrr5iQUSdKgMhatNVo6h9HxOHXa0jjGC2KqCuJGg717lpidn+PooQMcObAXXeceJs0G65ubZHlGhSHNU0prqIqUymZELZ/7H9xDM2kjUPi+z8EDexkO+yjtGnJ+GHC2KJFSEYS6pvE63e4ffOYU166vUVoQvqS0JaaA4WBSa0dBCFdUVcYwmUzcf1eV06n6Gq1Unf/3Zx8zWr3heXXX488zXj1zhsoaKmMY9FeJGlNoHZJnOVEYc/X6ZQDOnTvF+Qsvsb1+m9FgjKXk0APH8G1JkeX4ccUvPfmr/Itff5XBYI3zZ19xNHXlMzU7y/TsHP3hEE/7BFKDkFS1+Y8UEg/YM7fIeDQijCOa7Taj8YjxZMzLL79AI2mwtbXFsYe/isU99zE3P+tQK6EQkUdWOT1nZdx5LYVwtEw/YDAYoANBaXLKoiLQMZfPvsat1SG58igDTSkafOqJE4xHmtX1MUZGXL15kcFgmzAM6fe3EAIOHjhEWRjKImf/nj0oadG+x1uOTPO9h7+VohRMsgqpFM2mKwhVHdkTxi5fMq+ZC1EU4KuKw4cOorR19HAjQCkKU5KmY6oyY1Ju0Wq3oXIZfpWZIK2hMhUGCxqE8jj72hluLd8mjBNQkiCJ2dzcoN1qs76xztrmOkmzA0qjg5DZuSX8KKHdbuN5PkuLSy4bV2t8FaFlRH+jz3g8oRNNIbKKT/3+7yPLCaGf8dXd+/DVgHe/8wHC2BC3fEDg+wFra5uEQYSSmjJrkk8SlGwyHk/Y3tpGS01VQbPVwhSmpmQLSuP+dlVVcfbCKSo75pN/8nH+p5/5+zzwwAO8973vodfrYSrD8u0VLl84S5n2WZhtIU3KpbOvoYIOxirSyYjrVy/i/9VY6n7Z488SvP4fMr6C3P0ljj8vcmepLVjvQMF2tHSm1tbdTaeEL0HzeDOdXK3Pkzt0zDv24d579sbheS709d5kyC9j//6M457o5F3P77Xv5z7+cf7mQ0fvueGdn2klTr9oDKOtPv3NEUkU8swrrzHdaeGFPvO9KQpT4mmFlILVtU0kgrMXrjI/2yPPCoQSeJ5HWTpntcpWDMYp12+tsTg7w8rqFkkSgXSL3f5gRKvTpDQVr569wv1H91EWJf3BkCAMGQ7GSGkJQ5/ReMJ2f8JoPEErjygKa+F3SqPZIMtLsrSkAvbMTrtgZSXBgictaV7gLLYNxgr6m2M+feI09+1fJAgD0jQnakRMd9scmJ9meXWb05eucWBpjigOKPOUwWCbpNnlzKsXuXz9NknkOuFBGLO2sgXW8vTLp9m3OMueuZ4LQ9YaU1TOubKqePLZk3SShEF/RJKEKE/gaafbarcjPAuTNENrjRcGgKO0zc9OE0cu00ppQZrmDqFE8sJL5zh39QYH98yBcMWGEI4u53setrblv3Z9mf37l/j8yTN87aP3Ezci8iIlDmPSLMULNEtzcyhpkUJjjebcxcvMznaYjFyRrbQiTVPiJEYo5VCkwmWLSSHJ0pwg8LEWGr7P/n2LTmcXBDXF0rgOpHSFlVbKoTjCOWEqJdFKUlHVZhuSsjD4QcifVls89uA+kAIhKmyxRWUUZZazvXmNVusAYasFQJYX7hyQkv/ml5/gez/0XZx6+VVGozEzsz1+49//Dt95+BBVWVKW5e53SSnJ84JD+/cSxj7jQcHTz5xkbraHFwimOlP4gc/yyjKdbhMh1eumKXWx9vKrr3FgzyJhGGBqGteOGY7AHZfKGNeGtJbRcEQchzSSkCCM3DH2g9powTlias9H7KD/laEszC4idv/hgzW1sqIsay2aUnXwtotnuXlrmf7GgE63gRQaqTSmgiuXrtNsJ0gp+f7f/V3+dGWVwXDIty7M8d++/R18w9ws33nkKB84dh/fc/wBZlsd5pIORw8f4HuPP8h3Hb2P73nwOO/bs4fO7WX+9j/7F/z6b/w2P/Pf/xTf+UM/yHhpif/yF36RF25c55uPHHHxEFLtmsYIIRBWOKom7n6stHIxDUJSFK9v5xz9atqXMfzxZ57h/qMHXQ6itbVWhF2nSoQgz3Jmux26Ux2quqD0fZ+tbdco+cQTn2W+16PZShzVsih3dAEszU7jhx5FURElMUJUZOOcPMtpNROkrAHIyjr0Lo4ZjyfOmAXrdJXjtG7opAxHE4IgrHV1BXGSkBcFeZaRpjl79iy6rMTK0XiNKbl1Y4XVjS0aSUyn20IiGY/GbgFVywiC0OXoaa15uBnRlhXbW9sIKbl89TZnL94kTSsO759jbn4a5dUa8wo+//IZluanUbrmyVpBVUc2OO6s0/RIAflk4rLykvjPOHHBL5+7xvfVMQhQU/7veNwr+kd8ETnGP/+5X+A7H/pe4obLNVu9eYlGFLK8vkG7s0AUBSRJC4F0ES5lzsGDRykmfbzQp5E0iHwfT2uKsuAzZ19AAt/46HvYGmT4YYvFxSVanTbGGJIoQgKXLp1HS2fzb8sCrTRlUdAf9PHjDkGccPv2TVd0qIClxb2sbawSBhFWSD7z1BNEgWC6FaMkbPZHxEkDr3alxdYuhQiE9FBBgpSafDRAi8o5ZAYJ/f46vakeFoMpLYGv8fyQW6urTM/sITcFt29eY3ZugThJnFYyTV1OoYLB9k18T6Gl5mb/LD15CALL1NwhrIX+YFCbP8H1G1cJo8AxBqTmypUrvPjic5jJCktLCySxhykKpFCgRB2/IZBCcfj+t9Bqd1AyoKoKqipFldnrdG4hyIocUyn8sE23O42xJZ1ujzgM66Zk4iKSTEVvahqEYDga4fshm1vrRGFMURgm2YTA82vaaMflSw62SCLNeLxBOthg775ZFhcXSdcnPH/rCg8e1Jw6c5rpmXniuAlUJHFCGER4fsALz1/AUxEzsz1sZRBCgaiI4ojt7W3ipIPnid37bSNxc8FwPKDZbLBvz31sbpd86skXmUxSxumQPUt7OXHiBJ6wJFHMrZvXWF+9zQPHjvDww/dz+sWnSLMx03uP05tbQkr/DdfBncjdF4w7XvuiyN3ONXYP5E7e43PvlcV878+6K57sS6yNv0LL/P/h2Cnu7jQzeZ0n/OZnioDdPJ17vbbz+IJxx0RRWdctv5u6+YbPqvdjlz521/c4iPt1+29RZzB9wbffAW27C8oi/wI7FnePnb2R8t4GKz/6N/4m//BrHqr39UtcoZVl+eYyq8vrbG/0mZ7p0Ww1Obi4wCvnrzHVbuBJ54C4vrFJmue0m02H4piK9fUtNreHrKxv0W408LTHH372BI8eO0SZagbbLghbeRVG5Hz282e4fH2Zo/sXMaZia3tAM4rIi4KizlxS0uejj5/gwEIPrRWTccbTJ8/x0H0HaTQThIBbt9eYnpnCmIrPnjjFS+euMxmkHDqwQFkUTteApcxzqLv4t26v0B8W3FreJi0KDizOOMStrBgMRkSRZnV9nf175jh+7ABSS5Sv0RKKPCduthFAb6qFVIJut0VZwGdOnCbyFMfv348XaEajCekkYzR0we1nz12mGUeUZcFUp0UU+iAteZZhK5ehhywoiookiV0OmRBUpcVawfraJlIJLIaiLIkaCZub22xtbBOFitlum0bD6RuttSAsXu245QUCU6VM92apjGFpukUYuTBiIQxax4wmGUkjRlnBzdvrdLoN1la36LaaTu8lJGHiMvMEqr4eFVlWEEWRe6YkuqbPlUVJs5lgqloPmGVOQ4drjrj7g9MNjQdjPN93BhKAqBPLPd+jyDJ+6JlTfNeHHuaR/VPOUlsprJlgTE4QNOlvrJE0NMKbAaWRSuL7HkVeIKXmt588xwe+7Tv4ge//MGdefYUPffC72H/2HEu9GQbbA2fL73korUnTzOlBTMVwNCSMErKsIMtzOr0WcRhx8/ZtDh85UGs63DSmtdrVsx07dMBlGAr3N5FKUhUVW+tbfP7ESebneoRx6GiTO/EIuFovNy6TCoQr4ITC8zQVFqT7fGsqZytubZ2l52z5y8K57dlKYHcNDlzR02416U33sMaFLBsEr5x9jUk64b977nNcjAKuXb/Bv33/t/DBo4d5dGmPKxhr2rqn6ww6ISlSw8bmBnEcOVpZHXxureXbjx7lu44epbe8yv/6i/+Sf/3RP+D+I0f4mZ//p/yT3/s4//Izn+Fb9+8jjJzu0EVg1KiccCHqReE0OTvCPFOWrmCqql00NM+yXSMjcM6alcXlZ9WFYmUMfujtmsMURYkX1BmbSUxZFBw9sI84CN1vqJxmsdVu4nkKBPihxtMBw/4QpcWuMYoxJZV1WkN3vmnAsr62QZI0wbpAcCkVpjBEUeSiLpRE67ows257rT2Go5Rms7FrQz4cTvjo40+yb2aJo0cPoaVGaY0QwlnZBwEI2NzYYjJOCeOIdJzy888+x/v3L2KKksefOcnbHryPg/vm2L8wTbvbAFFRGuem6fuaPQuzrhkjXNzBjq6xKEo3r9THN0snbKxvsbB34a6JSLxxjrlzgSjgty/femNxd9fU8+UWd8/+xgnuf/B+Slsy3hyycvl5wsYMS3uPcePmMsoTXL16mX1L+8mLlGuXT9Ob6jDd6SCFi4/QUpAWBdtbJZ986mP8jz/8k9y4cYVxWnH52k327t9HVmRsbqy7xor2iJMEk4+Jo4CqLJzeUWuiqMH5S5eYnVkk8H2uXL1IrzvLaDyi3W4SRw0qU3Lh7Gscf+AI7STA0z63b64ShiFgMZVzmVTacwiQAT9qIkSMlhVVOQRR4YeaqW6LQEmUASlymk2f/mTMYGyYmp4jS1MeeehR8jInTSf4gc/21gadbofLr71AO/GoqpKnn32ZE9df45u/5t3oYAqDD1IRhjG+7+MpxdTUFJYKX4Xcvr1C6Pusrl7g7W99lEbkI61hRx9bVcYhj1WJVAEqiJHSR6oAa8ekgy3G4wnXrl2m2WlBZfCQxM0O5y+eJY47dLpTjCYTtID+oF8XWj5J0mRjYx0pFEEYUBpDFPisrKzQaXecTn51mU6nw3g0YGtrlTiE4eAWrY7HnvlZQk8SeJq5hR6/88zTvPvtbS7dKHnu5DoHFhNMVdO28ZDSp781ZjRMabcbGEaMhil+oDGlwVYCT8cI6aJsnnnmc0SRY2JMT08hleD/+NWP8dFPPk9/ZPmW938Tp0+/zHve814OHDhMo9Hmmc89xYMPPcCxYw/wB3/wCeJmF4oNTLZJY+og+w/eBzp0zZb6Pix3ENV7LOHezJDvzQwC72VSuLN6rYzdvVDv+V31vFUvonf0R2/gajpDvjeHP75Cy/zK+Mr4c4xXXj7NO9pvnmN39xj3R2xtDPGVz96lJXTsXA/TtOBr33qcRhACguFwTLuTEAU+a+vbPP3CqxRFyfnry2wPxhS54datdUb9Me986H5GgwmdWZ9j9y9ibUXoNYh0F5vDbKNFVRiUkHSbDdrthG6niV/TtpT0+Kr7D5FmLsyz027z7rc9QIUhyzOKsuDZs+cwVlIJwTseuZ8PvPftfN3bHnTW0RjSLMX3NV4YUlQG6WviKMKiuLG+xTd87SPkZYatSv7k6RNEXoApc/YuTmFthvbADxWZqai0j/IjCgqmZjt0pzu0Om3SvKSyEPk+U50WQRTgeZqysHz+lfN0Ok1GkzFrmwPi0OfovkWaDZ+qclbcjWbDuVlKQVEUxN0uMgzJMtflLHNLmVfML8ySNAI8X+JrH4Gg3W6xuDjF/qUu8wtTKO1y7Yoyx1KBHjGZDMnTApuH/NETJ1he2cAZB1mKosD3PLLM8PEnX6KqBGlWsDA3x2A0YHO0wnickSQdZ0iBsxgXaKrCUOaGTz31IiY3COvMO7a3B4DLwxICVL0IlVLgK9he36KY5JRZhrQVVIYoDqmM2Y0/SScpQmiycc6/eeU8v/Jj7yaMFI04wpYWayyjrU206LG12SduepQmIGhLhHXhuMs3b6GEs3L/9ve9j2tXbvD//Nqv88v/6l+xtrrGVx26n2yS8+xLp1BCuwU3LlOtqlynPAqb+L7k/mP7OHBoCazC2JIj9x2oHSxVraXdmdNcUW1qM5unnn2e4WBEWRomk5STp86RhBG+51HmGaUpKYvSrfOxpKVFaN91iRFoCUIJrHARCpXLMNhRAe9O2sI63ZTvh2jtzDe0p2uDEru7QMfzkJ7EFBm+FrztkWM89MAh/uef/x946aWX+a3v/l6krJxeTFmsNEgFnhTk6YTxoE+VZ0RBwPzsnCs8fUVRZhQmcxqq0uD7HnmW8yPv+mv82nd8B//o4Yf4/h/8YV559TT/7t/9Kn//hRf4vt/6LajyXXMUhFtQpFmGF/i1UZZyAeJBQGXK3bgGpSRhHBInkbOFL1223o7epKpMjZZKitxdC7aqaDQTpJC7KKgf+K9HHyBqXW3G+sY6eVlQ1eYwZZETha6IK8uSyjqEVElJUeZUxpk/mKokigNeePEV/CCgLBz91FOK8XCILUvS0YhRvw9SkGUprWZMp9um15tiMs5Qykd5Po1Gk/e98zH2HlkEXTEYbXH1ygUmkxFlWbK5ucX25pAnnz1JGAZ14aj42fe9n/FojFYh0422Q3E9iGKJEoatjU08qVBIbt66XZ9XFba0KOlhK4tSrqGgpMTzPBAW3/eZZNmfrZX/FzReOfkq737PNwBQVgZlXZ5lZ2qO7cGEVqtNGMS0mm2yPOe1cy8798zIo6wyPO3iN7YGGRcvXKQ728brtilNwez8HrrTM8SJz8bGKokfkMQNer0ZUIqk3UVIZ7hT1edgXpV4oU+73WXc7zPY2KDV7jIaj4lj51o7Go24fvUcS7Mz2HLCeDKiKA2Hjy4RRqK+1jwE7tyaTMZ1xqTA+gWTrO+uY2OpChhPLLmpKESJUg0EbTZvbXHfwa+i257m2JGj3Lx1A4Ber8dw2Gd+fpHKlsSRjxYWLSWfuvEc47xEBR6D0Zg8z0BIgtAxYm4v36LIC3wvIs8qJB4vPP8MgoLQF/hKISqQWiI1+NLlUILCC2O09Ai8EOVLSpMSehGjNGdldRM/CIEKVVaEvmCmN0UjiimzAmkl49GQhfkFxpOJM8Bx+Sr4WpFOxlRFTmUtg+GALMu4efMGZVny8oun+OyTT3H+7FmuX73IhZMXEYVGYpyEYjKmQjDKKoJkiU8/dZWTZyVaB3Q7U2jlkRcFVWU5/vASDzxwGKEKfE84/bXnDMq0FyKVIs8zulM93vGOdzA7N0u/v8XW+qZj1TSnWTz8NezZs8SNazf4ob/1Q5w48TxFlvHK2fOMyoqssjz30iscO/525hYPsz0YY8qc7c118tFg97zX2kUQ/acaLs+4diT/Kza+gtz9JY5dWuYdiNq97FerHUFwbZyyg6Ldifjduc3dY9ds5U6zlPp774UavsFk5U3GjtnKG4XiAqjNVerHTpbLztgJo/6PMe42Snmzx+vf7R53vvYjP/Jj/NTbH2ZHLOO0Ie4frMAqiVACjIGqYmt5k6QZMzXTBSUwpWBlZYNzV27gS0mzmeyiE0prTCW4dmONpZkOSRTiK0Wvl3DsvkP0Zjr4viaMArzAw8qcOOggPQVeia08ZjoRCwtTjk5UKgYbY5J2WHcOQ4IgoqxywlDjK4FQEi8ICKMQDYjKkBU5sR8Q+6rWvmUkzZi8cPQ6z3fue+NxipCaOIpJx2OQlkiEzM81CAJFsxm7Dr1yOW9hGLosKu0Wy1mWo7BopQnCGvkLgQAAIABJREFUCFG5xeTG+iZJElKWBilh/94Zp6OqO/VSw2KvhTEljVaTuXaPvCxIWglCSc6cu87NlU2mp6ZqY5YKU1KjUs48I09z/ETsUsM8HaG9CCsMw9GYMPBdBprw0IFgMizwfUlVVgirUF6CKmGwOSLuxBxc6tBoJFy9vka313DHE83K6hpH984T+B6IinF/QKfdoNlu0pnuYqjor2yjhHMyM6bE0z5ZNmH/0gxCVGilGPb7Lu+r2qHIOfqzshWmKCmxtHst0iJ3TnBCUFaWwI/RWjMcDhESdKABibaSa9M5jx6aR6CoCkf9HQ/WsGWGUBNkVSDzAblN0f4CSnlIz5I0p0BoPvbcK3zwB/5r/uFP/BQPHX2AUhYILQgvXqEoM+anpyhNQdxIsKXBFIYKwcbWNk9+7iQnz1zk8IGlulh13fUdWpGQFjDkuQsgd9efQHoeULF/3x4C3+fWtRW21wY8/PB9RI3Ada6FRGtVG4Uoytzw+J9+ngP75sjGEzwduG6y8l3wvQVTGqRw8QHODdMhd0ZWWGvcdkJghYFKQ2Fq5p7FKoGwhu2tTeKohfA1v/PyCX7+lTN84g8/ya9953c6xFcqENohX6XLFbRKoD2NKQwmN5x44WW8UBPGPlingZW4+I2dcHOt3fMdSuUHj9zHu1tT/N6//y2WpcfP/exP88zWkB/93/81n7hyhUu3b/Guw4fwtKaq3L26KFNX/FW2tt+XDPpjF1ItnL51p9gTcuc+bBES8iLDVCVpmuIHHn4QOoMQK50z7nhMGLhzUHkK5YVIT6F9TZy0qEpB6AcoJGk6QWrJcNQnCFw3XQpXYErtgZVIod35Xhl6zYYLVPddxqL2g10ECOvCrXUYov0APwwxVYUUoHxFZUuwlWt+SMvq8jKdZgstNJ9+8iUWFmaRCqIowFOKXqNJZ2qaneD45y+9xrwP6xubHDrommpK+lhysiJ3v0lJyqLg058/y4HFGed0KiFPC9ZvbhImAUZUTg9Yd+CtMWxtbtKbm37jDLQzDwpx17zptvrEap8PfuDbnGmZfb21v7smuPMhnWW/EF9opGaw/Mjf+XHe+5b3IhB4fsDq2jXiRoIII5rtJtdv3ibwQ0ajMWsr1xkNNuh1e0RBiFa6llJUCKm4fOUqt66tsGHWedfxr6Ws4NylK8zMH+LQoSO1m6OhMiXpeOyonKJg0l/HD31cHk+FrQyNZpfJpCQtUuZmFilFRRBHGGORFaSDgrgdcfXqDcJAEiU+wlgX1yIcYmyFQ0w85SGDiEp6VAUoWWCKHKk8tgfrnHjhNdqdGbQqsUpx/fZ15hb2MzM/ixcECBVw+dIl5uemndY1F2z2N0m8ED/MwVb4XswnX3kKWQkeu//ryKVHI+lRyhKpBKsrq1BnNCob8sKpZ0iaCStXzvO2Rx7AkwZkSVm7fGrtYU2FqCoqW+I3ZxClYDjaRnvK/b5qTCJgbmYKv6abu5gXSSsJqcqc22sjbl5f4dChw1y5coPpmSmkVGSTCc2kRZpmJGETKgUBeKEk1h0GmxlpfpNLl87S6yr271/k0IElel0foS3XV0ZEndgV0rnknfc/yt/7336LD33zfShGHL+v65ydsxxTlWANRTbAiJQiKFFlQrPpnKO1BGNSfN+SjYYMJmNSU1GYEpMXNBqzRF7I/qVposTj/f8fe28ebNt113d+1rDnM95z7vzm96SnJ8uyJVnGE7YIdoHdNlg2BhNCGjLQXV2dSkg1Xd1dqQodYgKVVAKE6rQDJITRQAwY22DAYFm2JdmarekNeqPedN+dz7TPntbqP9a+10/yk2zAqYS0V9Up6Z53zj777LP32uv3+07vvpcDB5Y5sO8w6+srnDj5FK+783X0Z9q0Ww1ufdVR7rv/T9g3O8fK+hmq4YjG4lH23PYapIpdY0o6d2FX4+52El/0+Jryn1dA7q5/iWuO2RqMuy4Wwb74hbv78bLr3nprjooD4sVr5G/SMv8ajhvm3N3oRKo7rTuw/k7Rdf1r5SsUY1/J4XgZXd3LjVeihl6nx3vl8V+ue/lXKRH/wy/+J379X/0MP/+W17x4m9cXogKQLnjaZobNa5vEcUSYOK0PhlqXotmzOEuv12E0GqN9yWSacnVljX6vQzktePrURQ7vXSbQHgvzPa5eWiVLM/xA40c+lTGEgcdga1LbroNWPkGkEZ5iWubgax45fprF2SZCQFEWDmkQnkMA8owkCZgWGVp5DAcj/MCJtMPQmV9IKXji+Bli32dmpkVp8poupzh99gqPnTrNkT1LWGMIQs0XH38eKSVzszNMsynacx3Z2d48n/zMo+xfmMf3QybpBN/3sYbazXJAHEWMRxM6nbajfQUBSss6D8ihJVVVkhclUegTRSFKa06fe4GFBZd9V2Ql3VaL+fke2nPOgTuNhx1dkVTu7+k0wxrwtM+n73+U+x5+mgMLHQKtkAh++w8/y55eB0RFEjdBGKZp5mhEpiLLUpejFAUYm1PkFUXhKHDb2xNsZVFS89izZ7jp4F483+NPvvAURw7scbbtmSFLCx5+6hS9bpMwqjVDpfu+XuAh65DyK5c3KHJLpzuDEtqZTASSsjAordGeT1kZxsMJ7W7LZacp6YwwTFXTTp2e6ocffJbv/f67OLLQQGuP7e0RYRihPctkuMk03aKqHMXq2rWrhEmLuDnvkC/p0D2JZH1znaVXv4U3vunN9BfmiNohH/oX/4Zvm11ASc1ge0S73WEyGZNnLoJhPJnSnelw85EDHD28jygJyaZT/NDDInci2hwtuTT4foBEkmfOmlxInG2+UmBcJlWU+Fy8fJlGErnuuHDaMYTY1f5OBhPiOKDRaPDgA48z02s5zWFZOlOWXTMLpy2z1pJlGVpGSGEp8hHD7Q08qShtjhUFCENRuqBwKTS+J1E64H/91B/RueN2Lp69wC9/13t2m1+Omico8hI/cAhXmbuQ8x2N5P59yyTNpkNkhaDIXSadUpClGUpqdxyc8LaeVys6vTa39Pq8Y2me4PQZfuKjH6XX6/PLv/Rh7vj2NyNuPcLmwgIffeY4H/qDj3NrK2S+1aEqSqR29EutFPd/4UvsXVqocyynu3RFZ6gCQiiKvMTz3PU3Go4ZbA3Q2nOavcohqzt01iIrOHXiLGWWo7UkCDyKPEMqQ1ZMoTYaqXJ3rbgi2lKWBcpTmMpS5SW2cudClLgYgyxzxkJV7sxJrK2c+YmCstYSWuOK9jwrOHHiDFq4Yt+PApSnefb4WXozXYSWLPR7dGba7rrTLvw6DEOkltz/wMNcubrCvz1xgjtRLC13MNYFzRdFjhQeSmnCKKQoCqwx9FpNev0OO9q9Lz/zPM04pD3TdFTiypngYCVllpFNM7qzvRffQr/GovIjJ8/zwQ++/6uev+GawFiEUje8R1vgtz/yUe557T0oKUm3h6xevUi32UJ5CZtrW+zbu8T29ibtVpvTZ06SFQXNSBFFAbbK3fwoFZ4ULM4v8qsP/zav672Km/YfoCwLitJwdeUKly5dZHFxybk4T8aUpUNzFAX5dITnOTdfjJvXskqQNGdptmcQSnH58mUaSYK1zqTs6sp5ZufmWb+2jodFC4Xni/rQiZpaLVwBLAUqjKiMwBhJlQ/Q7qaM5wXMLfRohMppIMuAp558BryEq+sbrKyuUlUVtxy9ldFkWDsoQhhIxlsX8aRBWdBKM6iO84Nv/CE2hxOCuIcX+FR5jkTSbc9QWkO722EyHdLr9Vlfu8Zcv0mnrfFkwKSAp54+TqA0gdagwCiFH81Q6cRlbAZOc2yLHFFOsVRurWfNrr7LVBVxGJFlKVvbq4zGK8zucbTYVrdFZSuUF/P4009gpOTMhTOcPn+KJ7/wHFqlnHjyfny/YHGuxbEDe5ifadNthIiywPcSlFI8+uiXmZ+dIQ4iSlOh/YA333Q3j554kO9976uJAkk6nbh8Vi8giiL8PEArQWkKlNkkyx0dPstzOp0248kEKWPSaZ/f/Mj93H//47z5za9HasPnv/A5ouYe/uNvf4HP3v8ob37T27DGx1SwtLDE8t79jEZjnn32OQ4dOsDy0jInn3uWayvP0oskxD3233wL0kuQSr34IniZ8Y0o7m702q+ss19581/Pfn2zuPtrPsqq+vGdju0O8vaiSIIdNA++gurV/71h7MFLxkvjEW6o6XsJYvii97+C/m+Xeyx27La/Mkztjqlqfd2N3vcNMU/5S77vw//ulyge+jz/6K5jX7VfdudY7ICQxqJQrF9eR1iBnwQgpetWls7QwHWyMpdN5XmgLNPplG6rwXQ8dSGmMyHNdoTnC8bpkE6jzfZgyGSa0eo2XLepAEtFlmWEYYy1BRuX15CVQFrJH372Yb71zmNM0pRGIybLc+LEmak8dfwM/ZmGs4+XAi0Uo7F7nVQKT0mCQLNybZ2sLNi/NI+1YGzFeJLSSBI6jSbz/abTsSnlIhisYs/yPHESkucFnu/TbjUpywwhK9qdCD/UDgWSzr5dKkkcxZw5c5F2u+nOE6mYTFIm46lbrFv3PaM4ZGtrSFDb0ivtMTvXdteDUhgDjz9zktDTHH/+vMvnw7n9VWXJaDBGCVkjEi46AitQFg4s9lha6FFkBVIIDi8vEIWBW3hLDyEtZVW5LCRTYk1FEGiXzVUVeDqg1WoThB6NpLEbTtvvtImbCYPtAQu9Po12g3Q8dQhJBZ994iQHlnvO3dHTYC1Ku/wuzw8wJSAq5hd6VLakLHPCUHLlyiqdbtcZZEjJ1UurnDx/meW5GabTqVvgyDpkOgzxPI9//NAz/MKPvgMplTOPmaQkUUJlK3zfYPMxvqdpJm2Goy3C0CNI5vDjtkPWRQWVQAnBj/2nB/mBH/ggk2xK0mkyHG2wtbnNTYXBGsEff+ZB9i8voLRDKVZXN2i3W3hhgNYS5bkizA99nAvYjg6sAmscbQhRU7U0k/GE0XhEHMW1iyFO+xJ5zM71nFGOVmTplHQyJfD9OuTbsLi4iB8qlNK0G03GkxFJEiGV3M2ccsZHBlGbvyDAkxJhK9LJNloIt+CXgTNNqWBjdUiZQhyFWOmQtt88cZyTJ5/nV7/rPY4aWhdHjm4qUXLnb+eUWlaV00gaQ1EUCKlrdz+nV7S21vnVBW0+zcnTqZsrTbX7HSvrjI6Er3nP0WO86/ARHvq9j/LTv/P7vPmNb2BxYZnX33U73/Ped8LBRf7p7/wBv/Xkl3nvLbfUcxrsXVpwP4OEP/7sFziwvFQb9GgkiiuXrjDTmwEL21sDkiSh2WoC1KY9GmNLyqpkOplSFoYvPvEUC/0ZwsBlXpmyYDopCcIEjEQJjzI3PPHMcxzYv4dpPnU6yMpiq4owdrmQ2xsDyqokikJXBJQlCp9z5y7h65AwTBBC43mwvTHg0gsrdGc6SK1oxwn3f+kxjh09hA6c/mrf8jLGuggN1yiv0NrlarqC0eD5PrMzHfozM3zrwjxmOCBOYrTw2NwY8dBjp5hpJyRJg5WVdVrtBmXpcvZ2XWmlYGG+T5KEu40DIZ0hkcCitWQ4GNLutF+iq/vqJqu1OygqfPzSKh/4wL03uGPdAH7AshOD8NKHFYKPf/TjvOU1b3OoTz4kHW8QBj7DNKPZaJBOHWX17LnnKY2h2eoy103otBqEvtNlSanwlKM8Xxme5J3f8p1o5Zpyne4M65vr3HL0TnozXay1BH5AVmS0221Gw00CT6IUmLJCUrOEdMjGduocQI2h02pz9eplyiIjSmKssayvb3LpynH27+vTbsbOREWImjrtqLGVMU537AcI5RP4EZ4sKaZjFyXiaQIh8JWkNBVGx1y8dpkwXmB+fg+HD99Mu9VAK81wPMTzfYrpGMWEQKRIYwl8nzRPObv+HEeW30h//iBIh2rFQcRg4NxXS+MaFXlWMt4acfzLX2T/3jmS0ENqybQoOfvCZWbaETPdNiUS48UkrUUqNJU1TjdeVdiipCynaN+jqixl7qjNO/mQ7l7h02238GRBujXg+KMPMtvtsHn1Ck88+CDkKRdOPEU1XicbbtDrFtx0eB9LC106zZBQSqwoasdqUJ4PpqKyOXv37McPBKbKkZ7vNGyV4Vfu+zzvu8cjy6HVbGGMJQh8/DBkYIZM5QzHL8JwOk9Tb9cFu2WSpmilyfINgniGRqfD6153DKnWCfyIfn+OjYHmhfUEgcfKyjo3HTlGkjR4+JFH2bd3H8duPcbVq1fqfE/B9tYatx7tU2xeZJAJDh69mai19BW2mb2xgm03huBlmiW7l9ArXH67er3rgtG/wnR78XM32pYz7uIr68yXfM7Omvp6ge03i7u/jsPaHxf1j7yDzn1NtOzlt/VXev1fZds3yq7bef4bUMO97PjLbPreez/Ij+/p8NqF/ou3dYMLbX1lHVEZ0mHqrI/bDadHU47qJZEYYUjTad1ds2xtDfClR1mUDMdTms2Eja2Ro1DVFuBx5FMYQ6fbYjJNnTGKFGhCsnJMt9siSy3InDCKyMsSjODmA0sEviZNc9cx8zwXgtzw6bYjtJSMx64wHGxt89Tp8ywtzFLkBUpYRuOUudkZGrF7r9YK7Xn4vmYyTvF8j/ZMjK3cwvzSlRXOX1pjebnnMos8n8uX1omjJkGk6bSaLtNMSUzpkInNzQGXr64xNzvD1saAra0hs7Mz5HlBWZZ8+oGnuO3mg1SVIU5i0nRKp9tBKcFwOEZrd0PMpi4byQs03U6MKWE0mrC0MMtoOKIsKk6dvsjiXJ+yNAhETfcTXLu6zpefP8/dr70FKSUrq5tsb48J/IA//Nyj3Lx/nqqEosoI4sjleimHtijPFWiTcUZZWMIgIq8pb2VZUpYVrXaD4XBIoxWTJCFSWYSCa9c2OXP+Cq+/7QiNxCf0FVrgKEd1QTSd5PznP3yQV92013XecdTB0XBIu9Xm6tVN4iRhPBrQ783Ra7ljjTXoOkNQKY9pmvE373+SX/0/vxtbFQilHd3OVIR+yDTdBpOxtbFBq7OIyaekkwF+4BPGi6jAQxrD1uYaUgUIofmdB05yYGGeOIzIy5y5VsJP/vTP8j3HjmJKy/PnLjA306bX71IVzmziytVVZno9pwOsb1qmwmWG1Avhsqwc6oqpTQQkQoDnaReCDgghkRK0L8BqJqOMwHfucZ6vyKYlp06foTfTqVFLQTodoT1NGEWEkaqp0BLt+3VIsNoN/DZVhVKKbLpGOhmiRUgQNxmlKb4OMFiU74J8jz93itgPiFoh3/e7HwNr+bV3vxM/CNzU4KzY3IJeSJ597iRXV9aY6/ehXoiVlUFphdT+7txSFiVK1U0MoajKEqXB2JJHn3yC+d4MYRiytrbhYh2EwZocM51gixTPluydW+B/OHiA8Ox5Pvbrv8mHfv23OXjoJhb3LPHe976H9977Xj74oZ/i02fP8O6bbnK0wtJZ0t988IDL8it23E7VruGSqq9v5/CaoWvERSmPsspRnqrdCj32Ls2xsLSA0gHnz12i3ekS+h7SD/nEp+7j/AsX2bMwu8s+bHU6GCMJdOCC461htD3iqRMnufmWI0zGE6dnnaZYoenP9R2KWkwJAsVkMCAMYqrSUVi9QOOFHvv2LuD7GmsqTFlSFTnGlEgh+KM//zxb423me308z6fIC5dnKZ2ZS9II+b8/fz/ffdOSc8kFtPZoRgHdmRZeoGm3W2TTgq2tEe1Og8qUeL7ndI8IpCcpixyJQCiNFc6Z1lQ56+tr9Of72OtdUG7YQIUdO/TfOXPphsjdX3RYITjiHaubYBXD7WtQVUgvIisljaTJ9nDC2toGnU6PK5fOURVjIm2dDX2Z4wcRvh+AsPz7T/w6K5MRb7/77WCp6bEVG1sDnnzqLOlki+FwQK/fp9lssbqxhrAVVDlSuvmtLAqEUlipwCqacUTUTBDGEIchQki0H9BsJAwHOZ12RK+R4Al3vUgpKCpH162MQUvtkHMvIIxamAqKfIAtpnja3zVxAcmlKxe5vDZiMDR8y52vY2PLuWgqKbh89TKzCwuOdpxP8OUUbSqskRSiYjQu+Mhnv8Abb70H6QWY2owpiGJHU9aK8WiIr30ee+wxLp59mltuvZlOQ+EZzzUJpeHQ8iJx0kB5HlbF6LBHJSyRpxydMksRxuB7AePMfYdLL1wgnQxIkiZaC4T2QDk0TwtoxglJBIcP78WabRqxZd++PosLDQ4dWmRxscO+fbPsWVxEY1ESdO2KLbVPWVXufLGmpn4atPKoqqm711iFkG4em1wb89o7FWXldMkW6+5rQJmOGI3hE594lJMnTnH3q2ed67MfuAZuGGLSEpjQaltm2hGq8Ak1+FLzS7/8exy74+1sbA94w+tfz+te9zom6YhrVy/Ravf5td/4NTzt02w0MRhuO3aEC+cfY+Pcc0TdOZb27yfq7K9P/p216I3Bipcr7r5etO2l6NyNnDRfCcG7vuh7ZUDlr17cfdNQ5b/yEPK/v59gJ8vN2v+2RKb33vtBfv2eu17xNaYWwZdVRX+mw9Wr66xvbDmXPkGNAAiMqXONhHOE8wKPi1dWeejpk2yubZNNCy5dW0dpzYmzl3nmxEWqUnDq1GWE9dC+R1YUzM/1kIjdLKuiKEgnUwZbQ5QnySmppEWFHs+cOU9pK5I44ey5SxRlhac11lZESUiUOCc7pRStVsJct42p7eGHgzG9fgetFb7WDEZjTp+7yNbmEGthmuWAJZtmlGVFNs1Is5y7bz+6a6Bx+dI1HnzqFB/71EMUmUErH6V8RoN0931zC33m+h2stRw4sMyhg3tJJxme7xEEAZ70+NxDT2GNW+xq7cJpx8MxJ89ddAhXURJGLketrEqsMDTimItrm6xeWyeKQ+I4ZN/iAo8//Ty//6dfJEsLVtc2SdMps3M93vm211NVhrI0LMzPUpQlM/0uBxfnGI1SLl1acSiKMUSJ0wZlWQ4WsmlOq9nAWkgnKZ977Mv88Re+xNr6pqNfVhVJI3Y0rjLDUmExdHst7rjjKL6vMVXFxUsrbG1us7k13KVZKKl48+03EUcNtAqIkwYIRbPRQmlNt9dGKkm702T16gbb20PKoiQvCkRdKBpj+XsPH+ej/9d3Yc31FGnH1R+PxgS+c7OcpFO8MKEoCorCdWsRgizLKPKMZjPB9zwM8D/9yN/lFz/8YeIwZK7fp5xmaCUZjUZM06kzTxEwmaTuPJOK5eVFhBAEQUDg+3zhocdYX1nn0sWrjEcTrAWvLpqE2GEYOPt5K2oHWynJptNdyrlSmjiJUZ5GINjc2CBJYm5/9a2Oqpu7YxFG4W50hTs2jvIoam0ZOPRJCOeS6UxWCjzf6b48P6TZbmPqfMgsTwkjzd49cwRBwN/6g0/wc//2X/Nz3/YWPN9jPBy7uAEla/2P6xLfevQmjh094uY9CQaL57uFpZR611hD1LRR6uv9epfQt7z+LpJGTFkWPH/uBarKko2G2GyKyVIGq9fIh9vkWV6jhIr33H4Xv/Sd7+RDP/Uv+eG/+w+ZFiVIzUd+65f5hV/59/zN3/8Y2TQjily0Rp67azyMQoc+GnfeVqakqErGo7Gb02oXyPF4jKkNb7B299hHScQjjz/FF7/0OFdW15lMMipbUFYF/dkWhckJA58o8IkiVxAXeUmelWSZy3ZMGhF3v+Y2sjqoPc9z93sqy3A8wIoKS85ksu3OW62Z6XWJ4ogwitCBJkoiV8zXOQtS2JpWWPHd7/g23vItryMMQ6eLsdRZgIIoDrBYfvrtb8cPnHZvMBwQBIr+bBs/0GxvDcjzgvX1Le575DmuXdtAaeWiOYwlz/M6huHFTBQhXPafczV95fuf3al+/ws1QHciL5568ktsbKzT7cyidUg2rUiSNmdOn+XC+XPMzs6TxA2Wl/ZTFnktNQjY2LhGZQ0jMaEoK4bDAWVVMRhuYUzJZDLk9ttfy5133E2r1XHraimY6c7Qm+kThhHTbEpROIMfrCHPUmxVEvoeFy9dYDjcBmtptzoEfsjq2lXSScrF82c5f/o0L5y9UK+RBFp57nqRzkRJComSjgEwnaZY43Lvqqp0qLgUlFVJt7PI1UvXSIcCa0sO7D+AMRVZXtDv9dnc3CAvci5ceJ6yyNy1qTWVKUknKe1mlzBKMMDG1jqBH1DWRlJKKeb6c0wnEza31ggTn0YjJAg1RZHjewEasMUULRVlBUEQE4UNwLK5uebmRnC06PGYmf4soR/R7c7T6y0R+CGVKcmLvDawks4AyxiwmrK0CDRSOqTN9wKEkERhgyRsooWAykkvyqqitCWD7U20kCgh6qzY2mBLgJLaFSClxVQlVZXzrr/x7fwvP32SKAzdPFsXKJN0SiJ8ZkKP73/fu/jhH3hnLUeAMHQ5nFprQtklCnzazYTt9TWScAZRWUJP87e+/wP8xq/9MkrCd77rO/jZn/sZBoMtXv+Gu1lYXOR9730fUikOHDxAFEasra6xsbHGnXe+BiVc9qs15hU9Iv7/OL6J3P1XHMaYH9/5/93cDPuVhcBXxSO8ZFxP4byRacpX0TtfhqL5cqjdzvav35fd/bt+Wy/R3tmd7UuJsHV2lRR1Ro3dFYW751wnY+e53YeSCPkVyqes90fWGhqBC3bdFbZSG1PcoFtigPfd+0F+7W13uqTnG3Vpdjj92k20SiteOHeBrfUrLPS7+HHClcurJEmMpyVVUVCWGatrWzQaIVVZ0p/psG9uji8+dYp+p8mXn7/IzQeW2Ls8SzMMSKcpSEu73aDMnUg8nab4vk/gBwil8HTIA4+foNkI3YIfz4nctcSTgigMENoj8Hy+/NwZ5nsNGmHMZDImTBr8yZ8+w4H9Ha5eu8bhA8tu8sbS7CQ8//xFWo0GURziBz5ZlnN5ZYskCei0Gi5sXgSURUqepSgpaXc73Pfg0+xbmOPhL5+iMhXvuudOKuGszWtBFaaSPHfiPAsLM848ApclluW+ZrakAAAgAElEQVQZUez4+8ZaQunsiud6XZ4/dYlr17boNCOarSa9ThuXr5czGaRgxG4Ol/QURw8t02jFKE8xGI3ptJtsrg256eAcYSB57NQ5jt18gMqWCCm5cmmV0XDMZDJleWkOYyv6/SaiCnjk2edZnpvBVgYJyNDDE4qVK2s0mg0qU1FWBdr3mZ+ZZ31lwqF9s5SlC9Y+dfoC3TgiiOIaOXRZaX5tnlFkFmEVnV6CH4VOH2QtlbG0+02UZ9na2MBWheucehKTG4LYB2HJsxLPK2m1XKiz0hrpa2RV8j9/8Tl+6R9+u7s+qwKpFdbm5KlxweLlBGEUVCW+qgiigDRdx/cDhG4hvYDtrSFJ0sLgUWHYnqTcdNff4Ls/8H6slGAlIvD4z7/3cb7/Na8h9DW+kqxvDpnpdrDG0Go3KaqSMI5I05SqskwnUw4c3IcQli8/c4K5/gxe4NeFoazRC0kYRo7SLdwl6ZA9V7hKLUBaisK5SjaaDWwdfOuKSllPQwIhXCdbKYXSvnPKKyv3Odq9RwBaWkZba2jVJIqaWK2wCIwRSO0o1p72MZWg2W7iJSH9t76JH/9nP8kP3Xk3VeW0tbvFj3DaT4mt6coaY913lEJQlYYsTev3uMJoB1nM8mlNiXJIcFmUGDRS+6A99u1bosymBK0GVnpoHRI3WgyGE/Lp0BleeB5Wg1CC9x+9he+55Rj/6F//G/7Dr3+ED9z7HWgpeNe7vp0f+tc/z8HQoxd4aCVcsYkEoXbpQ7KeN6uyJAx8vvTIl2k3GkgJa6trBL5PnpWYwvKpP3+QhV6b+dkeB/Yts7zUR0nLZFyQpxk3HTrAnrkFSgu+55MkCetrG1DBlx59iv37lggiH6kVOtAIA3mV44ch2guoipI4jmsNrKHZ6jhUQSu8MCAvcmduhTOPybKcyWSCF3go7YNQKF+SlzlSasoyQ2mBrwOKckqRD8mmGaD4yCNf4rXLc1RZUR9TxWA0ggKiIKCyJZPJlJX1Aa+97QhKuNgWJRW+51GVBZWxKK0xpUEJQZ5XKCEYDkbM9F9iqHKjW8514+MXV/nA996IlvkXG//8n/4URxeOgVSUkyGxFEzzMfgx2xsTzp8/QafTY3HPAv3ZBU49e5xbj+1n5co5ujM9KmuZpBnnz5+i11vggZMP4wnJW4/djRQVYRhx7sILTKYVnZk+lYXFhXkuvHAWUxRUecVoskUYCHSZobSkFAZTloR+RNCZJa9Kuq0eUimCyMUcXFu5QpGV7Nu3xEx/jkL6rGyv0+920crpMJ2u0V2DXhiRGYPyfKSOUDYjHW4ihUQEPnk2RQuFlYZxnnPkplvZ3N5kOBoQhyFRHHL14ll63T6bG2vM9dqYfAJKYKhAhvziZ34PIz3e8Ko3EQYhvW6PyhiMcfeYS5cv0utEpIMVml7KLYcO4OHiM2TgMioFCul5VIDvRQSdOfe8dXfJcjohn6aURUXSSJhOc7I8B1EQBD5Ka3JTIi21HKQky6eOxaEdxdvznZttWTkzKIlFAdM8A+nWNZ4fIITCWMOp4yfo9XooIZHacy7DNXusqgxaBbvUzApBaSoeOvk4H3j364iTFlUxxY8jkIrBJEX7EXGQ4qlthC4IgzmG44yiGhD5bSolmZYbWBsidYz0RxSyYJSOuXR1k4wumTXcc8/buOOOu5mZ6RE3Yi5dOMvCXJ9WI2F7c5M4itHNDldOP8F4fBWrWsx3Fgj6+5BSolBIe+MIBHbvGS+PmL1YuvQy27iRzu66bexSPG8wdrd/g3WoUnJ37fxNWuZf83F9cbc7XiG3ptrJ8LgBd/+VTFO+6jVf77jRvrzMcy/3qcK+2PzF3uDCuOEuy51/c/+opCCv9S6773vpZ4kbF3ff8/7v51fvues6zcNXv8ZqZwsvrcXmFelgwmg8YXFxEZW0wUAnCTFSsrqyThj4VJWh2WhTFCXr61tsbw8wVcXifJ9Ot4UwFfP9DqYsEAg2BkOOHNqLAacfkoJnTzrqpPY0Gxvb/NmXnuQtd93K7FyX4XCEqs0klFIkSYQpDdvDIU88cY67XnWE0XiDKh/XNzzFkSNLeIGi3WrVrnPO4lxgmZ1z4mZV51y1O02XQSdBKw9rwA99p5U0lplex4VgFxlZNqXdiLn9lkO0um00lskkxfM0Unv4nsZWJY0kcsHgSMoiI0lCEM6VDyFI4pAo8JjpdXn6xFnAsmd5HiGdQYw1FistfhTtuiOORimtJMTitBRZmpFEPpsbA4ajKfv3zdNoxhzat1R31p1RyiNPn6YVRdz/5RPsXegihCEMAr745HGO7J2j022ifb2LmCqpnEZRgvKcRb4feAShZn6uyYlTLzA/P8uTx0+TVwX9TpMsn7r8LukoY6aqWL24SasXEjY8KiuJkpjNjQGfefgpbj64xyFZQlAUJZM0o9GIHWIlJbWHoUOejCsGozhCe84Z9Ecefo7/+KNvRwhH8d3J37PWOFF7mTnDjjAmDiLWrlwiCCqyMqLZniWMe5RWEjdb5PnUfVcp+Ts/96e88zveShAFgCUrMgaDNf7wj/6M9x09iq0M6xublJVhft7pHouyIIwDpKfq7rNAS2fKECUhSwvzKM/RkWFHU+zs40WtVSomGRiBQVBVFuX57uYIzmhAOdSvqnUUWjlDH1HTCt18ANk0Q2nnEnntyhrNZsMV7VKAKMmyEUoE6CihsC7rTQHj4RDPD5A1KuqQNfjbn/gE7/2ud/P3my13DWCpSuPI2MLRMY0RWCF3v7/BFXbZNEd7zt3PGouxO9EEYK1ECY2QhqqqXA2qtUM2RG1AYxx9aof+J5SHUB5Rs0mYtCjN1FEWVYStXX2xlnceOcz3veoWTn/yk/z9n/kwP/h97+Le772XuW/9Vv7eT/5L3n/bq2sqqaoNaqjnRFEfW0VZxxEMBkMajZiZbs9dT9MUhOXY0f202l3iKGY4HOCHTmMcBSHPnnqePcuLDIYDyszyuS89wb6lRRqtJnES0mk0uXT1CrOzXabp1BW8YeDMFKsSWxWAZZpO+dR9D1JMKxbn5jGiIghDRoMRly+vMBqN8X2FH/joWpeLcU6dURBiqLMYcQ2CR554htmZWbzYI/QjjBFEUcyrlvZQDLdcI0s5lLXRaPK5B58m8JwxUaudcPTwEgjrikTf0Vr9wGXpaaUB3PVZF/7CWoaDAe2Zzi7l8usZ3yha5s/83L/jntfeQ2UtJhuzdu08zXYP7TeRnke71abZbGKs4PHHHiHQFXPdGeI4xPMVvqdRSjK3sMj2yhDdvkR7usCrbnkVVVk6in1l0cqnnGYErZi8yGg2GwgpGI63WVpcpsgyimyElAItJLaqXOh40kPqEGsVK6vXCMMElCDLMyZpRrfXZ2Nzk6effpiFxb10W3UTUTotcmnc+VAUOQaJlT5R2MBWEwSOLk7dsNBKUVWWpNEjSWL6c0tUpqTX77O1tcXc0jJ5mdNuxVx94bhzlFYGKWO2hiWPXTrOXfN3cmD/QcIwJE1Tsjzn7MlT2EqzvV3x0P2fpNuMmJ+bQQkL1sWLFHlBUGvyKq3xkzlW1oYoIShsjvY1eQGmLAnCiDBOkEpjrHA6wjiiNBovaqGiprsnhQkGjQoihB9hSouRgqoSDIYpzz53AqF9gqiBsY4FYaRCeR7pNKUyFlDsWVymtDlGSta2c2cWpn3wBAgFVjPMK4IoccY6fsSbj76exuw5sumQMsvIC4XFI47cfF2ZDGMyRmODpyICz1JSMEh9pNdCqilVXpFEDXQgUTLElpCOBYOhz3MXpmwNpoRRkz+///PcdPQYn7nv0zx34jgf+4M/cHmbVYXnxRxcDll54RnSHA4evolo/kiNPDqU95VYll/3OvjroGr+xSme1+tjX/xeKcU3tLj7748T+N/J2IGZr38oWXetbwBB/2Vh6etDyF9uW9fvg5Bylz51/ete7kSSUtTGAy/++/rnbjScm5u57m+XOfNKo9yhC1gn1v6h//FH+Acf/Nv8ytvufMX3AZjSIjBsrKxx4sQZrq1uMj/bI4witodjnnzmFCvX1sFY+r0uXuATBAH5NOfZE+eYTFLOXbnGTKfFp7/4DFVZMdNqsLq+hcUVTYf2L/PCpasY41wipRS85lVHOHv+EsYYsrzg6L5FyrKsNWkRQgomaUpVVWRZwXic0u93eNPrjxE3QrqdFlYpoiRBeiFGgRHONj6bZo6uZipMaVhb3SAMfabTDCkkZVbhBz6B5zMYuKyYsiwcha3+XY01HDm0l6WFPsuLfZJGhKkc4uDVrny2cnll3W67tntWTpvh+WR55jKirGUySonikKQRsbWxxd6FmV29D7VdcBAGeF6MsJqzZ67w3HPnue+B53jmuefJ8wJTudBgrCVpJJx6YcXZrEvpMqgwDEdjmu0G97zhdtbWR/iepKoqGo2Esqp42xtfg+drJpO0/o5OO4AQpNO81iK4BW+aTmvnPsHNh/fh+ZrXveYYrzl2kwvWFYKqLB3NsSgwpuLcxWusrW4yTacuw6uOdfjOb3sDSEGepljrEKL+bNcFOFtLnuXsoFFVVeIFviuOjHPI/MHPPcF//NF3UBlHx62BcEajMUr5FGVBmqb4fuj0gUVBVuRuIeZJkJasSBHSkOcT9zsZeO8//xgf+ZV/R9xIuHD+PL4f0IgTut0ZkjhGCkGe5Rw+dIDbbr3JBZnXQdRVVe2Kw6WSnDxz1n0Pa9GBxyOPPsUzz5ystW9foT1XZVXTtTw+/mf3OXv7Op9IKVcYCQRlWTjNWI34W2PJpwWbG1uAQ25EXaQIIJ/mzC/NOVSKirLIGGxuoZR2i5Za57hT0Idx5Mx5KoNSwp1/vqMK/5N/+hMoz6MqnSGHlLLWpE3r7+CuEWsMZtf4ql7oW1u7VuK+R1E3Lowzg8jzAltvU0pFnrpjVhZlrYFxiKPLw3JUWHfoFNqvQ+QnqVsww27eYFkZDu89yP/71m/lAz/wD+uCW/IrH/lFfvDjn0AgmU6m5GlW75vb6XQyYTQa43ke29tDnjl9FlM5eqvT5QYkSeJcboGsyGm1WyCc8ZFUittvu4Usz2i1m8wtzvLOb/9Wnjn+PMPBkPX1NcIoZGG2vxsArj1XIDl9jgtM97RDJua7M1y4fI21tU2CMCIdT0iSmP37llnes4RSisH2gCefOk4QBERxRLvdojKGyXhCkReugDSW5blZVlauOUOKytTNn5QP/f7vcumFq7UOsUJI5xz61tffTrvVxBhotRr4gSYIAmf6IyVRHNaIp6QoS5fnV7njX9U6piwvvlpysUvDFDfU3/1VhpMJuMdb976JnRthmk7I8jGdzgxRmBBFITO9HkVZsnZtlX5/hiixCFlQVAUIKHOnXRTWMNra5v3vmOU97/hO0umEukuHlJp2p8dgsEmr2aLTmWF7e4uqqhx1rzRcungRt9A2FLnTUNs6h+3a6jWMMWxtbrK+scrJU8eZnZ1jpj/L1atXWV+7RiOJaLc67HgSmJ0Gj+eRZxkC8HzfuTRXhrzIkFISBCGmqJAo8qJk9doaVy5fxtMBnu/Tareds2QtT5BSYKxxOX1Y8ukUJTX9mQWaUcQ9b34LgeezsnKVwA8Iw5CjN9/KnuU9NBKf+dkO3U67jhipnPMvAu0FGBRe2EAHDaQOWFo+RODHeNJHS49ms0PSbLqitXD3HmMrlNJIqVE6wAsSpBdTqQbWa+I3+0SdeaLOHElvgag9S6O/RH/5MLMHXs3SwdtIuguoqIOM2hgRgYxptueIki5B1EJGTXTcppQ+jz3zDM88+zRW+RgkRiiurF7jkcefYGN7gvYahEED7cVMM0ng+Y5ancSO2l0DDr4fYKqKtfUt0smIaTpGSsWZF9b4/U98mrK0hL5Hlk0ZpynbWwUPPvAkM939fO6BpxgPU779b7yds+dO8+53fyef+OQn+JZveQPvfs+7+d9+7H9n34EDlKbi0OEjZNOMdrtF0ojrXFnXDPyLDjcn26/53Nd6/9d6vZA7aN11j5eMqnLax29UZt43kbv/iuOVkLsbja8HnXulcaMuw46+4huxDzcE4L6O9seNPu6rUDlqFO8VkDuLRdQUqJ/80L/iJw70ePueua++kd7g81QleP7EGcosZ+/SPM1uh6srG/hS0O22iaOIbrfDNCvAuoXdeDAlij2qMncXbyVYubrNHUcPEMURFy6ucuL8VW4+uI/VzQF/9vBT3HbTPvLcFQxlVWKNZWGhh/YFjSSh3+/ie9oVZNa4wiCJufjCClVRMdPrIoDHTh6n04qIkhaT8ZA4alBkMM2HkFuk8vA8ianRNC01fqhJJzmNpMnjT56h35tBa8VwNKTTbToEVlqqvCKOYzY2XWdehRFCe053iKPGWSudjX5Zkk9y7n/gGbJJxkyviee7BXCWFoShTxy77KQwiBhsb6O1pNlOaDZi9u9fcto7T5NOp2TTjDBsUJUFk8kYieHOVx2i105cNpFUeFpx7cpVGu027ShkOB7RbEZM0ilxEhFHAZPxFBBcvLDOof2zzM92QLqC0wpLu9Mkil0It9KK6XjC5x55hv175snSCV4YIupO8cbaFnEYECUBZeUomH/6uUc5+8IKNx9Ywg9CZK0BkUIxO9+j0WgSRXGdu4TTxgHT8RiTp2gvIi+L+qy1pIMJw0nKxz7zCLccXMbzFC6E21KUJdVdPd792lnCuMFkNHZGDsqhpk4DoQkjSeAHgE+RjpEipSpTZmaP4AXOuUwqH88L3W8xyvg7P/tn/LMf+1HKrKIzO+eiGKSPQBOEIb/zux/juw8foapjN7Sn8ULJeDTC9zy8IMIiayc7wWScsrA4j5ACg2Vpbp6ZbhdwzoU7URhOt+a6xDcf3o/WEmtLppMRFhcOq1Rd5HrKmVUgmE4yPvvAwxzcv6cOkPZchzwKHJ3a9zGmoCozNtevgrA0Gy2wHkLrXb2cEK4Q8oKgjpnBdbmrihOXL/DDP/Fj3H1tg16jjQuydxbr6XiC77vQeYyoHYELpuMUT7kQa4QzybD1TVp7zs2xqkoq47IeMU4fqZQPlcDzQjbWt+oFU+GOg1B4fsD25oAoDJlOJqyvb9NutV1Ug+9RFC6+QytNZazLhxMuHPkDt93GF37/k/za/V/k7e94O/fe+9386i/+EuGkwFaGVqOBsAYtLdiCOG4yGk340uPP8h33vImkkTDYHHDu3CXiKGZzY5s4icny2hnY99Bas7G+TZUbkiQhzwqSRoMsG7tiqijodFs0GzHDwYRPP/QlZrut3UbOZOjcDaXWjtJoK9bXN1mYnef2Vx8lCDWIOgKqPq7jNOP06QvM9vosLc0jFG6ukK6p5PnaUfpRSC1pt9t02x3KYoLUAX6gybIpv3D6LD94yyFWrq5zaWWNTrPBNJtiqpILl1fYv7zITpaHqQSbG0OHyqqaarsTYu57NZU6QykPJS1ZOqU10+FF3fmvUdD97rkrf2nkbuceunptjU/9wZ9y+62vcWhwkSJlhVIhOmhT2oLtwRaj0YCLFy5zZeUitx49wpXnT7DnwAE8rSmzDF97TNMRH37wt/iTh9Z489G7UHXxuLGxxtb2gPXtEYXwaXe6rK1ucOrEc/R683S7XdJJyrWVazSaPpgC5YU1K05QqYAoiDBlwd69e/GUotvukk0zWu0WWTol9H267Sa+cpqwK1cvob2IOAyxwulrpbUUBoKkQz4t0F5FVTg3ZocSWrSneeHKGtupYt/hm1FKI5QrRpKkgad9qApMmWOKFKwlJ6bRW+LpJ8+yfPscexoHWV1fo9vpsLm9CUIxLSseePCPmW9mHNg7i9Q1Nb/+LXQQIpSH7swjgw7Sb9XrDkNlKzwdY41gONxAUqK1rLXthsD3qLIcJUGgufDCRbKipNVs1bmuerd5V1lDlgs83xm8dPp952bs+WQlJK05pG6ho5gKAcpH6wi/M89kWtFqzXLgwM3sPXiUqNFFejFB1MWP20yqiMWFZaqaUp+Xln/y4d/g3W/dS+AJjM0wtsCW4HkJSvkYa+jPzyJNQSP22JoYfv4X7mOYTrnj1XsJgCRpYX0QlWHfvv18/onTfObJVY4eOszePXN8y923MBqt0mkGKD+m1WohtWJ57x6KouDS5Q1kfpls+AJho4sfxDSXbnW6wZqJ8Mqrzq9Gz25kjPIXHV/TSOUvsO3rEf9v0jL/Go6qLH/8pbq4nfFymruq7ujuvAa7Q9752uNr6fZeug/AV237FYs7W/HiC8e+5K9dtuWLRmlwHUGp2Ak/l7VWb+dhBM6HWoiX0p7rHXWLJSEE7/+eH+D/WGoS1+52YkenZ6mpM/V7pIc1AirDxfPnyCvLnv37MUIhkCRxQGUFw60hSRwyHI751BceZf98l8efPsnTp1/A19Bttwk8j4eeO+0Kkfkun/zzR1jq97jr9qP84f0PE2nNHbccIAh9fD/EDz2CMER7rgu/vT1CWYUXaoR2BXc6nBBGARLLdJyxtj6mNzNDYVLOnL9Gv9UhaYYYK7FS4MfKZTR5zomqrCr80GcymqA9iRU+QRiwtrrOpJwS+IrJaEIcNpFCkk6nBEGDjc1tklbENM9I4pgiz2rUBDztcfniKkHk4fmaPC9QvkWXUIgJi/MdRoOcMPEYjyYEvmYymRJ4PsPtMUnc4I/ve4xQarqzM0ymGUVpqWxJEPsoLRmOBgShptGIaHeaCKXwmw2EkpjS5eIpzyMIA4yt6LRaLtC48sgnGb52dvh/8sBjvPnuY+RlRhyFBIFPOsmJEtfpLfICicBXmsJWHFxeRFhBGPlI7ajASkjCMEB5imyc4oUhVkqKLOMtd91CWhZoKRGl3V3wKgTSlhTFBB0FlIUlHU8Q1uBFIfiR49fXgaVbmwOSsEGz3eLYwT1uPSkrp33wND/0haf5wBuPkCQtkBWen6C8gPFkiDEKraaMhxsoCyazCAPGjsjzTSzOhW48XAHtU1SKUGv+wf9zP594coUf+8c/yj/7Fz/FbXfeTrvj8/M/+ytkWcWRI4epyorved/7sMef222qCAFFVhAGEZM0c8HIAqT0EMIwGG7TajewlUR7is989os8ffx5bj5yEOW581pKha0sQrgYASklaZqztTlE6wBdRykIXHh5Np2iPAnWOWIePrQPPwzc7CSpu/QaqxTWVPU8pVAqwgti8qJE+x7Ck+ST1AXee2FtxGJrfZ8zBPF8n3/wZ/chtc8bgtjpLpVkc3ObIIxqIwNLPp5iEFy6eJl2M8GPAqwEtKCq51RrnM5IKFXrh40zmPH82pDBRR0URUmWjjh34Ry9Tqs2+gGpPGxpWF1dQyuFpzy0hizN0cpDKlAqcOiecoWGFRIjASRCSJY7XV54/lnuePtbOXXiOPOvvYP4/AUWlucQCtAeeWVQysMYS1WVdFoBvX7Hmak0G/iBhxSWhx57gn2zcyQzTYduFqVDp+tYBT92uriiqCiLKd7/x96bR1t23XV+n733me/45qFe1au5SlWyZMuWbATIBrvBbWwm2eA4ge5OryxoenUgDKsNoVmdrDSdNCSQ0AnNEDANjsEEaBs3sfEgLFuWZc0qlYYq1Ty++b07nXHvnT/2eU+lyZbdzmLheK911yrdd+7Veffdc/b+7d/3+/mGPq1u20VTIPGTiMdOnGGmO8GJp86wf99einJI6Pk888wZylzTbCYI5dGe6CKRXL54lU67sUPrrKqSQHrMzszwwEOPk40y4jCkkSSY2gKwtbFFGEYEfk0qFa6DNRikxM1ODbIxfPHcGe4aa/DoMxfZ2Ew5un8RqQReJGm1GyjP2/EVK+nx+JPPMRxmzM9Nu79RHTY86jsfXpFVKM9S5Bmj0ZDu+BivbmZ247t//v00GsmXPSbLcle0vWhsrxGazQbmUoNWN0YbjS5SNpcvMj2/m4tXl+kmbcqiYnJ8gomZGR599AQzk10W90y4UHRrkJ7AGsFolPKZpx7F8+AtN9/u5mUMUvpcvLLMoPBoT4yT9lIOHjxCa7xLXqQ0kogkaTI12aEcrZPE8U5erNAWzwsxCKwKybOMjc11xscnUVGDqxcvYrRlfHyCJ048zLXrVxnv+MxOzxHEMUJW+NLDUGKFTyZKvDDCorBFhi1TyiJzG1/Cw9qKc5fWyGzOvj1HsFaT50MKawmEh9YZShqktFTWIsKE8el9rG5scuLZJ8gbJQenj+IrxaULZ2m1pmlEEY/dex/Z+hJzexcpypIgiPAqjbYGAxRIZNiEsIUMtuXOoZOMBj6+zdHpkJgSbUfkgy1ENaSqtqhyS9a/iB0OIR9y6uH7yUfXaEegzJByuIanS3Taxw8MgQBZFXhWUxV9PGEQpsJWOcP+Gn/90XuZXugS2BKhK0ziobTFQ2PKlFBUaGEIPAdjwyqKvOThR56kN+qx/8BR0rRHrCyH2ofZe2tKZVMUMBr0abVbaAoqnbqNL+URNmL6aY7vK97+tuPcfuwgU+MLDItVrCwpBkkdyRKjheAjn3gEaeFb3/hG1q+s8oXPP8zb3v697No9w8bWJljN6soaZ86eZ9fcIvd9/A/YNWnZzC2zu/fTmjkCdrsoEnWX9/lr40VXy87Dq7kPbrZxDyu2pZGv+tJ142UXpi/82ZeNQrhhGPs8h+Obssz/HwwHFPlPe/03OlUoyzL+6M23MdFq7TxnrdtlHY1SF0prAeGkpcIarl1ZptFImJt2XiJdVWRpSr83ACxjE12UUqysbfCOu97AVm9AFAS88eaDzE5NYK0hikN+6Lu/jSDwWVtd58jiLE+fu8JwNGTPzDidVkyW5fiBw41vbGxRlSWm0pR5QRK7TtFwmJKlGVJKByKpnKk/igImJ9r8xSfux/c8vu31N7Ox1SdPMwLfkSitwUk3+yM21rfI89xJQI2hLCv3u2tLHIUcPbjI2HiHR555jmeePceFS9dcN6MsmJoZJx1ldDsdjHYyuW1Z3TzVnTMAACAASURBVPr6FheuLnPm9FXWlnqEYYwQAbPzkxzat4jL/ZKM+iO2eiPnY2k0KCtNo5UwHAy47aZ9tFuODKg8xV9+6kEGWyM84REGMc1GA11ZdGnwPP958INwCw4poN1ugLAYo0EYiiKnMppKa04+e4YwDLj18KIjeE6OE0UhxlgazYStzZ7zaxhNlrrOhxSOZOikVRY09HtDykIjlcdokDkZY91B2rt7ntXVLaRwBUhZVUTN2PlioZZWukW+Us6H5tXFh8Rw7vRlfD/AaMPExJgrwkcpUgqyLHfh59ryvnse5UM/+10EoU9VlW5xUsttm80GYeDjew3Gx6epTIUhZTBapdFqImVIuz1BEIYEfpNWcwKExw//yl/xv//2b/F//vZv8Md//CEunL/I4YNHqQrB73/g92g0EsqycHl/pkLrysVp1HLdKIrI6+9sURT1ppDGWs2+/QsOOa9c8Tw/O8nNh/a5OIJ65x/roiOQlrIqKcqSMApYWlmhkUQ7kTDbIffb0s/ta9nt89TycO28a/c98BDCuuxDKQSe5xHGkfvskwTpKSTumkoaMUI4KWNRlGRpju/7SKGoyoofPbDIn/35R5FK4vuO0Dc5MQ64Sf/0mXP0BwOUp9jqD+oOlZMKY1zMQVm6MHXlec97COv3y9LM5R/i7sl+4OEHAceP3cRwlGGh7ihKR05tt5wEEggCn/X1DcqypMicFDiIAnRVuc9lG2BV00KVkrz3jjfxaz/xM/yL//5XOXrTQd7/6MNorXck/p5yHS+r4cqVJebm5mopsFv0+koQJzFv+ZbbaXXb9TpFcP3aCnEUUZWaR06cZHN9yxW02nkTHeRG0e62GQ2d/O3Nd9zC3K4Z191PU3zfpyhK5menSYuCLCtoNhqMhiPyPOPS0nVWV9fcJmZtTdC6YnV1jWYcc+nqkrvOpNvQ2VzfwPd9RoORC9NWHkoqkmaDyclJMBpjnCTvemXxw5C33HELQegxGAzpD4c7n/O2VD3PC5566hxTY20OHdiDUE5qKGod7mcefBwlFVEUMhrmroOL5JWd6C8daZ4xPT35ZY8xxtYwj1d+3z/7048wu+i+q8baes6Ja2rwHEIJWq0Ww8GQssyYnmkjrCEKY7fpUsvjK10SxzF7mpvc0j6EsG5uMMaS5RmeH9FutWk3u0xMjFNVJRPjk0xPzVCUFWmWsr6+WsOF6mtBuu51mg5BQBRFtFotGkmDPC/QVUWz0WR+bo7HH3+Yhd0H2Lf/GI3mOJ5QmKKEei9aSY9slBMol5kohaSqvekI4TI1BVijieOEffuOkKZDlpav0Wi0aMYNKl2gjaHShqo0+H5CHHdI05TxsQnuu/4Q933xYayxnL1wjrn5PbQ6LdZXr7L3UJM77rqN1euXOPv0U7i4UPc9lH7I2OQ8ftAmsIK0P8BUBpSP9CNEKSjyjCwfsLa17KJsMBRZRpkWnDr5OEnk/IulHnHrHW9i/6FDeJ5HUbg5vSwLtK5YurpCb2uTvBjSH6wjq4Iq7TPcXIUqQ5qSb7/rFqQZInSGzoZUoyHZcAOtU8oypahSrC5IRz2GvTXKog/kvP51x7jl+HGqKiNJGlRWML93kh/9mU8hTELod2k1ptz8icT3Q5TvZJdSKkbpiDAIydKMdiemKDIazSZS+XjKZzDoY7RhdnqCmekO3/PO72V2124eeOhh5ncv8PiJx3n22WdpJjFr6xss7NnNm+/6dp5+6im+5c47EUIQRzFBENT3upduenylYWsK8AtbEN8Y45udu7/FYbT+l6/0s5er6reDzl8ANalhJq9mf/BGuuTLQVlebrz4vb+8LPMrXxgv17lzsVEvpBhtg1huPI8vf6LuiPf/g/+K71yYftGP3C6J73s3QCgEVld8+GOfYarVYGp6mjB2MBBfSaStCOMYIQTDQUqWF3S7La5cW2FqvM3czAQXr62wZ8HBPLb9KmmaEUYBSRQw0U2YGG/z4MnTSCE4emSRUeromEng9OG61KSpk4NESUyeuy5TVZXu340EVXvoWu0WncRnY2uTwPeIQp9GHFJpN3Fu+9zOnb9OGCjGJsYQSlAWJc0kcQugssTzFFnu8OL7F+aYm53izIUrYCzShzhJqApNEESsLG3QaEYsL69z7foqw2HKsSP7uXphlanJLp7yQbmwes8PMEZy6eISs1NTtLtdEAKpFJWtQAiMqdjs92o5XcWp0xe546a9KCXwPZ/BIOfkyYvc98gpDi3uYmVlnVGaEUdh7f3KSRoOb37iybOEfsDq6haffehpjh1eREiYmmgTJq5r2263uXz1Oo1GVIfDR2TZiGYzrhcdDgVv8fjCI09RpBnNpAFIojDi7NmrFHmBVA6hLqREl5b7v3SSB544yxtuOQBS4McheBKUoCpgeWmDKA4oRhlIRRwFTiyiNaPBkOfOXmf3rhmE5wHOUxKFPp7ndrg9CeG37eO9bz5WezQdHEdKS1VoQl/R31pDIZHKJy9yotijrDKiJMCtd5tI0aDSGdJYfuq37uNbf+jHeMudu/knP/PLfPj//gjrm1vsnQr58F9+mnvu+QLf/33v4lvedAfjE1201Wysr/GPf/03+OHjxwCXWSfr7rmsi12v9k2lowyEpdfrEYYeCI+ZmcmdeAdTOX+v1iWGCoRBCoVSkrLMmZwad74mUUtcpet4+YGHNWJnIt7xhFqDqmEmi7sX0JXLZypLJ11CipqGKtm+nVjjvI1lWeH5TkblimyHWscKDs3O8u6bjjrFgNZYY91GhJJUpaaZuPBdrSva7abzqcpaCobg6uVrdLvd+mbrsrB0VVKV1Q5kRXouWF3X0Qoup1Dih4GTV/p+fUd1ER1hFDjpqRCMT4xx/0OPsjA/67K8hMATgrTfQ+c5fhRgbW3Qr3H4t+9e5Gjs89P/7gN88I9+lx/9N7/G3UeP7NwLi7xgfbnPU8+eZd/ehVqmKsnTIcZo/DAgaTWw9XtaA5+454sc2L0bIRQLc9M0WglZmiOlIPAC8sKBZJaWlwkDR0VcXl6l3UyYnuzSaLoQcFP7YScnnce5qjRJMyTPM/bvXcBT3k6RPRylFHnJX3/+AV53800YrZmdmwZrCUPngQ0CJ5++dP4ql65cc6APBEZbNjfWkNIVPfdcvszfm54kjHwWZsYYjAa0245+G4YBYeiK5kF/xGiUc/DgHpQnakKhQ9NvbGxxZO9ufM/n3NnLSDwazdhlyI2Pufn6VYx/+PknvqIkUxtLkjioxCt51s88d54O3VoeKCjTAUWW0unOsDFISQdbSE+ysdbn7IUnmBpvMTc1iTLlTufT832U9LBYvuu7JZPqTnxPIpQgyw29/oDllU0Wdh+mt7HJvn2LeL6TcUvhoj/iKGLQX0PZwkG3lLfD7xkMh7RabcrK1v5dR4SUUpBEoZM1+h5RFHLmzJMUeshE3CTwFMJ3AB2jS66cv0qqczrdSUoNzcijSPs1GKhCWQf1unp1hUanzeT4FK2kQZlplAqQMiOrQVpJ0gICNrcyBJbVC32uFpfAwuv3v4HZuQWWVpb43H3/kT3jIWNJiC9hvDvB9Ow0VhREjUmC5gRBcxLrtRBejMlSB3kpM5SsKLIeenSFqhxQlRVf/OKj7JkZQ1mLsAYlJOPtMQwObGSF26wSvkVaz8Go6jVgWVWcOX2GiekJrM7wBNgqd90oazBVQRR4CD1EehJlKqTVBEqi8z5G50hlKKoCm6UOaGQKFCWmHNJOfITNCTyB9ANk0EDnGUvnr/Ha18ZIqymyEosmy7La5ywpS7eBNz0zS6/Xd3EkpGit8EPJ5tYmExO7kcrFrbTHOhh/ij/84Me5dPk6P/ie97Fr/x68SHHf5z7H697wBqYmJ1lbWed3fud3eMc7vofP//W/Z7ylyWzM0WOvJeguPh8LhLMEbI+vlOFcu32ef+qrlFB+NeMr5dzdcOQ3O3ffaGMbWLLz30LsQE/UiyaKG2Empn7cOF78nLzh8Wo7eK/0Bdk+zxvPVdXxBV/tkPXC5sbO4quBrry4E3n33e/jf3jj8Vc+nrrQswZTFKxeW+Ztt9/KwsI82ajg0vmr9HsDDJBmpfvMPUdMTOKIsig5f20FIQWD4Yhbj+/HWkOv16fdaaI8wdTMBBcvL5PEIQu7pvB8xffcdQfaaIbDEVEcoJQLQPY8Dy/w+dwjT3Pp6jKFKSmLEqwDNDS7DQdtUIowiTnxzGm63QZ7FubxA484CSkqy+mzF0hHQwaDPmA5sHee7niXNMsp8pIojljb2GKUZtz/2EnSLKfRSMiLkqIo0EZz7NBeuq02URRjKvBkwIMPPc0oTXdAF2mW89hzF9BVxaHDU3zy4QdQvqYqRijl5GJYyYFD82RFzomTp/mrz36RdDTCVAZfKZqtNmPdLhNTY7SaMbcdP4BRJWEs0SYjz4fMz4wRBR4nnznPl06exZQgtaBMS5pJA10atLHceuwoY90xkjDmjUeO8qefuJ/BMMMiKEpNq93m7NlLzM9OkjQiosgVfFGd++Xyqip8LyBOIm47tp/9++YZ9IdYbfniQyfZ6A1otxKajRhtTQ0EqHjzt93Cu95yW93t1BgLZVpicoMuckbDkjPnlhFCIZV03ytjyfKSIIq4843HQbjiXkmFta7oy7KUUZ7xD+876bpdtvZoIdjc7GERO/sq29/9Ug/RpsQSoLwJlJrGGt/BW6qUTz70DO/99c/w3/7C97NnzwI/84v/nn/+jgV+6x/s5Q//6U38bz/+ej74z47zO//4IL/9Bx/A4qTLSkCWpwhcge4gKGVd7EqyNMerwT3WWE6cOI0pPe5/4Gmsdr40i659aKIGUtTXVBCClVSFg1F4XuCKHW2wdUfVGIOxYKwTzBhdAabOF3O+vNFwWNMyM6TvgZT4SqGLgmywyWg4wNiKqtzOMCwJwpAo8Z1Uts7fKwsHMTJWU+nc+eUstY9SuizK0rC6vMoXHnkcKy3YiqQRkbSaBJ5HmeVgKnbNTzMa9FGewmAZ9vpgqPH5mpNPn2LYH2IqB1WSiJ2sPqzBryE62zlo7U4LISVZnpOOMudr6TppZKXLHdJns91BhQH9zU185SJd3D1PUBYFRxcW+cN3vZP19Q3GOp36M3zeFa2UYGMwJIqCWq4PVWVJGo06vLueU2pJ7Xvv/vt4oULrAk8plHTSSU9KELbOVqyQVrCyuoHVhmfPX2BpeYVut4GUljRN8TxFmo7I8pTSVGgqhv0+rXaDXn9AFEWMRi5L04EbAu66/XX8zRcf5sSpc4DzYFVVxdL1Ff7yk/eAhUGaMjM1gRKCLMuIkoiJ6XGiOKLRSNjKnCwbnNxxembMwVUKTT7KsabC9xRTk2McP74X6YHnS4bDEaayRGHM9MwkzVZCVRXsWpgkboQI5bK9XmkufL5b8Pw4fPDgK85bbnqT+J7nvGZfZlH4ex/4w/pfdRZrZUA46e1g2KfdblPkORsbG4ReTH+rx7MnHyEtchcHIZ0lwVjNxvWUX/w/niZuegipyEvB9Y0hy/2MUgb0h33X2Q18zpx7jjTNyPKMqqq4tnQdIWRNyHV5sNY610W33aIYbiIxVFXhuvdFRn9rnbxMMbZiafkqa2vLDIdDxsbGwQ/IEWhTOS9d6LFn/x6mpyco8j5RGDr6qu87uJF00jwXem4ptWV5eYX+cIiVFuUrsrSgGUdYXTLobbC2vsTYRAchBFEnYazb5eff+/OcOv0szzz5IFMNxbfdepxmUncFRUWuUoLWNM3OIUQwhRZt8Jqk2QCrNzG+QQYWm29Srl9C9K9j8wKbZ4TKcvsdN2Mqg7EGGfpYASquwOoarObz5IlTXLrSwxF6rbvWPBfH8ZrX3kIc+njSJ1AR1guoEFRSIoKITFs8r8n/86kHWB2UbGQjSuNiGJQVCA2hF+D7ARJQQiCMQVmLEhWBrDBZD50PELbEKsl73nU3/+p3n8TaLRqNCik9Aj8G68BEnhdQFBV5WtJM2gz6GXnpU5Qh/b5lbGyGreE6fuAxNTFGb3OJXdMNOknJP/rRH+TAkf1cvnSFxbldvPe978XoiizLKPKMn/u5n2VicozBoMfU1DTWSNbWtty8IdxmwfZm/k40QX29vdx193LrzG1AyjYEZXuD7GtZ2754bKs4vmpy/dcwvlncfYOMbZLmV3ruG3Xcfff7+OBbXp6KKaVkNEx3NM/SGnobm+RpTqvdRAiJrySnzl91eTEG/DDYeb2SkjRNuXBliW+59SassUxOdCgrFwq9fRMZjTKM1uyZn8U5/WA4zLBa8IZbjrC0sk6aZqxtbJIXFaurW4DkzluPMTczjRDQbiX0tgYkSURRFjUNUHD9+ipnri6RNFweXmUtUcOh0G3dk20kEdZURImTACZJTBAFVJV2YdWBT7fZII5cDENcFzu9fp9PfP5hsrxwaGVtuXJ5mZsOL7K4b54iLxgf77IwN8XNexfwgwCpFD/41rsosoJBLwUMj558zkl7pKHRbbB3zzR33nqEKArAWq5fWWFtuUer2SZNc3RZkQ5TOt1xgjAGPJRQTM2M847vuJ3X33aUNx4/yDDNuPcLT/Dxv3kYKRR57qIWrKwIY8HUbIeFxSne+e1vQApFEAQM+iOsgYtLq4RhyGjg/v69rT5l7iaeOI7pdjuEQYg1hu54C12VTM+ME8Yhd9x2nDfdfjNhFLh8rTpTzVg3+UrfEbq0sVhtGG0NWb++jpIO2f/kmatESYInJUkjIctyGt02YaOBijzKqnSLZmvIRilRFFKVOatHGnzgv36bAz9kI7fJoBTnzl9BSJdxhnASvziOCMMmQZA4kEYYgBKEQcSTF6/wSx+8l9+95wK//8vfxZ9/9Al+5Ed+jD/+yaMc2ztOq+ViMMrKGeO1KXjgf/l+fvb9v0hlNEWR13AUydOXzlNWJeBAGLouTMqyJIxCkJrbXn+cLMtY2+rvTLDWWrK6M70tAahKTZFrdGUZDFwnRtQwGif/qgijkBs1CVI4uqIVz0sOpZJUZYWQ7pyk50AXAkiHQ0xROHR9kdcES4dQt7W3uNluYq3zmcVxyMry6o7cSWu3IBUWijzHGthc7zE9PcXb7rqTdJTuyPLK0klHJYLhcIjyHFHRYvB9RZI0dvIa02HK8voGvueK/m0tRVnkDiBjXKxFVRY7RbxQcke1kSQJYDhwYC+6MjseQz8IHbI8ivA8z8mNKxcdg8R5QZXrjvz4P/1pfuPf/grv+4uPAGAqRzgcm+rw1m+7DQSUZclolNJothDKI0sLR/Kscf9V4WBAni9ojTUAy2BrwEOPPcHa6hpFmRM3IpSSjE2MsW/vXjbXe7z28GEmJ8YZDVNGgxFhGJLluZNWCfAChe97CGEo8oKxsTFH5KvBR2EYEIQB3W6HLC/q+7tgc3MLKQSLi7t5251vQgjBLa85ysRk19FlfUW/16OoNL2tvjt/qynSDF1ZmnW+WFloojAgikOUFKysrDEajjBUFGWGtpp2u1V3Vp1EW+uKLB9h0TQ7Tm4+Od55KS3z+QkJXvSzy1evvOLcJuXz9OKvNPbu2eP+YSEIApTyybKUoihcwSkkzUaTvCrZ2hoyHJaEcZfN3jrGOpm0rkrKsuQ37/898tLlmRa6ZH19g+tr61T4WOkzNj7GgYMH2djYYHJiiixLa5l7RRRFTE1O7wDb8jzfWVgbU2Gqgn5v83nisNZMjI0xGA7QRnNg/2GiOOG22+6kE7W4cn2JK0srlEWF0S5GJgg8hLBEgQvL1sbU8mS3+RDGMVYIBr0B3e4U3e5kfZ1YCl0QRU2oBGhJEjVrH7CzIfzqx/4nvvTYo2z1NkmzEdfOP001XKcZSAyW0mqs9EgaUySdWQrr5r0gCsjzDE8KbJ5RDNZJe+uA4MKlCwg/cTmJXkioPLqt2EmwfQ9t4Ny5MxjtQso9L0D4AeuDPlvpaCez0xV9FcZqhNUY7TYdC1NgqxJdlqA1VlcooKpSus0Azw9ot7su0kWqHWibLgsqNFYJKlNR6bIOgHdFjgSEKdHFCPBQymdjK0PrgDhqEwURQRjSanWI4xirDUEQk6cZ/cEAXZUUueRDH/oPxFGL/sDlf5aVZpSmJElIGEoO7J3is/f8Rx5/7BGOHDzE/Z//ApcvXaaqtNsgNoYgdB39d77rXTz19FO021263fGd6KCv57Dbm7l/R8c3ZZl/i+NlZZkvgpvc6DWR20HlLwKtbHf3XiKVfBlAykvOAV4g9fyK48XwFXtDgDrSXV81FAUhUcIiBTuPlz8J531T8vnjXPDv84fcCFd58e/6Ez/+k/z2HUdf4XQdjdCPIreTXln6S8usrG2ysGc3CIUQlvseeJrXHd9PsxUjlYsP8Dwfoy2jUeZy5pKYMPBotpv0ekMarQaj3oCyrJzHykjWVwdoJYiaDWQQgFR86dFTLEx3aTYikjgAAw8+fIqDe3fhxwGNVgTGko1G+L6kqkr6g4wkcOS84SCl2Why5uIVDizM0B8MSOImf/bX93FkcZrJ7iRREuP5LjPHlBqRhJgypxwO0UWFFAGr6+t0Gy0+de8JhLTEcUAYRYS+YqLZ5Nr1ddaupqz3N3j0/BmO7JmnTAXpICXwHRBiYX4GoRWb/T5xy/2ODzz5DIvz8+xemMFKh6wWwvLYo2eYmergh24XuzM+xic++xC9jQGh8Gh1m3zs8w9y06F9VNqAFLUm3/nYBv0Rn3/4Gd5023Ga7SbHb1rE9wW6KLl2abmW81UEgY8XKL70xJPsW5ihyEuSJEEI2DMzS1UapPSwVvAX9zxIIw6Zmhmv4TyCUZpR2RyEIIxistwtij3PY21tg0YzpigLwiimyi1CVChpaDfaVLrAajchpnlJ0mwSRAHtTpvF6UnKcoTUChU4n5k2AqEsVebkP0oITFmhhMe53jrT33GI6bEOXhC4yVkZMIYTj5/n+E0HwI/wrSUbbrmrV7YwEnRhCFSEkYaf//1P05VXee2c5nfvWUZrzZ9/+jz/+vvneecdC1RqhNQJAk1W5C7WwIKwFisld79phv/ylz7AZi/jlltfz/f9wNv5qX/7O7xjfh6Fw7/rmtqmaplhZfVOjMCtNx+q4wwEQiisgXSUgpKEYeAM60j8IGB9fZ0gCPB9nwvnLjliXqvpCKqBqvUyTp4krNuhxlgUBWVZEscNrAhYWtpAUu1IEaM4Bpy3w0mDXffGC5zck9LS39pgdWmNpNHCGEt3rIvyXEfdGEuaDSm1+7trY2g1YrStyEYpQsFwq4/Ckg0GeBJ0VSJsjqlKgsAnyxyKf9DbROCKsLgRsrgwS9hoYo1CKIG2JUZTFzQp0hgCz0eXEuUJJ+msKpTyEdKCVfh+QKkzwsAVVtq4jqrv+Sg/3IknAHf/tQiM1Rih+aFjN/Of/+tf5XWvey13Nht4nkJbCKTG9wSVLgjikK2tPr50BFZdGcq8xA+cL2s0HLpFtFJoI6iKnMEwReeC6dlpwiik0hlBENDfSPEjHw9NlCQ02h3+9C8/zW2vuRlrK5JGEyMMyvMQ+BiLC5RHgPLwhPO0SqXwo4CiBhcdO3KAY4cO4IeSIPLwfFfsh7U6QlcFm5tbRGEISKIkQSiIohiB4s+ePcX+4dD5Hj1BI/awUlCmlstXl2k0Wjxw4jTHjuynzCuKrCSoPZRZVrCytEGSBCAFQRgipeck6EVJo9XCQW1eOidtz2M3jvf+m//xy026OxsJTtro4lLcnPvCefu3fvv3ectr3wxCIrBsrFwh8gNarTGGg4xAwNLyVfbsmaPbmeDc2bPsO7DA+OwYgfDBOvhMEDT5ywc+xVv3vYXFxWmwgpWlAXF7HKzl4L7DbKyvMTk+Q2/UZ3y8Q+CHBMonacaYSrC6vEoSCYwtkEq5TEJduU0bKZBewPpGHykCGnGCMAVLyyt02lNsbG6xtLzGqWfPs7F+iX17F2jGkkbUpqJECvdeQdCgzAUqCKiyIaGCqqo3aEyGCn2WV4ZozycZC2glEyilGAw22NxcoxVNuK54WZBXJUVWsrq5xaWtS/TPXeXY/G5EtsotRw7hSw1opAjx2pP4UZuqkhghCaIIIxWiGmDSDbL1qxg7QBQpwpagLXk/Iwpil+Na/+nOX1mj1QgAixEeaeZTGUUzCijRCAmLC/PsGp/GSltvJoL0fJQXYMocPIXyPbAGUZVcXHLXXVMKTKCwxrJ3zy584TaDfN9zntGa4Ov5Pp5092trBQKFMZbT569x5colxiZmQBSIssRPGlg8DrQPsWf/OrEYI5MDJzOtcqpMU+QVzUBSjLZI2iGFVxLGHQ4fPsBP/4vPcOqs4Y7jJY3mOKNhDsLQajZY63VZW+/xmtfexsLuBZQSXDxzhvnpPVw4d43ZhUWKquL06XOsXnmEvQsN+lrRnpgkmTzsICoCByp7maiBlxtOGfLCxw2X3fMSyu3F61dRP7rX2FpG++pfB9SqFwsSlPK+JlnmN4u7v8Xx5Tx3Lzu+gnb4axniP+G1O+9xw3m9pO39Kr7VOzvUL3ifL3f88z+8++738cs37dohY77CGTppmRCUwyGXry2zuDBHWUuviryg1x9y8doys5PdGl7hduLvffAJrq6sceriNV5zeC8I7XYFw5C1lS2a7SZlqTHGksQBX3zsaS5eu8zRPTMMNjbpNELmJjuM0oysKBmOUsYnxxlvR1S6RAXQH/ZRnvPLSenw7hjJk09dYH5ujLiRuMK0LJjotmh3GpSlYXllkz2zUySRMydHSYRUEY+fuMD0WJN0OCRpxijPR4U+D504zf49s+zfM81nHzrFgfl5R4L0JM1GTLMR86VTpxhmGe/89jsIIp+zly7w1Knr7Ns7x2A4Ym1jC601jSDh2pVVxjpjLM7MuHBUY+ltOo39aJgzPdmk0UxIs5wTz5xna63Pob27uL66yfX1Lfbvm2f3zCSeVHgeWO3yzLZzwjxfsmu6ix8oolCB4qIpIgAAIABJREFUrSjLgr/47P3c8drjhJGT/nm+h1QwOzmGMYY4Dp3cVFdkZU4YBxirSbOUg7ummVuYIh2lGG3c37osHfxBbi/sNZ4QDPp9nrtwlZmZcYIoIBulhEFIGHsM+gMwyuVBSXcOfh1G7RZ/fZAVYRChPEmauS6FkmENFXF5TYPBEIvlo+cucF+xyVvfcBihXAfI832XG6g8xrotfF9g0CgBg/4WUmriuEGRDyiLPkKUfPgT9/DP3nmESAxQJue7b4J3HFe8+1sXaHQmMELVBWfoZGaej7USUXfNtJYUeckP3jHN//zhB3j3e97JaDjiYx/7OO+9+TUMekOk8ojCiHPnLtGuwUXK9+tJzLhCxNv2xVmuXr3Op7/4JY7t34fvKQZbfYLAp8gL2h0nL/SkImkmlGVFFPqUuqqphmKHhCulQZuUYX8InkJKFzEggHYzwQ98jDYoT9agEoXB4Pk+FoH0fLdTXVSYSiM9QXdsHF1plq+vIayt4SIWrS1RHOJ5EqM1xlQgHCU1CBRFmhJGwkk+TYGgwtgKqTwqrSmyHIF13cIwoCydL280GhLFEaasnBdQWMq8JAhddpofhAjhPIb3f+lRZmemEEKSjjI86dU0O7dW8H23YaGk694rz0NX7vuSZ3ndPXWdR893SgRtNBh4z7HjxK+7lf/m9/6Adx+7ycnjCrcIr0oNVnHvFx+jvzUg8gKMdbCqIHQdAE9KyqKirDRREiGswPd9VpY32Opt4QcSbQqkkAR+6LIVs4xWt41Bc/zIftJ05Hxt2uVTam0IggilBKYq8ZWkv7WFUgFZmmMMBGFUB75vw1IkSFw8gTZsbfWI4/oYa2nWGWJBrcSQUpCORni+z8fOPMe7d89x7vIy+/fsoihK/CAkiRPW1jZpt5ukacbU5BhukSbq61GRZTlK+iTNiCIvUcqvN5CcF7QsS/woeNnZ6OXGz/1fH+Xtf/9tr/r47XXni1cEM/19xA03FxbpCE+U5NmQK9cvMze3yNL1y6ysLjO/sMjp0yeZnBxn5fxz2FFFu9sGDKEfoLE8+Oxnefdd7yLrV/hei0IWjDJJHDUYpkMOHjyEkNBudkizEVcuX8H3I9Y2VqjylMCDjfWLhL6PF0RYo1FSUGmNUgoviAijJlGUsLG5webWKhMzswhgMFyh246Yn5skCELGWi0C5SM8S+D5SJTz8AYe1peUlUCaCls52bKnPKwNKApL1EkI/Q62SBC24Pz559g1N08UJiz3l0gaTVZWVpEIuq0G090Gv/tn/yu/9F/8E6Y6DcrBBnGnCZ5CKx+/OU7YXkAGTVAKgUYKgx6sMBr1uXTlIs1GB1uM8P0IhEdVGToTDWSgUdJjpCusr5jsdKAEJQMslnanTRQLvLDByvomyo8RykOL0m0QCYvnucK9rDICrwYvGYEwgkwqnjh5kuZ4hySJMdLgS+U6kr6qJb22lqxuz1cunoG6a2nrDXslJXm6xfjEJJ60KKF2AEydiQYz+0tGBS6c3JR40gMU4XSDlf4ahR/yxHMxv/6bp7jl0AST4x6PP/MoBw9OcXRPhzQvaSQt/uazn6Uzdohf+bUP0RtkfOtdb+ORR05w8fxFjr3uNTx35gxvuvMOAq8kDnKm5iexg/OYssfmqMGRm78VlUy8SOr49ZU9fk3FXf1Zf03kzRve45vF3d/B8WqKuxsjEXaeu7FT9yq6c1/p/Y19aWTBjY8bLxPzMs/t5M7VsoEbz+bVFHcv/v3gy/9K28ff/YP/GR/8jte7wq7uaL74f7d9YdlapvDYYyddtk4YsLKyju95RFHE9FSXjY0eU1PdOvBYMOgP2Lsww+zEGHtmJ52/qirRpabMS548dYnpqQk+99BJnjl/hUO7Z7m2usIdtxwHKQniEJRHmjmy4IlT5zl8YC/aGJQICYIQJR24Q1gPoZTbffddx3BjrcfkpPMAbGxuMTXeZrM3IAzdonbfnjmefuYCRTkiDBwxs6okD584y9rGKtOTXZqtBv3hiOWVdSZbHYQUeKHi9LllEhWQ5imdbpNRmhI3Iw7um2Oq3aTVSsiyEcKDmYlJ2mMtGklEd7zD0soa7WbIZx49wa6JNtaWWFyX4NKlazz+zHlmxscIEhco6ymf9bUeldbMz0+xd88sB/Y536AUkiuXr9OsM+cC32Njq+9y3jAEoYcfetgyYzgYEScJu6cm8cMATzkJnx8EDPsDsqxyREvcIjaIfMIkRAjL+sYmzSRirNsizUcM+inddgtrXIfI9xywpazhKVmW0Ww10KWm0WogpUBJS5YWIBzQIIwabrLzlaNcjnKqouDZM5eZm2sSJwGWgI985n7KKmNqbAwlA6S0SM9HSoEfBvzLR0/xUz/xFm4/OENeB2RHcYC1DlFf5hrfh1E6dJl52iHPrS1IhyMqXfHTv/cF3jR7hdfsna0hJRW9zQ2yPKfb7VLKiChO3N5/ZVCyIstyENJ52iwYXXH58iofv+cJjh6a4z13TvGTv/IX/MD3fS8//J53kT10krJyuHprodNq8/F77+Pxp09zeP9epBAozwV9l0XuzsNTNFtNFqanMZWDk4RhyIXzl+h22qjAe8E9oyqrWlIcoXVJnub4nodCMBxukWYD2p0O0o/dIlFKstHIyaCQdbfKMBwOXVGlK9dF9BwNM09HKOUyG4uyQHo+tjQ8/MRTTI+PkzRidFXWXSSB0Zo8T0mSiMFgiLCOzBoqQVk6SZi7YT0ftOwp5VJbsFRF7kA+oU9RuOBwU5VIs+3fdAHe1lRko8xBhfp9pJLMz84grAu3/cgn/oZ983OEUeREEUKgK+3mByzbgTjbizO34SGRStR5jQpdA1+U52Ot5TN/9TH+3o/+CD//wQ9x95FDLl5BKnff19BNmpRVQRiENFst4iRGa02a5hR5zkc++TccO3wAa+FPP/ZJlLXcfOwI3U6DSpcYXZHEESdPPkdZ5jRbTcDgKSdtE0pQFRVXrl6n220577hx3tMoitBVhRLw0U/fy9PPXeT44YO1D9p19vW25zSvAMHy9TWmZydx4fAKoy1V4YA1vV6fJImwxhAEAVWp+fNTp3m9J6GyjHfbBFFEOnQ+Za0N5y9f59abD7nPUgq3gRP4ICUPnniGIquYmR7H9z3Kwn1vpS8ZDYYOhBX4L9nsfKXxrv/ul17y3LZ6ZfvxgjUAL5qX62O3Lvadsqf+Iw42r1EZze59BxmOSgKpmJ3djZQxl6+eIctWOXbTUSa7bYTnAjkdjAjm9qXMREeQoUdeVZRVTNzoUpYluxb2oJTk8rWLNOIWlc6ZGJuizAsmxscQNqMRK0LlbA3SD3bWBzsPIZAyIGk02er3mZ+fx/cSJIos7ZGnGc8+8TDSE4w2V2i1WqAMeTFECkmvt0WhLWHYJEzaVNkAYUoHQrIWg+Dkw48xMTVNWfZZXbrI5qjgyE2vAaWQXkK/l6KMTznK8ewQU25w+ZnneK53lre95g0YU9JqdJCNLjJo0ujOURhFHASYfIQerKOHa5SDFcj75Lpgc3OVYa/HRKtNYSqyNOfUiSeZnJoDnP/1sccus7YxZGamyxCfs5cv8dTp81y+tsa16wOEF/Ps6fNcvbrElasXGRufwRofaz2WV1YQeHhehFBuw6IoMhBghGWmO0WnGSIs+KbESIW1Tk5d5PkOaVhXTtLpMiE1WGoJtEVIRZKEdFrdGmilqUqNFNbliBr4hd/8EN/7vW+gv7nsNuSq0lGH0whT9Ig9Rw5evr7C4QOzBGKLO7/jCEePzSFGYmdDa3xinLIapxCT/NiP/QRx3GHv4gFmp2cYVjm33XYbly6eJ0vXGBvzQRlUcY2rl84ztfuN7D/yRrT34gDzr19xJ4SoJbFih9z9qoo1W5/HKxy7HYvwij+rd/E8z/9mcfd3bbyq4u5lunXbXpavx3g173XjGdiXee7FBeZXW9y93PhKv94vvP9f8itHalrcC1740mO35ay6qFAW2uMdQBCHAcZawiik1xuwsGvaZZ5IJ++REgeMyHMaSYySkiDwCUJXlE1PdCnykrnJLqcvXeOm/buZ7LRodrvOp6UrgigkHeUoAXPTk6Rpjhd4DHo55y9cZWK8hbUChKTXGzIYjZwPqCqZmRojikN3jrFPFPh0Ok3KskT5HmHoc/L0OY4eWMBYS5zEDIcpk+NNDi7OOTqldd6h5eU1FnfPUxlD0miyODPJ1FSXyakuG1tbNFoNLIKyMLQaIevr60glaLXbbKz3SKLASYOF+9tHkcfBxTlanSaeL5FegBSQhB4nz1zi4rU1XnNskTwt2dzqs2fXLEnkE4Z1ADQGq90itN8fMDHZJU0zhoOcdreJ53k7XiYhIB2khNvyqjhESPjUFx4mEB6PP3WOfXvmwEo+/vlHOLhnnqWVNU5fvMLc1DieUgSBT5LEjNIRQglX8OQlo3RIVZYUeUkQBgwHI4SQBFGABZqNBn6dtYY1+J6PUNQFDA77LAT93gDfc3KWqjLEkUcYhAwGFWfOL1GQcWD3LnwvpKoKlHLo9n/0hRP8u5/5LvpbPcIwwvd9giikKp0nSAkPXwXk5ZAoTmrvVFzDCSoGw4y/+vz9vHVxwHinjR85r6ZSrkMRxwlB0qKqNFWRE8UNsKDLFOV7Dkvt+VgsunIbC+cuLnNg7xRRFPIn913jO77zLsIo5KlPfJJdE9Ou6CoKjNXsmZvl2KF9hHGEH/hsz1fKc4W74z06T02zlgAKIYjiiCAMnhcjWOo4AgfMsNYt3JUU7vPPc8I4xApR0y1xNDlrCXwfi6HUxkldpSTwfVZX14iCEM/zyNMUYw1BGKCEI3cGsQfCdQDmZ6e5cPkq1loarQRdVfi+T1W4IiXPC9qtBnmW4vuOfmmMoChKdFUR+Iog8Nja7JFEkevU1d5AgQN++L4rZBFQ5JnrEHuS3lYPU+VgoSwK4iRGqFpvIBUfv+fzHF7cTavVIGkmWKt3yIYWBxEQ0sF5ZC0B2oYHlHlBEIZQ+5CkfH4R9Nrdu3j/B/+ED//JH7H52S8QxbHr/tVFoBSCsbEm7U6b3lafOInxA9ehDQKfxZkZgihCKsVN+/exubnF1Pg4Fu38oImTcz7+5HM0GxFT01OsrW2QxBGe7wA6g37KuUtXmOi2CHzfRZsAQinCMMRoQ6uRcGVplTxzGXPalDsbfEVWMByknDl3icU9C2B13Wm1bG32aLVb9WLWOQX6WwPX3VWKey+e54eP7GVqrEMYB5RVxZPPnuXMxevsW5hlz+451tY2XDe3Bi9I5RbGe+Zn6LbbdWC6rRH8EmMqNja3iGPnAX2145//8cf47re/9YVT2cttVL7CsBbu/ewXiIsGCBAGNjfWyXorIBWN5hilFlR5SVYUrKxucOnyc8zP78aUrusvpFcDUCyPPHiCa+US09FuUIqLF8/RGVsEKVlZWWL/gQMsLV3j4IHDhH5AXqRUZcVgOGBychxhC7Y2r+NLR0M1ysFVxA1WE2MMwotZ3+jhBTGe7zHopWhtGB/vcvHiJfq9jF27F4gCRykNggBjBVGY4EuPRquDtYrSCic7rLLnrStWMbtrgUJvkfhNNq6vcnHlKpubG6TpCD+IKPojWpHP+uplpOmjZMFv3ftHfN/idzK9a4bKCJL2OF7SodHsYq1kNNwi27iOsiVl1qPKh/jSXasWaCYdus0uvi+wShKEEasrK+xe2O+kjwLa0+OEDcXy0mWsmOW509eZmt3P/iMHaXbaREGLwSjH90OE9OhvbnDm7Bl6gyFZmuJ5MQanWFFS1HFFnvN9+jFCGa4tLTHR6VAaQ1EUOxsb2zRittd+9X+759WOP1gIi5Je/b6mPhdBqQusVdz3zMO86+3HaEeSPB+6awNB7DUJpKHMUsbGGrzh9QdRniA0JZXK0LpAZR547rvWbIWsbVr+9D98jguXLnLLbbfzyU9/isnxMTrdFhur65x86kmS2AOpGaUZm0unyIYDZvfdzsTcPvRLLo2vb3FneR7S4i64r8/7vmJxtyO5Ft8s7v4ujm+U4u7F3bz/r4u7H/iB9/Lrx+ZRwcvIXl7mdcK6JebS0hpT0xPY7QWOdZldZanxlPMSnb/w/7L35kGWXfd93+csd3/763V6enr2ASASXACSoinRWkxSe2xJthiVEkXWvliuxBVL+iMq2apIFUdlW7IURSVXKSk5dpiyZUoWKVIURQggCQLEQuwDzAyAWXpmenp/y93vOfnjvGkOQGxklMSs4pl61VPd7933+vW795zf+X2/3881lBBEcUw6mWKt4fLVTcASRQHZtGA8S5QLQh8FhKHPidVlPN/HC3w8KanKnKrMCX2FJ4VbzChFGIZILYlin2cvXaTX9vFDhdSCMGjRbkcoCWk2IQwlWoekWUaY+JjKhS0orUHDdDJhbXmeoNWadSwEZZXTH8QUZYnyNHEUMtoZ0/IcxDkMWqTThjQbs7O/g1bSJX0qj+3tEX/ykSd421tWULImjCNGowZjMlpJhBJuMYuxhHFCYyXK87CN07pvbm4T+5pTRw9x+vgqXuCRpyWPPHWBUEmGwxZ1WWJtje+5RLl0ktLqxpRljVYeH73ncb7utiMIIbh0+RrdToLWmjiOmY4LLl2+ga8UEou0EiU89ncz4sij1eqy3O1x/sUrDHsd1laW8IRib2/sCgAp8MKApqlQUpNNMtozeWySRJjGEoYBWnrI2HeJpkpSTKfURUG716LIKsqmIIxCtA4JA01T12glnCROSuYX57GVRaBRQUDXjzhzYgXteS4ARNRUZcGP3/8EH/rF7zxgo/lB6BIiG5eWaqsJezsTojihocCgENKnaTRIxQd/4+Oo4grf886jeDIkjlqUJsXKkkBFxFGM8kN0MsCke0BDECdgFXU9xlCjtOckmcLgafD9gEE7oNfrIVD80QMbfPCD309RlPyj3/sDvuf4Kao6JY4dQ057rnB2nimJsQJhBVgxk3zjgjI8D+m50AOh1UGE/02MQNMYHnr4MQ4tL2HtzWKldLvwdYMKPCBEqxA7A5fflLw4Vy1ofRNx4nhocZhA0zAZjV0nTRiE0AgkTdPQYBBKO4lj4LOwMEerE7sdcONeV5lVKCldcZxP3Q43lqppMLZmko7o9WPKMmUy2SdSPtPp2HkmAaEVpm5omtpdD6XjKWpfgm1oqgKFxVIR+j5ZmqGVJE3HGJxs/LaTJ4hCn7n5PmVVIZSlLPNZ9LzrGhdFMQuDsreoPdyuftM0MEv9vHmVrsoKawq+/+vu5L/81V/nz168yPsPr82Kw4YsmxJHAcp3RfeFFy7TbbedlMvT/Omf30M6Tamqim63zUf/4tO8664387FP3svaygJ+EJGmUwIvZGdzRBwHDOfmCTyNVpJpVqB9H19p1lYOEUQOiq6kdb7HIKKsDQhFGCrefNsZVlaWkQqKMkVLJ1n+6KfuY7E/5JGnnuPrzpxkNN4jmp3Lf/XZh1men3OdB+uA977yZ6nOkn/7zFnev9DD18J1HcKAuW6bYafjJGpS8MyFS8SBT7ubcOnKddqdllv4KoWS7nrrslFuTjyWLM3oD7t8OQvMI3/7e1lcejnC52Xz2OsUd7/8y7/K37jjPQgJNIJsMkU2GZ6fEMZtlIpIwpCyqkiLCWXRcOPaJquHjxIGIVY0COs+G3/46J/y4vou7zjxbh598Dyra28l7kHSGrCwtIyntQvPMJBOR1gaojBmbjDkwgvPMt5dJwgk0hqU1Phx4gDRTU3TVG4eExJkRFE1rlARgqQVUlY5YRJxaf0aQsUU+RbLi0NaSYip4YXnt7ly8SJz8wOMKF36t4ppxT5NmR2EuFhRYZqK2EsQoqDb05AX9FoJC/0eTz50L7tbFxgOAtoxRNoSCMXxYxe449R3IcIBnbkVai8GqdjbHyNthWfHKFHS1ClYi+dF1MaCF6BMTawVwjZYT7hQFCXoz81hqCjqlN1ty/b1CXXpMcnbHFptMZwbMOwvsDA/JNEdkl4LHSjuuON2Dq8cZW97wvW9EhW0CFtdXrh4jrQsaSoIvIBr65eIWwOsD9pIGiU5e/kag84QrQWBF8y4la4ANdaFpSjlUDIChRRqlu3gPmfGWqx112zte1grZunNAiU87nv6Qd7/3kNIY0izEdBQFCVpPKZsAuLWEsY0lHaTRmT0VZ+smhLEIYlsO1VTNmZabKKDIVkz4J3veidHjp/g7rveTrsds9gbsLe3z913vwM8Dx1HLC3MU+5f5sULz3L7Xe8j6sxhvlbcfcn4WnH3/+Ow1v7KTVbdy8etcsybCWUHUsxXecxX+CJeKpXgSz9vxhgHI50hGeClss2bSwbzCo+1ryP5fLWbtIJb/xkB/+vv/mt+7df+Gf/mm+8CqVzC+ste+83/GcNMbiAxpmH9+cvM9TtYKZ3nxtgZf0dxY2MLhWW0O6WbJC5W2dTc99BZloYDrm7ss7I0x8c++wWeeG6dSCuub+6wtDQELfjYfQ9zdHmBKndA5qauEVISRyE7u3skrZDGwN7uLloCQrC3OzoogIqiQUtNuj9FyhqtNHUJOpBkqZN1adwCTkoX9EFVQ2MJohBTuyj6ra0RnVaH+x95hl7s8dCjFwk9j53xhKWlJbyZFO2Bx57iTWdO0O/2+MTnHuXo4hJVWZJEHpN8n5WlJbwwQWuffDoiCn1aSR88uHB5nUsvjgkCiLTENjVCa/JRxnDYQyeRK2LKCqWgrArWDi8yvzSkbix+GBJFCXUjEZ7CC92iLs0qFwIhDHMLPeq84unzlzh6eBmUA+FGSYSnNJ/43OO86cxx5uZ6dHst6rrg2o09Dh3qUDYly0tDwiBkOs35xGe+wEKvRVFkhKFP3Qi0UqRpStJukaeG8+c3CD0fhKGqS6xtkC79BCHBC2a+iarBj0I8P6IxAissZV2D0E5iogRe5CG0h8GgAo3UCt8zxFFAmmZ4vuvm/OjnnuLf/eK3U1YOqlyXBcrTM4aV24X1gzatTou6yalr61ATVcVuVvD3/8Wf8Zvf3+YtJw/RNCU7uzuE7RZJEjDa3SMKB6hOB6s9pjd2GU+3CH2FNQoVtvEEGCK09sAaTOO8pMZAp9tGKxdnn072WHvrN2BKwe/9q98mzacs2whfey763vccBFy7ZESLgyx72idLU+yM2WZnZvebHfQiLdja2CJux3ie2yleXp4nT6cHslfP893Gi+/kzXVVIaWd+eUkWTolCoIZJ1NjUQhjHZtOgJUS5Xv4UYj2fSSapi5c59VTKKGoyxLtOwmmNcZhSmio0oKmKpDSUFU5ZZGhhECqWUAUN1PkLDQ1tioQTYUVkrrOMSVURU1jK0RdIUSNJyVN4/x50ki0H1DXNXVdO+9kVYIwNGWOLzTM0vDqqsDaBoxjuT368DP0en201jSmQirh/Gdi5p2cSYF2dvZoJa2Dq/Nkf59ghosQSpHuj/HDgPeuzPP+n/sHfMcv/gLv7Q7pdWL8IEKoCDvzzfW73ZlHLsSaipPH19ja2eP2U8fZ3dxmdXmZpJXQ7yR0h32ssBR5judrlg7NsbCyRD5NsQKqunbnYlGiJaRZhhQKLwjwtGI8nuIpRVk4GasftVG+BOMCLz7/uac5dnwVqQS3nT5KEPicObGGp1xSbplVbFzf4sKlq5w5cRRrXHcXI2hwnM8iyxltrnP38oJLWBXOY+QHPlIZWp0YISTLS0NarYiqKul1OrPOkcHYyvmYZhsTYhY8bkxNnWX4oQ8zae9smv0Sy/ytU/g/v+cB3v/+b3lVp8XrYYGEEBSPwcKheQzOm1ulI/a3LjPJa3rdIecvXKDdTdje3kRIn53ty3S7AaHn1hmbGxtURU273eIvn/o8169e5+TiKfIqZ355CeUFdNodoiBgd2+XMAjY3dsiSTokrS6hr8iLMZE2RMo6Lp2ZLRCaBjFba0ghMY11IT5x1ylTYh9hBXu7++yO9rBWsji/RDrZJwgj9kY36PcGhKFHq6U4fGSVpq4IlU9lwI871NbS5COUgBq3ILl29TJB2MILfJTnM+h16LQCPFWxtDBgZThHoMATUFq45+HH+NSLE771Xd9HKQy1qajygiof4cuGKt1DzYqesiixwuIFodsgkgapPNAejVBUtcPWXL22ydNnL3B9s2B/LBgeOsbC6hqLK6tcv3GJtbU7SPOSoswIwxgvCLi+sc7i/ArnL7xIq9Un6XR405vvpNftoqTkzJm3srO9x+b2dZQQ9AaHeeyxRxjtbdMbLqKFphV4RO0OWJes6RA3s80v34UuCQNFo9nc28cLJZ7VpHVG01R4ykdK95kWWExdYY1DcZR1zjff+R4+fO+9vPX0EBoLFChpsPuKflczGq07JmnZxTM9jDch8gfkE4X1cz77yA3++1/5E773297NfZ95lP/zT8+RlYq/+d5vpjGWMGpxz6c/zeraYYoqJ05iluYPMdo3PHb/n5DuZhx/2/tQnT7SzjBc9uWC5VvOIb50vfiG1JUzLMzNBOi/jsIOXru4O5B08jVZ5lflMMb8CvDKxd1sJrjZWROz3aiDn/11FXevML7kyNbOkpTsK+4e3soWeQNHe0NDvOxhVsCv3yzsbt7n9Y6BAGNJd3fwcO+f9n2qxk3+SRxSZCVJFDnJn4Fev8NkmhJFHnP9No+cvcCbTx2hqkqOHVpg2Glxx+mjDLpt/NBjOsoYdkKS2HNwWyuJk8gtWO3s9xeC8Thj0G+TZTlFUdHrdNnZ2iMMffzQeQaVUGRlTlnVrK9vEQTaRfUHPtrX5EVJHEdUdXXQES3KmqZy0qzhXIc8LXj63FUOzXc4c/w46xubWCxLc3NM0ilxFHJocQjCMp2mvOX2k26n3FNkecHJtZUD87AUEIYBcRyhpMaYGongiWeu8pY3r6GVg0M/c/4ia6tLVPXNEAzQWiGVxvd8h+TQLpF1tDdxEiZAzODnH733Qd508hhRHNLvdSmLHGvs9E99AAAgAElEQVQMp4+vOq+AUpR5Tl0ZklZCIF0ATFO5SOVet8tknDHsd10MfeI8MoEfsNDrgrBEUUjohzzw6Fnmum2iOEQoiReGRHGAEpZWOzqQV1kcg0tKQV0Zh4e4tomW2i0g8+LgPTJNPeOiGaqywg8jpHBBPUJJMA1SSVrtmP39Ef/o6Rf5/Z9+D1L57r2fyVm8wGE4nB/Csn71Kq1Oi7IqCYOIKIr48F99gdFonZ/6piWurm9S1ZLpeI+lYQ+pfJfmVzcY49IB69Jg6xItc2gaysoQd/rk0wlBFFMUxQF4ejSaEIT+7D13PoM7jw348X/yb/mOD3yAD/7AB/nU2bN0rm9xZHWZIPSpa9eREsLF+hd5yQsXL9NptSiKgriVUFXVLOBEc1MeuLO5hzVw9vw5Di8vIYQD2ra6bewsiVPO/MCzFhRKSbfItbPNL4Qr+LTrZArcZ0xJp8FrjKVMJ65zZV0C45Ur64RheOCp056HFa6zr5QDypdlie8pB1j2NAJLEsekaYbvK4oio6lKTOPCDap6ihCOvXhjb8xw0KYsG+578AnWVo5gm8L5Uq2lKKdYKjASrKauG8LIdxtoKISVZHmO9pULQtLKBVFoQVHkKOXxxLnzLAz6BwB1a0EpPduZl5RViRCweWOTbrcNAqrCsegQUNUOK+CHIUIqQi/gp37rt/lvf/KneeLxhzk9GLA/mjgMgnC7/cYa4iTGNBVpmlM3hpXlJeqZdBogaUUuKbGpUZ7CNA2e9lw3Vyq0FnzkU/cw3+nRmoHFd2e+0DAMUJ6myHK0p9Gef+ALqssaYRuapkF7ijiKCMLAoSMa4+SkStFUNVXpoNnbO3vM9bu02y2Mtdzzuc8z7HZpdRLETPr7Pz/+FH/32IqTms52yvO84LkL6wx6XfK8xFhDEPromfTNNIY0TR2Yvmqcv09Il1YICBquXr3BcNhFae8ls9Rr5aG97xf+8QFP9OVDzVJPX2/88m/9U77prd80ey6BNA1b116kUR6tdo+5uWWUVrQ7XR79/BNE7YqllUWSOOG5x5/h5Jk3u3Q+LdjMLnPSnmH56HFuv+MtnDv3BHHYRmmPdrvtsBpK0um0uXL1Cv1uj62ta4S+pqkyrMkJApdsK5XbiK1r14l3SgeF1Jog7lFbgfID4qhFK0mI44Sk3UYYSytpcfbsw3TbPZoqx9MSf9b195Siriry2uAFCVYYmmyMqQqk9hAW2u0uFjMLInLXBimE6xpag5aKBovQHiJM+PDZe6itx9ff/g1ADaZGYanLCdgGaRsUAqTHNJviBzFWSJTvI5qKurEURUVdCrY3dyhqixd0qWxAf7DEHbffSdJOmOYZfuDR6/bxPI8sTVlYXMDzZjzJpiaMIqRWdNptjGnY3x+TTqccXj5M0xh6nSFh4jMYzLO9s88kNS6xsrHkZUG70wFhsFUzm4fVgWzblA2NdZ/5adXwwuVzTqJbOJi9RuKYqvaLMldh8bQ3qzucleTf/eUnOD5vSOIET4OS0G7FTKZ7jv1aa/70P32cS+dTVo8PwNOM0hJDiDCSIyuLHFvxWFhe5fOPrvPtH/gWDi0v0hsOycucQX8Awiketra22NnZRgJnH/043VaXU3f/LXSYuBbA61RrX/Hq9Ja19qviTb6C8UYLxa8Vd1+F42ZxdyvS4OCD9EUX9S2tYPvSr693fF7aDXslKeXLf35rEXmTwuTa0q8hC3n5a37J9uMtBemrjJcUrbPx8uIu/Re/xveeOPyS773SEcXBL2Khrnn+3EVEU9I0lrKqCWY+n7lhF4cmdnDYuqx5/OkX6bYjojggK3KEFsz12gfw3G4nptPtsrOz52SEviIKY5o6ZTTeJUkiWu0uZVXyhafPo4Wk0265qHffZzye4HsecRJTTnMGA1dIqplh/+ILVxkMW3TaLeaHQwLfwd33xhOkErTaCbt7I/zAcwvNQBPGEXnWMBqNEbYi8EMOzS0RBJK6knzmybP8jbtud8iAUOMFnutMSfADtyAZj6fUtcMF+JFjZGkpKfIcKySmqVi/fpE4Cmi1Yk6eWmJ7c5dHzz7PytICS3MDyrqkqV0aWp7laK3YuL5Nt9fGGktjGpSSBL7P5csbPHnuRY4eWUIIuO3oKk1tHMy1dgb0vf0xnW5C09SzQsoyneaYxrK8Ms9oMqYqMuqywgJfOHeJfhyjtaCoJlRVRRxHCCnoD7uEUcjlSxu8eGmTQTuh1U6wsy6qYwHmDn1hwfN9RqORC2XxNJ4XYmrLxz/zKLcdO+y+p90tHY1nHWAxSxL0Ds4jOUsp831NVVbkkwl//+Fn+Tf/3fsQKKwQB8XLdDqefaYFuzt7vPjCOidOHHbpfF6AAL7/1z/CL31Xwsp8iyyd0IoD5hYWEGZEU2fIWYiGkpBlDY0RRFHkgmKyPSaTfYSp8KM2Fg0CB0a2ljCM0IGPbRwTrKpql6wmYGNnwn2Pvsjb7ryTiy8+zx+/cJ6/e8dtLrBDCKqych0kofD9kE6rxd7uPmVesb+7T6frUAOWxp3rVuBpnzAIMWVGHIZ4oU8YR1hrZ5JNyXScIpV2RZ2eBa/Mar26dvBkNbteKa2x1DRNQVXlCGkxokEaCHwPBDQG+v3OLBHVLfjKynW+qrJCCuHYa2FIOt4Ha5hOJygpMKahMSWCxoWq5DkPPvQknXab8WRMELTRqsWnH7rIxu5V5gdz3HbqJLU1jCc7JEmLz37+SdbX91AqwZeWj937CAvDLk1TUJSGT3/2c6wuHcLzJEY1mNqglcDg/C9COJ/qmZNHZ5socsbZlAeLsKqu0NoVwa1WcuDJq8rZ+SAExrp0U5gVjkrxvadP8Mv/8cN894/815wxDXGc4AUedVFR1o4DCBYhwY9ClJTc2NjgL+5/kGtb2zR1zbWNDbqdxBXLDSRJTJEXM0yAIptOWF1aotVqkWfO35l0Yxd8U5Z4nkL5HmXhuvhVUVJXJb6UKKnI8tIhK+acPLTIC3e+CUFZlYz3J1y/cYM4CpmfmyOOIpJWgud5BNqj3elQliXTSYqSimJrndtn0OrJeIrve3i+ZtjrIaV7X73QeWyrPHfhTZ5Gex5KOUm6khIhFTeRwdIayjwjjIOXFHcH67hXmbrD93zDq86Pt06d5hb1zMvHc598jttO33Ewl9dZirIVneEcraTN7igljEPAbUDGYZuL58+xs71HLjyuX7tIQ0Ont8DHH/gEd9/+ftI8oz/ok7S6rK6sce3aVcdRzDM2tzaIwphOx/Ey6yLFmpJ0vEXgK5q6QAu3YdLU1YyzB1IpjAXp+RSVZDBcJq9dSNne/iatVoetzU2sMXzhsQc4vHaaqshZHC6gZUPoO3+kMQ1SapQfI5WzRJTTfQfiBmiMC8xSLjDqZgCRkyZal5wrBX7SQ4ZddLzID/7MD9K93KPTarh49mEiAaKeoqTFmsoVhQhskxMGAV4QUBRTAi1Z38h56tzzXNueMioMg8UVahswt3iEwcIyvX6XaxvrhFFAFMdcvXaFfreL1j6dTptpNnUd2LJkOhnR7vSI45i6LsmzCa12Qn/QA2GIo5C6KVmYXyGKO4yynDvvegcLi0fZ2Nple3dMWQo21jd47oUXuLh+hUnRcG1jk1pGbO6NGE0mxLGHJwxL/TmC2QLqifPPc/b5i5w8emTGV7TuPJwpDYx1nSyJ4Jh3gjveGbO1tUG/30JKyPNdhxUwFqVi3nLnXRw/vsi4ukRRBvzu736YsjzCm077HD+2gKh3CeM5Wr3j3PtXf85n7/8scwuHyMuaYX+evCgwjWFvb5fGWD710T/h1LEWcTzgxFu+EelHjmFg4UuCBm9pOthXaEJ8ucWdnalPDoJVuEU+9uVKQWeHFVLMNiTdN2+q9qxxr/Vrxd1X4Tjo3N06Xla4veRC/mV2615+71fyzt0cB/sRMxnlK93n1Z/ote75+sXdzfFKxd1kOuUHf/CH+dvHV770/q90kAZQYDFcv3SN/ow3l5eW+584z9qhBbTnU5c1k/HUee2qkr3RiL3JlJXFeW7c2OHcpassDwY8fe4yd5w5Thj5TLKMT93/NHlRcPTIMlVTEyYhu5v7lHlDGIRU0uArjcItbqR0HaztrV2SODqQt0oFdVPTakfYpqHICubmBkhh2dkZ85G/fJQzxw+hlCWOAzCuMyQlKOV2kpvaUpaGsBW4d6OWTKYlu+mUJy+cQwuPVttnaaFHXVdEcejSFSuD7wcYIymzFKkl/+GTD7LY69HuRtRVSVWUeJ6PReBJDykKxrs5oR+jQk3o+aytHkIIyX0PfIETxw5TFhWT/Sme1uRFRW/Qclp1XOR+XTVorfE8zeXrWxxdXWI8nlAWFV946hyhUiRxiFaSdtfhHyyWQGs8T6GVdhBqwI989vcz/uqxs5xeW+H206sEvgu1UMIjDEMnJ6lrhBQUZUWURBxZnuMTn3+CO28/Rl3XSCuo8hKlpYuhRzCZjFHKp91u4fmeW/gryZGlOfqDDlhDXZbUZYn0XIFthMWiqGrL/u4eQRgBUKSp8zVYy4NDw89/5534foDnBW5nFCcZS9MpSjq5aLfbotuJ8D3B/u4eaVHzI7/5SX7nh5Yp0sKFEOxN0UKxuZ/x4sUtdvczhgtLlLVEqoAstbSHHtIDLbsoryadpkhTUeERhG0wjetgSefXVFojjADcgtXJZBVvP9HFLzb54E//E37u536GH/vJn8A+9fRBpzIKQqSGqmwospJ773+YO247yZUrG1gsjzzxDMeOHkbpGXRcCOIkZDzap7E1veEAqVysv5Cuu1cUJXESs7W5TRTHzvNW1bjOHwipMXVDNk3d6xaOWSiFwJ91faT0kJ4Hs98FA0WeoX0nBZYzrICeSbW1lHhaUJUZgaeQQBS7wjrPMpQtHPS9LJBSsbC0hO/5fO7x83hhm2nR0OkGnFo7Qa+zyKcfeYqV1WXm55fw4hbDwSGWl9eojCRJOrTbIevXr7DQG/LQs5cxTcbyQgdfm1m4gQBrvihNb1ynuKwKgtCnaRw6wRpzkK6mtUagKPMKz/ddx70xaE+STlMXhhK6lDpbVGhhHeZBB+zt3OB7fvJH+aFf+2d8++qqC0+oc+cBNWZWSDrm3HQ8odtpc8eZU8z3BqyuHGJhbkDcimnqhvPnLnPjxhZ105C0I6SvEcZ1W6uypN2OAUuWlagZWsbUDbVxjMLJeOJg4kGAtYar61tURUMrSZw0TCuwTt7nQljceRRFATpwYUZe6COkYDKZ8hefeYhTR9cIw4DLV67hKcG/Ov8C/8XhBfcZ8FynWHsag8HYhrPnLjM3N0ApjRdIQGFw7EYxKxAQNxNaceoLLbmxsc3cwpyTZb7BSdR717vf0Lz4agqZZ585z1rrtFNICLcZUUwn7G9fxVIjEGxs7DCejPB9n/Wr60z2dllZOUZlBZuTfY4cOcnh1RM89fhZPvHYp/n6t7wDX0l8v00Sd0EL5gbzNMZ1MzudHhsbG4AgnU5oqhSFwZcWJW7K4Nwi2AjX+UQqhPKpraUygGqzuz9xnDtraHfapFnBoO/8hwtzS1xcv0w6vkorCmjFkeOoak1RlUgV4EUd4qiDVZ4TpFYVQiiQxnW1tUdjmxmexVLVBqF9jPTxOsvoqIfQEdNRzi//81/iO+5+O6bco99yEkgZOUyMaYxT/UkFViG9mI2dMdvb+0RRj629CZs7OSfPvJ3+cJFer8vO3pjh/BIXL70AtqbIpywsrmCFxNM+SgrG4wlCQGNr2q0Wnvbo9wZs7+xQViVRGGGbmjBKGI9HCGA0HrG3v0sct7nw/AWMrVmYH1LlJdNpxvb2Hm9+893UtWVrb0JZNiStIVtbOwgZsbm5S4mlKARZViADhZIRVlbsTyoUkvlBGyHkTFpsD3YopHR+eWFd4u3xt+zQijXCy8E4VEVVWjrdgUOyiALl1SByqH3e/Y63cOSwBUoqkfH4I89w4XLDH9/7DGfe9Ha+7+/9EOtXt1g9tMZv/87/wrvf/W4a07CwsMDi0hID3yDtLuiElTN3z5JYX73x8fLmyP+T4u5ms+VWZd0XGzNv5GBfOg7sV7NXdLOwk8p1Wb9W3H0Vjv+cirubEdrm1vu8xi7hS5/o/73i7u998L/iD//mXa9Yyb3iEY0AJSjLguneBCUEnX6PMIw5cWQWv4/bvcvznM8//SxJ4GOMZdBpMxmnPHfxGne/+TTj0ZRWFJIkCedeuEy30+Lp89fxpGC+36bdbTGeTHnosec4vrIEShC1I8qsot93/ozdnRFZmuFpF++uPcXe3oR2J0Zqyf5oRF3VTNOcJGmR5m5X+fmLmyzPdxE0TKcZUeS7lL6mIYhipJR4nks6lIEizwriIObBx89z6vQqZT7l9tOnWFzqo315wHQDgZTaQZORBIHbMRokLZ547gonji2ghMDXisk047GzLzBs9TAmo5v0MY1G+GpWFDfkacGl9Q0W53vEccT+9ohxmrG4OIehOeiS1LVBWFdA5HnJ8SOHaGxDkkT4nk+VFbSSkCSOEIAf+jSmQQrJeH/s+Egz/1ZtGjxf00o6HFmaR0oIIp/JeAwIfO3YfePJlCLLCcKAsq5ptROC0Gd50CMIXUJk4PtOboXzzbjFryYIIneBnbGtpHQR/6ZxXZQbm9t4WlLOQlicVMtHKo92HGCl47wJ07CdZdwfp7zv7tM0TYPvu1h+K4STLAnQShCGEVHkvGt+6DMd7dNpt/lvfusePvTztyNFgyTAj7s8d26dTismSros9AesHV5GhTHaC8FIzp+/xvyy89SZJsCalOlkTKjBCzuEcRswpFl20GGoG0OZFS71clbw1bXjH80nPv/+gWsszA25613vZPzg/c5/1bgAGCsNprZEUcKZU8eo6oqnzz7P+cvrfPu3fiOe73b7tadRB4WIoj/ooTxXQCulsRaKPCeedfGSVmtWnGiUmqUVWkvdwKc/93mu3bjBytIiUiuk8NwirLYzz63GwEGHUViQelYoGVcIOcmYxdOOXTga7SGEYTwaEwY+dVUxGo0crqDJ2dnbIYpi9kYTJvkEz/NYWzlKt+Miww8f6tPvdVHEHF5ewQiLRBIlEe2uS2VMOgFXLt/g9jPHmO922d8fcfHGhLecWaXbjrCmwhrnTcOCVi70RklFmmcgJEpr6hq07+RWrhMpmYzHeF4wK8RmZaGUSGF57vzztFsJ2nfcOmkNo71d/CDACsnb1o7y9T/xUywvLhKbnFOLSwiM624KQVmU+L5PYwzrV68y1+9hELQ6LWxjXbpoXaM9TZlW7OzvAZbF5XmqusIUTsbY7bVJ0xQv8PD8gKZx0kspBMr3aOqGJI7QSpFNMyZpRq/T5977H+X0qTWaukQohRCSyWgKwslnAz9AShcAUxbVzZmHdJqztb3LyWNr1FXFtc1NPM8jLvc40W4RBAHeTFbZNA1plpEXFQ89/TzLwy5xHFNWrrP/5NPPs7g4T9PUmKZBKkXTOE+6MRbT1JRZQaffOfCFv9544MoVjr7vA29oXny14u65Z8/hZ06pYGaPafIcTzSkxYTpJGV5+Thx0qLb6TDoLbG0NEBpS3fQIy9hNN6kqSr2rlkeuvIA3/6N30WoNEncJwhjpCd48fnnObZ2lI3NazR1TZqmLMwvUtcl/U6L8d4WRT4mDF26tLDu/LtZBFsh2NvfJYoS0rKk3VmkLBviOKLOM5AQRx3yvKQqCh78/H0gBEeOrNLvtvBnm6LKc4FXUmqM8GhqQSMVvmhIx/tk2dR1WbVPUZRYDJ7v43sBVmpanR5Sh8SDFaRymJL/6d//Kh9YeQeLC0OkMhgjQCoKamTjJNzGWoyFs2efpGgE51+8RG+4ShC0MNWUtWOnCYOEyXjMoYUFknafunYFD7ah1+kitUdjDGEY4XsaiyDNpoRBQF7kTKdTyiynMS5N+tq1dYo8AzyiKEYrTZ4VLC+tMJrusHbkGJ1ODwEoK4iSFu1Oh1Y7oapSTqydotfrM+gNWFo8DEbQSbpsj3fZvTFlP00ZlztEYY8gBInP0ZWjSOkC3Dzfpdhqz6Nu3AYbWCQC31dslM+yvBAxTfdo6oZAB2jlMx6ntDstlCcpMkXdFCgr0apA6asYWgRxwKH5NYLkOH92/7NcunKdH/qhHyadFpx/7gIf+MD76fd7RFHI9evXAVDViP29F9gblZx52zeC1hwsXP8/Lu5eer83crAvHa9U3B18/Vpx99U5bhZ3L2klv3y8msP6DYyXm0ZvlWDKl/3M3NKxO3j8a0kpX+s13zKUxcnTZgEp9nVmOyFvvnLLj/3oz/Cvv/6Ol/wut96MulW+6XYHrYDR5jbFeEp/0McLAqwV/IeP38/pY4cJtGY6nbhOVhhw7PAy3U6boqyYmxsQRyEKS6cV4nnQSkKaqqKTtEjHKW+/8zixLxHWuNj3uua2U2sk3ZaLHLeCNCtIOhF1VbG1s4dpYHt7xGA4cHwdGgSKLC3Y3hkzNzckCiN0oCjSmieeu8h733EHaTolbkdYYfF1TNM0SG1JxznTSYbvu7h7oQKqFD7zwNO86Y5F5vsDFuYGCAWmsaTTkiRpYxFOHukxKxQrsrwmzXJ6nRZHVxecNEpqysqSTnKEEVzf2+TwyiqTLOeBJ89ybGURLChrGO2NuPP2k6jAQ/uadq/tdjulu1gp7TEeOT6dlBKrGoxtCALnDbsJVQ1CTTBDHFR1jedJlILpOOcvP3OWI2tDgiAkK0oCzwVJWGY7xNY63lwYEkQhVVWTjnPOXVjn0OEFyqqm02kz3p8grKU37FLXNU1VU6QpQaAxFrCGbJpRZCVRO6LIM3a395wE0/OghsYUCOuhhUfSiQ7Sw6Iocl1j4zordVGhhOAjzz/PPfk+P/bd7yYvapd82Rgmo+kMhTFA4AJjhDWgPKxQNHXDP/69j3M42OZH3n+Snb0prXaXRmqeeup5bjuxRpZX+IHms59/lvk551UUjfu7HTu5iGw8TAFKW25cvU6Z12AztFdjRUJjcpJkiFAWJcFWkiDyqGsXOmFM4/wxWqE9TVorfvaX/imbL5zn537/f+O719ZmXiOJRqO0pGyKGTjc58jhZU6sHXLevMrwJx+/j3YQOt+TkkjtAfKgiMZa6tIhKYyBIi1n3k0J0lIWpdv9N2CNZW31EKuHD2FtjecrRqNdfC/gySfP8dz5Fzi0OMD3/VkKnABlXdCNdvK/oijRnkeVZ0hpKcqMJ587T+K1eOCJJ2mFXaSoSEJJU5Vgaoz1eOzZZ2lMzHOXrnFs5Rjjcc788iGUEnz0Lx5mfjhE+pKNzS2efvoiAsFgME+Rl2xc36YuLEuLPYQX8dCT51k7cowTS0MC3yVfIixVWWHKirw0qFAhNBRZTRBqhLGzXXNJXRWAIc1LQBIGARKJ0jhpKs1Mai/pdQdELd8VJeD8dnGb/f0UU1eEfsQPv+0uvvUf/AS/8aH/yHeuHUEiqMsMpcQsFVUy3pmwvzdhYWnBJZs6PRTj0ZRP3Pc5VpcW6Q0HHDq0yNLSImlWICx87uEvsLw475ImfQ+hFKZqCMIIK2FnZ5sojhxTq27Is5y9vRGD4RzS09x221FMUzKZjKhqy5XL1xBG0u50nOROOC5hYwwPP/YMSRTSbiVEUcCpY0fQWlI3JctLCzy3cZVvXJrDDzWmqmnqmrIsXaFmBYH2UY1ga2fE4nwf7SmqouHQ0qLD5QjHFlTCdbezbEoQaJQQ5HlB0opxuu/XH6ZpmPumb3mFydDdvujQeJVFJfDz//AX+Oa3f7N7mLVIA0WRMdm/QVHA9s42q8dvc0DsuqKuS85fOI9Bcv36dY4ePkoctqlryz0P/Dl1V/P1J97BtatXabU6JElEJ0lodwZOsm0b6rokjCI8PyLwNePxDguLSyA1ZeHkuNbOts2EIK9KTAO2hjAakDcB/V4fqSyNMW597rW4ePECrdAnbiUMhvMEsmKhF3HlyhWefPo5jq2tgmmgqZFBCz9qsz8ezxixITIICMOAxip0GBO0uuggISsbhG4RteewMkCFbdLJDnW6TZPt8I437zIfvhUZCQLhY5qKqinJMosQlsZKPvvgw0jvEJt7u5w4/XYOHz5FuzMgKxvQMUuLKxRVzuLCAo21jPf3wDaUVU6n5Qr+om4oqyllkVJkBUpZmrqh02nRmJJ20mF7dxtUSRzGdNp9klYLF/lrkdISttpcunyJ+eEc03SK8iSNrZFaIrRH3Vi67S6dThftByjPp9vt4fsh3W6P7tw8cdSiP+xz5MgxxpOKjc118smU2PfZ3rnCsDdAKOECegw0tUvgRkqk0tzY3ObGjU0qfZ2lBYFF89BDL/L8ucucue0MRTllf2/LhatJhTUew8GAsjRgnRw9S6fEQlAqRey3+Ic//mNcfH6d07cv87a77yQK2ly8fIHrW+ucvuN24tY80+w62bUL+N15Dt/+LmwjEcqAsAfIEyG+lA/NzDt46zr4DY2XFXc3ETfg5qEv52A35Zy33qyZ4UHs7KR/ydevFXdfleO1AlVe8f580Rv35YxXOrp4jZ+9sYO+8Ue6CO7Zw16juBPS6bSbpkZJSfWJ/8Sp4eDV72/ciVqVJdJzlZ4qCvb3RjNApnJR/QiOLA1JEgfhNbWTJb548TrCQhRG3PvwEwyShNrUDIdd6sbtQDe4mHQdaDq9NtNxSjtpYRro9bsYW5MXBXESYYxld2dMFPloT1HkBe1Wwvq1LVaWhi4hrq4RwoKVbO/s8dTz6xxZnKeuLXWTE0U+i3N9klZIGHl4GLLplCgMybMCIQQX1ze5trlDOwmIkhgpJJfWr6K04PSJNawRlKUhL0r80Jm1g1BT1xVV1SBwHhYhJE8+/SLHj62QF47jFoYRN65v8dG/epQ3nTzBE09e5M43rxGGIdNpxovXbrDY7+JHmvFoRL/f4erGFr7vo5WDVyft2HmCcL6gOA6Rwq2/2K4AACAASURBVHVkEPLA+5NN04OQB620M9krzWSSEsYB02mG7/ucPrGKFsKF38QRVVERRzFlnhMGPtNpTpi45yzygiBw4TbLCwOskgRR5AI/hCsobvLcmromiEIQkqZqMA3UVcPWzphWO8YaQ7sVo7QmnWaURU0Y++zvTmh12lRVAXyR56a0pKoqhK1RQuJJyan3neI9bzriINqzQJB0OkVrTZbn9HodsizFDzyKLEVqTV0bfvA3PsH33tXl6qUNsjSnE4ckUYSpGnZ3J8zNdekOe9RNzYnVJYLAJ44DNrf2UVoRxz6bW3v4vudA8l7N/PyA/d1thK2QRlBbg5Q+dVPP/v6u4Jez4lzMFpfGOij02493uSaOcvz4cS5cuMB7Bn3KsuK58y/QSpw0WAqNsBIlNZ4vXECLcR6slYU5PK1doImnZ0oft3q1xs4WAAaL5PLFdW5sbzOcdx4T0zgGkwtHEVhh0L7rtkilHb5CK6RUpNOUO2474fylAvc58zR1XbvnsG7y1zOYt5jFEwVByOElF9/dbYWU+ZR+W1MWKWAwVuIHMSvLh5lfWOLY2lGmacrJE8fRM2/j0nyfpB3j+wEfv/cB0rRCA4Gnidsh7VZMFAWEsxTLVuDjaUmr2yUrK2ojCOMuO/sFl3bHBEIS6xpha7zQx1TGmfqFYyxiQQrnrxOCGXfPUpQ5nudR1S4FFdPgae0k60aAuBnAovB8PQO9u8XHT/zmb/OHf/C7/A+/83vcPZzH8xz7zljB/v6Up85d4O633el21qSTaX36M49x8cp1diZjThw5TBgFNHVNUVXEUQhC8Ojjz3H7mZMI6QKXrGko89x1IauG4aCPy8SZSW+F4PFnzjLX6+L7iqoq0NpdP6rKEIUxO7v7FFnO7s4+qIYwcmE5xbRgYdFdx7HWYUo8x+z6P/74z8hHGdeLEddeuMrCoE+UxFjr5KtKK/ZHY1ZXFxn022hPgRUzXiouIMhatPKpqgosbkPC5cownUwdsP0Nhi/87INP8wM/8H1fOm/OFoI3p9rX2mz90If+6CBM5eYMK4GdzcsIDCdP3E5eNrzw4gtICek0Y3V1lfn5eRYXl5lOU/ZHW0RxxIce+iN+9r0/R2knTEcVp0+dIc2mSOV4acbUTNMJFstgMERGAcJq5AxnUJVTTF3Q1DXj8QiLRuiYyki8qAsqQkZdVBBTN5YwSihrl4rrKYfsiFstrFR86r5PEnuWfsen3U44cmjZFdYWrPTxwi5pWiGDgEF/iJ11mhtjyGpL0hliREAtAmp8otaQIs8QwlJl+5hiD082/I//17/k3OUR7zzzdqRx55HwYi68cIkrlxu29jOuXp3QGxzmzB0nWT50FF977O2PZtUERFFIXjgea9PU5HmG8nzSbMqhlcMz2a5CS+fxnRsuorXrmo8nU9rtDswUEP25Raw1+DqkaeDa9WsMhkOEtayvX2Y4nKfX7zvZZhRTFBkC4eZdpR0ntikZ7e/QbvXZvLHBje0Ner0eYRxybeMadVWxeuQodV1x8uRxwjBh4+o+V6/fYLi4ShjImZTV4GmN9qSzVihvBkSvaEzNH3zys3zXew/h6YSdrZTxaJPFxQFxEpGmGXHcptvtkWfZrDgVjndroSglUSB54kLG7//vH2EylQjZ5rY7TuN7MRs3NhBC8rn7H2K0kxPqiN3rX+DyuSforZxh8fgdCGldUMxLV4dv6Nx7Q+Plxd2tz/VlLqC/ko7fV1rc/fVFv3xtfNnjJuZASHlwe60hef0/mHmF22vd7ysdt77ml99ePt4ok88YlzwmleLv/J0P8m0nj7+hx3m+B1gUgkuX1qmqhtE4dZIy6wzcnqfY2txmOsn4zCPPMJ2kXLy+RZIkrF+9wbHFeaqqotfvIJXk3MWreL5HGDiendbKdSaKko0buzx1/jJZVnDp6nVupjk1teHBJ86htWSyP2E0mbK9vU86CwQpy5KPffphptOcoihoJRF3nlzjT+95iGvX3A7X489cYH9/TFlWZGXJ7v4OQtVsbG3y3MWLaE9y/MgK7Thy3rPARwrByWMrvOOu2/C8kHvu/wJZVvCx+x5xCIEomCEUPIJZJ6OqaqQSHD/qYOdxFNHttVHaMrfY4we++z2EseJvfevb8D2PLM0YDLp823vfQZLEIB2I2ljDcNDl8bPPk2Y5XuAxGU/Y3xvx4b/4LHVZU+YlpjE8e+ESWjkPUJmXtDot1GzhtLM7AhzbrtNz0G3P910RIAxKaT79f7P35sGWnned3+dZ3v09291v39urWt1Sa7Us2whsjLEpIDZQYAIEcCozIczCVFIzAWYmW0FNTWUSMsOkqDjDUtSQYYaQBLDBBi+SbVmbte9qdUvd6v3uy9nf9Xnyx3PulSzJksCuUFT8VN2y3Oe859x7zvssv+X7+T75HN1uH6UUO1tdAAb9ES+ev0xZ1TBpQbMAUjg/NFtTFgV1XXPvI8+6Q5qQVIWrAu2RwLIsJ0pCkJLzV9cQgklbj4PthGFIoxVhRcX0fAtkTZh4/NEXHuLFly5ijCEbZe7AWpT8k4ef455gQD0hP4KrYGMtcegDlsXFWRfYeh7W1IRRhEDwL/7P+/iNTxxiMYSbTx7kXbcc55nTFxmOMi5eWOHkiUOsrG0B1pFUPQfY8TyPxcUZtnf6SKmYmXEZ3yzLnJ+bUEgV0uv2SULhKg0Tc+a04cza/cDD1NWr4m7hDuKmrrHG8r/+xv9OLQX/6B/+PT7x2T9HK8nMVNutCQiee+EMFy9cpsiyfaNtYwyf/tyX2dndpdlqsnJ1jaqYUDb35/5E1zUx0V5YmOfGk8epq4mptRD0un0+e/e9VGWJ52tHgNQaJRVVZVDaHToOHz2IHwYI6WxQgihACDGhbbr1pSzdoV8g8QIPY1w/g9IOeNRMQhqhh8kzAikxRcELZ8+BDQiCFK0C0maL2dk5RuOMrY0dpNK0200C36eqar7vrjsBQ6vVBGsxlZm0DOaMhmOMsczMzZA2Uoqq5uraJkmjxf/9F1+hkXa4/dRNRH4IVY2sS2w+nISh1tkfSPe51XXJeDRECAijkHvue8hpXGsHS5FCUpWFSyzBxKdKYGxJVY8pqzFeIClLp0/93Y98iAcfeoQLozGdToe6tsRxQrfbp9Vpc8fNp+j3BlR1xe5uFyEld73vXXzPd72Xn/jo99FqN/A8jxfOvszWxtbku7X8Rx/5IKPhCFMZyrxgPBw7Gql0SYDRYMR4OAbcnPB9n+sOHaLZ7mBKiy99hoMM5UW02i2mZtqcOHGUA0uLLB08wPTMFFXltKVRFBFEoWtV8zR+4LnOByn5qY99Pz/0vXfx/sMHuetdNxEnEXXlAl2tNXVVM9VpUhQ5Qro2QGugNgZwFUxH1RUMhyOkEk5LOpnjcq8l+51IGt5iGGMn9+XbD/WafddVBNxerL0AKWBj/Sq+53PsyDHmZ+dot9uMxkMGwz5V7WA77fYUaZywfOAgEsvS4kHn++lp5ufmXQW606E/6NLuTJO22hPNrqGsMiyG7e42271tsqKirCFpzlAahR+1UEET6cdUVuKHCZ728cKIwWiE7/usra265GASc231Gru727SaDRpxhLAGPYFFWWOcHMELKKqatNEgiWPKMsdMEjjKC0nCiLoqEdZgyxJhDMYUFOWIbNylLodEviYfjgDY7pVoHTDoVTz26FOgI5aP3kza6nDTre/h1K3v4oYbT000r863c2q6QxSHTE+0mWmaOnmLMayvr+L57j6+evUyu90dVtauoZUi8AL6vR7j8YjdrV2oYWN9nWI8Jh+PyMcjqrIgH2fkozGhF0405wELCwcoyoIsy4iimCzPSNMGgRewtbVFr9t166JyXQ9WwPzCIocPHeHS5YsMhwOElBw7dpyqLBn0B1hjCYOI4bgkLyW7vR61FZTG4GnXbl3VNXqyhxV5QZIkLCwcYLYTUdcGTM3tt9/EBz7wATxPMRgOKIsCa8WrlW3liMbD4ZCdbk5VBVhqpjpT5DUMhjk33XIrX/7yV/it3/od7rv/qxw5epSP/uBH+Y733MlwsEN/d51bbrqFKGkhtUSrV9uVrXVVMGvM/s9eNW/v//9lx9edbY2lnuyF9h3OTfciFoTdv+611wop3vDzrRjfrtz9NQ5r7a+8oYf+m7Q4+MtevYcG/laZortf4jU3Lq/rcX67tkwh+LEf/Sn+w4fe/baboxXuAC+UgLLi0suX3aF2bpY4SQk8z2khEFR5zu5uD6zgxNEDIODw0jy1qSYZ92mCUDGe+KFNd9qsrmwSR67aNx5nTvdV5Gjt0x2MSBOfudkWYRCwtr5FEiecfvkqx5Zn0J4jZTbSmKWFWRfMNRMOzs+ipcLzHbJ8YXGGA9Ntnj93mblOShLGLC8fQHmKqq5otFugFWncIA4SfN+nqg1zc9OTg3hNMajRvnR4ZS9kebFN0mxwcH6KKAzQ2qO73cMaxdmXLpMmEX4osLYkiiIefOR5Et+f+GZNWsLqmjD2KYoRcRLj+ZrnTp8n8DzufuhJji4vUuQlcZwQhhFzM1OEkc84Gzq/KM/n1PFDjEZj7n/8OXa3exxaWKCuDb7viKU727uEkc/62i7WutaddrtFUeYOA62cd42xBik9rjt8wLV6eprHn32ZB154iZOHlplqJNRVyflXVpmbmXYHK+nANUnsCJAYy8G5GWecPhwQJRFCusquMRaBCw6NMZy47hB1XToKoTHUxuAFPnleuuqw9inykvF4yJ233EgSBmhPobVPvzfi7zx+lh84GfGxD70XP3Lkx6quJ4J044yrPQ+l9L4GzZga6YX86z+8m1/6kWO88so15meanD1/hSiQBGHAzOw0oa/Y3OmysDBDPi54/NGXaDVCms0UMDz21EsszHZoNhNn0i0lRVYwymqECHn53BoLcw3qugChXFZdSnq9Hp4XMRj0XWWkKFybmzEUhaMXas/j9+55mR/82MfwA8Uf/dGf8uM3nsTXHkEQ88AjT7G7M2BpfoZmM8LiMr9FUXLTjce57+EnObK0yOe+8ggz7QbNZoqQgqqqnF6rLBFC4AWOqmctaK2xBpRWRHHAjSeOUpYFphY8/+LLzE53MMZw4ZVLtKc6k0QLGAxVUREk/n7F7tXEk9g/AFtrqW2JVJqyqlHa6VijZsKly9dIEx8dhDSmZpmamuOrjz5FI23Qnp5CeDG+9lhd2URKH095SC0pixohIG3EeNrQSGIWFudQSlBkJca4xIEVbiMvqhIpJEtLS1grOX74MHGaUuUZ5y5v0Gg12e538axFaunQ61JNdF7u0FvmOXnhPsflhUW0dn53xlrXljpJ7mytrTPs9mnEMcLTWAx+6FPmNd6Eyqo8n1/6d7/Pb/z6f8vf/vXf5mdvu3VivB7ghxFl7toOP3X33Rw/fMhZZwi4enWFqekp6qrmiWee4eZTN9BsNRgMRnz+Kw9x5NCi0+cZi61csCsQKO3WMWsr4iRmPMqoqwprDc1GA+n5KC3RvsYLQ2qpsHVBr9sjyzLOnD1HMSEah1FInMTEcchnP38/81MzE6hMjfacGKGscipb8/illzkyNUV/6AJjpT0Ekn5vhJSKyjiE/B989j5OHFyazFGn55ZSYK0hin2KMndabqkm7TWGIAz2NX9vN/744sqbVu7ebG98s3H2zDm++pX7ef+tH5jsi05PbesaWReUeZcwCJmaPkC3P2Q0dvTlKA4JJ4kmqSRJFNPr9/jMg3/OD3zHh/H9iMWlBdbX12ikLYqyoioztra2mF9YQns+o+EAUQKmRIqatJEShSmjUlEaSWEVsweOM8pLokYHIT0CTzMcjYnSBkWW05ma4tzLZ2k1GqRJQlXXpHHMuRefotNImW8FqNpO7BecRjYvSqLOHEgPYyoGox6+AoHzZPODCOX5rkpvDdQ5Wlmq8TaizKAuEKaiMjX/4lO/yS/+5FFu6/wIQsFuVnLq9g9Q4BGkDQ4dPUoQQVYO0Erj6wY7uxtEUYKQmjCK2dhYJwoCRuMRVVWRpOkEhFLSajUJwwDfc7YGQRhQFAVhEPDKudPsbF5kbmYaYUZ4IkeZgmF3lTSW1GWOpwXah6KyjMcjxuMxfhDgBx5CSpQSVHnBoD8gCCLiOGU4ytBSOip2GKC0Ymd3m/n5RdI4JYxiLOBpD6k0VWEIo5j1rRVuOHmSIh8iJMRhgKkrtHSgIVs7HZ6a+KAiLHfe0SUNKxA1ebmDp3wGoy5pklAbqEuJkBUWS1WVk/3d55/+s09z6dIW73v3DKNMcXbFEDWmmerM8l0feDdzs7PccOomLl24TJ5lPPzQ3Rw/NsXOtecYdnucuPMj+I0OUlQo6e8nE/cnwd68mQRLewHVN5V0eT3B/h2OPQImX1cEfIvXeM3zvt2W+TdwGGN+5Q1f8OuCLAP7fk+vvxVea2fwVm2WrzVvdNKi15iRTzId38x4A372tUO405YVAiteq/J74xAIfvan/xb/9gO3vaUQ3fn+CYy0KKGgMmytrlOXObMLy5RF5Q5tpma32yf0PdCuQhP5PlGsWN3YJEoi0jRBS8mXHn2aowcPEAQhW5s9kiSm0Uixtsb3FUEYMxqVhEGI1h5nLl7h0NIMtqjY6Y1YWJwjywv6vQEz7QQhJHleMRzmRHED37NUVQHSonyPca/H7EyHysJut8utp44SBT6tmSZbOztoqbClQQhNXbkKnacDslEFVUmYugCpuzNERxZrBWmjTVVmiEojlGt9qGvjvN/ikCormJ+fYzjI8XznSWOt4sDCDHEaUhUFw2xE5CdUOfR3Rjz8zBmuO3SIcTbm3LUrLM1Nc/nSJiePLfPs6fM0Ewe+KAunq/G0RqLwtE8+ymi0A+bbLRbmDyA0pM2QuhrjKfBkAMZju7/DfY++xInDy8RxiK1rhBVUhTNwRpQTQpekrirqqubo4QMcm58jTkI+9dWHuf3G4ywuTmNtTTXRexgrKLKcKIwRUjHOSh5/9gzHDi44QETtKhVVXVFXBggJwpiqGLmWtrIkiAKkgrou0drHStffr3yJEoKirEmaMUVRIYTH7b/97/jiP/8EBw/OOb9DAWVVoP2A2oD2fKcN8T12djYJtABjefzMKr/4uw/wz37yKKWomZ1qcOXqJovzbYwVnL+8znVHFhj0x0ghuXx5g2Yz5MByh+dOX6bTauB5EbNTDcqqJIp97KTN9NEnXubCxRWSMOTwwUNkgy7FcJUkahJEivE4J4kbBGFC4GukNJhaonTgggkjwQqEhEdf6vJ9H/sQxbjgxz/+Y9RPn2U0KOj2Nzi4NMsNJ46SpDFZXqIAz9doX4FnOXboMGEj4tSNh2m1m5SF4YtfeoDpVosodq2aQkBZWcoCdDDxVJKaqsxRWlMUJV7gI43igccfZ26qRZIGtJopnvJhkqk1VYUOFHVZoqSHxAWJSLu/ZimtnG2H5+1rKQyAdGS8+QPL+Mk0OmlSSw+lQq6//jhhlOCFAVWW8+hTz3BxZZWnz5zllpPX4cc+fhAS6MDpaSZ6lTAOqEzlKI9SIKXiyitXaCQJSZKAEiAgCHzq2tmGhI0G25td1q8OmerMEzQ9iqwPomJinwh2EuD52nlQ1TUiDCmzzFUqrWvTsnWBsTXNTouk0WBje5soDCjyCk8HKM+jrscIaRmP+/zIsWO8iOLnfv5v0Xv0cZIkxVOSMhuTJClZNuaWG07geyFK+mhP0GpPIbya3a0ej599keMHl4jiCD/w8ZWi3Wjw0ksXGPbHRFHM3V99jHNrlzl6cBkm8B4vDJFConGta34cTZD2lrJ0OlYNlLXDsXu+x9zMtPO/THzCMKSuHJHz5MkjSCX223ddJUuglcfZ1RWu8wW1LYjilPE4n+jnHHFxdX2LwXBMu90gz8dsbnRZWpjbt0AQUiIxdLfGNJuJ0/IYAEs+zghDB1V6J0dAc9u7ue32W77h43vtmd9otKfaHCiO71vbgJ14OUvG4wH97VX8ICSvKpLmDEIFhF64fzgvyxztBRQVxM0O9z9/Hx+6/f1MzUyTxC3iRsj27ibNRhs/TLBILl6+yOz0LNrzOfP8MyjtgvQiK3jl/FWWDh+m1ZnB0z51VeL5LjFZVzWra2s0GymB9KiqMdSGqakFgiRm5eKLGJvQ7W1T9c5xaH7agZQkeFqRVyW155O0ppGiQVnVWCrisEGdDUGHFFbiWajqHK2gzIfYcoimwtoaZWsi30MJhVGWFy6d5tP3XWOhdZx0aoHphaPEaRuBIvAj+oNdAhWg8MFIjB0jlUsEWCMoy5JGo0FZFgRhiLGWtbVV0maLNAnZ2Vmn02wz6O2gtWXYX6e/s0Kdd0lDmG0lRJ5FixJJjTUFgSexZYFHjS0H2HyAp3y2N1eJ0wTpCayo8FVEf7cP1pDE7jtUUhKFAVmW4euAuszJM7fO2Qn1UgpBlmXkRe7kAp6TFSwtOJ/btNHihdPP0+7EaOWWTWE1emLPJCbdSgCPX3iKg3M4GYwQNEK3l9b4JGGCKLqkegEjLhH6J8iyBkP7It91501893dez2CkKWuPSxsN7vnSF/mFX/h5rlxd4cDSQYaDjIXlefqjnNtuuZ219SfYOf81modPcey27yTwErQIkFq7KreZrIl2QhxWat+R6600q+90vAqpcuvJW1VTXquv+7rrX/dve7q9ry/yvPoaSulvB3d/08Y7AapYeNVA/E0e2xtvFdy99joL8Ppq4Tc73iY4/Pr3+sbPffqpZ/n+rYs0wvBtN8W9LIi0glFvwKA/JI5Dwijh3q89zfLijPNVC5xBsKmN86XRmroyzExPsba2QzYuwVgOHZh1m+jknZWUnHn5EuubO+x0e8zMTIEQ+J7LAh+YnWJje4fpqY6rHkpIkoDhoM/s9BR57sx0x1kxadOp2DMbFgharZgLV1apjWVmus1oNGYvTA8Dn6J0IuTLl9edLmvkdFn90ZAvPvgsR5cdqMCTivFoRKPRoCoto3xEtzskbST7/fKPPPk8y4tzaE/zmXse5syFa5w8tsBgMGLQG7Gx0qPdbmJNSRBG3H3/U6ysbjE30+T6YwsMdvu8fG6N977rNqTyOHXDQZf59RVxHBCEPoPhGC/QSK0m5FXY3R64trjAp9cd0WgHzpAYp2nI85q6tigNJ48uI7WgN9jdv2aP0GUMBGFAnhWAIAgDnn7+LE+eucB8p8XNx48QTmAsVVmiJEhPY0yNp5RruVKu+jXVbEzazxRausOQUho/CHjl0iU6nRSMa8WSQlLVZqKTdIj9qnZ+gPmo4OqVTTqtNoPegM9euMgXxpv84X//M4RpSBi64LCuLMNBz1E5JQx6PaIwYDTO6HTaGANnLm7w7z/3EP/ow3OkaQrS+cBtbfRptxpcvLLF4eV5NtZ3ObA4SxB6dDopjVaD9Y1tAuWC+JWVLbo9RxZtNBqMsxzf8+m0IjytCYKABx45y7HDU4xGu1ihCaKUwijCKEVIf+KRN0DrwHH3cfYbUjnC54dvneKf/sbd/NAPfRSMpXr6eYLQw1MecewMoqWURIFPaR2yXkiFqQVlXk70kK5VUAg4fHBpAp9wc64oKwSSu7/8ICvr1zh25MCrxD3cRqgmAdLNN17vTN6LEiE91lfXnX5MK0c2NQYhpPPCw4IwlEU12ZxdadDzXjX/ttailMRUNUKaiSjf/WAdREB5Htr3QCg8rVicn+W6I4e46eRx6tpgsWxvbLO9tU04ATuce+UqC3OzRHGEkpqyrCjzgo3NLaamOvT6I3xPsbW55TwxPY/haMTjDz/LzaeOEYYeZy5cwgD9XYiky1VFrRSt9toNBVVdU9eGIEzwPM2LZ15maqqNUAKpBLaeGJNYN5+UlHi+j520WQV+jDWCwAvwvYh//Pv/Fz/zMz/FP/69/8BHFubdXKxrrKgm0AKLF2hGoz51WeGHAf1BHykld9x0E572MbVl2B/zwGNPszw3TxLHDCckw8X5KXq7Qw7MzWCNcebnylWax6OMqnLtnCrw6HZ7RFEISpIXBXqvijNpxfYDH6UV62sb9HcHJI2YoiiJ0xhrraOdAoNBnzwvmGt0WN1dpxPFeL7HF776JHPtNn5osQaSOKLdbpJlOQeX5mnEMZ//2uMcWXTQKYSgKgrue/QFjh1ZnBz6HPl2PBwRRC5gfieJ009dWuN7P/zBt97r3mL8V//gl/mOU+97/UUu2SYUus6xOFuAwIsYjfuEXjjRKI/RymM0HCOss6F45uJT/OBdHwXlcf78y/i+R7vVBguXL5+n0WywOL9AXTvozdKhJQSaTmeOqrbML85TVpVb48cZgR8SJQmrayvOygJLHMdcuXrJGdb7ISsrqxhbMrN4mIvnzkK2xtLiAp5WgAEhKWqDH7eImgsIHTIucsLQyRLKuiTQAhV4BIFPPuo5Q++qpC4LJGYCd3GttXlZUcuA1Q3Jd9wVc1PnAywcOkEjbRHGAUVZ4PseeeEkFUhFd7BDnARs724ReE5vGQYBVZmjtWLY67KztU427NOIPagybLGNEjnj/iaBZyjG2/jU+MKgRY0vLEa6NL1UEouZdC3UOOsjgZ2swdghrTRA1SWBtVT9PkESoT2FHyVYpVESyrqkNCVxI0UHe3pkjZaC8XhMmkQMBkM2tzbp93vMzcxhrWV3d5e6MvT6PaTUbKz1WV15hSieIooihOd4Bcahtqnrmmvnd/joD1copSjLAilDR/ZUEq0FZTlCSUtP9ulVI85fCvnP/sEn+fjHf4bY7+FpyWgMRT3Db/4fd3Pi+I10ewO++wPfg+cFpEnKzu4WdVlz/swLtBtDGr5HPHOEuUOnkNIluQtTuXV8MlfExEbgG9Flv9mxpwl+y+Dunb7vm2lq7av/++3K3d/AsRfc7ZEq3wyW8v+n4O6X/sv/mp8+ccRd8zZvuTex8lHGaDAk9H0arZS6kiwtzDAeZYRRQLfbJwwDBoOMLz70orqrqQAAIABJREFUNLONmN1uH2EFV9e3uXB1nVPXH8aPPIajMUorfN93fmONlOlWg6mpFmEc8eBjz+MJSzLRuyVxQBCFpI2EwWCAEpa5mQ7WCi5eW2V+doqnzpxnrt2eQFY8rBFUdUmeZUx1mvuHkqIoiePQHVyFQyf3e0OurO2QhsHEyLOi2Yg5enAZqSVpmrC9sUMYaIb9jNGooD3TYEJNcNACa2inMUHoMx6O0QLuuuMGlJZsbu+yODfD6dMrLMy1GQ4HRHHCwnSH9a0dTly3RF1XeBqeOnuZE8cPA4aaHFtb4sSBUXZ2e7SnmmhfU2SlCyp8n/XVbeJGQFXVtNpNlHbtlXtYemMFDz/1IqdudMEZGJQnnH5KKYLIn7SdOEy95znCoZKKpcU5OlHM9HTHIdU9jaUmz1z7bJYXeL6PpxWj0ZiqrLHs2RpoLl5e4ekzr3D4wDxKaTCGtBFR1SXFuOZP7n2QG48eIogCh4K2Fmo3T42xBH5IM21w6eI1Ou0Go+tjfvbDt7O1s+20e7hAwfc8pHAWDsUk2HJ2CD7bWzvc9+wFZHaV77yuzdzMFAhnAyGM4PKlTZ5+4RJpHHH98UN0Oi2+dO+TSGnoTKV4niZJYnzP44lnznPzjUcR0nLv185w8MA03W6fdrtBEHoUecFgWDA73eT5s2c5dGDKEUCljx81JsAXDRMKnlYOl+/aqN1n5ioTgk8/tsXHPvaDFHnOJ37tX3IKRa87ZG5uljzPqI2hqlyFTSmFNQKpNL7vPOwEgiJzUBshXFCnlNr/fjytURYMBaHvu89w4iUmpAserRD7i4TzdpP4viaMQlf9Kwryce5Q+5WhqkuEcC2KUimqonSkRyH2fQz3MtFSSaRya2Q2LhgNM8IwRGj3vntgIznJXluLAwNJge/7+L43OcTCp7/wZUwtSEKfdqdFluXu95USjSRtNCZJDI0/seWoqxolJUtzC/RHuzzz8jm+8z3v5rHnXuTE4cNIcuf15vkUWYnveyChmrQ8B1G636nh+U5vtmcev6dLEUJQleXEikOgPYcTL4oCa2vyccZP3HAjf+eT/4Z/+Wu/yvjRp91342m3J0nJtZUNrHE6s431DdJGgzAKXHv2MMcauO+hx2mlCYcW52m3O/z5l+7nPe+6mWYrRSnJgfkFPvPlezkw02EwGJAmjqr7519+gBuPH2M8HhNEIUHo798DxhiK3OkuR8OMsy+/QhQEhFHAc2fOsLq+xbEjB/EDZ7HheZo8c4d1P9Ro7fGF55/h5maKRCIUHD+4jBIKL7BUhZu7QehT1TWe7+bPzSeOEkbBxDzbtcMdP3wIJokAkNjaUTfDMEBMfBTfanzu5fP8/f/lf3r7ve4txtNPPcf1cye//hqHzUJi2bj6Mn7gE0cR27tdtJJkufMGXFtdcTpoY9ntbhOGCX9y76f4nts+SGkMrbRJEARo7T43KQxhGNLv97h27QrTnRmurFxESp80aaEmII8ojAn9kGsrV7HG4gcB8cTCpyydVjYvc+Ik4eKlyywtLJEmPlfW1jn/3MMcWZojCBRKa9dp5AWUtSVuTFETYhGUVQG2RpgaLwgo8xFIyXA4wJYZCAiDEGxNmY+QFrwgwNM+UoXIIOHffOUPePCJc3zvHR8iarTwpc9ub5vId4kYKdzvm2U5QRBgbUUzbWPqmu3tdaSANIo4d+40SRKiZY2SNVOtGE/WVHkPTIWnFJgKgSNEW1ybKQIUEVr5EwiCQuB06L52/+57EViB0q7yaW1JUQ5QqmY8GpJnYza2NiY6XLcG5nlBGMUY6/wFq6pEWEu3u0OZZ7Ta0/h+QKcz5XTIQuL74aTdWzLVmaLRarK+ue5o2q0OYThJfAm3r1ljee70c9x8p2E0Hjqwy7hmOMwmUg5Blg0mvr4SjKCTHubk0QXiyBIFA6ypWdsc88nf/DSbw5iDBw/xc//5f8H6xha//Mv/hFtuvoXFA3MM+0OUGaPsOitXV7n9ro+gk1mU9hEY9/kotX8WlVJhBfuJu2/1+P8quLPWfhuo8jdx7Ak890Apb/ZlyMnzXvuYec1jez9vBkh5/WN7j+9pT+qq/Bb8FW89jKkxdfWGv+H14+f+9t/jt99/O3uGvW82rLVUVe2yMoCta1588ZwzDE9Trq3ughB4nnaifl/T6Tjs/WAwZrebk6QRU60WSRpz86nrePct1zHMRmxv7xJFgWu70RN6Xhiw3e0jkQz7Q+LYI02duXajmdBsJlgj2d7YodNKGWcFRkh63QHDcUaWZ9xx03WEscfWTo9+b8zZly87pHvgUxiDFE58nTRTqsrdD9lwxLA/xA9DmkmAsYbQ90njkM3tHZJmSBBFWAQr212E9Jianma726fICpIkwgs0W5vbICyd6TZ1XdNsN7ju2AF8z2Xsl5eX+fP7Hudd774e5StabefVJZXlw999B37g4XsBpSn44F0nGY27ICt63f4+XEB5DiIxHAyoshItNFVWIazl8LElRuPMeQNVtYMlmJqqKPACjyD2+PD33kF3t0ddlft6pTRpILVbnKV2h/E4jsiynGa7wXicYS1MzbYp8oJhf8zW1jbZ2AWVQRhOfJYUZVE4wl4aYkxNnESEacjBg4u899YbnA9fVU0OvBIpNEHoM9102GpjLVYIiqJiPBhR5QVVUZLnOVIr/uzpF3jv7/wu775ukcoY5uZnkUjyYR9RFfR7XbzIGTvrSVWzqAzCWP7+bz/MHYcCbr3+KEp7fPbuJxgORxOoSMVuf8QH7zrFyeNLPPTw82RZRqsRc/31yygFtakYjcZcuLjGqRMHuXh5jQuX1vm+7z5FVVY0GyllUfPgw6dREhqpx4mTh7jrvbcRN6aIEx9rjGs1loqyzLC2ZjAYTminjlwLTitoMQhp2OnuIHAHfa0UN564Hq0V2XiMmLQWas8FDYPekN5Ol2qcga3BWurS6RtXrlybZKYtxtqJ9s7HWMvhYwe56dQJpmamkMrbn/9gybIcahj1xpjaTkAW7jC+J1r3fJ84ibn0ylWeee7F/cRKmZcIC/1un9FgSJk7H0R36Kz21xphNUVeEkau1c9aZ16NcVQ8YS15nlNWDj9uXW2QYlzw2BPPYKipTc0tJ4+zNDdNZ7qNtYY/+fw9fOaee1m9tsZDTzzLpYuX+cw993HP/Q9RVTXWGAbDwURYb2k0G3z3+94LVvDD3/8RwramNTdNLRXZYAAYrK2oy4I48inLgt31VUxdMjM/jR8GE/3anqfiHsXWVTftRKdirQVpCCI3/y01Z86do9fvE0UJl/s7JGlCluX4OsGTEUnQpJl2SNMms7MzFFmGzQXloCAMPMIgYLbdJgpD5hdnkAruuOk42lM88sTTZFnOhQtX+ND73s303DTtVofRcIDWig++5056vRFYqIua3u6AIi8o8hIt9X5iKQwDDi0fcJAnK3jvu27lrjtvAyyjCbBlOBhhrSXPC6rCwRbuXVsnacSOzlwZhDAU5ZjuzpCd3R79/pBxlu+TfVvTTfzQQyq3v5jKzb1rV9b2Ez7AxPjdwareflh+/+oOX39CtK/5eWfjkccef9PXtrYGrWlNLTLOcsajLp00or+7yuzsDL4fECdNgtDJCIIwdnTTMKQscnzPozY1vV4fa91e3mi2iaKENG1w06lbUJ7i0MGjtNtt+sMeL7z4HHleMB6PqU3N0aPXUZmKwWjIYDh0dhOmRitFFKdESYsgSnn2uSfY2bjMi0/ezQ0njtFIQ6RUlGUNXoxRMWFzjrzCJTOwtNstqrIALFVdUhY51BVx4BF6gjjQ1OUYJSVxlLrXy2uKwjIaZ/zWH/8et910jH/4/X+XNFaEXkU2WGOm3SQf9RjsbHL14jkGO9sEEnwsNs/JB7vU2RYzLR9bbNHfvkAohnj0if2CZmypil3quo8nNYH2XQunc0CnlhIVRlg/RIRNvIaPiCSEEuNZCMD6krHJGNU5/aJP7RkqBYQ+KkwI4mlK4+PVI2IxZjY2mN5VquEmeW8LzzpKr7ISQc3q6jU2tjZJ0yZS+ZRViVLKBWkTu4pxlrn27sCntpa52SYnbryVvJZcvHSVOndellIp58EpBE+PnwVwSVZP0+sV/Pr/9kXKUjMejpymXSf4uSTME1Jxhe+6Q7DcWkEYD61DGs0OramDHDt2hKeffpzNrTWeeuoxPvnJ3+D5Z1/gicce48jyElRDXnr+UfBmiFvzoEOqutrX2r0WTuiKIcJ5p/4VQSpvNazBJQcnAJRvRtr0ZhCVvX97re3CX3Z8u3L31zhMXf/KX+U6KeUbqmVvdmsZY96yLO2Mir8F4y1u7L33F5M+7ze66cFn/+wv8J5/mjsPzL3l2wjhAAHWWJRSbK9tEXkahaA2kHbanD59jkYjQWvlaJlYqrIijhKmkoAwcFWaMAkpioI0DZHCtaOEUcDujqMwpqnb+F88d5kjBw+wurHFdUeX6HcHNBop2TjDUDPqFVxZWWW63SCII1QQEQU+8zMuUArCAGstaSMlCEI2N3ZZXppG+K69Mww9qspQljV+EJKNhoxGrmVvnFXMzzSIwgDfD9nd7TPVdrhkpERoxdzcFJ7nEP+tdhNhay6ev0baiN2BB0Ndu0Vo0B/y+HOnWZ6fARRKeyzPzYKu0IEGq9C+oCgKqrJkY30XJTVaRSTNlDIrGfUKyr6kMRU7SuPQ9fLHvqPM3fvgM2hga2eX2YUpjClI0xhqQRQ68buaLFpFXVLVFaEfuMpNbSmyGlMrgsib4NddILBnJi6sW/jqylUmsYK773+KW2866rKshQsigzCkqizWlK7VT0qHgkcwysYkTUeHtBNKo1QWbIjvB2xtbXDD8aPOK6k2+yJqk5X4kU+QhAgl+PXHn+MTf/fD/OInfoAgDBFCMxxleFKhbL0nikJHKQIXPAqtsULz07/2Wf7Vf7zEtas7PPXsBa47usjttxx294OtqYqSxbkO5y+soLRgc7fPyuo243GJoKDZcsAZXzu8frc7YDDIueXUYYQQtDtNPM/n+dMXODA3DSan00qRSnLulcs0k4B8tI2xHkIFYC1B5BDelhpPBzCpTgirqMoKpQRQ8sePbPHxj3+M4WDE7/37P+RgWXPLiaP4gWZra5s4jsjzwukY65og8FxQb2qq0mm8xsMh7U4LqRzYpK4Nn/3CvXSSlLSdOoNiDcYorFEYU07uEaeVG+5m+J5m7wwtcRp6a50Od+/A3W63WVpamHQraF46c552q0nScJYEewbLgMv8TtasqnAalKoq2drcpt/r02gkYAx1WWLKAm8CKnAgHqcJC7yAxYWZCXRAMTs7i7AW39cIYbnx+FGW5mcRSG654Xour6xxx803cuTgARcse97EyF6x2+uy2x3QaU2zsbpJo+2hZYKOU4IwouxvIJSPH/gIJchz1z4chR5ZWeH5HtYqpN27hZ2nkpis+6aqyLP8VW1KLdHK46UzF7CVYH52gf/k9lv46f/xf+Z0VnCL0PR6A9KGgxd4gQeiAmqs0PQHQy6eucLmxiZpO0KrgE6rifbcd6k9TbPVwBoItE+r1WJ2cYa4EU70K4qrK5dJ4oTBKOf+x57hhuuO4HkepjKcO3+BA/POZ84KuHTxKo005YFHn+TZMy9x4rpjIJzf3V67rTHW6d+MRXmuiqyUJCjGTE+eu7XZJUl9jKm4/4GXmJtpuoCumTrYjRROoOzuDspJy70Qgna7TVW7e9NVQAwrqxs0GwlK67eN0RxM5cfYK0NL+ao/1zuxQICvt0GYXIHA7f0osHmBlIJBfwOlfKK0yYWVdba2t2g0W6RJgyRNCZOU1dVddsqr3HXyvZRVQbfbdfpUqdnt7hCnLWc3Mh4jleTsubPMtme5cvUV2u0GszOzUEmGeZ+19VWiMCQKAwxiv5OhkaZYY8iLmhdfOsP21g7r185x8MA0S82YMAqRkQ9CIYXG6Ag/aqB04PD5411XrakFZV4QxyG1MURKU1QVVVVQjfu4AJeJ5MVV6VWgqU2B7yt29GkeeeIM33vqFLYqsKYiH23jhZq6yjB1Rhxq4khT57tUxYirF88QBhZTZyhqwkCgbEkaBXhK403otBbhOhZ8hfCU83YMfawSqML5KtraYI2kLAMGwwpPJyiVIAgRNsLXbarSI4qmKUsQOZTjAkRFXg7xAwlBitCOfKukQJoRphqT533AJfBHg75rEY8S4qRBbzCcnA1cpf7qtStoz6fT6VDVBQK4tnKValwTpAmvXDnL0UMHSIIKayVlmaOE5PGVT/ELP7lIURhXkZQKU4RcW824+dQRRoMtpFJEzUXGahUvmgffZ1CU+OES1gj8IGSYW+657yVuvfM7WT60xI03nOT48aNMTTWpCsVffO5T3Pmu23nkvs9zeEly/KbvYXr5BKUMkMLilNLyG8+VNzEv/1aM/eodb97++a16v29r7v4Gjr9scLcHV3mzLMSbtmO+Qbj5qrZPCfG2ucG957/+JjX1JMM9ea1XSUBvfMU9M0ngTYM7ay2/+t/9Cr/6HV8vKH9DC6qxDPoDwKIlrFy8BpVlZnaGcVGCcACRmdkOQgp6u312trpuI6kNK6ubPH/uKtctzuFHzntLa83W5i6B52MRFGVFo9FAKU13d+CQ2K2UIPRY3dxipt2i0WkisORZjsQFba1OivAUdV1RFwUq0mR5ie+FjIcZZZETRB7j4ZBWJ0AoTaglu9td4glRyvN8MBVlLnjy2UvMzbaIGwKt48njHp+7/0muP3KQ/qBPEvmYokAKxeraGsNRDz+w+EFCPoSr166wuDBLd3dAEARkWcVwO+P0hVVOXL9MXpZ4gUZrePrpVzh0aBnlScpxRhRGlIVhc7fHzHwHTysqU2BKyag/IowMURxSjAouXFphdqbNM2cuorTi1I2HSRsxX3zoWU4cWqTZarC1s0ujGZMPKmppXWawqjFG4PsRxTjnuZdeYW52Ci8M8IKauoDBbkZdGKypkFIgFWR5hrfnvROEVFXNscOLaF8zGm7jBxqlArTvIaVF+nLid+uqOUIApsaWTt+jlHLBYuHu9d3tLs+eucChg3OTxRuqwrV0uUwdCOWynIc/cIz5hsBQobwUCdT5ECsNWV6CdhqtfFzgexWYClsLfudPP8v/8KPHybIcUxcszKVs7WyhRMCL5y5zaHkBJQXDwZggUDTSiFYSsrqxw03XHSErM2bnpxBCAxqtNFvbu1x3bAnPDxkOcs6+dIW5uYSNrU0OLc9x+sIKR48tMRgMWDowgx/GDIYjqnIbb48sVw3IC4tSrpV02O/jK4nVBh9NVTqLhB9/3wH0ofdjjeXdt9/GAw89yPuP3wBIkjSmqiunSzKCsJFgrCEf5ZR1TRCE+IGPDjVIizUuQ1mWBTfdeJxGK5msOxXKuAqTlIIsG1JmlrVrm6RpQuBDnudsbe2gPIXwQQsfrFtvalNTmwIltANJTQhNrU4HKxx9E+sCV6lf48M5AUzVZYnWgmxU8LWHXmB5bokg0uytYFVd090ZEfquDdROxPwvvPgCjz71ItcfPYYSgnF/h1Zniu3tbZrNFCUUm+tbzCzNoya6rbSROtsPLdne3qHIcjzt82efv59L11YJPJiZa7uOBqnxpGLY69Hd3iRQUBcVUgboUO57hHpaOaiM7yG0h0Dsg6ikdNS9MJQooanKIdqPQSmMqEnigHanjR8Kamv5oxfP8Lu/+0kGzzzN3OwcnlJkeYYxNUVeE0cJ+WjM9tYOR44tM7cwh/IUw9GIIAyxpiYb53gShFJ4YUAYePi+axczpUOs+4HPzPwsoNjd7FMUBcevP8LG1gZFWbC0vID2tavoI4mCCCkVx48d5MjyIp7noYSHC7ZLqrzGCwNQ7vMQtcFSU+QFv/7UM/zAwiwCD62gKg1KaJaX20zNTtFsJSBhPBq5boa9ll4hMbZmlA3x/NBpGWHSfuzsFHxPT4zZ1VuCwUC8gZT5ZvCFtxpGCIJzLTpzrdftnW7uYMGPAvK8ZLC9ybUr5/CiJsuHj9Jqz2OFJMtHDLoDjK2oigF9ucGh5gnG44qpTpO0meL7PoPRiEarBQK6u120FGTDHs0557mmpGacZwSRTyOZptlpIgIo+yWe53Pp4mUCPyLLxjz00IMUgy10WSCzLocOzDDdSpE64MIrZwjjDlZa/CgkCNt40pLnI2qhCMMGeWmQnk9dVwgrXEJHgjHFZL57aM8lrZR08wIBVZkjBPzBZ/6Y09eu8d/88M9PulAsmAIlJaYqkHWBEgZpS6pyiKcspspot1J8LZF2r81bTuaNQHguIWascZ6twlIZR86t6pK6qDGlAREwrkNWNvssH7qBbl7Sml2g0hqD5OqVyzRmZskqQz/PscoDPyTDR8YtwkbHkSeNQZuauiyJ/QRP+lhpoYZQa8qiT2kHqLyg2+/SmppHCkUcpdjCkYnrqqIZpe46LL4OGI5HzM7O4ac+woa8fPoi89NtAmkRSqF1wMOPPcqP/vgif/aZFzh1/UlG+TaeFlgyTt08TSaP8M//1Z+SVyFLMwWh6FDlzl/Vk5q82GVQd4mTDlfPb3PP6R4PP/gka9fW+OAHP8j2zg7NRotrK9ssTgfYcpPlo21IFzly60dA+QRKIKzZb8F0N777O8Rr+sS+FSCVNx32VRKnkAKFk6kruVfIeM1TX2t2/hrAy9u+hfmrt2V+O7j7axx/2eBuT3+3F0TVk8rcOxaNvib4su8kwPsGGY89rcre2P/vt6zgGacpfN2v+fEf/Sn+7QfveMPz3/DXCNcCGHia7bVtyrwiShK8wCOMQrSWbG/t4AUhge8RBJ5bYKUgCDXD4Yg7br2e0XBEmIT4UYAV0Gwm7tDpa6SA4WCEO//XtFsNByqoCuZm2ux2+5OWENc4GvhOf+KHPlJJdrd7tBoJVZGhkE73F4doT1GVhduEpMXTHkJrd9DxNGVeQl27ahyKq6ubJLGPH+pJy5DDxR85MIv2NGkSMx479HkQRNz30GlaccrMTAdrodVOmZrukGUZjUbiNG7GcPbCVd5z6/UkSUxV1hTjEkoIQksQSOrKVVlMPUHPhwH/z5ceoIlmu9/j9Lmr3HbLCfxQsrq6SavVYnq6TVEUDLpDFhem3eHS09xyw1F3wJcAlosXV3jm7CscP7yEsNDbHZAkCQ888gytNObo4QNIIfnaEy9w+MAipnZaqo2tLYLQYfitdcCIKIrwvIDtjR2G/RFhoN17aYUXBGipWb26hjEV43FO2mjgBz7DvjOjDkJ/gveX+7dtEPgUVYUfeEylCUkjpp5g5quyBGv36Zn/6f3P8BM/cTszrSZFOSaIAsqyRosaa3LsxNQ8DCOsccj3ohjzs//6Xv5f9t48yNLrLPP8nXO+/bt77pm171LZsrBsyTICbLz00G7AtG3wQHfQwxCE2wNNDE1MD90zPR0wA+NpGoObho5pHNPBMNgwzbAavMu2JMuSSmvtqlLtVZmV692//Zz549wsSpZk2WwdzPhEZFRG1s28udzvO+953+f5PX/3Toe79zXx3IAXLq1MZGXz+IGy30Ne0Ok06PdsqG2/PybwPVrtOs1GQJFpdu6axfNdknGKEAqjS8qy4MLlZR554izTnYjXHD3AtesrtJp1njlxkVZcY3qqzfkXrjG/MGNfexQYkxPEbYyWlHlKrVazEzqp8MMI4dgoiX53lVo9Jk1KtJH8w5/5KN//3vcwNzfLRz72u7z74GEefvQYSwtzVg5bVnbiMrlH+a6LF3i2KTKRzigpkdJBbEtipc0LwzDxswm00FRViee5bK5t8fjxk9xxeA+l1vhhYNHinkuVFwhlJyUGKz0vi5wzZ14gikP8wKOqNGVacObsOQSaqBYhlEJrO8Gpqu2mmUFMYjiU4zA9NUWtWUMpCyT51OcfIR0XHD97nv17d+D5NtfOdV2mOy32792NlII8s7mHjuPZSdLkXt1o1i1kqaxYW9/k4Sef5dD+3QQTNL2jHPrdATsW5jh66AAAnak2nuehRUaSpdSaNTzPYZxtYoRBazBC4kgPY+xk2/bmJN3eiDgKkUIyGg5xfReJRFfGTrN1jiPt31xKgZQOSKi0/Rt87/4DiNcc4YMf+fe858gR/vhTn+fgXkuiDEKfNEl46uRp7jh0ALDTQYmxX9/1kI7CCVzS8QjHd8FYyaBB26mjFLf2tq3NLlIolpdX6bTqdKaahFFIp9PGUYrhwF4PaWI9UMqxEzoQXL54nc2NLTrt9kRGbEAYyqKgKipMCa7vUZYFcjTi4OTv4IUenu+jXIcgDEm3yYLG4PmuDb6vrIvNYEmnvufZ39NtO5acxK8kozFhFIAUr3K4e2kMwjdahBoh+Bcf/h9eNLm7/SsIIUC6FttvNLNzS5S6ojKCOKzh+y5JOqbdmmE07PIrn/hV1jZ7HJ45wNzMLEk2nnxFQVyrc/rMcVrNDlFoJbrzi0sMNnsM+wM8pRj0tlDGcHXlMk8fe4at1SHSHaLTLUbd61AM8d0SnW+xMFtjfqFJaypgarpJUabIwKfRmUVIj1q9g5Q+ZZmQpUOU0JgywxRjstEWggKpU6hS8mxIkdnwdGE0getQGk25LdVTAoSNh+iupcweXGZ4JeQ1Bw9a8qmQVLq0tGdlD4OOlJPr17Ey9El2nDb2fbkdcTOxkpgitzaYsmIwGFCvdTAqIs0EYThPqh3qnXkKFVDvLNCZXaICfBlMQEYBvh/QbE5bv3RzmnrcQggHz/HxHEjTHFdFOCpGVx6+3ybNC/KqIMlTDArPUxhRIdEoA46ocB3JxtY6RWEpuhvdTSo0cb2GkdabqHU1obLbemNjbYMojjh05BBPHPsiaZaxMD/Pv/+j3+S//ckAJWucPnWOPbtnQaRWiiwUnhJAwGBrg9fftYed8yHaSJJkRC32GY0HGKOZmzrE2toGejRg7677ufeBdxLFEVmWce+9b6JWqzNOc/aVdbnKAAAgAElEQVQuxbQaLv1hjyN330dct9P7bQiWeJk6VnxNE9Bf3bpdTrn93q1p3u0PfJn7wNdXs38TqPK3cn09h7vb4w7AboDbAJaXw6pKrBzz5Q5utz9++4J4penc7Y//6qiDl41veFXNsbGeD3lbJ8XA6888RSMMX/rct78jhcVhV5qVGzeRCKanOkg3wJ3gfZOxBWm4rsvmxhabGz2L+01SyrKgUY9QCuqtmg3CEsLm12X5JIA6mRSb0OsNadZj0iwjjAKrSTeaLMup1+uYykqShqMhAkOSZPS6I6IgoLvVI00sLryq9GTqVeFKZfH+ZU4QBnQHY4v9L23x4fkuQknSJOfAvp022HeCRc8ntMYg9Dl9/hKPPn2Ou+7cb/1JGmabLTzPYzAY4TqSLEmRvjMp1CTJKKEsK3btthEAve6Azc0+Dz7+HDunp2lNhzZ7J7WZf5sbA67dWGV2booDO+bY3Ohx8NBOdu1YQLqKUTIgjiI83yfPC7zAI/atfytJE4u1dxRGW4iJMTDdabFjdgohJYPekHASvj0/3bY/u7BI6dPnryILwclzV1ia6+C4BtdTKGk79gaD47jkeYESloZar8UM+gOCWh2jBYPBkGYjRApDXKtT5iVFXhHVQqSUjEajyWHCeg83N3ukWUZcr6EchzDazqiyXrBt4IcSkh966Bk+9tPvmFyUhiAOMWhc5VKVOXmeEsV1kiSzTQepkLri+3/xU3zkh/fSiGOMLlHKBjIvLc2gjeHCpWWyrKDUhumpthVWVZoTZy6xe9ccl67cYHa6zYlTV9mxc9Z+747Hlx55lumpOp7nsrK6xb1372c0TolCjzAI2eoOec0d+/AclzwvefbUFe44smviDxuSjHs4ToxUHrpIGI1ShqMRcb2BFjb4XBmNVAVSOHhuTJ6XvPfN8/zX/+r/5L3v+R4uXbrKffUGgetav57jWpiHb/+tSiulLIqMMPQZDRMcpSaNnu3OJxOdi6WXYgxJmlAUhT2MCAuPec2dBy3VVkrEpF3b3ewShoEFwgh71yyKEs/1mZ7q4Lk2v1E5Ds+feYFGLWJ+cRZnQlAUk6fOMxu3oJQzuTcaNBDVQ5RrFRPlZMq0MDfH0SP7bU6hEpPJjUEXpYWTCIMuLVyjrDR5UVAUJWVZ4vsunufy/LlL7Nmzkx2z04RxiJTY/KgJ0bLRsMClWhyxenPdAnAqDSLg0597jPNXbrA4tYPnTl5kZXmF3TvnbbGhDWVVEccxjucThAGD3gA/sF5Ig23eSOVi0Ax7A9LxAK8Wg54UqiLHVT5gJfA/+Av/mg9+4EfZM044uGMXnu9ZT5ewQLCplj18njl3gadPn6W71WV2euaWhFJN/Jn9/gClxK3mmqhs2PW1q8s8d/J5Tpx7gRNnX8BzHQ7t38V4PCYMfKqqosgKajVLZFWuQ5Ik/OGnP8+uuQWiMKI11eS5E2eZneoQBD5PnTzFrp2LdsKUZHS3BgSRhYN86OmnGT53hnYQ4fiKstQ88sQpBsMRc3M2kLqqShzXpSpLJO6kkMRO6yYetO19ZBusI4HNjS7NVt2+qG/bFreVALev51TEO9751leNO3jFXVUIFhcWCNLopXvnrQ8oEBLPD7l+4yqNRgtvkveZJH2MqYjjOuiSh059BeU4vPW1D+AqiXRdPM9na2sT3/VoNzusrawQhjHD8QBtNNeuvECj2SKIAza7q6ytXibUKWZ0jYW5OpFjCFRBu1Ej9CSeW9GsR4QqmnABJKaSBF4TlGeD1xVIWaFNgS5TXCXAlFTZEF2kuEJTVRmuAnSB0CVSGNLxEM9xKYoMUeQ4GHSRYYocUxWgFL/0qd/g2fMb/OPv/iEKrcnzklIbXDdAa0GpNUq5VNb0jdYGIxWVhqIyVBqMUGghkU4A0iWKW1RujFYRTq1DKSJk1CZJMxqtBaTfQIYhxvPorXcZDUdsrq8SOALHd1leuUYYWg+ZHwXkRU6pCxzPIc1TKl3SW99iNBrhhh440Bt2iRod/KDBcJQTxtMEUY1hmoCQOEoiCkNlchwlCHyHPB0QeIrl5WXanVl8PyLLCzzX5oAKrCrBcRyacQPlCNJszKWrVxmPJb/56G/zPd85zdEDc4zHBVNTEVHsUo9tvuTW1iaNWoM4Cjm4f5FaLCiKEVVlCc/jpE8cxuS54Kd+7vf58qkVDh19M3j7OHP+PAuLCyzOL7K5ucnCwgJGaJpBn2H3KnGzzfzeNyKEuk22PPl3cu38eT38UsXaX8f0bttrt2072gZWAejbp3RSvKT+/vqe4C9+uPsmUOX/YyvLM5SUlFX56g/+G1zbgdC3r7//7h9gR7vz6p+sjQ2VTXJW1zet90VJpLCymTSxodeu5+E4inarQVmWDIYjms36pHtqyPOCoqgY9IagDXlWUGQ5WZrba1DYoF8hBElWIB07gXA8jzQvaHeadLf6t8h6vu/heYp6LeaLT57kxPOXCAKPZrNFmub4YWAlXmVFWRp6vbGlJhYl9TgEY8iLnLWNHlIpqkpTa8SMk4RGs06Wlbieh5Tq1g3rjoP7OLJnkSTLEEpag3/oUG9GNFsNultDxuMUIWxRNuiPCOOY1dUuuqrAQKvVoFUPObhrhtZ0Hcexh8QwChBScG1llRtrmwgEURRx+PBumBSeAojjkCAMuHpthdFojJCCemMyRQ08dFWiy9JORLBFcpJkJOMEz/NhUvAlaWI/ZzLd1JXmHfe/nsXFOXbNT3Hi+Yso5VCv1VCug+u6hGFoJ2qui+t5xLWIU2cvcm1lDV1Zf2Ech2ggqMUIKakqw9MnngcgGSdEUc0GiDseV66s0Gq3iONgu0EN2J9VSYWcdGWLLOdnnn6e3/uZd5GlGZ7rkKcZRZ6TZykSgeP5xI0Wjzz6lJ3OIinKih/68Kf5jz+2k7q7LTG1OVS2SBSMxgl5WbIwP82Rw3sYj0esrW0wHA246+huTp+5zN7dS1xf3iAIXYvr1zDoD3nzG48S+D6jUYLvubiuh+d6PPL4KYqyohbGDAdjvvLUOZ4/f53vfOAoaMPG+iZaCwLf+p0GA9uhdz2Her1GlmWMRyOyNEVrg9aSygiyLONLj56kLCsLfel3+amf+gC//+wx5hZmWNy5gOM6RLV4cnCy131R2nDhoiyQQlCVFf2u9YVsqw/UZNPTeuKV0RCEEcpxb5nlq7JidWWDjbVN0IbHjz1DXItxA29y3rYhu0HgTyAi1lMnlZ3M3XXXHezdt8t254tycrCzzxlMmkxVVVoKpJD23oNBSWMnVVHA3v27mJrtIJQNny+rkqqqGI/HJElKWZUURU5ZlaxvbvKVp5/ls488waA/smh/1yFPEzSG5eVVezhQtrjS2nr1xmlGnudsbWzZyYJUSKlQ0kMiecu33sdsq0MYNmjWpzmwdx9lmVFVGVrb30GapRRFDkYTxdEkGkKgywmAAIOWkrjWQCjH0gcnqoTB1joU+a2/z57Q521v+3b+jy8/TFEV2GadJdm6jkMURRRFyezUFOMk5e6jdyKE4E8//yXGwzFXL1/n+vWbKCGRWP9sluUk4xEGOH7+IlIqds7O8oY7D7O6tQECexg1grNnX+Di5aukSYqpLITK81xes38veVYwHqXoquSt3/Em/NDn3PkL3LH/IGVeUhYlRlfMLkwjhSTPc9LK8N63P0CzUSOOA7rdHt3hkNWtng1ZN7ZBYLTGcRyeePoUJ86cw1BRloWdLkvrs3Nd75ZXDiBJUya/uFfd2lZu3nz1/e9V1v/+qx/92g+YNMWUH7CwYx8bW11eOHeS7sYKLhWuqLh88XkGwz4H9u6e+EdzwE4/R+ORpd8qO3UdjYdcvPA8y9cvc/niGWQpeO6pp/jMn/4xg60exSihGQXcecdrmGqGRK5LGEUoRxLFkY2ecT2EB1pqlO8gXAGexpEKdIU0JWWeUGYjqOzvvKoqXMeb7NFWHpgVJaXWE1udwA9iC8mZKC2qytIdK2NwHJ8P/eF/YHG2wT/73g/geCF+UCestXC8mK1un+E4w0ifcVahvIgobuEGDRy/Bk4IKsANm0g/Bjcmas6AE9Eb5XhRBxU0GYxLwvoUSaYZZzmlrjDGqgOEhkYtJg4jdi7tQlcVpSlZWFrCGE13a5OqtLl5QWibpI1GHd8PmJqetR7JesxoNKDVbiGEJs0y6vVpwrCJF9RRXoNKhAgnohLCxiQYQ5kn1AKPLOnRjD1qgQtVQeh5dCfeStvMqKxf1VT0ez3SccK9r/9WklTz8z9xP0f2OiSjnCJL6LQC4tChPxjQ6w1o1OukBQwGmzhugRAltXobJXxcN6QqK/KiYjRI2RrmnL2wxS/+u9/hxvoG+/bt457X38OePXt4wxveQBj6zMxNceP6JVrNkIOHjlCa4C99vfz/ZX1zcvefcX09k7uv3h7kbZ2Bl1uuciZyMvX18ba+HrPpX4IEtL3EROLApJD76H/4j7zfz5mO45d//PY70sp8xms9Lly8xuH9O0jLkgrB1tomzXbDSmiEQLoe4+EI13EIfZ+iKGk0ajiT4jDPCm6sblKPbO6XoyRPnniePUvzpEWJ4zgMRgnawMzctKU8GusRUxPYgYMtMCtd4QUOeZIgpYsvHc5fXWFhuokX1fhPn36CxamGnfg4Bs+PqNfrZHlKf5QSuYrnzpynHsdMTXXQxgIHhLLyPCEErudNsPseQihc12P5+ip79y7heoqVlVXCOCCMFdKxaOXAC3j++avU6i5RFBJEMd3uiHFSUK+FhFHM2so6ni/Yt3ueUZYh8BHCQTrSSlEqg8RKVl3PASWQLgijSIZjXGUoK0sNlFLh+i7aVIwSO43cXNsi8n3GaYLj+QghicIA15GI7fw5z8WLfIqyxGjrcQrDgH53yEZ3wJ69S+zcMYvn2Y3cYMhyG/4tJ4fWqFZja2tAo1Fj155FhBG3gBvKcxiOxggtcT2XpYVZO03yHKR0KQqNLg3Xrq3hOR5R3Z9MDy3wRQjBeJRYpLmEDz7+LL/4Y9+GEGKC9Ldm9DAK7aEZFy0cKiHZMW/9ep967BRLtR7vvkuBtBIYIRzKcowUIWVhDz03lje488genn76EpUuabfrxDWPtbV15ufaXLm+RjouKTLD0lIHYwRJkoExfPHLx5luNxiNc9rNJhcv3WTnjnnCQKK1ZGZmivMXrrE5GvL6b9lLkqQ06iG9rT6Nuk+/v0G93iHwQ5Qo0MJFCInnBzjKwZ9M37ygQZIUlGXJgX27qcqS99w3i7fnzQhR8a8//gf8/cMH0GVl8xWNBsEEAW6QrgJR3YLgBEHA2to6m5u9W+Z+ocSkw6owpcVbZ0lJVQKmQgp7CNUFKFPhuh67dizZr63AlIZqco+pKs3Jk+eoxSG+72GE9RKWprKNCilQQpCNUktmnXR2bUajQRkrqXOkJM8SkvGISgucyUTcUOFI+35RFpw/f5HHjp/k6MEDKCXY7G6hpGSq1WZ2eoqjB/cTxxFh5FPkOeloDMKhFsfMLcwgXTvJrKqK9bUNer0Bjz1znDsO7efmzXXOXrjM0vw8QpS2UFeG+akYv2FotQJMNUBKK88UUhJEAWVZkuUFYRwipEO+DQLZnhIJKLRGKZ8oipCeAq2QWuO5GeONEU5sJ2Vv3buXH/3lX+X0ZpcfuPMIVVVS5AVZUuC6PnlpG1Gnzp7nyN49NDtWTjnT6nBzZZV2o05/kHDl+g0WZqdBOeR5RbMWIhyffXt2sXtpkROnnmfX4jxHD+/HD2wjo8gqTp67wH333I0QkmQ8ngTca4o858byOkVWEDfcW/mYVVlSldJO78OANE/wAh+Botvt8cgL55kfjtm9Y5GySGg36yxNddg5O4Uf+iDA8z0Q9jpfnJ+h1QhBWDCLEPIWdXp7szLGBpi7jiKKtiExt9sXXrzH3ehu8SO//EuT//uLTRWMEMxn+24LMH/p5E6YAiEFWihcN6DTmWFpYYHu+grSlCTDTRzh8JFPfZT/7X/5F/zxJx/k9buO0mw0kH6AqTRhEPLkU4+R5yXDwYD11evUQoepRoO5Rs7cbMyeXbO0ImiHIMOJ+kEopO+S5glIRVkapOuhlI9xfCrtIESA4/pkZYopx+TpAFMUuEYiS6h0gfICm71pJNooslLjRQ3cIEa5IUWWM04yolqLCgjiGpXwwQ3w6202h2M+9pk/IyXhv3rgR6jVWmSZJisNbhBTVRLHq9FoToMXEdU73NzooqUH0kd4Idq4DJKSwSgjqLeRboiRARvdEbMLu9Fa4jkunuOzvnKDOAxI0pJarUZ/2CVwfIbdIVmZUxmF60cMxgm1ZpuirOhvdDGVQAkXzwuptJU2Gy0YDlMQmiCKybOSKhWMezkOFYPhkLAWoTzJODesrQ9ptRdxXJ9hMsDzIkyliVyFMBpXCWo1l7zI6W6tk6RDsqKi2Wxx8eIL5HnGVGcKlEYXhtCN+Mgf/1su3DhG3R/SnGrTCn3q9YhRsmrrFmEnnEJCpep4vqAoR6AEg8Rw6ew1XE+SFzlx1OaLDx7jPX/v3Vy92qfd2MUDbz7KvW96KwuLC3ZKn+dMTU8zTkf8/sd+BU8mLO25Ex3uQonipa/02yZ3L/m/vyagyp8/9QQY+FUfN1/1mL/Q+qYs82/n2j7c3S69/Oq3r16vhlzdlmu+2Mz5YlnliySWt3UcX2l99Tj5ld6+5iFwm5opDVJKPvqhf8MPHtn3oq/PbaZTIezGpZSDMJqV5RU60y38uI7r+CghCWL/llE1HaWYUjMajMnSnMD3aTRqVubl2s1AuS7TrRrjPMf1FMNRwv49O1jb6HJteZ00ydixMEscBqyurHH2wg2UEASuQzocMuoPLfGvLFCOpEgLiiKf5FNJXntoD66UZFnOgcUZRsMhtVqIweApxeraGhjBeJQCkma9zjjLiSIfYTRGW2mYMdoiyOPQEgcxNsxVCkpd2SLFKLJxQTpKCB2PMi/xQkVeFgjp8OSzFziwb5cFSxQl12+ssnPnPMYY3MDFjz3yqiIMAhwJQliyY5YnFLlm185FAj8gz1IwhnSUoxwbkIoQ5EVhZV4TuInJC3zPh1LxJ196grmpJu1WnXRsPXFFVpDnBWfOXqbTqlv/egGmgAcfe5Kd8zZINYwC2q2INMko8wo3cClNgeM6lIVGCmUJm7FLkeYEoYfrKfq9AaP+kGazhvRcqqKyPi8/oCor/uyLj9Op1XBcjzIbIzA4rmJuYZogsqjqqtQTaYVEF9Z/8YWLl/i1S1f45Q+8lVqjjkGgHBetDV4QoCuNkorRoI/nOvbzpeIf/JtPsyvucWihiVQS12ugjYdyfIz2cTxNHNe48MJNDh3czfkLN3jd6/Zw7twKm+sD5uaa6MoessrS0O2N2btvgTCM+eTnnuHQ/gWiKGRxvs0nv/AMb7h7P1eu32T3rhk8T9HrJSwsTPOlR5+jKEr2LLRJxymNVo0wimjUGqzc3KBIV/HDGkHUYJxAkQ4t3dFxQDlWWqaryTSrwg99tLChvZURePveQm/Q4we+/31Uz57h6tVl63EMfZRUDIZ9u/kjcRyXLC1wXUVVaC5cuMaenUtUVWHpflbvhNaGNM35408/jO8KFuanwWiyrKBIMv7oM4/gRTA91Z4ErRuLGRe8aMpFWdGZaWOEvecUeYF0bNaemdzzpCNvyeqUlKCxnWshb9UHruPy4CNPcPHSMnv37aTSFa6SlIW9VleXN7l6fY2t3pjDe3dbuZ40XLm+TBTWCTwYpwOSJLXFlWMjPgIvIqpHOBNgRzJIUEKRpzlzi/McOrATrQWD3pBD+3fj+qCUz6OPPcN6d4tde3Zbia+MuHajSxQYPCFwPDuB1EZbNYO0nkApHIQjqcoCBwchJEWSTDw6kI8zHEcipAMqwq3HmAr7uUryuydO8Lsf/yiXHvwCtaCGH4YT2E1KVIvQWvCZh5/gjr078XwHg0a5kqnZDspxaNbr7N+/h3FiSae6KHEcz9ILHWs32LN7iUarjh8EKOmAkaRFzoH9uxASNja2ePCRpzm0fxf97oCpqTaB7/Hg40/yuqN3IqShqnKazTp5MabZblKUGtf3ySaepM3VDX7z7Gn+6Zu/BRFIlLL5mRiDUZbGvB2IrKsSz/NwHNtk9IMQrSUIC0sxRqOkmNBIFb7ncnP5Ju1mHS3U5H7y0oMdwI8/foZDBw+xuDT3slumFgJz29vL7dIC2LrYuyU6ePmd3B4yBRN5mHIohUNnbokgbjEcjSmKMc9cPsV3v+N+PvG5r/C2e95JXpRoIRglOY8/8TgzU1OMh136m9c5sHuehemYOLIqjNAPEFrjuvYe50gLMpLKsc0dx8PzAjw/ZGNzE9cPbG6erBCiJB33UFUFaKRw7MHJ9ZBByFZvjHBqjJKCQgsuX71OGHdYW1sjDBtsbfWQfkCj0WFzY4M4boJ0uXrlivW7eiE/97GP8GP/5dt452vfTyUUQgXU2i2uXVvBcSL6wzFTs4soN6TMDXlZoRwbFVEaqIdNhHRpNNtI18dzfG7evEmz2SDwQ8bD0QSioUnzhLjZ4ub6OrMzc0jXwfcChK4Y9DdpNpsIBCsr11haWoK8oLe5SaPV4vipZ5ibmWPYH3Bt+QqO8li+fo1m3eGxJx7n4qVL5MMuCM3Z86do1OcJvJRklOM6AWU1JhtmxJGgKh2iThtHRQjXodQl0nNJ09RyBXLrEfTCDs32nI3zKCvm5xaotOHU6ZPMzM7ysx//eRbaPl5jht/6g8f5jkP/iN6NDldfmOFn/+8H+fxjm3zv2/YQ+FMMhl10OaSY0JIlikYckVYVcW0aoxLcMObyBZ/5nQ2+/c1v4P4HvgPtNIijgJOnTlBUFQfu3EcpEtZvbHF4oc/lS5f4lu/4AEZklly7fVG9wsX1jQJVvmG55G2fZ4zNxbxVx0+u1xdLsic+vBfVuK/+XLbh+E1a5t+6tX24+8vPxV5lfY1D119pN+PrmPAJYQ95b7l+jlvb1fY/4jafn5h4T7Rm1O2jpCIKQ7TZ9siISZ6J9fSMRgnXrq+yuDjDeJySpBlgA7Y914ahXrt+k3oc4vuBzcJybcCv7zu0GnWyPKfRqJHlFt//1JlL7NsxRxh4lGWJVJLR2IaPl2VFXItYXdvA9z2iKMB1HJIkJS1zpqaagKVpjpOcLM9wXUVci1nf6NJsxviBR60e2XDuJMdUhtEo5djJ59m3Y8F6AB1FkReTjVkRxiFKQr87oNmuEYUBynEmQAdLyOu0mxw+sJuiLFHKIR2leFIRRj5ra5v0+kOajZpFdzvWA5fmufVa+SHDQcpXnjzNnh2zPHXyNKHv20OTUpMgYB+DuHVgR2sEgsefPU02zvjWNxy1BXxVEccRq2tblIUmzyrOX72JqxRxLSAvK8IoYGm2Qxhab2M1IV35vg0Pz/PcTiHyAiUVAivVotII6ZCm1tsWhlbzr41ha6uPN5EQ9foD/uzhY3zXd9yL77t84qHH6cQxnU6LNCvI0vyW/8v2JwxSCpwJbOVUs+BH/87rJl4oJr9nC3Ew2lBWOVVlA+htToPh/R/6M37zg0dQ2QjXsWh7I12U8qi09e+laQJIZmZaFEWG70viMOLhx85xz+v229eT6/LlJ06ytjHg/vuOsr7e5djT53nrA0d59sQFdu+eZzgcc2jfPPV6jKsE3d6Q42cuc/jADrpbfdY3eoyTHKFhqtOk02lhDJx9/jLJKMEVY1qdKZK0JAxchqMUrQuKKsP3Y8q8Aiyt1XMdqqqgLEp0ZfjJ37rEu9/9PXieizTw7n/5c+xNKx4/foo79u2egAkqDOAolyxPqarS/v4qw9L8HMpVlLqk1x8gEHiuj3RsyPncVIvde3daiBTgOg7aaBZnW9TCmKnpKQTWV6q1mTSHDHlqqXdB6E88vlhZmeuisRLxckKLU1JZX5/r3goYnyRf2ELYGMqqZP/unRzavwekRbobo28Vr3/4mYd4+wNv4ugdBzh9+ixzc9Okacax42dYX+uzMNcijHyqwtCo1ygnU8fhIOG502fptJv4gU93q8/x02c5d+kq0502tUZog3/bbYo8x3NdNla7PPzEae67+07ieh0FYATSKJq1GqPxANe3hFhXWXooQuM6IQaJUAYpLXVZG3Pr5y0nEsSqMvS2+kRxjNYVX3r0GLt3LOC4in2Bx8x9b+Cnf/2jvGvffoo8I45DsjwjTTK0hjv272RqumUhOr6P5/uUpZ6EtLsgrJe4u9kjrsVWPj8YEtdqLF9fpd6o2QamMYyGIxzH3jONMTiuy6A/ZM+OBatukOKWdNyTgqmpjp2qSStxdV3BjRs3qdVqE+mrxGhDFPkk4wFvnG8zShJcx7dT6sBHG0EYBhR5iXJsRIfZzni8Bf2pwEikNBbOoiRZmtmAd1ORjMc06jFG2kbRK61nbm7ywz/xY6+8nX7V3vxKO/Xnf/shZl8lRuirlxQKIR2UcnG9AMeP+OyxT/Ku+/bymU+c5G1v/W5EEDEe2ety9eYNxsNNNm5e5b577yX0FEFgPZmR55MVOVJYMInWxsLeEPh+RFFavz3SXjftZgtTlZTZiKrI0KW9t2sDWircoIbjhqysrBLX22jtMBxnZFmFkh5RXCMMa0jlIpSDkA61VoeisFErvV6XLC+oN6fIioKf/Z0P8wv/7J/w87/ycd545z1I6dBotsiLgk5rljTPmZ9bYjQec3NtlcD36Q/6tJrtW/7fy1cu0my0KCZe1rIobAbgoIfjKMIoIvB9lOtSlBWBHxIGMQaNriDPCwLfxQ08qqogCEJczyVJE8bDhNW1FZaXLzI7M09Zap47/hjN1hTHHn+aXrfHpasnCZwQz/OpsgFB4LO+uczm2hZhWJGOClZvbjAzM8PytRVsJIikJEdXk/3NlOiqRJjyFowEIXCCOqsbXVqNJpubmwRhhBGGOKrxS7//Yb77nW/hs488yT+8/5V2/O4AACAASURBVP0cmtlLliXs2dUhigPuP/QG3rjn9Tz6uTEf+r3P8p7v3IkX+riuBVh5ng28b8/VuHLZ4NbH1No+/8/vnubg0aO8cGWdN37rOxFuSBxHTE3PMDMzx2c++yl27Fii4fk89Jnf4e9973sQjX1o13nF6+DF18o35jj7i9bBt0jwUr60jn+Zw93LfuxV1jcPd38LV1lV/8oAanKhKSktOY6/2gPfiyAqeuLv+At0Kb7WuhUg+SoTvLOnzvKRn/ynfNvSbZvR7RN0vW18lZhKk48Sbt5cp9VqYzQ2lHaUWGnUpAMyHI7pdgdcurHO8ecvMz/d4svPnef8lRXuumMfw9EYV0m+eOwk7SjG8y18pNGMAVvM+2FAGPq4roOUUBQFh/csUm/ElEWOVIJGo0ZZVjZXZ2I61lpbv4UxDIZDilLTmWqSpimB71KWFY1mA9cTZJnNQ/rc4ye468h+S23MMsajjCiKGQ9Tur0hh/busNNAx24sUgiGoxF+GFAUJbos8HyLZZdSMUozgjiwmVXaIKVhmPVRrmTQH+C6hmbdo9LgOApd2kmgEooTJy5x+eoaNT9iemYGRyiu3VhlnGV0GjHNOGIwSoiiyH4vjoMuNVI5dnpTaXzPpchL0LCwMA0YwjhAAONRxmCQ0qg3OXn6Cncc2Gn9hIXtrjMpoiujqSaeoKqy8rptH16ZV6yubWC0xncVW+tdsnGOF4T83uce4cDSrPX/OA66gu5GH2EM62tdyqrkzgO7wNi8wzv27aLRqKO1BR902k07+U3H1is4wfj/0Bee4v637ORNrz2AMyne/DAgzWxoLtgiXwmfT33ucdrNJv/z73yFe5dS3nPfDFubfVqtOmEYkhZjgjBECMjykYUTTDDqZZnjOFaK+9CXj/PAGw8RhK59TfoBF68sszjTptNu0u+P2Or1mZ1usDjf4fz566zc7OL59vH1Ro3NjS6vPbKb9Y0ul6/d5O47d3NgzxxJYgv3ayvrdNo1lISN9QGdpqDWaFCWhiofEgQ1lGMoypQiKYm8ACOhmIQPSyEJAkunvb7a48Br72E4GDPqdvm3v/pr/I/vehf3vv4udFWiHAfXcW0TQQqK0spYy8LSL4WCrMhxPIXruAR+wLlzl8DY11Rrqmkn9xOjf6U1ylW0OnXisM5nH/wyUy2bJymV5Mrla2ysbXH81PO0G3U8V6IFtw5jSHuYs3h0xeNPPMuNGzdZXJynKmyAep4VfO6hR/EdkCgef/o4u3YuUmnNeDSw0RlCkI3HKOkgleLowf2ThodmdrpjQU6jlPMXr3Ng5w6mZ5rWhxjWMAKyLCVJctpTHdrNOnEUUmpDHIVEns8dhw8SxBFZOrLE2JvrXF+5SbPeIK753HloN2Fsf3+ONIyTIbV6HYlEeoYsGeAqD6NtV7nIE4xWNoDYFQyHI/uz5pnNMzTC+gmDAIElhFpoiWJpbs7eM4xhtt7gH/3iR3jjvfdyR6WhKm0YsufguwFe4OI5EjEhZfYHQ8LAv3WvTpP+5MAi+aNPf4G9iwv4vk8c1+htDYgbMY7yeOyJZ/Bdl+cvXmRxfsYe3CebYr0eE8YBeZYTRRFZluO4ina7wbPHz7J6c4MwiHBdD1MauhtDlm9s8PSz5+ltDlmYncP3fD58/Djv27uTL33lJMPBiFoUUFWaP/ncU3QaAa1WY9LEMaRJhhfZPFLHcehvDfmzLx5j19K0zeMsSwuY0YaqKhmPRjTqMcJxebkj2XYj6TfOX+P977ekTDOZu93+6K8+3NmDk77lwd5+O/7g6W/4cKeN3beyqsSv1ag12nz59GP83bffy8c/+Rnedtf9KFPgliU3Lp/FqXq85vAu9u/ZgaLA9yxlFqWoihwlHcqqsgdGxwME/dEAhML1Qku0LUuqMiNLR5RFjiNACSuT3+wP0DgYr8a15ZvEtTmCuE23N6LZmaJEUW+2QTrkZUGj1aHUht5wRBDV8MMmQjh0u32iuEmt0SbXgo//6e/zLW+6my99+jk++N4fpzM9Q1rkuJ6PclyGacH0zBxZUXL9xg2WlnYSRyFhELK2sU6SpDQbLeq1GqPxkK3uJs1WiyLPSdKEelynXm9QVgVpmmAqw5UrV6jFDRzHAp62NjdxHYUfKIoyYzTIWF9b5/SpE6TjEf1+H0HJroUplq+/wNpGl3tfdwhlxsx1ahzav4OlhQ5F2mN+foYDuxepRZJdu3cw6C6zsDRNp1FDlxnjdJXuxnU6nTqXL11jdnqeuN4iLzRxVGMw6GOqfNIws97SymjanVlGowFRrYGc3HMfvvoQ65ubfO/d7+W77v07KNdh1+5dXLh0BVMOaLfanDt5kpmFnSzsaPPA4Xv4737tDzh3Jee+17TJi5IgqOF7IVeXN/nQz3+C+b2H+V8//Ifs3PMuDt59N4WpM0okrekpbizfoN5u4roBe/fupsgS8u4Vrl66ycK+1+HO70BqxXZm4Xb9qm+jt78cUOWl199Lp3RC8iIV2yvVxq9UN1tJ6ld9/GUOcrc/9y0Ay8s8z/aE7y8zufsmUOWb6290/cw//5f89/fe+aqPE8bgKMGVqzfotDtsbgwwWlgZYmChHMqx2We1WsjcXIdd8x12zrZo1ELu2rfI3oUO48GIdqeB6yi+7XVHuL7SJYxcHNcWPmWhGY8Lelt9PClRQJ5k6KJiNByRjEb0+8OJ3E7aA01ZEUUhQtgCHGPwXAUYvMDliw8dxzE2fkDokiJNcVyfOI4xAt799nvR2NiF0WBMGAQUueHG2ga79yyhXBfH90jSDCElG5tdWq0Go8HY+jqGJVVRTSAOCVE9wghBXmqcIMI4HltrPcgNvhsglUslDE88eQ5PBSzf3MR1FaPxiCNHdrFv5yzPX7tGVRXgwpGje3jg/tdSasOZF5bZsTQ/KWolWZLR7fahqqiKii8+9izrm32U57Fz5zx+6BHEwSQ43SGMY2bnOihPcPDAAjPTDdqtiKlWnfEwocorRsMUowWu6xNMKJyu54IweJ7L6somZy+vEDdqbPUGPH/lBlI4DLt93vOW+/AdidA2Y9CUBTeW1/A8h4Ud00xNNag3IlxH4LkKRwlQglIXLO6YodIFjgNxHBP4Fkn9vs8d4zc++FaWpjskWQpS4nkewER6KScyRYPWVtL3U791jJ959xK+LzCVpNNpoaTED12uXOpSpIbVlS0cXGLf58KlZTt5kA5CuFy6sMHRwwvENYdef4uqykjSlB3z02z1xxRFSX8wZu+uGesF9DyKvESXmh07FwjDECUl0506aZqSl5rXHt3HynofpM3gOnthmcF4hOsKknREs+XjRz5aCjvgwTAe2eB6CHE9QZJt4boCP/ApCxC46EozHA544EhMoxGzY2EHB48e5pmnHuMffOaTFhbj2OsBJFIoEJZyqrUgCGpkWWmJpxOkuOsqxuMhjgOdVhNHCooixYiJj06JW75XYyTalLz9rffbjEkpWb52k4efOslTxy+RpYZHjh1H+S6OsgX2tkRIl9aPhTEMhwn5JPjbbuwS13V507e8jtnpaZ56+hTdrTFVZf9OdjLhII0iCCK0NiSjxNIxJ5EfZZ5htKFej3njXYfYvWfGSkSx8vuisLPpdmeKNE2o12OqokQ6dnLx5MkzdsphwPcjhJTU6yHNZmypsb6DH3joKqdMB2xs3mTQG7OysoEMoTIerohthqHJKE2O43q4nsGYHF1VRFGdqgQ/8CYyWDAaBv0BeV7wic9+CSUVZV7aPMBtyJBjJdH/zQd+hGeuXcQRCik8LrxwgzS1tOI8KUiGBVmeEwQeaZpNHADGSveEQjqKd3zrG4kjH8d1OHnyHFevrSAMpElGrz+egDekfY249u8CUFWabneTqtIk48TKqauKsihoRD6D3pB8mPLwl48hhKRRr/PC1evUah5JlXD85GmSNOG7ZqfI84LZdo2F2Qb1movvGN5yzyGajZr1OhnbTKzVYsCZRJtAXA/5vnfcRxiECCNxXM9SRoWVHrvKtTLhv6HyqtX8xg52YItHow3PPn0MZWzemXQCdt3zDmZbs2T9G6xdfoa1lTM0Y5/9ew8iDXi+9VnnuYXvOMpFOQGlEYT1NkGtifQjnCBgamaOwHcw5YhksEWZD9FVTlVVKOWR4FN6LVRtDr+xCyeexwum8PwpuoOh9XDXLSBlbm4O6QjqrZhOZ4qNzQ2mOjN02jN0WtP0tjbo9bokWc4ozUH5/MJ/+mVumA2+75738YEf/MdIF9ZX12nU6hRFTlVogjBkMOwzGHaZmZ4ijnzyIqWo7KR8bnaWwXDAaDyi2WgyPzePUoIg8JibnSNNCq5fX+bCxcv0+l2qqqRRrzEYbKJNxvmzJ6hHDqbsUhUpZ08/x7VrVxkMepT5iH5/mbW165TFkHR4k317dnFj9RpPHnuUWi1gfjYiUCntWsBr7zjCdCvClyUOBY7JKQY9qiTDccbMzSg6NYfD+3ZQC0vqQUq/e4WnvvxHBI6i28tpT+8l0SGFUYRBhKckMh8y7K9QixRh4PDUo4/x63/y7/jMl77Aj7/rJ3A8ZxI5FbK5uUqpRqxv5hRFxo49ezFlYqW3wuGfv++f8N7X/yBnL5VghIUdjVMWWnv5n37ufVw867NyaZbMHWBUzOE772Z2donN5U2a0x0Qgnq9Rj2KoNL8wSd/m9e84e3M7rVxWWH15weobYuS/BrT8b/qtQ3/+qtY20yHv671zcndf8ZVbcsyJ39gM5nawV+PVNNMJiN/HVjYF329V3jBvuf7foD/6y33vORzRKUnTEIrJzIVSFFx4dwVFmamrcQmDDlx+gILi3NIMZFmVi6i0qTjMZgKoWBxts216+vUgpD9exfJ85zu5gDP82i1GzRrIW4Q2GDvQR9poMo07amOlXf2R4S1CBxBGCjKsmJtc0gY1hHCoyhyQt8lG6cYCUo6OI5LZQwCjaMEh/YsWm9cHNIfp9RaDZh4ucIwpNft06iHOK4lNo7GGV88dpwzl9a58+AiQezjuBKJZDQcUa/HbHUH1GpWwvnQY8e5cHmNuakOzXaMERpdFQS+j9ZQ5CUbG32arSm++MgJIj8gDkLi2CcvShoNC0lwXBelDTiC/fuX8FyHLM1AGrSpqNVCFuanePDhZzm8fyfalDieJAgdJJJBL2Xfzh2M8zGR7wKGIisRjmCcjKEsUAgCLyAdp6x3e/ZwJKVF03sO6xtdwijAUfb1IF0XtEAqRZlr8qLimedf4N4j+6ASeL5kdrpFvdnGmBI/8Lm5vgEYlOsipGGqHZGXVs5ZpBpHejx67AxLS7MoX2Cq0npCJoHEWmi6W0PCOOaHH3qaj/30f4H0bf4V2pAMhighkI6HdISFKggHIXw+8OufZnXzJr/yI0fQlSEvKoI4tJI9YRgPu0TBFBeuXuDmzS6mdHHDnNnODlxHcmN5mTD0qdfreL5LWY1Z21gj8iJ8P+Dxp5/n2x94Hckow3cclCOYmmry9IlzHNy/wM6d06ytb5AkCb5vp9rnL93g8OG9rK922doc8sKFFc5dXuPIgVmOHNyBVAo/CIjrMaNBDtWQdmMXvWIFX1Tk1Zg4miVNUqTKGQ3HKM/F9yKE1Ghp+H/Ze/Mgy677vu9z7jl3v29/vU13z/RsmAUDgiTABTQp0pJiiYxWUDQVUrEcy3ZVnK0qkaU/XK44sey4FFsVqVyOXSkrMal9sWRLpkQSJEgQC7HNYAYYYPatp3t6fd39trufmz/OmyEIAZREiU6U8FQNBlP9+s2bfve+c36/3/f7/Xiuz1Qj4Mf/3i/xyY9+lCSxUBY8+oMf4dc+9WnevrhEZVlGCjeR2lrKMNh0UYDWuLaDtKXBmCgj25uaajMcDnBcF6uyUMIiGY4wpITJJm4JLKVM1zkvUFIgBcx0pjh2dIlDhxZZ2r+A4/iTSbBGOjYVEqXNFHE0Snnx9CXe/94HJ/eCmVbpwvAJ03zMwYP7aQQhtSgycmDlUFGAqMizEl1CGIXclY9DRZkXxGPTlGl3mkhHoKQkS00TI8tzlFRIBxxXsb66yZ21Laa7TZ4/fZbA95idmSYex1TaPHZzc5d9i/MGkJwb1E1QiwxbMWwR1hqcfvkihxYPcfrlS7xyY4MoFDQiB0dZxKmgKFO0zlHKIRnn+J5HpU0aYpLEZhLvhmBJjh5cIIkTXNtHqxKhDey81JrfvnSBzdU7/M4rr/H9R45gSYcnnj3DqWOHWb29Qb3V5vLVZYqiZLu3x/nL11hamEdKmyorCBou472Ywe4Q3/fIdMHc7IwJovAclC2YnmrwxWeeY3F6DtcNuHjpMjOz01hKYSEIvRDl2FhKGJ6XNMqBTmsKpWC7v0O7UUeXOc12jX2zbY4dPcCB/XO0ohAv8Pn58+f5wQOLdJpto4KwLLJSo0vJs+cu0mnU8EN3smdKkrFJBZaWhe0o8iIHtJGOT/AXpdZY0qK/16dei0DKb7hnfm6zz6OPfr/ZA3mTIJQ3/IK7+/bX798/9bM//XWcuz/JMk2livn5BSqtkcLiiy89zic/8Ql+8d98iu849S6UknjKxpYWw3HfgNkpkbYiLUssN0A4LgkWtuOh84wijUmGO8iyQGcJeRJTmUQkdFEihIcla4xTTWYFIF20UPT6e0zNzFHkBYXOmersw5IC5Rjfb1lAGNRIsgInagISTwnW1laM9znTCEswvW8eL4qoLMVH3vs9HJs+QhRG9Pd2GI9H5OOYvd0dGrUGWZGBBY7jkqcGB1AUKWleoKSLVIY5WVESTFKapXRZ39pClja3l1cpRcHigUVqjYg4ThkPxvT7myzOHMXyMy6+do1LF68xHo4oil26nQYNR7B56xWW9i9w36H9LM13cFRBo1HHVoqFToPFhVmk5ZKlFUo5FGVi8FZFNmkWGcn47MIMYehjCTNd9yuF8MxUKB8OEBLmOnVevXQVLQMQgla9gXQ9xsMtbEdSVAW2SKmyjJ/59Z/n4s4lgsLlp37kv8XSFdIS5LrAwmMwHLKzuQvaQQhNu9XBd20KzaShC7lUPPH5m/zWM1f50Ikp4sGA0+dfJWq/m9t7Lv/gf/4ZGlGDkydOkWQpYcPn9PMvENYEu9s9Di7ch40mi3e476HvYe7QYdzAx9Ka0tIGZfVW1/W9++IbT+5e///3Jn1vCLp401yJN3muN07j9N2p2+Tz4o/Tkd6d0smJtPPrQhO/HajyF3OVb5KW+a0s7l5fdH2rkoPe+Pe8fv3A+rWv+/PXdMhGGhmPE7I0wwtcRv0BZV5Qqxku3XAw5omXLnH/4QWkUgz2hkglieOxgYkLqDdqJElGp91ECIHjKhxXsbs3nETbW0hlYbsOQms2t7dxbMcwblyH/u6A51+9TKcWEkS+OYRi0W41ub68xvR0C1tJ8tR4+vzQx5LKGJQn3h6tNTt7I1rtBqPRmDAKkEoxGpgY9DI3krOiLBiPEhzH4bNPnmGu3eLD3/kubEdOkugK8rzk97/8HPunu9TqEWVRkMQJh5fmOXRgjizNDQrBVvei8S1poaQxMVvSZmF+io3NbYajIUsH580BVmu8wGVyTsD2HJRSxh+lxT3pWVVBGuf0en2mWnUsZX6G/f6QIiuR0sYPfILQnfggLV67fJNuuzHhNlWM4xTXcxiNx8zt6+L73gQNUSKVmnhgPPIkpchzlOMSj2I21rd48fwlDi3OsTDbJfA8PvfkGZb2T00CKMxrtiyJsiwajfpExgpaG5mU8Qg6pGnOgcVZpLLu+XRAkGUFoEnTFMd1+a9OX+Bf/e33EYQRQgqyJDG+IduhKLWBZFMxHI5wXJf//l99np/4QMhHH9k/Se2sGdaVVBTZ3enQiLJULOxrsX9xHwKJckrGwxLPt2k2I7SuWF3pEacx3W6T0A9oNhsMBn2W9ndxPJvRcMx2b5cwDLhy/Q7Hjyxy6eoKjXpIlufUayGh7+N7LjeW1xCVxe7emJu3t+i0IlxXceLYIldvrDI73cIPXP79557nwFyNJBkQeA2yaoisLKSykdLAzMsyw7YdXM+nLKyJ9wjG4zGu6/KuuYL/5p/9Np5t0+m2iWo+v/nkc3ywOz0JCqwmP28TUmHbZiJkCcjzglJrbEfd29iEELi2g9aaLMtJk/TeZ6FlWWR5jpz4LoQQDAcjlLRwbJeoHuL5DlJigkFERVlodrZ7BJGPEBbJYIxUEq01J+47ZBhf9XCSQGkmZsk447Url/Bsj6mpLlJZk4RM8zlVFJrtrV1eu3yVublpIwuyBFJJHNvm3372C9x3cD9CVFjSNKt8P+DMy6+y0dvm8NJ+g/ZQCs9xCTwPKS1mpqbwXcOls20bW0lsx8H1PKhga3ObQX9Io1kzfjnHeG2VlBxY2IeSUA88Dh84iO9UpLHBDNi2bzyjQiCEwg9C4iRB2RZpkmE7zkRyKA0bywLXNWmHpS6whIWoNFmW8tGTx/m5xx7nL/+l9/JwGBKPxpw6doTt7Z3JpMshigKeeuElTh45yMHFBRzHpizN/RAnY6R0+OwTzzDVqlNvRFjCMqwtV4EwrNLZTodrt1aZ7rYJPc8UUEqhi5J4FFMJw4EU0nguP/OlJ9g/M0ezVaMWBczNzhDWQhOUI837rUvNmfMXyLOCd3Za+NmYLz51hnYtIIx8LGXxB18+Q64LHji+ZLAHeYllmSnn3URVhPmMlNL4FqU0r9uwKUskE7SH7XzDffY3ri7z8Y8/+k1tsa9/3l/7td/+0xd3b3hdFYIvnP48H/uBD/LM73+VE/sPmGtBlEhLENZClIKq0Ehh7hNLWJRZitA5stJQZCTxEM+2ycvCBEwIgWW7WMpndzgkR1FrzbA7HBLVmuYzfJIEbSubcRwzGg9pNtqEYUCaJXgTzl7gB/R2tnBcD991GA/2KEpNvd5iMOjTbLXY6m3SaDQRWMTjIWEQmPdkIg3XZTlBJimKUrOz28N3fRzb5s6dFSzLot5osre3RxCErG+sUZa5uR80pulkSfzAIawHuI7LzZs3aDe7xOMhr5x9jnrUYmX9Ajeu3Ta+42JMp10n8G2ajRa2DYsHjjAc7VCv1xECPM98PkkpJ1NqjbAcTr/wLFPTU9i2Qbco2zH8RSUn75v5710PnaWhlKaR7CkXy3VxlCIvBL3dPgsLCwgkSTZGkhtmr+2ztR5zeuvfcfV2n7/1ob/JRz74/Qgp2dzucenKBeYXFynyiiwdc+zYMfb2dhjureMFIY6t6O3uAKbJ5jsuS/v28cJLZ3FbDmt9xdLSEVpTJxDuFFMzM3SmG/ybT/8SK3dWaXfb7J+fp9GusbCwiNaa8xdeZf/hQ4R1U/Deyye5q2n+Y6/rP1lx92ddb1Yovp5991ayy69bkweYPWbynK/Ln/i2LPPb6//V66M//PG3/FolBVoY6HFQCxgOh+z2TPczyXIqKamFDp/48HsxcwBQjgtWgXIE0rHY6u1xF24ZRC7SEaR5yjiJabRC2lMNkBVe4FCMU7JxysL8HEVVkZUFr7x6Fc9zmKrXqNXNgVsqD9s2xv3ZmbqBptqKrCxxA4fd3SHj8ZioFuB5LlIqstxMvLKsoBbVUZZNnmZIS+LYDlJKHM9DIGm1mmRZxvd957s5dWIJhOFP9bb3UMqAjr/jgftJxjlVCbZyqdcaSFszGg1odSIT3V5aVIWg0ahPwl8yXN9FKWOiriiYn+9SlBlIkxK5vLJmGGAIw/9LcywsknGOLkBatim8ooATh/cTx6kBiWtBLawR1iK2t3e5ePEaaEFegfIMIDiPC7JhwXCYYzs+SVYSNSN2+n0qUXI3Ev/ixZv8hy+dwarg/KUbWJYk7g9xlKAe+XzgnSeJRyPKLKW3NyQtK7wwRDkm2r7SmjRJeeGVy4DF+vr2xFcKQkjKQhPHIyylKasMBIyHySSwwZjcHdchDAL+5nPn+fmfeB/NZpMrV258bRJTapK8AGVPmHkQBhEf/Zl/z0/9lQbJ9h7nzt+m3Z6iqhRVJdnZHmBZNnFc0Gp1uHrrNmtrfcoCvvzMy+jC5tbtDe7c2SIeZ2xs7lCr+0x1W2xv5pw+t8YojRGWkYHqomBvOCSIXK7d2OTYkf18+ekL3Lq9xxPPXKTVaLC21iPNckqtWdg3xfqdHbI849TJBR588BAf+uCDfPXMJeamO+Rpyt72Fh965H72L85iS4WUI3SuECJAa5OSWhQlvlen0lCVBbZjG1+NsAn8gKoqiSLFz32yw6d+/VcJIgdlWxw9tMCwPyAZpWSxYaUJyb0DibAEynFw/MkEPUkxkfM5VVWRFflEdm08K17gUWo9gUmDqMykushzolqAkg4IiZKQjIfYSiAqIwHYWFljPBhDXiFKzZVrNyjKHDdwuLW8zJPPnzZhG8Ji2B+YBq7QXLm2wSuvXQVRUVGCZYrasqg4d+4Sz774Gu95+B2AwJpICQzDKePRD38XYeRj23Ii4TUSwvc89DbeeeokL5x9mWRc0NvqkaQxljIIA8dxGI9jsjwDy3gkoULZgiSJieOE3l6fsjTS0izN8GwFZYkoJ9GzouDsuddo1Fso5aGLHCWNx0ZaAl3l7O5uImVJliU4ns3m+ibxOEWSUZUJJsG/AilQOFgUIBK0zkj7OZcuX+bH/9on+fL5c7i2xlE5s3NdajWf7a1NLEtQFjkvX7hkDvpZgi5TygqEtLB9h4/9wPfQnekgLCjKjDAy4TeDwQgq6HY7vOedDxDVI5578QqD3RGf/s3PIKWkt7MLlUHFOK6N7Vrsm26xsbXBY08+y+8//hXAYCV0ZeD1SZJjSZuH3v4ODh05xGO3l9G6YH6qhue6JOMUXZQ8+uH38MjbjlBq472VtiBJE7IsNx61NDP+TQH3uv2TJYSYTHcssjT7GirhLdY//sff1Jntz2UJNAhBhWW8faKEbMyFp/41l3cuYGnjdx8NE9I4RycFIp1MpkcDKDJIx1TJCJGY37Nku7HyKwAAIABJREFUjJI2QnpUKsBy6ljBFNtjQWY1qU0fxW8usD3OmDt4jFJDPE6xbZfRcGiQC25Ap93Bdc29IIRgsNen1WgwGOzQiALy8YAiidnr9+lOzWF7Po1OEyEF051pZAXZeEieJdSDgHg8JIlH1IOArZ01HM+5FwCjywrHdih1RbM1Rb3e4cqVK5S65MaNa7SabRq1lpGi5jnDYd/A3/OYNE9R0mJjdYVsnHDuxbOcOHkcxy05sH+O4cYGTb/ivkMzLO1v09++xbjfoygSqspE/ZdlahI2k4QLL58xwUZWjuO4SAknTp3Etq27Cndzb6JNOJUu7jk170rNS1EaJmkJyrHwPRfhSmbbIePNi8T9LYYZVMJnZWOXOLf4R7/9L/hq7zGeOLPJ3/uBv4GkZHNnGxUETO9b5IG3vxuBYHd3i0ZUx3UkR4/dR4rPa1dvsrK+y41btye8Xp9kDKMk52/80F/np3/u9/iNJyp6+SlubTgcPX4cy4eRHnLk+DHe94EPcOjIEgeWOmxdeJF45SwbK1/CsvYYDIYTb+AktGQyGfv/w7r7b/2z/Hu/Pbn7f3C92eTurRAIf9L1euzBGzsU32zc65/+RbxuQmhZfOzRH+XTH3zHH3nY10ymBhYsBaAr1lfX6bTbWLbCmnT1TTKd2TR/7Q+e5PiBOaRy0KWm1+vT7bSohMBWDmmSEtV9xnFC4Ht4num2FUVppJCWpD8Y4YUBtuuQJRmvXl9hqhEx3W2CMAl5aWxA6NKCZrOGbUvS2MgxXdflhbOXOHxo3nSFdcV4lNDptil1Qb8fm0ADXZngAsfBtm12tvtQacbjhL09I03y7zKRLNMFDsPQsOYm0PCL15bZ2tqlUQ944aXXcJWiM9WchAxYFIXhGNlKmtS6oqTMIR7FCGC628T1XQpdmtAFIfnCsy8TOTb1emg4YKWZsPyHx09zcHEaRGW6+xMGWJ7n5IXBGXieQ1bktLsNut0GRZZhSQtdFrRbNVzHYXNzh9OvXOfAvjkkijzVuK5HEo8mAQ3Q6Ta5b2kOSwiura4Tej610EVYFkHoMRiMcFwbx3XI8hK0ZmoqwhIVo72YXJuD8dL+GUpdEoU1Bv0xoe+TphmWkIZFpiT9wZAwDFC2MwnMKXAdh1u7O6T31/mJ730nruMSx2Ns20CZbVuZbqkSuK6iKnOGSUEyWuZj7+ri+y7TnSk6HfNe5EWG73kEvsvaWg/PcXF9h7mZOpbls7s74sSxWQK/Sb3uMI4Toigy7DEBL527RhR5zEzX8X0H3424eHEFq1LcWR9w5OgS3VbEhcvLvO3EIvefOEA8jkmTlMWFWb76wmssHZjFcRxWV7Z4zyP30+7U2d3Zo1F3menUkELyxFdfZWa6Tmd6hq3124yHe9hOii07SNehFjQYj/dQtoVG3oN0W5Znpt5C3EuL810b11b8wUt93v/+h3A9n/tPnuIT//R/48Nz85x99QLzc7MTD5KeTDTU5HoX9Pf28CeTqtFobO5VW1EWJVIIbNe+l4h5d3oWD0eMhgnnX7vCdLdDnhc8/vSzNMMGrVaHoqh45rmzzE5N4fsuz559mWNHDtPb6THTncILHHKdUgtrHFoyMlXLMsgUwyqLuXx1lQ+9/yHcyTRJl5p4nLCxtsV9Rw5x6OA8jmPCQixZkYwTKl0hlTMp6iCLM0aDmOEooSxLgokXdW56ZsJPFAR3A2ZcRV4UprFUVly+cpOaH9Lb6VFrmGux2WrSrNdwXNMk0oWZemZZxmji/UuyjJmpGaQUZiKWjqmqAsfxAG28h1KipARhoTU0moZJp3XG9tYOtahugq0mE6g8TciLEtf1cHyP7ztxBOf+E/yPn/p1Hj12lHIS+uS4tgHK25K5qSaBG/DCudfYNzPNbr9Ps9lCUxoJWVHgeeY9V0qiHMnOZp94nPCFZ57n/mNHeO3iFaqyYHZ6mq++9DKffPR76PcH3Li1xtzcNK5rMxwMULZNu97AEhbHjx7m2MGlSWEmqSrMJNqy+bd/8EXmOi1cz+V/P/8KH2qFzHVbOI4kCF3zWGmhpH0v/VZKdc8zaaZ1Blx+F9eDsAwqYpI+agFFlhFEvklpeN0E4Y3brv2eRwgC/5vaYr/x5O6P39+F0FSVKT6rbMze5i2+cPoxPvSgw8n6f2og2l5E0AhAVRRVgRaQ5RppO5QCNBaW8hgVNpUTYkcd/OYsy5t9ykrRbM+jhY8ftOnv7Zhpn7RoNhqgS3o7O/QHfaIowvd8RsM9mq0OwtLs7OwCcHvlFr7rUQkIgoAszwnDmpkCpxlFYZpOjhTs7e6glM3OTo8kHRGGNeI0pVFvADCOYxaXDk9ClQR5ljHdnUZKoywYjoZEUZ0wCGm12qzeuc3s7D72+gOjXphMwRxlc/b0WYqs5OWXn2fp0EFu3HqNA3PHWd94iaWDC5x57AwPf/AktoB2q4GyKtqtKWxbsb3Zw3UdHNtIPi0psZWi1Z5G2haWFFS5xrIgjAITPjNJGi3KEinVhJ+r0KVGV9U95UFRaV544UW63X0oqUFJyixDiorFAwdYvnWB6zeuUwun+dQzv8HY77O8sspPfOdf47sf+CBo8CLBaLiD49XxnABRmdCmMIzQlWYcD6mFDeJc05me48KF8zh+i73+AI3FUy9dZL23ydLSSX74Ox7l95/+XQ7f904efPsp2m2X7a11Dh0+xMljh2k1Iy6cew5Z3GHn5hn6e6sUaY7EYWt9nebsIraSlPqudelrwSdv9uuenFHzDc/B3+z6RjLNu1O613/t7kn49QiEN6IQ3jjhe8PDvp2W+RdxvVlx92de/7Gkl3/C1/CxRz/O//Hekyip/sjD7l3cCPo7e9iWZPX2Or7rENUbFLo0G3RRIibFmSUE0/WQdqtGllUMByNqtcBIZqRFHpdsbPeIIh9l2xNGkT0pUIpJaltKvVVD2or+7oBaFHBwYRbfdQyTzJa4vssTz7/MME5YnJui0ppkHAPg1wIqrelEdbzIZ3e3T1SLKHIjNxQSdAFfeOocCzNtltfWaE7YNp/58gvUfIczF2+gLIu52e7kUGj8X6IywQ57O3083yUZxrTqIb3+gPnZLq9cvsG12xvMdhoEgU+eFViW+XnHcUKeFgRhQDzO+c3PPsP9h+dZXt2g3WlOpJeaa9dXWZzqMD83bSRxrgINt5fXcB2bWuQaOZMSRjrme1gW+IELVWUCJKQBQVdak+cmyrosCqQyaZfNVoNDC1Ps7uzxzEsXuH77DotzXcrSxM4Ly6IsCqJ6iLAsDuyfwwtcyiKjmBS2tmsKYukoPM817CidmvjxSuCGHq7josuKJM6wlUk7PP3KRRZmp5G2Yu1Oj6+8+DInjy6RZRlSKooiw1Y2P/25p/jwJ95FpxEiLZeiKKAqCAIPSyqyLDcQ62REMh7zI//kD/jQkQqSlKheo6g0eVZiO4q9gfFEbvd2oSwZDGMajZA8z7AkbG8k3Li5QSUyVlf6XL+9woMPHEVIibJtVu9s4EqbXCfMz7WwHQer0mhdYAlTXPqBwx8+9iKnji9w+cYdbt7e4MFTS5w+ex1HWZw6eYhLV5fpdOpQau70esxMtzlz7gqDQY9uq8HZ87fY3hnxzrcfwgsiqnzA9uYmQaCRVodCF1TaIs0N09F3Q5RtUeQZYa1FdddBJ4TZQIHd3QEffWSOn/yFz/J9H/lPcFyP//zjP8Z/+Qs/x99+3/tMCAoCy9ITP4Lha2ZpjjuRFiZxaphkWTYp5CzyojDJgNKiyIt7h+OyLLh1c52LN25z6vgRAI4eXaLeqFGhqYAD++eN3Ml3Obi4gLINRsFzPIQUJGlMFNbucQ2ZqH3yvMDzPA7tnzedcYtJKq6RzTSbDSOVsa0JA64gz41ncO3OFpYwKbL9fh9dVAz6I66trNJumtfmuq6Rf07+vmSckOcFaZ4a2XAl2Nsd8uXnzjHTbiKsitrEI5ulOZZlJIHxOJ40SUqUspHSxvV8bMfl4tXrtBoR9XqN7e1NDEdeYyJzLARyUpTaxsdmmQJFOQovCDh39jVmp6dIYwMLV9LGVi5lWVGUOaHj8unTZ7l1e4W/eup+RuOEMs/RZYWwJOPRGMsWzM3tY3HfPk6/9CqvXr9O248IIh9p2Yz6A/zAxVI2pS6JxwkCC9txeNvJ4+R5juvaNBp1wnqd5ZVlZrstrt28zWtXVjl8wIQ3FUWBY5vodT/wcCZNNKkM4kJNmJS7O30aQUCrHrHX36Njlbx9fooiL5DCJLEmSYrruWRpSZJmE3SDkR/evSbvJvrq6mtpdpaUaG2kcZYUDPsD07CTim9U3DW+87u+6S329Xt7mZdMu7Ov/+pbfl9VVYzH40kiqkmO1emAeG+DZy49y/q24KHD78YPamxsraMrwFJUSKQTMhrEpiiUCturs769hxe0sJSDcnxKLbEd04Ao9IQvmCZ0u1OICbIHISiLknZnipnpaZZv36JRr6HLgiwt6Q93mepOk+c53e6UST5Fk+U5UdTEsiSXLl8kjGpMdTrkWcatW1dI04xmq01Rlli2JIwa+J6HrjDcRKnY6vWIwjrj8Yh6rc7axh1G4yGWFKRZhuN6oKsJxicy3rWsZOXOMgLY2t7EqgT1Rp0kHlLqgsoS7O3toIBaXREFNdrdLkFo43s+CNOccl2XosgJo5qZwFXlvVCuiupeYqPRQ5cgLbLCTIyFnhz2qwohzBlBVFBW2iQKT65DIQRJWlGVFVHogKVQwrBXkYJ6s8XP/Mo/46nzX+Y9+x/hhz7wcd53+B2UaYyuKpzApyorw+vNK4rMoECyMsV1ffwwpCgLRoOYxf2LXLtxCaE1o1FGvdGl0BrP9Xn4ne8jCmo4ns+ifYDffPq3+NijHyFwKnZ3tulMzdLvrXHtymUeefgBzp/+ItHsDM2Z/Rw++X4aU4c4ePwkWVlhK/U1uSJM2KZ/zKq+Xi75VvfOn+f6hs/7JhObb6MQ/j+8vhXF3Zt1Fe72D19/fd2d8H0rLvTXv4b3XzlHLQjestMBkFcaz7VBl+RZTr1RNz4WNHu7u7jKBWk+0KSlcG1FlqbYjsXjT73KkYPzVJRUuUSLhGa9xmA3phaFJg2uKtlc3yLPC+qNhpFaAqPRiKqC3/3C85SjnNXtHvMLU5x99Qo7W33e+45T7Jtukydj8mxMENiA8QZpwG34ZKP4XtR6WA+ppECWJl3x6MF9jNOUr5y9xqmlOXq9XVa2esy2Wxw5ssT8wiyOJSjLgsHeCOW4XLpwkyov6E41QVk4tsIPPeZmO+Sp5sr1dR46tUSn3aIszAe94/gkSYrjC9CS3Y2UmzdWeOTB+7BsSb1RwwmMZ0Aqm1cvLdMMajz7whUOH5piNB6bUI96SBpnzMxN4wUBtmWRJzHDwS5RFLK7O+LpsxeYn+3gOg7j0RBhYaYPhTGml2VlAl6qkrI0P5Mjh+Y4sDBFkqa0W21EBfF4YA5nuqDMi7uCeqTjUZaC9TvbBIFPmRcUaUYSxzi2hXRsHMfHcmzyYcZTL77C/OwUWOBNJKmL+2dMWIyUXL26iqZifraLH7gUeU42HPJffPU8//KnPkwtDBCVYDjcI45Trt1YpdOqk+UxjuMisPm533ma33j6Mv/Xf/duPFvy/JmL7N83xekXLpPlJTdurHN4aR+DQcLKSo/5xS46E5jsVbh5bZtaw6bV9Vg6MMdU2wXhcO3KVeqNCNu26TYC2jN19s1MkSU5KIm07pq8FY7j4DoOR+9bwPM9ZqbaHDywb3LwSVic74LW1GoRQVij3o5QFoS+S7vhM7s4g5CK6XaTC1fu8OADh0Ha2K7H1FSDcaIJ6xUCj7JKaDamSeMCS2iGwxLfEwwGG6TJAGWbmG9r4gkzaZcBv/bkCj/2iY8zHg/Y3l3lR/+zH0dduYrG+MKo5ISvJVGOYzqweuKDdSSDwQjbcaEyLD2BnET1WwipUZNDtKgqut02BxdnqXRpElDLEqHNxJ2JAqC3vk0QBSbUpdJmGigVX/rKc7iWohbVWFleo9EIKPMMUVVIBFWp8UIP17ERlUYJRZHm3F5eJQx9Ll25wrNnzvHy5avUfY9Gq8nmxjZfevYMa7d7LCxMEwQef/j4Mxw5cIg7WxvMTk/jui7KsbEdU9xU2kTBn3vtMu1GCzn5pL5w6RpVJVhanGbf/Bx5Vk7i5S2Ua0OZIkWFZSmqogRdcf3mMrbt4PkBV6/c4vlXrlILazx77hxN3yewjULCslyoNEkywvE8LOlSCeNFZeIZ7rRbjOMRriuhstGiwHZ8igx+9/e+yMLcNP/y6af4lV/+RX79X/8ix7rTBL6DrjRZmuE4DlEYUOmSokqYmoo4sXQMvx7gBD55kVGVOXu7eyYNsTDIlFo9xPNMM2E8HuHYHptbmzSDOtdWljlx8iC+7/Dud5zgi48/g21VzMx2zEGuEiaF0ZJcvHgZqzL+Kl2UWALieMzc3BRKGUn8L126yPsaDZI4M02OyiA+iiLly09e4PrKBu16gOua69vIkS3KomTtzhaNRoNKlGSpKSDFhPEGMBgMCBsNhJQTb+gfLex+4cXXeP8P/8C9P78RWP5m0HJzqP/6fVQLeOzzX+Jg+/DXHveG77v73Gbj0gyGAzyvjhIFSX+LnbUr+DZc3b7OrfUBDx9+iLy0kSpid5DTHxQU2kULH9eLkE6I47UpKsX03AKeF5CWOb4fkaUpSZzQ7Uyx199jHMc0Wg12tweMxzFJnjA1M4dQNqIsQZvk2UoU1KKm8bdKi/7eHr3tHqPhiDCM8Bwf3wu4fv0Ke7s9jh45juvXiNOEPE/ozHRo1LtUWtLr9fB9h/72rmlCTbxMlRAEvs/u3jaVqHA9l1q9ThTWWd/YnIQhDYn8GuN4xPrGGkraLC8vMz09RRpnbN7ZYGNtlZvnX+HAkXnSYkRFyag/Imp67J+bN76zQFFWFpIJT67SFNo0+sxbYdBRuoTBKDN7m8jRuUVSJTjKNd+nzTRYOraR/CqJxvhnNeBjUekcUUKlCyzlU49cotAm0xVpUXHr4ib/4iufQrir/PJjX+C+zn7+7if+Dg8cfSfLN28j7YAgcojHQ1xMsVjoiirvYWmP6zdvsnjgADqXiDLFUz5pVuIGHvPzC+zbt0Sr2eTgwUMoaRN6daa6U5RFQV4UhI2Q48Fxjn1gCU2G7yteOf082yuvMBXZDHcusjeIWbjv+xHONJ25g6ggRCNREzam+XwSE9/wN/bTiUnD7huFoPxxS9zde/80640jt9dP6ay3Dmd500CV1z3tt4u7v4DrWzK5e5P1ZlLP/xjyzEd/8GN88tiBt/z6vcldZSRAN2+s4Dq2CdqwjBfA80x8dp7lbG3vsr25g1IWjUaNvf6Qo0uL1GoheZExHCQoW7C2scMrV25zaP8sdzlqrUYNqLh2Y5WpTo08S81NVMLKeo9HHjrB2maPWuixtDBLt1lD2pZh0AjBcJRQFBWFLskLE6EsUDhKUeQlnu9TlTAcjInCEMsSDAcDOu0GTU/iuY4J+QCWFvfh+Ra2FFAVDAcDarUAaTu4tuLi9dt4tplWCWlRVqZr6QUeke8w1W0jhLjXuY/jEWHkU6SglM1wPGCz3+fwfYtIW+K6NrooqcoSrTX756fxXZeVtQ0W5jt4gYcQkKUpw9GIoiwIAgdhVSRxTFiPiOOMei1kfqpNMo5xbB8pJ6b6oqQsIE0ypDShDMq2obrbRGDSVbeNfG1yNbq+mWLkeYHnOyYxUxdYWJy5cIWNrR5LB/YhbRvXNR98lTZSsiQ20qfpdhM/9NF5QZpmBmSujfwvSzKC0OX4fYs4rmJ7exfXdvnF85f5yR97mDAKyUuNtO0JDN5lfn6WNB7h+hG6gk999qs8eWmHf/qxBWzXBl2xtH+ejY0dxknB2uYuD5xYZHllnYXFWYLAxbUlaZyRphlr2z0W982zs9sHIIpstns7NFsd7tzZ4PDRA9xZ2yTyTWDDmZcu0WpGDAdDsAqarRpbm3u0WnWeffEi+/dPs7a6iePYbG7tsLq6xcJch+dfuoLnOKaTa4ECqCqTzro3Iqj52Mphfa2H79nMzLYoshhKi9XVbRM2JDJs5ZNlKULYRPUaGo3rOaRpTC2KqEpwvIAsTYy3KEl54eoGX3h5C1fBX/qujzAYxgRBHde1ePR/+kc8euQ+hqMRUtmTw18KFRO2nERYRk7jB57xhkkHhDWZvkwmtZagKEzkve3YpGmK7/sTcHRFHMeMRn20NogOtGZ9bdPIeicBLLrUxElCmsVEgUetFqKUvPccIDjz8nmiwEzAhGUKhuFgyLXrt9jZG9Co1bhxa5W3HT9GJAMOHlzit37n87z7HaeYbbc4efIwfuCQJmMOH1ggCH1Cz+bZsy9xYG4WrUvDnnQC8xliwcx0lyI3eJU8zxmOY/bNTNGdaprQECWpKm0mLpVpSqVpjh9GKNtBWJJmq4njueiqotuuc/HGTR559zuY73TZ3d0h8hVS2VjSFJdVqXHDOllu5Fyi0mgN0jLXrud7KGVTpAN6vXWCICCOE2ZmmvR3B+TpiIc+8hH+yad/lb968gRJau5r3w/Js5LeTh8/iCi1xvN8NtZ2aU/VyTIzHRPaIo1zbNelLCqSOKHQBb5rPHppmpDFOXNzM6T5kJPH7qMsBGEYUVUlh/fvJwh9dvf2CCMDPl9eXqVWqxH6AaPhmEazybUbyyghaTabbG1s88VnnuPGygo/8ra34ZZDPvv8S7x2eYX7DiygSzOK3h0O+I73PoDr2whRgcBMorKCqqp47LmzHF2Yo8j1vWAVME0tq8zZ3dml2WqAZaYrb7YGyYhjH/7IvT+/kWkHf7RIe7P9uhLwyPvezVO/dZr2dPNNvw9RmSmPNpJcP/CRVslo4xbj3orxZXo13va2kude2ObhE+9hpz+i3ZnB9nzCIML3PATV5H6VNFsthDAyVts20y6lbCyhoBIMBgNqUZ3+sI/nBkSNANdVNJoReRqzu71Jr9fj1q1lms0GvZ1NoqhBkRfoyjR5O60OYRgxThMspYiThKjWwJlghbQoWV6+SRQ28JwIpSyUI9jZ2WaqM4sWgsFwQLPR4OaN6+iiNKy34ZBaWEPcLZLKio2NdRbnF7mztsLG5jq1Ro29vR2arRae6xIonzgdcmv5FTozcxw7dRQsePm5ZY6fWKLd9mjUOri2haMkwqomTd8UqkmgSyXRuaaaqAEMVqng+RcvYHsRnh+yfHuLW7fXmenUAYPiANN0sR0XrTVSmGKRqqKwJP1YExc2a70d6oGZxFvC4b/+5/+A333i86zqVSwhmMkX+PGPfJSHTtyPtCzyMqbZquHXasRFRVEK0iTGQqMkqNIFL0E5FZau00922NndYRgPaXebUGk2NzbMvlAJbKlwHR9hC/zQZ21jjXqjQS2KaHTr/OT/8tO8+4FpimSbZiRoz0zTarbROmP55jqN2aMcPnqEUmsqTLPpzcJT/mTn1j9joMqfc6LhvbPu6ySl9xRu937TKKmMYuR1r/Hbxd1fwPUfq7gri5xqAj+9u95smvfnuT726Mf5pQ+98xs+5u4FrPOCnc0dojAgCALyXKMcxxRfGoq8ZHcSnd1q1mnUI3Z397h+ex1RCsLIp9QZYRjhuIZH9cqVFea6dbP5KOOVcx2bL7/4Kvu6EaNxTBgGVBooShxlvH3rvV10WZKlBgkgxIS7UqsZ+aQt8HwTPVyWFe7E/1LkBUVRsrcz5DNPvsBMvcbTL79KPk6Yn+lQapC2ohb4BFGAUhVJPGY0GOEHHuM4oSzA9z2muy0uXVs2/hrP8J3uJkHWGiHrq9vcXFljbq6LVAKlBPE4ZTTIsG3J9u4O9586ClS8/Opluq0GrudQ5Lkx/RclaZxy/Mgijuews9cn8B2kNADiVrtuOGVaMxyOqLUa5FlhNoQs4/zlazx37jpzUw0E5mcwGqZ87qkzxkNnCdPBd22TSpabQ1GWGUmmF7hIWzIYjqnKysDc45S93T36/T5hGDLXbTI/20VIiRYQj4c4rkeWltxeXmd2dgqECekQVFCC8m3zwYnxOkopCSPPFKlJQhgG/PWnX+Zn/4fvpVarTSY6RlonLAwPsCzJswQpXb587hoPz434oXd0iMIaa+trFLnGdoxHbHW9x/vedYI0SxHCsM0GgyGeYxu5q7SYX5whjUu6U02++ORZFuYazO7rMhyWWFVOp9siqkdQliRJxr59XXRRUq8FWEpw584WN25tMN1tU6/5BIFPFAVsbfZ45cIybz91CCnhyrU1Th47AFQ0mjUqXXL91hqDwZhOp4Ub2GaKnZdsbO2xb1+HZDzkyWcuoguY7jYQVobrBOiqIE0nCWxolK3Y29mjKDRSKcNNs22oNP3+gP/1cyP+7j/8h3zwe78PXQqiWp2ygFKP+dgP/zC/+su/wnuOHMF2HPIs5/TL5+k2Wzi2+XlbykyvpZIUeYm0THKr1hrbs9ETr4ltK5RSkwABE2phir4Cy7KIQsOclBO5me/52K65/vK8wHaMt3FmuksYmkLKtiXj0QjLknzmS1/h4ftPomyJ47rkeYbnuehCM9Xt4jsO3akOB5f24/sBnU6LIsuYn2lj2xZh5JEVBcqG8cj4Rc05rGBxdsZ4VdOMwPc58/JlDh3ab6ZYaKKoxk7PTBoOLC1iOy61yGOvPzTSQSkJowBRVljKNE+kstFUFEUxYb0ZoPdo0Oeht7+NeBxz5foNlub3UVUxJkbDpFEWeYEb1JDSeBrLPEfZingUc/HSNaIwJAg8qiwjy2KCoIayHcJ6RKfV5uGDhwkefpg7t27ygFRIaVJ4i7xkOBpz6846kR9y/eZt2u0Gj3/lDO2WZ1J/swJluxSlZnlllSIr2Ng2jM80jglDD6kkruNz9uVXWVjskCaaOytbBIHPcNCnqioc16bWqFHmJdev38KxXZLYyFVXVtexleRAcLFwAAAgAElEQVSFcxdY3dzivoMHQAiOHTlIKwo5s3GbgzWfdhTi2w7ddoM/fOJFuvWQw4fnKYqcJE1xXIeyLEmTzHgdLcXBfdPs7Q1RSuG57uQQavYKnaVYosL1fRPC9BbJ0X//7LV7AHP4sxV3AK89cZn2dOtNv+/uEMKyzPtU5BnD3Q16q1cQeYLvh6xsbXF9+zKn6t9NvdvCdnyU7aJ1RZoaz+h4NKI/3GOrt4HnmYl4nKYMh2PW1teQlo3juIxGI3RlPNuBH+AHAQi4fPUilAaBYlXgBRHj0ZjFxUXidIRr+1RVhVIKW5m4/7IsqTVblLrEVjbKttncWMe2HQqdUo+aXL1yjShskOYxcTLE832GgxjlOszMzDAcDaiHdXRZsjvYo9PuYts2w9GQoigI/JB6rWHCmzyPTqeL7/mmEPb8yRklZZz0qTWb1Gtd7ty5xSge098e0+nadNo1Vm/fxrVNc9P44wqELifS4NIEwdmKCmGYspi9pzO7j1YrxA8lgR/ihzV8x0g5hTCPUUqRF6WZ+lWl+RysLHI0g/6Y28vL/P1f/lkub11hfmGDzL7OS1fGLLkL/MR3/yjf8/D7OHhgyfxbKmEQUFXJKB4hpI9lh5S6YnX5Cp5rU+kcx/YQsqIoSwajhChqEoV1XM/F8Rw217eY7c6h0UhLMRgMsIRFEEWMxmO63Sl0UTLY65MVGQ8vvYMDx0uS0Q6L89PghAR+xFef/goHD9/PgWPvnDBDjbf6ze6Jt7oP3uRRb/2VP+b7hWXOD9+KVM2q1PcYk19Lize/KWVTlDlK2l/H0vt2cfcXcN0t7u4WWt+qYsuy5NcVdvDNB7e8/rW+1Ws+e/osPxpvoiZa8NevNzO/poMRG1s9Ou0meVFi+x66KMmSnN7mHnmW88VnX+PBE0uUZc7la7dY2DeDJSzOnL/JdKfO7mCPjY1davWIx546x6N/5RGkFPihx9ZGz/CexgknjyxhSQh8I/+7eXudhfkZpDRxxGcv3eT+o/uZMHMJo5BKM/FVQF4USKXI8wI/8Mlzkwa4u9PH9xxcpTh5eD+lLpluNmg3G9SbDWxb8TtfeJrjh/YTj1N2d8y0pNFuUWHhOja2bZMkKcqxmel0+OJXznL4wCy9rT3W17bwPRspBTu9AWu9HeZnOwAmqj/XBJOiqdGoITB+noV900bLL00oBBYIKQkDcyiRypp4V0wscr0eMBiOzSTHtvFdl431HkpZ+L7D5eu3efht93Ps0D7jXWk3iEcpL756lQcOLxowMposMwl9V67dQgiB5zgoJZGOMvDnJMN3HZRlkSY52709rq2uc3hxAUtJ8rLE813yosBxbSMhrhSu41GvhUCJ1ibwodIGHj8cxyjHRmiTDFgWOSDIsoyX1u6wut/j73zkwXvR9UWeUekCz3OohKQsKpS0WO/t8JmvPM6HH5pClDa3V3d46vmLTE35TE/PsLXZ56svXOLE0Tl29/pASbddA2EM8L3eLmHgsLG1jed5bPf2UFLQqnlIJfB8jzwXzExF6EmohYXGCwMDbHYkRZ6B9HGUQ7sRsbndZ2q6jW1Lrly+xflLt/nL73uAoiyI45RDB+a4tbpJFCqu37rN7MwUzVaNMPT5wpNnWVhoYwFKOqxv9Ni3r0s8GJIX8ODbj1PqijCosdXbodWuU+aQJglSljheZJofoqIsC1xXsnZngzDw+Fu/eIvf/NX/E7cW4XkBtmvkQ37gsb11h8cfe5Z//u9+jx89cf+9omT/vjmUZRoun3n8KU7cN5GUVRaWZXATlpRUlZly+YFvfBeVZjAYmQIp8NCV8bi6noslwLJtiqycTG41fuShlDIFn7SwhDByQ8ehKs3UoSwLXM/BshTnzl/h+NFD2I4JG7GkQAhI04zdnT2abRPMsLGxSVQL/2/23jvW1uw87/ut9rXdy6n3nHPr3DKFTSwi1RXLTZYoUqJISlZkK3JsJLaRxIgNww7gIHGcyIHl2IoDI3ZgIzZkObICKRJEkZJIiqKGw+lzZ26Z2+vpbdevrpU/1r6Xw+HMcCgXmAAXcHDL2ft8++zyfet93+f5PQiZY105k5I5yiojriWkk4nHuGcpZVkQRAFRHPk8rbLEWkea5iRxSBAZfw5xkjjxwBqf72UQ0iKdl6s2mnWUgTzNkUpz8/Y9XnjpIqvL8+AsxkjKMgObk6c5v/KZz3FiZcVHt1Qlknw2wXR+KmoMo8MRaZpz4fIVFhfmKQvfkJmfn/NB6dYSmNh/Pgofo+CEYuP+Os12k3/yB1/kL/2X/ym/8Uv/mlNzcwgpiMIYgeTVWzdpxnWKskBIy+NnTxHFIUr6SAuL5Oq129xd3+LYyhH6vS5KeqVG5SpAoHXI8pF5ijwjjBPK0vIbn/595rtt5pfnEMp3wcu8YG6uS5bldHsdppMJ69vbXL1xj+987zt45+NnKcuCO/fu8YUvv8h73/0Ep5eWeeHOVU4vLjC/0GE0GvPy1TucXJ2n2a49LOR83MqDjbaYvY8kQehlqMaYmQVoFvhRldQaNVDG+4Te5Dr6q7c2+PHXxiC8ASRC8npYhOXBlfvhZnF2gL/58//dQ6jK1xZ3Ygb8GpNPDpkcbrN37yr1JPGSTV3j733qX3Jvz/ED3/5HuXXnNktLR8jzjKIscA7youDI8iq97jzahDgB+wf7s6IqJYkbSKkwYUijXufOnZssLx156L2zhQOryHNHnpV0e/PcX7/NqVNnmU4n1Bs1cIq9/T2Ukty+c4OFhaUZ8dR/noPAP9dR7ItF4RzGBPTn5qknNbRROPx5LInqSCUpy5LJdIwQijCKqdXq3gctJMYEjIZj8jxnNByxubWOsyWNRpM7924zGo24c/cmRVnQ7sSA5drViwQmYePuDq1OncUjHfqdGIWl2+49nNo92BsZ4WFplWfuUjlHYIxvKAqBUpqQCuUqbFFgBNRNgFDu4WsuhWDj/oBmu8bnPvcHlKOKX/i9X+I3n3uSZ64+x8/8mObUIxEvXBshpeBH3vvT1PUjfN+7PsAH3/0u6rUHDTHBzvYeRjXQWmCkRDlwTpBllmajTZC0qNVrKG1I8wGu0IRao4OCwe6E9bs36Hb6SBVSj+tcvPAyrW6bosjZP9ih2+mQzXJL4zjGSKiyEaPJHooJf/0f/EM++gOnafQXuHHtHi889zLtuT5PfOCPoKMa1QwOYwVfI03+RtRmr5VlvhUE5Q2XexsFpHBvCXYRwmfcOee8xPN1v8Nrf/7D//P/+po99beKu2/C9bC48+7aB3yC/6jXG73lX1/c/aO/8lf5T44f4bUXoTdbzjnG+wPqSYgJPZJYaIO0lnSU8tkvv0w90pQFHFtbIs0nNGsJtnIktYTzF+/y+KNHCULBqzfWGY9TytKyvNDDhAqlJdPJlCQKeeXKTW5v7HB87Qj7+2Oy3HrsuvSylS+/dJU//t3vJc8yokhTq9XJs5w0K2b4doOr4Pa9TXrdFs5VFEWGkl6KUeaFP3FXlUc5pzmffeYCj5xYY2d7l3ecPk4URfzKbz/Je84eZzTJCRMvrRoOJ+TTjKRRQ2rF5Vdvc7A35tjqHLao+PzTF4mNYGmhS7vXZrHfwRiDs1BM4dad+zRa3sAvCLGTlEtXbzE/3wUB+wcDknoNoaSfygnBeDzFUTIYjgiDACUVk9GYeqOBVJosLalKR6jFLN7B5/0EUY0sHxIGCiUEWgUszndoNmpMphPCyG/QA62pJRG1JPbFcBwymkxmAcQ+s2oySUmShO2dAc9fucs7Hj2N0JIwNDjn5SH5dEKWWaTw8rosmxJGkjKz3odpJHmREyaR3+wVFVpJ9vcPMCrhqa1tNhZC/uQHzgK+Exoag61ybFWilSQvveb99168wu88/TIf/44u02FKNo158ZU7fOd3PMLCUp+qkhwejDl6pEevE1Nr1LxJPokorS8UTGgo8oxuu8mlS3dYWZ0jm3oYz8bmId1eh6hWJ5uOPHkOoCoRWpEWGZYKJeCl81ssLs6TpSnXb2+yMNdhcHjI0lKf1aUeeZYzHEwIA8OVG5ucPr1GLTEszDVxJgTpp7r9TuI31sowGU2Z67exriIdFaweX0BFEhOEPPvMLRaW6qRZihEKoxzZdIjQLeLAkE6HlGWKVp4qabTihdspYa3FytppoijGCQuyYjjaZ231JPOdo3RqPf7KL/4zPvnEEz5rqrTcvX2XWhJz9pFHHhDBZoWdIE0nKOM792EYzbxOJc464igiMAapZplQQcBkPCEIDdJECORMwmQYZWOEFVhbkeW5n94ZTz+0lUNLL8e0woKVnDq65s9x0pHNMiTLosQoT4EMY01e5A9pldJoEIrP/M4zvHrtDo+dPYN1BVhIJ5lvaCiFjkIs7iG58fefeYF3P3aGqvJ5f3pW7Pg9gCPNcg85qgqMCX0EiXOg3Oy4hiiIsNOSej0gyzKMBiUq0vEILQPG05xTJ47TaNZpNGMO9zYRwvn8P6UpS0sjDhBK0+/3UEaT5w+aOtpvjKsSlEbqgs2NTWqNGCu9r1NI+Lnf/BQ//Ke+i//+n/8yP7i6QhCF4ASj0YT5bpOFuXnqtYi5+RY4i5QBVVn4IrKW0JvrceHCVY6tHeHTX3iSs48cwzn1MDKhqhwosLkACXE9ZKHbpt3qESQ+I1POlAhaK4I4RClBOp1yZHGByWRKt9um1a5jbUkYarr1Nq1mk7JM6aRTP2FTFWFoePzkKtZZ7m1s02zUMTrkcH9IGIVUtnpY4D34sq6cNbMkAu/zcVKiowDrfGPgza5+v3xz/asmd28oP3uLK+3ri7tfeg0x82tlmf4PoyXleB+Rj8j2dyCsEbXnGaaKjfF9/vR7f4bt/XWOHzuFcyWtVoPQhP6cHsYz20DA+vo6nW6HXncOpQyVy6nVGty4dR1jDLsHOyRxTL3u7RIm0OxsbbK3v0O92cQkEVmVUU8ShFM89/yTNJstxqMJL51/hoXFZbTWBCYgSRIGgwPGoyECD+No93sUecHdG3cJo5CoFjBNRxRlhXTaN2Ol8PmzwsNUpDHoMGT9/m3m5+Ypq5KyKhAYBJJWq4UAev0eRgXs7uzR68yxunKM0XjIeDzmxvXrKClYWelRqxvqjQiKgCzdp9mso2axKQ47o9mWFBRUWKww3Lh2izyT1GszlcwDaZ4ucUKgdYSTFqe9lUEpT8OUSvEPf/v/Yn5pHdGo+NhPapZXT/J//8vf5tTJo3z6C1usBB/kj7332/nQufdhZ3JGZSXGiofyU6kFSSNBhYBwSFshcFQUTMdTpBKEcZswirlz7w5FmhMlAuEg1g3iekW3UWdnbxsdJmxt3+bM2RNYp2ZU8oB6PaZIR1SiQOmKg4N7RLqklkRoSn7/0tP84Pee5ZUb+4w29zh76lEef//7KJMe0nqw1QPP6evfy9/IJE38+055EzOY0mubL6+7iZRqBsqRXwUZfNMfKb5C2/xWcfdNvlxV/S3/OfQf8n9fEsm39VjeIkLhtdO6N1qvneJ95MMf4+e/613+/2cG2K86zuyN/qAzaUvLxuYWrWaLLPdyA60cVelQgeLU2gL1pMbR5TmyNCU05qG8QQeauW6MwCGs5Mh8j8oWpFnJyso80/GQUAviKKAqMjrNOggYjEZ02g1wcGR5ntAYtFCsLrWpqsxv1HPhoRbagzlml2+MBkGB1oJ0kmLQTMcTjFEgLU46nnvlBovzPcwMwb/YbdHqNDChR3+fWlukoqTVbqCloaoscS0iikMfKeAs3W6TE0cXwQiCMOTK9XU+9L5zHqSFwxjJeDJCBZoXXr7AmZNrKOnlcnk+Bh2jnM96euXSTVaWlymqlCAwnmqn/CaummbUa/WHpuU4qVGVXpI3HA6o1X0grTEhUmpqtRhEgdKRJx/O/FLIiKAW4ShIajWMiRiODxAKEA4d+Mnx4XBCo9Egn5QMDidEUczOxj6rx5ZY6TUxVKTDsccfVxVCSpz1/ixbQJYVmNBQuoKoFjIcDdFRQKgNWhiqLAdRzjq9AU/eukrwxDLfefYYSVLHSYdSIWYW2i6ERSnBZJLzC7/6NB95X4v3nW6xs5USRnXur2/zbe86zngwwRZjJuMRURzQ6bbJS0hqGmM0JggYDYfUagHOhQyGY+KkxuBgCqqk3W7MJkGCjfu79Dotnn/pOuPBiGuv3sEWJRJBnIQYFQGSqjqk04l5+eIdLl/f4T3vOoGzlvFgikJQFCULSz0u37zJ/Z19FvoL1Joxuc3QUmOLHC010/EeQaBRUmOimM2dDfqdHtev3ZkVrD7P76UXb/Do2RPcX98kqTlAIXWMrcDKgjSXKDObvOQpWlheuDXlk//Ff4NQBqkrsmyCkgFaNiiyjL1bT/PEuRP81M/+5wSvXPCvJZqLl27y5NMXeMcTJ9jd2aVeqyFw7O3se6kb4KzPn5PCyzW1MZ6iWVQoPSM8auXjLYSiyA8pywqlQ5CSqB74GBUlOTwY8Zu/92XOnDhOEARYV1KUBVGS4CqBMh7Hb4wnY7q8QBtDGCfYwnK4ezj7jEAQ6JnMTeDKiqPL816OZQyR8ROfm3fvcvH6LbqtDmHkJ8/OOaIooBaF2KzARCFBHJCX/vUqqxwpHIgKoxz5uMDiiGaU2oOtAdNpSqtep8hyjqwtIALhn28VoRON0D5wfmVhHilgODgkzzO2t3doBCHaligTUQkPJ6pKQVKvg1REJvaNRnzTRIoAqzNEFqCClOFwh7ru4YTDOsf/e+kyn/j4x/itT3+OHzp1EiEVw8NDjJaEYYyJvAywqirKspgBTzRxnDAZHhKFkrlug16/zXy3NcvZHJDEEVlaYK3DKIOKBUZFjIcDrM0p05w89UHOtiwp8xJb+nOaNoYoqiMNPP3UJU4/soZQILSkQtCsJTz/0gWe2l7nsYU2TpZI5z9LUgkCHdKsRx4GU5SADzGXwoETCKGonEVoQWACL1dXCjnD6ed5iVYe2CXdG1d3Tgg+vTvkRz76w1+1kf2a2/GAMyV8EffgeiqEbxYAatbpf/XyNc4unn3Da7QVztsP8hFXLvwe+TRFxhEHw4ze3Ao//+u/QJYVfOjxDzK/uEyc+AZjVhTcvnGdhSPHCKI6ymjGRUWr0UQ5ixOKYjzk3u1bbG4d0KwZ7t++yngoWFo+QpoPMIFFu5hbt25TrzXZH+xz8eUvobGMpxVXX71Eo9Hg4uUXGA4txhlu3L6GkBFVkfHsM5/l5MlzvPrqZdrNBZrtNlJHTNOUpZUlwsBQphkIy3AwYnt7m363h60K4kYDYwIq6yWlUoCyFhME3Lx5HVDEtYAw8JE5SdJgb7hLnqVsb29zONrn8uVX2Nkac3djnVa7T6Arjh9ZoBFE5OMh/bkGjXod4aQnYNpZi965WQHgZr45xcFgynA0Yr7TJlSawnlvsK38ZNjaAiW83NJVD3II/V7pO05/G/3kUdYvThiPz7F9rcGJhWV+7Dt+iA899h6SupfQSiVm7z3fOPesIYd1lqosMEojnKOyFQhJ5Xwj1GYFrqqQaMoSEJrxZERgNDqQ2DLHFRodaUwAxWSPemgop2NsOiUb7UOeUkxHFLKiHgWk4wEBgkCF5MKQ1Ht84ZWnOHvqJDYrOP0dH2X17DtBN1HuK8WYcP7xS8dX7R+/IZnkW9Ay3+4qrf9sv9UE0NoHr/PrpuzwFWnlawq7N4pEePAl5ddGKMC3irtvymVnk7v/GIo7Jb4Smvg18JW3+TN+5MMf419+/3vfxi39CUhYy/q9TfrdFjoIvI6+9FjgqvChwQeHAwaHYy5cucv125soIZjrd7h1e50vnX+Vx08foyor9g4G9Htt7qxvM5xkHBwMOH50gfFkymQG2tg7HHPixBoSycWrdzi2tszwcOShC1HI/c1t7mzuMtfrEIQhB4cHJHHoM7AkbGxsYStHvV7DaMOzF67SbzY5f/WWR/OHs/DyWkISRxRFyZlTawwGQxrt+qy7K4jjCFc6JmNPlrNUaC2ZTiYzqY9GSf8cKaUYHI44d2p1hlgfoqTi3t1NerN4BQHUawn/5tN/4D1vShBGAc1mQpJEzPVaDIcjpsMULFTlLKBXCqQK+De/+UXe/fgjOFdhK7h69Q6HByO6nSY6MERhyN7uIYcHQ2r1hPF4jBSKMDIUeUkQGC5dvgtVRaNZI5/muArCMPDdbCcITEiel7TadYaHQ+7d26LTqhGGPmB4Mp3Q7bT4zJPPIJ2g1Wly/fZ9Fhb6lFkJ0hKEIek0J655b4YUkjCK2d8bUGSln04mkT/ZSsnPfOkCf/lnv5NjC32ss34SU+Yo58jT1PsfhEKbiL/2f/42f/3Dy6STMUEgqCU1iqJgYaHD7bsbFFXBwuIiZQnXb2xx89YGWgiCyCOuszQjML6YD2Zh7loZnjt/Cykc7WaDNC3otNpsbh3SbMTUkpB+r8XCnMd7O1ESxhprLXme0u/2eP6Fq9SShCMLHeb6HS5dvkm7VUNqSV6WPHv+Gu9/x6Oce2R1lhNX4NyEMKgxHB4SBgZEiVT+8Qih6febpOOcra1d+vMdpPJT1COLXe5v7tJKFNpO0VGNaWbRakJZVTSTDlhBns2md8CHzrX5ib/2z/jxH/lTCFdSpgV7O7u06i2oDtDtLnF7EcOEj/3Pf5cfPrmG1LC6tsCZU0cAQbPp/Y+j4Zit7R0uXLnBsaMrmDAAqZimuQcGzSRaQRhQFQVBFDIe+Zw0i0WZBG0UQlRYW6Ixs8gAg60sp9ZWqNUTwGECjVaa6SQlCBV5nmNtRZplWGcJQ4PUknQ6nRVmli8+/TyrR5ZQ0ku0wXmEv3D05tr+uM6iZ76blaUFavUYh2+WGKMpy3KWuylJGg0f6h2E2NLNppQC5/ymwaEIksRvwirH//Mbv8vpo2tcv3WLxaU5hBJcuXqDz3/5eco0Iww0xoRsb+5ggpAiL/nU57+EKx1379/n+NoyZTXGKf2aqYAmLyuCKEQCaZqiA02R+0mpD0j3xF7rFEHQAAm2cvzY2XP8/G99lr/zt/8WFz79Wyy02rOgdEe90SadpkynKUmt5icZ1k80RqMRjWadaZoSx3UvvTbGy1ulJC9KTBgShpoinZJORwinZrEUhsFwSrtTJ4w0RZkRxyHXb930JOUgYDpMUUpx6tgRolpEnucz6qVGIgiN4dLLlxmonGPtFkob9GySkk5zPv3k85xaPUI2LQnDkMPDkZ/IzybGVeUbQkp5sqOXL3sJXTEdoLXyft4321QKwf93b4ePfPSH3/j7X3PzN78Cy9nV+bu/50P8pb/5X/Pd7/yer7mNFQLhKu5cep6qyNnd3yes9VhYOsFgNOEH3v9H+P53/wBS+wJ1MDxgND4kSSK6rQ4Ii3KOu7dvoESBFhWXLr1AZi3ZdECWjRiMxxxZnKder3F3/T6T8Qa1OGJ74z4vnX+W6eA+xki21q/x6Nl3YvOUeqKYHq5z9OgqC/0u+7t36LTrNFshu5s36bbb9Lpd9oeHbG9tcnAwZH9/jxu3LtHr9IjCiNIKCgdJFCOVodPu8vxLzxElCbWkTlGUlEVFYEIeRAiEUUIU1ZAyIJuUhHGA0JLhYMzW1iajwx3y9JBE9hjuHfD+D5zgzHKHxU6Nva3rdPpzBLEgSmI2NtaJgphJOp5Nxg3WWp9RKxVGefluUYzp9Rr0eg2ktJRljpOAc0Rx8nAPaB2+MTfLBAXfTHPOQ1jmF/rUawGNRsCJ1WPowCGkRUnn8ybxv+ODWITKVr7Ym02dH8DG9MzT+MCukyQReweb6DBhMJ4yGI9YXTlHpzuHlAHj6QAnC5wNqNfahEkDZxQEirjeIK5HSCOxFLSjmCzLqNVbBM0+qtYln4yYphnvPv4eZD/h+/74h6l1eg8Js2/x5n9bn4M3uOMf8n5fWXIm7Xyr6dwDCefrj/Gme/m32uSLN7ZLfau4+yZcD4q7B5X9W/nY/jDrjfxxb/b1FTX/197/6y0LfPZ3PsdfjgqQr/uwvm4cba0/iqtK9rZ2CZQ/wQihsFagtSTLcsLQd6sPByMCbZhOclYXu3Q6TXb3DtBGcXd3n7XFvpfNVBUmMLPpmuLxc8fIy4Jao4ZzECU1oiikKCpqsTf11xsRZVUSxZ6Mp5TiSy9fYWW+S2lLkjhgPJoQRYH3tShJs91mOs545pWrfPDdj1FZi60cL12/TSOKiKMYJQRhGHgapPZ5bUWW+7ys2fORxDW01n5iYPzGp8pzTOBlnYODEa6yaCX9RE8KgkgjlCSJYi6/eptGHKMDTbfbYjJJeee5E1hnyfIcoyWj0ZggDNja3qMWRzjraLYaaC29VC3N0Cbi2PI8O1t7FFnJ4eGIvYMRd7f3OHNyjTzPKPOKZquBCWZewyj2/jYtMEYzHaf0ez1u3lnHVhWvXL3Fcr+LiSKkUiipkUrjHExHY2q1mHbb6/739w+Iotj/jkKwOtej2aoTJRHdbpt0miGdQBrvT6g36ygleer5S9y4s87ywhz1ekIUBmxs7NLptBAS/swfvMIv/tU/wWgw4O69dZQSNBt1D3uZTojimMrCT/69z/BrX7rBL/zZ42glmMxiIYQKGI3HxHFAkoQsLfUZDAru3tvl2OoCtSik326we3BIvVajKi15ntFpt7AOnBVsbe/zjidO8dLL1zi2usj1mxtEUUCzkRDHERcv3+bu+i5rK0uYMODzT77EIyeXMSZEa0WWWvrdFlVV0mzE5FnOaDwBKejNtQmjgF67QTrdRMiSIlPEURtRBUjlUNr7xZTyMlcp/VRKULJxf4/l5Z6nmxqDkopf+9TTnD29SrMWUmUp0hiSeo1I1RiPM6ScUpUTtAr9RU960ulPfNc8P/03/gXf98H3EZqEOK4RRRGvvPAFUh0TxE2q0Qaf+OSf5qd+7u/z0UfOYCtHXPMTAmstv/2FJwlNwNqxFY4fW/PZdpWXwpnAg1ccEIRebmqUZjSeEIYBCLJTdxQAACAASURBVDChwRaK8WRIGGnSSUo2LYmSiCLPaXdaZFlKGBrywsMMptMUgfLglDhE4DydEkdhS5SQXrYb+OJxsTeH1obPfOFJ5jsdosiDEnSoyLIJQoDSyhMhwwA1o+GZIPByVOso8oIoDCmdn0prY7ClZTJJfRZnWXmYS+llyJVznkRnAvr1OmVVcX9nm4WFPlIJoiAilJo4CojigFqtQa2WoHXAdJpxdHmZ5cVFtA64dPMq/W6TqiqoxxE4PzXSSmKt96gGYcBknHlyqYIinxAmIYeHA6xzRElAWVRs3PdQjf/1M5/hh37wj/NPf/Ff8765vn8OsWhhuHn7Di9evsKJtVUqC1L5nL+qqjg4GNBqNRFS8xu/+3nOnTkBAqaTnFrdKyykcAwHhzQ7ddRskyyk4MVXrpKEMUlSIwwihJOMhym1WsTBwSG/8TtP8q7HzuFkMSvKAqbjKXmWg3PUmwmx1qw2DaE2TEYpCEdZeh/vI6tH0NKwubnH8xevc39rn+NHF9DGv9eUFJ62rBV5VsyKPEWWplTTIVESI5TAiZnH8Q3WR/72/+DzDl+33sob9OY+HQDHj//4R/iLf+O/4ntmBZ6b5UkqVzI52GHn1iVyqzn7ru/i2q1bLC0epywt126+yuLSGsIpLl++zN1bd1hdXuX61av059pcvvgsoQ4YD0dsb/iIjW53kedefJbB1g3ajSb3794hVILp6IDDwSGLvTkuv/wMURARhQGnzxyj32+xemSJQFa0mglJIFheWCQyEGjL/NwCtVpAqxFxfPUY2IJpesC9u9c4deoco+EORT6lZgzDgz3u3rlNWcDFCxdYXVnjYHBAkiR0u302NtZptzvcunWDqrKMRxOuXnmVuYVFoiBkMBhw5fJFmrU297duE4QB165cIh/vc7C5z6kzSzTqFUdX57HllGGhWN/eYHXlOCEOJwXOKu7cuEORW9LxhDjxzSg3c1s+aNeXZYWRGlGBQSGUAisYjXOcm03alN83KeXBaULKh5t9H/8iqJw/ByphsEVGGAiE9M1AW3nvvZQPCKClb2hK4YnWlQ9Ln07HBGH08HgPzuNlVVKvN9nYWOfGzdtoFdPsJBwejhhNCsBQll5VIKVC6xpB0iGM21RIJpNsVoCGTGxAbqG0oJxg4+4dKieokCytHOP64TqPvfvbMcrNBtFv7lvjG/HKfdVn5c2jEL7ufeVXH/O1A7YHSz58fDy8zWuP9TUSzddILr9Cy/zq473Z+lZx90247FvQMv9dFHnfyNv6jY7zdu//4vPn+df/4B/y/WtLX/e2clb8ZaMxZZYhnSWq1djdOaRer+G7SV7qV1YlZVnSbbfZ3NujtJaF+RZmBvd44uzJh6jgOIz4/ede5tU7Wzx6fBlbVUyz3FP9bIVUvjAZD0dUhWVuvsPu/i5SCaQSTCZj4jBkte+hFfVaiJoF4xZlxTTNUEbPOlI1RsMJ3W6d0WjM4kKPXqtGr98liiOmkylhoHHCgyGUUWilGA5GGPMVEqAQUFUFVeVQOkBYx2icEkUR4+GEfOoR8EGoUUZjcX4zaC1LC/Ocv3SDldV5hBSYwPhXTHi4SFkUKGUAxZPPX6TKSuYWO0S10BMoEZSlJTBeJrt3OGLpyCJQERrNQq9FrR5RlDkSD30QMOv4aeLEb9LsjPJYb9Ro1iO6nSaL3aanPgXhQyJlnqdI7T1UbtZZlFoSxoYiq6g3E/IsxyhD1Iixwp/0tFRcu3GPuX4fHXgctgk0K8tzLPXbBJFBSMjzjHa7jdaKf3D3Gn/np7/TFy1YFuZ7Ph7AeBGTFQKlDJ/4u5/i5390nsfbKYuLPgQ4SmpMpxUwaxSExhelk5yrV+9Qi0OSWkC9UWNr74Bez8vJsiynUY/J8pzxYc7ly/fpd5q8cvkq3/WBxxlPpiwt9fj8l87zyKllXrlwk6NrC5w9c5ynn7vMU89f54nTK3T7bapKkk5SgllRoJRlfX2HweGYc2eP0+m3UEZ5mlsYeJkNMBpXDEYTLl29xdqRecoyIwxi8rxCK4eS3mtljCAOIm7f36Tfa1OVjldfvcX7vu00g8GEae4onMaokslwHylDrJNkxQAhtA/2LXxmXJaVlHnFRz/Y42f+x3/DT/7EJ5mWJaWwLB05QkuV2PGYem8RKxJ+7CM/TPHMlwmiCKR8GHEw3+vS7XvaXzaZcv/eOq1WDWcdehbAq7SedXL9hTFO4ln2k5cyG+l/R1tKdBBiQt+91oFhPB57OIYQBKGZeUAT8rRge3sHLbWfRgcho9GErd09alFMHMdeumQ0Skh2dvdZ6Hep1yOfrycB6TdIEoUSXsCtjZdbB4Ehz3LkjKgbxb7hkU6mZHmGpAJbEtYipumUerNGUZR8/qkvc+PWPU4dX2N3a5eXXrlEqAz3d7f59ve+axZfIoiTiPn5Hv1eGymdfwyBoSr8Y/7sU1/m3JnjtDptFvtHwCqwU1yVg9Ag/cYyDGIqKv8c46WslfVZgyhFYBICHVJmA4Q2tNpN7ty6z+/tbvKRD/8x/vmvfYofWluhrAqUMVR5QV7knDt1giAOZ8HDJWVREoSRL8pxKKM4cXSVPC18UZQ7Xjp/kTwtcECj2cQKR5qWDAeH1Osxx1fX+NTnvsi508extuTu3bt84dnneffjj1GrB6wtzZMkIfmMPOdfB00Ue8JxUeb0+x3+8u8/zZlpxpcvXOHEkQWss8RRyP7+gGcuXGF9+4Bve/QEx9cWCBIf2+IqN8PQWx8CL9UsRNoDOvK0pHJgwhAUbxyFIATpo+8gisI3+NabX3XfsOB7+Dd/oB//+Ee5dXCTg6sptUbkv7N3n/U7rzJJM4L6EUyQUG82aNQbjEb7OFdRr7VRStDv95nr9cBV7O9vERjF3Nwch4cHXLpymcn0gMX5OV6+8Bz1esI7zpym04k5snKMQOXUEkOr0yQrJjz2+GO0W4Z+r0mgE2xZomyJMV7CKJXy8TxVgQ4NOzvb7O7ep9fpYMuSIDLUGw2OLC7iXIZRgny6x9lHTtLvNCjyA+IAFvoNDgYZN65f5Pbtq+R5xqNnHkNpnzc7GAzQSlIWBVk6ZWd7HSkcx9dWyNMhd+5eJYmbBMKyPNfgyLE6h1tDavU6OtC8/PQLNLstyjKl222jFdgqRWtBq9ek2Yro9ppo7af0QRBiZ4XYg8gCqTXSaH9dc9528sILLzKZDJhfWJgpt9xssgZFUQF4cqLFy4GFxAlJaQOCOPZeYScwyvvTyzL3p8ZZ5IVAzLJo/f5Dzgo5rfXMbzh75zgQ2hOGa1FIEhmUKCizym8plMIENYSMiWIf81LkY5QOSKcpVWkJdEBZOawTKAlYH1szGA5JkjqthSVanR4O+Ef/6h/z8U/8qJc6f531ptPvr7O+Uc/d6wu6r3v7N5BPvlVx92ZTv9ff743Wt4q7b8L1lsXdbIzu3B++vPsPVdz9hb/wF/nfv/vdb+u2QvqTrHCOweGQehIhjZcQedmYP7BAUBQFOEdSqzHfbVJVJQvzXaxzxHHI/Y1dmk0vvcjzgm6jxs2NPb7tiVOkaUZci31BNpkyGIxptpqERpFOc8qqpNVOvO8mDEjikHSaEceR93FUBSqYTSjUA7yxIwp9R7zZqLG1u8vigqe0JUmMwyN0v/DMeZIwoNVu4KlKgoPdQ59jVVZEYQDAweEhYRSgdUCVWwYHA7TRjEcT7m/ssr17SBAo8lkOXFGU3idXVUxGGUfXFhFaUJUlk8mUjfUdkiREG0VovAQPqejV62xs73L85BJ5XqC0DwYNgoDpZEyUxLTaLZzw1MYwDAgDg2M2BZSBz3zCUZSW7a19ojjAhApbWZIkBjnLyRuOabZqgEOH/vnLc2+ql1KQ574oAJBaMhlP+MIzFzi1tgxC8MyLl5if66ADPcv0kWiEBx+IGUJaQJZmXoKJ99qkkwn/0/mb7HQsf+5PvQ+lFVmak2dTrLWEUYStnI9lEIqP/9xv8k//7HE2N/d45OQRXr54m063jjEageLXf+s5DgYj1lb6HOyPKApLEipW1xa4v7lHs5FgjCFLM547f41GLabdquFwHOx7SulTz15mc3+XE6vz3Li9TqdV49jqPGEUsrW1z/xch6KsWFrsceP2Fu1GRLfbIAhmlEchODwc0OnUCLUvVNrdNkIym+g4qrzk5q1t5ud6REnM/uEejz92hKoQJPWIPCuQSqOkJc+8DC/NxihhWFpZ8EHYMzRzUkuIopBLr67TbNboNCVaWJySJLUGaTpBihglS6rKnzOU1CRxTCUqPv4dq3z8r/0TPvmTnyAtM+7evoMd7zDfW+Awc0zyKaPBHn/+F/4xHz172vtJEAjpA6SD2ectnUzZ3Nmm22oSBiFFUSC09lNy5yEaWEtR+ogNKb0XLp2MqQoI4xp5lqNCMdsYeTmSMRonYDKekiQxu9v7PPXiKzx6+iS1pEZZlEynU5RUPPXyK8gKGkmC1BLrHEZpGvU6zUYDIfFTO61I84JAByjhp6DOWarKh64r5V/Hq9dv0Ot4kqNUyntKraVeS5iMx6D0Q8iCc465bpeTR1aIawlhGBIqRag0kypjYb4/K8JACB/OjqtmU+caw8GIqvIbxbMnj1G5Em0CwiAiiSKefeFJFvodhAyx+E221l694M3/3n+bTidEUR2HQAqDdAJXpchAo6ShVq/zmzev8yf+xPdz5dVbfG+vhQk0aZphy4r5hbmZtBYQAulNNCjlvZNKqRmAKfST9MoRSE2eZfTm+jx7/gKbO7usri5gTAiuIowCDnYHnDt9DBModne3CQPNO849wt7ugCg2aKnIi5y45gmbVWkp8pSyzDA6QgdeHruxfof3LSzw2CNHZ8RUwXiS0qjXiIyh36w/9MrqKEDgJbN5mhLXQpzzTYaZyQApBUYbnBSowIAUb1jc/Yvzl/nQxz/2xtfHf8viDmBlZZnhvfHDvcNw/Tp7u+tMi4rTZ95PlMSEsSFQhjzPqDcaNBpdhLKk6ZS7d29y7crzLC6t8uqlZ0E4Lly8wKkz72auF9Pt9mh3F0iSmHZiQPhrZWg89XmSjpmMBN1WBy1BozkcTtjeuEevO4cQM8CH8q+DMQYnIUna1BtttBZUec7uwTa1RpPI+Ol6p9Wj253HBBajJbXE2x8EJddvbVKWU86ceYw7t6/RanU5f+F50jTj0qWX2Nzc4PBwn4O9bQ4Pt0jimFfO/wHj0SFzC6vcv3eHrTtXWFrqk2cp2WGb9Y1L9Jfn6C3O0wpD+t2ut1AEGlV5bxwCjA5xZYWQissXzzO/sERZlP7zBP6cgCW3OaUtKNIJ1sLyyimarS5KVA8bV9ZWaGVQysuAxWz2W1WWMIqxwO9+/gu0Ww1PH5ZeHVBZ33z150OJrSzWMQMyeciUfPDnjBIshJxJxh+AP/y8MTCGLJ8yGZSMpiPqzSbNVptmvUmeZoRG4VxKYR1hFOGsn2CZGQ9BFROEFBR5Tr3dp97qo0yAFD6r9vMvfo6Pf+JH33Sq/dr1H6q4U6+BJb2dHfe3irtvrbdcb1Xc2dnm7etFDygpZyHgX3u7b2T929z/h7Zu+L+4h+/Wh99zcuYKm42hbeWYjiZs3duikSSE9QZWCE/as9bnwbgS4bxkSWrFztYue/sD+r0ue7tD6vWEvf0BS8vz3uNRVeRZShxqDvZHHDmyQFiPGR4OmE4mdHs9gkBxcLDvu+VS0WzXKPKCqhBUhcNWJb/6uad59OQxhuMJjXad4Z4ndEnhO2dRFDMZ+ZPo5599ieNHFomTmOkkJ9Ce2meMIMsq6rONstE+6yqO44dYXKNDJuMR129v8NzLNzl9coVpOqHRqFNVlms377OyNE+rWWNusUez1SBPcy+7mD2eIAjBWco8Rc1CiSkc65veR8UDSY5WICqOHZ2nxF9oyrKgmJZs3N+hWUso8xwjHVWWMU1Tnnn2GmvLi1y5eZOjS6vgCp8zFodebgak0ykHe0OkUL7z5yTb2/t0Om0ckjCOqcoKa3OCULG3s4tGEcchk8mYKNbkU5/5dfqRNR7EJ7TrNV66dJO15QXv+ZEQxMbLIHCEQeB9JqXPCdTGMJmk3BqP+Kmffi/vPLVEVTlEBdeu3mRxfgWTaKZpDlaiZcWf/4Xf5b/9ngBtQi5f2+DEsRWiWM/kYN73s7rYodNMiAKfudRuNRkcTLlw6Q7tVg2jFM+8cJWTx1awmQML2/sHNFoJZeV9o+fOHkUJ6M83WV6epywrrlxf58aNTd7znrNcunqDVjPgYP+A+W6dxfkW9UbE7t4utXpCVcHu7oBms0PSqOGERUjF9ev3me92+eznX6DfadDttHnqmavcu7vHwlyfV17ZIE4kST0hz1PSyZik3gElEaJ4KMVxUuKs49bN+9y+v83Kyjxf/OLLvPtdj3Dv1h2iKMHKOkZa0skI67y8M2ksMBhuYsuMRqNJIR0ai9IhH33/Mp/8K/8HH//hP0ocSJJmk8FkjLDQjB2ajGeefonLV6/zgWNeRmytz5WUyk+etVTMz8/5wkg6X9A7hysqqCqksghpAIfSEmctSgiEMp5UiEUKi3Q+dDnLUmzlCIMQW3g5HSgf/ZGEtHvNmcdNMJ2mtNstjvTn6fc7JM0Y9yDcO8tQRpJlKQIIk4g8y7Glz3cLQ49WN0YhhPfPSJSXmk8LWu22l0dJ7/2Mw4g8L4iiGCEVgdHk0xRXWZIgJkgS8txHo2xs7FBWjq3dfU6cWCHPU8qioKpKkAJb+te0siVJGLG5tcVgOKDZqJOmGVSWiinFNEULX6wGWiGVh9EMhxOu396g1+lx/vwFOo02cb0BVAiHB6VEmqy0uKoCY7BFzu2tTZ743u+jWUv4X3711/iTx0+hlM/lzKdjD0CpLDqIydMRtgzIipznzr/EysISRVVR5sXsdaxIiwnNVp0kTsgnKbUwpFNv4yiRKuJf/fJv8/iZE4SxmdEQFXPz8yAVw+GIVrNJVKs9BGlkU98EiuKAcCaHddZR5hU/+0u/yF96/7dhAoWtKsbDsY8LCULCIOSp81d57OxxtFJMRyVhaKhs6afOTpAXnqgqpN8kO+dwRYGoKnRkPMr9q3d/IAQ/d/EWn/jkj70ppOHBkq+7rvNGm8BZPMJrZWg/9ZN/jg8++iFsWTDYuUOZjckraPRP0JmfB2EpC4dDMp5kdNo9JtMhe7tbnH/hSeb789y6d5vt/S3CICYOa6wuL9NrCuZbdfJszOb6XQKhqCUGh8RVBVL5hkUSx/TaMVJ4cqSQEIUB7VYLN6NlOBzOVphAU83kg7gSQ4Vziu3Dfa5euc3i6gqurFCBZn1ji/MvvcLK4hKFlSgToESOEJLDyZB2Q3JkrsHKQgeb7XP3zjWKbEyVT5lb6LO4NEdoNIPDXYrKokyLyeEW586tcWS+yUJ/kSgOiE1MvV2yuLgElUMbb/Vwsym7sNbLbn1rBKzCAgro9OZwzrGxuUVRaALjG1i2rNBCE6oArLdtSFkQGImekTW9FlmBkuRi1uyJOzz94ov0+ss+CkKG5NmEXruFlh7kY62Xkgc6mk3IfVFpjPE+emdRSlNah9J+eqilpihLjA48qVgIrPNS4qp0FBWs7+xiraLV7DEajQjikDBJCKMWw9GAUJZoV8zsF5ogiCny3Me9qJB6a46o1vTXmwf7Q+f43nd+LwunO/76I8Rbfr3t5b56p/y2J3DyNQAU3lwpp6T6qkHLg5//8L4zsMqb/Yw3/Llvo7jz09ZvFXffdOutirsHb4Y3etlfr/19O5jVf1/rRz78MX70+LL/x+zi9VVrJkt2ladIuarEaIVwYMIIofXM8OehBUopRoMxFZqyrIgjQzqdcmN9F+Ec56/cQ+Do99so4fOivAxBU282uHD1DkY4kjCg0awTGI3SisloSrvdJjA+gNpVHiueFwXXb6+TJCFPnDlBluY0W3V/0ckLjNYIpUizgqKs+JVPP8O5R1Y4ubZMUovI0im7ewMatRipJOk0ZWVtgSgKfTGmFJNRirN2FlwJ6/e3ac11WFyc48TqDNBQWIqi4MWL13jXY4/QbNVJ0ymhDjg8HBIloc+qE4Lp4Rgc/MrvfJHHzh5DK4WQHuzRbNbBOooyQ4c++PRBMLQrBWLWMKCqcLYCJbDO59/lZUlcS3jymRtMx1MePXec0SgjTkKc80bsIs+J4ghlAo+RtxVawC//+jN84D2PMR5P0YHCCd+gyLICpQOiOEEHPqxcKUlRFOR5RVVWHBwOkcKiteLS9VsUVcnR5bmH8ifhHHlRkGc+isFaS2U9LVOg+XNfusB/9uNnOTjcZW9vjyiK0SamVqsR1SNcBVoE/Jm//xl6vMwPPt7k1CNHMUHA6lKfl16+yuqRI2xubHH+wnVWljrEoQ+5Hk+mJDVfsIHl+PFFev0W4+mUc2fXEMJy5cZ9Tp1cpdtpMxpOqSUJv/W559nc9YTLIIjJshypBf1+naOrPSqbsTS/yP27B3RaDaIYdBiRZRlJHGFkwGA4IIlDysL7r8qiItKCi6/eJtSKO+v7nDt3khdefJWjq3029/YJAsHe4JAkiuh02oRBiDEStJcDFnlJYEKKLGM83MCWBSaIOHZ0hVcu3uLokS5hJJnranQoqbfrlOnIZ/GZCBMlaCGRoqIqHVWl0cbLi6WEosxYbeU8+j0fRqsYISSBCdjcvku71WN/75Af/JN/hP/tl36NHz1zmrLKZuHkhjIvwQkkljzL2d/dJ4qCWUfag3mkUkghsbMCFSEQUpFnJaEJcUJQFDnGaEajIZWtmE4ztrb3+NyXnyeQkIQxZVnQaDcJogAoqUrJ4d6IS9dvsLTUIo5igtDLm8EhlUQHhtFwymg0weiIyXgya0qBVn5iVa8neEaAeLi5kkpRbyQUeUEQep9emeezIlswOBygA0/UVNJHt4RhgDACgaWqKlqtOq12k2NHV8iyFGP0zH/oMNpQlZXP0csqrrx6kygIWVxYJIp8lMLd++vM9fqYwDdKKgtG5QTq/2fvzYM1ze67vs/Znu1d73v3tW93zz4jjWWNNwxeZMnGNtjBsrwQ7GBwEkxBgARSRSqVIn9QKQgkRQIpKimTYKoCpGIjKNmyLUsaidHsUs/SPTPdM909vS93v+/2bOec/HGe2+6ZaUkjG+MKpVP11ky/973vfZfnec75nd/3+/kKrKsxSUK700MIWFlbQRoJ0mLLGudDVxcC+a+cTInjFCkE33X8Pv7GP/t/6Hclp147z08+9DDOWqSzSC2xtaXdajMZTRmPR2idsL27zdriAkmSYNIEZQK+XkeG8cEUCJ7gubkey6sLWF8ipGS4W2DzksWVPpKYLGuTZuEarCNNpCPOX7iElmGDRmmJ1ga8ZDougqRYKUAiJDwzHPGJE8tgFCaO0CZCyYiqtHzu6Vf4o9/6CNoI6rrit7/0EvcdWw5LRxGumVrrO53WUFjBZDiiPejhaHw/Rxubd82Lv/b2DX76Z37y686t7wlAv1fn7siv3/zsuWde5HuOfwSc48L516mG2+wPR2yeeBShUsaTCTdv3uBweMDO9jbH1je5ffMmly6e4/zF8xTlmDj23Ld5kkg4PvDQ/fQ6ik47ohVFWBeu39q0eeO10/TmZulk4diwVdg4Enfle7nG6+VcjW8Yn7IBmzgX7AlGh/PMI5DSMCmndDodNlaWibBoGeTD7VaH2f4AGaU8+W+fptPJ6GQxQsDhviMf7rIwt0BdFmitmZvpsra0xLGNY+BhfLjPfeuLnDi5QRoJpoc7ZJFleXEJXE1kJMoIpG9YpB4ircFXOB98bKG9pfGE2BaPZzIahnVGM5dKJPs7e2zfuMbi8mIIxQakFnjhA1FTKYQMRaGQBhWlCJkRZT0wBp22EZUit2OWVxZIhMS7HHzB3KCLxINzPPPcqwzmZlBRUHO4qpEMyxBl4hF35PjT6ZTIBHlx3cCNZPNdOSe5tb2FIOLShQusbTzKzNwG1guWVlbo9nvkRU5Z5AwPDum1U+pyTF0W4Cpq7wKESYCOUrJOD2lC1ErYNnvnWHxwtilE/12Ndz7XNyqv/HpDCnnP4g6a9bh//8/1zl/82r/n+b137v6AwyC+OX6vQ70bTEKQNN6dhSfhDnrXNbd3j99Pdt7R7wop79zuHu+LjnknXiGEBu9tb7O3vRu8aFrfyQ8Ku0/grOXJF87wqc++iLeO8+ev0O93aSUxt3cP6bdTrm/tMhyOqSvLaDgJXgjnKfKSDz9ygtMXrkADR6hqx87uPlkrY3trn89+6RSnTr/Fleu3GI0Dae8DD58gSRKmk5zbO3s4Z9nd2WP/cIR1YXHlvSNNDesLPb7w/Ctcv7lNUVRcv7nLwtyAsrI889LrdDptjDEhd0sprA2ZW5956hTOeyaTnNF4Sl3V2NryzKkz7G7v8fRXzrCzc8Dx1SXiJGRXdXstiqLk6ZdeZzgcN5IpR7fbIkkjPv6x7w7YdufCwjGJiaKokT0KbB12dcfjKb/x2Rf51d98mhdOvYG3Qd4URYpWOyNrpUSRIU5ivIc/8dEnOLa+wO88/TJPPfcade2aDrELobCTKf/8N79It9sOwejAhx5ZJS8mdPsp4+mYspyim4LzqLvnPURJzN7+MKDtdSAuDgZ90lbGdJrzxOMP8djJY1y7fhsTBcrhEWo8zVKsDe91Ms1BCH7+qZf553/jRxkNh8zOrLK+egJjEopqSrsXQqOrquRP/73f4Jf//Am+/dF1TpxcR8jgx7jw9nU6rQytQ3fvicfvR2lFVRfBs9FkED75pVfY2Rty4eI1ptOcTqfF9s4+B4dDvvPbHuKt81e5fv02O9uHbO8ccnx9lu/5jkfRKmxS1LUljuKw2JMQspCCHxEhmJ2dIUvTO8dPUZYMRwfs7O0wGg+pqglVlVOWFdO8otdr88e+4xEuXrjKEx9+EITn5LEFWmnMtz9+P1vbh1y9epvpZBpeuAAAIABJREFUtMR5qMsAk4jjFO8F2kR4W5FlCXMLs+hI84EPnGRa5NR1SV3nSOlDl7cKXo44SdBRzHg0YjzJMSbGWsd0OiZOIvJ8gpaeD52Y5Wd/7i9z88YNvIfRaML6+hpSaPqDeS5fuc6/+pf/O5/41V8N0QZl1XS9Q+B4URRcv3mTzz73Altbu6FLjefp57/Cv/jkbzEZTxvZkQ/FHZI4SRAiSJLiBuTTm+kRRxGtdotOp8OJ1WU2N47Rbrdpt7MgmVYCvCBOYrJWyuOPPBAkRXVFXdchH6+uG0VBoMzN9Pt8+fQZnn7pZaoq0GIDgESC8JRlwPgXRfjcptMpVVVz4e3Lze67RCcpKIM0Mb25ueADvCv30XmHs5bhcAiEzsb+7j7/+jOfR0Dj2/X42jee1pKnn/8KRhuWFhbo9/u0WhkQYh66rRbltEZqzXOvnmYwWGQ4zimqAlygi0rhMJHCN37guixxBN+gp5E040mSNMS/6NAt2tvf5eM/+fFmkSIDIr+sKPKjzRiP8J5WqxU6YqdPE0XNgr6R2dZ1jXeOK9ducvHSlbDRFwU4zWSaU1UV3W6LXq/N9u4Op146w6WLV5iMp+EYEJC2DSurc7Q6CWWdM51MEV7wlVOv8sKLr1IUFXXtQECSJCFkmKNNvprh4YRPfvZZhocjnnj0JForlFJEseEj3/VBTGRCR7Is0U3AvXeBnOld2Jy7swCU4bh6v8M3Sp27b0fjiPJ4r8cf/cw3Qd+j0ehOsbmyssZkPCSvLBevXGYwmKPf67O2us7GxglmZmbZ29/j6tXzTCeH3Le5yYc/+ASpVizOdLlvYwPZbK75usZWFuFjbO1JMvi27/p24iiiKovGQx6gZErIBhYT1CMyZEkE/2sjJw7kVB0sAkfvEaiE5catbc6/dRkTG3QcAr2d95jI0G7HeEqOb87T780gfDj/9w63GE/HWEDFCSqKaXU6OFVz9do13jz3Gstr6xgtKfJDBjMdHn3sYR58+HGEaLImfQgWl+KILhn8p8FCVgOhI2295+mnng5rIkKHDDxVWYciwFnWNtZ4+AOPhffbXOMREqkNKIWUuomPiVEmxQuNE5rKemiAKd7lUBe4KsfXY4QPkUDCBY+bd0GZIBH4SnLr+hb7ezs46xtwW/DjQVDa+OZ6GUAr6o49oqodee44PBgzLUqOnbif0uZcv3md+fkFlFZ4H/x9k/GYXrvLaHTYHPsaJQh+SqWIooRpkYf1ndJNZ/l3x1F3+eMf/zPv+9z4Rsb78c0F+bl4R7j4vcYRPf5r3Xd0Xh75ud99e/c4skB457/mazh6zO9nfLNz94c4vqbn7mhH8B733fn3XT/7ap0+f4/73u84Cld/x8nS/P2f/qk/w6/8sQ/C10PZ8rtSUltZ8v1tinxKmqR4YJpPcbVgfy8QMMtpyYOb6yzPdTFK8ezL50iSiNWFGVaXZulmKcc3FokjzfbeiKdfOceJ1fBvJaE702Ox16LICz791EuMxznH1hYwWlOVFY88cIxWkrK4OAc4rAvZepNpwSe/8GW+98OPMc1zuu2Ul85dITERwkM709i6pJ0lHF9dYHbQ5+XTb3H2+i3W5ubRJuKpl9/iWx4+EYAhUjUghrDgO76yjLWWVpaxMDfL8y+eYXVhwMbKHFJJThxb4YsvvhaQ0ouzQY5lJK1uh2MrC8HL1s6ItKF0ATTjrOPTT77IsdW5cJHRik997nmOLc7zm597mf2DIavL89y+tcvm4gKPPXyMwUybJIsbGZpkb2ePNAlyssl4SrudoYTm5dPnmZQl3/HYA7S6LS5cvMTsoE2apeRlzUNrSwEI4xxJljHT66KU4vr1LbI0odVqU00njIdTjDa8+dZlptMpaRRgDHVZAZKXXj/PwsyAPC/odNqMhxPSTka31wleIGNwXjAa7ZNlLQQhmP6fnDnH/3L+Fv/3X//jIB1Z1sKrGNdEL0xHU37rM09TiIzEvcUPPSSpSsfl6ztEUYLSMbvbQ6RXGKVptaMQtKo0r79xiel0yuxsn2IaFvkfePQ4SipWlhf5tU8/z8bKLO1OmzTSXL+5w/GTa2xt7bC5scCVa3tsrM0jkOzsjAFPt9the2cfaz1pmiGEZjQ6ZGlxhrq2PP3MWywv9DjzxoUQv6E1voa93SnddijmwXHl+h4ffPg4e3tDYq25fn2b3kzK7OwMvvZ02z1e+PJ5HnlgnWvX90mTiE43AZdjq5LagoxMyP0qp5i0w6So0UYhZc1gfpZWO6Ec7QCaqhZU5ZTaepKkhVKG4d5t4ljiPFS1pZV5vDcU+TRknCUp/+JLW/ynv/iT2EpS1544iVEi4sat2yysrDEd77K/vcO3dWaQUhFHpqEhQpxldDtdHjp5kt5ghrp2aC1ZW1niWx55EJQgTgzeOWxZNRATyMeHIb9RB6+Ks4TMMSExkWZ1bQmTJTg8rq4oy5Kqqti5PcREAhVB1oqRGEyswQuUUESpxjmLiROiOPiUjm+u8sCxY+RFTpomTCajkOmI57NPP8fG0nITcO3xuCZL0NLqpNQ2kDilFBR5Hqi1SlNMa8q84tSZN1iam6WuaqQUaGUopgW9Xp+TxzdQDUkUJ/j0Z5+B2rOwOBdiGpTiX//mk8wNemRZKHKUkUivePJLp0hSzeOPfYAb1/d48stnWBp0SOIgWSyrkqosSLMWrnYoL0JAumkW4E2Wm1QKExkOd3cwkeL/feMNfuxHPsLnvvAsf+L4/WijyEcjiqomabWoHRwejGh3UqyVfPDRB8Bbqrq+YztQSjAeDun3+qysLBIlqokcMFx462YgAwrL4tIC3X6PleVF2t02cWIQUlAWJdpoXO2QQqC1whaOvb19ep0OS0vztHqhoLe1paoqfvXcm3xiczV0hBEBsrEyR5rFFGXJ2QtX6XVaAE1WYcgjiyJN7crgTRThMxFCcOP6bZRwKBOjouirzrvvu3N39N8jf889nlDeeVSYl//L/+q/4Xs/9P3hNUcx0/GQ9ZMfJEra3Lq9RZEXlHVJFCXs7+9y+tXnmR30WFtdodOK2d6+STGdMtPvoPRRV1CjddR0YCSR0QgsBpDShdfgw2aVaLpZrunWCCGa6B3TdIhCce192ECQTWEqmoJQeaicIE16aFVAASLWnHn5DcoKev2YSEKvN0NkIoSv8EKyuLrA+toqgjpsSrkKo8I1pdvpsriwQJZGSC3QMgqRAdQoIxDOh2NRa5yXaCGokVy6cpk0aSOFBQR5MUWZBFCsbqzihUVpgXCEa5AS4I7WbA4lfAA+KYXzAoQJ8DSTopMucdbDqxQvEmQUYyKFtTXXLl3h7fMXWVrqcPa1i5w9fZb5pT7GROH5nQvSSqNZWh6QKomUBqVSqiKn2+2GmB935HEN6oYoju90nKkdtbUIZfBEnH/rAgeHQ5ZWjuG85+bWFr3uLOPpYSMXL9i+tcXS0hLDwwNwObEJ8k8vFYUVJFkXj6DdaiEbj7QAZDA+v+O4ffKl4Lv7dzd+Vyb5dR/5Pjtsd0ssjzp37/7dozV5iHR4bzH21Xx2X/d13NXV+2bn7j+w4Z17z5dzdN/R7e5xr/t4132Or93he3dn0DvXhEi7O7ejDl5ZFkEf/nWG8KGIQGp0ZLi2P6LdH6CiENTcbbV56tmzvHzpEiYOFKjc5swMWpQ250d+4MNsrCzRzjpoGZGmCiEcW1u7rKzN8X1PPBLw2hVs3xqyc/Nm6H5ECd/9wYdoxwl4x+1be4EKeP4K7a5FyClpkpGajK2tbfq9Dh/7tseoraPbblOMS77niYfpd1OefPoNLl3b5urtLQaDPq1Wm7r0XLkxJNMx7VbwdPypjzyBjg0SiVJQFhPqqkBLSRTFDA8mSK0QETzx4WNUbgS+RAo4HI2Zyzo8fv9xEJI0TRkdTqiLGqMkUjp29vbY3t3FuRoTK1Qs+dGPfCdpu4dQGlzNf/SxJ7Buyg//4Ie5NdzHFTknjy3S6ymUqJid6YTNNFcS65rLN7ZwQNrO6A06VFVFXo7YmR6wMNPi3776Ei+9co611XlsLbBVoHfGkSTKEjr9LuAwqeTc22/z7Om3uHlzD1s50IL+XJc3zl9keXHA/GwflMJ5SZRm1PWUb//AMVRkyToRpS1pD2YY7eZ4NE5qnAwyqnbapSoqdvd2qWzJz/wn38k/+2s/iK1rpAArgoQNVzIZ7TEz6PGp8zW/8ltf4cLZHeZnN5ldXOLY5gnOnd3FloJ+t8uXX73A2voSHsuVq9tEcYvdgwkzM30ODsa0uhlFXeO84MKF6wwPD1HSIyVcvHSNa9f2WFtZQvlA4ZvkOfPzLcaTisnU8vblG4zGE2rn6fb6CBFx++aQMy9fYLznQ/aWhMXFGa5c3WZpfpGLl28hBCTtjBP3rzG3MODq9S2iNOWhR45z8fINvHfsHRyyPx0jG5z21Zs38argj3z3Sb704jkGnZTZfreBlhis84BFSYESGpXOIVRCmU/xdYGwDoFF2BxrS2Lt0G5MFLcwCqpiAnUVoDPWol1JGiuKsoOJu9SVB1tTFyP+6V88zo9/4i8wdSUyUUzKmmu3rzK70KXbkhT5hL/8F3+e//o3P0Nd1NS1DdLsumJ0eIjRAu8KfDnBCMtwPCJpRWA8URzha09d1BwejCmKEi89Mm4hpKIqQtGGBCcCOS5OUxw148ODkEGlDSZKyNI2L752lvG4oNvpUZUVJhII18g7I4GtKsqiYDI8ZDwMwb7OOrz0mCgi2N4MSRS8Jx/9o3+ErJNQlAW1c0QqAedYWpwlH0/vgCyqehq651mGt444UnT7bb7riW8JIeBpStpKcb6m1WuDVuTTfZQWJHFEFMXMt9uce/MStg7+Q6EcD53Y4OLVGxwMx3gvkd7jVc1HP/JtrC2v8+nPf4mltQX+5A99L3EiyPNDqskU7StsPsZOR/jK89SzrxBpEYAtQiGFwRUC0NhSkHQT9vf3eCRrkY9HpFGMFxbrHJ35JVTUwuiMM2fO8fr5CwgHk9EQZ2u8Mpisg1QRVV0zGo2I45hOP2wS5dOSqqqpyooTx+bo92ZI2h0cFl/XFOOCw/098mpKkU9RUjIZFUiliZMUpQ2d2S5740PGxYT+oIevPE5YjIFWasjzSaAMVjX5tMJZRavbRsWa2cVZvuOJx2l3+5gkwdoCqSy1K0LguUixvmY0PMBWFdNpydrGepCfa4lwLvjLvsa4V5fuHXOyEM2NQFl07s5Neh++16Zjd3d3T/ggKcyL0L30WHq9DstLS7Q7GXEcceX6eb5y+gW8MbR7XdqdiHY7Y3PzBDVjHHUAddSB6OpthXM1BVMqVyGtorZgpQYR1g21FzihqevQ6Q2ESANGY6sCIw1emBAF4D1FaZEiFDSVLxkXFUUJ8/2M1fkMJRNINFVesr66zHyvBRXUzlAVFa4Yh8JceGJBCNoGnAuesrqskCi8K4ljkFRI56idpXKOty5eC+smLWl3OnjvMUpAbdCmZvdqzqW3r2CjEFxv4ggTGZ5+5hmk8AgncCVUZdF8nwqvBLWw1N6h4i5eS0rv8TpGxV1MOsBFPZAZ1mkkoOwhPt/DlYf4csTh3mUiu48tLEtzfTZWZ1EYbF02ljqF9xZE8L86KXCiJkk8g7lBI4sVTccUqrpGKxE+k6KmGNfklQ0y+mrK4eGESrbZvO9bORjXmGyR++77EAsL8yzMz9PKUvb2txgMOqSRITIWpSy191ipKCwkSQ+QZFmGNDH4kJ0cvKLyHZ42DyBC9/bu8+Cew773JlDvvR35VptumNb6Tlfs3R2yu7tn72cEGbu9dyfOh80k79+7qnZf7T29j3H0mn8/3btvdu7+EMfX6tz9QYx3mLPfNTxNFsc9uoXv8PQ1+ro/efPC3Q/62n8UgZSQj8doBK1WRl1aTBR2ttfXVji+PofwAXceJ4bDgxGzs30m05zxaMqlS7eYGXR56dx5Bt02MzM9rA0F58XLN5ib6bG1vc/sTBsTRyStjHY7odWK0Voy0++BELx24TLry7MIFF5IyqpkPJkiEXSbnWCtFLu7e2StjKqqmOv26A9a9Hstbm3t0O+1ERIGvYzVhQFpFmAp7W4reKKFBBxVWTIe56RpipKKZ0+9xvLCoJGnGJQ0eCsQaM5fvMHFG7c5HI+5/+Q6AphOcoqiJp/mVFXNwvwAbUIY9WQyCfTOJAHvG79PgJiETBvNY/dvBgy7DHl0IVhXNgvpoMtfnJ/FWkuSJlgbyHJKapYGPU4eW2a+1+b48XWMAVxANNfCgvNoEzEcjoiN4fmX3+DY8hKDVlg82LomTg1lUTM76JO1UsqyZH9vyGeee4kHN9fRWjAcTUizFGcbKQyC1CgmkxEQ/HzlZIqJJdNpzt978xrX2wUf2pzDmAjvHNpoDvYPSdK0IS9G/Nh//0m+e1PzgdY+D5xcYXtnL+DjgTiK2NraI44U12/ssLm+wOmzb/Ghxx/m1o3bHFtfoMgtz375Lcq8YvPYKiaK8a7COscHHzkOeN548wpJFAU57/YuuwcjTmyuBFy2Npx+/SKRkdx3/wb7u4cYE6SvN25ss746IM9r3jj/NseOLdHv9em0El4+cwGpYW15HhPHbN/e4+VXz3P82CJJllKWFVtb+5w4tsIbb17hiccf4MKlaywvzZKmJnRrqpLN1UVu3tolTTUmppGYyTvgBU+QkjhbkyZRcwoHSZB3JcVkjJCaKEmZTscIArhAShG8Gzp0RybTgsFgjqoq0SrAUaQyKJPyytuHfPRHfpS9/X263R5aqwA5mk4QPkzAv/Jrv8lPPfoIiJARV1U1cZKAEGiluXnzNtdu3mam1wMvKBrPJsC/+vTneOPCJR576AS2rgNtU0qsC+CdurJ35GG+2T1O0qSJCTBMxjlaGx5/7BHG4wneueCJs4G+Gycx4/GYVivDaH1HxuRc6EtIEWAGu7sHnDn/FusrSxR5iXMhyLwsq4D+N1GTX1mTJgl5XmCtJ0lMiKnQAdcvm8lcNOb9qiqZTkPOZl3aRn4afLR7uwfs7OyzsbrE8c01dGQ4PDhkMh4zPzvL/fdvEnx/imI6JUlThqMxURSzPD9HlmVYWzFoJ0xGY7RSaBNhjKaqPdNpxa2dXRZmuyRZBkKBD8eRbK5xUjnqsuZjDzyMf/QEn/jET1G+fBodBaJvHIfQ70G/y9LcgDiJqWswRwTgJGM6GoeiVDZQLU/obBqJs57t7T329w/IshYmSRiNJrSyjKqsQ8HmQ9c+nxSA4NLlqwwGM5R5hYoU/W6XhYU5cJBPC6IkYnw4Ip/k/Mbbb/Pja4sgJG+ev8ybb19jZWEA3rO9tYdwgldfe5NeL6OVxQEpr3WjVvFoE6RYcRwzzQuydkYURwFw1cji7jUzvt/O3TvmYO7hwbvHY6SQzOoFGvU3+XiIidoYHYVIES+ZTgsuXX4bW3q+7Vu/k347RQlLPs05+/rLPPTQhxCuwltL0uQSBnmlaqilgBds79ym252jKiYoo5EywIteP/0VVlY3wgLae5RU4FwovABEWAgnWQBwSBkybi9duMStW9eYXVjm4PAQ50Xw5StF1mqHokXCwWhMnCSBMKkEtXPh0oVsbAISHHfos0ERKYNUTqmQn6k0b547y+LCLKKRBRsTBR9gVVOrkrXV4wzm+lCHuBWBoK5qVlc2kFShI+dClEOSpne+ay01ShmUMghlAI0x4RxSUpOkLabjMbiKqhpRlznCe4qqIEkSep0ZBoN5hPIYEzM7uwDyd2X8qskGtdZizBEQRd7JLK3rmiZVDed8s64jWEGcI0oS3jj3FvML61y7fp3tXcf161fCxoQxDAazTcRM8OuFIPiCOI0YDw9wrkSrEMuktQEhESoOx4Z4r33nXuP7vuX7eObMMzz8yIPvOYbfMd7V6TrKvvt658FRsfhO1dlXf/zXGkfz5TfqqftaEJX3+7fDNdf8njp33yzu/hDHv/fi7i7c67shLO+3uHPAn/rxT/DxE6vvMYrfc/gwKdmi4KVTp1lcnEfrsOvsgLoOwA2EBSexpaWqC4xUjMcTJpMpaRRz+q3rTKc5xzeWSdKYuvYoNBcu3WBpdoZWJ6G2Fbe3Qjiu9zVSVjgfUPDOeeLEsDQ3Q6xaICQH40M6nZRIG5TyJHfAIQ6lACGxzvGFL7/BBx7cRCpoZQm1DXLLVicJYesi6O5rWyMQ7O8O+eLzr/LgfZtE2jAeTYhiyebGIlEU8faF6/T6Mzgn+dyXXmZ1YZY00nzwkWOcOB4+1/Foyq1bu8RRRLvVwmjD3v6INEmwlSNrZ8HPZSsO9w7o9zuce+MS/UEfJwWfffIFFnudsGC2FpNGICT5tCRrt4MExQmUCYtV4TW720M+/+IrPHRig7qq0UYgpMWYhDhReGTwyfmSKG7hHaRJBLZmaW6erJVya2uP++5fo9WJ+eJzr7I6P49WGu8taRbRSlI2F+fRJgahaHU6eAG2DFjnPN9HC8t4MsYWZSDUVTW3d2/zV1+7yv/6l76fb394E289Uh8RwSCOE6Q2bB+M+XP/8+/wT/7cJgtxRa/fZvP4ClnWUDYtlEXJra196qpibXmGwaDL8mIfW1e0WimvnH6L+UGP4xsLdDspFy9eZ3gw5NjJVcoiAHem4yk7O4dsrM2zvDxPr9tifXmei5ducOPWLRYX57C25P7ji2gdIaTgmRdeY3VpQJJobm1vs3FslbW1Gap6ikAiFSwvzhAngshocBGTcU6WxZx96waJ1vRm2mjg1u1dHn3oOPsHQ45tLJIXOW9evMrsoEOn2yKOYyaTIa3MIJXHaEWe54EYGawXnD13nnYW413wqtWVBamx1tPp9HHCMJpabDEkMZK8rDBRCKMvijHTyYQkjclLi7NFgCZ4j9YxWsd8z6N9/uO/+Sv83J/+CQSeqoB+b4Y0zhj0B3gr+Imf/Wl+9m//Hf7UA/dT1xYdRcjGM4pQdLo9ZgcDkijGVnUTdg9lWbO5usKJ9VWyLMXEIWssLOoUzja+BiGpbYV1JUrE4XOWKsjLohgTRTz7win63Q7dXid438oaEwcpotYBRiCkZDKZEkVRgAYohZKKqqpCV2Q+SKOtc7TbbfJpTpIEuqyzoeiNYsN0WvClF0+xPFgka2VYG6SXymi89wGS4sNGhzEK72zYm26u3dYFUm4cx/QGXSaTQ7q9kMeVRBFJHFNWE6I0Qung0dVaoaOINA0RG7/1hS9x5tybfODBh9BoRsMJkS5xzeu3zes4tr4SfK+OoDg42m2XYG34rpXSmChCP/4oUkaUL5++MyVI6RvAkcZEimlec3g44cq1q/jKIhyYOLpTyBoT4YXjYH+PrJXibdgEm5+d5frNLabjgn/7/Ck2FpfIWjHWObSJ+Tef+jytOKHTS/F1IJTGcYLWstkYqxBS8NxXTnFsdQMlDG++9Tb/4PO/zV944sNMRiO0kswPOmRphBKSL7x4mhOrS7z61ts8cGwZgQxStwYqZWKN8LopzC3O18SJxkrZyGkDNOxe1d3zleSHf/QH3/+8/Q0UdwcHh5hx2BxRUrK3fRupDNpotnZuY2vH66dP47xldWmBi2+eYmmuj3JhEzDJOrz03HOsLM2TRApPyNM8wue7OpADnfCYqMWlCxdIE4OJgtRfSsXi0ho0BUXoIgYsv2o81kJGeBS1C7mmdW0RwnB4OCG3JXNz86RRgpKamzevUFc1JgobpkZpDidD4jhhPN4na7WbvLzgnYyMaSSiirqqGE1GdzxmzjssYVPK24rNtfXwOYXJHmdtgMAIS1UIZFRh7YhYJNR1RZomeFuhpccYGXx6zhMlWUN3BBPPIHSXWkToJMGJBBNnOOdRUoRNS1chXI6vJmgKBB5rSxRg6xKBwwexE1JKyjLHJBqJCkgaYRFCIZGNN1Dc8SzSrO/qxg935IN1HpI0I8taWB9yXEvC53Hj9j6tpEOn22dz8xijyYid3S2cdMQmI41TlPIoVaIoUNQoGWJwrA0bXTppo6IIL9U9O1z3Gr/+1K/zgz/0A+85ht8x7jrktVZhA+x9nCvh2i/eSbn8ZnH3zfHva9yruDsqwP5ACJhHVIt7PLdofi5o4JV33Xf3+Eu/9Ff4xx868R6v3TuKwnsctEpptm/usLA0jxSSsgyI3jiLmIymJLHmYHfMZ59+lc21QSBVRZpOk/N0eDhieWGGqq5oZRlSKLQUxEbTaqXkRUmrlZFEKcgQVDwaDhEiZL0EWheMh1N6/VbjX/BUpWX/YERimkWfDIHUSRxRO491ll4ro9/vAJ7xfs3vPPsKD5/cxNmAac/aWdhFiyJs7TBacHx9OQSHaomJQg5bVVZMJlOWVxaxVQFYtIasZXBUxHFGXpXoSJO1EuZn+4ECZzSvnrnI9b1deu2MbreDcx5bB49SCNYVPPWVczxwfA2pPJuL85hIh2DeLA2ZUqOSzz/7MsuDHlGsmeRTkjhmfDgiTTOydouFbhuB4NatXeq6JksSimlF5Wqq0odIB1c3MIcKpcA6z+7BAUpJZme6eO8CAdOBc55WllLkBVVZokyYcIxWzf9LpPBo5SnLPBTLUYpAk5cOHaeIOOJvnb3KP/6L34sXKuyY6zCxOhsygqqyQkrPf/6PPscv//kH2N7ZZ3lpjrr2HB4esHdwwPz8DOcv3KDdSdg8tkSWaC5euUmRT8naKVFisN5ybGMNRIFUHo+l04np9VOMiZlO8yayI9BPFxb7VGXFeDzl2vVd1lcXmZ1rU9eeNI44c/Y8aysr1GXJzu4B3lu6nZTF5XnwiqIck+cFe3vjQEgM9n3G45zxwZQ0jbl09Tbf+sEToUuQRnQ7bbIkbvIVE25vHZCmKa+/dY1ja4t4HzwWrURR1yFuQikZUP4NbXI0GrM01w+d1zhqcpQShAgBdl5ohNbESUJdgULfgRe0ez3qMsf7cDwgNNKH3DljIrRRzeZAxEcfiviLjY0eAAAgAElEQVSF/+5f8jOf+FGiOGE4GpEmEVLCeHiIjDSf/Fef4idOniSKgr8SVzfxCCUmMncykxCBNjedTImThE9/7ileP/82J9ZXSNM4eH28wznP+fNv0263MLFBColWzeJTB4lQUZRoE1HXNa0sgGykDA4w7z1lQ9wsitBJLIsqgBeMwdZ1oM/6UOSYKCwgpJIYY0LhEy4vYce8ru6AY/CC5fkFTKTvXEKNCVj/kAcZ3SFomjhCeBn+tgzXkiPfFyIUsa00oa4tzgsO9oeMR5NAzJWhGAnSnhBTkU8LlBEsz87Ra7URXnD91g79mRkODvfAO9IkCYHsWuPwmCRDNvlX4FFR+DwtJUpqjIkoqik/93f/IT/1kz/BL/39/4mPLK80cQEeoxRVWZBPJ8RZIL/GiaE/0+dTn32K0WhElsbMzc0GOAqho6u1wjnPMy+8xPrGMu1uFyUVo/GYQbdL1gqRF0Io+u0W3W4LEykuXb7BTC9cg6JYB6WKDJ6wY+srfO7J59hcX6bdyvjYiZP0NHQ7Gf1Bh04nAwJl8MT6EtbVPHhiBWstaTu8n0DNDYtuVzmEUggp2NnZDT5hIZkMx0RRyC17x/zZ/Pv/evUcP/0zP/mOLsM9M+zeBYeQ3B2Z8O45PHw/6+ur/NLf/C/4vm/5fhACV5cU012kEnR7A7qdFguLsywvdui1FJvryzg7QSpPXozo9Fqk7aAuidMU5yzXr10kTjK0jnC+prZBpu6B5eWlBnjUvEYVjrvaVng8lXUIFSOcbIoK2NkZsbW7Q6/TRRLOAytKBgtzzM/MkSZhU8NLWFpeDRJypdBCo6Qia3fx1tJOU3CEbl0UhW6/UeTFNGxA1JYsbQU/pVREjUUDFzIova2obbhm3f2ZV7bk+c+/xPzyGlIlOF0hlaF2Fi8lOoqpUEiT4kSMlzEmaUOUYmWKafXxiJCJJ2tslVNXI7wrkKIGN0G4CoFDOoGQ/k4xIqUMMD0fLg5Khg5giAKSoYMuDEbKcDg1KzVbB1+gD0ZHlG6gLUIilAx5pl5RO09layI6bG/vURaW+f4a3X6PxcWlcO2uLbODWVpZG4nl0qWzaD9F2gIpPN5WeB+6dcrEOGHIOn2kDteG91sCffLJT4a8u+aYvheNUjdET3lXN/BrrozvNsp57oB+jp7za0WP3GuEiAh/56m/kQLv7tcpmwLxHXc2r/XrZVt+03P3H8iwzmHd74dx+Qc7rl2/Dg3h6n0PITjYO2RjbQWBCHh8pYiTmIODIWkak+clSZJw//rinQuE0Yqbt7epqpqN1TmWlgYszPWReOqq4tr1W0AwLRtjmE5L3jh/mSRJcNaRRAlZkpLnBWVVAY6yqjgY7bO9s0273SNLW8zPhTBp2WjVtdaMJwVplhInEcc2VrDOUdY1rU5Y7OzvHyBkCPmeTqZoo7C1RRtNnEboKMgZbB2yfmwdKGDdbpu93T2qvOLsuUusrS6RZClFbfnKK2/y61/8MhBoeAiP1pKtrV3KuuaDDxy/U2R6FzID8dCZ6WGSmI9914e4cOEyB7v74e/XNd1eh/39Q8q8opiWRFozGY1wriJOQleirMJi2lpHv98higwba8tIFE++cIbxOEdJTbvTQYjQYdNaMJ2O8TiKumZ+oY+OJFkrQQjJ7GyfxfmQ63XpyvWGuKlBBwz54cEheIutKva2dpnmI1Qk8E5RlzUHeyOeeeV1qqLkF555hX/0Vz+KjhJa7TZSK4qqbMAoBmctT792kb/+f3yGX/7FE0wnU5QyvPjSWwx6XbxzdDsplS05ef8GeV6EjDDnePi+NW5v76O0oaxqirKirGqkjLh9e4gxKa1WB2MStm7t8Pq5K+wfDGm1W1gcZ964xLkLV+l02swOukynBbKRvo7HOVmSkE9zirziWz5wkn43Q0lBUVYgJEmakqYJayuLZK02ZVkjkLTSlMPhhIPDId/xHQ+Tl2Hxr1Q4zsqyIs0Snjv1BrODGc6+eY3v/PDDCKERIpDK4jimlWUc7I8oywLvfQDx+IC0F8Lz2tm3sbVt8hDB1jne16FwqQOcoNVrB59KlTMa7bO9c4B1QeA9mRTgBFVtSZKEqqooihyoKcuSdpbxD//sBj//C3+Nuq5otWKsr3jp1IuUdc7u7k3+h//2FynzKbasGunmHlWRI0WTcYdDxxqTRCgdIk+UlPzJj30/P/YD30u706YoSpwPaHVnLbWt2dnexfsQr3DmlTf5N7/9uSZPTzZFI5jIMJjtE8URk8mU2taUZQAWIY4IrTaQXhvCo5KKum7eX6fTnDt1Qy4WFGWN1hqlNUIQSJpSUFUVxhi2tnYwJniZoyhuKHahyCvynHwaIC3KRDz94stBmiYleRFiIy5dukqRV9jac+H8FW7f2glFd7sV5J+Vp5hW7O8dolUgTo6G498N6pWC+bkBz556mUlV0p6dodtbwDnPZDJtKL9HdNAmA6u2KCVxNlwnQn0RFj7OhUV7bWsOipI4CZsUUoSOoTYmfN5Y2u2E2fkZojjmx37oIzz6wP0oISnLkiRNg9xTasbjKXk+5Qe+97swscbEhk6vzeOPPEin02I0GjZFrmdmpoOjpipKJtMpN27dIk4Uo+EIKQVlURBFhslkzP0nVlAajFH80yefxHmP9Z7d3YPQ7dAaExmyVkrWTjCxJm1w+9aG88R5msVyONY8goX5Wbaub+GLMpBpCR2re82F83Nzv7fJ9xscUipm+oMAmJEKW0tOvXyK/f0d6nxEPtqjyscYpcFLdON/q63j1MuvMpqGoOullU20jpqNh7DZ8ObZQFGubEme56E4uSNVrtHKIKXBOsWtnf07xaBAcv6N17hy+TLWBQuBQJEmHbSM0SaldhKhU2TSZVwDUQqmjcr6OJMiTUrc6qHiNqVvukY6wRG6w1LGKBmFDmMTk+R8sEl4axGEaxsEWFG4NromJkMgpeb4Iw9gkoRTX36BogApI5zXmKgLuoVpDfBxG511MUkbqRJsUYGrseUE6Qv8ZMh0uI+rpigBSoCREumCV8vamhob8hrDpxfI0k1xhhSUVXhtroln0Crm2rVrWBe6xUrr0E33QZLrwv/ciYkJqoEwx7925iWKvASvuHrrBtuH+wzml4niiDiJmOZjAA6HB0QmppiU7O7eZjDTQQmLEQJbV+RFEaBVOmTnJa0eQobP7hvrbb3reBXyrptCiq/PdPjGnv/eBMuv9rijwk5Jdef2/6fxzc7dH+Lw3v+tu2WSjVr893WCOMJuxb0OYtc8t2gomO/+2dGmh3zX445+9uf+7H/GL/+Rx977R9+9C9K8n2CUlZQHY6q8IO218NYHqV0TTJzEGbWsUVphtGR+bgZvJVGShABgIbGiptXuhIlXKZRWxElCpx2jjeF3nn2V9fk5JsMR13b2WZrt4kUI7KysY2d/GOSgypAkEVQWrOfTX3iR5dkeaRqKuKIME1Vd1jgrMEmEROObDp2zlryuOHFskW6/R5WXRHGEVobpuKDVCsGt5aQMk4WWfObpL3NiY40kSxjM9KjKknavgzQZFy/fYnamx/7eIUsLc8zPtXhg4xhKag72t2nHEaNxyfUbO6ytzNPtZBR5wXh8SJIqyqogMmkI/51MAIvRgnaWopMWuztDbm7fZmVpwNvnb7F+fInFQY83L99gZWkZpZIQqh7FlIXnU7/9AnkxZKbTxUSSTj9mZTDP7OoArRNuXdvmYH9Iq9PF24p2twtCEyUJ09Eo+JBMikKxf3uP/vKAXruFEoLuTA+VxsjaUtuSJEmRIiywk1aKUgk3ru2D1yFvKBL8n7sjbvUsf/vnP3JHqre7u09V1rRaXfJ8jFaCn/47n+av/PEFHhvkVEXN7VtDKltx8vg8WlVkaUpkIl57/RpaKeYGfW5v7zGYG2Ad9Ga6TIYTjIy4eOEWsVK8efECK0sDLr59A4Wgriy19WxuLHLx8nVmZ1oszHdYWlxgd2fI3v6IhYUeT714mlgnZC3LtBiztLDB2fNvsLoyoCwLpBCMxhMiBQjH73zxFVbmB3hboqIUoxVXrmyxtz+h3SmYmUlIWylGJ41PtCQymiuXb6EQzPQ6DA+nJLFBEhbYSRzjpEVGCTqOMKIAkxInMcPhHmmWopMOshaYKKE/6Ae6WVEjVeh+mThCywicRGqNTlvkxQSJRQiHSSKcULi6wDCmritik+F8hRdByqtMQP1rJfnM6QN++If/GHGsqZ2lPztAR4ZeZwVUj1/4B/8bH3/kYfLJiKyThpB1KxoSpgBqiuEQ0WxCOBxlUfDSa2+wtDCHiaOg5JRh935uYUC338LVoZiZGfR5+OT9JKmmygu0Ngghcd7i6woEJGkc/HqtFGEFB7sHpFmIYRAKyjqg9KMkZLO5I+KclESJoXY104N9dBQTZSllUSDqius3tpjp9XDOkU8L5mYHd0i6e3v7pGmCIPgh3zz/9h3PHkVJGhsOR6NmoylmeHDA4soScZywc3MXj2BlfSWQ+4wizTKIFNJLxvtjIhNTWssRhj7QJEOHsZ9lPPvlMxxfXaEWlksXrgWJnXZIYipXUk5ySpsj49CdVD5qFpNB4yGFQcmYX3vzHB//6Y/zud/5Ij96/DhFOUUqidQKW3niJGN8OMZkCUiNqxxpHIFW/MYXvsRCv4+vam7dOMDWNbNzA7Zu79HqZrhaUIxGqChmZ+cAVxT05+aopjWT8S6tbo846eC8ZHV1hZlBHyscJkqQAqaTCXGSouOUmV6f/f0DkizhkfllvviFF3j0oePUdU0U6yaHjMbPZPAIqsqim+IwikMH1dsjKalACIdAk2UtiumQfJqTdTs4Kd8TYn51b5c/+/f/R4QP8RDi7vn23bfmMfKei+av3r/4mZ/5OLfO7gTQiolQlWU4POT2zUskJubUS8+wsTZPbMJGnLU1SjfdeTytLGZteQkjCN2l5rV4wHqITYxzEW+eP8fS8hyunlL5DCkc+AohIxAeC5x+9VXOnr3G5olFTBQ6XcceeIjVzU3iqEfU6lGLCJP2QKcQdUBnyChc86SKyfqL6KgNKsxrhVXotEcuYpLWAC8SysqSdWaRUReV9JFxn6Q3Q0kIBVcybHrVWqKSFIRCNFANY6Igr3W+gcoJ2t04eP7SPoP5R1BZhEm6CNPGSY0XLYxp4YSiljWVr6D2IHPq4gBcSWnHSA8ST1UVodhv4iuc80RRTG0dKonCeVLbZu3k8JXDixqpDCCCTcRJPIF2qU2EFBqHBaeRGqyzKKHubH57BJPSIpzi4qXzdGY3eP6Vr7B7KLjvgQfpdgccHB6yuBQ21AeDAbd3bv9/7L1prGXZeZ73rGHPZ5/pzrduzdUT2aQoDmoNpETKsijGFiKFECVLkKLACBL/UAY7gCEZhizFsiLFcJzICBIk+RHEUKIgjkjZihRxarLZTfY8d3V3zfMd6g5n3PNa+bF2Fau7i60mKcoRwAUcoOqe4Z4q7GF93/e+z4vvaeq6YD7bR1EibInWtJNXSZKkFLVBiACsIuotIqS6fYy+U83Z+w59kOPvP4SSrqCzd6FCvBnE8i3p2do3fj0+5O132Ld+zxun5O5h2vPgztfcbYm75OK9ZXJ3x3Pf8LsY+11Z5l/FZYz5R7f/Ym8N2L+9ZdvPuivZp/38u8k+33paff11t175Z7//v/PjR1bf+kvf/Lvu+LsCrly6Shz5rvNdC06/egGBRSmJp50Z2FYNtjHk2RylLFVTMc8y0jRhPM6IEycty+ZzF1xuLX4YcOHyDYa9DiurQ9JuzEK/Q9KJKIuaLz35MutLCywvD9nfHaM9zWw2J4rclOYD77mPpq7Jioy8bAElgc8ffflJZC1ZWx8CoLXkyrUblHXFytICszx3Icd+wHg8IY5jhFTMZjPGkylJElNWLjPnyNoKWmuKucuBmU1n0GasrSy6HC6vDcPFVgRBghAQRBqLQnuKfi8hDDyqpqKsK7pJgmix00p77ibQej2ee/UCh5aX0R50Op3WBwUHBzlx4JEmMRtrC1R1SRAobly7SRj6BIFGyYYjhxbodGLqpsILNAe7c8LYo6kqHn7iBReOe/kKx46uUxQlSkqK+ZyyygnjgCzLkKrB8wVFUVMVFZ20Q1M7WEWZZ9RNSRx3mMxmBJFmNp3R1A0Xrl1Ha8FgkPLlS5f51Kfezw89eLydRriCOU07t/0fnqf4/c8+yd//G+sYo9nfzTFWOM9aoCjKmjDwHX5aK9bWFiiKnJ2bY6SUbG3vsn8wYWHQ5StPnqYsS9ZWhvSHPfr9lKJoXPd7OCCKI55/6QxJErAw7FBUOWkaMxrNEVK6jDYBWklGkylHDx8jDlPG0xGnTqzz1HOvc2h1kd29Md1uh243pbGWU8fWaWpDnjsJ4utnLrMw6LIw6DI6mLK8uEiWl2RZzkunL3D82CrT0czJQq3F851U7atPnyXtBEwmOb1uijA1WoC0NZP9bfzIdfDdlMTJ9ExTceXGDZZX+gjbIGkoazddKsuaprk1rXCT9MCT5HmJNiWe1jR1Q20chEUAWgcYW7WgCSer9YMYKyQ/+YFlLuXrpGmP06+8yuLCMnGc4nkuF+tvfuKvc/6RR1nq91xou3S4/cbUCOmAQVpr55MLAuqqJIgijmysI5ULA5cIqqzENAZPKeqqwY8ExlY0pkL7zg9StpLMWxMzKQTTyYwwilpIgqVu0fpPPPc8h9fXqOuGOHDFt5JOZi0cyBWLJZtl7bnsri1+GGDrxsm7Gwc/AMvWzT2ee/U1Th47QlmW9PpdZrMMPwgoi5K1tRU6SeIgTJ6HMZaVlRVsA3Ve4YcuD08qtyH6whNP8K57TraFhkdVVjS2QlrBq2fPs7aygu8HzKYzqqrmytUbFLmT6l64cpU4DDiysYYfaDCGosiIA5dLGSYxwkis8YnDHtZIjKnQnvcGr48xhp+57yR/ev4M/d6Qd0uFEF/3uhRFjucrfN/HCzyUcvCHqqyosppIa04eP0Kez5EoNy3uhFgDSoL0NIGWWCn5zOe+TC/0WFpZdAHYvsQYwdnXL1BXJc88/wonTx6nqRyJsSwcpMJJdtvQbE/jBx5JErOWOkiN0tL9n6LJs9zBOKTzrfmhjzUC3/daaAcIK9G+y7wr8hLTuGaixLC3P6LX74JUb/TJCUE3ivjnDz/JD334obe/kb/5PvyW9fbb3N/+zf+K9737/WAtWsDWzg1CX3Hj/Iu8/3s/iC8MpilpmhKpW9myKF0Om3W5okK5drD2POcFBRc14gk6acLqxhFUk2HrmKeffook7dDpdKisxTbt5HDhMPfc9y6EDonjIVJ3qAwgPXSU0giNDkOUF7gmcUvfVNrDWBhNJoRRDNYVL0Xu8tqCwEer1pvcNEjtu2kqwkmxpaSc1wihUSpE+wl+1IMmQvsptdGu+I56qKhHYTUy7KKiLtrvIb0UoSIGS8uUNsdTMUoG5POM+WRCqGbQzLHZBJHP8OoabI4tc2gabFmhjcS00nUHsHKSbYHzHwLUVYGnvZZGbh1J1lqsrynmGmNrtC9pitpdb4SDznmeomoKrIhxMHI3+SutpTECIQPGk4Znn3kRL4zYO9hnNJpweONeqrxic3MTIRVLi8sEvofSHrMiIwgj0qSDtYYyG5PGPmU+RbZFpRIKoTSzvCLsDEj7C65QfsdH89fXpdfP894ffeAdHtF/cevbCTh/83f8xsXdW2Wm30px913P3V/R1dT1P7rTA/cWv9u3sATcLuze/Fm3P/Munrs7J3dvfp0Ffuef/Nf86uF+O0GB2zCVN0/sRJt9Yl0X7GBrFyHsbbJeXVqi0GdxcUDTGLT2qIuKpmooi4KXz10k8jRpPyXwPZ568XVOn93i3pNrYC15llGUFVleOCpm6PPsa+c5fmjFIf1D3Xo2NCc2nBHeWgcz0J4m8H0a2zDNchfcHQV4WhKFjgompWJl0OfCtR2OHV5pNyIC2xjOXLrOcr9H1IlQyun093b3kULy+a89x30nD98OM1ZKgXGyCBrL1545zUI/JY4DgihgfLCP73t4XsAXH3uOpWGPssiQeCghUL6kbgTZfILv++7C2lICpzMXGhtFEaPRGD/w8D2PfF5QZBUL/R4393fopT2QkHRjJpOMbDZHYCmKnDByGUB/8vBzrC93CQJFGGqSToB18n0m4xnF3OD7giDQrC/22FgbMkwTorTjfBHWoqSkzCEOnddMCElZ1O7/uq750tMvcP/Jo0gk0+nEmfG9iMYYZIt1l1rSSxOGwy6/8Mhz/INf+XG6cUzg+xS5K/6C0G1epYB/+L8+zB986WV+4YMR+bxiMi1ZXlpmcaFPGAu2dg44duwIVWWwFiezjTx6vQ7Pv3QZrOWeUxvMZhN8T9HvJjzwwAk8T7O/P2Z3b4oxMBz0OH/pBq+cucJHP/we+oMeEotWijx3srzxeEq322Hr5h73nNrg6MYKTz19ASwsLsX4QcDhjRXyomQ4GDCb5ewdTDh3/jrLC11290acu7jFxvoC2zsHrK8uks1LysJw/tI2hzYWiOOIhX7K7s6BkxIu9nn17EVWlvpoDavLXTpxzIVLeywvDsjzOa+fucBCPybL5mztZAz7faR23hMHe6gY9EKy+QwlBUJopNJIKVoASIhUHqapUEo6mEcQYsvSwVeQ9Lo9LJp5PkOrACGN86FGMdqPnFelpVb+yu9+mp//2Z9hff1wK9P1yGfbbkpnJb0PfA/P/NlnWe8topXz2mlf0pgarXyU57XAj4aqKlspE1R1hZIC2+BiElo/qu/7OIW7dDIx3GZJSUe+lK1vhdYbunl9i7SXtkVOTpTEHD603gJoBFVWY2zThrs7b182dx7MKHLB6ePRlC8/9TSHl1coirINVQ9aQItlMOhzZH3dBWjbpt0EGKT2CaPQ+VFb4l1jIel0uHjuMloqXnjlNdIkRrc0RiksxzbWiKIAcNeobD6n041BSNZWV3jk0adbGZjl3KUrnDx6hC89/hwKePDB++hEERevXKObdklvxaRUOVI6yAWqARRaB86DKjOkDFq6ZwupqCtsXfI7f/LH/OPf+Af8zG/9Lp964F0Y4677t+4Hs8kUgW1VBorrN7b56hPPEfiaS1evsL6ySBRFxHFAY2qk0C67zoJtamrg8MoK3TjACktjqjbTUBKHPgtLQ3Zu7vPCS69xz/HDlEXFbJrx0mtnWVtdpjEVQRBiGwfcaJqGSzcvsdTpuMmm0q5IU27KORpPiOKQ+TSjLhq8NgJDSUVV1CAkQeg7T15LTDbWMB1P6A8HrlDBvuE++cily/zSb/76N3dT/xbmF5/45I/zd//hf8EPvfcjSO2kudl4m421Q4S+RFuB8hVIiVQaYaA2DQLNjetbKOm8hEp5LbjLRVwgfEw76a4bhS80VsHg0CG63SFB0KFCo70IpEcUdVG+wk96zPISL/AJ4tipA4TEVCXZZIInLOV8hhfE7ryUAmMh6aQ0jZM9KyUIgxClPOq6wlQFRZaxvbNNvzdEtOCXvMhbCaNiPp8Rd7qUxmKFck0MFVDUlmdeeJEjh46jle8URFWNsJK5qYnjPlpHaKERtsGYAtvk1OWUKFTMM0PgR+SzfSwlVlRUxuPypWtEcRcduhiLMi8wbQagab3asqVe3raUKJfL6STTTilRUHPh7HUQJWk3QRpN3VgQPqARCKqy4vNffoylpaWWXBlx7uJNrl69wWxeUxvB2pHjSOWRpkv0uotYAyvLK6yvHwUBg16PnZtbBFFMN01RvuTK5bN0k5gq2wdTEPpeG2RukTrAWEnUXcCP+0jtv2MoyVsfASc+eOgNR/l3cgnZevuM/YZ+t9veOL7+nGmnfY5i/NZQ9lvr1lTv9r/vjj/fjkW4s9cj34Hv79so7r7rufv/2fpGeXXf6aVaI6/6Bhjbxx9/An2H8fjtloXb+XiXrmwShAFhEpN2u3T7HYYLreHdD5iNM9c9l5LtvRGTWck0K5mM5+zsHtBNIsq6oawq6qYhTROiKCCJQ8IowPc0P/bQ97B/c4S0is3NPYf6F8JJrVqEdV4UNHXDdDrDCsHKylLrJZPkhdOhdzope3sTFgd9fvhDD3KwP6Eqa/Z2R6SdDg99z7vx/ICmdie4aRpWVpeIk5iPf/hDICRVVbvNiIU8L/jco89y6fINPvID7yGKfbI8R3uKOAqoqoKqKCnLhi88/gJJmvL5R58jyzKqonKBpS11wVp48vnX2Nra5+GnXmEymTOdzUmikDxzm+04jrnv5BG0p1heWWi7hiFNVXPs+Bqnr1wjCP1Wglojlebf/bGH6KYu8kEK0F7AY8+dZm9/QtrtcPj4OnHibsZJ4mScg0G39aAYZtM5jTGcPnOFyXjOE8+cJp8X+EGIVoowCvnQA46E+NqrF+gPe6RpF608Jw/0tJMCS+cZ+sVHnud/+89+1ClYgK2tbTzPw/PcJtHzJE+/dpmmzvm9/+A+jmysYWzD2uqQG1vXmWdTrFWcPHEUgaA3GJB0OgwHfV54+RLTSc7ayoATR9fIs5ytnRG+Vpw4dohnnnmVl185z3yWc+LYBsZYXj97jXtObPDgvYc4c+Yyezf3mU4yoihhb3+G1pojR9YJo5BTJw4hhGB0MOW+e9YYT6YcHEwpq4qmRXRLpUnThNXVJT7wvvuwxnL40BpJEgFu8vf6mcucO79JHId8z4MnEULw3PNn2N4eMR7NybKc0WjM93/fu0k6UXt8WJ4/fZEPvO8EWZ7RNJbhoEdeNCRJj0Gvcxvhb6xBCHPb8+g6txrp+VSVQ6JrpVxjQtICFBxB0QsiOoMhUvvO5zrPsNbQ63apKsNsnrncqtZ35CIKnNzrP/poCtIihKVsvXl7e1vs7++gA4/xdMI/f+G0gwEoSWMa8qygqhpXqDUWoRRNWZHEkZsutJM3KQEpnR9MOk+dO0ndNAbr6H1KOmlTVZW34RhlWTObzvmREDYAACAASURBVBkMBq4ppSTdnjvGpZKtoV/xtedeoDGG2bygrizjg1mbvZlQ1w1FXtAfDPkbH/0oge+3UA3ZytYtXuAjlcRY5/2Nk9j5IJsWE28tTWPajD6FaRqefu5Fzly7StJLKY3zNSqt0FoilSDtOjJnU9Vk84xLV69R5ZWDMyhJGPmAIe12XNyBr/npT3yM++87SVmUnLt0mZfOXeThx57CiyL6C4to7VHVBXXdUJYFcSdAeU6eNB3N2+NUtfAfd3x4YcjO7gHz6Riv9QuNRuPWh+zh+wH9wQBjGoLWu7V+aI0kDfjQ+9/Lu++7lyTtOj9k4CO1pm6c7HU2nTOdzrgFk+l1e3zp8SeIOyFNA3mW4fnufvPAPcd56P3vRii4evU6URKRJDGzaUYUxI6YKyS7O/tUVY2wUFeGyXhKVVdI5eiJVeWaU/NZhudprl7boq6cF7Mqa65d32Y2y6mqhiAK3Z5NgBCKOAgos7yFXLxxfeToEV55+fV3lBH77a6PfOwjHOzPkdKjbhx8xvd98iIHJamtRPkRWrtIIq19pFIMhovc3LlOEES3i6WqclAg2fq4qtLy+BOPcfq1l6mbiiAOUdqnaiBKuiTdIZWVIFtEvjW3abSTyQFaKSbjAzANcRS2eaWS6WRMWRYUeQHWMs+ydkNuaOqa2XRKXlWu8aQ1cdJhcXEJa2qKfE42n2GaBi0VRZkRJ4kjYBuXC5cVcxpT4fseUZgAjn5aVxW+1jRVibKW+WyEqXPqKkOZBpqcIhvhaUNdzXjsa1/m//2zf4PUGovLzhtPxuzd3OJgdEBVt/TRKMRvr0XuXn5LhGud9Fd7rQzYFX1Ku0gJLSSnTp1guLAE9utQlOlkyrNPPsJsOkNKzUc//COMDvaxVjGezDl39jzGaKyR7O/fZG9v203MPY/BYIFer0/QUnyHgz47uzvMZlOUUOzu7pLNZ6wuL5LPxxRl5jy3bVNZCEVjQHlOBut53jcFGHnz+l8+9y++3UP8L2UpqVzh9p2AHH4H13cnd/8W13ealnm7A/GOXmy//rjL57z39NP0o+itEsy7rFsnfFM32LIm7adYKRHSZWg5A75AGMUffOZx1lcTojgi7aYMOh2WFpeIY5cHtbo8ZD7PWVhIKfOCIPCclG6hT1nmmLrGVDVfeOw0gzhlYbGHsYa6KlFaYG3DpSs3yLKC/qCHksr5+aTEU77b3AYes1HFfF6wOxrx1Omz9KKIp1++jMSwMOjx1LNnOLSyjJGtNEVIzp+5SFYW9HpdhwrHBaJKqRxeHuk8akGADi2d1Mm6irImDCXZPEfLgCTwuLy1y/33Hufoygqbmzv0uo5a5+AEinxW0u+kWGP54Hvvx7bksTgK8LwIrTzyLEdKFzJulKWpBMI2VGXBdDThxLH1ltKn8EPX3S/yOVVd0enEgMDWirXFZZdF2FSUWUNeFjSmxg89dKApi9oh2rUmiEKQimHPJ4491lb6BHGAH/pQNhgsaT+lKmpM2aADjVYaKXx2dvbQvibP5vhewO88/Sp/+6PHuHT9GhvrazzzzMscP3oIax1lsCwL/s/PPcFnnrzCb/3scXwvZHNzm6XFLo1pSHuCIPSRIgE0eZEzm81R2mcymXHp8h6e9Li2ucvJk4fwPYWwNbu7I7ppipZOtnjuwjadyGN5sU8vjRiNx3hKMp2XDPo9jIGbN8e8fm6T48dWmGcZl65sce7SdbQSXLiwSxxLjh5b5ubemOHQBTMHgU9RlJRFxc7NEQcHIy5f3uTytW0OrS2zd7BHEsUs9Lv0ex2apiaKfaQHi8MB1iguXrzBux88QRD5VFXFjRtbbBw6RByHvPTqFabzOVJadg5m3H//cW5sHlDW0O1ETgqkBMZUYGtMmeNridI+tZHUIsbXzmdjbUNjnexXKxeVYFAI5WG0h5Q4H2qVY02FUJq6FijVIIQl9COMcJKuvMipq5JTG4v82n//WT72I9/v/E3WUOU3WVxaQ+mItNvj3/nJT/B3/5v/jr9+4rgDcnjaeZ9qQ91epgSGqshddILWTs5knTQLKVCeB0I4xLoES4NUFiGgKAqssTz82FMc3VhDe5oqrzl34RJHjm603VRuA1BaTARKK45tbKADTRCEjA8ynnjyVeIgZDDoIZUbAVrrrt1N7eTQnW5KXVcI5Xw2TeP+L33PY545SW8Q+Ji2cCmrCqU11hiqvGBxOODee47T2Ia1tWU8ofEjvyVrKrLZHKUkvhcglWBxoY+n3TlpBawtLVJkc7qDlOGgT1lVhKHLA/QDj8Ggx9H1NfpJit/rEAYR5XREbTK0l+J5LnbGGuk8P5VGR04SinWABT/0QHq8evksH/74x/jMH3+On33vu4nCAM/zEVa4awYNUtAW94YoSdhYXUAHnstwrBqqukF5kiwvOHfhGlc3t1gaLOJJd/499sQLTEcjPvLhD1JUOXHU5WDvgG4vpKnd3SpJY+o6Z2Vxke2dPUCwurpCmRXkRcV8mhMnLi7k4rnTLKZD4iSkaSqH+2+BMUEQuHxIrVlc6GGty+57/dwlVpeGVJWlk8a3iYXWuvt3nc1djmGavOXe+IXzF/nIL//7t6eZ38n1fd/3AZbv7XH5uZt04oCtq2fp9Xr4YUhjG65tbnPp0gUG/SU82bRB5CXaVywsLmNsg1L69r/LdWEblISi0chokU6vw2JvgwJBHKbkWYWKPcpGc/7iJbqdBQdjKgrHAa5qqqwgCRKE8vBbL6RVAVYHmGKOlpIgDFvfYwv0aSFPnvLAC8Baqiqnbhq8IKIpp7dDs+MwxtR1e01qWsqvk6d6MnGNDyz9NCRI+lSNy38TyjVizLjA8yDPdymLAwJpMEWGryXGlGAMXpSyMOyR+hJfKjzhoYKSQ8tH6YQ+wpSEIqaRtZv2tNYtX/vthky0ebgCaZ2Er6rduW8QiNLgJ8bRRK1CSDdqCuOYwcI6Qhi0r/C1ZP/mCCt8xpMp42KP4XAJrXwiP2V97RhRKNjcus5wYRnlaa5vX8P3XN6floqFxSXyaeZozJ6gzEdIKoLQxYmo1oeo/RC8CKkDoqiL1r479t+0J7wbjfJuReDnnvk8P3dH3uN3fHJ36zvYu/zsjr+/eXInpWvICd76He98/53vezPR1r7lD+9QHvpdWeZfzXXXnLtvUGB9K+vNHro3PPdNFJGf+pmf55fvP/7nF3atptNai6wsW5e36PdCgjDFNpKinIH5elj1S6+e44d/8AGiOGAyHrO3u8fyUh8jDArF2fPXWVgYMJ9PkEqxsDigLGpm85wg8PA9n8o4ycPhtUWiKGA2P+CzTz7PfccOY+qGyXjO4rBFZzcVnhQ0jaMNekHQei0UXqDwPMWw36PjBywvDrj/3g18pQg8Tdzx8SONlBYtBfPZjIXFRaxxBSTWcu3KNqEfI6iZTSYY23DsyBpxFPHKmcusLCwAgqooMRbiTuLCn7Xk/e+5B9E0FHXBysYSf/TFJ1lIEuI0wiKYTmc89/oZhv2EheW03Xi0RLKmZJ7lPPrMaY5trCK1wFQNo50pZV0Qd0JkoJEWQBFFPrPJGCWgqhuiTgdxKwjVF1jZYK0hDCLGozESSJKkNXdr0B7Wuov/zvY+n/78k6wtdkiSmDhJ2NsdgxWu26hc+PHOzh5xJySKIgSC6WxEJ4mZjqa8evYSf8ic//RvfT9r64us9BLqMqObxsRxhNYBWV7xy7/3RX71p47ww/d28LyE+Tyj319kPD5ge2uX5bUTbG0ecHN3jyBQ7O+N6XZizpy9TBho7r/vCJPZlPtPHUHIBuFBv9tj3k6K19a79AcRG4eWSDsJr50/TxJ7DPoL7O6P8LSkrgwXr+yyfzBjfX3I+XPXWF8ZsLTgfIVpJ+Gee44QRc5fsTDoU5Q1TWMR0kkBlVb4yuWZ7e1PObKxwvkL1xFWEGpBp5dy/uoN1lYWnPHeC8jzAt8XrKz1nQw38Mizgpv7E7q9PtpTnDq+yMKgQ68TIYylyHM2NlbJsoreoI8ROU2V4eseDTlCwsVzm/QX+lSmoZyOwDhPpFLOt2LqCoGksVCVGUo0WCNRXkQY9xhP5wyGCfP5CM8TeMrloillsNLBNlw2kcIg+NoLF/hrP/EJRuMxnf6QRnh4fg9rA6IgQlLzP//LP+CnTx0n0CHG1FR1AVahlaP+zecFSafvEPeyDfWtBZ6CMiu5RYSUnoTa5bzlRdEGCzuQweHVtdbvK2hsxfqh1fZmK8C0CHdpkEZT5jlSOuJtXebURUGnE3DkyAppP6IxTn6ptcf+qA0991zYd5HNXce+nRq6orhhnucEXuQgWtIBH2wDn/nTL3BoaZHQ99ndHbUh0hVYg1TGRSYUBVEU0dQuCHo2nZPNS14/d8nBS+KApi65lXEHEr+Nu+h2U5fHKQEpKIqcpBPz2a88gckqep2EKI149vmXOLrWo7aWbmfIeDqhaAq6wyHT8cQBZaxFKQ+QmKbkRx94F9NjR9ndGfGhTpfGFljTIIRGaCdjLGYzlIXZPCcMfco8x/cC9nb2+Tef/Qr7BzdZHgzp9nv4UiIaw8r6Iltbeyz0uwhK7r3XSS59P2EyndPrREwOpkznJWHkMZlMHUJeal48fZbNnX0Or68iPXji2Re458QJtAdKw9/+4lf5AeXR66at/F21/ifDbDbndjyQBNkGmC8tLuBHQVsQlgjhNt62NQn6gc/BwYi0m77lnnltPObkxz9xxw3zGy8jRJuf5h7f/IzEUXHXHlzh7/3jv88Pf8/HCDxBNh8jDCjfBa6nnQStFEiFVh6msS2ww1FhrXVTJ6kUxmiqWuBFCYNuh9gPKTD0ekPmhfPgesJjf2+fXqdLmiaUVUGgFaPJmNLULK6skZcl0oDwBUZAPs+hyojTHo2pMbUhy12jCmvQfogfRIzHE+eZVRphJXu7uwS+T1aU+GHcSh/tbWmnFAI/CFzguZSYqmaejzGmJghT6jJDChiNDvAkmCLD8xryfM50MiZQGq1cfEDTWMDtN7qhpN/vYKRAo2gkeCoAWYO0oBSNcIRLJVUrPTc0xsklbWPd91QOVCK1i6ixFrAGgSNHo9rM3UpSS4NRAluXVE3Mcy+9zvmL1/CCRfwgoNvtsdhfY3FphbIu6C4skNcVcdIl7Q6dIqiq8LVPlc/Z3N5iZW2dpnY+3Sjy2do8TzcOqcoCYWukcDRcITUGRZwu4YUJym+n1dySHH/9Ye9yXN+1kNmt+L5PPPSOQSl3DSZvlxIg73jc9fPu9ovepHa+E7hy68emlWJanErkzgLwzrfLNxS07hW3pJq31p2F7y156BsKRGve+Jz81qMQvlvc/Vtcf9kh5m/43bfIQe/gtc/84af5kY3lP/+Ft7UpljormIwnpN2YusHlAQmXL3Mr92llaQEhoKxq+r0OVVlRN6YFcDR04gilJTf39jl2eJ26bvA9zYXL10jCkLyo0UrgeQ5KMp3O6aQB9x8/SjbPCXzfZTx5oAOFEJb5fM50khF4HlJJxgcTmspdxOqmRnsa3/fQvsfunvMLTmczev0YIZ1M0vOdr+fixet89cUz3HN0jU4n4eBgzCNPvsLaUp9uPyUIXGdrb3/EE6fPsbE0IIpCzl66wmK/h1IKITVVWWONpa5LosRJFdeHQ7JZzs29PQKtOXvxKsuDlNWlIUVVcHAwIdAeWnvs7Y+wxnBsYw2lJFVZUpQF3U7qsN++h9IB2MZtqOrMUe5EQBA5GYjEgqmpjcX3fKSQ7N50YcJJ2uNPvvgkq8MeQRA4GI52hWG3l3J8fZnI91pvhLuUSeVgBkHgNPlh6JMkMWARqvVKVQ2TgzF/qAt+7Rf+miOPSvCCgChJqOuaoiiZTKb88r94mF/8/pSTKwuMR1OkdMHQnucjhWF/f0ZRlHS7HVaXh0gBvqd46rkzvPv+o1y5dpPJZMb1zT1Wl4ZM5zPC0Gd/b+LkpbOc4aADAuJOj7qqWVnqc/7yddZX15jPpiQdj9XVZaLQo9eLWRj2SJKAi1du4GmJlILFfpcsL6mbmk4noShrqqpqPZiG7Z1dd1wYw+PPvM7NvRnLiymrKwNWlwZoLXnlzFU+8L3vYjKeMJ64XLjLV2/g6LLaSQsNWCEJfN952tosoNksAyE5feYa73nPcRpTkyQB+/sHaGlpmho/iF2OWVMw2pvSG/ZQWiGsQCrDbD5HSheWPc/maO3fnvjkuSsKPa3Z3d1nOEgo8hlacdtbZ7BEcYDBA9z0o2ks2vNY7gmmwVGOHjvJ/v4EMHTSHtks4/r1a2hf80s//0k++Zu/y8fXDhP6HrapkZ5PXVTYxhBIyc7WJkpZAt+FIEslqeoGgQspbmon04qimDzLW5mmIxvWtZMt1o1xXWlLG2TsJFraU6AsddlAI9ne3iQMJUI4KJSQbhIFAs9zE8goCp06oNcjm2cu0w53PZTSnQsuBsahzYMgYXd3H+0pPE9TlwVFWXLviaN00gTlKUI/wgpDnHrMswlVk5FGXUxjXI6g9qiqijAKaaqGg7GD9SyuLLYeH4sQiqpsMG0OJy3IajyeoIQiTiJAsJh2efLZVzh17BB+HHLiyAbj3RvE3S5PPfcyFsnK8jLnzlxhdW2ZpjHumJGuQy2kk4k+Pp6RpB3e1RjKYo41Dq4hJGRzp7ToJLGLiZCOKPf5R7/KscOHOLS6yLHD6wRR4DzFSUS/16UyFZ1OQpzEzGZT4igkCH2XAygkdV4Cgi8+/gzvuvckUeKAWtiGI4cPcerkEaR2k9WlhT6eDphOJ0ymMz5/Y5v3YSjLAq1cs1NKxdVrOzz+8hmOra4gpeLlVy9RlxVpklAWBfPZnDAIscb5tKVwMlUjHB0xm83ppMlb5Je/+uzZO6YVb7+ltW+eKvz5d+C7LiMFn/zk3+TTf/Yv+dPPf5GH3vUB15yLE9K0i2lKsC7qoigLpNStnNanqktAYZAtVl+C0HS7Pcqyane1Tk5YlCVlkTtC6XSEbWqqpmQ03mc46KK1Jgg6ADSmpiznFHWNEO4+5umaqnJB4kEYEAaRkyzWhfPZFiWvn3mVRx57hKNHjhPFEUknduHlQQDCZVgGgct+xLpztK5rbt7cIQpDqtL5Ix3d0TUllFZEgU+eT8nnozYTNOPiuZfo9RdQQnDlxjVA4fsaJQRGNszyCtsItLTt5F24LDxrXYA4op14WoqiaPcNhmtXr3Ll2hX6wzWkrdG+1xZ/1nkFtY+UHlZC2eQIARpNJSVlY9HS59q1G8yzkmNHTzE+mLC9vcXK2gbT+ZSlpRXiJKXbG+J7AZub1/E8n06StEWkoD8YoD2fMIxIooidnS2KfEYYaKwpXfM8cBmEbYGBAZSf4vkh3JrkfhtwkidfeJwf/amPfdPH890+S77pR9/OeORt6ZVv89nvBMBytyff+L62uLzjue8Wd38F19sVd7cma2/3MG1xdudr3+nU781TvW8Uk/D5z36RX/DLP+fD7hh3SwFNw9XLl/EVRGnq5FI47bIUtvXEcZv4JqUrJHzPyYTqymCFxQ9c7s762vLX6ZqeZnnYwxrDI8+e5tSRdYf2DjyiJMDUNb4fEMUx+3sHNI2h0+mitA9GoIVH6DuwSt0YkiRCCUuWz13xISTa9yjKkmeeP08vjAm9EGthPitIe13KvKRuLItLfU4dXifuRFhrSJKExPNYXB62JLXC+Xe6Ke+99ziB7zGZzFhZGiKEYjKd43saz9dcu77NyuoQ5WnqunYgAgurywPKsuTIxgpxFLQbBgj9ACEkSmmyWUanLZwuXrrG4qBPYwviKObRZ59nY3UJaz2yfI7WyuHuS8GXHn2JtbW+888V7sZcVoaqKMmyjLQTo5VA+IpBN6TbDdnf3wVb4UcRWDeFkEDgO7pdlmd0uynXru/g+xqtZOvPczmCdV0DLiR6XlXkH1rnkx/7XqqqBmA6OgCpXTERRDSN4Sd/41/x9z7scXJxQOi7XLiimJLECVev7qCVxNMBjTFcubpNWRTEoc/uzX129meEvsepU0cJPM2J44cYjybEScz1GzdZWRqSZzm7oxlLS33Onb+BAr78lVc4cWyFpdU+AkVdFwwGKfv7Y5596SIriz3SXkJWlhxaX6YTJxTZHCUFUmu2tvbxPY2SbmKzve3Q5F7bPJBSsLG2zOIwJQx8egsply5dRUpLEIa88toVHrj/CP1BilQCTwoG/S75PGc8mfPK61dQQjEYDsE0bG7u8cVHX+a+UxvsHUy5dPkmJ48tIKVFaksSe27aEYQIBVb4NNWcbFbQ6aZ4QYBE4vkJvh9RVaC9kMBzsjNPKZq28J/OXGEcBj5CgPIc1CIrKoRwEklPe1jrE4QJVeWQ3k1Ts9hN+JV/+q/5xV/6BbJ5RpL0mc9nVE3B0vKwnR6nfPozn+Hfu+det0kSIKSmaQzZbMre1iaimVPkOVVesLs/YjKdkXY6Dv5QVtRVReBJjJHMZ7kLWm4lgUIKmsaFkyMkqt1YSalQnjtGLRYMTPczhDR00pDtzRGz+ZwkSbDGSYDn8zm6zR70PQc28lrwi/YUfhRS5K7R5AeeO/+kxDaC/f0Rg0GXPM8IQwdJiaIQK6A2NUUxd8WXUUzHBcP+CkU2dU0QrW9vGPOsIElilpcW6HYTauumSJ4fMDmY8vBXnuHIxgr/6k8+zz3HD+MHGj/08DyfbJbh+z512XB0aZG0l2J8n8logqnmNHXF+rIL/b52fZNBd4Ew8nn+xVcY9Lr4gdfyQlxz59d+/w/49d/4NX7uN/4JP3XqBIEfoJSP1AJPOyCSabvTSAjDiCOH1rEY0l6HIHK+3qauW+8h+KFHY5w6oj/o4vs+SgvyrEBLxZPPvkgUhtx/6iRCOX+WRYA0CGupq5KqLvECje9ppHWezoeffIavjcf8h+89yerKAoHvGlGe59HrpxxeWsDzHYiLxk2NOx3nP97dGxHHzpNWV42TqFmB0sKBr+qaIi/ww+gOOZjl05c3+dSnfpp3sv38iyruhNZUVcaZZ77Mf/zLP8pu9iK/+wef5ocfeKiVyEu0dBRW00BZNsxnGYGfYJFMMstoMqffW8BQUZUZVZUTJQG1rdi6foWkkxD6CmErmiIjCQVpEqCloZNEFMUEF9XjU5UZeTYmDgOU1Lx2+jUunT/DoB8iTE2Zl8yzEaYsuXbpMnEkwVQIU9NUhve9932YuiQMnWQ8y6YI4xo9FktRFvh+gKlLbmxuEvgRnThkOjpwkl1TU9WuAVrMpkRR4vztNMSRjxWW0PNYWlrDU64494MOe7vbdHtdPC0pCsXXvvY0Nzc3OX78MFVVU5YFge+3JEyHe1LaTe1t65+XUtJJ+9QqIC9zuom7BonWC4qQWGOpRMkrL7zOza0xi4uHKKo583HN9avXqLIxaadDmiZMspucvPcUx06doKxz4rjPeDKmk3bJ8pzJeEJVuqbn/v5NPK3Z2dki7fZbX7xkOt5HU5MkIZ3EJ/AkTe2AVUpqmtpghIcKOsTdIbb9ni7W4Y4j075Vonn7GLzLzw+vnOTI+9be9th9M3HyGxVef5HF3ZuneXct2u42dWsfb5ajvmFad5cveTf56p3/1u+GmH93fVvr1oFg3xSg/j/8j//TN/EhtpUfaZrKEHo+QgUYXE6UaSr2dscEQQjGeVksODN72fDYs6/S1IZr17d5+OkXEAqiyGeelwjtIZV2FxalycuaH/ngg+xsH0CL4y5Kt1G5cnWT3Zv7rKwscWNrn4uXNwFJVRmMdRfRnb2RixEALIpuf8hkWrhw8Krh4OaID3//g0SdkKdPn+f0mRuk3SHGGvwwIu7ESC1R2hn5q8r50DZ39zFNSTadUuUVtrJ89gtPMxlPefalM6TdpEUZ+8RhzOXLm1y8eJ3lxQEHN2dk8wIQFGVGtx9ikXS6HYwwdPpdGiS+DlHSIfCNrUjTlLpquHZjE2tdWHgUOkjK9z5wgqIqUFrQ6/bQIiKbGKSCj/zgA8Rx6HLq6oa416fX69LpxERhwNmLV1wnG8visI/2PPqDPknawVpHONRKUxYlf/TZJzh7/vptSdz62pLr1noa5Sm0VtRNjdKSuq44t7/PucMBp9YXKOYubBigKBua0vmi5lnOz/2zz/Jn/+WPEcgUYyr2R1ucOXeeshCUueHmzoxzFzfZn8y4vjXi5PHD7B9kbG4dsLK6TOT7XN/c52B/hNaKixevc+XaNkEQUhQNBwdj1tYWWV7qEwQx991znIPxlB/80ANkeQFKgTBYDAd7JRcu7PHhh95Dt9fhYDRi0O+jdcholFNWkoNxweuvXcZWlssXt4mCENPUrK0usjDsM59lRGGAEA3aUzz82BkefeYsnu9x6tQy3dTnxPEV3n3/IYyUNFIhPZ+nX7qI1B6z3LCwsMR0WrE46LN9fQfTNOzuTVhdHHL+8jbLywNOHltsJ5IZAkWDpdPro3WANTnSuPyuNEkc1fZgjNQKawVFUbX5bQIrQXuavb0DlFAgPNJuH2slWElVCaRO2R0rkt4iSnvEQUCV5Xi+IM9d/qLS4HtQVRmNNWxtXWd76xKmVoRhQNPkKC2o6hpbTfid3/7P+Y3HvgRaIn03ofEin6gbE6cevUFKEkVUdcViv0caBVy5eIntG5s0Ve02VCi2N3f44y8+QlXdypAKkCLEC0IaU7vsJmmRSjhCIxJrBLryUcKSDkJWDh1CegnXb+4Qd2KUp917m4Zur3sb7Y8QzMZT6srFQdSNa2R5nsfBwQgpFbP5HIvFD2C4kCIlpGmHojJI5WI7hAFTOrJjlhVMRhM6ifNvKc9HKI3yPDzfPe+ykFwzaXdvD9EABmzdMJ9NGc/H1E3N3/qpj5NnhcPUozF1Q13V5POcRx5/hnlVI7TCF4LhcJnB+ik8KSnyKWU1JQohDKAo5hxeW3ZFbGUQRkLdMJ/MEVZy8ZWrNFbgxx2s1FRVQzabg4UkTdFhSN3U5AVEXAAAIABJREFU2NbrpLSHH0Q0FcyzCoQiihKiKKaqG7AeUmikFlRNjRWWIm8wtcXahh946HtZXV8mjHy0Fo7AG/kkaUoQuQDyOI7chrSGIi8IooCP/8gP0Eki4jCimLvz9urlbeqmdHEM3ZDZfIqlZmWtz+r6EGNq/p8vPclrF645P4ynkBpQDY0p2L6xSVVWxGnydbL0HRtUY/7yoQx1UWKynGx3i8/9yWeYjHb5rb9zit/+w99D0mDqiqqpCPyAKHJS+F6/x5Uzm3ie5rVXn+HFl5+lqef4GtIkRNuKfHqANSVH19egnNBke1AcEIkCX1tsPaPOD6AYocs5Mh8z27tIk+2g6xl2tovNdijHZxjGNSIfY8tdnv3K53jqa1+iyW8SqRmiyTDVhHK+x6Xzz5HtXyL1K/KD62SjbSgmmOyA7GCLJhsh6wxTTZnNM44cO0WnP0QoTbfXJ8vmVGUNRpB2uqSDPqPJlL3RBISHRbdkQ4uWFq0FyhNEnuDY4SNI64iXkVI89H3v54MPfYgyrxFaEscdwEnqrDEgBE3tKKNeG71S1zVeIFntJRwa9t0GXsg2Y89luRprsYVhuLDC+rF7+erjj/LCyxfBVyyvH6EzOAbeKl9+9AxnX93lmade5Mblm1x8/Rpnz71K6AdUZYEvJEU2Y3SwS1VmLqaiLDl66CTSCA72dshmI7odH60qJqNNhK2pqhKltCtekAipiOMuaTrEtJPa20XXt3E4/7f/+p9+u4f2d9fbrO9O7v4trred3L2DcfctWeUbXvst+vWkct3rWxO8W+tz/9f/zU8cXnn7N9/qNrSmuzIrKedzOlGADFzGi7WGPMtIO4nDSSvFbJbj+z7j0ZSV5SGBlKSdmLOXbrA5GfGu44ewjcGPQoSUVHXN5o0dojBw6GljGA76jPYn7I9GCGnpJAmb2/tc396nE/n4nublS1c5eXzddbOVI+o99sKrLHa7+J7vNP4I52+pnbQsTWKKJifphBxaXeL0+atoAf1BBylcfg2icdNA/5b0RrC6tEiWzQjbcHMpFSv9AXEnZHmhj7WG+XyObSSNMZRFyTTL2NhYRUtNXpZUZUmShpimYT5zeVsGg/J8qrpmvDcmikLAobfLrOLS1S3uOblBkZU0lcHQEEcxng/a1zSNK9+lUFy+fIPFpS6mcRRSqT1836coKmzdUFcVnqfpdWLG4ynGOBjIwcHUdd9rQ91YtOcKuzgOefC+kywtDIhiD+37gGA0HhGGQYttF5RVRRD4TPKMX3/tOn/nJ96DaQxh5CiNnnYEzdD32d874Bd/7/P8H//Je7l6/SZpEBHFiiTRrK0sUBaG6SSnl3bYHY1Ik5CNjRWUUnzx0dMksc9kMicMfK5t7XPfqcM88/xZRuOMIxsLxHHMcKHH5as3WBx06S8MXDcOgZaCNOnz1POnOXZ8FWNgNp1w7eoYpTRr64soJdjb26fb7bJ384ArV/c4eWKDPC/Z2x/z4AP3UBQlo/GIbi/l9bOXuL55k73/j733DpY0O8/7fid8uePtm8PkmZ3ZCOwSORIESQGkScosMImkLZtSSaVgUbapElW2JJuSLFpF2ZRsSTRdpizJFCVQtMRMEDltzrOYHO7MvTM39u38xXP8x+mZXSwWwC5IyaYLp6prajp+t/sL5z3v8zy/3pDV5TmMKVHSsZre884HsKIiTwcOsZBV+H6A9D2UdJ7F1aVZuvsHDEcFl65s8uC9R9nY3GGmmSC1pNcbcfzYKidOrKGkZK5dx/OVCxxBIDQI696vMmOEDfECWL+2RWe2xe7+Ac1mA7BYUaJ9x/ja398nDEICT005ds5LWaQ5nvKoSoPyfaTyCENFOuqjJJRpToEkqTVQWlBVljyb4Ac+v/r4Pj/24x9hpl1nOHCssrjms7+/h8RDkFOv+/zCL/8m33/m3mnyrsVKiTUFyhZYUxKE8XRfdz7lIi/Z2NqmntQQUpIVOfVGnftP3zP1OrqCFCumHTwnXTTGcSJ3d/YIg4Air/jX//L3eeCho5TWoJRPWVrmO22X2ioFvh9Q5C4cSgeasnDeJN/T5LljwWnP8eK0koShY82FYTBNA50mAFbGyVz9CKU8Njduk8RO7ud5EZ7nOc4kBZYCgWIwnFBVhms3NlheWiCKY4qyQPuaOA7Z3+mTpSl7O7ssLM5y6sghWh0HUY/jiLI0pGmGpzVFUVDkJe16nd445amzL3HyyArWSoRWeNWI8ThHeZJmuwlWowOPWpJMFXkKgUNn9A/67Bwc8Eu//TGOnzzJB5bmsRanrNCCfm/oPIDWJab6nqYygix1k0kLLqDJOHh3r9/HDwO0ClDaLRrZ6eTa9wIOej20Us7/V1U8/swLXNu8wZG1FQaDIVhJnuYUeeFYmcZy+8ZtXvzSFTqzzrv6noV5yv1dPv/MOZY6bWY7bQdtl0wDjSK38CRAa02/N2CmlnB0ZZFavcZoOHIS9dwFkQRKof2AIsvo9gbEtcR59abX5aeNxx/70Adf1zX5D6tz53shni35lf/95/nB7/8Qg3GfIr/Bn/2hN/OT//CjvPfet2KxGAz//Ud/nmMn95lZ3eO3nvssT15+ikevX2V9eJsHF09Pfa8CLV2K5vbOFsKU08W5yi3XVhXl1INYVTnCuM6/koJxNmTY38eTijwboX1JXKsxNzOLsDnGloTRPKtrq2hZEoehCxpRjg0bxLPEHijpuINVWaKVot/dnSa4urlGlqVoP552mRRUJaPhgDipY60gDhP6wyHal4RRjSSu4XkarQRVlVMVGcK6tOCsyPGE8+9J7bps1haEiY+VllCGFLZEC5fEa61xqBUhMMYQ+MErvFxOyijLEk8qt31SUBQl/f6BSyQXAlFKwiSmkhXdfpdsWOPW1nWub96mNBXrWzdoL8xy6sRJSjPB2pKyzHjk4bcxbRVy0Ovia59Op4PU04LMQr83dIFBoU+rUaPInboljmMqU+JpPZWWunwCP/AxQjEcpxjpOv6uM2ndnO+V++kb6Nx98ulP8IM/9JHXvR9/rTnxH2rn7vV87mtKKr/G87/8ZV/3PV45vinL/CM4rLV/49VtW2cElnytFvSdoaRLd7LGvGYQy6slll9nW9xrXnFfvz/gQ7vXuBPn/WW3L/sgcfdfIyRZv4etKuozLSoLpiypioooiijGFdfWb9GaTdwEpzQYW2JKF/NdlBWrq/OstNr4yq0uSyGdnEkIaknEeDQi8DS+hsFwQr1Zp9lICLQrmObm5lhemqdWcxPO40dWpivHljAOKYcVDT9kdqE97TZaqrzgi8++xPLCLONJhhcE5OMJkywjaSacOrFGp9NEKOcxMcYwGZVEoQM+S+2BFGgNcZRgpaE0JQjL+Ss3SWJnwNdaIZHEjQgv0AyGQ44cWiJLM7eaXRriOCYdZ1RVxaPPX2A0HLI418HkFZ5UDIYjtrZ3SLOMdGz57Be/xNJik9n5Ga5c3qFkxOLigouxnhTkufMqau1M3TPtOpMsRQeayThDIRxcvEzRWt318VgEURQThh79KfPJ+WwUTz3/EsuzHXa2u/zWZ5/m9LFV8iJ3iWtlziRNieOAyaQAK9G+j1aKm/td5NsO8eMffABJhdaC/jAlCEKMdew0jOS/+sXf5e/88UMuJjvPiWNNiaA9M8vtrR6PPnWRUycXyYqMM/ccJooCzp/f4NLVTb7loSMsL7S4cHWD08dXGQxHrK7N02pFRL7HYFxOI9kV83OtuziGopywuXmb21tdOp0mjVrE/nYfayBOalzf2OTY0TkODnpEsUNiJPWE0WjE2qE5pIBr67c4eWyFS1fXOXJ0kcFojK994jBECUWznpBlBdoLUEowP98ESoR1uYwXL20RBRG1Rp1PfPJJDi3P0O3t43seoR8QxdCsJ5y9sM6Joys89swF5mdDfL/k0uUdtDI02y7+virGXLy8QafTxOQlZZVSmAzfa1AUXYyus9SJ6I8yZucXEMZ5A8vKonVIPkmJQ1doKM93hYx2Mp44digPL9D0Dw5oNROUF1OVgkmaIW2K0ApQGOPjBTFIFyLwPY/M8uxmzMzsArW6T1mVYBVZWuJ5HkEQ4ns1zn3pIm+NnTQ4z/JpkNGEpDXDZJBxa2cPoRQvXbpMHNQYlSVfunSLmXqLp1/8EvccP+yCTjyN8oRL7PMtWeZ8hI5ppqbx7pYwdNH6SimWFzoIodBKAiW+ltOlK4OpnESwmgKHyyInihzPMC8qvMDx9Cpj8D0fYyvSSU4QRuRFjudrskkxvbZLPC/kYL/HaDDE911s/R05amVz8rEh8GOyfEKVW5RWxGHE7EyLvMynSaGAcYlucRThBQFJvUFVui7CufNXeeLZlzi0skzgK4o8c+D1OGJ94zYH3T73nz5BPQyIkhDtK8bDnHEq2N7b4WB/j3pSJ6sc13KSpgRxNE12N6Cc//B995zg3148z9seOcODImAyTLHWUJYVgR+xvbVDHAWAoahKJw3TkjzL8KRg5/Y2zUZtKguvE3g+6WRMNsmQUjIeZ2TjDKEV9UYNL/DRnpPRryyt0I4jqqLi7PkrxNpjfXOLldVl0jTH5BnnL25y733HqUU1lPK4PbhNx9N4UvDU+WscOzyPpxS2gu7eyHmslJPqGmNIajFx7LqBXuDknZ7no6R2aaLTOAmhNFHgMxyOndTWRU7yrIp5//vf/RVpeq81xKtu3+gQdsTVrS5283mCY2+BoMFKUJHmO3zbWxIm/dMgDFvbXZ68/gI/9affjS8sb71/ga2b61y7fIm//ue/m5OnLnFx9yKfeekL/Oqjn+Wz557incffTBQmSOkg18biFqVwRZZWd/hojivo+T61xKVLe9JhFQKtEVRgBVr5JLHEUxZPKqIocqFcxhVNzcRHexqp3IKCVgJrSkwpKKscQYmtcjylMCZH25J8PKAqUgf+LvO7OAdbjimL0nFH9/cRGAa9fbCSc2efZ3Z+AakEWmiMAiMsF8+dReqAOEkoUsMXH32CpdVlKHOXdHlX+eR+NakDPvm5zzM7M4+lRPrO22yEJq8qrBTYSnH27FME0RpSGWwGz509T6kKtjZ2sIVibqVGo7lMo9bk9Mn7WJpd5NThI9TrdaRQHD9+D3MLK2xu3aLVbjPKUpr1lks79h3XczAYkKYTarWYylYEsUdVFfQP9tyi99QO0jvYn6bhKu4ICavS/T6ejvCn8te7Cap3q5SvtS9/+YPWGP7cT/+EUz1I8WVhKM7Ga78infL1eOFebzjLGxqvfvNXfMBX89l9tdsdjp419ss4d6/k6716fLO4+yM4jDF/49X3vRFuyCu1/F/18a/y2OuBpf/gD/wo339s5Ws84+4HfdlnVuMJaVZQWeHizLVHWZQorRmNJswvdpwErDSYsuTW9h5JFFFVFb/76HOcObkGpkQIKCvY6w5ozjQoy4qDg6EDHCOxonKTJ1Mxnoym8epwe2sXfypTcuyoimbDgWrHozFR4tOcbTg8gxAcHAxI4oDVxQV+41NPMNusU2vEaCmo1RLKoiTPiunpWrm/RTnQ+KQ3nqYDaoQUlFVBmVWUZcVklNM7mHD00CGMLZx8ytNMxjnd3RHPvXiFe04ccSuTnvMTIh1DynmCNIfmZ+i0GvhhgNDKpesZF5DQSCLC0KMQE1aWO8RRTKMW0qjX8JWbpKZ5SVKvUeEWDkoKiiolCGtYqxFViZTKef+UxgGLNZ6nmUzGRElAVRaO5xQEjEZjknqIstCeaSKwHF6aR2qL0m6io5VLqtOem/B5vmbYG3N5Z4+DkzGnD88jhcJUzqsTBj5aSpRQpOOUP/E//S4/+wNrNJoJ1pbEcYjWmq3tXaQwXLiywdsevofN23scPrToPJv7B8x1mjz9/DrHDs8zMzNDlpUIYZmdbTKejNnY2GNhtsXVa1sksYdSkvXNbWY6LeR0IaQWR6zf3GV5aZY0zYiTkHoj4fyldR647wTrN7c5dmwNISVJLcGWBYN+n1o9QnmCMNYoSubnWwyGQ5ZWFhE6YpLmdGbbeEpgqpIw0ORZQRRGnDt3nYPuiMFwQhzHtNothFSQGa5e22Lt0CJhFLqADC9ge7vPyWNrFFlO5CvqtYj2TIfVtUXCRFFUGcODAZOJpd3soCJLZSEIHRRalIJbmzdptpZBZBTFEN/TUIVMsj5BGFAULmq/qgqKAoIwdL+ZsYR+QK83IIpiDAYhLHnaRxLgBzXXBa4ybJGitSAIAioBZV66aHxh+cS5nDe/6b5pZ0uTZpk71iqXxnmw3+MD3/Ze9MWrDiuipPPpTgMqIu0R+j5pWnBo5ShffOoCWVWy2x2yub1NoxYy26yRJDXSSYYXeFhbIcWd8AvXCSrLEqx4uWurNRs3Nnnh/GWOHl3BD/3pZzqgc5pm+EHgOk9+glIaL/TIJhMqU0290M4vFsUReZZjK8OLF86zND/rQhMsTprteyjlsCnnr1zjwrXrHAwGHFldxvOcR9LzFFU5Pa+anH7fsaeKonCS8CoHU5HnOUVZghTsbO1Sq9cc7sXTPPns85y/sc6Hv/VdLlp+it+LawlSCuY6bbSQeLEmjAP6/QFhGKGU4tbmbZbnW3TaCWEU4EU+nvbxw5DLl2/QbjUBi5R6OisTfPTcOX7yz/8n+JfXCZOYPM24dOU6c3MdwjAgCF1AT5ZmU6msxfMVnlaMRjmTYcr1m5vMz3cYp2M8X7O/d4ApLb7y+Nxjz3LPPWtgmTLXcpdMmjngs+d5eEKzt99jdmaGR596gSNrK1y7us767R3uP3Mczw+QQtCIAv7LT32RH7zvBPccXUaqir3NA2xl8bTCj1yAjisoJKY0CCEpigJPB9M0UktRZChPsr/fJwhDlJQEvsfNjVs0azFKOzzHB37qv35Fl+E/jERTSoOfNHjitz/KQ+/7CI3mMns3n8DqAis9zj+W0JqrUa/X+Nb7385f+p//Gb/z+Rt85zs7/LtPnmXrVsqRpUWWlzJOHurw7ofn+eDbYr73A0f5N194kn/9uY/zxJUXeNfpR8AaZAUV5q7UXkpJUWXTaz5k6cQF/kiLMBaFCx0xNgfhAorc961J08k0BMqfwr8rV6ApF5CGgKosCCP/bvEWhk7Vo6QBkyNFgbXTf6vShfCYjLIqyNKSdruG70viMEJJHy+UtFqzDnguBAJX5DjG66ILRsElbuejlFarSRzFGCqU9py/31qnAi4tM5158smYWqOOkdJtg5JYK9jf69JIEmZm50lTy6WLz1CLZxmXBe32HK3mAkmtRbszy6WL12i2ZghCn3q9Rlm6368wBUJLJ6HXLy9GhEHEcDCi1elwc3MDKTW+H9JotkBUeMpiShckpKTj9gLEUYzvB1PmnuvPGaFROsZP6oipBF3cNZl9/X3w1cXdf/d//k1+5Ed+wD32WgXSa6g+/yBMvX9f441u013f3av8el/hx3vF+GZx90dwvFZx9+rxWsyQr3jslRroV4473bhpEWPslFdl7V2UJrwsyXzl6PUGPHTxWTpTr4c15su34ZVdvOlrjXUek4OdfbKiIqm7gANrXJCEQKCnsiaEoLffo9cbcjCYkIQuMr1ZCxECfK2o1Wpcv7HF2cubLM036Xb7fPrJlzh1dBUlFWXlYKQSx3arTOUmTkIRhr6bmE0N0Vor0knm+HmZm1RIqSmyAk9Lqqpkb7/PyuwMveGIZiOmqgy9/tBdqMPgblfVmMqBhJVEC4XUmvMXr3H1xi0akYv7d3Bnwd5en8WFWbTnoMJCCD7xheexlaGeRPR6febnZ9CepnfQJwxDx/bynRSzzAqSWkKW5lMfT4knpSuGpCKMA4oqY2GuQzouePql85w6fhRT5ZSlcTKn6T5ysH/gWE2hjxQeZW4wVc54miwqtUR7HmVROBltmk1T9yq0dmlkURw6aO3UByWEII5Dh1+Y+i3vgNdNAXdYWMPJkC9wi+9815vcCvxwTBglWARlnnHzxiY3bt7mL/3TL/Dzf+KQS9TzXAJqnERs73Q5cniRT372Wb7j/W9xHKSyYHe3Rxh43NjYpXsw5K0PH2d794AkDpFScGNjizOnjzAcjtz+biytZo12u06tFpNlOdYYBoMRge/RH4wIfZ8vPHmOhx86xZcuXKNRj4ijgDAMqdcix7IqS86dv875i9dIkpCZmQZMv4vxYIRQkivXbtNsxKTTlMc4DhkPR4xGY1qzLaR2wOZaLWK32+fUiUNoT/P8i1fY2esx12ywtjbH9ZubdDoN8ixHSEWzXsPTms998SytRkQce+zuj2h1Wihtwbhu/rMvXOeee44jtMGWCq19hFX0uyNCX+GHCaiKPB1RFSV+2ABRTiPPLVWRT9NO1d1ocZeQV03ZR8ZJrD2NEgbwUcpjPJpQawRURTplWkp0EFGVbnW/qgw/+ytP8B0ffDeNZps0y9zxmaZUpiKJEhfAoQS/8E9+kQcXHZ8RC0pLirxAior9bpd2q45QHvvdPvuDAWeOrpHnGWeOHabb6+F708WKwCMvcocPUQrsnfOhmBZ7DiSspvD2i1fWaTcSavUEUxpX4AnpFofCkNFwhPYD54+pSrSvyLMchHCJg0pR5CV5WhKEHp1mi7s8NKCYsiLLsmIySVmcm+O+e06QhKHzh2HI8wJjK37vM4/RaTZpNBOSpEYQeASBC3MpyoI4jskzhybxfI9GvXb3N5RCsDQ/y5GVZQcznq6693oDPM/HlAXDwQBhBUkrQXueO7aBIs9odxI8VVEVGVjJZAJYie/FXF/fYnZmBk977pxqXUjWra1bvPPD3874mefw/ADtecRRRFVWhHE4lThKwun2lkXBcDhywTaV5PNPPcO9p45hjaFWS9jd2ScKI0ajCbs7+xxaWiSq+YyGjo85GY8J45AgCqmKEs/38LXPwvw8n3/iWfZ6Q46uLLKyvMhCp02UhPzeJ75APQwxouQTFy7z/sUOG7e2aDZiNjf2SKKApB4ShAFIQVmUbsFrPCHwA8qymgapaJjGxd8p1F88f4WF2Rm0lAz6fVqtBmiPLM9I3vWeV1x5v/KaLaaJjy6A4w9nMiusAR1z4Yu/y/VBwLWrN9D5DsYILq5bVufejKVyXngL77vvbbzn9LewuzHPbzz7IsJvcf5Gl08+vsvqrE+rBpN0SC3xefPJgI98R4cPPHwPF7af4x/+u49x9sI5vuX0g1N/odvfpXbHlVY+ZZnfTdUNtO+6aAKsVM5b63tgcZ0kz0NpPU1iLu/OY9R0TmONcZiDac/U9x0DzxqDEi4111gXBGWNocwLPD9EYMBU1JM5xqMBVZkzHg9c8qx1x6WU7nfFCpAVCHc8IUBqUMpjbnYJz5NIZUFKsqxkMpkQBCEWg0CiQ02jFjEeWzY2dqnXEjxfI6UmCCOsKfB8zfqNDZqdJvOdFS5evkwYNrhy6Qq7u/scO3aKk6fuw/dd4ejmAhVX168TxxFJrYYfhnjKpZZKKaGCMAgZpxMGgz7zcwvUajWnhgKYKqa6e9vUaon7TYwLPjPGOO+wduFmQkegAsI4wQpATos7+IaKu08/9yl++Ic/8lX38ZcDSL76/PerDaW+ynz438f4Wm261whlufuViS9HIXytrf1mcfdHcLye4s4aM13tfflkX03vY3r/192R7zyXafv3VQiE1yoO/97P/hzf3al92Xt8vQPMAukoY2N9k+MnjmCkRhjnhTGl5cqVm7Q6dbcCZyCJQ0RVsbi0QK/b58XL68x3miwud9xE0PdpNBocX53H8yWBpzh1eBkqyNOMnb0+tTjGlIbRaERYi8jynDh0cf15WRFEIaYokMJ5iKQSVKUlTQt+7XceI5uMOLq2gB96lHnFs19a5x3fch/KlyjtEXq+kyQIhxQwxk0ApZTugmOdS7GeJPgIZGl46vkraKVYv7XNyWMr5GXqCqjAY2e7y+rCPAtLTRrNmDTLiOMAqaSbpKUlO1v7hFGA73ug5HQFTXH7lisWhNBM0hw/dJr/mU4TYTw+9ZkXWF6uk8Q1x5iTClNVd6UPjmGt8JS7uCkFXugTxTFl5SCu4/GIIPBQWhJHMVVpHcdLuBAYYyq6vS6NWp0iLwhC7+7Essicj0wqqEyOQJLnEx6/do3w7Wu8/b5TDp5uXOT8Jz/7JMeOHkYraDQa/Klf+Bz/4i88SBTGCOEKzShOppOdiqpIObo2j6kqrt/YYXl5lmfPXuH40WXGk5R7HzhBrZ6wtb3DoN/HlAVoQRh6zM61KbOC7a0DDh9b4tkXL3Puwg3qYcjlK1ucPLGGNZYnnrlAkRne+677uXh5nfm5lvsukggtBOfOX2OmVUMpSadd5/ixVeI4Ipvk7O/1CDyfG5v7NGoJ2STn0uUNjqzNsru7h+8JBsMRkyxHCc3eXg+swVYVZZnTajXxI5+1Q/Mszre5vbWLxXLkyDzd/S5J5INwDC6lJJ2ZGlES0tvdJc/k1FcHipC4HrGy3KDIC5T2KEauKLu1tcPc3AyWiQPyBnV84OqV63Tm2zhUl5NXedpzBaVyvjStFRaDFoaidJ1coTyE9FEqIsvG5PmIpJ6QZR5lMWbQ7xJ4AcaA5yeA6+Z+/lyPD37nByhLaDRqzlMHJHFCVQ7p9fYZTXr8g4/+Jt9/5tQ07MU6v5yUCG86obOWPDc8+cIVPvS+t3Ht5k3e8fBDWOD5C1eYaQQ06gkoD08HwDSZzgon7aoMt25u8W8//mkuX1vn3pPHiZOIUyePUm8mWCxq6oOxwlCkJZsbW7xw7hKHj6yifSefTEcTanEdHbjJauiHHHSHfOGJFzhxdNUliHqaySQjDFwnWipJmmV42nnzrIAoCl2S7GRCkVekWcb6zW0euvc0UlkmkzFaa9I0d6EigO+7LluR5tNClLsLeUI6b8zO1j6f+MKTtGs19g96zC/Mo32PYa9Ls1FDez6jYYq0ku5OlzQdo0SFDmK0qBj1eyipiRPXmR2SEm2ZAAAgAElEQVSPUp596QrHDi3z8c9+kdOnjqN81+nIyoz7vuOD/Oj/+PN897Ej+J5j4QVJAECeOWncaDgmCAKwglpSI52kRHHA4uwMtVrifI1ZyWgwIZ1kzM12OOgdIJVjjA37Y379dz9HbzDg+OFDYATSU/R7A6wpSccZayuLCGGJQ5/N27fIioK5uRmqvGS2M4NW8Muf+RQfXF3hxq09rLHcc/ooYRLghYqimKYGKsVkkiGEdNw05TydYejfRU7Yyik4VpYWpn6rEl9UVGVFECcoIQje/g7XNr17xfzy8fLK/h9icSc0pdXcPv95vvNH/gyf++JjvPdbHuIv/91f5+3L30l3f4dmq4mt3ITeyeNBKcG3nnkr7znzMB+8/62858zb0eVhejsr2OxBtm8uMdg9wu//dspP/cKv8tL6hL/7k0f4vnd1SGYv809//3F+7dHP8pYjD1PkkE5S/MhDS4WwFouDcxtb0R/lnD1/ifnOzFSVAyAJg4gsy9yizDRtUk7lgG7SP02jtBaJO54RrriTU+mrUpKqco+/+MLTFKUhijTClBS2QFpLkeVcuXSO2YUVtPYIg5iyyAnD0HWljbvOVwZGw5HbB4RACoOUBoHCCLCVonfQc3imwPnuijJHYskrwc3bG8SBJogDMJqnH/8Ch4/eQ7ffZ79XYqUBG7Dfu83i4jFmZueZX1ig2zsgiiPiOGZj8yaeDvC088m5fUU6VQLKnSOU62J2D/aoJTVGoyGh9uh292k3W1hKynQIpiBJEoLAcx7JclrcVU5lUVQlYZSQV5Jacw6069Bb64o7Ad9Qcfe2b38za4dWv+7r3miJdkcZ8f+98VpV38vJmF9rfLO4+yM43mjn7o637hvV4LuT4suwxTuyzdcqDn/u536e7z+67P7zOi80whp2N27RG0yYmW0hpytXTI28L527weGjS1igKgpsaUjTgp29LvMLMyzPd2g16hSZM/EKKdBK0N0fMM4rgijC1y55UfmaMPIQSlKainq9hic0ge86blIrpxa1BiEU/eEYL1JMxhMmvZzPPPUC3/VtD9Ju14hqMeNhhRWGnUGXo2vLgMIU5TSQAi5e3aQ1M8NoMEJNZV0uhrmcXjxKvMAjrMccPrJMZ7bB2uo8YRyQpyn1Vo2Dbp/9/QHtdg2LIEkS2u0G/YMBVAahfQSK3/r0szx033HKsiBPS/r9/hTmLen2umAFO90eL129zokjhxgPxlhjWFycYaY1x7PPX6GuPbK8RAnBeDCku7tLQAlCuPRRY8nGY6xwgRZZOiYIFGbYpags1za3CKOIMPTxggTlaXoHXcLI+Q2MMXiBoigLfM8nTyv6/T6+L9EyAASmzBmVBT9zbYc//eGH+c3f/hT3njlJt7tHFCqOHF11Cwul4Qd+9jf56fcHZOOUer2BQPL5L7zA5uYeaysLeL6HUD7ac9HRtXrIzvY+Z06tIZSi1qhRTEb4nqLVbhD4nkMRiJDOTI2qykmzkq2dCb4HcRKwutSh2a6xuNjm8acvcOzoAs1aRL+fsrDkOHt3JMCh72ODis5MnZsb21y4fIPOTIPQlw4FID2SuMbmxg6Hjyywu91leWmOQ0cXEVKycWuXudkWSRLRbERgJWlacP36NmEgmZtNuHmzR7MRkWUTpHQ8uus3tlhcmCHLDf1hhjGGC5c3mJud4YuPXWLr9pClhYTMlCjP4/btPWaaCVq7zs04TfGUJogEQegu/lrV8YIQKx2qwQrBJMvwyNDKhXxURuMpGA8HhJFDI3hegJKKSV4RJ67w0RJslSOUnnZpfCygfPCVh+fBaDTA8zz8sI6xFmPh2+9v8J/9t/+SH/6R/4giq0jiBvv7u/SHO4RBhzhpEYQxv/prv8F7FufxrcSbrtBLq7BCoK2kyg3rG7exEo4cWkVJybkr1zh8eI1zl9c5ND8DwoUTWASUDtFkRO5kTQjqjYTTx9a49/Sxqf9P3KXiCul8VAjuYgPiOGJhKjEEJ0cWCPKyQFgnPy3Lgij2OXZkCSEVfhgACg/Nb33s08zOzRL7Ptev30RJRbPVxhpD76BPLW6wfuU2QRBTqze4956jWOv8u74fUKYVvvZYv3md5164yPHVVdJJTlyPMFR3J8Gu++Z8bVHkceLoKmGoOXv5PK0kphbVnDxbSoT2iBMfY0Brn8l4TKsxR9gIKEuPdLiFkiXKayA9QZq5sJpGs8k9p45TVtUUu6E53FngB3/m72Gs4YceeABrPEQgMVmK8pxsTSPpH/So1UPKSqKUhylL8qKgXm/w+NMv8cy585w+cYikFRDGIdr3mJltYUVF4PsEYciZk0dYWZxHac329j61lkKpit7emPEw5ZmzFzlz8gS1Ro2ZdpNnzp7nxNEjRLFPnARUVcW/2drmR88cZWVthnqSoCRkWQZSEUbx3VROLERRQJalCCy+DpmkYyrjmIa3t/f4xOdeYHW+xe7uPq2ZBqYsMFYQJAm/9Ox53vo9H+aOm+iO8kEIB/K2dwq7aWfklQDzrwcxN8betd3fud25ZhshkTZlc2ef3voVgjzjL/7MP+KvfO+fo5iMWFyYRwiQVUWgfCdnD0OM1ggLmjvbWFHh+IRVlk1VuJbFlQ4feuR9vGn5FOXgDL/3sX3+ye9/ib/64w/w4bdHtJeu8Pf/5Sf59ac+z1tXH2H7VpfWQssF8ViD0j6j8ZiNq5usri2gtHY3z2OSpSjliuayrKgq4/42JINBFz9y3mcrBIEfUZoCJ6EOqGz5smXEVAhhaTZbtOox0lq0FNgqc75Kz3WcO7OHkFM1gsX5abWoKKsCpGC/P2a/nzHbaJCmqWMcKo+iKpHTbqsfeuRkIHwEljgIKfIcIWBhrkMtiF1oWQhYDxVH9PqGy5vX6R1Y9rs3OHr0DK1mm4PePkWVO0UGMEnHLC+uuEXhKKYyLg+h2Wxy+dIFQs8xeAPfJ01TLMYlRQcBzdYMWZ4hhMKYDKTFD3ysKYHK7QPKLWRI5dKtLYrKatAJYa0+nQ++XNTZNzgRFdPO59mbL/LQQw982X5aGndteOXt677X67jvzng16Pyrws7vvNcdT9zX2Y67aJevvbWAwL6qmydenQTzquGSkL1vqLgT/8Hal98cXzHKsnxDX/6rMQVvdAj5leSLr/aev/Jn/xTfffrE9EmvbzOrvGT9yjXarRmiZp2qLBh0R9RqCXle0NsfMLcyA9ZiCkO/N+DgYMit/QPe8tA9VJWDEPu+R2kqpITJJKPZaPIbn36Sd73pHtrNmEFv4LpLoeMSSSG5fWubVquB7znYqtKaySR1TCljqbcbGAoOdns0mh2sMGgPirRAa49nnrvE0kKbxaVZ7pTPEufJ8TztIK7GsLO9y2PPX+LU2iKnTqyyv9fHD3w2t3aYn22xd9Cj02nQbjcRxoGdtecxGo0oy5KZVoO8LLh5cwuEYGVpHqk1WZqRNEIO9oeUhZtIXLm5yfrOHh9695vxPRdC4IUSjEup9AOfPMsxRUGtViMvCroHQ65vbiEQnL22yQ9+6L185vFnCbXgfe98E+M0xwpFlabUksixjYzFjx23btTbI6zVkZ7PeDghUBIVhghbMT0jYQDKklGaEgQBfhBDWVJVheNMVW7V8G89c46/+1MfwlQGqSTZKMUL9DQJUNPdn1Br1PmLP/fP+dn//G1cvLjOobUFBoMxcRRirHVSxnHKfm/IwlybIAjY7/aII7dyGgQ+Gxs7FHnFylqbIAwR0nmgbt/aYWFxibKcoD1Jrzem1ZyhrCZUpaHVcj7OwWBIo9HgytV1Zlp1fB2wP9hjdqaN1iFXr95kaalDXA/wpObs2aucOnmIwXDEl86vc+L4KjOdNgJDOnET2ND3ybKMMA7AarIsxVYV3YM+S4tzjMYTtra6NGoh/eGIleU2k9QQxQHdgz4L8zOMJ64zcOP6BmtrS3fBsdev32I8zslSQ1XBobU27dkWUkkm/QFJFCF8F+phrUVJD1NljMcj8sww6FsOH2mDCLFSIGyBqUq0rBiNh8T1BlUlEFWGFBbhh5SVcCpsa6mMdWiLokRIGA2GKKVQWhPECUIKjBUU4wGRlvQOuhg7QHhzJPUEIZxn7D/9xxf46L/+3xgNcxqNFmC4fXudOK6TpjmznVmslfzAD/9J/tl3fRdm6sMFiYoi0oM+V65co54kLC4tgdA88/xZrm5u8h9/1wc5f+Eyg4NtHrj3Xrw4QkjPyaiVwIjSyU2FxFTOH1PkOUEQM+qP8CPfqRyEvesdchf6KQfPGpT0AEtRThAYF+svXaHnuuYGKTWTdOyCN7TP8GBAluY02g2EteRVSRTHCE+Sjkf4gU+RFtza3OGLz1zk29/zCPNT1qWU1oHIp7LbPMsYjIbUazWu3dhkcWHOeY+mUGRjLHlWEtcSLAaMZTgt1qWEvMiIo4jh4MCtrIuI/sGIPCuYmanx2ONn+dbveCumtIx3ryJFiQxaZEVFpzNHJT2EnMrnpOfCqYRTZfzY//1vKKqcX/6e70apGkYJrKkQUpFOcgeNHo+RssIPE4qyIB2PEEIRxRHjccne7h4rqwvTEAzXMcuzDOUJqtw6CV1ZYY0gzTKiyOOg63ipSirKwvL5Z57j2Noqh9aWUAqqUqCUuDtxy7KUH/vN3+JfvOcRJvmEwAud5N1XIF2UfT5xjDxwviRr3aTYlJLBcIgfes7nZS3pOCUIPYytyLOUUAoqIGrP8Nyt27z7b/8djFDT/enl63H1OnoU8mtch18LsXDX86Zi0vEAT4z4jX/1z/kf/pdf4W/+6F/DV4osm3D2uc8xt3yIQ4eXybMx9TAiyyowIH0JpnQAc+tRmdzJ+ikxpaEsJXqaZGps5WSl1qClA6JrrenujfnHn/1lpIDVuYgPv6vJtzzY4aO/d8Ct3SHPX9qnMpYHaicJPM2Hvu3bXDiJdfgSkzu/PlMWpaFCK8c+vHF5h9Zsg1//1K/zrhPvY/l4i1/72G/w4MqDfPTyb7/iN5sGvhjHZjt9pM356wcY4/BIBoEQHk3ZpM+I+5uneMt97+SZLz3GO978ZprNGsqXFJOSK5fPc/zoUQbDHo16E2Md8F0JA0Y5jAAVthSYQIAxU78yOE2n8w6XBYwnE6SwbG/3UVHIhXPneeiBR3ju+ec4dvwM8wvLDEcDpBLMzs3iex6D0YhanJBmGVVpGE0GdGZm2dneRkhLvVbHWrhxY53l5VXyvEAqSRRH1OKIYb/PaLhDsxFjrUMPaSUx1mBMNV1Ec0mf0kvIK2jOrmKl/rr76Ncbd4qgB7/3NGK6P9/ZT8s3iAl5o51t9RpPr95g+XM3ePAVn22scQE0b+D1d97j6xV3AL4XfkMt/D/4r/XN8f/LcbewewPDWkurWUdqRVG4Qq3eqCGQJLEHxt6VkxostVpCvz8m8KYgVV9RliXPvXSZtaVZGq0aURRSFiXve+u9eMqlUSVJ4GLEy4peb0Ach5xfv8V75mcxJqU/GNFsNGjUXZiCH/tOtpTnVMZipfOHlaWTWlgLaZEzOztDmjqfkfY9Bgd9txIXeAhrKPKMZqvGOx48yWSSsXFzh88/e4E//h3vwFeaMAg4vDyPjiRSWPKiYme7y9lLN/ngex+mKgoGgyFRPeLYkWXKynDQGzI713E+rqogqQUIFHmac+bYYU4dXWUyyRiNctqtGs88f56jK4ccKNdNIzHGMuwP6Q1HnL9xk/uOH2F2rsObHjrNaDjhzadP4CnBOC9BaUxhCMKAQX9ErRExyUrKsnQpjkHsoPNWTEMKUiI/pNcb0GrVKbKC3YM+y3Mt6rWEojROJicFk0kGUmAqRVqkfN+HzpCnGZVxnZ643iDPBoAly0qazQbf+1d/kT/z3hbGWO677yRbW7ts7XR54N7jrN+8TeBrbmxscfLEEaQUKK2Yn+vQ7w+4eOUG9997DK0kVze2WVxucvalqxxaWaDVarC0OMvlqxu0Z2JmZ5vsdwfMtDtko5wwChmPXaR8ELhuU1kaWq0mW1v7zM86oPZoOGYwmnAsDtm4ucXirJMMp+OMPCu57/Rxtnb2abUaXL66zr1njpKOC/IiB2BnZ4+DbsahtQWk1ORZyXAw5vFnzvOm+4/RbjdptBKur29y4sRhtrb2iKOALC3wAoWQTAG0PZJ6QhiEHDm8zObGDrWlGuNJzjjLaeH8EmVRceX2TY6cPOSgumHkVv2Fwg8CRqMRi4tzZHnquuNYlIu2w2LxwhhjnE9SC9jd7VJvtQnihKqsXLDANM1sMplQqyfUGw1sVaA9n9IYrJVU1tAbpPitNlHcpNfvEnglkorKgOd5/NKfPs5Bt0uns8RkMiHPU+bm5ynLgqLIMMZSlK4rIqVCaUFZFs7kby1xLcEPAvqDAe1WA+XH1OOYdr2OrQzHDq/wiWsXscaglUQoCZXrcFRlhfKcj64sc7Sn3CLMYMRgMOb2pSsszHVod1r4gabICyoMYZC4lGKpwEjAMB6NqdUiTGXwtGI8StFSAy5UQ8qp5DovQMBMp80kHVNLEorMYpFMRqkLrZGSSTqi3W6TJD7z8w67MR4doD1Fljm+XqvZpAKG4yHtdoO1lUWKsmIyTvE8TZHleEHgvIoACLI8J4qnKcXGorVPkbso+cFBn9Zsk08++hne+eb78QLNmZNHqfISqTV+GJNPhgiT4+uAyWQMykf7msl4TLPeZDgYY6zjIs4Jw6m33YOpMkyp0XGI1I55l2cZcehTFCVBKMlzl6gZxQFaB+R5QRAoZtpNbqxvMD/fwQtdMRjGIVVV8tknnuS9b3sLUkgG/RGfeuwpPvz+tyPxMJXA9xWmKvi2d7/FoRa0uLuQefnqOpUxHD20huf7lMM+/YMhcSuku3dAGAQ0Wg3noxOCMApIJxOkUm7iK1xH9MqVW7y0vsEfe/cjSOHOgePJmKQ+Q1FULkBjMqLIXUH4r67v8u4/yEX5GxwOV+NYqL/4Kx/nb/3J/8Z1lyvB9s4OaSUpK40tndIjqyouXb6M59c5dXINcJ3ap598nDwzvOWtD+N7FiE0165eZnVtDT31nWmtsVZRljlSK5CK2bkmP/39f9alImIpiop/9A8+xZN711FK8vM//QhhYJiMDf/r/7XOrz39y5xf71FUFQI4ulTj6uYAKQSHFmvc3p/w137iFFfWKz7wfRF5Bi92De/7wFUO0hE/+Rc8sFd5v3cfge9jypwoDHjqySe47/4HkFI6mWK0gIcmLQ1e2KS0M7x0YYfDp+5B6RA/CPiun/gIH//9z9L3K/7h//Fx/voP/GVOnjiDtTnNZps8z5yPrarIjUc6TmnUfQQVQuI8e8Z5UcEFQ6VFihCaYT/jyuUXuP+Bd7O7fYXVU4d40yPv4LFPP8bb3/t2dnd36R7s0mq10Z4i8AN2dncYDgfss8vS0jIlDl0U+AFlVdJptphMUoyxxHHiUE+lIYqdImR3MsSX066VNZRFhsBMi2UIAhd+V5aFK0itRelgmlEgX5EG+o0PaywHBz3azcYf+L3+fY7XKuTunEOEUq/5mj/sIf8A0uxvyjL/Xxyv13Pnuk8vH1SvRCW8+vbqLtudVEyLW3W/o9lw6WvmNaUe3/e9H3lZkvk6h7WW4V6Xfq9HXK8RhBHCuB7YsD/hNz/+JPccX2Q8mRD4Hkq4lf4iL5mfaxEGPoPhmEajRjqecPN2l83tXQ6vLU5XqVOSJET7ml5/RFFWSClo1BK09ui0GoRhhFQQhhEGnP8uibBYJpMcpSXdvQEY4yYXWeEA5HnO0SMrZFnBaDghSWLKqiAMAoI4Iksz1q9PtfJRTBAo5hbaNJt1ji/NIj2Pjz36AitzdVrNiKrMkUgEkk89+SJVCYeWOigluXH7Nu1Gk5sb2y5QwPNcahwWLT1GozFh6JNNcs5f3GB1dY4g1HT3R0wmOYvzM2gdMBpOeObsZfa7A56/dInjh5axwGyrRaNRo9cdEiURB90eSeI4ZX6coJXiX/3Op7mxuc3xtRVu7dwiqYVUpqBWD1HSZzJO0Uo407kEqXw8peh1+8RJQhSFpJPcxflrB3SmcuRkPwzAwNVjEW85fYQ8Tae+FENVWQa9LrVanbI0vPO/+AX+/g+f5i0Pn8QYw3MvXGZpcZbRcMKNjR0XMKI9iqwgCAIGwzFa6buex7lOAyldQt3yYoe0ymk1akxGBXv7PV66sM78fAuBA0XXazFPPXuenf0+Eku9HnPQG+D7nku9M9DrjejMNCnKko2NXTqzbcqypFGPaDcbnH3xKmIKnQ2jgE99/iU67QQtDUsr80wmKbY0jhHme2ghiOOE69c3OXfxBjOtGmHou2JPWxDuWFTSQ3uSKHIhHUEYID0JRlBLmly/dot2q+7SAYuCSZoxNz/LrVvbvHTxNvMzNXwt2ds9YDjKiOOEIAh54qlzzHc6WAue1oRhzO/8/rPsdndZmK0hRcl4dADS0O33qSctyrIA4TrOfhDgeQHWCtf5qHK0VHd14UK6OPjKVE4KfSflrLLUmjUsCi8MydOUbDLA0wIrJMrzUZ7PX/kHH+PbP/h+fB0QBB57e9tuUhK4NMPSFPzoj3yEg0cfRyo99ZEpinyCkJJ6nFCVJTt7uzSaDWpJjXOXrztZXLNGI45p1t1z/CBEKOdBs9YVvA45YFyAhdPD4Wl3btjtdrm0fp0ja8sUReE8YEXp5Fpl4UJlqoo4DsjTDCW0k69VDlr86UefZGVhHq0FeeFYYEHoA5ZPPvok823XiX706Wd56fx1zpw6jikqwiDkhbMXeO87H0EqF2Lz6UefdMfs4UNun5ECrV2HygsCqgKe/9I5jqyuILXrRpZlRRCGd4H0SrtQHWtcsWxLRTYuHI5A+ZQlJEHAysoCQagYDVLi6P9h702DLbvO87xnrbXnvc987j136nlAAwQJGCRIkwLFiLRNzZREU1RMlyVHVlXKshJVRXacOOVyqhIrg6XIVlVKsuyKFcYRZZGWOMqUKJIgABLEQGLqudHznacz73mv/FinmwDYbIKMUo6quLvun3vGPnfvs9b3fe/7vAHStSlSE3YuZQZYs2vArClSCiqkibDwXCzb4vTaOlY34E12iJS2gWFYjlmDZrK3rCgN4TBLTLNKKNBmQpNMR9TqIa1WA6kklmXWwCzJWLu5zUMPvBHLkiRpjO9HrK1ucfzYQdbWtvjSs8/zhlMnqaoc17FwbGUkfSZXmvn5LvUootKaLM35081NfvrYISxXooTks489h84Lut0mRVkST2MQwsAsgKIwYA/XURxZWuDS5VWqwqgR/NCdZaCayVw6GTNNc2rNBm9pR9QfeafJNjNXye2f12ba3VpT4Ruby7tt8+60F7ilQLFERVmVoBw++u8+xjvveytrq1dZWDqI4/oEUZPLl05zfHEZiUDZAadfvsz67ojl+RaWElRlie34zLWbNOstIz8uNLt7uzTrNWzXNqoJIaACTQlKkqVgSeMHrqoSqQVIzcljx3jnvW/lnfe+hd3VJa6c7vI//N6fsNOP2R0kt2WmUgiGE0OqllKyPzQwtC88vcsL53f5xBc3+MxjW5y7ss8nH1vnc09t8+kv9/nU49v82VN9Pv75NZ49O+H/+MRlcj3Hl7424s2nQkMHRjCdmCzCPJ+SZgnzc3XCUNGu+0xGMeNJihN2mG/6/PSPPcDf/99+m3sbJ6g3faSURiZdFEihePnGDmfPnebA4ZNou0TYEqEVQtpkuUZJDCitNFTdNEmw7YAiqNgfjLl2ccLO7pBoqWR5foW5uTmarRZBGDAY9knTgsGgT7fbw/N9XM9lOjHrV1VVpgi0DJRmfWOVKKrhez7TeMpg0Me1JePRLqGnoMxRClzbNkqGIp9FRBRmEiVNHmiOhe0GKCeYMU2/u+P2OTm7Ng49sHz7fP4GbOTOe9q7AQW/6XfyloVJf9P97jQku6ss8w6vK2ZQvVdem99qgvh6VJGvCoO/A4Cl+p4s8y/m8XpkmbqqDPlshqmFO8srX3n/Vx4Vszy819x26/d3kmX+xPs+wL9991te8aR3f5u3oC77q2tkSUKrN09ZKhxLkWYV165s0GnVUI7G842U0lIO21v7fP6pczQbDu0oYGcwpihK3v7APQRBgOs59Id9Op0WeTzGCwLWtgf0FudQUpJPRsRJymic0J3roCvwQxMYWukSjfmSGu0OcXyfsiookgKRF+wNRiRFzonjB4GKCsn+3phOt4PlSOJkOsP5my/OdDzGsRXCCdA6Jc9zXNvh5pVNztzY5K++6y1YqiKfjrAcl6IwIIY8K5DKRggjDTHB4QItoF4PyZKU3d19FnsdPv6Zr/GD73mQ4WhEPQrZXN9j6dAcZZXj2iFFWaAsENrixvV1Nnb7nDi8zP5kl163TRBEZFlJkVe8cPoC9586ShC55FmKrUA5PunULJy24+KFAVWZk0xjk+NUloSRyTUbjycISxHUQnThsr6+QW+uRZym1JsNpFRG0mpL8iJBYaQoP/fVl/jwL/8wo/GQequFLQqSZEpZCtwgQlU5RVXxD//15/jv33+c/b0+UOB6PtdXd7Btm3vvOc71G+tmMjua4joWlmXRnWuaWItmHV1WXHr5Gou9NrbrEEQhiJI8Ldhe69NqRbi+g0Zz5eo6vfk2URQwHo8ZjiYsL/eYTqZkecH2Th+tYa7dplaLePa5MyhLcHilx+JSj/X1deo1n9E4ZTJJ6M2ZKI/+eMz66i4PPXCC69dv0p7r4vo+uxs7zC93jD/u7BWOHD5IVRZM44TpNKY338ZyXLIsZnt3n2a9RuDXkbIymWVSsLm1TXOug60cdtf6hKHPY0++wINvOsz+YMzBlXnKosJ1Xb781Fne8fApbtxcY7E3T5LknLuwwcNvOcFoNOErT1/kr7z7Qaoq47kXr/CGe45j2Rlom8CziKdjXN+lFArPkeR5Sl7lSOVi2x4KzWQ6JQw9qrIgS02uW2WCavUAACAASURBVFkZQpzWgoqSMs9RQlBkOZZS2H5AWmTGu6gtSNcpKlBeA8dvkuUFv/bxS/z9//E3yLMSz7exbIElXbIsZb+/TXe+xf7+Hn/3F/8J//Z9P0aelVjKoSonZGmJ43hIqVhfXaPWChjtJzz34mUefvA+vMDm+dMvMtdu0G01aHXnKbWRbCtlOtrTOMExmbyMRhParS5nXrxIFIUsLM2hbAHiGyREXQkDV6kqsiTBcW3yNINKkOclnm/gSGVZIIUgThIsKVC2Ip95YaqiwgsisumULE2wXZfrq6ssLnZJk4Qg9FFCUmoLz/Vuy7Qff/JZVha7HD52wBRUlWR/u0+j0QBdsbmxQatZw6sZX2pZlIzHMdM4YXFlEV1p/uiPP88Pv/td+L7HU099jb/8tjeTF7GZwA1zNtY2WVjukOVTXnzhKm84dgK77fPMU1/jgWMrOO4Yy64jlMujT7/IO9/yFoLIp7IUQlimsJFAKbE/9G5+4UO/yG+++z1mauqEKF0hqgotjZeZKiVPYnSpiRP48tMvcuRAj8MHO6RFRrPdoio1WZbR3xsxP9fjwtlr3PfgcYoiAyqEdujvDfECD+WK2eQv4ub1l1ma7xqAU1nh1xsk0zG2bSOFwblLoRhsbxOSkOkYUcHazX3a7QZBw8OxFVmaIoWhuTq34is0FEVMnsPXz1wh9B3uPXGYsB4amI0w2YnT/S38MMCuNfjVp8/yTz/827dlma9ap19HcXc3Weadjt/57d/Fti3+5s/+GEiPkoiP/aPfY+FAxHQyoNGaQyqbZDJiPNhhc+s63fYcC90ORZ5RVSXjOKHTbKB1QVEVKGG2+J7tkgOlADlr3Bn4SYLt2GatBZ784tM8/NYHsTxlGnMI8sJEAVRViWO7xiM/U+VQFZQVoCWrq9c4fPgkmoSiMJJPpRRFXrK7u00UNbA9OWtqCy5fPM+R4/eaCJeqhKrCskzQuRBGnimljUDPCOEV41HOb/zpvyS0PMalgef8tXcc4QffvkgQzlHZDa7tljQsRa2uGffXmZ/L+c/+4Rf5Jz/zyxSF+W7IsgzHdZmOYxM3IjVK2AynU4SwWd24xoGlJaQEx3KNjFUUXDp7mf6wxLIiTty/TBJL1m4MOXpyicCPkNJmZ3eXTqfDpZcvcfTocXZ2twjDkCSZstCbZzwZs7Ozw8rSIfb7fRPGbimy1KgzRsMJS0vL7O6sgU4JXIFneyTpBMtWptmvKyqtEVKTJubzVsIilQHt+QPYXs2c099leXe7gNOaNCl4+IP3c2sXe0uW+e0kkq+tVe5YVM26i7r65vv9ecgyX/te7pq99zqv129VpIKZcrqu/12N7743ufuPeNxtcncbnjIrzO7WwXjlcWt6ZwSHs27frYndK+936/evOc6dvcDfroazN6G/YUj+pjc4M9MK06XXeYmqBHFWEjZrBgVeViglqDcDvMBIHaU2tDzjQapo+wETxrzx5BEiz2O+1eLMxXV6nQDHtvA8lzTLefHcVXzLIXA9PNsmnsQIIbEsh82tfWp+yKf/7FkO9to4njLFXWUjtIOlMmxdYgtBPKl49PR5HnjDSUK/huu6aDRnz95ka2/A8kLLaPsBZTsUecGnvvgUb7rvJMp2DfZcCCxhgBidbpvlhRZFkZHEE4LAoSwdkBZ5WeFFIUmaU+XJLDTZxXU80+lXikk8pdGugaU4eqRn5E5UhPWAxlwTXVbmM8gTpsmUvCz47BeeRVsVWZVz7NAirVYboY2X5bNf+hrtWkhFQb1muva27RjsPYI0K3B8F8tRDAYDbNuYyZWyycsMLA+UwnJcwsAlnkwoqxjfCsjKIZO9iuurN2jVfbLUZBAJbYhgZZbys3/7HZRVbhZu36ZAIGwHx7Uo0illaVMVFZ94/AXec/8ceVHR6rRBKpaXe+wNRnTabc5eusS9p5a5ubZNr92ht9RBSkGSZXi+Q384QlSS0Sjm5uoOvfkmk+GUIAi5ubFFnGV051pQ5kgBX3nmHJFvwoZ39kfUQ3N+Oa6iVvMQWmA7iiBwOXiwR70e0G43DF7btYmTjJpvG2pnWdDfG3Lx0jpxmpHHgq2dMa4lUUiSaYKjLPp7RjJcb0QIKbn48k1qNZ92p00pNM987QInjxzC931Gkwm+55NlJV94/EWOHlzC8Y28zvN8XNfmyKE5RCXZ3hrg2BZVWZi/UZbTajV4/qXrbGwMaNZDDhyYZzjqk2Sxkfu6Ac+/cJXBKOaekwuG5ma7rK5voRyBF7pIUQIGeKEsDyVthFRoWWFbgiydEE/HKMdH2Ta6MrJgKcyUWkpFWWls18UJAiP5ExZlWnL9+ga93jKj8QDPzZCETEYTxtmUEw+/l1ZUZ7TXx1USoSLQgkajxXhYUgvm+cCP/wCf//1PcnRugbwY355+uK7xvQkBIi+wHMHBpWUcx8VyBDfWt2jXI9rNgI2NTcLIMt49aVHmkk998kt05uvUay0s6dDf3WVluU27NzeTbQqEMF1+aSkzDRECQYGUFrqCLC7Y6w+4cOU6lsUMACEYjyf4/oz2qgVCKxzLQ5cCXaUgCkoKssx4V6NaDYnNZJjyZ499nZPHT4ASCAXSliyvLNLpdbCUDSjKvOTmlZusra8ThQGr6zvML3TQoiRLC1zXpcgLvvjUkyw25glDj8BTBF6ArjSea7F6c51uu0tVVVw8f5n13W0OrSyiK8nK0iIvnb1AsxZx/tJ1qqqg1wgopIXjOczNdai1G2gpkDMvppQCVYEkJ7nvQT7+8U/xvuPHkV7IcHdovFMSkBVIzd7mCPKcvMgJ6wFLczXmOk1sO0BJs2kmdxiM9lld3eWlM5d5+O0nSdPcyEtLzWQUk2cZ9UYNUQl0WSFVTq83RxqboOig5lBmFcqVmNwyC2U7jMcTPvP00+yvrnPsyAGEEqTTnPXtPXzPxo88tLilAjEU35fOXKXbaqPR1Oohnm0KntWtbebm6tyaQ9yKkRGWhe26LLiS3rv/yp3X7Tv8UGmENhMHgSkAXwtZqWRuFuNKG8ujBqFLfuoDf4sPvP0/Zdlb4bkvXuUf/Op/y7//dx/jJ97z4wgL7Dxjd28P2wlJpjmeK6nVanTCGr6l2BwnPHPmDKeOnzBTOKmQlUSiEJYixchrHSGRKkBLTaFNU0eXs/9AqVleWcJzXbQwsnGhgAqUkCglSZKpuR61IJ5OyaqSrz5ziZXDPSb9mLDj41gupTZxCUIKKCV5WRCFtVkGoUJqidaKeiOirHJ0IZnkBUqBrAqU7ZJXFY4CC5NLGOsS37V556k387aTD/ADb3w77zj2IL3Ovfzm736ejz76PI89e5G3v/378IKI51+8zsqhgqaree+7uvwXv/4HzBddektdw+AVMz+nMDAQqSTbOwOuXLrEfW96I1gayw6QpUUlUuJRgXQcNArp+2xu7XNsaZmpgosXryJFhe8b6mYQ1oiiOi+/fJ7eYo8sT2m3O0ynMVVeMh4NCf2AojIKGl0Zifj62uoMApThej7D4YDADymqDCXNmCgeT/AcA6sqygohzfddUVTUGiv4YRNtyVfB/F71MwOsCCH4Vv/0K4pCy5L0TnVvT+5ub0/v0uC44zVzx/vzDVjJK6eFvBrU8lpgy52f6w6yzNdTYH6Hxy3v3R33+JrvenL3veLuP+JxV1nmK7Ljbk3GXo/+9pbU8lYo83d6/J2/85/z/sOL3/jF3V5zdnVLBOk0ZXNjk3o9wnIcEGZ8LZFMxjGO7aCkCeT96Ge/zL3HVhiPp9i24sShA4RhQBAGtJo1evNNfN9BKYlUJg+pEQTU6pHBItum87m72+fc5etc397hxOEFTh1fIogik3dXVTz+9IuM+iO6nRZ5VaERjKYxl69vc2xlnptbN/Eche95tDttup06XuAZOdwskFejaQU+Ugo+/ehTHD96CGU7ZEWJV4uosgw/8LEsG9dxmY4S0izn5as3saXE92yuXLnBM2cvc9+Jwzz5tTMcPNBj/cYOuzsDDqwsQiWMJDOeUK+FBKGPbdsURQllZmQc2iz0nuNw4tAyy4sdjh1ZZjqekOeazz35deq+x7GDC/iBw8pCBy00tYb5PNI4my0+0mR7SYHne+RJRpLEZNOcqBYgpOn6TUZTyrygKCtsO8Cv29gqpN7xaYQt3NAzE0mp2O+P+RcvXeRHf+4RptOEOM2o1evY2EitUMImnsaEQcCHP/s0j371cX7kvohrq3v05ppM04zhaMx0MmVlocvly2s89MBJJpMp02nGzs6YuW6DJE1pNE2eXC0KOXf+Og8+eA/Ly3NcuHiVnd0hN29ucvTIIr1eFyEEeZaxtd3nnuPL2JbF+uYehw8vmMiAGYo+iALjzXRsHv3KCyzONbEdm83NHeq1ENuycByHwTDm0ScvcM+JFVzPxXUk9506yNzcHMtLLTZ3tllcmKNWCynLkmvXNzm4skieJezt9olCj7X1HQLPxgsC5jtNPvOnz3DsyAKbW3tEdZOrdWBlnskkIQx9RsMJ48GEra09mq06lrIoioIsy1nodaiAej3AUhaeo7j//mOcu3CddivizMXrHFlZoNOqMxiOOHRwjt3+iJ2dIYuLcyiladTDWadZoZSaLSx6Ji0TM2/d1ARMjyc0mw2k8EDLmYlck+cZZVlhWxZZnmLb1iw+xPhZpZI0GhE72/v4vkueG6JdFPm8dHXAR/74Bf7SA29iaalHpVPG8RTL1gxHuzRbJiQ7yeC/+93/k/cc6hH5dTQVSirywviZkjhFIAxRdn/M1vYuUc0Ur8cOLTMcjgh8j8CfJ0tAWS5CwfHjy7TaDSMvFBpLabI8BiGJJxMcxzKelBl9lFmsiK5KpDJAlvW1DaIgYGmxx1y3S55mWLaNEJIojBhPRziujVSQphOG4z43r+9QrzXY3x0xGsb0FrtIocjzAsuyeeP996CcW9Et1Qwfb8idaZqQJQlKaZqNFsoWNDtNVg4sYTlqJu0xsirbsjl17ChBGFGWOZ25Nnla8PUXTnPs8GE67RZyVkD25uYJPBfXc01Ug1Rcv77GKIv5yw8/iO+7aFVgW0Z+qiybLDOTi7yosGx7tiBIinjCP/79j7G7v8/PvOEUIPF9H6XEbf9Rlqa4rsfLVy7TqtexPRfP90nzgk9+7nGeO3+RB++/l/E4QUvNQm8B3/MYTycIIQjCgCzPsC2HZrvBoL9Hfzii3qiR5xVaF9iWR54XSKlIpiWO5/CJP3mUxbkOtqUYjwe87YE38djaZe5pNXAsSRCGLCx0zN9MmoLCddwZKEcSj00xKZXkudMvc+rEEUQlOLSyeHth1NoQHpPphCAKEJbNLz99lg9+8Kde91p8a/m+PfW4U4e/koZoiKBUklIKCiz+4CMf4z1vehe76y9TTHb4/vse5v6lI8SjHaaDPerdBbyoTl5WNOttJtO+ka6KilTHtGptDswfQOjEnJdpSppNEdKabZgVzz/zHEsHlkHkyEqQxQlVBWmezIitFpYysn0hjfw8S40aw3I9pPLZ7+/j+RGWrUxcD7CwsoyqMpqNiEqXFJlZA42fr0LYEIQ+VCWuZaPzklIXRFHdFH9asrW1yfb6Ju1mB0spsiJDU2BbPlmeIoXL4489w9xcE8/3UJZFkRtwi9SCh08+yCP3vZ0T3VP82v/8f/FHTzzBpz75eb7/re/CtnM8T/Nj7zrK/Q9b/PI//zCP3PfmWTbezDIDVFVFvVan1WwjKEwUeqn51Ge/wKGjh9jc7rPV32c4HFFvdtnf26Db7VFvdmk1amRJxqA/oBZGCEtz4eI5jh07QRiEuG5AlmQIS1FrNAijGp7nU5QFaZbS7cyx399ncXEJ2/EZjkaEYYDnuihLYkvIshiJYDqZzPIaIUtjsjRDV5qwu4xX6yKUDfL2UOwu+8HXV+js70w4/NDSN8uMv8NC6W6F1XdadH23z/XnVty95nm0vmWoEt8r7v4iHq+nuHtVJ+8Vfrnbd6tm4/Rbt73m8a/3ELNi8PlPfJLvX5l/nQ8yP0JDMo2ZjEwIt+36xpNRlrOuvmA4MDh0gHuOLDMaTmk0IiPFUsY7oiuD43U8i35/dBt2URTG8DseTWl2a5RVRak19VrI0kKHhU6TMHDNxtLxbssfLQ0b+7tEboQbejieRxB6nDiwjGUL6nWDy0cLnjt/mfluE0TFeDzGC1yG/TFh6N+mq3XrIZHvMNzdoR65FGlMUWmTpVdpBnsjorCGtGBhvk0QuFRlSRR4HF1eRiBwLYuoFqJUSbMZYLkQp1NsR5kNnBSUpQmHFlVlcrAci+l0Suj7ZGmGGzgMRhMsaYAOQigOLnbpdBpE9QAhMLIKyyDR8yynqiDPC4IwoCxK4iRlb39AmeZYSuAHERubu0S+S5nnBIHxAxZ5iVQetqeRwictxnhuhLQkeVHyxSef59cvXeNf/KOfZDgaE9VquJ5HVVWsr14hqvnkRYzrKtJ0wtXLp3noQA2tNUUlOHXPEfzApVGPuHJllXrgsj+a0GxGJrMIja0solqAUhLPdZFCsrO9x5HDiwhgOBgwnsbce/wgVVWytbPP0mIXhAmatS1JlhV88ckzPPTAUcJayNPPnqXTrFGUFWvru9RD3xS3uiQKZptQCVKYjCTHMWHG9xw/SJGXhFFAuxuRxgl5XnFjdY0DK12zAZn5oTY292jWQ/b6JsrC5JdlhIFLWhRIIJ4m1CN/RgUsANOYmU4TPNcjm+acuXCd+04dod8foSTMzbcIwwApFWfOXaM332AaT5nvtbFsCyErup0Gw/6U5eUejmPTbBiQRr8/plELuXlzh04nwLas2aYc0IIsnRq5NtrgoqXEtc10zLZtE4ytrduG/LwosGwLNTt35ax5YOQ3JkxXKollK/zQ4+r1HTrNFqPxHo4N9x89wKMXCn7yfT/C5auXac8beMB4PKDSmfEJBh4Shx/84bfxX//v/4YfOXFqBlcpsRzb5Ii5DtNpDGhGoynPvHiWN5w6xEK3bTxSCFzbwo40yoOSCsexzVRECMrKgFqUPcuVVArf943CsCgYj8a4nocW2nSGMUAjAzeJQEnKsuKJrzzLoQPLhm4pDFlTaIswqFFkJWgz5Wy26wShS5bn7A0G1GoNlGUjAD/wERIKXRp9kdZcvXyDZJJgCZdHH3uGpfkeju0wnoxptusICUKYYOP93X0ajQbXrt0kDHxDbK1KiqIANEmc8fSLZ7j3yDHiJEYIUI6aAYZK9vcHaK1xfZvlxQUWluZw/ICiKLE9RREbZYcQkkpD4PsUZYllW7dzpmRV8oWdXfb393hnvUlYq5lmnzTNAxDG76ihUQtwPCPFVbZt/KHS5tTRw8YvqCpqUQPbsRgOBzzx7GkefuAUAgNvkY7NeDSm2Yqo12tUVYXn+WRZDJVtvENFwfPPn2dlZZHt7V0OH1hmNBnT7NRBgFMMabkeUsNwPEUqgWUpQwDGwEOmk+T237veiLBtI8mtiopGo46Q0qhTpJoBqSRFnuK4DtKy+OiVNX7mg++/65L6ykiD28vsHYq7WxMEKRyElFTaTIAtW/Jf/r1f4Vd+9Je4eukMohhQTifoPEGKnCqPCVyPWnsOy1Z4nkcyTYw/e2+f5555ES18psMN6rUA0IzHYxzXrOvKEpTaNHIWFpbAMgWv1JI0ybBth9F0iEBh2w6lNrFGeZ4ipcKyAq5euUirO8fuXp/d7Rt05xdBG+mkEhLLVVhok9UqHNAVtm1TFrkhUWqL0XA485dpNCVCKSpd4DgBqzeu0Z1bpDPfwLbNeaq1JE0SykphuRbCguXlZQNPs+xZMX4rS9MU7mmeGZ9qlfI3fuiDfN8bHuGf/f5H+IkfPkU+sviDj3wWJUL++g8t8I//9Wd4130PzwoUM8qqdIUuc5TUpMkUz3FJk5iVxSVCzyYZJ7iuR1x6VEXO0cPHGMYpoReQZVPAIs8LHNfFcRTzvUXUDIa0u7tHs9nG8RyKsmQ4GJBmGRtbqxw7coLTp18iSWKWl5dZ29o08JIyRUpNEo+RusS1rdnEzYTM68qEw1eVwvVryPo8yvbN3lBUiErc2fgpxKsLs1efvN90dz9wXjW5u/2wOz71t/fevfIa+W6Pu03nlG190xv8ToPV7/ia0ryW+e5+zXNpuPVhf6+4+wt4vJ7i7k6HeM2FZJbK/3fHLTln5+tfphMGr/NBs59Kk05TJpMRtVqI40eUpaEoUlaMx1P+w1ee44F7j1KUObZj43kuL5x5mdXtXaZj4+dRSjAcjolqIZ7n4vouW5t7nL90g26rzc21TYLQwQtchJQoIUiShPEkptmqk6U5Yrbh+uifPMEjb30jrVrIE8+eZ65VMwWUkmgkbuDgug5ZZrLM5jptBv0RrXZj1qWvyLMCP/BwXGfWwQfXUji2YNgfMJ5OaXY6ZtHVUJalWXAsyWA0Nt1FBLZrcfbCdZI4YWFhnjwtePTrz+NaimYzwg1cyqpiOpzi+R5FUeK4Nvt7fZqdFkJIvNnm1XUslGXjej6WbTanjmMhlXkP0lJMJjG+59EfjKg360hpFvGqqnjiGeNBCgKfwHeRWhPUfUPjbDeRomQyjQlDn8nEhAz3R2OiKJoVOTZSCrMpBKo05Z3vfwuRJw3tzrbIixwhBb4vyYrcIMyzjN/8o6d530NzLPY6LM538FyHqF6jLDPkrDGxsztkkmS0mzVAsLnVp9droSvNzt6Qej3k+RcucvjwErrSvHT2MroqOX5smSzN8FybwHMpixzXMQHrm1t7zPc6HFxqs9cf4Pk2B5d7rK5tU69HtNt11ta3adRCbtzcQkpBEDj0++OZf8fj6rUNLLuivz9hfXOf+bkmRZHgOi5ZUjKJY/IiJ01zyrLkwqUbLC12WF3bptmssT8Yk+clJ04cun2+WsriwNI8SZph2Rbnz10jTTKoKmq1kP7+hOk0oVUPcF2HIAqoqpKvPnOWWuASRhFnzt+gXrOJQh8hBOcvXmNlZZ48K4iTjHotwrIsJpOY4WBsGiqew5Gjywb9P8tqy7IMy5boqpwFNsfYjkOWpNz6honjqUGilzmWbTIOi7LAdszERmtNkWXGdI5h7FS6MlEilaasMsIwZGd7QL1uzhPH9fn0c0Pe8X1vI6qH5GXOZDwljAKCICAvNNeuXicKfba2tvjkZ7/EB07dazrJQt4GxQhhwDVJMjUS5TShFhi1wLX1dabTGEcJhG2kg5NJjOt6FFmOMrhQ0iwz0BbhzKbcZpMulMJ1XfO3ecXrSnFrCmU8Q5Zt8+SzL3LP8YO4ro3nOViWhUCRxAkvnD5Pt93G90OqKsVyFLZtIzSkWUlUi7DsmWxR6JnHSEKlcWyLrz77IpevrbE/mFAPPIqsYG/fTIS1LsnzyviLtIGpjMYTer0ue7s7Rn5tQg1RyqLbrFNkJY1WxHgyoVaLKIsSP/QRWtBoNWZ/4xJhGTme57pAQTrtm7gB20VriWUp4jTFc5zbypEsTvhSf0B/MOBvPfAmKmnNBsH6FRsjQVUUVFWFUpK8yAgjn/FwRFFolpZ7JlczcrCVS5JM6XRb3H/iHnSVU87gD7bjUGmNrQx+X1rKfFd5ijSpeOZrL7KyssDRo4cQEppRjZfOX+DYkYPYttnUtqoEoWyzuUXjB97tQrSqNFUlGI8mvHjhCq16ZNQxtiTwXYLQZzqdYlnqtt9SWRaD/gjHFgbBj+APr2982+LuTsv+3SZ3ZaWNrLEqkLpkZ2ODA/kJyMes37yEZ1smAsT1QVpEkSEUZnlOkkwY7u+xt7tnGjDKYnNtg4WFZfzAMR5vaXHl8jn8qI5SNjdvXqHRaMEMQqRsRVEqBBD6AUJJHN9AzuJkiud5ZHmOY3sIDGyo05lHCI3ruLTbXaoqRykz8SoK4/XNs5j+cAqOiyuNgkkpy+TOSQ/HdmaSV2UsKNrQtvO0YDwemWvJMoHmQptGjOvekpobb7PWBnwkpSn8irKk1BWuM2swODaOY3PgwHGqMqXZrHGscZxf/fAf8lfffohmo8uNGze499QKP/TIMv/N7/wR77jnIYq8wLbM2mwpBRJsy7k9+W3UW1RVRn+vT6VLbm5NyJIx8902Zy6cZ6HbQyNwA5/FpSXG0xGBb6Aqo9EY23ao15qmiSA1/f19siwhTWLmFxZwlMPiwhJFYfL5mq02g/4O7VrIcLBLFPqAiXMpiwJlOlzkWYpAoZWLEzSwowbqVvyBqMzneMfx3d3UXd9829bakKMPL7/u4u71HH+exd0332a8b8wae38er3f7eV8hIX3V8YoP43vF3V/A4/9vxd0v/9J/xU+vdL+DBzFT4Uji8RSqnCgK0VjcAoIVeUaSJLzx5CFsW6EcOdODu5RpztpOn8BX1CMf13VxXYed7X0ee/40hxbnCTzTTW02W1RVQdT0ZmbsimImiazKigsXb5ImJfXQdPJPHlzGdhykpVjuNMirkjhO2NrcodFtkGUFUnqz4mWErAT1Wgi6QgK2ZdDoWhsjdp7nuK6DsFy0AMt1aLSbaG02irZrGyN3kSIcl8kkYWe3j+s6pEnKkUPLOLbFS+eucuPGLlt7MW84fgghLFwvQEoHUWZUM0+PrrTJllM+L1++SeA7eL7J9pHSJk9Nbs90PEZYFZZtJqSWcrhyeZ2Xb6xx78ljDPsjLl9dI5oh0I8cWMKxTTFoOwbdrK0KxzNB5ZYsDFnQMdOLNMuJ6jZPPn6JbtfBkSHjeJswCPjgF57m7/3iD7DYqRlQjjQTEDPBEWZTYQUI6fC//N+P8wuPzBPVHM6cu0IY+Oz0J1RVxc7WJtu7fbrtJqsbfU4eX8TzTGHs2grbNhKfrZ19wsDj6OEVnn/xEs1GyJXrG5w4umyCqUtNfzA2eYeuTZblCGnhe7b5+/kOnXaDqqq4fmODA8sL+GHA5tYe3XaNsjSFLVrT7TbY2e0TRSHjUUJvvosQU3zPp9VocOXqvLPmSwAAIABJREFUKp1myHAYU68bohxaU69F5GnO8koP13NotmpMpinLK0u02k2EUoS1CNtRFGlOPE2o1SPyPGe8l9Kba3Lp8k1cB3pzPba39snyjE6nhVSKF89e4uE330dUCylLs6GtdEYtDMjLgsWlOYQwTZLlpUX6eyM2NrZ56tkr7O9PTedXVFhKU6s1KPICqbSZUMgKKUyTwkg1zfRdSTXD/xvJmtBTsiylrIpZrqCJMrlVjJRlSVWZLCo5i+yo0EinNIVTaeG5ZnKZZAkf+fImH/rQT5EXFbbjIrFRygQZSxyazQ55ssFS9yQ/+SM/xgf/p3/K+++9d/YdkKMsi/FoguO4eL6DRLLcm8cPzHfNXLtLs9YgcG3GQ009bOFYHlWZ4TgSlI1UCqEsykLxJ3/6FNdWV1leXCQvKibjhOFwQuR7YJmg6fFgwubGDmFoCL0CM+F98A0nEUKjbLPJT7MUx5OkWUJe5MzPdY0EzbZNvh4Wju1x4dI1FhfmkUqSFznKEkhhY9CDGsdSHD24xH1vOMxcO2JuvoVtGVqolJosz3Atny888VVOHD+IlJJWs04cT4jqAbqsZnI6cD2Per1GWAv5sye+zIGFBc6eu8yz517i5NEjOI47o2sKEIqyLLCEzZkXzs88xzEmIsYnSYrZ81aM9vcJAn82ybX5V089za//xq/RuH6dAjWbvJhNvK4q07ouK6QlcFyHZDIlSydEUUAtjIjjGEtBlk9JJyVlmeDYEoWLlCV5WbCzu0dUj1DKFMmVLg2Zt9AUVYklPXRR4Uc2ju8AFZ7vcfDA8u3psms7/MoffIIfOHqIOEnxQg8hJVmammaHFLiuj5KSxXnj/TXTbUMhTbOUIPAoysJkvc2KwjD0KYvcyHcti0+u7vDTH/jJuy6p33FxJwsEBU987j/wxT/+DP/yNz/Cm4+fYn/7Gp5j4QVNrm5vsXzwJJMUtrc36S0uM9i8BkVK6LoIaSbAYRDRngtodhT7w5LzFzfozbfpLPbQUnL16jXiQUFv4QBK5oAiSSueePZZFnsLCFnMwqFtKl3hex5ZkSG0ZDSY4rguWme4tkIXGUqY4HvPdSjyEiVttvbW2e9XRHWHs6dvoj1FzVGmaQE4jkNRZlQUWLbLxnafZ7/+AkeWD5KXKUVZ0Wy0QeXI0nhiixIc10IqjdYFVQGOcrEQYEmm0ymT6QTXcc2UFYdSG1BYmWfIwiiIoKBRb/Kf3PcIq5ctPvrUl/mln3+EJN/A8+AHH1kk6mzwv/6bL/DQiftnVEUMcVoo0+yWkKHQlqTCpT43z4WXN2nXQ44dOUy9u8LqlYtM4pIDRw5ghybM3ZEeUikc12E6NTLKOI6ZTAYMB3163TnqUURS5NiWy+rqGuPxkFotoqoyfFthk6MoQRfG81qVeI6DlJDnGUpKXD/EDjq4tY5RgWiBkDNTnZaIP4fiLohcFr6Dyd3rOf6/LO5gBg0svxFW/r3i7nvHXY+7FXffKtrg1m23gCswq7HuEI9wtwLxG4re2aE1v/Vbv8P7jy6/rvc+a4aZ168Ek8GUNMtwfR9rNuUyIZWCIHRNoKmy2dvex3Nd4jih023R3xvT67VoNOpIodjbHZBOc4qqxLUsXN/G8RSer/ADB10KirScSZISkmkCMyPvfLeDdCT7ezFziy00oJSD61koAc1aSK1eQ+cFo8GIwPNAQxpn1BoBWVEYkqTrUmkoC4PetpVgOh5jWYKyzCnzkjRJIK+wHBN6K4VgMBjiBwGj3THDwZhDh5dnPklBMTOEr6wssLTUIc7HHD+yxNlzl2nXA1OcYEKKhbSwpGJtbZswcJjrNk1GVRjguj55UaCcWxkomizPzeYGmzwrabYigkARhRFZUnJjfYuVpRZpYpDSuiwoy5h+f5dWd46i0Ijy1sYegnqDogRhzWSrlsdg1DfZb47A9nx+4cun+cg/+FHG4wLleGbBwPiDDC3RokgypBJMJmP+1Rcu8cNvrFFpTb1WJ4wa+I6DpQSTSUaRaXZ3Ew4f7pFMUs5fuobvKprtOi+cvspct0OnXefZ58+zu7vHcq/J9s4erm0Rxym1WsCll2/SH04pS6g36riuC7rCsWye/fp5RoMpZVHgOS7tVp3nX7rE/FyDMHCRljND2wsTp5Dl2LZDvz/h5touK8tz5GnF6XM3mOs2TKF+5hpHDx1kdW0Dx5bs7pmActtTRtJVVGxu7qJLULJEygpNyWAwxFYaZVvYnkuSxji2BCGI6jUWl+ZZ39yi3qnheYp4UpCmKVDi2RaNdgM921yWWUJWaFrtNlKZ3La9/SH9nSGTeEJR5XTaHU6eWGA0mtCb69AfTCnynEbXYzAY43tGqktVkOYFvueTZglSGvM7FeRFwu5OnygMiZMC16vhOCF5mmI7wsA0BMZ7Z1sIodjf2+P6jW2ajRrTyYQwaN0+P3b3E7q9BSaDPj/4UA/v6PeTJTGyyEjiAX4QsNsforMxu5vXiNqLFJVGWJKPfPQPef/Re1DKQiqLosjxXBstq1lGX4muSlOkCIEUmiQeMp4MiFptHN9FOBaW41FVxn9a5DlFmeE6NieOHaQbhbi+Q1FonnryeYa7I+aX5lFaISV4vkMU+aA1Ss5kqRr6gyGe65g8vUojpEU+LTh74TIHVw4YSh+aIkkodWEaLRIOHVlmOjVhxbZtQWW+0xBGFieUwvI80iQjjEKUUgRRyCQeUm82KCtFXhR0mw2EJWfYfkGRVYwHMaXWKEuipENVFQyH+3hBQN2LiKcZR48e5OgRU9jduH4DXZS4yqbIctOIKDIazYjPPfE8B5ebaJ1Q5RonDLECSZXNcupsD60NrfBj58/xs3/jp9BnL0JZMB5uYCkXaQkmwzGe7aJthRQW0poFgZcFCEGZ53iBi+N5VBnYriKODXimqFKk52PZDo1m00xXBZSlRkmHPKvY3xtgK0UynbK00kNZkjSeGpmskuRFajaqZQ5C8ekvPcZfe9NJHn/6ReabDdwZ9CtPS2zLyO43NrZBGJy9tBXSEqRpjpIOX3/+MllsPgPHmdkMqMjixDQFlcVTueK9733PbdnltwRC3OF3BhShv2HNmA0SEJJqELP98uP87sf+hL/73p8ni/cp0hjPDdBOhG03iJOM8WDIoUNHmSYpjm2RFxmD4R5llVGLmthuSBi1UapGnufMz3fY3Nhkde0auzs7HDxwD82mhx8YwmWR5zi24vDKQTzPptQlWitsywORg4Lzp8+RpVPCRhMEeK6DVAa0dQvykRdGrpxmCVJLpuM+jVabg8tzRMo2HjHXnUnYpKFgC0mapFhK0aiHNBohBrAmqYoMKRVSzkAVGL99UWi0KLDk7BosoSgyBqOUrz9/jna3i+9JdKENuXgGIxuORghlG5lpmTIcDwjDkIeO/iX++W99jvd8/zLpNMYPOlCVlOk6LfchpNLY0kSPIPVMAaG4cX0V13FIphlXrp6h2WgRxyOSrOTypRd5+K3fRxD4XH75AvOdHmmSYbk2k2lCGESUufk/tOo1lGWzu7OD7wVMplOkhiSeMI3HrBw4SFmBjie4nkV/ODAgJQej1LAs8jwhnU4RgLJ9CruGHbaRtmOk57f2eFp8i8Lu9R2vtBd97BO/x3ve9wOviun67p/5Na/zOmWcdztuwV/Ea8rPbxfH8E3RJd/uPejZa+hXSEHv8GF8r7j7C3i8npy7b1XcfRP98k4n0F2Ku1u3vPJRX/yjj/PeA71v+5Ze+0BdVkyGU6QwaHaQFHlBHKdorRmNxjQbDdCCMAhI4owLL99kfzDg6MFF6k2zWVFKsbc3IM1yTp04jOe7TEZTY5AvjCl+OJjQ74+4emOdVr1GVAtwXZdPP/o1ji31cDyFkjblTMMPEqqK0WiMlILxJKHdavG5J57jhdM3OH5gAcuyTAbe3oAgDGbZV8Yv4/nOLMfLBH/fWNukWWtgWRZB0KCsCrI8x7YsXNcjmaQ0GxFrGzucuXydwHFpddvGHycgnYE7Fufb5HnBQrdlPDFaI1FUsws9ixOCwEHZFl7g8tyZC/iOkYcqy6EsMsq8QghNWRkPRBLneJ5Dlud4nqIqKtCC+U4DpQRuEBqZTJaSFxn1eoRWHkpZDAcTwihCYp4PIaCqSOIpRVGyONdBCEESp1wd9vmbP/M2ksmY7c1dXr50BS0qojDEnm1sgFkcheBTX73Ar/xQD8uyuHF9g3ot4tz5GywudblyY4MjBxfpdhucu7BKoxHQajTIsszAPhyH3lwX17W5ev0mb33LfSz0Wiip6Q8nnDy+QpYVbG8PObIyjxCCNDVSk6vX1plOp3iuw9JCl958m0arztbWLjdublOr+Vy+usHSYpeqKtjc2qUe1Qh804VvNmu0202WlueQlmI0GnL06AF2dvv4gUtvroHtuEwnU1bXdzmw3GVnr0+9HlIUFTdvbtCb75CnBTfXtui0a2xs7tLvT2k3Q9I0ByGwlcn26g8mbGzukucZVVXR7jTwPQ8lJWsbu7Q7NcIgpBKC4XCE69hURUar08GyFJubO7MphqJZC3B8m06nzcbGHi+cvsLu/gRdaQ4fnKc/GNPttAiC4Pb3RBwnhGHEZJwSBAHTZI+iilHSBUBKs8FxnIBKF+gqQShIkhTbUmSzgtgU+SWNeo1aFLK+tk2n26AsKrY29+jNz2NbAqTAtgWyTPn5f/J7/MLPfYjCaZHF+1iOQxgaCWktqqEcm+kkQVoWf/2nfpwP/eo/4wP33UscTwkCFyUkQhn8vBIm0y1OYgLPJY5j0iwjyXKi2bllux5UAimVKRaUId3dkvq5js94EvPlr36NyHdZ3dzh3pNH+fC//2MOLBjPoxASy7YYjSamyFOCL3zlaaQuabebxscz8yMa715FnpVIqXA9g2IX0oBapGWeS1kKgQkrF9L4Ph3HTBbLvGQynuB6xmellCLwPYSQDIdTbNueeb9AWRYvnD7HUm+BR7/yLPfde3QGYimotCaqhSRJimXZNFo1bNsiS3IsS/HYV5/l5JFDXPx/2HvzILuy+77vc+45d79v69c7gG4AA8xgZkgOSS2hJIoiS4slSpZjWWssL1WynUpiVakiKXYcR9FfSZxyRUqszUqsyElFG7VElixZCyVRJGfjDDkzmAEGGOxAoxd093v9truec/LHeQBH1JAimVFUrOKpQqGA1/3uW+89v9/v+/18r1yfn5vneV61YW9nn82NZYyuCVWIER7GaqT05zmE/tzvKxkNDnj8a96DfOUinvLxA4VUEcITzsMqJLVp8ITnvGbApUuvkcWpywMzFmOMk9GH8yBl6QimjZ6HCc9tQHVVMx1PUEoSBgFhFNDUNVEcO++TtY6qKNwkxPcDJ6u1UFYNv3R4yPtXe2ysLM1fWw/fV/zBky+wsbpMrRueOX+ZzfUV6qYmjkOkkCjl4yHZ3z9i4/gaUeo/QLtXZYXRDdJX/N2Pnuff/Nt/jXgdo/2zLe4+47Lg+xm/8du/xX+08G4iX1PkE7QI8OM2o/GUhcVlut0Fkjhja3uLEyc2QUhsnYOu6La7yDDk4OAA3WjStIsIfPwwRJgQz5eEUUZTWrpdhZKBiyPxNNJLEKLGaIPynCd3Nj1CBQptNcvLJ9z7EQQI45ouzvumifyYoppSVxX7ewPa3Q5JHNFqdfGkwxm6S7iDO1lrQDgPrFMHGALfJ4lck8VYg5L34VDKSYTF/SaJ80E3uplL7MCTPtITZK0OK6vLZEmCE2jbuXfYwxOSmzcuA4o4TvGUa7ikUYgnDG995BF+8Cd+lW/46hWSqAWippyN2Z5u8VO//Xt89bkvmz8O17yzWDqdRYp8zJ1b14haLYLA5Zc+8shjrK8dQylJEMTIOchLzOXfYRS7gt5aZtMJs3w2h4z15hMyMZ/8axYXl4jCwIWSVwUGF1AvPBCem2AK40BtttFUCDwV0ekfR6gIoby/GKDyea5fefrX+O7v/vY3raB7/XozJmpOhfL5Tww/38fw6X7vi8XdF+C6X9w9mMJ9Cizl04WMP5jYvW5a9yA64VMkm/dBKZ+6HtjlcIXet3/bd/Ez737iU37oM43bX/9EYG/nACWdV0Nbl6EXBAF13YARzn9jNLNxyeHhiLv7A77kbQ9TVCXD4cgFXVuLHyhW1hbnF2KBkgqjrTNmByHjoxlVpdm5d8RSv/3g+SsLK8tLRImH9Hykcpp5b27ij+fhwcpX7N3b4/FHNljspRRVQRBLzl+4wcvX7nD9zg5nNpxeXTc1QRAwHIxcALJQvPbKDsePrVI1NQeDA8LYJwwCtrfu8bEXLrO9M2RlISNJIpZ6C+RFRZKkDA4GJHHM9vY+aRLhK4mUHlYYrDVMpzPqypClMVZrGt0QZylCwHAw5NSJNTzPdfXruiEMfXTj2jxVpUmzDF/5TCdTkjSizAuklISxKxyPRhN2dge0WjG+LwnDyGV2NYY6L+bZejH5bOb8WnlBnIQIbfFDB53xlOLd//dv8CM/9K3M5sdZ6vdZ7LVp99pIKSnKkrKq5t48+MZ//kt8//u63Ly5RxJHLPc77OwOCKOApdU+WRbR1DW3bt/lxPoS27tDFvsder02RVWR5wWjcU7WCuh0UnRTs719j263TaeT4c19i91Oh8l0ys3b93jr42dctpr0OLGxipLOE3Lj1jZ5XtBKU7Q2nDi+yvH1Zf7gTz7O2lJAv9uibgxJmjIZTamqmsvXtlha7rhptDX4UUi7kzKZTQHDzVt7bJ5Y4+Klm2xuLNPpZVy/tk2WxZRFye07uywvL7C22qeua46GUx4+vcHu3gH9/gKDwyOKoiAJA/YOhjzy8Ak8AWkSc/vWNvv7Q4TnkWYBga/QxslPb97ZpZ2F+Ergh84j+7FPvEY3i6lLt9kKQp/zF64RSIXW8O53vYUgEORFxcnNY5jGcv7lq/iBxA8UYRQxmRzSareoK4jjBGsczj2MMhBy7n0JsbZgOBoQRwFCKCfjm08OHWzEw1rN4HBMt9NyKPk4Jp8VCAtxmqC1wUqBLwzvfyzge//bX+Dbv+fvIHSFRLB16yad3iJVY9k/2CVOYnxfUcw0N27c4suSmCjyHbhF+dRFidG4AHglUb7zzgohaPf6tDo9PF8SBD5WW7x5xIFuDAKFh8LzlAN/qID93XuEvuItjz3M5olV/DDgzMY67W6GEBYxb8YEysnQjdYcW1mhnSUI3PnHGIPWDb7vMx7PePK5V+i3WgShK26d1CpE4zan0vOoa8Ot61t0uy3nk5tvg8zcE+egOe68V9X1nEqs2L93QJTGRHEIFp576QIn19d57NxZ8mKK58GHn3kBz1oW+wtuwxgGFEWBHwhm04IoCHjo5AmMBV8qhDTzTDgnKztzegOEx4eefpr1pQWSOMZaSxDEGOuBcMVs02j+4LXXePf7vwlz/uU5nVRR5YamrvD9EOG5KagxGj1XTfS7fRptkBIn1SxK/DB2vk4hkMoVfVJ6VLkjszZ1jQp8At95G2/cvE2WJA54Umtu3tqi3WoRRD4ui28OO6lq8ukMPwi4sX2Xd28sESjJ6GiG7ysn6e12+Z0//Thnjq/y1kdPAxBFARaYjnPKoqKqGl68dIuVhTadbuYKca2JooAiL4iikKu9Vd73tV+Dx+s9h29wWX2DycMnL99/9jpuLOBZdK35H/6nH+Nb3vVeqAtmlSbtnyRpLdHO2oRpxK1bNyhLF1g/HI2wMubocJdAeihpCUOfMAwpipIw7nBwdMSrVy4ymQ043GuYTRvWjvWwNWihEUowPCyxSuPT4MmQyTQn8H2srVAqxsNlrR2Njui13TRQqZDBcICUgcuhCxVSKsK4C9I6MrR0IDajLSpQrtCSHo12BF4plMugVcq9T9Zl4BmjQXgURe6ksHLeZMRgrODmzcvoImSh26PRDZWuXWyHtHhCozyBEj7GMzRGI3Cyym53kbSVIjxDFEToBpo8xxqDQLLu95D6S/mvfuqX+Nb3rZG1OnRin+98/wa/+EuvcOrkJnUNSiqE0DRVQxSHdLqrlE3N1q1bpGlGNc8WjOOYW3fusLqy5pp/86zdS5cuutxL7WjJk+mUfDql0ZpWq02r02GW5ywvLnP79i10U6LrGVJJdFOArtFViVQCYbRTHCGRfoLXXiRuL+KpFkIqLPaN955vwrq0e4lv/pZv/Est7v4q87s/XcH32UwUPXk/t9H929HN1ReLuy+0db+4+3RvuLWf+Qv2qYXcG/3fXyTPvH/LL/3Cr/C3Tq3/+ds/tWB8cPDXPY/GOBmSbVwsgO+jtaaqKqQnMdphoYPQJwx87u7c45HTxzHG8AdPvcjZ4yv0Oi1GowlJHM1N6Y5YdXh4RKudUhsn8UsStzG/cfcevoKVlQUa3fCxC1c4dWyF6WxMGiccDgfOO6T8uTzUkOcF7W6LKHRGaYFHt9uiLEtObq5x9uQ6vVZCkkZEccC97X2efuEC/ayDh0RJn2devEzseywtd8k6Gb4KKPMKC2weW2V9tc9klrPQ7zEeTfnYy9fI5uCErbt7nNxcd9LA0BnCvUDOQSABRVmgpMdkPMYPQsaTijjyybLMTQE8idYuH6qqKgLfyUrDyAUjC8/BDYw1+HHkKIiehxWQtdu0Qw9fCUchkz7GejRViQp9Wu0UPAikxGBptTLqqqZpKoxpMHi87wO/w7/8ri/n+Gof6XkcTab4Ycwf/NGzPHLupINKKOWoqEJQFhOefvkW79qIyGfNPCdMs7i4QBxFbG3toauGJItIE8XwaIK1Hr4vuHjlBpsbyyhfsrDUc13a0AVPp2nGs89dot/v89FnX8GXmnaWMi0L+osdPvzUBR5/7DRPPX+RLAsYHU2o65ooDllcWUB6kn6/y3g0JQgC+r2MyK+o6obdvRHK95nNCuI4YmWxx8H+AN/z8H3vASgokJI4CrhyfYduFrPYTWl1U6wHr17cotdJWVtb5nAwpLvQdXRH3dDOYgyw0O+SlwWtTps0S6irkiyNENI6SImKuHN7m0fObNDpdTgaT5BKkGQRg8ERJzfWuHrtLseOr1LlNbdv77KxuoSuNK00YWd/wPLKAgu9Njdu7HA0qlhb6bG7d8CxY8tcv7ZDEFrCSLC0tEBRlAwHBYPhlJWVHtpM8WWIlBFlVaFURN2U+IGHUgajBVGQYa3nPGciwCLQTePw/bpmMhmxuLjM7Tv36LZ7FMWMbrvNH33oPCeOLxFEIcYIhPAYDIds9hr+yb/4t3zd138dmJrlhT4NEit8oiChambopqaVtXjHl7yN7/uxf8VfP7VJGIZU9Zx+Oad2PgjTRmHwEJ5EqQCpfLSxSHA5dp4gnxbMJoXLpDPOAzY5mvDHTz3H286dJWolyEChlCCKQwTWFYF4zouBRTc12mjSNENgKUoHotFWECcRfqDodFqs9Nv0ei0a7RHGEUEUUFYltjL4wf2GlscHn3yaR88+5C72nmveKd93ZMT5pM8YixVu+ni0P+LG7btsnjwx/4wKNo+toQKPsnT0R2MNK71FktgRdX0/YHB4RBxHKCmJYifZ1E2NVJIojfHwqCrN7/7JR3n4oU2kb8EaNlZXCXyLdmUsACpIMNpweHiIH/q875GH+ejggP/mV36dbzm1iQx84iTmqWefZGN91Unip2O8eS6glC57zptPdCejGUmU8eTHnqedxCRRxHQ0dpEKnpusYS2e57yVVjiP4PLqMnWjqauG5158hVev3+bcQ5vUdfVJCt2cihxHAb/3x0/za/v3+K6HjgOQphlBMH9OUrHa65BXJd1ue55dGFEWzmcXJxF1U3NmY5Vnzr/K6ZNrD95HrV2DMIwi3vtDP4T0/Qdh0fZTr9WfYX26y7cFalPxwV/5Rb6881bqcsqsFoh4kXxaUhYlxjYU+ZROu0u71SWOE4SwJEFMXhtU3AY0QpeMJ2OkFGzvbNHO+jx8+i0cP7aJERWLiz0mgz2uXN9iYXGdJEm5cfUCS4uL6EZjpOLC5RdYXFonUCHbu3cJ/BBPWA4H92jFLRptyWvLbFaTtXuU1nD54k2CuMvLF5+n01pjNitIkoi6MnhBSCOcvLmqSgI/QPk+RjvvZq01GoEVcv6dlARBgO/7DnATOlq10c7fubC4StqOENLFKrzw7HMkWYJSgYts0JpaV664sRajGwdEsY2bYgpB01QOBBUECOkyMOu6IQpDvvrRL+OHf/rX+Ztfe4IP/PJvsbS8xLd+2yr/7Cf/PR0bsba6DjQEXkxZ5rx64UVOPPQIyJSl5TX8IKKuLYv9NVpZm8FwCMJDSZ+bt26xcew44/GIqqpZWlqh3e4gcHTfrN0GT5C22lhjmE7GJJGirsZUZYUvanwMvhRYGoQ2NE2DEZLaT4mTVaK4hZWu5f/ZxG59PuupD3+E/+5//WcPPr9v9nozJnd/lY/hfnj566V1Un6xuPuCW8aYH7XGvOGHwX66qd2f+aHXafA9DzPPwrs/ybsfgP4XFXcfe/pjfE91SDS/oL1+vVHBCeBpsELOTz6CT7x0kRMby3i+jzFOo41x/gSlJGVVOrmelCwv9fCkpS4Kji10iZOE7bsHpEnCzVt3WegmrvgwhjRzJLJWq42pDUWR0+0krC21WFlaIS8KpBQ8evo4RVGAEviBIApCDg+meMJHBY5waa3l4GBKFMXUFVSVQ6LHrQhPeFR1QW+h5U5s1oEhzj10ktmsotY1WRZxbKnF1v4+6yt9pJA0ZYkXKuLUFaXlJOf3nnyRbhqwuNTm3NkNfudDL7DQDql1Rb/fxlOS21s7RHGIEm6KZrQl7qQIDb7y+c0PfoRzp9bxA99JipTznERxiC8DlB/MM69K/DigqSum4yNMU8/R8x5oD9PA3s4+wquRYewkpNJteIfDMXlVuM0eColCIGjKAiXde69UiBA+T6VH/Mj3vJfN46v4yjDJj1hc6DlvTODT6Xbm0rOa2XjKKy9f5j8AgAxFAAAgAElEQVT9357iZ77vHGkWsbbaI0siZuOC3d0BF67cII48EBpTW7Z3j1jsd1hZ6VGVmuXFHnGcUJUlw+GQatIwGY+Is4j9wyEXr+wRh4p3vv0RWnFMlee0Wm2SVsrx44ts3zqg025xd2uICgRx4rOw0MZXAZ7yOBwOCWMfJaGdpcyKGWm3T2+hS11rfM/R4ybjGZ7n0WpllA0o1SAJeP65q+zdGzA6qminEb2FDtM8J0li9g+m9HptxuMxS0sZKo6ophX5pALhcW84ot3tIj2BMDUebjNeVYIkjbF43Lmzh4dgaanvIjKMy3JrdROiKMATHov9RZpKMDjcZ7HfRVvL9v4hV27fpd9qkYQRgfTxFRS18xiFYYzAMp5NEHiuyCxysizm3r09Ll3fY63fIlA+VnrkZU4cBNTN/WaCxGscxdPh6ysCJbFCopQgzyfO62ZdIHxd1cRhwJNPX6TTUvgSzj60zkeeeZlAuGaNEJJ/9PO3+DvveZz9gwPe++4nWF4/xsfPX6IqDgjlDNlaYjwsieMWvjS0MnjhxYu8VQW02m2UklgFSAdxqoscr6mJkgTflwgpsN794HMXTJ3nJVjrHoNnEELjKY+mNihf8fBDmyStFE+6/LlAesjAB0/hGcnv//7vk4UhvYUOZVk7Ip5vscanmhmkp/CVQVc1aEHTuOzCC5evcPnKFmfObDAej91jDBS6AaMFnqd47OxppHChz3VjkMrHs94cYCWoygpwnkhrLEmWsLa+jCdByRphBYEfohuLCgKsdQWpDIRD3FtDXVfc3t5mod9DW/DmjbjxMHe+QdNQa4jTmMCTdFstpFAoz8f3Iyb5vgsNrwVpK8VojTbwoWef5/FHH0I3hvZXfCm/+x/+kO98y1sQRqFNydJSjyov8LCorEs5q/E8hS5zB5oxBiF9rNZU5QxPBqyvrZBPZgRxSEXDbDp9EEHjCY+DgyFWG7IswfMEdV2StTos93u87fEzKF86nL9U3LhyCyV92u0WVllWFxf5zYsv8y1rqxzcG9HKEm7euMufPneRhzZXiGKFLh1YQvkCP/Ao8pIwSTB1jqRkNpvw6EPHUGGKwF0XPU/heYK/99TL/O3v/V7QBqUN5v7+zX52fx6sMsCEhzSU6LqNNUMOX/ogP/Aj/zPvOvMEg9GIzvIxegtreHjs79/FDxWelpTVlOdf+Agnjp8jiEKkhFa7w3g0pZ1mTPM90jAhjkJ6C30ODvfdtdvzafcypPIpC49Tp85w7cpraBtgVUZeKxqr6WQZ7d4K51/5OP3uKlGo5tlpiizpkecTVBAxyTU720OwCbf3dqjzEaGvOHvmUfaHU7YP7pLES0jPY5pXSC+lKmb40kMKSVFWSM9JxBEuomV8dEQ77mFVQ6UNVkj8LETUFk9KpPRRyneNJ+son9YYlleW53l5BukwuA+APwKB77vvjUHggu8tCA+rJWEUcjg4AGtY6LZRErTUvPfR9/DjP/sRvvLrHubc+tcw1od803t6/O+/8XG+4uzb8fCxqgI8VBgxmhm2bt1GBQLP06wubWCoqRpNnMQMhvuUZc76sTUQHmmWcjQ8pNfuMhmNSdMW02LGnTs3WFtaosxzDvbu0mmlDA7u0GklKFERKA/dlBijsdZNwBs/RGU9wmSVKI1dz4PPiEf5tHvIP7tnZJ4TzIM7tPO//80f/xzf+Zckyfyzj8FJUF8PQflclzXG5UV/uvv/lPv95KT901ipPot1v7j7pCLPflGW+YW4yrL4UanUG9/4OY6V73+ovNd9wB58oP6C4u77/4sf4G8/vPm5HQ8x75SCLmsmR2MW+u0HGT9WGwJf8eKFy/MgaFc4Xn7tNk1d00pjl4ujFFYItnYPeOr8a3zpE2epm5rpLKfVSqmrxkks5h4T33feHmMM41FOGCniOGQ6nbkMNATCWoyGZ1+4xupij8ZUBL6kqms6vS4ffe5lNo+t8qGnz7PQTWi1nYQnjHyscVAI8CjLkg8+9SJve/QMcRY4L5Q2rK0sIqWkqWv27u2TthLngQpdvMJkPOX6zh6njq0ilUIaw7mzG7Sz1E3WtCUOQ5R0HpuyrFwmoPSw2jh5UpbR6WRMJjl1VRMECt+Xc2+BK+ruT8mE56Qbum5odTIabedeFCdL0UaTZjFBFBL4isFgRBTH+IGi22u7EPq8wOiGyfSI9kILa2E8qvivP/wiv717k3/w/neiZEAQRkzzER4B0gvwVcj5l6+yvr4Iwjq8tFIM8obTYoszp1aJohBfuQiHu9v7VHXDw6fXKcuKxV6Hsq5YX1uirGouXr7DqZNrGK3J85xut83du/scHeXkVUUS+yRJxGPnTrG01OXwcMjV61usry8xmcwQHnhS8cyzr/IlX3KOXjfh3mDAxrEV97zDCIRw8jYlqecB6nk+ZjqriaOYySSnv9BBIPjwMxfYWF8knxZ4UqKUxWiPLI3Y3FylmBUcDMa0s4i7u4dkacza2hJZkhBFIYeHA5Ry08PR0RSpPI5vrmEMDA8PqauKg8HRXD4oeeGly6yuLNButyiKgu2dA/oLXYLQvXZu+h2itSYMI6aTCZ1ugud5pGlGr5vR72aURY21hjiJGAyPePXaLjt7Rzz2yAaDwxEPnT5GHESMxhM63TZN3VDkBbfvDlldarO9e0Cn4+IoAiUZjaaUhfPUzaaHKBUQhCFGz+WEyoUVu++pAuuytzzPfU/2D4ZcvrHH5okVPBWy0G3z9Ceu8fijJ3jywi3+wde/A094vH2zx4GVHB4Oeee73oOwmtHRkGxhBeX5lHlBGEjKuuR97/1K/uH/8rN83eqqw/DrxpE9lZoT+Oo5Kt7iKefDseaTXq37XlsMCOV8etbauTzTxYoY7S7wfhBQFyVCOnDK3t09zp05SZImoNztTV1jrcY0hmc//hKL/R67+/tIKQmCiMbUlEVJp92llSWkWez8c3PSqG4M21s7pGlKWZSEoY/FcxNvC8y9sEI4+Y70nGTNKTy8B912KSzWCLbu7DAaTWh32ijlIVwXGNtot8EVluWlJfK8JMlShHDSzBdefpX15SX27u3zux9+hrMbx1lZ7rt4mLpyfuS6QcgaDwh8n7L+JBXy3Jkz7iKhS/7RT/wsZV3znY89xn2yc5JE7vcCiREe0nMAIgd8UfPmlI81Gms1y2urFLOcKHE5g55SBL5iNs0fqATSJJ57qYTz6mlHX6wbd61wgA2J1frBazKdzmh0TZZm/NatW3z7xhpxEqF1QxyHPH725DxzMqfbdRE5eVHg+wpf+VhPEIWS0dEYR4pVIAOk8jBag7BMxyOePxjx/u/4j11hMM9A+3yWsT5W1RgkARE7d87z73/lJ3gseB/rJ45zNBrTX97EGLjw8ouce+RRF8QuDbqBNO7jJxBHLi9V+YooCN3UVFmEcR7QqirxVMD23Zt0ukscHB4ymU6Io5SDezu0uwtMphMGwwMGgwOqcgZaU9aWu9vbTIeHxGkLpSKOxmN2d7bI2ie4cOEV9odDRrND1k+c4MbWFieOP8TO7m1K3XD15m3QNUeHR0ynI8rGsrO7RxRHhFHIweCAKHGkYQuu6dI4iJvWNSqUWKsYjaZ4niL03ffXVwqjXdZlPpsQhtEnNz/CxRMIKR9srM18GmyMI1I3TYMxCmM8gthH15ogcB77wA8wjpjC7Z1dXnnpRb7+vX+NH/+13+YXf/dJ7HiPx889zje/t8XTH6xYWl9E14I8bxgcHnHr1g5hEnFi4yTXr1/CGp+Dwx2iJKPT6ZCmGUmcOIk8gtH4iCiK8f2QIAiYzWZ0u12Gw0OUlAyODonDAE+A0S46SSkPU9fu/3DPTVsI4w5BlBGE2ScHAW/CEvCGlp7RIOeH/8fvf9OO8xkfw3xvas2nUZ59FssRv73Pulj7dMXe53L8B5O7193H5zu5e/Pe0S+uz3ndh3Z8QS4B99E+dV3TTuIHCM0irxCeYHQ0YWmh6zb3gQMPDI8mHA7HeJ7AYFhY7NLqpiwudohinzAOOZrM6C/0nI9PuUy8o+HYoeqnOUVREYYBRhuKvMIYy8HhCGsssbQIXREGHl//vnfSXmjTW+gwm5U0xmBMzSObaxwcHrKx1qOVxUhPOpN3bahrjdGus5fGCe/50sdpdIFUliQLaXfbJGnM/v4hypcsrfTdzyYRAosMPI6v9PnKt57DVz67O/ssLXaxAoIoAE8QhI4qpwIHRiiq0oUDFw113TCZzGi3W3zi/FW27x6ys3OIMZaqqaibCoSdy6w0ZVlgNBjr4ScpRihkEKK1RSiBnYc1S6XmMktDFMd4nguWP9x3WTva1livwVMCYwSzUvODF65z7i2L/Pj3/y3COEP6AUVVYQV0e4tI5WMFfOVXPUFTl2A11tRMpxN+8P/4MG89t0lTaw4Pj9jbO6QsKxaWOjx8boPdeyO2toZcubJNEHqEkSJLI6Z5zXQ6pqwK8qLkTz5ynsCPOXl6zRVX0oXe55MRTZ3TX2jx9rc/glEBeVFQ1RWg+ZK3n0TrinY3op1FFEVNHKVs3z3gymu3ENZtkMM4JE5CZnnJ6nKfmze2yKKAg+EIFQV0OwlVpWlqTZ03FLOKKI7RFjSW48cXWF3tOGllbdnfHzMc7DMeH/HKxWsUpZsCfeTZy5w5u4FUkkuvXudof0A3a7Gzc4gvFNev38OYhq9811sJA0fu3Dx1gkcePU1ezbASVtf76NpRAS9eukldz0gzRaVrhPQYHA44GhwReG5qdu3WDkWRkyQRf+197yBLQqaTnMvXt+eAAo+F3gJWC5574SrH1lY5d+oYgR9x4/ah28Bay+2tXdrtDh/805fIp1PKqqAoC6y1+EEIVqJ1xXg0wWo7b1DUSM8BDNJWxKPnVsmLhg8/8yq//JtP8eTHXuNrvvIt1PWUn/yTEXlt6K+socI2t2/exuZ7lPs30PmMLG5DVeB7gna75SI3ZMakdOHy7SxjNBjg6Ya6LJBSkRcNMkoxBicRzku34ZeKsiiwFuqqoqkbkBoA01iMFoArhMR9CMd9WWSUsH17h6aoGQ4HvHT5NbzQp2ocCVdIj8G9A8pyxFd91RMEiU9VekRJRpAm1MYig4huv0+nF1NWJUJI51Gceymf/PgrHA3HCE8y3J9im/tkRbBz4p5pLNi5JNQYrDYPSIK60fzpUy9weDii1+txYvMEvh/ieQoVhvhBgMupcV4uT0kH1TFgTUOahnzZOx/nwqWr9PuLfMc3ff082FiDMMzyMVbCv/vDD3Pp8i5VWVCWRyAa6iqfE1MrjoZH5JUr5kLfeZ8RJVYbqonBNDX793ZBzxCee/2svF+ge1RlhfQVjYHJaECUBuRlTl4UKOE8wHGS0DQNZV6hNURRRF02eEJSlU6WGfg+YeQib7TWjMYj7h0NeOHlC2StzE1SmvuvhUcYK/zIyceFgN2dA547fw0rasqqIEtTTCMYHrgYl9GkoL2wSJJ1ubs7YjIZ0zQVFg0YqiJnK58BNY1nqP+8OOazXlWYg+mgmg7V4TWe+72fJ80ynnjXO8gbOH7qLRyNC1pZm83NU9zb3yMvSm7c3OXG7WtYr6Ycaeo8R3k+VT2jtiX7owkqWXfndqtJI0WoajaPrzKbDVhb3SAOe5RNQ7e/jEGwvLLOO97+5aRZhjYplpSikiytPEzcWuW1G3tsH5RcunqHRnW4dPc6otPl1MNvw+iQ7bv7zGY5O7sH5JXE81t0uqtoHTIcWfxsncvX98irkOFUcPXGHYKwze3bN5nkoAnQxqK1h7WSIPFdfEGtuX71ItevXKfOZ1jdUM4mWONowGmaue/6XE6tPJ9aaxqrqeoaYxxQpa7ruQyzwVrLc89/nBdfeI2yLpDSMptNmExHNEZjpY9RAf2FDfA8lB/wz7/jH/Pf/70f4nAaYb2UtLfCL7/2O1gFWmlUJFk7sc7jj51mdX3NNR9oUZQFcZLgKY+6rjh//gWKsmY8mnE0PGJweESrs4ANFLlt5gWt5ezpsxSzGbqa0spCjJ6yuNBFCouuSkfxtBpPKoI4QcZdPNkl9BcQc2/iX/b6sd/8F/+/HOfNWsZYdP3578/FfVqr93l2c+D/kzz2i5O7v8LVNM2PwryBNJ+0aWP+Qq/dG67575jXyTRfH5fw6ZYATrzwUVbb7Tl67DMf+ZOdCPPgZ01Z0+QF7YUexji5kxQeQei7MFjhURTlA+pit5UShOpBwTeauBPRudMbHA1GdNstpFKEQeAyv5RPZ6HN4eER7VZK4Kt50LikrmtHNex1kFJR1VPG+ZRpMcOPfMJIkY8LgijBWodFr8qKVitmfX0JgYMaNNqFmc8mJVJKRqMxSZq4iVnoQAt1rfGVh26aeWCtRBtLEiXUuZNJ5WVJr93iwx+/wKljq3QXunS7KcZa7mzt0GqnCM/j4+cvsbrSdxuKMKCsakJPUNUVH3rpZc6d2uTY2hLTScGp08cxWuMJQRhFblPt+wghGY9yfOlyyDzlQAtVWRKGIUYbhPSI04i61kin6XoQfh6HrutttKGqauI4JvISDg+n/MDTL/Gvf+hrecdDHaK4jVQuxFR5EuFBVRdUdcH+wT5R7DM6mtJuZUhP8s0/+qv8ux/+MnQD3V6bvb1DgsBn794RUeSTpgkL3TZR6Aq1Vhrywvnr9Be6PHJ2kzQJiZOELEs5tbmGtYbJ5AjdOBDER5+9yLmHNymKgv17A9qdNvv7hyz1Fx54Pj/80fOsrnbRTU2v2yWMHIzD2JobN3c5cXyZRjsiodaWTjuj0R7aWO5s7bPcXyCfFSz1O+zeO6I2htt3DpjkYw4PJxwczIhCyd7+kKqsSZKIk6ePk7VjPKtJkow0Duj1MoIg5OGH1pC+k/OsLPcJVMB0OqHVStk/HPP442eRyvLKq1dppRG+H2IMGGOIU9/JhIKIJI55/vmLvONtZzGmmU94QqRUZJnzj97d3efOzoDHz7m8s3a3xZ2tPc49vEm70+LE+hLjyYQnn7rI7Z17nDi+yHK/xfMvvoYvJb1expkzx2nqkjgKydKU7a0Djq32eOb5C5zaWGahv8gsdzIfcM2cOIoJ/JCyqogin8YIBBbhCcLI59zmAquLCcsLEVFgGR+N+Mk/PuCn//E30u11qeqKrJXyQz/9+7zz8eNgxuTTMb1Oi2leUeQVSZwwmc1I04RiOuU9X/Xl/Pqv/BpffuqMKyhVQFVroigCLNL3uY+vxzgkuvKdWkIp57MZj8bEUTKXXnncvHGLG7dv004TlPLnYeaWRmsO9vaxRtPutjh18gQIj9s3tgl9H4wL1Pb9EKV8hBB0ey085WG1xdiGLMuoqoYwVEjpIFJN3aCNxg98IiXJWim372zx/Cde5dyjZx6c03XVYCx84Df/kDObJ/B8gdGaT7x0ga2tHdbXVhmPJvjC5Qv2+h0XvSAEdVm5qZ/nvu9SKaSvqKqGKIoQ1oV0K89DKo/1Y6sgPGaTCbfu3GFtbYmyyOm2WwyHQ46vLXH65BlMUyA8g9aCpjGowCcMA4IoJggD/mh7h7//d/8Tjo8mc6mWO/8Y0yCECxuPogQhBAZQ7rqI5yuk57noltrgKYkfhS54vqhQvgPBBGFAU7vJpRDWNZMOhiRxyo0bt7m5tcVir4vRhqOjMe2sRRwEnDp5AuEJDg8H7O7d49rRId9wcp18VlBVFWniqMlxEnHm9DrjyZgr17eRQmK1ZTSZoEtNkiUuRBuX1xYnEVZrgsBnMp4wGk05lkU88W3fjrEaTzQI8+d76t4ckGPmZEXp+/Mps+X+qM+KEmljvGbKJz76C0y2t9kZrbPWexyNwAjIWglXrlx1tNvZiKIouXHzJXwvZDYuqMyQNG2hEYSBz2D/gLXlE+wf3qOVtdx0WrvC2oGHauI4I81S7u3fo9NbQHiOKdlpt1no9fGjiNBX+FFMWRf4vuFwOGV3d4/FpXUaU5EfaTpJj2J8wNJihxPHVllqd4n9kCQICAPp4C4+rB3fZHv3OlLWJHEIGkxVsLa2Rhy1eOnli0RRQjuJuHLpElobkjRBGInWOavH1lhcXJhPgeV8Euf2NlprNw2ZT2SquqTWHgeDEb4KydIQa0HNQT1+4L7HnhcQhYp2L8Y2IOdNkbIqnVrKWgKvZOP4cSQaW2mSMOKhjSf4pz/9f/L+d3f561/3KB/40FM8svQ2Ll68QOBnDA72mJQNuzv3OHHiNMdOrNHvraKkz+DwkF5vkbJ0qpE0zdBNg9UG5UuSOORoOGBvdw9dFwTKo8iPqIoxrSylKacIa2h0gyd9NBIZZgg/JewsE8YdrCd5s7GYb7SD3LlxyHf953+DhX7vTT3WZ1yfEjfyhtDBN1ja6gfS3M9p6ib+rKTyjXIePhPo5cH3/3XHtXzRc/cFuaqq/FF7X1jveQ5LO7/t863X718K3gikcr9wvC/fvL+S559x8pbPZYlPXnRuXLtNIASVtgRhQFXWhL7i7vYe3a4Lh966u0eWxly5epdWGpGk4QOJIhjiMOLunXv4ShJFDr0+GI556qXLvOMtZ5DSI58VxHFIM5/gCRS7+wfEUcBgcITAFT9ZliE95QiXuCDTwWCK7/t4niWdAwSEJ2gaDRaUL6krTVXUhFHIZDrl2o0tQl+5zrn1kCrA6tr51nyF9AR4Adeu3Gb33oCVlb7LLZvOSPyQNE343T99lrWlHp4Q9Be7D+Qki70WQRgwHk8IQoc7Fk3NtCh5+NRxoiikLmv2hyN6nQw5R81jHEHJIdUVt27t8PLlq5w6sQ7eHBeNwRoe+DCbRqOUpJjOUL7PcDiiKkpX5HZbGG05f/E6d+7u000V/9n5a/zcD38zs8mUUHlI5TMeHRL6rjOulDfPhfPpdLsIPFfgxAkfeu4CK0lBrAs+cf42x9Y67B8cAU6+1eulDIdjQLC1PeD06ePcvLXL6c11qtq9r6+8epO1+UR0eDSi3U4YDgYYIxgMphxfXyRppW5zMhgxGU/ptFtcvnyHOA6xwFI3o9PrOF/R1j4SiJOQwdGQ8ahkZaWHH7rNfVVWRElMo6Hb7TGd5FhtyZLEmdSziOXVRRegfnqFXrtHFAbUVcXW9iHrq316vbYDQ/iS8eGYaze2WV9dZG9/n6JoHIGybsDCcDgijsN5g8BjcbGH8Ry1bnmpx3SaE8Upxaxkf/+QKFIUs5LXrmwRBc531WolvHD+Kv0FVzwnUURRVqhAsry8wOpKj63te/R6baq6otfrIqXk8mu36XUzoshnud9hbbVDmkXzz1vOytICC/0u2hqXX1dXFEXFc5+4wbHVHifWe3gehGFCXpTESchkPMJai5QumNv5FDQIOZfJORl309TgCbqdFqurSywt9fi5D+3yTU+sEcXRfMNv+M1nbvId3/YN3Lz6ChhNHPssLG+wd2/A4uISeVngmYbZZMLi4iK/86u/xXvOPkzT1KjQvf9lXmCaBj+KnKxKa6S474US5DNHu/ODgCAIXMfeOHJjb7FNK4rIWpnrugrQjcaTwvnOpEd7oYOuG6yFj7/4KoudNsY0qCCgKBp+9w8/yvGVRZRvqSuNUj6z2WR+bvbQRiO9wMnjAh9rtYuD8STtTsrCQofFdpvnX3yFKPRpt13jxBjD7ds7PHL2NMp3her62grH1tdoGs0H/sMf8FVf9k7SVoKn7neNBaPhyMEq0hgpPCajKVEaOQqlga07dwmUjxAeeZHP4wNcDtj6+jJVWfHKpddIgpBut0tZFdy4cZfFXpvpbMrW9h7tVgfp+1R1hZz7lX7hpZdYXlrmCT9wPinpKKq+Cgj9CKEkQkjsPEerKWu3ofF9rHETFIXPZJaTZqnzQDWaoihJssidv43gD//kGfq9DHDTlpcvXKHSDQ+dPIFSktFoQrfbocorpHTQKSEErU6LQCn+r6tXCa/epB3FJHHMwcER5axEeBBGPnXd8HvPvAK1Zn21z8FwyEeff43JdMLacg8lBbqpmUwLXrtxh147I22lPP/yFY6t9Fn92m9ECINnNdg/Pym5v5nzPKfmqUvXZJzf6m6TBqUldXnAwd0X+Ngfv0TZO8Uja4+zd2+fbrvHZDTm0quX2N+7gzYlQRDRzWIGe7tUVUN/eZk8r0B55JMJraSNQKApmc0KJuMBoRREiYvKMLqmqCqGR0dEUcqx4xs0jWZ4dEgrSzkcHNBpL3Cwd5fRdMr6+nEiX/LQmXN02h2OjgacPfswUkYUxYzJeJ/Nk2e4cOlFlhdXaaU9orTN9ZsX6PSWSOKY6TRndXWdzWMbJH5IqS1S+aBg994+raxHloV4tmC5v07WbiGEJp+USOmuj77n4ErNvJir53A1b35NdA0OiacAEfHRJ5/H6gndbhupFNY4QIsxBmMMnXaXbjdDehD4CWYeYG+MwWqNB+S5I1MKz0OogAaN8iRf/ciX8sM/+f/wN963wWNnMv7pz/wy7/+Kb2Lr7lVOPXSWMFriaHBEWc1IspjtOwdEc79yEAQYq2m32wAo32c6HuErQVUVdNoLjEYjuu2UKFQkUUwcBRhdgdU0VY4W4KsQT8UIPyJt9/GC1E3w/xL4I290lz/9+/+K7/uHf//NP9jnst4IOvhGP3afaPs5vjhvRpD6g2O/7r6+WNx9Aa66rn8U3PgX+0lpDfzZov/+n0/96Jg3uO3Bz7xRh+D1eOX5733gl36Vx8rxZ/2YXx/U+EBOVNUYAVESEwYBHoLnXrjE2Yc2kMoRHLudjKquWV1doCwrrPG4fusuaeqTJhnbO0MabZhVBf3lBOX5vPjKNZa7HTqdmNF0RK/XRlegq4Y49pGRZHVtEc9amrp2JDJVI70QKyy6aRDWYzIb88yLFzg6mLKw0CefVbTabQ4HA7q9NsPBmLiVcvXyba7e3Gbj2ArtfovlpSV8FdAUhjzPEQiCNMT3pTMm6zk0xlec3FynrhxdK/RjkjQiCCVnT64xy6fk05Ks1cIiMHDHnLgAACAASURBVE1DEEmKIsdX0m0ylaIqGjxf0m63MA1EQcTO/i7hnAAmPEsQ+Zi6oS4bdKWReBQT+P2nX+Thkx08YwhlggoiqmrfFatBghaW0PeZTKf0+j2Uch5EbEPgxywuLHCxKfmp7SE//19+Pfm0QBJQ64qydOG8ZeWKrySLGBwMSFsdirwEkxO2MiyGf/Lzz/Ddb005f+EuJzaWKYuSNA5ZWOiQV5orr+3gCcXW1iFZGrCwkNHqdnnu/Gss9dukqc/2zgDTON9LOA9j3t2fcvLkcZQvefnV27TSiHJWMJuVDA4n3N66x2OPHsP3HeK8rt2G/vzFW2RJQJ6X3N3Z56GTm4SBK7YaKxGeTxjHeLisLCtgcWmB8WhI3VTcun2PIBAEvn3gTVKh4t7BAcPhhHc+8TBJFvHqlVtOomtxE4YoYHdvyOBejqIin+Zcu7bNwcGUJIp5/uOXaXTF2nqfsqwIgojRaEgcJURxAlZw9eoNjq318ZTkaDTlxPFlgixgPMqJwpCN4+sMhyOm04o4DimqgjiUGONQ2/1+x4EkIslsOuaPPnSBqrCc2Mi4fuWI1dWUIHDZVNvbB/R6HYQ0hGELsBhbAQKpBC+8uM2XvPMR/FASKA/ph/hhiCcDojhGitDh7QWuiPE0ZV4ipZsEFWWJDAJU4LKbpPLxVMCTl474m+95C1VdOS9JEPL+t63wgWf2ed83fBPkNyG/SzUdkHU2qCtoKcVUW8AjyzJ+4hd/jW8/9zBeFIL1aCpNEAbOdGBd5pvnRzRVjfTFg5DaMIyxVlAWJXXR8Fu/96dsrC1hmoIk6zj0uhNCIpVwHjw8wsjFdwjtNJNr6ytkrZRLl6/SX+qjAusgUHFCuxPjCYdrj+KYxjgvludJPOWjfInE8scf+gTB3K+cJCkgiFsxC70O3V5nTgH1kBIe2lzH9x1uX3iOvihwYexPnDvjpnJSuggDA1J4qADa7XkemHbSeT9wQd3Cg3a7g2kqqqri8pVbfOjZl3jnW8/h/7/svVewZdl93vdbYaeT0z03d+6Z7pkeTMIMAhFIEDJJi5REUyqQIiXaslUy6aLLD3pxKIsyHcryg+0HqWRVyTYVCFJiBEgCJEECRBgMJoee7pnO6fbtG889cee1/LBO9wyAGRCBIs0SVteu6nty2Gfv9V//7/t9yhV71XqFyA945Y0rLHW71Fttuv0OfqCRQtHtBK449D3yIgah8VXAvzl3Dk/DxqUrnFldm3vCcZ+DgiLLEVJjjKEwBcrzkFpRZJnLoVMKP4go85wg0KRxjPA0eZEShhVsISnKgqV+m2SW02q1uXrtNqfuO8lgcMDhI2t4vqbTa5HECYO9GdM44eXzb9CsVQk9TRiEPHftCn/rkfvpdpqEfkgljNjc3kN5TjYf+D6nDq9w5NAiWZpz/eYux5b73H/fGlI7L6NWHtV6nVoUuN+EkvTbVVphwGcGM+4//QD3aCq82a0Tc5/gm+u88i2F3ZtndYvrAO9cO8v+5eexjROErRa1rEY8HLOzeRsrc5rtKqJICLyAQkC2v8mZdz1KGo/YvzNlb+cm2q/SX1p0+4pWZNmUen2RXneNOB9hbI6nHN0akVOLfHwVkKUTRge7LC+uMUtmrK4eQpQKozNWltfxVUC91SQKaxyMD7j//gfZH4zpdTtcvPQ6C4vrNJo9xpOUoydPEFQrCK1otpaIk4xmu8362jq1Wg1jYedgl81btyiNZHd7yHA8JskSVlZWqAQ+zzz/MrsTi/AN169u0V/u4fkKk3pcu3WT1188y9r6IZQPWVYiyhzl+5RWQJnjexXKPOXY4RX6vUWYf/5vTpnE3NdZIqTzu5c2vwceEQikEBSmoBpUSUtLkqVoYfFTSylLpPL40ENP8MVXv8KD6xE/9kMPcflFj3a7wbmLV9neHBNGISdOnmCwt0ez1cTzPEf+9D2q1TpaKQpKt0BtDFrCdDKiGoWURcZoMiErDBcuvkC/24MiR1CiKxV8r0pmJarWJqi3was44N1d/+e3UJO8Xd9JfM2/r73N1XO3+Jl/8Hfmaoo3h5w/9T2F2b9r0uXbFHfWrTx+VSFn5/+k+PoO+58UY/Injbf34d39JOZzahwMRs6PC98uUOW7nrs/x3F3VQjs/OD+Z5/N8Usf/5Xv+DFGkym+p/G0ZjScANBqVF13bS6FQAiCwGc6TvC0z87OgNk0IwzcKli7XePw4WUWux208BkMRqwtdwlDjzAIaNYb5KlbKR+NZ8RxjkkLslkCQHehTXOhTSWsUqTOixcEIUJKGo0aH3zsQd775Bl2dvb4ytnzjCcj8iInTROKMseUJSdPHOKRB46jPFdwxXHM7c0tXr1wmXOXbjA4GGFyizWQJoXzseUZr1+9wZ2tXV5+7RIAW1s77O+7btVkOqNWrXJ9c5sscXQ+JR3hLgxDF4KrXC6UXwmRUmOM4OBgTJplnDxyxHVdpCAIPPI8RfkefugzjWMKW3Ly1CI//iMfoFHrURQwS0YUWU42U1QCFx4vKLC2pNGsOZ9dYalWnOekLAuEyRn2Ff/op56kyFzA+XQ6QylFs9Egz3MC36fZrCMkLCwtUZQlN29t8tQzZylzy+WLN/kv3yOJwoD7T65w5vQ6i/0GuwdDxuMxqysdKlWP/kKDhx46SqMRMhgMwBS8//FTLPSaDAYj8qIkjAKuXr+N1oqbt7Y4st5jsD+g224QBYIyT5lOY4wx9HoNHnrgCNNxzPb2gGSWsrGxh1aad50+grGWze0BaVIwm83YHyVuYq0knrRQ5ly7emdukNdYU7C6usLW3oTTDxxjZXWZIKwQBj772wdQWhqViMNrfbI8I54lrC13GewOkBZ8Lel0Gxw5tky9HXLoxCE29w84ef8Kh4+0WVypk5Y5pTFsb+8TBgE7O7s06m3StKBIc/Z2d1hbXkRKzebmgJ3dMZcubSCtpN/rMJ1kPPX0OaRwIdiDgzGvnL2B59X41O+fJY1TLIKtrV2KsqRWq/IDH32Edz9+hCAI2BnsI32NEYKr17dYW1slyQxaVQCLkAlKagcSKBV/+QdPo70cIebEOGsR1iBMTpHOEKogTqZYYYmqVcpSEITBXGaCgyFpz9FKpSKeJezv7fN//OcfvXccsda6+BK/wmc+90Xa7SWE7nHzTs4o3md3/wKF2MfUHRij02lhTTn33pTY0pJnuQu8xmVtSmkR0oIt0L7E4Lp6fhjcW9U3xpAXOVJBGIVE1Rr7+wOUVs5XagRFbhBWMdg/IC9y4jRGhT5WO9mzUIIjRw5h8gJbWh5+8Ayd7gLlvEtTFiWmdBlWZVHiBx6z6cxJD5Xi9P2HWV7r4wUaIQ2eL1GepNGuoT2BEGbuAxPzDqOZm/3dY7+ZMzgHAaj5+5aGoswc8Ka0CCG5ePkqn3vmeRwdULO3OyDLMoIodN0x4L0PnWJne5fNjX08FWELha8iTh85yXg2u5dNt729D1IzGSfsbe+RTjNEoaEsyLOCmu/xY3/1o/TCEIRxMl7riiGBRskAIUukKvGV69ZdvHAFKZV7X8BkMsQPFdPJ2MWhlCXNdos0SVzESJETRSH9xQaIlEcfO0mrE/HQmVNOepdmpKmTcC6stuj1m5y57xjtbhOEICsSLkwnjogaBlibYylZWuzSqNcxhUUrn1qlSp4afC8gSXMWF9uEUTAvxCzDkfPb1eoVxuMx8SwmCnw8rfjMZz77HZ9ntQZjcgaDHfYP9hnHU3RRYTqbENVrdJdWiSo9Dga7tFtdFno99u5corvQQcmMqFLw2BP38a6HH2A02uOpL32e8SjGWEGttsBkOmRz+w5lLhx0p0yxVs6zUCcIu08e7yLMhDQ5oFINGE9nTOMJQnjs7e2TpC5rcjTaAZthTMKh9SUOxrs88Z4nWVjsUm9VeOzxx8iSEk8FXLp8kUuXX+f48eO0O32UF2CQNJodwqjB93zoozz44EP0+j1O338ak/mMhin7wwmHjx9nOL7O1Ys7jGc7xLOC6ThDRCmL/T5rRw8hPSiNZmf3gFyEUJQEWJCKorSkeY5QGulp0Go+8Rb3Cu2ydD58UxqwAiX1fOHHqaEKW+L7PoNyxLkLV3n2uYuUqkpRBwi4cvk6aSz5zc/epNbuURaCf/bUv8b368STgiQbsrt3i0oUUWs0UVKzvbtFtVqdL9AY4iQmm82wRcntO5sYoQgrbrG40aiystjG5kP6zTamSPB8idUBqCYi7FJrrVOt9vBUFWn+bDx2d8fvXf8krVbzz/Q5v9nh1E3mqy6TQr5tYfdnOew8MuU7Gd8t7v4cx93izhV1rsD7izii+STOggOdWMvxo2vUG7V5h1CQpjkAtapDVUspePD0MaTQaCUJAqdxD0OfIi/RStPttDh5bI3ZLEbi0PTxNOaZ1y5SlMbpz40hyzLyoiAvc65cu83Fq7ccwW0uPcRCluV84g+eYmWtzwff/SDVWsTS0gJSKeqNCukspTQlf/z8WUxpSGcJQeCzurbIow8e512nj+HNyaZ7uweMxzNAsDcY8v53P0S/3+WxR06RTBO6C2263SZ5njuYiVIcW10iTTOwgsk0Js8KBvsj8twBAFw3w2Vf7e0P2RuMKIuS3d0hn/zMlzFY0tz5jvKiRGhFpVFhcbmL8iEINaaUaOU6FnmecPv2AcZIZtMpWZownUyx1tJb6OD5PmVesr87ZHtwwK+k2/zERx4GwXwCVbC5tUOr3WQymbqV6fn7T9OUvCiYTqasH1qj1+3gaZ//+1PPUK1GrK4vsrLUwfMkg+GE0/et0+40mE6nnDi6xCvnrjIcjuj1mgyGY3xfkyYxz714nuXlHo89fJxOu8Hh9SUs0GnXuXrNyXkHe3ucPLZMGHgs9DusrCywsNBxFMnAZzCY0O/3qNci9vfc57u+tsixQ4scPtQnCHyOH13n6WdfuwekeOP1K2itMaVxxENKZnHGYq+NtW7SdufOHrc39xiNZ3zlmdfotFsEvs9kMuXchetUKhGtZh1rjYuEKAuEgP6Ciyh49LFThFFAq10FSp545Dj3nTyE53mMRhM2NnY4f/4aWeK6ZVIKrt3YZjp1YfQnj68jhSSeJgwGY86eu86jD5/kwuVNVle6XL+1Q6tRpygsR9b6jCcxFy/eYHl5ESmclxBhuHjtJtNpzHuePAnS0Q3X1hY5//pVWs0m/+pXnyaexeR5Qhyn/Nvf+grGSsaTA5J0RhiFeH7Azs4eZZEjKSnzHIQhy1PiOMFYSxhFLptwHj7t+y6jTQgH8tFa0u21OBgcYK2j0h0cDElmCSD57//6I/zk3/4Zponi6PFHkarB6vIqvU6HtFS0Oy2MKZBaUq24FWGlnEpACMgTV9AkacroYOTCkaWTqofVipNZSkE573J2ui3+yg9+L+PJxMm1pKLIyjltTaKlpiwMvYUOWjs/cWkdCEQqh1FvdpqMR2OKvCRLc37ttz/L+YvXMGWJ5+u5zMsSVSpkcUqlVnHHBASra0t4nqa/1EWo+YKYNWSp84BZDFLNV3uF4PkXX+XShav3SLngFge1581hHpaiyJ1cVju5p5pL0e+//zh/7Ye+H993kSqNeoNqtYLyPLTvs9zvcfz4Eaq1Cmtry0RR6DqXShBWPOr12vzz1rQ77XkcgaAoU3wtCX0nf5NSEucuQNpOZsSzqftu8gKQGANeEDAejebAC4euP3LkEMYYPN9Da02lHmFsQWnMnAJoyOIU13mwVKoRXuCxvb0LFsajiZPhapeDd+XaDTztzaW1lko9pFKLwFjyvEBoQaAkQRBw88Ymk9kUi3FZpIXlqZcuMD6YcuPGJr/3xRcIAo8PPHnGydOldK9LCprNqpuUYajVI8LIpzSGvCjY3t39js+zeZ5gheGNixep1Gu8evYsH3zf9/LFp7+MH0VcunKRLz/9NPFsyLUr54kCn8cfeYxOu0cYBqwfOoqnLclsyHS8Q71SZ+PWdeIkweL82o16A4Pzc5fGIJRw2XhAnk7wlKXfabG/e4siT9jb3XJ5f2GV9ZU1ojAkSzICP6TVaPPKy8+yv7/H4fUjGGPpdRdcEHhZ4umANMu578Rp3vueD+J5HtduXAep2N3bww8jgiAiqlXoL/ZZWlqiXq2ytLTEaDji0oU38P0ay/2jtLp1Hnz4Ybbu7LG/m5LGJZ6SLC72XadceLxx4RK5wcUFYTFAXpbcunUZhLjXVXfWFfed3gWqCCHBsbixxnneLS57Ns9SkjShVq1z34kHCH3HJDBzJdbB3hZXrl7kbz/yN/nxv/9pynLK//xzT/DzH//fKMuCU6ceZGlplThNaDTb1BoNjh0+5vzA4yFCSdIkJfRDrly+xJEjx9m8s0kYVRmOhwhRYk1Kq1FlZXEZKSxpniJ1gNY1vKiOF1ZBqHnB+u+4Q/aWMRkl/JP/63//M3u+b3WUdi7Xf8u424H88xzGuHzH72R8V5b55zhms9nP340sEHMk79e2jt9s2L4pw7y72731q/9mdsW33v7u427+7id5fHnh7W//Dhpl5xPEAUqUZLC7T60S4QXhvLMuuHXzjguKnkydDy8v+N3Pv8Dp4+vcvr1Dq1NHK81vfOoZqpHDgM+ShGDug7p2Y4s3rt9ifW2BSqXCcDAiyzI8X3Hs0BKNdp2yLMiy3PkUygJTGnrdNoHyqdR958HRLmuoUgm57+i6y7zzNaZwcIWyKN1kTXsoz6PbqhFVArQQIAVaC4wpiKoVRsMxWEu726BWqyCUm1gOD8ZIKUmTnP29EbuDAZ12AxCcu3CNShjSbDYxFoRUTMYT6rUqlVoVKRXJLAUkaTyhLCxSKM5evMrhlS7Pn73CmePraE8QBiH7+yPyzHIwGFKJAvxQg5BorRmPps5rowTKE7RbPSazMbVGSDEzNOp1pNQMByMmozFh4PGzz5/n/vcs86MfeojZLKZWqTAeD4nCCrt7Q9qdGliP8WSE5/n4nkdRxEjPpxL4eErSbDSIMwvFLk+cOYwVhkarxtbmLlIphuPEeS/zjIODGbNZRrtZI8sy0rxgb3fI+UsbnDi6Qr1RZ2Njh1arzusXbtJfaIOASuSzsbmL9hStZp1KtYJUmlsbW1y+dps8y2l3GoRhgNaaRqvBwXBMmudcv7nNYq9JaQyVSsT+3h7tVp2NjW267aajob10lSPrfba39qjXq0wnrss6jaf3iKqNZoVWs+FAN9OYqBZSqYRsbO6wstglTzOyJEX7miTJ0EqDgc996VUWew2KeUfSWpcdJpUHRhAGAStLHTZu7TEcTfG1otlsEIWaRqNGu9u8B1fwlGAwmLC+ukCjUUUp68AvvSZHDi+T5ymHDi2RJDFLi312dvYJQo0QHkrD0mIbrA8qZ7AfU4lCbt3a5OyFGxxabvLYu46ycXuH5ZUFlPBI45yV1R71eoQfVDDWyQOjUDMeT6hUK5RIJqMJ1YoLx5YCZrMpSqj5cU3NJWeu4+dpl7N07sYuR9aPM53MCAKfMAgcul16xKMhP/2Dj7KgMuK9LX72f/0kD642CZWi3j3C7s4mQeRTZCkf+fCT2HOXybMCJZ3H1poSJcU8ONoBq5AKaxxM4W7HriwKJxVUAqklYRRQGEs1ilBKkSU5k/FsHsgMSBcyr7TL88RYlHTdszTJOHfhMseOrGON5Oj6Ct1ug7LMsViyNHeZdVKRzKb4UYDS2hW9WPfB2Xl4su8WUnw/QCl5TypmrcAUhnqlwjSOqdedHzdNEhftkZVuYqrUPdlfnhcgNRYoSuf/s8LJj7DCxTwUDtaitCYMw3lBaImTlOH4gCBUIJyfN6pWYe43CoIAITXxbEg9kuRY8sJBWgY7Y7Jbt/nQT/8Uv/Bvf4Mff9cZpJRkWT6fHBvnMQF83+Ngbxe/UkFrRTkPkBYC8tQdx8uiRHueu7/vIYDhaITWGlsaIj9id+eAT332Ge4/dpTPP/UsS/0u7Y7rGni+B9IVh0HgO8+rkKRZzieuXuevLC/iRxqtIEkybmxsU+Ylt3YGHAzHHFtfYnWhzdkLV7i5tcXiQoswcp/VaDwiDDzywgFypJBzKIeLjvitjV1+/G/+DST2nmPiq+Rh7ziPe4v3RgrSxPL8l7/IQsund/hJXnvhZT73xvP0ZBdPB2DHPPrgKeLxDktLK/iBxdM+ZekUI2DwtUe32+FgZ5c0HrG0ukwSl3RaDaJahYNx7AowC7PZPp7nudB46VMUMwLPm+8jkq3NDVq9Dp6OGE0OmMxGzKYJEk1ZCo4cvp/SGJI0p9VsY61gZ2eXsrRUq1XK0tEID0b7xEnM8vI6ZWmo1xt4nkcURqTpjBvXryGkpF6rY2yCkB7jCTRbbe7cus32VkJaDGnWemxuXKS1WKFRa6E8gSmhNJZjR4/jaYWW8xB56WI4ur0+Skl8T+MCvN+c7CulUUre+36cH88gpCZJUrfo6ft4nkakBl8WrK318FSJyBW5yVhaOUyz1aTVDXj3+mMsHNplGCtQbWr0WFs9TqPR5oUXn+Xw0ZPo+b69t7tDo9FiFjsFTZplTKYTlFSsrq5QmpzZeJ9KKJE2p8wTBCWl1EivSr27ho6aCE9hpZP6IZ3M3Pntvp7L8O2Mr+OxvGW6+L/88v/Ix378x3BxL+Jtb3Z3nnmPP/GW7TvJqPvax3rzyrc8PuLbes63yiu/1biDr3ssqd7m8ey9xdDvRiH8BRxmnsFUFMW9rSzfEj7+ZzAuZ9/aj/teESrcClCZF0RRSJrlLhtKSuI4od/vONJfFGBMSRgG/NWPvgesod9vOnO5tHzvk6cpEphOY5Sy88vhvpOHefJd97O7O8AYQ+grrCmJKpqSAoRhnMbU2zWUJ2nWayjcj6JWjxhPxpSmQHnuc07mK71FkZOlOUIpbCnBCKwRYA3Kk3QX2mhPY+agjSxNEdJ1eBZX+ggsee5W6rIsoywcrXM0dCv2tVqVWjWcS698Hn3oFO12i9FwQprmPP3cWfr9HlI7P0yRG149f5XN2zsoDMKUCGv4yHseZjaZcvrYKmHFdyvr0mNxYZFkkrKxuUugPQ72DsBoyhK8wL2/PBEkSYL0oN4JSLMZ0kTsbh2QxTmNVp16IyLJY37uL5/izFqL3Z09POWypYLAozQFDzxwkqxw32+v25mvUjs4i7QlwpaYPGM6mfCD//X/w0cfO4olxw8UloLpJKHVaGJKQRhWiIKINCnJckun06XVbmNKy9b+mPc/8SBRpYLQPisrPRcbMT/AzWYJo2nCyZNHGM9SDkYzCmPZ29vn8JFVHn/0FJVqgPQ0jXad3BouXb1FnOXUaxUefdcJGs06125ssb29S7MaEPkehw+tcGd7QKvT4S99+Azj0Zil5T6gaDZqNOoVkniGEhbfU9TadSazGVE1JKpXsEoQx06S6WmXuyWFIDfg+SHnz19n6/aAVhhy5eImnvSxRoPwiOMpQgg2NrYRCF5+9QKL/Tr9XpPpNGXrzoAkSShNzmQyYjodk6QxZZGxstSmXg+4fuMmjUZIp9Pkj798ntFkSGkS7mzdcgX3LGZhoetynERAUZRuEcS4SfPLr9ykzA2eEnz/++8nT0d4oWVpsUcydRPck8eXyLIZRe6w/iCREra391FKYaWHV2lSpAZfBzgFZI4nS9S8o1WWBiGYTy4lk3GMtYbQl/P3WDqJIa74MNZw+Ogaw+EBaV6gheDjf//7ufTcZ/jJn/3vSEfnkApsWcxhA3V+8+zLBL7H3s4+eZo5SqSxGOOKSyU1ArcIcm+i5rkoDCGgLAqKPHPlxpxaXJaGsjB86o++zB989imKIsMYl0dpjPPblnnJeH9IPksItMejDz9EVhbkecpzL73M6xfOu9+MUlSqFYIgcK9HKbTnSH5ugdY9ngWUdlla1oq5pFo5WShy7iFUeL7P5raLinFZoHLexdP37gcSicLT/j1ztprTA4V0WagWiUDe6+qVpmQ2izFlya2N2zzzlXN8/qlXMYXi9q1dJB6zWewmQsZirMBYQRh0KQsFaDw/whpHLL20vUtYqXGkEhFPM0fHjAKMzV3RqwxhUIVSUq1pwO0vUjrFQVmWlLngV3/7D+fH8YRaw+WfCiVpNmsEoY8fhUhf0OzW+I9+5MOIQPDomdMA+L4D10ynMaYUZElOPIspioI4ickzy42N24yGU/c5ogmCgK39EdVayIefOM00SVBK0O01Ob7ep12P8LTLFiyynFrVRVuYUlCJKpSFYWdrgADXhX1bt9K3OEqP0Kvz2tkL/N7vf4FjJ85w9ESXq9eustw7xGDrDg+dOoEm5cxDT+B7ngNs+QYxj7hRWuJHmlokOHbkMAvdFkm8z8ULZ7l+/RpJmeDX6tTaa8yKEM/WKa11DBhPuezAvEArgc1nLHVaxNmEosgxGNrtJp72OJgMQIEOPcJahFAlST7FklNrRIQVjaFgb7BNpRaxvLRMt9MjS2KYS7m3t+4w2N9FWMvRoydY6q9grKJeqyOEJDcFs3yH9WNdwlaCIGQ4GrB6+CSRt0CcpeSFwVM+njRolSOLCYWAUmpsWWJthsBgyhxTFGjhYj+KogTE/P+F65xLBzExtgQr8XTI7c1bWAN5XlJ4OVZJhPAorMCGisgP8bR0OZyJpRpG/Gf/7Rf5J//4d+hEdT755c+yfWcXUwi+5/0fJctyJrMpW3c2qdUbbGzcePP9liVLS6ss9DpMxvuYIqbTqpPEU/I8d/NJT+GFDbxKF1SIkQZRSkQpwcg5zOdPV5b5Tnai/+lf/gK/9hu/9Kf6XN/OEFJ+1fbvy/j3553+/3AY4zKrbOkyp9yP7qt/KOYt29de9na3e9vn+QbX/acnlr7usrtEza/9+62bLCWpsORlzuj2FoQKg6AEfN9hlE1ZovEoy7vizAIjodZq0Gy30b6i0pDUmiEH44ROu4dQGi/SbNzY4fbtfdrNBlmWM57OGI4nTGexmySXgoX2IhbQgWKSx8go3K33FgAAIABJREFUZDrKSNIJlSBgNi6Zjl2Hzr2ebC5hysiSKdPpDIRCSo0VAfEkQ2LJsgSv4kLNvShERlXy+YpOtV4jHwtuXNhFiwDpRxSlZTJN+J0/fo4gCllc6qMCTUnOLJmRFyVR1UdpyxOPnGA2GzOZjsmKGK0tx9cXCTyFjBrIef6dCjTVdo3+QotWvUYyy8iyGUakvHDlCmsrPayEGzf2HZjQOjPuZDzC88GXEYocURjK3JCJMZ4nuHL1OrPJFKU9/u4Ll3no+Dovn72GtZbJZEBhDGFYczKVYkagA3KbI7SP1BKDA24IY4lnY7a3NynLjEOra5TGcuHSJuNRShoLjpxYJy8yjMmZDEfcur1Lr9/g1P09Lly5Cp5m7egSDz9whCCE7Z1tRFkyjVOMsawu9ZBW4AuPre0pZWmp1yKgQMmCbr/DYLBPWaQ06xHnzl7i6adfZWdzh0BJlLXs7A65enWDsjC0GlWWFvuISoW0dOb0s+dvoqSHtXD15hZxHHP16i2SNObazU3WDx3i2s09dBgyG8bs7o65eWMTT4KNY7T0OXvuJlmW01pYQIYVBlsDdCmpeFVqtZBrWwe0OzXKsuTO7W0oLGHoYUzG2uoCeZ5ijQtf73Rb5GVBq11l/yBmc/MAiWY2TfG0x/5Bzue++DphUOf6tQNefOkW42HCWr9D6PnUm3X6K30KY4nqIaUpuLMxIJ8dQFGiMGxs3mQyFDQa8PwLr3HnzoBOd4HmwhKvX7jtcr7ElOHBmHPnNnj6mStIK7h06Sp5FpMkCUKVKF1i8hkmTegsLlFgKG2J9gOUqqM8nzKZUSaTOcTJLehU61WKIuO/+TcbCKVodzv3AE9p4giFWZJSr9SwpeHcuUvkqccPvu9RTvYkV57/LLV6lRvXb2AsyLDOpwcTEIJ2t05hU4QsiZMZQpTo0ANPgzWUc0+jMIIiKZyvS2sMEq1DPOUjgaJIKEyOX/F57yOnePj0cdcJFAG2kIgyI09jfF+jAh+/EqEDn5efO8dwf0helHzP+97N6dMP4ClNPM1BuAgRhCVqNigLg1YKyV3Zl+sA5mnOhTeukcclZeGgB9qXlKLECkNuSvYPhly5uYMxLtZA3g3bFeAHrismBBgMFkM2Tfj0p75AMk7JJjOKJHYFt7JYW6AQ2DjnzvXb/O5nvsD+zgEHg4SllTY/9JEPYI3g6u1NVCDwlOb2rS2UVFibMxzs8qXnz/G5F65SjGeYdEoymVKIlO6pQ7z2xjWuTWd4CoR1K+rWCqwV5HFOaSEHRNRESgOUUAricc5of4rWHh96/HGkcDCe6cEQYXNmoxHT0QSbGZLhlHgac+nSDTZvbbNze5vROOPKjeuks5TRbuKK87wg8AMqYRVfB+S5YX8w4AdqDjaTTwr8aohfCXjykZNUooA8zvngu0+jfEVaZLR7Te4/cQjfq1DkufNEKueB8kPlZLxKs9BtOZmmKflnT55yHZ95kfBO0ri7173d9bNUE6oxzVbAE9/3I6wfqnHiyYf56z/wXl566XVUtUacjihLARSUZeKK+8KDPEdLIBeQG3QRUG/CynqHc2df4/gDD1KpRuSzkloUMU6GVJs1bNSCJCc5OEAIBX5IZg1lmUFRYMoENRuyt3kZlQvSaUFuZjSqVcbjA4wpKLKU2cGI4e4uo+EA3w+RKsCUkmazx/5gSGktu4NdbDHDFCllmuNpTVSpENaapHnBnd1thCcQOiTPDI89/CCHllcIVUQ96HNorcd4mvL6K7sUZoDGooTASNcdnI1mSL+OsIrdnTtYcRf/YVHKndtKLPuDCXGaIr2QzKEm3TzKunOGUgojZkxnM869eotJkuIFPp6JEFYghSRQAZ5xizEYS24TkkJy/tJr/Fc/9Pe4eGmHlcNNLu5dYXFllVk6I8tiBvvb+AKanQXCULO0sMR0PMUL3bkhqnrsbN8km47Ix2OybEKg3P4mvQApI6wX4VebgEKXYIVxGwZrzZyoPR9CzLe5luvuQtM7aMHE22xfm9XslBKO7CmtRFpHghfW4pb33HZvXuq6Al9XhN3tXN0lSFosf5IVzhqDNQYl5b3t7vP9aYy7r+VbHW+Xd/dmZEKJywgu7m1Y8V1Z5l/kMTg4+Pm7nfE3MzIsSqpvaweCt/9Jvj3hCH7qJ/8THq56LNfr3/rzCIFQ8MILryCSGZ1+G6UjAHZ3BlSrEWmWoZWcU940WZJzMBihpUQYy2w2dbK+TpPlpS6f+KOnWV/sooSi2a5Trfpo7Q46nhcCkt3BiFq9AgLKNMXMQ2/Hw4Q//MKrnDi2TLNRZTyaon2Pp195nZVeC63dapUxlmyWEYQhW9sDh8Mvcp47e57Dq4tgLUEYsL87IgyiuYwow/c12JI0nSKl4c7+Lv1+3RH0ypxmo8qZ+w9z4+YmEperpbXnJlrGzmVWzktTqVUIvGCuq4bA1yjlgDMmL/A8STyZ4fRlGi9Q5EVCnhkGe2Ow0GnVyfOMatWfI8Kdn6QsSwLfJ01SiqLA9wLKQvCpz71E6Pss9Xtcmo5pfWCdH3vyMG9cvMaTTzxMpRJSqVZccGdZuq5rxXkt5NyPBlDmOcZaPN/HWmi1u+zFlo897rG/O2B1uQ3GsrM7wJaC4XjKUr9NrV5hYaGBF0XU6yEL3d7cv1CipGQWxxxaXyHLcl586RLSWrRSTOOYveGIB04fwvMUWZrTqNexVnJrc5OlpR5ZWlCp1Oj3W3Q7dTrdFrWaI5Yu9Du0Ow2G4wmra0vs7u1Tn+co2tJy34lD5HnG5uY2J08coixKVlaXeOP163jaobBXV/uY0rC5scOxI2s8/+olVpbavHH1OkpJTp1c5dmXX2dxoQWAFJa9/QHxLCWqah59+CjVWkhUcYHpt+9sMZtMEVZyZ2ufWi1ieaXH5uYeWiu6nSZCCFZXFhyoyPfQStDuNGi1ahw/skQ8m1KYAj9QaO1OYpevbXLs+BrWQjybEoQRz794kTID6WnywlCtVgl9nxdeuswHP/AQ3U6dxcU2UkviNOGppy8wHEw4emyJJMnY2h3x6MOHwRo6nTZSOWx/FIZEYcju3oioUiXLDjAmRXtO9jgcjl0m4xympDyf6XTsqK+A5/l84vkBH/vwKYwxTCeTe9l0nvYpimLue5D4nmI4nFKrBbzvZIdf+sTTPPzu99LrL1KWEj+o8cM//MP84S9/nBPLKy5SQCu0p8lTM49oEJS567oBGJwXzf1RooTA2hIhLFK61+Ckl5Z2u0G1Fs3plJpnn3uFq9c36HVaCCEIw8jJFMuSZrNJrRGhhOaZF15hpd+hNAY/CJFK4PnevJBXCAtF4cAkQlqKuXyzzEuef+V1AiWdt/Du5MZYxFxep5Xk4QeO44U+UswJf3MQhIOdlF91MhAIlvo9zr9xiUoUUK1VkUqDxcVsXLxGr9tmMp2x1Ovy5Vde40Pf8wRSWMIwYDqLOXXyOJ7nMZ3EFHnJZDIlDAPCMGJtaZlDK300BUJLwkqE9HweW1ig9YH38Vuf+G1+7NT997I3766geyrA2oTZdIBGgNAOtiIlRZFSa0Qwl3mDmV9uiKK5z1I6+IGUEkNJNXL5mFEUUKnVWF1ewFrQSlFSopXEWjOP5QBPKdIk5/+9vYm+eof7ji2jNfNi2RBVQvYHQxqNGp7nOnp57mBInlZ4gaYoDH4QkSUOzDUaTvjcs69wfH0JKVykRKkUtQ9+H3Keivd15+hvQqrp+SHaTPjCH/4BeQoPnvkgX/78NVQ+5Z/+zi/y2NopThxaI8snczmvQiAc3VELpMDlufoK6ZXYUpOlgtu3t9GRYHVp1RWm2icKIvIsRyqPWrPFLM2QRYoVEl95lJkrasOahzSSasWBcbJsSpakdHt9qtU6eQn7+we0mg2q1Rra8/E83yljsny+qDjE05rpZEy3u8jm1hatdgeltcuSS1I85XJvB3s7VGs1Wq32fBGjIE1zhsOSas1j4+aQB999lJtvvEGn10MqiZ0DUQ6G+0RVJx0PosDRCHP3XWt9V86tHfU79CizjEArbJmhvRBjnLJAIucTc0VnoUejGYEx5EWM9hSlyTAYjC0AxWg85fwrL7F25AhR1Gb7YMxvPPclfu6/+Ls8/sij/J8f/+e8974nqNWqNOoN5+1Xmq3t2yz0FlGepjAp6WhCPDnAFiNa9QDPN0ghEUJRWE1pNUIpdFAlCB1xWdxt4r/N/O1rLnnrlV9/h28wlFT37nOXRPwPf/Ef8mu/+kv3/n678c2ULl9X3Anxje84/9G8Xfi3/ZrbfKPn/E6u/4b3+Sbrtbdm5n03CuEv4BgOhz9/1+Aq5zut1k4io4T4uhWSu/vFXWDD3ZDXt1731t3u7sqHsParbsP8/wf7A/5S+PU76jejJS5NiS4Nw7091lc7CBXghxWKvKBRrznzunBOQadPz/CUz2AwQFh45uULdJs1atWQ0WhCrVbh6OoCoR8wPJiQFSmVaoRAukw57XDzl+9sc+a+I0ghmI5GTKcxRVYQhRHD0YSlpY6TgQY+YeizvtjB93xXYHoeWMulyxvUK1U6fZfZ5fse/V6DIPSJY2cGD/yAvZ0BfuCjPeW6lVg8HZHEKY1qxU3YPOV8aHlBmZcs9HsY46iewlrytCBJHbJfSkEYOg+NyQ22dN+EH2p04Mz/WZrz5RfO0W3UCAKfKKqAcCu+UaVKrVaj3arRbjdc0ahBKI2lxPc0RV6glU+aZkglSeKM2STh+Ooq/cUutWaNn3nqJX76I2cIw4CFhS6lKYiTjHjm8Oie71GWhjhJ3EKDFOSFW0kVUqGVpigL9vfG1OoNfuWTn+e+Zc1XXrzA0fVlfN/D9xRSaWpV50sbDA+4emOTTreNUhBPEg4GIza3dmk2KoRBZQ6E0DQq0Rx24SaCi4tdSptRFoY8K9nfG9PrdalWNOPhFN+PuHL1Dr1eA8/3eO38NeI4pdWq8+LZS6wsdalWQp598TylMWghERa2tvZo1CtoLdy+JqXLI5vE5GlOq1nl9p1t2s0ao+EE33MZjLVKQKvdpN2u0WjWKE3BUq8931c0d7a26C+06PRaVKo+aZaSJCnVasSVq7c4fGgJYSS1epNavUJW5ISRx/b2EK0UL792hZPH1xmPx4zGEypRQKUasbW1S1jxSeKE8XjC+qFF2p0a+4Mx9993mHajwme+8DLTyYz19R5S+uRJgTWWhaUejWYTIeycQlgSRT6Xr2+ystrHYAk8nzJNOby+hNIOUHLs+BphIEFJwqDK669fYzSestDrYktBrV7D4jLutApJYoNAE80LHs9z2WmzOKZareGy0wokgvHU8PipdVfCCXcMFAgnGxSCIi+p1qt4vsdkMqPb7eD7EQ8sevyd/+Ff8rc+9iPkpSGqtsmmM37hX/8KP3z0qPNkBZ4DVpUxSoNQgrxI0XPQh9bq3mr1lYtXuH79FpSGKPJJk/je60Y5GmMcx0RRBEKwtNQnVAE3Nm7Rbrbm3jXQvkb7Gs+TTMYzuq0mnpY0mq25rNJ5OhSS/b0DarWqm3wXTrYnlHTgGSE5fvQwrXYDa0uyJJtLSxVFlgMGP3B49rwo0J5HmuQo5YK874aUg+sEuuwtRy9dXVmiUq86WSbOc6K1plaN0J773S8t9zl131G0p4hCn929XdqdJr7vnsda+MyXnuXIygpfePoFamFItVrhD77wR5w8tIxQczUEgq/cusGZ//D7+Ve//Ov8jdOnXXGF2we0p5FWYmyCkobx/pio3nLHWmGZjMcIAV7gOR/xXGrrzyFEQeiOv0nsOieGkmq9RhhFaF+htaXI4dc//UccXu/jeR6VqoPY5FmOHwSMxmOEFfSyA77n5GG8UFGrRkwnM6IwxBXLhlqtxqe/8Cz9dpNatTqX6KVo5Wiqd/dXz9NEUcj60gJpnCCEy36t1+v8xD/6x3zsYz/K2xV3b3eu/drzcJIXBGbC+Refwdd11o4+itBTWo1t7j+xwEJ0lGYV9/49DyzMZjOU0nheQJEbZpOYMKw6eJsAIQuanS7j/YJqPSLLM6T0sCXcuHGDhf4SmdUYFEU6oSBBK4U3lzkXpUFjsGRAQTw9oFVvMZ2OGAx2SNOMaqWKsQapNFFUI04S0jQhCkOKIqe/0CfPMhqNBqVVVGs1irKgLHIGw30C7buFFyxJMqPV6eL7HlmecvXaFfr9VYazHTYuHXDo1BIXr7xBu9GmUnWSXVtalNJUalUH0NAKgaUsC7fAId18Rmo974ILrC2QSExhUNrBf6Rw/uiyLLEGPE8RhM6bSnm3aHf7ge9HWCvncTIwGo8J6yGzWcLNOwc8uPQQH/5rH6HdbvLci2f5vke+l82tzTkhU+D7AZ6vmM6mxLMJ1UhxsHMZLQrqFdd1lij2BgfgVQmqXXRQwwucN1oIDUJg36Fl9bbF3d0u3rc73rKv/uh//MPz49c73/wb1mjmbof/Lt/BOXTv4k7e+SXMX8PbXGfuhpjfnRe/ZZPK9XCl/MaS1bsUzXfiUcC8S/dOc+hv8Kbf6fbfjUL4CzhMae5puu8ebL+p++EkXH/SuNuifqfxu5/69Df5Sr9+SO3xxitX8IWHqFVRUX1OZtNMpzOGwzFaKbAOe/5bn3mGg4MDlpcWqdbqvO+xM9QbDbwgJEsM8TTBmoLRZEQQaj7/7BtsbuzzpWfPMZlOyfOUxx+9jydOHyWbJhRJjh/6tNtNpFaEFY/3Pnk/1UaVMKowm8RkSYKnpSuEfZ/CGPI8Y6nfplIPKQqXreV7IVp5FLkz2idJTBzPGE8nCFx3zeYWUwguX7jBH37lZQajsQMdCMXB/oj9vRHD4ZTPf+ll8izD0x4bt7Yp8gJPK155/Sq3NnYQUjIaTkmSGZ7vfC/GCOJZPqd3GT743sf43AuvU5QCZMlLr1zmN3//BZJkhtA5lWpImhT88VfOoWXgTjiFJUsLgqDCU8+c49rNLdIkozQFt3a2MTLHDwQ/9YVn+cQ/+FGslsRFgdYKz9c0Gg1anR6mLIlnMVmaUq1UXKFncvy5D1ErzfbWLvF4RBKn3Lh+m89cnvHapZv8B9/3bpK0ZHt3SBBFRKFka3uXz37xReK44NiRI2As44MxX3zmHEJLDh9dwg98bm1ss3VnQFHkNBeadJc69Ppt2s0GB3sjR1ZLMzxPc2d3wHQ6ZmtzSJHDZDLlxMlVTFFy5fIGJ4+u0ms32d7a512njnL71jb7uwe86/RxTh5do9Fo8uLLlzlyeIUbN24Rz2KSNGM6STj/+nWwAulpas0qJ04sUdgCL/RpdetkRU6n1URYwXQYY5AIqfF8n/Ov38QYyWA4ZWNzH6V9Ll7aoFqrU6832Nzc49ixQxgr2NobsrM7II0zhoMxs9GURr1KEHh86P3vcsTJMGBpucdoPGZvb4/FfgfPD5xPsNUknqWMRjPWD/XJ84xXz11nbaHD8kIHYwRp4or2aTxjc/M2poyZTCaEtZCjJ1ewueHMqWPzhQjHy3jo4RO0uy208vn13/kK8XiKVp7LwipiXj53jTtbIzZv7zOdpKRJgZQ4L4dVVKpVlIasmGBN6VRJOBiEIECJAK0D/t4/v8BPfN9psCV5nhEErgOV5SlCCPYHQ27dukOWp3ieRFIwGsUYVSdH8y9+5lG2N9+g3gyYTAZolfEvfvGf8vHnvoIfBggpSZIMaSS2FBRZSeBXEFIynkzIi+KeD22hu8S5i7f53NOvksQFUbVOMhuDKOfe2YhavQkIrDDoQLK01uPhMw9SiSrOh49xk8XSksQzGs0a1UYFFSmmcYJU2kFcipIiy6lWKiSzFFsaXnjxLL/xyS9w8+od8swdr0fDEZ7nluRePnueSxeughFsbm1hhJiv0IeEUcD/x96bB0uWnuWdv285e+7b3WpfulrdrZbUkhCSkAUCPGIRYYyRzDJ2GIyCZcIRhiECM4uFcYQNBhvb2AMTHhbDeGDGRiyWEAKhBTW9qdVLVde+3rr7nuvJs37zx5dV6halVtOCIIjQF5FRUbfy5j2V95w83/u+z/N7wOB53l0FyObG1owGaqEeYI9PKEC+eEMDQpYIWYKwPfZGs05pSrSryIuUwcGYSiUizxMKk6Fd6zv6mq98BM9zeffXvoNxHCOk5MyJozZSQgqmScbe7j6P9ObJ0wG+p/noJz99lzCotZ3g5sUEYRwct0pQrdtp/izzam5hkTCocvH8DbLE2OtkEtPvH3DQH82gMRLlKNLc5uXZ3axECs3+3gZKKP72N3wtnfkGYRDS3xty5dot0rQkizMqUY3WfIffHEzRWuJJRTJKkUYh0Fy7vopSDtNJwunFBVzHnREUYTiIuX59ldFwQl5keKGeUU4hnkxptGqYWcOuNMY2B76E5QU+5BNUOUaYIWHDobf4EBfPST78wRV+9P/4CVwVorVDUVjPa6US4XguWZFTmJLNrVUbAaJACoXn+VRCxcH2ZVaWb3JwsM/m1hpr6yu0mm329rbRRiEJyP0uoTfPZFxilMJoiVDurInj4zoerWYbpTI8mSLLMfPdCtWKQjsOw9GIaZzYSVqekyQxULKyuozBoJXm1s0bZInN6zRFSuS5uKGPE7ho36XebNv4ojJDCEmjschgFBOPx9z/0CEatTbpBKrVJjdu3WA4GpFOM65cOUchDI62nkEhJEo5GFGCccgTRTotyU1GnkzBQF5K+pOESWqLPSEhSafcIdeW5FBkkJuZr9YScT0/RCqbC5tn4AcRx+47xe1r62QJZNMRX/t1X8c//IEf5ciRB/n+f/Cd/G//+SdoNpp4nsdwNGJnaxXPUYSeQ6sakI32aDTaBGEV5YUMJjnjRFLrHEX4TZyogV9t4EYNpPLuSvruNbW75yrLzz2+xPWv/+9/xbHjh7/k1/ny+tLWl4u7v8JVGDMz/Vuk9ivFr97RFH+x9XJeO4D3fPM3vbIDvcc62DugyEta9RoGhZmZdAXg+x7nri7T7w8RQuB5Hg+fXOLclWVKBJeuLvPks5d54plLHPSHnL1022bIGUO1GgCGr37Ta5mf7zHXsp3caTwlzzJ67QbJNMF1NNNphh8GOI7Fkg/HI9I0I52muK7LxvYeSZKglZXXKWWzk2q1iOl0amV+acbmxi55XjIcjhFSUBYlrueyON+ZNbNsmK5Wms5ckwdPLBFFHoXJybPC+rkaNcIw5NBcm6gSMhyMePzcNfb2BkziKW995EFeuLHCZDTBdTRSQDyJUUqSpTlBGCCV3RyXRcnXvfURJpOElZUNzpw8yjsefpAg8plMRmxv7eE6LlXfhjCXhSEMQvKsZDSYsLU75L6TR2i2m0RRwOseOoXrar7+g3/AT333m0jTzIJX8gwhBKPhyJ4rZTmTZBoq1QqjoY1OsD5FKyVL05RGo4HvuSwdWuDffvCTfNephNc+cAKEIKpWuXpji3EcE8cxzUbEV73lQZqNOlJIxoMRQeAT+i5pniMdzWAwolYN6faaJNOEkhIhBLt7B1y9tkKaZLOOqqJWq/DmR+5nd6/PXK/L5tYBWzsHFIX1T3WaNVzXIQoDPEdz69Y69VqFcxeXUVLy6cfOURYFr3/tSeJJjFaKi5dvcfX6GlEl5IH7jxGGITt7Q5RShJWQsBIQVQJ29w9wPRelFLeX1+5Gl7iej+f5NOtVTGl4+MHTTKapZU6U5u7x93odMJLd3QG1usXJu65Lp90kCALSNGM8mWIMvHD+GrdXNihLe25JKdk/6JOmOVEQAILBYEKtZiXV4/GEpfkWRw51kUKyvzdgeXmDbqdBr1vl2OEeWguC0AchSNKEeDJlfW2LLEkp8pz1tS3yYob+NoL3ffPbLCAmy2EGRPk773krZ04d4qnPXuejH38esHlQeZHO8uQylAOOa2W1G5s7CKnwfZ/SQBynKCUZxNkM/gEYCzTJsoxKVEFI6HWtbDfPcvIss9LIKKRE0Ol28FzF9//Iv2E6HVka6Gxz+Fms/Hk0HOMHPllSYHJh5X+lII5j6vXq5zxqCCrVKt/67nfx4MnjaGdGFtSSJLUTIWMsbW84HCGkIE2mIG3sgHIU02liI0+0Ip7EM7mlzUybJgkIK5WMJzFaK/zAx/MsYe9jn3ochGA6ztnY2LWSTSmpN2t2Yp5mnDl5nJMnjmEMLB5asHI0wSzn7nOaDSUlSZKwsLRAHMdkaQaYu9f1S8EHgulkYicWSiIE/Jff/jCj4fju62qtaLZahGGIEYaisFmAYBACrly/iTEl870eruuwvLFGlqUoaYuuNEv41PUreK7H26sR3/A17yBLsru+7SRN0a5EoIgnKZev35p1/wFjiEcxUmruv/+MjUSIQrZ39gB47LmzCCHJcysh91zXRn7khfXOZRlB4FGUBZ7vk+UZRV5QqVbJ85KyKDl/+Tr7ewcIJfjuxQa1aoQwhvWNnbv5kVu7A0bDCZVahTNnjuO4NiC+KEuq1Qrnr69x8dptpLKxGp7vWTjaDHAhhFUFmNIwGo9f9f0WYJpmlEXOtauXqVUDRqM+l258isVjVSpNzfe89xvJSe7uIvI8Z5rEpOkUsI3L0/c9ZL0/ugQkZWrwXI/XvuGR2WfKAWmaUKvWqIQRSkCRpmAM9fYCvtsgCtsMRn1ykyOUVRzlWU6Rl7YB6Cg8R7M4v0Acj1hducZg2KfZaM1+Vz6VSgUwBH6AVorAD8iyjMWFJesLK0uydEqRpcTTKVmeM02nSGU/S3zfRzsOgR8xP7fIGx58G1InrC1vUm9U2NvbZTjq43ouvu9Ta/Rm9hBl52szCXNRlphccOHssyzfvGGVHUpbNYFyuHLlLAfDob33ZanlHplZLibWf4rBevvKnCxPybKUJI2RjsbRPhiJ0hJTBjSb8zz82jfiuS5fvfB2kgy6vTZCQOD7ZKmdZAoMaZZSljlpMqXIEgK/ghCaeJpgpKTealJrdmh2ela9Y2zotfWmyVc0LPh8vsJfxPpv6VnCAAAgAElEQVSeH/z7f6Gv9+X16taXZZl/hWt/f/8Dd/KAlNY4jsZxbBFxr3X3Ni7ukM7uNp9f8pwv9LXPX//2536eb1pofcHju3vRy9m43nxO6rl1cxPpJvi+IPB8pPQpisz6R4QNPj13bYWjS12UFNRqIYcXu0jhkKYpUhruP7FAEGhOnJhn0I/xvQq/+/HPsDTXpNGqUuQZSZzQbDb4zDNXubG8QTW0gcF+6OEH/oyspnBdnyI1TMcZYeShXMWNW5t85oWbPPjgKfI0sdOoSoAxJV7gI7VF0Y+HYz7y6HPkScZ8t4Xne8TjsY1R0NLmL7nOrCubMzfXQQh5t1ve3xsQ+B5CGLqLLfr7ezSbdU4dmqPZquF5mk8+fpY3nTlBFHi2A+57OJ6LVBZjLhF88rFnOH64h5CGMs+ohB5JXhBFPpWaT5bkZKkhClwO9gccXuyiHcXtG2tM4ylhPSAIfGrapRSGMArp98cEldCSO992hNOH53BdD1doTF5QFDnGWPmcFDDYj9lY3yLyffzARyhNmYMxJfFkgh/6CCHZWF9HS8XP/M4z/OT7vwZT5iipKIqUxbkGy7c3bQc7zmh32nYyIHOmY5s7ePzIPJPRGAdJlmfUqk2k1ChluHRhhXa9jue4uI4mzXOGoxG9Xo+V1S3qjSq1ZsQ0ntLrNfA9jyis0B8OiSoVDg4GRNUIpZWNRwgDkmlCq93g9toOx47NY4ylIUZhQK/bptdrobT1LZWURL5mGsdQFgg0Tz55CVMWNGpVbi6vc+L0YaZpzOhgyNrqDu12g2yasL66xeZWn2NH5nAcQa/bIhnn7OzssXx7g2YzoNWuMh5aouzKygb1WkSeFzTbNSZxTK0W4czCsbWj6fdHOMplb29MMsnZPxhwe22LE0fnePTxC5w62UNpMZNza85duMV0mliqZt2n0W6QpgWlAUc7aKVJpzlRzafR6FDkUw4GB/zp0ze4/8RhlKP54IefIAo07VaNaTJESRel7HtSrUdUQodKxaNR95lOxxS5REkbjWIQlMaSGm13KZvJBgvi6Qjtuiw2Gpxa6lEWxSwrTiGEsoHCCIqspFav0R8M8PyAIIhYvr5OHk+J6hFpOuUbXjfP+WsbtNp1YhkgpMffes//QHn2vPWglSXaDxDKNp7i6Qg/CClK20iTUpJlKdqR6EDTW+jYaIJCIJT1fo36AyhyXEfxqU9/lqWFtvWYGIlWMI7HRJEtzE1hLEhAuyjH+qa1dtFCMh6P8cMQ5bo2Hw/Dk08/z+31Xd75lW/i4YdO0u40bLSAlmjXRi1o12N7e5tWpwGimHlsbINPCJBS22KimCKlDSU3OazcXmN5dY35hTkQAkdoDJamawPCc1zPo8wthVMqRcX1yfKcIPRnUluFMRohchQahUNRlgRBgOe57B7s8/TZ8xxemCOs+NRDl8iBaTJBei7VKOR4s0N6eIGf/52P8q2nHqDf7xNVfPIkxdEao1wEdoLUaVVBKPuZLiRSQZ6naM8Wm0pYiq1QgofuP02RJ1bmrl2E0uTThLyYUuQpZQbKsfcHQU5//4BqtUFRZjx78RL3nTxGp90kqlS4tXabf/XCZf7uqUMIqXjs2as0aiFRNeTo0TmSdIrnKQ72+lxbXmV3Z8D5K7dZmu/wwH1HaDUrVhJrBGWRMZ5MaLbqKKXI8hghFMrx+a3lVd733u8EUXzxzcE9VmYE6cZNfvd3fp83vPPb+JM//gTnnr3Jf/q//l/e/obDjHde4MTcm9GuwgiDVo49j4WYNZoKyjK3sRn4CAXK0+RGsbW1y2Q6ocwzlq/eZu7QPFG9ihAaowTPnX+Gpfkl8Dx0YP1cMs/RRYbUVoJrMBhxx1rikKUpWkqajbaN2igTDAW+F6CUQ5xmTOIxrWYTY0BqH2NSdvd2KQphyZi1Jv2DXdJpyurt2yRJSrNRxRi4fOkChxYXmMQDJAW3V3dQGnzPQSnDfafPgJGs3l5mYWEeSrs/UVJb2FBZoqXGKJhbXKTVaqJLQymspaIoSiZJysbBmLlmFSkkSsmZ39Ihy62fWM5iQbTjk+cW2CMxuFpAXiKKgiTOGMaS5nyHSq1Blud053s0D7u88Nxn+Uc/8IOMtjJKYvJ0iudrJDnCTEnTMUo5uH5IYUry6QQvahE05iix8Vli9ht4iY/nzubvZdZdGeCLHnd8cvfkN5g7haPdgwohPrc/FPCBX/mn/JMf/5//zOvfq358uUO7V9SAFHdyBmfyypeRkJp7PF42ssD82eHKF5JKv9zfv9DXTGm+8H9YzCwCL3686MmvVpb55eLur3Dt7x98QM58Ps6suNNa39MMCq/Yi/mK1+nTp2lev/TFn3hnti+tf2/SH7K3u4/nKlzPQzme/WAu7cRLSkGlEnB4vo3rOGxu7dBs1KxpmZI8T6lXQpLUwjF29g5YWOyxubnDiUM9ut0WWZIhZEG7W0Epl3Yz5OjhHh998lkefs0x8syGRMdxYgsTKej3R+z1D3C0xHVcFuY7CFNSr1dwXRfPc+20TPukidXel2XJk2cv8i1f8xaiwCGo+DZA1w/JphOSScETj19kvhdRFgmeG1n6Zwmj4Zgg8KnWIqSSpFmKO5Pz5XnBOE6ZTnNGo4QThzr4noPrWbqeLFLyJKHMDIPRFNd1WOg0cV2XtbVtOp0muzt71OsBUkubO+W6OL5rJT/NBjeW1wgDl2ur67zm/mMEkYcpS/IspztXI44nVGsRZVHwvo9/hh/6ptdhhCAvSuRMruq6LkJILl66RrfbZjQcc+v2BqdOH0NqSZJOUcJu3Is8wdUaaSCqViiN4Mmbfd64kDEcWDndxYsrM49Vyvxik1anjutptGNvglmZ0h+OqdSqNJtNHM/DCzw2t/aIKiElhqWlHpN4QpykBKFHtRoiCwuUqEYBmIJnnzvHXK/N/sGAJLWTJ89z2d07IAg8giBgOByxtz9kd+eAo0cXcF1Nt1Ohvz/B931cV4EoUI71IxkKzp6/Sq9bJx4nbO/1WVzs8thTF3jLG1+D57pcu7GB42jarSa+73PzxjrHjy0yjVOu39ikGgXsD8YcPtKdbSAMAs2zz9/g9Q+f5vaqlcxpo/jMZy9z/NgcUksLxjCS0WBsJZLArVurtBsVxuMUkJaWVnXpduvM9+okcUI18Ki3AsrCEPghq6u7RGGA1IZGo0IYhkgpWb69SaNeQ1Dy2c+ew5Ml2vH45KdeYG4uot6ooKWg3W6wsbbFcDzi+JEunm9zzKZJgeN6KMcGg3c6HWr1Kn7og5Q8+8wtut0GYOVLk8kIN2jieT5SGqZxTBDW8b2A//qx53j3295iIUvpZDYlEeRZhpAwjVM7IctS8jzHUYpz5y5z/EQLI1Jq9Y6VVJUjfuQX/oiveqRHr3sSk6aUKL7rX/4s33T4GGVekucFSin7Oo4my+yfQtqNSlGWxPHYAoKAsjA8/qfPUKtV8X0fx9NILZjEE/IYbq2uceTwogWzGINUNqPTXkd35JklQigb1OzYaUFZlnYStL1jwUllydLiPA/dfxLHs7EfSWJ9xv39Pn/4iT+l1+wQhB61RkiWJnzX7/0uC1JwpN2zE67ZTUEIKHMz8/o4mKKkWo2Yn+uQZzMvnk1Yg7K8G2heFNndrD/tODQ7dSqVEK01WrlsrGzy6OPPcOzIHKYEhGR/bwffD3Bch3aryamjRxiORpy7cI12s4ISmT2XlQ3C/qUnn+LYG15Pb3mV++YWKIoC1/dm8RziJS6asixI4oKD3T5rqxt0ei07ZZLlzEdj75V7uwfUGlWSeGpjG3KYxglCSTzfI81zomqFwhS4rs1eLcrMFssazpw6br0sjkMST3GE5PVhTrcSsb6+w9XVDTAlzVpIMp3SbNasRyz06HVa1GtVOvU6YWQ9VH7ggbGxRkhBpRKhXU2aJiRxjOO4OJ7H6MxrePOb3vyqizuhPQYrF/nt3/og3/7d7+fY8RN0D/WYjvts3n6av/+dX89/+siHePPpN1Jmkuc/+yTVRgvXd5HKElWlUkitkUqQlzkCSJMEz9H0R+v0uh08XUP5Bc89eYVDR5YIfJ/xaITjuWjX+s88p8okTimV3YhqrQHrh7QO/3IGL7KB4MrxiCdj4umUwgiGoxGOciiKHM/12duzE9lpntNudWZU1YLRoM/8whLGwPzcImEQkRUpRV4QVSokacL5888TBhWbBZfEJEmM4/o8/ewzxJMBxw6fwJvJjLPMklqRwt5TDRhTEE8GOL5DXhZWhi4kUpRUo4il+S5i1uxQSmMKyHKBdjykUiCNfX9nMCOLgRJ3G1d5CeN0RKe3CNowGeUIKZFS8I9/6sf5kf/pBzh//gLD2wmuW9g8zXJKlsVoKfH9gOk0IclTSiMJ3QpCKlzfw4gvLdbgTiFyr+ndvXahd55f5MVd+uOdr33gl/8pv/Xbv8m9QLB/3uLuZdfL+N3+ItcrKdxeaXH38pXsvVR4Xy7u/lqv/YPBBxylUVrhe/7spmpDgu91NdxpyNyBqcTxZDY9enWXyYd+78M8lI6Al17cX+gENtIgSsN4OOFgfx+tNf3hmHqtYWWZd7opxlAWBV7gUxYlYeDPIAmQpRlh4DMax3TbzbsSpeFgwp8+f5nTRxds53gGl8mylLKQGErCKODMsSXrdVO2ixMEPlmWY0oIgoBq1SErMoLQI07i2YZzVpzMJJQrK1vsHwxpNmoUec7hhS77OwNa3RpFYYNyhZAk05hKVEUJQVGm1BsReSEwhZVlRJUKpizZ2dmn3rRB05PxBGaTCM/3ieOUIAwxRYJUd2RxGlcLBv0xG5v7rO/uc2ihR54UxHHGRx49y+IshLteD2c3ZSs3M8ZQ5gVaa9rtBq6rqEchru+S5RllXhAEAePJEJgVVPGU93zbw0S+x2QyxfM864cUkKYpnu+hlJj5YAzHTxyxXVjAcTRS2q/3+wOCIGAaT3HcgLIsefzsBd54JKLdbKCUotGIaDRq5FlBu1Mlz3Im4zECwebGHp1e02b2KcXBwdB26LXCdR2bn6ckRZaDELieg+c4IGDYtxLRSRyTZxndTo3xZMr8fJd6vc7VayscOjSHkoLxJGYaxwghmV+Yo9Wu87kGo2F/z+ZnbW5t02xV7mKKBeA6imolwvdDJNYnY4qcS9dWqAQBc3Mtlg7NkaYJzz53lcDXzC90kUpSrwYMhxPuP3OE2yvruK5mEidcvbbGm954BoOxAKHhmFu3tuh1a2hXWUN/YcPct3f6hL5H4PtIVbJ/MMLRHuM4YWd3j+5ch2k8IctSwsBnPJpSa0QW0a0d6s0627v7VKs+129tMD/XYmtrxwJWlGE86jPXrhAEGseP2Njc59BiEz/w6LY6AEShx7HDXSq1yEqajeAjH3uW0ycW8WYeryc+cwElIKqE9AdDoiCgEgUobTMWo8gH6duOsiys1y+0EtKf/L1Nvu2tpxiNRihp8Hx7LrmuBSe4rjfDwUuSaUqlUqHbblCWEyt/VD5SCoaDbd7zhhbv/+mP8i1f91Z8x2U4mfKud309XDyPp630986US2lNlqZ35dlFUaAchee5wB0stUAUcDAc0O21uaOPUFrRbfeIQg8l1CzIWJDEU1zX+rBs+HZJkhU88Znn8ByNMSVpkhGGFZ5+7gUu3LzBfceOUKlUyIsC13UtrCWaTcqFBaysb27haZdmu4aUkCQJ3/ZP/hH/6y/9P/ztM/ezurJGGAb26EobpWBJnIYkTri5vEK32wZhr2FhhA1s1wopFNN4inZskVcWVuafpQl3tnRJnLC6tsV8p0W9EeG4HmmcsLy6TCWqIbCZeq5nm01z7Q5nLz/PYqtOURaARmqXnzt3gYPtTX777GXe++ADuJ5HlqbkWQ4Ym0doLGZeSoUSilrdAqPywkJX8jKnyI2FHRjwfG+WjQhlVpAkBZSCILKTR8dxbSZnUZAlJYPRCMdR1Gp1+v0+nueR5yWe66CUZutgmzOtKqYsCMOQU0cWOLzYxfNdlLLvR5alDIcT9Ay6oZQgz0vOX71Js2ajY7Ism3kANVma4HouRZ7i+QFSO/zsJx7jfe/99lc/uUPiTff52B/+IRdvbvC2t76NTs9DmpR0vMyD93f4lncYLj49R1QLqDfnMCazZEhpm3mIO/dO7qp/lFJ4nke720ZKxf72Jo1OnTxRzC3Msbe3S7VqlRTDyZDQDykzK090PBdhcrIsRc4+R0vD3b2AMYYiz5lOU6qVGkVhCIOabRgbqNWqKKVwtMPO9gbNdociz4knE6qVKq1mi3RGaPZ9n9F4bP19bkAlqoCRzPWWMKRM4zHJdMpoMGJvd0BQcTh65BjtRsW+59LwzBOfod5s43uebcRkVpbo+T5SWPUDQlIW+Qy+Ye8bjuNQlAWmtCHn5194mlZrDqXF5/ZqM89rWZazLMyS/mDM9vY2XhQBIc1Gi2RakOX2c+1PXvg0X/vOt1CLQp6+9knG11Kq9ZAsm+I4DpPpFCEVjhsgtU8Q1Cjz3HoOtURpn3uXYV/6erlXvdOcudOg+Y+/8fN83w99D0ePHXnJcKIszReEqrza4u5LDQ03mLtglHtNCD//9e/kvdsviZd830uOS37h41Izmey9fo6d6s1iO8rSTtrvTE/ll2mZfy3XoD/4gOt7BEGI5zoIqWYbUHHvVsedNaNkBmE4Q/O+ugvl9Y+8nv/2K7/C/Z2XSjP/zAl6d3IH0hh2N3aZxiMKA5fWNjlx6AhFKfjs85dY6LVm5nxjiYdFYSdPSjIajUknGU8+e4njR+bQrmI4GrG702c4GvP2r3gIrRVlYbugUmgc5aNcZdHXxnb1Xc9DYIOY09RObLRjZSCmyJHCYTJOQQjCKLLh8FmB0poLl27Rm2uxsNDDZAVplhNEIZ5vZSppGqOkQEuN9jykI0iLhCDw7c9UJY7nsLa2zeOfvcTq7W0u3t7gxKF5trf20cIW6vFkgjElrqvxfQ+pBJ6rmYzHmNLY6Z126HS6zHXseyallYueWOrhegqlSpqdDlIqXrhwndB1MHmB79kCQSmJ49mbkTHguQ4H+xYpr4Q1eE/iKR9WIx45ddhKsVyH69eWuX1rFU8r6o0apjBo13qAPF+S5jmO59lupBBkhb1pB6FPPInxXI+iEPytn/xv/PT7ThGPpwwnU1rNGhcuL9PrNggCh+3tAVpJ0mnGzlafZrVBUZaUJVaSVeZsbG7huz6+77J8a40oCJECVlc3CT0PIQTLy+ssLrW5cn2FY0cXmaYpaZrS6fRIk4zRcMxwOKXbrQEG33dtt3kywQ9CNjd2uHz9Np12FaWgUa/ie7Z77QcBCImjHTCWZppMU5Ry6A9GaK3pdFt0WhXarRaTeIxUlkCyMN+lUfPY3Nrh9toWg8GIUyeWGI2m9OZbOFoRVSssLrZIs4TReESlGhJVQhYXuzRbddIkpdmo43suQSVgYaFDlmdM4ilpVlCrVHn+3Aqvf+gok8mQwItIswyMIE5S5hbneOzJ80wmCa1WHe0JOr06jXrd/h78AN/3iMcDXNfBc10cz8cISV4knDh2BKUla2tbOLrCJx57mmbVw3Ulxcy7JIxDtxHw8U8/z+JcHUzOnzx+iVPH5nju7HWOHe5RqYSWtKr1jM7nEg/HKGEoTcYkjvGCkKLI+M53vZFnnj3LseNHcBzDaBgTBhHD4RCpSqR0KMuCNEts48hAmvTtTRaJcjz2DvahMNQqdRo6pj0fsrWxwZHT9+NFdX7kl3+Ndy8sAHZTa7PzUvyZ5FBKWwwJoMxBagUIlm+usLDYo7fQmTU4LAlUKQehsJ30wCfPsrs367I0OK5jM/qUoszg/MVbNKtVqlFgQ7eznONHD3P88KKdphtQjiX1uZ6DUILSlGxv7lKtVHjhwlUOLSzQaFYZD8dgJD/0C79Kp1njby4uElYqLN9aQUlBFIRcv7qMlpLJJCYKA1rNOisr6zRadeLJBK0dEObO1gTHsQWtKezGdWV5g+s3l3GU5o8ffQJRlpw8fgST5yhX4Lo+Wmkqvsbx7Iby4uUbaKVoNBvEkzG9RkQRj/EcF6ldhHT4ras3OPfMM/zMO95BtRoxHkz46J88wUOvOYkp7e8B7FRTaU1ZJJQmZ29vj0rN0lWlcix9s7T3FCNLlKMYDIZUowrpNGd1fRMtBGU2m/xtbNDpdqDU/MbvfJz7Th7G0S6//0eP8ZrTp3A9l8l4gtKSZq3G1sYyCru5jyKfNLNqgDuNyiK3XnILoFI8/cIFFrs9FnsdtFKzAsmGqd+5/wkJ2XRqY3fGY77vP/4s0rivurgzShPmYy6+cJZH3voufv3Xf53VK+eoh036+1s4jmRxscXTty9ypPMAQglc36PIbDEthUBLhSkKS41UGi2t/xuTo3AInIB6K0Jrn9XlqxRCIaWln/b3B0zGQyphlY2tVUoElajFZDKBMkea3NZsUtlxFaCE3at4riJLJ3iuy/rGClIKBv0+jucyno7RSjDf7eIozXQaU63VeeHCCzRbHbSj7zZBMBCGFaQUJMmUjc11rly9TCWqIzBsb96k2mjS7i1QC12a1QBPixlV1mdpcWnWOBNQGj79xFMYoFKpzTb8ElNkSKG5o6RzZlAiTDmjbTo4Tmgl1OQzqaeyyoOZZ7QoLLCpMBWuXrzB3JHDjAY5stSMEtuk8jyPdzzwVfT1dbY2ljmzpKkv3OJf/trv8DUPvxMhHRAOUnkoN8INqiRFQUlBtdqhKPQMkPSXM8V6pa/4E7/yAX7t//sljh47Arw0huDV0jL/steLowa+6HNfVMi+3EF/MZmonBXCn7+kkHffM0sKflFxJ75c3P21XOPJ6AO+5+J5DlJr9Ezq8+IrosR2SUpj7l5sdzTExYxs9EovEgkv6gzYdfOjH+ZEs/HSjsWdx93x96zrYARFUrK1vc3B4ICji/Mcmevi+QFaeyzMNSmNsR34kplnQ92VQHm+JeXVI5+NjR3qM4ndU+evMt+yhnalNZ5rpR2TcQzCsLa+RaPZYP9gQKVqQRQIQ5mDHzhMxhMcdxYD4LuUpeATTz3Pa04cIs8TfM9jmpa4nset1RXGcUKjZeWCTz79LPONBm7NZTxKCEMLxcjyKVrYG4ofaHxXvWgq59JoNjgy38JxBKcOzxMGHnmacTAY0erVcB2f0SAGBErZ4tYYK73yfReDxhQlFFOUkpbWaTJcx0MpTTJNCAIXqRVZmrG0MEdhJGubFh5SbQR4gUtZSnxPQWlBKK7vWZN7AdrXfN9nLvHP/t47EcJBGqtX39ne4cihBXzfZ5oXuI5PEg+5dWOVsFK1ryEEWkkmwxF5bLhw4SK1is/+fp9KWOXcC9f5r09c5DvetoTjCFrNCp987HmqkYfnaVzPYTwYMxokzM3Ps7G9z/zhNisr20zGCVElYjiIcbTL9s4OzXqdZJpw8epNpqOSNB8hdUqtGuK7FbTnU69FTCYxewdDFhbmefaZS+zsDOi0G/R6bTAlCMHyzXXW1nY5efzQDDxkmJ9roxyH0kjSOEUIge+5KGBleZ3dnX2a7RZSKkbDAb5SrK5ssrjQZhJPCCOPlZUtOp0Ga6ubSAxh4DDoJ3Q6LRwFc3Md1tZ2+eRTl7jvxAKDwZgyS1ld3WZrY5/by9scP7IASuC4Lo7jMBqMqEQR+7sHxOMcR89iCqKQssi4fGOVr3rHw6As+bAsDdWqzWqq1y0R9Mx9h6jXKxZCMY5xtGMvXyEwpkTkiiwb4LqKfOYTcTwfR7skSWI77QiEynjh0k0eed39aG0nVFpp/uBjn+KhB45z9EgXz3eQ2uXMiUPUag0W5ls4nsOH/vAJyjzHdRw8LwDjoFwQJmF3Z59Gu4d2Xfb6I6r1JXqdtv1cEwqklR17gc80TvE8RZ6X+F6ElJK8KFAKijy1kxHlEHh1qrWIeDrhWM/n+3/6D3j3VxxHanArDd75jr/B9DPPMugfIIWiKAVhLaIsLBzClCXlLMxXS0lhBFIqfM8hHo/w3RCMocgyijJFaTv57x8MbcOoLHAdzx67qymzBC0hTQvyIuXooSXmem2kn1MkxkrunRndUemZB6mcRTJwFyyjZ7EF/eGA0yePo7XC8z1cz+E3zp/l/d/zD/j4H3+U1x8/QqPTQEvJeDyiNYsB+f1PPcqRpUOE1ZBqvWr9tNqbSUYFly9fp9NtYYzh0sVrNDsNOznOcq5eus2p40c4GB9w+tgxNm5vsbW9jxt66NBCqzZX96g2azz6+LMcnlvEGENYCTl37imu3LjGoaUllONSGgco+cO1Vf7lj30vf/QHf8JXnLofzw+478TxGZTE4CoPUZZIWVAKhbIfsISNup0yCYksFUU+QBQSJTSpSClSG08gDIxGA2pVn1tr29Si0AIqtCD0XXY3D3jzG16D6wuUCwvNHsiCMk/xHY/pKOfjV1/A2R3TqNrJkvZcTCmgFAgJ8XRCpRpRmgIvcEjilMXeHBsbO9SqVbSjWb61Tq1eQ2iBKAXj/gRXKfJ0SJrltBpNPrR+wINnHsC82uJOlgz7O3z4w7/H3/vu76DSPcTbH/5qtNjlEx/57zz3zFne/Kb7eOPDbS4/H1GtBjZiRDPzVN+xRWSgFFlmabZCGpS0OW5ZmZKXJeSa3a1V2vPHGG7uMhltsrx+k/F0n5On72eaFuRZju+54Djs7w9wHRdHSBwSSulQ5gWU1gJwB8hj8ph6rUHguVy8doFmc45Grc1kmtIfjQhczfrGCvVGk7ws8IKQG1cvE/oh/iwfD8GMBqpoNFvMzy9SCRpEDY2kSqNZI08GJNmIRrNNPB5x4+ol6rU5tFuCyO3EpChpNRs0G3XLO3AdiiLDFZLUTClyB3AxbobIrVJIKQs5CgIXIcznfHhFgZqFhUutKIVDmhkoU5q9Cl4QUam0CYIqQdUjqESYQhGELuvXPs0DczmOvIH0PN7//u/lx//dL/Km05SMI+oAACAASURBVF9BEETE8dR+pucFeTLCkOM6PgqB8Twre1WK0pSvGMp3Z91bQmju/OOfff4d/djsKf29CX/3h76VRqP+kkneK3nMYtPvPu5Z+Hzec77Q8/4868Xv0Ssqiu8Fsrjz/fLPTvpe7mXufUDm7sOm87zIn2e+LMv8a7niSfyBIPBtaKuwfrbPX3cr/s8r7l7NuiPFeHEH4cpH/jvHm40v8n3ibhunSHLKPKXie1QrEbsHQ5rt1my6ZzeX6xtbeK6LmXW08zyzUtNZwee5DkoYDCXKkSz2Ohb24GgLUyhLhoMxnu/huJpqNbKZS4EHpd2Y7e/1iSoRYDdOo+EEz/UtDctIFhpNHFcTT6a4jkYpm/uz2GuyMN+1nWtTMlcNkY5GOgrP8SiynK3NPaSUDPoD9g4GdNottLK5Rq7nURo1AxEYoshCTJxZ9lK7XacocyvfUZqLV29xaKl3N2uKGcwF5IyUmcw6+GKWv6Po7w55+sJVFroNgiigyAryrEC7Hn/82Fl2+30Wu1YG6cwy9kpjyGdyzTyzErHRcMwTwwO+8StO2Q9GKRgMBszPdUjTlOl0ihd4KKkZT0bs7BwQRj5haDcFpiyRCB597Fnuv+8Ye3t9a2yW2ID4G0Pe87oGq+u7XLmxzuGFNkvzHXzPQ8yK8/mFLleurbC01CGsBkSBDba+fHWFXrdOvV4lcFzOnrvFoaV5jhyaoywLmo0KjUaNldVtWq0GBtja2qHTsRtT3/NYWOhQr4UkacJwOMZQUqmErG3ssjjfpChKsixne+eAWr1Cnmc4joPv+XzwQ49x/32H2N7do9dtsrs/pNfrkOc5166tzM5PQ38wplqLGA4nbG330VqytNCziHkDWZpTlgXTacaNW5u0mzXe9MhpHK3Z2TmgWokYT6YcOzzPocUO29t7XL6+wmB/yMXLt+i2a0ghWNvYQQpJtWKLPi+MuHrtNg8/eILVtR3azTo7O/vcuLnF7ZUtuq0qaZqxtzsgzTIk4Lgu5y7cZK7bBIk9Xx2X3e1dXE8jlYPjeIxHCY52GY5GKO3iOp7NciwKXnPfMaRUs46hYBrHnDw2TxCGaMedyQZLdnYGPPbkBZYWmxRFxur6Dgu9JiuruwS+S1FkIA2OkoRhgNA26uB7f/Eyf+ftp3Fdlywv0Y4mnsR3JYkY622J4xTfs2RP19UYU6ClJMtz8hxKBFpBksRMJyOeu77JI689yXCaMcmg2WrxXT/z7/kfH36YNM3uNoVMYaxPWDl3PVwAWV7guC5KSzzXRUhlJXnC0mLTNLfhzn4w85oUs6mTsZlxRcGwP8QPQiuFVA4H/QGOJ3Adf0ahnTXjXgQDEEKQJRnj0cTmW/kuSivmux32d/t2yqjsNZcM9jjzN97Fr37sj/mWE8fJ8xJZChxtg6GL3HDfseMsr67S6VoyoZI25DhNbd6WJfPZzUi32wbJ3VD0PM9Z3dxkfe+Aiu+ztz+gEgSkRUGW5IReyJXLNxBAt9Vief028/MVinxC6Ep67TZJUrCz36fTaRGEPr/+/Dm+89u/iSPrfWqNJs5Mwiq1bfqVpaHIE3b3dqnWaxRZdjdo/k5eVZEWDIb7VKI6pTGkRYrreKRJwnQS22w532dxaZGtrS0mk5hqrWJVIJnk0088Q71mP3MdpUnTmEq1QlGWFLnheKfL2sEmC80aZWlpj46r2Vjfod22cnsviNCO3WreiTe4vbJNs2kjgC7fXKHXbljfVpbziaeeo9eokCRjatUaP3/2Jt/7v/xjVKksfv9VrAzD6tULrNy4ztKho9z34BvBHTA1exw+coTXP/IwXkWSTXb5F7/5Md754FuYJjEKh7KYnadAKQT7+2O2t7Zo1tsgCmsHEQKBPd+LwlJW/bDK1uY6vYV55uYPcezYGRztEVUqSCmpRRXGkwnVqEqRxSityPPETrOVvW7FrLFp1RFQGsNBf5/TZx7CdV12drdoNVv4gc/Ozjae5xPHU+Z6C0gh6LQ7tnBRimkyZX19lbX1VYSQbG1tEoYRRZ6Rl2OuXbpOmk3YWFslDJvsbq2xMD9Ps9PAj6wfVUpbuBd5gRcECAFaazvhR0JhvZMHByM21m9bWjF2QlYaQ1nmuFrbIjO3tFm7r7K5f4D9jNzapFpr0e/3Qfpcv3GTo0dPMo7HsygWgesq/sV//nd85YOaU2fux6+fxqgFvuar38r//u9/lkeOvZ7SlJiyIJ/FZmVZxmg4pNZsUpo73lsrcX7ZUdk91ssWJV+wuJstA7f1Vd769q/8c/3Mz73WS9e9jvxeR/cXOfH7Uieef2m+vxf9J79c3P21XOYDnuvNCpJ7n7J/2cXdj/3Cr/Jtxxdf+jM/71heXNxRGibjEYG2xnXH1QRReKe2w/NdsiznY4+f5diC9fmoGXHyYG/ENI8JKwFaWU9dfzSiUasThj7rmzs89cJlFttNhOtw+fpt5hc6SEehypKDvQM81wIKpBAIJUizHINgb3fEJx+7wKljPaQQBIGL6yi2d/apNqpMZyHiBsP+3oAwCqEsZh1jQ5lalPq166s8ce4GeVJw6FCTMhdEUY3pdEJU9SkKxYc+9hSTwYRet8Fjz55nsdcGY5hOp2it8SM7fSuKgk67Tl6kOJ5HmqY4rgNCUZbSFr+BQ5Znlq5nJKDuFiQPPnCK3d1dtLYTlOEo5vUPnUJmBXO9Nlor4niC9ixm/oUrN1joNtFKcP36Bj96bYWf+4dvQymLJS+KmR9vPMH1FH7ggLTwGaWh2+2yv7tHo1lDSgu4yJKUU/ctMRokPPnkVRbmmnTnK6RZxtuPF1y4eJPjhxfI0pwHX3OC/mDElevrnL+8wpvefD8GwfLqNo1WBe1IJIbRJKZa8bl+ax0ljZXQGuv/C3yHRidC64Ci0LawEynj8YBup83udp+r1zbodZoYUZKkqSWSugrlOKRZTrdrN5FCSIIowJ0FWn/6ifP4jqJSCZjrWRhIrVFDak2v22JtbRPfc9la32OcxJw8vkAUhWxs7tPrdWl3KlSigDRJuXZjFYzh5u1tet0m9WaFuXaT4WhCterZEOtWgyy1heq5F26QpBm9XptaJSB0fZYW2vSHE6JqiOs7aCnxPJdPPXqObrNG4GvqtRphEPD82atQlHRaDTZ3DijznPWNfdY2Dnjda09z4eIySkjme23KwuB4NhDbSpwilJpJPLSD6/nWx6Gt3HAyjhFC8Ik/fZ4zJ0/MohssCEE7CpRGO5rROEZqjes43F7ZYH8w4vBikz/61PN889e/kcB3ieOERz9zhXrk0Ztvk6UpCIWQmmw65KnLe3zDm+8jyXILd5j5XKRUZGmOUpo8h/HQNokcR+K4VvZmMfsaP/AtoU8YHMclimq8/cw8P/wLn+Q9736ELB2TJSNOHjnG/oUrNIKqbTYVBa7v2wJSKgt4Msbmuml1F4ZgTIl0JKUpLbjF2DzLj3/iCXZ2doknMa1ODSFtwyaLU4RROE5op/COpZY6jiYvEkxp4R02d85hdWWdZqt5t4iRUiKRON4sON1SRqzU2nNxtCbPSx5eOswP/uL/yW/8l1/iO/75T/HeMw9QlIadrV2bFbmygTSKhaU5yjs0TaVmkkfr7VAziRFYdL+UgiSdkk7GCCZM0hFZDMPRkAfPHGKuV+OzZy8z3J/SqlWZZiN8VzPXrVEPwZUTymyI77r4no/nR1QrVRxX8h8efZR//m9+mO/54X/N9739HUBBmmWze0Ric/a0g1RQqUcUSUpZQJnnOI6aeQkFjoYr127S6bQBZgW5nVJoR5MmGQeDIZ7rkqYFaVqwvXOA1rC5sYcUgm6njSg1g/42rVadSTwlrESsb+7wzz78u/zNxSXqrQCDPb7d7T2iSsCwP8GU8KnHzjPXahDHCdpRhJFPFNicwb3dfR584KSdRGOjGBa7TVskKgDN1JTc943vRpX6VRd3pVB0qz6//su/RBg2cSst3vddP86HPvRprr6wx9Z6yjiecv+pgPd+wyl+7Bc+yDseeAsaW4hkpqA/jFnf3GV+/jgXzz9Ho9W1sT55jjEZRZYBEq0ElWqILGF1dxflBXTbbS6du8HGxgbzi3PkRQolSDRaOXh+hUq9Q4ZGk9vraHY6U5ZQlAhjQ8HDwMNRhiyZEAUut27f/P/Ze/MgSc/6zvPzHO/95p11V9/darVOJMCAxGkbbLyDWdsYsDcmZrzjDTt2vLszO/aMN8aDweE5dn1GeBbHzJj1eMJrBjMG29gGBAziEgKpJbWkbrX67q7qrq4zK6vyeO9n/3iyGyGEED52whE8ERVdlf1m5puZb77v7/j+Pl+MkWitEULSrLdYW1uhHte4cOUCG1vrTE3P0Ov3OHL0NuIwwnVcBrs71takStjYvMbmeo+FPYtsrO3Qna0z1Zkh9iMEJVSGivIm00AApbGdfCltl1hIe/wJZaWonXYXJSs7e4eizA1SY89rhpvWCkrKyVyofa1SKOKoyaWr19nc2qVWX2D/oSMMxgN816fX27bFkHGPB5/6ND/x7rtI2UfYvYtEBiwcPMAdxw4SzWre+3//Gt/3yu/Fi2pI7REGNXb66+z2N2jUu4zHie34T4A+3876qyR3D5z5OP/TT/3EC273kp77eX9/J7l7zvprSO6+43P333CpCaL7uUbjz/emk5P/l8+77cbfSsqbfz/39hcyL7fAM/mi3ndMtvlm64ZNw3A8ZrO/Q1lWkwPRBgzGGFqtBt//unvJS0t+KvOc0WhIqx3TaMQW06wdtrYHzM/NgoAkSYnDgIVOm6Is+MpjpzlzeZUyrxAGqqLi6sq6HTDWinFSQAnCGKSBVjNmnKVsbG0hnIq0HLK2tcHCosWbP3byWfI0BSloNCIEFWVRsrMzIggj+/5UBSu9DV5z5wFedvthMJqrqxtk2Zh+f8D6ah8hJK++4xCH9s2gHMXL77iFqGaT2ycvXCYrS6oCytzAxGLAdW3C6yiNlg5VAY8/fpIsTchzS6w0he1YDHb7CFHyhvvuZrQ7JPBdPFfT397h+NPPQlkxN9OiLCrKzP7s9nfI04zAc8mygiwv2Ld3lmGS0GhY2ZCUFn6QZjlCOPh+YAmRVcFWbwvHcxklCQ89cpJknIERGCSu5zMcjrm8dJXvedO9DIYjVq9vY0rBlbUBr7j7KHEt5s47DrPd30Uoxfx8h1fecwRjDF/+6im67TpKCByhqEqY6rRZmJ/llfcco9tpUatJjt4yQ70m2RlsUmQGTInr2M4MRiKEYWtzm0ajzivvPYoQOZvra8Shw8lT57myvIpW2krQsMnwTn9IXpWEUcCpZy/zxtfcxVS7SVUUE+qmIcsKhFRcvrxKqx7z9NMXOHp0H8duPYLr19COy/RUkz/5+JfR2gbEo/GYA3tnkULgaEWvv4MUgkefOENRWOy1NzFm90KP3f6QhcUujVZsu7PGzlnt7I6o1wLKoqQWRVxb6SERTHci8nwXP3ApsfNFdxw7AAhOPrvErYcXMELwipcf5eiRBUxVkmc5zUbEUycvcP7CVUaDlCuXVgk8HyPBUJLkCeNkiKFgNN613TVTcnl5hWsrq9x6eI4zZy7jBe4EHOCQJSCw3l2h75MMU6SQdFohhw90aTVj3vSa26iqimfPLbF/3wyvufcgm9s7COxMq+M6KGn480eu8X/95Pda8EJVoaQ9Zwhhu8za0TdhD61Wk2dOX7ZKWxQlAsf1UdqlyDOUljjaZTDMyPIKtOIDP/NafvaXfp9QpHjlDq+5Zy+/8swp6o0AqQV5WSB1SUWOkQXjdEheJBhhK1PC2POV1I7tKFV28kFKiZCSV778TmpxzMLcLMk4oypKqqJEioosy9gZ7PKZz3/FFkXyDNdz0coWFrIsI89yqrJkYXGOytjzT1VVZKnd9ob0p79jQUP1pgXQWPS6RgrFH7z9bez2t3jbW9/MmWtLXLpykdZUHSNLZmfbrPZW7eyjo1D6RiXfsLqyPukwQJpmthsgsIRNx8N1NXXPZV+3zaHFBrGXUiV9dgfrdFqwf3+Ntc2L1OuSqFZRFLtoJRGlh6+bSBWDclCewKtpikpyfJCwPbIFhaI0JGnK5aVl8qzA9ax0X5iSsoLKCNI059LlJesVlyYoYU2Vd/qbmFJTCYGRhnSQU+Ylw+EIqTW1Zp25hXn627t85cRpKiO5trJOWZTMzk5RawQ8fvo0K9c3GKUpQih8P2B3e8DMdJdfece7cVxbYHA8lyIt6bSbQEVnqklhYO9ch6ge0mhEaK0wRuB6mqLI6HTr1uORijzJOXd+GYEkrtVRwsGU8B+Xtp5zFf7LraoCr9ag2WwR1+oMhgm/9i9/hpffEfJ9bwp421slb/2e67RaTaSQvP1N+7h+sU8pMpAFnuuihKa/sUpRrfPq+15NHFtipRDO5PX7Vq4sLEiirEpiX5EO+ySDMUl6nXvuvh2NxvdClCsoyoKNrU16OwOGSYEh5PzSddA1hHSRQmEQlkSpXUxZUJYZ+XiIYwpMNsIpE5L+Jo2aRxx4lGXBKBmT5Bnzs/PcfuxO+jvbdFptxjt9rl29ghKCudl5njrxCL3Nbdr1OQ4eOUxU92l0G2ytDXj6iUcpiiFCZGhdAsICu6ShNDkYa+ZuKkOaJBRFhnLBUOG4BuUUKGEpulmac/nSeapS4LveTXVLWRSYskJoQZ6nVvpawbnLl1i6uowfNlldX2GzZ218tOuwZ36BqhqTp9u85x3/lF/9wBJxd4G02CAfnWVr4xJHj93KgVvu4D9/8AP8+p+9n3/+gfcilYsOIxYWD1IazW5/izCOLXDt20zs4BsL+S/pPlXFe3/vvfzcP/vHNx/juT/PXy8Ig3zOsvCsl77vL0UG+YJglBeBpvxNLCnEN/y81HUT8vaX+ExvrO907v4brsqY9z7/o7MVpG8BVJmsG129529rgG/lA3JjPXniaV4fO1+/X1U1kRzZ9dzOXTpKWL66Mum8KTotS8oUE6zx+uoWfmBtB2r1GhJQCvLCVokd30dipUimAj/wMcYQhD5ZljE91SLPSw7vX+Tgwgw7/R3K3FKqtncHtNo1HNcHqXnwocc5tDjLYHeAkpK7jx0gqtVI04wwDIjCCK0c0ixjYapjOzgY5MSrpSwr6nHE+kbf0i6pOLh3jla7Tp5kDHYSDhyYB1UhKui0O1QY6vWI4XCE49nKvzMxMN43P4PEcOHSCmEQkKXFxNzYBlXj4ZhslOI4ljBWr8cYAdk4Jx0nSK3wfBfH1QyHQzzPsRhzIUjGCb3dEfOzU4SRA0aysz3g8WfOM9ut4ziKbsd2rJCSS5tb/Og77ib0HKRyAEmeF/heyCc/9TBHDu9hd3eHWi1mu7+LwRDX6tx6eD9+aL3Btnt9oiDCDwI2NjbYu2eeJ0+etcj+QcLLjnTQWrPV2yHNElY3tul2W7TaTbIsp7+9w7Fb9oOxmHbPc1hb75HnOWfOL9OoRVSVYfnqKp7r0dseMjfb4dlnV7i6co12K2C7t0MtriOEwXV8drYHXLl6nfn5JuQ5SggGg4SsrEjGKXIiB33siXMcPrCAF1oZ2Mx0G9dxeOrUBXa2+7RadZTSIATpOKXdaLLT32FxoYt2PR747BN02zF5UVCvh0x3IhxXMByMiKKQwcBKv7qdJsefPEe/v8uRg4s0G3UuXlphMBxx5Oh+dnd3uXplnYXFaeI4YmOjh0TiBS5Ly+u4jkOn1WBrq48xsLW1RWVK6nVNvd2dFFrsvEejFrIwP0WjFdOohziOSxD4GFMyO9NESMHGZo+X3XWE8TAlSTLC0MfxHJTUaO1hKoVBoaTHaLxDGAYcf/Isd99xgG6nzqcePMmtR+YYDAY4OuAvHjjO3oUp8izhzNllLl1aZ3amSa0eMjvTnnSXfJQjiEOPMAyJ44DZmQ6mzCYXNFug+Vd/vs6P3H+YIrPAjFocobRroSU3OndaURW2gxdHAVJYFHhpLBSpKkuEMBisr5jWmqpIkaJCoHnT7R1GwmLJs7zi2YtrvK7ZRLueleIVlpgLlg5raa0W7pOnGWVVIbU9LrSy3nA3qIJUhk6nPfF6nHjKmYr+dg/Xd/F8H185+KFLUZSWZExhZ5G0xvU9ssyCWIqivOlvqrWdf7pRF796dYVGvYGUtvNm50YFUinGu7v8vd/4Ld73nv+dn/mt3+EfvOpV1iC+NGAkJ06e5eCBPSitMNa/ACkUURxOFCCVnb+6SWWWKCnJkhHSSITUNDt1Ou0WBkHoR9SiCEcJyjJnqt0BI1COY+dyHYe8qjDKevMZYwNh7cd85MIl/ocffyef+sSD/PCttyEwtNsdC4CqbNEiG2cIpSdWJgGB74GpSEZDS890HPJsxNzMHoS2QWB/c0jU8CfXDihLQ5ZlNGo19szP89CjT3LXsUPkZcb09DSNeszC3BTtdod2q854nFFkdu4tTRI+eeYkbm+AMBWu65An9jgcj8cgJFEc0qiHIEqKsgCYSIcT4pqdidJKMxqNqddraKEZjVLqjZhkMEBKzZ+tb/POd/8QCnUTlvDtrkJI3CLhmRMnSPOKo7fdQ9z2ufP2wyydO4/vaaanNKayhuDHDjZ43wf/gjfc/iqkVJhK4Loui4t7EFWB73j2si7BmAn8TEhQwnaQUaR5wez0NFpKVq5fZWHPPI1GnYceeoROZ4o0G+D7dla+quwxX5UVFRrP8xnsbuIohXSUbUgbOwuslLbAtaqkKFILMFOSvMzIs4IgaiBdFz/wScdjiiJnMNylHtfQ2ioSwiBkeXmJu+9+Oa5jlR9pmrF09QzjXUm9FjE1M0UcWQ9XYWCcFBRpaROKyUznaDhESdtpV0rauT4UlSlt1zzNLbhE2uPdcTVU1U0VFNyobwso7Vz9hYsXubaxy/zcfhYW9xLGAe12m8HuDo7nU+YFZTmiygdI4fGnX/0sr7tvL6aEmdo826MecdQliKdQrs8P/shbecvrX8/P/+p7eMM9b0AgKdKCVqdFMcnEhZi0/P+a1o1ETdx4bUB/Y8gT/a/yq7/6r7623fPu94209RfY6Dl7emP76kW2+cYHfPH1ki0K/orrxR7zBf3uXuLjyuckoFJ+B6jyt26Zsnzv828Tk2rQS1k3tNZgq7s3TjSCycHB1x9MN8wfn5v4ba5vcHTY+4Z9uPGvmARnk7MyVVqwvbVJ4CjCKCZuNCixQISyKqg3ahb+YsCUFSU5GGWlYAIoK4osQ7sOm5vbmMwQ10OKvERqjXJ8PvOFkwSuxHcdnjpzkU49QijDwvwsSWor+a6rmZ1pE9QiHM/F8RwrASktil07mjyvEFIjURNEs6EyBeO0RLsW+rHV69uZHq3QjrTo8iSzaHkp8ZSgzMY4QUQlJKgCUyS4WpDmFbW6lURmE+29kgZPezx7fpko8Kg3I6osm0BVbIAnlaHRbIG080te4OIGri1xVTAeJmz3dgj9ACcIsJ5BhoMH9iC1Ih3torVjZ8+Ug+cH+IFHVWRgbJD771cv8r33HEQrh83NLazJqQ349ixYApnjelRFShCEhLGVKrlRyA1D1CAMMEpTmYwHPnucmufjex6L8zNcu7ZJVeyCEKyurjM726RRizl5+iILc02Wl7aYmWuhPc3q+gbdqQZCSQaDHVzt4AiHcxdXCAKX+flZHM+lO9XhyvI67abCmIxmLQADaxt9KAWlkTTaDWbnumxtbwMKqRymZ6bwHZcwlEShR54XHNw/RZaNKDLD9bV1gsBlc6vPwf17GeymZFlmJUK45OOSdDzk2fPX2LM4x8lnLnJgcZbjT1zg2K0LbG+v04g9HC+irCryqrJyTlfR7w3Yv2eW+dlZHj9xHkcr9u+dptmqU5kSP/SZnmuzubaDMIrIl6yuLdOcbjI11UQpaY3LGwFPnbpMoxawOD+N63t4Qc16phlBkeVcv75JUaVsbPSo1yK++JWn2drq88yZZeZm6igtabe7PHL8AnHk0Gm1ePbMMlGgQdUYDHYIvIo//MijbG0MuP22edK8ZHGui+soRjtbCOExHCT4jk9/e5vzl5e5955bcT2HdqfGnj1tAk9y9txV4ihCeQ6lyMhzAarC9eso7VKKAcrYYDHLClwvoBXGHN03RwnEtQiBoKhShCgp8gTPdyiyCh14GGFoNEK0A0WREHgBBoF2PYRykVKTp/kECmPPJ1qXUOX8k9/+HG+5/1a2N67z2tfdzU//hz/iXbffRsmYctIec+zAFwZDKSqk0ijHtQkwElMVZGmKo61SQQqBQtDf7POZz32ZC5eusG/f7IQiG+NqS5N88qkz9LYGRH7AX3z2i2RZxky7TTl5LqVdyhKeOH6azc0+jbiGMIJPfvYhZrstHE/RbDYm8BXNhXMXaTQalGXJhz/2Se687Tbefded/Pi/+Q0+9MEPwqknqIyxPnRI9u9dwHE1SZLCjeTXlEgkpqzQ2plYwpQoISiyBKkEQiobXCkLz7IyUttdjkLrIRYEAY7WeF5AmQuMcNChhw5cqrSgynOkcshLoCj5O//4f8GUgh8Yj8jSDC8K7Wy16yKkxhg58Zq0ipBinBDUY8osY3t1le2dIa3uNMqxdEMpJAYIahZkY4zhkeNPsjA7QzJOOf7YKa6tL/Pqe4/RabfRMmU8LgjCCbCoN8aLPGr1iNGg4KMf/wKHDkzz6888yxujkCDwiGIPFJSmxPNdtHapisqaxZe5TcJLzWC4S1SzhUoqC6sZJxlB6Fs5piMpq4KqMgS1kI8urfGud78TIwuEuXF9lRP57EsLOlVS0h8P+cIXPsvRvfPsu/1+rm31+eQH/5gPffo0X3j8Km9/zf1gtkBAXG/ylvv3829/5/O8/Pa7EcIe11VVogOPIrcWEmUFItCkw/GkWJJNDoMKz3fIUsXxLz3EvS+/g0AZkvGIQZoQRHVqfosiTdjcXGN6eobVtVU8P8LzAy4tLeF6der1kLIYIwzIysqeizKfwU/iTAAAIABJREFUFH4VStgRDc+XuEpSScnWdorvR7iuQ1okBDok9mMKk2MKS29N04RGq4bSgq1+j7XVPvsPLuL7Ae12E+XkFGlFkRUEvi3sjtOMy+fPMjW1gNAghMLTClGVKCkxpbkZP6kblgjCTBKUCseZEM21QEoNuQGRAxWOqMgqSVpILi1d5dDhu9izfz/D4QBfx4R+QDIe0Nvc4drlp4h9CNwAoQT33/oKpvamIBWlNgx3d2i7NbbWz+H5htJ0KKod/v4/+Lt0Dzb5h//H/8bDT32F777v+2+CRkDc9Eh97s8LZUjP3+7rtpmM7YgJ6VRg48Bf+r338Y9++ad51au/68UYI9+4DGj5jV2sG/HlDbuE5+/3JPL8BhDL13bzm3fneIHt/jrXC9ke3HhNN/bxmyWY4nnbPf/+9n6KG1o8KeV3kru/bat6geTu2x2I/drdzAu2fb/Vl+H2O2+n+PIXvkU1RNw8A1w5vwyUuE6JUWoymG6QUt9sIasbQvtJEqmVleDkWUGaWriKchz6/QFfPXGOQ/tnKMp8MhRY8eSzVzi0p01c89m7OE2j04DSGqQLqTh1+iJbG9vMzrRs1TnNcF2X4SjhgS8e59jhPQhgsDtCYNjZ3eXUuUv0d4bMzc1MyGHWOtcYu7+e703mGm1yPRqN2R1tUZFak+soQEgoMnCVy2iYs76+QxxPPPmUhsow2BkS12JmZjvU6hGmLFlf30JJSZoWSCRra5t4jsdDjz7NTLuF69qASypBVdpZhXo9ZnlllSdOn6cZhTSaNRvQVIY8K3jwkac5cnAveV5Qa0aWRuppRqMEx/OZuqVOI/RxXZcoDtFK0dvasZIi7PB1WeRIodCug9QKx9Ek43RCZbSdBYNhNBxTpgW3Hj3IlaVr7N8/x8ZgRH/zOnv2TPPkyUvs29tFoEiTDEcLrl3v0awHKCHY2tyhUY9xHZcgcPE9j1qtRpJa+4QkGbByfZOlpVVmp9q4ro/vejTqLZRW1BsRFy5cJ4oD8iLH9xwC12U0TChKw+ZmHyUlT525QrNew/N8/NDH9TzGac7mZp+pbhMlJRcvrrA7GJJm1ncwzVIwFUEcEIUOcc1jdrpBu1Nn/2KbSlRIoSkrydlnlqhHEbEfYYoSigpj4PzFFQaDEUeP7GEwTGh2axMJXkVVlGys9+h2u1y8dI3puSZhzfo0aeXjOnY+z/d9AselyEt6/SEz89MIodjY2GI8HKOlYjxOCSMP13HwfQ9PK6Y6dRSa+YUpBsMB9XqNbifmqdMXiAKXTjsmjDy8QOI5CoXPbUcPcGXtMntn5yhLyUc/cZzA07S7LS5fvsqBPdOcfPYKR29ZpB57k2O8IknGVJWhvz1geqpDVd0g+cJgI+Ps2SWG2yO6rQbKZFTSsd81KUjGI245cMwO/YOFthgLNTAGXNcjSXIcZYs0yTjhxuXc9fwJjMRWz5MkuRnMZFlGFIdcuHgZKSRRVOPl+2pc2VGEnqIW1PnE5x/jBw8uUuYlCMd6raU5SA3SztN9DUZgMJXt6riuOzkvWkPi7a0+H33gC+ydnWJ6qgWVoVavU1WWQKi1IoqsH9b0zBRH9u8hDgPCMKAsS9JkjCMk2WhMd67B3oPzuJ4mKxL2zS+ilCSMrK9lMs4wZcUjT57k8IF9SCk5dvggaZ4iteQte+f44vo6v/ChP+Lth25BaTVBxtsgVjvWMxIx6cIIQ55ndj8dawNSVSVKK6S0s8tKSBASpa2qIRln5KUgCCNGSU6z2QTp2MRRSNa3+oQTT1Lb6VAEYR3XDfm5L3ye9d4m7/9/fp8fve12+5yOvhnUyEk5P0tSCzYpc7QGmacUWUajO01Qa0ySOnHTV6usKmuJIBRlUbE4N0c6tp5yy9euoxxBp9lkNBjz6NMncVSA52rqjYDjT51kbn4OIQ3jYcJ8t4XnKS6ur/L6hQ7T0+3JtVFOAlrJbn/EmXPLDAcj4prHaJigpUtcDxBSk4xSHOWS5SVBGNiuDkwgOJIsTQhCH+++13P7nbchRPWc5E58HVznWy0vCEmSEbGnWb5whlzXufD007zxNffx373th1m6cpnR7ha37l+goiAvRxgx4I8fWuIVB+6e7Jc9zosMhCpBF5Pvok9VptaM3ICSGoEkNzmu47CwZwHHt8CVNEs5f+ESa2s9as2IkydPcfttd3D62VMcOngYJSRFURKGMcNBQqc7Q54lZHmBdmwsIaWmquz5s6pKbgyaGmF9ZoejFM/3qEyBoxzSdIwXuJw5d5YoijBUNnkuKzzXR0gY7AxoNptEQUyRlZx++iS7O6vsPTiHFAZRge8FtFptXFfiKIUp7CCMkLbIUyiDrKQlimIVPjeSm7Is7e9AkRc2+ZFQICiNQ5pXZKXi8tWrLO6/k337DrO53icMa9QaLZJyQGZS9s3P4TO2XsC1ljU01w7/7Df/Az/y9jcxGCQ4XszW1pj1rWv0ttaZmZ7HjztUVYkjSu572S286bUv41/821/j9rl7CWPvRqT2guHbt7zpBbe5mTLyKx/8P/nwR36ftMgJA3s++3bWi0kS/7J2Cf9/dee+3ed+seTuuevFO55fU859J7n7W7heMLn7y64b1Zbn3FRWFVop0mR88+L4QutzH/4Qexv1F31sYQxFXlGlBasb62inIIoiEBLHDynLylo5YE8GeZrjeo6tKBvJcDDmq48/S7MWWtKWkkSBz1y7RlQPb17Eq6rk7mMHiCMX19UoxwGl2FzdZDgcE9cCapE1iy6yxJLthPWMklpxYH6K5WtrRKFPGHkURU5ZlRw+uIfxKOVzXz3JkQN7AMkfP/AljuydJwgDyjy3s2YwmT1wqMUhruMRBBHgsL05oN4KyfOUypRMz3UYjxOiMOCZ0xcwheHE6cvEgUurUwMM43HC8afPkWcFB/YvWIlmZfB9j+l2g0tXVwgch5OnL9NuhoDAC1x2B0NmZ7vsn58jjCIGw4Q8TfE8h8oYFmamUEoR10O0q9nc3KZei8kLw/1/8FFubwkO7luc+P/lVjqnNWmaYqrSejK5Dr3tIUKam3YVwpgJnt1+FmkyRiuPx544w3g44uiRfSTJiJ/9g0f5vjsiOu066Thjo9djdnqaqmQCHvG5enWDKPRoNmO2tnYoimJiIFySZQXX1zZZmGvjOy71Wkin1eDCxevMTHcosoqnnr5IoxmjPcX8zAx+4BIEDkpauwMhFEVRYAxcuLjKHccO0W63cT2HsigZjVKiWsjcTAcq2zGYnu3iOhXTUy2klCxdW6NRDwnikKLMUUqwvrFJkYxZXlml3W6wdG0T1/VZ2DfHRq/PE8+c58D+eYqq4NLlFW49uo/LS2vMzrQ5ceoC7WbEcGj9Ej/xXx9naXmLhdkmvu8QNyJW1zap1WpINFlW8uyZJTqtmCiKKKuS409dYu/eKaq8ZDgYMdVtceHSNebnuiAkVVUyHI6Zme0QBi5ZXvHVx89w9PAetJJcvnKNu+88SBgFZJk9/l1VUJmCwaDkYx8/zlvffIzBTs6ffuI4r77nEN1uEz+K6NZdAt9lYWEKP/TpdBoMhwNcz6UqDUHgE4URjqNZWV0nDkPScc4DD57kDW88RqvbQGpJJQqU8qgm0I7f/fR57j12C2CbQ6NhguO4OI5HmuYopVFSIRRQ2eTEC3yEkKRZjpISx7GyvyAMLbEwyezsaVlSi2OkcEA6dFsNfu63P8UbX3EIJR3e/NpDfOkzX2VP3MRxPexpylhap+vaYC0rEIKb5uQ3AhtjDGVeoCed/Ltvu4WFhVlajTqttk0GlJTWt9FUlGVKu93kzLkL5HnO/PwMpbEUW0rI0hQwBEGIdjzSUY6jPBzXQ7u2qLLd28Fz7Tlgqt2i3qghtZ37cz0HrTXSSA6OB7zrF3+B//HXfoPv37MPx9XkeYbWds5PCkk5AasYY829bxgsK2llmULaBFBpjaNc8ry0RTQknueTFuAGAR///MP0d8ccOngQP/QQaMIgJK7VcLWHdFy8sMYffuwz+BIeTrb5xV98Dx/56J/y9iNH0I62clhhrWHS1Jqol3llLSEcTVXmVGlCkhe4jTbK8ZDPneOZyEqr0hbhbCJi6G1tk4wTDh85wEy3bT8Pz6HTatOI63zp0cc4dHCBvYuLDAcpV64t40hFq9XC9TQfOHuWdxyYpapsR1NUViKMMTz61FmWVrc4dnAPrq9tUWqUoV2JlIKqMHZswIiJL1qJ6+pJR6KimpBB/+jSKt/z5jciRGWVJJPX8u0Eo8rVFEXJ8Ycf4kP/8d9z//e+hf0LCeeXz/G5T/whnhjx0InTvPG+Nkoprq9sMd08xLt+8BC/9Uef4Pb5uyZSXZDaYEqPne0Mz4/Rztf2xXEdC/cSEt+NSNOhTYYcD1NZIInvN/DdBleunea+V72JU6ef5tixO1i9fp12u0NORp6PaXem2Nrp4+gA7YZUJkUCWrtIJSkr67fnTmi6AmX9WJWHo+x8bS2uISRsbG2yMLuXoswIo5D+zg6j4ZD1jXWazRZzc3NUBWxt9bi+tsS+/XsoK009buFpwJT0tjeIo8ACpowgL6xKx9JEAzbWdwk9bedVqajKCqU0VVlNIF1YzgCghD1fjYuSLz70GO2peR594jiDpKTdXqDVaiN1xYUr51hcPGBJ36Zi1LuK1qBVCH6M0C5IzevvegMf+tQneO39r2Jm/zG022S7t8RUOyDrreLXZ7i2dInN61fZ3F7jyG1H+bG//xMceMU87/nV99FOu3SmW18L2ybgGMQLSCW/IcZ7zu/Pgfdh4H3/6X18+L/8v7YDp/VN6u9LWTelhS9ymN/4esvn2Ao8xxf+mz7mC912U0r615Dk3ezOvZBc9Jskd+Y5Y1JV9cLv/fP3+YU7i99J7v5Wr7/O5O5mteA5t5WlnV25UQH/ZqCUn33/734DMfPrHruyz1CWsL6yie8qknSAF8TU6nWE0lZ+lVv/mKqsWFpeoVGvkWYpDz70JAsz7QntzoZNrufQ721bbztHs9Mf4HmupeKlBRWVTQRKW9Ub7yZ0unauKE0yZqa7uJ7C87zJa7U0LKUEnVaD0SghCD2yPMN1nEmw4tKuRRx/8iydRo3pZp3la+vUohDPd+n3dun1dgkmc0qmqFBaUxTmpoltRXlTM1CWBUEQsNsfEHp2cPyJZ5bZv9BBKktycx3N3plpms0aSkuqqrCV6rxEO5J67BGEAa7UBIHLeJTiuXZmx/Xt/MKzZy/TbNi5s+HEBL0qDb1en3o9oKhKanFEmhT88Wce5mpnip//8Tfgeq41oBXSvvfK4dMPfoWyLJiaoNKDMKQoUzzPRwqNqye4b+w8yng4JK7X2bc4y9zsNKPhiKqqaPjQDVM67bqlw802cVyfwe6YuObhui5xFBDFEeMkpTvVJooCnnz6HLOzUwhpTe3LIsdxPEBQlhWupxknY8C+39u7AzrdBum4ZDQe4np2PqfKDX7g0tsasHfPHN2O9dl55LHTaG2I40nBwXXIkpSqLEmSDMf3yJOEMIppNht0Ow3+65ee5MjBBZIkJYoCarWYcxeucXD/vLW+KCt81+ErT5zlllv2sjDfZXOzR7NVt91hwQQkVGc4GLFnYZqNzW08zyUOPRZmWsRRwPbOLlQVs7MzpMkYjGDl2gaddsxgOGI0GmEwRKHLzPwUg+3BTf+lwWBEf3dIoxZTFAU7uyOkBM93aLdbLMx16G31ScYJG1u7eJ4mCCI+/bknueXQIp4j2drqc+rsVZK0YO9iDdcLeebZK9x75yFqtWjyXc8J4xjHdTGmtImha60DHnjwcY4c2GOljGVmEzdlZzmX1za59dYZhJC2K1zZ4623tY0X+PzmAxu88/W3obWkLFKS8ZgwjqnK0s6+STFBkRuEMBMfOIPBnk+EwJrS+wHlBMaSZwVJkvH0ybMszE+RZyVhFJGMR7zz/n3UFvcwGKaUZcG/+9RjvGVxgaIsyMZjS25VGqk0QpibNhk3O/qTs6mU0kJeJhdtNSGHDkcjlBY3E8IbJ+FebxvH9XC1w1S3Q5KO8XyPZJTS3xnw8ImnQQhmpmcm0kdFmZf0tvo4rlU/PHbiaagMcwszxLXIvhfGItyrsiQZWWPsojK885f/DVpr3nXHHVSV7cjbAN6W+jbWN9BKo7UmzwuU1oyHiVV6TGaBq7LCatrt6x0OhwRhgEBSa9ZRUnJocZH9exeQ0vppeb4t0px65hxT3a6VhiK589Yj/NTnPsvtxw4zPTPHy/o99k1NAwapNHmWIYTtbOV5jpL2MyjLEkdJhFSEcY0KaaVjgpsKEIOZzKBYX7Hx2L63vu9Rb9XtfLK0c2VpmhLXYwSSWw7tZzQcUFaK0PfwPU0trhGGEULCJ86e5RWuIo5D+jtDHjlxhn3zljjaqkX4jqJZb+AFVhmRpSX1RkjFBHRmBA89forr65tMteu4nktZFDdfk3Yc3vbLvzSRYFaIr2HPXtK1/cbKyxRjFP31FY7unaU+M4+TzpMaj/nugLvuaHLLKxeYDm3HfLozTTKEcbbNd93R5H2/++fcd/Tl9npJTpk7nHzqSRqtNkamuE5g4Uy5Bf8YYzjx2MPMzs1TFBmmVBOYkWL56iWSRDE1N8vFc2d52d338tiJR9i39wB5aUcNyqpgd3eHRtNShJMkoVGLKPLE2mEoZZ+nqpAYCyapJHk2JgobXF9bAQyDwZDd4YharUkYhPS2e4xGQ7TURGFEtzNFlhecfvYEzUaHbqdrKZiiJI7aXDx3mlYjwnUsSAcmExDGoLQz8bUtEEbzzNNPEsU+YWA/X6Xs9/Omf5upvtbNw7IElPZoNho8ffIpaq057nnZ/Tiu9YpN0iGNZovAjxnubqGlweQD/LiJUS5CW8KrmNA6P/ipP+GnfvrvgQpxdMxu/wqba1cww13i7hwb15bxvYD9R4/hhHVrdA687QffyrE3HOaf/NI/5YsnPs9r73wdCMFgMMB13W8vuZus9/3e++iVm7z/t39zYvAO5tvMmW4870tJ7p67j98quXupz/tXWTcf49tI7nhOcof5q0hCv5Pc/a1ef9PJXVVVPPPMM3zsz/7cDpY3Gi943w/95w+/aHJ3Q5ZQVZCPUlbW14gCn9XeLtPdLkYIhJTkmfVXU0oRBwF5XhDFAc045PT5K7z8nqP4Sk+SPEOzHtPvbeN6EVEcIrBGwRqFDgKE0jhak44TYj8Aachy639V5BVO6E5evKEqctLRCDewhLo0zZDKMByNoZRorRiNEv7i4SeQRrF/YYYszRiOEmZnu6TJmCdPX6LbbNDutrAm6SXSUWRlRlFmlCbDFA7g2DlCx2MwHCKqCgEsX93kzW96Bb7v4AaOJeLlJWsrPbQr2Nzq0WzFVIUFAPieprezTb1Rs95CeUmjWbfdUMcamG9vbvPoqUsszExRiz0sw9KeQLqdBuPhEOnYim6WFMw2m/zET74Bz7UI9OFgyIWLSwD4vs+BffN0uy2GwyGNeo3clIShS55ZYEmRjSkN5LmlqzlKggStHL74xcdwtcOlKyu8/3NXeNf9MziuwtWac5euEgcRV5Y2kTonDHz8MODK8nUazZit7R083+XEU5dQ0s5Y7F2c5rETZzlw4CDnLl6l3gjpdBvU6hqMoN1u0W43yKuCU6eu0Gj4PPH0GQa7I8rc0JlqkWYZVWmo1WJWrq5zy+FFtnpbtmKOYL23TSOK2NrYJooChOOws73Dxz/zFEpA4DuceGaJ2w7P47kew1GK4wfUwgjHC0CApwX9/jbrK2OGO0McA2srW/TWt+l06/iey8x0h+Wl68xMNblw4RrNRkx/Z8D+gwu06g12d3YZjhKuLm/SrtfoD3o88+wSR4/sIQo9HC1otWqEoc/0dBOUIPJjlpdX8X2XeiMmCnzbVdaKdrtBlqWUZU6FwXU0V66s0Wo0mJ+ZQmqJVh6H9i/w+JPnuXRhmfmZJgePzHJg3xye6yFdw+2H59jubSOqit3+gLjbnnRIbLenKgu0E5CMUoa7KbMzUyhdkuVjothHSYmrXWLXQDlCVRJPuWTDFMdzbianb/mu263/XZUzGvQpSjuPmGfZTelmWeak2ZAojG0iY+z0p+t5CGP96cqynBAsJ/M6UlPmBa1WgzAI6O8OqDUi1tau85P/+qP88A++lsGw4qOffoy3H9pD6GjSbESeJWjPRWlNliY4rg3ItbJ+cRWVnVGaSLXL3II0/vxTn2em07Z2Lo7tvpiyoiwqvvDlR2nXGzQbLXzfZ5zY96goS7Tj8aVHn2ZzN2GU5dx+9CBGVBR5ysbmOl8+foq9i7O4rsPi/BxVURHWIithVwqlrNT99LMX6G3t0O12MFXFeLDFszu7fPjUM7zz2O0TqZhNgIwxXLq0TKfTmnS5BEpqgiDAdd2JFYLEGFut+sOPPsAdx47YxE4K8rxATIx1Pd/l5KkzNBs1tOdRVdj5O+3i+z7ORDnxxNJ5fvR//rvc/crX8M9/8V/yD7/rVaRZdpMwCaCUoChyC88pDY62UuOtjW2cVguhNBQZWgqyzMpdb1zkhJCUpZX3KWXlpuvr64ShpTxubfRYunqN2Zkuu+M+YRAijcHxAv7sL77CXDuk3gxRbsB2b5dKKP7wzBkO7o7YOz+FqQx7ZqfwPAchDY5WzM9PIYxCKsOffPardKIajVZMWVlgVp7ldFp1Fua71GPrc5jnOdpRjEdjMlPh3Xf/xD/yr5DciRKBYm1piZWLp3j1d383z559mCMvu5eon5BtKj7wn85y18E5Ll8+Q7cbI+Ua2gnJi5IfestBfu79/4XXHHkFvhdQqYru7JSdExQWpmOqCq1tQqq0pFabwnUMUhtOPfUk3c4CUkOj1WJjY8jq2grdZg0hYHHfAYKoxlZ/ByWdyXkhoMhy3CBGaxeKCimsiXwxMSIviszaDwiB1AKlDGWZEtRC/EARhQ2ECBHCYXe4RRBYz8owinBdF9dzcZ2AKA7Y7vXIi5xRusXZp68yHA/ozMa0oggtHApZIYyezJiWDEcVxpRWTitL5vcsEAc1KlPYLpAxKOncDKzERLKrXdvtG0wsOLTjsD0s2Lv3KI7jUa/VkaIky6AzNU2WjvDEgGS0ilYeMp6j8hwcBEZ7VJXAD0I+89iDvOl134X0mzhuhCnX2d24jJv1We/10FXOkWP3UPhdUhHgiK+XR77jR36Id/zoD/G//ot/xMrZKxy75Tb0BH709THdNwR5DAcZ61e2+PWP/QoPnvgc7/mFn+fdP/YOgO8kdy/h8b+T3H1n3Vx/08mdkorpqWnuufdeGo0GkhceWn33j72Tf/fbv8M9c90X3k9hq1Wj3pBLS8ukZWKR4cqlFtfwgxAhJEpOgsLKWFpbZZBa4Ac+01NNhLDkty8/fppbbjlIUZUYUeF6it1enzIvcT2HXBRoofnMg4+xd7GDo11KBHlp8LyA4WBEGNkZuY21HtdWN2i3W0ilSJIEKkFWJoR+zKCfE9RC3MChKEvuvuUAxw7OkWYp03NdZqZbCCo+9fkT1MKAI4f3gLAt9YvnriEKyYknLwEltdBHaodHT5zi+MmztAKfs+dWOHxkH9LRJGlCb7OPH7msr/a4vrJFp9VknI+JvYBmpwlKUmGoeRErKxvMLc4wHiVcvHSVWiOYyFQkUkrGwzHDXQtvCQMH7Woc1yZ92nUoK0BqNld7hIFPWuQcH2xz2117ScZbdo4pzdkdjNm7b4GySAjDgCTJqNdrVp4lFEWW4wc+pSkR2kEgJl0MZdHLwnZJpqfaIA0vu+cYa2vXOdA0NOIm/Z0hm1s7zM9ZWUij2UIKRW+rx04/IfQ9PE/wzMlV7nvNraxv9Lh4ZY3Qd7nlyD5GyRBHS9I04/zF67SbIaNhSpam7O4McYRgarqJEprRoODAvgV6OzvMznYZDoZ02k0uX7rG3HwH1/WIwmBCHbWGwvU45sqV66yub9NpRXi+xz13HqDVrgGCl7/sFnYGA+JaTJakSAPL1zaoyoprK+tMTbUwQLMV0mkGJKMBSsPMfBvH9QlCn+3+LlvbA6a6TbK8Ym1jh5mpNsk4RSiHtc1t5uem2H9wntIU+DpCCsnS8ipTUw0GwxFhGGGMpCwFg51ddrYH9AcjPFeCqNjY3OTEiQscODSHG7qsrm0z05nm6pXrjEZj9u2bxY89tC+x8XDK7mCbLz16ET8oubIyYHen5MQz58hHdl4OoWhPtXEDj6gWIEzO+to1ZOngeB6j8QCtfLQr6HYiqqoAKrQO2N4aE8cN0nSMdkOanQ6OK6iwSUGRlyjl8slHr3DH4SOko11crXG9EO34CKEtukdUVFWBclw8N8ZUJeWkoOI6PhacA72NdYxJcLWDFBYoJKQgTVPyvOLSpWX27d9Dmoxptlr8nXvm+dhDy9xx9CD//VtewRc/9TAztfpEmmnBCFkytrOcSY5W1mfOUKK0c1PmU5WVlUUKh4PzcziuZnc4pBY1EFLyB3/yZ9y67yAH9y1OIDoelbFdxDTJUUJjKsOBxTnuvvUIB+ZnUa7AGDuPHEd1moHPaJDw4EOPceTwPmotO0erhEQaYYtVjqTTajA11WXt+hobG5u8/rbbGVy8yE6zQ7q1xq1z8wiRU+YVEsn0zBTatWTCNE0ojZUJplkGRYKwVAmEENxx9BBlkSMEVGXBaDRAa38iNy2Zn59BSU2Vl5OZSCZJriYrcj7w5S/wA7/4swxGA2Zn9zF18hT7OlM2kSxKK5vVFRiFkg5ayZt2QGVlLSp8x8GUJUq7NoiWimI8RgYhmAJpDKgJ5VRYaWlcq1mFgtT2PJhkRGFMLaxRFiXa89nZ3uWO2w6QFQmOtnTRqiy5tLTE6WzIj92yDyEkcS3C9QylKSZKF4GSigcfOUHourziziN0p+qkSUJZGZS2c5th6CEEeIFvAzwBWsJwsEOrEdP47h+gwFCRo1DPu2q/tOVJH0kMeuL8AAAgAElEQVRB3IxBah746Ed41Zt+gM985EE68xFffPJhTp46TxgXzEYZnalpvKiNDBr4UjHoDfn+N99Nqi6T9KYQVCgBlLmVRCptxwbKkjK38+Fu4GLVZdrKkFWBVg6O49HseFAYwihmnFQsXVtCK8lUq4uSBgxcX1sjjiOgRCiBF0TkZUlZSaQxpKMBjtIopTBKkuepLdhUFaqqkEXF5uZ1mq0muzubjEdDnDAiiiI211bZ7vcJw3hiReGyvrHOaDwgGw+pyoTp6WnOXb7MeDikM920ICVKpLT2Slp7JOkQ1wkosxKlgLKaJDPSzqtiyIvMxjjado2zrAQJjusxTDVpIZhdPMz29jb1eoOV6yu0utPEtZjh7oBsdB2qFFe6qLCNHzRwZYAxJdV4gDAljnJ57bFXk8uz/x97bx5t2VXfd3723me+8/TmV/VqlKpKEgIhMG4gxjY2NhgCYvRAt53EaXcnMat7LTurk85qt1eWnY67E5Ju20najoktsIkHYgzGTBIGI0CSNSPVXPXqvXrze3e+Z979xz6vqiSVhMDkD3qxtd5aqneHc+995579+/2+E/3+Fo1mk3JpEeXO4NXm8IM2o0xSn1vEFg5ODlo+myKphUYLzTvf/XYO33WI2ZPT/M+//AtM61naMzfUdwJ+6UP/G/c/dj+tow0ah2p0jje4+8138O53v4P3vOceZmanjas4hk4tlLx2yr6YmcmN5immOTbPoZ/7nxbXXUaL+xrTn+sUzRsdNJ97vBtjF25G0/wbrxdxjHlBJ8wbXtP1TFEKZgNIafYYc14Zfe/ND2IObrJWre82d99p6792c7e/Xkq8wq/8zr0vjN5Jgc40lrRIxiGBF7AwO8VUp4PtuEbPp7kWZB5OQiylSJLEZOVkOXmqOXd+halOg2NHD7C728Xx7IJ/b4MG23XJtMZyPbY2drh0dYvjR+bY2Nhhd7vLYDDCktepUHmeU6tV8D2XjfUdhsMJ7akaQqgC0QGhFUpqtDATOsczuUNoUJZlPhsp6NQrHD48T5alIGA8HnPfA6fp90b4joPn2jSaNYQUKOD240s0W3WWlzdpNSqcv7CCbSkC36M906BSLtGoVxECyhWfP/mLr3D+yhpHD84hgHgSFZuDRTiJmZuZxvVMvpZS6prRi+/ZLCxMG2qpVOzt9jhz6QrTrSa2bbO70+XplUvMdpqUy1X+9Pwqh+ZtgkoZx/WwHRfPsbEtie+XuHhhhVa7hWUZ7VaWmc8lydJrYnqdm2OnWcZ4NCLLY3Z2upTLZRCCQX/IP/nd+/m5Hz3OxsYuK1c3ue3WBQbDMb3BEK1z1ja2aTVLlEtlXM/mysoGg37G7EydTqfJgYUptrZ2aDar2LaDZRs0KksT4jBiemqKnZ0+a1tdmq2qoZppQaNeYXllnePHFgijiFIp4PyFFaIoRSnJ+YtXqZRc9rpDfM+mXC2jC5QzTmLKtRKPP36BbndIp1MvNGqrTM9OoaQwaILO0UAQuFSrAZajcD0Xv+ThOopJOKbeKKFcCbkgmoTkOQwHE1bXd7CUYnOnj0QzN99he3uPve6QyysbLMy10XlOFGa0Ow3qtRLhJGR3r0+t7DIZxwWdWlKqBLQ7dYajEbVqwHTH5AOm5EhlU6/XGU9izl28wsJ8B893mYQhtmWD0KRxghSSI4dmSeKQk8cOMhhF3HZigX5/wu4gZOnQgqG+SUGuUwSYYwcVhBL0+j3z3c4T87nkxg7edcxwxZKCy1fWeOjxi9xyeM5oXNMMqRRJlPDwI+f5t18acaImmJudJooSLNtF5wKBMu5z0mhvpDTnfZJOzJAnjRBCFqgPBJ6H7djs7PSNKUqcEMcJrZahGM/PtNnc3ioCsFMm4yH/5x8+yA//rWN0u6v8+ue+zlsOHyCahAhMw1Qum7iL/VgEpLgWU7BPAdz/f53n5AXasL65RbPZIE1iji0uoguzl6DkMxqNzTUvy1FKMhyMjPRFSB742iMsr66xtLRAlhtty8qlFZ46cxHf8zi6NE+1XiHPC8MGBJPRBGVZKEeShDGWZVGtV/ALdLC/3eOnTp3g0M/+Pf74Dz7MrdOGTaFs40SphdEXKctovYQ2TdUkDI0lvZBIoU0OnjANc5rE+IEPysayFNJShYcuKEvx8c/dRxanTHXaBYIG//qxJ/nRN/0Q7dYMP/7f/l1+/nu+t4hkMIiH1pDmCULaBf5hTHLyLCLPI5IoRtmucUW11LVjpXEGQmDlGVmcoC2XLDEOxHGcmGuDKIxjNFQrVc6eu0ilVCbLNK7j4jouSZwSBB573QEf+8yXEDpnYXaG/3z+HO87uoBfchiORuQ6wfVcY31vKaIkZnFqimqlVMQEGYqo4zrXtkjLskyjV+zFQkB3r4dA8+mVNW7/sbeSC5AyQ+hvrbmzlAMFFXvpyBG+fN99nHrFK1k6cITN7U1+5z99hNd931u487jDXXfMMZqUkHYZmUUkYcqZqwkf/Pd/yKtefidO5TT/94fv5zWnXmFcpPPcNKvSxFSY876g+BYIlkG2zR5hchxdPMdna+squ3sDev09skK36AYWp898nUMHj9Dt9qg3KqyvXcV1Arq7PfJMUG+1GPR7KMsBnSEwNYYWGlsZFDHLUzzPuKzmOqden6JcrTIaDmk2WlSrNdI0pdvbQ0mLVrOFbStmpmY4f+40tUaLYTSmUq5hu8aN02ijcjNQEBGeHZDFsLa2QlD1IDN0cMu2zDlom4L8mm+BNHmLSEESKx586EmCyhQz09MIFJbtMj0zi1KK7a1Var7NZLCBVBaW6+H5dbS2jB9CNCKa9Iz5TpKQ5xm3vrzNcLzBzvYuU50DVCsNHKfKxUuPcNvLXgmiVuSBZuQv0sNUqhVKpYD3vPceTn3fLfziP/9f+PSDn6axVMGbdviFf/w/8Z73vpPb77iNuflZGo16cVo+u2nS6CLg/eb6sxvvC89G6bS+/hw3ecTz/rWvcdvvnZ7b3H2jY7+U+3471os9vywovEhJlmbX3wwYZ91CR3z9OV74Q9Xw3ebuO3HtN3eiuGiYSYW+aYP2jdY+CnfTVVycb/oaMCfQs6iZ+5OUa483/mF5qhkPQwLPRwsb2zMmAJNJhKMUWpopZ57n2JYCBJcur6EzTaVaolYtGWt3KbB9M63r7g6IJzE5kKSaOEnJUk29Xubo0gLD0QBLmoni/PwUURiZMNErm0xNNQyKZVvkqWZrp0+z5WMr17jGZYKPf+5hBt0RzVqF5dUtwnFMvV5ld6+PbUlWVzcIAh+/5CGUIC0aUsdSnDxxgGNH52m2SswsNI3ZQ5YbSphlLsZLB+f4s/u+xu3HDzEz28H3HJK0cB2Day6DnrI5dmAOz3VwfY8szylVSsbAAYHjuUBusp0sZVwEc41SZuMdDsY4tkuvOyBJMqZaDRBg24pjR+dM8Sc9fuPCFd71vQexgiphGCGFwLUVWZKycmUTISSBH6Aso3lzHEkYxyBVoVWJi4JPERUGLsqGSrlCEiVkaYrveZy7dInvv3OGPNeUSi61WgnbktSqAUG5RK1eJs8iokhz+dImx48fIIkyfN/Ctm3G4xHVigdoxuMxGxs7lEse1WqJ1ZVNPNfFsi3m5tq4nsN4NMayFOcvXuXQ0jRpmnBldZtWs8bK6jbzsy0GwzHtltHeOK5FmmU4nsPuTo/dvT4HD86x1+2ztTlkdrpB4Dtsb+8wP99he9to5JRtYzk2Jd81eWZAlhrtRZ5ZXFnZptPpUK01CMOYLIlYubpNs1qn1aoyO91iZ2/A3XfdSrXqc/rsMju7fe582VF0nhG4Lts7fWrVCpsbO0gpWF3bplL2SeOQ0TgxNF3XQTkKIaBaCVBSMBqMiKOQ7l4P35H09npcvbrBnXccZzgaIhSUyxVAYjsOSmos28LzA8qeRbVWZ2amg+PC/Ow0U60Kly9dJnAFOp1gKU2eCySK5eUVKuWSMRPSGbajsFQRr1IU6929Po5t0+k0qfguvu9jWTa27aAFbG50cWyPS7s5rzuxSLNTJk5ibEsZR8xwjON4JFmCutZUGVRHa4XWCsdyCCcJaWaCvAeDAecuXOXipVUOHz6A6zqMxyNcxyZPTaFfr5dJ4xidpbztlTP8ow/+OT/02nne8ea34Fzp4Xk+aZJQLhf0zywnmYzRuck3E7Zp9PI8L4YtkiiMsF1JNInMIKLVBARSGf3wyvIalUoAhR7NdmwcxyHXOWtXtzhz8TJxFDPdaXHqhDEYUZYqHD4Dlg4eoD3VoFwtGyqsVCAleZJz/xcfBJ1RKgW4nocUptAFkEpy7IjJpvw7H/wgP/STP0l45iyzrY6ZjOcCKSxynRfsCoXOUtIkxvZMjiA6Z9jvYbuOMQDAFC9JmrK2tklQKkKStXEntSzJ4cV5ZmamUVIxGPZZec3dvOvtbyNNND/zs/+Aj7zjrehcs7G2ief52EV0i7QkCoXQKeHEBNeHo12icEQpqCAtt8iaM7mfGaAs0DpmtLdBEk0QrodtK8JxaLJLc22u98V0PM9yqpUqn7jvs5w4dpjhaIDr20hponG2t/cQWnPbLcfI85Rf/cSf8o6lBbxAYVs2juOb6INEI7AJwxTXNTrLoOSTpSnhJLyW0WopxWg0xnEc4ihEFeePaymSOCNWgkNvejOgkXofcdDFBH8fjfjGjZ7Oi/1aCsgyvv7UWZ5+6jRf+uoXef0b3sa5Czs88JW/4jWnoNZU/PKv3su5i5e56/YqcTrm/HZEN9F8z8tPoqNt3vYjB/nnv/cJXnnwThzbQRRUXqVU0fBlhT27GaYqKVCiiK6wLXRmIno0Aq1dqrUWWxuXOXLwIA8/9CSvuONVTCZjzl54giTMmG7PMhgNaLSaIGEcQb01gxdUuXD+acqlyjUTEClNVIlAo6RgPB6QxiG94ZhwHJImMbVGgyeeepxWq0MYRly4dJaF+QV6vV3OPvM4J47dztULX+f2O1/G1soFOs02Dz3wMJ3pKSzbpd8f0t8ZYbsKy7UIKmVs10FijIbyPCeKQoRQBhErwt1zrU0+bay5ujHArtRpdNpsrl9lYfEQUZIyHg0QeYwrxkSjbWSWUmrNEmmFUh7DUY/JZAg6KlAqsJSpub7yzCO85u7Xs76ygrImDIYbXFo9RxLuUq/PIu0WcTrBcnJy/cJGedeolEXt97ff/hbe/Z57uOPO21haWnrB8+y5qJwscin3b3uxx5n7P/93L6W5U4UnxLPQOV44cPyFzUi+vc3dflOrtb6uvy7WfiN3raHjhm9ywSzZv59pXJ+NdD7nEc9bea6xLPu7zd132rqG3O03X99iY/c3WftN4YmTJxn89Vep+/6zGzsoJqKaNEnY2t6hUiuZSZYFtm9juzZppk2hlJvA4rz496A/4dHTl6mXfOqNKp/7y4ep+i62o7ClhU7g9PlVZmZauI7FXz38OHPVMlGaEoURlbpPrVYjqJgiUGsYTyKqlQC/5pOjsW2b7e0umYZms0RvN+TSylWmpuqcOLrAwQOzWJZEatjY2qPZrNFq1YkmoWm2PA9lWwVipRCAbRlK3+bWNq12FTAxB64lsR0L13OK+ISUg/MdgsBHWYI0i0BY5CmgDZ3Rti3aU00qlcAYCigAC5DoNMXxbFISJsMQy1IMh2N830cpxaA3IIoMjVJIwV63R5rkdKaaWMoEPsvcYeXKJuWqz4fPLfNTP/BybMchTWOGwyFCKjY2u0iVc3llnYX5Gbp7XXzfQwiNX64hsQotAWSZKCINLJI0xHYCdC6wpE2SpGxubPJ7D25wwOlx6MABLGWxsdMjTjLSJCUITNFoKUU4gbWNLlOdCo88cYFSSeE4igsX1yiXSoRhhu+5bO/0GA5D0iSjXPEolct84jOPUi97+I6xxL5waYODi1OkaUaUxLSadb784NPccfIwp8+t0mxU6PaGTE+3OXPuCp12nSDwIctJ4oyNjR2yLKdW8bCkJAoTOu0WTz51iVoloNcdUKmUTPE2HJNEEXs7A7Y2u4TjCMeDqakOSaK5fHndFOblAN8NqDdb9Ic9grJDo1FH2ZIkjhmHE2am6gg0G5t7TLWbNBp1NjY2URZcWF7lZbcfpVSyGY5TOtMdvvLwaY4cmmXcD4kmMaVSiTCK2OsNjSHGJKJareB5nqGReQ7VeoBjS8IwQ0mbXGeE4xFoU3xtb+8SThJyrfEDWRRmUCq7KCWxbJOzOB6McZwSlbKJXhDCOLllWc6lK5s0Gg0sy2E4injm7Boz021sx+Yz9z2Cayk+/pnHOHnLImmeUKtU+dgXnuR1xw9y+x3HiJOUcrlCEqecP7dMu9ViEoU4jkHQkzgxjo5o46xaNGyWJcgR6CwFMg4cWKTTbhoTAiXo940Zydr6Fo7nGiOiPKffH1AKPD7yhfP8yKtPMcoTqhsJyrKNxgeIo9QgDbYEnSKUAttF6GcX3VZxfdje2OGrjz7B4aUDJHEMGBOnRt24r1qF3X9UmPjkWc7MTIfZqTatdp1qtUSuMxzXQwtTMCgpTcEutNFx2Q4iV0aTF6UoITh8ZAnLsRDa0K6iyGiPlVKFu23OWw8f5R/f+xHu+cDf44P/8UO89uCiMbDKNVoZm5g8z8nSCMdTCGGxvbGDX/KxbGW0bhiHTaUssiRnc3uTZr1hNFlCY1mF6lcosmzC+z/558hTJ/i+N7wBz7X573725/idN34fyvLI0pz1jS2mplvGWr54f5ayGPZ2SdMJ4/GYwC5hWx4qKONIyZWLl1GYwYxGI9IUXJcs0yYc3raQytDTdZab145xqkviGMe1iZOQWw4eIksykjQjz83fAiWwLQspNFOdJpYNn1hd5Z6FeRRu4YCZojBsFSUla6tbeJ5tdNK+a9wwJUhlXcupU8oM5SzLGFwYV8+YLIFfOrvKu993j0GmckPLN/vqjfvsCxd415pABLkwP0JYgEVNl9nuLiNli0cfeRIh1nnvW1+LVDbf87pXcOL4DE69RtlzOdzxuPP2wzjscfTQKfr9bb73ZQG/9KFP8b3HX4mUFNS4ImhdCmOOlBn0QUiJslyEMp91HOZYtqBULnF1fZfxOGZ+fp7A0mzu7vD1p/+ahYWDTE9N8eSTpxmMx4a6bSkG3R6O5eIFFYRy8MpNMmGTRGODoqvr3z2lLCwlUEpQrzXZ2+tRq9W4tHyJublFhBZUq3UWFhbZ6+7gOg6tRofN7R5aC7ySxhEutVKV2QMLWI6NlpDGOZcvXaA53cZylTnHc3OcXINQRicqpdG8arHfMAnyTJClko2tbYRM6Xe3OX7yLqIsw3YcmlWf1Utfx7dzsCXS7yCdOqVKA2yXwPeLxsTst0bvmKGFpHWsSqvTQeR9NlfO4lkKpW2qlSb1dpPN7gZC2CjpXgMGXrTGu6EJut4MfZOV5n59+gKmfPvHgZvr614ScrdPg7wBufvmsO3nv5ZvyypehFTPf+/7RjvihubuRV/PN9ncSfndEPPvyLXf3N0Y1Jhl+85oL/wl+nau/YtDZ7rDr/y7D/H9C1PPa+50XuTV2SY8PIoiAtdDugrQCKUM7aagZEipiOMYnec0Ww1knvHFR89w+/EljizOUir7CKnRucaxXC4sr9NuVXAsSascEI4mlJs1tDaFm+97oMxE1mQ5OfQHQ2rNMkIa+o7ruszMThOFYyqlGhdXroLOqVYr5CJD5yle4FAvB3hBCSklg16feqOK5jpS2e8NsIssICks6jWTWaZzClRCEEUJjmMzGI5RlqK7N6Q/GBEELru9Lpa0cVyHBx58iiRJuLi6zlS7gUJw5vwlyiUf2/axbQutU+IkQtnKxBXYFuSQpsY+3SnE7VFkCknXtZmZ7vDx+x6gHvggNLbw6PcGVBoldu0er7ntVgqGGa7nEgQl6rUG1ZrH3GyHLM350lce5dTJ4ygp2Nnp4/tB4ban6XVH2JaDlALXs0hTSJKcyxevMDc3Q6NW5t6/fJpfeM8r2dkZcHF5nfmFadOEe44pohBcunSV2Zlpdnb6XFlb487bj1Aum8J7cWGWySSmXAqYTEKmOk0m44iF+Rk2tneoVqokccRUq86VlQ3KVZelg/OANg2NLbm6tsvJWw5w9twqhw9Mc/HKJmGYsLvX45V33Ypj26Rpys52F1tJ5mY7pGmKIKfTaZDGGbmGKEyYFBqiUuDzwENPc3C+w85Ol4X5GYaDMfOzHVAxaFhe3mBhto2lYDiOGI8TojDB9QSOa9HrjZlMJkghmJlpU6uUQGua9SoXLq2RxjHz81OUyz6NWgnbNsYQG9tD6o0GC7Nt8jTlwvk1Vq/uMj/XAgSNZh3H86nV6ozHEVGcUapV2drYIk1jHEehM2OkMxwM8QMbIQV/8PEH8G3J4aVFk2mocqIwIRMC1/PIhcR2PEDiOhZ5KsnzCecurzEeJEilKFUCxqOQSrVSTJot2u06tm2OcWxpmieevsLiXJNWq4rrOZBp/sVn93jznfOUyi6uEyCExWAw5stfeYpbjx0ySI40hdw+LdOyYXdnF893SJIJmgwpbRxbEcdjXDfA80uAJgxDqtUympxyuUJQMi6pUglsWyF0zvGOi1fp0Jht8r4P/j7vOHoES0pTxBf0vyQOEVIzjlKcoAQ5Ba1SXafQaEG9WqXTNIwBU5gZY5As0eQ6pdfrGwTYMi6byjKGL5NJiOvaJGlibhP7GXuCOIoQlgBykjjmk5/5IscPH0Y6Ep3mnDl3ifn5WezChTFNTVboI488ydzsFFprktjkgv3twwdY+P6X8+jlyzz64EOcmp01Zk1CAybSJksjhoMhQclkT04mIY5nGQMbrbEsk3GmlIUko1QqkaY5WZqA1FjK5fTaFT5w/xf56Ed/i5O3HceWHvff/wV+fmamQK5sbFtRr1cNxTI3usUsS9E5ZMkEZUG5WkVkErAQngNpSpYkCJ3hlwJQEktLEmw8x8W1HSwk2HaBKBndWxxGWI6NUoYeK5XAdwI+9dkvkcQJU60WjuuhbEPdbNRqTMYjlBT88bmz/MypW/nk5x/h2OEZtDYZZ1qbbFXXVgSVEr7votGEk9BoBYVx5ty3PM/SDNtxSbOUKAxRCvq9kJYnue2tP4bQGqklufjmmrtrdEBtGgwtJeSaAwsLXHnqIssb53jZna8nnITcdmoKJuv8/u9/lFN3HWG6WWGUuNg6R4V9hLQLRoWkXPOQMudHX7vI//r/fpzXnXwVWlO4kRZ1iLLYdynFAIbk5MRRxOWLFyjXquRorqxsUqm2qFfKrF95msbsPOVyCc/3efSRB3DcKtOzs0ghCZyAXreP59qMJiGeH5DlObVqHdfS5GSkaYTt2KYpMGImhBBkWqCxUcqmPxowNTWHbdtYlkOcROR5RjgZs752hXMX1qk3mux0LxC4DQI/YHtvlaBcYmvrCjqXdObmqNUqKGFjCZs8T4pGdj/LTiCVRZqlz0Jh0jSn3xsSZ5Kp9gzHDp1Ceh6uH6AsxfbGFVyZY6kcy/NQXhPHqRQGRtJoaQtquEYULp45CMmHPvFH3PXKg/huiogTwknOaOjQnm4T5wmnL5xhfu4QChthfYvN3TftjEJBSVYvfJe/YXN343fgOuL3ra1vZ3O3j9jJmzRwL9bcPTuUfP/Jvknkzjg0f7e5+05b12iZN/woy9AVX0wfd+3xXG8Kb3YqX8s5ebF1A2L4oT/8GG9dnLrhCYqmZ1/7qcFVho5hOY4RyscZgv2JtcZ2TA7TuD/mzIUV9roDZjtN7rrtCONBn51ulzhKCMcZK6tbtKaqTLUq6Cznz/7yIe6+81aqrTp5qgl8D4WFUJrJjrGFzwTYro2jFLlOsaTFeDTB9WxcTyDyHNuWTDUb3Pe1J7l0ZYPjS1PYlplwW5ZFrkHZkkrNJ45SPvqJL3HL4hyD/pDdvR5ByWOv28fzHFMMkBfNrUWaCbzAh4LilCWawA9wXRc38Cj5PsNByMNPnOG/edXtTLVbzE23obAyP3fpKkmUI3RKKXCxiouzJU3wK0WxkueGl/35Bx7n4Nwse3sDbEcSlD2SJOWWQwep1qsgQdiaWr3Ev3n8PD/xw3dgW4o8Nxo627ZIk5RJOCzyrwApeezxC5y4ZQmkhSU1WTKGPEYohecGSKkIJxPzd1USW9pUaw6ZjlF2wPb2VV6+VDG6GZFz5swyWRE7YTseX3voGU7edpDJOGNtbQvbylhamEdrRZbCo0+c58DiFMpWWFKwsrpNkma0OlW+/uQVhNB4rsXUXJPOXAvP84jjBCkMchUlOa1WhSefucQkTJjqNLi6usNtJ5eYnWuDlAgliwZOk+WaC5fW6XVHdAcTsiSn0ajx6fsf49WvvIUwnrC4OMuly2ucuOUQaxubjCcR7ak6Qkncks/ypVXarSajUUir3UAIYYLE23XW1teo18rEccba2h5zM00gJ4oSojBjNBohFYzHIQcXF8DKyXRGHMWAwHU80DnRZIJrWzz22HmWDhv6qefZ+OUSKIkUhl7nui7d3T18C3y/RDxJCIKANI0QOsX3HaRlct9a5YDDR9qkWYpjKfq9IYicalAlTUJsK0fkGXt7Pcoln5wEy/aZbs9iWxaTcEyt5mNJQTKJ0eS4ntG1Oa7Fzo7JATx8aIZ63SXwHXSeIS2H3/j443zgnW+gXAnQegLEJEnMrccO8dUHn2TpyEJR8JiAZa2Mg2KpZMxtfN9HSYs0S9B5hm27ZFqQ5abRtiyb8WiM41pcOLsMeY7veViWxV53hOs7zE5X+Plf/0ve9L2v4Idee4r+E2exbBcvaKAsB4lGKAshbSypEGmE7fhIx1CTlZbkSUaSxcZq37ONsUisWV5epdVpgpQM+iGf+6sHaJSDa1lncRgjJOzs7qGEedxkPDHmNfsB8IMR49EA1wn4i/u+zJEDi7Sm6mRpgrQEjWYFr+Sgi6GfkAJb2dQrNVzPIhyHXLy8SqNZR9oWf3Lvx3hsNwulBbIAACAASURBVOQXP/h/8RO/+q942+FFFJI4HGFLC8u2cTybLDVonuOa5khojWPvIzUgLImjUgb9AV7JR9kW//Rzn+W3Hn+Cf/CvfoV77nkzSpmssB//ib/LB2bnsRzb8CiLLEEKrZS2hEHQR0OycIjj+fjlKnGi0ZaFHXim8NGCUrWEUw7QuSIKI6Rlo4TeF6CglULkZtKfppExgZFmv5JCkefFdiUVrVqFsu9RrVfZ6/awLZckjvn8A19ltjXFY0+e4+FozJuaddZ3utQCly89/jS3HDxghg3C6P5yBEmacfHyVdodM2yRuSTVGqHAthSua4ZJaI3nuqAlqc74Py6u85M//h6zXwtdoLRi/+2aem9/r73hR10zXtjfj81eLrMUKQRJljDRKZ1Wh5NH5tnYusK9936CT33ucf7hP3wvVT/Ds0voeB2/5JOqKl6pTJxnCLeOo3KyKAKd88OvP8gv/uYf8ZqjrzaB89Lsb6DRuUG3AbI8QQqBshxqjQ5agq0E7VqVVtXHdyVe4OIojzSMWVk5QxIpbr1liTwZs729wplzT9Eb7pJmmmZ7ikuXzoPWXL58jiSTpjnIY4Niux5xEhlaMMYAaqc/Ic0z5mcXmIRjcp2zs7lJtVZhPB7RaDS5unaV207dytrmReZmDxN4Bm2NYyj7ZZSWSCfAVzZSp6SZ5sFHHubAwqKJuBCG2q7JsW0LR9lkWYYURns6HCXk0maSWpTKDSOxIGfQ2yUJB1h6hCMihOVj+zWkUyaJQlxbga3IC2ZAkgyRhcmUdEqMxwPe9e67GU8i+jsDXKeGE9SYP3SAamsaP2gyv3ArTlAn1RQOrDc0ay+1pxH62T83eeB+9u0+LXPfDfJm+rZnUxWffziJeN7PcytTJZ/fDN2selXCHOPGn2ueEy9A0/ybrH3E7oVsT17otpubrlz/zMU1qFJhLpjP/ym0nt9t7r7T1k0NVa5NiYvp3g16vOc2avtGKS9kliKLgNqX0igCdNpt5jauPP8GXXz1C2qGmeAZ6s5oPKZUCoo7CrIkJwkTsjTnK4+d53WvuQON0f7EUUqzXTc5crah56Vpwu7ugJ3egBNLc1TLPnkSM5pE9Hp9KmWfSRwRR5pcg+1aJpTbsQpqCuzt9piMQkqlAGW5aGE48wvtNieOH+LsuVUqlTKu65LlGcKSBW3G6N2OH5gjyVN2uz2WDs4XTVzG7t4AP/BJkvx6JhY5k1GI0IL1tW2293apVEr0+0PKFZ/RaEi5UqHdrBBGMXEaYzuWcfxMU+anm5QrPoHvkiQxAk2v2zdfb+UilWLQH/Nn9z1EPQg4dmgepQTVuslkipOEJEmvBdQ7nofj2oyGE0bhmLtee4qPffJ+lM5o1Gvs7XYRwBe++BDHjh1EWQLXcZidaeJ5HtKyULZFrjVJlqOUoeLIIjA5DCdmGg4M+l08z0YIi49+8WnecKJJtzdkNEqQImd+tkWudeFSmVCrB3huQLNRYXV9g62tPvMLdVxXASk6EziOy7kLF+m061QrPmE0odOqUasFZLkxQwBBb6+PTjXnz61SrxqtoucZ+tzJWw5h2xa9wYAsTZmabhm9VKGPdBwb13HwHGMOcfzWg0xNN1hZ2+Duu06QJAnrazssr2wavaWraLdqNBpVQHJldZNWs0aWRAwGI4JyYEJwRY7jmQyhSqnE7s6AOExZPDBHmiUgoFwu43ku40lItVLCkoqnnrnE/MIMG+vb5Np83rbr4QYuo0mI1jkbWz1mp9qcO7/GTKdOr9sn8F36O310nhOHIZdWNji4NM/ylTV6ozG1WmCiKTyH4WhiHA+HQyQZflA3gdYqxbZ8HnrwKnPz1UJTZvP4UxcplwJ83+jFslQX53SZ4XBEpVbGdR1cxybJwHE8bMvhzNnLVCtlRJ7wtb9+mpXVHRRQ9ksoR/Dfv+2H+fz9X0VJSanskOfguh5xkhD4DqXAJ4sjwsnoWhC4FMbwIwwnpElCHEUoy2F9YxvHMbEI0XhC4LmE4cREtGUZrXbLWHRIRRxnlKs1XNdCaPjBUw2+vDxgaWGGn//dT/D2Y0dx/ApepUoSxaaJKAw0sjzDdSughckJFZBnGSBxHJPvJpW5b6NeI8szkBLPc7FyzcLinAkcd1ziJGM8GvPAI0+wtr7F4aVFbNsxmX5CEY0Tzpy+yGgyYnqqw5GlA3Q6zWKoJK5FSZhN3jRSUkqiMOZrDz7B/OwMUio6U23DYtBwdGqK337wQd733nfw1h97Ez/7b/8DlWzCsfl5pHRIMxiNQlzPIU1SbMfBdizyOCxMhSzSLEcqhZAO0oJf+8v7+H8efYJ/96EP8853/hi7u3ukWYrnurzvx/8+977lTeR5glA2IE08js5IoxCpU/I4ZjTuIgQ4bhnLq4FwCgpeobWRGpFbJFGBmAhFmiXF4NC4FGptnPYunl+mUi1hO7Z5nZi9TufZ9SFeniAl+L7HJz/7JXp7Q3Z3tqiVfE4cOYRjK+Znp/nk8jI/2ApYmKtTK1c4dWzJhJkLo4E3qEWEUtBuVpkMJygh2djaY2Vji5nZDqIo0MajCfvjVqUUru/yX5Y3eO/73nVtCHsz0OQave6GvVrepOA2IJZ5JiklgYiolnxyAbVGm8MnbkckPf7kQ3/FD7z+zaTiSSr+LL1+F68UobWHEk0+8wXF6vpFGo2AUmDRqCzwxr81xz/5zT9gUS5QaQTGXAyDNArLoMiea9giOs9QaJTMyJMUZYPtQK+3iatcPM+i2SzRblVpVTxUrrnwzKM0Z46zubrJrYdPYQcJFW+G0WjIwqEOnmpRaTTM9SEe4ypJnqXFvmvedo55n+iMXBvESxasIrSF65ZwPQ/HUZw/9wgvf/mruXDxNEG1xcXlC+x0twmCgJJn4/uKVEs812MySTl/YY3OzDRWMSgwn7GhZsZZipQOSSLIBCjpE8cZR47fhl8uMxwPQEK4t4LLBLIJwvXxKjO4fhMpPeKoR5aFWMpkyuZZTjQekGNcc5VlGD+nN8/TqQe029McOP4yqtOHybxphBJIx0NjcmuFBJWnRg+3774ovmWs6/m/KU7Hfddg87tv3Dy9WOzBjev5SNc3vs83c79v13quxu4bUTBv9rj9pW96+4uz9L7b3H0HrpsZqkh5XbwKPFuPd8P9nnfi3KSB289pealraekgv/Pvf4s7brTM3W82C1oGmJMyyTKEMFlHQgiSMEIgSOKEyThkMp6QxgmzM00uXFpFIfEDz2hahNEAGROFlOX1XZq1EjOdBmEY0u0OqLcaVCuBsR1OUizLoVwJyHXOZBIShTGu55FlOb7n4vkO40KzNpkMsV1TKPq+Q29vxPnlNRbnphiORobuobUJ99QmS6lSK0PRmGitKVfKIKBULhmakjCGFjrLsC2rKPYgCDxKBRVMa43rOUzGhiqm1L7Tn6GcJVFElmf4gYdWFq7noQHf95GWjc7MZz3sj7ALNGOv36deKzMajcjSnH5/hGNZeJ7Rh0hlsbO9R7VW4Z89eZF3ve44x48sMjvdodft0W41cWybdrNGqVJi0O8hlcB1XEM5EzlhaExyHMctqCcCXSCHURThuA7bG7vkOuHKlatUynUO1STNqsK2LTY2u3iexfR0k/E4YnOri+c5lMsO42HCxUtr3H7yAKXAZxJNUJYJ1L64vMV0p0Gt6tNsmLgBzzcW9Moywca9/ghLGW3N+voum9s9lg7OcOHyGmEU02nX0Wh2d7scODiD59km9Hsw5pHHzzMaDZiZbnPlyjpB4DPdaZPlGZqc/mCI7/nYtks4HlOvl1k6OIfve4zGIyqVCqDptJtkWUaeJbQ6bbTWPPTYGY4szROnCaPhCMt2WF3dZjCY0JlqGHTHMigCOmdvt0+1UsWSkq2dLtPTrWu6xGqteo364fs+pcBnZrqBpSymO3Uee+I8aZbh+w5bm13KgUd/OOTggRmEFKxe3ebo4UUc2yrcTXOSJGV7a4+v/vUZkjhhcXEeS0m0yHDdgCTOqdVdXNdFCMVgMGZ+bpokMcVCrjWTUczjT12kWjUZUlJo0iRGY4YjSinOXlihWa/w9NnL3P2yW5ibbtLrj2nUK2Q6Z2c35dzFFWq1ClPTDUPjxNhdf+b+hzh54jDkJsg4CIzet2C5YVsWlpIGDRHms1lZXcd3HTzXJUsSJpMJoqBJCSFNFl6aYbsOtm3T73XRucaSOf/st7/AG159G/e8+Xu49OUnmJ9eREtBFkfkWYKSBmWKkhShjQ5RIw2CJhVpmqGKzDUhBJPhhM3NLWrN2rXCvFGrkevc5OZlOZaycB2HQwvzLM7NkKTGEU9IsKSNUhaddpPZGUOXVpbCcqxismsmt3maX6ONSylIIuOYOdNus7GxxelzF5iabhnERQiUJbnn1lv59Ef/M7e88Qd4+9vfgl6Y53/49f/An5+/wNtvPcFoPDaOxnGCsiVpkmFlCdvb28QTo4N8/599gj96+jQfO3eGX/q1D/AjP/z9eH6HUuCQphl//+c+wEc+8sf87lveAjomTibXaKwgyeIIrXOSJC4GUSV8r0QuJNI2JhVCQxwnJlcviuntjDlz/gLTUy1koSfUBS1PKWVMoFyXclAyGkQp0AWN3QTMK5Sy6O312NnZplKtGp3w5i4njx7BKRpyocze43kuv/HAA7zr0AL1ZgVSQa6vu6WmWYaSymjEHfuak6pfCnBdx2g/hWAyDOntDag1TOabUka+IAT86eoW73nfuxDFXnzT5q74+z5rf8+fTd/UBcNGCGNLr/MMX2k+8xefYn7hAB/7+J/xxDNnuP3YYc4+/jQzMx6zCymB2ySKJkRJH0RAHEp+9df+iEcfe4A3fv+dNOo+SWQcIN/8fUv8xp9/jrsP34VlO0hlsbW1SVAuYxWvwQScG+dYRG702kKbv5e0sZVPriOyPDb7jABbebSm5vCCgFyEzM5O4fkuQvtcWblMqeIitc+Vq5epViq4tkLkqTExKUzaLMsxDoSZoFZvYjllzp87T+CVSLKYUrlGkqY89sTDLMzNUa9OcfnyRbJMkyS6iAQ6iG3b2MoiCiN2B10C10Yqm/XNdaZmWgSeW+z55jvv2A5JkqOUw1e+8mVcv8zOzi5+qcY4TNjYXGN2eorxcIBKx1hoLMvGCeoIp4RULgJJnoYkSWjs8KWNFIJoMriG3AmpEJbg1rsPMeltY9k2uXDwKg1S5aGz0ER4pAlKas4+/XVq1TLjyQQvKBXn5reKWt28YxI8+7y8RtF9kfWSX4IURm9cfC9eKnL3LTd3Qj+bJmcQi+fddn3QUtz0nNfzUivqGySEN/9+X39HL/o8323uvgPXtebuOV8WecMJf+N60S/VN9HEvdj65d++SSTCDccV0tA0LcvQFIaDEbYyCFoucmObLSEIAupVwz8v+T6litG5/fEnvobUOUtLc9jKYmtjj+lmhVLgFgYlUKmVSdMUJWFze5dKpUylWSbNU3a3u3z+gSdpVyo8+MQ5dve67HS7zE93iCcJK6ublHybNI2xlU00idjY3uPldxwnimPTxAltUMfBhMvLa1zd2KYzXcfzTDjvaDDGC3x6e12++sjXWZyewlaSOIp59LGLPHX+MgvTLVxX4Qclnn7mMoHrUamUsG0LpSEcT3j0qTM0K2UsKYmTCNtReJ4L0nxGo+EQqSS7270izDUliRMqtRL1aoneYMjOzpjTl1dY293l+KEl2q0mUZhgOxKNJslSSmVzYf/rrT1+6DVHSLPMhFjbxkEuRyOEMYXI8xTXUziOy3g8IQnHBL5nbLCVIku1cYpLM4Qw8Qn9bp9qucZn7/sSt504TrncYLUb0fDMlLrVrNLtDqhWAlaubtPtjzl2bBGdxwRBlW63T1BycByP5eUt2u061VpA2fep1qpsbe3yqc89xuGD0zxzdpm5uVZh9mLQj6tXd5g/MI1jKw4fMjlj84tT1Jt1kALXs/ECh8lkTKnss7vT47EnLvP6176cZtMHBKfPrhCOTSDyw4+eZaplpspfeuBpTj+zyiteebzQXsCTj5+lUgtQtsSSFs88c8loCVNwvRJJmuJaNp5j0+/1qNWq5FowGE44fsthLi2vUan6Rr/k2ORZQrVcpdcdsL6xy9xcg3F/wvKVDaY6DeIwIs9SnnlqGccqRPY6xfUtNCnhJKJeq1GpVNna3qHdqTIcDnFtm82NLu1GDdex6e51ieOEku9x7vwKV1b2aFTK3H7bLSjH0GryzEJrjV/SeL5HOEn41Gcf4ZWvOFnorczwZTAcUa1VmOrUqVTKCCGJojG2o4jiBMcx59LsVIOg5NGqVfECD01GvR4wmAz5Hz90iTec6HDHbUeZnZ8ugqBtsgykUJw5c4WF+WmcAlGN05QkTU2UA7qIHTCudY4XIC3bmPCMRliOj+0YhF0qxdWrO0SThN3tPdrtOmtXr1KuuPheCd8tI3TMnzy4wk+85x30+9v8pwce5w3tOaQU9PvbBK6hLztBGb/WZjzcxHZdpDCoURonPPbEaebmZtg3l3I9u6CwKfIsJ81S08gUn41lG1R8MhySZ8Zx1PUt0iwmCovMNpnhBDb93REb6zucP7/M3PwMWu/nBKrrUQzaGD4pZc4RoQSXLq+ydGAeL7ARhd4szzIG/SFHp2d45tOf5Z/+xw/zMz/9ft721h/k/e//O0wOzfP7TzxK7e47+d//5E959U+/lz98+ix3//Q9+K+6nfs2t2i95gRvesPd/NibX80bX3Ub060Fur0RXrPGu975fv74o3/IvW9/O++49ZaiWFFYQoPOiMcTHK9EmkSkSUxQKSNtH6FstFBmkFUYb+mC7i4Lmrvt2CwsTqHJkcIYStmOKYSNO7BNnmU4rkMYhgXLwFBNpRDkuUGrK5UK1XoNhMRyHQ4tLUKW8eTT56jXKkhb4ZV8hK34L+cu8JZOh8996Skm4YiZToMoinEcC8d1igEjjIYheW7MRKI4gTwjyxJcxyEaR8RhjF9yC7RXEEcxrufy8dVt7nn7W6/p6F+suXvW77R+wdsMrJIjLYVSIHXCkUMHcW3Fb//mvfzcP3oZt54SNEpHSZMR/eGQVnOO/mDMzt4mr3vdbbzljScpuyBlTkqEsn3iaMIbXj3HxuQq5782odyssr7eMy68eWQS+oShkn35ga8yu3AASxXukhkIadHt7VEq+4Bke2MPt+yQqxzLyrEJabZabOyusbu+yzAc0Gq3eeqJZzh8aIkkSXHdgJWrywSBh0YYxApTdOvcZH8lacz5y8scWDhEHE8Iwxzbs9neWefUydsIJwlfe/CrSKE4dvQEZ8+fZmHxKMPeDlu7fUrlFt3RhF5vQr3m4riKhcVD2DJFKkWa5iZiobuHZbsF9S+jMzOL69bojWF24RDrW9tMtxuMB10YrlMq+yjHxi7VEapMEsekSUQYDQv3T0kUjvHLNbIsZTLYwfUr2JYxrvqX9/5L3vtTP0k8WiONJ0yiCXkWE5Q8ojACnRD2tnjoi59nsH2VpaPHqFXrpFoiLQt0/vxz5SWtl94UftuQu/2GsTjP5TdAul7s+V8SkvYccORZDdyNDLnnPKm64bb/OhrA7zZ3/79bN3PL3EforsHgNznpdJ5fR9SK9ULUzW92vfd97+bPP/x7HG429p/4ec8pMJlPaZJgWxZkJujXclxEcaEn18Z50pJ0uwMqlYDxOOTULQdoN2s89tgZOp0arakacZZjWYa2admGwmjQOptKtYKyHcbDPns7A6rlJmfPb3DL0XnKrks4SalVykzNtOj2e1QrAfVGzTjiYZzlLMvCsS22t3YJXIcs3jcMkNTqZebnprEshdAay1YMBgMcV5FEKU+eX6ZdCvBdjyRM6XTqXF7fJIoi5mbaKOVQq5bY3tmlVHIgz65l581NG5piNEnxPYssz0jzjN5un73dQUFJSwg8H9f1jYtXCkmU4no29VaJmWaVY4cXWVqcx7IEw8GQJNWU6sZ8RSm7mNYrPnRhlXe/9jiC/4+9Nw22Lb3L+37vsOY9D2e855w731Z3q9VCaAIBBskgEYKRkGIDxZCkElcq8RcHV2FXJSE4Q1VsKpRNgiu2IRDskMLCQgJkgZDR0Bq7W+rxDn2nc+8998zDHte83nx49z096Ha7NaQcqvRWrQ/37nXWXvuctfZ6/+//eX6PsBImDH7gAgatbZaY6/js7w3xPU1ZZDiub6+xWZ6XkRnGVIxGY1zf5+hoxBNffo4snvLwgxeoRXWSJOZgc4c7Gzc4deoEV6/fxXckjXqDdr/D0nyX5567xtHBlEY9oN9rsrs3oN6s0e21ubG+QbNRw/NClNTUmjUefvgM0tEsLncxOGxtHqC15pnnrvGGcyvEacLW3buk0xGNKEBpGxSd5TFKCvLESnYt7l3y1PPrbG7usra8TJrErC73Mabic198ge9/2yniYkQUtfEdl2bDpdtuUBYVzz5/g7W1OaKoZumpjl3hXVieZ2v7kEbLx/UEWzu79HsdtrYPaNbr1iO3Nmf9nvN9pqOUZJLw3LNX6S90kZXAmIr+Yo+t2wckScYzV65zeu0E9UYTY2Lm+nOWZlgW3L27azsMCFqdJlu7h2hHMhpmLC/NkWX5DEaTEdZqCCmoNyJc38HxXPrzfZYXWhRlRm+ugRHGdp2Exfd7vgOlw9bdvRkEpyRqN1AmI8sqfE8jS/jjjz/JqbVFfA/29o4IwjrT4QTP92zAquMgjMYNHTCKyTjDGM1kWvDJS2N++t0PWZnfTMr48U88Rq/VZTqecmdjhxvrm5w+tYQb+GhtO66IHCNSXF2jKEom0wG+7zIeDgmD0BYSEpRnYyuEVDQbNfKkoDdfx3UDut0eeTKdSfMEo8keH3znWQ7KCmEq3v7m8+TP38CLIrT2rXerygmCECl9ROUjRIxWLqWAtEx5+plrRG7Ak199jlOnlzHZlLubd+m0m6CU9SRrF1drhoMxpjSUuV3gUFqgXQFGI3FxXMHewYB2u09VzibqEp69eoMzJ1fthNKRM9+LnWckcYoXKJLkXtSKwFGC7d19yqyk3WxSFBlaaXzfRwhBOwj5sTOn+JV//L/x23/4b3jvj74bRMV3vfW7EKLkr/2199LttGnWA2phn6KUvPHRBxjHFY3OSVwVEjYX2DkY8l/87f+eP/+jT/DP3/ujvNkN6DQb1r+sHNB6FgrtUhgs9dQI/CCyMrKsQEn7vYvBAmUQGJPP5NMSY4TN3ywrlNQYY7u3CBtynueZ7fwaBbI6zu1TahY0nRdUJTCTsJaVxBQ5YqayqKTizp1NFhfm2Nraod/tooXmqY07vPvEHIv9JgfDISeW5nBcF+06pEmKEVCm9nmGEHz2iWe5cGbVPqexUS6NVp2oYRcwK2PjU8qsQHsuf3Bzk5/5mb/+ko4cx0CNV24vs0EdY/psl87Il/j0MPbZLB2anXncegfjhcwtLZEWFSURZy68A79pUI4kanaRXh2koN1r056r8CIFjiQtBI4Tkqs60m/h+jlRucthuc3GM5rNuzfIizHz7Q44L841lhfmcTGUUqKwGXVlZfjaU0+xsLCCQOC4At8PMRXsbm/i+nWGk4xbN7eZTBIWlteoNVrMzS8SuC4gcUOfVmuOnc2bNJst+1x2rfS2qkrifILveRweHtKfO4ETBHieZQG0WzbzcpKM6Hd73Nm4yuLiCkoq7tx+gfGkpNNqsb1xgyiQTEYxJ1YXmQ6nGDGlyB0ruZcKtCGq19BoSmOp3EIJhuOSW+s36XTneP7y1zgx32V8cJtGI6CSmkp5VNojNwWNeg+tJUk6QXoRyq9RZSlCQlXkFFWFL2aRSCLhT5/8JB96348RyZjNnUPCsE4yGjAXCOLpAevXLzEaHRLUrHdybakPQdcSWE0Gxt5XL9vuJ9U0VsZpszS/MXjfKwuVV3rgSvPyrtVLN6lmVqFZofTSy9xmGdrt2I12H39daZjlsn59J83cZ0FEyFeXkt5PBWdmB773cy89/292vHZxZ49u83Xt9qIfz3yHlvmXcbxaiPnLirv7XRSv47VvZfzSP/ntVw80v/eeQuA4DqPhGEc7XLpyk8WlNqYqGY0mBL5F+QsluLWxRa9jvXaVsREJ7iyAVkjBlZt3OLE4j9KKwWDEaDih2QjY2Nyh225ampzRuL7L/tE+b3rwJGmas3iiR3+uQa/fIk1TfN+jXgsZj6f4oY/SkjTNiAKHIPCs4TpJ+DefeZy1pS7akzOqnqYsbIjQdJLQbrfQysH3fR44vUIUBYzGYz791We5cHqFBy+cpFWPSJIM7Sjubu2wcmIBiaAsjJ3wKnE8oXYDlzRJCGsRWVpCKRlMpjNvjcJxXY6ORiALXMdhMplSq0dIJRmPYv70i1/jofOnKMuSoBZw8+Yd+r0Wk/GYMq9sPhXwz5+5zM+++43H8l4pJdPJBKU0yUy6UVXguz7/4vc/zqMPX0BqCy0wBqbTGFfbeOEwjOxkxlRcvnyDuX6bqqwIQotwvrm+yVseWWIwHNLvd5hOE1rtBs88e525XovhcEy95rC9e0BZFjQaEa5ru0btlu0EDQ6HjMdTqjJnMpwiDFy9eov129ucP7dCnmWcXF1gff0u/dUe7Vadbr/HxvYhfq2BEjZX8flLN2g1QhCGo8GIp5+/ydsfPUuapCyvznF9/S5zcx3WN7Y5vTbPNE6ZW+zwzDPrnFlbRKsKL1Ts7Q1YWuiSphlSKm5v7NDvNTEmx3EEgR8igC8/fokHzpzCdUMaTZ+r1+/QaTdpNmvkRc7m5ibTSUyr3eBoNGZuvsNgf4jjWNBEmWZEUUCvV6Pb63Pn1hbtVsDzV9YpipK5uS69bpc0Tbn8wm0WF+fothtgDPNzbcbjMc1mnecu3uD0yWU83+GLTzzHybUFu0AiNVKBVg5h4ON5/rGqWgltQUBFjlTCZjwGLn/2mee4cHaZPMnw/JC9g12kgO969IK91ixv+wAAIABJREFUlsucZy/eZmdnwMpSHSMMQeiTpjFQUBb5LD8tJQhdgsDld/7wMX7ux9416+ZLpvGUC2dPUpYFzz3/Au/5obdRDyOC0EVpQTyd0GjW2NvZJfQ9pqPYIujTxJIOlYPjukghiacJo/GEMAwYT6aEYYDvuri+oiol/8+/+nMcDa1Wa9alHlGr1/j4syNOnlqlHob8zX/2Yd67tEAQNRkNDrE1QsF4NKRWC0izKdNRTBCEYAznz54gDEN29vY4ffYkUga0mj1+/yOf5OyJVZ595jLXb69zYnEBgCAMbKi8Izk6GjIdZzbiwdOWrur5x1aZIs/xA58HHziD4zoMjgbWjyZtzIFS0kJQ0tyCrIoSpTVhENBpN0mSlHa3iZSS8XiKdqyaQimFkILvP3WaHz97lic+9kf81u/8S37jX3yYz33uy3zvO76bKKozNz+H1h67u3scHQ750z/9DP/gV/8RH/2TP+ODlaR+d4+3BiE//7a3orSk1W5w7cZNPvvEE5w9uYowJXGcoLSDH4bkWUFZFriee7zgYjPGqxmkwcy8W7NzFAIhbLaalYNnaMfKIIWyxZrjuBRZgZSaypSz7MnK5pElic0AVPa5hBCURckTX3uGfq9jPau1kDzJaLcaFGVOu91mPBrzm5cv8aHTS/i+w4mlOUxl4xLyNCfPS4yB7a19vvTsFU6tzHN2bQmExeKnWUazWUcINftbYaW0ZpYL52h+8L/+RVqt1sse0feDUnz9ONaF2Y7MffaR2Amo5wcEYYjn+SzN9/iff/kXeePZJeryiGS4iStKsskUVZUkoyHVJEOkJT4aF8l0OEIO75CPhgyHI3x/ibNrpzn37gf4tQ//Ie97xw+jZGE7l5VVvlQYlDfLLxT3CvOCpaVlpDSzzUJlisJnMkkpqoog8kGUtNon2N3bZWFhmTt3bqOVQ5bG+IHtftYbDQu0EZIiS8jSFKkVrhuSpgVlKUnzkqIskNL+/isj2Nreot+bZzQ6wvUChqMRlSlYWTlNFITsbN3kke9+lNFwQlml9Pp9XMe3dgcV4HiKNDEIoWdZf/ZPkaUVSSa5fO06zdYynhfw0INvwJEJtSiw0VBujSBsYAqX0GmQVjHTSUwQ1AlC+4yaHG6DtNdpWVUonVKUUw4P96AxotM4QtVX6CyfRCiH3b19puMBg9GQeDqlHoW06nV63Q77o5ioNYcRCiPl/S139//P17juXn1IKb7u+n1lJ+01Z6DiPoXSa/zAq3XpXtp1e9n+6uvD1l/PZzT3qRS/nWCW13UOr7L/d4q7v4Tj/6/F3d/4qf+I/AufAXGfFZ172mEsGjeqRQwOB+weDHF1RRD4xyHYSimUIwk8F+1oDg+OqM28aDvbe7RaNabThLKs6HdbTCdTer02t+9s02nVaDYipnHMYDAiTw137m6TlFNWlhdwtMvB8IAoCvADjyzPj2/4sBZiTIWQkizLkJWdUCCgNIZzq4sEoctgNEJrZVHacYYf+Dx/6Tr9fpvRaGq7AkLMpCKOXa0VzCZaPr7vkRc5rWYdL/AYDsYcHY1odpogIM1zyrLE830cxxIwXc/nI5/4Im98w0m8wENKKKsKx3WoTE6ZlewfDmxOoKOIwoBzp06AFKzfuku9UWPj7hZKGGq1CK00UltJ2R/e2eV9jy5ZHTvm2KNRljZrzyARRjAeTXnDuVPkeY52JK7j279lFIEpmE6nTCdTPNdDCMGtW3c5f+4ktXrElRfWqUcRa2uL/Fe/+nv8xA88iNIOjVrEYDjm5NoiSZrgaEW3XeP67W3qtQDXc6CyGUpKKkajCVvbh/S6TYLA5cbNbfIso9EIqUUem5t7ADhKUlXWy6ilIksLbt/eZ67fYzQc8KUnL3Hh7DKNZg2p7e9rab5Ds9lAUKEcQbfb5OLlm7zhgVN0ey3qDRtevbs9pN0M2Nnbo92tE8cZl65usLoyj9IujqOQ0uAHmul0QpaWeJ5H4LocDaYcHY5oNHwODkesrSxRliVpmjLXa1Gr1xBS0mqGVMYwHU7Y3R+QFhllVtDtdUjzhGajBRjG4wFrq8u0203KWZSE0oq5XpubN+8yHk3Z3j7g+Su3GY1sWLud8GqC0KPbqVPkJWEUWsmYKKlK+ORnnubUyjxSwp3bO7OIiRytJJNpTJpm1BsNkjghCnwa9QCEwvXA81zbZdGCLEk5PJxQFBW10MHzA4TUbGzssbNzSKfdAGM9H+PJlN/487v80gd/iEbdfn7rragslMVzmeu18DyPT3zyCd70yFnKMsX3HMoipx5FbG/v0eu0SJPYelqNpCxKqsrgaM14NMXzfOtTDAOEFNaDl8XkmeHCuVMIUzEYT2g06vZa0oq/9398gg++/30c7d3lB972MDe/8gwn5pYxVY7n2UKyUa9RzOAdWVYQhiFlXpLlE8Jag+XlRZSjSaZ2snl6ZckCorSi0ahTq0d4gY/BkubieIxWDn/x2Fd54PxJkjRBoLhy4yaNugXVIJiBU2xW6B98/JOMB2OWF+epZh7sexlxeVYc+4CtxFxxe2OLdrvJeDym3qzb91b3sOWCsigoi4IT3T7fs3KSn3zDBWrplP76Hf6Xf/rb1J+7xKf+4A/53Y/9CR/ya5zPKz74hgf4yQvnkcohnib0+t3j3DMhDJ1Om/NnTqO1zesMo3BGaJVoJY/9iVmS2UKsqkji2MZkCGYZf/reQj7xNEYrPevIWRn8737kT3jLm95gJ18Ibq3fodGsk+cp2rG/L6nkrEC08lkj7CQ0S1JOri1jKkOtUUM7inazjetqPNdBSoHv+Xzy5nV+bHWe27e3aNZrDAd2wfL2nS1qUYgUkk6ryXy3aQsPbSWXvu8TRJ7F2c9qrzS24etVVZFNY4yA//Zff4L3/ehftRRsvr3FnbjnxWcWfeN5tBoha3MNjnY3iMSIw4PbTCcjNA55klGVGarKcLWi2Yw42NtlND7Ed0OU08ZvL+O0z5GrPu2lc/xnv/Cz/N3/9X/ggc4FgjCyWX6moijzY4iPUtJeY6WN8LGaW/v8cTyPJDMUZcXu7hbNdpdOu0+FDU4fDoecO3fBRvFUFXE+pV5rkGQJUmtEVVHlCYEfkGYJAnsPDIYjOr0FPM9nOp3wwtXLnFheIwiCY7WOQTCZjJlOR7h+QL/bRShDq93m5s2bJJMRYWhjdwLPs9mElFx89qtEtTaBb6XmVSX4zGceY3nlPMNJjOPUuHDhPJt3r1EPFJISIxSlUeRFhVQuxpQUlNSiho2BUTCeDFEmw/EC8qJkPJ7g+BFB0CD0Ozxz6wof+IkPEXYXaLR7aMdjbn4Oipyj0cjC1PKczbsb7G7tMLeyRhC2EEpTAvL/4+LO8nXNN1/cvaQNdnyMb2Nxd79jvu7i7hX7f6e4+874VsYvm1cBpbwWleg1iUWvs7izRPxXj0r47X/2m7xxvnfvDV/c7r2NFC9m8VWGVqPO6PCQwPURwsEIQ5bnaC3xAx8B+L5nvWJVxe7OPllW0Go1WFrqU5UVu3tH7Owe0u80CUKPw6Mx9XqNqBYR1WpMJlMOhhN8bTOUms3GrMtiV4aZIYyzLGMyifE864kRQJxmBGGAIzV5nqGUJIx8lJ5NqGb+nrl+G2MMYegjpF2RnIymaOkghSIrc0tiNNWxmV8KQRIneI5jjd+OBQFIISnSkjI37O0d2jweR/PA6WW00jY/UApc17FynrJCCU3oWY+i6zukcWwzucqcXr/NNE5Y6rWJajWqypDPIA9SCj66scPP//Ajlt6H7ZYoZTuDWZrZQjXLuHp1nWYzotGocTQ4Igrrs7ymguFwQmUEzVab0hiSNGU4GHBieQHHcRkOxywszLO5ucUwzzkz5xLHKUEUkaYpjrYSqUtXN/A9h3NnVwmCgMuXN0iTnHotQCrN9WubPPiGk5RFjh9oPMdhbq47kyXmuI5mrt+hKErKoiIeppiiYjSY0mlE7O8e0Ok26DRrlq5WWKlLmqQcHo2o1yKOjoYEkUMQBPi+i+c5CGHQSvOlLz9H3a/T6ddQToUfRERhje3tA06cmLedkHbT+hDLAs/1cLSLVi5feeIKnquYxjHtdkSv0+YLX3meTqtGMOuUVZUkLyqefv4aq6uL5HFKrebTakd0GhHK86k3A6bTHN/3qUcOSBvTUZYlu7sHhGEIQuIowXQS06xHnDkzz/xcl/E4oT/XZzqZWvmtbwmUjlYoKagqw5effIH9w4Q3nFuiMhVRFPDFxy/haInnWZiH9jS+7xL6iirPePzJKxbUoiriOMXzAypj0MrmOr7xjaeJgoBr13fodnrUanU6rTqHhxOiyKcoclzP4Xe+MODn/uqb2Nrepl6LGA2nALOJuGRjY5vBcMwjD5/G8xRZlpAkCVpb+ECn3ScrJlZ5Jlx29w5ptdtkaUZVGW7e3CZLM9yZP0+7Do5yGU5GdLp9ktjSDbu9HlLB4DBGKcnvPfYCf/M//hluXrtILRD8/Y98hg+cP2+vobQAIcizgkoaqlLi1zzKvMB3fQpRUuXGSnXTFMdXGCryPMULHWr1AMf1mU7j4/w8qSRlXqCVw/nTq2hHkaUZf/7Y4+wcHNGsRYRhMFvoUTPJveDCyZOcOLGEEJAlKa7rzqT46hgCBRaHLxB0O22EshJFoWyHXEgLSpHKdmqZ0f/k7Bhn5uYI/Yi/cuYMc40WD8wv8qPnznPx4lXKsrILMsLCO0BY/2hlMwSzrLDADWko8xIpDEK7GCGpyhI568wHgc/m3S072fa9WUFmF2zuPcuYPVrkrEMHFnbiOg5VntNs1CylNC/5/ONPs9DrUGvUGBwO7HfcTJ4JNkqoyG0mmeMokJK8sPAvrQRKOxRFTlHaRaw4yfj9a1f5wMoCf/H4c3SjGs9fv8lCr42WEiHAdTRfeeqShVLVApvzqATxJMVxbbh9Vdl7RCnJcDgmCD2GgwFR5PMf/sqv4M+658ef+XWN2bN5ZsGoZpPql0YcidnrZrZVVYVxoRHaOJv1W7dp1QOUU+dT//YLXH7hEosnlqj1IhKjGGcVhduk8rqIuXew9MAP4XQfIDjxFmqLD+G6LYQM+OD7fwLZGfF3//Gv8z0Pvct6g41BSAfKgrw0CO0hpKUpG6kQUlNWFcYIKlExGBwgnTaXLl9mdfVBKilxHZdOq42QilqzgRKKvIjJ0oJ2u8ON9XXrn5clwthOoRKaJI1xvRA/qNlusefS7Vq5ulYaA7xw9RLTcYyULp4f0Gg0SOIh3bkuO5tDssxwcu0Mzz/9HEGjidYeyjcIIxHS5+7GNXq9BShhOC3IS4HQNbZ3NiwEq0pp1xSmyjBC4IZ93KCO8gJKcioSPG291+PJkHh4hChzssJgUPhBRD2MyJVAey6/9nu/xn/3P/6n3Lx9mU57GaEdlBsgHI+w3mJ+eY1Gu89kEqOUJk4zC0eTM2q2676sSDke9ynuLKzpmyte7kFWpJrNW+9/1f67x+vQOt63uJtJFu/noTvuwN3nfY7BRC/t0r3ktVfOq+/3+zmWbH6jRfFr7F+ZexmvX19gwneKu7+Uwxjzy8cBud++g76+3eBVIxQAJq0eO09+iYV6/f4HeFGdieu4FHnO/tYBrVqTOCsR0uBHHlmaUZblcfCukYbD/UNa9Rr1eojve2RZjlKKei1ES0m9EaE9j6o0MAspv3L1JmVhWOkv4fmeDRNPDLUoYjqNKcqcvMjxPNdi/F1bYI6GE/IMNrcPuLm+yUKvZQ36M/+Coz3KwuB4ioODQ3zfRQjIi5yyyJCAqzw+/sknWe51qXVqs26fIM8TfLfG8GgIgNYCx5WziKeKeJrx3MVbdBsdOnNNXN+nqDKqKkcLD1NWJNOp7UQMJtQbLW7d2EQgSeKEsOZT5ilVkVPmmfXvpRl+GJDlJa4XIB0NxpAXBR/d2OP97zhlv+SNII4T4jix1EHtMJ6O0I6m122T5ylRLSDwfTCaLMuAijCq47oepbEZOo7nsTjX4c7GJp1Oh2ajwcWL1zl1epn/5ve+wi/80EkrLymxq/VSEIQB3V6Lsqg4OpqQJjkLcz0wAj/QuJ5HoxZx8+Yd5ufbbO3tMRzaKIs4Tmk1fBr1Guu3NlFSsbM3oN6uETYiomaA8sAPLJ7eTkIDHNdBScgzK3mcTGIm08RGKswQ3tPJlPF4RDqNMWVFvzvH1sEeiyf6TIY5rhvQaTcwWAz6aDSxgdTCoSgM167dsWRWV3H69CKdtkXdA4SBT6MesX57iysvbHP9xg7pNKVV96k3Qg73BvS6TXYODjjcH9BoN8mKhFqtRZpkUKW4Xp2NjS1a7QZh5JKlJUWec3Q4ohZ4HB4MObE2hzGSLClYv7WN52mazfbs+pMIZVBagNGsrZ7g7JlFtCxtPqTr0W7XaXWaOJ6LEi5SKwaDQ3xfE7gK31OURcn2/j79Xp/xyMY/aKVptUKSLKYsh3R7TZQWGDKS5Ig/+sQ1lhfr7O0PqDeb/NHXBvzII3PWNygUzz5znXa3ied5FHlOvd7gM597igceWMZgu0pRVMd1fITSVJWkqGJcz0dr/7jwcV0P5Uga9TaUFft7R2zv7lFvhpS5xHEVBrvYk2ZTptME39d4bgPXdfjQO0/yTz/6Jd7xXReIs5j3fP8jBLeHGCMJ6w0cL0QqB6nB81tIX5DGMUpqnMBHK2/2gC9QQiMQaOWweXcXR7t4vsfjTz3L4dGAuX6PeJpw5fJNgsAhanjkWYmWDudOrnJifo48L6lFNbRnj1sWFWmcoqSmrDKKsuArX3uGE4sLOI43iwKAIs350uNPsXxiHu06M8BVAcrCTbg3URH3ICsFpjI4yiFJUvZ3D/D8GTGXWWC7VlTG0Gm1aTTqxwVXmtg4F7sIVlEUlS3stGP9UDPZbYXNKJOz2ZUfeJRlSafTRjsKY16k0N1zmVXGPhdsK09iqCiLwhZ6StLrdi1VESu7O722gh/Y72jXcxFg4VszKrFAvOixqUqE0rPitqDMMoTQfOGJJzl7epWisOTjJ+5u8J6lOU4vLtJqtqiKhE67juc7pGmK1oLID2ZFpPX2SiEQKLSjEAju3N4mikKEEoS1AIyhKDJ+4/IGT9/e5Hvf9fbX9Vz++qf0y//1Sm/9/WYOpTA0OwtIL2L1zENcu3SRk2cfwY1aPPJdj5CaEq/9AEHnAo35R2nMvZ1a/7tZOfsISexw/YWLLC72qbIc4WYYmZBXisbiGn/jp36Bv/M//RL5xpj5TpPB0YBaECC0R6VDUD5B0KTSGiE1ogIqw8HeIVXpUJiAtbMX8MIQx3OY6/UYDgd4oY/yXI4Ox4R1n6ooSNOMsixYWJhDlDFCQGEqoEJJie9H3Li1TqvVpTIlcRwzHNlnXBxP6HcX2drcpsgqhqNDqgpWVk5x49ptXNchDDwaLcloWqB9l407I6bpmE6zThDWqNUbVKbicPeI7aMpc4unERpOr52k020gSCmTAUo5eGGDQnpklUJKj8Cto/CZDI/snESViKJAI2jMrRJEdfKsgKpApxqRF3z8iY/xfWfbeBMX4RgarTaVdKmEppQanADPr7F8YoVur0+z3WPz5mWuPPcc/bneLJbHuc9c7T7F3Tfos7vfuBfq/k0Xd69j3BfOMitMXxoSfvyer/Hmr6dTeN/9XzrMa7z2jR7rJYeUQn7bi7tv/S/8nfFNj3urq/8+hoSXRy68ZAgp+YEf/H5+9crmq/78PXIsgFHg1X280OWpa5fxQ/AbIWLWqSqynHg85c71u4z3hzBDfivHYTSJUb6D3whxo4B6p2kLljLHdSSe63Dlym3Wlhc5e2YFryaptQOcMCCZjhgcHjA4HPDxzzxB4AZUUoK2mXR3b+3gSgff18TTjI2dAVlmvRzW0WyYTocUxZQCRbPXAS2PQ2YdN6SqrNzhPT/4RpoLIXmWc3QwpEhKpocFaZzyxPNXeexrz+P4HtpzEY7GCMW1m1vcPRgS1DzieMrg6BBpBFK4aF+gfUWtWUc4mnqnQZJPWTu7jHGg0auTFSlKaYxSKD9EuR6NZgOEZJqkpGmCkhLlCbSnibMCKT2mcU48HRKFEbVaE6VdmxelHDzHwwt8mu0u02lhDdhVRjwZMR7FFBUIpRkORtYzYgwqCDlz/jwYwdHBEafXlpiMJ0SOQzkZcbC7g+dIkjjm2WdvkkxzTGHwa4rA93C0IIxy5hcClBYIUeL6gqUTfYwQtOptQj/EcR0rwx1nDJMj5pfqzC/Ok+YFniPJ44zbN3eQxsF1QtxaHTd0cX3D1tYu5IpkWoDSBHWf1ZOLuH6E43rcWN8gzwqyxPCJv7hIt9fiaLLLnVv7OFWEUDlpOqHIM/Z2jri5fh1Bwt7ODkeHA5TULC/0CKKA+eU+SMn+3pDQ9SnyCStrdbTjcvb0Wd76ljVqNWi3Per1AKkMK2cWOZpMibyITreLKQ3K+JRVhh8pZBiSJjZcvcoNjz/+AsqVDEYjRuOE8bTg3IUzpKMJWlT0ejWWFtt2AsAUoQriiaFMC7J4iJAFwiQok4GwUAMpBYODHVxpmI4ypJhSZAWOruHqkApDs9UhCAOe+Nodiqziox//Ejeu71jfGYpaUEN79VkHxlBmFXs7Kf2Ow/a2nehg4OjWs1y8eJPRpMIIjwcfPEmRlSjl4oYhrq/58f/gexDKpSw1Ua1DZSRFWSIoKcoYx6lTFTZzz3EdXC2BgoP9QxyvImz6LK0t8MRTN3GVj+Mr7t7dpiozpIIsszmK4JIXE6aTCXdubfOvPvoJap0+8ycewmv0+LmPfwLhOnZC6nq4QYjCJ8uHlBNDGDRJihRMSSUFRkqUdq3fUNjv8G63S1VBQcY73vooD507z+HOIZQV9UZIq9WgSHPSPEa4FdqVSKH54lefZXB0iDCC/e1DnnrqIn/wp5/i0rXL3LqxyeBwwFvf/BDadchzQ1nm7G5u86nPfok3nDlLPIyJBxPMvSiAGWBJGIMwAjUrBLT2cF0ruXV8l+58G8fV5GWKEQVVlVOZnDSZIpQ1GQkhMEnJV558ijSx3Qnp2o6vBGRRgBU/g5KUaYZCUeWCIi8p8oKyqGw+WWUQlSFLJgiRU2YpSgjKgtmEyUpMpbDPhaqy/61dDUZgRImQFdqRTEYJZWZssejo2WKG7RAZY4jHMcIIkA4SaTs+QuIGIVWV89DZsxR5RRhG+GHAZpoTx1OmyYgim7C00kd6Gql9PL+GkB637u7bxS7HYTKcWrmyshCYJMlZXV1Eu4rpaIQp7ck7QvGz55b427/4t755iOE3MXSlKApDd2GVxvKDvO8X/j57aUStOOKFJy4ROn2avRO0595Jd/ldjApJb2GF9bu7GK9gGu9ztPkMobiNJkDIFsL10KbELe7wCz/x3Ty2/zR70zZOa4UklyhH4TcWcGpLyCDE9fpUVcg0jSm0x+Wb18EPWTm1xInFBZSpCN2Qi1cug1JEUcTBzi6tfoTjBujQwVGGuhsgnRpVpanyHGWw0DatiKcT2q02UhrCsEmnO8fKyTXCWkRYi9jevsvZc6eZW2hyenWVM8vLbNxc5+yZc+wdbLOwusIo9hCOw3AwYTi8y+bGLnkBw/GIODNs7QwovQah3yTNclZOnkcqhWvGBCIn9D1KKUAHGFJ0OaWc7JLnR6ggxGu2yAX2/D0f6iFGQmVi0vSQdDpAyZjxYMi//K1fp+o9zMo7v5/+idNUQmOokLJAixSRT6iKmKQoIWjRWDjJI9/zPsok4dJXP43/igLCYKyzxkgwEoE63uxSzIvbtzJK8/LtGx1CiuNC8ZWjEuLrtuPXjDneTGWOlVDffNbfi+ej1Ld3Xn7vPO/3f1JY2NpLh6nE8fbNju907v49jqqqfvnbftBvg+fu3qrBT/30X+e//Ie/zntXF177LasK7ThMx1MmkwnpZESr3UY7Lo5nPUHadWm16pRU9Bf6eJGP9hzqrdlEcbbaql1FWVU2VwyYxClLy3O4s4DjIPQ5PDgiCgOEsWHerXaTh8+fRimNkJI0ThEV1Bt1/MAnjSfM97ucWVvEiwKKvKLICq6v36XfbZNnNstGVBV5llNmOUoqrrxwi8koptlq8OmvPM3VG3c5e2p5BpLIuH5jk8Wlec6sLrPU65ElGVpZ2Y92HKLA48rNu1w4vWzhAVTkeU4QBpR5SVUatGvz3PK8gMIwHcd87snneOjcGlmSksSpJYZqu0KcxtZrEgY+jutijCHPEtI4IYsz3vzoCVzX4sFNZTjYP+LPPvVF1lbnrH9ECgZHA9tRzTNc3+Pg4ABHa1rtJmDAVAShhxCG/YN9yqwgHo8RwuCHPkHkE0Y1Pvb4TR7qpKydWkHqgKIwrJzoIR2J67loJQm8Olev3SEMHSqj2d09ZHvngHot4Mmnr7KyPIdSgv39Id25Dp4raTXbDAZHBL5Plpb0+xEYyTROWb+9w2Q8YWmpy/rNLUxZ4UjF3u6AkhLlaBqNGtevb3CwN+TajQ3m+i1qoU8YRThK8vCDJ3G0Igp9zp9dI44T8qKgyODOxh6ddoP5uZ6dIHXbGEqyLOXwaGijJyIfQUWWJewcTOj15igy2N7aIc8tDEdLQW/OdkAmI9udPToa0e60CKOAghzH1Vy6tE4Uhlx8/haYkloUMDgasnpiAS/0CD2fKrcZd1vb+ziuwAt9vvr0FVZXl/ECD2UE6+u3aXfqGARFKVCua7tAM/lcHJdcv76BMYJWs8NjX7jM0qK9rjxXW3ldZem3rueghSAKQ0QFJ091ENLw6c8/zcmVBRxXk6Y5o9GUMAi5fPUOvhtYiI+QPHHxDn/vP/9Z6vWA5567xsqJBRxH4rqSssywBDBFludIqbl+bR0pBZ7nIYUgz8fkRYrnO1RVRpbF+H7AZDKlqiparfZsSVdw7dptVk/0qNUClBJEUQBC4rk2qyrLMqIotDErGKrC8AMP9Hh2Bx5906PkWcKHP/bn/Myjj4B5k7SvAAAgAElEQVQQSAHJeIIpM4QqMUUFlFDlNnBe3vOczbD8VTWTKRkuXb7KaDCk3WiSpBlPXbxMv9+l3YzQWh0TI48OR2AqGq2AteUFuu0OaZHRajdZWpzn4XNnWVpcoN1qEkQBQehjxVDWR1Zv1rlw7iS1RojUiiDwrRKBl+PErTzbeqPvdX0+/Md/xoPnzxx/3yZxYpl6UuK6llh6+9YG9UZEZazHdHlxwWZSaUu6kxKEMLMoF4VUgjSZeeCMIMsznnrmeRbn53Bdl//rwx/j4QvnrGRUCg72D/A8G1EitZ1EFbn1ERps9y2ZJjMYyz2plCFLc0xluLuxiec6uL4lAZuyokgzpOchpcFxFXdurVNvNsnzHKUkapYH6nmu9cPOfi9aay7dWeedvTZFXjIcT+i0G7Y4NDZz1BQVCwtdHEfjznyR127cYf32NkuLfcbDCcPh2Mq4tZUdl2VJPJnykVvbvPP976cy1TeRQfbyZ7lQykowq+pF+8Zr/fjsfpR+k9bSKeYe/j4eevuPUQVt/uD//FVWV87TbNfxWxFppuhFLq4wdHzJ3vWLHN6+gVcLqCRoqQAr6f3Vf/AP+fF3fy/v+08+wG/9xm/xlu9+F+lkSJyk1Op1hHZmwBAP3/Pxw4Buq0u9FhHWGmg/5HAwwPV95vrz1KKINIkZDQ9xEFBVOMqwt7tFVZZoTxO12hbYUxWU9nJgOokZTxOGwyFC+YzHY2pRg729Peq1JoEfUAGNZoswrLG5vcnZCxfw3IC57hKXnr1Ir9el2WgyGu5z8uQZVldPsbGxze3bdxA6QsqAtdULHI0PaLUaxJNd8vEWyrH3vZI+bmjVSo3OPMkkA6ltxIf2EKWxnWjhEEUtsrwiG40IvTpZWiKAzf0pb/vpC4igRqPdZHi0CxV4Yc3KWwUIU9kCTVh1isAgqDDK4eRChy9/6bMsLizhN+defs28xJv2Msnh13WFv/Ei4rgg+xannK/VUXvdHbKXfUbrz/1G3ueV+71q7ME32bn7unN4yWkcy0Vfut+x9FV9JwrhL+N4PcXdvS/yl+rsX/sHvnXP3UsvwN/83f+bD7waOfMV+7uez9bOLsqUTOOcXr9rfWnGILXE8V28MJjlm8xWlqyA2foYxIs+PjHDTsfTGNfVZEmG67tsbe3a4OqyojIlvu/bzKM0p6wgy1Omwwlh4JOXBUjI4gQ/9HBDD5TiYPuIPC9YXVueWQklVV4wHo4JfCudSqcZi8vz3N3cpR5FdOohoe8RBh4zmwif/srzFNWYXjdCakNY9xHKIIxCaRuoPN+u0WzZMGztaMIooCrh6HCEVoqNjR2iKERKyeNPXmJpocvD509yeHBEo1FHu4okyWyHxXFmsJTKTqaOu77W4/Jvtwe8881LaCWojEFIzeBoxFve8hBKS5J4iuN6FEWBMYZWu8V0EuP7Hq5n5XBJPLVeG1NSVRVKCExpLEHUcxFSUFQlVQXvf/sZ/vhTnydyNLVanVu3NqlFCj9wKasSieRgb2QLqXoAOORZytJCl1oUsbLcJ57GYAz1WoTjaZQjWb++QacdkSQ5oAhCxXAYs7V9xMHRhDOnFhBUDA4nLC/Pk1cV9dAnL3MWl+ZsR9zm69LvNhmPptze2KPfa6Fdhzsbm3R7dvEhz3OSNGHvYMTi/DxHR2MaNQsLqSq4vbFNp9tAu5pO2xI60yTF8xz80KFeq/O5L1xidXmJspxSVSkXX9jEcbBdO+lABXv7A5aW5hkMRzieS2VyPM+jHkWY0qCFpFYPuHT1Ds269UNmaYoxJZ7roJRifrFPkibEccry8jyOYwvo2+t36fZCtKMoK4kfhBgjKLKSJ59+gcWFDlo59LotOt02aZKzubHH8ok+VZGDKXC0zXZyPZc8KxgOY774lWt83/e+iVrDgiDOnloGIShKY8Eynm9hPVpycDjh7tYhK8s9fv4ffZa/9ZM/SK0e8oUvPcMD51e5fuMWYajJ8xzP9ShLQ5qVBL5Lr9+x5MsgoKoqPv/5Zzh75jRVJVBC42gPIwRK2OIiSTMbAC7UsU+2rEp830FKjaMdirzA8122NrdptuqUVYnjeQRhDc9z+OV/8vv8+Pvey9bmbT7wnof4O7/1EX7k5BqmLMmSGKpilpWpyZLEQhWKCsd30Y4ijRMLYsoK9Iz22Ou18aTDZDLBCzzm53qMRmN8T+N7HkpKRuOY4XhKr9uiKBOUtAsxylGkifXPbW/t8sRTz7K2euJl34sVFY5WlKZEO5IKS3LUrrJ0RjFD6c9+T0rZEHQx80dXVcnplWWklkihkMJGFiil0VpRFfZxUKuFaFeSTBOEUniBh5CCNMus3DWx/kUB+KH1ZAphgSZ5nuN6LssLiwghKauKRx44Z88Jg1CSMIwsVERa76B2XgyGlzOIV2WsusNUHHe9pBJorWm3W5Y8O+PFSCFRs4JCYCiynCgM0Y6HUvaYZVVa2eRs0lTkBVlqZfz/+9NP86HTK/zZ57/KQ2dXmE4S4knC4GiM57r4voty78WIzALflaJRCymrkla7QZEXTKcxfuhTzgrKNCvoNwOW3vMjryjsxKvxUV4xXjkB/3qQ2msdQmDfQyUZWkGmLMUxchU3L38VJQKkyDAqRXsNcNuklYvXXECokDtbAz71yX/N0onTRPUmWnpkaD776c/zoz/8E2wfJlTOBJUu4sqSsBaBVlTCAnOEVAjhMRjsETj2TCupKYyk2W6jlGZne4v9/T08x4Z8H+5vUQt8TBUjEES1BkpJjA4oyxKHwsYSaOu909rGJLmuT7vVZjIeY6qKweEhjms7gnlRsr29hUDi+CHXblzCDxwcz6BVwN7eJmurp62/fjpl/c4mblhjZfUUw/GQZqvN7u4O3VYDXU3xtaJU4Lo1XL/FNM0Jaw2E8PDcCKVsRIuSDoiMPJsiqJBKEadTTDJAOCHScSiqlF//41/nh//Ko+xs3GSweY3rX3sMHfUpkYT15nFxN5nEjIYjJsMBkgItKjCKKk147POf4vBowgNvfhtlUVjAjlTA/UKzXyzuHMchz/PZ3+o1WA6vvLbuFY2z+/jVACevfZCXK9esV9K8/JivMe5HuLynArivxPF1ePyAGb/hxV1fJv98LZjhK4a8T4H4UqvfizvO4iFees6zO9sYg1LqO8XdX7bxeoq7Fy/M13nnvM797M0vj70ZcpZ19kqZ6KXnr/BgOcV33X/nMR3XoVULGY2nJFnJ4vI8x3k8lb1h760QidkNKGdmfVPaVybDCa52qGYrXlHo4zgKR2uqsqLVrpNME8q8IC9KXM/j4GBIGPoorQhCjyxOLYY7cqkwXL1+h8XFnv2s2I7E7u4+zVYNqSRxHNsA2sDDUOEHPl4QUJkSU5W0WnVq9YBWs4bnWx9JVRne/OA5+nO1mSfJTqLSNDvOnhMCwjDAYH0pSXLPA+faibnrcOX6Hbptu0I/12xSlAVKS4LQA6zcRQrJ4cGQJ565gicVvfnuLPNsjB+4TOMEz/N41/Icd7yCyLcTkTQpKPKCeiNiMDwiCAKMgSefuki/1yWMIl64uk6/1+UebEFrZb/sZ18v49GYx5+8xMm1ZRCQphlFWdpjAYlJeMPawmzCWOI69rMeHAwpioLRUUxRlrS7NZ6/vEG/W+PoaEStFrK+vslwOKbbafD4V1+g3YnwPIduIyRJY/YORnTaXVxPkcY5YeDz0AOnmE6mHA1HdFpNHNfmulVlRbtVY3NzFyrD3sF4VhRJev0OeZbZbqfjUG8ESKnY3z1kOBpZn52BIAh57EsXyfKUqqpot+v4vmvDsosCpRRauQwHE7zZ/4PkzOkTKK0IQwtt6bSaCGlppnlWcWP9LkHgMRyOUEozGcdkeYbreOztHFCZimazgRe4XLx8izc+eArX83ju4jU812EyTmi26lSmYnA4pNGoc7g/YDyecOXKLZaXu3iew61be4xHUwJf47geR/sHzPeaVFVhEfFaUmHQSrE43+bZS7f4yteu8MiDJ5lOEzwvsD5XoNVsEvoOvu+SZjFaW9prWZZ4ns/+3iHm/2XvvYMsu/L7vs8JN77c73Xu6ckzCDsAFpu5NHdJkzYpJpHUkkvJluxyle1SmXKJcrnkcrm0JM2SylVKLpsOYpmkbFGUGbRL08zejF1ggUWYAQaYnDvHF2869/iPc7uBBQa7wAZRW7WnqguY6df3vjd97z2/3++brKVWi7n4yk0W5rt84H0Po6TkXzxxl//8xz6ItSUPnF5GKUm9USeqhe66KeHFl64wNzdDURQgIAzd70ZIyb07mywtzSOr7EmBIM9zV+VbWF3ddMHqCP7oz57k2NE5Gs2aa+qFxJQu80xpSRQFTpNWUf1u3rhDb7rNT37wFL/z+evM9AJE1uf3P/cS/+7sHL7voYAoDDEmR6uAojSEUeBy6yoqu5ASJXWVHejcAvO8IKo+h9aKOI6Jopi11TUuX7uJKQq63SnqjRph4LL/PN9Haw+hNdsbO2Rpzh9/7kkePHmETqtNkqQOdbQu1F3IyoykenYqTwPOSONAt5HlhaMVWQ5t6t08uzxE46gaQVup3yYTRwnWnnKGRr6P9vzD6by19jC/UylFkeWYwqA9H2PKahjnDE1sFXdjsYfuiQfUK2fIcvAaNwQTSKRS5HmBta6Jk0phbYnJC6wVXLt2g3bbFfrJJKvuvWpPMdYxsYTbL5VyDsgIF7fjnmlOx4d1jpZBGHDpyjXm52b5nZdf5kdme6yu73D6xCKeVoRhSOAFICyFKQgjN0TM0pwr1+5QjyJm5rusrKzjeYpmu0EQOKdQTznNtMXyX794i5/96Ede14VVusO329zd5/VvpRSXtkAoA9ISCo0OJDsbW9y6uUYcKj79mT/i0YffhRc2wQtA+cRxRH+c8PDZU4xzRbM5hVY+kxJ+6Ae+n0iFXLx2m3edO87/+Dv/jD99+pO876H3E8Q1VKlA2gpJVogypzQpSEUQNgnjmkPRbUnguyGRxFCLPEyREkchRZFQa7ZBOu0eQmJNhiwzLK8GS+/ubhHXG/QH+8RRxN7uNo1a7NDAdOIYJJ7HzvY2YRhz69Ytzp07R1ANIBu1LlIrOlNTmKJkf2/Aw+ceZ3p2Di/wWFxYwvN9ZrvTDPY3acQ+Uil03MTzInJTVkNq3GBJeUglyU1eUYwFhcmwZUlZlIxHA7AFQd3pnv/er/8C/+gXf45ut8eR5WMsLcwTKMnWwHDqgQexB26ytiQMa9TikEBLRvt75MmEC+fP06zFpEXCYJShojaLi4tkhWMfvdk6aDsGgyE7OzvUG823cCW95udfO2B4m1q217yJr0Sy3kbj9HbO97ZRNvHGfvGwIXsbyN2bon9v9v7u09wB32nuvh3XW2ruKnTttVSMr7reYnMnVSW6Bw7cIg8ct157ng9/34f46//wV74megcgrcWLYrozM7x86TrHjy0gjCUZJ6ytrFOvu5BXgZtSmCynv7NHNsmxuWHt3ga1OGawN8DzA6SQbG1sY/IM5TlHycuXbzI7PUWaZDRbHcqydAJ7BShLnibEgY+UoGMPPEGv3aU/6BOGPmVeoKTC9zV7e/tEkU9e5ERhiA40VlbIgB+wu7tDu+OMGPqDAXHNByvY3t7lU09f4OjcLLdvb+Apn1pUR6sQSudWuLfXpzQlaZahtSKtkEfP03iex5999hmWZntMterU6rGzeA98TFkQRM7ooigt+3sD4jji/MvXeN+jD1XoRUkySohrEaPhiLBWQ3seo+GEdL5OPfIwpcX3QsIohNIitUB7PkjJ3PwcfhCwvz/kk585TzqZsLi4gDHWmSgI6bKMtCJLMvb2nZ18f38IQBREmDxj9d46/9n/9nkerCUsH+lQFglFMUZYwdRUj2QyZnZ2ljzPCGPF7PwsoafY3Rtw+846U50GeWFo1mPXwAceUsHWxipaC6Y6HQZDgx9KfO3jeR7Xb95jaWmGei1gNJ6wtTdkZt5ROy9euEI9DtncHbB8ZJ57q9usrW6TJKnLg5K4JlTDrVvrbG71OX50DmtLN91d2+bcQ8scXZ6l1XHImR/4iCpDaTRKMLkl9APSNMdKF9WQJkOkNljpkReuoY9rHltbLoS2xDA708P3PO7e3ST0PCbjnK2NPY4szxHFAXuDfWxhubu6TRx6eFrha8HsbI/RaIzWCj8M2Frf4cq1e8xNT3Hj+hoCWD45w/7eiOnuIo2aJI4FV66s4GvJpau3kaLE2BQ/kIzGI5S0eAra7Tl6rYA/+JMv8PgjZ0kyy82bK9y5u8kzL1zjXe887ag/1oXdmiLHDz0+98RFlIR+f0yjHlRIrI8fOGTusbNnODLTAWnxPcV4PHburkqR5xYKuHblDqdPHaUwRaVx0Dz51PPcubvC+99/DlPmaN+yu7NFFHtoL0YImEwSnr9wlZPHl0FINre2iUJNaQu0lkzGGQLJzvYOrXajyt9SrK1vEtdr1OIaWgu0J/j5f/qv+Ikf/gDHZpq8733v4JlPPc3Dy8uMB0OGo9RR6YQPuDiUMsuRvqa0Jb7vI6XnXGiBNHU0Uqnds0hJxdrdNS5evEqWF8x0Oxw9suC+p1wshKdisAJT5EwmhkazSRxHnD2xRC0OWF/bYpIktNpNhATluWenMxtxzbYQ1jVEQJZmDumT8pCi6eIYnPuklAI/8JwGrnDFtbCOQuj5urrWYTgYQCnRykf4grwabADkWY6SGq01ntLkecmgPyKOY8pD1zkwZV4ZsjhWRpHnjtopdYX0icPGs9q4KEtbxSM4Kppr/hx61243ieKAoihRSjEejfHDwBX6SJTWjPt9tOfcVq107AOtnZmK0ro6z6vDzKl2C+1pZrMdjvV6HFuYQ3kCg4uRiGqxc+aToD1FMnHh8fNz0y6DUBla7TpBoBlPxigtkMrFBAgcjfL3V7b+wpu7RDcohMW3CUmhyazmzLnv4h0PnWPt7jWGG5e49dIVnvvSJ3n8PY9hrcATZaV3rtPoLlKrOXdIowNMkXLpxUssnzxNkWzykb/2I/y1n/6P+ZX/+Vd5x0OPok31EUWBkBo7mbC9t0mnM432axXxFqwSeEpTpBmjwS7j4S6dqTbpZOhQWR1Sq7fJC5BlgbYFRhhCz3eZd8JSazTwPU2WjtFK0G40mIwHWJOT5RlZlrK9s00jrjPVnqLTbrG+scGVy9dYXnoIg6W0htwUbG/vcuzYAxRlQbNeZ3trE2EF0ipGwxWEnYDIEVENP5zGCp8kmxCFjo7c39siz41jg+QpxoDyAmxZYjODsi6HrtbsouKYX/yNX+JPP/H7zBw7ja7PYMIeNpom7B7hxNFFihJQ3qu0TCRpkrC1do/nn3mKYX+Xh04dYzhOeN+HP8Rj7/8wcb3hHJ5fc8/eb72K3Cmazfbb78u+Fc1d+UY32K+6vlXN3QEieUCX/Doz8P6im7vvGKr8W77saybFb2WJ1yBwr0fiyur7h/lHr7FQ5vXfe82K45i/9cT5r3nustqwtRI8cHyJZH/AtWu3EHlBnmYulkAComQ8HLG7tc9klBGEHpMk4frdDfLc4IcRxhaU1nBnfRupPIokoywKThxbwiCpddrs7uxhcsP66jbr93ZQpcbzQkqhKaxie20PJhaTFzTCGskgceHUd1cYDId4vmYySVy4urQgJUpop4krMrrT0yjtkRYZjUYThE9R5jTrNXqNOlEjYDRM+OwzF91GLUu8SGEVXL/rzGh8z0dLTS2uY40gmWSkScajZ48RRD7Ndg1TZFiTkw6GrNzdwOQwHkzob+/QqtfIk4JHzp5iZ3efoBYigeHQBbvX6k2EdZELUezzd3/9CcoCNxGXhu2NNbJ0TH93AAaU9UnH+5h8TLtR53u/6xzvfOwBtLJk6RApPIT2KJWgNCnajDhxbI4nn36eqW6L1ZU1knTExsY2R5YXmelNM9VtcvvuOlqDZojJ+5RmQhh4CM8wvdhF+TVeevEKYezyAYfjlG6vzWickmSG6V6TFy9cppyMCbyIVnsag6LR8RxqhOXOvTUW56dYW91kd3fM3MIcnWYdk+QMBwPOnj3BS5dXuXR1k92dPlLAnc0BtThgqh2zt73PhfNXEaXGV5LTJxdYW98GFL6SCFly6dptkiwnNylpnoDJeOWVG5jcMtjts7OzhxcGDEcp25sDikIiZcj+7oRsMiQKBFZCUUh6Uz3Ggz4zM112tnYZ7I/wPc380iy9dlRR5nySrGB6tk0ce7zr3Ama9QbnL9yi12uxt7fH3dVdtPLY39pjem6eRx4+y/b2iLn5KR5912nG/Zzr1zdYW7/H3dUdBkNBu1nHokiygmRiSCeWQMd0W1OAAE8TxGNqzSadXhejcI6IUhLFivGkZDzpkxQ7eEqxem+Hm3fW2dka8a5zZ7hyc53p2RZIzWRsSNOc/f09hnnCwydnyPIJwmRsbW8RxgGmNJhJgSotQls++D3vJMnSwwiTZDLk3e96mLt3d+kPRw5dyqEWtyitG8AUlevp9334vYzGexRZSjrJuXZtFa08KDWvXLqOH2im53pkucEYy2Sc0m41KPOUwkyQSpOOLZ/4b3+cwd6Eeyt7DPe3+MTKGtk4p7QG3zP4SgI5UkEYhGSlxVce0oBUGkqDVm5o4JwmYX93F1m5Vfbmepw+u0yzESOEYDyeILAoWYKQ9Ie7JMkYrSSNlsaPnTkSUhJFNZaOLbB0ZIk0d7TQIrOkoxRbUDEhSoQRiFKA8vDjEKErrYYUrnkTON2ZPmBIVOYKwmnohAOfkcLDCkOSJrS7bff3ylDmBl/5h4VNEGhKYygF4GlsmVOkI0yaU+aZK0JLoJSO2myhMBapdRVjUTIejClSizWSPDNQ7RtKCwLfoywKSlxWZ1ka9nfWkJTutRbG/SH1g6GVe/PkeU5R2Gpbs9gyx+TO9RYhKfLcZZ8qgfI149EYU7oA9F+9vQ0YsmJElhSY3DkHT0ZjgtAnrsXV0E47WnCWoCOJ9AKU5yOkJvADskmGUi4mod/f5+bNVQ6yCL9y2ftGyH6tJe0bv97K8ssxXgmljfA8S6AhyUaIWsy5f+cvceLRv0yimwz7Y574w0+w+vKXsGVCkQxpNQxKbGHVgNJX+GZCPfbJ7T6/9c//J/KyRpIppPL4O7/wN/jlX/sYpXbDBWGdk7OIYlqtGVABpVII6XIAyQz97TV2d9eYPnKCZnsBEfbwGzMov0OeCRDaIaFFytgUaO2TlyXad06pGosSlrmpFqEqEOWIZl0RhQZlR2hSar7BlGO2tu5RYFlYWODkyRPs7q5x9dpF4iCkHtWYmu4hQslokmJKw/z0FBQDimSVOPQJ4zp+vUccTTkWQ5EReiFJBlaHxEFMkQ1Ix7uYyRCT9rGTAeloRFoUFFoTtTugfPZW+/zWv/w/SJTTFGMzVDlB2wTfUxQGpDFEJiPd2WSys4O1JX4YMRyN6dQ8AptS68ww9/A7yWSbIrf4vqYsC0d1FiWIEoVzlnSaYmepcmClYoV+gwnK6+MF7vf1FVdzZWbytpcVhz/7FTlzrzFI+Wpfh5q/19xfr61nv9H1Vj7X/d7/wZ+NKe/z2ZyRlrXSRW5YCQYwHP5Z2FcfDt+I4eJ3kLu/wPUtMVS5zzqkXB7cmPebOlTT1PtNJH7qr/wkv/YWtHeH5xOC/Z199voDTj14gmQ4oj8c0puZqjZeRzEa9ke0mg0sYIylXXfUKt/3KMqSNM1YPjJ3SC/Kq4DaLCsoTcloOHZ6Md8ZskRRQJIkLvtNKZqtOnme8Xt/8iUWphr4gUeWF0xNtQjDAO3pwygGz/cczch3AcmDwYjr1+7R67Wq6XhZhdemBJ5Pr93E9zXTvQ7JZEKjHhPVwurBYul12lU2FQwHI/78iec4e/KIK0TS3BkzVBlUW1u7zq4/DGi3WiSJs/N3+hrL2voWX375KkpaQk8R1yI87fHSKzfodltcu3aP3//MMzx69hgfv7POz374HRSmwNMBvufzf3/8U3TaddrttjP16DbR2gcrabWbVT6aT5pkZHmC74co5ZGNR+zvb1JrTbG02GMyGdJsxoRBwDPPXiLwFMdjA17OAycXnLumKFCej+eHCOXcUH3PoRDddp0XXrpCvR5Sr4U06hHT022UCvDDkCjw2NjeJw5DPvXkRR45d4bC5BRFRjJJ6bQbhFFAGHjcW9lkbm6aCy9eJ9ASP/A4/+I1Hn3HcYccmEp0Zy3CWu6sbHL21BE2tvbxPEm9FjHoj9ja6TM/2yOIApqNGp12gzTJENYyGIxptOsEns/u9oD+eMTS4ryjYNYjrDXs7fTZ3t7DmIJ7K1vMzzojljzNeOXyLeZmOs4WvzcFWOqNGlZKXrl0kzNnTnDp8m1nJy8Ez1+4yNHlGeJayMzMHE8+fR4lNSeOLtLvD7l8bYW52Q5pmtAfjvB9xe7ePr1eh4X5HrU4pN2uU5iCa9fXmEwymo2Q8STj5Svr1CKPdrtBlrsiNMsyQr/GqZPzCCyTUUK7HTMz0ybyfJSSNBp1Njf7fPHLV3nk4SP8wZ+/wDsfOYXAsDDXYzAYs709YGqqTRSF/Py/uMVPfddJPM/nxrXbzMzM4Pk+o0lCf29As3VwfslknOB5Hlev3qTT6bCzvUerUaM300UI+PJzL3JkefGwGEwmCcYYVlY3GI2H1Op1prsdosAh1Fev3+TsmeMMh04761X5kX5FL5RCEMYRRWF45pmXaDVifvHXP81f/cs/TE7Ox//8WX54eRntQZEVKO2RpClKKReNUpaHeUReEJClxeGzVSmXNYl1SJVUDk2q1WKiyKdWi4nrMQjBaJxSFoYwjNyEGMFef78Kh3aon1YKg+WJJ77MyVPLWEqk8Nhc28ALfLRWgHW0zcCvDFMARIUMVs/9SiB88GdTOhv5Q+Gw5fAzlcYZsAih0FpjTPkaBMC+2jBK4YbMVlAWliiM3XG9SpcmZdW8VKTPSsh4IJEAACAASURBVEunPY21sLfbR2vNE198hpMnjxz6HxS5e65LrSu5gNPPaXkgpZGkk4S4FrO9s0sURSAlyXgCQFSLkMpRjw805dbaam+TzmAnzfC0RxAEjp4Z+Hj7axytx0glCYMAHXqVCYamvzdwOts048LL15mb7Tq6aVagPH2oB9TaUdpt1ZR6UhCGAX+4ucdHP/pX3tpG/Yb1zSlS77eUlNXvUjO7sMSZh87RiSTNeo2djTUuX3ieF770Ba5dPY8drzHeW6E5c5QwjNnb2eL808/w8sXLBEGDxx5/AG1Ddnc3+KEf/n7SDfmq+58AJSx+ECK1c5EuS4MtC9bX1lhfvcXs3AI6iAn9AKVDsII4qhPGDWzpqL5+pQ1TGA5yEktTIAUOBfe8Q7pmaY1rYoRgMh7R7fWIopjBcEC3O+vyboOQRrNNGEeMhs7gqBbG5HnO7FSH0WCH/v4anrL4HiA02gvRXgxKo/zQxbJUkQ9BFIMpKIwbVrQ7XQbDEXlRVLrMHrkpiKIYpT1eTl7g3e993KFXpgApMSqizMbQX+GFLz/Dxp0bPPfkZ9m4dZmgGNNePIGQkjDw2NtcQwpBe3oOL66zv9/HZDle8GoUwiHyVCFIokLy74cA/9uwDoZRb+BFvul6Nevuq73+mxo19vpj3g/Nu897edUA6VXt3lt5Vy5j9ju0zG+7ZYriY/Ib6My/1npTgex9svW+1g3wIz/6I/zqP/s1Hl+Y/ion5PDCzScJpXGuiztb22RZRqfbQSDJk5yyhFot4ukLl2jFdeqNOkrJqkFL8fygCmYuAMX/+5mnmeu26fY6lMZQq0WEYUCa5URxgFdNzrM8Q1jBH3z6aRanO0RRwMmlRWqxTxiHeIGH52myPHe22eOUIAgP6UO2dPlJQeDTm2qjK31JWRaMRyOsFIRVll6Jpcgy7m1sI4BOp+E2ndIVEwfTmz/94vN84NwDRLUQrR0NqlGv88kvPs/65g6dZp2pqRZKa3a39tnc3OX8pRucOb1MYQo6nRZnji0QBZoo9NjcGLC7O6DTanBvfYPTJ47y0IklpJJ84u4GP/7e4/haMZlkSOVx5tRRZuZ6GFMyHA0I/Yg8z7GUWGv55Ke+RKvR4E/+9BmWlls06m2EtaTJmO50DS9wP1uLa4RBhEQzGo6pRREnjh/htz53gVO9kGcvXEMrQRw3yApn6LK5sUcUBjzz3BVOHp3jyPI09Tik2awxHo8xhWFzc8j6xh4Li3P0pqfRSnDm9FGyPOfm7VXmZjr4no8tXdOeJCmtZs25khlDFHq0p9poZWk263Smmuzt7rE0P8Vsr00UB5w4voQpSzwt8bQLIN/e7XNseYbA99jc2SEMAwRw4+YqjSjEGIuRgnbLGanMLnR55cptZmem0FqyubVFp9WiO9VGS0Vvqk2eG1ZWt+m0GrSbder1Or5y2iAv8LBS4mmNkpKVtW3OnD5KvRZTFhZPBGgvR2rnbhiogOXlRW7dXGF5eQFjDPWGTxwHzM13qddDkolzn0ySlEazjikMK6ubbGwNOPfgcbrdBlKAKQQ372xx6vg8SoP2JOvrO0jh43kKaw2lkUQ1xf7emOnpLp/44+d44NQxNje3WZjpsHx0DpNnhKFmbm4KrOWVV+4wO9vl9u0NavWQpBA8fvYoUkriIEIHIXle4kce9TiuNEwuULssSyaTCfML8/zRH3+BVqPG2QdOA4bxaEy328YLQqwQlKXh+edeptVoMDM7zZ17KyzOz7tnRGpYvbfFrXurCGtpNGrUGzHj8QglNVmakqQpUewMW2xZ0ut1qNUahGZEfelR2p2I95w7SmdzQl5m+Mqv+h/XqHmeQiqNFC5fscgLhPBJktTpCIXFGEf/M6Wthk8j0jQjqoX4kYtf0boKj9caU5SYwhkPKWkrDZ+HQPDCCxeZm+9xZGkJ5TnavBKaZqvuXIFxVvye7wKbJeqQ1vT6Z7oQgrJ0QzcphNMS42j+jiIJN67fotFoOt2jo1dU9EVHyT2gKRVFhtYeRW5IRykCxc2b9xDSEkWho4RayNIErZUzTUkypHRFvZCCWj1GAEtLs2gtGY8m7t+lui+kUhRFjpQCrSSUhiByLqhe4LFyd4WpXte5czr1NlpJZ9QlX/3MokIG1lc3abVbrqCqNN55mhNGIUII/snz5/nhYwsk4xTPq4zhhcTkJf/fE89xYnGeuBbSacb4YWVAo9RhEVeWJaNRwn5/5MyxhCQbj4kaER+/u/lNa+5cw+SGh99owVraskJvFKUKKb06vaWTxN0ljj74CEvLxzh59mGS/Qk3X3iG/uY+c8ffgxQpJp0QKsmZE6fY2t4l9FL2tid0Zlo0myFTR2r83Mf+Kz706IcOabql8rDCDQm0lIiypD3VZbrbJao3sNJDIkAKpKcRWmFMyThN0H7gGvXSIehJmqG8AKGcKZAxJaYsqiFFiac0pkhRQhL6PkK6a7zb6VDkGVmRUhSpo956dWegZQuSZAetUkbDNZQsiHynPZRCMSksYdgAEVFYS1lCbkq8MHZyByEpjSGs1dGei1OpNVqEUUzcaCKV00FnqaH3ngYf+vB3VYMc6bISlU+SF6xeOc+X/uzjnHr3h5g/coTZuRlmZma4cfMmR06exfMCpNLMLR4hKyVPP/UkD73jQbTSeL7vYiJeV/eNTELNDxHGmUplZY58XYfn7pvK4OStMCLfJJPtq73+QPP6ZseS4iDv8mufvzrzIV3y9Wjdm6GMb2cdmLqoSmsspXi1xv1qYenyzZFOWekg75cx/erd/Srd2sJ3mrtvx1Ua87FvZc7dV7uw3+5Fr7Tmf/iN3/zq6F01dSkLg7Kw3x8g84ybd++yONPDjxuY3NDfGzrXyNJSFoaZmRmeevoloKRWWX8rAZ/83LOcPDKPEIKar+l0WuRZTp65cPH+YMRLV25y8+4a3Xad0pRozxVIC9027SmnlxsNR5iiYDJJCSPnujUYDJFIXnzlJkcW57AYRuNJld/lbl5HrxlSazTxAh8/DPG1R54UJElGGEUURUarETM320MpzebGDrfvrtGq1xj2R5Sl5ZEHTuAHPkorzl+8TKfZJC8KsjSh2YhYWpp2vw8JWjiUYnlpmqzIwJQIK9jbGxLFEcNxymefeoXba9s8cGKJmdmWe6gLi5CWGTKOPbxIkScEUYTUHn7ooWSJyXOanRCtQvzAY3d/AyU9et0Wga/JiglHjxzD8yxS5PT7fcKoRSldHp4tBGkyRqmEbreLMYJPfeY5fuuFDf7Gh08ghGBmehrPr7O7m7C7uce9lV3m53usb25zbHmGydj9uz395Ut02k2ajSZTU3XarRobm9sOZVE5xlpXAGcljVqdNM0BCdaVc/dWttje3+fIfAdBgQ40cVSnyB3i22rErG9sI3BmD2Et5sbNVWZn2kSRz+r6NgtzXeIoRArY2+tTryb/zXaNoBZRr9dIBznGGKJ6iJSSTquJLQ3CWgItyIyLh7AWhJCsbe6yudHnzt0NmvWIm7fXaDaaZIXFC0LSSUrkheRZShhpGq0IKWHQH9Fohqys9lHS5+6dTcpSUhY5VhTEscfe/oC5mR5feuEVlBJEcYzJS+6ubIMVtNst7t3bYLrb4dSJefI8487KCvOzHaLIpzAF09NNPD/AlIJGLWZtpc8LL17j6vUVNjcGHFmc5drVLeYW6pw9OYPn+Xzx6Zc5e2qJS9du0ptq02zHKCH5/BdfZGN7hNYeSwstWu0aRtaZqvkINEYatHIB5GWROtMNcFoopfHDkLJ0hf+pk0eoN2r4gUTYgr3dXRq1yJlYZBlYQZ5kNBoN4lrM6so2c7M9dnf3uX17lf5gzPd893v4zOfP88g7TqE9zcbGNq1mw2nUhCQvMkeZxFF/8jzjqadeQC2cwRQ7NOKQW188z3SnzWQ8QkiB1q6YL0sIwhDKEq2k03x5dZ569jzzc9OO0i4lCOnojkIQ12O075GNJ+iqIcsypwMqipwo9F3ot5KUJnNNsB8gtcenv/AsD55aYjycUK8FJJMJ6TilKApGw4lz7gx8rLSMhiOKSc5oNMEPA7DloetwWZaUpT10oSyKooplyByV1JRIJfG9wGmXpcAYUxm4CWwpef55Z8CEBe15jungabY3txgORywtL9Jo1DClizMQQmKF08ZNRkmlnz5o7lzQuSlL/MC543m+QxukkGRJWmVVSaRyjZsnnVZzMk4Jg4goiFCeRmntoihMQVmW5FmBFPIwVoEquuLSles0Gw087R3qzJVUJGNncLW/cZtH5mYq/blBC4/h/pA8NZw+vkgYh0xGQ6fZrVCj0XBSubM6R9IgigiiECFKssRlodbqdZ6XIT/4Qz/wtvbaV9f9qsdqq/1GmzuqQhpwSYWGrFT4YY0sL5FejFebYv7oaWpLp3nwA99HPY4xaUqtUWO0u0KSbHP0WA8baFB19rZvMti5wfrlF/hLP/ER/rt//Mt86LHvpaqIq3NV1DkhMUKhlcAKiUWibOkoeZUpkgS0kC7H8DD/UJClY5AK6ccYK5Gee4aCo4OWpbM4UUGE9kKKIsXTknQ8Ikv7hJ7E5hOKZIxlQjreIU/7RL6iyFP8IEYIRW7AlIJSaJDaocGehx/W8bWqrqdqEAJoLyAtnPMkUiOlVzmDV4MHIfil/+uX+E/+07/uTH+kRJSWsfVRGDZe+gLPP/MUZ9/zPcwtLSKVptObQdcaiKjBpRdfZPHIMqX0MVZQa3a4ff0K7WZMo9lxdL/7XBZSwrOf/hyTnV16C/No5VD5166DCIGvx/XyLTtsyn9zCNs341ivjSh4neTu6/8cFtfU3Yc6+tq/+U5z922+SmM+9noDk7ezhBCv0mze5PvwxqnGa5ctHXWtrOhr93svtnQC8Y9+9Kf56b//T/mprxWNICU6CvDDgN2dfdLRiLIo6U53KYSjzxhTIoSiHtcQQjAYOg2R9iX7/X20p6nHHp1Ok9JaknFKLYpRQvNnn3uOY0uz1OoBtSjk+JEFlO8R1AIuX7xNu9mg0a6R5TlpVhAGMU+98AoLc73KXXLs0D7PY2l+hi88fYGlxWlMakhHBdeurNBqtbl79y5PXrjE6aUZBAUKgxUeKN8VyGmKDALqzTpSCibjMRLL3MIMvifJc1dAvXLlDrs7+0y167SaEWlasLm9zUMPnmS659DMyShDyZDMpEzNtAiigMCLKQrL+uoOvW4HL/AJ44gTR6Y599AxgjhE+yEmSxgO3dR42g+on5kmK0qXt5S78GVrSjwvpMhLrCjBCnwvRqF44gsvsni0w/LRGTzPQ5Y5m+trdLrdSkAvGfT30MoS1mN2+ynPPfcy9+5t8uDpJaSCDzzYJstSmr02fhg5BOz2Go8/dprzL17jA+99CKxlZ9sZwczNd3j50m1290Y0OjVMUWDLEmkNhckwuSHw3DQSJbn2ynUu3Vjl2NF58jzl0vUbvOuxh0jSnEarRZbkXLx4hcWFHhdeusHcTIe9/pBOu0lcr5HnOWmaMhwM6HR6hIHG8xW3bm/SbncIw4i7K5u0202CwDmilcZQa4RMJs7QRKF58eJ1pjp1iiJDYZFegBc4BOHK5ds8cPoYtThgfq5DvVmjN91AKGdhT1k6XzVfsb01IA41Nh+TTgbUmgGidNrTRiOm02nQbNaIopDNnT7Ndp1ur0VuCpbnZzBJzo3rqwzHKWdOLbG5tUurGdFoRBR5Tl4W1NoRzXadMAiIW20WFue4dOkur1xc4eWX7zG30KLTiZnpNpmdnqLX66CVYH6h5WjIXh1Tas6cnqHRbNJp1Ykij8CvkeUDtBY8/uhDLC11iWLNR/7xef72T76P589fptVuUm/4ZJMB49EAU/oo5VPkBb4vQJQIC1p5bG3uMhhOCKMIKyVlUfLc+UscPbZEaUtu3rxFq9EijgIuX71OrV7j+QtX6E61eO78Zd797kc4emwRayyDwT77+3s0m46GnGcl43FCXKujhIcVIKRyoeBFwTsfO8t/+Q9/k//oP/xZVlY3+O//n0/zkw8+XNFnXAC21sI578V1F5MgBGG9QVJMOHZsHkuOVgprYTJ2FG+pXEErSlVlhLkmwFY6jNEwIfQDClNiAD9sHNrjCy04+8Bxhns7dGd7FFYihCLNx9SaDUqbI6XF1x6FAT8IKMucK9eusTg7A0i3J5SW3Z094jhElGAKg19lYyqlK6q52zv8wCEropLhSwlFNsEYwcx0l88/9QwLszMuwFyVZFlGs92i0Wo4yquW1TEd+0EJiag0P2EYkU0MSgl2dnbc8E56SDSmyNHKIXZFnnPhxWtsbe4wM9OpzFs8JlnqQs2t4EvPPs/CwiyXXrnKVLtZzXu0o8ppCbbA9zRl1YRZLIsLs/i+pCwypKoMaISiLGFjbYf//e5tfvzITPWs0aSTFC/wSbOMZqvOcDDmzz77EnleMDfbIy8KwnqMFwSsr2wS+AFSOUS0yHOiwCFUNwcD/oN/8PcrCu3Xsw40hCX3b/Tefu1wcCyH4nL4JYRACZfnqKogaGsNVkCz1cH3nTPk+QtfYOfeDY7Uc1bu3uKR93+I3sI5ejMdunPz7E8sR9/xLmYXj/HRv/oR/uZ/83N8+LEPH7aSggMdkUVJQ1GC0j6Y8pA+aJ0zD3mW4PseRnjVZ3XaUC+ooYMaOggJwxhTigrdF3h+hPRCSh0ifI/SObtQZpmLDhK2ytoskbbEmAyrLMZC4NWxWeoMh9Cga0g/wgsivLCFNaAsqCBy90qF3h4yCauIhoNBjsAiDxAeAR/7jY/x25/450ijSfZ2yAe7PP/EJ0mzPTauP8vTn/tzPvjv/TiNQLDyype4cv5Z7ly7iswzji8u05xd5onPfJpY5nS7UwhrWTr1CH/4a/8rj557F0LEGKXR2hl+SeFYAkG2zSd+97d58dpV3v3e92Hu0wEKUTnUlpUbzhuuG3v4OnADqQMH3IPG8H4/99rjv1lD9HYRtq8WvfCNonWvPxbwlYYqb+jy7rNe/9qK9XBgcOXyapzUx9FkKwMsOIyfOkTxXBbn19XcfcdQ5dt42cpFM02Tf2PnnO71vuZrSuOoT1Ec4dT6knGWHQp6ywPnz9JRmXZ29pnpdej3R2ilmZmdxpiSoigPpSGzcz380OeFl67y+EPHyfOM8XhCnueUZcnW5g7ZJMOYkizNSJPcBW5HAcYUnFqeIwgdChDHIUHg7MWLomB5zn2mKA5ptuvU6wGTyYjpXoef+IHvxlpIk4w8LzCF06UkScJoPHaNceGE+3EcEccxSkmXJQdEUcDFW6tMdRyCEPg+U1NtlhZn2dnew5aOViKU4Hf/8PMURcHu7j7pJCPLnCX5OEno7w/I8xxZFUEHm7MQoD1Nq9XAWsvu7oCnX7rh7NhdACZFUVRW4AI/9MnSBKld7lWWj3jPux+gUW8g8FDKOetFUVQVa5WGsDdVxVZAt9vlg+9/nE67QbPd4LsfOoIxlvn5ObTUrK9tMOgPeceDJ0iSjGY94vbtNW7eXiUrcu6trLOztcc7Hz3D8aNzeMq5YzWbdfr9EWEUsrO7jy1hc2MHaSUnTizx2LmTXL56G9/3+eC7H8Zay35/yPb2Lmvr2xw9Msvq2ia9qQZ7ewPmZqZQEob9AUoK1jf3CAKf6zdW2N0fsbndZ2lhhjRN2dreO7x+TVkiK51NkqaVeL5gZXWjsoNX3L67wfmL18jSjMH+kPE4YXN3wMbmNlvbTj+lpEMZ0yRnMsm4t7LptE2lK47LwgCK7d0xWgX0B0P2+2Py3Dg6XxyjlKLXbRKGAVIpl+mYpIySjHsbu5w9u8x4MnL6pMo23g8C1tb2EfgI63P9xjpYgzEZJ0/Msbw8xQfed5pGsw5YPvnEBeI4ZG9/yO/9wZNMJhOCMOTPPvVlbt28g9aKQX/A089eJggCXnzpBmVpmZ/r4Xkaa43TqyqXq/T4Yw9Tr8VkWU5Z0XGefOo8v/fxT5LnOcP+kPHI6aSSScKnPv8cMzM94jjC9zS+r4mjgM2NLbTWTHXa7O8O2Nneo9NqkmeugH/ySy/x/veeI/A1YChLw2icEIYBcRRx/dotPF8Sxi7OYTzuY0z1u01SavUaWika9Zhub46l5eP8g7/3t9jb3MD3tHOZLA1JkjraVWGcnlc7o4h6LSbwPcIgrJA7RRAGHBQ6TkhvKSkZjRwFOUvdwOmLz13gz5/4onNvlYLRYMzlqzcYDsckY+fuqpRiPHbPdiklzUYTJTW1ep24FjMaj9lc20RaRyV/8OzpajBsybKcvIpeKMuS/b3+oWYROHy/RW6qaAVwBluvhm1r30cpgfYUH3jPY/ih55wF84IwDDGF+717nj58BoLlAKA1RYkxhixJee75F8nSjN70FEX1HC3yAt/zyJK0ig6AY8tL7Pb7SKmcZhmXxeUHLnqkWatjreXGvVXXjOHMbNRhwLfTZB9oW4QQh//vKLnO+bQo3Nfy8SV+cqbxFU7RfuCjlKIz1XLn9z0ee/Aol26tkiYpvu8dahSn57p4vouB8LQmjEKMMfT7Q3750j2C4GtHCH07LCEcXfLcw++gNDkvXrzE7mCCF79qoS+QnD511u0llTzjd//1b/ILv/GxrzyYdfQ/WxQIayhNwUGGH1WDJ7FQGoo8RVqDEpUmVAhHj5aKZJJQWkEU1/CiOmGjjZUeyg8d+pcWbqjpe3ihT2oytPaR1dDGNV8GTwjiwCdPJ0gpSXNDENdpT/VcLmYUI5WqXGUDSkfT4KCZOQBjvvLf6yCv0b32F37jF/jdT/wmoPBCiVUZW7trnDi9TCOqsX53g4ceeoyZuaOMEsHusGB+6RjLy0e4eu0q1y6/RL3Z5oPf873EnVkGmaD0m0hp+a7v//f5+L/+Pa5fvoAsc8gTIk9SpGPW7t7h//zVX+M973svf/vv/DwAyvN4/bK2pKzuyTf7/X8rtGvfWV99fcdQ5dt0lcZ8DL5+CNmWJdrz3jTP5O1EJxzMXd5Mo3ewfuzHf4T/4h/9L/zg8uybHvIgeFdIwVS3TZ4Z4lqdIK4hhEQisKZESLh3b51Ws8Hlq3eoRwGdbhtbOl1LHIXO8UxqhqMBnlK06jFSghcohChp1Gokk4Q7K5tcv3uPcw+eot6skRc5EuGmv0oRBB6+51GaEhCMRmPSNENKycxMF1OWDAcj7txd4dTpJZTvNnmtNXu7fep1525YZCXDwYQ/+uyzzHbqtNtN0qQqwJRkMskwxhAGIZ7WSK148PQR14wpiZSgPI0Uknqj5vYIaxkORpw5tkCjEVfUIneMzY0tVrd3aNUjoshpwoLQZVsZkzMejioNj8sGrNdj/ujePR45Oe/0B1ojpXRmNKWzJj/IxCpMiR8HNBsR6XgPUZagnB6j3mhQFKCkD9Y4M4XShR4PBkNsIbhzd43lI/OsrtzhzlafrXubTE212NjYwfcUeWaZJBlCCJaPLrK1uc90t0mn03S0VwTr61t0WiHb2/tMJilRrY72BFPtDvfubjDqJzTiEBn6RFHIVKvBoD8kzwz1ZpMoCrm7ssHJ44usrW05iuDiPGvr27x89S4767dZWpylKApme1OUxjJJDEsLs7SbDZI0RSrY74+Y7rVQSuH5PsPBEM/3SZOURiPGGMPu3pAzZ48B0KzHtBoxuzsJgeeRZjlnziwTxKHTR0lHYbt2/S7aC9na3KNRj5ikE+qNiFYtwGIpjGBufoHhIGM4HHHq1DJRFDGZOCOPK1duMT8/zSRxzZBSkqI01BoxZ04dwSLxPcPUVJPhcEJ/f4zW2uXzaQ9bWl56+Q6dtsvhE8LS7sSA0z8pIZnu1Kk3GkgpWdvc5sTRObSWxIHm6o1VFmdajEYT4sDn2rUVNjYmnH1g0bkVSsXOzhYCSWF9Hljs4od+ZWtvUMojCCKOLi/y8IPHCX2nrQqi0KGYUnD29LGqCLaO1pZNmJnuUms0kdJHSY9Bf8hz56/w6CNn2d8fMuyPWd3c4/FHT2NtgZAlu1t9dvt9Hn30LMZYpqamkNJiipz9/X08rRmPM5dhVzpkWynFbCtg8ZHvIwgaPPm5z/IP/uSz/PjyIsaU+IFzRJTaFfSO0mrRWmLzApMVSKUR0qEEWsnDe1oAeZahfRe2/uLFy3z5/Ms8cPIEeZLTadXotJtMJgmUkmcvvMyxhXleunKNhfk5tBJEtbqLGLA4FzWpGPWH+KGz3E9HOTvbO7TbTXTgkRuDEhIpBJsbWw61E6LKF3RUSaEOGp2S4f4YP/BBlGSjMb6vyYsMlMZahRAWpSVKqyrjTlb7hEPGDhodU1qSyRihHFpXZBVFXip2dwdMtVrUG1GlvbM8+/yLzM32KKkMVAClFHE95vSpoxjjUDB3bnloDd6daiOVZGl+DiSYosDT2hnmWYEQymm3TPkGHEEohUDT3xtSq8cOraRkySaAG4ocgBACp53O8wJPu5iZh08vu7gLJdC+h5CWZDjBD3QFgTktTZ4WDIcJnxmn/PTP/NTX3oPfdNnX/feN6+3XDl+JwLzV7xVFgVSKdH+NL3z+83z4+76fizc3OPP492CNwxmEUC7bTXsV88w1yz/z0Z/ib/5dh+AdnsmW7G2ssr+7RaAdkl4KdVg3lEVOOh4y3NtBYfG1drRepVFV4yiUh1IeUKGmWQ6lQQlBnowIlEQpgUUySnJQPsgYKz2KUuBgX4uxpbt3vRirNcJvIP06yAChXKyQEKC1pihdg+fu74OLxSGH4jVIqjHG5VJWOZjd4y0eefSdSBR5PmZrc4tOt8Oly1fQ6S5XLz7HyTMP0T52Dh0E1KeOcvzsQ3ieZG3tHtevv0yaFAiTEtVqyLCB0gFSpERzxxkNNrj9yjN88Ykvsru5wuWLF/jEb/9L9rfW0GHID/7kz5DnTmcptILXuUC63M5XtbZvuM5eh5a98TVfHbn75q7XK9NeXd8Sauc3wdfooDm+L7WzGgQcg7gdJgAAIABJREFUUJZfG34u+U7O3bfl+kabO3EfUebXc4wDyPjN3sdXCEOt5Uc/8lPkTz3x5gd9zXsqgfFoQq1eI4pjV6Qg8D3XNHU7DcZJysx0i9mFaTd1TjO3YQvBv/rDz/OO084BUVXFQlG4AN1as8ZgMKZerzEz1SHyNI12s5rWgjUlWZoDrpkRQjAeTnj+5WucOLZImmY0mjXSJEF5TiRvjSWuRSilGA7HlQGLm3QJKUlGKX/yxHl+9Hvfw/RMG5MX+IHnbG8thLUIKSQrdzddg+d7GJtT5IY4Dt1UUkn6+yPCICDPC/pDlx8XhD55llOv19nZ3ufJ515mcbrDVLvOVK+FFFCkKcpzzp6j0ZhWo4bFY211E2NKojjmV1+6x4994CRKKSylC+CWEreFWdIspTSWWq2GwCdPBgyG6yBLtF8nCBwFRyntDJOl21QRrjATFsbDMbOzXbLU5fj9yqfv8cBUzub6NstLPcrSUK/XaXUahIFma3ubxcUZbFngeR4bG7v0eh3u3tugWffIckOvN8WdO5vMzna5c2ed6e4UYejhRx5CeoyHI5Lk/2fvTYNsu87zvGetted95p5v3+47X0wEQIIARVGUqYGRHImSKFrUECmOJDsV2ZFcSaUqlbjsWKVYshNbP2LrT6ocR1WyYsmWTFEDSYkkCJIAARAzcAfceey+PfeZ97j2yo91ugmAFxAIwYKV4EPtAgp9Tvc5Z59z9vrW977Pm9JqN/HjkJ2tXc5dvMEdx5dJkpR2q0E6zlDS4dbaDsePLHBwsc1Ob0wQhkRRjV53SLMZs7GxQ6dT5+LVq8zPNZmbm6XfG3Hh8goLc9Ps7HbxPMWlyyuEvpUFTU+3cVyX1ZVNtrb7LB9cwPMVo3HC7GzHStOkoN/vMzMzRZKkdNpNGo2YVrPOnz3yPPe95xgGw9Ur10jSkvkDC2xv96i0Zm2jy9R0005dXZeVm+tcvLbO0cPzlurnuZhS44d2itfd7TPqjdjt9YnCkHqtwXicsbnVY26+xvraBsPhiJX1be48tjiZ0lQEkzD3UmswFbVazHAw4tbGLh986M5JFqWkXgs5engWx3OpxQGu49JqNCb0R4XWhkEv5XNffo577zrG4blFmm077TDCYupLbYmJVPCFhx+jUQvJs5zdbp8gjnBcOckgm2S2VQVZZuEIfhhiDDieQxyFHF6a5ennTlOUmnvuPkHgWv/WbreHEIJOp8OBxWl2truAjR35zOee4K4TR1m9uYlAsbm1gysVnu9y+vQFalHIsYMz/I1f+lV++BMfZ31ljY99z3cyevkskRviBz6VtlMDKcAJI4yQUObkeY7v+5TaNntQ2ecA5KltKONasI/on52d5q6Tx3A9l7m5acLAIQxCfD/AVS53HF1Ga83BA/NW2u56FKXGkYpKG/74M1/i4MIc8WSjicrQbLVJs9Q2Qa4zmWABQtiQ7oU5BHDm9AUGwxGdTttOn4VgfW0TR7mTUHONMwlgRlQTnySICWbcNoNmsviwVEwllZ1MAFmSWYJshfUoakOW5jjKoSxL4nqEdCZeZiTz8zMoR2IQVgruqMk0pJrk9SkcV9kNkKJgPErwfEs4RhqCOCJNUuI4pCw0Vm8L3V6frz31HLPtJkEYArYRQAjrhTJw/sJlWo26pXdi+NOzp3jP/ByVmcRR7214GgtA2N3tMRyl9IcDFg/MwkSSZowhTwuKvMTxXLTWKCTXrtwi9AMeGaX82Cd/9Fu7IL/6QvpN199vTFDeqEl7c7/ztbW/AL0duEUIKm1R/Hfe+17+7e/9ET/+X/1tChyE0RMZogIjQQsq8epc3p/6iU/wd/7nv/eqBs9zffJ8TL+/i+cFNiNSYP1yymHQ6xFFNRzXZW1tjTxLcR27gWIXvY7deBSC8fYNTJGTDLoErqK3tYp07aMSysf1GrQ68/j1No5fR4VN4vYsbljHq9Vxgzq4MTKM8R3HQlyEQElBmgzQWYqaEHfzLCNPhmD0K87J3su01yDZZnfrVo+nNr7C3/yZHyX2oEx7KB3SCBv4KiJw65w/80WGgy1mlg4RzS/TrEncaArluijXZ+noCZaOnmS4dp0bl8/xx//hd5mfajM/18YIH6TD/PwscwtzPPht38GRYye46977+M6PfBf3vvd93PXeB9HagPSQyhJrX5vAttd43A4Goia5ma98jwD7TYjcm2K+DU3Qm6tvTE2/6Sdv53TxNoCUt/wcJ5sdt5V2Tpo7+7X96jPzF/HcvSvLfLfeUv3cl597/R8KsX8IKVhcXrAXh1LvB2FnaUbgu4zGCXE9oNmyPqZKl3iew9bWLv3ekEYckmU5N1c2ydKCNMnp9cbU4hqe7xHGEVI5PPbsGfJCTz6I9m3tOIow8Ki0lcEJbMD03ceXkULSbjfRWuO4DlmW4nkOzUadLCnQJTRaNTvJcV2ytGA0Tnn5wnWOzE8xGiVkSQYYkiSzniwpMdpOM6Iw5Pc+9zW2Nnf2CXEIsS91bLWa9LoDiqKk2ajTbDe4dPUG9UadqqzI0px7Txwmy3NmZjoIZSmPo2FCpQ1KSTzXZdAb2t/XbuJPYh0+MV3bByrsSaAqXeE6dkFfr9es3ttUSGHzesKwTrs1j5QulRFkWcHu7i7j8ZDRaDShXVnZ3d6mmVKKGzfXaTWbPHi0xkPvP0YYOrRaDebmZgkjj68+/gJ+4DEz3SJNE5I0ZXunixQSrW2wcr1eZ7rTIhknHF6e44WXLpKmBZ7vsbq5g/IcejsDS7FsxFQYxnlGVVW8/313Upaa4WjM6bNX8X0PrTV3nFii0YhJcs3iwXmCMOSZ589Ti0LSNKXUmv5gwNLiFEHokGYZ0zNtptp1hJB0piy99O47DyOkldz2+n2yLMcAtTjk1JnLSFcSRh6OIxn2LDbdcRRfeORpirLEdT2K0kYPfOz7HgIj8YOIwHOo10PyMqfeighjn5mZJlVlWF/fRErJoUMHaNZCu/hV0kIjspx0lNDvDrhxc5OtrR6OChj0UzY2dgkCj5npJkEQMehnKBRlIdClYWurj+d6vPzydXRl5W5SWnmv4ypOHF/CdW1YfJZlDPp9sjQlzRLyMmdja5fHnnqZ5eU5hABdlZx5+Qaf/NiHefnSLTY3dya5nLYZ2tnuoiuQjoPWJbPTTR598kWKQtPrD+2Gy8R/k2UZxQQ2UlWwtd21DQWVRadT4fkuczNtdno9ijynqgxnz12jETcwWqIrzY1rNxHChoo//cxZfugHPoTnK46fWGI4GjA7MzVB2BsOLR2wMQfZCEdJRsmYBz/0HUzNzPA/PvkcfhBQ5gW6tDLQoigRjkswoW4WpUabapLfVjIeDciyFF2U+L5LGPiWSmsmPmRXkRc5ldEMh0Nq9ZiyKBn0xrx84SLr6xs4jqQsM9JkbMlqE3lwlqTMtVo4vmtDirUGJM++cIrOTAc/9NGTSaKQEl2WPPjA/QgEaZpx8sRRxuOUCgt10VXFY8+8wFcff9ZG01QGHEve1JVGlyVXL12zTZMRNkfQiIknT+wvVorchpUHUWCVAUJRFhbWMB4lCCAMQ3zftZMMbEjx73/m81aevxddYCxhNE1Tqr3X1BgLz1JyvyHdazh0WU5k9oX1MA6GVJXG8z1OHF7Cdx2yLEOXJUVu6axM1BP333+XPYe6QiC4p9mw53ayAZhn2b51QDmKMPQ5sDDD3HSbra2dCbzDgBHEtZoNNJ9EbmAM43GG67n8yj/+R2/vRfcdLKUUeZ5jnBpe3OFHfuwncR0fU2TfuNHk/WFeZ1n5qU/9Nr/8m7/M3nRIuj7Ts/MT+0IwuWbtKYkEM/OLhLUmwguYnT+AMYaNtRuk46ENOjcVUGHQmEqT5ClRs8UoTak121SVREo7FS51xu7uOunI5p/6rocxAseL7KaXrvCkwpSassih0uRZQjLq279VlRR5xnDQJx0P0EVGkSWUeUIyHk6yEV9ZtuH7jc/+Oh94/93cuHyOpx9/mBuXT7N56zKXz7/IpQsvghmDaPDR7/04d9z5EK7TROQCR5ZkWUKJwqgatc4S93zbd/HRH/9Z7vvAhzlz8QpprhEoXFPiOAGNuUMIv4YMauCEpFqSaptpJ5T7jXXZbWqPpPvaA9jfwHm3/mqVeLsC/96tb72KPN9/8ffyOl57PvZCzPdu807XKx/P//BTP8OvfPDeN749IIwgG6ekwx5CuiRpjucHRGFgQ2+VlS7kWU4QBeSpnQalSWr9D9Lj4qUrLMxNWwqbVHbHPM0xGJIktd6moiAOfRzfx/E8dne7NBox1y7dZGFhBtdzUNLgBCFSSvIstxMtXVEKA1oT+j7DYYofxxTlGNexKb+O8tjd6REEHn5gfTLJMCGaNGNKCjbW1qnVPIJGi0pXZKOUOI5IRgluzWc8GhNOiIlInyIvCEOXIk9xHIkbebjKY2ezR71u/VBm4r3ZXr1Jc7aFE4WMtnrEM1PoyjDuj3Ecj52tHVq1mNMXLvHAfSf5+a+/zG/99x/F9yV5XiBRlGVup4VlhQwCEJJ8sE2Z7RK0ltB5RVlmBGGEqQyO6yOVZNzr4UdWUqW15tbNNSo0O1tjDi0vIpXGi31eOvc89xxoceHCDY4dXWR3d4gfSvK8YmpqBsdL0aVHMs5wHYfS5DiuohjnuG7AYDik3opwleKpp89z54ll2p0W6+sbeI5DvVHnkcdeII58PvDg3Xzmc1/l+z/6IFmRE4Uho8Tm4e3udHEdmJtt4IYdqtLw9adf5qH3Hmd7dwtRucwtzVLlJeM0IW7VGPUGFEVFFIbs7Owwf6DD7u6ARq3NF770LO+5Y5HZ2Q5OYKmTVg5m3xONesy581c5dGTW5ptJh6jWpLvdJfRs0xAENdv0Rz6FTrl0aY2lpXniKGTt1hpFNmZmbg7Hcen1RjSadcb9MZWuSIqEA4vzGAOff/hFBoMRP/R9D1hV0cSvuLG+TX8wZnbaSl63BwMOH5in1x/SnGqysbLBwoE5hJIYoxHCNsSt5hQCK60zlChX0O/1abXabKz17KYEQ4xxMJWdnLue4Nq1VRYmXlWlFB//58/ymV/+cZJsRKPZ4PkXztCo1zm4OIcUkqefOsWh5XlqtRipoN8f0m63+ZM/fYwf+dhfo9Q5nufS7XXpbRVs7uxy//tOTrLlJNkoY3enx2g8psTQqDeYm5vm0qUrnL1wjR/+638NKSrOn79GI67z4pnLzEw3eP9D91OUhZUtV5ped9tODDLNaJRwYHGO3m4fL1S8pO7kQ9/7YYpS4WQ9+Hd/QL/bnWxqgOsIVFxHl8rCdCgoSo1fq5ElCYIKP2iTpEM83y4ewUVUVrpZGbsAHA2sL/DKlSscPXIIKsGg12Njc4eZ6Q55mdFu1xDKJS8UO1t9Xjp7ju/+0P14jRijS7t3rQVJpm3unfcNOXyRGozWIO0EwfNc9MTrqbVtina2dqlFPq4Xoo1BuYp9K1FlyNMUYUB5gZ2mmMpChkxlPXUGO6WpDIXWuKYCT5Ek6cSDaOmYWlcIaadvAgfpgFICKV2kUKRJgud7+xlXVW64eOEyCwuzBJHN6UQqdFnuB39LJax3UknyrMBUkrNnz3PHiaOAVV7oSiOFjVWwdMaJR11r1ISemhcFWZLxrx99mF/4wP0IrKqirCokgq3VbeYPzmCkgaKkMoIvPPYsH/nQ/fiBhzCQJNlEUmwX80WeIo1gOMj4g/llfum/+4Vv6fpavUoup9/EPW5nyXgz9/tG7W2G7tV+Rt1rqtATv+lfsF78g/MANpg+K9je3qTVmcYLAzC24baxHgpTVVSOROgKR1UMtlbAGEqt98FAjuPYDQJdgrGySV1oqtJuxAnHErTtBMogpDeROitMZT+TaTLGC0OE6yPzhNIYhHTp7u4y3emQ5jY6Iaq3EcLGNmRZArJCFzYeJEcQBTFSWr/u//1v/0/+p1/7ec6c/SJtr4OQBi0HzC4/yPr5FVxR4ddS1gYx3/O9/xm5G032IEqMeX0Ij3IcxqMx9XqdPM8m53BPQvjm1oj7AeCvKBuT8q33A28pwBxQr3kIrw1T/3P/7hs81v9U/YGvfN3fzOsmpMBzg7f0ZN75buHdesMSewHk/wk0dq+tS+Psz7/RZIIe1gKG45Te7jZpMqTRjHB8h1zbIOA9/wYVeJ7NkYuiYBJEq5meak8WmnaXTwiB6ztcu3GLP338eUtgnJ/GIHnmpQv82aNP04h9pC45uDTPjVubfPqRpykrKIqS0WhMkqSkScrNlXUcIYgCH1NVfPaxp0AXUFr9PlpT5hnnLl0lTTIEknScIYS9WAyHI8ajlDiq47kxaEjGKVEjplICPDspCPwAUxmbt1UknDp/HiVBKElYi0nGCd3dHlWlefSpF6h0gVGwub3D5bUNNrf66EqiPB9TGZQQ/NEjj7OyusrsXBvlCg4vzSE9iREGL/RJMrsARVnZkq4MTDw5prJG9bywyHcjBFmiGQ9Ter0BWhf0+z2CwMZWbGxtUWpNu91garrDiZOHeeyJ53np9HmuXb3Jr39mk+s31jl+bImbq5s0GjXq9YhKa06fvsTmVo8LF68Thh5K2WY+z0tKo7m5um7zZIzNNDtxbIEg8FlZWSMIXEajlCRJ+OCDd/LAe08yHo/5z7//g+RlRVhroI2D6wQYLZifnUEqFyF9XnjxPMpxeOiBO7ixsgFCMjPTBGG4cnUVXYKpFPV6jbKwC4a5+RmKvNyPSfjoR95LoTX93SGrN9ZxlYM0kmycMrcwxTgZk2SawI8J/Jg4jsiThHojnuSGOXz5a6cZDMYM+mP63TGHDk4jpaGS4EcBBw8vkRWaM+eu0e0NuHzxOtu7PXqjIWHgMR6NSNOMo0dafPjbj3Hx2jWEFFy6tMLFizdRjuKOk4coipJWu8GRgweRKDzHwXcUo3Fm4T+Tz1elDVni8PlHngaZgrByVl1q6vXYZjYFDl974jRXr/RwVUylJQ9/+RS61Cwt2Wm8H/gUZUm3t0VRJjQaMWVZcvL4UQ4uHsDZh/LAtZV1glqIF/qEcYQbeHzsBz6CRuCHMds7fVrtKYLIZWlpBlMZvv7kafrdMUo5bGzu0G41ufuuk1y/vsrFC1fY2OjSqsWYysKEQj+k2x1x793HuP++u7hxYwWB4JEvPwlAkWkb7t6sY6h46pkXGI/HmMqQZQXKSFwpKEvND/3O7xFFNTzX0lPHk02kIPDsImgC2qnyjMBz7EdM5PhOgMRDGgcpSpAVeWYpfKYShGFMmZcsLR6gLDS60vihi+NKwsDHUR55bkE0QeDy0tlz5EXBiy9fYLCdokSAI22+3x//2VdsUyIkeZqTpwVrq6t8+vMPc/PmymTqaf1/Ssl9qWK9UWcwSDBGWHJkaSWllp4obNCz5zEaDXn0yaespBI9oWhWdLftVNfIyf18h1Jrrl9boSo0exMYz3cp8oIojvADD891UdKZUEMr29hVlQVLFRU727ssLx+k2W5O/Hk2SN1g7PROWYlqWVb7mVGup7jv3rsII58gslLelRvr5HlBnuVoXdqmtywn8Qm20VVS4vkeP3hi2QZiKzs5cl0HBFxd3aAsLdxobWObNM34rm97r6WUFgUAfuDbPD5HkYxThBD0BgP80OPv/uJ/8/ZdbN/hEkLiqrdK/Xx1/dpv/yoAJQqhHGZm5hmPhigp0UJQ2QRZymKAIMUkI8o0Z3dtAyGUpVd6AXGtiRCKygiUBk8qRGUoswzPcXDDGC+MLJNAl+iyQBcaUxYoKnSZkucJ/e4WvufgKkWVZUCFoxSV0XSm2pS6oNGaJa5PoRybr4dS+HENpax0UrkeQpeWpmusFeLn/sHf4urNF5iemaGgwfKx72P5yMcZ3LxOu5Wx3b/C3MG7mZ2ZQbhvvmnOc5vZmSSjt+V8vFtvvfaJobdplt/petdz9w7WnucOXp9G9HaEMb6t9Yrdkp/8qT8/GmHPZKwLTei7pKMhmzs7LCzMY5BUwsICjDE2AFjbAGOb3Sbsf7suvu/heO5+/lKWFQSBj+c4LEw1CaMAXVY0Wg2atZiDcx1cJUjTFC+IaHfaHDkwS5KkNJo1ADzH4db6FlVlaDUiknFKnhccmp3G9z2UtFQ9Y2xDuTg/RRAEJGlKlhfWF+Ipdrf7dpJYGl44c4n5uQ6eZyVD0lEYAdkoszACYT0mVZlz6OAcVVXhBz5CSjzPYThMiKOII0vzdPvWl9TtDri0ssL9d53E80Ns+LiFzvS7u9x98ihK2XD4ej2kNxhRlSWrRcLRubYNes4LC/pwnIk8A0spK1NcL8QIF+W4eK7HM8+eZnq6RVwLUUqQJTlGQL1eY+87bDROWbm5zsnjyxxcnMNgyLMx33nPnCX7NWsMekN0VeB7LvPzczSaIdIopDA89uRLxHFAPAE+HFiYp9vtg7FSvI3NHlVV8dLZa3Q6MXlekeUF4zRlOBrTbNVJ0gQpFWtrOyip+OrXTqOkoLs7YGaqRRAGbGx2CVyXZJwhpJV/3VrbYmqmRS0IOXX2Op6rcB1BWVbU6zXGyZA4jsAIurt98gmRdWaqzThNJ1JGwc52H9eXxHFMFPqkSU6tVuf6jVVqcYQUAj/0UdIjTzMOLc8TRgHjcUKjHuL6PgZBGNoJqe/H1l/Zsj7FMAppNiLb1LSt57LRjKjVA2qRz3CUsrgwP5mMlLSaNaQwRFHIc89fYbfbo92uce3aKnMzHTuZUYr+YEA9DhmPDFEs6XRijIFLl27R7tT2Td2O6zHdqXFjZZupTp0gcDh8aGYyPZdkmYW+FEXBndMtFuY7dkJmKrrdAWVR4gculy5epSgq3vfA3ehK4wWefQ2V3VGXk2y1qBYjEPiBR6NRZzAcU49rGCPp93ocWl6ku9tjenaahQPTvHTqIocPzuN5Lpev3mB56QAYQavTIkkS2lMtrl1fRZclJ08cRgrBY4+/wNLiPGEU4/uKqakmZVnxpUef41999nE++Tc+DgbyLOH0i6c4SUWr0bCQB11SIXFcH8dxGA36pFmOMLYhSMdjhJJIGZCOS4o8x5gCx3NxlTuZZMGzT5/mqdOnODg3Sy0OKfIS1xWEQUi317eya6koqxIpFIeWD3L6/EUatYhsXDA11QSMlbzPzbC1uUVciybfLzbY/J47jtFs1XE8lyzNuHVrnWazue+nElJamXZhpzzraxtIYXBcu4DPxilSSaJaTBz4BGFgVRtCMOyP6ff6NFtNdFlOvHH2i2G607b+xAnIydKJY3stEHI/J449v7gQ9HsD0iTjytUbPHv6HJ1GjXqjjpn8gzF84SuPc+zwsm3S8hLXcyYAgmp/A8Fgpz5lqfn8V56kLFIOHJhnNB7jTZowdGWJgELaKbtS/G9PPcf3HVrYv2JVukQKQateQ1ca13OotKZWr1FVxkrwlbST2YlPL01TwijAGEsmjaOIx3M4dvzIW7288uYMPrfb9P3WRiC3h2O8uorJtJi3uMlsvfb2+OQnf5R/+Mv/iIfu/XaEgSxNcZVibW2FOPAZDbok/R36u2vIqkBJRZJnBK5DMu5RGks0NlVFmmeMRiME0oJ5lDPJmyvRk/erkoKqKvGUQznZVKiqklJru+ngeQisXNlRLrpIMULYTMcsIQpDpFdHTmTLezJrIQTD0QDHUZRlhYIJzbrkV3/nn/DTP/vTrFy6QKc1y6FDJxilJS+dPY3ureBGmtWNNe68+8MI6dCcmgZhJ5BCVLzR3EUg7ATeC6kmU9ZvnMM3t058vbXmW5rBvUXx32v7obdTQ/iXtV7e8yG/2UizV93mTTzhqtS4rvcuUOWvWu01dxUg9jUxf7m1l3P3evl2r/3ZK8EqAKPhmPcUt9lBesXzMcJKaZRyGOxsI4W0FL0wpLvTR2C4cm2FuflplKMsoXK7b8mAusB1LGHPmIrKVFTG4Pu+XSxVFVMzbbsA1xV5mlFWmnocMhgMcR1FXI/J8gLHdfjMl57ixOEFPN9Hl5pmvYbnOlYSGkd4vk8U25DpCmFhA9LSr0qt2dnq4jgel6+u0mzWUArScc5zZy5RiwIWF2fx/QClHEajlCuXV0AbG8DcqFv5aF6gtY1KqIxFhp8+e4X5uWk8x0cISbc7oNmyi4l6s85ip0FvMCQMQ8Dguy7SQCMK8IOAUX9sqZha05pq8Z7pNv/w4dP82HfcgRCS8WhEXLeZQJ7nI4UmS8Z2B9trojD7C6XFA7M2kHfiX6wKCILAZneZiixNCcKIp549zfxMC9/3GPRGvP/EMmevXOXGtRXa7Ro3V7bxA+hMtXj2ucssLMzwxNNnqUce7WbAwcV5kiTHdR2efvY8h5bnGQyH+IGi02mx0x1w/3uOEQQOnakOtXpMUZRMz3S4ubrB7Ow0nu/RbjUp85zpTp3pqSZnzt1keXmWIIpoxh6u6+F5rs1ylMLmvtVjets9jh49gOcrpAHfD3BcB9d3SIYZ/d6QubkOcRxNgrM3KbTNpomikDTNaDTq3FrbZH5h1p7bNGN2pj3Z1LBwjWeeO8c99xzi4pXrzM9P4ziKmzfWaNRrNmRaa8ospzQGoyscR3H9+jph7FOrR7TaNYq8IBlnXL2+RrMR4/gOvu9z7eotwihgerqNEIJur0+tFlOrR8zNdQjCkFsrW8zPTWME7OwMbDyBgHanxsysheJUpabVqYM2ljBnKjAQhh4LCw2UY0jTIRvbm9YP6bk88rVTHDuywGefW+WOAwcthVVJdFnx1LNnefnla9x5x2GKIuf4ySP0en28wAOqfe+pEnZaYqqK1ZU14lq8D8Dod/sUWcXUVAcw9HZ67HaHzMxOIYRm1B9z+MgyygjSNCGKAqZmpzlz5jyHjy6SlxmXL68yNzuF67qkScqddxzmia+/xGgwYn1jm+WlBXSladVqfPalVb7nQ9/JdKfJyvoaD73nfn7in/zv/MRd9+AFPoaKvChts6IUQRBaX16WkaUp9UZEZQudAAAgAElEQVSDXncH1/UZDse8cOoMnoQ4riGQFIXNdFtcXODO44dxXZdet8/etChJMwLPp9lsYNB4nst4PAJjuO/uO4iCiCPHFlnbWCOuhSAgHaZMz0wBhoe//CSb69scPbqEUooszcHAjeurHFhc2M+0K0srTVTS0gl3t3eZmW1T6hx/Eihe6grlWRKhLjVSShzHnrMwCIhrkfVgTb7DVm+u0+q0QEyiYZT1xSklJw2aoMwLLl28ylefeI6ZVpMoDqy8rrLSXt/xuPuO4zTbTTY3Nvn0F77CXceO4LgOh5cWSdPMTv4c+7jKokS5dkPQRuvY54aBu04eY25umqIoiKLQeuFGCWWpCcNwP5dQVxVHxJhWEE42DXMkdqPR8T1ePHWB6XaLIPZxXNfKyfPCBr2rCd2RiSetKHGVotQZo7LkA7/wd7FX92/hevwONHffBE+5zf3Vnm3kDdYoewtcKSwI55Ul9ITUauwk9kd+/Af5xb//i3zo5AOgC0xl5cLVcANHpxTDHVxTkI/6ZKai2Zkhy8YYnVlf8KQxL4sMKQSjLMePYozjofwIN6gjjX61V1zYwPTAtQAnN4woJ1RV5VjJcW/QJQr8ybUPHEeSpSO8uE2WZZYwrByyPCHPJnYK5U4+Swpdaf7Zv//n/Na/+Q0Cz+eOYw8x7gouX/oa61svcHipSb3WJFMO933gO2k2l3nu2aeZm51DS3fSNH6jubvd5r6N45EYU70CgjMBHd2mbgdJeb13wVupbwb9vLl17H+M5s5gJmtEC9GzGN3/eOvqb3n4cjugyhv9filxHPddoMq79Zdff+u//ll++uGn/5xb2WmMATqdDp1WG89xUUimWk0cx+HEsUOTTKScIi+o12PGo5RaLUY5dqEANtqg0hVZajXwfmhzZ5SU3Fzb4LFnXsCxcD6iWgzKZXfb4pST4ZBPfv934PlW1pimGWfOXeH8lZtI5XD65WusrG/R7Y9RrksQxUjHRTouwnUQrsPLV27y6NdPI4y0mHSpmJpp89B7TzIz3yZuWsR7luasr2yxudFDlYJGvU6eFOR5yae/+HWUH+IGEY7jceblqwz7CcmwQBeGP/78U4xGKUWmKfMSKcD1BEkyQpgcXeQMewOyJKXVaRF4PhJJrzukXm8ACrTN77lxZYUXnzuLq6xfSmtNhQWt9LtdpOvTGxZcPn+JIh2TFwmOKzGVtuh1oxAILly8YiEOwlI9pZR873c/xNR0h163T54XJKMxv/noNrPTTRrNBllWTOSdJc1GhBSKD3/gHmqxnSRubOwghODq5Vs8cN8J0jRjeraNH3jcXFnn8PKCfd9UFd1uj9XVdc5fXkEpydzcFLtbPTZWt/jCl56kFjnUagGbW9t891+7j+E4wVg+OmmWsba+TVyLmFuYw3VCqkoQRD6DQQ+lbP7YYDDiqWfOgpB4jkeel1y6cp3ReMzZc9eYW5hmq9tjdmGG7d0uB5cWcJyQhcUDSEeS5glRZGMAkvGY3Z0uoyTh/Q/cQZIOadRdjMnZ2txhZzchTUtOv3iRUXfA7sYmvhT4vr3AHz66xJnzN3jx9CXyPKMoClZXt5hpTbHbHYOwvtMD8x0AtC7Z3e3SbjctnbAR4IQuRaW5687jrNzaJM8tqXR2ukNcj8mrXXRRkiYKz6sxHnd57Otn2Nzcpaps/pQQsL015MKFNTABi/OHmJubRirFRz/yPqSU/P6zCdevbjPdmSWOYvKi4CMffj8f++sfBiAIAwA67RaislMpG7INRZ5QlTllnjHVaiDteJGiKGjUa5iq5NN/9AgYWN/YZWqSPeY4knvec5KttW0effw0rWaderPGeDzkvQ/ciXIhrnk2CkRIHvnKM3ztiRdxPcn73nuc66sbHJifQwjHyveKkn/8X3wH/+53f4/zp8+wcOAgR47fyR/+1m+ztblpG68wnNAZLaCjkg7KC/BDC0saDMe04gb9wQ6t6Yhv/7b7WZiZR2vBE08+bxsPYb8LpRSUecnZi5dtVmAl8RyfbrfPs6depNQ5SZLgOZI48nGU5NbGFl96+Amm2zPoXLCzNiQIfV469TJUIBE0Jo1kpQ1UsLW+Q5Fb0qX1vwmkmixGFChX0Zpq0N3dJQx9HEcxHo3xQ996crMCo8H3fKo9YIouMBj8ICAd51y+eJ1LF29Q6YpKgArtZNb1XJSSlj0ygQHNz85y7OAi9XrMoD/EcW1sx/XrK7xw+jyO6+C4Lu2pDj/wke/AC3zEZOwTxxHGiInXSqEc+z7RlUYIw/ZmlyeefN6COaThK197apL9aFdScS3CdRw21jZtZqnWbPd3OdLpkI4TTGUskKksJ5lq8OAD95CMUvt5MAZdVXzpyefZneRi7q3pqj2Euakoypy/f/baO7FX+46XjcUo96cZe4eUgmQ0IkszdKm5fvU6w8EO2XCXna1V4tjDmJK8zBCOi3ADdkcZ+DVmF46Q5xKMj+9EmDLFUQZTpsShT+g7TNc9fFFANqQc9cn7fbK9HNoKpBtglIvjexSVzasUykOqEJRLXlYgBbV6DUyFFPY71UK/IMtGdhOQijJLUVRUVUFVFqSjIUWWkRcV/+v/80/5jX/xv7Czdp2tG5fYHlwgKXaoki79a6vkqwm9suDI3d9FY+pudno7BEFI1Gq+06fu/xMlpUDeJqT9/4/17uTuHaz9KIS9//EmR7tvtt7MjsIb3eZ2P9ub5r2yPvWpT/MjS7Ovnjy+QiYgEEyI2ig/YH1jF5Pn1Jo1MiXxPQch7S5Fnmc2X86VBIFnEdmYSTaTDeP2Q896OUoxQXZb6U6n1eDw8gKu71gy46jgM199njQpOHRwfp/QWBnro4jC2OL2XZfPPXaKRuhz4vBBoijACVyEMRbuohykgGQ05tDhRY4fXSAMPTAVQRDvEzUd6aDzik9/9qucWFogqgV0GjEz89PgVUhfYqiYbzZ57vnLLM7PoquSxQOzTLdbXL66wvzCFCcOz9OZauJ6DhtruzRbdaQb0Kq32N7oEbUaGGMpnWlako2G1BsxUTNCAHqc4wY+P7wwRzblEAQOcexZ0p/nkyUJZZkSRT5hrY0jNPVm3cqX3AiEDfi9cO467akYhEBrC38RwlAZjesGnH7xKskop0LTCD3iWkg/GXPPcoznuRRFzvzMEpsbA+bmIpR0yfISP4o4d3aLje42Rw63yFIH33dwXYUjKpIkp9YIcH0HJQU7mz3a7TpxI6IoS2ZmpzAams06RZZz4sgBzl+4jjGGRj0iTXOGg4R6GJGmGUIIZuc6JElCd7eP9ASe46B1hVIeL59d4eDBaYzUDMcjPAFO7NGZaRPHMS+fu87hgzOErmIwTpmabtNo1tjZ3uLZ588x1azh+i5R5OEEkizN2djoMjs7TRgFKM+lqmC3n9Ce6uD6isiTpNmYI0cP4AQuQRzT3R0T1CN2drrU4hpz89NMT7cI/ICqKmk2YxzH0GjUUUg2t3eIGyGPf/0cc50aG2sD6o2I3f4Op85c4uBCk/W1dW6t7XD06AK9wZDFxXleOnWVdquNLu3n+4uPPsPJ4wuICf2vWe+gVIhwQAtNHEakyZgvPXqGYW9Eu13D93x8zwMBx+em+PaH7kVIg+M4PPrYc5w8dhTh2Dy1wWCA76kJ4ENMMhZtAPbOxg43V9aZX1yYSL4EV65cJw4DCq05+/I13nf/HZw6dZEg9AgCj63NLep1nyI3rK5sMk5TjKjob28Txx5B5COlQ7eXkucZS4cPoFxBoxYx1WohsRmZfugS12OazZjZhRleeO4F5h74CM+deYE7jywjnIDmVIuf/xf/kp84cYzCSIIosjmVSPQoQ2EoywIlBZQalEMQREhjmxQcF4Sh3aizvbFNs93E8V10kZGVCQuzCxa+UuYMxhkvX7rO1Vub3Hf8KEZplFQMeiOU4xDFIQeXZvF9lzRJ+OKjT7K42GH50AEcx+HQ8jydmRrCtdTeIss5f/EK2mhqtQDXdewkbZIxqXVuGyNHMeiOcVwbdRKEIRhLN37xxbMsLHYoisSquSuFozwEljwZeC7tZp1Go44wEpsq5liQySQHsSyt56273ePS1Rvcc+9JpOvgxxHJqI/nBjRbTQ4fPoCShjRJKNKURqMOFVSvRJ9PphSDfp/A921eqpBUhebCxSscP7ZMGAcYARtr2xw+tIwUlvRoJzEenu/bbD8piPyQf/XIw3zg0BJlXlFVFQg5wewbRoMRUT1EauvTA8PSwgy1Rgvp2OtOkedQVRPvYMGoO+RzOyM++dM/iXwdOMnr1asvrfJNHN9clQAzmbK97jFBAr3qmCgNXnm7164MhFSYSSzI3lkxEw9jWRQoYT3trnGQwsHgUgqHXOds7J6iv6JZvfgMHWeaH/2pGk//ScrcwjxVYRDkGDNGOhHJoE9Sag7d9QCV8Ul3biGqgYUSBSHK8yc5iI6dMEsPxw2RCFxHUOkhjudNchk1ghJjSpQu0WiU6yCMfQZS2q8epQRKgHEkmJJAeVSlIAimEM4k6kI5FGWFchw8P6IyDr7n4TiCWyvr/OAnH8SVPtl4B8QmES5BtYNTFcyduJcyjjj2nu8iCGzEgxvV2B6MmZmZt7mhwgLoDHtk6m8cQshv0Gpfc+yRdW8Xm2Eqi+B/1fRvksMphf2Nb3ZqtheZ9Xq3/3PjAl6hzzVGvGqQpcQkLvIVx+1+1RtCICfPU+5Bgl7zvOHVk8y3Oi7cewxvy3pdKCYL4G8cr3hgb3Vy925z9w7WKz13e/V2Nnemqt60FvjN/9Jv/jT8+E98kp//l/8XH1ucfsO7isniLfBdJFbO44Y+VWEDUjF2muYHlj6W5zlpku/vvpZFSRAGDAdWBqocK/MQEvI0pShyHNejzEvCMCJPS+44cpAodHAcS44La4EN73Y9lHJIk4xur8/77z/B8sFZsjQhzTLyIseYCs+zWPhSF1RG43vhBI8d2F0iySTzqKLIc0qtue+uo7iBZ9HnuiRq2MWSkpI0SRkOx4yyjOFoxPRUk+52n+EgYapTx3XtRSTLc/LcSorciVTqd//ky3zb++5GKtje2MZRkus3Nyy1UAjr79Mlo/GIrCjZ3NzlJ3/ni/ydH/7ghN7HPiZdV5oojhmNE0vT0yW1WsTOdp8gdHE9l6lOB2MKNja2mZudxmB3zC11r2Ll5jph5LHT7TIeDThydJmWL/nUExeZciuimkMtbjAe29dUCJ9zF66wMNemyDVHD83SHfSZnZ1BiIqd3S4Iwzgp8FwrvXIdK6d76sUrHDw4az2Fu10cAbdurfPcqcucOHaQaysbHDmySFGWZHlBFAfs9AakWUq9FiGktK+l69JqNymLAmMM43HK4UML7Gz3aLSbDAdjJIIoDhET5PvywXmSJKUsK+I4YjhIaNRq7O70WVyYIoojbly/xXS7ydefPE2WFfiex/qGDZfOs4JaHBNHAcP+kMDzoRKsru0Q+D5Xr68zNzdNrz8kDH1qtRrPPnuW+fkGnuewurqJ7/k4rkc2oaP5QWg9kAoOHphjbWOTk3cc4+GvPcf8XJPFuQM4bkC90WJqeppbK2vUapGND7hwg9FwzGNPnuHYoVnuPLlMRUUQhrhugOsLhMhAuhRZxerKBosHZrn7zsO0m7HdzRaSPMu4vDHi3hN38PWnXuLwkUXOnr3Igw/cixQKbezGSBRFCBSeZ4l1p06dp91ssLW5RZpmHDm2jM0zK6GCVqtFGIZIKTh34TozUy2OHV9gcWGGi5euMzs7TRC4nDl7hRPHDxP4ivn5KYw0RHGEQPLii+cRFUxPt/B8l067OWmOXb7wpSf59g++b+KTLaiqEiUdFudn+fJXHmH+yL0szs8SN9oU2vBf/tTH+Zlf/w0+cfIkQkjKQpPnOVIW5HmKLrOJrzVHU6CrgkLn+KGL1jlCCTzPodNpIYSVZyrh4LkuYRiztrKB77k4jsvVlVscWZyh2YxwXH8Se+Jya22d+cVZ8nHJ5sYWU9NtThw7SL1Rs1LBsuLlc5dZmLMZea6yr3ezVWNp+QC1Ro2y1HaSOZHYgUC5Ho5jv3ujKJ7QEAVFkYMwLC0tIiUTarFDUWi0ttmeRkyonBi+8MgTLB+YI677UGnOnb/M1FSbLM1wXBchBLVWg85Ui4sXrzI3M40jJcPxkDCMbIaYtB7X7e1dvvrU87hC0m62QNlIgjIv+bNHHuPcxavce/edVNpgDOxud/GDgCeePc3CzBRxzW64LS0dmEj7S4w29HpDojicAFOsbHrU73JvzSOIQi5evE5/MGR6qoOQgrwowNhIHc9zSZIMhCCMI3t/7DTU9Vwb2O4oFIJub8QDP/e3OXTiJKIq/6KX12+5jHgzv+Q2a4Lb3O+1t8pz21AZbfYhEnvxXc5EpqqUolQFuBqlcpQY8cXf/l0aYYopAmQ9QUtB75bm//j93+KDJ97LcLyBF1gvc3eni04GKNcnCmLKqqTftWAt5SuUaHLl8lUaURPX8dCVnZzubu+ws7tNHNcnVEwLz1HKQU+8UbrUOI6LcjzyXFNqG7/iOi5UAk8GSOlRlSVFVaBcQVaOkSjS8YBhrwtVjs4zRv0uYWybtF/5N7/KP/iNv8fi8lEarRmm5maptVqsb99CBZKdYZ+ZQ4c5ctd9OCqeWE5tg9WoN3BdG3Gy1zTcLk7ijdZxb7jGM998GykU4hVNxO3eMfKVDeJr/s4bvsPe4Id7XsXbNVa3Y5K8HVLN23tK946/2Nr47Wnu3lha/W5z91ewXq+5e7uasTfUV+9N4G5zvPEXxW0+bsbwiU/8CP1HvrAf+H2bB7P/7+2tXcajFEcpgsCj1Npq+qWwO6pMfCFSoZT14CnHej6qanIxVTZ0vMhz8ixnPB4T+C5FUSGwenw/9Oj1eqRZyrnrN1henLdB3kYxHmeYCja3tmm3G3iBhy4sHEAqQVgLUEIglUJJhec7OEqiXJcsSQF7sbCeEZvBBZYOt35rG9dzSIuMVtviioURKEcQhh55ljE302FpaZ4iL9ja6rK122N2toXvu6yubqKkJApDXN8ujHShmW83COMAqpIsSQkDj0YYEdSt7M2V1qsXhD71Wo3hcMT3L88zc/cCruszHievIOEFGKx2X0ixf+7DIOZzX3qEY4eWkMql1ClTU1MgreShLErrnykL2q06rWaNTrtBe6rFjZtrHFiY5WvnNgmSHkJlzM7MkKYpc/Mdnn/uKvfcOY8xmivXtmk2Y9qtJn5gpV5h4OMFHs1Gk42tPnGtbrH+OzvU4xrtdoPV1Q2kFKzf2mRqqonnSGr1GNdzKHVJvR4R12s4yuHGyiYnjx5ECgtZ6PeH1gQ/GHLjxgZJkjE908RxbSA3AlxXMTszRZbmKMdhOBjiejZAPIrrmKqiXot56dRFpjotiqIkDH3iyGN3q0vk+ywdWiSOQrSuaDRrXLhwA0cKjK6sdDaOGAwSGwreapJlOecvrnDkyAK3bm3SrMfsdnvMTNcwVUUc1y0EZrqNF7go5ZKmKaPRGN/zWVvfYn6hA9Lh+JEFlDTE9YDKaCpKXE9iSusV9DyPpYPTHFicgTJnfn6Kbn9As9mg0BWf+sMnmG65xDWXSivK0vDFr57i5LEFpJCcu3Cd3e6IhQPTXLx8k1/77A6f+OAxfM8lCH1mp9uUZYnjulTGQkV2d7qcOn2JtbV12u0m052mDdsG4jhEKIXruOjSSvdcz7PwG62ZmWowPTOF6wr6/SEbW7vMTrX5k88/QZGXHDu2xDPPn+XI4QVqrQZBEDHsj/Bcl6lWE+kpO+NQwvowpIOjBKPRiCgMeeLJF3EdRT2u8fjjL/DRD9zNL/2z3+SX/ttf5NP/4Q85dOgIuan4mb/50/z7f/2bLMVtXjpzjiPLC2idUhQZYeCSJClhFKPzijzT1OI6poIir3A9xWg4sqHsZcXuVo/Pfekx7jxxlDytuHTpGp6rqNViDh88QKsVW+VAJSnykvWNLa6trXHk8BLDXkKWZ9TqMXmZ4XuWfimloNlosLm2Q71VByryNCGM/MmiUey/5nZZY8hTjXLsgtL3FEq6CCEnUjqNcq03eq/BxAi63T7raxs0WnWkUiSjMbosmW42bRPkS7I0+3/Ze/Mgy677vu9zlru+fenXe/f0LAAGBAiQFEHRpEhRtiNbkhOJkm3JipTFVbFdSSoVJXZUiSoVOy5bKVW02BXbcpyKHSmxtcu0mZgyQYobCALENhjMvvb0zPTeb393PTd/nNeDATAzHFJkKVJ4pm7NzHvv3ne3d8/5nt93oVqv3XE9vrsPKApDq1Fn0BvgaI0XeAhxSGuUXL16g9XVZZ48+Qivn7nEq2cusLI0i9YaqSSrC/OsrSwhkHzm88+zubnD5u4e1VLI0+8+SbVesVq8aa5gnMTWfEVKevsDrq+v02xa5oOlmUt+5dVXebxW4frGNo+eWEW7zh2jhFNnLjE700QpSe9giJIa19MU5BwGVkttq5RCSuLhhN+7us73/+f/JUprxEPGEhhT3LNrPczb+3raHxTc3V0Zefuw847eXrw5sBXClvGUUihlq7Yid1EF3Lh8Hp1J1MGnKIdbNDrv5tqNTY4svRdVXONPfWiZv/mP/ynf+x0fI09y0iQi9ALyeEhmJI5fIfBClNIoJyA31kytWq1g8tTSnIWlIAdBibBUxnFclHKnbqrWuCnLMltRV85U/5pBAZIyYRCSZymmSBiNeziOwogCx/WIkwxHe1YWYgowGbJIESajKHKCsMI/+PV/xEe+96M89R3voxBWxjGeJEwiw8LSk1Tqy8yvPIFXWiAvPBv/dFdzphrAoiju3Adiqod9yyLfCYruvPbAG+Kuv6fLYYbdHTB5j23cSx52p8omFeJt773j++733n00Zw8L7u5Vnfy62l378I2Otb+pJoffBnd//Nq9wB1FQV4UiKJ4a8f4zW4PLG0/AOQ9YL3TuoR7/nV8173vZ4QQlKtlHKE42O/hCBCOxvU8AJulluVcvbJBtVq25itaYUO9oOCw5C64eWOLSrnCrZtbdNpN4kmMwfDpL7/GQruB0gXlSkCjWqFZq2EKm90mkHbwf+M2e70+q6tzSOGQpznRxGbfSWWtrT3XZzScIKSl6gip0Nq6ZJosw3UDihyiKMHzPbI056uvXOClNy7z9Mk1JNAfDvB9l2g8QRSQRCmlSsVaeieG9kyVZiPAdV2iKOG518/xxImjtpNyFaPBCK0UbugyGo852BtRLZcQQrCxs0OjVaPIc4YHI27e3Kcz20EriZQFi7NtfvLXn+N7n1qmd9BHaWv/XaAwhbrjsFfkBYchvivLHesgJhSOYzsTkxvboSPsoEUqSqUS/d4AKRSeX7IDH0eQd/coqh5111AvV3C15PLVy5w4tsT29i7Vik9npk2vN+baxjbzs3VcL7B0KG3vA9f12d8f4PmaetVn0B1x89YOy8uzbNzc4eiRZQbjiOUVW1molK3+5/r6JtUwIAxL+I5iEkdcW7/N8vI8k0lMrVYlmkxYXp6jwJDnOZ7v0uv2qdbLlKsBSRIj0Wxv7lGpllHaRm6UayW63X1MllIOXXJTUKtU0K4iFzmmgNZMk53dA0QBYehz8coGj55cJQx9HM/FdTQUUKlV2N3d5+r1W5w8ucbCQps0Teju99FKML/YwdMO0ThlOIiZnWuRZBMQCsdxkVKzf9BDK8mFCzeZn2vg+yGvv3aB5YUZCglSeGze3EVkhr39Pp2ZBnt7XZrtOnEcMztXt9UGpVHCGmwcWWrTrLcYD21Fy/M1aytz1jjAsfS29a091o7MMTvX4t+cOuDPPbNGpVRiY+MWjqO4tn6TZqOO0posy/nkv32O9737BI5SeJ7LsD/k0597kZXFWcJSQJTERJOY/b0DTJoTx6nVbGnFaDTG0YpXX7vI8tICszNtvMDj+rVNnnryKM1GlTSJ+Oqr59nf73HmzHXiKMX3XSq1ENcL+fSzL9CqVwhK1t6/UikRhiGuo1ldnqfb7ZPGGYPBmPn5GR6pwD/99Ku86/hxfvdf/CrL8y1e/PKX+M2vvs73LR2hUamS5ZHNUM5yRJYSZ1OK2BQcmSInSRMcTyOFh+N49Hp9Pvns55mpVXnkkVVrmJQbDnpdTl29QKtUQmApX47nox1FFqeMRhPmOzNcvnKDuU6DeqNGXoAxClEItKO5cOkycRzRnmlaV2EBaZKgcFDaoyBn89YWvu+jtKVmOo5rB3dFgZSaoshJksj+voVESQtysjTD5Nah19GKSrmC47o2+HlqViQdiSlsNMD+3gAhJP40smbQH1q3yqneEgFe4DMcjwj8kNxkpGmM43pUayUbFVMYVlYWOfnoUeQUOBS5wXGn3ycFgavZ6/X4wPveTbfbozlTx6qtC6QoQDhAgcmtAUqtXufmxibznVmGvSH7e12q1QqPhQWOdlic6+C4ijSxVX2tHeY7LbI0J41jKtUa29v7VOohcTKxwLcwd56bWZZTpBP+h3M3+Pd/8seRunjousD9utVvhHnzzazcvX0Ecvd+3r1fBUxdKHO6vR6/8gt/G2W6KDMk8Hxe/MJnWVhe5KBXZrB/mXbosHtwFl+HfOLTp/jI48/Q6+2AyfEcjzyNaC0+glftUAhBbzTg1OunmWnNoT0bR6KUsMZVUqC1Q26sptgUBdJxYGqsIaStPKVZaitmHFIVDVeuXyXPE8qVEkraSJE8MxgEflAiSWwkkhOUyadjsjSLcLSNcdje6/PXf/6/4P3vfy9GGERhK7qudgm8MkgFUmPQd875gzwp74CGewz475zv+1yD+7Z7fJ04BDfywTTL+zV5aIT1kN/3cNv8pm3qodv/J1zovw3u/vi1e4I7rJCXqSPSt6w9AKTZ7vHN2Z2HXW9xaZGf/J//4QOjEYyw7pC+4xINx4zGE8q1yp2YgGJaKW+1mlMKhZ19E2D1d9NZQ1MUONJ29KUwQAobMaTfCtMAACAASURBVJCZjBOri5TKIePJGMdV9PYGaD0FkFJSpAXa1TQbDUqhS1gOEEJTGMP21o4NEFfgOi5CSjzXo98fEJYD4jimMNZO25gCCsnLp86jhSQMfNI0Y2Wuw9Mnj2FMTpalVMohWWZzlKJJzLA/wRgwecFnvvwaa8szIG04u++7PHpkCa00r75+iVa7ijt1+jNFQZrl3Lq1z8rKLMqRuI7CDVy01niOTxJlhOUyJovpDgYoJfn48gy9ZsDsTNOaHDiaJMm5sX6LaqUMBrTWpFNH0cKkSKUZDSNcV5KmOVrZDDTXdad0RQGFdUA7f+E69WaD4WDIaDhgYX6GX/zUdX7iYyucObNOGDg0Gj6VUpler08QurheQGumSbUS0ut1CcMSWW6dUDc2NomilHq9RprErG/cokgLvMBa5C8szGJyQ71V59TrF2nUQrq9HtE4Ye3IIpcubRD4Lq+cuoLWcOzYMgDPv3SOZs3m0FnHMYEf+JYuqASmyLl24zYmz7hxY5/VlXl+/RNf5omTy3ieS4GhHHhMRmO2d3uUyyUuXLpJZ7bGJB5TrdcxUy3k7k6XmXaD2dkWaW5DrAtT4Ps+v//FV1lebOP7Lp1OnRdeOcvK4gyu79FqVFFSMp5EXLmywRsXNjhxbIUomVAUKY7nkyYpN2/usDDXZv+gx8kTawyHAzwvJEtsJSlDEY1STp++gUJQq4c2GmL3AMdRBIEH0tJstdKs39jEcxw+9dlXObG2zO5Wj4NBn2argkCjHclkNKbVbjI7U8OfGhn98Effj3IU0ThmZqbJcDSiVq+yu3NAAThaszDbpNVuUKtWcVyHeqNOq1bB8228ied7hEGAVpp+t8/8wjxaK157/Sxrq8sIAZ32DGfPXmZ+oUMcJ1RCn7W1ZbrdHotL87QaVRbnO6hC0mhU6PeHLCx2SLKCq5dvUgodpJZIpREC4knMuXOXWVyY4/LVGxxZWyGeRFy5tsH73nOSXX+Fpdk23/neJ1lenqPdrNNozPJf/eqv8v0rq9RqAUpYq/88S3BcD+k4SFEgFCDs/SpEgSh8C6IdzbuOH6NaKSM0JGmMq1zC0OeJk8fxtCYMA3JjHf7iaIzJC9qtNr7v8+qZS3TaVVvRLuDX/uVnONjdY3V5gTiO6MxajadV1Fma+IuvnKbT7KA9ieu6eJ5HNIkszTHN2N3dQyqFVgqpCvLM/qZt5qHhzLkLXFu/yfzcLLs7e5QqIVq5d57TWik76SatVk8oRRiWrF5WSRDWaXcyHE+p1lj7dmUjL6RQDIeDO9mlhwPGPM+JohgpLZ390EDLTF0XTWGIohhHK9rtBpVqBaklxuTT6vwA3y+RpBFZluJ6Lkmccf36LZYW5ihXSlSqZQa9AX//qy/zvmbNGuskKUorrlzdoN2qWwMaaQG773lUKmXSLMWQIqW22jyKaWVFEo9HfHKry4/9pR8Fkb+p/fka7Y8DuMtNQWEKugcHnPnyJ7m5cZ5CxiwtrfH46lNsHewxt/g0L37lt9i/fQ3HL+GpCh9971H2bxdUayVqlTr9XpckHoNfxys1MGRkeYqWLq1GA8e10gLPcRiPxxbYZYnVnEmF47qkqa2s2Wq9xBQGz/WI0/TOhHGaJswvLeA4yn42NeRJjqt9DII4sUY6geeC9hhPIgpjmM5P8MLzX+WzG1/gh3/4BwFDbgoEZgrubGYvMqaQBYXIkaQIkSHuGTx/eE6n46B7XJ9vJriTU93bYfX52+DuD7F9G9z98Wv3AncGO9C+J7D6Jra3Rxq85b3D5R77IISwlvL32e6d7Lsj84crvG3b1lUMaWdjR4MJ0WRIpVZBKBvkeahjU1oRpzFRFNlbvTB3MsaYZjJJJclSw95Bj1IlQOQFOvRI84wizpA5JFnB5189zdHFWbTUJLlBYBj29imXfZCSLM6QuqDWKKEchasdPvmpr7Ky0MEJHDytyOKM8XBIYRKiyQRyiclz0jhjpt2wDnKBRvsOKCylU2tAksaJNUfoTzh75SazzRpRFLE63yIMPLRy0J6HEIIoTuj1e8zPNrhxc5NWq4bUmjyBc+fWed97TrC3vwdFge+5xHFKEPikWcprl67SrpUQjiJwA77w3GkeOXaEv/w7z/FjHzmByTMGvR6T4ZhS4ON5Dvt7XbRWDIYjXB3QHwwJwgDf9RgPc774xVc4dmwZ5UgKBLmxVBIpCihyFlfnkMIwGPRZWV0mzWK+64k58miH1SPzKO1y+uxtFpfmKVer+KUSw/EA5Si0o4nHEZeu3iTwPYqsoF6rEEUTmq0K/cGQUlBi+cgKvgcHByP+n0+f4smnj2DiLovzM9y+fYAfukxi6B4MCAMHKQsyk/PYY8fQrkOW58jC4GsH13M56PYpVco4nmepsVt9rlzZQgtNs1qj2iwTlgJOrHWsZf1+jzzNCLyQ33/uDM+87zGUKmi2K4RhYDUMRUGWJPheQBi4BGHAwf4ujiqIxwkvvXyRRr2KVIJBf8LcfJM4mbCy1EErF6OgKASD4YgwCFEYZlo1Ks0qg/6Qr371EseOLCGKAq3sWOzKlS0WFme4ePkmrWaVoBIyHMe4WhJFKQe9EYNJRGemTZZm04pGQalapkhhPJrgeC71RoWDXg9PCebnStSaNbLEEAQBn/rMy5xYbXPQ7SGV5NLlLdrNGmdudGmWG1w8e4lWp4XnuETjiDAsEZQCyn7A3p7NINTaoT/o4wc+5y5cYWV10cZwKBvpUGDwPIdKtYRwJUmW0WnPEI0SBt0hL586R6tdsfmG8YQkmlAIuL29S6tdozAxru8wHIyp1xs0GlXWb2xw/vw1ThxdZO+gx9Vrm8y0Sly6dA2MQKL46stnWV1pk2UpWlsqnx84TEqLfPDDH8Ap1finv/qbHDn2OKe+8BypVByNYhYXF9ne3aXZahDHEfbxZNBBhSRO8LQLKEvTUgXD/pCtW7vUWlUMOY7r2vzDNCEsh0jpEKWJBT2B1dptb+1TqgQ4gcZxHZZmZ4mjlDiaIEXBbLPMiePH8cOAWruGPKRoTccKSmvWVpbIswTtW2AkpAQj0MphNBhx5dIGSwsLGJMipYMfhgiEHexiaM20aNcbxOMI37V5d0Jbm3g7CC2mUTcSoaavK0sTLYqCJIpxXMdea0dTCDvYVigwNurG933kVB8llXVEdrQ1vNBSUyjJs597DmUKGxMhbaYnBjozbfIs52C/ix8ETIZjkighTzKkAi/07HXIDSZNOXJkmSSJSLIEqcCQU2PCy6+ep10r0W41iccJpcAnyWLU9Fhd1wUtwLUgznUCkAXJJMZkOWmWIh1FFmU8/Z/8FZZXl631xQN1UlOzMCHuaxLxtQefh4Hxby7GiCnlbGq+cS+wN30O3L3cMdm4a7nX/rydkpYLgaTAn+qChVC8+KVP8aEPP83S/GPsDBLyZofFxz9MdX6O7atn2L/xGosrNfT4KiK6wunnJPWZJqPBgDxNyZDMH3kXAk0W9XFUgad99g52qXmaSRSh/DLKcRAFBH6VQhocxyeeJGjtgEkRgOcFxHFGlhfcXL/OYBCRxBlhqQRCUghJUUj8Uh3plDBKWgfbLEMLRZ7mIBUKQxJ1cZRPFIE6sstP/Tc/hXBLUwOU4s6Zy4uCQgIoKKR1nkYBGmOEDUJ/u4mGODS3Efc0FzFvq7bdzyzlsN0xP7nXvSUPjXXenMh/hxHLA+66w2+71+feco8cvimKt+jtvhmauwcaq9xrn+91jPcwRnkYsxRTWJnDw6735r5ahoxU2gJ4IaF452/47vZtcPdHsN0L3N23Yvatag/4gdxXr/cAcAfwYz/+oyTPf+EdwA6YzmbZwo/jOgS+RzQaEY1jymEJY+zsMVPcqbWeWoXbmbHxeIJUYmp3baZUTdjf7dFo1ChEQW4szcZ17Cx9kmScPL6M73vEUWINVaa6Ci/0SBKrtev3RzjaZXe7S54UPH5yGeVKcpOSRDaEPEsi0kTRbnVwSi57W10816XVat6ZgHEchzhO0I4Fq8YYTAGu53Ft/TY3dnu865EjTKIYx3XZ3N5HCImjNafeuEyvN2J5aQHX86hWwymAzVi/sWVjADptwqoiSWO09PFLNrNvEsUcW1mwVZZhwo2NLY6uzhNWfH746BxJyzpYhmGI5/nT66h5+ZVzRJE1rskzw+tnLtCsV0jTGGMyOnOtqQ05UFhQ3h9M6Pf6uL6P1C75JKbRaNDrD9nZO6BeK/HX/vfzPFnPkUKDMQSuRmtFPJ5WP6cxD/3BiNW1BbSW3Lq9w9kL13jk+BKOa23sZYHNJwokFJLCGDqdKt2Dvh2MSomSkla7QRC4mDwhCD3m59tgCm7d2qZWq1CtlNnf73F7e5+FhQ6mMHz2C6+wPN+mUgnJswzX1QyGY4bjCc1G1cYwHPSo1cqIwrC322VteRalFOPxhHqjzu7u/vT3Yjuvl16+QqseopRgPIqpVpucPnuNp999nLDkUKm4NJstDva7uK7HwV6fIPAxsY0CuXBpg7n5FuWwzNb2Pp1Oi3PnrvFdf+IpPv25V1iYa1IqWXOYSikgGse0WnVOn7nG8mIHa2rgEoYBKytzzHYabNy+YXORjEu14uO4KWgP13NQ0pAlMeXQoxo6ZHnCwcGILz5/jstXbvCnvudJEDAcTggCnzNnNzk46POf/pOv8hc++DizszPESYQSkmF/TBLl1Bt1kjhhOBzx6usXcbWiUrHmAwvzswiBzSjLjA1JEYI0tZmWSZKhhGJzc5t+b0CpUuLY8XkqVWuGIdC8cvoiTzzxqI1lkBLXC7h6ZZ3lpQVefuUcF65s8MjxZU4cO0KzVWdmpsX19ds4juZdjz9KrWZNDHZ3D3j8sUe4fXOPwWDCaDSm02nwX//9X+PPf/wHcR2Xp556iuFgSGdmnovnLxAfP8byQZfNvX1ajQZa66nGsECgCAJbqYeC3CRkaU6lXCYIfRA2005JFyhQWiKENThwHMfSyvKCJE7IsxwQjIYTTF6wt3vAC6+cYWNrk9WlBebmOnzuSy+QxhGtVgOAYW+A0hqJYDq6RLt6+jyyhjaO45CbnO2dLU4+dgIhhA1inlZeJpPITjBKBUqSpgl+6OEGmjhPcNShIYmc0twsNS5NU7TWU56FHfg4rtVSOq5LQc5kbF03pQIhp/3INFPsMCdRSjnNoSvITc7zz73K7t6A4XjC4yePUxQZve6AXq+H57m4nkuWZVy5eoM0SRkOx3iuz8tvnGF5YQGpJCY3eI6HUBCEAWfOXEKjSUzOz7xymv/ue74Tz3VJ4oTd7T6u4xDHqdXOGsOVixuEpcAenyiskdd0gOh61pTG5IaD7QPe/R//VRAa63D4oP7Vasut3f43ytJ55/aL4i4tHNwb3N1rf77BPRCioBAKKSTCGH7hZ/8mT53sMDs3j/aqUDjMPHIM7ZQRacDlV56lUR7x+MknuX75Ip1Wh5/9xGf54LGnrK45M5Y9pHwyYycQlJIUueFg/zZhvYp0XG7e2KFWqkCRkk4Nz3rdMZNRype++Pt05lcolxvs9wa4fojj+jheiWq1gXI9tOtiCFHKRWtLM37uS5+l2Z6BwuYgJklEELqMuzvI3CAKyDF85uqz/MCf+RjSqxFWavcc6tyvyakU4p7asemlehDQecu4rLjHa3e9Vdy94luumXjg/++z2ju2/TXvrDs7fY/v+AOCu6+3fb2GNF/r8/d7/8ETMgLeAbgffJTfzrn7Y9Ikdgb4G22FMXeWe7329uVht3X38rVumtwY/sPPv8Zmt3vXxoo3geRhDokE7bk42jqRReMJRZ7xid97zs7iSnkn085xHDzXoVwOp5x0QWEMO9v7KKUolwKEBMf3rKtbnDIZR3T7I/a7ffYP+nds8UthwGg0wQ8DTA55Zqk89VrFBpTGKUJJHHdKnxCCILQunY6jiaKU3d0epoByOeT1C9fZ3zsgSVL297vEcWLDz6czakop/MCjKApOPrbGn/zAE+zvH9BsVqnWynzp9Uu8fOYyjlZoJXniXcetQciUBmlyC2qPHVtirt2w4LgQ1lFQSbRyiCLrrJmmKQgYDYecOLFCc2ZKFRxN+MXf+TKVamVaMVFUazX8kuKxx5Y58cgyJx5dxQ88PvbRD1AqhXieS7VWptVu2lnFAobDMQIIwpD1jdu4jkeapmzv7PHaqbNIITm2dgSBDfVdXp7n5Vcvs7jY4dSZy4xHYw4O+iRxbkOOpWB+oUO328P1XI6uzTPbqhGWQorC4GhFlue4vkOWpYSBz7Ejc2RJSiksoZSmUivR649I0wzXc21UAnaGc2+3S7NZY2Njk8FwSLNRpdOpW6CD4KMffBLPdbl+/Tbzc23m52ZYWZmj2bDn6cbGJjduWoMbz9NEUczN27vs73fZ3e3y6qmLRJMER2t8z+PWrV3e8+RRSuWA25s2H+3U65d4+t3Hub25zWQyRk/pe5MoRmAjP/r9Pi++dI6Dbp/jRxdQSnFjYwulFUkUM9dp8MUvv86HnnmSre19QLCzc8CNjV329vvkWc67Hl1hPB6hlcAUCecvXQIRk6Q2vmB+rsXMTIObt3ZYX79NURgm4zGFMfS7ffZ39xhPJpy9cI1Wq853PLXKsdU2nueitEulbM0KssywutRhpt3GDy1NNAwD+r0+7Zkm5y5cYTKOOX/hMrOzM3zso8/wyCNHGQ7H9PtDhsMRQgiSKAJTWD2XKdDKgpDnnz9FYaBSLhOWfMqVEqPxCM/3ef30eTZvbXP86CJgSJKYOEowBtrtJn7gIST8mT/9nezsHLCzu89wOGJ7a4eZdo1ud8hv/e5nEFLw7Ode4IknjjGexNzY2CZJbCxJEqc8Nl/D81wmccQ4ilhYXKQx2+KDH3yGhZk2P/Z7n+LYkVUuXLpOrz+xznyFZSbEUYIXBOQmRylQUpBlCZ7vYPLM6sdMMTWesSHcubHGTDeu3aLAZkm22jN88tkvs73VZTyIee7FM8w0KnzwPU/ieS6ZyfnYd32A48eP2FBtIXAcFy0F4+HExiFkGYZiWimUd74rzzNWVpcxGKSWTMYT8jSjKKylvZQ2tkUUBWHoI7Wc2r+7dwZqSZIcPh7vPKumwtwpYLWVhTRNMcYGoTuOi9Z2Yk0eshumtMfCFKRJZingJp9SLAuW5mdwXYc/9ZEPsruzhxSCer3KTKdlaeQUBKGPAGY7M8zNdbi1uc3y7CxSKTtZWMBkMrE5qcbQaTVpz7apBBW+O9BEkwjXs6ZA9XqZooBT566TpDme63J0bQnfdymM7Y+GgyFJbCmcWZ5jsunAf5rp9jDN6vrU/U3IvsEmpERI+VB9/N3NGGvo8XW3wmbYmqIgz2PatQqTaJ/FpUWMjDh77iuUvQYid1CZoVlp0WkvcXP9DFk+5NbOOs+8q40f+OQC4jQl8ANq1TKhp/E82wc6jsPS0gpK+nQPhly8cJZJMiY1Ka7nI5VGKYf19eucfPw9ONolTQ3rN9YRQpPnBa4bgFT4foDr+nS7XUye22MvDO9//58gCDxL/cxjIGc8GVjduSnwg5C/+1t/n7/yH/0ICyvHmF1YsgP9rzFAfyuAs7+Lw+XrP93vXPfu196+PGgbh80UxTuWh20PVYx42zEXpphW876xKQVzn4iRB7Gg3569eEh5PqzgHS4PPIx7bOPt693z/buqfF/X7/IhJ2bu1b5duftDbPfT3MEfgAt81032Jkf7W81cftsuAH/xL/4If/kXf5mPv01/J+76h5zO/Ia1KpVKyNbmFqPhmA98x7sohKX2OI51OrPPTjF1qDQ2V0oIG5YdxfQGg2mWmwuF4DNffJW11TlqjRqOcKhWSggkOztdTl+4wtJcG9fzGI0nVn8ECCTD4Qg/cPECWz5XWmIMrF+7jZKKUr2GdCRhxUcJm9GHyZnpNHADB6kLXMdHTIEpWI1hnma2wlPk1OplQt/DmBwFPPnIKseW5xmPh8x2GnZg5GjMoXqmMIRhMDVPUEgFvf0JOzt9KlWPLBF85ZVzrC4tMB6NyfOCcmCd6FCKa9du0Wm3+M5Gi2e3b7PYKqO1g0AwGg8ol0rkJkUo8AOH8VQLGYShBUliKrAx1qTB1ZIkSRkPR4S+i+/77B10eeTEURzH4/nnX+O11y/xN/7Sh/ie//Y3+Ot//t04nmLt6Bz93hDXcRlH1ulMKoFJcjZu7TI7U2fQ6zHT7HDuwjX2D3qUSppS4DBJMrQuiKMUgWI8GXPh4m2arSpCCQLP57f/9UvUSh6+73Hh8i2SNEchSLOcRrNGvV7lwqV1Fpdn8TyHmze3KYUBW1v7DCcTlpdmGQwGTMbRVCvkEngOWZrR6w2pNQJqjQqTKCEs+Xi+y9Zuj8cePUKaZly+chOtNc16lcmkTxxH7O4NKJdDSqHD7FzDDnKFQ5KMqFTKhKWQvf09FhYbLC7NU6lVUFohlaJeayAQCGGoVSvs7g2o18rMdprkeW5pUNLSaa+ub+G5UKn5KA1ZJliYb2GMda50VMDm1gGTSRcloVqqoUVGniQIY8iTjOFggnQCVlYXEdqjFGrKocL1A/JM89JLVzCZYWNzl/c9fZyZSoUTy7Osr28wHI84OOjR7/U5cXwZZM75i+scW1tma2uHN85c4sz5G9TKAa12gwKD67mMRzEvv3qGhYUOWiuuXd0gS6DRqDEYDm1+YMnHcX16Bz1+/4unqZfLHDk6jzA5SRRx7vwVqtUKX3nxDapln7W1JfIsJ/ADXj51jnq1xMLCHM1GHd8LOH5smSxLeM/TJ+n1+nS7Bxw/tszefpft7S57+z1+8geeYf/yy/z6v/i/+FfPvsg/+uV/xI/86A9ScgWf/9yz/I2f+mn+6j/+ZX7y3U/w6plrLC50EBQoUZAa8IOQyXiCksZSbk2O42pboYwTTAHakaRxhut4mDzn+Rde5djqKp7vkqWWUra6MMtLp8+xtb/PM0+f5MhKB8e3RkhSOzhaMhwM8Hx/Cu6sBm7UH3P56g3mF+bI8gSlNFmaT8GOrVCDRMhDzweJ0hLHtc7EeZ5NIyLgYPeA/e0DfN9WOYQops7CU52u1hY4ZjlSCoyx4O7QhElKMdXyWiqiRCAUZGk2NbuYDrSUBad5npOn2ZT6aZ08VxbnKFUrlsUxDVGPYxsL4kwdP2daDYLQx3NdfN+jVi0DVlertcNkNCEo2Xy0crWEKXKC0GXNsZpiR2u0o0myMWHJ5djaMlo77O0cIMjvZLE62sFzPTvJKa1bpskM8STmX129wns//u8hlQCyh+7Hv/Eu+h6Vu8Pp10Oa2MNO4T8EHe1eTSvoj2IC3ycZ9hlvr1MrVzn+2EdZv73OY48c5fb1bYi7MLlOOr5Mt3ebmkxw3Aq9CXzsT36Qn/7l3+BD7/4QjtIoWRDHE/I0sqYohc1VzEyOySRbm7d495NP4YchrhuQJjZGydUha2vHcAMHR1ttZqc9RxzZXFsB1vVaKRyl8R0wJiHLYoQUBH5AEsVIEtJ4iMAgM40OayRZzs/8n3+Xf/6//hyO38YIB69ct1q/aW992A6jBg6Xt16nB1TNHqJy981s3wzN2QMpnF+D2/mw1cp3vl7wzhTGKVns6zhRX2817w/S7PbE2/4PD9xhAVp9m5b5R649CNzxEG6Zd88EmKIgS62u6+3vfzPBnZDynpo7w1087OnfP/qjU/3d2gLTnvrOB8ThfglLuZNa4/sem9t7ZFFMeToTaygopFUCmMJyMLMowXNcTFZMCUCGcsnDD31kbsFQq1HBD32Espl0WR6zd9BlplVjpt1ESsXebg9hbAhtUCuR5YV11PMdlCspcuveqYSgXArxAg/HcXCnWXTWVbPAdTXa1eTGoB0Xx4N//ekvM1etkyQZ42hCrRpSrpQYjib4pRAjM5SrieOcNMm4vbXN/v7YghUpuH17k8B18EKH8WgChTWUSVPrYDgZx0TjmEq5TBJFFCajXvW4dHWdVrXGZLBFniYEfsBr56+wOD9HNBrzd758me9/7wqe5yK1wPVKKMdBOw6FkChp85p839I2teMQDVJGgxGe5zAYjRhNIgbdAfPLHbzAR+RgUsF4NKYgRYqCaqnETKfGpa0Rf+Y9LQ4OBmRJxtWNTSZxwpHVeXShuHVjj0anYvPy9vu4yuP0hassL3Q4c/4mayvzDMZDymEFV7kMe0NKpYAoynEcSbNR58rFDWbaNZxCUquUqTVqdOba1qHSl2RxSpZk+J5Hc6aB0gqTQyUsMeiOCH2fmWadJMvojybMLM4QCM14FCGlS7tZxuQTrlzdY36hgx+6SClo1esszLew5hke2zv7rK3O89zzZ5nr1EmTmGNrLWr1Fls7+9SqVZBWZ7h3+8AO9rUgzaxRyq31PZJRxFdeOEenVcZzfJSS7Pe61Oo1wsDl6uWb7O12yadW3mHoE0c5lZLHzEyDbnfClSvbLC20SEcp27f3kUKgg9DGKdRKtNptMmkNRvJcsXHzgPVbBzz66Cqb213KpQDHVUgnwPEqiMIwHkeYLGZlydrC/29f2OSpTonALdOZa1CpNpmf6xBNRtTrVaIoZnZ2Dj/QZHnCXKdNs9lgcXkeZSMMKZB4SnLx/E1WV1cQQuCXHDY2tmm1qsx0mmzd2qFWryMLe7wmi3nfex/HFAVKO2jHZX5+BiEKLl3cRjuCZqvE2QsX6XSadFo1Nm5v0um0GI1GKAGVSgkvCNBa4mpFrzfCDzyOHl2mXi8ThC5n37jO8bUlnnn8CN/9riaeivnvf+lX+Ykf/zGaM3P8vZ//Bb7z6Q/zP332Wf7aB55BCMmVaxs0mjXENMJFAOR2Zli7LqMoxvc0AgNCoXWBFhJh7DNrfnYGx9MIIZBCkUY5vu9y7PgCR1fm8ALHulpi8DyXZJLiBMrSPLXCFDl5YcizgusbNwl9jzzJ8Ryf5196heV5G2dhigzIUcIKN01hMELiOoJoHKGVg8mtNi7LKnA5sAAAIABJREFUc+JJxGQUYXJDqVymwCC1Jk7SqcuxQBQ2sP5wwCWlnD7kra7EAj2DFIL8MD5G22qnVNbmPUuNpWoKiKMEgdVTD3oRnu/iugJjUg56fYLA6v983yeOUygK+r0BZy5cIvRdgsAljiaUgpB4EjHojtne3qdU9i2FNjd4rsvOzh5/79Rpvmd5bhqZklkad6U6rfYkSFVQqlSQTCMPChgNJ7z6+iWWluYQSk4DlwtW/RLtP/tnrWNjId4+jr9vM4d0Ld6kuz0kLHzHK8KScm1AtTg053jrIu200Vv/3AEiby4PE4guTYx2bIbk5s0rKNPFF3vE4yH1hae59PKnqM3Uma1qXvzEL9G99QK+8lgfjxjoJcKZ93HyO36C3/idT/GRZ/4k2ShBFyk5yjrCmpxiul/xaIxRkkZrBtCMRhGOdskySZoXlCsl9rv7lP0SSTYmjScIkZNjcHzLQJDkdlJkMkL7lTcnRkRBFg8x8T6FEUhdpXDKhO0Onl/iX376X/E//sJPM8lhce0xgnIViUBJgUCCkneqpoenWgo5pUbeff7vcQnfxnH8wwR3X6/+rrhrvXd87gErKjE1yhN2yYsHKc/u2mRhgV1BMT2/dwG9r/MkHR7/g/R433h7M3D+zfD5Q7vCAgoDxX2iTg6DzZFopb4N7v6otQeCO5iGfj/g/bvA287uDqWw9JYS+bekcncfvd39OqMf+Qsf5+f+l3/CBxc7D9io/Wk6noMqCqI4YTQYE4T+nVDdw2+11B491aMUUwdHB+Woadi5xZBRFFGqlBAUdPdsOHaSpHjaIygF7Ozsc/r8Ord29/BdTbVeIY0ztLb6Nu1ITCZwXZfxVINSUDDojayDmpBo1w7Uev2RdX6T0nbQwrC302Ou1WQ8jqi3qlMQaukIWityk1tKnuvTO+iTJCmnr9ykEjgoJanVqoRhib3dA4LAx9EO167dotlsMBqNKfkhpVLAZDImLAW0mzWgYH52hjRJKZdchNQo12OhM4PWVt/4ve06u1WJp60G0JicNE0ZdAcEfkgUTXA9d0qxsgOmKxdvkCQprXadcrmMkALfdfEClyxLiScJpXKZ27e3qFRDPM/jwqUbLCy0+L5nHuHijXWWZ5t0uwMeffQI5ZJHrz/iypVNwsClPdfAD31cxyGNc8JQW2CmJa1mFcdRXL26iRIF3d6QwWhCWA4pcjszrqUkDH38QFNvlkmSCIqMQb9PAVQrZW7d3iUMfBACqQS9gz69bp80zUnSlG5/iFI2YLpaCW3umjGcv3ST2ZkqO7v7nDi+huNb6tnm1h5FnpOkGVLZ+3O204TC0KpXyLKUubk2t27vUKvWqVbKJGlGrz/EDzy+8sI5mq0KpUpIGPq2EiIcDg4GdGZqVGtlzp/bQMiCmdkmeW6mA+ycxx47ShTHdLsDpBScu7jBkZUOF69sEAQey4sdpBKcO38d19XUGxXSrEArwYVL63Tadbr9CVoJSqUyaZLSblZJkoTOjK0KeoFnKwAFFCYjjrJpLqM1yPgHz97gB9+/xuLCAoNRn0988suYbIKjJbV6dTqj7tHv92g2GlDAiy+f5+jRRetgJ+xgst/tWV2lVoShDyJnZ7PL8so8FIb19dvkaUa5EnLr5iadmSbD4Yhavc5wMEQqyXgU4QcBb5y9yhPvshTFRx45yqVL68y0G6yuLHHQ7eG6LmEQcO36BrVG5Q5tsN1ps7m1bQPBXWu4MxlH3Ly1iedrPFdz8sg8f/Ejj1E++gyB5zPs91jf2OSHvu/7+c/+j3/CvzO3AEIyN9+eRoUIlJDE0QRjcvv8KAxZkiAFaNcnS3NA2Zl/BUpZ6mOaWupmnuW2qiYFSZIRRwmXrq4TBj7lSpl4ktzlCKjI8xzH0ezv9GjU6zZ3ztGUK2VmOy2+9JWXqZcrlrqqbAUtyzKkVAgkhckZjyZopaexB46l92WG+YVZHNdFKmkdh41Ba/XWPqZ4k2YlAJPl1hU4mx6/MRRIJJIkTsiyDOVoJuPxHZOByXCElJJhf8iZ85c4OOiytb1PYXJKpeAOaPRclyiKmUwmJFNDqS88/wpRnNJpNsEIwjAAKXjj3EVMblhaWUBKQBS4nosxhjRN8fM+a80GaZIihEQJ8IOAKLZ00mxKpY2imO2dfepNS9mdm22hHHXnuX6w1+XqQZcjf+7ftX3V4Yl4mG71nr3iN7qm/JqfeNiaxMM4b0oMRnhIAc9/6fPUfMP+7gbN9hK1xce5fOEVSo028WTCsLuNEbDTL2gsvZ93P/N9HHvXMxg34Dd/83f56BMfpkgL0nyM1OqOGQ9ScerUi4RhlUq1jpaa8STC9z2UVnS7Q1xHY/KMIAjsxKs8BFYQhBWEkORZSjQZ2/taSDvBkCVMxiObXWcyTJ5SKjcoVRr4QYB0HP7WP/tb/MN/9nMsLCxTrdYQ0plOwsjp6EUcSlzfdp7FfXVvDzynf4jg7u0A62G/954g8AErv/0Yv5HjOzR1ulcV72HX/9a1+42UH2If7iq3fxvc/RFs30xw502dFr/V4M4wnZV92zbvB+6klHz04z/0ZgXvHu3QAttkOaV6lUo5QORwcNAnT63lsa32HXKkIcsyjDH4YUA6pfeYKbBL0oRqvUKeZwz6Q6rVEo52UVKRJobT569wbG2ZY2vzHFtdpFYvM+j2CTwXk+fYEUnBq29cphwGBGFoc+w8n/F4jDGFBYF5Bsbyv7XSJLGlUpk8p1WtoLWi1qggtDUmkMICU0yO1h7xJJnGPWhq1RJPPHaE3BiiScyXX77A8twcUgr+zedfohaEfO7Fc5xYnuf02avMdhr4oYvrKTtjLsV0AFngBx6TDErVKgUC5Wgcx2E8GLO71+VnvnSBH/nwcQb9HibLeOGF1+nu95nvzPDb//ezPHZ8lb39/Tsh8pVKic7sDFpbfZBSAs+3INSYzAYRG3tdypUyAmH1hNUqk0nML/3m86xUYW62xdVrN2m26jQadVqNCv3BiFq9hChga2sPgWB+oTalyFjL9cKASa1WaGl1jv5wSGumRuhrrl7bRKDY3ukyO18hTib4rsOtm5s4QhKGAcPhhEolYHP7gNube2zvHOC5+k6MRppazZjnKVqNCsP+ATLwcX2PWq00DYgugbDn+sLFdR45voxSVoNXqVbsoDxJkVLh+rYKPRxHGKMgl1y+chslBfVmnSTL8bRkdrZlaWnGas78sITnO7Rmmrxx/jrHjizQG4wol30cx0FKxWgcUamW8IPAmrxIOHFsgXE0YXGxwUynZa8L0JltIpS1/Z6MY5SExfk2g3FEo1kjmkSUSiUuXrrNzEwdKe1gSmtNkiS4jgumYDAYEJTKfPH5Uxw9ukC5HBBFCe1Q2TiRqs/a0jzHjq1QroSMJhFxZjOnhIAst/dnZ2aGne099ne77O8PePGlszx6YhUhJNs7e5QrIb1ejxPH1xAC0jRlf69LpVLmzLnLPHriKKVymX5/xPXrt1heXuTa1Q06nTZKK5584ihKSTwv4PXXzzM3O4sz1TSdPnOZcimkVCoRBB6myFFKsrm5Tb3VoNmqs721Q7VWJwh86tUy3W6PF145yxOPH0dIBSh+75O/w9GnPszKygLPfeULXLx8lp//uz/LT/y9X+LjK2tsbG8xOzdLr9vHC1zrQGgMaRJTKgWMRyMc10EojVIB+7t9nv3S8xxdnSeKImvCVBgbnaAlubGmKuNhxLNfeoWFVpNKJaRUChmNxqRpihQKjLiTFXrx/HX7G2vWcVyNERlplHPr9jaOUgz6Q+q1OtNMc/IkJ4syEILuXo9r127z/MunOX5khfEg5uCgS6laQjoSRHEnMkUiMLnVK1u9lbmjkxZGcOXSdb7y0imOrixRGKtHO/PGRV569QznL1/l8UdPUEyBfjSJ0EqTxgmvnDrD6tICS3OzhL6HUppGrWap0TU7iaWUIo5ifM/HcRRZlrKyMM+jx49aloNS/NvPPUen2eDY0RX80MH1NaORDbhP0gTtWDrnz3z1FD8wZ/V79lkQTqutmkq9RBJZDbUXelZ767v0+0MLEAuDEJAnKfEkZm1+ltJ3f4+t3HGfTvEe7Y8yuDPCJceBfML1i69Rcyb0e3s88thTFLU1lk+cRAhDo7OK1zjG/Mn388QHf4jF5Q/QmH0E5dVJizGXL13gmL+A9AMy5ZAnEclkCCbH8X3q9TZ+UKMoBEpaLZ69FwTjsf3tuJ6DkAXKUeQZbNzcIAjLU5lExpWLZ6lUG2jtsnl7B5kPKLIEVwlMmjAZDdB+BaE8xnFGkhT8nX/+t/md3/41HCegQCGFixCgpLTOlYdZcfc4V38kwZ15ZwntYUDQt8HdO7Z+j9e+De7+f9G+Frh72IybQ9MO+Xar2bveP1zMId3zGwR8d+iU93r9futIycryEnO3rt9r5+/SBtiBLlLi+t60uiUYD8e4vrUDT9MMKRTKcZBKWIt7Ke3ss1AIJVDaQQCjwYhKuUyeZRS5IE1y1m/cxvMc2s2a1UXY3AX+zRe+ytGlWaQQuK7H1q0DpBQ06naGf9gfAAXlcgnPc3Bch6IokEqTpjl+4NuBiFQo10Ei0EowjiKKAhu8qyRpkjAajQmCgKIw+L7G8zRZmlKgMMbqwy7fuIUuChqNClfWb+MIxRMnVgC4tbPH4lwTKKzjl8l4+Y0LtBsNXM8hTmLCsGoHYia1uVC5gCKn3qzyI2uL/Plf+Rz/wZ9+DxLF8uIc8wszVl+YJtRqFZtfNR1EKUehlMPNjduUygHReIhQGlGY/5e9Nw+2JLvrOz95zsk97768fam1N/WCFhjMYjYjAQIMsiUhPLYxEOFh7HDMeJmJ8UzMjB1IAtuMMd6CmJmwPcgYYbHMGARCGIGWlrpbvVR31768qvfq1dvf3XPPnD/OfdXV3dVNdSOwMf2LyFruzcybmTfznvP7/b7L1AxZf1e3tnYYDid85vPP8Nij9yGkBAHf8q4HqFVylCmman0KQ2qD6izP8XwHgcB1HJSl6B0OGI8Szl+6yfIULtVs1blwdUN3uzyb/uEhlUqFGxv7zM20GE1CwjDBczyuX9+l1Wyxdn2fWsWh1W0hpeTm5h4P3neMdrNCpeKjlOD6xhYlJQtLc/T7AzzP5dKVmzRbTc3PQDCZhCAE27uHVHyPKIyxTRPLMTk8GJKmGY6nu6s3N7YJPJOihGvXt5hfmKHIM2zHpN1pMByOKPIc19Yw4iTNmIwm2KbFzZtbdGdb5EWOY5pIQ2IYBaXQHeosy+l2moxHY1zXIYm1+ffvfuFFHn3kBFmekeclQmnfMkNK0jRFGopbW3t0O02Uqbh1ax/KgiSNqFU1/PGoIzKZRART5VApdFW6LEpMy6U36FOtuhhC8FX330+tWuOwN8arOFiuw2g4YP/gkHanjWU73Lh2g/39AfPzc9OOTsHnv3iGZq1KteKTxAndmSaTScit7T0cW7EwP89oGHLh/BVMabC8tMDW1i6lYTA3P8ONG7fY2jqgO1unWg2QwkAqg61bOziuzfr1WzSaDaAgDCesr2+RZzmOYzM3N8s4DCnLgsCzsSyTaq3KZDQmSzUcr93Sfo22bdLuNMmyhJnZrk5agBPzLT74t/8R3/We9/Ad3/Ud5HnO0vIKP/9vPsbHXnyev/Et30IUJtSbNQa9AUHFZTKJ8DytoGl7LkmaQakVfZUp2dzeYWGmgx8E0w7/EUTOmFrGKGzXoep4XF6/wUMPnKAoYH19mzAKaTebKGUxmUyQUjIz28axdVddWVqxV5omy8tz1Js1Gg0NS88pKIucJEn4zc98gVMnVnBcF89xqXoun33yaTrVOkme0ug0GA1GmMpESkkapzpJxZiaV5eEYYhlTb3s8gJlmsRRzPX1TbqtJoaEVrNBEsecWJrXXDyh+X2u43DxwlXanTa2VESx9qczLcXm7i5nL11jY2uH+06sYoiC0XBCmmRkRYZtWWR5hlexmUxGuL7DjY0NVuYXcF1HUxykxLJMbMshywpc19PHqEwubdzg6+bbKKHN28sShFJIU1vdFHmB5dgkSYLjOpSGge3o7ucRnUpisH5jm5lug/JdX4OQ8lXJXVGUU2TJq0fLIwGLl0HDXmdMfSneXHLHkZjE7/MppaEFj4QUr1nBNaWLNMBMe/yrn/kwx5oZ1ZrNsLfD/H0PY0qDwe4turMn2BsULB+f5zd+7VfwVZ9Rb5d0dIAx6vMbv/47nGguICwDJX08u4ZUFmE0wTRNHMelxEQpPf7meUqWZbiOq5EGhRbgEkIQhiOU6VBvNkEYSFEgjJJ6vY1fqWquv2NRljFZlmkInlBYtoewq7h+BdO2+egvfJhPfOLnMYTUpz/FEMrbdgR3XqtXX5viCGv4RqO8y71yhwXCa6lsvvHP4VXJ2133f4+7urcXdbzZ5O7omITUD58Q8mU2BG8m2bubpcEfPN5K7v7Exu+X3MFXvrJQllOfuT9CkRXDMFhaWuT9H/lpvnexrSf9+g3Kadfp9vEdVX8MA8e1iaMIaRgc9AYIg9scjxJI00RDuoSE0ri9H11RLpEIdnb2CSoBezuH5FnOzEydarWiFeyKjBKDLCsgzel2G+wfDBiNQqrVGrWKoxXzxiFffO48zcDHC1xKtJy5MeUz/N6XznBscY7xcAxFgbQsDEqiKMS2baRlUuYZSRRjOTaWoyccSRwzCcfTLonil37zS9x/fIE0y5ht1Zib65BlGfedWKLTbuC6Dk+eOc87Hz5FGIcopf3DMApa9dp0sqiYRCGOshlPRrqSOfXxSeMJaZZhWiZfXQ/4xAsvstqtay6hJRmPR8zNzuB6rpb3lpI8z7AcG2GY/PpvPE4tsFlY6CKkSRLGKKlAKD2xVJJ2q02roT3iNje3aDa1iMgP/fMn+d531AnHEcbUpNv3PSqBz3g0RgnJpSsbzC10CFytynjmxXV8V5EXKfuHfU6cXMSZXltR5hwchgyGR0IoIxxbsra+Tadbp9mq0+rUuHHjFo1GFQxotxpcubJBreaTZxm7e4esrs7TatWYhDH1WpWiKFlcnOMzv/ccNc9hY2Mbv+LiBz7Vqo9RGvQOtUjK3sEhWQbelPszGk7o90cIzRRlbratIXm2ietpvmaR5ZhK4vk+eVGQ5xm2YxNNIvYODvE9bar+uS+8wNJ8l6vXb7F6bIHReEKjUefi+WssLs7x7HMXiOOELC2Yn21iKjmF09qEk5gsyUAYUx6jpFbzUUry4rk17ju9ws2bOziexLIspNKFB0OgYbeUXL2+Qb1Wod8f4nk+8sjXkBLTssHw+fVPP85su6NN6V0Hx7W4eXNbJ4WGYGd7l/vvP8Xm5jZe4DEc9Hns0QfY2txDCMHGzR1OnlzGtk0W5rt0Om36vQHD/pCNzR0WF7ooaXJtbZNut0m90eDatQ1OnVzBciSObVEJPNI0o9mqUxYGz565xMJcB8tStNo1RoMJnuewu9fHcW2CasDmzS3WN9aZmW1jCMFzz16gGvj8zmefY2GmQRzGxLGGfM3OdZmMQ9JUG2ELw+C7vmqZH/5f/wXv/rZv49z5i1RrNWa6XX7iJz7CX/mZn+F7T57EDzwsSxJHIZ7nEYahbkELheW5TPoDDKPUXnRLiyRT/ppRGoBgb29fd5CmEEghDCqVCvedXKYoCqJJxMHBgGajipKK3d0DhJD4vkecRChTd93BYG1tnWazTlFkmhdbaL5iKUAqDStcWZjDnBaglDK1EJUA13aYXZoDqSHqRqm7FUmckCWpNipH70cYQic1hoapWZZJp92iWa9iSElR6m5uo1bF9WyE1AWd0VCrEXqOR2kYOJ5D4HsIaeD6DoHn4Vo2zUqFai0gL1IcxyWKdDfUdLR4hvafs7FsG1MoXjh/ieXFOUoM4iShyAoc1yOahBzs97S/niH42XPn+HOr8yRJSp7nKNPi1uY2QT24zb0xhObPHfHgtbG5tvEY9oeQl6Rxwqd39njse75XQ/fhZfO7oyH37sndq9/7o0juskyjDV4rCorbJu6vZchuFCV5lvA3fuQHaPsFD69W2e5v06j6xIXF4GCPiuUgsNja7XPj8uM8+sAS49ihPbtEfzgiGu/x4HGP/esenqfI04I4TbA8G2mY9PuHFHmJITQMM05iTEthKos8L8HIdUELLcKWZRmW6VOUugBsSoltWmQFZLmmdMThcAqFtoiTlFq9jaFsLNvj7/3c32fmdJO/9+P/C/I2l46XuHR3u6T3Npe/p5BHxZ2XJY+vc0f8Aadzvx/37k3v/g+xc3eE+LqTH/eVSO6+cvFWcvcnNv6gyZ1xlBzda2WlKF6z83YHzfNlS1EUL4N6vtZ6dxb1XrVOWVICH/iB9/MDP/lPcbOQU63mXc/PuOM1wzCwXRfbd8jCWPPs8gxDSQxToQw1Pa8ShO46SKl9iKIoRCmTJM4o8pw4SWi1q5iWqflxSiKlFidI45i187t06gG1RoUoTvjC05eoWBa/9fkXePD+Ve47NoeS2ny0LECZBnmegZAcW10kyXItaV3kJLGutjue7nIopbuDUimKvEAqQRKG2ijccbBsF8NQnF6ZR0kTx3O1ulfV16qg0+/Bdi2W5rs4vqe5QaZFnqV6QuRoK4g8SYjDCMe1MZVBGmvfJ9fzSJIxnudSpCUqS2iXkupKDdc3ycsC2/G0n61hUJYFURQipYFQWhluZbHD7kGP9myXPEsRSmI5Gg4cJjr5EEKxv3ughU2qAWE4IKg4/JlHV1hf36biKZrNBjfXd+m2W7zw4lWMPGN7Z4dH3nYcDEGS5Gzc3KFRD6gEPoeHEYcHAxZmO1y/toEE4jhn49YBe70RK6szGBJm2nMEroWBgee4CJFiWYrJaML+Xp9LF2/SqATUWg0uX7lFxbeJokPybMx4FOJYPlJZFCLHQjIz28H3NPSqLHIO9gZUqxX6gxHVakDg+diuwrIVRZETjhNG45j5uS6FFLiBN31+BGVesr9/SO9wwNr1LUxL8MTTF1hZ7EKppeSFAaZZ0OsdcvrYIsqTLCx1MISBqRT7e4fMzbXo9/p0uw1arRqNVoUszTg47PHCi1dZWp7FcnSCWJDTatXY3z+kWmnx5S9f5J2PnmDj5i3uu2+VRrWCMBTX1m5SrwaEkxRRCsJJzM7OgPn5LmVR4voWZZGjhIkpLf7yv3yBH/zmt7G6vEC92WDQD/EchzwvSLOUZquBbStM0+bmxi3SNKXdbBClORTgmIpbmzu866sfxlbah82QBlEYksQxvcM+lmkxO9NBqBLXlTSabTY3b/HQQ6dZu36DZiPQQghSYto2RVESRxNarSqOa5PnBaZyaLRqKCXozjaQoiSZJNSqAds7+3SaNYaDHt3ZBap1j0ceWcXzHIoctrb2KPOCW5vbzC/MEIYhrmOTo8VR5ooRf/Of/Bv+5//pfyCKQ97xzrdjOxbf8qe/kR/9p/+c950+jWU5lKVgPOoTuE2icESeTRBpiVXzmAwHmp8nJbbn6C5ammAKxeBwzN7hPr7vYZkmk8kE29KFDsvSna16o45lWayt32RuZgbXtRgMe5qnh5bkj8OUC+fXWJifRRqS8WjM1bV1fNvBMhWlITCkwrQtyAqSOMW2TaQhaLdbBHWf4WCAa1l6oieMqZjNVP0SwZe+/ByLczOkeUgSZaRRwtraBlka4wcOghKKAqPU3bM0CzGV1J3rLMNxXIQhiSYRRQFPfPkMp06tkMSJhgrbLn6gqFerRBP926Z5lxVsxyUMEwypxU+SJKLICrIsodmsa1i6kPzKp36P08eWcWwFUmBaFs89f55Oo8kvXjzL9813icKUYW/McDKmPkVsUORkWTZVGLUAGE4Vf+MoYhIOqdcbFFlKGI/pthosfPu79Vj4ysnrKxK4o07eVFcMA22bcSQwUb7K3PiuKcVrvPbSYtxtMfSYYhhMu093H9UNDHa3t/FcbTVglMXtYz1axhM4WP889aKPp2BxucX8sQcJI4Nbl57n2plfwwgSJgcHZHvrRFxnbuUxKkuPIYYe+2svMhk/yaU1n6YzC0KRZCmOFwASp9rEDVpEScH5F55EpRNa9Tq5cjBMm6xIAYFpK5I0Jkm1Muav/von6PX36HQ6SGUTJilFKbBETjwZUuQFRRFOobg+eSmwLJePfvwn+PgnPsbDjz7MbSP4OzpcaaY/ryh1Un7bDPxuk6O7xN0Myl+53NXWevoPeQdCqziCUN4RhjBu24vcc9wFgnm307ibafrrJYGv11l8ZXJ3t+vwumeguwC3j+d2IeZNQjRfdcx/4LjL83S3ruiReMqdyx3P/ls+d2/FH4v4pV/9RT620fv9V5yGHnwM6t02yraZTGL6OweIMNGVLEOQpJp/ZzumTrgMLQZQliW1RgXXdfB8G6EkYRRpPouUCGEwHoxxXZfES0iMmDyP8DzFt3z9AxQy59EH5zEMrQXqVwKUqTBNyWQ0AcMg7PWJhyO+/PSLfOmpF7m+vsvmrW0MoVXhwGAwGJEmEVIZCAmUBUIZJGmsuQBZwe7WAXESk5cZn3n8yzieNR3cpwNKmtE76KOU4OlnXiSNUz3Jsmyiieb6Hez3KcqSSrXCaDLm5q0dsiwn8AKyuEBJXQUNo4QiN1itt/nr/+fnUcLGVFoBsiz1YKbNmH2EMEmzlNF4QFGmPPLIaaJwopMWIZmEenAMggDQP8hRFHPt2jpZltLrjxgNJ/i2xU/+1jZr6zvkWc7y0gx5UWCZim63wXiSaEXNLEcI6LZrrC53aLYCHnhgkYceWGHQGwAQpzmTKGFlqUu3VaVIC3zTZvPmNuubu1y4ssF4PCEKU/K8ZHP7gG63TncmwHJgd3uPlaUuF65sUQlaZIlFo16nFCNMKyaNUxaWZ4jiCMu18QOPNMvxPIfzF6+R5QWXrq5z5doGg/4Ex3HIs4zheMixYzPk5PieS5kVDA9HFEnBeDjm4qUNlpY6RVWoAAAgAElEQVTnWFmdodtt823f9E4ODgYIIekNRlTrNaq1Bn5Q4XAQMhpOEIYuJuzv9aCAONb30WQyZjge8ZnPP41tWwxHE775G9+uYX1FQZ7nZGlOFMXaeFkYPPjAEmmW0R9MuHJ1g8P+hDBOmJ9psbF+i93tXTa3buEGNq5nsrW9jWVr30dttpxiCNi4ep4il5hKd7aTOOL5M2cZHPSZn53BkoonnniOJ558gfm5Lltbe1qFUZjav65WYW6+xeNPPE2WZ4xGYzY3dtjdPmTnVg+pJNdubLF5axvXdalWq9hKkYQxSRQhgF5vOLX9yCnynLIscT2PTqdNWcLNm1tIaSCVQivyS0xl49d8DGXQG02wHJdao4U9Nf2eDEP6vSG9wz5RnE7VGC3iOCYIfC5dugZT6NcDDxzj3/+d7+Fv/40f45d+6dcoc8XP/T8fp9Vq8ee+5zv55PPP6ntZKlzPJ1d9/KBKmSlQGfkkptGdochTZJlQpgX5tEBUipL2TIPV1RXdmchKirQkz4BSsLd7SKVSY3dnnxcuXMR3XW2fkOdUqzXyFEAwGYdkWcrXff07mIR9DKOkXm9w/+ljnLt2gaLMdFfQEBrtUJZYU9jhlWvX2d3dp3/Y54lnniechFPP0QijgFF/xBNffo4sy1jsdrXVg6mgLBkMBpy/ep3ffeIZsiSjyEu+9OUzbG1tMRz0sG2T0pgqHZc5o/GYgoLdgz2uXV+nVa+RZzlSKZIoAUqGoxHKFNQaVaQlEFJvKyRa2VUaiFISBFXKUvMum806+bSwZyqJ6zn0e0MABoMh41Bfn3cEARgC27aoNXxG48ntLpBAYJmmVmLWGddt+sCgP9HiGqUgmiR0mg0+fH7jKwjr+sMNIQyEUK+7jhSC2dlZDRN+jfOqOyG/8cs/x7HlLv3+HrmRcvH8U2xuXKA0UhaOncDNbiLCC/S2nsITBXk0ItlP6I+f5ekXHqfW/CYe/doV9vYGmnvvemRJTJ6lTIYDlBQ0Gg3e9thX47bm2OsPUFmImU3wTIksBapUGIXANT2KtOSdj34ND9/3KBU7IOyPIQWTnCgc6w6tZeF6HRyniWlVsZ0qf/9jH+bjn/iY5hu/RpjqK+tL+EbjzXjR/WHGf07H8la8FG917v4Txr107m5j41+jkvCGKgyv8wDeWYm7c62jaszRclQREq/YRjNq7q21/oEfeD8fuJvAym0IzEucwNvnLgWO6xD4Pus3NknDEKkECEMb9B5xHKYcFaUU4Thke3sXKRW3dvZpt7TAQF6UJHGCmirjpUnK8sIsnuNCLiAr2b51QKMVMD/fwZSCKE6Io1Rz54SeXOR5ThIlZGnCqWOLuJZFu91EmQaTSUhQ8TAMtFS5FGSZluyWUssmS6ko8pJwFPKZL73Aww8eI01TFmZb+IEPwmAyiFDK5NbWLu1Wg16vT6MaUGtUEUqQFQXRMKJ/OGJ2voOyTIajMX7Fx3Ns3dFD8IUvnmVhpoNpWQz6Q/b2B3S7bb693eFvf+op3vP2Y6RJChg6KQgjJmGI57lkRY7nWQhZIqSBsmzKqSnxES9UmebtCnS1GqCktq4YDMd0u23youQ9jy0R2BGe7/Glp85qFUTPoVJzSdOC2ZkZbalRCq5d3+T6+hatpkdZJhS5FsrpzrSwHQvTNNk/GNBp10njlAsXbpDk8NBDq/i2wHF9DCGoVCvUqwGu62gDcSXY2R1QFLqLtLs7YWFxgZ2dPUyrYDQesb5+QLtdxzBKhBTapNy06B8OmZ/vcHVti8B3WFmao14L+OKTL7Cw0NRdFsfSzwmC3kGfNEnJ0hzDgJWlGUqj1J2qQk+ubNuiPxiyvXvIzFwbIRR7ewOGo4g8zekdDmi1mlouvyjpDwb4vku1WsHzPeZmW5w7d4NHHz7B/mGPSlDhU7/9FK6taDSq5EXOzs4+tm3xwrlreI5iZXV+KrZhsXlzh7XrW4RhzH0nlzBMcGyLKIqYm+2iTA3rjcKIIAjYPejxDQ+/nS984QzHVxdYX9/gxIkV5uc6PP/iRdbWNvEcm+XFeZZXFlBSczrDScTu7gH1Ro0sz+h2W3i25gJ2uh2ef+EKplQ88+w13vXVD1INbPIyx1SK6zc2Wbu2yc7eAePRmDwvGAxGdLstwEBJkzwvKKb8W9s2abYaSCXI8oKN9Vv4nofneqRFimlbnDy+rC1YhGTzxhbPPHeO5aU5LlxcY/XYIvPzM4yHY2r1KpM4AsOgUathKkkax3ieQ5YWfPPblvmX/+FxPvTBD/GLH//3fPd3v5cTJ07wzu/9bj744x/h3XOLuG5AmZtEeR/frxCNBaaC8WRMELgMeoeY0sF0tC/laDTCtBQlgv/3k7/DyZUVbt3c5uKl6ywuzHJ4eIjve9SqNRZmu1SrPlmWY1sm/f4Qx3YRwtC/bVlKkWeURsGtrV0a9QaIXNsuKBMDzSsrs4Qs1wqYea492377S0/xwIlVluZm2d87IAljgkpAGIVYpmJupsN4MsFzXbI8hrKcfhcpp4+vMt/RcOHPPvE0X/PoI3S6DW0/YVtIqTg86OG5rkY8GAamaTIcTlhemMO2TUbjEb7vYTselmmQJTr5PewfUq9V2T/saSExYVAUGTtbe7iOg2XaRGGEV3FI4oz9g0M818Y2p152lklJSW3aWf8XFy7y7fU61ZpPVqR0Ox2EkGxv7RJUfEzLup2w5VmO67paWMpQOJ5FFmtECRR8anfAn/1z33dXI/M7uy2vNRS/Csli3Dki32vn7pX7FHfMIV65/utvr8+7vOu2RVkShhFP/PYvk4e7hIMhjz78EHG+h2tJlpcWCao1vGoLs4jYunmDTtPDq87j+W0CNcOnfu8X+MAP/VUa3cf46D/+5zw48xCWY2slVSH0/ZgVUOZEcYjluvj1Nhgw2L5BkU+9EouEJBlTFPG0GKvtkcLJgPF4QL+/j20rwtEA2/UoihLTdslLgXJsPv5r/44P/d3v5y/+xQ+R56VW6LzrBXmNS/gGcpt78e3+fTtWr/GZR9SUcvrnSx7BbyBeC5pV3n2dIyG/103w7qFzd4+bvfTeH8OE8veDYL4UL53bm+3cvZXc/SeMe0ru+Aq2ie/xYXi9tcTt1vcb2+6V8Q3f8A08/6lPslCtvPTilAto3MEJfNV5GwadmRa9wz6T0YhavYY0lX5AioIszyjyYqpwZmKaEs/36HabYGi5cQyD8Wii+SWmlv0WUnDm+Us0goCyNGi16xz0BviuVlMUQuIFnubVYVCSY5oWRVFq9b080xOBI9NlUxO7e4cDXMe5XSEfj0PyVFcNj7yFsiTlbadXuL6+RfdI3KKEvCiQaG7fpx5/htOrc9QaNVzfoywKegd9HMfm0qUNLq9vsTjTpqTEC1zyXEuQh6MJGAKjKKlWA90dsBUGBr6n+Sr/4cot/sw7llFSMBiM+dzjT9NqVpmZ6Wh+gVTkeUqSxFi2gxAm/X5fe+WJI45DQZFrDtm5c1dZXJzXvotS4AcByrLI84wP/fTjfO0CzLQbrN88oNupIWRJxdf3QX8w4FO/fYayLPjqt99HliUYopz6c5VMJhEAru9iTXk+1VqVxYUORQmVioNpGJjKYXfvgKDqs7tzQJpmTCYxpmmytzfkkYdPMplMmJvrEMcpti0Zjic06w2qQYVwErF/0Gft+hYzM1psAaMknER4jkmjrtVQhSiY6VSJ4wTb0fL2ly5tsLG+y8K8hlQOh2Pa7SZxEuM4DhgwHE2myqOSKI5ZXZnHEAa7O/t0Og3KPGdutkO1GhBFCVevbnJ4MGJja4+VxS5KmVy5uoFhGLQalSls12RzY5dHHjqpzZqzFNM0CVwH1/OZm2mgpCBOUvqDMXEYEoUJnmvxtgdPsXZ9k2animEI8rxgbX2bVqNGONEQ4rIs+LF/dY2/9n1/ihPH54jimJmZlpaQn4oMLCzO8twLF1lZWcCyTSzL4rDXw3Vdnnr2LCePL+H5Llmace78VVaXF1GmwvNs0iyjVfewXBPbNllcmsO0LbqdNpQFp0+v0uk0oCxJsgzXsanVawip6PX7PP/8RebnZ0jTFNu2KMsCpRSVis9vfvpxZjoNojDmP/7ul7nv1CpZoiXu67UqzWYNqRS7+4csLc8jpeKLT57h+PEl/IpO2ing7IuXoCwoypygWuXKlet852OL/PD/9jP85Ec/immafOQjH+Yd73w7H/rA+/lLP/VTvO+BBxGGwpApw/6IaqVJQUoaR6SJLjKVeYm0LKRSmKaFnCYBp46tUBQlzWYdUyr8wMV1bZSSSCEIwxDHsRkMB9zc3ObW7j6L87OUFFrGP82xLJsojJmbnyEKQ+I4ZjKJ6B0OOHfhKjOdFnkWIoRWSRWGQRB43H98BdvUhZQy15Nd27awHa2CKpXEce2pSJIgiWPytKBWr5BlGY5t4rg2vmXjez67+3sYZUlZFiRhqn93DUFRlEghieMUxzRpNOtMwjGVik8UxyjTZTQa4Du+Fr8wCizTpl6vMeyP8AKfsigZDkY4rkPvYKALb2lMkmSEYcTK0iK1epVz5y/TrNcJqi6e77G7u8s/++zv8VAuWF2e1XyuKKXIc25u7WIrhRe4U9ENXdwcDbUdTjRJsBxFkRUkUYjjKH5xY4/3v/99r+tR+3rD8MvHu/IVf7/Z5O5u+/wKhCGwTMVMt8GXn/gcDxw7xfz8DPv7l0lywWg8IU1LjFLg15cYTxKSNMarLpHhkMUFMyvHMb0OCJdzLzzLYnB86l+pFZ6zNEeZ5hTzCFlZMhqO8FwbUeRMwjGD0ZAiTynKnLLUyrRQEscRtuPi2J5WNaWkEtSwXQ9paisD5dj8+L/9cf7HD/91TFtNx+o/XEDbHzi5e5145Xf9BxJbude4k5Pzeuu8Iv4wr8N/rvFWcvcnJP4kJ3eVaoX//p/93y/v3r1OcicKDVEshcCQgnqzwmRrk8PhmIrnIZQJRUmcRBilIIkyLFvh+TYgNGxn2k06sguwbOu20tskHKAE9IYDmu2AYTTCUT5PPneeE6vzCCUxpupMJdz2eJKuozl0cUxZ5FqNVGmj6jzLMS1TT0ajlP29Hp12S3MBMw1rJC9I4kgnScomywrd0StKytIgT7Qs+gMnljCEtoAYjWNsx8bzHdIopttoMddpceHqDdqdOlmeo5RLEkY4jkmeZXiBx2Awvj3pDwKfOIpBFXxrp8VPf+HL/Km3reK4Fs1GgONYmJZiPBohpIMxxcAXBUhlE4UTbNtGScUkDLHsI9NzicRg69Yu9WaVy1fW6R0OyLIEqQy+/oEFug1JfzDi+LF5LU3va8GWtbUthIRHHnwA3zHZuLnL0pIWx9jb7yOloN1tMx6HmLZFb79PmKTUW1WQMB5H1Gs+ly6tEUU57a4WcymKAqUsPv/4ZeZmWjSqHpBjuxI/CNje3mdmrsXu1phud4b19Q2a9SrhJGJ1eZ7PfvZ5Oq0aL164ju/azM51CCoBNzd3MGXK2sYmnU4TIR1ePHeDmWYVSyk2NnY1hEwJXM/h/MXrVDybNIpxPIdBf0SlGuBPuZlCwLkL15lpN0gTLVazv6/92fKsYK7T5LA3pl7TgjNKSFrtNkWW4ngOru9w9tx1VpfnyUoNVZRScrjfw7RMzl24xtLiDKatk4iN6zdZXujSaDbIsoLD/oR2p04UJVSrNap+MOWMjfF9jyLP+cSTu7zv644jpCCOIi5dWsNWkrRMaXVaIAQry/NIpRCm5s5keUG1XuXUiXnGkxGO50JhsLG2TbXqs7Wzw9xCF9dVdDpVfuszz/JVj91HkkZTTonB733xGU6fWtFQSd9lfraLlJLxOMSxbRzHYdAfEkcReVGwcXOTVqtBGE4IwwnvePvbkMLg0sVN8rTg+tpNKr5FFIXkZcnVazeZXZhhfnGGUpYUeYlrKZrNGqPJGMu2uHnjFqIsaTZrNFp1wjBkYWGWNIv58193mr/wd/8ReRiTpClvf8c7uHL1Cj/6Iz/Ef/tT/5DvvP8YigqGyCnNEVEMKos1F9etQBqDkuRTQZUsSimMgvFowuH+ITdubHL+8nXmZ5ts720T+C5xHHHmxQtUfB/fd7GUxfzMLIYsiZOYNM2oVqqMhxPOn7/BzGyLUiQYpUIYik9//klG45Cl2Q4lIY7lkKUJBpDEMY6tPR2LomB3dw/f90iSFEPkRFGoO9sG7O7vakETwyDwA+IkIi8yTFOQpgmea3PpyhqWZTE706XfG7K7e4iBwHVcDKG7M8o0eebMOVzbxPUchBBTvz/J8+fPokpBGMYEVR8KY2pPISgxCCcR7bb+vuv1BpajZfE9zyPPC7RipsC3HbyKj5AGBweHNOo1nhhN+MFTSwS+T54XKCnJspxa1cfzXQxDkGYJSknCsS50pEnKb33+Gd52/xJpkrK7t0e97vIfhwXf+2ff+yciuVNSozVy6XK4v0cgTF44c4ZGNaM+d4okzbl0/iINr05l9b04tS7PPvc0q6vvwg3aHE6uMr/6HbjVFvuDs/zMP/wY3/TOb8eQgizX6sBCKQoK8izRcPOsoBZ4WgjGsgkqNUylMIUiTRLKAhzbQ0qTsjRRyqEsDQwpcFwX169TCO3VKA2Dj/78T/Krv/xLzC0so0qfOCyQ5lvJ3RuJ8rUK8S9b6dUvvZXcHb34VnL3X1zcS3KnYWrlEev5DUVZFBRlqbefwh1fIri+9mNzL63wN5vclYUeaClLPvihD/CBj/w037869zIRlTvj9v8N3XEz0DLbhlT4jQbD3pBRf0it4pEKA1tZlJS4nkNW5JSI275fAGmioZWGgLzMKYqc3mGfZqNOmQvKQnfXqoEWM1mca9/2Q4rDEIqSvDAQwiSJI6QhEVJSAJajZbaVLaEsGfbGiFLw2cef5/jyAo5jIywDoaT22RICw5iKKUiDySCkIMMQJZNQwzrPXrhMp11DmtpoeG1tU/Ne8nKqrIf2QZZQ9X2EEJovYuRESUyWaZsGKQ0++ekzKAFzSx3yIsH1LIzcIE5i/r8bPb7z6+/DEALHsTS/qgTP8cmLDAPtOyakQplaGMFgasFhSEpyRsMxlnJRyuLSlRscP7nK0vwMrUadJEpoNJsMDg/4jTM7nF6wMRV4vk2e5SRxyeeeOMdD981huQaNVkCnW6MoIIlzfN/HtAVKOvR7Iw57W1QqNdIsZ9Afsrm5h22buK5DsxaQ5wmj8RhTGownIe1Wnbm5CjNzLeQUalyr1RkMB7TbdZ49c5ZGzePChescX5kjyw2iJKNar3Dy1BKIkuX5LsqEC5dv0G43KEvBwcEBEg9DKIajIadOrnDpyjqeYzM326Q908SyTJQQzM93EEJ3xeIoYma2jVC6cxyNIpI0pCxT6vUKQaUOskQI2Nk+oNup8/yFNVaWW7iug2VaXL5yA1Pl2I7FaBTi2BWazYC8zNjdPqDVblKWsLOzS61SpRq49HsjJpOQMs8JPIfNvR61VhUhYdA/JElSRsMxAm3TIWWJbZnkWcr21g4Nz+XUwgxFYXBzcwc/8Ah8l0sXN5id7SKn8K0sS/RvTlFSr2n/wcJQ2K7PtcvX2dnZZXV1DoE2HS4Ng+3tfTqzbQLXotWqI5Xk/LmrGAYc7A5YWpojTVKkaSGUot8/RCkD05KUBsx0W9SqVWxlaZPrOMVzApSyiJMMQwi6nSZnXrjM13/tY0zGEXlW8vgXX+TB+5fZuLlJvRYghWJ4OOXlmIqdrT2KLGd2vsv+3gGB77K7c0ir0+Lg4IBOpw0lfODrH+An/6+P8bf+1t/EtWzOnjnLqRP38+7veQ8/+NF/xPseOI0SNkkkkUaGsE0MIRFFSVEWWgwkDaEosN2AeBRSq1WoVDVv2JYWn3v6DN/4jV+DFt8vWVpe1mIoRsnWrV1eOHeZlZVFhoMJ1WqdLMs5f/kqpjCoV2t4no+gYDIZkSYlj9x/gkrFpMwgyQ2kKZhEIYFfJy8zDKnhnUmS8MTzL3Ly2LIuYmUGX3rqRU6eXNUWJsqiKHMwtBqzFwTEcYYXBEjTpFoN2NzcYWFpFiW1WmySJFxZX+cLT7zIZDimXnVZWpjH912thigtPv/kM+zv71Ok8My5q9QqPpUgwDA0J86yLaLJgErFJY0ygsBlNBzQP+zjVWrEUcrnnnyO5y9e4bGHTuH7PuPhhCzOCccRtVqFX7lyma+1TIoiY2PzFtWaj+1aKEtqtUgpMAqQQhLGmiftBS4r8w1M00fInDzLyQ2Tb/47f0d7fUpJUb58Avt6cEwhXl3AfUl0QavP3rnt0frltBhw51JoOZ3by8sn0W9uunzbmuMV2xsGKKfKQqfD+ec/gzIndGaaDLMqx46/Hbd2mtrKA7itZQwUrWaLw6Rk5cF3IZwuWTbGsiSWbHLKehilFFJCHmUUWYJSBlKamjNrOQgkpZCaK1ga2hZJmmAHuIFPkkTa+qcAoQSWbRIm0ZT7GiAdB6kUUio+/As/wSd+9d9RylL7SYrXTuyOvOze6OW7m3jKK+PILeFl9Jd7FBd55XrFyyCUfwRdO14ugFeWxevDOe+Ie0nujk78brZgb9Sq4Y867t1S4rUvmCEMpFRvJXd/3OJekrujjvebuoGnKpVHW75sH28yuTuKN925u+NzDcPg3e95N3/ln/ws37c6d/fPuct5H6mEgkSS0R/0aLeb5KWJkmLq66Y7YGXx0sMyGk0IKgFFlt/e12Q0wZn6JNVqFZIoxjQVlmniei5xnGhz8EL7Az5z5jKPP3uZk8uzt+W8szTFsvUk/cgHKs9y/IrHZBJy4tg8RV4wmUy0P16hxVQcZ1oZz3WHJYkS9ns9Zmc7OjlNC5YXZyiBPCv0sUiJ40rqjSpnL17Fdy28wCeOEq5v7GgvLVMhTIHnukghUabk8KCPY9ocP7aANEGgYZYXLm/Satb4trk2f+EXPsd7HpnHthVKmQhDV8pNSwElpmnqY7As0jTDVKZWIo1CTEtPqKXUsuTPnbnI8lKXLM34tU9+lpXlGTxfe2jdN9/iQ//gN/nhdz+ghWmEwXgU8o6vOk2axXpwk5Jra5s0G1Wef/EK19d3WVxoUhQGt27tceLEDFkK9XqVei2g2agipcIyFZu3dnT3Ukp8X/OPirIkqFQYDbVXl2HAl758nmOrc3zxqbMsL3aZm+kyHod02vUpVNC5rQ4ohMHly+s06gGmqbBtG9f1CDybKC6IkoSFpS6j8YRuq044iW+bOmdFhGWbFEXBtWubmEqbJUeJ5kNFYcTW1j6ua9FutzBNiywtKSnY3tlnZXkB0zKZn2uxfzjA9RzOXrjByeNzjMZjqvUqvu9TFAWWafIfPvUEb3/0FHle8MyZi6wuzeC4DhgGnudSq1e1xYPrENQCrR5rCKqBR61Rp9Goce3GFrNzHdI0Q0nJcDjmv/m5G/x37/ta0jgjqARMxhPSVCf+rUaNtRs3EQKCio+yLITQPk9r19apNeoUqebR7GztcvLkMbzAZ9jv0ex2dIcbsG2Tvd1D6o0qeZZRqfjs7/W47/Qqh4d99vcPaTRrXLu6zuxMmyIvcBztHZdEOXmac2N9E9u2WLu+gSk0NHAw6FNv1IjDhCJPMU1FJQjYPzjkq9/1MHGshYFarQZSKJSUXLy8xrnz17jv9ApSaJaxFAbVaoXhaILrO0hhEIWJvk5K8f5veYwf/d9/lmajTrfT5uzZ57n/oYf49m/903zwIz/JuxeWuHrtBnMzbaJId+zDSYghcgxRoEzJYDDGKA0uXlyjUa+ilML1XeqNKqPeiEarNjW1hziKKIscKQyurt2kVatTqfgMBkNeuHiRpfk52s0GV66v02k3tHqvVGRJxrFjK9oIPUsZh1p4pygykiTFdTwQBabhkMYpjmexNN8mjIYEQQUwaNVrSKmFo6Io1gqtRY5tO4yHo9tFvH5vgOPYdJotDAP2Dw6pBAFPPvcivf6YB46vkucFjmdjmgrXdwDtr1ar+Mx2Z1icn+Xa+gbvfOwhiiInnXoFbtzY1AIXpSCMIjDACzxsx0VIies4tKoVHnngJGEYEUUxW7d2yNKMZ89e5MTqEk+vr/Pek4tcvLZBzfeo1vVvSZ6X7O0csLW1T6tVm6oquhRoURXXs5kMIvr9Ho1Glb/61EX+yo/8JT1GCXQx9e5D3z2Nc6+MO7e/rWh4l32+8qWvTHJ3tJPyVa/FuYEjM5574ndwbIPe/k1aC6t4lQ6rj30zQWOWUroE1QrSNAlziVtrE7g1hLQQSHr9EbsXe9hKkGYh4/GYWr1OXhYUuUCY2odTKYvxZIJSijzX90FRlmDZOuE3TFy/gqEUUin6wxGtdgfXDxBSMVU04x//8v/Bv/2Ff/36F+5u5/8GL9+b7U7dq4n5V8II/CsVLyX/9zZXvadrc0dC/Z9rEvda8ZU4XsN4K7n7Yxn3ZIVw9I97NDR/WbwCPllMPe7yI0uEO9/jdYssr971XZZ7iVdWMRzX4f0f/PO3O3ivXO/19kNpYJoGlqmV4RzL5fBwgKlMfvcLz7A8P6PNh0sttOA4NpSQpRlploMwUEJiKs2nKsuCSq0CJVrG3CjJsgylJONJzHgUcnxpgapjoZTC8jRvTpnaLDqJU80hScspDxAsR2HIEowSv+JBqT2iPN8kDGOkIcmyDCjxfQfbUlrFzBBIpY3DDcNAKcW165tYpqLdblLmgma9QeAHlEXO3l6Paxs7PHB6hTiJMaQ2bfc9X5PHlaDWdjBdgTAkIjfJopLFYwsYpeBzXzrDO1sexx9dnlZPBfsHfZ557hLdbgPXsSlLTTTPixLbtsim/BxKyEotqx3HEWUB3U6d3/qdx1ldmufEiUWSJKYsEoKgxtq1df7a+76Jp55+msko1NwsUxJFoU4o4xhhGIzHIf3+kNWVOTzHIy8SwjChEvjsH/RwHZcg8On1+gRBwMb1Lfb2egihFVRnug1ube9rnpLn0OsP8Epv/VQAACAASURBVAPtcacsxbGVOfIip1nz8IOAySiiNxyzf3iIaQoMCoaDkMNeH8dVNOsV8rxke7enpfZNg929AZ7v43kSpQz29vpsXN9l53DA4kIHwzCwPcH+fo/Ac6lVq2zc3GN2ponjWGxt64ljp91AKosLFzbwPY+8yHn+zCUcyyKKtZ+XVIp6s05ZZKwszyCVQRxnBPUqWZYhBPR7AwLXRiotbjHXbbK2vkWzWSNONJw3jhI63RY7O1o4JgrD6feo77ksz2i16pRlSV6U9A76BJWATz4/4C9+69vw/Qpbm1v4nrY/yIqCbrtBp9PEciyE1BDmLE3Y3zng6tot5mdnyZMY13FwXZuNm9tIpYCCcTihUqthWyYbG5saYpWlvHD2EhXf5/BwAGVJq9VgOBzTP+yTpDmOZbJ5c5s81/zXJMm5evkGy8vzuK6jfSzTknMXrrC2vsniQhslTba396jXKkgluHlzm+XVBfyKT6NZw8DgzHMXmJ3tcLjf45GHT+E4DiUlW5u7zMx1kUpy9txVJpMxruMQjVNePHeVE8dXmIxDjrspH//kb/Gvf+XX+b73vpdP/+anOX36ND/0l3+Q//of/BQ/9k3fiBSaU1QUGYZRYiC0h1wpcG0XZShcxyOMIxzPpKTAkAYL83NIU4sxhaOJ5p1iIISk02yxtrHJ0uICypR02w1cV0O9iyKl3WlRUlJOO4VnL53n6bOXmExS6tUqszMd8jzHcbSITlEmuuNaTBUvn3me+4+fYm9/HykkQdXDEJAmCYYhsWyTOI6xTBPTtMnSFFMpXNfl8pU1fFfDIQ0DLNOi02qwvbVPrRZw4uQKQcVnEo2wbf276nqu5vUiEVLQrlfAgGgS02jVcBzN5Xvq6bOsLC7qTo1jMRpPsB2XPCswjFLzE6XAKMEPXO0HKhQz7Ra2bfOr16/x3sVZ5mdaVAOPwSDkYK9PvV4lDGMGwwlpHJOlGa7nopROENI0pUxywmhCvdXgl2/s8uff//23x0cD42UT2Jfk2u8ynuo8+GVjXlG8fMy/c7uj9e8WRy+/hNK5U1j/jcVRx66c6vy/XJxFhxCSIkv49V/5Rf70n/qvGB3eQvkubnOFzF4lySRGMcZyfFRlhkZ3AdOyGB9OqFQaCKn44A/8Zb7tXd9KkcZE8QjbckmyAmVpyH6axwgpCeOIWlBBGEJbVADVao2ySEnH/z977xlkWXre9/3e9+Rw8719O/fEnd3ZXWwgCBAAARAgBLtM0QxLJBGkaNkWP9BKtuWy6CoTFOmi6aJpAXKQTEqkKck0kyVQTCBBxAVnscCm2Z2cerp7OvftvvHkc/zhvT07M9s7mF0EEq59pk7V9L0n3xPe53n+IcQ2LMgyCpkhpIlXKpPmheruSQ2KnI/9+sf4f377N9S52rcSKMZiJK92iu44ffudvNu6eeJldNT+Z9+q5E4IhSbKi1cRgvlWxLhbeDehk9stFG7/7jZrkPF8B/k/3i1u65RJKLJXWoV9rU7a19sNvNfl78WyQpMSKV9fcveGFcIb8Vci/t9P/g4f/dyzr20hrUDTLYrcwtBMenublCoeuil57zsfR2gAufLzQVWYiyJXuHzHRowfRHkBaVwQhjG93h5xHJImkTJ1rvgKOiV1Gs0GuZaT5DF5HqMVEIbhGL5lYJg6mq7RHwwYDobkRU4YJaBpisAtNcIgwjAFg0EfXRc3hVbIlSm741rKENzQoYDJqRaOo/gnD9x/hKmpFlIXjIIRTz1zRvFSDJ2JiQbv/e7HAShXSpimjiY10iQnCmPSNEVk6j2f5QXSMHB8jyxJ6Gx3OTw1ybtOnODHP/5pBoOhgnPaDu9851sVsT1NyfIMx3UwLJPhXodBv4fUJHLc5VODgAzT0pFCw5AS1/MwbZvJ6QnyLCKKY+RYROQTp1LuO3GYIs9xPYdSyePFc4vkeYFlWUxM1MgypU4XBCkb23s0G1Xq9Sqe6zEchawsr3F9eZM4jmk3quhSo91uqQG+6zI3P0m1VkFqklq9iqbrWK5FXmTs7nUpsozRMFRQVDKOH5/mxH3TuI7B2QvXWVndoVbxuXbtBmmWcOHyCnkuWL6xg5BQrTgEowGWKVi7sc3u1oD2ZI1eEKHZOqZjc/bcKu3WJINBhGXZFEXO8vIWluVw9OgceZ7T6ewCBUePzKLpGlevrzA/1SIKE9qTTTRT+dGtXFuju9snHA25dmWFPMl55ssX2NvukacJ250ux+9boFL1sU2TzvYeR4/MoekafslnY2uHpZV1kiQZY/0LHNtSA2pNIwpHnD17hUuXFsnThHA4pN5UYkQf+K5ZkiwjR3WJHNvE0AWjUYTpGgpqrGnqhZoVuLaHYztMtupICRcuLXHqqedZX9tibqaNqUss0yRPc2QBIi+ouB5xlHD9+irvfNubsS2LuZk2vd6AjfUt4igmDCIeeug4nmcjZUGepTiuxV53m3rT5/zFKwRBQLlUohApDz5wmPe/923omvIsbDQqLK2ssbm5zfR0C2QxZtJCGETMTU/x4osXSNKUs+euMhwO2drqsLy8qe5LTePN3/kmalWflZV1ojBhMAhJ4ojV1VXyIue/+aF38G//2w/w3/38L3LuzHnOnn6J9c1Nfvt3f4cf/f1Psrq2QZYJwqEyoi/Q0TSbJClAwCjsYzkG1Zqv+MJSksYpSToiTdX9vHpjg43VbTbXOpw7exnD0jl2ZFZ1cE2NerNClqfcWFkbW53o6IZOLlJMW6daqnN0boZHHjjJ5GSTOIrRpMC2LTQJhiExLBOha1iug6bp9AcjTr3wIq7nIDVBnCTkFHQ6ezfFo5I4I45T8kKA1InijHOLS2MItyBNUlZX19E0jbn5NoePzJKmIbomaNTrpGnO+QvXuLG8MVY+NtjZ3qZWK7Oz06HdnqAoCkbBkDgJ+O63PY5mKJTB8vVVdKmzvb5DFEYkUcxg0FfeYUlKITIqtdLYzzRASmVy/eXlZcIgJIgi6o0qmqGxt7uH57s89OBR2u0GE+2mGrQJSKIEfczBzrKUj37hBX7vD/7dN/CN+PVHMeaXf9O3kycIzeKxt7yTU195kdPPncEqBL5TwrVsKmJA59oL9NevIXIdR2pkvQ3cMggZkhONVwRxkt80VTelzqDbJwp7+GYJkQhkkdHd3SaLA0SRI4F+r0ceZ0TJCM3I2e13SGJlBK4JqYq3QJFlfOzXP8a//eRvfdPPybc6hJAKCv9GfFvF17KQ+HosJt7o3P0lxr0KquzH6+nc3fYnry6I8leBuPrBD/0IH/7Ff3obB+9ukZMi0UnjjNX1DWxb4HjlMT1REegLYNAfoRtKWVHTtJuwPIQY+xmBpiuYUxxH+CUlLT4YjhiNQmzb5ivPX2B2eoJhOGRqooHr2GSFqgoNByMc10aTGkmUoGkC21EGy9pYaEAWQlWSKbAdHcM2FFQziDE0faw4GWM5FlJKkiQjSwss21SQUE2qBDUviKIhlmVx9cYq7XqZ7e1ddE1DNwziOEE3NLIsRddM1m9scXnxBhOtCrbhIaVGoUbSIHKC4QhTtzEtE9dzWOp0mWpKarXq2GLCQIic5eUbNBo1RaDPC3zbJMsKdN1AjD3yALIsRY75MA+fPMKpL7/A9NQEUTBiZXWZwShjeqpNuVrm/Y8u8JufeZbHjrawLGUK3J6oEcUJpZIHBVTKJaIwpNlskucRYRhj2w4UKZ7rUSr71Co+URRj6gZZllGqVtB0BXfb6yofuWAUYlpKsTPPMobDgDAIydKUdrtBmmWsrm9Tq3jkRYLIoVopMTM9jaYLGo0ScRQzOz2J59jMzDSxXQtN5FSrFeIwxHMcVtf2WFrb4dE3HcZxbZI4ZXpygjTNOfXVc1y7vsoD981Rq5RZXt24aZYsihzDMDBMC8syaLcruKaN79sMwhDbsamUfRp1ZRB+4eJ1yr7DVHuCsutSr1fo7O0yPd1GCElWpKRRTqfTw/MdGFeaTUOnUa+AEGxt7lGvlQjDcFxt1EnjiJLv0G5WyfMcz3NYX+/wzOnLHDl8DM/QkZrBxtoGs7OTlCtlQBJGA/a6Pcp+iV63jybVda9rmkoWDIOLF5d47NEH6OzuEUURhiYZjSFWq6ub5FnO9cVljh0/SpokXF1cZnZmmtNnLrGz2+PI4VmiMObkA8fJi4xgNMQ0NGr1CgUC31cWETdurPPAg/eN4YcRjUadPM956ukXWJifplz2qdfLtCaaVCtltjod8ixTfmaWjaEbGIayY3nggaNITeJYFhcvLXPsvnn2fV9KZZd6tYqu27TbdZ557gyPP/4AwWjE/MIcg/6I75wps5KWaNZrvOk7HiPNCn74iR/h53/l/+B+w2F6bpKt9U0l8iEFrucSJxEFKV9+4RymrhT8DMNACg3dlPT7fWzHxTZMLpy/wvp2h8Pzs+oZpwlc1yeMRmR5yr//9GfpD2LuP3oEwzZAQjAaUhQ5E+0pJpoNkjhjOOpSLpXJsoQkUb6GeZGiaeNnBjA50cDyTOpeiTiOSbME13MYDkeQC5qtOqMgRDd0Tp+7qPiPtoVpmpw4cggp5M0k2jQtXMdlYrqleJOGrooCUpIm2bgIldFo1envDQjCgDiOGQYBtUoV3dQpCuWtl0QJKyurNGo1XNfGNC0+f+qrrNzYYGF+Sj1LUIWtXKYkcUIUxVQqZaQmeWdrit/81J/xPQ/dj2kaFIDn21iOxerqBo1mjWAYYLtKPAtAN3SG/QF5kuE4Bt/3sz+H1D10OYb8j6v3B3Zg7hGeeWcn717Hefuz7fPb74nb9DX3p3jF/u1HWuSIAk4cX+DJz/wRExUD1/eJKWFXZxhtXuXpJz+L55Wotw+RxUOC3hY73Q6dTgfLtvjd3/1DvueR7yFLUnKRIpBkSU7JL1EUCWmikAhRPEBXJoeYlo2mSaSQGJZ6bkdZTLXWRDdcTFNXtk1SAwSdzT7/6H/++wefrP1ju8dzfDvFZf/DV8I3v1WdO0XtkDc7XX9V426duwNhx1/H+hGqM/uqOg73so7XEa+ly1h8rR+seENQ5dsyvtnJ3a3t53zsTXcnVPPmvAdM+5edHP+/yF/Z4v5GhhCCD33kg8QPP87f+vg/5wcXDubh7YeWSQopMF2bYDTEliBNHWHoaLoBOcgCLNNQRs5CtekLTQlqZEmsVDB1HW3cxdjb65ElGRcu32CyVaXeKBNGSjUxTVKKLCHNCjRdR5eSq4trmKZJkRWYtkmapvzeHz/FXLuGoUuyOME0DOIgJk0ipZ4oTaIwRtdNLNPm0pUlgmFEtVElGATIXOI4Fv1gQGdrD9d3lRm1IcnSBNd1CYYRO7s9ZqZaVGo+SLhwaZE4Sjl7YYnOXpd2s0Kl7jM52cRyfHKZI4Rk8fIKg+4QxzTRDB3d1tBMDaEJ3tpoIOcrOK5DXqToeqFM0oXg0uVFyiUPsgw0g309l93ODr5lKp8s20HmMaZlgGbSrFUJhiNcv4Tllmg3muxsd8YiNiV+5y8Wec/DDeIowHEs4iBlZ2eP3c6APFXwMdPWEUaBpZtKlU8KMnIM02TlxiaXLq1x+PA015bWCaKEkm8jJVy5uoKORmenR7c7xLUtLNsiHHaxdINKpTKGwAp2O30mJ2o3u5ZLK7sUBTz1zHmajRLnLi5jmzZBFPGV05c4enRGwQqlxnZnl6yANC2YnWkxDEa0GiWefuY8w8GQmakGmxsdHnzgCPPzLTQDdjs9Dh+ZQmqC0Shk0IvRLR3yjDAIlPS+JpCGzvpmh3LJIQwCdENHapJKxSXJUixH5/S5q9TrLoahI6XBcNyJtGybctXHtHQWFxeplEqMRiOSJETXSvR7W/glnyjKkVInGgV09vqUfZcbN7ZxXJutnS7Vcol/9qfX+IG3P4hpaVxbXOKhh08oXtdLlym5NuVKhSTJuLa4wvRMWxlay5TOzg6nz14kHgW0Wi38ssfMTAvD1EnSlHAUs76xTbc3YHllkzAsmJ2bYv3GDpPtCs+9cIFaqcpb33YSv1xSRRzXIRz10XVJnCTouoXj+AihzNrnFqbJspQ4jSlXyxQoWFarUcWwNeI0ZuXGBpVKBd0wCfohjmWiSUkuCnqjIUvXV2k1q5Q8hywvSLKcXnfA7GybNE64eOESrYkGRZHR7e6qDhsFui5ptZr8wR8/yex0i+npCR6b1vjYr/17nviB91OkGf29Pd7z19/H3/uVf8kPHDtKrdkgiwNlHWJoNy1SfLfEpYsrHD82qxQoEaRRzNL1darlMparU2tOcN/JY7i+raCUSUGch0gpMS2bY3NHWF7aYGqyQRgoaGGp5CoeapZRFClSy7lybYV6XSVjYRTilVyyRKBJSOIAihzbttGFQRQFOI6DlBrPvXiOpdV1Ds/PI6TAsm1ls7ClPChdxyKJQ6QQSFOqjnGuINxKqColTwuSOCUXBZquoGVffO5ZWrUqnutgeTambVJt1KjWqghNMOyPMEyLohDotolf9sd+kgoCfXR+jutLyxw/doQCwfbWDt1eD9/xMXTlczcYDAijEE1ITBdauomuC8IgwTBUUW11dZtGVSkQF0WuihKmiRAamuUQ9bv8w3Mr/Nh/+p+gy1j9dqgutIDb/O7uFFQ5SCRiH5amErvbiQ9C8IrpIH7T/vtbCvVsu1VsRUptXPwRt4muFArce9s8aj4oEEqxS0gKUVAoRsTNyZCQazYFBteXNzFliZ3eGu9+52MsXbhIbxRhGi5JVvDUl08xOz9LvT2NmwyoTR9GGCVeOn2eh6bvR7dNRv0hjuUgTB3dUs+0jP2kT8e0PZKsIIijsUWRhzR0TNvFdstIaSCkYDQcMhgO1LMoy1nRLnDy4YdenUsy/vsgMZM7p/yAdQgpVfH8lnXdS3J30PoPjPHYTZPi5nw3xVgEf+UTO+BmcUeOE9HbTuMtF/b+Z3f+FryKuODBUEhxEyZbUNyCLipesdxBUM2DvrubQMprhnPe8XvdCvW9dXqDc/dtGN/0zt0t8Wr2BXddZn+7+/9/Pby/1xGmafIjH1I8vCeOzBx4M8P4OaApFbFSucQwjOlsd/EsB6QklwXCkJAVhGGofIoMHSlAUBCHEdtbHTzXJs9RiYShhEEajTICjSCISWIlKvHMSxdYmJ5ENxVMMQhGtCbq+L6LaZqEwxhdMzg2P4Hr2crw29AVRCnNlOHumHOhxAeUkIpjWbQm6oSjWEmwuw4FAsuy+ZPPPceh6TZ+2UMI5V0lpRLnKHs2rm8gMBj0Ai5dX+Pw7DSGFDimhePZitiPSszzLCVPc66tbNCaqJFlOZ6v1MN0zSDPYWdzmxfiHu2Ki++rDqYscnTNYHF5nWazgVfyxudKDZJ0wyCK+9jjgXAWJ2iGhdQ1NE3j3PlLtFplPN+ms9PD9RyqtQqjYcD7Hj3Ez/7W87z/kUmiKOGLp17isTfdTxglnL14g1ajohT3CpBS8tVnL+JaBmtrO7iOxdLKJieOz2BZBqWSy26nS28wpFotMTnVwjQkwyDk+LE59vb6mLqBaytjZCl1Xjp7Fd+z8cs+Ugo83yUKI1qTDSzL4OSJQ2xtdrBNg34/QJOChx84jCYEi1dvKJPt5U2iKGFmegrLVpYQlWqV+dk2rmfjOAWua5Pn+U2YmW3ZiofneVBIFq9v0mxWGfSHuK4DKK7baDhiqt1AUGDoOmmu+FZrax0sy0bTTVxbY3NnF99zSbOcrZ1dqiWbQX+IbZkMB32qlRKWaTMaRlTKHrpuUi75rNzYYqezR73mkuUJz19YouTamKaSktd0ye7eHr04422PPMTuTp96o4plGghUN6fX6xPHCdWKEr9pN+tYlolWFGRZxuz0JO2pFqN+iGWZDAZDdEsNyPe6XebnpphoVZmaajK/MMXS8g1WN3Z48IEFOrt7PPLIA6ytbVEul6hUfJI0pFarg5SUyz6aZrC312O/1psXSsgmiWNs3SQMIp489TyHj84RBgGWZVEu+6yvbTEajShXy+RZxtLSDepNxRtsNBqUKz4AG5s7BGFIu1XHdiyKImfQH1Iqe2xu7DA9PUWWquQnjiI6nT0812JmepKLl64xNzfBO46U+cmf+xd84AeeoOxXKKSBr2l8/E8+xbvaU3jVChSCKIhIwj6yiKjWXNqNMmkW45VKSOEAOXmSEwYKYWA6FqJQyrlSSLJCXWtplpKlKbZj0+32aNSqfPX0GeIoplL2ydKcgoIsS7AcG89xsC1nLAqlE0YBmi7HnA9JGMSEYczuTvcmJ851fdrNFs1qDc91SFPVjS2yjMmpNkWREkYhumHQ7w2xLHPcnVbPr6IolH8kGlLTMS2TbreLEIKjc3P0ukMa9QZZnnLh4jWSIMbzPAb9AaZpYI5tZgxTdewNzVDQUl3Hdiy63SG2oeP7LoP+gJcuXuXEfUfY3NxCCEGpXML3PUzT5qc+9yRvRafT7eOXXNIkQdM0yr6LpkueP3OJsu9QrvhkWaYSoQLW19bYOnqc937vezCkJLvF/FrxoF6986aN3135qxRN7+1V+9oLvnBwIiDumOfW+W5+Jl65oBDJmGMoeeQtb+PsSxfo9bp0ugPSOGd95TzC8mhOtXnz29+NaVdJY0GmuVh+kyDOeM9fexef/c0v0Go3ybOCIgfH9cmygiAYQV5gGRZ5kqFpkjiOqNbqGI4LUgl+qWNQoxUhwDAMbNvmZ3/j5wisET/1d3/ynhKg19ttu8mpvGWGr6dr+optHsA/+zbI526LfNzlVer/X/vkHNjdex1j0IKDx67fyPHs17su7RY1+1t/1zeSu2/DeK3J3X5J724X0X537c555J0Vh7tgPPbFVZQ+nIr9SuC36mEigQ9/5IN84otf5beeepb3z7VfOZMoxlLQysPOtCxIU9I4w/NdZWie50rGWtNAqAQhz3PCIMTQlAmvPhaRSOIEXUp29/qUSi7dvaGCco5hjrNTTdIkHcNzNHzfYWe7i21ajIYBURhjWRaargYwwTBE1y0oNIo8YzgKsB0HUCqdas/FeDCWcWNJ8VAsxyLLMrp7PQwhmZxU5uRZmgDQ7yquiGmZxGlEmihIxtGFGQoKWhN1PM/FtgxM26DICwa9IVJqpEnK5EQDv+TieA7hKFT+QXmOoWtkScqylZAO+7QnWwyHIzzfIwxjWq0GWZYo0/a8IAhCRqMRpZKPrkMQxGhSx9R1CiHIcsWHsEyDYDRCSli70UHTNHRdcSH6wxH/6guX+aE3T7K4uMrcTJOtrR6eZ3Hf8TniOCbLCna2dzFNneFoRKXs4dgmaZpzaL6NEAWW45BEEboumZ2ZQEjJ9vYujm1x+doa1ZJLGClOQhAERGHCxmaH6ek6m5u7LK9usbvbY2JCQfhs1+Xa4iq1aokwCHEsC8PUmJmeUBX4HNbXdyiVfRbmJhkOA2r1MpcuLZOmOX7JRWqScrnE3t42lmljWzajoeqqqARPKURKqawlXNdCN3QuXl3C1DVKJeW7lec5juOQ7vsmAq5rsb3TZW+vx/R0nSTOaIyN0tMsU3DLIGZpeZ1azUc3ddK0QAqNNI0Iw4RLl29QLjloGnR7Axr1CseOzpGmCXleUKmWEaJgNAz5tadjPvjd91PkgigOCIKASrXK8y+cZX5+inKlgqbpxGHI9PSkKmToBkLTsT2PDAj7Q8IwpNcfKsP0Ro12u0mep2xt7mCaJqVKmfbEBEWaUqt5xEmM49hsbu5Rr5cRmuKE6bpBnCTKvLo/wNDNsZ1ArOCgukZRQBLFFIXqYOwrcPb6A3zPYzAYMtFuohkalmmxs91lot0gTpT5uyaU+IfreVSqFcLRSHHNpMQ0DHTToNGs0+v2efa5c0xPTqDrGucvLHJoYQY5vgbrjQqGYXKyKvnf/8WvkBplZucOEfQGCMOgGfSpeTWkMLAtB8vQGQz6FGSYukGaq/te1xwEOp/94lcp8hzft3E9ZdCsS0mSpHzl2dPMzU5jmDqGaZKmGc16nTRJOH70EFOTbRAFL56/wMz0FLqhq0SnVGI0HGGaBlKq53yaxmiaoYSohOro7OzsUW9UMQwDEPT7AxrNBlEY4LgWwSjANE2EpixohDaGrdsehq6pDl2ej5Nk6HT2xsqfCsIuJZiWCYXENEyeff4M5y4tYqCTJQWnz1zCdxw8zyEcQ0D7gyGWadLb6+P5LleuXef5sxd58yMPEScxfsnDcR0W5mexHJMgCPF81b3M8oyNtW0+8dk/42+evJ+ptkrqDdMgTVKuXlfPgIvXV3no/sNI/eXOVpHDv3zuND/zq58gLzRklpG/nCGN7+2XZQ3urMjn+ctQR3lA1f5ehu7ylgHh3QRb9uNmZ/CA78Sd89wy392SO/blY4SgSFJOPvwwj731LTz33DOcP3+VtIiZmj/GyYcfIcVENzw6u7vkSAzbAU0gyPnYx3+W9zz2vVimpZSYUQIlmhREUaysKIIRYaQSO6kbFAgKwSsUxaMw5ef/zT/m8y98nk9+8rd517vfcc+SMq/bf61QRfTbviyK28/nbZ3Z15YMvN7k7qZ91f6A7lU6vvsh5P61d2th4tW3dBNCeQ+4YU1q49/r7nIf++uSB3TH7raVg/bh5fuiuO3vez3/d3b6Xi3u+t09WGmoRkXxCiGlN5K7b8N4zcndOO56UY6Tv6954d6DFcJBa/hWJXf7D+K3veO7+L4PPMGHfuHjfHp1i78+P/nyPFJBKfeb+FJKLNtkb7fPJ//sKR45eRjDUHASoUmkpikuhKZMxjWpoVsGhVDCALblAIJypURORpoWlCs+UkCaBOQkOJ5zU2lTIvEcj73dHq7jEEYRmgaaIen1+lSqJdIkw9AN0jTm2tI6W1t7tCcbGJqOruuEQUgcx0RhiG3ZVBpl4n14Vl4wNdXCsEzFpZM6qze2+IvnL7Ew1UYKNcgsBDiuEupwPIswDHBKDsPRgH53hCgEf/TZ55ibaVGp1UiiCCEys8txywAAIABJREFUwtGQP/niaU4cmVXniQJdavz801f529//VixLJXFSV8IKvuMgScizAYbtY40TDdOyiEchUuhsrm4jsgTbtUAzsE2bzk6XVrOJbXvYtsmXnn6R40fniZKYQX/Ih971ED/0P32G73uoztR0E8exsGwNZD6WJdcYDAb0g4AjR+coVXzSOMXUdZ45fZGF+RY7nS6GgJLnEsUxCEGtXsEwdESRU6vX+PMvnOaBY3NYtslwGDA5WWd1Y5O5+RatVp1K2ScMIxzXgzEMLwpjhkHIbm/A4SPTbG13yLKMza0d5mcnuHB5hanJGpatYdk2lq2zvdlVg956iaLICUcRGxtdoiAhjpQyqtALNODi5etMtGoqUclypKFRLfu8eOYqs3PTiktWKpFmOUmS0d3bRhQpu3u7zE63MHWJYWrjxD2nVC3huCaa1Ll8dZVKpUSlWmHQ62EZNhfO32Byqkq/N2B6po0oMhq1EkUBtuvR7w4YDUOCYUSSpkgEf/z8Jn/7e0+yu9ulPTmB7Sie1d7uLseOHwJykijDMk2uL68yOdGk3+uj2xZCwOb6JkkYcmXpBvfdf4Rz567zpgdPcPbMJSZn24wGI26sbDE9PQm6wTNfOUOzVmWns8XkZIu1tW0W5qd54aULTE1NAIJRmOA4qks6Goy4cmWZQ4fn0Mc2JsofSKM3GGI7DteurtBsVDn1lRdoVCs4rovvu8qOQJfkGZz68kscPzqHpoMoCgbd7sv3hSZJkxTLddje7rC2ukWl7FHkBdeureBYFr7n0e0NKIqChYUZpKYxPzeFkAY3Vja5cGmFH3nfo5xsxPzwf/k/8tW/eJJ/+F//PcqPP8zf+MVf5sgoo9WaQBoWmuMS9PYwdB0pE7I0VFwjqXNofoqFhRm++twZGlUfQ9fJMuXhefTIAl9+6jTVchkQNwsJhXiZiys1QbNeBWGQxglnLlxGZIJ60ycMAqIowfM8CgqKVGc4GGFaOmkc43mOsk4YDsYJpMHW1hblaoU4S7A9ZUouNaUgbFkOf/Hl05w9f537js6SZSmGbVIg0E11b0qhkaQJeZ5RjGH0QgriJGZhfop62WNmcpJyyWeiVaXRrCDGXeE4SbFtk93OLk8/f5ZmrcLFa0u0G3XiLGF2pkWvu0chcopCYhgGRVHgl1yQAk3X8DyP6bLPyXoFyzHY2d7FK7mYtsnUZJMojDgyP4WQIDWNOI7JC9jb6dF/+1t56M2PIgsdLc/J7sgM7tXM/OD39dd+2x603L1w8+6W3B00392SO4lSoS5ETi4LEgFpLrj/8bfwlnd9P8cefTsyEZTrkziVCQWptzSkISmyEF0W6MCHP/xBfuqn/y7vfuTdikKhIDYKwqtp6Jqk192mPjmH0DXSMbwXAf/kX/8yn3r2U3zppS/xd37mJ5l5uM2HPvwBPvThD7DvkcvXKGrfPJ7Xm9wdEHdb1bcquduPWwsBd8+QFMT0XldejP+Je+jE7UMk7/XY70zuxrv3muK1cu5ey7pe83f3sPOalC/fd1KiSe2N5O7bLb5ZyR1jlay7zZff4YF32/pf5fNbv/tWdvAEqov3yT/4E/7v89d44vC02pfijv0UoKEjNLjv+AwAmlBiAKIQFLmyPhB5AoXizeWFqnR2u7sYwmXQUyqXhmbi2ILBcEheoCrocQaFIC9S4ijE0C2iaIRlKpl609ZxygZFkmLYFtLQgYxBbxcNHV1IhADbsQhGIZZtQSHJsoJSpYThmuOOnAFSEuUQDQNMy1SdlyymXPE4fmSWq9dXsCwDTdMxpImQCgKZJRk7nS6Oq2HbDoamtnHu4hplS+I6GrppoZkm6JITC9NoukRqEk3XCMIRYTnh8cPTUGSYjk44irFMC0RBnCXEaUKRS3RDJctZWlBoJkiDL5x6noX5mbEcvpLQtm2LJI65eO4qlXoJ1zBwXA3LclhZ2aZWcfjgux7kz19aZOPKIoePTnDt2gr1sg+5AKljGhme7WKbLuSCKIpwPZOZqSa7nRHd3QBdGjz/0jWESHFMSZbGSMui3x9x4fKygpXt9aiVSpSrPtKUrK9u4dkWtuciRYGha8RRwN7ekMEoYmFhkt5gwKFDbfIkxrE8DN2mVPIoihgpBZapMxwNEUVElkVMz7QxDcGnPv8889MNDN2kPTlFVgiqrQqGLTE1jfXNDrOzMyAkwSjC9Ry2drbxSzaeoxEEKd3uEF0qISCQGJrOcDgcC4DolKtVcqGzublLvVbh7EuLuIbJ1k6Xo8em8Us2ZAUiN9jY6jB7uEWapHiOjWkYjIKA7U5Pec71Qmxb48zFJdqNKpVyjd3dEZeW1/ju73gLrYkWuiFJChj0BkxOtknCkN29PfyST68/wnc8SuUye7u7iKLg2rWreJ6F53nUymWSJKHVLPG5J5/h7d/1KJ3tbZrNNiW/RFYU2KZk6foSvm8TRRnlqlI1tB0PScGlS4s0Kj47vT1KpSrrq9vUajXyPKHilciSlO2tHUzTUkILpsna6hYnThxjFA5olks0mw16ewM818PQdK5dXaFcr2BZGo2JJuSweGWFVmuC1dVturtDnn/hIifuO0Kv2+PypesszE8icp3z565y8sH7uLG6jqYL1le3abdqZGlMHEesr61RqTfQDA3fsyHP8VyXn/iP3szvfeU6P/bjP4Zhmbzvff8Bf/j7v8ejs3NKZdV2AZ0kDiiiEOKEIg4QMiQtIIhiDi8cxtBAagLNHPOMEczO1el2u6RJNlbhzTBNk9FwgGlY6JrJxvomIhVcXVrm0YdPYnkmg8EAx3GhUMiDrIhQ4E2lYJikGUmacvXqCocPLSA0yRdPfYVGuYpmmliWRb/fw7J0kiBna2MHKSTTky2SLKTeKDGKElzfJxwMkHmO6fgMhwOCKEQUkizOSeKELEup1ipjsSoHy3IwbEkQjnjuhYscv38eoQmCIMQwTMrlMkfm5kHm3Hd8AWTGobl50jTD832ytGA0CAlHIZapYLyuYxOHCbZtIcmpS9A1k5cuXmWiXkUfi14Zuq68D02DXBTouo5E8mfnz/Hjv/A/kAvlE4lUpue3RjHm2ckDMoaDrA3uxvk56K17E2Z5i4z8Xd+nt3QQ9t/lYrwDxX5XZD8REuLm+3ef57WPlLl1Km7ul7LykGiIooBcRxomUpi0JufZunIJEYZsDnJazQZmFpPqOrmQ6DkkEn77N3+Xdz/2HuVvdvMYQSdjr7ON63pYjuKXZnmORPBz/9fP8o53v41f/vgv8oEP/fBtywnB2O5ATXJ83FK+Op/uXuLA5cbUl9vP1+3nXQhxi2n5y9yye5n2D+jWz7Q7tn0QZPG2hO5V2pe3dqekpgoSt4p93K1hIG4yTb92KJEftT0h5avaT9wKT9yf8rGy+UH78TI3T4wRZq/OobvXTtydy70arPPemimMk+YDOvR3JO0FIIWOEBIUdeeN5O7bLb5pyd09zCdeBwfvts18Hcu+lrh1H3/wh/5jPvyRD/K3PvGrVNIRC9XKKxeQAsuxFG8tzsjTbKyEKcemyimMPXKkppPnGUIofH6RaZx67iXFHdGVEXqaFbiuQxzH40GGZNRP0XULyzPRJGi6zqVLy4rbMRiNLRfUIKAoUAmlEHz26ZdIY+j1RlQqDmmqfJM++ZlTHJ+fQpOCOAxJ4xjDNDAMAzEmsGu6xmjQR0pBNEopeR7VegUpJU8+/QJREOK7Dt1un/ZUkywpCEcxTz77EqaUPPzAPI6jY5gaf/S55zg008aydLI4JUoSbNchCEIsz+eX/vxJnnjf20gLQaFpiDy/yZHZ75CCSjjCIFCeXboBRc7JE4cxDXXcmibJkhRN03jh+XMcP34I1yuNzeVTOp0eC4cOcf78ZXRNI+0HvOPNcwhh0O8qIvyN9S2KPKOQAl03OXP2Kp6j09nZpVxWBs+b2x1mpptUKmUocvyShes59AcBSZhQr1c5tDBNq+Fz330LPP/iBSbbVcV91ExKpTJJnNLZ6+F4DrbrUvI9Ws2qgrzpEt/3SdOIKEpZvrFJq1VmFAyoVqts7+zRatWIE+WJqOsenlfiyPwkWZazudXB8xQHLuyPcG2LIAqpVitKfTRNGY0CnnrqCseOzmKaLqs3OrTbdQaDIb3BiDzN8EsuYRhz5coa7Yk63d4I07LobO9Sq/qsb2xz5Og0m9sd5uamMUyNXq/PoBdw/tIyh+ancFyLTmePNB2LT+x2WViYxvNcPF8ZhjeqJSZaNVbWNknTjH99Gt5zokWlXOLihcsUQtDvDlhd3aDfH9AfjnBdl82NHQxLw7I0wmhIEMYcOax8E6WQmJbD+QuXabUaSKEqlJqusbS0yvWlVebnp3nhhXN85+MP43ou1VqVbrdHe3KCxasrzM9NMzMziRBQ8kuQFXS2dtnt7NLvDbB9B6lr1BpVtre3qVRL7O3t8czzF7jv2CE0Kel2+8Rxylanq7p2mmBioqGUKl0LXUo+97mnOXpkFqlJPM+hVq9w/tJVjh2dIQwiZmcm6fdGjIYRg0HA+tY2R48ssLO9y/33H+Klc5c5fGiWtbUtKpUylmvhOjYb6ztsbHS4cWMT17f48LtO8p//9C/x67/5e/zNj/4o7/3AEzzxcz/Phx48idTF2AvPxLAdcmmwtrOHrml4pTKmZSI1SRAoJUnTMRFSsHx9GcdU/o+e72EYGn/0uS8w02xj26rQYZg6vu8QBBGVcpmigEE/wDIdiiwnKyIgx7F9ZVMhtDFcCFZW1zh6aB7d1MmLjOmJJlEUUq14pElKnoJAZ7e7y/T0JEIIglHI8aNHiOJQdaGTFFM3kJrGl55+lrnZKbI0xXU9/t2nPs/5a4ssTLfJsozFpRUq5RJFLvjTJ/+CB44fZn5uTiVdhoFtWeoZWRQ89+IZpiabmJaB75coUmU2PhgMMAyDF85coFmvsLG1TaNRJcszLMdkFIQ0q1VG/S18z2Gm3UAIgWEqi5e93S5+yeGlc5fxPRdDM0jCmJ+5sMRP/MSPkhUgx8PbO5M7wcuwyzvjoETs7oPEV0/u7lVJ86D5832e4Pi72wbEdy53b5tBapp618YjstEesekhKgaWneLVaogiIRc2cQG6lIhhAobBj37kAzx39Rk+8Wuf4J2PvFttc0yZCJIEy/XZ7XT54z/9A1qPN3n797+F9733u/me973n1Xfm1g7pzeO5xwN5DXGg2uMB3bbX6t12t9i/rG5u+xuwzrzIxxoNtydG35C4dXx6hyfgvcZB+/J6zdy/FRoSX3N7B1wPQow7/sUbyd23ZfylJnc3qwavL037y0ju9uMHn/hB9mpt/sG/+p2bXbybMYZyFEVBb7urBhKmSRypLsswGGHbNowrO1JKBv2hUl68tsGl1TXe9daTGLqBZdvoY/ikpmt0u31MXRCOClbXO1iORhYrY21D1+ns9pmcmlCKjuNzn8Wqat7vj1hc3aJRKiGl5MixGXRNR0qNo3MKapplKZKC/mCA49iqcirU4F83dJIoQpOSP/rMczz68HHFGUkzvvTCeY5MNZGapD4WKikyQRwlNKtl2hN1DFMnjiKyPEMvNBqNCpomOH32CpqUlHwX3TAYDkd89D97P2mWIjUFh9GEIM+V/LeuKyiWpilfM0M3CIOIwWCIoeuYpjKwDkYBUtfIxz5+w8GI5eUNLN3E9zw2NjfQDJ211W0OHZrh3PkrfPc7HuPH/rdTPPHWOZZvbFCr+TSbFWzLwvVdrly+oYRFDI32RJVL19ao1ypcW1ql3apw7vwStarHxESdNE3o9oZUy2XOn1+kUa/geg45OXPTDQSSMIi4cGmV0ShgMAyo16tYthokb61vI4Cr11eZnmyhGRr9fp8giFlYmOLG6joTE1WkNLmxukWtWiLNMrKsIIxisjwlz1PKFR/TUMpz1arP3l4P33ExXRuAa1dXKADfc5idaSK1/apvrqwUkpT+IKDRKCOlJMty2q0amxt7TE1PUCDIswTXsfFLDkIKGs0qmxsdpFbgOA793ojZ6RaaprG8vIbnOpR8Fyk0qjUlJhIEAUmc4nkWg6Eyru71A+bn2pxd6vCmuQbhKCBNMlpTExhS0uv2qVR8jhxdwLJsao0azjjJqDV8Sl6FM2cv0WzUsGyHgoJKyacgZ2Z6kr3dHqWyT7vdojXRwLZMWq06nZ0O1xZXWF3b5PjxI4RhSLPVZHFxmSRJcByHleV1sjTj2vU12hM16vUqTsnH8z10XRVydE0jzVOOH53n8sXr6LpOs9XAdl2a7SYvnVHduGGvz5lzl5mfnSLLC6ZaNc5fWsRzbbUuTTLVrgMFUZxw+coSV66u8+gjD3Dh8nX6gxGtRoVquUwQjZiabFEul9na6pDngoIM27Ypl0tsrG3zlu98E6ZjYmgG3/+WI/y1N03zkz/zv/LRj3yY7bUb/NKffZofefABolFMkqQIqWG5Ho7rYYzbDmmaITUNx7KxHZsoStB1g+tLqzRqVbrdPrsd5dN24sghslzgeA5bWztUamUFtTYMkjjl0pVFzlxcZLLewHFt0iwkywvCYQpAkmZ0uz0c21IG6ZqkPxjieA5SCCzLIIkiKCR73SHLK+tcXF6k4nkUBfz5qa8wN9lGM3WiMMIyTaRQViUVv8Ty6hoTrSa2bXPfoXlOHJ7HL3touqRIc/b6PQa9gAdPHFWCPL0R6+ubOLaNburs7e7i+R6tRhXXdxBCkIQpy8urRGPfOoFgfnqanJxatYKUGpalzOEN00DTNa6sXafhOFCIMapj7BNXFOim8uhzPRdD13ny8hXe/tG/weFjRymk/LZO7qQYGyl/A5O7PM/I0pSLZ54n6u8R0+fXPvELbC5e5PDJt2CYPikaOSm6gP/zl/4JM4cOUa6UOH7fMT744Sf4qZ/+O3z2uc/y+dOf53Onv8DnXnySU+dP8V/99/8F7/2B97Bw7BiWZVLyvbsLpbyR3L2myMfF6Tv5ot+QeCO5e+WHbyR3//+Lrye5e9WL8oDkbt/v5sDpdcatwIyCl+0SvtFx0FEKYGZ2mg9/5IP849//NP/s6Rewk4D7GvUx9l89MJQsdwB5imWbZEWG5dgUKAy+EOKmiqRuGJQrZY4vtNAMCZkkywXnLl6nVvUxbAvDtsiSlCBIOXX6Io89eJgkzvBc1VHZ2e2xuLTBzEyLYBigC43RMAJpYDsWZcfmxSsrvP0tJwmCAVmaYVoWSRJj2SaarsQNXMdR0ttCEochQkpGgwANDVlIHnnwOAUZuiZI0oj5dpP2ZBPbskiSlCTOiMKUa9fXFNxJFJTLPp7vMhyFXLq2yeH5CfIi5sZahwtLqzx84ih5VhAOe1jzPromGfS7kIRIw6AoBDeW1yj5/tijTCcKQ4QUSKHzp58+RRgMqdXUgG44itDGtQND1+l0dllYmKHeaBBHMWubazdV96qVEo2aj2kYPNjQ+Qf/5iw/+X0nKCj4gz99hqrnYpk6s7NT1GolOrtd/JLL3GybOIpoNsrs7Q1ACKanW3Q6u1xf3mJmqk2cxBRFQbnscfnKMtWKTxwnbKzvYOg6Gzt7bO32MTWNLEsol3w0TbK4eEP5vU00WFvbxnEcSr5PUSh+49XFdSYaDYoCarUycZwSRSkFEt83ETIjTgKSdKTgsaYgjiNKpRIbW7v4JR+JRHVIFCSuXDGxbINR2Gc0HHLu4g3aExUMXcNxLJ5+9jwTLaWq2GzWidOUK9eXqVdLxEmKQEGM4ygmGAZIXaDrOiW/zNqa6koEwxDHNtANjYuX12g1K/T7Q86ev45jGtTqHoYGcZSwsDDP+nqHD/yH38twOKDRqNHt9SmXleff/PwMvu+TpClBGJIkCXGcUqmW6fV6CCQT7Tbbmx0c1+HUU88zNdViOBiSxBmjUcjubh/HMQmCEaPhCE3Tub60yuOPP0yp7NAfhFSqNTRDeaE1mg3yLOf8+escv2+eUslhYrLF57/0PCdOzCmQmJJUY2e7Q7WieJfTMxMKsiMlX/jiVzh2dIHDh6Yo8pSvfuUMhmHQbNXZ2uiwubnD2toerWaN0SigWimjGzq9fh8pNeI4YRREtCfrTEzUOHnyKI5lKqXMbpe5uRnWVtcplX12OrvMTE5gWRaXLi0yO91kOBgixhw+27bwHIuHWxof/Uf/C53dXX7tV/8pP/6Lv8wHT56k3w8YBTG6risBniIjjmIFw9IkmrQAiWYY5CmU3BKGqQYGtm2hazpfff4lKuUSjm9Rq9UUFEoUbG928FwXgWBrc5dKqUy1WiEvMhzL5fz5RdY3t3FtVWRwXRdN04niGMfziKN0XODRSbMM23H5w8+cghze+ujDeJ6DX/IpsoRms4ppO+hSw5CSwSDAchxM06RaKeG6DlEQY5im4gaNxzau51GrVxn1Q7743DMcPTTH5770LJPNGnGcUi6XMU2LJErIshw57iqbhoVtmvgljyAMyZKMlZU1Li8tce3aGjW/TBjGWJaB1HRGw4C/f+qrPLEwedNvrxCQJilLy+tUqx6u66NrGsNujy9fX+Q7fviHKTdq9AdDfMdVxZc8u+1dte8ru2/Mfdt77BZo1kFJwCvj1ZO7g9a1DwU8KOm4ff7iJgTuztA1XV1r493KDxhfvMyPeHnfNalse0ajgGa7zZ//xj+nknZpGgGpVqNWnfj/2HvzIMvStLzvd/b1nnPXvDf3taqrq3u6e9ZmzADDzAASeGzQLPQwkgILa0RgEFIYSSHJ4bAJCSQIFJaMLYs1EAgThGwQg2EGZoaZ7um9qrr2JbMqK/c9776cc8/mP87N6qyqrOrq7hqsdvRbcSMr857zne+e5X7f8z3v+zzIEohiB1q7nH/u64zNjpIfGkEQ0jrXH37m03zuc5/hr37vR/mhz3yKz33uszzzmU8iJx6SKoAskwgJMcktwbijPsPhzypy8Pnvc5rfYhyVondwuo4SqblXG4fjjURKxDuuJ+Ld6X4P2tatNgcKuUf166i5593pw3e/d9S2D1Knd5RtwZF9vg+4e5DP/TBB3v3EU267NwZeELe2PxwJt26ed8HdOzD+ssDd2wFxDxLpVOovD9wdjo99/KM887nP8vgnf5A/22nwP/2nL/MfF9dZ26/zgXIW3TZp1qpomoaiqkA6yHpdD0kWCft9oiAEIUEUZGQZup0eppmh3ujwyoUbTI0UEORUJIBEwswozIwX2N2qcubiMroiMzI2xPBIiUo5PxBbgZXlTcIwxsm6JEJqCP3YIxOoukAcRqiagt/z0TSNMArohzGSJNEPI1RNT9UGg4hu18dxXDRFpd3qIogJiibRarewbJ1GvYNpGQT9gBfPXMHWNcIgZG52nOHhEoau02n3OH/xJhOjFY5NjaPoCZ7fZnJ0ghPT44RhhKRIfOHVq3zPk+PIhoFuWiianq46x2DbFlEUIcsSnU5qDK9ICt1uj7npMcZGy0gyKKqGKmuIYqqGZ5oGiqbiuBkuX1zAtk3ixOfY8WnyhTw3btwkjkIWb6zyniceZ2tticcmDAzL4JGZcTqNPk5GZm11i3bbI1/I0ux2EQjo9/tIkkwm42DoGpeu3mRyvMzi0jYjwyV0SyeXd5BlhZxjs721j26YnL9wk+Ehl7GxIicenaBUyNL3PGq1OjcWVnni8Vm2tlO7BU3T6PY8lpZ22dyuMTJcopBzUVSd5dX1tPbNdbFtG93Q8XoQhwJJLGFbGSQxIYwDREVEt0wU3UAURPr9PiRxajkgiayv11AVFcty0VWTkZFU9VRRJHTDoFLKYtoqOzt1kjjm3OVF3vP4BIZlo+sGAgKhH7G9WWNstEgYh2i6jtfrs7tXJ44i4iDi/JVlVE1ibm6aoO8jEGNbqeG6aQtsb+9TqVQQUPn8vz3H+woKuqng5lxULb23wn5Ao9FC0VTqzRZuLj3Hfi9A1w3iCPq+x8baLr4f4jg2pUIWw9AxTJ35hSX6/ZBjx2fRDY3dvT1GR0dYWd5MhXBUmVqtjp1xkCSZIPLT4ykKOzs1jh+fJSbCydokAoxPjCKGXcIgYGlpnVw2C4KMECcs3Vyl22sjiLA1SCUdruSRhIRer40k6Rw7MYsgSNiOzeVLizwyN4UkyeRyLr0B268qOnt7+4yOlpmdmyAmTZWt1vZxMjY3btxkaChNJ9QMFc/vURrKQSRy/cYyuWwGVZdxXBPbcbl44RrFQpYwDBAE+PFPfojxTMzP/OJv8Tu/++/4Gz//S3x0okLRcQi8LonfIYgjgn4f3/NRdIOe1yYRIkQFEGJUXSIOQ5IB66RpBmMjI+imgqRAp91DUVWSJMK0MnzzpdNMT4wxlM/ywpmLDOWz7O00IBa4cmOR4VIJ13EIg4Bs1uUr33yB8eERzpy9wuX5JVzbwHEzGBkXBJG5iREmx4fRVINur8fO9i6KJlEq54gFhY21dTRZJogSTp29yMz0BIKQsgVRFPONb77KSKWELIvEUUy/H6TPhyBz8tg0iqYwOTxCoZTn7OUrKInIV547xXilzP5eHU1VWFxewzJMJFFE07VbE0knk6GUL6ArOtlsjtXVDUxLR9N0+v2An/2D3+dvP/kEiqIiysJAtROGinmSBOrVNpqqEYc9fuHmKn/3p34SQZYwbIs4jFPmLrmDuRuMwfcTVoGjGZ4jtrp7fDxi+zvbeiPhllsA5MhDxrftFx/R1lEMjCgkKKrG0PAkfWTGPvwDvO9j38/pl/4jE0MKL/7576LIRcSoxn/6D7/C2Ze+wd/4iR8jEZ0Ba/F6Y4qmYlg2MjEXX/wqZy+8QC5vo2cyIKgIgnhLe/F28HB3iIJwa+HgLyOOmnq9GXD3RnGn4Eh8W5XaQwQst65/fBcoe6MMsQdp98304ah4q8zdW+nHA7f1Rsz8fZ75w+f3XXD3Doy3Cu6OEky5xc4diqPAnTBYlXnQVZwHCeHQz3uBvMMqvHdud9R7B68H7oMgpOkcP/xpnnnms3xyHs9oAAAgAElEQVTnpz/FH6/t8T//8Z/zmelx2vUmiiSRKCpyFBGHMbKqkMSpX5ssCQiKiCCnwgAiMaqqMDdVxjBM9reanH/tJtmsgqUbBH7I6uY+zVbAwvo2eVsnDiN0ScXrd5FkiWwui2UZLC+tk3NdBEEgCiKSCFRdR5YVRElElEWSWMTUtVSZTlGIgwQ5kUikGFlJ04YSMQExXQUOopgoSkhCkRfPXMLreBTyWeZvbDDkOARhQr7kIAgR3W4XTVU5P79Etd4kn7MRRBnDdJCEhLbXxtAMfvirL/NbP/VRbNPAH/iBRVFCFPi3lh09P5U693wP23aRpATf72LazmB1PwOkSndRL6TR2ca0DcKezJkzZ8jnXcqVPJZpEPQT+n5Aq9ljamqMQjGbpuaZMj/9e9f4oQ+VkSSBfC7D1s4+45MjuFmbMPAxTZ397RaKpLK5sY8qSahamupVr3fZ2e1gmTqua6ay+Z5Ps9FGQMAwVTRFRNe0FIiLEoqSKqgWigXCKMGwNAxTp9Fqk887RFFIaSSPIYusLm2Rz9psbm1Dksrld3o9up0u7VaXZr1OGIXs7tcAkCWNnb0ahUKOXruHJmogpXWUaa2jj25auBmHP/3KKY7PjhAEAUHooWoyIgJe16e63ySby7GztU/GNhiu5FFUnV7H49q1JUZGiiDFaIbE/l6DtbV9tjarlApZCoUsfT9Et9Iao6GiO7BVSFhZ3aFSLtDqdMlm8uxv9/CDBpoh8aVLPT4wrCNJMqZtpRMt00AzNDa2dqjXmxTyWfyeh9cJUFUNRZGRlQTDsJDVGNOW6QceiDJRGBH6aR3X7l4Nv9unVq0iyxKqrJLN5tB0GUVXsTMZVm6soCCmCy6GhGEoWE4GIY7Z36+i6jqnT19kfLhEEu7RbPWo1npIosSF89cYHqnQ7vQYHhlmd3cPQ9OIk4TR0WEa7TaW7RDHEZ7XYnd7F0U0KBZscsU0bVnRFJ5/6Rwz05P4njdQtVXQLQNJkSGJae/XSZIYRVN5/rkrlIccNjd3MHSDq1dWmTs2Ti7nYFomsqKiagZh36fTa7G3X0UURHy/T6/vMT0+zA9+eIrP/8y/5nd/5//kr//8L5KsrfH4sePIho4kKoShgCRrLCwuMTEyQq/dRRFIFUolGVmzkESNG/Nr+L5HxjXY3drGNiwkKU3prO3X8Xo+tVqHuWMzqLrMsalRHNdClOEvXjxFznQYHSvR6/cwTJ0/+uqzEMjs7u9TLhToewHn52+Ss2zi2CeOwkFaJLQ7TXbXainDO1VElEyq+1VeOHWRmckhZFVkbnYK32ujaiJxHKGrOo3mHhPjw2zvVLl47QZF10G3DLa2t8lkLNJaOJlmvU291iSfc6k3m2nqtJTw/KkL7NXaNGo1hipFVFUnDOMUKIYeopCQLWT52vOv8L4nH+Xa1UXK5RKqrPBcvcFnJkpIhoqsSIT9iJiYarWGgsyF+ZvoqswXzs7zi//0n1KYnkhHqeTgxyGl6jQf89bYG8fxfQHefRds79jmKJYkimIEDtI/ByqSvF4jfdf2CbfBgORe7Q9eiZDKpogDEYzDwhC34vDAP1D8i+IQRZZxVRUJgUce/wB/8Lu/wvsfn6Fdb3DhtWcZy7lcu7DM3Hs+QnF8liQOEYRDRuqCghSFBH6XSmWU+XPP0u90GKlME6EiKQZiPGCzAWEgVfK6Lbtw6xUN5F8ODLQPg4IHuQYPGnca1h+OtzrzOmqeFN8pynL4lzfTtiSCkKSs9f3A2hHiKfdj8t5onnmvYx3sJ4vCLZGUA+Gao1q8816+17HeiFl8KHFEJ+7JznF/cDeYr78L7t5p8ZbB3SBu/2K9z6reEdT2wwR3QKpcdbBSeMT7Rz0+yX3ee7MhHBpID35/7PGTPPPMZ3A/8X38rf/9VzmzusHHxstEcUIiJCCltXSpOpSAKEkkMenE2g9QdRVJklJJeFHi5XOLfOCpWeI4od/3mZyo4Bg6j86NYdsGmqZy9doSleE81xfXaTTaNJptXru2wqVrqyzcXGdiOI8og2ZotJtt/L6HoqRpckkMqjYwZBWiNK1OkRHEtD6s3/fRdJVWo4usyeh6yqo5eprily1kMVWJcrmIm83wFy+eZmp8GE1VkRWZkUKW0ZEipmUgySJBEBCFPrqh89Lpq/xXn3qKfD6DrMhoms7Z1y5RGSoSJxGSorC/V8fN5jl96gpjY2U6rR5Bv4+mqcRRQCLERFFaC6QoMqIoYlg6cSzgZrNcunqd97/3cS5cuMro2DDnL16jkHfZ2q5i2xrdbpckgaAf8tc/8QQ/8aun+L7HXa5cWaSQd7h+Yw1Dl5m/sU6pmOXytTXm5iZYWNxgr9bCNDWGR0usbezy7d92kmzOHphbJyiKzNbWPsViDsS0HtH3+wgiaQ1Rq4NpmoRBiOOkqVyOkyHoRwPDZJUkEcjYGTY29rEsA9NMRXGGykUQElrNHrZl4GRSy4d8waEfpml0dsZMBXR0g62NXTRVpVFvsrdd49RrC0wMF+h2epQKJsurm4yO5tC1DL2uR98PuHxtCdfRaTTbzEyPc/3GGs1WB11TiPoho8MlVlY28TyfjGUiIVIeylGpFAapugG2baIbGpVynv1qg3whx2vnFxitpCluAgkdz6Pd6TJSydHyEr792BRjwwWcrMMrZy4yOz1BFMfIkkyhkCPrZkiiGDubYWV1i06nC0JCu9NmZ6tGqVRCkjQuXVhmamYESRR5+dR5bFvniadOoMgylm1w8fIirWYbkoQwDGk1U8+yoO8jKyI3VzYYHysTRTHr6zvksi6KpmCYBgvXlxgZmB9LkkG5UkGWZI4fn6TndSkW86hyWl/WbLUpFnPUG01c1+XZ505x/NgUftCDBFZWtoniPlfnl5ibmyIKY6YmR/F9n1q1Rsa2UtsUQ6dWq3NzcZVC1kFRUo++E49MYVo6rmvR930UVaLv+VT3a9RqDba29shlHWrVBoVCHkPXsawMkiiQsUy2t3Zp1Jt87rtOcOqbX2I/zPBXvvAF/t5v/iafOn4CWU0Xha4vLnNidgZJTqX9dV3h5VOvUsnnkVUVTVcpFF3cXAZZAUNNDe4XbixTqZSxMxlUTWWoXEJVFWRZRNV1EgF0w2BkqMzwcIVs3kLXFAzT5Pj0JKPlIR45PkOxVKCQczl5fBo357K2vEOv2yefyyFKMpajYNsWI2NDJMREUWo3c3xyCt3QUGSdJEwBgKJpiJJEFMcMF8u8dPo8bsbh+OwMV+ZvIAHj46M0G61bPqGbW1ssrK4yNz3Jo4/MDNhviXIxz/uePEnQ91OvT10n6Af86V98k8mRCoVingSBywuLlHNZpqfGUVSFtdV15kKBlfoOo7kscQzNRoduu0ehmAMSZmcmaLc6nJdUfvwLP0okS6+PPXeEKIh3jUlvxN69nUgBHAOPrNvfO5KtO6KN+07qD9i5+8V9GEIxEYnjBFnV+MBHvpsgVOjUm5w5exo5jrjw8im++o0/59v/yg+Rcd1UjGUwS44TAVFM0DQNWVUYHZ7i6sIGXQ+cbBbTlG+d59uPK9zx81AXD1JX7wB3DyvuN716qzOvI3v3sMBoEkMivKV79O2ctzfa92FYIdzvWA8d2N0jDgzKb+v7gzB379bcvTPjYYK7AzZOOGKV7vB7h/e9bYXuTYK9A6PzA/L/8EN4FDsnHLHfYZP0N3tsSZJuB6gHX+4HD9FhJlOS+OT3fSfOaIn/7t//X3ysksU2dGRFSWsIEiEVPohikjhGlkQESSKJEyRZwPM8Op0uU2MFcnk3BQSKgigLOE4GWU6/HFVNJZt1UXUZXVUpFfNpsXc/4H2PzTI7USaXzxBHIXEMuqkjD0RH4ighCmIEERLitK5NkVOcJwhcv75KZbg4kN7XUFSZhAS/5/Hcq1cxDY2h4Ty5QiqQYZgaO7tVRoeHEAYrX0kSIUsS1WqdKAppNFvYtsHebp2/d+YcP/o978N2LACiOOLylRtMjg+n5wIhZTmihG88d55Hjo2zurJFseiSkKTiLlGIZqRiNQggKRLECoqcpjnFYYyiyIyPV1hcXMHN2IiCyJnzC3hej9nZSVaXN+hHEc89f5a/9b1P8ctfusLHn6rQbvWYGK9AAqNjZWq1Bo5tYjsmI8NFhoayLCxukM855LIWUdTH63Z5+ex1xoYLbG7vs7a5T961CYKIrOugqqmgjSCKrG/skXVsbtxcwzIUNE1jb6+OnbE4f3GRQt5lc30XQYCV9V1UVUGSRQxDpdFskculghqiKCCIImcvXmdkpIhlm0RBgGkaIIg0mi0MXQUSvJ5PuVxguOSiqikjlnNtSkWHvueTRCLXb6wxPl5hZLiApskUCkW67S79fp/ZmXFanQ4ioCoKntdnfHyYvhcQBn0kWabb9RAlkfn5FWr1Jlk3lRLveT5Ly1vMzYwgSxKua2NZJhnXolC06PUCFEmFOK0FzWRsdFVOU3PDiI21TWRRwvd9Ws02lm1SKObIZh0MIwW+rVaDmBRUtlptSqUCnu8zVHRQFBnDMPA8DxKYm5mkUi5x6uwllle3KeQcDEMjEcHJOlSrDZIowXFcdnb26fd8svksoiQxPlZB1VTiSKDV8ui2upTKRZaWVrAsk7X1TUhIWUFDw3EyrK1tkc/nWF3ZYmpqlDjuk8vlKJWKiHLMzaUd4iikkM/SDwIuXVqgmM/ytW+c4f3vPUmUJFi6Tj7nAgm+57O1tUun22Hx5gq6rlEs5hHFhHq1ie8HuI5NoZBnbXULy0r9H3P5HPVanRuLa8RJwo2lDQp5l0wmw0Qly/c8XuEnf/43+Ec//d/zD37n3/ODJ07SrLcZqVRoNVr0vJDTFy+T9Pscm54G4PzF61y+cp3NzR3ybhZV1dJ0akmiXBlCEEWCMCSMQjRTT1Mi+wFBFCCrKt1Wj9NnL3Hs2DRxHKCqKrKcelp6vS5JEnNjaQnXsdnd2+e5V88QxiGGqWBYCrIi0Gt3icVwUKcs0O10sN0MQizw4qnXmJ6c5NSrF5mYGiMIQ/r9gChOUBWdkUqFhes36fV6HJ+bpl5vpd/FknTru911M0yPj2BaBtX9KqIo4rou29s72AOj+YzjIMsi1+avI0kix2am8fp9kjjC9z1GKiVUQ8PreeQKOXRNYbPXYNJx0FSVMIw5dX6ekaECii6RRAl/58wVPv+ZH+SxD72XKH5jvy7xtjF2wHp8C+eTaX9uH8sP13u9nl537wVfUbrbGP3gsxzJmtxRO3QXsBMEhDitywvRkVWX/baAXZnlyY9/P1OPf5jnn7/AP/qFX6IyOnVbjR+AMFCbThAgkdDsEsOj02QyLmLiYeoiwaFSR0EQiEltLQY9fL2vd/wnieNBbaJ013l7s/GgdhRvlJZ5r1q0+y2Qv+0Y3Mui9GBZXfeqsXuzx0ySBEES7vLVO2j7KGuKt5Jyefj+fih9v9/xRCH1qrstH/rufqffZcnANP6O995l7t7Z8TDB3cHNe6/ViTfyvXuz4O7w1vd7RO4Edw+63/1CAMIoOnJV58g6Q0FElWV0TeNDT57gH//fX+G7Sw6mlooJEMVpLUGSEIUhiqIQA5vr29hWynYYho7j2iRxRBzHdDpp6mWj1sT3+4giNFsdVE0jicM05Q+BOI4ZGR7C6/XIFhyqe3U2tvcxdR1BgHo9TaXa261hmjq9Xi9VpJRl6rUWCdDrpZLruWwmrTuSZAQpNeAVBRgrFxmfKBPFYWo/0A8QJZFysUDQD4miCEkU0/MlivSDgIxj3/rbJ//k63z5n/8YTjZD0O/fKqIvFXNpupmSmtTKogRCQjFvkcs5qWeUKaMqIoqiAyK9ng8khFGYmrR3I1aW17FtFVkx6LbbGIaWSqlHMZZl8sQTJyiVsihyygYVinlytsni4jov3azxX8xaZDIWr527wexsWh8YxTGVoQK+5yMICVEQDqTRVRRFod3u0ul6TI5VWFnbYXp6FHXAKO7sN8k6GUgSVtZ2KJVyOJZBs9lmdmaM9Y0dCoU8QRhgWSbFfJaV1S28rk9lpMjkZJlsLgMJmAMLAc/3WVvfppDPsrOzx7FjE6mQgiQikrCzW2dru8pQKUej0QREHMdCVWSu31xHEhI0TSUMI65cXaaQc1nf2EUSBUxDRVYUFFVlZWULkgTbMvA8H9M2MHWFbs9LRVUEgWdfuky5mMHOWAiAYZlU92o8cmwiVYXd2GGoXGS4UgQGZtD9PvVag3a7g6qL6IbFf/nPn+fvf/Yj+P2QTCZDq9XC0HWuXLmBbRmcPnuVSinP8y9d4MSJqTQlttrg9JnLjA6XyeYcVCVlN/p+gCCmRsQiCc1mh5WVbXw/Za5XVrYQJYFjc+M8emI6VSq9sYIoDVJXux71WgtFkqjVm5RKBQzbZHtrm4zjpAtMsoKmpkxWFEW8dnEeVZFwHQfTSsU7fv8Pv8bjJ2fxex6WadKsN8nl0gWbMIyJwwTL1LBMg739OsViFlmWmZwcQ5Qk/F5vcO49dE3j1VfPMzkxQt/v42QyXLu+zKOPzOI6GRYXV/D8VDRmeHiIoXIpZXorRWRVZmNzj52dPa4sLPP0B59geLjMxMQIGcceKNJKJInAJ983xU/8wq/z27/6a/z0r/0qjyYCrVab6bkpnv3mqwwV8pQKWRRNpdvzGR8eYWp8FNsw6IcBqqKiDVRM4ySh3w/wPB/d0G4t7F24cAU3ayEkoGk6laEivW4qcCOK6bMaRxGOa6NpOvm8i6ZrZJwMo0NDPHJ8kqybsv6KKkMoEJLazYiCimGqRDHsrO8yNVHh/KVrvOfkiYEgi0gcpZ58vhfw8umzPDIzmRrWiwKLN9dYWd/i+PEZfM9DVmSiKFW51DQN0zIhgXq1ga4ptFotLl1fZGJ8jCAIKOSzjFbKqaWBYxP2+zgZC9NMU2tlRSEejCf/7MIVfmA4f0uMZmZyBFmVUHSFWqPFl7dr/MOf+WnC2EOUtQcaq+4eox50pHurcdc08tCxD8Add/3tjSa996pjux8DcavdJCIRIEGCJCFjZTDdPJJuoRgOYSjywY9/AikRB5mgt6E7DpaLEyEVukkEgbXlm9T3t3jlhW8wc+I9SJJ8Wz+TOCKtsb83uBMRbqWwvt3J/oNOof5zBHe3PruQPFCjDwUY3VqQv7cAycMAd3fGt5qtOyo77kj2PE7u+by9y9y9w+NdcPfWIgak+wwk6YFeP5IcA6KMptvkc0VKWQ33I9/Nv/wPf8B3lfI0qk1kzSAK+vQ9D0mRkWQZTZEJwxBJTusMRFmkWqsRBAHZvIskyqiyiNdPffFc10nNu8X04Yzj1CgdBFQjXc1RVY1CLodhmHTaHrmcS7fjk8vmkBQR3dCQJImtjSo5N0+cpKIY5aHCwNfKw7YsOr0uYRggySKaksrhB1FI3I+QBYlYiNnfbxD4KZBrd9oQi6mwzKBPuqbxma++wh/+4x/EsjO0ey0UUSEI+kRxjJUxQRK4OZ+KhrTbTSxTI04CdMNAVSRkGQQxprbXJ+wnbO/skc1n0km2ACIqr758ibHJPIaV5fr1RSRJpFTME0Uxm5u7+D2PbDZDda9Kt+uh6TovvXKeqbEKn/3up/jUv/o6n/vwGMVi6sl1bX4FWZIwVNjbq2JbBlvbuxiajirJqY+ekDI1opSylook0un0sEydIIyREAiCcFCXo9DreKys7lAqujgZCwSBXs9HEiV0XadUyjOUt9nc2cHNWcRJhCgkrK/tomoycRyjqyqSKCFKAnYmFZ/xPR+v1yNfyDE0VMT3fDK2jmmbNJotYmJcx0KQRKIwolZtURkq0mz4BGGP6alhZFVhaXkTVVEwTZ0Ll5ZQFQnbtmi229gZE1VTUXUN1dCpDGWpVhtkHZuV1W3WN/bQVYlqvQnA0FCBm8spQ9Rqd1BVhU67SyJAMefQ6TbwE4WvX/P51Eem2dmp4fk+xBBHMa6TIV/IUS7l8Hs+u3t1rlxdQkgisk6GkXIJ28pw6cISQT9kfWOPmZkp9nfr+L0+hbzLy6evUCmViAlxMy5bW/vkcw5RHJAQYpkmrWaX8nAFWdWwbZ3JsVFIwLZNri0sMTpaptlu42QyVKs1JFVkZXmN8bFhFEVhfHwUx3EJwwhNVwnjgMcenUVRFVaWN3CcDNMzE9SqLYpDeURB4ubiBvu1fYaHK4wMl0mAK1duUBkuUa83yTp2yk5aOl/+8vO898kTaHoq7R8EIcViDtOwubm4nqrE1hucPDmXegZGAflinhs3lvC8DmOjw4yMDjE5PoRhZ1A0hShOECWJMIpYXlrHMCz+4uuv8P1PjvBLv/X7BAh8eWuDb+zt8LGhYXK2g6mpyJqMW8ijGCZ+twZiiKwm6KaKbql0Ol0UVUEQQJSlAdgTiaIQkpiJkVGiyMcwdMJ+RBAErG6ssb68x+rKFjdurjA+ViGIfYJ+RL/v0Ww06bQ6SJKEaVp88cvPMTMxQafpo8o6siEhqxq9dkic+PS6Ib7ngxBx7Pg0oijQrNexLZNGrcH+bp0/f/FVhnIuOcfEsk3iJKZcHKKYyyKIaU3tK+cvMjc1ldZjhRFxAlEYcfrsFeamxxGA2dmp1JdvfQPbNrh4dR5FkHByDp1OmyRJqZ4oSSfSsiKxsbnF/7O6yked1Ce17/VRdZlut4tqanzhpUv82Od/hLlH5lAzCiTyG45Vh0epAz+5o2wRHm68RXB3VF0Qt2/3VsFdIqZp+0kiIidJ6g/r1+mLEbKQ8OQjjxHKCbIoEcfJbecobfegkk4gok8sxlRKReSwR69RZacTUCgUkA/YXSDoB2xubeA6zt1n5lZST5qh80Y1kQ8S72Rwd1BzF4f3r7m71Zd3wd19238QcHfAdh/ZxuBqpwz0u+DuHRdvF9xxyIskiW9Xtbpts/u8d7itNxOHUy8fZLuDdMzDRcF3bSuKkCTEb9DuvfY9SNkRxdetDtKBBRIBBElEtSySIKHf9Yg1hZ/76nM8c3wSxBBFV9AtE2Hg+yOKoGmDCZEoE4cJup6mzyVJQhAGdNs98nkXSZKJBmbfnXYX3dARBWg1WsiSiOeFrK3vUCi49Pt9xATOXb5O3rXJuBaSIhLGEaIo0mx10snmoDZMVVIT9lazw1dfPsfs+DCKKqGpKr1uH0FVQZRo1Tq4OYdYFlBkGU2VMUydJElQFJVrC0sEUUim4CIDn/7Ki/zR//jXSAbnTpEUer7Hsy+8xtTkGN2uh2kYmJaCYeoYpoUoyVy7tkQ+b2GYOp2eRyaTS0GmrjI0VBys/mskScL16zd58r0n0FULRRYgFnBcl82NHU6fuUbWtbi5tsb0xBjnzi+Qz1uYlsXk5DCFUo56o8GPfuJ9/PqXnudYxWRvr46uysiiiOM6FApFwlhkr9YgCQMarQ5nryxz4sQE3W6HdqPFyvouI5UCGxv71BodtrYbFAsOhqmmNVF9n1dOz/PUEzOEUYwgJJw5e4O52QnazTaimKSTQQkcJ0MSQaPWpt32uLKwztzMCJqi0O16hGFIu+WzurKLoalUqzVEWUXXNFRFZnNjl4Xrm1imTLPRo9tJWTHbMpAVGcPSUVWFKA7JZAw0XScZpHPZtkWv3aZcKrC2sc+Fq8tESUC5mKXT6bC3t0fgefjdHnOzsywurZPPZ7Adnb4fUBrKUSzlESUBx7Go7u9h6DqKrKIbOnGUYNkWN5e3cQ2N95SLlIeGcRwbSQI747C2tovndzBNC1XT8AKfk49OMTZaodHoMDw6hG4aLCze5PGTM3heQCGfY3N7m3q1ha7peF7A2EgB05IpFEqIUkJlOJemCjfarK/v0u16TEyN0O20MXWVVr2JqonsVvcolUsUh4ZQVRnXzdCqt2hWO8wvrND3Q7I5hyCOqNVqdJptLl25wfh4hRjI2CaXL13jsfccY/76IoapcPbcRYbLRV47e4mN3SpPf/BJVE2m2WwR+CHnzt2g02gzc2wM2zGQpNQHsTJUQjcNNMtEkmX29mtcuTLP+MQIldEKl6/e4LETM4RRSLfTZWJ8jDBJME2DZ795lmLeJk5Cur0u+7t7WKZMr9ui22lz7tw80zNj9Ls+j588hq4pfOpjj3PMSfjKpS1+/Vf+D/7hb/82jcY+750ew9B0ZFmj0/JZWt4lny2kE2lZph9EhJ0eXrf3umdnrcnZC5cZKZYRBZGIANW0Ug+9KEDTDF565RK6LTE8lAqOFIt54iggDD12dqqcOned9c195pfW2NrYZW5qnCvXFtne3Wfq2ChxBI1qk+2tLXJugZ3tbWZmJ7FsG0FMiIkIwwBVNxEkhWw2gxClz9jo+Ch9v0+rmdbZCTJUa1XWt3Z4+n1P4fd7qJqCqiogJDSbDY49MgOigKLJeH4XCZEw7GMaBoVsDhDRtFSkQ9dNRFHmyrUb5LMZZFnENG0+/8R7eeWFlym6DtmCQxzF7O9U+fEz1/g3//JnOf3S83z427+dQDIR7zPNvFUWcMAiMRiDRPHICevbjcMpgYkg3gJCd8IEgVQMhQNRlEOplLfSK+/BMiQHOv53vIQkGXhzHgiYpH87KNdIx3sJAQlRSEBIUvZN0ZETBRGJWBIRD7N2iUCqmikSESEICQJx+hIVZEGj3+3xxd/7VZSkTm3lMo8+8QSikUvTOOM+7Z3rrCxcQlMUVMcmEaXXkcHgZ5ykfUEQiJOB0IqQKkIe/ie+4UyHtL933BKHy1AOXvdtQyS9UY6II079Q4uDa/tWgM9bBUuHQVDaxBH33RGvtxrfylTM2yIZnE9BSi/oIeZZEJLbtrvXORdFiThJEHlXLfMdGW8b3MHrdXRHFhTzxu/dsc23Ku5k8I6KgxSh5A22u+e+vF5feFSkPkQxecvmxsICWdvgmc89w4/92m/z6ekRJFFKc2YOxrAoRpKlW+xdt9NDUVPFPwBFUfB7PRRNodf1UuXFgSdZ3/MQBFBVBU2VQZD4xiKzadAAACAASURBVKuXsRWZ05duMDc1ylAhiyiJeL0eiqJwYKytayqiJNHrdqnuN2m3uyRxgm7ojORzxEmEbqh4nk8URlycv0kuY+O6NogCURSRRAc59BICAr2uR7lSwM06kCT8N8+/xm/+xEeJE9CN1NC61/XQdJXKUAHbtjAMHc/zUmPjMLp1DYvFHLIsEcWpSXYYhjQbLUzLJI5jur0e1WodEZFms4th6OiGRrfXpjJaJokSrl69wZOPz1GpDDE6UkLVFHZ3azgZk821GnvVXVRVGJgz6xQsg5//4gJPT5mMjVdY29yj0+5y5eoypaKLrssYqorfD5meLGMYaT1jr+sBpMxgrcWx2REUVcbJmEiiwP5+nZ29OoamUSi6GLaOqEiYqkq90UwFWIA//rNXGBvO0251cFwXTVW5Or9KpZhN1SJ9n16vz/p6lSRJyGRSM+Vc1sLNung9D0kUyboOk5PDCGJMoZDHMnWSJEaSBGIhIY4iBEFkZWWb8lA+vXY9j2vza1TKBTRZJiHg0sINPvYd72F8tML89dXUZsDUKBaLKJrC5auLTE1UaDQ7lMtD5FyHZ1+8RCmf4dK1JWxLR9cVDMPipVcvU8xnMEwVUQSSiP/2Nxb5B5//GJIks7u1Q8/3sJ0MpXIRy1SRJZk4Tuh0uumiiWIQhCkLpKgSxVIWUZB5/sVz5HMZhkpZRsfLZDImURjT63nk81larR6SLKDrWmrwblsIJAyVCrhZl1azjayqfPVrp5iZGaXvB3heH0mSgJgkSdje3MF2MoyND9Fut2m1OziOw/z8MsOVErt7VTJ2ep9GUYDr2sRRgqJIuE6W6clRep6HLMs8+cQJAj9gb7dKoZDnpZfP8T2f+DYuXLrO3Nw4JOmkXdcNut0eoiSwtraBZZkkUcxQwUXVVAQBfK9HLueyurZDqVCg2/NASDAtk1IuZQBffPUi733iJJ7nk8QJl64tMjY6ytTEGIomY1kmoiDS6bYxbYNCLsdnv+MRfvSf/C9EUcRP/9zP8Xd++X/ji4uLfOrRk2iaTrPaZn5hCUVSKJaGEASJdqtDxnUJgj5B2EdRJcZHU4Yz4fUarCROxYea9SaiINDotBkfHqbebNFutxgZLSNJCp12j0qhxIc+9BSPzEyiSiJ/8dI5njgxy/FjM0RxSBIl6LpOt92l1/UYKpcQBJF2q40opkxWapngoWoK3VaHcrlMFIV88c++ydzEOLVaExDIZCwsy8B1Mvi9Pisba2Qsm1q1Qd8PMXQTWVWIggBJlpDElJGxbBM/8DEGnnq9no+iKFy6skCxkGN0tJJ6ncbpddne2OXYSAbTMhCVVExrbWOHb3Z9vuPpp5kYn6A8OoJPgnw/lHaPMfdedURvN24b8u44piQcqqETD1iwoxp5vY/3eu+oELj3xPmNJtN3DtWHawIP2j1QIT18vCRJkESJ4bEyuXyRbqtN248ZGZ9CFBPwW5x68U8RCVEVGTufRZKE19nW+9Jnd7/5IOCOIwqr3nx92FvY6f/jeBiA6YCd/f9VHOG5cRe44+jzd0AwCLwL7t6R8TDAXTJYrrtLSORwGuYDgjvxTpGSQdwm0vIWQeADPboH/XwrBxh85uTOz354kwGrpwgixWKRZqODW8zzU3//p/hff/nf8f5KMV25SxKCfp/aXpOMayMrEr7nIyky7VYHVVFRFJkojJFFgSCI8PsB/SCkVmsShiGWbSKJ0Ov10po3SWFuokIu7zKUc1la2qA0VGD++jKjYxUAri+sYJkGkizhex6GqZFxHGzbTNUnJQnDMgiCPrqhopsGiqxSct1UUMP3B95MCV7XZ3V1G03V+KOvvcxjc5MohsLq9i7/5uZV/uYHxxBI2Nmr8/Vvvsajj0yzv1cjIcF1XQSBgfKliD+YEB2IsgRBH0VV8D0fURARRZk/+9oLlAoucZywvr7N5OQoqmZQLOR54aWz5HIWkhTj92LOnLnI0x98gk6nSxSGg5qZmJHhCp1WF0XSGR7NYdkaoiSiqgbNWoOW51HUAkaGS1i2zs52jfc+dYxGo0m31yeTsVMBhRtrJFFIs9llbLxMoeCytbWH74fIsoTrWjRbHTa3qkxOjLK/3+SRE5OEUTjwAEswDA1dV9nY3KXV6vJtHzxJt9sjn8+zsrqJIMBwJY+qKmxu7VIs5SARyOedAQsV0e8H6IbK1tY+jUaHvWqdTreXsn9JMFB3lAjDlMFASBnW+YVlxkaKyJJC3+tjWRbbO/uQRDjZDPXmPrNTJbrdHs2GR851UBQl9TqMYsIoQtNkPC/g6sI65UKWZqvHE4/PsbG5x+hwgXzOQdN0Njf2cDIG2azNfrWKZeloqsSfnG/z8ZNlms0We1tVVE0mX8zR6XRYXVkfpMQlvHZ2nkcfnWF3p8r09Dj9fuoVqOsqW5t7HD8+TS7rsLyyTK7g8sUvPUuj3ubEiVlEUeKrX3+V43MThFFqfi6KInt7NSYmx9ja2iZfyOP1euiagphIqJpOq9Gm3UxZwOsLy0xPT9Bo1HHcDIW8m6ZnyTKLN9aYnhnHtnSGykUUScK0DLY2d2i1OiwtbVLdbzBUKfLSK+eYmhxFVRVefPk1ZqYmuXzpOk8//QRBEDA9PQoCbG5u4zg2L7z4GsOVApals3B9hStXlpibm2Bvd5/NjW3cTFpPubG1x+T4OK6b4ZVTF6kMl1A1FVkWQIC5mSn6QZgqAcoKFy4t8djJWTRDQ5QEzp+7Qj7vIisSkirRarYxTYMf/o4T/NdPT6LVriNW1/j009MMPZpFHEr4iT98li9vrfKN/V2+t5Dn9y69xtPHTyIkEYZtIghJKholivS6PURJRBLkW2mDXs/Dsi2GykNMTaSiJcPDJUqlAv1+SBILCIgUhvJ02l1eOXMeURAoZh2GyyUsy0SQRE6/dpGMYRGGEXu1OtVajbMXr1GrNsi5GWr7DYIgIlfKIgkpgBOlmDgOKBddmp0Wtm1y+uxV8tkMggher4dpmXTaPVwnTYM3dJPnXjjN1OQYvu/R7XaxTQtZleh5PnEMp85dYLhcJOiDLMs4jo2syui6li5MmWb6PCoyzy3P09vaZ3S8gpAkhEnId/3tv8v+/jaPP/k4qm0hSPK9IFI6hh0Bdg44tKNqxd9uHK6XSwam4gfjtigwYMRe3/5+4O7N0iUHICzth0RyyOvv4O9HL7geFm25NYTfmmKk+8Ykh9lPQCQhihNiScJwS7hDE8w8+iTXLl5Gijs0t24StLeoFAqYmokkZcmXZ+j7IqIk3Gr7XqmAbxXcxfHd+73p2dJ/psDuQDRNuO2aPRwmTBiA4r8UVo3UU1MQxXTMTdI09Ydx3g+z4IKQWm8czHvFgb5Bmpc22H6wnSRKiMLtpIQgpNvHSfJuWuY7MR4GuDuIo2rN3iy4E+7Fet35rfsOiHsymElCXwbVNOk2farbm6hKwnf9yN/kX/3bX+PbRspIUpq6I0tC6gsVRIRhwt52nVzORVYUwiCk3eyg2y6LN9eZGB9BVxWWlte5sLDB3MQIURARBBGe36fX89K6LF2lH/Tp9wI0TeP5165y8tgkcZywvLHJ5Fi6kiwKIpqq43nd1DdMlQaTr9T0WpREAq+PKEgoUiowoJoagpAgJgleL+DZM1d47NgU8zc3yFk6i50m/8OFRX7y4yepjBTIl3IossSxubGUOdve5fyVG8xOjyMIAn6/jygKqKpKGEXpBFsSgZh6rcUrpy+hyTK5XBZRjBgbG2F/r8ELr1zi8UfnEGWJer2B69iIkohlWciyQnW/RrlSRJYl5heWGB0dwut12NmpIokyubKFLGtsru/jZmygh5sr8P7jE/zsHy/xA08WWF3ZoVzKcuPmOhMTQ1iWRavbpVZvo0hQLGRxMhY9r0sC2BmTYjGHKAokSczOXp0Tj0zT9wMUScJyVBbmV3EMk+Z+i4WlFQxDIZ/LYmgam1v75PN5EARkScDOmPiex2sXr/PIsVEajQaOk6Hb7VKv17EtG0WWSEjodjwUScS203Rew9Ro1DukX/8Siqzw4qkruBmN3b0aExMVwjjiwqVlkiSmUMxhmgqFoouoJrjZIr1ujG1l8Ps9NF2nWm2wv1fFMnQUUcawMiRRxPRkhTgKyeR0RBnCsE8cRkRBTK3eYnikTBj00XSFdqeDIqfGzT/80Q9i2w6tZpe9ah3b1ul1OhiqRqGYZXenThjGZGyLQj5Hp5fW/iEk5HI5Wq027Wab+YVlJiZT0+l2u8vJE7Ps7lbZ2dnHtnXKpTxLK2uMjZbpBwHNeouhoQIbG1tks1lEUURWZEQJbt7cZHVti0dPTEMcIyGxs1NjbX2LR0/OcurVS8QDJcVut8OxR6aIk4Rms8XCwjIjIyX+5Esv8MEPPEW73eH4sUla7TayJNEPQuqNJqahMjM1iqwZlIYKBH6f9bUNSoU8W9u7hGEf13Xwez4j40OAQH2vzsRYmfnrK4xPjNBotNJ0rwQKpRKtdo2trR36QSp4lHEc/vhPn+epJ1NBkZ3dPSRZwrYzzM6MoWgqQdRDQKHb6rGxtpuqeEpiqrpKQpxECIJAs9ZgbnoEGcjnHIK+x1/7yDE+MulSocf7/+pjvPf9o5ytrfJPvvwSntngX3zjHK9uXec3XpvnQnONf/3CGf7ZH/4BL9RbfPmFF/nm0iLf8+hjxDHIqjTIKkq/T4MgRJIkVF1BlEFWZSYnR1PPvdFUtXS/uo+m64RBQKfXZW52CtvU6XZ7OKbJ7NQk7XabF89e5IPvfYxmu0UUx0iCSqPWQBJkCoX84Lm12dupYxoqubyLJMuomsKli4tYpkGukCEKY8ZHKszPLzEyVkIAup201lWVNXZ3qlxf2uDm2hrXV9YYLRfJFbKEQYhmqMiizMunzxOHMbm8w6vLN/nuk7MIkkCcxPzYS5d4+j3jLK5d58Pf+TShKEOiIRDdPcY8QHwrwN1tIdxuW3BUJdl9wd2bPRyHwd3tBuT3m3Mkh3IW71w3liQRz/NQVYP40IQ4bVQkJrUzEhEQYhFJM8gVcuxsXiZjJ/T7e+zt7tPu9jj++PvxZZtY0pCEO67ZQwR3R06d3nCvd058q9m1vyxwJ8qpyI4gPIC9x5uIey3mAK/Pn4+4twbLH7frUQxYP+FtCKoID9vv7N148Aj6/Yd+8oW3WRR8OA5q9Q5HTOrZ8Ubb3StESSKOImLuHnSO6vuDti3cWXt4R1vRoXbUWCASBHzB5+qZV7hy5jV+5Jkf4cpGjdIf/W6a79zxiIFGtYVp2GgZk+2tfcrlLImQEMcRsizR3E9TjPr9gIxjEkUhiqLi9wI2t/awTG1gTwCSJBBGAUkiQBJhWRZhHPH/svfmwZZc933f55zeu+++vvv2WTEY7CQlkqIVlWTQoiXa2kJJpiTaScmmJdlRkkqUVJxynFQWV5ayK4rLUpQ4caLIkm1Zlk2ZJimKFkjswGCA2df33rx9u/vW68kffWcwM3gYzkCDiIzwQ13gDV7POaf7dvc53/P7/r7fTndApVwECVGUqkwqpQjDiPHARzd0cvkM7U4PXdewdIGuGwwHaQ1NtxOQK2TQTUUcR8SRQjdM+t0uhUKWMIz47PNv8hu/+CmiOCRXzJMoQRwriEfEccTYT2tTRoMAfVKrNxj0MUwdQzNI4oROt08242EYBvs7XWLGZLMuXsah1exQKBRoNXsMhiN0TVKsFEhiSGKF69l0uh329ztUK2WyuRxRGAEpvXXY3cMwDEYjwVefe5Uf+fPfy6DfZ3+vydRUHSEFv/8Hr7Aw3+A//qdv8Os//ygXz2/w+GOzKOmj6S7x2GB3d4dKLZX6z3gZNGERRhFCCqIkwLRMhoMuuWyWt95aYmFmCtd1sRyb4bAPwNZWm8VDOa5cWeXY4cMMhiEvvXaZei3DoycOoZKYOE6QUqO510XqUKnm6PdH2I6NEJKlpTWGwzHHDk1jWA6O69JqtnBsGz/wiRnjuTkCP+Ktc9c4crhGsVDBsnQ67Q75fJaxD4Nen16vjyYlpVIOy3bodrvYtgkiQUqIEkEUpj51o5FPrz/CNQ0cy8E0DRIVEiQJnW6XmekGFy9sUK0bSOlMwIaLFII4CVlf3aOQz9IPSiwszE9EYYZ42Qy6aRFFIYNeD5LUysF1PS5fXebDHzpJEPtowubG0hrVioXueLz44lmeePw4KIWXyyKlIIrGmJrJ7naL7qDDTL1Gf9jCtExa+xFzC9MAWLZOoqJUmh2DXrtHGI1SlVfNodVqYegaTsbC8xzWN7aRGJiGTWOmzJe/+g08x+VDz5zkhZdO8b3f8128+dYFHn30CFHkY5oWKMHZM5cRQnLysaPs7u6QydqsLO+weGiO1dU1FmaKOI4JZgaRgO8HrC1vcPj4NMFYsLK8xW5nk8eOn+D5V87y/c9+nAvnL6NpEtPQMU2bxkyV9fUN5mZnSRJFrGJ0A+JEoekGmhIgJYmK03VAlGCYiiAChMbO1h4zUzWUNNjfWadaLSE0gziUnDp1lvqURyHv4bkeaAYKQZIwsVaJCMcjvEwGhI4iFa0QxAiVZo4B/s1XX+fo4RmqUyWUivji117iez7+BP/z753mRiugOwz5/mKOH//wx/E8D3/oU6jkU0XeJCQIfWzLJgrTulXDMNNMixQkRGjCotlsYZtmKiyUyxKMQzTHYO3GOnOzU+xu7ZIv5tnbbzI91aDX7fOV51/m+OIs87PTxHFEPp+j1dyjUq2gGSadTh/DNNnb3mW2USPwx+iujT8M+do3XuUjTzxKxnOIIp9xmIraJLGiPxySz+fQhGBjfZtud8gTT53gJ3/3n/N/f8+HQcREfsTPvnye/+YXf5rqiZPk6tMIzcKME2KRgr+DxC/uFQfROeMDVgKa+ObH3G/794p7rQHvp8+b4zyQLXPP9aVgNBrhOA5v70O/8/ibYxCTjTlxAN2t329hk+Pq2S/QKOtsXr1ItlZg43KLj37XT6Dmy7SDPhmrkGZSkEiMO9YFd5/Pw4jogGzew4wHWe2lzJv0nXBzXApFohI0od1XG390RdF7Z7tv/Ty5h9X7fP3uFeqApMjd4zrQxkDKB1oTC/XOb/H2dbau6+/pon+QuftjjIeaubsfk9EHjQMeRMXkJXEb/fPBmnx36uW96gUPioM8/d4tS6kmxakCkEqghCAWMaV8Fk83eOv0m5x8+mk++3d+lX97oYGUkmF/RH8wplgqIHWJ4zm3CsfjKEapBFPT0TWNOI5QKiHwQ1zXZn19l2zG5Q9eP8dio5KqLroWw+GIKIjxMh6JSpCaRiabSSmQUhLHCf7YxzRNwiD1R7MdmwSVmp3rOgIY9IaplLmUnHrzGvVqkSQJ6Q+GqYpid0Aun6Hf7fNT3zjF7/znP8p4NMZ1bZIk5uvfeJVGvUIcBQRhiBTyDj8rTZMYpoFCEUdJumNuWiSJIgxj/tWXX+TDHzoxoZXLCSU2VVP0/YBKpYwfBDiOg22nk7dlGRi6QaJA1zQuXrxGc79DqeShlI+mCQYjH0OXVKpFRqMRmibZ2dkjXypyeHEOyzb57Pec5N/5lVd59phLqZSl2W5j2w5b6y2CMKRQdOl0Blxd2iTwA3zfJ5fzEEIjCiPyORcpNQq5LKZpcW1pHccxWV7Z4OrSJnPTVQajPsV8ntUbO+SLebrdIVO1PLt77QnNcIt8LsPObhspYTgeU66UIFFsbO6Ry7o06iUMQ+f68iZJHDMe+1imwXDoYzs6nc6QQjFPrVog4zmpKEKisGyL5n6bc+dXmJmpgUo4fW6JwPfxXJN2t0/GsycqkDbrG3vUaiX29loTPzNJpVhgbX0PIQVBFJHLZchkHHTd4PKVTRAhiwtz6LrOfrPF2voOuayDoRn89K+c48c+dgxNk6yubqT3jFIsL91gf7/F1HSVvd1Wag5uWSiVsHZjg9MXLnFoYZEbKxsoQoqVMtONOkEQ0Wy1cT0HXZNYlkG72eH60hrHji9w/sI1iqVUoGVjrYNuCMIwZDDsk8lluHJliUF/SBRFFApZNtZ3aDa7TM/UKZULAIRhyH6zy6HD87xx+hzT0zX29zvs7XcYDgd8x0ee4OqVZebmpjFMg6+/8BqFbIZsLkexmGc0GuE6NoVClvF4RBQlVOtV1tc30aVExQrdsmjut0DB9tYehqXhuhl6vSGea5DNpgDf0CXnLi5x5NAMlWqRXndAFEcIAdlcljhOvTQRCk3TEQheeeUtGo1aygqIIjwv9WoEiaabLC+tkc24bGxs8/zLb3BoYZpOZ4ChWehSYNpaWqc7Dlhb3yKfyxFHKYXasi0EkjhJN9fiWKXiFxKSOL12cRwxGozZ3W+j61CplFiYqeK4Ns9++Bg/9l2P8KMfO0J5Nsty0uQv/8a/4jcvnOdHDx8lCIJb2RdN1xFCYlip0rCa2MsIAX4QkvFcVm+s0+50KRYLnH7rAnNz0ziOhZSCQrFAEie8duYc1UKRfn/A7FSVmekGXsbllTfeolIsYJhpXV0UpfJbGxtbOJZFHIcYusY4CBmNU0Xh+dlUgCoMfSzbBeDS1SVmphvp/IFATsQwdF3jd69f4wenSqgk4T84dYn/9dd+jRuX3+Kxj3wnoyhB1w00cTPpdLCy4b3ifo2Z71433u9M+zAzg/fTp7wHuLtXCCEwDPPuEsF3HYOYFKQd1E8URHQ2t8jqHUb9HWzXo73XxnMFX/v6V8hNPUq+eAhdI2VMCDmp3Xv383kY8X5jkwe84mxtb+I47q1MvJQCkvv/7t7P7Nrd6u/AH2vq80Bq9c3rpmm3BADfEQ8sTngAQJy0I4T4wOfu2zEeJriT/x+Du2QifPKg4ic3lTAPejAeFNzJBwV3t46Xk7oEhWu7mKbFhTNv4roun/+5n+Mv/A9/jx9enKW518H1HBAK09ZJ4hCZwGgwotPuogmJJlLJ5Wa7Q7lUQJMae/ttrq9uszA7xZG5Kb7y8mmm8gVMy2R7pwVKki9kkFJndXWbYqFAGMYT+edUPcowDXTdQMUJ+/ttHNdOF+66jh+EWI4zKdiVzDSq6W5cGGPbFnGisCyLX331TV5MWvydz/8Am5u7fP3Ftzh+dA5NKOLQx9IEhmXjui6mYaRm6olgeXmNfCGXXjMtNXg3TAuERDcMRmOfE8dn0Q0tFWRIJMgEy7IYjQLKlRK6rmFaOprUb/mOpTuEBl/92ssszE1TKhYo5LP4/gjT1BkMR+TzeUxDZ+z75LNZFDFTjTJCM1m5scbFS0tcubrET3/fo/zNf7HMp58u4jouupGKfOztdSjkPUzDYG62QSFncn15k35vRKVUYnVlB9PWiKOE8Shgb7+dgqFqOpZCzqU3GFCrVtjabuPYFls7+xw71qDfHzM3VycIArZ2WsxOV2k1O1SqOQqFLEoJVCLwsqlIhJtxGY58pus1Ot0+lmlwbXmDqVoR3TDY3WszGo7IZpxUSU+kHmR7e20kGktru1TLHsVinno5y/Zum/12i4W5Op7nomkGve4QKQUb63scOTyD41iMRz5oGmEMXsajVC4QhgntTgfHtpmdaXDu8hLzsw06nQ4Z1ybj2uRzRTTNoNmHZ7/zBKtrq5w4cRjL9RACQt+nmMugOzalYpHReISX9RCGRCSCJ584Rr87ZNAfUShmyWQzoASrNzYoFLNcubJCxnO4fn2VqUaNTrdHvTHFaDQkm7cQUqPdDrm6tMLK2hbHjs7x0itvkstkaDQquE4qjb+z08KPAmq1MqDY3dlne7vFo48+wjjss7BQZW19kyOHjlIuZSgWs1iWyfWlDXSN1I9Nh6mpGu1OB9u2GI/9dLxCkctncRwHwzQp5fPcWN5CkyaGbdDp9Cnkc+kCWgjW1rZodTo8/eTjXLhwlQ9/5HFyuRy9bhfTNDhz9ir1WplsNsPuXovhcIjUBHESY5gmINE0Dc+xsGyLMAwxdJ1+p4fUU2BHrPBcB8PUyeY8Tj5yCCE0LNNm+coypqWRy2fI5orYbo7tjXVs0+Lixes0pqrEUciN5V2y2bSmMd0QVgR+wPVrN7BtA8s2KZayeJ7J6voWXsaiWC6gGen3kiiF47rkMg4zpSwLZsCPfewRriQt/sKv/j/8/ef+kM8+/iFs20FqqW2KRKPd7qb1mUmCZZkoAaVinmKxgFIJ7XaHWqOKpmkM+0Oa+22klBw/sgAKCqUC7WaXQjFPu9lmulYlm0u/T90w8IMQ27LxHIdur8fmzi6a1HAcGyESSvk8cRxjmDp+4GObDkJIPMfFddNNnp3tbRzHZr/VolQq8s+vX+Enjs2j6zr/6Noaf+7TP0Cx6OEWq2i6NZnw0pnsA3D33sHd7T3ck77J7e2/G7hL+Nv/4c9jDC8xPZWjFRvowYhWa51LV97iz/7wz6AigS5tpNBBSZSMDzzB/7+CO02TZDLpRvJNZpOUkruYtPfu708SuDvAouGOUqd3WZve9K+7734OAndSpmqZH4C7b894mOBOTcREDnxA3mPcXTibFmdPuPUpFzjNON38fzcB5r2ybW8P+KCTuPV5R73gXaIu7yb+8m7g7o4JLy0SQIrUJNjJ5Vk4+givfOMFsqbJX/0rP8tn/sdf5i8+9QiO56BbGhJFMPYRQqQLFdviuVfP4dqptHitXmY4GGF7Dq7nsDg3g67p9LsDSlmXaq1MEARU60WyWY8kjhkNR5TLBRKVYNkm66vb7Ow2KRUK6WWIE0bjMZ7npKl+1KQG6aZfVbrrLzUFCob9EVLq/MIbF/h6u8l/9LlP8NFHF3jjjUtcuLLBwkyFWq1EnEQUi8XU5ypJMA3zlgKZPw4pFvOp8IxpTNTzTHrdHpqW1v21m21yeQ/D0FCAphtIqfCDkCQB13WIkgipaYRhzHAwBJHSUqUQPHJsIbUWQGFaBtvrbRzPxTQc9nfa7Hc6FApFdrb22dzaRjcUw+GIvd0mH3r6JNNTFeLQ5888MctP/t3nV+C3cQAAIABJREFU+GjDoNncQzckmpYuWm3bZDQasba1x8lHD1Es5fk33ziNAGKVsLG5z8x0jWzGw/VsWs0mjmPT6w2o1fK0WwOKhSyObTPyA0rlArmMR6vVwXVd+v0B3W4fyzLJ57NsbO7S7YzIZDJIpej1hhQLBTTDwNA0+v0BmYzH3Eyd3b0mnpejVithmjJVWRUauq7zhS+/ypMnD+F6Hnv7LeZn6khdsrq2xdNPHmNudop2u8d47E9qFAWvv3Ud1zbI5zxurGxRqxQIgohKtcRgMMT3x+iayRtnr4GIKBbKzM9U2Nzco1zySFUnBTvbHS5cv8GPf+p7MQyN/WabSqWE1DQ0TUfTUnP4MI4xNJ3RcIhlm1i2QSaTY9Dv4tgZXn/jKrvtDseOzHPu3BUWF2fZ2Nziicce4fLl61RKRba291g8NIMUGuVSjsDvsrvXZHZ6kempApCQ8Vw2NvdApYp/w+GI9c1Nlte2mZmqYhg6vh/QbndQSpHL54iikOFgSBQpSsUiUZxmpZMkYX52GqEJDFNPVRR9n16vT6FU4KVXz2DoEtM0sB2b/f1mSjdutzhzdplGvUylVsSxHX73977O3Gydr794hnotx5WVVQ7NzpG/Kb7k+/gjn5XVHT72HU8hpMJ1PTzHIV/I4DgWhqUhpY6mGwRBQCGXYzgaTmo6dVr7Tbx8DolGMA6wbQslFC+/9CZz89O3Cu4HoxH1qQqaDmEco2ka5WKOdqvL+as3OHHiEJZloukWFy5cpV6vsLO9i+s4mIaBbZnohg7EBEFEoVRgerp+863JaDjiwsWr5LMe4/EYy9QRUjA7U6dWLXOoUeanvvdx/v3P/GmsGYsf+vv/mH984Tx/6SPPIIWGbTvsbe9RKKbsBzl598ZRKm401ahxU3Vg2BtiGCbZXIbA91nb2KDVbjM1Vef8pSuE0c17eoBp2zT326DSrM1oMESIhOmZaXK5HGfOX0RTgkKuwL/40jeoFAoYps2w3ydfyIOA02fPU6uWyGQ9FAme5xL6Ietbq3zXTI0kSugsHqPb3OGpj3+UROmEUSpGo0SCUO/cUL17szFVqEzf5W/Poan4xu3H/VHB3R1iDu+11EaJm+4N99XnzXi/bfvUHT8cLOLhOBZ/5lOf5qVX/hDbMZFBTJLJcPz4JwhHRfb2z1LKD7AzDURiApCImINsBx7G+dy0pkBOrudtF1IlSSrs8jBEPG71l7xj/Xd3qAm7Rsq3TTwSlRwIYL7Z2vHA3wt12xqQbzqed2v3Dqrj/YLOWx6NapI4eKBu36Wtt8ekSXnfSPpBz1lNpJnu+FsTpUz+CDV3H4C7P8Z4mODuZjxMcPduEUVROkHHcZq5uRtQPYQ6znuKwUzEXw6M+xKPSSu5hRAITSNREAmLqN/n93/vXzIzM83n//rP4z//HGiCKI4ZdYeMRwG2Z2OaJkIKjh+Zp1ia7CKbOqZlkiTgj32+/NzrWEJSLud54+I1HNMgl/NApsapge+nSpCWQawSpBC4jkOtVmZra5fV1S2yEzsCw9CRUqZm6qSThZichpQSgSL0Q64tbfK3lzf4L378SX7k3zqJYeiEfkS/P0IIyTNPHSeMIxzXQTMsNN3A0HWGoyFSStrtLufPL1OrlRBC0Ov1yOQyxGGIPx4jANMweON0SqXSdIlKFJom6fa6uK6LSiCMIsajMaZpEkcJ+/stMl4qtjHo99C0dHGXJEmqAqhp9IY9wjCg1eowMzNFrztCCkmhmKFeK0KS3BJk2dzapVQp0tzv8bH5En/rn73B5549RC6fpdPtU6sVGY19XM+mWC5gWhZJElMr55idrVAul7BMgxur27x1bolcxqI6VeC5F85SyLkUCh7bux3q9QqbG7u36HICGIzGqCQmm3GYqleI4wjbtsjmXKIoFcJZ39hmfq5BGEb0u8NUsMSycL00uzAaB7SaQ2xbA1LbCtO0AMljjyykFDESZqZr7O7u49gmuayLUoooTnj51EVq5Ty6IWm2ujz12BEsQ6fbGzDTqHD67DVmZ6q0Wl2uL29RKWfIZAuYJtQrBU6fXmK/1aFazLGxvUMQhEzVagwHIb/0O6v86McOY5omb565zMLcNONRuuge+yGO4+G5LqHv8+Zbl5idrqLpOnEIrdY+/c6IJFFU60WSKGA09CmXi1SrJS5dvEYURZQrFUqVAs1mi5WVdWqVHEGQmmEvXd1jdr6SWhxs7+HaNrVaKe0zjCmWsjz22FFaez3OXVymXMrRaNSoT1WIk4jxMODV1y/x1JMnQcL581eZmirj+z6tdo9ytTj5zkxA4HkehqlTr5XIZLJkMh4qSVJBkDgkk3VxTT01WI8T1ta2aNRKdLsDysUchaLH4cVppLDRDcH2zg6QZgVNXWMwGGM7JqPhiP39Do5r0uv1yOU9okiRJApd1xkPh+QLBWIVI0UqnJIAkZ9w8cI1hFRk8x7T9Tp/+PzrzM83IEkolkogQWpq4oXZx/Ns/CDkySdOEEYRURzgOC6VSoE4Ss9dSslwMMS2LQxDJ4pDDMtGCoFu6Gi6jiY1tInXZxRFWGbqt+n7PrcQGQoh0xpggWTBHPPzP/SdvLq/zK988UW+e2aG189eQSpFoZRHTd5Vuq4xGo0xjDSznySKcBximWZaYykUpWKBYiHNvHmOzczsVApUNYGmGSytrLG/36RYyKUquIUMmmHS3G+zMNNgr7VHsZDnyMIMxXIhBfWOxWic1m3msxmWb6ylKqB+gOvaWJbNF1aW+FPlPNuDPs/81M8QRD6NQwugNCzDTBXvhDqwVuZAGpd4ezf/JrhLQdRDBHe3z/v3OO5ecWtM36rgbhIHze3DqIedKfPUM0/y27/9m5ycnaJ89OPkCnk216+wurRGb3fA9LHj6IYHSpJoyfuWubu1BLrZlrrzl0IeDO7iOHogM/Vbzd/Puuf2Idzexrtlp+7V74Hg7p0Zt/cE7h50d+GOftQ7zudBQ7upPH9X++9fElHc9u8DxvMBuPv2i4cJ7hL4pi8FIW4z+X7AUEmSes9MUsUK0CbUpHcAqocI7g7cRboHuLufXSdujnvSFig0OaQxdwTDLPOVL30FLxlxIVfHu34F1/GwTJOs56IkxEmErmlIbWKwqumphUIiEZqOLhW1co5KNc/mzi4nj8+Tz+dJ4hjb1lBxhJQp7TKOE3TTAAnDfgehFK5j0e+NMDUDJ+ekAjRRxKg/RIPUEwsmxuyCUbfD509f4hf+2vfxqY8exvU8hBIT76YMjmVTLpYI1YhsLkOv28UwJLoublk12I4FKiHruXzpD17i8ceOYtmpOEgcJbgT6qA5MaFeWllhZqpIHIUodGzLIopiTMtE6iloDXwf07ZSgBiF6EKimTZSN7AcC90wuXTpOrVakVw2Ty6TR6kExzWJk4hytYDrZVhb3SU/VcV1snSaPWbnGuiWRrlcY3q6zjMzOX7hNy7xk999mHwuz/mzK3S7Q3Rd4LoewThkOByTL+TY22uhaanp8cLCFItHZsmXCnR226BC6rUSppdJlQfjlObqOCbXr6/gOC75Qg7DMnAyqRiOLmBrc49uq49lSixLx3Vteu0+3XYfTaQA2A8Duv1B6lnWHdOYLnFjdZtCPnuL5hUnqX1C6puY2lrYjkWsElzPm/gXQrFgk826OLZNtVJGSkmnPWBjs8XsYp1cziGbzZDP5iAJKFRcDNNgY3uPerWCZiaYpka1XqJaL5HxLLrdDioYcn0fPrRYQUmdQ/PTvHX6PEIper0e1XoBw4S9nR5vnbnCJz7+IV548VSaXTRSIFCq5qjPFNEsjaWrG9ieQMgYXTfxXJtCPsvKyiZR6HPs2ALjQYKXbaIph1FfJ1v02N1qMvbHnDx5hHK5RLFYZH1jHdsz8DIemmFSzOcoFAvky0VM2yIKA0zdIEnA0FOa4uUrVzlydIYkUXzx91+h0+1x5NgspmUhlM7m2hY723sUcx6abtDp9BgPRziGgRCK5m4b10ozfEEU0O8NmZ2bZuyPmZ2eYmq2TC6XI/QVz7/yOp6j0W1HoFK/zBvrW2zu7jA3PcP1pVUWD01jGBLXsxl1AoajPl7WJgwDTCkZj0MMw0KIiGDcRiU6uqFTrZfIZrMQQ0zMwswMb5w6T62aZxwOsWyD0I8hFqRs8wjT1BAktFtdTMOm103tKQQK13UJowjDMtE0nWvXVyiVyphG+l5PUMRxgibT+mTT1PEyHlLqSGkx6PewbYNWu8m//vIrHJ6fwzB1pKGzvbnFsN/jqeNzPPvxE7y+co6/d3GNL66v8JkTJ+i0u+iGdttmmEIKPQWHWqpsms1lGI6Haf2v1NDMyTta6AwHPlcv36BQyJDLejhWCgYzuQxKKYb9HoVCliSJKRbLXL66RLVSYjgcYho6o4lHomkajMc+MzNTtPc65PJ5TNtCGBqffOQ46zur/M2zN3jmqe/kwx/9OJohU6XdiXLj7cDudmbLwfOQuGO+Uukq+FZZw7vNlvcD7jSRHncTaqfMhMmxMq0tvzMjkJZUJNzZv4KUrntXnxO/83t+bvZ3+0eTGncrZ95PHNjWXf3dfq43P4aQBLFAkw62WeDl556ncfgxzOIUc098HH/o8fLLVzk0k8erFkk0hVTmXRqFb5/zHzVuff/pPsAdY+Ue4ONB12a37h/xznvqXh8hIQgCkiRJ/X3v93xu+/MBR91xQx90zEHPyu2/SzOJD07LvOP4B7jl7rYvELddQzn5c5qFTW/MW+tSlRod3P7PTSVMlbzzJj6ISfY23VghJmVCNz+3P7UfgLtvw3iotEy+OddeiLSe6z0paqo7zcVv/nw7DfNBwd3tVMu7P99sLA9TFRRASoVSOrOLU2Qdj9UbS5w4Weev/cPf4ccW66n3qQ7+wMe207qLOIwZjwYYup6mz6UgDlPzXsu2ULEin89i2w6anj7829tNdGkwHKZ0yyRJUKQvD8d06LR62K5Du9MliiOKxVxq2KwUiVJouo7h2EghMXTJX3n+Tf7JjW1+6z/5wcmueohpWmyub08m7HRm+cIXX+CpJw/j2A6WbRLHyaQO0cAyLSDdfXccm0dPHGZ3Z49cIUsQ+FimjRBvy1NXqkUa9TqD3gDLctC0tCg+SdIX882JRiiF1HTCMMJ1HKLQZzQMcCwTlSRsb+4wM91ASo3hcESzuY/jmqyt7aT2CkISBiGj8RhNE+hCwx+Oabfaqdm1ntDvtaiWM/zEJw7zuf/lNb5jRjLbKDK/UCefzeD7QbowFZIwCEgSheU5FPJ5mnsdxoN00Z7N2ViGgZQCTeq0mk1830cDrlxdoVTMUChkaDfbXLy8hohSOqs00uzFOAjIFzIEYYRpmlxf2kLTBEEYolBUa2WuL28ihSCbccnlcwih6PUHFAoZVtd3qFaLDAdjbMtCSo3XT11kplFB13S2NnewTCsV14kj2u0+SilarT6Oa7K71+bEsXmWV9bJ5zMIoZHEim5vmJp2J4J+NwXy5XKJQj7HqO+jaRqanmb9fvlLK/ytz32SXCFPs9lheWmDeq2CZhtUqlWCcUAQRFiWTa1WYHt7myNHZtPvHo319W0uXFpiZmYaz8tQzOXpdXvU6zXePH2Zrd19xn7I0aOLXLqyzPR0lanpMkr5dDsBa+v7FMt5Ws0Oi4uz6IbO2toWtmPRbHZpd3tUa6lIzdkzlxgFY4r5DImKuHLlKns7baamauzutkiSiJm5aTzPSRfzuuSJx45j2Sb9bp92q8dLr53nicePECYhUtexHIvNzR3KlRJJHNPtDshms2zv7KBrkqnGFKZhsrfXxHIsWrttHMdjfX2bxfkp6o0pphplBsMe4/EYIQX+OOT60jrjIGBxscH2zi6FfI7hhAIphWQ8DJBScuXqKuVSkXarg+1YOE4GISVf+OJzHD8yT5wkRGGEaRis3FhndqaGaaeKn4ZhsXpjk2vX1sjnMrhell5viJQahmmQzeTQNJ1Wu0M269Lv99KNGE3geTamqTMcDNB1HZBYpkkwHqNICKOAKAoRAsbj1GcuCAKy2SyVUo6r11co5g10XWJZMq0/lSkfbXZumh94ZpZSRuO/+urr/PTTz2CaFoEfEvoRo9E4VZhFcf36MnOzM6BUagSviYk/lEnox5x68zyNWoVSqUC310dIjVKlhJTpRpuQ6a79cDDGmjxDc3PTk/dnSqV//rVTzDUaaHpqf+G6DnGcMB6PsV2HRCl2W/vUDck/W9ngk5/8U1TrBYSmP7S55n6zGfcD7g4CIm8vGg/KCKR1ghwwhvcKag4al1BMUoF/9Lbua1wqJhE6fqSYnp3j1/7B/8UPf/YvkivX0Q2PRmOOP/XJZ/EqNSJhoHh3b7OHmYn8lrVHmFBGDc1AJckD0zDfD1ZYCqzUnWvA9wLuHrDPd4tbOPGArOaBdbY3bQ4OGMNB1++emfgPwN23d/xJB3fyWwjcpZLAAl3TKBVL7GxtcPHCWf6zX/pF/sH/8Zs8Wa+SIJGTcad1genf1HWN0WCEYeoTmmIKaDa39nAcG03XSFSMH/hYpkm72afWKAOpb1QSJ5imyaA/xsu4JElCsZhFk6RqelLQ6/XxvFTpDU3y629d5L+/eIP/8997lh/6jgUM0yCO0/L+4WDI6beucWihgW6k1hP7rRbHjs7T6fYmqpg6hqFDIgiDmOeeP8XsdD21eNAk15ZuUK9XEDChUempNYKho1DompXu2kYxmm6gkogwCCbqZ6n6nD8eY9n2rVq98WhEGMRksxmiMGR7a59SqcBw4LO1uU1juo6uKwr5Ep1OF8uyAMXlKytcuHwdmSjGYx8pBbZlooRCxTH9bp+11U3+0p/9KD/1d3+fTz6awzI0+oMBQki6nT66llIYTcMgShQqign8kN29HrqmU6xkQClW13fRpQYkFAo5Ll1eTb3ikoheb8BoFGCbFqNxQLVcxvJSURlrUqtl2xb9wQhQHDs6z2g0YmV9D0MXVIo5ZmYbXL22Rq1WotXqMt2Y+Jc5qVKpbui0Oz1s2ybyg/T6ChgMxggBo6FPGEU0pir4QUC3N6ZUyuG5NmfOL+O5Zmp/ECckCXgZF9u2Cf2QQj7L1tZ+es8lcPHSKpapkcl6WLbFrzy3x6efniWXzbG9s4epW1imRXW6jm7oCJGKB0kpWVvfYGa2Psm05FBItrf3ePKJk2ysb5PLZVlZWqcxVeHU6Ysszk9z8rHjWKaJbVu0Om1s2+Lq5TXqU0U0abK8usP8fOqVaFkGV67doDFd49VT5/jIh5+iUMhgWQYrK6vUKmUsUyeTdYmikHK5SKVcTim+vT6D4ZipqTJJEpMksLvTYjQaUyoX+MrXXmamUWMwGHDs6CJSlxiGjqZpVCrl9LlOErZ39pBCsL/fxjAN3jxzhelGldNnLqNLgYpgaWmdRx45QjafZXd3D00TZDIuhWKeqaka/d6QD3/4MY4emUfINPuTzWUwHQ8pBWfOXKJaKaFJjW6nTxxFvHb6AtmMTSabJYwiTp44ghCC5194HVCgEo4cnsOyLDRNwx/76HpK/YzCmJW1TXK5DJblcOnKMrPTNUBjby+lMCqRemWmpxmnO/5Jgm1bSC1V3Qz9AClAM3Usy8Q0daIoRNd0Tr95gcZUFRC4rk25XGB/Z5coillZ3eb4I0fRzNQTU9fTmuSw0+Ej0xn+8m//Ac9WGyyvrN8SXtL0tE4xk/WIgoQwDNFNDZUokihmd7PJ9eVVpipFUArfH5PNpRYvN+XCR6MxKo6wHZfVtQ1UnNbpDkejVDDHH4NKqJfLFEqFlHbe7eO6LrppkC8ViKIITdexhME/fOU1LvVHfO5nfpRsIYdS9ycVfz/xJwHcyVtpqofU1jeNBCU1gjC1Fnn05OM05udJ0EgQSE0nCWICKdB1E5WQ1iY+xOtwUHzLgjvS7KrizozUu8WfSHB3MwN3wPEfgLsP4p7xUK0QgDuESN7tuPfwUN7yjru7v5t93lS+vCmGcg/QlqozyTsM02+O6X49Fx+4YPU+qKhSaKl/HYAmWDh0GEPkefP1N7ncG9HcWOd4tUIwSr3lUCnoSRKV7p4LwXjsY3s2SZyAgHw+w2CQquNFYYhpGIRBSKVcIYxDlFJ88euvsVCrIhGsb+5SKOTSxaaVKtgJlQqR2I7NVrfLL7x+id9Z2eBv/Ox380MfWcR1PLZ3tshkMrRaXb7wpRd46slHOHp0Hl0XaLrG/n6Lza0mRw7P8fqp89Rr5VtAXyn4rX/6NZ79vu/EcSzCMMBxbLJZLxXMSRLCYJjWukidMIwxdJ3f+K0vs7KywaOPHCZMIjQhGA3Hqcny5OsxDJ3xRIRmOBhiGBqvnLpAxrVwXAcpBUtLa0gJjuOgGxqDwQDLcnn+xbfIZdNF8sL8DLWCh5fxsB0by7bTTGAg6LR7WJbN4uIR4jjmc88+w7nVHl85vcLRioFl2ezttVPqiVKcvbjCkcNzCBSea9EfDDl0eAZFjFKpRHa1XEA3dTqdAdVKEdu2yOez6JpEk5JapcRoNGZ1dRvNAM9z2Ntvs7W1T6WYxw9iijmPMAywHZ3GdAXHssh4Li++cpZHHpljc30XqaVZvGTimzf2fVDgeS6GYeJlHFAJumGSy2ewLIt2u0+5XKDX7YMQ7O/3KZU9bCe1GbhxYwfXMqjVi5i2zebmLral02q1GPT7bOy0WFyYQkqNxUNTFAp5gjBCN3R+7Hs/yssvnGGqVuK5F99kplFheraBQBFHMZcuX6deqxBHirWNDWbnphiOxkhp8sprb/L0M4/xwgtvEIUx040qKzfWyeU8Mq6Da9vcWN2mVqvQ63XJZ7MkccLi4iyDYUQYJuzsN+n1B+QyGZZXt1AJnHzsGJpMFTErlSJxFLO/26bfH1HIZ8h4Ln4QIDWdlaU1isUi2zt7zM1OYdkG4/GYbqePP45YWJyDRKELQb1eo1wuYNgGSRIjVIKKYi5dvoZhmGmdpGmysbHL7Gwd17EYjsY0pmosLs7wh8+fxtQtgjBierrCeDwmDGM0Tcf306x8HCWUSiV2d3dptbsIAYZpAIJev49t2tQqRYb9AcLQUtpqIcfsTI0oAdMyJ158EIQBcZSws72PIsa2TU69dZHZ6SooNTF615iZnWJmegrbySClxlSjhJARy8sbnLtwndmZGnEc0+sN2Fjfw/VcwjC1b9E1SbfTxXY9Qt/H0DWETDNWYeCDSt/h+Vwex0qzXH4wIpf3yGTLrK9t8+iJR3j99QsUixkMXUOphH6nz2gYMD/X4N/9/mf43D/6Eh/18niWTbaQSWsgHRshNNZvbPHqG+c4tDCb1hgLiet65DJuSpF2bYqlAkkc49gWGxubLK+usTA7g9QgDGIaU1PYlgMkOI6FpkuSOKbV7lAopc+upmt4npcq0ukaTOhZ/tjHlAb/9auv8V/+pz/HIycfQ+o2D2Bb9e5zjCbvoIF9s4XoewF3KuGWRsiB4E68c2F5c959ryqbN9tKrX0mc/97aum9g7tkYmVh6Boaikp1ilhKoigmQRHFERhpjb2WJKkdkrx9u/rB+rvfuEX1u+3EvlXAHaQg4r2sCQ+kVR6gLvnN2rh7Qz/979vifff0xZMHJAPu0fdBFMz7Gd+dD0v6UUK+k+p6F7i7KShzkBfe7bTPAzPfH4C7b+94vwVVHlrc9oAdpIh54J9v+/l224N341q/r3FfmT5JPKl7EhOLgWzRY9TdYKoQ8OunrvOYo5jKFYjCmL3dZqq6pqWKmwowJwbWSRxNFlsS27HodHvkczlUojBNAxRIQ2M08jk2N814OKbT7jE9X0/FU7S0+CGKYqLAZ6vT4+deu8BXtlv8xi/9IH/+mQZKCb7yB69Qr9eolHKMRmOy2SxT1RKmaRJFKZVxOBhRLpfptga0e12eefpkqrw3ue7DwQBL11NhGFtPgbxIX0y256RiLWEPXTeJY4FpWAAcOTSNSmJMS0c3BSIB13MZj8epmIplEoYpRTRRijgKsS2T+lSVQqmAZVsgNOYWZ9FEWgcUxwn5Qg5ds2g1Oxw+PMeLL72BZem0mvtIXSdSCi/rEYUhV68usbgwRXvQIVcusru5i6ZJZqdLmIbN3/gnV/nkI14qHjEao2mSx08eYW97nySO2G+3JpQrQeQH7O51cV0nFZjRdRzXxTAsri+vk826JApy+Sx+OMaydUrltJ5RAbZl4pomlmGytr2HoWsMhkPKlTyaadLv9RkNRxw7Ms8w8Nna6lAqZthvtsjnM6kEvmVw+sw1CjkXwzQJwtR0vdvv42YcDNNg6foWq+vb1KoFfD/i0OI8nV6XXn9IpVKk2+pRrxSwPZ1IJWzu7OGaBq4lieKQlY1dTjyyQLvdxcroCKUY9of8T19Y5rsfX2Tjxj5vnbvGD/25755sDDQp5XK8+NIpjh9bwDB1HMthOBxSqRYxLZuLF27w0Y+eRAFz8zO4roVnGxSreS6cv8rCwjS2pXPm9BKOZdDr99ja2qPV7NHstmnuDilXi8zO1qhVy5QrZaqVMssrWyws1ImTiNm5WXZ2dtjdbRGOYwzTYm52mldfPc1gOKLeaKCRAqIz569x7OgC3V4P27LIZnOUikXOnbtMrVri1dfPc2hxltfeOMf83DSuZdFrt/FHY86ev87xY4cZDgcYukGlXAKZPrfTU1MMBgNGozH1WoHG7BQLCw02tzdpNdsUczlQJm+euYjrmQRBSL83pDFTJ+M5rNxYI5fLIjWNl188haFJMhmXIBzj5rIIpTBNDT8IaHZ75HNZQCA1yUsvvcmHP/QElVKeWr2EaRm4joNtScIwQJFSwUejIZqpM+iP+L0vvUAxb6LJEF23OX58Adt2WV/boV6vcfnyKoePzGFoKR25ub+Pl8kQhanqZhKFxCoVPAn8kPFojG2mmysvv3qGUiGHrgsUMcIyKZU8EhUwNV1CJhpJHLG9tYOhG4TjmHzRw7IOPLAhAAAgAElEQVRMPvOJ4/zi773IZ594As3QUSomSWJUAmsr2wyHY2Zna0BKBRda6seVvjvTDSmRRIyGQzQhyGc9Ou02mazHaDhGSo1XXz/D3Gw9Vfi0bcb+mFfOniH0Y+q1VLBnf7+FZdvolnFrgWUYBr/5/Nc5vd/kZ3/6M+SKDcahjpTvDd0dtAC9JZX+EMFdHCcT5WRxS37/4MzdwW2li+l7j+fd4mZbsYon3BaFfI/w7r2CuxgdXSiMJEAmESIOiIVAqARJjJIxQiQYSYSeKKSASIpbyZYH7e9B41sV3L3XuOc67iGc4Nug+B7g7qB1473A3XtdZx6Ivg4SU3pn5u5eIPJWUuOg330A7r694/0Adzezd/dNcbyPOKitOwpQb2b2DsjYqbv8QN5vIHdzPHeP9d3O5+1PKreu3ZyWBEgMhJnl+vUt/vQzJ/hvv/gNfuToHEJJPDeDEDESCMc+SRSnqnN+QKQU2sQbSgqJaZvoukaSQBjFaKaOIkHTNYRQGJZBtpBBKIEQikG/j1Sw2enxV1+/wCuDMf/7z38fn3qqgVQxluMQBhFHj8wS+GMyeZdExWhCYlsauztbJAIy2SymZRHHMVu7O1xd2uDxk0eJohCloLnXJl/IUqsXsR2LKIywbIcEhemkIhVCKS6eXaNSKSF00HRBfzjE8xwq1SK5XBbDsNPF1miEl81hGjrDbhfbE+xv+extNSlVPTTpoet6aviexBMpcUkSK3qdHr4/ZtDv8OrpCxw+NI3tWCRRjG3aXFvZ4MTxw2QzGZr7TUzTolTKA5LhYEw4HlOpN4hDxbkzF4mGAz71seP8d/9yiYbocPzYAoVijvHYJ18q0Oq0afWGlItVJBZIiSYNMpkMmaxNFETsbO+T8RwMTSA1jetXNlJKYXtIPl9kf7fHXrNJPpshicH1Mizf2CKfdbm6vEm9VsJ1PMbdiHEYkC1liFVMEib4wwAB6KZOqVRAN00QMDtXx7YtOrstMrkMwThgfWMPXaRKpcWyi2dLhIrJZFOBn9WVLQaDEfVakViFFKsFNMNh1OuRdSxsN4M0dKRmsLjQ4PyFFeZm6pw7t4JrWyil+OWvrPHpp2dZPDTN+tYO87MzbK3v0W4NqdRLREFEu9PFtg22dvbZb3VwLAtb16lXcyRKMej2cGwjpSfrAqkMLlxYxtA0XC/LkeMNDEsyNV1HSjh+4jC72y2OHp/jrTOXuHptjcOHF+j3+iRKsLGxx9x8jV63h0Tg2Bb5XJY4CdjYajI3P0OtVqPb7eE6Kf3v/PnLfOLjT9Hvd8nkXHTDICFBkTA722BrfYvZ6RpraxvUa4WJsbtAyZBEwNHDR9lv7dDrjYjCNKPk2A5XLt+gUHQRQhCHMYZu4Lo2585dJuu5Kc2206Y/HOI6DrlMBn8UoJKYOAixLItiIY/tWPS6PY4fPszS6jpexiaTyyB8H8PQ00W6blCulFFxSBRH9DpdpmeqCAGmbSOljpASy9HQtHTzBJkg0NnZbvO1P3yZ44fnOLwwg+u4uF6WwSDkX3/1ZR49MU826yKEYma2jq6ZaJrGYNDD9jJpLW4cY5oaw2Efw7LxfR8h0no72xEkSUr1th0b09IYjcfYRir8ZJkmcRRjmDaalIRhhEwkV6+usXCoiqG7jMcDPv2hRT7zv/0unzn+CP7Qp9XsoGuSnONwZHEWoUliBUI3kInOaDAAqRgMBnhehlNn3mR2pkG+WMDxPIIgwrHTTNzSyirHDh/CNHVeOXWW2foUSkGlkEOTCts0IRFYhsXVKzeoVPLopoHQNVSseLRa4rcunOPzf/3zqP+XvTcPsiS7zvt+N/f17Wu92rp6nQ0LAZAASIAgGZQpkQiTFHdTtGVSom05ZDlshUnZNG2HLf9h2WErLFpSmKQthhmiuAAkRIIUMIMZALPP9DY9vVZ3177Xe6/enrv/yFfdNT3V3dWzQII9JyKjol7ed/Nmvsy857vnnO+TNWQpTdu//6Qzri0Tb58DD5IrvDU6kQohx9H9653ujQw8qA1CkIhUV02R0qiH2KdTP8TS/WkP+xmUh43jXoKTw4DPPtGJIqVSF+8E2O1LB8iSGPcBcRShHKCg328TJel5ppd2n0Y+/YUiIRNJMpGkkEaA0oVaCRmRyMSJRCQE0f7Fu8+1ea/tIEYR92yHAtojtnsUu1821f38ozuRZkncjULtbw+Igh3a/yMPfhxVfdD37n1AksOjc4/qB7+NEOUQE9IYzI2Z1yF5W/v9KPbDhn/4AZI7mywrH4C7bzd7X8Addx+uOIrekdbIo9rBVMv3Iy30UWwfUD7oOEcdgypL2K6LPxpx6fxZfuCTH+FX/vgZfmy6BiQIWUnrUpS0TiUMQoCUGj6KUNR0pbnb7aNrKr3+gN2dNooiQwySkFAUFVXViMMYWZK4vLbOP7yxyvnRJuVJi7/7c5/jr3x0mjiCbM7FDwIUNSULCPxU5sAwU9bNWwurdHt9Zo/PYBqpIxoGEUISzEw3OD5XR5LTNNUkScjm3DFJS1q3o2oqSZiwtLJGJpMhDKJxrVaWvU6HRKTprWlNmuDPv/IC1Uqe0WiEomhohpmm+CkKiqYSBTFLi5vYrkVCgGFptPfaYw26AbppjGv8BFev3aZWK9Ns7fHmlQ3KxQzlcpE3Ll/nQ0+dZG5uJr3GUUI+X2A48hj2B8iKwusXrnL8WANF0bl8+Qa2pXHm9BylnMuZrOA3nr7GPz+7x2dmFXaae6gKOI6JLNLU0aWlNUqFDDdvLlMuZtjY2GR9q025mEeRZbZ32kRhRD7noOsaQ8+n3epQq5XJ5Sy0MevgcDik1x9h2zonT0wRjXXHmjt7mHYqhSAJQbvVY/b4JIVSFte1uHh5nnarQz6XRRKpNuCon0ZjNF3F0BTevLZE1jHpdvsUC1n8MMKyLRRFI5+1WVnbojFRYTgYkck4+EHA8vIG5XIBhOC5Fy7y+OkZLr55i+/48JlUWy3nsrK2w3/75Sb/8Be+i0zGRdNUZmcbqIrC9s4u2ayDk7Fo7nY4NjvNhQvXqZYLuLZFu91lfWOHYqlAGEQ8/bXXKOezqFoqVq1qGqapUiwXuHHjNvV6hZdevchoMGRmdoowDMllM1x44xof+9iTHDvWYHenSSZjIYAwCLAsDcNQ2dzcpdls43kejUYd3VBQFYVXXr1IEERMNuqsr20zOz1Fc6fJcBTg+T627dDZ63Hu3BUmJyeIgojl1Q2mput4vp8S2wCb25uUiiWe+dpr5HI2U5MNZFkm47rs7Oyyur6F69jEcUIun2UwGNDr9zh16hhLS+tUq1U2N5rIkkzGtZFkiWq9kupeOhph5KMbEleuXKZcyhLFCZOTNYIgwtBNur1Ryjar6QiRpFFxTUOW0ro1z/NRVRVZ3SeCSPBGQ0Rs8uILF5mbncX3Em7fWOexx6ZwHRvD1rEdgyAcMhyGDAd9js02SJIYwzBBivFGQzY2N3AdkzAGwzBQdI0EGHkhlm0RRwkX37hGIZchIUFVU8mEQiEHkiDwA0aez+bm1h1dTG/YZa/TIpd30C2dxnSN4bCHaVrESUAQBPzsZ5/kP/yjr/KjJ0+jqQq+5+PmsoRxzGjgoakq89dvISUCRZG5cXuRza0mlXKJyakGkqLw+vk3uXTtJoVsltcvvcnx2cn0Xdvrs7Pb5ENPnE6vmyzR7w9o1CcY9IcoqopmaNQnyqk8zZgUyx+M+Kt/+Pv8wT/7P9DdLEJSEAmHyaHdnU8OALq3pVrds4r/FhtT4j+q6PHD7Gjg5O2O82FjuNf5fL9kD/bBz8ExxEkq77EP7vbbHBzT++FPvN/g7m37DvnsKNHWR7WjXqu77Q4gnOSt33/k6/6ogxe8I1B4Jxp2AHS9H2M9SpTyvbo3PwB334b2foM73qPI3WF9P2hF5Ki1c0exBzE57e+7N+3zUQDt3ZfB28e8vxJardUxNZXqRIPv+84P89xXn+FMuUgsKRDtp+sIgiBE1VUkKdVuS/u9q6WjaSqObSEEPPPiBRqVIrqh85//3h/zO+0hH/6eGZ761Am++6kaRjBibnqS3iBdqfY8H8/3kCWJMAoxTQOERDaTISZG1ww0VaNUKRGGIXutHmEYIcvSmA0TEmKSOGHkjej1U4KWKNqfQFPKfkVKQappmqiyymjgI6symWzq+CuKgkgEYRgzPVnFsk10XUXIKl/40rNMVArjSInA9yKiKKDb69NoTNAftLBtB3ksbh7HYRpxVNJazM3NXWrVCidPTtPv9imV80xOVBgOhsiyShCEd5gjoxiyGQfd0JiarLLbbGHZNhsbW0xNVlle3mB9Y5cTJ6Z5qpHnl/7Kx/iFf/wKP/fpOq5rEPgBmUwGy7Yo5B1u314ljmNMQ2FxeZMTs1PYjoWqS+TzGWzL4s0rt1ndbKKqMvV6iedfepNcxqLV6rK8sokQ0GiUUw01AUJOGToL5RI7O7v4ns9oOKJaLRNEPpIkiOOYUiFDLmsjCQWRSERBujBgmCnNu65p3FxYo1LKIYkESVGJ4gTfD/FGIyRgerJGFEfESYyuaUDC8y9fZ6KSR9UVut0epq4ShjFB4HPj1jqVcp5SMcv87Q3+0qc+TBQF+F7I1avzxGGIJAkmp2pEUczubpN+d8js7BT+cITt2IyGHo89fgpZ1RBIPHb6GK3WHhcu3eDEyWMgEkxLpz/oYxgazWaLUiHHcOjhDYcoisobb9yg2x+SzzlcuXqLUqlAkoRomsre3h61WhVVSSNatmNi2xaWYxFFIe12h5mZSQwtJZFZWFyns9elXCrSbnfoDUYQJ2Rcl9fPXufU8WkQgkuXb/HEEyfGQEVFkDJGgsTkRIN2u02hUGR7a4fbC0vkcy6ObWCaFrZjsbi4Qn2iim7onL94hXKxwNPPneex03Nsbe6yvrnDmcdO4Ac+QpJo7nYQKMxfX+SxU6cwNAuhpDVC585eoVzIYTouiqoiyzKSSBj1+yiaRpJAOF4wCcMI3dTwvWAsPA6KAnPHJ0iSkK2tTU6dnh5HAEMURSIIPWQpFUo/fWqWfq+PEAJNUYmSAEWRiML0eU8SQRSnLLD9/gDTspAkWF5exzIsVla2OHFijl6vR7/fx7JNZFlB0wy+8KfPUi/nMYw00mnoFpKsIEsaw1GIkFR8v5cy60opAEQIfuhDDf7omQt8bO44um4wGg4hSfjaS6/wxKnjyOMIwtdefJ3v/sR3MDXZSPU7oxhJlpmoV6kWCti2xVSjxqA/BCDrWmk9tKaSiATf81EVDcMwGA5HmLZOFIXIWvrui+MERZYZdHs8vbnBL/7y38CPI2RJQYKUjz85IPrMgRqjg3MGbwcf+xG8/dqbeyMD7/kcfdR2Yn++vDvWe+1bBe7e5ksI3gLs4HBwd1g/d9s/mh+SkGbavB/neJjfdFcLT9w59p32h47vPmO+j2bew8Zzv/Ed+PTOdqifdOD+PUjtf6jt32NHrjk9ZPHhQVG5/bZ3Q9l3t3ujew973h4wLlnel0QZj+kB0dDDovaHffYw+wDcfRva+w7u3qe+v6X2AKB2d/UkOfzzI9iDw+YJsSQThil9/Isvv0JnfZnj3/9Z/vbvfokfn6mPF7XEndQYSZIRApIoJk5S4KeqCt7IS+URxoLlZ4dd/s/tHaqP5fjRH/ooP/WZU5QzbkrFr8hUy0VURSWTdTl/4SqXry6iazKe51Ou5tnZ3sH3PTRDo9PsICFx/doiuWzKsPfFL73IY6dnUBSFdquNoioMBqmwuKEbWKaFEBLJWKNlZXmd189doVJ2yRUyCJE6lfPXF/jKN87x5BPH0DWFvVaHCxeuYRg6mqYiSwJZliAW+N6A6ckKgTfCcRxkWSGbM1J9uc0uuYKBLKdOtCQU9vY6uK5DFCepDmAc4bgmpmWiKBKDwZClxTW+8eIlaiWXJI6xLYOlxRVmpmqMfB9vOGI0GjF/e5nJRp1arUTge1imRRIn3Jhf5EMfOsPy0jo/9OQE/+KlFda2tnEEJLFAFoLLVxdQNY3Tp6fQDZ1iPo+mWQyHA3r9Dr4fEofQ6/Z58oljY+p4jWF/SKNRJQxCpqaq2JaOpimwH8Um1RKSVI2c62AaGqsrW2RzGd64OI8mSyiyIAoDdENDkWX80YhvvHiJueN1et0+lmWxsrJBIeuQyzrpudk2e50h+XwOxzJotTpcm1+mXM6NI7vpfRL5Ma9dXODkXIVKOYfrOhRL+VTKoJRD1VQWN9t8/nOfYTDoA3D1yiLlYgHXddBUFZGkGprVWh4hIpZX1hhFHpNTNQrFHLdvLXHzxiLlao5Ll65hOwaTkxV0S0cRgvPn36QxUcWxTCQhUa2VmWzUcDMunjdiol5hbWOb2dkGvu8zNdPg3OuXqNeqSELiwoV5ZBTC2L8TkWk2WxQLJTY3m1iWhe0YKJpEJuty9vw1pifLnH3jOp/61IdRFJkXXz5PLmuxubnN7YV1+kOP2dkJHNdJQZMfoBsqu7ttHMvFcU3iGBRFwbJ1ZBlsx2RleRvL0tF1FdPU2d3d49Ll25w5M0s+Z6IocO3WKp/97MeQhODihSsUchkyGRNBTDabQcgakpzqWgoEEhGuazMcemnqVZIS6+i6jqwqCCEYDlMWXSEker00+kUyfr/EAZIkaLXalEs5wshH002QEkYjH0nSEWhIRAgBg+GAJCKtyx2vbtuOTRxJNHe2MXUNWUisrm6Sz+dICLFMm1devcpjp47huhk0XcYwNeIoYjgIkGWFY9NVpmcmEYnEXrvLjcUlqrUisqLQbu7x9DOvc+rUJDtbHQxTY2erhWU6tNstPv6dx/jRf/wH/Mj0Mc6/cRHb0HFsnUq9hOmkYvKPnz7BV599iYXFZSZqJWRFIvR8ent7tJot4jCgN/DY2WkzNTlBkkSsb25hmgZ+4LGwtMbGRpOd1jYzUw2EJDHyPMxxnbSQJZIo5P/6yr/if/n93yVMEpAVUjWrhChJUvZPWX5kweh0iroL7t7voqtHBSf/JoC7o9ijgrt3YilQeVddHNnuBXdviYwd1v4+/bybCNej2n6q5r0R6bdEqw+zw+6x93LMDwCCR4lQP6ivt375EYZ9WNT+QZH8+9gH4O7b0D4Ad0ewB4G7ccTuYHTvUUXaHwbuhJDRVIXQ9zh14gQbC7d55uvP8JHv+AQzu9soY+p/IVIBTkmSUqiXgBASURQiSRKapnJ1c5P/7MJNHv+uCX7gB57kk8eyZHWZTMZFSAJNNwjDgGazxTe+eY5apYhp6bTaXQq5DNmMTW2iymCQalTZjo3v+ShCxtA05m+uMjFRQVUVqsUcjmtz9eo8U9P1lNxFM1JXJQFJkvH81DEcDIa4ro3rWBh6Ki7sBwEkkHEsHn9sDtPSCYMASQga9RqSrPDlr77AyRNTyLKELCuUizni0MMwDIQs4Y18othDVXW6eyP8uEe72SeTydLvDzEMDVVT05qhBAzdIAx9rl67RWOihqLIlEoFpCTBNlUyroMkSTSbbVrNPcIopFjK02y2eOLxkyiahjfyiMIQ27JRVA3bNFhZ2aBaK/PauWt8/rMf5fT0FP/uP3mFn/jEBDcX1kjiGEXRcLMWw+EIRdU4d+4GQegzNVWm2eohSTKNiSJCEhiWSbPZ5tzFBY7PpCm6W9tNHMdgb68LIpXUCIOQTrePadtcuTxPxjYZDkdksy6FjAMCbNdCU9PoQhwlaKrK5EQBIYs7pTy3bq9z5vQMQkiEgY9h2ViWiSRLXLo0T6WcT+tdZJE6q+MFglq5RK/Txws8KuUCQRCSxDFhmGp+yYrC3/mdW/z8DzyFqqTpqZVSmWKpgO8HLC6vk3Ft/DBgOOyhaQq7zTaT03U0XWM0HKFKCq5t0hv0ubW0xom5qTH7YUrTXy2XUspx4ObtJer1Gmur6wgBqqrR3G0ThhEzs5PkC7mUdGZuhuZuk/mbK3z4qcdZuL3GXm+PiYkq1WopjVolEs994yLFnE2+kEVRJDwv5OTcJNeu3eL7v++TIIGh60xOVrFNnbnj08RRwhOPH0fVNN548xqB5+HYJkkSEgYRkqRz/o1LmIbJ1tYOk5NVhIAoilhY3EIQky9kef7FcxybmeT43BTzNxeYm5tEM1ROnzlBd6+LaRhEUUS5VKTT2UWWRaoSLdLfptvpIRDkci6qKkMiePrZl5lqVHFsm8FwOJYWUQGIwhhFUdCNNAU7HNe3baxvEMcJGSetrw39AEXVkKQ0lVEkMpffuMnkVJkg8JGE4NKb8zQmaiQiwTB0BII/+Zff4MyJScIwRFFVdF1DVVP5E1lSmZyosbPTorPXxXFNVFVB0RTiKKHfGxLGPpqqomsGo6FPuZZFUaVUTF3AsZk6/UGPyclp/MAj8EMuvnED29apVEt8/rtO8rf+4Bn++kc+hKaqFIo5hCzT7fXI5bLpsyHJzM1OImSBqqrcXljC1HV6/R6Neo2vv3YRKYaN9W0mqiUKxTy6oeF5HvVqldHQI5HSxTXbcVIyFUUlTl/WNHea/O835vn5X/iFlAQqiZHFuIJMTjMbUsIt8dC5421zyQfg7l3bB+DucPtWgrv7gZR/08CdfCBV+t4I7rsCd48SdfsA3P3/194vcJcyir13efwPSsF8v22/nu9wwZi3r6BKUkp7/UDQFsfckW54QDsxXrWNoxBFNwiShLWVFU7VsxRsmd+6sc13GhKGrDDo9Lh8ZZ56JU8iUnY3EMiKwh9dvsH/eHWRv/HXPs0TeZnW1i7H56YY9AfUSnm2trcpFPK0mx2efvY1ZqcmqFeKadpkHODYFpVKEcvSieMQw7DvEAusLm/hZrMous6x4/VxGleMZepIkuC5F95gOBxSq1Xo7O2h6TpCSGNHD158/gJRFFEq5cnmXRRZQVZV4gQ0TcH3ffwwQFc1BCJNp0LgBR4n5qZRFQ1lrBEWA1s7LTL5HAkCRdVQZIMoTsjlTHTNYtAfQBLiOCpxHKIqEgkxcZTW/qmahmO7KIrMxvoGK0trTNWraJbGbnOPa9cXKJfzzJ2cYnNrl8AfUa+XSCSZXrdH4IUsLm4AMfO3Fjh+YoZOu0uz2Uqp/adr3Lxxk3//3/oY/80fXuJnvncGx9SpVIvMz6+wttGGKObEyTo7zTbFcpH1tV0q5RKdURNdzdPvN8kXbGqFEpol4bg2rmuxOtbIc10HRVY5f3EeQ9cpZE2yGYsYKJcLCAHbzTalQpU4HrLXbaMZLq+/foPGZAVZVZAliU5zh8APOHZijjiOCfwRTiF/h4jnytVbnDw5jWrY/Nkz55mbKtPd6/Dq2WtMVAoMh0PmF9eZqBTIFYpoms7u1i6ZrEMYJ/zmX1zm7/3kJ1GUtHw/ThJKpSyJiHBzNpZtoKgKza0O3jCm1xmytd3msVMnOHfuSgpcLYuh7zM5M4FrGWQzWWRJRTdMEmI67S6O7fLVr7zMyRMTeKMhsUhw3Szra5tMTU9SqRWJiVAUiSQMANjb69Bu93njzZvMHavx5FNnePX1C1QqRaI44o2LN/nc936M5189jzfwqNXqaJqMZqS1jYqqIksSURwhjQWrVdVI675sHcs00RQF13UxLY0ohJXlTQzD5NatDY7N1sjlXHrdPjdurFIuVajX02j69labne0eJ07P4vkevheQzxeQJRXPG6LIEv1ej2Ipj6yrGKaFN/LRVJ2RN0RRJFRAKBKSIjMYepCozM5UieKAMIx47rkLFEsOjmMhyel76Mb8bWzDRFJk9lp9/GHAXitNQ02kVIZhMPRJElicXyMcxUDExEyJ1ZV1dF1GURSu31zh2MwEqqYiBIyGIx47M8fICzDtMfmOAoN+BzeTQ9dUkiRicWmVJEmo1EqEUcTubhPHsfnjLz/HE6dO0Ol2GQ1HWON0TjFe4FJVBVkC23aJk5CF20vkMw7r21s89dQZ+t0ehibzI99RZ9QMEJKEYTj83p88zVNnTtPa7bC9s8vs8RkM20A3dLyRR8bN4LgZKtUSQ89jplGjWi3QH/XJ5TKEYYxmaqiKgm5qFIo5TNkgjAMcJ62ni6UEISQIEzbWt/jEX/9ZJqcaCEGaEiql5Q33MlCmE8nbt/svRB5w3B+UVvaIJosUcMmSuK8c0v7/8X1q+/bHcC95SnKg//3tMDvse0fZHgSi9slTkgRI3np9HgjuJICUbyCKQ5L9ur0D+0UChmERDAbEJCQiQZYlkij1myQkhHjrdbvrLtx/0A9qd9i+JEnr7uMoQlM0iO+S2xyg6biz3bck5iH3zoN8t0f16Q4ubBzs92G372Gpinf2HSXd8sCx30Z4ck9fJIxlnpI7iyqHpm7eJ13yUa7Dg9IsD0vRPHiudz47dAwprwEIlA/YMr/97H0Dd2N7L8Hdv05LH8yjPXX7KzUPXuVJ3tL+oXbnJSEze/IxNFXh+q1b/PxP/yh/63e+yL89WUbIMqVyHsMx0pdLnPCzz73GfNDkb/785/iJT58gSRImGjUmJ2vIisAwdIYjj3K5TBLD0vIqn/zOp9ja2mb+1gqWoSOrYBg6iqow8odIkkDVNDRNo9cd8K++9ipnTk8Rhh6DQQ9ZltB09Y4DNDtdpdPtUasUyWSyvPDCeb754iVOHp8kimOuXF8gjiMajQqSnDp/yZjls7PXxTRNTNNMwVsS4I0GyApYloth6GnNlyynAsCyTC6bYTRKHVwQIBKk1MsjSQSmpWPZNiPPI44SFE0lTmRkWaHd3sMPhox6IaoqIwkolQqsrm1SruS4Mb/M44+dSAVohaBUKWK7DkgysiKhqylFf2OySi7rknFttjZ3GQyHEMPMsQZCEnjDEd1un+88ViJXbPDVS9v86dkVsvT45CceY6fZZndrj5PHp/E9j+XVLXxvhIyCogiGQx/TSMlMJEWklPe9AbZpEIQxpq1z69YKTz15EsexxnqBCbqus73dZHtnj8gDWfYJwhZZ10KTXSplJ2URFcWpsd0AACAASURBVNBpd8jligz6Ps12h36vh2sb9LtpTVEC5Aopwc61+WU+86knME0T23U4eWIGRVORJKiUsgghM3/9OoPBgOkTsyRRSL+1yb94aZvPPla9E8F4/dwVzp67QamQZWFhjcAPqVaqZIoZNja3SIDTZ+YIPJ96vcLeXodSJU+plEeS5LGmIZy9cJnp2QZxFLO11aTV2qNczpMv5nEcJ406CsjlXG7eWqJczLO2so6maZw9dxlZhsXlDU6emObUyRk838fMqBw7NstoXG9WLGRY39ygWs1xbHaSJImZv7VItVJC13UURWF+fgHXtVAUhY21bUzToljKQgL9fp+vP3+eeqWAZRtsb+/SHQxpNGrs7DSpVPIMvRGum0ppuFkXTdO5dXuFfD5DtZrn/IWrTE3WKJdLXLlyg1KpQBB4PPvNcxhj4GRZBhtr23z9hYvkXIdiucTK8jq2baKbBr6f6l96XkAY+mQyLrIiMTszgZvNEEYJg6GHuc9kGYf4gU8YxKytbFKvFVMnXFIYjkYoqoI39NhY32Zza4vjc1NEUUCumEM3TVRNY2qqzsj3iMb1wtvbO+y1Ojz97DlKhQzb2y1c18EbpbqVUbzvasZouoxtacRxxLA/JI5iZqaqZPMWspTQanZ5/qU3mJurEAQeQRCQJBGarkGs8uala5w6NYuiyczNTZIkEqEf8eWvvISmSPzzy9f4ys0NPjs1zZNn5hBC4A1GlEoFrl6fp9XaIwoCvvHKOQqui+vYrK6soqsqlmUThTHVconOXhff84h8D0nAcDBClhQsx8bO2ARewuuvvUmhkAdiwjDkl7/2NP/Vr/9K6mTdMz8cFXu947nyHYK7fYB0EDDcD9w9DJwcNoSjRLHeaSDyQX0fnO7jMQHYUX6LtEnqA/yjf/QbfOI7P/FWcCfSDrxBn9defY03r1zhzJkzY2c7Ho/rreDuLUyXD7p+D2h32L5oXLoRRtHbFuQPO8d3HW17D/p8177gISe23+c+GdFbooAPiX4d2ldyyGcPOfY7jiIeNRL3gMjloWM4UH/5Abj7NrRvBbh7r4HZoakbRwBe+9GyRx1PckT12CiOEeMX5H3HuT+GgyH7o4xrv08giNPnbq+1x+L8dX7ur/0kv/RPf48fm01THxOR8OrCCv/z7WV+6z/5y/TWVzlxfHpMiiCnE6wkiCOfIAiJkgRd09OCflXCsS2iMMI0Ver1MqZtEkUJm5vbFIupPtxgMMQ0TFRV5YnH59BUFU3TECI9tyhMJ0NVVdjY2OaJx0+iKgqDYcqkeOrkdKqTZVnEkc+HP3wGSZaRlRSkkYg0tcyyUBSZl18+T6NRIUlS+vMkSVP7gjBkOByxvrZJt9sj4zqEUUgYpEyFhm7gjYb4gYcsKwgho6hjsVlNTdPGJEFCKg4uyxKqKrGyukGlkkE3FHr9DqVyjjAKmWpMoOsGzz1/FpIIVVPQ9ZQKXlXSFLEwjNja2sZxbHZ3Urr8UrGA45hsbTfJZF1a7T1kIZHNOgz6HqZIOFl2+fUvL6EHTaoZg6xjpOLxtsnMdA3T0DENE9OS2dlps7i0Qy5rp7+Z6xIFAWEUUSjk8DwPN2Ozs9Nia6uFoSm0Wh1y+RxJHFPIZ9F0ieGwi6r69Ho9LDMlooniGEWWUVSFdrOLYZmQJEzUy1y9vkAcpfdifzDCzdiomkq9XrzjAMVRjJBk2q02uqFhGBrXb6zz1ONTVKpF/AhkEfNL//Q6/+svfo43ry4wNTXNjRtLmLrF3GyNV89e57HTx3j5tSucmJtEUiUqlSK5XI6N9S3OXbjGyZMzZLMu12/colYrI2SF8+eu0O/1+ch3PJGCjJFHsVggl8+mv62uoqgKSRgR+AGdvQ6mmTIvrq9v43s+x49PY1kGc3PTyLLM8vI6c8dn8PwhURijqioJCV995mU+/rHHcWyLVquN4ziUSwX6/SFBECIkQbFUIApD+r0+r5+/jiIkSpU8nU6XYqnI8WOT9Hp9srkshmlSLOTHi0Mx2ayD7Vgoisr1G4usre0QRyH1eoV8MYemqWxu7+LaJoqmcvPWMnEUUq0WqVVLFAp58oUco+GQ0chnbqZBuVRkMBiyvLpJuZTl0uUbzExPEvgB3U6XTM4lEQmhHyArEglSqkeo6xCDZVmoMulzKWu89OqbPPXEcfq9ATFg2xZhGNLc3ePY7CSlUg7LMtJUUE1h2B+hqvo4YpdG4VVFIpNxMAyNRrXMaOgRA7KUsLPTpFDM4wc+qqrgODayLKPpCqqqYplWWh8rywgpXbxYW9tmaqJCoZiypgoEcZQqa+9s7qHrGrZjIkmCMIoI/AjTNCkXMlTKBb7/E4+x2t7lo4VpgiBIF2I6PUggk3GxrZTUxlBUavUqxAlLKyspO7GioigSf/H1F5gslzFMjcX1NaanJpGEzKA/YmNrm2zeZdDz0VSNQjkHRAx6fT73y79IoVq5k0b8lnnkQTU8h4kpP6q9S3B3ZyzvwpGPD8uE+RaBu4ORrXvdiXuv7QOPd8Bh/vjHP4YiK2+NBI3BnQAURWXu+By6boy/eNcnENwlczlq5tKDwN3hfaT/y7J8pHO8Czbfen8e/N59o3sP2XdkOxCleiiJyn3OYX+TpbeTkxw8DKTplYj0b7wf2XrY+O4z5jtjeETx8/se5z4g8rDI4mHkSw8cwxjcSXygc/dtaf9fAXdHsTvple/ge0ex5B5Nn0PHeRjwO0px/IGXaRRH6G6efLFK0bY498Iz/Nqv/To/9Q/+CT8xN81//MIFjj1V4W//2KdAiLRGRJLQNYXhyEtpuSWZ4WAPSZLRDYskGadmaHrqBGsKlXIO3x8SJwovv3qJbnfE1NQEe+0uQsSMRkF6TWUYDjz6vQEIUBUVQ7fQDZVOp0Mm40AUsbq6TjbncvnKPLoqky9kiOMA00qJPGRVHU9oIpU6SFJB30QSTDVq+H6ILCmEYUwUwsuvvkG5lEXTVIrFIoV8htEoFQo3TYM4ConCBFlJkOQ0PTVBIUnCdAKPBf44BU+SZeJ4DNDCCMfWUt0kTcF1syiqwcrSOqVymevXb9GolygUXYZ9n2wux2jos7fbws1kuXx5HlkWuLZNt9Oj2+3Rbu9RKORotjtksi6FYgHHMmjutpEUlePHZ6nVivzkp09iKSb/6e9d4Wc+WWI4GuJmHC5cvEUQxKwsbVOpqBQLRUrFErohkUgyW5s77HUH5HPZlPzCNlPJCFmiVMoDEoauMxp56EbqbG/ubKMIg1q9BonMyupOKjnR7rGwsMnt21toegqqTCOtY9re6XLyzEzK4qkpBF6Qsh4GAxYXVygV8iwtbQEJiqJy+fotSqUc9VqN589doVEv0dpahzjk89/zUbLFGtMz05DAzVvLPPXUKXZ3mpw+NUO/32dqsoyiyly/fptKOY+MhCJrTNSKLC+vMdGo4ToGmq6C0NjZ3mVqqoZh6nQ6HTRJZndnG9PUiZKUmVBRZZIw5uKF68zMTDHyh4wGI14/ez0V6K5VUTWJMAx57ewljs006HZ72KbFjauL1GoVWu0dMrZDsZgnAVRFY3e3jaaraLqasmuGEc9+41WOz86gqhrtZovp6Sq9Xo9cPku/N0CWUgkQzdSR5LETIUvYrsmN67dRxyCmXqsSBAFXry/R7w/IZGza7TaPP3aCvb0Oo9GIM6fnyOdzSEQYpsNw6HH58g1cWyObz3Hr9hL1WpmYhGzWxnFsJho1vJHHaDBEUWQcx2ZjfRNZlnBciyhIuHlzCV1VMTSVNEUnXRiJwpjJepmN9Q1KpRKXLs1Tq5cJwgDDdGm32ziOTSJAVjRIUhbM0dBPtcQkgSyreKMhpplqHbZaezSm6jiuhetaWIaCopookkK7tYdl2WM5BgmEwtZ2m9HQw7QskjhlFhYk7HW6ZDI5SGRGw5DAi1lc3GB3t8Wx2QatdgfHzSCQkeUESZIxTR0hIJbgsUaRX/3SVymiMJUrcfHKdXRVIZfNoBs6C4sr2IbBaOjR6/S4cus2OdehVC7Q6exRyGao1srolkkhn2PkBYBMtzMgm89juQaGYZAtuPT7bVRZ4Ud+9//hv/yVv0soS0jJ3QXFOw7bAxzB92SOfY/A3buxw1JPv1Xg7lGILY/aVFGVNAfzoGcwBneKouBYJqppIIQgCAMkSb4zmP3o3aPYUSN8h7V/275DPjusz/tFad9ve1uE7SF2MCp3PyB7KLiTU1mp95KB/XDf8D3s90ERwgfZIeBO8AG4+7a0bxW4OxilkiTpzt+H3XCHgcPDVo8O7rufdEESx+8I3B3V9l8ed6uu7y4D7o/n3mjdW96uB5cN79n2a/5iUqFWkcQgCW6ubjJpGLzyxll+7b//Vf6H3/ht/ru/+b2crJWJ49RpiePkTlqequqQRIRhH0Wz0XRjTHKRcHN+iSiUyWRNJClm6PloegZFlZhslKlXCiiqmgoYC41nn36BMycadLp7ZGyXJErwhxG2ZeN7I0Z+H8NM9ddU3ULXMyRETDSquBmHBEGn00NCxbJ1SGK8kc/iwirZbCatiZBlZCEjkAkCH9MyGQ4HqJrCxsYux4/X0Q2VbmeI7/VxXIc/+tJzTE5UsZ0Mo9EA3bQRipoSeQQDhEjTBYejPrKsjvX+FGSRMkvqho6QFVTNJollhsMRq+srHDtxgv5oxMTkBMtLG+QyBXLlzB36clUWaI6Eaep0O30qlTzbWy129/Y4cWqKdrdNoZBFxBIjL8B1XeIwpN/rce36LSYm63R6PSYaVT49myW2s/ydf3aJM7ZHMWfhOiqqqiPLOn4Y8trF60zUq6gCLl+5zcxkiQS4ubhOpZxFRAm3b61Rn6iys9PFcWy80QjDVIjjETknS76QYWFpEyeTI5vPcv36GrWJEqapUczbNBo1lpbXkBWJ3mDA1EwVSaTRSUkI1taanH9jgd3tHo8/NkeSRGQzNru7bUq1HLVyGolSFcFMo4YsJCQh84u/vcDPfuYMiq4RRSEvv3KBj3/8Q4AgW3TpdLrcurnKoN8j55rMzDSQdJU48Xj1tTc4cXIOP/TRDBXLsRFSmsq7ubVFvVrC0HTa2z2snEOr3SWby/LCixeoFLMYis7Z16/xxJOnWVpeS6UxNIWpmRrVWhlNUdjr9JFklSuXF3nyyZPYro2sKKxtbKIbKp4fsLK8wfRkne2tXfKFHJmMzWA0wLJt4iiVBtlrdWh39igUc0xO15EkCcexWbi9RLlcQpIVfD9gdWmdSqVEr9dDUdMFk1IpD3GCaegMB33yWYdy3UWWZdY2djh9Zo6VlUV0XcHUDTTN4qUXL5IrOESRj2XruI7FXzz9OrPTZbJZG900iCKBJCmsra6Rydj4o1QS4+bCEtVqCcu2kSUNfxSxurLJRCNLxtVo7rQIBhJx5OOPZQDWFjepTZSIkhhTt5BlBUVWkRSFZ77+Gk88cYLtzSZeP4A4QkgqnhfxxvmryAk4GZNup48iqwgpjb6FcYggwjDT+/zsSxexDIfeqIdla5AoxIkgjiGXN9lY2+TWjRWyBRNNtzAdk1IlZVb9wp8+zZmT0whJolYtMXNskt5eQOgL7JyZyhAkqTC5YRnIsoys+EDMD3/yCf6LL77A54+fpF4vUBizu/b7Azx/RGNygpu3bjPdqHFspk4m56Ahk8RgWxaqqqArMqOBhywkkiTBMk1sWyMCEk0iTmIUVecXvvAFTp06yQ9//odJhIosorfNffFhq/D708fBfe/UuT6KcznOzNiPMqXz3js73EHbj5oJ3r7FYyboB2331uUddQvj5IAY+fisZIkgDkmZnA8/3lEtSe5GevYFpfdTbuMkIZFSLlTgDrAT0jizJgEkiUQIEiG4Nxhz2HU/akRs/3pDmgIakbztHA8TMX8Q2nzUhfx7GS8f1Y4K7O7oPsaCOBGIRMB4S8bnvW+H/8bJ3Wjrvc/dYeM6TFz93vb3uanSuth7FgMe5Tj7+w477oMeoP36uvTmS7ckSndKHxCqfFvatzpyl4yByv7fo3z/KJ8d3HffercjHvNd231A58PaHKXPg70ossxEo0Fva4cr1y5RKmT5zT95hp/53ifHKYYyYRSmaWgJKEqa7hXFcRphU1NZBFlSkCSZYimPqmoocpzqv8WpnlkYBKiyDCR884XznDp5DEkSZGwtTUXSU/KT185doV6v0Ot1sRwLWZHpdQfomoFA4sqbN1leW2NyskYcRiRJmlbx5199GQiplIoEQcCNm0vMzEwgyxKdTockjgn8AEhZ5hRVJYoisllnrBEmIasKtmMSBCGnT82m6Z5JgmYoxIxJbuIEWaSi6lESY9sWsiSTAEHgIysyURQhyRKSlNKNR1HI9vYOrpuhs9fFGJPBuK4DUYydsYnDiOHQY2NrC02T0VUDkUCv12WiUccwNJI4Jp/Pc+3awh15iRdfPIfrmEw0alQrRYQkj2Ud0nFUcg5/9VOn+fLFFn//SzfZ3GxR1OHkyUmWVzewTINcLsviQpoSVqsVUVSVSiWPQNDt9FndaFEsZtMU0d0mQRAiSbC51QLANNP0tOHIwzANHENH1VONPF3X6HS6tNo98nmXTNYFUj3AVG4jTeGdma4y3SgxGg7RDQ1JUVha3aaYd1B1nVZrD1VRQErP67N/78v88X/946iqQiIkoihiol5hOBylzIkSZLM5ysU8k40KYRShajpClhgOB8xMTrKxvp1qhZk6hqmTxJAkMRMTlTvPmm6kzrqqKsRxwsmTx1i4vYAQEhP1Olsb28zOTXP18k3KlSLZnIuuady+ucBEo0aSwNxsA1VNU3dGnk+tWsJ1HbrdLuo4leny9QUyrp2SqCgpM2MUJpw/9yYCwZnHT6CoKnEUE8cxvu9RqZSRpDQFea/dodGo02y1OHv+CrOz6b3fbqWRr0F/gOPYqHqa+lwqlSgWckiyNE7VNZAVlZXlDUqlPLlChpdfv0ijXkE3DE7NTaMbKu12G1XV0DSD558/SxwHFPIZur0+uVyO1l6HfD7HcDCi1WojhEStXiFJYiRJxrYdrl5ZoFRxsV0XISRWl9eoN8pIkoRp2Pz+F57lySfmUFWVWjnH5sY2pVKROIpxXAsE3Jxfgjgil3OJkgTHsVBUGd/3sWwLXVcJw4gwDNC0lCXTzmTI5mw8bwSRRKezx2joEyUB9WqFiXoNL/AwdBNN1xgOhhiGzlOPn0JWFDRVS/X75IQ//OKzLC6tc/pMA1mFfmdAJpMh8PxxClaMJClsb7X46c8+zs/89r/k3/nwh+l2+mPimhyWYZIkMbqqkkQhMRG2Y7G6uoWbcdBUBUmREQj6/QHDoYeu6WiGge/7JCKN6sRhRByE/NZrr/CHv/vbCEUlFjIS0dungMPmk3e6Qn/oHHOENmK///cW3D1wOjzC+bzTMcSHHDcIfEzDJD5iOcZRbB/UxUl8B8wd2k46QDqT7Dv7Y7tnrO/mut8b4YsP+fEP7f4hvtej2MNA0pG+/yjtEvF22CQePoA7IDJ58HP3wHEd8TzvfbYe3vYhdtTrKw7zi5M7x/kA3H0b2gfg7n2w9wHcxaSPu3RA4wjS1T/ZqDBdMNi+eZnPfupT/Ad//zf55GyOTMYhSRLCMGA4HNDa3abb7ZLJZBGyRhxGCARRtL9KDLIs8EZ9tra2yGYzadRN0wh8P61Hmpuh2+kiSzFxEpEr5DAsF1VTmZltoI21seIkSmvwUFAUg+HAw8241OtlFFmm2+nz3NdfZ3urxV/6wU9SKOTGAFRhZqY2vkQxSRzhZh1kWeLmzUXOXrhCvVYkjhMMU4YkTRWLkxFxCMPhEKQERZXp9/sMhz0M3UQgIRKZr3zlRebmJtHHgKvV7KDrBnEwQEgirQVSZJJIRjNgMNyjVCiyNL+NaaSU8HEccfPmEmurm0ShT3O3TT6fI4xDens9dNUgSQTZvEMUx9imzWAwIo6h3e5Tr1aAmMGgTy6fwfd9DNMYM1DKqIqCIgkGwwEvvXqJ73nyJN93vMrjUw1+9YuXiAKPz3zkGIHnY1sGcRRRzLvEcYxuGniej26YmKZDuVxgd7eJlAR0+wOmZxtomoFj2qi6xmAwGhPJ9MhlM8TxCCFJbGzsMBqExFHEzPQEzz7/BhnbwHUcbt5aoVDIjmn1YxRVpr2zAUSpuLmQcByTJIpRFBXT0ImiGElRkBWF/+gn/zIJoBs6YZAC7lTI2kfX0xXEnZ1dTCMV7e53h2hmKq69urpGPlfg0oVbeJ6PBLiOy4VzV6mU01pRWVFJxJhBL4nIZBy8kUer2cLzAmRJYLs2zWaTYinHwvw6JDEZ1+abz7/C8dkGsq6mdYiWydraGsura6yv7TDRKON7Ho7j0Gn3qdbKzE430HWD5aU1bNem3U5TkXO5DJalY1kWJAl//pXn0VWFWq0CSARBwAsvnWdubgpd0xCSoFLMYTkWcRJj28bYsUiI45goCgmCGFmSUDWVrY1N2u0BrptFVVXyhQyLKyuUKyXmjk0xGnmsr2+RzWZ5883rTE+nBEaqqlOpFJierpOQ4DgOkiyTzWXwRqlEQBQE5PIZFD1Blkxe/OZlVle3+fBH50COkISB50U0GjmiJErZVVWZYzM1DMPg5RfOcuxYg0q1iOd7rG5skxBgmjrlSoFyJY+iyfzZn7/ClfnbHJ+to6iC0A/uSC6omoqqqgSxB0h0u20kAf3OEN9L2xUqeSRJIKlp7WuCoNdJWXyFiNP6T9Ia21Z7jyDwUUTMd3/6KSQlIQgCoiAVTvf9AMZOuCJr+y9qfvozJ/nZ3/ozfvzEaW7ML7LX7rKxuUOxlGpxuhmbaFxvWiqWGI08Ll2bx7FsNE1DN036/QGartFq79HrDSmViiiyTDQc8cO/83/z8kvPkUgSyThDQzrE6fwA3N3f3ktwp6gqfuC/RdD73Vo4TrlUlXSh6X4mSRJRGKYp2h+Au4d//1HafQDuHtDZ+wPuvgXe9gf2r8uSOCaO7q5CHgR2+zSxD/z+EdocPNaDQOP+MR9l7EclU3lY+/19R+lTSBL3a/GWQubxeVoFkwEGsVmhkC+y1/chiUmIERJpLY1rU6nWsG0LSU4QcUQQhMRx2s/21haSLIgJSYRg5tgMQlbuPPSqquI6LnGYgrbBaDSO2CX4no/nB4yGIzbWN/F8L2Wx9PwxicCQL37pGzzz9VewLA1Vkbl5a4ETc3VOn5qm2dxBVTSGgxGrK+ukWmohQFpfF8WEUcDUVJUf+sHvxrEdbMtGCAVVTVkqFVlHVUyymdxYMyzCzTi4Vobr126nUZMoIutYyEo6cYZhjKYZPPvsayiqRhCEdDtdiCEhpt/r09nrEXhDavUMzWYLyzawXZtiKcvpM7NMTDZg7DzOTE1RKBTZ2mrRbHZQFQXLNLm5sICu62QzWcqlHAkRrVaTD3/oMdyMi2aaqIaBqmtEYZRGCA0ZIUn84A98mv6oy/nr1zhxpsHT/+CX+Pd++Ae5shjzU//b6ywsbbK8to1A4Lg2u802qqZy7uxVPC9gNBhRKWUZdIeUS3m6vR6XrtzipVevkIgEN2ujaTLTU1WWl1bxfR9ZFux1B1i2wdXrq3z1a2f5vk9/hGzGJQxCTs5N4Q8HiChAERFh0CGOY7LZLIZuo8kKuq5hWjYgWF3bxjBMWt0RP/E/vYRASutJEMiSwquvvEGn1YNYEIeC1155E8swEHICUsL/y957xlqWped5zwo7n3zOzaFy6DjTPRymITnUaGDRsgBKNCVIsmTDgg1DhgXDhmBLfwz4hw3ZhgBLAmTIgCzDokwqgKSCh5zUnOFM93SsDtWVunK699bNJ58dl3+sc2+FvlV1q7umRVL9FQ5Qd58d1g5nr/Wu9/vetzFZo9Pu8cF75zh4YJEkSVnf7PLyl55lasZ6zm11umS54MaNOywvrZHnBs/TYMw99WQh05NTBKE954UDM2AKVla3KJcjAOIkx/V9TGGo1WrkWU6tXuPZk8d58YVnSLOENEv43g/e4tCRBavAKOHs+Yu0+31cx6NcLpNlGVIJqrUyYCjynIlGhdvLa6RpgTGglOLooVmiyCfLc1uDUymhtRqz6xbsB34IRjLojQj8gDgekSYj6vUa1VqZwhQkmRVGOnzYCicVBvwwpFav870fvE27PWQ4iAmDkKLIWV66w52VNa5cuUm33WN7u0ORW6AcRiGrG5tkWWLZa5Pzkz/9PEtrm/hBQBTVGQ4HfO/3X0dpF9cNcZRLnqVUaxHb25soV9If9EiSmFI55NlnjtBoNayXpqMwQqBcl6/94kv8xBeOj8WcXJsilmYEnkeepqRxOvawlFRqNYIoolSu0GjVmJ2fJU0ytre2MEUGQpDlCcvLK3z/+2+wsb5FlmX0+n16vT7ffuVN3nnjItdvrtHrdYmHBY6K+OjCDb7xu6/j+zatNElGGHI838PzPFzP4x//t3+Sv/Kdb7Hd7TE/N81wOMLRDtV6lSQvCIKILLHpW1lecPLoES5fvUWc5gglmT+0QKVRZf7gPItHD1DkGcVoxNLSMn/zr/9XxHlBodRYUOTjrN3D+wrxsc/H+x6z+5HCZks8bF9yLDBl0y/3GqTuyKd/goE8lpXa6/OouFdS/sH+e2dZUZhd5dWHxeOOu1syMa53TNNkt4Ri56O12k2v/Hjd1oNJfndDazsxmGWPvrdFXqCUpsjs8fL84evv9/rtFXJc8yp37vUe53PvOrvrPsUwn6DdD26/83lUFMbsCvVI7Hhn57MTO78LJdXu8p1luyI/jzn/nd/fve3aT/vu/a09yW/rUcfZ+ftR74X9xqe5T58zd/8W48fN3O3E02TMHjZj8STG4fuK/Qid7LH+p41d9vGeZXKn5u6e5Tvrua5DjqTSnGJ9ZYVfeOkEW5tLLEw1QIDSypqbo9GOJk1jBPD666eZmmziug6lckRRFEhtZxfjJEUpBzP27Ot1u2xtbPPW/FOrOAAAIABJREFUu+c4euQA2lH4oU9eZAiEVdMDLl2+yWAwpFYtj72lFFtbbUqRy8svHyfPc9bX1llYmKZUCqjVypQrJfLM4DguYRgwGo1NyLFGwaaA4bBPlmd4rsdwOERphyzNKUyKENDtDBkNM1xH0xt0UVqT59Z4+cLFG8zPz+BqzcxMi8FwaF/aBYBEGGg0qxQGO/tfFEglUVpTKVfod7sURUKjNUG706VcqxKGPl7gAYIwDPitf/X7LM41KVcrVOt1lJT0+13W1jYplTwmJlqYoiBJEnKTsbS0ysz0pBW68XziJLUegNpjOBiSJgOE9FlZ2WB+bpbJVo1+d0BYCui0e8y0mvzKlw9j3Cr/5+8v87f/9Rlubxv+xJfm7ORAkvLamxdY39hmdrqMKz0u3Vhidm6SUslnZqKOcsFxFGtrG6ytbXL0+AF8zyXNCyaaNZuymuccOzzH9Vt3uHDpNpubXSYaEaPhiFMfnMfRBUoalHK5fPUO9VrdshSOJstyHK25em0ZaQy//toG/8t/+nVWV1ap1cpgrBBPo1nj1KlzmMJQLpVZvbPFxuY2s7Mttre3iaII1/e5fOkG9XqJIIj40Ztn+dKXjvPaG+/SbFY4cfIIjuvz2o9OUy1FlEshWgt63T7DUYzAjJUWXa5dvUG1GlGYHCkVvqeRWlJrVmnUStSqlpXsdnokcUaaJKRpih9GOK5EK0W9WqFUCrl1awk/8FlcnKXRqCKl5s6dNSoVa3a/trpGVCpZM/GJJtOTTUbDGK0Uv/vtV/niF04CsHzLqr2WShFSW2auyO1vPUnS3cmI1988zexMk+FwQLlUGtfACi5cvMLkZItOu4MxEISW9XNdl9FgxOraNosL02OFWE21WkEKwdkLlzl4YI5XvvcOzVaNIPDAGMuk5gV3Vjeo1coIYdDKUKtVWV3ZoDlR5diROfLc8P3vnWJ6qonvuwisoubC4jRB5JPlKfEoJvB8W+ZS2EmTMCqztrbBRKvO9nbH1qd5HnmS8aM332d+bpq8yC1jmWUo5YE0LC+v4uiAUslDKo12FMIYkmGMF/pATimKMHnBwuI0ruuBAc/z0cJQrZR48YWDRJHLKEn519/8ISePHOILLx4jyzO2NjdpTlbo92w6OUYwGIy4ef0Wf/4XTvDqRyt8YW4B3/Oo1spWIVkpulsdPNclKzKiUoTjuuRphlTKKojm+djv0IrmpKMYYwr+4jf+Df/z//Q3EDrc7T6EMHum7u3J3O0n7tvw4ZP59w/izL6Zlf2MG+/WyT9+3Y+16yH7um+ZASXVIwmPvY59/xnbf2I8oNfKuXu88cZK2TT+oijurr/LYD5eQ2DfcfdhuDuueaD99x7p0x53r9uy1yTAownWpwv+niT2c+yd+3Q/IC/uW3aXpXuM7cWjGPMnfcZ32PCnMHx8sA33XZdH3ryHM3cAWjufp2X+YYvPCtztJ7Xi30Y8KMByr9DJjl3Bo2IvYZTd7e5Nn+QuQHtsPADsdpYB95mLivF6aZzhlQV3NjaYnjlGo+Xxf/yTb/DV5+egMGSZTU3qbG0RuIE19TYphw4tWGsECpSydUWFESBsTVWWZ1AUrC+vYrKMSjViYXEK5SiSeISWLkq6IApGvRGe5zE926TZKJMnCaM4Rzuafq+HdgT1eg3X9YlKoR3AOq6tbQOUK2zKlOMipPW6K3Jj1S9dheu5hF6Zt948Q6NRQ7sSIQxxMsJ1PFzX5/0zp2k0yuM6MttGDBaMKkmBQDoORZ6gHY3jaXrdPrOzkxglUK5HURSIogCZU5gcpT1cp4x2ChxZYExmDZXzgjw1Y7NqzaFDU5SqJdqbHYLA4cbN28zOzhBFIb6us7q2TFHkRGGFNE2YP7Ro6x/TlDOnz3Hj2i2mmg1uLa1w9cZtmrWIra0RH5y+xosvHGd9bZ00zax/miMIQp/NrTYTjRa/9OUj/MkXF/iF5w5x+fIW3z29zj9+u8Nbd2A7EfzOaxf56WcmOXrk4K4ce5YXbG/0WF9rMzMzTbvTx5G2Lm57s0OlHHLqg/PMz9QJSh5TC9NMtWrcvLnCOx9c5+DCNIcPz3Hr1jK9LUlzYtKqokoLuF1XgdTkhWFiss7/9YM1/tqf/gVu31piem6CwsD581e5fuUWB48scPDIPJV6mevXbuJoRZwkTM20yAvr7SiVYGa+idISIeHFFw8hlaIcBTSqFURhWF1a4ksvnSQoBXihj1AKhCAdxfY3pRzcQNOaaiCUwnV8klFKv9unXCpx7sxlFhfn6Pf7kAuWb9/B9z1cz8f1PIQCCsGpd88RhSFKuVy/tkyjVqNIc0699SFhOWJyeoJiLHjU7vZYvnGHpeU11ja27HXfbtNq1ZmdaeD5LspRDPsD3v3gIs1G2YLBwpCnCfEwRQiHb333NU6ePMTcwiRKKfzAR0hBlo9wXIdmvclomHD9xjJTEw0812XY76GV4vd++A6/8st/jA8+PM/mRptWo44xBiUNiwszOL7L8eOLbG9uEIUhWllgWS5HBEGA77vkJmdqepIb15e5tbTE9KT1yms06szPNlldW6cURWO7EUmSJVYJNE4JooisyCgKy4q6boihoFwOoSjG4LEAJJ7rAYYgdJHK4803LnH0+CzdTgdHerjKTiJJAW+99T5xP6ZSaaB1QJ6PENL6b3qOQrmKfq+HwJDnKXmWMLswjVCKUrnKneU1DsxN0mrVWLlzhygKabZaVvjFGNI0od+P+e4r7/Ls8YO0211OHG/yV/75K/zS/AKlivXe7Gy08VyPbreHEBqJ5Oz5Sxw9vIgXuYAhSzNcx0EJYdO+Mfy53/invPLt3yGXdrkcn5dgbzPv+/sD7k8Te2R/cve/SsqHjvHu9oHjtLA9VtxLuGSvtj4M8NkJycc3+SHNv6+d9y8bgzPDQz97tueeD4VBGHv+ArHnxvZP+/3Ov0fFg4IX+xU82V3nHsD94LV/UmXMe+PBe3bvvjHja3IP27p7GZ5iWuZ+Yi/RkB1rgr3EQnZqG/dsizBjlvLumZv7N7/7PNyzvZDqY4d7pGDJk5/lUwF297Zh57rt2xj9c3D3Ry8+M+buDzK420PN8tOwdXdnT+4BfA9Z95PEzl52WuhoB2SB6/h0t3qs37nK6Ut3+Ppzk0itrAAGQGH43g/f4cjhRawwl0JKW2uXJAlaK5I4RsnxUYqC0WCA6zu4jsJ1NUJrACQSpR3yPGU4HDLsxWxtdajWqvS6fYockBLXdQiCgHqtSl7kaEfR6bRxtIOUDgKFwSovam3B1ne+9yaTjSr9Xo9up0u5WkYISJOUrY0tZuencDwHjEZKyfZ2FyklBxdnMdj1LDjMcTzfzpRnKUoZTJ7i+wFFkZNnua0RVJoiTa1SntKkWUyR5LYjQJJmOe3uFqNRTJzEhIHH2vo61UoFFFaURmmk1Fy7eoNGo0a9ViXJ7D6Xb62ytLaC6zgMhylXrl2nWqlQLpVYub3KwvwsSZxwa3kFx9G89OJJsiSlXCux3dliYX6acimyEuxXlwlDnytXrtMfDJmdmcTzPTY2NmlNNBHCcGJ+kl/6iYP85V/6Il//qZP8iZ99keubht/7cIX/4Z+doddr00tz+hubvPDsEV5/6wwnji1y7sINpqYaSGHo9focOjBtWQ/fB2l9AGenm0w2IjrtAddvLOF7kiOHDiE8heNptGtZMO06SCRvf7TC3/iNa/yd/+LfYzhKqDeq+L6LkopWq8HkRG38m5EoqXAdDy0llUpItVZhMBwRhiGCsRiBUWRpwfbmFpVymSvXbjEx2STLc24trdKabBGnCUpJsizl13/995idrqO1JipFtDe3kQjLbpqCS5evcXBxAakE5z66ytzMhBWR2WwzPTNJfzCgUi7heC6drW2uXLnJ8cMHKEURpz88zyiOuXLtJlkac+LEQc5duMrMzKT9XSGIwoCoFLCwOEulHJLFibXpKKywkR/4Y7GSkNnZFs1WkyRN0FrS3uyyubHN7aVlXn75uE0Jk5JBf0AQWsEHIa3YkOt5OI5merqJMMb6XSLIs5zpiRpROcBzHZQStpZ2LNyjHIVUCikE1WoJLS04W1tbp1avEIQBnXaHfq9PmmZo7TAcDGi1Gky0mkhl066D0Md1XctqGINyLIviBz6igCzJ7LLCIBUk8RCpBUIo2p22BYZCs7neYXKqhdKSJEnJ8hTfcymVS3ZCxtUoDcakaEcQRQG9Xpfby8u0Wg2UkhgylAYlXVzXMnyjQczExATa1TiOZjAYoJSk2ayjlKLb69Oo1xACVpZXCMMI3w9w3YBz56/zzDOHQEC/P+Q//1Nf5r//nR/xpw4fwRgYDmPCKKRULvHW+2eZm5tBC4VQEpPl5HmBVpI4zfBCn1Fnm9Xby3xva5O/9B//BVDWJmKvd/zj4knB3b2eXvtZ/8HYM1Nzn+vtrv/jAHdPtsu9j7OPhn2iurJPE+ZuyuSD1/TTgLsHz3QvS4g92dbPGtztCeTv1sA9GLvAb5/73M+ztbvWXpPzTwuUPe14UqD5Obj7oxefGXNnzEPTJu9jv3ZYs6f4onicSfgTsXOPmA78GNP3iM7iYQIp+4kHZ5sowMgU1/HRONxZvsTzxw4zpTsYIxFiJ6UTjh09iMEO/qSwCpgYY89RCPI0x9WawWCIhLHx+GCcGqVodwaUohKjUYyUVgjDc33SOMVgUFqTxhmjQYwfecRxbNMsA88CrqLA81yK3HDz+jJXrtxifr6FKSAeJTiuMzYxL6hWyrQmGgglybMcrSTlckAQ+qR5znvvfMTv//A0Rw7O8uG5C7RadYIgwPU9TGFwfY98XO+ktCBNY5LREMe15uBplqOlRinN9cvX8AN/1+Q6i3OUluS5QTseYSWkXCqRJzFSGFsHpB1GI6vwOBolfHThGpVKZCXVtSYMfNbX1onKIYePzKOUJksNBw5Oc+PKCku377C4MMvm5qZNhxOG5589Tr/XoyigUisxPzfJ8vIdjIE33j7D0cMHuXj5Oi++cJzpqRZCCdrbbdLUpoOVKiW2221a1Rpxf4TJcjzXxaQDvvKFY/z5r57gJ58/xrGFeer1WX7tu+f4F2cz5ioZvW6fxfkmnu8RlUKyIh+zSLlVjBSS1974kNFohCgMB+abOK6kXG2gXFvPahUgc6SU/Jm/9Sb/9Z/+ef79F2Z5+9SHuwC11xviuvY6W+VNyfkLV5hoNbl+4zZxnFIqh/iBh0TgKMXKyhqe4+A6Ho7j8tH5K3S7PZ555ritpQVm5mbIMlu7lmUZnuPw0hdO8vrbpzn5zBE81+PCmYvMzk6xdHuFIAiYmpzgd7/5OkLmfPknnqMwOdeuL7PV7tBud4lCnzRJuHbtFtevL3FwcYYoKnH69EccO7qAlIKXX3qW1mSD5bVVTpw4ZlNye/2dGR2CyLVzJZlhc3MDNWbGpmYmbdq0VMTpCKWtYqQwBe12B8+19aGLB6dpdzq4nmPrioRACMnb75xleqpubQSEZGN9g3IpIIljXnv9Aw4cmANjqFQjClPgOJpKpUIcpwgprK/keGIHDFKA67oMh0Oq1TIIKzjS6fRwtItWmkajRq1WQQBvvf0BnU6X2dlJHMfhzp01arWqZe6SGIDv//6bzM9MWaZQWdaVwuwao0tlZ8Xv3FnH1Q7vn7nI3Pw0WZYSBD7NVtUyfQay3NYx9vtdpMxpNhsEQUAQ+TQaZRztk6UjOzklAKzNxIcfXqBStqI6OdavKvB90tjWFK5tbFHkBdevL1Eqe3Q6fRqNOv1+zMrSGmHo0pqoUypF1GoVOttdfvXnn+Ev/z/f4D88cRKtrX9ou93huRefRQgxts6QuM64jtJxcF2HoijorK7z60mPv/8P/i6ZMeSF+JiAytMAd0VefExufkeaf6/tdmf5HxF/EMDdXvE0Rgu7k7pPyLY97rtP1yjshIhWHzvHJ56IviceBe529nmvXcKD2z0pE/mo2Iude9Q+zcf+cw9TBQ81Nr/rc3dPzSSPv46FMbupmruHHv9W7jMjf8SDuh8LhX+r8Tm4+6MXnxm44+F1d0/zRbFnPGnt3EO239d6j8sDGYfY3eTJf+0fm20yAiMzBIpsmHPh7Nv4quDDD97n4NwUAsFoOMBxvHFxsRWesTn1gqLIxzUGlrnKCqtW57oueWHA5CRpRpKk9Psx1VqVNEmIE1s7pLSm0+7SmmyS5sk4LUKSmYxSKdo11E6TFMex4K0oCkqliImJBmk2Io0zy9BIQa1WRQnJq69/wJEj82S5BZamsCIHBuj1BiwvbSAlLK2sMUisibPceYGOz81aQlhbiB0RC0e7FMYq6UmpSNMMUWRE5TJ5nu+mlnmuIk9ztHIREvIcPFdR5Cmu54PQKG0V/fr9AfPzM0SlkJXlNSqVyDIypRBjcpSGIAgZxRmd7jZzMzMkcUy9XmF1bZ3hcMRgFGOylEtXrjMzM0EYRly9dhslJM1mA8dRTE9PUZiM5eU7lKKQNMm4eXPFKvW1Gmy3u9SqZf7pP/8O8WhIvVwiyzOiKEJqRb83wPU8pJCkScZzB6f5y1//AmW3THlygf/yH77Lv3pnk5cPh0xUQ3uNlAIKm8I63SIMNc16lX6/z8xsk6zQeJ5DkedkWc5bF1f5h99d5b/7pWcolUJu3lrhuWeP29rKvOCD0xeYn5ui3+vhuj7bm22mpyZQStCabvH6G6d57vmjFpRLxTe++UOiIGBioo5Skps3bnH48EFu3FxmolUnTTOWbq9Qr9XAwDvvfsjC/Mw4dVkxvzBp09FyQbUaghAEUYDv+fS6PaqVMocOz4MwJGlKrVpjfn6SufkpSqUSG+tbHD68yOzsJP3BkJu3ljly+ABaay58dI2pqRZSKxr1Gv3egG63x/r6Jtev32Z6skW31yPwQk6dOsvhIws0Gi1b3zpmDwtToLUcS7B75HmO42iiqEwQOty+vcSP3j7D/MwUUSmk3x8SBgETraZlqnLDyvI6k1Mt+34QMDczBUbS6/ZAFLz/wQWiKOKHr73HxUs3OXn8MEJaGwrfc0jThCRJ6HR6BH6AkJLNrS20EoRBiOt4nDl7iVarhuM4tLc7CAEHFufptDtgoFwtY4xhY2OLTrtDKbK+ilPTEziOQxLHu0zXd155h4lGjTRJKZcjKpUyruczPz+FVLbdYeBx/dpNK8jjeVZtcqtNqVzB5CnbWz1cL4AxQC0KgR5P2jiuv1uvNzc3TXd8n13fxRhDEo9wPRetNZ7nU63V6Pf7VMo+YeCP1To93njnQ37qyy/guC69/oB2u8PNm8uEvsef/spR/rP/99v82eefxxio1qtWcVc7SCWIR0OQguFghOd7llUo4C/89m/zj/7h3ydXalzxIz/OyuyzL9hPet8j64Oe8KB/lMHdkxzvvmP/GNksKSRG2JKOH+c57nlf97gQ94K7Txu7gOeTxkOYS/EQcLfLRIr70zCf4DAfW7hXTdteQO4T1+N9VvE5uPujF5+Du/1v/7jYqYXbz4vjXlPyJ23Vo8Bd6Hr0u+us3bjMN18/z9dePmpVvqQ1LpZSYjBo17IJAnaNM40xoFxGo8TW3mFTViVQiiKkUPz+q2dYnJ8ZM2EJvu+RxBl5HuN5GtdzOXP2Iq6jaU3Wray41gwHA8AglWXw8iJDa0UQehRFzoXz14hKIXmWoh2HMPCZmqgTBD7S0Sgp2drctJ5xxuD6PpOTVWamJjh27ACHD0yPB6sF2rGpo3EcU6QpaZKOayMkRlgfsjiOcV0XkGRZjiDHC0LLPCUpOJr29ialMCKNc7SWFEajhUGN767UHt3eAMdx8Xxbe7iyvMbs3DTXrt7k4qXrHDgwj1TguJrRKOXihRscPDRNZ7tDnmcIaWg0K5SrEZ4OeP/9sxxcmGKz3abRmOL2zVWu3Vjh+ImDBIHPO++e5pmThwlDn06nT70+Qbnss7A4N06JywmjiGe/eIypyQa1Zt2akEqNKcD3PIoCbtxY4rU3PmR+dpIkjhFS0ChH/IWvPcev/txxTKb42799mn/wygr/8p11fmJB4CiHKApxPIFWmtWNDZqTNXLp8lvfP8f/9q+u82/euMFf+upPslhWHDlyENfzmZycYGlpFT9wcRyHM2evceLEQUbxAEeHrN/ZYDQaUK2XKUg5cmCRNE2teXd/yOL8NJevLHHo0Ax5ESNkgR+WWFicJUlTzn74Ec+ePMblC5doNmrMzc5QGEF/ENPvbRGWLFgxmeDO2ir1Zg2lFL1Oj43VTYRyyLIR5WqEQLK+ukVY9rly5QbTUxN8eOYjLl++ycGjC5QrZar1Kv3+gCK1Zu79/pA4jilVy7zx+gdMTzZpterMzExR5CnXrtwmTwrW1rtMzTQxWcE3vvU6x48t8Mr332RhfhrlglaSLM/xPRfX0Vaoo9fG81xOHDmM6/i4vrYeawUgFNev3SAMI5aX1i3LmGb4vsO1q0vUG40xcIQ8hSiMCH2fmckWvj8GRXFMkWe2JrXI8T2fGzduU6mWCUMfrRVnzl1hstVkotVAa1sPGwSeBUuea/0ila2T9DwPz3V480en2dzc4vnnjltbCuzkkZQSR3scPniIt9+8SDLs0WzVUa6t9yyMTand2rRCOqur63zvtY946QvHEUKxsb5NuVwjT2M8N8QUtj3vvneWgwcWEQa09hDCAZFiTEESx4SBbwWZfI8kTgiCgNFgSJbnhKUIiaLRqOG6Au0q8sLQ6w1ZWVvn4KKt0zt9+iPiUUKzXmVjYxvP0/zqV47zV//5K/zKc89TGGthIArDaDCw5vKVEqN4ZMWhtMP/+Ju/xfEvfZmf/sWvUriOrXei+Fjf9DTAnS052LuH+Rzcfbrj3XfsHye4U3KXbX2YyukniT8I4E6NM50+Md75pODuCTPEnhTc7Z7XvWU5n4O7z+Ozjs8S3D3Mf+7BH8JTOdYTCqM8Ku7S7o9n4+77SPmxbXeW7dghfJJWPdgKIwwYDQhyAY3pBfrbKR9ducYvPjdFISRKCPI8tSySFBR5RprlKCVBCORYRKXIB2xvdnnl907x3LNHrfE5kuFoRFgKmJ2uEQVjiXDH1t/4XsB3v/8+3e6Qer1C4LnMzs4yHI3I0gwhBEEQopWm3+/tpmIhLBhRSjI7P42Umh+99gFhYGXcw1JoYVSeIYVDuVxla6tDEIQM+gPCMMBxFVKC47oMBx3C0GM0GtHe7lAqlynMmDEcS1gnSYYzFnHRWmPyHFcrhOOMa+wsU6mUIggjjBBoR1qmRdlZ1EIKjBBIpfADa5yOKcgGHSKvII23qdcDFmanMMWAwWAbk8Vsb65y9NgBHC8gTXImpye5desOjnYQQjE1NcH0TJWw5JPngrwwdLo9vvjyM6RpwvUbt5maaFEKI85+eIkTJw7TG3QJfJfr124ghcD1XJRWKGGVEvM8p73ZBmFwQ5+8yBEUNColDh2cZ2trm0argdLK1ssJgRCaSxev8Stfe5kvTvv8By8vMjt7BC+oY0RIpTZLpw/vXuvxwrNfZjCUzDea/MU//jLPTISsb2zz4gvPMBgNCQIf7WiUEkTlCspRHDk2awfaXoSQUK9XieOE5dtrZKmhFPicO3uJVqNJlhWsrm5iDEzPTLOxvkW1WrMz2cZAnlOuRGhX4/suXuTS3h4hjCQZ9QiiEnla4DoOxhjurKzT7fSIgoDLV25Sb1a5cuUWYeggKPjdb7/Kz/zUyyglOXPmMhcuXOcrX3mZ67du02qUKPKC5eVV5ham8SLNRLOOxBBFIW6gaVZCLl++RRRFeJ5Hp9fFd1wmpprMzU+gxiBqarICFFRKAc1GDSEM8SjD1T7acdnebmNMgeu6aMfBC1xyUqTUXLl0hV6vi6MVZ8/dZGFxlqvXbjMzO4VUiiTOaU5UQdjppl53xMyMTaGt1kuEpcjWv6JYvbNGvVGz70nlsXx7lcmpCbzAIwOGg4Sr129Tb1S5dv0Wk5OTNl0zi5HKkCcJwrE1p0lsWF5ZolGrsXh4loMHFygK2Nrq2PPQAuUIsgzyPOPAoQYzC5NoLccS4gUmT0njhFq9DsIQeA55knDsyAEwOe3tbVxH8oMfvc+xo4tk2YjBYES9WsUPHKTnEScxkDMcjAhCm9K5vrZJHCeEpYhut8/p05eoVupo5eI6iu32NqVSgFSaJLN9RqkScfjgPI7rkMcJszMT3Lx5h15vyOLiHFma4nk+v/TFOf76v3yFn5tsoYUGKfACH5RGKoOrA6tAPOzwm8s3+F//3t8mCAJEkVuBFfFxAZUn6gwe+OwOYneEUfaIh9YW7byYx/GgiEcxzsoo7hGteFBg5XHqmeIh5/yw1j4tcPfg5OvDPp82nuYk9Y54i/0DBI+vKdtPKGll/oURSMSe+9xr0n0vVfz7QBMWkNrJ4jFmeOCZurvh+JoXH38Q9nPtHnadDfemYN4Fejvr7bXdTurlw8anHyMfxMfXvfd45oHt9pPybC0RdsT4xufyiDHnIycVHpMGujOhf08O2R6fu+t+bmL+hzA+S3AHD8v1L35sNgYPO+an3ed+ojB3vXl2WnB3BueTdyOP2lKPa/huXrnKy8/MMdpexlUaaSDPc9I0QSprdyDGss5ga6XAdh5RFFCv+TiOwnU9BsOB9WDLMxzHpSgKup0eBTlZmnP16i2EFHzhxeMURUbge2NwLdFa4wc21UxIg5CaN958n9mZqbHJuSDLcgwwGsYcWJzF8xx83yfLLeNYFAUC+Ge/+S2ePXkYY8D3A9qdDkVh8DwPIQSjkfUBE0LheT7dTp9SJYKxpDpCkCY5Z8+dIQhcHO2NDcclWZGhta3/yrIMqR2EEFZgRo1TYoTGSsIra8OQW+sIrey1U7IgHfUQFEhHgChI4h6uUyJLChr1Jv1BQpYbiiKj3W4zPz9NWArwPJdbN5eo1iyACMMSSZpTigKCwGcUxywuzuNol4sXr6K0pNWqcXvpDmFnyuxvAAAgAElEQVTosbS0RqtZZziKrd1FnKKV4ub1W3Q7fYIwwA980jTh1LsfMjXRIstypqenUNqKb3iuw+bmFlJYoYnhcMigP+Tw4QMkaYpWGq01N67fpCgKTh5ZBKzgShSGltHxPZqNGmEY4HqOfbaEwHHcsby8axnrLCdLM9I0Z2Ntk6WlNY4ePcgPXnufatnn6NFDAKytbbC0vM6xowcIo4BRMsLzXIyA0XDEt777OidPHLKG40FAr98jz22nFkYuRWHodqw1xvnzlzl+4hDD/oBrN2+T5zkz0xPjui2XeqNG4HnU63XeeONdfvZnXmZ2ZpKz5y7y8kvPEIYefhDSalpG7P0PztPZ7rG8ssH8/AxGGE6dOsPxo4d569Q5DhyY4cbNJfIsIwg8fvjGe5w8cYQ0SWm3u7Radaq1Eq6nMEawdHsFoSSuq3A9B8/R1vZjDAi11kghqZQiSlHEhYvX+PKXX8B1NJeu3mRhbpr2dpdyNWQ4HKCUZn1tk1K5gh+4KGXFU4RUbG1u8+qP3uPFF47hOPb5lULzzrtnOXhgHqUlUktMnlNkGZMTE5SjiDvLa/iBR5yMcByN63r0R72xr2Bga3D9EO1I4mFMr9ul1WwCkhtXb9CaqBPHGWk8QpDjByUMhjzLMaYgjof4YYCQin5viKMdZmanuHTpKlOTLSrVMr7vcWBxmsGgj+e7JElKo1FHKkmWptaHs9fHkKOVxnEczp2/wsnjR1FaE4URc7NTaEeNUzFDa7liIBnF+KH1OZRjL6w0TnBcTZYXRGFAtzNgaWmDLM24cWOZg4cW+FM/fRzRUvwnv/Y7/MqJEwghSOPUgubCUOQJv/wb/4Tf+rVfQ0UBSZKMB8GPf6c/aeyHJXjUIPbe7fYS8diZjP20/eqeQGGP9Z4WuPusSJOnnnm0s9+dfT+F3e+0ccfSYb9tfhS424kdQHqvH+AjU4P3sc8njXu33w/b+KSM5BM/S/vYYCdN3qqq72P9R7b10fljdtvH5Zfd3ZdWnzN3f+jiDwK4eyozXGOmrtipJbsXPD2BWMujZt3u/U6OB/R7gbQd24Mdq4L79rRHPd6utcEDfz9s2aOiGJ9fHAtKasR/87//Jn/+F04Sj2I8z0ErTZzEJHFimZ0s3zV3T5IUiUIqQxhZyXGtXbSj0dqhyAzGFPSHA+JhQhQFQMHMzBTzCzN2QOo5KGUFFW7dWqPZtMbZaZrYAaNU1ColjDFsb3VQ0jKOctwGKSAqRVi+0ALjdCyw8twzR8jzAmME3/jdV3EcydzMFAVmrLSoSeIU1/VJkpwoiojjIWmWMugPqFQqSO3Qqk9w9uwVpqfqDOMucdon8ELiZAQYhFCA5rf/5SscPTxPnmeM4hGvv/EhrVbNqvZpl0F/xHDQtfYNQmCKlDTeIDcpyglRokGnk5GlGVJ5uH6E60d4nk8QuASBhxgbyG5tbeH5Hlev3aZarTDoxyhH0el0qVTKeJ7HKE746PwVvvDSc7QmG7x16jRHjxzgjVMf8qWfeAE/9Al9H1drHKXobHdoTTap1SqcPXeJiWYDJRVB4ONHPmLsCyWF4MyZC9Zc/upNsjRjcnqSNIlpNWtW9CfPSdIEISTNZhOEpN3uUmvU0VKCNLS321Qqlp0bjUb0+32KIucHr73DoUML5EnK7VtLaKVRUrO2ukZzYoJyucTlS9c5cGieEycO4nkOIPi13/gmi3MTPP/iM7S3t/FDh7PnLjI1OcV7759lfnaazY0tpiYbVGo1pAGhC7R2Wbq9ShKPqDfrSKW4fXuFxcU5hLBM4ezMJFJYK4ty1Rp3X7p8nampFo7r0qxXrIpqXjA/P43vuWOlyiGjeIR2NbNT09TqNebnZ8hNjhQwOzuDF3icOX8ZKeDwoYOUKwG+H6AllEsRfuDRaNaRWuC4iu3tTTwvolav4PsuRZGipGTY7xJFEVmWoZQGA8YUGCHpdvrMTE+QG8uMVysRN64v47maerNElqWEYUCpVGJ9bZs8TwHGIkg2rfLggVlcT8N4QsMIyeFD8yRxbIEdBcNej8WFWYrcsLa6wTe+fYoXnz+I77sMhyOKPEd7Es+zdbXa0RS5rYHzfRetrCnw1au3GfR7NBtltHLREvzA5datNcDguA5KKfLM2n10ez0qlRpFAkJBo1G1yp5CYIQhzVK8wMVxNIEfcO36LYqiwHU0WlkRKakMCCsS5bkefhAgpODNNz7gzsoaYeiwvrGG77j84LVTzEy1rGWB5yClJE6SseiVpN/vE4YhCMlHF29yYGGa4Sjh8OEFqrUKnXaHIPD41Z87zobc4q/9i1f4Z+fOseg5/N/vneLvvv0mX/+55/nqH/tljMN9wI59vNefKPbTUTyKIbl3W2PAWEVluJ/9+LTx7zq42w+7J5UEYTD5XVG4PW9ZYSdvpbAseJE/xIT+E7QhzwsL1sZKq0IIhE34GbflIYyYuf95eWjpzUPA3cOEUe6e8yMYv/F44l6GeRfQ7owBha15vu9xv+ez13XZFVd5wnbtK3babx7N2D0Ye9+/j408d/d5F2zf/f5uac4ezTIGR7ufg7s/bPEHAdw9lTA7HBQfB3c/jjbsKEzu9dU+2vDg+nA/Qc4jlu0npuYmeeVf/yY/+zM/xaTTx3ddsiwlSzO0o21akJAwtkKQQliGShiKXGEKO8BBpBQZtDc7JKOUIHD58MOPuHhphcWFSbSS1rTaCwAoinxsYu0Tljyb6icFWjtjmXXL9PhuiFSat985g6cdlFaEoQsSjBEM+30GvT5SSpRyGA4TXM8ygHmeoh2olkv4gY/Wtg4PaewgFcO3X3mD+bkWnudbW4FyiTRLKYydzR8Nh0SBT6laRkqFoxzieIh2NVr7mELw3vsfATlz81NIKRgMYqamGyTxCGMMeZ4RBhFZZmG447iIQpLlCiMDHL9CEIasrqwyf2CRYZKhHE2300Yrl6tXblGuVBFIlpfX8byA+flZ1tc3aTQrVColGvUq758+x+ZGm6mpCe6srFOplRBKUKuWWV/d4KUvvWBZizxDCUGn3eHUe+eJSlYoIsdQjkq0t9q89/55ZuemcAMPrR263S5RGNKoVVleWmV+YZr5+TkunLvI1HSL0WDAaDhCSkFQssbccswARaWINE2RApRWVpHR1Wysb3L1+m3mZqfG30taE028wMFxNMsrG0SlkOZEnThJuH3rNseOLqIdRWFy1tc2icohWZLw7HPHGY1iosjHcSVTky0wgvmFWZQQzM1Osba2gRd4tDd7lKsBnU6feJQghKDeqNDrD5iZmUIryzTleUG31+fypZvWXNsU+K5n7T2EpMgzLly4ytLSKtNTE2iteOX7r3Ph/E0OHpgniCKGwz6+4yK0BRuuI0iTAa5fRkg4uDBNKQwZdEd8cPoSzWadeq1Ge6uLF4yfAa1ZW9skCEKbLisLjCnQ2qHfGxGVQ5AS7bhI7Y6VSEe4XoBA4iiHlZU1wlKJer3KxGSDSrU0riXd+S32kVpQKlWsFYKjKIqC7XaHSjWi1+/jetbfsddrE/g+H3x4nvn5edLM4HkuSZaBAKUlL790lFdffZ/jxxYZDAYIIdFSI41CCkkSD0hGKe+8c5F3PzjH3EyDoBRQrVWo1cpoz0EqnxvXllBK0R8OcVyN67j0uiOioARje5TRcMSPXv+AqZkGYSlECKu2ubG5ReD7gFW+U8oZK5uGiCKnyHPAKuza7zVRpYTNmDQEfgBGMDc/TakcMopHHDt6CKTg3/zuaxw+NDsWVHFIEqvgWxQKpRxcx6FS8WlN1imVAuqNMlmREUQ+2lGYLCXwHf7sV5/hz331JPPHK/z8Fw7wj775Ln/v7/wt3NokmPyhfcBnHY8Dd3aIuDeg+LTx7zq420/s1tspYVUzhdwb3I3VaNMsZWey9GkVIu7YJZkCzA7Il49m5XZiX9fiIeDusffrkWyguf9v7gd+40TSRx5jzyyzx7Vp3ys9vXjS5+3hBMveqaNSis+Zuz+M8Tm4e2A399bqPaatxT3plvftYx9teHB9eLrgbrud4cTr1JpN/urf+sf8mZ86Mk4Ps8a7/X4fZ+xLZdNiFUWeUxQ5W+s9XvnOO5x89iCjuMOwn/LRR9eYnGjhupp6tcTxo4cwJhunRIJB4e4AyKwgSVKCyEMrzfraBkopXM+j2+2ipCQvDEVWcOq9S1y+ssLzzx3EcZT1+FIOeqyY9+G5K3ieSxRGKKXwPJe8yJiZniCKLNh46633qVZLFPkIx3GI45Rmo4Ln+yjlIIUgTRKUVmRFTp4PqVZKmFwgpUcc5xR5huvrsSqZxhjBiWOLNBoVvHHN2OTUJEpLlIThoE+5XCLPDJ7v88NX3+W90+c5efgwQRDihQE5BUk2pFYqIR3XdohSorXEZJLNjW0++PASvW6f20vrnDh+COUoSqWIq9eu06hbs+n5uRmksNLUs7MTKNfWB/q+h6M1CIlQtgMeDQZcvnSdl156nkqtglC2k+xsddjc2KZRr9CcaOCFPu3NtmU7XAcA33O5cu0mMzPTeJ5Nn/R9lyAMyLIcPwhQWu+mGwNWrbEwJEli0yWLAt8P8F2HMAgolUuUyyVu3VoiKgUUBmq1Onmesd3eJiwF1gS8yMnznNNnLnD0yEGyPGdqssXa6jqXLt+k1+syOVUjywpef+MDDhyYZXNtk3KlTJqmRKWQUT9GOYZqtU6tWiVLMrIiJQpDRqMR167dptftMxyOaDaaSAlpmuMoyZXLN5gdg9GLF69x/Pghej0LCvM84/0zF/naL/z02H6ghes5uFoRp6kdeBlby4jyMKZACFuflCY5M7OT3FlZ48a1ZZua6kvKldLYUH6IMVhhIZPjugohNIEf0e22yY2xKrcFICRpMkBKl9/59mtM1Mtsbvd49Y3TnDy6yNbWJmEUsL3VwXHUWOTH2pk42gVhGA4HOK5LqRQxGo7wPMvQK60Q5CjlMD01gZSabndAe3vbiug4miCy5uMH5meBAkfbNF2MYDiM8VzNYNjnG996na9/7edJ4wGLC9O4rsNgOAIKtOvQHySsr7UplyNak3WiUjhWsxW89daH+IFDuVrC9zzKYYAfehakSUFhDDdu3qbRaOB5HpcuX8X3AlqtprX8KDLanf7Y21Px9rtnWFyctfdIQK/boVZt0Gg2MOQIAWEUkBU5nufTalSswm1h76HWDlmSjsVbChAwGo0YxUO+/d23kcpaTbiew2g4JI1j0jzD8RwKUyAVxP2cL3/9P+Lg0QUyqVGPIcs+y/gc3D39eKrgrrBiO1JK208/BNzleUGW5Qx6fYIgtLYhT6nURYwtk3ZKG+yyRzNvd7f9ZOBOje1tnnS73fq/MWOnpLqfscJazxQ8nh37HNyNv0N8YkEV8bTFND6P/UeaJJ/5xd8VFdkHANvvs/EwFm0/bdnvfvZS+9w5jyc9/qPW3uuV/KRnl8Zghh1+71v/H4cOHmZhcJrCWHYuTmKkEmNlOU2WFXzz2z/i61/7KXzfSogLAUWeIyV02l3CUgTG+l65joPJE0ajjDwvcD3FYNCnXKnghhUEBdmwh1F24CiVtSPI0mws/25QwnZWWZaTpCmeW+LUu6d54YVjBL4d4JoCbt1aIstSlNa8eeo8v/LLf2ycm56N63Tg4sWrzM3N4DhynIqZYAoIo5DNtW2+8/03+ZmffJb5xXnyzCDHDF+aJKyvbzK3MG2NjLs9yuWIPM8Am9ahtTPOP5Fg8t25PmPsjFYxrjmcn5vHcSSOK0izFCkVcRxbT78MwPrmJWmKUi5KC4RRbKzbdC4/8EFkjIYJV67c5OSJoyBz4tjaR5w9e4lWs8rU9BRFnoApcD2POM3YXmtTbVTxQ5+1lXVGgxELh2cRSlBkGSK3z+gPX32XcrnE88+fQChr9h6PRpYRzTLKlTLD3oDV1XVaEw3CKGSr3aZWr8E9dRna0eRxyvraxm4apnQsK5vl1pDeWmu4mMLWUmWJTcsdDmNWVzaZnpxgdXWVxSOLbG+1qTesgXSapiRxjO/73FneoF6ro5XGiILtrW2q9SqmMPi+T5LGaNem9SIsOGlv99DSsphRyUcYiZEFWxs9piYm6Ha3CYMAqRTnL1zhmWePc/3qbeYWJnEUnHr3DMeOHATp0u/3aTYr7PR4WS7YXNtgaqpFkmdoR+36+jmuJh4NLChG0O8NkEJy7sJVXvri89xZWUUgqNVLjJIRruMS+AEXLlzlyNEDOBoyocnTlNdffZ2f/bmftdYfgUeep+RZSpbmKMfBlT79/oCwElJkAoQBMoaDAZ4fkKU5rqtZWrqD73s0mw2QZvyuKigKg5KSK5eXCH1FqVIiKkUgBO12h1qtSpYW3Ly+Qq/T4cSzRzDC1kkWWY7juRRpgnZc0hy+/713+MpXvkAUeTiOw2gUW4CrNQYLfEeD3thIPiRNFKvLq9Qb1n8vLPnjgb7CpIok6xGEClEE3LmzyuZ2nxMnDyJEgcnt723hwAEMMa7jjutUCigUSZLTHwyIQh8pXdbXN3BdzY2by7z00rOM4g6Dfky3O6LRrOF5Ln7gEw8GKK0RUpMlA5I4xXED8jwnjAKkFMSjhCTObDpyrQ5CoLTEcSRpPn4vKm3T8YUkzzK0MPzxv/lPeOMH3yEzUAjBTkZmUezUJn28L8z3GvDuNah/ir33Thqf2Qt1PaINTyOK8THNPvr9T9o/ij3q8D/ZqOEhA/9Pq8rNo897P/u1wkT372M/9+xJn6O9Uj4f9dw8bB/3bvO4fT4qzXSnz3nc9w8qjpri7t8Fez9bqHvXv/+JedJz3m/sd9wrpGVUd//exzOy1753Fok9VTPB///Ze7MYO7I8ve93ltjvfvPmvpBJFtlV1dOLemakmZFGggE92AI8siB4JFhjy34z7BfZMOxH+cGSBct6EPxsA8bYBiSNRjPT49l7766tayOryOKaycxkMvftrrEeP5x7k0kySSbZ1V1dcP0LgUreG8uJuCciznf+3//7fP+lOvUXmbvPMH7WmTs4G8/7hR+QLzlB8MRxXvDh+rICKc+kA7zg+qdFMaxf87Sk3+/wX//P/yd/99cuHbdTSwVCYgoL8BbPz9hZ+CFJXEpxnMEMIo9+r4vWtuYljgdIrXB9F6klUgtEIRkMUhztQFHQ7/Xp9noEgU+e5Qx6A1sHIxS9Tg/X9cmxDxPH1XTbHebmWriOYJDGSK2QWuGHHmOtBlAwOV4nzw1+EFpbBwW93oDJqXGuXbM1To6rCSOfXq9v/dwKwcR4hXIpJI0T/uAPf8DE5FDm3VHUajXiOMHRDq5rMxFSatI4xhlmyCywsb+CGPLhbY1ggdKCMAxQWoEoEEKRxBmmMMRxguv4KMdFCEvdFKZACUOa2zoq33dxXEtDM7mtAatUIsDQOYoxRvDDH73P3HSLg6M2E5MVBt0Mk2m069n6yEoJx3EQEqJyRLlaotvpDu0XBqytbrBy7z5ffv0SzXqdK1dusL21gwS2tvdpNut8/PEtxsebZEXOxNQ4UknSIkeYgjRN0UPaZRIPyOKCtXvrGCMIoxAn8MEYe0zt0Ov08D2PQW+AVLY+1XEd2u0uUalEuVImywsmpidJ4pRKxWZg86JASsH66hbGWIGXe/dWabWqGAQff3Kb6akJhBB86ztvcGFxhjQd1ocVBXnSJ0tthjEIQ5Is58qH15maHicIAqRQLN9boVa3QjS7u4c4WluVRCkoCjg86DE1Nc3S0hITEy1cP6BAYYRVVo1KERsbW9TqVYwR3F/bpNvuIiVsb2+jtYerXYwRFnwPBhwedJiZmcH3rZBGEHjcvnOP6zfuMjnZoDU+xtFBmzgtkAJajTL+0F7A+rdZqmaSpsfCH7u7+5RKAVmW0Ot2QRiisIRAcvvOEqWSrdWbmBwfihmNqEiWRlUYqFQqFFlus5+JVa0NAg8wtNs9kkFCs1kjz3L+9b/7Nq9emsfzbGbSUKAdm4k+OmzzzvufEAaKosgpl0tsPFinVq9hDBSp4cb1JaZnxmwGDU0UebQ7h5QqEUUB/V7PesQ5DgXp0NTbISp5jI3V7b1Fwe7eLq2xJtIVSGVQ0qMwgjiOSZIMz/PxfG9oASEIQqvs++DBDhMT42AEUVimUqkgpMEPPIrMDmjyNAMh8RyHOE7odgcopWwN86BPu90hikpUKmWyLMXx7DNIKvtM7HZ7+IFva33yHM9xydKU3317mf/0H/w9cmHBizzxyhCI0we1pzzTz2pD8PJxXG301DXOUMb1ckc+pq+cAcCctv0ZjqGlRD5Wy/Wy1+95dfs/jTjTwL14knF0lt/sRa/Dc2s1zxRmaAl1tn0+75o/j2JpTtlHYcRxj39azzc8ZHM9q32fRYwSbg///XJ9Typ9bM91Wmj9hVrm5y5+1uCuYDiD9hgX+vFOeWbVosKaLOdDRcUXjtFAfUTHPCUe4ZfzKHUTYSW8z+pX97SspRUPHjbplOW0GKkMn/a9qx1c12Hp7i3W7i3x3pVr/Ee/epE0y9BK0ev1cF1Ld4oHCQgL8oSw1z7LUvsSHE4LSSnodLrWz6sUIRDkRUZRZCgl6fcSKpUySWLFIBytUI5CKYUtFJYMBgnCwI/f+5iFhRlboG0MBoPruaRJgpSgPRchFHlmaSgFBf5Qyr5Urgx5/oa8yHFcB1MY6vUqY2MNhBRoR9PvDcizguU7q0xNt0jShFK5RLNWptYo4ziaosgwheDDD2/QGqvbmplhjYMpbBG5FYdJSNKEorD0NbAqY0pp4thmYTY3tqhVKxQFfPu7b3N01GZqagLP98iLDIntY0oKmy3zPYyxNUMGQ5IM7EC4sIPsIs9ZW92kyHMuvbKA6znMzU6ByFi6vc7Gg12UgDv3lhkfbx3LT2Ngb2+PchAhlK11NAWMNWsUueEvvvNjvvoLl3Bdh/2DIybGG0gpKUUBf/rnb7K4MMXB4SH9wQBH23pJz/NQSrG+tkFUKuEoh1IU8ODBNhvb27QmxhBDP628KHC0IklSrn18i7FmHe0MaZ++R5FbKpyUCqU0SkvSLLP9zNhsca3WsHS5MMDREsdVgGBmepI33nqfeq3C+XMzGDO897OM+/c3ydKEZrNBnltxIMfVdI96NJoVlHS48sE1Xn39FdI0w3UcJibG6fesXcP99Q3yvMD3ffb321SrIXGSkBfGqrY6Dsu373H/wRblcki/N0ApwfXrS5xbmCEMA9I0JU1ykiSz2WopcT2XJM64cXOJqelxVlbWmBhvUq2W8TzNxHjL+h0aw8raJru7e5ybnyJDQmFwHRcpBXmeEwQBeZaSF4aoFCKEoNPuUq1VLA1RqmFdmqBUCvE8j/trD6jXq6R5ZvuasUbzWmmkVPi+w9LSGisrD2iOVVFKIBB4rsuf/Pk7TE00WFq+j5KSiVaDt358lc3NbebmJ5FSMugNGG+NcfnSPOWSFXAZ9AcoaXA9HwNkSY5EUKlFdDpdpNQcHuwTBA6u76PUkDZaQJrZrKOV3/aAnH63j+sq0jSxmWKtMcIMKcEjERYX13HIspwPr1zH9+11c12Xrc1tGo065bJVot3fO8APgiFtUrK3c8jqyn2MMdQbNbrtHkmccXfpPlorSuXI9kNta5W73R5BEIKALE2P+3epVEIqTZHnuI5LUeRsbm7yX/7j/wXX88gKYzN3o7ol8STdsSisqMEj1PzhSqcN0p+VrXgW++XU757xshkpKr4ouBudz6niFKNzfawJzwvxyN/iEbrg8+KJUxQCg61le5F4luDac7d9hkz9s/Zxpn2fss6LgrtR+55ZU3fKIOV58vuntPa5wORkO0ZCJSepl2eYj3jk/B4HeMJYo4lR8uvkbkYidtYt6lFbhSd2/CnHWfvS047/4skRwJjjd6op8kf28QW4+xzGzxrcje7DUwtdT8TZZqmGHfExu4EXjZFa5FO/f5xn/ji9Y6igdJbjn6xXGoWS8piu+ELtHv7/tK0EhswY5menSAdtvnFxnH/0v/0hv/nrlzG5QSIRUvEX33qTxcU5HFfZ7JKwynCOoxFC0Ot28TwfY8SQDhdQFJD0Y5SytWdHh238wEcNa48Ggz5CCFzPodftA7amqVmrk+UJ587NoLQkJ0cogSsV29s7VGs1lLbCFiYXFDnc+GSJZqOOYOhR52qUFmRFCoXB0ZqiKPD9EBD0+z0MuVUn1A6T0+PcvrNEkiY0xhp4gY/jSKQs6PV6eH6JerVKp9PDcUe/s+YH33+fJE4pl8sctTvWxF1K1tc28H2Pg/0DfM/DcV0EEt+zSnxSSsZbNS4sLjAYDDBFTpb0cVwXKSRpliMdiRAOUloFxDiOybKM0A8o8gwlJdqR+IGLH1gpd891uLeyhikk9VrExGSFzZ0tZmem0EqTxQl5nOL5nmUpGsHB0SFeEBBFEUhLMZ2dm+CP/+xtvvoLF9jZ2WdyssX6/U2ajRp5ljE91WJleZ0Li+d4480PmJmc5OqVm9y794AoDBlrNCiUAWFoNqpUKxH9Xg9TCHzfZ293j353QLVaZWK6hRj270G3j6tgd2eHMPQ4PGxjcnvuo9oQC1Ds/aSU5Oatu8xMTZFnOXt7h3Q6HV577RU2NragEPiBx927q0xOTFKr1fADHyE1B3sHVCpWcfXd925y6fI8hwdt5uamiNMUrTW3bt1jdmb6WPK+XIkwFLx39QavvXYBpaBWrfCjN96n7DuUgoCD/Tavfvkyrudx984KY2MlPNehUqmAkdy8scLE5AT31zaYmGhx5/Yyk1PjSAn1esVajDQrmMKgtKJaLVuLA0cS97tMzkxTq1fY29kjqjQ43N8ny7KhkuRwEoYcL7Cm7IcHB2jlkmcZ7c4R2rEUP8+1ta4IuHL1JmNjNXw/oN8f4Hk+enjPCGnodTuUKyXmF2YY9PsICtrttv0td/Z558O7fO3Li3zly5fxPY/ZuUl2t46YPz8zzFDZ2k9vmOWO4+T3ABsAACAASURBVAFhFKKlZGVlgzzN+Ivv/pjp8Tq3766xMD+LEA7lkgVMSMXu9hG72wcsL9/HcRyyIsd1PP71v/kOr79+jqO9I3zfs2q+UrGxvkOlFJGnOd//7nvMz47TPjoAJK7nMdaskee5rd3VGs/38DyHNEvQ2uAHVtnTCs8IsnTA5GQDKeDoqEM5qvDu+9eJgojJyTEMhiyLbb1pYcizgl63RxCG5MNnqeN4tjZJMhwc2Rql/+Sff5N/+A//AWmeg1QYKU+yvJ6I0Svg7ODuGe+HTzm79DLg7iHd6zQa4ynrn6Udj+zDKiW/6HYPPxS8iBXAw81ePjv3cBzxktu9YLwwuHuCzXTWI50RaT0lTgemJ8Dd47TXl8xYncSkIw/B48TxyWMPM70nD/SzAnc/abx4X3k4mhRDVtIX4O5zHj9zQZXRH8OM2cmbdlQ8/Lx6vON9neh8o4fAi9IjxTEd7GF2brQcG1sOpxfNKan508Dds8xSTwtjzCPAbpSRO7mcDuCG25/2XWFAGQaDFCkDjnZTxlohr7U0+4c9fN8nzzO0EpQiK7KS51YWWDsOQkriOMEPQ5QQtNsdwsin3+9b6laeIdHEg4xGvUJhwHVd4iTFcT380NY1KeXgaI96o2r91GRus4TKmkYLY60NlFJIKSxQkAXJoI9WcP3mHSrVgLU7D2hNNJHOUL7fUWip6HU7KCkweYzUmsEgxnMimw1wJFneo96sUKvWAIHruAz6HVzPQ0vN8vIKfuBw48YyCwvTQ+qopFIpI4RV9qxWKuRZQZoZ/uCP3qBW8pidmSJPM7rdHrtbe1TKJaQDhZK4vmtNorWgyHOisEKhJIUwKKnRwoMiIcsGSAWbD/a4enWJibEqXhQySGKydIDvSPIsxtOwtbvH1MykrY1CkuYF4xMtsizDDwJ7TR1NlhjypGD/8JAsMWw92KVer9A96rJxf5M8SfjlX3yNzQdb7O0fUmlUKNXKVt2y1WL1/hbzCzPkWc705Dhh5FMqBTzY2KZSCknTjP6gT9xPCAJLgesnCaUootftUq/VCUJ/CPgyPN9nc2OLNMmRroPreZDGHBx0kDogHVJ5pZT86Z+9wcxUC+24aMflBz+8wuVL59Cuw8b9HTzfo1arUilHuK7HjRtLLJ6fx/cc+v0uqytb1EpltJQWMJuccuTSOerTarXY2d3laL9DFIaUogjPtyDND12yLKdUilg8P8vK6hqt8Wl2tg5oNgOWVraZnJrh2rWbTI6X0Aq+/8OPee3LF7h+7S6bm9vkWcr0/CQffnid11+/QLvdGVKSU9qHHYLQQ3uKLMmQUrC3t4vB0gCl0BSysJTEHN5462NazRIff3yTuYUppJakg5TQ9ymMosgLHKWt/UfgobXC8wML9HJBnhyhXI+ikExPjaOUQAmJ5zr0B30LoKVgd3tr6IFn61SlkpZO6lrho4uvzPP6axdYX9tBK02320OSs7q+wvz8DFJKjvYOcXxDYXIc7XN02LUWGEYwMdECCRfPTxOUAqanp/jzb73Fteu3uHRhjqIQDPoxYRTh+y6NsYBqY4wg8EmTPhcWp0kzwebmtr33lSTPDW++dY2ZqQZvv/0Rr752Hi8I8IIQYwp2tnbwPZ9SWCZJYysy0RtQKpcBwYfv36JRr5KlMZgMk2eEUUReWFpurVpjMOhTr0fMn2/R6bbp9rrUquN0uztobX0C/VJohQaGNFmpFALIU4PjORgMe1vbfPPDTf7+3/9NpNTWVsE8zFadfH+NslijGJlMyyGgkoJTTb/1cD3Mk++MZ707XjRGg+DHa5aeu91zMlEP3/ej4zCcEHp4/o8DWPHYPk5u96zltDg5wH/8/f+s5cznLwVqqFz5xLbPAebPO+bJDNuz9vW0schTxyWjTNwLg9BnXekzbH3KeG40BjMn23FKox/P5p3c12mfPdzQTlSK4cKJxVAMF47bAjwCfEa/rXpOguCziudlQ098+nB987A+WyoFxnwB7j6P8VnU3B3HEzNE5oUfnk/Ei95gw4zfqTfBGbKBp4G7n/QWP+2YLwzuBBgErtZEYUA8iGkfbvMv/tUP+Vt/aYE8NxR5xp2lVaZnJiiKHN+3AihmmKJXWpNlmX3Zam3FBcKANEmI4x6O41jhAc+z9ETPOabxtdsd8ixDKcdSOPMcx9HDB631ocpzW6OGGRqeIvD9ACU98qQgSwyL58+RJAWtiTpKKyv3nKSIvKBAIpVGDkVhtNZoxx3SGwv29/ZxPaueGUUhhYH7q+to6RLHGUUmuHtnnempSebmppESDg8PcVwX39NUKhGu52KksaOrQrK7u8fSyhaNagmwFNC93SOiKLL0HqUQRgylqRWOowGJ0jariTHcvbNMp5NQqdQR0iEIS5w7Pw9YemyaJriuJE2y40GBH4YM4uQ4Wx1GAUrZ7EOa5jbjkedQwO3b93jr/U+4tDjH3NwMRZERhSHVapntnX0+ubnEtRsrXLo4y9TMJJVKhUatyq0bS0xNjVHkBRsbW0RRxO3bS1byvV6lWi3bLG0YUCmXuXVzmbtL9zl3fo633rhCkRVcu36X2dkpawsh4OigTalkffqUo3EdxcbGFgsLC/T6CfdXH+A4mjRNaTWrOI7D/t4+7XaXNEmZmRmn3emglODg4JDWeJ00s4bqStl+2u/H7O8foZTmzp17GGOIIpvJ3dnZx3EctFZEJWsIr7XmwcY2d++ssnhxHkcrypUyQpihp5wkS1IajRpR6KCl5Ac/+JC/+Td/jV6/S5wmvP7qIo5U3L69yi9+/XUc7fDBlU+sYqMxTE3ZOr/3PrzOa6++Ql7kZHnBnTvLtJpNlLK1nWEQ0Wl3rXBKZjg66vDq5UUcx2F+KPQjpcJxHEul9h3SLOXb332bC+fnyXPb3m7XGsQrqTg83D3OJLmetuqsecHhURvf89COVaMNvQilLDjJshTPc1heXqXRqFvl2zRjMOgwNdPiW99/k/m5Mar1EpVymc3tXULf0nWDsMTRYY/2UZc4iRkbb6K1xmCIwpBe39beHh4dcfnSApcuzoKw9bFCQr8XWyuDUoDjesPXQkGeFTiuTxi4ONoyCQ72D4kin3q9yuTkGEHo4wceg0Efz/MJQ5+lpVUEcHvpHkHgEUYBruOQJDGmMNxdXmVyYsxSuo0hjlPry+d5FIXhj/7sHS5dukCa5JALstggtc3YubqC6wTkpk9RCARmaJPSpdfvc/fuCpVqCYzhj773Lv/8//i/kVKSpk+qFz4yAH3KYPV574CT9XtPi09zyPmi4O6s8azzfxa4+4mP+5RjflrxVDrf4wd/yX1/Wvt65v5/RpjlkfthtJykXp5l29Myxc/IHr9I28yJvx///KwJiZ91nP2cT8maKmUFZoRAK/VS4O7T0Wv9Ij53YYripVUuP62wCuOnd8GRdP3nMUYViKYwaNfFr5SYmJzlH/8P/4g4SwmjkDCK+Mt/+au4jkYpq+42ej6p4WDKSqXbffmeR14Ux3L4h0dt3rv6CQf7bTrtLp12FwH0+33rT6cVnU6Hf/v732JleQ0AIZQd6GuN47gs313l+ie3AUG327OG5aJAO4pur8v//tt/iOe7KFfjeA7Xrt3kW99+CyUVaugTlucGx/UYDAZIBNev3eFHP3qfJEkpCvA9nyTNMMYwOTWO62mqlRJKC37pl78MAjIraWnrZoQkTxPSNLXXBGBYy/fXfu0b/O3/8G9Qrln/tKKA9z+6y4dXbpCkKcJgTaCFGArUCKAgTWIwkBc5587PMzc/aw2fjfU36w86+L5HlqVEUUCe5UP6nCHNCjzPQw9ruOI4ZtCLh5YTGVo5FHnBrZtLCOC1114hDFzeee+apYYaQ5Jl9Pp9xieaXFycY2qqwY3bq5iiIB4MuHnzLoftLlev3WZ55T6e6+J6dvBLAVEQoJWmVCpRikoc7B1RLpVYPDfLteu32dw+REjJuflpvvn/fh85FM85anfZ3t5FCCtLnaU5Y2NN8jzn7tIKu3uHLN+7T1SK8DyHSqXMvdUNkjhldrrFzs4upVJkAWBmB+GmKHj/g4/56NodGs0GDx5s8dH1O7x/5QZf/dqrrD7YJIwiPNdlcXGB6ekpXNdDCkEYhhRFjhCGCxfn8FyXnZ19ijznBz98FwHUq1UqlRJvvfU+8SDm+o27/NVf+QoIg+O4hGFIu9vmk+t3SOKUD658guNo/tqvfoPWWJ2pqXHiOAbgr/zSV8mLjDSzXouXL13kT//8TZR0+N4P36fIjRV7QaG1Zmyswfd/9C5FnmMEJGlKp92xmWBH0+t10Erx63/1FwGJ69oar36vP1RuMzTrTbRSKMUxsFt/sMEP3vrgWLxjMIjZ2z0kSRKEhLzIiAcxR+0OStnC+jtLK5RKZZJBzNxUi3q9gTESkDSHYinacbm3tE77qMfVa3colyMwBWmakGcZ3U6HMAxsLWW9jNYK7WqSNGZraxvA+jk2LXXUprQMrqNxHM2tW3dRSnHn7gobD7ZoNOpMz7TQWhOGgZ18MTmuY21M8jxnZmaCWqPK17/2GkHg4bouu/v7SKm4cHGB8+dm8AIfY0Apjee5DAYx7U6XdrvNr//613A8heMqkmTA1uYOpVJIuVQlSyGOM/LCKgk7ribLUvzAo96s8dqXLxF4HsIYfv96GyEEaZodW058EV/EF/H8MIWxi3m4/DzE53U8+DIhsef7k5zxF5m7zzA+y8zdSFxkFPKxf79UvEzd2ogn87TllDimXpqHRpiPZ9JO0itfpFXPo02M9nty/ce/KzCo4RdGCnQ5YGPpHrsP7vC//l9/wr//S68w6Pes4AkGx9X0er0hRc5+NlJPyrLMqhEOxT5sNs/gOJqJCes3tb29Q6VsTa0rlRL9vq2781yP2akWjWbNUjqjkLzIEMLOhN+/v8XERBOtHYIgwOQFmRkQxwMcR3J+YYxGs4JUFmi0GnVmplpgBMkg5lvfexdMQXOsgeu4YGB7+4C3P7jD/sEh5+Ynh4INDgJYW13H9TTG5AwGMbfvLFOKfLSS6KEAjECzu31At9ujWqsOhRcEeZoitRVpUEpRG6tjTMH4WJWFhRmiSkge58S92KoKIiwYoaDb7mLyHEd7bG7uUa5Y03ST5xQmwfc1ncMupXKZQRyTJQlZVhBGJYyQFHlBf9BHIHA9HykUDx5s89HHd6jXa4RBgDsUMtnc2OYbX3+V2elxdnZ2CUMPx3XwPI/V1XU63T7n5qYIfBeTF6zcW0dLyaVL57i3+oBXL59nfGIMz3PxXJdOu8Pq2ibtoy6lUkRUiSiXIq5+fItLl89Tq1VYf7BF4LmcvzCP50iC0Gdne492p8vq/U2kKAijkJWV+zTGGuSFwXcdqqUSk5PWKHxzcwcp4OIr5wiDgLX1TeIkphwFCCGZnBxHa83BwSGL5+cIXI0feHieS8kPePXV8/iBz/nFeQ7bbbKkoNcbkCYZt+/co1YJ0a7m5s0lLpyft8IavkelXOKDD68hpWBmahLtKHZ2DmjUG3iBZnFhFsdx2N3boVatcO/efZRQVMtlkizhq1/5Eh9fv82Nm8v8wlcus7S8RrlsveGklPR7XUuDLgqkUNxbWWdhfppLF88jhvSfLAOtFcZkeEOLBS/0UVLZ+q4oRGpNmsQopQEL3JaXV/A9ew7acWytbZpZ6wIKOp02WZYx1mrhe5pyuQzDgZMQBY7nDL0XNY7r0mzUjh9509OTtPcH5LlBK43vR1z98A5H7Q6f3Fhh8fwcnu9TLkc4ruLC4jRB6IMB7Wr00ALFtlUNzdhtH/UD3yp6psOMvrHZZ6UUB3v7eK4iSzPGJ8YxRcHS3ft0en3C0CcIHLJcHHvQxYPYCsQohdYSf+i3qB2N6zpsbGwiBERRQJrlRKUArRS7ewcEQcC7731Ep9vn0qUL5EVBXiQcHR3gOII0jTl3bhojNN3OEQd7bZpjdbQj6PcTlNIc7B8ihMBxHdI0gcLW5HkL3+D1X3h9qKxra/CUlA+FJ04+w5/ITgmbieeEkNcj69t/jTJpP+3M3UhETP2UBrej9stTrs0oc3dMJzvx3Wj9lx37n856efoY5EXtDp6atXvawV8knsqrPHsI+QxK50+47xdpw0nBFMwJyql8uBxn4E4Tbnm8rSeuzeP7VydKcM56eqN1JY/+pif/fxaK7MMdPqoU+qzjPr6MRpziBXPYp1N7LctLCKsKrMRDOrQ9MXss9ZKZuy/A3WcYnym4e6yzfSq0iJ/RDM9ZaJJPA2A/aTx+lcwp3+UCVGFffgZDIRUXZ6f5/l/8Hn/7P/hl/qt/8U1+89e/RJam1nzaFBboCWUfPMP5GoMtWNeORmvr6QW2LifNBpRKIb1+n+mpFvEgplQqWcPiIcU2jhMEgjRJreCKMBhyzFCpcnpmkjRJ+Z3f/z5ffvU821s7uG6Ali6hH+H7EVkusAw8a0nguA6DZEDo+bx6+RyNWpWiKPjhD98jHsQsnp9nb2eXsUaZixcWcIbm6kmS0On1WL69Q56CqwPu3Nqg2RgjLDloR1uTaddnEBurAikkWRqTxQOcoZpmbjKUtoIVxuREpRDP1Rgykn7O7s4+9UbtuL1SKgbdPkdHXUShaHcHLN9d4vaNdcZqY0jp8uO3rrMwP0WcZEihiMIAIWwdnRjWVwmTo12PIi/4vT/8Huvru/x7f+NXWLq7iu+7hKGPQOB51qPNdT1u3F5marLJytoGSknGx8eYHB8jK3KUEHbgX6/juA5B4DM302J9fYter8/e3j69jm33+FiDcqXEjRvLzC1MkmcZRZaCKEDC5VfOUSqHfPOPv8fXvnKJvd09pqbHqVRCXrk4j+tZY+56owbDl7Xne5RLFa5fv83s3BRSSTY3d2g0rPVBEseMjzdwHBfP9Tk6avPhlU/40uVXSJIBruuiHQdHu9y+u8qFi3P04gFZnrN8d43J8RZ7+wfs7B5Sr5W4v26VIxt124ble2uMt5q88/YVjo66/Nqvfh2tFf1ej/39Dpvb+0zNTUBhX35hIPn46i1mp6a4t7yB6yqq9TLleplWq4HCUKvXWL63hhSCeqNGmmUcHh7Q7fWp1Wskg4RLl+ZtRidJUY4gywf0+zlgyLKEZrOO63r0B3087VBkmRVREYARVlRISeK4RxgEhGEw7GuCw4NDS0HMEoSwkzae6yGkplIuAcaq4gLSyUmSBMd1MYXNOLueixhmnbudLoNBl3LVZ5D0SPOEH394i9W1fX7tl17jW999l0tfWkCQkSQ9tIO1Vhlaf+RZTn8wQCtFmqY4XjA8TkqR5YBEKY/79+9TrZVJs/jYM7DIEsKoxHvvXmNmepypqXGmJsfxfZdvff8HeKpEqVxGKUWRZcfGxEoJ+r0u3V6PLMsRQK1WxXNtdm5peY1ms4Z2NEEQkmY5szMTjLea7O/tUyqX+OiDJRzlUKvVCMIS2vHJUpA6IYw8pFYYNCa3Kr+u61llUCPwAocizfitf/qv+Cf/7J/CCTA0slA5bUx2Gi2xeKxM4XRa5s8G3B0P8n7K4O60MUDx2Hen1dz9rMDdi6zz3PV+DpJRZwYjP+02wCPtOPW6Pd5HztjuJ9YXL45bR4DuTNudCdy9/LV/2dKl08GdPGbVyGGJ0WnxBbj7HMZnCe5OM5V82TBDURRGL8VnHZeHN2lRFI+0YWRp8CzPD0brcDqwellwd5qQymnL09oyaneWpeSJrYXLjcEgUFiJc6MN0lX8xXc/5Dd+8bylDypFlhUIpZHSZlCLPANhrNGusGbEo1q8NEmH9V3C1vYASZ5RqdUwCLRr5c2VVGS54e13ruFoh8ZYHc/1wEi0dugPeri+xglDzs03CQOHtbU1OoddarUKu7t7VBolChLyuIsBlHZASpTjIKQhSRMcT5NmMefPzeEHHtrRVEo+587Ng0gQUnB02CYIAjCCsbEm/bjPxFSd1mSJickqgyTGGPCGlgxv/egK9WqZf/f732dufpyoEtFuxyijeOetq8xMTw656KPCYytF73gelVpEf9ChyAtc7bK+ukmeGybGW3Q6bYLIpd/Pub26wVe/fpF254DFV2Y46rTRQnCwd0AQlvE8Ra9rqa6OcnAcnzjukmUpE+N1Xnt1ESQEvgZj+OjqLfIsY+3+FrOzc+RFxvz8NEK6NBsNOkcdC+SFVZp8//1PWFiY5a13P2JmymbFao0aR0e27VopjnpdvvKVV8lyw7Ubd5idaVEpVzFAkqQIJGurW2w82GNyapxbt1dYWBinNd4gN7bPLN1dg0LQ6/UIw5CDvUPCICIeJAShR6tVJ05i9ncPLHjOY0qhz9bWDq7W7O8e4HoeN28tMz01zvbOLmNjTZSjaHfaKO2yubHP2voaKlfcvrHKwsI0US0gTXK6vS6Li3OMtRpWat+3XmST42OkacIgjrl4YZZSOQRhbHbW0Xx8/RbTE022t3eIygFZWjA+2UIqQbVeQoiCJE7JkxzPCzGFIqppbl5fp1rxKZVdgpLH3k6XsfEWypFkSd9OlyLwPQeKnDhOyPKUUim0IF7AoNcl9GtW8n+o4pqlGb1uB60dO+mQG/ygTJ4XOK5DlmeEpRKZyYfG9Dm+55ObAiGsQJLretZaochR2rOAw0iKHLrdHjfvrNBsjVk6jjC4ocuNa+sIBK2xGosLk8xOlnB8jRRq6EEnCMOIuD8ArK9hmuU8WDlg6c4DJibrSO1AkZGlKUWekxcFWZYSJ4lV8fQ9XMfjzo371CpVCqGQQtJqVsmNpWk7QUGWx8xOXiAoeShl/eT+8I/fHM5iZwijQAikhKOjNs3WGMYIsgSyBKrlGkt379HrH5HnAzxXgrHZ+Dwv+OCD6/zCVy/i+g6FyXAcwWH7gCKL8VwPqTXacZDKwXGGs91aobWdFDN5QZGn/Pb3b/Nf/Of/2VCOYficHg4Qc2MBy8nlcaZGYTewf5unq2IaxBPbmqKwNhEj5sYZ3j3PjWPRMzNke7xYnCYGc1LFcTRgzQrzxLV5oimPLPb81SkZvGcJmx23gYfvzpGIy7Ou17MG1o9bCDxvAP5MwZYX/NEs3dpw+gjhybD9wxybcP806g3PHKcgpmeBu2chrNOuw/GkwOi6PmtB8cSIyxSMLJLOtBwfeJidO/V3efgbK8GxaNJoeVHgebxIPRQmfHI0KYbexlJYzQMh5HBUOAR1zxjvfgHuPofxWYI7+4D/dB4qI+oLDDM8zznuKJQQQ7rUw9lRwehB8Pxb7NMEd5/GlRDDlLo7rI87GUmeMjd3kZU76/yVb1zmv/mXv8d//NdfByEREqSQJKn1qTPYdP1gEFvJcFMw6PdxHAepFP1+nzAKSZKEPM/wXQ8pFd1OhzQZkOcJYeizubHN/uER1WpIVPLxHGuSnBc5rufQbnfod/pW+c/1GRtrUR+roZSm1+vj6JGPlc/RUY/VlS2q1bIVpBCSwSDGcT2kUDZzJW22sl6vEQ/6hKWQPCuIosAafQvIsoyrH98mjgdMTrQwCPLM+rpoJdnb3ePylxbxAo+vff0Va52gBJ7rH1NRhbSUszgZ2FkvZamTWZZjrLoUV658wtTUBFK6vPHmFba2dzh/YRbXlUxMTLKzecD01AS3b60yPTNDuWwzG5VqBakVQg4HK0JaoRiB9QWTNhvjOg7OUGAmKtmsTK1eY2Zmknv3VpmcbB5Tafv9Pn7g0e8Phj6FhsCzSouXLy0ChmqtyurKGqYo+PjGMl/58iWSJKFSrbC/f8S5+Sn80OOTm3ep1ypsbe1ijGFufoqp6Ql2tnfY3t3jy69fQmlFkRvWVtcxwOzsFJ7nkuU5Ulka4M72LlJI1tc3+NZ33+NX/vJXaI012d3bI80zHmzucn5xgVIp4vatFRzXGo7PzExxcNDGdR0whp3tfS6+cp719U0i36Pd7THWqtMb9PG9gLm5qeN+GoYhQkq+94MfMzszyZWrN3n11QsWOA0GaKlwXZduZ8Drr77CnbsrXLq0aOvH2gMr/BGV2N7a5c7yOq9cPM/Vj25x7tw0d5aWKUcR5+Yn0Tql3T7CcyrUGjWklGSpte+QUuFoBRQIAWEUIYQ4/q3spEiO0pKCjKIoSJOUIAiRUqJdBymsmM7Vq9dpNqvs7e1SikoIIY9pR7ZmM6fIC6TUNuM9iHnv/Y8YbzURyuC6Dt1Oj83NLbZ3dlk8P0sQ+GByTJHayZtCcnNpiZnpFmFYQjnQbI4xNtakyDMMBUWeD43gCztppyVJL2N8vEG54iOVixRYkSHXxfM8giAg8F2UFPR7fUol+4yISh5pnlLkBWEQ0mkf2Hu93+N7P3iXZrlFuRmSpin7u3t87cuX2NjYZm19m3IUWkqr5/Jn336X8bE6AtjZ3WUQDwgDHylhfn6W9fu7/Pl3PmDx3DSDQUy/F3PhwgKDOOXb33uPL11a5OioS6VShaF9hevbLKhAMLKOkQLyPKfX7aGUx2/8T7/LH//BvyYdsh4ej0+VxXHK+1MJW3v4rIzfC8eIjgjHVNsX2vyUz17U2uG0GJ3jacIyL/rO/Umv18O2nKTQvWS86IaGM9H8jlcf1rGtrq3SbDR+bmraRvFMcPfMMBbYPC0L+Lx9nOp3+JLXZpSdew7oPu0+eFFwd7yd4VjhEoY2WyOq5cja4SV+6y/A3ecwPlNaJjCi7/2kMaoJGIGb0zrwaCbv5JxGAY/w+I9bcsYbwDz292lg7/H1nrWvpz0GRpnE55qlD9udn9Z+rSkKRaU8wfrKR/zG3/k7bNz+kNBTuI5LnqbWIBh7PQ0MKZuGwhQobY3Fi7xgkMS4jsYPApI4GQ6O+kBB4LsURWZBX+CxeH6WVquOKVJrK4EVigjDyA5uhwqGxijaR92hkAdUq1Uw4DpWBTNOMm7eXOWTm0tcvrSAEArH8YYDKIlUDGu3trDPNyv+oqQ8HnQ6WuF6LgsLU0xOjrO9tct3vvc+r37pPL7nzSJrcwAAIABJREFUkuUZvufihT4AcZxYzyxtaQsFhjzPybIUrRSua1UB4zjBc12r+ikEGMmgP6DRqJMmOWPNCs2xKtVamf5gQBgFNJsRrieZnR/n8HAfYywoF1rQaXesmh9WyAUxMiy2PdfRGmEMmxtbFEbwxttXmBxvEoQBWZZRr1XY3d+jVC5zsHfIux9cZ35uijzPcF1Lw93dPaA1PkZRFNy+vUyapLTGxyiVSlxYnKPfj/EDjzhOmZicQCgYDPrMzU+T5wXNZp1qrUy7fYiSmlu3lvmVv/I1rl2/Ta1aRUpBpVLm8OiIRrPO/fubRFHA3TsrtMabQ0VRybVP7nJpcYY0Tdnd3Wd6bpog8GmNNUFI3nn3I+JByuL5WcrlMnu7e9y/v8P4sN4zGFp0vPnOdX7xL30JKW39U6VqPeW0ttfw2vVbtMaapEmG7zo0Gw0q5YjD/QOSOOXa9WVmpiYAyerqA2q1MoeHbWr1Kv3egDAMuX9/i7GxBm/9+Bpf+fKX2N7awfddmmM1oshDSRdBTqnscnDYpjU2iZE2C/rRR58wMz1JmqVAgesqjo46ZGmO544UMfsYBJ7vI2XO4WEb13FwXZfDw0MrzCHsZFaSpkyMNyiKHM/TNjvXj8kza6wtheDoqI3nORhhnx+O1pSiEM91wViT9CRNqTfrRL7D4WGXciWyM8gY8sJQKpU5f87WIoJLEHqkaYYWmqtXrzM2UUcpycryOo1mw0qFS0OlXOXHP/6Yej2i14sRQvJgw96bnutx1O4w6HUJggBhDEmaozV0u7ZGsd/r0+v0cRxoH/bJ0pRXL1+kFFVA2fqvKIo42N9ndmacPC8IPJ/mWB2lNK9cmKdcjrh75x71egU/cAmjiFI5ZGdnH9+PSPopk5NNXNej2+sN1VQdLr+yQJYVHB60+dGbH3Hu3DR6eN9YHzuG2U2Gz5YC13X5l//me2x1BX/vt37L+lk+JfP004zjyclP83ij98kIvA/pmeaM/uFnBXeGF89+ndzXo7VJz7dhUPLJ4/xEgGz4iH6YRX0y4zOaPD11FyPZ/lOygKdm+DCPahecBDXPMRUXQhxPuOlhHe/PTQyv1QsBM2B08Y0xx+/isypu2s1/AnAnHv4Wj2QJnzNt/yxwd1qN58nPbLb6YfvEcDJpVDv36E6fnZ17VnwB7j6H8ZlaIQzj0wB3T7wITunEz8qovWwLnknhOON6z9ru+LMhYD0r8WIEXh89rp3RCnwXioQP3voOg2iWpuoQuA79Xh/PdynyYkhtGlJl8tTW7g0pOUoqHM+1WQYlbXYtt7Uy5XKJQRwfzx5FkbUMMKYgjmPyvKDf61vQpRRFUZDnmfWj6vb4oz99g8Ggz8cf3+HooM3U9DhSSwzGiljUSizMTeD7LkIqDFaoQAgYWS4IQCqJ57koqZFSkY1AzfC/7e1doiji3/3+D1lcmGRmdhyDwXEURWGzS1ma87u/912Wl+9zbmEKOaSc5UVOGIUUWU6SpgC4rmNrqLQdZA/6Ce99+Alzs+M4nkulUrLb5JYyYURKGPmWIpfn5FlKnhm0qzFCEAbW6FvKkdBGQZZaMQ2JoN+P6XR7NBsNSpUyzUaVeqNOYQw/eutD2kc9Ll48xx/+0fdJk4xqNaJeq+D7AXme0+12abXGWF/fQDuaBxs7nF+c4969dTCGw8M2zUadtfsb5EWB7/s4rmJ/fx8/8JBS43nWDLrTOaLIDB9+dJuvffVVlpbWmJmeoNft4jgOY01Lu/Q9n42NLaSQHBwe0Wo1wRhmZybwAwum79xdoVwKGPRjfM9jZ3uXVy6cZ3JijO3tXcLIp93psrh4DiEgTVNMUVAqlbh0cZ7dnV0wBbv7h0zPTNFpt4cG2Ame51Aqla1ASRCwtvaAQa9PVI5IkpTQ9/j4+hLzs9Nsbu2yurbBxQsLrK6u4zoOYRCytb3Lyr37nJuf4I13rtEaqzCIE/YPDimVAqr1Cu3DLkWRMYgzKtWGtU+IYybHWwgl0VqR5xnxoI+QkjQtSOI+2rEKssrRIBTCGEsFlHrYT9KhxYSk0+la0Z48B1PgaIWSmh+++QGVsvXxK4r82H9JO1atUUp7X6+tPqBWLWMKQVEYm01zHaJSyQpbSUmWJiRJitYOhbHm77s7h0BuB6naodWqYbD1ulEQIof0RIBeO6Hd7jA7P4nWHteu3Wa8VScqh0hhByHaURS5BUpvvv0RWZriui5+GFHkBUHg0+11qdeaOK4EYcgyO9H05psfYPKCyekJXM+lXCpx89Y9arUIP3DpdDp4nofrWbGmkXrtzs4uzbEGCDGklVqVXAteLXApisLWIzoOl185j+M5uJ6ty80zew/nRXb8lJVKIwT8s3/7Hr/3+7+DUBKBOZ7MOhk/C3D3qR/vmOM5nEAd1d6ZTxvcvVg8Du7Ouq+X3e5F2jT6+3GAZevgnxLmyX08O8xTAdBZatMc1z0TiP6s4sXB3Ylt5fPP/5SNTvnwrODu5dp7lj54ar3cCbrpaJFCfioMsMfjC3D3OYwvwN2Tn71I/NyCu8cM4gF0BkIVaE/RaEzjHV1j0N7hf/ztN/hb31jA9dyhWXloB86ZzVgpLcjSzMqrC0mv20d72gKOPGcwGFigoi2nO88F2vHIk5iigDw3JEmKM/TcK4xVMcyLwoLNcmBpZ57DhYUJxupNfNfW6JWrJVJj1TkHgwFB4BKVAnq9Lkma4rqa/mCA62iKwtZcmuHsaBInSOmQ5zl37twjHgzwPE2/P6BWr+Iol9devcDERIvCFMMB9wCBIclBKZdXLszR7/ZZmJu2mUBHI4a1Geur67iuwxtvfcjs1DhpkuK4th5q0EtYW9vgwYMtpmfGUFpycHCIVg7/z7/6Ftu7O1w4d479/SM8J0BrH8ez9YSFySmynFIYoJXEFDl5HuN5DnEv5uiwTblSwfdDhHLIsgTft+DI83yu31gm0D5ZltJq1rl44TyNZoUg8C04zVO63R7lSoUfvvkBX7q8SKUS8bvf/B6lyGdmZpLA93jr7St89euvUa1WyPKcwmSEkc/G5gaVSpVBP8ZxNX6g8dyAy5fPIYRgfKxJnhesrN6n0bT1eUJJtjb3SOKUhXOz1GpVsjQbUiB7vPvBdeZmJ7l8aRFPO7z51hWmJ8b56OptLl8+x9FRh9Z4E8dxODg4pFKpEg/6lCsl2m07iG8fdpmcbFEqh8xMT5AV4Loa19HE8YBarQoodvf2CcOAKAwAQWvcKq2OtVo067bmcGKyyezsFIN+n34/pl6v0e202drepVy2qouL5yZxXMW5hVmEsJYb0i0ol2p8+MEdXrl8YVjj5/Dg/gZ5kpEVBUHo43kOuzvbjI010dpFkiOEspMiQlrLEeGQp4Z4kCBUgTE5GDnMRiuEkEhlyHNr4+E4HrMzU7iutn1xaHGitQYhbTZYO/R7A7I0pVFvAIo337pCs1lFIDFyJKpkgXMY+MPPC7Iso98rqEY+v/MH3+byK+dRrqV053nB+toW9XrVDqpEThhUqFXLfPNPvsvi+Xn6vZijTpty2cfRLkVhkFrjej5pZrhw4TzVUoVSqQJCsLuzS9wf0GiNobWL9qTNHsd9yCSVqExUqiAcQVpkKCEQFEQlS71UjiCOY+I44crVWywszJPnBfVGlXbnCCUFmzvbJHFmhX4waEdzeHSIoyVRKSIIAooiRw8VOAeDvr3PHM9m8LDP5CIv+O57N/lv//v/Dh2UkVKjEFiuxaPxBbiz8f8HcDeiaJ58D/88gTs7maF++p3yJeMLcDfc9bPA3Yksr5TqzCVFLxJfgLvPYfw8gDtO0DxeJI458sVDbsgxPfOR9Pgwjc2TL77TPjtLjCiez4qTbIxRjCihp77sntWWE+dwlrA1PI8OLIy0tBdTGFKTEwbzbO7GTDV9/slvf4e/+2uXcbRGCYkpDHma299FiiEtVICQOJ6LKWxdjXYcsjhFuwFKavIkJk1TlHbQjgNSUAwFEdI0odcfoIQkCnyMMHieZtDvAQo/iKwqoAONZpUwdNna2KDih5ay6Hso1xqrl8KIoihwHOc40zjop7z77lUWFmYR0jAY1pklg4yVlU3yvCCKQsJyhLS8M6QGqayIxsHeEX/x7XcJXIdyKcTzXLSWIDKicohyXLI0wdGapJ+wv9emUq5z5859pqZblEsBvV4PgaUbXlicZ3JyHJNn3LixxNzMFAj4ylcucOnSObrtLpv3t3E9gespNu7vMuj3qJZLFIUhLwqEdshz++Md7B+iPRffK7F8Z400jnn7nXeoRhWkkMRxjNAC15XMzozTmqjy1rtXube8xexMHT/w/z/23jTWsis9z3vWWns+852nqltzcSgOzVazm2xKrZbVsroN2Qqi2HEGO0FgwHAiBAgMI4DhX/khIwniH3IQxEpgyJEsJ5EUS92t7lbPA6cuziyy5nm4t+5w7rln2vNa+bHOvXVZvCwWi2yR3c0XOCDr7n32Xnufvdda3/re730pioIktTV6w37MvsVZlFK8+OIbPHbsfpQjGZ9oEUQBC3unMAaGwyFxN2ZpeYVmq0k8jPnmd45TFjkTY0081+MrX32aNI6ZmGyBA2sb6+xZmMf3ffr9IVIqmtUqtWqIFJbaqkaB6Y2lm8zPTSGFJIoqxGnCeKtBs1lnYe80hTF857vHmZlqcuLEWSbGxynyjHqzynBg6atSKvrdDmEUcunyNSo1S9eL+0MrxuF5lKVAKJsVHfZ63FxeZWWtg3Q0zVadNEm4ev0Gvuewstph6eoqe/eN4zqSWrU5MndfY2F2mka9ypmz14iCgNXVNrNz0/iBDYQGgwFXri/jOIpqtUqaZExOTiCFoNasopSDLuHmjXXqjSalLnH9CMexYjfdTpdkGGNkgZA5fqAoswJHuihXogtt6+lMAcJjMEgJwwp6FGr4XshwmBAEIUVWIrDvsB8EIOxqfbVWxQhBkiScPnuJ+ekJsizn9MlzeK6gLAoa9TraCG4sLeMIh9APqVZ8uv0+n3j4Qevxpgs8GdDrDlhrt6lEARtrXZqtBlmWIpRhrFGn0aiTxjEH9i+ysrzGWrvN1GSLlaU2lYqPMTnDuE+lEZGVKVJKKtUqUbWC5xh63QEb60PCsEoYRVy5usRzx99gfXWdCxdusH/fHpDGMgfiFEd5KNcdCT45VixDGsJKSJZaYZ9L565x/IWz3Hd0L64jiFNrDVOt1ClKW0e4vr6K60m8MMLav7jW5xNBe+0mYeBTFgVp3OW3f+97/Nf/3T9BKgFG7xrYbfXht38+yKnYbSzAXYW6ts5XlMVISTjHdd07HHQ76kALW9dksEPCrrVz2mB20OpuF4zY7TvvtN92zdB2ycUu93CXye/2wu2udMZb57sFgdH2mt4Jd6I67mZxsf1vsYNG97Zr3tGu2wOEd8GtOZB5e5vuiopor+VuRT3uVfzj3Sii74jdJlF3c7630CLv4jTb86vb3x6z6367nvMtfNy7b+udzniLennrabfKlm8XRbkbYZR7xcfB3U8hPhLBHdyTOeStlSnzlv9/y7Ydf/sgca9H3GrVbt9/r0GmVAqxQ0jmLce6bbVwJ7bqroJKldBzuXTxAr/93/42f/+f/kv+9lNHKUeiF1uy19poHKlu+RCOJvxe4GEKTZamqNEqNlrjh4EVgUgHI0l+RZrGSGnwvQDf80Z+UlY1z3eVNRpPU4QQ6DJHCNvOerVCkiYYM6o9M9DvDQmDCOVsKVvZ37/fG7K+3mFmZhylrFm6LjWO67IwP83ERIsg9Gi3O9RqtVs1CwLKPMd1PF4/cZHpiQYTky3reSegMqJTgrA0Mq3xPJ8XXnqTdJhz4MACExNjKCEpSmtYbL3IbJvPnrnEnj2znD13manpsVGmxWAKY33LRobNjWYdbUoriOP5Vkyj1LiOQ1nkBEGA47oMBgk3bqwyOdWi3ohI0txmIj2rYNhsNjDGkOcpB/YvMDM1Rn2sbo2xjSFNUi6cv8r5czcwRlOthow1G0xMjhNVApSytLQ8zxn2B3zvhy/z6MNHeePkeeZnJ6g3Gtx/5AArK+vMz09jMLx58gJPPfkJHKX48l/8iGoUMT5Wpyw1m50uSRyTJyVraxt4gcuNpRUcR9HeaHPgwCJh6BNVQpRSDIdD1lc3cD0X13Mpdcn5c9e4//79LCzM0Ov1GcYJQhgazTrt9Tb1eoMoCkiShBtLK8zPTRNVIqq1ipX+F5LLl67R7XUYHx/j2WffIMtyZmbGmJ4aIx4mrK9vsm//IkEQsLrSpsgKGo2Q/iAhzw1pmjI9NU4Y+rz6+in2L86TZjkzs5M4ymbLHMdm1J5/6U0ee+R+yrIkz2195vrahlVkDSzNslGvooVd2FLS0n0xVuQkCHwCP7LWDPFw5DMXkGY5SWKfhSxLcB27r5SCJBkS+r7N8OuSjU6HZ194lf2Lc2hjJ/JKKtvPCDuRcRyXmalxXnr5JEVZUBrN3j1zeL6HlILl5RVmZ6fxvJEYjpT4gU+W5Zw7f5FWo4ZUiqga0qhVKIqSVmvLK08Q+AG1egWDoV6v0u/3aLQaVKKQMKxw4o3z1GoBvu/jKBtc2N/L0kWlEOR5SVkavvwXzzLWCPE8SbVaZW5qjIOH9nLh0nVajQqVKLTvnYE8L0BqlHIodcnk5ISlbo/GBV1qGrUa9x3dR6Ua0u13kVLiuj7nzl5m0B9w9vwV5uemCEYZbyE03U6XMPBBCKqVClIq8iznv/qX3+Ybf/5HpCNPQPMeR4ifZOJkt3Fl63xSSlzPG9Xh3qEVO7bZgO7WeL1r5uE9Z6DuHrs1807B3Z1we3CHeZfg7g7ZsHdqw7u14wOr93sfuNsM5r1mOu8ui/jh4/08r1slHz+JZ37LquCDEiB8z+f/OLj76cNHJbgzZveXYtvi4A7YNZDbWsF4l8BuKwO32ytzp227HXWnqMvt2Kp9uVNwtzUQvNvrK6R8izrolgXEzoyl0fodV4SFlFacw0jc0Cf0AtZW1vhH//Af8A//2b/gS586iACKosTzXLS2xshWdc9OXo0pUdIFDL7n0N3sIYUgrFTJsgxdFERBBd/zyfOSKKwikCilSPOMNMuoRBFlUaCkncC52xNZgRSQZzlCClzXwXF98izBc2yw1GqOoRybediamPh+wNz8NK7rWSNnA9/9wXEwJWPjDbQuyHNLYQx8n7IsbGBXlDhK0evGPHzsCG+cvMiBA/N4vos2JUoqnv7Rq+gyp1a1E9Wy1BzYv4fmWIQfCIJAYgQUhUYKq04ppM2AjI2NEQQelUpAVA1RytIndFmii4JG06qDIjSO6wECXWqMzsEYrl1dRhprWWGE9UdbWJwbKY4GzMxOkKQpZ85cJAoCAs+nP+jTbDVI0gTPc/AjnyxL8X2PSxevcvHSEnvmZvB9jx89/xoPPXQYYzI22pvcXF5lbKyBACpRwJFDe9AGFvfOEoYhZ89eYn2tw7Fj93HjxjLVWsixY4fodDbx/YADi3uYnZnCCI0Skmqtyo+efYVqWOHkmav4nmBqZpJqrUqrVSfLMi5cuEqzUR9R/xI8zyUKA948dY65uRnSYUy1GhJFAZVqRJZnTE9PUxQF3/j28xw8MMf3fvgChw8tMj8/zc3lFer1Cka5nDtzkSROmJoYx/FAKYe5mXk2NjZZ2DON60jSrKA1NoYQihdffJOr15c5eHCaQS9lZm4ehCEMAtJkyGa3x7EHDtLtDfE9j1q9xsrKOv1+TKNV58rla3z2iUfJsoxq1Sqgnjt3CYnk2eMnWZitI6Sg0CWe54OBOLV+cI7rYkprrZGnhRU7cBQGmzWXUnHyzfM0GjU7kcCw2dlASgg8jzzLSZMhSgnCMGT/vnmKUm+/I57r0Ol0CHyPwXCIkhLPdZmfn6bVajLWapLEKb7nsXxzhanpyW3ZdK1tu6xliMv4WJMyL/nGd55l795ZWweLGS1sOPx/X/4ue/dM27pRV4I01qpEuQjpoLVhbs8MlciKMunScHN1BcBmfHv9UVBpqEQRRw/tIQpH1itZyjBOOHv2Ck985iGuXbvBzPQUCMlXv/4jDh5YQLlWMdT6dxqkEiRxTJmXhGGEUJL+oI/rKhrNGsII0iRDCsnCnjn27JkFIfCjEKNL0BorFClI0hTXcdhY36C70eXJ//AfMDG7gOe5NuP+Hidhb0+6mLcEUO+GW2bEbz/Yu41fW8qJO49lzG3n37kdu3AoHUvn223C/5Os47pTJm4n3ntwN7p/d7IVuFO0Ntq2+zzGvOP2XRk+owyf0bdE4nbNpI0Wa96v2uV7De62MrNbDgHwLoHRPWTf/irxXp9XuYti7Hb+7F6fe3ErJb2TeSbEKCv3IeJeg7ufjCvmx/iZgS7LD7sJdwUxEiL4aUEmQUYV9u4/QpqkFHHC/Q//gu2Dha3VSdOMsihGdTuCorA+VVtqw9Yfa4AubSBSam29oKSg0+shlDXhHiYJjufS6XQJgoDxyTHSJCXwfIrSoI2hKC2NKe4PSeOMPCtYWlonTUsMEiUEmxtrHNg/jXQ0hgLXk0hpkMqQZkPKMsWYHCENQgrG6mNWsGF0PYFfscfpdEbxsNn2hCryDOXA53/lMQSCOB4wHPbJshzfDUYTP9vZOq4DUhBFEY5SJHECKBzH1vR5I0pnnqd4nhVfiCoBGIEQCsd38SKXarNKkhcUWvD7f/AtilRw8dx10izFCwIcPyCsVKjUGyg3gLzkxvUlHCH4yl88Q3uti0EQhCEHDywgpUbrjGazicShGtWoRBWyYYLnuAghuP/YYf76F59kYd8E9UZIJfTobnZwXEm9XmHP3lmMMfT7fXRZMBwOEMr6hnU3u0RhRBSGrK60WVpesxTg0jA5OUl7fYPV5RWM1uSpFZiRUvLZzzxCmiX8yuc/SWusQaPRYjjIuHH9Jnle0mw0EEKxcrNNnuU88/yJkdpog7Is6Gz2abbqFGXOZneT8fEW3//+8wihePLxY5RFzi9/7gl+/MIblKWhXqsx6A3RRUmlUuHKlZuEFZ8rl9p4bkhQU9QaASffvExvkBJVq6wsr3L8x6/gCHj04b1ImTI9PcXly9dxfIXyBVNzU+zdv0CS5czMttjobuC4AoRVvyzygsXFBVurqgRlWfAX33yGVrPOvgPz/ObffMqaogOO55HEOY6yQZE2Je31dcBYn0kyytzWeDmOD8JBGMnkxDiBH1ihmDyjWq8SxxkINVoEyZFSIZWD54V4fgholJQjO4gAJSXt9S7LSzeRjsH1IEutsNHy0iq93oDl5XVKU2Kw6rZSKTqbXSg0Rpd0Oh02e32OHtxHnmmkcHGcgG999wWSZMgvPvEQYRiQJBnCSOI4odSG/rBPkg0RyhD3u5RlSqlzlKsIfI96rTJaWAgxWhO6il53A9cTfP+ZF0nzgjD0mZwa5+bqJv1+nwP75inLnDOnz/DUk8dwfYfA920NrRQURcFg0MdzFK7r0en0UK7C8RQvvHSSQX9IXuSEkc/4eJ047qNcQVAN0MZ6gDqez2ZviOP5hJUq2hQICv7HP3+Z+x6+H3zvr74TH0Frs/35GO8PNqD6cMdxfTc2TNpgjL6rfT/GBws9om1/kBA7qJY/KxAfNY+NnyfkWfaRufm7BUZ3ohfeCUbvXu9wN20wWr+lWmKrVbv97fbv7jy3xmbsSq3ftv/trcszm1F6L+3eaqtUyqoGGo3rem9rwzu1WUs7yVQaTr16gixOmDmwhyis8P/+i3/Cb/3iJ0nTFD+IdiwJ26xgUcS4XkhZFECJoySD4QDP9YmTmGqlQjxMCUOPNEspC43jWCVAJSVKCrrdTcIgQJc5SRpTiSoM+kOiasRgkBEEIVevX2disk6j1mIYp9aqwWgoSxzP217lUsoKuShHEQ+HRJWQPM9HtSEGiQBhg0hHutuc9SyzmaIgctG6wHUdjC7J0nJUMwIGTRj5IH2ksFRKo0EXGj/0rNpnqfG8CvGgN6KXKa5fv8qBQ3sZDgZUqnVGXDiMKEdiMgYlHXQBSZwglUBKh+GgT6VmVS3BKnHGcUwQBJS5RioxUhdNOHf2Gp/81INobQ2uG40x0jRns79Ja6wOFOS5gdIZKVIarH65YWN9g6vXbnLx6hJ/468/gaGgTAMuX7zG1PQYQaSoVEPKUgOK118/w+zcNGNjDTAlWhdsbHSZmJqyIjOj4GHL+y8eply8cJFPPfIw2lP0uj372yv7DHzzO89yeP9B5ucnOX78VR5//GE63QGTk2MALC+v8OIrp3nskSOsrXbYf6jJ2NgUeaoo0oI4GfDM86/w+V/6FJ7nMRxk+L7Pl7/2ff7a5z9JrR6CFCxfWydNU26uLvHpJx5Dlw4ba10uXD3Hvj37OP70aWb3Rhw4uJ8kzri2tMQDR/ZRGvCDgGGvj+s4dDs9XM+lWqtz9coNZuashP6NpRUW9syjlIPRKZ12l9ZYkyxLyPMUYRyyosQPIxxHEoTW1811fZaXVpmensJxBFqPFiWE4Pr1VRb27GUr/67TlCQeElQDpPBwXYdh3IdS4Po+0nUpihRjSorYZfnmDfbun7U9gJSUWQlIq1IpSqQSlIWldhd5juM6pHGG57kUO0zRjSkJgoA8KyiKAqUU7dUNWmM1zIgiHdUCu+gB6NLWhHTWemgKnnvldb70xV9EKkXSi3F9d/ScK7I8R+c5WWpoNpukaUqWpXi+R16kVCt12ms9inxArVnDD3yWri8R+h4vvHKGlZU+v/GlXwSRMBj2aTYmUSogiFwQJfHmGlIFGCSO52ME5EkfKR3yQhOEPsZostgupCRJSpKmjE9MjOqf7L0vixJXqW2zcSElWhv67Wt8/9ULLH7uv+TTTz1pF7t28z64B+zsq/WoL9/JYNG3jRM7t23VWr/Xhcbd9r59NHrL+CStOp/aJalQ3sVt2O17d4O7Ofb7wVa7dmZgijsEzWK3tNdtMDu+f6dyPCa9AAAgAElEQVT9t2h39xqwmXsM7nf7Lbbr+d6lLbffm4+a8qYYKX3fCbtZDty+7S3bxS3/SqO1nZNs72NLWna+O+a2d/KnLXxzPe+eftSftuv8GB9jVxit7ymolNybMewWdFniOM6uXjVyx+dOeODYMfYs7mV1aRlpNH/28joXllat35ayMuxWRn1rcBoVYis18mODaqWG57mEQchgGG+bJvu+N6pbsVSDJEkwGALfp7PZJUkyq9gFCKXQRtNo1vADj8XFBSphxWYPXRugBH5AmqbbZtgYYy0GpJ1gRpXKdieqtVUbLIrSFlMYQXttg+FgiNYa5UiiSoDjWuuEPMvJsgLXtTS2JEmJopCy0GBsJ77Z6bK0dJNTpy9QFta4XEnJ+mqbb333OFJJ2u025y7esJL1gW+VDjEjU+lyRKexBuSIW36CRmuWbqxx6eJ1BDbjIIXcpvYVZYFSkjAKGBtvcuToPpI4Ztgf4gcBN64vIYVgfLyF67gI7PWWpabIC9ZX15FSkiYply7f4PChfdx3aC9CKNIk5/XXT+G4ijRNCcKAXrfPzeVV8iznyNEDrK22QRh6vR5KKt44dYGyLMmSlF63x+ZmF0c5xHFMtVrhwfsXyfIh7fV1XOXg+zZrtLGxydRki2Ec0+l0ePzxh1COoloNybOMzkaHqclx/uaXPsfU5LhVcQ1rxMOMk2+e4emnXyIexoy36iglWV66yaXLV2lvdPj1L3yGMArI8xSjNZVqRKNRt8Ii2AWXZ557jVffvESRF0xNNdno9q3YTiVi3765bfuHXneA63mcPH0BoQTnL14DYWh3uhgDg8GQqakJBoMBBiufX2/WEULg+QFBFCKkIqpUeOb5l9G6IMtSEIYsS5lfmCVOE7Isp9vt0esNGA5jFvfOEScxcTwEDK7vUKlGlp4jII5ja6mgS8AqvUqpyFOboVprb1j6YlogsD6WSZJw8+aqZdgZwZ98+Tuj98i+e55nM7tCCgb9wcj0VpJnlr5sKY6S6ZlJAF4/cZrKaBFHjISWOhsbfP1bT+P4DpPT43zxC0/hKJtx3Kqhi4cxWsOlC9cBRRRFdDqbdLtdlBLb7+JwOOTK5esEgbctmjUzO0Ot0eTRY4cRAob9PkopZmamWVtrU+Q5ZVkSD2OK0hCE1q7j/PlLSClQyi46JHFKp9OlGPUburT2JmNjLTuZG03itmhRpbG0TseRGF2QZwnrmwP+8MdtnvjsExhhMB9QYPcxPhrYoqv+vCYffp6v/YPGFqvrbuZiP0v4ebrWj/EzDM3bVzrvBkJK5PswEe0P+gDbk7Tbj/2OdFENwroR0I8HFBjyziY3Ll7m//pX/yv/9I+Oo6VhMOxSlBnG5GR5Ql4kI8+o0vLEjVVzStLc5sikQxRVCIIA5SgGwxjP8/B9H9dzRhTMclRz5IJyQLlo6VBrtEAKSl2gTcGgN0AKl16vB0aPqJQlURSQppmlQwpJkmSgrbiLKQt6nU2M1mRJSiWsopRLlpbEg4xvf/9llONQlDlCahzXZufA1hB4rs+f/vvvEobWENkGsgpdZpSl9fuamZ5GChcQuI4LQtBud3j8saMoJbhy7Tq/9NRjVCoVkiRGG02eZ2hT0uv3QGs2213iXsIf/OFXSOIhxpTkecn5izd57vlznDlzEdf1kMrBD0KOHD6I5zmAxpicssyoN0KEFESVkF7XGlC7nkJqyAYpcS9mrNFACs0f/Lu/wHGsAERZlMzOTPHii6eYn52nyKHRHGdiqs4g7dMYq7DebuO6HuPj4yhHkSYJJ05dIs8LGo0maZrz1BO/YKW9y5KL567gSkk6TGnWGiigLLsMB9dwjPVLK4uSOE4YnxjjkYfu574HDrC6ts7JU2dGaoY+g17P1sElQ37ww+d448QpPvvUJ7l0fp0k1tx33wEe//Qxvvn9F1hcnGF1dZ3TZ69y9P5FanWfEydP0e93SdMEKY2tOfQ9Tp9fwWgbuH7pS5/lv/iP/xaNRp31zS6Pf/IhHOXxxutncZXCdXxcx8P3A068fp4H7z/C+ESLAwfmOf7Sa3zq8QfpdWMwkigMCAKXssxQns/qaps3T5+nBJTr4YY+XuCzf+8066sroyBG4jjSerF5LspxqdUbhFFEtVan2xsiKIhCD2NKhvEAIwxKeWhdUhQZQhgcV5Iksa3IKA3CCGp1j1947H6MMYRhRBYXpFlBrVrn6edeZzhI0Frwa7/8OJUoQinFlcvXt+lojnKoVCtgDKdPXmR9bYN0mKKEJBkmbPVyD9x/GKUcXCfgzJkrbLa7VOsVvvD5T1EfizCyZLPbJR1kXD23xKXL12yWPKjwh//225w+vYwwijffPEejUaPZqiIc0LpECEme59x/7AACYxdeipIkL0lzTWOsyeeeeoTxyTEqlRpZqmk06rzy2ptoXRInKX6lQrc/sIIvgYfOUrqbQ5aW25w+fZVGvYXEwRhodzbR2i7m2H7UTmqLvLAyCVLY/+qcIhuy2V7hmfMd/vzLf0YuHUqlKWVxz334x/jo4eed6vrzfO0fNLaCup+20p33i48FVT5EfFQEVYBtMZIP0vdu50dvWS7cSc52JExiuLMIytbfxOh4mrdbGYita9rtPDs+2/uM2qXhbe3Utx175zX6vr/rdWhj3qqudNt17zyeF0TUmg02V5ZGgicpf//v/Wf84EybIw1rFC2kJE0TgsCqUBZFZuukjcH1rMEvWNqgMVZ0xHVdlHKI0xTHcRnEA4IwwHUcXM/W8YVBiJBY83MhtikPWZriOgpHKsJKwDBJKfKCPM8JfAfH8Vlba9NsNpBScvbMRVZX1hkfa1CWJZUoGNFUDXmW8cd/+j2yJOXXvvDpkZiKQAjrO1SUpTVVL0u6mz0O7t9DELoUZc7NpTWisI6QjEQvHKTj0Gg2uHLxGq2xBmkaMzM3Y+uZlGR+fpKysDL0cRzT7w5RyhkFuR5loVlf7/DKa2c5dHCGRiOiUqtSloYTb57nb3zpM4xPNHBdl+FwyNraGmHg43kBWhcIKbh5c5VKFI6yfrB0Y4XJ6THcUeZtK4m8tLxCFIUc3DdDa6xBvz+gLDSNRo2Z6QmSJKVSjbh86SqL+xbwfIXrOly4eJ25mWm+/q1nCT2H1niTRx8+SpImONLlxrUVXjtxhrn5SYIwYnKqRZZb0ZowCqydQ5EiTI7vV3HcKo7jWM+8UvOX336WShiQJSlHDu/jzNlL1GtV/vLbzzM3Y9vV3ujx6U9/ghvXl5iaGufqlRtcuXaD+fkZjh07SBCGrK5tYLRAqoLx8TFqtQrNZhM/8FlZblMUJa+9fpov/OqTDPspWZZYGmvfBh8PPXwEbXJWlze4sbTOkSNzKMflx8dfY3Z2moWFGc6dvYjve9RbDSYmmni+R5kXrKytElVC+oM+juOQJDGNpqWtCqBaDe36B4bWeNM+k55LnhV4Xsi1azeJotBmNJWkNAajDa7rkwyHo5pQF9ezQX5ZFGht69/iYUZUqeK61jPOFAVXLl1BKoXnKqTjYLRVxJRSIBUcOjhPpWpVHj3PtfVkYiRapFxOnT7LxMTYdgdRr9T52l8+x9Eji/i+x5/8+bc4sLiHK1eu02rZDGUQhrSadfzAo8hKvv7N5zh8aAGMIYoiQPLyq2f49OMPYbD9yCcevY8D++dQSjI+3uTC+UvUGxHeyFQ5GWYs3VglzTKyLKXRbIKyNa2u43L12jWePn6C8WaN2qhe80dPv8TC/CSVamDVcI0VVSqKkvGJcbI8YzCI6fWGxEnG5EQDP/BxPIdOp0sYBgShDXZ73R6u61r1U2w/IdAMegOKvKAbZ/zqP/rnVllYCITRWHOAe5u4bYlxbX129ttb2ZM7ZZLeMmbeNoaWpkQY0Og7irTcjXDY7SIPQsJutsn3ImZyt/hJhxtb7dp5rduiIfLt84q7we42DO98rN3mL7dft9xt2z3enPcqirOboMpu+KuiaN6RVnkXtNFblgNvp2C+5TfYFuzjLYJ9W8rbWxullG+d491q6LuK/H0U8bGgysf4SEONatTez/e3Pn/V+Emcc2fnXZicXOfsP3qY3rBnA4qbN/ncE0/wt3/ny7iex2AwpFKpIqXCcUZ+T9rW4XR7XYrCUgzzskCjbWGwELi+i1IKpRRBYG0Stsx/LeWwxPMcQt9DCsnIKWCk1FmQ5ylpmlCrVVBKkmcZm90+pdajCXWK1oZeb8DhQ4s24HVdrl65TpIO6XWtYfFv/ebnePKJT5BmMVlmj+mMPMdcxwNjfayarRqe56FHnXWj2WCj3eP61WXSNGNzs0uv22VlZYWzF65z8eIVW49jYEsWrChypJR0N3sUueZr33wBhKViCiFRrsL3Aw4eWOC++w9QqUej38PwwH0L+L6D77soCVElYGFhdlTfp0fG8JrZuRkGw5iyLBn0Bxw8uGjN2zNrKRFVKri+x/TMBJ2NDtpo2usb5GlGrWYptC+8fIKNjU2K3NI9+/14FBgFCBz6vQF5VuC4rr33RU4YBpSl5qVXzzPWtMqPpSlRjkO1XqU51qTd3sD1fcKwhVLW09BgWF66ybmzlxBC8ulPPsj166skSYZyHC5eWbZ1a0jGJyeYnpvl8MFF+oMhzWadNBuy/8A8SZpx+cpV1lbXMEbTbNaZn5+m2Wzw4ouvE4UR3c0eve6AZJjR6XR5+KHDeL5LrV6l0awTJwmXL97gjTcvghS8eeo8ZaF59OEjdLs9VlfXeOyxB3j1tTcBTatVY2l5nfXVNlFUoSw1zVaNVqtOr9tlrNUi8APCwEMXOVEY4ijIkhgoKQtr76ExuI5HpVrDGMGFizfY7PRBCPKitFRaaY3MG7UaUVQlSTOkdOhu9q3wiLI1pmFYRaAoCkORlziu5MCBBZr1OhudLlmS0O/3saFlSa+3idYZWZaQZQlCSrK8wGjNcBij0dx332HKssQYjTGGzkaX8UYVJQR5mjE3PU6WlZw6f4WitNn1srS1qkVR0m5v8sVfewqhBd3NPkmS4HiKTz1+jLIsKfLC1oyWKZqCjY0Ovh9w5MhBpFSUpUZKB8+PqFRqvPLaOSYmpyiNDYAkoMuchYU5ZqdaTM1M0l7v8PrrZzj2wAH2Ls6hlEOR5+RZihi90waBF0bMzE5x+PA+Sl3a51YXxHHC1PQUfhACUBYF1WrV9m/GLrRJY7i5tIoQkiAM+e//6BUQGUqO/L6MQeqPVq3RFqQRlLpE3knj/2PcM6y4xr3PKz7Gzwa2xFDeDwvrZw0fZ+4+RHyUMncaEDvqHXYiy9KRCIa4K3uE3fBugZ3YEfwJ2JYgvqO9wrb55d1hN2+6LdnbrWMZ7H14ixH76FxvyeCZt5u/77RjeJsnyp0ylgiEATeosXd+hpWrF+isLzM5Ncmv/+ZvsO5N8Lu/9/v8yicOWqpSWaIcSZZnOJ6PxK6Q5Vlupc6NQPlW1n/LGgE0Rgtcx3rFSSmJk4Q0HhLHKQhFXpTUooCVm2uEYUQURfTjIZQFWhtrlzCM0UWO4wgCX1kFSjQzU5NWqp3SrvbXmwilcB2HQX+AI62HnhdKwsBFKLuqL4QgHg5Ryl6PchyyYU6SDAlCH4Rio93j+8++xANHDtLvDmi16vi+YXpyGtdzqdWq1qNt0McYrCCLcDhz5gq9uMsjxw5Sq9cQSpAVCZSGMHTxfEUYhkihKI3A8SRjYw08LxitjAuMySh1gcBaYGhj5eaztCCKQvIsxQkEyg1QCNAFq2ttsrjkR8+8xP33HyCsVHAdRb0eUVLi+C6nT13i4P49TM9O8v2nX+TIkQNk8WBk02BoNGq8/NpJfuWXP02tVqPIczzPIU1LNjY6PPLIUVpjDRzp8vzx11jcO0eRZZw/c5nJ8QmEI3E8QZKVGK1RqsIPf/QKT3zmUSscQkl3s8+Rw/sBge84bLQ3eeD+g2RFgi4Lwiji0sVrnDl3iWajRmu8yZ69czTrNdIsx/cD8rwkCDxefe009x09hB8EnDp1kYWFeRqtBq+8eoa987Mkacr1a5fo93vMzs5QlJkNBoRhYXYPX/v+13jk4SMoUadeqVAWgitXlyiKLtPTVdobA/bs3YPN4YB0JJVahUo14tKFJcrMIQoFG50NxibqCKkwwsWUOdoUaO3h+AGuEPQ2e0jPYXFxjkazjiMVgpJ+bxOlBIN+jyTOcV0H17Xef66rEMbFcVyy1Cq7rq13CIKAP/2z73H/4YPcvNlGSMNgkOD51j9OUyCMtdCo1qpkRYYfeOhc4yrXiqb4Ltmw5MbSDaq1EOnYvqNaazA2XiGshhgBi3v3EFYcDh/ca2tJteLqxWugrTR+b9hjbKKB1pqbN9s8+/xJpsbrNBtVHKW4dmWJ5esrNMfqaF1y5eIa7c46RhR4XsD58xeoRAG+51CphuyZn7LWKEAyjOlsdMjzDC/0WZifYXV5HZNZz7qpubFti5GbSyvUx8ZwXBchIU9jsjSm391Ea83szATVZpWitB6EZVniuMr2BZvraF2AchEjzzqTFXS7PcYmxvlP/5e/5P/5s3+HQm1RL7BeBPLuMlajPvwt2brbsFuW7o6ZNXHLfvltfbsQIwubO49SZpfPu8LYfv/2cWh3M/J3NzG/G+x2rF1tAu5in3c6gRHCCucAOxM/2yIjO6wNpJLvKJKyc7/brRC2/rTzd9Ej1tDObXprPGfrM8qI7Mzubl3zLvfnbu7Nu8EqImuMeLvN97t9D+5OsORus3x3s/97yajuPOatt1NsL7Lt/GyrWY72V1Ju+89tfX4Wl1A+ztx9jJ8YlOO+Jfi6F3wU+M7vp0hZSImzo65uNwPz93uNWkkKHB587FOsrq0hdEqzMsX87FH+8//mf+B3/uAHSBFQlCV5URD4IWVekGcFIPD9AEdZJTxGAjOu66C2xDRcQBi7v1FUojpCSBqNOlprW5tWltQbNdrtDsZANaoghJ2c9PoDms0GURTZQU9KHEfh+x6aAoOV7q/WIooyI8uGKGWNyL/53eMcf+EkP/zuG7TXYhQBvhehpE/gelYgRirKNCOoBPihb6maeUa/2+MLv/RJHEcRRj5ZmuE6HlHFY32jjaHEUOB5LidPnrUG69oahD9w9CgTE5NorRGUeK6lbLiOQ7VaoShLyrJEKUlR2GNIKWBrUoZrlQ2ltVTwfMf67ynI8xTlSjw3ROCQ55uk2QpTUw2arRqffvwY1pdQcPHSDYwRBF6ELgV7986gHIFyJJ/8xFGgJAwqSCFHhvWGJx5/hJWVNXq9Ps/9+HXyPGfl5hrVWoWvfuNHeJ7Lq6+fwsHh299+zvq0SUFQiYiHQ0DheRHV6jj9fn+UtbHWGhubPfbuncYLHKJKwNz8JIXO6XY3R5lFjyAI2L9/D09++lGmZ6ZJhgnXrlwnThKWllf56jd+RLUSMRgMefSh+6zqqBDUqlbJ9aUX3uSxR+6jUo2oNyJazQkmx2fo9xOmZiZptup8+zsv0O322L9nHikUzz3/MqneIKwLBsOMPQv38cLxG0xPT/H0M6+w2RsilYsRYiRoAvv3z/Hiyy/jeC7VagWQlNrQ6/bxPH8UdGiKLKfT6drMt7TG5Bib6S21IQgiMA4vvnQeP/QpjWEwiPF9HyEUeZmhETheSFYIms0WQki++IUnyIqURqtCVAnxR8JDylGAwHGgLAvKQuN7EYN+ipCCdrsNBhzHxfFGokxGYEqBLm2NWaUaIoTBdaS1dyg0WpdsTUMHScLrb57Fd13Gmk2yNCPLcqIwwHUkRW7VYdsbHS5fX6HeqCMdF8cPuO/BRZ578SSe67Ox1uX4K2d57vjr6NJm5Tsbm/R6A/qDoQ2uWi3CIKRIMgbdPj989jWCakhrqkWWZpRlQa/XZ/nmOmtrbbI0J8tysrykKDSN5jhlKehuDkd9ikJrg+/7I69JSbXZAuUiEShKhC7I8pzJqQn+8Fsv8cd/8m8/dN+pjwLuVUDspxlGm3tWpNyJD3se8l4ghCDL8ndkDxVF/lfcog8fH4W55E8DPr5DH+NdobayW+8DP0lj1bvF+xkQ7QqsfMu/bz/W+73G0oDwAgqhmJic5Pf/9f/J0rWruFJz39ED/ON//n/wd//nL+P7PmEQkGUZIAj8EGcrAAeCwAesh5yUlruUFQV5lqK1Vffc2LAiBpVqBRB4roOrJEWeU6lW8DyXjY0OWZrhOC55XhJGIUVR0u0NcV2POI4ZDmPW1tZIkpjhcIDrOmxsbFCOBFCM0Rg0tVqE57k88ZlHqVYrrKysjGifMVev3qDMClzlkGcF0pG2Xs+Akg6+pxifsAFKVIkQAlzPR0nB/sU5pLLZZc9zefTRB3Bdh3Z7g2azjhIOutS4jsPWWqelfBmUUpSFrf/L02z797Q1i8XIjF0ihWPVPaX1TlPSGjRrXZJl2SgIBMgp8iHDQQ+Dpt6sbZvH33f0IHle8tWvPw1m5NUnDMPhAKUkru9y8+aardVUEuUIWzMpJWEQ8Cu//Dg3btxkGMc4SnL4wBz9/oBWo8r+xTmeevIxBoMhDzx4H9pAFIWsr22gHI+NTp+oEjLWquI4Nvifmpqg2Wpw/uJl1jfatDc6HD68j4OH9nHq1Lnteo72+oa1wNA2b/3GyYv88JmXeOD+Q/z6rz7Bysoa1VoVhGFzs8vLr7zBvv178DyXYw8d5Stff4bz5y7S63ZpNMd48eVTxIOUtdV1+t0eG52EosiYm5nG90OefPIhjLE2Gb/8+U8hpODwkUWQknbHZjaTYWKFgXKNMVCWOZ//3KMIKSlGFhauVephZXWdOE45ffo8Qgja65tYQ3JhKcqlJi8LXn3tJOvtTUAyHOT0BzGOcnBdFyklrusQViKkUkhH8ePjr1MWJY5yCKPAPrO+R1GU3Lixwtp6m7IoKYqCXn9AtV6xtCGpqFaqGGOo1WskcUqaZPi+R2ezz4ULV8nTfJQpBiUFrquQUpDnuX1mtUGXtmZxdnacubkJhJK2TnKtg+s4jI01mRxv0mw1ragQhic+8wh79i7gura2rr2xxn/wG7+EEJLhMOGvPfUYn3zkAUpjrPKl1lRrNRzHpdVqUWrDykobVzm0Wk0q1YATb57FcR3yoiDLMqIo4IEHDqGkxPVc4mGM5/n4fkC73eXa9RWqtSpGaxzl2KBQa8rCKtmWRuL5AVJBmWf0N7sYDFGlwrdPbSKVQn3I48hHAdrYxbifJ+y2OLuVsXkv+OlaHBDWlued6u9G48XPE37eVC/vFR/TMj9EfJRomTvphu8UoNxL8LJFf9nqmIUcZSZ2ZL62VmHuVNy8kz5zO5XyXa9tB8Xy3Yqo5R2u0dwmOvNe7sV2cLjjenbeCyEl0pQYIcDx2LO4yC986pMcf+ZrrC2dRaqUqOLyH/3W3+K3f+ff8AsHGkS+z/PPvsqPXzjNnoUZPNf60BV5YbNPI288jA1oMMZKqjsOQggcR1GUpVUN9C3dzPUDsjyjKApcJbl2bRkpXYIowHUdsqzgzJlrTE+PI4SmWq2B0NRqVVzXpcgNjXrd1plgufCD/pCjRw4wMdFEqowk7VOr+xhTECdDwiAiiMJRUOOwenONc+cuE4UBxmimpsf493/+Ix58YB+GkuFwiOf5GGPo9fp4rmMFY/pWWMMAvu9TliXf+96LnL1wmSOHFijKAikUvV4fx3XJ0wzXdUnTFM91SZOEwPdGYjQORWlor/ap1muAIU1TlHQp8pIt+siWmbUjXShjPAVS+ig/RCj7m0slyZKYPMtYmJ+h1xuy0d5gcmqCMAxxPZfNzS4vvXyao0cWuXjpKuPjLa5dXWJmbgbP9+l0OoxPjNGo17ixvMKhQ3up1ao0W3VOn7nInoXpEd3SCs+cOHGa2bkpq1YYVdjsdllYmCFJEk6eumCDic4m+xb3oJTDuQtXmJ2bJhsFWmCNr5utBt1en5deeoNmvUazVuXgwQXCMByJhSieee4VDh3aw/TUBGmWwOh3ee3EGb74hSdpNGsj2p2L60qM0Zw+c4lDB/Zw4ewKRx6YYmpyElO6xGkPqSOWbqzhuII06TExWafX7ZOlOXPTE3zrO8+jZMmFC9dZmJ9FKskgHlgqZOjbgClOWV/tMLcwg9GG5Rtt5uYmqVRDazugDEpoNjsdKpU6zVadeqMGCA4d2osXejao81yyNLd2H9iasCzL2DM/g6FAOVt1nA5SKdI4Ye/iApVKhBqZqQdBCCNqpuO6DIcxjiMRuBx/8QRnzl1hcd8MG+0eTz93hkP751lfXadardr61CRDKUWaZmhrnYeU0r5znmPFVPKC0A/47g9f5vDhPWgD9VoV33dBGKrVkCzNRoqv1o/N9yWeE3DixDneOHnVWo8EAVevLlGrhoShj+cHrK6u85WvP8eRw3vp94dElYBLF69w7MHDLMzP0uv2CUKfSsUHBMtLa1SjAMdRxMOEqFpFSMXl68sYA0Ho4/suQeCPLF4cpJK27tH1UFKSxvYdKYqC5sQ4//gPX+Z//1e/O7IsMW8ZU7Yn/Tv6Y2tPcWsKuJOGeS/sDbVjDNk5br3TGJAkyQeyKPpOkKOxwwqCiXea+98jBPouzMSLorT77ZJFeRvdcBcxlF2FS0ZUSrOLWsiu8487UD7fabzf1Tttx/63pDlu/XfHsi6WGn6LwnnrEt8+r9itbe+FFisEOI7NcO9K8VTqXZ/n3QRL7rTtbp7Z9/pcb9Fn7yiaMqIvWxrsLUGU2z8/b7hXWubHwd2HiI9ScLcT73dAMlrvOhDqrYHVGModSpZ3db4dnYIcDZo7OwrNdijzNnzYGUNg2ytq5325fSBQeoAREi0UpfRwghB/s0/kRbzy4gmG3ZJsWPJ3/t7f5Z/97v/NH//gBP/J5x6i2ajRaNaRSlKUBb7vUuRWVMQYkMqxFEppaw4RhjRNyDLrp+YouW0GKhyFoxRJnBB4LqsrbeK4pFoPRyuEglOnrjIz1SCshCNKI+R5YZVDlB8AACAASURBVKlWODieR5HndNo9hJAEvo8buAyTAZFvBUEqlRq6UPh+hBtYQ/Q4SXBcF50UxHFKrVqhFBrlCbobQxb3zyKEXfF3PZ/XXz3N2lqH2dkJ7ChvEMIKnjjKwfN88iTm2LH9VjlRSJTyCXzH1s+VemTCrmww61pFwDy3gg9owdM/fIOFhUlcT6Gkwmi4eOka9Xod1/UoyxIhtc0A5qBzrACKH9Htd/FdB4PGdRSuq/A9n5dePc2D9x9CSkWaWZuCOM74xCOH6fUGzM7NoEthDcUNOMpho72B1gW1eo1wpNCpHMVGu0OjWSGs+BRFRp6kXLtynb2Le8jzjCDwAGz9mOdQlprp6UlqtRr1ep2ytDWEZ85dYXpqgiCwmaGVpTanTl9kfm4aP/R5/cR5jj1wiGazgXIkaZryvR8c58jhfdQrEc/8+BXmZieYmpqkPxgwNTnO1FSLeDjE8zxKY/BCW2s5MTHG/sV5AMYaLepNxTBOKXNBnGzyw6dfwvckjVqd9Zs9Lp9f4egDi0gDnXaHLE0Yb9Z48IGjdDb6BFFEWI22VdSUUgSez82bbaZmJimKglazhetIpDL8+KVXaDYikniAROP5NRxPARojNL1ej7BaQQqFLuyz9OPjrzI1McZrJ04yOzWGVIY0HdjJl+tjjAQpEdqqtNrMrn2+TGn7K+nYcziuAqMxpcD3PM5fXOLgoTl0Ab/42ceI+yntjU06nR5TUxM4jiJNczzP5ytf/yGHDi6QZSlZluMFVgFWlyVoydHD+0bHF4RhSJKk1hQ9G+IoS9MUwgatZZmjpMfC/BxHj+5lz8IsQRDw4iun2Ld3hmq9SpqUNFtN9i/OEgY+9UYdP3SJKhGVsMpffuNZpNbUGhWUspTv4y+dYna6haMcGq0mvd6QIAyZmByj1WpQr1coi4yNjTZJnFOtVkfZVIXRBWWRkw56GGBmbpa/8z99ld/71//baFHsHZMY2xt2jj+3OuD3Vp99O3ZT0LxTRKW1FTn6iWeJjBnVw3+QB701Pt15L+vFuJtWzO0BzM4F1juGIu8x7v4gGEV30wRxW63ZrkHbLn97/8HdVkD6nm/N245xt9t+EsGdHlkp7byI248hxQ6Vy/e4gP+zjI+Du59C/KwEdzuFRG7//vYLaoyltm3t85YDmLd9bm/Dbtm22wO+nQIsbxNE2dHOO53n3XCv1MvbA1K5Y1V3629aeBgNzmiSWBpoTE/Q6fcYH28xvXiAqfk5OmvrfObxB3jo2GEunnqZg3snRpMriZKKPC9RvovQJUWWgLFmwXneR0pha8iEJAhszV5/EOP7AWFUIRn28d0Azw0wQK0RUa1VqVYqGANFnjE5WaPebCCVi3RckrRAl5pKFLLRWScMXfI8w5EBjuvYVceywHMVBkmeF2it8X2H4bAPeY7BmhznSUqm+4xPtAgC38r5i5SZ+Rlcx9K4PNfn+tUl1jd63H/fQTbWN3nxpTPs278H1/NJ0wzXc3A9xdh43doTZPlIWERQlgYhBX7gMRz0iSoBQjgIHAzWNF4YhVIumxubzC38/+y9eZAdWXrd97tLrm+vHUBhaaABdKO3GXbPwmU4HA7JEWdEBikGZZIKK2TZtOywRSnCwZAcNM3wHyIpyg7LtGSKkqyQaYtWhGTTGorkLM2Z7pnp6el9Ry8AGnuhCrXX23K913/crEIB/VBd6GXYLeJDvADwXubNfPky773fPec7ZwJrC6QKKG1BZ7yJF/gI4WisWtdASLQeMByu4gcNrIywWKQwWOtopv2+s7KYnGyjfYVUgjfeeJPJiQ5RFGKEwvcVL778KuNjDYTnUD+kJarFWMD3BVhJnjr1w1ot4vzpK7TbbjLdHXSRCk6dnuOOw/tJkoyyECjpRArKwlAWFs/zuXjuEp1OnY3uGmfPX2as2eTypSu06jU21rtcuLjI3ukJZ+4+v8CBQ04IxQhJ6PlMdJr4WhPXIoyBmT2TCFFSljmDQUIQ+RgLaZbT6bS5emWeKAqRnk9uHP220aqhte/qQkNNHNa589hBrIE4rtEaizh05zTD4cAZmw8GHD12kImpDi++/CoLVxfpNGqEXkheZGjlUVpLMsxAQq3ZQEqB9px8uBeEjI+Ns77SZ3JsjCRJGfSdaqTW7jeNQh9hFAILtiRNUjqdJn7QYGK8jef75LlB6QDth07YQUqEtWglQFisLZydQlkilcSYnGTQRwchWVGihIdUEIQBE+0m9bpHrR7jBYoyL/B1wDBbR0mHDq+srCJw9Wp7pidQSlML61yZm6MWR2jl0esPubq4gi0lFy9dYW5ugTNvXmTu0lWOHJ0lK0qExIkslQVC+gwHCb7nfDOzbEhR5Bw/egdRFNHtbrB0dZFmIwJhKIsMiUH5GiFgfW2NK/OL7N83SdgI8bwApGByqo2nfaJaiFKOVpomGVleoLRwNi5G0Gi0CUMP4VXCKWXJhTMXqEUxpYX2xARzKxv84q/8JpJK/l+4elhu6EeFEFsTw02q3vb+flN8wVb73yiWsvW6iajYdoRQVAyMHfv7qj77VpO7kePcTsd5ByyS3Z4HuFKB7QIe2xOTrZ8CKlETt7wqpOBGqwGzrY0do9rAVnTDzYT+ZrGJjpqdxFO2fbb53ub5bRdR2Slxs9W9c+06vNUqYfN7bqJs29vZbuNw46nuVlRlN+WGoxCvkcnqDmjebkNsqRPtYlvcgtP2M9sUTZGbQinb4yZiR38e43Zy9yGM/1CSu62E6mb7WUtpzC1ZCtwqmre1/U7nchNawq3EOx1ERyWrI6OaPNhq0CmsYGJqmma9xuKVOVaXFhifmCHLMo4dPc7+e3+Av/ar/5izF+f4wfsPk2YZJ185zcSkU69TUlIUBqk8PM9znSwglVtddsIZwRa9pjSWvDT4YYhQkiAM8T0PgCLPiesxge+Tp0OKLEMKKAqDKUvSNKXRrAFuIp0mGV999AmKPGViskNZOqPwZrNBmiT0+gPq9TpFnuH7m554CX4U4fkRGxs9avWao7dJjaxojlorXjr5OtZKjhzZzze+/SyfePAelOfUQYMgoLvRw/M8ri4uUotrxLUYKSVFUQKGfn+A73mu7icrQRikUluegkorpJTsnZ2qrpfk0UefpMwzWo06xhh6Gz3Onb2M7/tIZVEiZZgMiONx0twQBD7J0NUcrays0mg1oFIdNaak3xswO7vXtS8VQliyNGW80wZrSYYF/f7QTSSkJYoCihQ21nu89vpZGo2IpeUV7j5xJ195+NvMXV7kjkOztFstLl6aZ3p6nDAMOXXqHH7gatCyLMday8ryCm+cuUCnXafIS+6+6zCdTpv2eAulNcrzuPPwfr7ytSeZmW6yd+8kE5PjnD8/h0CyurxGPa5zeW6BXn/A4sIay0urxLWARrOJF4QILNrThEFIkRm6GysMen3qjTqeUiwvLnHq9fPU63Weeuolnnj6JG+8cZ7jxw8RhhHffuxFur0uE+OdirLjsb7a5YlnXqXdium0G9x55yEETiwH5XwTXU2j7+rhQo0UkKUJaZKgPI9aHHHlygJB4OiA/e4anU4bhCA3m2qoGVo7n0TfD4njGnmeobRLGqIoorfRJ/B9pARrCvJsSFnlEwiJHwYozyPLUpdgaA/l+aRJglaSPM8Y9AeMjXdYWV5HSlUlKyClYXp6ijiOeebpkywsruEpxdhYk9ZYgzzLKPKUKI7o94eu/k9rNtY3KMqCJMnZu2eCe04cZf/sFJ6v3P1tJcN+zpNPvcodd+zF93yntFtkBEFEXpQ89u3nOXRohiQdMDkzjdKabm+AVIpmp+2U+wzEUcjRO2epNSK01qTDBGEtSgqazSZ5XpAkGUmSEYYhnu8sTxAQhpEbD5Ry31dYTOHuTaUVjWaTn/utP+I//9Xfumk/+Xb98SgKmL324bXPbtzx7RCrXYwBm+rStxq3PB69w/12GzeOmKMSkc3EZvOlpHrLWLvrafp2ZGfzYDvtvJn7jdjm2pzgre+NSjR3Su5u2jbXDrGFSu50LiM+3y2St5vkblRTN0vu3k1o7VgspqIF7/bMrlO4vGFB/naMjtvJ3YcwPqjJ3VsMuN8m3nalsaJKvYX/Pkpt8hZWLd/Cpa8m5jfb/2Yc/FuJt6M43Iha3uy9t2tfVB2gUR624qKn/Q2Wr85T5pbJmSmGwww/aPMTX/gRjt3/cX7p13+Xn/7eY/T7ffr9Ia268wQLwsCtjBmXXJdFzmDQr1ZGXdtSKoQU+GGMUtIpQmoPiyRNB2hP4/k+Gxs94loN33MImCclg8GAp559lWN3HnKG6EmGVpqiKBDCcv+9x1hf75IXJZ12NTnE4vsew2Hi0J1kiDEFYRCgdIgQwiVgoY/nBRRZRp6mACRpQqNZ446D+zCm5MTdh6tz9ypPM0dJ832fwPOcQXu1sKCUcn5mQqCkM3Lv9/rE9djRwqrJKcJRSaxx6G5pDaGvmJgYI44jPKVR2qEJWZZRiz1Kk+OHIWkKvh85DzLlYYVLFrVWLhHAOISpLBn0B1srylLB66+d4+Sr5zg4O0MU1/jGN5/j8B37EEC/3+P0qctM75lk//4ZLJZ+v0+tFnH3XUdoNRvEcY2lxTWOHD2AEoqFK1c5eGiWWlwnTdNKIETQ7Xa5urTCkcMHqddr5HlOUeRbVFvPcwjYm+cuc++9Dskp8pIrVxZZXVmn3xuwttblzqOHaLYbKGPJ85J2x5lTSy3ornWp1eruWiuFLRImJyfIixKBYOnqMkePHSYdZpw/P8+JYwfIi5Rms4ZAIQzEcUieOZXQpaU1nnr2ND/6mQf55uMv8cD9x5DS1Rsp7RBhrdykI0kSsJBnQ7CuBrPX6wNODKfeiAiigDAM0VJSCouxoDwfYwRKWDxPk+c5nhewtLhCs1VDSihM6YRcshzf0wgsaTrAmgIvdKIrQkiEdOI1gefqXD0/cGqydbfQoLRD2hGCs2fmiGoBUezUMZUAoXzm5hY4duww/X6fIPDQvqLdaiKloFYLoUK8a406Skpq9ZBWp8nE+BiPf+clOu0aXqBQSrO6ukGt1mBxYYUkydk3O8FwkFDkBQvzC4xPdPB9n5npcYRwiwlJmlOWJWEUkhc5UknK3JBlKUWRY0xOb9BzIjGbz0pZoj2fsnQUaT8IOHf+Ip1OG6dkbvD9EGMs2tcoCWWWMOwP8eOYerPBz/3Wv+cP/t9/fVNgYFRttDHm+hq8bbH1vqj8PW+W3N1s7NiBCfJuFvxGjUeurtDsqt0/y+RuC/25MdGxdouiuMVKGYGoXbfPJpy1re2t7Xeo17txv+0xKrnbfg5KXl+vtitk8YZtt++z+fdItPHGjbfFTsndbg3LN+O7ldxZC/1Bn+FwSBiEb7u9kmq0PdTtxO5t450md+LdwLK3491FnmUfyItveG+NuzeTrlHvb493K297s+O8l3EjlXKnz3bbge70DJbkWDSlFUQULFy6QHfpCoUUHLjjGFkR4uuSPM1ASH7hr/6n/Mtf+jHCyCdLhgSBR5JkBFGMyQ15mSOlBdzA5gceZWmc7YAxKKHIi5QsSysJeI21RSXIIpy4g1ZgbEW/G4AwhH6MkoK8SPEDH2sFRZ5Si2M2uj2CwHdtlwY/8PA8Tb/fx/c9rNV011ao12LSvKDR7LCysoJUkjiOXC2gkQySIVEcI5Sb0PY3ekRRgDEFFy/NMzk1Ruj7DIcZ9UaTjfUeUttKmCIjSx2CoFTMm2++Sb0eMD7RdobtwkMhMKYkTXoo4Tmz7Qtz3HP3XXz90Sf5zI98jCRJicIIqQRp1ueVF09z1/HDaC3wfN+ZuyufjdUh8wtXSJKcw8cO0mjUsLaitgmBKSQXL87x3MtnOHH0ANNTk7Qn6lydWycIAprNkMIYXnjpNT724H0sr6zSajZYWVtnbLzpJshBhCmgyAv+zR/8KX/pJz7L4uJVjDEcODiDkh4bG12CwMNYV1sosCAhTVICX3Pu3GWuXl3jYx+7lyzPWF1eA6DfS7CVt9P+Q3ud1ZCA3mCALxVXry4ThSHTeyfJygJf+xSF4emnXuR7P/kA/cE6S4s9ojhgYmKcjY0NtCjIS0tpFEEQ0e/2GCQ9xjsTXLxwhaLIOXZ8lqhRJ0sNGMmli5coy4LZA3u4dGGesfE27U6DfFCAgF5/wJvnL/PAR+6iSFNq9ZjBYECSDBkf65BmOXnhkgkrDMKAH3okwz5CObpgPW6CB+BmUBqPvBiitKMMDQcFf/hH30Ipj5/6qU8xGPQwpqAe151YTppWz5Lv0L88d3WGhfNvy1LnI+kmuAYpBb7nJkRZXlDkBqxB+x4WS5akzF2aR2rFvtk9DPp9mq0GSgnSrCD0Yp59+mVqNZ+jdx1yQgXGkOc5WjuqU5nDyVfOcOTIPsJIumes2yMINEEUUhYFRVESBlE1wTKgSorC4qmAPC+rtpz6qFKKPMuqGlWNlLC6us74eIf+YEDgx1hjeezxZ3ngvuNo3+PSxQXy3HD06EGU5ybTxpYURUYc1au6LkuWdJmbW2DPvv38weMnOf6ZX+Bjn3gQUXWLo/zJR/XyZhdKyKV1CP12GOTG5kdOhncYv97pmHOz8WErudtFu5tbyHdjXrdDlDdcDHVDcgdQjthv0zRoc2zb3s4oX7qdLA5u5mO32/1uts1O7b7buBXLBvU2yd3Wv3fR1sjnYsR7O81jdhNlWTgLF+0WwK47hxHqncLe1rd8p+H5/ju6UW8jd3+G8UFF7jY55e9dgzdZ3bwRuXu3x3wXq6i7jd2gbrvZdtdhC6yQCOEhbEGtUUPbhPMXL1EaiBvj2DJjfmGBWlzn6B13cFVM8Y//j/+bT9+/nyRJtoRQpJBOyl8rQKG1jzEl3Y0uCKrJf4UseW4fV4LiJOe7613iWg2tNEp6CCmcHLctKQtBu9NGa0mvP0BrTRA4OlcUhSi1SQuzeJ4HAq4uLqGVRCqPPEmrgUYQRjHf/s6zHJydQWvN3Nw833nqJEeP7Oflk6cZH+84+qWnGQ4HBGFAFEQ0mjV6PSeXn+U5X3/0Ge655wjWWgaDIS+/dpqD+/fieT6vvvYmFsPkZBOlFUUpyNIcMHS7q0RBDa0V62sbFHnBRz5yLwUZX/zSNzlyx360p5AK9k5PA9Yp/ylnGWGM5dzZy3S7fY4fP0wYBQ7FBLIswVhDkrg6tGNHDtJuNYjiiCwbUubw2OMvMLtvAoNh395pLl26wuTkBCCJGyFSOuuHQT/BGoHv+1yZW2RmepyvfP1JijKnUQ+xJWysd/F8J1xz6o2zrKys0mo1tiiuZWnJ0px2pwk4ZHV5aZXVtS5LixtIBEHoFBejOHAoMDA+1qa7sUEYBfihj6kSoz0zExXdV6J0QGesU6EssLy8zNTUJFluiOMar79+ljuP7qNRb9Ko19i3b4rSZqR5jlIazwvo9XpVjVjJyTcuMDHWJAg9bG5JhgnLy+scP3EELwhJ+kPyPKNRj535tpZozyk4au3OUUkJAgqT4QcBc3OLnDp1mcnpMSc4k5UoofFDxdqqMymXQqMVHD18B2GkkVIQ1xytMKssA6x1okK28hEUOHphnjmjbisk2vfRVTKovdAhXNU9E0U+WZHxJ199jH0zE+ydmaE91sLzNGVZVPYmVNRqSbPZYGOjT5IOiGNni1Kv18iLAiEknvYZG+/Q7/WoNUKkcsIrRVGgNAyGA0I/xJSWNM1QEpDGLbgEEQtXFtGeR6+7ThxFeJ7m3NkLNOqxQ1Kkq5MxdrMeSDBMUsqydIJApmRiYpLJyXFXVyM3kR4qyrPzAMzSAefOnuPw4YP86u89xt/+zX/EnllXX7s58Rwl2DESodjFRNXyVhrZrkhlO4xf7xVV/8a2PwzI3aht4K1JxnX1ZyOv5c3PYefrtIv9Rmbr7/Nc4RZypp1yzO239AcJudOeJktTRimqjkqaP1z2Ex+suE3L/BDGBzW5E/CeJkqjqCybtWXX0TN3Iazyjo7zHnbim6qXb3f8Uf+HW18pE0JjjUXZSn5fKOLGGDITDNb6GJvQbnWoxzX6/YT/6bf+IU88/jS/+F//TX7lt/8VP/39xzGlwRpRTZg9TGkobYbyQODha7ll3F2Uzkuru9Ej8D0kFqkDpJSEUVApcAqMzdFaVx5WNeI4oCwNCEVRoQgISZGlKIFTTQx80jRD+x55lrs6OBSYkldfu0BeWLxA4umQxeUVWu0GRVHSaraZv3qFmelxBv0unXYdhXWG3WGIsY7vkqUDBBAGAUVe0uv12btnzNENo5CpibFKJVPy3IuvUq/5TE9NMegnKGUY9F0i2usntJtN0ixjrNMkjD1Kk+EHIRtraxzcvxdTlAijyIzBD2sYo5DCMkyGLC2vs7E+4OCBWVpjDdJuitSuztHaktCL6CdD6rUmL710mtWVDfbum8Iq55XWbESMjY+zsdZnZWWN6T0TKF9z5sx52mMt8mHJ0vwakxPjWApKLIcP72GwkdBb7/Gxjx6n1WkjlSSKQ4SQaM+j2YgxRY4feKgwJOkN+OojTxBHHs1GHa18pK8ZnxgjrsUEnuae+47iBx79fsLZc5cZG2/jVzYKzVaL+flFxsfGWFlcIRkOWV5axfd8nn32DWZmxolqIesbA7prPTrtAIFCBwIlQ948c5EDe8cxtkD6CukplBcQ6IhLF+eoN2IajTqTU+OO7pdaPOkR10J6wx6tdouiLHjy6ZMcPrSXwmREQYTUJUiDFS6BEkLQ7W4QhyFYQ55n1JpNsJZaFOP7mnotRApQyvlCFkXpVF+NAVPSbkbU2rXKj81w8pXTmELzwoun2bdviqCqW80zgxdohsMhSinA1ZUVRcHG2gplkWNMibGu5rXbW8cPnKy9KQSR59PuNMnLIWmaOuXbosAPfFZXVoniWkWPFHTGnaCN1h6+77O6uuoS1MKwsrpClg8ZDBPisMn8lSv4vsTYHD+ogdWsLK0DBbV6gPI0nleval/hxRffJMkG3HFwlv4wQ2qfKIxcoopleWmZKNL42ifPc7705e9w+NBeJifH8LVyPo6UGFOwurKKVh5WGbewg2HY77K4dJV+b8Df+TcnWfZn+dW//5soQG2nTTqG9K7k0N/igTbKvmCXCdPma7NGyIwYT94ptX/rODuVD+wSDbzG9hPb/n39a1TycKNQynUvsV0QpPquUriFkRF1jJtiJtu/jzH2OuGQUSetuHadpXCvUaPjpmjK5mey+vfboWNaOEn9rRqvikJ6HeXzHf5+2wVVRp5F9aYS177bzV47/RYIsfXSUlz3XaR4q8jKyDbe07i26KuUZvvT4qiXW9JH1/25He88btMyP4TxQaVlbsb7QXG8LgHbXJndgU7zTs9he5vv5ffYiS6zG1rmO3neSmOuXwlVFlkY1pdWuHT2PMNkndnZ/QRRjfn5VfbtP4D2NRvdZf6zv/FL/N2fvp/Zdp1Wu0E6SME6sQcv8DFlgRSGvChRnlcNGJu1JODEcARSVavuSoGVGCzCWqQAYS294QZRXMfkVGvjFmNzlHLyxv1eD9/3KQqnpFirRYDzZCtLixCKsjRkeYK1UKtFBBVlNC/c9+/1B4yNtej3BwwGQ9LM0Gk1sKJESotWmuEwdWiHKR36XEmse56PQJIXOSdfvsDS2iqf/tRHAMFwmBJFHsbA0uIql68scfzwUQaDAc+9/Brf+8m7kRLanXHyPEdIgacUSZqg/RCBwJiC0mRVbZ9ECU2eF/iB5snHX+Cj33MCz3dG6sJCWuYoqVlcWGFxcZX77ztBf+joqxYQ1ilpHjo0C4AX+Dz27ef5gR94kKtzVwn8gInJMfIiB2kQ0lIk0NvoEUSaerNFlmZcmb/Kvn17WFlaJc1S9uydpDRO3KNIclZX15jZO8nS0hKdTguLYHV13U1crODxJ1/iBz55P8+9cIof/MGHHOInqHywIEtzVlbWaLZDfC/AGuWSi6U1Hv3mywSR5Ps+fj8XLl3mYw89QD+5TBBM4gdgbMnzz7zO/fffTZo5JK0sS4JAs7S0htY+aytdvvPU63zPvYeIwpBhlnHk2Cwb6+s06g0Wry47Wf5GxHAwYG25z+zBSZAWKUJ63Q3iOGY4SHn+hTf4vu+/H4CN9Q1anRZ55iiUCEO3u4GnNVoHaB1gMVhbgBVkSUZQixn0eoRhSJEXzF1eYu/eabzACa90N3poFfP6qdM89NA9JMOhQ9qk52ibWnN1YZGZvdNb60NJkhLXIs6cPsvBg4dYW1lDKIgij6Iw1OoxcI1yaK3gwoVLKCk5eHA/WZa4+khjMEVJlueEYUBRUaabzSbdjT6tZoNud4NaIyZNCoIg5OTJc0yM15mcHKPIU4K4RZL0SNOMeq1NaROENc5TEuh2u9TiiLX1HlHok6YpcVRDKY0VdgudDsIAJTX9/gBrLWHknhGpLHmakqQpv/J73+L8SsL/+S/+OdN7p7ECrBSIW6Cz3Rg30jK3+9xtXb9dtLO9195so3wfxpO3SyxuZazYqa1RtL8b6ZbXtbUtG9xMoFwdtkWOSO6KaptR++0Uuz2vG5EgN0bZt0/uRmS1mxRSO+KcbyW2M5vMiN9p67rtovmdfovtMaqt4l08L+8sqtr197n85XZci9u0zA9hfFCRu814tyuTwI6F4a4g+poIyvbXpkTxKHpoWRXO70QdfSeiKbvZVt7Qqb3lONuQyFHt3awwfKdjb4kHWOukloUzmK3X6wRewNyF06yvrdJotKi3mswvzOMHAYiSn//5n+FfP/wCdTlg73gT33M1eGHkfN+yLEVWogymtGRZzrPPvoKwUG/U6PUHBEFIkg4rw+4CLZ29QVkWKCXp9XqENYcQnTl9nlazWSkuCvLc1fYEYUieZSjtIYVDKoIgpD8YUpZFNWGyhKGPF/j4gSZNU7IsQ0lNHDsTZqUVaZrSbrcI/ABjDGEUkCRDpHCVHsaW1GoReZahlU+e5XR7SNprLAAAIABJREFUfer1GsPBkKIw1OshExMdpJTUahG9Xh/P82g06jQbda7Or/L1b73IffccZHV1lf2ze51XY6X6KkRlzGolpSkQguozxXAwJKrFCCHIi4zxdosojqHaRoBDNYsCgcDTmih0AhP1RkyaJqRJxvmLl9mzZ5LFpVVarRZ5ntHptHnyqZcQ1hAGAWEUcebsWQLPw9MBZ968wMLiMpOT4/zRl7/F0SP78X2f06cu4PuKsYk21lqee/YkV64scvjwQSyWPHPopud51GqRo+L5Pncc3EejXqMWR1y4cJlaPcSUJX7gYUrL0uIKY+MdPE9UdFsnJvLs869z1/G91Gua6elxOp0ajVYdZE7o1xgMewghiIOa81rUukqy3DWK4xiBoN5o0KyHvPbaRY4eP8j0ngmkEkSRS9bDMHCG83nKI998hrW1hCNHZxn0+2jlE0YehhKlJLOzUwiBE6Gp11zCIZ1wj7GFW8gonU1EkuQMehtgLX4QgpSYonTJYFU/WqvXKIocP3BiQ3EcU6vXmJmZQGAry4QSayxRFGGs5Y+/+h2GgyGz+2cwRcmfPvokE2Nt2u2Gq9MrS554+mUO7N/L3JV54ijcUm4tCyd002w2sNby5tkLdNrNLesPhBOYcKvqwqmr5s4fz9XKSbTSiOo5mdmzhziOkEK4JDGIMKak1axTFAYokFLR6/VQFXIjlWJpcZV2q0WaOYVNpRReoLEWsjRDKIUQDr2TQpKkCUVZ8Ou//wj/6Euv8odPX+D3f/9f8tf/k18gbrQxwq38W2t3vcbvFlSuH1t26k9vTJSuE0jZ7K+r90aZUfMOxpObnvsu29nNWDGqrbcIkIxoe8eUYBTsI677a+vYsK188Rbhopspb94YW4umm1CguPb+W67LtgZGfe9NYZfNazTKJmE3cT0y+lb0bqdrP6qt3R10m7jK5munzW9B8MehxWDLa8/UZp319pcSI4RRbsf7GreRuw9hfBiQu+2UlncSb4d0mbJ830VQdhu7+a43bvOWjrNKWEd+9jaxo7BKhd6JihqTAUqCKi3l4pt89eGv0xwb58RHH8QKjTE+YSAZpn0W5hcJvDq//N/+Hf7Z3/ghJ2yAxQsDJILzZy8yNj5WIW85j3zzaR78nrvoTLS3BighoDSFm/xqn6TXQ2iFHwbVeOuQPa080ix1vmrCYmxVn2MNShiSrKzqiIxT2gpDkr5DBPqDoaOnWYFSTk0zzwpklUw637uCbq9HnueMjY3R7XbxPGfarj2nklmUOckwo9FqUGSufktJV/htjCVNBZbCUdR8HxCcPzvP8bsPgrWsb3TJU6eWePnyPHefOIJSirkrizz30ht87kc+4YyhiwxK6Pa7dMY65Bko7SNFiakMWdPhgCjQJGmBXyW4RZbiB22UhuXlRV577SwHZvcgrKDe8rFY2m2HpnhByHBQEAQBeeFqr/JkiBDwxJMvMH+1y0/95GcoihRBQLfXp9EIEELxxFMv8MD9dxHHEfkwxWDRocQiGGwMiWKf5eVVpqcmOXfuUuWXJmm22xgsQegQl6tzl9nYGHD0+GGGyRAlLb4fcObMBfbv28cLL77OiXsP4WkPKSsj+KJA+5KkN3DiGVoirCBLE4IwoSjqSOVhjWHu8hzTMxNOdbRWg2riTqVEKhAUpeKxbz/N93/f/WglEdqitV+tIxt63XW+/fjLaFnjMz/6MYoi5flnXuXOY4doNurkRYbva4yQKCFQVpCbksFwSCOOSdIh1lr+8EuP8ROf+yH8MGRtZZF6I8SP6lihULh71tOaLEkJohghYH19nUajgTGgPcnluTnGx8aJwoiiAExa1acKSmO4fHmefXsmiaKYsjQYa1lddQm8UoosdfeskK4/kFKSJgmrq2uEYUC73aLX7VGUhkYzIvB91ta6SCEIo8gtaBQJeZ5icX6BRWFZX11HSUUcR6wsrzAxM0mZOyEYIQ1lAUIYkrRPHDUp7ZA0NWgh8LSiKEukF9DvDanVQpSSPPfsSU6cOIYfapTSGAPnF1ZYWuvxD/7gOaSU/M7/9j+SZQm99TWmpqeZmT3kzCtKi6lqid00tUTuMr0TCIfO73LsuBG52z7m3CiMsltRinca70WCuBM75C1I14hxZbdo0Y1t7oTc3WrsGlHcVNax1yiiN4vtaN5O7Y8SW1GVEMgoJO7tYhNNfMv7u2hrt7+FGNHWTvflrQj+CCFAWExxbb52WxjlgxHvFLm7ndz9GcYHPbmD94ea+V7FTtTLG6mem2Iebxfvhkr5fhVom3KUHtm2jr2USJPzz//hr/PAvQ/w0Cc+y8pgyPrgAlFDEXoRZBG5tfzif/G3+b2/9Tmk0EilSLMetrCsrfYZJimtTpM4cgINjUbNJXWUlRqbQ9eMcYPAysoKE5MTFZKlqu9vnbiGEBgKJE6aPk8HFEVKre5qnRAwGCTEtYi1pUWiMGQwSBgfGyPNU6S0pFmKKS1KOqpcXqQEgcYYwaDv6GxSSi5cuMzs/j1QJCRJSlaUNBrNarW9IE0KpFCceuMi9959DOtbhMw5++ZVDu7fR5oNefjrz/Cp77uXer1GlhkuX1zkzqMH6fU3aNTraM8nyRKWllYcyhJ4eFpz9swCR44cYDDsUm/GFEWOtR6U7vrmxQCTp1ihCCKHeklr+OKXv8NPfv6HsMZN7k1pGKYZrXa9QvcUFieOURYlj3/7ee47cYzMZExNTVZog+Xsm+eJwhrLS6ssLa7RHm9x191HWFteY3FlhYMH9gKGtdUu4+NjKBVUFKscP1Ksrq7RqNcpqxXeS+cXOHhoL//uDx/h4w/cx9j4OP1hF6kN7bE2BkE2TJi/tMjk5DitdoONwQbK+sRxSFnmKCXo9XqOApi6WlGlwAs0JisYrq/RmmqTlZ4zsrWWIksJAp9hv08YRZTWTdzXl7oMugPGpsY4f/4KB+/Yj/Y1C1fmmJ3dy/rGBkII6rUa1pSY0vLwI09yx+wMZ87N84Uv/IB7REyJFB7WFCANpSmQMgBKfK0py5K0Ej/p9nrUmw2wbmGjyFOGwyHj4+OAqBDlgiCskxcJQhoCr0aWJejALXVYo6pFCeiuLdJsNhkMEsLAJeB5lmGQTE1PoaRgYW6Zhx95hv/oZ36UQX9AXIvBGgw5QsLS8ip/+vUX+Ys//knq9VplOZKS5TlXrixwYM80SEkYR5gShLQYU2CtE8w5f/YKr52+wI999uNVHV+OH0YM+2mF7IEVKUp5rFxdc6ikNdTCgKIosRiQAs/zyZMEPwjIS/gvf+frDNICYw2eF1CvN/id3/0nvPKNf8f0vgPEjRbdtCRqtGi068RRfF0ftpu+dbcj0HuZgL1XsesxoWJj3IrK4ncjNhMkY6wT5BqBFe0mSRulsrk9RqlqbqqGbhrCb+0/ijZaoXAj9D2uCyPemtTdGG+nsnnjOWzGdkSrLG9+N75bquZ7M2e/gYG0bf70wZ3x/fmM27TMD2F80GmZ8P4lLO9J7ICg7ZbyeGO8HwXy7zZu1plvljIjFaUp+NhH7yXLS1bWeuzZN8nFixdo1FsEQZ28MFjgkw89yH/1G/+Cn/u0qyNDwMZaj68++hxplrOwsMS5C3McOrS3ooOJanAVW/VJSmmUcmImvu9TlI72ZkxJUZYV5YWKt2KRUuJ5Tj7d0z5JkjDoD2k062RpTlwhRHEtpj8cEIUBpSlIkoQwCtDK1QIGgds3zwtarRaDZMhwOKTdaaKUYn19A6UUYRhU6oW5UzaMItIsZzhMaLUaCCVIkj5xWCcvSuJawInjRwCL73lIqZmcGmd9Y4NOp4kxhjTNyIucsbG2W+G1lrzISQYFi4srdDpNsspP75lnT3L69GX27p3E+YVFFIWh1x8SRyFFUfDmuSscPXKA0hjKssQPfPzAuzY5EdeEIKRSnD17iXoc4AUeYeQUK4fDAa12kxdfOsWDD97H1auLHDq0jyD0eeWV0xw/fgcbG13GJ8ZYXd1gOEz46sNPY0zO5FSHvHST/yAMURXi1mjUkUpw4q7DnD83x+uvn0NrmJ2dcWI4SjqVyCTlW4+9yOEj+zBlySNff4bDh/fxyDee4MCBPU7dUQhefvkUnXbD1V5KSTLIELYkCH2s1AhbUX5wEyLteVvffX1jg9XlLnEc8+a5i0ihUEoS1wLqjbpDB5V24gxaY4whSVMO7J9hcnqCKHS1YKqaTUmpSJMEa8uKMuiRFzllkSOVsyzwfHfPK+U5HzapsNYQhj5ZXpAkLgnV2kMq5RQ5tQArEVKQJkM8L8CWbmKqpMIP3LZFUeL5Pr7v8cJLrzE9M0UUhZiyIIp87jwyg5TQ7W6QpkM21nsIaQkCnzCMOHLHLLU4dHYbWleUd2i3GlxdWKIz1qE0BqU0yXBImqV42okeLC9vMH91lbuPH0QIiKKINM25enWFr3ztabA5ExMdR0/WPvVGHe1rkmGCUpJ+XnB2fpW/+U+/yRefvsDM/Z8m7Rzl85//An/5L/8sP/WTn+eTn/g4P/4XfoRa4CFNyuUrV5iYmmF8aprO2Lj7zd/BxHS3veoHKy1ysfsx4a20wg9CbPmIV7TFUae3G3rlKJXNUXENWb1W5rCjUJndbF9U1MqbNu0239xgp5rDW9lme9vbXjvtu5syv/f/NthEQSsqMtvmE7fjAxW31TI/hHE7uXuXcQvJ3a5NYT9MyV3VMRspUVojA01rYoKNYcKbrz/B9NghxtqHSFODjCSRHzE23uFnfvoLvLxU8NWvfom7ZmfwtM/pM5c5fucsDz10Dwf2T1c1T3arJsUYh6BhJRfOXqa0uVMrLCrjaEpXc6akW+UXIKzAGmcaLISkKCxCaoIgxNM+CIVF8JWvPonnaWpxjBWwsLBEvVEjDAK0V3nmmZxev0cYRa59HDJRq8UMBn2XKOaGuFZ3AhO5M5jOS1ebqZSgVvdBFE4VUlnW1wZusu67xCAKQ/r9AVJCmiUEgWJ9fY24FlUDnyAIAooiRwicumbQYGZmkqeffZlDB/dv2UkcO3rYqWOaEmsV5y7MMTk9RVHmeJ7kxN3HnCy9UnztG08wMzWGH/qURUIyHCIQKC0rk3PLnpkJ2uNtarUIKSRZnhEEPp7W7NkzQVkW7N035RJ2JdgzPUmaZZw7P8fkeIfA90nSlLWNDe49cZg0zXj4a89w4q47+f+++CiHD+3j8sUrtDo1d72kZN/+aeo1j/X1DcbH23TX16nHEdoX+F5ALQq4fGmRmZkpGrWAc+cvsXfPBEtLq7RaTRbmlpkYb3HqzDn2zIwjZchXvvIdDt+xl7QYILWmzHKG/QF+GIGUzF256o7vO/P6VrOF73tMz+4hTRLC0CfwJVoHlIXhzJnzfPuJl7nvnmMgNX7g4/maosxpdRrEcYiUgtIUrK6s02hErK2torVCSd8lclJhcWJBZekWFYLImdq71XjXdxRlWdmJOF9IawTWFlhbIIRmOBhw+o0L1MOIIPTobXTxfUmWZZVQjFOUlVJy5PB+PD9w/otZitAWpV0NrPY1vV6XJ59+nTvv3IdSihdfep2nnjrFsWMHcHL+YK1xz0QQYK0gSRPCwK9sBgzGGHrdPoEfsrrSY3bPJNpz9YFFURJFMVEQc/jQPibGOwRhDazkkeff4IvfeY3f+H+eYVXNUDv0IOHsvRz++Gf5i1/4HH/h81/gnnvuJfQ8tC059dpJxqZm+PX//pf5K3/px3njlWdRcYtGe4zpffsI4rqjq2O3jM5vJf48JHdCCqx1VOQPUvxZJXc3onXb44OW3JnSXBujd1Fz+EFK7tRm2cWIGtTb8cGI28ndhzA+DMndd8M7butQxk18dmtjcCviJO81vXRkIfsurtOtGpxv7jOy862ukTTuvUJIUJpGPaawHoO1ZWoexHHI+saQNBmQFwWXL1+h3WrTo8XK5dPsn2hy8fIVPvqR42ilKIocY0wlFOISI2EdNeeVl95Aa02n03BKgEJUtgebdXdOxlxpBaVFKpwcvZQoz2OrIl642oYsy9m/b5p6PcYI0Nqj3W45c+gsBwT9fkKjWUNKj42NAWEYoX1NkReoCtWzFnzPRwjIi5wgCOn1B1tIY1EhZFmFPlpTEEc1/vgr3+TYnfsxpsCrZN2Vglrd1e5JISgKS7+XkBc5vq8ZDAYEvk9RFiRpQZalTE+NEVQKgmOdMfIiI88zEALtOV8yZyPhJrhp5pRErbVEgRNU2Zw6CSHQ2qMwJb1un8WFJZrtFl7gMRgM8X0frRV5liKlk8NWQvDMMy+zZ+80URzxxT9+lIlOk6NHDzM/v8gTT59kdt8k9913lJdfeYNmo46wgunpCQ4f3ENZloxXNZZFYShLw8LCPEpLtOdz7vwVrLGMjbUohSDPCsY6HbSSDLOEVqPG9NQ44+NjTE6OUxQl//5PHud7Pnqc+flFapVAy+R4m1oUI6VheWmdq0trTE5NOANwLI1GAy0t1uCEe4oc31OkWcba6jqtVoOri47maK3l0uV57jtxBASups6UeNoJeeSZs+tASFaWV/nTR59HGcPBg/tIhglae/R6XYJQUxYlSZoQBKGjY1W67MYayjyr6rsUAlHdI6qqiStAGLCKQb/PM8+/wdHD+/ED3xGUjakULEN6vQFxXKPb7aK182J0KKBCqRAhPMocwjCm1Wyzd0+HlZUVEKCEZtDLmJkZp9/tobWHEBCHHqYsqTcaTrTFFHieR7/fx1poNJr0NoZcXVphaqpDo9VAaYXvewyHQy5dnOfK8jpPnZ3nv/v9J/hnf/wkZ5Yyfv0f/K88cO/3sLFyhS98/vNbcu1RGBH4IWVh8LXPl7/6NQ4eOES91eTHPvUQ8wuXOH3uLHuO3MOR43dRVt6Vu+33RoqG7Laf3HWP+t7ETqyQWxZfsfCOEjvhKO7Xjw/XPnM12qP3u2ZFVL0l34oeXgPQXJ/9XiZ3oxYtN9/ZEjoZFdsgsi3xGJx6rzGbPoZi5OXcFFTZMXaxzTsZ+6+17yi4b3cKuwmppLsHdkpEN4VRuPZsKXmDMMp2lZbb8YGK24IqH8L4MNTcwXev7m6TX7+9xmy3x76VxOq9iFED1PuV3JmyvK6e5MYrokuBEYJcgzAF5BlW10iXz/LUIw8Txi0+/qmf4OLiOSbGJtE6xJSCIs/JypS/8lf/Ov/27/4EG90uzWYLsOR5gee7OsU8S9Dap8wtj3zzWX74059EB5AmKX4QbClASuk8wsqyRCnNoNdFeZKyLAmjGCF8rC2QwlE4y7KsFCevXRetFbY0GFvQ7/WIoogwqpFmAwSKNMlQSpIXKV7l26e0ZtDv0x8MCAOfMAorcQs3efd9jVYKiXAKmlozTDYQhDz86BP88KcexCGBgka9TpIO8ALn9+XEWuDp505y17EDWGtoNGoUpVNX9MM6w2HijLs9Xf22ClFRUfOixFeW3AiK0mJLgycVpQTf89zvWy1qdNd7NFs18jynLKE76NJsNEh7KcrXxM06wlqSZIhWjuZqjWEwyKnHMckwYZilNFsNlhdXkFIxNj5GnuacPXuJZitmz94ppJSceeMC09PTzM8v0BlrIoSh0W7g+yGDwRBhLVHsPNayEnwVMBj0iKOAfpIgSsnK8jqzB2YQWrBweYE9e2coCvfsPvvsKxw+NEt7rMFg0CdPDaU0TIxPsr60hNQFvV7CwTvvJBkM3QKCVCSDAVpZisJy5coSWZIwu2+aoFbj4T99ks/+8CewwnD50gIHD866xQ2l6HW7+L6HkJIiy9Geh9YeFy5cJooCOmNtTCnIBkP8UCGUxdMBCEOSDbDGJS7DYUaz2aIwhfNK7PbIi5R2q46QmizNqdVqpEkK0uJ5uEUAG1fKsX2nOupruhs9/MAnCDRJkjpfqEpox5gc6QWVv12BUE5tcnPClQyGFFlOGHtYK/j6o89w34kTtNoxX37426x3B3z2Uw/QboWEcQ2EhxCWLBniBREChy5KqUmGOcYUBKFPlqfuGcPws7/xx+R5yd//tf+BE/fdxZNPvsLf+3u/xv/+u/8zQdDkt//Jv+L5J7/M//Lbv82e2T1YIC8KfK3pdQc0mmMkWYn2PUw5ZO3ySUplufsjD7E2FISV+qfWsmJOvBWNeYuK5bZ+cfOzD2rN3U5JyndrQXRU7dd2mf+b1Y1tfSbsW4RKdhIlGVUL9k5r7kZdt3cv9OLqAYyxVZ34u2v/7Y4LO9fmjdy3KlXYKSPbbc2dU7kUmB1q/G4Lo3y447agyocwPizJHVxbGfxu3y+jFJ92Hjjddtef5/Xqle/Xd7ix/Z0Kx0dNYka9t/X/HbwAR8WmZ5QylvOn3uTC2XMcv+8wUS3ijTdOs3fvEcIwIjGGQBj+47/2i/xf/83n0F6AtYaiyPGqZCXPCjAF/X6fKIoIotjZGkgfqRWlzRFISmtQSiCtcAkaOaCQUnHq9fPcccdBLLlD+4qCKHT1Q5vfWylVjc0SYwoKU4IxCAnZMMPzPNLMJXdRFCFRbKx3CSOHtAjhkSRDosghN1ni1DGdxHxBkqYMkyHNupOdT9MU3/NQSpEOE1559XXuvec4Ya3B1blVao0AoYeOfmc0Qa0FRQa2JElSl0AoDy9QrHfXabY7Tvq+MAh8/uQrj/G5H/0EZZ65Y2Q5r586x/d+8kGyfECRl2RZSa0Ws7a2wdJClz2zU/ieR5oVhL5mfX0DPwppNEL6/S7n5y5z4tgx+ut9arUGwvNAlpiypMxLBILnnjvJJz/5IMNsiLEGLRWvv3qWI0cOsrK8yszeadZX13n51TN85P67uTK/yPG7j5DlCXmasHR1lT3T06AEVlpHcy0MeZJhDfSTLlEUU6/VeOyx5/i+738IKUuG/ZTXXn2TE/cc5crcFdbXB9xz/wmstZRlyqPfepo90+Pce+JOTJGRpilRvV5J9yvSJHV+hBJA8LWvP8EPf+bjDAYDotCjMAIlAk69fob9B8YpS4+lxXUOHprG2AGagF6/z9pKxoULV7n7vn0oJStbgBhjDM+/cor77zuGoCTw3fcq0gztKYQSDJOMuNYg7fXwQk2v30f7IXFcp8yH9HopcVzD8yRZ0ieKY/LcsrHe543TF3nowburiZ/BGIvFICyVF5ysRDMAmyCkJC9KtPawpaQ0pfPD891zl2UFFqeQuriwwmOPv8KBvdPs2TOOsZbJyTGUhixN8YOIPMuZm7vK7OwBkmydqKbprg/50p+8xPd97x10OnU8VeNnf+sP+bVf/ltYq7jrvkMUJqO0mo31N4nCDq3GnZRWIVTB+uKQuCHojDUctToTFEGAFDl5f4N0o6TV7DC/fI4Dh+/Ai0Onyrqt+zK3MPndPiG/cb/tn333/b1uHjfry3dKrm7tAJtt3nxCvqnWuLk4sBsfuBvjVv3wPihtb4/NpMuUZrTP3Xfpttlp0eK99L6jWjAZNU+6nb79hxG3BVU+hPGhoGVWccs0k/f4uLsXRxn1+a2jZe8kboWqMZI6utP53WJCWpEfsWVJu9PBDwLOnH6FuUsXOHzoAI1ancjzsSohy3r8ws//FK+vWP7p7/1bPv2RI86fKklIkoSr82t845svcOjAPpqtDsZIBoM+YRi4mj9ToqXnViMrmqYpC0wp0doDBHEcEASOluk8zbyKAuiQHqWdVYHWGrZ5HGpPk2UZvu8783DfIwhDbFm68+gNKw++GoFfBxTWyErW3UN7TsjCIYwlcVzbQoaDICDLcwZJ6qimrSZCSqwQhJGoEL+APLeEYYRQkOcJeZoSRcGWDYRDnQRlUSClE+6w1qC1ZWKi41C1JCWsUE4phaPtGUutFtPvD3jj1DmEKvFD8AKoN2tg4fmXXqPb67NnzwTCwuzeWfK0ZDBIEBKXXJcFgeejtEJJSRSH+IHm1JvnGO+0EFimp6aQUtDt9vA8zcL8Ig88cBcnXz3Dm+fmOXJ4FiEgCHzarRYry2u8cfocU5PjjuRkHSI7d3medrtFq9nEmJLJqTaep1BSsbi4QqvZQGIZDofM7p8miAKUlkgJhw7sZ2Ksw8WLc5y/cJnJiXHystiizgaB72hTwlLkJceOHXbfLfQpc8OV+UWajRb2/2fvvaMtu+77vs8up97+ep+OMhAoACJIgs1qlhwVU8WRbcUlseN/7BU7K4rtxF5ZTixZtmV7yYnllZU4tiLFtqxItgol0yRFkRAKSYDoIDAABtPL6+XWU/fOH/u+N29mHgZvUEiO8n5YF2/Wu+fus8+55+29v/v3/X2/NqfZrOAHARaLHzifOy9qID24urjG8RMLjIxW8QKfMA7d86QkI7UacRQNs9EeUjtV00GSYIXAD0KncmkNQrnaw9APKPPSUY2RmLLAG9oqCKkRwlkFBJ7AD0OXkRXQ7fQIgwCphKNwCjH0SiwpsmxIUxYopRkM+gRhQK/TxfdCkiRHa0ctLcuSKI4IfY9XXj/L/fcfp9Wqk6YDtNasrW/i+z69fp8vPf4c9927AAik8InCmHvvnaXWqPFn/9ffoxi5h62NddbbqwSex/zCHNPTM/hBxObaOhvrPZqNSX7uH/8TPvqxhxmbihFBgQ4k7e4WuSlpehpfWBaXLuOHAV6omZqbxm7TA+31NLzbGbquB0pv/d63ELZ7y7H8vRJI2aFPvk0f7K6+2J3/7T/26zv3TuL9bPumRu3Qg/Qt3v5mxO7v7z2tuRsC/u3n7UAY5Q9fHNTc3YFxAO72PocYLoKcUAfu5w0zvSnL66qnr2XN9mr57YfK/V7ffo7b65j9ZAutMW4BuEf728Bpvyul7RaEUiAE1UaN6akJLl+9ysUL5+msO3EMaXwGWUCaGEZb43zXD3yKn/jvfo6vvHKeH/jQCcLQp9aoMDfbIgiUq6GzBZU4RkqBtSVCWCfxLxVFaYYgQwAeV68sUqlW8HwPY0qU57kdZqlASLSnUVqDdWqeUgqyPEMr5ZQTwdXVSYmUTi2xLN19skbwxJcHpsaNAAAgAElEQVRf5PDhKdKiJIwUUkKSDoijgE6vzdPPvMKJ40cwFtIs2/l+EBI/CBBD9UepPDxP0+8PiKoRw1O7jJ0fYE0JwiCsIc8zwjhCSEWv18PTakj3tJRFhhUSz5O0Wk7+3tOKxaUVavUKUeyMwnvdgbsHVmCswdea48eOIYQk9CPy3PC1Z17g4Q9+G2NjI/R7PaqVChfPXSUIfbbaHWccLwWUhn6374B1WTglyXzA5MQExlqiyNVIDfoDjDGMjI7w+49+jWYj5MTxw5w7d4Wnnn2Vbzt5lK3NLeJKTLfXZ35u2ol1lIZHH/saRw7PMzExhhCS5cVltNaoIf20KC1nz1xiYnyEqBLh+ZJmy9EbwdWEWOMyWE98+QU+9PAH8PyAMA5QQtFud3jt9bM7aqRKSdbWNohjZx9x8cJV5hZmsRZ3j8kxFifJn+ZcurhEENdQnqXZagxrJhNHg5QKY53oQRyEdLsd4krk1DCVprQuK+L7HufPX2FlaZ1avYbve1hjyZNsWLvnvLA8rdncbFOUzouxyHOyJCHLUqq1Bsa6v1ff97FAr9emyJ0ip9Yuu6yHoFIMs3meFhS5wfM9kn6KVhpjU6IoxtO+E9jxJItLq0yMDQG1VggUZWl4/sXXOHJ4jpP3HEb7FoGH7znw+6m/9+vEhx7mr/7V/5qRkUk+9WM/zN33HubooXm63ZRO12UgK+EIc3NH+PKTX+UjH/0w07NTCKs5f2YRYWOqcQvfi1g8/RJLVy8zOTfPyOQ4cd3RlN3iUqCGWaTtEh65bRhtt8eyXUJXtwBwNx5zJ4C768b+2wG1Q5N4xM0bmvsJu+unvfGX+4x3A8CEvDWQ3RPQ7HoO3nPUZd9bQLmfcopbzfFCbmfV7L68HPdqaYemrK7VV8prFYYHgO4PaRyAuzswDsDdzefYHVJKTFnuXXh9g9jKtX+/s/269/La3nFbw2u6ZVbvNjN4YrhgsMLVlB0+epQsSajENVZW1llZWqY5OUMlruIpgedLPv7hD7G43uX//M3H+K6T44RhQBT5eNp52SmlMCX0eh22tjYp88Itwk2JVN7OyksKxeXLizQaNS5cuMLWZofWSANrrJNsl87DDWGH4iluke3UDUvAUhZmR4hEKkl/MCAIAkfhtBAGmlo9olKtkecD8jwnDKJhNs/j0Pwh0jShKEsajTpCCAI/YDBIhn102cVBkqGVIIwCsjSj308ocuNqA43B9wOSdIAe2kIIobBCIoXdEXLJkj5aSdIMLBalFEEQUZbFUAnUEobOQ/CxL7/I5HiL1bUNfF8zPT1Jv5fx4kunOHPmMgvzcywvLzI1PYEf+ERRCFi+8tUXGRtv0BptobQiCkLSJEVpTRSFO/dKDxf+prR02m0HEjyPuBJRliULsxNIaYb1j4bJ8SaTE2NgCqTS1Gp1tFaY0tDv95mdmcRaZ3D7/HOvcO7CInedOMzq6jrnz11mfGKc8fFRrDEEoY8pC/I8d/+2FlvCmdPnGRlpMD8/RaVWQUpBmvR3sqVjIy2kksPfO/PybSqe20gAU1o+/Z8e44H7j9PvpwRByNrKJhfOL1OvV6lUXTbMWsug3yMMI3qdjlO0w1KkGVEcYErD2uoG1rrazDwvsAYuX17iq0+/wV3H5oaWHCVhFJLnBXlROPP6MicIIoLAp8hzwsAZz3taob2QLEtZXVkdfmegJPT6CbVaHVPaXTYGgiRJKYffVzJwgi5CSCfaoi3WXKPZ+b7H/MwUX/naSzTrVSpxBYQkikJazZpT5PR98iLDlJaiLPnRn/1NfvD7vpuPffjD1OsVigyazSqNeoQEqrUWAsnVpUVir8FTX3mGhx7+DhCGajXmV375V3n4oUdo1GtUYp+tzRUWFy9w8v4PUGuOUeKEOcqydGODcMvN3aPUjRtv+83O3XjMnQDu3k0b29m39yy+keDubQDanm1fJ+ixzxPdRrwf2cLb/a7tLtaQ++w7B3d7iw0dQLo/7HEA7u7AOAB3N59jO4qyRCuFMeam9+CbB+62lTxvl3K5v8bfO3C3c/w2sLOAH6O0T6NRJwqrnL94mWa1zXrSI64YVpdPs7WZUq3GfOITH+ZP/PgP82f/h1/g1x57kx//yF1gJHlu8fxo2JcCLQW1WpWt9qrbUZQ+UnkkSYKUMDE+ijGWPC0ZaY2ifInWGoEgSTK0rxn0BgRhMCwyx8n5b/vw7FDfACHwfVcT6LICJSMjLbTnPlQWgjCouKyFDjFGUJYFZ89eIkkzwiBgfWMLKSEIA/wgYGOzTRgGBFHMYNAnSYeCE0XMMy+8yuRkhSgOwLoMi8RlENOsQHkBRZEOvcEUed4HDGE8ghAw6CcEfkSRZXi+JkkzhBQEQUirVqdarXD+4mWOHF6gLEvyPKVWC7nv/hNIJZgYa1CUJX4YYcqSPC+Ym2lS2IJqvYL2PNJByuLVJRqNOspzdMK8KCiLHPDptPtcvnR1mPS1vPzy61TiiLgS43lOlbNRr5OmGa3RJi+88AoLC7NsdToIYzl35gLdTo9Wq7HjQ7e+ss6HH/52sJLlxXXm5hYYJD2uXlkmjkOXVVIOACtPYQyYXBDHHo9/5VkOH551fc9S1HCzAGOx1tX3dTpdKtUK1lhefuU1JifHKIuMMIpRysPmJWNjdaJKjV53gKcj8kHB7PQoQSgp8xLPC8iLgq31LZqNBkEQEGgPFShnaSAFST+js9EhrMSsLq9hjWGiNUrseVy6sMj8/DTKkxSmRHnaZfnKDGssnueDKSjzDGOtE84JAy5dXOb8hSs0GzXiSoSU0gmbCIlUGsu2sqsmSTKCMHRZQSPxtMcbb5zlq8+8xN13HUIq2NrqoaSmKArCyCMZlJx67Tz1SkwY+tdEWoQlCDzWNzaoVRv8xhPP89P//ll+4ed/mo88/HH+4d/7B0yMNKnFTc6fO82Lzz/NfffdR7U6glI+y6tLjDbm+Xs//bP88I/8ILV6TFbkzI5VmJxo0utc4uWX/4Ao3uLQPQ8RVpqUeBjrNhOMsEhwmTsERtw8Fh2Au1u3cQDu3tv4VgB3xrpNJblDrX0X4E7evDY4AHd/+ONALfMOjDtJUGU73kvlzHc6Ke6X4ritvHmrPt8uffJ2RFluJZCy38/upoM4Gf13rgm3/UmJ+x6tMaxeucgbzz1HreIxOjZCu1hnbuYkSWKRWpAWm3h+ky998Ul+5Vd/nZ/5yYeZG2s64/SydJLwAgaD7rB2yqMsnRKm7/tOjEVKfut3HuXw7BQf+tD9FGXhbACMpCgMv/rrn+NHP/Vx4rhOXqROdVI4YOeyGT4SS4bCI6Xf3iSIAmQwApTuyqwAjLM68OLh/TLkWY6QLjOSZQUba11GRkPyrMQCQeCAY24MoR86I+x+yvrGJvNzM6TpADmU2WbIitXKLbY/83uP892ffBiweNqSZwPXd69KMsioNeokgx6BH1AWxY4q5sb6JmvL68wdWkBoj3q9Rntzw51ACmqNOkVpsCUUeTE0fzbOpiLLyPOCJCtoNpv0en08JUAIlPaQ2qlvCqEQVrC5sUUYRKyvbzA+PsKpU2/SaFSYX5jBMLR4yEouXVpkbLzJ5OTIjsdUkqZEUcibp86xuLLO6maH7/nOh5Gl5dyFyxw/foirV1c4cmyBNOtjS4m1krW1NeYWxrGwQweNo5itjT6Li8scOT6DNZa4UmVpcQVkyeREk+WlVXzPx/MisJLLl5fwfMn09DheEAA4X0WtSfo94kqFJMkR0mdrq0ejrvBDzfLSCq1Wi9/5zBN88pEHaLXqCCUQUlOWOVp7QzsDj6WlZSYnxkmTlLPnL3Ls6CGQAt9zCqyVWhUY+rMhSYscrRWe1Lx26jx33XOUfm8DpRTac3WhwkjSJOcLX3qaj3z424kCp9wXxAFF4VRBsY6iXOYFRZYT1WJ67QEXLlzhzPlLfPg77qFWjxAmZGllmbGxBlKGSG3pdro06nWytCAvM9bX25w7t8gjH/l2fuWLz/KrXz7Lb//KL5JmOYuLKwR+QFGUVKsRYBAE/J2/89P8/X/4dzAipFqrYWWJMgErK4v4VcXoSBNbWpL1Nk8/9VmOnzzB/JF7KNQEQmQ3Dy7WjS5GWJRQe45926PwXsIoO6JK+5wS9hJpeT/VMveaQeyeQHQf9d1CIbmhv9bVAe+lfnk7sS2sstOssfu+p9siHrv7IG8xb1mzU/K177Z3x27BEzv0Ut3rnr7b2O/1bMd2X29XCfv6k7rr2b0LIbVkW5n0+mOvqchuz+/qG6RQfhDf+nGglnkHxgG4u/PA3V6qVPtp+1sJ3CkpKYoCaw3KWnSR8/Lzz5DkKf3BKqMj88Rhg6PHDrO6dol+DkVRUpaWX/jff5GLF87zyz/1A07mXDnBEqm2lVSdcbkQgjTv4XsBWV4QhxXyrMDzJVeuLhJHEVFcodcdsL62zuTUKGFQwYpyJytrrMXznER8mQ0QYRXPZGysLtMaG8OIACEZZvLc4hsERVaQFZmjxRkn7hGEzvQ6jGKMSRBout0ecSWkLAvU9oJfyqGJt1PuLIuCNBkQBE6SfjAYUA5tD7a22kxNTlKagixtkwy6KCUJKuNYI4Z1kqWjyBUF1hjiSkQySOm2u0zPTDNIMzzfp9ttE/oBYdjAWEMv6VCNaxRFSb8/AKBSqbKxukGjWUcqycryKmMTY2xtrBFGES99/TQPPHj3Tg0hFtIk4ytPvkgUBzzwwL0g3FMQxRFJ0kdLD62dcqirpzRIQGtNOkiI4ojSQJblRFGIsc5A+9VX32B1dZOPPvIQS4vLNMcqeDqi18nY2Njg+F0LFEXGtsKfFIoiLRkMBjz30is89NBJ4jgmHWQIaRj0u8M6Ts2F80tMTk2wtLTC4SPTdLtd6s0WWOcP2N5qMzra4vz5K6RJxszsDAJBGEuUlmANRWGQUpH0e3iexgsDTCkQGErjBFvKwoGESjWmyFOXHYud8I5SPk7xssRSggVPB9jhpogtDc88+xp3332YKJR4vgahEBg6mz0+/R+/zMkTh1ha3WJ+boRjxxfI8pRqvYaSmrW1dWqNKgrJ0uIyY5PjSOGomVk6YGS0wWDQI08VfuBqOPu9jLge0233nNiQVvihR5458aJ7/9zP8Fv/7tc4emwBJSWmNPS6KeOTEwgth0q18OgXn+CDD3+Y0BeEUZ1+0sOIFC8aI+l3scUW9dDn/JkLvHb6JR74tvs5dPQEeCGZDDBlcfPgcgDu3O++SeDuRlC30+w7AHfb6pwA6haZoTsF3O33erbjmwnuDiDdQdwYB2qZd2DcSbTMnXgbSuJ2bIuisGuye6tC8VsWIt9Gpmyvz+1H/GQ/fbhW3G+/Ib5/u/t/3b+Hwirbi+zbanP4Mtv0TylBaIz2mJw/xPjMHNVqDVsqLp6/QL/bJRskTE1PU4krrG1u8NBDD/Bn/vx/wS//pxf52V/+DJ/60CEGSR8pNI77J3aMZAuTDpUDr/W0NCVxHBMMqYZhGFCvVQhin9IYLAaltBOcEMIJwgwzZ0JKBu021WoVVDD09ynodduEUUSZWzCCM2fO0+t1iSsenh/g+a5GT/uKNEuQQtJu93jsiRe5+66jSKnBuHMURblTU7W0vEKapM7TTkCnPUBKSRj6RFEEwmLttuR5QVkWhFGI9mKKvKQYZuvKwnD27AWmJidIBs7vzCBcXZ4EY0uiKAYsjz76PL3ugNHxGlppJ0wjBM899yrVOOSlU68yPT1KUaQ0R6pYWeL7IVEUceXqMrPTEwigNG4jwPd9fF8yPj6KH3qEke+Mzw0oKRgMUsCSFylCGKI4QmvF2soa589d4uqVJSYnxxFaDGmpkJU54xOjjI+3kELS63RptFx/AZZX1mm1WhR5zmCQ4IfhcOHpMqhR5NMaaYIET7FjCWGt4PSZCxw6tEAYRbRG6uRFgudLOu0+YRg64K0UwvNoNuqEkU8lCrGmxAiBkpo8L9Ceh5Tg+QqlJe2tNgKB9l3NZJYVnDlzmaeefo177p6n3+/jeZrVlTVefPk1srSg1Wo4tdU8R3mSPC34zOeeYG52gmww4OjxQ4Shj5Q42w4pydMET/skvT5KK+bnp3jiq68xOz2G52lOnXoDKQxjY2MU6YDN9U0uXl7mqa+9wtz0KHE1IowD8rygKJxSrZAGrRWDfoYfeKytrJMXBdVqyKvnL/Pf/F9P8KN/6W/ypc9/iQ996ENMzVbZ6qwxPjmC0JbNrVV+63d+nyMnjiEUzB8+jFASgcTzAvqDHufOvIZfqbO5voRXbvLMk09QqzT54CcfZGTyKKWoYqxEkGCFt0Mx2w5jS1dfZN0YI7Wrid3eqBHiGoFsW2jF2mst7Kadb793a/GKPX53m+Ph7cTunhhj3nIe2Ff5gpA39dUZTYtr5t03XL98G8rmW723+76/XeyCMjuvW2HN28E7e9IMb2rvPaalXnem66/HGPuWz9juZ/K2RG12P5SW60zDEWBLixzWre9+7RZFOYiDuDEOau7uwLgTwV05NKzeF2gS4jpw93ZRFMVOjco7Mft+v8IOJ/NvZJ/e7hz2HYC7nc/u+reyJaVix2+uOjJJtVlnfHqSM2+exhg4d+ZNvCDACsnU9AxeGPDgB76dH/qh7+Wv/YNfgrLHfUemKYsS5bnJS0qJVgHWuNqrshxmCqXGlIIyH/ra4XaX8yznyS+/yPHjh8jSFISgKIqhObpCojBWUIk8kkEPEQRI64RXNjY2CYMApZ0sfaNZZ2yshVTKGbgOd0vzPMcPBP1Oj8APMXnB5vomYeCDdRleT3so7ZFlxdDqAarVCtZawthHKUmnO3Ay/BaCOKTf61HkljQpqFablEMK35UrS7SaNTzt0eslLtMyNHaOqg1MWRJ4HskgxQtCirzkxVdP0el2mJ+eRitNlmeURU6/36XRqDA3M4bWGs/3UdrDFA5cSilo1WsuCzTSYpAkXLp8lTgKaTRqCKtJBgOCQGKtASMpi4LHHnuOI4dnh55YliwrEUMl0dGJUYSS7vPa0W97W22ee+FVJkZbRHGIFZZ6q44ZJnPKsqTVdDTI3//CUxw5Oo+SAiussx/wNJVKlX7Sx/M17Y0NB1q8kCCIaDbrCG25evUqfhA6GwRj8b0AtgGxUqwur+D7HmEQcO78JR778oscnpvG9wKefebrTI6PsLa6QhBV3WaBcjYQUaVCURj8wGNkpM7MTJNB0uXpZ7/OWKvOm29eptfJefChu1HaLbmcQqdFWMNIs0EUhUShRomU9ZVFhBUEYQTWuppAC416hZm5cRqjde69Z4E4joijmPbWBpVKiNIeZZFQq9Wo16qcOnWBu+6ax/MknW6HIIrJ0i0qcY0wdMbyp1+/QlwJkHi89PKb/NP/9BJ/9Cf/Ct/9Rz6BNTA3N8Ug2SKqVpmcnMUPYqxVGCMZ9AZMTY4wPtbg3JnTtJpVaq0ag17C8tUlFmbn6S9eILQDXnvhST7wyCPMftsHEXkd6ytKlWJFiTYeZmds2kX/G2bupJDXe20puXPYXuPVjeBu9zHfquDu2oL9HY7Ae6S7xHZ2ye7+3a4N0Hd2JtfOPo/b6xzvkiV6222/31Sm7XPuVcf5vvZhV4b6oG7uIG4nDsDdHRh3IrhTSu0IX9wq3gm421nsvxs6xG3GfgRSpHQLFjFUIvxDBe4wlMOGPKkZFAYweFpyZGEBgWCk1eDs2XO0kwFFaTBAoH2Wlq/wp/70j+CNzPBXfvaXmW0qmqGHUpIsy/B0OHwGIBn0CQKfLC3J0pzP/97TzM+NcerUmwy6A8YmRpidmXLy8NI9N57nOa8+axDWWTr0ttbxPEVmBZ5ytXlh6ON5TqTFmJIgGPrPaUWWZiBc1klIMKbAk5qnnn6J+dkpOt0BZ89e4tDhaQaDhCAMkcrDYijLkkolQirpMoFxSGkslbgy3JVVDAZ90jQbSsAr4rgCEpIkZXJinLLIHVCMfKIwxFrD6tomnU5CHAYo5cBDXpRIIZmZbPGBk8fpdVM832NxcYWRkQZj4y18XxNFMdpzQimBHyOlR1FkKOm85s6dvUizVcOPIsrcZRK9oXLmxto6WkMlrpAMMt544xwPPXgfL730Oq+fPsfxY/NoL0DgFCT7Scro2AhKSrIyx5OKfqdHmmVOQTUOkUOLAFEKri4uEYQeL7x8ioX5GWpRRKUWO8EQ6bIPWZYBkiD0KYqMSujj6YAkLYiiED/wKcucVqvlVFmNIU2dFYFSzpzelMZ5+fk+QkhaIy1ePXWOXqfHSLNOv9tndLROtRIhVYAUgqJIEYDnOUXRbqdLXK0ABt+THJqbRilNvVbnrhNHiCoeq6trRFHkMoVI8jwliqq0t9o8/tVnmJuuU6lE+NrH4gzJpfaw1hL4miRNYZiR8TxNWZRMTY6hlUQoD1s6VVbt+dx38jhOiNWCdPWTwg7oD9ymi9YeU5NTBFHA3/rXT6BmH+Kn/vu/jOdFjI6OUas1OHJ0gbvuPkIYjuCpiCy39HsFE+MTzM/OUpYZ3d46kxPj1JoNkjRha73Lz/zMz3LvibtZufgGF86e5vu+748QjU6S6zoyNyQ2A5G6DZtCU8qbR5JtcCeGaqfWOmAnhbi2KXaLsehOAnc71g7vuLHbA3dvl7V729Pt87gDcPf+9UFpt9Golb6JJXQA7g7iVnEgqHIHxp1Yc2f41in23YvauRfN8htVJ3djWGN2DGjfj7a2r2v7OymN2Rdnf7+1KaYsnCpgKeisXKK/doXBYADKZ+b43SAkxlqMLZHWIysS/tSf+YvMNjx+7i9+N0EQDlsa0o2ApN9Hex7WCCySU6+cBlVy//13I6SgvbmJH9QoSlfjVZY5DmxqytK47KDW9HsDqo2QIjf4XoSxBq1cjZSQGmuHdq4WjM2xxgz98jyyNCfrrZNl67TGj9DpWio1l3HM8tyBRnVtsVkWzsPL5ob1rTWajQm6nT4jrYBTr1/gyOFZ/NDj4vlFisJw5Og8Tz/9EocOTTEx2eTxx55nfmaKU69f4IMP3Y3SlvPnL1GPx5k73KK0KWHUoMwcEPR9n0//xyf5+CPfxtWlVaZnxhkbGyHPCpTOKXIQKKwVhJFPluUsLa8yPzdDUZZ4WmNLWF/folqrIBS8+uIZ/FBz/J55lFB85ne/zPzCGHfddZT1tQ2uXl3j5H0n8CO9sydTFDl5XhD6AYiCTrvP6soW8/OjeH7k+iBAKMH50xeYnpnEGosfBrzw4itU45CsyLnn7uNIT9Fe3eILjz7Fj37qO0EMVUfTBCUivv7K1zl8dIZapUGn23F00sDbea6FgGSQcOniFcbHRmmN1lhaWqFSqVCrNuh2UrxAE0Ye3V4HrEBrHyktRZE7D8YiJ6xEaKk5/eo5VlY3OHnyGHEt4vTrFzl7bpGxkQbVasihw9MIKZ1no9bDeteC10+dp9dPaDVrHD4yR1lkpGmbSqWORWNMRq/bR1hLvVGnGNb/BUEASLJsgB/4KDT9fscZo1uBUBqtPISQFHmGMRnGuduhteLc4jp/619/hX/1f/wzriwuMz+/gJUK3y9IkoxqPMGVK1dotupIJZxlh7CsbWyBtYyMjjg6YQFCKJSQDMoML0954blnaY7ESJPxwIMPUugQoyKM0EiKm8auPYcye8OoIsV1mfm3CmEcj1PeJorYq+ZuP2H3mB/2F9dG1p15ZFgnd6vYXUN3y/vwLmrtgOvq7eSuOcxYe8vz7o791ua9VRjjVCGNMTfVzond/Rte6151eHv1Ya/j9hN7tVXccC/2mi+3n+Tbr7NTN/3qW2OldBB3chzU3N2BcSdm7izXTx7fzNjTMmAPs+9tcY69+n0jTWJ74n5PNj1uYW2w7yaGmUXDcILc3dY2yIOdHfJbnclwe7uSSjrwVgpFXKsTBppz58/x6kvPs7V+llOvPEevs0GaWGwQkBvDn//zP8mHH/k4f/uf/Xum64ZGqBxAtM503Fpndq60ZnNjk8mpMcbHRhj0U7Ty6LT7nHnjIrVqhcD30crRJPPMmUArrQnDAK09pIBef4Ae1vcUuUFKDyEVQjrQKRjWt1iD9iRp1kdIyPOUzfYqrdEJrBB43nBitgzNoaHIMyfiMUhQQuL5MX7gIQj4+kunSdI+9VqdSqVCp91nZGSEIAzZ3Nii0+kxGCS0Wk1mpyfp9/ucOnOR73jgXsIoBGvwAo8oDpBSYcoc5fsIHJApkpSJyRbj4y3qjRrWuOdXGEueFayvb+BrzZk3zzM2Pk6tVnNgKcmQStFpd9ja6lIdGshPTYwyNt4iKzKsFSxeWaHTTThyZB7tK+YXJjA2BwNKKHfd/QEb61sopQkjH6Ulo2NNV2OphiqjaUF7q0vaTylNSaNVQShDqxVTr9X5+qtnOHp03nmwRTHdTp+pmUmE0Fy5skwlDlhb7eAHCmtLorhCkZcsLw994mSJ0pJB0qffTYjjCs+98DrTU1NYBJVqla12mzRLuXDxEhPjY0iheeLx55mbncYJyEiCMHB1nFKSJAOuXF5CKsH07CRSKlojTfIs4eTJY1SrEVZYlhZXaDTqZHmOlIJ+r0+326dWjTh0ZJq8zPF9RZb1kcpljb2wSlmUBGFMUVqE0nha4/6MDUXhwHuRG5R2PoRKa7R2i+Jut00YeZRlgZY+Aslf/5dfJFh4mL/x1/8acexTFAW1Rp3llWXiuIrvxygliSshYeAsRYqyRClNFIbEUQTJgDiIAMmbZ88TxRX6yysMBme4snSWR/7If0Zt6iiljsnN0L4BcxuFQDeMLENq9l5v7Q6J2FGRvZ14x8PzOx6Ld80Re9BSbzp6D9n6W92HdzpH7GxmvkVb9m3OuzvebZZuu4bN3jhPsXdG9v3O5u3V1o04dz/Z5P2fT15nKC5gZ0P2nT+wB/H/9zigZd6BcSeCOwH7FlX5RsbbgahtYOeK1s11AinXxXswCO9QPXctWLZ/t/26bgK+4UdjkOsAACAASURBVL3rXtvXt7t/e713A7DbBnK7f7f9iWFO67rXnpvxOz/ljnJlq9WiWoloNmP80AcpqERNmq0JqlGFIrFUwibf90e/n7aq8N/+o3/Lrz3+Gj/y4SNIARanYioQRGGI5/sIYel0unhaE8cRg15CpVoB3H0qihKlJEpK2u2uA15DqwXf9zDG4mmNU2Z09WcWS5YlBH4I1tLvJ24xbUqE8KlEVUfhjOrOO294tWpoUg5DpU5jEXabjqzpD5ywx+rKJmk+4NKVVRbmZ7AGfN/jqadfIPR9fF9z6o2LHJ6fxvM9arUq95xYoChLytIwOjZCWebkuUFrHyiAAs+TWJM7CmYcopTEWMfW29zY3DFwr1Qip/QYx/T6A2eSbgxhFPDyS6cIAo8wjFheWaPVqlPkOZ6nMNYlWULtMTU1RhQFeJ6j0vUGPbrt/o63ZBTFBIFPmhZoz9Uz5lmOHwakaYbneawur/HCC2/QatRZXF5lemaMfr8HwmCN5MjhObfoA7TnE1dCOu3e8PuFM2+e4eWvXyAtEo4emcPTAe1Ol/Fx5xUosBhj8LRPWbrs9fTkOGEU8+gTXyMOPBrNBq1Wi8BXRGFEnuUsLMxQFiVSC4LAZ6j1AVhMaRkfbdFs1oniGGssaZIwPTNBlqV42pma//Znn+QD9x1He05AJAx8Wq0m9XqVPE8Iw4Ct9hZxFJClOZ4fYKzgs7/3ZY7MT+MHgQM5QxGY02+cQwgIw2BIMVVIrUmSBC9w9ZxKSwa9PmmS8wcvneFfPr7IX/gLf5mTJ+8lqsXEQYABtPLQns/S4iqVuILSkixLsaWhNAalFEVREPgBxhiWLl4mSQZMTE+ydPkiTz75GKHWIHp8+0MPoMImwq+C1OghtVIK9lRg3Bl3hNwlDMH1i1g7ZB++7XD6zjbAro3ft/WxW3ZHDPcFdwth7Lyk2qOft2jN3vzaAXx7fOydzqd2+NntDT4h1U6/tr87JeVbD/K74nbB3Y2iJLt/7swde1Byd6avva55l6DOLY/bT7xFW9dt5rJtHXMDIOb672TnOvaYPLcB3J70yhvm6oM4iNuNA3B3B8adCO6248Zs1zd7d2q/k+OO4uW7zKjdMvaqM7zh3pihQMu7qZ27ZReGP/daitxqt3Kv0CbFCEWpAqwXMTk7R3P0KJvtVUxRsnjhMr3FZ0k7i4y3RsnKkl7SYWZyjp/4sT/Od33yY3Srk3zp1Co//28/zw88dMgBvGFdZpENyNKMdrvL0uIKi0urtBqxsy+wJV7ggRH81u88yoPffg9KS5QUpAPnt9XtddDKY2NjE8/TSCUx2KF6o0VY5cBBYZHS1e4ppUmzjCCKMIWkNIVbHAmnIogQGOsWKULKISiyBJHGCs3k1Cj1WsDxo4fo9wd8+jNPMtqKWF5bg1IxMzPO3Mw4aVLy+msXMaYkzXLOnL3CxNgEvucjtSHy61y+sMLISIWlK2vUqxU6nT61RoM0GTgKk4TAD9jaaONHEUVZ4PmaLM+p1etsbW0iMEDJ+vo6SrkarSx3dWyep+l12y7rKCRZVpAlGb1BjyDwkEpy+fJVatUqxjobBO1rTr95zt3fTh+tfF547g0kijfPXWZ2dpJ+r4fnKY4dnefUqXPEUYiQlkazSRjGKKl48eVTNGoVPN8nSVLq9RovvfgGUxOjbKytMzc/yX0n7+LSpcuMj7fQno/nK+dPCFgh0cpDao8gcIbfnqcRSjM+2mB0fJRBP+HRR59hZqo5BJKWNB0QxsJZQgBlacjSjGSQgLFoLZCexgqBFBqlIS8y8jxja6tDtVrh0PwEcSXe8f0ry4FjARhHmMzzHK01toBqrYaxoJTm6KFZPO2hPUW/36fb7hGGIXmW0xptORqzdObujmas0NLHmIJer8dP/dJTfO9P/BUq4+M88pEPMzE9TdyoYoShuzGgVmnR7+esr3f47U9/jgcfeJAgFJw69Qpz8/N02h2SJMH3fdY31onjmLhaoVqLaa+c49QLj3Fsps7JRz7BzOwJvGAEGfgok6MoEENkZhE30y3BZW13KSFfN4Ls3nSS2yvgt47td98xuHkPwd2O0fReB+2p+X97J7+mCHqL995BOAErR5G2u4DKbpCynwze7YI7wfB+7SPbtmfTezFp9nncfmI/bSkp0DoAzO59ieGhN7ew/YzspaR5UDt3EO9HHIC7OzD+sIC7a7tTblurLA2mLLHDLMq3SmyrXr4XVga3EmK5ttvrFkDWmJsyabs3/24VpTHOw4ibN4Nv9dm92t7rd/uhalrhaIrCGpQAYwVGwsjEAmPTh5lYOIpJ1lhbXaWzsYT2K/hhjaVeF4+SzsoS03PTNOan+JM//pOc7sb89lPn+MXf/Dxb3TYfOLFAVKlQa9QYHXfCKtVaFc/XaKnBgvYEd9+1QJblO/V32g9RWvP5Lz3FyXuPUK24bJzUoIWiKAzbjlJFkfPbv/tF7j52CKmsy9qFoVuoKkjTAX7oUxa5W5QawLisUZ6ngEH6ERYoixRrS0wp0VpS5CWBEiwcmiVNElY21li+uMmF88t00w3aWwlRoJmdneTKlSsEPqwst2lv9jn1xlle+PoZjh85SmfQxVpLkmTUG02CMCZLMvxAs7W1SVkWjI24jFaSZERRBYuHFAOiOEKgeeHF17nnnhOEcUS1EhNXIvI049Qrlzh79gpz8xNsbW3RaDWp1SPSJOWpZ17h1dcvc/e9x3j91Fk83yMMQ5elrVVRnqQoc4SyHDoyw9RUjNY+vheRZ4a8KKi1GpS2pFGvI6xg5coym1tbzEzMoYXP6uIKI2N1siRFSajVqrx5+gLzx+YRCmbnJrHWcPHSJb76lddYmJvhhRfe4ImvvMDJu49cJzjR7fXRMiWOa+RZyUsvvc4HHzxBUGlw4ewVRsdGKYoS7Qecf/MStXqNNMvREipxFey2wMoAk2Uoz2Mw6BPFEb6OCIMqQilXo6klZTkAUQxFgVw2Nc9LSpPh+4rS5mxu9pEiYJD0ieLK0OoCtJZorSnLEt9T9Do9PO3xygvnqTUidKBQnkYY+Lv/zxf5zCsD/sef+tv8q1/8N3zie34I7UlarRpWCDKq/It/9o/56MceIRv0SQd9fu6f/H3++Kd+iEEyYG5uHlBUVUm7n/PG2QvMzs4higSpIzbOn+bK6S9R1qd56Dt/HM/zKJSktAZdGERg0dojSS1SKUqbOlartdctaq01YM1wnWyxptyhVV636B1+ZdtjpBIOQOx+uePEba/fS7vHeKgkVtgdi4Xdr2Fq8dpYeGNmbru/rqFhGm/Xy5bs0ertxS0+ts0XkMK5de4r6bmr2Z35RAjEcMNwu51teG6Nve67wNqhr+dbA7sb7/N1xw1PWhjLtqXbDdZuN136dd/XHpmx7e/punMOT6WG2eTrthRuhe63y67tW996Y509j7nuGPdBIa89B0rIIe3yrf87iIN4P+JAUOUOjDtRUGV33CwWcq3GYn1jndHRUew+is7vxNiPSMu7MRzfjtIYV/u2x3vvRbH2u+2hkpI8zyBTXLm0yJlXH0OrLWrNmLHaOKOz99BJoNJoIcnJC+Wya0JQGkNRlFDCn/2v/iLGGP7NT/2xnZJJJwrhvOeSJN3xOesP+sRxhbIs8DyPNM2x1hKFIWApTOYWAlLRH2R4WlOU5U5/tw3utdaUxpIXBZ7SDPoJfuChlWZ1bYWRkRbGWIq8IAxDLII0GZD0B9Qbda5eXmar02F2eppet8crr5/hOx68h143xZicU69f4EMf/ABLS0vkecnE+AhSCcbGRrm6tMa5C5c4ec9Rnnv+FBjJRz9+P8mgS56mtEZb5HlOEAQMBgkYzek3L9GsV1haXeXYsfmhJ52PKVOMEQg8pHRWBzrQLvNlLFmSceXSOlHks9Xb4viJBeJKBWMK8qwgT7NhFguU1Xz1qef5yCMP0Wl3iKKQX/8Pj/Kjn/oEvq+wWNK0TxzVwEo++7kv8/GPPkDUiNhY3SAOQj79mSf4yIN3Mz4zxtryFjOzk7z88svcfe8J/MAH42rPhIDNtqNgMrRi2Npq8/Wvn+cD99/D408+x9Ejkxw/cdjReYd/a0VhsGWCsZq19S0kMDZaR4eRW8yWJVJJCmt49AvPsry2xY986pNIctKs5MqlZY4dm6M/2KDILY3mBAzNzZNBjikFp8+eYmJsnJGRFnEloN1uU61FKOnR7/eJK+760zTB2ILQj+j1Uq5eWqE5GhJXfP7giRf53k9+kqXVRV54+Q2+/3s+SpIkWGPo9nK++Piz/Ok/8T38pX/+eTY6Cf/85/8xf/pP/iSf/p3PcPbNsyRpm5Gmz8lvu4vCCAoRUxYZpnQkYmsEVqZEQcRWu4/JLXGlSre7ybkLVxgbm+DEoQVElrDWXuX102d56GP3EEYtfFUjK1JKAb7W/Ob/++/5/h/4TqxRKC9Cez6FzdE7dXN7UNSGY//239NbrSWuAxQ3RFGUO3/ntxN7GU1L5Z79PZKN1yiDQ3RyS5GRPYQx9iOe8m5i+97sBjzv9Iw39n67HVOa676LbQGUW8HIG8VM9iNSst/YryDa9jy3lxDLLf1ptx/d25zkhNTXnfcgDuKbGQeCKndg3MmZu22FRjm0B3DhnsGiLAiDkNKU31KZu/eUirkPi4eyLB3Hn3dOXbVDIZg9mUK31dJbtP8uPy+sW2gGlRAvjLn3nuOsL19k0Omg0g36mSApwQsqLJ4/x2a3R7VacXVxxiClQCH5sU/9cf7Ej/8Yv/TZ5/mZ//t38GXBXXNjFLmjIHqeM98uC1drJwCtnVS+1h4SSVZkCCnQSpLlKUnSxw8rCCnRSlEa47IVWU6aZLz08uuMjY2wtbmFp3yCKGRlaZU0zWi329QbdQA8LyDPS7JBwtXLS1SrFUxp6Wx1aTRr9Ht9lFTMz01y+s3zCKsYm6jT7nTYXOtx5tIVPv6xh7h0eZH1jQ6NRo1qs8bc3BRBGNDpdJmeGqdSi1DCEEchBkOWFRRFQbVa5/TpSywvbRHFzrx9fKxJkia0Ox2kVNSqDYrS8pnPPcn87CReoEmTlKWlVYLAI4pitrba3H33UbI8w2JI05QsSTDGiXsURU4YRFTiAGstZ85cdDYMjRpbW1s0mzX6/T6VKCbPnGDH2bOXOXHiCJacaFhLZsuCifFxqo0q/V4P39dMT4/jRwFpmqK0RGtnD5D0U2fjoBSddpdKtcLYWIurl5dQUnLPvcdYWV4lrsR0O12kUvieJk1TKrUqtXqVWjWmLPOhQElOkaWkWUqeF0RexH33HUNrSWkysiwnSTPiKMDzBNVaHaUDV09YlPzuZ5+kWY+568Qs9XoVgcSYkih0lhi+7/wNTWnJU8vTX3uZ6akx8iwHBM89c4ZDh0cxJqNZr1OJmvzWZ54g9D2OHZ1DK0m1UsELQ7765hW64w/zIz/8x/iJn/jPefzxJ9Ge4pOf/CTzhw7x1Fef5N67FkgHHdY3NtA6RIUBfhBigI2tLZp1n6Q/IPQrfOlLjzE/N0el1cT3PI4ePsxv/Oqv0t3cYrOzwnd89LuxUcXRUqXvjMcFvPbaa/zCz/88Lz3/HCOtEaamJpFaY7DInbzJHn/7OzTDW7Mhrkn63/xeWRqUuv1l9N7MSeHeuQXt8VbUyF0N7fOM713IPcDd7Zxxt/n5jcJh2+3stvEZus287Xx4Yx/2I1Ky33gr1stNv7vhvf2ebqep2+yf2hZG2ZWtPqibO4hvVhzQMu/AuJPBnYCb+OsO5NkdL7y32xV8T/vzFjz4243d4ia3nHz2Ae6uo0Huo7B6m8a5m4Ip9gB2ElcEvg38bjd2t/9uY7uPhW2jPYMRPnML99NsHiLrb5D216n6BaZIaYxOMjE1BVjW1tdJ05QkGdBtt0mSAYNej4ce/AA/+IPfzZH7PsFf+J/+OSMVycJkFVO685w7f5FGvcba2gZaKaRQFEVJnmZ4vqQoC5TykUITBE50RFjL0uIylSgizwt87SGVolatwpBSkw4yXjv1Js1GnXq9Sr3RGtbsuVqMZJARxx6VSpVTp86yuLjK1NQIp9445wBDkhGGHosr6ywubzI9M87xE0d488wltNY0alXGJ8cR1pLlGZVqBa2lq48apExNjiMU+J5Pf5BSq7cwQ7sIT3uMjY0wOtpgdKzO1NQoUgk8z2Nzo0OlUgVc5jQvMmq1iFqtAgh63R5SSKJKgOd7bKxtEoQ+cSXCCoEtLbVKBWNK8jzl4sVFwjCgVqsQhj6n3zzPxNgojz/5InOzk7z66pmhEEnA2toa9VpEpVLB8xSDfh+pJWNjLTq9DrVaBU9LhBIEYUBhCvwgQEmFBWf74DmKrfI0cRyjtMbTktGxEbRWeJ6iUq1Q5Dn1Rh2lXR2lks5fTyqBKUv0sC5SihKtBHlecvbcVd544wpjY02KIsf3FHEtJAojPvuFpzh58ihp4oRhur0BtWqV48dmCSONkCWeN1QyNZaVlVUGSYY1ljiOhgqPHq+eOsv0xBgI5+34+ulLzM+PUm/UqdZqfOELT1Ot+XzskfsxJseanM3BgL/76Tf4G//zP+Xo0UOUZBgp+NCHH+bue+6hNTJCURTcdfJeoorH6ddf4cixowRhjBWSXrdHtVKlvbGJtAaMRtiA+dlpLlw8zfTMAqO1iLy3iVYl1WaF7/jYx7AqoBQFnvAoC4EQBitgbmaeS+cvcP7V1/n0b/wGP/KjP4wXBijlfBnhbca5txmDHEV9b+LaOwF2cE0s5GYaqNgRRsG6bN62kMn1pQS36vD7A+5uJaiyp0rkLe7rbjC3W6xFDGmd1513OIcodW0jdocS+zbxfoK7G/u4p8AZ1+bQHWGU/TZ6i0luW0DLeRa658X52e6iWO4hXnYQB/GNjgNwdwfGnQzu4OZMmJQKcdPE+I0Dd+9J3GCh8Jbn2Qe4u91JYXuH8O0+5coltifp27/u9+Mb8VMPZTwK6ZGJHGJDZsZ49cnfJVs9TbMRs2Fr1GsN2p0OU1MT9HpdqrUKcRBhjaHZaLC1tUVrtMXWesqf+zP/JXd98Hs5O1Cc7lT4m//bv+Pra4Jf/NxzzD3wPfwv/+LT/Ls/eJXvunuERqNGadJh5kiyttpm8eoqY2NNkt6AMAx59PGvQVly+fISY6MjQwU8STJIiSKfRr3C6NgIv/YfPs/M+AxPPf0yRZHQGmnSbfcwFBSFob3V4957j2JsweFDc4yOjLC0vM7kxChh6NHpdVhYWEBKxfhoTODFrKy6mrnpmXHqzdoQYZesLq/S6fRYmJvDKEPazzh37iqt5jjPfu0UaVpQb8ZYMqKKx5XLV6lWY7rdLsYKpianMMZw4fwVfF9z8r4TRHFAluVsbGyyurbB+kabQ4cmybKEuFJnc6NDtV5zO/cGPvd7TzAzPc6li1cZGWkxOtpCCIFSkonxUX7/0afBCo4fPYSvPC5duUqjWSGOfRrNBhfOXcLTPucvXGV0tImQlmazyiDpE8chytN87emXmZ6bIBn0EUJhCnj22VeZX5jECusM54sCoTWmyLHGEoYhWZZz6eIVRsdarjbGGLa2NqlEziy+2+kQhD79Xo8sLdDaqaomg4yZ6TkW5ieI44g/+P/YO+84uc7y3n9Pn153d7Z39WJJli1syT3INjbGGBwLDCQkAZIbyr2BkIQa4MYBQk8MXIIhOHTbGBvbgBsusuSi3ne10jZt79NnTrt/zMx6dzVazco2xGZ/+hx9dmbe877POTPnvOf3Ps/ze3bsZdnSJhKpKKZlc97qFZhmrvi7ZRvYNqhari5eJhvHMABBIpXOICsigZAfVdHy6qFZDMPE4VAIBt08uX0fy5Y04nK5CIYUyisiWJaIrCo0tVaSTCRoP9HD5x5o497nO/mLj3yELRs3E4/rDI8PEqmtyAmuGAYevxdRFDGxsRQXmUwCr89JMpUhY4AmKgiWjSbl6jV2tJ+koryGZ7a/QDDkoLzCjUNyc+rkEXY9/xQXbF5PdWsLKUNBxkITprBtFcuWEYWc5840dS65eAtmNE4iEeOHP/o+b/7TP8W25en1u5cq+CEIL29WUoFQFL1Hz0gXOGP9uD+I5256ye60TxZK7uaaM2sents2T+5mkqdSA2p+n+TujJ/Nef1yfBNiQel1pnduerz/OdFGi1jEuZK7xbDiRZwzbCsnnDL92jbzOXbW9PaKqlLOtWcOMTsXb54oSS/WurOs0/LmLNM8ay5dsf3mQ+FsmXnhlVn2cPpFanHmXL9CX/NBEsWX/cLXNQFdAVEwkBFRBQ9V9QG2vPXtSPUrGBg8gNh9J527foY01UM2ahOMVIFTY2B0DLffz8jYGHWN9cQTEv1DfSRSY2BOUOb1sHHTRn545x18/OMf5Rd3/YjzN23g7nt/yDtv3cYHf/ACWd1CkVxIoowoWkzFR2hqrSSVStLZ1ceJjh5ed/4alrQ25sM8JUQBOk9009vdj6pCKpXhwMGjXHP1Rfj8Cm63hCTIvPDsfvYdPIrmcOJxa5hWGlGycfsDufMpC6iqjKppTI4ncMhORvqHOdXVh67bWOisXbeUqupyZCWXz3H8+AlOdvQSDJbR2tJEPBXDzugkYimWLm2hf7CH8y9eSV1jFSNDo4yPj5FJZykLVzM5nuLpHUf43RP7yaQMkokMQ0PjBAIBsuk0UxOTgIAkaHR0jLFkSQu2LeB0uTlxohs9mwYri42E4tC44vILiMWjGEaaQMiHYWQxdR3TzNWYm4qmUVUFh1PL2TMxkSNDqgvTtOg81U9ndx/NTXWMj43nPNayiCJJjAyNs/2J/axeuRQBcuUvZJF0OsHw2Ci2LeDQXEiCygvPHsZMW4iiiiLLYFm4PV4ikSo6jvViGVlUVcDr82CRRZEkZFEiHdf57SO7+fkDT6NpLiyTnOiOlcUW0iRSEyxrqcYybTIJmaOHukmlE/T0DCArGorqx+P1kkwlcjXt0Ni95wgORcWlOUgnDKJjSRRVQTd1LNtEUVQyyQR+j4vrrtnC3v1HaGvrACMnNJJMJZEkgcTkBOO6zFd/18uXPvtpfvGzOxgemcRSRP7l87cxNZ5ifCBOPJZEU9VcyYvJcRyahCyArPnxhyoZHDiFkunFEAUEV5KUlcTpCaG7Mwhu+MW99xMdGcNp6zz925/j8TjZev2bwFlB2lQQMTEx0W1fTqRCzIIgIJHzJGUsgze9588ZMnV+8cgzSIobSVp4KLud/3fa+5aNaXPaNhfF2hTbSrFLEARsa3YR77mvZ7UXcx5GbPO0raBs/JI0CmxhVu7i2Y67YOt8Ntu2gChICLY4vZnkiKFJLt+u4OW0CmRXKP0YJGH2VgyyKCCLLwrBlLrNPo7Sz+3Z+pqvpSTKuTlCkE47b4VtEYt4LWBRUOUPiFe7oEoBpYiKvBwKlfPaILxY4uCMtpTwW58pEjD93tx6dTPbFzmuQpuChDowiwTPxXxkTJynTUEJbaYF1ozP5htPJGe7+TKIvpwJtiUhCyYSBsmJQSZG+0lE25iciKM5IqTTGsuXrwRPIFeaIJ1l587n2Lt/Px/63x9CVVUyho5hGqiShG1b6FkdSRQRJJHh4SHcTg+K6OTOH3yP+x55mPs/eRMCAqZloyoKqWQK07A4eaKXyegU9XUVlJWVcfDQcVauaGFkZILa2mpM20RExjAzHDhwjOVLWhFlEadTIx6P43BoKJoDTZFAMMlksoiyRDalk81mGR4eJ5s1cLtyYYqyrDA6OkZFZZCxsSiqKiMrMhXlYWRF4vHHd3LhxvNIJtKEwv5ceGo8xtDQBKtWLUM3sqSzGbxuL6NDQ3h8Kk6nh0OHeqiri9DZ1UMslqKuuoqG5irGRyeQFRmXS8U0TeKJFMFgGMu0kGSRo23HWbakGUlWMA0DBAtBkFA1lfsfeIytV74un1PmZGRoGLfbicOtEY3FiE4kqago59Ch45y/YQ2xeDwnZKNn8bhcWJZNV9cp6mqr0PUMI6Nj1DfVYBkGmbTOxFiCVCZFU0tdTkxHFMhmM2iqTDqTAXKlG5KJFJpDQ5QsMqkksiwhiHJOyCZl4vVrxGNRNNWRV74VmIrGcTlcOJ0uLAEUScQ0sgwNjhCpqqSrq5dQMACCgM/n5VcP7mDt6iZaWut47IkdXLJ5I4qqksmk0TSVbNrAyBrYYi6X0+12cfe9j3L1VRfhcrnJZlNIck6sR08meW7XITZuXE9v7wCaqlBW7kM3bE4OTvHZu/dgGAar6ht4x7tuJRjy4PK7sW0Tjy8Apkw6ncHtcTEwMkhZKIxlW7jdLianptAcAWzBxuOAE20H8MpZyls3YKQhHrNRNIOKgIPdO3cQDHrZt/8AlRVVbL7+evS0TiqTRXN4sQQJwc6cfn3mSVjBU2GaBqlUrsakWNR7ld9v3tp3pwtizHdPnksYihG+haKYaEppQir5z4oQsFKP55XETC9k4ThEQTptDrCFvMLyGb4n27ZypP5lhrVAF16pM08pTw7F+pLywiiLWMSrGYuCKq9CvNrDMgs4Wz7GrJCHlyEvbqE2LWQBYzrnjhkiKLMa2Ke/npujl28z32rvzPy6YkXFC1shP25um0LOHfn+JUnK2cDZhVamUzVse96xX/JzlpjGwsYURUR3CDVQy0hPFkVxk02dZKDradzSGLZShmGYjI2O0dKyjLKgn+qqKiRZwbBsbFEGw0DX9VzYrwWGYeByO/NFnxNs3LCRbCbBdx/aw9N7j1HmcxFwOhgbG8fn83HgUAdOh0p1VRi3x4uhG4TLyvD7fYyPT9LVNUh3Vx+xeAyP00kimaK/f5j2493U11XidDiIxRIMDY/iD/hIJOJYpo7T6WZsbIJAwE91VQSX24XTmSuk3dc3jGXppJI6jQ21mKaJruuMDo9RVxtBVVXa27uoqa3MFbbO55MJQHt7N36/i6GBUaoqy4nHYzz1zAHCgQBVVWV4vC5SyQxNzQ0kjTfvGgAAIABJREFUolMMDI0SDPqYmJhAlkW8Ph+iCLqRQc9m0TQNr88L2CRTaZxOF5Jgk0lnMAyT6tpqECWG+kc42taFQ8uF5Lk9LrweN6IocqpvkPLyIA/8eicrVzazZ89RRCAYCuBwqjzw0HbMbBbdMAmHg4gitHd00909TFVliEDQmwsjtmyymQyjw2M4HQEkUaX7ZB9Hj3VhGzZerxdZUpAEGVFWMEwLr9+LaWZRVQXbhKxuoqoO9KzBqb4hnC6NVDLF0PAYum4QCofAMunvn6SurhKf34NpmJSFArR39OBxOaiuqkASBCRFRLBzizG2mfvxu9weRDFXCHxJSx3tHV0cOXySmuowqXQaWZKwTYtgwI/T5WLX3mNMTsUJl4f4+zt38vCBAU619/CnN91KT08Hy1a00tDaiNsTYs/eIyRiCWpqKlEUCV3P4Av4URU193tOpXG7XAimjaKoWBZ43T52Pb+b5pYGLF3G43QTjfVijMWYnBhifLKH9RdczIo1F5IUJUxkZEUDu5CDdfri0lwJd0mS0DSttBy6OW3mzZmap7+5YX4vy2pnsVyrefKvLNPMLwyeWTxmJkpZSHxFMCPHbvqtPAmfZYkwf2i/IAg5kS6LfO7oy3McM+f2UqbcUr/r+aybngcLQjGFHEtx9m97EYt4tWIx5+5ViD8GcvdS2r4UnPM4Z1uhLWHVupSZbWZ+3XyWFno6Le9gzhjiaUWFz95nsX7P1O5cIIjZ/Jxr5xmjRSRcTXmkmvHRUyQTQyTTMSaSEhWRSiqrqvCHygkHg4iiQF9vD+GQj4mxUTTVhSCIiKJMMpVCkRTGJ8dRVYVMKonb5UMRJa6/5hoMHBwdzHDHb/fwpZ/+mof29VOuWlxx0TqOd/RwtL2LVata8yUSLO65fzurV9QzNRWjoiJAc3MT23ccwO3UCAa86LqObugE/B6C4SDJVBJVUdBUBdPIqUpi23Sc6KWiPERX1ynSqQzLV7SgaTKdJwfwel0MDY4SjyWora9BVRV27z5MQ0M1kiyhG7lyDsGgn+6ePqoiEQ61ddDXN44qiQyNjBJP6JSFA0xOTlFRUUY2q9Pd1c+pgSHKggHcLjcdJ7vxuF0oqoYoCUiyjCRJOJxuspkstmBjWiaa5iAWjaI6HITCAeS8OqLf56OiLEQoGKCnt49AMIBt5eqfyfkcldrqipwoi0MhncmiqAoejwOHIlBTHaG2rpJUKoUkCWTSWVqbG3nsyd0sW1aLouQWIbLpLMlkmmw6t+b+zM79VJQFEAQBv9+HkPc8KIqCouQUIRVFJJHI5ezt3deOiICeNYhUljM4OEJtbRWHjnRQX1eNaRh0HO+kdUkLkiximgbHO7rRdYOG+mraj/dQVxvB7XFhmAYgIou5enSKIpHN5vIhs1mdTCaDQ1WYmJgiHPbhcTsxLQtZFNFNA1V1IkoCd+3q4dM/eITvffNb7Nn5LMMjIxw+2sZn//mT1DfWgASK7Obb376Dqy6/EhsLl8uNbYvIiszxjuMEggEkOVf1LDYZRXM4GRkeRRJEKsvLaTu8n7rqcgTLpPPEEX5x74O87pLNLF+3Fqe3DEl1YxYWeezcf4JtlxSK91Lz6s7ls1eE3C0UC1xwPE158w+JM5C7s+5m2zkhERZeY7AU/L7IHRQEexZz5xbx2sQiuXsVYpHcvXJYJHdn77NYv2dqdy6QDA3RkpEsCQUbxbYxtSxZZKorV7NkySZSuodwmUxffz+mZeL2BxgZHEOVRbAyjPV3IulxUHzoeq4um6Ko6LqOoigIgkUiHiMRTRMdnuDO/7qTTRs3EPY7iY0O4PRIfOlfvsAvn9jPzo40R8dF7nrhCA/vH6BaM6itLKe2KozbpRKNxUikEgwMTlBXXcaKFS1UVpYxNRUFBFLpGC6PG0GUmZqIgWXlBFxsi1Q6y4oVrcSjcfoHRmlqqmNyMoppGsSmUrS0NuTr+4nouo7DqVEWDrL/4HFSqRSCYNN2vIeK8iB61iARTVPTUEldbRXVtdVEKspIJXU0TcEwDTSHQlt7NxvWryZSFmZkeAKnw0EinkCWZdxuLydOdnGis5dQwM/IyDhOpwOnS80ROdNGklUQBFRFxTD0XFkLy+KFXQcIBQN4fL4cmY6nEASBTFrH7/PxxPZdLG2tz4WqKhKGriMr4HY5cLkcKIqMrMoYho6hm4TDZUxOTNDcEkEQbNrbOmk/3suJjkEam8rYe+gwmy5cTqTSj+YU0Q2TVCqBLFuIEiDaqIJGLB7DoTlQXW48Ti9ejwe/z8/Jk6eorowwPj7OiuVLkGSZXz+8g/NWt2Ca4PU6mZqapLwswmNP7sHncdI3MEZzU3VOcVWSkSWVVCqNokqk03EGekeZnIhRXhYkFAwgYNPSWo2sCBiGjqY5EAWIRuO87WsPE15yMW+88WYOHmrjxjdeSzYd5bbPf47zL76Qzo6T2KJBy5JmJiayrF9/Ad/9zp00N9Vxzz338qmPf4a161fT2tqCIObUPxOJBG5V4+LNl/GOW/8Ml8tNwBcgOdbHrx/6LgO97XidHm54z9/gDkewxSC6JSEoIophIdp2roy6YGKLJqUEt/2xkruFRpK8FsidZeY8dqIo8Uqc9d8XuZMkMed5FIt4kxfJ3SJeA1gkd69CvFbIXSEksZRJ0ras6ZXShWBWyEc+dPKVmFyLjTNzs5hnslmIbHKh5IFlzat4WSzM0ppj50ySWAjjFGa0teds4hn6PdPY5zr126KNLYIlgimImIIItoIkSdiKgKU5CVTVo8o+RkdidJ7oRhZs7GwU1edmeDJGbcsaHn18F9/+5u1sff2f5AuVg20YOGQ3x4+cZHIswffv+B6br7iS+x58AEuUaD/ZxQf/7iNkoyrlET979mznK1/5PJddehVL62s4fvQoay5/Mx/++g/52fbDHD01wdRUjLWNdcRjcTJ6kgNHjuPzOInF02SyJuGKME6Hk2w6FzYXj6VQlNzxDA2N0T8wTDDoY3wihtflIjYVp39gGCTQ9SyBoA+Hy0EgHMQyTPr6h9iwfhWBgJfBgVHWb1ibk/wPePF43QwODFNZWU50cjL30G/puB0O3B4XoVCQzu4+amorsG2Tg0c7yKTT+P1+HJoDl8/J/j0nmRxPsWbNUkJlITRNxbZNTMMglUxz+MBxPB6JRCyJKEg4HAIgU1EWwu1ykUgk2bXnMM2NNUgy+IJ+TGxWrWjBFHQURUJRnEiKjWgraA4NSck9aFmmhWFkCISDxBJRWpvrSSczyJKKz++jvr6KltZaNKeDhroaNM3Brt3HaGlsxOX28NAjO1m/fiWmbmPbIrYg0dHRj6a5UDUBp8uBpApIqkhZRRBZ1bDsNFK+OL1DlQmVB3G6FRBAUWSSyThOVaNvcJirt27m2R0H8fldKJKAaehgm8SmYni9frwejXDYh26Z2IKN5nYwNTmFQ/MgSgpv/NwvuP+FXsLLL+JT//ARbDONz+Ni1ao1eDUn3/j6f1BXW0vrkiaWLGnG6/VhWQo+r5f3vO8vufXtt1BdXU1NTRXNzY1suuh1qIrI6Mgg2USagC9MMm5w4ZaLqK2rQJJMTh47SE/7C9Q1n8fmq95I/eqNWKaQ88JgIol5kSsBrGntDoGZxG5mwN60YuA5hsnP2lew84Th9FD2Wd4UUZgdVpjfLNvOByQXG0jKkZizbJJgk3/OP+NW7F4mldBGFnOhjKKQC3O1bRvDNk/LTZxbjHtu36XacKZ2pyN3Bmf+my6PMO93Ksw47/l54WWcTksJzyz+0emJAvacraDKnQujzW1CkX+LWMRrAYvk7lWI1wy5o/TVT3GGEuWCVNjysfW/18T2IjPT2TxtC+o+P8ZCyxmcZlWBXJM7v2Ke8BVty8LtfyVW0wtTeC73D5pbW5FFgaef/B0Rl8TRo4dpaqrHQKGuqZUrLt2Cx+MGG3q6u/nZz3/O9qd38Iu770FzaPz6gQfJ6Lkw0G233MIDD9xPQ30d4XAVfadOcsEFGwmXlXPyRA+rVq/A6/Gx8YKNvONPb+ENV/0Jmy/bynfueZifPHWQx48P89OnDlAddNIxME4mmmTpknq2P7uP5sYaRkfG0FSVRCKBz++j40Q3q1YuIZPOUF4eYmBghOhUgurqcjKZNKGgD7fbyaEjJ1BVmcGBEbweNx0ne6moCHHwYDtLljYSjyYwjAySLCErMmVl5YiiiCRJRKMJwmVhTp3KlRtwOBy5+m2mSWwqTjyRZv36lfSeGiYSKUNxyAiWhY2Fz5/LA8xmMoiSgCzLaKrK6PAEkcogxzt6qamuQBBMTBs0TWPHzr0kkynO37AGMEln0jicDkZGx3A7PZiWTtuxk4yNTFFeEUSR1FzNOcsik9Gx7VwdPsjlxWiqyuTkJJqmIcu5ovSpVBrbhp6ePkJBP05NJZVMoUoSLQ2ViKKALKuoioZp5jy2u3YfobIyxNRkIufF1PVckXpZQlVE4vEEO5/dz9o1y7nnV7+jpbGSeDyGKosIgk1NTR2NjVVMTU5x6tQYra31SBKYpollmSDYpNMpDh06QTgcwuVyISsKhmEiCwZ/9o3H6Yhr/Pu//ytvfsP1uN0uhkdG+da3v83WrVv5+Cc/g9vh5Oabb6appYV//MTHKA+FWbZ8BaqqYgmwbt06vv6Vr1JTW8WqVStYvmI5opzzdAqiwOOP/o6P/N3f87Zt76ShvhpFypKJj3N43/O4fT4u3XodqstLxiiSE3y26044PXztZYGQE/koJjA1N+e62A0lF1p3BkYzj7jLTIgl3KmKtSjFezizjWGa+XMo5k07/VwWjrloiYMSbDhTu4UhR9uKR6CUZsNLtmDB5O50I6T8nFbYFrGIPyYslkJYxB8UxcjXTMxNuD+bemahnMB8ZQXmtim1RMF87c9GOhdywQiiOG/ZApHcxFUKrBlbsXEKbUzLOqMC5nyy0QVb59vv7NLTpaNwLIIooriDmLZE05JlrD1vHQf27mZZfQXZ8T4mBk8SCrkxTZ3J6AS6maW2rpqJyTE6T55k27ZthIIB/vzP/pxnnn4Kv8+Nz+MAS6csFMTr1qiurmXPngPEYwnq66vYv+8Ia9ach57JEI2Oo2oSx9qO8N/fuYO3XHsDd3z161y85nxe6LJwNl3Kfr2a7+2J85OjKd75td/SPZHk6YMd+AIe0qn0dBRUZaSM/QeOsXrVEpYtbySTyTA4Oo6QX4lftayRVDJNWShAZ2cfWV2nvf0Eq1cvYaBvBK/XzcDgSM6zCWQzGaLROJOTMSzTJBaNU1NbiWGaGKZBNBrD6/OQSmWoqSonlcoyNh7jhV1HsS1YsryJlauakWWB/fuPoGgao8MTHG/vIpvNUl1TiaqqrF+7HD2bZXx0BEmyESWIJ9LU1VYiYKFoCl6fh2w2y+EjHVimQSqRoqqigp6eYWRZIGsmSKaniCcmSKZiiKLNrl1HABGPx8ORo+2UV5QxNj7B+NgEz2zfhZ7O5etVVZVj2xAI+olURsAyaGvrQLAtEHLkMBGP43TI1NeV43J6MHWIx1KoqoosiwiChSQqaJrGhResIpNJc+N1V7BvVydmRiSTtsikTPYfOIJpGkiqgGkayJJEKpXE6XJw+Eg7oiTg9bpRZQeaw8XN//Yg2z7/IB/7yUHsJW9hsLubrVe8nm//v3t4ZsdOyioqCZdX0NKyhGgsweDwKOOxOOGycrKGwbXXXc9vfvMoWAK6oSPJNs0t9Xzuc/9MVVUEBAvTzGJbIpqi4dCcNDe1cNdd99DZ1Y4iJDm2bzu/e/g+3nTjG9ly/S1kRTcZWwWpdDXAgoPrFYMt5ARp8nPArDI0BdYg2NNF0Yt28XIUTCsRBdEN27ZzKo9nKFFQgGXZ05ssS0hSnljP2a+k6JV55smZ40y/V+SclVQ6IF96YW5JhRwJz3lbz1gH8CXCNC1Ms3Ql5hcdsCKCmKtVWdgWsYhFLByLnrs/IF5Lnjs497yLojjHEh3zjlOKkps9Y/X5HG0ohG4WyOxMT9q5otS95+q9lZpfN60A9zLbUwqkXAwRJhLlNfUEI0109XQTDnsRzCSCmcUXjBCPR3G7Xaiqgsfj5tLNV/Dlr3yF6NQUTY1NZPQUNdVVrF61ks0Xb0KRJAKhMN/81rf40Ac+lFv5lS0cmp//vOO7XHTRhagOiXg8xs/uuov1686n7dgxLr9sC+etvZDBwWEu2XIp+w/u5yP/5++46ca3UB4IUbNqE5e98e3c+o9f4b+fOMThrh6uv2gNBw614XY5GRgYZmx0iqHhMVqaqtB1g1Re8h4BRscm8Xv8tLRUE6kqQxRFNNWJIAtIEhw92kHA50V1qMRiUULhIPF4jLbj3TQ31eZyZSQJn9+LIIr4fC5cHhfj4xOsXNmMpEAoFOS+h55i6dJ64tEotbVVACSTWSory7EFC1lUsawMWBapRAJFtnG6fdi2QENjDQ6HiCiYJFNZJEkmlczQ2ztEQ30FYJFOZfC4nWhOC0V2IkkKiuJAklQEZCory5BVGQSBPXvbMDImhm7hcjqwbZ29B46yak0rqqqgyLnvwet1k0yniETCqJqMaegYRhZRFPB4nASDHgw9S7gsyKOPP0t9bQTbsjANG8uyME0dh8OBpmmARF//GLIqEC734vI4OXywl8qqED6/m7HxSSqrwshSTr2ztraW4fEkj+8+yUfv/B1DYgXveuc29j/7Oz70V+8mXNdC+4ljbL36T/j6l75CR+dJrrv+jVi2jSTJ7N63jxtv2oaeTiPLCnWN9VTX17P5wotxuFwYlk4qmyKZTuJ2uqmsqkAUBWKxGIKoIUmQSacJBctwOr0E/BmOHnyOwaFh3nrrX5CWKzCFghIgSJjYJS61vHib+/14Pop566bVhxd683glPHf5WERREl8M8RfmtJlpwsy/88dWymHMV/R75jkqtJs1TUyPc+YUhHP1wOb2s2d9Hy8nz5sbnlq0zYy/C+G84mJA5SIWMQuLYZmvQvwxkbtimC93rpALsBChkMJ+ZwzdKJHcFUoMzAcz76mcOVYhvw0K4Yb50MgZeQ2lnqG5uXPzWWNbFrIkYZkmYl45bGZYpiSKCIWyC2c6n/MQu7m2FLNnZqbEfLaKRdpM1/YVc7a7y8qor62ivb0Dv8vH0OAY/nAVE/EkLp+XWCxKucfDqd4R9u7eTTqVZv2GDXT3tnPhpgtoXbaSZ3bu4/ndhxmPDvCud98KioA/6EO3bSwhw7XXXY2syQiSTNY0MGJTODSBsvIyntzdRv9QH6omUB2weNP11/P12/+TJcsaaGxq4P77fs2xoyeRBY1//sSneHL7IWJyK/t6EvxoxyHu3dXBFcvKaW2uIRZP4nY76eodormpnpHRSfoHJ2hprabteDfVVZV0d/UxNjbBzl2HaKiN4PV6OdJ+krraShDA6dTwB3w0NFQTS8bw+n3IioRl5XJ+Msk4sizhdGsIokioLIBhGCxrbUASBJ569gCV5RH27j2Kx60RDPqxLXj+2QNUVFTQ3jaAx+MlY8RQJDeyLIMkYFpw8NBxPJqXZ5/fx9IlDbgdKtuf20djXR2iIBMKB0gksmguDUmS0XWTX9z/JD2nhgkHvPi8PtqOnaCluYau7kFWLF/CQN8oS5c2UlnlR5O8PPvsPiojYRRVBEw0txtBEjEME03LlQfQNI1U1sRCQJFFstkUhq4TiVQAOTXM+FQUp9uDJWRAtHjqif2sWdeAy62iaRqGYdM/MkhzQx2KZeL3ibz3P3dw+y93cnzUx+7uNI7qRoYnInz2tk+z+eIN1EZ8XLRpE8/v2kVsIs773nsL3Z1tvPXNN/PwEw+xes1K3C4vH/7wR3nfe9/HbZ+5jUDQTXdvG1u2XIxb0/CFZYaGB/H7ypGw8XpdaA4XRmwAPZXA4fSg63Cit4dQZQRF0elu20Nv3wD1LSs4f/NWDNEBoogkWPnHX6FkYjd9wc7Jw7LtXD+CmM9pKxovWVq+W+6W8mKelDQjLyqnyPhiXpQ9c99SKNI85K7Qg21Zp+cWlxKNaIMkCrNubsVy9YrlJharI5fLzePF+6ktvXiDy29CPrtQyrcVBTAsO0f6BGF6myZIJZZnmP5bLNxh8+SwWHqBncvNm1nSoRRyZ9qcdp7PtM06FsTpnDnyvzdJEBHz22Ke3CIWURyL5O5ViD92cjdfCIswPTkubJk3N6m/NHJXEgqT/Zyxz7pbab2fJngyX9+CIJDNZFBkefr1THJX8Byey/mcOfZ89pRsawltDNNEleBUVyeTk5PU1tUDMm6/l7HxCUaGh1EEiT27D+J0uhgdHeHxx3/H//nIB1i7dm0+rMnikssuweVRGRoaJhwKoSgqI8NDVFREyGTTGIZBPBHH6XTx9BNPcv7559Pc0krTkuU89eQTyIJNOj7Guo0Xsea8DXz5q1/C7fJwzTXXsHzFCu775S+piFTwphtu4Omnn8Lr0rj8dRdx6eZLeOroIB/7z7t4+uQkl7aU43ColJeFqKyOUFERwqEpqIqMqqqYpkUo5GfZskYCQT9ut4vGhhqi0TgejzsnfGBaTIxP5eq1mSaiKJJMJBkeHkVVZXTTQJYVHE5HLu8yX4ft6NEOVq1soa2tG8uy6Do1REV5AKfTwdFjXXg8Gsmkzp79x2luCpNIGvgDPtKZDJZh8ezzh2msr8bncyKKAqFQkLKQD4/HS1vbSXpPDeBxa7jdTkzTwrIsmuqriJQF2fH8IZobq9h3qJ3mxhpqayoZH5vANm38QQ/pTIb7H9yB3+eiti5CJpNB13U0zYltWwiigJ7JIAi54xElGUEQSCYSKIpGKBgiFo0TjcZAALdbRXO4sCwLQzdoqKvF4VC4f+dhekejfPxHz7O9c4IfP3EId/VSRiUn7/mLW7jy0kvIxBUu2bKZppYIDkeIWGISt0ujr68brzfAmrVr+eZ/fIea+ghOj5fqmiauufYakskUmbTOX/zlX2JZJmtXrefqq69kzZpVAEiyysmu49TXNSIIMqIEiUQCSVYx9CSmJZJOW/zzpz/LDTdeRzabxKUJTAz3Iygay5atAEnJEyIBoeTSz2e4/mbd74Q57xUjd6V6BoXZ2zxt7XleFe/8zDZYloVtmdj26fXaXkq+WykoFkVamHsKt1mhKAE/3atVzJu3EJzmKV3AUuJCyN2Cna75vgVRmv5tlFZNcBGLWAQskrtXJRbJ3TzkLv+ZtYBQQfj9kbu55Kswdin7ldT/dAjTmYVRZqKQp1UIBy1K7kRxwedz5ti/L3IniTn9s4amVmwEJiaiiIbO8FAfmtNJdW09nlAVY0ND9A/0s27DelKZFNdct5WMnsbh0lAVm/q6Cny+ADW1NTgcLkRJQFU1DCuLy+kknUnh8bgxDJ11r7sEl8ONYIHHrdDY0MwFF2xg/749/NPHPsX1N9xEXU01U1NRKsvL+ea3vsn73/83SJJJTV0Vy5c34w96eOypx+g5NcAbrr6G89esxchkOTgmcqy7i/1dw1ywpAqHQyEaixMM+onHEpiGgSRLpNJJPB4XpmUiKzKiICFJEgICiqpiWTaqJiNJ+XpsqkrA78O0dLx+H6IsYgt5j4INpmGy47lDrF27jNraStxuBytXNKOoCrIk4XQ4qKqrJBFPcullG5BlAW8giCjL2Bbsfu4Qy5vrqaqrwO12oSgyT27fRUtzLQIilmnS0FhDeXmY/lP9uN1uYpMxHJqGbRs0NlSiagpVlWUMDo5QVhFgdHyc5tZGBARkSUZTJVauamXHc3sJh3MFwWVZQc8aiKJIf/8IHo8HQRDJZnQkUcShaUyORxEFiUee2M3qlc386z3Psav9BC8c6eP23x7nF892kvTUsf9UlrGszE3veBtvvu4q3vqnb+LP3/421q1extBwN06HH39oKceOH+Oh3zzAitUrueDidfz7F75OMOCjpqGO8qpaTEFi7759vG7LJezZfwRJcZFOZZmcmKKhsRZJEvH7/Fi2TVV1BZZtMTExydj4FI0N9fh8QSzbIJ1Oo6kqliwjqxqmrfLsc/t599veRqTch5mNsef57bS0NLB8zYVImhMj7xUrPRhwnuvvFSJ3czUO58PLSe5OJzUzbFokdwva95UkdznvXP73MWduW8QiFnFmLJK7VyFea+Ru3pDIIphPMns6ZHPm5yWQk2nvVLGtGEppMwPFQhSnu5rz+nRR5wVgjj2z8hM4c/hjgcwVJs9Z3rp5zt1857aY7aIozgr3mRWOcwaIzA5dPWM728ASFExBJhAqw+/zMTI2id/nxDayeN0eLFQcqkS4PMy69eexadMm/OFy3B4fHpcDIxNnqL+XQLiSTCZNIh4nHo/z6MOPsGrtSpKJOA6Xg/a2dsJlISSnm/HBccYnpnB7HUiCgiQJLFu5Cpc7QFm4guNtx1jWuoSxsSGWLWkhFPAgyQ6cLo2uU53U1Ddy1dZrOXTwKIIoct3113PV5Zdz3wMP0rpqIxnbRXfazwe+eAeyoLNuSW1Ott+pcexYZ76sgYUkivlaahqSJMwIs7KRJBHLsvI1/nKhbYqSI4C5mlW5737XrkNoskRTYzUerxtJgief2UVLcx3JRApZlgkF/ThcMg/85jlWLW9CkQUEEUzLwNBN9h/oYOXyVgTZRJJlbASWLW3GMgwmJ6cYGhnH5dSQZQFFVbBMgROdfVTVlAMGXp8HAJfLiWVayKqKQ9MYGR6lf2CYvfvbOe+8pThdGjU1EUzDwul0YJoW0WicRDxN+4lTvONrD/Gb/YPcu7ODL/34YX69f4hg6+sYV2q4477Hqb3gSt6y7a1cftUWLr7qnciyzE03XodkqbTUBXnTDdeSzGToH55AFt1EIg388M772bTpEnY/30ZVZSPJ1AATE2NcvOn1jI330NTURKjcRzDoQxZlDu4/xF0//yFXXfknbLpgE1dvvZZNF1zCxgsvwLLTOa+jYfKTn/6E89atxuGC/KMAAAAgAElEQVRyEAxX8NCDj1FbXc3E5Dger0oikSQai6PITlJ6hoDXzeoVLfjCQY4f28epU11ctOUynIFaDEHBsApX4Mwrbf6FsZmY2252+J40p4/SyF2x+89CF+DmHbMEG2Z9XAhFn9PXK0XuLMsmv35SdADbBrFQd80qErAovGj3i7sVqdNW4ndcHAJnFVyZOY5YWlDkvD0K9vRkIYpirs9pT+6M3hdSMmgRi/gjx7mSO6HUG8AiXn7o2exr6uRblK7+CC9ObjMVNAv769ns6e1FEdOy/qASr4WgqGI2zA2YejntnNm3WOS9mSicw7Oph87EQs9tof1CUCB3Z4NkZzHQsAUJ0bJQbZ2pqRQHdj9FKOClvrGVsZiFqimICDmvpW2D7AbBQhMNTrbtZ2x0iI0XX5XLjcy3iUaj6HqKSCSCrmeJJ5J4PR4ytsTUYJRnnt7BtTe+HsmQmIpO8fN7fsZvHnqEiy+6lOe3P4nDqaLrKf7sz9/Fo489Qlt7H9/7/neoX9JAPKGTSmW568d3sWrlCkTborvrJNe8+Q3ce/e9vPPWd3L7N27nuqvfQMqe4rYvfpVr1pZx/ea1BF1ODFNHUeS8JD/Isoxt2YiSiK7nPFm6kUVRtOncStuyyaaTiJJEJpPF5XYzOjpOMBhidGiUWCxOTV0VmkPJPU/ZkEplGOgfZumSZmKJCQRUDh48zsplVbncxEAAGwlTB0s3sSQdI2vj8XiIxaJ4PA6mJhP4fD5GhkeJxmL4fB6ef6GdrG5yw/Wb0Y0ELpeHZCKN0+FgYiJKsCycK/ieSHDkyAnWrVtBJpPJKaYqMrf96DGyJhwZTCMKIp1dnbzvnX/Brhd2c/u3vspAZwc+n4+pjMm2W97Kr371IIlUgvIKL26vgpXM0D+Y4dHtj1JdVc1/ffOX/PXfXMsVV11O0jCxBDd2NsZH//5TnL9+E9u2XcfYUJRUQkD1RPn8v36F9sPjXLF1Ne9+z1/hdqt0tLdTWV5LeVmEfXufxestp6mllf0HDvOJT32B+351N2MTndQ3NGKbEhndRFbA6/ExMRnnphu38X8/83Euvfxi2jsOUx6OoChOHnt4O2vOX4nXJWOm42RMFadiUNVQg25IGIIHUZxZpRIE8nXMOP3eecbrdO49diZZEKTZjW2zSAfSaW8V7hEzVYAXcq+Z1bLYmCXYUBRz+pKKsBWzyOkq1m4+FJQsix1x4YwUQkSLHZ6dl9edGUZazK7p9gt8Riv1tzGzvSAKiCW0n8/OmcqbhUXeQl6iYC+qXi5iEecCRVXPaYVnkdz9AfFaJXezk/bnrNNa1othGXPaCIKAlZd5VxT1tP0WaosI+Qfg3L5CCaTnbKOcjVidDdNTXLHV6BmS1wVbZxIo6QwErJgtBYJXUMFc6PkrFS9Xr/ac45wJwzRQTOg8thfbiuPx+zAVDcMOEgiXYdmg6VniCR1Rskmlx3G5fKTiOt6gF9O2MA0DwzAQRBGPUyNr6Az0D7BkSSupVBpdz2CjMDg0SkV1A4KuM9DXz/andmKbIs/teI54fIh4NMqa89bS2dnFtVdvJZ3RecMbttLVd5KW1uWcOtVPfWOYZEanojzCUFcfWqCcdDJJpDKCLNi0HzvGVAyWLWvCtk0+/4V/Q1REdux6jn98y0VccV5O8TI2PoU34MXhkLFtEUGUsbGwLR3d0FE1jUzKmC6kbts2o6NjuN1upibilEfKSKXTKJqCYFr09PZTX1+DoRuIkogkOzCFcTQhhKVbRONHCZQvIVeBQMK2REwrt8p+192P87ZtV4JoY2Vsnt99gHXrViDJCggye3fv47zzVmAaBk5XLu/PsgQM3eaRR55l1XmtaJqDv/l/j6DKEm6Pi+pIBcc6TnD7l7+M0+3D4wswPDzKj+78Af/rbz6Ew2URj2aITWU4cbyNRx77NdtuuRmHU+af/u9H+d/v/SLf/e5/8LFPbqOucjlHOnpZ0VRL27GDSIoTR6CC6NQg9fW1KIqDZMxEky1++pOfMzaV5S/f+x4E0UaRUgwOTGAaFu9///u57bbPsmZVE8Njw7j9PiqqmrFNgUQyxre+dgfvePvbCFX5mIpFcbsVHC5IJm0cih/d0Egno3hdCjufeYr161bjcPpIphJoTo1YYoryinKQw2jiJC88+RjlgQDuxtXU1NbkpOrnnZPz1/W0ou/85GhuX6V6ggoP6vM9lJ8LuTPz9/8Xd5xtv1hkPEs4ve/5CFmBfNnzKTXOrJcq5nKVpfxcIVAC4ZwxzrxtZvw9nX9WTOCkiK3n/mx2diJlW8aLduXn46JkGGm6x7mLeYtlChaxiFce50ruFsMy/4B4rYVlzgoJPGMj+4zhJtMPCIVC3HP2W6gtc/PPpsecp6+zjVJKzlgp+1P0HM144JjxIFAIgRKF4uUKiocazcmneYUWcV6uXs8kxiDkfwu6IFJZXcNw3xCJWAYjbRHy+1AVkWhsEhOJvbt34ff7QBJQFBWf349u6siygqIoyFKuUHQiHkORZSoilQwODKEqKpaZC0s1TROPR8M2BPbs2s0v772bRGKCwcEufF4f1TU1tLe1sWLFCnbt2k1fXx+GabDmvNVEqqpoO9bOilWrERUXlilw109+QXV9LUuWtvLoIw9TU1NJWThMNBZlx3NPIkkW111/DVdcfiXLmlpwV6/m7772X9z/Qhdvv2oVWT1LVtdRNI2sYSCLErqh55TnLFBVDUESQLDRszqKIpFKp+jpHaKiIic4oqkaiqLyxPbdBDxOntyxl+VLGpBlGUkREG0FAZiaGsLjiyCKcj7fNVfU+6d3PUJjTRl+vwtN0xAViYpICEEEWZAQLJtUKkV5WQhRFpEliY99/xHueeYYP366nb3DSaJqmNWXbeNnP/4Rd9/937z5zddz4QUbGRsYJqsb3P6tb+Pz+2huaSbk9eHxBDl6bD+BgJ+33/ou3nbrW9GNJCNjg9Q3VLP5oiv53Ge/SG9PJ2XlfjZsuIjbv/ktrrj8Mh577HdcvOVSKiJV+HxuQqEQfX0DdLR1kYyP85Mf/xRBEDnefoxkMsr552/kgx/8MDe88SY2X3wZPr+finAroVANkuhl59MHqYrU43Q56O/up7q6hrJIBW6PD4fTjY2AqUs4HT5uvPb1XP36PyFYFsIfLiMQrmCg7xS1dfUMDw9RUV5Od1cnEZ8LIxvnmZ3Psf6CTZTXNuZLOeQ8tPNcKdPXy7lcgSWTu8L9Y75gvQWEs7+4y1x15Dnks8h4BU/XTMwXSjltTsnHmifMBUXhEs9pKYc9K3R1+pwWNaKkMUtDKclzMxYSC0InRcNY8wuizLlHn0U0ZxGLWMTLg8WwzFchFj13s9vM/KzYfgu15bXguSvAtKzXtOduvuLqAKYgg55GtW06Dh3GNkxMIYs/FKSyqZmpmI5oGsTiMfx+H4qkoJsGvb29OJxO/H4/cqHIsvliAXtZkYnF4/g9YQYGT6E5HQyPDPPEoztYs2o1t/3LZxgfHSQUDNJQv5QrrriCe395Lz09Pfz1e9/LU9t30NPbyac/+wn8/hArVq7CxEK3BCzDZOzUEP/18//mo3//YYYHB/npj3/IBz7wARTNQSoTo729jcpINV5PkP7+YRRJwbJMlq1oYnxqlPf89YcAgZ/8wxvAFjCzOpIsYpomtp1T0VQ1mWxWR1EURFHIeRSsHFlNp9O43G5syyKdSjM5OUU6k+VU/zArlrZSXukhNpXhZEc3a1ZXISphEGxS6RQup4Zl20xNJHj++UNcesl6ZFVGUmWwLR589gjZdJav3bcHzeli6+VXIIpQU13Fli2vI+gvQ1OdRKOTOD0Slu0lkZjE6ZFxOR1gixzdewRZUfnwRz/CD+68E5fHTd/JU/zbF7+Gw21w3XVvZOWydTz463u58c030D9wiuqaSjIpFVnQuGXbzVx97SXc+rZbWbZiBZapk8mkOd5xktbWJYyODdDV3cnmLZcQnzIRzRj79h1Alt38x+3/zjtu3cbqDRv4q3f/LyxL4OOf+ARf/eq/cc/d9+D1abzvfe/nlm3vwqE6qG2MMNI/zDe+8Q3+9ctfIJPJEAz78Ho1JifjmIbIvmefZtXatTi9XkwbTMDnlOjq7KK6OsLxY8doam7i0K4dRJMJtr7xBpwuDxlbwbYsVE1D1/WzXin/Ezx3xULFz4b/yZ47yM0NsljatPzH5Lmz8/PPIhaxiN8vFsMyX4V4rZG7AuYSk5eCucRs5nuvBApksEAOYf7cipmY265AxqbDfWYQzVLJXbFjLeXoC8R2dvcv/3lbaI/FzltJpFu0wJZRRBHBsjn6/Av4/E6SyQkS6RgV9UvwBSvQVCeypDIVnSKdTqCpuYLWIyPDhMNhhkfHCHsD2LZFJpvF6XAyMjxMqKyMTCrFsSPHuO/eX3LTW27mP7/zXfr7ehAsC2wLjy9MQ0MDJ06cIJlM0dLSjKo6OH6ynX/4p79j9Zp1uSNUZJBlTnWfIj46yZqNKzFNA1mSkAWb7q4uBofHuHDTerJGBo/LQyyapq3tBEuXrURVJAQxiySZxBNJPN4yYokEiiqBYfHOd/81fT091NTW4HTIjE7GubJJpT3u5MvvvoSBsSiNVWFi0Tg+r4cTHV00tTRimSaKqiGKAtlsFkVWOHqsgxWrWkjG4pwajeLz+9n+xPM81hunNuzkYF8ay7LRDYPlra1YNqxetYZbb30rsfgksijR2dFNy4qVWLaFIObFXrDIphI8+vB2LtlySa6moKiyc+czbNi4Fq/Xz+R4FCFr8/FPfpz3f/BvqWusIx6PIRkqn/70v/DRf3ovHo8br6eML37pK2zYsJYb33Q9tmBy/8+epmmpl6efeYb3ve8jWEIcBY2UbtPd08sH//ZvKQ/5uPNH38MwdJxOD/29Y1TWR+js6OTE8W42bFhNbU0lyXSCT37yX3hm+04y6Sybt1zIxz71T9h2BtvMsOv5PXzyE5/Gkrz89oF7AYGxqQRNrU2oikJWTwEWQ4NDjA2NYlkma9adhyAITEanUB0yTk2FbJZsMoFpWgwOnmD1+RcjOr2Ygk0R/lLSFSQU8WqdKwRRyJWgEHK5nLk3z5zvdq53+fly7l4pcreQUFfpFQrLnD3abBRsXcjzmCDOmjLOMsKc8WaQu1xfInIhT3AWay8x33ERi1jEK4JFcvcqxCK5OzsWyd3px1+KkMn/VHI33+rvfPaJQgpDcJDO2rhUBdFI0t/Zx/DACdxaFl9ZJVq4Ea83AJZC/2AfNjp1lXXEE3FMM/fAlkgksLIW5eXlpFJJdMNEU1US6QmsrMDBPYf4yhe/zuoNy9m/bx+bLtjMvl0HqKmu4URXO5HqKiKRCO3HjuHxeEilMlRWV3D9DdeQ0W1ev3UrtmIjKAq2BYohMJmcxOtx4VBUsEz++84fcNHFl7N8RQuJZAIBkaHBcSYmJmhobEQUJSRZJxMbI5HI4PFG+PFPf8S2W29BkjWwVCRRxed3IkkGd/7gZzzw4AN8//v/RW9vL2+6+SYuu/RSjhw7RsDrIxqPkUiliJRXoEi58z80NkZZIIhpwfnrVzM8PMzQ4Chf+MJt9PSeYtOFF6AqGrZtY1oG6dgEtqBgCyq/+vkDXLV1C5HaCKIqMhVL4HZ7EQQwjAySJDI+MUZZ0EU6roAp8YUvfpV3vetm0ukkVdXlyLKDJ594hos2vY54MkZNXSTnLZLgwAvHqCirBHkSr8+F113G/2/vvqPjuu8777/v77bpg0EhAAIkwU6J6lTvsmI7kiV5LaW45jjlJHHizSaP4302ya43z1pJnGTP2TxOdWzHTuTsJnbiRM4T27Elx5YlWVajukSRFCtY0AZl6q3PH8AAg+FgMCgUidH3dQ50RODizp2K+7m/3+/7PT44Tr4wRde6DJGoxeiRIq8c+jq3vu12LGsLJX8Qy01wbGiSA4eO8Knf/SR3v/1mrr3pWkqFAuvX9+M5Jl9/9BEuu+RyskOjDGxaz6WXXIhbHuXVV9/g7/7PV/iJn/hxfK/EuvW7mBgfYsfWfvyyi9JMhvPjXLRzgMnJSSYKPoZlErEtgiAgGrPYf+A1/vwvvswnf/u/ErNgYmyEdesyOIZN6PsMHz9OdmiI3NQkN/zo2zDsDGUCgtDDbCIozLwT5v1Lwl2d/Uu4W/R3G4W7edM6Z0Y1z+bfXCHEwiTcrUGtGu5gbqrHcl9flT8mlSqHzfxxqQ5P9YLWUvax0Jb1Kj7WTv9cruqppBXNTCFVdb5XfVzN7Gs11RuJW0rgbzRaWb0XQ9OZGBrimSe/SyqiEY2n0K0I2y/dg4qkmSiXSLs+JQDDYGx4mKRhUCTAtiI4xTKmMikUirhM4Zfgd+//Q2678R38/T98idHRUX7qQx/i9NBpXt+/n5MnTmDbEfL5HHv27OH5558nGoly9Z4rSaUT7L7yEi6+9BKsSBQNNTO9LsBScUwzpOzkcFyH3GSOMIzRvamTYjmP8kEvhUQTUUazOfLFPA/9+7f5wHvfxxe++EU+/DM/heuWcT0XQ/OZHC/S1t5JPJUCzWP/3qeJxRWdPRfiWmkmCpPkBw/Tu6mHsZFxbD/DA//7i+zefSHre3u48OILefT732fX9u088Ld/zk9/8BcYntjLroE7CJM6E+MTlMsupmmRyWQIcfB8D0M3OHHyJKap09XRyfDoKH3re6cvNvgGfhhSLpew7Qijw8NEEhrxaBulos9D336EZ556gid+8AP+8A9/j90X78J1HXxloPnT65yyY8Ok0hY//eFf5/77/xuWGfL0k89y15338Gu/9duMDL7BJz/5/xBoGlu3XMjLrz5PEHr09/WQyXRz8vBeTo+W2bL1Iv7lwX9m19Z+vvndF8hNTVDIjfIff/nnuf/+TzE6Oorrunz2Lz9Ld083hw88jZ3o408/8wV+8SO/yLZt3fzLgw+ya+clbNqyDTtuo2kBxakithVDUzrvuvMePvbrP8fu3ReRyXRSLucxbZ3S1DG8IEmmeys+Gsoy6AhzfP3/e5BkW4Stl11Be896DCJNvBNqpmAyd1IeEqKURhjM/azhVE1trjBGPWdMl6zzfqvV7LTM2s+DyvT9uhep6hx7s9Usm6k42eiiXGXaZL3b86qC3FKrUdZq5sIg1L+wtzyLtJKY2b9MuhTi/CPhbg2ScLcwCXfT1mK4m719fe6qfzOvg8rJXrNTN5XSUYBTyHH4wH6cqXF0w6BYLpNubyeWiNHVs43AnF6jVswXiNkRAuUzOTGFU3CIR+I4ZQfNCPiTT/8Zj33/cW696VZe2/ca5XIZ3/c5cvgwt93+NoqFImEYMnR6iHXdXRw6dIiuji62DAxw2203s+fGq3AJOXHkMNu2b6OYy6MMHc9THD92iO7ebtrSHWiYuH7I6NQQtqWI2VG+8U/fIDsxxf/76c9w08038jt/cD/RiI5bLjNZmMI0dFKpBLoWEPgmR44cp6evFy8oM/jqExgqT9ROkytBaIRs3X4JHh3s3fsyfT2dvPzSs1y5Zw+f/fzneMftP4Ln+2zo28rg4D5efekg23ZFeeHJCT74kQ/x8HcexrYstm7bRn9/H0FQJhqJki8UaGtLM3j8BO2dHRDC8PAw6XQblmXiuA5hAIahY1kWE9kpTMtmbGyUvv4NvPjcS1xwwU78wAMClFJ4lDE0G7fo43su0aiJZkTx3BKlYg5LWXh+wHgp5Cfe/U7ueteP8pGP/kfGx0u8cXg/oyMnuePOO9GVRWH8JB3dm/if/+uPufH6PWzZ2IUZ38SxI0d54bmnccpT3HHnHWzauJEHvvQAd99zD6+/+hpd7Um6N+7E9TT27n2WdFLHtmLops36jesxIwFHjx2mv3cdnhfg+yFDp4exzDjrurp58Gvf4D3vuRM/cInFYpSLDqlogtB3yOWyPPHU41y55wp6+/sJrCSu3+z78PwOd81+trRauJttR7HMkiLnMtzVmznRzLR4IcS5sdxwJxdrxFkRBgGB7y+pEWsYBLNfs98L53oKLfZHbt6Jf81Xs3+4wjoBo3o/QdV280amNI2ApU9ThJkgPNPjr/Y+anW+V3tci32vmX01oxLWgqqv2n1Xf4VhOPtVUfscVx9Po2OvfbwBfC3A00JCK8aWiy4n2dFLurOX/GSOY6+9xte+9CXyxTyhW0APCsQiGoZlEoYhTtmhVCpy7PhRnn76KTRs1nX1YJoWN998M/l8DqUUQ0ND9PX3sWVggGeffZb9r79OsVRgcnKSgYEBNmzayBtvHGRkLMv4xATHDh8hapv8y1e/imUZvLB3L4YOF+zehR212f/6Qf7u//wjnu/QFo2Ssm1Cz8ENHIaHxvjsX36ObHaSodPDPPLI97AjEVKJJEHgY5kmx44cZ3Jiik/89v/g4Ye+h+tBLAKKSaaGXsJyjuMMv8LpQ0+TtBVXXXkZHd1pbrrtevYf2sd77n03H/1Pv8Irr+0jHk/Rs34D6/v60XSdn/7Zn+G3/ut/5/prb6Cjs5MtWzZimBqe75KdHCMSszg9dIpILEG57BGxI3z+c1/gpZdeJghCIrZNPBEnHk9QLpc5evQ02ew47R1tBEGBXbu3Ydg6pm0ST6bRDJNcbgw/9Dh06DDf+reHGBkZw4oZmFGbZFsnB48cwfVd9u7dywMPPEDP+l7SmTT5QhHT0Ln3vvswbYsTJ04yPDqOHyp++aO/xHU3XEdbZ5pMe4ydFwwQiRi8/33vp+jmeGnfC9xx1zuxYybprhTr+gcIVQCGx+DgQbo7O8i0Z8jlprBMxfDwINGoIj8JpkrTllzHzh0Xs3PnTgzT4O673oWhG1i2halFyKQSPPbIv/HG68/z3X/7Onf8h7tZt2kznooTuBp6cOZUx+oqhAu99sMgmNcUOgzmv++Wa6m/rylFUHtcNfuoPi6/5r1b+Tyu/Yxe5tHPTI+sX5Ck9vOnkcq2QTD3Vf8WtWUHu6VY6fNaoc/8bVloSny9z1YhxNomrRDOoVZrhVDPkv441fkjXD0FRlW1NXgzzFbUrve9SvnoyvdnWhQs509+U+F3Ja0gVrivuV+rXLGu+qqpfNrETub9f+WEdTnHpdBQaKD5KBUSSSRIZNrYuHkLzz73IldcdT37DryClzvN1NgJnPwklhVFmRZt6QyJeII/+eM/5wMf/ADZ8SFSiXY29m/i5IkxXnjxWTzPZfPAALF4nO997xFuuPEGenp7GB0dZWhomMnJSSzTJJeb4sYbrqe9s4PO7nVYkTibt22nraOLtkw7YWDjeS6RiM3Q8Gm6e7pIdWRIx2xyY6MMDw2BYXD9ddcxNDzMxo19XHfTVWzaVCmP7+P5Lq7r0dvdS6Hg8fa3v5O/+MxnuOeeuzh24BW8MEdPfx+hkSSe6WR4/wscGdxPPB7SnukFQ2fbth0YVpyNG7fzo++8m4e/+y2yE6d515138vzLj3Dx7uu5bM+V/OVffpZ77rkD3dQwDJ0gDEgkYkRsC8f1iEVTmJaFrkyuvvpqNm7aTBgYOE7Aww8/woMP/isXX3Qp+/e/yi999Jf5wAc+SDQaRzM0/MDHtCw8HxzXxzItFBa9Pd309nTSu74DTwsxDIu9z7zMvn2vsmPXdv7H73yKyy/ZjeuUGdiyhdOnswwOHuXyKy5lcmKc7u71GJZDpqsbw4qRz+Upl4qcOHWCTFuCnp51tHe0k+nooGd9P44fEIvHse0ovgvxdIxUOsGG3nVYaPz6b/wmH/rQh/n37z7GFVddg6nHSEQzmIaJMgw0QsbHJzANk4MHDpNIxUgkYowfepUfPvlderZsZOfle7jkhttxPR9lxfFChcJF4RLUrLmt/x4683uVzZSuZipaNm6pMveLaoE9AlXtVhY/grkKvNU/C2aCkVa1zdzuz2zfUvcwqv5brVHbA9Bm2ys08+nRzKM1rxXLbDPuJnbepCafsWWrvDZmv6RpgRBr1nJbIUi4O4ck3NVYQ+FOzXy/Mm00AFQl6CzxGNdKuAuYu8/U9Dxq/sDmbjsAgiCY6+u1xOMyZkNhQKgF6IZFqGloSifUDLZt34GhArSgQHFyjMHBk5ScACfQyI5niUViXLL7ImzbJp6MoGOSTmUIPJ0nn36USCTC5s1beP31fdx37318+6GHuObqaygU8hiGQTqdwg982tsy3HbbbXzzoW9y5dVXYUWixBJJxicmKZbLWEYUz3NwnBIDAxuwLAsrFiViKJ596gkuvHA3ma4uYrE4PT29bNmxFaWH+I6HYZoUCjmSqSSGoeM7Lo4XkkqlueW22/ADl6nRE8STionJSeLpXso+dGgOVjpKLJXguefeIJ5uYyqXo6O9iz/708/x3e8+yn0/dhc7d26iWCxTLJ+iq20bE7kCR48d47LLL54ZtTqNBjhlB6UbGLqOZcY5fuw4hmEQi8Up5HPkpoocPXKMvr5+du7YxamTp7n2+it51x13Th+7MlAG2LbF9Ao7xUR2gl/8hZ/nyj1X8elP/xF/8zdf4M53vQM9YjM8PEpf70Z27NiK73m8453vYlN/L1dcfjmlUon+vk1s3rKRz372MyilsXnzVmIJQEXIFz1M0yCTTJBIJxkbHaGrq4uoHWV6UqNGNBJlbHQMNMXTT+6lp68Hxylx4PV9hF7AvT/+Yyhl8fnPf5Hbb78dXTfQVUAQugyeOErJyRGxo4SBRm/vesLQ46mnfkg4PsS1N1xD9+YtTJVcPJVA+T4lN0DTDfTQRalgtsR8xVLD3dz2Kw93lc+ueiNczYY7VelNWttTFAl3yzmGFe2/5gGTcCfE2iV97tagVl5zV1EJP6tpOT3vYGVzkCvTi2r30WjdSb2fVVfhrLdd7fb1flZZq1KZZlPv8aiMqAW+3/A5qL6d2vtXe6yrMUVoNaf/zJsGVtXPr/oWvGKZ7OAhXnruaVLxCANbt1MshGimy6nhU6zr7qe7ez1FPYLvhoyeGubIi/v5n9lyV/oAACAASURBVJ/+Y2688SaCwAdCnnzyCWLxGENDQxiGwrYjXHrZpWzaMMAll1zMtTdeQ8ktcvToEfo29jOZLZFua2MqP0ZhbJLOdV2Yto2mT7dIzpeKlEsF0skYnu8xmR1BcxTx9gSxRJKyZxIDPL/MG0f3s33XbqZyZeKxKMePnmJDfz+W6XPixH7KEyPo4SR+cYgg1InEEhRyOQpeG2YkBfg8ufdlfuZnfxZNjzKaLTI6mqO9PcHQ0DCuWybTliYei/DYDx7nuuuvR9M0jh87zrqeHp5/+hm2bd1KpqODaDQy2/R57969bNu+lSAIsSNtPProY2zasIEv/M1f81u/+Rsoc/qk2DR1SuUJYvEMhlKEXgi+z9jIKL4qErM7iUaTZMeGmMidYH3/Bqam8nR29DJ0cgwvCFnfk8JxXbJjWeKJOFOFcTo71vPlv/9H3v2euygWJ1jfuwFnqsDXv/4N7rnvP+CbOr4DnuPjuC6ZTIyXXnyeHTt2kZ8o8+673sW3HvomViyFaYYUinkMw+Jjv/YbfPxX/y86e+JM5sbIpDfglOD3//BT/PwvfIBMRxuJeAo3X2R8LMvTTz7KtoH1lIp5Lrn1DpRSGMZceHMr77GGJ9kLv7carYULqypJNqpwqdWpOBk26GG3+FHNX59cu11Y5/bq9cyrbBcuMT3V7clWs4tm/+6ccVS6wndnLgMs8TOvduvlVlqubLnQWu5wpkxm5b0oPeiEaE3LXXMnI3fnkIzcLdNSp+/VXFX2g2B2fYVqtqlvzdVqpetn3rdGDYMrC/qVarxd1TEvuNZO0+Yf9wIjnrPH3Og5qLrSXnuFvXYly5JG6Ba5vdVQfTzVUztDpk92lKZhWDZt3T0MbN+FgyKa7sCIpnjjwBE6UmlKE1lwS5gWpDJp4vEof/flr/Lxj32ctrY2hoZGePT7P6BQKLN580a2bttGKpkimUxx9Ogx3vu+n+SBv32ARDpFGEKmo4MwLBKJxnj1lVfY9+oh2ttTJNMppnI5Ck6ZWDyKl8uTTiVxg4BkWxpfN+loS3F08DiO5xFPRgEfOxrBtuMYKk4sEqfoKNozHuXiUU7se5o2zcYNPcIgSXrdxYz7PiqehFgfAxdfx8adF5Fe18+6tk72vbqfY0cP09kVR9cLDI+McdGF2/B9h0g0iorE2bljO57nYds2tmUTidj841e/imYotm/fTtl1OHniJLFYlFQqRSqVJpGIERDywovPc9VVe3j88Uf5/qOPcMst1xOxYhSm8kSjFoYKcZwSpXKRXH6SSMymq7OLYqHM1x58kEx7G729PYSaweREjvZMJ0EY8v73vo/brr+GdKaNdEc7WAaZVAbDNLnggp0Ypk4qlcIruZiRCFt2bCUaj2OYBkOnjpJKJvHdEC1UFEo5IpEoR48c4/3v/wm6uzsoOx4hHiE+U5NT3HLLLWQ62nDdEp5TZmx4hA9+4L38/h/8LqmYhRb6TAyf5KUnv8PhN17moisu5cKrbySzcTO2ZQG1o9nNjG7P/bzy2q18NZwuWd0KYXaqQZ2iGXVbJiz+fm60RTDzeVHvM406t1c33Fa2W+LHQr3RvOV+stTuKpfPYxoGLGNKY+3WzT7q9babXv/nzwa4apW/P3rt3wIhREuRkbs16K0wcrfSqpn11I426Q1Gz5aq0dXoys+bOa6lHEu9fdaW266d5rQSzTZGrxSQqX58ax/vZvd/zmhV65J8jzDwMIwoQ4OD+PlJhk8c4rHHH+X6229Fi6TZvGU7/+Vjn6Aj3c773vt+PvnJ+xnYvINN/Rt45NGHKRSLnD55ilRbGk3TuPfH7+Gmm24mlWmbfqxMncFjr7Nj54WEvqJYCLBMH8MwQVeEavr5njp9mkxnF0PjWdoybYRK4RemiMZiOJ6HaeqEnk+xWCIeTaFrJkEQolkOg8eeYeTUQYyyw/ipAruuuYkNm3bjEcNXE5TKUxhmO5oVA6XQ/RC9XKJULnP02AGOHDlAGLjY0QwX79xOKt1O0QkJ7DR66DCeHcf3PL798EPc+573MHh8kHXd3SilEYlEePIHT3DllVcyOHiC3t5egjCYPjnVNGzbplwuMzY6imkZpJLt/OeP/9988pOfYGRsiA0bNmDbFsVSmUgkQuB4lB2fB//pa1x++aV0dLXRua6XVDLJyMg4Stcp5guUs6P0DPSBoRgvFDBDDdsyiSViFPJFwhAmx7K0dbRjxaOYhsHExATF/ARaaPDYo88wMjLEPffeiWXaGJrJgX0vs2XbJnQzgWGG5As5lDKJ2Elc30fXXJTmM3j4GPFYnICAwlSOeCzC08/8kFuuuYx0eztGugtHRfA1HatOtcfKiFJtYSFNKdRM38F6o1oNX9aVz6kGlTHnaXa7Gc0cTaNZC4uN3FUKsiy3T99yR+4qsxlqCzlVW8mnV1P7qhTtWqR3qTbTY27u3wsfsxCiNUkrhDVIwt3ySLhb/XC30NTQtR7uDBw8zcbXDAh8jKCMpwWYehTlw9jwCVKpOE88+iSZ7m40YOT4MFt3DpAdG+eP/uhPufqqG4jGEvztl77EaDbLus5OdN2gr6+Pj/7az5Ivldm+YxeaMd30e2LkNJnOJL7vYRlJlJpZb2UoSq5L2XEw8JmcytGebMdxPPKTeYyEjWXG0RUEQY6SU0JXBhErghaWKBbGGdz/OFu3X4ppJZjMl3FCl56+C/A1DQ+NmBkh8KZP5H09QCPECKAcKkx9usm4Cl0MBSf2P8srzz5NOtXFlde/jUnSxGJRwjCkXCyh6Qo0jUAD3/PwZ0r4f/Xvv8J9972Hk4MnOTZ4nFtvuRUPj4mJcdpSaYqlIp4fkIzZOCUN07QZH8/y8Le+xV3vvodoIoYXhgRhSHlyEtMyGR0b5dSpIa64/HJcX+NTn/oDPv7xj2FaJoQBJ44don9DP47nErEjfOvh7/H2t9/M0WOHaUt30JZehx44+KaOnYhNT0f2Ak4dH8Q0beLxJBNTw8STGQinCyFFbI2TJw9jxbooOzl6e7pxXZ9DB4/Rt3kAt1TEwMNWPqdODvK1L/817//gR9DtGNFMmnR7N0EIoQZ+GIIWotfpKl033BGiNIWuVz4rlvb3u/L5tFbDnR8EGIaB77tN3NKZlhvuHNfBtux5Pzvfw13l8/ZctrURQpwbEu7WoLdCuIOzNDVzAc32BmoU4JZiNe5bo6a4K22YW7uv2qvWtZrpV1Vvu3o/Wywor7al3l71PQgJoejw/Ye+Q8qMkfMcTp46RVsqwzPPPs91111PaXKUUGkcHznNTbfeghGxsK0MBC4jI0Ns2HEBlmVhqAK6YRP4LoViFk11EdHL4DsYehTHN4jFffA0Qk/n+NETlAsu3Tu6iGHhlEvTRRHsBPnJHCk7z9jxZ4jbIUNDDlYiw8hEju7NF9DdP4DvT5+4m6bV5L2d5pWzfOWv/oCumE//xm1s2HYVqc6LcTWTA4ePsL0vgxG6lJWNEzoUyz5Ks/jPv/ZfuP/3fpuO9jSO4xIGFroxPYUsDKFUKmOaOroeousmaBpO2ecTv/mb9Pf38+EP/xTtmTRTuSl+7ud+hb/9318gCANKJRdDJdBx+PJXvsLdd9/N4PFBHMdh685uJrIFkqk00UiagjeBqUIMpaNHkowVPdIxk9D3KBZypJNJTNNgIpsl9EIMM8qhQ/vYtXULummSKxSx43GGRkbo6UkyOVUm1AwMO0WASUYbYWpsmKOv78PGZf/+/Vzwzg+wY8cuwnB6PVbdvmozgWl+m5SZCzR15hJWptRVh7t6fTQXfzar1Aty9TQId7UWej9VLv4s98LWGVs1eezN9L6rfn5W+vnZ7HNQ2S6Yuf9n3KrSpq8GQN3plrJ2TghRTcLdGiThbvVJuFuZVgt3tU3dq827BxoYIdOjPUcHmcrlGR4ZJZVM89zeF7n4kksIyzkOHz+Gp8OP3nknGAqvBBNjQ/Su76IcQlg5YfMNICQS0yk5Pq+9+BTRiMn2HRcTqAia6aE0ndAHLdTQNQ1HC1FlD8IQN3DwnFFGhk4TlIq8vPdZdmzZjGYYdPVtJJXpJNrRTbHkYhjToa5uU+j69xaAMIBIMMIXP/37DGzZwabte4iv24ZlR9AMHV0HpTSK+TyTuTGGhsbYvn0XJ46cxLQVAwMbyOULGCqKYUI+n0PTFKZpTI/4+Q66MkDplEtldM3AdT2UDpatMzoyCkGcREJnYjJLOp1BC2zicYv9rx9gXVcnP/ne9/I799/P5VftolR00VB88xsPc9OPXE/olIhGo6Q61jHlaETNkGI+z4nB42zetJED+w/Qv76P0ZEsE+NTvPTK87zj9tvRNA3X94mmUoQKrHgHOgF+qYClBbjFPN/+p8+Qyqyjf/NOdl50xXRRomgKw5h+XqFxuJv3rTqjWGdsUzNlcUXOYbhbqrdyuJv3bd1Y8HaEEG9dEu7WIAl3q0/C3cLCIFi0emmrhbvqwFN7Vbw2+PmBByiUoWMGCq9copAvse+1/XR2dmIain976NvcdMvNpDJpCqUy5eHTBOUcYTiJEbGIpRKcHvJY37uZVCpNoZgjFivzxoHX2LR5E/H2jQR6G57r4rkllOai6zA+NoIKFaeOHaRcypHqbCccP0A+XybRtpmOvktZ19tLMXCIRGzcchldVwS+R6jbwGKjJWf+zPUtIpqHETh4QcA3vv09LrtkJ6feeJmu9gTJ7dfgW0niYYBTGmc8m6WjrQPLjFEsT2HbBqdODtOe6aLk5IhFo+QKeSKRCLmpHO3tGU6cOEVfXz9jYxNMTBXp6OwkErEIQ498Psdzj7/Kn/zZ/+ILf/0XJBJRPM9lcrzIr/6nX+VLX/ob8sUin/jEf+cT/+036OjIUC4XMQydvA/Kdwh8n2g8ScnXMJWGbeoUclOcPHGCvr5efFenUHB4fd9BrrrmUgzDJl/IEY1F0VRIqVTGVibHjxwAv8yhAy+ye+cW+vq6UbE23GgXk26EWEwnigMowpkA0ijcza8yO71hUOd9V6kSqaqCVu0z1ew06rlfOHfhbqmVid/K4c7QjdqfCiHEPBLu1qC3SriD1Q14jQLcYj9b6DiWeuV5pfdnsep5tWvtmi0OULkfStcX/L2Gt1sntNV7TJc7DWulKieT9dpS1G4HNdPjGjxnlfVLmq5PV9sMAghCwumq/di2RclxiMajjA6P4bgOU1NTeLkpLM3n5b1PsGPnTvLFIlYsgmlF6exsp1DKUhjPo1GiUMiTbO8n2bGJmKdz6uRxTp44TDoVIxGP4AVlBo/vp+SUae8eoHf9bmLxKFg6U6U83X29GGZmpjJhiD4zIuQ39dDXWQumyijNgEARhh66oVE+eZKX9/6QN/a9gEp2cNX1N7O+dzOB5qPMGGGgyBfKRKIGzz+/l507L8Ay4xw69AYDmzdTyOVpy7Rx+vQQhjl9qMVCiY6OTv7hH/6Ry6+4ggsu3EmhkMOyTEZOTPIrv/Kr/N7v/g4bNvYyVRhFUzapZJJSqUQ0GuOFF59noL8bpRQdnZ2Mjo5hZ3qIKp/Ad8lmxzAjcdqSbYRBwJ/9yaf5pY/8IuVSkdNDWZ544mmuu/Z6tmzdyKkTx+ju6cb3SoSBw+lTJxl+6SGGcg4d/ZvZdd3tRNO9eKGNoULsoIzuO0CAb0RmXlPTBSnnhTstRNNUw3L/jSht7kS/8Qjs4hqNFM5rOdDEmrtGAabRSPn0xZK59bkLXeCpbusSwDkNdyEhQRig13lcmp4aW/v5aSjCYP7fHl1JqBNCNEfC3Rok4W55JNzN7aM23NXu960e7lSd79X/hRC9siYqhFCbXj8WhpVRFY1AafiuN1sIwSmXcUplpsZGyJ44TjLVxvDoGEpXpFJJJqfGsCIe3R29nB48SCJqMVXw0cw0thUhnUqSnxzjjTcOsWljL6nuXlIpGzRFJNmPEYlTLhXRtBA/8CgWC6RSbXONlVnKY19nG70MQQQfHcPQcNwpbM/CMDQKE8McfPUF9u17le1bdtLe3cXgaJ5Esp14Ms267gyuW+bkidNs3LCVL3z+AT704Z/CdV1ikRhf/9evc8PNe4jHk5iGieN6eE4R3/fxfZdMJs3Ro0foaO/FcxW+63Nq6DS7LhwgOzGBbVkoXWGaNoViAacwQrnkk0imSMSSFFUEA4fCZBYtDNHtGBErxkR2jLZUnFMnTzIyNEygK4q5MldedTXZ7BCdmTiTkxPse/UFYrZOMT9Fd0eSi258Gyibsh8BK44f+ihCjNBH+QEaEOiV9XGrH+7CUOF7LrphNvFcNraWwl21Vgx3KIWm5q+vW2plVCHEW5eEuzXorRTuYPUbmjcalWl2emGj7es19l6tkLoqPeMaCOr1mVrkHLNyFV2xeGW2Ro/3cgPfagbFZvbQdPBroF7wDXxv9v8LhSLuRJ5yuUQsnsA09OkWAps3YFs2pXIJQzcwTQPdtucfn++jKZ2QkLFslrZ0moAQpRsNL1TUO66VPKZDR15k4uCzvP7aK6zr28j6K3+S7nXrULoiCBxOnT5CMtWHqSsCt4hXLjKZzdLVtwlD1/G9AE3XCDyfYrlE4E83FU8nU0yMTvC5v/ornnrySe59z73c92P3oawAZdmMTUwQUzA0eJKejX3gWxiWhe+XsN0sZrqb0ck80XgCEw9bgeODi02AjmFbFLOn+Nd/+Wd+5MY9vPDU43R1txGJxujbvpuOvm04ARiqTiGaJVaXnN2kTlPu6kIqStPmTc9s1Hi8rmanXNaoW12S5qdl1rPUqYqNXouNWjs0Uxmz3nbBEhujN1L/3bPw+08KowghVoOEuzVIwt3KSLhb2FLDXfWaGQl3zWs0Uhz4HmEYYmoKlMLz/dnb9AIf27LxfR+lFJ7nomqqXVaHu3y+QCKZwA/D2VGRNyvcvfT8Dzn47GOkEjEm8kW0sX28/e4PokXbsbq3kQ91vOwIbZkMf/+Vr3LdddeSTLWRNAIO7D/Ihg0bMEyDfD5PeyaDHwQU8nli8TgEoCudbDaLHYmQTqXxgxJl32N8PEfCTpBKpDmZHQd0PK9MNKE4PZLD8RUdnR2kkzGGjh3GTqVJmAGl4f10Z+KcPvoa2XKS0dFRDh7cz7XX7mHg8puIJRPT+wrBD0IM3T7zTku4W9RSw10jaznc1XsfSrQTQqwGCXdr0Fst3MGbV1yl2bVW58q8cDdbDn3hK9qzv6NpM2uuGqsX7hRqpnHwmT3zFgoplRGiSl+qMAjmjRrVK5jSKFAsteDCQr+/loRVZRVmP2+DAKX02ee+HlXn5DSoU06/qWNYQbgLNTBw0cMQN/B56pF/JpPq5DvfepiornjH22+ic+AyTDtKyQsZHZ+ko7OT0EyCBoQwNjpCIpmcnv5qGJSdMhMTE0xkJ+nbuBGlaRQKBTo72jl86CA6IbZtkUr18sgjj+NODOK5Dm9/5+2YtkMq3o1XzvPgP3+Vd9x2KxMTWQ6+/DS9G/r59qOPMLBtKxddfhmbBvZgmDauUgSaIginA42Oj0aAFoaETVa4DJuYTlcv3NXdTmnzt2uy51zdvnZNWM1w12jK5nL3VXG2wp2aebyXG/iq72vlvVSpUiuEEGeLhLs1SMLd2bPUcNdslc3VUm/kru66urMQ7uppFCzrNYuv/j0Jd4sIzwx3ASFKqfnZrqZE+vkT7hQKf/bk2VchuucxfvoUg689y74XnuBo1ied6eCKK68kGovS09OHH+3ENE00QjzfJxaNEgQBnh9AGKApHc8PCQMf1/cxdR3dMCnlcsSiikJunNHsdH+9TWk4cuQY6bYUJ0+/QXf3Fl567mncUoGrr9rD2FSBDe0RIm2dxNdvAjOCo1noTI/KeYAXgs10MRrCEE2bHpWvt3pTwt2bazYwnqfhLqx6o1aeO1k7J4Q42yTcrUES7s6epYa76qptb4Z6o2d1tzsL4a7RFMrqU1q9JtxVpmtqmjZvxE/CXWPzQlo4fQ8cQnR9/sm1xvkZ7qaH32aG4AIXfI1QMwk1DZcQ09KI5gd57N+/Qzk3zsH9r9PdleHYiRFKZYcLdl1AW1uawA9QSiMSizI2OkYymYCZ9YblskssFsH3A8ZOjhC64xw6/ALprvXEEumZ90uUTKaNnp4uSsktdGaSJJNxyoGOb6UxI3EIAiJ6gKFpaL4/XRiHEA0ftAAVGtOFclCESicINajzkEq4W9hqXggLaz53z9dwh17nAoCEOyHEWSbhbg2ScPfW1XS4q1Mtc6Xr9Zba567SViHwl3diuZrerHBXCbVqkdtcag+yRv0Bz1hPVe+Ef5lrwRodw4LH08T2Z2wbBtNVI5XCCgoU8oWZtYYaz+99lAt378YpeZTLLplMJ+PjwxiGQTY7Tk9vL77nEUtEicWTKDtOGBp4ro8ene6BV6Er84zXYzMVUpu56FP9nK/Gusx6mgqB9ao21mwfLFIlaTZEvklBpJkpm82+nmZbB7Dyz51KqJPCKEKItUTC3Rok4e6tay2Fu/OJhLvzM9xVfi/wPZRuoIBC2UFXOoZhTA84ay7hTO9AhYHn+1i2gee5GIaJpqnpdhTOJEo38HyFpluAhhc4aJpCaRp+4OM6AZFIBNd1ZptBNxPImimOVBmNXmxfK9Gq4a6ZUb3zNdxJkBNCnG8k3K1Bb8VwB2dO7VtLFitBv5jK/V5quFtkp1UH2EQ/pzrbLLUiZjOa3fqMogrMVeysvc3qf61mYYflqoSZZi30OCvmpqQ1PCFfZrhrtprpavWBBDBmnpnZdYZV01ArL9l6L9dAA212/eFMRcLQm7eNqrrPAXNTiCv/rj5uXammw0ZtqDtrr61mpleuQrhrtK+VTq9cjQq5jaw03NWbgll5S0nfOSHEWrDccNf8WYkQQrwJKqdazZ4ong8hr5UFvofvT1dLXZLZdWUz/wwV07VDA8AHArQ6f4Kmmz2E6JqGznQz+aWc3s87VZfRGEHVmruz3IJGCCHOBxLuhBDnFaXrBL5/RqGWhcyOPJznU0rXKqUbGPpc0aFmudp0pcrK6JKqjJZoAbMFWur+CQrQtJDQ9wlCf7rQjGp+6mn1SJSmaefFWlFxbtXOgFDzZk682UcjhBBnl0zLPIfeitMy6zXJrqiuyHgurHTKZa1m18ZV3oOr3ti8QWXNMAzP6FcHq7NWpmKpUWuxEbiFnp9mmymvltXooVjZR3UBkjfLStfcreY0vkaaXTtXu89KoKtXCGipaworUz6XEmyrm8xXT7etVq8CZK2mqlkus3rmqh5DlWZeW81+joRhgNKNutMy61XLrJ16KmO2Qoi1brnTMuXzT5xzlfL8lUIG56qox3JuVdO02a81Y+ZYz8WjrDj/i7aIpU+NFUsTBOHyy/KLhhRzFxC1RdZbCiFEK5KRu3PorThyV+18+qNbb+Sq8j2lL3z1utliKM2Mzq1mRcyGFSsWuM2lqDeaU2l0Xq+wxUo1s65uJZUNlzJyWe810uxruVFYqowQnQ/vi0bFMpod3V3K/agUPlluEZ5qS30uKoV7qguz1DuOZa/tPAsjd/WaflcK8QR+1XNQ8zlS/X43anq/qTo9FOsdQ6P3wUqF4Zn7Mes8WD6Vz1MpjCKEaF1SUEWIFagEuOqTn0ahrhmLTQc7m+Y1PhdLVgla1dUwZxstn8sDE0LMC3VCCCHmk5G7c+itPnIH0wHqXL4Glxp+Am36WCv9qRRL+/16fevqHctZWYenadPr1ppsw1CrdlSmskZyIUsdZVtp1culjtzVG22ot77qbAbz2mNYyujVym985T3zVuUwZkbtGqnXd66i3lquZtqtNBpt8pc4Iju30+Ye00bre89mL8R5j5EW1t2mervKbVcfaaP1hyttiVB5/4VhMPvcmYa5rH0JIcRaJyN3Qog1o96p30pDzWqEoqVWhBQrdz5MQ611Ph7TufRmvSs8f66foVpChVQhhBBzJNwJId50y13TtdR9LlUQ+HJS+SY7H2OU9E6c780qrKN0Y7ogykw7FCGEEEsn4U6cc42mKtZuU71dGASzJwHNnMyvxhRHDW2mRskC0ypnpj4uZLHpmCvVcDpnGNadqracFhDhzJTM6iIUS1Hv9s6H0ZJKsDsfjuV8U+85biaY1/tZswVRKsVNlvJszB5Tk1OOF3qul9r+ABqHwUYXH96s8NRoime9Y1jqcS33ftRO/5RgJ4QQyyfhTohVEoYhnutiGG+dt9Via6WEOF8L0dQroiTOvnqfGStdqyeEEGKOFFQ5h6SgyrTq5sMVy3ldVo9K1R25atDUeyW3O/u7DUYvmhmdbLT92WqI3syo50quxi808lJpm7DU0v8rKZrSaJRppVNCV9KGofYY9JneXOdq/d9SRnLDmeIXleqFjcJ+9b1ZzUsCtaP31U3Ma99vldfdYsVWKts2el41rc5Ipn/m+05TMw3rA/ADH0Ofa8s9dwz1HpFGDRkqxzB3Hyr7MqpaGlTaHASz21d/xi5/xkD1c77Qz+eOcfHXhhBCiDNJQRUhzjEZCZivcnK8nGmbYm3QlEJfJKrNBsWz9BoIw7DpqrvGTBB0fQ/TtM7K8SxEUxo6+nQ/ujXcwHyxYAfMtg+B83NNpRBCtDIZuTuHZORuzlJGTCojQq7rYJrW7L/nbbPEdWyr+T6od9vN7L8ymtDsyMlSRwMX29di61waNS2urL2rHu2oN1JzLiNeo4DZzOOdm5oilUw2MZ4ybbkjiwvtb7F9Vl43apHt6v3OYqr3udyT9bM1crfUZumNfr/Ra+SMn9RpOaDqNNKujNxV82fesksdudNUzfXYqmOo7Kv51+LKngUZnRNCiLNruSN38kks1iylG9MnYy1ygWJ2SqWcIJ2X0un0mxJOK1NZzxcKZkOjvDJFhaapua+ZqcRCCCHOPfk0FmuWZZoUS8VzfRirZqXrvsTZFQaNm7av2u2EwXk1jbXSEFxO4EW1yutBgr8QQpxfZFqmEEIIIYQQQrQAPbH6hgAAAxpJREFUudgmhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtAAJd0IIIYQQQgjRAiTcCSGEEEIIIUQLkHAnhBBCCCGEEC1Awp0QQgghhBBCtID/H8B5g+dRuqfRAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image = skimage.io.imread(image_list[1])\n", - "fig = plt.figure(figsize=(15,15))\n", - "plt.axis('off')\n", - "plt.imshow(image)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAJmCAYAAAD/znmcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXe8JEd9r/1UdU86OW/S5lXOCUlIBCOyZDIi2MbYxti+vvYL2L7vxa+xBRiBwQmM78UmmWAwGQMyySSBUADluEm7Wm0+5+zJE7ur3j+6q6e7Z+bMnN2VtHtUjz94NTPd1dXV4dS3fklorbFYLBaLxWKxWCwWy8mNfLI7YLFYLBaLxWKxWCyWY8eKO4vFYrFYLBaLxWJZBlhxZ7FYLBaLxWKxWCzLACvuLBaLxWKxWCwWi2UZYMWdxWKxWCwWi8VisSwDrLizWCwWi8VisVgslmWAFXcWi8VisVgsFovFsgyw4s5isVgsFovFYrFYlgFW3FksFovFYrFYLBbLMsCKO4vFYrFYLBaLxWJZBlhxZ7FYLBaLxWKxWCzLACvuLBaLxWKxWCwWi2UZYMWdxWKxWCwWi8VisSwDrLizWCwWi8VisVgslmWAFXcWi8VisVgsFovFsgyw4s5isVgsFovFYrFYlgFW3FksFovFYrFYLBbLMsCKO4vFYrFYLBaLxWJZBlhxZ7FYLBaLxWKxWCzLACvuLBaLxWKxWCwWi2UZYMWdxWKxWCwWi8VisSwDrLizWCwWi8VisVgslmWAFXcWi8VisVgsFovFsgyw4s5isVgsFovFYrFYlgFW3FksFovFYrFYLBbLMsCKO4vFYrFYLBaLxWJZBlhxZ7FYLBaLxWKxWCzLACvuLBaLxWKxWCwWi2UZYMWdxWKxWCwWi8VisSwDrLizWCwWi8VisVgslmWAFXcWi8VisVgsFovFsgyw4s5isVgsFovFYrFYlgFW3FksFovFYrFYLBbLMsCKO4vFYrFYLBaLxWJZBlhxZ7FYLBaLxWKxWCzLACvuLBaLxWKxWCwWi2UZYMWdxWKxWCwWi8VisSwDrLizWCwWi8VisVgslmWAFXcWi8VisVgsFovFsgyw4s5isVgsFovFYrFYlgFW3FksFovFYrFYLBbLMsCKO4vFYrFYLBaLxWJZBlhxZ7FYLBaLxWKxWCzLACvuLBaLxWKxWCwWi2UZ4D7ZHTgaatWqfrL7cMIhBGiNFgqt/cf1UFonh18IsejvR9u+0gopZKL9Vm0rrQBwpNPQBoAUMvHZYL5Pt5NGCtnyt5Yc5ThoBfFuad1mDSZ9nHC8tFIIKeAoumHGTwPxqyuEQClVHzetkVKg2hxDY66HxpGyYVUp2l9rpBCYkZaClqSvhmkzfT/6pnHTV/PZNB4+OwZPKRwhQCm0Dn4WQiKlRCkVje9i11f5Cuk6+MpPbOokD4VocX7muGZbKWX4vQr3a35P6NQ9araL9pMOvuehlMJx6s+KFLJ+jVJtmiOZ7YQQ+MpvGOf0sETPICAciWjzPETnao4r6+fop87LSZ1Xw5MZXmMhRNCvsC2lVOIYZnyUUggh0FqH59W8r57nk8lkkodSCq01juM0jH/8GFovcjND4r0dXA/zHMeeRaGRIrhuPl7wvRAIrRueKW3eA7o+Fo7jkM3n0eE4aN34LFosFovlxCOTzS7+RyTGSSnuLJZWHKuwPKloda6P4xhoozpCpBD4vkLIE2eKqPxwgp1WTiIm7IhNegFfKWS4vevIcCYtCab5oYCIC7t2CKIJNBCI7OCgHe0uhQxV9RIXFFKYsTBa0KvVkFKScTNtFyuiZ6nJ4o2UouFUVExQJRC0FXZN+x4bP0Tz31pdjlYLTtF9qmLXlEBIdvLuqNVqOI6TEJ7meL7vtxR4x5PounX8Zz7cXAhqnoe/sABCIKUgkykgHQflP74LghaLxWJ54hAn42TYWu6a8CRa7p4IjuaYSvnI0JKXRgiBV/OQUiKkiKwRrSx8TTqElE7z7Y7z+GgVszDF22/1GULrWuPsT+vAPqO1RmuN6yQtnSK12t8KoenIYmfwdGANM+1Ls1/YxbQxDQS+7yGaXD+zjZ/qo4PAVzGhmbIC6tCKFllSouFrfhKSoL/Rr+F2UsbHWdfFJCBdJ3EsldwVZ5FLaERTYLUJfpQE1k6zoSAQbBrdsc4056yUqlsfY8f2/cBqZc4r3mff93GEiMRM0DcjjHSjkIv21aE1TIbmynhfWvdTaY0TUy3GYh5ZcsM+psWi+V2EAr7BMiwFyvORjkQKgUxZxRBx0W8sfqKlUEutcQAitOCBE17ktNUUHLQKnj/ZxCSttR9ZDuOWOyEEnuc1eBloGVrfCBZZpBYorchmMszNz5Mp5AMLNHFPhsBybp5/Y8PMZDKB4Dc9lYGF1oo+i8ViOTGwljvLUx6l21tZHNepuzyFLmdPBaQQdYVk5rapz520sRSLnYDI7Q1iE9/UAZVfn2w3E3aLobVetD+tXBk7JZiQi0jMyXASbwQdgPaPzqrSCpUSqA2/q0bBuVTiwi75A4GV6hjaFSIUpxqkUxfdR0vkLtzivLXWwb2dXnXQOljECbdRRqin7kMjssOdYueSFmoBdUuwrruAtkGE+3V6zXxfUa1WyefyHW3vhS63MtzXcdpfwVqtRrVaxXGc4H/ZnBV2FovFcpJiLXfLBC39hBtYR/ukrDWd/v543TPt+tPJsVVoMTEWu3TMXcv9WsTiLeV7pdXj6hJpiGLwWsTapb/v5HqJ0KITWfsii0a48p8WYaEFAAKXRpfAatBSkOnF22voTxt1pFMWunjbxqyiwwm3iaFraLPB+pP8LONxWkLUrY2mj2H8YbP7VYfxokortAraCu4PApfNWJxb3BoGoXWsxThJnbz34mJExCxsrWLzdGrf+LAJgj4uFgcYuC+2c+dMf9aJ78w9ZrrWrDWlddt7oBnRuaT6YPrd0LfoPjefFU4o1oWQIAS+50XxielrrrUKBJ4m9ACI96W9qAquXbt3WvC7IzMo7UcmZx/zrgstrip+rhqRHoSoX63HNW0RzeYLuK6Lr3x830fKTGD5W+LfGovFYrEcG9ZyZ3nqshRfNUudQCXEZsdLG8dFhd3jQMJC12pxAqhVa2QybmCZXHI+nMUn3cFkd/EJvBASZDJ2LHBnNL+LRQXV48lSjxnkmDn6vgaJaRoF6PFEJ7VahO/7KKUbrFjG+hrFC0pJpLekIp1uJH3Ng0Q7ycQ7UZKXWDzf8cRY2dPit+E4HST+aUe5XIqumetaYWexWCwnA1bcLRPSLjTp2ClpYqviSR7azNLa/X68Od7H0ypY/RdStLXgNcua6UgnmtyZ/QVB4oS0r5ogEA9Kqbqb3nGy4jWIjFYxd2lLlNbBhM+4si1iGTWxPvUkI21cWmMTSceRrYVTy77Xj9uqT+Y4kXUkdr7NXNrinngyaJRsNsxsGI/5orlwS/chbp00MUrxrKnRZFrXM7saC5wI4+aihCauQKh6fFvwpW64dIGFrzGWLYgJVbFrSXRsba4zgWBqZjFaLItjfJvml8FkkexMECpVHzcVXjsnPC8TF9wOKRoTtjTtWeoRUFqFfQ1jBKWIfm8e52aOZ6yWMYupFihUYr/0+S8mUOt9q4u/4HsZbSCEiOIzG/eX4b9xsSiiZ8c8r/Vxqj9LQWZM40bsJxYUPM9Huk7CSreoNS+0VlarFarVMCFPNhfEg4IVfBaLxXKCYcXdUwT7x/fYMOLP82tN47p87YdxYuIJcc08kVC+Ovp4xTZqwfNqoXWkffIWMwfvNMnL40lktQktRcr3IxFmkposlpDk6I+rkfLJfdaDTJr1c6t/7uzRUEpH7qrtaPBMTi1KeJ4R4kkLXVroxYVd8z4tnp0z0YcW8XlpOn0nR8dsVJYsNqhB4p2Y62mI40h8L7BA1gWoWdRp0k7K9VgpRaVcAsB1XaSbabKXxWKxWJ4sbMzdyUr4R11Ija+8juPgmtWMaxdzl973RM6W2RBz5yuQ7WPuOmpbK1zpRv8dP15i4nWM49MQU9fO0tGiDl56zCIrrpT4SkVZ846G9L0g6qa4xPFEzHIYx8S3xa1f8f3jddkMacNLNCpRBs4Wk9xY2/EJd4OFK2YGSmTJJJiIxy1krTDtax1OqkWwr4xitlrtV7eeSiGjk40naIlnb1zssi0a99XMatvGcpQ+t+h3ZKLeXboWZCuvwHQXfIylLrwnouPVt2kng9pnd63/3uwadqqx04eJ2hJBNk5Esv1ASCkQ9Vp90XhhzrlV3xfP2AlOQkRD8joqXySOh1ANMZNpJ4BOEr1oTeTiaqzZ0pG4rovrZsJzEoA+IRZaLBaLZTlgY+4sT1kcJ7ilHy8B6vt+PesfPGVj/FQk6o5PO7KhpRNvXJdiZRMiyHshhEDHRFJ6Mm1IJG+JbSjCe+24Wd6bPhemM0t7ZjRJi45GIRBtk+U8ORihs/hWra5P6+2Nu7aMBLhKXysTq3gMGU2PitRJSMdhbnaWnp7uhk2P5nUZf8d6nhe4btZqZDMZpBTh4sCJ9xxbLBbLcseKO8uy4vG2KirtI3R9wtJxXbzlRotZcNr97WjbOZGKohuMO2UnIs8k2gj2a28t9zw/qo8WbBfeT1GNw2PpeZ2msXcyWZuv87bqYxJ9jlngDA3C9UnAXAMZ1vtrNZ6dZOxNbm/+NZZmGdUyjD8DIhaw+ER5PkTxhmE//JpHodDVdNul90mHVj4T2ygjK2KtWqVSrZLN5cjlCkfdf4vFYrEcHdYt82QldMvUQqGUt8hmnc8KH+97YbHU8c2O38yF9MkiEm9aJwqjLyrqWiU+aUND0XJM8e2UK6T5rBYfz3rihdbHb3lNzO9t+ty0zIDxzkp8HST8SJcdENFQpXaIj13k/hd8lR55oRs0YoK4e2bzk1jEZ3IRWgqm0A00nkwj7n4ZfA7adqJi8rGELDGXPZ06t1ZlC6J4L6WDJC8ms2IUB6aj4zeWOFGpbVvd2/UYuvjneh/q51r/TkALi16z69hum5b3ctwIGTuk03CunYu4+PVqFvbWuEPYFRl4EkTiV4CvddRFU6xd67Dsg7mvTRKetusbyey0pgi64zjhezadvba1eDfxn3XX7VbvlMZ7yCQSkmESoQghopOQUkZF0k+8ZRuLxWI58VmKW6Z9z1qeErRLmHA8kUIGFr1O0ws+zhzTeYcZDpe6/VJT5gspm1rrdJgh8ljSyStf14ujPw6YIUrEiPl+R9feTJCVr6JJfTNMzN6xIoRIZuw8jqQXEMznIJNv5+PfbiECAndV0aQ4t1a6IYHI8aCTPhmkE8SgmeLjTRpL3CxSBi6d5h4w+z+RRLGedGZ1j2/fjsC6q6lUq1QrZWpe7Zj6arFYLJbFsZa7k5XQcqfwFllhb7Zb60ndsd4L6RXoxyMBS7qtZpYzRzodH7PTPjYcJ7TgLckds1PLXdqqkBIm6VV1Xyc/R1MuHca0yfqKfNqYttRC9ZogSUR6At0soUqyj6lkEq0mhrGEKqaIdOwgyX/bDGeUmEPpqCg4YZKTxsPqRnHZ7noJEcbCxa1WixcNT1u1Wo3/YkbEYGJt6uOlrWyLD46x+JnkJ3VXUzBNGGERtalFwpwWN0gvNkQ6EvmhhSd135q+pM9ZqXqBd0PDU6Z0YowarX9Jl8hm93ewAGMuhEgsAJn2TB+cFrbrZtcpbZ2Nziv2QYTnAOGzIMBHN3VrbXZOzVAE1l7XdYNyLR0UdpQ6VkIj9p5olZizFeY+NBb5yOIfP9/YZzM+rpsJxKwQQQmQFsmhLBaL5amOtdxZnhRKpVLCZfGJQIfCx5EOzhN87LaEK/S6ndXoCbLwCVNr7BhwpFzUwrTYsY9XHN1SrTOawJVTCtGYcvMJwsSnLWX7o7lUS7XKKaUiy0ori1HgTp20NHV6Lo7jkKzFdnyQsknikia0sjClM3u24rhaAkW4BKIDySgdh0zGRYQJV2QqQ+vR4vtLiZ30AA+Fj9at93OkDER+hwjChYsWN7IOf/f8GuVSiWKxiF9rHV5gsVgsls6xlruTmGBqkrTciUVWftM83qUNjrb9pWyfLk7e6nMcRzgdZ/QLikd3MFlarM/hBDMet9ewu6rH2LSz3CX2E9CwRqPTH9ufa0McX5vPpsB3OtulbhFT2RhjVy80ne5HouRAIhujjjIOChrv86i2nEnyELVp9m84WP0YJkbQ1CkUAimCiXJUjiF1vHhZgkCfy4bfmh0ynoSkVQxqK4GWtvw1jFN4HrqF1aZugWkdA9eOVjF56ds6EC0x65vSuK4THbfZ9q3aU4K6yBIgU9YxLYIsncaCnL6z0uPWLgzW6BgVjqcTfw5i5m8znsmkOc3PJ31FTB+FkME1k0ZIm/uq3pAjJdr369s3QRGPmZORWGv2PjXWReUFMaEZ1w3KoziN52KsqPE4y5bnGPsiXmrF9CBtvTXX1Ayp7weWx1w2Z+PzLBaLJYa13D1FUDZ24aRkKfE7JzyplXmRqqO1VBxHRrW4GsVDYEVRvmo6fq0sT1I2ugTGEaFQRQbujvIYCtE363czjPUrqBV2VIdKHM/3vKCenpSLivlAbImE5a1VjNXRWg/N/e37oXtl+NlxZFNrW0eGa00g7OMibwl9OV4E41tvNyhOf2xtaq1QWuGn7mtj7RYE2VQ7pVbzOrbePf2yZ/OcX3khvueg1XEoRm68FZROXuvY9/H/GVToFu26LrVajWKpGBVKt1gsFsvSsKUQTlK09BFO48RlKROZE01gHE1/Og7qj1tVwhV+X/tt9zexOUqrRCxf3EKoVJPkGbFz0UqhZP27tFVGahlOWk2MXLL4t073UavkskwbLdE0k2X8+FLik7QWNPSxblYEwAmtDTIVa9fKHtRQx65Vdk6l6/F2KdyUlapexDz8R9Ut14Fg0PhKRaUrpAhiBYPJuQJTJJpg3AP9ZywfIswg2NgP5SuCMKl63Fr9tGIxTKJR6AZGQpW4BFI2WiFbZY5NPyImBs9xA+tiNKnXgUjV0XYm5jG0FsauR3D8xkvSOu6v+Q3XzKqTiGOLLFLp+Lfm+8eREFi3dH3D4FqHv4fWyMgSJOqWPSEEnqpfV8K2gj2SsXbROYe/OyaGWNfPxVg+tdbRuGtdd3E1pAuCL/amESLMfWnuVxGIH9d1UAikExw/bgcL4hiD94Qfu6ZBjTmR8FowMW0y8XwIbv3FT3j7/3sDjiNwclWUJxrG32RlbRdjGT9H44Ld4Aauks+2iiytAuVrfL8WLngoNIJKNRB4IozzzWRcJG6wiPQkltawWCyWExnrlnmSoqUfZqE7cWnn4pfmeNyL8QnNYolVpDQT/c6OeUziTifFWkNfdD1LndYanJS4S5c6SIs736ibDi328X4IEdQ3k/VU+cHX6eQXnfm1Ccxk8OicAhr2j/UjbXyLkl6YPmtwHSeY6MbFXTTpdQMrSSggjbgz59vgYmaEQnj9ohIMShvl0iDu6vsqPM8jk2m+fha5inb4LMhFro8QdVEj3aQLqed5SCkTyUogfDZiqwLNxN2xkrYIpt1mWyWRaePhHLWtVGANbPV7XNwp484bu1egtbhr6INOCtV0zF5gmAru2/hpLWYxbnmOSHzlx0R3KP6NWI91TppYVq0JEssG5+x5XtQPIUWDuDN057soVwRSeCgqtPJAbzUure6ZdIKVCGVcaY0IT8ZJK+WDFMF1EiJ6npOi3MF13cDabrFYLE8RluKWacXdSYqvm6TYPkFYaqxdJ+KvXWzd0R57qRxVsfI2fREp8aZEMrMkJqOd2V4krWxShbFvrU0tyd9S4i5ou00fW2XD7GRGnuhKvOC1bIgNM5PmuLjTKhb3RqzOXeiiF03M41kxgXpdL4H2faSTCcasxThF7RprEDHLQxiDB3HR1zzmLh4Llj5vQ1x8mH3SGSJbtZUUdo0WouS2dUtiZOWSsi4YMMk8ZOQa2MqNtdOJvdZEN2tk7YpZCjU6YeWKn09cNMUzbcbHItAGoWXKXJ50LJd5NsKMmAoicaO0xm1lOTZ9D/WHpv27qdX3iy0cmGMlhE6LZyLaPt6esYyFC3wayLjZROkFIWKJbKSIbux4X0R4vkFm2tbvtkC8Nt6LcZr1PcrhavqugyzDZrzS4cRCNFm8CK109e/i1lFFJpPBdaw1z2KxLG+WIu6sW6bl5EFraHNr1wsAH2czxNFwnARmfcJ/dOdkXAzNrE7GJk4n/FRIBRNUoXT7TJfGb8xMJOOCQphC7s2KOx8/2llp610VLZOptGrX7Jf4XjV+F2xv/g2fB0SUYdK4bjqp2nkdxb512FcjHmWYVCNu9WqVdKejtsP7wOzd6jmPFn2MK2FsDaJdORjzmhFCIDELK0t/liPBpwn6fJxeSUoptK9AClynnr1WCEEul4sEXnC8usAzgr1BiAoVitnFBd6TgTDXWgoaL0Hgllqr1fA8D8dxyLjHIW7QYrFYTnKs5e5kIZy4aqFQ6vimjG41cTxajtV6Fu+PmRi2s9gtFTMhalUs2BzHxGuZSWSrunqLZtRMu2gucZzTbpmRh5JSQQkyKYJyC+ZUVJuxaWK5ayVG6hN1Fa7Mp4jtn6jtxeLumfUYsOaZF+vNN9aNS5fbSLsc1kVs+L2mnmwkZS0zz1UQe+fjSIlvLHMp4ZSOBRQQuYC2wrShI+vM4pafeN+SRkaRsNLF3QhDD9OEFQiS4rFe1y1x1PC3+rDFjxkcS8IiKfKbEl3T5LmZ84syKOq6i2hc/DVtMuU+mSYQkqLhmMnrV7fmpcVatFmq3l2QyKW51VIp4wLpJ9xD08du97x3+jpIPwt+cHNFizW+r8hk3EDAa42j6/dCdDI0f9TTfYhvk3xm6s+rjFn72rlnRi6rhLGDqVdQ0/eEEM0XdNInkLakC0Emm0UKiXSdyNXUOnFaLJaTGWu5syyJdDzPU4GOLSYYy8eJU0Mv7Xrk+ypMQnDs1y8tuoyw62S/o42z67xvGtEkjjKesKNZ/JsUAhUKu8iK2QH15CzN7xWVKqTdtM+E+y8iOhLbd2DxS7plSpDB2KuY0NRa05BIh7TQqrdpfjOZSs33vu/TYv2jY1q5XR/rAk28rTSm7aOxuCUQhK6qrfuayTgd3VOt7tujRWmNpO58rLSKLFhOcMDEcU2MWrOetnIFjX43bZl3T9j1+jgvzeK3WKmaOPGMm+1qK5o2a2h8z8PTGl0F18lYi57FYnlKYS13Jwspy12rGJ3lwGL35FItd8pPJh9Z6oSyIdZP+cjQ0tAxS3zGGs5fJ5OLOGHMktnK/JdxuxJKxjen6bzTuCimC78voa8NVjBIFCrXqp4mPm6BCn9t2uZilryGJCst+tqQ+TCk3fxbKy/ov9lPGStT0uJRXwyp91Gp1qKt2TjFLXPNalOm2zHJQ5QKyjbUY8FS507dDdL0tVl9suSx6ntrrfFqHq7rhi6NGlAJV15tTHyEFl3HZIwM+2RqHjax3CW2a2HZatbXtGVOKYXjONHkv51YbifUW/0WdzFtXo8wlggp+k5EVj3zTCoVxPvFrbitaDUuOvYuUlo1yKn0s5a0MddjGBMiKXKV9aM2ovZTiyVaa9BBfG8QlxmXlo19SS9ExJ+lJmcdbWP2E0Ik66aL+jgmD0b9fSYknnkfRhvUY0xz+QKu46B838boWSyWkwpruXsKYAohHy9XSktnSOngez7CefLGXSkV1IXqYEJ7tJgJVEMq8+gYLdw0G9pJruzX+3bUXUv0IWgr7bp5dOcfLy4e7J92/zx+1zwQAD4gwwWDxRcdmgnAZpgsiyZWTAphRj78HEtG0ayOoA7S+y8qQrTG94M+SyGiCXJd4Hdm5W5l0etknNPXquV2x2jB63Tc0/vEwy7NZyCR+bFlHOUS799WbvD1j6HlznUbxIz5bMbJ1/H7PynMAnEtkI+DHoq/F4QM7l4hBX5C4ScLo6cJMpXWfSzi46hUUEOwuDAf1ZjMZLK4TcbEYrFYTnas5e4kIZhsKZT2W1g1lj4JOW6kQzs63W2RSYyvmtegMxNSE+eWnqw64YTcT8UJpds6XrF76faABvNIOslGFMcXDly60oFMh5SkTE6h7SeykERpx1tc/vpKd30DpZP9FEIvKmzS6NT4ttq+nUtns5i69O8m06MQ4TiaEYjF2ImYyIjtnTxG2iQk6uevlcJxMiitg2QVEMVZNoqQZJbMZo9d/Fk07o7xz/Wf/VTbQaNuxqW4UCSbySUsIPVxD7J36rQwMKJMh+MCQVp5JXCFoJaZRwgHr+bhOBmEFNQqkowHSIeqgDwCnREszM4hPEUmq+nrG0T7kprnU1U1BArtVXFdB60E3fk+KtUi+VwmsPjkJHPFOXzlknHyKOWTz2WoFotUCGq45XMFtNZU0WEyDBfP8/AQCKGRGmR4LhlfoGRgpVZC42gnMNiE6R6FVigyaEejZJWsn0qxnzaGm2cwbeVNx9yZ0W5h+TSxgMltl/oihCBmsslPCWtcyvorSNyArS13Ab4fWH2FNJax+rgYK7uJfzPPnI7FYSqtg7p/8f6ZcRFB+QKhCGpAtnuv6vCdGXolmGdNiNRJAI4IRF6rfEqe1qDj8b4iStoTdxevv1uc6LNWIFzIFwoIKVG+h7Rr3haL5QTEWu4sT1nSou5ExIiQJyqjp7G+Nc9NsLhb24mGUiqqVdap+S8SY+HcLm0lM4XNldbBpNAEmaViltJj1In1SGsahF087i9ePsF8FgKU55PLZhvERMIlTUpMgguDwEMT1vbToLWLEA6O1EHa/NoYLprafJni7DR9Pd30DCgWymUeengHa9dv5Jd33cK+x3y+8Y2vcsapg1zz4mtYtWo1vq/o7+9nZnac2YUyg6Nr0MLhO5/5JD19o2w5bQuVSpG9j00xsgZ8Pcd5Zz2HA4fHuffeexgbHmHb1gfZdNYlFPIOwz1ZVo/1U+0ZwnUyIGBsbJQeCighqAqNJwUaAU5g5dTaAS2pulXwFA4uUkt8Iya0RKosXirrY9qac9xi8o4DSmvcVN3BOFrrenIb6uegWFqSkCDpi8bz/CaxmyIsiSFAqui+VQT3q+f7wW9thqsjYfc4o0MrXbt3mqkLiK8pFYvRokrWsdP5PMAGAAAgAElEQVQii8VycmPfYicJmmDltdXfzXYxO4+rVe8YdUGzvrWzqJmYw05j35Ycq9eirl4ry2CChpgQnUj/3qomWX0c6nE6TZuP/f84Mmwjbc0xRM3FLXbSCWt/+ZFVzKRZT2/b2JHYsn5bmsfatbPs1cVn0BcRayG6x038oRFRUdIHc61bHDPaLrSBmngfkvdkJM4i62A9hqkdzdLPm3isZJyWjCy5EBPkMWEoYicvXAe/5uOE96HneUxNT3Fw+062b9/OVVddxdzcHCs3bmFooA+3kOFfP/RPPPfqc5g4cIiDB/bTnc3y6O5dXHrlK8kNDDMyuppq0Wfdmi2csqaXAwcf5bqXv4DM6BD79j7G8MgAh6tFVoyMke326ekdorhQ5fxnX8XZ51zC4SNT5LsL3P/wjazv2sKWLaeQkTnOOGslWktGhwdwHMnQin5cqZidPsgv734QqbNceuklHDh4EGd2lPlKhQe2bueM8y/i7Asv5sCBA8hCL66E3p4CXrVKt3DRWZdyReELB0crfL9Md64LoV1mynNknMASiAwS6riOE8VZpWMW0y6MJrYxbt0Ntk/ex0KIhjqVrTCxeenC61KKyJ02TvzRa+aZoVQ9ZlYIwnIBi73n6/eUsdAlE5bE4gPDxDpCytBqlrR0Nvy9SViq4x4ASatZ3YoexvalXqNRqEHM4uZHYrbFOKcWYaSIZ5ONH7/e98DqH1wLbRYCtKZW8/CqgfjN5QtA6ApqXTctFstJhHXLPFkQQeY6IVXbCXGw+RMo7o6So+lTenKx1KLinZZUaCXujgkz+Ui7XUYTzDA2po24SxNNgnyVSGjSrh/1/QNxB8HEKOxl023rTfgJcSda2BDiLozBsdp3r3W/49Fjsf6bnxs+JxPLNLrU1cVd8E/dla9p5k1Rd/fyfX9Ry0CreLJ6UyZJR/C97weZLp20VZG0uAv6XPN8srkManaad7zjL3jb2/6EhYUFekaGyWYzuJkMMzMz+EcWeMdf/jmvu+5lXHD+WXSPbqJS8XDcLJlcF7fdfifDuSpjW87g9l88wG0/u43Xv+Z1/N9P/T1vfMNvMto1xsSRGUZH+ukf7MXzq4i+HqgpvIUqpYUyXU4FT3fxi3vu58JLzqeiDzG+v8Jg7yBTUw9w2tnPAK2olorUqhV6MivYvmMbj+1/lOe96DnUvPnAauJmyGYziFKRI1NzzM5VmToyy85dj7J51RC33/Zj1q4ZZOO6lTy4a5KNZ53D2IbNnHXBhcwd3MP73vOXbFi9kdO3nMvms8+k5tUY6O9nanqaVRvXIR0nss6yyL1h3Gabibv0fRx4BHZW3sTENDaLrzQW3WbHavWeVImVDiLXb9NKqzdB3P0yLu6ChClEbpugIRR3RryZ4Yhi9FLWxvQxW4o7cw6huItKzSgvchk17qFRWy1iOdPvZpkSgelnVSsRlcAJFsNiYyBE3W0+tGY6joPrurjWomexWJ5EluKWacXdSYKWPtqvrzibOI0npzPNj21iwFTK1S+d2TM98TU14uJCykmlvG8lrlqKrzZqopmoS/enE5wmEzCVtszF+6J1oyudSCWkaKMjG0VM/XMwxslJkPZrgQALJ5Umo2Iyi2MY+xXG5Oi6mQ+tdPsYPOqr38netdohdZIN16M+wYpi7kgmkhFCJtLUC0lqhb2V4DR9DMRwVErBT07S0/+tTX1JKfE9r20SFEiKMwBXB3FjPsHk3FV+ELckg1g54fsIXLKZXJDRz1cgfYQDk+NzLJQrfO6zH2flcB99+V6ues6z6R5awcHDM/QUcgjl0jdQYKE4i1cN6pAVugrMzc6RzebwhaZaLvPzm27m+Vc/l99785v5y3f9FaduXMdDD21lbPVa9uzaz9BgD3fcdjvPeMaVXPOSl/HxT3yMdetOwXElDz64lbHRUbY+9DBrV5/CJz79RbzaAhvWjXHNi1/A+s2b+fjHvszVL7yKmZkiK0fHKGQq7H10Jz+46S6ue+UrcN1udu7aw8BIN9OTk5x90Xk4uQzd2TwLxQpC1JiZmuZ5V7+E/+d/vpWrn3UGn/nUB/mL6z+NGDrMo/dP4WhNdyHP3XfdBdJl06mbcXMuYyvGOHRogRUrxvBqHuVyGVGr8v0ff4c3/O7vUq5CJu8GYkoIfC+sgRjZxP1IzPz2b/8h88UF4vfzq1/5chxHsGXzJs49/+zoXqzTykrd/B6pG6B1JGzi20fPaRinZu47P9VgOn7waJwj48c02Umd8BkRQlBVflirLrTmKfPM1OP+kkI33cfm2XAjN9ConEfoAhqPiw23CY6vQJvso61fmKYu5GLn2kqXm3NRsXOQUlIo9ABQq1WRjmvr51kslicEK+6WIb6uIoUTWVhORHHXyjW0nbir69W6Ne6JFnfKV0gnmMQ8buIOwmLj6SyMSxN3iercLF3coUWDFSGeICVu/YumbdpcyxYZKk9icad8P9q+qbjTQbF7I+6W9PJpiInTqHDCqMPPQtettX6liO9pQOJ5Pjd999scOriPx/bt4YrLnsHmiy9jZLiXgivQFUVFKLTMsrBQIuN7TM4U6enN09vXQ62iyOY1QmRYmCuCzqBFDUdKapUq5WKRUrFId28vY0N9HDh4GN/J8cPv/pBnXXUlj+zcxhe/8B+86U2/xx13/5KXv/QlfOazn+UNv/PbDPcP8al/+yRbNm3my1/4Mvm8wytf/mJWjA4jenp56IGDnHXBFn7jN97Ida96CWvGVnP99e/kr294N488uIN8oYe77r2PNetWcfMtP+f3/+iPuOTSS1g5PILne+TyLjt276JaEVSqNXLqIH29GVad8gym/V0M5VewY9tO+rp6GRwc4q1/8r/42394PzVVoeqVKeRHEEJTKVcAwVBfPzW1wDe+8Q0uu/wK1m05A195FPIFtIYaHoTX4vWveyO/trKfq9evxs3kUhc0Kdy0X+OxmXn+/P7dbW+FoWyGI9Va099WjI7xwQ+9/4QTd/HvhQAVui0rAldMEYm5pLhrlRW3lbgT0mFhfoFCId+5uIv1qxXHU9xpEfgn+L7GdV0KhS7rrmmxWJ4wrLhbRggp8ZVC62ry+xbuXg37d7jd8aJVlstmfVlKlsw0cbdJpQIXwaXE4HXsbql1UNcuLfjCvjcVd+10jU6fXz1jotaNGel8Ex8iTa29lEWg4Qgpl8qUa1m8eJT5L5WOIUwlXDCp9U0sWP18zQAkXRzr4sz0WSV/Tq/cp9zkjMuYuaZSSLSui6vg+Gaf6CyS55Ca3qYzWEaWO3MW5sLF5u8mc6IQAimSYjqeBCV+JuY3ISXaU7hOBt8PLH1l34sSU7iuQzafozQzh1cuk3ezfPDv388LX/yrrF63HoSkWJmiUMiSyboo5SJzfWgPatUa2vOpeQvku/s4Mj5Bt1CMLxRZveYUBII9ex5l06YxlJKMH5gil+2ju0tSrpSpVqoMjQwzPTXN/r37ue+u27jqGc/hnge3suGUdZx26iY+8n8+zLXXXIPQLtmcy8c+9i88/4UvoH90mNtuvpO52Sle8qvPZ7qU5W1v+WNu/NbXmZ+bYXbmALsemeYjH/tHPvrxf+PQ3h3k86v47rf/m5e98io++qFPcs2117DrsUfZuGkLTk5wzwPbOLDvEPPjB3nD7/wmv7zjDp7zwueT68nT29vDjV/4F/YfnuO66/4H23c8zN13386LX/yrlEs+D2/dwVVXXYWbc/jJzT/lxu99j79+x1/woX/+CLNzc1SrVcrlMje84//j79//17zvPdezd/d2enp6ufmWW9i8cQNfveke7nvgAT556el09w+hw9p+9Vsm/VCn7v8WUsronuZPbGObn7p3K9+fLnL+uedy2mlbEurlOVc/m6HBAUy9N53a3TwHszNz9PX3NvbIvA6adDX+56GZIIoEZ+qdbSycJqSt4ZVuFoVSpThaJ49JHi/ZB+N50Py97Xs+mWwW3zfv06aH6JhIqEZraeZdV/87Zlw2HTcT1c9T2Dg9i8Vy/LHibhlhxV1znkriDpITrmMVd8lTTk9SQ0JBo81ESbpRH4Om02160X7hf4QfZWr7lBiMvl26uJPSpDQ3rRyduCO0Ypr0+JG7ZUrcmfZFvZPhqdTbrZ9+eC2VoFwq47ou2WyWmvL43o3fZvPGTezYtp0Dj25n9Zo1SMfhwgsvYPWatUzNzlNzXXL5HHOzMxQKWRbmZ/E9h9UrhrnzzgcZHlqFmxG8/S1v4l8+9Xmkk6c8P8+R+Um++MWvc8mFT2PthhWsXTFGsVTm0T2PcsqaU6BS4w//+I947etfz8tf9QrGJyaYmZjmlpt+RHffAJ52+OhHPsInP/5RPviP/8CvXvNCNpx6BkODg5QrC3z72//Fr7/h1/jvb9/K1OQBZmb3c/Hlz+XnN/+M9aesZf36dfzgh9/k9970Z9zwd9dz7bWv4O/e80H+91++nUuefiHVuRlu/fld+KLChZecx8FDsxSyJT7xb19huHeEy84/le6RUX78w5+RcVy6uuBnP/sJ733Xn/NX7/sXDi5U2LZtK+ds3MTbN6zkxxNTPH/lMMNDg2SzOb5/891cecFZfOund3DepjWsHB1iaLAPLTUOTjDxFyq4lzTMFYuMDA2gXcnEgcN053LMlRQjq4fI5XPhvVG/n+N3bPx667TSit8PSxB39e917N/0r3Ub/cOHxzljeBAcN9FctVIhl8kyWypyaKHIfz82zs1zFTIZl0svuYS3vPUPkkeOPZ7Nahya80z7NDjRMxNm1EyJQvOMmsWd9nUum7u0BvssLu4cx8WreVETx1vcGep5mOrvQmNdzWazZNzMkjOZWiwWSzusuFsOmPgsoaIg8zjtEjY8HnRaXPd49c1M6o3oWVSImRXu9LHSfe3QXbNBzKVplolhEZLxbanxUenZiN+QGCUqn4DElA43Ik9HsSctjh0Kr7hbZmP/0ucrE7X5GoiNdZB4wIsEjWgiTpPHgmRp7SZuns1qOYb/mnifuFysV79LnkMi2YXQidX0+PVQSiExCwbB964WVKTCl5DzBYps1H8pBTVRJZfLUSt74GsK+QLFUhHpzTNz4BBf/vxXOeW0DVxy6Xl84z9v5LWv+XX+5Z8+yFve9qf0Dq7gkx/7BM99yUv4xMc/zerVK7n2JS/gyPgUK1aNoPCZmZmkr38Mx8nx05tu5ulXXkIGTblUYeejexhbtZqcD+++4Xo+8Dfv50tf+DYXXvVcfvidr/Abr385c75Plz7CT39+NxddciXCK1H0fPL0cOedt7Fpywq++Z07+MKn/pVff9MbeM2v/wa57gF++ZMfcu7m08j3dnP7fXdx9pazqVXnmZyY4Owzz0PlF6iUaggKTIzPcspQP//xpX/n+S98EVu3PUK/Vvzkl3dw7XXX8V/f+T6/fOABCk4eX4PvFdn96G4Gh4YZHhxkw2CGt7z1z8gMr0C5Gd76O2/kH2/4E3700zt5wQuupjjxCK/54xvoH1jFq+dLXHj6BuZKC6xesYJ8Ns8vH9jG+jVD9BQKLCxU2ProfpQPm9euYNPGtUyMT7Ft1wGuuPIctNJUSiUKXXm+/ePb+ZXLz2OhVGR4bBDl+WScHELKIGmMkkjXoVKpIDNOZC3r6upCKYVCIaQI3LmRSDe4913Hwa/6ICRaGNdFBWi0CO7S4Pk1nxtfSc0eOSP16k9CE9Enkp8b3oeJdoMWf+MndyEEvPylv8prX/fqaCGoYQEpfL0may7GrNRC4DhOdLy6dbv+3oJGUbbYn5KGhCrhZ18DUkRWwygnrg6Eb1yYNmaljY9d6J6etoAu/icCrZLusc3PReC6Dq6TQToSHx1mJQ7fmQ0LfBaLxbI4VtwtB6y4e1LEXadi7UQSd0bEtDqnx0PcKaWQjoP2g0kuQqN9P8hIGCsX0LQ/RynuEuUJOhB3RvTG20zUFgzbC7LpycjlzGzhaPBEMFzBfwdj5IeT9VzFoSufZf/e3bzzXX/JqlUrWbt2E8973tX0947gyC4e3b+LFSsH6ekZYH6+wg9v/BwDwys599zzUUpS9iXdXQPcd//drD1lJSNjo0gJ4xOH0Eqxd98h/vEfPsyHPvRhKl6Rvq4hcrkcP/nxjxgdGWLdmjXcddcvufyKy3n3u9+PyvSwcc0Y9/zi57zvb/6GO+++hXzPABddcjmvfulL+ft/+ls+8uF/4w/e/EYGxwrs2+czP76PNRtWMTE9zcWXPp1qeY6pwxP0D/Tzrve9l+333M2b//D3ueDiyzl0aJaF2YMUCl08suMRbrr1VnYdOMzcwiwjQ8PMl0q8crCXV5y+BeFIdu7azzlnrsORGTxfg/TZvnUPd2zfwwuuOJ/9h8d5x+59rFy1ig/93QfYft89bN32AGeceR5/8rY/5VPPuYLe7hzd/cNUyz7lSomJ6WkeemQ/Q929rBkbZNXqEY4cmQGtKZeqrFgxgsbnF/fvYN/4DM++6Gz6BnvxfZ9KuczgQB/FYplCIUfFq9Ld2xXeCzL4Ryg8TyNQHDw0zsqRAaQI7nlHuiwsFBkYHWZhZpZKuczE5AyDY8OMjA4ipIMKRVCgQoj7NAaui6G4S92GRyHuUlautLgLG41cJ5uIu/j9DoK//sUDPFyqRN+sXbOGD/zte+reoZpA1CqNDgVOMk7V/JuKaVYpq3eiH81pJe6UOVBK3AHUah6ua7wMwPNUovREs/hAleqDiatznNbvMKUaM6Q2+1NjrHq5rgK5XC4ozYEVdxaLZelYcbcciIm7xon3EyPmlkqnfWpVhiDuXrnYfk2FXCsR1+r3Jtsl3C87FYWx77VSi1u7Gg4dbpdOupGulZBGBeLGTJikcBqSK8T7lr5/jOiJ9zXaxqzMt3Azq7cRHFupIO4kEpCODN0URWKCFy+JELSfdnNtLu4aV93bU5/ypu+jWMpzgklckKAlkIZG3MkwW2jGdRFasDA/Ryabo8uvsXv3HlauXsl999zLY/uOcMYZW+jpzlDIQjaXxVMuHoLxI1UGhk7h7ntu5qJLziOf68KrwR23fIMLL7qUhWKNvsEh7rrjAbwKPO3yS/BUmSOT44yOjuJ5Hp7n09c7SKlYAw0/v+UmrrjsmVx33WsQQvO+99zAz27+Ac997gvwlcett97MM696DmOjY3ziox/j7l/ezm+9+Q9Yt2UD995/H8+47Ap6Rrrw5mFudpJ7H7ydnr5N9DiSM8/ZzM9vu4W/+qt387nPfzawYFU9fvijHzBz8DFuemAnGcfl3WtX8dNDhzgv34Pv1Sh0uaxZtQohYf/hSe7cuotz1q5l/box8oU8X//e7bzomeewY/cBilWPi87bQmm+TDaX48DhI4wN91OaLTI+PcM7D01SyGa5bqyPywaGOXR4gtNPXU2lXMXJ5Xlw66Ocd9Zmal4VfIFSPr7S9PR0s3/fIYSAwYFeHNdFqRq5fIGdu/axcmyYfQcn2Ht4kvGZWS49YxOnrF6JBrL5LKVShVw+cGt0pKRSqTJ5ZJaRoT4yDlTLZQp9/VSrNbKZbFD03nFwpaI4M8O2R/Zz7lkbmVsokSvk6OrtZmJyGlWuMrJiJCzBENx+WgqkK+suz6HbZ7N1qcXvcN34OSXuBGGbaU/H2GMkdJildZFj7Zqc5K7DR/jGxDxe2MnPf/6T4cJb872i59y4r8qYVU/XxW09Bi/WRxE8/1qBJnBHF0Ji3KTTryYZHa9+7Ppx6u8N83s6K2krZ+5WyV8MrbKbxo8VbRv+6zgOjnTIZPPBPuHfDBufZ7FY2mHF3XLAirtF9wtSYR8/cSelg/JVa5+cE0jcSR1OFpSZIC1N3EnhhHFrKjaBOTpxJzDpy+uWuMBrSjas3gf7hfEp6SnVEyjuzHxXEIg7pTWulAi/jOcFNbEyGRetNd39Q/zOq15F7+gwb3zD7zM2OkpXdxfz8/MUhgaZn5unJ1+gVCxRrVaolIr0DQ5w+OAc7373B/inD99AJguHD07Q2zuE50/S3TuI0g6ep5mZPMLb3349H3j/DQyN9FEqzZDNd1EuVnnogYfYvXMPT3/6M/jXj36coaFeVvVncXIFRK6Xcy54Gg/efSuFfB/PfvYzURQpjx+he2QVoqsb5ZVYGC9xePYAq9eOkhM5tu7ewfqxTdxzzy9Ys36YtRsu4Wtf+Qovf8ULmZw4SKVcY/26jfzuW99GPpNl5+7dfOpp5zM2NsD+g5MMDw2iqeGIPEr5aOFTni+TK2SQ0kE6Dvv2H2F8apJVQwOMTxY578LNaF/zmW/exIsvu4DRsW72H5pi5YoRtm3fw6aNp1AqlRga6uWz37yJ17zomUjlc88DW9m4diUzc/OMja1g96OHqHkeWzasYmp6nkJ3lq6uAsW5CuNHpjll9QjZrEutVqO4UKZc8ZidK3LqlvXMzs0xMNDHjT+6ldUjA/T39FCq1Dh10zq+9J1bef1Lr8RxBeVKme7uHrY+vIfhwT4KhSzZfAbHkZRKlTCBRobxw4cY7M3h+z75nkG0qlGr+czNFxkc6MPNZEF57Nq9l3K1ytqVo7jZDH3DA/h+YH0ScUUnRBMj1mL3+9GLu8RjpGP7NyWtDJOUKmVu3PkY35gssn7dWm644XocV2JcHtOCSgqZOK3oPRLG5knAD2tJaq3qZVvQ0Xu/U3FnPBtMHOCJIO6iBE5aIKUkk83Z5CsWi6UjrLhbBphEKqKFuItvp2JFWk+E65lYMQ0nF50kSlnM7bJBCMateMHB0p1o+n3HMXUhDZkrG7yK2o+31MmkIqpFrYNmrrcCSUO2y9jvAEIFbk/G7bIxs2XnpR2WjA4tXlonkpOkh0k4QWkLIUXoyhlM2oJYt3pfTbybOeN4keVEjIsQSKVRIrgmSkDOE3hOBSUdtMqD8qhUyuQLWdAKUS5Rq0Jfzwjzc0V2bb2LUs1noH+AW2+5mZ6CojQ9zrlnnM5k0aenq5/86BqG82WqnqR31QYWFsrk8gV8T7EwM0W+UGB0dJRKtcL8/Dxf/uKN/OxnN/G//tefsHr1Krq6gxitb33jv5kYn+faay/ilBWD3L9tHxvOvAwhZqgu+MzPzZDPSbr6e3GkZGJigvvuvY/KTA3XEXzh3z/Nq1/+cmSXy/Ofey0guOiK89mwahWf+/yXyPd0UejPctNXvk3PYB83fv8HvPw1v8W3bvwBd9x+C3///vcw0FNgZno7cxXJfQ9uY6C/l4vO3ILqWsM73/seJo9M8vKhLi7uLrBqdJTxw9OsHBvl0OQEAwPd5HNdTM6MU8h209PXy533bOVpl57F3j0HGB7px6/UqFaqzJVLrBhZhU+VTDaDUopHH9nHqqEhnFyGTCbH7MIkjsgyNTVHPp+n5nusXDlEsVTkjge3cvb6jTiyRrlaZWRgiNmih8LnkX2HWNk/yMpVQ8xNz+EIl5vu2M6l56xHoyl05anVPGpVH+FCsVxCIJmfr7Bz/z6efcl59A/0cfe926n6PkO9PWzZvA6Zd5ASahUPhEu5OI/jOHT3BOnua55PJpsBYPuOPeQzirHRYXwfunp6qRSL5LrzKDTzswsMdHejXIHWPo50qVV9Zmdm6ekuUC7XWFgoIZVm76FpNm4ZZWzFCtCghY9CgHaCWD1dF20C0A5BoW1fp/0vzQNJXD3pdDYXsbhk7JwWrYTvqh0Tk1z/wB5WjI5yw9+8i0JXAQgWpuKWtMjVMvQAMNY513WjhaDoXGLWfyllg+hq595qvk97y6ZJi7ugraQrrWl/sTVD6TixcjWt3vnhMRxJNpuNvndkJlaixWKxWKy4WxZYcZeklbgTJi11Q7r/NqKvQ05GcZde2n4ixJ2IrdQ3E3dICUohHBkmPQj7H/4vinczgtQ0H2siYXDQQVZRFd5iQfIKgaCGV/MpZHupLMxy5MgEO3dt54H77iNX6OHqq19AT/cA1XKNfFYwMzPNoUMHOP2MM6FngMrCLEIpMt291A7vwe8bYChb4dDhaboHV+NIh0rV4+c/u5W77riTN/7mG3nPe9/L7//umznz7DMoLVR56OEHWL9+LdIV9HT3orXm3nu2cs/dD/Oylz6L/ft3UFOSs867jOnZCV7xklfzza9/FdfV7HjoER5++GH6Bwa44PwLcB1BPp/je/91I0972iUcmJjg6VdcydzcLFOzE3zz6zfy2tf+GsVKhUKPi0uObMEhX8ix+5G9rB4b5Ytf/jLXvea1fPoz/85Fl13FBz70D9z3wP382eUXU/YVr1m/hu6eLgDGx6fwtWbF6BAHDk6wUCrR19PF2Gg/t965jXPPPIV8rhvf00xNzzAy0k8mk2G+VKS/t4fH9hxksL+bifF51m4YZW6uxODoMKW5eeZni2hgeGiQA+P76cp10dPdDa5GqaB22NSRWfr6e8nJHJNHDtHd043r5JCuIJNxmJiYpq+vF1Dc98AOTt+0gbmFCqXSPCtXjiCl5LH9h1g5OszUzCwjgwOMT8yQy7rMzc2xft1KSuUqU0fmyGQzPPjIXq648CzKlRoIRb6QZX62yODwAAsLRQqFPNlclsOHJxkZGUQrTblcIeMGSVPKFY+apxka6MHXGjfjUq1U8ase+e4uJiYmmZiaoyuT554dj3D15eeTL2QpFktkHRfPF1RVmb7eQSqlIg/sfIQzNq9nYHCAeE4T4zqpZfhKU/GHQ0TPXfxJqQu72PcpcdfEU7NDFhd3zfj1n9yFFII3/c4b+ZXnPIt6gpbgNeA4oUdBy/i8sM+m7mWb9bx24q5eniG1ABhtX7fctTpeO2eCVn+G6n0KaxaicUKXduk6wT2/eNMWi+UphhV3ywRfKYJQhc4n54sVEm+3X6dub0vtQxojzJzQFccUDY8LuE5LGhgWLW0QVNxdUnvmr7FMZY1rV+agaVOpnbSMx540O3RnB2kp7gjcfOrX/jiIu05nTi22Nxa7BmQQt2N+00A6wx0izL/ZZLyEhlqthuu61I6UUTEAACAASURBVJTHob0HmTx4iOL8HGtXr6K3t5tKtYjjSA5Oldi4cSPzc0Vy+QLlWo2JfbvJuRLPydOT62LlmlVMTU0yPNyPV6syXvEZzJYp1yCT6UUKh0qlxv/4gz/i//zTR3AcSbVWxa95ZHM5MlkX36/xpS/9B5dcejHXvuLV/Pg732Ht+o1USor+/ixVr8j9997LxnWbqArBJ/71MzzvV57Fbbf/lNXD67nmmhdz2kXn8JzLn8l1111LoauL+YUF1q1bz9xCGSnhvAvPYWZ6ik9/5gv859e+xde++lW+9KXPsmdqmhve9Q72PvoIv7z5Dn5y261s2/UovT29/M81w+jxeTasHuUndz7IhaevJ5txWbVyCKEl2VyWUrHCj375IM+76gIyGUm1WiabzTK/UOTwwRk2b14FwsERLocOHkKjyBcKFHq7qJaqfPl7t3D1RWcwNjKKm1N88ds/50XPvIz7t+/isgvOZHL8CL09feBWyTg50CCzQSKUbCZPcb6C063pdvNMHDlM//AwbibPjod2s/WxA1x1/hlkc1lqlQpCuhwcn2LdKauYm5tm52MHOH3DWiamZslns+TyGYYGBvjP793O2HAXZ25Yzc79Bzjn1E2US1V+cteDXHn+GUjpkJM5vvWz23nVCy/n8Pg0+XyebDbDkalZenu6EAJcx2XfwXHK1Rq5nODM0zbiKRCOxJF1F2UIJuhTE3OMrRxifq6E9gNFls27KF2jXKngCJdCoYe5+Wm6Cr1IfLTWPLL7MU47dR0yl0X7gUuiVhqZcdG+jr3LRPRvMm6u7maZ0HaxXURsm9QTZR7gJr8thmm4xUKUeQ+oets7Jyb52z1H+OhHP5x457muE7hUBv7daKWiv09xt3e1iCtjs+RfrdwwTY/Mlg7Na/GZjJ9RllATT9jmdR0vY6N18LfKtB1lERU6sPSFgjyIi5Zkslkr8iwWC2DF3bJhuYu7NMci7hZdIj1JxZ0fCp54trdEO0+guEu7TS5V3KF1ymGs3m5i5VzKhLjTSjUVdyq8X6WGR3c8wtaHHqJSKjE4tIILLroA3Bqu04XnValUikhHkHV7ADh08CBr1q7hSLFGn6yy8+H7OeXMi3jfn1/PdLHEBz74txw5sJO1K9dTynVRm97DY3sPsfH0s/F8TWmuiNKCQi7Ltu3bWTm2gmw2w1+84y/553/+Zz7zmU/xspe9hFw+hyMKlCqzTB2ZZseOPVz+9HOYK1ZQRcXe7btYe8Zm/vRt/5tXvPQlrFu/ij179vLlL32Jj/zfjzA7N8vuHfexc8cuHti2g52P7Obs8y7h9//gtxgd7Wfbtl2MrRzFJcOhA4fY99gOTjvzbF76utdzyXkX8ZbePjIFQT6bY/XKMRZmS1Q8n6GBbvYfPMSa1aOQcSjOlci4Ge66bydrRoZZqBXp7srh1WoM9fcyODZIrVoj63YzPnmIakWxasUIQiump44gszmyhTxeTeO6DrOTs2QyWXqHslTKkJWCvYcP092dozubRZPFzfm4To5SqcLM9DS9PT04QjI5OcvKdcP4xSr5PKhcF8gce3ftYWJynlM3rSafz7BnzwE2bdnI+MQU3YUc1WKJ4ZEhfEUQb1cu42aC2MmZmRKTM3OceeraIFnK9BwL8/NoDcND/QwPDfCLux9m0yljlGs1Ctk8P7jtQa684DSGB/vZ+shjTM/PMzbQx67941x0xkZqfo1StcqK0SEGR4dQ+JRmi2QzLm4mg5Ia7cP8/AI9PT3s3zvO6IpBHEfiZlyKxRLzsyVGR4bRsko2kw2m+75mfGKcQs5hYnKWQi7Ljr37OG3dWlasX8PC9Dx9fb341ONlG8VdaM1WgRu00WnBNsZ6t1Rx15noM04DDa/JhLJqbGP7+ATvfOgxbnj3X7H51E04jsPCwgKFQh4hZNTbZJxw8/eo+VuW/pvWStxpTRjTF77zaV7IvV2ilqZEZWpiLqUxcWfalJkgw6dWKnQ5FXieh+M4ketqNpe3Qs9ieQqzFHHnXH/99Y9jVx4flO9f/2T34fFGUUOIRj//dsTrEC11v6NlqQsE6QK56T4ctbALGkl+J1oEmQQ+QfX/NfndCAstCNJly87+tAaxZPXJgUwdToer0sL8TyavmQhdrkT4fxIZuByG/yO9v5DhhACCmZtxj0z4bjV3IW3jtiocJ7inSN0j6bFoMu4JMZe6L819Gj96UjhmQSiUDsoreJ6L5+RBZ8H3qVbmyFcXmD14mK998bM847Jz6V+9llNPO5N8vsDWbdsY7u1nYHCAuXKZYqnC7MQhBvr6GOgfYGFmHrc2jswO0je8CaGqXHzF07jmRVcja2XKvsNcWVJdqDA6lmWgu4u85/HD//4uGzasZTCTx6167Nm7h77BQXqz3ezZ/ggDPX2U5hf4zjdv5MrLL0P5UJqf5mUvupZXXvMK7rztQT73yX/nrDNOo+JV+PnPb2flyrX86yc+xrrN67ni4vOBDAMDfWzeshqnkOPip13K1c97Idde8xKO7HuMTC7DwNAI3lyRmq6S68rzZ9e/h3u27uSOH/2UTz3vCl65ZRVCS7ozObTSHDw4wdjoIP/5o9s4e/M6+vv7eezABEODgziZHAcOHua0Taup1ar09XWzYsUwjiuZmpujr6sXgY8SmnxPH1MTU2TyPtOTJUQWFDm++M3bOXfzWr78Xz/j8otPY/rIFLPTRb57yz2MjXWzbu1qVA26uvMIV1LoKqCU5mvfvZVLLj6dSrVGLp/nwZ176JKCbFc3KptHKk1toUgGlxUrB+jp62F+ocyKlSNo7dHTnSWTAXDZu/8wrnT4xo9/waqxflatGUHVAivg9267l3PPXIObdxjoH2Cwf5Ccmw2TKAluvW8H556xicf2T1AuVjn3jFN4eM8+1qwYplyucO6Z65DC4YKzTqVvIIfvQ1a4jI9PU61VUQsK18lw30O7Wbd2BeYVls3n8Go+/f0FHtt3mOHhAQSCQj6Plpof3H4HZ65fi1/z2LvvAF2uoiefx8324GZcegYGWTu2gumpGUaHBtn36AEe3L6blcP9ZBwnfJjAyWSohjX5tACpdf3RFxB4d6fFiHk3xp/U+L/xpzP9vWiyTfqb2DaJP2WN+w53d/GK9av4w3/7D370g5t48YufH5Q0kPXCEcb650gZLXyZ84nerdpk14R03wKxK6NTlqLeC4mIPgdtJt91mui1izTvrhZ/OhoGJPYOFiJYiFPh+1qL4P3vCIkUImgb0CJw0wwyh/rBfr6H73so5eNmnODvqNAJwWuxWJYvjuO8s9NtreXuBEVRO6b9n8jrutRjtbPcHXdxl94m/n2zNpoeQnecCdOIO2NxSye/TBcIxklaV9Mhea1qwEUiOV0zScSsXskdGzvbZnZirIENbZlAmRbjrEW9vlaz3xsKIZvMdsZKqRyEqCBUlYx0eOj+h3FdzY+//2NO27yGvXt28MJXvRGtMuTzGWZnJ8l1jzB1ZJ5Vq8dYWJimr6eP+x64n/UbN6LQfOFzX+K5z30+oyMrmJudY8+2e3jXe/+BL339a3iVKXwK5B2YmZog09XH5NQkPbk+stkjCM+nWiowMDJMJp9n97bd/OdXvsXp557Jlc+6kv379rL1oYcZHR1Do3Ac2LB+Pa96zet442/+GoN9gzz7mVez7ZGtZDM5vvWt/+Kcc87l/2fvvePkuK57z++tHDpOd08OyCCYAFBiDspUsi2bFm3JVLAsh7Xlz/rt2s8f673127f2+q0tS/azLUtyULAsWZZkWZIlSgxiFBMIEiQBEiAyMQAmh56O1ZXu/lHdg5nBACAlyhZ35+BTmO6qurduVXefe885v/M7b3nLm/nlX/sQDa/BV772BZrzC+iaxdN7n2LLlg1YrsWpU6fJZHLkMnk+/5nP8ocf/wseu/c+fut3/wuu6/CxTYPopkEmk0HVII4FE2OzzC0ssH6kjziK0dqRgempObpLBbxWiyAMKZS6Fg13GcdJLpimEMYxTsqhUW8QBhLX0ZicmqN/oJen9x5msD+PodmYlkYoJV+542F+4rqdPPn8IW7YeRmnT09RKuRJ5zO0fI+ZmQU0RaO3p4vJ8VliYko9Xex59iivvmwTLa+F7TiJEyBsIQyTIJYEDZ84ijFNC0nI2PgkQwO9lKt10ikXRVFQVZWpyRnyuSzz8xVMw8BKGYRxhKUbLMzW8PwWhWKaWIDfinju4AtsGRnA830G+kv849fv59a33YBh6Bw7fJKhkW5URSWKEnKPO77/OFds2oSiKEyWZ9m8YYQnnnkeU9U4MTvDzVfvZKFaY3Cgm0bLY6FaY6C7BykUoiAAKVFNgygMMSyTwA+QUYyiCjRdpRX46IaC36hjmi5Hjk+ybriXb9yzm7dcdznVcoVsPkO95lEs5ZFCMjs5QysI0Ayd/oFumnWPSr1Bd28BIoloG39SyMTIiFcz7jq/4ZXGXUdWQkBXk3PpxBfjMFy97a88vBc7neaTf/uXK7oU6IqKlDHRBQhHzqfulubLXSgvTrajgItRNs5//ouRSLSddIK2Uae0jcb28XaUdZEhdMXNxHGclFVQNRRVWaubtyZr8v8DWYvc/X9AzsWudcF2SxbPS7cfaiyr5C909itt1sOlcqFrnity1/FAnkl0Vxb7SsgB2vsVdXkfq0TgxKplrX9wueAzXO4+Xn5+fMYOSpjeln82i1CmznNbMWzJEu91e0+7xZJtyfkry0Qsi2KuOHdF9Ey0YZEd7zSCxRIPy6jbV973ysdxjuOd1oroEKt0PlMFTVOIwgSWpEURIvJ4+vFH+NRf/xVXX/FqnN4RUpk8ma4urr7+eiZmyqRyRV4Ym2SyXCZj5UAqRFGAZgqCMCKKJPlcFsKYiy/biaZbnDhxit/9vf/KL7/7vbzrtl9grjxN6DfxfJg4fQpTNzh5epL1G3p4/NGn6C1lcS2LL375uzz4/Ud45qlnuHznDnp6elGE4JGHH+aq666hf3CQrnwXU9OT9A8OUOoucc1113D08FG8ZoNUyqLYW2B8YoLbbnsvE5MzpFMGXqPJ7/7e7/CNb3yV40eOs+3iLUjgS1/6KlddfTWjoyfZumULX/rq15ip1gkiya+JFjfns1ytCdKug6KoWJaJH3qowuTokTF6e/Nohk4q49L0PBDQbLTI5dN4zSaWpaMI8P0Woycm6CrkQJGoSHRDJwwiyvM1qnUPr9Wiu5ChUq7guA6FQhe6qaIIjQcfe5Z3vP5aHNtmsNSNVCL8ICKbyxCHPqqqMT2zgGObpDMOBw4dZ8PwAIqmMTjUTVBvomkqCIHXajEzX6bheWiKyv7nTyBicNI2hqWRy6RoeS0c22RutsLDe55HFyqqCpZpUG947D82yob1A8RxhKrpmI7FzOw8URQjELiuy2BvAduxmF9YYL68wDXbtxHLmF1PH6DWaDI82E290SQMQ2zHZl1vL2EQsvu5I1y1fStjEzMM9hQYGuwha5hkcy5zC0l+nmkYIAXHjp2mv6fE1OQMM7PzNJs+zzx/lI1DA/heiyNHT5LPZvCDAN3QkDJGMwwQBq6bQhGwYbAHy7JIpV2+dNfDbBjoRdcNdEPH1pMFvalrNGp1okhSKnUhhODI4VFALhLlKO3o09k/1RdjvHHmt7/YQac+3xkdJJd0d3bkbLU5YnnMcOmZPzXcy1t78vzCRz/Brbf+zLLjcRS1i6h3alQu9prMDYvzVbKFYdgutr70+stfn1e9t1EIi+OLorOQCKvJaoXOV3S7iFYQdOCkywcYI1FF8tmdpbulTGo9hiGSMznsMS/OrF6TNVmTV5a8lMjdmnH3Yyo/qHHXkZcrf+58fZ7rGhe69rmMu6TtGeNOLDMK5KrnnLOfc+aU/PvLynS/s4zkcznLz7S4wAkX7KBz4VX3LTPulizeFtv8MFHgld+Z9ta5qNKBbwqRMCaqyUJGb1b56Mc+yk2vfwPbr7gWzS3R9JsMD45gWQbV6gJp18YPJE4mjZt2UUKD//Lh/8oNN12LZalIVce1bSI/YHZqGsMwCbwWjmnS19NDozyFm3a56Y1vYP3gRv7yE3/D+9/7Hv76459g05aLmJsd445vfZ9iV57x0dNs2flqrr3y1Qz0ddM9VELTG2zZNMKn/+4zbH/VVWS7ijz8yEPc+NqbmJyaZGZult6eAjsuv5KuXIZszsZye/n7T3+OHa/ayfoNIyhRC9t2aDaq3Hjj1bhWjrmFKQI/4OGHd/P5r32dPXuf5eZTh1k3P8tr8w4/PzKAjCR22kZTBOlsGt0ykEiCVoSqSoK4hWs7RFGEoWs8+/wxhvt7eeDJfQwUc1iWgarA/FyZVC6DY9koCmhKsnCOI4miaMzMLjA3X2PdugF03cBSdayUTRwJpAgQmJw6Pc6h0RNsGOwBAYZh4KTSTE/N4zomxJLd+4+w45LNNLwGw4PdVGpNvnzHo/RkXNIZG6/lE/ohjXqT7+89ys6LNzE5Nc3WjUPkuzKEgYdpJaUTbn/4afKOhWZoDA4U6e4rYOoqx0bHyaRscikXXVHQUJifr2A5FroiyKQzSAkHDp/Ab/mkXIdiMYdtJbl/EsmG4X6UOCaOI3K5DKZpEkcxMzNlHNdkoCfPC6cnEFJQ9Twe3XeIi0cGkAoMDfRx/MQYpyfmeHTfEa6/4mIOHz/Jrv2JQTh6eootI4P4vs/xE2MMDfZy7PhpjoyOkbVsZiYXiGPQDR1d00CJ0XUVFEEsJdsvWgcxlOcqOJaBNFRs18ZwTBAC27aT0iAyxtQ1XMfmxInT5HMZgiBAUVdy/678ZZ73h7z8h8sq8wErHXvntZja/688RyweAbhlfR9/9cnP8udf/OqikZdcJ3m1NK9OiITQRuk4oto6TNO0NhxTLNv/YiWSCaHNmeucgWWeT847Dy6OccVddxANS4y+IArPYvRcKVImxGRBECTkO6qalI55BSKz1mRN1mR1WTPuXokiEohMTIQkZOXE2ImcnInunDtvbZlR9DIq95fLYFwWjVt+gE6x2rMMIOSii7VzjpTx2QbL4v2ex8BZ5fm8nMbwyqipsuJ9LBKDrrOtHItCm1Rklahc+8zk/7gToVu5LXb4Yga7InInktIairJ47VW/byvfK8ric12Za9f5oyASb78UCM0iiiWhlCiqRRxEGKoKfos9j3yff/jc3/Fb/+l/RzFcIkVHs0wqMzVeOH6EVMbGciwCbAzDpDY/T862+Ju/+SfedcvbcF0HP7ZI0eL+e79PsTjEI7v2ovuSE8eO8vyBvbzlLa+nXvGZmDzNu955K0cOj/O6m29moVKnXm/wxGOPYRgm/3bX3Vx342tw9QZD60Z4+OFH2HbJJeTzLseeO8WnP/fPXLrj1azr76E8Oc7wphHGxkbZsH6Iu753B4PdI2S6ckyUF/jQ//af2X7pVjJZl5GRIaYnJ3nHrR/gHbf8JJdesoGpqZMUczn+/vNf5vNf/Tq/31/k/ReNcHkYkMtmsF2HVq2BoWlIYqQmsBWTesNLIha+ZGJsEikl2XwaN+ugC51/u/dxdmxdj0Cybcswum5gmjZxDOmsQ6Na5Vvff5Stw4P4rQjFsPCaMcdOjDJQ6kZVVe59Yg+nxyfpLxTxYw/dsliYqxCHdUaGe+nJ5ShXagA88eRhirkMpZ4CUlHww4D1/T2YmoZh6tSbPum0y1B3lq5CChFHpFI209OzlLqybNnYiyagUMgTEKMYKiIKUAwdwzDIGBq9PXkyqSy2YSBDH1XXKZZyuNkUpmMShgGmaVCtNajV69iuhaoJ5ufKFLsydJcKTEzNkk65PLL7AJs3b0RKWChXUBRwbRfTtjly/CTFQg6/GXBibAoUGOwtoOoG+w4f5+artzNf9SjXa+SyKeIoplKrs2PLCHMzC2zY0Es+ZdNsBPR2d2G7Fq2WT3d3nn+9exeXbRrGMhVMC4IoplJu0ig3ePbgCwz1l5IIlZCAikSgWzqaqbFr70GGeor4foiQCrbt4vkeiipQhcByLKKWoFZpgoRWo07La2HpGoZlIjWNWFEQYYRUEwh14oRSlv1uEQnqW6hiBdRarvylt1+v1OntPlipqlc3sjqRuKU+pqv6Stwy0sdtH/0EDz3wCG97+5vbzqC4TRzVadNBG4i2XjtDzHSmZpxEtufSuE3y1Nk6OXUrgmcgxGIen+hYluLsJ5AQn6wSoUxY0c66V1ii8xd155IIaHtLYJud6F7STm3PK7QRt6roIF/azzUOicI2HFgIhJrMoVLGSf7lWmxvTdbkFSdrxt0rUdpKWa46aS7x6MXxIlb/329oPzy0czW5ELHK+c5dZFR8qeP6AaONP4ycFVe7kMeXM0bS6tI+8nIY7mI13/kqz+OCOYksfm2Xr+Ha8CIBcdvbLVRBq9lAiWNcXRDU58ikU9TmZ/nU33+am9/6E9x447U8+dQzlHr7SaXTeJ7Hu3/ufdxyyy3kcnkUxaDWrBNFIbmuPGEQMXZygtfceD2nxk5z/Phxnnz8KWr1JqWeAr/2q7+Eoll87/77+YX3vpev/OvX8ap1/ChEKAqpbJ7rr7mMibFTPHfgII889gQ7L7mI3/iN32SgN4cajLP7mePcdNPrOTl6mr/9u7+j1F2k0DvA+PQU9XoNzdDYsGkT+599jvUbN3D55Zdy1533Yjo2d9zxXT70mx/i8ssuRVNUtmzZjKbr/C+/8SsEvkexUOK9v/47/Fxtjjf3dHHr+gFyXRlm5sqMjAxABLVqHde1qdcbOK6DFHDi5CkyWRvNVKlUFsg6KVK5NAsLdTRVRVUlfaUshWIOKaHZaFCp1gnDAFVIWkEL3TC5dMM6gjDENAwEgiPHTrF16xCaYTA2MZHUgvNadHVlMXQXGSl8654n2bFtM81Wi1TKIZtNU6s1GRzoxrQMpITvPfQEF2/ZgOfVKFcXmJ6sEvpNVEDTdZyUQ9MLaPkhruNw5MQYPT0FvGaL46NjOI6FoiiELZ8wShbQxVKe6dkymqZxanwaCVi6jpACr96k1fRwXIvZ6STquOfgKBuHeki5LnEU02oFmJaO65pouoqpa8RhC8vUiBOzGdux0AwdRVWZmphvkyvFjAz3ISW4KZfBYgFV0ZAR3PP4AbZvXc+hY6fYPDJAJuPiug7jUzNk0yl0Q8OyDObLVcam5ih15diyYQgFUBUwdIVMOoOQgsOjE2Rcm7AV4lgmfqtJq9FCIBEyxjIMhvtKIEDXtSSfUibQabUTCZeC2el5pALZvEsUhYSNgIW5BfQopDw1i1euYKdTbXKkxFCQK/xJnbeSxPFzNqDkgspspSq4QLvO3CfPcpLdsq6Pm0sZTtx9B7/28c9w9MgxbrjxuiVz45Ki50tKJwhYTB/oQEHPJ8py/98Fzz9j3InVjbtVnGMr+1w07pbi95dsi6UUFvvt9CMWdfhS6GbneBTFhHFEGEcIBJqmtsezZtytyZq80mTNuHslygWMu+XkFS+l25cv926lrMzvWymxjJGcnXfQ2X/Oflf5t9o554IZvhSD75zP5SX2c95rtP8meSIkq4clctaCYKVxd5YR+/IZd2dF2DqlCNpRwQ78aZEohXbZBdFZLIkz7TuG3RLveUcCEu+zY6pMj53k/nvuZvLUGPuf2cc3//WLTE1MMTw8wquvvBrVMGn5PopuMjs7j6brHD1yhPff9gEsy+Tw4aPk8l0UShlc0yLwIsZPTfK3n/xrtu/YST6XJ2r5SGFz/wMP8FM/8VZe85obuOSSy8l1daEaBoVCN8/seYJ0Osvtd9zJu2+7lT27H+K6669lcHiEn/nZd3Lg6SfRTYtsVkcJJikMbMWxUzz99F6efmYvv/TBX+L4qdM8ums37/r5d3LixHF6e/rpKhR4fNfjnDx5ms/8wz+xZfNmfvVXP0jKsYiigEcefZhW4NPX283dd9/JX/zNZ/nJsRPcun4YTdeIZYTQFIQqSDkOqqoyMz3HsRMTmJaGIKH413UdXTexLZfIl1i2w/5DL2DqOgjIpNIousSyjEUCBt/3yWVTBIGPbVtYpomUok3p2maFjeGBJw5w0aY+DNMk5Rh8f88+rtyxDaEKFEVh9NRJBnuzaJpCJpNCacNpHdtBMzWOj54m7dpsGeknjGJiGaKrKnGkkrIVHMdG100UVaPpR9i2jd8KKHblEIaKoenkM2k0XcUPWtiWg6poIASxkGQyacIwpOX79PV1E3oBs3PzFLuy7YLlddJtY+6iDYOkUja+H6DrBo7rUG/UUHUVVU1+/8V8mmq9TjabIZ1OoWkKKGCaJhMTc9S9JsNDvRiWwdfvfpRt6wfZ8+wR6nWPDesGSFsajm0RBQETM/P09RQIwwiv5aPrGplcirGxKQRwcmqG/u48Tsol8Bo4tsG+Q6OUsjnmKzW2bhwil7KoVj2e3H+EjUPd1GsetmMSRxGnT0+RzaQQCE6MjtNoNIhlhKHrKELBa7YQQlCp1HHSFpZtYKgajTAi35VC1QSxiEFIMoVCkrMVxcggQjeTxb9CxwA48xtPjMalmmM1ZIFYvi1RD8uPr3y9ctYTy9ssuUzGsrhlXR/XGoL3/fnf8JV/+Trzs/O8+sqdK1R2Z86U7fs4c51OrnHc1q1K2xCUgiTHLV5+/vlk6R0sVX1noo+r9LBkTk7ueznqQojlSJ3FiN6SZ3XWexmjnpVb2CaDoZ2fF8f4QZB8xoqS1NYTAkVVzybNWpM1WZMfK1ljy3wlihBAQv3+o0yJfjk/75WQxhfb90tmw/xB5Mfoe91hy1xkyVTPb9wpssMaunjCCuOuzZZ5ocn4pTwDsWIVtth20Se8/PQVRcmX5ogsG0LnRSywNMHd3/omtbkZFDXgta97B0/tO8q6LQN0dRVAxsxMTTI8NMRc08eyTGQUUqvWMA0dTTWIwghdNwjCiLA5i2tlOfL8C0yMTXLD667m5PgcrUaLB+7+LtuvvYkP/97v105QbAAAIABJREFUctnFl/BbH/oNYtGkWmtw6fYr+McvfAHLsLjoossZGhlEs2KkiGg1PO6/7z6uv/Z6kCGHT0xw1au3Ux9/Bs9IMTywGc+DerWK9CV79u3n6muv59EH72Wwvw9pWlimQbHUxejoCepNyY7LtxG06uia4PALx9ixYyc/995f4fc29jCguSiaguWYaIbOyaNj+FHI1q0jNBoNvHpAJpdmamqOnu4iUovQFY1Ww0MqoLsWaiw4cuQk6zcMIoOAWqNJOpOitpAYMI5j4/s+pmWAqqOoEmRMs+6hqhqaqtMpuxLFCQmNIjVUPQKpERHz+J7nuf6qSwmjFopiQOTR9Fropk3YitAMQbXaRIYKgpBMNo1u6jRaHn6rRdbN8o07H+Htb3g1YRQgULn9wSe55U3XEwAHDx5juK+ELgSqa2KoGlHgU6s3UDSVlJvh3+58jJtv2omVtYibLYQikSHMl+tk82lkHGFbOlEYomgGjWodJ2UzX1kg5bjMlWv09JQYH59B1xRKpaR+n5QKfstDURTm5yoMDvRSni+TyrpEMsareViOg6Kr+H7I9x56iqHuDGk3RX9fD3c+uJu3v/FVRGGMoekcPzbOyMgAM7OzpFIpnLRNuVwmn8qwb/8RektddBVyPLhrH5du6MXNZGm2IG1peFHE1+5+hLdfdRmloW727j3MusFuHt59iOuv3sYTzx3h0o3DzJUr+F7AxnV9uCmbqekZ3FQagKnpOUDwxIGT3PK2q5MfZQgHj42ydfMQvudhpxymp+Y4efIUV2y/GK/RREjwwgBV0QiDmGKpiFTb5WDOqQouFLlbCec+l4ZY2XmbcKWj+s7h71zZ5j0P7gHg43/5Mbp7iqucD0JVzsA629BMpW0EKe3cPBmfKSNzodnqB+GplEv0eSwl6orjZ5U2uICjURGr1+aDtlNRLH0foyhau1uBpulomrZm3K3JmvyYyxpb5itQpBJxNi31D9HfjyCXrCOdXAZ5QTaw5VGxOI5eEpSyk1e3lB3zXLl2StvbuixhYpUI0lkSycW8BsGZtce5isH/ILIYp+w4szvrhnMFaZFJ3ptI3tH5297O5NotabM0inYhCOWS12fd1dII8ZKzF2vSda4TKsRCEAqFSFWwdYvAj3A0i1bNw7ZMCCLUwGP3gw9y4Kk9uKrLo4/s5qprXkW6lGVqxsOPTQ4dP0I2nce000xPzpFJF1DiAMdwCPwYXbPwmiF5J011rszzz+0jbVuMjh7HUgOOHhnjxORR+tZv5YXT44wMDzDQX+L7jzzAh//7H/LFL3+BN998E3ZmHfc/sJvNW4pMTZ3mtW94E7at8+f/839yzZXXEVWaGLrFnXfdwxvf8lbiWLBloMBMrUa1Oom3oGCncxw8dgiUBjkzjeHopPIpCoUesvkCu/bsYefO7TiWSTGX5fbbv8m6zeuZGJ/kt37v/+QD9Qbx7sf5yb4CAz1FNFWQTqfwmj5REJHLp/GDgCiKcF2Hmak5XMti9PQ0jmkRhR6maxIL0FWdIPKIg4hjo2MM9RdR4hBd12m1fCanZ+juKSIUpZ3HqbZzKkOatQaOneQ6+l4TYpU4koRxiKUbzM9Oo0hBw2tBFDEyWKTltVCkSqtWIZIxiqpRq7XQVA3TsGi2Knz74Se5eLg7IXYALCPJ8YqCmC3r+ogCD6/hUa832TjUg5tykDIik3awHJMgjiCKkLFKKAMcy8bWHRqtBmHsMTBQQMgIGUUoQiUCvJZPNu3Q9FpolokXhjSqdeyUDagELYHXbNKVz9OoN2i2GkRRjO06BKEkbDXJ5NNJxFQFVdNx3DRRDOPjM0hVQY0UfD/AMAwOjJ7i2u2XoKkK83MLFNIpAt9nYaFOOpVCCjBsnXq1QTZjUanUGT1VJp9x6OrO47oOIgZNjXEsgzvu3c+zU0eJGyGqUBifmuPSTQN4VR/L0gkj2H98knKlwvU7LyYOQwr5DHMLdWxdZ/TkBM8dn6RVb3HgyCkajRaVapNCwaWvpwhS8L2H93Dlji0IIVB1HYSC4zjkMlmazSZRy4MowEllEYpgodbCa0acPHmanOuiGTpSUxEyTnSYaHPdKkmUT9DWa4vGnOwE88+oryU6cDnes6NfV4kGdvoTLKIDOqANcVY7uGWkj1tG+rD27yPa/Rjv/tgnuevOe/ipn3rbYptYykV92YlgLYWni46+U5TEyIqSfMSldfGWbivV+YuZwZe2b2cMLvPhiSU5zInalYuQ26XSgZDGiZJe9fpCiITApXNf7XvtxGOj0CcOA4IoQNVVhCoQoo2YEWe2tTy9NVmT/1hZg2W+EqUzib3MEacfmXGHbE+yL77/pTkBL+o6osOGtpxBczUD8cz+F939kkEtiT6eo/3LSriy8iNereuV5RRWHFu13xc5xh8Eprv0XFVRiESysFBjiYkgaNTxm3VEHPGVf/4iTz61l89+7jOcHD1J30A/6zZuRrdt+oYG6Rvuo6u3G81IkU/nOfT8fnZeuR2IyGZSeF4DxTI4cPAguVSGA/ue445v3o6qqaTSKdZtGOHQ4YNMjI9x0ZYt5HJ9bLpoIzlLZdfjT1Cem6evtxciycb1G7jzO99h/eAQlVqLw4cOcc21l/PlL32JN7zpLZimyZ133MWVV15NFPjc/t3b+cUP/CKSmFjquKbBt++6n4u3rmPDyDpOT0yxeet2bCPN7f/2Tbr7+il0d/PE44/zsT/9CP/pt3+LkydfoK+vm7Hxca655lp+83c+zFunTvLeTSPMlBcwLIOIGMMyIAKv6RFL2PPcYbq7cjiOSTrtEkcRJ8dmKRXz5HMpvv3ALrZv20i10kDTNE6MjpNOp4j8mJMTU9imjiJUVEPHdBxSroPv+RimjpQRiqYQ+xEgabZaIMCwTVrNFqdOT/Hs0ROsH+6h0fQwTQPTsdBNA9M0qFRq2LbJQqWBaVkIVcF2XDRFRVM1oihAUQWvungrmqKjGAa6aRHFEYamE8fw0FP76ekuYjkW+UIeIRSiWOLVm9i6QdAKsEwTwzGZnalg2SqyFaEKFaEqDA/0EodRUiBcKGi6jqYqaCJhWrVdhyAIsG0Lx7JptVrMzS/w/Wf201/IMzdXpVDIIWVMsVAg8EOEFBi6RhRGlBeqpNMOtVoTxzGQMsZNuTiOy/cf28NgTwFNU9k80oeqKViWgaFr6LpKviuHjAXlcpVSMYcqJJOzVQQxKdfhu48+g4gC+nuLyCjm+UMv0FPMgRJx6UXruXRdQnjT19fNpuEePM8nDCPGZ+dJp2y2X7yeKPR55uBxao0m/aUuDhw/xczCAsVshnWDvfT3dRHFITMLFUb6ixSyGZp1j298bxfD3V24toGmKJTnK1iWBRKqlRqOYxNJcFIpmn5Eq+VTKuYxdZXe/m6Cls/01CyZjJPkeJ2p3QJqRzfLs0JYq8PdV9UunJN9crmVkvx9CVPkLSN9vL2vQLR7F3/wyc/yqS/9C+/ssG4uQZx0oneLTiwgiiJkG84slKU6c4Vj7QLDfnGStFhk+lw5v3WYL1fsl+eA+p8VH13Z39Iz2nONFEnZiDgM2wXfl3+Ga8bdmqzJf6yswTJfgRLL4OUI2C2KUJRVYRYvx+d9VkFVGaOKFbXnVpGz4JgrJitlBRTlQue/yMGSBPoEkvisBcdZBcZXRO4UoSKFPCdkZTVI6gWNpmjF4qBz21IQyzjJd1l6/AeFX3byOX6YSF77e9RJ+FeEIAwjhKpgKhoilux5/HGefHIXlu3QPzDANddei+m41Gt1LNuhUquiCoO58gyWrWPbNl7gowuTqBmSz6RYCKogJVNjkzi2jZPvwkClPlvhn7/4JS7auIVMX4FcPsvgcD9CCCxdpTI/yeREyInJo2zqzaOnSqSyeabGxvj4xz/BL773vfT196HqJophsevhJ3jb26+mslChFWl8+/bv8MY3vIm+/kHmZk+jqRq1Wo39z+3nute+iYfv/i6//5G/4OF7vkqtPMnupw7yt5/5Mq+/6Q2885abOXr8FPOVKq+9/iqOHj7AJVdcyeFDh/nePfdw32N7+NyV29AdG1UoeI0mmqnRqLcIw4CuQgoiBb8VoCgqSAjjEE1J8u3myxXiSKHQlWX/oaNcvGmIZjOg0mjS01dkYa5CritL4AUQRVgpjSiUxIqCbiQFs1Wh0Gw2URSB49pUZms4rokXtJACnHYUKQwi6rU66YyD0DUUoRBEUZKKJwWSCFBQFZUglrSaTUzDpF7xEEqMogviEFIpB78VIhUFw9I5cWKU9UODfP679/Lut7wOzTAQxIvfs8APmDg1SbGYw28FND2PYl8BVRgIJWRhuszp03MMDBdRFBXT0PH9EDedImj5HD1+ki0bhqg2m0RRTD6XwfcDIj+k5jUolbqIY0mz1sQwTIQCmqmiaQYL5SqGpmLZNo1aE91Inruq6VQXFnBsG4lCHEN5dg7TNEBALp9hbHI6MeIULSlMbrvUKnWadQ/L0rAsjVBojJ0cp7+3SLlSo7+nSKXWxDA0As9D1zSmy/PomkHOLdGKG1iWzszMPFEkMTWNE2NTbF7fj2VbhGFEpVKnUMhQrzU4NjrO1EKVke4SG9YNEMmQqek5+ntKCEVQW2gyOjbN5vWDKKrg8b0H6O8uUMjnSKVdJiZncByLcrXKxg3DhDL5ncdhiJAxMgpBN0FKvEaTpw8cZt3AAOvX9RKEIbEQaIZGHCdICqEICFciHlbomhXogqXxMrmYH7dEE53lCQNkB7J5LrNqRR8r3n9yz34ebfj805c+e1brWEq0DsS8XTdOxhEdAzTJNxaoqkoUJgyc8aL+XjIHyA6JS9y+clKM/HxTg9KpZ7fsdpY8rw5Odcn+jk23bIYQoMjl9x4vaRvFMbpQiKVEEYIoTu5jEVq/YpC6bqBpKjIWxCQ2vKKqSxhI12RN1uTfQ14KLPMHgYuvyStA/JaXTLprwsr0hZciQRAQh+eexKSUL4vB/EoRKZMi7EGzQRz4/NlH/5QwCnn/Bz7IzW9+K1dfdx3NIKA8N0cYRoRRTK3m0fICCl1daKrKvmeeI2rFhL5PeWGO0+NjOE6KhYUaPb39TI5PYiCYnpzkwQcf5NZbb6WrVGD7FTtBgcNHjqBpKn/0x3/C1PQM8/Nl9j37HNlCN14YUa/XURWV973/A6xbN8zUzDStKMIwVB7f/Rif/vTfc+LEKLlclp07dvAzt9zCZz/7WWbmZvnSV/6Zvt5eVAW8oMkll13CG974BuJY4jWbXHzxNv7yL/6c7lIez29Rb7YYHhxByAghQ069MMqhw8f4h3/5Bv/8mlcjVG0xomxZyUI5lXKRsaTV8ACB7dhUqw2EIlCEQqVWR9VUSsV8UoBZVegtdaFbBo5rMzzcC8QUChkQSW3Aick5okjiBz5RGAKgqgqKKvA8n/n5GkcOn0oW4aqC5yWEKq1Gq73mi7Fsg8mJ2bYxJ/Cb/iLduuf5NBpNqtUGhCGT03Nomk4QRkmdPV1DVw2EUFA0MC2NMAgY7usBReHdb34NhqEuOhoSWHeMYWj09ZWwHAsE9PSUmBibRrQXnVPzC6wb6cc0dWxTT6JytsW+5w6jGzqqouIHSYStK5+jXmsiY4llG6RTDp7XQhEqpmlgGDpNr0Xgh8RxjGXpeJ7H8ROnOHDoBIePnSIIwgQC146gVKs1dF2lu7eI41ik0y5zcwv09ZaSz2qhyuTUHAvzC0RBxMGjpzAMA03XeWj33qSPWoNSdxfj41MoQkFVFMIoRFElitSp1hs8f/Ao337wCaan5ujpKVAq5bFsg6G+EtOzZRQFDDOJJqpq4khTFcHrr97Bxg2DvHByjNAP6cpmmJqZB+DkxAy1psdCtUat1uBVF29BkUmJgG99bxeWboAETSgoqoKhaYmx0DZMVENDVxUQoGoaUQTdhRyPPf40dz+0KzH84wSyKEiiSB1ZDD6dCx5/Trh8BzC41NA7Swu9RIDLcqjnr79qG5+/cTvv+vn3897bPrhkSCvQDItMleoiSqXDuhlFYZK7pyqrQNk7dth/wPzb/r0mw+8ANM+/HkzIW849Sbb8Fp7nEYTB4oIxXDPs1mRNfqxlDZb5YyKS+GWN3Gm6/u8GoujUnXsx550lS2EfKyEnFzj/RY1NyjakJelx5TXOhq8sf68o54cvdhgwxXnu4+xBrXgvzryQrJLb8IMajx1P7EtpslofSyCiUkp2P/44j997P6Zp8ro3vYFMsQvfg1AKpKJS9Xy8hQWy+TxC05mYmeX3//N/4w2vvQFTV+gp9WELiwP7n6V3qI9Cfw+hDzKS7Hp0N66T5oX9zzPYN8Ajjz3Gd+66kze/7W389af+mnTKZf2GdYRRSE9PLxdv28rI+ou5+LJtqG6eWjNkZmqSQsZhbH6ewb4iVirN88dHuXjreg4fOMp7fuFnsE2HSr3JyPr1zEzP8JnPfo4P/a+/Rj6bpVTsYv+z+7nkVZdz4NmnuPkn3kEmpWBpAqlqTMxMc+NNV/Hcc/u56pqbcO0UH/l//g+++O17uPuBR7m1PMcVislgbw+mrSE0hTiK2LP3IP3dBcIgRonjxCBUdaSUOK7N7r3PU6nW2zT6NkjJ2NgUpVIOJ2UTCZBBRKVeo1arAxG6qfPArr2cGJultytHytVRVZUgDFFEUvrAsW00xaC72I3mqKCAZenMTpfJpdPMzJVxUzZBq4Xr2tRqTaJQUq3UkWGI6dgYpoGmaYRBhN+o09PdRRwrnBydRsYBjqOzZ88LGLpA0QNMW8c0DIhiFN1i1zP76CvmqMwtoKgqURjiNZtYpo5sJzPFMkZoCjnTYmJ8FidrUSjm0AyDKPTwwwBNVXhhdIzAD9AVlePjs6wbHkRRZVLmoNmiPF+h2WpSKOQYPTVFqatIFAU8+tQBNoz0YRg685UF6o06adekUOyiWU1YRDNZF6EomLpBo9GkVq/jpkyCKObYqQQGm8mkEYpgbq5CsdBFyrVp1pPn3FvMc/j4aVzXZeNgCVM3SGUySFVhfm6Og0fHSFkGLd+j5XvsfWaKdeuK1Bp1XnvDFczNzuN5LXTTxHUtHMdGERIhZBJRrNZpND2mZ+cZ6ilgpxwOHj3JhuE+Wn5Ive5h6BqqojE9V2agr4jvByzUGoQtn3KlgddsUcpmqNYa9PYVyWZS1CoVvnXfwwyVujANE1SFSESUp+fRbRNNN6AlUWRMSle4bOt6KtU6L7wwhgxjXMfGb/lomraoNpa/WCGrRO46py9rskrzc+W0nb3//H3esq6PnSmDbx05zY6dl7fJVJb20c5x7jBqKonhpKpqsi9uG396UjB8mXFLMjeIRR3c1u3nUcbnZG0+z+uVSNWOsakIQRxJ1A55zNLntCR/L4FjijbKY/U8/WTqTOa5IEzygRVFuWBh9TVZkzV5eWUt5+6VICLxiAplafmDl9K8jc0/18J/FcKNH1aWFoVdtv8l5HotI0NZxZg7X/mDZW1WwFOgA2tZ4UFd8kKsmByTCXqJ47X9mZxPVhpzygrqaeBswpROSko7nyNuryCEImBFLkcS5HmZjDvOvQhaelzA4gqoM9xISY4qQiDDECLQIp+P/V//jRt2XMa2q19D0xPUaj6O49BoLpDPFZChwFAkZiZNGIdErSayWednb/1ppmZmeP65I3zn9jsYHZ/k3vse4NprrkbImNj3qC94/NWffYLBvgGOnjiENEz+6CMfxWt5fOAXb8OSLtsu2sCRI4fxWxG/+esf5iff9hqEEiCFS1hvQFhm00g/QhGMDK/j6JEx/uAP/oCbX38DhuJx8bbt3HHnPWy/4nI0oXBw/3PceONN/PZv/zaO43DXXffw1NN7ueHG1yBDj1Q6S3+pi0azxdiJ4+SLA6SyeR596DE2b9iGZUr+2//4v9nY8PmT667i1k19hEFEMZ8i2+VSWViAUHJ6dJrT4wv09xUwrKRUgek4BH5Ard5AUzUOHx3nog39xCJCV000U8N1bJACVVFQgKbv41gujuWimwa6iLFUk52XXYRtqUipMjY+Q8qxqVRqZPNZKtUa6bTLfHke09EhkgStAMe10RwTIoluaSiKhmk5RGFIOm1haCoL5QZOyiQIAlQpaXhJRFA1DaIo4sSpCTZuHMDzWgz0FXjimaMM9pSIpYKiasxMl3FSNj2FLJZlYNkW+/YepVjIYDg6mlDxWxF79h1ksK9EGIYINCbm5hBSkHYdxk9PYls2lmXhByHECqXuPFEYs2n9IAnVYISuKuiWTqaQBqmiGxZxHGGnNfymx6ETY+hCYJoacQCmaWEYFvWah5M2mK9WsUwDw9QRmoYfhOS7cizMV3ENHVNLIIiKpiIUBds0KJfLWK6D7dpouoaiKRS60hiGhm5o6KaBJEQjRkrBpg39eH6LrnwO3VDZtLmfIIhIpR1sS+ORJw8T+BGDvXkkgiPHT3FifIaFhSbdvXnSrkMm7eKmHQzdZnJqjp5iHt0wUBEoukooJXEQ4zVDivlkLPVqC8vUcR2LKIpYv76PYiHD8ROnKOQzhEHEweMTbBwaolatYtsGMYJv3/8El2wcIcnP1HGzLulCBqmqGLpBLptK6gvWPMozFSzHQsYStU2xj1xuWQkplxF7nEl67pwm2uputYhTsm8p4HB1O1AsHpSrHF36MmfbbA+b/MJHP8mt7/zp86r/KIoX88Y7c1nHqBOyU2y8XVycpQ6xM47KpdNX4hA9M8JlZYNWi3TSZvXsnL9ICtN5zO1nJ0S7Fu6ZPEa1Q58SyzYpmVzU94vXb5+rtA1C0Y7ydnIRkzSJZIaIohDf95NcW0VB0RIH6o+O53tN1mRN1oy7V4Iset46av8lGncrjZx/B1kkUvkh5EWxZa5iuJ0ZxEpLannE7EWPrxORkkt3iQvOTGeGJpb9XdZ1BxbTec/yNp3Fwdmdv8yRuxchnSt1DM/FLYpRJER+yD9+/ovsuu9uiAVXX/ManFwPoRRce/0N/OqvfJATp45T7OohimJUFVRNIKTBxOlxDFMhCFs4hQKZdAbXsLlk41YiJSQKfQYHRogDwR3f/AZHDh/isisuRbEUCFrcdNNrue+++/mJt7+ZTMrm0d2P0jfYx/33PUhvzxBCxJQr0wwMDPGzP30rjhkxsm4EM53DC3UWyrP88i99kC984fMUewrUazWm5yvc8ObXMN9cIC5XWTcywsTYKVzHpKEF9PX3cOXOHZQnJ9EsjZF1wwSRT6NRp16vkc2VcFM5hoaGOHZslP/+P/6Yj100gl2rkcu5oEjSaTvJXSMmDhNPf74rzfrhbkwngeVFYYSmanz7/t1ctmUYIWDj+gEsU0c3kpw5P/DQdYUwDPnOg0+QMU3Saaed85M4FRbKdUo9WTy/QdCKUA0Dz/NJ2VZCjCBh3+EXGOgukMq6hFGYQCMlGKZJDERBAuPUNI3KQhVdE6iqRsuP2fXcEQZ7c9iuQ+i3MFwT3dCJY0nsR/SX8qi2Rhj4mJZJf28XlqG2i5jHNKqNpDB4lCyEVUWhVCqgqsniuOUFmI5OdzHP3FyFlJvCDyK6u7uI4xBdCOq1BqlsFkVTUDUd0zTRNIFp6uiGmkQSVIPv3v84KU0nn01jOTZxHFGr1qkuNOgpFcm5Lt2lAnEMpqlh2Sa+72NZBrowMBQFxzaJoxBV02nUPRzL4Tv37KGvlMJxLRzXJghDxk7NkMm4WJZJFMb4LR8poel5NBpewqxpmvhRTBRJpBRYtkkcx9i2hUQyMVnGbwUUSllMU0MFBnsLjIz0IgyRwCzzWVrNFumUw6lTcxTyGSYmZ7AcA4ip1Gv0D3Sz59mD9BRzWLaJpmkErYh02kJVFSam5njmyCgjAyXCKOKpYye4aMMAYRwRtSIs02RmZoFXX34Rjzy5nzAIKOazSKGwZX0fQoCmqKiAjJPIkAxjmg0fy7IxDB1N07EtE0XEKAIq1TqGZSJ1FpM/lmm1c+rx8yngVXTteU7tGH/J3+WG5DKRcMtIP+/5s0/xznf+9FldddSvqqrtLuI2XDNhtOyUUViu0zvGnLJYY3IlGctq5CzLjLvVb2vxvtR2QfK4vWPpvNGZgzrRtWTu7hiAchFeunTcS41G2TbCAeIoXsZEfYZ8LJlD4zjCD4K2Ua+tGXdrsiY/IlkjVHklyKLXLm4Tdpwfwy6UZIZMaPDb8IvO+xchP8zn3Cl7oKrqeWvUdY6dC6K5GkGKoqjL2v3ANfDOZRBe4L5XEqpESARKApNlyUT2Up7fOW5h0eO8CqtctKRmnIhXXOtFXnulMXm+8wRJYv0iFKkdMVSUxEP9Z3/8RxSLvVx34+sodfcSKi0U1SSWgt279zDSM8j8bJmRDb2oesTb3ngL377968QE9PR0E/khrSBEKIJGy8OyXeanZijmijz9xFMMjWxgYaGMm3IpdOWZn17giT2PYjg6ff392ErEus0X89yB59m2ZQuq9GlIFdfVIBR89tOfZ9Omjey8+nJCPyJt5lDNEM3SWVhoUa34TI0fxXXzlOdnOHr8IO96z/vwWy0c12JudgbVzLBQKaNbGnbKRos1nn/uAFvWrcfQdA4dGeW6G27gTz/yJ7zvfe9HGDXuu+shenuG+dinPsnnb7iM+dkq9ZqHaekUCzkQCRtlvdbEsVwaTQ8/CFBVhVTKIQwDLMukslBD13WcdIrYbzI9W+Ghfcf46de+ipn5WXp6+vADDyWG+bkqB46f4srLNqObBlEcYugaUgpqjSZxEFKrNxgY6AOhUK/WCfyAA0dPcnRyktve9lokksnJGXKFLmQQE/oR5XKNVC5NV96iUmmQSjkoqmBqeobenh6CMCnH4dV8PC8gDltkSl1MnprlroefZ8tQF1ddsRktlSwyg1YL205YGGWb6cGrtbBTNjNTZYrFHLMzs+TyOSbGp+guduGHMaalM3pynOHhfjRNodXwWKjV6e4usGv3s/QXu+gb7GmHxAUAqoE1AAAgAElEQVTVSgNT15BCYtsWtYUqTjpN7EeomqDSaJDPZQjDkKeePcwVl24jigNmZuaZL9fYODSIagnCIETTVeJYsjBfp6+/hN9qIYnRLJ352TKWYaIKhXrTp1jKE/g+c/MLdOW6qDVqKKqCbVrseno/l21dT7XaIOXamKaORKIbNt++5zHe8fprqTYqmKZJq9UijiXZfI44DAl8nyPHTtPTnSOfzXD0hVNkUi6e7xNFkt7uAnEscVNpZOQTRwGzCzU0VaFYzPP1ux9ma39/AsUDtmweRkYxnuej6wYP7X6Orev7mG+3yWUcNF0jnXaZnpgjm89SLlfZ/8Jpdm4aQVEFx09Pcsm2TQglKcti2RYAjzzxHFft2IJAUq95dJW6eHb/YQa6i4BE01U8zyeXSxGEAXbaQdU0EgtPQEe/nwuBsYqqk/IcB16ErAbhXITedwyfJUN6zwN7+PKX/+ElXaOTr9YpSA5L52VJ3J47FwuKy3gRsnmux3DOOncdw6u9HlhkulzBltmpm3c2+VlnfFF7Pj9z8XjFMz6L2GtxCKsbpHJJToOmaRiGuVY7b03W5GWUtTp3rwRZNELaHrELLOBXRuqEsmJW+BGLqraZw84zyZ4Ls7/y+FI5q8zBOfpXhLII5TlvhO4l5gGs4sRd5uV9sZDTTs0/gXLOz2TREypX5OnFSwqWrzKmlyrnah8vCZomXzm56M1VJHiex0f+5CNs37GDG668gm3bLkXTbUDh4DMH6MsVOfX8UVKKxi//xm/ynttuI1/MMD8/xS+979eJZUgma+I4KeKgyr59e+kq9hEGKqPPH0CRCrV6neOnTrMw3URRVP7pS//Izp2X8uVvfI+vff1rHDv0PEOlYUqlNPc/+DDbt2/nC//4eaKgRa5nCNMSmAbs3HEpw0PD6CkbQzO5/+57WX/5JcxMT2FpGqVcjumZCYYGh+kf6GNwqB8zk6NZLWMEEd/71u1MT3n8/od/n9t+7t2IGFKqw73fu4/Ltu9Atx02benhmb2Pk+ty6R/ooiVjfv8P/4yfbcyjvjDKRetKuI5DPt+FZdptSG1CIV4u10i5KWIRkctnsWyLOJKcODFJLptOYI6qwsx8ma6si2Xa7D0wxvrBPKmUjaoaRHGAruhoqsbIQDflygKOZXPw2AvYls7psWm6e7vQhUnGyRLKiLjl4boO1VqT3mKJa3ZcRKvVQtc18vlUUjvOMXFcM4GG2jqqqqCpegKJFBLLdSBWeOH4SXJpi1TaZXJq7v9l783jJLuqO8/vvW9fYs/IfamsfVFpF8KYRazCgG0Q0Nh0ezxtmx677WZsPPbgZfoz3T0zn898vGC3F9rY4AbTNsaWjQGBACEhCUmlrVSSSirVXllVmZV7ZkRkrG+588eLyIxcqkpgugfZdeoTlRUvbty470XlPe93zu/8Dp5roDkGIogY6M9wYn6KA3uGENJAE9qq+l55pY7lOcQIZLtNQr3WxHVcWq0mumWQz6SIo5hKuc7h508z0l/k0WdfYGSwgAoC/JSH0DSK+QKe59Nq1rBMDUPXsE2TudkS2XyGMAxxLQshYqam53A9B9NNAF+9UWeotxeURBgKy9Io5nO0mgG2a7JSqyeiM1KQyvlUVlbQTQOpG8ShxHVcFuaXyeYzGKbNs8+fxBASz3OxdBOhCWzPJmxEDA8WmZyaYWiwj5WVGoZhsLy0jBCSsb4itUqVTE8a3dCZn18mnfHRdJ35hUVMzUBTOrmeDKVShb5CAd/xcFyTnkIWpcA0dTRdUG+sUG/WyefyCKVYWipz477dnDx7iWI2y+joAEoqFhYXqVTrhK2IKIwZHxvAMQwyvovr2JRKFRzLwLJMTp2fJJNyGSjmcC2L54+fwTZMhgb7OPzMCb719EvccGA7lWqNHWP9CBEjUNi2SSQUPfk0tmNguyam5ZDO+kgVs1IqU1mqUloqk0qnUFKs7jub9tX/LvVbSfruslO3OeidjJcQSR3ej//2x3l/u13Cy7NkonBVeEshpNb2BwmAS1QpO2rNSVAzuQ7JO6SmrbU7YAu/s+H5phrvDa9vDK/Gaq12rrNGKderc270WoI1ddD2gS1tjcWSZAM1TSMMQ1qtJmEYohlGkuV8BSYSrtk1+36ya7TMV4IJgJhYRaAirnpL363IJTY8v+Lb/vEbajewjBU0WyEpP7PKt+9umL6uabmK12XxNgGzDSDtasDxqvV4L8Ok6qIedh3v1NIlB9ca3F7t+om4Q4Fp84CUWm1avtVDyLVaBhUlqE4IEHG8ZZXJ6vqu8NrVbEOgGo3k5kwTyfVo1Gr83ef+itkLZ7n15ltxMj0IqfH04aP877/6G7zhDW+h2FdEdySapZEq5BgeGWXfnr14pkF5YZFcsY+77/4i+Z4Ujp1Bs7I4jk91cYk/+88f54FDj7GyVGFxao7RkWFePP48S0vLnDxxlhtvuplqeZkP//yHuPHG/bzjXW8nlRmmt6/Agw9/kx/7Vz/G7v3Xc+rkcQr5XsrlOl/+ytc5ceI0lu3iexkmL1ziwIG9SC3AsLJ8/E/+mge+8U1OnZngjW97NbWqxr1f/gde9YY3UKo12X/wZnRT8aEP/STVlSUalRKRYbNt1zB+1qKyUmVmZoKhwTGG+sf5Vx/6ML3PPscv7N5GzvfIWy75jE91pYamCRBtSqqpEQaQSnucn5jn+MQFBosFKisVHMcim00TtGJM28BwBHGQfLO1eoObD+6gtLRILCWOa6PimGYjwnYslktlbMvAtE1m58oM9A7w9UPPsX98DPSYeiOivFgiU8wQo5i6NMfwUC+hEiwtzuPnMig0KpUVPDehFrquhSYUUQynT58nn0uhaRpffOAx9u4YwNHTaE5A2FKkUx6GrWOZEt3QsW2TvnSabCZLFLSIlSIKAzQhcF0PFYaEzRalxRUQEblchpnpeYr9BcpLZRzXJlYxqYzD0EgfvmezY7ifoBUzcXEWXWo06nUcx8BydFRMQuNsNQmJyfguKysrSesCU0+anrdUohAcRXhZH8u2kZqGYepUyjUc2+XRZ15g355xLk3Nkc2kCcOYMIyYn1umkM9x4sR5bN1EqBZS13B9D6ViLk3NMT42QBCHzM2XcR2LRjMgjuFz932LA+MjqAh0TSOdThMFMZ5tozkWZy9eYqAvR60ZUK/WKeTSNGsNwjBChoIwikjlXKIgQNd1NF1HGjpx2MSybSzbSn55hY5l6FSrNZqNAMdxmJ5ZoKeQoVhMk8ulCYKkt1+zHjE00kvYCjkxMcn2bUOYtontOhw/dZ6xkUFWqg0yWY+VUgPXsQjiJkGQ3Jzv3TVGHIdk0i4F38HUJKfOXMR3HAzbTIC8YaLpRkLF61AWpQYIohgMyyCd87B1HVPTEBqoQKFrBnEH4AkFKtkT29GRrs1KEbc3PtGuxZNyi11QtWvO1u126/e8rqHr9kWBQLXlPjt79F3jg3zwtz/Oe9//HjpJw5eDPRPxrc4HqdUsGyTgTtMkStEGTOvnFAiiKOryn8lqtgJ5631ox+2sH7vqc0QimCJZfy+wWp9H8nslO0C0PaGUkrANAGNU8n11vTcm6c9pmIlwm5CinUWkvW5WH1EY0AxaxFFILGKkJpESLttU9ppds2u2pV0Dd68EazuvNRjwCtjokntYDKlz9+fvZufuHatNV7fKcG1U0YxVzD8GmF3ONKG9bNnpywZxN3AaX7ZIzFY0oqt9RrwBmK/W2nUm3eJatmsVxXcRAd04WygVSgg0BZ/6+J9w474DbN+1kxtuuInZxRL9fX1UV1Yo5HoYGBihUlrh937/Y7zrXXfSaDbIZnKMbh+l1Qr4xCf/jNtfezvVpQqjw6OMDBeQ6Fy6OMPszBQSxWc+/VnOT13ko7/yEXIZl7/+/N/w9DOHef65F7jxppvo7+thcWaCnbtHiaQi3dPH6bOnGN0+xr4bDlIuV2lEIX2FPH7a59ChQ7z5TW8kk85xz9fuIwyb/ODtt9JQTSyjiGnE9A9FvPOdP0IU65RrK7znrp/kY7/1uzx3+Fn+9BN/wsL8LAdvOJhQ49q0M6kiVBDQky3y1KGnOXd+gv/r//1DDjz/JB8Y6WdXIYPUNDRN4+jJc/T350BCpBSmbdIMWhAp4khx9sIkIwODbBspJrL7roVCcfzEeRzbwvMdVio10pkMlmViGBJpaLhuGmKFoSVtA+Iw6QXXaDTxLBvDNslnsiwslHjNrdeBitDtRNQhlXKpNupYtkU25TNzaR7LsUm5FtVGE03XCOoxmtRYXCiRSrlEYYQwDHryecIgplytM1oo4tgWQatFK2rgOj6tVoCK4ckjJ+gtZNv/hxNgcubcJD09OcIwQtc1hK7RCkMq5Tq5QpYwbKEJDdd1kQgq5SqGZjAzu8T8QolcIcvs9Dypdo+8wYFeNF1jfrFEvpBFKcXyQgXbsokiha7phGFIvdHC990k1hW3eP7kWZbLK+zYPkoURoRBSLlUwfPdpEYRQdp1sUwTwzbQDA3TMonjpJ3E7Owio8MDVFaqVGpNMpl0UmtZqiBijW898SyeZTI+NoQCvvHoEQ7sGadVqdPX04PnJU3bJyYuUSjkqddq2I5Dq9Ekn0tjGgZBEGC5NrptEgfgOBaGbhCGCsc1AcXM3AKWqWM7HnEUU61ViYKA5aUKQoDr2O0m05LBgSKVUpnFhUVyuQymZTA3v8jIUD9KxUl9ZxCyXKqQzaSoVmvEcczswhKZtMf0hXmeeukCe3aOkOvJcubMFDvGh7gwOcPk7DzNZouRoT7mF5bo78mhKcHkpVkyKZ9quY5p60gUYatFGAQITRIGIadOXSSTThNHgtpKk/pKjWajwez0HI1aHds00TR9jcEguwEaq8igo3S8slLFNI0uxkPXQ4gucZLu3W7rcNmmo1vQN+4aG+Bf/s7Hed/735OMF+vVL1/23tsGOLFqg1jR7hEXq9XXOyY1bdPevkZ5TMRMrtSy4EpruzI5aAsVaSGIUas1e6sKoazRTy3TII7jq969xIDWnieO4qQPZRSh68YV3nXNrtk122jXwN0rwISU69Snvlfg7r9HDWVHJVNIgYbG7OQ0F86e44bbbqLRqCeUi63et8FhfC+AXaL0FSPbtJdOJi95Lq+eabvcvJ0M5KZA6XrguskJqrVvr/OIFW3BiLU1Rypeo/8kE61N0hUV3XrRbTpqe+yVzu1KtzadaHkcBDRrDR578GHe/ra3EQUhQRTyzIun2LV7D816Dd/3iSLF+fOTDA0PcdddPwoygjjGtFyWpid58P4Hee977+LixQs0Kyu0ag1MI+C+rz3A8WMnuf76Azi2zWtffwd/+3d/yw+/801UKgu8973/gv6BPt5+5zuIwoBWUOMNd7wV23PJ5nLUay1OnXwO102jIsmJE6fo6yuiwoBmo05vb5FU2ufhhx7nwtQ8g315xrf1orlpVCj5u7/5HK++7SaEYfKlLz3A6+94LV46w85tA3zz3q9ww8HreN0bXkdxaJDZ2Wn8tI/jWMxMzXP69ARDg8OcvzjB2S/dy7+/aS/FbIoojtCkjmEYCCEYHuhBCIVpmjiORaySOpPZ8/PoSDKezZnTU2RzaWbnlrAtkyhSpDyPVhCg6xqHj55maKCIlEmFp5AaUmoEjQbNZosoiqk1mmRyaUxdp94IQCbiJM+fOMdgbx4VKsK4ha4bSKGBiojCCMsxEVJg2Q5Bo4aT8ikvr1AoZInjmDPnJ+nNZwnCkCefO8XU1Czj2wbRTYkmDKrVOqmsi2mYzM4sJ5k+22Z0aIAgTGiTuqZhuzaTU7P0FvPoukar1aLWSNoCuJ4DIgGqs9OLzM8t4fsuVrtfWzqTJpNJcffXHuWGvdsTUGu1s0KaxPeSGsCksbSGiGBxsUQQRgnwCRVSacxeWmRpscTObYOMDPXRCsJ2Jii5KVbtTIlhGti2zfMvnqavL8elqTkswyAIAzzXxvdddE3DcSxsw0Y3JEIoglZMFCj2bB+mp5hFM7R21js5tx1jQ8wtLmA5AsvWKBQzoBT1WoO7v3GIWw7spBUEVMoVcoUMSsHZc1NMTEwzPFigWquj6Qbzc4ukMyk0KRPxFQTVep1U2qdarRM0A7L5LM1mi4WFZbK5zGpWKV/IEgQhURzhuQ6WZSE1wcnT52kGIT35DBOTlxAk4LAnl2FicoY4gpuu28FKrYYmdXqyGb54/+PccnAn+XQKvU2lvP/JozSaTV48M8nN1+0gigX3PvgsB/du49nnTjLQ28PSQiX5/UCj2FNA6hq6rlOrNQiiiAcPv8jBfUM4rslyqcyJM2cZKPaiVMSqsNgWWTIhBKapd2W7ksDo+p2u+2d7W91ivg27N+204OaNVAruGuvnX/72x3n/+xKK5sasYTfYi+PL+HDFqoBJt9LlmqKmXM+MiRI/2w3ikkyfXEfl31gC0fENayIt648nKpnJ75JoC8GsAmiSNg+KzvPk96ab7rkx67dORKadoYxZE3DpjOt+vfs4kPRBDcMkYyllW7DmGnXzml2zy9k1cPcKsNW2AK+AzF1HJVOpmOMvHiefztKX78FIWSi1Vo93NftegDux6lTkOgEWpeKXBWwvd5VXKZhb3Fhc6XnHeXcfjzacZxAGmG2FwdU1vIwI8OYaiPXHrzbDFgFphBA8fO83+OoXv8Q73/FOAhXRjEIW5xcY3bmPKI6JmzXCOKZeb9Db08vff+EfuOXWmzh79hT5Qp7Tp85S9ExGhsaJozhpEC00nn7iSbbvGOLggRv5wj/cw+7dOxgYHGBmbp73vf/95LM2X//qF9mz93ruf+ABzpw5xw+94x0MDffTJMuX7vkqR555kluvv5GgWULH5O/v/hKf/fRn+LEPvI8gaGCYGqZtUqlUSHt50rlelpZmObB/hHrkcujR+/nRd/wo/+7f/Dp3vutObrvtDdhpydBQP8V8Ui/2ute/nrPnJog0SKfTTE1N8sShQwwO7OToC8f5fz72MT4YzPPq4VGEiGk2GzhO0pLg7m9+mwM7xqg3GriWBbEibEWUlissL5bpHx9Ad00woW+4DxEJfNdFKTh9bpL+vh4c28Q0LYZ6i2iWolxeIY4gVhJdg6DRwPUcLM/F9myQgonzl7g0t8RAfx5dN0nZNqapU1mq46YsEBqHnz3JsZNn2Lt9lKVSGS/rI4VOaWkJN+1jmiZR1KRWq9FXzKFJDSE0XMNmoCfDpZkZPM/g4uQCnmPjehYq0jly5Ay7dgxh2Sbnzk2SL2RQsWJubgk/5ZJNp1AIbNvC0HWiqEm5VGXy4gy5jAcISstVRoYHkxtdjXZASFEql7nlhv3JjalSTE8vcu7iJYo9+aTtwKose8zczDKWbaFkjJMysWyD+cUFfM/GUAaaITFtE0h6fMVxhJ9K1BwjFRHHELRCGtUmhi7pK+YxDD1p7C2Tm/cwCAmCgKgRolsSzdCxLZcXjk8QqhAvldBJpYqwbRMhQNcEtum3szIGc9PLPHPkHHv3jXFw1xhS0zBtHce1iMPkBj6XTmPoAqnF2LbJI08fY6Svj89/9RFuPrCD2dlFvEwChIUSaELDMg1m5hbwUh65VIp6tY5CYbkOjTBCF4KYmCgIqdebIBQZ36e/WEChGOgroElJNpsAyMeeP87+3WOk0g7HTk1g6zqu4zDcm8NxbL556Fn2bh8iimJuPbiLXMpLQHDKo9kI6M2lsU2LJ589xcz0ImEQEQUxptluZm9IpAgxXQvDtDlxapod48PYto+lW2Qcn1qlShwFvHDyFAO9RUBs2Bo7IaruENrVdrpkXAcHdu+bW+6ZW06ZHLxr2wAf/J01gNf10rq6uXU11F0m26BFkFAXO7RMKTp979ogrNPaCIWuawmgawcwDV1PwFNbAKtzLslaNgDaTiatCzB2lC87YK3drm/D6YoNx9Rlr9dlM4RCsGXvu8swe+KuQvM4jgmCVgIcLxMsvmbX7J+7XQN3rwCL41YXp2+ttmujOuOm5xsijRvHXY4i+XKsE2HcypJ5JcW+IkqXODkfXTe2BHYd+uVWQCgp4v7uQZ5qh2IVar2y5qYiBrH+0Tm8ca0ioQMpSHrOtWvoNCGQiE0KYqvv6/S7Y4vrver8k9c0IVHhWuPXNWEY1iupXMbiLuGT5LPj9ee6wVYziCTnZtkmItKIqi0+9+k/JZ3J8K4f/RFiywMlsKUik80xff48rmWzvLyCbRk89tBh/uZz/42f+an3EYRNZienOPbsC5Tn5hnfez26ozh85Cm+/dCjWJ7Bm++8g9nZWRbnp8nl+rj1VTdy/ORLjI5tI5v1MMwsh558ide8/jWMjYwgBPi+y4XzFxkdHOA3f+OjvOXtb6HQn2N8/HoeevR+Pvg/3cVtt99GeTnCznjolkMritEti1azxvbRcXbt2s5iaQ7f88hnfURk8sY33whC58yLjzHYmyeTTTM9dZ7FcpX+wW3Uqk1qpWU828CzTcZGd/ILv/JRPtpjcmfeRyLRLY16vY5lmURhjGWYjPT2ommSOGgRqBhNM7nv20fYv2c7vu9w5tQEKceBSLE0t0Am74GEWq3OQF8vC/PzNFpNHM9CMyXEEZZpEwYhUiTfa73ZpBVGaHry/wYJ2UyK/kIOoemsVFcwLEG5UqVnMEesBCJWpD2XHePDaIaG7bnEYQShwEmZhI0QTUg0Q2LoFq0gwLAlUtrYtslyqcLI8ABBK0bEMb39eaI4RjMkI8M9xFqU1MooieUk2cswCnFch1ZQx3JNSqUKYRhhew6tWohUkiiKuff+I7z69v1UVko06g00w6DVCtA0DV1qbbreIrMzyxRyKfL5FAsLJc6ev8TQcA+aIdtZPZ2vPnKEG/fvwrAM0DQ8x6NZDQiJWapU6CkWKC1VqJUbHDlxjtGRJNOoSw0hoNVsJjehCEzXBkPyua8/zP7tg1yaXmR2tszAQB+6axDGYdL2QSkGejKoOMZ3Exqo1CzCME562dkGhqGjhEBoGqmUx2B/jgsXZ2i2qpiGg+FqRFGbekeyj7meg6YZtIKYbUN9aLrg5uu3I6Ugk3KJY8VnvvAge8eHMCwDaeo4rkOlVOXLDz1FJuVRLOZZXlyitFTCSfmYmsnSYoVYQsqx+fK3n2L7yCCNWp2wFaOIWVoqowmdmekSli7J53KcmZjmur07kSKm1mhw+MXT3HH7DVycnWOgv4ennzuBYxgMj/Rx8sxFms0mvmuR7c2wa9sAnmNw6vwlfFfHNDS++ugRBnNpdKHx1DMnGB3uZ8dYP6ZuEUYNTMtGtzV83wNiLE1SXa7w0snTxGHMSrVOJu23d9/uWi6VqA13J90uh/k2HlZd47catNGHtO2ubQN88s8+zU0//K519dMxKqGSdgE7IVhfqtDxBe2sGe19PG77sWRvVxAnIEwK2aZtrjE94jha9VGKdmZPrUHYzul3P1e0a/46p6fWqrZVO6MtSQLMoi2s0vHbqn0iG4VaLndvserP1i7zplp8AL2jKspa/zzZvkRCgJDJuqIobJ9zcq5SkyBBtOszr9k1++dq18DdK8AU8ZYO6WqZoo3g7nLjvlu74jwq4cxbttUFUDaPv6xqpupECP8HUC8ucx6bslkbHXu8fu1Xq5/b1JOu6z2rmjcdmcr2gXXX5eVkGzdc59XmtV3Pu9fcodYQK6QCVa9jCPij//wxfuHffRgvnUWJBFhEcYRpWZTqAUulEr6fQtcNTp0+xfUHDrJ9+zYy6RQvHTtJPp/nhhuvw7AkTz71HEODQ/iezxvueD2ZdIbScoW5+UU8P8Xi8hyuq1Gpldi1ZyeLc0vMzc5xxx2vY6VcwnIddu/bQ29fPz/zM/+G2285yA+9/U3ceMN+FhdmUYFGq1FHSjh35hxTkxc5cHAPQdDCMW3mZuY49PjDZDN5DM3C8zIsLy9w+uQpnnr6GBMXz7Br175Euc8wiEJwMzkGhocIaeJnHHp6+jAtnZ/82V/innvv489/4CAvvHSWTMonCAJ028ZyEyBkmTZCS25IwjBgamY+6cUWxQStANd20HUD1zGwXZt6o4HvWVRrDQxdxzRNDFPHdds0zjhE6hLVrkmynU4TbA0pJSnfQ0WKej2gVmsghMLQkxok3dDRdR3fc1m4NE9QTzLDjUYLpSJMy6RRb6JpBhNnLuE4Fvc+eIRtQ30oEaEiDSl1ACpLTYQekcn4q7VwqbxN2O6R16y1kFoib69LjaQ3tSSKYyqVKrqWqEcKTaIbGromE7qmZWEaBrZr4dkW2UIK27OwTQNd12k1Q86fv0ShkEkyTnFMTzGLnTaxTZuFhWX6e/PYlgUIlpaX8XyXwZ4cFy/NkvZ9pCZAhZQrZWzLpr8/T22lzuPPHieXcRga7MWxHC5dmCNbSKMQGJaJ57s4tk2r0cI0THocF8sxSfse+WyGer2OYWjEccTM9DzZTBY08FMumqWDlJw/O00+n+XT9zzArqEiC3PLbYVPydPPHqOYz3J6YoqhYhYhBWEQ06o2sR2LIIwolSq4joUmE+qikBJTNxESwqDJ3Owcpu1w/b5xZucWSac9WtUWmpCUlsqMDxQZ6M8n+4mmMTm9SMZzsR2boBVy7sIUui7Yt30Ey9KSgEQk8H2HIG7h+RbX7R/DsR1OnrnAq27ez/nzk6zUq7SCkGI+TaEni+NaXDg/zfahfsJmwMW5BQ7sGefQsy+xe2yIZqPF4vwyQkHGdWmFLeYWl8l4NpVKlWJvAYhIZ1NIXSKUwrA0okDQqkdU6wGmZZLJOCyV5rGUJJdOUW8EWJqObpqdjbb9l7baCL2DaDpY72qcBtFBEZteuOoWzI39Pfz0732Cd7/3R9f24Y6f6/iCdsBuo9/rZNy6d/rLszJUmxIp21mspE2OkOv9rbbR924KbnYmbNdqb1IoVau+uEMB3eiXu31M5/nLtQ5ts/t9ko3ZwXWTrwfZJH4tiiKiMEwCo1K7xtq8Zn/KE44AACAASURBVP+s7Rq4ewWYEh064da71Ua1xo2RwK3GX2m+rcZdlXK46c0JtSQKoyuOvRzok3J9H7tO/dzLoSh2WiFsdECbjm90chtkJi8L7lbnS9a+Xj1zs61+P1G8GaC137Nac9eh3KzJk7E6eYcOsy7y2W402+1cxZqMeKc3nVLrqTNx+zXDMjF0HRkrPv1nn2JuZoHP/+1f8+677sI0UjQBQ9dwTA3LMmgECs1wSTs+GrAwM4Np2xx78UUe+NYDvOH1d3D61DFuvuVmpmfmUNJg9649vHTsDKdOnWJ6ZpKJc+cZHR1jbPsuJi5cwrNNevt6MHQNL53l/OmLjI0N8vBD9+PYLrEU5As9nDlzlg//4i8RtFYYGRkmlc3Q09vPr3zk1/j7v7ubhdlZfvzHP4AkRDNhYW6BS5PT7N6xm9GREQAOH36Kw88c5pYbr2N0bIyJiXne+JY7SPkpAi2hN509cY6eYjZpMyBg8uJ5gkjym7/8a/zRbft57/gQpq0RtSLyufwqkNIkSAGl5RWCKMKydBr1BulMGsfyiFVMJuMnanh6IpQQRhGu7xAETUxp02wEiTR5m1olhEjqwhCYhsGxExMUCzkWF5exPZtqpYZUEk0ITMvAcW0QoLVrNzXNoF5LgEIYhKQzKaSm4fouqAgpJJZl8+ThlyjmMjiuya7REUxTBy1ERRq1ah3TMnny8HHGx/sxDA2JwrYNMHRQgjiCeq2JZZocO3aOXMbDSVlomkGz0SSXyyA1SavZRNcTemNtpQ4KwjhJgeuaIJvLgkxyAs1aA83QWSnVmZkr0d+Xx/IsbDdpzi40Sa1cpVpv4NgWUagQShLGAYZlYlkWExdnGR3qI4pCgmaLnnyG42enkEAul8HRdIp9GQSSpYUSIopxUnZSo9f+3XrkqefZNtTP3Ow82ZyPUvDiiQlcx8Z1TaQAXddIpXzmZpYJoiZ2W8gkjGKatSZ+ymMol6G3rwdT05lfWsY0DIYHemnVWxTzWaorTXKFNCq2MU3B3Nwijm3h+x6aJqnXGliWyfz8EhenpklnPObnl+jN59AtGykUjVoD13F45vlTFPMZ/JRDKuNRbzVZWi5TLPbgOw7lpQq2bYFQRK0Q23WIwuQamZbFw0++RH9vFsc1MQydVhBy5OhpegsZfM/B0CXNRsC2sSEWFsv4nrvaLy2d8dENnaGhPl44doab9u9kYbFENptmuVRhbrmCYWjs2DZMvdakv5ChJ5/lsWePceO+nav7WbLfx0iRtODQ7BZSk5SXm2TSRdKZDE46jenYhGHE5PlJ0p5JrbqSXP8INLkm0S800dVXdGMKrysgtunIxv386oN+ZLSPn/jd/8J7243Ou/Ql1z5nlaa/5iNWgV0Xk6TjrxI1yjZA3eC6VpU222M02dVPr53x09q05VW/32F3sMbC6WT01p+vWPu5Gsi8/L2I1OTlI52d9XbWuEWNXbfaZufc1t2LdK199WfXHHEcE4Zhkt4TAk3TiK5Wq37Nrtk/MbsG7l4BpriyuuN3CrxetrrjBprFd2Nb9il6mZ+9WY55iwr6y7wXto4ubnV8bbF8R+CuO+C55Rs2mOzQMrsymRtXIrdwVslTteYINzi79YXpsgv4bZXNTaxzwxOjKJfKNFZWOHXsOIMj23nND/4ghb4+Dj1+lFTWS8CADs1WQC1QNJYbWFJj8uw5SvNzfO2B+/nhd/0QvYUCjz7yBO94+2uo1Vqcm5jlp37657nzzrfwF5/+S8I44IMffB/lcpVcLsfM/BK79h5gpH+ARrPB9Owc1UqDfLqHM2dPcNNNB1larPDS6VNsG99Gs9nCsh0++98+w82vfjWnzpxHGCaiHvFzP/tzDAz0Mz4+iucZnL1wjptuuIlnnzmK6/qsVBpoOoyMDrB37y6a9Tq1ehM/1c+Hfu5nOH/uHIX+Aik/zUBPP6Ye8M2vfYOgEfEb/+F3+EB1jneM9ibRfymJ44A4hMcPH8e2NLK5FGHQQgLLS2UyhSxSKKJWgGnZxKHkheOn0XWB59usVKo88NiL7Ng2iGHoGLrkb+45RN51efb4WQb7etoUJI1KtU46lWJhfoH+viJSCnzPRhgaruOgazrLiyXK1QqubyORPPXMcXzPQijBpekF8rkUhmsiTZ1WK6Cx0mBmbh7LNAlDxchAH9Pzc2QyHvOzyzz50nH6e30sw0lq11TEQF8PK5UVlIqpVqtAjBIW5VKVoBWSzaWRUsORGpalI3SolGuYlokmJWEUYWiwuFzGtR2iKGmJ4KV8YhVRWioldMA4ShRBlWCxVKbYUyRshkCE4VkErZAoiNGlxvJimXwuhee7xJGgUWuRySUCP3Ozy+wYHwUipEwyqXff+zBvfO2tGKZGo9bANi0My0DTDL78rSe4ee82gjCivFRlYb5EPp9mcLCHhflF+opZhIzRDRPHMEmlk4xgs9GgWmtgGRb1apNTFy/QX8gjhIZAUK2tIKUgnU7zl194mIN7R0ilfQzbREUxtWody3I48uIZhoYLfP1rR9m1px/f92jWGti6gTQ1Wo0WlmWxvFRmx85hEOC5Li+dmODxI8fJuhY9+RwaksdeOMX11+0kVhFSl+i2RasZoAtBrVLDc12On7nA8HAfqhXipnxc2yZsBeiGyQunLnL93nF03aDVjIhjQTGXoVjMUSqV0XWNTCrFydMXCcOITCpFabGMYeg0wwDN1JmbWeDEhSmGinks02Bybp7+/h5ml5a5/vpdTJybJpPyyGdTLFfqyCgml/a5ODmDLiWO57C4uEgmk6LValBeqOPaPn/ztcfYv28UFbVYLpWxdEGrVsG3LBrNOtXaCo16k0a1iWUZCE1rU/TZUrH4cpu3WP17o3+94ttW7T2jfTzekoyMDm8avs63rS5sA2DpjO1ityg296VbmyohY8aKdYIliQhKQn1UinV0f2Cd0uVVTumq4O47acMjN/j4ZPrOOXb8W0y3YMymwPUW9wNrJQmKOAoJghag0OTLq/e/Ztfsn4JdA3ffjyaSzT4mIlbhFYZtVmd8OVmy71Ql8x9F41z1V99ZfZ+KVVvCu8uZCLEp+6Y6jVNVp9lrTKddwKY5239W5+jODEot6WGULHY1S6bE2mNj37tOxk5KkbApFegykZoX7efdj079R6curuPEBGKNPrSaqdt4Hdv1Ep3vcEMEdmPcuQPsFDFKCCKl0HSDWrmK6+i4lkRGMY9961u8+MzTiLiFZcDY9v184+vfZO+effi+wx/+3m/x5je9kUYzBqXztS9/hbyfQtMFuqMzvGOMeqVK2k/hp9LU6itJNtD2ePqZQ3zgg+9i7/ZdvPvdP0xpeQ7DiBkc3Y5pOnzoX/8Ut9ywj+LgEL//+3/C9QduZbAvj92TwnYyPPbYU2haxA/c8ToaKy0+++m/Iue7vP7Nb8aRMY4M8SwTNztC/0gPvf15KtUqUWQwM1+iWmmxc+cIlt1idmoKy3WwPQ+l6/zO7/9Xzpw4zm23XMftr/5B7nznm9g+kObciZeo1prYXoZf/78/xk/GFX5s1yjEgqAVYmg6cRiiSY2gFfD0i6cZzhd45OkTDPUUsEyDdC6NDoTNEKkZgCAWIX35LAvzJTzfwzANdo0NMD8zj+85KCSmKRnu76PRbNA/1EO90cAyDFZW6tieje96bZU4iKIIqWlUypWkRkYKHMfCNExWylX6ewuUKlVMy6RQSKNpGhLB0sISqbSHrutYlkGEwnUdJk5PMjhcIIoUmaxPfz5Pyk+hhEKpRIpcNyTL5Squ6fL8SxP09uUJGjEnT50nl7Vp1QKqtSqZbIZGo4llakhNY3GuzNJSBdvxME2D8kIZL+Vheg5KJBL8QSNARWB7UKvEuGmHWJPYmkS3DSzXxLENbN3g9OnzmLqGoRsIyWrvtPnFRfoGCnzuSw9x/c7tPPn8McaH8sRAEIVUq3X279pOdaWKaRkYpsX5C9PUqy2kkNx83U6ErqGbOumcR6giTMdsAw0baeo0anWaLcVTL5xkZKAX07R49ugJDGnQbAYsl1c4eGA3Sgka9Sa6LrFtM6mD02DXSBGpm5iWRhwkKqeW4yIMSSGbolZu0FtwcF2bhfkl0tkUYRzx8KEXKWQ8HNegFQR4vsvFC7OkfJ+BoV727NqO61ptal7Ewd3bCJo1DEuiYknQDIiaIbrUsDMeURRjmhqGbeBmUuhSUW82cT0PISVSRRSLOaq1Gp/9+qO8av9OdENSLpewLBtLtxG6JJW2yReymLZFjMK0dVzbZvrSPNV6A0OZbNs2QLleZtvIMEQKjaSOcalcIZ32uTA5RzbrYTuCMIoJA8Wjz51k+tI8PZkspmmiWwa249CoNzi4d1sibKNrmJrJ5PQi6WwGM+1hOi6unyEOBbNzy6RTKWrVKrWVKum0h0K28YBK0uydiF27RKsbym3prToqmJsx37rgYGevHrx0gQu9Q2SzmfaYLYKdWpe/2TCtEGKVZpm8XbX70K1PXnVPKUU7u6eSertQtIVcOmtWa7WAUnQHPTvBQrkhW7ZeDbNzgqJrzR3A2Pm5ekk6Ii1d2b+NzKGEpdMNdtfW17ku3R4uycKq1VEdhdBN1v6elYqJ44gwColVlFyv5AKte2xVNnHNrtkr1a6Bu+9Ha/M+1iDA5Ya9cjaj73StCY1Eu2r2TXQ1POq0N7hcreHGOZJahY4ju7p4yyZf3lU/0RHPlPIK4HmLpFzHoXSc4pWA97rPbwPajbUOay8n84VCT5x8FGAQc+boUb71ja9w35e/gAxCdu2/Fcv2mb40x/UHb+Txp4/guDa9hR4+9lu/zc/89E9w6eJFTE3n4sQE997zVbI5m1/6yC/z6ttfTzrVi5tJMTK2nT/79Kd5z3vfz/zsJYrFAca3b2dwaIBHv/0Ezz13FD/lcsMNB3niiZe4NDXLhz/8Yc6dPUa1vsKxYy/w6KOP8OY3vZWpqWmmpxb4xV/8CL/26x+FWOPi+Uv8p//4f/K2t7+RtG1iCLBcnwYWjz3yBEODw3zqk/+V0nKdW2+5DS/t0qivkM2n+PZDD9M3fADbskm5DmdPHOfm6/fxhtfdxsLKAqO7t/PgV+6lr1igt3eQn/3lf0/x8Uf45VuuY35uCSEkpi4RMbRaAULJBFAJwfV7d3DuwizX79vJA4eeI+M5TF1aoFjIEQYhjVYLKQWLC2W++cRz7Ns+guNYOK6NNDTSKY9Gq4XlWfTkE1l8qQSOm1DxLNfB9d12+wRotZpouqTZamIY5irYM00TzdBp1FvYTkLN9H0fx7aIVUSjkcjX1xt1bMek1Wzh2i6aoYMQZDNpDr9wgrHhATSZ3ACXy2X8lEvYCjEMg6XFZQq9WTQhMaWGY7t4aZfBwV4c36TViunpyRJFMV/69hPsGR8iDCMs2yJfyPEP9x9iz7ZBypUq9XoT17VRifRnUlsXBFi+C0py4fwMIozRzISebeoGURzz9Uee5oa9O5icWaBeb3JpapmeQo4/v+db3HH7QaIoophO4XgW42P9RCqGWNCsNcjncgipJQ3ZdY0wCCkWe7Btiy/c9wQ37N/BwvwyuqaYm13imRfPMdbXRywS1UpiME0d1/PQYkWpXCGT9hkeGSCTS+OnPTKZVCLwgKLRqOO6DohEWfPhJ46ya3yUSEXoumSlUsU0TE6eucjJ0xcRKsa2dYrFLLPzy/T2F1hcSFpL1GpNfNui2Qoo9OZQsSKdSoNSzMzM46dcpEhqGI+fOk+2kEM3DaIoQkNSrdQplVco9OaplFdIpW1s10gEnCLBwtIy6Ww6yUzrkp5cjjiKSGd8dvQVuTQ9z4NHjnJg5wjzC4u4rkmzGWLbFs8dO83CXIliPsPM7AKZrEuxL0c+k6HYk+Uv7nmAfeNDtJoBS8tlhof7OXd+iuGBInPzSwz091BZqVEoFpBSo1xZQUUht92wl8eePUatWqOQTaME6IaOEgrN0DFMSa3WoNkIyGbSJKrIGgINFUMmnUazdYIwQKiI2Zk50r6f7MEdBkUX62LjPiq6/l63717JxLofIATOC0cwXv3a1X1+EzNfbgh8qrbfbyO9qJu62LXfX3Up7QyXaAf3Ou0VOjV4sq3I2e33OnTO9SC000R+6w/sUClXA4pd790outbR/N4IYKUQW2byVsd0ZfIgUawFiKIOrXUzuIvV+obqnWsXhCFxFCWBYcRqAPkauLtm/5TsGrj7frQ2uIvbkv3fLc3ySjV6/3+ZihOntUqdWFXdUqsF4qqdhYMux9MOVXbGdWxNbayrRq99et1Zvs6/txZ1aX/ORk7JBoe2yfl3zddx2lcCZ3GHFrOhAkPF8VqEs+PoN94AqLWMXPfnX25tnbFSBegoDAy+df9D/MZv/kd+7t/+Are/+gcwrRR+rgchNMIwYHZ2jpt/4FXs37ObI08/xQ+99W381V9+hjte+zq++pV7ePThR/iVX/4I2XyWgYFhXnjxBPv3H2B5aQ5D1/j4H/4B1x+8DhWFTE8vMLZtlMNHDvPEE4d597vfS9/QAI8/+Tif/NQn+YWf/zlOHH+BdMqif2icXC7FgX27KOTy/PHH/5jxbdsZ2zFGKuuxODtFX28fr3nN6xjbvoN8vsCJE8d56KGHOXDdDfzbX/xxPvS//M+kPIvx8X5Onz3Kv3j/z/NT//qniUONsaHdvP8D7+HOO9+Kn/Yp9BbJZmya9TLDw6MJ9XFpnvsefYZTf/VX/LBlcnB0GBUmveksJ1Go7MR2z09Oc2xiiv6eAqZp0JNPo5uSPdsHsUyNQj6LiiOarRaO42A5FinH4+TEJAf3bycMWoStACEFrUYDx3WoN+oYmkltpcbJc5P0FQuYhoaSSWNyHUEYR+iGQRTF2I5D0Ao4e26KfDbNqTMXEULg+y6xUmh6coN74eI0ad/Dtm3mZhMgtLhYIuX71KqN5P+jJjl96jxpz6WQz6KbGmfPTzI4UFj7HQqT/lK6aSLimFYQsLhUJpdziOKASrWEaZqcnZii2JtnbKAH02grQ0qBlBoL80uMDvVx+twlhgd6WFhcoiefZX5+CQS4voeUBpoe06qH9BSzCEOj1Wgm4iuGRd7zWFgsMTzYz4NPvcBrbtmHYehoKmKwrydpUB0qdAMMU0fqOiIWzE4vUKs1qDWaNJvNhDaKpFap88WHHuOtrz7I5+99hNfcvB+pC7LZRLzF812CVoDn+YhIITSIgggVJUBWyqT2LI6T/WZ6ehbXcUApTMNIsopChxiG+3vQNEEraiZAUTdRCPKFLKP9BTIpDz/l0Wi0yOTSaLpGK2yRzvgM9vagSx3d1JGGBhFEYdwWxlFJsEGRfEe6husYqDBkebHC4mKZ/t4CQRxhOzaXpubIZlMArJRrRK2Y0xcuMdBbII4iTNNgab7CpZk5GvUmz5+c4Mb9u9m3c4SlpTIoyKbSSF1jZnYeyzB54fQUO8eKrNSS1hxCl1y6OMfXHnuaW/eO01fM8dzxcxSyKRqNJi+cvkC93mL/3nGWlkv0FgvMz5WYmJwmm/EY6Svy0pkLxCpm53A/cRBy36EjjA/0JnL/0GZNSFzXRUiBLgStVgshBYZpgCaIoxDf95KWC0hajSYCsGyLKAzbe+jmXN0asFPr9tPOUyHF5pTZZdyqpulJk/P3vQcVr7FFOjV23eyWddN0Mk9sIHMouhqxb7Hvqw1MGbEeUHWojnHbFyuxpljZyZJ1g7lO3XZ7ke051qiiAlbBWSdj2W2duVbrBTetV60+1h3rnqMT6FZitR6/A1DXfYeiS2l0w1q6AWdnTBwnIixJKxV99bWNAPSaXbNXml0Dd9+P1snctXvbfa9q6L7b8d9T68p2JU/XO6hOg/G14Wr1+FaZtXUUkLXJN33Glc55DUBy5Yzf5V9K3n4Vtmvn5XgdLUasf2Os1nNuXqZtHB23F/TEN+/hzz/1SbZt30uuMMQb3vIu3EwGYTj8wR9/iptuvo5m0GB4eJB8Lk2t2WRxYZFP/PF/YWpigvHxYVrNFq+69TaGh0ZwLIdyrc7w8Aif+MSfcOrMSW6+bi89uQw7t29jbmaacrmCbbsMDg/hODaTk9Pc980H2Lt3Fz29Bd79nrcxOTnBjh07OPrCUfbsuQ3XM9m7bxsrlWXe9pa3kCvk2bd/L4Mjvbz03JPUak3OTczwv/7Sr/KBn/hJMp7Pq265Ec+1eesPvY1cup9dO/axUm4QtFq8/8ffh+vFHHn2EI1Gldtu3MPo+BhmyufhQ0+w/+BuJs+eZ7A4yGf/4m4+87d/z68PptnfV6SvWECTOp+/5yGu37edudkFGs2QVNZHaIkC5p69u5MbvCgiqFeRpkSIEKkJlspldC0RcrAdh4W5MuWlFW48uJswCkDF2JbJ7PQiKc/D0CVLS2U8L4WuC0ZG+lBCUFlexvFsNAFxM0C3LFQMhmGuquotLZfpyWfJpnxs1+Gz9zzI3rFBNEPDNExcy8KybCrlGpl0FqlJHjl8lJ1jwywuljFMg1TaQ1OKweGB1Xqq3mKO2koVXdcgVon4SxDSasXUqlVy+RSGpWPEOvVqC8MwcJ00qZSDEKDpGoZpUVtZwfIcQNCXy4IUuLaN69pYhgYIXN8lCmPOTEzx3PNnGRvN43lpYhGgmwktMmy1ELqOZVkJldGyGMxnMW1Bo9WkryeH1HSEkJQXSkQqwrIMait1okhhSkk67aPbJrl8mjiKuPfhp9k5OsSusSKplMvusQGkFDSCEN3Q8FIOpmtgGjZREBG1QoSW3MAaRpIVq1braOgcPzFBTyFLJu2xvFjBdV3iSLEwv4xpuHz+nm+zf/cwui7QTI2wFdNqtHji2ROUliv4ro4UkihQOI7H8TPnKFdW6B8oolCUl1ao11qUVqr4GRdNCU6cPE+91qC3t4CuS4JWzFPPHaevmKO8OIfvOuhaQhcVCCzXQhoap89OkvUzGLqRAHBdJ5dO8eATz9GbSyGU4uixCXZuHyKd9iFUeI5DeaVMLpvBsRwuTsxhWDquY1EsFnB0Dd/XMQ0L1/dRQpBLpziwa4x8xicMI0YG+6nXGtz/5FHe9cbbyfoes/OLDA/3ceLkBQwh2TE+yNGTEzx97AKvu3UfhhSMDvdTKVcZKxY4fW6SYj6Lbug06gFS0zl24izVepVc2l9jWgqF1AS6kCglUEikbmFZBkEQcOrUOfoKGdS6OizR9biMO+i83EFcL2erFvDW3gzOa163WnfdASayizGyRtVfb4pOS5suKr9YDzw3feQVwJ2A1aDxaisi1gKlmhCoOKE7dk24pa+92r1E1AZKnf59L9c6pQcbYbfUNMIwTNoSqe5m8Z1gceI/t+oK3E0N3Rg0V0qh4pgwjEAl9bzX7Jq9ku0auPt+tPammwC7lx9D2shl/x9pmyT2u9Z0pbrAjYBNbfizadwG4NPJ9K2OFInD7NBBYhW3o5xAW62y7fuTOrd2DYOk3Wuuq14OJSCK1ytRbmGrapkbr0lXjyUECT0SsUqLEZerr2ufR9dJbp67U68gBOvdvECXGqaCP/jdj/Ef/tMf8Usf+VV6+4r4tsf/8dFf4113vhERNzm4fy9BqHjmmeeIAzhzcoK4Cg996+scfvw4p86c4Dd/839juVThS1+8jwPX7SJTUBimjS51RgcHuOO1t/LtJ55l576b6B/PMbprL1/4/OfpHeiDVpXp0y/yzve8hzt+8DWYlo2byXD08ecY7C9S6B2md2CI+fIcf/BHf8ro8C5WVsrobp5qZZnS/8fee0dJdt33nZ9778uvcnXunumePJhBJkCCIMEgkhCYRIlJEq2VJVJhrZXl9UqrlWjLS698fKQNR+vjY1lHVhZlkxLFIIjJIESQBIFBDgNgMDl2DpWrXn77x6vqND1MK0uQz/zO9Jmpqhfue13zfvd3f9+wtoTULPbuu5mvf/0b/MiPvpf3v+8dHH/qGBOTIyATGq0V4khRa1xESpN8sUgvbPBfP/8A07unaXdjDh6+g1179vNb//dvcPTwYQ7dcJhWs83/8tF/y9kHv8pPjeV4x0geEWr8l899g1sOz9BoNHj1bTfQajepVAtomsDQDbqdICuGgF67g2UbCKnwvAjbcUBKTN1AGSaWbRKHEV97/AXGhnMUSwV0w8h4Z40mlWoRZWoESYpmmvTaHfJFhygMWVleJQ4hn8vRaLRIlUAzdeIoQBOKv/7KMQ4fnKZadRGk1NfamK7FockxLNPMJo0iAQlRGKFLjXqrg24o9k+PEwYh5Wo+m8TEgudOnGFqYjhbyU4jpAaGbtPp9dBtA6FJEJJmvUUul8P3M+85ZSrWVhs8f+oCu2eG6HU9dE0niVPqtSYXLi+Ttx10TaGbGkqTOK4BAizXwfd9oihhbbXJ2EiZvdOTkAjSNEbXNYRMCKMUzXQIvA5SCizHQBkajmsRRxG6ZmAYBnNz85SKDvc/+hT7xyewXRvDNfqwtAgnv9HVlEpycGYXUkrqtQ75XC4zmy86KCEzC4vZFSr5Mq3WGrajgcg6VbmcjdJ1dMtCyZQoDMnnrOy/rBJYOZMojlB6Zl1gmzqdRovpyTHm5pawHZucY3Pm7GX27R5j375dWcdeU6RCsLq8hpuzGBmqIoXgzPmLTI2P4fldNHQECaZuohA8+MQJpseGMV2L+dlFbjy6H90w0IWk1wuIooSllQajU0PEYcRffuFhJspVigWLMIxw83l+78+/QtFRHNq7m2KlSBJFjAznMAyTNBHkSw6GrSNEShTEXJpdYnJ6HNs18HwPATSbXUrVMseeOknJtUnDBMM0WJhfJokTlNJYWlplqFphZqJKvVFnabVOpVRYh+TqSvLS2UvMTAyzZ7KK1+gwNFLBdExWV1dwXJt2x2et3iKNY8IgwNQMtFTSanZwcg6eF2OZNp1WB8PUQAparRaakAReSBTHpFGEYxmEQcTifI1iMZc9n5UgSeJ+MhB9X7qtXLCtXnFbIXc1zgAAIABJREFUi4+tP/3P+huYms7/8dt/wBt/8N0bPG76Yibb9k1FVhTRh1GKtN8Zo++n2t9wnbTR74xtvN729+C4mzpa/SySLcT0lagFmaJzyqAjlhV7W4q8zfmp360bKC/vNFPZ3tEbjGEneObm9we8TMF25czB6WWfCiEZ8CbFpg6j2HwMIa+ag2z1kN1cLGeL6nEcEYRBv7OaZEWkzDjs1zl61+MfQlwv7l6JIQaCINvXnr7dbn//D5vvhVv3PZxk/Z+DTt/m42whbW/q2mVmruLat3N7Fw2xjXtwjWu41iVchT/Z9vYOOwqlEH2J6GyTbw0RifuTkEG4IkRLI373d36Ht997Lx/6Hz5CuVxAKkEQRLz6zlspVfKEcY9Wp0exaDNcqUAs+fGf+Cmmxod481tey6tedQdvfstdFIam+ORffJZLcys89cxxXvfGt6ISnyiWTM3sozo+gd8N+LM/+wvuvPM2NGnx2nvuYGxigpHxCdpBShDD3KWLzF48zbnTL7FrZjeaKcnnSzz+xNe46eirOHJkkiBocvjgXeimzeLcHL4XMLP/II36CrZjMjd3hand41SrI9iOS5wkGFYOQ5l4YQvXrnDpwixKi7h0YZHXvf5NnDt7nj/7+J9y5OgBJsYn+dhv/L/kn3yUwxcv8M7RCq8eqvDVbz5LpWiiawbVvJOJwxQceh0Py7IQQtBqdoijlDAMcXIOUdAhiqLMiDtn43U9bNuENCWOQWkyg4ppGof2TbNaa5LPOdmkCdB0gzTxSVNBs9HhwsV5RspVlmtLWIZF3q3QbNXRNY0XT14i7MW4po6dcwmSiF1jQ/gdP1ss0A3SVGAZGvVGM4MkugYi0Wg1uly5vESSRHz18RcYKti4rkUSJ6ys1MgXc/hBwMLqKpPjwygtg/VJkRVzQmTfPykVumagKYVm6pw+d4XhcglNk6RxRKVkIVVKFAh0XeMvv3QMLdE4esNM355BEIUhoRcSRzGBF7C4sIrjmCQJVCslGq0mtUaNLz38PCXbJlc00KVCyH43IQxJUzBtm6hvD9HudsjlXaI0oTJUJgEOTI0ThRGmbZKSoklJGIYIJTAMnTAI8TwPJSWe5zM7t0TBttC1TN0ySVNMy0BJwdLiKsOjFRApDz16nKOH9yKl5OXTF6iUCng9H9vNcfzlc0zvniQIIqQQ6LpB0AsAwTPPn2JitEKxnMc0NHTHIA5jTC2DawogjsGwLVaWV6lUCli2SbvTwfM9du8a5/LlJeI05ZvPnCaf08nZNrOLS7zxrqM8+NjTTI+OUi4V6HZ76EpD2grLsbFdh0qpgFASJSVH9k4xPFLFzBsoXeL1eri6YO++KXLFHGmaoJsmItEyK4ckwnJNUrIJrqHr5PMuupUtNFiWjRQ6vbZPruAws3uMbqdLvdngxKkrHDm0BydnEgQ+TiETDnr6xDn2TE9SKeXJ5R06rW7fxy9h9+QorW6P8clRHnnmBYo5hzROKRcr1GttRCpotjpMjVdodX3SNKVWbxJHMdVKiWajzRe+/gSHpiewDIN6o4WmSaIo5tKVRS7OLjAzPUGz49H2Qk6fm2e0UmRteZX6Wo1ypQTp1R2jqx/q28u5qyPd1i57w+TwOjxzpyNufiNlUy7dtnCaiu2IlZ1nCdfKWzttl5Ii0o2OVpJs5Cal+t526aY5iRDr/Lx164qdrqUfyYB20H89KPq2x+ZicOPqNiJDIGf0hc0zJCVlJjK1ieO3fpSdYKLfQQxmEHGcibFsF4u5Xtxdj1dyXC/uXoGRPVd3AhZ86/j7LO62K3Feq4u4zrHrq1pucOa2qldeE+uyLeH119q2bJIdf6Pzt4XLIAZ7DV5shWZsORU739NBp279h76y5+A8ff7CYBl2M9duwK/bUtht7kb2PxMD36F+QtxeBq4XsAJkkmJrBgaCuNfmM5/+DHe/7o0US8OkqeKrX32QyYlxvvzlBzl65DCdbpuV5Rr/8T/8Pq++43Za9RbdVpdes8PlK3MUSy67pvYwO3+Gk6fneN8PfYDf+I3f5Of+yT/lo//bxyiWCtx886uI0ohme4W8Y3Hy1FnuuecOZGrQ6/YoOCYdz8PI5RFC8KEf+VHuve9dvPGtbyNJUkbHx3j2iRe4++4beerxpxgfGUFJk9/6d7/Nz/7szzA+VuXGozfw9LPP8OQTT/PySyf5/vveTpoKWt0u3a5HGMHyUh3LNKkMFWiseVy+PIeUEaWhEf78E3/O4UMH+MKDX+EDzQV2rc7znqkR9pXLtJsdNE3QanU5MDON5WjopkGlUkQoiZTQbvW4/6EnKTkWrmWjNInSFbIPzczlCiipkyQRpmmQkhKHMZ22h2HrxGEIQhB4Ifc//DQ37t1F4Pk0mh0M08QwFCKVNOodrsyvUq24KE3jyeNnyFsW1Woml5+zLapDZaIgQLctvvC1Jzi0ewLT0rOuVJTxRjLpuwRNkyjNAFICP+NdjY9XGMo5TE2NUKs1sB2bQrFIkiZEccjUxAhSgO8FNJodHNsmSRNa7Q6u4yCF4vnnz+B7HpXhEkPVErXlOm7BxTS1vjm5orHaxXFNZsarmJoOEnRDZ3lpFSll5nGnwMk5OLZNo9Eil3PwgwBNl1TLZY7snyJfsCBN6XZ9lKaI4xiBwA8z6Ktm6DTWmlRLOZqNJnESYxgWQirSJCZfsAmTiG43IPQCzs8uk3cdLF2j2/EJwgDbNmm12uzZM4EQghdOXmB0tEoQhkgJvh8yPDKEUAI/8Nmza5I4iun2fPKOjWloSJUZyV+ZW2K4UmJ+dokT5y+wa3yYRr1FsZRnbLxMrmgRJz0QKRKFpjS8roebc5hbXiX0I2w3g6uKFJo1j1zOIZfLk0SCbz71Aq5j8IZX30yp7NDrxVQqBXRdMTM+hN8LWV6t8ezL57FUhkVQStFpd+m0u7g5B5KEleU13LxDFMTYtkVtrcH07jEarQ6moaEpSRylnHjpPEqB7WRd0SiKMAyDoOdjuVlnMlP51bh8aZ583kbXFUKXFEsuRddkqFomThICPyTwM8uLKExotjIIZRB6aLqg2WqRy1kEYYKTc9A1DSUUe6fHKRRdDFPnytwSzV6PfXt30e16PHniLLrU1nPGvj27+MyXHiNOQqbHq9i6gRIKpSlMy6TV7lKplpnePUqr0cJ1HRzHoVJ0cV2bfN4l51jUa23yOTfrRK0/0zfngM2Iin6hda38vFHJrL/13plxPn1+niNHb7hqs8EzPdm0CJkmA8jkJijhttNtHmHyLRYj17tU6683OlqbxVfWXw8ucxOVIsvXGybr8UCtuj+GzcIq2b4b3cJBPt3eRdtOdc+6let9yPWxbualD2ZF68iVTdedbiokBwulss+R3PHe9LuQ2waabdvP44J+BzNJieMoUx+WamOb63E9XmHx3RR3O2jNXo/r8fcTA5DK3+oxpVwvqr67sYgt+8VRhJI7J9gd91dX4/vXi8BvExKBTEBXOn/0u7/PU08/w1veeh9urkSr52PoBt9/333ous7v/qf/RLfjUciXSRLJ1772CM8+8wK/8PP/jEOHDuEHHWam92EZNscee5z77ruPdqPB2uoyP/rBD2DpGmsra4xP7kEzTB766oPoIsF1DX7mI/+YTrvB6toyC5dX+LWP/guefOxRLMdicXGJH/ihDzBz8AZWuiGnz57j+PMn2LvnALOXr3BgzyRBN8I2i9x73z28891v5/3v/yF8v8Ob3/ImfuzHfpKf+Imf4oc/+CHCIOUnP/xh3HwehOTed7yTCxcv8fDXH6ZSrfKHf/jHHD5yhL37d/OXX/oi2pc/zX+8ZS9KV/h+QJpCEEas1BqYjkmxlENqiiROSaJMKjtJIrqdHpZp8p43v4apyTFa7R6aphAig/UhFWGYIJDomiKOslVj3w9I4hSlaVkHhIwn8sG3vZ40TQn7RuK+H7C22iJNBbVai9e+6ijV4QLFfIGbD+5laDSPZmgkSYybt3FckyDIjHkbrS6dZgdlZrL9EoFjm+imSbfnkyagkESxTz5vc+DAbjzPB1I6rTbLq3XW1hqIvjCBVCLrNAqwHJNyubAOuSqXCoMvOXnXZXS4MsB4YWhZcdNqdUFo9Doxo2MjKCUoFF0K5UyZUCqJruvYtkUYR/hhRBTHKC3ruuuGgWkZeJ5PHAtSkSBVgmlZOK6Dbhpoho4fRJk/nKajpETXNeq1JlIILENHCEiihHa72/fhg3wxh64bnLiwgG07JDEYuo5jW2iapFzKI7VM1OKmI/tQuo7r2tn/wTSl0+4AIvP6IyWMYr5y7Dm6XY8HHn6SOM6+D7fddABdSR55/hQ3HZwh8H0q1QKQEocJumFg2w627RD0AnrtLuVyEdPNrAQeeOw4QkC34yGQ3P/wU2iGRGnQ6bSZGi5zYM8U3W6XCxcvc/LUZRzb4cqVRTRN4XsBE5OjVAouY6NDRF5I7Me4jk2pXCAIA+7/2jGklEgpePrZU8RBQqVSIpWCfM4l6HkkYcTclUVGh8oMD5dxcw5xFKPrJlEU0Wi1SdM0E6uRinPnrjA5OUI+7yARKE3R7Xbxuh5hGHD+0iyGYZLPF1hZrJHGKTfs202axiSR4CuPPI9ruTTqPfLFIu1Wj6WlGi+9fI7FpRpJnBAGPkNDJY7cuI+u75PLOdx6YC8zk2OcvDxPqZjj0qV57n3NTYxXi9x4eB9BGPDwky8ipUBJwfjECLZtrhcFupR0m23KlUwYZq3RpBdGuK7NhfNXqK3UIBnI+O/41B784Vtx3/pfpC0vv/xXf/1tn+uvpBjYEqXJ1cInarPYCmSd/R3y2Xd8Lga1ldz2kxVbSqlrrvt+r5EkCUk/326WOhuI5gjEBrWDTCAn8H3CMCDeCbJ6Pa7HP7AQfx9crv+/EQbBP7hBx2mwpQv2SojvlM+3U6dOSbWBtR905wbPxO+1PttYTswOk1w9rqtW6QYcgc3bCq658rb9WuIkg2jslLySdMMIdrB6mnXc0nX1snSHRDAoCnf6bPO4BoAWkSYE0gQiTEJiJTj7xa/ytccf40M/97MszK8xOlrm0sVLlMvj/NGf/Qkf+cmfxFAmTx57jq7f4p57XsfyygLNRoOcbfL4sZcZGxmn1jnLa+68l8pIlVR4GLRZvnSFsYkZOricPP8yN900TXu1jdR0vvSFJ7jn++7k4vnLHDqwj3NnT/HS8eP84PveR31tieHxcboxvPD8SfbsLtKr9/j4H3yK//F//nHml+cZru6nUrBxKjlqjUUcQ6e5FtIJPEzDZHJyjOWFOe7/+P2854P3ofIup841ePTr3+TDH34/pYLJQ1/6JqEe8rbv/z5qtTrHHnmMfGGM3/n93+MP7r4JqQmiOEaTGQQuTVKQWeET+iGOleOZp85wyx0zCJHieyG2abGyVkM3wLYcSCSG4xIlAb7vY9suaRQSp2AYJt16HaFpkGaFihQJUheEoY9umHQaPnOLS+ydmcL3A4IgJAhCRkaGqS/VOH1xjjvuPEKcdDCFJAwhQicMfHJFF9KUMIgJYw/DlIjYyFQbEXz8/gf44Ftfj24YKCRJnOL5Abou6HQ8cvk8K8s1NCkojxVJoxiJzDh0qUIqSEUMIqXbbJPLuQRBmBViiSJNAuq1BpZu8/VHX+aNdx/Bdi3W1uoUCi6maXHl/ByFYo5Gt8vpF5a46aYplAFRElOoltCEIE5SlGbgd9rESZgJi6QGcSTQTeh0OqytdJmaHqXVblEouWhKIyEhiQRCaQiZkoYJQdCl0+sxVBmm1+gizJBuL+WRp87S6HjEYciPvfeNRGmMUjpes4MUYOUcgjQm7cX8+QPf5AffdCe6As1ySWSKrku6jQ6WY2UWE0Cn1cUyNeIwptsLsIo2umahJASeR+jHPPH4SW65aYbycJFUSiQJQRDQ63nk8zkSIlIhUVIjDkKUYRDHCWmSoqSGkIok9PF7MWgRluUQBjHNZhtdExRzNqkhaC23aHY9JvZNErR6WJZNGIW8fO4cI/YII+MVkFkxEhEjE6it1SkPVyARxHGA1+3RbnmMjJQ5e36Wg4dmiNKE1ItYW6tTLucxbZ1ECpq1Dvmci9IEKys1Cq5LKgWGbdBstvC7AZZj4boOfsdDSPB6Prm8jVQS38tgw1IZJAnZ/x1XR1M6F87Ns3vXEKtrdaIoRpcGT798ntfceoAoitClyeLyKgcOTdPtdGi3e+RzOSDFyVmcPHOBPRNjdLoeBSfHWq3JycuzzEyMMDpSybqvSNbqbZAx4+OjPPrYCe64/QAA7XYX17XRDIN2vUUYhBQcB6PkkEQhxCEPPfE0EyPD3HjoMAkpyBghBWEMmq4j4zizVNj6RGdQ7KWDZ/g6KiP7px9F/OZSj1//N7+2dc/vsGjZnim2pcItRu2bj5kpZCZXnWcgYLaR71J29I3bdMCk77MpNp0jSTZd6zoQZZD3N+7JgHO+I5dv0zWqHZBAg32klMQDmGefNz8IOVDOlnLLPEqs59C0b4XBlrGp7Qigbyeqsn7jszyua/qWjwX6tu3jb32863E9/hZDN4zveBnkOizz7yhS4lcEf25zfK/jGdgQbH4N/W7XDhCT72Fg2V871GdXj3nwoN+c8b7zU8l+gba9u7fdy2e9EO6bq65zC3bi2F3js5StUJN1CE1//LoETcCTDz2Kyhnc+YbXo1sOBTfH6toyIyOjkEjmF1YYG5ngh37gPfz0R36cvdOT1FaXmb18gde++nY+9rH/kw/+8LuxXUG3LRgezWE5Jo8fe4zGWp2x3WPU223WGm1kAu3VNXQjxxNPPsnb7n0HmhUyOjbG4vwCMlXEsSQRMa5l0AsC3GKZX/6lj/IjH/xBzpx+mbtfdzcXL1/ED31su8yxR77GjbfeQrfTpFwqMz83z/5Dh6lUysSBT6/X5ehtt1Hv1Ng1tZuLZ65QKRj8+q//Kh/80Acw3CK33X4rvt9F1w3+13/1m3wk6vChQ9Pohk4Sg5QagrQPR7RYWlylWCoACWkSMT5WAQW9Xo8oCNGV3hclgXa7t27qqyQYhk4SRTQbdSzLICWDHRqmIk0STp65wOhoBalJoiAijlN0pVMsuGi61ueGJBQKLlKCrityeQtE5ouWRAlCaiyvNEgh8yQrunQ6LR577hS7x0YRaPR6Hoapc3ByDNuyEEKyML/EV584zr6pcaIowrRMkJJSpYDX6WG7Noo+R7UvRhD44fr3zzItPM9HNwwCP1OqFLHC0hyiMOLwkV0ICUkCjXoHIRRJFJFzHTRdp1jKIyWUhgrYjovfi8kXLKIwU9NMgUZtlcaqR3W4wtJanXw+x8L8GuVKBTtnIEVmP7Awv8qp07PkXBOl+rLtIkUTOkpJbNsmiQUPPXGcvTOjFItFJqoVdo2WeNWN+0lIMAyDdrvDo0+dZO/0OEkSEkUehm7h9Tz27ZnE63lYjkEYhKRRygsnzlEtF9GUJAxCLNsiCH1My0LXjYyXJwW12hqGrqFrOhOjBWzXIE5SPC8kCD10Q8uuuT8Z1Q2TKIxRQtFt9zh/fpZqucj87BKObSGl4I8+9xC3HNrF6nIdKQV+EGKaOrZtIEQGVfTDiHwxR+j768JRY8MVdFOwsLyAaUIQeZi6RRSEXL6yiGVopCTUG83ML892sfImQ8Ml4iiEOKbndRAqxXJ0PN9DiQTXtQnCBKFJ3JyL5/s8+9JpmrUW5XyBYjGfwZQREKc0Wz2KxUIfsqbxwgvnKBYKmFbmK6jrGnEcY1oWhYJLHAUUS3kgJZ93ydsW+bxDo9WiWHYxTVhZWcUyDCxTp93tkM87JFGCa1t4vZBmu0sioFjOs39milazjWkaXJpdpFop8tDjz3PrDXv50jee4K2vu516rYVUGnEUc2V2mUq5gOf7VIbLPPT08+yZmSBNMzGYvbsnyDs5Oi0f3w859twJJqsVTMsiFSmp3CnvbE0oG7Y2aZ/bBppU/N4zL17NvfsOc9E1Kd5b66odjpmp3kq5wxjZBNscjHmn8QwWU/s0CoEgjvvASrEhVJJsKsoGAiYDCOWgKBvYL1zrGjdz8rYLsGzcy6uFXAYcwu0wzHVA6joro3/dA2rI9rFcq8Dd4Z4kUZx1AMlURrP7sL04fOUs1l+P//7jOufuFRYJIEQ2IVCaxsLCAvlc7irp3r/r+F7PvX2/DWuDDQ86YMNjbvsy5LUPvGWbzRLT23H9myNLKN920NdMOlJdvX+yXdFr/TAbRd61Trre0dt23aK/4rt+XNlPpiJBhB62Unzqk5/mnjvvwp0cpuuHhL2IRq1OvbZGtVpBaTb7pvcwe2mBd739nRx77CEsTWNu7goH9s2wsrzMu971Ptw8nL94Btcc4lOf+2Pe8KY3Mzk5Ta/VZfe+cRCSjudRyZeIezGr9Qa333kbQhr84R//B37pn/8K73j7Ozh69Cj79+1FaYrV5UWmZmZIhOKe17yGtdoKt9xylOHRKl434uVTJ7nxxtuoll3q7SbDQ6OQQD5nkQidK5cuUyjk+JmPfJj3/cSPMzw+QhJF/Okf/hHv+YF38yP/6P3MLs5SGRnn8Uce4ed/+X/ng7V5fnjvLtZqTaIoIA4jdNNgcWEF09KwbasP5U1ZXFghV7D7PDMP3TDQNEUcJfh+yOpqA8s0KJYLhGGI0gRREGWFfJpg2yZJf1KTdfA0ojhibLScdea8AE1lxaVhang9f/07H/g+tmvRaDSx3GxiH4UhhmFgGCaGZTE3v8zU1CiXrywzv7jM5MQwJSfP6kqDbiug3mpRrhQJe9766rRrOxzeuxuvl3WNiqUcStMQQmDqCqEUTz93koJlEyVZ8bO8uMbyco2hagEhNZK+jJ9UCj8IIFbMX1nGDwOcnJb57EVJJtlvWbh5C2UofN+HNOsYWZZOmkrSVCFkjNfpYpiZfYOjazx7/AqjowXyhRzNRouXTl1h1+QYQosxDAMA13Eo5YoUCjatRhulBGfPzuK6NmkKvW7AQ8ee586bDpCSEPoJn33wUe68cT9xEmKaBr6f8ermFtewDQPLUvheF9N2mZwYpdfqEvohiIQkSnAcm2qpgGVbJGmCrut0u511DyzfC7j/oUe56cA07WYbx3UAgW4L2u0uz7x0hoJj0/N7/d99JsyS8YR0wjDiiWdOUCnmGR8dQtM1LFNH0yW1eos9E1VKlRyGZmE72e/Ndd0MMpbApcvzjIxVQYCmKcLAp9Pu8NBjz3NwZjdxnJLL5blyeZlKpcjKUo2piRFa7Q6lcgHShLVagyiIsPMWvW4HyzbRlE4YwOJinfnFBuOjY0Rhr28/I/CCAM3QIYVdEyNoQpJECQmZl6CSirnZZR557gwH9oyh6TrzsysQp4xOjBKEIZoUtDodXNchCiLm55eIk4QojsnlHKI4xjQyQaLqUIler4sUMaZuEPjZM6fd61ItF1hba6IpjTBOePLls9x4aJpao8Fnv3KMQ3um8HyfnOPwzWdf4t67b+bE6Yvcemgv9WYD23LotLsMD1c5dfYyKo2JkphipcDE2FBmpZD0tZoFxH7CiVOXiOOIGw/uQ0lJbbVGsZQn7ItsXDONbMspG+8L3jczzufnaxw6dGCnTbK8sS0Vpinrvnhp/4PB+bd06DadJ9m+mMnVOXldwGRnKvpGrt3GLxs8dzRNrb+dWbQIkBmcMU6SDXuCvqrmegGYJOvdzfXO3CbUy5YxbxvSes9vUChu87EdzC02w0g3rCGya9ng5PffvlZxN+DPs+kXsfWGbuIZpiRxktk1pEn2fUL053SvrAX76/Hfd1zn3L2CI01TxkZHgau7Q9fjv11kalx/N/d7O4fh24YQWCLhY7/6K7zz+99ORxMYETjCwM3lKZbLjIyMIpVGEkeYdsjy0hxPPPYMlp4j1UweefwZrEKFE2fOkysqfvEX/xUXzi5TGhL8ox/9CaIY5ufn2L9/mubCMktXZqmUC9jFAr/wy/+CffunUBKSSPD4Y8eZGN9HEEaEUZfnXnyMJInJ5XKkSYqmJKWSxuFDB1leaREnGvv3HyJNUkbHR3FyFrt27yL0E+q1JguLVxBSsGfvHhYXFvl3//7fo9IYheLS7By//K9+iYV6QjfUeeArj/HhD/8cNzx5jM/c+1osx2at1sA0dMqlPKatsbAwz+h4kYHvVRgF5HIOU5PjSBRpItGVyWe+fIzVlRa27XLidFZEmKaNEJJc3sFwbDTTBKkhNB0vEARBwsrCGmmY4HVDAj8AkcEhLdtGCMX83DKQmSYnScLxE2cxLQvfC/j6ky/yN8eewfdDOq2sIEhFBjfaNTlCkgZMjg1z9uIyaSKoVAvkcy4jY8NUq3lEktLzfAw96+R1ux6+F9Bsdnj65fMZNElkEy7f99ENjf0zE7j5rCiTIkHXFYurdVJiAi9mebEGQiIzvCa6mVIcMhgeKaNJhzhMWVtpUCzlWFxeIU0TgqivRKlrmLpGHAUYZkKhqOg0OziWSRqHJFHAE8+d547b9mI7OhIYGapy2027SenhtXxCP6LZbJEQo1vQa3YRIsXQFFNjw/ihh2Zo2I7F6+48Qt4xMHTF/Q89yfvvewNhmtJsNfF6HhcvzbG2WuPu2/eDSBGaiVImmRCowHIdSpUSyrAQIitmlaOzttpkYX4F3/eAlG6zh6YUTt7l3W+5m9XFGqVCgVazy8OPv0i745Nz87zuVbdQLuYwNAPTsFmYr+H3AlISUiJMU+fuO49SKBVIBARxRKJA6IKh4TKTk8MICa1GmzgKsF2LNE05f2EeiBifGiKKYmIvQmkKpaBUyPH6m47geT4PPfECYZBgGSYxKdWRMqmA4fFhludr5B2X0aESQ9U8X3zgKXSlE/ghqZRYtsnMzBRpkhKHKV6Q0umEdJo+MgLCBL/jE4cJX3zsOYrVIkkSI4AoipiaGuXtb7wdZUoSYkbGhkhVxPlLVzBNkzRJKBbz+L0QTdeY2jWGUoXkAAAgAElEQVRKHIHeh2yu1Vq0O1nB/OkvPsrycpM4kRRKVWwnR7lUpOjkUUJhWxovnDmD6yrecPtBwsAjiWK+/7W3YJoaq2tNCgWX1916BKEpDu2b4dyVRUbGhkAkLK/V+OPPPsChvROEUcDC0hph2yfuRaRBzPEXz0AiEInEME1uuXkf09PjKE2SaBI377A0u0ASDnjRm5/f2xYz+x8NOGub4+TnPvdd5YrtUMYk2hnml/R9Kb/TSNJky8+3ip04d1uUNfuv0yQlThKUkuhKrUM4B/tHSbIOff5eYmBj9LcR6zy7bZz7ARfve4+EMAoI/S5B6F/n512PV2xc79z9twohQKQkxKRpuP72K4lzd61I05SkD8/4TmJDESxTzcykwMXG0sEOK4Tr7+8QUmSqZqnYah6RKW5tnDOOk3XFsUHEoq92JmUGreiv1g5eC7aucm72s5NSrkNPrnlvvkXHbmOjdF1lTAhBKiNEmqJSiQJCqUjI+EvK0LAjnwe//HXe8Z4P4WkmVcckinxa9QVmL59i3+5JvBg6vYgTzz9Fe6HHmdMnmdg9zq13vAolIp579kX27TnAoUN7OH3lIkduuInQj3nNHbeRL5so06FameDZR5/mmdOnOXL0ZrxGj3a9zu79uzi49yCnjh/HcfP8ySc/zz/96R/hjrvvzExnY8n4eJEra4uUqxW0WNDt1snnqxSKQ/S8kFj22HfwMIkmyA2XaS5eJAy76KaOk6/irdXB0rFLBSqVKmHzPLXlBZ5/7gX+zf/1O/zFpz7OG5Yu8gZT8f69GVQwjTMyvGWbWHkLXRkIzSCfz5FGCYnQUf3iKUHQabfQNA3DcDl1YpbXv/ZmTCPrjo6NVpEiJYlTavUajuWSRhGNehPHMYiDgOXFNaqVIkqTBL7HSydnGR8bRiTQbXSxLBOA1XqdoeEyq0srFIs5bF3DcWzCIGT/9DS2rhgaK5EmJqZrEvdClpdXKFRcZCJotToc2DeB0iRpLFmar/HAsWc5emgaIRTHn7/A6OgQdsHBzZn4gYebs1mpNZgcG0akAikUTz57mnKhgOXoxGmIIW163RbFapGJXaMopVObr3P8wikO7pkmTTNfPxBouk6n10UzBJEX8vnHn+HInt0Ml4tg6plgiKXTi3xcx8Y0NZTU8bsxa80muVyRIIhxcjZDlSK6pdCVIvJCwjTAtm1qa200TeIUHJSSBF6AsixMx8K0bVIp0S0d27Lw/R66IQfioAgUB/dOrgvMWHbmqVctl3nyuXPsnhrhi19/lpsOzKDpilariUwEUegj9RhDM0hj0G1B7Gu0ag2GR/L0ej5eN6ZccmjU6hhKIHUdt1DkueNnmBqrsnf/KGkQoAyNlVqTF05cJO/mcXIm+YJJu+uRz+ezDkuaCbIIIQmjCAlZpzIVRHGCVJmzlx/5mJYOaUyz3mZyfAzP8/nE5x/l9pv2EcsYkYIyJPVmhyhRFFyLo4f2ZB3bagGShMuXF2nUO5nYjp4SRmH2PJOKvXuLGJaJriw++8A32TsxxKf/5mHefNetLC2tUKmWMQ0d09TodLr4vk8+5+J3A6qOS7FUQmqS0ItoNzvoSuML33ySfRMTzM8vE8Y+Q5UKpUKGOkEqQs+n2elmv7s0JFcukAiNp55+mYP7dtMLQgxdcXjPOLppYNkWcRwyt7jM+bkldk+MkqYx7U6XA/t2kaChWwaWZZGkKcWxcr/baaNrEqVSzl6aw9RNKsUShqmjaTrD5RLTIxUqlTxKN8iZFmfOXmFtuYGma7iGzuyVZfL5AqHvU6+3cGwTwzKIoiDLDwkQhPT8EMNxsgWRJCFVbLSZsrS+Ic6B2OCnpSl3jQ/zof/nt/nhH37flry0wWFLsCyLIIqzRZq0D1dEoIRczx3bUIYo2fep22RVMOiyDf7OTreR29K+oqQQGRIlgzVejc5cz9/9vteG514//25qsSWbzi2SNBP/En2vPjbGMoBPbvDUr+5xDVSjJdl1KylJk6Qv6LIxni35fxuSR6Rb8/mgqFP9ccX0ue0DGxh2RiwlfcXOwSAHdInN20ol138xA4pF2i/2kjTOpjkS1k11r3vnXY+/5bgOy3wlRL+dv/F4+of1H3yzl9x3sw/ANZ/m2+Max88gNMmO59+Cz0+v5hqkmx/Om8Y0MEaX2wa1Dj35Tovu76Y4H+D+0UiFJJKSWIICdBGT1wUPffmL+L2YarVCp9dgaKRIr+1Rr60h0pTRkTHOn5vH91MeeeRxHnzgqygtYdf0FC++fJw3fd8bePHFl3juueM8euwR3vq276PZanLjkRvZs2eGF148jqYp1mpNDM3gqw8+yMGbDuE6LrXVNQ7ecJgjNx+lXW/w/AsvUms0eerpZ/iF/+mnkXpmJTA6PMzK0gqjE7sRGEgEtmkQxQmXr8zyJ3/ycW6/6SCaUlw6d46piREir0NlaBRdy/HJT3yOifERSpUy//gjP8+Zz3+Rmy9eJnfmAuPLy7x7YpifvOEAeUMnIVv97XV7mRVBkomJWLZJEiWZqiWwVqthGjpplHDyxCXK+QJpGpPL2yRxjDIkuqFI4ogwiOm0M5VJTdMIo0zcyPcCTCszIA+jmFIlm9wKJTEsHdvQyBds/MCnWC0ShwlhGDEyOky71UVpCsu2QShA0u35zM+tMD09TpxEBN0YzRCYppGtdhsaPc/HsjPFyCiKUBrkCi4337AnmxwomBitgkgIgowrp6tMNXLP9DhKCno9D8/3mJoYxs7paNJg7soqQqQEQYhhGkihIE2xHZfpqSqzs8sYmgA0/vCzX+HQ7knyhRztdpfaapuDu8awLJ1Wq4VpmjTXGtimhRQZPCsF6qtNdF3LFEaloNPpImTKN554nn3Tk0RRyqPPnWD/3imSBEzdIIwidFOHJCYOQyTgB1nHKwxDpJS06i0sx6TX7aLrOkLXCKOIMAgxNYMnnznBUKlMHCd4XsCu8WFM0+bG/XtJ0gjdUBiawQsvXeC5MxcZLheQQmIojVqjiWnZBH5A1/ewXRc3l0NpOlGcrbr7vQBkdt8vXllAUxqu7SCkwjItdk+Ns7S0yvBwCQDLMjL4nBQk8caEVirJ3PwyjmMjhaDT7aDrGlGY4HsBX3vkBLvHRsm5LrXVFsVqjqmhIkoK/K6XfXeTBF0z+JtvHGdstIBlGX24ZkASCh745gvcddsNGKaGkgLDNDB0AyHA8yNcO0cYxhzcM0kcBRyemUQphWUZ9Do+hmEQhjGO6+C6DmEUoOsapXKeWr1OFIQ8feI0Nx7ZTyoEB6cnWJhfYXJimHzBpd3sUmu0SdME3dDwfI9ypYymG+iaQc/3EUpjpJRD6RrffPolRkoFmu0O5XIJ09JZWq6RpnDL0YMkaUKt3mB0pILvhziuTRJFCFJm5xeRUUIcJBBLzpyZY3J8HNvWcGwHTVPMLSyjK4NGo0Wt2aTrdekFEa1Ol4N7d1HIOyysrJHPOQRRRLVSIgoDLMvs/24idNMkCkKiKLPL8NotIj/AMI2+6vFmbOOml/23BhlFSkUcR7x3ehz9NXdvSQWDVHbssccYHh7uc8K2HGYL1HB7cbc97w3+LeWG6uNWq4OtsMXttIKdCo443dmhdstxyYqyAfRy4Ng6mOUMeHhSCOJ+wXYthNJmqOlgnrTZyuHbjQUyft7g+FvpG+k6tBLYUM68xpxD9LuTYtMN33yPMvuFna9hMHeIk5goDMkEh+S33O96XI/vJa4Xd6+EGGC10+204Vd+ZGRpyVWrZNfgva137LYcZOOfg2MNOAXbuXVXd/R2Xl3LjrUxhs1du/WkJWVWyMHVY2Kj87e5Y7d5/82RxvHG+Po/29L8t4yNY2pAShj5aIakkHP59J/9ZxYvzXJgzz6GxqbRHYNiySX2WszNrrE4v8D09H5ajR6f/NT9/Pq//nXefM+bue3213DPW17N7plpzp47w9HDhxkaGufee9/G/oN7yBcKNNaWCfwuQ8NVLDtPsVjlV3/lV/ng+9+Lbpvsv+EAruvSWKuTCFCmgaHrDI9N8PDDX+df/8tfRRDx9PFnmZycII1ChqpV/u1v/BYz03vIOza/8isf5dV33cbo+Bg/89M/x49+4AexTZvPfvqz3H3n7TzxzDNMjO+m0ejxiU//FX/1xf/KO+cu8IG9U9w1OYxlOyBVJomvSeIEer0uiBTTMtF0jStXFikP+HG6xupqDde2aTXb5PIOgR8Q+BGlQgHLskmTsO/p1qBazSaXaZTQaXuUK0XiNO7zxCLOXVpgZKiMpmn4fohpZZYDhmUS+AFCSVzbIEoiEhIQEss08IMAzwtYXFxjaKRMmgq8nkcUJbTbHaIwyqBqfY6W6hdsnV4Px3HQTR2pdLrtHpZjEvo9Op6Hrmv43R66KUnoWzOQoCmdtdUaubxLHEcEXoRh6kgp6HS7dDsdkkjg90IsV8d2bAxDJ40ipMy626kIqVZKrK7UsWyLQ9MT5AsucRRjWxaObVEoOkgBTt7B9zziKMIyTVaXm+TyDkmU9n3NbB558gTlokO5mvkdlkybWq1DznWYmRrPIIsJkArmF1bI2RpSSizXodVosbBcw3UsTNOg1+lQKOT7AisJUiiEpqHrWUETehEPP3WSGw/MYNkWhqHR6XV5/OlT7Nk9TpLEtFptdM3gsWfP8OY7byKXy+5Bq92kUCijGTqB75EiaDY7lMolfM/nwpVFms0uE2ND+IGP0iTlcqEP7U3p9TKrjG88fpybj+wjCiIajTa5nAMphEFIHMd4nrfeIYmjhJzrsrbWJF+wUEKi+kXizNQICSFST9EMSbPVplop0mq0MDQts7aQgpWlBpZQ7NozQRgEmKaOJiVfP/YCb3/TnbTbbRzXIAgyUZsgjDAtC5VqaLpaX8jKfP+srIBudykWCpw4eYH5pTWGKiU6rR7IlF63RxRFuHkXS9eYmRoljCNWVtewLRvilEI5RxxHWIaJ6zoYpo7vh+h69rtdmFtB1y3SNEHpiudeepndu8YYcvMUSnnCKPPQ03RFoZDHdRxqtSanLlzGNnUq5SLKMOi2u4RhgKFpuLaJZUIQZAszhYJDt9fGtm2iKMQ0NRzLQikdx7EoFXM4joGUGqMjVcSg+FWSxeUaQ+UCcwvLDFVKfOqBR9g7PsKFS/MMlYuZ0I5pECcJtp7Zn/h+gGlm3frNXbUsD24uuDblp77UvrzjNeufbebX7d41lW2nZIaK6G8j17fLNk7SdN1ofGu+SfvHFJvOm25Jq0KQqVlvGtv2TLhlkXOwzeC418xjGwWcYCOvb440TbcUeps7jYNu3noxxkDpOlkfg+wbl4vBjdkeg9wvBj66G6rWg13Wx9DnBA6uaXuRGfdFUgaRDJQ62bn43X5PxKaxyE3FepImxFG0/iOEyuCqabru0Xc9rsf3EteLu1dCDDp3/wCLu+82dl7v2/R5f7JxrU7ddxPbO2+D2JBVTpFKXXNMg72/o+frDmPehFD59jFYgZQpKvYp6pIv/cUnaCwucPMtr0KzhvjZf/ZRbr7pKHaugNf0+cV/8ou8670/hGPleOzRJ9CUwcf//BP8xX/5U0K/wz//pV/m7e95F5dn55ka38Xn//oLPP/iaV73xtfQ6Tb5yoMPYSrBoYN7mZ2fZWhsF5/8z3/Jkf37OHnyRW6767XYrg2kzM/PMT0zw+zSIoZS5IsVLE1jcqiAMDRypTxxElFfXaPTqXHrq+5i98wks7OneP1db6Eykq32/8uPfgy3WOSFF09xz91vIo5T1modfu6Xfo0PdZd4x1iR9+wapd3qYuo6KEiVzGAwqSCOEkzbRtclxFG/45l1XprNNrm8i9I1LMsgCbLC3bCzzqFm6DSaLXJ5m7W1NfK5PI8/f4pdo0MgVKbU6NoImYDILDN0U5FzHGwnk3ev1Zq4OQcpVTY5SzMojdT1jFciBGmc9CfvEbZtsVZvUCnlSZMYKSQvnT7Pvpkp4jDmbx45zqF9E3TbHqahIQwN0zQQCQRBgELDa3vIBOr1NkMTw0CMSCKkpqF0HSU1VCoyhUhTJ4kTlNSprTQxDAMpM0PrYr6AH3apjhYwTBOpS0hj/F6HOI6QpCAjwjDpG5xHRHFEGGXWDaZlEgYBrVYTw9CRmoFSCt0QSE1iOTZRlHD/g49x69H9dDotym6BUtntF3Ep+XyBWr2N3/MJg8zEe3FhDV3XKZXyNNZWcVyXWChMx2ZspEKr2UZJaLW7yAyYRbfbQ5MKJXQajTq5Yo5TZ2e5+dBeDAuUygqXKArYOzOB5/fwfA/XycQ7Oh2PctEl1+/Q9rw2C7NN3ILF2uoKw9UKcZLgOiZKplQqRUbGhojiGJkIwv73SVcKJPh+lySN2DMziaEy64TPPHiM/btH0E2DOMmgdYaZKXMahtH3FlT81VcfZ6JaRApBr5dBTn3PJ5fPCkORCgypEDLBtAySVNCoddAMg+pQicXlZZ565hw5y+TywhKlcoE47uG4JvmCi1CglE7c70johoFSgigKQGTQP6U0NE0n/v/Ye/Moy66rzPN37jl3fPeN8WLOjIwclKl5si3ZsmxZtvGwGCyMoRqWsRtYUNWYoYqiq7pphqqGXs2iq4phNQ0FVQVF0wtsMNgC41GWJcuSrDEzlZpyTmVmRGRML95859N/3PdiykjJYnQVuXPFinjDPfec+17effb+9v6+NBe+P/LSCW654QCT4zUuLS5TLHr0eiHlUon7H3iSmYnRHHkwwHUU0tBIaXHi9AUmJ0ZYWWkQhTH9MKRULhH0A4qFAovzi7iuSZwkWKaJNBUV38YyTcJugjAN/GKBbqtHp9+n4LkgoNvtMzZWYXK8ztJSgyjOr8UwoFKmiRYWrlOgH8SceeUCU2MV7v/y0+waq4DWtDs9wiii2+nz0BPPk0YZtqnodfu0Wh3a7S7zSyustnt0+wEH90wSRzGG1lxabWAqyehIdUC25PInn32C667bm5d+pzEnT53DL/h5FcGw7HEjAtjycMNHCH7li4/wtrfddZnLGwYfYhsj5GU+RYhXf/01Xc+wZDN/fJm7G6Bumg2tu2xAVrKdUOYy5G7TOrcMuT603uJg9YB0RW8KnjQDPT0xQLcGlULDxPKVtkzDQC3TW+e6XrqpGRCebJrvIBLfjMztlKjeymT9Oq+44LL+Sz2cZ6aJohAEW1jGr9pVe732eoK7qzp3f1cmNEkaI4RmoPCy9fXBzWu9BOEKn8NlrFB/D/Zq3wmd6fWSg8t07gY2vIFl2QD52py63GxXen44zg5PZ+veYcNNyDzNt8WZrb9fs05dLuUGTfOwYXxY1rm5gTzbJo2g0/SyuV7me3KvnfckGBJ0hhRZ3iBuwif+79/EIOA9H3w/x548yfU33U0/1XSCDrsmJwjCLmkCnVbIl+//JE8eO061UuKd97yV0ZEKCAtlOnzkBz+M4fh88XN/hWcZfPITf8yNt9/Inpn9mKbDauMSllOj2eyycOkiN99yCM8ucvz4caampmg2GvhmSqlSRUtJgkGcJliywIc//GF+63d/G6VMCFv85//ycf6nH/tRhEpRhkvQW6PVnsMxdoEf0Ws3SEMDUpeJXeOkacoP/LMf5XvHirz34F76nV4ugGsIWq0Qz7dRZu64pZmjSpaZC11/+cGjfOv7bqHR6uZzMzQ61BBrVlaWKRdNnNoIaaTJkghlCoJAo0yBFCYnzp5mdnKWIOrR6/cZqVdRpsoRrk4byzIhg243wfMdhAQjTdDKQCNQSBorq5Sr1byPImhhuxVQEMcRSRAhrQJpnGIISOOEQsVDD753aRBgKokWiieOvMytN+xHkpEk4HgekEKW0um08MsOYSBRpkUUR6RJguc5tFotDBSOKcmEwPI90jBEGgatRofqyAhxmPDVJ45w15uu59TZCxycmUJ5CpTAwCRONFJHBL0ebqmKDjVaxPR6bU6fu8j11+0j6ISgBa7nEWcZOs3IyDBMjWMVSeMQpIFOda6zpxTttT5pGlOtFkiSiG4npFwrYShNZymkVPWIkyCXw/ALkAnazQ6+59Dr9LBthwywXYvmUh9lC0xXYjs2Dzx4lHe89SayLCaOUpRNXuLXT3j0yRe46/YbcZyUtXaXcqkIQnDs6Gmuu2E/2tBYtiTtJzn7Z6FAlhlkIpe/iKIkRxgMTZpGmKZFGutc5D7WCBkT9kIsp8jK6iq+72KaJlLliEISJRjSIIlDLNPj9Nk5ZvdPkoUpmUjo9QLGxkZpNZr4foEkysv8et0+yrGxbZNGY4FSsULY7WO7RRIjRWuFSEOUIUnRWJ7N2tIqBc8n1aBMSbfRJtOa0kCAPktSpJRkA2IL01QszC1TLPs4BQuR5mW5vX5A0ffINAOxcpMXXzyDa7mMTxUpll3SSJDEGZZtsLLSIs009dEai4tLjFZHECRkIiKNLVzP4aXjZ9g/O83C0hpPv3iKD73/bbRbbZQlabW72JaJ4zo8/exLHNw3hWcXeOa5k+yarjIyUsR2TOIoIdMmftFl6dISRc/Fcp11shBDSKKwj1CSNMsIGm3CJOXzX38O05R86Fvu5rmXz3D7zQdYvLRMlqZUSwVavZTllQa7Jkfp9QLuf/Q57jwwy969dXy3RLO1SrPZ59ylVd5060HSJOHYS+e4du8uoiRhcamB51gsrLa47eZr8HyLIOzn/XipJmqusdjosP/gPjAlImW9kkMIgV7XThgkdIHvf+gwn/j4H7CTns+WnKEWgyRX/jDN0nVULj9FXmEi5ZX9v9a5O9Rig/p/p8Bl+Px2/z58uF6RuCnASfWG3lwG63pycodxttswEZszQhswXMP6uvSW+WitkUrlSN4mcpWd9PnyAC9DSLkVcRNiCyKnGbB4A2marqN3Q5ZP1vcwg/3AprVr9JaK3Pw7uinQHSCEhmGQDap8hkHrdlRw+3WVUm2Ubl62N/zm395etX8Yu6pz981gYnDzETC4xez4ntcK2nYqffgHNQ0ZW+vXt6Nk60jd0K4wf73JQe5kOz07jOk2OyRDiC3z2TZdGNzIc7FXseX4bJBk3HzkZWNt8sZCys33+y3nyctCBi3dWmMMHNRv/dp/4X33fBtTszdguKMkvTbVkQmOHjvGX/zlZ1i5OIdrGnzqk5/kxutuzDdWWcbHPvYxPv2pT3HHXXfiFUogbb79A/fxfd/13fziv/233PvOdzC5Z5qxkQkOP/s8U1MzWEoR6hb1epVapcbKyhK9TpfVxiq1apVnnnmas/Pn2HftNawsNxCpJuj0WFlt8ta3vpWJqUmWlpZZnL/IPW+/B0NJjh17juldk8zNnefAgWkKhTLnzs9T9EqUijXuvOcejh49ytuPH+XD185yaLRGt92jUCgQhTHPHDvBtQf3EYQBaE0cp0hD0Wr28DyXNNXEvQxDacqlEkmUkkQxWZILzPtFjzCJUEpiCIMk07S7fWxb0e50MQ2bVqdNpVpCCPD9AnGYsbi0OmB6zLBMEyEkL7x0jpFaGVOp/HOSkizV6DQ/7tkjJxgpVzCVxeKlNr5fQmQGjuUQJwn3P/R1brt+P/0gyINHKQn6IY5t0e32sF2L6cnxHJ3BoN1uYzkWcZJvLCxTYUiFqTyWLq1y/Mx5JsdGQLNe8ray2qRcKeWBiZF/6Quex0NfP8KTR0/yvne8EcsyKbg2hqkQUhIFKUcOn6Ba8Wk1W5imRJk2vX6fRrOF67qM18cwHIcsyUk/kjRFk7Ofur5DGAXoVOTlpKYijkOkNAjjHuWyi2VBlsQEQcSXnniO6/ftJYn1gDhHkWUprXaXJII/+MwjvOHQPpQpkUrR7YXESUpGiusZaCPXkDKlyXi9jGUrllZW8YsetuVy8uQFHMvi6ZfOcNPBPWgyPN8HKQmjmNF6Gct1QKdInUvMWLa5HmxLKej3ct3ANMvQWUa/H+Qspp0Ax7GJw4R+2MexLHSWIz4CBhp0AmlIFi4tUyr7A/HxnMxHKYHjuQgh8AsuwpBEUYjjOCRpSpZpLNvkgYeOMlqpgICCU0LZJiARJBgIwiDGVCbdTg/LdVBS0G71KJaKdLtdLNvCtBRZGpPGMUvLTYQwSOME27bIspQvPP4so6UipbLP8lKDgu/hujZxnGI5CqkM4ihieqpOphNGajUunF+iUi0ijIws0fglP0dF0Tzy1IvML6xQrXgUija257G03CAIY554/iTX7t/NTdfOcvrMeUZGqpimhcDAtm3CIGKsVsYvufzVQ09z+3UHGK2PEwUpIpOsLLf52tMvsG/XOF4hD/YNQ65v9JMkpd3pYXsuLxw/x96ZKSzL5LYb9jNa8in4HpaUdNpd+kGe9CiVfe5/+Bn2TY/x2HMvc2h2islaib0zEyyvrbKyssbkdB3Xddk9Xs+Fug3BaK1MnKScn1tifKTMuUvL2LbFxNgIrVYbZUqUKRGGxHYsin6Rx555gZmJMYQhBiQj+e+dkDsVdrn+/d96RchtM6LW7/eRKr/+uayAMfRcg2DkG+h/H8xnc5Cz83mvPM5Owd3mJOb630JcFrjsPKVN42i9JaAbnnB7a0U6QOOMAanKlVpDhmQ2lyGc2/YCQ78/bKlYn8NwPcO1Glv3WZddJzHcBmx7foc+xSvtR7ZcV52RpilkQzmJTXDjVbtqV7CrZZnfBJaRDfNW7BjcbbuRvl7720T0tmfgrtRbt/m17TfC4Y/WeflbvsFSCGFcuUTyVc4Drx7cCTEI7DaNtdOaBFtvqpf12m06T177P1jHkBVze2nmsO9iYxHrxwzfJ7VBGoUYmeaJRx/jztuvoz5Z5/DLLzI6PUnR8Wk01hgfn2TP7r380s/+PO9+99vzTVkQ8IUvfobv+q77+P3f/wO++tVHectbbqHbD3nmmcOsNZsQxNz+hjfw1LNPMTo5SnNljQcefJhjR4/RarfYd2ACnQkkCt/ziNOE/ftn0Wj27d/P5OwkFy5cZPeeGS6ev00YaMkAACAASURBVEiv2+d//ZmfY2xigoOHDmG7DmMVH2UbJFnK9O4ZmmvL7J3dx8rKRb7y4MPsO3ADb/+W9zFz6mV++d67+eC+nP3RkDnRRrnoE/QC0jglSzQjo2WEAcpUfPqBJ7hm1y5OnLnAxMQoQT9ganKcl0+fY2p8nKWlFTzbQcl8w65sE7vg0m216XR6eF4By3RQFiRxhuv61EYKudac56BTwZ/81eNonXHwwCzNRguv4IKGLz/5HDdfuzfvfVOSoBsghQIEzbU2L5y6wOpym9GREZ5++WX2z04iZMa5Vy5gmxajZR/XzUW4jUFW3rSsdd0ny1HoLEOnmn4/xrYkppXroSlTouMUqRRhABhQr5ZxHIvGShPbcsmSFCHzkjQDIxe+7kWE/ZjHXzzOd977llznztAsLq1SrhYBwdKlBq/MLTK7ZwLL2gh0LM/CdV2kYfL/3v8QNx3aR7PZzvv/TIkhh30wAmkqlMzJQDr9Pq7nEAYBru0R9wJIBMvLHWojJa7ftweNwcKFZfyKmQfehqToF1CGya5qBcuySdIMaQ2IZ9A4jgkYKKlIQrh0scnC6jwCKPgulmMhtOLRoy9y48G9TFRLebCeptiuk99JlVpHEMg0aRwTJRndXnedfERKRbvVpeDna3AcF9u2cT031+9LNaVyCSE0luMQ9vtIQ/LSyXOMVAoYUtFsdqhW8nLXTrtPqeSjBsFSHCX0un1My8qRaJmTKLTb3fWN6TXX7AJSPN+k2+4hLSsnbyFBYmAIBVrjuDYIQRAEWGZOvuPYJkiDbqeP7zsYBhQLlfx7N9DHlFIzUa1Qr9eIk5hy0Ucqub4p1hriOO+LC8OAUtljdbnLw0+8zM03zJIkMe1WQBTHFMs+mc4oGBa33XoQZRn0gwDbdVGmiRQSI4Pdu8dRMmc1bbU62JZNFMWcPHWeifE6aRZjWga7x8fyvjIyHnvuGLO7R6mNlJmsVnBciyiKc4RXZ6yuNvELeVm0bVtI0+TrR49zzewUBc+l2+2TDKonLMemUvIpl3x6vYhKtcr1+3dT9F2Krk2tVqZc8lltNLEsmJ6YoN3rsdboYClJFIbESUKj2aZWLTExXqPT6bJros78yhpT4yN4njMICnLkRpgKrQUTtSpnz5ynNlIdlAjnCDDZ5TWEB6sV5J1vuVJeE9gQ/FZKbfVdXO6Pc2Row19eBu5sCzI3By7DMbaTsWz2vzvNcxgEGUMkatPgW5K72/Yiw8frKNhgTdkQjtw0vxyVlAPfnLG5Jy8nYxFsrnbMe/TyazFkt94pybr572yTz17/2bQn2MnyXj1jy2NjozFy65oHAeMQbtWb1r5+rYdahloP+iH1+nXROiNJ8x5pQ8lNKO7l6N9V+8dtV4O7bwK7nMT3CoxRf8P/vH8XqN5fd8xsENitl6twuaN6XfPY4Tktdn7PsLNx+HOlFbxaxcOWbNs3WBqhd7hWIkx45ewrXHzlHAdmZymP1VleW6NaqxL1+vTbER/9ge9n3+w+1lbaXHNoH5O7xigWHW6+7WbufPMbOXvyBHEMl1aavO3NBxgfqXPdwUOcePlFvvrkU7znfe/hF3/x3/DB++7DL7kcPXKEj/6PH8V2BEp7FP06P/xDP8J9930rQdBndWWFC3PnWVlZYWHuIgevOUiaQaU+Qqk+wo2HbuDed92LMhX9MMR3TVIi3EKBNAHbcXnx6CksS/Nvfvm3+Z72Au+u1Lh+fIRS2UEaFoIcefD9At32Go5tYkiDUsXnUw8+yr7pcdbW2tx4YB9RlIsgl8sFhKERCVTKDpblEKUxjudiWoo0ywj7YY422SZF32XuwiKOaYOhSaJ8c6RFiGU6pGlOsHFo7xSvLCxR8iyKRRfTVKBTrpmdwLQkQRAiJKwsNYjDGGlJbMfh0L5pJsaqmAWT8VoR2zUJo5BqqcDZVy6xb3aaKI5xCw5Br4/jOoPg3sA0FY1GiyQM8YouyjZxCwWSTOM5isbiMl7BJs0E93/hSQ4dmCSOI9yCSavZ5YsPHyUI+uzaM0Gr2aHT7FEs+8xfWGJ1pcM7334rUZhy+NjLeI7F2GiN1loD13Hwyz6lgo3r2ARhmBPEdPpoMgQSKSSzE1UKnssDjz7N7noNpQalUpkgSfL/Nf12iuUaKMuk3w3wXA+hBIZO6XQCghBKZQ9pClqdDivNFlPjdZI4I+gHSENiqBSdab7w6BFOnLvEoX0TWKZCAlkao0yPVqs96HvzsZRBuVjC8/0ckVGaesUnCmJKJR/LMlFKsLzcoFDIGSVX59fodgM836PT61Es+XieTZok6xpcjm3S6/VwPYc4TtGZQRzFuJ6FFAY6hV7Qp93ps7C0gmO5TE+Ok+qUTrtPuVwi6IcIIShVKiRpgtYpSuVEQKZp52yZBggpiKKI4iDAkkqRJOmgV1LQ68ZkOuPwc6eYmRkj6McoJZibXwKRI33dfkCpVCSJItAZWZzhOX5ehqnh4iuLGIbg3IV5PNcm0zGVSmWdsTOK8kCu1wuwbYs0ISfBKXhIKUmj/E558/WznDxxEYlNEAYoU+IXXb761BGm6yMEUUSx5GM7HnE35tgLp5idmeLUuYtMTtRAaxYWVxgfGxmUsEMUxxQKLo5n0e11KfqlnKHXVNQrPlKKnKQmimm1u1SrZU68+ApJljA6WiNNM6IgAqFRQjBaLGBaBlIpLs4v4bo2QRihNaytNqlUyiwsrlIqF5FKEIYR1UqRKIoQSC5dWiVOEzzTpVzxOXl2LkdkFbiuS6Xk89xLZxgbqfDC6XNcs38GoTWWYyMRdNodDGHQbnWxbBdDSwwEi6srhJ2ASqmY35+SnXXOPnfqLIfe9/5XDe5yX3N5K8FOJgcB4CbQa+txO4zx6ijdN+7jc9mLTd3uwyBnh6Tw5skNj1gPYsQ2KaJBQkzrvMw47yPeFFCl2VYGS/JWDylV3s+WpVzp4m0OEnfaD7xWcLc9ON54vA2NMzYFe5vWfxkKKHJkThiDfdGmKiJEhhCDnscsJY4zDCkH7SZX7apt2NXg7pvAMp0M/hL8bWjFX8YK+Rqo1zdi27N5r2s+2aaG7MG/vPxxULa4+eZ/hXkamsszapt+MjHsJdj42X7MEIkbsmUNs63DjNfw9eEPhrisDHPz9QC29thts1SwTrphIFAyzN+fSmzTo9Xo8l9/7Re4/obrGZ89QGIVmJtb4p//+E/zPd92H42FBX79t36P//S7v0Ovs0rQW+SPPv4XfOi7v5uf+un/Bcssk+qEk+fX2L9nD3e/4UbGZ/di1yc4e+EVJl3Jm+6+l2eefZrvuO/bWWs1OX/hIne+5U6q9Sq+71MsVWh2Vrj3Xffy2KPP4Ht5L831t95EdWyaH/nBH+JNb3gz1XKdpcXzjI3a1CpjvPzcKVbmL3H0yccpeBa1+gTNfoTlF4jDHh/6yA/wo5big7PTKDRpnFKpl8kEKEPx+FMvsG/PLjrdNpVSlVa7h21bmKbBtfv2sLraZHQ072lTKpc4sCyFsgStTkTBkTTbHS7OrTBaL9Pt9UmyDMfL0QOlDLrNFoYpc6kDZRKGIZZr0A/62KaHRuFYJkkScN2hA7iuhxaQkaLMnLHMtGyUlEhh4xVcbM+ktdbl0195iltvvgZtgG1I0kwjpYnAQAhFoSCxHItuq49tu9iuQ5puZI7jOMZxXAxp0m9HKMPk9+//IrdesxedpWCkGDrDtCz2z04SxRq/XEAIiPoR1+6dplj28ByHUsnPyTm0YKWxRrPXZnKkxqXFJZY7a1x3cAZtZBRch5OnzmMgKFcLmLYkCgIc28RyLJS2Cfp9DJVvrtqNNQ7tnyHJNEmSITLB5x48SqkoMZXghRMnqfgubsHLGTuFgCzj0qUWlWoV37eJ4igXDLctqmU/DybdvFdNCw3SwHRsrtkzyWjVw/M84jjFUDkTJjBgDrURSuIUfdqdDiJL0BrSNM4ZJh2PJw+/zNRYHSFNCo6i3W7i2SU0fRzbwHNMdJqPbWQQRTGJ0BhCYdomvV6AZUu0tEljzaNPHEMkKV7JwnQUQT+kUilRKZv4JZc0SXFcLw++LIlpm+gMTp46SxCEFFwX23UhhV5/jZdPn6daLILOxcOHaOfFuQWqfpmXT52jVqlgOSa2tNg9Xce0FYYpiKKEkdEKtm3SabWpVkroFLJhubBOCKM2QRAwv7hCsxlQHylRrRaJghS7kEtkKCnIkoRCweHsmQsIrTENRRTGLK81KdcKQIrOJIYp0GR87onDeSCUGUxPj5NozcRoFak0fqWETlMunL3A2QvLXFrqMlYr0e40mBwfZ3WxwehIlWanC1JgSpNSuYS0TYQCy3GR0kAK8AoOUpjYlsfCpRUmpyfI4piF+SX27t9Fs9Oi3ehQK5fI0KRJyPLKGiMjVZSyiaOMgueipKS51mZstI7rSpSEOIs5e2mBol9ACANpCM5dvEjJdxkdq+F6Bf7o84/Sajd5403X0Ok1qVdqvHz2PAXPoewXcB2bsVKBC/MrTE1PEEUhYa9Hp9On3Q545vmzHNo/Q7PZwnUsRKZ54vmzfOWZFxl1HZIwxvbNQQmiGJB5ZCgE9XvuIdO51qHOBdfWg7LcvWz43c3Pby0U0aRJSqO5hud5688PexQRg+Bwkw/c0XO9RqAnRK4ZJ4WxRc4gHzPvu1v3uxokAyRq0zI2s0cOe9aGyVbEhvYcWg/6YAXbgyytdc6aa+SSNMC6Ru2wIijTGiHFuszAEPHbsjcyNvrrDbFRurkFuRzMbfN7N8o0xeaPZ0eUcog2wqCvT4h1FHL9suxUnjlQ15DKyPXxyKV0tBaDLVNGliZkWUqaJSDIJXpEfkWFMAakca/+uV61//7sanD3TWCa9O9k3G+a/rud02E7I3VXyq691il2ykZuf88OjmVr0/MOc7lCcLfloCtl9ATrDkogSIVEZ4JisUjc6/Gf/+P/w0d/8AdxCmVAI7IUZQTcevP1mLbDH3/8k3zsYz/GsaPPcPsbbgZDc8eddzC9a5JrD93IK+cu8a53vp0ghhtvu4lSrcLK3BnOvnKePbMHaK71qY9P5Jn4NOXSpUXe+c578AoF5uYuMlKt0VjrUC4VWVtb4/DhYzz4lQd40x23kGYBY2N1vudDH6BaK+MXijRWGnjFMq+cn+d9H/gA3/fh7+P2O9+Ick0s2+GHfvgn+Pgf/ynf3bjI+0dqVCvFvG/BANd16La7uE5OivKVZ15k7+QI5UqRdrdHkqY4BQcEKKlYXFqlUqpgIFGGwvd8Ws0+hYKH7RY4c/osY+MjjI+NYJkGpjRwXSd3wllGHEeYyhz0NmV0myHNtR4CiW3ZdDotLswtMjJawbQVQbfH0tIqF+cWGR+pggFZmn9xu50+ypQkaR6o+IUCN18zk/eLZhmNlQa26yANQZqmPPTkEXZP1ImjmIJfIOiHxEmMaZrAMKMs0VmMUpITp8+j05RaoUB91KfT6dJaCylVyiwtNamUSjz61HPM7pogSeK8rNMQFMu54Hccx0hpIIyQYtGm4Fk4BYtKrcz02AiGEATdgFanza7pcZIow7JshDDQA6KaNIX5+eVcy8+2cD2X5146zsyuCWzbJAgDTCU4euo8d9x6DdKQ1MtVlCmIwghpgNAZjUaX5068wuzucYTU2LZNkuTJqyRO+eJjhymaDmEY8dVnnmfv1ChkgjhMKBUL2K69vhmKgmhQmpSXesVxjmj5vodpKkzTxHYsojAP8KbGR1ldXePEmfNUy4VcsD0RpImk4JdItUApC8PICUKiMCUI0pwRNAoplnwgF4h+8vCLrLa7XHdgD4WChaEkURhjKoVhWmRpXgJ28vRFxkarA9HonL2v4DrYVi6Y/ZcPPc7+XVMoS1D1KyzMr5KR8cSx48xMjGKaCr+Qa+uN1WtIqWg22rieQkhBmmoMQ5GkKabKGVpd16bd7vClxw9z/TV7AQh7EUmcoJTFxflVbrh+BsdVSAWGBNt0SZOMfi+XrjCkic40lUoZhOCBR46yf88kpqVYvJTLaQgBpmmya6TG/tlppBR84fFnuenQPnQKli3z71CWUa0UWVxqECUpYRSye2qMtVaLUsHj8Aun2LtnF6QZnbUuh4+dxFGKYsGl0+zQ7wQUCi69TsDaWodOp8PYRBlNSnOtRbHo4RUKtNtdpqZG6bQ6WI7F4qUGJd/Hsm2OHjvJY8+9xMzEKK5j89TzJ5lbXOLpF09zaM9upKEYGx1BGTmz7qVLK+yaGKXZ6REGMZZlMjNWY3JkhJWVFp1+lyyC/fv3YCqTLz16BImgWi2iAdu2cGyLT3zhCapFjzhJ2D1Ww7YlhYLHWqNFq9Pj5uv28aYbDuAXPRzH5MyZi9QqVYQwyAQYUmJqjX3X3euBhWHIAcrz+hKpxkDHzbZyFlvIexPlUFB7k5vajjRtd2lcwa1tIGlDlOkyr7fjMVq8vtVsdAQOK3te/egsywbXbhO5WX7ydYZPQ8rB2Nv2Rtsc/3AMQw508bYFbnnsuPlivo6FbTv3lt7CHZLwuZ76RhuLuFLyfz1BnZKmKanOkIZE6DxBc7VH7x+fXQ3u/gEtY8i2+PpFwF/N/jaQuu22me1yiL5tpupdz+gh8gzkpqbjV705b0bsdijfWB9/8HuIrl3WN/c6grvN6NxwrHTQQ7e5H2EY/Gm9IWy6uaRCD4+5gg0dmjRkLrar89//+qf+JbffchM3XH8dmVWg1wuQCFxTsbY8R320RLvT5dP3f57J8RqVaonJ6QnKtQpCaLq9DgW3jG0WEEZCvV7HKjj41RIXTh7nxptuBMMhzhze/u57+YWf/QXOnjvHve94B0ma9xhlSUq32+PBBx/GL3k8/NBXef97v5U733wnExM1bFvgWoqnnzrM+MQ4X37wAe666630uglSCn7iJz9GsVpGOS4/9MM/wTtPvsj37JvmA1OjGAaU/AJaa1prLZRtstZo4zk25y8sMDJa49CecUolH4EgjEPK1RJCGsRRgs5SqtUyZII///zjjNYsShWfLEtz0ohMsjA/z9hobRCg5OWVUkqyNKPRaOHaDtLMe7YEYDsG1VoJxzXzza6SJLFGCzBthWkIPDcvwbNNO9erG+SfPd8jTZNN3wlJ1OujlIExmPOQej+KEw7snsLx7NyxCrBMk3anizcg1uh1exx7+TSj1QJSSibGR3Ecm3q1TLvTolwq85mvHGFytEISp7iOTcGyKJY8tBa5Pp2jSNO8Ny+OEwwpkBg889wp9s7M8vKpC9Qq/mDjYGA7Np5vo7XIEfNME0UJrWaXQqFAkmiqI0UsxyaJEoSGJAoxTRPTtrBMhVKCfTOT64QzSinarRbFcpFup0sWR2SZyVPPn2b3WJVPP/IY1+3ZQ5LkZCCGoZgcqVD0fdrtLpP1KrYp+dQDj3Ht7C7iOMkz1eSIumlaKKXodrt4BZcoCDEtkyAI6XX7SCm4tLCSs5uiWV1r4fsu1VoRA2i1WhQ8j1a3i+fbCKkRpiaLUwxpcubsAo8fPc6NB2fWGRqFVgidC2PfdtNBLNcljWK0hl4/REqBwARDIJWiWqliqPzGYpkmURRhWSaWZQFwzcw0hpQYEpS0icIEr2hxcM9u0Aa9Xj/vOy37g3LJhMeffZkDBybRmSYJE0ypUJai0+6QxDFxlDOmTozUsC2LNE2RSCzLJMtgamI8F92ONGjJ4qUG84sN6rUqaZLwF498nT1jE5QrJeIk4eL8JSxl0mi2mRgfoVop0e10csTHkFi2iTDAdk1uPLgXMs3Th1+iWi2iDINuu4ftuNQrBfYf2M3YWA3XdSmWHFzboVoq8uLxc5Q9D4FGGrm4e7fdI00yqrUyYRBjOw6rjRYj9TLCyLXbiiUfy7I4e/Yi07umSJOEKI6xHY9uq0u1VqHb6eM5FrfduA+BgZSK6fEqszNjNFY67J+dQSoDyzTotvr82ecfZ//uCR49+hIT9Sr10RpLyw1GR6t8/HOP8+ZbDjFWr2CZNmfPzZGmGXt3T1DwHJyCTaHgoLOc5OK5E/PYpsFNB2dIkxjbMllaapCmGVNTE/T6ORFUo7GGbSlKrsfy4trgO2KigTCKcN9y94ZfGfiboSe6kovJKyCHJCqsv3f4HAxJQjYRceww3pAgZB29Mq6sVbuRGDXW/Xw+10FEqMW6XtzGufR6bLndza9XyWyzjaTr1oaNLWWXeoORUiqZ9y8PBcgHazeksY7OgV6vxBmWYm5ed+6rN0TO8/LPvIwefbnsw8ZihmvR69dzOMb6+IPAXRo77Jk2X+ttP0Np9fVSz8t6TQbHbb+IOicYy8hyVlUDDCnI9FZSmav2369dDe7+AW0Div9vJ62yfsNiCPtvLZWAQc38Nrar1+yne41gdP1Wvw19Wz/n6wjuLj+1WEcIhsEcbPTmbS7R2HLu1yhRXWfrTFN0mlFU8OXPf5Fv+/YPUChX6UYZjmmRJBnScugEMdPTM8xdPMt4eZSDe66lWLIZGR3hkce+xsT0FCePn2PX9CT/7t/9CuVqkTvuvp3O0jzHnz/K1Ogoplfl8JGj/MF//UOmp/fzg9//Ef7Dr/4q3/VdH+STf/qn3HLrjVw4f544jhkdq1Ovj3H2zGne9773QmbwG7/5u1QqJXzPpttscuDgG4jDlHLVwXFM5ufmMFM4ffIl/uef+z/50PIcH5io56QchkY5+SY+TlKUaWFaFi8fP0vQjyiVfcYma2idYSqDOInRWqCUgCxPFqRxto5wzS0s8sZb9mOqnGFvrdFhZbWJX/EYLbsgJKvLHR499gLXHdiLkBIhFY7nYEpJp9NHSYVOU6IoZmlxDc9zMYRBHMOXHjvGbTceYHF+kWKxTKfXZWQ0F7JG50ydjmNz7uwcAgPLsWmvdWmv9SkUHDq9nML+xMkLeLZCSgPPsRnSdA/HWVppMDJSzbXONNi2zehIBZllKGVy6vQctZERwqBN0asShAm33rSXOAzWdft6YYhf8hBIsiTlzJnz1EdH8k2xZee9JcJgrF6n1eyjJBAngx7BnHAjCCLOnJ2nXCzkQa4yKRU9gl7Asy+cZGKyhtAGFy8s4tom9VoN23ERGHkgqSRCWWgEmU5RysB2HFrtHpVKiYWFZcrlEjMTo1SqZQ5MTdFqdch0xtzCCgYGI/UypmXheRbVWgllSfbvmkQqiVtwkFKQJgm9boCBoNfLGSrDIMS2LCDDtG1sx8ZWCtuxMKSk2+1TrRYRgFtwSaMU0843Mn7BxTAEnVYXx3EwhIHWBuWyx1jNxTQtpBIkkWZxoUmtVsQr2HQ7XUxDEkUJ0pAUPDsvexIGUdTHNPNeoSSLB6VvBlpkpElObmDaJmcWl6gXymQiyckwsogXl5YY8Xx6nZATpy+ya2qE02fmcSwLz3fZv3cSRF5y1m61WWu1cD0H27YxTUUQBDiuQ68T5IG9kvlGVad89mtPc/LsPNcd3M3ipVUeO/IyN1+/j/HJKplOsCyT6/bsxnY9PvvQkxzYO51r+NUrTE+PEkYhSRghpMBUFs21Dq6XkwKJQSlhY7XB8lqD2dkZOmttTNNEGBJlKaI45OzZ83imwnIc+t1+LhWhU6ojJWxbYdoGWmq63YhTF+aZmhjF8mxOnXiFguvieQU67T5Ft0CSQrcfUi27IC2UFARBiJQWjx5+nseOHufQ7ASVWgkhNecvXGJuPtfli5KAg3v30OkGfO3po+waLWGYFtft38MTx05y71tvy2VFGm1GqiV0ljEzMUK31yeI+5SKRfpBj8nJET7/5LPcdN0+wihGZylplOTSB0FAwbGxLUW5UuTCxWWOnDjPoT3TXLi4QBDHVCo+tm0ipEApiePanDl7kVLBRqQpjy0ssv9b3rPJp231qVdyjfme/hvpwxsGD1fwU5eNe+UB1/15lp83y7afX2zZF1zpHOu9eOtBzPZJ6S1r2ym4297rth4OD/coQ5mEwevJICCXm4K6zX59OwvlFqITY0cYc+vDIcI21ALMBmW2g3np7WO+2ge3/tlvvXJ6+5W6Ut/I+jApkJGmCWmaIFBX+/P+kdhVnbu/b1v/j5WRZjl9+eVJl6013d/wdR/cRTazSf1NbPN5swHMf6W5XEm/7kqv73Cyv9bcNnrf8pucFGKLDh3kN+0k/euxSQ2FWzfbMDO3jtwN5pIaKu/zy2IMMmKt0dLB0AZ+FvDxj/8n3v2u+zDMMmGcICyQYZeHHvkKd911LxcvrHHtnjEe+urX6PYDds/sIcsS9l2/jyPPHGGyOsnphUXuettt9HstOp0uoxMzKKGJ+10qlRKNzirtRsQv/vwv8S3vfitvuvud7Nq9i263xcLiAn5pmqQ7z2hVkZkedqHO6vIcL7zwEqPl3fzYj32Mz/zFZ5FGQq+/gOGM8XM//3P80v/+85BFLC/O8a/+7a/ye3deT7vZ5ciLZ7ntpn0US6UBQpGzPAoDer0epilJ44EPN8A0JTpJ6AcxUaSpjPpEYUoUpbk4uJnRa/VxPCfPmAqJIVKyJC/rW1lZpVIuoDU4rks/jLBMj1ZjlUrFQzkmcZohB3pAq8tNSiUfjLwXIYs0f/n5r/OdH7gbnSUgNKke6B9KhU4z4n6AJiMOU0oljygK0drk6WMncC2L3eM1irUSURRT8BzWGk0s28UblJV2Om1c2wWZ9zsE3R6e56yTWTD4ysRJSNgJibMU13cwTVCGw8NPHOHNt147KPvUuJ5HlmQI20BkORLZ73awbBswcir/oI+lLMIoACmII43KEjAltl+g1wrwPYssVihbEKURtvR49MkjvOHma1hrNanVx0l1G5X6fOZLj/HOt99EHGhGxspESY80FggtWFvqMrm7ThB28r2FYWC5dr7xTQKEcjhx4hw3HJghiCNs1yFLNFmQoZVGWRK04Ny5eSbHiyjXI9MCS0Czlwe0aMHiXIN6vYRhZvR7PYqFGq1uh1LRp9loUvRtkihD2pIkTei0Cv9hWwAAIABJREFUO/iei2m7aK0Jg1yrbthDmcQJhpBkkcZQBqvNJuWyjzSG6HxKGMYM5Ukc1yGJIv6/v3qMfZN13nbnTSwvrzIxWQNh8LmTZ/nDuSZa5xvGKEko+T7v/Zb38m3f8W5Onz7Ovtkb+Gc//DE+8pEPcdfdd/DxT/w5//QHvo9TF5YoVqtIHaHSHmdfmed3fv9PCYKAJI5JdEa700UZBlNCcKhc4PpqkTdOTpAmcd7fKQRnzl5g397d6DSjsbxMq9tl797dJLGmHwSYlkJZkl4zoFR2uLS0Qq08gpSKcxcuUh8pI4RF0A8YHa+QZjHtdhdb5TIS5ZKf39uSFMNwyYgwFJBBlMSEQQfbtkgSQdTNERTHczBtCyHTPHElFFGYYPsGQT/AxEIZNkJtVD4sLzY4fv48b779Bp45fJyXXpnne7/1HuYXLjE+XgEEWhsoKQmDgLlLS+yZnaG1ska5VKQT9Ck4HpqMLINLlxqcOLXA9FiJmZlx/uyBx7hmZoxGI+Set9yKsiRRHKAkGChWG00KvoNSNr2wi2dZBO2QQrXAiTPnmBoZRZmCNIixbBttSI6/8gqedpnZW+eBR5/jjTfux7AMgm6Ea7k8+uwLvO2OW3F8k3a7Rb1eIxNp3iuZZGRpSKPZ4l+eWuT++/+UMOqCThDaHKCm2wKkQf/ZTnp4+evDWGmgz5ZmA3+18+t6m0/e/vzwcTqQhNjMCKmzYVCxMZedOhTWEbrLAKedffGWfrrBgDvp5G1G2wyxQciy2bIrJJQzQEm5rm20rl+747svP6cw8golDes9f1sWO1yLsbH4vDTSWE94X4ndcgvRzOYxxSA8vMI2Kc2yLajgxoDDz1KgM7Z8GZQykdJ8rUW/+utX7ZvWrurc/X3bpnIDva5td6W3/jWCM7GBRP1tlmZuL8Pc6fXtjzdn8P4mTJivZpt7APKsurjsfjRkqfxrX43h/XVbGcdgAht/ksCgoC81JLoXYUvJZ+//M/7Fj/0wP/lTP42hFGfPn6ZYtmi1LqFsn/17Z3nika+zurDIr/zKv+dtb7+XX/w/fpnbbr+DP/yjP+Ad77qHKIj4+f/tF/ihf/oDGEaGIU0s6ZFlgiOHj+JYHlI5BEHEiRdP8e53vYe1Zou9+w/lDf5egU//+af5V//6Z/nQh74DzzNZa3YwVBHbdvn3/9evMDE+xkf+h/vwfRfHLxCRkcQht7/hNn7ip3+W019+mPf32ty3awzLUiRJxli1TLVaAWCt2cTzHPrdnFUPRN4PZipsz0GaOaNllMS4nkcUR2idYDo5Bb8gd0DdtR6em8sR6CxBGIIkyXjkyee48dq9ZAgcx8k3GDrDMBRnXrnIaL2aN7wD3XYXpVTeB2UYpEmCFmDbJr5tUCjl1OpSScIwIY4ilFLrYrWmY5FpMKQiI0cx5hZWuPmG/WQ6xi06eVmmYeA6Tl4K6jlkOsVxHCw12BQJSdQPwWDAipgQBBHSkEiVSyrU61Us24JEgVaUHR8pFLZjs7LSxHNtDClQQnHkuZNMTIyQaU2r1UGnGtu1WV1dw7Ed4jihUPBwXAepFKZtkyaax596gZldI5w6dZFavUiapqytNtg1OUK322OkVkFi0Gg08TyPkWoBKTVz8ys4tqLXbyMNRUKA7VlkJEjLoLHSyvslHZs4jDGlotVqs3t6jG63i1vwydAE/QBIsRxnvdSoWi3lCRlDYghBFMZE/T6+Z9Frtjl3cZ7xiTJRkCClRaZj0jDEtBSWaRGnCf1un3a3NyiDBSVNhDkkLTD4q4efZLRYQRkKoRWnTy6w0lgjSmIsW2FZOTvokHwgJ9ExsGyLfifg2eNn+BPH4au9PocNm0/PLXLvj/849Xe/hyW/yHd+8Nt5+JFHuevOO3jp5CnCKObUyVOc+PyX+POHHmPta4/wz2+/lWsSTeepI9yQZhgnLiKPn8E9dQ7nzHnMExfwzsxxd32Em8o+M0LipSlnegEfeN97+dhPfoy3fe8/YeYd76F78Hp+5lOf4Y9OnOXLc4t833V7UJaJ1gmlUgG/UKDfD5GOhWkrXNciS2JOnpmjWilQqRRZa3T50hPHuP3GA3iejSkNtEhprK3heQ6O7XLuwgLFYgHbtmm2upi2xdeffYF9s5MIYZBlYGBiCpN2M4bM4quHj2GZkmq1yPz8EgXfRmQQxwlhP8zvA6ZFkiQ8+Piz7J6uk2YpUhk4rsXUeB3LtqiUClw7uwslJZVqXlrc6wUIIel0e1SqJcrFAsJQKKnotHuUyiWOv/gKxaLH5x55ijfecgjHloRxXko7PVplpFpids84zx8/i60k5WqRIAh58PGj3HbzQRaXVjh16iLT06O4nsPnv/YMM9NjlIsurm3juSZzi4s4toXtOni2zdTEKMdOnOD2Gw6RpAmWgJFKmeOnz3PN3kmEFpimQRxHeI5NOOgPFZAHlJ7HEcPiPe98K2AghNwUhG0gd8Mc4s59blvd0fpx0hgQiegtr29U1Wxzc9ueXy/BHJCIbAlk2Aj6tp//8vm8PnQQtqJyr5WUHbaD7DTGld6P1gjNlvl/ozuUzecbloDubHrb7w1E9kr7sytel9e4BkNimsuP25QE15vGGXwP0nSgocc3pkd41f7bsavI3d+3bULuMp1D5le6W/9DX+9v5PyvicgNbBgYXvb+1yptzDaSTTvNbf2Glv7dXavtI+ts5zWHYRd7QODhegXMfsbnP/uXFFxJfbSK7V7H+QtnmZqsIaVBbaTCpZV5Lp2fY+nCRVprDf7Db/wOP/Ozv8CNt9zCb/3H3+GGa2f4Jx/5Hi6cvcijDz7G3e95G+cvnuP22+9gdalNp9NmYX4ev1hitdHgzjfcjjAE0pSYps2b3vAmfuPXf40733wH3W6bI88d5+ZbDlEfLdBZa2CXJhBas9ZYobW2yMGZ3fzhxz/BnoOHuO1Nd/HRj/4Iv7xnnImJOr1eQLnsM7+wwsREDakMkiSjudZjZKyUl9JkeamOlJI4SlCmQhug0zyPqpTKv/eZJuwF2LZEKBMpDdI4RWiLoNeh2w145vhp3vam6xBSYpl23s+ZJWRCYghNHIS5tluYZy1N22Ju7hKVsk+h6NDrBlimie3YBEFAEMYIneB7FiiHOAhRlkUYpVgKDGXRWG3y0ulzvPUtt+ZID5KvPPos+6bGmJoaQyqDTruFXy2SJXmvHamm1Q2olIuDUhxJEvTpBzHSUDiOTUqCaZp87cnneeMN19Lt9fGLVk6nLiVxmPdqvXjiJLsnJmi3Q4JeTKnicn5hgdnd47imR7PZwSk4uL6DFDpHRQ0IowDbcul0etiORa/XpTxSRSc5TX6/26dYs9GZIiMm6MesrTaZnh7j3LkFdk2P0251cRwX01VoAXE/wHV9wiBAmCkrS23q4yM019r4noftuGQ6ptloc+b8PPt2TVIq+xjGAEm0TZSyQRhkaUzQ66CkhxBgWpIsywjCkHPn5zm4bw9CGKRGrgOXywKYdHtrFJwSGkGv18RzHNqdgEqtQqfXxXfcnOFUZxgYNBsthNRUahVWFtcoFou02jlCNze3zNTEeJ5JFxrDzK/d8sIahjJ4qdXity80QAqqxRJPPfIwv/Hrv8nv/fEf02q1SLIsDxQsk39xx//P3ntHSZaVV76/Y64Nnz6zsmyX6epqA01DGwSNaRAMoAGEEUJIWuiNvJ7Qk19PerKDZjTSiCWHpNHIMBoZJGYQCGjQNL6b9t5Wd3mXVWnDX3vO++NGZGZlZVU3g5Fmrf7WirUi4rpz742453xn72/vFzEzMoEVgixKcFy9+mzPB7YGQ/P3XrdHtV4gYFlW2E10Wm1yYwgHKNf82UXOLSxwxeV7B2IYMD+/QBTFjI418AOPH//DP2Zh6yw/8N7v4lW3vJxOu43n+bzne3+INEv41X1b2TM5SdSPccJC4Kff7UKeo90A19XkWc7HP3c3b3zNTTz99DH2bJtmcWmJ6S2TdDrdom4wtqQmpVwpobUmy9LinpcCfN+j0+oSlHykq2ktNgm8gNvufIhbbnoh7U6Haq2KsYYsSej3Ymr1KlmakaU5p+bmMdawd882hNaDGlZLGqdkxiCFxA8Cup0eJs/RWhRWCuPjxUTFAKEthQFSFs+YNMtRUpH2M1KTUGuUEapIVNIoJc0yfM9Da02r26bVjBhp1PECj06zTSks7Dqa7RYiFRw6dZYrr9iFloX9hxIGkQv6URewJHHO00fnuGzbNLVahZX2Mq1mwtatU6zMzyOl5tS5ZXZsmyRJcs6cXWJ6cgTX1QSlEh/7/J286RXXF8IpSvLENVez/+oX4JSroByU3rR7WQ2xoUMcIm1DK4D1Y/RL6H2dt875+z//OOsRvouhextRwI3r588yTrhYUnMxFtOwzat1hKZ4BpxXSydY9RRdPTFrV8thnIFwTYFCrom+DPv3IQNKDhU4L17XUTClNp6LWLsvRTvV8KTOO5fNzn9N48Cu0UgvgdxdjOVlbL4B7VXnb7dhP1KKgaDPQFRG6IuOd56Pf93xPHL3zY71yN2wCPn/4PLW54rIrVogfJWxKdd9/fKNpPyvY9gNM25rCzY/mJA+ygripXn+2wd/l2On53nJdS9kcnKaXNZ46tBhzs4f54nHH6LbbtNrxTjC8vM//f/y5re+iRu/5VpSIxibHOPUmVO85dvfzK2f+iQ3vPQGup0u//k3f5vXvfHfsm3HLEoZTp0+iSMN+686wFJzhbe/5918/3d/D/c9eCdXXLOPxOT89E/8GONjdXxXUqn5eDIgNTlRnjBWr5LJlHarx4P3P8KObTvQwQij4xP8+9/8Xd4yd5LeA09x47VXorVCOwKpLN1WgtQCqQuJ6yAMyNKYpJ/SWooIqz5CFNL4eW6R1mJzgxSKs6cXCLxCMTO34Aclzp5cwHEFUsHxo2eJTZ9KtYqnHOpjVZSSRP0EEHTbHTxHc/jwScYnRjEWWittPN+n3e6TZ4aRehXpyFUj2QcePUjVLxOGJXxP0+40B0lLjFYOJ0+eo1Yt5Ncb1QqXbZsBUfgICQv1sFzUHIY+WheebuVKrUCy0gxjMkqVsBAEEYI8Nwjr8Jf/9GW2TjSoNcr0el08z2NmYhylNYHvox1JNqgLMUmGsQbfg24vYrQxwtz8AltmxhhpVJBSEFYKFb5GrYRJU/LcDMRRchAwN7dMtVph7swCtWqIVAotBL1ul8pohU6rS5YM6ODCpVwpg1QFaijBDRw8twQyJepFZKnFdUOWl1pUawGlsEIe5QRBIbXtaA1S4GrNzPgYvuehXEmn1cZaS1Cq0Om20IPEXCtJrxcThAGLi0u0Ox2CsEw19NFS0u5G5HmGkqJAVZWgs5zh+Q5R1KNcqRaTFp6HxJImUUEt0hqExBpI4oxKtUaeGuIkwfMcyAQmz/B9B2sLgYEsifjF+5/h746f45PzK/y73/8d3v+RW+n2egigJuBvvuOd7EgzXr9zB2+9fB9v2bOHt16+l1t2baMShIBEWInjFccf/t6EI1COg1AKpEVgBxNUFoFCOQ6eqymXvWIixtVIKajVKiitaLZaKCmo1MogBX7oYY3lW190HW+/4nJm2126dz3E0u138SN/+Kd4nsf3vPOdXPld34t3/U38wVfu5o/ufYQrlCXtxHh+iB+4CKlYWe6we9s0rgOh75EZw/fc9TC3nm3xbTNjeJ7L4uIyjXqFNEmI+1Hh34ctxEq0Q5onZHmM6xZ1f9VGmR3bJvj4Z+9grFrBcRVSSxypCjXXJMFxNNbkOFLjuR5h6GORYAu6XxolOL7D3Nw8nuvw3z7xea7dvwupBbVqBZtDnKZ8/At3s2/HLK7rcObMGUrVAO06fO72BxDWoB1BGLoorTDW4rqFrUUUFxMtR4+dYfu2WbrdHoeOn6AWlgjLIcZkCGkJyyXOLqwwPTbG7Xc9zM7ZSVZWOiwtdamPNFg416TXT1ludZkaLYRfVtorjNZHODe/RGOsShCWaLW7HDt9DsfVbN8yTbvZZ25xmflzKxgM27ZM0lzp8eDDz7D1Le/g0NETbN++A5tlCH1pO6QLE6G1BGhT8OarHF6sMQIvRPjEuvHLZp8v1tYL+v4hpHfBfi/WpmdZPqj101qvooybTZvbDdsIiun1LMvIB6Ip54nBDRI7Y0xhzyI3+O8NzmU9greW3K0lopuKoVzi/NYUMu3FUbn157VB42DtfNdKAYo4/7clhCnaOXhZLMZmg5ITi5TOKtL5fPyfFc8LqnyTw8oca7PCs0TApRK7zdSUNlOxWv/d15uOuVkMZ8jguSd3Ugwpjf97s0AbPevY+MDbpBlWsEqz2ywuVpe4RmUpjjYszGb9LCCgjI+wDlJLUppU8gq2u8if/9cP8vo3fwcvPHAF3d4S1tT48u1f4IoX7qbh++zfcRnddpM463PkzBKveNl1lHzNM4eOsXvftbQ7XV7xyptYbp6gVKozPjpBpVpl555dXH7lbjApvXaLqYkGx88s0ev22b51B//mlm9l97Y6teoIv/hL7+dbbn4ZR48dwgqIspRHHn+C7TO7qY6NcvrsAo/c/zj79u/BE7BlcoTf/sP/wp/8+YcY+8xn+NmXv5gszWgvdpmdGcfxZVHXaF0eevwZts9O0e30qQY+ViqEAM9xeObwKUpegOO6pFnGJ754Fwf27CRNY2790t2k/QzHdXnmyGmEsdRGy3iOgxSFAEqjUaZWr6K0pFYvYYzBI8DxU/rdZJVu6LoOWjlYoyj7Hm7ZYnPNl75ykIMnj9IIXXynUPmb3TpBFEf4voN2Ndp1AUuaOcRRgh9YksjwiS8+wUuu3UO/u0KWpviBT7PdolIL6KzElMulVVRGui6fv+MBZqcm6HUiEBrXL2retKuJOn2OnTxH6LpMjTcwmQFjiOM+jz9zmHo1QDnOAKGSxElCs9mlOjJKtVrj7vse44r9O3AcB5OkpHEC0uJ7AZ1+E99poLRg7uwCruOhpEucRVibcPLkAuP1EVxXsbzSotKoYQEPn26vTb1eReaCB+89yvREFWP6OL5PEud86o472T4+BrmhUhnh9vse4NDcKS7bOoMUgtREgCTLiv90mmS4nkNqDNJxMGlxf0GgpMDTCi2htdIiiVOOnlrA1QHleomR0SpJr09YCvnS/Y+xbcs05XIABs7OLeL7GqkFhaiAxXN9SDOEkSwsdgiqZWQSIyxEvZRms0+5XuNjn/8Se7dvxfNdWu02n7/ncXbv2o7nOHzfPU9wV665danDjsv3cfz0KV7cqHNtc4W37NnD2/dewbdfsZebp6fJjEV7DnGrXYxFHYWQDtr1sSZDWgcji2eCwYDVYGL6URdPBYgcMtPD8UsgC9ERYXOEBqQkzfOi1jNJ0EGA67koCZ4CFQRYwHU8TAbKWrTjkGU5SwtNkqjHeGOCt+/bx2tnJtknFP4zhznxmc/y5/c/SG7hoUxw2ZvfxN63vZFve//v88lzy9y6sMLHz8zzZFDlQ08e5uNnFvjwq6/nVfWAaq1MHKVUKlVcBzID/TgtVFdNziNPHGNstIrvaRwlsFaRZRlKSLTS7N0xi+tIfMdBGglK4fuaXj/CLYWkUZ9ms8vExBh3P/Ak3VaHUuAT9aMCXXNdtJTc8eDjvOFlLyEzEdrRYBVZmqNVxv5d24milH6vx+jYWCEkZM1AWbaYXClXylhRJNiL80uYtKDrHj12Gosl1JaF5RY7d2wnTXOMMWjHwfdD0l7KPY8dYrRSZv/eXSwur3DwxEkeOHSM6UYdoQQTMw20BmOg3ghwVEBYLnFqfp5GrY7Wmlq1wtbZaULt8eUHHmd0pIIrFAdPnaHkeWyZHAfgpw4d461veDMz27fwx3/8QV5+ww0FvdtTpFmGY4vasVVWnbUMIaZVT7d13VLBkNlQ+3WR4cAlgCiU0qRpWghSDRK89YjhhUqa5yNqhUCZWu1jN44TlFKrK8tNasWejTU0zA2HlNEhHXUN6VtHhlylt4pCPXPw3gqDoajtU44cdO92UCu3Num+Or6yRR3j6vkMGmEHqN3Ga2ItxeQF59crDrfbbBuEWVeuc2EpjLF2FVXbaG2xOc3zPNfBgTL72uuCCzp4De9JlifkJi0SPS2QSmCtIDd2DdEUioFnw4Bm9Xwi+K8hnk/uvtkh1p7EX68kbD0k/41O7GDdbBDfeORuGBfMwF1qSm7dNibPL0n52JynvqHju0hHk6ve4I3EJIaThw/zxS/9M295y5tYWOoCimq9jLUhn/38bRw4sJ/p0Qk+/alPccONN5FLy559l2PSLkm/T7VW4/XveCc/+v0/RL1R4sixQ+zcsYc4iZmZmUFphZQQBB6O1riOptlKOXL0CI1alS2zM0SdReqNUX75V3+Vd3/3u7F5xujYKNVKhcnJCX70B36c6196Az/yYz/C//PjP869D97NttktvO27f5jxqM9vXXsFkyM1BBbtOkyPjeCHLrlJydKcL9/1GC97yZXEWYIQ4LsuQimyNEEqTeh5NNsdKtUSWMsVl23DmJwsS9m3YyuVMKRUDem2u4zUy5QqIZ/6/D3su2wrruvQbLcpV8p0Oj2sAa0VeZqz3FoiDCpFDZzNCcOAg88co1Yt8Vf/+Dn27JigVKoxPd5gerRKo17BD/wBBQe6nYjA9xFCcOTYKb78wBPs3jZLuRLgaMnKcofp8Qb1epnAU7heSBJnfPKL97FrZhrXdciznEefPEyjWsYLPZI4RgnJw08dYcfWaYzN8QIXKSRKKq7YvZ3KoJ2jjSqLS00qtWLQ5zgOuTXMn1uiVApWB2heUNTNbZkYG/hTWZI0wXVdkqwYbJUqPnkG8wsLTIyP8aF/+gI7J8foxRETYzVmJiZwA48kiQuxE0eTpTnNpRXqjSrGwsL8EucW21SqLo4rSVJDuVphx9TEavIshGakGjA1Wh8MRBRe4BL1Y3zP5+8/82VeuH8PrXaboBQAgn6ni+97KK0xxtBpd+h0+5TCgFIlJHA96qMNBIalxaVikCcEM+NjuI7D5+54gPsePcITR8+wc2YcrRRB6NHp9EjjjDNnFojjlJV2m7HxOr1ODwMcPnYGJRXVSol9O7dgTGHoHJZ8xiolfvjhp5l+w5u4+9576fb73FQp8cNXHuBt+/Zy067LAGiuNHFdF6l8HKnRjotBYvMML/QLzzBZ2G0ICVEvQbsOWikMOQwmsHy/EJAp7DMMNl8bKkpRiCnkeUHfHYpAoQp7in63Rxh4GFHUc9rcEEcxQehiMSgtkUpQKZc4fPgEpXIIshBHWFlaYWpqgtdv3cq7rrqSN+zYwc5+zDv/wwdQUjEy0mB0dJROt8upM3O8tqT5pRdfiXY0Ub9Pmma4joPSkuXlFZTSVGsVbJ4XtMrcUC6X8DyXZrNDWAoHKoCW02fmydKccjkgihK63T7a1avefMaC7+hCmVQp5hYWeeCZ41w+8NYLA5/l5SZCSC7btqVIdJUgzwr8xfNcHj94mPGxUbTWlCs+2nUQwjI/v0SjUaUU+Li+x+Fjp+l0ezTqNfIBtXp5pcnOHdMoKXCUZHx8hDQv7DIC3+PDn7mDPbNTSCk5sHc7S0tN7nv0GS7bPs2ubVuYqlbwPI/Ad8lNju86VMslFpeWcbTL4lKLbbOTHDtxmnq1oCY3mx06rQ7jYzXGRus8evAo11+1F2HB9z1e/lcf5o9/748GFgsB+/bupttq4/ouVg3QIsuqTY8YJgRKD4yzL+yXiv7suSV3F4vCN7Mw2M5XTb+fbbxy/jEdRzO/sIijnWK8sIGBU1gzyNUtL7bni01or+6HdRO+F2nRBQqbm7RZyvNr9a0tcPYhhVMqOUjI1h9JrK3MumR7Yxs3jvc2a+wqkrlxTLIRiXuW/TxLXPQWboL4rR+vWWMweWE1IaVG64uL6z2f3P3riOdr7r7JYWW+5sXyNSZiG/noQ3741+s+XUoZ86I1dBff2dfUFrlhc7Px0m1Sc1eYiMuLcsY3FoivbkfxMDtPFXOT6KkEN5d0zyzzt3/2l9z0muu5+sA+WitdcEeIYkOateg2Fc2VOUTSZmJykpNzp0myjJ17LmNsdJzmuZNoIbj9rvt48Q2vIIpSxicaOF7OX/7Fh7nxpps4deIE4xPjXPvia7n/3nvYtX0rSRLj+ZNEURM/1Pihg407nDqzwNjEDInpMzG6hThNaDVbuK5D3LGMTIzSj3rkWcL3/uCP8aM7Jnnx+HhBD1OCLM3xPK/wxzECx9PEUYQUDu2VPpW6A0KQJQbP8zl58jR+6DE6MVLQSLSEPCfuxuTG4gYOWmqyJCeJM9I8QSuJ77lkJscPK0gl6fbauJ7mqSdPMj5So1wOCUshWZqAsggcpHS44557ufbAPvIsw/c9tFL04wjXDchzWxi5phmVWoi1hjQxpFnK408d5eordvO3n/4C337zzeAU5t9a+vz9J7/Av33NTfR7XQQ5jYlxsihFWslnPn8vr3n1teR5TpblhKFPblO6nYjDR+aYGR+nPlpB6sL4NolSlCO5/4GDnJlvstyOeNMrX0C1WiVJU9zAxXE1WRohrCDppyRJRrVewWLI0gzP9bF5jFCKNLM4nksSdTHG4gcOWZojpMPSYpNGvYE1ltOnz1Auu/h+Cb/sY3OD1oo0K8zSFxbOMdqYQkpFFLVQ0uPcwjyzWyYwVrK43GJ0rEGn1aZSqSCwJEkCFlzPw2QG7RVm3llS+Ak+fewUN754PxYDUiEyQ7vdZWSs8FQTQiIEZFmO4zosnluk00vJTcKW6VHQbkHZyw0SSFKDFAO6K0Vy1um0cRyNVh5xmvP0oeO4jmTH7ATSdZEI2s023V5Eo1pB+w6/cOfDLHoBr3zly/ifH/sE//cLr+SWA1ciTI4RDhLIsxRrLdpxsZnAioRWe5FadRqBwVroRwm9bpvGWANrLa2lZWrjExjTR+ERRTFkFqcCQnoIozFpinLkpCw/AAAgAElEQVQsSgmyKMORgtRAklt830XlOcvtDqVqBUNxj/KkSPaSqF/QJYG4H+O6bpFQSsAasoFhvdIuxWPJkucpWZKzvLiEllCrlFlcboMQlCtVstygrMULHLzQ5/TxOSa3TPDrn7uNo70+f/rSa1iYX8ZxFEHo4vkakxXJZRwnxFFMuVIiTlK06yOFoNfuUh8p88wzx9i5Y5Ysy1leadNolNFK02tH9NMEsIyOVEmyjLSf4nkBcRojpMVR/oCFYVlYXMZ1FEmSMjJSJyiFdJp94ihGDSjWvl8o6B4/cZrtOyZI0wylNFIocmOBjHa7h5QSLQqqrJaKv/7El3jVi/czPdNACpeFcwu4jqbaqNNsrjC/2GK8MUKtVuX0mdNUyiVuu/sRbrx6H2fPrXD1VZfR6/SJ45Tb7n6Md7zxpSwsLFAp+1gDZ+YWefzYSV730usQyhYTC3lhc9JcaiF10X6tNKdOzOH5PvMrXf55+x5u++fP8smPfRjrSN7+1m/n537yp6iOlbnu+pcUdgGw6hu3itwN66ZWkZd1HnVCFv/FYV92iZq7i3XJq4qOeY6jnQFT53zk7sJtLlTYtIMELs9N0Sesi6KerUiajLUXWHOvee5tQK429MXWUnhObnIywzU3Tn6vTUyb1X0oVZQQnNfGYfYk1lI6IeXqhMYwuxqOD1aT1Q01dWaQnKsNyzeyr4o25QjW3UN7IXK3yka6MI9/1hAbB1JrDTj/8/o6RRh4ttrBRS08XT3PG6wsN9/2+fgXja+m5u755O7rEF/P5O6CfX+d78+l9mdMXrz5anuOdfveqOR1qdj4TMo3zk5eIsdc6wLP//xcY6PlAUKAMXQX4Y47Po3rxtzw4hcQZQ733XkPN954MzGgZEASL1FxJ/jN3/hFts5O8OZ3vI2Tc2fIkhSTZkxOz1ByBE8eOszlB17A2bNniGOYmZ7g0JGnuGL/NXi+SxynZGlKWCkhsTSXFknTlLGJaZS2ZGnE4uICBsvE+BaMtZw6fYjJye3MLyxQq9WoVMpkRiKyjO987w/yizvH2bNtK8pQeGeFhUCGEg5pnPPEoUPsnJ3GcTTdXkQcJUyMjyK0AJMVA8xckmdxMYiXgpVWk1q9Qq/VplavYoQmTWJc7ZImKUJYHNchN0X3mPRilFso6HlegRr0e0WNzuEjJ9m1Y5Y0jXB0ANpCrvnH//UlvvWmFxKWfPIsQ/mK08eW2LJ1jMxk3P/QEV501V7cQBL1+jjK5fjJOZRwqFZLxHFMrVZHiBQEZLlgeWmFick6QypMksXEccaZuQUu31sodCZxQhAGmDyn12mTJjlSueQZ/I8vfIX3vuXV5HnO6dOLSCU5emKOFx3YTS4EpZLL/Q8+w/Gzy7z8hv00GkVNk8lycpMTBB6gkSLHWkEU59g8LXySbOGZVgB5BpsptA9pkvPRz97F6258EXlmeOCJp7j2wGWEg1q3RmMEsES9HlIWgxXXLxRWo35hpWBtIV+fJ3FBgROClZU2QRjQabVp1ApK5/JyE6VFYVchNQLJR2/7Ci+9ajdTM+Ocm1/isUMnuOmay3FcB2ssrU6X0C+hdFHQb0xOHMX4YVAgoWlKmucIWEWNlptLTExOsrzUIghctHIL4Z40o9uJqNSqg3MxLM2vUB2ro5Xm9Mk5lOfw048f48CBK/jL//5XPPlLvwLC0ut2cYMARwuWFhZpjE2AMfSGxvJaD1QdI5K0T1ipEnU6KNfF9X3ai8vUR0aI4wzIWFnp0BgNkEZhhEJJF6syrJGYJMJxPFaWlrB5ztLiMueWl7jh+usLq4g8J88SyvU6UZygXLewYsgyhHbIs4w8julFhRBJ1O9TKoXkicEiMAwGkQqG4hACiPoRWiuUFEhgeamNHxRIteO5NJdb1GolFhcXEWg6vQ5TUxNkWc67/+nj/M/XvrSgaUmQyrI436ZeLdPr9el0+0xOTZClMa4fsrLYxBpDtV5CKkmW5TRX2lTrVRwtMbnl5PFzTG2dwOQ5SliSfo+wUqHd7lOpFZMYzcU2pVJAq9VmbKJB3Ivo9vpUqhWkUpw6Mc/CcpMr9+9keblJY7RB3I0K0++Si3b1gBJXKOT6vsvS0gqVUojJC79MiyJPDVJDHEfkuSQMXWxuOH78NI7vMjU5zvJik8PH57jqih2rQjhSShzt8NQzR9mxdZrTZxa4/ZFDvOsNN+NoSRR1iPs5lpx+FHHw6Gmuu3o3aZbz8MHDXHfFPvzA49SpeULfxQ99FueblEsBP/bkUX7ou9/Drl27GJuZZLnToVau8/j9jzA6Xebv/uZv+aVf+1WsIzF50deuolSrSdaFFgGr/eH6igV74Xfrw3Fc+v3+BYnU+clHcdxnE1IRyNVkcP2xVz1fxebWBs81LpzQLsRKxLrk1gzqz4bJ8UWFS4ZKkmw+JhAXpJyD7zfqAKxBhBu2P7/NG895fVuGSVtRA7c21rBGPLck7oKba4cw37ARg/XWxGKe0/6sHdR123V1gOe3f/3vEUBe5Lo9H9/ceF5Q5Zsd3wBa5r9E2GfrMZ4ljLEIe3Fj1Y0xXM0Yu1YOt375JR5+q2am6+kZeb7GXX+22Dj9aS1LKyv84a/8IN/17jczMrGV0ujlvOsd72Hn1n28730/yXe85104Fr70hU9z9IlnuPryndx0y834tQpn5+bYvX07NelSqo1x5vQZ9uw9wNJKF+UYtm7dxpm5M/z8z/8cb3nLt3PmzBxKSnJjsEJishxHK2q1GufOHiVLU6rlKktLTSZntnPvPQ9Rr9TIs5hSrY4Sgmq9DkJwZv4sv/wDP8JPbZlg144tKKnIspw0KRKdAkUQYAUn584xPTFGvxczOlrHdRVR3EcIl363g+e7CEcjFOSZhdxQLvko7UKegda04xQHhRASpSyt9gra9cisxSJYWGhy+sxpZqbGkUgeevgQpZJDu9OlXA4IQo/Wcovb7zrI+GhAuRyyfWyySEhSg+NqjDJ4KmR+aR5Dxo7tO0iTmIXlRWq1Et1WH993cbRLuVzB9z2Em3HPfQfZsXUG6UM59On3OpTKBTqU9XJWVrrMzk4XMhhaop1CpjzNUpJuTKNRRyrBucUlDuycpdVu4/sB5bCE64c88vgR9u6YIrM5Is8YbTTotnscmTvN9qlRPD9AOwopLZYMpX2yJEI7Dh/7/L1ctf8ytNa4jqLTbOH5LmmS8bnPPs62rYUdwuzYKALBg08c5hU3vQA3dBFW4AqLFZI0SXEdRbvVxndrzJ2bRzkC3y2RJYYkNdz38FNsnRotvBnjhFI5wJqcwAvIM0ur2cH1JLV6gHYc+v0IqQT7d22jVgtIk4QwKLF9egaEIctyXNfB0Zov3vkYtXKI77tIVdRytHoRjuOgtUOv3cRYix8EKNelWqlgcoHvhdhcoAdm90mccOT4WTxHEYSFumq5WgcMZ5tNfubJ43xmocXW0OfXrr+RH7n5lWRpWojKKI0FtONQCnzyvKBheb5bDJal5OlDT1IulyiHDQSKqJ/geQHGSPqtZbR2kNrFWEPgKOKoTdTtFXLqrotAYSLDwrlDLK80yWNL1storpzl6qsL1PfeBx/h5InjBKFPpVFDaU3cjUh6MZ1Oh7BcxjLwivM9sIX5sM1zFuZOMDc/R7VWLgQ3BmPANE4GJuyFx6SQCqsKhVbtaqSwCJsTVuqYLGFlpcnI6Bj1RpWVlRa1eo13v+Aa+otncV0XKOimUimkgF6ny8j4KEo7rMwvEUcJURQReArtOKv0LM8trFWMMZis+A1kJifNcsLAw9MSqwsEuEDXIYligrAwZl9ZbpKmKWEpIM8NzWabStmnUS/jOAolJChZTEK5DtrxWFxcoV6rol1FnmdI6RD3YjzfxfM0JksK4+rMcujoKe5+7Gk8rSgFAXE/IktiJiYmUFLQ6XbZvWsLflCgsd1ehB96nD07z2W7tqC0RAmB5wiOHp/j0OEzbN86xRfuepS9O2dxtKTkeJxbWmFqfIzpsVEeP3iMWr1CFmXEccZn73+UfTu28enTZ3jb972XcycO84//8Ndc9aLr8MsV0igl9EIOH32KV7/sZpTrIDx3dag87PbW+rGLd56bVhtcZPXCw1BekDhdmNytZRkXE1IZCpsMF68qV7I2XvhaJPcvqGsb7m+Y3K2rqWPdupud0yowd7FjXWyJPf91MTpmNkjKLxRLkReOR1bPbSPUKgaG8c8xGRvuz9jNxzdi87Fnkciuu5fr0E4E2HxNidSQw+o9tuR5PqitLD5Lcb4i5/PxLxPP0zK/0SEUxSyKwQqDtfnX/RAXmxH6au/XpczTh1TMIQ3zWWmZG5O/59oWIc6jQV7M6mADW+EC5E5KMaDqDNZfR7Nc/12x7hr3f/i9lJLMWrQFaS2JFLgiI4otv/Ob/4mf/IHvY6kFb37bW/nErZ8gymMC4WBtSo5F6ZCH7r6TbdNbOHHyBDe+8uUs9frc9k+fYv/u3VxzzVX0shiiFXKT02xnfOR/fJrrvuVl7NheoxqW+dBffIQ3v+XbGK0o5ubnqE1O8dM/9fP8xvv/I7fd9jnyzPJd3/k6jhw9yeTMLOVKlVa7RZrEJEnK1NQUjz1xF/t2v5I77/4Uv/O7f8pfXH8NUvsI1yCsIO9HoJ3C763bo9fvMjI+RpYXCpeOo8HawiRVFdfpjjse40Uv2Ee732VsskHWNxw8eJhGo8ToeJXlxQjtSOr1Mo7jkWcpnXYLv1Qo5J0+tsD4WJ2g5CIdH5OlhUIXhaFwt9OnmHSyOH6IqzSHjhxny5ZxHK8QQTG5JQgCkDk2K5KYI0cLOuf80gq7dmwtvPbUYOYzL+hSxhqkgiMH5+jHKZcfmEZYyenTi8zOjKMdyYkTp+l3IM0MR+bmeM3LXkiSdlCiENNottv4rqZcq5Lnll6nR6kSkJtC0EFJh7gbk2U5Z88u8qWHnuad/+ZmHDcj7qe4votyJVlsKLwRBY89fZJ9e2bQ0gNj+fgX7+TbXvUtJEkfY3JKYYkv3PEgN117FXHao1qqk5ECgnNzS4yPjyI9VQwObA5GEPd7+GGJ3Fjayy1yIRgdqRHHEWmcENZLmEgQR128Uoh2HKzJkViSKKLTN2glKJcDpBSsLK9QbVSxeY7UDkZI+q0WgRfS7XeQErywgiBDa4fcKDqtFkEQ4nqadrtN6Ds4StONIrTnoJUeyIgXg0utHeIoBmBhfplKLWR5uY21MDszVVgv9Dq875GjYCHwfdrdPn/w6lcw1hjBmBytCqGPoRLjubnTVMplqrUqZ+fmsWTURkbR2oE8RyiI+n08P0BYSa/XRztOUftkQWIQiAIRIEXigUqxuUQKhZTJqhR6lmUoJwQL7Wa7QCMX54t6wGqZzBpyLL4XEvViHK3odDvccc99vPa1r0UIOHv6FNt37OBzt32Gaw5cTWlkDNctvNHOnjpDu7nCziuuoN9p44ch/U5MWAlAFO2MowQjFOQ5vudh5ToqmjHF/yDLcbRkaXERLyzxro9+lI+8+vqCQpsacmtwPQ+sQDmCTrtLWPLI4xw/CDi7uES1XCZOejz0+DGuv3ZfIQCjCgVYoR06Cz2ePnGKfbtnC6sRJYmihHKpRKfTQyJZWGySZjm7d2+hG/UKVV6p6bS6lKtVut0O5XKIyS1CS1yheeTRp9m1a4qgVMJaS5ZnONrjK3c8znXX76bb7VPyy5w4fZLZyWniLMF1fWwuOXT0KCaH3Obs27MVPwxJ+73Ch9LzeOD+J3nJtVcSRwnWFn6X5+YWaYyVUVrQbfYQQhGGQWFL4mjiLMXxHBwh8Uo+UaePVpKMnPsfOsgNL7ySlWabU2cX2TEzye9Hgu9593fyn/7zB5jdMsNLb7yWxvQW6rUJ/vRP/ozXvf51XHvVPu7+yud5wVX7CaenEb6HEgKZS/JL0VQ2iTU7ofMTso1d8pBNtBHp2jxRPB+529jdr2+hFeKCBHVIdVylLg73uxGZG3y3MRkZmpYX4iOysFpYz65Z35hNktZ8AxV0k/ni864BXFjGYRkkrww8/4YiMcN2rPvPDdG+YfJ7ARI3bNtgvTzLL50ED/LsC2iWA8P0rxo4uMj6m3obD2tiVhHMDWjgYHAm1bCsZfBZnn8/no9vbDyP3H2jQ6x7rInhdM83+JBfIyK42fZDERWLxebri6Gf5Xz+dx4ym9EoLngYbvi4bvnw4XkeYrcZDXYdXcJaC8MEcMjNZ11HJKCXuDz0pc9w3eVbWc4so2MzvPa1r0EqiaSomQl9hzPHT2I6KXff+SinTpxmYmaScsWnFzfZOjXF6Mg49z/0EDNbd7K00qY6OsWTTx/m1OlT3HfPg7zmta+gUg2Jog67Lpvg8NGjzG7dzvJik8uv2M/U1BTbd+xgy8w05dCnXBvh2PFjjI6OopRkeWmZsFQiiSO2Tk7zzvd8H69vnuW9u7egXZfHHz/G2EQdm1sefPQII40aYHFDF1cppHKQUuEoSZbnGGOJo5huJ8LmUKv5lKo+nu+hhKK93GTbtmnCShnlePQ6PRqNCnlmyFODJUEJWRRiuz6B51CuBghhyXJDr9eh2+1RKZeKwZ0ryPMM13Xp9ZLivgDlSgkGAtaOcsiyFCVlMVsroBwG+IHLsVNn8aRLUAqQCu64/0Gmx8dxHKcQ/whcXO0yMTaCdiW9bowxFs9zabc7jI7UKVcKUYR9u7Zz74NPMz0zRhCWUK6mVC7R63YKD79BzZPnOrSbLcLAp9VsF15VwlIqh+zfNUNQChAip7XSQw/QTtdxUVKitKZaKeN5HlGvSBT2X7YVYQxplgxqsySXzc7QbnYJQpczp5dwHI0felRqIVmeDMQhXKIBsqaFQ7vdRwmJH4QEZY+VlSZB4CIVCKnJY4vSAu065HFE3I9I0hwnCDDWoHRR62OEwXGd4r8xhM6FwHU8/uHWL3PN/t202l0q1UKAo9vt4/oeYeAipSSJE/RAbTIzlk4vIiyFSCMLwRFriPox2tUgbIEMa0FQKlOrVfjZx4/y98fnuPGWy/jg/U/RyzRXC8OvvuaNtB84yK6JcUqBh6sVSZKgXXeg5gb1SogIyxiT4RDjhyGu59Bpt/EDD5MXVOF+LybNDH/70f/F4eMnaJRLlCulQmyBQY2LkIAzqOctaKy51AjlEiUW5QZgNbkRnDwxx9jEJHmiGZlskMmivtT1QrTWOL6H5xVoYKNSpVoJ8RR0V1YoV6s0ag0qIw2U55PnBoOk14voRwnjU5MoRxcJnKNZXGoSBCEIhZQFYqeVHjzPCgGXQoxFFr5ZjhqYh/u4jibIUw6MV+l0u8RJhucpom5MGPq0mi0cRxHHhnIY8uiThzk5t0it5GNMzszEBGkWA4ooinFdr6h704owcAkDDz/wSdKYcqVMmhU2HmmcMT4xSrkc0Oq0qVVGSKIUVzvEcYyxOa6rUY4oavpaTcJyyNhoA4RAKZc8z4l6MVIUCWGtHmBMkdCMj5RRvot2Xe555Cmmp0YpBQ7TUxNMjI0AxeTk8nKLSqVCu9mhEoQFrZBiIujc2SWmp8eLrsJAr1fQZOfmFvjyg0+weLbFsdNn2T49yspKi7AU0O/HGCNoN/tMjDbodWPmzi0zNTbCWz53O+9997v55V9/Pw89+hja9amVQ1756lt49IGH6S43mZyZQkjD/v37+N3f/31e8pJrkNrDosDk6wbVl47VhEsyoM3L1b5wsxBCFDV7q7ViA8rjpsndRZC7zbrr9TVrAzRNyjVxkmGb1peqrNWgbUQrB/tZl6gWypfDv6dcQ/cuMum9Wr+47vtLlcmsCZiIC9S3xXAyWqxX6lxbv2hise+hD+GQ4rjxGAIGoiXPzuxarb27gLJUZH0XQxMvGs927uvDriW7RXnNRlR0DRwormsx7h0ie5dCnJ+Pr188r5b5jY5vQnJ3MSWpr2U/1had23rVpGFyJwaDnfWJXSFc8vU5v/XqWKsPzA27veDheH5vwuAkBkno+ZLCq0nfxs5u3XtrLdpYkJI4S3GF5K//5AO85EVXUx2ZYHL2MlqdPqVKGVcrzp6Zo1Gd4E//659x9VUvQKqQv/vvH6I2UuW1b3o9reVljM1oVOtUqxXGJsfp5xEf+MAf8rJvuZlts1N4Ts7b3/xmhBTEUczkzDQagxvUeP/7/yNX7N3DNS+6hswYnnriCfbs28OnPn4rW2ZnqTZq5CYbeJ8V3lL/7kd/hl3338/3X72D0VKZNI2LQb1VBCUPYQ3Ndo+ZyVGsSVG6ECdAKtIkRQlJFMWrxsJaaLQqBt9e4JCnGWmcYyw0O32CwOeJxw7T6yY8cfQYWyZHi1thBEePneHhZ44xOzVBKXBZWVou0Agh8Vy9SgE8d3aJaq1Et90nCANc30UKi+u6w18hjlasLLeI+jFh6GGVRUlR2Bw4DlumJ/ACHyHggUee5IVX7EVJTZ6b1do1YeHRJ48x2ihz/6NH2LtnWyFBnufEaUJuM5QLlVqJmekRHMdDSMjSBJPaAe3NHahRKvLcol1Fvx9TLlVwXI3jOmglC+U5BdpReDrAL3kIBVmSgbGF6Xme8sRTxxip14rCdVEkm/0oAmvxPYc0NcwvLFOph1QqVYQwWAorBaUkcT9CWoHr+kV9lxC4WmHyjKgfI7WmUimT53lhVp3kPH3wJAdPHGfrzPhAJKOOkgrtaLQqaJFSFNLoUheG7VjL2XOLlMsllFLs3jqDVJJSJcBiSfoJpVKJLM8QokjwkzgjzTI+dtvdTI83CDyXLErp92KEKJQlBQXEoJQiDEN+9qFD3LV4iOteuY+33Xw5//zgcT5x7zFeWhvjF17+Cl6ycydaO7xg3y6+dPdd7LlsJ2luWFlaGNhrCNIoKhB8IVEDjyrHKxF1eziuWygPDga+hZKjw4uuuZwDl19GUAoL5E7JQb2JBCNJ04zU9FFKYciQuUVi0UohrcWowteu1qgCOb4fFP59jibLKNRls4wkTWm3u1SrDUq1ECjUfRGSQ0ePM7t9G0prWsvLOMrhgYcfZee2LbRaTeqVEkJrup0uWZJQGxtFieJeO47kmWcOMb+wzOTkJFG/u2pPAQJjc/IsRiqFtRIs7JvaAnEL13fxfB/HcfCDACEVSitc3yPqxmRpzOzWCSbHRvF9XQj8uB6GmMAr47geIGkurWCEpVYpzl27XoGUWkGnEzEy2sDYDO2qwjYlTZk7s4QQ8PBTh7DWUC6Fg9l+i+8HlAb3Q3sOWRKTZwZLXjzzhGR6cpSnDh1jvNFAK02S9Oj2IjCCndu3YDGUyyGddo8ojlFK0Gp2WOn0GKnXeeCRg9jcsrDcZGK8Tr/f55FnjjE9XmdlqUmpFBaKvs2iXnGkHLJj2wy+I2nUSiy3OlTLZaIkoVwr42rNZ77yAGP1ChNjNb7v3kf46z/5IHfd/RUOHNjPwaeeZH7+LL/yi79MlCT8wQc+wGMPPMD3/fD302o3+fBH/oEfe9/7+NB/+T1ufOktxGmGH2iMOV/ZcT1ANbQc2ojAFYNrOegrL17zZrGrypGXHlfYVcGUod3BehuG4d6HSYuFVTPuC9vGgD6tLkiyLpbcYVijRK5bbu2g7GWdeMpm57HqHbcusbvYa/WQ1p5X/iaGF33wXm44t2Fys4ZYFfdqvVDL8DVEMc877qWAu9VEdfWLwX6GWe6GY2yIzURdNhxgsJ5ZpYyuXgcojM4H3wu58fpuNvNui31ZA0I9n+J9E+L55O4bHf8CyN3XKzaicudx5zfE6kPtG/WPHeZfw89DJbFBDZ7c7MDrZwJXla3secsvRRFwUKR5Rj+O+M1f/w1+4rtuRlfHOTyfodKMv/jrv8X3Pe65806uvvIqTh5d5Cd/5ucoj0zws//fr/GtL72SW95wC34lZHJ0AiFcTh0/xfzSGWojFTKZoDKHQHso22dsxOHhhx4k9Ktor0RQqtKcX+aGm2/hN/79r7Nzdgrt+7iuQ6lUod1usbKwwr3338f1N7yYKCpMvH/l13+Lm48+wbsu28pEeYRcxGAV2Iwk7VEu1xBKoB3JaKNGt90qBtupBSXJMsNHb/sKu6bH8XyvkDLP4fa7H+X0qUXueeIIB/ZuxVqD43ho1+cjX7iLAztm0bmlXm8wM1EnLLt0e12OPDPPfU8e5ebrrqRUDsniCEdLtJbkxqKlYv5cE9fxOHN2gUa9TtRPEFYiNIVIhBL0ehEPP3mY6dEGnutSLgVEUZ8kS3E9b3VWdO70PJ1eF6UkE40GywPFOt/3ihn5wY9p6+wMUb/P7u3b+ejn7mDv9hkc18F1HVwd4vs+X7nncSZGRpFS0Gm1CAN3UH+gsBTeSHE/wgsCHG9onlzQkIqZWjmo+coHjwDNrbffxfRoDc/1aC61CcsBXslntFLH9T08z0F7CmsEWZZQLvlkUYJ0NEpJvEDjuB5Ss/ofMLkh8Dy0dnns8aOMjY8gVUECcl3N2YVl0tiQJBnLy21qlQoGy5bpKbZNj5LbnFKlTJpkWCy9TpekH4MxGGOK5E5KyA0mywgCHysESRzjBx7dbpc0S1Bas7SwQrkcolyJ4yiWl1rFrLcQ7JycpNYooyx0Wm1c12FxZYVS2ccPHbTy+OB9T/Cw2+cXvvtVvPLay/mbzz/Eb338Ucal5E/e+Dr2jkxirCzUXW3G8SNHuem6F5AJ8EIfVxh63Q6+6+B6DsL10DZHCI3RAVpItBRo7WCFgoEwRbfb58iRE4yMlIrBqlKDBGhtlvrQweMcfPwYO3duRdiClmmHRseI4rlkC28pLdSAu5XS78a4bjjwiirMzaWWhEEJrMJIg1Qa7Yc4QZnJiQZWSGyWsjI/RyUsY/MMhWFpaR5XasJ6DakdXO1gHQ3WsDw/z/LiAvVqlVqtged7eI7GDgZ5WZqhlSJPuijtoBwPIQsE+n2fu53Xb5sqnpaqsMfo9SK8wMMK8FyHXr+DUgIrBL7nIiz0ejHGJvh+iaMN0HcAACAASURBVOWVDh/77F1cuXsrQcVneXGFdrdPq90ljlI816ffi/GDAKlSlpdblMplgiCgWg1RSrJ1ehxHSVqtPpVKCdf1MAaWzq1gLAgsviOJ4pQ0S0nzrLATyQ2OU/hlHjpymu3bx+h3Y+bmlqmVSywsLPHFux9jdnJsQF0zlMKAWq2GFJI8SpidnaZaDiiVfILQY8eWCbQDvufyxMGjdHs9qpXi91GplDl47AT79syS5xnPHD/H9Pgo0lE4nibPUrbPjDNSr/Ce2+/n/3rn69h72U66nTY33XA9r3/9t/Lu73gHWgccP36M9tIyU2Nj7LvmSoQUXHf9Szhy7Divf/X1fOazdzI+M43jCcRALXPNbHsD00WsvV9LetYSoYLYcvF+b70h9rDO6sKEZ92Ery087VhnzzDc+1rNHZvSDM9LoAQXJH0XS+6kLCZcClroGgXygnUugUjZwYUZJi/PNnRZb1Q+3MfGfW7Y4PwTGayjpNr06q/fXslLWQ2s3+b8N6up9HOc7H+25G74/ryE22y4DhcwNzcmd4N7NHzZodrn+Qjq8/H1jedr7r7RMUCDrDAg7Pn1ZJvJ8D8HCf7VdS8y+/K13qf1+x0ieM9ho0suzjKDUs8dYdzsHKxZ65LUukeClAXlYXW91fUH1hAMAKQhYqfU6vL1kQuDtHJA/BOEyuePfue3efkN1zKxazu9ROH7Pt1OBz8M+KPf+wNW2h67943zqhuu5VO3foFbP3kbP/ET76PZmmP37p2MTc3ilTxOHn6C7TsOIEyM5zr8/+y9d7Rkx3Xe+6uqEzvfPHPv5IBBzkQmAAaAYBCDSIlPepRoifLyUrJky289W9aSZC1JVqRNWsmyAimSpkRRFDMpEowASCIPAjGYATCDwcQb+3buE6rq/VHdN80MANLkW8syCsC66O7TJ3V31f72t/f3ff2b3+LSq6+j32gyvW0z/X4bo3PCOKDge7T7hnZmKfs+S3PzlKoxo5vHaCy2WZo9yvYd59FOfIRMEFoShoLf/YP38MhjT/C+Gy/HaEtmcqQEnVkC38cIjc26SD/GSkh7KaEUNDsJ337mBNdcfD5zS0tMTozj+R715SVGqjXyPKfX6+FJ6crYjMIPBwFtbvno5+/irbdfz/zcErVKhY9+4V5+9AdvxdocJSwIRdJ3Sple4AJez1MYbZmfrzM6OoYgx5Cj/JBeJ8MTgm6ny0K9Ta1SYmSyiEkFjzxxiKsuO59eu4EAomIJ63mAAa3RqUFJn1wYuu0uhSjmc195iIv3bGF6ZhQ/8nHsn3Bql0KxsFDn8PF5rrx8N0ZrgjAk6fUdu9VP+fRd9/GmV9+EBzx64BAX7ttDEHvo3PUkLi4tUatWwRo8KckNaCFRQiKsJu13EMqxIVjXE+UHAUq539bhIyeZGB1F+ZpisUi73SOMQxSKo8+dYOuWTWBx4jF5RpZrhO9hcs3SfJ1arcqxkwvs2jPm+r56HnOzDSanyxx9dg5PeswvN7jiir34nuXbjx9l+/ZptE2Jo8jZXmiDkgKd5/STxBmTJ3rgN6YwQKPRYqRWwRiN8obmwQqNQQGdRpsgLtJYbrjS23JMLhU6SQijCG0E1mp3Xwap9+V6mzAMiEsRD56c59tRwjtfczXWWt73Tw9w5xN1hDX86S03UyxXaLe7VAoxNghIe01as4vUtsyQdNsUggDPD+j1Eh4/cIRLL7sQFQp0mrt+4cEc4Uf+ammRthidMX96gUKhQG20NgD/hvpinVq1xl/9/Wd4y+03MzpWcz1eWe4UQVemIDGYh1yZn7Cr2XKXuTdgBTp3iqFyIN+PhSxPUN5qFl7ho20fKSJQYHONZ6HerJObPsW4gu/7PPrI41x82ZX0ug2eefIZLnvZFZw6vcCWmSmybgcVR+jMIj0P6QsnsG4NNs8xViBkgJKa+sIC1ZFRcpPxqW99jTfs3evUUKW7RdaCzVI3f0qBZ11CRoYeSmiMNiRdQRBJjNHUlzrEoY8U7jjFWok81+jUlS43mx3AGdyr0ENrTSGOaSy3qVSKNJoNKuUy9z54kKVuh9ffcrWz8zBgdY5UkizLCAKfpfkGI6NVwJVLPvz4IabHaozWyvhhSKef8vUHD3L79ZeBzjk1O895+/ZgbEaSpPieT2JylJXUlxqUiiEj42PkWUKaOBsGP/TQ2rK00GdmyxRpknH8xByLy02uuvx80tT1hyb9lLGJEZ46dJSdO2awg7VeKMX//fWH+PD/eC/LS4s8duAgl158IdLkmDzl+IkT/M0HPsONt97GgSf28yNvfQOPPnGAq66+mrEpV4GQWdd/deCJA9zyilfQzNpgHLDxlGLYxr+ybg/Ym3OttRvtBFw/qWPfhqWYw++j+3tmnJJjGSBt5FmYuPUHcDtSa0Rb1oG2AR7Rg/J7cMnatSyeeR4wOtx+eCy3rq8FvIN46hyhx/OpWK593cBgfjdnVfwcspMr21uLGjCbCIE8w4bAxRpIsVqKyXrgPTQaP+c5rqVt1z4+19h4zoN7LKVyCuhnMJxnfvbGGpRQ61DZ2s9q5f+t621VUj3vNejcMe/Kd9nKYfLiXOf80nhx46Weu+/3WPkRDlits/STnbM37EV+qb8XJZnPt9//FfPx4ZDqTIWoDQd7/onJMMjUDfY3mFm01itlDWe+x7iJ07ICsmFtBnPDZINAWovIU4TJ+cgH/pJXv+rlnJyfpTwxQ+gHLDeWMcaQpSmXXH0DvXbC/d/8AuOlmDvueCOdTpOxsSrX3nA9//Kn3sU7fvwnyDPLv/03v8TNt1xDFPo8+OB+JidnKFcnqdQi8n6P++57gJHxCZ46cIRCFFAdrdLp97BGU4gkDz70MDPbd/Lkgf3kuk+mNZVyhTzXnHzuOf74536BX9i5mTfv3MJzR08wUishpCJN+64sUEqSXoYvJcgMT3hOrRQolEts3jSB0Zq7H3uS7ZtdEFOulkl6KUp5KKkII+d1lmUJSeJYnaTfZ/9Tz3Hp+dsxxlAdqbJv7xY8XzF3cg6bavxiiDUDPzEEGMvn77qPWilmYrJGo9UkDBVKeVgk7UaPpeUGlVqZRw4cAaspFX3CIGJ6ehIkBHGICnwsAisVJjegDTrXPHnoMJOTY0glmJ1b4vILd1MeLTufIW1p1BsEoetN+vBnv87Fu3ewuLjM+EgJJRTNepvKSBGBYHF+mfO3b3W9gJ6iXIxRvuTEiXk86WGNMyQWStPrdAbfdY9GY5nA91icbxIFkVMyFIJ+z6nwGeOMsLutDpEXECmfQrmANpowCuh2evTbGfOLdYqxT6fb4blnZ6lVi3zhvv3s27MLrKBUjOh1uoxUi/R7AWFU4N6Hvs3uHSNEcczYWJXaSInx0RIC6Kd9ZjZtxvMkcSEgy3LSvubAgefwA0mxVERIQb/fRwDFYsxyvUlUiAnDAKRE+T5WuD4opVwvpdUSkwuC0CPLUmqjFbQ2zJ6cp1pzPmfSd4wZFqQSpFlGoVTkTx59iv/29Al+9idv5GUXzADw9t/7HEcXUt7/+tfwtgv3kfYTgjjED8sOGEqBlJpTp2cZ37yJKAgQVpHm8NVvPYg1gm3bZpCDnsw0yQjjaGDOLAfRpSDLMu69/1FqlTITm8ed8biSGJNRLBXpdLpcsm8vhWKRLM0HvYxiwMIOTH2RCGvRmesBZViibgdzlrFYK0n7KX7oD0rYBAiXAe90upjcgnAsqbYJQjibCqTACokXKuKogrSSfrZMpeiUSxWabZum+co9d3HBvvNIM01YKCCsdD5lvk+n2cbzAmeGHgYkaR+EK7ftdnvEcYwnFL/8zQf5kb3bSHsJ2vTxPM+VQQr3t9noUihGIKHb7SCUQlsn0CI8jacC4lKMUJYo8lBhDFIiNOT9DCdw4/p3PeUReh5pkmFyw3K9hRCaYhyDhZFykfP2bKbb6SKFwAtCrHbHwro5PfB9hBTMzS4yOlpjrObMwjudLqPjNbzAY7o2TrkSowJLtRaDlejcscnNTpNaoUy/nztj9FoZTILB+Uo22h1CVUAqj2qlRq/fo15v8tChw1x1wW5Ozy4yNjmKF3gEUeiCe6PQ1tJYbvHzjz/DBw89w9/8+R+yVJ+n22/xwL33U62U2Tw9zezcPPMLS5QrYxw69DiVUsz84hz9JOPOL32JV77qlc5nslCg2+5w393f5In9j3HRpReurFjaaJTy1rFqQ/C2Gmw7sPN8PrhDdlquKbFbxQ9nrq4Di8XnBZGwWsqolFplgOxqSefgMgbnsMoIre2pezFM1LpSx5WyyPXnv7a95Hn3dY7Xh+yjWQNCN4617ORweztgqc4g9obeFoPQcOWKB3OHmz/OcY4be+oG8ZMc2lV8BzGh+97IlfPc+NrZtj+bP7Cb15wH3tp7flZRFtZ+Lu6z11qjtRPEWsf0vcTtfVfjpbLM7/fYAO7OVsu99vFKg+6LouQ30OXfYYbjxW5/tjr0MwDfC4EzvjMQerZ6d2tZ7QdYyZYP6/zX7ntwbmuyWcNM0srkv6FpIQwDtDF4Nmfx5HH++N1/wI/++L/AC0Kmt++k19Ok/T5fv+suup0u5+87H+kr3v2ff4+tUyXiQhWd5hgyrr/pOoJChde95hbuufdenjz0FFdedikTU1P4QvF3H/k7Lr38CjZv24qQGQ/f+wCvfMWrSIRgZmqSQhxSr7fwwiJCJNQqASMjYwgRM3fiKBdceiVhVKRdr/Oun/0lrjv9DK8/bxdSKDKtGRkp0e/3AEEcF50vmBR4yscaQZI1aDdTCqXy4G65MizfV5y/c4Y8y/jw5+5h39YpSpUiSdInjAInc24NCEMcxTRaHSrVMhedtx2wA8+r3IlEYCnEEWEQ0Ol2aTe7FIsRadJH55rdW2cYHR91SpOFAlmSgyM4iIOIYqVAnuc8/MSzXH3xDsrV2DEOSoC2pFnmhAsyxzgFQUSeaoSSzC7WmRwf5+DTR7hg306SJKHd7FKvN6nWypQrBbCSpJ+wc3oS6UkePPAM2zePo7XhG/ufZO+ObbSbXZ45eoqdO2botXvsP3CYbVs30+12GB0ZQQpBEIUrgCbwffI0R3k+QeANelskjx96ls2T4/R7ff7nF+7i0vO24fuKTqdJGPsEgeLu/Y8xXh3BktNotqmUyxQKMe1ul8mpUQqlguvHs5qRYpljRxeolgvMzS1QKRcwFu769kPsmJ5g69QWwiAm1zl5nmGFxvM8PDnMjno0m0201RQKBYIoZGFxmZmZqZVAMIhChBW0Wl0q1TLdbo/njp+mWi0PohIGUvnOH08Yi7CQpQnlSpFmo71igl2qVgaqq8YF9p7nstqhzzvv2k9QUfzJz96GkopWq8k73/NlhBR86E1vREiByTTa5BSKRaRMSXtN0twgjc/Y2Ah4AZjcMbFByPTkBLt2b0UIByKFlEjPmVobbVenBdzvYsvUBIViPFDlA7QL3rJ+QhzFJL0ey4vLfOWee5meqNFYXkIKzezcHFmWYnLLM88coVwokKWJA7wCsiQhT1M8PyTPDL1OfwCG3ZyVZylSKg48+QxjI2MEfoCvQnSW02y26DY7xMUCGpcUy3OD7wVYYQj9El6gaHcW6PaXOXlynrFajfLA8qTVaBIXQlqtZQqF2BnFW4tQksbiEoVymW67S61cJklTkjTn00ee5W07pp0gjRwyHkOGMyeOQvpJwunZBSbGxlb6nsMgHKj2CdI0JQhDlHClnla4cw9CH6k80jwhN5o8NyRJCsKVe46PjyJ8D+VHaG0pVkoYo/E9jzzVoCQPPXqIqfFR5hfqjIzU0HmO0YZiqejUBX2PuBASRQGdTpdur091JODJp48yNTFJ4BXoJh10rhkZKTNSq5CmCYv1JuVKkSD0sVqBkSgREHgRi0vLVKsl2q0+USEAY6gVC2yenqBWq5Cl7hyyNKNRb/Ky932QDx06zL/+s7/g1ptu5I5bruP3fvf32HfBBezet5dbrruO+tIi0vPYsXsvs/ML3H77HWC6vOpVt/Ib//m3KRcrXH3N1dzzzW9w0YUXYqXitlfexstvvJnJiUl27tru+lk9z/0ItV3ttWLtMjwMjlcWunVr/rliEGsMyvNW3ru+kmeVFROCM8Lu1Z46VuIdKc6Md6QQztrH2hVAtK7s0a4/7lCgcePxVkov1y3nq6WjYi34FGJVxXMNCJTDSp4N90UIp5A7PH/BKhu38b4M+/c2ntvGewtre9Q2gLMN90d53oqf8Bnx1xoyYO04w6Jq5eM6+3ZrAda687fO326ou3AuNnPtvXL7sevO72zAbuU6Bt/Htaylpzy0zgbxpR0AxZesFb6b8VJZ5vd7DDNVg7LMFzNeqBzznO/7PoG7s40XtED4Ho21yl3D3Quxyty5KXw9uLN61WBdSmdqutITeI5z/NznP8/rX/s67vnyneyanmT7zGYW8xIHD36b3Tu202/0eW7uGJs2bWZyYoLDhw8TR4LH73uSG2+4GL+4iQ//1V9yzY1XUZkcZ3xyJ1/94od55e1vYGm5S7/Zplab5Lmjh7joovPwwohObghCyWc++A/MN5q87ad+klNPPc626S08dfgkmSxw2SWbaC4eY3RiG8gRCl5GS1ve+sM/zj++8jqSPENIFzhGYUhQLNFYXqRaLZDnktCP6fU6RAVv0PNSppeeoOCPY5WHNDm5BeEpdJ6R9Xo0Gl0mx8fp9Xosddpsmhp3NgjWgjUYIfCEE0FQvmOklAdpkjm1O6nopH0q1TISaC41GB0dYWFxgTj28cMSWZoRRQW++PUHnMCGHzA+VqU0WqR+qkFtskqW5zx3+DTjYzFBQVEs1rBSkja7rv8s8PiHz36NH7rjRtqtPt/Y/xSvvvkqhGfJk5wsSykWIxYXGlRLNbSxBLFHbhI+9+UHeP2t1yCUZXGxThQVyfOUSqVC0s8plDy0ThHC0m63aS8ZHn76KK+++UrypINUPu12n/HxEYzNEMJH4mT6xEASO0k1WEFUiMA6uX2EHajXCQJZINMZSEmWGZTVhEVBmuVY4/HcyZPs2b2DPNdYY/CEpNdpUYjKfOLTD/LqV15EGCqMtXhRiOlrtM758Ofu5o23XYLpBUSxRy/pMTE1Tt5PsEqwf/9RLti7mbAQoDyPTqeLkpIwcgIWjl0MXNAoBbk2K1lmJcTAky1G5zl+UABpMVpTn68zOTlOo9GiVCmhfM8xx36INBbynFwahPT4sbv28+/edAlX7xql2+sThgXe+d6vYgx86M1vwugcbXKUF7pSQp0hlM8T+7/Nhfu24o+U3f3MQoJKkX6zTlwqgfKxWmNMjhSQZ67UVwiJzjWN5SaB8ilVS1g0aZISSCcCk2XGARulyE1Gt9OjWipjMCjhkaY5yjc0Gyn15QZTU+OMT4xx+vQsYRRQHJizd/sdlHKBWaVSITWKe775EJdfcgH9pMvm6SmMdV5RRgvHqqVtgsADrTCkSBRPHzzMth3b8IsxVucIZdGZU7kUg2hX2JSsm5FnHRqdLpu3bCHJNL6v8ANBfXGRYqFIs9WmUhsBJNIYciVxVvSCZ44cYfuOHXzw3m/yjvO3oI0hsNBodQjiCM9TNJebjIxWya1F4mH6Gb20QxSHeLJArnv00pSoEJO0cz72mXt52w9cRViO0UYjEezf/wy7d08SRQFxWMLk+QqLl2Uaq/voDJSSCGXwwyr1pSVK5Zi4XEKhSJIUnefcu/8Al+zbjtaa0ZGKKycMA2ye0et0iWKfXBsUHmme4geeY7mkx9zCLLXKCGifYs2j18koxAWSJKGvc4pxxPLCMpViAS/y6HR7fOSzD/KGWy5jcmKE+WaTX3/wSZq+j1Q+xhj+/L/8F4wx3PXNb/K77/59rrnmWv71T/8UBeHjhT618Sqf+OynKJmML35jP4ePnyY3hsD38YOAW192GW/5gdt5+ImnePAbD/BjP/FOjjz7LFdefRVJYphfWmRm6xYsgjs/83F+5MffQc9k5MLiG+UYmxVJ+qHIyca19Czr6xrlxrUBu2P4zMraKzYwT+eKUFbKKAclm+DYq7MxPdqYFf/W4d+VQ5j1IAG5npVcOf/BX3UG7IMzDNcF6OFNWFN+Kocs2Arjt3of9AaWzuGkVSGZleeHIPYs92L1klxcolYsAtYnr9cOOQCLK1YHZyun3KDcuW6sAepnO5eVD/Nc5ZxrwJ07n+dn3zaOs6mPngEIB+XAZo3NlZs3s3UtSwLfvfZifYlfGsB3Vpb5Erj7LoaV372v3YsFed+rz+WMmui1gGkwjZ4V1H0Hx3fZubUL0ZkLy9nOxROu1t1qs8rEcY57NMxubewtWKOwaS2gM7SUSKAgJX/zZ3/G1pkRNm/bQ3XTbiQ5QsqBp1pEN4VPffyTvOG2V/HQ/fdRCAts2bYJIwxSFvnEp/6Wd7zrXVgZYDua173uFXz8k59ESIm2mpHxUYSJSNIT9DpNNo1fQC9ZxuYpYblGTytaJ44zs3WS48dOAgFPPHE/W3btYXlxEd3v8Pt//hHef91FgCSMIoSnyLMchMBTitnj84xPVsl0SqFYIk17eF6IzizKUxw8cJSduzYTxp4rQbMa6UVgFB/99F3cduMlVGslhBJYI/nkF+7hjpuuxI98DC7Taq0GK/FkwPzpOmMTNZK0T6Eck+cpgRfT67cHWfmYJM2Q0k3OaT/D9y2dTkK1VqPb7ZPlGYHvSoucrYTrodPa8KV7HuXWl13OydOnUZ5kqd7hwgtm8AKPLMuRKsAPffKsjxIuSEdDYaSINYpet0+n26U6MoI1Gl85ZUmDcP1PQLvVplwpI4QzKE+SlNgPSJMO/UTjqYh+L6dQDonLMQhJa6nB08/McvElW1G+54zbcYx7kqRIz8OXiqTXx49D8rRP4IcD8tiSZW6bPDeu50BKgtBD9zJn8RB5HHt2nlqtQKVSAitQUYRO+jTbDcZGp+l1GgDUl9uUCjFB7DmREOOCDyt8Ou1lSsUY6QUsLy4zMlYg6Rp6SZ9CuYDv+2RZhpQC6Suk9Zk9ucTkphpZ6uwLsix1vnXa4skcrS1+GLFcb1GMI8Bjbn6OTdMjSBWRmx5GW8LAqRtaXLlXmmbMdzq8++gJ3vvTrwZAWoNB8Nbf/jSbSxF/eOsraLTaTE5NORETL0BmbU4cPcqmbbtQysnte76PRa6owkshMNaBuSAM6Pe7SARPPXWEkfIom7dNYK3lyNPHkVazdcc28qTP/NwcxWIR3/eYW1jiwKGjXHHRXgoF1yPZ7fZWvPMW6w0mx8bo65zlRoPxWhUlLEEU0en1wAo8qZxKqufRTfpoY4jDMp1Wg8nJERbqS0xsniHpJ4SFCLBYAcpKjAAhNJ3mMnFc456vP8zLb3kZuelgtYcXKKSENE2ReMggwJocdI5QAVIY2s1llBIszs8zvWmKTmeJUydmOXm6zg03vRwVRaS9NkFcRik5yJwbhO8hhSSfO0LS7xIUis5SQ8qBXYNFIshyjWdSMg2n5paZmZl0/ZS5A6s6y/nGA9/m2ssvxIt8tDFgNXmvh+cpZFBAeRJMRpoagsBfM987fz3P80jbfdI0o1Qu0mg0nciQH9FoNhkbr9HvpvjKo9tLCQshnrCutzA3KM8nTzPyPCWOC2htWFqqMzpapZ+mhIGHkh6teodjs/Ps3bkFayyHj57kwQNHueOWS6mUi7zngQM8lGrKlSI//NY3cNddD/Jbv/7v+aM//Uv+6Stf48iRw4xPTrNrxwTX/8xe5hc7xHGBdqfL+EiRQuRx7+eeJFvqseniLTz70DFueeeVhNKSpQlzi01OHFsgrpTZsnmM0UqBOz/6MJ0Dgre86nb+63vfzac+/TFEGNLsOBY3LhVZfPYpzjtvL0l1hMBEYHvD6r7B8rfa43RGBcxGcGRXQc4wgaqGTNYL9Non/ZQwCs762trlWwoJngWz2js3dL5bC87Wrvn5EJjhYgI1KBscgpqNccgQfFizGm8ZcLHA4LEQgiRNCYPgrOCDNdsNwZ42q91+54IWK6nlwXvWsZRyDUN3LpaNc8dBazY4+7mu7eMbZL6VUFjsCuv3YsYKWDTrjzPsrR724631Nx720g3PdzV5PnzyXAdb6xVoMdZV7Qx98WB90mGlN29wPZ6KgcHnsZEBdW9+cRf9z3y8BO6+z+N/Z3C3dgId/qg3/tCGr73YieS7BXdD31alJLlekzH7DsDdasPeYMISBqkzyl7MB/7qg9zxmutJyzOQCwp5SldnAHi+QJuMtNljfm6WPO0jrCaXHuefv4/HDzzJBRdfyt13fpkbb7qe+aU5auUCpYndLMwfZ372KHu2b4O4SNoR9PqnKJZiDj02z3mX7ED3OxjhU6iMkTSXsaQ8+eRTVMpj7N65Gy3hXT/zc7z7wmnKURFrJX4Q0u11KVfK9Lqu3Mv3fYSwpGkyyL76K1lJl4XM6LZyKrWYJO3jez7WJORGkCaG0AvQJiMIA+rLLWojNfIkpddPeOzQs9xwzaVIZUl6iRMHQVKvN/jHzz/Aj77pRoJIoXzlvMsAned4vken2SEuRMwvNvD9kLgAURQBklznRJFPt9tHSkWn3cWTrkw2CCIOP3WSrz18kNfddCmlcoGPf/F+EIa3vfZ6omJInmkwrl6/3e65QD3wWarXqVRKA1CREvox7WYHK3JqI0WM9Wi3O05uXUm6nS5CiAFQzHjw0YPs3rSFSq2I8gQHnzrK1s3jFCvFQcBq6XcNVmbURkfotDsUi0X329CGLHP2A3PzS+zdvY1Or02pVMQYjbU5fuiRpW5B9D3PSXhog85y8jzH9z2UJ/GUT5rktJpdCtWC6+0yCeT+Sn9emqYABH7I4mKd0bEKcTEkNxaTp85g1/Pptjr4ISRd6PczNm2dIkvdd9z3fXrtJmEYs7zUolIt0u9Z7n7oUa699DyU8vCUTxjB7FydSqVMFIcIoZk9tczm6SnyPAVl8VUE0iJUhs6U/pjJJAAAIABJREFUK42S8M6v7+d9v3gLvh84zkhIjIW3/+5nuX2sxo9ecQUiKjg1xyxBWoOIPNJ2RjEukIgMaX2sgSzTBJFPv9MnKAiCwMekkm996xGuvvZSHHlqEFbSazTITUo/ScFIKqUy/V4fgDzPSJI+XuAjVciX7nmI219+Je1Oh8DzqTcaTI2PrTCcAsEjh46S5SlXXLSHSjl2PmtSIoWkO2BnA9+prmpj8IMCS/VFauUCOQa0Igg9B1xaTcLIJypWQXpI4WxQrNZ4vsRayac+dxc/9ObbyXWKNi4ho/yYQWjkShKlDxiksORZhicy0HDq9LOOiSWgMjZJZWoKIzzQubPgyDV+4GO0Y91l8xRCOYVaoy1ZnmGM5fSpearlouvnS3uun85TeL6PMdpl4bMM6QUrvpNau/JLT3lOokpZrHUl/c6iS/L5r97HbTdd7cpvB2V0CAHGlXTqLCft9LG5Jii7vkFpJcVylYXZOvd/+2muung3Uei7nkwvoNVooXWK7znW3FpBOLBoMEbT63dIsoxKqUS3l5JnGT//xBEAfvZdP4UxGX/2vr9BWMuFd2zhwhsm0VnC8dMLeFGZ8VqRNMt5/OAJ9uzaRJYrqnGBk/PHODmfsThX56brL+DIsdPs2z5Gpi2tbuYAuLTMnZ6nHPts3jTBwWeOs3P7JOUo5tCzxzhvxwy5lXziY98i2y/58be/hQv2XcRFF19EanN830eZlLu/8hVueOPrCUyMtj1Yt96tYT3WgDujzfrH1qwDdyuKIy9QYfTDb38nb/zVK84au9dnE459rs3v/t5vDsoazfOCuxUrA2PXrflrBVSkUyrCGjvoVRZneP2txCdrASJrBE3WjBfsuZPSJTwGzJ08R0wyHENwJ5VyfYuD7VeEV1bO8exM1tpz+q7B3QD4MmhdGMZkzt9SvXACXghsbhByfQnkucDd2Vi5jbGhkucop7SrHsla566v8EWAu5X7ZVYBpud5yKFs9OrJPP+1/h8yXgJ33+cxBHdrVTBXXhtS5ud4/gX3/QKA6Ds+1+cBd8MhziE5ZcXqJPOdHMMdiJX1aF0GaM1QCLS1KOGEHFbKIsSght0OPKKkdPLtrJFh1huA5wDcydwS0OM97/4jfuzH/hV3fvGT3HT7HSi/gGc9pEpQ0ol8PHngEPd99U4uuvhCkrSPEHDlDTextNhi6/ZdHHz6ICPlIlOjo7QaCxgfQm8rf/2+P+enf+YnsJnERm06DYMQLbrtLgGbGN1W4OThwxw48DRjEzNkWYfLrrgIzws4/tws//bf/xqNpTk+89bbkUKjlCLpW4y2LLeaLNYbnL93B0mSsrzcYmS06hggnZElOVFc5MiRE2zfMU2e9zl48CQXXbgTi3ZZbh2Q2ZywIEmSFlZ7RIWCK2UcKRNHHt1Wj0986QHefNv1SG+1XKPX7SGVJI49jJYoGXHnVx7k+pftZWmp5ZiPfo8w8CgWI6q1Csv1Dg88cYhbr70Ez3eGykZb8tyxR0IKkiQnCn3y3DA/26QyElIsRXQ7faIgZna2TrVaROsMT3p4vsfs3DKHjpzilhsup9NxZXFhrEBY0iTlk1+6n+su3MfM1knSvAcGZ8Lu+QPw60oP+72EKArJkhSdS758/0O88tqL0SanWnEiIdYadJ6BDRG+Ieln7l5Ij2qlTLvdY35hge07ZvAGqpZCOr83kPT6XaI4xPdD2q02cSEiTVKk9AiiAGEt7UabYiXCaIGSHoeePsruPdsxVqM8y6mjS3zsW4/w8z98O1IJtNbUF5p89hsP8bZX34Af+KhIkPUzx2bFAYGMMaToTDJ7eoHaaIkwDDhy9ARbZ6bodjuEQUChWCDpJSCc2bmxmmPPzVIqFKiNlIhLsRMV0jme8GgsN6lUyjz82EEuumAHreUe1dESUmmUCjE6553ffIwP/7vXkOcpYRgCgsVGh598z5f46A+9Dc9THDrwJLv3nY/AoKRleWkBT/kEURGpAhCGfidheanFqfkFLr/yAjCutNJXAVlqUEqhbYa1OfWlZZTwKEbO0qDZbBNHEWmWu6BCSITyMNYB6smpTZw6tcCWLZODOUg49Tt/4O9pXdIi72UoT5IkCVEcQAb1en0lKG42m67/MtcUo4huV/PYwSd52aUXUSgWWG4uo5Si0WoxNjLCpukp+mmCCl3CQwpn2IFwv3OlfEyu8ZREGz0QMFEIHONrAKsNUsmBeIvF+B42yck6c9Dv0KOP7xcpVSbw/SIHnniCvXt3Iz2PXi8l8CTGCrKloywuLDOzecLN/9bi+YrmcpvQ98APCKSl2Umo1CqurNJ3INETwvWBmZyluTlOnl5kYqQKSDbPbMZ4Amld0sdKS6/Xx/MD1zMbBuhckHT7RIWI3GiSJCOOI9J+QqPeZGp6nKTdJQpC+rkljCJ6nQ6B7yF9jyxNee7YHKO1Ml4giSKPwHdKsNZYev0UYcHz4QOPH+KL7Yw9O7fxO7/1K/zg//VTXPaabfRUyiXXbiXTOWmWUIhiFyTnGYGvaPUM5YJPs9NBKefBmaYuYWBsn9nFOkpKkixnemKEeqPnvkvS466vPModr7uWSFmOnjhNGEeUS0WOPH2Yyy45D2stx04vUalUmF1osWvLBE8efo4jf1vn7W95C7v37OS8feehlOB//NF/5ad/5T8Qah+r8g2L9LAnbM1Ta4Lx4fq6KmgyANMYxECQYyg65FQ03WY/+qM/yev/46VuH8P9nm2NHzw/+0ybez/0FAAf/sj7nYXGIGi3RqwvvdODfu4hg7chsF8JL4wFYdGD59WG12HI4q9a3mxk1J4PpA2POWRCxVm2t3BW0LhxbARAZwVsA1A27OV7Qf+5wfvsAOQOt3LCOoPPXdtBXDTYfE0yfd11rLknnueT63ylVHS4X6nOPI8zrovVfruNzw9VWNcfeFUN3ljjbGHE+oTE8PzOcQPWPTKGQXJNDO6B+q5bm/45jZfA3fd5DMGdsGIVAA1f+98Q3J0B3oZgT57j9Rc4hjvQmvcPsntyQ2bunOBuUIogpVwBd0K4YIdzgDs7OI/u6TrfvPtzTE1vJx6Zob/cZOuYIJ6YpilHicw8h585yh/90fvY/8ABPvZ3f8HTzzzFlVdfycOPPMT0tj0UixP8xm/8Dje/8gbe8OZXkTU7/NOnP8uP/OS/YP/d32KxcZwbbr2B4yfajIz4FONJ2s1TfOTvPsI9XznI7/7xr2H7Pf7Vv/xZ/sMv/zrXXH8ls/Mn+H9/5bfZi+C8xRY/eMeNzM0vsHlqlF7SJvRK/M9P382PveVmjNakWY6UklK5wBe/up9XvPxSGo06lXIBbST1xRZSKmojJYwGqSBJnVjEw/ufIAwjdm/fShT6CN8we6pOuVomLoaQdhHCI+1ZUAKh3AKsfInnKxYWFqlVxhAe5HmKkODJiOWFLt1ul1KlQKESYW2O0Aas5MSJJaanx5Eip9PuceCpk1ywZ4YwVmibUyiO0O93B2bbIWniTIF1pjl6ZJbxqQph6KMQtJtdCrUy7UYfX3l4vuSf7r6PO26+AT+yg344ibCSpA9RMSLNE3y0M7FXHtoY8ixxJssInDibyzb3uz3iMMAIizUghevFsyaj1zZYZSgVSygpSJMMjOToc6fZMlMjKEYoX9Fd7uBHHt1OClrxqa8/yA/cfBWlSkyWpSjPlaM+9u1n2b1rhij08ayk3e+Q9g1jY1WStE9UKJIZi6c0WSun3c8pVwooD1c6KT0HBjyP5aUW5fGYdr2NpzwK1QISiQwMVkvarRaRChBC0On0KBRi9IBh8/3AGURbTa/Xp1iKUMojz4ZgwiKV4PTpBabGNyGVCxK0zlHKx5INVNskP37Pw/yPn7mZYjFC5zlZaggin19931c4ONvj/be9GoPED0PHVirPeRemPSrVEnk7h1BhfQ+hFRJNv5ujjaVYDeh3moSqysf+4auUaopXv/J6GktLaJMRBSG+59NqtxG43tD6coPqSIlateyAiHIA1mWHLItzy1THawPFNjdbiNzQ6yUUCjHWQqJ7RHGMNs4KwqQ5yldYo13SSEisNiRdZ0Cf5gn1ep3RWpXZxSXGqjUsim6nx5fvfYQ7Xn495bJHVCqBp+i1O8SVMsIqrNC0u8uU4wpYlwjp91IOPvM0u7ZuolguocIQYXNX3jtQJVRYdCbRXubENzKJNSmYBCkthahMq9MliJ1QUbPZJApjfvGuu/jvN16CRJAkCUEQkOc5Otf0Ol1KIyMoq7HKQ9hVG5qk33flyb5CZn3ai3OUxrZy7PgJJjeN4xcKdOpLxJ7H7PwitdEKxfLoCnOo0xwhDQcPHmHL5klKY2VM6lgIKyzdTgdfRaStDlmS4hcjwlKMzVI8JbBKIbIcbZxCvww8VCgxXUOWZ4Shzzu/8SiXX3QBO3ZNs//Rpzl89Dmu/ZkZxspl+qmg1U3ZPBHRaGdEgUfoC04vLjMxNkqaawyWShjS6LQoRj7WSuYWGpRKIUluKURVQk9x9PQCB548zqtuuhSdG04v1tm3Y4r5xjKxX6Ac+3zyo19m+2U72bNjC0L3aXUdQ1qIYp6dXebAEycpVUMuPn8LSd8x8/k8PP6Jo/w/v/gLZK0lbnnza/FSRSbS9evpBnCntXbm5mvWVKlW2Zyhh6NTypSr4GEQnH/pzq/yePYNJrYXVg8hhsrVZwKftdYIKywhq2IpFvjkf3oYgCsuv5x//x9/CWWHTOJg30MScSN4EwKd5Uh/PSv0vQB3Q7A7BD3W2pUeu43X+Hzg7nnLPdc/8Z2Du+FnM2AV1QZyTAqFxSUqhWTV4uBsu1oD+vSgGmrIgqkh2DrDvuHsrN25nj+rOusGcOd6qxWe8tbt79wgfENJLk6hdrUs1XciWmd99/854yVw970ewx/sBl+7s3navdA4J8g7R9rs/xdwd+ab/peOsXGs1P1vuDi7dmVYu6/hPXqeTNdwsjYiRwtJIENCo/jHv/87brzxVp48cBgpfE7PHePmW69DYzh9cp5NoyNkmVt0v3Tnndx8y1XgjfObv/Nennj8Qf7kPb/D1q2bieMiH//YZ/mD9/whv/dbv8b1113F8YU641N7uefur9HvtdizcwsXnreNkwttRkc3kycZd3/5y9zxQ2+i22hx4thxtm/dyn0PP8Df/vXf8NsX7yIqFt0ErDNybRDKIwwVWb+LQKK8kCzXfPP+A1xz1W4833ellgMmM+116ac5nvR59rlTXHjhLtJuGxVEZLnG9w3YEKRFKUmW5ASFAJvnpN0eSWYolMsDNsAQRj7PHjnG9h1bkFoiPMHicp2RStGJOHgKk6Zo5aOEzxe+dj8zE1Uq5SLT0xMEgSuFjOIIJYZg3KfT7OAFYiDSYTl06Dn27J0Ga/D9iFazRbFQolnv8PGv3cvLr9jF1i0zzshbGLKBR5tUkm67j8L1JwlpHKNVb1EbLdNp9UmzlInJEVdaGnroTCPwsBJ6nTbGCKojoyih0blmfmGJ0ZEqmow4KvDU0yeYmZ7i9Ml5tm6ZotNtE0YBkVLkWDKjicOYNM/otLuuvDQMBo3iBgw88tjTXHrxeVipB0kMJxTQqXfITc6XHnyEt9x6A34UDeTshQuwjUQI179GZpBR6LCocf0Sjr1x2xrj+lSVJ3A5EEGv1yaKI6RUZGmOF/ik/T5g8KMAtKLfbWGtJi6WUZ6PsfmgvCcnzw2lQpE0dQzy8WOnmdkyhfIUFu3mO+08k37jgQM8k/T5m1+8bWDF4Up6FuZP89N/9RCvGavwpn3nEwQhmQHlhRTjGJt1SbKMuFzC4oRDpCcwJgcUoLFCYXCWBFmWI6xl9tQsyjrvuMj3SE2PIAzotBM8JSmPlvH8gBPPzTI2NU6xVMBox/Sl/S5JX/O1ex/ktltvIIxdH5GUTlE1CIPVfh8hBkGRxfWFaj756a9z+yuuo1QpuM9SZ3ieR7PRJI4jsD4EORKPtNVmqb5Mt91hcnSUp549zvYt26nWImZnFyhVioTFmCByZt/FUolGvUmpHLK8vMzY2CRJL6XZaFEbdWqPhVI8YDTkSnJr2Ku0kp0XAmxOr9XAU07Jc9AoRJZBdXIKqSRv/8jHeP+NlwIWLwzdfGw0QsCxo6fYvmsrS0t1arUySvnkeeqM3nNI0z6N5SaTUxMYpSAfSPUNIm+TaaeGmecESqGFITc5GIPnhyuZ/5VAUw3AhjFgYXmpwdhIlXajxVKzyaZNE0jpyvT9IBjY3jhRo6STIpXHffOz/P7jR/j033+Ii192Pa/+yRvZfd1mxmsF5paWmRmv0exlTh3UZoRBgeVWj1T3aHeguVxn944Zltt9SoUQ3/OQUqKkwIqMwIs4MVtnrFLmxOk5Hrz/Oa68dieVUki5UGS50aLR7iKUJPYD5ucWuHDfDrJcUyrEeEoxvzTL9NQkH/vwl7jltddx4OmTTG8ep1yMWVxuUStXKBcjNJZUaw4dOMWz/3CKj3/0g3iFYKW0emVsEL8YrqnnYpJWVTAHSa2VddPwS//2l7nip6bWLKYbFtfBZyutWAfgztxcDP7dALAGb0hTy8N/cZz3/rc/WAF3htUySyXOET+tKTFd+9wQYA4TwqvXtAbk4X7jdtBXJ1dsS86eNJdrxF+Gzw/ZvZVDD6xe1l3jYKxlQd28r1ZsFc5VsWStXQfEh/1kQp2jjPMcyXYXK62+Tw5KJs2wxWUD8SA3lFQOy2s3MsBrwdu6stphOS6rn/nZ4lX3uUnnmzd8/jtl3TYA0I0+eWJQ3bXuOfvPH/q95HP3vR7DL/8GX7sXqvM+6zgHEDqXPO33enwv/O2+42MODik3gru1XoBrhpDy+VWjhtsNyziMQGY5zz79DBddfBlpP+Xv//7v+dCHPshPvOsnUNJQX1qiVqyS9DXPPP0sX/v63Vx33Y20W3N4fkixWmDTRJXbX30HzWYDoeCaa67lza+9hd27dtHspoxv2sLS6dM8dP+9zGya5JKLL6LfWiQIY5aX6oSeYHH+BPWlhC988fNMTFT4d7/6n/i50HC5JykWCk4+Xknuf/gAM9OTziPLDDKjWiA9nzRNOX5qnr17ZvCUIsl69LoJSngI4fHQgUPs3bWNQhhg0AN2xKfV7NJq9JBAEDjhD6x1nnHG4oURfhjygU98maWlBru2bqLf6VKII6y1HDh4hImJGspzjEiapEglXf8OGs9X7Nm+mYmJESqlErl2rEYUhs7MOdMsLTYolUt86s57uOT8XS6DLCyFKMIPlOvTEZIoDEnTjCgO2bt1E5OTI/T7GUHoY7Sm2+zi+RKhJF7gM7e4hMQB1l6vT7VSRiB56PGnmRgdwfc9jHHCAXmW4YceX7nrMQJfUS4XCQPX29Pr993jMCBJUnrdlIPPnmL7lk0cPPwcmydHCcIQz/dIc83x2QVGR2tIpfC9gH4vdbYIvhNbUUphDYyPl/F8Ra/bw1PKlQ9bSxhLPFHgot07CAuKtJfQT1L8MEQojyxJeeKJY4yNVuily4RhCWss/V4fgfNZa7daLgAwrr9JSkGWpVgDvW6fKAqwVhMEEiskvu8WZz8MQYFfCPB8D+WFaOPKD6WSeNIH65iZYcnS6MQYUlnyPEdJD4zLBL/z7kf4439zGz94/U5838cJ8FgeOnSUX3r/g/ztG1/Hy/buI0sycimpVKt88B8/yxXnn8/y8ikqpVEsIfiu4iHPc7I0w/N8jM6RUmG1RViLFJbl+hLlYonPfflbCGMJC74TzVA+uRHUxqtE5SLCU4yOj+IHHnLAUgoJnucRRjHn7d3pMJCxA1EJe4Yk/LD0yU0nFiEku7dt44mDTzE9PeEU8SyAwAsCcq3xwwAhDEr6KN+jWK6QpClzS8tIIQh9Rbef8OyxE5QKBVqtNr6UFApFEIIwjlxQJkEo5wd58OBhDj59lN27t5OlievX1Bbl+yvzpBACox3bmuUJRju7CN+P8MJo4F8psCYBnWPzlCfmZrl1c831RA3K0zzlZuNOs4VUilK1QrvZIZAuean8AGMhkFCIfMygP0prjRqUjvWTPqEfIwJNt9PlrnueYOfOKUxuCIKY9nIPL3DlVL7neg/RoNMMneTY3FAsRORZjsUyMjmCxFVx+GGACyGdSNLvP3yI95+uM/XqH6A5Mck37ruf5NKTXPH6few4f9TNQ0HIcyeXeGj/M5y3a4YgUORGM19PqBZL9NIukyMjCAmlYkylVODLX3uE83ZvQiJR0md2scUjjx1ibHyEwPcZqZbYsWeKidES5UJMpg3LjQ5bpycYr1VYarbYuX2Gp46cYHysQpJm9NKEOAp59NuH2XPBNspxyOTEGKnWHDk2y97tm+mnrs3gE5+6n727pxkfj7nyNdv5wDf+jv/+ax/ih9725o2L3fqHyOeNFRwDJRxIt5ZDh57hp3/mF7jnsS9y9Y9te97E6aBJcqU14oyXB/+sq3NcvwEAnoQtL6vwWz//p/zAD7x20Ce2euiN/Wobr3VdrDL47q8tW3RPizPAyNDmQFsHTId/h9uz4f3DJM9akLiSdx6APbPh9eGww57Swb6c1/qAhxqwTme7ynXEgBhe38bbsPY+nCM2tKyAHDMwej/X9huN64fx5guWmm7YHtbEq5ypmqqkQuAE51ZKM79TkmLjvdjA2bl9uy/gWqXOf+7jJZ+77/U4B7hjQBuvU1KyayY+VgHMyn8bxtoszdl+VGc8/3yF8S/qUp7H1251o7NO/ufKfq3d5/Ndw0qN/YbnV/Y/zO6c7V6tebxuPREK3e7xl3/yp0ShR7E0Rp5l7N6zm1tueTnv/ZM/5pW3vpz2Yp1Djz/J6MQYf/XXf8k73vEOFpbm+PqdX+Xq665hZLTGa19zG29989vJ8j7XXvMyWq0Wp2ePk6LYtnMXf/iff5ubXn4DF154Prv27saLIh579DFmtu6kMjbKXXffxcLCKT720Y/zcz/3r/jgf/mv/OZFuynEEaVyiV6vD9bgeQoyw+JSnYmJKlhJp9mh10tQnuRv/+luXnPDVa7U0PfxA49Os8c/fe1hLti3nempEfI0Jy7Eg34dyBJntlyuFikUixhjyLWm1e7xma9+iz1bZ1z/jjVcuH0LWzdPkKUZcRziSYkfhYxUCyRJShBFgCDwPVcu6wXkqQMFWa6RUvGN+x935Ue4ha+x3EIAp2aXGBsvs2m8xv/H3nuHW3adZZ6/tdbO+4R7bg4VbgVVSSpJlhyQjYNsMMYNNBgHkmEaTA9m3GADPaSGxvAYGroxeUwP4WHGeLAxttvG2MaSoyRLlqwslUKpqiRVrlt148k7rTV/rH3ODVWlAJoew+N1n1O37tl7r7332mF93/d+3/tWooi773+MiUadbr9PtVJBOU5Z3waOq7jz/ofYOTfNo4eeICtsnYkAwkoIEnq9Lr7vU4liXA+aa1aHT+sCqRQ7t8+QpilCGpJeSpYVpUaXYH7bDEaA4yhOnjxDtRJTr9eGk5Gl83ZYW20zOT7C/I4Zmq0OrqN44NEnmJ2dplGtUaS29qHVbhNXo5IsxVDkKY8fOcHEeIMs79Pptgn8gF6vj+tYmvY0y4kiyyZ4fnEJgFq9StJPy8JxmJqaAAwSWTJj2siv53k4SuCXDm8YhqyutPF8h063SxjaOiblOjiuO2SBG7AhJkmGNKr0SyTootQcyum2e3h+gESS5wkms2iWRmB0gS40CwuL/MNTp5h61U5+/NuuRklDlvUxQrC22iSOY372r77Kh9/4RqTrkJeIeBT5SFPgGltnWanVQDgWiTSaPM9pNjssL61RrUZIR4EoU6+zHKEN58+dx2jN9tkpDh4+yvbZaTxHMToxjl+JS+NfkiUZRZ7iKJt+m2e5vT52ICh0getbZKbILTq5TjgxcOwGaJglcZBSohyYmZ4CI1BKIKQzHFvHcUrjTSO0ZcSUAiq1Go3RUcLAp9fv8ejRY1y5exdpmjA+1uDk6bNk/Zww9FCOddRdt6S814ap6QlGa3WiakCeJ0hpNSyVUmRZxu1fu4ed2+c2kBJYnz8IIwQSGYYI5aGNBKlYPnuaIkt537338vqRCI0kCAIbOBDQXG0yOT1Ot2/1HAPXI89TXD8gS3OMMNbhFpLb73uEnTu24Q0CAeU7WkpFXhQoIZjfPmV17MoU4AcfeZypqQaOUmRJgpKSTrtLt5vgOo4l0jKGxw4fY2piFOU6yNKZU8rhow8f4rceeYrvffevMr53L//1vb9H9WqP4Jo2B751O3EYEIeBvSZKcvt9h3jhlbvZsX0SnWf00xyES7O5wvR4jW7SJvR9RmtV8kKTF5q5uTFWm2s0O3081+XIU2fYsW2MmbFRziyuMlKLUdLgKkmrl+BKF9dVeI7DwceeYu/8LLfdfRgj4PjxBeZmR6lEIU8dO83U1Ci1Sp3Pff5+/FrI9GidB+4/ihf5PHn8LO1uF6NzdmwbJ/Rd8jznxOlzfOsPXs1H/+RLvOY1r9w8J3NxG3ljyuFG5O73f+9P+IM//D+4/eGb4PJFLr9hhm1XjSMoUyQNpU2zAYXZMH0LuKidYbCB2mcy1web7r9hlkdW7uJDv/9Zvu11r8GUDs8Fzt0Wu0OXwt0b5Qhs3aBNebyYXzkYD1M6dGKw/YbPIF3SOmN6eNqD9Yf395ZzGSzfPBbG1h2awb7Uel3f8JjXr8lQY2/DOQtphs+yHYJ13buLjec6g6Uotxeb9jNcfyAHUX5M+SOFtE5Z+XtT5xc59/VD3WCrDfrZYgsOlkHJmcA6Omg5lJ/ecB06jRvOSYgtNyYM0+SNtsEoo/UFyOS/xvYN5+75bpdy7oaLN9z0WxG4Z4hYSKVKo+eZHyiwEYvBg/XPbf9UFO/ZRnou2O6Zdvc0YyXKcRqipuX3Urk8ds99zEyMcf31L2FppcP58+cZHWsw0qhzww2v4a0/+P1cuW8/v//ffp/vfsu/5ZWvejlHjhyi3+swVp1m92Uyt2jVAAAgAElEQVR70UKzfG6Z6antvPSlL+Hk6RNMTE4SjdSpjk6yurTKeCAZ3z5Hu9dDBh7akWybm6eZZES1EXbs2sUVB67gY5/8DDecPMK379iGchxLzOFao933HJKkx8TICNVKAKKwQuvSIa6EGGl4wf49pGlOVPHo9VIEgiiIeezocfbt20aaJNz41XvZu30W13V4/z/cynX7d7G2tkZcD+l2M9zAo93pURupsX/GUpvfef+j7JidoN3u8dmv3EPS7zM11sD1HIwQUIoTF9qKlwttLHkIgjzJrX6NNijlMVaNOXbiDJ1Oj9HROsIUuMqiJ2HFwQ19HMchUh5PPHkSHEG1EmMKm7bx1BNnaDSqVOMA33Np1GqMjo+glMD3PHTJjFjkmuXFVaIgINcZ1WoVrY2l+ncFva6tH3M9h0rVpoCmSU6aJCBzGmMjeK7HxMgIjuvQbnZ49PAxvnjXg4zGMZW4wkitShj5CCU5cXKBaiVmanIczw849MgTKA2fvf1uXnDVniFqJqWg0+kwNz1FnuWkeR/fVziOT+D75HmG63oEQZVWexXpQuiHBJWINElJewmelBQYpKNpN3t8/FP3ce0186ysNDEGOq0uaZ7j+h7NVocojglLBHTgoHiRj3SVdQ2lg5TGOjiuS2utw9r5FnElRkiDKVLyXFhUy/eHkWVTpIjcOu9FmXWnlOI/PHCE33zXa6nGIUJY0WvXsWmCGMNb/+Dz/OXrXmsRQp3R6XSp1ipknTa+I6hEHtXRCkLVKUxOmvbwHY8sT6nXR/Acz5LN2JeIJXzJM7rNLhiD6yl8z6FRrzIzO0cc+ghHYBxhg2hC4TqydDhcBKJkc7PelgHrKHglKijFBmOk2BRxFsJQFCVBlhEgsjLqbhlAN0b4KdECKQ1GS3AVIstASXJtiGsx7VaHmfEJet0+jXqNTq/L7Q8cZOfMHK1WEyVydGGdknarQxD4GDRxHGFMQV4kBH4EQpaGrGF2aoIgCMp6Kvu+FFLZ/wtQJiPvJgR+gAKUMFTjmPHmCttCl6SQVEaqJSuuIQx9jOMQ+D5Zv4/QBTII0Xogyl7Q7+Uopdi7ZydGKEyRl0LtEsdRpGmGowKUI+mnLcIwpsg0rVabyYkqnuuWcyIk/YSwEpPnOVEcsbS8ihaGWiUmDn0WF1f41KHD/O6T5zi3bZ43/8y7uOnGz3Owew+LjVN819teRTQV4yhN6HskWU6a5fSSgsBzqVUDPM8i18srqywsdbjt3uNcf80eBB5r7T5LTVhaOU8UBsRRgJKKWuQRBQGnzy0xN10nDkN81+Omm+7jiivmcDC0u1063T6VICIpchwhaNRinjp7nu3b5ogiH+UIZidHOLGwxJ7pOkeeXODg4bOspYLL5icIPI/5+SnavYRjjx/n+hfvZ2lxmUYjpp8X9JOUTq/P9GQD0Sh46Z5XbJxkt0yV63OllIITx0/yE29/J3c+fhMf/fAnae46SuUyw+U3zDB7YGx9O0q06iL9Wsdmw4+5tI0gnoNzN8BUJq8N+a2f+lPe/JbvvbRzt/UctwaABymdJdnG4LgveQzPhNQ9w/rP1J9liV137nSxPmIbj3HjvjcFtYVAbIh6P93ut+578F4wejOfgZBPj+qai/w8W3tyY+ZAnmVDiY0LmqZ8B6/3PUD6nq4NRu9Ch/ViUYbNd6Bh87W9JDL8L7h9Q8T8+W5CMKi5M6YYQurPJ3vP830dLlm4qjdEWC7lbV3qWLbQKq/T2G5ebZADTnFhP3oDw+hzIZ8ZrKMx5GiUFvhG8bd/9ifUawEvetmbyIIuS2cz/rd3/Ds++pEP4HshWni0z65x8xf+kVd960v5i7/4AN/7xteyb9/LeeErbuBD7/8T9l91BZ7vka91WOpmNEYizp87zba5eRaWloiCgDOnT7Fj2xwyCOh1uxQ65Ytf/ALf+Z3fhe/b1CLX8/iBH3k7H3z1C23tmYZetkqWuCRpzsRYHYmhMBpd2EidZQI0HHtqgR3bpxBOjsJDm4w0zdHa0FzrMr2tgcSl3baMi0VPW2ISk+G5HsurLUZGqkgS8kLRWm3T6yb4kW/ZMXtdIr+GdDRGSNI0JQgCXFdYDawwpMg1aWJri/IsI4oCpHTpthPueuAQ1129C+VIwiCkMAVCW8KJJO8RV2qsrTTptLtMTdYRfkBnrWWN7zjA5JbhMogCsjRl+Vwbx1eMjdcpck1R5Bx/6jy7L5uh2+lRrYeYonQqdYHjgHBc1labRFEICLwgtHo6AvLU6pa1mh3C0EdKZQv0RUG/0ydPC6ojteEEbBHJnOXzHSanR9A5pFmGKNEzqQy51jZ9NMlI0h6e56ELjeNaJChJuwR+hHIDsiy1BrYwLC4uMz7WQAhBkuuSkEZy9Mgp9u6Zo9fv4noeEgehBL1OSpZkeK7EDTyazRYSQbeT0BivI5UstcMsimJrRAbIu0uruUql4rO81KQx0qDXb1OpxxSZ1RfsJqt4jg9C2EdSa/zQJ0+zkp7fs4iL59JsdTjT7XJkTPId37QPoQRnTx5nbscuDPb8Or2cH/2jz/HOA/t5ya59KClxHGi3zqJweOLJE0xOzVCtjSDdANfxePihw+zevRM/sgia1gLHdckLq5e4cOIMaT9hdKRCu9dHSEkYxdRHR6xJYECQ2sCD6yFxSfMujuOAViA1AgeEddzy1D6PQ7lik7NOGMEmWm6l5JBoxHYgMFgGSyklAone4AxqrVHCpntJaWsFJTlFYWuhHj/0BHv37CbLe5x86gSBZ9GeKKzy6JEn+abrrmZxeZGJ8UlwrOTBiafOMj5W59iJs0xPTlAbqfLgw4cIAo/9+/bQbraJaxGtZofVlTXm52dJ8wLXc8jSzKaXSqdkp4Vet0dQidDdDgcfuJ29YyFOVAMnxPEilNa015qW7VIIm4qsXLTQlk3YQJZmCFEy4wlbk+goQ54VGA1+ENjxNTYwZMghL8i1QTk+iwvLNOohynVIeilhFNLpZfieQ5r08KMQJQWtZpelJOGXH36Kv/nr96GU5Pt/6O28+T0vJs8SlArppym9tM1I3MBzFX/38dt443e/HG0KDj15nOmJcbr9FjNj05xZXKJRi23mQaHxHI+ltVXOn19j5+wMyjV85a5D7N+/jZmxOhjN4mqLShQQ+pYtc3mtR5IZS7KCwVEe51ZazI1XOXnyFKdPr7G60uPbv/1F5KYg6ycURU5YraCFwNV9jh47x77dOzh1bgVX2fdm4Ps8eWoBV3lMj1fx/ZBzq13OLZ7jwO5Zmn1NY0QhcXmJ+11cdtnucgbcmDoMeVHwM+/8Bc6dX+Tf/OcX4l6EJAOebYJPGfAoje/BPi5m3Qg2IEob4amyh6fbt8DW8C0e6+IcHeenfvrtJYvsYIVnPtoL2Bs3/GmMuZAHoTTyi4GtobYIq2/s6yJO5FYhiks5TYM6QClFyTgsh+QvUjpDhPBibVOfG+HS4ThfXLT86UhPhjW5bLCzyu+UUBQ6vyjSNWDTlVJtckaNKSUwShtwoPMrjSjF6M0FUlobj204nkbb/Q9qHsv+tChQUm2wKdf3s/EcNn431NIanviWdcua8MF7XqLs/CG3jO+/oPZcau7+9VcgfqNtapZvyn7+qds+X00oW1P1bJrW2r4gtUFqMHmOKTLuvvs2Xv0t38pqu8sb3/KjhL7hIx/5G3AcWr2Eo48f4pGHH2Jqeob77n+Ul73sNfj+GA8fPMyjjxzkrT/0Y/z5n/0VnbU2jzx6ENcXZEXC5PQ0SS9jol7l6JHHWW02ccKYQ489Dgiq1Rpvfsv3IWRBmvbp9RN+6Vd+k//nlS9EG8PS8hpSOsRRDceRVCsxeWbAKJIkt7Vsvks/SYCCh586gZDw5LEznDy1wPJyizAK6Xb6jI5OIYVnGdLcMn3MgTRP0HlG0kvptfsYrWm3uyhH0Gq3mZ4eo1qJ+fjn7qJai4mqAb2O1amKoxhT2BS5qBKSpzmOcqhUKywvNYmrFfpJSprn3PXA4xw+dQ7XdfB9DyEFC2fP2zq9w09Qr8aYIsfzHGbnpkizAp32qI5UCSoxJk9JkoQ0y0o9PY/J6Qb1ekzaT2mutlFKEUcBRmuq1ZjV1Sara00cT4G0UbnVVUtm4XoOeZHZeoo8p9fp4SjH9hGH+IFlS+y1OiwuLOP7Pq4fYLBOmiZFOraWaXxynCTNyXSBchWe79kMRgxSwOpKk5OnFoiiECkFru+QZhmFLojCkDTN6HW7CGEZ7DrtLiP1eknNb6mtHSXR2nDHI4fpdxJcxyPpZ+RG88TRk5agQ2iSNAEMIyN1ltc6xLWYILTC21LJkgiotKlEmcKic6IwoN/L+PI9B2k1W4Ag6aWloW/Z1xzXxVH2+jmuQ9JP8TyXNM/pd3sYA2lWcNvCefZ+xwH+zfWXW/IDqRifmMJgz6HT7fK2P/4Cv/qia7h+9z5c5dJud+msnkcXPTr9Jjt2zDMxNYUqnaUk6XPTPfdx861fo9dOkMqmkd5//8M0V9tk/ZTA96lWIoRU5IUhywoq1ao9UQPdbpfC2PsAI0j6fRtAgTI1aVDbYedsz/WG2wpjadrvvOv+EnGzLKCe55UMvQY/8Eun0w6wKA01IRi+84yxAQohBHmxkVzAhtwts6jkiiv3ohxBGIbMzkyTZjnGQK/fZ35ulhOnTttUxcw+u0VuAxOnz55HIKhUqyycOcf89jku27OLPM+ojlQQSlIbrTG7bQaNsbWw2uB6HqJMFxVCoaRLXKkDBikdrjhwDcq39b6ur+j1O6CgUq9SqVaI4sier7LEOXmeo9B4jiDNcpTjoJRA5zkYhefZ4EmapFYHEYsWGy1QjrLIoDGMTTQw0n4XxiEry2sIafX2XNdBSUmr1eY/3H+YXz+0wItesJu/+qsP8hM//U7e8OvXsdpuW4ZXbR2DahyRG8Nqq8tLrt/PSqtFlmfMz03TqMZMj9UAw/RYlaXVNc6cX2JxcZmP//2tVKOAuZkxKpFPP0l41TddyWS9AmjyvGBmfIQkTcmynBNnl6lXKhw6fIpWL+Hzn72LNMt55NHjCKHYvWsnKgq46oW7WWm1uOUrD+G6iuW1NmutLkpI0gK2z01zfrVFL8nJc+s6NXt9W7Pr+SAkS2stDh05xpV7ttHpJygphkQj+4aO3eb2fd//73jHu97BS9+xne9+93WXdOyebVtHb9Ydu3X/bTP+9nTZPltwv0uuN74z4u77vkaSpJdc5zk3IYa1sxdrSkmUkmUQ5ML1LkbQAVaWQT0Lp1MN0Dhh7Pv+n5gVBeu2zvPVBDZANXDm+mkyJDi6WNvq9BWXYOa8WFNCbSJS+eeu93w0XWh0YctUpLx0idS/tvaNtMxn0wb5wgKG1sM/8ea4WFHu89meCQG0KUbrqUabau8uhfZt/d7Wam/odMNnQyL8BTV2lKkJ+sJaxc3HKIa58gPUdH0XBmEcSHr87nt+hV/85Z/j3JpB+hH12nauu3I7SIPrV/CDER576D4CV+IHEX/5/r/hB3/kDUxPzdJPzrO0dobv+Y7vY9fOndRrEdWxGo2xMQ4efJDlxWXOnl5i4cyTdPs9HC9AKI9f/7V38+2vfz1S2vqV1bUVwjDiF37y5/jtK3YgsVTfQejTWumxutKiWq/gOC6u45VCvpDnBQvnlhgdq5OmPa7cN49UitHGCLVaTLVeRUhJFIdIVSBUTp4alPSQSlMUmiLPEdLw5a8eRBSGibF6SdAgqMSWsMRxPGQfpuaqgOHksUXufewJvvbQEQ7snceUbF+O41udszRlpFHFIGh3u/h+wNz0FLErGRurWdRCOURByOpqk8mxGlJYJ+v0mUXqtSpO4CGyAoPHp266h+mRGn7sEscRSjkUuaafdQl8H4wkrsQYcs4srBBXfDCaKIpwXZdz55ep12sIaWnmtdE4rsT1FEefPMPISJWkn+N7AZ12B9dVaDRZlhIFoXXKHA8prTHpKAfH8RBCIRQIHFSZ3un6DspRZEVBt9cjDH2CIKBerw6FdgXQ6VqZAaQVJQdYXW5SqcQ4jkQIh0OHj9NudxgdHcFoTdbPuHx+O4uLq1QqFcu26QhGGyNW1kMa0jwljAKyXNMYGyGIfND2OUkSW485YOjM0sxqkWUpUip8P2Dfzh1EFeu8CWnXzYsUbQqSXo7n2xQ5KawWIULguA63fPU+ZiYneNudB/mVn3wFyvGRyr4XOu02cRAhhCRPe7z9z27htZOTvPaq6zAokIoiXSPrtQn9EcJwBOVHGKmQ0kUbQdpPSTodXvGyF1uWSiEBw/hogzvvuh8HQeA5uI6g209QXsDstjmLlJXCvX7oWHIILTl5/AyN8REEAtfzSPp9mxYly0ixEWisDmFepEhHIHGYm53Gop+U2ouJjVAjh1F/UaZJaa1LAWPruBQleZDnl6ybpTwBUOpT2XdrURQIIej3epZYJQoZazRYXlmj1+tRq1QwGMLQxQ9svZhyPYIo4MTxBY6cOMWunXOkScb41Bif/OwXuWzXDtqdFspRrC6vEVdjGxQzFsnFWGc+LXokSc8GjfqWkMcIiV+JEUWGLjL6SUZcqeB4AUmWWSkNaaPbnW7XMlzqgsVzS8SBixNFZSWCxlUKISzbpnLss1IUGqVkWb+jbHq3MZw+tUBcCa1upfJYXmpSb9TsPY1lhzWF5rfOd/md9/xXvnbXXZw4c5oX/ugEI1eEANQrETrXfO7LB9kzP41yQBuFEjBSjXEURL5iuZXiOaBNBsYjLRImajHtdpd6JeCqA7tYbnZ44tgZZqZGaHc6REGA5yoWlleoVyu0On2iwI7JkaNnmRwf5fGjZ5mcGGHH7il0UbBrxxRfe+hJKrUKE2N16nFIXmj27p7Dd0t01g9Bl3VpSnFqYQXPc5BC0u1n3HvPUS7ft4NPfuperrpyGyfOnuOKy3bw6OFjVKs+1TBicWmRSqXCiTvX2LdvTzmd2n/f+sM/xr/91euYf8n4s0Tl1ufep1t28fTEzc7cMJ3QbNlQAGIzacnQSdzS92D1vS+f4tGVu3jPT/133vzm79mENA1bibpttD621unbDIYB8lhuIzejgaZcZmBY8wabzZjBedls53VSFsq/t9bPaWOGSP6ANRhhHbMBwYscpIGbC2v+pNxgf5X2lU2ZlUM7aXgKkk3rbW3PWCYjxTBgNQhaybL+eZCmq3UxtAkv2r/e7Ohbm0yUckLWhti47ZBZU6z3YW06+93ABhx2J7bq4qnNx2I234f2P1vSMgd25WBsB/fFUF5rwORprJ30nJ6gr4/2jZq757uVDtDQuftnd/f1dVM959q7S1Uyb1m2Netz04v0WYzBcI1NLzWNNA7/5d2/wjve9gPoaAq/NkezfYJXXPfNfPn2OxkdHUPkgvvveoB3/tS7mN85w9XXHuDKa67imhdcy2OPnKRWU4xP1BibqPPIg/ey//K9GFfhOjXGxhosL55j1655LjvwAqq1OrVKzMEH7uVdP/PzLJw9i+M4BEHAf37373LtQ/fypst22AlOYZkjdUYcx7iejZhJR5GmfVZXVvCjCOVYFsdCF2RlXYt03BLNzFldaRKEPmnSx3Og025BLjl69BSVSoAfhrieS3ulxdVX7yJw7Esb6SCxNVWdTgcQfPrWh7juwE50bqiPhjx67AQvvWovaDh98jy6sPVNCFscLpUAbfA8xcKZJf7xlntodvuM12Mq1QitNV+47SH279tOGIcIR5ElGbVqFdd3ybOMfpaS9fvUYxcjJJWaZYHUWiMcgVKwstImiiIefPRxatWIbTPT9Psdi0AYxc13P8D+PfN8+uZ72LN9J47SZUxY4iiP0UadEyfP8qV7HmbH+ARxzSPLMlzHJUtyVBBgpMFxFMJAlqesrDQJAp+iKCiyFKGh1VrFcSShH9Ba6+K5Lq5jCVSMgTOnrdM6MGajKGJleQ0vCBESijyj30sJPCtBIY3LvQ8dZc/OGfzAszTxrkeWZIxON3AchRSGrN9Fa4vwBVFIVA1pLS/TblkGzG6/g6Nce2+UE3KuU5SSOK4LWiF0hlKWTEWTo4scx3HpdxNLUCEscUXoV8jzhF6nVyKfGsd1MQZ2TE3w3xdP8V/e+iJWz5+m3hhH6xyjcwLPI0vWSNM+P/pHX+L8wml+9toX02+10GmPVnMR0hbB6DheOIGQblnnL8mS1DKIdhIu37cbKTVCWpRL6xyJZmZ8AlkIiiIj1znGCKa2z4LAEr/0Oni+hxSSHBtVbozUSJKUIAzL2kYHIRVpmg7TKLvNHkIopHKQUlHoDMSArlyQpgn+kJFRruMNYsAU6lqGciM4euQYjxw5wvzO7UMiFoaoHSWtv+1DlbpOVipDost3XeD4LCwsIIwlyAkCj+WVJo7rkvRTlFLMzk4xPTNCpRYRxgH9bpcjT5yhSArOnl+mUYsI/ZAkyXBdt6zVEYDkQ39/I/t37SSOKwhhGWYxGqU8lOtQdJo4XoDj+uhCc+LYaUYbdVrtLq7vggAvcNEFBHFoGXNdtzS4LDJqlEIXuX11SytZ4SqPXOfr4spC0u32GGtUaLe7xLWQNNX0ezlx1dYVJv0+b7vjID/03veyf+8+/vd3/0de8659nI173HPr3Vx19W6W1tplIMZhcnoCJSWnz50j9it0kz6Ocsh1xnJzlVoc00u6NNtdnjjVQYmcMAyIKzGJNvjK5fDxRa69YjdJSb7zpdsfZs+uWUtaVKLrRaFxlGJ2soGUkqVmm0YtZLXZY3aiykjVY2l1lSI3rK6s4fku7b7GkZZ0x3EUh584Y++/Xodq6NPudJBSMDM+wmqrSxR7TI7VuPaaedr9HtPjozR7GbXIZXQkRhqHRx54lG3zc3zhg/fynd/5uuFs+HO/8Q5u+MkDm+fGS82Zz/L7i7VBVbt5us7EOlK3dR8b66QuVfc0WOfyV8/we7/4l7zxe99wyfU2mREX+C1bl4thrd7F2gChtP9f704que7gbSGmMVxYP2dYrxkcOMJWnmJQg7feR6E314A9XT3YxWzDgWbh0wXDn7YN96svHJsNDuZGNk1d6nsOv7vEzTAg5tmKeg5r7Z7OTtzUzxbnrkwqHHBMbLrPLuHcDfq8YDyGMLRhgFMXpQzPv7TavG84d89zM7LA6ILn07Hbmi+9NSL1fDcrJqpZv73Xf541YjdolzhMoYdBvHUx3It0IWAo2nnR/ZaRFmkKDBotDbkp0FlKVihqKCYmp1AzsyT9lDDM8b2YTtIhjALyLKPXbvOJj/0dDx9+lF/4xZ9nz56dnD31BAvnznHFlTtYbfncf/AwE1GdxkTEe37zfUTBON7YOJ/9xKfYOztN6Kdk/ZAH7r2D2anLOLe0QFirsmvbFC45P/TjP82fXrOdejWi0+mhi4Kk28eVDllS4AYujuvSbrXwlEOeWqbJD3zyK1xz+Tbop+S5Qzhia9t0npOlfYpEE8Wlbp0XYIyDLgRh7FGr+4RuhSIvyIoC6QXIPKXIYXm1g+N43HLPg2yfmKBSqdBqtdk3P0WtXhte7/nZESbG60ig1e0yOzOO77kWGUEipFNq5nn4nsM1++fZNTdGvdHACOuoirzH2Gi9nCwk5BbR+8DHb2ZmrMHYxAiO71IdqRJXrQMoUDa6pi2ZRCWMKXLNxPQYvheQ533CyGe12SWIK9SCkCDw2T03iSM1jrBR2iCOKZAooSnyghdctttq4vkSx/UpUk2RGj7yudvYPTNJ2usThC7S9W09HhqdpyjHR3kufuDjOYJuL8P3QvLM4IUuse+xstpiem7SGrfSQec5uihQjkeRFRijSZMEV1q0xnNDhNLMTtcJQg8rYSBotTtURypleVJB2u0QeA75IGqrDRSCqFqj30uJqj6+E/PgAw8wMzpGlguk55LlGmlShOuCEeRFH8dTaMD1AoR0KXROP+3jez5FniFd1xrgucHzBUoFONJDFzm3HH2cK97wQl56xU6kMCT9LnHsk3ZaSNOn2zxPnhR8/+/fTK/b5oOv/xaiMEIpwVprkSgCP67hhSMYIMsTK5orREn2YXAF9JMWRQ5CWocTnbG4sIAEzpxdJIojkIKR0Rqu6wMCJR0832dA3jCk3RYCx1U2TVkOnA+BIwxpYlkSP/uF27jzwYPMT08RBXHp2ElMAUYLpHJt2qwYiD9DkvVQwh3uwxgb4R1p1JibmcLzXBucGBhEpVacQViJAEeWEXJ73s2VNZYWVqlWaijPIYgDls+tUAkDO1YFNOp1PvjJm9g5tx3lCipxDKZMB5M+M2NjdDt9jp88z/TEOLV6BaTGdR2MtI6oMbB353YCZXB9F1MamlIK8ixDCIPprZIXuR1HKVhdWyWIPMIwBiDPc4s0aMWHP30z+7bP4DsKLRRCWEFzKayEQpbnVtMyzXGUQAiLTC2fWyJNUjw/4PxSk8CTmDxDSKjW62AETy2d54+WMt77O7/Gj/zYTxK8bI3dLxtFa4ft0yPM7B6nkxSMj4wAmiTNMAaWmx2WVztMjEUEjken36UaSnynhuc6dBKN63jMTVQwOMRBgMGQZhn9rMD1DK6n8V1otpvs27WNJ46fYbRWQRuHlXZKq5NSr/jcfvdhxsfq7JodQwhDPY6oxxHLzQ47ZiY5dvIk1WqV7ZPT3PiPd7L/yjkKLVHSQziSaiWk1WnheC5jI3Xq1Sr9XkIUesxMjeG6HmutVTqtHrd88QFOnDnPFft30+pluK5kZGKMOPC478YneNNbvof/9tt/zAc/+X6uf+v+i0+8W+bWiyFlz64J2OCwDTCxwWfA8igobYOBjY3YZBoN0CAx6HLQ+zBTqNyqXLbnm6f48Ec/wov3vawMuAw3sE4U6w6RMaaUVLLHaYTGgtgDbO4SgeMN6NhG526I0JWb6w2ESUOnB4bvhE1ZRdiU7UGsWghjn/0SHDIIW1dfOoYXs/mG47XhuCj1lAcfgSqdrIFXLctRsR+x1bal8mcAACAASURBVMnZMH6bxsIMr96mdew5bZVJWE/PlNLW22ps9srGm8JYSA8pHOuQlQExI8wFTtnmY9v8sVKWpszAUDBA4bYEEDaO24WdrGeg2fustNm3PAQDBNEuL7WrGVCVbhh3sZlt9OuhfcO5e76buLjGyfPS9f+km2aIzv1/uL8LkDohLuo3DiaHC9IJ5MBoshtJbAqjEVbT0hOSj73//dRnJ6mOTSASiOKwJEMIaa62uePWr3LZznmOPPIo9Tji53/5lwDNwsIZrr7qKsYnZvmHz3waYRSrrXN4gUelEfFDP/zjaAkjkeAFB/aRpim18Um+etsXeOH1l3P4ySeZ3T7KxPg0Rx5/lHf+4m/w16+8lk6r4PixRW6+43EmRxo0GqNkeUJQibAIBQhTvpCFJE1zrr9uHwhNr90mrtXQhUZITXO1RTVuIFzB6loTtCHtJSS93AooN9vEUVgat4IsTbjplrvZMTNKXImsuHbgMTM+ymduvot9O2cRUhBXQvLC6pY11zrEkXVgHMen0+4xNTVBYTRZnuFISZ6lBFHEytIqYWDTNb04pCgKMAXG5Iw1GuS6GApCS2Vf5lddthPHE7jKQxeGr9z1ENOjDRYWFonCACFg4dwi9UaVpN/n9NlF4iji45+/nct2zOD5LoEflEiAJghcWu22NVIdgUHjeRJMRtLtUK1EtHt9wkqE61q0xPEUoNm3cxtx5OP6rg00lPedzq1AsDZFaeALkm5ClhV85tZ7mB0bIYoDpIAs14RRCAOjHkORFyRpauvXHJvqmfY1xii8wEWockKXil63izaa+kgVIQRKFmhj5QtwLMOlclxbg5XnSCFxXRc/cCkyw7a5aVKd4PqWIdL1XFzX3kcWEfTJixLRFCCERCqFH4YIFFmW4zvQWVmmMlqzFPuuS6/f52cfPMT/8sb9dFdPokjBJNRrAc1WyuJSmzBuoPH5X//yXmq1ET76pjexcG6RLO2x1l5iamqC0K8ShCMIY1EwpQapetYwUErxN393Iy98wQHe/6EbyXoJWZrQ73YYqVdZa7a5++FDjDXqzG2bQWuN4/nrc/GGiVkIMSQPscaHGDp4BmscuJ6P47rs3z3Pgb3zeK5FPo3USGHotrusrTb57Jdu4arL95KntmZs+fwKtXoEhUAXRZn2aO8X5SikEdxz/0G2zU2VbKkSWdpXA/mEwQEPSCdcxyWMQqQE6drandALOLNwDtdzuOvgY+zfs4PdO2apNyrl8bsIsLV9UtPudJmaGeeqq/YQBgFJYmsNVYlIOlJR5Bo/cJCOlUAQQqCz1AYpvBIZzLso6VDkOY50qFYrKFFqQ0p7roNI+xV7duB7Dovnl4grcSlvYPeX9Pu4vmfJi9Y6fO3BR5meGKXfTcjynPGxCYwWrC61kFJRr4UYJNJR/Pvb7uctv/af+LuPfYr2FSfZcX2DflIQhw79xEoTmEJboiEUSEGuNdUwJPTdMniQk+Sa0VqFU+fPkWSSdreJpwS1KOJzN91NfSxkqdnk+KlFqpUKjWpEPy2oRzWOn1lhrBbjOB5B4LOwtMK99z3JzFQD34PQg/lt44SBQ7PTQ6CohoK1bgclJcvNDr1UcGDPDGne49FDZzlw5TYCz+Pjn7iNaw7swHUEs2NVMIY0zzHG4EjFWrtHq5vgewpXKnr9lJ17Zrj+RfvJCpv26joS13HwHJfLbpjg72/8DPOvqbD9uvGnn3svYgQPHp/n0jalQF5k2dBx24KYGYx1NTY6LmJzgHhzIHtz3xM7azy2di+f/ovbeNUNL9+clrhhvxt/24UDp+/pz3iYErkFuduK2sjSESu2omXCkiVt1cPbqhVXFOvO4dZUzosd0+A4xMb1LnDWtmy/1W56OuduUy9imK4oBqM6GJctSN3gvHShh7u/mA7zwK4cgAaDe9CO47On9NhoJ4ryfXSpdkmbedCJFJvE5Z9p+83XdD2Jd6u23tdD+4Zz9zy1AfW+McUwigPPj0O2Nd/6+W6DHOrN+1vP895Ua/c8tcE7ZojYlUGTi4mVXzS3e7DNMJq27tw5Gj7x4Y9x/dVXUNs+g9aCQDvkRY4AsqRAiYA4rLC6dI4H7r2Ll15/Hffcfz9zc3NMz86ihUQD7c4qr3zlDaTpCvuuOkAQeXzh87dzzQv24SZrPPrYQfYeOICRAbONWc41W8zMXcWRQ09x+uRJ/Bs/xdv2z4PRFLlhdHKE/fvmqI3EGJMhlUA4ijzNufOuh5nfOUfST62+jqPQJscLXIosoZukJJ2UIPRorXW5596jbJ+fwPddkm5Cp9OnMTqK4yr6vYQ7HniMndsnbA2M47Bv2wwFllTh4KEnmZpo4Hshl++a48TxBQ4+cYy9u+fodvrceOs9iAJWVjs0m12qlZAvfu0ggZSMTTbod22dju+7nDx1jvHxxlAUutdPUVLgOJJep4PvhyRJOnTYsr7hnvuPMDs1ReiHfPbmu9g+NcHM+BiO4yJMQa0W0+/2GJscpTAG3/OoV2LyTHPtgX0IDN1OF9cPgKKcdKxz5Yc+0nOsOHu3iyly2q0uynWo1qtWK81IjNb0+12yPMV3PZIsw3EUWZFbNi5t2S6zLCcvMjAC1/WtQ+X7XL5nO0IYXM+h0JogtPU/WZqSJQmOU6ZJQonc2HqnOK5y4sQ5RsZilhaXqY/UKDJNEHr4oQtCkGUak2hcN8QIB20cMAZdFFa42bUshUop2u01PNenwHB+aQmpNL4bUBjIux2U75VaTdbozrMM0EgM/STDdUuEssjorCzTba9ZlLDf5odvfZC3vHEPb7h+DrIe1foceeZgRIgWEY4yhGEF1wu5ozfPXfc9wF++7ttwHEXgh1Rjh3o9BOHi+Q1wBEnaJy8yCp0jBnVc5fW76oo9JGmX666+nNGRGp+77StcsWve6iwGAfVajbHxUZCCILZBEVsDV0bqpRymJnmeNzRGbLrqOsOa0RJdmGEk3xiLwApphgy+/V5CpVJhx/SUvdcDF2Eg9AMMOSa3BAJCGopck6caz3MxRjA+1kA5EscZRNHtfVHkhRVoZt0APHn8NLWROl7gYoRN6XeUg+N69Lp9alFEHIU0GnWyPKPIEjzPR5d99ZMUqcBzXfIixXElaT/l9Nlz3HL3/ezfPY9AkCUZDzz8MLNTE+B4pYaYobO6QlypUWhbJ5i3lkvSmVLXSzhI4aIc24frWimJAfBR6BxPCYRySkNJoQvwPHuPam3QecFle3ZAoQmigDAMgRwhNI2xKknSAywT51tvvpdf+vkf5z/+0m/z+l9+AV+45UH27S51MnWOFB65MTx17Cz1Wo0PfeQOrr1mJ0+cOEutErDa6jA5WufE2SUQViB+vBETBxV8Bf0sZWW1xZX7d+O6AXFYIykUjWqDLLOOrRIuUgVDceVCG1bWumybG2eqUbPXoUg5euIUjVqVM+dWadRr9LMmtShmtWNRyJW1lKmxiJXmGtdctRelwFMOjckq1dDBVYIkTSk0hL6H5yiOHj/Dtukp8qLAVeC7PlHokRcFQoLvOjhSEni2pvH4whKNWsTITGTfNc8w964rlol1Z2HDdht16bY6NBdz1ramLl58/2JT4GV4BFvm+UtlJV0kQ5CRyyXj2S6qtcr6euXCjb9leZ8O0iyNKbOB1g9o8/gMt7/wHLeOxcWWDxyjLV2wkZvFygSpYVBo63hvHYehPbnhPM2Fh75ljxd+fUlzdLBguB+LqG1CsjZe+9ImNKXgnikNOGO0ReMss9EwA2ijDSnLtHQtLNPmUDbskoe2eSys5Mw6ijqUc9jAsimURKp1x+8Cu3KI3DF8lxl9MTH3i9//AwKu9Quhh8gkYp1B9P9PMpbn4tx9/bmm32jPSxvUfmxtWhfDz/+s9lxYMWEDW5QqHzpt+Nu/+RCve/VrSD2fqFfw2F13ksgO3/+WH0AiSXspC6fP8SNv+1H2X3Ml1fEKGQmvftUrGKnXefDgw7zmta+jOu6x67I5Fs6eYe+OPSTdNnfcdgf/5x++j9u/9HnWmstc+5IXsbB4DqfISZMOk7Pj4Dv88Z//OYd/6w+oppJuJwctuPWeh+h3uwhT0FxdoddtoYwADQunF1k91wQpKExOEHsEkWvHxChCL6BWq+B6htZKn7GxMVZ0k/vve5xus8vIeJ2pbRMYofngZ75IP0mYHWtQpLYUPCsKZBhgBaJdDuy7DEe53HnPwxx85EkC32N+ZopuK+XgY8f4rldfzzVX7+HyfbvZu3cnXuTypu/4ZlY7HZJulzRNcXwfLRSzc1MURUG/3yPNEisWLBy63ZQwroGShKFlt+x1umgKLt+3naWlRVqtNV59/TXcef8jBL7LR268hUoU0m23cf1ScwyPLMuRSoMoWFlaQxeaSjVGF5qsn7O63EIKhRQOWkvyXk7SzXGcEKUCRsfHWWt26bY79NttRGlEy5I4xf5tWF5ZG9YgSWmNOj8MibwI3ytT5HSBNhbNc30rUi6VYwMkBvrdLoHnkGUW9RMYiqxAZxlRJUC6ht375nAcydTUmE0P7KX0e326nTZSgeu4GFdQGPv8FUVG2s9Q0jp5lozDAJog9MnynCJPmZ6aIgobFMaUqc82JTDPU7QsQGk830VJRXN5gcAXGJ2hsw55fwU3cBmdnsFTkl89coYP/8J3IL0Y6VbBqZLmTaRsgjlHUZwl6bdQIuEHfud/8Mfv+2P+6tXXY5Il+t1ltM7IMRSZIozGyKWLNi6eF+A5EUoEG4hJBEUpeu+4Hh/71BfxXI8bXnwtWZriOx433fZV5rbPUB+tE1ZiKFOBsjQd2iYDkgIp5ZDYZGBAgRk6GkUBX771a3TbbRxXWsRNSgptmRzTJCMIQj70iZsIoggvDEEqjJQIV2IUSF/hhR6OK3Bdlxu/eBtfvfMe8iLD852yrmbdgHNdtyQksTVbAwRvbvss0rEU31ZM2MEYwcFDhzly8iS60NTikOXlJrVKndCNSHq9QQifsBIhhcfpU+fxvdA+AxRMT03yiuuuAyEpioy11VW+6bprMYWyLMKZxmjByOi4pTtXttZU6xxjCrTJ6CU9sswiSknSxXWFraXDkJaMrUWW4YceG9P2hSmJYpS9Fv1eQrvVpd/rkSUpQkq6vR5PPHmC7lqbalzBcRQ/fOuD/O0H3s97/+T/4vX/6Qr6aY/XvfpaiqIg8gOW19r0s5xPf+Yu2v0eUgpe/er9KGOIowgpJVHo0u71uWzHHHfc/iiTo3UKbWj3U+58+CxhEFIfqRLHIfWKT+gb5sYDTi48xcFHniDNUhwFJ0+fJvQjpJJ0kpTLd2+nWg04fn6ZxbUeZ5b6zE5u48lTK8xNTaCkAOOS5JKVtR4j1YjrLp/kxMIacVAnyzv0k4yT5xYZiX3yPEGbhCMnzrOw2uHEYpMMhec73HH/EYrC0Op0OPzUGYyBo0+cxHNtTW2S55xfa3Nqqcm5xTZ5MfB+njmYPODAvmDuvQSi91zaMMXykq1EOgYO13O1fbcY2//j0P/9rIPewtiaNgG2tvoSjqQ25p8lXVVoPZRT2PR9YSxaN/xbl1kFlrRqKzPn0wEDg3fcs23P9toO2DK3Mp0P0i61Lp6WvVJKZQNUG4/NmKGswT+F9bLQxXNj4bRsSuTFP99ufbb7NmUpk9a5rY2/xD3w9dq+gdxdrA2jVgWG7JIvq+cTwXs++tna38Z+dSmuvmWji/Z1wYvVWIYnYcQQXTPa5r6LjZGO4fpPF+17mnMw5etHCLQQdHsFGDj92MPMTkwTNCYJwhm6pDQmx/C9Cq9/3es5fuIIN3/xy7zvD/+U9/7Ob3DsyUNcvv8Ao2Pb+dAH/paduxoYUzA9Oc+uXTvwc5fqxAgCh3jKZ2Zunje85Q3EtZCxqV088thj7N27i36uUZ6H0D7//u1v569fcRWjQcTc9in80Mcoj13bJsmLHMd1CYMAx/O49e6HGa9WGRuPmJ0eJ4wc8tSgcw15gVSabr+DF9XppwlhHPC1hw4xPVpl3/wMjUGdmjAIoSmKhKv2bCeMQiYmRtEmpdfrEwYhaS/DdySYgnazzSc+exff9i3XUIsjQDAzNwU6pRbFfPhTdzI9UqFai7nnvseYmbQ1JRNjFRxpDdPjpxYYadTJM5tuaZB4XsDKqWXiiocX+hgpKfotHF+ijYMTeCXSlRD6IW7o4IYe0+MNEIID+7ajHBflu5Yq3XNZO7+EIy3hheO7uCbHDXy0UQgjWF3pUhupIpWh1+siKVCOgx9U+Nxt97J7xwzGaCqRR3O1xWithhawtrJGXK2g/ACTZBS54Et3PsiVe7aTJtYxS1Kr5SeUnbikEBityU2G7wcUmb2B816bIstYWlxhbHLM1pMhQQuyPCeIK+RlNFMpxxLRSIUxAowmjD2k6xD4oTUCjEYZgXQ9iryPLx2SvI8yGkc5GBRSubSXzhNGFYwfonJL8iBMQa/Vxg08hGNF55XrU/RaCNcja68h0h7ohCJLgcIa6kIghOLdD5zgNd/zQr7nhiuQfgwqwBSapN9BaptSamSAq2KU6/IT77uNH/jul/Pzu3YhlaRIM8IwokDgeBGZTnGdUfAyhLFIlgE+fuMXuGLvHizjZIEpIO1m5GmK4+SY3OozPnLkKU4tLCOFx54924ekMcJYB0MpH5MLhDIIWUb5h8QnEiE1RWa165or/y977x1lWXZWef6Oue65eGEzMjPS+ywnqUoSEnIgQAhJjVxJsIA2MJjuhhlcY7obaFj0ot1009CGWfT0YoGmASEKWYRsqaooq8pyKl+VWelN+Hj22nPmj3PfixeRkVWp1sDMmqWT61VFvLj23Hvu/fbZ37d3i0qlxuWLFzl0YDdh6YNorShTFS3WKqRwxts3HT+I9jRgHJg20M/aBF7k/A+lxBpJmvY4tHcvO7bNopVTGO73e/iBQkhdBjvrs8lOXdOUYI8yvXwwq2ywxhCFPvUwJNCeGzfK1aWdPXuez9zzNW67+QhJv48fOm9IBERRxJXL81iBq0PUHlHg0+/18YOAIAz5zJfvZv+eXdx//6Nk/YxHnnyOgwd2lxMBApX3wYKSnvNxlE7UyClcusDNFBahNLYokNbQ7/ZR2nespLUIaZEqIO7HeL5HEEVIWRBVa0ilnP1Ir8/UTJNWO6FaCfh7D36N//57/40f/tEf49af2IuxOUJJeklON8m580v3c/joXs5fWaTRrFIPFBPNCvV6RK+fcOrSGpPjdaqhj1aCVj9l354JGrUa3TilH69x054ZkJZ2z1CLoN+PSfKCXi8hi3POXu6jwoDMGAJfUasFYAqEFWR5QcWLSNIMEBgrsCZmZmqSdj+l1+3R6ue8ePYyu3dOEXkeghpS5py5tMq2iSb1SJAXKfVKAAK6cYrQmrNn5jm2f46z5y+zZ26OHdsmEFimmnUW5heY3T7J1Mw4V5bWMLYgCnyqoU9hCq6cOsuB/dvJ0XikDCrNNrxk3Vtz+F9x1beb3q/X+H60bRANKdGaLSmvzfu4VhvyRK+0swFwFevbBwirit/8yf/Chz/8/i3EUVxBm5RlfVzZlHR1pnnJ+A8PVpgyw8KCMUith3V0I6Nz5JDEBh88KeVwP7pk5cTovwHzZUbOYXNMN1pDh2XdL9gh4UEK5yiP5fqlrKmTI2J+wjIoBXN1YS9zRcpjGNYPwga6dCB6IqVywiV2UHdW1qSNMHgDjQRZ+l0Ot2Fs+fwombJSCfdazdh1NdFBf7v/b2TFnPDW4MPQcNDVd5YTTnLADm7q10GzJfgdpH+NssxbMcrCbvwMNmNt2R+WQUGlxTpqbENt5Dcex79S+2Za5jfaBhe8nEW/9mJ/8xfzetsw57vMnd6c77xlCuZ1H78Y5lNnWYYU4mVnmP6ne2UkHVMAVU/x6EMPYA3s2HOAVj/lF3/2l7n11leTJzn/2//6c3zwg+8j7fe5+cabeOMb30C7u8xrbr2Zy/NX2Dm3g4XFZfYd3Mf+vQeoRDW2ze4k8kLOXzmPsCk61kxUxlk8d47Lp0+yuFqwtLSAH0mKIuHFMxf5yr/5Lf7pzUfpd3voyBlcK8/Sbq2itY8X+Hzm7q9SC0LqY3X27tiO73tkRUKlUiHLXI2V1pr5+SWyzDA1M4GxwjEMQrN7dgY/8MizlEotYr2AWqGkQilN3I8JQh+BpNuJqUQRcZzxlYeeZse2KcIo5NjB3SRJRhREPPDYMxw4sAOIkVKya7bJzI4mtoBdczMYY4hLGflOu08UVWiONd1+pcHkhn43QUtNtVHj0vwStXoNW1ha7S6ep/GVT7/bRSpBpRKSJjlhFCKkcuILaYpQLl1SK8ny0hqXzi3yhROP8qqjBzC2VNC0YKxT4MuyjI994UGO7NtOFLn6KycrrWittTm8d45Op0tQrSC0JqrVyC0IY8jSBE97pEmG5zvAcPMN+2mttQnDgDTNCcKAPC8wRY4UCiGdqbsUFmssfuARd/sIXJpNAWRJTrVeRSqF8jR+6GOswfPWC9otLsVy8JGA1Iok7pNnOdrTzhYhywkizdJCi7FmjdZax4HFKAKbsra2RliLkL6myDMKW5BnKVmeoGtVbCHRVrCycBGTtEnSFGlz/MAlXxVICjRRbQzPC/ihe5/m//zFd+EFQZlq7sBnnvURZNg8RXohUbWJF9ZZ6Rs+8OO/wq//m//K9918K4XRIEOEilC6QpH3HSsmQnLjmEdTGOJ+wi03HBk+WgQgkbRWV+n3e4zV6iicx93UeJOHn3mO977zbfiRKsU/jGNqleSOT99JnqQuFVIphiFjGdRgnI2DEJZqPcIUlnqz7mT5laTIDVJJ0iTFlvYdd5x4iAsrS/zKfQ/w2bOneSTu87FnnuVPnnyK23/1n5Ad2U/l1lfD8aP85h2f5PcfuJ937JqjtdahUqnxex/5C244sK9ke+0wLhUMnq/rCnGDYEoOOgIXGEkl8bUmSVIEjhFI85zG+Bg3H9uHEq7eztOlh52n6HZ7NJtjCKl4+pkXaTZqFNaJo4SVkFarwy03HiVLE3bt2kEYeuzZvZ0kTgijgAfPnWGuIoapSsMgbRhYmnKMqZI4dJkW7X6MVgpP67LvHcAosqxMP7N0u12CIKTT7tLvx1yeXyQKAxr1Bhfe8W5+8Pt/hA/+qw/zd37i1dSjCF9FVIIqd3z6EXQUMTVdpV6tsG2iyexUk6eefIlTZxY4tH+Ofpqzc7pJoHFj0xpqgUfgS3KLszrxQ5Zbq7TiPrumZ4iTLgifS8st9myf4fJSm9ffcoBaLaBZDWhUnHiVSwnWSAlrvT47JpvEacLcdJOp8QaLrQ5f+OyjHDq8nZmJSSbG62R5RuQJvnLiJNMTEWCZGo9YWEm4PN/mvnueoTYxRr1SZ9v4ONVqwPzCIof2zrLadc/ZT3z8Po4cmaXVjQmrg+c8TDUbpOVkReBp8GBmqklqQVIwNDHfwNZc/ab9Rpi6zYBnoFa/VTritdbfcByvsIIY+bCJHTz6tu3csu0NLtbfsKEyDXAIOte/tcZgxWaFTlum7smhtcoA3G11TqMiKqO/KynJjbk+ZcWtQMNo20J5ssiLq336hsDHbvp6FAa+MrgbqGRuNjcfbGtDedAIMbABWFs3CWatQUuNtWY9JV6sH9NQJfMaTUq5oY5v/d4aqHIOwN2mFbdS69z81TXlXbde/uuJ38UIg76+3oCxHpzD/7fAnfibqvn6m2xZmv7NHnQJMAy5m714xcVf+aL+Tffz9W7fmGI4MzOamnld6xuXIuXiGusSzu0mun6rY9tEZV9reVvOyGgp8ZB89d572LFzF43JaeLMEGcp7377u/nyl7/Mgw/dz4033cCZk89x9swZqqHHbbe9ilxKVtcW2LN7L/1+QT+BR776CG990+t58IF7edVr38jlM2cZ3z2BTbo0dx5HK0OWdZCiQOfTLC2fY2om4od++Kf5g7e8GgpB0osJPcXv/9m9/PCH3opWlrgXE9ad2lyvExNGARbBn37ybn7wvW8jN11soTAGpCddzVcZBAeRQsqQvIgxuUR77tFQ5Bn9JKVer/Pss2cocsv22SbjE2NY4VL3+p2YS5eX2DU3SxSFZClcuHSZhbUVjh3cgzUQ+QGLi8s0JqtUAo2SARcvLrJtxwRZmpMkCbVa1UlAS8Hn73qIb3vdq9G+71gIzxD3UqwRXLy4yGK7xU3H93HHl+7l+97xbaXvY4FJwZgE6WlMkeLJEKE0WWGQpex5mlucu4JlfLzJH/zZnXzXm44z3qxjjSWqhBTWknRT/uzz9/F93/NmjJUo5Yyho8gnSZz5t6cdi2yE4vL5y9QbIWEYYg2kaYqnJMtrHbZt30ZrdZW8MDTHx5BK0Wt3QEjufuQpqlHIm247zpNPneLwgT1oT7K6skqlEhKGzn/PWDDkpcyzKkUlJAjrXlAWDAUI0FIPQRMSsiRDae1UFIV7DeggwBZO4VN5YApNnsYI6YRIssz1n6v5cjOkQvkIYHlhgVpVIys+vvDpr7bIkiXCQJPKAN9TQw8nIzzC2jgWzd+96wR//IvvwlqDUAJhFZiCIstIkzbWxEjpEdXGMAQIqbjjjOZP/vjP+R/vfW85EyvdPVw+F3trC1RqDcDHUuC86Bwws9YiymfJ6vIage9h8gwlJVluaK/1SIqMx559nnd911uw1pnHC+EAmV96H8b9hC/edT9vfeNt1OpVpLZ0212q9ZoTUUEhpXUCIxgCv4qULp3TGIMfhrQ6q/z4F77iwh8h+Mnjh3nqyhV+9FvfTBYnKF8jpKAwAq+smRswhP/yi1/gyU4LawSHDx6gH/d5+vnnueP2D+KXyrIgHNsl5LCuzhTG1U3qsjZEiFJhEzDCifikOVcuXCbu9ajWa0xt34b0FOQJaZIjUE5Aaa1NozlGlqZYY9FBwCc/9xXe985vw9ocKx0TOTjwLDVoLUmzBK00SmmEEpw4d5pDtk293nSquIT12wAAIABJREFUmEPQa4kqFXr9LmEYugDLWv7yngd5x5teixUWXymMcYHN8vISgfYJqz69Tp88M9THKuWkhQN/SeK8KH/qsbP87E//OH966lPM7dastleZmZhGSoOnNHlhy9RpSbsXO889Keh3+jTGalSiCFtYLiwsIITgxD1P8a7vfR2+lrT7CX4YIoXHRz96Hx/+4GuQnuL0hRb7ttWQXoW7TjzDG245Qqh9Xjh7mp3bp4iTnMXFNXbvmONrzzzH9tkm3V5CbiyT43WKwjA93mBhpY32fAJP0Qg1f/qJh3nDm44yN92g0+mSFiHjNUNhLIVJCL2Ay0srdLsxRWHYtWPapdlmTjxltd0hqtR56ewCR/Zu4/GnnufQof0khWGsWmVheY2zl65w2w2HMBaSLEfZjFpFkaoQYTK0GFGRZH2ydvNbeyuwYkbAylZs1VXvYdxYN5t2ILbY2wYfvFfYLqOAr5z8GK2JEtj1A7Tw6d98nD/+kz/YwAQVRQ4wnFzezFSaTQG4GInfrMBlVXB1zLY5/rmWvsLmAN5ih+niA4Dq/FBHAdOmGNKWMv/GbEjbHHrnDUDVKIu1RXMgVF4NHje3a8SnW4EwMxrvXiMmHDU5N4UZikoN1tdKr9dBj9TMqZH66PVDK0FhGYoOY0NhNi5rxMiP1qWClv26XrtYPsOvlTopN17TDcfmTG9fvtlXSLEt01P/JmvdPN+/bgT5TXC3Vfv/IbgbADkplRvA13iYvVxTCPLC0O/HaOWYJT/weMVRcdUMy9aLFdYiraXqBXzxs3+F0lVOnT7La17/epp1j9PPP8He/cf5zu94F3fc8TGQGedPneM3f+M3+U+/++/YvXuCnqnj+VBvNDl18hyqEvAPf+Rn+c63vJ73v+/b2X34OBdOnmb7ob2szi/ijU3h+4bLF8+zd9chsjin1VnkV37ml/jfX38jQkiytHBBlDAk3QxZSo4r7SGEIUtzJ99uYWlxlcZkAyUUcdLljz5xHz/6oe/EyMLNNqYWKy0Cy1985qu86ugcX/rqC9z+3a9hbMwZ71arNbTn8cCDTzI3O822WWdo7gUB1sLywgrNsTpJloK1+DriiWdf4MYje7nvkae59eaD5LEhiiqoUKFEhi0EUmlyUrLYEkaBY5O0Lk2J3UUyhQsE7n/4aY7s3UkQ+tTHqpx49DmOHNpBnKaMjdURCAqb4XsVhDbkSUrc71KLGuTlvqQssEWBQVOUkuytTpdapYoMFEpIiix3Qez0BKoQdFY7+JHmo198kA+/401oJemXjGWWJZi8h1SaAs2pFy5y7OgehJYo7TmwleVkRYFfqUCeYzHl3yT9TovaWI1Wq/ROk5CnBUEY0um0aYw1SNKYbqfHWKPJ4uIa0zMNDDlKBJg8QyiLKQUZwC9TBg1JnOH7AcIkCOWsCfK8cP5ZaYoX+CyttJkYH2NtZQ3lWSrVCchShO9R5BmYHOVFjlmxKVfOX2R69x5sYTBJQru9SBRUWGuvUq97CGOR/hjRxCRprwfWovwAlOJH7vkaf/jz371hfEshsFIg8pzV5RV8DWEUgN9gUOv3j3//ASpRlX/9ulvdpDcCIRxvLzHkcZ9+r42QVaJahChAeC59qLXaJoxCtBIsXVlhaWmVei1kvATXaZbhhwFh4CwFDMIJDJkylUcYl8ppNCB48OFHee2rby4ZOsHq8hr3nniMt7/xWwirHlmW4fs+aZIQBCHzrUV+8ot3DZ9zFsMfv/d9UAjQgHW1vLYoEFj6cZ9qo4GrobPrwRIgrMDKDKxjDS2GH/j4J4dB74d2beN7X/NalNBgJQWFC+qGIlx2yJQNfzaiFPMQpL2YK5cuMbt9lisLy+zctZPO2gr1iXEskCcxwmo67TZRFBH3Y+qTYxSZmxwIfEWOxfPc2MrSlIVLayysLnNg707GxsdKtQfLE+fPcSzIh6mvrVaHarVSBqFOElyUPGu71aIShTzz3IvcdGw/K50e93z1ed797W8gL1LiOHU1pkI5y45I0W63icKIPLXoSPI9n7iTH/vwD/GVF+/nttunqIQ1riz32DZe5/LyEr7n0YtTsIKJ5hj9JKUwOeP1CoGEc4vLTI43XdKMVHTijPvuf5rXvWY/C0sLHNy9B6HB05pzl1eZmajh+4o8VcT9NkZaKpUITyoWltuM1yMurbaYm5riyefOcHj/HBVP8ugzp4mzgtffcpAv//Xj3PrqQ1SCYMhuGFtQZG5yqlIJUVLjobj70edpRIZbjh3GknHu8iJzM5NcWlhmolnHGEsW90lzQ7Va5dLCGnvnZnj25EUeffB5vu/Db0T5FdLCkGWGu+9+nLe+9SYqQcDCaocHHnyWN9+2nzMvneRVr3ttmR63KbC85kt203t907LXA+6GWxHiusCduMa+t9rmgHETgtLwftP2R0ANwA/c8DMbwJ0pM6mGeGaUWeJvH9yZkhkcHMsAnI2apX/d4G4Acgf7/FsAd8OJ/pFlNxMAAFfV7lmxAdyt73IjgBoob272w/smuPv62jfB3TfYrHRpVYO2+WZ4uSaVclLar/Dw+H+qDRTpBjMumwfZ6PdbgboNrbi+YxydLVs37nz5W9qYwcAefRUUw3Nw9L4T29BG8MmP/ilv/c738cgjj/LPf+Wf8Tv/4d9TG6uwcOkMN93yWk6dOsfKSod09Tydoks1HOfnf+5XueeeLxBnLYoMJiZ2kKolvvDpL/DGN34nax3D+DZoNsfo9TvEcY/Zyd3ENuCuux/it37tV/nDP/iv/Mav/Tq/+7obUZ5mdXGNai3AC5zEu5CKfqeDkoJuL2ZsooEWgocfe4bXvvpGTp29yL5d2+m1OsRZQdSoo6XB8wJykztPslhy6sVzjDebdNpd5naPIz1NZgp0oDH9Pr12QbVeBWHJ+j1kqFGBhwSydk5Qdd5lUnmYQjkGRhRY6ZNnGdpTCASdlZhaY4xe2iGsaOJOQqVSY3lplSgMOX32Ajcc248XOW+z5bVV6s0xPvZX9/Kh73qrM87OMvzAI0sN1hZoT5HmBWHomChrLAUZaT8lCgMKYfB0RLvVRmlJFEUUuUWogjTN0DKg02nRbDbJCoP2BHmWsrCwyraZKZdS5ym08pAyxxrLuVOL7Ny/E2Mykn4X31dkSUJUq9Lr9Hjx1DluuvFVKFlQ5IZ+O8GrSXw/wALdXkwYes7qIXfiEQbrauWE8yDs9WMaY1XSpE8Q+nQ6CdVqxaXZC4G0CqsKCjKUsMgMrCvcAwqsgLRf4AWCLO6ga006i0uM1wKyaAyyFCVAKUGCxmY5XqQhKTAEJNkFvLyK9CVSWF46+RIHjxzg/KnTjDcikiylkyRM1MfQGjIT4NUnXf3gyEvzh+95jD/8+XeWY2uQdCdQwpIiIGmRx33yNCGqN1FhrUzHs+jbPsjtt/8of/Tev8Mg7QQrwUqkzel1V/H8CKE9VpfXGGvUS4JKIbXE2oIiNawtrfHEU8/Ti3Ned/NB/CCg0qyjAx+TxqVwTYAx2j0/bIEUYJUmTft4ShJ3Y8Ja04USeU6c9On1+tRqdQdKhSHLDe/7739AY9pJxR9u1Pie/fu4be8Bisygfbd9rVxQWRROZKQoXHph6LmJAkOCUs7EW0pFFluCSJMXMVJqjMkYvP0XWsv8zJ33YYE/ft97XYBbxqQucHW1gTaPSdIUv1pDCE0R91DaYqxAFK7OZfnSAieefI5vf/tb6a6uUK83uHTlEtu3TyF1QGu5Q2O8jvacgmqlGrnxljt20hQFeZqTJrFTmbUuHdXzAgpT4AU+T54/x5GgQApbsjjufrDW8sgjL3DwwDYaTadOqLQii2MWriyxc3aKXCvuve9p3vz6WzA2Jcs1ykikn6E8jzzP6LS6NBo18jTn9q+cYG52ltW1Fu/556+hn3aJgoBunJJbw0vnFsiznP27Znjx5DlufdVhTp5f5eyFRfburLF/+wyf+tLXyBG89x23YKzC5ClFVvDoM2eZX0s5cmCW8UbIzLiHMQFaFLT7MZXAxxhDKza02x1WV1qszK/x9rffRm5z4iQh1B6Lqz2eff4sO3ZMEQY+O2bqdOOUXj9jqtkkS0q7kDSh4ilQBaEXkmUFJ8+cZ+/unWR5Wnq5aoS0pHEPJS1G+iy3e+yd2cZaL8bgWOFACtK89Bw0Bh00kMKCycFaCmExtrz3Csvi+ZdQVZ+52TkkAQUDIadrv5O3SoXcDFKuNw4ZALHRdexVex8E1ddqohwX5fovA5QGVgqD/QnpUsw//i8e5c///CPD5YrNzI8Z2bYdsGj50IolKwHUOgCwFNai1DWO2sohc1gYQ7mZMs4ZWWxjFuOwjQLRYZ8PgImg9HKzQ5YP1sHbta/RRsESIddr4ASyjK3cwVzlHzz6s3Xvu4GYyIBJG8SFUqohM6qUHmZ5bW6qZO4KUwzjzXXFSmc8PtjXaCtMMVx3c7v6PnXZZXlpW7TB4PxamV9sEkkxmy/O1izikAXevPwmUH4VYGXrc9mwzmYwu3mdrxMXfD3g7ps1d1u10tdu+OvXk5tbPkj+turxBsBokB5xFagc+f4VrQ/+J/DnxqLUwU1/9bmv94kY2dHGYzYFiKJg4eJl8jwnqlTYObeN7/7ut7N9xxTdbou5vXtYmF/g3i/fTaQ9br7pKAeOHUGKkMivsO/QDHnRp9aoYG3GP/rxX+PDH3wfL5x6jPq44uLFJSYnphFGMj4+SdY+ha8tU5MTvP61r2Pskx/hnbMT+KFLLQj8Ukodwdkz84w162AM7VaHsUYDhCWNMybHmigpqdUrrK208QOP+lgdrVwqX3utS1DOCi+tLDKzrUGlqogqiiTOUZ5C+64mS1rlBBVsQbfXRipNEIWuXwvLykoLz1N0un2nyKXLWqvCopQ3VO7DWhbmV6nWPLQOEHh4nuDJp09x+uI8+3fNMrttkosX5qlVK8zPL1Gv1ZBacfPB/WjfwxqD57saoSAIWFtrEYQ+nu+BtSwtreBphR+EfPaeEzSiAO1pPE/hB84oOs1SgtBD4iPRJFkfz9PkuSXuJfhBgFaaer2KEM6gOkkTkl7GWqtFGAZMNCfIi5Q0TanWKsRJhq8jDJIgrDA9MYnUealW50CTNdK9UJTE8/VIbYF1KVV5ju/7QxGMauQYHKU1SZo7pjZOCEqfvDhdBWnxdYjJlEspVJrV1RZ+6Ls6BM/53GkhsTok7sf4FSc4QdIDL8SalCzLUDbHszlZ3AYVomWI9hWrayvUqgFJv49Je+RZgvYlOvCIwgjwMFpTHZtCKD0cQ7994hn+0/Pn+B+/+D0j49MFZQ4QpHjCIqSmMM7PSdkMKUIEmh/57S/yxBMv8W9f/1quKkQXUOQpEjCFQggPk4PJLV6okUKRxAlYJ6qRpxmTzSZJmrBn1yxhNUJ7GgMoXN1imbWIUpI8TZFaYax7fvQ6fU6fuYCnfXztaqO0ViglCYOAH/jkJ/n48y9y/1qLo+NNfvsd38Xtx4/z1v0H2DE2DlaweGWZSukLibEsLaxQqUQI4YJoJQX9uI/nK9K4QGtneZAlOZ/83J1snxp319WIMlh0z7paVOP9Rw/z/oN7+P5PfIqPPfMsHzhy1GXkSjl8X1shUb5jlAVuG0nq7DQQijTpUatEjDcaVOoVarUKCKjVqgjtaiNPPP4U0xPjrK6ukucZYRji+wGddg+pXa1jt9slikIH6IrMpWVqidQeeZbz0vw8OyuaJE6HdTJZniIlzEyPU61FpGmGRIGSKKUIwwAhNUmSs2vHLNIDSwZC8WefuYsbj85hrODihXl6vRhfK+599gW+5Qc+xF989nO8+1dfzZe/8iiz2yfQWnHuyiLT4w22TTSoVQPml9ZoNGo0ahU6/QSlJP24x8R4g7HJBufOLXDs4CxnLi+hlUs/TY3l2ME5dkzWqAQ+86sr1KMmWd5HCMmTz51mdmaCz336YW57zSGQcOjQnGO+pFMMjEtfw1o9Ysd0E2MLllZj7rnrKW695SBKCpbW+lycX2JyrMaXv/woRw/vIc8tF+YXmRiPCP0IJQWr7RZh4HN5folKELDSjpmd2saZi0uMVwNOnblA6Pv04gQtIQoCjJEI4fzsXjh3Cc/33ZgWBZ7WdHoJgVa8+PxL3HD8IC6wX393XyuqEMNlBszUpvcv18/aXXudzYHq1u/6zdsYLvEKLNjgt0HanwB6Ky2++63vGVloYz2bkrK0TCn3NwCG5SIDBm3goTvwP7t2fCaGBzJ4V1g7qPneKMKx1Sa23u5ID0px1XUYEnyb+2e4r839tKnOS47EV5tjz03blLIUpRo5D4st4wVGvIZhK187YFivu6H2b+TngeDKqH3EYPlr9fvVfxNDBn2z7921r92mAHZzDZ5Y74MiL64CXleNjpepdXRLb2Ly5LqVwzXXeaW6wFdo3xRU+UbbJnD3da8+eqP/LaRjWhcRlb+b8qHs/snS225wXFsdz3AmYpQFL4qNJi7XcyzGpROsPzTWmygHu5tZcimd6xkVbsksySDp8xd/9me89dvfQSVSFHlMFGjyvMfU5BipkTz5yKM8cPc93HbLzVTHK4SNCaKwyvHjR/F1jXp1G3HP8k9+4Z/yd//+e6j4miOHXkO9tpNf+qVf4APv/wBRGCEsLFz8Gs89/QS//Z//L95x9lkmmhN4XkCnlSDRLCwt4HlOUr0SRqAEWkqUHKQeStbWeo6ZEpL5+WVmpidBQpIkpH2XOvnxLz/AzUf2ubSzXFBkhsD36bZ7VKpVtF8q7jFggqxTn+v3qY83MXlBFmecO3+FsfEaSml8zy/TOgyrax3a7ZharYKQ3vAhv7K6BjblzgeeJO3ljDUiZqYm2TbRQEhDnuf4ng8YKtWqM1G2LlBYW205EJblBIHPPQ88we6d02itXC2ZlHhS8eDjT7NjehvHDu+lPlYj8D0KkyKFQmsPz/coioy4W6CVj/SsM6DOC5KkoFqrUOSliaoUOGNaaK32mJmdwGJL0+6EOHb1Nn4YYDHkNsdSOPavn5MkBUq7wPTM6QtMTY6TFwVxL3YCE2HgXu5YlOeEV5ACpQTd9hphGGKMwAsDBMYJdEiXouWJACk84jgGkSL9AFMY1lZaVGoVkiRz/SfBpClIn6gSIbQiXluhSBNUFBKvLZL0O5D2ee7Jr1GtKIKKT9EXFP1FFi+dI15bQVtDVHVpmjoIyLIcL/AJK038ah2rgrK+zfJTX32K3/qp7+D2Nx/ZMCbdGHNS93G3jUjb9PoJspQNp8gwJsGS8T/ufp7FxSt87759LjVUqnVwh8WaHJMXWOfHQFDx8QNFlhdOMt4Y+t2YtbU1oiAkjvvs2b2TldYazfGmM6caPocGAVOZZiUlxsFQhND4vk+v22eyOcZXH3uc6elJtIK//1ef48O/9gt89GMf59+9+Q28//AR3rJvH3mel/UvLkugSAsuXLjCeHPMpXsZw133P8yeHbMI4e6/JM2IqiFxt0MQ1VBCDVPGjhzaTRj5gAvGP/LxT3Fk315XxyZEOT49PnD0KLcfP84/+PRnWF6c5zW795RshUEob11lDoHBoD0PkKUYj6Ld7jC5bQqLk9mWWrK22iLw3UTQ5MQYUSWiXq8RRQFxL6fIS+U+KVBaUq1ETjRGa7IsJayEpEnK0vIqlUqFX7rvPt67a4ZPfPEB9u6YIQh9J39e3gNpkhCGkWMtlPMC9PwAkMxfWaIxVqXX7ZDnGUEYcmBuBqks1kpq1Sp5nlPkOeEP/QP+7X/6P/jwv3wtnhYcPriHVjfB05KZiTGXRg7UohClBI1KRJzl7JhsYoXh8J5ZjIWxWoUbj+5CGMNYrUrg+yysddi/Y4pqoPjCXSfwI4+9O6awxkMIV0e4fWYCY6E5XScKPaLIR3uKwJM88MQpKmFIPQqoVXxqkauTmxmvc99DJ3nnd9zKXfc+wdyOCXwvYLJZxVdw8OAceW7oxSnbJ8doddYIlGJxZZlGvYJFEPdTpibGEcqn109YXFpjsllBSEmjWiH0NC+cPM+VpTW2TY2hlSIrMtY6Pb5059c4fmw3/SQGa6mHAe1uh6mZJl7ghKlEOTLcSN4ImEazaDYChpGxtuHv60I/G4DKFkmXV7Wrgtut24BFHLTBvjZv/yofuQ1bcG370SkWn0jZu3e3i3VkyTsPQYP7uMePGbI6A2A6ZNJKkCTsgCFd75+hGF1RArnydykEUokt1R83Ky4OPs7ncoTFx4m4GGvLfpcbz1s4/zhrcaq7YuP5rfdOee0HLN3gnDYBw6FgyuAz6CRGQPMA5DLSB9J9nJdbKbIkBr+vTy4ooYb+o6P9sJkMGU7YW+MUpkfa9dg9DNPjB/823a+jbeB3dzWxvDW4A7YAdleDtUFAvPkcrwm6R9jL9WPY9LmGwuZmX79rtW+Cu2+0fQPg7m+LsdvQrjUVxDrIG/x7uTYK7gYzYNe1+819Ja76YXg0G43VN64XKJ8/+v3f49vf9GaqEztZXrjElYuXkUJSr9VIkoRGUKcSBNz22lu558G/piCnOTHLyloLY1KuzJ9lrdXC9+Hd73k7x48fYLxRIU46FDZjamqcvXt2kqU94n6bxuwhfvaX/z2/d/NeotAnKzIEEFUC+r2YdrvP+HiDdqdDtZRYL/KMPM05d2GeahgQVSr8xRdPMDveYKwW4YUBOtIUScaX7n2Ew/u2s3/ntjIdLKO/2nfmyGFIbiyVasTq2iqe0sxfWiGoueCn1+mVogNgMle/NT7TREpJlhT0OjGBr5FIFhfbvHDuMhNjAbbw+OuvPsGundM0G1V8qdiza5ora8t40qMaRVRqFfr9DmONGmvLHaK670ClKOt9lCIIfdZW29TqFUxh2T03S5JmzjagKCjSDC/w2LN9Buk7IQflaefDJwyL8y1OnrrM1GQT7XmstVosLi0zVmti6KG1plKNyIoczxPOV6+fkMZOya4SNciKjLifEFUjur2Y5vgYwlpWl9e468EnObx/F1op4m5CZiwShe9rx3YpSb+fcPnyKmO1OrVm1YlxlDNsSmmkliiJS2X1BZ4fEvdTtBIgBWmSulo6BEpZ8twFEGHkU0iFloJ6JcKUM4wCgbAFWb/jmFgMyeoCnu2jJsbJ2m0unHyGqfEaL558kUa9Qs336XaXsb0OV+bnmRqrU1hJYiUrqz2UCphfbKEKkKFPVB0HoRHG8Pfufozbv+9W3vMtB8oxtXHMDQKcPMswWUJRtFFkaJHjeSG5irBFH2sK3vDdb+f7/SaWgjzP8Tx/PYAQhn6vjwI838eWqYdZmuEFAViDMLC0sEyz2UQKyVijRqvVZmJmHOU5I3cswywjiSRPE4o8xwpJr5fge64GVChJpRrSaa1weN8ufvCzf8WHfu2n+dgdf0l44lF+8S1voVEdc+9Ma0orivKMrcHTPlNTE/zBn3+Cm47sRwjL0UP7yPIU7Qmneqo1poA8yUGUDEAJEN0L3Km8Iiw3HT2IMQ7sD1QmB88+YwzvO3KMY9MT/L1Pf5aPPv00O7stJio1PF+VgFAhyto2J81u6PcSomodUd5/nnTKqo16g7SfYSkIIldTSGkMf+70RSSKtVab8ckx0iQbWkIIIfB8jzwtwHrc+dBDHDt0gDuee54P7N3O8YO78HxdpmBpsC7FKslSfN9zAY8ZAFBBYSy1elhaVEAQROTGUIlCiiLHFM6z87899jTN2z/If/zD3+fWfzBXsvY+Saa4774naUzUadZD0jyl1XEMVTXSQE6j2iDNc5I0JjeWZlSllyRIaZ3ys7F86vMP86obDyKlpd1ts2vXTsYbEcakrm8lnL44z1i9iq89arUIKQWVwNVltnodDu7aja89CpNhjAtaozAkzQw3HdmOtRn79szSTzMefvJF5mbr+Kogt5BlGY8/8SIFlm3jDc5eOE2jHnLu8jLV6hj9bkxiYKJZRYmMqaZPENXdZCCC505dJPA9bjm2G2yGsX3iQjM9Xmf7znEakYdSmiRNCbXgqw8+ydFj+zAM0tpG1TK56v+bQd1WzwDxCn+/NlQbbWLDYi+3xihU22qyd6stXGt7n/3jO/k77/reLVmvgZn5YMLoKjrtqo3aDaDPmHUVSRfGiE3g6xoHVbYBmBsFm5v3JkqmazRlcpTJcgDo5dRFy94cAtLrPLjRk9jAOIqrmLfNmV+2XG+gtMnwe7vltb1W20o9c6vauy0O+jpObLCTQY7s5u9f6V7Y/Odrg7sNX69fgK2/f9kw2zCK9izK3dOD2YBXaN8Ed99gs/bqmrmtl3vlWrNrFeZeb3s5KnvzMqOzY8oOJgkswo4kQo7OsJT3mSpnlgd/MsZseBgMZkZG0y9tYQYbXN/ewE+lZPAG/mHXGgxYjRAFYCisj1xaJJcBu4/fzGpriTQvKIDZXTs4efICuYl49OGn+fyXH2J6bpLXvfE72De3l8tXFvhf/u4/pNs+z7s/9D5md8zwlS/dyfEjN5ArjyefeYHts3MURc7szCxKQa+7wpkzL3LPv/1dfuHmw2R5SmETAl2hlywQhBVk5GZ6tWfpdNt8+b7HOHZwN3fe+wQPPXGa195ykNX2KtWowc037Maqgvp4g26rDdagA49DB3bTXk158ulz7No1jTAKa3Oa41WEMoRVj5dOXmTb9DRLi2uMTzTwQ03a64I1zvpACpaX2wSVistzt5JOu88zJ8/R7ffxhY8KJEeO7iKLMzxPM16rUYkqJFlMEAWgYHZmgrGxKo898QJjtQq1eo3UFAQVD2Vznn9mnsnpCURk0cInKWJqjRAyQ5rJMnVU4UWawqRElQpFbpGexhbgacHq4iLVepWkrHeamW6QpjH9LGZyepxKEPCRT9zJvtlJ6pUGK4ttVpc7NJpjKOERBiFaa3rtGIQhDH2UJ6FMa8K6ulbP94jwqVUq5HmO1qo0XRbEcRdbJNQnxqhUKzQaNYR06ptCasfsFMbVZkifIoMg9ClIXGtJAAAgAElEQVSMdSl4WtLrd/FDjVIKi5vBXV3qUKv7SKvJMoEyGTmSHAgCg7AJ0lqefPoRxsbqpEsriKJNt90iCCNCX3P+pVWqlYIgsIxPjKM8iZWGwPOIkz61ehUvqiCCkDgzgM9Tz52m3VqiHafsPXgUITU/dNejfOj7b+WDbzrE6IRfkqR43iBVc/25I5VGeiFpIjBZjkJiUfjVcfJC8oO/cxdf+MoTfPimW0l6K1gSlGwg/AKsRhaGIk/wdA0rnfCOlBqpPSw5wghWl1so5YQ20rxgYWWZyZlJfC/E2BwpDUro9eerkHzkLz7Hq245ihTSqVBKPUw39D1NtR5x7/NP8/Byiw/0M9575AiHdu+BvGDAKLpnVI6QijRJSPsxXqAp8oJbbzyG0hKpFWneRwcOJBmhsBRIkYEp0F5AkRryNEP7liLroYWHRFHYFOEF+J5GGoEUmkKUfnZY0riPUpK4DR86fgPfs3eWfib4xYcf4INHbwAUKCdaIIRjvITRvPTiOU6eOcvOndsA60Ca9on7PaJQYwrhfB+lQErL/JVFLi8sc/fDj/Otb7gFLaDTatFo1DEmJ+mn5FmO9DRe6HFw906UUtzx7LN879wMWgt6vV7pNem7wBTwPZ+icOJhpoDLl6+wtrbGxGQNawr6vdT5KyqDtV5p3AyLC8v8yePPsOt73skffewTvP4fHeLiYsp0c5ILi6tIIVhaXeGmg/tZWr7CWNWnUZ1A6YLFVowSgrPzHRrVAM8TeFpybr7Npz71MDfduBepFK1ej/17Z6gGmstLqzTrNTr9PlhJt9ci9HwuLXXZPjXN0yfP4gcQeE7BOE0zV++mqzz57IvMTDW464GnObJviivLfb727Bl275jgpQuXmGw2sFbwV595mDe97iC1+jg2z+j0utSqPl7kLDwsmpmJJrVqg8mJSeIspddu8fzjZ9m5Y4azZ88zNzNBJ8nwRMGZi0s0mhMsLqwwNTnG4uoKWkMlbCCEoBqGFMbiCZfqnFnL3J4plPRHgNtojFEyT1tlx4wAhAFTtPmtK0oe0JaxwiiwGwWKYsAgvcxn/Yg27mfj/kZYpXJhQZkqeY3tbW67b51iMttPtVa9+o+l15kt/d8GIGkYB0mXBYJ1WQEGu+G56Jg6Z/0hhKuH3kx8DfujZOZGY771mMkBRmMESqryGg1SII372ZF4MDiGksUZkEBCCFfXL9gwsS5GPPJGj2kzq3ZVIeCm30fBnUC4LCJryzhWlb6clMdv1tcVYpgBtmEb1xHTbrWMEMLVw40wWlcJd46wW4V1lkVXb8hNvK336/r2HRu53sdb3WCbz+Fa4O5ay18dz3JNYLeesrn5rh/NsxshYcrjlqWnoUt1tSilvwnuvpG2QQ3oFdr1Aq+/rTYY6NdlEzJ4MLEp1WMzIN0KoI7M5gy3t8XyL1d/OKgTKGyBLxXPPHaC2bldCM9jaf4K22dnWV5epMhSts3MghW0F+b5+J/fwU037XP+a5WQ//A7/5Gf+LGf5MYbDrBt53aSXszkxARTM9tQQU6jWqG1tsz09AT1sSppmvDr/+o/8/3dDse2b8MJIDjjYiWEK3LPDUWaIIUHVuD7EY987RIHdo+ze8cM080ai8stDhyYwxqJJaNSDbHGksUu3StJslKdNGVu5zT9xNXiBWFAludDG8XmRI2iyNDa1YYppaAwhFFIludYC9VKhROPvcDqSpvp6SZPPX+ar525xDvfdhu+LwkrPqYwPP3cWZpjNer1Gp1ux9WxGYUXVJBopNXMTjU4f+Ey1YqPXwpO9HoZYUWDLaCAOE2pViuYXNBZ7SOEYH5+kUYjQglBv53geyFSKYRyqlpFnhMEHkI5o2UlJJ728MMI3wsosgIhJNO1KmcuL3HiqVMstTocPjSHCsCQ0eusYW1Kpdqg14/pxzEW0J6HNFDkOQuLy+SZY2EvXLxMc6xeyvU7Kf0wDMizAu27PkmSuEyxc3e5lBIpQPsDFkY4xS+rkMIJrPh+QJ4blPDodzI8zycrUrRPea0M/U4X3/PRwrJ0/iKRkqBDZid2gy9op+d56dQlpJBcuTKPj8Wr5BRJxtJCl9CvkSUFWVIgrMRTAecvLWBRdHopoHjmuRfwtc/ERJ3jRw7zG0+e5aa37eNH3nHLYMBvaHpg0rvFkJNS4PsheZ6SFTnaCxA64KvPnefnfuO3ePivvsh3HTpMlvYJfIVSEUYLhLEuJLQZSgZY4eoSBwFIkecUibufBzLg4xNN4jhmYmrCKb16A8n+QdTkxv6NRw6UKbo5Wrm0SEtOmqQYY/mhT32GJ1sd/su3v8VdMx24YnvpniB5miOVQgtZSrcbKpUQIxzwRIlS8FKjvABjPRABJo/R0odcYUxGp9shjEL6vb6rwURjRIH0RRlYlB6FaYpQAqndJJZWCl2al3/mC3dzeP8u7nn4BMd2HeAHXnMzJ06f5OfvuocJk7J3asadn4G/fuAEt9x4jFolchNBnkev28P3fYLAp9/rUW00+MjH/5Lbbj7uUvYaDbbNTDHRqDC9bYqi9ExUWoOQKM8Zjp85c5aV5WUqlSpB6PPRp5/mQ/t3IgTkWY7SijwrymA1R+CYLCkd+1mtVRhrNLBGkMYFYRhSFAVray1WltYYa1Qpsoxep8dDczs4fvwwje/IUVLxuc8/wYXLVzh+ZAeBJ5mbc0Al8CXKC+n0Ygqb0Kg2CLVPqxfT7rapVQKU0kw2GoxvqyGE8/jTAkJPkZsCXzvlUikV4/UKvmfJC7BI0jxj/9wUga9ACFZaHTyt8bXPpeU1osBjvFFhx45p2p0u4/U6i8uroGDvjm3Mr7SoV3wmt1XxPcWnv/gotZpi+/QkSjiGulmLWF5bY2aiyZXlNedHh6DWHCeanODz9zzDLa86jJGaL/7l/ezZv5OXzswzNT3OyRfPga9Jc8vs9BRWOCELIV0A9+lP3cfhQ3NI5UDuVfU8w/fzZh+3je/Tq7/b6p3LlqzPINQc/f/1tNEwdct9XivA/zraf/zlP+T2299/1cavIuqGapjuY7AbzmUQZA9SMAdAbxTwvVwbAq+r0hLd83WQ1jka94iRSagNYGKL+MllAnBdxzOABVse5GgnbNrfZnZuMJE/7BuTD4HjK8WvoyVBX1fbFJC+jDWee0dvCe62RlLXe29d1f/XAe42LXBd+wFeFvi97PJi42rfBHffQCuMYWBc/ko39v8rKZgjrTDFEOlvnlER1qlCDQHby4A7YMiwmVEZ2c1U8TCZnC1fDpuXfyXWUhqDVZIkTalreOGF55jbuw+LII/7TjK706LTXmN8fILzZy9w6vlnefe73oMf5UxPzdDtrXHi8cd4+msv8G1vex1SCYIgIDeupqrbWabIXE3E5QsXsB786D/+Z/zr/XMEgTNhlkI5MRfhQ+gBIdr3EErheQW9pEsQhRw9tAtPazzfY2yshikMQeBhDQQVjcTSWe1TrVdQWrG0uEoURXzsc/dz86GD+L7HS6eu0GjW6Pdj8qzg/Pl5xhpjaBXw2Tsf5cqlVWZn6mXNi6Db7UMhqFYr7Jid5vTpK0xP19mxbZpbDu3BYJHa4mlNGmeMVRs89uyL7N45zUtnLzI+1iDN+gglWVldI4o0a6trrn4xzcjSjCIvqNUbpFmPSiUk6ef4geeEH3LBiyfPIySMj9fxtOL02Qsk/YKHHn+eQ/t3khcpUjpmL80NnXYPjatVUFq7/SQpvu9z4fxlJifHiXyfV990lLkdU67vpE/Wz6hUKs4nRzmj8CgM8X2PK5cWqEQhSkkqoU/oa+I0ZnKiiSks2veR0mKFJM8N3XZMYSxZllFvVOn3e2ilSn8yN4uLgKJw6p+uxrQAZZz1gRLESQ/f02hfYEgJdYPcFngqIO/3uXz5Mr7WLFxZROYxp148CTYh6c/j6ZCGv4OFtVVWOl22T8+ClUTVCs+9eInlVosw8lA6YKXdQvs+q602CI+Vdp8rC6ustnqOUTfwz85e4sY37eZHP/CtNGoVN9RGc/Zf4VHk3uGSwroZZGMtUkn+8PMneNdP/AqVqM7b2j2EFBgLeb+PlAodhGBykrjvUhr9ClKuh0vGWALPw+auftPTri+VkkzMTJYCBpYkjh3wdElRwweQ9jRFZkpT7MFLPkcgUUrz/qNHeM+hQwjrLCuSNAcExkDcKwWFlKLTWiOIQqxxdgqetJBnmCKm310l0DlF1sNTFmEKsjTHFpLlhTUqjQgrDNZKMBLPD9BeiJCOsY+i6nDyV3l6mEaplRNPMcalmB47shelJQd27SWqBAil2N4c5/1H/m/23jvK0uws7/3t8MUT6pyK3V2dezpMT06akZCEJBRMEAJlZElYF/sCgmuDbOMANuGybNI1+DphLDBIwAXJAkkIsHKcoDR5emY6T+eufPIX975/7HOqqqurZ0aWsJfX0jurpvrU+XJ83/087/Mc5M8fe4Ljc5e4eXY7QjrBmAceephD1+1FKo1AEoQey0vL+NojjGPmLs7zwrtuIc9zVpbaVKsxS4tLzGydcj2vShGEIUPBYiyCPM8Zq9doNuto30NKyZ89dZQf3LmFPMvWhJmGrApjDaY0q8p2rVYL3/dxlFTotAf8f3/9BW49tIcwiAh8RRQGPHXmHH/RmOZlL7+bT5z+JJVpx3I4dHAb+/fNEAceRWlACd7/J/eza9c4URgigTCULHcyPvWZB7n7tuvQGmpxyPxyh8j3aNQiQl+RFZnzflSS0hhCT+NpxSAruLSwjBQ5nvI5fX6enVuaFGXG3FKLiu/ha8Vjx85hhWD71DjjdWc6XhiDEIpqGBKEHrU4wKKoxgFagrE5UkoOHtrD1FhMOfSubHf7KKXYMt7g1KVltk6O88iRU+zcMklv0MZXcNv124k8iSlzZndvY2mlz47ZaQJfsX3HDGO1GmlpqMYhpSlc8TEU/Ni3dxtFkVGJguHVfyWyBZsXXJuhZTAsMNZ/PypCGOYEYkPWKNZ+jV7vG/Ofq4u3q2mSo3VfwSa6Ig8YFVtidcZNW0A2PNCe+txF3vKW12OuagG58rNDmFzPurWglVidR8l1hYxYE0l5Pjn6an4l5arSoiuI5BCdHB2RKwuoTXZlNYy5ehDOtQtINsuZ1qwP1j6zLse7Cm684pg49K1cp+S+/hwZa9ZQo03y3tH3o78ba4aerzzrdNeM5yjuVm0KyhFD4urqz67L069Y1qh4fQ6a48bj4Bhnaz8bt+n5FnejIllsvMc2mea5Cr5VdVUAC1p7z7u4+5u0ZPh2fDueNdRQ/llrj7zf5unjR/GjwNG2TMG5M6eZmZ7ihusPsDw/hycFe/Yf4N0/9VPcdMcd6KhCFGte9rKX8oOvfz3VuMbRI0+RJhmTU1MY5aTppye3oQhYuLzMj77753jfi28jTQre97HPoBFQFDzx1HHOX7hAv9Ml77vRYamdSqSvAtJ2wsc//QCtpQGDfoKlQHnghRLtgykKludbnH9mEax7KG3ZNoMUkrd970uQSqA9zUq7R5EUXLi0RLVeY891O0GVdLpt/tZLb8MLFEkvwTFbJfV6nVMnL5NlOdbm3HXHfnfstMQPfUe7VR7WWHyt8UPFd9xxE0pJDh/aQ6874K/u/TK2hCI1pEnGWHOM0hriakwYVwiimLTfYazWQCmfSjMmCB1CMkgH7NjeZGpmgpVOD6E027ZtZd/+XdywbwdFMkAWOVmaYoUgiCJXKHtyiG64Xi9kipAFW2enyPKCrdvG6fe7eFqAtSTtNp6S9PoJRmjKIiPt9cAUiLJAGcMgSZFS0O/26Ha6BGHonmCyRAeK0uYI7UQpxqcnqNVjwjBwvmBBSJZlqy8wR61RKKXodXtIoTHGCdg402iQVpJlOb1ujzzLWJw7j68Z0jQ9Hjl6nCRNmd0xTXW8xsS2CSoVp/wZ1RosdlO2bd3D7bfcw/SO/ZxvCZQ3zqEbb+Vlr3gNVk+QUuPQTXfQmN5BMLaVXpoyMzHB1HiTY70uP3P8NNGLtvPeH72Hm3Y0nTS0HaVHay+Xq5KeTcPt91w74Z3/7gv8/f/6Vd72996F57neM6k9EBahFNYa0rSDtIIyL9HKw7nDKLI0X5UGl9IVn5cuXh6ie4b+oI81pUO5htYTfhAMDb9xFE3lEKwsLcgGGfNzi8PRSkPWz12fhoDCFM5MO6iQ5BYdBeBZjh49w/JSG+0rEAW1Mc8hi1pijKDd7ZAWOUJ7RHGVMgdrBbkx5BgCP+DkqZMo3yKlR1lorNHkueuRcWyGgMgfI00GJP0WeZFSDosoX2vKwinMSakReFhKhHQS4IUdOElwAfff/yA/dtuL+PjFeX7k45/goZPHuf76/bzqpfegPcUHPvYpep0BZWkYq1cpihwLpHmKwZCmGf3egDTNqY1VQTgxFkrD8vwig26PIbbIyZOnSZKUogQ1NEL/45ff4QZaPE1rpU2321stipX06Hb7WEqMzWg0Xb/k0vIyg6RHEEne+Kq7kFKSJY5q/vYvPMSOn/ln/PR7/j7v/aM/YeftW4kCn/OXLxP4EAWa5U7CF792CmUlgQBMhikGPHr0HCvdlErk8apX3EI/HVCJfC7ML1GLY5SE5Xab5XaHSuhTDT2yIqM36ONpwcf/8nNMjFVo1CJqcciDjx6lLAsuLy0QB5rtUxOcPjPHpfklbjq4ne0zNQZZylcfeZKidOjffQ88zYc/+iUqYUA1rgCCTj/l1IVFpPBJ8pTA9zg3t0RhLOcXFwiigDiqcXZhwCc/+RgWya4dW2j1+qy0ulyeW+CRJ45z7tIyX/jiEQLPZ6o5zvm5JYJA8ciRZ3jyxFm2TzlrnDiIKI1ASccUqNYqPPPMefc4E3rz2/cbiPXG5aPPz/WMGBUpApcYb5xnfaG5WUhxbVQRRmSfddOMWINSXuVNNqIIjuK2N+591m1fW4elLMtV0ZQ8X8co+FYMxlvrjLvXfbbP00LqWx3PlxVmTOl+rHnOjF9JdU27go1RFuVzT/RNxkj06dvxjce3kTtYHe2wwiDUN6eU+T8zVrfTuFH89f+JDQ/3VfNQR1O+og8PRg8Kp8RkGU7Ehp913O/hUPGVIUejHW66NX65m15aN1KhpXIDhzamyAv8vM8f/dav8N3vfCdFqVBCYWTO+FSFkpI0D7h84RxPPXwvX/zKg3zn3TezdWoH4xPbufe+r/HyV7yA2R11FtvL7N0/TTsTTIzNIJOS2liVhx9+jGpzku/6gTfxide/Gmvg3oeO8P3fdTemsBhKtmxpgLXUG1W8uCRJuvQ7KXFtghJQviYbGOaXFpndOs38whIzW8bJBiVWgvQ80rzgxPmL7JzdQq/XwfMcXfHs6Us8duIUWyaabN/aRPqKifEanqcQWC5cWKDZaKCUpF4N6KcljUaNJ544QS2Kubi4xLYtTdJkgBISv1rl0596iK989QTnl+e4btssOirptFLiqk9ZGrrdHpiSStVn38xW0IooDvnrz3yVgwe2owPFYJAShhX6SQvP0wySnCDy6XTaQEmRZ4ShR1SpcOrkWeIwRAmNp0OkGFIwPQ1a4XmhQ4byjCj2HW1PKExeYMmRxoBRCB3gxRopPMqyxAs8TFkShz6DQYJEkPRSzl64xNTUBPPzy8SVCoNBTmOyBtYnyQpq4xWQCmMtXuC7EUOjwWb0ez200CAY0iwVeZYRRwFp0h+WRdJdzrlBq8IVK0FCYMbwRIgVln53gSCK8IKQOIqgWGJhsTOU5M+Y3bmden2KwvZI8pypmVkGaUmlOQ02IqoElGVGkSScPnuRw4euwxhniyGEIs9K0qSgElfwvIDACxj0llhYWObnzlzgFd+xnVce2oakZKyqqNTG8OPGsBl9OGrJaERx4+ilu/es0ENFVYsRgn/wHz/BW37ml3nVq1/G9736bij6dBYvUQljskdPABpRZmhZUJYKT1cpyDA2pxI2nDeglqvr01rRa3dBCJ45c4mJ5jja1wjlrDDyPINSumcUILUiTTI+9fn72bNjO7aw/PknPs/tNx/G09BeXkIJh2TlRUEQBUPxgxQpAygEykqqlSpjjQpJ0qHdXiCsjDNCEpSn8aQ7b1ZIQCO1j1IRamj7YIDxyQZxJaLIDfd//WtMTzQ5eeY0U80anjIcP3bM0Up14AZQ8pJQS4o0B+lhyF0PJxaJKyqxIJQT3VFGYo3izNnzPHH8CC9sTLJvcoxX/MI/523/6ld40403ITXcdHg/nqcRNsUYRVCpgCepxhFqKBBUq4dIYfADnyK3mLwgzQxxteLopElCGLu+wLgSIpWg2xkAlsAmWNzod+CHSAlF2UP7BpNDGAQUWemo6RawgjgKnchL4KMUWFPw5PET/E4Ws3vHNv7sYx/jK+1PMthiGav6VAON0gKtAk6cvcz0eJ1BOsCLFDfetIfAj7EYqmMVoiAcnlPB4spltBT4SlMJQxYXL5Bbn4KC2PcwhU+7v0Szplnp9Nh/4BDYlGoUUhaCifEG26cilFT4XpW5lUs89tgF7rxprxuMkgG+LmmOxTzyyJPs3DqOChW33LwXYw0PP3aUmS2TVOKYIHD+m7X6OLHnEYbBMCG2eMLj9NlFClsyM13HSqeo2+9nyLDB1qkJao0K9XqVSqPKEw89zo5dW/n8vU8xvWWCyLMc2jsLQmKEpLAGLQWeEChreObcJaanx52IkR29Z9fu8RLjnEmG71M5xPZG+N5GBE1uSPxHT4jRdFJcbY20HiG8Ep9bnyNcW1VzlUn2PJETWEMSr0ZfGH0DCMamI45/cZ5Dhw9egTitHQVnkm2EoBx66hpr0UMUTABFUSKkM6tev4xnZWcNrSiwws27kV83RAHXevGuVtBk3X4wRBVHx9OFZH0vllhTibkKiVuPeILru7sWzfaKg7nufG+K1gG2tFg2R96uElwx1m32NZhjz4XgGZwf52pfnB29U8QVVE8z9NEViCtQtZE65gjZG63bmNIhfUNUbIQwbnqur+r7u1KxcqTqfuXds/68XeOYr0+brxXPk6a5cZu/EeTu28UdrBV31ol7/O8S6+HajdfZRjry6kP5WS+o59j3q67ljSvdSEe48nslFGmWIYUkz3NiXzDIBlTqVT720Q9z10v/FksLK4zVmoR+iKdjjh09z9zlAdu37KASVvi+172WgwcO8LWvP8T41BT7rpvl8uVLGCvxVIynYzqtBC0VP/TWtzA1PUFUqfK53/g1fvNVL8OUBcsrbfbtmiUIXT+dFJDnJdVqzamvGR8tYnw/4E8+9gVuvWEPQlpmpseZHKsRRj7VaowxhuWlJfzQB5TbZhRx5BHGAdnQG67RqLN1ZgIv0GRZ6vrHhl4r7XaPZrNOr9cnDAKiKKRWDbFYqpWYIAxptdtU45AwCmm1uijP46uPHufWgzu4547rscLQ6XSI48pQ0U876X5PIaxLdtM0x/M8Hj16khsO7sUYQxiHUFr8QK72mSmt8H0fm2taS30CP+bY02fZvW87vudM1M+cOU9tLAIc6ipRiKFSYbvVJQhCyjwlyzJHjSwN2g/wQ2d5oKQlTwvC0IkGKCVJBill4foMlZT4vs+DTxzn+v176Hb7hFGIlhIhcpQWmBy076wgBIIszfEDh6AEgY9SFjns4Xrq2CkmJ8bodftEceSUHqXC+hqkpihzlNSoPKI0Syy1j/LM6bPMNHeRZYIgqJD3U06eOcvE+DRh4LwMq7VxlPBRSnPhfIs4qIOFMIq5/ytP0u13WF7ps3PnNuI4RCjJM2cusHPnFqwpCALN5cUWYzWn4vnRp47zZ2nJW99+B1vsCoOOoVHzqFVCwlgzPj1LUKm5e0uuSWpvSuEZ3ujGlAhrKPOCt//Gx/n9P/jPCKmJKzUMmqVWn2o948iTDzMxv0JZDsiyHmVpMVLiVyOHyBmDKUBoiZKSpJsO1SZLJBKtJLVqRH/QpzZWx/M1SZqhpaKz3OUvP/0lbjh0HQiB72t279yOUs6C4obD+13PZp4TV2JQHg8+eoSJ8QYSt+3aUxgryLIEU6bkZR/fDwj9KlGl4ew7imFvRglWlKRZhpJDKq4dPuaFo4lK5RKCkWrevm1bCMOQ8fEmXhCQl4aZLdMMBomjXiPxPE2eF2jfd89TUSLlUAV0aJuxlhsIHn30CEtLK9xy0yGu272T3bt3sm9yGh57lNf97D/kh3/1N/m+3bvQnodSCqEU2vcdcwGL1h5LC0tEUUCWpqRpSr+fUK3XSJKU9kqXWq1OWZR4nkeWZPhByOXL80yMjzPop9TqVcrBCgw9+PLM9di5gRjni5mmCVE1HB4bh9T2egOq9Sp5kvFvHz3Bfz51mbf+wi/xr//Vr/PQ04/zA7/wIia3jbPU7jA91UR7PufmVmjWK9QqMZ/94iMcPrSTWhAS6JAP/cWXmZkdY6ZRYSSo0e4PmG6MsdTpu/txaAfxxU8f4cbD2+h02kShwlceC8sdZibGSLIWSpcM0h69pINWJUq55O/0+QWqFY/rD+ym1W1z/2e/zqHDu8jynND32DLTJIgjIk8T+xpbFggJFy/OMzZWxQpBo1bF05qnT5+nOVbFYtHaZ7HVJy1Kdm6fYNfWSaIhNTwONbYUfPTD99GYqjA5VqdRjdizewt5AQcP7KAS+UyN1xFSUFqD53mooa+d1gGDvKTRqDh0Wwy9l+2oEBBYBB4KaQVaSJRQlK7eGNYEG8uxzZ8JsEbXHKUMV8yz7vdmfx/Nt75wXCsw1z97NqeQboznRp6u/O5D/+FTvOnNr7+qaF1d71Dg7koqqXsSOoqmpBiJwz2nWuNo+etVce3V7lDrClkpRyfk2Ra4ViSsX8uVkwyLLXN1zbaxuCuK8nlZC6wPyxBt3LjsYVG5Ud1yNI/btnWF+7r5n6sY3Bgb+/+uWNi6ZRtbDvu4N9lHwVWIrF1XzDn84Wq1zrWJNx53sbb+zbb9KvXM53cNfSvj28XdNxhCOq4YK/AAACAASURBVB+SNaTp+Y3qPJ8o8mK4jm/NhbDadDtUM5IjCW97ZWEmgHLYH+cGOq5G2jaqYK4u43kDl2K0UcOfdcXm+t+rbwfBkSNP8NrXvpYf//EfozN/kbhepdPvU+YFs7sOMd5okKQJWEkQ9LGknDx5jE9+/MNMTvhs37GHU2fOsnPHTlYW56iNV5ie2kocV7hw8QJv+MG38yPv+jt89WsP8LZ3vJ2ts1tY+P3f4xX7dmOxLC0sMzXZRGtXQMih4enRk2cYH6sjFfQ7fbrdLmGkObRnJ2maIIRx3lhpTpZlQ683QxxI/CBECm+V4x8EPr1ej0o1ptPqgwAdeEglwBoGg8z5WCH56qPH2DU7Q1QJhnLJEkwOwuIPTc8nmzWeOXuJLz9+jEN7dyKE4saDO6nWAsJQY4Vh7nKLickGy0stvvbEMXbPTjmPHuFeaJXICaHs2zmD5/mu76rMyQYZeZYirGRpacUZRisPgUEq0J7AD1zSWRQ5ldgnCjRGOvEOMRqplJAmKZUopt8eEETO3y7JUir1MTcKa8GYAk+5vohy2JuFsPS6CUEYOtRHCjwvZOfsNAII4wA9LCranSXiKEJYHyvKYXEu0FphhSEfGDxfMUi79LvOPH1qskmr1aFar7k+Mu1cx4RNUcZy8exZTh49xrZ9WxGyhqcmiLwxLs4tsdRu02zEhDUfLXy0DpBSsbjYxtMK5RV0On0mJ5oIJQjDmF5vwJ6dOxkfr1GPa1gL3V7C4tIKE80aWit836Pd7rJn704+cuIUv378LP/0R1/Od999EGO7zEzV2DE7Mxo3ZufuWUrpE0SVDQmNuMrkdXTvuVuyZO7yHL/9xUv8w5/4YXwxwIqRsEZItdYgafepVuuIp89R5gXWKrSqE9fHMQrKNF2liwltyDPLZ7/0FXbNbkMpxYWzF4iikCzP6A8G1Go1J3KiFCutDmEQcuHyHPv27HDnCdfzmAwGhJFHObQYUFq7ohLLlulpFueXqFUraKUoSuOKH08RBB6ejlyvmy+xsgRTUBYZWZZQ5BleoEkGA/wgdPdVWSCEJcsTpBIkgwTP84bPU+ivLCO0Qgc+eVE4b8Yh7UhJgVAKUxZorTE4n8tuawXfiyjyEmtztKfodnsEgeuXnZyYoF6trIoOSem8rJQX8P/83vt4z8/9Mxrf8ULe829+i9fsvw4rHDJgixJhXEdJrV7BmBKtnIG754d0u32wjv75kY9/FpPl1KtVPv2lr7Brdivj4+OY0vCRT36Wwwf2kbUWcI9296zXQzrmQw8fZ3p6HD/0AMvC4hLGQK+b8mtHTvJfT10gPXwHT5y5yG233MRv/If/yNt/65Xc+Or9Q6GSPtu21KiEPiu9AbOTTbRULLTaXL685Ppxs4Izc8u84PYD1Co+i8vLVEIfY3Ja3bYbSAKqoU8vGXDqmTn8MGCi6RNoxVJ7hWoc0R9kQMlKZ5la1MQYQZIUTDebLLXbGJMzMz7OSmuZOHYWMzfetBds6QoiCRfnF0nShMD3WGq1yPKMiUaNskipxCFKe0jlBIkmm3UsriAoS8NYrcbUxBhSGLKypJckhJ4mzQs8LfGrmgO7tiMEdAfJsN9R0c8y4tCj00+QssTXDmGyRcYzlxbxfR/PC0CUV7wnTVniKd+VdsJgpKSwlhKndAmjHvnCIfMjiuPqw2Fdf90mb+3Nirfn+rwev1h7tV8pRjLEnq5eziYb8nwEQ0brAHjq8xd505tfD6wzJ7dDZdDhyPXH/uLj/PEffoCLFy5y8y034hxt1oROxJDuvRFd3JjzraGUbo+kWFPRHM3nEEH3HtPKCZOVhVkdOBqF2dhTuHHk/aqCcHQyh4N4ox6/UY/bOlTv2Qq79QqX7jnnqkVrrm1FMCqENiJwa1s26stbv4PueKxnj63u6rWQO2tWqffAlf1uw30H1hVqm11Am/xJrBXj6/fjymmu0e+22mu3ec/j/8ziTkiHYK71ero7T6vnX9x9u+fubziKsnBiAX9DYaxZk619HrEZYmyNuYrz/g3FRuGVa0Sapdxxxx18+Stf5uKlyzz22OP8yr/+VapxxENf/aozw7UFccXnD9//Pp4++gTTWyY4fONB3vrWN3Dp4lmkgusOHOTHf/InaDbrhGFErzfg5MmTHL7xAB/68H/j/LlT3Hnbrezes5uf/Ic/x207ZtGexg98oihkMBigtKQsCowpMLbg+oO7yfOcZJATRJrxqRpZlnLu3EWiKGAwSDl/bp4w9KjXq6uNyUoq8qQY7r+jeCaDAWPNGkVeUq25aaUQDHoDpMBJl1uYn1/mloP7nFGtFPT6Ax5+7Bid3oDWSpf2Spv5SwsURc7unbO86JbDCKXI0wwhodqo0mp3abd7HD11iTRJGJ8Y49Cu7QySBCEFn//Ko2hf0+v2nJpl5GOynCJNkEBciZ1ZrhBDqqim0+qw0moRxq4IrDcqlEVOpRLSHwwoTIlSTmq+2+3RWmmBBTVEI/1AYxAghUugEahhH0mRlyBc8qKko2XkWc78QmvYPOzQJq1dwtLr94bnqMRYS6VSc6IpQ+n20uRYDP1+DxB4gVMuVEJTr1dXp5ucHMcpolr67Q5pr0uv1aLf6dKoVdk21eDSwlFKMqTnUZuqMrtjhp3bp3ny2Al67S6Veh3P9wgCj8nxOt3OgNLmVKqu9095gqWVFbd/xtDvJ9z/0OP8wUc/x1itSqfTJ4pjOu0uxhgmJ5u88dMPcDo2vOuOSdqtLmmWkiQlgR+z3FomL0omJsYp8px6vXrVPbWeRrI+Rk35/V6ff/Inj/AT/8f3UWZz9LoLnD5xhCxZwRRduitzTE7sYKy+Da0jtBcRRlWioey4sK4fpizciKgpC5SWvOSFd+D5zjS72x+QpTl5VjLRnKDVapMMEoSUTE9NEoY+L/+Ou9BaufNhXE+r53mUQ1qNlG6QSvtONKPdanHvQ4+gfZ/+IHEIsRRDIRSBRSKVxlhDnqdYLEElJKpEhJUQY6BSra4eG5eMSTzPxxSWqBoPEwBnUB9WIpR2SZSnlbNE0BLtaYrCMOh2kcINgGVZhjWGSq1Kkeeud01prIFqtYLzhnI9Lp6v0Z4zHJfKJVhpkvJTd97Nv/nFXyZJchLfW7WWEQypRsrZQVjrhGrK0gBObKFaqxBFAWWe8dpXvYQbDx9ASsntNxygUo2x1nDxwiXuuflGlFKEUcj7P/Y5YGjILCzJIOHmw/vwggAhFAjF+PgEP/nQCe783ffzk7/wC/zmr//f/Nc/ej9HL56id9sC3/8v70JrVzR4WvPZzz7OykoHrQRTYxFSunfReL3Gd774FjzlBlwuX1rg8uIi7W6X6fEmrV6fvMgYr/rkeUolUORFgTGGO26+jjtu3edMz4uSRq1Kp9dl97ZJpJBsGZ/G1yFSaBrVGu1eQj2ug7VoBZONClIIfN8jzUuksBR5wcJyi+nJJpPNOnEcO8qr9hgkGdu3TqGVdgNN7qZa7TdL8xwp3XEzQyVDqRS1OKbV6xOFIWGoOLh3lpX+gMeOnyEKPTefklycXwYslUCjRUmRJbTbbdr9hJ1bpocKoKVjMCCxpUVZeOrEaTBDkSLlLDfAWWkYUyAR7l6UTvhm9E43z/0a/qZDijU6JLg2lmejYI4YQ5uwDL8l8fa3/whvfvM7+dx7H2KPvI433v1mbm7cwZd+/xHe9a53r/YHP1v897/8FMePnuRNb3gHb3rDO3jj8OfShblnnc/iihQ3eD4qttZEXGA0sP4/fmLMZhDeNxFae6uqoteK5zqn36q41nq+0bz223F1iP9d+svWR55l39KNFtKpcQlhhtTMK+ObOUZFkRP4EaUpvplNXA0xTBxXL/xrbJu0DrnbOEhkNiviRgnQNdSHrhnDB8TqCJvcgNytbrT7FXohWZYjhFMl9XPDkydOcOC6XXzsfb/LS9/yw5hyQKezxHRzln6vTWkVX3ngCaYbVe646Tr+03t/mx3X3cjObbOcO3WUl7zqe6hEVTr9OY489TV277qRiob55R4//bP/ij99+e0gJE88fZL9e3cSSEGeZ3R6PSpRFSsLEDgTXzQnjiyy87oGpR1gEo8gDlHact+Dj1Gmihe/8HqyNEMrjRf4iHTAUmvASj9hYqKOFSW1qEppSi5cmGfn9lmyZEAQh4BheXGZWqPp+q0GBUEQIH0obUboR+QplEXK8vIy0xPjZEmGF2vm59ssLnXZf2AH93/tCfxY84JbD9Jb7uL5AYGuouOUXreHpyv4oWR5aZmJsSlKZViZb7G83GJ21xQRCitLCgxlGSA8iUfpkDAkaWrod3NqtXjVTFgPxU78wEN7GomHVJb2SgshLJ/5ylO86OZDNBtVPF9TSIlUFlOUmMziez6DZIBQ4Pshg16fLMlQWlKtxeS5wAs03U6XSjXCGIspXVHnBxrta8rCIZFZljtkpt9BSTW0lsiRIqIs+2RpwdJ8jx17tmBM7vwDxxoIzyfv9Xjq6SfYt30Gr1bFFAHGJkiTUgmafPHLR7nnRTfx9Yee5LZbrufYidPMTDZpTjZIywzfk7SWlon8gNa8wW9k1KtNLALlD5Os0pL3BQ898SR7tk4SRhUG/YRBt8/uA7sosox33vcQb7ulweu//ztJ+im9Xp/G2JhDDlLD2bOnqNc1Tx45RpEl+FHJ4ZvvZGxqduOdzpXWByO6i7uPf/nDx/jRd7ySvHeOVucyteZu/MoYBklrcYWdW7eQygpCx5x4759w4869LpFUrpigFGSDLkq4fqrU9gn8CtY6ip/2JEknxRSWMi/ptHugnbLl4vIK480GjUaVQZJSHau47cLHIQ/WjSYbSV7kaF9hMGhTkuegtI8BN0BgSwpbIoxAGIGJSsgllMKhkL6mKEuEtWjfg9JghxKXpTUEWlKWFiEUZVEiPYby2gJrS/JkgB+GGGOwRe6KNSEoSovyfIRJwVp6nT7V5ji2LJGepb2Y0O0OmNk2xapnFcZRfVWILXJAYKRES4uzcVCryndv+/OP8Dv/+T/w937sx/nj176Obq+N74f4nrOcSAZdKnEMViCEpURS5AWXL1xmanqcNEn58Cc/xw+97vuGKpx9xho1DIayELztox/mA698AZ1WD8/38XxBniUopVFSURSWP3v8ST7aKfh3/+a3eNPr386P//iP8YUHPkO5ZZlztHnD617Kubk59s1O0B4kRL7P/Eqfk89c4p6bdiNEyUq3zVSzhqVCq9fHWku9EjPIuwjr4StNknQRQYXIE7RWLhN7htYgo16p0O5mPHTv49zzqrvQ+FiRYFVI0Uvp9BZpNmLyTHP8ZIfdu2KEEnhKUJqS8fpWknyZNClQMqfZ2MLl9oDxakSrvUKRlTTqFVr9PhONGt3UEmjNIEmohBFaWVA+SV46pEf5Q2TB3QJJvwMqIPAjtBW0i5RYazypKLD00g6RH2OMQmsBtqQ0YEqBVoI0TyjSlDgs0ELi65hM+KOXKOfmFnjwi48xsWWSOApZOLvA9J46QVjn7LFnqE8G1KsNLh4/x8zuraRJRm3LJM+cusiL77mJMPCGqO96OuS1kbtNX+VXv66vQrfWT7Fq/L0epVn9PerLG/3fsoa/rVvKc+QZo0xlNGft+AG+/we+x31nLe96x9/jn7zln16BK20iu8gvve8X+cAH34eSAoNzuxut+01veAf/8p0/f+3iabjw3/nAf+RSMscHP/T+4WLd/pelQQ/bIISUQ06ty7NG6yiMQa1HkMSGHMxulGVc+35kuyDXe889z7jKPNxJgiOsQCpJaa7OdUfzfEPrGk26CVR0LUqkscbRi4f5trRXAiAGly/LkbiL2eT8yOeXl1/rOtsk1XfTXwsNFRvy443n7VsYQjqEfz1yZ60h8OPnXeV/u7gDrCydFPow1l8M62/Sjd//rzp2V9yUw23Y7DpfX9ytMiWfpbhbfahs2C9rLWpo/ux6Teym041uitFxkchhAucehKtrNiOjdNcjI62jCjx98jzbpyYp0gGyqrGlwvM0vlL897/+K77/e7+Xz3zuc9x5ww3kFvxalbI0LC1dYnm5w4HrbqLbPUu1NsE7f+Qf8N67b+LCuYvs2buDbrdL5GtUENDp9KjXqy6RKwVW5uQD67ZJ+vi+JC+7KHysyYc9cpojT57h8OEdSFXSbQ0IPIVB4HsxRWmdGI/I0cK9bHudAb4SKM+Z8YbaI/A8hPZ4+uhprtszC9agI6dSmA6y1eOx0urgKYEfaII4oNfJkNKj1gwZdDOS1NHKKtWYbmfZjd5awZnzcxw6sIfS5ASBT545JLFSiTGl4eP3fZ0X3LificmG66upVrEGPvG5r/Li2w5hpCSqVSjSnCDQmDwnSzOk5+OFPv1uDw+FDmKOPHWC7dvqCKOIx2ooz1E9i9zROUO/SknG4sIKjbEpyiIhzxKCMMYA0rp+sCAOya1GDE2e89I1wiNK8jRDax9KjfGcp5kwDtUr0w5CBhSmJKx4GCMps5QsL/CCAE86qow1JdYWCO1RZgItDKZM6aUZFy8vMtFoUK9W0HFI2s8JvZDHjhzlwMEdrp9Jhzz19GnCQDI1PU61WmXQTci6HXQlotqocu6Z82zfMoWohGAs/XbC733sS7zuhTeya/sWBr0BeZ7xa0+dZst0wT94x/fS7rTxdICQhvZyhwsXF7nxpkMszM9TljnNZp2vP/AAYSjZum0n9UaNsaltwzEV4e6ba7y4fvsj93H3697FzTffSr91AZWdZ7B0kkI38YMagyTHSEllLCK2PpdWerz/136Pf/aq70EIM8x1XIN6kfUR5GAkvlelEAJTlA7hKgrmLy8R+wFIgR/4BHHI4uIyWZZRr9UIx0JEOXwWKemQ2MKiPD3sYXEoY5amjgJJijEShHbJk69x0vzWodzDxBWRU2QFCp+5hSU++aWv8rpXvoRKLQJbIKQTdhFSkqcpakix8wNv+Cx0jzCpnDlxWbp9wpZkhWNcmNK6fjjpUZYJvlZcOjvP1LYtQMGlC5f4+pHjvOZlL8Qb2hK4HtCUKPTXKGNDhLXIHeXTDC13lJT80J//Bc1Kk86gxR98799CAFmS41UilhaWhshtgVDDRG+IMJmswCIoC4OSio/89Wd53Wu/CysM7eUVxqeb/O0//wt+964bUAJKLJ7nsbTU4qeOnMbzfH77t36dv/32v8PLXvkaPvmFzzM30+H1b7mT6abrLe50+lQin4VWi2YtXu1f8oYop2Gtz0VLRZGlCMDzAoyUrLR6PPH4k7z0RYfdwJ5XxcPQ6XVRno+vc3q9hE4vZeuWWfr9DqWxpHlJJfSRnkd7eYEyT2mMNfDDKvOLi+ycmWJueYWZ8QZL3QSlBLVAsbS0QFhroqRHmpUstXtcnm9x6+EdtLodojAi8H2EUEPaGZRlB8+vY/HodlvU4iqInE6vQyUaw5EQJHnhkuwPfOB+XvXdtzM+FmJNwUh639iS3iCnGka0+8tEsqBaqZIYReSFLK3M0ahVWekX+MrQH6QUaUZrfonZfTeQZJYwKOkOCprVgJX2gMhXfOXeB3npd72Adr/HUjvg+OP3M7t3PxONcR76/APk0qdetbz6e17K6UtLzEw0Hf1u+HoetR44JpoFa5CM6NHO1PyK9/j6d/8Vn9eJcqwSNK/uvtgYGx9Ra2mDeHZAatgzJRC0VnJ+4sU/QznMUd765h92RdnGXq2rVu5+XTy1yHf95J1r946xvO0t7+Ln3vEvnmUDro75Cy1+74v/iT/84/dee7NX+/OGeaIZDbi536P8TalrFZQbPA6ldf1315h+Y0H2bAXV+u+eTwH3P1TsDecbFZNXfTasFoJXbI8p14q5bzJG7UujfwNXfR6Fa4exq1TIVVrtNYruNVGZK8/rN7R9q9fGs9cQG2uMMHz+xd23e+4AxJXQ8JUNmlcr/vyvlmbdrKjcbIvWP5hH/XXPGhtgvtWbYcgrt9Ze8wEDVx+XER/fGEcTGy1da6eWmWQJWno88dhRXvqiV7F71z6WlxbZfd1O8qKPVvDAffcxMT5J3i8pc8mOnVv56If/ir/86//OrbfcwH/74Ee4/dbbieMKWrpE5yd++mf5L3cexPcVY7UK3d6Aer3CykqLqBITBA5isdaC9CjLHGEgSwacPHOZyYkGfoCbzjjD61a7zfTEGEL65EVOFFVBKcIwIE1zkjTjgceeZPvMFGWaoTyFDiRKSdI0wQ98PM/nQx+/jwO7tjE11cDzNGVhyTLD4uKKo0jqgKOnzjA53gShiCoxYAjCAM/36XQ6qCGVsVqJOP3MOcbqIbVahSgMaVRrrLQ7tIYmvp6nKYzrCVBas21inHpVk/b7BH5AlhcgLLMzM2RpxoVL82zbMoXU0vlfeZoszYjDkCRJ0Z6PH4XMXVxg765ZokrI0aOXOHnuAju2ziCkxg9CytLSXu5T2ow4DkmSAiWd+XSr3aPWHHN0Nk9RDFXNRveaGlJb8jxDB466qbQl7/cxeYlQ0hlJB4FTMLMWU+aOLqRcL6RUGoVlkCwQBJLTp+Z4+sQFdsxu54kjp7kw12brti2MN8eJK1WskCzMLfH40VOMVSO2bZthcaXFWN31j9VrMd2VHlJI5uaXiXyfIFIcO3uB6YkJpJRcuLhAszlGWbhBkNv276QxVuWZMxd4z7FnuOsls7zh1bdS9wWNRh0v8Ol1B8RRzPnzl7nxhoNcujjPlm0zFHlBlhf0e8vs3bsNU+R4vkZqjfb0sN/DsnG49KtPneHPnyr56Z//JbZsncFkhvFGk0FWEo5NgzdGPLGbXh6xdd8tEM/QmjtFJQr407++l9ftPwRyVIs4gYK033Km8DrGqhAhDGVZkGeZ8xEc0h+NtU65MUtRUrprMg4xhUFKtapWJ41FK43WEmtz2stONERpBVI7FFR5jnpmSrQUCOEjlXTXhDcUmjAWWxhH2fQ8vvbw08wtzHP9gb2UeU633SXp9aE0jt7Z69PpdInimNKUru9zOMikhOurybMcqTTpIBnSOJ3oUpolw+21nDhxnsZ4TJ4MaDRq7Nkxi5YF3U6XMPABseqFVRQlUjmFUN/3VhOHPMuHvS+SNxw8yMzLX8xP/V8/yht++Vd4y+Eb6PcSrIQszYjCiF63hx947tofqg4PBgPa7TZB6OMFmsMH95AMBigBpnR+gPvpMqYd2u5pwWv/6ou8+9/+e/7xP/9ZSmF47PxDvPDHbsTfnbL77gluvGUnAsPZ85eZGK8hNQS+diP+UuBp6A0y4jDGGDks8kBL7Wi7JqO0lrwoyfKEWiSYmWmQJBkSSZr28H2JpSTNcy7Ndwh8zyFqSU4ySAk8ReQrKlFAkpZMNcbwfR+jPHQQUK/WWOj28YMA5ftIrdBeRFpAHFVBe2gvAKkRSnPdzi0MsoR6tUYURKTlMMkuCgSWfpYBEk96fOjDD3Do+p2u10l7SOkNvc0k1hqUFMzumGSiHlDkXYTJSJMW/cEKpuyhyMAmpGmHZNAjLzJanQ5JbwnP9lmaP4PMljBZn9Cv8OUvHCNXEdVmnfsfPEYcSzwv5PSleSabTTwdcrlfUqtFtLoDHjm2xD0v2IuRMSfPLfGCuw/jN2t0ljJOPH2W9tIKFy7O85n7TvPwo2d45vwcS52+G3ga9oiN1CPX3tHrBVI2ea9v+q+rp3yurGjkK7c6ljz893OlUwLBJ37jUd70xh/ECst/+vfv5Ye/811Xr1UMC871ic9w4bVmzE///D/iB17/ulWz8evjW56bK7rh+0o94sU3voQHPvQwHX+F2e1bN53N7dcI4Rn2Ra/2ya0Vftfa442b4EDJ0fLWqObrbQuej4iJEI79srE3btN9KEcKoFw1rZJqjY56jXXZdSf3is/rzs/VufZaMfm8/PKuEc8m7LfpMkfna/1x3nhFb+y5s//jxd3Iv+4bnfcbEVT5NnIHGPJNEbpRcrPxGG023XPFs40abLaOa80PrifjKvPO4ccRv3wVqStL51u1CWLnqEFrzclQXnHBrRpJmivlitdG7+RQ0MtB/XYjB3RDXLHcYY+a1j5Fv8T3Qs6cOcPYZIO8zNEWskFKUZZUwojf/93fp9fps9KZ48Xf+d0U+YBqLPjH/+gX+flf+EXa7Tle8z2v4N3v+Rf89m37ydIUTzslu0q96uTxFVg8wiig3e44ZCsp8SNBdyVFCkutOYYtBVnRJR3k1JvjKAVZlriErfQwIkVJH0PJ8uIyjeYYnuejhsIPnaUlquNVMIITx86xf982pO8Sea0UTx07yw3X78QUBl+H3P/gE9xx6wG0lkOah+DIk8/QHKszMdlEy4L+IHVKgkKgtaBIrRvdjxTadz1CWPcA1Z6Ho84YkrRPaQSe1pjCEoQBfgjLix1WlvtsmZkgKxJ8zydPU+cdpxQME5qiLMnSjGyQ8+Tx09x12/UYLGEg6Ld6pGVBEI6zsrjAxEQT5WlKnBXHvfcf4fZbdxFXKijlIbCsLLaoj9dAa6Q1dDttgjBwBYB2Iiyu18S4XiVbut66snBIsFKUxhULVsihM4dBKUGepyRJTiUOuHj+Etu2b+PiuWe4MNfihv2HEZ5lZblNaWCQZOzZswvXX+NQlPZCi0o14vGjp7jp0H6OnTjN/n27kFLwwY9/idfcdTPNqQZpktHvJkhtyAuL7/vUG1XyLIfS8tDjx7nz9utZabV498PHOTBu+Pl3vnrY6+mTZhn1sdpqv0a/l/Klex/klpv2Efo+ynO+V+1Ol7y3SGPM58yZs2zdMouMq9QbU5RosGY1yXrrr/4lY/U6/+V3//0V91za66OVYGnhLKYcUC6doZ96VMZm2HP9bZRS8djD91ETfRr3nkT5IdJzVhaj+7zsDrDKYBUIz0cZZ1InhHsWXbowTz2ukGYZUSUmrESsLK9QrVZcc7qVoJzBdjpIqTdihHBoQr/fpVqpUJQGpTyKwrC0uMDk5OSwj2io7gsGvgAAIABJREFUlmY8DAVSjkbzXW+ltNb1pBWOxlIWOb1el8ZYjYWFRZQUREHIQqvNtm0zaOWomEYJfM+ZdedFhhQCUxh04LsETDh2QVkYTGHwIm+1v05ISZb1iYIArKAwBolBaOeVWOQZgafJclCeArEmsS1WC0iFUmAKV+AZU/A78xd5z3v+Lq9/87v5nVe8GiuhUonodVw/qaWk3e4wM7OFPCt46ugJDly3mygOKcrC2SkYV7RYKZBWMrh8DO1rfvi+x/mzP/1tfvBN/yev+ac3Mr/cY6xaoZsmbG3W6acZvtbOZiQMaPf7BKFH4DlLCs/znXCRgjQtUMr1qxVlysJKh72zM2RFSV70MQYiP8CUA3ppRjWMSFNDWeYUeZ/62Bj9rKQahWgVsrA0x1gtprARn/r0I9x+5y4mGxWWWn3Gxxurhu1aKfppilY+nlJO1MT3sbbA8yOsMWjh0MRi2NMLkOU5CIOvPechJxxSa4ZMASEU3X6HWhySD9kidlgkFKXBU4o0S/BkSafXw1oI/ZJAC7LC4qN46ugx9u3dQSWKWen0OPb0Waa3baG11GPr7AydpMtUs8bTjz3KoQNbeeS0Zt/+63j02En272pSD5s8cvQ8Nmuze/cOpptjfPSv7mf/we14XkiWdcCUePFWTj32AJXpaZrNJntn60jt86nPPsn3vPJGSpPj64CjZ1r4nqQW+xx58hSLl9u89GU3sdxus2PLBNVqTJYXTshoJCj3rG/vq7st1odch+pdC8m7Oo99rqrO3TPWWj76Sw/xgQ/+IYaSxz96Yl1xdE1YcNOvf/EPfpEPfvB9XLh4maWvd5993euXuUkSbktDuq3LXffcftU2rM+dpNiARg0RoLJ0g0rgULm1HO/K6cWIUbUJBOpysCv/vh5lGw0yudnFNfPMayFz11Sa3CSssWs54Dp07lrLHaFl69e/Hilcv24hHAV7/f58s/GchdWz0GXXf/+tBHuuhTaO4tvI3TcYFnPNKvr5/u35xje7vLIor6KVwzqEbuOzTYqr/jYKs26fxWh4iKsvrFXpbGNWRQiGa2NErXCjOBsu/muMmAjrEj0h3CtBKoOxCf/vb/46L3zZiylRdBZ63HPPS7jz1rs4eeIkL/6Ou9m9a5abb76FG255AVjDMyef5Ad/4If40r1f5u/+3b+DMT3e2J1nebnN+FgdLTV+6A2pRMb1U2gn7BGGAUop8n6ClJZKXCWqxKy0FykLSxQFYCXC11jhHkK9TkrsB8zPzzu0QjglvTAKKQpnnCqsU/QrTYlCcezpC4zVYicUEXoUZY4tIIo0WmnOnZ1jarJBrRYxN79AHAcszS8yPTnB+HgTYwxZlhJXXAInlSbLMyzORy7JEuYut8gLQ5JlVMZiMO58SSnIy5QwjFFaMz+/TJpkJKXFDyt86otP0O/12DI1hh+4/lDpO78+ASilVhVXk6TkzPk59u2YodPvEPo+0giq9TGyXBFopyS40u4SVyOKPGPv7p0UpTPANhjyQeauAWEdkjtEZZSn8LQbZS+KEi1xCXSa43u+o3SUYIbnrsxylHJKaWmaIKWzQrDW4HuK1uICvskJGmMkKyWTjRms9p0wSJohjGD71q1kZY6xJUuLSygtSDoZcSVgarrJAw8+xTPn57FZydREg/E44uzcPNPTE6y0OkxNTWCMxZaO9iQ9EJ6gu9xj5/ZtvOsrj/HWd9zJW77jIPcc3M7yygrdrqPBVmoVkiQZFrKwstRmduskMzOTVCoBg2RAGAb0BwPG6zXa7UXs/8/em0dZlpZlvr9v2NOZY54zMivHSmquggKKQmZlRqEKQemrCIjagwht921bHPCynLiKjQyiKEopCiq0hSCDWFVQVdQ8ZeVUmZUZERnzcE6ccY9f//GdiMyMjKwsu3Wtu9b1i7VXxDlnn32+vWOfvd/nfd73edKUOE4pVnpQOgAcEPC23/gKt/zHX+DWt/4Qb3jjaza/a5tMvUhZXpim4MH64hSFoku+PMRqtUlpcIJEuuS9PGlznuTJU9YwPMjZhE73xhunTdLE4Ok8aSKJU1viaBU3JZ72iMPI/q8dhXY1Qc7fTFrdced9DA72UavVaaw3qPQXSTMDRqAdh9QIhFCYOCMNU+KoTS6XJ8kMQitMl2lIk6TLOljjdIFgaXHZBjmZIe6EzM7NsVJdwVGa1bU1XKXJ0oQwilivrbOyskrOdVlYWiWLUoQR1KoWiKouk27oKuxlhk//5Ze54cqD1k6BbgZeGpTrksR0fe4EQnt2P6TA8yRRex3Hy1uBi3PKMoVgMxseRxFKW7/HKO4wHDb4va99m4/89gf58d/5BK/cOU4xyJ+9XjmSUrmElIqFuSXuvP8J9l82SeD7trJC2XmnqcHxXX78K7fz2aMnecuHfoG//tLXaB+cYffNA0gpWa7VGOwrUvY1rShGSs0ff/5urrtiAiUg77ssrFRpd1qsrtasAIlQrDXa+K5DlMSESUQl76G1wHc1SgqiqE2cGQq+T9hZRymHtVqbYuCTZiE9eQ+pXOJMUa038V1NnHQsKE49BkdH8TyN60oeePQkfUM95AKfjYDXlQpX+xgjePzYNMO9PTjKsiKCjEa7QZYZVNcLMk5iXNdDKkGcZJY5Nmm3vUDZxWhyHjTa6yglieKkm1nPiOLIClEpA1mMQ0w7hKjVAaN45NA8d90/x1U3XMN37z/F2I7LqIWavtEhEp2jMjCMdHMEuR4eP1Wn3haMj48xPjGKMS619TYTvSVasSGMM+ZnFrh8307mVuosziwQ5DSddgffkfT25Hj4sXluvmkXhWI/ng5QZARujpXVdYb6CkyfmqVSrCCkZKinyGqtxp5dg+zfPcLpU7MsnJpn6vgUDxyZ5urn7Nq8i58bQzzTEJy1QjDnPX/23Vs99i66rUusc25M9trrbmF8Ypwf+eF38uKrX7xlRtttG+BCUPaSa15C394eyuUCi0fXnmlyz/wYG1s5TY/3/9IHeOFNz6dUKl3AcFlcuBUkdNtWpEB0S8XP3/yWsswNwLTdHLjwWJ87h3MBkuwqVG+qWprsrKDJM7B9z3pcGBpuKnZe4Km4wZJtJQzOebyVfTPmGWwNtozMnCVrLsYCXnrftmfutr7+LwHuxCar/czs679ZIVxqCNWlyDMyYyWIz5WM3VztXxCRb932pRD6xcdFaHC6PXabz6TQ/QKD2Xax36+NLxMkwioSYmxWitQ2ugohaLZatNsRjtJgQGNFMzASVzmWTcxs74XJhC1F6Kp/gbQN32liJbmFLXlRqlumoDSpgRdfdy3CuCSRpNNu8rzn38i1113N3gOTFIqKan2JA8+5iuWFJSYnJ6j09nLb577Ee37y3xEUJD/23v/Mm3eM4edctOciHXdTvlxk4DkuxthSJwGE7Zg4TdCugxM4IBWecvnCN+7iij27cDyHubl5XOly4qkz9PUXaDXX6Rsapra2Rhi2KRWsR13YiVhdq5Iv+GidEXYiPM9lZKQXN+/zxOGT9JUtw+f7Cq1smVmuaJXyPM8nbMbc+/BR9u3dieOrrsiPoF23JUgoiYkTHMfDcRVJFhMELo88cZLh3h5KxQLray2cnLI3DqkwiWW7pqcX8B2Xk6cX2DUxCEnGerXBc687gONrlNS4ftAtRbKy65KMqN2hsd7i6IlZjswucnDnCJ6r0G4O42jCKMbVVkEuNRm5nEsah7iuD8IywVLZfkvtgnYAYZXpBBntVhvHzZEZQadVRyvA8WwJp5IkSUyaZWhH01yr4vt5lOsgrQY2YRiBMTTqTQLPIc0UuXKFoFTgqeNzlCoVyv1lPF+RmZSl1XXCOGXqzAJDQxUwkiPHphko5elECc1WyP2PHefgrgn2Tg5Q77TxXIf+gX5GJvqRmWHuzCLTc4sMDvbj+AqlBFr5LM1VuX/uDH9Rm+XdN0/S31PBZAbXd3nwoSMMVCpIJbjne4+zZ9coTzzxBGPjowSeZmFpGa0ka2s1/CAgijOKhRIZGXd89zGKuRLtsEM+lyPNMv7dR7/JLT/9f3PLW39w44ICxqBQpMKQkkGc0mxUWZ2fQpmQ8V37MFJTWzfs2HUQFXigWpbx8Ivw5El8xyFNMhw/j5Ex0ijiMER7Gi1cIMZ1XZu1lJBmCWGrg5KSXMGWt0oH0sh+x6R2OHFyhr6eEgNDvZTLRUgFYbhO4AZIYUijFkJp0ApHQ6PWwMvnUI5DEnYgSa0PoVQkcdpldTVrq2uU83myJGFlbZVOu41WBkdDtbpOFLfITEa90cLTCte1ACFJMmq1NfKBS9hp0lfppdOKiJIW4NCo19Cei0nh+uccsJnzDXGWjV68JIRM8NVv3sXO0RGrqCjstTNNDNrLkWY2MJMShJFUV5eZnp5lYLCfOErRjsCkGX/xP7/KFZftpbfSz/cNjfBjv/Vx/ujTv8tSqcw7P/r73HrwoC3hdDzSOKO2uk6pVGCiv69rWh7YTDfQaYfc9uB9fPh7D/Irv/BBvnPP3ejr5qlcUeDuOx5jz+5xlFLkXQ+TZmgliZKMciHPSm2N4cESQc4hTlN6C0U8TzDQV+gKOgiePj1HmMSUCjm+8c0HERqU8mwfngONZsjxIzPEaUY+5+LKEM91iI2w/XLVOvkgQGAo5nNU2wnlfI44ySgWihRzHp5r5d8v2zFp70MmQ4kMpQxJlpJmNpE21FcGkeFoSZxGSClwtINWLkoq2++IZTckru3XFJZSaDaXiKMqadQg5/mE8QoaD08YlEgxacj0mVnGB0qEnXWa7RaOo0iN4NT0ChPjYyythxhjuPLqnRRzOXZMjLKy3kQpydLyOp526S26SBHhaY/TZ5aYnOghl+tlenbBqmiblELBI+959JcDSr1Fao0mgQv79k0yNFhhYWEJKaFU7uHA7iGkcikEisC39iFSKtpRRL3Vodxb5uvffhy/kKPebFEp+QS+IkwlIZr9B3ZTGOghWatz6OgM0tNUinmkPCu/cjYiuNAcfbu4Q8Al19v2jVswy9ZIhW4FXyc0vPEFb+GWW97BB3/0F8/bxFlQck455iapJy4Ml4TgAx/6L/zQD72JxWNrbJZdbl22vGdzGHPBczddeTOtMyEPP/Uge/Ze1n25WwLZlbC31w9zIUAwZ0s0z8ag5rxl23lsPBZsllhuLbXcKNk8a4VgNkHEJjjfbn/P+4iuJUKWdnNUl153s/TWiI3bEpumjN1lqz/dBbG3scbuWVdBW4hnEY9n52x/wxi++7fgrO3CdvPe/oUt/7dzjNYtaLD3BSG66z6Lb8DmfpvzH1sriG2Ow8YxtW29/wbuLjk20f9G1uL/eEr/+1N5lgByI/twMWR/4QX2WYDFzErSbyS5utVpln1OIUuh0Wjwxb/8Ih/42ffzmT/5HJ/62KeYPTlDY2WdO775T5w48jjf/ofb2Ts5QWdtkcOPH8IYRbGnnzSFNIOpp4+zePIQt3/pK1x58ApcN0AYBXLDR8qaDJOltBPD0ePH2bljDAP4rsvXv/ZNRodH2DE5zsLCGm972w9z61tvJcvgppuvotJT4sd+8n185nkHEQK+ccfj7Nk1TqNR7TJCijQ1mCwjjFL8nG/lsj0Xz3fQjkNtrY7Wtt/nqv27SdOMOE7p6yszPTNPLvApFnO4jkI4DoGnCAK/q2YlcD2PcqVE2OmQJYawAUHepxVWidsJA729SDRf/LvvsmtHP57nEsUxjlZo38ekKYHnMFjJkysWCNsxnVaMSSGo5PDyPlEn7HrPuSRJ0s2iwtjgII1mi1K5QK7gYoxCCcXc7BJplBAmHQYHekgTWwqVLxVIU8OuXWMoJZCOwBDTaLRoN0Nc7ZB02iRJTC7wEQZGhnpYWauxb/cEynNJ4g5KaxztkEYJQtsbR73eIE2tUa9ho79S4Die7RXK7PyNyTb7m6TURHGLQq4CRgMx67UWrqtJk8j26JiYIFekuV5HZQkriys0O+uUCjmiTszRU1OMDPTzhX+4h8tGhvFy1kzZehJqqmt14jBjeLgP11EMDpSZX1jBdRzGRgbJ5wPA9ok5EsbGB3jqxCy7JkZRQvOFr93Nc3bvwGQwMNDD4ECFzGQ0m22yDH74n+6n7/IKb3zTCxn2JQ8+eoLn3XAFi0vLFPJ5doyP4PseubzDxMQIjuPR6SS0I1s+nAsCCsUiWRaTJintdki+WMD3PLIkZXlpkdWVNVID99bKvO/n/j2Fcs9Zye2N64KSZAjSOGLxzNOsLRwlyOcZmTzI4joUBsZw8n0ExQomSzBZTC7owfMCxOGn6HRCq/qZglYOnVYIJkEIhRQKpQ1ItSkSopQ1NE+ShLVqHc/3EErQWK+jtEQ7Dnv37kC7ahOwdxp1cvk8UmtSBI7SlvUWlq0tl3stmMhSlBbWW85Yg2utFSZJmZ6aIWy3mV+Yp7Zeo9lqoxGEnRaeq6jX1ynkciRJbL3v0oQwDlFSWZbQxKyuraG1w3qjwZnZ04wPDZMmAA5RGOIFEu1mmBSE0giR4XgaIazAVBInjA4N4Pke0rE34TRJEUKRJSAVtFvtriCTJPAD+vp7SdMYxxGE7Rau73Jw7x6EVpum9D+4dy/v+I3f4R3veBs/fMsPoq68nMPC8N8+9+cUkg5jpTykoPKKxxZnGc4V+B/f/kd+74lDmP17+LH//LP87Zdvp7PrDPtf2YcRknKpzJ49vUjhIXCADq5rENIl7/s0220O7h3H09ZrTwJRmtEMYwySZhhTCHwqJYc4sQq6l++foL9U4sixUwwNlhCkuF6JwaEyQ30FssxBOjky4eM4HlqB5zhUmyGlYpE0g2Iub+/HwgE0aSpQyrC4tkSp4APgqK7yo3BQ0sWQcvLMMq7j0A5DAl91AzhlrzHCeucpKUjTlNV6SuAppIgIoyaOyQjbNQQdXJ3SbiyTRQ3KOYd2mNIO4cnDpxgbGeTI8Rm8XBkpPGZm6zx1cpV9By7D9wMC30c6mnIhh6M8wijj5LQVTRnqs3Y3Z+aXKeQ9osTw8COnuXzfCMdPLdBTKXHoyBT9fWWOnpinUPSYml9iYriPhdUqSkJ/pUycJExNz1MqlwijmJ5KkeNTc3Q6NZQW5P2ApbUGs3NVyqUcjz18gu9/5XMRUpHP+WTG8MSTp+nvLzNUKROm1mbGLwZMTy0ze2aNVrPBUKWAchS2hdkezXNji43fW6MVcZG/Lzm2wxRi+8/56ocfYer0GX7i5e+68PMuADxbHgrOL6sUgnixzY0/8Fx+/dd+nWuvuP7Sc92O2dqGBQrCIr/0/36I17/h1Zfe5jbjkrHgP5Ns2GDltnrXnQv2ns2c7LrWjmE79mu7eV9S3mFrKWmanQc8N8LXTUbv2fhEX9JA/iJPP+vjuj2Td/b9zwLcbay7sX/PtveuG+D/G7i71DgX3D0LEHSxE/j/aArPktIVQmzWI5/bN5dtnhQbT5w9tWz/4Pbby8jOZnjiLnuXZWRZShqlnH7qFL/yi7+ENoI3vOXN/OVtn+fuO+7ine/4cR65/wF+/gPv5w/+4JPcffd3KOfyvP51L+XyPXv4kz/6LFOnT/PJT3yC2ZkZ/uO//xm+9uW/4Zc/9Gs8/vCDlJ2UoudxxcF9NBtNHnnsccZ2jHaPhVWXml+cI18uMzg4QNiskS8WyYxhcnQ3v/pr/w8veuGN5PIlbr3lzbSabRaXqvRUPH7gze/gtpuuI8liFIIDe3cQRiH5QkCz0SLLrN8aQvAXf/9ddo0N4HgOAkhMCkYSeAFZYvs04iiiVq3T01sCDMWi9a7K5/KkcYLje2RJZDOMmWF5qcbX736U/TvHcXxFvdri9Mw8Q4MVlJZkqeTz//Bdps4sorWikPOoVAp4rsPSYhXXdfFcl5WVKlJaMKS1S219nUIpQDmCRrWOrx1SzlGeAitCYQy33/EAjfUmT8/MMDEyRLPRIvA9yj0FPM/h0UPHmBwbxHElcRyitcBxBM1mk4X5ZXyniJYSqVLSrIMwGj/wiJKElbU6xaLPnp3jOJ4FZsIYTCq5/R/vZf+uUaR0EQh8N8DVHlHcAQHNRgvP94jiqFvqlqG0ssqIroN27PuUBISVZ67XqhQrFZSURGEHk6XUqjW8nI+jUqKoTWYMuaBIEOSoVptMjI4QFPIMlYosLFdJogTXUVR6iiwtrjK/sMrI0ED3BpnRaLbRUqK1IpcPePzJE2hpBXD6+3uQUlDJF2i3Q6SS7Bzrp5APbG8Ehvm5JfKFgEaa8MHDx/jTD7yeK3aN0Gy2CHIel++fxPNcglzAoSeOU6/XqVRKJMYyD8vLq2AklXKBOIpotTvkSwXygUu73rRAJ41p1OoU8h6eI3jvH99NrtBL3G7yile8khB94fVDZoBDp94gbizhaBevOEBQGaZQLCOVi9P1jAPQQpEi+B8f/STXBQFJZojDBtpx0CoAQkyW4fk+WWKIkxZSOl1G3vaPqa5ct1K2VDgX5BEoAj8AoUhMhKMdlHYQAmq1Kr5fQkirhCekzUALQGtNIiKyrINWGY3GOsakOI6LyAz11Rqzs/M063WyxAKOQhDgasXyygI5X7G4NEPO91irrpBlMcW8ixIphZw1hVbC9q+V8gXyQQAmQ8gMZRzWG1XIBI1a01pTCE2nE9OqW1Gk1MS2byuzXlaOo9DaITUpWWbVMP/67/+Rg3t2Y0yM5wf2GmvS7n4a6rUarqut6I+0PXmqW1rYTdDylgMH+MKTR7jq2iswxnDk+DF+6t3vZPj66xi46QUke3ZSeME17H3Z97HUV+GFr3str33NK7nqygP80h/8AlfdOkb/UNH6CWor7a+UtkxpGtnnXQ9jbC9Lo9UijkNOzCzgu4pCLiBOU0o5nywF35HMry5Tyvfy2LE5SvkASHG0QDlWCEFJhyBwSZOU6nqLUj7PUq1OGMX0lYusrK0QBAWSDJRy8VzP2vpgEz5KSqYWqrTDNqP9ZdIUpNTWwF5Y83VjIEpiRvr7cJSikPMxOCipEQZc7ZCZBEGMSdp0OnVM2Ia0SbNeJVCSo6dP4+iASmmYx48sMbsQsTzXIihKCkWfOOuh1oaJkXGMDnjwkafZt3uSwf5e/EJAIZfjjnufYMdYP6trVR59copdE8Msr1WZPnKSnv4A13UpBAGFvI/r2BL8HRNDtDothvp6Gajk6O8vIBBMjAzwD393Ly+88QAPPfYUA30lBntLRHHG408+zf794ywurXP66Bl27hlCSm2TXFJTzOd58ugMaSdmcqKP/v4i+cBDqha1Wo04lVy5dw/L1VUC3wOg2WrxjW89yete+zwyRyJNyuKZecbG+oi6ohbSyO19o89hUJ4tsNs2fjqHubvURobT3Rx7+DjPfc7zLlz9YuBuE11sQZFCsGvXbv7oi59hsb7EjftvfKaJn//73CluE2BJKbhx/4387C/+HHv27mF4ZLC76kXYmE1W7KxwyaWGlGrbmFV11V+3W879XLBqnRug7yyLZ8VZNso8LyyTPH8blxqbwj0b+9gtk5RCIpSk1Wrgut7Z7XdLRWU3BhCcBaQGsy24u6DccusJK8+CROR2J9yWOW/M5aKlkduDu83xLARWtoK7i4PjC4Gj9Rd1/w3cPeP43wB3/9IjNWnXzPfisrUbJ7vZkp3fmNPGhcEYzsu0ne97df6wvTh0mTJoNlv82Wc/y7ve9S4+9bFP8uefu42ZU9N87957qbZbpFFCoD1yjsfb3/Imbr75Bbz57bfyuS/eRiHn8fSpw9xz9wPcdef9vOJVr+K+791Pc73G7/zmh9kzPsJPvOe9vPnNt/DiG6/l2BMPUFuvkQm45vrrSTcvxJYByBXz+EGeeqOBp+D4yae55+7vcfm+a/jIb/8Wb37zG/jiX/8tfQNlhoZGuPWWH+Vrd97DX77o+URxRG9fgWYjRHkpjqvoNFNyeQ/X94mTlDTN8FAUCjmCnJUpl0rQaUWYFO579EkcAaVyAUcrlJQ0223SNOXr9z/MWG8vJ05N2+x71KHR6KC14s4HjvC6l74AYzKkFghjGB3vYWlplXxQotEMef61l7Nv9xgH9u2glMuhHUm93qRYKKKgG2z5NJsh5d6SNeLWGVIbSBJUBidOnmFwcJANqtWKOwga9QYHd+1icmKCkf4epJa02m16KgXm5hbwHI/x0SGMSWg067ieJOy0cbQ1YK8Uizg5hVKKZjVk7kyNKEspFAOU61GqlEmzlNXVdQr5nDUebyY8eXiKAzvHKORdOkmbLEtIs4Q0TXB962XmBb4tEXXshVbJDQELiXZdEBKRGSSSOAtROiVuR5iu+p7vOKRRSjFXIAwNEkESC+546DgjvYNMTy8xNj5ClkJMhjQw0FsiTRO0Yxkfz3WZnV3lxJlZJseG6LRDinmrrur6VsDEUZokjenrK3P42GkqpSJCWHlmP+fS219ibm6BJEvxPI/PnZzld45PsWeXy0+9+aUkccQTTx5jbGwI19XMzS/gOgrP8+krl4mjmO89cghXOwyP9FMqFqw6apahlCQoBEhH0mk2CVshM7OLTHStMlYbDd776Ts52J9Rr7Xo7ykxMDxMz+jOs9eDrtBHJjMwGpGkxM0FElMh6BnGzeeRpo1OMlt2llk1RYMDMuG3P/J7vOU5l9ubfpYglEJLnyRt4HoBcVdu34gIIR2Wl9bQWtty5OU1wjDijvseYWW1ys6dIyhlSLMY6cpuD460vkIGin1lorZBKutLZ4TtP3McuVkqpAQ01hrkcyXmZpcxcczc7AIL84uM9vdTrVl2I8sSllaWWK2t0FsqIEjYOTGKoxXjw8MM9FYoFQPyvoMUGVmasLAwh+d6tNttavUGjlbkCnlmppeR0pZTu4FEIlHKod5a48ihaUYnhrry5QqyruqdFqSJQWnHKshpzd5dk/iBRxyHVjRBK9I0hm5PnELiaBehPaIwhjSz7KUQhGFkxY/SlN/4+69yy1t+ENd1mZiY4K4GhEPUAAAgAElEQVQ77qBRrxOHEUcPH6an4OG7Pt+68056h4ZYnJtjZHyM+fIRHC0w0mNhbZ3AdQjDFkoVWVieQ8uYRihRKkAqawFR8DWeVvT39ZDFMa7rkCJwhWFmfoWjR06wZ+cAdz98lMnxfuqNFTw/pFZrMTbUi+/43PvA03TiKlq6TM1UaTRX2TlcoeA7dMI2veU8Yao4PbtMb6WEkBLPMbTCmNSAEgLP9Qk8TRjHuMrna3cdYmiwRLMTIsiQ0vYCx0lqxXFMhpEJJmux3lzBZA3SxFBdX6WcU4SdOnHmUCjkaCWK2OQY7BtD6jz3HzrNtVfto3d8nFx5EN8TZLLC9PIyw4MVDBn5vMu+XTuZWV6lXPTI5RQCxWB/me/e8QBXXT5BUOolcB2OHT/J7r299JU9fD/PkafnuO97R9i/d4y5lRpRYhjuK/DQodNkxCiV0VsMqDU6DAyVqK03cbTi2GOniKTBIKk3WhTyLpdNjDGxc4AnnnyaTGguv2ySk1OLnJpaYnVhnde+6jq0NNzzTw9iPI3r99FoxYwN5ZldmubkiQV2TAzx2NHTNBpN8pUiw0O99FUK9FRyzM0ucPzICcZ3jSGltIbqW4LXs/5154fJF1YNnT+edfx0kdXe9fqfYaez1zJ6XawmsGzOBdHbZiy8HTXI5nNf+dbt/OGffYKHv/EIpXL5gtWklBdUeZ77/AXjnNjs5qtezMIjNXY/f5yz6ZqN6V1YHmjMpdQzz65nN3VhaehW8ZENQHUu+Nn4LYU8D9ht18+2XQ/cuY8vPdltwK+QSG21G5TsCmKp89U4BZYlFJw/l+3A3QVz2vKZGfbaC90KtUsc40v35F0C3D0LwmYruLvUOBdwZibDdbxnDe7+9Vz4/j89bB2/OVvdve24GKr+5zB5WynXDapcSYXqegVtR48rYUvr0iTFZNkma2dVvs5ZzMaSbC4bdZVmI5oCEhMhMLhosnZEvFbnI7/yIV50w/P5n1/4Gz7wU+/lg//tv1MsuBTLGsePefvrXskrXvIihONweGqatvE4NVXltj+5jesvP8C1V9/I0uw6rdoiH/rFn+aer3+FV7369fzyRz7FyblVPvDLv87Y4BC5QoUTNQc98hKOPXAv995zF6GwN0mBLZmM44ynDp8maceIVBBlDmOjB/n0H96GCjI++rGPcGZuCSk146OjlAqKP/3sx7iinCff4+HlXRAOPQM9KOMQtRMcX4F2adUbZGGIdgyX79/JkRPTJFFqSY4MAt9DO5oX3Xg1+VKJVjtDOQHSdWiutfAdjze++PkUApdqM0amAscr0NPbiwFe/4qbkG6K9g2rizWUY2u8y6UixqTc9dAjzE4tEEXWxsDxFXGSkGSGMO7Y0jphiOIW/YNFkiSELKRQKCBwrFKd47HSCFmv1RGkaK2RStFqtZiZWsXxJNXGEjrQmCRECeiEKTPzq7ieQ5qB9gJy+YCoE5P3A6RwCAp5hGeFSjIFxf4i4xND3X4VAakhi1Jcx6VvoJew1WFxegkduIyO9REUA9qJwXd8NJrTTy+QKxRpVps4jsvUqWUwEmGU9bCRwkosB4q0nZJ16kRhk/V6DZFKhAnI9/TiSkOWWdW/OEsQIoM0QgiNHxS4fGIc39fsumwIpazH1PpSjVypyNfveYxWq0OnHQKKtbV1brh2N9/3vCtI0ggv5yIcaUvtgKjTpJB3qdUaxGFqGUpf4eVc2lHE8kqNdiMiiRPK5Tw/ds/j/Kefehl/9b5X89Kbb2RxYQFtDKO9ZVZW1sAoSnkLrLM0Bm1odNq85KbrKeQ85s/MkSUZcTvkqVOzeIWAXC4g66RIHdA/NsruAxMszVXppPDNqYAP/Ye3Uyz10IoFi0tV5mfmLAjGmuRuXCNU5qJNhFYhYWJIPIdiMUBnMQKHREkSocik6ia1k26vgk0wpKmx3H6akIiQLDZEUYjCAQWOrkACf/3N79BqhshMcPzUND2VMi+87kpeevPzEMZBKhftepAapHFI4xShDEIasjBGqshmiqXEINCOptNu25jMCOII6s0Os3PzjAwPEHVCTBrjOZKVtWUQKau1JTrtdQIXBsoFtOcwODKK45colXtwPJd6lPHtB48ivYAjpxdphIbJyQn0Rg+DE9FqrZJFMaWKS5xAp9UiiRKyJCRq13GFw/Nueg5CZl1FzhAjEoww1NfrKMdauxhSsjRCy4zl+UVOnZihtd4ibIe4noe0aRyk65FJASK1zL4wZBLIEnzP9slo5SCEIDUZC8s1pCpyw3Uv4KYX3cxyvcoLXvZyEllk+swaa0tNPvrbv8++K25AZJq/+9XHSDOByAye9vnOgyfROk8SVxno6wNVpJDzCTyJyWJcR7NQbXB8ZpEozggzh/V2jDAJa80GYyP97NozgZQew2Wfid6A3eMDpDEMDw1TbcSst9rc9LzLyHkungtDI3ku272b9ciAziF0nlorRQhNb08ZrWwFQSsU+NrDVzZiD7wMR0PO9wjTNldfeRmFIKBSyJHzNGSxtXowIXHaAQwiTWjVm5TcHKQOSdxh5kyd9TBHUNzJvQ9Mk5oCfeUhestlGp06ucDh5uc+B6UUnkko+jFR4qCUi68kRc/nyMk5XCRHTz7NUG/eJgONRGQx377vOK95zc2kMqDTWacddSj29jG9kLC8LkkSyaHHz/Dq77+OLNWUch5j/TmemqmhRYqjXbR0qbcjfM9haKjC5PgQ2nV42Sufx8zMOk88fIzaUhWEZTWfnl7k+qv38/SJeaaXlhkZ6eXgwQO86Y0v5B/veZwnTy0wcXA3O8aGuO+eR21paKa5/54zVBfb3PfQUUb7i+yZHKan4NJp1VlcXMDTLjv2HqBdNTzynUdxTYZybBLCAgiB4nwAtxX0bAC883rmui+Ybu8j4uKBr31anLdIBHd94jCPP/KkbRs5J0wybCiDb/STnDOJbWe48UYb+/3c294PWcqjs4e2fO7GarY6hS3LWZG5jRW3TKw7Rnb18SO3/rj1s+xOc8Mb0GTCLsZqFii1JQzfAKZd9WuMtOsiu9VCmwcMuqDM0FVd71Z0bbVJsKueH2tuPN4Adtafr2sq3gWAG2PrY8HZirKNx+fZY0hz3iKFBCmsim2XZVTaCs9lWbp5HLNu+efG+zKR2t/phYsSDmCN48UWhVE7Z7q9ginyHAuvjblewKAiybr6EEYo22N37iKy85aN+HXj9WeDC0xmtvW2O/d/sd3/CCwm+OeM/58ydxt0+6XB3TM9L7vZ8kvVLl8MID7T2PiSSiXPy9Zs/ajNhybdLLc0GEg1pmtynGHIRaCjDn/1p5/h/jvuYOHUFH/++c/wwV/9MO/+mf/A3suvYHR8hI9/+tPc9ue38ZZbb+XGG1/M7370Y5xZXaJTX6eYz/Htf/o6richNbz2B97E7V+5nf/0s++jtt7ic1/8W973X36Bcm8/WZryQ699EQ888AALCys8cN/D/OkffZLvf/lLqK2tcuVzX7ipXGkVPQ1KKOI47vZLSFrrLSrlEpM7RpmcHGNwoJdW3KRnsB/t5/ndj3+G/757GO1oXMcGQ52wjSAjSQyum0MY0G6KVBKl8sxPzVEpBBRyPo4nabVbNFst8oWAJI3I5/J847sPUskHBIFLHKcExZxVd0wy5pbWKBfyeJ5LpxPiBS5rS2v4vgQy8vkiSlkvN6UUrudxxf4dFIoBjmvnmMXw1MkzlItFCsUCcRyCMCgtaTSbNNetT9iJU7NEYYofeDTqLZ48OQNRasGjEcSxlT/v66lYg+ON0goD2nFQWjE5NsRqdZUwSgiCAC0UGSna9TBGWuYXg1YO67U6Wku8QFOuFGk2GsRxjOd2e/yEYr3a4r4njrNztB9HaUySUsh7SOnSaUUUcgFSa6IoJM1ihoaHgBSJ9UUzGIyUaGFQSmCERGsP19G0OnUMNmPfaYVIY5AY1mt1XE9jhEet1sbxfMqVMikdAOIwxc8FzM4u8fT0PDfdcAWVcoFcLm/3zZGESUSz3qLTjvF8lzhKWFutkmUZxXIJoR16y9Z+wAjRtbawpWA9PWXCKOI9Dx/mNa8/yA+/aB+OY73LFhYW7Tp9FTzfI1/Mc+ToCUqlPAN9fSSJVQgdGR7EkJEkklK5TKPZJMi5Vg6fhJWVZVyt8IOA6toagox3f/K7TOy7kte/5VY+84Wv0O9lRI0FRNbm5pe9hMrkHqI4QYqzAYKUirBV5/TJY7i+T7lvGN/3t78GnfN37a67uGZ8gjAMESa2gjquhyOFFT+SDnESWaaVlOfsvQxHWUA2PjxEu9OmWCog9QZgM6RJilKaNGkBNjBOopg0w17XhKEdNnG1S5Yk1rDedaytioEv/P23KPku69UaaZYQxxFZ3LaATkMx71IoeFRKeXI9/Rw5ucr+fQeRWhGZmE5bUukZYHx8lJXVDrl8icDPU11vsdyOOTY1y2UTE5i4bXvMog5SKYzQTM/MUyzkqa3XCHIuvheQJYk1hAaEtAbuQS6wrGSckaUpWkoeffwwg719BL5PJ+xQqhQwMkOi2QgihRCb1gqyK++dplbcy2Twa1//Oh+77RO0m03OTC3w6U99hpte9iLCJKRZq9Fb7GF5aZViOU9fX4Gx8V5GB/pZnp/hrbe8icfqh8m5mka7zZ6JIaSEZpTiOS4YgzAJ7U4b15VIY3C1x1o9Yr3eYKCnhOc4hLFNqDTaMeutiL6eMp2wSZQKCvkizU5CvRPRUywSJSlKSTKhCHyfIPDtdVx5dMIMOOdeKQRSSuIkJXAFSdy2VhIiIzXaJj27Gfxi4KCkTVQaJEkqqdbrlHMOZAbH8VCmSbXa4N7vHKJvbAKUplIqE7gOswsLXHPFQY6dPoMXOBhSpmYWCQKPb377Ifr6y5QKkiTNaHVifNehVu2Qpi12jZdZWK7S29NLIfBBQKMVcmpqluuvPoBJY2rNNsP9g0gklUKeMElZWm1y/Kkpdlw2zNTUDNNLdXK+YnZ+Bce1fcCVcoGjx6YYGuzjkSdOcdmOYaYXljlx9AwLy6vs2jPE3n17uf/RKa69ephHnpjieVfvIUoSBoZ70XQY6c2zsFzDmJS9u0c4fnyaKw/uYmZumeWFdWZmFnEDh337xyj1VXA8j1q9w8zsKvV2yt7JQbSrabRbeK7EKeRZW6jx9OGTJKT09XVVc4UmM5INcY/t+IxzWa7zYJLYZqVthk2ObGFOgJ+95b9z4mtT5Ir5i7wR2Fr9tAkUn2kIBvf30ngso9R7kW1f9K3bufxdOF501Ys5dMfT9O8pdkWo6B6Djfizu52tDNB57I45W6K48aPOlmFizgIKCwQyNtQ5N0VULslInR3nes0908hMdh54vKQvnbGAdaMazRqan33ZtqPIizKG2zKB3fvMpmLo1uD4IlM5tyruvCluc/6d/8T527dEqtkEtf8aFX5bx7/13F1iiA1fl4uAu0sh8LPUqs02bFfffMG6z3LbG8NkZ7drnXu6vihKcK5lnbCpMdtHsvmCJDGASXGyGN1p8ZHf/hRf+tsvsGtyhEceeYTv3HEPO/dfw+c+fzs/8rZ3E7Xg1lteystvfhUTQwcZ6dvP6so0X/z85/jND32QN77m5Xz89z/Orl0jvPfd7+Yfv3UnQ8MjnDz5FAPDA7z+TW/ihue/kN/6zd+iWa8yPjLGn3/2D5k9M8uZmdN88xtf5Vd/6b0Y3+HAeJnSUAXt924eRyElH/jAz/MD3/8qpFJIASLL+NF3vJ2fes9P8OQTD9NpraNkQk9lkFY7YfHvb+eqwZ6uebUkCkPWqx1ygUccZ6SJwHFtDyJCkRqIwiqlYkC10UQqg+/lyefyTE0tkM8HtJptLt+9g3w+wJgU13URSpBmNng7MbXAxMiANQVXkkykKCNwPUmn08aguP1bD3Jg1ySf+/LdhI0Oo8Nl0ixGSZ9Wq4XnufT12Gb57z70BJeNW7U965OX4jq2pEtKRbMZMjwyQBC47N4xxOBAL4VyHikVS0tVlJRoT9Nuh3zpn+7nqj07WF2pobRDo9Um8B0cR+P5AZ1WRBLHaM+KyEjt2HNHSdLUkM/5VsVSC5YWVimW8vhBQLtlmUCpHHL5gMvGR4jDlHYz4t5Hj7Nn5ziPHT3K8FAvrq+QjsD3PVsGF2dIVxFHMa7vIZUV2cg6Ga1OE5NJXEeRpFaFUEmrICjcjDCM0NLF94sksUOGDZSVFhiZkgtyVKst8oUcQlhvrbGRQWbOLHDo+NOUci5KGtbrDSp9PcxMz+M5PoViniRLqJQKNFsRruujXY2SEjdwiZMIz/M3G7xf/Xff5qWvuIyffuPzmT51htXlKn0DfaA0ge9Sq1XR2podp1lKf38FDESdlGI531X8E6wsW09EiaBYLKC14ujhKUbHR8lSwfyZVeZWa/zXv3iI/OgO3vGmNzC2Yw89gyPc+IKbueLAHuor8/T3VSj3DTC2+wDaDVBSkma2tCfLYH3xDGGrRnlwlMxIXM+zwj9sl6O2yRX5+CEGSxUr+R9nCBy0E5CGCWEco7RGKIOSDmtrqxb8Skku57G8tGrPHceKjHiBx+e//A8MlSsUiwUyUlzXCtYYkZ1NcqSZFTEyNuh3XBektO0RUrBnYgyZRFSry0gSojAkStr4gUJpF8cPmF5eYdfufXheP+NjY0RpB+UYfL9oGUGtcYOAQ4emue76XZTKeQLdQ19PmSiJmZ+r0lvK0241qDfXcR2Xcq5MktqqB99xaHdC1qt1SoUCJjO0OyGu66HOKTFSWnVZiozVtSp3P/gYB/ftpLev1/biJQlaO2TGXtvtNc5QX2/i5wJ71VYKqSS3P/Igxee/kGuuupKV5UUmJ3dww/XX8KW/+TJXXXmQU6eeZmJikjBqoZRgbHycHZOTzMzO0lspA5IPv+/THHjJKI4WuI5guVanp1DoftdTpADfd2m2QgItmZpbZqXeYXQgTydqb/pzeVpRqzc5ffw0g8MlestllPYI/AA/8HGUxnM1RoDSmi/efpgdk2O0wpRikEcpK6b0hS/fzdJalT07R3C1Zmp+he/cfYQDe8eI4oSkqxhskGAy4iQkcECKlCQLcXRXcddRlAMfTcLaepN8UOThJ47huB4HnnOASqlCalLK+SJr9SaDPRUyo7jr7sM0wg4D/RUGeiqkWcKO8X76igUQkqemq0wMjhCFLVpRi5NnVhkZHsHzc6xWm0glu76GhiQOiZCcPjmNVILeSh/fe+wYA315njo5y8hQLzsm+nEcxe6dgwz19fHQQ8cZHx9gcmiQUslhvRHi+ZpjT82yf98kR0/NcmDXOBMTAwwMlJhbWGNkoJddO/up1ds0Gi3GhnvJspTv3P0kSZRSKLrWBiOL+dadx5maqXP5/h002wnPvfYy9u8bp6ecx3M1zTClt1ykWPARWnLV/nG6bZ64WuFqB601tShhbbGJFBlR3EIgyAUBCcZ+L7eJmC/CkV04LkCF4rzSwo2/N4LlhRMNDg5dg6l1rS7O0mVnN7Zt5dwG2DnrA7rd+Phtn+LrD32V77vmJc9m9s9qbP20fNHn537157nl1h/cPE5n+9c4Z37iHCAsYJOMFLBlL85t5dksv8w2lDC32ihcyFht14q0sR2rinvWRuDcfjk4C4zg/Kq0i/aOdVUgraey2ASgSnctErrXwnMB17klpZv7jNqgLc7LF0irALQte7oxv41Y+tx93a4X0YqTnbNPFxykrWXKctvz61Lg+dmuu91c/w3cXWKczWg8M3P3TO//1x6WzbJZmI0TwhjbtHvheWwvvGeVPwUdEaPJOP3ow/zVpz7B0fmYV776pVxz/ZU8eeQoR45NcWzuCLv2XMZvfPiX+ebX/hYZCd7//vfw9Kk7mTpzJ3d+437+rx99KyJuUFua5q0/+uO8851v5zvfuZuDB66ib6CC0vC2H3krnajNwvwCL77p+fRXSvSUypTyBa6/4Qbe/ENv4HWvfQU512O17jHiu3zyj/+KF738VRhjSNKUcqnMxOg4lUoF1/FssKc1P/2T76HdqjM82Mt6bY25qRNMjO7jxT/wWn7jpueSphvGwpbyf+ihU+wY6yMMY759zyFGhvKYRNHpROTKPr7StFsJjxw6w8T4KCuL6/hejqdOniFJE/I5+9me75JlCSsLVTzXQboKx9X0FUtoxyr5RVGCG2gcoVhYmMcPXJTjM9CTp6evxNWXTzA5OUQaJwgFUUvy9XvvZ8/EKFJbH7qh3jIYQZoZqtV1KuUSnu+yXq/R21uhv7+X2ak5HEdgVIaX8+15ILRVnpQSJ9D4XsCBHWM0mw0GBvqI4oR83kqOR1GCVg6rKzV6e4sIx2aqRbYhSWyFdhTWc0c5mryfJ467xuipQWsDXaY67ITkShojMg7sHycTCeMjE5AqGvUOfj5vSxeyhChKUK5GaZ8ss6bNcSdE6RzKl13WpolyHUwscR2fam2ZIDeEq13W1mu25NYT6ERhMsHqSg1XezQaIY5ykFqCzKitNWg22yysVHnu1fsxaQeRZbiOi+P5DPZWuOu+J9m3ZwLPd/js7Xdy3cF9TE/PU8i7KOnR6XQolHOcqa7yru8+zi23XsutN+0jCkPyQYGkk5BECeWeMlJrXC0hSyhVKsRJhu+7tFpNckEek0na7TaBn6O6WmN2YY0k63DLr/8df/atx/j8nYfxxg5y+Uu/nw/94ZdZVUP8xR2HKeZ86vVFXnzDQU7Ot1hdWqSn4BIZjUhiHrjvfmZnZyn1DjI0sRPEBiCSSKEJ66vEYZN2JvG8HJ7rdn3atg/CjIHc4WM4jkuaZkgiMhMjHI3rCJRySZLUKkKiSNOQXKGAlJKlxUUCP0AIQ5QkBLkcqcl4zt49aGXZY+VoHn74MINDgxiZWsNjY8GDMdKa0UvrXZcaWFqYo1C0fa8mblFdXcHEHYSQTIyPUu4pMjw2SSY8JnceIM58HCfDCRSu8tBYIFlvrCIkOMpneKwXneSRIiN11ggcGBksU8wVKVWs2froyBC19SozM3OUKkXqjToGKBdKCCHwPBekssqcjtM1IrclORnWFkI7mr7eXg7svYxmax1Hu0jt4Liu9bxjo1zK2PW1g5LWI1RIydu/9GX+68c+ynU33IhIBX7gkKYdHA+uO3gdjXqNiV07UL6PozPWqjXyQQmTanpGhwl8j4UzZ/iZd7+bR1buQ2tYbzWoFIus1WoErmstc5QmzgxRZCh6mlzgMjE6TLu9TpR0mJ1bRipFTymPEIbhoQKBa8hEnqVqC99ziNOYwPVIM0M7Tgg8jxuu3sNaY52V6goDvQGie03Zt3eU4eEKWkmklJRyea7Yv5MMiaO1FVdBYbIUJQxhu4kWKa7bh5Y+SvkI4dJoG+749j0UippDDx9ndHKcocERAt+jkM/RDENMlhAncM9DxymUCnzl9nvpH6mwsNgkRlApBniODXOX1upoJ6VUyHP89DSVQkynPsOusXGy1CFL1llY7TC/Uvtf7L13mCXnXef7eUPlOqHP6RxmenJQTpYcVsEWBhkn2cg2BicwYAw29sJeTLoYG/YuYf0AZpddluv7LAtrFhswRpZkyxJCkq0cRnk0eaYndE93n3xOnYr3jzrd09OakWTY/c9vP/3M9OmqU1Wnqqt+3/f3DYxWivTCPpNDBSzLJU762JaF5xQYKlvUW3UmxoZ48tEX2bZtimefP8qWjSN0g4Tx8VEeuPcpNm4aI4japKmBbRkMV4sE/ZjFWovN06N0gz6nl2t0WhGH9u1jZLTK3kMNCq7CcQyOnTzNpRdt46HHjrN5toJhaOI0YmKyxGUXzbBcW2a04tNsBzRabZYbHfRg4sEwFKcWFllaqlMqmLTabYKgz4H9p2gHCXNHjvPi4Tp+xWd4vEx932GW52sMjVcxLL1KPTtvzfKqi5sBUHuJZOlscHf3F5/hjjvu5NpLrjvvljLB6gR7/gKrCOqV6rSv3vW3/NzPfww39L6Xvf+ex3WXXM8nfuPT3HLLzYNdXLevgxCI1f3N25iDSf0znbsV4LN+V7N84VfUlL1cd21tl2+9Tm8tiDtnXt3LjJUoLinUWTTOFVbaCig9b8duZTuc6eopIc/av/Nbcw72+xWuhfOZxrwSuDvfNfO94INXA+7Wju+Du1daPwsHxOUzMxBSKF56t2H19/Dqu27/mrE605FfkazGH6SDYN0kPWv2PRvMWugkIBEmUSrQpDgk+GnMl/7oCxw4so+f+Jmf56ILN1FbXmJpsUmnnTJ/fInNM7N8+AMfYGZ6muuvv5Z/+MpXuPUb93J4LuKSi7Zy1WvfQKoKmIVxpjdUScgouAYiatIJ+1x+8RYOHTyClh5zx+ps3LGVyW2zLC4sc/XrbmChUac4Mopb3UgnMtF2wuPPHmGilDA2tpGlzjJ+pYCZyTzM2jRz98Bun05/mW6vw5984U+48U1vxKu6SO3yC7/229z5rjeTJH28QgEpctt9ZSimRopEcYJX8NkwXcUvFDFNm7lj8zjaxLBdEJKJsSKub+UZX1KRhAkbN0wQxylRHOccbSFI4hTTMDC0QZpkOJ6RW7zrvEujM8WRuQWCMGN0dJwkjRGpyPPblEQIMLSm1+sRBB0u2roVZSoWTy/g2CZSGdSWGigNvu/RbPRIwj7lSgVtaOKwz9BImX4/xLHcPAjcyClJWZJgOTZCKOIwwDQFju/SD3tAyjN7DzBeHcFyJEkSUyh4oAQiE9QWGzQaLVrNDpZpAhlioHsRUhLFEZ1WwLN7DzI1XqHV6WMZFlpLMhKyOMOxNWE/IA5itG2RigTTUqRxhGHaeXaZYGB8EKNEXthpldJsNfFck3arARh0Gm083yAMenznkWfZODmOMCSWY7OwsESl4HPw4AmWlhtUR0vs3XecyfEhkjjmqef3U/FdlhebTM6MIpWkXC5xZO44luOx1OzgFxyyFLZuniCMApI04ZJts8RRRC/oUQTmcLAAACAASURBVBkqkCJ5obHIv3/hMO98x8V84E0XkCQR7XYH13RZbiwyuWGCb977CNNj5TzbkYwDB49SKZXpdXoYWqINm6XFZYJel68/8DS//JcP8N6P/TJUN/PCYpdf/OTP8Xe33o7nFri4UuPhu77Bp39ghm3eMtv8Hm+7sswNu0p8/I/u4Rd+/me4/7v3s3HTJkbHJmifPsg//v3XEFKy7aKL2bBlV26mJGQ+EZRGJCI3GoiaNSy3gpYGIoOwH9HqtEgzhaHswcR5zFf++h+40DARUpCEEWG/jRAKlelc16SNXKoSJyRRHxAD+iRE/Yg0SSiWh/JnbJKgTROlwXZN/sdXbueC7Vs4deo0Rc/DdgY6PK3IGBgBZAmddg+lNIcPzKEMhWO7GJaJYViMTUwyObOJkYkNHD5R4+DJOkWvRLlSxjAlSuYxJwKFUIJu0EIaNo/veZ6ZsSla7S7tZg/L0SDBNn3QHlK7FMslpGlTq8e4voHvOFi2RRIFRHFu2d/pddFaMHdinqXFZVzbREiwTCsHpGkESiGVHhQrOUXa9X0SMixL067XMC2bMOiijVw/I4RAScliq8lH77iTd/3m/8V7bv5hWu0AYfoImRvboDRpKujFXUynwD/d9R22bJnF1CWEikhEB88vcWjffopFh2PHDuM5RX7n332JnTdMYRsWoEiFjVaSOA1xLZOlWouRIZ8TtTpIQRh1KboOUphUhiqEMQRBO6dsd0IKvkeSpliGRquMJOmTCY1SOqedIWk2m5Rcm6GCRxwnaO2hSDFUimVq4lgSRDG2nUdKiMH9phcGGIT0wy5xCo5bBMNBkLDYXGK5sUQU9ciSiJ5UOI7PyOQ0qTBRMkVqgzQNyCKB77rU2m2KRRvfNpiYqnDZjglGR2yCXoennzzI1q0b6IY5W2D/4RoP3/csY2M+Rb/AqYVlJiY20OhnWJbNxHCZpVqD8apPHDXpRgmnF5cpl3yytI+WMXMnlpidnOaxZw4yOTNMqVBgeLiI77gYhmS53mTXrmn2HztJEEoOHFzg8P7j9JKI3Vs3cHJunkqlzKETyxw9USeKQqY3jmEaFq/ZPcJQuczxU0ss11tMjJXYvX2cNIMHv/s0l160mSQ1GC4VEFLy7HOHsS2D8eEhPNclSjKe2fMC2nZQImTrpnEOHKkxNT5GwSswMlJitFrgiT1Hec1rtrN96zQv7JvnVE9QHKtQO73IaNlGGfaA8fQKBel5fsjWtPjOxdA88+sc/hinK/Rrfa65+BpeutYr1WRn6HIr2xaCM91CIbho6gre8I4rOfrkKQzz1eqZxLrvV7fKdZdcx8/92qe45X03r92FfGJ1TZbb6hZEbrwihMidMQRkItfVrTVMWWWNvQywW2ukcj5wl2YpWuk8koA174/IjbTWfd4v+dzXZsyJPFN2JWMyd0TOweeZb0WapChl5BYY62IF8vJ8zXuqfJm8Is5jE/LfZSDFwCFe5Kw80sG1JpAip3umgxp/JfMud/M8GzzlFloij6RZaf6IbA3IVi9/7lfyUDnzvdYYZu3ntzoGNRdSgDyjBVx/7lbW+z64e4WRnel5rw6xkhL4MuP/BLBL4jMh6nBmpuMsusKqSxIvmaUQ5LTDCAuRpVhZiB13+M+//Zv8xX/771x48Wu4/6EneOLB7zA8VOSpp57mttu+SZhAJ+gzOzvLVVdfyZ9/6Uv8wA/czNWvfQ3bt85w43VXMTo+yeymWRCKz3/+81z1mms4emKeG2+8ia/8zdd5z4/9OCMjVTpBhLZc/vqrX+aii3aipcFIdZov/skfce11/4Z+GPCtb97Gvfc8xLe+/U3e/94PU3BN9h14gStfew0JGpFlJFGuxUmyANeTGG4FbVi8/nWv44V9L+KXh5ia2Ejyd19hx4bJ/HPLFFmaEYUxQadPkuUmBUorBBlaW9xxz0NcdtFWHFfT7yf0un1KhSJxDErmf8TFkpc7K7oGlmVgmiZSaizfJopjgm6PE3MLeK6zyg+3LJMsTVhYrFPwvIHOJMMyTdIswXIsmo02tm2BAMscdK9ERrHg0mh2sBwbx9E5DZQM2zZI45SlWhPfc4ijCNOyyMgwTE0cR6RJCEmMYZrEWZpTM6UkjQc3vUSipGKo6GNYkl43wjQtpJY0Wy2UMnA8F7/gURoq5TO7WuaAMc6oLzXxCx7dTo9Ns1PoFW2kkARBgGkZ9Lp9TNvBsB2EZdJYbmOZJloLpMonHOIwRJkahEKmBp2gSyYTlDQx7ZxK6hWLIBWmUHzn0afJYkm5WKFUKpGlGY16E8eySaKUkdEq1eEypi1ptbpUKxXSNMU2DIqlIoYBYQ+e3HuQmckSlVKZME4ZHa7SbLTzeIiBFkhKRRB0icKYxVoTxzD4jWef4oM/dh3vfN0OWq3cuS4M+xgq18KVfJMHH97DjTe8DtfzePHFg4yNDTNcLeO5Ho8+8QzLYcbj++b4/VufxXAr3PTjH6fsF/i9L/5n7rr3fp59/nneOTPHB67dxOunJZdvG8IjxHZsHM+lttzEcw1M0+DdrxnlY5/7Eh/54AdoLNdwHZul5UVc2yaJYq5+/TW5xnPQBc7INU+ubdFZOoWnUmpL8wTN09ROHSFYPk4anCbr9zCUQJkOMYI//sP/xFs3b0aQkYR5KLw2bMAAIpRh5sH2WqMMRZbEaMvM75mZoNvp0u/3YUAPMiwTpRRJlHDJrm1oUzI5PjL4ewEl9KpegTRj+XSLu+57hOmxUSqVEqWSh2HnHaE4jjEtC0ybNINCwWOsUqLe7DBUKYOQmNoijhKOHT2B57pYtkMmYypFD8uyMCybQtHHNDXaMOiHIUobJElCvx/huA6Fso2Uitvveoy5xUV2z44iSVlYPI3v+nlxgMQ0LYKgTxxEdFtdXC+fMJFCrj7y4yhCCEGchChlcuLIPIcOn2JqegxtmqRpxsGFE/z8nffwmo98iI1vuo4fedsPogxBvd5k374DuYOnm1uFK6VgYEC1vFRn586dhGGX1119PZ/6t5+g3a7j+mYOVIVkdGycRqPGhz7yozx9+gFa3YB+P+XO2x5gdtMIjiERWUTRNekEHWxTI9CQGhg6ptlJOHC0BiJ3udy/7ziZyqgMOSijiJAmShqkKB5+6iDT4xVyb7qcKum7DobWmIYmSSUvHDqObRnYpkYZVn7PJUZkEUYaE4QhrV4v7xJqN9cLy4ws7UPYodnqEMYZrS5k0mHzxDiubedbTGKUMLEMg4X6MgcOLzA1UUaQMVTwEELguzbHF5YoFQqUSyVCFLV6nYJrUvRMJsfKjEyWsSybIEjRToF6O2T/wZPsf+4wlbEROr0+c8fnGR+usFCLOD7fQEhFv5/Q6EY02z1KJZtabYnLds+y2OwSxzEHjpxkuFzgkScPsmvbBtAayzZxLMGWrVNcsGUjjU7AyHCJBx56DsPSREFIGARcdtEmXMui2W1S9qscO7XIBTtm6AUBhhBIAZZvDXTeCYePn2JmbIxjCw02TI+RIPjbf3iE8ekq2zaP4nsFhstuXkZoA0PnIepHj80hiCkNl5kYGeKf73uGfj+hVo+46ootPPfkUU6cWGZkzMU28iI0Fmdn4a2vSWCl+7IGYolzL3e+8fO3/CKbrR2rS5+z/nrZTuL6IvnsZR3Pwpkw+JXf/VWuveT6V7VP68Hl9zKuv/R6Di0dYnpqMtfIZxlJcsbZfPX4Us62OlwLQMQZt0010Oq+0liNIZDnphHmR5MDx9xQZRCHIeVZ3baXHSsxADKfSD6zmRWq43od3xmKplBytSY/UwevW1qeTSddefYMfljtLgohznIDTbP0jOHM+n14GbfLHASv/+0raBFf8n6vYp11oPyl8svvd+6+p5GtDYVj5QN8eWOVV8ujfdWausE6KzMxZ/aNQVv+TFcxSbIzzk1nNkTuLpT/2O0GuCLm3tv/gT/8j7/P9KYLuOXDn8CobubJfXM89+TjzJ9e5hu33cGOnbs4eWouF8L322zbOst1176eiy7cwNETB9i6dYpOa55t23czVK5w6zdu45b33ML4xBjeUJlUGoyOTfHl//W37Ny5hVQqJmc2csnlVzF36DBj1WESIbj86svQhkXJL5IkbV57zbXc/CNvJ46gVDSJOqcZmdyAtguILCFOUrIspdcLaLfaWLaHyBJkGhD2u4xPTfLeD3yMz7z+UoSQdDsRrVYHz7MQwHN7DxPGEcOVIfrdAM9zyYTEt0x832Z5uU6xVMD1HJ5/7hCdToDjGByaO8nYcJnOINog15tIgm4vN01wbBzHwnUsekGIZRkkSYzSim7QwLINxsYrCJUSRf3cCc3MTWEc1yOOY9rtHn6xQJIkLNUapFFGoVTITZjIiKMkB/YiQwmJV/Bzg5V2N9f3yNxOPQxDhALHtnMDB0PRarYIOn1ERm62InLaqGWbCAGmbTJo/mLZuW6k1+1imflxrPDhV+gt7U6PsBdSqRbzB3maIWRMpxPge0XiEFzfRgwyujIS4jDC8y3iKKLVaGKaNkqvUDEEMkvRRh5vkKQJQuZGEjKDJAyIU8mWDdMsL7XwfI9CqYgkwbENHNumXu9gac3JY/OE/R4zo6OgJIat8IsuQRBiGQapkOzcNpNTs6IUbUiCfp9yqUit3qTV6lLwPaRQzB1fYDEM+N1TNX70x17D4tFD9DpdxsdHcTwHpXIqXqPR5PCROYQQ7Ny1g3q9xaOPPc1rr7kUbSgeeuYAH/zCN7jhnR+iuuUKHnruGAeOHuOhZ55nh3yGK6t1br6qyntfP8G7rp4CBHff/yTbt06RxCHVaolCsUCj0cJ3TQq+TZZmWKbNG3d6fPwP/p4bXn81d337TiZmN+M6Dq4pcVyHMAi45+67GRkdwyvkFF8pBI7jEcQwd+pFtJGiRA/HzoiSPp1uSCY0qTSRhsGX/+ff8O5du0ijkDTuo5WB4bh5dpjIQ6zjMEEqnc/cZzFSa1rNDq7nIxHYlkEc5QYjURwjhUYKhZSCKIzJyEiSCNMwSJMoNxgb6M8sy2ZqbBi/4GLZJkkcIrVBluUumkhJSoyUAkODZWlEInBdh6gfszi/jFaaSrWE5doIIREyy2dghUBqjaETgrBHJvPohSTKaZC2bdPrhQSdDlKb7N62m/HhKuWyg+vZSJHSWK7RiwKUhDjJZ6Q73TYFz2VpaRlTa0xt5HPU4swstdYahMS2LBQphXKRP7vvPr7RanPjz/4Yt9zyQ5SqZSQd2gsvYvlVMmXz0Q9/lA+//71ggGlaJEkGmaC+3OSXfvGXuektb8ayJVddeRnj4yM4ngOkKF2hHyhOHK0xPDyBYaT89if+jAtumMTUBsqRLDfatLtdxipF4iQE8py7LBWAptHOGCqUsG3o9hbZvHEDBw6d4qILN+FYNlEieOTpg5TLPo6lKXgOQor8vKZQ8u1BF0CBELR6iwyVPAquh8wUcdojinLtr+tYtLsLSCUp+VXILNI0IktDmq0anXaLRqeP6xXRhs348Aiuk2t5/+pvv8PkdJVGvcmQZxPGCVJk+H6JJAnQSqNVvk/tIMQ2DfpJhmHaRGHIro3DWIYiSQVBlHLPPz3JpRdu5bkXjzI9M81o2WfDeJnR8QpFz+OB7zzNjdddDEhePHqa6pBLHPeplHyGSkU2TFaQImZqrJqbNBVc5pfqtBtdKuUS3X6XkeoQWkvanRYbJkbwLJvnDhxBKxgdKjM9Ncz06BATYyW2b5tm7tR8rr+Ou9x11xNcdulWXMvCNAz2vDDH7FSFRquJ57g55XKxQdHzGKsOYWr453v38KY3XcJyo03Jt3no8YNs2VjFUBqpJM12JzdOEgqlcprxgw/uZWZ2nN07Z9i8qYprW8xumeToqTphp0On02KkUgKxNmMzWwcaVkDdGkWZOAcL8xx10cpbfv1zT/DVr36N6y657hxLZi9Z4UxPb5Vcd453f+nL+069wGOPPcH1l17/qvpwuX7rVSx4niHqGlnN8Dw3zyZ+SR3KS7twa0Bf3r16aWdnJVZrbS2ZxMlZr70cEDxDvxw4cq4wxgb/P5+2blXPlomBPWW22knMl5WDztnZlNCc9cLqfq2Yo6waAgrJqspInvGdWGl3rnQFBzt41v7lcV8DqupKXTP49ywKrzhTY8PZQEzknYN1x7zyWadnv8/qSuf4fM8TrH6m+5qtSgaz7MxbnA9HfB/cvcJYvVD+D4x/bXfvXGLX1Yt83Ytplnf60jTDlnDvt27FIuaa1/8b0rDLr/3m53j3u97L2978Bn743R/itm/ejed6tFp13vJDb2LLhilOHT/CTW9+I2PVEnfd8U2efv4YleFZxkc302ovcvzkPMeOHefe++7ljW+6lseffZqNmzZTrlR47etvYKjkEYQR0rTp9QT333sPF1+wkz/80z/mhje9iTtuu4Md27extHiMLVt2gIoYHZviyOHnqJ08wNx8k03bLwRiDJWHI2eJplHvQ9pFxAFBa4EsiYj6ET8a1FBak6WKv7/tUS6/ZCNC5ZrDsZEq5aEyWipOnDpNGufdsyNHTzI+WkXrnPoZ9vsoobj3sb1sn51gemqUOIq59e7H2bllA4ahWVpexi866EzSbnfyrp5nY+hcH7Oi2bQtG8uwifoppukghSaJQvr9HnGckCU53VHJ3LBDSkmxVBxQEhTaUAMagMqNRrIE0oy5k6cpFj0s0yCOU5QU9IIA2zEwBgCt3wvI0hi/WOD0fI2C5xPFIVEUIlVOVZBSkaQRURShDQshFVnUx/WcvEOjcr2WzBSLizW8ko/t2+x78Si2rbBdB6UNstDgW999nM0bK0gzREqHNEpQMoUkwnJMxOA6NbSBMG0ykeWi/Swj6NQxtQ1oDDMjFRotFYqUxvJp3OEx4iDCMTR7jxxj4XSNStkl7AcsLdepDlfIDIXpaspVj14/yru0g26H49qEQYpXMlESVGqAFpi2pt3qYCpNoejjeS579x3mkeUaXztxgHe893XcdNkEcRixa+cMmzZtIIpjtKlgYLXteQ5joyOkQqK0wfz8aYbHR/mxL9xG4E+y4cIreOjRZ7n97ru57Vt38jvvqPD+azdw5XjCSMlhamqUbrdHFCXsfeEYWgp2bJ8BJajVG+x59jAbp0f5+h0Ps3v7FM1WO+/OJRnaELx5l0Np+w3Mzm7kRK1B0TZJgw7HTxxleTnPmNu8ZRtOoYQWMhfFKxtdGKZcnkGrMlFkUi6O0057SLNAmErGJ2ZQWvOV//W3vHPbdsKgRxz2iJIU2/eJwog46qANG9O06HQCDMsgjfqDQHKNkpqw36fXaqENE8gtrk8vLGEaBs1mA4lGKjDtXPsTxj0My8jBYpTxldtv59ILdmAYGiElhpHnmEmtQeTXsc40SZhBplDKZP/+gyRhSBxGfPexPUyPj4BIyCQkA2tvKSVIidCKLM5QykCgSRKB7Zg0G00s28EyLSxhIQ0Io5hTpxaod+pUqkMYMqPse2QK2p0unV6XOIkplDy6QUAYhmghaTQ7xEmK49gk2aCDnubH2wsafOI793Hx+97F2z7yE7zuDVfhFSyironljWKk4CS596u2Ctxw3XXMjI+AqYijhCTJi5+4nzI1NU2jWWPT5immpqs0Ww0sw0VKSZ82cdzn6muu5N0/chNFv8rdd9/D1FU+cRwzNT7K0ZNL7Ng0QxiHLNTrGMqm021T9n3mF5vUG8s88sQRLt21mWLBx7I1sxsn6fVjMiSWloxVi0iRYegMw5CY2sjPuzRJsnAQyqzJEPhmGaUMTi4dx9JNlFR4lkGYpmhtYpplpHIHxWQPSwo6nTpl34AsxS+NsNgImF9uUym7xGlAmvTZtXsWLSUTlRLdXgPPczG0xJAunqNZanS5+/7n2b11NncvbndxLIe5000qRYN6o0YUw57njrFhepyNmyZotLtkWcpQqUDY7/LYI0+zYXaKMMlIRcjGyQqdXp9qpchIxcGxJZWiRz+OsQyI4hiFpt7sYXsmhlYMlQocPjLPZbs2cM99e5iequC7CqUc7nvkBa66cBOmjql3Y4YKLu1uL4/pEJJywWGp0WFqtMCmTWOEccLRE8t0ghRtucRpyETV5+Chk4wMV0nSjOVGmyAMMRXMzIxwz52PccVlW4mTmCDMqJQd+lGESFNOztd54tGDjM+M04slWsKWzRN4jkXBcSgXbLIso9kNaHQCaotdooUFllotqiMVlDbO1D3nIFmu7XGdDe6y86xzBse89fJbuHbDjWjjFeiSK5TDle2s2f65lz/7x//4pT/k937v80SLr64Td6YDdR5q3isMpSSf+X9+lVveczMgcu29EGfl3L0UNAyOcUWbu8YNc3WcQ3OnlPoX1aNra1Al1VkdrzQ5Y96yut0VcLf2JK/b7Es0ddn635+NdJXQAxqqysHUuZq267ticpBn9wrHvB7cnff9zqexy84+lvMvv2ad8+zD+SY8zncM3wd364cYoHCRkRL/b9uP9Vq8ldmPszd9bjva9eMl7kArgC5lgO7SNceQ5EUPKWXf5Ym772b/03s5dvQQ9VaDqamNPPzwC1x1zbWMz0zheBYKhevA8vwRdm7eQrkwyn3fvY9f+b8/g13w+dXf/Pf85M9+gh+66SY+9alPcdNb387WXTtYarZxSxU++NGfotbpsHvnBbjaJOh2kDLi4P4T/MX/9xds27yRkuvw0ONPcNnrruYdb7kekSnCIGZiaoax8Wl6SY8slURJH69YxR7aSP3QARYbR5jZsJV6q5NTECPYcelF/MInP44ybZA2hdIwP/XJX+VNBZ8kiTAMwY4tYxgDx8cUBp2kBCkM4jBmaNin1erxrYee4cItG+m0e9iOhdYay9VctHsDUisa9SauqdkwVQEEqNyJMRcvK/YdnMO1c2e4LE3Q2sAYGCrU6k20oTBNzfJSDde1SDNQUvPc3sN4lkU/jnEdmzSJiKIuUmha7RZKZQS9PpZtkqURnW4316pJE6kzPNci6AUYMgOddyCSUJDGgiTLA0EtMwerpmsRpzGOqYmSCNtz8qspjUkT0BrqS4uD7odF2M/1JlE6yLOTAtt2kFLQ63aYHK/S6/bxXZco6KNtkx1bJ3ODiMwijvtIJRFSI5VBlkmQil4vQGqBsjQiTWgs1bFMC9Nx6XYDDEsjxIojY0yn00YKhWlaaAmddpui5zI7PcxyrYE2NI7nYg9C0Y8cPEnRLXHy5CKHjp5mbGQIKcUAfHTotHp4vk8/DEmjFGWYWJbJg48/w2kFn9t7mJvfdyVbd41y7eW7iJOY4WqVPU/v48jheSwlCcM+rmOjDYVIUhbmF3F8ny9/+wl+88uP8tF/9zuokU187Rvf4viJU/zkJR3edlGJ14xm/NRbdlCr1zFUxszUMI7jc+TIPHPHa4yPDiNESrPeI44jhEgoDxUYG64ilebySzajlU2aCPbuP0Gh4OJ5Ls1mn9d/4LO8990/zqGDR4g6dfY9/xhkCbfffivXX/t6Nm/dgfCGcj2kBLIYSYztmvilAkNjY2SWjVuYoDA0RnmoyiB6iJm9LzJdGSaN+yiVkmEgE0nQayFkQpYaCCVXXS5FGiP1wKRFZpha0Wx2yLKUbreN4/hkpCgNxVKJMApxi0XSTBIHERKT+mITrQ2kIdm5eVNOvcxS0jim3Whje3aunYgzgnafkydOsvfwASbGqnS7XQQJhZKPVyywe9cO0izF9dw8FD2Jc6MlI5/FlTFgCLIkIQ7znEMEuYNsL4+qaDdbWJ6DsiTDw1WefPIYrX5O/fzHe55i1+ZxrEzgl/NuqUgF3VYXx3boR30sQ1JvNNBCDmiZGR+5/Q5uP3qUzT/8Fj7x8Q8xPFYgi+uYukwqMlzbIQViEmKVEUQRBjbVaoEgrRPHekCJzkjTfMLGL9jMzk7l+shY59eohiRWCKGwtMOnP/lJFBHSENz45hv5Hw9/nZnhAnEUMDVa4tj8Aq7tMlQs0Wi3Ga6MUO9FlIdcxspFtmwZIyMmTvoowyJJI7L+MqahQdlopRAiI40ThAhI0hBEhqFBYZBlGVplxHGPMImRWYitNZYzhFAeKQaGtgjCBElKkvSI4h5ZatBq10BbxJmNbTm0exllr8DzB04S9CNGyiUsKXj2xTlc18F3HLTOUKng5OkG7bCHZzuEScTFOzfSDSM8x8Q0DJ567gCmTOmGGc8+f5zNsxNEUYzt2iiRkqYJaZpnb1VKBcanR+kEPWxTMTU+TJpJpDLz2Iw+JHGuF+4FGdqwMEyL46dbPPLwAZAplYLPd+9/it0XzrLc7tIJekxPjPPos8cZq/gIJXnqmQPs3rER2zSJ0wzTsDix3KZacjC1yYv7j+XmLWi+fffTXHPFdkaGbBqtgFZtkVa7y6bZzdz3xH6u2rWF797/FNu3T2EaCtPy2HnhDEoK9h6c49Kd22h1Whw+fIpS2adYLBCSBz3vmBnjxPwCvV6H8eEyS80uSZqw//BJJBmbZ0bZsHGc0Y2TaJ1w8sBexqYmiZIcAKj1FMy8+lmFQNk5Xj1vRSTAXKxQFkNnXjjvsuvg3KCzcwZ7nb9fKIBLpq7ikht28edf+DN2bNv9L8FrrGzl1a563SXX8/v/5Qu8+QffdLYCJ8s7OS8JNF8FAgMfhiwdgKmVX5/plK2ArfW6re/FuGOFlri2O7Vq9z/QzOXOmvJMbbvyWZ8H867WyIOvTKSDnNP8PaXII3BW9HB59l2+3ZXjW9mnnFEiBjWfHNTC2apbfM4KGfQA5dp9X2cIdJ7O3JoF1n2/0ue5fnmxVoq49pS9whbODe6EFCilvw/uzhpraJfn6oz9a8crOfG8GnC3fr8kInc1YwAi18wKZGTEWYJIU/bteYqTBw8TYDM5s5lHHn+Oz3/+D2h2Wjz2xGNcfunFVIpFWotLfPY3PkPS73DZpbu57tor0VmL2c1bMJ0hytUphkfGeHLPE3zwQ+9jYmaU8RLd0wAAIABJREFUNFXMnTjJlm1bEVrhuh6GNqnVatiWzfLyaaKgx9hIlX7Q44//05/z67/y68wdmcOxCvS6XR5/dA9//eW/4bXXXE2n3WHu6BxjoyM0G3WK5Qo6zjB8j8mRKgvLC7iORZolfPLjP4fM/TiI+iG//Ou/w59evBWv4LBcr1MoeGit8iJZSizbpBv0iMNokFEGvW6PYsXnkq2byFI4cOg4E1MjeXZPKlg63cAteti2QRiGFEpFTNMkIyGNBVIaNBoNZmbGcZ18FlNiIJA0m220qfMsvDBCylyDlyQJSuamJVMTE4hM4fomWTpwpcxSyHKnNNO0sG2bOIqpL7coFUskKdx+78NceuG2QY6WTdBJMC2bJE55YM+zDLkuvu+TpdCotTAtD3uQLVVvtCj5DkvLOTVSagORSbTSWKZNs9UjyfpILYij3Io+v0nHQEoSx1iWRRCElMulvPuYZSilcqBpGkRRiKEH2WnZQOA8eKYqJTC0JuoHZGmSuyeiEDLP8YvDnPqXphmddhff9/KQdhHTD3o4rk2UgenYFMtFtJlru+I4RaF4+OkXifp9bNNkcnQEw9SYlibNEgRQKPrEcTQIbhe0O13qUZ/PHjnNJz50DTdfs5W42yWJYwrFIq5rg8jotDtcffVF2IMoBMOUdFsBSgv+7V88zOgF13PdD72b2++8m9/+3f/AFfIJfvKN07z9siEMw2BxuUl1eIjlRpOZmXHiNCYF6vU2I9Uy46Nl9u4/RqFgI0RKmiW4vs3phRbFos8zzx1huFoiDFMOHz1FZcilXLTpBn2KJZ8NYwXufHAvN930BjoNhe9NcekVO2jVWkxPzaANk1JlBAbB4GtnF/MHI6vn2lAKqTVCCj70wZ/m41dcgyAPsM1SsPwiUdLBcb1BZ0XSaXcxTQMBdLtdlGEObkYZ3aCN77sDDVKIbVlkWUocp5japl5fxjIt+kFAEkUYloFpaHpBD60UYadLs9HA9VyUaWDaLoIUEafUT9fpNDtUx8vMTI3RXG7iux5e0ceyDbIkplGvY2pFq90iifM8RdOxUdrI4wfilDQVxEGIMmRO+1S5AYhS+Wci7TwuRWTQai6xcXaGyfFJCl6J2elRtMj92uI0I4oiTJ3/PS/Va3SDANcpUHA9vvBP3+IvT5zgPb/1Sd7+1pt5x7vfyS/90q/QXHqYHVsvJgpDDGeEdhpjpgaCiCTu49oFLMcHctAslEbKPF/SGGQHaiMZ6FotsiwHfrXGEq5tE8cplrJhsH+u66O0RmqTv/qdr7Lr+ok8miRLMUxNkqWYhubg8RqO62ObJlop4jQbOHvGaCVwZJRT0MlAuYBFRkqSxWgjIxNlwMZWLiLVkNQh7dPuLNMPW5jKwHM0/bCPNg36YZR3YrXA1JIk7OUMA2WSZAYFR5OkgocfP4DrlyFLOTa/yHClyOx4lTAOMYRkuFzmiT37mRqv0Oj2qDUbODYoleI5HmXfZbnR4olnDzNa9dFSsGFqBMMwmBkdwnBNpkYq7N13lKnJKpZp8N0Hn+PSCzZjWxD1+1hK4TvOYAJR0Or2aXQC9h48xXjFxbE0zV7KkF9i3+ETRHFIo97kDVfvolT0QQhGJqoMl4qUCzYbJkd47sBxdmyaplwwKHou2zdPEMURShl0gz7/fP8e4izh8KEjtIIeu7bOYJqKomeydfMk3SCiF/TxPYvRaolumJIKk+EhnyRNmZ4ZoeTbHDx2gkgYWDoPTT621OX43kO0jj3Pxt1bsGwb33aJ0oyS5xKFIZUhn+GhEqfrbQ4cOMnh40ssHD2NIWK2bxqlE2fccdfTuAUPxy9Rry1iWAaO7bA2dGAtIXOl8lpbwJ4PCK28/vRti3z71nu4fqCDO/fSg3cT64HjK42zwZ3tmtx63zd44cSLXLX9Na8aoWWD2uwl4PJVDqfhsvParQOt25ku2IrWSyl9plFwrkKfMwBjLe1ybUzC9zLSJM3zJddQMeWaHDsh8uialY7daj2bvXz9u36s5Dfn88lrOoKDOKyVk7m+05dmeUNDSrV6bWVplt87BmyRdCUKLDtjHoNYcy2+YqftX4jsX2asZ2W+2i2s31chV6KDvt+5O3sMwF3eOV7j9PMqxKgv/7avTl93Fkf5PNtcvZizwb6uGO6s8pSzM7zlTKDJoNPjn791J0kWc80bXs/NN/8IO7ZfQL1RY+fFuynYBu3lRT772d/i1Mn9/OzHPs7E5Azbdu7E9hwuu/xyUumiHZdLrrwI27YYGRtmqFoBKdjz1Its2rwJZRk4noOWBrWlGvtf3Md//S9/xqUXXYZtahzLYag0zFtvfhuPP/wAvuVy5OhpJAmHDh7hPe96D+1Wg9/4jc/ykQ9/GNvWNOpLFCpFTKH46Mc+ysZhjXIqWJaDkArTcYnCPo7jkGUZo48/yMLRE4xWhimXS4gsn+2JkhDDtMkQmKaJ1op+EGBozXeefJaxoTJJkqK1YmjIJ1OSOIwJgoCCa2HYFlpKRCK49Z8eYcP4CKajObD/OCPDuRtfbbmBNwhRjfsJz794iA0bJkjTXMiWxhlZJnn0qReZHh9H6Zg0S0iSmIQE2zSRQhLHCe1uj6/f8zAX79xEkiR5Z0FKsiTBME0efPIF3vyGKwa6NIijJKe/ZBlJFLNxZhxLa771nUeZnZ7A912klmiVUxIs10EkGiEMpDTygGtDcXp+mbnjp6lUypi2xnZctLKI+zH1eh3Xseh2u7iOQxqLnC6qchONFY67VnnnRpsKpVYe3vlDLgz76MHNuR/0sRyLNEmI4xRt5hbyUggMCcunl7EdC8/zWFpqYdo2QdCFDCzXxrQdTMPh8Sf34lkWhtZ0W116QZ9dW6cpFVyKBQ/LMnjhxSOMjlSQUmA7LmE/5OnnDjJaHWJfo87n9x7m/e+9kvddv5M9e56lWPQoFAtkWYphWkgJaRqTJhm1Wp0kSSmVi7z/C9/m9sfmuPFHf5qb3nIjn/7l3+J9m+fYVejwmfe/Fs8xKJZyYProYy+wc8cs9WabyWqFZq1FEmcU/AK2YyKVpNfvMT1VxXV89h06RnWogOf7FFwLITImxqosLTYpFFzSNML3bAoFlyTNcF2LITPiq48vs2Hc4IJLdlMa82l255ioTHD7N/6Biy7eSavXxC2P5w/m/MaTg+90Xd7PqrZD8uX/+RXevXsnYa+dn0tpYNgmWRKSxBlIA6nydQ1D0+t0cAseGbkmIgkjwijB8Wx63R6WZdNqN/B8h4yYTqcDaUq30yVLM2rLyxTLJeq1BiIDUxvEcUSxVCAMcxfjOOnS77XotZskSUqn18Mv5k6PQggs0yYaRKBIrXMKoADXd8gyKJQLg+tWIxD0ul0W5pf57iNPMjUyhpAKpTJIEzrNFqapiPshzeUa3WaLoXKFDIjCkL37DnLw2AmmJiaIo4Ajp5YxDMVw0SHNMr748IN8ZX6eb8+f4Pr3vZnF9iLvfMfb+PSv/T53ffvbvOedNre8azeXXzrFBz/6p7z75rcghAtmgpkJFHV63TbK8EkHf2c5RSl3b5YDsC4Gz5FWu4Pv+YNTmNHrtXEcG0NbdFt1XN8giLoEYYKWefj02976wzxy8AEKJYt6u4tt2RR9n6Vmhw1jYxyYm6fkOyiZYmiDJM3QMqPeqKGJiDNBuxPQywy+9rXH2LVjamAqpegHdSyjy1LrCL34JEoIpBJY2sNQBVICer0mUdQjTfsEEZhaEEURhpYE/RDDMBDCBCEI44Qszdg0NcYz+49jGXDy5BKnTy2zaeMYQqQsLLdYbLQZrhbYu+8I3UgwXHIYLhfJMjnQ/+WB7bOTo9SaNY6cOI3nOdiWTaPZYGJ4hFavx/59x9i5bRLTMJmZHsc0NeFg8u/UYgPLMXny2f2Uii5DBY8jc/NsnR2n11/ANg2SDIQ0OHhojgu2TDMxNoKQimanR63dZaJaYanVwbEU9XaXDRMjPPD4i8xMDmFokzhOaXYCLMPk+QPHeO0VO9g0NYJpGWyfncIwFEEU50VqJnAtA0FKkjnc/+h+DC0ZrhqEQZuEFM81cawEz/V56ImDbNk4gm2Y9MOIJBNUxkp0ooyi76OlotUNGS0XePSp/RQKNgfnFjFMi4JvMjpWYevWSY7PLTE6ViHJBEutLhumR/F9j25tiUatwfh4lYSBy+D62oezC9qXA2IrP794+zwfvOan8UvOuaqp1XpoBdyJ9V4E53jv828V/vzvvsR//4v/xsKLy+dfcX2xveY++vLbO/cYHh/mk7/xad7z3pvXgLQ86kogzwAgqQYmeyvbkWdw7bquGgw6VmlGSvoSA5GXq1fz6K2BD8R5QszX0j5Xc+nWgclV7d/K1+C5s/K1Qi1l9V43WD7NUXo60BSmDHL7VoDcgLZ5VocRubqveS7p2ceSm1yJ1fzZ/Jb5Us3dmiM853H/a8b5wN1LtIvrqMrrdZIr/34f3K0fKzeD9efuXwnu/neOs0/u6vTFIAA5G8xQ5RdslqY0F05z9x3fpF2vcdPb38ozzz1Nu9li66atjI4N89Wv/T29Vo2y53L1a9/As88/xnU3vJk//a//L9dd/0YWlpa49Y472X3xFUzMjHPi5CFKQ0MUiyX6/T5pklH0KoyOjWE6OndcyhRKSIaGKjzwwAM89vAT2KZBbbHBX3/5bzB9k5Ehn30v7OXJp15gcnKExx/bQ9iPcByLa6+7jqnpCU6emGOoXEDagvkjJ9m2eys7Z4ewixuoVEbIhCIj194gBB/9mU/znuEyWzZOkwHzC6dxXYs4SQaCcE1tuQUILCvnmSul2LphCsO2kELx1PP7mByv5h0LAaap6XY79MOYPc/sxbNsLt65FW1o0jRiqFwiTWOU1pgDswghoF5vMD6Wh69bjkWWkGeDScnE8DCdVhdIse1cq6a0Juh06fVCbNemH4Zcsn0TIj80wn40ACYWcZzkQuMkwfYHD7bBH3kYBNRqTbyST9TrsWl6AiEkQa9HSkK306HXDbA9nzSOaHW7eYEdBQhD47kOQ+UilmMhlEBkijQR5B73ST57mEGz0eWpZw4xNT2S63jCcBA0neWdAAlR2GeFhpEObuaGIel1e2idh7sHUUgURjh2DrwRcsAqzmjU6nSCPq5t89Tew8xMjaMNiak13XaAQPLAg89xYrHB3MnTjBQLWIbGL3k4Xu5Q+tTeg+w9fAwlNJVSASkErVaXfj/iT/75u/xVN+Fdb7+IW67egmUanF5aZHp6HCllHkwvJe1WlySJyDIYGxtl374jHO/EfO6rT/EH/+HX+ZkP/ATv/6mPs/D8/XzmB8fY8+whLr94OwcPH2dyogpa0W52mZ0eZ+7kPJ5r5p0ikZvlCCU5fnwe17HwPIcojgAT3zWwHRvTsun3Ap5+YT8zEyMsLNTZf+gEWzZPYZgGQRihpKLTbWNZBl97bJkP3PIjLDYaWK7BcHmIe755OxMTVbbv3II0NX08fM97yawy6Tr1PvkDZPyF5xgvlEmTfq7BNCykoYg6vZx6rBVZlpsDpUmcGw4NzmeapKRRxKN7nmfjhiksy8I0TeIgoR/kMQKGNkjiGMfzcF0X17ZBSAoFn6XFGk88/dzq9WVolbvmxiFhr0cSJzhOiWKhRD9o0261c2AmFctLy9i2jZAabdoDJ0ydR6lEMUppVqqgXH8aMVwqUKmW0ZZmeWkJ2zKxbQupMjQgRYTSYBg28wvLHD91gt07tnDoyCkmxkcRIuHwyUUW68t87oXneabf4NqrN7Ox4rNr9yxf/MtbefbIPJ/4mc385EfewDvfviN3Qx78jc1Mejy/d5nduy4iituYyqBVO0oUR1heJe8+D9x708HjSipFmuSz1qQqNwrRiqWl05hmbvqSTwZKkn6XbreJ6ZhIbQ3AncCyLH77U19k+78ZQwhJL0xyN0tt8OgzB6iUC5RcM6eySpMkzXW0pDFRGqO1RcF1WepE9BvLbNs6kTMj+j2ifos0izG0puR6aF0GDJS0yJCESZYDvoHBQZJpkiRGCEESx9i2Sy9MEAiCMALySapWp8twpYxtSiZGK0yMVzkyd4rRaoFGJ+Dw4Xk2z46zacMoxaJH2ZNEUZ+FxTqL9S7DQwWWmh16YcJQwSRKMwq+h1aaeqOG7xWIk5TtW/OgdyUN/vH/Z++9wyQ563vfz1tv5eo8PXl2ws4m7WpXOYGMBCKKbIEQxgSDwRHsY/va557DBWzDNdj4XvAFA8b2tcEPGJBNEEFIskCAUFpJm7M2TA49M527uuL9o3pmZ1e7QrrH9jnPY7/P08/udIWuruqu/n3f3zfc9wT9g3l0zeTEmTl2P3iUHbtGGOzJ4lgGfhBQyKaYnKsyNpAmClT8UEUzVDaN9NFqe5RbHkEUYRsGGdvGCwP8IML3XdK2iedHbBzqR4iYUzMlso5DykoMYaI4wrEMhAIr5cSwp9ps4wchURhTrbssLJUpZi1M06C3mGNyboUN/UWkgN1PnmJ8dJBKrUrDDejr7caxktic5dISMyWXbVtHKOayiCgxpLAtk8cOnuKqXeN4vkdXvsDJ07PMzZQ4cmiOkZEeevuLaLqB5wdsHRtA0xRWlsvgt4mCgKbv0VPs6oRAnzueqVy+2LKFvS43XXnjz9zybJF+lv75XMDdKj57wc6b6N3WxR9++I+55tJrn+F112143ngutMzVcdNlN/Gh/+vDvOrVL7/wMQpYn3OcPCXOLl7rap2XX9c5mIuBtNWx6ii5RsPs7OsZCLPnbHuh/StCIezEIKyasqzq9lbXj9fnPrAah9M5dJG8x9X3s54OmuzvrOYw6oDG9SHrkGC29ce2yl5ZfY3/VcDd+rGWYXiR5avjP8Hd+eMi4G59F+9fo5P3TOOiHbsoXpvJ6DwDgCcSO9mIxExDRAoiTrI5At/j/ju/QF93L9u3X8YjDz/C4d37qbUaHD99ku/ffQ9XX34FPd1ZdCMmY5m8562347Z8du/dx5ve9mb6xodoN0K2bhnG81pYepoYkw988KNc//yfQ9EkxC6BW2f/3v1IxcKrBvzd3/wNc1OT7H7kYeZLFVLZHvYeOEosddzlMq1WyOHjJ/j+Pd/l7rt/xOTEDK1Gi1qlxXe+cxdjY2M8+sjjjG++hJWpZZyBPDt2XIse+1QrK1i5ARQjjwjrTBx9jEzK4PmnT5B1TNqtBppUyOSyhB1LYIWQtuvyrZ88Qrlcoy+XQlMTrjOaCn4SjZBPp9l74BRDAwX8pkB3wAvapA2drkIO204jwggviNBNFU3VUCQEQYihadTKTYJAoVDMoKgKnu8RRYm+7x++/QCOJjlyaoItG4dQTYPADTh67DRdhSxS11GESrVcoZBPI1QtKZAjUBVBo9ZCKCpCKDTrDTIdw4LVTEOpSGIR4dgZ/LaHYuqYdqKp00yToO1i2w6mbRGEAZohkYqSAF9d0Gwkod9xqPDE3iP09+aJo5j7f7yHgd48mbxNTBJ4rWoq+YKNaZoQK9z9wGNs2TgIUqFZb6KaClKzCb1mUpQLCKOIdquNYRj4fpBYG8cBumEToyM1HTVosTBXYmJygbHhETKFPEKqDPZ2Uy7XsBwjAYERLC2uML55kNLSMs+/bBupjIMXh0QtnyAMqLdctmweoyefZmioC103CQLB2793P/mtad73a6/kddePkHFShG6TaqVKFAnmZmboG+wlChXiOERqBppmEBFzZr7Eb33+fl53x9v49fe+h3f/+u/zqt6DvOGGHq7fWsA2TCxT79DaNFqtNmqs4aQtTk5MMjLci+8HHD0+g5QKuqFQq9fo7y0QRh5BGHPk6Awz0yUK2TzVaoO0ozNXqjA+toEDRyYY2dDL2OggK5Uylu3wjW/vY8umHEEQkcvnec1VOZ6YUnj0pwcxyZHOpMk7WRRRIWhD0I5oNAN6+weJFA2Iz97y1n7QIgQaCiqf/ovP8sqeXgK3iRKGeJ6P5ZgEYUxMmAAzPyYMWgjdRJGS2POQutEJtpfEAsbGhgFY9VlbnF8hFqBqakInjsMk6LrZxPNcKuUabddlYKifaq1OLpvCMDQgIo5C4shDVSWK1IjiiCjyUaUk05UlcAXlpTKpbApds3jokcdJOxq2YxKJxMRDlZIABUlE0KoSdgBIs16n2pznq995lK1DWeKwjYjbNGpLeM06D+3dT1d+gFa5zGJpkWqthWHBvhNHefNX7+T+pUVOKk2e9+IsN18xzO7DcxydbfHEyQXecccIr3jRBt76pstoewGZfAapqjz4o710dWUxbZ2RkT5++Tc+xytecAkiXEaoWRQREEYxpuGgSBMZtZGKRRA7qDJOzmkc4Hsu0lKJhIYX+lhZFVOzOpg9iUiRVi9G2sBvGxhSY2rOZc/Dj9FfLLJYqnCgcZyUY2AZGrHQWa57DPX1kHFMdAsCLA6cmEQXHp7XQJEC205jG2kEEl0uMbShn8CrIEWM50XsOdEim+0hZedQ1DRBpIFQafsxR04v09/bhZAa7ShOIg6I0YQCkQaqiUDFsQ2EIjhyah7bjGh70PIEfYUMsSKptloYmkJXLsO+I9N09/QwPtLHxPQc/cUcKhF+UCUmpFDI053P03TbtN0GKSMHMqKYy/LT3Udw/YDxoR78IObxQ2dIpRwOHpvC9WI2jQ1iSkHMIqODo/RvTJM2LRQh8MMIVSo8tu8o28cHCWKJ5ThU2z6tZoymqiACIq9C1hJMzFfQNJOZhSUGe7NAhK6ZBGGIJkKOTVbJZ9M0XI8HHjlOqbTE9s0D+KFPGNGh30o0VXB6ap7j+08yNJAjl7HQrQyuV2WuHGEZPn6ziR8qDA4V0XTJwSPTDA0OYusqShwTBB6KbnPJeD9+EGBoKsQqpUqdatOl3fZJ2TZpO5mA2jzcS6GYpVGvMLyhmyPHJpicWqTWSPJTM44FUiHb1U/sVqgtzND0muQK3URIIhSSDMNzu1vrvTbEec+tLnj8zqPMnFrhpstvPou+nvZYV/xewONAnPvE2QcQr21/9gCEEPRuzbP/0WNsGd4M53M9Vw8aVm0Pki6bEMn+1r2fC47zzsP6UZtcIXQiNgwPnu3WdO6j6z0cFEWuErlY7ejHHVfvtSbmuu3PBzdPO0cX6kSubntelt5aTMJ5IOqc0RGXCaF0suU4azynKJ3lEEYxUsg1jeBq5y/qMOuUeN2FiVnTzEVRzGpQ4nrjeKUjHI9jzgFwMTEorFFL19wygbOumZ0Awaf1l1dPSrTugj8dvl8wXuH8XTzzK5xd7yLXAykI4whFJu9Tlf8J7s4dF+vcnT/+Z3TyVr+x5yP5MOp49yQiW0FIHIc0y2WefGQ3tmXQaEX0D23i05/7PJXleZYqZR7f+yQ3XHstUSDYtm0LBw8eYdPGbRw8cYIjJ0/z8Y//aYJ53DqLCxUu3bUd23b48Ef+hJtueTFbt1xCd1c+yVLzJfue3Mfjj+/j8iuu4/5778VtVPn2t75JaWGWaqXMdddcwezkBKWFOYpZi0plmXu//33GN25kvjSPrgmmps/wxje8jju/9nUG+odYLtfoKvbxkx8+SN9gkfvuuY8rdm4iisukCz20A4GqgG2necd7/itv2TKC22oTBiG6aaFIycJciVzGYaVcIZVyuGzrJkYGepN8O5GQBWOSLqdUFeII8pk0qq6gmYLKQgsnZRNrElU3ELqCoitIoSGUEEhs3IUUhH7EXQ88yrEz01y6eYwg7IiBUVBVyaWbN2BoCpvGBjs3NPA9P6ELSokiBYsLy/T0FBPKBdBu+8zNlxBxRFd3F67rMTUzRyGfJpvPQaygqirNejMpkMOQ+dkV7nl4D7u2jNKo1dENldBvo+ka5WoNXdfQdJ3Qj1BVjXqtQRiEOGmLdtMnjgWWoWGnTJaXq2zdOIJhqARhQK2W5PGdPD1JsZBNnDvDmK1jQwipEIUCTWooCsSRQhwGxCT6OoGCUMD3QwzT6HDfQ1RV4jaaiChgpVwjn8/R3d1Ns9Xm+MlJil05iEHTNKQqaTVclkpVstksIpaEXkCxK8NTZ6ZIpy1EBLqhd3SRCUXWMA3e8uMneNmrNvOu197AlpF+6o02rhdi2ybTk7NMzy2yceMIha4cbruNptuJOUgU8Y6PfZWZuJftN7yQB376BPsPHOJG8wlee1WB8koVVZW03DaaplGrNSkUcpiGwbGnJunvzaLpKoV8Bs+LsKwUYRhg6BpRCJZhUas1sWwTqRpMTS9RyDr09nUhpeDE6Sk2btyAVCT9vV3Uag1UGbC4WMexNeqtBZaWXcZGhlhYXMF2bB6bNmnU62iqitTAa69w+OAxvvfth8h1O/Rt2EzfhpGELrYe3HWGkAk9VgE+/NE/4w1bt+C3WihSYmcyIDuB9p0IFlXXaDVcdMNEETHVajkJsjYTy/tYhEiROJp5bZ+YmEw2Q74ri1QFyysrGLqJlAqamnTX1M4PbqVSY3jDELZtY1hJNpoiJV7Lo1JpEYUCx06RyqRQZFIILJcqnJmZoa+vmziG8fERDEMSr7qEhiGCGL+5yOLcBIFbpV5dYn5yhvrKEiLyGMrlqVcX0ASUFhYI2h6NRhtDs9i97wl0GfE7997DPeV5vvjAA9x82/N4461pck6KvUcXOTnf5AU3qrz0lmGuulTn5TcPd9xFPfoGerGcFJaTQyAYHh5OOt5SosiYd77lSlZWChR6B9GsAgsL8wwNb6TaCogrh2hUZxFSIjWH2K2iSEEQg2HbaKGO4oOGyspCCb9dx23UyKRtgrYLUQtdJt11IcE2DVaWZyh257j62qv4p/3/wvjwILqmQyQ4/NQk3bkMecdEiX2iQNCbtzBkiK4p5HM55kvLNNwymmbSDgQtF1K2Bai0A0F/d45m28UyDaIIJInjqKEbFHM5FKFRa/ro0sIxsizXXA4fn2OgvxupqQRhxInJWcJYYJsmuqozt1hlpK+IlDFBGPHUmSlUTZJPp8ikU5hvncExAAAgAElEQVSGjmNo9HXniaKIk9MlegtpTN2k3Ajwg4CMbWHqgnLDQ5Xg+gG2bTDc18XE7BxeGDPYk0fXFYZ7CzTbLuVKheH+PCKOCENJrdkgCj00zUQqKiu1FptGBtD0xCXyx48cYLC7SBiWyWdtLMNmpRpy8Ngil10ywsnJOXq6MtQazSQzVdeTSbvIo687RRS1yKYMtoz2MDxQ5MzcAj35PAoqQRTSbLUxdY1a02XX9hFUTdIOIqSqoyuCrnSGtJOYA2UcB9PQeWpijoG+AmHg0nQbTC+uUMilOX56Dj8MmF1cZkNvMaHxxxEpy0BTFeYWljl8ZIKllRpO2sbUNXq6czRaLpmsQz6fJm1rNF0f0zRI2Q4/+ck+0sUuZo5PYxkKK40W3V05VuHJzyq3nrZcwO47J/nA2z/4M8umi+77Z8hkngb+OuMzX/ocsR6ydWD7szI9PL8XcD6QfbZjbOMmPvZXf8Ybb3/9xQt8Oh28DuBJuvlJwR9HcWJstu4Az6dKPidN3HmAZT1V8xm9IzqgLEpgGnEcJrTJVcfONTDWCUc/T7un0HHlXKf566yw1slbe3+dLtdqd6+jZEpondFZACqEOBd8XWAi4BnHs+js/Y+6419sP2e7i+dqKf8T3J0/fga4W8utWHXTeZYg79kESJ49hIs4GIlz9xNHyQdUXd1/DFKVaHGbhx74If/v5z/PVTsvY3zrNp548hDZfC9C07n7u3exfedOfvf3foeg1SSK4HvfvYc33fE2vvTVr/Ir7/ttXve61/LlL32RfC5LVybHZdfcQGl5ASElV115HRExjp0m9jyOHNqHY+bRFIVdu67k1MlJPvPpT/ALb76Db379a5i6yu1vfCM//MH9XHnFFSwtLbJj+xjjmzfhtgMuu+wKZhZmuPWVL+fqq6/k8d2P8Xu/+wf8t//j/bzspbfy13/zdxw/eoQ3vPFWdu28jJOnjjF9+gm6+0eJFYfAD3jbu36Lv3veLhQ1caDLZhODj2bL5chTE/TmkuJaURSETAK2NbPTVdA0/v5bP2DbcC9q58f4wNFT5DIOUezx4MPH6S3mEBHgRxhSMju9gGWatD0Xrx11bpzJDNnmDf1csnlDopurNrnrh7sZH+xH6mLNLdN1XaIoxAtCnLSDqqt4rTZSVTo88GRmq1Kt4aQS3Zht6kkumCbJpGxMQ6fV8rj7gcfpSjlkMg7ttk8Q+nQVioz2F9FVFbflYhoaMQGBHyUgS0m6mXEoOpq4GNM0UKUkCmM0Q8M0dZaWK2QzKf7uOz/kykvG0QyNtttG1SSFXAZV1RPaVOgjVQkIQj/mC3fez7axPlRVOyu+jqFZb6CoKlJNXKx8PwARoqkShYjjT52hf2CIHz96AF2ROI5N2/VwbAvPa/PIvkN0pzJIIcnlsriuj6EbSEVg2iYLS8vMLCxiGxa2ZTM/XyKKIl7+zXu4/Y1XcfuNm8lmkny1VsMllU2jKDLRq7R8tmwZ56FH9mCnLNquSzabZ/fhM/zTgSa/9p6388WvfJ3bNkzxphv6eOFWm0w2i9v0SJkWpaUKuXxSqCtCYBgapdIKQwNFwjgAESOQVMoucaRQWlkm9COyaYdKuc703DKFfApDN+gqZCgWE5OYlZUyG8eSzLvySiXJBYvBsjXy2QJChIwMpcjYeTzPx3YspFT5+Fd387vv+00GhvoYGx/FtnQOHzzKzOQyN99yHSuNkJHxzURCScBdHCeBuSSzwFECxQnaHq9ttQmDdgKqNIMQBVXXCbwWUqxmGCagHqDVbJLOpNa+T2Hgo+kqBHEHvCgJMJEC308MNEzTQtUMPK+NYeloMul+RnHyQ3/XvT+iv6e4ds/1PR/HThFFgkKhC6EK2u02QRB0tCeSsbEhImJ0Q0uKBEUQ+B4ijmjV6nzxG98hrC5RWVlCFSoLc0uoVgrFsNE0i4WlZfr6e6m1fP784Uf41P5DfPfMaZzRDA/PHCccyfKTw7M4aZO3vnYHleYkL3nxFoppj5fe2M/VuwycbB+LiyuoegrTyhFEMflCHtf1sVNprFSKRr1EHLexbBW3VUWqKmEQ8K73/g13vPkteBFUVqrkCkUq9SathX2USvOsVFpkCr3EXgMvcFFVlXa7QWn6EL5fQtBgYe4M3T0DtBp1VClZXlokkxa0G5LF0hFmp09D1GZgsJfFxRkMHb78sa9w9UsKBH4VtzZDwXaxbZVarUS1sYSpqazU6gR+wKM/3sfAhkHyaRvLhhgLRXGIYkG96fPADw+w9ZKNCHwKaQepJPmgzVaLlGVxfGqR/ccnGOhJYxmJzmZxpUyIw8aRIYQUNFwXW9fIOinaQYSh6+w/OsfoYC+u7zI9v0DKthgd7CabsnB9j8n5ZWxLx9BViGNOTMyyaWSI6fklpGpgWQ6GrhJGoCgxS+U6+U70TDZlU2u16MqnyDkpFAWOnjhDJu1QbzUZH+mh7XtEoUTXlUTH2GohZTJhlbYtJuaXiEViSjTQU4BIMDlbp95qI9UIx4J8TiNEJZex0BRBMZshJpnQCAKPwPcIY4lpGChCZ8/RaZyUStpyCEOwjcTUK0awVGkk9zIpqDTb5LM5dKnS8gJmFmYJwohMOsWpqXnCMGB0sBfD0JB4GIaOqmlk02myaZNsymZ6bomZhRV6ignobLRcYmBpuYqddijk07htj0arzcnTCxiGimWqjPR30XBdUrbDXKnKkwfOcN1V4xSK3WR6uiidmSObNUilrSS+QMikW3HB4vdc6LfW1RDwod/4KEvHyx0pylm65Zqu7vwi+HwU+UzF9vnLRHJPj4E777uTT/7FxyidqKx1B5/W9eMCJeSzrO2fCezedNnN7D+zn42bRpPopFXny3WPVafItXqxg5ekIte6dusfUUcqckHXxdX3s57uuUrP7GjVLuQEf64BSgfERTGxiIk7ICteBVedC5fov8/SLtde//zDWnWF7+x7jTK6joJ7fjcxOa/J/pPr2Nlu9Vx3jjmMw3OAo6IqBGF4QRCceIeva9Oeu8Z5fz27i/9cAGDiQJ7oFJMnxDnH+Z/g7vzxszp35+dW/Dt08KJOy3oNQKy1jJMPbCCixBY3iKkvLPOlz3yCYjbL6Og4qCrLC/PseWIfP33wYa6//jomJ+Z42SteRb3W4NZbXspf/tWf88d//H9y5PhJ5kpziCjAsCSvfPWtWE6WQ0cmyeTyaLrEMC2CIMb1Wxzef4gH7rsPQxFcsmM7y6XZJCNN1zl66BCf/+xf8pJbbqZaWeby659HNt9FO4h496/8Kv/0za8yNbvAH/y3D5LO9/P6176aeq3BgX0H+d3f/h2+/LUvMDc/w5FjR1laWaHVLDE6UkRVHD7woT/hVTdfjen0ozpdSCWm7+FHqc2V6O3NEocBQcuj1Wpi2yly6QxLSzWSKKukw2ZYJrFQknBvqXLp+Bhh5CNVBbfVZrCvBylVLCPNli196IYKqkAqcPT4GUaGh1CkgqZLvv/Akwz3daNqyY1DECN1iapKdENj6+ggBw6fopBLJdcsAsMwsG0TzdCT6AIhePixA+ScNJNzc/T2dREEIXYnjkEIQeB5BHGYGLtoEkQCwi4ZH8U0VSJCgiDAMFXCIELXJaouUXWtc3tTkIqyFvGgKJLAD0AkAd5hlJTzpVIZy9SJY4Ft27RaLpdvGU00VGGMYVgoioJUNOamlwgJSGcSgxJVTYxULtsyguGoKGpywwx9HyEiLDs576thpaqmdehAAZpukMt28fBjh+gr5OjpztNqtbANC9PSiaOIscFeNE1j35ET9BYLVGt1jhw/zdBQD1KVlMs1dKEipcrHDj7FXx4/yR23X847X3IlumYwP1+iu7tAo9bANnWEiNFNBWKBaTn4XkBfd4Fs1uENf/It9s2EiNwoe558iDdvr/Caq7pxUmn8wEPKpBMZ+CGthktXd74DmhVEx/754JFTDA50E4XgeQGaqlGtNvjRQ4e54fpLyOVsWq06Pd1pQFBv1FE1ge2YVOtVTNOktFROzFPimGY9cQl1XY+J6QpCCXEck8CPsZ00mq6gGQpzc0vcdsMGfni0xrU3XM3Jk6dwrH5UbYWdO0aplhuMbL2UYu/AWXAnFIgifN9fm3gQkeCOt7yD146OIogwnTSaZRNHMVKA13aJI5F8jpUkgymOI3TdYP+BY3R3dyXBx6pKFEXI1WJgTcORxHS0Gm1mphe4696fctUVl+C6LVpNDztt43Y0l+PDG1gslXBsE6/VQhExzaBOLp9P9HW6JAgDVE0j8D3SmRyKFqEZScH95MRTfPfwYb549AiF8hIPHtxDyWvy8FKZL0xOc+9CmdgT/OWJo9y7uMSPSsv0X7cZZdtWPvvIE0w0fLLZAu979y4C6fPWtz+fDWM2r7t1K7fePMTGjQ67do7QaFg0/Qgrl6ZWaWOni/QODOL5MZaTwfOTTnuxmKfQXSASEUbHHj+OQZU6YagQ+E1+4Y5dHDguSZs6GdPm8cceY2CoG8MZwUoXsLJFMvkeLMchnbKI2lUaK3P0D26g7bkgYLB/I16ski/2IKRKJlcg0n1srZ+F2cdIqR7VlTZWOs3G8a1EXp1LeiSn5CKKauLYCUCPw4BsKkvLB58UQgjcdkRhcAM/3TdNsWghhU4Uajz86F4Gh/owVJ1IV8nlHBrNBm3fx9Alpqai6RrVlsd99x3glS+6gqYXoCqSZtvFC9pMzdWwLB1TVzEUget72KaNFBqKiMlk0vTmUyhKhKJoEIdYhoaUAi8M6S7kUKVAk5Jqs8Xjjx5ldGN/op80DBCC6YUKSxUXx1LJpVJoqs59P3y8o6+TCKFxYnKBQjpFMZfh6GSJzcO9ye+IkEihgwyYXQ4Y6euh4TZRFFCloNZsMj9X5olHj7Bj2ygtP+LgE8e45spNnTxT8MMYy7SJYx9i2HvoNIP9eVSpcWZmkWI2k+ieEQSh4JHdJxkf6yZt2dz/w8cZ31gkjCJMXadSbzM1u8JIf5ZsNsuZuRXSlgFSpSurMDG1AigsLFXYNjbExOwilZZLIZdFU3VKKzVabsCJU1P0dGVptf3EaVqqPLn3JNlcmihWOHJgiuHhIhv6uzgztcBQX5ED+ybZsWMEiGi2Wxiaw9RcEkq/bXwAzVSRsU+t4dK/aROn9p+g5LoM9XcnE5kXLbjOL5KT8dDfH2X3gwfYMbijs2CdA8FFOmPng7tnRZNcN1aJUzdddjO927qY2rfQmdC88F7Of2aVRficu5TnDXcKRq/q69AY14Gvc+II1hmVkACkNY1bfLbjttphu6h5ys8AfBeiGl5II7YGAkWSS7dqYLLaaVoFS+s1dRc9IevEaefoBy8wzneWX7+uIhM3zdWO3qpr5jngTsqOhwTnnt/nCO6e7XhO3T3RaUGuvvR5sRjPBdyJ59J9+l9l+J73nA46Vs466SgoRM8xxHwtP+Mibd1ncw7PXydxEDqrtRMdt5/V2Q+v2UbVTb5x552Y7QqXX/NSIuHyD1/+B7785a+zY9jh43/+CT7zmb/lPb/6Pj74px/jsu2XsTg7z8MP3se73vpaZssuxf7NLJaW2TmaBUOh6WU4cPQ4v/y+O8iYJlEgMY08jz7yOJdfdy3zExM0KxU0oG+oj9npWT78Rx9m5/ad3HX392m4LW6+5UVkshlir83bf+nt9A8NUlpawslkkAKkCDl96gSm7qDrBt09fawslXno/h/gZHv41Kc/RcoJuOEFV/PqV76b/XuO8YIXXcKhE3cyXHgRzuZx3vPOX+cfbrycMAqRSPx2gCIkhD4PPHaQS7eMMrO8xPbxEaRUEvtzXUXqBn4YEPo+bq1FtqeIIEy+2FGM226hd0w+NCkIIgVFRLQaLXRpoFoGft1ldmqBnsF+dF0FJSQm6IiDVby2TxAEVCoNuopZ4kBQrbbo6e0ijkM8r4WiJnSZSMToSqIBFCiEXkAY+MRAFAdkcimCICYMO2A/DiESqJoGKPhBgN+O+OYPH+HNt/4cnlvHsGwURSWKY6q1CulUDkWFJJJAEPigyAiIIVCplJfJdeVAEYRtH6/VoN5w6e3rp1KpYqcTh1K31cI2LUrzZfJ9TlLsxBJiSatVwbQtwAAZgu8RBB6mliWgRoxKs9FEEQnStVMpfC+gWfcwrTS6KYnimDgMkYqkUqpj2gZekHSlkILI8xMxtKpRrSZFYND2mZldYm+tzvfDiM//5os5ceIpeop5pCZxzFTSSRsewA98YgKEiJmfX6J/YJAojmm3PH7/c3dz3c0v5evfuYfrcov8yuuvJybAyaago3dsN11MU6PZbKIoOgulCYY3bKHZiPj8V+7l3bddS71VR1EljlXkzNQUWzcPc/ToaYqFNMVinqnpRTJph1TawQ8CTp2aY3i4D900OHVmhqHuLGZaI/QjTj+1SN9gHl1T0VSd4ycmOHh0gVe+7HIUReC2fHRLEkchjXoTRVW563sH+PZcmk989P1kM9202wZRaw9f+OynuO0X3obTu4v+kQ0EColJSJw4ygZhG0U18NsN3vq2X+FzN78AyzTRdBNFM4gVBUGE36jjxxG2lSKKQ1ZWlih09RIFEaqMqVYrpFIF2n4d0zKJQwWhnLWhTmYZQ8Kw8/9Y4LY9FAGB56GpkkhJJkjadRff86nXV0ilU4nOUwju2fMwf31iNnFZJbH2z2byvP71t/Lq17+cltsmDXzzX3bzj1/6In67SWW5hOcn5jhOKoPvtjrA2EBKFT+O+YuPvpy+bo0oaOO6Mdl8jlq1hqIo+G6LOI6p12qoUqLrGo1Gi0athioFdqpIrbZMKqMTRQqWkyeTMVlaXqGr0MX8cpuRsW6kBKlqRIFE0QTEEYpIMvH++Z9+xO13PB+pa7zhrV/nr//6U6RTqcSwRioIGaKEFgiVOPRpuSVE2GRp7jTZtE1YnUaxHdpqmuzAJUS+mZQbUUCrWSelNYnDxMzEbZfJprJMTs/RvWEUP1bxy2Xe9qvv5bpfHyCfzqBKjWqtTC7bxexKA9MwkEJhz/5jjI4M0PbA1OHQwTO85IU7abUbWIZDO4gJ40SXXKksEIZgmRIhInKZflyvzamJKXJpi/1TdW65YogobCHVNFHQZqbUwjJtcmkNXfE4dvIo4xt24SNYKpc4PTHPlbs2YxgCBZV6s07KMXHbPopQWVyp0dudww8DLE2l1faxDI1yvYnV0arFUUzbDymV6wz2ZBFCIQx8mo0GJ6ZW2DTaz77DE4xu6OM739vDL9x+LZah8NPHj3Ht5dswdYOT04vMLNSYnVnmTa+6jpVajXu+9yQ33LwdXfXRdEibOYiaRGRotBvMzZbYOjqMUEM0aVBvNVGUkOmFNgsL81x3+RaEkCAC4ljFbbsQJcZJQkpkx630gUeP8dLnb0to5KpOSBst1qnWptCsIsuVNqaqYuo60tBwm00sE37y0Am2bNlAT7cDsUSVGm2/ha1bLJeTXLyB3mGa7TK2YUIMXqAk9NfJeXRdYdPwALWWj9tuU8ikeGzfCXJZh5GBHrwgZHp+hYXFCtvGizi2jabrSKly7NhJVs5MUBgqcumuLQjVRCGh6q6vfs53BlwdhdPbyS71kSnYz0D/W1+AnQvmzjfqWH3+2Y7ua7P85m/+Dh982wfParcu0GT6VxkXYIj90Rf+kK/e+YWLv/dVCuOqoUjHRXP17+dKEVxfk65GIaxftl7zt7ZenEhSnu3zq8cURmGHDZL8nzg+N+7hZ4woPJeWCUltlUxIKghFWavTLzZEpwO2up5Qng5i/61HTBIrFYXR2t+KIogvcuhR55KuxmWYmvWsL/J/KHAXR9H/rwv67wnuVjt6zWqDnu4sj97zXRQrTyHXy0OPPIgfBrzwllv50/f/HrppcOLkKZquS9fAMFNnpmiUy3zog39AFHnMLZd50S0vRlN8fM+n2Jdj4rTL0IYxhFHHcnIAzM7M0NPdy8rKIro0WVmqIYRk/94n2LJpE/v27OWPPvRHbN2xEzud4v/+5CfwfI833fEWvvqP/8Di7Bk2bhwhUkIeeegxrrv6Go4fPcH4zp0cO36Cj330z/izP/s4rZUac4s1fvLQQ/zoB1/nG//8Db793bu4/rrr6O7pQdBg6niNv73rbm4JS/zcSB+eF6CqKtXlGg/tO8KLr78ssT6PogTMALqtE4lkBsl3Q3RDQxGCRqWOlU3TbDSIgojJyUXGxnowbTux6zc0ojjpcBBDrdzAzqtEXoDv+pipFGFbYWJmhuENPZyemGWwrxvHsSkvV7FtG81QOX1mlv3HJtk40M3WLaPUmzWIlWSGVJd4rgsyiSPIZ9JYKXv1E0Sj1kQ3RaI1antIqSClJAxjNE3jxFOTjG8cTnR6rovvNskUCyhC8sSew2wc7CHXlUsKVN/DbbvYVoYo9pCaBqGC12oiDQ1FKoReuHZzbDRcUjmHIPAQQqKqCkE74cpLXUnyrVSZUCZkRL3WJGWlQUlc7WIRQ6QhtZBmvYltmSiKwsSZGXq6ix3nwsTdqlqr0t3dRRRHTE/Nk7ZT/OTxg9x07S7iOES3bMrLK+iaQirlJDb7UcibHtjN268fYCSTRmgBl1+xE01KIj/Cj3x812NluQqKgm6rFLsLKIqKgqTtN/mVv/wRV195FQce+zGffNcu4jDG810C3wchcbIpmq0GuqYxNVWirzfHwuIywxs2sLK0ktBrNY2VxSq5bJpqrYyd0jkzscSWzRuIohi31aTVdOnr7+bM6Xl0Q0NKhVTaQQjBvgNPkcul2LRpGGKXMDTwvYBvfPcn3Paa66lV6szOLTM23E/dbdLbm2dyapZcNku14pJyLOIowrAsRCxYWCzx7Zl+bnze81G0FLY4zX//L/+Vl73m57n2ha9n59VXEmsqSueHLwhCfL9No1mltnCK4Ov3krPTRFGMZTuY2SIIQdttEQcehm3TbgWJW60SI4SGgkIQtNH0RH8pZESj3sS207Q9H+II3TASd0gSZ9VWs4WuJw6aZxan+d8ffJQrbJNHqokxkqZqbN00zvv/4Df4+Cc+y//2e7+V5Lu1ZylXHGbL85RXynzla99ienqKreMq5bLC7/+XG9mwsYgQMX5jhaXZSQLPZHmlydZLL8GwHSIlIo5IcidViYhaxCKhRep6Yr0fEyfZTUIgleSxtFjC99poepIbOXF6kmJXdm22NwwjglDQNzgAcYjntwkDmJ+vMLChC9dtkEpnEGigxMRBiBAKzUaTWqVBNm9gpmyE1Pj5N32Zr33tC2uUrYStJFhenCGd0SDSznZPVUl7cQUzbRMIFVXLoShNJicncCyLg/v2MNQ3zkc+8jFuedGLGd80TLHg0L9hhIYfUWu6NJdbvOu97+UX//SFaNLgn7//GC95/ij7Ds9ww9XbUTWVMAxptJocOHKGRiPgput24PoBuZQOImRuqc7kbInNY4MYusqefSe4bPs4EGEakiOTJUZ6i0k4eeDz00MzvOCKUWrNGlIxSBuChUqb01NLXHXpCIHfgthDkOHYVImNg1nSVuIyGROgSS3Jj2s06C3kCUNotnxsx+gYWgkarRaGpqFrOpqqUW/VMDSDM7MLDPf3oElJywsgCqnV60wvNrlsyxh11+Pu+x7nZbdcSRB6OJaO5wf8dPcxXvS8nSiChNIOyQQhMStVl7rrMdidRlMlYaiw78gBdm69FNdvMTu/zEh/HweOnmDr+Ai+72EYknrLJ2XrHfqqJCLsRBHUSdsaUZTc910/wNB1KrUyxVyGMJZEscTzXQgiVMWl3BIcPDJNb3eWvu4sESEtN6C/y2KpGhAGIbmsiUCy98gprtg+lmi14pBGs8U99x7kxpt2Ml9aYXSolyAIqdSbaJqGYUj27T/F/HSdV776GqSisOfQU1y6dZRyrYGp6ywsVZmdWeaaKzbxwIMHGBrtZffuCX7xtut44NsPIGXAlis3sXF8I1IqiRnG+tpn7dfv7ChNt9gaXsOGaOyZOYz/o+DuGWQ3l7xyI3fc/nY+8LYPrAHPf09wBzClnuYVr3zxxbfh3wbcrXfhXF22So9cP54ruFs9xjiMO51tSRiFF+wOPtP41wJ3QRggV8/X/wRwJxQgPgua/y3B3X8IWmYch2e/SM8gCl3V3j3t0RnP1Oq++Gs/HRAKIZLu4bovuOhwqaMoRtUkJ/c+xlf+9rNsGRsl2zvMSmmKe+65hwMHjnDl5VchIsnU9CyxEJw8fYqnnjqF12xy8wuu5yUvuo5i/yCZfI75xWlOHd/HFVffyOGj+xjfuI1GzWXPk4/T3TOC5yWz+qqm8KN772F840Z0I8Un/+JTXH/NtXzurz7HvffezYteeCMHDx/l/R/47xR7ujl06CC//hvvQxJQW57n0YcfBEL2PfE4d33jWzSrTS696koymSw33/xCPvbRP2XH9h24fkyh2MVVV+3gW9/4Lq973ctQjQhdS/HOX/oNrr1qgG/d/1N+c/sYkDjfKULBsgwGijk0U8P3AlRNJ/SihK4YxYQxKJqKFJJ6tU7oh1iORRxHaJqGphqUFqtkM0mxjiII2mGi44kFrZbH3OISmVQaVWpoqs7CQplcLkMmbdFqufR2d6HpSVBzOpMiDEPKK3UGB7vpK2bpLmYJwxBVU3BsB81QqVYqOOlUwqOPwLFsXN9DapJKuY7jpIniAL2zX9t2kh+sjp4tl3aICPGDIOmORDGGY1Or1Bjd0IelGzSataSzE4uEZukHzMwuks+miQFVUQiikHotATFNNwRF8KMn9jG+oR+pSHwvWAv/ljLpuCROUzGICKRE1SQiViAO8KOEwiRklGj+FHCbbY4eP8Om0WHKy1Vm5pZRpMqTh47R39VF4AUoUiGdSRFFMW23Ta1aJ5N2QFFJpyzqtTqnp2f55d0Hed1tu3jZ9h6u2D6OZZmk0jq2YyOEyl3f+QldhTQQUavV2TA8lGQxqgoKksmJOd7xqX8hjHKsIucAACAASURBVOEjr01z61V9tJptDhw+ldAlRYxuWMQCHNtCVRKzFkVVyOezCVVVNfH8FkJGKLFEM2xOnpohn88wN7dENpfQ2EzDoN1uUyqVqdZcsmkHt+0R+AHz8yv09ebp7ysg4oimW+epEyVsy6LYZZLNOMRRTNgJi3ecNJpqocrEyfP06XnSjkU+m6HZalOpVMhlHL7x46NcfvkVhCIiapcpz1XZsesKIiNF/4ZBhCqRiSoCYoXQ86muzPBrv/2HvHXH9qROiBLba91JdyIIfIRU0KSZXGuR6ESVDjdKqnKtAEg0HWpH26iuCef9IGDP9BkeOHaMP9+7n+9PTbLzDa9g/OUv4bbbXsPPve6VHDt8gvnFRaI4otWq8KWv3sXS8hIHD95Fvfwk23ZI9u//MVdcHjEy7PPyl2zmjbfv5JZbtnPryy8hnU3jtwKWZ6eYPTNBNl2gqzdDvjdHrCQdcUUBKWMUQuLYJ/BcNNNCKBpCUZMCQ1FQVJl0tMMILwgxLBPDNLEyWQ4cPM7AYC/57m4MW9JseWTz3TiZJNh99R6uKCqFYg4pRUKNlonGTLBuhlhAJp/p3HuSYuSO2y6l5Q+jqmpnPYmIPcrLZ2hWp4hijXrbR08VCYRBvbnC/MoCUeyhGypSQOj7qAoU8lms1Ag/d9PN9A0M8uS+o5yaOMPopi24bR9N1cn1SN7wuldztLaP+378BFu29HP06BTXXLkdQ1MRIuLIqVkqtRbFQpprLh3DD0OiGB546CADfQV2H5hA11QMQ9KdS7HS8MmkUzy67wTD/UWyKQuIabhtHEtnuL/ADx86xLaNwywulTB1lZRl0pVPYRkapi5RNQcpBbNzJfq6s9RabWzDQFcT5oKhK9imRhCEqFJyZnaJfMpCFYKlSo1cxk46X0Ikk2Kqguv5ZFIOUklcplVVY3ZpmVzKQkgVW7d44LHD3HDtVuqtBt25LAvlBlJKNo/0o0mFKPapNMqYuqTpNhECUrZJPu1ArFCttynX6wz39zA5X0YRPrlM8vtRKtfQDcne/Sfp6e4ilzFZKJcTGvlyjWza5vjJM0kgecpCkSqVepNcymZmcQlbB10z8IJEz6RicuzUaYqFIn6kMDmzzI4tidZwqCeHY6apter4vqAr51BveUgpGR4oslRpECOoN13Sts32HWOAQn93HkPXmF1aYbivi8Vyg1aziaap3HjDpVRbLt+/+3FK8zXmF5bYsKGLH9+/n9mpZfqGCkhdx4sitm8cYmysyL5jUzSbHk7GQYY+akdHHq5Da2LdYz3Iu/cT+3lyz94kuHx14fp/WbeyOPvcqkHKGnXz6QVYh253dvOLjf/n7z/F0vJy5xjEGi3033N84u8+ye1v+vkLL1zT/sVrVMML1aOrcQY/q1ZNMucuHHwuhOjo586+xnowuap9WzNEUc4CzCiMEh3e+mMUQJRoBM933XxalANPB6rry+iYmFgBorgzKdapqaMw0ZfHnXvu+o0UAVF8bhbjebTX5zqeRuN8NttcSLf3DL2heN3nPAxDdFV/1rTM/xjg7jwa5sVb/v9+Wrvzh+i8vlAE87Pz/OMnP8TVz7uJjZffyKlDB8jlNK6+8np27LiKu7/3Xfr7uzg1McEjjz7JL7zlnRzY+wS7du7k1lfcQnl5ip5ilqGhDSAdNm3ZhRlpWHZEtRGQ7+5mZMs4SpR8UZaWltGkwcjIFqYmZmmWq8StNl/5p29g2yaTE09x9dVX8ZGPfJRMLsupM6fYvHUz82dO8u53vgOhKLz+ttvYf+AkhpXiZS99OV3dBT796c9w/dXX0qrUGRsaZWVpBmJ46vhh3vlLt9N0K3zkjz/J2MguWm4Z2xhmbuoHvH9kE1IziMOIaqWOrqsEfiIQbzbqmI5Jve5hWCkiESW0sFCgohJEAY5poAhBy2ujonUyUkDXdSwjye6SqoKIJFEQJIHTmQxOyuQb33uMbePDSF1DxBJVTWbNVSlpuwFCiVG1pIALgpCUkyIIPVRNwbJNVFVF1TWiMMJvt3HdFrEiOrQ/j+mpBVIpC99voql0cvokURxgWRbEEjr2v7Mzc0RRhG0nXTdV05L9KyqGoROLiCCKUQ2JYVhMTZfoKubA94njGN0wQApa9RaGaZBkiWloukRKGB/uZW56kbTloJoaUoIQMW6zhWoohJ2uQ9TR10mpEAQxUlcRndm3lZVFHDODoiQ3TkNVECJCKjG5rizpXI6MYeC3faq1Jrqpo2gSKVX6urvIZ1Isl8o4WQtVKrxv7xHe8rYb+cWbtmEaKk7KQtU1Upk0jpXC8wKkoiKJyReyZFIG1VqDarXJcmmZhflF9pye50++eYDP/9IYb3heL6qqEYcglJDBgV6kTEx4VEOCiKjVGiwtVskXsh2Kr4+mG9RrJSzTQlNNKtUSumXQ1ZVBSkk2baNbJpqqcnpilu6ufBIoLyJ6+7sJQ49sPkU2m2X3nmNsHO7BbTYxLRvLUDh07BSXbNuIIGZxcYWR4X6IY3QN5ueWOHJ8AiKPsdEB4jhkYWGJQiGLpkK15nLNsMlsVOSG572E0swpnnjkSbr6cgxv2kmxrzdxxQRiESOFjoxi3vnu9/L3r3oNTipFEESgaGTyXcRC4reayY+llCiKQhB6RFHS/Wq7jY6GIcL1XKIwRtcMFEUSBhGKlPzLwX28/6cPs+v217PrNa9l280vYHZ2llOnT7NjfIUf3P9trrkyJA5P8OKb+3nTGy7l9jfs5P9j772jJbvqO9/P3vvkU6fijX3v7ZxbqJUDQkgIGBONCBICm2jAjBk8Br/Bg5ffeLCNsRmH8Ri/52UciSaYKAQIEJJaodWSutUKnfPtvjlUrjr5/XHqdl+1WkKwnj1ea9hr1eruU6d2ndN16tTvu3/f8NpXb+TW12/lda/ZyEtuvJgNG0cQUrJypEK3NY+m2aSJQBDQqs0iRZduY4577/wO69d4DI4MIq0cmp1HNzNXTk2TmL28O6mbIDOKs9KsTA+YCqKw0zMdSkjikBSRfa+lQMrMsntgsIJhGiRxRKdTo1iqZPOoLOtR6YIo6KI0lWldoxDd0IkCnzSNUUoQhSFxkqKbFlKB7FGAs6IA3vzWP+TWW18PQNcPUGmKQYhjagSJpK9/AJkKVAp0auiahFSSy/XR7kpOT8xSKvaTSgPdtNDMhEQFjK5cycrV6zBMG8fOMgb37d1NyS3zJ7/1GV721i2Ucgb9gwPs2nOI/r4cpiEoeUWeOnyabetHEIQ0uhmbYMPqYaQmGB7so9HusmZ4EE1qnJycxTQNavUmQwMFdCmYqzUwdIVtWUhiiuU+6q2AkYrNzGKbvJsxF+brHZRKEcJD1yNWDvYxPreAVIqO72eLrSLN6PNx1qWTSlHMe+x65ACVskfetfnBvU9Q6fNwbZ2FxiKenccPY2zTZr7eZmp6gXsfeIpLL1qDlALb1Fhsdtm0ehBdJZTzFu0g5NG9R7lowxiSkMV6HcfSkALSKKHebmcGJcoiilo8eeQMbT9itD8HUs9+f2SEY9kIodPfV8AyNfr6i7h2DiUyg6fT0/OsHRmk2q6ji5Thvn4M02O2WsO1TXQlcXQNx8nztdsfYuvGUZSMqbcSKmWDfcfnGO0vM9ifw7FNCp5DGqe0Q4iTkGrTx3NNDM0giLKg+ChK0XXFoWOTSE3DMDSkyn7Ldjz0BJdsWUe91aXV7tJfzlMuFTg5Mc8DO57iP/zCZXglmxdsXU2axKxaM8j2i1az4579nDyzwMuv38aOe/eQpCG6ZeCngr7hMnEUo0UBubwLmurpxS7clBPA77z7Y6yKN2PZ+gUKo+cYz6Mwv6DGrPdnmvYchYXga3d9nQ9/+D9jtq3nNe+/xrhh+42U1noopZ75ZO+YlFDP2fk6mxH3E85hiXb5rM2O9OngbolOK3sZp8uPcamuzULDxTNy8JacPhFP/zySJD7HXnve4A40qbEU7n7WDEakZw1dnmGMKJ4dRP1bgrslYP58X7ME7pao+z83VBGCpWyKhOjcRbUk8vwJHbr/P8aFANzSykccxai052TXW0EHQZhmhYEMm+x64H5e+OKbOHjiDOXBMb72pa9w5XUvYaHa4Rtf/QYHjjzFg7v2cePLX8OrXnETzVYLx4i59bY3cMc9j1IcHqRvxSh5r8xNL30lt9z2bnTHxvayH5kkkGAqTp08xeqxlRw8cJAk6tBqdtm5axeJFDy+834WqrMkIs+arau58tKL+exnP8OLb7wB3dT59hc/h2XZXHv9jSzWWnzms//CO9/2ZpK4xcRslQd+dA/dTpN/+Mw/cve9D/CeD7yHlJBtL9jM0WMnqU5Kjpzayzve+z6OHDrJV/75j3hgn89bNg6i9DzInuV6CNWFKn63Q4LEydnMT1cJgyaGbTN1eoZatYptKSzTIIh8lKFQUgMUx46NMzO1iKWb6KaG0hVB0CX0u1h5iygOSdOYbidgw9oSIlWkacSRE6e5/8lDrB8dIw4F9cUGbtFGqqUVQx1NSXw/yHQ17U7WMZAJu/ceopjzKBTyiDhFamDlbCoDfVjKIIoCbMfAMDN9iKYbtFpd4jRGkGAYBnc9/AQbV45hWzZRmBCHCaZp0e20iaIQKcH326RBRjVTmsJ2ckipoemKhASp6agkpV5v4HkuadpzwZQSiUBqEs3QmDw9h+X0QI9uIshcmoTMrldEgq4ZWZ6WlOcC3qWGlAHtxSpSSHTDwTRNlGagGRZpAqdPTzE4NkDOsXlkz0H6S2VMUyCUxHQsDE3yy/ft5rWv2cKWisG9Dz5GfylHrlBCM3UQKa3OIqQ6E+PzVColoqSDJGJ2ocrw6ApyORfbNvnNf97LDx47zlf/88XEgeDUyVn6KnmixMfQLfyOz+mJWfoGKqRJ1i2ZnJqjUiwgdIXfauJYBghBFIS4OYeElJznoSQEtTqz8zWabcnpkydQKmV0tJ9mrUkUhnhFlyTO3EtDP2JqYoZy2UU3dDTLJBWZg6RtKJrVJoZtUsjn8AOfRquN7Xm4+Rwrhoo4lsbsfBNd07NOceoDFpZl0PY7fOr7h3HNgM0XX8fMkcfYvHkVslhibHAdmhaQoGWh2KnBG257M3/3shsAieHmSDUTy80jNJ1WrYpUmc4z7AToliJOVHYdKZXlNGoSgULDRrc04p4V90fu/B6v+ehHKG7fxu13/IC7772PF13VouId5oarTW5+7VpWDNpsf8EwpmVACp1mm8BvEQZtbNNGihC/U0eXKSQxpE2ajUXcXJ5Oq4lIA7qdGlJEJFEbQZfhFQMkhGiWg+2VQcuBsJHSQkg98xpUBlKBEglSFEijlCTO3PCkaZGmCZoUGe1UCiQGItVJ0ix/Mg6zWBPNNNDMAgiQJCAMpJGczZiTSiOWWfcyjjI6a6fZIIhSHNdF1xVpEpKSZKeXpr1Q+IS33LodP16HpkzOTB2lmB9g50N7aLR8VoyuhDSH1AxiYqpzcxTzA0SxgVICXeao1xaoN5ukqcGhfftwXZd6rUnOLFIqDdFoLXL3Pd/noosuJopSDLNAX7GfZLCGpukgIIgjGq2QgWIfUdpmdLBMnAgWWxFBEGAZvSgHYWLrkkLO48iZKRxHohkm991zkKsvv4jFxiy6BpW8RxJDGPoIpXhw51OsHBsgBvqKOVIUaSrpRiGVnEeUdgizVWlyto1t2yhDx9Q1DFMQhDGWYdINYgzDYHaxSrGcp+AVSFJJf0UQRxDFAiU1qo0mjz52nHbQZbDscGJigasuXYVjCAxNQwiFZ2dh6jvu2c2adSvpdhPyXp5uGKFrBkpTxCnYpkfD71LyCkzO1qk1GhQdk4mpGkLTcT2H3Y8fYN2qoZ7OOiEhpFGfxzFN7rr/KMODHoeOHWNwsB/XMUFGmDLLUdWkII5ivvy1x5iZnmLtuhESoQiCiE3rVjC7uEDeMtBVRBAoxgZzzCwsMFDKsVhbwNKh2uyg6xZpqjM2UKYbtjF0jWbHJ45TPNtg94ETXLp1DdV6C0PTsU2TMIoplQtEcYxhKBbqDQbKOTpdn+pinXzJYXpmgenT82zaMEKr3ebkiRmm52tcc+0Wtm7q59vf3cv2y9awYjhHOV8g8AO2rF5BEEWk3QWa3YRi0QFU1m3p1WdLpa0AHving0RtwYg3sqyG6xW2SwBEZhFCWRF/zk3yLKX5vMe5eZZVx8v+/QygKQRXrLuGq15xMXOHF1lypnzOGu/89+q9zxKwOAswni946J3Tb33st3jDLa972valKGTR84xY3ulKk+fuej0XeHl2YLeUtpcBkTRJz1I3ZS9j+Px5lrp5ssdUWAJySZqgyew3NXPFFGcfQqoegMzmSXreA884BynOPhA9SVN6DnQKztXc5wO7s53M5W74vQX3hHPGKmfP7acYP21v96wZzvPef9k1nf48xLz3ZTrHac22LbuQ/zfpDFOyAEckT7f2TTNaoUoi2jNn+OLf/TWvv+1tNP2EvsoA5ZzJpg2bed3rb0HTLR7euZP+viKnTk/yyT/5U/7kj/8AQ4drr7mWY8fGSRFcf8NLqM43ENLkA7/26wgJ0zOnKRY9SCVTk7OYjqDdqmIaisWFaWSiUa9V+fu/+3t27tzJx373o7zm5lfxvvd/gFLF4uSxo2zYsJnP/NMX2bblYmanzrB7z14u3r6d8VOnuP6aqzjw5MP8/d/8Fa1GC113WLN2Dddd90J0zWRoeJQHH3yYw4eOsv3iy9Gk4L0f+GXiUPLffvtj3PKOX+SKTsKA6mIZLogUqbKbu21adDsBxVKOdrtLsVhEigTbspmanmXtulEM16TZaGHaRsYCiBNkAvmcTf9gGdO10JXIVtqVJA4jZE9PpDRFnERA5hw5N7fA+PQ8V27byGP7DrPv6Ck2rR1F0xVSKNrNLrVqky/feT+XbtnAXTv3sGp4EKXphEFIJV/CzeXQNB1pZoWcTCXdVpdqPbN6ti2P3buPMjjYRxwnmGYmTF+sLtJutbl40zps16bVzDLtun4WVxCGAbZlkcbQbAbkS3larQ6OZdGsN0FJNENHIPnBvY+ybuUgpm2wsFgl5+VQSgORUdEa9Rau5+C6ORC9rnIqiJP47IpmFEVn3TTjKCKOY9IkRleKOApQuoZmFxG6hTRtEpndvqI4IRWg65lteRInlDwHxzOIw4huN+BlX/s+r371Zt776kvRdZO8l2Owr0AQJBRLBaDH0w8joiBgbGwFJ48fp1RyyeXL5AsFTp+a5FO37+bjX93JbZcbvOf6QVzbIk6ajIz2cWZyAtczSKKI0O8iVYqmUrrdCNM2cR2LJE4yipTrcnpimkIxjyCl0/WzYlzTiEUb19SxXJ1c0WWobxDTcokTgePm0JTB9MwcXs5DCI3FagMpNSrlIosLTUqFAhJoNJrYjkm5v0ir3SGJU5TU6bRDdJm5m56ZmKNabTLUX8bvhqieY6UUGtV6A89ziOKUjduvRRk23//6P3PtC69ktlZn5dhGUi0FoZGmMR///T/hdzevw9A1wMCwrGWxFV1i30c3DDTDRLOsnltbRokOul2kJgnDEKVUTyMAd+x9lH+amuHKF13HxPi32LqpwRtes4Z3/NJlaKKJZenojofABJEtGHS7EZpmIHUdJ+diGDZJKojiCKE0DNtBaRZxkiKVleURmm4WNm8UMK08SnexnDK6UcZyy2hmhSR1SVMfJQRCBMRxi9hPMup2mNFSO36HL33hu1x8yTriOKMcK6URBiFKN/G7Dfygg2YAMqTdaBBGHUxLw/fbSGUjiYmjTqY9VC5xGPeAW4QIanRq81g6+O06rmNiWIWeji2iUauxODNNsVQmjrNKTaQJod/myNEuphkyXCrw0AP3cPkVFzM02ofhlkgSMJQiCULqjWnanYhyaYAoFYRBgmHqOI5FdbGOkpKBoQqddpt3v+u9vP5Nr6KvL08cdymXS8zPz9JfqdBs1bn/iZ3k+7PPeqCUp5R36AY+Tx2ZpO0HNNo+SZJw4tQMlq1jmzq6rnH01Gksy2Cg7KGUpNUJ2La5TLvbJJ/TUcKkE8RMLzSwTB0pJWtWDeE5FkkSo6soYysojYLrkCYxc7UaxZzL8TNz7H3qECPDZSxDEUYRlmkQxwnVRhvbMukEIWUvh6Y06u0OjmmSYuC5BW7/zsO8YMsqip5NXyXP6ECZJw6e4JItG3j8qUNohiJnZ9d+J/AxdMVctU7/gItr6kxNTxPhUynmsQxFmibsePgpNqxagaZ0LMOg5NksNBcolQqMDPTzo/sf5yXXXMTBk1N0ggjPtRFCMT03R9HzSJXOmclpLt26gUf2HaeYc/G7AZqemaHMVZu0ugE3XrsF3dXJOTa6ZqApxROHT7JqZJDJhTpJGuLZOertNmEsQNjYpsNTx2aw7BwrKjmOnDxNrdmm4DpYpk7esbj9W/ehOSYrRypYuk6j1eXM1BylokcUJ3T8gILrIIWgUvIQZNIQL5cjTBIcx+ay7es5dHKC6blG5nC7egWPPnGM+VqLSy5ej2loSFJs20Y3M0ObvGfhlRyGS2UOHzxKeaCS0fiXarBlf3zkLb/H+J1V8hX3mUWTyDI5WQboLtT5+0njbIG8vAZcNlfG7NHo31hm/46TuDnzJ4Ky5c8uByTnznEJ4TyPA1x2bNddfD3fve+7XHLZxWe3q56j+nJt3Ll69mcDcD9pLMUvCCHPWvMrqbIF6GcDhTzTbTPt/fZfCNQkyVLQ+dPB6fNyy0yf/pqzRj0XALdyeSf07Gd/vjvmTy+7+rcePwd3PXCXiWGX93Mv3KH7afPtnm/L+9lWUIQQva5d74uapkhNYUZddt5zN2Gry8ZLrwZpEHYDtLjLe3/1A0SxoNXxmTx9gou2beHjH/8kw0NDXLR1FS/YvIEPfvij/P4ffJLNm9by9W/ezgtfeB3dbpdqtcpXv/Ilrr3mahYWFvjSl77CNVdfRaMKf/yJ/8XLbnwVX/nnbzM/O8Wn//ZTbNywllazw6+8/120uk2KxX6mpo9T8Aps27KNNE6Jg5h/+frXueyyK/jxXXdx26238o2vfp5y3qCQs8k5JSZmFjFNDS/n4Jgmn/jkX/BbH/mvCKHh2C4f+tAHWb1hkEKuzNzpSV7woq28aLFLShtTdxE93U/2vRcEQYxlKHTLIA6gG/ocPHSSTRvGMuOSOM40aK0WhmUQBRG1Wj2jYhkKdNDF0g1AAilSaCgto0XqhsQybU6enCIlYuPqLOQ77zhs3bg66yA1OtQWW+RcF91QXLp1PbqpMzrYj2Ga3H73LjauHiOKYx55/AD9pSKJTNCUTrfjY+oauqkIwwQixf79E6zZMIwgJQ4jAt/HKzjkXBelafgdnziJMAwDvded0zRBq9WhVm3heXnCOMTNuWhKZfRV18HvhHzle/dx+cY1lPuK1OtNyuU8SZSQJKJHBU3xCm6vm51pPTPtikI3NHzfz+IRlEKRaXLa7TZxEGPbNknoQ5qyWG1x5vQsDz9+gJV9JQQJyrDQpCKOQhzXRcQxURTjug5RFHB0YpL/OTnFF3/7VqQUPPnkAQpejigIOX7iFGvXrEZpilqtTuRHmJrF9PQknU6bTrdDpVxEalmQ9tv/1w/ZtXc/f/XeS3jJ5evotH0MTaNeb+O6eSzLQaChhEmt1qFcLKM0M9OYSdD07Fw9N0eKwHYcoiBEN22CoIvjWmhSI4qASPXOzSBM2jiuQafTRMiYM1NTrBod4eixM+TzORzXxjINDh0+Q7nocfzYBIWii+NaIHpREXoWAN5sdFioNomCLkma0tdXykxUTJMjxybQlKJQyLG4WOPIiUkajRYvvWyUkctex2MHDjPSn+NLn/8cnmeyfvMVaK4NqUBp8IO//QwvWjmGH8TkC2Wk0rKV8TQiCrqZS6IyQCqiNEUkCSBJkhhD10iTlG6nm+VnKclbvv4N/tMnPsZnP/8l/vC/X8aa1RX8bhO/0yKJs45yq9kGNHTLQ2oaSSKwLDtb7VYKIbNtSJl1zjSt19FRKM1AaSZhGGeU6xSkgoSUTqeD1I1srVbpxEm2kiuJieOQ6YnTOI4OcQfd1EhSHykTkjThkks2oOspcZJiGiIDZUr1jjnTPuqGSavR5uv/cj9XXrWdRq2JZXnMTC/g2BqGkeUQKaWIoyZJ0kZXKa1WlygB3XYRugWaxczkLEpK2s0muUIBxzQ4duQ0fjfEtEyiIKS6uMCvf+RzvOo/XEPU6FDpL7LYqFGrN3G8IeLIhzhicX4ey7Ww7QJCy9x+ZSKwHYN2u0neKzI9fYbBoT6mpqa49U23UijqjJ88QaVS5uSpI4yNrCVJQ1JiDpx+isRLyVkWUma5mFJCuVDm5OkJtqwdYf/RCdqNDkNDRSzTYMcj+1k31k/BsTg+MYNrO/xoxyE2rx/GNXOIVPD40SnGBivousQyDExdYeoa3dDPaNs6+EGMrul0egZSOduCNKVcKGDlMiqnocAPI0AQhiEnxmdZOTyIkJJWx8e17F6sAew9dIx8XmPr5iHqrQZpShZs36OmG5rG4EABAdiGQSfMGDRKagwPVYgSnYmZRcIw5sxUjbGREmkChqFj2TqOZdHuBDimgZQJSkvRNZtay2d4qIyjC4YrJabm6pTzOUgFhpYSxgkr+vror7jECSw2OszMLOKaBs0wwDYsHNtkbrGGZiqGKmWSOCVJEs7MzmEYOqWih2VZKJkSJ4r5apW+YoFv3b6Dk2cmufryDbi2JIkiIGagXODkmXl2P36QtStXsHL1IFJJSq6JkpKi51Eo5DA0DT8MCYIQ17GotzsUXJeFep2S59LqhAz1lVBKo9psMzm5wDXbN1Fr1CkWHPr7S9h2li16/NQUKwYqGLrO17/1CFu3jIJIiKWkttDAUiGxFLhW7mlCu6Ul+O0DV+MvhBesoZbqs2ets56zCnvaZBcGa0vbe4++DQXaE+2ndfiec9rzjnXZFs7Kev18hwAAIABJREFUvp5tkvOPadnf//Fr/8Ab33RzDx/2IgV6utLz894upJl7+ts8v/+lJaMTKTKt/XJtXcbiEWfZZ0+rZZc/OA/gwtkF4wtFHJx/Ps+Wzbd8LAd3SmkZHbPnvimkyDTP2eSQQpwmJEnyNF2glL1jTc7lW/+sCsufxYvjZx0/B3dLnbulXuZPGP+WHb2z4tGznbvsfaMo4O4772Tng3u47Z0fRCQd6rUGExNTjJ8c56677uX/+eu/5eY33MzOB3ZwZP8hLt5+GQ/t2sldP/w23/ral/nob3+cVlfQaEzxsle+jIXFOTzPplaf5cXX30CSpPT1D7B+/XoOHznAgX2H+IWX30R/pcD3vvNt7rv3Xgb6XW6++Wbe9Y738MMd91Aq9/Hffufj3HrrG7h/xyPcv+M+hgfL/M//8Qne/b4Pcuf3v8+LX3Qdd9z+bW5965sZGuqnulij1krYvOUixsePMTd9Bi0V7Nl/kBddfy1JEnP06GHefMvbOXBoD1ddfgVnjh1gz/59XKtspBYhZS4rOFMBMkVq2Y2wtriI49pZxp0SrFq5gnq9ShLHWIaVdbUck2a9he26mLbJoUOnMTU9AyydJrpuMDtTJZ/PZWYWSYxh6Ph+SJqkFIsFwtjnsf0nGS6XsUyHZqONV8jR7XS5/b7dbN+4iq7fwsrZJEkEAqIoYsPqkR4XPebQ6TNsWreKVrOBQGI5NolMsEw3y/lyLPYeOcbWzWOZ6Q8JuiZI0Wg1O4RBlteXrTsIkjRFKZ3MUVgQpymOY2HoCkGaRQ/4AZqS2JbFRRtW4RUd0ljhujYCmDgzi+Vkhaxh6iRpShD4veDULOw6iWOSNO11HRICP+DYiRPkHB3TMEgT0YuoiKjVG1iOy+BAH2ODfSzO1tn1xFEquRwySbAMjXa7w4HDRxjs72fv7Cx3dBa4+ZarecGIh+vlSVMYWTGAQOA6Np5jkCAxTIWXd/E7XcaPTzG2aoR8sUC+R8d6259/l68+eIQv/vpFvPnalYwNVkiSmHzOZffeIwxW+tCNLD/QD7vopsnM7ALlvgJSUzyyex/lUo44jXEcmyiIiXtGMQtzi+SLRSxLI4x8JAqhdNJYEAFxHDE7t0DecZibXcR17czMJgg5ePw0K1cOgEipLtQYHiohpMDNmWimQilJdaHKwnwVXVMEgU+702LVWIVq06d/sI84CpidW6DUV6S/v5wtVsQx+w+eor+Uo90JWTHcx6dv38/LX/saCnbCrh338eJrLyVfWY1ZLCEF3HLLO/nTG2+i22mRL5Sye6PKfsyiICQJI6ShZ1pPgDTMKEBKksYJSRKSxFmHPEli3vad2/nA+99LwdrJ+959NVEYYegmmq6TK1SQmo3QbEw7j2Hl6LSapAI0XXLq+Ckcx8zYOXFCt50BryUnWKUUpILFuVkcx0LTJIKY0O/QabcyYyTDzkynJKSpRIoUXcbECKQ0MG2bJIFOJ0Iog6AbItIU09BpVecJg0V0Q+I354mibrZwFHc4fnSSwaESpF1MU2PL1vVILSKJOzRrLb7xzZ1cesk6mtU6UQApkigKMS2bRi0gV6igNBNdt5HKIAwivHweIQSmbRN0uyjLw8uXsu65FJw8cYbhkVHe+uZLUcYV+FLH9jzyXh+OXkGXBkqPOXjkEOs3b0LhIqTZozNLDu8/TqvVoL+/j8CPsUyJZRssLs4zNraaenWeocExfvf//n3e9MbXYeplTNPEy+f49J9/hWhFQn+xyL0P72PlyEBW5BAxtiIPCDTD4ZItWYacZ+eYbQQYIsG1LfJOjn3HZ7np6tU0uoIdu4/Rrc9w8PA8a9YO4Ln62QJLymwhA6H4zjcfZsPG1RmtV6Y0fR9TSar1FnONNpVCgZylQ5Jg6A5SSY6dmmbN6CBLOYp6756YJAnNboe1q1YgZYouNQpOnogEQ8sYH6ZhoKSOFNm9qNpsYVke7W7Ek4fGeXT3cTasHWWg5JLP6WxYMwIIGu0QJXVyjgmpJIhi2r6PY2okwkRXNkJo/OiuXWzfuoLZxRpnJudZOzZInERYuqQThIBGGHfZ9dA+Vo4NMjZcoZi3CZOExWaXqZlF1oz2Y+gmk/M1ojjE0mNKjkkxny3YKSkIAkE7gErRRki4aMsYrudScC3a3SaW6VIsuIRJSDGfo9RXwDay7vyuXQdYOVam3mpT8HKcnqtRb7QY7ivS6GQLeI5lZp1SQ2Ou2qDbDag2fSzLJO86zFcbNDodJg8ewfQMYkBXisNHTnHxtlXEcYzvR4yN9WEbGo6lI9FI0gTLCpmdmMMr9mU612V0yu98/DG+/JWvZyYm540lGua/6jhv/kOT+zmw4yDDoyuyp3+G6ZY/lsDdc2G8Cx3L9dtvoLTGe3o8AT3NVi84nDTtmZ4932P7CaApTc/mwj1tO0/vSj4XBfRC25fA3XPtnxA/r2NcOp7sLxmbZYmWugTe0t4CSWaqQsaUE08PYY+jKFv0V+L5QITnHP+W3b7/48FdKmPoiSuf1/g30NyJJO3JANMsa09CICBOgEBipx0m9j7My9/yfgaK8NSRObxCRuv54Id+h//6/rcg4pgP/8aHGBrsY/PmdXzh8//AqZNHGB4Z4ff/+I9wi5KF+gRXXnMTfrvOwMAQmmlz4uQZKkUPy7Xwo4hqo8XqDZtZtWKUt775razbMEbKIsePTpBzSwz0DdFoVHnhC6/n5Pgx7rv3Dt5x25uINZ+N67dx94/v53VvuJkffvMbvOpVL6fRqRPGPgkm3/vO1zEtxebtV3Jq/Aiz09P84R//KT/88T2sWbmai7Zfzl/99af5j+99D7/z2x/mP/3q+3A9k7//3Gf5Zd0hZzloCoQmUbpCyARIiGMyp8Y4QNd03KKDnbORKGzXRmlZQLdpSqIwxTRNgsDPjC0KuczBSwl0wyIMIZ/LAqb9Zg3DNonTLICz3mhjWzam6TJYKSJVxu/esftJRBQzODLA5tUrmJmbp1wqZpSFWJIECZrSCDodfN/Htm3GBvogTXhs3zHOTCxQcC10TbE4X0VXWXFz0aa1kEZEcYJp2kQRJHGErgsMzeQ7P36QsaFBdKXxjR8+yLa1K2m329iOThJmQK7R6NJp+7iei21bpL3uSRLHmLpOStTLdlSEoeDHu/ZAGDHYXyAOYvxOlL2OzI1OSkXac8xUUmDoWffVtBySCHRNp9WoESZQ6h/AtPKEYYCQiumZReI4W0Vut0JOjs8xOlLhSLPJi//+83zwnTfxihddxCO797N+/RoW5uZQMmXXQ/tpNbMumW7ozFcXKBZyxIFPt9PAMGNyeY8wCPG7Ib/ylz/gL986wlteNML4+AyFQo5/+PL9bNmwgvEzs1x6yVZarTZCpGhG5kaoaYJiMc+Bg8ewtJT5qQ4Fz8F1HaRStHvgfn52kYGhCpqIM22hUsRJQorIsrIabaIoopTPE8UJrVaXufk65VKBtt8m59gU8wW6rYB8wWF2tokUKQVPQ0qQUkc3clSrAUdPTLB27TBerozSNaSy6NRrTE/NE4aC/sF+0iTlxKkZ8p5H2I0YHR3ENjWSJOSRaYdLNl9ENzjNnXd8kcteeAMjG9ahOXn+/JOf4pNXX0G9VsfQTKycS+YWEhAFLRK/S+QHmE4+o3xKCUmmhZQ9B0lNNxBScKY2x5e6PjPTs/zGrw1SLhdJ00zH4HeqGGaOOE57rz1nS60ZBiLN9Hu246KbJu1mE8d10HSdOMw+H9vK4h7iOMLJeaQyu4cG3RDLdtFNG4EgDH26nTamZaKkII4jklSglAmQdf2UyeFDp+ivrKDbCXByLlJ3sDwPpRcJQ4MkiYmihCjukqQBadIlTUI03SGKsgJHSR2pmViuw6WXraPZaKFbNnf9aCebt6zDMCxSkRmZxL0om067hWGahEGAkDFJ0lugkYooSPncP97Otm1r0A0zMwzy8iRJyBt/6fd579vfjURnbnaeVrvBnicOI9KEtaNjpH5IKpvo0iboziKSGD+KqQyUEVLwwx/tIOjWiCONVWs3IUzFzMQci9Uqj+x+hFWr1lAoDnHn9+9izdoNvPSmm3jyxKMcGD/JdZevptVpZ5pkXdD2A6TQuePOx9i2sczUfBOpNLpBh/nFNmncyRwn3QSRauS0iNFBh5HhATZsWomUmbYtTmIcI0YJSBPF0VPTXHP1RqSCwydP40cRg8UCSkuRWo58zsLSdFpBF8PQkYnEDxKEkhQ8FwTUmwEHToxT8Rx2PbqPwcEiUpmIVGBqOnfcvoN9R+fYsHYYTWX5kXEc0Gq3sC2TRCpOnJ5jZm6RRq3Jy2/czp79pyh6gkYrwLJsNCmpNltUmw1KXo6WH9DuRPTlPRrtKkro7D96gsmZeW64djutlk8hL+nrKxJGMUJE+DHYps2pqTnyrsfYyiFavuLMbJ2BSg5deTy8ez+zE3OMjQ7RCVrESYxtmtQbmQZ8sSNI4yaenjFP9h89xcjAAHGSEnQVe544SaFcopArIpIQTSpIJCSK+3Y+waqVK9CEwciKASzTYnymiqYUpZxNzs4cffOuha5J/DDA1g3afkDOybFzzwnyboLjmkSJZO3ICJYe4uUS/DhF9yoMFBzGVlRQIiVnGfz4gUNctGkUQ1OkaUwqFfMLdZTQsYseR6eaGNEinmsQkoGE/mANm9UGxlauyhwNlyGjCxbNPUrds+nd0udbaC/rmollurj/8ek/49D8YW7YfsO5XVlW/z9bR6+3ffkpnC0BxXMAgAt17nov/NDv/l/c0jNbyjaniDRjKiztn5KedfyWUj7DiTLbTTwt1mA5UMvkF88EXsv3WergLe+wPScrTTw9Hy/793nHogmEJJPdcM5Zc2kkcYpAEifpM6wxRCqQPS/opY7cUmdzuVPokhlMlpL19OvpbLfzAmX/+d3If0/j/3hwd/bi/9+krbvQOBd237PmFWlmDZum6CQ8sfM+9u07xJptV4LUGKkUSMMOv/ar7ydod5hZmKNQGeTw0eO0goDq7BS/8eEPceVVV3HtNdfQaHXxcnkcu8D0zCJPPr6beqPJvn0H2LJ1G17OBiGxTIsoTrBNi/HjR+mv9FMp9/HVL3+Nvkofv/z2t3PixAlK5TJjK9dy7457ufLyK7nvx/fxile9hqjrs27tKEePPMXczHGUmXLNdZdz40tfxKO7Hmfv47t5xS+8kqNHj3PjDS/hRz/4Ebsf3cNNL3kpX/jC3/Hgrp1Mz85wzdWX88ZbfpnxiVOItMsvvvLlzN11P0PDgwh8oigijbOctCRJ0VQmvK0tdthz4BhD5SJB18cwdKI44sDhU9zz0FOsHCoCAsMwkJrA0Gyk0AjDCKVlDpBxEHJqfIpC3ul1qEziMCHuxjhuppFJ4wjSBN3Q0A2NgVKewYEySIFlmXhe5vgmiWm12oBgfHKa4dEhLNvC90MMy0Q3DEaHBih6Lq5rg0j4wa7HWDPcn+nxNJ1avY7rOIRBwt0P7mXNqiGCKERJg4s2riGOAwxLZ/OaEbrdLnYhR5ySuWfqJrqe0RCkpLdilVHZROb8klEQJJk5gm2xfmQUQ9cQEgxLxzA1kiQlCrNcOyEEYdBC01Jqi4sYhiRFZeGbScT8wgIShWlaBEHC+Pg0+byDQNDfVybnmDh2pp8rFTxuu+8RfvN9N/KhW19Os9mmXMozONhHGEZ0OgGRn3B6epYrrtjGYrWKpmuQpNi2RafrUyxXMB0X3w+YmF7g2Mmn+OCrt9L1OyxWm4yNDSEQbN8yhpKCctHjyX1HaDW7jK0a5uixcfr7ipCSRTHkLCzLZHCwRJRkoeppnGZaTQGnxifxPJug2yGKkrPuqBmdz6DZaJHP5zh0+DQzM4usXbuCYsFldnaBYj7rLC4s1PnaHbu5aOMwXtHjzOQMnmMxv9gkl/PodrsYhkKSUio4tNo+M3Nz3PfQIfKuzoqhPkzDIAizuIhWs81Duw+zad0wxZKHl7PRdcVf3v4kb/rFm5mdPsXWdetwnH7s/AqsXIm/+ItP8YZ1q1BIDMtC6Do6CYHfzVY7pcJycz1Ru6DdbGd02zT7QY3CLGPyz7/3PUbf9Abuv+9bfOpPX4WURmZaEmWxH0IavciEbDGgJ26h2Whg2SZSSmYmprHsDIBZjo1A0qjXieMY3dSJgoA0Sc85s2qKKIqxTIsg8EmitGdWpAj9AN2yGD9xmnKl3CtqsrddMjUZGh4A4eO4HlFoINMuSRz2KJWSKFS4XgUpHZxcP5ZjY7kF2q0A282j61ovmiYrZHQ9WyAwTIMt29bTrDcwTANElkEkhDyrzUyTJNMwKqOXrZoiSGg3u2zYOEqpUmJ+do5OJ8uXTFO47ZYX4IericKQqelp0jRl0/oRvLyFYTv4CdQ7HYJQUiroNOdniFMdTcSkSciWDRvo6++jr6+fJEmoVudYMTRMvpDn1a95FadOnkAzE7Zu29DT7Qg++h8/zqvffiVKZothd9//BCtHBtF1jSiOWbumHyVsEmHw/bv3oXSdsaFMl7V3/ySb1q5g39FJXMfEdVxm6h1qjRDLMDJgZ+mkSUadiuMIw1SYhk0QJpw6M8+6sWEQKiNnSJOUBJlGBFGmy5tdzMLL865J2gs+vu+hJ7nqki2ZZtl1KOU9bv/uQ1y8dQ31dpvKcJn+wQqeYzE+PZ85dipBFIUgJZ0gYqBURNcl4yenWLt6iEqxgK4Sco6XRVwkCQXXoZBzSFMwdA0/jGl2OjiWRhRDXynPquF+jp6eYmJynv5yDiUMpNSIkwTT0IniBD8IsQwN2zApuJK9ew6y2I4ouAYb1vazdu0ghqmTJuDYBo4pMbWU2cUaTi5Py2+jqczt1XUcZhbqKAEL1SpbN45w5OQZSsUcC406c7UGB49PMNBXYP3aUaSAMPaxDEGUCI6NT2NaBpZu0vF9kiTt5TtKNKkIohjHspirNtiwZgUDlQJ512LXjkfw8pJOp4OwPDasXsn+Jw9j5RyUECzUmkzNLLB50xo6vs+u3QcJ4hjLdim5NtOziximzqqRVUxPTuKVSiBMvv17u/nkn/0eZlB8Gsh5znL6ueiSQpzT1v00tdmyee/Zew/AM8Dd+RTKZwN36bKHWL7zTwPueuPFl9xIfqV79t6TTSXOTfy04xHPCiKXwNaFwN2FgNryfZbG+WDtJ+3/jOelQkjZo5ZKlhzsl3SE51M2056O8KyOTi4DW0vP9VzFz54XkKTn4g7OZ+Q9X6D27w3QLR8/B3dpmmVeLH3IP6Wm7tmn/dlfv2yxBcgKgjSVGGnMrnt/wIN33ckb3/YrzE1NIQyPz/71n/DRj3yE1avX85u/+Zvc9u73knNzfPlLX2ShUedXf+UdjI6O0DdQYf36dbRaXTZs3EaKRhiHXH7ZC5ifX6BWb7Jq9Ro0IxPFRn7E/if3sTAzx5YNm/ncZz/Dlo1beOKx/aSpT75Y4LU3v4F2ELIwN83w6AjXXnU13/nmt/jh93/Iwf2Psf/JR7jh+msIApN2F/76bz5HuwOXX/4CRkZWU6s3mZ04SZrC8NAQTzz+OOVyGdeIqDdb/MEn/oi+/gp/8Vd/y0tvejGd5jwDlRJPfft7rBkdpdNc6N2sbL5w+w4u3bbmrAj94d3H2Lx2BXEckbMcUhHjd7uMDPezbmwYXRN0u2GmowpCok6CZmT0kEajQ951MAydfM7C9wN02yVN4Ivfuhstgb4+D3raMkPTMWydMAx7hWlm/5smMY1mG8d1CIM2lmmBVFT6SsRJZjZSrdYhTWk0WhhGFmGgdAkStqxdhW3bRL3Vfk0p2u0utmMxOtiPMjR0Q3HnvbsZHawgtQyYZS6fPu16DUOALgR+q4VmZd2VZqOFEGDYFmEQoes6StN6Vu5dbMckjhP+5fadGEowvKLC4mIVx7F6LpmKbscniVNs0yQJwXFcBFnnJSFB0yS6odClxfjpWXKuzUB/iSRJOHjkFLVqk76BIqZl8jd7nmT0xtV84LVXsP+pIwwODWQAF1iYX+TIsdOsWTVGs9km59kUCg75Qg7LtJiYmCVfzDFfreHkPJRmEUQJtphFxRFxHFEo5Zmdq+K5NqdOT9JstRmsFDlybJytW9bgOCatVhu/GyABTelopoamaTSbbXRbEYUJkxNV0ihmfHKGct5ioOJx7OQU/RUPy7J56JFDDA4UUbpOGqfoWqZZq1TK9FWyQjFJY3KuBUJHSIWu61y2fQ2tVgNN1zh05AxjKwaIE9EDrR3yRZdTpyYZGi5imi6WpajknSyLUVO0Oz7NZpupmXlGhkqsW9VPqVJgfmERyzbQDI0vPnCGm1/5Oh5/7GG++eXP4XoFSgOrKPUN8/punSTwiaIEoRnopoHfyjSoumGhdJO4t6rZ7frEcUIYBNm12hPwv+3b3+YP/t8/Y9/jX+D9770O3TSJwgRNy4BwFAVIaaA0SeD7zM8uYDs2Skksy6Lb7mQ0NdvCtG3iMKHb6WCYJvMzc/QP9gNpD3CFWK6DpQtA9hYnMgZGs9bEzbm9+3CC3w2wbBshBBPjk+RLhYyik2b3+ziK0AwI/JSJUwsouphOZu4ipESqBKUL/G4XzTBJhYbSTEzbQShFp1UniiPmZ+fx8hkd23JsWo0mmq5hOg4pCZqSRKGP1AykkmevjTAMEWkWAh+FIUIkuLkccRSSAo7n4loeQqYYpoEQkle+/qO8852/hGbqeHkPlbTQTINUGKSphl3MUXDKRH6VpNsmxSVNAqSEhdlZgiQlTUDJFImP4+SJ45g4jtANjXzJwrTMzJSnVuc973onx7t7UL1uvVfw2Hd4nMFKCU2T2KZOJwg5PTXH9Veso1ww8KOQgpdn46qV1Bp1VgwNoKQkiMG1XYqOjW1qaBKC0CcIBc12G9taov5Jdu45zDWXbMLQdGIEmhLUWj6GEnT9OkrT0DWToBc4H0UhswtVXMdi1aohohge23ecNaMDaLrG/Mw8hm0QkTJfbaJrGrZpEcZQyrnEaRap4JgWpmmyd98x1o4Nsnr1ABOz85TyHlEUoGsWk4uLpAj8IMx0u+0uU/M1LFNnoJQnSRL8MCKMI2xTo1xwGB3oZ3x6hnK+QhBFWdZmj/Fgmxb3P/QU5VKBWnORdWtGGO4bwDQioiQgTLIFNV2axEmEqQtarSaakaOYy+M4GqbhcNfdeyiVi+hKUa03WLmiQq3ZYNVIRoP0XBMv59BfKWAZBlIqjk9MUPR0lAQ/ANs2sYzse1vMWdRaWa7fgWOn6fghw31lfrRjL1OT8/QPeICk7QesX9tHrTZLu5vglgboBjGOljBX9zk1PoNp6hw/eIbxyXmGh0qsXjnI2GCZfUcn2f3oEUxbMjRQxFUJzcVpWp0u9cUqf/Zf/py33PYebrzkRnRNz3Jcl+ql51tXLRVU53eSznucHemybLRzk/RqtBS7qVPeUGZ934bz3+gZ819wXKhEfLadzwcRFwAV/+Vjv8Ubb3n9OeC2BBTPB4WCsx2wpf+TJQ3bktnLMwxf6FExl2n2lvZb0t9dKJRcyozltCQxylgOS7mo6dPmgZ6bZ5qBsnPGM+nZ+Za6dlmcQha/kIrM9CrLC812l/SOR/YkKvQ6c1Ki6dmimhSCRGQ6OpKeIcySS/4FzF4u/LE8syv576WT93Nwd95F/q9Bu/xphzjv7eMkRkQKFXZ49P4fsmXbFuJ8idNPPoDteCzOT7Npywv41h13Mb24yItf9lIG8jaHn9zDQnWeyy/bjuflGBjsRxk6n/3cP7Jx41YajQbdsMrRw8ewbYsrr7mabqfLzMwkXs5DpQJNKvJOjju+9WP2Pv4IL33Ji/ncP32eG15yLW9/17spDQ5RLPfx5BMPcN2Lr2b8+DFcy2b3Izu5dPsmbMPgyP6jDI2Ncc1117Hlou285KaXIegg9RzXXfMiJk7t5/HH92AYkt/72H/j/h13c9Wll/H9O3/EK17zBv7m0//ApRdt5o8/8THe+a638YV/uYMtjRZpLGg2a5RKFcIk5pKtqxESnjx4lIFymb6KTaFok6YplpWFSOuGyuh3usT3fY6fnsLQdLy8A2mKYWlIqbFv/0n6+7JuTafbydzy/j/23jNKsvws8/z9zfXhMyO9LdfVVW3VvmVayCAJ5BEySAjNggbtwGj5gECrnZkFYeYww46As8BqBEKAkJBpIboRarVaUkvtbbWtLl+VWZmVPjMyfFy7H/5R1dXV3UJoF2b3wD0nTuaJuDfuDXfv+7zP8z5PN6W53eCq/TsYnx5BZAplmW56FAranTZKGNbKsm2S2BS/rufQbneJ4gzX9Tl9eoV84GNphSTFtTSOpUniCMfzeOiJQ4yNDBq5CqKfu6ZQtuLgU3O4jo3r2yjL3J8kEbMT42itULYmjgwT6HrGwt0L8ggkrU7nXHbW/U8cYqhUwnNNNtf2dgPH0qwubVEqF0nTDCEUM2MDTE4Os7yyytDQAGT9E5c0DolKaerbDRzPgNasX+hLYYpAYyoqWFrZwLYUSqWEoTFMcV2HLRL+Pt7kp978EioFn07HOBn6vsfm5hbtRos4yRiqVsjlXZSGarXKkcNHaTbq5P0CGYog51Ktlpk7Ocep5W1G8gYwt5odPN+lVmswPT3G8soao0MVipUSm+t1CvkAJ+eytLzFULXCxkaNocEKDz16lFLJRSpJEORIky62drG0zcLSGkODFaJej1Pzy+yYniRJY06dWuXii2YRMjOW93HCiZOL5nnXG5w4dYZur0sQ2CbMW1vmgiQzmu0m+cAnzRJmJkbMXJtKaTTbLC5tUi4V2NrcIvAtI9V0JMtLG+dmKXvdkHK5QCHnk8u5rG3UWFpbZ3x0EKWN+c0Vk4K5xjA3veIKSJeYnBokTG3GZy4ieeppuq0W0nLxPJ+k1yEVgiyVWLZDkiSGVRImoF5rjWUbe/w4ivnA17/Ov/3gv2Fr5TYuubhCuVImjiK0ZbbJMLMLWgm/tWJ7AAAgAElEQVTSLERqC0vbdNpNpDJgz3FN9pxl2aRJxj13PUoh7xHkAnKFHFmWEkUhEkmS9IuFuE0cg5Ca5nYNy7HIFQogBN1OG8/3AIXrmdw6bWksx+53cQ2LZsyFBJa2KJRcY+KilCnOu7GZ/ckg7PWob9dwPBchMuKwQxJ1iKIUz/MI8gESk4GHMKy9Upr19U2CfA5IkRIQyjCiGX1wosmyGCElruuQxBmdRo18uQRScvTISdZX1qmOFM1MiFTc8a1jvO4Nb+irBSyUtul0eljSwZUOUbhFs9YmSlocOXaSqR2X4waBmY8Uhm3rdYzbYyFn0WwnaK0Q0vz2up0MrVzIwHNdLEvyW7/0SWZuHAIEgedQKbk42uHvbn+YmekhHjuywpkzNU6dWGBkuMBgeYA4y/j8l+/n8osHWK81WV/bJPA8ji+sM1hWKJmyUa/j2jZaaZqdBpaWhLFACcXU2ABRHJNmKY6laXcaiFSwVdtAq5icn6PVM3LWMMuYP71C4LrkvACkxrIU1XKAZUk6YY/R4RIIqBYL5H2PnO9xx11Pc2a5xsrmFtPjVTq9HrZljHvGB8t0o5DAddBK4jg2q5tbOJaH5ymKvk+SmpgiKQSOa+G7NmEU4TkmLzTnGTAmRMqZtQ3GBkt0ehkPHzjIxHiZLBPcee8T7N01xcRYFa0kza7Cc1zOrK8hVYbnWASuT5bAl79yH1dcvot7HjzI+so2O3bsJg5j2q0GjlQMjgxSyuXI+Q75vMtjhxYJfA/HkkBMlqbYWhNHCSdOr1As5CgXPBrtDmQ2riNJSSgGDqcWl1le32JieBDIOHZimY31JiNDFR566CQ33bSfvG/huhrH8WiFMeVygZHhEXylaLV7hMJEDQ1U8gyWC2jXZv++aR5/6iSu73LbNw7Q3GpyyeWTDA0GZElIJxUoleEXy/ztbzzGwpGjXFV4GVOz4/24ne/Dyn2/5fvEDZx1eTz3eB8YvdDaAvjTOz/N4uIZbrpwBvBFnv8HOtYfHKk+766XX/YKBneX+iDlhYHshbLJs8uFYOZFwd0LrHPh/S/0nOeHlGdZ9jwgeC6iod9AfO4+nutmf9aZ0zzeVyIJydksu7PbnZVfKqlI0+RZWWr67L6zs0A4O39/z///xZb/0QDu+y3/4sFdxgtbtT4nB+OfeDmX93F232lGavJnibMMicfS0VX+7va/4oqpSdpulbDb5CVXX8dX/vpzPPboQb70t7fzJ3/1Rd76+lfRXl3g3//CzzMxPsZrXvkyDjxwgJte+zIWVk9jCcWuqUHGZybRfo4gKHLxzlnqvS6Dw2OU3CJRIvi1X/sdXnrDS/nUn36SOK1x5vQ8r3zlTXzyk3/My195IzOTeyiPTvAf/8OvcemevdxyyxcIdI7G+jr3fu9bDA+VCQLBU4eeYd/l1/I3f/M5eo01GstHWZ8/yJNPHGFz4Tinjj5FuTqC5Q9x/JlD6CwlzDRap+y/6irueegBLASdjVV+9T/9NgNWwqc++xUGVuskSYNS0SNfKWHZXj8gWDJcLSMVdLsxnlPE1opjh+fJFxzCbkSnE+IFPlpII1srGstpy1FInSEyRbWax3IspKWxPAfXUiydWaVYKOHmbdIsAWH2d3phiTsfPoDoaUZGBuiGPZAKkRqr6Cg2GXyO47Bda+A6Tp/xsIzZiO2SkGH7DkknoVrMk8YxOhNYnkMaRRw/cZq8myMIHPIF48zoOIZt67RDLFsb+3DbIksUtnZIkwjX8851sEyHK0EowVi1SuD7yCymGybkyiWEEOSLOeI4RmtjLOIFGm0rXNcjSWOkzpAqo9fuoi2LlISkV8cNbMJWhmX1iMOILDJMozEK6bJj1yjzS0sMjw1heQ65wOHDTxzlZ993A1fumcQPLDbWV3nyiaN0wh7lUoHFM2tMzUxSr7WpDJVotep0m21sx2VgsIjrOdi2y5OHDjM+OkzYSziyVGfK32R+fpUsSRkbr7K0skFru0e1WqQbRViuixAJyhIoBadPLzE5Nc7qygrjI0N89esP89pXvoR6vYnr2abbIlKSGO66/xmuuWIvSZxw8NASUQRPHT5F4FrM7Bin1e2YeZRGDdd3qQ4NcOjwUSqVEiMjRbI0JfAKSGySLGR9bZ2c57O51iTvOySpxPYctmo1cnkfrS0KuQDLshmsjhAnCb7vkiYS39eQSdbW23z3/jn2XzRELu8CApFpJoYGUcrIaDMh0EnKQ6dCirkcdmAzNuRSmL6WD37wF3nT+BhCp6SZxLIcom6TlL4ZSRojLYtYKKJWizSNiaIQZZle98987Wv8yR/+NiPFB5iYKFAZrILUSGWTJRCG7b4U2CYTad9N1TiqeX4RgclGTJMMKWy6vW0s26VSCciXPKJeiu2YDrBQEilimvUtvFyOTDogTSPB9QJazQ5SZn122e6zczFCOqRpguNKwrCHZTkYl08BpGidkmZxX04MShvnV8fRNLbq+H6OzfUtygN9o4e+mEoqi24zwvFdUjJk38RACuj2OsQJlCo5uu0WUmnCMDSssDIGRGRnpfemUImiGKk1Qul+YwQCzyPIayzLGH7EUcLb33YpSuyFpMvG2jx+YYRc3mbu+DFygUsj3aYihrn/u5/i8pdcyS1fe5gdszvZ2thg/uQJhsZmsXWPXm+bhaUmh545zshIFUHGnd96EIsCy6fmGRnIg0wQEm6++VYuf804QqQ02k1ynkWz1WZybICVtTqrZ5bJFwM8WzA1XuTvv/kkjgtXXHYZzd4KkyMVcvmAQuCQpE1c20IJ8F0HKTJs2yewM7rdJo5XJEkzNhotGq0eGQrHSskyl7vvf5qr9k/Qjh20ynAsiGOJLR1yOZcwicjnbBZXVil6pokgpY1SHr0oREpNlGSsbDb6MlrBxnqDl117CVqnnFlaJh/YhHGKUIpGx8wjO7ZFo9sicFw6vQ7FfMEEpssE0hiJRMgUkWQ8+PARhobLxjgpitBktHsRYBH4OZRKGSjZ2Aq0do1rqwDLtkmzjG6Ucsd3HuEll83gORa2dmh2Y7JMMjyRRwmfyfEhpqZLLG/UOPzM06yutygMDlP0LVJckDEaMy8deBaubbFaa5BzFPOrDaT2WFhYZmyozKnFdSaHhnj4yeNsbLWwHJt8X26aC3JIYRElcGZ5nVfdeBEnTq/wshsvxnU9UmFRr7co+GZuMc1cllaWabY6SNvCDQKSTpsDT8yTK+axLIuFpXVcC84cn2f//iGmd+2gEJjc2YnhYZygTK7g4dkeH/u5j/Ppz97MW256PQ/f800mRiYQtoMSZ+fpzKyUlEbkKPquJEJlZEIhMlBn1zyvkD9rUAeY+bsXkFM+Cy14lsnr35fvBJR2lNhV/f7MndGBvwBIvJAy/GFKzfOPWwg+8psf5Sfe8dzcu/OXszN3F9a1SqoXVJv9QxJLgBdz4LxwFu98d8sLQdRZMGoYR9ln4rK+si7rm81ISDGGZchneZjMvK6zBi/nS0rPzdn1gd/5IFQq9azUtM/+nTumCz6M82WfpNkP5NR54fYvdPt/c7nwOf8V3PH9jVT+OcDdhZ2P7Lw5QJFkBAo+93u/yaVXXc7IzD6qQyVkFvHYgYMMVCZZ21jk6UOHePTAk0yNjPG///qH+fVf+098/bbb2Niss/fiEZRV4ZP//a95y9tezeLCIsXKEMXBEeIo4Xvf+xZ79+3l5InjLJ4+xbGjJ/ipd78bS0t2zE5Rq22yvFDj8cefYHVtlQ996EPM7BxkcLTAyGiFA48+wL69FzE2NMxXb/4ir371K7jv3m8zMjHJ8PAMuVyFH33Nq9DKptHocvllV3Pk1Ckee+wRHFtz9PhJrnzJ1dxw7dWsb21y9TXXcN8995MJhaU93vD6t9BpdymPzvI7v/1xDi6s8oGLdzA5Yi6ejpMniY2pg5LKuOt1QgI/4Mtf+x6XXDRBPp/HdjRSKoK8T5pm1BttgnxAlqaoDKTWxFFMliq0pUmzjCSO0NKiU+9SqPjc/chBdsyMGGAnIM1i8r7DjrFR7ntijsv370BLi699+yEGywG5nI9lWwghUFZissLSiHzRo9ttIYRAK83qygbFUsGYktiKTteAt0xI1jc2mJ4cRjsKKSSO69Bu9bCUTdI3SsmSGK0UG5vbiEzQ7YYIUsPWKUmaJNiOTRxGKG1hW3a/wwdhFOI4NmQJQpg5klarTS4XEMUxQhrpndKGjcoyQdyNsWwbgcR2NEmCcelME4R0kMowmp2wx9p6jUo5T7lYpNOJaLSb/LtHjvCZX7wJS1uQGSZGa8309DRDAyXiJGFsbJhOp3tuVlBKQeD5nFlcJch5hL2IsJsYlzuledVHP8OPTieMj1UpFD063R6VcgnXtlhZ3cLzjfw2CHxk3xBHCk2WQi4XcPr0KqVijkv2zVLfblIZKGLZmiSKEQJc12VirIKQCd1el7HRCpPjw0yMViiXcqxvbFMeKHP0yBxbzRbV6gBCSHzPJZ/LobQk8D2ajRZLK+uUynlc18axHZ45fJqFxTXGx4cRwNz8IpVKkc2NGq7rsbCwwurKJmQJx44vMD+/yvCIef5c4FEINNWBImEYcWZ5nc2tFtURk4n4ze8eYGa8wlPzK3zvUJ0f/7E38sAD9zI75vLzv/KHfO7H30Cv20YrH8vRaEsQxQmW65FExvJfCkmWJMRhhN2fjbMdEzNw/QfeweLcV7lo3zRJkqEti143NN8ZZRihMIqwbJMHJYQ2QEgqBLC+toboy3Ck0li2MPNXWhlAoz3isEOv00VrhzQDP8gThQkiM99NKTKiXhvHcxBCUtsy71t9u462pJFCSkEc9rDsgNrmJr1uF9e3z8l8mo06tuOek2F12y3IUlrNDo16nVw+j58z54vtWg1lKTPP5RunRimlme11HKQSJEmC7bqQmTxCIQRKG2fINEtR2jR34jAETEc7jiJsyyYDtta3OHliCcf2+PKXvssll+4kCo2MPE1Tfv///BY3veIGoxAADj71NK1uwvD4DLX1Oi+/4XX83IfeT+pV2LlzHzfecCNvfMMb+ZWP/K/sveQy8r6HY7uUyqPYlsXc/Ene+7738iu/+hE2mhvce9+d7Ln4IqTlI7TL61/7ag7VD5BlYFkWKQLbdohTQS9OEVqztNSg3ehy6cXTHHn6CFdeuZuDJ1ZZPLbA5PQolnL6xZwizRT1dohjWRyZW2FwoIgUGb0wpNGOKQQ+Skp816aUC0iiNrbt8NDjc1y0Z5pTpxcYqZZM/AUWTx8/zQP3PcVll8xiWxY5z6dWq+FY2qgropBOaFwejUzSQ2Jm4mxPU8y5OJaNZ1vECTi2jSAj7IUcOnKcwUoOISW+47C4soXvuZBGKIEpSJUFIsXRDpPj1b4EOyVNUtIsM1lwjk+cZiQJzC2skg9yzK3WmahWkErS6YXEkcnzmpgYxLctRL82sC2LKE4ouIq1rQ0KgUenC0OVPKNDo0QkVMsWvc46lpKsb2/hOQ6CPGkiqbd7lHIBc4tLlAol8p7H2HCFI3OLDFby1PpS/Yt3TOI69jk2UmlJu9vl8LF5brruYhZWTfZdznc5tnCGUt6nVm/i2BbzS2uUCwFRClqbzNKib+HbFm7eZ7PWZP7EElGaUa2WuWT/TtY268xOjeM6kjjqsra+zmApoNepc8fvH+Y973o3e9R+XMemMjjCsRPHWF9dIex2qBRLxFGIsMx5wcAvI9MWacJZF9bnVHnG6JmzronZi7B5IjsLKp4FHufDH9ctcuWr9pJuXQBuXkRC+U9SSV6wr8eeepQ3/sQbXvxY4HmGIXCeq+QPdQjf/5X94x9/rtHKs/nT4twM3XPuP+95LpzHk0r1Tduev68sy55l7v6B43yOVPOHAGb/HDjiwn38iwZ3SWrcFc9fXszZ559yOdslMLN/fXvZNIMopbld59Of+A1E+wyTe29EeC5zR5+kHLh87GMf5xc+/B/45Y9+mKuvvpqBSoWv3XIrP/n2V7B45gyvff0becvb3sN2Y46pqctZOFPjNa+7jvHJWbbbEUG+xJ9/+k95wxvfQBrHFHIB+WJAMV8m8G163Sbf+MZt7Nuznz/+wz/h9Ok52u06V1x5Kdor0Wm02TG1i5np/dzylc+yvHiGJG7SaqzQaNSw/Crve9/P8sXP/iVapczu2M3c4jr3PniAyd172L9vF7t3TrGwuMrBJx9j7759rG9ucfjw0+y/5CpklpIlGRtbLTqtJqG0OX7sGSJp8VO7J2g2m0RxQpCv0OvF3PrtB9k9NYbJLnKIehEj5RxuoLn3kSM4WhGnCa7v0A17BLm8yWcDsjgj7neJSDVnFlcolXJm0LwTcvz4EpabcunFewyDJTUry2t985kM1/PYs2sYITO2ajWuvnwXubxvWJ80hQwatQ6u7RH2EnJBDoFECmFAQbmIVJKVlVWUljiOhdCaJAXfteiFPZDmAg+CdjPka996hF0zQ0RhiG1ZNJttCsU8nU6XMApN9pjrmMDzc12pDNu2OStOF33g1223cR2bVrOF45qCV0kFQkEGURj1u1XShPS6Tt9EQtCom6IrSUKEtIgjgevaIASW7aBUxsFDp1BC8stH5nnve67iXS/fw+mFM3iOyx3feZidsxMoy2JhcZlWs8XAQAWEYPHMCn972wO85PLdbG1tmbB3qYAUKSDLFKVKgff/wTf52kdfyvhYFaUUnV6LSrnAkaPzJHHG4ECefMHH82y0NgXT1nqdb3zraV56/WXMnVpk5+wUSZJw36PPkGbgeRaOY5n3QltEcYoQKWkWUduuUykVWVvfYmF5nepgkUKhgGXZVCtFBocHjXlH3zAjS2OOHj1NkqT0wpDJ6RFOza1QKuZYXd2kUsqzY3aCdqeDVpJS3pgZNRodyuUinuNQLnk4toVrWezZNQF9m/d2q4VWgtX1GmACdrfrbUbHqmRpwshgke3tBjtnRrCmX0GlkOeu73ydweExfnFyL0nYNeYmGNlrL2wjlW3knMrMBaZxiiBD2UaSiRCkSUr05lejknvYu3+inyNnzHvajRae57C1sUySgOP6nGW7sv6t1WgShz2KpRIZ4AWu+alkxhZeaUWWSdJYABFJHGHbHkpZIBRRFCNSyebaBkHOQ4iMJA5R2sLz/XNGGkqrc4VAp9Wh140olIo4rk0ch3Q7XZRWOLbTN2KRxFGIFwSkaUa72aIyOIAb+GQYkxXHc0niBKU0YdQl7HaxLG1MUpAkcWhyH6U6V5AobSGFMABNKeI4xnYclhaXqVQqRs5tWaRpQqfdwc95DA0N4dgeV161F8uy+oYsoLXkU5++k7e+6c10ui3WV5cBj1JlmAzFZz/zBWZ37OCKa29geHIWLQSXX34p+/ft4/U/+jp6UY+/+ovPMjU5w3ve9z6+efs3eP9P/zQf/OAHUTrFLzns27cL38uRKZcUzc/9zAc4cMcC+181QRTHWJaLlKrvNKl55PE5rrxiFzt3jHJyYZXrr9vL8nqNoUqZgaEKtnYI44hON+J7dz1FO0mZGhkiijPGqlUyYuotc44kzfAcm816kwy4874nKOZtXNelVC1xYnGLiZEctqWRQrHV7DI1MsDsjhGTt5iZZlPO0zQ6XfJBwNpWDSEUgWdTbzX7UTImbiQfuGy32wghOfDECS7eOUWcxZAkeI6imPdodjoU/AClFNvtNt++7VGuuHSaTKg+CwDNTojTP7+KLAbRZ8LTDMeShBEsb9YZGShTKvhICffcf4zh4SJIgWXZLJ5Zo1Lw8V2LA0+eYHRkEFtrWt0ezU6HvO9Qa9RMBIPySeIeYSIp5j2UjGjVO9x113FGJkaJU4uv3/4A+y4apxc2CVxBKZ9Ha4soTTg2t8zOySq9MKSUD/B9hzSFMIl58PGjSAmFvEs37DE9PkAUJ+Q8H9d1kFLguRZRHFLMBf1rTIrnKHMt6Ub4jiaOOiRJwtBAmZFKniiLuHj3LE8fmmdkZIByqUAsEtIsxbMUnU6LcmCzsr7GkTu3+ebt3+HlF1/DZq2GUDZjE9OUcnlyQY5mvc6pU8dZXz5Np1EzIetpypGDTzI8NGIcx7UmSTOkEueCsM82gc8HXhfesozngYVnizaB59nsfelu1o5sPfexs4DwfAf2CxjBc6ud9/eHWi44tmsvuY7P/u1fceNLr3ve41nf8OmFwN2Fy1mZ5Iu5Xf4gdfE5qeUPsB6CZ1060+czhqLPrAnMekLJfjOw79gtnpV6ZhIzEkJqnJilQElNmiXnSJSz83tamwiQJE5QWoN4dq7wOaHlmDo9Mxeo5wB+eHGl3z/0Xr0Yo3chs3nhsfwgy79ocGc6Nv/jwd35x2MGRDNkBiJJWDg5j45qzF55DWM7X0Zn+UEGB6ZZPX2Sg4dP8NdfvY2/+Is/4+qrrkER8dRTj3DFvsuYmd2Llyvzn3/3v/EjL3819z3yED/+ttfhOwGZsigODhGGCdddfTXNbkzBLbCxsoqTCzhx5ASt+gaHDz1NqVjm27d/Fy/wiNIWH/+NjzEzM0o7hZnxMiKDb95xF1devpt77rwTSZepqSqvffWbefSpeb74158n6izTaqxz+NhJ3vSOd/HMyVNce+ONlIs2X/7iXzI0OM3PvP/dtLoRS+sbNDfX2LXnIuZOHuShB+7mTT/xLr5z25coDw/xypddxd0PP8E7ZibREpIswwvyKKXZMTFMRoqUgtW1DQLfIecbkGSrANuSFIs5pKWMGQSgHYt2O+T+xw6zY3oMIQWPP36C6alRY2qSJqRJRKVSJI1Sjh87Qz6wSZME33FJkwSpFAKFlpo0glw+R5KlSG2KSSEEcRiSJorvPvgE1WIBKSSPHzyKp13KpSJpFlNvbFMdqBgziQyUNuYqUkgECst2qW3XsWyLKAwZHigwOFTGcuz++hqlNN1uj0qlgOc5qH6X/2xRKTJIMojiBK1MTp6lFGGnh5bagMIoxdY2SZxiaYso7NHptHFti8Z2k14vIgzbKEuRpOA6DvOnFsnlJDK1ODW/xOraGq62efyJE0xNjeAqi185vsBffuRHUdIhAXL5AIlCaUGWpDxw/xPoDCYmhrEdm1NziwghuPySHVQHKziOjeV6KBKUAts2evo3/dbNfOmXLuPkqQW6vQ6WEjTqTTzPpVgu4BcDXMfGsiRxHCMQxFGPeqPNDddczPypZQaqBVrNHl7gMzM7TLlcpFFvoqXpXqMkAgkY6Zzn2qQZDFZLjIwWkdJCSsXRI6fxfBvL0WRJSJZE5xwAB8rmsyoPFkjSiEJQpNVqs7lVJxd4uJ7H4tI6ljJueJu1BkPVCnGYEscJtq/odCKq1QrLq2tYSvRdVQVJllIdGCBJYiqVPPmcT9hr4zgWtuOSZRLPdxnY/Tpuv+UL/Nirr+Djf3Qrb9mzl7DTIc4EftEl7sVEITg5n7TXohfGSMsYf8RxiNXPeFRK8/6/+3tuv/123vdTVxKGsSn0tSbsdQnyOeIwJFfwiCKB1q6JkGhsYbsGDFjKzO+tr25QKBYNMFMO21treH4Bk8eYMnfyDLZNf6YtoxdGSKVRIqUXdnED89yyHyMQhV2kVHTbHUAQ9rpIKSATaO3g+BZpkvRBvkJriZI2GRlJ3KPZaBhWWim0svACw8ydBWlLp09T325QHiiTJgnKkti2RbfVxfE8MvohvnEEGfR6Ib1uiO041Le2cX0PrQ2IE0ChmCeOYuLIhDMLBK7nk6U9mvUtkiTB8TWrS0toS+P6Pu1WnZ/8iSuo1ark8jlS6TA4MEre86ltrHD9jddz6ZU7sKWLikOkZeMHNvPzR9i1ZwLlWFx/7dUkYcQb3vR63vymN1LIGyXE3PwhRoenWDtzhnIxj0TS67Z47WtfRc73CAc3kRJOr2yhpeDoqQXGBgo8dWSR/XvGeerQCfbtnmKjHvPkUwvs213F1prP3fwgl+0fxXM1xXKesZEBhBQ4tkZrRbNe4/DRJYrlEr5r0ep0KOZ8bEuzc8c4+VyBKE0JXMVUtYBt2djaNJksbcwQ6q0WuT6zrIQikdI0VzJo9SJKeZdmp00plyNKUqRwuO/xo8xODOO5NmQxpWIeIVO0BWCk51or8kGe7UYLx7EpFwtcdskOttodPMdjbauOa6VYlst3Hz7IzslharU6jmPRDhO0ZeNYgsW1Fr04NixV3EKrhOHRCjnXIvB8OlHKQDHAsgWNTpd9u6bpRSlxmvLAo4eYnRzGsm1yfoWNRptKySJwHWwno9OLuOeuo0zOjDG7eweFnMXi8gqzs6MgUrIUslTgOg692Cg9Hnn4KHv3jLG2WaMQeJRyAQ8+doxqtcie2XEqhRzbrR6lnHGLfvzgPKmwCXyPje0m3/7Gw+zYMYZlWzxzfJGBUoAgInAsHnlmnsmxISBBAUhJN4rIeSaH8/T8MmPjA2YOVsQ42qbTTRgeHGBpbY2Npx0+9vMf4bqh69k4cxLfD9COOQ5laeYWFxgaHqVUGWCgPABCUtuuobXNVm2L06ePszh3DJGkqEwYVj4zMVNZmj6L4M5n1i4o3J9T/10YWSUF1T3l54O7s5ucv+0LgLvnrPqPqBOfu6/nb3n80cPc+GPXP//xs2YpPBsp8GL1reg3786Zs/wwS/aDbXs2lgH6sskXIxGzrA/KeHbmTprm9HOAZF8GmpkDMFl/WdrP5nwu65em/dDyc1LO/jFnzwd3nL/fF2H7/inwwr+CuxdZ/n8J7sgQKaRhzH133cPenaN4w+OkYhBqT3DqTJOxaoFjcwv8+u98gsBzCTwP35Z0ex1qa1vcffd9vPf9H+Clr7iJ7fUttltbvOJVL8O1c/iFPGkqCaOUwLFIMgVxyp//2Z8xOjXGcKXKQ4/cT71W4/EDB7jnrgfJSBgdHWR8fIjrb7yazeY2X/7rz1AoFDh05Bi7Z6ZIk5A9u6ZYXV3g8DNzvPWd/4b508co+Bk3Xn81V157Azff8k6arxAAACAASURBVPf8wr//MEePnuD66y6lvrnG7MwlHHzqUUrVYbYbLWTaRVseqytzXHLJpXz7rge56rI9LKxtknMyvvvIU/zk1BS12hZCZAT5IkprI08UYLsOnmv1u/CAENS3E3I5m6Dgk2WpsU/v9gyzpC1GBwdIM5M1NTQ4iO0ZGVe71UIKY1sedWOeODxPqeAiAMfxiCJTtJ05s87fffthpoeGTQA5Gb1uG9ux0ULR2G7iBwGTI4MUy4YRHBsZIOfnMeZQCUHeJQkzkjQzOWBSsry8jiUFjuMSRxmWLSHL+vNmmlq9dc7AATBMT6UAZH0JpjLgRNAPfu7PADoWWZoglUMaxxDHWI7N4soaQ9UBshTmF1YgNSfOQsE3VvTSMu+vZxH34wlcz8W3NdrOSGLJ0NAgw4Ml4iglCTNWtzb4pSef5tMffh1JFkGmUFpRbzRwbIdCPqDRaDJUKbFzdpKt7Rqe5zEwUGawWsH1fOIoQgrBX37pNkqBTSHvk6Qx7/gvt/GVX74SyCgWAmxLGfDbDSmViyT9eUOZZihF38pbEyeRcRUViiPHzzA+NsCBx04yPTOCtGB9rYYUgmIxj1aSlJQ4yZBS4zgOtmPheT5pEpP2maZnDp5i544JhBLUm3U823wHozjBtizTyJWSzdoWnu+SRgZ4NJptxkeHeODhQ/TCiKHBPI16g4GB8rlcvGMnlpjdOUy3F2Fpje1Ibr71PuIooljMMVgdJOpF+J5Nq91m4cw642MV7n3oIIVcQBAExHHMmWiU//pb/5E3ve46Hjm8wRtmdhB2OyY3MQsRmSTIFehGEa4G2/OMY6TWiH5XM8sy7njmKX75936X97zdQUjDbCLN6/E8H5FlxFFImiVo5RnJWpYiswRtm+/OypkVcsUCQZAzcyAyRSkbx1W0Gl38nE+vF3HfvU8zPT2A6zqIfrBxkqZ02y3cwEf1GyBRbCTHWRIjpMCynP45FeIkwtK2kXbakk67g9bGjl7KlIW5RUrlElHUwe8zdPWtbfwgII4jY7DSH/AoVUoEQcC57CRL0m11yOVzxEmKlJo46tHtdsjlTLiw1tqEk1sa2zEmRlqZrnGcxNi2iX7otjrEcdyXb/ZwHMcEw/sOXuABEsdxESojChOKpauJk4hYKk4dX2BkaIB84IIWPPTw3YyPTpN0WnjFErat6HYaLCycYHJmJ65lU8jlqFQrlCsVlLD4yle+ws49E+S8MnGvg6sV280WZxYXGZ8c5fLL9nFw6yEgo97sMVjMMzFUNpLpUp5y3mN6bJAsyzi+UGd9rc7CiePs3TvDeq3J6EievO9SCHwQAi0lUkCcJFgipVAoUi7kkMpIy584eIKJ8WFAkCaCO+56hJ0zI8RxD8f2kEL052kStLZ5/OBxhgeLHJ5bYrhSoZdEKKkJ45hC4CGFicppdUPa3YhmN2VufpVd0yMkaUq722G4UkYrQSfsYFmGEbaUNiyclHTjmEanh2vZICVH5pYpBi45XxHGksGBoolE6LaotTrcc/9hds6O0e11iCJJ4Dn4rkTLiKXVVaoDFU4tLFMplfjmvU8zNlLi6NwCkyND1JpdLKX4+h2P8MqXXUqz00FrzbcfPsGhZ06zf+8QIpWs1bco5woEhQrKSnBsF2TIYNGh4JfRUnF6eYvJ4WG6YYdMCGzLYmCwTKfXYaBUIElN7tfk6BD1To+c5/Cdux4lV8obF1PHptkJiSLBWr3BzMgge/dOEScmBijne+Q8i+1mHc+y6KUS17XxHDObubbdxtKacs5HScXM9DCObUxvtmrbPHlwntmJUYQE39Xc/4VjfOe793HV9OXIpEuSSVzfZM4KpRkcrNINQ6MuEEaVUxkcRtsu5XIVz9Y0auvEUczo2ARCSW77xi2E3RDHcXB9v2+vf67YM/+fx8Y8r/4z1T8ArWaPtNAlXEkuKOQAeUEp/s8I7nbu3MMvfux/4Z3vevuLgruzCOqs5Pd5T4voRyU9n3k6y3r9g7XxPwbc9YHk9wN35wO7c+CqH5mQPfuSngPuZD+8HAFa6mdnLPsrn40uyswOnn29/wru/r+/PA/cCQEiIyVBiOR565//of0wH9Q/FIFw4ePnNN9wLlgRATGQRhFRs83gyBDLK9uotM7hI2dIMsHMxS+hOr6jLy3JuOWWW/nNj/86w4MDvPNdb+TlN/0IX7nlVi6+9CKmd01x1ZWXkYQhidRoyyFsdyDscviZQzQaa6RZyLXX3cCRp49SW13j3vse48DjB3ns8SfZu3eWS3eNcNOrX84lV91ArWVRzhURIoDEZ3hEcuvf3Mx111zD3Xfdz2B1mpNLi7TWFtk9O83b3vluFhYXyAcutq148IF7mR6ZoLbVY2hkmkJOsLa5xFc+fzv/84fewenTi0zMTPLZz93Mu9/9Ae7+3h2E3jDra2tcdc11PHLgaX7ETlGuR+A7Rl+vIE5iLGWZCIBOC8916UZmtqXeqGE7km/d/RgyThmolsmSBGlJEFDfruN7HsvLG1QqedZW18nlAqSlcTyf9ZUtjhxZ5bWvutZcsAKLex96Gl+5ZAnkcg47p8coDRZAZUgtsbTL33/3IaZGR/ByAdqxsGxFGicIrRHaptvrsrq2QalUglTSS3pEUYylLSxtUSx6xL2YtfUNBCHa9rAsM6ujLYHn+iSdhOWldaIooVBw0NqwS2Sa48cW8VwHbUuTTSdNFlOn1aXTiYh6HaIoxvGMRMiSgiiM8fMBru8is4Q0y4gzQZYqHjxwhMnJAVrNEM/3sF2FEApl2yBtbE/TadbYbjRQWlOuFPnjxYN86ld/0kgihcXBp47QqjdpbLeYn19mamKSoBDjuXnipINla7wgIE5TThyfo1QM6HXbZFnKFfv3MlAt8e/+rzs5tXCa/+0tk9Q22pTyHlu1LdIUtPQoDeSobbV45tAikyOjRGnLyC6kMuYilkIgCOOEwUqeOEsYHy+ztLLKQLlIHHfJ53McOzGP72m2ax0C3yWOe0RRD8sxMx6Hj84zVK0gkhDfFXS7LeIkwbEC4hQWzqxTKPj0ogjLsjlyeJ6x4UFEAu12h4WlVUarA8RRiutZFIOA7e0WE5NDrK1so20YHRtibGyEVrNNu9PrS/M0F++exdKKwNOcmjvNkVNncLQgSzKEcnnm6DK7Z8YJw4hbb3+cl1w2gx6c4q1vvI7UzrG4mnCll4LQZCJDZwLbdUmFmXdLhSbNDGOZJhmk0oDZNOOefIFbv/onvPIVO022pDS8phJAGlGv1bA9D8vuOzSmBnBlCDPnmAls12FjvYbruf3uqTKaGhSua9hxkMzODmFrC8d16fZik0spBY7rkaQJmyuraFIc10Mr3Zf4GCa71WiYGThhHNOUJRFotGVY7s31LXzPwrKEcbhNjOtfY7tLqVKErI2QxqRGSpPdaOTHgqgX4bg+SZxhOQ5RHJmw8j4jZ9kWzXoDx/X7M3gRom/+cuCRp5Aiw88HSKWIOh0Ttm4pbMcCKWnX2yjLwfZzhL0OSthGUk1MY7uF57t8/D9/letfeh1RbxuSmHIxYGlpgVRK8q5NpezTTlPygccdX/8mO6ZmyeIutUZKoVQiUxmIjNOLiywtL/PKV9yIawlWllfxghL33PcQUzNDVCoBluUgMpeHl+8jjCJKhYCUiExAGGdst5oUA0Wj3WVhpcFF0wPs3TNDZls0Gxtcc+VeHFtRb3dwHZtut4sAao0OSlosbawyVh0kA+I0wnV8RoYH6FNOZKlgx9QolpI4ts3K6pKZ15tfY3iwQq/bY3K0imM5DFfKZq5TZGgpOXF6ibzvkIoMW2m263UqgYfvWFw0M0wYdiFLsGyNFIJemGBLh2a7juuY30GcYAx86EFiAtxXN9qsrGyytLrF5MQYthI8c3SOkWoZx/XJ+x57d5vMUcd2ydKIvOdyeqWGtnzy+QpaCIq5HEoJZsdKWCLFtn1KQZ6T80sceOwor3/NFVhaoaQFwMGHj/DOt15LnEbEcUrBK6AkhHHTzHlrARhn1CTtsb61xe6pEcI0Qmt5ztbeczU53yaKupQCjy/87SNMzgyRc23qjTabtSbjo0UGinmkkJTyOcarJXpxCEScPL1IbbuD67tUAo8kbhN4kMiAgaKPqyWrm5sMlcscPrrAjslR4hS+e/8hLto5iJQZaSzIey5TExWirEeSCNKow3tf/m+pbI4yNjlMr90mXxxAKJsoiXEcm7DXY+nMAoVcjjPLy2xvb1EuFGl3OyAFju9RHRwjEYpukrF4eoF9F+2nVMgTOA6nT51CS0G71cHzbETWL6L7Jh3niKCsfyMzIeapKbRt12LH1VOsH61dUERyDiief7sQ4P0/BnYvtPT3cdcT3zOh5sJICc0hnS8INT8rBM9h8c5KMTOeddx8Xq4czwKc78f8XQgML5QdnmXbztXEF4C7VJiZuExwzhSODISSKKnPTpaY5qowtbTo54ie3V/afx3m8+szfaTPAsGsLwvtA/Is68sv+5l6zzFS6b+/UsnnSVuNkzTnfVkuuP0gn7JIn7tN9lxJ6D92+ZcJ7vpf5hdqEfxzMnVn93e+Xvfs/zqDP/xvv8/ll17KoUOLlAoVBiplPv+lL/C2N76Zt7/lTTz1+ON89eYv8sd//N858OjD/MKHfp5L9l/MsbkFpOXxute+BiVCulEXSwvCXgfbD2i3InJBjo21dQYHqzQ3N/j6rbeyY2KCP/q93yOwbZrNOt+689vsnhnniv07+aWPfoSxiRmU8nnve3+am66/kU/8199leWGV2dkhjhy4n42NDQ6fmudt73o3r37NTyL1FmdWTvNnf34zF73kaoYGBzj8zDO8+53v4DN/8il2X7SL6Zkp/ugPfp+3vuUdKC1ZXFzikv2XcfOX/4Y4Srj77juZna3yP/3cL/KJ3/0vvP1tb+G279zNz+ybIUJAmqIshcC4AkolSZLE2JwrM9Td6bSpVosoqbhodpIgcGm327i2g+zLFvM5H6ksglyAti3yxTxhN0QrRRInBEGOYj6PsGKitIuWPhMjI3z7oSe5bN9O09knwba1kYaKjDiMGRss4/seJq9ZkPRC49antXF4ArSSuO7ZoGcDvHrdkE7HBEg7vsBzbbT0sD0T+kuW0Wy0yRLF2voG4xNVpAVamXkTrS0ef/oo7W6H8eEBYxojJanQCCRKiD67KbAtm82NbQLfI0sSgnxAlCQ4gYvE6NFdz8F2baanhvvyO0Wv18OxHZIwQUpF2J9dUjI2MxlIHsj1+Nm3vowsTfnmtx5kanIC25LkcgHzC8u89Mar6IRtY8KCg7RDbEsZFkZZRiolNF7gcWpunlI5zwf/4Jt89NUFXr5/hCcPnuSi3dO0ux0KhQKObZGkGb1ejywTzC2sMzUxjGPLvnyW/slecd9Dz9DrhMzMjNNothgdHyEfOGxublMaKCKloFD0zwWoe76DyDDMimUcHwPPwbYVvTDC8xyOnVzsg/IivV6PoaEKACfmTpHP+YwMVzl8ZA6tJNqSuI5NL4p54pk5dkwPUSoHWFpgO5q11RbVoTLNVpMnnz7BxPgQ5VKBVrON5zrYLiRJD9/zqG21mR4fI00zKuUc+aKHrWzq9Q6Hjy9z3ZU7yJUsmt4oTxx4iN17r+QPP/NF3r5zN1pYxEkPJ1/qG+Nk9Dodor5rahSZfLQkjdHa4r233Mqho8f49CffhZT9jCHMxS0TKd12k3zRxBGEYWxAdf98q6QZSG9sb5NlGXY/54ssRQjMb0Cr/kU4w7JspDSB4JvrG2htmnNx2CMOu3iOYUe9fJG11Q0c3yFNzKWwtb2N79po22Q7Kin7M4SSsNcykQ6WpllvYNkaoS2UskiTCMd1SREkmTQipj4DaOn+HGqa9WWdxhxE9Fm8JDFFc5KYnEshwLJs81uXCq0ttFIMVgewbRtt2Ziy0UiDoigmjmIQ4PuuYfekJIm62I5Fr9dGSHA8FyXh//iD2/mp97yVXD7g1Illem3Y3u6RyZhKcYDjh08wtWMXaZRw/NhxLr/iEj7/uc9zzfUvNbl7cUgu55PzA0aqQywsnqFULlAuD1LI56gMlOl2eiwvreJ5FRrNGp/42J9TucJjsJCj1qjjaIWSklIhT6PdI0lhbmGdhx49xeLSPLt3jDBSGSKMemiZkSUpjjYZkpY2cubA9XBshWPbZFlGrdUm8BziJO7/pmMsnSFlRr3VoRellItFlLYJAsMua5kilWBlcwvfM47GSRbT6fUYKObRSiGk4vTKBsOVEluNNn7gIZQgzehLa5s0u5vk/TxC+FjanE8srcmAXmhhqZSCH4CApx8/xCtuuISx0YG+4VSHoYEiWlscX1jn/ybvzYMkue77zs/Ll3fW2dVH9Tndc2FmMAAIECRAkAQEkiBFguIhEqSkCGlN0xsbYWttSbESZdlaSStTtmxHrG0dXso6ViJF8RApghQBEiAIgAABDI4ZDOY+eu7p6bu6zrwz949X3WgMBiRsyfpj+SKqj6qsrKysrMzf9/2+R6fXoVIsAAJD6gjDQEodP0owdUm7G2DbLnGm9D+ZyDl3fgHTMvjeY/vYu3uU3btmECInThI6fo+BUpHJLUNoWk4SpziOSzdMcWwboUlM3SQIVSC6H/YwDUm1YCs3WEOn0fQ5enoO13UxdRORS4IowbVMrtsxga3D+fkl5hcb3HHrXny/x9Jqi4XlFs/tP8Xk1AgDJQs/jBgdHKJWqTB7YZGRKiRpxMkzK3SinMZah4JrM7/YwDIdtoyPkGSAEOyYGSHJEoIo4eylRRxPoOsFJBZ51qFQKDHj7EXzLZI4VpPemsHC4hKzs8epVQcRObTW1vBslyhOsC2TpaVFqtUBsjzny1/4EsVSiUq1ius4+L0Ax/WQtk2j06ZUqpAkCSQ5Z88eZ6g+tsFyuVYtnfd/rIOeLM8Z2ll9NbhTxdyrV7HZnOV/tGD8YaO//jtvuouR65RunWt1IPvbs/5e1mMK4JUNiM33v/y0HClk/+VeDd6uvn/z469Yz+bt6uOfV4C7dX0bIPuZo+s7Ti233oVT2sn1dWVpthG3sO6muQFur4pheMU2XWPb18FdlqYb65S6/mrocHV+2avf/Q95/BrryP9uR8mPHLgT2ssBiD9Iyvp6Qd5/b1j51YLJzc9f5x3rusHZIycYGxwmA+oTW+g0V/jOI4/wpa9+g4cf+i7VgRonjx7nLbffzvGTx/nohz/Ent072f/s0wzUKtiWw9T0NJbrMDe/zG//xm/x3ve+nySTfPvb36E+UqdUrmLqFitLDe68825OnzxNnuV8+Yt/TS+OuOHG3UxvneCn7vsgf/TZL/HUU/v5sTvfxi03XUfRtpi7dJafvu+jHDz4OHqSYnsOftBlfvEyX/zCV/jQ+9/J6TOnKBRd7rnnHi6fOcnundv5q7/8HDu3T7C4tMjScoMzZ2a5fOkcvfgix4+dZMd1UwRByJaJcTRNcM89d/PH/+3Pmbt0nudf2I/ulrmrYNFoh1ycX2J8dIg802k2O5w8c576cE3ZX0sDkRlouYbU1IyLZigaiGObnJ69xNDwAFEYEgQBuinQZE6axqRpRK/rqxnjNEPTdeWspwu6XR/LdEiTjJ1bR/nOMy+wc2ZSFV9BqIBcDouLqxQLrhIAI5ibW8Y0FQ1ACEAKpJQEYdg3V1A6N9d1cBwLU1fbKjSBkGo2X2l9c/I0xysW0DQd2zIwTB3LVq6RgR+j6wa1gRITYzX0flBtFMU8+NjzbJ8aJwhChBBEaYImdWzLZmlpFcM0MW0LMnWS9HsxhmEQhTGGKUEKRC7QdQ2hqdk/oWmEYawK6zwl6hmEQcI/2neYT969E2mYLMwt0ep0mdm2hbDXRZOS6ekJVlZW8XtdZk9fZqRewzB1us0eC0tr+L2AgVqZK3PLVKtFCgWHj/+Hb/OZ/2UblWqJy3OL7Nw+CQKCMEYTGn4QUSh4BEGHYsnBNKHb65DGKbI/sxdFIZpQocLDQyWCwGdhuUkUBJimQRjFFAsF4jjE7wYUCkVKxQJxFNHudikVPTSpceLkReojNbqdNppucPHSAtdtn8K2bXIBtq1MScIwIk8zXMdD5AJNyxmslbBcC89VesCZ6WEMw2R+YYEkTQnCmOpAmeXlNSzDYHxsiIXFFTrtLmfOzzMzNcrqag/PdZm73GCgVCMIfTzP4criKroUtFtNZrbWcTxBuSRZXon5p7/xJ0yOTvDm2+/my998iI/t3EtKgu046JaNQFNmC1GIWyiqPLlcUXrTNFHH6Y17+Xe/eSthPw9MaMqW2vd7BH6I47r9CAIDTVu/EKoAWfKcOI7QdQPTNDFM5Z6om6qTYxg6eZbj+wHSUEY0mhAszM0xXB9CN/o6uT6dWgWQOwipYeggpQKb3bYCmJphEMfq+5DEMXEUIdBorTXwii7kGY5XIM1SBch0S33n8whN5IpK2y+816eK81QQhcowZd0lM4lDLEu5ySZx2j8XBAqIWR5xGNBpNcnSHMvWSaKwb/UtSOJ0w9xB0/q5gklMlsT0ul3yHGzHI/C7mLaJlGrdumFy600jVIdv4aln9rF15jq+9rX7edudd2A5JmkIi/OrTE5PIhBs3T7N5YsXuevt7yRJY2zHwtA10iRm8coVFheXmdwyjZAautBorK1w8cJ5JsZnMA2PJI1BS/jwB+9lPp2l2WlTLnqkOWiaMn/Kczg+e5nrtk3SjSLecMNWnn3mKLqlc/TYBXRTY35pDc8roMuEjt9FiJQjp84xPDBE2++h64JeqExnGu1O3+YcVpptdKnjWJaiVmcCpSVL0KWGICPs07ctU2lidamRpDm6ZvDgd/ZTrnqMDw9iGLrqAIucNMtY91azTR3LVMDs0SeO4pUcukEPXdfQdZ3ZS8uUHMELh2aZmhhmamoYy9TZf/Q040NVojjGMixyoFoq4NgG7a5PpejR6gakaczj3z9EteoxNTKAY0oa3YCiq+jNmtAYHqzi2DbT03VsQ6pYHbR+riggNNYjnA6+eIbhkQquZSv6sMhIU7W/0izF1A3yXBDFIa1uF8t08GyHoVoF1zT52gP72L69Rp4GSJmy3GzT7CVMjw4zVCsiyLBMC8MwKHguO7ZOcOzMFQarFmkqkULjuYMnedPebRw/dZZqpUqpXKPkeRw9eZGBapHJ+jBP7TtGJwqZW1xhdKiKqcPDDz3Pnl3TVIoeRUcnzTUee/oIftBl32cu87X7H+Ddb3oXURQjZUKjuUZ9dIzxsTEMXRlj2ZbD2XNnMGyH4aFBioWCihyJI2YmtlKsligUinRaTaqVAQxT59LliwwNjfD8c/sgFzz5xPcoFHQmp7aTJcp0Q+PVtfW6i+7mMbCtxMps69VduWvVj+udwH+gBsK/+t3/kw988H2vsS0vxw9Av93R71YpGqN4zRDv16PXu/p/IVTY+fprbF5OddiyTdvR7xZKbQNnr2fWiX5n7WX9Xd6vpzbX1Jtem00d0v7jSZZi6MZGl28d9K2D71dtP2pfrRu6qN1y9cHx9w/u1h2Wr+6Qvt6A9R89cCcEWZpsXKj/ruDu73Ost3/TJGX10jy6EDRaTUbGhwi6a6w1fe7/5iNkaHQ6Pne87a30gpAPfuD9fOy+j7C8uMBNe/dw5cIp6qPjVIfGOHjyFLu27eY9734Phm6hW0XecPPN9Lo9vv61+9m9azdf/OL9/Nt/9++xTZtvfutB3GKFlh9gOib1sVFufdMbuPWOH+eOO97O2dnDfP/JB9ixdSsH9z/H6soys2cOYEgHyJg9c5Jf/7VfZrRe4zf+5e/w0Q99ANuNOPzcC5Q9g26nzY/dfTcnjh5gba3FLW9+C5/8xCf58hce4hOf/DhD1V08u28/N75hmpXlFVZX1jh86Ci/8qlfZXRsnOltM3z569/gPcN10kwShjFDAxVst4jj2IyODKjvaSaQJqRRSprF9Pw2ruOQS+VgGHS6jI3VyfJ0I5A78hN0TbmvpXGOW1TFj25I0HVF480lhm6T5RGLV1Ypl112bZ/gxMlzVKplACSCPMlwPRvynG8/9QIV16FYqmDaJpatAnIzIMtyHNdBNw0QgrAXkmUZqytNXNdC0zPiSCNJM6QFSaQMQXRdkkQJSZrQaXcxTYMoikmihNNn5qiPDCpdj6WzutxCSpOu7zM9VMOxTQzTJIhibM8kTXOiOOUb3z/Arm1TxFGK1CRPPn2QLIbzFxcpOQ66qSMticgEa801NVMspKKgWiZpnrLaaNLsNvnY957l/l+7j4vnVvBKLiJL2bJlDCQ0V5tUK2V6PZ9ypcyjjz7Lnp0zvHDwAJ1mTLsZMD29hVNnLjAyPEBrrU3g+/zxNx7nk7cVWWm2yfOcsYlhhIC5uSVG6kPoukG30yPJEubnWiwstpianMB1labP6YcJ245JGIQUPLuvYUwol8tUKyWCIMR2VJ6Y3+3iWCazs5cxLR3LtjBNBaSTJKXgOmR5zsLiMoPDQ3iOTRRGfbOMjGdeOMp4fZAoSrCtAqbh4Hd7VCouaRKR5DmCfv6PlrG82GZsfJDGWof6yAimIykXisyevUIcJNQGS6qbUilw4dI8o2PDHDh8mOv3TKtsNakudCMjg1iWhS4kQtMpVUqQZZSqFd72k5/AdQMi4fOt777EfbuvJ858DMMj9APyTEWCmLZFlubkGf0OlCCJE/7Jtx/i8LHjfPwje/udiog8y5F99zLdsJXbZKLs3kO/S47SOvY6XRW43Y/JWF5aplipqGNIk6RZTnu1gWGZmLYKHW82VtE0QaHo9YsOgzRTurYsyxFSJ05VDhtJgNRS8lyqmAJN0vMD1SWVsn/hVkW661kEfgfDMBAYCAGa1EkSBT47jQVsUxXVmjT61/0c8owoyDhxbJaxybqazU1iep0mK4uLOLZNs9nBLXjohgF5Tpoo7a9pGUjdotNexnEdOu0mruuQZhmmZdHt6vcnzQAAIABJREFUdJFS36AX+d2OMqZJM3TdRuoa3VYXw7TRDQtN06lWXbq9SUbHx7Bsm+t2zVAfqxIEMRfPzhEGGdXBMkmSATHNtQb33P0+3vL22/jcZ/+CXddtp1IpUS0Vcd0CnZ6PbpkkQUSx5GBZJgtXGoyNbeGJ73+HNA2pj07xmf/weaZuHVEqB6ErwK3rHDh2nrGRGo889CJeyaJUKlMs2aRhh7VAsGf7BCNDNbIMkjTnmX2n2LVtKwOVKn6YUHAMnnr+MNunxzF1nZLnEqcJtmVQcsscm51jeKBCNwjRpSTLIhxTo9XpMb/Spui6eI6raLh5zkKjxUCxzNxyi5v37MBzdQBW211F4U1jNMA2TY7OXsYt2RiySK1U5IbddaplF9cxkVISJynD5QK6jJiZGKPpB5iWRcf3qZYcNGLSTCdJVfGr64IwjnFtizTLabS61FyL0ZEqtUqRKA0Jk4iyZyE1wWqzp0xF0gih6XSDGE1I2r0enl1Yrw5YaXYolx2WG20mRkaI05B2p4djSixdQ2g5aZrSaPnUSioHr+zZGLqG0FTEQS8MmVtaYWpqiBxJyXEQuU4v0rm80iJOU4KgS9WzSIRGjiCMYr735GHuvu0GUhIMabG02sTzdJ566hC33HwDpy42sF2XJM2ZGK3h9d/75HgN1zUpFmylL7cMwiSlVi3z5JMvUR+uUvQsakMFKpVhPvHe/5Ufm3oXlmFw7txZSo5NkoCmOei6iR8FHDtxlIGBQQYHB9E0nV6njWWpjNA4SamWS7ilAlEUsrywRLlaJssyCl4BXQiyBMqlKqVSGa/k0Gg0OXHqGI7j4DousKmLd61yUAgOzB6glFVeqQPrP7ZpwQ3an3pone74iiVe31BfuNe16Ix3HVvfPP7a69k8NthjL0dDvFYNvJmWee1VX/t+TWjXBCWvoGbCy6g652VjFPp5epuW29iOq/fra+CsdcqprslNn9X6a61TQ6/9vhXA42Xa5z9E5+4HPOf14JMfOXCX5RGQE4aRooRIuWHF+oPGD7M8/R8Z10LkALa0OfDUUVwvoj4yQKfRYN/+09x8yxs5sO8x7r33I/ybT/8Ob7n9Vi6fPsof/PGfEUcxZ8/Ocmlunh27bmZxZZliqcDMxFYSepieg10oESYR+w/sY7Q+zNaZGZYWlrj1jW9i166dfP/JJ7BMk8bqPOQptuXw2//Xpzl1Zo7tE4Msr3VZai7y7nfex5VL5zCFz4MP3s/Q0DZsI+S2297B/oMvcv7SSXbOTLHSWuCe997D57/wFUbrMzR7DWzPYmrLFAcOnGHnrhv5/F/8KYODNlu2bGXbzkE6vWXe+Ka9eEIyMraVbTuvZ++uLTz6+KOEcZfh0XH27rkN5+RpHBOu3zlKnoZIyyQnQ+SaolPqgowUqeVkaY5bKBNHIeQ5URyj2wZREBP6CUJkkOnYrk0YJ2hGRh7B+cuLFMtFsjQl8Xskca46CTJneanBMy+eYefWcSBneGiAb31vH/VqmTRXXUzdUHleO6YnKZSK2JYkzzOCIMKwLNA0SHLyJIIMjh67SL0+iCZ1iqUioBHngl67RdGz6TZ7OH1zkSxNaLVaG8dvjlCdO13H8yws22D/4RMMVapYpsWXH3yC3dvGcT2XxaU1LNMiJ8MyHeIwQgN2jI7yre8f4KY906RpzMzUKLVqiV7oM7l1FKELRKICsS3b3BAzZ3lGFkdkcYJXKPLJp47wOx/cSxL7jNRL6sKnazQaTZYWV3Adl5XlFcIgwCsW2X39DtxSgZltUwwNFjANgxMnznHDDTuxPZs//dvnuesmk7fs2YJtSaYnRjBMBdKf23+SvTfMKLCbxLx09Cwlz2OgZjIyUsO0DC7OzeH3epTLZeIkxXJMJeNJY/wwRkgD27WZm1umUi0jNej22szOXsYyTQpFB01KOu0e5aJHp9vFNPS+Y6fJuTMrDA0UEWh0uz5ZluG6BrY0qJTLKmfNgBOzZxmfHKbd7SFNg1ajh1ewULwR5Wp58vgFapUiQgPT0ohScB0N1y5gGibdboeFxQY7t2/F73UYH60rA48spVCwuTw3T7XisrraxLQEpYJOq7mC7XjMnV2hoee8/S3vQIphHnj0Se6dnsJ2imSAZToYurKMbqysAALTNhH9jpKu68y8+5188H02taEKmjAQWg6aTugHLF1ZojJQ6rMjUixLx7QcluevYDs2tleATCh6rBA4rrXx98riMpZtUq4W0aROt6M0aJZpEkcxhmnSXGtieQWVvSVSsiSA3ECTGWGvi2kWSDIlmm+udjCkhaGZBGGrH3SuY5o6nV4Pw7SRuk2OVN1UaRDHTYJej9APGRwZUxRmo0+5TGMEKodOtyQjo8P4vRDdVPTcHJ1SpUqnvcrgSB2ERqfVwe+28VwHIQ0yIcizAN0sIjQDyyn0oxQidF3Hcd1+zaXoqLplqUgEzyUjp73WolgpkWYJQiiGQZ5ntLqD/NEf/Ddu2LuLIOixttak5nl85+GHqY8NYZo5SwuzmHaR+uR23v/e9/L5rzzMO+66A99fo1gdhtzl8IFDyCxGEymrK1dAdzDdEoM1l9kTL7L3+l1MT03yzBP7OH3sCsXdGk6/89oLI6IooFYpc+D4PB98zxsYGx7m4Yef5623baOXWNyyewuaFmPqOiAxTcn46CCmLgiiFqYh+d6TB6mPDFGrFEn6TnZhmPLIwweYHB+hWnHRdA3PsumGASXPxo9iCk6BUqnUN0fIiZOQtXYTTejoGnzrb59maLyMrmuYukSXOQVbxw9hfnkZTaK2RSo9cxDF6NIgExorzRYV1yQOe0gtR9MtkjxXOaXkSAF+mKAJyWqrTbVYADT80MdzlDZ3ea3LQKmkJjcMjTRPlG4ol+gyJRcWtmlCGnLu8iqDZRvyFqZh8/yR88xMDpGkKUJYuI5BHEpcyyTKely60sHxVMi64xSI44RuoCboeqHP4cOzzGwZ44XDZxgZLNHudnBNRYceqVaRmg4iBZFhGyZLKy1MKZWW1DSwLVuxTzTB9plRXjh2mkrZo9NdZqhi4Tk2A4Mea+0Ww7UyB/Yfx3Z0yHy6gc+F+TXGBsssrqyyZbTGwtIK3Z5Px0+oVkqUh0pYhkaa51i6yXd+9xAPPfQI77rlHf24k5wUyamTs5w8cQLTMSgXqzz37FPs2bWbLI1pNVcYrg2iCYGh6xQLHn4cEPohq6urzMzsIPB7xIkyL+r0uniuTZrGTG2ZxPOq5EnGzORWep0O+1/Yx/j4OLqlnFbJ1oHeJrQn4NlTz7Kttp11m5L1LtOGZEq8/DyxYd6illrvBL6iktxAJuIVv64qHF9XfVkoO/zv//oX+eh9H3pFzfmDRr6+/nxduLRJj4fKsZVSfxVIe63IhGsNgQJZ2gaLTtE8N7pU/Y7V+mtvbFu/U5eTK2l2/6Fc9Ldxfe9q/fxCUtXV0/pdSsHGb/rEvZdpoS+D29caaZJsgF+hXaWpy/vhia91u1pPd41bngnI1fu/1gd/rS6e2LQfrh4/cuBuI7S8z59tt5rYtvND1/MP4YqzfiAnSciV8+dJkwbDw6MEucGWLdt48tGHOHfyIGdnL/Bj73o3hmEyPD7GE9/9PmuNNQ4e2M8n/tHP4RVT5VJZKvELv/gv+fH3/jjPP3+A6a1bSfKMkeEKlUqRxuoKhYLDi/sPc/bsLLfcfAt79+5hz7ZJIKZcq/G2u+/GKtb4nd/6dSbGx6gPl9A1l+98+6+xzIyhwWFuuvl2hOhRrQ5wy803sHPHVv7rH/45cabxEx+8j0uXFrl0aZbr9uzizre/nT/64z/CNCVDgzUsx2ClMU+aB1y6MI8p6+x77jF27XkDrW6PJ773HeauXGT/wRPMz12h4HnccustbGs2GRmq0O60EVlGkkZYlprV100JpMpVIaOvAVmkvdqjUrOIfB9bs4mzGK/koknVQYnCGMM2ECJFoFGtFJGaIBcCaVkkYUKa5JiGhee5bJ0Y5en9RxG5oFQsMDNex3FcVhttisUCeZrR6wYEQYRp6mSZyp7TdZ00TREZ5GlK6AckUcqV+TVGRqqK1pdntFsdvvGd/QyWPWWV79rkWkoYxPi9kFJZOZy5jkcYRtiWxcryCtWqun+0PgQ5tFtdbti5BctWhei+Q8fRNcHAgCqGDF3HNA2kJrBNGBwoIVChv6atMTBQJO13mQQCTajw8yzNAMWD14RESJ37HnmOr37qQ9THBrFtg17gU3BcTN1gdbUJZHTbPlOTowwPDrJwZZFWa41iqUiOAF2yurjG6NgIZ89c4uf/7Gn+zcd3cPDwacoFB8e1OHb8LMWSh+M69Lo+3V6HQsHhzJnL7NoxqcLgpcHSsgouty2d+tAwZ87PMThYUZb+miQMAwquQ54JVpYajAzVePb5o6RxxGCtxtyVVSbG65TLFS7PLTIxMdI3vykRBoH6TEmpjw0i+46lpmOim5JuNyYIYmzbJkpijhw7w57rppSGLcywbQ/TEmhScOniPLomsSxJbaCC7TgsL7d5bv9xtozXyUWM43kcP3GWqck6cRxj2SZZlrGy2sSyDMhy/KDLQB9k5rnEtQzW1tZIUxU4rwuDdhnq1TewFh3n/gee52N79oA01CerZWRZAuTohsR2XRX8nWRIqfGHjz7C3R/9AKP1BrpukOeqgEySBE0Dy9KQuiRNM+IwJU1ydEPZ3JuWmsFfjw4BFTGhoYTxtmNj6CbtZhPTtGmutXBck9WlVbxiQVE3Db1Pw0v7uUQ2Wr8TYZgGQkvRZI5hWDiey9nZsxuZjZ1Oj2LJIcsi0kRtQ5YmSKkTRxFxFGG7JpbpEoYRlmOjSdWtDHshum5ATr8DmHH29HmGR4fxu20F8m1LdTf8WHVqHRvDkHhFD7/XBnKkbiBQui/oZ04JjSiKsR2VvRj4EWdnL1GtVJQe1pK0mquYZj8oXahwdCly0r6xxPceX+Bd73wfQS/DshzOn7/A4OgUjzz6BLe/+VaqZZPBwQnWmj533fUevvbVr/Lvf/d32DIzwdj4KGtrHQqFEf7ys3/J5z77OQrlKnfcdhtx4KOLhMX5i4SBT7E0hm7YLC4v8FMf/zAHl5/DMhW9SYr1gjVj15YJhBaTp5LJLcOcvTDHk/suYdoptYpHLwwpuDY5udKdBT5lzyFOYWZqhFLBYt+Lp9g2rfS9ruWgOS7VioVlSo6euUilXCLNmkSxRpbbLDYaimpp6Cw2WjimScF2OHp6ni2jI2zdMcHTTx9lx/YxpCbpBiGgISVUi0M8/Oh+dmxXmXumrhMnad8+PSeIQgq2QZym6JqO0HRUNyYjiHIKtottmjzxzBFu3rOdJ54/zuhwDdvUSfOcJM2wTANDlwRxQJolmLqGlBrdMMA0HJpdH9fWWe20mRyp40cRucjIcx3DNHFtA03TeP7wLOWiTS8IyUgwDUmtVqLgmPR6PUSWcOrCIl0/Zm6hwfTYEFMTVYQQTI0q903b0TFMSanokqRpvzBOyfIUqQkqRRfHMaiWXEzD4sDR83S6AecvL/P0U0e5/fY9GDKlVnS4MLeEpkvGhwYoFYtIaTM5Pkq17FIpuly6ssLkeJ1e0KNSKpJnOVGa4fsRg4M1emFEuWDT6oVIzUCXBr/2s7/FzZWblZQgCJUeV8sZHByiWCoxODTMoUMvcPPNb8SyLXTDoFgus9pcw3QsNF2FvIc9n263w2h9jMuXL2BZFufOnyHLlflSyXMpeC5nzpwiCn1OnDiOJgXlSoVyqYo0lKkZudLQ51fXfAJW0iUmClPr//Z/bwJmV9E1X/HXNWvIq+De6wV3r1GPPn7wMWWssrHYD+1ivPLvTaBnnbK5QeG8qjHx32NGuE4t3DAT3ASqRB/o5Xl27efmOXJTR28d3WwGZuvbqm3q0r1yJa/s9l3tgnnt1802MvBevdgP26+vQ7519Ta9jtE/7V5z/MiBuyxXDplSl2hSw7KsH7gzX4WU+/9frbVbv+/vAvrWD9ZuJ8RfaxJFLQQ2mp6To7Nt2wxpEvDEU/v5yH0fgzziV37pX/CzP/NzvO2Ot7Dvmcf46Z/6ENft2c13v/td3n7nnXz8Yz/D/GKTvXtvVFoKQ2IaOqdOnmZocIjlxVVcr4wudf78z/6EBx98gOXFRX79N3+NhIQ911+PoXtYlmSg4PKZP/iPHDt2DsdymL94ngMHDnDixGl++VP/nHanyZnTJzk7e4bdN97K++79AJ/73F9RGxzh9re8mTfd+ja++eBDfOQjH6daLfL8sy+we/cNnDx+nA9/+KdwXIPlhQ4333wzJ+eWKTiSgpMzNjbOjW+8lfe+826eefIZTl+8zMLzL1IrewwPVimWKsyeOclAqYg0bXJNXTjTWFHKdMOgVCowWCsQxzEIjSwTIHJFESMj7MWcOjNHuVTEtCRrK22koaNpEk2Xyr2u0+PY6Ut0Wj2GhipoOoyO1KgNVBGyX6xKgWnq9Ho+YTekWC4QhhGmbZIligZs6Dpkyljgm48/z027ZhBCMDQ0QNdvYZhKI2E5OlPDgxQ9G9u1SfIcXTchlTi2TZanGFLDMEySKKXV7FIdLJKmCkCGQcDCwgr1+jCapuEHAY7tsm3LKKWSg6ZJ+vR1uu0ujmviOWbf+0Kj6wf0/A6uZyOlpayRyTeyzMih1exsFDGaJnnHXZNIKVheWaU2VMN2XCzLIMs14jRhZmYMy7Bod3qUqxUuXLjEzp3bOHn6HAO1AfIkpVBweOa5lzhw7jT/4t2j2JakPlxnaWWRYsGjXPQ4PnuRkeEacRgxOTWKQGOwNsALB04xVh8iimPCKGCgUiZLc5589hg33bCTTruDaWqsNbqYtkGj2aXZ6DIyMkAUJ0yNDzFQ9bh4aYmJiWGE0Dhy5CzT03WSJKbT6aEbGp5XVHReXefs2TlKpYKaxZfrAnTJhYvz1KoehqFTKVYQIicIepTKJRYXVjZotIbQ8bsxaZZiWIpNYBoGw4MVLFNnYWkexytQHy5z5tw8W7bUCYIetuORpQmGoSzHpaapXDohkFLn+MnLTE4ME8UxbrFIknYY2f1OLpw/x2e/+jTTPZ+37d5FlmvkaUaaxYg+eBB9AbsQQh2rec5/fukwTz/zHD/5oevJ8oxer02WpMopMg5x+1b9WapohopeqJGEAUKJhZRTH2piYHW5getatNbWMAyDxsoKhUoZoUks20KIDNtRUQTdTgcpZf/iKvomNz6aVC7DSZyQpjGGoZNlgjSJqQ1WsRwTXUq8UhEEdJpNCsXS+sQ7QkCaxNiOw9rKEq5XUd+1OELkOVEQYDsu0uhPyAiBaTuUSorqaDkOQmTkQiJyDddzMA1HgeS+S5qmq+768vwixXKFNE36+1llAxqGQZZDEsc8/dR+9t6wE6mrvNO11RVKlQphkHLq5FmKRRfbccizXJmx5IJf+def56Mf/Qj/5b98httuu5Vf+dT/wUfv+ygzW7ZiWDbLq0uY0qRYqXLvvffyS7/485RLDgvLSxRKZRpLqxhWgccfe4zf/u3f5MZbb+LwsSNMTUwgERQroxw8PMtIfZRf+qVP8c5330O72+Sf/9Rv8dafvJE0y0myHNsw1HerE6BLwfxqi4Giy0DFoxOn3LRzRE0kGZI4UdKILM/o+j1mzy9SG6gACY6tMz05SpL19U+apOzZaDIlSxPGhgZIUhUmv9r0KTg2rW6PgXIBUKY3Tzx1hIFahVJBdXpNQ2dktEbRM2m0u1QKBaSmE8eKArl39zTffOBpduyYIAfWuj3OXFxgoFSg6LqEcYppmGSpMlTohTFpkrLW7lApeQCMjFRIs5ytk3XSPCdOI4JY6a092+Li4grVUgHTlMRZhhDK/ERKjeXVNSrFArph8c1vPEmQC7aMDqAJSbVPSQ7CiLGhASzdwnNMHEs5RXeDAM+ycSyLIAmxLJOJ4RrjIwPoEqQm8cOIHMFyo8lQpUacZEih0wsSDF25D0aR0p22g5SSZ2EYkOWCxZU22ydHmKgPMD0zjB/2iAKBrlmYVgHXKdDphViWg6ZpXGmsIXWNJM5o+zHjIzU0Ad/+1j527pzGsW3lpFwqUPQcemFAtVQgJ+Nv/+0LfP3+b3LX3rfS9X1AQ++DDNMyqVYqSE1jy8QEvaCL63pk5GSJMjCSugqTbzbX2DI6ji4lKyuLuK6D63oMDg4RJwmFQpHc1MiExsDgIIZlU6sOUioXiKOQcqlKmufIPOfppx7FNC0KxTKaFOsSYgBiN6CSD2ycT14xtFfe02/Kb0KB16oVr6oh/449hLtu+jGGrxt4zcc3M9LEZsqn6Lts9g2wlJwp2zhpXt25+0EGKlez3bJMtc02g6/NOXVZnvezfTfV25sRjBCggbbR4XvZUGXdT2Ndo7f+uuv3bwDAXGXDqs9kMyU0v6YBzUZnsO8y+3oplKLv8Lm+vNC0jTD5V42rwN2rWIJC6RFfaVrz2gfIjxy4y1Hg7hUuPa8tvXvdYO3vE9zFgcblM2fZsW2CLVN7WLxyimYn5sln9vGff//3cEtjfPYvP8u5k4eZP3+Cp/c9R6u1wq9+6hdI0y6f+9w3+MhH7uPFFw+x47rrqNXG6Ha72K5FkqXo0mBosE6eaDz+6JN4ToFt22YIgh53vf1Oxqa2YXqSPXtmOHb4CFvGpugFPudPHeXd77mT+fkWj3zr+wwOFHnPe96BbltUqx66LqiUSrx44CDT23cwNDzMtut2csfb7+Ds7AWeeupF3v/+D/LII48zWC1y+PAJWs0eu3fvxZA19r3wMJal88A3vsfHP/lPsM2QgYLBdx9/kgcefoB6tcpff/Hr3PMTH+d2AjXz2QvJc43EbyszklIVNEkYBLx09Bxj9UGEyFi4soRXlOi6i2E5aLaOZRgINILAxzQchodGMAyDOA7RhMQueKSZCpCWmsAyJROjIzi2TRj6mJ4CQrqpctPyNOkfDJBlKWfOXqFU8IAMw5CYRoE8hXarjWUZrK6usWfHdjJSgjjEKdjYuoMQkqWFJp7r4hYtLEuSJCmabuB3Ij5//9Ncv3MCxzNI01S181NwPYdUgKZLdKmhkZPnGr2ej9QllqXs37MsQTeU7imOlRGJZZggMrI4pdsOOTF7iS1To5TLXj+fTUfXNZIkJOiF6KYk9ENsyyL2ewgh+ZnHXuAT99yAVbAoFhWtVGomaR4zO3uZLdPjRInP/JUVakMDIHU8z6a11mF4SHUZJTlhHHD48hXuvaXOQK1ITs6F8w3q9aIq8BHEaUKpX8y5XlE5h2aCcrFAGMQ4BZV1GIcJrUZADrTaXeojVaIoQBMmhmPheQUKbgE/7GFZFoapc/HyFSbHh5GGRhKn1AaKuJ5DEIRUK0WiKMJwXFWgJynlQnGDCaDAR46p2wwNeORphBSCo0cW+P4Lx9g2M6A0X65FuxMRhzEryx1c22V5pUm1VibNEhbml6jUBtDIGag6SM0iCH1KxQKdbo9C0SaKMizbJIkjut0uSQKu47CwtNyPbdBwPRu34LK43CQIrjCx55O0/KN86esv8Rt3vBnNtBHSRMtBMyRZliM1iWlYhJGiCwpN8Fvf/hb/6U//kA+8J0II1a2DDNNQYC30QyzHodlo0261KZU9pCHIkhxNCnTdQNMN1laWcVwPTUgsy6HVWKZYLgApmhRkuQKmAHmm6Ji6ri7StmvTXG3jOB6WbaDrEt3I+xrUfk5cz8ew1kPN1YVcaess1j20hKZmitdBlq6rToztWgTdGD/oYtm20nxoglxT77HT7mC7LquLqzz4wDNMTtSxbYc8hyxTIDGJQ3rdUGXpddtYtkOn7eM6NpapgtazLCOKImzbIctUISI1HSk1yiVHGTdpigbkFUoIYQAarmPhFdUxL6QOKC3Ul756mI9/5AMUC1V+//f/b371134J19AZGhohyTWGxieYPf4S5y9ewrB1DJnSbDQoD9ZAmvTWWiRC8JEPvx/DEHSjDvXpCbI45P6/+TbDo7spVsYZHjZ54xvv4E/+5P/lrrvu5H3vejdLxjlFhcxznjt0lrHhMoa00aXANiUd3+foiVkaaxGmmWNZCsxIDdp+SC8M8BwLkOw/ep5y0QRSDMMmZ/2amrG0tkrRVuHzK40ODz96iK3TMyAS0ixkfHCYXGSEUcKjTxzkrbftxbVsaiWXuZUGcZpQKxdotNtKU52qfX7hygrFkqQXxAyPTOI5Shdk6pLJ+iAX51YoOK4C4JmGEDlCSGzLxDZ0XFsnThOkXO9qqCyuMA4hTyg4KidzpdVmoORh6Catno+h62iaQZ5BmASUPZdOkNCLcybHqkzV6xgyJ04gI1O6UU2dpw+dmiMXKMpyCgVDJ8000ASGKZEaKhS+10PTcqSwyPIc2zLJSHFNiaVnXJi/wlDZJc4keSZYbnWxDYNc2OTEWKZiZbiuzeyFywxWPeYXFui1WkxP1nn8sf3s2DGBpoPIDV48cQ7Psyi4SqMokDTaXaplDyEy9uzeynKryxNPHmZ6po5lmMRJgqUL/NjHMU2M+Qq7zT3U68Mqg1bTSKII1y2QZep8t7Q0j+c6dP0etqPMlNIwxnFswlAZhRW9AmurK7RaayRpwlBtkFany8VL5xkcHGZ5eQnHMGksLlFxCpw7dZra0DDtbpORkTrnzp0jzmLKXhG/FzA0NMLlhSt4heJG9wbAruvoHfuV4G6DjXcNcLf5j9eiLb4GuBPrz3k9Neam5X7+X/3CK7p3r/2Uq9a9qZ7VtHUg1X8oezkq4QeuD1ULqRzTzaBFff82osA2gRYlT7y2vm7zujeAYZ5ugLuN5TaBPYHY2P6XVyiUM+oP2fb1kfWzkdX71hByPQ/vKhrt1SNXju3rTaUfiBNeo3O3sR9T5Qb8ehH////BXZb/JmKdl5vyqh7m699Xr3zaJv7r3wewA/UF8rs+50+cxNYtMCzOL53CkC6OSDly6AgnT17ED9s1xC0OAAAgAElEQVTcdtMuDh08RDexuP7mm/lPv/cfse0qpmUyVBlkaXWRd3/wXlJpkWYBaZ5i6CZSaKBJ/HXDlNEaxRLMnrrIX/zJX3H//V9BNzIqtTo7d+1lbHSERx/+G7ZvvZ5DR17Esqo89eRTvO0ttyKyJcbHRrl0aYVjLx3kL/7qG3zgJ36aoBvy3p+4l2eeeJwrl+fwvBJepY5tZkSZT7FWhdzg3e95P3/5+c/zkx/7AM++8CQvPH+QsdExxscGIfURcZVW5wr3/vg9lHWHMPP5x//br7DUXMY9eZ751TWKBRfbMSkXJ2g0mxQKAs2ooGexoiemEaZpUi4WyXMNyAiDgCzIEHnGFx58nO3jY6DlKoQ7jdB1C9006fUUvefZ544yXh8GLScjQ5p6f8ZenQw1qWZopJT4QYBlmeiGZHiwymqzSbHk9XO3BJqpuhEIA9MzaTfbaDJHlxrdto9l6sRRiGlL5RzY56Qbhk4Wx4Shz66ZEWzToNVqk4Y+0jTRTA3DlUihQsszQOgSyzYxDZVnFPR8pGOjSXWc6VJg5BCnMejKzdAwbWzXYnSshh/4iP7MeZ4p11ByDdM2aDXXqBSr5FqALm3+8b4jfOGX38vKcmMj6PvF/YeolFyiIKFYcLBtiyTOGBkZ5oUXjmLpGp5r8dj39yO1nHazRafT5akjR7hnb42l5QattYBSsYiu5yRRzqHD5zly4gy3v/F6uq0uV+ZX0bSESqXE6vIauqVh2jmrS2s8+cxxZraM4JZddA3qwxWWl1YpOB5etYQQgiQI6bZaeKVKn6cP5UqxX6JpgEYYJ6y1mtiWiWGYBH6I5RhIVCi3NDSkqUKOG401LBPCKMawLTTd5MzZeW64YQs7psc4e26RasmlsdaiUioyN3eF6S1D2AWDpeUOo6M1NJFRGyqRZylxGJALi64fc+rEWSbGaniOSRSEXL48z/FTF5iZGiaMOjhOsU8lExQLJaTMSJMGFy8ssbDYpuC4ML6dxaXzPPidQ3x051ZMxyOMVPxAY7WFZZn9c5mGZqhiutfu8KXLl/nyX3+d+z50I9KQ5FlCmiQkiSCNE4rFElcuzTM0PKgmAeKUPFXmLKqIzVXmm+VgmgZ5npFEEY5bQNMNkApQttaWcbyCAgxpjpSJMhQxbGWs4ZoEfhfdtBBCBcOnqUaz0cbzCooyp20OfBUIkn7H2dhw0tR0HU0YJHGGaRr4vk+e51i2hiEtgs4ahm2BbiKFoLHcoFxRnZkoCLjxDTvIs4RWo4HtOui67LtnGti2jZAxmnSQQlMTElLHtGyyJEY3TOIwUXmVaYimJeToRHFInmXouk7sr6JbJnGcowmr36EUJP14il6nDUAShXSaq9x65wcoFW1+4n3vIe5F1AYHibQU9IzW4jzD41tpNBrMTIwzNFDjyJFjWLZBp93E73b4my/8DbqeY7sWTzzxHPXRaSq64Nzx/RQLkuqAyeJKh3vf9yE+819/j0rFxS0YPHTgYUrVAnHWY8tInTjOMQ2NQ6cuMThQ4y++9hJvvqnG7TfuoRXkeI6FZaRkqY5haERJimWYXJpbZM+OKSxD4pg6sxeuUHJdNKFowWqSTNDsJQxUysxM17BNiWvpdDpdLJmy0PR58vuHueMte3FtEz+KQCRYVk6lUKIbdil7JfJc4FgGQmQMDhSJkwTXNrFMSbvT7UcwZMRJxkClSJLBaqdLlqfYpkG6ThcTyjHY0otASBB1kBQ5f6XB6KCFY5r4YUKWJWR5riZeVppITaJrSn7R9bsMuAa9IOTZQ5fZMlqm4BisdH081+JvHzzI1u11wjjl0adPMjNVpFi0GCjbCAS9ICVJfGxb0YbPzy2DyJhf7jBUGaDVaynTLsuk1fUpui6LzRTyBEGCaXlcnl/FtXVKno1uaEqPJyyeeO40E/UKmgZjwwMIITAMi4FqlTOXV9i6fZoTs5cYG66q2IkkUcwBXUcKKDgOaZZgGSo3UBOKIbB96yhF1yBOYgxd0vIjik6BZ754ifMnL/FzH/w5ur0uq41V4iTFcT0uL1zBcm2SJMHvhZimoFiqIQyJ3+uSozqbUjMxdI1z585Qr49SrY1w8dIivThgqDaMoRvoUhBHAZZt0WitUixVODU7y/j0JGmWY1kOhVIRSzPoBQFDo2MkeY6N5OD+56iPjmO7NmmSMHHDMN1LkTrfrIOX1wBgYuMHLy+36bG8f7Z69ZP+buOHde/gqm5RXxu4Gezl+Sv1b5sB7g8bG46Um15rvYO2kSf3CufO/iSJyDduCPWaig2yvll9VWBfq6Ywo8pSXf9f6aFB9JdZN7HTxMvuzdcc/f2wftM02Z/s6293pszG1vVxP8iLQ3Uq+0Ajf/k5IPrsGI3N2Xyb13X1/9eiYK7rCq9mE/4IgLvsN9Vf+abb6x+v9aH9z9DcrYtVq26Jr33lS4yPDzM8NoxjOizNz7Nnz43UxybJ8oR/+s/+GfuefZ6/+uIXuOnWGzhx+gieUeDIiy9Rn6hTG6nzla9+nbe+/S78XouUZYJkiXJhApFrhEEPjYTmaovf/70/gEzy/PPPc+utbyBNfbZu287/80d/zI+/7/2cPj3LSKnIsSOnaHcjrlxZoTF3ivpIjUMnznHLW9/F2uoiU5PTHD70EqVqlZNnL3P6xAkWFpa49U23sWfXjTz99BNUq0VKnkmaxHz605/mne98Fzkpb3vzTnbv2kOr3UOzLarlGhcuXuRbDzzETbfcQrfV5dyFizzz1HF279jDl7/2ZX727rcThglPHVJAYXigQNRewfNsMsvFMgxFJeh3qF46cpKgFzA4UCGJErqdHrVCiVqtpgrxfntfOf9l6IYkiVO2TI3i+z7dtRZaLvjSt5/khh1b1SxuDkmc/n/kvXmUXOlZ5vn7lrvHHpF7ppSSUlJJJdXucpU3XBS2sTHYBrvcxhi8AM0YaBpmaDxMD23M0AfabMa4bcCmaQaGmWbzvpS3cq2uVSWVpCrta0q5Z+zLXfuPL1Ilqapsg0/3mQNfnjw6irhxI+JG5L3v877PQhKldDttPN81BaPlsLC4jOs6HDh6gi2bJg0VIA1J4wRI6YdtyqUiCwtrBijFikSk+DkPiXFby5KEXi/E9X2EUiwsLDNSKxPFEfm8j1IOygYlBY2lBiB4/KmjjFXLZgIiBdqyuP/RJ9kyM2m0Q6RDSqpFvdUinw8gEzTWWjiOMdDo9/p4vnvpu75xYjEXMWUmGwKUtviFR5/mYz93J512n1ary+ryKpVSCZWB57p4gTcMsM5wHGOiMT01Bhja7PTkKOMTY/zxF/fxyt0uU2UDAISAbi8kS1PanT5LKw327N7G3JZp9h88SamcJ00yKuVg2BkzOiTXsXnm2DwvfdFuHM9hvdGkXPZ5+ugZckHuknV/vd4kn8/Raofk867RuJAQhiGDvpnC/s1nHyJwLaanRrhwcYVz80tMTY6gtGWMeSwDMFaXGgRegOuazC0JQ9qdNHbxmOeslHKcO3eBnGfRD2Nsy6JWqxBFCeNjZaSQNFsdtHKIwgHr9Q6+5+C6NsViHqkUC0vrlMtlcvmA6ckRkBLbcREqxXJshFRkSFxL0Wy3GB0ZY3JyBCsLKW9/Cf10wFe/cYQ37ZzDdtxhpEBKPp8zEkohyLKNiVbKPcef4VXv+Ff825/bhlZmQiWVxrId4ijGdl36XUOzVVqhlKZZb2K7rjEVyhIQ4DgWtmURRyFLFxYNlVVKE4KuNEII/GG2WZqmrCwuI5TEcTzU8MKOiLBsy5iutLqIyEyS/+Ivvsott15rLuCpiSmIwtBkEgkJ0gJhwJfnW8Z0ydZkWUbY72E5ZkKoJJw6eY5KtUyGQGsTx2A0qaZTbNkW2jL5c/ligShOjbFRlqGVRRL3ETIlyxRRFLO2uGo0IEPbfaUM3Ukqo4FNUohCE0cR9vv4uYB+NyQoFGk06nieRZJG2I49pBqpS9l/Sil+9yP7eMuPvAktNWdOneUVd34fnmfzxGOPsPfaPVjax7EUvudTLBY5dPgZJkoKxwkoVMa5sFjnNXe8il/7tV/nrrt+lEazQ7kkaLeX2LRlinY/wfVzPPDwE/z7X/vf0Y7gzNlT1PJ5/uA3/m+2v2yMLLOIEvjc3U/Q6vYIuz1GRipsnx2lUvSQysZWCeWcQxh10cIydPfMAI9+GJIv5PBdDyUtRktlzizWKQQ+zV6fOEmNWYZlcWGlTjlvpkHGHEUgBJSLRbZuGWcQRdiWYt/B42yerjGI+riWh9YZ8yvreLZDb0hBVNI4ZSbDKa2lBGEckwlYbTYJXAP0jhw/z6lTF9i0eYIojoiiAf1BF6U0Aot6u4kEcn5ApZAnJUJKizCyOL+4xuRoiSzD0Ej9DCkjtHTIeTnizEzdZsZH0VaMlBalnEuzs87N112DpTNIEyZGywhM/EgYJebcEniILKPR6ePYtmksijyVokua9QncIpaWOJbFIIrQSuJ7HnES8swzpxgbG8V3HJrdHpDSG4SXJuXTYxVsS6KV5qmjp7Fti0rBZ73ZZnJ0hDiJmBwrsdZo4dqKJx5/hl3XbObhxw4zM1GjO+hTLTosry/zyKNn2TRtsvna/Q6O1iRpRncQ0Q8TAs9Gninyg7t+BNfXNJtrZEmCJTWPP/oIu/bsxfc8bMvCUprTZ48xPjbDU4eeZHJiGls7uK6L1pIoisjlcjx95BBCKO67936qIyUKfoGvfPHTbN9+DaVCkVSkjNRGGAwizpw5S6u9yuTYBO1mHce2sRyX8/Nn8ByXXrPNmQvn2b17LydPHKOULyK1YvMNkywfq5u6/TK63PNVh8+57Spw9/zb/KPLyOddn7//C9xw03UveP8L1rffyXSRK10tN9alMPRvUyuLqzitl/ZzmYPlxu1qeJ69fF2Nzzbo+1LKYVYel6Z02RBFS/Hs5E1qaUwVv9VrvIIK+dzbX+j/325l6UYe37ORDv9Y08aNx1+9/sWAu+xStt0/bn0n4tB/6roaoQsh6Pd7fPKv/4bXvfoOuv0mnU6PQaeHEoK/+/tP8/2v/UE2TU8wvWUbd739bUDMmRNP4zqS3/vdj/CJv/wr3verv0ghXyWXr1Cvr1IdGSGXz9Hvxkg83vIjb+eHXv9q0rhLMajwyU99kVtuvpmdO7fxwP33MjNV5VWv/QHe8Z6fBmnhOD71ZpOxyU2U8iV27thKo3mcPXt2MH/hLPmCh9R5lhfnGR0fY3JmM8+cuEDcH/A9r7iD9/+HDxAEipV6gwfuu4/HvvkwQiW871feRyYkWZowu3WcXG6UIKiwe9d2PvOpLzC7ZYLPfv5h3vzWu3ji6X1s3jZFPl/ioQfv5p6VNjeQsWV6M2IgObN2junxCSwpGfTWkU5hGHLawXVs2p0Og7DPxFiZJIsRMqNY8hEyw/EVWRaSRkYwGycRSplA4UE/NMWzLdHaxvFc9u7YQn21gec5pEnK6dMX0UIR5AyFUQpFp93j4IlTbN8ygzvMCALI0hhQSKGQIqXTjlhYrJPEKQ8cOMyeXVtI0xSpjS4lihI836XT7pHEMXk/h7IEcRwZu/o448z5RXKemR5YtqJazHNhYQXPdbCGk5iC5+HYFufPXsS2BJlISWPwCznSOKXVaFOuFklTmL+wRLGUN5ldSXwpg0sISbfbZ2W1QeB5SJWSxYJnsiY3bRknHAwolwJ832VxcQXXdgz1wlL0e32CwKfZahnQnMQcPXYSJRSFUoEoihjPNSkENt989ASWZfRZa+tNZreMUyj41GoFmq0WQismxmooJTlxah4tlbH5FqZQy1JBPvCwLE2706VQyNPr9BgbrVIsFUjSBNfTdDsNXNem0erjey4gqNeb5PI+AhOoPDc7yqbpMbRSVCpFpiZHaXbarC2tUxupkaQZWZaQC3z6g5Bmo43vOVhK0Gh18AKPs+cWyOc8Bv0Q3/WYv7jM9NQYtuOytNImTSSLC+vUaib4e3mlwfkLy4zVytiOwxMHjlIMbBzHIwPc4WcqFbQ6HS5eXKVSNpNWJS3iOGN9rUE06FGuljg738APHKJenWxkByE9vvTVp3jL3j0gFWkCSWxC7qUymrsojNCWRgG/9uDD3PvAw7zljbuwdEa328WyPZIUPN9nZWnZFFaWJgoj6mt1qqM1tDJusWlitA4mR04zGIRoy8ILTED84vmLBIFHFEW0G20sRyMklMpVkztHQpZEw5xCSZZAHIW4rkMYtUFk3PKi7WQMaLXWyBeKxmFTmyiCDKM72qBLZ2l8KaZASEmn3cd2fLIsIw4jRsZqICRK2aQJRGGXTquDUgrLdojiaEjzMU2jsNczFFGtECIjCXtEgw62FaBtm0KxQEaKZRkaUr/Xwba9oSGRMIDYsonCAZ7vkUQxjh8QJSaYOktSojgcbg+WrS8VI1JIbNljduuLyRJIUsm7fuIncZw8N123i5yrsD2P86dPU6mWcX2fQqnC04ceYXp2F3/yib/m4vw8t95yHYV8kYsLS9xw0x7KfgnL9lhZH+B7m8nnR3Edh+nJCoqY+7/xDT7w63+AlBZ77tjCYNBBKxgfrzK/sMYrb9tNu98HkWJrBz1sGsRJwtHT50iFQy4wenfPtrCUsfB3LIsoTklFhpQhWRZRLQUMopDAcQmjlELg0+kPKHgOrV4f3/NYb/dwHYf1VptS3riOzk6PoYRjAHdqjn3e84jiDK0UjjUM+dY2K40OtmWAgYkvsI3pSxohhaZczLFnx2Z6gx6+6yKlxHc9emGEEg5xEpFzjT4+TjIsS7Cw1mFlvcXpE+eY2zpBmkGl4OI7LqBMESrMcekNeviOQ7fXQCkHmYWcO3+WSqFAPzbNBYFivVPHd43RCUAY9vAcH9/1SFNwLRtba4RM6Q362NoCYKXZJopjLi6v4fsuWkoevu8QcztnCZOEvO/i2ja2lKy1VklJSNIQz7UYRCmB75hCPUt47PGDzG6eQcgE29IEnsfSaoedO2axbZetM1PE8YByPhiGgmdEmaSQ98j7Do8/cZTR0RJ534TE53yPOIm485rvxwkdsjSjXCjhezl6g5DZLdtwXJcwNLmPiAzXcRDSYnxikiw1fxdJappC62t1PDegXC7jej5a2+zcuZPFiwvc/pJX0Gw2qbcaQ92qRknBIOyz65prWVtfQytNvVEnyOU4d/Y03XaLkdoID3zzYYqlMrObtnD69Cn8fJ4/+q8f47rN13FJK7cBAp6n3hNXyX82QOCVwG44v9uYTF0+Ifsu6tCP/90nuOutP/yC939bMxQhrtCKPSfSQDzPY7Nn6ZzmvQ4dN78N6NtoJBs/hOxSkPoG6Nt4/MZPHJu6bQNgPhtgnl3GkH0W3IlsQ0MHqchIM/Mr1WUB6hvPIbmk3ftO1tV6uQ3A9p3MlC695qsndt/CEXPjOZ/vWP7LAXf/hKnd/6x1OTdZa83quQW67VUmJsfJF8pUKmV67Q6bZ7fxJx//c2SWUJmYwQ08RBYyO1LhIx/+A+78vh/i1z7wAf7szz5KEJR473t/gcB3+M3/+Fu8+U3vwXNGiLMeZ05c5I1vfA0LF8/h6BxRH06cPM7kxAjHjx7l5MlDfO+rXkM/MXl6YxNT6FKeJJI88uC9PLXvQdo9wf7HD5EOJIWgyCP79vOG172aBx54gO9/4xu4sNDCFnDwwH4mpqa58cYtzM7t5qYbXsT5M+d45ffdzpkz5+l1QyqVMnYQ8IFf/11u2H0TH/3wB3nLXW/n1LmjlArb2b5rjp3XvxLbLXDzjS/ny1/+IudXQ375Jbfz8JOHGBv32LVtE6cvNBgdGyMN62jlIbWN63hIJXBszWh1HCkUWjssLTfxPI84NvbmCtM9txxNvd40zptRavKqbEUWJ0jPNzRMQIkMbZuC4eH9Rwgsh2KxSBIbbrVta8bK5v+lUoE0S+l1uiBTRKpNDp9UNNb6FIIcUzM1dmwbp9Pq4Lo2CRlJBpY11PUpSb/X43PfeIK5zWP4gUd9vYmjJYVclThKcH2bKO5j2RrPtY2rnuOghDHcSLOUkXKZKAmNZsnyyIRicX6FYt7n3MWLBK7P+YtLVMtFkwEmjN1/Ojzx2I5NzvMQQLO1yn87Ms/Pv/OVuLbL+uoKWoYUKjXCMMR2bBNAqw3n/ZuP7mdu62aSLEFpQa1a4fDhU5TLOT7499/kDbdOgBBMT45TLAYIUkZHKmQiZGl5hUIhQCnJwSNnCXwbz9NMTVSxtcfXH3yK3Ts20++F9PsJ+aLPyvI6xVIeISVnzy5j2RptCaSGZ55eYHpijCxzyBfL3HPfPrbOTpj3mmQMeiFhFBIEPuFgwMFDJ6lVigzCkDCKCSxNq9VFaYljS4QliMKILE5ZXlrl/PwCm2cn6fV7jI7V0KRopTlzbpHp6TEeP3CScgUmpmqkWcixUyfZNDVDv98nzQxd7OjR80xMjSLShPHRIoNBhJSCJ586zsxUjXBgdD2FXIBrewx6A+NQqTQQkSYJuUKeYmUEbQmIu4S17bTaF9i/f5HXbJ0jiQ0NUGvLXNDSlFa7he8FKK1429//A7/zf/0K7/2padIso9du4OfyZCgQirDfI5fPDy3rje5O2xZCGNMTo6vQQ42EJs1ASIW2bQP2lMmY1FqjHTNptxyLcGDoviBpt+pYWpAmGWksaaw1yOU80mSA5Zex3Txau2ilcRyXdquFn8sBGa1GA8d1qK+tmumbFsRRSK/dxXbM5LHbicgyE94eDiIaa6vYrodAIYREaXAcm163h7ZMfppSmjiOsSwbkcZ0mk18z2V9ZRnXt4mjAVp7ppuvjL4vS1PCbp80yfA8f0jFSUniAVJZw3zAiEG/D0KibRuRCeIwxfV9lBIIBXHYw7IcwkGIZVls3z5Grz+FlJr/9MEPMTU1wxe/eC9ToyWmp8pExBSCAisraxw5doJypcb8xdNs2note3ffSDWwWV6bZ2JimupojZGxIlF3FeWmFGplnnnmNL/4S79MOQiY2zrO2eNHuH7PXu74oTt599vexdP1Bzl74QCj1RrtXkqxmCcXmKgUz5Y8+MRJFheXeXDfGXbv2Ewu5/ONb56kNuJia02r1yNwHdK4S4ZESE1MjEhSAjfHl+57mkpllMBVPH74JGcvrLFposoXvvBN9uzaRr3Tp1woEicRWipsSyGlyWWL0wHL9WV816Hda9IfKOaX65QLHkpnOLbiwkqL8UoJIRJW1hvsP3CcmU1jhg6vBUIoDh87RzHv42jBSr1Fzg/oxZkJgU8kR06dpVLKIWSCUjaDOKKcK5HzJFtna8RpSrcf0+3X6Q0U7Z6i3W1QyBnqva2AVODbgihRhP0WeU/iOQFo20x3EygVXJqdiDACx7LISGi0+5w4t0AhZxou9dYqnuNia5so7pFmilPnF5mbGTdkc63wbIttc9P0wphS3ifLjMZTS0G5MEJ/kFLKlXhg3ylGKiZrsRA49MI+hZLPffc/zdR0Bce2WFhtUvAFnm/x1W88zNyWMbSAb9x/kJnpccigVs4PpyWa0dEqhZzDucU1XMdGCMmnP/AEDz70MC/e+WK0pel1I0zvQzB/cZ5iqcSpUydpNZuMjY3iWC7Hjp+kUi1jWZrllQUzccygkK+wurw+ZKTA1OQmEAlHjh8jVyhSrVXI5wtkGYSDAUJCtVYjTQW5fAHfD0hSiPt98rk8uVyOVqfN9XtuQkqF63kMopC7v/Z5RuZG2VbbtlHIXQHUrlb8XGISXtrohcCaePauy7e5evt/BNjbkd/DttunX/D+79hbYvjv1eDs+TVkVwKPJEuumO59y+fMuEQ1vFz3t/HcwCXQJzBOyiYS6vlr/EuxChmXWBZiSM00XieZAX5cBnKHsSrfSWD4C74n8W1MPb6DfSRxbN7fC1BIX+g4/gsAd8n7GXJ4xXdiR/o/cT2L0E0GigJEkrJw/gisHSMYmSaMTQevUK4yf3GR667bw0c/8kGSXsiFk6f55V/8JeqdHv/6Z/5Xbr7lFgLf4fyRg3SyAe/9N/+eV770euYvLvHSO19BZmcIEXHHK19JL42ojtaIOss8eeggL771NnJewJe+9Gl+4sd/jiRNePrAE/iWolVvcOCRBxm0+7zsldcR5OY4efIAhdEJNu24gb/7zFe47babiFLJa177Ok6fOEW/28VyLH7yZ36KO151B91Gj4ce+irLK4tUR8co1yawrIDVxSUKgWB1qcv2nbvpJAlve8/P89EPf5AnHzuGsldo1VtE/Tqzm3czSNZxlcfffvKzvKzks2l6kvW1FrmgwtpaA0cLlOPh+xaJUJCazx5LIJQgzTL63QGfuu9xbpjbjJDgB475I5SG7pRGKWlstHFSgpQGAPa7LbI4Q2kb5ZiLchwnPHXiNLfduBvLVfS6fTzP4fSZeSYmykih+MvP3MO1c5twdEaaSmzPaAfazTYXV5apVkrGOUoLHMclHETYloNE0eu28HMeSrrEacyurYbeKS1YXmohSckwgMMNHKKwj0htPN/GshUiS5GZpt/vYFm2oSx5HigLkUF9tc7YRJUkjalUikjXYny0BKREaXppWpQMA9FXllcJigFpHKOlw28dO8tbX7qNVqeFF/gUKyaPyfNcTp46y8ymCYLA4+TxM+zdew1xlhH4PoNujziOmJub5a7f/jwfeucOosiYTIgsodk+SaU4hpQWT+w/yehIGW1JLNthZnIUQUYURaYD77lsmx0nHIQsLq9SLHqQZnT7XWxLU1/tUKsah0Rt2wilGSkXWW+0OXX6It12h6mJMovL65QKeRYurJLPuUMuu8l3s22bTGTYrs2g02O91cXzbAqFgAwx1BpZCAla2SBCwp5FFPbR2tABoySmXM7juA7Vag5L2mjbZm29SblQotXpUShYLC106PRbnLnQQIuUsWqFJM5o9wfkchZZElEIfLSb49TpZXzPw7JtFhcWKZcLHHzmHAmC0VqNNIFOo8kjjx3oJRkAACAASURBVB7hqyd73PGqV7F05gKfv+8gb9q119CjBhGP7n+KqcnK0HjHNRMyEti1l1tvbtBtzRM4Gu1XQCiSKEQpidQ2GQm249DvDlCWJE0iuq02juWaPKA0Yn35Ao5OSTJBlkYoBf1eB9dxSEWGsgxt0nE0ZAIlNe1WA8c2F+BUKNIUet0WXs41IeeYEGutQIiNbjC4nk+aJKRpTJD3icIY23EY9PtDWrLAdl0YhjO7rsWhA0dp1JuMTdbwAg/bdhn0uqytLOMHecLQTMotyyLLYhP5EMWkKdiBhZ8rkgmJdiy07TKIM7RroYSg3xtga5tmvU6ulMNxXdZWVk0Mie0gpCYbOkOGgwFuECAV9Npt0jQ2TrxSGxo4Akt7hGGHbruD4/sIqWh0RlleXub//cu/4i0//CN86StfwvJcpjdt413veDevff1d/N7vf5iXvPhlfOw/f4y3ve09RFEDqTt4XomRqRm0Z1MdLTGIBqzXI4qlEZaXVul1u7z85S/h//zVX+eut76efr9JFEWcP1WnVAv4rX/3X7j9TbfypXsO4+UKHNh3mFgoyrmAJOqwbXqKmaka01OjWBa4lmLbdIF8ELDabFDO58gyRTeEYuDS7XVoNPqXpsGjtQLtbpdMZMxtGmd6rGyiMHyLkYqZ7tjKwSLEssyEdhAmPHnwFNVqhXK+SD+McW0X1xFU8qa4W17vkCQRI+WhOVJq4TgW0zM1bEuDlAg0kpTxkSrfePwYj95/hJmt41iWxLZBCUW732Pn7DRfvnc/c7PTCARJmgIJgzjDcxyyJMHVhv1gKZe7v/4kUksmR0aod7rme4XEcvJGC+24SCsgE4IMRRynNFodSl6Rh/cfZ3S0iutolMiwLTVs8NhkWUpgO6y311DKAaHp9bpMjFQRUiFIkZgmslAWS2st0izm6WPzzE6NEcU94qjHxbWElD5bZyo4SpLzfHr9iJwfkGSCvddMYzs+9XbMvV8/xI03XsPyygpzszP0IlPIz81tQinB/MISrU5IuRigpI22EkRm88Shs5w6s4ztSnbnb+AVk6+gWMzTbjS4sLRApVgk7rcZHxnh8SceZeumTYyMVBFaIzLJxMQ4aZKwVl+jXK6SpaYZ2uv3yBcC+mEf23MY9NvUV5dIs4ypiUk6nSZZDFoq4ihEK4uwH5OkKfX1ZfL5PMtrK3i+z9LiWSbGJkjSDGXroVYTXNtl6+wO7nnoc+wavwZ7yMxh6Ki4AWyAS7zBqzV3L1AUXgn+sufe/E9Z+UrA73/8Q7zq1XdcwRS7vBY1L/UFKIEb2182nbwcMF0+LduYo0g5jE8gI0uzK6d4zwNILp/oSSlNo3wI8i7fZgPUwdCsRXIphzEbBgxKIUlJn6Nh3HDfZajjG2pNkFJzZVaevPRcpFfq757PTfPq9Sy1dChnuToX73k+zRc6LkqpK+ZSVwPOy41jLl//AsBd+v6Nr+H/Xyd3mYiGmWeC/fsOceSxr7GwtMjsDS9nZHyCvF8jiRPW1hYJfIu//+RX8XNl3vqjd/Gi22/iqUcf4NP/8LfMbhrnY3/024yWS9x++y187GP/hUopoF+v83v/6Xd44xveQKvTRMgBUdjHQrG4uM7WTbOcPnmGffv2c+ToEX78J97F9MwkuVKebdvn8Lw8ji0pFPI0Gh3+8MMf4gde/X1ct3cvs1umaXfWWW2sstZocfbcCqfPLuCIFr4jOXfmBGO1EvPzDbrdhNe9/k2sr7c5e2wfliUJigX2P3OC5cUG+/cfYnp6K2trLW679TYOHz7Fi2+7nu3bpjl/ZpFCrka5mqdQreJGKbX6KltnNmMriycOnqQ3iMl7NpWiC1mEkC5xZMwhhBCEYYJtaxxXs3Wygu95OK4NSAb92Dg1hhFu4OLn8wgZ02o1SZKEOEop5IpoZfNnf/tVbrhmKykRkLFryyZMNgsoLYGEcjlg4/t23Y4tJFHKoD9gvdGhUMgRDvrkch6lwKPb7ZHP+0ThACGMeUoUhtz32H6SKCGf94mjGO1kpLHROB07cYapsUlSK8X1bIIgx6DXo98LeeiJo4yPFNG2YnFxjZxXoNvrGpqaECRxPCwkQ3zXIgwHxjpECEwYpySOs6Hhg7HF36Cp5vIBZBKRCcIk5B0/fgtkKRLJJz93H9fu2sGg22NxYZlqqYitFL1ehO86BL7LysIiX7nnMWrlIn4Q8Kuf+Ap/9J5dRFEIgFYWgoQk7g4B4ICZTdMEfkCWwWAwMF3mJKHf75MkCZ1OhrYStJWRDwJOnFghySJmZiZYXq4zMTlKt9+jVC6YC1GcImSI69msrLfYNDNGpVygVM6bzqxjXOzq9Q65IODosbN4jkM+nzMh8Z5HEPgUCnmeOnSScik3DOM2up2LC2u4rkWhEHDh4hqjIyWEgl63h1SC5aVVLEsixdDgoztgcnyUo8fPUyrmyAUuoyMVWq0e7XaP0+cWKOY9XM/h3PwCkxMllAXKcimV8hx+5jSlgk/gOTx99Bybp0dRSmApm7/6h4fYNFVh585Znjgyz4033YhQFj/4mpfwUx/9b7xh2xxaa6anRy9pF+IwQVmaH/30Z7l9b8Q1c3mUkmh/xEzekMOsOtNh3sgrsl2HQauB1gLPzxHHKYNBD6U0jfUu5eoYQivTLQVsyyGOY0SWXrrWRVE0pEuC63r0e30cz5iaaGUcMoUUCKWIBgOU1sZ91nWNwF2qS80I4+JoviuO45jpoGURxzFxFKO0yQ5TSlKrlZmcHkVI6Hab5pyhJKVKCUgQUhANYhzHH7rnGm2h1ookigDM38nQ/U1b1hAgm9ub6+uUa2XSTECa4Pk+UiqSOKbf6+K6LikmZsQYs0jiKMbxfJTWxENGgFaafq9DmkYEhWBoV54h1B5qlVHe8uY3EcYdrt2zjaNHjvK//dL7+MrX7kXKlHKpwOYtM/zpn/4pc1t38vDDDxP4eZYW1jg7f5Kca1xMbVtQqVZYW12hVh1DEfBTP/mzOHmLd777x+j2Eg4fPMtvf/BDvPNd72JqcpxDnQNcv2Mzq40WtYrLiaOLVEYLFH0HrT0G8YAsNZOy3qAPCLr9NgXfYb3Z4e4vPsHO3ZtBCKJU4Hsunu2SDKmohcCm2enT7hp3zdVmh9nJUUAMnYwla/U1lGVcUtdaHbZNj+E6mma3R871UEqzvLZKzvchg7zvDiM3lOE+CVM0ySwlS+IhXdemP+gTJxmVSoFrdk8wWsrT6g3wLJfPf+UJrt+9hTRNmJmqGPovGa1ujwtLK1SLOaSQKGWm2VrbZAg2b6qxWq8zM1GjP+iY6bVyOb/cwneG1xIpiZMYLWyyNOWbjxyhUC1SKuWpFnykgH4YMYglJt4HvnDPU+zcNoVUggcfOcbs9CgF30VIZSJDkhjfcciEccYdRAlr9Ra7tk2bolFqltZXmRwtEXguWpprwlPHzjE9NsqF1Qa1Up5mt0uYpAwGHW7aO8njh0+weaqGZ2uSNEEJQZpmWJYiU5KZ0RInLyxSypUMPTqBLTN5gpxi6bEWQVJi+9hOmq0WlXKFXLlMs7FOlkGQL3HowJPs2LEbx3FYq68Q+B4LixfI5fJ4fo7+oIutHD772c9RG60gNrJrwwFpmpBEMVPTszTqDZZXFhj0I8rlMo16jzTNKJYChNS4XsC5+fnhOS4jFwS0W00cpenHJldyEIbYls3dX/0ab3n3D3PmqVOMj46b82E2xD7ysinec4p28Ty/w3LhBamK36aIvAx0vdD95w+f4mWvf8kL3P1ttGPf8gVkz/t7eQD6FWD3BfdiLkDZZYHolx+7NH3WFfPSY7Ls0mu7RN0UkjTLsLQ9NDPhCkBoHnPV2zPe4ldM7i5/7Vevb/deLn8+s/1z9vAd7/P5br/iGLzAdPGfPbiL4+T9WZYOcy6+Nc/3uY4+302v5Dtf2dCowtY2a+urlO0Y5Veozu7CTnoIK0ev3SEOQ37/d36X1fo6vuMzNjrKZz79D0yOTnDzzbciBbzu9a9mpDZCRsSNN72Chx5/nMlNVf7Vm99KIVfEzrnmOhalaKkZmRjnxOFnkMJifa3JuYsLPPDg/RQreSq1Cpu2bMH1ApKww2c//ymyOE+9Nc+RA4+y97q93PP1r5PL5bj9ttv58R97B3d/8Qvc+X13cuL4YRaXl3n0sSdxvSL3fuM+fuZnf4HFxSWUrdi+ZY7l1XV2772O6268DWk1ufXFN1AbKULap1ypIkVAt1Nn0G1yfrXOoSePMj5e4uiJE9z11p/m1GP3M+nnOX9xhe3bxjlydp49c1sQWpGQDuMGOoRRjONoVleaWFqhhkLbTqfLfY8/xeaJcXzPo9HqcO7iIuVSgXAQ0ut28DwXS2uU0EiZkaYx110zDTI1ujkpOXriLNVKASQoZTK24jBBSIdsaO2+tLBGoeCTy+VIAW0ZUwdI0Zbm/MVlRqpVsuFkkUyweXKcWq1CEsV0WgOEzEgjAwocx2HpYoPaWNE47ElFv9dDKUm7NcB1Nb7nUCwFLM6vcc++g+yYnUBbFitLazz45NNsn51mI+vPhFGn9LrGRcwcM4tmvY0feJe6cGkGq0smWPpn9z3Nq68fRwlFp9vnxut3mWDt5VXSNGVsbIRWu8PJE+cZmxrh01/4Gltnp7juul04rk2z1eLO3TaZEgiR4dgWJ09coFDOk8YQBBb9fh/LzZkOYCawXWP+0en0aDbbaCUpliWdbps0zUizlFzBJclSkgRKpSKP7jvE9OQoaZJy5PhZcr5HPzRmCOPjVWNCMizg19fq5HMBjmtz9twClUqeSilvTGJqeVrtDt1eDyUs5s8vMzpSYn2tTRiHaCVASqq1KsvL61QqHtVyjdXVNeKhuUqWGidN27Zp1FvkSzlygcfC4gq7dm5FCotB1ObC/Do752aYnKyyfds0R06cY2LcZCqem1/GsvTQrj8jDkOOn7jA7JYJysUC9UabkWqBQ4dP8eIbtjA6biazX3jkKC+/48Usr86T9yNOXwh5WbVGODQRzjJDfdS25kf/4ZNsmhrl59/7IsIwxPE9sswlTQaQJaRpggC0zOh1+maSooTRqCURSRxfymOzbJtCqWByhYQwId5DPUSzvmYolFmGHJqxZJgg8l6ng+v7WBpDlXQMmLFd2xS9StHt9ghyOVpN8/lLqQzNzbYIBwPsYYh5HEdIqWjUGywtLFEsl8y5l6G4ngQpMpACz7OQQhFHRoOnlMXZU+epVqskSYpUxgFxbWUBywKtHZI4I42SoaulZnV5FS8ILpkQWdroBMFkRFqWZbJWpQHJaZoQxzFKGwprmhqA2G40sbQmI0Vre0jdF1hWgBCaOEpRymZ5vUgSSr5895eN9lbGvPS2V/KWu37MaKd8RW20ylNP7eeXfunfIAS892d/hl/5lfdRLBWpVnOMj03z4T/8z7zk9ltoddZADLAcQRwPuOutb6SQL3LttVsZqdbYvnUHnf4a23deg9SC/+9Dn2XuJZMEno3rW2zeNEO16HHm4jKFXB6pUk6fXcD1bLqDAY5lEXgecZpSyufZuWOGVKSEcYJnO4Zlk2VIac45+585TSnv49oWvusQpQlRPMC2NFkG/TCk6Hv045QsE+S8ACU1GWZ/9XYHS0tyvk2SCrQy0S4IRZzAPfc/ydZNIyyt91mttykEJZbqA0Ojz8ykq5jzafVCHMsi57o8cfA4t92803TlhzWDHHb8LW20z1kSEieCJBUcOHaaydERoiQGEjZPjhgXTdcBBIMo5uT5ZQo5G8fSDKKQTm/AynoTSxjmRLFkMmm1AERGiuTQsXOU8jaWFsxtngQESqXMbZpCSaMJvrBaJ/AcbC1ApLT7XWxbUvQtyoUS2jKg21Y2nhugrZQ0VSTRgAsrdUaqZVq9Ho6lWW00KBcLFAMfkSX4tqRcrqItzXqrQ2BpEiSerWh2uwip8SyFUhLbskFE9Hp9BuEAW1u85Zq3MxVv47Of/RS9Xp/qaO2Sw3W/P0DbDsVcQC5fQGoLhWRldYmpqRlanQ6W1iRxhmXZbN68CSElvU6Xr33la0xOzpDFoFAIpbj77i9w7e5rcSyPi4vnOXLkIGmacGHhPN1el2/c/w1OHD/BTdffhO0FOH4eZQU0212UNuOzXreDlJq5bdt58tRjXLfpBg48uY+R0bFLOZxG0MUVVM3nkDSvBhmCb4/ivouSdPvcNYzuLF+5u++m7s2uGicOAebV07+rgc7GukI7N8y8yzKj75fCxHBsTKWMk/WzICbduJYI+WxtMjTPyzamfelGMAkgueT4aX428MDGaxNXxC8kqZkayqsO+KXs13/0unoieiV4fQ5g5YVBm7jqsS+0/tmDuyRJ3g/ZZfapz7++W9eb72plFoIMIRMOHdyHlcTcdudrmV9aY8SJObtcZ6RS48yJ0ywvrJELEg4dOMzSwhLnzpyj3UkYGZ1mcWWV3dfu5uSpcxQqeY6dXObVb3wT192+izhOsaSN67uAxrMcjj7zNMrXFKTD1+65j899/suUR6rsumaOW198C9WxKtpyWF1vIJI+oyMVPveZ+3nHT/wgN+2d46Mf/RgjI5NkiSIZDKivLfPyl72I1eXz3PWj76TbB6VzRIlGqYgkUywsXeCOO7+HD/7On3LNtbt55NHH+JOPfILtu+bYsX03p06cJx9UqHeXefzhwyxdPMfc7CzH1pf5ibe/my9+5pNs2zqHG2zl5/74o7zc99i2bZpDx4/w8pv3IKRNlAqU49Cur1AoV/E8lyyLEVhYlsWxY2expCYcxOzatpl9h48yWilw6Ph59u7eihIQhyFSGAv3MIywtObQ02eplYtIqQj7IZblEocRlXKOOI2G7oIZnXafrz9wmLX2GtOTZXr9JoWCCQG3XYe/vftBdGyc1fycg7IsSqUiTx85S9gPKZeLJFGKpS2UrVleWqdSrOB5DlKmprC1U2qjZU4cOUved2k3uwQ5lyxLmJmcIk5iHNslFRFS2mybGUNbZrIhUpiuVhBaYrk2cZrS6Q6wbZdup4Ub+IaqIIy2aCPTJo4jsiwj8G2EtnjTm29EkpEm4Ps+aZby2L4DbJqZolgqEIURKytrzM3N4uY8tmyZoT8Y0Gq1OXXmDEVv3UislQmh7nX7nJtfZXG1zeaZGbq9JpZtAwohLfr9ENe1iKIYx7Yol/J0e3206JIPRomjANvNoV1FqRBw7PgFisWAT99zmNtvmOOehw5w2y27sVyLXneA65qg7SQxWX9RbD7DZqMNKmVkpMTdX3uMmckKg0GXXq9PoRQYB8ihHrU2UiZNUzzXIsj5l2jWjmWh7YRBF7IsxnJMk6DXj+h1I0qlIrnAYq1ex/cc0iThm48+w9pKhy1by7h2wJNPHWNyosZDjx5i145pBmHEgYNn2H3NdlzPgzRBpNBtdUnDBNuzsR2bUjFPp9Nm4eIq05NVWm0DPh87fIGX3fEGfC/H+rlT3Hz7tfwvH/8kb9m9Byk13WYb13P4P776ZX77D3+b195+Hu0WsbwiURRhCUm30yRLErIkGQaoK5RySLIUZQlsvwykxHFEEoV4QUCSRKaTriDLFGkSk2UZaZJgWyaTMklMNIJlWXTbHSzbuLZKpeg019FKkmWSaNBHaW1Av2Vj2TZKW9iOY0Kms4wkMW60QknSODE0uSS9ZFhSHakSxTGddgc5pN1maYSyJGEYE/e72LYHqbngS8ulUCjQbjVxXYs0sbAsFz/IQ2Ymf+vLa7i+h5QQhQleYOiSWZyYgkCmZEmCVC5SpKyvrpMrFEgSM0X82pcfYtPsJM6GvjXNUFLieCZHz7ItRCaHVPABg0Eb25YGaGYh0t7Ob/3mHzI/v8Cb3vBDfPyPP8LHP/HX/Ne/+Cte94Y72b/vMcrlIkePHmF262Z63SZv/7G3EwQ+Z04fZ3pqnD/+6J8xPTXL1m0TePYMIrNR0sF1CoSDhKmRMZTsMX/6GPW1Veb2TBPHkCuU+NQnP0f1lhrNfo9yIeD8SpdK3sKxbb76wNOMjvoUfQ9tCYq5HJZWCOFiWUYLnJCiZYqr7WFxk6CVaYQMooTT59eZnaqx/+BJJieqOLaFpQaEcYZru2ilqLfaFHJ5tLYRQiOFIowilBRImVFvNVFKYSsHISRpFpOlCi00tWqeVqtJrewQ5GyUpckX8thS4NmCdq+PbVk0ujHFwCeKQyxb4LkapQTL9Ta21iyuN8myDG9Ddxr3aXUTbMtltFYkScHSEkRqCkgyyEzG4SCMmaiV0co4NqepMSwp5zxsmTBaLZJJRZpKAltx6sIS+XyO2bEyjpXS7raxlMJ2TMRGP4pQIiFJI8qFHCkpnW4bRxewtIscmi9JpUizmCRNiBPB337uKfZcM8YgBJH1KeZytHt9Rkp5EBmlvIOtHVabXWypcJQiExYL6y1GigWeOXqWiclRer0ujz/yNKVKGc+2cF1NhmBxfQmShHxQ4Uu/dZgvff1eXnrN7Tz11CE2b97CxOQ4CkWr0cDSFo5j02muEeQLXFhY4sTxYziuh1I2nudRb9SJ+oLPffFv2HvdHgK3QBILtm3fQqGYJ5/zabXWOTd/gd279pBmMfV6k5npaWY2T6K0YnbTdiwtSZOMaqlC3O+Rsy2eOvgkJ08cZXZmM57nsbh0kZGRMRaXFnjwoXv48r57efmel+PaAY89/iCjo+PYjv3sNMkUk8M6bwjmNiZ0z5cT9z8Q3MFzM+++mzr3OVl3zzNtg2dneFc/1+XauWz4uGyoZ06y5FlwKCVpsmGIaADZ5ftLr5r0bexrgxIKDFU3zzptGqOTy4BiZsD2BuDcWFdn4f2Tj5d4fnD3bR/2LZ7v272Wf/7gLu2/P+NZl8xLX7zncS664v6rt/8fsJ7tcMQkQiJIWbk4z9NPHmJ27gYsN0Pak8TdZXqdNr/xgd/ge175PXzvK17MqZOnWBykrC6d4MabruPP//LPOfHMQe783pdy64v2kCmLIO/y+D1fZ2JkK/lCAeUpGs01fC1phzH56hhHDx5mcaVBFMWcOX2MhfNnWbtwik07dnHtTbfSrDcQnTonThzjzMV1brhpL2dPnaOxts51N9xEaz3EDUIa9TprjSUGScj3fO+rSJVPqzHg4Qc/gyMSKmOj7Nq1iR07tvC+9/0qr/2BN/LkgYdYW+zw0z/5bj79yc/z5L4DvOY1r2Lfvke5+WWvY2V5njte+hIe2vcID3/tIZIo5e3vfA/NfodyJeWW66/FOXKMc/PLbJvdxoHDZ1hbW6fZajI2WiXtN7HcFJHlEFZ6SQMzMlLGCTx0ZsKVayN5lO0xNWEiEhzt0m722X/0JOVSHs8tIJVFpeoTxYlxoFTDYtTWKGnxF5+5l+uvmSVLoNvuMVINuP7aHURhgu/n2QgiTuKM7dMTOLZFt9OnWMohJKRJTJqYHCUvMBEG/X5Krztg0I8pVDy6YZewH+IELkrYhN0QP6fw82UGvQTX1SAU3d6AE6cXOHzqDBOVPEk2wLYVoLEcG9uyCcMQkSUo2zJAFmNVL4Wm02zgOBKENl0zBaQxrVabIJ9jbb1O4NmkYx7KStDaIcUYioxXywglcV3PdPGksec/sO8pHEtTHRnB83z+9Z88wI/cVMPSmnarAyk4jketUuTo0QuUCi65fAkhLaJBRLvVwvMMsPM8F/MHnNLthnhBlTQDREKn3SIOI1bW2gz6Mf1un1e/bBdCCgq+JJfzyYRxaJufX+P/+eSjjBY9ypUyaZogZYYfOGSJQGtFrRKgtOTRJ8+weWaERqNJ3vfxAo8sG+DYmpNnFhkfq5BGMUoavYltOySJxPFs2u0uXmDMeCwpUJmm1ejguJr6epeMmHY74Ya928nlhnqzTpdNMxN0ex1s26JWq6Fthe/aFPI+CxcXyed8up0urudQGymjdcrRo/NEUUq5UqTXNzTkaqWA4wf4okPtujnOHH6aQqFPubaZN/3wm3Fvvo13/OZ/5M179/KzX/w8/+4//Cw/+dP/lve88+UI7YAw+Wphr4WfL5jMNs8hSU1shBpa2jfWWjiu0QcobeG4LoNBxGBgNEWgiXoDFi4sUqqWAZM3JZVGao0bBGaShkO72UXrBKV8QGC5Hto2hf+gPxgaphh6l3HLy7g4fwE/5yOzjPZ/J++9oy276jvPzz57n3zzy7lyqVRVklAASSAkkECSA0YCRDQYG9ttDxh7TNueXu4euturHcZhvNxue8bAahtsZqAxQQYECJQllFVBpUqq8Oq9qpfvfTeefOaPfV+plAwse5bXcu9aq+rVfffcd96Nv+/+pmabQrGoJTppThpHfQY6A0NBnpOnGVka6zoRZRAGIWmS4hYqJFmsQb9SYGSAlj8jFHkeIYycsNfDdhwEJn6xQKfdxPWcfhG8LryOgwDDNAl6Eb1uyqMP72fL9mkKZZ0QG4cxWZoze3qZ8fEhpCGQBuRZ2q+Q6A8puU4DzMmRpkUaZ+QoDMMiR/HpTz/Jb/zmr3Jq9gR7Lt3L9otGuOXmW7npTTfxh//lP/Jzv/wLmMqhXKxiGoJieZBSpUAUtxgeGcVUNT7zN5/iYx/7DT7ykV/kxhtvZv+BfVi2yemTs/zZf/1zLrl0F3a1iOlvYnR6iu996ykgp1Ip8cbrX88Tc/cyVisgyTGNGNPUvshGu82WiXF819UVEuQkiS4fz9Oov/FmkGQGZBki13UASRTpQm5LsHlqFFMZVKolXFPRateR0seUutczSlKKvstSQ8fy6+C7jCRLSNMM27R46pkTlMpFfNdjfrWOUgZKCtY7bZpd3afpmJIsl3Q6CQ88cIDRER8hcqRhYisLU+XnAafn6Gh+KUzSDBxb4VgWruXSCUKSJOTM/CpjI4OEqQ4rkRjUW13ItfRUGgZB0EWZWlESJzGWZRJnFl+583F838J2fO5//AjjYyNkKTjKIM1yBqpFlIQ4EUSZoOC6ZElEkgTYtkeWCyylhx8HegAAIABJREFUwNAbZAYS07TJRUxOztHT5ygVbZZX1zl9bg2pbHzHIjRgqFRCioxWmJNLk5Lv6TRBMsJYdy0aua4zMC2DuYU19j09y+BwlfWuBoJpkrJ5ZoRSwSIVGQaKs0srjA0MYFsus8+t8Yn3/QpXjF5Pvb7EFVdcQUZCqVjm7LkzVGuD3H3v3YwMj1IbGMAQkocfvpeLL7mUgVqVKI76ScmCKE/ZNDFJ0G6jTL2J7SrF3JnTFDwf1/WoDQ1Tr68xOjxOmsYUSkUct4RtOqytLJALxfDIKDMzUxSKLk6hgO8U2L59G5ZXwCDj1OlTVMu6Cufx5x7n6aPPcPNVt7C8tszE2BSHDx5gbGQco8/Av2j1GaKNufPCmXNDnvkiMux8cuKFt/Gjz5nnAaYQ3LfvXt51x23/LHOtkH1WaYOxuyBNkwvkkvR74vKs7887b5Pqpxhz4X2hme8LL8v6sn2R680+sn6HHQbkot9hnZ9n9zZ8bhuJmIKNUvQLAKWhEBj9JPANVdJ5ng8BSGG8wNSJDeuAlpyKPnP+j3noNn4HjTf6Z5JvfP1D3L9c+Px4Mct3YZrmq61//eAujT954f9fePLxiuDuX2Lp/QWDPEto1Vd5/tmDbN+xizheJ26FmJ7W8f/Yj93KqVPP0+r08AoDXHXDzfzWr3+cvbu28K7b3s61V7+BfU89QxhlPP3k04wODPI7//G/8P6f+RDPHT6EaVr4xRLCckgyKJc8ss46E5NbcF2H3bsu5tK9l/D88WOMTU5w8a6d3PX1b9KoN1hbW+HW225DmA5rzS6Hn36EMGnTava4+ZYbefD+Q4xMOGzbsZNvfO0hcgPe+IbXI4yYvXtfR6fbZXp6gu/efR+/8Au/wMjINL1enSce20e308F0Crzlrbfy6c98jp/9yC/xyCP3sbxwjoP793Pw6UNc9+ZraLc75MJmcHiMdnsd0zSpzc4xNTWKZSpsaRAFEZalGB6qIq0y8XoX5fQQeZksCzUTJQR5nvH0gWOMjQySJBGmtElTPdwdPHaS5XqDvTu2IRD9gAkQIkVIHV2uLKlj2oWg2+1w9eU7yTKFNCTfe+Jpdm+boV7XkirDMEiShENHTzI+PsyDTxxgpdEkzzIc18ZxbMgF3VZAoVggilK6nYgoTCiXXTJD7xrbskC73cX3Hf3izhKcfkT1seNnUIbQu82WzeLyKlftvVjXE1QrSKl4Yv8xRkYGaNSbKGXh+g6G0DtapmUxN3eWocEhTp45p3vqDIMsSyDX0k2nXxegRM7vPnOMG6/eRrO5yunZcwwNDrG21GDp3BoDtQKN9RamZZFjYLs2kxNjOLaFRPB3d3+fn75SSz8XF9co+QWiMKbZanJm/izTUwOUSx5RGJMlsLC0gmlKiqUCURxhmjZZltBudTGlSZ5lpGmq0xpNRaHg0WkGbN02Q5IlCKkIeglDg2XCOCIMtYxxx7ZpLrt4HNczOHt2iUq53N/110EbKysNikWfbi9kZLBItVpACMgzaLdamJaN7XhE3YT//uVHKZiCalkze4ZhkqcZ584uMzhQpdloIoXk+ZPnmN40zuHnzzAzOYLne9iOolodpNVco1Qp8eQzx9k0OUmaRXieQ6HgMTe3yMCAlmSFQUhtoMjq8hIZsLTaRijJer3Orh2bcByXTq9LGPYol30ytCn7Hx49y+vedDVZaGD7EpnZtDs9vFKFJ556lis/9B4efvhB3nv7BD/5E3t5z89+mfe86zU64ETkGDm0Wm0syyRNEizLQVm+/uAmx/c9gm4PQxq0W22UqTR7nKSkUYrIc0zLoVwpbbzpIpB9WWOmjfB5Qp6DVyggbYs8Tc/LlbI0IUkier0utmMhJIg8o9fp0G42GRkbJk9TgjClMjhIu9XGVDpoxi9o75ohBHEQawbHsbFcC5GlIBLyPNNMcW6RpRFSCVaXl3Fsj6DXI8s0GHQ9HwClJK31JpatWRbbcWisNlGOgyEVcRzrkBXDQikT17WZnhmh017Hcb3zMr4o6rFjxzSOa+uBSWoJm2FoyWG320ZqPEqaZJjKQVkWcZzoIcUw+L0/vJN33P5T7N6zG8vWkt1qeYjawAA33/pW1hZPsry4Sm1wHOkW+Ye//wI7t23ixPEjOMrCMEtceulOol7Krbe+lf/w73+b22/7Sf7g9/+I6bFtfPOb3+MDH3wPlmvz9GOHOLx/H1ddvZfpTZuJwxZlL+crn/0eI7v986W6AsXc4hJ7t88QxFkfWGcIkdDutfCcAqrfSdULYixbbwitd3oYSrG40qFWrmjpFLpf0bNNlBI4tiJJDUxT0u6GWErSi9vU/BphZHD63BK2HeNYxfOhWCMjZaQ0sU2dJFwt+mRkOLYN5LrAWplkIse2DGYmKkRpjuO4dIMYx7ZwHJtOEFL2XMz+pkYQxdx556Ncunsr3ShFSZOv3/Ukuy+aYbCkGVwpDM6cW6ZaKnDXXY+yffskhiFotHt4pkSZNlGcYpuKHGh1ehQrDmNDVVabMZfsnKYXhrSDAIOEomey0mhjoPjClx9j984x2r0Ax9EdqQhFN9Sl4qapkELQ6gVYSpHEAeS6c9B3FKZIGawUqK93MQ1JqVREGQZRnCCQdIIeBdcmTlKOnpin6HtIQ4NU37XYd/gkw4Nl9u6aYX55lfVmB8tzaay3GBooYShotNpYyiSIE+Ik4dDRORa+E/CFr/4D1+2+mjgKcRyHWnWAxvo6jpETRQEXX3wJUkmyLMa2bTZt3qqHeKFtEbblkGcC07Yo+B6+59HudfqvH4NisdyvbrEgzyh4Pt/69p1s3rwNzy9oz68QCKl0GrOSzM2foVAsYpoOruOSJAGN1TXSOGXp3DmUklSrZf76G59ly/ZtRAsdpmZmCLpdLrpoN7PzpymXKjoI4zxTx8ZfnA8myV+YAM9/deEYarxUFMirYYgfYsjUB15/6fUM76z988y7L72Nl9qeXkSSGOeZtwsvfyXZ4Xm2rX+9F8JJ+nLLXHChwPJCsKzrOl5cMbFxGxfWKmT0Gbo+i3ohywcbHzkXAuAXA6mX33+vfH+eZy3/CZTrqzGfP2j9qwd3SRJ9cuPrCz13L0XBL1oXIPz/P9cLPzsnywVZEvP1r36FseExrrzmOp49tI/JsWkyCpjKIwoTHK9AybPZe/ElXHzZVVRdSZJJegE0Gi0GhofYc/nrOHRoP1deeSmHjp1ky7atXPaay8lziUCR5R0tXcrBtRVnTi9gIPj4x3+FidFx9u3bT6Oxyratm7h07x7KpUEuufS1mK6k6Fh84bOf5crX7GZm8zBrKy2efuYppqdGedcdd/Dd7z3A5VdcQX1hjofu/y6TE1VsVSaIA7I85fXXvp677vouQ8NjXPuGK2ivR4yPjXLLzdfz0AP3c+jgfs6cPs3siTNcceWVHD92hCsuvYT/9wtfwJAOX/2Hr2O7FiPDo4yMjPFLn/0SV4qcQsHlxOxZVpstpsaGWFlr4PkuYdgmTNYxpUJKLe/L8hwhcsaGBzGEwLIlprTIkxRpKEqFAlkKRd9GGDl3PfAku7ZNU19fxrQVyrBIIxNh9tP5LIs0jrX+m5SpwSqeV8DzHR2E0t/FKxU8yHMmRwfYPD3G2FiNNM9RUtCst2i3tQl/anKMNEkplHRRrzQkc2eXKBcLmNLov+kLoiBmZaWJsgw8y6NarfDIvgMMDxQZHCgQxSFGbpDEurNsbGhA+5GU4vDx0/iOTRT0cH2fOEmp+C5rjSZTUxOAQMkcU+qAiBShWQzAUIJPnTjH7VfvIM1jhmoDCGFgmZKBAW2YtyzF6dl5piYm+xtWguefP4XnKv6vbz7JT1w5iuf5DFZKpFlGNwjp9kIu2rGJarXI0efPUKuWOXR4loFKjbHxcdZWW3heEUPqkAzHsTlxcoFiwaZc0qEffsHj4ccOsGvnZuI4IIxiCsUigpyFhSVELjCVTbO9TrnkI/KcXq9HwfM4PbuC79okSQ/TVhTLHpZtc+LUPIM1H9PSARjrzR6OaeIVfKRpIkWGZ2VctG2Sen0d23GQEoTIcT0Ly1IkacLaWovDzy8yOVIhDAJKJZ8kyWh3Ohx67gwFX+EWCxR9B89WnFtcpVL1MYRBpVwiCSOiSD+f1pstRoYHQEj8gku5WmbfweOkSU6SxHieQang4/oerU4X11WUgzOYm3aRpw65CZu2vYYwbLO6usAtt9zEhz/yy/z5H7+dDAe/NMnb3/ZaTNUmCrqYSleEVAdrGFISBaEGQ6bF6vIKfsEnzTIsyyIMQgrFIt12h3a7Tbk6QKNex/FsOq2u9pZJHcpiKEWj3qBYKqKUQZKkRHGIsnRnnBCC5cUVPL9AGPbwvCppApbtYxgWAh1U5BcKWLbuHzMdhzzT1QOmZeJ4NqatqwNytN9KSqkTDfuDV55nxGEMyH6xbIohJYWi9t/6hUI/HVR7E9NUew573R5pGvbrFuqQ53gFnzSJz4etpHFEFIYYpoGhJKalQe3q0hq2o5AKHNcnI0UYeb9bDRprbWzPwbKlrkqQqi+hS7X30LLYMJl8/ov7eec73kav19GhD4GuAoiTmKHBGvX1ZSq1YW695TZufsstDNRqDI4MMjU1yXOHj5OlFvsOPMzlV1yFYQgu2X0x1YpPmka88Y1v4H3vfSd//bnPcM0bruLIgeNctmsng+M1epGFbeTU5w6x55JrOSdOIaXJwmqLJ555nj07JwjijBNzq2R5gGMrQOCauuZCCC2ZPb2wRqngYogczzZJs5xqyaUT6L5CIcDse+h6UUicGDiWljNaShFEMY5l02iHFD2Xp/YfY+/OLWzsxqRZQhhF+K7P4loT1zbphgFKWSghyTPB6fkVMpET9h9bU0l8zydOBd974CDPHjnD5k3DtLq619BSikYrREp4zSUzZFmCNAyUNOnEERNDFVYbdVzXJcsF9WYL2zGpDRWpFAsIDL565/epDXosNXoMVcuEUUA31P7BUtHFti1KroMhMzzHhBweeeIIW2ZGcC2bpXqH2bMrXLprjLAva07TlE6YAAZBEJIBtqXvw9nFFRaWWowNVfrKQIPV9RbLjQ4TI0M0Wm3ml+sYpNSKHvNLDSplXX0jDQPLNKkVdPXJoaOnmBgbxHRsBko+ytT9opsmR5k9u8j0yCBnzq1QLpbwbY92L+eRp04yPTGOlbtUo1H+zU2/iCFSXL9AFMU4roPv+4RBB8vx+j1vWsLdaK7jeT7dbkAcx9imw9mzZ9m3/wm2zuzk1KnTuovWslGGpNVt0Wg0qVSrdII2Cv3a2bFjF7blQJ6iDEGapShbh9ZESULQCyj6BQxlEicJvaBNe73JWmOFXbv2UB0Y1D2tC0dQtsWt1/w4jz32IFs370BZNkmSUl9bwSsWcBxXh3qIDZTHS3HC+VlQhyOdRyr6HzZsYPmLLr/gwB8s5XzJuuvhb3HZa/bqU/kRC7Nfcb2IgXzxZRtfa2ZNnpdUglZc6PtGz9taOfPiRE3d57kRtAIbeGzDlSYQF3y/Dxz/EWbswoTP849DzgvePF4cqvJScPdq/jhdkPUKd03/z8vOI8swpHjF58LL0jBf5TZ+0PrXD+7SF8Ad/MsydK++cjIESRRgGVCpjmGXalQqPnlqEtGi2VpEqoi1tXnsVLCyuMwn/t0nsfIul197Kx/7+Ce47/4H+ZVf+2VUoUqxYNFq13nDW25hZGgIZZrUG20KxQoWTd0zlRlgKMJOxLlzZ7n6ta9j9vRpKuUae3bvIM9Tdu28iP/t3/9nhke24dg5VUvw3KOPI23Jffd/g3Yr4YYbbmBi2uVrX32AG978Vs4uHMYMA87NHef0qcOMD29lqb7GDW+8jvvufYDrb7iBxcVVkrTD5OgMf/anf8olu8epr56lsbLEdde+jsceeY73/vT7yPKIE4f2E6U245MztLsd/u1vfZyRoQmCIOIrd93NHVsncAoOtUqJ8cEajudguRbnZpcZnhzAyCRRr679LqZ9/gPfsrQ2ft/B5xiu1vjsV+5lemQIcsnI6BAYIdIU7JyZ4UvffpgtQ5vwfR9kRiZi4jCENCPshni2S7O1jmNLOs0OC+canDw7z8T4CEEvwLIsDClod7q6hJqsn/4EwsjxHYeC61Aqejxx8CgHT86yc/MEjfo6Ra9KtVyk1anjOg7dXkAUptTX2nz/4DF2bZsi6ub8j7seZevIBAVf98HpTj+9yxlFkU6Gy1LIYGSgSp5nlMs+udAJhmGnR7lW1MXyeU4Sdei2u7iug7IdHQett8F513supxfEeAWbs3MLHDh0jJmpEY4ePUKhWKVY8rBNk2a9yQMPP82WbdNUayU+e/fTvP9yycjQIHPn6ri2Tb3dYnpqjBOnl/Bcj9Oz53Sy5mqDS/Zs4dSZszi2ACPjvsf2sX3zFEGv208VTYmTmBOn57FNxfp6W6dFmlBfr0MOrfUexZKDQca+Z2cZGRzGtBIajTbdboDr2HS6CbaycVwDjIiMrF+2njIxMYQpDcIowPUcqpUKD33/IJNTIwRBlxMnT3DZJVsJw14/DlpqSbUUKCnI8gTDUpTLZWbGh5mfW2RmaoTTc4s8e2SOmakBjh5b5OKd02TCQEkdNFIbqGFZirm5BQoFj30HnmdkaIAkiTFtCcKi2w1xXR8DwfBQleeOzVMuWCiZYKoCtuvS6XWQImbpzBkGL7uW1ZWA1Mzp9UyiuMNgrcD7P/JJvvSpDyLsMlZpiKzfhXjPPUf5D7/zLW77qV04xSKt+jqu5yL7NRFR1O6Hg+jB05ASpUx0AIguKs9yA7/oIWSO6xV0f+IFXg1DCqQUBN02lltGaPKKoKNDUiqVmk7jtHR/n+1Kut0mli0wlIPtuBhK0esFgAFGov1KlknQ7ejAHGFgbrz2+zHYUa+HZVq6iD7LcBwfZTokaYg0BEmSI4WFEDmN1Qau65ImPZI+mSilwnGd88yx53s4noNA0Fpfx7FNuq0mjmfp1w0GUlkII9HyOtcHkeO4kgyTsNchS0OiXgvbK2DZPlmeIkRKnqo+G6Yj9qUQ5FmKIKfdXGfb5goT01cRhCGNep2nnjzM1+78KldffSWvvepKPvqJ/5WCX+P97/lpfvPXf43/40//nHe/773Eec7wyBSm9BgccXBdnYZ74ugxVtcW+Nzf/hW33fZjRHGLa95wDfsPPolKTdrryywsrwIVDh94hst3TVGPBH/3Z99g+qpRjs+ucNnuTTi2Tt5FmFSLEtd2IFeQKaIkphuGtDo9pkaGtI9NCvK+lzMjxDItZhfWCKKYBx5+ji0zI4RJhmW6mMroq7+Evn5qUfAkWR6xsFbn7HKXatkmTnT4juy/zxnCwFSSnIw0Vyw3ujw/u8yZUyvsvXgCU1koaUKuq3G+8+CzbN02zvWv3Y0QGUpJpKH1c1EkKLiKhdVFOkEHy7LphhH19Zb2zykwlIkyFbWyj+h/7ri2hWEopjePMlIrUG/HVAoehtCbb7aSWpqfZlgqY2W9gTIMOkHMps0zCENHn6eZwa5dE3gmGHlKkmpJr23bNLshpjRYb3eIk5SBchFpGNz//dPs3jlJkue0g4QcyWCtBoZBuegyVC0wWPaQImf27DLT4zXSNGVuYY2i59ENIp58+gjXX7OXOMvwXQfDyKm3m3iuDUIyXPYwMmi2Ix548DCjYxaOpQF1YzXgEzf8OmPJFo4/fxQpMoqlcr/UXWoQXiqRIDBNkzgOcSwXt19k7ntlHnr4fqYmN1EqlXE8B7/g4fkOjmuCSJg/d5rBoVF8v6Q9kJ7L8sIitWoVYRhIw2RlcZ72eh3TNLVxJ8uI4pSB6gC9bo+1ep1KtUqrVUfmgpltW0iyjCAMCaOYx48+RqPZ4KbLb2RgcJCoF1KpVfnmt7/OZbsvZX5pnmqlShiFfT/+C8DtZRK7LEMq42Wz/sa75CuREBvesh92bVzziSef4bq3Xv3i7/0zgLsffDV9vY3C8Y0wlAuZupd66aSUbASnIPSxG2pEzbbpTdQXncsF4O58F97G/fxDkDY/CNy98jE/fBeevrm+X/FVTuefA6f8qwd3aRZ/8lUZOl5l50K88ovpn3udN3dikBBjGga2YdJYmmV4fAthIjCMNlmS88xDD7F50xZkqcJv/dtPcv2NNzB3dB9PPf4Y99x9H3/0e/+Zyy7dxR//6V9w3Y1v4t677+fTf/VZ7njXO3CtjI/+8q/wjttv5/Tpo3gFH8cYIArrZGmCskt4vmL71mlmT8zSzSPuu/8e9uy9jCCB177hjWzfNUOx6NNorHPg2BGKBZc0VgwPDhCFIc16wEC5yBMPfpPt0xUmd17Fd+/+Nnv3XoV0bTBsFs6coFIrcmp+ltdf/0Yeeegxzs3PQhphioheonj2+BxvvulWCrUiJ48fJul1UZbF4uo8W7ftoFioct999/NXn/o73vOBd3Pb229GPL0fJSBOAj1c5TbPHjlJs9dhbHiALEpwzYwgTrFtjzxLIcnoBREil2RJRm3QY2KkgluwcT2LNEnIMDCVQ6vZYfvUGE5RaNYoyYh6EZahMG0bw1TEcYhtWvR6EcVKmUqtxOBAVXekmSZZkhLHKZ7vIvsMmDAkTx04Ss3zkcoklQZuwWGoUuGJQyeZGqpx4Pgptm4ZJc1y4kjgeA69bkSlUsArmGzbPEYSxLgFh1NLi1x3zSW0u2vUqmWEEkgT7n3wCEXfBaETG4Wh3+QcW6fOBd0utuEgjZwEk+cOH6fsWywur+OVS0hbyyAl2huYdLr0ShGWzGi3QixpMzE2DEJSKFTxCzaHDx5hYKDGmcVlpsdHSRNAxGwutCmXKyhTUfYtCuUiBU+nKo4OVjS7027T6YVs2TRBBiwudpkeL9NeX+Hyy3YSo5MEDUPgFXTEfbVcZGmlSbsTsLrWYnx4iP/+xccQZFx88TTNZhvf8xiqlSjXfHq9HiMjQ9iOie0qgl5MqWKjLIEyLYzU0HJGQ5InOblUSFORC4OV1Sa7L9rKM/uPMT42xPDwEK1WSJpmlEsFZmeXqFbLIHQ5eNCJicMEhEEQBUSR3u0fHKuydfMEvU7Iju3jWK5J0OuQdAOsgsJyPOI0o1wusLa2wo5tM8zOLTA4MoBlOxw8cJzh0SqGjGnWA5I4YPP0MKaSKNtCGIqMLpay8LwCTqHFsv0WJrZtwkhChgc3kyYpjz7+HL/28TdjFweIkwxTWUjTgjxlcnKYO+64gZ9853/j9lumsWyTTjskimOiqIshHMh1+qwylWZJ0pBeO8B1S5DHJHGCyGPa9QVdNG1pGXJjZQ3Pd4nCiDhMMC23D/QkOYIk0UMqUtDttrRfyzCRwtA9i6atGTbR92Wg6zospf0UwugDzUwAG/41LaXTQSlKTzxZRnu9A+huJEMI4ihCKaVDN9KUQrmAoSTCsHUOghA01hqkSYopHWzXJxcGWS5IkoBCoYShLBzPQ8RdDGWQC8iSlLAbYUiDOOz1A1MMRCaQpkGvtYorYzI80jQmTRM0mxizXl/HdX2W5hbwikUt9ZUKx/N55pnTON52hJAMDNaYP3WC40fO0Fzr8Md/8nvY0mKtsYjtwbvueC833vg6fF9ycP8BhgcmKdeg28r58v+4k7GxIbZetI3RyXHeevNPIpVLp5egpEWxWGN0fIqf+8Vf53/5hZ9nfHqM2miJpXYdE4uv3fld1KaYiZEy7W5C0SnxrXv3sXvnODmGBjeGw77nnqVYcil6CoSJ5/hESY8kz7FthzBKsEybIEopei5nFlYpVotUSwU8xyKM29iWohv2yLKENIs1+BWCZjdg0/gwk8MVlBR0ul08p0QuM9bWe/i2ZHm9RbFY4vsP76NYtNi5aYSdO0b7TFaAIKPg55yYW2RmYoDRWhElc7pRxPxSk0rR1CDQcFhsnGSkMkbRtTGkwrFNRodK5HmCUi7fvudpdm6ZIIhCfNcjTiOk0t5c25SstZqMVUdJs56WrmYGS/UmnuNRXw9wTYVlShrtHsPVGt3OOpYUCGykijGlJIpi2r2QUtFFoFCmpODZmFJSK/kUfINWJ8KzHbZtLmMqizwzaHZ6VEo+ppKYhoJM8tBjB5kYrdKLdOjUynpIrVRAWSamUiip2DRVY6mxQsH2sRSkuYGrXKI4JsliOmGKoRS+Z7Fr5yTK1LLO8eFhtq1exW13vJN3XH87eZYyMjyM7AcspVmGZTvEQYblgBSKMOhBruX1lu0g8pQo0V5eJQXlYgmlFGEY0Gk3ybKMoYEh2u0e+/cfoFDwkYaB5/p0egFPPPkoo6Pj2K6H49m4vo/teKzWlylXKpimxdp6A99VNBp1xiYm8Yo11tdWUaaJ63kE7Q5PnHqKKE24ZtfrqFWGKFfKJEnMzu0XIU1FluSUyxVkv/7lhfmyP9SLCxgn4x+ZN3+0i3/g2jmz43xq5gvgkpcqJvW5vdLlG2zheXlpfv664pVCYs4f9hJwmuUvB14Z5z10QH+ztC/Z79+Hwuhv0KEVWLq+qS/EzLXlRipdJ7OxkZe9SsH5y8H0BrDTm44vpvj0OWvbZL8KCOOHA3Yi40KPnuh7AM9LTy/wK74aS/dqmOTVckL+9YO7l3juXm39SzJ6OsI9xQD+77/4S5ori+zZMsnywjzSLyFFzsTIMCtr61QGx9i9dRdJHPLlr3yRG2+6gWPHTvC1r36J66+7FmEIxqenufKySzly6CCbt23l8cce4S8/9Te8/afewej4GFHSxDILGCqjsdqiVhsiTULCXkSlUuX//NM/IYkDVlfW+OjHPsaRYydwbJeoF2AaBtdefQ1bNk+R5zA5Oc6XvvRFSkWH3GhQr8+z6+JLuPPbD3HzTW/BdV3u/Po3OHP8CKMjg5iuwxVXXsnTjzyFJU0uv+wqlhbrvPbqKykPjvG2297BPd+7m/XVBo5jY5qCatVj2/Y9fO5zn0cIxa6L9/C2238c33eZmzvL0rfvp1z2yNFP3GjgAAAgAElEQVTD+Hqji20a7No6g6F0D1KU9BCGgWk7CKkDS7JcA+tqrUhOirI0EBNpjshz2t2QLM04t7xKGidUaxVMZRIHKV+++zEu272FvO+bkdIgDlPueeIA02MjAJhKkUQ6Fp48w5C6ZwugUW8xO7fInou2IKWOcjWk1EEDcc65lVUGywWCKGBksIrtODzy+CFGhoooZSKVLjzOEqivtygUfS7evoksyigWHOIwZX29g+PYFGwbxzco+D5KKbqdHq7rnt8pTRIdIjN79hy1wRqdVpuBaoliyddlusZGqIP+AP7m86fZcckEynYpVWqcPn2WgcEKyyt1ntp3lE3TQ9im4uTpeXbvuYilxSVGx0f5wn3P8JotVRaXV+h2epDnWI6DsiXrjSb1egsQlEsupaLHar1Jtxdy7MQCjplRKtr6jdvykYYkCgMsU5GlOY5jM1Ar4doWE+MjxHHARVtG2LZ5nF6vi+t4nDhxloLv9MM9BFKazM0v0Wpr9urcuVUGBoYIwwzblmS5whCQZiFxqIurwyBGKZPV1Qae77C2to7n2cyfW2ZgoISUimq5TLLBPmQZZDrSXSqJZTl02h2OnjjLpplR0kRLew1DIGRCHAniXozlC5R0zhu6oyBk7twa6+0u42NDWv7nOnzlrqfYPFmFxCBKIhzHolDUhbpK6XAd2/QRIiSOW/zVt86wZdMoYbuFqRS2Y/Gbv/Mp3nzdLqRhUyoXaLYaOG6JZl0n1GU5vPdd1/LBj/wt737HbmzbxXJcbNvBsl2yPMd1XZI4Ict0zUMUpiAkK8srlKsVRB5jW4pmaw2vWCBJYmzXIs/A9dz+87KLaVvoD+kU0zLJMi2TsWyLMNDhK1mqawGEYRIFXVZXVrFtmzRNaaytUSiX6LbbBL0elmvTbbewbF2SDoaOrs9fKMuNowjbcQh6IX6p2Gf9dEdSluV0220czyXNM1qNFqLPKDiug+PazM3O4ziWrjEwBGQJhtRJu7nIWVtZwy0USeIY13HodTta0ivV+aCBMOwBKXma0Gt38Mq1ftddhGlZKCVxvAKGNPA8F4SB7Pf25XnO9FSNcuUa4ijRiaOtFsqw2LNnD9WBAp7n8tzh56hUajz77BG2bJ1haXGRam2A9777A2zbsYWLLtrFzMwUlZoHMkPkBouLK4Dqy9gM4jjk85//PKdOnuSn3/thPvk7v8NNb7kaKZu0Wwkf/tD7Od48TKnonq91GBgsIsiIswxhwJ3feoqLdk1gWRaOrWh1Ysi1980yFVmWEacJeR9oO5ZNtVii3e0xWCkQxgGuZbHeXsdzTCyl5YKNdoSlFM1OD1NKWt0eUgoqBZ84yc8zpqYyyIXg1NlVNk3VmB4bIErjfpiNRScIKXgm7V6b+nqTmbFBwjggSgIMoagUigiRcuj5eU6ea7JzpkqcGCjDwDR1+nCSZkRhQhAnjI0N4FgK05SYwkYYKWkaYkqXNBUUXJNOYOBYgv1HTmIqG9uWLK42WGu08V0L37XohhGubWMgaXR6WKaDbenCdEtZuLb20q+ut/A9lyTNkIbAlAb11jpFt6g3V5SuvUnSjMXVOiPVGvVWj+dntZLg6qt24jo2OQLPdfEdhwNHTjExUiPNMr5y5+NcfukMjqUQhkWSRjTaPQqOg1SKXEjanU4fgMI99zzB5PQIaZ7x7d89iIHBz77xg6ByhkdHSJOcU2dOYzuu9rjFIZZtE0eJTo22DNqtNUrFGlma02mvs2nLJrqdLsViGUNBFEXkeU6lXKHRaJBl8PzJkxw/9jyX7L1EzwHKJAwCJiYmsUzFyvIiWZbieD4YijzPKPgF4jCmVCxhGIpyuUqSxeR9H5cOvLFIk4h7Dz6CUpKtlRmGBoZI04TZ2VOUSmUMoUNv0iwly/pe3o21MWte4BXb8Hj9SOufMLMObq++CBRkWdaXTr7cogR9BmxDHvhqYNMQ/eTLV6ajXsn+9NJUzRf8iS85lpf33V343QuXVMbLzvMHZI+87JakNEjz9OV+t3zj8foRmTrxchgJF/z+P0Qx+quyhi+5fOP//9OCuxe0suJH6r/7p65XTLjJIRNgSclQrcq2qXGeuufvqVZriPIUROvMnjnD5NQM83PLPP/sczz22CMsriyy46Id7D9wkCtes5f2ep3PfOYzPPr9+1mam+PhBx/ggz/zIcYnJvnoR38VyyuwWl9leKzC3Jk1SpUiJ0+dpVqy6HYCLOny6GOPc9UVVzB78gR5mtHqdPnDP/oTbrzxLYwNDfLtu+7i85/7W4Iw4IH77mF58SyeZ/PGa28iJWBy+mKuvvptDI+NcfzkGb797e/w0V/+JfKwTasXYrku27ZvY98TD7Bt+xR3fecb2L6DsitMTm/hz//bX7BrxzZGSiWe3r+fLbt2cGb2ODu2XMLRo0c4ffoU3U6I4xtMjE2waWYHR+/7HlMDA+ej7ZVQYKQ8ffAoQwNlLMcjISdPAhApYBPnMZZpI6WOyU7SRHeoxRlpnLC0uoqUFr7vMTxUxbYVUdQjTmJsx2Tb9CiWY+vS4iwnDGOWFlvs3bGFldUG5UqJLE4wDEEYBCRphON652UFSkrGR4eJ0whDqf4gBFIpLMtk19ZpLCWYmhwBcoJuzNy5VbZtH0dKSbfboVDyMHKJ67s01pucnjvLM/tPcmZpkYnhER548gA7Nk8TpxGFkokUNgZaCqFMyVp9HUvaKGXQavYoFn0c3yYOYxzbJowjzbL0XydpkpLlOXfOrfKWG3b3WYqcou9g2iaVaoVNM1OkSUAviMhy7XMbHamxtLTGf737eazlWfZePMm5hTrHTiywaXqYTtDBlFJ7Ck0T37cJo4ih4QE812b3RTO4liRJYuKox4lTqwxWi7TbOnHSdhziKOb06QVKJZ80S+l0OziuyfFT8wxWy5BL1taazC+sUSg6eL5HFCQ8+uQxLtu9hSwxOXN2heGREgtL5yj6PieeX6Ba8wmCTv+xk1imjWkqLQXyXZrrbUpFj5HRQRzXZmV5Dd8vcPL0PNVaCSEEUikWF5bY9+xJpqb04zk5PkC73eLgc7NsnhnTiaQyJQwVp04skBkhhUIRIQxEnlPwXAYGawwOVEiiCCUlpmWTBAkjQ0WefPoEm2eG8XyXRmMd33cB6PYS7vzmPibHBL5bYtvrXo+SHmfn1zl2/DkmN13Ez//i9bh+Gdv0yNHppkr10wqVqQeVNOO2t72Wd77/U9xx2y6yDKJIb+ualgZepm2T5zrkQymTPM8oliukaURzvYE0BJ5XJs1MwMSQJlkagxAEvV4/3VJXboRBrx9dbZAmyXmfn+U4xGFElugS9zyL8X1fh0ZIzSzbto/laDllnqUkSYAh0bulSLIk4tzcOYrlot57lQbSkJiODidqrtX1a1tqoFEoFXXwAgJDCJSpvV7N9Rau62JaBl7B73sJlQ5osmwdqJKleOWy/tlZRmu9QaHo01hbx3JsDEMBEqVyWs11HMcjyyS26wBg9YNTgm4Py3HI0ky/5xhSA91c93uZpsV7PvS7lAsFdl60k2PHD3DrLT/Oh3/m53jzm9+ItCUjI+O0OxGWbfHlv/8iuy7aw+jIGH/wR7/P7//uHxL0OgwOFUnzGMe1MITD1/7+W3zi1z/B4cOH+b3f/QN+8d/8HHsvuYg3vek6LKvNw48+yaWXvBaZ+xTKNucWFvnsH32dyasGMETOweNnyNIE37MpeS5KGoyNjzBcK2Kbim4QYCtdD2GaDqfOLtPu9aiVfOIk6r9fCtq9CNeydGefadBoB1QLRcglOSY5CtvSgTm+a3Pg8ClmxocxlGS12aboOSTJOr5bOO+7HB0oUfRKZBnEmUGjrWWMJd+h3m5R8lzGB0dIU4lne4BEu48lURIwUKmwaVT31jm2liN2w5h2L6Dke5w8s8Tm8VEsJVlYa1JvtvjePQe4aPswTz17nKHqCEfPrFDyDZ46soDvKg7uP8Fle7aS5gm5gK1TI5ycPUe1XAYBShpYlqDT61IpunR6K0hDp8zmuSAMU6pFF9Hvcl1vd1lr9qiVHI7NLuK7FqZpao9TnrG40qBadij7Fmfm5rl4xzjStPXPMk3t0U9TpsZqtHs9Djx3kh07phgoexiG4tnjZ6lUHApOSr21huPo13XBNLCVJMlSNm8eAzKCVsYn3v1rHP7uUaYmpqkOVImiiDNnziKEQa06QJbG5GnM8toKWaz94rZtIMlBSAQGcdzFVA4rSw2ee/Y50jxnaGiIbq9LlmY4joeUJkEvplqtYFoK27KJkhjfc7FMyeLCWWqVGo6rA3Is28UxLYJewOzsSbI0JYxyTs2epFj0kIZOM62vreE5Ln6hwNce/gaN9XV+8uofxzQlZ8/OE8URvu/z/PNHWa2vMTM5w5HDzzIyOvoCHtkAMOKVBvYfQWb5Soq0l7Jqr7I+9tu/yh3vvv0lh7181hWG6DNlL5zzK5zI+Z+V9z3Ar7QM0fczb/jexAseuPOAULwgpXwh2VJLM8/XFPTZQh3kpZ/3/UP7x2QvsID9PwYSQ0qtWvpHkN55Gay2ekLfK/jCr9q/Rob+PfMXNgqFAXmavexyfeArg7sN792FNQ0vv3tfOR3z1Ri7jev9TwvuNtZGSs6/qBevb+g0cp1I12u2OTp3jouveD2tZgRxgu1bBEGPoNPGNeGaa6+m0ezx0x/6eT748z/HTW95K7/1W7/FO9/1Psq+wfT4OHt27+HQ0SOMTA5QqpQR0tAFz5nAtqv04iZjE2Pse/xBHrr/US57zWtZWVnBcywaK8vMz83TbncxHY8PfOA9fPAD7yFPetz+9rdhmg7z87N8+GfeByTMz89y/1MLfPqL3+DpZ57k6kqHOOmxdcjnO9/6Jg88O8dTp9f5sZtez9ryOa695Z1Iu4SyHO773r089v37ufnmt7L7ot08fv/9iKRLoTqKWx7hxuvezEMP3IfrGlxy2R5OnTzNwUOHmZrcytLSGh/91Kf5yGsuAwFLC8sUCwUcR1Iqah3+5+98iMv27IAsJoy6yNzHdAVC6NCGPE/J84wsEyhpIy1FseJgSnWeGXrw8YPs3L65HwShfVRhENNttmjWmyipKFeKxHFMo96iXCiw1mxg2RambWKaFmmeYEiDVrPNvU/sZ6BQwDQlQimEAd12G9v1yLOMoNvBsgxarQDLtrAck5mpUXpBgGO7mJbJ8vIahtDsl2XaDFTKTI7W2LptAtNymBgsI1SO5xQJgwjHcQiDGM9zMQztB0vCnG6vQ6FY0EWfwmB9tc3p2UUmJoZ1L54wSNMU1R92/+b0Im/aM4ySBlGnQ6HfZTY/d44kjpGGZK3e5ql9xxkeqjA6NMDqWosPXFfAUpIwDqlVSowO1lCmjrkPuiGNeoMsj1ldbTBQK7O61qDV6ZKmKfMLdWbnl8izHjNTExgix7F11Hq708EreFjKwPN13LqSklanTZ4KssTA80xKBZetWyf6u7gGjuNQLdocOnqK1bUOl+zeen7IaDZbxEmbSrmIVB5ZFusS6RwgQyiFMhWDtQp5lnHy5BKVSlHLRIyMqBeTZhm2ZyMAz9KgulQuYpo6IdC2JJtmJpBKkuYJSppI0yCNI6Y3TZFnOVm/yLlRbyCSCJFndIMAx7Z47vBRNk9PkOUpk+Mj2K5i7uwSShrYtkkcCqSZsmm6RsWz+IvvLPHaN+5GUcLzppjZczm/9Kv/O++8/TpMSyejBmHGt77+ADt2TROFkZZBCYNup0OWxLzvPTfx/g9/hjveuYdeW9cwtBpN3D6YlIZJu9XDdk2a68v4rk9ugDItTKeAYVhkudRR/3GomTqhpbBJkmj2XUqU0mXfluWhlAQyLMdBCMXZ2XmKJY8w6KJMnbDY7ehuPMtxzn+QWpaDMCRWv5YjDkMtkZIS09SdlwgIgx7SNPvSKYFj2yRxTJZl2LbTf8x151ES9tnDLMVxHbIsJY0j2q02lq1leVIJOq0uWZqTpDGmpUjDSLOUxSKdVo9yrYpAp2wKkSOQJJE+P8t1dRVAnGBISzP+UoAw9FyTZTQbDSxLkaUJQaeDVIK//rsn+I1PfJww7jE5XsMwTJ56aj83vOk6lGeSppK/+MvP8OY3X0/Bt9m5fTfPHTrKv/vtTxDHOWkW8bnP/i1XXf5GMKDZiBkcGOM//Kff4IYb38Db3/52krSHMCQnT5zByANu/Yl3sLS0SLXiI0yLam2Am9/yZj7/d/8P07uHqZQ8ir6DY0miKCJNE4qOjzBSJBFKGpjSw7RMgjBgoFJEGgohFK5tstbs0O4GDFULWJaNbRnau+l4OlXRtsAw9PgmctIsI4oTRger+ntCP57SyGk0FpGGTS/R4SC2VCytN/EcCwywlMQ2NRPmOw7kJvc/dohulHBuaY3x4Ro5CbbpkGQBSipdTp+BtPqZeLnAsrQyYGPYOj67wDOPH+GyvVsZn/TJMZkcnUQqwbnVZYZrNkOVIYSRsH3bBGmaYlv/H3vvHS3ZVZj5/vbeJ9epXHVz39u3c7cCkhASAoQQIpmMkY0H7MEzyxEcxvY44fVmjM2MPcvvGT9nGEw0tgnGNiIJJJRRTh0kdVIHdffNofLJ5/2x67a6pSb5+b231mN2r151q+pU3VN1q87Z3/6SSalQ5ou3Ps6LLpklR3L89CK1ikdn0OPQkXmmxyaAiOPzbSolDyFSXEux1GoTJhpwOqZJqVBBmYIwFVRLPmmaEUUhpYLL1NgIYQL3Pn6YS3ZtIUpTpATXMgijiK/c8gg7ZxukWcRj+w6yZ9c0s+NNBlGEVAZjjSadQQvX9kiSmKJTYH65h2lKcilxbFuzy1lC8kCJD33kU4xZNbbt2EOeSb7+ta+wfctWRkcn+OcvfpaJiSn8YpGCVyAKYhyXoRTTJohDUpFimy4PPfgAM5s3MbttM9VakzCIueee25jetJlCwaPTabG4vMDu3XsoFosopXAtk0EwQAiDar3JYBDjuR6mYRIGEWQ5plKUSmWEENxyy8286IVXYRqCQadPN+pjCEW/28NxC3zpWzfRabd41+t+HMO2GG00UUoRRxEjo2MkeUap4CMFlOvnlId/R+D1r5uHiu8C5p47bn/8Dt5+41ufx9Q9bx78bzAv1tJFoatcNhIvv9P2G948Ic8LFnkuI3g2nOUccLfxOH3lWT2p4Nny8e8N3Imz4E6IC7B0zwltycg4p3Htea/l24G7jcX+LM++oxzz+7l9Y/zAgruzqPc5qyffDT3/W46N8sU8T5F5Sp4IOp2YQ088wtYtWxnbtAm/XqRQKdFtdXGlQbXkcPLp46yuJNz50F5e/pY34PlFlJ1z2y33snv3xYyPjrPvwAGiKOSG666lH86TBx6SGETG6mqAWzCxDAtlSKYnJ9m2ZxdYJqP1UcI05Ife8HaufslVbNpc41Wv2k65PMFFV+7gHe/8cR5/9AjRoM0/3/Ygn/rnr/PAgRP87EsmuHza4zff+WouadqceOY0bt7nmst2c80lu9ji57z64k20luf5nb/4Ik88tpdrX/JyapUGlWqTcOBy+sxRPvcPn+XGd7yJg0eeJM5sDFVi//59LC4fo9VuE8WC/QdOoizJxMQEcRzSaIxxjalPrKVSibX2KrZv4BfKCBS7t0xiSAPhGRhKaqmK8MlERm7pFR6FpTtmpE5vE8IkR3D/gwdp9TpcedkuUpHo6PVOD8d2sW0PoQSDQUouE4pFj14vQErJl++7nxfu2j6UgCqyLCUK+3rCaFrsnJ3WfjxXIhEooXAcl7DfwjAlpmWDMIcSgxzTUNpsb5la4iklpmFh2gb9Xjgsc1bc89h+No9PsrrY4v69R5idnERZGUrqCUy/06Pf79PrBximiWEm9IOQOM04dWaFetVCKYVf8EnzDMs1h7HBkOYZpmPz9YUVbnz5dpI0x7ErrK0u47sOQdSn2hjj6OGDjI/WmJ0dodEoY5oef/6Vh7hmq8/8whzbt+7AchwWl1cZ9HqQCBzH4cSpZWZmpnAdiyPH55gYH6VYKGE7JkXPpt+LqDcmKJQkAsXaWluHLhiCKByQ5RkF36XV6mA5LkZuIVVOY2Qcw0hIEr3qfvjIGQqOwLLA813Gx8bodtpEYZf7HnwaZWQ0myN4hQK33fMEM5PjPPnkUerVGlLldDuL2JaNyAVxmGJaEtsxMQ2pkwoHAUvLHcgFRdfjqUNHUZbD+NQIUoIhBe21FsWqTZ5JwjhBGga33v4Q2zdNYZo2cdZmfWkd1/YQEuaWlqlUGwz6OXmas76+Tq1apx/0kErieBZpGmBbBqVSkZXVVXrtkELRoFiq0R/MceXWIv/xv3+LT3388/zUz/0qf/jnH6O1tsw73v5SBp0OhumgDMnm2TEEGWmmZWjIFJ1Sr71f73j7S/jd93+el79knHyjz603wHIskizHsnRlhut6pBlsBIkgFMsLcxRKBcJ+F6UyTMsnTSPtqUGQ5WoI5sAwHaQQBN11kqCPbRfJ8gi/VCDPcgxl0G11yLMM13PpddokUYRt2wgpSYfl2AI5ZMgE1tA/KoX+Lji2h6FskiQiTTPIDcKgh+3YukC906e7vobteEhlEvQDlKGQUmgmP0pw/QKWbZGlMUkcIKRBFIb4pQKGYSKynDhLkZaJISWG7Q4nKjlZEuoyekPhuD5Zrhce9KREd1xleaoXFlIQKiPPHSzHQBlanmRaPsiEl109RTCoYqkUw3WxbBipOWT9deojm/FLGVde9iLSNGJ6ege33XY3W7dt59jxp6lXNvPuf/+zvPc9v0K92WC9tcbc3FHiZI2lM2sQSaqjEseokSU5lYpBqxNRq9SoVUrML8xRqnpEYcign/LRv/gCO66f5MT8EtXiCJ4T4jpF+v0+N910P7v3bCdJIpSyESqn023TCwaEcYrjOLimRZTEZHmG79lImaHrgmBhpYMhE2zXxDAckgQMKcmFIk1Djp08zVi9gZAWWR7Q6fXw7RKmqZhvxdx770FKlQJS5hQ9i0EUcXxumUatQhDq2hnHsDi9tE616rJlqsloowTkWKZJOGSHFYookZiGoNPtkMYxhqU/swKwTANDZUw0ahQqPo6pKHl1lJGhhMFqp4NpZJTcBmESY5o2Sa548uAzbJooEsSKndvqPLD/FFOjJUZqLu1uj4WVDuvdkEbdx7UcDp9cZ3K0hpIQJxHr3YyiIzFVwpHji/ie4KmDR5lo+PQGAV/80gHWuwPGRyr0gjZxKpkarbPa7VH1SziuSZpmSBT79p0h90yalRKzm8YQQpEJRaff5eixecpFnzSzcE0TaRhkApQhsEwbIQRxEqJEzhfev5eF+VV+5W2/xJbZXQSDCL9QYNfuXYRJgGsZ7N61gyzJMZVBEAQ6PVEYtDttgkFMpVLBUCaDwYDm2Ci+7yPICfodEJL9+x9l586L8LwChmnhDxcxbdtmvb1KEkdEcYQUAiUV/X4L2zLpDSISYbC6ukSnMyCLY0QWMTo2po/tpsfqSoeRkRFsx2ZlbYWiX+KBow8RRjE3XHIdB594jFpzhCgK8fwCvX6XscY4WZ7hui6rK0t4lfL5ie0X/PcsLjl//nk+eXZ2uwuBunM75p57ORwPHnyAH37bm9jwo52bIn/u2GDN8vwCyGVj33i+DPLZx8qzLJ2AoZ/624CrTL/wc8FUlqXDI+VG0uizHjudnnl+7cFZgPScXjkxZPsy8qFyyiAX+YYlDyEyhMjP1rhsdOvp90TL+TfwmxTqLDu5YZs4D7tJHQBzHq7IzknofI7XTqoLyzy/HTN37vVzx3Oxyw8suPt+x/8TzN4GY7jR/yGFYn5umR2bp3nowYcwHB/DLrG+tEacQJwZCKuMkpJ7v/UAe/c+ylvf8gZklLB45gR//+nP8zu//3ts2XMxN7z2tdxxx62MNsvsuGgXSeRQqRVotTvUm1XarRa97oCCWybOJLlSxEHAmaOHsC3FkUMH+T/+x3/nne/4YaYmR3h073GuuOIG7r/vYT7+mc/w9ksLXNYwePMLN3HjNZtZWupQqZURIqff7/PCK16AUoonDx5l0A9QBsxMT6KSAb/4tqv4T//n53jRCy7m0FNPEQy6hIOU6195NVe96MU8+cR+Dj/1GC9+6cu494H7uPSS3SwvztFqtVlvddm6ZTeFss83brmVSy+7lNe95gY+/NGPc+32zWcPpoZhkIQp9zy8j5nJUf2FjQQSSZaHdAeLuF4JUhORGwg2YoiFlg8MtbKTY6M0G0WiaIBt+vTafWzbJgwjUHo1qlyu6O6kOGffk8eo+D5XXbqHKNY+v5u+eT+eMhkdaTAYRENZl2AwGGDaJnGkE9j6/b5OBBSSQT/UBnbTQA6lBK31NnmmV++zLCVJYqQwWVpcw7YMDFMwNdpEScXX7n6Eqy/dRqFgk+WxNqYPItIsxC8WKHgFRC5Rlo3neZiGYnREm7/zXOL5HsrUQFjmQ507OZ1Why+cWub1l01rpsnI+drX72fblk20umv4fpl6pU5rvYdlOPTaAatr6+ycFNRLLlmaUCyVSJOEpeU16jWfWq3MgSePMj3VxCs4BFHI+GiD/QeOsbC4zmNPHGXX9k1YhqJcKbOw2OLY8WUmRsdwPR+pXCzTZXmphYHEsSyWVjtEYUwv6mNZJgcPnmCkWSGMIkolF8dxiZMUqUyEkBQLJvV6mZlNExR8mzRJeXjvIXZtm+K2u/dxya4ZHNcnCrXsR+SKkyfnsW1FGPXwCpUhkBFIw6RWKVCplLn5tsfJspzpiQqWbZEjhu+vT55ndLoDDEMiyCgXPNKsR7FYZG29S71WIk5SlDJpNOrkKcRxzNdvf4xNk3Ua9crZUvcojigVS/R7IYePnmFyokm11kRaKeEgQmRtotjkzZc3eGIwiW1ZvOZVVzM2ErB792Ysx2JpaQHLVLieRZYn2E4VJfUKumnaxKHAcR2SLOeGV13Fk4c73H3XPi67fIvuG1xIUoUAACAASURBVDSUDqDJte8hHTKNy0vLWKZCCHA896z31LAsslj7qqRQpGmugZcBYdDXctAk0VKtHEzbJRe6c1ENpZSO5+O6Htnw5GlZLso0SOOIQaeNEhlppkNasmyjHFeb7R3HIk4GrK+uYzuaBTMtXTfQWV/Hdl2kVGdlmcpQdDtdfN9n0NdMnWU5w/AVc1h5ogvcHdchDMKhFzDRvXxC0u/2yLOEaBBo9txykKaFlDqoKU1TLNPQk+uhB1cZBsFASz077ZVhRx5kaUya5lqqFvWp1Uq45SuxCyUco4ShbIJen1LRx69MkGYBRw49w/jkGP1+m/mFBU6cfJoXXL6HOO3wohdfQrXh0urMMVKfIs1gbGSKkfo4b37zW7n++lfzD//wL2yZ3cTcwmnIHG6//S72Pr6P1dU2m6an+ad//AorS2u8+Q1v5HC0n5mxBrZpsNpZRwiDcqGAXbSp+B5hrD1kUZwgRU7V9xnECQXXhjw+6wnu9HX1geeaKCkpug5JlmrvsVQoBWEyAJmiRIxQKdWiTZiGJEmOa1n0BiFB1KHglrh45wztXo962SeIYzzLIo61571Y0NH1g3BAmkWM1qpnz9VhpL1XtmkOJY8Bjx86zdRIDXKDU4t9ykWHE3NLlDxHhwwpWO0MaJRKfPkr97J12zhpFiExWWn32TzWJCfn4f1HmByrsrS+RrNSwjTBNp0he5+ilK7cmVtqU63U2Tm7Gde0eeTAMTZN1vFchZQ5rW4Py/A4fPw0mydGuP+hQ0xsGmVytI7rOCjTZtf2CYplj8W1NiO1Ok+dWGQQBMyM18jJCKIUQwmW19tcumeaRqXI4uoaGTm+p+XCpiEYbzToBiGWZXHzLQ+yZ+c0aS5QQldWqKEH66HPHuHXf/rn2e1eiTIV999/H7t37+H+B+5hdHSUNM3wCj65zLFtj06vh5LoFF6lyPKMYrlMOPyenXzmFE8fe5JSsUoQBFQrdTJgemYW13ZJh5H65DFeoUAUxliWi2U7DIKAYqlCEATDhSAHy7EJwoBjR57EL5YplUqsrq3QGBkhJ6fVbtEf9CmWSiRZSqPRZGlpEX/CodGrMzMzw8T4OOvrLQzTxLZtur0uX735a+zZcxGua3PmtE7vVMo4xxL03cd3JeQuBOwudPs515969Cl+509/9aw8ND8HbFwIMOR5fhbAnVs98OxGG79j40Ke55E7rz/uO3jydHLmBciWc3xpG/sCz5dvfqfxrBRUM3LPFp5v7NhGsKK84D4PNaTkYqMQ/TlBjBvvu073Onv7hm/vuazceV47eWG967/Wg7cxfuDB3XPTMp8bUfvtxr+WyTsvHWgjCUjvCUIouu0eZ06eZGqywcUvuJxBqHBNi26/je0VKBTrPPLow5T9Ap12i9tvu4PP/e0nyeKAP/7gXxLkgmK1QWttlYNP7KVUsKk3JkkSg/mlk0zPzJLJFNMw+dmfeS8/9qPvohfGOJ5He22RmudQKPkUXBfbsfmfH/4Idz7wJPc8cpD2A1+j2DvBT756OyXfp+C5nDhxCpFnTE5O02qt4zo2luPS6fQZDELiOGJ8vEmxpGUbjUaFMAr5jXe9jp/5r3/Cz/yHd/Loww+yfcdFPPzIXTimj20ZdNtnGBsfZ2xslIfuu5cjh48yPTNDGCVcd/2rCJOcH3r9G1jvtnjVa2/gQ1/9Jm8cr4IQnDmzjO/p2OeJ0RpxHKEUpOkAw3AQucRxLdbby7iWjTIgySNNj2fZcIKac/s9j0GcUqt5dLsdWssBSyttTNukUPQwDIsw7BP0I1ZW2rieZGKihjJy0iwmCCMksGd2moLraeZiZZ379x9keryJW3DJEn3wUEqAyHlk72EatSqW6wwlEzndbh/DUHiehxQG0pBEUYjtWijlcOdD+9m1ZZIwDHBcD4Rg28wYpWoBKSVBOCCLc7qdLvVmSR/YMjAsm34/5q4H9zE93iAcDHRCqK1XXZWSREFIEIRIISDNcByLL5yc58dfeTkIwZe//nVe/fKXYzsuSuWEvRDT1f64JI5oNCo8efBpdkz7CCUZ9AOWltep1krUa2WiMCSMAprNMo5jaW+UocjTnGqpSC7gysu3cerUHNVykTPzy/SCPuPNMnkec8d9j7F9ywQQ4xcki0vzGDKmVm9w822PcvVV25CGyXizQZKlWLbJ0soq7VZAlgoe2nuIzdMjiDwcFv56KJVRKPi01jtMbxpj59YJShXNMJiWHLITCY1GGccxSJKYQT/Tr21pnYLv4Tjar5JEMZ1eyJaZEZIkRZkWndaAL33jYbZsGsX3XbIkIY5iikUfKUNMy8V2CiglhhMcg9Z6j7W1FqfnF9k602RqcoyVlRXW1nrUa0Uc14DcwDQtGo0qSZKSSQPLyhCZIApbeMVRLKvAh24+xM/+9LuplSQXXVLRsikhKRRcpIAkTgAwDH1SMyxJELSxHXfYpWWRxCmNRoWdu3Zy110PMjFWQlpqyFposXuWJYSDAbVmDSEFSRojpCLPMtZXW7gFD9KYNE21JNo0AN3zprsZTZbmFykUPaRhEAyC4URXP4cUEqEUJ4+fpFguc/TISWqNOlmaADmuY2OaCsNw6fa62LY9fG05SZSgDEG3vYJlO7quYENOl4NpGQipwUU+nGDleU6hqL8/pm3piYjUoShJopNoszQljlKU0umYaZKgTIskjhn0Oli2pyVr5MPwGDmskdDnIdMyiaJQp8Mpg0F/gO04usaBDCkTskyvGOveTn2ZJgGm6XLjv/t93vb2txN0Ej72kY9RLJepNJpI6ZMTUq00OXHiGIaZMTk5ydSmKRzbQmBy4tgCvU7C2MQE6+0W1UqdD/7xn1EpVnjvL76HD33okwz6AfV6Hcuy2b/vMFPTum/0r/7yo7zlLW9mz67LcFyLiy7Zyl/9wScZu7SCFAmGsHV9gBR4jo0UGZ7tkuXQGUQYSrC01qHkF+gFAbYpyXOD1c6A+ZUW440acRIyt9zCsgykBMt0hkyIDksBB0OamNImy/Rq+OLKmvYEGyZB3KXkl+gNQl2cHg50n5kQ+LbN6fklyqUi650u5YKLocSQfdBzQFMpLMMijvXx0DItpic8sjzBsQyieIDv+hQ9ByEyLFOf50/Or1L0XbZtnyKMYwwDBCZzyy1OnFmgVilQr5RwTEnJU3rxMNaPT1JJyTMIohDP8aiWSkgilMpRMqHoQidIKPlaIuyYJlEimJ0cYf/RZ7ji0u3sO3yaRqVElGQgFIiMiu/h2BaDMKFaLBLFIWXfpjvoU7BcsiwhyRLSLKPkOZR8D8vSCcXkumszjmN9XhA5mzeNYhiSNAWlLBZXV/T8Jsv5ueveg22X+fhffporrriCyclpur0WO7bvREiBqUyEMlhdW8HzSiwuLeK6LsViSS92OLYOgUl14fjTTx/D9RxmZ7ZgmTbz8/N0e9r/2u93EUKw3lrVahelaLX0oujq+hqlYplev0u5XKboFxkEgQ7tsU1G6iNIU2HZNkvLi4yNjWs/rqGDVWzLQUi0/LRY4pIXX8lMeYacDMuxeergUzSboxjKpFQuszA/z6apTZw6fYKJsUnuv+8uZmZ0CJv4Dgqx869/H3PL72Gb93/y/fzuX/wWQsnhnFPoMK/nzGefn0NxDu10oV8sznnMBlbJOTu/zTPN2ulnuvBrz/PsbDpnLvRnh+ECgd4/bW3YkFie9eCds4faHyjOdgNqn/Q5dQho3/RZUHgOuHuut05vMyRh8mclnXmekUvO2/4suMvPuZ7n5wDi57xl54Lp/NnbLsTMfbsuwu8mM/1+wN33GQ/zv8b3O4JBgJKSer3E0sozHD32FINwQJ5ljNZNsu4J+vNPcfklu7n99ptZXlnnmdMt3vUT7+T222/l1TfcQHelQ7y6zE/8yI3YyuVv/uZvWZhv85GPfIy5uVP89m+/DyU8slTxwT/5Y9q9FYwkJg0GlMpVlFcgxGJuvc0f/c2nuXRTlddvLvLLL5vgP77rel5+7aVkqSKKMuIIdm3fQbMxSnO0TsF1WF5p4xdrOnq+4HPRRTspFW0WFlcpFnSVgmU6LC0t8bX/8VO88+d/gze94XWkaYhfKLBv/37uuvMetm7exRf+8R91ZHx9hFe84lU8/vg+5ufnuPOOWxmfmOb9v/8B3vDGN3D46EE++Acf4OG5JUzLYHJqBMj58h33a619QYeD2I5Hbgpyy4Tcw3dKBP02eZogpXNWgpCmKXEYc93VlzG7eQqRK6rlGo2Gz+mVVfyyDrpoLfcwDQvf95iYaJLn2p83CCL8go/n+vhegdWVNWzH5Kbb72XT9ASvfdnVSGUCilMnF9l34AhBEKIMwZ5tW7AdZ/jF1QepYqlInkOSJqR5rFMFDZM0zonThB+69kXse+IYCoNgMBiawUOyLAFl4PgehqPwihbhICFLc6IoIhj0sA3Blbu3kCYZXrGMabn0+gMG4eDsRN4rFHQxt2lpuSiSMOqQZRHXXv0SPvNPt9DpBZw4scjaUpugE7Iwv8rxUwv0o4jRZg0lJadPL1Ktlti0qUEYhXQ6XaSQJMP4fcPQ5cUIyNKMhx87zOhIDUFOpezzzJkF/ILD9Pg4I806a60uN1z7IrIoIugP6LT7bN68CZQkCVrc+PoXsjS3oE+kIh6ugirCIKdgG3zjtr289IW7WFqcJwj6eL7L0tIKp0/P88ADe9kyM8E99+7nqYPHyDKTXNv6UYaB59mE4YAojkhiSAcxQXdA0A+Iw4D19S69fo+dOzdxw/WXIgwL09XG/FLRZbJZJEkT4ihkZbnN6vJgGL5jEvQzEBE52jOkEyglk5MjXHLRZjZNjRDHCZWKh+farK236PU6DIIeyByEBqGWYXLi+GmWljoMYkWcKu49tETJ93EKFj/5nt/GtBxWlld1aIkwQCiePnISpRziOCRJY7I00dHSAkSekSUxcTjAEJCnEde94pW89z/9M0KmZGlKFEXEcUROjusXQCqQCsOyiYI+eTzANuUw2XYB21bDIMuccBBjKJvTzywhMRifaGI5LtI0tU/R1gE/hmmSZhlh2KE5WsGwJDv3bMUwdcS0YTnkyiaTDjkM2eIUt+DR63QRwkHg4HoVHM/XVRWZgFxPINIsJQ5D/ZmRmulTSug6gzwjjuJhCJJEKgPTtFlfWUcpA9fziOIYx3GwLJ06aBgK17X1dWFguQXyXLC+skzYa58F1Ekc0xnKivMso1AsEvQDwrBHTk6a5sMCd8gzzXhChun4ZMAf/d6rOfX0EZJkjde9/nomp6f52Cc/w5ve+HYO7HuKl1xzLSMjDSqVKr5fxpAuBw+eJAgC9u19kjNnljly6DC2m9Httvj5n/s5ZrZOEITr3HLLl/nVX3sP37jlm9x91yOMjdfZsWOS3mCVv/qrvySMIgaDPlu2TbG0epQ3XPtGiq5Llg+484FDOggGiWFIWr0W/TDm8zfdh++6eLbLZLOGoQxOnFknjhW9IMWxTC7bMY2UMSJLmWyUsS0ThC6h1/3QCjCQMifLcqI4I040OKyXbdq9HlKaWHaBXjDAcywcS1EvF8lSGEQx/SRkdlaHXlT8IlmmuO/RE0gp6AUh2TDxtt3t0O616PXXSbKIVjeE4XHfdw0eO3gc17JYXltH5ClpnrNr8wS2ZeLYJr7ro4TCcywmRkpcdekWXNuhF6ScOL2Ea+pUzV6gEzXvf/wohjQYqVYIopAoTSh6HsdOzZPEEZDgOTZxkiOFSZYq5pYWyUjZvWWKftinWfGxlaLb7eOYJqYUulvOMSGLMFTK5EiZKI4pej5ZOiCMB0BGyS8ghS73ztHfC0FKbxDy6P6jGIag4JjEaUichkDGZ/7pTjzLJwhiHv7wadK8zS/89n+hUa+hRIbIQsoVLXONIl0hc/DJp8iSjNPPnOaeu+9CKYtuN2B5eZUkzsiTFFtJwkGXK15wCbPT2wmCEKGgVPaYnJxEKUWhUNCVN40RXMen02mzurbIXXd/A9/xEHmm+wI7Ldqdlu7dNCwW587gFov4RR8lMhqVCoMgIknAttyzrE+r1WJlRQNXJTIOHz1IuVKl2wu45NIrcN0C3X6PMAwR6YDVlUUQEqdQxDPsYYIufG9Q7Psb342/+r1Pvp/PfPYTADz28N7vuO151Q3/RiPL0qEC6DsPIcQF/Wvf69B9lv+64u8f1PH/S+buQisW/2+Ns79LSCQmaZwyCANaa4t45oCxkSZRlNNptTDShDxJCNOIgi356Ec/waHDx/j99/9Xrn7ZS1laCzhx4hjduaepVUt8+eZv8Eu/8Vt0gpC//su/533/5de56NLd3PDKVxL3I7q9BSbHdqAMhzAKOX70KOMjTU6cfJpff98fcE15hd/4kZfhipRwEGMakrHRGvfdf4CL9uzBshW5Ujx64BCeY7J3/xGmp0bISAiiPiLPieMBtmky6CcsrfdoNoqsrsQUigXiwQAlMl6xtco/fvMgr3vzm/mbD30EW+VMbJpBuor1rse2rS9kee4AnV7GxTt201ptE8aCr9zyVV73ujdy5QuvoTE6RrU2zW9+/FO8dXqU1vIA0zbYsXmTpttlju1agAFJQpomSGuYnGTYpFGMigakZEhV0Kv1ScjHP3c39aLDvY8eYnpqHLtgMjPVpNNpY5iSTreH47gYUjE/t0Sx4DJ3ZpWSX+SJI8fJooxbHtrLnu2bsWyT6VGfJIgQGdxyz8OMlosUiwXGR+u6SiFOUYbizJllsjTFdgzMXBHFIYat/RjxoI9bKGCYJu3ldXzf5cix42zZNKUlaZYFIsOyNrq+JEmckaY5nl9A5PkwwEUzdEGvjV/yMFyTfCgPMC2LPMuxDHPoQ9qQ2SUg4F9OLfGO63ajpMHefU9w2cU7qJQLrK93cD0LqWwychrNGq7n8c93H+AFOxrUGmWkIQj7Md+8ey+bJmq4rodXtDkzt0a1WiFHAwllmCiZU6/55KJHLqBU0lUHC2dWCKOYaq3M6cVl/EqVlbl1eoOIXJgUvAara2soM8HzTFzHpNeNcR2TQT+kUqliqh67to3R6Sxi0KbUmCHoJTRGiggjZXKiycGjx9izYxPTUxM89OATOEbGysoK9WoVjJzDR0/TrDV00qKni7rnF9fYNFUnCDLW19qILMX2TBJiLf1FdwqNNCtaDmsbuo8HiWPZeJUiaRZz+22PM7tlSq89ihzTVERBD6UkWa5TFBcWW9RqDUrVMmme0u/G3HP/QbZt3kSaJigzpeC6nDq1wPjoFDkwVfd520su41/+4e/4jd/9SY4ePsboSJOl+SWEVGRpzsTUBFkek8YpSiqSOMd2fVZXV3D9Mgg5XETISBI9ufQ8m9nN+j7LHrJeyjy7ejno9RGA7XgoJbEcmyiO8IoNzSbkOctnlilWiiChVCpi2gb50F9hKAPDdshTDSDTNEFKhTTU0IMak8Yd1lbO4HoVBHoSIaUx9MElWiaKwBwyATm5TqpVEqQkDiMtS84ilOlgWJbuTxNCM465luNkcYple9p/lEZkWQepLFy3AlKfU0zLOhvPLgAhFXGUATpVTZDR63YolIoIFIZhEcc9LNvGcQpseE8EmjlQykAQEwZdTLOASBPCwZpmA01PS8QTgaUSPvhnt/D6N70WlKTge8xumeGHXnsxEzOb+flf+kVMchaX5/HdOjK3WFk8xsTkLMVimV07t1OrVyhZPpavEMrnm1+7iU1jRXqxycTYNG+78bU0xyVbZi/h6LEjXPqCi/EKFldf9iLe+LZ34ropTuIwMj7KB37lQ9SvaHLRrhmiqIcyDNIso2g79OOQS/ZMMQgDfNOgHbUxlKBZLYGQdPt9GmWfJA0RMkcaLkJEDIIOlmkhZQq5IkkkhswJY10DYZgmyjDphwm2bVFwvWGnnE4nbXW1vmoQdMlygWGAY9qkieBDH7+Ni3ZuwpQOxaLEMCVxmuPaDnkmMU2DlU5Cp59TcEx8U7Ha7vDYgafZMTtDrVTmCzd9i1KtSK1cQUmX+dV1BlFAwbGxTIs0y0hz3XUJ8NjhBcbqPqO1wpDFTgjjAWmm2L5pEkMKolh/5xEpQRxQKRXJcugGEY1yhSxLEGQoldOs1EnSiO6gR6VYZGGlTbVcolz0SJMelhGz/9BpCoUSqcgoejZhnOLZulvxjoefYWp8FL9QACFJcgki1V2uhkF/kJGjmJ6soyvaFLZtkSfQ7fW56vJt3H7foxz9hzU++McfwLRKfOPWO3j3G99Je30RW1koyyAMQ1zL5Us3fZkz88e44rIXc/fdd/KWt7wVw1UE/ZgHH7yHnTt2kSYh2TBUCakTpaOkj227CKkYDPrk6AoT07C1V7bbpjHSwC9VGWlOIlB85UtfZ8vOKYIOWJ5mk6OwQ6VUIwh72HaBOIpxHJtyucbayiqnT53AL7h0ui2kEERhSBRGPHryAFdufyFr68vcc/c3mRibxbIMup11bNNmcmyMIAwoVxpI26LmlzmzMEe1UjuHkRPnXIrnWOTy70GX+Zzx3O2HbNrvfeL9fO5zn+QdP/JuLvIuRbVNlg6t8d73/TKzm2eZnBrX6ZPfy/z32+zTBiDMs4yz+HWoUGO4SHbu454nq9xg1oa+t43eyg2G7tlwEobPJ877v9F9l+cpCM52+moWUT82E/lQiaEriPIN0x3PSjKBZ1lBfchGSuM8YCqR56Vifr/jQqq/56oHz/ZgD9+Ps7bD70GGCv9Llvn/6dj44+W5NnbGUQo5PHjLF4n6i5yaWyWzqoxPjrG6vESpOorpVlGmzZve9BZecvWVvOzFL+TI0af50k1f4unDh7h091bq9SaO6/P3f/d3HDqwj4sumuLhR+5m8+YZTNNF5Iqv3vwlxkZn8ItFHNfE9Vx++j2/wkT/IP/5xmsYqZY4eOgE1XKFfi/Gr5gUiiazW8bp9tcxlIWUgq2bJ+j3B0RRH0NJCoUCjXodkeesrq3prpc0o14vs77eYnZ2liSOCaMurfYatVqRyzYX+dhN3+R117+MK696McfPtNg8NcuOXVu49dZ/YduW3WDErK3Os/fxvax1I+yCww//8I3c8s1vcvHFe+i0W9z4I68lf+hBTp1eptEoEcchhmmQps+acHvdPpblaNlOZgw1/QFh2CaL+4BAmQoMyeW7ZyhXCkxPNfn8zfeyc/ME+596mtmZSQzDoFDUBcyuaxEnCXme0mxU6fT6zEyP4hc99mzdRLvT1RI7ZWJZDp++6S5GaxXGGzXW222aI3pV1nF1FHu/FzA6NkKapBw+cpJavYwUYCoxlMYoskT35wRhhOc4OI7LfY88wfhYjTiK6XUHHDhwEsuAJEkIBgGOpQNa4kQfpHIgy6A/iMgzXSFx9OmTNOsV8jSBLNNl4UoOu/E0a/I3e5/iXS/fyeOP7WfXtln8ku4tsyzFIAj0CbXg0et2qZaK/NGXn+QtV9Qgz+l1uoBk57ZJkiTlqcOnqFWqeK5Lp93DMi2SNGbuzApZBqWix9ryGq7jkyQ6Oa1c8Tl49BSmoRgfrZPkKZ3VLsWyR6lahizH80qEYcbScp+CVyTP1ui0V/GLFmk2wDAKBElArVqDzEcIj5XFNuFAS25M22GkUcF2PObOLOti4okmlm1hmJb2WvoFzsytYFsGtuNBLpgYH2F9vY2hFKfnlpmcbCCUQAqDLIU4ihAyZ3l1lcXFFiXfxVAmaZLyxKETNJplRC6YmWySxDGmqYFShg5oEELS7fR0L1w/oFavMOj3kEpx171P8vJrLkIIwV3372OkVsO0UkpFiaEKxEnMvgPH6GYe112+m3f/b3/PpXtG2bJtM57ncd+9D7NtxxaU0ieXNElRSvtLhZAU/AIiSel12jiujWkZQ4lmxJZtm/jTP/sc17x4G3mupT5JEg8nDNrPaprmELDkw4hzmzzTnjolwS8VhsofoSsNLJtet3P2eCkEKKkTWw3DGsqZTYRQGMrBUAW8Qg3IUYZ81sSOLiXvtHp4vj8EkwKlMvrdVQzLHaaWZUhlajZMaololsRDGWhOmibDjkm9Ar0h14zjEMPQITKQIZUcvndaCSBVTpalGKYOYkEqkiTCKbjkaUYYRhimGDKBJlkukSIfnh9yslS/f/kwsIXcHEqQJIN+hOOVkEpgmjbLC0vcesd+XnH9q4d9eGBZJmPNzShZ5E/++MNcdflLeOtb/x1Kxlz8gmmeevIJZrZO4BU8vnXPt2g2Gxx44kncosH8qWXq1RLLq4t86/5HedPbruPkiZPYcoyHHnmQq178Ihy7wNEjJ/ixH30HzdEJDCvCL5RYWV/nl9/zUxzp7kUIHSXf6kU4pk13EGJILZszlX69nV6MIRWmVBhKUDirYFBIYZBkAkMI4jjFMh2yVJLlCYiYLFOAYq3Tp1zwkCLHUMN5KEN5VQ5pKjBVypmFJZRyEcOUzCzPsU2b3TtrSJWx2u7h2ClkJgJYXlunHwQUCz6PP3EcKWG8WQYFnX5AvVrm1JkVJkbq7Ng+iWNrZtm1TNbaLWolB3LohZKjpxZoVHTY1/xyh8l6Cdcy9UKFVDwzt0KjWsaQGqBatiSKYywDJDFpZvDogeNMT4zoxQpDEcU6eGIQpvTDiPsffoLts5NaclrQn28hIMo0Qy0NmyDKqRY9DBNELoa9gHD8+Dy7to0hpZ5QZ3FCnCTEqZZ1CmXwrYcOMT5S5r5HDjAyUgFyHt9/lJnJMQZhwt6Pz/H3n/ifzM3NUa2Vuf32e3jB7OVYrosyPJSh63xMy2R2dgvj4xN4nofj2riew/rqCo7p0qw3yNMEv1giDEOiWPf0WdLBMAyyRKs8lNJyyjyDQT/g5MkTzM3N0Wg0UYahk6IHA/YdPMD27VswMClXSwSDHn6hyNr6Krarj8WLiwv4BZ+1dpev3/JVGo0mSZowNjalQ5ryjFKxwouu20Ln9IBBf8C2rbu451t3UG80ME0D13HxPIcgDDlz+hkmLgCRGAAAIABJREFURsbI84z5xTlGxyc4H9Q9e/m8Of+3A3ffDvBdQLr3gU/9Pp/97Cf48K9/lH//1nefd//LL7seo2fzC+/7Zd7xY2//3sHdd7r9rDxz+JryC/fjXciTR87z0jQ37v9uNqiNdM0NwJjn2bOAbQjupFTDBM78/OdGnrf9swEuaMlplm/8+D3ty3cb3wncPf+ODTns+eDvu40feHD33Tx3/3e8dRfqzzv3y7OhI9YiY0m/12dlaQWjv0TZN3nhS6+nPrGDuflTjI2MYJoe/TBF2TamoTh66AlOnzrOwYMn+O33vY8bf/RHuemmLzA2Osp117+Si/fs4a5bb+E3fu0nuGj3bqant3PrbXdzZm6Zl157Fbffdi87dm3no5/4W/70Lz7Mp3/ttWybmSTPE7JMJ1499Mgh4jilVC6TpBm+X8R1fR56ZD9S6CLlZrPB6uoys9OTWmJnObTX14mTGMgpFou4nsV6q6+j8pWkVK5R8ErML65jGopvPLCPasnn1Ol5yiNTHD5wiNXVE7zylS/hU5/+Fx7f9xDttXWuu+HVvONdP8ntd97BJZdcxktfdi2OZ+NYJmHY4ef++tP8hxfs0oEQrsVX73yA7dPTWnIltbb4lnseZ3ZyE0jNPpiGi6E8FDlJlPHk4WcYbYyASEDmGIbBxTtmMC2LsWZ9OGGFNI1xPBvNdikdaZ9m+L5Ht93BshVCKny/gDRA5IrV5TZpkrFtepy7Hn+C9UGXTRMjGgAoSRhE1KpVHQCTpTRH6ygp6LTaSDJyIQgDDVpN28G2darf4tIql1y8FWUqpARyQRJldHpdJseanFlYol4tIU3NELueQ9AbYNgWtmXjuQXCQUS55JImCYZSKCXo9bVcUCmJGnqFbl5Y401XjDMx1iSOUtyCSxgOsG2TWrWEUJJnnjmDa9uQ51w926deLvD0kVMUfZ8wiPBLHsFgwPhog4wAKRNMM8Mwcp46dJo0yXEci1LJZ3FuGcf1KBSL+uRuG4yN11lf6+ANGaCTJxeZ3TqJMhXxIMCwBUEYkZNRLHmYdpM4chGqwqe+8AiGyJndOs7Kco84MnE9gRAxrmcgZI4yHBAaGJ94ZoGtWyZYWW1r6a4UWLaBlCZSCJZX1jn1zCqOZXDzbQ9z8a7NrKysMzHR0F7KHJaW1kjSFMe2WFxcYbRZwbYtPv2P93DZxbOsrbUYH2swv7BMtax9QGQJ8wvLFEs+IEhSDeg91+GxfYdpt/uUfJswismSHM+x8X0XyBhtVMlyi0rVpNddQ0oPwzKYGKvxS5/Yzzuu3cWPvGwbv/BH/8SNb30pjz1ygFKpyPjkCO32GoZh8/GPfJ5ypUijMcIXPvtFtm2bxgCCMKDd7lDwPZRpYZkmURjT6uasr55mbLRBmmimsrXW0jH3g4A0TcmznCgIMIbdjkkyYNDr6pAUwyCNkmHMv0V7vYXn25jWRh9cBplepdU+xBa2w3ByHyKEQZpnxFFIr9vB9byzPgzTcnFc92zdAXlCGvchDzGtAlmaEvQHmJb+fiDEs4BPCF1/kuqfg0EHISRRGJFlGZZl688FkOcp4aCPYRosLSxiOyZS5mfDYfq9LqY1ZAyCAMu2h1LnDCVNwmFdQ6/b1j4v0yTN9Ep0lkQoU2DZJQ0EDQPXLYAUdFtrKKkoVku8/nU7OfK0QblcZH5+gWqtxvzSCYolmz27NjO3vMC7f+JnWVo5zUUXbaNZr9MZtDCVzaZNs+zff4DLr74GryAYa05SazZoTIzymle/mkGwgOdW+M3//If8xLt/FKkUf/5nf8XLXvpKsjzCs2xanTmk8pCmieGYfOAX/5rtLx3j0Ml5Hnz4OE8cOs3J00vMTjcpODZpnhInKYsrfcbrVXqDAWvtNkme4Vgmq50+d9z7JFs3j2sWOIzxHAdLKU4tnqHsuySZrk04Pb+M7Zg4pg7iSNOUdCipTNJsKD2OGKlWWOsmNCseQRyipMQ0TFZaAcWCx/zqgLJf4MTpZUbrlWFVToprFyj4DtOjNdI0I1eCUqGAIRXtzoBaVbOuQZxw4NAJxhpVKkUHJTeiKCw8xxou9hs8s7DG9EhRMxNKAYKi53Lr7Y8zOzOOYxlIlaOkJI4DsjTCND3qlQq2aRJEEf0gJElz+kHCV7/6KLt2TWI6NrVSiZwcQ6Y4tkmWo71rsaDVCwmiGCUlSRZhGSaPP3mM8WaFHbNjIFKkyAmiBEeZnFlaY2qkST6ctE+MVJBSMT3ZxLUVUhpMj4/w1NOnOHNTzFtfdQO33HoLr/mh1xBGEddfdzXv+98/wCsuv4H1Vg/XtgiiAVKAYRg4doEoiag36liWgaVsbr3l61x8yR6efvoQS6trNOojKCUZBD2EIcmJMaRAqowk0V75NNH1JaZlEQQRzUYTQymSOKIf9Hjx1S9GSoGUOoUWUu6680627diKlAZHjxymXK7qgBchWFhYoFqrM7t5C0iJYWj/43/77B/yta/fysXju+kPAoJBxPadOykWiphKB6Gttdfx3ALra2ucOHYYzy/ieh6lYkkHb1x45nj+zxfa7HuZjw7/TovPrPFbf/RevvnhR9l9yc7nk0zD57rusldw8O4TzFw+dsHnOe//c59keLsUQ4D0HIYuz3KEej5jd+71s+Xn4tnwk+fNyb+Nf+3Z3Xj2/dqYW+dZPgzX2diZIdM2lNc/+2D9Op4POIfsmdB+8ucCzeexis8ZWZ5pf+NZkd45/r9v46E797pmLvPvixzceNwPPLjbGP/WaZjfDtxdaOS5lokE/QGHDx3CLxTxXIPF1Ra2P0Lc63H88JNkSZ9B0KFSKpNlKavtDvMrK+zcdTX9KMfyfR7et5c3vfk1SNumMTLyf7H33vF2XuWd73ett5fdzj5dp0g6kizL3WBsTLDpYMiF4FxiQgJpZCYZmCGkTYBJQojJTZkAKZPc5Ca5IQGSkEkIzXRTDca9yEWy1Y9OL7u//V33j7UlS8amfCZ/3JnM8md/rHPOLu/e+y3P8/waX7r1s1x+wU4+8bHPMbfzQi6+9DKue8FLcFwYHZ3iP771l/iNG/fwmufuo8iHByZaGG1bDotLK1RqDr3egEsv3qsnHAWMTzaphh6u67CytsHRo4v4rk2jUWF1fZ1TJ08zOTnG0vIqnuezsb7N3r37SNI262sbWE6A5/s0GlXyIuI5B/aRtVf5o49+nX3zVS66ZC+OsLnlE1/gWc99Dv/H97+OT3z0FlqtNv0k4YZXvILArzIzO4df8TCESVmkHD11mquloZ26DJOxShXPc9nY2EYYBY7j0Nnuc/joEvNzY0gpyNIcadtgediWJIm6CJXh+dWzOjwdflkiTQmU2sbbcYgHyRCR0ML7fi/GECaOZSGkIEtK8rTU9tC2dkt8+NhJ5qZHObB3lpmxcRzXQxqGniopg7/75Jc4sHcWaZSUStv325YFUhCnOZ6ttWnSsgBFu9VjfGJEnxJLRavVJqx4jIxUqIQV7nzwEBftX0AYekJtWhr9KIscU0IcR5ry4mlUCqmpYK1Wl7AaIKVuXvNcC9qXV9a59toF+v2EI0eWcD2bSqVCnuV0un1OnjhJs1nHtExGmg082eXUyWUePbbChQf20O/1GPQj6vWQpZVNBr0U33PwfZfjx1bZu3uWwPeoVCpIU3Lk+CnavZhOtwdlznarQ60WkqYpQSXAcgTzOyZ55PFTNJsVHn30CJOTTSzTpdeL6HS6CNEnz1JOLS1y3bW7mJnaQTTIqVZ94rhNbaSBZQlM2yQrFEePLOK7Bq3tFjsmGpw4uUTo+yye3qAf9RgdrZPnWgBeq/jUaxU2tja5aN80ruczGAzwfQdhSoqkpN4IdACxZaEKWFnZpt/vcOHeHZRlRq1m4/sVGrWQQRRr5AmNgHU7XSqBA6aNISRFnjE6UsWzDYoi5xv3PEbUz7nwgnmOnjjN5MQI29tdPvbZ+7lw9wS25XHLF+5jYdcEhmny4gtD3KCJNODGa/fzU7/6Yd7yn36ItbV1xsbr2LaFUiZXPvMiqtUqCMXCnh1UKh7dQUSlWsPzQ1SptWhFUWA5Lrv3zPKz/+nv+NGbnklrc5ssHVAfGRmi44pBf0ClUqHIUvI8pygK0nhAvdHU55wh/VcagkLpAQTorDfDcEDkWv+TJUhDYBhgG76m4UhBqQSddhfHtXFcfazFgxglSqShkTgpy2FAbQlFSllklMI6i1BLwyTqb2A5NkIYw6Ys1RfLYfFtGJp6bJgWQhUIYQ4nxQWGYeoGsSwIw2BIp9FaMykkEoMsy/R+liYaBc5L/RwlSFOb39iOi2WaWuMpDZ2B6digMqT06HVb2JaNUiWGECRRjO06w/coeNvb/4IbXn4DYRhg2bam0+YZVb9ClhsYTp/9C8/g197xHmZnRpmZ2YdlBPS7Ef/1v/4O173kBny34PSxRYJanZWNVWoVj0Ff4fkBl1y6i5XlTQ4fOsT2dp89uw5QH/VoBD71EQ/L0867GQX33fkAj3SPcM0zLmB1s0N9JOBZz9iLSYozHJIoJalV/OH3CL7vEScxlmUSeBYL8xOkeYY5pH4ZpkAyIPRCpOEiDUkj9JgYqRI4DodOLGu6tKXPxQyPpSzP2O5kw4y6Yvj5CrJcoz9ZnoPMGa3V8VwL0xJ4ro2QklqlytfufZz9uzSqlRUKU2qXVykljVoFpXLiLMV3bFrdAVPjTe5++CjT402SXOlmTRZIWVIUObWKh2UZmvqlFIur69QrPvv3zJPmKbZVaiOaYZyIjsjRyHCaacTbsT0c28ZzLHpJnz3zU9x57+Ps3TmDlIoi7dOPUhZXt6lXArJcUQtdQs9CUHLLZ+5k3555PN/n05+4gwMHZnUOpdI6vvsfW2Rje8Dadg/fM8iyPkmWc/TUOiO1GpZpYgibz33pHiaP7+StP/cT9LZPs7B3gT/8k7/mAx/673zsE59nbWmVN/3yjSzevkUmU+rVOpbpUOQl99/3ALOzsySpjhKShoUwDMYnxxgbm2BkTCPylm2R5wmOG2Db+nPY3lrDcofHo9DXqixPGB0dZ31jDd918VydFSsNiWN55FmEUiVxHLF/z2X0kza+VyX0fAb9Affefw/z8/Ms7FygUanqnkEVFHlOmsQ8cOJBdjXm2btjPw89/Aijk5M0R3TD2+m0NctFmJw4eYKjx47x3Oe/CMuyqVdrbGyu41fC89uUp0XonrK4/G4KUN71/ney45JR5CmXoOI87f3OLNe3efPb33JeuPlT0i/PRB+cQ6fU/ztDwXxSkyJ11NPTIXCqfIKlINBa7HPz7Z58v6erqZ/q92edKp+US3emiTSG5/gz26ZUed57ON8l9FtRxO+EKpaUTyCZ59zve0HuvleA6UxzbJn2v+3m7nv94L6X+3+7L/BMx/8E2FvyjdvuZM/ui5nYOYYdztJaB0+sMzJ6AV5zmsbEKBsrx/C8EZLUoFkLOX3qEJdcci1BYDE7VefDH/wwL77ptQRhhT//4z/g8gMH+OBHv8iBvXv4m7/8fxiZ3ovnl9QqE/y7n30Tf/vzL8YwXMSw8MmzgjxLyfMMIUpqFQ8hoDvYohoGPHjwGAcfOcme3VOcOr2EaQq2tzeZnhgjrJpINeDk0jK7ZmcxLfA8j6JUZLnBdnuFuRmdKbZ44jR5UWDZOkC0Um9Qq1SYqls843kv5k//4M+48oqLOHT4USqNHeyYcjDMCkvLA+657x7e+BM/wa49dd5987u58MAeKhNNpCF5wXVX8cAnP8nk2CgShW17KHL8ioFlOUhDcuzUKgtTU1SqDijBYBBDUWK6NmUpqNWqKKVIBluYhkQaNspUiEJRqgxt+qabN9OQyCF1RUptmLC2ssnBRxaZmh4jy3KkqXnjpm0hDNi3e44gCLAdl09+6Q72LcwgLENTfNptrrp0DyV9KGHQHeB6HiWCQpWIUmI7NkWWUaQxnW7EP95yN1dctJM0i7GkQeB7DPoxlILNjTZpkhJ6NoHvkCc53XaP7e0W1WpAlut90QtcUFKHqff7mKalEROlkIaJQtDd2sYKfHZVK/jzNUzLYnRiAscQxFGEYRisb2xx1wPHWNg1SbPZ5OhKG8/cpsxKmrUQz7UIA488L+i0I+45eJwrLtpNpxfhOA7HTqxy7MQWjm3ieyamVNz7wBGuvfpSoijHtSwajRDDNHFch34nwigNOr0u05NNVKnwg5A0SxHAdmvA9NQ0aaGohDVWVrbYMTlOqUpOLh6lWrNQKFbXOtSqVQ0O5SWVqodbcXGsBptbbcLAp9PvsbAwhQI66z2WlzewTEk/ijhyfJH9e2cpSsHWVpup6XEMUwEp0lSk/R5pmrO62UVRUq0GVIMaIyN1TEuQZjnbW20C32VjrcORx9eYmNZGNELkxHEbQyoMIVleauN7NZQoCasue+bHCQObza0BU5NNbEuyvtZibqaKkBLH99izMAVKkmUZvudxdE0w1vSxLZcPf+0xbvqh57K6vMzE2DhRP8G0BGurm3h+AEJguz6lsrAsAyFtJDpHLo4j3XSghew3vuoaDNkhSRLCal1fXKXEsR0sWyOdaTzAD3yKUuGHVcDQTqWOg2VLra+zHJQygJx+r6trH/lEsxMNIqIopd3aJAgaqNJGCqWRMuNMPqQEDCxH0trcwrFcol6EYya0ttawnRDbbSKFIOq1MQyTzdUtGqPjSAzSOMEybbIkxzSH2XllTJEL7Qwb9zFN7XiZpbFuKEuNrJelwpAGQgnSNKYsdKSFYdn6XGuYmKbN1saWDrUXJaCNOWzHw7adYeh3hlI5hqGpmI5bodNuEVZDiqKg1+noXDwKDMsbuojCD7zqUr522zbzMwu0t7awHItjx09QqTb5tbe/k2dcfil33nEHf/kXf8LFl1/EwgWXoswB//lXfp13vftmpmtNBv11KiMmplnHoIpE8A9//9+56lmXUavM43iSqpty9dWXsdXv4hgBYaNCiSBOuvz8f/glrrv+Rbz4Zdfz0OodBFVJGGQszDTxHR9pGBSlwjIlDx46xdRYnVKlOLagKNTZoYAhNQonlEln0AGRI7BReEhD0u73cGyLKBloN8MyZ7xRpxsnbLYGuI7AtgxN2UsSqr5LL+rw1a8dZmHXFJapkRzLlLiuwenVTQLfHOaKunofshQIyeRoFceWHFlcplGtsLnVIQxcDMPAFBAnGVle4jsOnuuQ5AXHl7Z47Pga+/dMk8UdOoMB9cDj0KFDNKs2rusPawBJ4AUYliQrcyyjZNAF2xmGtCNQeQZCkJca6b3roVNMjI+gRE6W95kfDygEzM+MY1kGnUFELyuphlWWN9qM1LQb9RmUxLZMlrYS9syN4nuKPRdMofTUnzQrsaXJ40ttWqvbPPvKPVQDjxID27DxbBPbFuQqwxCKe/5qkff8/jtBwY59F3P4ljWesXAJ1+6/hmcfuJqmFfK+9/8lb/7Fl/LlLxyk2WhiWhZlrvjGHV+i0ajTqNeRGKxvrDA3u4NClUTRAAwb17bptNv41TqmNFGl1vWajkPa72IZJmmeUSiwbId+a53J8bFhIQ+q0NdwzTjy6PQHjNTHMG2hh51xRD/qEdSqTE/PYagS09b6VNOwsTxH07INk61inXo4TtNv0m+3GauNsN3ZpOoFOpqmKHjkwYcYHx8jzwf0Om2OnzhJY3yMuN2iVquf1wRpZOrcHk+d93u99D54zoPO3u+J32nU7EP/9H7+6P3v4fd+571cd+l15z7DE489F4U7B8H7w//3j3nhi65/2rpWDtGnPNeabFAYhjnMhjun5lXagfKJOvfMNpyPzJ3ZF88M0p+8ztTKZ173yevb1eRnHiMk593OPO7M80tlUA4p/KAzk882hMMoKjUk2Ukh9WMM46wb6NO+/pNRymEEw3d04j9HY1cWxVM2tU/FLjyjRRf8b+Tue17/Wgjft4oiFUVS4jg+p04eZWq0yuRYhbvv+hy7L5rjsXs/RTzYYGR2HlUIPEfQaq3SbNYohMXRo4dJopjNtRbPeM6zSAcDnnPVM7n7jm9Sb1icPvkI733fb+EGJoePHOGdN/82f/3WlxFHA0zLoVQ6N80ammhIKUgTbV1u2yatVsLppQ0cx9aFqR8wOTFOa7vNxNgYhiGp1yuUWc7Y2AzVaoBpmoRhyIlTqwhygtDDNF0ePXwKKQQ752fY2NjGti2OPHac8dE6vlHy9a9/nYe2XX70h17J0ccPYhg57/+bf2Rzs8fS8mmuuuYyrrrmeRRGyQtf8gOMT08NqU9gWxaf+cgnuHRyjLJQGLYWzuapQhX6YJybGaU64g2tbAW9XsTaxjbjzfrQ2lliWjbStIizAWnRx5Y+0hQIQ2cCKsPEVCCEQRRnfOZr97Gwc4yizLBck7n5Ce6671GmJ5o4rqXRskJhSnNICSgQQrFnfhzD0k2VKkosw0MKk0F3gCFcvIpHnhYYSExpYFrapKLIc/pRzMhIk32zk3z17ge5YM8cW5vb+EGgNXK+y8Zmm7175uj2+jpDzxC02l1qtRqmYdPtthl0EypBSKFiENqJ8Izlr2Eo8kLnBmVpiuOF+LaNNVclSwvSJMdw9MTbsS0mxsbYf8FuLNOg1x/wt59/gMH6cXzbZazZwLJsjhw/yeR4kyB0mRoPCYIAP9DaronREUAyPjaCYRrEUcIlF80DgkajiuuYHD22RGOkSrvbpl4LyLKCSiUAodjYaDE+PoZhaJpIEPhYlontSmzTYGqyST8akEY501NjZHmJ7QZUwpBoEOG6wwnncDr+pS8/iOuYjI/WcF0L0zIIghDDgLDi0mhWcTwLSxo0RmpsbrYoS0WWFEjDwPVcXchLA2laVCoVXM+hEoZst3varhs9lZSmwSCKOXR0mWajSrXqIqQkiWKCwCfL9IXbNAVKJeSlIopjhNADiQ9+5A6uumInSinKsqRWCwAIK4HWf6HdVy3L5idv/ltefd0VSGHw/Vfu5KZfeD9v+Y8/wPrqmo4DsVz8wOfj//JZDt7/KBce2DOczOrQ20cfOcToWA3X8UAoWlvbeL5PUWZI2pqyHHgkQ6pjt93F8VyKQpte5IXWc5ZlQbfTIajozz+OBpRlSZ7lOK6DIRnSKU1t7GNwNgvOtg3CWu2s4Y8qNZ2yKEuSaAAKLFM375QK2zGxHZM0zfHCCkhT0591QCG2Y+MHoWZDCeh3e1i2hWlJTNMgSTIs26EsddRBlqa4nk+pFLZj021rxO3M3wWSqN/H9b1hg6Iv0L1OD8fTaJMfBFi2QxrHuL7PGaOAIo8xh4wA09T7pCpLep0ulWqINDQFyvU8LNtClQrL8kApep0upmXzAze9g2ufdTVTU6O4vs/xY8cZH2vy7GsvR4kC3/e54RUv5WOf+Beue873kUQbvOSFN7C9ucbBh7/Jjh1zpImJ57sokUKZs3//hdieIo1TKnUXP/B461vfzoEDz+RXf+1tvPwVLwOhsG2L51xzFYurSzSbNf75v32G6WdWaVZCenGGZWo6uUY8FdXA18eslJpdYGjqu5TybEH0wONrzI41UCg82x0epwyjHODUSotelJIWJUIIKp7N+laLiZEaWa5IM4WUBULo72Lv7p2cWlkjyTIcy9bRNllOo1odUjk1im+bFkrlpLmi0+/iORZ5qbBNl2rgkuTZsNjVEQG2ZdCLEzzbJHQ96tWQWsWn6jkIUWJYDlJqpP70aptaTec0PnJsiYlmDYMEJUy2ugMOn2qxY6wyrBEysjTSwwtDD4QnR0MMQ2jdr2Fz6633Mr5jVDMsNjtMjlRwbG2UNNqoYhriLAJy6Nhpxpt1XM8k9Cw6/ZgoVdiGHloqBXleMDne5OEHjlIaBY1agOc6tHoRnm3gezZSwKHb1/j5N/w009PTfP5zX2P9jgzbzalWtLO0ZUrm5he49sJn847f+33e/Sfv4Od/8208Y+FKDCkZHRvHsW06nQ5CGISVgDzXg2bbdrBNE1WWWtYh5dlstiTVOXumlKR5hut6SEPTm0fqDdrdjj5fDBHPNCu0Ng/dACZxTBLHBL4/1MVaSGliOw55mTEY5Bw9dowds7NEvRaWpQ2Bbnjd8ymPCqq1kNGxccJKiO/7xHGE67gkaUqn02Jqapp6rcmRxx9nZnKG+w/eTTzoMrNrQVMzdS9xDgh2PhXxbN159h9Prj+/lSL5rve/kx9/8xt416/8Fv/5R3/lqe/95Oc55+eLZy6hb3VojNR5qjW0LdE0xfLMEOap7S2/Xa7dd4t+fae/f6dG6TstfQ7irIHLufEEwycZSt7E0ONG14GU6mm37enomuK7be7O2QZhnN/sfbv3diZuAv4Nau6+hfP6XZJZn+xg8z+ySvVEltqZpZTiwQceYn52N76j6Kw9jEXCRvsUljuKq0qOH9/gkiueT14mHD10D5alsIIa0zPTjI40uOVTn+FlL30ptVodSwhe/8OvZX11mTvvfIx+L6fIDT74sS9x9UTCz7z8MtI0wXZsSqXY3moRBiH9fo9Op08Q6oy0NNOTwu2NAZ5js93pc+01l2M7ECc9BlGXsOJge4JSxGRJF8tzSKKcRw+foBJWGR0dZWN9iXpjlDyDRr3O1tY2jUaVfn9A4IeEvsvW+gphYHPxnl1cUDX4iZv/gv/zFc+n290m8Kd57U2vY8fcNF/66q0cenyF517/bHp9qFQbkHU5fXqRkYkp3v23/8SrZ8cxTYNSpRRFiW35GHaGFBJD2ghlDJssRRiGjI2OUBTZsFg2iKMSaZVIHAzhYVg5UbtF1OsjyxJjmMOihm6AC/MzyBJKBa7jE/UL5mcmsF2t4VLDIGUESENPkrSOByQm/VaMJW2EmYFQuJ6l9UWGRZGXDHoxjx46wfTUqN5lpS4Mtfav5Cv3Psqle2epVn2ypCDPFK5nU6+H9AcDeoMBjUYVJQSVSohjO3z19gfZv3ca1/bpdSKkWTDoJ8OsP60vKPItiVRTAAAgAElEQVQEaZrkeYlrmWBYqKJg1RccOXSU+Zlp+mlEEPhIIbn1y99kbm6aBw8eZm52mvfe8hA//YLdbG73GG3WWFraYKQekufF8JgqtV6l18M0TY4dX2Vmepw8zzi1uM6O6QkKkZMkCUvLa9QbVRrVCkKgKV1C0esl9Pp9bMukWqsQRwmDQYRtWyyvbBLHMZWqT7fTIi8yTZvsx7TbfVbXO9RrIZZhopTOqiuLHB1W7CJFxsz0mG6MUZimRbeTsLa9xfhkk0IpSqXwXZdOp0etVuGBh46T5yWDgW7KTFPnOKkh3z9NUkzDxPZ01EGn1WNleZvJmXFc1+ahw6e4+qoDGAYYEm676xGmJ8fx/arW/fgmWZ5QqVZxbFfTkQzBNc/YS55lnFxcY8fsJCjtblqWJQptaCIx+MptB3nbTz6fn/vLO7hiqoJrOVy5q8FP/uoHeekLLmJ0dJyNjW1uv+0uXvnql3Hg4n2kScLhQ4+RJRlxHBMEDtVaiGla5IUuwFACw5S89g1/yet/5EpQCsd1OVMO5GkKSNrtLoZpEQ8ikrhPEPokcYzrexR5obMa0cOaM40KCLY3t/R3bgh6nTau76KUYNDr4jgWWZYNQ4JLTNsmTxPSNMZxXewhWqHKEoWNYTooAYqCfneAlNqRUkqdg1QWJb4/3A5DmzS4nk+eZvR7Pd3wDNETpWBrfZ2R0RGENPWxLYeZf0KiVIFpmcMprsTxXMqiIBpEw/dWYgiTOBpgmAZ5lg3fX0CeKYQwQRS6cXB0tlu308b1PAzTYHNtgzTNoYS/++Cn2bNnFtcP+PHXXcNb3/ZXvOF1P0hpQqM+iikNtjZPU603mZyaZHrHDq666jkMOls0RhxULpmcHGNqpoJlhvjeCIOoR14k3PrZL/COt7+TV77qRVTqAXmhaPci6o0Jbn7Xb1NveFx55RWcOnWaNMmZnq4T1Kqsb6zyyu9/AYe7j4CCQ0eXyZQi8DyNV0mBbRgkeY5paNOgdi/Cd13E8BwtgB2jYzx2apnp0RHSPCctCt0ElhClCaO1JoHrUAs0Bbofx0yN1kmzkiQrOHJqhWYtoCwlxxaXqYY17rnzIS68YJZqEFAqPUD7/FfuI6wGhJ6HwODh48uMNwKNKBuaurXZ7jNaG+Grdz3Arh3jGFIySDPavR610Me2DNI8OxuNE3gORZlpRFmYKAwWV1tMjI5gSEVRKmYm6hRlDmVGlEukhNnxUT57653s2T2J61hstVtDyq4kyRMUJZYpKXKF5wbMzO3AsQWO5eA5DmutLjXP1iY+ZYkloSgVnX7E3NQYWV4wUnXZ6vRp1kb41Gfv4bKLZsiLAqW0GU9nEHHlZfOM1AM8x6ZQAs82ifMEz7HoRzGvu+QNLOzZzWOPHcPdaFKt6UiCOI6JshSKjKxQBGHIsy++hjf/+i/xkQ//FW/+jV/mhVc+nyAIcByPIKgSxwmWbWOYJtIYDjTznGgQE/ghUkBBMXSR1XIIBGS5NtrJswLbcpBS0O50NL1fCKTlYBqWprOaBhJtGqXKnPX1FfJSYVk2rucRxQPKssB3Ktx2221csH8/g942QkiCSpWJC0eJTkcIw9A5lK6lB5dHHqfRGMWwLCYnNA2+3e4QVqoEns9ll11BPaySliWO7XB245+i3oRzaIVwvt5MnJ+Vd6Y+/fMP/ymZzFm9f4Wfvulnv3N5+1R0UCF49/vezY2vedXTP+bMNpzTED25iZNSG1Gd3ewzSF55vrbu7Bo2TqUqz6Nlfie23LdDtL7dY87ctObPODsEPIPOnav1O5uJJ3Ucjr6OqLPfz9Ntw9mfz0Edn043eG6PcS5Sp874qXyP63/n3P3/aE1NTNLv9qhUJYcfvo31laM4tsegM8CZfxb1mX1sn3wYQ3p4tg56HpvYTZEXLC2v8vzrn8dtt3+O33rnu+hstXBsPYn+sZ9+ExO7DnDLXY/wBz/2TGpS77y2ZXPs6DJB4NFo1EkTbaQxMTUxdFTUJ55v3v0IM9Mj7Ns7xwV755CGwSDJ8YIqtUYTaTogbQzDxvdcTEPQ7fexLJc4LojjlAMHLqbbSzh+4hQry6fZu28nqytr9Hs97n3wMUrDoDoSsrGxwqDfx3cM3ve6KwnWDxOlVY4df5z3vO//4vEjj/EffuYXGAkr/NF73otZFnQ3N8nTiD27dxGnBe9//58hiowo7iGUhcBAiZQ0LlGlYHNrE2nnZ2YuetKfZhRKYNkWUW/A3//LV5C5i+u5WL6iLD2soEp1ZBzHDcmSjE6nRZ5FSJVy5z13097exJIKScGjjx0ZTp11ca3DkHOQJWV5xhJfa7yEoZBGTr/f0hlbeUka5yRRycnHVxAI+lHM/UeW2Vjboiw0Nz3LS/I8xvVN3viDL8CyLXq9Po7j8rEv3E0cp3rSHDjs3j2jLfdzuOWL30SguP7aS2i1YpI8xXQkKAdLWgSejyktiqRAFUOnx1JRFBmIgk/e+k1GfBfTMDl1YpHA9kgGWqC/Z2GesizYt2cXi4urvPFqE9s2mZ0bJS8yOu0ugV/BsT1s28XzPbIspTFSY2V1i7mZCSy7JMki9u2dZml5BYV2ZRwbqZOk5dnJbRqXbKz3aYxofY/nurRbXR48eJRKJaRUirGxGpYlWVveBiSW7ZDlENZCbMdh764p8rjH+sY2tm0TBD6tti5mN9c3qdckridZ29giTXNMyyGsVNg1PwelwemTG6hMEA1iwkpAkmQ8+1kHWFxb58ILF7BtmyyPKZAIaRAPIlzX1TTbrODE8WWqjRp7LthFFhcsL63zvGcdYG1lnV63R1nmXPfsy/nm3UdQMsWytXNgGDQ4euTU0L3RJitKlpeXKJVicnIUaUpc3yEMfaQ0cGyX5eU1SiW4eP9OhFT8zmvncQKXza1tZsfqVAzFjT/6e+RFwVe+/E2edfXl9Lo9Hn34EEop1lc2GJ8Y1U6xYRUpHKJ+H6E0LRel3VfTtCDqJUT9hLLI6He6tLe3GfR7FEVBvTmKadtUG1Ucx6TX6eL5DoISP9CT/jzPUKokrFbZ3mxRFjnN8RGyNEcVJb4fsra0weKJJYKKT5ZpkxYhJULqGAHX93E9i05rlTSNUEhKZWDZEqEEWZyCEoTVCqblgjCGmi/F9ubW8IIsKUsDw9LRBnkWUx9pEPUHGKYJQJIkVGo6cLnbbg2LA0FR5Ni2hT2krZZliVIleZYipMQLfISA9lYLw7Apy3zo8GtRrY+ilMC0JEWZkEQx/W6PsihAKar1GqAD52uNOrXGCEuLy7zqB67HD0PSJKXT7jI9JuhHXdK0R56XgM/42E4QHobtkWQlDz10Aq9ap9VP8GsNCmliywYbW4vE2RqWVUPlDa6/7iX81I+/iaKQrK+tsrXZI5cO1173fXz0ox/iwYP30Ww22Tm/i317L+D06UVc18exAtJU8vF33Ud3kJOXgqlmQ59jSkV3MMAwJZ6jfxaYNCqBzvUsi2GDVyLkgN07RoZnbYlnm5xeb1GUmtIoZIZpKKAAFKHnsbLV5fCJVULPYWFuhFs++wB5AZddsJOqb/GKl1xBViREWUyudHD3C6+7FIUizTNs02bf7DSDJNHGNhiYhsWu6QnyIuG5V1+ih6BpRuDaTDXr5EVOnCacXt1ASRgdqXD7PY/iuDZlnmMZgEowyj6+mWnkaRgq7dgSYYT4TkDVM7Bkj+nZcaIkZW2jSyOcpCgLyhLKQhI4ejBFCZ/9yj10k5Q4zQBYb3WZbNaIooiizLEtSa+v41RGKiEAgyRFKWhW6xxb2uD7nnMh260uvX7E4RNL+jiyJYM4oigy4jTFEIKv3f4Age9QqpKDHz7FxNQoKytL3P+Px7VDdVawvbWFAiqVKnZQoVAlqizodVv82uv/C6949ev5h7/9U37jg785bHoF8SDh05/+JEmaDtEUE4QkSTLiNGezreMrDFMSJxF5lhEnEUKaWLZLqYS+VuUFrW4faZgMBpHWzqYxSdQniwe0tzc5fuKoDnKPBoSVCrVaEyEckijFMEyqboVSJTzrqisxpYkX1rEcn9/4m5u58cY3IB0XL6gQhiGihLwsueiiyxBS4vsBRQl33HEH3V6f8YkJKs0GuSoo85yo09bIneJ8gOGpe71vXWrYFp1z/0986iP80Qd+nze9/Of44Rvf8D1Wn+evX/6Rt/OaH3z90772udtcqvJpkbv/5VY5bACH60xI+v/s639K5K5UxTvPIHTyHMhSleV3jdqdu56M4H1Pej3E8AKhkboz0wFZFCgkSydOMF4NkXnCI3cfZGpfk3DyWpQ/y2hVsbEaEwUDqnaFoF4lrMxj2yW9KKVebTJaCXjwG5/mxh/5d6RpQRIP2L0wyr69l/HPn/kEv/vqC8jzhJm5KVzXochzut0OzWpAf9DF8lykdEBCmefYpolpWszOTHP4yEmWV7dot3vkSUI1MPBck7LI8XwH0zJIowGFsDGKlGigbfptU3LsyFFMy2a8qfUtnu/R7fS45JJ9+IHL5FiTza02KjfYObvA0RMrTIyP4LoeO2amuPmDn+fqZzyPlaUlBoMOk3PTHH7sQW6++WZ+5Vfewsteej2RMimFwaDTI89K3vhnH+A1u3eSF6kONi4FSIFhy6G1uYE0JKZlgtBukBKhrbkdk8sunse0LQpACpOks4Ft2RimpmE6XoAwDCwnIMsU05NjGCqnH3WRpmJ2ZgqkQBiKTqfDseOrjI/VyFJtkV6WOXmRkCUdBAaOa2M5QuuZpI00JJvrXT53+4PMTFQZH29wYPc0duhhGtoQBQpM28MQNkWeasqR5aJEScUXVAMH2wp0UVEWoCRlKZgcrWJZOr/sI1+4i/0LkwhhElYDCqOHym22lgecOH2KSuhhmiamIymVJGrHzM+MU79gAt9zSIucjfUtmiMVDGkw1hwnjQesraxi2xa+HFCoAtcxCcJQh0mXEbZr6O+8kChDYLsujZEqcRrjWgKBdk8MKjZryxtYMkcaOhT47z5yDw8fXuTCvdN4rkm/n1CphMRJSr1RIUkjatUaqlRkaaEv7CX4bkm/32Nrs0e16pIkJUFYZ3mlxVizhmmZ9HoDJibGddNNhGNabG61aY5Mc+ix07Q7bZSKqQQVDFORZQmW5bC23kEKCz8IKYqE/Qs7uefeQ5w4tcKePTPcc8+jjI1WMSwLVWrTIpGXtDst8qIEZWKY6M8g0eHxldClH+UYpmBhYRyEIE1iLAnd9jaTE5OkeaZ1VhJtduF5qDLX0/wsBQRlXvCNOx5manxUZ95NNcmykjAw+eNbDnLDcy5GSofvv3o3J7sOf/bXn2ZuKuTCAwsUuSIIKvzDBz/Jja95GRvr69x9x0McPXKMXQsTCMMm7kV4gU9WZri2x6UXT1AJeni+TZLmuGGIbQsC38T0QqQoiHpd7fhopJi2xLIc2tsdigxcT2KaILDptLvUm1UEBaahQ5QN0yCJY5rjYzp02LBIogTbcfT5VUKeJprGlRa4fgVpmGytbxBWA1SZo0yXqN/Hs7ULpZAWZZHR3VgdRhZYSNMEowBVDk0vhnl3QmBaDgLJxvoWlVqIYVnaot+xEUIhpEBKU0fBlAo5jALo9ToE/gg6DiJGKZ37qQPKS2xH0w3LMmfp1Cq1eo3N9RWtAzRypITt7TbeEFUs8gxV5JiWx+nTG8ztnB9GK3isLi3xuh++mtf+2Hu48dU/zmc+/hEeeuDrzO/bTdMf5fTynTQqs9z6xVu56NK92KaHEBIpDfqlduUUpcuvve23+PynbmVhV8h9D9zJpZdfQ6ud8bqbfoqfeeMbMKWgtd3jec+5gmplDMet8cWvfoM9e3aSxjljjTmCasHWZoQ9XxKGIb5rUqRdltdahF5InkUabRGQ5Zp6F8V90gwsQ1M4JQW9QYZjurT7fT7zxXs5fnSNubkxKr5NlnQYxANMqXWZSZpR9wXjoyMgJYOk4KILpnVWZGkgpEkpFY5l45kCR0TYErKsS+CaWIZBXkjuvPcgO2cmsQyLMpeUtDGEh2XaWEKxsbVJiTY30UY7mtY4WhshLSKyLGNyrEHg+liOjgjpRTH1epVemvOpj36dAxfPEqUpUtqUeUSucrI8RZAw3pzAtgxKJAoTYUiyNNPsAtsjzXIgZtfcBN0oY6Sij4N6xSHPUxzLIitBYGhaqGGhhP6MHNsi6mcEroNSsLbVYXy0ThCEjDeqiGJAnGaM1Op0+in1MGSrs83unTN0egM8x8c4PcqLvu9yfuSNv8gP3nAjeWZgIbQpkSGJ04Q87uI6HrIweOj+R2iMjvDSq17ML/72r/Le33knawf7KKHda8tUEjZcPCtkeeU0jXqdVq9Fp91BCoHhCGzp41oGW1ur1GoNol4Xx/ZASb70hc+weOIYe/fuIS0KKoFPZ3uDIKxhmFpm4rsuaZ4R+DVs30c4FnGny4MH7+X4iZNI6dDptqjVa9pR2vPotFpUwiqZ2+f06iovvPDZGEAUxSBN3aspOL28hAI+fcu/MDszy97de7AsC8PTQ5406rK0tsLE9MxT15fndHdP/PsJx8Sz+jwYCsh0jt3bf/c/c/zzS7ie9QTb86mQOf0k36KPe3I9e/3lz2PigpHvur791pcY1rfyiYiCstTmV2fy4+D8vDtN9/z2zdKTtWZFWTwlenbu+k71uiq1Nlzp4EaUKFFCnb2dycw7e0Nvs2GaQ7rm8PmfghkoTXl2+77d7V97/a9PyyzzdwLasUaes9P8K9Arv9cvRCDOm3CcfbzSwYrHHz+CWSriMmd6YoS1tUX279mPMbifx++/j9CeZufUfpSI6Q/aLJ5aZ219icD28JyCb97xJT7095/mnz7yMa551lWUZcr09BS//xcf4B0v3snW1ialgLvvf5z52Sls09HUI2WQl2Cals5hEgrbNjT9oSwoVMnx40tccmCBE6dWWN9ss3fPjNZmAdutNoISx7IwbI/V5XWEMPHDANOU9PtdLrr0YrZabcJKwPrmJtNTTdY31ggrDkrFCAlh6LK0soI0S7rdLitrG1iGzcuv3MW7PvAJRnyDSy+9lPsePMxv/ua7sG2b57/g+Zw6vcj07Lx2QHMctja3uPFVr8Q6eD+GoTnOSZzowknoaAOUprwVeXHWB6lU0O/3hwWawJDlkDUhsGyHPNViedf3UXlBlgqSKKPXHRBWtW7CDwMsx0NhDqH+Ei9wGB1pgNImfYZhsr3Vwg88LOliGR5KCYoCXfAiKMoMzwvYMzuK7zsoVWpNgeehCgXooPIsz+j3BkghsWwTAUT9AYHv4vk+hiVIs5QiL5CYZPkA17MZ9GOCIGCsEuC4BqYwWV1epx5M6guDEVOqPs2xCZASpIHWTliUZcl7PvN5vu/Ki7Adi2pVT4HjKNa5YwYcO3GKXQvzhKEicG3CiodAsry8ge872mwCgR94bLe6eI6tG2vLIs9LVtdaGIZBUAkxBZiGpNuLCMIKu+bGufoZ+ygKjeIUClzX0k5qRU69XiEvFZ/78r2aAprlxHFKGNraidb39etkJXfe8yg758Z57PFTNEdqBJWAQ0dO0Gw2MC0D2/HYavUIKx6Tk3Vq1ZAwCFlcWqVSCTANbQN+132PM1ILsG2DwSDCsSWOY7Gwa4a1lQ127prGHuac2ZZNHMUcOnqS/fvnuOPuw8xMjhMEDt1eD9/38IOALC9wfU83OkWGkC6W6VGWkiQFYWjzkSSK6bR7FCWEoY9tWwihESWBpist7JrFCxxqVZ9ev6/3a2VxzZ4mN73v63z/FXPc8rnbuebCcV70ypv4iw9+hDf8yEsoipIPfeDjvPHfv4Z/+aePc9U1V3HvXY+wstLiymdehDRM7r7zXuZ3zaFQRFHE+Hgd2xygkNh2CMLClC5SuigkKstwXE1NtK0GQrio0iAM6xRFRpYlWlOGxPVstjc3sSyLLCkRhk2vM0CgMB1Do/KqxLJtsqFmmBIs09HW5bZNr9PGdhyq9SppHKOyiCzJsIwcih6WVwVhkmcpaZrguA6mZZOmejukFPR7/WEkgkGaxCRRhO26BIGvm8lMo3RC6pDjsnyimDBNC1WWpEmCQmFaBvGgizS1FmrQi7EcW7vuSkk8iHBcV0dgCK2ZLEso8hLT8nCccHjt0Po923GIox5lqfjQBz7H1c++mKgf4XkWRZ7zwzddzhv//e/yqle+lOuuuw7T9imSPv14C9cLueiSA/iBRxhWOHnilH7e7R6UGYFr8nu/dTMvv+EFPP+GF3PNtVezvHicX/6FN/Ppz91Cp7vFseMn2LFjjrGpKVpbXf76r/6cV7zkekqhg7fLwuTU4mNcuP9SXn/Dm2leOcr0WB1pmNi2Q1aA41jaZj4rtKOskFjDnEDHspASTm9u49gutz9whJmpMYQJu3ZN6mZNZbiOj+t6IEwKFLZtkxZ6OLfd7lNzbSzLxjQNHl9colF16UcRjtmn3WnR6uQYpqWpiL2IWuChhIHjmQSeQ3swIHBD1lttLNPl9Po2n/74vazeGnH4Sxss3tXhkVuXOfTlVR7+4hInbt9i476Ig59f5Pg3Njn0lRUO37bC2kNdLrh2GtMwMaTBzM5RLNPENl2KUpLnBZ5jo1DkmcK2XbKs4GMf+wZXXLaHolTYpsnjp9aohRVagwHrmy0OH1tl7/yMzsQbDpGyoqQoBYY0dYB6UaKUIMu0PrDTH3D4sZPYroVlCqbGavSjFCklhs4LIAxdylIReDa9aEAl0GHsjmXzkXfezR//4W9z0xvexK+//tcRSiCF4u777mRsfBLbMCnzHNOyEdKk2+sBivGJMYQQXDx9ORc9Zzcfve0j7B69AM+rMD45SRhUSZMSz3e59747qfgNLMPjrjvvZNfOBTL6dDrbhEGIZbj0Bh1M28F0LGr1Cgt79zJIU2q1OtIQ2I42RCpLxemlJXyviut6JLmOHvFsH1XkNEZG2blzFycXj1Gvj5CmKWkck8cJtu3zqVs+xk++5cdptmaojfj0oh5JEmHbJptbG2xvbzE7M08cJzSaTXbu3E2hFAcffoAdE9NkWUES9YiygrGxiSd0d9+xphRna5Hz7iEE//yxv+e/ffC93PGBQ4RV97xHqaeDAb9T7Tr8e2T1qDdq3/6+T7POaPPOs4Q540R5xkeQ715798Smnf/3MxTG76Yef9r7DDV1AjE0duE8qum3PG5otqIE5yF5Z1HNc9BNndv3r9+8faf1b6a5e1pO7HfZ5P2Pau2UOjOXUGf1dk/8J0CUrJ48gcxj7IoPloXKTY4+che15n5wJ2nOjxGrEteGQiW4dpWZ2XFkqYijTYTI+NGffAdbS8d49OH7qVUrvOW/vIt/etuN+K7F2FiTkdEmu2dnWV3bwvO1YcPnbr2bfXt3Iih5+NFDjI2PIhS0tlv4foA0THZMjZJnBZYh2drqMjc7oR3dshzXdaFUDAYxwvBI44L1jU2q1RonFxexLEmnn7K4vMJIo8buXfM89OAJkjjXwaWOhZQu9XqTdidmfbPNIOpSCSssrWzx6GNLXH/BCAe7Dgs7JmmOTXLbN29nx8wMjusxMTmBtIxhKLLA9wKiKMY+eI+mzCQpjqunmYYwhycDrZkry2LoMKen8rajUS4pBEIVWsBtOZRILEsiTWsYk6KIugnR0DDCDRxsx9EWzsLk8OETGAIc14bhiUIqg6IoKFU5RE5LLFs300qqYe6OnnIhSwzDxvU0rSsvCpyhJbchpTaQUFpgfsYwAwRZGmFIk9Z2n9pIFSmUFqanijTJcHwD0zTxPJ88LzCFJI4HZEnJ6GhDG7sYMUUZMzEyRSG0IU2vH+O6LkWeYjsO//fhTa6c1IGz6+ub3PfAY0xNjlOphiigPlLDdCxE2SWJh0YlSmFIE8exuO2Oh9m7a5pTiyvMzU0TRfFZ560HHznB3j0z9PsDsjjXeYFIFpe3GR1t4vsWpSpYWlonS3MmJkY5eWqZMHD0hE3P/9i/b5Y4irEdi15/wKNHlpiZnmBzq43rehhSMFIP2G71mJpsYjk2aZZTb4TaqXEYCWGaJqDdHKU0kcb/R957h1l2lWe+v7XWzidXztU5t9TKgEAmCzACREYkYQaDwTNjzPXMxTa2wRgH4JprfA0ejI09BBmMsYhGgAQSKKullrrVrc7dVd2Vw8n77LTmj3Wq1RISwfYzc8eznqf6eapP9and5+yz9/q+731/r00+59AJYxzb48jRKbZsGCbVqaFE+j5+YM6zRr2FtAT5XI6w08a0LDM832VwqIdqtcH6iSFarZAo6lAq5RDCdOZt20WIlKjTMkBmmdFq13E9G9ezuX/fIcpFlyDnE0cpU7MLLK/UyOd8HEdh2w5SKn5wx342rR89dw5ZShHkfDrtlAf3n2DCa3F2ts6znn4R40Mlfu/TX+dFz3sRe/YM84Obb+fZz30KWZaybcdGHjl0nKc87RKOHznN+MQIx48eZ9uubbiuew78IpWkWZ/B83Jo0SFs1pBKI6Qhfy3MzhFFkYknECYmBJGSZd1ogNTIX4UwpMl8IcCyHHQmsSyXJInxcz5pEqExBa7WGWE77EZ8aFR3Ip+mBhyCMAHyAJZbxHI8pGURRhFCObTqTZRt4+cCLKVoNhvkCgWkMM0W23FQStEJ2wghcBzLRCRIg9hPkxiNJkvSc0CGTruF7AJxTDaig23ZxHFkciMtQ/D1PAMDEkCaGSS/FJJOJ0RZCpAIMBOXzEz1sjR7NKZFCNrNBvVam6c+bTf7HzxIo17n1lsf4II9W7Esm2teMMZvf+AfueyKi8nnc1gyQkqPldoc8/Pz9PYO0IliwrBDoViiN1/k7NQJps6c5Dd/671cePFulhptAt/DdTSvfc3LOXH6OFGUMDE+SZJ0ePZzX8T42DgX79nJH33od7nujb9EphMELlEScuiRk7z3v/4GjeAkSgq0UFiWTSFn8ggzNEpJ0izremEE9XaIpY6LM+cAACAASURBVKDaaNJXLhkvsKPoJJqhSo5iLiCf83AtiZAOnTjtvveSDOPn1UjuvPcQ2zeMkgHVZpPeko+tIOe4hOESWaYZ6B0j1tCJNJ7tGF+wUpw8fdZ445TFV99/L2furiFn87z+aW/gtc9+M6dOHeNjH/8IL3v5tVz70pfyule/mte88lr27NrGVZdfwFMuu5i3v+vtXPuqV/DyF7+IclDk6gtfzq7eS5Fn8xy5bY6bPruXuQOrREnK4EQfSRp2rRMBQmjmV+pcdMEmk20XJ5BlNMOIOx84xo6NQ+R8l8G+HnOe2aq7MQU0tDopURSjBLQ6MXOLVbTW+K6Fa1uMDvbh2BaWLQnjyDTRPI8bv3UXw8M9rNTr5HzbNH1t83qC4MYP3M/ff/6vePXr3spvvPo9SG0RdyKiqM3EunXEUcqN//RFNqzbhFA2tufhei79/UbBk2QpQc7jne97D//p3a9m6bDJdRSWoFFvcuNXvsquXTuZGJ8gnw+YPnuS7Tu2c9N3vsL2bReTD3KEUUimUnJuBSltWq0QS1k0mnV6+vqJwtAoZZCmSEs0X/nW11g3volGo06pXKDVbGELh04SkukM21JUq4vk82UC36evp5e77ryNYqmPG277Ry65cDeimaKlTdRJWVmu0lvuo9MJWVpaxPdy7N//IDt37TJQKEsxOjqO7kRoIZECKpU+bM9kqT7eS8fjCqLzHnzCv33Vb7yUN7z2rVx95fPOt7c98XqCiZ1Y+7vzv7rrtz/8O4+NRvhJ60me43w65to0T0hxznv3ZBCZTGcmo+6nrDUi5toePdPZj03yfroHTz7m36wVd086EewWd9l53rvH7OiVNPYb8SjASCjxY++L7Gbgne+xW4Pr/STAjFLqSWuSNVWibf97j0JYm9w92fo3mOD9PGtt7Hz+G2O29Bmd1RXu/uGtXH7ZLlajjOGB3eSDJkF5G/meEU6dvpcNw+tYWJwFkZDGEmVndLKUdr2NTBycXJlH9t7DwQP7EF7AGy8eJUma9PdXkEpSqvQydWoax7HpH+ilFYbsvnAzSRwhtWZ0fBitzYkTtiPm5pcp5kscO3aKOE4I2xFRHDM7v8JAfw+lSslgyzGRAAKbE4dPEiUCy7aYmV1k65YNuLZHPnAIfJ9jR0/j2IKhwT7mF5axHcngQB/7Dx5j67bNRGEb1/aYmVtmfHQQZUHgBTx/Zz8HVoy34h3v+s/ct/d+tu3Yhht4rKyu4HoeSlnEUUylUuH1/+8nefnkaJeAtXYRUaaYQiNEN1tOWd2u3lqRZ9DICIVSJksOqbt4buOzMVOHjHzJx/NdkBrZDazWaYpjSfJFzwSbJ2sFPSgLkjRCWRLHdYk7hvCXaU2SZKbjqjVpGiGEIuoYr6BlOUgpyHR6Liw0SWIEa5AWaR6zbE6dmmNycoxGdRVLuVjCRWdrHSSwlEcSpdiOpBNHFCs5bMfjn265gx1bJ7BsC6EFjWYL1zabV0vaZHGMJEUoi6+cmuH5u4YZGOxnanqGYt6Y1ldWVrGVhZfzOT67wsqZY/T2FFlaXCZLM+bnq/QP9DAx1k8cx1QqeWZnlujv7eH01Fkq5RJxJ8axIEtiQwntIuZ7ymUc16MT1fF8l2KhwMzMClJmFPIejusQRaEheNk2Ugk838P3XQLXYd26Sebmlhns72F2boVcwcXzTIi7VwhMkLaQfOume2nWm4yM9HUvkgqhbCN/0lCt1XFdxdHjs/RUetBZTLlcwLYMWtwP8kglqK42KZXzhJ0WfhBgKdPEybK0K8tLcBwHx3V46PBxekoF/MAljhIsZXP69BmKFR/bcRDCIcvAtV2OHTlNGkWsnyjTiVtYtoPnlxgdKdPXU8Z1PeKkgxBmMhRFEb29JWzbIYkzpqbnKZeKCBEyv7TCpRdu4P3/fIbXP3MrBx5+iFdetY1dT38Nt991E4V8jpu+czdXPv0SlhaXGZsY5lP/7Yu84EVXnutw9g32n5PeSEuyvLhIIQ9C2qQZ2N3plxaSVn2OIHDxgxxZJhAYb12aJKAV0jLgl9WVVTPl9PLUV+s4rvlcyG6RpJRF2I66N2VD8HRs2xQIliKOwu6N0+SJ6cwoJpRlmcZxltJqtvD8AMtxsW0b27bBshBZilImXFkI+9wGrF6vdQs0RatRJ5fPkSUxWZrhOCaeJIoiXDdnoC62DWQ0q028nNfdbGcszK5g2VYXIuPSCQ1YJUkSc9MG6qs1grwLSNCGGJllGVIlpLplyJho0rRDrVqlUh6m2Wgj0XiezYZN4+y+cBvtMKLTapPL+zz3mSM4hQsJG/OkSUYc5nD8mNHxDcRxiut6OI5rPFw6oRk2yBXLKK/EX//tDUwMDFPp7WWl1kR5Of7wgx/m2c98AUHOo9la5h8+90Xe8+73UGs1eNPb3sL0qVnm5qdp1RP+4EN/wBtefz1+XvLx3/0M664YQGJkWnKtx69NKLW5I2Zk2sJ3LZI0wrcdwk6MawsC1+KWWx5g3Xg/QeAhLLDIiLMIW0lTOGrjy5OYDfXIUK8Js846dOIOOc8njFIQEkfaJJmNcMw0WUqHKBO4nksYxdz7meMUlkZ53VVv4y1vfiV773yYN73lhczMnmVybBOXXrqHLIuQWpJpwb77D6C05J57fsiFl1/C0OgIgZvj1pt/wEc++se86U2vx3UVEDM43MvxE7Mszy7y/3zoQ1jViJdc9iY2+yN84v03sv97Z3n4lrNEszH3/OgAvZtLFPMeQqfkfZee3gI5X+LZRhZo2RDFkQltTwycK/ADLGW84Mqy6CuWueXWfRTLAaW8R5pa3H/oBKMDPaRZStGz0AK2bRlDSigEeTpJgm0ZNUqWCr7y/vv5zKf/nDe9+Z184Pr3U1up4ngWSInt5Gg3qwRunl0792B7LjqLzX0FzdnpKfLF4jkS6qGH93PtK69l6WQNIVJ0qpGWuU4WywX8wGNu9gz9/X14nsu2rTtpdlpEUUyxUEIpBx3HfOXGz9GJQuZmp9iycStxmhA2G0TtDmiDt//uzd/i+c95Mc12i1Onj/LIwUNsWr+Z01NH8fwCuVwOz7Hp6+3HtS1836XRatE3MEKcJNx6+Efcu+9+LprYSSGfJ5fL842bvsnS0ioDvf3cdsdtXLjrAgYGBgjDNkoIps9M0VMq0+o0cXN5JBnNRs3EwDxhcfdkZdyPrz++4Q+54Qv/wG+98Xe6/+6nrCcoGH5S0XPljmcwvKP3ZzqWnzYN/LEIBP3Y4u7nOa6f9HOPFpI/z7TscT8rfkpdsDa5exLSSaZ1V755XoH5RMTL8/7ufIDK2l7yiZZcK4yfZMkuXdNS/84nd0kS/d75IYLQHbf+nJ67fytd7PldiizNTOcXDVpSrPRTGBjmgTv2snn7BbTSGMsepTZ7BE+l2MJleWkJr2eMMHZwVYf6mWP0lIc5PTdNYaiHvF1my7ZRVtopV28OWF6qMtyT54EHjnJ2rsrwYAXfBduxsS0bpRS16iy5IEBrQbvVwrEdSBOiOCKX89EKesoBvueyvFxlcaFBb1+OkdEeWi0jV6qutvFzDratyOXLnJldZnKin7GRfk6ePMPU1Bn6+3Ps3XuU9RPj9Az3Mzu/jOvYnDpxnKHhftrtDqdOzbBjxyZOnTiLkllXP64YGhlgeXmZq/cMcu8CPP3pe3A9h1Khl7mZJfKFMo5tk2RtHj7wCItzdV724mcTHD6I0BolBM16E8u1QafErRa255NlMWQZCtX1yGRoIZCW6hZOptBTXeOsAaF0i71MIHRGs76KbSuiOMW2rXOdFUu6pvOvJZoMpOkQSWV3819AiQxlGT29a5kiWShp/D42oBUnj5+lUvFBREjpoolotZqQamw/B1KZjr9ULC9WGRnt46GDh5gYHySOO5yemiFsR/xg3wNsGhtCakOHqtWq+DkPISSO47BpYqRbnBrpRC6fZ3lxAcc28qFOJzY+RWXzt4+c4m0vvpTVxQUm1o3TN9hLoZTH9T3yuQKNeotf++vbuf656wnbCY1GQpJlBDmFFwTMz6/g+R4aTbHoM312nonxEdrNBgN9/bRaIWEnxs8F2I7EcTw0giRO6DQjWs0YL8hR6S+R9x10KonaCYuLNTxL4fhOdzNso7FJdcLhw2fYvGmcmdkZCvkC//1L99Fb9IEY3/dxu0HtwwMV1m8YI0sSDjx8nJ5SGWRK3ImJOx3SKEFna6HFGTnfx3JypJnGy9m0o1WOPHKcvv5eEq3p6csjlE+zEUIGYaONoxSWpWg1Y/zAYXhohCAwaP7lpSZJ1mZwZBAdmdy9TERk0kFqm4wGQuTRdCiWetBIlAVxnCCkIstMNMChgyfo6cnT318iw2DNj5+YNkWrANe26e8tYSvB87f5YFXo6emnkK9w0Ut/iQNHVnjXO65h+4717Lt/PwNDA0hLcfElF+BYNqVSjrmFefr7TRF8w+f+iQv2bMZ1bRBNtLSQOukWmSbINssEysqZjLOkg+t7puCSEmUr6rUGfi5PmiQ4nkscxti21SX7SrJUdWNa2uTy5pyQlpmCIQ2R1lLmc5alEZbKjI8pTYnjiDSJSbu5QVmaoaQFmOIzidoooVHKJo0NBKnTbqFURhJFZqKuU4R08YOAOElRyiFKUjJt/BZxHGO5eTQptpVSX5khKPYghSSJEyzbJlfIYzsOjueTJBlCqi5JTiK60AnHcwnrNSzbNBV0N0KCTNBuxNiuAhRK+YTtlIW5Jb75zXvYsmWCBx44xuZNY6SZJstibDvFdgMcz+NVr/sQb3jjW8lSiyDvIYVPlmmqYQ3bDkizlDhepl6vkc9P8MXPfZsrL9zJZF+Fb3/7ZoaHJvnYx/+MZz7nSp6+Zze/+Iu/yAte8DqCss9b3/YfsJ0SH/3ox/HdHLNTx3jKZc/k5a+4lv/2qU9y+sQx4tBlcmKUVmmFNI0ATSfuIGWKzlzCKMJ1JK0wRAkHx3JR0kFJB8dqQiaxlM+WzZMkxCyt1vBs2+QQoliuV3EsIw0MO5Hx6wlIk5gkjXFsH8c177lvBxw9dZpWkjHY2w+ZwLIcPv/3t3DxhZN852MP0tpv84m/+Ct27dxNGsa4gcsnP/WnvPa1b2DTpp285fp3cs1Ln0d1dZZysY8bb/wSgpBixabcW2CgZz2O6xF2mli25NWveSWO66KkSxhqbDvHpRdcyvOvfj75cpEHDx7mwou3MTWzwJvffB0vfOFzuPaaq3nja97MC37hKq7a8BK2VXZRbk9y5r42yQmH73zuLqb3rlKbaRClFoWCg+ea7MhavQ20iZKYlVrI1NllhFLs3DqBbSmUtEizlEY77ObSWrhuiSjJcGyHONNYlsK1A2wp6HSqfPOPHuLP/vj3+c1f/UPe+fJ34nk+1VoN3/eRWtJqhOTyAXGS8MjhowSBg+MZ6X6SZuRLZZory7ieRxTHXLLjUt79wd/iqduuIPDzkFm0GzXWrZ/EdhyQFoVcDsfK0+rU8PwAx/VwLA8yqK7OE+QL7Ni2k4HeXoaHRoiTGG0bmJdAUGt2yBUCestlysUC9UaNyYkNrN+wEc/3KJV7mD59lkqxTCIiLLtIHLfNtF9IFhfmefjQcf7isx9ho9xA4HrniKLbNm9jfu4sIyPDrJ/YQDsMKRQLNBsNSqUyc3NzuK5HiMazFEnYZu7sGXoqvQhhpj8oiZaiOxNdm7o+wfSmq/DTaD7wdx/gc1/4a3YEex59/PHFw+O+fqwAe1KZotkDKCX59Jc+wzOueuoTbWYf87XWdF57znNeujUr0nl73/MPWHQ9dk8UH5Bl6bnHn2w9fvL3+Gy5J1pJEiOFerSmE/qxX9q8E2SYxkA3PmUt/05aJudV8liPnVDnBbx3n+Zcft8TlBtPNH1bk9yjhAF8mUN4tEz8KWXLmiPz378ssxuF8OOa2f+5E7snXI87JAUcPXIEHXXoHRwiS0wB6g2Ponwfx7dZWlmkLweVsoeSCWkaEWWK8YkNxJEGXSVsRnz5S1/guudeyokT07Q6EZWeMls2jqF1irKE8Xhl8MO77mPThnHiKCNOMrPpyUyHvFqt09ffi7QsLGnRiWKmzszhOJKh/hLNRpPB/l7qtTr37DvIQG8fR46cIp83RWMURczMzFMpVxjoLyKETaVS5tjJI4StiKH+PmZmFrni8ks4cvgIoyPDVEpFjhw9jqUskAJLKXrKZQI/x6Ejp9myeT27ByyssYsYGBxCScXdd93N1h2bkZb5YOdzBdavm8QvBrzhY3/Fy9ePGA+H46AxUi3HdcjIyDKNpWw6YYJQGUsLKwSBTxJlKGUuKkYpoclSTRKZ/DIpBdKyiJMEPwiQdtfHZ0nQwkj5JESdCE1mOjHd5zIwHdNgUEoQRSZ4MkkzhMxMXG0ssVKJ1m1c2+bIiTNYyuI7tz7Ejk3rcSwXx/FIkg5hs4klJRLwfY8sy+jrLdFqhXiBTblUxFYWo309CCW64el3sW3zGDozeP+0K9mLo8RISRFIJbDtjE4nQkhFp5OYYHMEp5Zr/MJTNrC4sETYbnHmzAxJHFHIB6RpwpFjx/nR8VVe+ZQBWq0m+XyOWq1Jb28Zy7bwA580SbBsRbvdZnBgACEsarUW9z14hE0bR6g1mwyNDCIlhGHM1NQ8p6dmCeOI8fEh87qKhDjOsB0XISTTM4v09VXMBVWufcQ0aZrgd4OFw06bKEp46uVbqZQDZufmCAJJq13DtiW+b6S0aRwxOjKMZbkoKXBsG9d3sRzFyso8uZxFvpCj2qgThiGnpmao1uoMDw/QWy5z/NQ8Y2PDkJkYgOMnphkfGzKbbiHZf2CKyYlhMmJ0xrluu9aSXM4mSzIO7D9Nux3SP2Ayh9IkJZdzyeXz+F4O0wGw0NruZsBlXfJeytBgv/msI+i0IzzXoVIpoiwD90BaPPDQcUZHhxBS8Z7PHWBIdlg3Ocbnv3cf1774ZSBajI31c+89+zl+dIqLL9vDLTfdxvadm1hcmGNkbMRMStDsuWSnMaYLicjqZFpQW1pG6wzXc5mbmaFUKSMQKGkm13QlNJkGKW1c1yGJ43O+13arjeO5OJ59LpNTZ4Y4G7ZDHM/EIdAt/IUQJoA8TkxMQ9RBWQFCKJRlk3QnVFbXl2iAShnVlVVy+SKtettE1dgWzXodyzFgFWkZT2iapkihaDRqxFHHTFM9F8uysG0L2zIwAwnG5+sFKGWbIi3qmCZMN3tvDTZAt8vbabdwHHPtRIpugeuZHL5u7qQQAstWpCkIYaEzwd/fcAtx1Gbb9nHGxoYYHKpw6OBhRidGQGtq1Qaeb+S4r7p2B6974x9w3eteRq1e5cTJU+TzBXRzmcZKlbf+0i9z5TOeTbFgY3mwfec4rfZZihWbv/zMP1Eo5nnDddfiO5rjR47j5wpceOHl9PR53H/nHXzxhs/z6+9+F2nS4uFDJxkZneSt73gbi6uL9BSL+LkckxsHOFx7EDASVN/1EcLm5h/upa+/gO+6OJbDTd+/j03rBrnjgYOUywFRHKNRfPe2fUyM9+FaDiem5xjoKSKExpI2nmO8e1Gs+efv3s+mDSO0OhGeY2FZEi00UZogu/uvUjFPJ47I+R7TcytUih6Doz3c8uGD/PHv/T5/+zd/y6te/QoWF+a44/Y76O3v5ZprXkT/YB/LSytEYcqei3ZSLpeo19rs3rmLDRs3USn3GuCK7fLA/fvQWrNh4zpOHj+GY1t4nofnehw6eAjXa+PmjAR5+45tZKmkWCjzile9ltdf90YajVmEMFNHQR4hYlaWV/n0X32a9/32b/HCFz6XN73hOp5z5fN4xs5nsN5Zz9EfLnD6rhr7vn2Cw7cuc/rOKluftY7phTrrhiu0o4hy3vhFsxRmFpYZ7Kt0428SXEvSiUJyrk2UdLqQi5SH7priN6/7dd7xnt/l/37Tf8X1XDQaz1ekWUymNUvLi+QC04wc7B/Etqwu4dg0WQUa5bpkygZpsbC4wgsufy46S7Fth3/48t+zadM20jQlSRMsaQBiSlkoJUgTjRQpUmWEcZtMCxNcrizCMETaFp4fENYScq5LHHcoFnOmcYoml8vh+wGO6xDHEZZl02g16B+okKYdMqFJNRw5ephGq00Q5OkfGODA2YN863tfY+fYbhDmmqC7E/11k+vwcy6e69Fud85JyjMNfb19KKVYWVmhnMszM3eGyfUbSeKEB/btZWR41NxvEQixZkZ7Eq9X99sP/N0HsG2bbd7un7SlfII9588xoBCmTLjhn294YmnmE1idznnqeHRS93iZ5qOsCfPHWvH2Y/EB3YLo5/Xg/SxrLfrgJ3kczTE++j6c7x9M09Q0Bh9fR6wds5Ln1GBmT/izH9u5Y3rsIfzcrr3/I6MQ1iQ6/6uXFNJ0BrrL833K5TL5UpHlxQWsLt3x8CMH6LRWUUmdrDmHTFvc8YPvgE5xggDpWKyu1Bno6yeMqrz9v3yAP3rr1dz4je+ze/t6dDcU9NT0LK5tU683sZQijmIu3r0NxzFyRse26UQxtuPQarUZHOgjSRIAbMehUimzaeMYV1y+i7Nn56mu1ui0Q/L5gCufsotCrsC6yVEWFucYGe1nZHgQkBx85Hg388cUa0ODFSyhmZ2Zp1QscOT4NM1GC6E1aRwRRx0sSxFFCafPLnDo2GkePnScDZOj3Hr7A0iheMt/+M80qk3q9SrPfd5zqFaXkN0LhbIsGq06WDajo8PdTBJotzskcYKyLDJMR0kADx04StSJSJKYck8BtGB+dumcZnqt0NEa5uYWu15Zc+GyHBeUIlvr5nSnsVEUARmWpbBt69y1TUphwi+7n9goilG2bcibjt0duSdATG11iShsUyzl2bN7GwP9A1y4eYwsS1lZrZJ2PYGObSG0Ju50aDQaZrpmGc9Xu91mdbWGshSe65psHeCZl+/GdVxsxzWkUCmJOzGu55ophDDZXrZj0e6EKHvNqyhotzs8rexz6uQ09UYTtGbXjs2UigXqtTpS6nNFrNaaIHCxbYtSMU+a6u65L3BdQwXN541HMk1SlJCsnxggzVL6+8uEnRAQHD02zfhYP1s3jbBx0xgP7D+CEJpWswHCFMZ33Pswu3ZuAiG6BWvW9TGmJFGE6xhvlpSK/r4S9UaN5dVVtmxeR6sVEYYxp07NmW52GmO7NktLK6RZRm210W3GaWzHwRKKMEyYX1ghXyyhFGzfvo4N68cIWx2kZeN7Hjo1593q8goTo/2EYQfL9VC2w9bNkzSbLdIkZnZmHp1l5nUqFbGUwrEsSoUccws1onDtfDLNgyhskKYJcRx1yamaJM44fnyaMDSvWbZWDFgWrWaI7AaZ12sNEIIk0dy3/yxxYiaczTBldr7KQw8e4tsffhf/8KV/4Ppf/hBZphke7ju353juC34BIQR9g304jmPkX2Rd35nAthwjJRSKfCFvriFC09Pf021oGNl3bbVKs9akXm3QrDUB01G1bducj1FEqVzGdmziKMZyTO6ZkJJ63YBEHkNW06aZkqSZKeakjVQOtdUamTaTTcfzSLtZRrZjgxBoMsq9piHgBTmkkrRbbXLFQvdnupsPqXD9AGVZOJ5LoVTE903enc5S0jQztM7MNERsN0BI1/RRBTTrLcJWG9AoaQAJ5rUznyvVxeFnmZnkO55PlmW4joHGGMmgMllwdOFMlsUrXvksAC68aCeWbYrMzdvWkSYJ+x98hL6BwXOxAuiMz//Vi3nRS6+j1W5y3333IoWksbrEhslRfuXtb2dkZIJjh0+jhCKM2/QNjqAcn+mZs5w8fYRKOc/eu+5m+44dlEol2u0GWdrhgl07ePvbrsdzJFkS8dGPfozJDes4fXqKyclxrr/+rRw7doRiKeA7H3sQELRDk0P61W/fy3OesYeeQp40y1istnjJ1ZfTCFtYFjTbLbQ2kR5btkxQb7VxHZdysUCj3SFOjJ9Sa0EUaRzL4YorduA4BobywKETaARKCurNkCRJyTANvL5yCa0Fg71lvvaH97Jxbg9f+LvP8La3vYuP/OmfcOChB+mplHnZy6/Bc30+8MEPIoCh4QFqzRWklAS5AmG7jeO63Py9W6jX2/RUBhFCc+ONNzI+Ns7iwjylYp5isUAax9RqNRbmZglyeWbPzPKud72buGPRaLTRmeDLX/pHlLIZHh5CCEGj3mJhbgHP9ZicnOCTn/hzyqU8Srp0OjGajCgJ6R8Y5IorLua33vvrfPLjH+ELX/gb/vIv/5yBU9tY+MoS3/2Th/i7D36dZhhiKcnZxVW2bxjDVhYSyQMHjlBvNlEC4riDYxv5fpykrN6jibTFe1/1GzTbDdCa5eVl0kzT6UTcdc+POH7sKGEnpN6oksQdRKaRQtNumntFEobGJpFpojDk5lu+RZamBLk8cRxzyaWX4bgujudRyOXPfZ6E1MRxgm2biW69VuvmQgru37eXOE1pttuApNVus7I6R62+imM7nD07zdLyEqnWpOjuR1qf85wV80VA4/k+nuNjWzaFfIlMQ6lUIoxCHpq6j4cOPcLc/DzVWoNqo8lqdRXf87GUpNE0Tb5qbZV2O6TS08fc3Bljmcgy7vjh95mbn2NkZBxhKTzfY/PGrdx51w+pra6wxnIXXanmT/Obvfe17/3JG8z/1asLFTE5cj+9fHii4u5n8dz9S9a5vL1/4bJsi1SnT/p4161ngFL/it/zL1nmfvTz1Tj/W07uzkUhdNfj/9MC+ejYmPN1r/oJvz//5/61Ms1MZ6zd+YUWxFFEf38fnSgibrVZXV7E9hRjlYBweZqlU4egvYJfGcJVktm5RXqGx7HdCksLs7Tri+x78Bj/8aph4iRl17aN7D/wCJddtoeBgR5yOZfvfvdutmydII5MXlI+54K0sR0Px/UoFvPngoBVt/sgpKTdDqnV6sag3Qw5fXoGqWySNMWyJPl8wImTp4miiEqlTDuMOfDwMcrFHOsmBikUbGNwqgAAIABJREFU85ydnae/v5+FxRV2b9/C6moV1/PI5z36Kj3Mzs4TJTGFQoG5xRUK+QK1eodSOcfK8gp7LtyOkhZnzszyjmuewYvf8T5ef93LWF5e4czsCfr6ekhi4z8LAotUa666fAf2gYNoKbEthU4TpBKmoNIGadvbU0LIDMuWWNIijlPSVOMHBl2cpgY3n8QJ1XqLYt4nTRPoyi+RCqkFCE0cxWZD3Y3dyDS0mx3jA1OCsGkALObcA8tSiC60IUoSdCrIspgoqeMVwHVyZNJCa6gurtI3WGB+folSOU+qY0Mo7XoGo06Ml3OJO5HBoUtF4BU4eWqWYiHHLXc9yJaN42Q6w/VdEJDE6TkfodGPm95UmhqJaavVxnODLtxDGiJlFLM4PcPkZetJMuMTbLc7OI5Drdak1W6yZctGbrj1EV7xlGGajQatVodSKY/rGxommm5RKbq/UzIzM0+x5NHbUyGM2nhdb5USknzg4ToOzUadIAgo5nPYjo2yjSfJsgUjgyWajQa5XI6F+XmUEqys1FlcquLaCt93UZbF4lKNxaUVhof7KJeLrC7XsKRrNBSZIvDyCJHSbLYoFgtorTlzdpGwE5HPG8BBsdCD6wYcPTbPt773MJdeNMnx42fo6y/hODYpguWlVTzHEFxL+YBao0kQGNx8mmnCMMEPHMJ2g+pqTKUnx+pqjWPHztDXmyOLOqzWOkyO9xN16ujMbEgdJ6AVLhAEJidNWYozMzPUqyEbN46hVPe61W1M1Ko1Q91zbZRtcfjIFMW8j6Uctm0YotVskSYZH/zMd3j+Beu45OLtfOH248wstZieO8PuLSNcfOluLr70Au675z4W5pc4eXKKyfWTZEnXXyC6ZERt/Gxhc8aQcht1SpUiGqMYAEknjBBC4Pkurp/H8zykzMjSDpbtkaSJ8ZilqZEzA1JZKMsmTQz0o1guo5TNyuIyWZoaySJmWuZ23+csS2k16xRKFaSiez2jK7OBZqMOOsWyXaJORBYnWI6FtEyR1W62cFyXLDVE3fmZeQqFgEatiec5pEnS9eQazUyr0cB1XbOhlaLr5bXOTdykNJl6AoiikEatRpALUFISJwlJ3MK2LZI4QypF3PU5NWsreEEe27Jp1GvGW2tMxERhAlrz7W/vpafikMs7eJ7DXXceYHJyhJ6eEsoyMIssTUAbX/GbXn8Z1//yn/Hrv/4ruJ5ioL+fhZUlNm7ZgpI+v//bH+Gal70Uafu4Tj9ZkmfPRVt51rOuoNVqMDwywenpaUqlMps3beO+e2/hjz70CZ5/9fP4xCc+yTUveQV9PTkuuuBi/uL/+wt2bt/GHbft5ZprXoTjwze//kPGLiuhpEBKzZaNYySpxlKSMIrIez5JGiEE9FUK5HwXz/MRwjQ9cq6NY9v4rk0+cNAalmqrFPyAr3zjTgo9JeIk6cYLCAb6SggBUaLZ+8AJxkf68VwDqFlr4L33pX/Od77+VdZv3ECz2eRVr3klGzZNMnP6FAsL80xumCDwylx11dOJ45ADBw7wile8jEajgaUcrnzaM/ilt72BHTu3I4RkZWUVy4HnPueFfOITn2LHrk14lsS2LKanphgYGKC3p8SffeyzPOMZV9GoZ+y54GL8nCE8ZzrjzPQ0t918O5PrNlMoB+SCPsJWlcX5BYaHBpmfm+HEKfNcX/7yV9i8aSuuZ9NuR0hlM31mBsvS2LbG9+D661/FK17+al72vJdw4Hun+Mbf3MHU3WfZ9LRBbFvRjiJGhvqwLEUjDHEci1qjSc7L8eXfvY8Pvv893PhnP6RQ9CmXzbn1ja9/nZHhcYr5CoWgzKaNW8lESuDlqFfrhGGdTiekWOlFCMHNN93I5k2b0GlKFnfYPD5GrlTqEjxt8vkc5vaZmaZEmpIP8miZUK+38FyfNNEIYSGxSWLN0RMHGB0Zo1QomAZkGFIsKVwvx2q1zkDvAN+/7Xvs2Hkh7bBFo7ZCuVKh2WrhOg6drux6eXkJgY+0JOViAcdy8QOfZr3Fm9/2QnbmL+HWW29m06ZtfPVbX2XTuk0UikVWqivkczm0hsDLgRA4rsX02dOMDI9y/757ufTSK6mUy3iey6HDh+jrG8T1PMbHJqjV65SKRj7/2ABrvaan7PbWzPfP3PPMR+V75gfP7SmeaJ03UDPrp+1dz3v8B/u+/5OhKudN6h7zvN170JPRMNcAK2Dkl4+PQXgyYMiTRQj8PPFkSZZ0IXRP+p96zO+CR2WmGRlkpskolXwUDgOIx0tChX5SSeZPW+ZcePwR/XjtsWYxe7w89f+4yZ1U6jF5d/9/WlqDzjSbt27GtSzGRoeoN6rMrsQ0KVGcuJDJi59DM8mxbuMOlhdXkbi02hnl3hxxZ5HO8fsplYusrtaYnV+gv7dIFsf4vku93sTx83iuy/ETU5w5O8P09FkOHz3NwUPH6YQdVqtV7r5nH7VaHZ1pvnvLHUaqqWN6eiv4vtnolytlVusRmZbc99AjnDx5hq1bRxkarFDK93L8xAzlUhHXtVlcmuPU6TkKBRu0JOf1cMc995HplGp1hfnZM0yfWWal1mRucYmjJ6bJBR7HT81w4a4taK256so92I7Fps2TPOWKPZw4eoZP/+rVpFnKgw/uY2xsmE4nxHYcGo069UaVLGowc/Iwb/j+fQg0Qmt0EpNGEVmSAAZ2YtuSXMFBCSO3tG3FwGCle0E0k4+1QPLJyUGULbFdhWN1ITIayDLiToznGWJjpjU6E4TNiC9+805WlxoINH7OP9fJN3JPQZZqE8xqK2xLYlk5HLsf0j4SbZEKCVLQU8nRWA3pK/ejE4UULtIyeU7LyzW+c+eDCAmu7yIQdDoxcShZNzrO6nKd5z714u6GUyAlJOmjmYsazcL8EgsLy12Ue0YnNERWS/mkMSCMd3DqzBy2knz7jn2Mj40QRSlRlLK0UqOvv49iIU+WahaXVhBaIYWR27XaTVZWF8iyjLn5pUdJU5kmDENGRipkuk2zVmd1uW4iHoBDj5zAsiymz8zSbLdJ44hjx87ygx/tB+GCTok6TRxH0Gw1SOOIQsE1fiPLIvBydMIO02dmCcM2cZwyOTaC4zjoTHPy5DxadMjnFXHa5IED+6lV20Y6K1KOnTrJ8NgAg8MDAKyu1EhlAipl9wXj/NJ1V+A4HpVSgVajhVQQJxEbNgyTC1xmZ+Y4OT1HuVxifm6J6uoqDz98lEIxh1IC1/EI3BytVotKpcCO7RtotdtkWcTwYJlSOSDLYoqFAKlACEU+5/C5L95Oltikqc1A3widKCZJU4Q0hUwcJ2ihyedz9PZWcFwHnWXs3rnBwCKaTe6462G+9d19uLbi9j99Jbu2T6IseOHFg3z+C5+np6eP573wFzjw0CNUV6t4nmJgoIdCochD+x7h7z//TX74g3uR0uS8JanpsDuuBJ2QLxYBQ/yOo5As68pZ0CRJYsLcdYZlg9AtwBDztAbHcY2UyzIkWLQgzYzEU2vIMkG5t4dCuWxk4J3I5L8JjSYjzWKTa0cCIkOTYFkCy3aI467P0nOorzZwHBfXd8jSDlqbuJR8qUgnDHFsiRIwNNxHu1nHD3wW5xdNsZmmNBtNkighCHIkcQxK4PguiJQsjVDSHJvn+2itqderdNohnu8StlpdaZiF1onJ0Wy1kVLiuB5aZxTyAVIa+ZeyzJTddhRpGpFlEd/97u3YlqJWMzEutmtx5TOu5Nbv34fr2iwvzZEmgoP7T5AlkEQpN3z2Jr782dfxtrf/XyyuTBF5OTLPRbqCvXvv4U8+/D4SVqi350kyzY4Ln8r2jaOEYRXL8xFemS3btrJuwyStZo0ffP9m3vmrv80NX/4G//i17xImLr/yK9dx+ugBfvnN13Pjl27kI3/ycQaGRtGZxeToeg59+yTKEswuzaF1zEPHZqk2TYzE0akzzC3XcG2HdifFVhaJTro0Q5v7Dp5memGOervFQ4dP49oegSdJ0pj+oTK9hYCBco5yIcBzbNMEkxIlLUZHhslSSTOMSdKMOEm5/TOPcPstd2KrAM/xcH1JoWSzsrrM3XfewRWXX8LM3Bn+43/6NZrNFn7gs33HVmZnp+jtqeA6AQ8fOsT0mWPESROIsR1JHLep1+tYymb69GnuuvNOpk6fpK+vjzSJKBVL/M77foPjpx7kdW+8Gi8vWVycQaqMVmuFXM5i0/qL8d0ySZRhO5KHHzrA0NAA7/+993HH7bfiupJbvv99Dj18FM8pYzsu9WaTwaFhBodHaC5I5k+0yFoeJXcAIcELfN7xjrfwqU99lM/+xUe5JHoKN330ITxbEaUZp+aXKebz2LZDOV/kS++7hxv+7q9Zvs9maXGZvr4+HNd85p//vJdQKZe4/8F7CJM6tqdRjocUOe65ey9+IaDc00uKIE01z37OS+hoC2H7WF6O0sAASZJgyUdp0pKkC9OJ8XJ5Op2IxaV5SoUSN3zxs0QiASG5487byLIaz3/mCyjlAtrNOq5t0VMskEU2OnM4MzuDVhkvfuHLsWzHZPgN9FOtVXFdx3hwMw0yJV/waIU1Wp1V6vVlestl2vUmH7zhg3zxn27h5ptv4gUvuIb79t7G+pFRSqUSQkh6+gawlUuaalzPZWFpFiklF+y6iGq1yu5de/DzeVKMt7a30ksqNFgKadv09fezUl3tqjDOW48qNM29msd+/7Pai/6F9cXPvHT6b/DsXR/02hLix6PD/i24F2AyHtcyp/81K44T4jh50sezJDP2qv+J61/yOv1vObl7IqAKPPoCrHVVn2gkfD5e9V+zTHH048jU7oPd3yEQqmuiFDbVRps0FowNjpNlCVHSIghK2E4PcZJy8Phhdl/wLBNoGtdIM81vvv8v+dUX70GqjHzg4Ts2Bw6exM8VmJ2bQ0nB3MIqYRzRjiJKhTxxnLFx3ToGBvuYPjvL6MgI/QP9+EHAzMw8F+zeysLiApVSD2naxnVtPN9neLgX37E5M71Af0+Znp4yjh3QbLdwvByupRgdHeWevYfYvm0zlXKFQ4en6eur0A5bTE6Mcvr0ApYVUSyXSbRiZGSQsBOxtFAzHiTlMju/QilnYweSYqnMg/uO4uUc/HzALbfuJVqewhrYyvqNu7GdgEy0KZYMic+XGpHzeMObfpkz3/sWeddDOSauAC3MJtgSaCHQWqKlJM0ky0srWK4Bhzy4/yi9PSUjaVMKIQyaHCnQmA6r1pmh5DmeeUxr0AItIMsiLtm1niDnkyRmSiyVII5ipLDQcs1srEGnJt9LZ0Z7n2VoAVbX0xTrjGa1ge17nD49wz37DrNxYpyv33IXmydGWT88gO265gaZJlhSUq/X8XMenU6M5cpuwK4ibLchTbE9hUSh05A0irhr31F2bVuHkGDZLirj0RtuV35ayueQWrP+skmCrj+v1mwwNjZAY7VKsx0hpGQgO8mm9YNYtgnLra40kJmFnwsgM+j3dquF45qpi1IO8/MNWu2YkdEBTk3N0NtTQaM5O7uM67r0D1TYf3CKrZsnGR3uw1IZC3OrlApl7rj7EBMjw8zMrdDbW2BxKSTqpHQ6TXoqvfT09pClYAlBisHtp6mmf6CM67rMzq0wOTFBf08/rqu4654jbFg3ipIK37WZmzFwmVqjTrPZxHM9lLSIYiN5tGxTmCzM1dFJSpDPgZR8/4cHuHjPRmzbxXYjCoUcQwP96MyQ4eqNDuVyDsexuWvvI4hMUCoO4PgOlmuhLBdpBWhhYStJomNQJXJOQrGnzMpqFak0w0Nl0InJYxMWaQadsI3tuOw/eIIgULi2RZKmZJkmiRr86J4pNm2osLC8yrp1/fQPb8B1fb7x9R+x9WlXsbLa4JnP3M6GTRtI45ipqRnCsMPQcD/FQsCFF++kUAhYXlzi6OGTTIwPglB87Ws/YOu2MbI0Boz82HUDhLS7uHsjb201llFK0qzVyZIYOygi5FoMgI1OO8RRx0zmpMBSLlIq5mfnCXI+WZqQxBGWpXAcmziKsC2HOK53i3cXy1KkiUAIi6jToVlv4PlGim6IuJAlZppXry3iOcUubTGjUV82RRYChKGD6kxRLBXM5yEF1/VQtugSbiVKubRqdSQmF091iZ5JN4DddSxEN2JkTUaZaYFteSSJxs8FtOp1bMdMljpxZuAvlsJ2PaRyQSuUUjiOx/jYMJ2wycEDJ9ixcwjfC0jTlHarztBIH7l8gXp1lYnJ9URRjfv27ucXr3k+SdzmpS+a4Fd+9b9z7dUvplK0qC6fJbCK1JqnefjBGj29BXpLOd742utIslVSJfEDB0ea7NO+3mGK/TYX7LqK5flpfGXxX979LprVU9TaHb5323e46LJnsWPPCJ7l47gpnpfj8ssv4sDeU+Q2afY/cpZSocDUTI3B3oDDpxbZMjlC3gvItJG2nzy7QiVXIIxauFbGQE+FYpA3kuG+CnPLK9QaRrY8PtwLQlJtxhR8lzBq47sO7U6CrQTlgo9GMz27QCGnOPi9KX7tte9hcX6GkYlhlCNxXIul5SV6ij30DgwilcVAfz+7No8zMbmdmAaeJQhyFbJMsLi4SLuzYoKptU+rHREUbaz/Qd57R1l6lWe+vx2+eHLl0BU6d6vVLaEAEkmAQRY5g8AYcAAbG9t4xvb19ZoZxgbMjO91GuPlhI0HA+MwBkzOWEiIIAkhiW6pW1IHdagcTvzOF/f9Y59qtVoSwWbuWjPevc7qqpOq6qRvv+/7PL9HSqJWiX0HGww1ZvmNf/8r/OgLX0XYGOOfPvZP7N6zi2a3y/jkBO1Wz/pP0XiOQzUosbG8xvDcONoRtJpnCdyA4ekpzpw9x/Nf8CL27NnP2sIZrr7iiVz7lCey2T5L3O8yPTVJa7NFr91nZEozOj7B7/7+H3H5lQepV+u4GhYXT6Glxwf+7H9ww4tfzCtf/SKG+2P82X/+CFfcMEe3F3PTrffiRgG//vpf4cbX/xQ3PPHZBCWHesPKtB0hcF2BUIrx8Sm09ojjBJMZfNfl5On72bPnAElaIClI0hihxCAvNR9kFA4m370YIe3t4jhGOoGd5MdWxolRSCnZs3c/jlY42mdoqErgh3S6m7TaXWpDY2RCkBqDozVZYSgFNcLAZWHpLNVKhTxP0TJAOtZ3r7WkKDIkDg+dWkRrTej55HlGL0340udu4T++6638jw98lNe+6HWkWcqO7bvZNj1LlPQIQp+TDxxFaEWlUjmvPChVazjKIc1y7rjjNubm5uknCY7nEQaBnZZIRWH1Yxz7zrd56OQJ5ud2WMmfeBjFf35qM/j3SErjw19vXfPiKdZWM/lRu9nvowiYYJJLrtv9yNtcdDtL+X2MvfIFlO6tPfXFe+GHIxIeDUK58DZbf9t3o2s+blGzBUjZOonvEZZ+MWDlgpno1gRvSzq7FcXwWD/7X1JobU3ipBAX/sYUtr/JFudl616llAPgyiN/zr9doMrW+v8JrPJ4yFSwodbmAvNdnhc06g2O3nfU3tYNcYIKRjqgPDw3oVTywWjWN04zMTHDr/76u/jzn30KWmtcadDaJSsEzXbEzOwkk+OjHD58lGo5YHZ2jF67YHW1x/RUmTAILJHQUxiToT1FkWaEQYCSilq9QTGYrhhhseV5WnDXdx6k2+uza8c2Wq0OJ04u0Biq0G5G1IequJ5DpRLY7CgpSNOEs4uLTIyP8J37DqOlZnS4hjE2d6tWq3DswTPU6zVqtQor603GRurMz01QrlZwtM/4xMggqDlkZXmFZ117iF/63Q/ytCcfIgxdWs02YVjHCIfm5hpjk+PkmeZn/vh9vHR23L4RtkIvpaAo7NdZllkKkhQEJd+GJicpE+PD57PTBIrWZtvKyJBsrm/iez4CaXO4pJVMGEAogRTKEsmsTo5v3X0/nusQBP55OYJ9r9p8N1vwyQEq3x7wFIao18PkGZ7rUKqECAXVSsC+XTNkSc6ZpWX275rBcW1uVBz1CUsBruejPY+/++zNXHlgB46SdDp9i993XJJ+Qi+OCLyAXtQDITh46V6LSY9zsjhH+RbH/o07jjBcDQkDByMLHK155y138+S92zAGhoYbA318gec7BGGJsp9Tq1QHG1mB5zlUqmWyPKNcDtFaox1NmuSW8CgF1VpIdeDdKwobTl4q+9SqAVJCELgErkO73aFS8um0uzbf0BRsn5/m1OkFkiSjMVyjPlSn3iijtbSy0cDmjJ0+s0ylakNt73/wNOMjNeLYMDRUI4p6lMKAZrNFrRKSF9mAahlxdmGDmW0TdNtdJicnOX58gTRNqNZ8jHRQ2iGJU2r1KlpaP1FhCvZsn2Bh4SS+59Pr95DKJc0N3XYLKSXrGza4XEuYGBvGdx2+c+QEk9um2VhrkaUZ3VaHUrk0gK4USOXTqHr0ej3KpS04jW/lv9pCg/LC0hkFMDY6hO85CGEPRlIpTp1apdXM2LNrlL2751AS/voLR7lkeog8jantuJqwVOELn/0Y37nrCIcu28v2nduZnZ/hO3cf5uavfJMdO+f4xMe+zOVXXML89lmQdkLynj/+NM9+xhyO56K0YyXcGQiZ02428X2X9bU1KvU6Qkq0G+CHVRCCNInxBpsrOQh6FlJZL8HA91gqWUmqBS1ImyUENouxsJM3U0ik1DZrTZhBY0Xi+RamkmfpACCVUhTgej6+XybNEpRSg8l6gVIeSrsgLI0zy1Ibr0BhCzADUa8LFGjHSgSzzE6Ni8Hv0o+iQTSCoMghzwza8SgKWDy3TKVaQQ0UAsZYj7NWciDd1ijHykWFEQipEUXG+soSWgrCMGRu+zRfufkeDuyfod3s44UBjpb4foB2PP7x779KGOQMjwVUSsPWD+I5uK7HS56/l6ue9lpe9txnMDFziKIUMlr1md+5g6xQXHPV03jRi15MnuZUa5M0N3ucPnGabbPTODrkj9/zJ+zefiV79o7y8le/hp9529soj47xjx/8MCPD2zhx4jQHDjyBVusUfujw4PFTdLsZ1z/3Ot79S3/BNS/ejdaaHdMjBIGgMJI0K8iK2IKrhGRsqM4DJ88yMVQjNxClBf0kwXUUvufguopyMPibXQu3uvf4OabGyrhast5qk+dgTIrreERxwVduPsKe3bO89sq3sPuSXYyMD+HrwDazsoJSWCZOYlzHYXRk1HqRlQV7bDZPs7hwjjz30Mq1uZlaING42n4OCgN5kVEt1xGqT1HEvPH1P4sX+EghecKVV3Dy5Bmaqws06iW0ULz3z/6SU8dXOHjoMgpS/IpCSXu8SLIe73nPX/P0656Oo118z2d1ZZVavYJQ8JEP/x2jI0OcOHE/Y+MTfOWmm9m1Zzv9uAdGc8n+Q9QbJeK0C2QIFJvrPZ727OfQSvosr61RG5rgRc/9UZ6+61nctfJ1tk2N8ZF33Mw37ridX3/lr+L6Lo1Gw8bjaEVBTq+3NXGX1kctBEHo0Wq3GR4ew/cChLLwsiRJCYOQXr+P6zg4WtNptzBpzkMPneGrX/sy+/Yfso2ZwQa3G0UkcYQxBtf1+MIXP83Y2BgYCEIPzwuQUtKoNyjSmKTXxlWCJEuRQlAKApAZ5aCKkpJev23l246HVhKlNFo5FKZgZGiYbrdLUCrjBSW01Dz79Vfwln/3G7ztlb+I57qDBo3L5kaLm2/5Z/btvYSR4SG6UY+wFJJlqc1HVQ7rmxtopZmcnEIMwFJCWqDU2VMPUSlXGIRX0ut1CcOQ5aVFRhqjdg8gH2/fOvj/oosvLIAeOax45M0edcF3WSMTI4zvHfqutxFCPvYe1zxc3D181pbvfquR/f358R7r6+9/XfxA/aD7/h/OxPD7Wo8jLzVbz2Fh2QRb62LYy9b6P7642/LcnY8+uPh00fq+vHWPLOS/67qwg3LxaUujfKHnD6AYdAZarRZpklKuN5BY8lZhUqLOBlGUUCmNUK4rfuGX3s4f/cSTSJIMKCDPKIRCOi4T48N86vM3cfrUGfKsIDdw7PgpDu7bzcLSKkGgaTU7IGF4uEGvG+F5AZ/53M0c2LeDYw8cpzFUQzuSTqdLKSyRDEzNlTBkbmaCb955hPX1NWrVMvv3b+euu46htUI7kjhOOLewhpYpvqfZs2uGajXE0Q5TY+OsrC7RbPfwAw+lHEaHh3F9l3NLTVrNiDy3UqXVtSaTE6P0ej3ipE8QlBgfq+E4gldft483v/29PPdZz6QxbIO3lWfw/TLrm2uUwmFe+vLnYG6/w2qTeXgqu1XkbSF0DVvBk4KiyBCCgb9FYgpwHIWUVlJGIVhaWkMpgevaOIILO2cmB2GseTtJU6anxkiimL/79C1cvmceuVXQG9utcV27EY/7iYWwYGi37cbfGskduv0+nmPlowUGrSXz02N2AzgAMiAKepGFBvi+y/zEEEKC6zi4vg1jlhK0UviBQ7sZUa6G9HoxStlmQ9xP8EOXOLOb1rmZCaK4S5y0aW9a0/qf33uan3/xNSwtr/Kxz36Tyw/t5uTJU4yOjnJuYYUo6zFcCzGmYGl5lWq1jNSKEyfOURQFvSiyj53j0OtFaK1Js5yFhWUeOLHE/r3bLdjECQBBux2RxIZyOaBSCfnO0RPMbJtGOYONuBCMjQ6xsraJq2zobhzHlIKQUslneXWdMAwYHa6jXUGa5UyOj7Cyssa37nmQUqjI0oxeP6ZcCsBYiU2/n5CmKdumxlhe2mRycoxur0ejXqNctgHZduIKjuNS5CntZotSuYLvB+RZj3LNR8kA3/dxHI3WLoEf0O12GRtpEEc9vMAjSXJW15tUqx4LS0tMTw+BTAhCG9MR9ToEYQmEAlHgeQ4CgeP5ZJntQhusYTxJIrR26EeJRYJLK2vcer0PD9fwPcXUZJ33//2t3HvsIT5/QuJsnuP6H3kyb337n/KZz3yRV934DLKkz9T0CGE5JE1iJqcmOHDpPk6eOM3U1Ai1WoVP/tMXWFtdZW5+G3/5NzfxutdczoD1MuhcwYk2AAAgAElEQVRCQ7/Xo1SpAoKwVLLe38IQdbo4bgAUKK3Pg5yEsI0RKZWNochtsZ0mAyJdP7b0W9/D5MX5PLgksRssU+RkaWIlj0oikEipWDq3aHMxtYPQDo7jWp9TYYCCTquH61lCZj+KcDwrEc3SBKVtrp4UiiTuoZRDr9elVAkB24XutTtoR2GEpV46nmdpnga069rickD8HB4bJcvstDtLE7TjkMYxWZbRjyJLBfVcWpubBKWtfEBBqRKiXYc0TzGF4ZJ9swShotttUx+uIyhwHEWeG4QomJ+fQSmDF5TJsy5e4NnPGtfl5376Gt78tg/x/OfdgFSKrJ1y9MRhSpVJfvKNb0SoCGUKFpY3kBI8LycIrfzaiISpyTm+ccfNvO2XfxXH8ZEK3vrTb2Vscp5Xvvp5fO2rR/iTP/2vXH31VcSJoVYdprWxQp4Zwh3WMymFLb5AEvoaz5W4jmuz1UzOULVMXsCphTV8z2OoFuJoSVbkONrixrMis5+NhWF8uI4QGa4jcbVt7HiuQ9QvcLXDrZ86zJuveQt79uziK//8JebnZ8mShHu+fSczM5O0mmv044x6rU6e56RZShhWEQV8/WtfYNe+QwwPTSHQdNpt6o0q9993HExGP2rb10XUpNVZo1IepVKpEMeKT33842ybmqQQDka7zG2bwAjJe97zFzzvhpfyvr98H9/+9r3MzG2jNlzmnf/53ezdcwnDYw2uvOrp+L7DyvIqwsBdd97F8nKCwHDTl77Cc575fCZnR8kTxY4de9FOQakccu70Kp/85GfxfMW2mRm6nRZgcN2AB+75GvMTIXPjwxT9nFe89kZe+aqXsbdyOb//f72ff/jQ+5lOttMYrg6aJtZnq5TAFAwgXYbC2AakkookjalUajhK4w6kj2maUi6VEULYeJM4Ju5H+K6DdBW9Tszi8ln27ztArx9h8tyCt/wQ7eaEYYjEYW7bHu665xZ2zO+yUt1M8LlPf5iJiWk7kdcaKRWO47G2uohWms3OJpWwQrO1Sau5gVYOG+vrVCoW8tWPE9sUS/qUy1W+fNM/43ke7/nEe3j6k69gNrqU+mjlvDfPAOfOneHApVewurKC4yiqlRrGgFaDzxMj8DzP0qvHxyiyBCmg121RxD18R9DcWCZPIs6cOs7eXfuoj4yiXYebvvIFGvUR/DCwe9cL/FSDLwanR+4tL17nJ3bmojMeY/r2eKvTjJi5bOyRd3rRfT1WYSeFfFRht/U3CGGjwJA/+GTrsaZ7F/oUH+dWF337v7a4y/NsAG/7wd1sj/dcmvMPu3xECbL1+vg3V9ydDzF/PHPmYKT6uJc/3gvmh1DIP940zww2QlooFs6dY2xkBJNCUaRIUoIgJPDrxJHh+ImjvOFgiMF6w5QGjCRHURjIkz6TQyVkYbj2SVcxPjmGFppK1SPNIkzmYExGtVYlLJXYWG/Rj3NGhxrUqiUmp8ZY31hBu5IoSilXaihhO8x33nWURq1CGHj0+x22TY/z0JmH2L93D7d87W5GhsoIJO12zMZahx3z85w9t8oDDy5Q5AWtZsTYeI2xsSG0tt1RYyRpnrNn125WlteZnhjFCMkl+3dy/ORpxsaHCYKAbtTj8OH7KJc9XE/xsifu5ZYjm+zYvQftC2I6mNzF9RR5JhEiJf7arSjlPOpxL/LcduTTfEB6lNhQutyavB1tZZZ5TrfbQUhjZWK5JPBd/FAT9Tu0N/tQGFxHk8UpeQEmz6z8TghEnuNIzYHt23AdhSlS0syayNM0xXEVrWbHZgti6LQ7lCsV4iS1qHilcHwPihwlLcjFFDGFMWjHJYkzlMoRykYyaM8h78c4rqJUCcmNQipDnqdEvR6OaxHTvh9gBlMHZXKytMALfQqVowqJEg4UmsAPcDwXt1AsrzX5Zpxz+QhI7XLowB7uOXyMyw7tRgrbtX1w4SxTwz5KKlxXc3ZhhSBwcZRmZLiO6w5QwsLKc3pRgpIOnU6HA/t3sry0TlGkBIFEOQX1RogwdnPa7rYZHxtC64ClpSUcx6Hft5vgRr3C0rkNkjRhbKTB+somQcmnXLEkxG6ni6HA9306nR5DjSrbt49SLns4WlMOK+RFwenTy4yND1GpljEm45vfup99u+cwQFhyyLMcqWxMSJb1yZJ0AKzI8BwPx/FoNVsoVWC0xHOq5FmGBKQRJAjSOEZiu9bDYyOsrbVoDJcZGi7TqDRY32hRrTeQykWpjMB3MFhJcMEgPiE3CO0iyNjcbCIH0kDXBYFGOy6CwkprpWJQ/YHMKZV9lDLMT49xxaFdLCw3uebAdg4vbHDNda8gxqBp8oobn09zY4P6cAkhJIfvPka71eOSg/toNZuMjAyzd/8O9uyZQyj4+Cdv43k3zKPkwC/WbOJ6DkJqkji1PlahUNIlT2KCwCXNM5tNOIA4aa1pbrbww5A8TdF6C1IiUFrT7/UtoEQImhubVu6LQGkzmIgXCGGfoyJPLLUutxjsUrmMdtxBBpGLMTY42whL7PX8cABlyexERjIAqxRICa4TkOfFICzdoVQOyFK78ev1Iqq1KgIsuEmrAZ2tGMBTEoS0YbO2qSXIM1vUOtol6vYA+1wprSmVK/T7EUHoI5X9LELYCaL16AgWzy5z5PBxJidDhkastLXIUivvlpJWa4NGfRzXsZ/Vjg/poAA+c+ohqiPzvOJle3jVj72TN77i5fzCz//fvPHNr0aYGnnephudo14rMz61jbvuuY1yGfJME8cRQyM+lUqF6elZbnj2c3nDja/m19/2i2SF5Dd/812U64bmpuTZz7yW+R07GR4ZoVytE/VajI4OcU48aF+SRmPI8B2HIJBEcYQUGle7CJGTDGihAts0vP/0OcZH6naCax6e/mdZRmHAd1wKk5DmVpXhahdTCKTUKCm4bujZXH5oF/1Oi/179yAMnDx1jL37d/HgA0cZHxvCdSp0ul2ifp84jnH8Kq99xY289a0/QaU2Qbcdc8cd3+bs2XNMTo0xVBsmzyMqtTKOdGj2VqhUAg7feZYHHziF44Y4wnDrV29mdGqWEw+dZXxyBINi/4ErGZ2Y4YpD+7jr7mM8/bpn4AYuVx66DJSml3QplcZI4x4/95af44XPfyEf/chHec3rX8HUthJPfeoVJHEHv1TB1TX+9kP/k4XF00xMjmMKze6de5iaHue9f/7f2bFzO0nSZXJqnKHJGYSEbpQRUePqKy+lVAqIoi5TE5O8492/wzOueAqe59Lt9PjMZz7F3r2XsLq6jO8FyAHn0ZCTxAmeGxCnCc4AzCakQUmNUopOtzOQ+NvLbISPIdeCarnBJfsOcOb0CRojY2RJn6jXI04zbv/6bUxPzpNkEb2kzSX7DtBut/ECH9cJuWT3JWhHY6RAOB6tbpd77rqDnXM7KJUqZKJAAUVeMDw0xK233gzGUApLeH4ARpCZlCyO7B5BukyOj/BLv/JS3vF7f841T3gqeZpx2223MjU1SxRFNBp1PvbJj/KEy64iSxKWV1eo1xp85KP/k9AvUW8MWVm2kmw2NymVQtqtTTwtWDp1lLWVk3Rbq5w5cYQ46iFwCBpDlEpldu3aQ1FkHL73COPj41wYF7C1/RSDL75b4PnDddjWQOEHX67vML5v+LsWhEo8Wpb5vYq2i0PMHyvn7rHW/w7FndIWtvLDNDqai/+E8xeYf5vF3Zbn7nHX40zwttbFBBr7zff/87+b5vYRb7gLriNNRmYc8u4ay/ffzsrSMiPzO+inMb4oiPtdsrxFvTLOmVvez3DFI81sNlSRZnaTlKcEnp3QeK7P8bOnmZ3bjvY09VqJb95+hEoQsmv7BFnWp9EYYnFpg3K1xNjYBF5oECIgLwRhGfrdBAor6ypEgTEp2+dnieOUcjlkfaPHyHCDPBN4roPv+0T9mErFoV6pUxR9C2VpWLnm1MwEzfWYiYkhyrUqXlCi200pij4PPXQaf/B7Lq6ss2/PDNrx+MrXvsVwo0ypVKbTSqmWKzQaDYTQbDbbvONvPs1rX/UCuhtL+EWB5wYDM2tMlvR5wx99gJfPjpNnEVI6A3KeQUo98PiJ8+8gY3KE1BbDHifkWYEhp1wuIZVDgaDf66McicnNQCbjATlSG5J+gud4Ay+Wld3a2ANLavICz3oNsF4fpZSVcLk2YBdscHeruUkS59RqVVuE2tmi9Q0CxohBMLQlS9565xF2zE5R5BlCWGmpG5QQUlNkCUIVaGmz2rqdPmubLSq1MmDD1RlsKLM8t9LNXg/Pd9lob4IwRJ2EcqPM6voa18+M0fZh544ZHGVppKVqnajbpVz2uePYKbZVPZTIcZyc4caEzUxUtijpRzGtTteGiRrFxz/3LS47MIfvCjxP4/qKSq1ClguEcMnT3HaLlUAajas82u1NKqUyrivpRxGdTpdquUKpVqPT6oBJqdQ9FhebOI6V1UnHw3d9IEVph35kwBT0ewWe43L0/hM0Gg1KZZc8j8GkSOmxc36aJE0o8px22wIxlBYU0iYoSamRShNnKUJCu9unWqugyGluJnieYnF5g1KlgnRcyC3m3vNdtJasrbSYnh4m8CWpcVCOzUfL4j5KZkhpJ7faccj6fRxtAUUCSPp9kn5CvVpDOZo4iQcwEpsxBbaol9IBYYEmmII0TjBGcuz4aaYnR/nl997CjpLDai/mJW94I7vn9xAnp7n38DEOHNrDuTNLVGsNXNfhtm9+h69+5Vv0o4Rjx44zPTNGuVIhyxI++Le38NpXXomQBsjxA584ztDCNjEKYxDKdh216yCkwNHSyjqVDSnX2kNrg1a2OPTC0sMHywHlUCmNlALXc0mSvj2gYqe2QiqM0UhysjRHOz79XoSUhjTNSeI+Sks6rVVc1yHq9vHcEGOy83KhbiciLJVIkv5gul4CXIQwAyqpYnO9RbkcIKSgudHG9X37Ondtzp71aBiKIkc6egD0sp8fcT9BO5Zwq7Si027iuArXca21V2mKQiAprPBG2I10lsZoCUo7KO0ShiWmtw0jlI/UPlJ4aO3xsY/cxLnTi5w82eWKJ8yQkmFMThpDuVxDKof60BAmNnz8n/6Rf/fW5/Ky17+bv/irP+fsA6fodxYZmRzB9SoYo+h3u1y6Zx8P3HeaifFZhofrfP3WO/nwP36Cg1dezlOecjlxtMGLX/hC3vSzP0OWNbn9G3fznbvv4donX0GUdtCuZn1jjfuO3MMHPvi33PmZh9h73RQYSyUV0kZLaGE/i3IKulGfwHFZWN9kfKhKtRQilaDse7jawRSCOOnjapdvHz3DtrEhkAWdKCH0Qm675yRTo0M4DkiZ0NyMeN2PvBblQqlSJTPQ7fUZHp7goTOn2b5jH3/4397L/Nx2/vtf/wPjo5NMTU3RXFvmta+7Ebc0BEJz9+G7ufaqy/jy5z9Lkrr81tvfxUZzlYNXHAQVUqtO8Gv//l3s2rkb34N6KeDTX/gCb/ipn2Zj5SEu3T1NUK5RZMYWtj6g4LnPew79qEm1EiIcRblcwfcdHnjwdiaH57n6iidQrZV5ytOvpduKOHLkMMMjk4TlYQp8CpMTRW2ecOnlCEdQGxpmaGSEX/uFX+ZHn3c906PDmKzglq/fzq5dU0RxSoZEK8PM5ASyqPCHv/deXvySF3DFyBPR2rHTahS1yhCNoTpZVhD4IUmW8rd/93dceukhC+rKElzHJU765FnGrbfezOTkNK7rkheFJUkLg6et5xlHQaGQSpDnGcPDo6gBPMcLQxztcerUcfzQp1qr0mq2CEsVHM+1XqQsYyPqEHUzjh47zPT0DEo71OvjJElML2ojDHheSFpkFCjm5/cwPjmNF5TI84ReZwNhCrTnkeQZU9Pb+NzHP8b8wRrhyix5EuN4DnfffRf79x3Acx3W15Z5wqHLiOMe9UaDUqVMmmUcuOQgRhQgbYas6yiUiYg3Fjh74jBnz57g8LGTiAImt+0iKA+RpAlnTx7DczzqjVGSzOC4PpNj43z7jm8wOTGF49nHb+sz8EJa5vndoxhsHwZTvUfvV/9lU4nxvY0L7uIxpkqPUcVczJh4FHNiS2ZoCi5M6X7EtQrzqOnf43nbHv7BF/nrECCKwTFh8Os/xnWE3Nr/icco/n7Ax83wQyfYPF5xt+X/2/LkbZ2c/9OLuy3P3b90/bDoPN9tXfzGsLWmoFoK2bF9B47XoDAOgWeLlW60wvz8Dl79+p/k559/CGNsx1dKG+SrfZcsy8mzjPX1VRxXMz83iVIuhcnRUuBIxWazTdSPaIw2OHr8NNVySDmQZJnBdQLW1jbwA5+19U2bqeS4VjooGQBEXCsd6vcZGa6wsLBOpVxGa4ehWvl8l7pSriCl4NzCKmNjI3znyHGiVoux8Tr91BqMk7TP+nqbUtlnfaPNzMwU65tN5uen7YFFFWyfmeWOO45hTJfRsRHqjepAhpXh+ZJXX7eHG3/l93jNa16JdkJW1hao1upI45LEgudd/0y+/ZkPMztcRZqQ1tryAO5gg4W3ng2EGISuAhTEcYQXOKwuWY+U1po0Sem2+pTLZQA21ps4rodfCgaTNI0sCrqdDmtrGzhaEgQWe34+CDPLEQL6/QjtKLrd3sA7ZBsOrWaLSrVEWApIEguNyEkGweOaNMnoRwme75LnCVHUZeeOeZvjJSQGO7EUWpAmGUVhpxNCaAqTE/g+pdDSO1dW1imH/nkZgeNo0jRjbW0D17HByko7fO1b9zIzPc7IUIOvnHiI7ftHKVfKtFsdhkeGMMbgeT5CGMJ0ibHRYVxf0eq0OH1mHSFTtLLetIWFNcbGhkiylHYv4srLd6EdSZEbhFLkeWFhK0IiBrEhRWEoCsk93zlOrVKin6T4oTPolCnqjSpCCZK4iSlyqo06yvHxtOSeIw/iu4r7HzjB0lKT8dFhpNLc/+BZRsaqaMdlo9lkenoUVzksr65TqzcQ2idLMqJ+jKMVxx44jdK2mKWwFFbXU8T9BM8P6HR6hG4ZrXMKYnICjtx7hsWldXbvmKXdauG5DlpZ6I4QNh+xPlSl1+0R+A5ZoTB5zt13H2V2eoio0wHlIKWNzVAC8iJHiIK8yHDcQWyJkpbE6DoYYTD2B1hwwABmAvZzLc8MvuexsdFCK0WcdPjmgsdvvekGbrrrQS675gZ+9i2/SEGfJ11zkJHREW7+8p3Mzm/j5pu+zrVPvpyZ+Qn27tvJ2HiVoaEqeR6hZMg/fPgWrrs2xHUCbFqIwtF2c5JmOY7rgpRk/ej8ew6hkNJ6bZSS5FmMlIosSQlKFYpMkKXxgJ7JIP4gJUn6gMQPQlaXVtHKNmekUghhpY69bo+wVEI5FsqQ9GPrgRv4YDrtHqVK2WZUxn20duh2upSrZesvUhpjBGmaDWTLEXmRnQ9id1yPpG+loq7nDwpqgVbu+XzBJE4HESnWR+h6LnZCV+C4JZvzqDSO69nnZwBmUFoTx0083wPs5EopO5kD+9hqbT1Q2tVsrKxRroXEccyBS/fSavV42jOuYWXxLCurm1RrNcLQI88sjEZKQRxn7L1kF14Q8IoXHeJJz3gTf/+hD3HJgf3Mz20nywp+6sdfzQc++CGu+5HraUUx4xM7+A9vfztnF9b4tV//j2TJJhMTY5giZ3bXTo4eO0a1PMPwaIPdlzQQukGU5iinjBElhqtVnvPsG5jdNsOqfxxvK+fTQJxmOMqhFcUkeYHrCDzXo+x7LK01kVoNJN+2aC5MhkCQF/DVmw+ze+822zjR0I9TRofqnDy3xlC9jBGGz/3OYV78shchjZ0G51lO1I/4zKc/z86dc1QqFeZmd1CteTz96U/hHe98F8985rOIohYf+OAHuPpJV9Nst9i9Zw9RmrF3/0HCco277vwW+/bvZs+e3dx39H4cz/Dc5z6HXrfJoYMHaK5tstnu8aY3vQVHKq6+6kl0Int8sR53h3f+5m9zzZOeTqNhfU7dqIWSirOnz7Brx3Zyk9LubVKphCgJQRDyB3/437j++huIIpul2Gl32Da9jd98x29z1cFLMTgUQvDc51+P74R4jsP73vc+fuwNP0nglajVGmAMaRpR1indbpt21OO3f/cPeMZl1yEEZJkNFa/Xa0hjaLY2uf32WxkeGkUJyfTUDErZ44Z2nfPZsHOzO210iDU90ul2WV9fR4gU7Qi09u2ES0pMntOPeiAljuOglY0vmp2fp1Ip0+l2GBkZtsdspWxcisnRjmZtZZ3du/cSRT081yPJInzPxjWVKjWUVGjHYXNzw8ayFAXK0bQ7HWqVmt3LxH3CIEQIyQe+/rd89qbbecqBJ/PZz32Rq55wFbV6mWqjgjESRUEU9UFKSpU6DLy2BmxQul/F5H3aaw/Rby3TWj9HvTFNuTZPL1dsm91HbWicOIe57fuY3rGPo3fdSrsbsb6xQWNoBKRgenKaW27+InMzOyzxW9pCSF4gdz+/LhzpXXjeY3/zfa/v5bn7164txgA8DCyx+yC+r+Lu4nt79FkX+djMo++zyIuHL//XFnf/C9bjTu4e5/J/E8WdkPJfDE55RN7ID3g7Y8z31NwWpnjM301gg2xzNIsLa7Sa65RDjzRLWFtb4uff9nbe/7brMCjywhYIcdQjDH2QLgKHIpOEYUgp9AHD4sI6vqtZXV5jZXWD4ycWOHBgJ3cdOcqOuVnqtSpx3EeIgodOLDM5PYx0IAyqBEFAlqY4rpW05IWxPpOyj+d5tFsd0rhgYXGVOOmhpWJ1tU2cJYyOjrKwuEylXKIX9ZFSMFwbYXp2jFu+dg+jQzVarQ5zc/O4vmJ6eoI0y5meHhv4kzxOnDzDZ790Oy9/yTPwfSu3tJlaxoJElI8wilc+dR9v+I0/4UUveQXVkg/GBh4vnFvg//kvf8qXzq3x0rkpwMFxLAglzQqLX8dKMrd6YVsfMKYobKBvP6VarZClKd12h1PnlmnUypZ+maaUax5J33YtO50ujmvz46q1Mq7r0utGdDo9KtUyi4urlAIfN/DtVEFppJC0mhGB7/MPn7uZgzvnQAj6cTQIq87t9ZMckxcYU3D/8bOMDNUwxuAHPkk3hkE+oTTgaEsjy7ICz3VJ8xQlXbvh1tpODITCdRRZbjfdzWZrUMxpAtduTqXjkKU5q6tNXCUIfJ89YyM0Dk1x4sHT1GtVNptthJKD7DwBos/JBxeo10sEpZBqtYajC+J+ThzFVCsheWGoVkuUyyGO44LJwdiDPOQYk+G4DkJYwmi3GxH4JeoVj3anzeT0BIYUpRw6nYgwDEAYlhZWCIKAICjZrn/gMzLcwNE2RmBubozllRW0I5iYqKO1y+LiKpMTY5be2Iuo1UK043Hs6BmOH19guFYmSRKKPKNWq1CrVji3sEwaJyBygiDEGAgCnzwvyNIEx3GR2mPbxBjtdodaxWNxaQlXw9p6h2DgEXEcF4SL54acPrlApT6CowqmpuokaTYIz1ZIvRW1kQ6KE2Mlf8YM/H4WMKK1GkReqIFXzE4pTTEI2kZy7NhpTp9dZWpyhLGxBoHv8ok7m7zgyln+6KO38urXvpFTp09z95E7+ek3vZyTx0+xY+csZ8+c5dqnXk2ep4RhmX/68BdZWlzikkv32IkTgnrV4fLLJykyQxx1iXoRnh/geBb/LyVkaYIwkn7Ut0WPMQPPqyRLbY6kQeK63uAAX9jXtVR2CiYlcd/Gn1hCqKBcKaGUIYkjXN8njjK8wEcAUbdLkduJgB+UBmAZSbvVpVqrkiYpcRQRlErkWUZQDlCDDrhVvii0VjQ3WrieYyFYRthohtzg+oGdvm2u47oapfSgABd02x2CUkgcJ1zY0pVCkOcFWolBNp7NbSwoKPKMqNs9D0jqdfu4rm+PG0VO0u8jlZ2yKylot1po5eD5IQg5kLgqJifHOHHiDKNDZRojI3zsI18mTWKmpie5566jlEoB2jEo7YFMkaqE6C0wu+fpvPAlz6FWqbK6uMCLX/ATPPnaZzG/fQ/VcoPAl1z/o8/gKdc+idWlZe4/eoR3vfP/Zf++Q9TqNcq1Es3WJm/6mZ/ihhtuwBSGs6dPUW+M8Fd/9TfsmJvgP/2nt3P43vtYuH+dsQM1ktRK5IWUpOkGge8hhYcoPJIixtOasheQY1jd7OJoTS/pE3q2oek6Djp0mRpt2G49g8Icw+RIjSi2ntrf/5U/pLPZw/N8zp45i+s6lEohszOzNIYa5HlBrVLHcVw63XWe/8IbuPWrNxP6Ls+5/jlIrQhKPisLp8hyw7nFFVprK1z/nGdx01du4knXXIvrO3i+i5Jw7uwZJsZnue22r/DEa6/hTW9+E7vmZ6nXamg/YH1jkVtvvRVpfF784heQ5wXvfOdvceVVl1MONZ4OqNcanD1zlsaItUZ88AMf4sCBQ7TbGzztqc/kJ3/yp3nlq15OnrSo1kJyU3DV1VcS9WK079Npt6mUXJZXHmLbzAjXPuVKCpkT9zPa7Ta+F6CEw/LiIpV6nUsPHmRkcx43VCil6bY7eJ5Dr9chKJW4+ZYvcM01TycIAqa2jSNEQZwnCGW9q8YYC3QagDOyLCPq96lVqoSlMq6j6fdjlHTBFAgMeZbiui5xP7KNPWOI4z6dXpcwKNlGqNZox+P4gw8y1Bi2BVUR06iPYgQEnkOepHhBiSItCIIyQrhEvTb3Hb2XudntZHnO5z79YXbsuoQ4to1qPwgJgoC430cYyMIur77ydWhHMzU9hauh0WhYT5/WOI6H1JpypUqv20FKhe979HodPM8n6XfJeuv0NhdxvAre2E7aUUYpLLFtYgzHLyOVJgwrIAQPnTlFkfYJ/YCVxVOkcYLnOBRZwva5Hdx55+0M1YcQjrbTmkFxd+HaKogG5KmtM+2O5rH2oo8KwLt4H2pP43uHHzFdg0EQ+IW8iPPcgkfuZx9RrD3GstL4hy9/hFpOPppV8b3XY0z25MN78guvc+F9PuLx+SEVd7mxlhPbv/zXFYiPV5PKtK0AACAASURBVNyd54lcVAT/2yjuvoun7nutf+kT8v3pgB/fdyeM5d8U0nokvn3nNxgdrVOvVzlzZpHXXzaEVAlSeBTCoLWgXPJZW9+g19vA8ywgoJ92yBKL1vecEidPnuGBB44zMtxgs9Xh9Lkl5qZGUdqjWqtRLpeIepscvX+Znbsm6MddlLITJ6kEd99zmEatjFCaIHBwXQdjJGU/4MyZFTbbLSoVxVBjhPvuX2T/JfNU68M0qj6uq6lWS6RZxuG7F2mMepw710TkKfV6nZtuuYtq1cGInGq5xmZzE0drjh17iB0zs1x2aA4vlEgZIFWK6wZIoUnzASoZS1h76ZPnMLPz6LzCuXPnaIzU+P0/+B1e82Ov5Od/9uc49sVPUqt4YFzifoajNLd+8x5mto2f9/wMngQAkjgljXLKtdKA3mbwXM3U9ISNDFCSI/c/yPSk7d7libFFtpYIaeWWWV4QBnZjtrS0xtjoEPefOM2JU0ssrmwyOz3B5kaHuw6fZH7bJAd3zSGEJEkTwrItzoMgAOGipEJJgRCG4aEhDFDkFvDgaUkhLEWwubaJ75UAdZ7y5wUOAmU9RkagtTPYOBvbyc8KSqWQvCgwRYEwhoWFFepD9m8ba9RRFBQonNDnrBtRDXxu+dpdXHpgN47jDDxVivd/4iauf/KlgKAd9fH9EloLfNenH/XxPc8i8l2FEna6ISWcO73I0FCFuB+hNSSpjYiQQnL8xAKjww2SpEe57LOyvkG33UWhKJXKJHGMlIawVEeiUFphyIn6KVGU0ul2GRoq02sXVKvWs6ekQ5rE1Ks18izjyH3HmZwZIy9iep0+UxNjbJsaw/Ucet0e27dP4foerWabUuBT5AWVmqWKgpUcKh+aGxGuE6Kcgjwx1Oslet0W46MVijyhUmuwsdnC8VykVuQmYXNzjeGaTyEF0thCTLoeRnlQZICVVBqTYQqJJbwOQCHYppCUCqMgSzOKwh48szRBKpfCZCip2Nxs02knzM9N8M+33s2O+Qm09PiHbyzxiqfs4R9vO8ttt32Dn3vrm9ncOMHkRAXtKIaHa2ByavWaDS3PrRz25Kllrrz6ABhNkrTZu287Jo1xHWMLHCDwQ6JeB89ziaMuRRbjhXU77XIkRRZbxSh2qthptSlV6uRZQtRroRyDFA5gA8a10oNiR9BtNzHkZFmfNO4TlALifoofBGxubBKWS4OCy9LxMJIsy5FK4LoBNs9S4bougoGMNUsxFJjCkBeGqNMnyxLK1RrdTosgDAa0XQNS0+v0iPtd0tjCcSwSXdn3meOglc3Fk7KgH/Us2baforVHlvXQjmZ1aYUg9DFIHEcSdXtUazUwdiLieN7g/V6glSX2VuuNQXEf0G1HLC6ssbS0yuc/fxuHLttFmkRUa8OYPAapqVVLTE1NcOy+E7iOS7cTgehRqtTp9dZwnBrNtXNc/cRRSo1dHL//PrqtTWIcFpdOMjbkUq8apIAff93LufFVL8XRgrHhaXbvPMQlBw7Z4qzosdE+w403/jienqYctJmZncDTmrnpbaRZkxtf8xp27tjHpz7xZWavaRB4Hv0kRSlNya1gjJXYJlkLoVwcJM1OhOe7uMrjs1/6Fgf2zHJudZ3RepV+mjNcq7DZ7aGVsIWysRmHWZHwzW+fIr8l4PnXX8+73/Ffue4Zz6JcLhMEHmsbK4yPTZPnKXleWECZ0fSTTQrT4wlXHKJSqqFdTRT1bCHeW6c+PEK91kBmMdMzM2zbNkupWsHzHXzP+nxbm20mx7czv6OOch38MOTc2YdwtUD7ZYKSoFquU62OYeiRpBm1WpnllTNMjA2zsdbmA+//IAcPXYpQknJY45prnoIULl5g8JwKz33e89COolzKyYsU5WiSPGNkcpo4zZkYH6O3ukI30ijjoKTP/Q8sMDJq3yPNzR5hUOeTn/0Se/fu585vfZu6rKFcTZEbXM/DcTSer8lyw9T0HH4QkJmcuNNBSgfX9W2OZJbi+5YkbRBkSYzrubiuh1KKXreHFg6O9kmLDD2IDInjPr7nkvV7nDr1IMp17dQ+L+j3Y2q1BoUpWFpeIe4nBF5IpVKiMH18v0yWp/SjDpgC5Th2QicBLdjcWOfI4cPs3W2PSTtm93DTzV/i8L13s2P7LoSwn6WuY+E7n/n659g/uYdSuUS5UiKOW4R+hTyH1CQsLK1SKlfI0hhfK+Isx3U1G5vrVKs1us0lSDs0N9e45+hJitRnZHiISqNEt59Qr5X48pc+zY75naRJgjE5zfYqM5PTSHKiXpPTxx+gHzXpJzGLKwv0Oj0mtm2DwdHG/AD708fnRzx8/sNCz4e/B5i8ZPTRnj2z5fM6rxN9zCLOmGLgr3t8exLwqOKuMAVSSHKTD8ip3y+c5LFkm499ncd/TH44xZ0FEJkBGFD/wEOiC9d39dzBv6q4+982xNxcHAz5XdbF3QFzPofu+7vdhfl4Qggb1LxFZbzohXR+avcYRlUzoCEWJmFmaoKZsXmC6hjH7vw8v/9Hf0zSfwglXLQnyZOYPDOkmY0tGKlP2s2ySfEdTblkQRj5VgC1V+a+BxaZ2TbDtU+6kt179+AHmnZrjU995ss0hie55tr9PPjAOQKvRpFH1nekBFdefhkqDNlYbZImCVG/jwG6ccSlB/eyf/dO1tcyoqjHs595APKcJIm4977jVOoVhITQdymNGu7+zinq9YD9B7fT6yc84dLtrC+3KXllssJQqdbp9CIOXr4bHRjirEsSC4SUnHlojaP3HscM6HpCWMCIo0MULh/+4CeJsw6jk5MY5fIffus3ufTgTgjh3UcWUKmxcigHNjebnFzaJEv7aAcLT5H5QAtuCIMArQRZv4tQhqTIEVoQtdt0m22KLOOqQ/tpbeYIXLIiJ8lS++YzoJDkaUJBRpKmTE6OkWYZc9vGkQhGamXSJGZpbZltEw3SrE+hC7ppF+04SByUdMnyAlFkpGmfNEuQSiOBxeUVlCORWvLAySX63RyTCkrlkELmFKREvQ4mzxGFQ6/TBSPIMxvi249itNJ4rkcQ+vS6XZyBN2h5tUucQdTvoh2B9/+R995RlmR3nefn3hs37HP50mdllq8u107dUrdcyzskZJDBLg3LwMAwwC4HszDszDCOOcPiZlg8DLDsCGSQEEgCNVJLyHa32vvqLtNVlVWZWemeDx93/7gvq73snj0HNvq8U53vRUbEe/ki4me+v8/Xd9na7nH61BPkvQHv/avPsL3Z4TWvuZHSVJw88Th+6LN8fpmVdIILF9bJspzlc5ucevwUDz7wGMNRjBd4aN+1tEntYoQgLzOSPGNydoJSCMJ6A+2FqCpFVQalPK6++gqkquj2ehS5Szoq6HaGKMdlfb1jOxlZRhL3kdrCZXy/jtYOZZ5CWXHx3BZR3SfNYi5dWufMmQu4jsJUCVJKjhxewJTQ285YW+tQlTnatcfXaNUYpQWmrNjY6tJs1lHKQckaaVLahLgyVFnO5FQd1xcUWYHyDHmV0ZqcoTeUBPV5hqOU+YVZpLAAkCormGy30FHLep5V1vLAXkeG9jIhS4QoLYxEaUpTAQ6InLxMKKpi3LGzXSmtLfwoCAOqIoWqII0Tep2Y7U6Ps2dXiGNDmkGS5MxWW/zdJ25jYW6Ol7z4pXzm01/kJ378u1hb3UIIhyTOmV9YIIlTBA5ImNs1ie8BpsBxDMZIkniEdjPyClzXxw9C4iRGByEVAu0HFKWkLEY4jkAol6LQiMpFAr6vaE9NYoSVOIdRHceps3lpi7KqqLdqSK3J4pQ8WadRC3FVjim28AOHeJgDgqKKiWoBeZZRFAbt1cjzHIydmcuzEY4rKDFUxlCkMfFoNLZCsD52pVEo7aF9x3bsTIYfeDiORjlWOSEkhPWQemuCqflFimJc2BOKskxAlKTZEO0KRoM+jlIIwPP9cQGooqpKZuZnkdKemxhBq92mLAsqURLWa1hKmrCWF0owPTdNURTjfaWMRn0rx1/vMzfTxpTWY/Vjf/NpgoaDI3J279tFvRmx/1Cbo1cd5IH7z3Lf3ecps5S4D1URc+jIIa44NMsv/sK/5/jxF5FVIY6ouOmmmwhbU3z5nkd57599mP2HXkaWeWhhEA782i//Gx5+4DaMzNBS0Q5rUMZIP2PQ2cIoj15c0ZyYYnJyP+fPXWJyssnRQ4doBJo77n0Y39U4UpEawyjLqKqKwK9DntMbjfj05+/HUS7n1za4+ppDJJlhcbpNUhS4rkI6hnbDSg83e1tIYTClgyMN09M1fuHnforf+53f5aaX3UBcJpixbPj82WXSJMURLf77f/8jXO2TphuEkY8XtLi0MaIf29nj5eVlyiJheuEgVQnDYYf24iyjasjUfIs0S8hzA6mHzDU///P/mkpmLJ/vEIaTaB3QarWZnJqh19mgKg0Tkw10aOe+fF8zOzXL0f1Xs7GZEmcpP/LjP4zU0sJjREmSJxhZotwaw9Elag2H3MC9DyxjqgZrZ7v80W/8CcJAFm9xae0s0qvxhje9je04RkYOB65YIhkl/NxP/SJTTUl/7VH+6i8/xBOnb+M//PKvUo1VT2WZIaVhNBzQ3e4jTYWWgirPCV2PsNZEex794QAhJL4bUhUV3c4lpLHS9dGwR1VW5GWO5/lsdrcoKXAdhyxNKKuSWq1GmhV4zSkOHLoKRzo4QjIapvhexIkTj5LlGQuzM+zZt5vcpAwGfeLYklKTNMaPajiBbwu+hfWejDvbzMzO8/rXvcXGMiJHBw6NZoPrX/Bi8hIqCgxQlBVpkZN3CyYmJ636QihqzTkqJRkmfWQBkxMN8jjhxCOP00tKq6SQirmZRagyisE6a5e2aMwcY27XQSbna5x/YoV41Ke33WW72+NVr3oDUgqyIsMol6U9VzExs5dgag9hrcnivkNcXLnI6soKqqq4tHKazdWLmLIiK82z49PxrJd4jv+onrqeec6u3fONip05/YQd63hKvGqEwYgnf37e5OuZ8e0ziPVVaX08pZBP28ZOF/CZz38jyzM/JyGNnQcX1bjDz9O6hE8e+vjnnfWesv7TXn/m/qrqstQTLIH8qQbt38iihG36iLJClLb4/tTcRpqnP76ubf9j7dz9f7Gfr5fwA0/p2j3P7+58FzvLZ1m++1NMz82zdORKLjzwBV6wf4r19R5+oPGC0FaIBRSlBXoMRkPCsIbrhYyGPdI0RuBy8uQyu+ZbFGXFxlafa685glGSZrNG6PloFLfd+SBRELKwa5YiL1lb2ySqNRECyjTFcSVRaBG/2vFQws48IUdWQle6nL+4Qme7w8XVTTY2tmhP+ORFSeBHnDl9AUdLlhZm2b9v0XangpDKGE6fvcCd9zzM5GRIa6KB63pIAdqx1L1BL6GsCiYnJ2i1muwMDuf52JsKQWUM991zB3uvejmhB1W6xmDrJHlVw9Mer33tq5D33TvueNgTf9dMm1ozIs8ylFSWmjW+nhSFlUM62rlcMS/KCq0loySh1xsSBQHl2McnqoWX0dlVWTEaJjTqDXr9LlEYMIpT/NBHe5oocJmfnwYEtTAkCLSFOSCo12pkeTqe2VFWuictoEUoh852n+ULl2i1akQ1KwkMQ+tN+Cd/8yn2zU+iPQfHUSjpII1CqHJMjLSdNOUAgjH5rwBtzaCLtOTEo0+we88s09NNpBBkaUael5w9f4mlXXNEEw1++/FNXn98jrAWorVmdtbOX0RRwH/54O3c/KrdbG33iWohE40aM+0Wj59c576HzmOqnNnZNkWZ0Ov2oLJ2B2HojyuZUBQFWrokWUmn18X3FcZ41FsBBkFrImJ6egKEJKwH9qItoMylrSBnOcqxnaFGM8J1JP3hiFaziXZdXNeh3W6wvTkgSzO6vRHNZkBRVNTqAa1GxJmzF5DG0OsPCQLf3oxTeOKJdR4/dZFjR5Yohe0SllnKysVVonqNsizHpMUKhIPreRRFTrNR4+TJs7QaPlmaj7vFgrIqkI7EVDlFFlt/OAFS7EhtSoajIdpRFHmKkI79LuZgsGREx9npFOeWcort8Np7smslumXFVqfHvt3z3PqlE7zs+oN89O/v4epjCzx4bkgkJGlzN3/yB+9jZW2NqZbhuuuv4sQjJwHBRLuFdn3+6Hc/yN13P8CrX/NSXnDdMdvNCiK0qy3V0nQRCNJkhKM12vWoigIhhpiiwvNrOG6AGnvRIYpxebKiKPPxvIUkz7LLlMQwiBgO+khpcdOOq9GeJcEK6YMIyLMSIV08P2Q0iPH9HQmmIMtiXC8kiVO066KUy/b6JmWe4gcOw8E2QVQHBFr7JHGO5++ck4zn+ATK0aRJcnn+VY6hNVIIkniEkAJHu3S3twmDKRy3xJQxEBBFjTH1U3L2zDmCwLXXUm0BEf1eD8+z1/Q0HaJdENiunxj7YPa6WziOlb/lRUlVGBytrAy/HrBrYYGHH36cI0d2gyhYmJuiqmK0W2d9bYtb/u429u6bJQwbLCy0uOL4AbrbGQKHquwwu2sRMLzlzYf5mf/tv/KO77iZwWjA7K45XF8zOTPNxvoKr3/9K4kij8IUKN/n2979HtozM3R6QxoTk2hciljx+c/czsJiG6EDNi5tM1Fr8p9+6Zd42UtfymDQ421vezO33HkLc4sNQs9jrdOjGfps9YbUwwhTga99Tl1Y5yXXH+d/fPDzuL5islXjU5+8i8nZFvXII80zPO2QjWcJ655Hb5RzYTMjCgLu/O3TvO2tb6DT6XD0+DFa7UmSeIijJIHnk8Rw9swKU9NNfv3Xfps3vOEVNFttQON5HlnWwXFc5hfmWVk5j+caTp0+ycLCIsrxEIyD1Qr+9E/+lIYcsrp2hh/+0R9kfWOLU4+vsLCwgKgGzNRyLpy5h8prUqvVEcpFCMmFc+eIapG9pgtI4hFz87MoZYFQauwPV5TFOPi11udZVqL9gHa7hdaaZivk8NE9NNsh/W6PmakFXvbSV/Mrv/KfmZ5ukOUjAj+AcoPXvuoNnD57FuW1+e3f+TO+7/u+h0POVTzwwAMsLEzbWbosJ8sLHKm5/6F72b17n+1wCNs02NzaxNUeFy5coBnV7LXH0VSVYnvzEp7v4nkBlSl57NEH2VzrURSCC2vLRFGAHwR2bi0vx3PjBqUdyqogDGrc98CdHDxwBa6n6fWG1Gs1PM9FawetPBAFeRaj8Bn2M0uONhVSe5bciR2/EEKQZAm+H9BqTTAxMUEYuEgp6XZ63HLLR1ha2s+1B69DaxflSBtmVNIWUjBjSxPNXXd+kWuuuY5aI2I07OD6IcYkxFurbPUSllcvMjm3m9n5BaJajVtvvZWDB/YxM7lAXmWcXz7PbV/+Eo+dOs2Fi8usXVhmOOoT1CeYm52n2Zqh3prmkRMPEtTqGKG4dOoEs3O70I3QqgyeOnc3TqSeNxp9Zqz51eLW8b//6pf/Nd/+He/8yvHqDijl61x2zMu/kRj6edZ8jqe+GslzvP/Lq5nnWe/p+3je1415bhnsN7FcFiA+z0f8zGP5/wctkydvyl+rPPNr1fc+tVP39b5elZZ8ZANQdVnC86Tfkl1cetx6y/swTskj993Fe65fwFFQi+oW3CHlOICz1SMlKkxZ4nseGxtbNKIppOPQ7fYJ/JJev0+nO+D6a44QNSIuXFijFoVsb3dwtYeSgoX5SbRWxHHMI4+dZdd8C4NBGcFWt8/21jbtiTa9bg/P01RUQIXn+kipqUUe/f6QG190NaNRzNzMHK4b8sUvPkhnK2FxscXS4hxKK4bDBGEqOr0+Bw/u4dy5Va48skQlFGXJ2PQ4YHNrg2arbWVQxuCPZxD/4XN3cejQImVZYrBdiyv3zfPb7/8CL7nh5Sjp0mi2MSpAS4hqDb7rV3+fb9s7ZyVcoU/UiLAEPGtEKx2wOD9jg/YyI4kz8izH81wqA3maEYYerVaD/mDAhdVNkiSlPdEc/+0VZVGitZ2/yZMYz/esX1mSkOYptbCGEDDoWwsEL/TRWuEHLsP+gCiq2e7fjqkyYoxtB9/zmZpsURY5nu/T7dgkSkjB2qVNXnDlIdyxcXKWZJfNq6sCfC9k2Ev4wt0PsHdxHoyxHn7KIUsym6jNTFEVKd3tLqYUSKnZ2urRbtXR2iWIfD536Tw3f8tLrQdZXrC2smGNmIH3f+EEN9+0SL1Z49zyOnt3z2NMxczcFFccXCD0NZ1ejzD0ERUEvo8XeMSjBD8M0OMgBlw2tjtMTDQoCzs7akwKlSAMQtYubhJGAXrsd6eEIoxcsjS3JEptgSVJkjKKU+bmZwFJZ7szNn6XPPLYWQ7sX+D2L59iaWmKLCvwXJeyNNRDnySxQJtGI2I4GFGrBczOtMmynCQZWiKasBRQz3UYxAlhGFAW1WVpJMYaaVempD1Rp6wMd95zhmajRq0e4oznraR0kFpZewxHkOcpwki0IwnDCFOWOEqRF0OGwy61WkRZjqgKjcBBCBcl3fE9oGQ0GuI4LlLaBP4v//oOKlNw+93ncJTippdeyaE90wgB67HHjcf2cCEPOXr4GF+8/fO8+hXHaE82ieMEqRQP3vcwa6trzMxNUpmcg4f28rnPfJ4Dh/agtcdoFJNnKY4ajt+TveVLxyUdDZBKMBpZu4GyKsnzDIzBcaDIqzFUp6TIC/IkIQhrICxgpSxS8jwhjEIQDqiEIhcUxYiqLPC8Go6n0Z47Nji3nnlKCYbDIQKBo32ENPQ7Pfwgwot8lDBkaUqWWziKcjQGUEqSpwlKSdI0t36CuYV3uJ5HVRqyNLFzQmNvuixJiGpNQBAGnu3sCUNZVCRxxvraJerNOqaCznaP9Y0uMzNTOI6d0dWeO+6+Wq/LskxhbD+jhC3iBVGIlLC1sU2j1cZxLLwiHo7QWuP6AYcP76WsCkwFYRDi+pqyknS3Ohy/6iCOI6kqxfv+4uNc+4IrERharZaVG0fB+HqhefWrD/LjP/Hf+P6bb6bIMh599BGiIGD33t3UPMXP/MzP8c73fDeYIYUoicKQhh+Q5jlkgn/2Qz/CBz/0Id7z7e8grLfwHBfHSF704huZmZ0lDAO2trf4/f/yPq5/0z7SvKIZRWBytjoxzaiJlNAZxuyamSTNUq6/ai9bvRHTExEvvu4QF9a7TDRCXO1aqqNUSCHp9BPywtAfpdRCwdHalexamOTYVVdTazZJkoRWvYGoDL//O7/DS296JW/+lm/lF//9z3HV8WtJkx5rlzrU6002tzaZai+gjE9VODTqbUxV0WpPU1VWko2oxkl5yk03vYKZ+VkW9+5mMBixubqBUpqf+tmf5hWvfDGbmxeZmp7GrbeQwsfgUFEx06phKkNhDEEUsn5pnfZkm+3OFhMTLcpSkGcZw2Gf7e1NgqBGlWcW7iMdknTssWigVm9QFimUDq5f5zu+59s5fvQgxsQWqpNVNCYaRNEUUd3nzOknWDpwkF/7zd/h6PQhjh87hhlbqBgMQRjhaIf5+V3kY3jIxsYGp0+fxNU+zWaLT376E0w0J2i1Jyw5U7k0GzWkI+1s9LDProXdTLSn+Pu//zg3vOhGmvUGjz12gkajyfrGJVoTlvprEGAqJILmRIuoFpKlGQiN1g6bG6sEYYTrOHR7HTqdLVqNCSvtLBKKPAPtUeV2nlZIaYso0hYAhAHXUbYAJV1MCe2JOb7wuU+zuGcvaZYShPY6hShxtKTb3WIw6NPtDliY30WcjPDDEM+LUHlBd+NxhoMO9zxwgte87u14gfVMLXPDC6+9ljwZ8uC9d7Kx8ghPnDmDLwpm2hMEsqDdVKyuXCSOBSZTeJHH6uoKx469gChscGn9EoqSXmed2akZpBtcLlA/M+78mpavcb1Xv+DVzByxUBUz7rg9y5LgGTN5z1p2jnGnk3f5AYgnk8PnJNR/Pe/pG0ju7Ft6amePrxjX7+xj53i/0WN9qv/2V09udxqnz2Pf9ozt/JNP7irKX3xaBv1NaF6fa/mmhiTHQ5au62JMRb9vh3J3iGE7y3/7td/jJ37237Kx3uNXfvP/5nVH62TpiDBq2XmC0s7c5XmKNJb0mKUpUCEoKYohFTlT7TnOnFojy/p4ns9V1xxHuZp6ENHr9ploN2m0mjx24nFqdZ8w9FBKsmt+FqUSRkmCVj5uVKMeBmPpHuRFYj3SZECelrieQ5YW3P/g46ytb46pmQmtiRqLi1NMtkNu//J9LC3O4WhNHGdoZWWo7ck2Ji9ZmJ/ECAfl+GghKUxGve4hhaYoKnzPHRPxJIcO7CfNhrairiyyuchzfusjn+Md73wtleuQC0lVSsp4iKM9vvXb3sXFT/4tDc9DOjZgMkVBnudI6VKYAoSyWv84RpoSP6xDVVJkOUJaCwQppQ3qypyZKSuRKooCrR1cbbuN29sd6rWINB6RZSVB6ONHPtJRKKOt35s0JEmMcjxrPFzYbSrps7nZoaoKDBWucijyjDzJcD1NmVf4oW8Ny8fgnKIo2bcww8b6Fq72rIlskVMUOeCyvdHj/R+7jbW1La47esAmhKIiy2O21/s0mw02tjp4ocfaxTVqYYAQDv3uiHq9jhElURRS5Tl//sQ677hhP4GnWVm+ZD3yPBfta/7q9tO85coQN3CZnZ3k3NmLNOoB/WHPzsHFCTNTbaTU5FnBcDgijDQbm30atZBqbLidJSWuq8myElMozp67yO6lCR56eJnZqWnuf+A0roZGPeTihUv4rk/JEN8PWFvbQAhLCHVdj0vrXRqNBlIISxwsCzzfpd32GQ5HzE3PEPg+2nUpsoqyMCRxSrMRsb3dBQG1Wsgo6VEWJcYIFhbaOMLQ7fVJ04zBKGFmbgpTgRAOw2GG9hzSNCGMfLI0tYRLL2CyNYkfBGx3e9x66x0c3LcHoV2MkmghSZIBjlQ4UvN3n76dpfkZirxEO7Y75nkBVB5lUaF1QVlZeqSQBVL6CIz1lxOS0XALRzpceXgfmxtdLmyMOHpgqglzcwAAIABJREFUBl9Lzi2v8cTZDbzWPI8+eJLv+Imf5D/+u3/N/J4lXvOKw9z+xQcwZcXKyipvedtrOH9+metfdC1Hjh3E93z27l+yhRFl7Ru0dvjhH/1j3vS6/WjHBmmVASEKHN1EOi6VMFRFjhQG13PJM5vQadcafjhje5FKWOhIkaVUZYJSYFBUuS1GKEKqKkdJC94wMieNRwC2e5sOcTyPwA8RQmMJlTZBVo4GuSPbkXhhC+1o+t0uSTxCKlvtV45jsfxFiXYcet3uZQKn41rwQ5Zm+EGAo5S1ujBQpCOUhjQuMaVDUPcIfGdscgyuGzI5OQ2mtN93Ne60UlKVthvo+S4785xgj7UqoUhTgrCGUB69zipeULPd0Qq2Nza4uLzKxOQkv/Wbf8ONNxzHUPCZz9zF3EydRrOOF7hUheLaFxxGlPDFL36Jxd0zbKynfOR9H2MwGLJn7x4cx+Xtbz3Gz/+rP+OF117FnqVFhDHc/+BDHN63H4FLa2qRRx/4B6bnplEI1s8uMznZ5rWvei1/+H/9MTf/yPczOzlNCfQ7A770D5/jve9/H6961asQ0vDTP/vT/MLP/CTnytMopbm0PSTLh/SGOY2oxl9//EtceWyJoiwIPU1lCu748km8QDE1UefR06vsWZihrAxpVqK1BWXd8vlHuObwbhqhJs+3edeL3kpzYgKpXe6+937mpmf4r7/+6xy94gquveYqHFdz8/f9zwzjDXbt2gWm5LYv3cvBQ4fwA4+i3KTT30C7ho2tZaq0jqmUPQ+loCpzpFJ4rkdZVvRNhBEKWYGHy66lad7+7ndSb0/R7cdM79pLVeWAhxAOeZ6yvbZKa7JN1KiTFQWudgmjwPrMDQfj74Gh3oysh5zjg8mpAKFcpFOAEDjCR8mIs4+f5GMfvYVDh6+gPuGhqoLeoEORZ0y0phiUDkLU0E5CK5L81h/+D37szT/Ent17qUSBqzzUuPBg29eW1DscDvFcn3qtSZVXTE5NMxwNObD/AFOzcwgBWTpEGCirAqUlq6trBGGAdkOkqti/fy/1MAIjeeSRB1nctUhrokVlivF793GEHTlIs4QsS22hLi1wHUHguUhHU5QpkR8hhEI6Ff3hFmkc43sepXBwteb0yZPkRUEtaiCEoigyoqBGkaUIDIO4R1nmNGohu3Yv0ppo42g7X1mZCkcqhoMBw0GCIwLuue8ejh+7kmarSWUMuZMj+tv0L50kqO8jN4LJqRm0q0mGQ86eXeb+u/6B0NOcO/MYL7zmEHt3LzI/P4src/YtLlCv1ZiZaXF+7QxRUPLlu+5g394rKPKSWlgniRP6WReHApWVtOYXv6G49Ekq5NeYhAB/8pd/yite+TIQz719KaUlTj6Hcbl93dKLv1p376nJ3XMe81ddvoHO3bPomV/7Pr65HOApCeXXmtzt7PureHP/k0/udnzuhNlpudoPZCcjf3YG//Ulf1Kp55zpK4r8yQz7eRYzljTsDJx6nrUzEBXIHaW0MXQ7G6x1E2Zn9/C9Vwf49TauDlhZWaYRBRS5RYYrFVjpRCkIgoCyKMcEKJfO9hDtSCYnW7h+wNFjh3nwwce488v3s3zhIseOHcIIgVSCqZbP46cu8vipi2RZzPSEixe2cFREmlfcc89DzEy37WcpFI4TEI9GRFFIlmWEYYgSOQcO7aHfH7Ld7TPZbpOnFa1Wg3MXLvKym64jTUuEEZw5c440qygLq03Oy5IKOH16mdnZCe6773EWd8+D0OOKNpdx6BiBEA5SSRypqYzVOkspWWr7LF39cnobW7YSjIdybdVeiZJ/+8FP8KbZict/d6EdKMtxBapECUGR2S6W1i6drY0xsdIjjhMCP6AoK1zXw1EugpzQ95FCkmUZQhhu+dxd7JmdwQ88cBRhFFrPvLxCFFCYDMdxKPPSzkUWBWVpTV6163Hy8fNMTERW9uh6FFk+poVpiqxEeQ6iFKSphRAgDAqX9/7VZ7nh2oM4SlFWBaNRTFSro1TF+uYmL33hYdJixL69u0BWMPYCC4OQPC/J4wxXC4LQJQgD4jhlYqqJ40kGvRHNdoM4Sbllo8Pbb9xDDkSRx2C4zezCLL7v8uHbTvPtL1uk340JfIfBaAtTOdTqNcJ6gKMV62s9wlBRYYhqIclgQL0eIByJUIqqzEmyhGazzrA/oFaPaLUCtrZGXHFwD1LBQ48uc/TIIsoRaEfh+j5lDkI6NCcmEMphe6NPniSEkYfr22JKURYEYcjZ8yu0Gy3SOMdgZ0sc7ZHnViZZVRXb/R4Lu+Zx3YD19Z4lXEqHh088wWS7jh/6BKF9T/VGzfoLupI8t10+owxaheRZivZ9hAwo85gw0ghl5yP3752nMlBlIzbWVglC3waNKIRU7FlaxPE8tCdI4x5GaqTyQeagKiQBmBKhBmjdJo47eK6PKS0xM01K1rdHRPU6U62I7e11jh9a5JOffYilhRa7F2dY75cc2j3J1NU38a63v50LF9Y4emSCN7/19YR1n5m5Sc6cWeHhB86y/+DiGLTg0x/0CQKf7taWJeo6Dn/4p5/hu9/zApJRF6UVeZoT1CIGvQ1MWTDo9qnX6hhK0niI6wZUZY7rhRgsNKjfT9DaIvIdbQl1g/4Q3/NtR0tpHKe87OVXlClVnqF9l7KokEi09ijLDGMqhv3RmNxnO7me71IVFUoUpMkIP/Ap8oSyymg0p2wy6mjKomLt4hrtdp0sz4jqthNhJcB2hs9UO3MstiIbjwa4QUSSDAijGqPhCM/zMEh63R4VhjDyUMqgtMTRDkVRYbDdW6WgyjP6nT6eF1rJua0IUuY9irwEDK6r0X6NLE7Z3ujw6b+/g717dhFFPl7gs3fPHCcfu4uPf+QEb3nzDbiupCgHeEGTP/7Dj3Ng/ySD/iWuvu56Br2U9bUVbnjJUZb2LqJcRZ4OEabg7Km76cdzzC/MU1Lwrrd/J9/1vTez7+AB+sMtXLdGsxnhOnV+8qf+A69/4028+BUvIS8yFuYWyNI+ed7H0YYrrjzG7vkALxQM4piH732Y7/jOd3LnxS8CEtdReH5Iq1bjwVPnePmLD4+hCtYIviwUBw/M4nsugedRmZJmvYYQhpPnlmkEPo5wmJlp4WlFYUZ86lfOcPM/+z7yokChKEclYdDg8JHDTM7NoCMf3/cQsqBeq3NpfRUlUo5edZjcFOBoXOlhjCTwQ86fWyMthgSRRrsKQclo2CX0IiQO9997B0vzc3iOpDeMEa5D2AooK5BG0W5PkOc58SimLC3h2NGKqKYZDgZ0Nrssn12m1mogRGbN7pMCrVw21jZp1WukSYdGs0G/m+O7EY406CJlc6uHG4aYaoiRkjd8y+soq9zGFSKk2aqjVMlouI0SLrXAZXV5ne3ukBtnXo7v+5RVSVlUKE8zHA0QYKFbacZ999/Pgb0H6Q+3KfKKWr1OklkLgnrYQErIs4wwrJHkCdrVZLng43/7Nxy/4hhJnqK1g4U7GqQj2LtvH1JJ8iyHqrJwnTShNBWyMnjaJy8ToqhJMkjoDToEUWRJtUFImhf4gZUqBkEDoxRJVvDZW/+B3Xt3AR7t6Vm0b83tN9fWOPHowwjlUGu1qCpQUuAHAa4XcPH8MmWRE7oBd9z2JQ4cuoIkzZCOotVuQgHCA9cLERicvMtg7RwPPXaW0m0yNztP4HusX9okjEK2t9bZ3u4y0dYc3DuHcjxc7VCVGWEYECcDtrcu0WpMMBVFNGo+2xc3eeTMWXbvWyB0XeZ3LTI/v5def8CljWV2LR0CKUHuzIY9XZb5rERKWKn7DuXyKY2zHaHh8wSrhs3H13nBa69CyWcblu/sSwiezIye2qmzKzAeGr78+k6Hfed4lHSeN17+an7RTz5hLj92fO2ej7j5ZB4ABjseIQSYsWnc+NXx80/5/ackg0/t8O0AZb6SsfxzHbsQ4nIX7/mlnoznravLss+nH9PTc5p/8sndzsydMdXTWr47yzeLJ7UnyrO/6FKor7rtZ54g4qknweWVDHuvOEi9PsO/+Jf/K99103FwJFleMDk1S4VLXiTESYpBEPghjutbklKZ4UhJbgRRrWaBAVVJOurSnpxk0E948YtfxNlz5/HHcAtHGLa2Nzl0+BD79+9ndnaOu+9/jNBzuf3LDzBRj6iHAVEtpD8aEIURw6ENijY2tlFSjD3ZJJtbHZZ2zWKKFN9zGY1S+oMRi0u7yJKEehTZoDPNaE/M88SFcyztnuT0mTX27l5kc3uTPDMcv3oXZ86s0Wg02N7qIqUiTnsoCVJJ7r7rIebnZ0BY9LuVLgomax7hnhfyW//n73LDDTeitKDb26IoE7SreNMb38j3/Orv8pb5yXF3ocRxHOJBih9qRAlFVqK1hxGKKPLpD0YMhzGtVv2yL46QtoOnLb6KUZoT1iOkcjh/YZ2FuWmQAiVt0CeloNsbkKQZIHC1TQiLosBzA6SSJMMU7Wgm2020514GMChlO7sVZkxDlGRxyl33n2RpYQ6oKIuS3fMT1BohZZ6jHElUq3P/fafpjQbsO7CEozUzkzO8/28/xexEgyAKQDgox5CkKWE9xPd9RsMRWZYT+HYGqN/rEw9ywsDDUZI9ImP3tUtgBOfOrlm/JGEo8ozbH73Aq442WV7epN2yJrzJCL58/wmWds1QVRWtZp3RyFIpa/WIs+fWLKREumNzcwh8SzMscivhC72AbreHqUrK3LC0NIHnaXzfJ41TXFcjHUlZGbqdHvEoZXpqirLMiaKA0hiKLB/7jIFWis3NHgZoTzYZxcmY6iZ5/NR5piYbBIFHluYMxslBq9UADPv2zJFmJZ7n8uAjp5mbnaKqDEp6VsbsWOKpERllDqfPnqfdamEqe08WQiGVpCzK8fxcgXQUYeChvZDKCPKyxHE0iBJhIB6lFu+NS172AagKF0GMVhFlKqiqPogAR2pAkmcVd9z1BI88tsajj53jioPzzLTrBKHHkUPzTE21uPv+U7zo2muZnJwgbR3kw3/xCT7wt3/N3ISP4xoC32VpaZHPfOp2PM9h+dwFlnYv8tEP38rBQ3vodLYJ65H9O2QJ733/Z7n5u67FVCV5lhPW6gy6XTzfx/VsMiyVorO9Ra1eo8hL/NAWiIyxw+JeoKnKEikdQFEUKUFUR2mXfm9AUHMwSZft1Yu49SmEGyFMiREOjlJsXlonCEOKMsfRLmGtNt5WNVYYjHCUxpgcPwgpcoMbjIsshUG7AiqX7c0t2lNN8jxGuyGVsR19P7AzrllqpfXeuOBTVYaoVscYgatdTGXwfY8iy0AI/MC3Nix5hjEGhTVdZywrT4dDpLB+olG9DliSoFIShMF162jXSrwdR4GQKEcShg6LS20a7SZaK7SrqdVqtCdmuPra/Zayako8F+I457objnH7bfdw9OhxqkrygfffwiteeQ2f/+wJDh/bDSKzxa5Kcf0NR2k3N/j5X3gvg80av/dH/4dVJnQ2+fCH/pLj172cwPM5feIUk40ah47vZ25ulnqjgaFke2WVZiPC1z53334Xx657GfXGNJMzc1x34wvBGP7sDz5G2hyxMNUG6VCV8NDjyywtTBJ6HlLI8chChREG31P04iGtWkCclriOncMTCLSjCTyH7cEQJUt+6Ud+FaVsh7i70Wc0LNm1NIXSgiRNMEjSZMgTZ87SmpjAc+18WFhrEI9SXMeqLNI0BQRz8wuU5Qjf15RlxnDUpxQSP6oxSkqW9h7hxKMPIJUYXy8qLlw4j+dHOFJRUbKxsc5kc5q3vfVdvPvd7yTwNWVpqNWbKMdhZm4GrT22ti5R5QW1WgPplri+x/KFVdqteXq9Ea959Rv50X/xo/ZaoDTaj9BKcvH0o0g3sBYR2kUpyfrmRTbWVwiDCE/VEdq15uTNFj/zk/+G649ebyl/xs6Bxklm1QxjmXySWF9J1/XRrkMyssVlx4EoCknzxFqxCEttdh0XHBclJQf3HaAqM4KoTpEXlFVJGATEaYzrusRJjOf5l+/jWZbhSIc4H+C6Ea4Xklc5o8GIUTzCc108z6c0YhzjWcCalBJH+0jh0Gg0qTDUwhDtasoyp7u9zWc/+1lm5/Zw65c+RzpK2b1nD1QlQinU2F6l3W7jOJrVtVVa7faYrBoA0JoIkTpEax+dddhaPkmGSzi1j2G3h1CSZqtB5IdUZcw/fPEOIjli364ZwloNURXE8RCJpR/XozphrY6nrZInjlMmZxrU6hEH9l1NpxMjHXs9mZqY4uLyGba7HRZ37xmnE88O8J878PxK3aLn/73F3bv5wgNf4Mjxw5eBIc+5PO9c3w7t5amJkaXZ7jxnjLXCee7NPn9y93zL1yyPfKZt2Th527FxeBY98xnJ3VP//+tJ7p5xEF/bMT/fet9EcvePlpYJT2bIz6Tm7Pz8tVIxn7m9qiyfZ4Vnr/8VNvacr1s/uYpsa8SpE3fxmmM+neE5MBLfDylKMMKhXl9gojWHqwWd3gqVycjyEVLDKB1gSklZmMuSsunpGbq9PgcO7uGuu+7jqmMH2bUwR56lPPzwI5SVhVEkWQZKcujwIVbX1njpDUcYxl327l8AYLI9QZZnVMZW7xuN2hhqYjAo4jhn/dIW9SgiLyoefvQJmvWIs0+cw5HWRuHxk2doTTSJ6ppWq0avF9PpjRAC9u/dQ683oLsdc/qJiwC4niYIPD77mRNgbGJ7/YsOkKYxUtqbvpVd2WDq3d95Mz/38z+N5+oxBMXFGIkwthMglcQbB/nCWFJWrVUjiftUBvwosN1CAXlhqDca1Gu1sQmxR60R4foeRVlRVIaiMjSadT5wy+cxZcWVB3ajpOS2ex6iKioG/SEIQa0W0mo30Nqj2xlgUBQl/PGHPkmRF4Tj2TmUDVKkgKrIyfKx/EZKHFfzpx/9JEobXvzCI6yurLJ6YR2tJdMzbSoMUtmksaoKlpamOLB/r/3eYyjLku9882uYnplCCgtscRzrKaYcSZJm1Jo1Gs0GZ85epL/dp9sZct+pM9x+z8MgBI1cWCNXU3DoyF78uvX0azTqvPHqWc4vX+LA/nnyImdzq8vUVJurjuxFIHGUSxIPiUcZnutw+vRZ9u1foNas0+/2eeL0BT56y21kWcVolOK6Hn/+kdtIUwu5aE5Y/7w4HqAdxaA7IAxD+1lhuLhyiX5/RD0K2dzcGsuIrQF0kqbjizbkRcnCrllmZqbIi5Jms0mSpkgpOHpkD65rZY15XuAHmjDSFIWdzyyKzM6YFSVLCzMIbFJ57/2Pj4EwUJaCUW9Inlbs27NEGidIY5COc1lrIURFWdpOu3I0yvN3mkD2fDIFAkWepXiui0EhJEihUcp6NpalQ1oklGpk5dPaQ0hDnifcde8J4izj9a88xjVHd/GFOx7lAx99iHvvX+ZDH7uP06c3mV6YpNlq8J//4EOcPnWWH/ih72d7awOtBVdfc5yZuSmKIuNb3nIT73z3G3nHu97E2soa73zPm/jrD99iO5ueDwb02COxKBLyrCCMaqTpyHapC4EQ1qcyi1OardZlX6zSWE84ygKlNQhlfRbV2NJi0IeqoCoK6q0WZZKxuTmgOb1giz3kMKaF5nlKq23nZdIkuewVKaX1P5NS4wcNtrc2iUcjkjilLGHYHxBG4eVrcp5l1OoRUkFVAsZ2j8JajSLPSdMU13dxHE2R266D62qqosCUBUq4lHlBlo6sb6fWVg4qII0TPM9apGSxnVuVwkJohoMhUa1hk0VT4WiFklCkMeUY0ak9n7KyxRSqyn5Hw5AsLRmNckaDhDwbccsn7kL7JefOLoNw6HUEQgSkcQFG85lbb8dx4LtvfgNB6PPaN7yAIi8RxsX1XBxtgx8pcm6758t869tfTprbwtbkVJsf/MEfIIzszJcXebz7e96BMnXiocQRDfpdw223n8BxJul14eixl5CkKXmasbp8ASPACxvM+QuYyjCMR6RZypmVS+RJRpJlxGnOB//mNnvvlSWu9hmlGY4SuNqj2x+SFwUrG9toV3Op17ekTAxKSe6//wG6/QFRGJKXJbV6nXvvuxM/8Kg1GgS+z9bWGkePHYZKonWAF7YoC/t9lkBZlBaq5TiYqqTRmMD1ApRyCcM6rdokRZrguyCKjLn5KcLAo9frkqYxC7sWiULrQSeFIIwilHF533vfx+aldaQwSOWT5xWlqRglI/LM+rBNTk1xae0SeVEhVcXS7iWE8mi1Wtx1151kRYyRGaLK0Y4kzzP8qD5OlKDb2SZNUhqNJgsLi7g6YGuzi6FDITr88x/7Mf6X7/yXpElGnpZcXF7FVBB4AQJFmuZsbXcI/JCZ6Tluu/3zSASPPvoQKysX0Y69j3qeNz6/7Mz5TrEmi0dAhXI9W8BMEztDbAxRUIfKUjZNCVle2PtPFOFqhe955HmKoRjPVIfMzc7TmmgzHA24/677OXvmLKaoKLMSkxs21lcYDDp4IbSadTxXIEyJNDDRaPHa17yevXt28z+9+3tYW13h4soFC6dT427SuEFzYfUCN9zwUoIgGBMVbVFZuQ0CHSDKLdZWTyGdGlNLR0nSmAOHr2D3nn2cPvMYqytn6WxcYK5VcN31x+lsd+h0hsSJVSAoxyEK68TJkNANMYWNQ8+fPofSTS6urfIXH/kLnIbk0voqIMiLAoxksH2JLImRGNiZ32Jnfu0ZYaZ8brnjV1yMJTnvdAT//C8+8CQsxJinzYyZqnpSO/jUGLt87tmwZy52JEl97cf2FRYhBFJ99W09k3B/+Xm5c6jmOR+X1+NJMv5lSv7XkdjtEC9NZT1cq2dZMDzHMUt5GdbytMRy/PxzNbG+2vKPunP3//byzXb84Dla5k++MN6Hlff9xv/+U9x00+t5xaKLqxu2ZVyVY1NjQUWKMRkCgec1kNJDKhdjHJRfR5Zi59xkOOxTVpoorPHeD/wtV+ydJahFKCXpdLqYImeyZQEs2rMySMdRXDi7xa7FXUjhAu6Ybme9b6RSFFmB4zi4roPWCqU8Ll3aQhpYXd2g3rC0zSK3PlT3PXgKY3ImJhpsbPXY7q5w+PBhNteH+L7LoydPsnthkXoz4N4vn+fGlxzBdTWOI7n/gUd44QuvQLsSR/koEWJERlFkloiXp5ZwJSVvuW4XP/SLv8+NLzpGVJ/B90Jc12c0SpDS4d3vfgc/8Bt/yJt3TaOkQiiFqUqqaojSNSuBKguyOEaPK4paO3S2e2jXYzSM8X3f3tgciXatYfLe2SmEqbj74ZPMTbbYuzBNPIxxXQ3CXpz90CdLS4q84va7H2FhZpL5yRph4COVoN8f4LiaLEkp8tLKBV1rEl2NK2dX7V9AiALpQLPVoBHVSNOEUTyyM3hlhVT2PaR5xvrFLrW6j+PA1kYHoV0urlyiPdEgGSZUpWNldWM/sCRNrNVEJdBKQ2U4ftV+ZiZbVAamp6fReyL6vQ6OqyhMRWezQ5zE7J5uMTvp0h/2aDVrhKHD6koHISGOM8qywPUUnusSBg5SVlQCtra2kGP5wbEjiziOTxKnRLWQq47swvV8orpHlqeAQzzqkqQFnusTx4mdXXQ1E60mgedR5CVZVlCrhXS6PbzAx9Oara0OgefhB9Yr7czpZdrtBhub27RaTbI8Y3u7S3OiwQMPnmJmqoUfuHi+i5SalZUVGo0Az49YX99kenqS1bV1XK1ZXJpFKUmWpTjKh8rwZx+4mysOzOBaBwEqZb3plCMoy9Li3zPrTwWwvrqO645JbZTkpbJJjyMpje38lblGKUlRDFCug6ObOLJBv7+C69XI8gTXVSwtzrH/wBzagWY9YGlxnplJj7Mrq7zzrS/kzvseR0Y1ds0scGpjwOve8b101s/yiVs/wX/6j/+cbAw9MRV84mOfpVbzefzESR579AyHj+7n+NWH8F3rHyeMsQlY3uPwoQjPDy4DGRylcb3IzuA4Etd1KcsM5Sgc7VGUBkcJHK0QUiPQ41igJE9jPFVdDiLKsiTQIcHEAsOkQssM8gG5KXEcFygo0t7/Q96bB1t6lee9vzV88x7PfE6f0/OkWWgAxCDAA5gI20DFZjC2g4d7cW6lkjiuupW6lZTjm9zEDrZvcm1fTzE2BmMwNmAGYyQQEgIhkLpbA92tqefh9Jn3/I1r3T/W7taAZGTsVN3Eq6rVvU/v/r69tff+9vuu93l+D37UxA89lNJYpPu8KEWWluRpSXOihjUlQRChVIjnS8qywA8SoGDQ7xPGjnxZb0xSVSX9Xo8gDCmLwmVfIsjzDD8IUFhsVdLd3EQKSIclXuBke0IqRwIcB4yDZTQcgjGUVTWGwCgwJXnuZMPGWBCSqirQSmDKEunpMT24C5Zxhp+HtYqqhI2NISuXOjxy+Dg7dk4RR00aLcPU9Dznzq2TVxkLS7NYUg7u38bMbAs/UlRVga1gMLjIX37ym1x97bVU5ZDBYAMvSAjDBj/3s7dxqTOi3Zjj0soyQeCR5SPqtQCwNKbaPH32JE8cP8yZCyfZtjSD9mH77jnSqoMXK4bZAE+V+BIacQJaY4xg355dbKgTfOUrD7Nj9xyT9RpJI3Q5qSpgdn4aCUhRYG1IHLr3v7Wa40+7oPZaEuIp7eS8oiIKfLK+4Yde/k4urZxFCMPOHTv50Af/mOtv3M+jjz3GwrYl1tc2abRCLi2vEIc1li8sU2Gp12pUeYE1FqnctTuOI4wxDAcZWvlOFi80oYq5/2v3sG3bFOmwT2ndBpsZT1h938MY4dDotmDY73PuxDL9/pAkDglCDSokzV3cDcLiexFhoNjc2GR6cgahA5Al/WEP5flcOHea5UvLLCxOs7l5gVhYtjo9hBfhhzWadecX1p7C832wHr7n0etu4nmaenMaW/r83gc+zOuueS1RlLC6usFdd93FVQev4vNf+Bzbt+8kCkMXq1DkGANPPvk4+/bvJ0kaTE1OuzgeqRBWsba6Pm6S3EahKStsVRImCdIPKMY6h4XZAAAgAElEQVSba0q6z5pQFmOr8YRdoTz3HSSEJU2HeNL5cIWsEJXis5/9ONdecyOjkYvVWVrYhh+AqVLSUY+yykkHGRPNKaoqJZARw1HX2Sg8j05ni0bDhZYrJdixYzsTE9OUZY72fIy1RGGItYYgCPH9gCLPSNPRlQ3CQgvMaIO0c47RABpzu3jizDmu3rMTGflo5TM52abf2WDUXeH6XXvAU5xfvsTG2iUWFhawuA18IRWlKZ2sXgDaUpmAel2T9TaYrG+nu7nBtsUdKKU4feoEWmmy0RbogImpmbHk8bKX7sp/rtSrl5uQ5zQnL2Fy9+z7vO7G1zN7YOLKsTDPNI0vfDz393YMt3KB9s8+/zMevO+WlvmC53yeVPGlrmeOJXhOef4dcu++637gea/F5eiHl7IuD5de7Pn/g5Flvth6IcqNEOI5HfnfZT1/GmjG8tDLL6I1l4XIz9L/2mfuK4Cd2xe4+947uWaqhvUF1uQgPcyVHQNnVM3TFIQgyzNHGZQSayuUkOR5SlkVJLU2aVEhZMZ1+/ew1R2wsbbF5NQE9WadRx4+yuTsNGmW4SsFVcWRI0e55uAiZZlhTEFRDPn0X32VfbuX6GxtEnhQli5kezgYgjCMRiNmpiaIk4CFbVO02g3W1zs8fOwkWVHxvbe/nIsX1zl9do0brruaM+fOMT+3RLMdMN1ucfLkWVbX19g2P8uO3XN4gUe31yGKWkzPTON7GiHdGP/C+WXyUUnoR3i+P5bKQp4WnD25zCsOzDFz3asJQkefK8oc3/coij5FnvKmH3gjwWOPYIVEjHdmi0KjxvpxKRVKON21K8IFge8DOVHQwApDkQ7Ii4x0UDBKBxRlRS2J2Lk0S2UKyqrA83yePHWBbfPTKKWoKkMceWilWVlfY9tcGyk0WmmGoz6xX+PP77yfG6/ay9kLl2i12zBu0rNRhud7aE8hZYD2QkwFSluMhTiKENaZnJXSKO0ThCHtyRq2sthKOZO+UpRZTpKEKE/wuS89xNLCBJ4vUULT647wtEcceXiRxosDtNSsrW3S6fZ5cnWV2QPzhH6EKUpMnjM1OwFW8LH7jtGkx8xME2EVh46cZOeeeXxfoJXm/geeZveueYLI+ZB6vSGhr5mYmiIIA5rtOkr7eFKSpkP6/Q6e8khHHZSQrhnHUllJUo9cjICFP/uLw8xOxKyurtCeaPLnn36QW27az9HjJ9m+tIC0gqPHTrAwPz3+/yOp8or2ZJ0yTwkVKC/g7PkLTLZb5FnF3OwkVoLnaTexMC4H8elTy9TigPZEgyyv8L2ALM8IAom1gtOnL9FshCgv5taX7SYKQ9Y3eoRxgpKWfm8D3/OweA4QJCvKPMVTmmOPn2FhfhIw+J7G085TWpkCazJM5aaHQriiU0sfY1KyrEutNklZVgRhTFkafH8cdK8vyzQL1tY32b9rniiO2LFtigefXmOu3eITX32Micmd/NKv/Tq33bqPk0+fYO/uJe787Jc58vBT/MAdr8UPFAvbprnx5uuwWEbdDZTv5I+DwYAoibn2ul0IhmgvAKEoshLGmWL9bhetFGk2whsTdoVwDZ3SFViNFIZR5zyB75OlOX4YYLXBDybJRqMrk/cyH6JFhdQ+VrjGuxiVlIUlSGoM+zlKuSwtU5UI5V4brAFbgRB4gcfyxRWarRZFNgLrIYXhwtnz1BshWVZRb01TVSOkdGHnSo7JxpXLDgzjCGsNRWVQno9UHlHi5KRKCwbDIZ4fORkljHdrBUorep0Rn//cA9x489UIafCD2GXiDbquSEaChaoCP6xhTMnm6irtyUl8LxoXWBpjHNHvxBOnUNJw4MB2Gq02rekYpeOxP1gSaEngJ3zqE19m34EFVByjSDB5ivahs5HyylffgFQVRT5CKx8lAkaDLnffeYhHjxzmplu/n3qjxaCXUUsmkVUfypSHHznOws6D/Ob7f4d3vue9CCQXnz5DkXVptuf5/Kfu5Xd+/fd5+zvfyur6RfxY4dmEJIZHDz/Jl751D698zcHx9cvJ0PIc1jbXmWzWXR5aoPj6Nx9ibm4SId1rNT/bJtAeg2E2bogtvcEQT/rc9etHedvbvo9aYwKtDVUxYs+u7cwu7mL7jl1IqWg26mgV8o63/zR/9dm/5C1veS1ChsRhkyzPSOo1VtZO06hP0O+meL5m0L9AGMV4XoAXSYTImJ6ZorPVpd6oUVmfii7YmEZ9miLf4vy5Zf7b732AV73yVQwHQ0JPsLhjnlq7jpQensiIfZ/3/8f38/KbXk6j3mCUGfyoRiUkl2MPkqiBUpJW0mR6pkmal0jZZHW5R1ZkTE+38HQElDx+/Fvs2LWT9Us9Lp17mnotcH7mUYEVFf3uFpsPd9i9Zx9GaOr1kD27dmCM5di3jnD1tdfRH/apxQmiBC+SLC3u4KFvPkCz2XSxDVik0Nx///0YUTA/N4uSTgZ5+PBh9uzd516XyuJ7HnmeX4mH8fwQU5VoKRn2eni+ZDgYYCsHHZJhSLfbxeSGMAip1ZtEkdv4CMIAbAnSQwcJtoIwqrG8coler8uFi8tML2zD2oKVC2dI6vMU1ZCo3qYoMvI8JYgitJIUReEAcFnmfPbr61w4f44wTiiHAxBjefVoSJX1kHmX3voWhU7Qgc+ov0VlBKdPnKY93eALn/srlOmxtDCDjHyELZhqT3Bx+RLz03NIT7K+uornawIRYSX42nf+95qHFJJ2c5KnzjxFJkMWF7axvrHKjh17WVndQosSXwe0FrahrcTKcYHAZUWIuDJJevbvV7LvLtepXO4HHefhcpN4pdUR4oov74vf/CLX3XjtWHH2TG37XN/bs449bgCvTL0uTxrEcwPPpZBXHpM1z9Tel2vm5zc9VxpVK8cySffryt2+CyXeMw9aPq8vkAiefZ7n/ru/iZb/NzVsz/cBvpTG7sq09EUUf5eP+w9Glvn/x2VMheXFgw2VlCitWdq7g+nhaaQsHHnKWjY31tHSIEyKhHHxk6A9Hy1BWIMtC0yRUpnMXTz8hCwrSQJNledIJcmzEVuDLv3hgCLLuPH6q4gCn3ajQeA5mdFoNGJlZYssLTh1+ixhoHn7D76ebn+ViYkWUTBJkvicOXOOjfUOWE0U+kjtdjmHaYG1ksWFOfbtXEQKxf3feGxsIh6S5T1uueFGTp86w8OPHOfww0e47sAs1x1YwteSk6dPURQVRx59HGMKBKOxREgjhYfWHu2JFhcurpBnBik01sKli+scvGofV+1c4Kd/5l9SVYaqKvnFf/uL+H6AtS6vqlaPeM+9h2AsJ7Wl5MGHnnRjbgQYg/b1ePIgydKcbrdHVTq62XC4RVlWxGGDWq3hsqbikG6/h1CgfZ+k1mCUjbj+6l30+wMHQfA1pXE7sK+4+SqUJ2lNN4mSgDj06HU7vOlVN2CFYdeuxSvXFGsgiJz8bTjIxtRH5zcYjTKWl9edP6zfAyzZyEnSpABhfQbdnKPHTmJsSSkrJmcnnA6hsLzp9peRxBFaaowxtNtNqrLiqZPnWVvbYnNzyz0G6zLVFuoJvq+xMG4gY4oCfD/g4EKD3btnGfUHFEXOVVfvBKkJ44gw8jmwd5aNtU2kEHS2OlSVccCMjS4Kl1eofA+0pLAVE1Nt+umIuNbkyLdOo/0IoTX1eoCvY0a9isefuMCPvO1G4jhgz67tnDmzzA++6WV8+q8f4KqDu/jq1x/hGw8dZe+ebQS+j9aaLMs5evwEWMnGZoqQNS5dXGNucpqTJ5fpdnoYZVFKYazE92tI7eGHIYsL02it6XYHrK1sIDE0aomTGRrL/r07eezYScoqpSgyfvsP7yJLDS6yQFCrtyhKg1LWSY5UQhzXsSLl2quX0FpQVQXDUX/czGk8HRAGNTwvGCtxLMah8ihyg69jjBFoLbGmwloYjjKqPAXjcv+CJMKTmi995ThVbvnEZx/kS4cu0mq2qHSD177uNfzEu36MbQtT3Piyg/R6faJaxHt+8q1cOH+RdnuSPDPkeQHCEoQe2lcEYUgQhlRVRb/X5w//6D6qqsJUBWEcoD0PYyqa7RZF7nxuIMbZYO4LcjQY0NvawmYpQWOKvHQFnCkyV3jlI7fBZQ1pmo4lmAVVWbrrppL4viaMvLGPz1F9fd95jvLUIuwYhmJKqjxlfXnI1PQiadanLMsrFNyZuWm0liS1ECUlUviMBj2MzSnKFGsKgsCFlwsEQkg86cAfYRiSFwI/9DHWUKvVXM4WgAShBFXhAElGwBt/4JWYwvL00TPjnEdJEMVOhmvL8XRTUlUpVZkzNTfFsN/BUo29Km6aC7B7/3b2X7OL9kybosoosyHCGrLBkFotIGmEFOWIt/zQ6/C8hCo3/O5vfYI/+dDnKXJoz86MgT2OTox1PuaiMOzeu513/OitVJXlrz77hTHVtuAjH/4TtlZWWZhskPc2OHv+NLbq42nLjn27+E+//Ad01gq+8c1D/Nv/85dIq4q40aYzGFHIkpNnj/GnH/kMo+OFu75ISW+YEgeawBPU4hBPCeLAxwrFy285QJbnlEVJXlZgJXlRuemw9vC1z2SzQVEVWGPY2uwReh5KKE6dPkd7ep6nHj/Jffd8jTMnzzLsjrCiz8c/8QE+8IHfY252OyuXtvjgH38AP4DzF56m2ZiiKArCOEQIDdZ3sIn1VYrcUhlFt58SJU3WN7aIrMJmFf1uwbt+4p+RZzA9M82/+Bf/m6PYSgGez2ZnC09JhsMuhpzV9Yv8k596N0+fOMZgMGRrc4tOp+P8ucZFDjnvG9z/ta87lYfSgGVpxwKLi0uceOo0CMP9X3uI3bsPcN+9X+eNb3wLSb1N0mjSmpykxBB4Eb6vObD7JrTSSGsZ9AfUajUarSavvv378D1NPYkpTAqei/eJkxghFZ4eZ81pD6UEr37Nqzhw4ACdzQH5qKA/2GLfvgNYY8nznLzIGQ6ddzlLM6KwBoVESZ/KWPwwoioFtbiO9jVpNsRWhka9Tr3ZYDAasbC0REmFsQVVOWJzawvfd970pFYHLLt27Wbv7j3ccP3LqMoCrWJm5nfz5XvvocwFZW7Ii5QoqpGNnFMqSmqUFsKkzmA4ZGpyilZ7giAIiCYm3ZSzqKiqHg0NF1cucHKly6kTZ4jCBnOzO6jVWlx79XV846tfohHmTLTrzutXZJhSkGVDbrj+GqyCygiyDJSOMAoQglJU5EawtlGMPV85N1x7NaPNTZaXlwnDCKhY2rnEVq/H2toFfGNBKxgPBHhWg/ZSlpP+22/7d8+MHp5Zf/GJv3zJx/3brMpWVPbbbU5KKtTfk1zz73sZ6yTz/6Ov/6Gbuxfz1L2YB+/yC3b59vNpO9/W6b+E873Qm+CFjnH5A1UZp2N+6vQ6Vy/NcebME9hyhBIwOTnBKM0oS0ORZQRBgEEyGuWkWenCzIXAU4pud43hsAsyJ65JBv0BQioKA/PbZnnVq26h0WgirGaUGTpbXbpbHY4de4KL55e59sBupqcn8HyfxW3bOHHyHMPhgFqtSZ6VFEVOZQ3z8zMsX1ojiROwlsFowIkz5wmihK9+/RDGVlx7zR5e/crrWd3ok6Y5L7/pGo4cOc7ZsxdZXJqkszUiTYeEUcxWN2WUluzeuZ0gCHj9a15JNszBVu75jE2ws3MTKCV56unzSBTWupysOIkZDPs8+NDD/Mkv3MG7f+xnycuC//B//XuwljisjyVfhj/58G8iVYnwK3RkufnG7QgpqaoSYV0IdFU5KaTyFO0JZ9JePr9OMTIICf3BFl4gGA77VCan1XaFu0NYD5icaGKMIYpChoMUU1qMtbQn2lgEXuDT63adidz3mJ6ZotlocuHciiM3jneOnKpbApJaLaHfHzIcDlFKoJXH4rY5tFYEocewPwYzjDIXQp7nCCk49PRpqsoVsWVZumIqDPFDb/xeFWRpStYfsrnRZfv2RaanJplsNhAS5hemmZ+fYuDqCR548BGyskR6HtZU+J7Ha246yOZWB1O5qjOKAlaXV7h0cZ31tS1275ojDNwObqNRY35+jlOnl1ld3wIL0krXGKY5UxMtTFVdmaRdf+1eVtfWXWyIUVw8f4FW0+fG63aw1RvQajW4cHGdXTsXKauCUVYggFtvOsje3QusrG5QjJ+352muv3YfpTEktYitbo+Z+SmQLmi61W6SZzkrF9c4c/IcUjmwjdaaWqOO0ppmu0Wt5nPp0ioG5x/Y3OrxyGNPsXNxHiUdTv+977qdmZm2kxhZwaEjJ9Ceh60yRwoTJXmRIoUmiltkmSAM2yjVwBhLVVmE0OT55Z1NFxOgtHY70IGPkAop3YQa3GfE9wL6g5IPfvQ++r0RwhoeeuwcSmk+8skH2Lt7jrsfPsNH//xLXNwc8vM//y/54hfu5B0/+j3UajHfeOBh3njH93DXX3+Jx4+eQEgPKzw8P+ar9x3iy1/6KkJepnJmSCmpNxr81RdXncxQCDqbmwgk1pSuCBEuf9AY60K9haQqe/iBIWl4DIsexgqGw3Fguw6wVmGNk3BZC2Ho5HFhHOP5vpOIlyVZNhj71DykEOSpk2FrHRDFPkWeOoiSMSjPY2quReBDNuijPeeH63d7rnHBFRdVkY9BDY6eaw0o7dHv9RkNhk5alZdsbnYwxhWeEumuxVq7zYGqciHsWJSUBJEPGKam28R1H+UJ9uzfS5kXVEaC0E76qSRlbhBCYW2F5/tYawljl4lmTYU11fg7xdJsN8bPw+V0Ki+g2xkwSnO2NjeI4sRJ/iKfNM3JhkN++mfu4D3/5M18+EOfIwgUxhRk6YharUG/N6Aoc5586hT7Duwirie896fex3/+lV+nKHLyqsePvOsn6Q8zjIEoCPnPv/ortBoBWdrFSMH7f+M/YGyPd73nh5jaUUdZSeglxGENbEa7OcX+AztZfqqHQDDKHbk2L3OgwhvLxC+srlEYEDIi0BG+8ukOU/f9Fkk6/U0s+diuIIgCzX/73f9CPW6ztbGO70ds37mX9c6AQX+Tqw7uJRv12Vi/RDYq6A86DIYdAPbu3cHr3/BKTpx4krnZeYQN0FLR73WRaIQIGA6HTM9MIdCsrG8hZYAVHlOz2/CjhLX1DYLA58njR4mCFlpqtOek8tZAY2oaFYZsdbcIfEW326fVaDE1OcPBg9fwvp97H1VV0mw2yPMMJRVlVfLQoYfodrqcO3fWUVjHG25ZMeKuu+5mdnaRsszZf2AvfqC5/XW385lPf5KilJw7v0J3MCBOYjwvpjXRIq65IO9HHjlM6PsMhgOyomBuft4BJwQUWUZelRRFiakqbr3l5UzPTJEVI4SEYdojKwcIoF5P+PRnPkm7PU2jUXcRRn5IEATjDVjLVncLayy9Xod+t8toOCIIQ7T0GaYjqqoiGU8Lq6LCGoNBcvz4UbS8LPOTLqIHp1S5dGnZXdd9waW1C1Q2p6jc5z0KI773jW/gxJPHgYoiN3z04x/i6TNPMxx0wRqCIKCsKuIkwQDz8wtoz11XMRnD/hrFqM9TJ46RJLu58dZXc/UNL+PQQ18mjj2syOhsnWP93Cpzc3Um245irj2fNLNj6bkmCiKqKmdyehpjCkI/dJouC8aU9DaXwQrK3HLyqScYZZb5uXlmZmb42tfv5eyZU7z8NW9ibXOdE8eOklcFjBVniOcKBy3Pq3O/3ZHHZdrmt1XJ4589u9F79vTo2feTUn1bU3llGHV5Yvdia1weG2ueCze5fE5rXd7gs25/t8o6J6R/5hzPqdf/dkrO5x73eX3BZQ/e35bC/3dZ3835/qeUZb7YukzJufJi/d0tdi/usfv2Oz7rz5b3/dNf4G237iAvOgyHuct+0W5ipT0PaV2ToLXvdP1hgFROogOXQQ11srRAKQFG4kc+RQmer7i04vLQPvYXX2Y4HLG+sYqSkvMXVijLkuEwxWLwPM1wmBGGETOzk0j0mExlydIUKT1mZ6d4+ukTTEw0kUqwsDBPGMaYMmNmZpo8zfjy/Yd4y5te6/LgtGb/vl1UVUlZpezZtRuFoTXR4uHHTrFtfs7RKLULZf3In97NzTfuZpQ5r5uUCmNLTAWnz15ka73HzOwEQlruue8Q2+YmmJ2bwvd93v6qvfSTJcIwoqyc7ybwPCrrUOb3fPwTLLXagAs49oKIIsvJs8wFG4+llIxpi0Ec8qnPHWJ2sob2oFavceTIU6x1uyzNL5AO8zHJzn3Ii8yR8jqdIa32OGunqhj0Ru4LT0qiMHAFsLX0uhkAn/3KIa7fv8uZaIVFisueO0k5lpFIJZFSMuiP8AOf1ZV1ao2YInW74L7vu1y9sZTx+oO7HL7bumNZnFxOSeHUataABC019Uadv7z7AfbtXCAbjfDDgMpUCARHN7YI24p9+3bhef7YFM3YWA2KPk+fWGZhaYYqz/C0xJSGwWBEe6LOKM2Ik4jl5XVqSUyjlhDFPtr3OHv2IisrW0y06mSjFCFgdWWLp08u02rExFHA+uYmkV8jz7uMsj6e56Zh6Sjl5JlLzM1OoH3NDVfvYdAfsLq6SRwH+FoTxREnT1+g2axx8fwqSGg2E6QEz9cgNM1mDSREYYDCeV3rzRjLeAc9cNMooQRx6NOou2miwAVHj4Yp9VqE0h6D/ojl5TXa7TpPPHmaqckmAkmtHoLNkTJAiGp8/fHJs5QgCsZ+HQ0ClPLAwhfvPczO7bP8wUfu5qbrdjm5ceF8QUprisKRFcu8crEZZYGUESdPr1CLPCZaDfbuWWB6ImHH4iTNRsK3thrctBDTPnAzWimajRaTE4ap6Umuvf4gfhDQqEXs2bcLPwi5dHGFrU4PYywXTp3m+ptvdDAVz8Oa0lEys5TrrplAqssTLBDCEV2jKAYYR48IBr0BtirwQ43SCUFUB2MIo9gRLcH52vwIV0NotKfGdF6NFC7cWWmNrQqEgKKyCGvxgoAiq1DSo9ddIwwDTFk5WEVcI8/7dDfWCIMQqRTdrR61eh0hLaas6Hb6bnKmnPS3KitAUBYl2gsIwgAhJVIpPD9wg/A8w/MC12wLV7RkwwzhQIB0NjYJ44jl8xfxfY/u1gZRErtqyBqCKCZPU0yZOZmmF2OtoSpztPJdUy+dz9HYAqRk2O8TxSECBdZSlQXpKEVIyec+ez/nzqxwzfV76Gz0iGrj97qnUVohLBibcdU1e/BkRb/bu9I8lnlJZQx79+1gY20T7Rle/fJpbn75TyClYXI6YX09JQg8FrZtpzdM+dCHP8Rtt17Hyuoq9babcP/R7/8hv/Ebv8vb3/FuqtGAOIrIs4Ll82cI4zo33XQLt73iWp5KjzFKU8LAozQloe/x6BNn2TE3SSOOSMuSvBB87aEnOXtxnQO7593Gl4GNzoB2s+78lUBnlPK63d9Dv5/x1ONHGQwGbtIqfHYuTVFWBRMTLYLQI47bJFHI4UOHmZudxSBotRKEEMRRE1AUZU5Zllxa3uDC+bMoZanV6ygVEEc1Hjp0mEajQRzXsGiyqoeWMXe8+Q6efOJx5uan6fU2GaUZrWYLFcRoBZ4n8LXE9yJOnzrD3OwiK8urvP71b2BieuoZi4AUZFnO0uI2klpCI6qBqMjyAs+L8LVhYX6JU6fPEiUuV1EpcSX8+5ZX3sYv/Kt/TpwEaK3xRMiFS6dZeyol8D2q0tJq1BFC4PmB879aS56lxHGERaCkh1TK0R4VlKWhKg1h6IBWUnmURe6kyaHLe1VCYYH19VUeP/44O3ftJInjcQRPwOr6ClPT0xgDRVYQRj554TyNl5ZXuXDxDJNTM6RpwaOPPMCeXQc4e/YM9UaT0PecX1lpakmClpI0K/C9gNXVVWZm50n7PZAS6Usmay2CKKAqLPsPXMPkzBRlOiRJEhdHYyyjkQO7CSmprEUJQZH2CLWlzHNWN0ecOH2CXbv2E9VryMrQ6XZQUpINOuzYsY3ZqTaB8qmsAWkwlcaqijDQCCspqozACxHKUuUVaIWtSpKoRqM1QWUyRsMRq90eqfQwZU67PcHM9DyN5gRZnrG5fh5tJDO79yIvF/XiGRmmu3lZQvnsnz33trv5AoXu837m9xQ3f/+NV5rBZ9/vsgzRHflKoJd7LN+phr6iDX2uPPE5zdILShyf73/7DufB1TfPBo/IsbXpmeL7pXnqrtA0n/X4vmta5ktdL5Gq+T+9564s81989u0X6/afP5F70ZiCl7heaLL3Qse9/Jie+4Nn/dkY1o98nte94jq0VqxdPEmzPYn2IyxDMCFbG2vESYRBgFAIKzGmQPsSJQMkGmtdblk2qggjDVagpEApS7PZYDgYUuQlyytdpufbLG5bQHseR586wy03HeRzdz1CveaxbaGNtSlPPn6WqZkJLl68SKsW0+vkrK1sYkXBtu1tsD69bg+tPPKiZGKyzbHHn6bVblIPI06dXub4U6fZvWue+x54mJl2iyCOOXr8NPNzbdKiz65dB/jgn97DzTfMUhQQBB4vu2kvFYIwSHBhru6iNRyO2L9vh2vsgDIv2bdnJ8eOnmFhcYa87OFJwcpThwkWr0fpgM7KaXIzQHgJwp/grifOcTM5wkqisI4fOkmStQI/UBT9EbYsnJxGBXQ6q1x/9RKNRo1a0mJrbZO52Ql2LC44gt0oZ2uzR5rmtCZaBLFHUVT4no/nexRlxv1ffxxpodlKkJ77UilKgzWaJ548w+RkjZddtYdTJ8+xtdGlMiXxOKz8/PllKEqEEvhhAEIy6HeIw4S4HiK0QmuP4WiA5wmywQihBX7sgpxNZRDKSX+NqVx+TWkoTUVRlCipKYyhwnL1viVHGtRukiCsIAh8/vHHP8u/euf38+BDj7F9acFNGYSiKEq3sVf18bUg0AGjUR8hc2qNhDgJkFKNSYGWRqPGkUefYnKqjVah88A1E1qtgMoWpPmQtbVN2o06e/fsJIwUjz99kh3bFzl/7iS9Xp92u4EXhUhPcf7cMtdfu9MRLfOSYwmtiRwAACAASURBVE+cRBpDGPok9QQ/iuh2e2zfPgPSksQBva0O2IqoFiPRHHn0GLPTbQb9IWl/QBAqpLKsrCyTxBNUVQHKYqxAFAVlUTLKMqx10jChJHEcogKPTqeHKQ1nzq6yuDiFUpIoDq9MsDw/wWIwpkKgECiMtJTFYNx4u2wmR3u0zEzFaK2ZasYkSYAlJ/Z9pHJNqdSXPalOeiyVRQUee3fN8fkvPsKepTYf+9QDvOrl+ymKlFo94AtH+xxoS17xg+9ma3PAT/30+5ieyXni2JN885tHUFpy953f5Oprd/ORP/4U/d6QBx98lCjwePMP/4C7Pq1coha4L06jIn7pP36cH337NUipKUYFlc3c1NOLKEuLkIJ01EUJ5xUL/AlQAVYaqCTCeghhKYohShuk1EjhguXDKMaJIRxkpTLg+Q6Oo3RAvzdEIJHjCaEXaCqTEwYevV5BVG8hNW5TQgeEcW08aa9RVQVSW9J0QFKfRCtBGGjSohhLFB1MqqoMAie/ztOCzbVNtKoAhefHgIP5SCXIsxFhGDkftFQI4YLPk1qMkpJme4qicA2bEC4yRSmJH8SsLa/g+wH93opDxXuashCsrawS132E1ORZThQFZOnQERfLlC/deZiJRo3mRI2rr9nLwav2kqdD0A5BrqTzapvK59y5s7RaTScNPXGR6ZklEAVCWHr9IbXEBTp3tzpsrnfpdnL+9M8+xx0/+CbWVza486+/wGtedzurGx0mJme49qpr0FGAUjEmV6xeOM0tN76R7Qt78EXOV+79BtdffzNRVOPwtx5nz94dSAn33Pd1es0OkVfiKY84iJFC0G418DxNXpWEXoDvKZYWJllamEQgyLMU7Xk06jFnVzbY2upRGs2Tnz7LbS+7jrJ7ivkde1Ei4PzJFXwRcmnlLK16m9APeeLxx/GiGrGvmV/cjvUTQp2TlzlJq46ONBYXT9KMEtLBFrsO7CFO6kRRQq/TwdQsXrlEo64xZkRZbHDu7Hkm56ZoTNZZnJ2h3qiT1OosX7xAo1kn6/VotmqUVQFS09lYp95sofyAWqtB6Bm8KMbajEcP3UdpNa12jPY1RWHw/Ihjjz3qsmYbTf71z/8Se/fuZ2nHPElj7GeVIX4Q8xv/7/v54B/+Pl6QUFYSEWiUHuGJJumyk+7GjQZGKLTns761QuS7aBALVJWlKiukdgW2lB6hHyO0BkpG/S6xDjFKMxoOWNi2jbwyRNoHLJUpyIsRO5d20xt00J5PZQSf//xHuOmW1yKUx+qlC8S1BDX2z48GW1xa3WTfgX2YCvqDPrPbFlCeZGJywgGGlEULH2EEo6xLRU5RBTxy9Bj79u2js3GJWhyD76ZlceigNUorqipHS6jV2qSZg6YkceSUAtoiUJS2S3+whhyukXW3WO4Z9l99K4s7dzAYjOj1+zRqE3RHG9x3zwNcWj3HgT1z4ymaRAunahCqop7UnI0mSpBKuc1rAUq5zEyhHdhIUiGMpFmroQMfYSbYf3A3lamQIqBej3n4yBHmJ1vkdsTCwl4XqTL2rlnxTJNxud16brs3/n1cp9rnT+Jc0fpt9erSjh3MHpz49vs8v74Vz/v1HZd11+sXmNq5w4sX9qQ9K9cO8dz63lrrqJnmuQ/mmcndcx+cK8W/3VOHMONjj5+ufeEn9Hwv45XjGge2+/to+r6TavDy+p+/uaue29zBCzdq3y2p52+7XtL07vJ0eDwq3p6dwvcjAs/D9xRlWpIOR0ip8fwaQrmiUInLAYyOMrW5sUkUBQ67bQ15MTYu46AbVVlSFTkr6x3arRYT7QbtZshV1+4nSRIm2w0CDbXYZ/f2GSf1yitOnr7IhUsb7NmznXar5XaaRU5ZQVkKWo1pkJZ0lFJr1t1OWFXSbNQY9IdMTU0gbMWB/dsp8owdi3M88tgJ9uxdotcbYUxJv1dQliU33bib4TDnG4e/xdLCHEorRqMRUKKUuhIQ6o0Jg1pr+v0h937tEFmWcd21B7nr7q+xd892pJRMNuucOnI/v/qBz3HHD/4QQRCiUHgIbr31Bt71/t/i7TvnAMbTUHUl8wdbMEwHlGWOF3kEKiGOEjq9DpUdkiQ1tFZUlSvoGq0EL3CNkwSqqiQMI4e8HcMUdu9coD3hyJNaaWzlitE//MQXeePrbuKv7znE7qVZ6o2YypTMLky5Jsxams06QeSIXlopuhtd4poPRlNWBVJKqhKSWgII0rTE853sUkmHl19bHb9HlPOADfsDgjhAaYkUgkePPEm7luB7HmfOLzM52UIKyXCQMugPeeMP30A98ti5cxvGVOR5hpCGoig4udIhEo5+WlSuwPUDjyhskI6clFgpQTaews7OtFjf2KLRCimLjJNnLoAQJFHC6nqH+YUZlHYTzjzPmJubwiKpJ5Pu/VIIGrU20moa9YjDjz5OLY7IC0N7osH0zCTHnzrD/Pwkm+sd4tCn2+lRFgVlJaglMWGckOUlRV4wO9vi7NkVFuanuXhxk5npKarKMjExSV5WjNKUfm9A5Iek6YDKGGpJQlVUnD59kSLNXb5jf0h7oummhYHH+maX9c0ukecRhh5+oFDKXCFfnTm7Sqs5gUQ5CZf0QfgIcEH11iBkiZCSiYmWkyNKj6LIGI1GV6IsslHuMqAq+OoDj7FjcQZbgcKwtDTLnh0zjEYZG5tdpqcm+JM7H+Pf/C8/xCWmuOMf3cFP/viP8eY3v4yl7UssLm4jz0suXNhgbW2d9mSD27/nNq6/YR/NVo08GxHXQsqsZJQOiJKEykjW13rc9op5yiJ3tD4vYNjvo6QmHY4QUuF7EiEMyguwIgcUVS4QwgAuxsPzffrdIVq7CV6aZlciKsqycHCVsUwrz0f0Oh3qzRrKc/ATiytclNL0uyOkNmgNSnpsbmwSRKHL01OSy3mXUkriWp0sS/EDt3kilTeWmcLW+iZJLRlPVZ0/LQw9TGWIktiVKlJiygxPO1hMVQm01uOGPsALQsrS4IUhxlT4WpCP+qAUw/4A3/cpypKqrOh2ekzNNl10SOSyMaMkHMuYNJ4fMuj3CKIQJQRQcuCqfaxeukhcS8bSV0Nnc5UgmKEqBI8cPs7k5ARbm5soJYjjiDCKieKAdFjgB+45JLUGW+s9PC/kgQeOcdMtNzAzN82b3rifo8dzwihkbmaBKG4QxTW+8eA3+S+/9l8ZDUdcc/V1/MSPv5d3vPMtDPJzxA3D0vZFqmpEa8IBUurNJlHg0+31mZ+d4zf/jw+y5zXTjHLDo0+c48zFNZbmZsiKjKJMMZTj11vwrW8uM7utxTcPH2Nmuo3vadq1mKIoCHzNY585z0/9+HuoSo0fR0RRxNlzZ5mbn2FqbpL1rQ28MGBu2yLnz19kY3WFdnsS5QUce+wIQgbUkwl63RRP5QgKKl0iY0kga3R7PaLIZ5j2qGuPI1+/k1AuszCzQOnVmZvfRpGlSFPx7/7dv+e2227DWkOSxASBT7ezBgi6vRSlQsoixfd8sqJCKc25MydBBjRrE2S9kkBrqjzlwW88xNryOv/pl/9vfuxd76DeaFFrtnjtq17FzOwUnu8IjFVp+JVf/lX279vP699wO5EHwlo6W1tIUXLm6WXecPs/4jU3vJooihmNcj7zmU8yPT3L9PQM/V6XpF5DKydTD8LATay1R1VWDAYDsAVSQJTUQEiEkvieB9Y6H3W/67zhxtKst+iPOgShjzElYRiyb881jPIhURRSZpaLy+doNduARElJGIYktQilNI8//jjz8/MYY9FSEQaRk/FmA4Sy+H6AsYJQKSabDcqsTyOJUGEC0nndTQUCzfHjxzl79gw7l3YzGPWpqoqjxx5lcX47Fy+codaexkfCYIAdrVIUJZWKmV3YjVUVT3zraaZnmjRqMRvrFzjyta9x++3XsWf7EmU1IvD9MQSrQgg5zm69bP2xLrPWVI58ObbXIBxdlMrgxz6VKRhmI7Ii59ixb7F//7U8+sgjTE5PsX37Hk49eZhaLaHVnkF57pp4uUd5poX79v5K4NopN1xwwDj7EpuP2QMv3Nz9XZfgxRuXl1qDP/t+phqHtX+XrrIrx/obcu5e0rJ2DL367zjRe976B9fcfac3zt9Evfn7WFemdy9wHpf19MzeAkLw7ne9l59848so8pKtrQ7Nep1u5zxaOZSwFyiCIKDb6RD5TuYnlMJUljiKKIrUedCsJQhC5xPxHZkuSzPiJCSu1R0QJA5ZX1ul3myAsXziU3fRbib0el0uXbxIVRo6/ZTti0vs3DlHWWZ0u32iqIapFEmjTr0ZkhcdlHZTCc/zQUjW1zZIkgghoN8fMDnRYm1tnUajRrczJMtLfF9QZIblSxsce+IiB/YvEEUejcYU7UZMUktQUuF5HlCSpTnNVmsMlDBYy5WMmrzI6fWGLMxPs2vHAiDwfJ+tzS6TjYQ337iNd/z8r/Dud70bDAz6HfxQc/PNB3jiy/eyrdkEAU8+dYbOVo+pyTZSemSjnDAMAY/BcIMsK7ClJI4SSlOhPUWWjeElWlCVlZMWFSWjLB/LIhV57povhHE0KSG554EjHH70FDsXp7nxqp0gLWfPreIrwcRknUYzuXIxFsIBR6oxMbHKS5SQ+EkEVrGyuobva4Ig5I8/dTfbp6eIa7Fr2i4blC0k9Ziquqxxdxh6h6kTjAZDEh3Q7w9Z29hkz97tbGxuEfgecRRz6swFdtziJpdF4QA9WZax1dmk1Wxw730PsnepSVG5XDopJEceO0nsB/h+QFkVGOvkecOhox/GkY8VFRhLs1GnqAzfOnqW667ZhwU832dtbZ16vYapBGWeU9mSqZkJklqAUpZhv8vqeo+9e5ZQUrGx2aeqQCrB7NwEVVkQaI8g9InHIdRCe5w9f8n5sEo49sRJlhammZhoYIF6rcGDh59gZnqCI4+eYHauRbPRQCFJB0PSYkSjUWNzs0stqVGLfYLAJ0lipJJsdrqcO38JsMwvTDE7M4GnfMoio9frUhQZ2vcwBkaDgrvvPcrSYg1T5khlQRRYfB48dJy52RbaE06iiSM/CuF2zoMwwJiKqqrwtM9Wp0eZl+xY3EZRjFBKMzMzCcJBTL7x0JO0mgmNesylgc8rDm7jbT/3b9i/9yAf+8gf8LPv+8cgNX/xsS+wemmNO976vbTaDeqNhAe+/iDXXX8VtXpCWeb4viZJ6uOGAxCSV992AGG3XGxDlTPqjwjDACXddDeIakhZ0t1aJwjrGFKEVSjpk6YDtOYKEc2WgBIorZ0sOnS0PBcG78jDRV7geZIocZso6RjcoD2P4XCA9hxYygsF2ApTlsT1OsOe89oJISjzzEmfrZPrbG6s0Wi1KCt3nnQ0QApJMN4UcSAPt0OsFASh57LIhCN0aiUYDVOCuD72Qwq3IYZg0B8RRQlpluJ7iiIdEcU+QjrYz+bGBkEYktRrJPUYISq0F1EUOZdjnC5HKgicREgqTTYYoAOJNYKJqQYCRb+zyXDQo96suxiJ2GNhoYU1OWVR4PuOqFuWBWESsbaySVwP2FzfQsuAj370bm59xXXsO7AbIQRVlSOE5M4vneXqq/fxhb/+Infe+RXe+s538r/+zHsp04Jtc4sURcmf/9lH+dF3/iz9wQYf/dgnef3tP8zcfI1et8N//X9+ize8/vsY9vukgxG/89u/zer6JgdfP0/kh3zu84/wvbdfy/J6j1OPrPHwh89y/J5L/Owd/4xZs4u3vOJt/Ouf/BX++Q//U+649Ue4efG1/Nr//kc8ec8FBudGDDo5b3/bW/HDGS6cP0dZlWzfvg0/EBipSZqR2xwUAfVawkSrTrfXxw9j6s2EdmsSjKDX7VMLWggCIGAwBF9BlEQMBn1G6ZCgtpPZ7TWmF7czogVIHj78MO16g8cOH+LtP/IOTp06RWuiCRjW1zeQFKyubTI9M08QxBw59CB79u7nvq9+nbn5eZoTbaywVGnJW/8/9t47yNL7rPP9/MKb35O6+3TumZ6skTTKtmwsWbYkG2eMLdssNuw1Jiy7sIRloYgXLnjrUnANi2G9pHvJLMlgHMCWcZKVpVEejcKMJncOJ775fe8fvzOjgGWLUNStC29VV3X3vKfPqTPnvOf5Pt/0pm/k27/jAyRJzKFLLmNjZYvZhR3s37uLx44eYXp2gWbdJ8sTtntbBgBph9WVDQ5efDGeZ5MON4iTlEajSRIPmZuc55orX4mdGmlxZ7vP8tJZDuy/CCklrmObvrosNdJOTDdoHCX0B8bfrGVFlhekeU4lJGkS444SMZXSlHnOMyeOM96aMKEtysJSDqC44/bbmJvfCaIgzxLCoEEt8OgPhziuRxKbGpw0iyhLQaPWxPVclFQ4toWghErheBZpFo/eexalFHS6XWq1JnZQIy0KEJJubxspFAUFruexZ89elGVSky3Loqok3W6XRljDsmHQPU0xXDMJmcqjPrkLkCArxhttep1l0qTH4/feyctfeQhHlDgUuE6AEpq8KHGdkCSOjKxwBJCroiSKBni+T16Uo07ajP4wwbE8KHOiLCXP4fjTJzm3ts2efYdoj0/Snpxhu7PBE0ePUPcdwtAjS3PCRmtkhRPn0ZuRS75wDh2JBxkBu+eNt0J8RTD43GPqwBjP89C9hPn4QvF5eX6+HV2/RtJGKRVCiuclyj83Wf7FHtBXSrx/4ff/VHB3PvjwgvKvGqVyvghXI9UL7k/w7P/L17pPCVXxVUriX3A8K4N9/vn/6sDdix3/UswdvDh796xc2vSCPPLQY3z3K5soSxq6vipIsgzHtel01xlrzLC2sUE0HFCvuRR5RqVswJh3qQSWtkky4/3I89J0aOUJVVlhOx5pUVIicCybIkuM96eCz992D1PtMS4+uJfp2Wl8v8bp5Q0mJ5qcOHWG2ekmssrxPY9jx8/g2BqvXgPA0ooHHnycnQuzxmMjFY16QBKbiobllXUcx6FWD+n3I+6672kuOrCDqakxjj5xinPLHW684QCh51FkUEmT/Oc4tgFOSo22eR5VWVGUKVKYZI8iL7n38CMEnstlhy4yLIbSPPnkCSanxnFdDwmkScKbrpjifT/833nXe96BDmy00NSbdeZfeyMPfeJTTIUhjUaNibExTp86R71ZH8niBJZl4/kev/XRL3HdFZeytrZOrRUSRRGeY48GNeMpLCtI0pxmq06a5DiOKQYuClNMXFUCoQQLs20O7J2jLHIc1/gnd8y0yfPMFKcrw9idly1UwObSNlBh+w5CCYSS3HnnEY6cOc2hvTtIoyGX7F4grIWjEmbTo7WyvGHiq5+zQayqCktZdLsD8qJidWWLQZowPdvGciw8z6XfG7K6vslYs8mfn17imqt2EMcpVQWea6oohoOEeq3B/j07EGWXNEo5c2YZ33VZWenRqDtsbHYYH29x/JkVlFQEYciZM8s0mzWEsBj0Y7a3B7QnJ5hqj1FVOSdOnGGsUcPxLYTQdLZ61EKP4bCPZWu07bC0tEY99MkLCEOT5pblJR/9+ENccWgHS0trTDQbWJ5lkha1xeraJsNexI6d00gpeeqJ01x59QGkhCiKDXCoMqamGyjLRNpH/SG2spBakZcZw16fNM2wHQfbc1GWJEpiXM+UwjuOTT3w2NjsUKv7aMukkTqei+8H2I5nuinLirBmfHBfvOsouxcX0JYGJZBCMzs9aWTHWYmQDkKVCDFipaR9QVpjK8d4X0SB6zmGEZYFSmo6nSF5njPoxzTrHq1mjb/8m/t4+NQG447k3//Qz7Fv3wEGW6tcf9PlKK2YaAfs2zuN5zusLK2QpjlPHT3BieOnmJpqU282KQrDpp9XCFjaoihLPvjB3+frXrmI0gLbNR7GqsJUG1SKXmcNx5FYdogUIXk2pCz6uF6ICRAx72EhFcoyUmxtmYEzT1Nsx0YojGRz5IuNBvGF84QoL3RTpXFMRYoQnknZjLfQVohlW6MhQY6AsvEjZ2lEvVGjKKES2gwZZYHSGtt26G5v47guyrIBSW+7i5LChC8IQZaYCgd7FNHe3drA9d2RxC0bMXzVCOjnRFGM5fgXPgs8f7R8GJWyR1EP266hLclw0EUpwXAQY9mjhU9ZAiW251NWBQKL3uY2ru+agbICpQPKIsb0EEuktJAyGykPHOM3pSQM6yglWF/bpNFscdU1+5AahMzpdjcQQlJkFT/3Cx/nfe99J/XaGDdc/wZ+/Ed/FMsFV8OBffvxPYsbXnst9fEWizsO8hv/8w+58eYb+MiHf53XvOZ1vPKVX4fru2ycWyNNM17/uhv59K2fY+Iql+N3rRMfztihD3DPnzzEL//Eh2jUPH78R34EaVdMjE+Rp/D1r3szx596ggOXHKTT6fL6m1/FG2+6jte96o28/jXXEDbG+L9+9bf5pf/zl/nAB76dhx56kJ2LC1SFYHP9DK16iypVCAWizBFaobSDZVtsbq0xHGzQaFh0uttEwy5PH3mcndPTnFo6SqNZx3dDtPRJ04QgKCGbpJ9E0O/xyAMPMDExxdTcToo8Z8fiwijkSOO6Ls3GOEmWsbW1gR847JhdYGl5haXlFRYXd4PUaDtn0F3j+le8jPbO3czMzZJT0ZqYYnH3LKJKCGserXaL+++6g/bkOFleYDsulnR417veww9+/w+gR724ftiiEg5ol7tu+2uuuupqjt59huZ4g7vvupNGI6TeqlMP6yRxNEoVjrEcx4SR+QEnT5zizJmTTM9MEycRvhcSxTG+5xINB0hMYnAlBGsra9x77+3s3r0XpSXaMqDH0pq9i3uJ8wTf9ijzkpycPIupNRqj16tCCYskiVHCot8f0GjUoCqIkwgoEFqTpgZQWZZtFjpa4GjN8soyQa2J1ApJhaUgTwssy8Z1PeI0wXFdBoMBShrPXmushR94ZNtL5MN1hHShPketOUuaFKR5wvLZTSw34+kjj9Fu1ZhbmMRzHaRQWJZNlqeUZU5eZCRpgpQQ+AF5npFlOXrU/WlZJrzGsl2KEu68/zH27ttHmUdIZXHs+FMsbQr2X34lY806zVaLsoBjzzyJpwVZ1MGvhQjl0JiYAJ4D7M4f5zHYBQAgnh04nwvuhECK5wRyvMjcO3VgzFg3XkJR+HMH3OeDzvN3Yb4pq/J55IoSozL5lwDuvtrP8M/A3I2eTCnP15eNnrMXAXdlUTzvuXuhN++r3yfPq4L4WseL/e1/A3cvOL5WKuaFLrqv8cS/8LwL24ivlJhZjuTCz9HrCiH4nu/9L7zrun1UJfS219jYWCcMfSy3hWM3ScqKxvgkvuUZaY9j49gBRZlCpVBCkSZdLNszJux4SJElRFFCEIQ8c+Io4y2ziSyrnCSNuffBpzl8/zFmp8fZt38HQaOGsBSe5zG/c57meIskzmmEHoW06UfbzExOsrLZJ40HpsDc9agHHpUQ9Lo9BoMeZV5g2w6DfkSjXqcQEWHQ4hOfvI+rr5pjcnyCYdRlarLFwvwEjVqb9a0tJiYb2JZAWSGCDClTqkogtUU07GFbkrKCv/iTe7noonlOnzhCbxsWds5SlSmO55CmBetrfZpN1zy3EpAFjuvyruv38+7v+3nec8ubqZDkeYVSNretdNi7tYJluSAqXM9E0Nu26RpTWrO10eNll+ylP+hTb/qkSYTn2lRFRZYVCG2bguo8p9sd4IUhtmPR6/Xo9/p4rjUKb+jjei5aS/I8wXG1CYkpc7StsW0XIRQlJVVRkqYxtm0R9WNW17doT9WpysJsvpRkfrbJ7sk2thugtIvSJgXN+Oo0Qim8wAVtCqflyOiOKAGB4zqoSpAMExbmZtjc6BCEPkLAoD9kbnaSpdMrfOjYKd7z6otZW95EIqmqkl6/S6s1gdYCKEmG61iWQ+BbaEszMzVBENQYG29RUTHerqEcRa+b8MDDp5ifa6Kkg2N7WErT2d5ifXUZIW3md02TC0XUGVDmJUpJkiwhjQscy0JrQVhzKURJvdYgz3LKqsR1NOMNm1otII4SGo06/U4fEHi+T1EWBIGHZUm00tRqPg88/DSz01OjJEeI0yG+7yGlYLId4voug2iIlJK/+MRh9u6aZnysSb8/JM9Thv2CWi00CxVlQ1HhOJKsTBgbGzPpiUA8HNLr9YxsTxh2sawyLFeyb9e0YawoSOIe2naQJOZDTrpsrK6a2O+yIo0GlJRIbba/iIoSG1Fpbrv9UWbnxihLG6kqM8iHLsdPrJAkBd1exGCQMt8aZ9/iPL/1sbt48ukHePWNL2NxV4MKQbPRpNlomC4/x+HsqWVm5qYZG6uzZ98iSTJkOOjT2dykXgso8hIpLYb9de6882FuePUBysr4HwfdTWzHJk0KJDmWLRFam7J3Ybrr5Ei6WIkUhDKMlypIYuNXoyhREoQqSIYxAs3m5haO71CWpreuKlOEKBFlgbZswxQ6Plq7RP0BVBVO0GBrbQM/MMsnPfLADPtdbMdINZWSFFlBkeZURU6WJmjHIc0LPM+mFBVVZSS1rh+MmDTQ2oRfoNRobVti245hBUVFJSryuEs52EC5AVJaRkJPaRYu2iyxlKVGslZBGpvkTCE1ZW4kb5ZlI0a1MEpUZGlEkcco7ZHnOW7oUFVyJAcXUGnWV9cIajZaeWysbSBkxcMPP0E9dPE9zdLyBmHdocgTpKgoiwzbcSnylCxJqNXrbK4NCQKP97zzIh5+NGJx10UM4m2C0KIqSyZnJlhe3eJ//6lf4MknN9izZ5qyLNl/YJ7F3ZOUOdi2QjsWUgnqzWn+8/f/AG948xt421vfwMd/7Q5+7D/+EO997y1cecV1fOFzd3DVNbuZmV2gJGdraZvO9hb9fpcf/+Ef43u+/314js+jDzzGnl37WF5d5oab38P3fNd/YHn1OC+/9mbe8MbXIS2YnAspizppvIkbuCA1SZZz/+Ev0Z6eZjCI0Uox2N4kcDUigzTdQks4fuwM8wu7KGTM1PQiJT7bnQ5pfBanHqL2HQAAIABJREFU2YLMpkgjfuD7vo+3vO0dzMxPMznVwvVcur0VokHXdMIODWgadgdoafP+930bN776Jt7/vv/I1ddcziWXX0JrrM1wY5ksivHDgFKVbA+GOJaHyGJEtY2SdSzHJc0SJAWNMckw6TExOcXqyiZowbvf/R7CwEExoLc1oNkMOfHMEeoBzO3bw6nTT/HB3/jv3HjFjYw16tSaHpOtOb70pS+ya88e8qowSxQEynKIk8ikhva3mJmawnZ8BsMBrVYTAEtrLMtFK4co7iNlwcUHL0NrTV4kaMsmz2PyPCaJBzhuSFqWCMvC1hpbw+r6Fp5T4zOf/CRjkw3SuGRl5Ry1WoP77v07du7cBxJ6nS6dXp84TfACH0VFmWfEaYFjW4T1BlJpVJYzHGwAJcq2ePjBB5mZnsK1HeJBApaNVII8S3GVRRKvUww6DDIYm9+HawWsra7QqNUZdHtMT83QT9c4efQok+Mhrq1GadTm/Wvk3TZKKyylsEbp2xWCSggqZRRcaZ5ha4s8SxBU7NwxgygzsjiiqiQb3QHtmR3UnIDZhd2sLJ0jTxICJ+Ts6ceZn23iK4sqS4hL8MMWJaBKSXnBg1ZdYPGeHTwvDL1IMUrAFM9JyxTiAiB7oXXu8bNH2LN38YXD8wuH4Of9XlTPCVYRXLCXXGDXhKCqSjPHfA0m7qsd53vnzi/CDaCsXtLXi3nqDNh6Qc/dV3FYvWgAizJheV+JbXu2M++fh0z6t567/w8eVVFQFc9GvgpRMTY+juf7RlKnbeMHUxJZFaAsLNuh0+uRJT0obNI0piRCWS6D4YBOrzPqVcvwfI8sK5idnWVpaYUiz0zSXFZwxaV7ef1NV7Fn9xxjYy3WVtahkORZjpTmRbAwN8Wttz7A33zifmxR4/SJDSbrDSZqdWRWcuqpEziOzdbmNr7vMj7WwvN9hBB86c4HQcA99zzDmTNnOXiwzcRYG21rjp08S6M1gW3X+Nztd7NzcY48L9nc7PPrv/1J0iRHCI1WNgJlNoVRhlI27/p311FWMXv27uIVrzzEqdNLIyYE/upjX+CyS/eZ2P8sHyU6Ks7z6n/yI2/iHe/8AHlemIuNFLzrm74B8R/+M09trHHeq5MVMUkamTdoUdFohhRFyR0PHEWgGcY5ZSWolBrFj5fkaYnn1hgfbxBHEUJKgjCgVgtYXtmEyjA1VVkY6azls7K0RVVKLMtDYCOR/OEnPj8q3FZEUUq300drzc4dM2xtdc0wojXxIKYqBYMo5dzZNcoqRcicze01tCuIoyFZFCEK6G/00dqmKgVFVpIlJdIyoMwkmVocffIZxscb+IGLVJKpyXE2NzqMNQL+x/u/DktrhKhGBc02ZVmSRBEbGxtYlkW3M2RtbRPP8ynykuXVDXq9bSCjLE1KaR7H+K7mda+9wgzDoiCKBjzw6FO0WnUc1zU9aFlCGfVRtkM/SvB8H8qcsbEG65vbUCkGvRQtPQb9PlJJVlfW6PX67No1R5HnLMxPkaYpfj2g0azT3eqQxRlbm12yZNSvpS2uvvIAS8trFEXBdqeH54VUlUKiybOKqiiIoxglKm64dje2Y5PlJXqUKHv81DJFUVBRUJYltgtJAu3xWfI8o7u9QVlWrG8YBtNxbXNhLw3YFpVECoc//ou7Ofr4Mp4zDlVBFA/JyxwhCvK8oizMh4TjWghZkaUplnaQwkLKHKUEN1x3JZbl4ft6dK7Pw4+epNMd8MzpFXzP4vWvvYw33nwNY62Qyw5dyuc/ewdKhlSVKfT93f/7j0mymI/+6adoNVu87NqrOProMxy8ZD9/+Lt/juu6NJpN6o0GSirKsiAvMhwn5PCjQ0CRxCmDfg/bcRBCkGUxWVaCsCgLQYWkqlKKPMUIhxRFYaSF0SCiyMFxNFsbawhVkecJRV4ZH6koqTdCI1VXAqoS2/FAahwvJEtz04spNVkajxJZJWk8xPU8wFRiZFlGPIxwPI8iz7Edl2iQUZTmgzlOBjiea4BnkZNnGUUmUcok91ZFDlQIaT7EN9c3zYf1qHJEaYUQiu2NzohpVXR72ah025R2p0lCnmUXWPWyKJHKgUojlY22bNI4wvO90fXKbLWLIjXshNLYo4RC2zaS8LKQo+Gk5ItfuB2qkqrM0ZZiYmqcIGzQnpggCBtEUc6Z01tkcQmVpDU2RlALqKoSpW2UZbG+uk6zFdDtdnjm2Fl++oMf5qMf/Wt+6id/il/60K+MZLIWU1OT/OpHfpEf/KEPsG/fXmampzl06WVsrG9w880381u/9dsGVGtNSYff+b3/wXZnE9txuf0Lt5OnFbZjUTJgsj3L3Mwe/uB3/5qlkwnf9Z++E8cRpFGH3/m9j6BtxcbGEv24Q1VlTM9M8eFf/nkqVSBUQRhq5ubHCUJNFHVRuuLs6VUO3/co8bBiZWmLa666nu2tAY5tEUddas0aWgc0mgs8+cQadq3J7gMX87FP3UohbY4/fZQ8SXjskWNkQwcqwdkz5/D9gP/23z6I45YENY8CWF07w+TkLCiN1kaSH8cDvnD7XfSTjL/8xKf47d/7I86ePWGUFlXJ9uYqK1vbeI0m0vVxG012L0zR73VISgnOBINom7IqaDbafOgXP4KSPrJySaKKmekd/On/+lNmZydRSpCVFWMTUywvbTA3uwi45JnN3r0XszfYQV5ktKdnmGzPkhcpN7z2hpEX1PQDSmk8cP1uD9uxufZlr6AafV54nsfW1hbLK0uUZUGcDDlx8iRFXjE+Noltu3z6Mx/HtlzICygFju3jBU0+8Zd/RJkk6KqgSAcMBgkTY20++9lPcNPrX8fY2DiT7Ul27lyk2Wiwe8/lJCkUheL0mWXu/PLdjDenKHMDItIkw3FsKgSdTpeqrHh6+QzrnYxKhLhOjSsuv2pUL2MSxZdPHENpjVdzGUQbDLbOsZXmBK0dbG9ELK2tMjE9QywKGjOTfPJTH+O2z3yZiw5eimNZVJjaESlNxYocWV/KokBIiLOULM8vpBeXhUk/NswLQIVtOSZBtEixXJckS1BWg/H2HPXxJtvbq4SNGmmVkZIyP9kygWqtNtMHLqOztsbK2ZNEgy0KK/37ZFdVXvg6b/0RnFdnfgVA8Ryg9Ny6gI9/7FP/8MFWPt/2VBblP6i/7sWCVv4lDqlfOvP21Y5i9FqQQr6kwvJ/qeP/l8zdV9PrPvd4LhN3gY0rX7ou9oLX7jnePjHyvQhGPSIv6A65wl1mrO6fJ4Qp8oIiK8gL47NwbJuRic4MNVpS5Bmu16QoYobREMcJsR2NEKbEVwgoygKtXbSlcBwbqSyyJMO2LILA49Spc0xNtTl58iyW0jTqNaRWRvJTFqyurLK4OEMUxxRlhO979JOYw488xv6LdtMYa1yIRPddjyiKOLe0QlgL2bd3J8NhxPT4FE+dOMErr72E7c0Bg2HMeLvB577wEGVeUWtoJiaaWNrCcQIuObiIVhLbMo+3Ks32w7FtQJAVXfIix7IciiJldnYW27G59bN3cf0rLsNzLaI45i8+/kUO7DepbFVpQkzKsuTd1++nXDrCt/3or/GN73iLSSgUgrFXXYe4/x7KAhOkYlmG6SqlSScLA46fPMeenbPU6iFJkmJp4wvM8hTH9ckT0zmotUUcxTiOw2AYc9ejT7J3YYaTp5aNr6HIqQrjwwnDACEkjz36DJaluOqSPUhlkiqHvZharUan10MpQbNZZ33ddMP5toWyLGzPIwg91s51qCpoNmpQaSwtTGdXXvHZLz9IM3C5+/BR6r6PHxgGVyoTC/zxL97HtZfvRVuKrU6Xo0+fpN1q4LoOg5fPMDnW4ImjxxkbC6nV63Q7XZrNOkprwtDj9//2HhZbkiBwSZMMbSnGJxoUeYbl2lCB1Ip4EPH08XP0ej0a9RraliAEk+MNXM/lzLlV5uZmKYrIlNqfWWdhfpoiyzh56hz1VmOU/mreEyvLGzSaNQQVrmfjeUYGd+8DT6DkSK45krCtrGww1qwziGPqjYBOp0+tFjIcDinykmazhm1rTp5epR7WkUKxsrJOox6gTOcDvmezstrFdWwa9RrNRp3JtqnjsG3TmVaUKWWpMB65jDiJCYKQRrNGJUoG/aEBPSM/VlXB2XPnuO6VFzE2HiKE8YdVmNdRVcHtdx1lohHgeS5pnmBZFkVeopRFWVbk2RCpFMOBKfiW2oDBKMqYmpxgx/wkB/bN02j4xtsma/iBy75XvY1Wc5K7736M9kTO7OwMi4vT2K5Pa6yG47r8xZ/+Dbd805soq4qrrr4MISWDQR+lNa7r0O/3sR0bKsn7vvlGqnIby3FwPMMix3GM7bpIa+S/zEvTX1dk2LY1qnWQKKHQWpGlCYPeEMd3cBwT1BBFQ7TlQZVTFplhFaQiS2I629v4gfGTDvoDU1mhjbTRsjVxNESICtvRRMP0gky2KEssyzIBKpUgjmK8oI5la6Q2G3BlOSglDTOnNVI4pGmKpRRlmQOCaDBAKUlYCyhLIwntdboGqJQlruehlGHq/KA2MttLNtY3CGshSptrtVKaoswRCLLMgEnPd0FIkjjBHi0FRGU6UZMkQWubXrc/qm4xj+eOLz3Mwo4ZtCXYu28Bz/ewbEmaGDVAPIygUtz6mbtpt5t0tgZAydLSEuMTYyRRwrA/oLPV5+zZNdrtJtqSeJ5PPEx569fvZ2r2et75zndy/fXX87Mf/CCvefUNvOvd7+S93/JutrZXOfrk0+RZTnOsgetaeE7AlVdfSaPZIMlSlpZPENQCLG1hWzaHDl7Grt07qCg5ffYkjx95mKtevpuvf/3r0Zbkm//9NzHeDGnVA7TvEA0jijzn0kOX8PjjjzMzs8DirnnCRp2KmLiX4/mCJO4TJz2qzMHWDmGtRrM5wW/+5u/w+7/7B9zyjndy6vQpms0mQgrSBL7zAz/Ikcee4OvfeiNV5fCq617NVneLqbEAWwfYymdjeY3W7DStep2jR44wOTMOxZAClwqbVkPz4OHHabfb2I6F61lsbqxx6eUv49HHHuPUqTO85W1v4Vu++RayZEij5vFrv/ILvPamN2PZLmmWYzkuq6dPsr3dwfYa9PvgOCmbm1t0tnrcdOPNaKlx7JA/+qM/Y+/+/ciyYHHXDra21qk1TNXPU08dZ3Ozw8zMDtLMhCz9+p/8ITdf81rSJCGKU7StjUcbSZ6Zzsw4ThgOh/zVJz/GJRddRL/fxXVdirLC9TyEEIRhjQojhXZsD9u2ue/w3ezatY/5hUVs2yGKBiMZsM3S0ho753bg+x55kZJEfbRdI00SLj54sQE6tgWVICtS8iIz0nbbQdmSZrPFrsWdWI4mz2PKIgYKtOVy4tRJpiZn2NxYp8pKptszZMk2w8EKygo5/MB9jI1N4Ac+fnMcSxcMV4+jozWiWNKev4hcaGoNj6w7ZG1lCc+x6XU6tNseMiuYn2/QatWJ4xhtKeKh6ZIVwNLZkzSaLSOVd8wslxdmcaq1Js+zEYtjVF15npOlsWH2hOSRR56gGxdcfOgaKpFjKZfl5S2qqmLQ3SKwU+pBQH9tme2VZ/ACD0tUrK+eY2xigQsSTQTIF86qFRdyNJ87Bz+P3fvKgO8Tt3+CW971drNYOv9rXkQ6+ZXYwtH9Py/8xIQPfEWZ5T8GWP1DGD8xUh4916P3vNu8gKV7qY/p751X/vMFq1RlObIJfWWQ+K9elvlS9Lov9u//0BLFF3rtyrJCnadpi/J5b4Jf+IUP85YrJi/cEqFMglYUowSgNLbrmRCW0pSWGwmez3ZnlTCsY1sBlTADXZoVxlytFMqSdDsxWZaSFzlCKlPu63lUlJx8Zo0HHn6K9nidMHA5d/Yc4+02iIoTx0+yb/dOsCzGGg0GwyF33PcU+3bNcOjgXra3O9TCGkVmAj6KsuCJJ46zd/+eUQS6xnZcECmHLtlHmmaEocuDDzzDgf0L7JibRgqY3zGNZVtGnqQ0jmP69KSsqMQoaj1LR31sgqJI8JwQhI20M6pCkCV9di7MmnJlUbK0vM6rX3W1KXoWgFQjj41AjOj7t71sB+/9L7/Eu255O0kaYVmK9R17Of6l27jz9sfYvzhPnpd0tgfc8dARxsOAA/sW0K6gyiosrUjjmDxPcb0aZZnR7/cY9nIee/oYc1Ntsiyn0+lzYNcOE8e/MIuQpgesqnKCmoeyBFkaMzU1gRdY2I5N1E+MFA2FH3h4ro3UwvSEVfDM6SWUKAhqIUIbGWaVS2695zC75tsj4FsilAIJ+/bO4Xkek2MNGq2a6TMSGjAJXgd2zUJVUlYlfs1nrF6n3x3w3Q89yftecxFaaybHx3A8TbfTJwwDtGWRRqZQfXVzQCiHTE62KPLKSFN9i+EwMX1CpaDbGeC6DrMzbfKypNZomPJp7QCap58+y3gr4KljSzTHApS2sFTF+uoWlraZGG8Rp7kJ21EliALXNuXSJ0+fo1Y3SapKaRbm2niug9aKlaV1A8aaNRzfJfBdlDLbtLIEZSlWV7axLInve4yPNyiLkjxLGR+v88iRk0xNTZAXJUEYMjHR5vBDTzM326bT6RGGPlIJkjQmz8ygUZRDkrRLNMiYaE2Q5ZmJRxYjhiXPMd2FJWUJDz58inrN5f6HH2dhfoKHHnqGyek2UlkIJHt2T7G92ePRI6fYt383WZJj26ZaQqgKCcRxSdioU+QxRSE5/OBxZqbG6XS3cR2X+x84yvz8OIgCpSb5wpfv53Qiuf7667jhpq/n3js/ydhYSFHCn/2vz3HNyy9l6ewy07Nt7vjyYdI0YWZ2CgQEQYC2TXXB+RCTaBBjOxbf+E0f4RveuBNtuaSxGVJtxyOOI/LMpF1SFcSxkZYaX5uiyHOyNEIp44ezRsl4ojIGfG17xFGPqkixHY88ybFcl1o9NAnB8QC/FpImA/IsocgTtOUhlSaKYmzLxfFM+Ipl2yilyfMCiSTLMobDCC/wSJOIsqywtIdQkjxLKIuMSkiUNvUUZVVSZDmWY1OWJncuS1NTW1NV2LZGKkiS/gWgppREWGq0RZf4gfGQam2NFhAFW+ubBKFRW9TqAd3uBq4b0N3u4Ps+CEGWJAiJ8RiioDIF6UoJlHKYnZtkbfmcAZdFief7pOnA+BolVFlKlmVcduVBLEcz3a4z6G+zY3GBfi9Gac3Ro08xN7eDVqvB+to6cZRy372PsXvPArV6wF339mmPjyOk5MorrsDxBd/6re+jKApazRa7F/diWTabm+uEocdP/9TP0uv2OXTppVQIThxfZnJyFkvbKC1xnBxlaYRQtFrjTI7t5J57v8zOnbt58qknmJie56brX8273/6NqMAjtMdJ0pTl5WW2Nvrcf88RLr50H/2kYHtjHU/WyPIhTz7xJK1Wi9PHtvjwr32Igwf30ZqYYP++/bz9G96M0pqP/Npvcs3VX4cTWFja4sQzZ3jnLW+h31umETR5+9vfwXd8+7dw751f5tTpZaQQODrHH5/i3jvvYs+uHURJH08Kvuf7f4aJqd3MT9XpD3MmJ9vYriKJDYAOXBeKgs//3a1cdcVltMZ9jj99nMWFafbunubzn3uYMi+YbE+ipaQ1MUFYC7j/rvv58ufu4pprrqAqK2r1gCg2C7I7776Ty6+4DNd3aHghUdwlqAUgHFy/YnxijHqjgWU7FEVGEveZGm/iJA2KKsP3aihbkOUFVW4qM5SUOJZNv9fn617xKooyoxbWsbRDt9dDSUkcR6bzsRJUVY5tmUTMvfsPkqQxUBl7gKXpdLdHTWhw7OQxJmcWDGBTGtt1SeKILInw6zWiKCJPi1GnXkqWREihjHd4u0fg+6RZjG0ZhvHcubPcc+9dXH75y4ES37eRUuDXfDa3t3ng8N2srvUoipL9B/ZTiZzh1jmy9RNQJCi/gdOcI44yet0eZQVeUKPeqJMkEbd++hPsnK4z1a5hWYoTp87guwGVLOlsDVhZPkmtUWd8fIq8yFFKE6UpQRBSFDlFYUCd1kZNIRGUhWH+iizDc+scf+YY9ak9HLrqFRRljqMslldX8VyfdLiNyrYZH2uy1emwtdVhfHKOY08+RhH1qIqM1uQ8UlnnJ8gXBG68QGgpeM73zwIScUGnyAWWDyF48MSDvPVtb3zB/FuNqmmqZ/11o/Nf7BDPYa+q5wDN55/zTwdCXxvcjSJmLpz30nHAP+i8f8bUTKnM3Pdij+VfPbh74fHC1MwXe6G9ENi9lEb456ZkGkRvAJ6sFDnQT4bowMYSNr/0y7/Ku161b3SuKWNVEtbX1qk16lTC3C6LBkhtPBdVJQwAqiQV0gRslDlCaWwtkFVBJRWqtLEdEzVuWw7a8omjAUkaYbseU2NjLC+vc/T4WQ5dup/21ARlCY88/ASuY5tgEakJPI8TJ87wxte9grIs+dxtd3H5JfsN3W4phDbSqnZ7iixN6Q9MtHdRZOYClcZEkfmAm5qc4u67j2A7Nn/7uYd4+dW7KfJiVIhcEkc9tDLSUSXUCPQpilF6pBYm6SuJOuRJZnw2ro/SRv/+iU/dw6FL57AdhRAWFQV5nqG0RVVVZGlseqWk4pbrDvATP/dh3vANt6CkRRAETN/wGpqPPUC9EaIdTVAPmQg9bEfhuBbRMEIqgdSSOE4BM8hFgwTX8dBKGnbMN2EaWko8z8ZzXE6dOUejHhpZV6VGYSsVVBbaBkrJsBebAmVZYbmmNFs5CipFnglsXzM7O4XjGX/l5uo6eZrSatfZNTuJ53vmRWiPvF1UWLKiHIHKCxccAYKSPElRlaSyFJbjkKcFjzx5jD/c2OI9V7Zpt02EufZcqlJQb9axXYfl5TW80MPSmnsfeZJLdxlW0bYUQejz5LFz1MManucZ75KqsG0zFDRbNQQl8aAgjod0ulvMzU/i+T5TUyYW27JNTUJrrG7kcUiWl1aJoiFB4Bg7mpL0Bwntdotep4eNoBuZrarWxsRu6wrHNYPb5voWEkkU97As8z4TlabVCkjTBC0lFcaTKpWkKAVzU21y4K7DTzBRr+G6Po4lCWoOjqcRVKxvbBMGAcrSDIc9PNcEVjiuIC9jw+rmGWUpyNIC27YYRrEBLZZmqu2xstJhdW3A4vwscwvTVLmDZRWmtLpMcJwaG+sRU7OBkf6VGUWZo4RhdJSSVGVONIxQWrG4c4per4vnOGxtDBkMYtIkodVsYHltdu+a59t+9Jf5pve+G6E91lYfYmZ6gomJSYSsuOP2+3A9j3NnTCjSVqfH3Xfew0UHdhL1e9iuSzRM8HyPvEiwbZ+yFPQ7m1z7ijmS2ICfaBTzbzkmNU4CSHBcTWerix+GFFlCZ7tDvd4adUQlbKxuUgtNKIFl2whKLNsy4LlQ2K5PlkX0NrdxHA9lu1BJytKcYzkuZZET97epNer0egM8zyFLYqoiobu1TlCvIVVJVZUmfTQ3pfZKyZHfbwgCojjBdlyqoiIeRriOSxaX5AW4nk+30wMhcWzNoGcYjiQyt+lsDWi2JlBS0utuoy3DvhV5geN45v0vKqS2cf0aUpZklWFllTTeJy+wSOIBQmC8PRKq0qYSoCwjTcizlO7mKn7o4bgWjuuQJjFSm+ekEgbE2q7H2lqHspQcvv8IcwsTSAsc1+a2LzzGgYsOMj3bIE8j6q2QjY01GjWfg4cMGJS24Id//Pf53771HayuLNEeb6NsF5l3CcMa3VjiCpvXvOZGvv273k8hYurBHNPTU+RlitY5UzNt+oM+eZEjFaytnOW+ux9neeU0f/R7f8xNr38t7YkZxsbGjZcmy3nFtTeyOVhhbnqBTAiGcZex5gS//qv/D//pe95BXvlYOufUyXP86Z//Fa3xCS6/6jKK3OFnf/bn+e0/+F0+85k72Lv3Yn76Z34aO9tifq7F8soqjdYUX/zMpxmfn+a1N70SL9DUJiYp84T3/ru3kVR9dKzYsctjfM7nN/7gs/zGL36IQxfv5aJLLmJlucf4RMihiy9mrFnDb4xh+xG2niHJlqmAJHawXZsgCNi1e5F6o8bKUg+hPSw/5PiZJUTeZdeeXfj1kIwSSoVMS4K6w8tfezVFnvB93/uTtCemmN8xhZaCe+95mMBvMjM3C6KP2xinUBpLJqw+cRs1d4YTZw/T3ezQHpvhyaeO8bJXXMvhW59mot0iy1K0UJR5iu1Yo2odxRNPHWVuboFubwvfs8kyQVQNUZWmSEs81zeQQVgobeT0shKkqelNTaM+bhiaKh4strc7KK1YO3OWRsMDXVIJi2Q4JKw30bZDf3sbt9aEIjdzkFsbVbyUUEo+/4XPsXPPPLWwgRQWp8+e5cgTj/Lq695AJVLuvufLxEPB3Nw8WgvOnTvHwYuuYW5ukp2LixRSIbbPIfMOUlakgO2NU7k1HM/HcTxsaVP0Mzr9Fe667TauueoQY806Txx5iPbkPEla0qh7SCpcx2J8fAwlJFVVAJVZxmubNEkwAVglnnIo8oKSjDyzqawKLU29Q1rlLJ3apD2/l1pYI04SOv0u03MLKBRJ7yTjNUUyjOmlLqo+yamz5zj0stfQ6WyjlcXppw6zY9dlRtotSoSqABP0dAGo/b0B2EyqzzJ652FINVqIm5++/Yffe37wfd5sLKR4PrA7/0eAqhj9jeeAvucmYj53Tv5KksV/EsirRn650dff/1MvnOf/8Xf11Q6TtPmPu61JWh0lc7wEb96/gbsXHF9ra/BPeYF95QJzUFJSJilpt0PbC0krwZ//2Ue55boD592dVCMw2GjWGPYjw5DkOZbtIrRGSYWWik5nC8s2krM0zbAse7QhfvYFUQlBr9/HdT2UcsiKjDAwG38pnw3XWJyfYjgYMuwP+cyt9zCMY172skMkaYrrenz2s3fQaoREUUwUpxw8sIuyNAXDZWmMyZubW/iBh7I0jq2JBj1C3yUrKpSlyPICIWwKmbBn3yyOK7j4olm0Vni+RxwnCKWwtIVl2WgtyIsMyzLiUstDAAAgAElEQVSm26ooKIsSbTtUgLY0lu0YVrOAY8dP0p6YZKJVRwiJ47gGCIuMslAkUUxFgR9YUArSzAQj3Hz1Xn7sg7/CpVddi+u6xHHET3zsVt4wXTd+LlHhOi5pmo8S7TTa0iwvrZtoaMsy/VSFCf6QyqQsua7NqdPLxHGCHxgWQkqJbdsmCjnNKIqMMi84c3qZ9tQYZV7x2dvvpxm6RubiS4qiorMekQwjHjlyjP6ww1jTpJVmSUajWTddXUohtWB5ec1s/9MMS5uutDzPSZIU2zYyVzHaHuZZwae+cB9ZnFClBYPOAFsqjgyGvPZVC1x++V7KsmTYj6mHBuSZri1JLQywLAstBduDhDtvv5eL9s7SGmtQVRUTEw0cxyJNE1zXoSzMtm91bZvQ96kqSVWCH7i4jmF+XM9FCFhf36JRD0c9RSXb2z2CwKder+G5DtEwwQ9CNje7jDWbVJR4rk2vN6A/iLGUxhv1g8VRjGM7CAGO67CxuW26iKSpERn0E6I44cTp5Qusoue65EXJ6dPL1EIXIWFuehwqQSVyY6BXepRUW7G12cOyNZZtY3416mAqYHOjSxCGUEn++tN30wj90f+ZxbmldUI/wPdcHnzkBBPNBlNT4zz0yBFmZ0KGwy1cu0YJCKGo12yE6GErC6qCsjJejiwrcV2Pe+97nL17dqKkRknNpz/3ILsWpvm7Lz3GoYMLeJ6D42qyyuWZZ07znT/+S5w4cY6sKDj6yG1MTo6RpRmf/ts7ectbb2D37h3cf88DXH6FKcUeG6/j+x71Rg0hpGGPpBwBy5IkSbnyyv2IqjvyjUqKohgxdtaFKhMhBYNej7BeR0pNWeS4fkWaJFSlhRQhrqdJR+l2VBWD/gDbscnzzPgUpZlGanWzYU+SoVEMKAWypKpyhCwJ63WSJCUIG5RlRW+ri+v5+GHNXCMrUyVhrM8FQpiS8rIEadmmsy7LTDeeLSnyGCkKyqJHUVqjknoP13UAI7fXWjHo99C2TVirobQiiWOyJEVbRqVQ5KXxaFqSssw4/cxpGs06RS5Mb1hZUCYJQmmkhDRNcd2A9dVVXM9BadfUkkjDepZ5QViv09ns4gUhUmqUsqiK3MioSkk87NPZGlKWAqXgksv2srXRZWJygrLM2bNnB4NBj6AWcseXDrNz1wLN8TFcz+Poo0/T7QwI6x4H99TZsXgttbrPYNDh2mtfyZve8Ea2tmLe/e738x3f+R5uuOE1eEGIY/s0Gw7TM22ieEhYMym5AhNE47ke42M19uy+lKmZMQ7f9yDXv/p6Tp8+w7Fjx9i9axf333eYtdUNbrjpWooyIxqmZFkXpSwuv/Qq0qJPnJhBenHnIutrmzzxxDPsWJin3gy46aYbyNIOjz38MN/3vd/N7//ebzA5v5+f/JmfNQP1oM/Biw+yc9dOlBL0ul36HYfveP/3cMs730u9MUW9NYlU0zxwzymmmpN88ze/GXROo+ET1kN63ZSxsTb1Zh1tleTlEN8NGUY9fK9F4JsqHy0twqDOU08/w5133MuDDx3hmquvZmyshWe7LCzuZn29A9j0ex0Cz0c7Dkcff5ys0Lzmuhu59toriXubxEnCD/zgD/FD//W/MowjQkeitGTY7XDmxFMUpaY+sUh7doHOVspb33QLne6AG2++if/jf36Q3c1FpFK4jlE5dHs9XNcwxJNTM8RRhOM5bG9tEfg1KmFKoj9z6yfxfJ9hEhGGPqUo6PW2UQr6gx4PPnIfe3ctkgsY9vs4roPv+6YjcXqSeqNFnlcURUbgBReIpSJL2dzcZvncaaanpihFgRajNNo8Zd++/eR5hec5rK0vMzExxa7FfUgpuPfue9je6DEc9FlbW8MLAnzfpxbWsV3XBM5VEWlnGekELK8OyKqQWnPBpB6bSFnieMjG5gpPP/kUs3MhzaZN4Hi0WuNoq8TxLSQSMPVPWZrgeAElEs9vgNBUlZF/m2oX6OuUv/vbB5jeMccgSlk+u0EYaJaXOjx1/ARrWwV7LzqI6/gcOfIIuxf3/7/svXecnXd95/v+laeffqbPaCSNRt2S5S5csMGUkCwYsI1tMC2BcBdSNgRyN3uTe3dJIdkkC7lpBEjgJiwJPRgChGBcsI17lWRJVq8zmnr6OU/dP35Hsizb4GST+xc/veb10pw55zllnvk93+/30zh+5ChJuIyVtrCFRSNOmJmvs3rNRoaHV+AFAcVChYGhMfbve4ZDh59k7+7HmFq5AS37rA5TyL5wg3fuDeKFvhUMr68Y6uJZ//pd/fNr5NPfn1YcvYQa+t+8uePcOv7H3P1fmmP3/9M6HYFlgix+9Gv8SXP3Y9bZ8PRpF56z149D7M7O7Hix46dxzJ3f/Sf+64d+jR0PPsLrrvtpdvzg22xfP27s70VqdDgI2q0WjrbQWpKkTSwrB8KIU4UAx7HodFsEuRyWbZMlCVESGa2YUtRqNdIsMTRPxzPmImREvW5/E+sSFHKUSgVcx6FULBCHMa5WnJqvMz09SQY8/OAO6o0Gy8t1VkyMcuDwCR7fsZec7+F5AXEU0Wp3OHT0BGMjgzz06A6GhyoojOlDnAkjPkbSrHfxAp8kzrC1Y+gfntGxaNvG9VwsZVwqzXQIet0uljZNglISpOpzjyVCGec8z3HQSkMG3/rnB7C1xfDIgNHPJSFKWqaxchTtdgPLMrbjKRlSCV65bYqv/sM/ct72q1hcXOLmW9/O2/7oz3jDRBXHtlDa2LEbDZSgXqsR+CbLL4pCPN/Dtg23vlFvUq83sbTm8T0HiaKEFRMj9DpdkiQlV8gRRTHdbsfkE/ZChkcqxKmh1VoiY2x8kJMnFilVTZG2NN9Cyoyx0Sqep407Y2QoV3GcIJXuvz6F57s0Gg3y+RxZmtKoGzqkbdvESULYMy58SZzQa0e0mx0u2LqO4mCRXCGgFffYU4jZvGaM2blZup2IgeoA3/7ne9m4YTW9rnGXS9KUmRMzVIoFHnhyD67ssH5qhHqjSZqmBnFxrD4KoqktN8lSyOdyfdt62Tc2SbBszeJCjSSJyQU+jm3E13FsQtv9wCUMu5ycWaRWazIyNEinHZLEGUoplJY06k0WF+uMjw3j+x5LS8tm+qsN1fX4iVnyBR/Pc/G8ANfxUEpxYmaR8bFBRkerRGFIpx0aSqhWlCtF46oW9/A9Byk1Wic4roNUmhMn5gl8nzRNefTJ/UytGgfRz2EUkmajS6UyQEZKlqZEYcQDTxxk8/oJhBB4roNtWXzvzkcZGahw4Mgc69eOc/xonbt+uItNaye54/Z9TKysIgQsLi6hrQiZZrSabTwv6JsGWSRJxqlTSxSLORMY3+3xw4cPsXXjKh7feYThgRyWlqRpSqE6jpTgrbqM40dPsmp6kicfvYtuu8eWrRvZsGkVlVKZw4cPs37Dauq1GqPjoywu1HnkoSeZXDlKnCRnchSjKDJa3STF9Xx2PLGTcklh2WZQI/tmPN1OGzfw0VJjOxZKPkslsnUZ1wvYv28fgyNlE2kgJc1GEwS4rosQxgxFSEGSJihlEccptqNZXjxFrlCg22nS63b6WZ8RcZJBZvYMkYEXBICg142I49j8XUQJIImiDo7robVFrx+foZUi7PUgM26oSnlY/WzPJDFInxQm7kDLzDRagLJslLLJ0pSlhXlsx8b1DL3etk2cSW15mcbyMkHOpVwtIRB0u0u4TkISNYl6bbSbezbbU2qCwCeOIuIIo08iPXPNklLhBzlzPUoM46HVqCOFYubEKSoDFb725R+w9fwpygNFWo06cQyFYoEkiUnTiIwY1wvwHBvX9wlDk3c2NDxMsVRAIBmfKBDGUyRpTEaPn333+xkZn8Rz89z4xhuYndvLjW+5hTdc92YKhRKul3Hs2FGGR4axtMXyfAvP05RKAZ/4008xNFTmE3/xWbZt28w111wLwMBAlZWTk8zOznL++Zu5+ea38ZqfupLBgVEef+QxcnlJIZ+jUBxifmmOYydP8s3bvs369RtYs3Y1WzZdwF/+5Se5/Y7vMTRcYGJ0hHKpwq1vvZknn3iUwsAq/tt//S1+/dc+RBw32brtMuZmj9PpdhkaGqcQeLzmda/gwJHdjI5V2Xf0aY4fOcXv/c7v84H/eCOV6iq+edvtrF93Ie997wfY/rLLjVbbEWglSTKB5WRYukAcZqTEJEnM8tIyvu9z2zdu45abbyaOjePk0aPHWLduHZlI2P30PiyZw7Yke/Y9w9jYKEPVQfKlYt/pV7Br5y6KpQJDQ2P8w9e/wQUXbqPZWCZstygXchSKRSqDq3nm4EE8f5hqpcRrXv0qMgRzC/OsnFzFRG5l31k1Nqiu49Ht9fpIuTGF6HU7VEpVTi3M0W6GKCnYvGUr1YEKxUIRMkkcJTiW20ffKzz80COUCiU8v4DrGu1tr9c1zJm41z83NY5tdKlaW0RhiGNbNOsNo9O1HaIoREjdjwZKjI4300RxSLGUp15rYGkLKRX5fIWNGzcztWaKwYFhkiyhXC4itaDVauBZCbQWSZKYg8cWyJcnwbUIKgGPP/oYI0MjCGBuboY0STi8ez8XbFuP1ilCJJAkZElGGivanSau79DtdLEthziN0K5PmAEyo9c1muQkjtFCEfdAi5ChkTJEAjfoopTNvn1HaKQwOLGG9WvXc+zYMSzt0Ov2mJ4cp7mwj3zgMXdqnuHpC+iEgoHBIdqtDo8/8RCr16zn4OEjbNp8KUkEaRTR67UoV0qGqQTG5UGcRrDOziV4KVUxDK0vm88fI4s5+xCna2Kl+o7Hp2vfF2vuznHVfKlGI+c2ez/ayf7c2865b9bX/J059r/MQOW0X8bzXlMfhUySuK/D/Nc3jYL+55xmz6Fjnuvsf/o5f9Lc/Zj1v8v3fbGm7jn3iSLedsvNfPR3f5vDRw9zfM9jrC+EyDSitrSMpaRxfgNsy+bIoeOU8i7LS4dpLkf4vosUAoSiFydYEoTSdDodHMcgekIpGs02+ZxHrxtSyBcQQLddJwxDZJ8y6roO7Va3TzkyZiUpGfsPHUNKSbmQo9PssWv3EUaHckxOjLBrzzEuuWgjI8MDHDw8S6PRxfMklUqBUr5Iq9ljdKSCEgohNZblcds/3svU5DC9bhfH1uzdfZiRkUGarQZ+zjPUOdvp58VEZwq3MIoBEzYaRTG26xr78NSYRljaMmYVOQ+IjQ7IstiwdoKJFSN0Ox20drAdCyFBaWOkYC5cp5uHEKufP7d19SBf+PznufOR/Vx71ZXc8Oaf4V1/+lnevHqCjBTL0WSAUhLHtnEc69nX20vpNDtkcYxjafycQeqmJseYGB3m779xN1s3rOapvQeZm1tixcQoUkuSBKO/U5BECVoqgpyLVFCuFkhjidQKJxDk87kzBWIcgu1o46DY/51/+/aH2LRuCjBNQ9xHG4QQaNui1Wj2bauNq54QKf9832NcfN46pJXxFw/t5C8Oz3L1VRNMjZQpFQpUh4b4yjfuZ+t500ysGERkRsvZbbeRAkq5PIcPH+Vv7j3Eu1671tBJSfu6Pk1tucPs7BLFYoAgIY5jwigkCEwsgRIWiIwkjkiTlFzO6+e3Zf3wdRPEvry8TBhGlEt5fvDALnxHUyzmefSJfTTqLSqVPEHOo1opEWcpGeA4NkmWkaRgOzaFYo44iqg32jiOx779x7AdE/QdRSFCZGhb4zo54jjuW+UDmQVZRBS2QWZ9hFaTJAm+7/D0riMU8gFKKuIowg9yfbvp5AydQioz+BkcKLB5/Ti79poIkjRLkUowOT6AkoIt502SZRGTqyYYHazw1N4DuJ5m9eQo8/NLjI6OG4qqNkV8FKVAAlqRZikrJoZMHlEWI5Rk09oxTpxY4KKtU8zOL7Fq5QhKCZpti5MzCwxvuYoDB59hfOU4d999Bz/77jfxnX+8g83nr+drX/0n9uw+zFXXXM43vn43522d5mtfuZPVq8eYXD2G53n95sVc3DNAKgspMt73y5/jhjdMo22bqD8U6bYMlRMhiMOUhbk5/CAwzpJKIkRGGLYZGCzTWG6ytLBAoWgcVLMsI0uFoTmRUK/V+gYmMb0wwdIKx1Io7RndaBAgsBBkdNoGsa4tzuEFJrhb25o0TXBdv2/K0sC2XbQyjXKv18N2jKMl9PcMKcniOlpqklSxsLBEZbCKlMIg8GmM7gevJ2kKUqGlTafdwHEt4jjBtr3+PD1DSIUXeOQLBaLE5OkhLCxL0arXSVNJUBqi2zLUUNtyIdNkJPQ6bbR2yURGFLaxLNNIx3FMp9UEkfW/j/ACF6EsCsUiUktWrxohyDm0mw2yTFEdLJl6LTOvy5jTJHiuQ72+TKFcIIpCOq0uhw4cQ0mBn/N45JGQifFxjp84zKmTNYSn8H2JrTrkS0Xe93/8IqVyEVRC1JZIYdNoNvADn8cf3EGrtcBdd96OrXNsPG8tr37lT7Nj12OsWT1Nq91leXmZVrtNo94gTGd4y1tuxg9sbvvq7Xzyz/+Uyy7fYoZRzYygWKRaKvH1r3+LUrHImulJ5k7Nsm7dRoqFIpdccjFCegSFQZT2KBQrLBw9xjve+g6CvMfIiiGkCHjfe9/OLW+7lThVvOvmW3jjTW/C9iw8W0OqGBwoc8ml2/hvH/ldVk6OEAQ59ux5hv/8G7+Kk3epDhQMHS/U3HPvU6xZN0SznuH5FovLR+i024yMDbKwMMvLr76CjIjl5WXWrlvDN77xNS64+HyOnzjA2um1/Ow738enPvUJ3v+ffhmtFSLKaNUP4/g20rEoDY2jiRkZGSNOYMvW83DyFTzXNYNm7aGEoFhV2KLI8uw+IupInbFly4Xce89DfPoTf8W1L38lSkvCyGTm2o5DFEbEaYzjunhOAKnA9W127dpLMefjexZht02WJmjL6V/LYr7/vduYWDmF5disXrEC5ZgGrd1uo7XF0uIS5fIgUdIDkSBSQbfXJe2bsikJlqsZHh5FKJONadlGH23bNq12G8+zyDJF1MsoFIomTkUqHE+gLcFTO5+gUi1RKhX71/iIqL2ILVOidpPQrXL48DFWTa9lceEk1XyJkdFxThw/zq6dTzBz4gQH9+/k5VdfyMmjz1AqVfrYibEQb3e7KG3juDZpYrTTSmhmTs0RJ+BYiiyNkQhc1yUKe8gUSuU8ruWTyZA0MYNCYZfYtOVCJkenSLKEZrPOQHWAJI5ozu8l71p0oxCvugK3MMy9P7iLjRs2oFCMDo+SSsGxk0cYHZmgJ2zK5SpJ1OXRx+5n1er1xpm27475bHX70pu7B+79Iduu3XpGp0YKQp11pDNNxjn1749D7s7W+b2E9WL3e0nNnXh+I3i25u5fmosn1WlK6ou8HiHMdePfgu75Y+LYTGbxT5C7f7dl4NPnZ9qdvdI0I02hF7WoNRp87avf4aILX8kjO3dxwxWbiCJYOnWcJKwxd2KegaFBUktRqRZYWJxHxzHFap4o0Uhp3BtzrkMqNWmsEPRwtSDJHKK4g225ZEKgLQ+tII065lxLwLIli8vzWJakF2t8PyDs9ZCkOLahck6MDXBiZp7leouLz19FtxexZno1ExPDOK5Ho95i48Y1lEs5el0z9X5y5z72HzrK9NQESkqSJCWMYtatmeDpXUcYqA7RaLc5cPQoKyeHjduTY4JAhTR0Rk5vo9KgAL1eiOtYKK2IwxipDD0DII672FoQhz2StB+AKRXatmjUe4aWZPcQGKe7DJOrQqog6/WtnhVxkqFkQppEbJme4Kp1FdqHn+DWD/8PPv+5v+adf/JXvGqgYCiOgJDQqdXRlqLV7uJ6Ab1eiLIsHN8jjGPuuG8nhcAlVwiIk5ihUp5cwaKY9xkdGaDd7tBabCNFiuPatOsd2q3QvCYtsRzrWSobpgFYXqwhyEijjPpym3ZT4riggSRNmV41RCZ7SKH6hjTKFIu2i1SGQuu5Jqag0+3gSo8Dh2ZYt2YF735gB7e8dgU/++rNdNo9lpZrFAo+Tzy5C9eV5FyXYqFEJww5NTdLlqbs3XsY13UoD5b5wp2P88bLJnAcp0+HhFarydLCMitXDNNqdfG8AGVZhFGPmbk5iv3PxgithaEZJuC6ilPzswRBjnazhZZAluC6FrblMb1mBX7gEUc9piYHyAU5HM/j8ad2US3bSEv0dbISbVl8/84nSdOQsBeSD/J4QQGRxniOABKOHztFkHNw7IAssxAkHD8xS7lcMFlGYhnb0aYRtzy0rfuW2xGBb5MPCriuxcBACa0EQplmJk1TssSgqVlsinmkxLIl5UIZZIRWNlnq8JVv3MeF21ay/+BJHnr4BFpGHDhxnMsv3cDwQEAvDPnW7TvYumU1GcKgLAiUZYHUyMx8fkKkZMRkWP1g9hbzizUKZZsVK0aYPbnM/HyddtuhmAv4xNfu4Na3vYPFkw1+/SO/x/ve8wZWrp4gClMKBZdXvGo73U6LTZun6LZbvOyKC3A82+wtykIIyLIISIx1vgAhJddffzlStPput8ZNz9bmPJXKJgljiuUhUtpnEPH6cqtPx7bRliRfLBFHBjFL04wo6fTppg6eH9BstBCphes5NOoNlOWitCCOumSpyY6UCtIsw3Y9bMeHVNBud00wepSSCTMccRzHIHvEIAXKgqjXptNawPNKRJHEdUEom16YkiYJpUqBbrdJHEfYto/WHmmaGlRCSpKwS5QkZiglNUkUmQGCJWjUav14A0iypE/vFWZYJCwsJ4/jeaRpj1ZtmVyhTJamiKyHVjHtZhtta7I0w7aM2cRp/YwmMueEdgwLJE3NvipO6zhiLEujbRfbcdC2Ra8T8eB9Txr9kHZJog5RFDIzs0AuX6DdbJEvF8kXAvKlAigYHLuAxx5+iMAq8sAjT/Oyiy9i7uQJHNei0YZeJojDGm7W4r/85m9w+eWXEHba7N+3j0uv2oLj+mzeuJ3PfObL3HLzW/nEX3ySf/rOHRw5dIwLL53Gc32++uWv87GPfZxXXXMh5coq7rpzJzfd9AZuuf4assyjOjRBu9Oi4NkgUiaGp+l2UoaHqrz1bT/Hu979VlzXpbHc4fN/+/e06h1EZnHk4AwP3H0PygrJUDxw/y42b5ngrbe+x1Boe3Xe9PabyHmD/D//52/z2AP3cdHla9FikCgK+ZnrXs1Ca56tF25kYqKEzno8cO+DrFtzHnfe+QBOzmf9ukHyXpVGvYGUCQJFkK+glY22POIkI0mFiWCwBRdctA2hHAqFPPv2Ps2vfvAX+dn3/gKZFdKonWT51EmCYpVMCaw0T2fpOB//f/+Gq6++lrnZU3zxi1/lsu1byJAsLncp5AZRVgRhnjSbx/ddLF1BZDbHjh5h7fQkr3jVdhYPN+h1egS5PPue2UschRTzBbrdFo6jCKO4H8li4nEc30FJRa+X0ktCvnnbV1i7ZpooCjn//Euo1ZZZNbmSxfoCvm2Gt5aT6weJO6RZim1ZiMym3mpRyFXM8yQ9hLBp1OoobSGU5Gu3fZVVk5PYtgN9x+tGq0UUxobuHcd889tfZv2G80jSDKEUwyMjaMun01hExnWSqIbjWtQXTpLIAp1Es3Z6I4tLi4wOTdBot7GkjV9S6MiimFvgwm0byblmWGx7PmDccaUQ+I5lhndJgusGZFrT7XRJ0oxyZZBEgEoyoqhHFHWxHI84yuilHWzPQWufpx5/lPpyk4PHTrJ+0/lYtqbdaZMvFFBC0e3OEEiQQtPKYnKFdSgFtu9SKBQQMmVmZoZ8UCSLYXFpnmd27aE6WGVwaJgojHj8gbupDg7i+QUMFmSybY3Y/qU1VX9152e48cbrON2+9Tf8Z5uN0yYs5+bcyWdvl/0A97PvfzqM+2y223MarnMQqheru194nXMMZL+BM+89y0xDZ/wt5PMYeSZb9Fnm3vN0gc/KFJ/zPKdff9aXHbwU5O40O+1FG0FDATpzrDMu+6e/+rf/pLn7d1ovROE8dz0LXwuW5uf59Kc/y4P3P8SFF27h1J6dKCUpFTwGBocIwxpkKZ4TkJGhBETdkFTY5AtlksQU+612p98caerNWn86Y1Fv1NDS0Mp6vQjH0nS73b6erEuSxLiub/KxyBBZyo6d+0gzY1jgOR6HDh9n7/4ZLr34PJaW6qyaWkEYx+SLeWrLdSrVMmTQ7XXptDo8+sReNq6dZLBaQghJux2yf/9xcv0p8JHjp6hUcqSkDA0UyRfy2LZt4P40PRNyafYd0W9ytIG4RZ+CidFoWbZDHCckcda3PbcRykRNGN4qNJstcjljaBL2MoSEOAoNFTODJI6Na6ZS/UYyNuHwloUQEktK3nz5NB//879EeAO86Td/k//7z/6aq4aqLC/VCfJ5MgFambDmsNfD92zjHKgkA0VjqZ4rBEbT4DqILCPI+YRhRKfT41t3P8HWzVNIKTl8bJZKOWfsbpVGZtII25UyG4sQKJQxzhGQK/icPD7PI/ueZvX4KMiMxbkGjmMmzM1mB9vShKEpVmWW4bgOWZphOcblUDuaXztwlHe8/TJuuHyKxZkFlFCMjIxQLBYICnlGRoYo5nxazTbdTofleoNy2eiuqpUyWgsyBD/cPcu1myoobRroJMnwg4BCwVCGpZDMzS3i2A7lchHPcXjw0X2sXDFKRooQGUpKXD9HlEQUy0WE0CwstwkKBaRlo2wHqRKUJZEy7QfIRtRbXRzXYmRkAKVNfIVAsbTUwLFdRodKjI0OUCgENBttsiyi1+2RZQLX83AdB6UUUpsA6d17DjG1epxms4XvO4RhgqU9wl7Mcq2J65Zo1rv4bg4pLOYXFykV85yam6NSLZoi4/Sma1l85/YHWbWiinYc6GsdbUcihI2QGRkdpleNsLjYZsXEGLkg48TsMi+7dJOhPSqJ6zk4FgS+bab4mGDY0wZMaRabGIEo6V/IFEKYeIZyqUDOz2Mpm9nZBeqNBuu3bkBZMfNWDohpNnrs2ruHSi7CcTXz8+IcnacAACAASURBVAs06y1KlTyuY7SLf//3/8zY2CBCZOR8j+XlBYLAJ01AK4PARmFEnCTYts1Nb/80171uDVJKcx5LbRzjMtPspanRr/W6Ca4X4HhmcJUmCUpbHD18hFKxQKvRJCgUzMU8y1g4tYgb+LSb7X70RsdoXaVAZNoUD0rT6xpnTm0ZMwMpzQAo7IV9YxZDoz5dJNiORX2xgx8UkNJCCgutXdIsxnKMZs0g/+Z8WZxfwAs8tDKU7yRJgIg0y5g9OUepMmAMT/pRCrbjUFusEeQ8wijCtl2EFDSX63ieS5qE2LYiw2iMw16XNInwc0Uy8WxxkgqF4/rGjClN6LZDXC8wCKnlkMQh2nZBqDOfmRCCVrPZHzokaNuh3dcwpv3A4fHxQb7ypduZWjNKp9XBC3IUy4aSFYcm4N2yFFHUxXU8brjlo/zyB99PoTrI9NoJHFvS7bSolMvML81TKhWxlYVIBa993XVY2uUH99zPJZdsZ3424o/+6ONccdUFbN46xh//wd/S7nbYuHGat9z8JizLZ/OG8/nYxz7Gu979VnKuz/Hjy5x/0cX84R9+hLVrJvmlD/46l156Ja5d5O8+90Uue9lFVMrD3HPPXaxePclFF13ByGiV6kCJfDFgemo91UqFP/jvf8CnPv1Jtl64nq0XXUB1cJQ/+bNPsP2ybZTLZaLUOPL2mh1279jDO9/5dq545eXYOkBT5DOf/TQbN0+zfvoi8n6VViPil3/xP7P98vNYWFxg6/lbGB6t0Ou28bw89957H7atqVQq1OtNPN+j0TAa4oMHDjA0OESapHTaPZJmjUOH9jO9bgOf/cznWbGmiOM4+HqQt7zxfbzmtddSKJewtQu0ecW1r8ZyJKtXT+K6FlNrJuh02sZx0bHo9pbJB0XStEGn3eDo0VPMz89x4QUXcGp2hs2bN/GBj3yY8ye3UCiVqJQqFPJ5ojjEdY3UQZ3ObbQshNQ4ts3C/DxRmBIU8mw5byuW1nR7PRDSsDKSmCDwUarPmlEKo/NPSeKUMAqJwwTXsclQKAXtZoPHHv4h02s3opRGCsWGDZtI0pgwioy7ZJbieybeJp8rkJKyYd15KJlBf9+L4pSo28ZSEIdtJDFZr0sSwsypOm4+hxTGDt/1PFN/6Jinn3qGQ888yprpdchE0Qtb2LZi5yNP4vqGMUNqGkrlKLPfaIW0HCyviuPlcFxFEnWxLKP9tZQmTSGKLYIgRxwnxFHC6Mg47ajHeduuRNsOIlPcdfcdjA+PkrMF3cYMjlacnD3O6Irz0X5AmsTkciU6rQ5pklIq5nn0kfvZv2cHGzZuJlURU6vXsLRUI4kV3ShjcXYfQ5VBLNc7Xa3yUpu72lKHX/nt956pcfv/AQxYkWWZYZE9txh+gfr4LLrmmdv6zcqL3P7jYsp+1H3Obu7+1esF4hBebJ39Xk73Ai/VJdMgfc9/vrN//tzG8oU/r580d/9Oy0wHxI+kZUop+sWHZO30FN+67TYcy+Ho/AIbqw7nn7+B48dnmBgfQ9Kl227SaBir4Xw+R6u2jOV6nDwxSz7nkWRguY6ZUCcC17PQlnF7S9IeSijarQ6uY5mmTxqNlOMZ4wDPy6EtF0VIrxuyYmKMYqnA0nKdQwdPoqRkxfgw9z20m4FKEaEEparJAjJ0LIO0Oa5DtVSkVmsQR8ZW/J77d7O4VOeyS7YQxQlP7NzP1OpRiqWAcqVAeaBkii6laDWa9HohjmtooUJgeN39Js927L6zpOgbFViEcYJWtpnmCUG300NKYywB5u8kSULiKEUp+MKX7mLd9ASOa2iUUggc22VpqY7jmByrOE5xXI9up9uf+GukFGzfNMlrtg7xHz/0EV5zw9v4lS/dxvD8EmumVvTpnCmeY2PbJhsw6obGxjwf4Occer0utXoT13VQov87cB1cz2XL+ila7TbK0nzv/h34DoyNDaKUZvfTR6hU82ZqpBRZCkkYk2YxQc406YODA0ytHCaOU1r1Jjt2HWXN1ChZKnBdjzSN2XPgCJVSAYHgBw8+xcToIL/0wFPcvrDAT123iVuv2czxYyfJBR7tZgff9UhSgbZttGWxc8de8rkcpVIOKQVj40PYloPoW7nXazUOHz3FU8eWedXWClLByRNzxhlWKDIhWFhYIgpN3prSml6vSxynDA9UcTy3n82Yoi2Ho8dm+7l/CoTCtxXdVotep41rK5LMZCBJoU1Ys3QolX2UlEilITP5cmkm8D2P+YUl5uaWKJZ8siw1xjdphK0tQ5+0LJIoRmvLnDkiY2igQq3ewHNtEBDHgiTBFFm+i9ISrWHPvoM4jqRSrYDImJtfNIHZ0qJRb5pBgZSsmZrgtIGRQY4z0ixCCJs0iWh3avh+nh8+uJ/Vq0YolhzGx0b47h0Ps3HdSpSyaLfrVCv5M0HWWtpnppFZlqEk0Ee8QZkYjP6U1NI2SQr3/XAHK8aq2LZgYHg1juNy/qvewetecyPbLtzK337+b3nL9Vex9fzz0EowP7/IwECpr3tRTKya4PiRkwxUChTyHvmSabw8PzAREHZmmiIpicIuX/jyffzMa1bh54wuVypjld6sL+MFAWki0FaG4wT0OhFax9QWl7BcM6UvlArGZVVLQ+fE0DL9wDTanh+wND+D5/sIKbEdh2a9g98/fxzH7e/PEtnXv0jZz6zrD3U67RZKmkltEkU4vkSIGEFsEPpWgu1oEClzMws4rkschSZyQysc16VRb2C7Tr95NPmEnp9DaYewU6O2tEwQGJTa9T3azYbRxQmjaZIYtH5hbgbH1aSZRpCgFP0i1AQft1tttO0ilQ1C8t1/epz3/+o/8sx+iz//1F186au7+LsvPcmX/2EP3/nOM1z3+o1IoagtLaEty8RA9HV5YbdHvmiQ6bu+/yijo2WCnMfG89aQxAnf//5DTEyMkcsFnDh2lN1PH2XFylEsSxL22nzztof50Id/y2iR0Vg6otNpkiYxMzMnWDE9hQYspcmkQzdMWVhcZsPGTSAkwprnla+6mtmZRaZWbaXdCHnFNVehbVi3fiWddsrTu/Zy5113c/kVl2Djcsvb3sXr3/gGBqtF2t2Qt7z1XXzwQ/+F177qtfx/f/UZ3nLz9bQ6LUZGBvF8h3e+4+e5+a03kM8FzM8t8Osf/k3WrlvL1NQq3vOed3HZ1duZGJukUqly6cUXsnf3TgZHB8jlc8zOzCJi+IX3f4A333Ad2pHMnljmlpt+jv/0wZ9nbGyUJGpy8OAeTswe4aab34gfSFZNrWb21CyFckCWQdhNGB0dI8j51Bs1yuVqn5HSQ2uLcqnEFz7/RSYnpug0u9z1ve9z9TVXc/T4LFe8/BXYdpm400aoLldeczE33/B2fuYNP41tuYS9eaTl0Wk32bPnaabXTkEGlrbIBS5h2OH4icNkqSQMl8nlAqT0cR2HcrVEqViiF4Zcsf0SfvV3foM3XP0GRJqeGYIYnVxIt9XE93OQZXS6prHwPRfLcvFzAYuLs3ieT7PVRktFdHp4rBVpYq7IaQpJErO0tIDon8+kgm63DShOnjxO4LmsWbmGTCla7Q4zMycplwpIS+O4LlobL4EoNIO5nbt2UK0OmFohPc34kWilSJMunU4T1wKZhcS9LgcOHqM6tIZm2II0ozpQRQCe69NszXF0/14s21CNk7SHa/mkSUxlpEwQ5A1qIjJs2yWJEpIkRWuPKLFo9BIq5Txp2CZLUrI0MRVhlpGmGfsP7qYyOIC2LPJBgWa7QSdKePypJ1i3bgt7nt7DRRdeiqclreWj6LRHmKZ0U5tCeTXPHNqNrS3CKOPJJx5j545HOXR8H7VGHZTk6IlDLJ2qMzAwgtSSwZEBJsammJ89yOLsMZJMki9VT3MlX7AJO129nv7J73/po9xw43WmfhXiOQ3Li6JqmThz/vTvaDC5uM8eMFepM0gdYCQ8Zx0vzdL+vvfjeY0vTXP34o8926zk3OzpZ4/23Pd89uNf6PmllKT9gdpLajDPZrO+iJ7v7GNnZzWDpyMSftLc/TutF5tCnL3OCEAxLpJ/9id/yuqVq9n1zD62rxni6X2zOEoyPb2CAweOMTwyhB0oaot1sqiNSFtoR1H0XZYWF/D9AKlstIwhgSyLSeIUaTsUij5RnJLGMUkYUmu0yYTEtjSdbozjBKQpZCR0wpAwSokjY8/uu8bQRACr1xjnsPmFU0ytniAIgr6ov2+QIoVxadSS8fFharUGjz51gPPPm2Kgkqfb6+K6FqOjwzz42A62bVtrQrP7QYxxFKGkwrI1vV5oEInnhW+avzUpQdsaJH0kLyNJE5I4RimFkNmZYyeJcbGyLJtGc5lLLjqPVruD7RpzD4Cv/cPdWJakUi1Sq9U4dWqJfDGPZWnSJDIaoszY+WakvPL8tXzp299F5wZpTq3hrx/bwdU5xzjzKU2aJVi2g+P5PLFrP6VCgO0aSmWQ81hartNphuQKBo1N05hdu/czOlLFtm02rVlJqeBjOYpGvcnw0CAH9p+gWAqM1bkwPW+t3jBT/jRFJMYdU1sOYSdkauUEmQpRShGFMUoJRkZMHtTP37+Tj919Dx/+8Bv56e2TvOaClUghsC2HKEqwPY/BwRKHj53g1NwSY6NDZElEIXBxHIegUCATgsB3UFJjWQYtjboJO54+zKkoY8NAB9cJsC1NoRCASJHaJp/PEfa6tJotLEcSxT2jh0vouz1Cvb6MY3vkPAvXdZmfX6LdbpHL57AsC8c1uWSWoyAOyaIeu3YfYLBaptns0Gka05iwX8AnSYTSklzOxdYabZkwba01SkiWluq4nkWcxpBEKOWwsFDD8zy+d/djbFg7ies6ZiijzFfaR5xOnlwgiRND+5SKtI8ARlFsKDOpmWwandZpGkr/vM9ipEhI0owsiyHTaFlAacn4eAGtFZ12wp5njvCyizczP7eE63tYUvSRdQew+NwX7sKSRquolKGLhmFsOPhpwsFDJ6lWSzzx5F7ufWA3a9eNUCz6FIp5cjmfMMrx6KM7iYqruenmW7jjjvtoNFvcctM1dDtdbv/u/Vxx1cU8cN9DjE2MksvlSLKEfXsOsOm8tdiuJssM7TWOekgFUdQFYfUF3oKb3vJyXKdnmk9tkWYJadTtB83bQIJlZyRxhrYc4qhHkM8jREa73cR2PbRWdNstHM+n1w2xLEkcdXG8PEIobMsYl0hhkLogF5BlMVmW0qw3aTfb/cBlsz/3Om2UZdwlRX+AFPa6JHGE0zdwsCxDd2w2u3iuhVIucSTIFRxAAakJfBYagehTyhVpmiD6r8N2XZIkwnUUfs4njWPmZhfwcjmSyCDynXbHXKwzg1R6fh6hjJmC4yia9TqO67O0sIDn2jiOQZGvv/lzXPf69+MGq3nfz7+bq15+BT/1U9fytnfcwvU3vpEbb76Fq698GY61nhve9ju85frzjKOpNK6DJotRkyYJYbfL7j0n2LhxJe3WstE0S8HWCzbwd3/7T2zdMoVlJ+x86gAPPbiTyYlB/uiPv09h8ArWrJnCUQ4Wxjl4aHAAbQmqA0UyWUCnIbOzx3FyAUJp8oUcvahnaHraJh9UKJcGOXnsJB/96G8xO3eCG298E8eOnaDTaXLl5VfxrW99l8suuYzAVYxPTpIrlLn/3kc4NjPLBRdfyuuvewNBTnDV5Vs4NVfn9/777/IfXv86LG0xPjFGvbFEpxXxg7sf5h233orr2kyvXcXIyCBCWCyeWqZdn0Nmdc6/4FK0Dbbj4Hl5umnCe9/3cwhi7EwgdMott9yMZYfkciWO7T/MypWryYRgdGIF+bxLbanB6PgKc51KMiztmv3LMZR+rW0azSZ+4KOV5sDevfyPP/xjrth+FZ/+5Gd47RtvRfsuzWaTYi5PKlI8lVGrNfALFd75ruuxPIHn5PE9iVI52q0OE+MTnDgxSykYYHFuGVvbKCVZWFxgZHAV+YLL0uIyQpqog4MHDlCuFDl+4hTjkyt44qmdXLZ+O1qZzNSl5SVsywTMO35AmiT0Oi082yIBOt0mvhdgZGiagwcOMT42bkyC6k0CPw9kKGkR9Yz2/ZFHHsLWLsvLi3S7bR64/x62bt2G53s4jomIiLIMoY2W3LEdMhGjpUUcRkRhxNHDhxgaHiZNM0pFgyrv27+XJMXEnIQtlIzxfZ80jSHukHTqNNo93NIIQX6Qbq/D6MgIM6eOmyFonHHPXfcyPT3E2lWTWCIDS5IlMUqaQtu2jBOuGZhJLKkNq8q2CVOBq1OysEmaxhw+MoPvOqRxBJh4poHBQeIkIk3g0YcfJsFmcbHGFVf+B5ZriwR+gG1Dvb5EEtdxLJvFRodeVmRwdIByUAKR0Wp32bd/J+Wyy/Ytm6jkXMLmEmtXjbPQWGJp4QTHjh2lWh1m/+6nmFq/icVGCxGFFAdH+1KNF27uzsaaTh5e5EO//74zta0806ic0/iccxwTAfa8u5mn7Aefn3Hb7K9zTVVeclP0As//7Dt5aY89u7n7UVq6l/7cZx33X4Mc/hiN3RkTlT511DzmJ83d//Y696ST58DNP6q5MzA2kMSG1iMtPveFv6cThnzw+mtYmK/x8su3kgscihVT8FtCUiiVOTFzCJUpXGIW6/OUijls24iN09giSjs0Ww0qA4NYluES246Nl/NxAo98IYcWMHP8FJVSgSRJyJKIOO7ieDlcS6BEyq7d+ygPDPKdf76f7du3gRDMzy2hRUK1WkFqhVR9Y5Ik7vOwU0P/kYKBoQobN63mnvsfxfNsxsaGQAqOHT/B9ku3YDunM9aMs1IcJ3Q6HTyrbwpiO8Zi2OQzPPsleM5mZAoqc7txStREUUySJsR9swutzO8rCnvMnqwxMFBAW4pGowEiZf30KhzHwXETbCvHwECRU7MzWNoU6lmmzyAfZCCVYvuGlUw5ITJr8NC+ed7ykY/yC5/6G14/MYBQCiUF7WaDVaODJHGHLDVaISEEjusSeAqhIEkVn/yfP2DT9BDlSp6kJ9FuRKvRQ6Q2nu+SxtL8Tst5SAQZMd1eSN4PUH0KzOe/+DAbNlbo1VP2HTyKE4ClDU1VasGv/uAJJi4aZeW2SV6zdYxfvvEKHEfR6evYlBvQarTwXYdjR09QKOYYHhpCpALftYnCJkGxhLY1Tzy5i4nxIRbnm/i+y75nDlHKG03UqpXDvHxtRpoK8vkikJEmKTOz8xRLZfbtO2yMHtoxKEXOz6OVie1oNLosLdQYrBZptJukccb8wiKVatFQWHtdjh5bIEukyQ5rNhBCMLdUY2i4SLPdoJgv9REjsC1Bt91mcaGF77hIKfB8GyUF2rJJhcRWimIxT6cXorRCaxCZolgKaLVqbJiapN3uIC1lgMBIMT+3RK/bw9Y2URJTKjuUS2UsrfACn3p9iYHBImkGmpReN2V+vo7tADKmttzGUhlK2mTSIUmMJvRzX7iXbZvXkCQR3WaPsBfi+DZjw0VAsWf/cYRIcT0by/KJ4gQImZwoMz7qk/QWqJQqhh4kBUmakqQplVKRNO1RyLusXT2JpRWu7WBZmnqtxSe/fD9jgwFrr3w1K1euZHpqHeun13Pffd/H8ywu3b6FQilg1Zph4lihLYuv/t03WLtuAtvWJuBba6RIyEhRlovWLkoJwp6JbxFk3HDTX3Dd61ZjOza9btsEF1ue2TPoEkeKLJFGI+o4/YgDheMaChSYv700SRAkgNfXEltkaOKwi9QCoSTKMkh+Jmwsy8N1fMK4jRCZMUNKY6RykJaLSEN00gbtG52f0qRxgrY8lpfq6L5hklAWC3OniOMeUmm00zfLiWMyYYxyojjC0rYx/1FWf2/K+kMik9FlOx6e7yH652EcxeTyBTOYUrahN2UChMK2HOZnj1MsBSRhSKE8wE/f8Dc8+HCNa1/5Hl5x7ZUoJ+2zAHxmTs4wPDJM2O3SbrawZEKn26He6nDjDW/GK6zl5rf9ATddfwFZlqK0Gf2qfiG/cfMapBZYjmtcQ4XJidp2wXqEUmSZZN3GVWzctIqv/MP9fOCXPsHGTevRSpPEKd1Oi3/8zje49KJL6TZrNOsz2MEQiVT4hRIISWM+wtYetqXI0h6H9h2nVCwzt7DAzqd38n99+NfxAws/Z7Fi1SS29vjA+z/M22+9lVr7EFOTa9m0ZQOFksO2zWvYvPVKrn/jjbzmmlfy4V/5MDe8+RaWW23CdsSqVdNoP8djDzzKZdsvYXh8mLUb1tHpnCIfjPDII48zNT2OzDr0wh7f/t53uPBlF6Klh+No5uaO4AdArEjTHkdPHMErlLGtCtIW+H6BNFUMjg+RkCLiiIWTxwjclRRLPmE95eF77mf95i2cmpsnUxGRrNPozhPYRTwParUFcn7Ajqf2smPHQS6+bBuXXbmeT33iS9x394O86fWvRuGjdIeTR/YysXIcK3A5eXiOk4dmmF43TSgdEtslkSlSaXx3kN//+Md4/c+8nD1PHmR01UpKpWGiNCNJBGFjid17T3Ds2CkuuORScKBcGaG+dJKV4xW+edd3mB6ZPkNZDyNjFhanGUIJXLtArTGP4+Sw7ZKhlEcxKMnAYNUEeEuLYrFAkiW06ybTMFOaRnOBkeEB/FyBgaFB8vkSq1avxXI8MowuGaDba5Okgt279nL08FFWrBwHoXAtjaUEpUoV0UdXLEuRhl3GBofJHIWrIpSEOMXElogI4i4iSfDKVQ4dn2ewOkSiFMViDttxicKYQ4f3UwksXJHgKJdMYFhIEiP3EBknj9ZNtmpimBNxGJKKkG4rI/BzJKJJ0oshyzi4bw8DlXKfUdCvGZXEF5K02yVfGeaHO55G+0Wm1qzFcx3CqEsQVKnNP4OnPXpZEyc/xIqVm0lJsayMhVqDQEpU2kMpKAcKnYWMjYyQEbJyaASR1Og2ugSlYaSjqVaHsbXm8N7HWDE+geW4JEpzbgdzbivxxYf/J6993bV96qVhPsRJ3LceMTIXU5I9H7l7Tq92Np1TgJT9WKs0O/PQ0yjxj0LFTv//dAzTC61n739uw5n0jbEMM+fsnz9HF3eOlu7cJZU8gyo+x5zlBRBGQV97p350sygkZMlZOrrnvZcXeAzizGs9nYP3k+bu33id28y9FFpmigmVvuTSS3nisUd5+7YJRofKHD25QDHv0qgtUSoXEEoSp9DpNckXyuTzReYWj+MHA1iWR71lCpE4iskVAgrFHM+H2wWZFEgl0ZamVC2RxAmLi8vG1TBLiRNBEsXc98CTSKF5YsdBNq6doJAPDBWo3caxFUEQEMYxzWaL5bklfM8z6J1Sz57c0rzPTRumWbl6wtAPfZehoQqO64A0EQ9SZAiRUltcoFhwmTm6B0GG5+fIxPM3nnP3D2N8YBA8IQRhGGFbCjJTUDm2RbcTkmVmmpfPVfju93/IiokRsjTDdz3oN8Cub6GEcZUrFHIobXR9CPpOk/LMtCTLMr70zXsZCTQffuvLueqm9zExtZaL33Mr7//sV7m66ONZtqH+CYiTFN93aTXb+K7D8nLzTFzC9OQAA+US9VqLb97+MOunxgh7MY5rk4mELJV8/Y4HuOi8tRz/X+y9d5QlZ3nu+/u+ylU7785hekL35CiNIgKEwCIYBBIgEAKTHPCyfY59sY3t40QwcAjHmHC54GNfMCZYNtHCQiCychyliZrc02E671zxu398e0ZpAGEf33vP8am1eq3u3b2rq6t31X7f73ne33NyDt+3cOwAyzRptVp4vsuWjauxPcgSyfLKCkNDFaaaLf7TPft51at3cOWlo/SVXSxbYFpgWC4KoWMzhEAIgyROOHL0JEu1OoWCttY8vPcIa9eOsP/QY/iuj5QGg0P9SMPQGHqR0Wq2kELgug6P7D3EyGCA5znadldvYVk2pWKROM6Ymp5nqL/MwGAVy9UB0VOnTlOrtTk1O8foUAUhBHsPnGJwqEKxVKBRb5KlikxllMt5At9mamYSx3PBkGSZIJcvks8VESJlcXmZKI5wXQPTsM/SOJeWVwg8l6WlZZ3JZ1o06k1tqevGNMRhhO34rKzUyOV8lOjgeDatZoRtBNz/4F5836avv4JtOUhlgkoIQ4UX+HpOUkckEUcJpu0yeWqOZquN50rygYsQmc69Q5JhYgqJkLBjy2q+8/37WL2qj+/f9hCT0/OsHu2nE4Xa8lz2KeQcpGGRpBl337ePsdEB/MDGNh2SEFYaNVzPRamsS5Nzu/OoWn1eXKyzuFCjXCkyP78AKL54/xK9MmHLc17Bpz/59/zO23+bb3/7JmZrKf/pN67GcV0MKbAdk1t/cB/5gs+mbRtZtWYMy3K44YvfYsv2dZimQdgJtZIrtZXmTKGWJgmvuvoibv3x3axdOwikWKYGBQnOUEcNTEuSEXeVTUUax6Rp0p2Ns/WcnhAIwyDLJKaZ0m7WUFkKZHqGzNQ21XZTZ39GnRWizhK242LZtg5XrzVxXbc7x6pYXlzADfQsihLa7pKlEb7v6XtnJgjDFvlC7qwNvdVsatpora5z89LsLDCgVa8jpI5EsExH30cU1JdXMAyTpflFct1Q9narDWj3guU4rCws6wiT2jKul8PPecRRwhduuA+3+GJef/01vPSlv4hh6tc2QKFQwrY0Zn6lVqfVajA4NEi73aLRaNDXNwAIpqYmecMbrueX3vIBrnn5BqQURGFIlmorehwlpEmEUgrLcbFMS1tCDQEi06Aew+LGbz7C+omrWTXYRzNsYNsSJTJ832PtmjUkmcAKcsTCpBMmXYuRPgef+PjHmD09Q39fL7WVBjEeH/5vf0XOdRBxzAc/8FHG161hfONG6rWI/pEhjj52jNFVQ+w8byuLM3Xe9d738vwrn0e54GHYNjt2bGLV2BDPf95zqNWXwBScv2sH73rPO3npy3+R/koPuZJPq93hP//nt/PiF1/B/NwCH/jge3npVVdiSsn84jLPufzZCCnZ+8ijjI2tAWUShwLP4d+TsgAAIABJREFUd+mELao9PQgcGo0FLCuj2ayzf+9BckEO1/F0qLzh0GjFpCLiute9letefz2WmeOdf/5+Lr3keQReAd+tkMURoEEccZzxpje+lc9+5u/J5wMq1TKvuPYKhofK9A74RGHMHbfuoVrpxXV1LmgxX2B+9jStsEOYJYSNOrbI8GyTS3bv5uOf/BjzcyeYmZljbO0qaotHiOM6th1xz+3f5uThFu9+5/txzBLrRjdguyFB3mN5cZHrrn0lb3/fn3H+2t00m03KxQq2bSPIsExDuxFcl70PP8rIqj5WajM4lkG7k2Dblm6opOjeCwX33ncXq1aNkinIOQGO5SIMaDdbHD9+lJyf4x//6QtMrF+vrapRhOf4kBm0O3XWja8m5/taIReCKMlQhoWRnbHyWGTCRJkWRnuerF3DknTdERkqgyRqI4lptzOWV9r4fp5iTw9ZmOGYLlJJTp48yYnpxxgbHeHY0f0U+wawDBuVJbiGT5YapFmMZQss2+pGsJjYvs/icgOvUMJOBO3OCo7tUiwXCXyfKO7oOCDbIQoTAKIkYaUZs2vnFYyuGiOKQqamT9Hf208aNrBkm3KhO7dtFplfWmaltkTgFEjSNpab5+DeB0nry4yMrsHzTOK4g6kEpVIZx3MJOy2OnzzOrl2XoBDMLy5Sb7WYmz6GdALyxfLT6tMnlljv//x7+eR//8vHvycEQukGX6jHHztncfZUV+NTLY5CkGUpZxftz9R051DvzvX1Two9/6nH9DQV7V+hqKGbOPkMZ+m6T/iZSqAQ6Eb3aY//fMrlf7jm7ueRd5/J9tQO/WlKnpRnO+lzQVbSVGcVKSCOIubnVzAXjnH5ZefTaNTZODHG1Ows1UqRer2FYdt4Xh5UgCAgAwqFPpLMxLQdbMfBD/yz1q9zvZDOSLfdOEs9GyIM5uYWdQZdrPjej+5HCJO1Y8Ns2TyB6xh8+wd30W61OHZiiksu2kmnHZ9deXYNm1arg5Qm0jARgq7HGBCatpmpDLrNYZDXx54mqQ5gNyCJIg4fPQZZimnEtFtNckEOJfQA9pNuCuKJn5z5Gx8/92esVZbhkCYxYaeBZdugoN1pcd+9BzBtk+HBPur1hrabuBZZGoMyUCTEcdpVArVykGVZFzObdc+j/v9euGsDA/1lHNfm1695LucPOcj6NN9+4ARrXnYVv/eVf+Gq4R78XIBpasUhlw90ho+jba3CUFgmtBox37/7Ya554cWozODQ0ZP88MFH2DIxQhYLFleW6CsWmZur0zdQ4gtfvY0HDh5m944JkjjGcfRx3j51io+eXmYp6PD8F+3k6kvGEQJMwyZL5VlFga4lQ88KmKhM0Kg3GRjoY2hkAKvbvK0eG8K0THp6e8hSvcJfW6mjANs2ieIQgZ7JStOMgcF+WvUZvMAD2bUMCMm+/Sc4ePgk68YGyBdy6Pw3PYTd6oT0VsuMjfUyN7fIick5tm6eQBhajbUME7IMy7W6zYNEqQjPz9NqhXhugClNms02pi1oNjtUKiU6nZCwrZst17U1RCZVxHGHlVqTOKZL2oxYXqlhGpL5+TpxlDI9u8jiYp1qeYSw06FQtFFZC5Uphod7mJ6ex7YdPvvFW1m3psJ3b91LX0+gFzqkhcoE7XaI6VgUSnl6ewr4vgNKkKkEw3TYd+A4nmMSdqKuRVgxMlQliRMqpYBVI73c+O372LJ5NaYhUGlMlsVkysS0DFaN9OsmMu4gpY3t5vACm1qtiWWbOI7btSYrFhaWNRgn0IH29XqdYj4gjGK++WiLP3vLi/jS9w+ytNRgYnw1L7vqhUzNzHDFc9fzve/cwR133Mv4ulX0DwzSajVZrjWoVssIw2Tu9Dzj60dRSucIZl3QgGmYer5OoOeCLZO3/9HXePUrtyGUzvpTWQZZhmE5KDIQCXHY0aHcYYhQOg8vVyzSqNdpNppd+7eBECZKdbrqoY0wbOoryziug0AQdTJsWytQKsu69yFJq9GiWKrQbjVwbJs46uj5MwGGaYCQOu8ribFsDVXSGXoRhqntl/WVGrm8r4PqHRdt09JztKYhMW0NjbAsPT8spYlpCBzPo91qUaqUIdPXRxhG5PI5hKFBUWcIt4ahVRiQvOiVn+P3//A9BL5PsxEyMzOL5zvYlo3rBCRJxtLSMs1mk2q1gmnaZFlGo1HXUKNMYTsOxUIF2zZ5xStewtJKL29/+0d5xVU7yLJM3wssC9uxztpnVaaI4za12jKmYWDaJlIarF7zRgb6+rFdaNQXqNVq9PYPUWs2CTwfx7eJMsikg0EH17bJMg26mJhYx+bNG9h/4ABbtmwlX+1l25bN7N65k6/ecAO9fSO85rrXkiYp83MN3nT9G/mjP/pdVq8ZopAvsrTY5Lf+4Hd529t+lYP79+E4gjWrR5CGYt/+vayZWMs/3PAPbN6wni1bNuMXc+x75GHWrltDJ4yo19v4js3wSA+vfNVVOLaPFBLPt6k3G7TbEX19FTrtGN8tcmD/UYK8jef7GIaDFC6OlSJEwuzMNJ4TEPh6jrLR7PDxT36Kwb4+Rlb38IIrX0p1oB/JIhdcsINaY4lKtYhlCeIoIstSmo2Qhx86yFt/+c1UqmW+9vWv8ZGP/BXPuuxZrBoeZ2VphZWFFN8P+PN3v4fLn3c5geeQqowsSQlyOYqVEj2Bx8f/6mNUSiV+7W1v4dOf+ltedd3LGR5dQ215kWqxBykDDOkxvmYjK/UZnnXZRdz0rRvZtn0DDz10F8VcmT/80w+T7nP59Xe8kQ9/5qPc+M/fYHx0gkKuhMoSWo06whA0OxGDfX0YUnF65jRR0yaX1+MJzWYD17WI4hQwGBocgCwjy/R7URhFxGlM4Pg8sOduBgeG2bXjPBxXg4Vsy4FUcMetd7J5y0ZOTR3BMvV8epopDEsvwnbiJgYhoj1PsjJNsjJN2FmG7r2y3VzR+XmJwhAZKos4OTnP5q0X4do2R04cxfcc2u0mzcYyKo2YGOnDtzMG+4ao1xe4546HWLd+LUkcktDsRh9p8qcp9f0iUSaFSj/NxgpSdbBsA5FJVBKSKU2vPQvEUClRlhEpwcMH9jO2ehPSlBzc/ygbJjYxMz2NLVqkcZ0wiVhZjugbnsCwDJIk5tC+o2xav4lvfPNLrBnrY9VwlQMH9tPTV8Z1bAxp0olauJaNlIokTWm0Uw49dpDx9dtotmJcM+P48cOsWbOhSw9/SnkFfPgLH+QzX/wUZ+PKzzZVdEPezxTDPMFhxRNqsbPFcbdzeTJFU3W7vzNK3RlB5KlkyZ82c3bm+z+ZqPnUfT11L0+3kj7TvL0n1tfnUhqfpjY+5efPRd786X/LT9/+Qzd3/57bT1pdOLOdMwS96+tVSvHBD32UX37hNr536/0M9FX48V17MV2LUt6nmA/wHIckTkCmSMPWw+uZoBMleDkP29WzcWe6KiUybe150i/tvpS7h5JlAtu2KeRzPLrvIMODvVQrBYYGe5g5vcADD+7n+KlZAt9h8uQM521by0q9xcBgP416C0MKhG1g2y6ZgmatxeJiTWfKnH2h6gs3jbUSFXYyVKYQSmEZguWlFebnl5mYmKBY6cHJ97C0sEzUrNPuRPj5/JMpTOJpnzzpnBuGRAld+FmWRaOxghA68sGQsGrVKgb6ipr2ZttnMffSAJRNq7WI5+cfl+4RoCw08CAGkdDtODEMiW1pe6VCUCoVyXk2L9+9mrvuvI390y2u/+B7eMNH/oarR3u1RQQQZhf2kkGnHeK4Fq1WRDkXUCg72KZLmiRccv4mMpWQpZKNE0MYwiSJUr77wN1c9byL2Ll1rQ6btWxe96N72HxeL8+6Yisvu2A1F29ZhWnZNBpNbNum3ergOq62T6V61SlLE0xTdjPYNHTk8JETVPuqpJ2Q5YVlpBBIw8CQJg8+sp/BoQEOHTyGbzuILvnTsWySJKOnr5cjR09QLWt1JVM6n3FyaoaR4R4KgUl/f5WlpQYLizVKpTIIiSkVuZxDFGXkcz6Liyu02iE539aNjymRlp5TsUwbQ9osL7XI5Qp6zlGl1FaWqVZy1FsdqpUqmZIcPDSJZZoEOZvF5RUK+TyLCzVygUWQC7DtAIF+86tUNOK9Uu0hCHyazRaB5zN5YpokbeN6JrYTUCwEOkDXtlheavKcZ28lSTtsWb+aQiHHoYMnSOOM07MrzMwuMjhUJksiUqWQho2SJggdg1ApORiqTaq0cpgkGaZl842b7uaiizZTKhVYN9KD7wWagGlbCOFgmAKlYpIkxpBSh2hLRaJipHTwXI+5uSUCP0cYxliWTaPewvUclEoJAhvXtZDCpFAo8dV7Zrhy2xBZdRN7993LO9/5F+RyBvMLi1z+3PWMjg2zfv0Yt9/2AFOTC/T0Ftj/yCHWb1hNlsTccev97Nq9kSwV3QWr7Gw0QhxFeJ7Hcq2O5zlcc/UlvOEtf8MrXrqZMIx0gLepw8+F1G/2humDyEijSKv4gU+GgRDgeDps3hCQxdqaI6SNEhqC4/kutaVlbNvWEIesG4liWAipLaWOa+u5OsdmZWlR79PSc5+GYdNYqSMV2J5PlmQ06nUdsm46CKSe97RdTMui04lBKKL2EmEnwvVdwk6X/ufl9BypFCiys+8BpmProVmpV66jMO6qrYo0TjEshzTp4DqCxdklpk7v4C1vfj1x3CFpreA7HmnYpFp2MSyf2kob23aQUlEoFHAcm1qtRrFQwHFtPNen0w5pd0Ic2ycjYnl5llKpxCUXPZfXvfmDvOaabaSpYmV5Bc93QSjCdqjvc6aB6/mYpkWrGfHn77mXcrGXcv8QiSmo5gKSzODAwaMMj45joDjy2COUAhsrTemETZqNJp6To1VvceM3/oXzzz8f25FMz5ygvy+gVAo4cvQI4+s38def/iT9A1Xe+/738ZrXXs/HP/ZJ3vjma1lanuXzf/9lnveCS3jjG9+gFwQigw9/4D309fbSPzBI3+AIUaKYnJxluG+I2dPzjKwao1LymZufY3h4jPN2XoRMTXoG8rRbEb/1m+/g3rtv4wUvuoJCoYCULpCQJBHtdoPT86dYs3YNYRQihU2jnpC2FY7lcPz4YVaNDdNoLlEsFyj1VDj/wguYGCjzyCN3smbNeqIkZM99tzHQN8xLX3I14xOb6KkOYlgaYT8zvUguqCCtBu3OChdffCG7zjufkdG1JFFK/2CR2nKd1WtyvPCql+qF0sUFPD9HfaVGta8XTAMzE+zd+xi7L7mUXDVg54YLmDx9Ai/XQ9yO9By67RBmkhTFQP8Ia8Y3snXHDixf4Bsm7/jTD3H9JdfTM9THRz75Ma597cv48/e9g+/c80P++muf4coLroQ0QRgRuaBMlEbEYUKr3ebm797CyMggvuvh+S6N5goqNQg7KZYjOT09S66QJ1MhYdRhZanND2+/hZe97JW0ow5BPkd9pUOn08Y09KjG3fffTbPdYnx8I7l8jjjRc+RpEuKb4IqI9so89doiSSbIpIlX6EcZPocPH6RU7CEJGwR5nzgMUUlKz6qtJMLk2NEDrF07juXYWKbk8KFHMFAM9VeRQpOGTdtjZPU6pBWiQvDcAGGAa+uZUbIUbAfTzGOaJmYWktDm0MPHMD0TU4IlNPBN0741jP/0Qp2jJ07h5gcYHhvBQNBT7ePQgX1MTh5nZDCHLT0SAcv1jOmFBXw7oLe3h77+Po4e28/4YIm8Z+Ln8lQqFRzbIk0yMExsz0NFCWnSYWG5xtzyIjt2XkQShvRUqsRhi7DdxM9X8HP5s6XiE6uqS1+2m96+nqfVWcC5s9uesMB+rsfPNnnnqNvgcbfbv23G7mk/9ZQvn3bQ/8r9/uTnPJPn/5tm8X7GMfw8zd3Pl+r3v7dnvgmBISWmoQvXsdWjNFsdZucXqYcRaaoIfJd2u8Ps7ByKBGlGRHGLVqOFYViUyqVu5poOa/5pUKGz/twznws0Wc62ec6lF1CuFMnlfAYG+7nwgu285MpL2L5pLc+77Hwuu3gbxWIO0zKZmprlznse0REFlqXn76SB63k4jsMN/3QLWdqdK+z6hy3bggwefegQp05ME0cRp2dPE3ZCRkeHEdJECQNluAyPjtHb08PS0hJxnDwjUlL3dAJ6CB5pkClFb28vtm12bYM6VFllqb7RSp0NlqmMKAyJowQ/55+93KMo7u5XN3Ma/R1p0mlX9TJMrZgZUlKvN1BKWzhf94LdfOn3XshnP/BfcCyD6364h5mFxbPABWHIs6HWAkEu57F69RDS0KruyOhQ16MPlm1q+4dlcPOdD3PlRefjujbT9RpvvetRjgxLbvj9X2DbulEdv2AatJotkjjBtnS2mOvZKFLSbuZXEkWsLK8QhaG2v6UphmEwsX4tmVI4pk0u8FhaWiZLM1aWauw8bwsoxbYtG8iSjOnp0yzML7K0tEx/Xy8rKzXWrhkl6gamG1Jnbo2O9GOaUoclt1oUCnmtHiuJFIKH9x8lSUMajQ4o2LppLWvXDBGHCYVCvouq12CLAwdPct8Dhxjo72NxcQUpDWq1Or3VErXlZXLdMG8pJFs3j5MPfKam5ykUfBQwOTVHu91GZYof3fYQ84vLWuUJQzqdDlIaJGlKb0+VTidm9aoCpaLG3aeZTa1WxzS1QrO4XCdRCZajA85VlhLGCbZtc8+e4+zauZGlhSVMS6vjSkgQOhhbSInVPSfHTs7QarZYWFgmjbMueRWiSNuJk+RMJpHsYvAzmo0apiW7CyjaDi27iwxpmpHP51EKvvODPRhC0NNbwTQtDGkwOTVFkiQ4nssNX72VeqvFI48+xmNHHuP33/E7TE1O8pZffguvvOZKFBnf+PIt9Pb1cfkVl7I4X6ent8Lzr7yMA/sOkKYJ27aPE4Yd3VAZ+nqwHT1L5roeSZJQqVaQ3XtNu5NhmBZ+rqDJvakGDSiliDoRKE0RTdMUKSRRp4PKdOMrhSSOY1r1OqZlI4Ts3iPkE5pJraTZjgCZEoYtpClptzqE7baGpqQxqqsmim74q+X6hJ1QY861aRwhJUHO1wCYFITQEROGNHWYs+dhmJJ8uYif90iTBMd18HM50lSRdO8hWRrrAkrqIOWwE5JliuXFZfzA794LO1oxs/Qc86+87at8/8cWJ48dodNukc8FBJ6DKSRJGNJurPCjH/+I9733/QgElqXjEMIoolgsEkYRS4tLgFbAK+UytVqdLE059NghhIBqtcp52zZw3Zu/TNTp8PDDB1FphkBgO64Gr3TfN26++SG+8s2U97/z/2D7tq0EuYAohenJaRzL5cYbv0UnjInihPHxteQLPipqEycR1WoVVIbveawaW83s7BylUolVq4aYnz1Jo7bA+Pg4pUqF5z//uQwND/CpT32Sz3/+83zn29/h9a9/PVIqvvWtbzM5eZx8ISCXyzM2to5XvfKV7N59IY8+8ihz8wvYtssrrrqagcFhpLRIEoXne4yMDjMzO8vU9CmSBBr1BgcOHuLUyRmkYdFqNgC6xFmBaUmkqahUi9RWlgFohx3a7Q4njp7izjvuZXx8PVJAtVomSzUlNMkSpCnYsXUzKomIww4bxrcyM7XEjd+4hc9/9stELYFtmlTKFcbGxphYv56161bjBzaGBRs2jNNs1ulEdV597cuo9gYcOPQwi0unsW0T05RkmeJ73/0uSZqwsLjArbfezuJyTds2ERQLRYrFMp/57OcoF8ss1+eIsw52IEmIyeUHuPqaN9DbN4I0Pb74f/4Lv3fN73LnHXeyvLzEb177m6gjea557VvZuH4NRcfh/qX7WLAO89DSj/mjv/ljLNvG93OUKkWuuvoXcR0HITVQKJ/TAKwjR45iSIORkTEMw6DVblIsFjANmzWrJ4jimFwuR7PZ4MD+fUxOntDXjFJc88pXs3btBnw3RxjHmKZJGLVxHJtOq87CqRO0GzX6BlbRUg6RXaLeTFiqhRTLo3TCDCkgjDqkKkUKi+m50zzw4H2sXTOOIQRRlJBlsGH9diZPHOb45DGSTJEoRYrknh/dTpboe20YN1FZRrPZIs3SbqyLpN3paGUyifSiWXGMOAmxbB1/MDN9Eil0uHuapBSLg6jMZ/Om3WeJiJZlsXnzNjxZYs/9j+J6erxm0+YdrBodo1gs02jUefjRB8jlXUTawRZ6LMGyDCT6NYHQsVRhGOJ6gV40ylIefPAuJqdO4Nq6JvD8AlOnjp/TKvjOv3sXm7dufEZ11zPdpJDPXBV7wpap7GdmR//v7V+3/S+h3P2P3n5eyVSr1uLsh+x6l7M0Qwg4dt8tuGGDZrPN1HSbQlHSaoTseWSK7dvWkakY3zFZnI8oFCvkijnMblGpJV9x1qnYPcLHv+5+CKHn7tSZ4+8emRKAYZAhyBcLmLaBtExs16ant4LtOfT095ArFnlgz0EOHDqBZUmqxQAhLK3SdQuk6cl5Gs0m3//hQxhJhmFI9h84xuL8AknUpuBmkCrSNKRSKVEo9RCnKe12B8s2MVSEcGwMzyfqtIkz8IPgCYs+TznnXZhK9y/Rdtc0Jo7b3SIcDMMlSwVZJvVShVJYlsfszBxjYwMkYcK3brmbiYkRTNMGYejT2bUuRnFNF5rS0SpJlpEmCZ/70o3s3L4JE53P12o2SeIEP19ACAUqZcfaQV68rY8jx6f44H2PsfYVL+NPvnILPz5whN1BnuWVOqWSj+k5rCwvQ6awzIxMCMgEKD10LE2Db377Lv5Whex61igj549RnejlVZespacYgLD0oHOcEXU62n4XJ2j9MesGZ+uXiRQOC6cXtfpgmKAi6ist6vUG09On6e/rQSm4696H2Lx5LSvLKximpRUIldBstSgUS3ieTX2lxfBIL0qYpEnE8WOnyOIaZALbsTg1dRqji0MOCmVN1Ywjeqs9/PPNdzKxeoieUoHHjpxidNUQGd14VYkGUhiKOI3JlMSzLYKcw9BwpUs4zKg3m5QrZVIlSDLJt255kA0TgyAyFpdq5AOLcrVEmmnKV7PRolQtYTkBtaUm5YKLl3OxLYeFhRqWYzE7d5pKuYDvOXhBDtPyqddCDBkTBB7zC03yhRL9fXkWTi9SKleotxqkacrpxXl6e/JsWN9PFIXMzrfpLbt4ltXNLdRY7DPXbBKnzJxuMDo6ghSCU9On2b1rI4ahiKI2QT4gSTuYpqReq2NZOkjYslwMw+pey3pFOIkzBArT0g2gaUlWjw5qWqgBCIVC4lpBNx/ToLHS5uZ79vPHv3oN7/jEF5kYHeAP//jPOO/8XTz7sst522/+Cb/4oou547a7WTu+mqlTUzxw7z527d7CrT98iIHBPkbG+kljiKM2jmuBkqRZQq3WII61Mn0mkgLg2lc/i9//vc9w6UW9GKbAMGwkhl5VVSlJ1NH2x26kRaPWxM8HRGHULY4yfL9MlrVQKsJxfEwpadQaeH4Bw06BQJ8PJbvkXYlta3iLZTk6O8uUtJshru+zsrioFSs04tyyLeordaIwwfV8hIFuKG0Ty5JIQ9DutDAMQateI45iLCuHlNripG3nYdeSjwa9JBZJ1MQ0M2anTlEqlnSUjGXjBz6N5SVMV6urr3njV/jvf/0phletpX9oGMt0CVtguzZuroRpWizOzLNt8262bFmPYSqOHz9CX2WEWm0eaYYYUpHLlYgyyAUuRx+9m+/+eA+7tm7l8N6D5Cv9+KbBxKZNvPraa3D9Ddx40wluv/12yiWPr37tLr72jT187NN7uOGrD/P2P/gLxlZvwHQtmp0atglWpjBdh6npE4yOjNBXqoKMmZ1dxHFyxNIgXy5Tb0ZYjsf+Q/vYvWs7Qc5DCoPf+I3f5gVXPhffK2NIB9OGtRNr6BsYJEpCtu9agyFMeqojrB3bQk9flcMHTrF9+wa+9o/fZM1EL47T4uYb72Bi7SZ822DvA4cpD7j4jsXxyWP4+RxuvkgSSe764Q8YqDqUyjmEaZNzPF54+WW88OW/yM3fupXNm7ewsDRDqa8H28yzb//d9FR6yeVslmZsEnWC4f5+ZmZOsmPnVk3BNQzai3OcmJ4nVyxjJ0s89NBJXvu6X+Xiy57FwOAAiQrpHewjjNvs3befyy9/NtgKP/BxPZODB+/HkD4D/cOkieLTn/o0G9ZvJh/kuPKFV+MHeXqLsP/RBxkaHMQJfOLOArlyLz09g9BJsKwiu3ZtwrJDcq7L/Q8eZP26jUysG2V27gSOTGmHIa6To75cQ/g+V1yyhc9+5m9xTlUYX7OOfD6PF7iadql0pMmLLnwBxazCV2/7JidOnKCvOcpFW17As7degjQsMimwbR/PsHF9DUVJ0oSl5WVanTa3/fg2SqUS+aKP1SUUd1odCsWASrlCEkegFPsPPMr27dvo6+1neXmZQjGgVlukXC5jmKb+kClJc4nm4lEWZyZxCr20YkmcuviFMp4fYEqLUrnKgcf2Mjq8mjBewcIiFglWJvCDErYdIB0ToQR7H95DuVjlxOQxVq0e56E9D7Fu1QCGbSGTmNHVI6RJjOVYeF4O1XWL2IYkQ0KW4QYVsrROkmYQx+TygkKuqL9vWlh2AAIsyyJOU44cP8DEpvO47dZ7CJsRUrl86J//GwQr7DzvFM+7Msevfvhv2da7i9hxyPkeGCANk/6+QW7//k2sH1uDsjKIEk7Pz2FbJqapgX2ONEHqGdux1eP0lfPsOzHNeTsuwrE9ioODFPyA+eljDIyt0w6rbhD2uz/3br54w98+vebtFlryKRbDJxTFZ2vjn/b4ufgUT3zszCye4nGb5E+zKf70OvxnKHdCPelD/Awt61zH869V355JsPk5n3dG9fsJz/8PZ8v8/3p74gvhSVRNpQuBrcYUhIpOq8Ml52+kkLcYHx1kdKiKKSWmMPSAu+PiBg6GdY6w9J/xWjn741234VNfHKZpPEH5023Bmdm9M7TI1auH2DCxirHRQWZmF/neD/Zw5OgUR49O8uhGJwWBAAAgAElEQVTeoxw6fpJGo8WqoRLHT85w4uQspaLL7vM3kWURS/OTLC4uY5kxx48fI1eokC/mNXhBKMDQK+YCisWAh+/cQ/9gD8KSuilUqusAP3NeOev3Vqk6u+psmhZZqi2gaRJi2yZxHHYLyAzH8Th16jTFUhFDGqwfHyNNtKIgZUyaxl1FVZBliQ5gFZpCmMQRmVLs3rWFLFVIw0QpwS0/uBvXtuitFmg164Rh1M0UTDlvYhXXXrqa9cWQWq3B+suu4K/ueoA3bV2rV6USQSdu4fk5luZiDh0+zuHFeX79rof4zvwyq3f0Mn7eGDv6HDas6Sfw84ThSncgWZImeh7OMAVZpjBNk1Yz5Cv//EO2bxnHtkyU0BarNE64+Xv3MjLaR64Q0Gq2KBQK2LZFtadMs9nEMm1OnJphbGSYOEq45/5HWDu2CkOafP2mW9mydRxBRqVUYnpmCtNysH0P4djUFk7S05PDtjz2HTjG2jVDXSqsoru0wP59x7lg5zjTUzNUy3nKpRzHT8xQLReYPT1Ho9GkVAyIoxDPsZmdmcX1fQxTz3bGSYptujQabSxD4jiOvi2rDCFTHNci8H1qtRX8wKfdaCORlIoBtueRxCn9fWWCfI52s4PnB3iuS5KFlIoFBAbtVsSpqXla7Q5SKG0JEnrGwnVcwk6IYSksy0JKC8v0GOjvRUhNOTRNk96eKkqF2LaGdxw/MUm1VCDNEtqtNiIT9Pf1sry0hGs7/OiOfRw7eZr144M6VDrVM0+G4dBqRGQZGKbED3yiSFuUzkAGtJocAYZuqJVWRz/12R+ya9sYkGrrsrDZd+AEex4+woW7xxl2UtatW89Hbvg2v/Nbv83Yqg1c/7o38JG/+gRxavC8yzexceM4Qd5gYLCX40eWGBrJs2v3Tv7hC9+it7dMoeCzuLiIlALf95HSIsjphQlLBigVI4QiS3REw84dq+npsWi3OtTrOjsrTbpofFuHGYftkFZD22+1XdMkCkNs28awDKShyFRKY6WGNPTqdZLE3WgXhWHo1fClxQVs28IwLA0csACRotDKvRACN3ARQoeZR50Qy7SwLEG71STLBEmSEeQ9Fk6fPtsEKpVoKqvraFBLYtJqtnRWo9QrzVEnIuzEgMJyPISh0XL5YgmlTEg6YJgoBLbrcfLYIu34OVx7zcvZ98g+RkbHCDuK5z33Bbzuda/l0KGj3L/nEd79vg/wzzd/l69/80YOP3YvN33rm3zpyzdTLubZvmMzx44dp1QqE6eQxgmTJ46xuLjEC1/8Qm677Xa+8pUb2bzxPB66bx8bt2xDyYypyf1cdN4lXHTRsxkY2U5v7wSvvOZ6No8P8aZfehW+W+SLf3cDnmeRz+XJ0hTbsWg0GvT29SIwSGJFbaXBxKaNzM9N6owwwyVprhA2W/T3jjI1M4s0LPoGhzh/93n0VQeQ0mF+fh5pZhQKLnGiQEkcxwdS/usHPsBLXvIStm3bwnkX7GS5dpo/+S/v5Ppfeg2GU2DV2E4sz8PKCYRp0tvbSxylfPd7P6Kn3EuhEHDTjd9jzwMH+NT/9Vku2LUBr+hTGajSP9KHwGJkeBXfveUH7NixAyKfw8d/zJqh5/KC513LL731lVQq/RRKAQtLdSpVj7n5GYJCESUt2s0WmbCpVnoQmaDZUbz5V36ZUk+VhZVlyoV8d7bS59nPvhDDSkmRnJ6doVgocvToMSbWb2B29jSWZbFm3RpMMyNTEXHcJghsfvyjW7n40ksxTcHC4iyZU6R3YBhDZsxNH2Zi4wbCpKnhQ0aBarVKvVnD9xz6+vo5fuQIlZ4BOmFMHLWRKuUPf/c9vO6y6zg2eYh1aycwDEmpVCaKwm4sgUO90UBIyYsvuJLLd13OwPCgLnJNU88QpzHtVkMHgDuWJmpKi1xQxHVdxlaPcGr6OD3VQZQQhJ0OrufrkZLAxjC0RXygfwhTWrSjJkJmSGFQW25QKFf0OERrgeb0EQ49eg9YNkNjO3EKvVhunnqjSbVSQSXaMp8kGb3VATqdENtMMYUgJaHTaNKOFK5fRBqCw48dYPO2bczMnsJ1HYqlEquGq3iOoBOGOIZFJjPtiLEsoijuLozrBbpEAbJAM4pQ6QoqzDQIDa3QO45LhsWPv387w8M92KbJ0ckGBw7N4Rd6CbMltm/fwv333c1sMs9bX/ti7GgffrHCZReuZftzruAPPvoBnr3lEqSQHDl8BClM+qs5pGgQp4kG9OQK3frPoNHUsSmgcGyLuN1i8shJmlHGmvEJ5haOs+/RwxRzOY4eepRq/wieHzA9OcMjjQd47/v/9GkTPbrCenKTlil1Vih4vBh7erN1hop5tg79aVSR7vPVEzLmxE/Y7xN//qfs7Slf/iwX2DOzVP5bt39LY/g/srkTz9QW9/+nLYyaTzrof6+/4Znu95yy8hOe27n179i75xD9vWXm5+qUej3uu/cgO3etZ+34Gl0UmbpR0KASpaMCnribJ19j5/g1T5/BO8dBnf051QWhPHlf3YBQIXR+mlS02m08z6PRaJLP5UiSjJtuvpVKKcfu87Zgex6GCYKMVKUIHBQxUpiPz9hKyVk0rdLwEqViaDU4fPwUq1avJUNqi2KqrRZCStJMZ1IpJbpERTClRuRGccziwhJ9fVUs1yZqt4miUAcaC4MkgSRJqS/XWVxeYnz9Om3RixpdO5kmYcVphG3pmZg4DrEtC4QGIfieR9q1achuAaqSlFarTi7va5T54gIqEVhWSi7vg3IJk5Dr//J7uJYmH642JCfJyJTgNRcM8wu71xEEvn7DNCTCsLnrjoe44IJNSCNFCm07zTJoNTukiaJYCUjThEatA6QUCkWajZaedWy38PN5Hfou0Uh7W+j/S3bm1GvFha6q1Gq2OXVymnIpIBc45Is9nDg5RU9vleWVJZIoobdSJUpbOG6BJAk5MbeC1TrM6MgASQqICDI4PVOjb7BKkkScODnN+nVrSdIOUdik02lTLFVJU4M4jnFcS2cWmhqvblsmQqSEqcQ2LFrNFvlSgSQMuXfPfjZNDLNcqzPQX6W2EuH6Bn7gIYRJbXkZx3NpNTqYSEwXkkxQKBbJ4pRUaWtcpVomTmPSJCHv55mcmiFLE4aGBsiUhs2UK3myNEEJaLdDfNclE3oxIY3h+7c/xOXP2o5p6ibDtk1QFkq2QdkolaJUjCEtkjQhizOa9Yhjp06zfesYaQbHjs7h+zZDI1UdfisM4qRDEhl8+cY7ee3VF2O7DnEcYxo6diSOYh03ILrXbBdBXVtpkMuV+crXb+PC89fQ119CKcENX7mbV191MXsPHGXH9tVkmY2y+rh1z35K217Fl7/yT7zkxS/jXe96Fzt2buX9H7iWXK5As1Uj8AvMTC9gmCmuFxB4OeIkYX5+msGhPkBTQh3fJ010lmCr3kZJyBfyRGGEaZpkWcirr/tL/uGzr8K0TcJ2guOaNGrL5AolAJr1hg4hB9JMYVqWDjK3bNRZS3RKlqV02m3IUrzAR8ocSnS0gpjEXaiPAmWxMD9PsZTT8S3SxLRsfS5NaLcTgsCnvryCUin5YtC10FqkmVZFERC22wgBrqvx6dJ0SFMwDY3xXlyYo9JTot1u47g5hJJ84XNf57o3XEWSRN3/laDTaiNJMGxNoV2YW+KxE+Ps2LaFMGxx7OgRxjduxLWqtNsN3vK2X+ePfu8V7Ni1gSRqQ5aQpAm242DbLgqIwjZZpnjVdR/mU5/4r1R6hlFxB9OAZpiyOHuKgVVryZSBTGNEKhGOQ6JSLCLa7Q5CKnzfJUliWq02getguR5JKjlxcoq+3jKlcoF2p4VtmaSJxLQESaQAh7/4i3fyrnf/KUpoOFbgFzmy7w7Wje9gegFOz59mbPUo7/iD3+VDH3o/jmlwz117uO6669m77yEayymvfvXr2HneBTzrkt38wgu3E3YUhw9P8olPfILPfPavUaJFfRn8QLKwskDczvG5z/8db//9XyGJTMJWg3JfH1mcsTK/RKEnIA4t3vcXH+SyZ13KBeevozzSz+L8IsUgICOl3YbAzRHFHaaOHWZ4jY+IJ2i06tTDKSrVXnw3hxIpZC0Wl5boHRii2e7gWTZz84sU8ppCXV+u4QcBQdFHGgJDZUxPz9DbO0AUJliWTWZKDBTtZp1cLmBpaZlyuczU1DRSCmxHUCyWSLOUIBewMh/juQ4Gmjway4gYialSZNpGmkWkmVFbWabdyiiUypoKbJlMnjxJX6lII0o479LL+NCb/pK+VWWKhQJGd/ZTCkkYaSotQtBqNlAockFAFMb6NSYUlmmQJor5hQVKxRKWic5aFQZKqC7xT2AaFs12E4D9+x9l/cRmkjTGtUxsx8EwLX2up2Z45OGHuOKKK3EMl6XlBfych2WaRInCNNqszB2lNnuc8vA6Zuci1q7fQSNsaEIykMYhppS02k2kFFi2hyEki/NztOvHqfguhidJmjHKCfBLw0RZpsPJM1AqJUsz7rrrVqxoiZ3b1pOIDAMF0sQ0TdI0xfMCwjBEpTGGbZNhkgqPJMsQ4QKL0y16BnwsxyZJ4i59xEAqgzTr6FrPMGi1PHr6RjEtmwfvepQNW8aoN5t4IuGr3/o7jibzrB/r4V0f/Ah3/ehhpuen+cwX/onzereye+uF2MkU5YKHaecRaQdMiGLF6ek5+vuGMa1EZ40i6LRjkjBk//Q8F1/8Mvbv3c+2HdshbXPowIM0WhE3Hb+Nf/zHz3DX7ffyob/8OABf+sf/+5wNhPxJTZY0zvn4uebsyHScADxeG/+8lk0hhB5X6f7eJ9biZ5sm1a2Rsy4Mz3hC83iuTZ37GKQhydKn1/BPbc50PIPg38tF+tTjeBKPpfuw6/rPuGP8n1K5S9P4z//f/H0/qwv/aasVx4+eoBJN8fDeA6RJyvr1mhR4/Ngcuy/cDIZCSb0HJc5YKo2uCvL0333m00w9jmw9p6XxXMeZqcepkN2A8Cf/nQaKTKtZpkBh4TgewjBxXG3JMKTF5o3jDA72YHs2SofEoIShL+BMFzdCaXsTZw5NoDsNJRBoqqNyEvp7+vnRd+8H06RSzp+lfuqZHMXJk1Pk83lQkKWKMNRzUaalPe6O5RJ1wrMzR0JolVAIRZIk+IFHLm9jOzYA9VoH09QxBdIQ3efoGTnT0hdXmiZdNLTQb1iug+3aGIYgSQV+4GGIjNrSEqbrkfNzmEZKHIWEUYbjuFx3+SaeM9FDNj3Nb775Ml5z2RauvmgNm9ZUsT27G8Ru6POgUkZGBkGkxHETIROitolleUhT8uCeA/T1lYiikCDIY1qChcUlcvkctfoK+VyOr930Q1aPDuJ6FnEn1pAZQ6sLAkGWZbRb7W5URUaj0WB0eJAk6WDIFMPz6LRDfM/BNgVSOpiGzdzcPJblMXniOMuhYrgsmJpaoNybAxWh4pT52RqFUolb73qUXdvWYBhg2kUMwyQX5Gm3BWmqi0nb0mRRaduoTHSV0ZhOO8EQBiLTVlyVxawa7UUaGZVyHssWGNLGsiSWZTIzc5re3ipZohPSVQqOb+H6Pkppi6npGPiOAwaYtoltuERxQj6wyAUW0pKEnZAoSjl4aJI4buP5FsgM0zA4Pd9gZmqBKAxZPdaL6zq0mk1c12KltoLreMRJRJbqhitVEdJwQQru2/MYwwODDA5XidM20jC49e6D7No2TpJGel4jVZjSQgiLgd4Az5dI2bV4dt/UpAlCKEQXJFSr6/w/z/OIopRtW8ZApdqyZLpsnhii2Wxz9OQs1aqDZfp87Tv34ZcrPOelb2LHjg0cPnyUX3vbr7F+w2pGVwmajSYClxu/fgvrN47y7ZvuZOeuTXzp819h+85NzM7MorIYPwiIo1jbEHGRQJQ2yBWqxHGCadkgJEnc4vWvez5Xv/ZTvPwla/GDAlmmlaB2q43j6axCKSGOwi5kJMEwzO5qlQQMskyvDNuuixQJpm2SZS5CRGSpwrIM0jQmbLdxXJ8gFyCljWG4qDQiSxStegPf9xDSIssyLMvEcRwdB2C5JElCEodEnbQLitEQqSicZ3HhNLm8r+maWUSWpjiOg2HYupD4f9h773C7rvru87PW2n2ffm6vqpYly5JxJS4Y27QQqo2xgwmBEBICJIEkk/68CRMyCcmbMMmk8iaZDAkpBBsI1diAcQwY4yJbli3Z6rq6km4//Zxd1p4/1rlXxbKB95038zxvsvScR9K5u6xz7t5r/8q3ILGUw86dFxJFTcNHdFwDtVZGRTNJUu67bw+bN91KUPCp1xcpFUJGRwawPYu3/9h7GRup8ws//3oq1QLKso3kvrSo11dwXY8k1jQbTcK8STTfcttLyYUt9u9v48qMmaNHKY9M4KuMJ556ipGJERyry8zxZwmLRaQIeOePvofX3vpDKDvg5Ik63Z6kUBrmR3/0nbz+jbcibJtCOU/ONZYfBw/sR1mSfU/tM1Bny4hBXXf95XR7PVaW6pSKA0SkDJQkdlAgcweolMtkQL1R48KtF1CrzTE1tZ73vecDJIngta97DR/72N+iafMXH/0wr3zlSzlw6CiXvegKXvnKV9Bqr1BvLuG5JTqdBnv2fJsN01u46srLsa0UR/osLp3AyXkEgce3vv51Aj/krrs+xS233sz2S7YgPZ9WN6Lo5rASya69D+K5HgsLC2b9cGaIOj5eGICzwsjoOnQWMXN0kVIlxFYOrucze2qG6lCBJNW4jiTudfHCPI98499YNz1GlkUgUlZqKxQKZbrtjA//7p9w1ZXXIu2srxit0DqhWCrS7fXQmaZYKhEEAY7r0Ww0KZUqxNTodOrU60u4tsJNU+JYk2rBwvwCw8NTHDlymHze5/77H2Bqegrbtvm7v/84937lAf7hY3cSH8l43x0/w9BoGcf36fYi4tR4SNpKEveLId1ulzAMDa++zyuTQqIsl26ng5AWd955Jzt27GBleZ4wF7Jcq6MASyniXo9er4OybIS2abc7DA1X8RyHdqtOmsQoqQzsutFm+0U7sW1Jq1Oj1WpRKpXo9Gqki8+S1I4TOAGxO83cqQZBsUSu6OJggciMiq0SdDptPM/DsiRxanxutdaIrEegBMqRCC2oN5v4uSEcJyRqZ8RZm16vg+M65II8QyM5LBGjbAepBcpy6fW6CGGUbNPE2D30oh7SMpoIrutjyR7Ndt2gSJSBFNmWQ9xtGti5UiSJYPbwLOXCZg4fPUp5OMfQ0ACBbzw2F+eOctXFW7jh4mtZl9/A/Az81p/+Hg899jj/9UO/yXWvejFpvsfv/80f8tCBJ/mHL32SHQMXm+/ZVmhtGX59EpOkmlRb3P+N3WxZP8HJ5UWeenYPF++8GNtyufvzd/Fbn/wISXyUzC+xzd+J0/F56c7ruf6Sl/LtTz3BlmvXPSdGfP4O2tmJUZYZH8DzB5qcod7+/QmpnDmPVe+9591mFWaZZUhlFIy/r07f6nSzrM/ZfGGbhjWRlP8JvaQ0SxHZmXG+WEOnZfr05/pfHpa5mtz9e3cddabPe/GcldxpI+O6ysMrlYpkx59k4/oNHDp8nDSKOH5sjhtfdaWBoQmjOslZSdzqDcHpxOiccVq+dpXrd3pbU+XvXxD994yEebpm49DHY3LWjvSTyb4EsBCrOrjmZeZpeF5KWWtzFmTG8DcTIHQf1iHIRHbO/FfnY44nhYuUkmcPHaTZaDO1bhQhLZSUdLtNHMulVMyTJJERSLFso0xFRrfXQ1kWCOMzZ1kWUZxijFJt0BaaFmmvSZArkGljdH73PY8QBsZTy3adtYo9mSZNUizbcPGUso2RdGZ+n0kSs7S4RKO2SC5XZP5UneWlBotL8wwPjNBo1I0DARntdgdLpGRCUKkWqVZK2I5kcXGZfc/McN99j3PR1mlAY/UhsZ1ekzTNcL0izZU2Qc6oJAoB42Mj6CzFso2PYZqe7izkwjwpXTavX4fnhyhb4rmSNDJGnMqy0dCHPCpqtQZBkMN3PdJejzjOcP0SaRzx+BMHiHpdZmdnmZgcAxnTaLaolIs4lseug8fYNukTeB5SGmVONwjxfA/bEowMDtJsGxEJNHS6EZbt0Ol2adU7DA6WAE0v0ugkQZCRRClz801816HdbRHmbeK4RyY9ulGE5weABcKh2WzjuS5xzyT1qdYIIVmuNwgKHvWVOoGf58D+IxRzFkL5HDx4gkolTyZcelGnz6kyAj9SWViWIAwdBipFhIKCV0DaAVEnZnmpw/jEEGHeBNhJFBHHCc1WB6UslKVQlsRxIY4TlHIgE0gkoe+RyxfQaUx9qYdSNhdsHKbXq2HZNmkq6PVSvnzv42zeMkqx4JMlGi1jXMeDTJOJBCldssyQ6QWCbquLZZvr3nIcut0Ozx6cZWigjBSSOz/zTS7cMsoFW8YR2jwgT53IuPHqi9AD03TaNu9+z7t52StuYnr9BHe84ze4+XU/wL/80xd41Q9dz9zcCjPHTrFt+yYuvHAaKTWeH1AolpFSIYVRh7RtaDab5MKigUdHDTKd9PkzHr1exPR4nunxvjVHf70SErLMMpYdul/CEjZp1EUS0+20cDyPLOsSdVtEvQRLObTbTVOxlxlJopHCIopauG6AlAGIuN+N0EglaDWbeK5LWMyjyei2Ihbn5gh8geMVkFLR6/VMIcd1sGSCbZv1rdvtIvAoVQdNooYC5JrIi1l9jdCN1pkpEMQJrm+UOk1y6tBq1Lnjxz/N+z/wWzRbGYOVAD9XQUmXxx/dzQc/9Pv81Uffy7r1E2vCCfQ986KoQxDmcD2PXq+L1qnpFIoMKTVCWgwUmnzyU99masMUQ2UPNywYsarFBWwn5N4vP86mTRtpthd51WtegW9LQi/AUorZ4wfwXHjJ1dcQR22Koc/CyRO0W6dYWOoyNj7I/Ik9rNuwA51Cp9OhGzVRtk2sexQKZRItTYcxC4lTQLfRaYytMnZs346lbCxHoUWEkAlLyzV+/G3v4cixXaybnua973s3gVPl9tvv4KprrmFkchI/yJORUioHRG0X5RaoDBUQVoKyHOYWFli/fpyl+RqOlWelFTMwUOUDH/hFtlywkV6nxmCxype++EWGx4bQNnzxs/fz+X+9h8nxLRTKGSMDm1hYXqI6NIASebqp4NFvPszObZv6IkAptrIoFaukPYFrhSil6Pa6+F5IvlKiUB5GKgPF1d0WWRLRaqxw7dXXcO/d97Bh0zi2DUKkzC+cRGQpaRoTJxotJL7jIgDX9Y3okNbkc3mkFiRJTJIr4PsBf//XH2diPEehMkShWOAv/9vH+dTn7ubYQ8c58PVZLrvwcrZPbOfSLZdhKZs0Tjhy9BBDA4M4lmUKmcomjhIEwliJZNBpNAj8wIid9X1ju70eruvT6bS4dMd2pJKE+QJJmmHZFo7voTNNu9MizOf7fngWg8MDkEIqwPMDMiGxLRuZWijXdMca9RqF0iCFnENz+SgBHRaXF/AHNtCx81Sqg1QGhqhUqiRRSicycHlb2Rw+dIhdux5k8+ZtpBpcL0CnGt91II2xVIwULqlu43ghzVYX18+R0GN5cZFqeYjl5RUOH97Pnt1PsnndFCKGzLbQUQdpSZTtGF4/KRKJ43okmUMuXyVLW8hM4joKz/PRUnH02DEKQQ7LcY3ZuRbc/41HmK13uXD7VpK0y0ChisokTz/7FEsn56hWBaWgTCdukSBBlHjFlS/lys1XEUYFDj52lA/8l19A2Amea1Epl3n41B4ePPAIyj/Bdw7t4snZ3TzwzMN8+bFHePDQd5jpzPHgwUf4zqE93P2d+9l9/AAP7/43bvvxN/PEvmd58cQ1XH/ZTQxWh86IvwSVoSL/24d+lTe88TVnx5XnxLdr5uznBKFCiDXfz9WhZN8LWfS5ducYmJ/551w4ps70We+v/kxn+oxY12yn1CoU9Aw+ncR05rJzY9rTL+PHef4E8MzEbrXreOZYnccLJXZrhu/Z6f+v/vt8yeNZ+56HTnU+eOd/mOTu33uce/GtXpBnjjVfjzN8P7LZPSQ6ZWp6nHK1yNT6CaQSa2a+/c3OemV9AuzzFyLE2n6rcEow/z4LK33WvEwl/Hs1aFy1OjivP8faVfxczPTa8b/LKTItWF5cJLBh8/QgvXrTJJaWoteqkWHmmpEhpEWS6L6PnGNEE5SpONqOvTbfVWXBXq9Lp1vDc2ziKMWxHGzLZcumcarVIp5r9aFPKUKYhUkpZToQlrVmONlp183PlYXvB+TCAk/s3k+z0WH/4WNcccUFOK5PRoIQEksF+IFNJsBxHQYHq/R6bVrNDr4fMDk+xkXbppGKvhms6Zauqm9JIbFtFxCGtyUEUljm8woTJM8cnSUM8ywv1/oBoI2SFhkZSRKTac3hQ7N4vjHzPnpklnwuQFkK3/PRcca+fQepN5rkcj6Oo+h0IzZtmKZcylMshsR9ewsyOHr0BJVqlc/92y5+YNsoStnML54iH7rMHD1JY9l0FeIkolItkSQJAoskMQbHK7U67W6XUimH6/kGchelkGWsNJqMjg+QJgmlSoFMCJrNDnMnajQaLaJeh263g+/aBEGOpcUlPN/HsV2UY9FutYh7MZVSCekYJcSRoSKWktRWWhTyGXHUQpEDNMo2cD8lVV/6vIHjWGRoHC8kjjKiLKHdblEs+vihy4GDx9m1+xgXXTiJY9vUG20KhRApDIe010lQ0ibqm/z2ul2WlxpIKfnk57/FVZdvZWWlhue5+L6PpWw+9YWH2HHRRoaqAUFgYHeWZSOlS6PexLbNAyzrW1tkmXlYWJZCiIzl5Tq+52NbitHRgbVrN+51GR6pYtsezzwzw8hYlV/4y69w602X8lO//Tfce/c95Is5Pv3pu7jt1jdz8xtfy13/9M+87Z2vxnU9dj28nwu3TlKplFCWwnFdkkSz67EnmJgcRVnGckAKRRT1UP173XZtlLL6vpE2yrKZnh7lTXf8FUSHLo0AACAASURBVLe/aSdo3Tc/F9iOotdp4zg2UgrSSON4LkJIHNfvwztd5k4uki+UaLXaFEoldJoR9SKUtNA6wbKNZ5ulbLq9NpbtYDseQghc30Og6fV6xvhcGnXLIB8ghU8mTDHHti2UUqwsLeGHOePVZRtObxx3SeIYrTOyLCbTKe1mC6kypHSM0JSOyTD8m9rS0to80zTljnd+ir/9qz/CsmxcJ2D25HFaPcE7f+J9/NS7r+ZNN18NZCwvLmHbRqwl0wYt4Lg2c6dOmWvdcUhSwwHstFsEXkAv0ti+x8U7R8GephjkeezxJxgdGSNNNUmiGRmbplzNs7J4kkIuQFkud3/hHl77mtfxgZ//AI7jUCqVyeWNUnKxVCDRKR/+3f+LV7zsh8gXq/h+AcezaTZblPMDCMcUnGorNWzbp9FcIQgChFCs1Jrcc/e9rN+wgbvvvoeNGzchyFBCIjLBW25/O7fd9kaCXMZAdQTfzdPudPixd7yTyckxbCWYPTnDwOAAjXqb73zrO7z3J9/NpS/aSbVcJEs1A6Uqy7VlBgeGqTUarF9vfCJ/7B1vx/M8tmy5CGFFPPX0U+zYeRmW5fPrv/pr/MEffZhjR2aZXjeCJRNOnjqJ7XlIJciUTb5U4SN/9Mdcevmlhg+rTVf5xLGjpEJhWZIjRw6xd99+Nk5dwNyJBYLAY2lhlqSbY3Ghhh+G9KKI93/gZ7niyh/g9z78B1z/khvIF0o0ajXKlQGCICSKY5Io4tSpOTrdNqVSCZ22iboJrpPnlrf8OHfd+Vn+6Z//hb37D/Dwt3fjHCnTW+ox6o1w04tuYPOGzUxMj9LpdpmbP0G5XCYIckipGKgOoZSgVquxGtQKWyJx+aePf4KLL9mB4/kgzZrRqK8gsxSkZdSUXQdbKeI06nskptiWTbfbIY6jfvGhRxjkjMhIBt1OG+Wa55aQCiEtVurz5PwSX7n3a2zduhmpM5pLhxBJk0ZL0EhscqVx6q2mSWyFRZZpA+8/sh+lBE8/uYfFxRUmJifo9Joo7WDb7prdjxQZtcVZ/DBEZSAtm8PHjpFoief7FPtG3rlcgSDIoeyIMLBRjiTNMqMHgM2eXY8RhgUKOY92q02sM5xchdmjM/h+hk47eE5g4PQo9u3ex9j4KHHUpd1p0W6nICRXX/tyXM8o0UZxzIm5E4wMjOBZLVwHlHLpdDsUSiOEpUF0ErG4tEgQhnzjm/ewfXILP/qDr+aq6Z3csOMqrtt6KddsfhFT5S1sn9jBzslLcKIiTz2+B1VQoBOiXodUC1rtDtu27mCp2eSi3A5u2HEds8cOkmYx69ZfYATq+kGjAEayyed0757f9kucbhicER+eGf/Kfvx1OsDjeWPAc5O7czt8a7EmZyc3z2cxsCY8+EIjO/sczzfO5yP9Qjy4tW36nTZlmSQ3S/VZn+8Fkzsh+vHgC8NX/zO5+x5H9jy/7DPfP+t1nurFuSIqq2pAq1nZH//hn3PllNcnntIn3XO6Icb5EyFz7Oefu+mX9RPAc7N9Ts9p7WcZz2mtn3s+Vqdzxjm+l/HcBWHtADzv3Q1IBI7rksuFtNotlKtZWlnAsRSOlcNxHWM2bikyLbAtG6XU2jHjOEHrFEsZsRitNZYl+zYBLrYrsO0qlhQIldCNW6ATdJYgpCZJI4S0T9+AWYaURmjFdDsTrH63cLWaI6UwqmOey8ToAH7o0WlFuJ6i3mijUwvbtUhSY3K8NL9IsVTEtl2SJCXTqcH46xTbdomjFKHAdR2iXoxlOzz88B6q1SIzMycolwooy+LQoaPYto3jWtgS4jim24splEsgjaeiFIK428F2HEqlCkqZ9Szu9rsSmI5Hq1FnaLhKuVJm7tQirq3Il0rUl5dJkph6s02j1qJWq1Eo5BEIBoaqfOQLe7lsMGX33kOsnxyg0+1SrhR55MlDbL1gA0889SzV4hC27XPs6AkWF1YolULIEsbGB5HCQmemkePaDvVGk+GRKnEU4Xg++w8eIQw8op6mVAxwHCiV8pAJXNcnimMsJTh5aolcYFQOXcchX8iRJCn/dNcDTI4ExvrBcXFsw+2sN2rYloVlORw4MEMu9EjThCSK8X0HnaV9b8ku9eUaQcHDsY20vxAwMFDCUYowdDl0ZJbh4Qp+6BN1e8RRyr985iE2Tg8R+D4Gepxxz/276TR7vOqmy8lIyOVC2q0urmcTRQkXX7QByOj22uSCkJmZOfwgQIgMP3D6D05poItxbNAAOkVaNkkaE/g+e548xMhIee2GE8Cjuw4yNlLC9RwcW/DZe77DfccE73n91Xzs3if44dvexK//+q/y2te8hn37nmV8fIpLLqvw+GO7KJeL/NvXv0On1WTDpmkc12VpcZFHH3qSrds2Eeb8vh+kRW1piXwxTxR18Vy/b3cAcWQERtLE8O9ufdO13Pjq3+H2m7dixJAs0tTGsjy6fT6pIMZybLq9mMbKCl7o0W60KJbLKGXQAEoodJbiujapToh60VoRzcCojUy7khKdZrSbDaTMsF2HVEuULQnDgChqY9k+va6x5nBch1azgVIOyjJ80FU+oOPakGU4jrFEkEoR9Xp9M2bVTyyNVUzUaxLmiyzNL+E4Dm9++7/w1//tT3n44W+zccMmbOXw9p/4ad72lm285bbrIUvpdTvoDLwgwPY8DA1a9M+VkS+WaLdbJll1XUDieS6NegM/zJOmMVJavPVtv8ytt76eTieiUCiQyxcMvCx0WFqcYXKiyP69j7K0lLBt28W85LqXsmPHdpaWlwlyIbZrs7i8gBYCP1fiyhddgbIkdugxe/xZFpaPYlmmKyOlJNERpWKFqJtQKAUkaUa3k0CmyOXyVMpVVmp17rvva1y24wqSCJ556gCjQ+u59PLtfO4Ln2DHxZeZNTwxa3arvsxff/TP2X7pxQRegO/kOHlyjl/4xV9k8wXraLZaBp4vBIEX8v6f+zmuuPIqvMAzvmk64r9++CMsLbbZvn0zpVKZYqnM0/ue5uY3vpHh4SKbNm5B2pqFU7O8610/zQ/f/lZWanXyYZ5arcs//uOdLJ2a4ZIrr0JrTbtRY3H+BJPrNtHqNCiWi6ybXk+rvsKf/PGf8ud/9pe86ZbbKBTLlKpFNAmFYpmX3ngjl+zYyU033Yjj2rTbbW648VV89evf5pN3/it3feqzfOLOz3L420ep9KapzTR57EsHaJzssXCwwfU7Xsr1F1/D9Tuv48ZLbuCKiy6jMmjgrrovfd+LOriOR7fvcee4JimZnztFLp8jy7Th5PXRLcdnZtCpZsPGDQS+4Vwab0jjGWvbtuleZea5V1tZJpcrIISi1WzT68W4nofruH1euugXUgwSyLEt6AfAq0XWJIvxnRzTU4PUF46gW8cRmU1QXEcthc2btkCcUMwFLMyfpFAtmIJRJjm47yDlvMvS/Aw67rK0cIqo26NUrPL0vj2Mj08ytzBvigc6QlqQRQmNZpORkc14fpnl5RVmT84yPDRCohOCMEd9oYHnuFhScuiZZymUS1iOw8DgBK5rEacxSllYrovl5sniLq4ryPnm+ZNlKVJmDA8PY/uuQZAoxe4nnmRobIpyZQDHdogiY+2wuDRPq96kmjf2GFGm6bXarLQ0QbmCIxXFUpVHdz3EtVffyKFD+5kaG4DUQiqNjrJ+EVv1i7cJuULItS+6gpdceAXDacibb3wdO6cu5sLx7VQo89YffCvNTpPAD0i6NbqtOlPrL0Ba1lnRWGW4RGHKFH3PFVR5bmz3XGrSapy82sFbhVGuxcvydBz6vahinu/91Y7ZKmruzOTnzETSNDheODH6XkVOzocI/F5iYalEH0apn5NIfi+cwxdK7IQwRRrbdv4zuft+xn+fUs/pcW5yd6Ya0CWX7EDNPX22kM/5DvtdTrXWLFvbXKyldi+43/eToJ3RUv5e9z3fV3QaLmqO8vz7apTtgOWQL5TQ9gAFzyLpLJNZgjQB13PodjqkqamdOK5DkiTGf6bdXltEkiTpi11ECKFQyiNOImKMOl6jkaIznyOHZonijExbBGEJIYxsfJqYjh2sYrfpeyI55hNkGUJolpcX8Hyfz939LS7cPIUf5Dl0aJZGs0G1WuaZvccZGjHy/VIoeu2uEXCJNYePHqMXtem0Y4qFAlkm2P3EM4yNDdPrRcbDKBN0Oz1Onpxn08ZJ6vU6fuBRKpUMT1Bq4l4HnWkWl2uUK2VU33+MLMFSNkrCnif3MzhcwbId8kGeOOnheQ5JnLG4OEchHyKUTalQwLFshCWZnTlJ1OsxtW6SQhhSqRQ5ePAYnXaPwZEy/3DfXn7qNdvY88whBgohh2ZOMj41wuYLpjg5e4Tp6TJC2vR6bQLXp1TKcez4KYaHSiwt16k12uRyIVHcxXIcLFvRbLRYWjRBZrlcMAms59Pu1vsdzZRCocD8XJ0TJxeoVvPYStFqdamt1MnnQ1ZqDdzApWjD8EBIkA+JteT4zBJD1UkcJ6DdibEsm1zgEuZMkKp1DOg+fNSDNOPRRw4xOjrK/r0nqDeaFIshYPwJc6ER3ikWC/1rRNPtRBw4NM/kWKnfQRVYlmLb5ilKxTzNZpsgdHnsiWcYHxvl/gcfZuP6sT7nzMCZlVB88rOP9FU0NamOzYMqU4DuL/rmOs3I1kjXg5UyiY5Ik4Q0TREItmycwnZtoqhNrVYj8F1uufZCep2EuSNHmI/gD//wI7z+9W/g3e9+Lz/ytrdx+4/8HL/w83fg+w7bd0yyZ9d+Nl2w3hRWlOK+rzzKoYOH2XbRRszzx3T0et0WfuChExCW6dQ6tg0YeHOaGq+oW1//It7+Ex/n9lu306w38QKLVnOFIGdj2QKymFSbVTSf94miNn6YQ0kJQuO6qwUXTUbahyzmUZbN4twChZIJ+tM4pdvtYVkWnu8jZEISJyjlIoRFkkS4vuHzWZbV79CkZJnG8fx+R1Li+6aTujg/TxJH+H5Ip9ft8/98wKw9SZzgugGL8yv4nuESh7kCH/yd3fze7/wy3V7Kxk3rQCje+a6f5Ffefz2j4+OITLMwd8oocfbtEpJUk0ZxHxJvri2lHIQQWLZlUAGWz8LcHKVykW63gy0giROGBkOknWNybB0zx47zG7/5QW688Ua+8cB+dm7fyf6nD3Dhhm382gc/xP/5kT/mDW+4mcHBKkEQgJIoJYjjGN93iWIIHZuZE4dxCzYqLjI2NkK7lXH04AqVQSNKorWxudBZxMpKk7u/8BU2btzCwEAFxzEFs82bLuDo0UcYGs1z6PBernvJlUgRMrVuENf1WFycY/bEIn//dx9DiYzXvvrl+KUCUZRy5PBxLtq2jVhkWK5COhJNhuv7dFtdrr7mGnKFnPEo1BopNJe86AoKuUGGh6roTBPmXKqDRU7NnCLMKYKgRJYlKATvetfP0OkklMpl3nrL7Rw4MMvPv//nqQQ2g9PrWV5eZGigTNrt4AQFPNcilwuIY03UXWHThgt48y13cPjgcQbGQp7d/xS7d+/jh9/2Y9z/zQeJ9qWcfGKFzlKP+kyHW264jRdvfTE3XnYDN156IzddcgMXX7gDL7CI45hqtWCg3rZCWoYfZ9kOSIu4r+hsEqrTXnOWtDmw/xCTkxMYrqiL1powZ7q9poioiaOESrGM71voLCJLdb/gKU2Hsn+fKikRwvAEA8+j04toN9vcc+/dvGjn5fTibr/bbRNHEUJKZk+cwvc84y2ZRohMIjKQlsR1fOIoYnlxP45uEWUF8qNT1KOY0VyJiJQ0lXTiHlEmsHD53GfvJEkjgkAxMVxkaKRKmrUZHprk2OH9rN+wiYnJdbQ7HcqlMrYtyOI2ys4QGsNndwJOnDpFpVJiYnw9tYZRntaZ5pEH7qVUCvE8GBkcw/I8ukkLy5HoNEILafjOQtDpxBTyHjru0m13idMYmRoBMK0TpPR48IFvERSr7Nk7jx96FEtF42Ec5lC2Q3VggCPP7qcSSlzboytj4nbM5PRFaFvRXFkxa1OUcuLELM1Gg4nhHJ7nI1SELb0+R9sl1SlRr0slCHAdi1YvoqN88rYgFTYzs3Ncc+2rmDs5g2W7DA4O4SpJp91gYGQCy/P7qMzTSc7PffCXuOXW13335G4Nc3j26HT6NIFzt++P75dzJ8/pBq526lb/fqHjfLfk7n/WWJ2XTvVzqFv/X6hvgvkelGWhlPUfI7l7DlTw+xzPW0V4noTku1UdTreUT1+glm2RHd+z1qBbO/SZfDQBhqchnvsyGMs1LPHqn+ckducgLVe3O/fnZ/LgzuTkre1zFvTy9D5n/n/1PhfnTPXcFvrpBG/1s51bETHKmav1HcdOmJ+vkwkPx1ZYjkMSpwS5nEkGrL7IhOp3QYVEZhmZspHEdBpzWHYe11E06kv4bgCZ6EO4LDzHRicZR4+dpNPuMjRSZm52Gc93QJgqvCErJwgBlpRomZnOmFBkKALfhcyYcQc5nywD1zNVKc/xcFxFqeCiNXR6Kfd/aw8b1o2a94shuTAwqprSqB8Oj1QQ0sA+4zhGWYLQt6lWqwjLxfVDvnrvw6xbN0ovamPbDrYX4Hkh5VKRbrONsjKUNB44cRKTJBlDw4NkSCAlTVqkWYYfhtSWVyhXS2RIbNum3mxiuRbtVpckihkbL5Om0I17dDsRGVAoh+hY88XHj3HdBlAopicqVCo5bBWQpG1CP2RhroYX+HhOSKcXE/oeI0NlMmHjWT5KSVrtFrmcz/JijVqtSaVSwfUC9u09SLmQo9Pp4AcunlvAsi06nU5fwAYKeZ8wyLOwXMd2FMMjBbTOaNYTcnkHJRX1Vg/fD9EJzM7PMzZWwcDIGthWTK3VQSmbNM1o1FsIaZHPF5GkZHgMDoR0202ePTjD5ZddRIYxmndUxkqtb7Db6xH1eizMN/jy157i9ptfwhN7DjMxMYLtKjodjbIkXmjEdzqtHk8/c4L1G8bZsG6MVCdIaSEwoj4oyc5tY2Rxm6efmmVyctx0woRmabGG53lmW2kKR0b8x+rfhxaZFtx932Ns3jjOPfc+TrfTZc/Tx9mx/QK+/fB+Lt2xnm8/coSXXLOTl9/+s9z/b99gZGiQ9773J0nTiN/+3Q/zmldeShjk+fjf3s2bbv9BvvD5b/Ds3oMMDeQZmxhDkDK5bhzb9Zk7MYfruUghkJaNspXhGkpJt9sG5SGFRGuNUja25XHrm67j9bf+BW+57WKyTBg5b228/KJer28Y7oCwcdwAEP0EPCNNQSdxH7Zoksduu4tl27ieEf45dOAoA8MVbEeRamMuXltu4Ic5pIIkSiCLybRESot2s4XlOPR6EX6Qo90w0Mg46hp0BRZhLgQyI2jQrwx3Wk2ibg8n8PF9nyyO8XwXcIh6Gf9wZ5u3v+MOcrkSblDgPe/7eV5+fYHX/tBOPNcYTydpTD4X0OpEeEGexkoNRwmkNL/XVrOBZbkkaQclXcgkgow4iowSbAYPfXMXA8NDCGkxPTVExihaxFQHhmm2O2y9aCOb1o/yzL5DjIysY7m7xJtvfwtvuPkNTE6PU6vXsF2HxYUTBJ5L1GvjeRZkEjfw8YIA3/ZJRZOlk7MUigXCcsiTT3yT8bFJ4hjq9SY/85M/y9ZNO6mWiqybHuauOz9FMefw0T/7A8YnpnngW49y+ZXX4IU5MpGhXJ9CYZCHHnwYnWjWTQ5z/U2XMbFuGyoosnLyJH4QUB0YoBvHKC+DrsuXPvMlCnmb0B9iYXGeOO2RC3KQKHzfptVqE4YelcGQx3Y/w2/96m/y67/y67z3Z95PpTzMl+/+Clu3r2fPU7uYXLeZPU8c4emnnmbd+mlecsNLuPmW11GphlTGisiox9H9SwyPDpHaNh/6tf+dm17xSjSaXrOGSCucmjvFL//mf2H2OzMcfPg4Y8Ekj37lETZWNnPHq9/Klgs3kSu4pFpjey7z8yf56n1fYfOmLaRxF7IML3TpdNumy2M7pFlqhIWkBKXMEzOJkQb5aOxZlOxbLGXYtmVQIZZFvb6EFwQEuRySjCg2sv5KGi/ISEe4nofj+OzevRvfz+EHPo16jUa9xr5n9hI6NqnuoaRDQobnunSjHtsvvhjLNuIrlu2QpgLfdxCZpJjzgASkwHI8EJK5uSWCIKTbnCNpHKdbX6QycgHSK7C8uELohmSOzUp9hUKhgGVJvvWNr5D3HRoLS0xPVBkfzEGWonWPcqGM70g2TK/jgW9+k63br0Q6mk6zY3iGaZssaUMGaZpQa8VMTG0hTjo8/sSjbFi3gVa7QeB7hLkygefhBQKdaOKkhS2N1Y5OM+r1FpaGw7OzDA5N0K0vgASN4VQ7jikk0+9KTYxPIa2AsOwxPLKRcrWMcjyOHDvG7PGjiDRlcf4gI0MDWJ6DbjdZbnVYaEQUC0WSVCMkhIUcvusSdRfRaRfflViZj1ZGkTrDqPV6fp4UjJKusKgUQpwgQGaaYzOncMIiw+OjBEGA1oYqcvz4AeZnZxlfvxmh1BmNhownj+3mta95ZR9IdkYiJmRfMOWcwHItdDMBoG3bZ719LqeOvmaBTvXpOLJ/jjMTobV/C84SEFnrfPXpTvBCWhvmU+gsJUP3aSzfHRL53I8mzjr/uVy61ZGmyZpwzOq25pmV9vd7/nO+EP/vvHPCPPv/E5b5P3r8LDUXmDz7i/9+EshVVUqEID76+HfF0r5g6+5899YL7/ECEzvjGEKsXfTf7eI/X8L73K/jeSa69v4LC+DoFPL5IkEQYjsu9doSQpigxrJdpO0i+otAqlOiKML3A0AihMRxbGzXp9frks8X0Fr3xVYcpIBUa3QWs+mCaQaHKiAz8oWcMVSWhsgu7Zg0EdiWR5Im5oGRpCRJ0uc1dU0iliSsrCxBlpHPBziONFj6Qq4vruHyibu+TrORMjGSR2eabi8iVwiNKh8ezz5ziELB7sNbwLatvteOT5ZZ/O3/8yWe3XeYV73qKh78zmMMDpTxA59MZzQaDYrFPFKZh642Nz4Anme4Z0oZnqXCZfee/eTyIUpmWMpw1mZnTzI4WCaK2+hEEnV7nDg1S6VSRgnJJz79NS68YJJKuUAvavO5R2b44WtH8H2bXM5nfmGJo8cXGR+rYgmHQuhjeR5Li0uUy3nm5uYJQp9e1KHRaPc9+hyWFhrk8yUeeGgvw4M5LAsKOQcvcLFsFyUtaivL2Jak2eqQy4UIqfjmQ3t4eNchLtt5Ae12F6VMoj87u0y5nKNWW6GQC7Bs05kZGq6g05RGvcXAUBWRCaqDg2idkiYR1UqFlVrDJLn1OisrHSqDJYLAwfMESapxXBuRQW2pTqI1QejjuQ7KsijkPUpFD50lbNkyjuNKI36SwvHZOYqFAkJmNBttJsdG2H9gltHREkpK8xAgQyqbOI6wLU2vs8LE1Dipzuh2Ilw3xHVNdb3ZaOEHDlmmUX2F3CiKaNTbeL7HhZsmSbXm4ccOE8cJ+ZzHkaOnuPH6HaRJj7ENFzJSzfPXn38YnaW87GUvY2CoSpLGPPbNx5k5fpCbXv4D7Nq1h2f3HuDNb3ktU+vGAM2zzxxlYKDI4PAgOoNcLsR2HCOrnkGcdEFDFMV4fg7LclESOu0GjmuST4TgljdeyS13/BVvve0SmrUGrm8bb8Y0NfAuaSDVou83KaSi024b7zvLwF6UstFpF88vIyW0GjUcz2JweIhGrYbtuCR93qwfBhj1zhglBcq2iHvGrsB2TFfUdkxC5ziO+T24BkKfRj0Dxc40lpKAJE1TPvfZr7N954XYjotODcdHZwm7HjtGofoG2p0m66enUErxljvewT/+3c+hlINlh/iBT6xNshjHCZ7rsLy4SBh4xFGEF4T0el3QGd1OiyAsIoQkTSOUhUn0yEiSlMmpSRzPMPaltPmtD/09V191E67js+2iraRJRKvR5mtfu4+hwapRR1SCIPBI0xTPtYniiDAImJk5RrFUZGV5hUKpzMzxQ1TKJbQWSJUQ+h5xHON4PqXKGEmk8ZQi63VpdWNe9vIb+fK9X2bDpo3MHj/OyZMnuO3W2/nZD/wSv/Sr7ydNEoqFMo4d4CibJIqoDlSZmBojYJnZ2Wdw7RKdXszExEb+8Pc/wo5LduL6DnFnHhuPsfFhhiaG6GiXvOdw112f4cSxFd733l/mjW96Na4TsrS0xKFDByg4IZ+481+4/6FvcXJxkdC3GBgs0eu1mZ6eZHkhZWJinOGxEspOKZYClpaWieMIz7NpNuY5cWIF25G0Oz1sETIyaixZfuZnfwXrkMtwcYwbLrmeS3ZcwtS6dTRbDUYGx9mwaRN+4NLr9Dh85DDlcoUsg9APuHDrRaRpimPbSMum3WoRuB6ZjplfWGLPk08yPDSCpRS2Ml00IS20kDz4ra9SKpYJfZ+VlWVqzSa5fAHLcej0un3eY2ZgvGAshHSGAJI4Jokjsgye3ruHDes3EscJYRj2vdoE01Mb8VRKmmkc11g8aG3iAsc2diE6SbEts77XFpt0kzYzs8colSv9xCojU5ZZH+MGcf0Ytl+gQw6Bj58v4Ody1Bo1crkcvhvy5J7HWF5YoL44w/rJQSwrYnhoACVjhIixpQcq4+ndT5Erlwhzw9RbXcKCTxIl7D+wj4nhAZK4bSDSSiKUz9GZOarVQSanN7K8skIuV+TpvXtJk5SHH36QTRumkGmC5bp9RESM0BZfu28PkxuG8MJhlBTYIjEKmVJhK5tup4llO/TiHlkmUFLT6jV5evdxptevI9MpM8eOMTw4jO+4PLP3cTZu3kqWtnF8nwwYHpoiPzzNSn2ZoXxAvW2QLK1mC99zyDkS3zNrgmMbr8BYx3h+0F8bUwQZe3fvZnBklDjuEvXanJxfYXG5zbqpSew+NPTxXd/CdwwFZnB8Csf1zorTvvTgl7j1zW9YS7bWCv3idDJlOmLnxG7fJRY+M7k7jWbjrKTJ6ENka10vJdUZAi7Pc7zvYayqv575/bgtcgAAIABJREFUOb+f/deSSK3JBMZjWT83ERNSwDmJqOH+mc61lPL5E9Hvkf937vgPk9x9N7XM/97OnhTyvMnO95xli1UunhHq+OeP/x3b14+eu9V5Xuc9GP274rw31NreYlUD8xyu3RnjOa3tF8onz+kCnn2uc6aSnd7yrPOd0RE8Z8PznxN1xocSBDmPTrtDmhj8ukCtyRCbSs4qjttAKXtR3FcgtWg2jXKebdl9Hl2GUuB5LhkanaV9eEuClMrI8EuBlqbDlAkNykEBOtXYfX8zqSzi2KiHuZ6N63g0G3VjqmxZSGmhLJskinl8z7Pc+obryOfNohyEgYGOppqoF3Pq1ByTU2PQ713q1CRkmpTPfPGrXHHJOtatq1KpFpgYHzGePTolSzPy+ZBUp2fIBZvv2JhfGxlpIVLS1MByWp02lq0oFAJA0et2qVSraJ2QkeLYLqVigXIph20HKKnYdsG0gfYFNu1mh39+4FnecGmVfN5nYaFF4IfY0ieOYoLQYXb2JK7nEQQhJ2ZPMjo2xNLSCjo1nnOlsqnSKgn1eofvPHGUK1+0sf892iwu1XBtI5ZjWwLL8gjDAt948Gk2rJ/EUYJN08O4riQIFAiLVqtFp5lg24J8PjCQxDjFcjyUJRGAbVnoNEUD9B8gZObebLa6hDkfKTKC0DM2DkrgBwGebWNZJnHudiLypRDHMbwUx/VIk5hUa8MbTHsmIEoylCUATRh6pDoj8Dy+8fAeLr9sC51WC8f1zWWeaTRtpLSII/D9EtIynNIHH97L1MQwqU76UFUPITIyLWi3OyRJShQZy46oF+P6HralWD85xPBQkWI+oFDw+dcvP8ZlOzfxzj/7NmOixT8+8CS/+zv/Bx/87Q/xile+glwux/Ytg/zJ//1p3vGjNzA0XObSy3cyd/IkudBnbn6BkyeWeHbfIbZcuJE41iiZ9Y3UMzqdLp7nkqSR6cZlINAkcYRtmetSWg4Iw1e97U1Xc/NtH+VH7thJqhNazRZhPrcG99JpghCCdrPVt3swZu5JHKGUJIkFrmeRpClxEpPL5RFC0O12yHSG7bgGNhbHa3YShneUIIURGJIiI9EG3hp1e30ZbUwgrY1yjTGMlySxNh6G2qxJExND5PJ5srRjLDeEJOp0eeqZCTZuXE8uzNFsN3n7u36av/+bd5NqDUL116WMpaVl/MDHVhbSMollvlAy6q2yf+3bNvliETLZLxJmLC0u4gc2cdxG66gP61U0Gi0yDT/+U7/B5z7zBW6++XXUGovk80Vc22bdhnV86lOf5rOf/QLXvuTFHDp4kLGxEQQYa5dYUx0Y6AfGRiXZdjSLi4sEQZk4EnjKo9PWeP4AloC3v+3HWL9+I5btcPV112F7kksvv4xMCzZunGZycpKX3/Aq/vTP/4qp9ZM0mh1SrYmiiFPHTpr1IheArchSl3YcMVCdJCMh7SWMjo4ShDlSndHptOk0MqqVARqtZZTK8bpXv5rf/u0PMTQ4zNTkNJu3TPF3f/sJvvrV+3jTm19PMV/mhle+jDjWfOXzX+azn/sML37xD+C5ATqVHD18EsdXOK7i2LGjlMslSsUqH/2Lv+GyK65ieekkvlNmZGKQfD7gmacO8cV77uapu5/i9de+HuVZhv9HRpxolG2hBNz/9a9x8Y4dNNt1Qi9HddCorT6z92ly+TyO67Lvmacp5Yo4rgspJGmMtBSlYpU4SigUi1iW7Md+GUoK4igiQ6yJ5YRBjlKpQrNRx7ItU3wQilarSS4MTXct0Tzy6EMszM8TBjmkZeN7HoPVQdPNc20SnZABruuya9djDA0Pk2qwhI1UkGnZV6m16XXbBqYtLbrRClkqKZRy5ItGpVenKSQZjoggWaFVO4EUIcfnawyNbcB2Ja12D8sywmUHnt2HEIp2a4kDT+7DV4J1E8MU8nmWF5fIhTkQAp0KEBYzRw4zMDTK0cN7mdywFce3sZXHyMgoteUFfFcaDqplkWaSUnmYWqvO4sICUgp63Q5TU+twbGEKrDLDc03sIPuRk5CSockBbFdSGZgk7rWQWUSaGhpIHPUQKMNRtDxOnDjOQGWCBEFlZJRyZZTl5UVGxybIBBRyRWzLo1oJcZVGC0GWpthBlaWVOsNDgywuLlOtVFEoPMvh4YfuYcPUKPRh++gUZdlkCJIkxXZ89u95iqGhYYZHR4nTCNfxiHotVpodVupdXMfCtl0KpTJTk+upLR9DxprxdReA7awpM4Lg649/nVvf/AbSfmyohOzrC5yO5c4rYrLaUTuPqMqq7sSZCWLWbxeudfY4rVeRkfW1FPrnO8fT7vni7udTrz+9AZBla8+Bc0eaJmux8/mGUb3PnvN9rM3tjM9w1vv9BO8sTmC/U6fR35V/+ELj+0nu/v8Bqf4vPtK++e6queJd3z7+73bu58AxzxlrYrRZZi7A8yRcon/jP+91tyYG8z82l+fuoEFoMqnRArSwKA8O0Wy20FGEJVcNVVchARbKUUhpvOk836Pb6xEnqalyiczYM2SiL2XdNot/mq51TbROaTZa/YepwEokSXuRTu0IKunQ6XZxXLuv/JgisfvBef9B1+4Zrpw2lc7FhWWktHB9l1te+2JKZQ/l2PiBj05SaosrRjo+a3Lp5VuRwul/5wJEhtYpnuPw8pdcxbZtW5letx6dmYdLPp+j2WwR9XokaUISxwgl+ibMxsvO933SJAU0zUYDqST1xjIbNozjOIpGvUmn0ybpc420zrAtl5nZGQ4dOoIQFl/68oMsL69w8uQ8w0NVpMhI04yPvWsrtuXQ7fQYGinQ6TWoDoT9LlcP37dMl0XaDFRMcFqpGoJ5uVxCKkGv1ybMKcLc/8vee4dLdpVnvr+11s6Vq07qc06H0zmouxWQhEAgsggmCQwSYIHBBg/2mAcbj81lriPmMnPHfmY8XNsY2xiDLZlgIbJQQChHJFotqSV1VqeTT+Wd1/1j1Wm1WgmBPXeuZ9Z56jmhqlatqrP32t/3ve/3vi6X//yLCPshUZgSJ5pGo87M7AJx3CPshYS9mH+48naGKnWu+OptjK0YQdmSLOshZUicGLXDiYkRjh9bwPZ9+nFKkmkyDd1O1zT2pylHjs5guaaX5Uf3PUYaGxW4MIoIw8iIp+QxWRIR9iOUcLn77oeYn10gSWJqw1U83zXImaXI8pyHHz3C6NgoGoHjOPS6PaTSpHmEkNmg+d5GSMkrX7qTXr91Utl2OXgj8tFaoVxBInuAUYV90XlbyLPYyEtj1OnyLEdgsevBxwm8EuVSDddzWWy2SQeJpuM41GtVdu85zE23P8rLX7iFsJ/QPfYI27dt4v96z/lIpfjUp/4YpODr3/gGh/cf4abvXI0UBYrFEe6640eMjgyRZRm1epWlpQ4XXvQCPv83V3H86An2PrZ3kLQIXM8niXNT3c9iet02uU7QelCQEdZJgSmjXGnz5X/8Td72ri8bwRPbJoqM71SWZqRRTBLHlKoVcq0JCgW67S6OE5ClYDseWaqREmzbJo4zNDaWrfAC31RbtVG8BGgtLhkTdDLiOEJIQb/Xw7YcLMvFtn2Uck76NjmDSr7leEjLxSuUUY6HkJIszQgKBeIopts8gdYhl1z6JZT/Ji566YVYlsVjj+7jwGM38vm//BC+5+F6Dq6ryLKQJOkzPFxHZylJHJFj1EGNL7RFrxvTbfc5uPcQzbklsiwFAXGSUq0OIYWPbRdwnBK2XaTXi5mbmecv/uIK3vLGN/ONb3+ZYlWBSFDCRWsIPJcPfvCX+MhHfoOZ6ROMT04QRiG5zpBS4Lku3U6Pa6+5DpCGoWALhkaGQENQyjl8ZDeoDrloIuKUFSsm2LhtJ/WJKaSS9KMOrfYSXqGAH7gM1Ye47rof8olP/EfyzOUPf/9TlItFXEfwqT/6JAf27mXXrl0kaUJkV/mvf/41uv0cRYrrw5e/eiWHDh7hrW9+F4XaKn71Ix/nnHMuxJMu991+J3/5l5/F82zml47z4ovOotvucNllv8Dtt99u6KsyY+XaKa751nfxMsWv/sqv83d/+w/cfNOdSHz+4Yq/p1QMcCyXkeEJ4kjz+KHjPLh7L/MzLa762re5++77aLUW+PD7f4OReIT19loufs3rKZYK6FyQZTlhGGPbg/1bSl79qteT5Rmu52ApiVCSNEuZmJg0yHCasGnjZlzX48Sxx+l2OwhloxyPnJzx8QlDoUxD8oFIVpYmBK7N2rUbyDUcn54Gy+LQgQO0my1IM7IkPinO1ev0OHrsBMeOHuGsnS9gqDFMpVTh2LGjZq1C0Ov3OPT4flzHCHRZtsXOM88mkw79MGN+YYkkMqbchULR+OFZik6zx9133kOpVKZaquJ5Hp4X0Gy1TZeJ6tCb2UeycJQ80SRegWKlwdzxE4S9mL2PPopC0O92GKrUOLT3CM3mLLYbc/YFO0FnSFsQRn0SrYlTTWpFZEnCORecjWcLtu88G8+3yTE2JABLiwskSXISGdJ5jB/YWI7EtW3KhYBi0YU8pNfusnffXm6/8z60sJFKkCamaJbrhHrFoewMMTMzjbIBoYnj0MQSIkco0xOd6YQVKybpJi1uu/5OpmcXsQLJ+ORqlOvg+B6ZhChN6bbnUWjyNMW1fLTyKNkWIs8IKiOcOLGPMFzk6NFH2LJ5E2Q5nmt6vckkYRyitcbzi7RaHdZt3khGQq/f58iBw4S9PrZyWOqE7Ni5g9HhMZaapqiaZCkjoxPU60Ps3/fIcmB2Mi778MUfBUAJiXqeRuNgCt88B8jybENJddKoHEzs/C89cp2fNFM/dViW/YSC6M8wngkMerqhhHpSQpdnGT/Fx/6Tvdb/H5G7NI1//19z/tPVMpfH80Pu5Ekq5le/chVvf/H6wd+fCdE+Fd16DkjtaSY4ae/xDEObTO60NT6NAuhgricC0KfBFU9vuBOn35afoE+7/WRDIEzFBUmeC8qVOkuLC6RhByFtEBKhJZaC3CwWZdsmSMpyHNsiy3Isy0UKTT9sDuhsNtKSZHmOZbtEUUpzsYnnWViOeb8Z4PolbDsgTSJsv4AGLGUQOdB0O218z/TCpEloDE+loNvpMTo6RHsQ4HquN+iZMTxy2/VYWGxTLhewbBPUaZGh8wi0HNgxSPIsJU0EX7ryeu657xHO3LHJUCwRzM8sUWpUiOIYISR5ktPr5xw5fISCbxv7AkzF3x4YhReKZYSQdNp9k4gmObt3P4YlBeVqhSTL6TZDKo0qrVabeiWgUPYYHmmw1GyibEm5WkfmTU7MzFMuV0FIHCXROkM5HghBq52g8xDHFTiuh7I0WR6jbJeD+w/TaJgegywVFIou3WZIs7WI1JprbrqHzeunyHMIih627TI7t8SWDaNMTg6x84xJtM6M6IXl8sBDxyCFar2C61sMD1eYm52nVA7wPZ+oFxkUzjZm2Hv3z9CoFZk5scCGDWu49oe7mFozyvT0HMNDZSzP9PUtNTsstfpUamVWrRxFSUlzsY1EMzu3RKlYIM+MeM9Q3R+g04KoF6MG5ts6y9l/aBrPdvE8RZJIFuaXCHwbz3EGAXts6H86QwmjlKjzgbCBEqZyPqjyaSGwlQlohBSMjVYH6GBGc3GBwCugc4u9+w5Tq7tYtmL1yhHqdZeb79iPa8HrzlnJ0OgkMo9ZdEcYHR4hDnP2P3aYjdtWUa2P8o53/RaeNIlcUAgQ0uGfvngdcdTk+NEFlBJc8OIzGRkdRmDeg1KKfr9L4Js+OWMxYaFFRppZCCUR5AihUGKgqCct3nXZy/nvn7mBx/Ye5JyzVhF2O+S5RlkObhCYczHLAYEX+Cwr8CmlDRVGSUN/Uaa62lpqGglyJVicm8P1fdCabqeL6ziARZZmhH3jHxdFEf1Ol7/53Dc49/wzsJQHxKCtwZ6Yo8nRg8RUSrAcY7YOKY47wlsuu5JP/8Hv0mjUKXgeH/jg+3nf5TvYuHk1QiicwR6xbGdhWUbY5cjhI9SHa8YU3SuQ54q/+vMvE3YW2bd3L2eecx5x2sa2XPq9GKUSdJaBsEiSmONHj/HlK7/LOeds4VtXX4fnBvz1F7/FZW9/N91uRKU+BLamHy4RJRm246GcnEZjmGazRblQMn5rOShphCY2bd6IFqZf5eDBA1SKq3FcQWthnmKpii0t9uy6n9roSl7x6tdTCgS9hX0kScjC7CxxFFIp+czNNZGWINY93nrJm3Ftzevf/FrCuE1nYYZXvfZNTK5axeHDRygHZTrzM3z6jz7FB375lxCuTZyCZZeoVhu89nUvY3y0zsO77uZzf/kZ7r77x/z1F77AK15+Hvv27eYFZ53PW9/4Ht76zp+jWAl4z+XvJEralPwqc3NHOP/Cc1m7bQtJHHLO2eewbdsm5hePEdhFVq+dRFouYLNn9/2MrxjjsT17mD4+w9sufSOf/tP/xrnDF7J2ZB2VWoXh4RGsAbJZrZQQMKBYKrrNNrfddgvSsmkMN5DSIuqHSMCyHAqlEmkU0mq2KZUq5EITFIs4joeyLPq9DnmWE/iWQe6ly/Sxxyn4RZQjiWNtBLTm5qmUq9i2Rblc5qbbrmf9us3Ytku300VaFr5fwLY8fvj9HxLUXFaMr4Ycbrjxe2zZtJ1bb70V1wsYXzFBmuZ0210syyCPCsFDux9ifGKCOE3otFvYrkeepYRhl0q1ysjIMLnIsF0frXPifoSjcjQRcfM4iQa3NIRbmSDwG/i+R6lUwfYlQ/VxpNIInbDr3tvQdsjqFRNsnJrEVgJsBWnOcK1q+tB1hqVthMwRWhFHIfsO7KcxvIJdP96N7xRZWJwn7CxRLgcopYiiHnGSc/jINFo6VMo1vCDAsmxD8+532PfII7zhNRcishANAwpqhm05xFGK8n3zv457OMoHnZq2QmVjS0mujcG8VBbzS11wPFauXkfYCwcF2pSlxSYi0URhk7IVgxdA0iH3athuCeV4LDZbFAIHxy+iENz9wxtYuWYFiwtLOI6FsiQZOZaykJj9zi+WyHVmmBHKpxf1qNfqhAkszc9x+PgcZ+w4h0bNXLvvufc2mp02VhaztLjAxJqNpyQimkLJ54pvX8kLLzj3CQuAZZ2HU+JEnS9bHeSn9ZItB4kDhG75Kzcxz3IMfCplcVnN/ensBU7trVt+3lPiw2eIXclNIf/k7dQl6meY61mC5nzAINMsx8TL05n9/HmEtM+I0plj76nznVTc1E98hvC/AC0zzf51k7vTD7Dl8dMq37zjnZeQH33gOZ4vnuHnn2w87cF+ypCIp9iAPBVqf+L7k+wVnvpiz7Wawe2nreic9lkMKsx79uylZIe02x0K5QJaeBjs3QxlKSxlmc03DQ2KkmSmF892yDLTC5dnxmNNILn6W7dy5hmbjWJmlqGk8c5K4hhlWwzK6iAsdJYjxcDoXGvCsI9lWVhKEUUxhcBHKYs4jSgWTQ/IiRMn0Frg+R5g+h9830VZNv2eoUpKLJS0iPopP/jhvaydmkBaCdvPWMvGdZN8/erb2L51HVmeUqsZ/zElLSxpceddP6ZSKnHzHbsYHxuiVC6fRCiWg+0kNQ2+rVabfq9PJ+wzNjbM0FCDPM2YOTHLxMoxkiSiUi4gFSwsLBrVNL/IP37letZNjeOqHmmaUK4U0Tqj1wtxHJtet0fUiRkbGWVpaYlypYTOMVLrhYA0zamVPKyBR9ri3BIzM7MUCiU836FUqbJ140qkkniuQVyyLCEouChLg0jQImKx2cMPPCzLolEvU6kHRp6+HzE7PUe9VqHbbqHzjEIpINcWUsLC/CKerZDk1GoldJ4xtWoYL/Ap+Db9fh/X88hzg5SVSiUW5prkQhInCZVqCctxjAhGZ7l30GL6eIsgKBnZeFvwze/fzlijQVBwGR6qDHpvBKAIw5hSqYRSCikl+/cfo1KqYDkO3/j2ndx1/wG2b5kiz6NBz5gLGE+7ZQElyIwstjQIS5bmlEslrrzqDpI45AXnbCZNoNPpc+99e9m8YTVz8zNsXDfG6GiF93zmdt77mjP486/dzoUvupDP/Nln2b17N29+2zvp9Du8932Xs2lzAd8vIoQR6Fm7fpzzX3gmQmpe+vIXMjs7j04jQy10XUPjsw1N0rJsg6xL6HWb+EFhcKHPkVIZVMgywjBZmnDeeVs5Y/s2Lv/A33LZpWdh2QohMZYecQg6w7Ys04wrNWGvg+vZSKnRKDrNNgiBsiw8zyGJjDWF47hYjs1yH67xDzTCEq5remld18VxXV54wQ7SbBnVyxDCJo5DbNun22pj2xaIbECFVCjlcMUVd/H7n76Z//Pjv8XE5Bjv/cCv8KY3TPH2t72UJElxXBsvcDBFaFNMEgJ6/Qidd6k36gjtIpSi02kzfewYtarPljPWsO2Mzdx4/S2sXTeFtBV+EJCTGDRSmj1jZGyEHTu3cvDAAar1Cpu3rOPvv3Qdr77olbz7Pe9icXGRl7zkRSRRH88rYksHx3VYmjnO1778T1gSAtdmdvo4fqFIpVIgy3LazS6WC0pleG6BOGvj+2WOz8xRrA5TrI+gVIplO0iRUq8FZNJQXMfHV/H1q77Jf/nTP+WVr3wppYpLUPAIPJvm4jyFQhXsIuVCgWaryYYN64jiiIlVw7zzsnfguIp2Zx7bdphau5LGUIUsjxHS4bxzzuX2227jwoteyqtf92o+/tu/x6/96q/zo/se4r2Xv59yrYAmJ8szDh96nIW5FtV6A9vxyHNNqRhQrw1x/MRRRsca/OHv/inf+OZ3eO3rXka7P8vK8XW4vscLXriTbrxI+36bl+28CKE1gRfQbYdImREnfbLIcF06nQ5BMUBZRt14dGwFjmvjODZKSHSWGyEeKQn7fSM0FfggIMlSLAbBcp7R6bQolSp0ux1sx/gnFoOSOWeyGDXwcSwWi8SxERbKSNm0cStawzXXfIe52QUmJiYRCoTIWbN2DY1GA52n3HXP7bz4xS9DScXE5KTp31QWQggKQUCcJPS6RjGyVC7hDexGsoEfqOu62LaDkDZ5lmEJRZZEKMfDcgQibZIsHCFBkwfD2IVhHj94DK/gMzt7nIJXYHFxHlvl3HXHLUhhE0ZLbN+8jkP7djEyMoLU+aDfFZKBWrDWYDkG/U/TjFxn+OUp7rjnZrbvPJNyzaPbjaiXSyiZoBS4tosUDsNja6nWh5lfmKFaqSKQJHFCtVShVLTxXEwMIA2SkqbGzxIl6PWN6rTIY2ISECme7xIn0UABWGDbPnku6EaCo0dnWblyHUXfx3ULTM9OM9QYNoJseZ/AykkEiDzBDmoI5ZDEGUo6IBT9Tg9Ngu/Z6DTkyImjVOsmMRYYJoJtmb7HDBBZjq0EadynXKnQj0PuuXM3m7edTaHks9Rqs//go6xdbWj0i81p3LgHUrJi1Wak9USyIITg5W+7AMd1TiZfgztO3v/Er0/tEzMWX0+mZpqo7Qk7hFPHMiXxib640yK/0/vank/M/Rw+d883fn9KvDz4rpQ66YP8sw5hcIwnf/ZwEg01fZBPxPb/O7n7n3DkR3c/6ffTwa4nZVbPNk6HwIVJ2pYVkMRptyc9lFNUMHnug/3UFO0pyN2zLlHT6xqT4p92nAoM6sG6x8dHOfr4ATIiqtXVZLKL5BQ+9UB9SEqF7ZgNNEtSpLAQApI0pt1q4gc2eRYhZM6OMzaSaz14jOTz//Attm+ZwnZtQLAwexzX91GWRdjvGZXCAaqptfEge2zfYVaMDpsLsxBI6dFphVQrVarVCnmeUSgGgPHVShMjy+96HkkSkSYMeOewft1K0wuUREhlUSgUsEWO5xtlRWVZCEyjfJ5nTIwPU66V2bxpNcVKGXSO7SiEliSJMT62lAWDCwRC8IObf8Q5Z23lR/ftptaoEvge/TDi4MEjFH3P9MNkjkEZS2UcabFiYgiZN1lstnBci34vRFoKz3Po9Xo88PBRxkYa5CLB933yPMe2LaIoGiiBpiy1OhSKJcrlEl6gKBRKuL4a9FlJhNTMzs4NNk5NHJkg3HVdhABLOkghmZtZoFouo3WK1oYK6tqKLHfZ++hxVq6cIBOKxx8/TqnoU6mU8H0P3/ewbItOt4vnOSjb+Jh5rmuEbADX9cnilHvuf5RKuYxtG2W4+368D9eRNBo1jh2boVIpctudjyKEplYrkcYhWzeuNoiXgB/csos1k+McOnyUu+9/lOMnFgnDiJHRKmkWM1SrMjfbQlmwds0oBw/PMLVqFKlyEzwPqnU6z8gHB1uuE9DCCDEERe66Zw9ZnHP2zrWsXz9BksZ4rjeQ98+Io5QNa8d5ZN8R4jjmhr0hb3vhev7kyhv55yuvYs9Du/kP/+HXeHDXfopFhyzJ+dxffJbpE0fZsHGKPNdc/dXrybKY3bseMaIKOezfe5B1G9ais4w4NImxsmy0NhfvLE2RCoNOZzlxHGHbLkpIosgUBOIownZslJS87ZKX8PPv+hxvf+sZaJ2jhTQy8EiifmjES3Q68KEUJFGMVPZAGMVFAM2FeYJC0QSIlnVyb+u22ybIUIJ2q4PnewgESZqwOLeI4xr6oqGsGUU8y7LQaBzXRVkDhFBK0JJLLruCBx5Z4POf+xP+8FP/hV94zyYufuVGihUjnKFsB9u2CXtdpGX2kCwzSa1tu+Qa+u0+QRCgyfE8j2KpwNBwHSUtXK9AsaSYnV5ibMUKkig3XptugSzJUJbisUf3UqnWaAzXGRsbxbFtrrziBixh8+ef+QwvuvB8XNem0+2yMNdEKRdLSTzPYe269azfsJHFpSZHjxxhau062t15lFScOLaA7XpUKgFaOzguxP2QWmOITCuU7dFtLRihl1zTaS4h1DCFoEGSwPYdZ/O6172CTGfkqSaOJTkx5JLjj5/ACwrYlsQveNx2261cd911jK9aQa0xDLnGkhBGOVJAmkYUSxWyWLAwO8/YyCgvuehCfuXDH2L9pgmq9RLt3jwrVtXod3PlLnLkAAAgAElEQVT8wBx/nltgeLg68BVN6PYX8d0CRw4fxXYsLEuwceMUe/Yc5i2XXEIUh0RxShD4/Kf//GecWXsh3VaPNI3wfZdjx47i+6aXV6M5fuI4tm1TLpcRwogICWlTKBbwfQ+yHEuaAo6Qwpy7CLq9Dp7nEkV9HMtBKYVA0u/3AchT+O53rmbrtp0GGRhQZBFG9c/1bNI0I8syCoGxcpFSEkcxmzdtY8WKcXSekSQRnusQpRGe7XHDjVdz7nkvxnU9ms0mR44cJk6NwNDi4gLFUgkhJbZlDWiaDhojzuXaHq6tSLOMLNc4jmEV5BnEWQhZF92bo7UwQycMqdTXg1UiSTKytEepUKBa9jmw7xEe3XMntpK0F45Q9C1KBYuy79AYGkXa5ny1bButBVkOQhtPVi0z0kgzP7Ag6nbahH1BtTJJ4FYICj5ht4kUIbZjkyQRvTBmdr6NXyoBAtdxTyobPn74MDPHdjM6MjwQIMvJs5woNJL+wrIRlLAcQR53UJj9JeqnHD8xR71aN6IzToFH9jyIV6ihsZldnMVybDy3wOz8NI7jmYJ6HuPoECsISMMubsGcS9Ozs7ieR7fX4dFHH6DoV7n7rltZu2qUNasmUTpDJCkqB60kSZZg2w6WHdBpNpFSm0J2niKFZGi4wcF9D9MOM8466wJWjI2jpSbwi6xcswE7j8nzjKGJKaSynojhBCzlCwyNDg0ETpaBuycQtyfFZctInDaR4bLK5klUD8MwWlaDX54n1/lJtO70Pr0nx32DZJJlVfinJpSnM+uW5162QsiFodgLIcnJnwAqloO2we1U4ZRT/y7VE4r0T1rbaa9/+ng2vYtnGsvJ3emZpJTyJAApBtef5+tz97977v4HjXd++lv/Xy/hpx7PF4Mzkr3ev8hrD1rh0EKQIyg31rHnsS656CApPv3jkUjh4LolQ+OTijCKTSBVqCFxzX3SI05auK4aoCEZ77vs9SjLAiGRymJ0pIKUmjiJsCwQQoFQaG1MpivVGjt3bsWyHXq9Pu1Ol25vCT9QSJUwv3DUXHTS9CSFzATJOYuLi+Ra871r7uLo0aNYtkZaGZZtceTwIq7rk+cp27atIc8jbFeR65w4CZEyp9/vEIY95uemEUqD1Ehlkj5g4I0E6QC58wOPeq3C5HADlRsFKMdzkK5NsVjGtz3m5pqcODFHqeLR7c/T6s6wdcdKXN8jy3OGGhXiJCFL05NmziNDVS586U6ka1GtVYgjo8y2uNjC8zwsy6bViajW62ghCaMUaSmEBVHcwbIyQHD06AlqtaJROgx8sgzuvnc/aaKYPt6ludjmyOFpAs9l+sQcM8cXsKTLgUPTWL5PLlLqjQAtU7AzRJ6zuNQkjGOEZRGnOfOLbaqNOtK2SLIM27HZf+AI/V5Iv58TxxlKSRpVj2LgYyloNhc4e8d6hofqLCwuMTRUpd8P2b51nMVWE6UMbcXQCBPSNOEVF56D1jZTa+tc/KozeMXLd5jqcRqR5SEzs7MMDVWxbcUP7/gxr3nZdr7x3Xux7QDbctB5iiA1aLRlGUNYbaiC1iBp3r51ihtueZRup8fM7Bxozc23PkC73Wb9unHqjTK2G3D3AzMceHyRf/+KOlmi+eP3vJS/+Mxn+djHPkK7e5wv/u3f8vGP/RZlr8p//6vv8Na3X2xMjpFc8OJzuPP2hwBj5j41NcXe/TPkWhN124SdJbJcD3wWjaCPbfv4fgGdCaS08T3TC2dQNmOR4AcBWZ6RZilaK75y5Sf456sP8b5f/joaefI8cwslUBaW5ZIkGToXSGV6YIUQdNttojAyEuTqCeVNrQeUSqDX7SGQVKoV5mfmjR+f6zE0MkS72WJhboFlTSIx+CGOOkhh6KSP7Jnhkku/wn27UrZu2cwnfucj/Lc//b/54t9+jDx1qFRWkOfRgBlg0e30cb0CYCg3tuOaijWgRIF//NL3+dE9d9FaWiDs90iyjCTNkdLjxutvx7IFmzZv4ujhx7n5BzeQhC10FtFqNen3ekytm0IK02vb63WxbMXv/s7vMD46xm233kbBL6BzTbVa4ZprriUICvT7EcfnFhlaMQmWy9jKNZz/kpeZwkvcJ0ljrvn+dYyNrCRJJFLYHDs2TdRapD0/i62M3YptebQ7MTq1KPg1Wp0lctFDui064QEsyyBlUvp86P2/yWKUIx2farHM0uwMrZahyG/dspkPf/hDrFq9nijMmJtdYn5mAVsV6PdjEBKdSZaWWvzhH32S1VNruPvuOwnjkA0bdpBnPuvWbQNtMze7wPvf/4scPXIUJT0gJM8ThEooVGwEcNddd3P77beT5RmlmuY1r3o1H/8Pn0SnRYqlAu++/Jd54463GiP4UhHbVmRZjOf7BBUPadk4TpHVU2uMgq6AbreHJW1c1wFMH2iv1+Pa6747uBoZU2MpBMWgSKe5hC0EOk5IMs3cYhPXL1AoVnjowYd43cWXQG56pwWCH9z4/UF/dEqUxAQF/2T4KDEiYFmWcte9t2IpwaN7H6LdbqJzjRs4SKk4a+f5uK5DEAQcOryfTRu2UK8MUa81GB+fNAkkpv+o3e7Q74dEYYTO4Zvf+ubJAmFGRhx2SbMIKS0j69/t0DtxhDSWBCNnoQpldBzTWVjAtTziqEdzcYa4M0vZU8Rhl+07zmRyos7ESA0pjGJihkAoRZKGhP2EB++/z6AjmsF+59DttEAKOnNHIe2yYqKO8GPCKKRSKSMH3n9a5wS+x/DIMEpJKqUqcRzh+UbV+IEH7mHNmk0oBVEUkeUZUio8r0Cea4SwcGyfhYUZhMwh7yFlgltw6YTNgXAWdHstqo1hCr5Dpz3LmrXrmJxajbIlGzdsplyuoAY2O4benRvaaBwDsGrlSgoFj1I5YOvmrejMYf3USsrFImmsSTONdixSVyCVQbrSLMW2XIJSDWEaArEtD1fZFAoOyhGcmO5w/PgMWmsOHHiUNIu4/fY7Obj3UfI0ZHZu+kmREsBVV33zp4jL8qcVKtEDOruU6kn3n95b91wj0xmZ/sn6706fWwn1rD1wQkqeyaYgyzPyNH9OscanG8+n9+4nHUoY30ut9Unhr5/4uf8WkLufVhXz+Y6fZf7HHtnLSzZUfoKeu+dcxJMnEEZGdnHBUOCebtZnRPAGQ59MicSzoH6nIPanruUZhkEeTj9BTvfye+4TyDxSn0Q3280O99zzMOtXj+NYgGUPKkWnfi4aTY4QuUnUtBFfyJGG9mV0xYnjLo4dkKSC4ydmIYuRyjWXTimIwhbYBbqtFl5QRMoB7UwYRUOjapaRpgnNpUWCwCOOIqQWBIUS/SikXBoljuIB4qfJsgTbdVFS4PlGtr3f67Fu/cqBEqFDnPRYMT5Mt9fFcW20yPG9Ig/s2ouSgnvufYz1a1ebxEzYXPWNOzjnzM2QJQPZd9P7dett9zE53hgwW5fNCTUT4w1anRazs4tk/QwlenhBiWLJJ4kjapUC7V6fqdVrTDAtFFfffD+bV9jMzCzhOUW01oR9I0ZiDSqjUT8i7KdImWApRalURApJFBoBGM9xWFxo4fs+cyc6JFGM5/h4fmBorzpB4vPII0fo9TsMNeqUCj7HT8yxctUomU6xFJTLRdrdkOHRBlG3y7Hjs9QbFTzbolguI4Si0+pSq5UpBAFCC9IoxnYVQVAgS/vkmSbp98myjJGRBrZj0+3H+L5C64zG0BD37trL+lUrmJtZwA9Khirqe9iOwnYlhWKBiRUNkiTh4OEZhkeGEDJnaf44XmChhUBJD51LFuaW2P3I42xcN4ZtefhBgDHlVthSMlSvc98DB9ixbZI0zYBBAUFrlq0+jBGvxPcCbGnzpS/fwub1Q8zOdxgdrpNmKVNrGriOy023PUi9ViDLUnr9JV724jMYr1U5MJ9wxtQKdrz53Xz6k/+JD33o1/i7Kz7LpZddRrff4fUXvwYhF7j+mjtYt3Gc4ZEhtu9cz+joCFEc882rv8cHfuntKMt41XlBmTRLTDCNQAlFPjjNtY6I+l107hoamNRkWUyaZAPaqTmH0DGg2bZtHW9+84u55NI/55KfW00aNU2frLBMwOq5A7q0QmeaLI1wXRspc4R06XX7SBUS9WNDp0RQKFRw3QChhPE/0hm2Y2jNeW68Hw1NWpAkOfOzxr4jyxKEUFxy2RX82q9fyo033M173vNRbr35G/zC5S/m5a84CzAXXFNsMYlrkoQGCY5i2s05o/qYxPQ7LWzHyJNv3rKWxvAwjmvjBj4CQdgPKQQuK6fWcPTIYUaGxyhUPFavXUOvHzM3O09jqM7CfJNuJ6RSq5KnfXQGD+0+yBf+7vv8zu9/jFVTKwnjiA9+8MO85Y1v45wXnEGu++zZ8ygP79rD6lUTSJUwM32AVmuWYrlKc6kNicPObWfTiaa55Qc3MzV1Jm65wFBjNb2lJqWKIs/LKODa713HRz7y61x6+bvxfAslPKTwcF2Pw3t2UyyWSbKc9773rczPLlIuV8mlhesXUVZCFtsUghph1KLT7PDAfY/ykV//DT7wofegpebH9z/EP37hy5x79k4KjTIvf+VrybRi78N7qRV80n5KkvUplMp0+jnlQLJu5Thaa1atWUuOhbJyXMej184RQrN+41o2bd6IJR18r8q2M87gzjtv5oYbvscXvnQlH7vkNwYm3gJtMTALt8x+kWdY0jJsFM8U6tI0HYgotXBsD3Lo9foEfoAfFCiVqqRZSrvdwvcC43vpBiZoVwrPdliYn+GeO+9mdHSYY9OHWLNmDVEUkacZSRyzceNGUAKdCwLXqOL6fsC1132X1aum0CJncXGeQweOMLpiBWMjK7Ath8OHDjE6PI6QGtfzB6qBgmKhQhSF5DoxRvPaIs80eRbi2i6HDh2mUq7SarUI/IBNGzbR7vQQSkGmsJXCUjlh+yjRwlHyXBOMbiASPgVXEYcZXsGiMlxFZDnf/cF3WDx+nO07NlCuVmmUi6BTbMc1IjLaqE6rk71XDo6rqNer2MIl1RF5KojjkPrwEEpJqtVhWlFCtTrGLT+8lsZQAyVcsnwJWwtynZKnOYdOzFCtjNANIzzPIwy7uFIzPuRi2YbNYuUS5QpTrBW5Uap1qoR5ikuGoyAjRykfrTOG6jUsKyDXKa50sTyL2RMdRsfXsLC0SCEI6CcRKlXMzB2jWh3m+OHdBMUClmWTxClRIvFLxjoiGXgRtpothocKtBZn0HmC51pYlsQSDmmSgjaWLH5QJMwsHtrzMLXAQ9qKMInIpYI0wSkOMbJijJGxSXKgEBgaryMtUtWn6BRotbuMTKw2n/eAMnn1Td/gbZe88cmx3zMgd3oZ8dJP2BssR1xpmiOleEZ1ylPnO2m9sMyKeJrHPVNM/0T/3pPjSSH1oEh3En80cY/W5EIPKKRiUGjEtNycqswplyNgDIInln8zTCnyJ9Quf9rxVB2PAS2Tp77Hkz2Jp4TJ/8vRMv81E7p/qdeJwpgpv/Nss/90EwsjMV4oFgYH/ICryxMQuznMnyUR4/mpWv4kyd3TPJqnvsfnXx0pFousWTnE/NwcI/UK2n4mhPCJTShLE/I8wrJNzTOOjRKYrWxsqdBa0A9jrrnhHn78wAE2rp0kipNBb5VHwXXJhek3CMOu8SlSgl6/C7mpqnmekc2Poz7X3rCL4XqFcsUjTTOkMhdRJY0yGWQDSk+E6zqMjg6hMcGIxhrQklJA0u2GWNL0bK1cuQLbsRgdKWDZBlk8fPgYLzxv68mqsWV5aHKifsKqyUmMDLsxXrUtQy1C5Ni2ZGmpA5nN1NQqFpealMolAt8jjlNcz1AWHcem2Wwx34spiCVGhhs8tOcwq1eNGYTN93Bch6gf8fiRGQ4dmWZ0yPi7CaFZXFrCsRTFYoHpE3MMD1XJkoRKrcrXv3sHa1YOD3qxHFzPwrKMp1ajVsJxPGzLptGo0G63qNSrFIs+aa6p1qvcfc9DFAoek5Mj5FnGw48dY2R4mLgfUvAdFhYXcRwHx/aIwhRpCWzLIcsTBGpg+m4oWVGUUCq6hN0eszNNysUK4xMN8iylEHjsPXCckeE67XYXoSSWsgeCHhZRGDMyMoQ26TuBb1BHQzPStJa69HoR579gC0lmfBLzTBKFGTfecj9nbFmF71ukSZuJyTFuvfMBut0uK8YaZHlMFPaNPQcpcd+oHOY64+wdq1mxosHwUIU0y5ifb5qky/VYtXKMm27fzdYtq5laOYZSNkoKfvH/uZnLX7mDHRtWsn8h56Mf/ShpGlOt1uj1IlasGOOPPvV5XnfxToaH69x8452sXjPJ9PQMcRhx8etfzv59hxgdG6Ef9gf9ho4R/JHypIqmHqjaOo6LZXvESWSKLQpTdT7Z4G72gDAMSeIEz3N55ztexPU3HOTjv3c9b37DSoQIDelGGUlzANv26XT6+IUAy7EgV4ShqdA7bhkw53jY75JmMZaj0AJs10UqQ+FL4pAsi7AciCITrPuBjxCCd17+z2zZspWLLtzMv/v3n6Pbz/mFd5/BRRftNJYMaTSgamb0eqb3srnUJCgUDEJpW/h+kTQzCLptmwKIVIo4iky/UzEALbAt92RPixBQrZcRIkMIk1AUCgGddhvPVZTKJZQtcV0bJSyEVHz9m/fx8MOPcNHLL6JYKuJ5Dq9/w+sJCpLpmeMIAaVKgRuuv5ZNmzYglaRRH6ZaGSJJE6SQ7HnwUQQ2KyaHmJ+bZ2JyHcdmD/LpT/4ZF7/u1ezeczeeW+Qfv/hPXHbZZVx66aVIZSGUWXOchKRRguvXUW4Jv1IjSYytiCan1Wrypje+iV+6/N289pUXUylW2LFtG50kZWr9en7xg+8nFwl5pqnXhrClRSHwKFVquJbDP3/tq4T9kN/+7U9w/Q038Ma3vIkwjPmt3/o47eYiZ2zZxtTaKRKdECVd0jRhcaFLKagzM3OMkaFhkiSm1+tT8KuE/Q47ztzCWWftYGf1BVi2Q57n5jhWy1RaRZrGGGqtCVyFMMjxt759FZvWbyZLI/JMkmUpfhCQ6hQhMPuEEFQqVSPRL4yR84GDBykVStx08w/Yuf0sDh48xNTUFMP1MTzPQ0pJq71EuVREKYESDkoKlpaWkMKo9A4Pj1IsFgn7PQpBkak163A8dfJyPDo6TLcXkWU5WZ6bPmFt1r9v76NMjK8izVLmZufZtes+s2c4HqNjY2j0wLLH4o477+DwoQOUSwFKKAq+JOzMk4VddJbTixWNoQlazQ6tdptCwSGRCd1uTG/+GEP1Ep6lqVUKeK6L1BrXtklTw27wPGMj5Di+2VOzlCxLSXWEJQO0jjk+E5HbGk/k0EtJ0oQHH36MbdvPZ3xiDb7n0W22yLIlSn6BLEtwnAK2P0SWCWr1KnmeY1kW/V6XAwdmOHpsllq9SkZMnlnGEiTrk6VwYq5DLqDoSdO3P/CWzMnIM5skAkSEbTu02m3soEov6rNu3RZ8N8APPHQK5WqJJEpRSQspNUoYOnl9dB25lvzwpuuZGF+JUoJCoUYUZxw5uJdarYyrJJa0DHsiVzQ7LWxLDaiPgsboKLaMyQQsLoa4Fni2yy33PkCzGzM+PsVDD/2YofowWaaZnJxkbn6OpLNIP44ZnpgyccjggNl/cB+v/rmXPTl8Oj25Wy6eD5K7p7T4aIEQy1Zbz538iAFqK3hqX97pj3uWWU779emJlIZmecqaTJPbU8LPfCBodroH3XKfoF4ukv8M46mJ6k+Q3J0y/s0nd1me/P6pWb0+7Z/xL43kPd3rPN/5162fYn7PXfgDwYiTSpRPZEo/2yIHfOEn0DXzJU/D4U7lOj9XSpebCOzkY56C6D3ne38m1vIz3f/sQwxoU0HRp1at8qP7H2bFcNUIoSjb0LlOfX+D9fU7XVzXMYbmtglyhR54FElFGIcExYBtm9aAThBac/Otu9h34AirV0/wvWt+yPoNUyhL4tguy0ChbbnEUUK/38W2LbrdDpVKkS2bN5AkEbatWVxo8+jeQ9xz7142rFtFFEWkcQ5akqV6gCAYef1lX5W//+K1nHnmJmaOL3DVN+9ixxlTeJ4NwlygbUehc4kSDjfcfA/rpyYRkpON79J01fN3V3ybC87bgc4zvv39W9i4bhVxEuO4NkkaMzE+RrcTmkqk7xkPNyGwHdcExWnK9PQc4ytGue+R/awo59TqNUaGapyYXqRWqxgBmSRBZzkjwzVGGmU8zyGMQlzXJc+M3D1aUKuVOXT4GL5vYTsu27euwfd9er0I33Xo9zo4jo/n2biux2P7jhJGMbVaCdtVAxUsw62Poox+t0+lViQoeFhS0KhX+e51d1Or+Fi2pForgxYsLjYH4i8WtuOQpylf/fad1Mo+Q0N1kBLbsUHn7HpwP5Vikem5JYZHauZ4URa1eplet0O5UjLmvlINlCAFj+09yshIwwRTWYLGxrIchDDV2X37pjl6Yp6VE3Uc1yaOMu685xFGhqps2TRpKGA6Y3x8mDzXrFk9xthog37YNxLYro9lK5IoJPBdQ9kUEKcxQhjBgxtveQAlNatXjWFbNtfe+CNe96pz+ewXr+eCF2wxVWKpOWuqwuTYSiYaZX73r75CteayeeNW9u87wNDQCB/65X/HH/zeH/CqN72P17xiK+VKiRPHZnngx3s457ydfO/bt/CyV76QJMkHVNY+Udgf0IENhSrsR1i2GtAiJWnexHVt8kwi8I3ipZAopch1SpZpXM9jfm4Wz3NRUjK1dpJ3/PyLufTyz3PzzY9x8as3kaU5fqGA0BIhQApjRt5amsfzfGzXGfjhecRRH8uyUUoaWwQ98BbSgNZkWYrtmB7OXINtu2it+flf+DLjKyb5jY++iaFGhZWrxnnbW8/l0ne8AgZsAPN/TY2CnDSiN8py8LyBQbAWLC026bS6aJ3h+T5zM3N8+5vXsW37hoFHptlH4tiIpbRbHf75K1ez8+wzCHs5SiUgHHSek2YJ1VoVyzL2K77nk6YRGsXiwiL/+b9+hb//+8/jeA6LiwtYStLtdLAdSalURwgLy5ZceOG5aDS1SgOdWwP1YIFtKZIw43d++z/ymte+itbSAvXGGEHF4rWveg2dNGZotI5MXTy3RL1R5sYf/JC/+esv8pKXno/nKU6cOM61197E1796DT/68f1oaXozt2xegxCSYrFApVxldKTB5e99LyMjI/wfn/g9Nm7axh9/8o94w+tfTZ6mxEnK0cePceaOM3lg1300hit0OvOcd/6ZjI9P8NrXvZHL3vdmlBWza9e9vPfyd7F18xl84W++wKYtG3ALEik8bFtRqVRJ0wxLGSscKSSu63L82DESHfLLv/JRzh2+ANtyjJepbeiWAoVSpsgWJwmO45EPbEbMvZrNG7fS6/colSt0uq0BVVPwtauuYP26LViWRavdRkpJ4PvoXNPu9hiqD7GwuIjnGy+5jRs3keqYW2++ifmlBTzXY8XkKsJ2m+nZYxw7Oo0bWDRqwywuLSKloTV7nsPi0hLdbo+52VniJCLwijSbhibuBgVs28K2bOIowbFM8bHeGCIICqRZTKlYYWx0lKGhGp7nEcWxOU8HPbuLi0u89CUXEUUdapUK3bSJ0jmHjs7RmNjO7MIJbM+jXC1RqhQhDkl6TX58z41YGYyMVHBdhef5WJZFliQkSYYxZ1ekeYZjB+S5oN1ZQusMIQOELZBmi2DmxDGiqE21XDMm17bLmo1nc/OdN9Fo1IijiBPHjjE8XETHGeiMdj8kswJWjI2BzhHSYvdDu8iznEf23Y/IY3zXgTRn/2OHqJZrSJlhewFRLI0acNwBNNLSMKCA9/o59951NyvXjKGUA8Km3XZ46JHdWK5NuRIghMXCXJNipcj08WO4uj0QYEuJoj57Dh6jVKmwZvU6bNshSVOarQVKlQqPPHQXk+NDg7hS4QQWYRRSKNVAaOIkodmNabc7VAOPLNMcf/wwQ0OjpHHC4SPThH3JytVTRFHEyMgIBT9gqb3E3scOUK/6tFvzTK7dZvbEQXx03QPX85a3vP5J8TOn/nxqDLaMsp0WDC73gD5TYreM1J2uhPlM8bN4htcHQ50UiJM+didv4sl5gB4gc8vfT841sAE79T0ti7ycuq7T435Om+cn6bFbLnI+8wOe+flPp8j5bz+5G5iYnz7+Z0fwLv/NP+HnX7LxtLlO/vSzLeoZxumzLqN0ywfUs72qaax9lkP3f3ByZ6bQhoYgLGq1Bvsf/BFBEOD4BbS0EKeoZy7/n1zHA62Q0iaKe+ZiLxVCGoqN49koqQk7HcZXjhHHMQ8/8jhvuPgClCXZvmUKBtV6hYsxCId2q8fuB/cyMTFKFPXQeUYUhijbIk1TkrhP4BXwA5/tWzfzhX/4PtWKg+WkKGVMxvM8xrYDY1gqNVHY57xzNyFVgnIEO7ZP4XsFhNJ02i0EAsf1yRIQQrFx/SS+VxhUecy6wn5K2O9z9s71SGk2oa2b17PsrSaEJIr6KAmdbp8sjykW/l/23jvasqu+8/zsvU++Ob6cKqmypFJAEgIDIookkgwYGof2Gs+08bjTmhl3e/VM2x579ep2u52wPcYe3MYYMMFgGyEBQhkJxSqFKqlyvVD18n03nXzmj33rqVSqAonxzKwZZq9116u699xz9jn3hF/4hhxpBoahE0MltSBKuVKk2+3y1NHTXL2jglJaDGNufpVarczs7DlKpQJfv+MRrty7lfW1Nc6eXWVouEmaaDGI+fkVquUCnU6HcimH7/dx3DxCSPp9H2kYZIFPt9fm+RfOsLSyxsjIMJVKGde16PZ6WJZibXmDZw+fZGSowVOHjmMqxch4nXNnF7ENxdraOju2jlEoFTBtE0OarKyuo5SgUtXS42QSyzYoujaTU6Okacrs7DmKxTxJljHcrCMkNIfLrCyv4/sB82eXqVSKdHsbWqwgDAbGviG9ns/wUJ04SQiCENs2kEpDDgO/h2FqYaXmpgAAACAASURBVIKpiSEcxyBNFVEY8ewLZ9i3e5okCTEcmwwJykAMHh5ZmmqzYWWRJBlhqLs+SdzT4gBKYtuu5nFmGf1un727tCeiwODU6UWmJ4c4sH9aQ3f//iF2bh/h6NwGi7NrmKbkjkPzfOxj76TXTvn13/hNbr/9w8xs2Uq9USXn5Lj1nXu0Oqsy6XY6lEpFGs0GXk6wvtKmXKmzurKGoUBKQEqtHmto2LFhnLckKUAqEDKl11tFCs2DDQKtiJkNxCPKlbIOAmKQZkYQ9vjwB97Em15/Hf/6V77A5774HB947z6SRKBkjGXa9NotIMSwtE9emkUItBF4HGkvyLNzZymV6mRpjN/tYBiCIAgxLQulTH7t17/Bf/7DRyCz+fVf+2nGJ5og4oHgQjYQLbAIgx6mKQmCAMv0yDLNDVRKdyzPxxh936ff67Gx3qHerEIa47kee/bv0tYgSqF5wVJ7Lfoh7dYGN7/+Onp9n5PHzmGaAi+X1wlwGmtIoGHyta98k8mp8UGikZHL5zh6tM+VVx6gWHIIgoBGo0mn09ZCEqHi2NHT5HIejqt5RlEMtpkjilIWV+ZIophCoczHP/YJwsSn2azj5Uqk0ieOfKSVQ5CR+ja33fY+PvTB93LHnXchcLjy6l30/TZRFFOrNPmLP/2v/Jff/W0mp0bYPrWFtQ0tHHHs6DFuvvl1ZDJFGIKh0VFuuvmNHH36CH/yR3/AT33kdtZWVvmrz3+Bt7zlrTz+6BM06zU63SWGR6ucOHmE0fFx8sUKvU5KHAlmJq/AkiXWW8t8+o//jNs/8gGqQ0XSyKHbXce0FGuryxjKZL21PkC3SCxb8Mlf/h/51Z/6ty8m/UJ3HjTs3tgM6jTM3djku2RpSq/dYnHxLPc/dD/bd+0lSwJc10VKxc4de7FNGyEFnpNDSIFhSno9nzAIOH78GK1Wi0Z9iH7P5+jzxxkZHmFqegYpJa1Wi5yTZ37uDKVykcmxGXrhOguz5wDB4ReeYcf2nZs833KpqgV3LBclTO6845vs3HkF0jYIgj6CDNt2WFleo1QqkpFy+PCzVGoVTKnVPdvddaTUiW8QaGERpQyGh0ZYWjqLbQks0yDutMnCPlEKc8vr7Ny+l363j2M5CCF45IH7KFsR42NVytU8pCm5Yh6lbKIo5IXnn6VaG+XUqaOMTkyRpDFpIjl14hjKUNg5j9kzLdy8gykylDIpFS0axSZYFq2ww+pqwL33P8bb334bUmU89vi93HjdT9Bam8OzPNI0Yml1mUJ9FEnK8vIKrXabqckZSsUyRpyjtXaaK3ZsJe9aFIdrSFIMJcmEgeeVWFs9h6cysjQhywS2tMmSiMSMmd6yBcMUxH5KmEQcOXmY17z2jQw1R+m1Y3r9DcrFOl2/g9/rUTTjAZ+/j+U4DE/tYqPTIp/L625aFFEtVuj7IWeOPsP02DAIh+PHXiBfLmIYOSAGIbCcPLnamC50+j3CsE9zqE7H72AZAiefIwza7Nx9Dc8eOUizMcTZc/MoQ7J75wGefOw+6vU6Y1t2627ZID6669FvcfuHbnsxaRl4fl4YQ10QVF06LPshseBmp+4Vxs4/KLkjPS9wdfGXLprLy7QHL0juLvX+ReNldg2X6ej9wPEq9vniIYROZM+L0MCPQXJ33udOCPGiqfX58Y+jUPqykSbpD7RIeCXdvPXVFgdGjc2u8EsXu/A/L9OnfMVDXPDKXuF6LrfEKwZrXvbkFVw8Iz0GJurntyDkRcuB5uddRlGJbFAtl2QIgqDP3JlZ4iAil8tBmpGkuvQnRAboKnucdDGkSRDGBEGk+TemTRQFGEqQpgZpFuDlchy48grSLCaOA+27legun+7aCcIowrYVpUpBV2GlxPO8QSVG4fsRcZLh5SyEVKyvrePYUG+UaTSGsGyPOBbcefdj7Nk5TRh2SZIE28oNjouNadn6QSsZeKHo9dqmy6OPH2J8clgb3SYhaRzjBwGGUsRpiOfl6HZ9DS01tRCLFFr0Q4jzYismOdfh7vseZ9v0GHff8yQ7t0+xdG4Wz/U4dmKeWrVGlmQsbgSMFmM9R9ulkHewcra2HEgzpicrSKXhl+VKjijKNJQwSynkC6RJhFQGlmWzsb5BpxviWA4nTiywuLTCE8+eZnx8mJmtE5iGwvVMlDRYWlxFKUiSPnGYEEQxhXye4aEqhpHSbq1TLJRYWQ1pDpcxlIXIUo6fOEWx6GCZBp1uMFCcU6yurBGGMY2hKiBII59SKc/hIwuU8oPfTwosy2R9bQPbVCwsrDAyNILr2fS6GY8+eorpqREMw+Q79z3Fjq1jzJ45S6fb4+Czp3nq0HF2bp9AGTrokSLEMEKef36JWqOIkAZTUw2UKQYCIEqbmYoYUCwvLHHy1DnypSIiS3n+hdM0mxU2Njq4uSKG6aCUSRyHKGnz2OOHmZke5nuPHWFstE6apDRrRTzPIkwCQj/g6v3bQcJozeO+F9bZMzXCcFGy48qb+Nmf+e/41X/z73nowftoNosEvQ2U5fLpT3+OA/un+fIX72J9vc3yuS5XXTOBaeY5deoEw6MNhBDUqlV63TaFQo5+t4tpSZJIQ+xMWwd2hqm9pGwrR5Zqn0BBhpIK0zR01zrLdOIjJWEYYVseQRTg5T1ufdcNvP+21/KO2/4zDzx4nHe/c8+mxYA0lFaCzTT0ybIlqyuL5IqeFkHCJQw6uI7SfD2p+Plf+Ap/8VdP8eY3XsUb3nAt/+Tjb2X/lds15DVJ9O+RaT9NZdr0+itIqcgyRRxHmKbH6soah548xPj4EFJZ+r4TJ9i2zaOPHmTb9mkcp0DgB/hhD8MQWAZIkbGxscZ9330Ey0gYGhplaalDqZwnDhIcR1EoViELEEphWBaWZXP3dx5gY6NDt9tjcmqSJI1RSjIytI+wt0GuWCSfz28ey0IhT6/fYWJ0FJEKfud3fo+3vuXdZIlkaWkOL2fy9a/eQRSl7NixjdNnjlIoVQgjH6FSslBhW5aWzo9TovYSv/wv/3ukmTA9OcE73vE20iTibW+4nTe+6Sampyb52M99HNNS2sdRpZimQxRGVKtV5ubmuPub97Lnqqvp9LsoGbNt5zRvv/WtNIaGOLe0zOTUMGurq+y/eg+FkkmUWHj5IrXqEP1exLfv+i4T4+PU65WBmXRIsVLggx+9DWE4RIFNP9zAM2wNNa/XWV3cwDHL2GbGqTNP8vnP38lPvfbjzJ9dIJfLIRT873/5Z+zdfSVCikFnVvM2/TDEtAzIJIcOHkSqjHyxRLlSZ9u27RgK+p0QIQRxEiGV5PiJo9x773cJg5Ch5rDuGpoGtm3SbA5x6OBB9uzZR7vdoVKtcsc372Dbtq04jk2xWCQMQwqFEoViCT/qYZkujpNjbn6eaw5cR5YlrCyvUSmXCYI+d971D3TaLZ55+hA33nQT7V6Lzmqf+dlZgiBkbWWNxx67j9GRcbIUGkPDyDSj21lDyoRcroCyXKLQx7Fy9IMOhrJ14UmEmCJCiRiygISUYmOcoUqdleWzxFmM51h8964vYRAyumUcw7JwlQNJTDcUKBEThyF+KihXaxRLJRS60ZJmMbVmhbxX5s5vPMCBAztRUsdaKRmW5RJlEVGYsbRwjkyYXHv965C25LkjR7juup8gjDrIqI0wFN1em/HJ7Zw8cZpIGgzVm8zNLmBZNq3WEsdPPMzVB/bj2JIMCMMUU0KmMqJYoOwcggDTkkQRSMskTEKkUliGA3GAmdhESQhGmeX5ecamt2F5OQzDoOMHtJbmMaTJmdkjNAq2FsQgI5MuZ88tMT6xHSkEhi2wDIso8rGtlPmFo4zUK2Ro6K0UEqU0NS5NU/wgIMsEruWQiYgsjjCEQpAQx9DaaHF8PsA0FQsLCww3R6k3GrQ3Onz/8Xspm6nmuVcbFHKFTajivQfv4fbb3zcI5c7HrwP+2nliz3nOfspLAsZXlOBshok/PE4+3+H7QevdhHFeHB5muuOZZOlLoI7i4rhdyzojLrONF9UzuYA+cAGCb/B5QjpQtBQvsde78CUvWv+FaqHn9/HCdV6cy2weq8G+/H8/uUteTO4uWQ34v6AJpqsZP/qK0yzl+uuv0X53l1zPxe/9n9wJjS95RSPbTAN/xG2+4srES6/G9LxXyOZUL1yPeNnyL1tbBvlCgVzOxXVcyqUKD3//IFOTI4g0QWYZQeCTpTEksLi0QBRnOI6Nl3MhTbUClWVqmOMgSJRSkQwMOHM5myzNSAacufPGzWmaDoxnXYQYCDxEWpYYKQmDiOWlNer1GoZpkM8XqFYK1BtVTSQ3FEJKjp+cZcvkCN1eF8/LIaVBHIdIpbse2qx5QO4VEte1SQU0m1WiMBgEyWpTgj3LwLRMkjjjqacOMzU1ShiEKKktHJRhEoYRSaw9xAzDxO/5DDUbbN8+Tae9SqlgMju/jFLGYP0pv/HVp7l5OqNRryOkQeB3EUrQ6/t4njtQjIM4ikniCCkd5heWqFSLxHFKlhiEYYplOYgsI8nAdmzyBY+zSyu86XXXYDkmaaaPaRSHJHFCq9WlUatimgrLcigXi/hBiO/HmKakXMxpef5Ti4yMljlvMOpYxoA7YpHL5ZHSQKoMQ2rvsDiOSZMUZWh4oO04PHXoOOcWV2nUyxqiSkK5VGBsdIi5uUVKlRyt9S7fe/wU+3aP87kv3csH33szQdCnWitQKDi4tsmVe7eytLhCoZAnI0EpgWlKnn5ujvHRIdbXO9qKQYGhzE2Ip0SAlBRzHnGSkCvqjslQs8rC2SVqtYpWhUs0o1YpA9/3GR8fQkmDsZEG7XYH27a596FnmRqvYVo27VaXbruLl7fp+yH/6Y553nv9Vq6YGsbbfj0fuv2jFMtVtu/cjpNzKJfzTG/dzhe+9E3e8LqdvOGWG9m5a4ZyOcfc3CnIDJrNOpDheg5B4OO6NnGi+YC2bev5GVrURG4+jLNN2E4YDoR/hKDT7mz6LGm7g/OqlwNTdKW/I6XiEz91C7e+4zp++p9+mr/860O8863TGIZB4PfIMqn5bZal7UDIiMIuuUKJ2dllyCQf/tmv8Nhjs3zqD/85H/3w67QUvJDESUoSa85Fr9PFMI3Na1wqpYVfkAPYs9y8M01Mjunr1TAI+gHff/hJatUqM1u3aIhbFrC2tkql0mBh7jRxHGK7LlEU8+ADh9m3fweHn32ezkYXxzW0pL7naj8/Q9FpdzCkQeiHtDZ63Pja66k3a9iOPsZCCExjmDNnZhmdGKPf7fPbv/3b3HLLm3jsew8z3BjC9XJs9LqUSnka9SEMwyCXd1BKsm/vAZaXl3jqqYPsu3If0hC4nsXKyjJPPHGQ8ckxDaGLElw7T4zAsAwc16Pr+xiW4plnXuCnf+4jRCm8613vYd++vYyMDHNu8Sz5QgE/CAmCACHhz//sf+N9H3gfcZqxcHoBvx+SpZp/XCjlmZqYoFFv8nu/+/vc8NrrKXgF2htr9LptFuYWOHD1ATY668zPzfLd736HrdtmMC2Hs+cWCMOEQq5ERkRno4034KHf/Z17SCLJFTu2UatU+aPf+gv279xPqVjafMpMTcxoqXlDDZ5N6WZsobnUIWOjoxSKefr9HutrKxTyeZIkxLZzzM/NUiqVMKRBrVJldWWVTqfDwUOPs3PnHqRU9Hpdet0uu3btoe/72JZDs9HgxIkT7N+3T9/7PA/TMPm7v/sKtmNhOw6O5WCaNs1mEyEgjiPyuYLu2Pd9Tp44zmtvfj27du0hyzKazQY5t0gUxLRa6yDgpptei+t6HHrmEMPNYVrtdarVChlazTVOMgylWFpapVQpIYTQXMEsRGYRWRoRxyFpIuj6elnXcen7HQwlOfb8c+zfvw/bkehHVkacCA4+cYjRiSGkEOTyBYRIEVmiu+FKYEjdYTQMxcTUMEJmmKYijkItrZ9qVIBUJsqweezp59i152qSLGKoMYQQEr+zhkq7CGVs+g56hTr5colup8/IyDhSZhQKOQwR45oSx9TPsO9+53Gu2L6NMOpjeQUwPcwsJPF97nngMaamRjGk1F1GQJlArEhEwslTi2B5VBsjIBRJFOE6HiRacdl1DGwZI6QiimIMM0+hMMKTzz5J3w9wbRshFK7nsnD2DOVSnbwpMG1H83MNBVlKBijTwbQ8TLdIEoUkiY/KIIoCMqm5eEmWce7sOkNjY+zcsYeNjQ3CKKDVWmPP3itZnH0BL1+knwqaQyOb9+J7Dt7D7bff9rL4atNcGzjPwbu4X/Bqu1KvtMP3irhtlwgPdTFVbgqpXHKb2Xm60WXm8sM6e4PP40wLrfwgjuElI30hNu/d520czu/Lxdu6OMn9sUnu4NLVgH8srt2F49UmdhdjjM///crnP8fOyeYFnDsx+PfFic0P3cAPTaou7oVdfrkLgZqvYlxuDi8nFJ7/ANA3jfOduxdXdeFMxUuWv/zmBZk0QBkavx5GzMxM0ut2OHXyJBurK6RZShpHJHGKY0tK1QamadDr9bUghpmRRGBZLr7f46GHDzE6MkSapBw/foZSOTfoECiCfsTBZ55lbHQYYwBbUFIR+rpyqwwD349wHJNOu0+tWiGMYjKRoJQiTrSBeZJmAwhXxvatUyipRTD6/RDLcrVqpDBQA58ssow0zThx4jT5XB5hCKSALEsxDUWK2jxS2vYgI00hDEK+esf9HNi/hyyDVqvD7JmzlCtFLYIhFVIoLNPgkUeepdvdoNnMY6mUQqWJZSr8IKDaqPHpOx7nvdfUME2T2blFZufPMjKkVSaloZCDKlcYRloxVFqcW1qnWinS73cpFHLc+8hB6tUcSkG5VqXb7ZEmKVu2jLKyvEqv38eybB5/4gjDQyUs2yHv5VhcXGV9vc+Ro3MA5PM5iqW87rYmWsBjamZEW0Bk6UAExSMddFGTBAI/IkMrqS0sLAOQy+eYnzuLZRqYlsP4SJ2R4RqO4/C1bzzMVfu30N7oYVs2URLhug6OazPSyNNud7jmqm2kacyJ02coFiyyLKVabWBYgnxBJ+pRHJLGKXESsGXLJI89epQHHzvOFdua2ow7HZznWUYQxBhK2x7kC9rLSsmMjY2OTqAtLbiA0NzSMIywHZ3EdDp9Op0+zWadv/7yQ9x262sIg4Av//3D7No+zokzS9iWwZkzK/zkjaP8p7+6n1tu2s83nlygVC3R92Pe8pa38f4PfJB2awm3mOfokZP86v/yO/zsJ25FoLjrzu+wbcdWnj98hsPPHWfP3u06WBOKr331m1yxcxtq4FnVWlvH8bR6bxwFg4eUIonDgVKmvj+cr56apkWSpMRxihpIfyulGcNSaUsBMvD7fVJSPviB6/noh9+E442y3jK554ETfOVrz/Anf/4kf/7Zx/nyV1/gi19+nk5PcuDATThek1J9mo/c/nquv2YrrpcHoQZCKh7GIMk/X8QzLQclwDDlZkXV74coZaFMLV7x2CNPMDo6gpQDNIE0sS2bxx55iu3bpmhtrGOYKa7r8ZUvfIvATzny3Cm2bb+CtfUeV161l1K5zPBwg2olz8pai0q1jDIAkZIkYFtaOOX+ex5mfGqCal2rsypDYijJ29/zP/OJf/JRGkNN5IA7esMNr0FKxWitSafbwS24LCyfZXR4GNOwOXH8JCdPnWB8fIwshV/6pU/y8z//cwRBSKe7juWY5LwiM5Pb6fhdCq6JRLLW6iNNybHjJ2kON2l31sjli1xz3TWgAg4/d5xf/qVPMjY+Tqu1TrVSIQy1om4u72Eok5tf+xqkYbCy2mJ8eJzbP/hTfPFvvsjP/tzPIETG/KlZwiDiNTfehDQVYbeHyBI67XVs08Zzc0gTGvURhkabuDkJmYXrOZw8cYaTJ+bIOVCtjRD0+0R+m737r+TQwWe5+1v38zO/8En+3S/8KgcPPs7U1IyGPWVC+6X5fUzDIgwDLEt70UkpiMIY17FJ05Qkjrnvu/cxOjpB3stBpjlwlu0gkJimwfETxzBNi2uuvZadO3fT2mjh2Dbf+979bN92BUHQJ8kCpIR2d4M9e3axsDBPpVLB9wPa7Tb79lxJr9ehWq6ghCKIQg4efIKR4TGklMyemeXJJx9nfW2dqw9cR5pGmndqak9RJSVrGyskWcgVO7eRphl///dfYWp8K631FYZGRmhtrBPGMbbtYAgN8zdtFynA769iyZgkaJPFfcKwjxKCIBCU6+OEQZcMQUoMWcLi7Em2bZ3AlCZprIvFhmOC9CjmbF549hmK5SJhv49l2FimSRL7JHGGbdmEA1++LNW0CsOwGfjLkImMKEwwDYu5cx3GxrdimAaxn9DrtTFFiEp9gigljeHsuUXqjRmUsnn60BOkWUatViFNIx689wkW584wMTkDhmDXFdvo9zr0/D6FyiTKdBFhG5H6GAUPxzSwB95/CZI00MqT7V5IoTzCiYWzzGzZgTG4V6VBxLnlc0BC2ckwXZM46iOlYH5xmWOzC1x/3WvJ5Tw816XfDZk9M4tK8zz9+MNMjNd0Uqtv8xpFkAHSwLBcNroJKo3JEp9eZx3XzZGQQSbobLSw3TLN0XFmZ08RhiGLi+cYGx3DyXlUy2X87jrKztFojmzGZ/c89fLkTsgLinIXxmQXFOr0LfzSic35pOVyaLfz6IJLxewXJnaXg3Jq3t0ltn0BB++8QubFPnZ6uRdj8s3PBZpXN+C6XdzxE4OixWYipsTgGTaYtxQX54WXaNmIl/zdfP8VdkB/rJI7ePXVg/+7xqVOzP/4x3/De66bukQC+v/8PvxIyd2r+jx7MbHLdIJD9iLG++W/4w/H2ArOwy+VJsZLsByLYimP7blUKnWSJENgEkYRJDGBH2C7LtKwUMIiIyYMu9h2bqAwCY5jIYSBZZlIoZOnfr/H1PTYQLlQAJKzc3Pkcq42pZWCONXBaSGfI4z6RHEf07QwDYc4Suj1eziuSzbo3vW6PbrdLkrZLJ5dQQCmZdHp9un3etiOSRKnrK21ME2DQjHPPfc8xtjoMJZlaVeZ2EcpyZf/9tu4SqtO2pZNuVxi/+4tCCn5k898nf27t4CAYsnVN6rBb3H02Eka1TLTW8ZxPJc0g3PnNnBtC89zEcrk6w+f4m27SxRLRZTMGJ8YRwkJSYyhBMtL67o63e0TxxHFskOlnNdwOVJSIrbOjGvFtzDh9Ow8Q4069z74NJYCx5RUKgUkcOLkWcZHh1ldbbG2tsHISJ1nD5/h2v3bcWyDF46eod3uUKsWkYOAKiFhfaVLkuqK6tETi4yN6u5SkoQkqa+7iykUiwUKhTzttk+p6GGYCmXY2Jag1WphmIrWepuh4TKum2NlZZ1CyWVjQxsRe55NLu9hmQplKPKeh+vmiOKMpeU18jkTPwhYXWkThQmGsnFci74fsXVmmDQOGB2to5Ti63c8ys4dY4AgDFINH04jndgM0DBKSqIo4fiJBc4urjLUqA5MkDOE1J6MQkKh4OL3e/T6PSbG6tovbUsDN59jdHSYM6cWeeLQKXZMD/Mfv3Wat+8d5jf/4hu8/93v4Auf/RKnj5/h3MJZbnv/+1G2Yv++vRzYfQN/8KlPc+rYHLe85WrK5SaeZ3LVgf2cOnmacll3S3fs3IHrOQiR0Wm3KVfKRJHuhMVxuGlKbhhScxMtHSxLqTY7fEJIHTsMYEhhGJIk8UDpT99LLdsginzIxKDLHZErOFyxcytX7pvhYx9/Ix/+0Gt4//tu4GMfeTN7907T74Z4eQuhDMLQJ+86BLGvj6FQCKkLIUmi+THaxFwhRUq/t4FUJmtr6xSLVaQ0ePbQs1RrVUZGx/n7r32H9bUWhaKLZTu4OY+R4Qori2eoNuuYKoeUFtt2THD0hTNcdWAnUknu/Mb9bN1Sw3ZzHD92ijSJ8XJ57v3u99iydZpup49je2RxoGG8W6YxZEoSa5uR9dV1bNti6WzG9ddfo5VATYM4ivUxVYrMMMgVc6RpxLHnn2Nycobl5VV+//f/kPe8550snJ2nVqtQrRWYmhknjPtUa8M8f/gokS85c3qZvGeyvnCUJGqRK3oEnZTP/9UX2LNzG46dEvkZf/qpTzE2WmViaCvC0FxL0zRYb62R8/IYA2EPpRSOyrHe7jAyNowUCe9+z7v4xU/+M6Ig4dOf/gx7tm+nOTyK6dhgSQr5MiiJMG3qzRH8UNDrdnn0+8/xR5/6FLfe+maCAPp+D4Hi0KHDbJ1s4hbqKJmxevYU1eYY27dv4b/8we/zr9//ryiVCoyOjm8+YoIgRBt3KyzzfPL+YlFWSn3/j6OEcwuLPPX0Qa69/jqkKfHDYPCMkDiOTZYleHmPWqVBilbf7Pf6GKbJSHMEyzSBBMu0B5zdHhvrLRr1YY4dP8pQc5iDB59idHyMSrVCEIaYlo1pKmqVOnd+6xvMzGwjCHzqtSZBEDA9MzVAbWS01jdorW+w3lllbHScQqGAbZt0uz6nT56hWR/C9SxKlRqOl8N2PdJMe4IKpej125hJSOYvEraXNMcuDJDKor3eYbXdwS7WkEJi2hYiM3jw3n/gwDWvQYkAkUpa66s4roIQ8mUTESYMT23DMS2EUFiWTSZ0AmCYunBmGg5hr6eLlWmGZdsDs3WTNIWllXWOP3+Y0ckdIARezsFUBlkWE/mrGFlIux9QLNWQyuH7jz5KpT5EvV5neHQEy7JYW1lhaqrJ5PQQQgQYEqI41Cq5hSLKKRB1W0gRk6QB1UJJWyYoSRKnbHR8jjx9iJGRGTbWU7phRqPRpOB6kGUYhkEa9onI6LTOUfUUWCbEMVGSUKmPU6iMYpkui8tnsR2LvFfk2PGnyZcFk9MT5AdFJsjI0hRDmSSJhuunSPKlGiuLs5QKHqZhaJsOpZDo7t6RIycIU8HWmR2USmV27LiCY8eOUGsO43dXaFSqLCzMMzQ2iTBMJDC8tcLufTt/SOwmXvL+ebPyy8Xem92zyzbHXmF3jkvH91mW+vXz8QAAIABJREFUXTq5u3AZwUs6eJdd74XNiOzFvxdvN0vSl9DAMvHS9bzYqLlgGz9whq8O1gr/f3IHGS9T5rl4+VdzQC+nxvnDxqVO3vfe9i7+62e/wr6p2oUz+mEzuPwyP6SDd94SQbxCmOarSvAut93LdvQg3UzqxEva0RqRdvHxutRFKS56DRI8tFrS+c0KaWA5DkiJ5ThYro2bz2NYDkmS0m1v4BjavLXbWcXzSoAkJRxUrARPPvksDz18hGa1TLvdoVQp4Lo2i4tn8TwHgcL1JEmssfPtjRaeJ0lSILNQhsQP18nltKQ9IsN18oRhSK/bxXFMfL9HPlcijQWf/ep32b9rEtd1sW0Dx3YQmUIocByXfCGPkJLxkQaOben9RYuWRFHMzh0z1Oo1njp4hEazRr+vJZvPnJllcrhC3nVIkgTLBNvy8INYe+oNDbOytkRGSqfTo1Cq4Fg2va6P769z+OnT3H9induudomjjLn5PpVanrmzy1SqBUK/h2XnyTJ9czNtG6EkqysbKCnpdbv0A5+cUyCNfUxLQzgdx2FqYoTVlS6W5ZLLOayuLlMuu7Q3Vhkfmeaue58kTvqQejSHtDfSkRPn6PsRQ40S7U5HdywMm3y+RG+jz8kzS8zMNKiUc8RpRNBLkWQYjiDwfcLAw7BMcp5Wxet0elgm9Dba5Ms5wjhmdKSOEgZxFA64dgHFsotpGbQ3ulqQR2m47lf+4RF2bh/jOw88we4dW7BMBykUjm1y5NgZRkbrnDixSK1SJSWhOVQmSXusr/rs3jGBaViQSb70dw9RKAjK5RxhEGJZBhkSqRSmZVKvlajXarpqKTTv1DBNhEjJ0ggltdhOvVKm1w1xc472c/RjAj9kbv4cb7tlD6lKefhUyofftAsRtfndT9/Br/zbX+Ftb38TR55/jqv27MKUirML63zin/4ShmXywfcfYPfevfz5n/4tN772aj732a9iOYLJ6TGUoUgSLTyRJuC6Dtq6QIvzmIZJEKzRa3cGNiIGWabVGiEkCLooJQjDEMMwaK+vI5WNadoDg/sIpRyyLCFLE50oCgOyTKshmiZq0Dnvd3qYQmA51uY9xXYlURhrTpHjasqF4Wo1TZkRh31s2yOKfCxbkiWa89HeaGNbDkHYJ+fk6Pc6LC6eY2LLVp5/7hQPPfAI73rvGxgda5BzSvQ6G6SJ9ryrNUbotAP+7svfYGyihuUaTG+ZwLYdLMdi5+5phPRYnF/lu3ffz6kzS1yxfZxczqaQL/H1L91NY7iGVALLVoRhH9fLYVgGpqnIFwscPTHLTTe8DtcUoGyCuEuGwrZzJGlMP+xjKI+7vnEvBBlvv/Un+eV/8S9581vfQBj71Bo1et11du3cQxRl1GsjPHL/nTz/xAr3fPsu3njLDO9758f54E9+hCgNKJUd1ltrXH1gn/auEw5r59Z54y23kAmX5fVVcsWM06dfYLg5wonDCyRGgK1KEAmSaIk//L1P86a3vVHDlWNFFnX50hc/z+69O2m11th//dWkMqFSL/OFz32BkbFJjp96WhdSkgqlvMe377uLG2+6jtff+DpmTyzzZ5/5I2688Roevv857r//Po6+MMfs6WOMNCf4zF98nc7KLBNTk0ylW3numacYHh7moYfuZ3JsGpEJDMcZwIhNDb3LUtI4G3RMYGN9g5ybRwltQTGzdQbTNDV0N0lBKQxD4Qd9TMvAUGpgXg6O7eC4DoZpIVLtj+fmi/i+j217HDt6jCCIOT13lD279+kEbWON0bFxwriHqRTdTg/LMonSmGZziHyhgOt42I5Nc6RJRoIpLB5/4lG2zmzDMBX1SpUoDOl3u2xstCgXS7hugUq9QoLEdB1EkmFJfW0gDeIkxjYs+p15iDYgTVhsBbT7MY6do9DcQaEyhCHBKTcRIiFB4hk58pZPlkpMS+F4jg5aTUsH4QrSKBzEBLrYpgyDVEgEEYZwWPX7PP/8UZrjddLIJ45SsBXHjszh5PKUSjlsx8ErlqnWy/TDkIXlRRwjwzUj4izCVHnOrm7g5HKMTEzQ6fVoDo9okcMk5czJ4zz8yPfYNj1Kd2MD280jUrAMSFSeOBOY9CBLSKIIyJAZxGlCLATLy+fYuWMbSZZyem6OWmOc5vAIpm1xavY0tVoDQ7rkSnnioEvJFgQ29FbXQHn0QptytYKQMa7lQWqQAUvnVnGdKt974FHorpIv55FSkCQZSRqRCYHjFOn3AywvR77g0euvYzCAsEcZqYpJoozjZ1e4+trXYSrF84cP4rl5hkdGeeyx7+si1eIc/dYatfEd2JYFErbetJ1iIYdEDNSDU5266ZBKi1AOIPQXh2EXxsS6CCdfjDUvEQK+WmSdEOJFdcwL3tOJo+62CSk0avSicHHTb+98/H5+bpvdO91k2Hz/PE3oMhBJXeh5kScnN1Pcwa5ml4pOLz2yiyZ7noOXiktz986/zB/75A42Ma2XGj+6es0gY8+yV6X8c/F45tgCe+uvdOkfXVwFLoBc/iCM8UuWfzUrf/XzOt/WzrJMJ3roPdTml680uXslU7v48tLHUQmJ7Vg4jsXi0gpBLySXs5GGpR/sSkvux1FMtVxkfKzG3fc/xXCzQrVWJAxT7rz7EbZMjSKEpNvtYBoWi+eWKRRyKCUAg9bGKpZtIIRFGCU4roX2tLJACGzbwvf7FIoF7aFkSHZvH8cwFK7rEYY+SjdliKMYwzS08IuhtHeeIYmjGCEFaSw5fnyWYrHA8vIKzx9dYPu2SSxb87pq9SqWZRLHMbVGlSgKWFpco1AqYTsGx144zfT0GKZlYtk2nufRbrdxXQfXtcjn8vzy73yG/+bWPRSKBe753mGu2FInX8hryXBlYJnaeDUMA8IwJJ932NjoUamUsCxdYex0AqIooFQqsLaxTBQFnJ6dZ9euSdrtNoYh8f2QoUYDZYIQFrt2jOH3+ww3KqxvtHjkiWO89Y1XMzXRwDIluYKLaSqETOn3e5yeO8vV+7dgmJKjR8/geRauk6fb7eB4ppYAL3rESVfL+fd9XE8nja6jk1KpBtxLU2IYgm6nQ97LadsHP2FudoUsgTiJaLW6XHvgCpQhmZ5oYtsuJ06coZj36PX6jAzXsEyTIy+cZnysgRDnDZI1vybwfdbW1snnXaYnqoyONsgygWEadDtdkgEXRgwKDrrDrGXXoyim3wtQ0iCOBw/6VHsnZpnmip0+eQ7P9cjnXZqNAmniYJo5glPHKFeHOfncKUauej1XX30Vb3nzm/kP/+G3COMWSZbSaI5x5x3forO2yKNPn+WD738txZLLmZOzBEHADTderfl1gyqnYWrFwSAIUUpqw3GlyOKIfm8D1ytg2jmiuKeJ5kJDf5QyyNIUKTQPVUPiDNIsRUlI4hgyA6VMpFJEYazhcnGM5dh02x2SqI/luLrzZlkaMpZAkiRkme4EGIaheXWGydLiErl8jjSOQWphG9txyBKhE0ngyccO8cSjT7Pvqn2bgYI0DH0Nk/KaG69GKYmpLIIgRpl6jqsra3henpOnTnHDzdeSK+RRhkHg+7TbbTzPQSrB3/7Nt5iYHOHqa3cxPj7M6VNz7LtyD0LAnn1XcPDgc0xOT5DECUtnl8kVCtprbXAu/Px/+4d88AMf4MypBUrVJn/9mb/mwfu/RxwEiMzHNQVZAp/97Be59b238f4PvpN6vUoYhuRyBQQGSRLy5BMHMS1t3UFisffAbm5511so1cf42Cc+SrFSws0XEYaDZTkUiyXN/YwT/s2v/Dve8ra3Uq/XQQqKxRJDjWFOnjjOULOOl/fw/YhyqcC5pXl+4ifeCFJ3RpbPLVKplNm7/0pMy6ZcqdLtd6nVavh9n+GhIUaGximVLRzb473vup3bbnsHW3Zsx7FNpIhpDJd44IGHqNeqvO7mN3HLm1/Pvt17GB4ewrZdSoUSb3zTdXziZz7JNduvYnx8FCdfoN4Y4tjJY5SrVWQGYRDg2BZ+v4cwTV00kJIsSXBdV6vXmrqj4uXym+I/SioEkiiKsG2HONZCQkka8/D3H6DZGME2LTKRMT9/hlqtQTrg6pBBuVIhl8ux84pdBEHEUwefYM/u/diOIuxFzM6eplTMEcXaqiGfy+tnZpbQ7mzgOBoOGkcxoyNjZGTcc9+32DqzHdMy8TyXUqnCWmsNx3YplHUn1bZs4jDi6WcO0hgaQpoGYbdFFrcIOkvYhslGX1GsT1GsjNDzQ3qBVm1M/C62lyPq+wi/xdriEYr1ApZhg0gZYM0xbZs01f6RcZygDIOMdMDl0tz0JArI0gTbsmg2CsyeaDM3f47RiWFEBufmT+IVixw+/Cy1+jYK5WEsyyMKUsaGJ+j3Noj66wgEJ06exssNcfr0MYZHpqnXh1lbXcLv92mvr+EYJjt3TGCICM/KkcQ6GYmTCLtQwTByxEGLJAp0h1VoJE6rtUHoxzRqDbI0JVOSIEpZaXWYnJ5BCEkcRtiOw/z8ScJolZwNllDEkcIyJJZTwDBLmJZLGIU4tsuxE8/TqDcolC0Wl+ex3ZjpqRrKMBFS843JNE8+TiLa3RZevkaWQK+9hi1NAt8n5zgEcUgS6W7iocPPkMQh1117A1JJ7r/3O2zfsZtiqcLRw0/ieR7F5jie55EJwcx1U8gsHXSiskt31S5hNP5inKVRQEpd3rz84uVf6bhUzHqppEtP4jLLXcy9uxyn7hWqaP5jjEt17DQX7wePH5vk7rIVAPHSCsHFr+wybdrLjYu386Nw+i7c/v6r9vGhX/xNPnTzjosWulS+9I97gv2gqsIP3dL5jtzgJLwc0fRySZ+2KXsxuXvp1SgucXN4Nb/TxTWTi78rNteo5y7JFwrYyqLba+O43uAbGk4QxzGua1Mo5ti+dZxKtYwQKbblUS3lKZVKZFlKhsDLeeQLOdbWNXQySzO63Q0to2x6WLb21gv8cGBgrblVUggtq26ZRFGIYzv87T/cz9aZCSxLEcURaZLQ7YQoBaYp6ff8gcR8TK+nOWrKsHn62aPUaxVKpQKnT52jUi6QzzvESaTn0/MpVcpaaCJLqVZrpBn4/Q7DQ8Ma359meLkcJ06cplavcO7cOYrFCkHY59CSyYdfN4oyJdtmhuh12oSR7qK0Wh0EKatr6+Q9B8sy2djYYKihPXv6gY+U4Dl5+n6XkyfPsnXLFlzbo1qpIJAsrSxSLhcwDUvDoERGu90mDGJs08K2oVqrsWPrCIZlIERGlsUEfjzgZiVYtkkuZ9H3fY2jTzOkITFNF4jxnApKuayurmA7LgLJyTNnadQrmuNlGTz86LPUigXt0yZ0EEWWkiQppukiMsG9Dx5muFHBsGF4eEg/gERGmqREcUS1UtLzSxMsx0FIwfhYbTDnjDvufJStM02yLMP1LHI5F6kErmsThVrI4eHHDrNlZgLTNPTZKyWhH+C4pi4wZgMYo1JIDP76Sw+yb5eGFEdRiJf3yBJtffLw919g4ewKE1MNnnjyeeLQZ+7cMr9x50l+8xffw2/95TcZGxpGKHj9616Hm7dYOrfBO952K+98x9t421vfwtOHnuAnb38DDz/wBDt3z3DNtVfyuc/+Hbv3bEcpgziKECIjDAOyVBJFWqhICEHY72I5BmlmIqUJIkEO7sNJnAy84nQCm6aaRxonif4NMm0Ur+Xp5eZ1HIXBoAgS6c6IzMiQCKWIokQrdBq2rrAqSRInm8bySZJimQZKyk0udZbFRGFEHMHxoycolcuMjAxTKhb5/Oe+wdT0CEEQ6Gs+zbAtA8s2IEvJkkGhKs342pe/xVXX7Mc0bSq1IoapjcaTOGN1eYkkTvFyHmkSMzk9yZHnXmDLjgnyhQrzswsMjdTo9bogBBOTY3Q7fc4uLDIyOqb9IkUGmfbFfPe7P4HtFDCcvDaZtgqIVLJ/316+/Z1vUMoVEZjcdPNP4ORcqnVtQ2IYapBQZ/i9PjMz0/S6XUzboFafJMhauHkXPzQQ9AmihDBMOXPmLI1mQyuCKsnq4iJXXnkNc/Pz/PEf/wm3vvOdxFGKVIKhoRpJ5OPmCniuSyozvHwOZSg67XXarTVqzSZJmjE3v0ACVGp1cp6rBYPSFM9zkVgEwSq9Tpef/cTPEwZtMGzu/va3yXk2rdYqN7zmBn791/5X/uHrdzE2UeKTn/zn3PqOW0nTBGVk/LN/8T/xr27/HzCUydNPH6QxMoppm9TqDa2eGsYoJei0WxhSoQYFiwcfuo9KqYLtuiAygqCP47q6GKckgR/qLl2mz2VDKZSQmIYBpIwMjw2M0Q3i2KdSa9D3fQxDYZvWpoqx5zk8+eQTNOpDSASe66EUWIZNt9fBMKBUrpFmmmdrGIY2sjdtlFQYSgGCuflZKtUqO7ZdQbfXY25hdiDeZfH9R+5nxxV7iBIfx3bo93q4nkdzaBhlKqKwS9JfJ43WcC0b3we7MkbHD8mXSlieR+gHeK6HSGNQijQLKJkCScrKygq5vEuG3l+BpN/vDnz5sgF/UZKlGaZlYRgGcZpAohAyQaYZtqmQZonicBGVxshUUKnUsJw8G32Tnq8YmxpHiIyNjVUkGa7jIKIuUpq8cPwMk9PbMEyL5dUlyvUqConf92lU67TWVjh86BGmJkZI0whhCpQ0SbKEVOUwlUPQW8NxbMJ+T3O4bYnn5XFMCyljpKVQWZ5nDi6w75qrBoVpieflME2LLFRYbGCbmeZzxqEO5K0yh4+9QJoqivkCPb/HyPAI9z/4HWRi8dzjh+m01pmZHNboojBFSC3oJAZIBMOyCUPtcxuHbSQpQgmiICDO9Dnw3AsnyBcLXHfNa8iyBKEkI0OjhFHCQw/dSyFnUSjkydeG8fJ5up2Qkb1Del0XItMujgYvkdwZythc/kXU5oUQxZc2QLI0e9lyr2RcTkvj4v+nZGTixYTwcki7y2pzXJwXZNngnL2EkuVgJFmivezkj6RasdnBO//d81DP80+6i6PYH6vk7v8t4+K5jgwNM2G2LlroHzuVe/n4QenSq9n2Dzz2l+uYnj+BswsFVS7oLL4saX61yd0r+VxvMxM6wVOGgR92iMOEfreHbeuAMQ5DHMciHFTxoiRmbW2NXMHC8zyiQVCp5dG1KbJlW4Sh5u8dObLAU0+/wNVXbaPbi7Adk37PR/tiaZjd+QpmHOvq8MZ6D890aTQr/wd77x1t2VXfeX72Pvnme18OlXNQSaUIQjKIbJODMybZYzPGGNsYmzGsHnvcYzw27oHG7YTHDaYBI0wSWJgkC4SEAgqlUpVKlfPL4caT9+4/9q0nValKErQ1M+3uvdZb9d6pc0+6Z5/zC9/A9PQMUZgSxzm3376XzZsmsW2J7wWEURff81b2n+UxkxNDOLbD7Mw8jYEyQcHH8z3m55YoFQK+eMsd7Nq5idbyAp7vIaVNFKcEgUsSpUhbIi0bKS2qtSq2LZiZmWZ4cBxppfz+33yRX33NDrqdHpVCAWFJTpycY2igyumTU2S54foU+oa1WqdIaSCq3V5k+HTSY2pqmkatguue8wfLyPKU4eEG83NNXNfFtgVkLradUyoNUCyWsf2EuGcSOFBIC4S26LSNkIBlw9LiMkme06jXWVposbjUYnJymCRRtDsthBb4hQKFsoXUFloIJsdH0WjCMEQ6NsONGhKIk5i9Dx9neKhmghHfJ1cZWgo2rh+jVC0RBI5RAtVg25Jbv30v27euJc9yBBiOnxD9pCciyxIcz2PN5ASOo8lyRRwmCMx9mKY5lu1g2za1SgHfD8gyYxsQR5FR8FQOApssN3wehCJLFeWCS71RIIkc8izvd5A1hw+fZN/hOV7ygt1853v7cT2bM9PzvPIlV7GtEuJ4dX7i8lWsvvbHuXzXLsbGx3nhi1/LNVfeyP/6y7/Izh1ruPPOe/j5N/0cN//jXbz5rS/hc/9wK5u3rGXT5nV84XPfYnxyiH/41K2cPHaGTVs2cfu37sHzXbIso1Aq4nkBreYSpXKVJIyxnYA810jL6ifm5lVmTFsNL1f0TdGFsBDaVNdBoVRGlia4rkee5ybhAYTloIWFQOBast/ZToyBcN8zy7LtfrXeAp0bj8A+Zxc0lmUUOweGKoRhRJYkNOoN9u49iG1LNm/djOu6GK80H5RicWHG8IT6ndK7v/8wuy7fyic/8TmuvHILuYK7vnsvs1PzrF27hnKlxsmjJ3E9l0KxzIM/2MOu3VtJYsXM9FlWr12F5wXc/4NHWL1mmBNHT1IsFFFKcfDQEUZGjA/jm976EXbv2kx9eARt2UidMzs/RalaY9PWrUyuWUepOsT11z+f3/md30aKmP/8nz/F5Zfvotlaplz2+N73b2frpp0cP3EcIRXDwwPgSmzhYGURveYJKsURok7Io3sfYc3q1YR5TsHz0FmCIwWjE2uYnpnhVa95NbnKcFzT7T5y6CCjwxMgJZ1ey4jiWA6WdHCEoOAWmF1o4rkOg8MjRmE4zbCtvrm9Mu8H1/KALq7j8Naf/0V+9mdfS6k+QrVYo14dgczl29/8J97/ex/gRTe9lOFxnzf93FtxvSLDw0N84N/9Lr/1xveSKXOvjI2O9z2yNFIYHzulNUiN4zrGfkZI8jRjcnINQbGAVqC1wnMd2q0OucLAMi3LFBzOQcP6UOnlVhNLOOQqJyj4LDUXCFwX6XjYrmv45krTC3u4rk2ShKxetZZOp43jmPvU8QK0UNQbDYKgAv1nlGXZpgiqoNlq4QcBvbCD5/l4nkeWpnS7HVzXp1wt4fk+gV9CYLP3kYdYv2EdYOEGPjmghUDkKWnYJg/nIYlJlYssjBLGMY1GA9uy0Urg2YKwF1EqFbGKASJ3mJprcur0o9RLA0CObRl45zmu9bn3o+04ZFm6IlqUpglJktJtJ5TqRfJMoKWFlDG+FDiWg+7zcWdnF5hZbLF1xy6S1PjwBUERYVm0W4vk0TIIi7PzIZqcifG1pJninvu/TyEoM7swh+f4eK7LqslRBCkCh+m5OXzfARxsf5A4bmORoFWOY1vGhkTaGMsW46uWJhCrHidnjjPfbLJ61XrmF+Ypl8u0Wi3m58/Q8BUqS5Cuh8gj2p2YpY5ifM1aBuqmoOC6NnGcsnpyPYMDJeoDAY6nGBms0e4mPHTPHkYnGni2R5Yl/aKfTZQqXM/YSwhlxMRyrfne9x+mXC9zenqR9eu30uu0efDBu1m3YRueY3Hq9AnypMX48AC99hLDqzfj+T5f++aXueFVz0eSn58APU1yJ4V8UvIGfSGVfpL0pO7fE3hsz0bsLrEM188y6AadXzopO++wzgmqPGmDwnjKPsUxa4yKOupHQ/Jd2MFbSe4sU3i8sBH1bz65y1X6+091IS+8IE+EU/6/NZ7I0zvvy+svX7tuNW95z4d43fUbuRj0UjyBP9ZfQn92nL/+E7tlz+DmOq+/dYnVn/Eteol29iXXuwBpfK6Xdh55faUKdGEn7lI/lybLPg7NvEhrn/71lQrXr4C2TJWvfRaVC8NX0oBOiCLDeSiVyoQ9gbAUyAyEgy1d8jwnyyMKQYAtXXpxm4mxBldecRm59nA8TdjN+cE9BxlouBQLDcKwSxSFaC1x7JQsTWl1FhkYDPC8gKX5FnNzC2zZuo7xyUFKpYKB4uU5YTfHC3zAcI50bpHlPZqtNmenZ9iwcRQpQCAN1E3Ati1riaOIcqWMVDa5hla7S7FYZHl5mcD3SMII2zEB79lT05SKRdI8QgrJdw93eMWOMr5XZKnZI09TBodK2L5HqVJFipRiKcArFNGWjdCmS7KwsMjwUIXlVojrSnSWMDU1Ra1eQ0oblQs63Z7x3wkE7e4yQrpkSpFrSZolSBse2X8K8hCtUyzLZmmpR6lYJEk7BAWPPJNYlqDglXB9U1EbHRrGLRTIVcpAfYBcCByZE4UhmUpxPYc8E6AkWdKh285wPA/bslBJRhQKVK4pV8sgQeiegWNJG0GO4/R97KS5l7ZsMFBdgTby/RKSsG8EbVm4fsBt33mItWuGkMIYaHuBgR+iJb1eTpZG2J5vgji0scJAoHKL+bk2fuBw/0OPMjE+iNaC7999gM2bJpiamWZwYADbsvjS1+5i68YxXM+nWq2wZeMQX/r6vVx12SRXXLaRB/YcZf2aAQYHS+x5cJnx8QY/9d4/5ZMf+xQ33fQc1q8eYmx8FUdOnWJi/RrWrtrF7/zO73LVFVfxK+/+Qz74799Cp6U5cfwstmMCoRe++LlUa2UWFpZ5zvW76PU6VOtVbGHgTYVy2UxDabhytmXTabf6XY4+l0GC0jFozwTNWqFUihbKQDKl01eSy5HSCHTked6HcwtEv5upEAgdmpxNBijy/jXM+vBKC2QCQiGkZfiBwgJhYMU6S/EKBVzPJVU5Oy/bQmO4YoQgFLSabVwvw/NKZHmK43q4jhFJunz3Vj72l5/lzW97Pbbj4jqCWrVKriza7SYDgyXqA1WSJKVULrN56zqyLGZxocP45Ai2pRG5YnKyTJRIhkYalGtVLNuh2WwzOjrEf/nU13jve99PozbE7PQRKkXNqRPHaVQneP/vfYCXv+xlLM0v4xUi3v2b7+TUqVMUCzW27t5i7EbSBKFg49r1pCLHK9QYGJqk3UuMBYWdEWuFXxrExuG2228jyXpUqgV67Tny3HgRCtfw0lrNLqsmJwijDtNnjlD0PALPx7JtLNdeUXm1gVQphOOSoCnXasTxMmlmlBBdV2ALi2ZrGtfVeK5Pb6mH8AN6ac5r3/h6ZOZxcnoKpWJqNYf7H/guX7v1bj5782d4zvXXsO+hE7z97b/Ma9/4Cpq9BU7sX2Lj+Ca00iy3FikWKmidQWZQF9J2cBxpoJLSxrKN7UQY98hz4xuqNFjCQkrb8Dst2X9vnRPzkkih6XSaBJ5P4BuBrSju4Xk+xUIFLIuw28b3jLVOmp17hguSLMP3CjieQ1DwcX0HoaDTbdLuNAkKBaJeQhL1YflJQhhm8SIaAAAgAElEQVSG5HmGJSSWkMamQGUUS0Uc10XlyYoa8i23fIarrnsu69atQwjTbUnDRaRXQSDJ29MkvWnsNCXKQPp1XL9CuTjA9PQsXlEilUOnu8zyQsTo+BDtpUWkDLjj7ruYP91j9eYyRcfj+MnjVCrDWCIFYa3wbrXSSJmT5TlCGCEwoW2K5aAPJ1f4QpPnKZ5fIEpipGUhdMpSL2OxGbF501Zsx2VxcYliYAoep48coFotgwwYGl6LkhbFYpVTpw6zcd16JiYmUUozODDIN279EqVyCS8wFj9xGNMoeSx2NEGlTtyZJ/Bcsiw18YHKUSonSxVxFqO0TRLH9EJFLlyuuOYFLM0uoISiWKxR9ItkzRmsQoLjFrGQJFmG5fgE1VHiNKfsF0iyDFs4pEmbpNflxMkZ5qbaTM0eZ/Vwg4JnMzY50E+QJcK2UE6AUxmmPDBO1u6hRAuZ2mQqwS0UmRwaxLYsZpeaOJbLyOgEO3ZexfzcEp5rMzs3T7FQxNU9pONTLA3jVSrsfuVWRutVcs6nGj0pubsgvtRacTGlzCfGuxfyyi6GnrtUHJ+rfCWBvOR6+mL+yOazqm+pI8TjHnIrHLsVKKk6n3P3JDWUfuPhEoqfWilznZ7mXJ7JWLk255qbSpuE8YIz/GEEVZ6ZXM3/HM/K+Ou/+8sf/kManv3+3rM1Lt661v1qvcqVqaL+K4zHu4OXOBIhVua7ZQk83wMBju/hBR5h2KHbaeE6JUqlOmmSowGlejSXF0nTGKVTom7EzV/8ZwNzEoJUK6rVAYR0jFebismiBGnFXH/D5dx2x37++u8/bzyMPAc/cNE6YHmpx/jYWixZQqmcb373QbZt3cTU2XmKpYBOr0273QSyFXjY40ULSDOF7/nsvmIn02dbHHj0JI7jAZo0Tel0Otx1zx663R65VMRpRKkUoNKE+Zk5dC44duwMOhdkac7E5DC+7+HYHkLYOK6RGxdk6LxHsRhQKBSJwwjfc6hU6+Q55FlC2GqjFMzPL1OtlEkSReAFpIlmaGSC7dt34bgOYRghLcm+AyfIM5tCUGdoYII4VDhaUy14TJ89Q685z7Z1DcqVMo1Gg3YnxOt3bCqVCrOzC8RxRJ5o5ubPkiU5Ije8Ba0UnucRJfFKELfnkeP84IFjxBFkeYSQMZbt8/0f7GPv3oMIKcm0YGi0wtBoDSEyLK3JcyPcohXsefgI8wsLpGnyBJixKTacexkopfnOXfvR2sJxPAQWP3b9DoLAJc1CsiwiSzM67Q5KKYrFgIXFDq1mh7AXE0XGWwo0pZJHtVYgSxVXXb4VpQAl2LZ5gjRNaXZ6BlaYR7zhVc9leblLa7mLtBzK5SrXXrYeKWziJOKNr7qBoFAwfn/VEnffu49KKcANUuqDLnfet5eZmWmOHzlAyZZ89ubP8La3/QJXX7uTP3j/73LrP+/hgfvv5+jRY1x+xU62XbYZ21GsWTvIyEiBQ48dZnh0BC8ocPu/3MHU6RnyVLC81EYKY+yqVE65UiFNU4TMiZOQOE5Iogww/EnbcRDSwraMJYjuy2s7ttt/GYLKVX8+5AhpVDUtSxNFMUI+bmMgEGid0+ksIy0F2kcSoFOBThRxr4XQOe12m7NTs5hkUBH4LkrHlIsVpk6fQaCoN0rEcboSCxjYnWZxYZm/+5vP8o5f+2kKRc/wDtOcSq3G6jUTbNi0nnazTZ5risUiWdbrC3DY1GpVqnUL27U4fbbJP/3TQziujWVL8izGcWDHzq1EYcj0rOEPWpaNkAFhT7Bhww78gs/HPvbX5DojyxPqlVXsfegQUS8lTVOixXmiVotarYF0AlLhkguHL3/5FsL2IoFM+NynPkPWiwiEhYug2Z7m6msu5wU3vZCh4TEmJ1dTLATsfXgvSlkcOXSKdes3cuvXvkJzeYaN67ajtMvJkzNkSpAkGXluCip5rpC6y8LMSVQSI9KccmmIQlBHSp/5+SZpllGrjNBcVIRtl27Y44N/9MckUczy0hJJnvEPn/kcn/n0zXzve/eybt02fvO33smH/sP/RS9sc/VzdjE0MoAm4wtfuJWXX/tSOp0OJ04cp1arA5DlOfsfe4QwDEFr4tgkcZZlUBQPPfAQd97xPcrFGpYwljG5yomiCK01cZIQJ3H//aHR2ii7BkFAkpj5Ki2NIz0kNu3OMgJJmiljAq0FSZoQRTF5llEuVZhfnCNL0z6k0Vh0pLGmURsBZZ4nlWqFpeYScRrj+z6VcoUkTXBck5A4jukWxmlKqhS266G05lWv/ln27X+4z9UznqmuX0WiUHEbkbSQWYJybXCKxClYts3RM4/SGKkhhIvAxrGL+GXFnj37UQjC5RmcdJbnXLeB5rEQ1/NYs34DlqPM80kYmLVSGtux0dm5bkqKUOA4YFuQxCGOJQmzHNsrkMQxnuOS55oszYl6EZ12RBJnoHKG6nU6rWUW52cYHJ1gZqGFX6oz15xhw/p1BIHPtq1XIC2Xhfk2k6Nj/POtn+UlL7qegUYRx7JJk4jRsREi5TAytgbyBEdi7GnyFCkFWaaMoqdlYwkHnUnONhP2HzzIxNgGvCzn9OmTDA8NY1kQxW0GauW+eqXZjs5zojhhZnaGVqvJg3sfQFqw3FzA9TwWm4ts27KNXm+ZomeeBUqZLpp5NkpUHOFLicgS4tYiKmkjMg2i37lLMqI4JE4yVAaZhjTLmZo6SynwmV9cotVqsbw4he3Y5GlMr9dBAKvXTqzEQz9UciKMgMqPOlbUNJ+FYQkLS1jkOifX+bOyj2c6/r88hv8+O3d5+vsXWy6QK0HvhRjbZ2M8lajKpSbLE5e7rsNP/toHeeMNmwFxXift3O+PF0wu7ECd69g9YeVncsxPPJYLtnjxHtcPMZ6ue9gPyIyYijJVCnFOPtYEx4/7qzzNkegnnP9TH9RFD3GlIoTZv5BGUj9TOWmq8T0LP/BYWuz2Ta5N8rc432RkaAxBQBym+L5k47pxgmLBdBEsCVrgeh5RHCOlJuyFSDvH80ps3rSWDWuHyFVqCOZK0+t1KFV8lFYGamlbbNu0mm434uChk4xPDCCFxlgKaGqVGkkSIwUsL7ZoLvVwXEEQlOh0ujTqQ3zxq3eze9cGut0OtXoVPwjYuGE1rVYTP/BwHIe5uXmKvk9zaYlyucLBgyd59LFjbN6yjm63TalUwnZdpLT5x+/t57mrHNI0Jkm6FItV8kxjWZJWswkIsjTFloKwF5PkmizXVCol0ixjfn4K2wY3cMnRiD4P8NSZOdavGWFgoEicdEmyhFzlLCwmVOtVvMClWCkhbAtHOszMLtEYaHDvA4ep1zxsxyEoBGRpyqkT04xP1mg3NYcPn2Fy1fCK9YbhXaVIS9Ko1ij5BfxCgOcLlE6xnQKrhotMTo4gbBvXNaqG0spYXFgg8AKiMEMDnu8yNjpEEDgr969A9CFHBpL52KGT1CoV1q+ZwLIFaZxy/4OPsXrVUF9VzFgcCGEjpcC2LJIkJeyFNAYb/ODBA4wMVhGW4XR0Oj08z0VoA2uan1vg9jv3MThQxvdt1qwe7Xc059Aa2q2Ig4fOMjE+zC1fu5dN60e598EjbNowguMGZFnO1PQc/+dXT/L2l+zk2tUl3vK+32dopIoWAwSewyte/lIWZxe4/bvf5bbbvsXb3v4LjIzUee9vfpQdO8u89nUv4ltfv5eBgQae70OuQUGhVKJQLKO1YHCwTLVaJ44TfD8wXkD9+bvidSSNIbtRrzSqbJ7novIc2zZS6HEU9v2mTMVYSkkcp9iWxHWdlWdInqd02q3+bJdGYj3umaBZKDzXNbBZCZYFSdwmjVomwHQ9CqUatfoAWZrheR55llAIfJJYrySIWRLjuj55Ljl25Ajlchk/KHLk8FFe9hPPZ2bqLKVK0A9sFWjBiRMnKZeLlMoV2s0Ox4+eYHRiGK0lliNxHRew0EjK9SobNo+DzrGkhWVLpFTkSjE3t8wLbnodCMHi8iIDA8NYVgGlBIHvsm/fIyzMz7Fj53bm55pMTq5m3759gMK3JMVC2UCykxyNQKsMqSDwLOKwiYolA/UKC7NzCCWwPG2SIm1h2x6u53L02FGu2H0ly0sd3vXO96IyuOvuO3jDG1+F59Z4eO8+FpYXWbtuNZky57C0tGwEnshIooRKsWr8zRLB0cMn+eAH/4TXvOYV5HqGJAmRUvJ7H/g9Hjt8hN9+z7vxLMngwBCf+OSnuefOe/jAB94PCEbGxhkYrpFlOcNjQ7iBxRtf/3qKpYCF76WUGyUKfkCt3jBm2EKihWZ8bJxbvvI5Dhw8wM7tu/pvH2ODMT4+yvjEqDHZdmyOnzgBQKFQIMtSfN8zXEohEMh+5x0c2+5zzHK6vQ55JlBamyJaTl8MRzI9Nc3A0CCObfdtQCDwXbJcYUvb8PRsgRd4WHZf8MMPaHc6DA0NUygUeOyxRwkKAVEcUiwUsKUFUhCGEcViAafPG7Rsc5ylUtkUnHKTOCgNedom7y6geoucOnOSE1MhGzZeixcEaCujUhjnK7d8nvm5M0g7Y/+eI0g75NAjZzgzdYhC4JDGGVqnDK8236fSKY5to3NlFDGVot1uGrSDyMhzBZbqv3uVOR5MEc72TCfTktIIIQnznIxymxTYvHkTcRhx+OhBikGBwYEhpmaniWLN4PAYwpHGOy5KSLOMar1OFLchzxiplSAJ8Yt9ZV3H2DHgD+D7JZoLZwhsTZbGuI5NnmVoDXMzS+Q5uL6D7zkUvIAgKOFX6shCkfVrNhgv0zxHipwsXESRoXNBrhIc6dJNoVQZZnh0lJGhMaSlWVicpzHYoFIeIKcLMiTsLjI0UEIKA823+9fPDookIsApNhCWhZO1QFkkKsZzPNIoxXYcWp2Q+cU2z3neCxFCsveh+426aqXG6snVOJYAHWFLG9srUxkcYnzbAGCjxeNFMIFYUW9cCbfORVIXxHfnvOzOW6Ye97e7JL/tIuNctw6eDOm8+GefentSGBSSFn3lzHNxpxTndQUvVM1c+UGc1/m7mADKxc7tiZ3CczBLS1pPef6inyw/HW/vf3bu/jsaH/non/1oH3yGMMz/Pw4hBRLDVXhid01D33uNp4d6/ojjXLfuwlRWo0EKiuVBIyWemtb+wFCFNAuN+qCU1Os+zdYys9NzfP4rt6EluIGHVjkqT9F5iGUZla1C0fi8Wa6Fym3SOGJ5+RSNgQalvlrd/FyTYrnSfwlLpPQBBz/wCAoe1163izTJkcIGLfHcgDRLsKR5DDQG6iwutFlcbNFpdzl0+CSajJ3bxkiThFrdBD5aax64fy+1WhUVK2bPzHH3PftZXm7TaDQ4cPAwhcDh2iu3Mjc7a4JqAKFI85jnbWjwlW/sZ2ExZGLVJCdPzzI7u0yr2abZbEKWEfT5cN0wo1Iu85Vv76EXxnheQLlYRmiLmbPzZFFCmqacOj3HxNggxWJAFEfGwF1JatUK1ZrL8tIiSZyCAikcur2E8fERup2I+cUeWZaZBFNaeL7D0EgJxy9z+x3HEE6HdqdD1DMdgziJ8b0i0rIIigGdXggiBCwEBbTQ+KUiwpb0el2EUEyfnCMNjTVGkoLn+UipSbMeaWJ8CGU/EImiGK2FkaAPQ9avnWRpqY0SCse18DzJ7l3rSLMckKSpgQSiBZ7rIS0DKw3jCE3GtVdtxC84eE4RgcORI1MmeMoTtE4ZGxvgZTftIgxjoihBSosojPjmHY9SLlVIkoxVq+skSYjvGx6UZWlsz+bAgePcfsc+hocHePt2xcz8Iju2b+T0yRnIK3zgt9/D6tXjfPrmL/DqN76NX/qlX2DvowdII5deB6JkgS997Th+UGLVmkZfUbVAUC6S6Zx6o2aueRTjeg6t1jSuC0sLi6RpRnO5SZqmJvFB9xNW081TOkUIyNLUVKWVJs8UrhegdIbKc+MFmOUrwXLYixA4oC1AmoS/aOTmtVJYUpIlEXmq0Mrhu7fdZzi2vRi/UMEr1ShWh7DsAmGYcvN/+QpnT50miRPmZ5Z46P4DKDSzc/N4fomP/91Xeej+fSwvNdm6fSue76JVytp1E9iOTaVWY3mxjWUZddwwChmfGOGxA48RRym3fPHbbNm2hTSGKMzJ0ow0i8l1ThKHWFpBlvSvSd9jq9lCSvilX/0L2u2IXjekMuChLcP1U0Kxf/9+tmzdxOVX7KLbabP/wL1IJ2ZicoyxsQluv2MPU1NL9JodipbGSlrEi7Nctn0LTlCkODTKFddchVcqIBwbbUnS2OfU8TnCyASwZ85MMzY2TJZk/NNXvsHHPvYX7N69mze+4eeJQ4ucnPpglRuffx1LzWksaRFFEa7n4dgOWV5nbNUOlroRCRlJmrJ6zSre9773IK2cpYUM1xrCd4f40J9+iF/7jV+n4BVoL7UIuz12X30l/9vvvpvbb/8GG7duAEcibY80d1HKodsN8X2bj3/iM6zZPoa0LE6dOW1sAaIIMIFenme88fU/x3OuvN4o/QlJHMcm8RfQ7rSRQppkBPiX736TPM9wXLfPsc6NQARg9YszlrRIkhghBYFfolj28XwDp9Uo44cnBYPDg33vsv67SAu0lvi+T5ycg8YboZ5TJ0+aohFQKpfJVU6ucnbs2MnAwEBfudS8Sz3XxeknBFkc0u000XmGVjmFQgHXcYwNjRBIFeOJiCxaYKE1z6qdN4AYQVmK++97kL3f389HPvNBbn3sn2mfjTm69wCu36LgFFm1zqNekThWxM4dG1i9oc7px6ZRuUbmFirOsV2HNE2J44hKuWZEwKRkfq6LJUsExQoKm0wJslzjeD4qiwFFkmcoKQCJShVhL6LbiQh7EdJx2bRpG9X6AJZlM9gYxfFd4jSmHJRBC2bmZiiUS4RxiCs9msttWu1lTpw6hCsDcq1JcoXt1XD9CmHYpViwyfIEqUFo3U+CNbWBAbzA+BdmaYLCptuLCPwC+/bt6aMB2nSaXWwsbD8A4eAXKmSAxiMXHpbtkiuFdGw8z9ixdLoxcQIP3ruHol/H0jUcHfST4nzlPlO5gQz3ehEWmnYccujIGbS0UKki8AOEDblSaJWRpyG+4/D8578M6bhMzZ7l1ltvZubsMfIsp7M8S5YmZEmG0uY6/48whKnugDLf77/20MoIQT1xnOtQPh2S7NkY/6Y6d+f4W5fi3P1rjafDC5uV+iIBKwqQFyrxGMJkpVxBn33kIhu4EG17qfHU2OinHOLi5/CkJaIvQPIMdn/x/TzxmPrdO/o/RrqyX00xOzHk9Is9cJ7ANVzZ5o86YfrY8n43cSWZ1BaWa+F4Ht1mB42HdD20UJCl5NjGAN0SXHHZBrQWxL0OQmQEvkOmNWE3QwqNbWuSJESnOWiN59mkqTKBqbCwpOTg4cOUC0VarSYFv8jf//3X2X3FarRKKRQ9wm6LcrliqrDSQmiXXOTYjlFkC8Muw2MNhgYHue0793LN7m0cOHiUnTs2EBR9zk5NUS0V6XYiRkaGcQsSUMzMzXPVrm2EvS6Fok1zsUu9UaFcLlIoFDj46Gnuf+gxtm3bgBDwoc/fxc/esIqN69bSCxfw/Apf+MYD3Hj9dhqDNZQ2gVC3F1EtF2m1T7Nz85gJKlwLxzFy8YODQ8RRjmP7jI8PMj03g+fY2FbA6amjFIIG0nEIXEmaRZTLHirPsSybUslH5Sm2ZbNh9QSliofj2iwtN/E8j6BQRqqcyYkSa9ZvpOB5KJ2xuNyiWhlAiAytBYicxlCBsGsM5q2+abVlK5YXmtQrVXKVU6rU+PLXf8DlOzdhOxZCJKhc0GxGFMtFHMvDdgzfxpI2eaaRluHl5EpTKAS4jgW4HDx4lpGREVxLo3WKsCRK920AtElihJAMDVXJs9RUj1VORo7WitGhOlE3xHL74gRKgxbs2X+EzRtXGe6fLdmxaQNKaZI0YmSkjmVLNm2cIAgCNq6bZPrsFKvXjjI51sC1Lfbs28v/syfj5ZeP8Pt/ewsvveklXPPc3ZTrCffceRKJYHFhmQ+87/288hUv4sduupZfesu7ePih7/Pr7/0QH/kP7zMEf2nULoOij0Jz+7fu4P779nHFlZfhOUWgzbHDDzM2sRHPs4AYy3KIO0v9GayxbQeEgxCQ5yCkY54HlkBjTN5dx0PqHCybPDddApFnCEsQRZ2+N14BS1g4rim6LC0tMzuzyPJySLlSZXR8AMdzcV2Xmel5CsWqSTyyHEtYrNuwGjAKoGmqmZ0+wej4MJVKEa1zVq0aZXBsmIXZOfy+iMX8/Cz1gTpSSA4+doxVq9eiVMrU2RkGhso4dsDI+ChZBtt3bqDbmefQoWNYMiPshRTLVVAazzOJ/tkz03z5C9/miiu3o7XG9T1e/1N/ymc+8wm8wMINLHSmkMpA/8KwidvvOD+ydx+Dw1XWbVzP9NQiYRQTlD3WT67m45/4aw4ceITdV17Lf/rzv0FaVdatX4Mlcwqei7Db2MUiQaGBJQI+8tE/5yUvex5J0uLEseOMTk5w5swiCsmuy7fhlWyKQZU3/9Sv8soffyHlWpnWUpNCqYrrlVA65MSRFp/93Gd53vU38DM/+WZe9rIXopVRB3al5ktf/Dzbt2xAYlFp+Dzy4F5+492/xet+5nWUvQJhT/K8G1/M63/6haxbN0E3c9l99W4cqQhsze133M6vvePX+cnX/TSeDOjqLnd9+h7Wr1lH1OtQbwxgOWBbDvMLC+x56CEmJleT5imVegVHgtI5x48dpVEfwnFsAq9IGIUgMyqlGtu37cSSEguLXhwTeL4JEPvvKyMSkmI5pjOsNEgXLEtiSw9pyz6jwsKSxt8MlRjzcWSfH2e6yWHYxvOKRnl3YBAhLbLYQHhzpYwqLBmkpmghHQHCptvtojBiULmCUrmCsIy9iNSZgVJ24Y9v/gMeO/AwX733izxw7CGKQw6XXXUFr37zS/izj/8Jr3jDbrQ6wF997ju8+vrtXHe9YnByL2vWNRlbNcuDD3yTR7rzfPeR+7jr4H0cPHyMXZO7qDcKHDlxkGpjkDyLAYHl2CvWHVpZ3HX3Q2zctIU4aiLynDiHM1PLVBoBMlV9Ea4cqcESBsWa5z6l0jC6bw/QXl6m02lyZvo0Q8OjFAsFSsUyU9NTDNYHqVQKaMuCJKHdi9hzzz5qwzHrJrfxnbu+z5ZN20h1guOZBCxPjGecVhmWFEY9U+cIaSN9B8cKsFyIE/jenT+gUK8xNraKUlDADQp0lhZoDA5x9NhBBgJFmOQgNSJLwXKRdpnjJ04xOjyMSnKyLEFrmyAooSXMzJzCikIa9QRpm2eMbbnkKgYgFzaaIqWggK176Dwjy3uUggqO7dDtLSMVHJuaYXopoeiXSbOUKIoolUpkSjAyMoZjxbhS4wdVqqNr+diXP8ZP/8xr0JaFOgcdPBdeXRjYWXIlXhTicSGQp0OnXWrovqjQObViuLgv9FNv6+LLn9hp00qZRkL/7/NMzfsWOOf2e24/eZ6d141c4Qlegrt34XpP6v49RZB8IUfxUuueW+/fvIn5pZO7i49nC5b51NvtJw/yXAJyYRJyLqmAP/zjD3PjrnXPyjE+5RAXmcRcPLm76PJLLrz4589fZPD4+pxGjDj/Rr+0tOyFy/7bkrsnHs+KAIswUDjbtlmYmaFaLWJJ6HZ6BAWPdqvN4SMnqdeqaDTFcoEkzUBaSOkazzfHQWsjtRxGEcVikU63R7VSJtcRWZbjug6+71Gt1ymVCziuy87L1tPttAyfSAkWF9r0oogo6lEsFvjbT97CNVduBaDVMgR91wuIo4hVE0M0l9usWj2B6xleUrfdoVSq8KVbvsdlOzbg2JIw7OB7Rkbb8zyyTOH7HrlWWJbF9NQsDz92kle8/HqOHzXwwi/fc4x3vnYTYTekXCxSLJe4fMdq2u2ueUgrAzsqV0tYjgO41GpDnDg+S6VUAgHdbsTZqXnOTC9iac38UpP161aD1riOIM8SbCRpr0eaadrdHq5joRS02z1sx8axLVzPptftkGeKXjfk5KlZBhs1HMfh+PEzlMoFE6hbDlJatNoh83PLNAbKnDkzQ6VS6ifbLt1e1yguagUIAi/g+IkpqvUaS4tLjA5WKJUKBiqcWxw8eAbfc8nyFClsojBGYzos+w+cYGSkgWXLvnUFKGXutMGhCprEyJmnxvD7nBGrgQkrbEv0XxqS+YVFPM/FtgMsaaFURp6npKkRB5HCIgxjtmya7JuEx33bhJz7HniUSrlApVKlF3aNb5xtIOuFwMV2vD4M2WJyuMqxx47w/GuvZtDTvPptv8Ov/trbqdcm6bUVtUGHm2/+Ky7fvYO7772D93/gvezfd5gXvfhGBqp13vor/zvveufrDR9OmBdrnik2bdnE9h2bCcMejm/j+yV8rwQ6Z3F2Gcf1sGSRH9y3n7Xr1rDnwUeo12vkeYrWEUplCKHI0h6Q4PTl3oWURgRFsaI82O10sCwHrYz6aKfV5tTJM5w5PcXw8DB+UKBWr4HW3PKlb9JuNRmfGDddUz/gnrvuJwx7/P0nbmF+ZobtOzZiS4tDBw8zNDzK5m2bOX3yNCBJ4pSB4QEKhQLVSonHDjxGpVpieGSULM1Jkozv3n4vW7ZvJPALPLrvELVGacV64DOf/DK7rtyGsAWTq1Zh24LGwCC5UkRhD88PiMIejYEBtu/YjOvaIDTv/72/4cMf/agpJmAhhEOvu9AX+HD51tf/hYmJScJuyoHHDrN+/Vrm5yK++I9f48bnvZh3vuNdvOH1r+aqa6/iit2XE8c5N9x4I15gc88936dcrlEoVgwPTXg4ls9f/flf8xvv+XUsS+A7HkEQ0GyHDNRHaC53DEctWqRSLXD7977Lj7/++ZTLJYrloA95DUnTNr/4tnfx4f/7Twl7IS980Y2UKh5zc3P8+Uf/lutvfC7bL9uJ7XlI26aT2GSxzc+94Rf4ws23sH6nJE9tnnPddaxfu4qEGZMAACAASURBVJP2okup6uHY4Aea5fYi69dv4a1veRt/+If/nlZrkX/4zOd51Y2vRguBVwhYXl4i8H3DYRKS9evXY9lWX8kRZqenKRZKDA0Ps7y8zMz0DNVqDSHEytxJ0pAkjemGXUrFMlor0jjC9X3SJEEIiW1bdDsdHNc1voHKzDklUrQW2H2IZJoZVdAkSVa692HUo9vtEPgBnuujMtEXGzLvN1dK7n/gXsaGJ7CkRCNot5ZJ8h6FQhnHcXFdo+AZBAGOZwoj3U6b2//lG3zizn+gOlHkpa+9glfdtIYbrrX4iSsyitkZCsPXcfjMSRw74+rnPZe16zfyuc9/BdFOefPbPCaHSnz184d54Us24ro2Dz20h3e/YzM/edMaXv38AX7sOoeJjadI5Gm+vu8oX7nne3xn/32sddZTbQQGwqw0jmMxPFSnULBRWYptWyBcHnjoYdavW2N8TpOQmVPLVAYKhjwmIFcuD+9/mG07d5AkKWfPnGB0ZIx6Y5C5uTkqlQp5rlheXsbzbeKoi+sXaC8tkIYnWb+mxmhjCN8RrFo7SZynVMprSATYOkHnMWGng205ZCpDCBeJh2U55HmEzBVpnrKw2GJwbCOTq9cwv7BItVLFcm1q1RpYDlIrVLKEWyiiVQYqxXZLTM8vsXHjVhQ5WZpy+MQRxkcnmJk5S7fdpNfqYos2Q4ND2J5Rij2nLKqUxrI9KrVRZudnUETYYZtSISDPQlIVo4WDygUHTpzBC0rs2nk5jm0b31rXJY5C5qZPUfQFIo3pxRHja7cyp8/ygpuupxtFxgrItp7A9rkgzpKPF8Mv+v8XRldPE3NLIc9L7H60cYnPPwFuKSz5+DmdO6aV5ozsF1fPb9aIfnfvSefwLDSNzoNzPk1yBz8cLPPfVHJ3qbbnM6kiPJP1zo0VrsgzSO7O+bohnpzcoU0wdP++41y3tvCM9v2MxyU6eBftB4rz/2/l8/2hz1+NZ8zze5zgdsE2+1WN/iSSQq5UOIQ0k+7iZNuL7fMi1/WZZZxP+PzjHUChze+qzwfMkwhLnvuuLZRKsWzB+NgIn/7Hb3Hl7i1YtotlO0hpZKq73S6O46IUTE/PIy3DqVF53ifNu2SZ5MSxabqdmOHxQZTKabVaFEo+ruuhVE4cZ9QHGhSLJfzAI1cZu3dtIUlMxdeSxq/Kko6xBhCaUrG0AiU6eOgomzevR+Vw34OPctmOdcbwW5tkrheGzM0tUyqV6YWmsyeAs1PzvOCmq/nmt7/PNVdexv59B1nMXZ63WRCGKVNnl5lfWiTwjBXAvQ8cZHSwQhB4RlrbsvF8C6VyqhWfKG6hlLkXBhpVAt+olY2NGU5cHIXktqRcHTYm0W6AUrnplCjd50tZzC8sUywFJtHRCY7lgdasWTXK1NQ8vu8QBD6FYhHHMtLqaZJRKBYYGKySZQmNRtXA+nID0/BcnziJjdJzXxFvfr7JwOAAgW9TqRTJsgwpJKdPLLCw2GN4pEaxZIyVkzjH9wvMzy0yMlTDdgyZPklMMCiFw8FDJyiXXBQJUtgIDMQ2yzJTIe53jqUl0X3Fx2KxgNaC0yfnDEfStoiTmEq5jFKau+87wOjIoBGJURrHd5FCYNkwNjJgKraJZv/BEwwP1g03whJkecaevccYGRlEaZNQFIuStWs3smqszi//uz+iUCij4gKrVg/x7du+xbve+R6uver5eE6FXTuv4e8/9XGuveYqnnPdc3jTz/w87/j1P+ANr7sey5JI2zaVUnRf5MGj120zO9PiwKPHmRivEXgSN7CQtsfYxBD79j7G1Jk5tmzfjJCCh3/wKLXaIJZwyFKNwEWrBIXxHJLSWBrkyvhAHXrsKMeOHGfN2rXc9o07qNbKHD86xYaN67j1K7dhWVAoeHi+x+SqEb5/5x72PnyAnbu28MB9e1izZhVr1q5h9+6tVCo+7VaThx98lN1Xb6dQLDMzPUNQCCiXK/hBAccWRFFCr91i9ZpJyrUKju2vcJx27doKAm7/1p0US0WGh+tobbO8MMc1z9kNElzXiKL0Om16YY9C0UDBpbSM+ITK+oIw8L/8yp/wu+/7Q1xfMj09Q7FQQinJ4cMHGR0ZRSnFyPAEA40hvvqVf+aGG26kMVClUFBcfc0VBIHFq179IrBcgoJLL+pRawxw5vRZJtZMsnHzJkqVKo7rg7SxXY/FuXlefMPzOHb6BI1Kgwfuf4i1a9YyOzPDO375nfzHD3+Yt771F3j7m97Jz7/pTbzyNT9FqVpkevYklo25f5MY27LZsfVq/vIvP8xLX/pC3IJAyIxGfZibXvAylMyN95vrISyJtjMqJYdPfvwv+PrXv8xrX/sWPHsA2/ap1AQ3f+7TXLH7cvzAZWZ2FmmbpP+B+x6g1Vrkx57/PLYGO419iWMCN9/1TeCeZfi+Mai3bZs4ipHColQq0+q0DddPSOr1IQSaJE0Mf9o2n7eky6GDh3Bcl1Ih6KsoG2XXcwIYQRD0g2RNFJoEJstjbMvrC4cpbNvq+0C6Zr4b0i6FQpFWq0O708VCcvz4MRqNASwp6bQ7TI6vIkszup0OWghKpQJZHuE4AXFiAnQpJfNTbT548x/xnT3f4ad+8eW8+s0/zivf8EJ+7Jpr6S3dS9Y8QWvhCFYaMzJ5Gbp2FS946U38xUc/yYtf8gr+6YvfZnqqx9veOMB4TXLi8DF+/FW78APwPYsbbnwOQitU1jNQVcfF833arUVecGWNVzyvwSt+bIjLrok4vrCHP/v8t7nt4btZW1jL8FCDPI85dfwIlUoN1wkYXzWG51b4P27+CD/7moyrn5vyue/cybrGThSaublldlxxHWHSo1qrI7Xk1NmTlKs1BmoNAHw/oBAUsW2jYJ3Einvv+AZxt8no5AgCl8xVdBaXySyfYnmMUC0hwi4q7fULqhLpmuLavocfpNZokKc5tiXQWtCOBI/se5ANm7fTqI0Y+5o8AaU5cuwoY4MV8rxr5pHOydOY+VaPiTWbsWwXhMKzHWoDw7iuQ+B5tNotzh4/RhgtMjmxCqwc23KYOnOCSn2gH5Y4nJ6ZY2R0nDztonWCRhJnFo8eOk6j0SCKIjpRyrYdV6PyFCEEzeYSYRxy5NA+os4ytUqA77k4xTql+hCPnbqT5954A9INVjwIEQL5xPhJ0leSleeh4ky74tIxsNKmY7bi43aJLteF45nE4itxvjLvTYUy0MeLqV+eg4k9YZuWbWDZWqu+3c75iatJPJ8cfyplfAPPzff/lnGx8z/Hc7wYj+9/+OTuUuOZfhE/zHrPNLl7/M+LJSGA1jz3+uv4j//pL7l22+pntP9nZYgLjvgp4Jrqac/9gm2s5FtPnuDn/j3X7hcrN/eT17/4uMR1/aHgrOL834QJ/AUSr1QkS1N63S6VSh2BMF2uPGHLhlWoJO+3yy0jea9T0twGaQzKi6WAcrmMlJCmKcXAQ0sDw1laXmL79vXEURfPdfE8nySMkZZRPwuKHgjNiaMz1OpV4/8lLTQ5tm1z7OgpojBhYWEJpRKCwEUrwZkzM3iey/BQ3SSpUpCmHdavGaPVbNJrpwR+gTiO8AsetXqNYrnE/v2HSKKEKIwZGRmgXi3RbLVZs241+0/NsnNMUCzW6UZdXNulVisRRj0mx+o4vkOap9i2ixQOWmUs/1f23jtOrru+937/fqefOVN3tvdd9WrLki3b2MbYEAcw3bQQSB7qffIk9yE3pJBAbkhIbkh7khBIQiAkIRgwYEwztuUqd8vdsiVZdbW72j595syp948zEpILtoHkPs/D/b5eI+3OnjYzZ875lk9ZqWHZFtV6A0UmhHRBTDqbwm1VaLk+X7nubrZtHkHTPURsoKghlUqT2+9+gmIhRbPl0nKTJKtQyBCFkqPHTtDdlafheqTSqaRDb+pUy1VSHfVMVYJpGwiZeAoJGaAoWiJ1Hwv27ZsijiXpdCbxWosjQgHEEdlsGiGhWqlgmgb1WhPHcfDabY6fWGLV5ACqrkAcceDp43z3xkfo6jIJAp9s2qHRaBFHAieVIYoCbNPEsp3Eh0dRCAIBseDfr7mDrZvHiWM6wiHxaf5BspNoZrj3/icYGuyBOPHdabd9Bgd6OoTxiJVSJbHKkILACwmCgAcfeZqhwR4szeCb33+QrqxJIZ9H0xWKxQJHj5ygqytDHAZMjI/x4c/dx2vOXccH/uAfeM0r38CXv/avfP+mqwlavRx8+kn+9u/+jocevo+3XPVafF/wt3/zWd70pqu47LLL+PBHPsrQYISmJXyeaqWGYWrousae+x5hsG+QIIpYtXaS/fsOUq+VyBYyhJHANDXiKGbb9rPwPJ/FhWWGhob4ypeuJ5tP8/CDexmbGEVRNMorFb7279/l4FP7OXZ0lvFVo+imSVdXgb6BHnbffj8vv+wiFhfmeXr/MeyUwUWXnEexmMeyLTRdIQojtu/YxvZzN9Ko1zBNnWJPF3EcIIBcPkc+X2R0chTfb3DNV77L5i1rsGyN5aUK37rmFoo9aQzN4rpv3IxlaWRyWTTdYGF+nq/8+7c5a9smfL/NmnXjdBXzKIrk4T17GRrrSwp1mTRFhIwwTB3TtEAIbvje7UxMjqDpiTDPScPqfU832bJlK5aVJp8rEEUBqgrd+THanovrVlFUiaYq7Lr5Js47bwcoPlEQUlquYJkmt968C1U3MGyTTDZDux2QLRRAaETELK/MIdWOJk7s06wskzYFeibDylKNh/c8zMTkKJmcxQc/8AEuvfQiBga7ufjyy8h3KxD5RH4Jzclj6Bb4EUcPHsWxurl11z284Y2vQFFbmHYOVVFpthrccstt/NmffIo3vvb1WJpJ2A5QhYFKyOo147z2TW9ExjaPPXKIP/uzT/Hzr72Y7dt3cM1XvsyaNRsRMo2uF5mZ2cemjZt52QU7+J1f/yTbNuyg1WwgYoiCAClVPC+kXK5gm1ZSRMYxQRAk024Jmq5h6Abfue7rrF69PnHLENBsttB1nShKTKkVqdLVVcB3XTRVIex8V8MwpNVqJcVjR0VQKnEiZ+8rBGGQcISjEN9vYxk2USfxbNbrSJl4dGmWiWnbqDJC01QajWZiaq7p1Bp1lpcX6S52E+CjoGMYNkJKju07wd/84K/5rx97H/kJh1+46i3sffRRXvPq13LT9TcjtTLdZobl+ZtoNesM961neeUgWjrP7gcX2LH1ZZx78fn8yvvfwlnre/j8F/6BV1/RRcHRmRwZI4gOoOtFVKlSriyQ0ov4YQNNtSBWkWgYtknoNtBVBStdwG026Snq/NwFXfz8ywYZ3+5y7e33c/VtN7Nz8mKslMT3IlRb4rcN3vO+QZSwQWl+in/6zjw7J7ciFIWZmXmWyy3GJiaT13rsMOvXb6LeaFKtlqk1atiWjRSSo8ePks9kqDYqFAtZUtkCYauKbZqJsIbmkO+ZxPOaqKGPiBIOc8ZKIUWEqugoiqRQKCClxI/TuG4NgcKje/exbfuFpLM5olAyMzuFqUkM1aBQ6KK6dARNUzB0i9D3kEDv4GpixUQqOmHQZmF+Hiedpuk2MM3k3mgoPkG7Se9ANzKEtueSzRY7zQmB0B3avkCVCn6zimGZiAhc12X/kRlGhroJ3DZTx+fo7Rump6ePMAyxrRQAk5NrOT51hGplga5iD5FiccPum9lyzhoGRleh2jkUGZ1Mys6cHnXyB55VjJxZED07KztTkOWlFkMvavmOWkksOANuecaE7jmKu46SXwcF8hyTvecJRVFOWqL+xPGche2PKJZ/pou7M6Z2Hb5b4jmVJEA/Kl6yDCw/LPBO/vzsBeIzH8/jySGV5Pdrr7+byzZ2n7H9F1XbvPCBvuCU7aXOul5y10I8/x5OYptPH4knF4UXu4/nnEWevofT/n+uZZ9RDJ481lNqmifhX9BuVDBtE7ftJz5bqkTXbNpeC99P5PmjSIKMcZuJkIWVknheRBRLbMOiUW9C3FFtLHYRxoI4DoijmHq9QaPZYHFpGdtM0Wq20VUdVVdZOLFI0A44NjXD8EAPzXqLG257gO3b11HIdWPaKoKISqlJ30APYRCg6zrNlouuqQwM9BDFEaEf4QURqpaYKAspE7ijkrzvha4c03OzjAwOoGiSpcUyxXyBpZUlRgo6UtFwUokCqJMyqDcbZLIpTM3CcwMMTWNxvoRtp6g3ajiOjaWnMGydRrN5Ci4kZEw2k2PNaC+qFhN4LqpQ8V2JbWsUsikGBvsSdcMoIpu1MQ2D6ZkTTB2v4qQ0whi0zjmj6DrpjIPneeRyGYRUqaw0OyIoiYiCRHR4XYJidx5F+hhGQvyPYokhDECiKJI4DtEsBalqlMsVwEc1VFavGeSxJ5+mkEujaIJc2mHbpnHyhTTpjM1TT05zdGqZVauHiUWIiEUCrUNHKDEiDgj8kNmZFQJXMD5eQJGiI38NrWYDKTQSj0LwQx9DF2TSDjEkU183QBUqruehSDAti+u+9wCrx0dQFYU4jnjg0YNMDPdyw53388af246uqdx4+wOsm5zkyKFZHn/qGOtW96DqMfc+sJ9mu8zawX6+ff9xhGiz7ZwtXPbyn+cTn/gYf/eP/4NNW1fz3ve/hzDyWbtphJ3nbuLz/3QNf/33f0s+Y5E2h9i79176+wsoIqLdCpDSwE6ZfPc7uzn7nHW4rsfAUB+KYmCkcqiayfSRGVRNUK3WqJSqqKrEzjgcOTzNWWdvobcvQ8oxiEIXx9Ho7S1y9nnnMblqFaahE/oBjVqLG75/G6+64lJ0XWfvEwc4enSG8y/YyonZeQqFHirlCoZuYZoWSwvzWLaNk7Fx0jpxBFJYHJ86SiZn88XPX8P4RC+5fJGNmybw/ToLsyUG+gcZHCrSN9BHo+Fx1jmr6R0YRJUKJ2ZnSGdyjI4Nk85kkyuOiGk124RRxN7Hj3DowBHGJ/qJpI9QIqRQCf0aQob4vs/E6sFOx1ilXKqj6ZJ3vPtv+NM/+hRCCgw1xNQNNE3HD8BzyxiahqmnmDk+QyaXZ3JyEtOyCXwlEaUQBudfeCm//0d/SHd3AcdOc/zwFPlMlv/7V3+NK1/3+oR3a+lIEdOuVSikezmx9DSpfAHbKJBy0iwtV/jM33+BfLqf3/zIR3n7L7ydRquMbdssLlWxnDQBOlYQI+OApw/vZ3ztalRNx7ShVKmyds1WImFw9NA0A9199OSyvOKSi3hi/6OEUmJk+rn3nntJZxzSToqVE0t053WWS0f49Kc/xdvf/j4UmeWszWuRRHzpi//E9LGD7Ljo5aieRFV1ho1J1DiBo0lV0HQbSCm5ffcPElNywyAME76qpmoIBJ6XoAMCv82mzZsRHdVLPwhwHIfIa1MuraAbJul0miDqWHIYOr7rEQYBmm5gWGbHtkJBCIXAD0FKgijANMxOf1egShWpxgSeh6ooidiMpiXbFIK43ablezQbbQI/wLRNJIl6czafg449yK037+Jf7/oyr3/nKznnio1cddWVxDEEnsKll1/OH/7hH1AoZMhmLeqlKr3dw5RrxzB1A1W4RF6N3qG1rL/wnTT8JkraZ9gapbb8OAM9edatG8KwfaKoQuRaGKZJqybpKhSp1KYpdhUpl0voKQXPzeFFAVKdp1Q30QgJomkMemi5bfonxihVAtaNtXj1eV0MrT6BVVjhY//8PSaNDRxqfZ/J9auYfXI3Q2ODZOyQaGUc21ZRpEG60EvayQAhfT39hGFEHAncdpNcPoedSnxgVamzsHKCVjVgev4AY/0FnLQDURsfDdPOEQkDTUTEboUgaifKu56b+BhGiSsmemLbUKksks0WOXjsGMOrtpB20okgChHZXB5TSdOWAe1yCRnUiFQFJXKJPZ9GK8YNIywrTeD5RDHYaZsTs7PkcwV8N8YPPJxMmr0H9jM6mUePzOS8VEh41YpGoKawLIdKeQkdl5WlBexUCl1XWT06lJxThk2cKlIuVckXitx91+0sLMzj2A62aTM7t8TYYBeqquJHcMfU/Xz4I7+Okyt2eOwnOWJJxCQNbkTCc4xOMos6+dFJhNPJCd4z1TETysFpWdpLGJwkU7dn5GunDUd+uMzJzE2cMbE7w5Q87hiry9M4fXFnnSg+o1B7oeliGIdnwDhf0uv5CZY7nSb4M1ncnRnP7Cr8x6rUvLgT9/kqciCGy195KUv77+soDp4+1XrB2uw/LX7sw3ih4vLUBeH5hFR+knhmEfdilz/5c9KZVRWFarmMNCxUzeiMz2N0MzETN0wTtx2g6TZCgGma6LrG0sIKumah6zq+76KpAs/3CYIw4VzEIUvLZaSUpDMOlmVj21YC+fN9LNtESoVM2mH33Q+xc+dZRMTousGmdRPomoJQQpp1j0a1TblSTqYBViLM4Ps+iqqgaZJmvU6j1qDR9rFsg3bbZW52AVPVieJEGr1SrbFp45rEQgBBTES9VuOjX32QIVkh7eikMxnq9UbieycEum7gtlxK5RqGZnJkao7+/iKGoRHHMe22j6arGIZOGEaJBLiiIITa8WYKqDZcmq0A09CpVSrkumymjs+Qz2VpuQmvTdMUMtk0g/19BEGbQleOo0dPkMumURTJ0mIJ121TLlXJZTMsL1dIpy38MEDTVXy/jaJK/MBPIISdRkIQhDz4yAFGh/pxW81TMBRd0VmYW2FppUb/YA+qooIQ9PUWoSNwE/gxN976CP19ecIwYnCwwOhoD1KBKPRptsropkQI8II6qtQRQsUwDBaXywwPdVMp1zEtmziWGEZyU1NUgRCJEmLKtpGKwsLCCqqUKIrCd2/aw8hgAVUT3PvgU3TlbYYGu0E2EeiMDw1Qqa6wY+saTNNCSMG61UP4noemJcDJ7u48cRQzMjrIznXDWOle+rUa6172Jvr7+/jzP/sbPvU//oK9jx3ngfue4PzzLuazn/0C55y7mcj32brlfHLFLIYRY+kKQZjlr//6c5x37lpSToYgDLFTFhs2TqBpoKsWmqZQqzY5cOAgPT1dpNM2mqaQLxR46qkDjI0P0ag1eGrvYdpuk1WrRzl+9BjpXI5KqUJv/zB33/kgd995H+OTAzz+6OP09vWwccsa4jgkiiJ6+oqcf+F2NE2lp6eHxKxaIEQCFTVtg3/+3DdZv34CIRRAZXZ6lr7+bnzfY+cFO9B0A+JE6t6ybXbdeBeGqbK4WKK0tEw2n6FSXsLzAgxTI5vPoGk6qVSKh/Y8zOBwH9Mzc5RWKvT25hns72XfU4fZvHU9qqoRhjHlUplcLkfbDbHNNAgdRZ4UlAnZd8BhzcQqhkaKZHMG1XIVBKe+m41qHVXV8DyP/v4BSuUyuXwOTdX5zD/8PTt2bCGOYt7x9rdh2yq6YeK3XbLZLEEQMj46huuF5PNZTDNBC8QxaJqNkzJRojRe2GSltMzI2CAbNqzj2mu/RSabZcd523jtlT/Pu9/1PhBKck1E4cknH2J4ZJAoEqiKjSIVTNNkbHQMIQTVWoNf+uVfYvOmjSiqQqU0zY7t55Cy0swcm+eW7+/ik5/4BO941zvIdHURKzq5QoEP/pcPseuGXUSez+BoH7vvvJO3ve2tTExO0HRbVEtVfvG9H+RlGy9EKIlZfRQo1MouTtpi9eQ6DN2gXCmze/cdlErLDPT388CD99LT242hJ3w4122jqlqiQBolHOQwqf47lhTJDTkKE3ilqqjoiuxMCCIUIPA8wjhJPuPkH3zfxzAM7rlnN8MjY4lyayfJjOMYSSLGFCMIghDDNHAcByflEMUhvhfgtl2kovBHX/4kZ1+yCaNX41c++AEUGVCpVshmUxyfOk4u280FF+5AqhG5rI0QAWHgIeOIMKpyYP9+HL3BiaOP88Rjj9PXt53lY4cxvEGKq3NUWgHfufoJsobG/iceZt3aYTTVp+UFNBp1FpdmSKcNfnDLMVJOHk3z8VyX9/637/KmN76Hd/yXf2HLjosYzBSJkbhxmbprUm+00YVK2K5jmTYyTDNSUDjr5evZfuFlqIZHUWvR9pv0dKlMrFviNz77PXau2cmR49Pku7oJfJ/DRw4Cgvm5E+TzeRwnzezMLGkngy4Fuh7z5MO7yecs+ruLBEEbBYFuOXhxAnn3WyVE1AKSYkBIgaJIwlDSdpMJnhQCXVVpux6qYpPP9oFUUdQkR3v60H4KXSlaTZ/YX0IKH83IIESEHwagOEydWCaf7+bgoYM46QyLi/Pk83mkENxxx200W2VKczOcs3aMjJrCCz1CJUysj2IFiYaVyjN17AiFfB5FhuRyOcIo6AizxPihz6H9TzK70OLii17BseNHGRufpFDoolIpkct1USqvYKoevtciWxxg45YssTAYGh1LqDDPmBoJkoGJiBOk1g9RWJ289CSV5TQo44/Mql5yEvtCyDeeldY/k1N3+vNSKqd+P6P4ewnHGBPjtb0kD/gpx4/a98kaAX4Gi7tnq2OeiQ9+zhPjR8SLg12+1Inf8yx38tDimHf/xp9z1cvWvOjj/M+KFzvZe/4NvMi1n7Xc6Xy4F9rGM8+Bk5v7UUd/+vPxMwrLkxexDg5dUU75aWmqDiQYbESEoqmJF5fnU6kkMKh2u4WiJLLHlmXhBT6B3yYixjbT1Gt10rbJ9PFpRkYnEjPzKIG2hWHMbXc+wEBfEV3T2HXbfayaGGRosIiqaai6Sr1ap1yqIEVMLAKIDR5/7Ahr1w52eCjJ+el5iQeOJiOWFxZYKdWYXLsqgX5FIT2FLnw3xLANbrz5fjRVUuwusG/fIdJph3wuTTql0m42ee35k7T9CrqRJu2YSEVBVXXiMLmZKVLFtFOkHaMDHdUSmKYkMaPWNKSQiciIPIldB1VTUDQbJ+3QrNfRNIluamiqiq4ZGLqBrhu03MTYet/+aYpFBxElXIs4jpmePkFvdxdOKoWuaURRRFdXAc3QEJyESSWfrKImnjOKSAq9MAwZHe4HEaLpOnffv5cTs8ucmFkmjgSrVo0i/VRI+gAAIABJREFUVUEY+GiqyV13Ps74aB9CSKJIUG+0SFkGT+0/zsSqvqSIFIn4hqZYKFIjFnqneaEShhFCwshID/fv2c/4+CDX/eA+Vo8PoMgkoYzikEazhqokPm8Q4zgpFCmoVCts2TxKu+1R6MoxPFhkoDePogmCsI7E4rvXP8w554yiKgZRHPL1797F+tXDVColMuk0hXzid6ZrGmEcIWKNz+96ijf93Dlc8b7f5fP/+A987Pc+zq6bb+OmXd/Fyegsr5zgzW96Dal0hrRtc+DADE7BxnVreG6dG2/czYc+9FHe9Z7f5KqrXoaQMVJR0BRBubQEkWR5ZRmpaoyODCFljKarNFtNGrUGqZRNNp/Ba/uce+5WRkYHOHLwICOjI+imTaPlsvfx/axbv5p1G5PvzNDwAFIKKqUShqknnpRGB0YX+JRWyjy053HGx4e48457GB0botVssXPneVz79R8wPTXL5OQ4mVyGVqvZ8dtTgUS4ZHlphdAP2bpjC1IoDA7202671BsVenoLWFYmOX8lhGFEFIU4joWdsjBMh29fexNnnTWBpqqsWjuJoqjITnKQTqfwvAhDt1haXOTqf7+erWevZ3p6nhtvneH8HZewYdMEldo8nt+iVq6jGSaqphHFMaWFKmGQJHtCwk27bmJy1Spq9TpbN2/mhuu/TSaV4b3vfS+XXHQhtpNC1wxuveUWerq78TyPqek5pmemKRa7EuU4Vcc0dE5MH6GnaxhpJoLupZUSq1aNsW3HNl5x2StAxrz1bW/lHW99D5dddjlCUdBNC0MXtL0gMdhuBZiGzc27bqFWq2GZNrqi83OvfBVzcycYHh/ljz/5MSYn1tJd7KdWKbPr+psxLJU3vOUNNNptdDMDgkT8Z7CfG39wPVvO2cbwyDAISSzg2OGD9PQPced37mLnWTuJw4Q/pOkKTbdGFEUsLCyRSjkoisLqVWvJZDPYtk1f3wCaLvF8jyiK0A2TUikRYFEUhSAIqdQqmKaFoWuEHYsOISSqVKjWKjRqFYSQxDE0O6IoQlGJ4phqtUzKcdA1lbbnMTQ4gq4ZlEsVHn74Abq7e/F9D0UIrv3u18nlurn//vtYNbmKKA6RHUSFIiSf/MqfcOXbL+f97383g4ODDA33J8bZhTw9PV147RZe2yNtpzFSOidmpllammdouJ+eriLz84cJPEl3Tz992RTt6mF6enLc98idDA9UGOz3+PQXb+EvP/VvbN+c5+dfmWfr1nFEHCKFiVB8VF3FNLUEnmZM8vWvXsvLL9mMKuH/eMcO3JUWO3dsZOPaHKpZJZYuri/4zKcfZu3mcWytB10P8cMUB48cZtW6rYRmliYK9dIchr+EYSpk81lKi/Ncem6Bd//B57ho88vp6elD03X6+wbQVI1MJoNl20xPz5CyHVRFZWFhDk0G9PXk6c5nCMMAIZVEndrKYNrd+G6TZnkJv9U8dbdXNRXXbeERJZz12EcQ0Y4KLJTrjKzdhGpbNGotpmemcByHwYEhTszNUMz10qzOYJoOhuHQajcJ4pjZuRW6iqOk02nyhS50wyCXL6KqiVfpqvHVlMpLKLqkv+AQaj7VtiRtZon9RHzLznSxuFQhm3Y4sP9BBoeHcVuJgJQUCs1mHcNOoUiLhaUm1XqNdes2YhomAAcO7KXddsnmcgi/gqpo/NWuL/MnH/9ddt9+LwNjI6RzGcIgOJUznJ4BnQJpPmPKIOUPuWdnrpOojZ6uQPnj8dPOnJjJ07Zx0idZSpVT3LrkD8lDCiJi5ElvuWeoW0ZRSCw5NYWL4ug0VfvnDynkiy7skoI58Qt8TnGW05d9xms7/bmTIn//Wy2zE+KZvh3/QcXdS4sX2FYcc+mlF2NVDv8U9/n/kviJ3seXOnl7jvVfxKrJzTl61n6Sy0QimasqKtNHniYOkvF8o+VimzoykQkk8NtkMiZuq0XKMYmiiGu/eyvDg3l0w0yMnpG02iG+HxL4bVqtBs1GSCZr47qtxOxWUZgYHULXNFzXZXxsGEVGGIaKoqhEgYuqajhOmrYfsOfhfdz/YCKYcvd9jzE40AexoNl0se0UOoLy8iJtt87o5DgKKoqAVqtB2wvQNAvNUrEtg7XrJlFUSXd3F4Zh8uSTTyClz3kb13D7LbeQzXukUz2ohnbKnqHteqTSJpaVIgoFiAhEROBFNOotPM/tcFEgDE6aUCfeTYmQiURXEz6ebmgYlk3oxxi6zfz8MiCo1puk0iaKFBTyBRABzXoLVTNQFYmhxhydWqTZbJLLZSGKqFbrWJYBxPiBjxRKZ//qqc9bIFCVjpmwTLrswwO99BYLFLodevq6ePDhpxge6E7kzCNBrdziiX2H6etJo5sGA4NFUpbByFCRuNPEJ5LcdvteRkcGOjcOFalEECtEcYRuaMQiYqi/m5VSme1nr6VerxOHMbpm0XbbnW6/lUz9PD+ZKBDjZFOJjHMQoKk6S4slbDsRcogCheXlCuvWDmCZKRqNJr7X5pytq4hCmJtfYWm5Sjbj4PkeR47PUMhnuf3uB/jW3oBXb13Fu1+1hcve+UF6+7rZuGEDL7/sXF5x6aXs3n0/pp7GtixMU+PQwRm6+wscefoYA/0Frvv292m1Yj7627/Nu375v/GG158HCMJIoOoqraZHJu9g2ia6piYTjTBE00xMM4WTznW+izFPP/003T1d5Lty+H7A3Xfex/pN6xkY6kfX1UROPg7RNIMbr7+VDZs3cOtNd3J8apbxiTEe3PMIQyODHVhmjl033MMVr7kc123jOBncVgvT1ti+42yu/cb3WL1mFMuyTvkFJiqVggfufZj5uXmGhge4+849NBpN1m5YQzqdIopBVWzu3n0vQyODKFLvqGXeR7lUxtA1tp+7Bd2SSEXFbdURUu14WpJ4kAkNISLCoM7287ahKIIwXsPE+CgpO41mBFi2Qb3apLe3l0ajiWrohFHMu97+y1xxxauJ45Bms8bYxBiVSpk4islksyixJGVmufD8S9i6ZQvVRp0g8OkqFPA9nzAI+Nzn/433ve+9CAGZbJpY6rTbVUrlo3TnilRbLpaVIpcr4LkBtWYCb1U1BcsyeNXlryBbyNJs1Ug5NrZdYHZmFtvSSNsmx47NsW3bOXQVi5RXKizNzdPb28sX/uULXPHqK3jNlVfR1T3Cxz/+B7z6ysu49Odexcsvv5A4apC1TfyWj6om8GRFN9l89rksryyQSjkgY+r1OilD45fe/2t85N2/RegHzMzM0mo1ieOIMAqxLQvHznJibhbHSaEZEtu2abZaBH5Au9XEtlIIIfGDEMdxTiVTYRiQTjvoqg5CIqSWiCaJRBDJNHQsO4WiGwipcuTIYYIwwrJtiBPYmqZpVKqVBFYtEwXEKA6YnFwNQMpOEUvBurWbsE2T3mI3QRii6wqu2+Yvv/VXfOjD7+SOW27n6LEpLrhwBwgdw5BIEWDoFiempxAiJu2kaTZ9VNXASWeYGBujUa8jCWi1FxgfPQchBW7tOLXlWbTUMHruIobGtvPYEw+xc1MP5eP7ufxVI8StBdKOSSZjE4QN2h6kUik0zYBYxdSqbD97PUJxEUKl1WigimUOH7+X/i6FWLNZWQqwM0X2HTnBxIZz2H72lcyv7Odr19xOKr+aTH4Vs4s+bR+WF49gh0s4aZNmq42Chy9s1k/u4ON/9xnedeUvEoYRpXKZY8cO09PTixe4EEPGyaBokihQuO/eGxkf7UdXQDHMRHRTagTSQtNNvMYygecSRAJDT5rHEWCaKRRFQZUCRZMEocodd99NvrufXLEXTdcxTJ3FpXnCMCTrZBJahaiiBx665RBHLaI4JvShqzhKrpgjikTC9xUx1WoVKRWWl5e4/567abtVlmanWbV2ksALqS0v4wdNVAUULcP0fI2h0XEiv834yDieWwegVq2iayZBEKDrKWrlRdSUTU/vGIsLC+i6yZNPPEouV2RsbILH995Pdy6FIjQ2vXycszZs49vf+B4XveoVhDI6lSI/C5p4Mh+S8pQp+HMtd/ryz+Tb/XhxWsFDfEZx98PnOgXZM6dwIjkGEZ/5tx8qfSY0jSAMkEqHd/cCBdhLOnIJUZBcewSJRdGPAg8+136f71h+5oq7Z3cHOgDhk3y3HyN+VDX9423wGRy8ZxYRQuA4Dp/5zN+z46cprPJjGCeeXOOnVtr+2O/bSynsxPM8Xtx6gR907Aue+/1KOJASJ99PafYQ+e5udCtN6Lv4QUSj3iaVyhJFCrblJD4uBGzcMIKu2US+TxxLghBk7PPoY/swTYve3gEq5XnsdBbNMFhZWuLpg7PkHAupJr5hiqogZOLFFvgxK6V5TCuBgxBL1q0ZJJ9JUywWWbN6jFYrETwxdItvfPtWqpUWo0PdaKaDnXJo1OosLKxgWDb3P7SPgYEiqqIwMz1LT3cX99/3KNmcg1BgoL+IY1r4UY2UUaY7V+TIoYNkcjaNukcURqRSGsQ6lUoVx9FYXJgjX8ij6yqNZgPTMDh0+Dhp20gK35RFu1WDOEqgS2GS0K+sLON5bbx2iKoblErVhKOlKpimjqGFxGgJfMlXUFUFz/d5+tAMuVyWTNrh0LETxBGcOFEjk9GxUzp+EKKqegJzFGrCwRPJ9CwMFBQlMYslMAgCl1gEXHPd/WzZNIzbajLQX0AqCnHsE4YRXV05pmaWWDXZj5AqURwhZBtFCwi8ZmcfgsGBLJohOoWIDzKkvNjCttMEfph097TEvDjxdZJYqRQRPlJKNC2FqoEfeGhqMs1LEDICESfd5lgBy9Tx/DbtVgvDzGDbOn7gIYTGzTftY2J1GlWxqdVa9PQOkM3l0HSTcqVBtdamv9egryfDtmGNI4eX6St2Y09sY2C4H2Fo5JweYlnl4ovPwzRswmiZ6791A7/+W7/NVW9/D1//6ld5zWtfx+bNZzHY30crPMS7fuHtVMszaLrKTd+7nfHxUVKOhapq1Eqljp2BpFHzKC3Ps7hQ5pE9TzI2PoiQkM3nEELB8wNU3aC/P8/RQ0cwdI1bbryDhx/ay9BQH8QxGzatIQoixidHGR4ZBCHI5tIYpkGhWOC6b97AO975BpYWl8kXMkSRywP3Psrs9CL7njzEykqVs7ZtZGWphK4bBEFAHCloasLjHBkbYXr6BFvP3kTvQDd+0MYPFBbnT9BqrLBu01riSOcfP/tv7Dx/K+MTwwwMDnLD929j05b1xLFGGIJpW8SxTOB+mpJMdMOAVrNOKp3jq1+7la6enaTTaVQlaQaUyw3iMLlnRGrCe6pXV3AMyeve9jaKeYtcNkW54YJUiIkp5DLUasuMTQxjWCqPPvEo4xOr8NsxX7n6a1x++aVEhBSKXVzx2suS8zEIEDIixkXTLRStCzQbTTc4evhpJCpHD80x2FcgpVtUV2pUlur0DfSTshziEHJOlv3HDiKlgqnGuI1jVEtz9BYtRNQkl1H5wY0P02o3eMtVr8dvt1E1jziMuOSSS6nWSmSdIopQaNRbqLpOKDSEiFGliipiLF1iGypuEBGFgrRt4UYmB68/zIY1a6jWSxS68qTTDpqmkXbShFFEs9XEsiws20KRKrV6HU3RuPfeexifmESVGm67jWUZ+L6f8Bo75vKmbnc4WQkcc35+DiflcM99uxkZmcD322iKQYRPd88AqmpiGHqnkIsoV8r05BIj79nZGZxMOoHBRjFCU0DqTB09kig/CsEdd97C1x64htnGLO94/xVcefkFxEJn21kvo+lXWbN+E2ndRcYKbiug1W6CSOO2I7KFHK12GSFi3HYLzdCp1pvcs+dGNm5+LX6gEPlHCKIGlabHnocOk82cxe49J7j0tb/ISs1lxzlddDllPvWZ3Vy084146n2oMkMqlaFWraGqGq2WS5wZIsJGbTfQnX506VJreaxZswEvjFHCImrOJ2aY2K8wODhBf/8w0ycOc862S5mZCdBMm41b19DVZZBqzRAq85SW58jbBq5sEoQ+08cidj8+x4aBzRS7cujSJMQlZacxNYuMU6DcqpOSJi23zmB/AWQdRVjEhMRIsLooLS6TKxRQYhfPrWHYyYRX1bROyhihSYU48mn5Lo88vJcNm3cwNDyGqiXIi3ptmcHRISwrgx/4ZMwUmlfGlaAIQRi2qHk6XT1jSKlydPYEPYV8Am2UAkVXqC4vUCotsnL0MGdvWMX4RB+KiFCISKcMVDuH0BRku0FmcB1CxMzPHKXVqJEyTZBg6AYQdPwWJbGpsm/fcTZt2p6gdBbncbI5wjBGaA7u0hGytsUff+dz/OVffoY7br+L/pEhuvqHUfUUIvbPyKOf5c8mf1jYncqHnidP+skLO87IlaV4tnd1TNzxi/whby6Ko85rkM/yszsdlnlykqcoyg+5dwDiheGlZxzDaX56ZzzfUSsXIhFtOamu/6Je9kneojxdMTM+JfzyM1fc/WfFf8YkL9QLDKqln+J+fozo1EX/64u7/7yQSqJ49uzP+PQvZXLhMFSBFwToegLdUWQC2YSYm3bdTSqlk7JtQCKlhpCJV5WUiUIbSEZGBsjkHBRNdjD0Ak2RLM3PkcnmOT41RyqVIgrh8ScOMHtigUI+g2HqiXqaqvHla24ijj3cZovFpTJP7TtKVyFDLp9GNwz+5erredfbXkVvf4FmvUKt4bHrtgeYHBsgl8ug6hqNRp3+3iJLi0uMjQ4zNTXD+PgQgedhWTa+FzK/uIKIXZ6cmsOQEhQD09RptgKkFGiaitt2UVVB4AWoqo6mazQaLWzbTMQrUmai2un5p95LOqRsz3OJohg7ZUMMKSeDQHLPnifJpS0UVUXVVLyWi6LqzM8vkclaLCwsY5oG/X2FRInUcRjoy1MsOESRj2GqmJZOGCWmwoZmE8YtgtDv4CZiFKkRkaihGobky9+8h5G+bjauG0AqAtMwQIiOh1yMQKJqGoenZhkf60FRFOLQTTqnhKh6miiUhCFouk4YgiKSKVAUQ6vZwnVd0hmbKPaZn1kmnbZBgKIpydsShQhFod1q02q5+F4iwWwYKiCIow6BXQpUkZhvW5aJoiUCEVImMGJF0Vi9KnkdxAq33/kEI4NZbr/rEYb6c+SyKSxDRTcsYgRduSxfvGueTNTgS7c+xoU7L2TPnscJvTbpbIpmI1Fx0zWDMIz4nd/5La7++tX83u/8Jkl+FLFnzwNMTq6mWvJIZdbw0d/9BB/6P9+GqqmdG2xMq1WnVq0SRzE3/eAOxid7GRwaYGx8iDByqVbr2HaqgwRKhC8So+IMhmkxuWqc/oEenHSKarWKZVu0mi3qtTr79x+kr7+XOIpxW22EkOiaylN791MqVRgY6GVhfp6B4WFGRgaYmZ7nne9+A1IGHR6mpFKqcvc9d7J67RhChFi2QS6XT3zSiNE0Dd/3aNRrjK+a4PDB6USxs79AJpNBURXKpTKZnM0N19/KlrPWA0kzQSoSRRWEkUfotZNpA4K3vPPP+fjv/Sm5XLrjkSgAlTiC49PHGRjoww9aKFKgqzpHj8zQ3Vtkfm6GqakjjE1O4HkBcQzpVIoTM7OousBttznrrC247RaBF3LBBTuZmjqWQDA7fLi5mTk0XcEwNKJITeDDMkI3BGEIPT3dlJbL/Mkf/ykvv+QibrjxRizLYmh4iNdd+UZe/4Y38tWvfg3LssmaRT776X/idVe+Canm6BnoIRQalWqLWLG4667H2LJ5E0888Rgf/vBvcPnlryCdziPimJRj4wctYhHipNI0Gi10S2dhboFMJoNEUFpZIZXrpdUK+dIX/pnNqyZ4+tAB1vZtIAg8HMfGD0KCKMTzXLyOXxgIUqkUCGi1XKI4pFarsWbNWmJCmm2XlG0TRsl50HY9VKEipMKJE7MU8gWESBTznHSKIAwYGhohiiOazQqKIokI8P12IlKlJomnqqqoUqHeaLD/4H5Wr1kHiMRHVVERIoIwxkmnaHtt/vgrf8x7fvXN/OqvfIBLLr0YU9fZ88C9ZLtyHDp0jCtecwlSSg4//RS2k6HRbFPsLeJ7LYZHBwmDADuVxtD1BNZnWUDM5rVbII6ZmT1CMd/FiekZLEPBtnNMrL2A4TXrufqr32dy/CwsrUgU5Dl/S55777mWs9afT7vZwrIt1I7YjBSCL/7z43zvunu58KIKMVsgaoFIYdsF4simVK1Q6F3L0elufvf3ruGC81fjtny+8tWrObB/lte9/jKuvuarvP6qN2MoEZWpB0mnQ5xUFqEaaGE/iDbdg/3ccM80F2/cmXinTh1jeGyUKCYRVcJD1TXmjh2nUilRW16gq5BDIolCjxgNX1qEIehKiFtfIqWbxESEYYim6cQdb7nPfOtf2bn2Ahbma5TLNXoHJ7BTmc41EgzVgUjityM0CehVAt9DMTMoRppSuYSd7UfTbRQhcbLZBHnh+6hSgSjxVSwUiqTTgkKPjhQ6TsrBa7tIRaUVBuy+8yHGJjYg81nUSJC2TIh8DF2j2VzGNFP4gcANQ3RFsLi0zMqKYHxygvn5GQYHh6k16gwODLPnoQfoK2bIpm2GBlcYWb2Rhfk5VENnfO0kqi4hjs7IfZ7tc3dm0fNCqo7/0XFycnd6cRd3hNN+uNCpceSZx/VcqppAFEXJsi82832+oc8zpoUvVYAl2QYdSmOnuBPiJRd3P231iv8dP2FccNH5PPT08f+lx/Csrs3PQCSk2xf+OihCYKUzLC+tIDtcwHqjnnimxAGvvGwnPT1dHcihClGCr1ekpNVqYVga9UaLWCTVcxAlPJcoTAws87ksdsokn88wN7cECM4+axNbN6/HskzabpNqpYnfDrhgx3o2b1xFX29Phy+i8tSBI4RhSBgE/MJVlxMEbVIpnUcee4LeniKXXHgOURzTcl3q9TpOysTQNXr7eqg3GpQqVWzbolKp4bU9nnzqEAPDiSLghsEM6XSGIJTYdoqenmSitfvevai6gqqrKJpCqdRAKhJNTwRT2m2PeqOJEIJMNo2uax1ol8b07Dwpx0reWykJ/OSGq6oqZ2+eJJPNQBwRRxGGaSFiQVdXhuWVZQYGe1HUDrZfSnbf/Theu83U9Cw9PYn5eOJjAxCzslxheWUl4TxEnPK4EZAkj0rML7z5ElJOGtPSSTociZlwFEaAxA88fL/NheduBCGJQh9DVdAUiWWbyXQ2iNl1+yOEYcILuP3OR7jx5j2IWJLNOmSySSIXRSHdXTka9SaJW09EHIcJJytOVDAty06k9lWFdrt9Sv0LEpGGuZlFWg0XSOAlYZRwJxID3GQ66HsJ/NQydWbm5rhwx2osS6PZaJDLptA0i5XlBqqmc/0DT7F+/Thz08eII8lffOrP+f3//vtEIRw9epwPfOCD3HzDLSytlLjn/nv4rY/8V9pekygOabpN8l05bDNLKpXnm9/8Nh/92Kf48z/7QnLjjGMECl3FLhQlUf8bGCqSzeVxW22OHp1i6thsAuErlXCbLrpmIBD4QUyz2eKhPY8ihOQ7191MEIT09ffRaNTJ5XK4rsvmzeu54Xu7qFXqXHP19dz4vduYnBxn/cbVnH3OZlRNw7QsbrlpN6Zl0tWdY3F+gTDy0Q2VXTfcQb5Q4NzzzkFKBdt2UBSN5aVFBDFtt83iwiKZjMPYxBiBHyf+ervuoKe3hziGuZlZ8vks45NjvPMX30gURx0BITp+TCHEIZ7XIgh83vHuv+bLX/9XohgWFpcJQp9SOeH66ZrBdd+6DkVRsUydwPdwnAxr1m4gDkOyuQyKpuB7Hh/5yG+SzWYpVyoMDQ0T+CGVchkpBUePHsSyEt5qvtDFrbfewf/1K79Ku9Xmj/7wk1i6gaqchngQMDMzhaolqo/5fIFP/93f4DhprvnGNxkbG8Vtt/jWdd/CMk3uvPNO1q9fTxy0+K3f+LVEBEmxCCMVhInQbHTT4ZKLX8bXv/F1RsfGec1rXoeIddqex8zcLKqmo5uJUu3jjz1OynKolEsUCgWiULCyXKFaq1Nv+Xzxi1/iqje/GYKQ//7JT3HPvbdwbOoQipLYolimgZ1KdZogEk1PJO6DMPGiy6TT9Pb0YhgGuqGjKgoRJ4UWBAvzJzh46ACKUOnv6yeMQtx2m3a7jZSCOApRFUmr1SCTyaFoiaKyqiSWCsQRtWqVffuexLZs8oUutm7ZhpCSar2aNHvCMPFIO7gfYslffPMv+NKXPsvadWvxgxApNa779rexbJsg8li/cS3zCyfY99TjdBWLLCws0dvfj9t2cTIG+/c9ge/7xJGgVC5jGgZhFLO8skyz5pNyLMrVJSpVl5SdwzRNGq0aszNHmZo6xJvf+kZQDGYXXX779/4fNOFx3s5J3EaMk7FZWlokiiKkIrFTNu9//xt4/ZsvxtD70M2IdpDA8+cW55g6MU86O8yhI03uefAx1mzZQm93P3/xV5/ida97K9t2nIdU2rzvQ+/F8wPKpSXyaQPfbSb3pVwB32sRRk0OHnqS+tJx0rZNpVxiYmISIdRExMxtUS4v4bddlhZmmJl+kr7+oQT2L6IEToskmy2QyWSpVVaIo5BatUToBwghCfzEEkNRVJa8Kq2wji9rDI5NousGlWqVOIYnn3yCKIxZXFqi2ajiuhWCZgXf99BVBdet4WS7McwU+w4cYN+Bp1AVBaSCAB55ZA/Li4s4VpHdN93J9OHDhF4C/XXdFoqqEcURpqJy7jnbUU0LKRL++NLSHFIK3FYdVap47TbHjh1FUZOmaT6f+O7V6jWGhkaRqsq+p55gevoY5+44Fyed4eCTU/R3myzOHWNm5hgLiwtJw9lvnZoW/X85TnrE/UQRvfhC7MWEkJ0J30uMOI5fUlH4XPH/i8nd6bDJ53r8pPHM7fxUYJo/onj6td//NG95scIqL3QIJ4mwzyDEvpSIX2iS90Lb/o/o5vy0N/kjtyfO+ClWdfIpk+XFRTQ7g2EohGEb4hClk2Tfdc+DTIwNUS6XMUya57Y7AAAgAElEQVSNOPSRqoIQEtuyUGQCz2q7HpVKjb17D7N332GGhnt56JGnWLNm4n+S995xdp31ue/3fVdfu5eZvac39W5JtuVGbEyxsQ02mJ4CBJKAAyEhJDeES6g5CbnhfAIc4EIOIQVSCCEUY4xt3C1Zkq1iSZZGGpWRRtNndi+rnj/WSJYbNiW55568+uizZ9bea6137z177d/zPs/veZhbWMA0VVRNomkKvu/iug7xRJIwhN17n2T1qiEOP3mKjRtX09vTSTqVRJESx/FoNJokkjFC4RO6HuVyCyFCMqk4fuCTTMVIJWLMz86xUCqTSibo7urkwIEjjCwfRBEqioi+2AU+n73jJNtW5OgsdHLk6Emy2QyqqlHM5QhFgJTg+R7Hj8+hqAG2FfWLKapCLG7TbLYwbSsyFBEhnuuSzaao1RooikSROpVqE9syuO+R/Swb7qHdamNaJgsLi/ieT2mxytipKYaGe5BIpCKp1mrEYzFEEGLbGqah88TBkwS+JBa3IZQIoWHbOrpmEgRLzeAIQEcQUq00cFyXarVOPG6jahI/8CPAfy4gVag4ThtVlUhFiYxrgpADB8cY6O/B9aFUbqHpBq1Wi458EkVVUfBYvayPWqXBYqnK7FyZTCYyipBSI/A9wtBDVaLezjCMGBNViRxZwzA8bwogFInruKha1LuViMdhqc9PkRLXbaFIFSGjvq4gqGHoSU6cGmegr4N9R46zbs0I5XIVOxbnxMlJKpUyiqKiCMFv3bAaM97J5au6yS7bxqtvfCXX33gdpmFz222/y9vf9g4qC/O87s1vZHj5EIuz8zQbDsdPHscyLMZPTZDOJshkcuzd+wRr1q5j86bLOT62C0PXqJQrBH4U/N5utRkaGmDi9Bz5jiLjJ8+SyeS543t3c+llW/nOv93J0SNjzM1Gct18Z56+gV4O7D/IylXD5Asd+KFPLB5nz6692DELqarMzy0ysmyIeMJgy8UbeHT7borFPE7bZXFhkUKhwMo1yxFCsLiwyOTkNENDA8xMzxFPJFgsVcjlc6iqQWmxyg++8wAXbV1Nq9nirjsfYGR4kMrS6yekyn13PUhnMcf2h/YwONyPbVs4bpuZyVkM00BVVCqVMoEfoqtaJOPTFO699wAPPLLIRz/xYcIQdBllXKmKjmHECUOBrttceeXlzM7OcOzwMXTFpNJsRT2ibkDb9+jq7eXok8f51299h22XbqOrqwslFMzPV+jsKPLEE4dYtXrlUg/tk5RKZRr1Fq+6/kZKiyXe8ua30mxVEYqHH0byX13TiMUShEHA6OGTlBZKZLMJQiRXXHUlii4RCuiaRKohV199FePjx5mfP0Emb6BaIZqh8Z1//z7Ll6/A0G3+9FOfpq+vh19725swTY0tm7eia0muv+4V/Pb73k3oB8wtzOK0HXp6upkvzZPvTDE/U8Zrw+c//wWuv/7ltJ02my7axMzkJFNTZ9mY2saKlSvpLBRx/YAwiNxGFREtrGmqjus6BKEf5VMG4VLjDThOm0a9SqPRwDajrEipanhOm3QygWnbIARSRMHnilQj2W4YRgtYqg5CQ4RK1K8lNCQKbadBIpmg1WwRt2MEEIFC38c0dOZmZ4jH47ScJl+68yu8549/nTe84bWomhZdM1QdH0FXVxcy8LFzKWJ2BttSKOQLGLaGopn4gFgyXTknhXfdJtVKjVg8DkA8kcCMWbScgO5CJ3MTT6K4C5TmDhCzBF/80j9gxtLsenwXy1Yu49+++0+8572/zj//4zdYtWY9Ui3RbMyQTHbQbNaxTIt6vY4wThJLNkgE62mbE+iGSTtwiCfS+EGCHXsrfOZz3+Qd73kdL33ZahbOTnLja66m0L0KK55g6swoazb/EpOzJQY6VKbO7MUPWxh6ClUKkDNgWZydSnPdVTez/6H9jCxfweHRfXR3DYAMaNYaKBIUqZFJaJiWTtwGKXxUTUZxFFocYcRRhE+zuoCu+FiGhVCi3FEhIofSMAx54MnddCs9HDk8x7YrfymK+PBDdNOIVByKwDA1LF3FNFyoVZCaQdhu4HsOR46MoRopWs0mHdk0iq4j1QiMdRV6sE0bN6hSLZ9g7fq1GKqOIgFCQhGtLQjXQ7MkTSdAtDR0Q0FTAkKvTatZI/SixYr52UU6OruR+Li+ZGjZKmLxBEEYUm80MAyDeCwWGaokbL5w31fY0KvTP7CGlgNbr7yWeDwWMYpLzNBTdU5U80QZciK6K1wqAgNeEAgKIc73nD1z+887zkk/fS9SH1wYe3DOKyMMIofbiP2KFoDPu2RKES3sAuciFKSyFJ22NL8wCJ53rs9023y+CIVzbNvPEoXw9LiHp96b/7KyzP8sSvgXc77n3/eNb7qV0Z0/Jpu0f47j/zRTeXHA7yeCuxc6/i9w/Ge/z08bvo8vNTQcxo6dIJ0roKghYeBg6Hp0MROSzo40iiowLA0/cIEARdEjV81miwMHR8llc9hWDNs26Mx1sGbNCnwRkE8lSWUz5PMJNDUgJKBSqSKExLJiSyuSGpauEU/E0aTO4/sP0tdXRFVVdj12mN7ebpLJJEKGzM/P0aw1yGZzFLvzBH6AaVlUKmVqlSpxyyCRSuE4DtVqDdPUiaUStOsNkgmTSnWRRCLFX91+hDdc1kW93qS3p0AooFZtIIV2Pr9O11UyqSS6odBqOZimycJCBVVXsGyLo8dOkc9nAC8Cg15IzE6ACGi13CVm0CWTjGGaBqqmUqvWiMVsNE1iGzH6+7oZn5jEtiwe2L4Pz/PpyGcIXJdHHzvMqmVDZNMZPC+SRX37jt2sWT4IsoGmxnli/ymSCZPH94/Rme9ESLj7/n2sXbmcWEyl7VZxWtEKdRiGhEFIEIaoihYVEioIodJ2PXRVI51K0fJAMxPMTM+STMXJpGIYlkoAZFIRkDk8OsGKFUOIUHD8xFk6OiMDEUWRqFJQLlUwrEimMze7iGao+IGDqkhAwXXAcZtLxjwhAvDC6HUUoY8iQCggUBBIRo+dIJtTEcTIZKMQ75HhXvwA7FicIJCMj8+xbm2RZDyB7/moiuCdX9pNwavywz1jXLRpOapmMTs9T7lc59U33cRH/+QPeeOvvpWPfOTjfO3Lf8PwstVs3/4IoDLQN8zy1QUWFhYIAgXfh5gl6e3dzDt/88MkrZCu7iKGaXH27DSu69Lb30XbqZPNpVAVwaaL1tFsNDmwf5SXvfIqenq7KHQXKJcW0Y2o2Ln9u/dz0dZ1CEVhYWGe0A/p7e/HMAwGhvqplkt0dGRpNVuYhko2nyWbzXHfjx9h9doVCClwWg4Tp89yybaLePDeXaxYtYr77tlBGAQsW9m15K4aYFoqZ89M0NffR2mhxMJCme6ubh5+aDejR8YYHCzS19dNKp3kib2HGVk+RKk0T7GrD8dxCYMouuSH37+PtetWc8sb/pQf3XWA33rvx6nWqvT1RAX8+PgRcvlOBDr33PUwwyNDPLpjJ8WuIvG4TUzP0G61yXVkQQ3Y/uNdxNMpWp7H8v4VXHbFFQwPD9GsN5icPEvMyvPgQ9vZsnkzJ0+eIpGMUSwW6enuZdXKtXieTyIWo16rYVkqk2dPopk6mmagqgZhIHG8FpaR4JGHH2Hv47tYt2kLuq6hGyql8iKptMnszCTpTJxsLkmxazlmLIGmGMxNlbn8ks2UFha5+0d38+Y3volsPsFiaYpkJo5lWtx953be8IZbSGVs9uzZx/DgcjzP56GH76OvrxMfj3y2h1ddfzN/+Ad/SGdnmjPjh8nkc9iJBO/9/Q9xwxXXg1RoOR5Cauiqxv4n9lEsdDN5dpJkMhlJICW4bhuQ1Bs1DN3A81wUVSMRS3Li5Eny2Tx+EBD6LoHn4C8FW4cEOI6Dqqp4vh85/xItEgXSj+TZOMxMn0VVFEzTwPd94rEkIChXFzE0Fc9pYWgaC+Ml/uL7f8n1b/4l3vjmt7Fj+6MYpoVpWZyZmIxMXRSNuG2Sy6ZwQ1CUOKoIOXH0JHbSQNctTNOm0WpQnqtiWhaNZoXZuTP0dA8yOnqEzo4OpJQ0lBoz001mTk6wMPEwqj9DLtNCoUlP11rKZY+urvWYVhxFtNly8Wr++2d3c88PT3Hl1RYaOYKgDoDrOPiBT9xchW30IZRR6k6K0E1xdrJKJj2M73ZzamGOZHIZr3nNKwjKbYaGCrTDOc5ONOhfNoB0feL55diJFFPHd6AoDVQdpK+g4eCTpul389kv3IGZaHJsvMFwVzfJVBJDi3Po0B72PLaDkaHV3H/fXXQVLBbnFkinTXTVIPAglBLVTCA1I2LZ2m10LbqeS03D97wlaaaGlApXrNqK1C3MdCxSuLgusURiyblZQcpoMVATEqexSMttoGbzOI0mY8cmSMZTJDN5TENHUwVmPIbXdpmfn0PTDeYX5tn5wB66ezrIZmwM1UZR/CU1RgCKpC1D4ole9EQBTfeoVuu0GwtIAjRFQYQa0vBIplI4Th0FldmFOcrNCodHx+gsdGPoBtlMlng8TrvR4g++/EFue9UgmXSG4yfnsVNdbN52NVJZMnd6Rkl1HpSJ6OeASOkil3q/Xgy4ey5Twl8UuItul0xeniP64MIA82fKL+USmL0QzC2pH4HInTMMw+dXcj3X+X5Bz+mFxn8ZcPfz0pY/6ziHqn8+Bu8n7/P333+USweeAndPO4d4xu2LGRfoj5/1/wVex3NinWff8QxQ+FzH/t+x3+5pU7pwBeaFdw0VBcUP8BWF7p4C0xNHUI0UoScIvIBAhWq5iqlHq6/zCxXqlRaJVIrtj+6jVXfIF/J05jMgQ4Sq4rRaSF1DyABVeuzY+SS9/V1oisLk1Cy5TI5qtcGhwyfo7emmVW0hJcQSBp4bEE/Z9HZ1cGJsHFU16O/O0Ww3MGydr3/zDkYGeujId1KvN0mkUtEFW0osw0BVFey4hdQMFFUhkYyTTMYBN8rSqrlYMcmZ02VaTpsVHRr/8r3HWL+ml8DxeOCRg8wv1unsiLPvwHH6e4ocPXaSeMyI2CapsWPnYVYM9zM2NsFAfzdBEK0sngsdrVZrVBbrGHaIEArNeotkNjJtWJiv0Gy2UbQQXbFwXJep6VlC38c2LbpyNoqU2FaCRr3O6NgiI8sK2AmFmB1HaoLlI0WkBD+QqEpIsWjjey16enrQtJBWq8HcYoViIU1IgJQKux4/wszUPP19RRRN4ezEHJoGmm4ipUqtViJux6nVZ9E1A11RmZ2dJp8roqgsxWZEXz5BGDI1XWLVymUEBBiWQi5r4XsOj+48TjadwHE8crkcTiuMZKumRFUkrhsQEkl6Z2bnyWYSlBbq7Nw1xuBQZ0RACIkfBDRbbRRpIJdY4Xw2ixAWiKg3Ugh1yezFRwgPp93ENi0MyyREsu/gUQqFFP+8fZoPvOkyPvutBxk7PceeHbvZ+8R+bnvfuxG6ZLBvgFyiyKkTh/m93/u/0WWNl7/8VXz3+99j/aa12EaCT3/6M+x+dBdvesMbqDcX+PhH/4yPf+TP+KNPfI7XvXYb9VqV8VNn6Ost8u1v3s3hg0c5PjZOPJ5g+8O7eejBPVxx1Sa6erowTAOEj2UlcB2XRDLO8hUDHD96kmwmg2kaZDNpfM/h2Ng4nV0ZYjGbMBRouoFp2uzfc4ju/i4Gh3soLy7itB0euPdh1m9YgWXFGBjqQjcs9u07wktfdgmKauI6HpqmUyk3KC8u0tPXR29/H13FPIeOHCObiTHQ24Hv+/T09mNZOstXDuK0Hb71T/ew5eK1PLZzH/nOHM1Gg31PjPOZz/2Az/73P+W1t9yAIiV9vXnKpTKmEeczn/4Sl2zexuc/9z9YvXI5imLQ3z9IpTYPMqRar5LOx5FKwGc+/VdccvXlDPb0MnF8N5phYEloB22EJrF1i/e9/0N853v/zjt/421ksh1MTy8SyoCQSGKYSmfQLIVYWkNqkkJxEEWazM3OoKuSEBepWOBJhOdy5sQxNm+7GNPQCMMgMh/xDOx4iiCU+KggIlmw74ccO3GcWMwiDHV+cMc99PX1cM+P7+PSy7cQhB5BaFLoSTIw2I9lJXjPbb/Dq2++gRMnT7J+w0VYZhJUHaknuPraa7n7ru+ydeMyUh3daIrB0dEjbM1fgq4oNOp1dFVFEOIFPt093YSEGEsgS1X1qGdSgq4bkZz8vofo7urDsAxAUCmX8IIQ29CQmkK1Xmd2eh5FB9uK0Wq3ETJi8ASSRqOBYRkooYgYfWmgqAZSiXIMEdHnVlV1LCty25Sazse//qdc9brLefe7f51crpN6ucZjO/ewcfNFzE2fpK/TxjATVBfmsSwL3YghZIBhKDRqDtVKDdvOUq0t4jhVdNXAUCW6IiDwMXUTgUGrUSGeiKGrBs1Slc6Uja62Wb1+E0K0cIOQ6uI0p48fYejSW5g4fYJrrrqayTMTPPzgg1z/sg1cvrWA5s/SkVGZnQt59JH9jIz0oqg1SuU5FFnH81USpooUBr1Dq/GlxeipWdYMrSakhu+1yGYN/HQ35ckFRtZtImHFKfsmhx+/n+9+/zs0qgsMFbKU24vc+sv/wmtfcwmt0gxG3KG7u48Dj53h3oNH6I11Y8YLjB1/EuE5VEo1pOLTnUmQTmokE3EM02b08AHyhSJoFo026LoVxfa0F9FkiKJqzMwuouoavucgQnDdgNHjJ9h+9162XraNXGeeVCKHpqq0Ww2EUFBViesHBM15PKeCnS0S1uu0W1XsVJFQt8lkslTKFTTDitjZZoNsLg9BgC6h4Z5icsxFNeokkhHARIChW/iBhyZjoCWQqsRzQ3QlRHgtdFWB0EOqkReZqmooUsUPPXwv4OzEDBsvupxGtcrp0yeJxWLUqjWq5SbXvtRmZDhGLl9kZqbKyiuuo1DsAAGBNCB0zxdB8hlKJSByy5TnaroXz0Zd+PPPVTMHAiEUAj+IAtSXetIuxABPCzGHp4G3C+cQPa9nnD/kqdgCGal6nneO556DlOfNWS40VjnP7C1tU9XIIffCOTyfuvD5Xp9z2//Lgbv/T5mcn/n8P3mfbZddwuvf99+eyr07t5AiON8X8DNJE19IPvlc9/+k7f+/HE+5lV741F7M04lKbQFSwXUDjj/5BH0DQ0gB2tKFP2YlOPTkGLlsjng8wb0P7WB4oJ9iZwG37ZPKxBGA63r4XsjR0ZPk8x2oS71dy5f1MzM1RzKZwrZsfM9h9Ngp1q1diWlY1GsNJqfmiMeT6IaBbuoEQUCt1kRIQSJuIAhZXKywfuUwQehGEkpFMjUzw+kz02SzGebm5kmnktTqDUIk1WoVOxaLpD74TE/PYRtxnjh0mLVrV7NlRQ9zUydR8OntylCr1Vi5rIdd+46yYrAPFYV0Nkk6nWDq7DzFrgLVep21q/soLZbp6MxSrdYJAg9NKigiCgGemp4jk07i+pHtum0b7N0/ytBAL67n0ddfRFUU5ucrJFIJYjEby7KWWDSVdCbNv9+xnS2bVtDfkyMWM2k7bRbnS6iqytjxCU6fmqG3L4vreJw4Po0UKuMT03R35/ADj5HBKLJA1zQUodLfW6C3u8Cp8SlqtRbFzk40XUFIieO4WKbF+Kk5kpkYqmYRComqKjz4yCF6u7NRAbgkw2q22lRrLbKZJOVyCV2X6LqOqit0dXViWkZk2BKGkZTId1FVlXq9yuTUIplMMgI4RDlqqqIyNNhFELioiqRWq6OpkeObris0G80o6833I+loGEbW0EIyPT2DbVsIoXDk8CQHDk2SS+qYhokQAYmkzU0bOzlybI7JSoPf+b8+wIP3/5hrX/paBvp7gRLVRomBoX5Wrl6BKlMUem1UafHfPvWXOK2Axfkar7vldVx8yUUouo9TrRK3TDZuWI3ie/zeh7/Eb77jJlauWsn4+KkIzBoGgyN9HNh/hBtvvjaKENCjfqhmvYGiSnzPPZ9hd/L4GTwvoLOQQypQKS9gWiqhLxkdPUZXsYCq6himycL8HNlcAsdxAUEimWD0yHFWr1nJ4mIFRVVwnTKmbbJpyzqEELSbDq7r0mw26O4uMjkxSypjYFgCp+Xju3WGh/tIZ3NkOovMTU8jJZGDa9tl68UbCYVH/2APf/ihv2HPvnl+47duY9slW4nFEmiKhVQl7XaTMIBctoOtWzdj2RYbN62nf7CfTD6GokjSGZvTp4/T0ZmlXJ7HNGw2b7oMK6agYzA7c5ZsR09UbCAYGz3O2972Ds6cXuB73/8Wqh7SbjcYHz3F8pFB2o0GOx/eyUDfAOhtQkJsI80bb30br3ntjfieS6VahjDkvnu2c/v3f0DcSvLZz32Rm265AcM00DUFPwj4u7/9B/K5DBAQj1nUa3Vs2+b737uda665hrbTIhHLgK9QLPby2c9/ibe85Zc5dmyUfC5/nglTFI1bb30Dimuyd/ceAq9FZ0eSxcVJksk4hq5w6cVbaVRqtNw2s9PzfPBDH+MVF78MX0pMy1oKGee8s2FIZGokhcR3HHRDR8jIIU9RFPr6BiPH3CAgDHx27XqEVavW4jgOIYJEIkk6lSGRTOH7Aboe9X+GIsBxXFrNFoaqIaTA90P27d+DbVkYhhHJP0VkoNNqt1Gk4Mvf+n/Z/Mp1vOc976JYzOMHLer1KoZuIjWDgcE+bF0wf/Ykmh1DKnD2zDjxuEnVFZQWFjF0lWxHAU2GpJIJ6rUqqqqAsAiEgheCYSdw2zU6ijnGTx4jlU5z8vhxOos9qFaKcsvHawUsLEygeG0KiRxn5iw2XPoSFN1Gahqr16/l/rt/zMnxJ/nxPSe54ro1JC2X5Sv6MHRwnSaJZB4pJa7rUS4t8olPf5uXvGQji+UqvcMXsbh4hieOPEnbCYibMXzi9BU7OXp6gqC9wJmTJ+hKJbj3gUf41TfeSGlulJgJ7/zl6zB1D0ULCEQbz1XJZNPU5k/Qn13L6eNjFDo6mZ89Qc9gFzPjp+nqLWDoNigBTqOBoVkI4WMmOzHtJE6rQbO6iGUECEXguILTZ8bpyHdiLxmHHR87jBrPc8fp7dx89a1ouo1A0m63ePDhuxkZWoXnu1Sri5TmTpHNZiAMcJ0mumGjWWmSyTx+GJLP56nVq5GUV9MIAkGr1WTfE7upLjTZetkghY4UiiMRSsSGuU4TTWr4agzDztB2WigImtVZRNAmoiIDVKmhqQqu26LdqqMoGouVKvPlJgcOHWT9ug0kk0niiQSqorFj5k5S0uHo3sMoVoyR4fU4Vpbunp7IIVdIwD9fBD2n38KFIImfvrft52Xw/CBAUSOm/PnIiAsZuheKH3iuEfj+U3l3P0lOeSHuWJJ1PpdhC4BUBIH/wi6jzxzPJ/X8LwPu4D8X2P1iqeYXprVvfeMthBMHnrH9hfd9ngO+ePnki2HeLqCxn/WYC1nCpzbys6HR/4hx4WrO028v3P70bRF/KYREhCGBCJCBQq1cJpbKoiqCVquBbtrIUFAoFvj6N+9k3YoBBge6qFRqzEzP0d3XgRBRRtnExDSJVIqergJB6DM3N08ynmD/gUPEDIuduw9y8sxZBvoK2JZJJpNhfmERVVPJZfPRSrACUgY4LY/ZmRKFYgdnTk+RymSJx2PUa3XK1RqaqqJIhXgySalUQ0qBruscOHSU7q4CggAhlCgYFEHoaxiGihXT6ey0UdUY9WaLfDqkq5Bibq4MikosZrF2RTfj4/McHjtLT1cGyzZIxUxKpSp+EEar/GYkgZKKIJVJ0ao1mZsvkUzGseMmhhZDMyKmr1KqEAYBQRCS68iysFDCtozIxlxVcdoe1WoTw1RAaszMznPxRSMIVSMIotBl07SQioqmq3QVs6TiOpquQyjYsfsY03M1tl2yGt/zkIpCEIKuKjhtnxCB50fN9gvlCv293SzMLDB64gzFjkzkjBdI/uFfd3HJ5gEatRaKItE1yfBQb9TjJ0PAR4SCyclFEgkbw4okPV//9iNctH6YwAdFi2QliqJw+swUihoiwsilLwg8OjvzUehqGCAVQbPexraj4lEzNDzXwTQNpFSZmlyk3qiTTCUI/CWLbwRB6CGFYGGhQiJpo2sRu1fozLF2TS8QYphRnpUQITPTFYaXrePlW0aoxLtR6aSnuxfLsPnoh/+cN7319TTbTVqtBqV5yORNPvj7H+ZX3vKrzE5PsWLVajRdw44ZlCuLFDv7yHfm+cAH309Pdx9b121gbl7hg3/8V7zlTVezbOUIy5aPcPjQKLV6BVUBz3WIxWMcPXKce360nTXrRpYYPPCDkEw2wx3ff5DBoW5M00Q3TRQZcs+PdqBrKq7rkMlmOHjgIIPDg8TiFo/vfIJiVyeGpVDo6loCfosMDPVhWiZBGCxZbEssO8b83DSJVIKTx0+xYcNaHtu9l66ebiYnpukbKCKF4Mf3PERvXz93/fBeLFsnl8+iahrX3/JR/u7r93DDdW/immuu5dqrr41cDsfGGBjoR9NVPC+gWi2Rzebx2j66bURskxXFn3hei29969usXLGC+fkFuru6CYMA3TCw7Tj333sX9/1oB5VKhff/wR/zjne9g6nxs+zdvY+bX/863ve+25Cqv5RJF+cTH/sUV19zJXv37+Xlr7yeluOC6tJutdA0k8G+5UtupRVWrFgGIkRXNLZctI5Vq9fS17+MkeW9JBIx5hcXiMdi2KZF4Ln09BbxHIdYPE4YhBS6itiWTaVU5uCBJ9mydROWLbj5tTchZEhHRycLiwtoaiQBdd2APY/v5Stf/hp33X0XN736enIdWT72R5+kp68fKQS6pjJx6jRm3Kaj0MWQWI5hRjJMwpBWs7XUn7rkTuv7EbOtSJxmE03T8IjiLO978G5GhlYQhNFSlqaqjIwsp+22aDsO8ViCSrWKYZk4Tpu204qCyNsOoQBVUdFVlXJ5Ht000TWdXLaDmG0jtWhBRQqo1xsk4gk+9vef4O++8UXynQWq9QbxWJzFxTlUxSCf66SQj3zFAs4AACAASURBVKMZWiR3TKWYX6gQjyWRUsGyYqAZmLSZPnOMWDJBaWGevXufYPzEaXp7C7z+1rdy3StfsWTkUqZWq9Ns1ujp6SEMFVKZHJ4vmTg9hee0uelVr+GVL91ER1pSnisxNmWy78gxLtqykVw+g6aZrFvfRzYd4+H77qM8W2XFsiSCKB81FkvSdnzq9TpBEJDN5bhkyzKc5iSmLmh5MQaGBrny6pcxMDSCIgWjoyfp7MhhZjpolaZZLM/TW+ihf9l6jp3Yx3C/S7u6QLN6CkV1aHkpYpZO0NK480d38YEPvAuaA3R3Fcmk4yiKh9NosGb9MizL4NSJMyTjKXRdQagaRiqFYXcgFIXAaTJ+bD8d2Y7IEVUV5PM5CHwIYW5uimLPch5/7AkOl07y8i2vIBDBEqtuMDKyEkUqVCuLgEfSkCBAReD6bWbnymQ7Bhk9OkqxWMRxWti2zejoEQqFAo/ueoSYZZOMJzE1SXcxiXADHKfO8RNjSEUjlrBxmgFmposgVPCcBtMTp0glTUK/fT63USpRRqyQMnLNdHwe3X0Qy+7ioosuJZ6wUTWVIAz53S/+IX/2J7/Pv/3t59i4rgcZz3H29AID6y4j35lDCH9pMXcJQJyvdp6jIDpfGBFlxAoZmXa9iPgAIaIYEflMIPQihxTKU/XmOXfLc9EH8tkM3U8L7IAlV11+MmsXPQAhJJ4f1RrPkm+GIYEIl0LSYXFxEcuynn6IZxWc4dNq6uc7/38pcPefOZ4J7n4+w5YX3i8k5Fc+8BfcctnyZ83jP2S82OMKEUmaX2i/Z23/3wXcPTVe9NSXRigUZBgV7n7TId/ZScMNMLRzK0oSVZV4IVy0cQWB52LFTDTNwLJVND0kCBUW5hboLBQQQuXRnY9T7M4RBD7lUoWVq1bw7e88yA3XX8nAQBeO08a2bW7/0UOsX7uSr/7j7RTzSe6+/zFWrRygVi6hCo2J07P09BW49/5D7Nx7lC2bV2CZOtlcFkLB/v2jdHUVSGfS6JqOaZkUOnOoqkp1sUQmneHUyQlu/9F21q7pjqzhQ5PSQgO31UZTBSemzpBNm8RjSXTLwrIMWs06rh+wdnU/mqbQajQpLSyQzaUxbRvDtKlVK8TjMY6dOEM+m2J+thRlkVl6lOPnG0xMTpFMJLFME3wf0zZRVY2TJ8+SScVpuy5BAHfdu4/BgSKJhMG/3b6L9asHIHQQioaUUKnU0BQVzbIIRAB4GKaCKi2kVBkZ6qavpwNV1Th0+DiaqlIpNzE0hR/c9RgDPZ1Rr6TvksulmZ+bRxGS01Pz5LMxdMNAKjrZmEY6raOpGp7jMHZinDAQqKqGrqsI4XPq5CTNpkdfXxdCCdE0k/UrB/inbz/CutUjkfRNRl9QlqmjaSp79pykoyMTmegsMXW1ah1NU0mnUty/fR/9vR0IKalVaximRRAIYvEYD+w4wHB/N0EQSXdMS6dUKmGaBqZpnV8cEkLg+w71RgXF1FEUBd/38ByHeCrB2z+/g+s29vHuT36FD/7BBxD6BE6jwprlF6PHkliWxuTUGd7xjt/jzW99HbVKiy2b1lMs5BgY6eP42BiKqvDg/Q9zdGyCi7dt4fobrmfV6g0UO3Q0TfLWt/4KW694Hb/9mzdTLpfRNYUtl2wgn88QTyaJxWJMTs6wfuNK6vUayVQcp93mzJlJbNvkyJMnaNQb9A/2s7hYZvz4Ca686gqyuTQ9vT0cPnSY5SuX4bkuiqIRegG5jjSqGSJCGZkeFDpBBMhQodFsRoyrEASBG8VLKBoP3f84K1b10j+4jDtvf4iBwSJSFRimSV9fL4qqs2z5ALe9/6t881vbueYlr6Uz08kf/9EfYRgKx0aP09szSLPpkO/IYJgK5coc1VoL121G4fSKhlAEYRjQardotZuoisLykTWYhkVnZ4FWK+Cee+5heHiQ2dlZVi4b5q/+ny8xODTAJ//8L5BKQEcqx/vf+z5+5wMfJJOzaLYqOC2P3TsP8q73/AbxdJy+gX4abQdF02m1GliWiWGYGKaJ7zl05POEIkRKQczUSWXj7Hh0N6NHx9l22UVAiGUbhEFAf08PUoGv/s+/ZuPGDai6QRiGWIZNtVZnZmqWv/zMZ7j22qs4Oz1KsTcPYdR/bBgGt932Pq677npOjJ2iVKrw+je/getuuI6PfuLjXHX1Ndx4zc28932/ywMPPchLX/ZLSASGrfNrb7+Ny1dvw9B16qUyhq6j6gYiajqFMMRfypuSUhI4Dg8+fD+9A8tQpaCnpw/P9dB1jQBot1vRe68IDNNGLqkKVE1FVZUoSL5RwzJNhNCWXE9dkgkbNwiRKBw8eJAzk6foLnYRhoJW28Fz4Kv3/k++8bUvUq83SKYzSCFx2gG5XJ6xY+NYVpKgOsHZ2XmsVBbVTJC0E3hOgKYaNBptHLfF/PgoWVvFTsQhFHQV+5manGLFymFefcNNxG0Dr91ibnqSoeHV6LrGYqmCqceRuokiVG7/9rfJWApufY4tmwoYSo16tUl2+KVkczlsU2XPY7vp6uzgoQfHSFnwilf69OXSVKseYeCRTCTw2j6BCNH16PpXr9cpdsaQ3iymLqg0DYxYFzPzi5i2zc4dD/GSq6/BNDSwUiQ1gR4zyCY6CGOdrF43yMKJQzz6wB4KmRSKyBBYbRQqqCJg/ZaVWAmHr31tDxtWjxDiEbMTdGa7UISLDHT0ZIimGoShixPoJDPD1JotgjCgWZnHUhUUPcR1WuhCBcdF6gph6GPZCR5/fDebLr6aJ84+wTUbr0HVdFqNFlJKDCPKvzQMDSkDQqeGFY8TNNsgQ6Sa4ujxcTZu3MTE2XFCos9AR75IrbLAQN8g01MTqFJgSBfbAOHrSEMhnesHKdEMidcSeFLD0G2CdoN2rYSdsHCcZhS7pOh4gQ+KpNlq0247mKaGlcxgxnOcmhilq6sHz3eZmVykb0U3X/jsX/P+33wF8zO7MLJD6CLFTEuycvUKEB6BFIjwGYYePwncnd8kl+rhFwZ3UkgCgp8jA+/ZzFjAU5/vX8TwPPe8JPOFZyOWFlyV55B4hktGNBKxlEn4Qpgh8IOnIo5+Qh3+fzy4cwPno+ccHBH8rDnlL3qck38+Z+Pmzzyeoal9KonxKb0ugtfd+lqCs0/8HOc5T6/9hKm8CFbvGY8Tz8XsPZMuf9ox/yOA3c/BBv4EUCeiZazzPblPl25GdL8M4cjRY+SL3Rj6EvuiaihCQwgFz20gIOrd8UMIfRrVBq26TzxpEQaCnbv2MzxYYGiwH01KJs7MUOzpQlEEa9cOEYQhYQijR47T1dVDf28PQeixef1KsrkUInRJxm1Gj5yl1qixdsMypCJZubKHdav7CHwPPwg4NT5JOpMhlYhTr5Wx4hq6JjlzcjKS46kQCI9qrUUibrNhdT/tVot4IkGpWiaZSdJuNokn47z3q/sZ1Gt05GM47QaqDFGlwuiJKc5OzdHftyQzNC2QknK5gqYpTJ6dQ9c05udrpBJJTF2nXKmTTCZw2i5Hj44x2N+F4zg4ro9hKTQabTSpk8tlOTp2mq5iDqftMzxQQFMFQRiwdkUv9XqDUrlFPG5w6vg8xc4Utdo0mqZz8NAxOnJZwKDltEC22LlnP+mEiWHppOJxtu8aZePaQU6cnmTD2tXU6xUScQsh5VK2bUgsmaC3kMc0bUqlMqoiyORiCKmyb/8JuopFpFDRVQPXaRGGLooqWZiPJJKu62DbRuSUqKqkYjqZtMn09CKmqUaufpqJFBLbVqnXG7RbLqZh4vkelmVw+52P01PI09/biaJEhiBGzKZeqSNFSCgEQ71FdNMkxMcwdTw3QCCZmpqLsgYF+H4EKBVVQVFUNCWy5xdC4PkB997/BJdvKNCsNnn7dRdzeN5joHcd7TYYiYBPfeRjXHH5xRQ7++gf6GVgoJt1awYROqQ7szRbDgPDvQSex+xUlZff+DKEDKk16/z1V7/Ghs3L6CqOYJkp3vXrb8Hzc7z9XX/CW99yDaZlomlQLtdw2j4L8wuEYcDAwAAh4Ho+qXSGx3buYWZ6gdfccj3/8vXbWZyfZ/z0Aooq+cH3HmbVmiF27zrIQw/sYs26Edx2m87uLCHgtARuu43j+JwZn6CzowOhQLvpU600iMXiUe+LajE3U2JxcZFmo41hakydnWT9xnUgFK6/6fe5/Y7DfOOb93Przb/B1i0bePuvvZmpyRlWrVhLJhOj1miRSiWjvz3FZW7hDOlslmbTJ5mKo6oGhm6jaTqe12ZxcYpUIoGKhlRVFDWk2Yp6u3y/xfJly9G1GKZp8/73fohP/fknufTKbYS4VOZrjI6N8Vu//W5K5QVMMwAEqXSG3v5eVDNiRHVVoVEpkUxYjB0bI5MsUGnUSaRNbFNF00zK5Sq6oZGwFDwvxHFcbrzpOgLRoro4S63Wotb0UFXY/vAOXnfLG9i9ey9Dy4ZRFBAi5MjhMXr7urn19a9F0TQKhUEee2QH3f0jlGo1LC3kmpe9FFVVyeRyfOYzn2X29D6OHjzK77z3g6SzNq3Q5dqXv5zrrruRM2fm+dHdD9KqtXnl6ldgWdE87WQKoar4QcRsqPKcq60SFUxBCKrG8MgKQi/qP3UcJ8qDFHJJ3q0hVYXAc1GUqHdPUSQhQfR357jouonvB6hSRCZZAkKho6lRjl5XVxf5jk5a7RaB7/Lpf/1Lbn3bjVx1yVaMuBH1V7seC+Uyi6UpbDNGLp3gxNh+ksU8yWQSXdVQkQhNRSiSZqtOOpNEQ8EPPbLFblqejR3TmF+YodmoE7gBDbfFj+/ey7pNa0imExw7PkGhq4AvQhQzRql0FENk2XzJcgJ0Wo5gw0iMyuwJVEL+9Rvf4KY3v5uF0iK9qX6szhQrVy/DqZ/gIx/6Ct+98xilZpnNGy7GiLnY6S6k8BBqSL1eJ5XM0fYCPBGxRvfsOEVHZw+ZdJKHt29n+doN2LEEj+/fjuJ4zC6eZmjFNhbKC9QWTmPHOxDBWY6Oe6S688xMnSQZi9FuhaiKJGiV8es1RucajOTXoSh65HAYukvGUj6eJ1GkRrsdcODQaXpWjOC2Wji1EpYaoBsBQpqUSnPY8QQIgY9H6AukaXH81FlWr9nMN+/7HleuvRLbimEoGigCx3dQVUEYeixOjGIkE3jtFr5XB5lmcr7GypVr8GWAIS1ihsWp8WNkMzk+d/v/oI9hTkwep12eYtlIN9VKFcPSIlWG1yJmaoROgGcmMGI5GvUamhpiGAr1xRkMw0DTdJrNWuTMik4ofAxNp1SuoltpNCuO0/TI5zu578770Ac9FOpcuS5gbvIo+Uw32Ww3LSfD+l/aRjKeQRKx3M+qZRWFMFxynLwQPF0A8sJIu0j4HP+e1TP2jG0/be0c9cJHgCryDBCIcAkInTvUUu18DuxdGDIuJM9i857lUBlRci8I7s7dL58HCJ47vzhfQz77Mc9S/y1FtjzreZ/v74seoyjq/9ngzgucj174+y8K3P20TNwvEtwFvv+ckk/g6b13P+14Punkf8b4Dz1nuITtfl5w98yLzgU/hE//XVy4Ywi5bCqyxJeSwA8it0FV4nptFEVQrzU4cfIMmXQMScDZszM06y0y6SR3/3g7V1+1lUcf3Ue1XCZh6xw9cZKenk4q5Qq6rjM2dopms8lAfxeIgLvufwQCj+mpKQqdGbKZBLZl8IMf7ucVL7+MVquJqqiEOCiK5PCRExQ6OhChiHLcRIhhCJDwwMM76S0WEFKh7UTCjHQ2cvh84uAhdDVGLBZD01RCAh7euZ+RoT5s4bK8QyGZSqLrOp4X4jkBXT2dFDoi9y7HqWHoCVRFxbQsCKBUKtFdzBOzDUxD58cP7aMjl8T3fGKxGB0daYRQmJ1bIJmMo+kqyWSKeq2+JCtTURWD6ZkFLCsKFj/XXxaL2yQSNo2mQ74jRqXc4OjRMt29GVJJG8M0OXToBNlsBoEkn85g23E0Mwr8HhoocPDJMQr5JD+4cz8Xbx3B8T1UNaDd8jCMGNsfOUQyaRCPW+iGhqJK/uGbD7Bp3TBdxTxnzkzxyO5RtmxajqobPLrzCD3FLp4cPUlHPk0yaaHpapR3WG8Ts00mzs6STiUIAh9NN5g8O8vCfIXu7jymFdl6O+2oV+jRnaOsWdaPrqsgfKQSYhg6SIGmRoHIEVhT8Nz2UsHJeXlOLBGB1chdTMFtB9x13x6Wj/Sc78eTikLgh3R2xBnuThNLdHH06CkmwwT5zjSqCoeefJIbbngFVtLGiBkUu/M4bp1v/+s/E4QhkzMzfOsf/o1LL76c0xOTrN28iU998mNc+9KXMDU5wWXbrkRRbc5MzvP+3/19XnXTjTy+axd//Ed/wNf+7g4++ed/zxtffzXxRBzD1DlxfIxNm9dHJiCtJo/t3E9Pby+JeJy165aB8Gg7VbZeuokVKwcwDJ140qCru4e+wRwrVw1hmSmMmI6UClKJrOajQFiVfEeeZrOGYcT4wue/wUuuvoRdO3fz2M5DLF8+TLlc5uC+Y1z7iqs5PX6GL/717Xzlb+7j7jueYNnwBg4fHOXLX/gswghI53Js37mbK666mr/9+39k5YphpIzcUGN2DE230HUTgcnH/uTTPP7Yk1x2+eX4fptWu4ZlJojFTFQ9ZL50FttKU603iMVspBSUS1PU6hVmZ6eIJ2LcctPN7Ny1g76hfqr1OiIQFLsLkTGTJlHMFO22h6EqBG5zybypjUTlwQceYdmy5UhbR1UNfuc9t/Hq616J1AWEOqOjY2RSOVzfwbYTGLZFKAVShpw9dYqOQhHTTqJrkpFlyzh1+gzrN2xE4tGoNyAQ5LI5HN9FUSSaqlCpVVClDUIhblnYdowgLHPP3XcxMriCV113A+9852/xkT/5JIeePIDn17HMJEL4iNCF0OHSSy/lrh9+m+5YL7ph4fk+pqrjOS7jp06SjEVW8LquoSgKtWqdcnmReDIZXbaX+mqEFBGg9j3Onj5LKpXGD0I814vC5qXA9RyazQaaqkX9l40GjUadmGUT+CAVlXbLQcjgvImR4zrYlsmOs9v50Ic+zJe/8lVuveVmXNVBEZKJ46foTKSJJ0KUIGT3ru1s27YZRcngOhELMz1zhoSuUm82/hd77x0lx3ld+/7qq1zVOcz05MFgkDPAAEYQBJNEiaQkk6IsUdHxLSVLluV7r59lW76+17aSLclKVKYVLVISKQZRIsVMAkwAkYHBzGAwmBw6d1d8f9QABEBQpG3dddfS84fVC92Vvuqa6u6zz9lnbwwrTsMLmZ87ju81sOMxnCCkPNckGU/T3t5BOp3CDRwKLYuo1Ut0dHbgVUscGznEyPAROtoK6EqOH/7gDpYtXcvH//If+OLXPsua5Sk62jLMzU4ycPg4scJ6mr5B6LvIiRw7d2xH0eLc8dNH2HjeVex5oYmdHaWnsAzBMFJoUG9UyOZyhEBdTHB4Xw63nmD30A72HK6wfuMm4qaBU56lo60HKazQ190XiZpoMYoz04wdm6a1vY+WXA9hMEzMniRjdRBKUXJLUyLPTlmWWbsywbHD7Si6hCBabmgqQegTs23qDYfQytC/fD3luUksTSX0Swg8ggAEPqZmAhI+IZqsEBL1fS9duRHViJMny13P3Mv6JetQdRGJlyBRnp/Cq84Stw00ReDVG7gBFGs+ff0rqNZqkeegFUeSwIoZKIqGP+Myqh0ho7aTsm1yGYsg8PF9B1kR6KqO53s4TRcr1YphJhg9NkSjNkvMUrAsCyFJVOsVYrEEU3NFglCgaxqHD+/DlQyqTZ94IoesKPzznZ/lf/3TBxmfKPGJT/wNb7rhXCS/Tq3pE+oF1qw8l1RPD6qsR2GOdGY0SgToFix4TqM5/jt7xiRJOkmfPNv6l0x7wpj8ZY55ms7GiXpIEJzOqDsBkk6zSOOs4O7F9RKSLOEH/5nq4inneRaAe7a5o/M93Trh7NtH+/wXuPu/OF4t4AuD0xV2TnCezxxBGHDTTW/ko3/9Ga7Y1Pcqz+KUitarrcr9Jsar6dX7dx3vFVb+e+c46+bRtTrbKUvSKYq6J+R/T+knlOSIAhQ1Xbu4rouqCmRFXpCVjyiRbtPjwIEBMok4g8OjWLoKoUetUqM4X6Wvt5Xt25/F90MGjhxncV8XqqIQBiFtbS2RSIFtUGhJ09nVTqG1hdFj46TSaWr1OitX9OJ5DoapUynXUOSo4ldobWF4aIR0KsYzz+xGSJDLZwgDm7gRp96o4bhVMvk4Yd2HMMB3fcrzVboXRUBCyCAI6e3pQkLm0O69bFhdwHMdVE3B9TyaTRc7ZhGGPoahRlUhoUHoMzw8yvx8kZ7eSCVzeqYYAcYwJJ2KU6s38VwX1TA4dGSE3t52pDAkRMJ1fU6IEshKiKbKBDSwYiqyHDI4dJx0Oo4QkYmz6/iYtsHdDzzHeRuXYpgKuq7guQFthTzeQn+AYZjc9sNHWbmiFUKJIJDQVY3jEzN0d7SSb4nj+w6NeoNq2WVkeJpVq3qJJQw816NaraGqghX93dx+15MsX9KBaaqsXtETUXQW8nmmadLVlY0CTUVCyCAJhTAQFOfLtLXnmZou0tKaW7hfoh5GVQ2p1+qYZgxFie6tfQdHWbtmMYoSNb/LqqDZdFBUldD3kGUBCKqVOaq1Co5TR1FCfC9EUWQ8x8VpuqiazNTkPDt3D7PlorW8sPcg8ZiJpmsgRUITlh31Nr7vGzv5w+vP5y+/eAfnblrPfffcR2u+k1wuwb79h0hlsmimjAg0+hctYdGiVQhhc+VVWzBNmx/9+HZWruzj+te9Dkn4pNJJGtUGuhpn5OgI73rXLYSByyMPP8rKVStZvnwZ1772GpAKvPM9f8Ft332AN77hUjLZJK7rISsyPT3d7Nm5j2Jxnta2HIap09PbieO4zMzM0tpWoLW1hbvv/AW9izqJxeI888xO2rtaCTyJeq2OoesEAfzwe3cxODDEshWLkJWATecuRVZCOjs7WL5sOe/+/b/kjjt38Z1/u48HHzjAW2/+IB3tS3jg3vv5+0/+FfGExYf/9P0cnzhCS66Tf/v+j7n4gi2Mj42xevUSpqcnSafSGKbJU9u3U6lEgfD8TIV7fvYA/+1/fARNkdANhbm5KVLJLMX5Kpqm4wc+mmZhGDqNegMkgSwHpNNpkskUlUodw1BpLeRRVJXx8QkM1eKP/vgPuf6Gazk6MkAmXeAT//j3XHDB+ZE3o6oghOBXv3yYocFjrFi2Bh8HQzO44frrEZrET35yHx98/5/y3vf9PwufH4tQEjiuhxdGVhmGoWFZMYSiAT6uH5DL5XFcD1OH0AtRhcbP778HTVcpFFrxAp+4bRHPtCDjIoRPw3MxDejq7GLs+DiGZnLzO9/B7r17OOfcjaSTGXY9u4tSaYJc3ibfmsV1PP7l1q9x5aareeyJx5manqK90IYsosTE0PAwumFgGDrNpsPzO59lcd8SZuZmo2SVIjMzPYVlWBTLJUzdQJc1AkJkVUbV1Mg6oFZDVdWIIr4gXiYhME2TIPQJQ1AVFUVT8XwX3/MJgoB/+OE/cuFV67ji8m2ohsHm885hYnwE01IwdYNKuUJHZwfVaglVS6CbCeqOj6nHmJyYYHJygo6ONmamZ7DtGBAwNz2FlbBIpbKoqo0vCUzF5JFHH0ZTJObnp7CSLul0FlX3GDp6kO7ORUxMjrN2/Vqmp+awrTyr1/UwP91k187necctt7BuVR+1yjxhc55z16/h6JSGrmQpFDS+++MHeeP1V9DwBIODw4yPDnH1ledz772/QhMeHQWVIFAJcWk06szNzREGPj+8bZwLNm6hrdvjkitvoTQ3SzaVZOL4KPsPjxKKOkODo7S2dNIIwW022P7UkyAr+JJPX89aPv03P0RWK3R1ZdA1lcnJCXRVJQhC5ioGt973EJsWr8U24jhukwDwAgGyAVqSRLqFZrNKJp3Aq84i/DpCRMyGialxkokYXuDhISEFMscmxjk8MEoslSeZzhA2dJ6dfJpNveuIJxPMTs/SrFXALWIIH2EY+I0qspA5enwKLzQ5enyUbDqDbWjMl0rolkGjWWdsbJz1GzbyLz+4ldt/+V2uPe9CYrYWeeYFAZ7vEiwoNIJMqMVwgxBT1wi9Kpoc4roOYRBimhZBEKJZCoYc9cdPzTcZOVrl/PMu47FHH+a27d/n1k98EtnU+dhffpz3ved3qM3so6Mlw/j4ONnOfvbsGmLdloujql0YEIqzhEbSKeysE5HSyxQfzh5VRRW0E/u8pEr2Msd5OWB3Yv7T47MIeEq8WBmM2DYRpZxTeufOBu7OMvlLgJ0kIPSD02L1VxpRlfClYPZEBfGEncSp8554nAB6p/beRfNKCwnJ33Ja5m8DuDuzcfJF5B6esVn0+urrbyAc2/2KN6h08i7+v1Cp+z80fmM9hq8A7k5bGp5tGwnpxLVdoG5KCz/6YiHTJWRo1BuoqslT23djGToP/nIn69f089zOvZFP1twc8ZhBqVhhcW8XIS62abK0r5/QF6QzMUqlMoauo2kqg4OjJJI28XgMWVZx3JCBI6O0trZgGBa6KeP7DqqqsX/fEEKCeDzGzMwMnZ0FfK9J4Pn09nbj+QFCcRGKh9No0t3dx+x0EzMmELqCpCjkWws06mVcr4miqDQbDqqiEQbQ1pZFUyp4roPjuSiKjOt56Jq2cA0k5ucqOM06iiJIpeNk0nFK1QaO55NMJ5FkhXTcIpGMRz0YkoRmGCSTNpqiMDU1jR2P0Ww6FEsVEnELSZH4+m2PY5sKhXwOIQxsW0WRVUzLRFEUJqemscwE/YvyGHbkT+V6XpRJCyRUVfCz+59mUVcrSxa1IKtw4NBxlFDmwcf2s/n8FQSehONUUOUARbG4856dtOaSWJbAMDT2HRzG0GUymRTNesC61YsQAjRdW6CN+CBJKIqIhE9kCUVVELIAEYnWTE9FAYPZsAAAIABJREFUhvGyLGFZFs1mnd17h+nqbGNqehI/aBJPJJFCDVkFWVawTQU/qJOIJ1BUmcD3IiU2RcF1mszPl7BjNroSR4QyiUQGQgXfa+I0HXRVI/AD3KBBLBant6cDIaBQiKMoanQ7C4EkQRBKEAaMTU2zYUknK5IyudUXsfWyq4jHclgJnVy+E9OKMVecxrY9gqCKHTPItqTBiI6z+dxzEEGV6kLPUL1SptZwGNo/zNL+RTRqRR7+1YNcc81rqNVqBGFIOpVEUiVef90V3HzzDRw6XOXWr/6cD/35P3Hn3c/z+CM7ecc7rqWzp4Cua9RqNcIQDMMmkUwyeHiIifFJNl+0kbHRWQYOD7J0WQeWYbPruX3sfHoPvT1t6KbF0MAwr3n9Np7esYOu7h5Gho/xgQ9/m89+4R7SRj/btl7OH/z+W7j5DW9kenqGrVsvJZGw2b7jSbZc/Fruvvthvv3N73Pta2/gk//70yzrX8kfvvsPOGfjamLxkNbWHoQQNJ0m3V3dxJMW88U5TDPGta97PaYdICvgBx6aruK5IbaZplxqosk6srJA7xEL3+lhSBgImg0fVdXZt/cFBgcHyWZyHBw4whc+/2X+59/+Ncm0TTpjE5NNrr7qyqinRtUQUsDc7Dz9i5fzyX/8DM2mh1sv0t3bRyCHKDGd9uwi0ukMi/s7aDTn0NQEQpGRVSWiaPkelqkjJJVyrYlhKQR+SICEEILS7DhOw8G2E7S0ZCi0t9N0mkxPTaGbOg3XQ1M8FOEi6xqjQ0chEMRsE1WXUWI2zWaNjkI7gath6Bq67hHQIB4zURWDn9x5H+cvvxgpkFm1fPVCryKYpkUinkQSEqVyEdO0yGXyzM3O0NrWtvC9HqCqGoqiLvTTqRzcv5eWthY8InElGQGSQJUVQkmKrBSEjKKpOM0mfuBimSZClqnVK1EFZecgX/nVV/jm175EW6FA06kjKzKKEqLKLo1iGduOodsWkqZi6gkcV2PLFdfy/g9/lOnxYVpbC0hCJmGnUQ2TaqWIGrrkEhayGUPBwPdkGn7A809v57LLLsYP6uRbkhTLTVQpj+sG5LOd+EFIMpOiVm+QyrYghQJZL2KqKbo6W/niv3yHJx+7n6uv2oocFClOD/PTe3bz1FMHWNQb46rXvoVnnn2Ijs4Ortiynv3P3M/ll6dY0ftmDg3cy+ZNG6jV6hC6BKGLZVlkrF66Vg0iG4+Q1Jfz9dvu4Yqt29i3by+pdJZNF13JsbEBLCtDV9dS6o0GqWSMjRtXIakeeuJcvvu9j/Paqy6gvaOL0J3Bsi3qtRrZbJpmo8HjOyZ4/ZaVPP9UhUwqiSQiAR3NTtMMNNRYjnppDtuWKZdL6KKJ8D0CP6Dhexw9OkVraw4hycxMF6nWq0zOzFAqxzn/gosYGzvK1x77Ktddezktco7DgwPkMwWOHT1ENm2gC/A0Hclt4LohHhaFjn4Kbe3IQmJk5BD5ljbqzQaWbWPpcQYO7eeipeeze3IvH/w9m7/5yj2ct2QNipCRhRL1tssyktDQ4rkowSCFaCIAr4GiqkhCEHg+jtNEeD4KAgQUm00yrWk+/KU/45a3X8sNV17HH/2P/87DD2znpvW/y+ieUZryGKo/y/zsFPMNl5XLLiTe2Ykqa4QhBFKIOFtm+9T/Ty5+aaAkFqp7EWXyxfWnAqXfjAjhGafIi/RHWZZfoodxaqz8qsDd2eaQFgoxvPpzDv1I/OxUeuYpJ/1rK3RhEP5aEP1bD+58z/krKYxA3dmAXRgpQp98vCL4W4jX/cB/ZaWcU8bZaJwnXr+STcOZHhxnut6fGEKWo+Z2SSYYPbX37sxtFwBHuPD8t228wls6kdz4jx341MeLx5Ok056ccm1f3PZE3khRFY4fHyeRTOF7LiEqx46OU8inmJsr09PbRqVaZbYYBdeSELS0ZJmYnmN2ZoZqM6R7cRe5thSqUHCaTdLpJBKQb8ugKhFtz7JMQj+gsztPuVRHNxSCoI4UaoR+k2ajhm4ZKEJifq5IsVjFNOK4biSLPz45RToWqSkaps5ccY5E0sCp+8zNVUgm4jiNMjMzc5iGha4ZlMs1NC368rzjngdpL8SiPpZQQoQCVVYpFSs8+tRe+ns7UHUZTVFwmj6mYTB87BjZVHxBgl8wMzGFldAgVHjy6YO05G2kUOGZ5w9QyMep1KokEjHGjk3Qkk0ihMTMTIl1y7pIJS1++vPtLOkpMDdXwY5ZIEk4nkMyFgfJRdNUFMUiEHUUEshKjdBTEIogZhpYponrecTiFtl0DMPU2bXnGGtWdqHrKo/vOET/4i7CUGL5klbaO7IYpo4QKvfev5dz1i/BD+pYVoy9+wZIpWxUVUaSQlgwSPU9ByE8vCBAUaOqmITA911iMTMSzNBUwsBh955R5opV+hfnsSyLmB0ZyktyEwIVx/dIpRM8t3OQXCbF0NAx0qk4iqwRfdXJ7Nw7RCGfQSiR/PLE5CSJVBxVUymVq2imjmoYaKqJ73sRqPAdJCFRnK9imsaJfAVh6OH7DucuybNzzyQbN66mmevHsC1qTpNY0qDWKOO7DvlUDoGB60YqerVaCclrougGdddH1yy++61v49Rc/viPP8TEeJFvf/PbbLnyMlq7Wli9uh/Pl3jy8d10daexYwbbn36WtrYuQlehLV9g+5OPo0oKV152FR//+N/ykf/+af7lS3fyzX99gH/41Hd46OFDVKvzDA2NMnBklD17BnngV8+TistsOncd9XrInXc9hBW3MWMxOnsKHB0c5pzz13H44AFmZxp87OPf5577D/OZf/gMMUNw+aUXcXx6DiueJZ2yaS+0Ml+cxoobXHfDm/i9d/8+f/rh91IsTXHvPXfysb/+a77ytS/x4Y98kPMvPJd9Bw+jaDa1xjyxeAxF05GlgEQiQc2pY9o6wvMxdIPQB0uP4XoOkuwzNz9FqTxPPJ7AD+oYWhQ8FedraFrUr1uaq/LCrmEajsOSJX2U52usW7MRI25h2ia6kGiEAcePDZO0Ygiho0kOZszGTmeIGQl2PLWdviWrWLS4g7nZKWqlGgnbYlFfN5/9p89x8YVbkTQZPwxRcHCK4whZRygWk1OTxGwZEdg49Srl4jC6ZCPpCkKJpNn/7KN/yeVXXs/551/Ida9/HaW5afL5ApIcMDk9Tr3aRJUNEvE0mhLnmR27iVs6quSTSOmUy+NkWlpp7SgwO1sknsghyQbVHQ7ZljTpdIpqrUzTaWIYOpMzEyRTSfzAQ1FUDF1f+F2VEVpEn1eEghAS46PHKZdKOL5LpVRGkkSk/Ol7hJ4PUhAplvoBxdlZTCu2UK0TKKpBSEQ3UxSVMIQvP/RlvvH1z6ObBpKQiVs6c7PzIEAxVWRNZnZmkngiS92TkURkkv4H73oHzWIJM6UQelViMRsPQa3WwLIFtUYdK5am3nRpODWGhw6QT8doz8TxAdmI8+ADD6MpBa593dW8593vxDIFx0ZHSCSSHB0aJhVPoNgCPBtCF0SVtedsxrZg7ZrljA3vIvDmybZ2o6WWsOmSixkbOMy9v3iQzeefw/Rsg00XXceDP72XvP4MF1yyGkEd362QSSVwnHl00rhKEcWJkUisIExcyuYr3kgqlaaru4v5hkssu5Tuzi7mp45iJmI0SyV2bH8GRbex7CwH9+5k66VXkW1J4vs14rjc8r7vs27lclxvDiWu0Z6Nk47VeG5slO7MciQh4wsLWUsgkJmYOEQmmWduagRTd/GazYXvRAWhyLRmM4CH54UgLOo1h9n5CqvWb8A0TDzPY4453vN7NzN/1CVtJ/GEhEUFWXIQRhzcBr4fUnYg3dqHZdnMzU5zeHAvS5atR5JlNN3ghV07mZud4djQIM1GkTdv2crHv34n77yuH6pdCD1E1U0810EKQkQsC8goQuDWZgm9BgiZyC9cwvM8NF3HDzw8VwJN8Mz23fzoufv4fz/4Xm6//1HMySwXLN/Iyt5lmHEd0wxxp5JkezzCMKS1fRkTfpyVa1YTLMTJciCxMEkU/56IJYEXy0ov9WM7GetyIhYWJ2PikNNBShAGiAULhSAMTvaqnTyGf8pUpzyCIFLlJCCqhp3yeLnYWzoZq50y/gPALgyCk8Du1OO/eMjwxflOXoOIOhoGIWEQnKWPLjq3E8rM0hlYJarOyS/r4f1bD+48//TK3UvGmUmIV/OHlUBe4Pv+e8DdKy17+WNFy/3Qj+Z8GWRy8oNCyM0f+Ht+56IlZ92O0z6Qv4XjVby336SK6MnEFa9OPcnzfVLpFM1Gk8ALODJ4jKWLexgZGQMp4Lld+ykX62xYvZR8LsbY+ASZVBoCmd7+Thb1daDpMpomg4gU0Sq1Gn4YYGgqTqNJ4PvMz0WZf89zmZkqRgbkIsRzA4KgGVWKNJWhwWGWL+tj156DLF+6BMd1SKTiC5Q7iVKlRiyepOn46LqBpspUa1VURRCPxyNxGEWm7jgkMylKpWmqtQbnn7OB93x+B2/YnMXULSYmZpifLaGaBsuX9FKrVrAMmUAKME2DMIRkIs3sTIlDg+OkUzaS5GOYOuVylVw6RjxhIYRMb1cbs7NlZKGh2xaZbJoTP2rxmMlj2/chpJAtF63DcT3qTY89+4dpb80xOjLNC/uG6e3uQBKRwEGUOQvxXIkw1ICAycki4xOzDB+boL01g+s5xOIGy/pbaDTq2LZJSzaOooCqCkIpQJYjSqXnhhw7Nklvd4Gh4UlS6QRHhkbp6swhST5B6COhsHv3EXp72mk2G+iaTrhA0ThB65WEjCyiYFNWBImETX9fB0IWKLJGvdFE0wWVapnHnzpAd2eeIPDoaM0gyzKadiLbK3CaDWRVpqe7DcdxEWHA3FyRRMxCFhD4HvGEHf2oEuC5PkeGRsllktH+DQfLsqN+vAWfNMfxUGQFSSh86GtPcePWNbz7Lz7Lm2++HlmWqE+UGTh4iHQ+gxEzcZoh0zPzvP2dv8cNb7iJ2tw0yUQKSYKnHnmINWvOYc26TbS0dvLTO+/lrp/+iFgqQUiIoWmUy/N87zu3c/XV2wgDja62XkozRXY9t4OxkWHSSYsP/MmH6epsp1KtsG7NKq68/DKu3raVD7zvveiaSk/3WrZe9kbm5wLe9Dtv5Quf/w43v+WDfOhPPolt97Nj+zBvfOO7yWaX8tzT0xwZKaKbnczOS+TSy7n+Tddw842/w969B7jokosoFUsU56o8s2Mnx0fHWLq8FzOmIKsQBB5XXXEF8YRFR2crV1+1lXJtno0b13PhRZtxHY98vp1EIomsypiGiSypzM5MoSgmiWQKx3UIwia1Zi2iTCrgulFfURiEpNJJ/vVfv8uq1SuoVKoYpoUqIiuPz3zmc+RyeZav6OPoyBCdXR20tGbZ/cJ+nt/1NJs2rcWtu5RL06RiKiND+2lta+HI0AjZbAuVUpUD+/bztrffwic//Qm2XHIJR46M8fSTe+nubsE0DFpaWhcqSf5CEiLAMnUcD2RZw3EcGo06d/zoTs479zx83+en//Yrlq1ayrGRUTo6O7jyysuwTJ13vesW2jvaSabSKLJMtVYjlcxE/oaqxtNPP8PXv/EtbnrzW6g2q3hNF69a41f33smOXbtYs2YtjhNQqzp86lOfZ8umS7n7njtJpTPkcjlkRY78PlWVMPDRdANd13GbTSrVKj+7+yesX78Bz/cRQsbzPZLxJI1mk3QmR1t7gXqjjm3Hox4pP2Bqaop4PInveRi6weEjh8jnc5Hgk9NE0zQAvvCDL3DT+1/LW996I7qu02g0CcOQb3/j61x00aUIWeCHHjEzzoH9B8m3tiHJGs1GiWqljOs2cL06qmZTrxSZmB7HDRxSSTsScjJiBIEgEB6l0hwtLRlMXcWRbXwlsu/IJSyKs0f5/T94J4lMgsGjx8im08zNztLV3YNtW1SdBrKqEEgygaSTTMj09nTSaNTxanMEbpkDe4fYcO7lBMS5655f8O53vocXdu3EsjTy2QyDR/YwMXKA5atXIjfncH0Dy0rRdDzmZkO+8NXDLNlwDk1VQ7IyqFY3SCEDR4bo6ltOaW6ESmmOVKbA4JHjPP/MEziuQ0dnJ03XJd/ZjWaYuL6Glejk+Mg81954BV1Zh5RpMjvtks4mkeQii7t09LTL2GgnuUIX1XoTSREYmokUugi3iSa5SAg8zwMif7ggDJkvl2kGFo89+hyypbF+wyWEUlSlffTJh3nnn7wJzdT46N/9FdvOu5by9FESBviKjC5JBIFHpVrj+PF5Ct19VKpl0pkM7e1dlIsVDN1ECEE6lSFm26i6YOjwQfr7urhi/UX84w/vZmn3IJ+951E29a4CL0TIOqEWQ/IC3MCjODeGbUbqta7nLtDmodmsoyk6/3znNzk09wLX3ZDmc996kEvar6XFTLGofxHNZpNcPkc+28LuXdtp7Wzjb771Pc5ZZDIxNk/7yvPpWrSIEAlZUqKq3cl45+STMyOis8RIUeJbFvJL1p0EPicBYBhV8iReWmGLNjjriADQ2T3r/o+pxp+c/EXLhZP+d6eOIFzQZXjxPYaECFlE9Erx8hWHF2maLwLi6LV00vD8bOO/wJ0kEQYv3kAifAUFnFOrpi8D2M5cfoJPfLZtz7bPS/jCJ0rKIb/+3BZUM4WQuenNb+LG9/3dgrjKmSqYr3Sj/5ZQNU+Utc9WufxNTXGyDCid0mL3Msc/JesSEkngKigMDh/j0MAImWQc3/WJWRqO69Dd0UK9WSObTeEFIT29XaTSCZrNOvV6A0lSEapCEESCGaqqEgYhjYZDMpkgmbLRVJ3R48cQkkIml2RutohpxPC8OqVikaGRcZYu7sV1PQqteQ4cHCIesxek3SOwOnT0OKZukU4nCIImsqoiE1ApV/ADsCyb+bnIviAMAgzN5ujwBLl8ng2Lsij+FL4vYVsW07OzeD5oqowkges5aJqN53lMzcxhWiZC8ikUMoQEaKrMzEyVdDrFvb96jjXL+3BdD03X8F0v6m8MfFRNxQ88CKFRbdCSS9Hd3crY+BTxmE0ikaSnJ4/ruhHVsKuFO372JP2LChH11UwSUOO++/awuK8VRRMkkjYdHTna29KMjEzQ0poGQoIgxDR1PDfAtmNMTc1i6AaqqhEGEkEAvgtHjo7hNBusXbMUSYR0tucBCSGrhKHAD0Jy2TSh7yPLAt+HWrW58CMo4fkujuOgyAqqqoIUiT889ew+2gs5wjCIKqW6hmmaKKGMbdk4josiIgGBw0fGIAxJpmzC0EdVFBqNZqQ0ueD5NV8sIysyQpXxPA9ZVqhVapimTioVQ1YUJEmgyCqKokbCNYqycM/76IZKvd7kZy80ufHSpXz/4f1cd91rUFWdP//ox/jyV7/CBz74/qhaKYXEEgnefss7UTWD737rNtZv2kwoCdKpGMcnJrn9jjt469tv4bLLt9GSTVKulTEsE1yoVOtcue31TE6P4rke9z/wS6amJ7BNi66uLr5923e4bNtl5FvTfPCDf8Kbb7qFZMpGN3WKxXnOPecc0kmLYyOTrNmwjlu/8WU+/KH3MzAwwODQUXbu3MWy/uXc+pUvIgtBa76NS7dtwbYTtBU6ufCCi+nu6mLt2o0kEymOHz/GfGWG3s4efnn/L7npd2/ipjf/Ibe87fcYGhhhbqpGV087r7/uOt75jndw9NgIhhn1nAZBgKYrqKrg+Z376F3UxfHRcT75qX/i9a+7Bt83ePrZZ+nuKeD5AaZpoSgKfgC2ZQGRAAuSxPp161EUmJwYJxaLM3RkFEVRsGNJNm06Fztm0NrSztTkzII/os62qy/BCxoMHzjGR/78r3jbW29k+OgA2ZZu0vkCvuNhyBpdi3owbJMrt20FAc88/Tw/+fHPuOXtN/GL+3/B3r176etbRMLWQci4XtT/GoQCgcoXv/hlNmxYx6Zz1zF2/Djl4jzfue0urnndJeTzeYIgRJZVpKC2ILYnkOTI91DXTEqliA2gKRqeF7B0yXJisQSjx48jE+PI4XFGRsa4+e1vQxYGiUQGWZH47Be+xOUbtpFJZ8m3tCIrgjAMmJqexDSt0wImz/NIxOKs37AR3/NoNOpIsoKiKLiuixWLM18sIQTEYnEQMpGwkCAWi6PIC3R3oZPMpCN6dRglSRRF4dO3f4rPf+kzaLqgWq0ShpGqpmmarFm1kkqtgWEauF6T8WPTLF3ch2qY+CEokoJpmqiKQiJuI6saY8eGaSm0oZmxKLkYKAShT6k4jVDSxMwUcqgT+IJScQLbtgkDD1nyabg1srksiUSCeDyBIitkMhlKxSKSkNCESeA5hMIjREKXQupOgBnPoCs1bK2CJhwmZuexkyvpXNzLof17mZw8zrbLt9Gou5x38fkcHZnhoe0vkLRMHn1kB64rsK0Yzz4zREU4XPfWD+PRwuKuczk8OERLLo2pa8iqgt+YYuTYJB3dy0hnUxwd3MfmCzdTaO8gCENaTMGTD/0C4TWIqSpaLkNrdw9HDz2DEU8Sa+ui3JxGMxczX+sm234BfRtb2fmLSTRLQhUhitCYmxujWatiGAquGxAECpqpgi/R9Hx2Pj/MwOA4Gy/YyNIVa7FjNjOzk4wNj6Mtceld1EPMVNm6eQV7fnUMU54HBTTdIPQauF7A8akZtHgWy4qseyQBnuthaDqSEBw4tA9N1ZidnqZenmbV8j7iC2rJF6/ahOyu4MmB55ia/iV3PLuHC1ZdgpHI4zUaBGGIqcjUK/OYhokfuBx64Shfeuy7PH7wed7w2lG2bNL5wS9m2JC5lpzVw7nnnYNtx3nyqcfYfP7FHD68hyMDR0gks4yPHOJ3Lns9Qj2A4ymsOO8acm2thJKIqmm8FIy9Erh7cbuFStWp/4Ko7CYhXgQ8Z1A0X9qDdzrIORF4nbAaOA0AnSUeP3WEhCc9LjkDSP7a/RbYcyfEe3yCSITrZawWXu54fhAQhCFBGL6sOMuJ3roTOCVcAIoRWgSQXuy/OyV2/y9wt3BznETUwdnlWf8z41TlnjOXv6r9OV3R55VGQFTGvenGN/LVW29l49LOM+Z6NfP+loC70wDty2dHonEmCH7l9af/bc/IML3kfKLtwgUJ3iAMwZNoLeTQZEFne4GHH9lNPh+jUikiiZCenk4MSyfXkiGUJRrVKpqmYtoJVM2KZOlZ8FREQpJVQgTNRhNlIVg3TAU7FgPJRwpUSvNVDEPg+z5dXd1MT88xNTWHZdocG51kydJF7Nt/iNbWHM16kxd2D9DT0cbUxBjxmMD1JQKvSSaTZvT4BMW5Km2tLdRqNZ7buZdCawbdUNANQSYhc+8TL7CsowXHdWltSyKHUlRpEwLV0CjPN4nFLRJxkyAIKM01sGNpGnXwHYXDg2NIYcjmc1bh+QG33/UElUqZzo4c9WYd2XdR1EiuPwxDKuXIh+rY6Dh9izrwvJDJsSmqjSLxRAyhqqhColyu0dtdIMRh384xEkmP1myBoaND5PIJhCyBFEDokU6nUBWF+fkypmEjCYmBI8fZf3CUJUt6+bcfP0UqZmKaFvWqw5HBMS68YCWdHTmmpqYwrUiY45lnB2jWXB58eD9Ll7QiJJlGo45lmfhB1JMQ3R8RwFM17SSNJUoIhPR2twMChI+q6KiqQalUo1kNODI0QU9PgXqtjiSHdHa0YRiRmIUsC8qVKoSgaSqOF+AHAfF4HE03EHrkoSZCwbGhCVIZG1WNeuyqlRqe5zM1NRspmxoGfhD5Avq+i+959ORlOgsd5GOCRRu2IAudba+/npve8mZUOaQ0P4fQo4A4CANkWXDB5suYr7k88sQT9C/po9CWZcPG9XiBz5HhQb5561e5ZMsWEAKv6fC+936EPbsHOHh4J+lckpXrl7FoST99i5cQi2e44sqrESLA8Wps3XoFD/ziEVpak3z2nz/Ha665ikazTkvORtXiTM1OcsnWzRA6SIRs23o5d/z4Dh556BHGx4f5oz/6Q5xGE9VKUKk0GD8+Tb3p0Ne7jOee3UNXVw89vW0oVsDDDzzEW296M2bCoL2zi3pjjtWr+rFMlW986/tceOFFrF69ms7OLv7iLz7ODTdcR7VaQTUkFMWnVPQptOXwPY/+xUtJp+NUyh5d3V14QQNFNhBCJQgEQihUyiUUWcHzPSQkFEWh6dRIpzNMT89gqDHWbNzAZRdfhkAwNTXFV2/9NmtXbwAC4nYKIy7QNIGtJTnvwteQzSUodLThBiaSIjg+eJSHH3yI3mX9BFKIU2/y0T//EB/+0Pu58qqtaJpKZ0cH9933cy665BKKc5PIukXTdWjUq9x/7wO0d3TT1tJKJpfBD0qYhkUiHqerYwWq3SAWs5CFzh0/uou1a3sYHj5KLJGh7njoqsTAwSGmpmbp6WnH1HU+/anPcPXVr+W+e3/OeRd2oOo6yVyWzsXtJGIFJFRe97rruP6Ga+jxlhKL2+zctZPOzk6q1SqGYWBbkdiE53lRX5KIwlYhBK7vIRNR82RNjxhoYYjrBTzxxOMsXbIEJImAEEmCptPgBEeqXi9jaDYIFirzguJ8hbYLY9zytrfxt3/7v7nk0s0U5+dJxJOoqs7s7ByT48eRpKilIsDjG7fexoplSzHjFk4Q0KxFlFwpDPDcgCNHD5BNp6hWXRQtjiKrHB08Riym4gcl0vkMATUGBnaj6yFBeZJqtUy1ViWdSZPItWEYJvPT84wODtJ0XQzDIB63GRocpDHnEAZ1NMNnauo4thznuz+8i5WrVlMrD9Ao7Ydmhb0HjvAPn7ydN739JjasXs7iRT08/NCTZNNtNDyHj//dZ3jw6QMs61/M5nNTtHckUa063T3dLF6+jXjufPbsP0hvb5Vsup/i9Dg//9mddHZ2kolrKEaGct0nDGss6mpnfHwMz/cIgpBUroNQVlm0bDmeUPjcF77FqtXb6Mn3M1ZqYOYXc3h/iUMHBKvPu4hp/zi6J1i8Kcf/+tIq66lSAAAgAElEQVQ/8fNf3Mu2865kYvooU+OjZPJ5PCdg+45nae9up1l1GByeYa5aZvW6c7CNJLWmw8F9e/n+9tv54z97Ky3ZHK3ZDJmYwciBfbQWBnjkvgP0rlgGjQb1Wp1iOaDpx+joXYxtmPi+S6k4j6YazBdnUFWVTCbLju2PU5ovUpk+RmdHGllESoyqUJEVn8tWncuG5Vt47OBuXpgYYF6tsWP/4/z40Xv5wS+/z57xwwTKCBecN8JQbZDfvaaHu341Qu3ICvLxy7iwfyOqrrB3cIplS5bhuQ69vf00mk2Ghg+yfMlq9u7bTVs2iSw85qRpcvksVutyWtvbCcUp4O4kVnv1lbuFHc4aUokFKwVZVs4KcM6Mp/wFmuLJbV+hremVhnRGPBedVvhrWXIn5gwJkRWF4BTlTM/3CKWXAtVThzgBUIksVoT0Irh9WQqpFJm7n3x9wufuNAuF/wJ3J8eJatjJvrxXQOwnxsv1yZ26/NRjnXweSKfwgCNqU7hgsPhrZuMkSj+1+hOGZ1XbCcPwJA5Zd/FVMLb39B1fcfymgd1/sBJ4cpdfs7/0az7UrzDlS//Wr3R9zlz/SoD5zPOO9o8odyALwdCRQ6QzKbyGwo7nn6W3O49AYb5Yo9CSJpGK02g4GJpJzLBQLRNkBYjEFcQCfU8ICd/zCL0Q3/dwHQdFUfnJz37F2lUraDabVEs1EukY5co8uq7hBwGHDx+mv68P24rRdGtI+KSSMbK5NNVKjR3P7GHb1sgbS5IhFk9QrzdxPMHU1AymLZPP5gnCgO/c/gsuu3gjtWoVISTiiTiEgmf3D7GqJ80jT+5myaIeNMuIqH2yTEjAzPQshmEghEIYwp49h/GDJjFbZejoMfr6W2nJJ5ibm0LXZdasXkJHIYOiyNixOIpmsn/gILlUBzufP4ob1smkLLLZHOVKHcPSEXJIoxYgS2AZEn4gaO9IIUs+CuAGDfKtnZhxk0JbnsCXkELlpPeMhMJjT+3BdQMGBsfp7EiTb8nx7K4BVizvpLs9TSxmoOkCO6bQ0pLEdavISoAdiyELmdmZIh1tOWrNGr3daWJxC9drYBgWzSZMjk2DFPX3SUIwcnSCRCJGpVJZUA2NVDJP5hJCCSkM8F0Xt97EiCu0tWeRlRBF8XGbDoquoRoGlWIJTY+M2XXTBEmgKSqu00BIAd+741FW9ndRK1dQdYVEyojoJQuqXIqiEAYBqYSNlbDxvYCxo5OksrFIatuwaM/a/NnXtvPH153P86M+TzzxGJmkREs2iyQFKFpA0JDY+8IBNCVk4NAeUi1ZyqVp1q9aiSZrTI9PYKg205Oz9PS2cfkVV+F6TVQVGk6NN7zlJi7dspGLLzoHSwnYtWMvSdskmbSYmy/TcJoomkKj4hM4AkM1yBcsLr/qCnQ9YM/TD7H30DEmxmf4yIfeyw3XbUWR0/z49nt5ZvvTFOcm+eJXPs9H//tH8Twolh2efvJhCvks+dYEr33dNp5+4nnuvvsulvb30tXVjqwafPTP/xvIIaqsUWhL8cCD97Fs5WoeeeQ5jgyN0tLWSt/iJfzVx/6RdFrmvIuuQDMzPPzQUxTyeSbHh0glEsRjNtlUgvt++TDnnLccCZiY2o8iG+iaoFSaRRYBum4RhC6qqiJLGk889Qjdnb0IVEDmzp/8hBvf8GaWLlnK9NQxPv3Pn6O/fzGXXHoh27ZdzQfe/0cYqgy+z6FDh2nvNCiVm+hKjt07d6NrEplsjkX9S7npTTdz3Wtej60bbN60Bc2M0XQb7Hx2Py25dmZmZ+hb3MGjDz/P6hVLmZ2aIJ9LMz46BbLM0sUdNGZGmCk1Obj/KEuWrKS9K0M+18LTO7bT2VGg0NpGsVzCtjJoso5tKhwZOExrIUVfXw9eU6VarJLL9KAIDS+Ypbt7BcW5OocOHmTjxlU4zRpeUOEd73wzui5TH2/SaDQptLVTKZexdZ1qvYKqachCQVU0Aj+k0Wii6RqyHFXjEAqyquK7DYQkqFfq+L7Hor7ek+wIVVYihdxSDcepoxs6hh4pVhIGCEniY9/4az78N+9Ck22e3bGL3/3dGzl2bJBCWwcSUWUvYceoVmdIJNpwnBDPd7nqysvYuWc3nV19kZed4qDIHjt2PIqhBnT0LMa2k8iqzsG9+0hnc3TmY+x5YScd3UsJJZOhAwfIxeNks61Y+RbmSy75lg7GxkbRHIfBQ0Nkcnly7XkIBYqi4To+uVwrvlTFTsRRtRixeB4RegwNj3Hw4CAXXHI10zWNjOET0+v09rbwr9+6m2K5xvK1a6g1qnS25wi9BoMHD9BhOLzp2j5KxSq5mErDSVNy28gsvhRNt7nmyhu58Zb3g3+UVLaVjZdehe+FSJlOdBrMjOwlls5RnD1OzLS4+66fs/aczdSlOKoEXmmag7ue5bo33YguAibmK6DamFaaUKgsXbaCZD6Lqhv4UoJ4yuCaqy7m+jdcxW0/+nvueW47MUcjbaSIpSz6ly4idAMQIVPFCnKY43sv/IDu5V08PfgEN777DezeuZPrb7iIVGseYSYIgwal4YeJqS9w0eV5hvZZ+CHMFgP2Hd5Px6Kl6IYRGYurCqYdIwwlZCmIWBECcrkctXKdUnWKrs5CZL0RBBGlNwgJQg8/lDl30Xo2r7yM1R3rWNm5jvE9Q6xp6eOKZVtY1bueWrGfjLUCv95PNjA4Z+M56IYKks/hA/vYsGp1RAl2fBLJBGHgEAQSL+x6jsu2XsnRo0PIUsDdzz1Hl+0StwzaV52HJEkIKcSVNQiDk5ICJwtIv654sEDJfLmQKqpG/TuKHScPt1D1W1DCPKlFIQUn153cZqFA8pLet5ep9J2qxHlWgHZKtTAMwyhvHy7E6Avx94m+wVOHkAWu50ZgLjjd9uFkDyMvFg1OjVHDMDhdPfPE2zvxnAWT+IVl/78Hd//Z8fIiKC+H+M+2zX+gg3Nhtwi5nwHuTr0xhcQnPvdNLlzZ/h+b4z89/hMUT+llX7y63aVfT7H9zVVnTy+Hv3TdmWPhQwiMjU3R2prFslR6ultIxpPsOzhMV1ue/QdHKFXLdHV24AYhA0MjaIpAVRUgMrKcnihyeGCYQiGPkAVz0+UoSBEysqIwfnyOQmseRZXRdZWBw0dob89gmgq1SplCoRXH9XAcDztmk04bOK6DaZnUGk2W9i/C932Gjh4jl8tEZpxCIZlKoRs6mqHxwq6DpFJxNq5bSqlSIZfJYBg609Oz2DGb/3n7fq7fmKGnu8DeA4PIIczOzNOoN7AMNVKBdJoLflOClmwHkuQyPTdO/6JFqEZsQaK/Sb1eRzdtPNfBdR28IIDQJ5tOIS0YoS/r7+XQ4Aj5fJYgjLLwum6STCdQVBUvkHAaEb0UIvnoYrHMLx/Zw4r+bm777sOsWtHLI4/voqujlTCUmJ6aIZtJ0NtdoL09S7E0j6aprFzejSwLLMtkdm4eyzKoVms4ToN43KbZdKIsvlBQNA1V10il48TiFspCMClJgsee3MXypT0oatRHdeTIKIVcGimM7i1NVWg6DkJEdEghSQRBk2KxQjweBwTxlB2p8tWamIaNqkW0M9d18NwmumEQEuD7PkKIyLT8/2PvvMPsKq9z//t2Pfv0Pl0z6g1JSEgCUYToRXSbagw24NjAxQXsuMWOHYjt4IpxEkMcY7ADBgcbY8B0sKiiqPc2TdPr6efsev/YM0KAwCW5eZJ773qe88zMPud8u8wua33vu95XCN7cuJfVpxyFJE143bkusqRQKJbQdR3XFTimxx9e2kZzcwzwkCSPUNjvEfQtFzw8T/CrtYOcvbyFm757L3/39b8hEovhOo6vBihrWKaHVfNobG4hEo5Rrvlok+e47O/qwbEE3/nuDzjzrNOx3CKaGqRcLvPs08+xe/c+Fh0+j96ebs5afSZXX301rU0ZAkqam7/6fVadcBS33vo1jj72OHbv3MXdd/2CKc1TkKkwPDjKxs27OGbVGWzevJGWKVO48bOfRFIEhZLFrh27uOaaj3LRxRfQ0zvA6Hg/qi6h6R7Z+noamhvZtmUr7XvbOfLIo0im4jQ1ZVnz4nNkG5u4/LIrmDtnPkZAJRiJsXzZMVSKJnXZeirjDmtffpFYOMiSwxdx/wOPcvTy4/jgBz7AIw//io9cdSnZbAOBoEZvfzuxVJDDFizAdkwcS8eyLYLBELn8CLJqU62NYegJcvkxDMNACIVMJks4FML1fIS2rbWNVDKBZddYunQ5K445kmOOOQojoHHttX+FEA62baEoOj37+2lqaCZoGFTLFT561dVce91VOI4FOJx/wbkEQiq1osONN32BZUuXMjQ8yOuvr+Xxx5/gogsvZsO6bfzrz37Gh6+8nGBEYSw3RCreTFNjExKCsumiKjFeWrOWObNnIiSX/p5RfvTDf+LoY47nw5dfQ7VmM611FpdddgUnrjoe29Kpq6+nWMrR09ONooe5+ZZvcs4F5zJ15nRwNS679EN89nOfo6uzm1g6gq5JfmGxbROj+woIIRONxCkXyhiqjitAVzUeeuhB5s45DE+4VCol9IDu38OFn6i9ue416uvqkZApFAvEEwlkScay/Ukz1/OTvsH+fjKZLLIsU61VqVar6AGdb/zyW/zi7h9jOVWKxTxNzfWksz4ym8sNoagemq7iuA7hUAzLkrjhhhu58sorqZbyzJ4zj0qtQqVSQfI8RgZHmDlrDkLScIH+vgGSiTjhSBjbsgAPPaDhORYWOul0CtNxMCJJPNekVCygKxKBgI7jVWmdOpVqpUylnCM3Po7AJhiUqZkFJEnFcX20slqtEdQUZs6ewy/u+wXHHHMEuuwxNLiPlqhDrVLk1Y3bOOXUD6EaUfoGRxGSjCuHWXXc8XznH77H6uOb6esqEqtL0z6sM3vJZaw66YO0Ts+y5pUXSKWbUZ0iCIU3Xn2NTH0jxWKesZERspkso+M5QtEMRiBKY10D4WAIRREM93cxONhH4/RZ9Pf0ooXiZBuawLMYGxkkoNVRNXuJpxMEwy3oukJnewfpVAojoNNW73LaESWOP1alrnEH0fohjNheEo096LE93P7zX3PjzZ/nsgtPZuZ0lZUnrAIHZk2bxs6dm0gnEgx3beCZX/0D07MlDCNIbWw/P336ZX63diunrzibWfOOwAiHMQIaWza9iWNbREK+6nB7RwfRWATXccgPjzLQtYmFCxYQNhRwXVTV90zEc5CE6qt9qhG0UJxazcJxbSKay6LD5pJIBZCUiVzD85BlmUy2AUUSFPN5jECEZDrDnvYOVD1CKBynUimj6/4ERyqZYWx8hMamNjrbt7O2fRNz62V29NQ47sxLkVwPxXOQPYEr3g1s/NHi7n3Ce68+tT8x3sVsO2h17oSl0eRnJhGz99yWg6ihk0XeIT//TnBnstibEEkTCCTlEP1/wvNbMGwbIb+3RsPb+wzfquImkbpDf+nt7/8/X9w5rvMXGRG+F8J3sArOIePgQszzJkQT3u3rMamQ834U0bdOrEMXd5NQ75HHnwh9W/9TqaZ/evxnrPO99v9PR1rfd3Qh3r2KP2nIgwu6P6WwO5i+6X83nUpTyhdwvTJdnUOUS1ViMb/53TB0RkaGUBWZpqYGYvEIZqVKJBKhr2+AYCiEpmskU3Gq1SqarhEwDDq79pOpSyGEoK2t3jdX9WxUXeaFl7cwra2eWq2KWXOIxaLYjkPNtOkfGCWdqgOhoCoBAoaBZVaRFQnhuXR39xGLRvwbpfBQNRnP8YiEgnh4JFMJPNdleHgURVV8dT/g4uPnMD66n0g0whPPb6AuGaahIUkwpPq9NpLwk4igDkCxVKV/cJhQIMCe9gEGe4vs3dNL25QGFFVHUeWJYqeGoqpIWHR3jaGpoOsShXGT5ilZxkdLaKpGf+8QsUSUmllBVRUkWUHTVHp7R4hEgkiSRzKZJBELEQ6FCGmCmmkxZ24LO3Z24DouLi7xWAhVkxHCQdeDSLJEqVhEkjU818Jzbb9BWoBhhPE8FVnWkYWMqut0tPcQNAIMDY0QCgYQwu+PLJcrzJjexLp1e5gxvQnLcRgf972XDMM3j63VauiGgef6/HzPFeB67Gvvx7FdKjWTSrlCqVCiVjXZ39tPKGggCWlCuEFCCA9VVVEUxb92JA/Xg7aWRiy75v+fhUCWFWzbIThBX5MkgePazJhWjx7QsWumX4QKF+GpgOPTaiSVc5YkUQMJlk5LE2o9kpdfeonW1mbwJDxXxXGrJOIpnnv2eTLZNPlinkQiQXfXfu79xb0sOGwel152mW/c65lUKxaappFKZWhpaSOoxZDRuf66z+B6Bp372vno1Z9g1969/P7xJ/jHf7qTLRu3cf999/GpGz7OC2ue5I4770e4Ct/6+x9w0cUf4fbbf8yFF11GteYSDCSp2WWWLl+OIkvcc/dPsVyHFSuWo8oayUSGaCqOpils3rCFloYWvvy1m/jEtVfS0JRg2sxmHv/9CwwO5Nmzcy+HL55DV/s45559KWee8QGefOppzjp3JT39ezjj7BMIBDVOPe18bvn6l5nSlOXe+36GZqhULYtIJEIkEkMImVKxxKaNG8mkW+jo2EEylSYcCvrYvxDgacRiIUaGR4mEYwhJwTRrDI8M4HoOkVAESfFIJuNc8eGrufTyD4LnYllVvwjwquApCMlA0w0am5v4yY/vJJtJ8rmbbiJXLLF+3UbC0QiaprB3z24ee+RBzjl3NXMOm4btFlmy+DCmTsvgiSpz58/k8iuvpFIrIxQF2/b4wue/yMknHoeia8ihKLGQQXNLC54HF198IZs2beGGT/4v0uk042MFzj3rbF548RU+/9efQwsIopE0m7dsZO7c2WiaTn5sjKXLFlPK59BUhcce+x1XfvRiKtVRUukYhp5A8lQUyeDOv7ufSrlKKpXFxb9+YrEoQhZUKhVmz5x7YPIiGokeSOTKpTLCg1Qyi6r4qsbpugyyIoPn0dc3gOO4VKsVNE2lXCkRDkd46Le/Ztbsedz7yM855xOnccKqFWhaCIFMPj9OPB7Hc2QCWoRoPMS+vbuQJQ2BQq1aQTcCnHPeuYyP59EUeUIZz7fLGdjfSaYuy0MP/450XR2yrJNOpymWiui6gueCZoQoF/MM7O8glamjf38H4XAYoejosgBsNF1CU3XauzrwPIlivkg6lQRHQtcV+nr309/XRX1DK6qikssXiMZijA0NYoSD5HNjNDVkqRXLyHqMsgUhXbBycRsLl57AU0+/gKIEaGlsxHFUuju3cvKqJnRjH7GkihdoId12Eq7cwJe/eD2ZTIyPffTjHH74PKKBJI88+gTHrzyRbLYFWXaIRCL0DwyiySqK4tDd0U5jfRORVJKa4+G5Fvn8GNFUhoZMiu//6F/QwnGwiiQTYRJpfxxZDSOUKN3tu5jaNpOe7i7aO3dhmiOoYpRUIk2+WEGSalhmkBs/9xAL5x3Lg0+vo7ltCvPnHsHQ8B6i0TQ/+9e7WLZ0CZ5r07NnLYX9L7FwKkgUEa7HMy+2c8ppp3D2OVfytX/5IRmngUR9GtOsMa11OqqmU6lW0VSdaDTJyPgg4WCUbZu3ks6GaUjH8bDxXD+HtPHRmv6+YRTNwIgmUTUDWZZRPAfXKuLYFVRVnrCpUTBrFo7loCoyVqXo95UJnzYcCobwPI+R0XHGx3M0NDZSLpcwjBBNTc3s2LGT+myKs4+3GOwfYMb8o5i++Cgkz0VI4AifbSOLg6xXJoll4u25kM8sOyi3Psj3FwB3Qo8C3pbnTk7Ku557yP67d4XLRB492Yt3UB6O5/u7HkSOe79evEn0TEiTQNz70zInc/jJcHDfKiAPVQJMHCtJev/CTkiHYpSJA0waWZIOFHMH/z75ffBQ5P/HizvvfRoZ/4+Ed4gT6h2rf2dx+EeLl/cwQQT/opEkiXuf3sqC7F+2yf894lD9bm//+y+NdyOohyj23vvbf86a3vF5gSQrDPcPYwRlUslmIhGd7bt309M3wGFzZ5JNhOjs7iEej6JOKNF5HiRTKYSQfG8zxS9WfBQIEokIlm2B6wAyL728Ec8R7NjWzfHHHYmqqyAgHktj2zWEECQSceKxBB4umq6C7ICwGB4eQ5EF8UTC97lxPAK6SrVaIqCp2KaffOu6RqlcRtUUCrkS6XSKXKFAuVwmFDL44i82s3J2iCULZxCLhv1Zw6CGkGRfzhcPRZbp7R0gmtSJR+JYNcHOjl6WLWwmldQoVQuEEkFs2yWfyxMMBpAVhYAu09NVwMWn740MW4SCCpoW4PEnN7Bo/lRkhYmmeQtpQuk2HIkihIfnmghJIxyL8sDDazjmyNls3t5NW1uWRDxMJBxkbDRPQ2MGx7GwbRNFDlKdULj8xQMvMnOar+hn2baPdnmVA8mZ41SQJZ3R4RyZdJqAplApVVA0CTyZSCSMZVdpbW6ms6sHTVNobGpAyH7/rKKpuLjIsoplO5hVC9O0GB7IE09ESSRjjOcKpKIRHnzkDZYvbqN/oI+6+iZeeGUz01ubCAb9wnRwaNi3MhACDxPX8WdNVVUceOh4rucjhELCdixkAYriYjtVzBp0dfYRNAIomkJxvIYk2yAEI8N5eoYLhIJxGjIZ7np0C6edfhJCciYQRxXPy/PMM8+x6oTjaW/fw+z5c3Edl8ce/T3XXH0VV111GWeccQY7du5B0XRqtRqaptPXM8iXv/QVTjhhMaNjfYQiGh4mA30uV1xzEZdeeSGXfuhq2veNsr+9k49//GqSSZ2mxjijVplzz1zJhy+/gI6uvVxz7UcYGe8hHFFxMJEUBVXR8XBYtHgBmqqiqCo7t3fyta/eyuoLTsVzPcJ6kNu+exstLfM5evkqbv2H2zl8wTJ+ft99fOiSK/nZT+9mztw2hFLlAx88l1BYZmB4D7PnL2HFscdhOSq7dg1R3xDhxJVHsnPrOpYuO5xQPIZt+350khTEthRKpSIzZkzDcTya29KMDI9jGGEcW0bXYqiKgmlVJzwlJX+SRLgUCmOoqoyuBhjPDVFXV8+qlaeiGb7oUkD3Tc/LlRyg8dW/+XsOX7QIq+wwY0YrP/7xj9iwfhPbd3YwtW06ra1T0FSV3bv3cuyRpzI6XKG+oYXRoQIvPLue41Yei64HiIQSmF4FSVYwTRdNDXHG6ScgvDKqoWOrGipFdC3I0iXLePKpJzn7rDOIJ6K4nkOpWEIPBDjm2KM5+eRVXH/DNehaiNHxYerrslx/3U2sPHopI0O9zJ0zHU1SCASakIRCJJLAqmm49OFJFo6wyOptJDN1BLQAniwTiUWxPdsvpHQNWZEJBgw8z2Pnzp2EgmFM02TH9p0kE2mEJHj5ledJxjJEElFs0yQ3Ps74aIHm5hY0XcW0qiQSMWRJJZNqo8Pbx7U3XUUgoFGpVkkkMsioRGJRXNvlkd89xbat+5g5cyrZhhQ4GrKkYwQlFFVgWRaKpuGaFrlCHkWV6O7ppKU+wdDIEAsXL6K7pwfJU5AVGceuISQIGxFcIWNbNdIxg1AwyPq1r1CXTpMrlfFMk3xumEq1SMe+bmbMmkut7FCfbWSofxBdNSgUirROaSEcCqDpYWRFZX9PD7F4gmjQQA8aKIqgqbGBN15dy4xZy0jPOZLRnt3YHa/y2+de5oILLmOgb4y9u3YzdWaKkJ7iszfcgiJCLFu6kmJtHoF4A8lGm/H+bbzw7AaOWHAUrjcKXpGFi6ezbddrCNlBoOI4DnV1jYyPDuOaQzRms1iux76eftJNbcTDIV568TlaW5rIxFMsW3kq8XQd6ahGx+4dpJsaqBYFyCEsLDzHJBqK07O/i3QmBsIjFnUY6B1ncHiEpvo6TNvk6JUzGCt28qsnuvniLZ8mnZyFoQcZHRtk2bJlrHn+DzQ3NNIQz6NU9hKQc5go1PIjzFr+KbpK03jikd+wdNkiLrjuAj543RVcdOIHMS0bZAlJVihXauiKhhEJ0NHZzf7OAZqn1RNUPTxJIGSNQinH8GCZUDiE48kEYjqy0EFWKebHkRwbRfZQJF9YycNvydAUFUkSVGtFArKOoqsIWaAKDU2ycF0XI5Kivb2T1rZpyLJKuVSmq7udSsUmP9rBlGk1xkdzDA6PccwZ52F7Lq4kYcsKwrXxAGkyz3yXkNx7IXoHFgL+s8Z1nQN/H1ycOK4v7OV4zjuKlkOE9473D5K8Fwgc23/mg59ru47rd0a9T0/dAcDsveI9wBtPvAeNcyIcx0b+IyileMdxfWfIkoTjuMiSdFCef/Cm+ZYQsqz8ycXdf2EF9J8f74WmHUqa9T9rfYc6GV3hzzC4B52AnveWz8fkP1UW8oFGS1zxvi/Xc3G9d/ftHbzs8isv4eJvPfJ/ZF//6+IdCOVfyGZ9Z7zVo3hQ8fUnjf0fKSwnZ7dsoskQuhEDxUFIMGtaGycft4Knn1nH9j09qGqQ/r4RJE/gWBZaQMF2TRy7Co7Hlo3byY0MU86P4jlFPM+lVKygaTKuY3L0UQtpaqqjpTVLR3sHrifQjRCuZx/olyqWK1StCus37MBxwHUE5ZLF8OAI1YqJJCAUDBAKGXR07ScUjmJZMDJaQAuEGRoZpa93mOKYRX1dhmqtSDoVJR4PYVkuZVsQMAJ42Ci6QjyRID9WwXVlPCQCAQOETGNTI7WSg6orJNIhpjQm6B0eQw+GSGfqUISGU3N9VU1ZwTId9uwZpHVairq6BjKZFsIxlWKlwosvbaFmmdScKrblYNoOQpIo5HI4nkCWLCq5fpBlkCQcx+SC1ctwPYcjl7aC56BpCoommDq9Hss2J2iIQR59/HWwJX5+7xouOnsFwlEo5quEQ2Esy6GQr6HIYfr7hpBk37y9dVo9NbOIBwwM5PBcCdsysZ0SQwN5bM8k25AkGDbwnBqyJKhUyniOwKzIjA4PoakSkahBKKgRimhs3NyB4zg0N6eQDYUrP7wKoSosXHgYplVj1ffTXCsAACAASURBVLHzMK0CnnAAF1VR8Rwx4cujousT9hiu59NJhIKHhCS7fs8RLgh8WXs9TMDQmDGnDUXXcW2Jh596HbwgqhLCtixmNNfzw188TqlUQFJNNF310U7JxvUq6FqYubMXcc89dzN9ZguuaeIKuPiKy0HVuP1f7sYTEnt2b6OppZFEVCEV15k3p40f3fYdGppmks228ZM772VsuMb8eY08/+SzVHM1dNVh/vwsJ526GFtUGS6bqIkmZrbOJhSbwsCow3PPrcV2PaLhJMJTKefK7Ny8i2J+iKd//wQPPfAUpYpg2/Z9zDlsGv9y17dQJRfPruF6Hp09fXzi2gs58eRjOPmUUxkcG6V7eydb1r1OR9d2mqdOR3LTXHbJh9m+bR2nnHgCstA57ujjEbbNI795gO9951Zi6TTX3fQ5Ypk6JE9izTOvMzaYY/fOLehajVg4RLFQRVI8KmWJSCgK+Mg0wpdyV7UgQlawvRrjgz3Y1SrJRBYPnWJlHCOYJJeziaaDVColhFDA8xE+XY1x0YWXctNNn+TM1adTlosY4QRPPPYiF374Q3zimmv41a8eID8+jGe7LDviKGzhcvSq5XR17+W66z/OshWHc+pp53Pb7f9M1c3jOR5OtYJbLpLv66FadZECBgIdJ78fMBge6+W5F59CVnSEkPje976P69qcdOoxAEiSxZoXn8WxdGpukcMWzKFcKfGNv/8qdU3TqTkyA+NjeIbLaLGPta++xD/98B8xIjKvvbgZVYlzyWXXY1kWqgBXCKrFMvmRUdyqyd597Vg106cyKr5ExOw581F0DdcxmT1nLqZdQ9MkDDVGfWMWaaL3KRAwmDlnKi4WtZpPEUeorBt7naUXzsat1XCcGgHdIJXMIISDHNAQQqVYLHDWuas444LTURQJs1Bmz75tqEEPx1PIjYwSCWsIyUGN6CTSQbZt3Mj0hhkoepp4sgFJVjhswVzq6uvYumkDffs7KY0NUyrncT2HaCJOMJ6kJsPhK48jXN+ErAYIxBMTlgZR0kkJp1wiGdex7RxGSMGhiBoJUZN1HE+lfVc7dtVk3tw59Pftp6YEqTgFps2cynNPvoLtuWzdvIWNf3iehumnsju0jMULlvHkQ/exa8dm5h+xkm3ru3jssd/wTz+5kSmtUzCD02lbMIeWhiS3f+1bRONzOGH1iYzVBsAusXffTp58bA2L5hyHU/aolWycmm8zEU83Eq47nFEzyFDepFqqsPm15xkfHyPTNJNkw0yGPL9gT+uwdf2btLVNxXUEWiqOHA4QMgz0QIiqU6J11mxktR6zkiTX340mR/nDm7vY31Pgi3/7GFq4ga/93VpWLp5DVGQYGdvCujf2g5fEckxWrjqBNS+/wNrXuxFKGCE7eIrGtv4oZdtm66aNfOwzn+WIw5fylc9/lpefepD6IxXuXvMzbn3gVnRdJZmIIeQaI/19KF6Fo5a1kA36vo+apCBci3A4RmNDioAmEw2ryLZCvljCdfxnabVmUqnaBMNJLNPCMf1zzxMOQhYEgzFsLYDjSEiOQAtpDBccyo5AVgIsP3oVnge6rlNXX0c0FmfpYYtZsHQlL7ywiZgRZeq0WTiWi+wJZNdDckARErIv+oDnuAdJ+b8jw5lA7TzXnfj5zgxIIEvKW3nu295893iTefK7QvL8l3BBuBM+eBKO7YIrkFDeGsP1t+vg/rb3i0n2nL8/TDw331sjQ/LEgc8c/JoMWVYmvO3eek9Ik2id35PneZ5fgE7s72QeLwkZScjY9oSX9YTKpvvOY+KJt3nu/Skh3pNq+N84qrWin7YLMWFy+F9LTXznMXMnCjfHc5AmETfp7fxdx3X8xZMnvPv+2/zWP1865PKD48IPXs79Xzjrz9uJ/yYhxCEKuneCbv/DQpIE5UIBXdfxkHBsi1qlzKOPv8Ki2dPZsmMvRlBDUWQKxRLHH7sAy7WJxmKEwlGqVRNdD+A6cP9vnuTY5bNpbGyiv3eYhoYMnuQiXJVSuUo4KqO4CjZg2RYBQ6FaruA4LkbQlwZ3PMmf/dNUXNcFIeM5Li+89Dorli1AkSVkRcE0Lfbs6WR/7xA1y+Ps1ccyMjRKMV/BMFQy9UnGxnIkU2ly4wWO+cR3eO2fr0SW/VpqcHCUaCSEqgewbdOf0FBkqpUaquSBkNADIUZGx4mnogjPnym0qiaqrlGplCfsCKCjc4Dmxgw7dnehaTItTb5IwJqXtnDMUbNQAwqRcByHGq5rIxwJFwVNr1Ar5FGMBv8adF1sx0aWxAF0z/UE+/f309yc9NdveahaANeVKebGCIZUkIQvdOJ6mJbvM6TIAV5cs4N58+tJZxJUaw6y7OHaFgMDfh+kJEvYtosWANdW/W2T8aWZPQ9kyW9e9yTWvLSVY1bMxHNB1XwPs5ploUgK+7v6aJ3SQKmSIxgKUqrUCAZDE4qsDpZVQ9dCeLZLLlcgFA4iyzKS7GE7Nqri0zrMGlg1G1XXUGUF261RrVQJR3zT7ICuU6tZvg2C58s4r3lhCyuWz8O2q0SiOiOjBT5xTxe//uI5XPrtx7n353dRrpWwrBrJRBKwcEyF+++/n9Vnncbal99k9flnU7VqlMbHUTQVcAmHAmzavJk50+eRzxV4/rkXeO7ZNVxz3bXc/fN7+OY3b0GSJAxP4+mnn+WBXz3A9NmzeOLJJ4lFDO6+5y7+8R9/xMc+/jFkofPZz/41J554IkevWEHL9Dq6OvbS1tqE6zr89J8e4JIPX4IjuXiSzA+/9QOu//S1hBMRPBncqk3H3nYe+d1vuekzn6FcKqHpAWTFIFcuImomH/nIVfz0rrvYs6cdS1KYPrWOTCLI5jc38ZVb7uTU01ay/o2X+MqXvkwi1cLgcB+pVAxJs3zl2moc3XAZz/dTKo/zw+//K9+97Xu4CP88qVkEgzqWZVKzKgSDcSzLRpYFlmkzOjhEfX0du3bvYcbMGeTGTYJBHVUXOG7VV3PzNGTF77lCVnAsMVG4j1EpuGhSgB/cdjurzzqVJUtmsWd3F7oa5ZqrbiCVyvLgw3dhOxZbNm9iyRGLsS0YHhnCsitks0n6uor85Cf/SkfHPlafcQaBUITjVy7k61//Prd+/xvs3L6PHbu2snr1qYyPjZOMZtA0dcJYXKVYKiErDuViAcOIYXkOuhJky+at/O2Xv8jvn3mWocER+nr309SYQWgGXXv3YlbKLFq+GNfMYTohHvn2s8xcMJP+3l729+5nxqwZ1Gpl6rJ1lEpVgnoINSBjU0WVAgfomLqq+zP6roske0iuiiP592jXA8/xABtVVhGSxFd+9rfcf989SJJHT3cHTY316MEItZpJPp8nkUygOS47du9m+uzZmLZLabgXIxKhXDUxogkUVWPtyy/SWp+hobmFfMXCrpYoF8d4480NXHLh5dhOBdOxEbLAEx6yJDM0MELEiCIhoQYVEILhoX7q69LkClXi8Sg1s+azBzwVVXXwnAKhiMqu7d3U1dejaxojo6MMDeepr2/AtF1SiQQD/UMomkY8EadaqxEyEuQL7aiKjlXyCEVMXnx+C9l6i6b0HNKpBoZGOnn9zQeJh6fy2G920DRVo2VGhGCgSCYwjXhjioaWRVQcwcjYGKlUnL7eXjLJFuxqCRSTUCDKhg1bmDq9BdWIUsoXGR8bIRzWSMUyICkEQnGqjoeqeUg49HW3o0g2tiOIJVIMD4+SqcsyOjJCOAySqpCIN9Dd0U84JpMbHkCqOTz28FMsWbqATOhFZFsmXq9SGjCR1ARdA/vx7DbufXI9t3zjXqLRIK6dI1erEktKmEWJp554jAXTQvTtfQnVzdM9CMd94EZ27xkiFE4yf2EbhfEqtVqNjs52ps9so+qWiQSbeOqpNXztmzfTVD+N8+eeQanYT1ixmT1rLkHDw/ZMPEnHRUd1i77cvhpED8SwlCBjuSLZTJLBnh7MWolENIiugmPVfKaWrODaDiDYsGkjs2fOJ2QEqLplXl27i/opWcbHRlg4/3h6BrvBE8RiSWzbYWCgh28++H2OafA476zD6B8LcNa1X6VlShtCCGxJRxPO23IY712wz8SCSVRpwqDbcyaNuCeQtoM9XQ8KH7lzkCX5z2qbmsyfbdv1n8d4fsINvNsg/I+MJfE2kZdJ8ULX/mPih+813tvXf3DB5/fmCRC+FoPrvH0db/n+ybiO7aNyku+re6iYLOx03fiTi53/8bTM/8rC7p2qmQe2wfMrlHfKrwreat6cVPB5a7D33+53rmOyX+9d24THRRd9gIs/+S0+eEj/u/+74mDu9fvxrN873ksk5eBj+xceO+GP43keqqpQqVRRFN98VJYVpk5pYseuLqpVi0g4iK7KZFIx0skswhVEY0nKZYdgUKNS9gUB5s2ZQSQWxrEcglqA3zzyPNFwCFmWSCQi2LZLqTxAIGgwNFRg0/q9tLbWUypW0HUDIckM9PcRiYaRJYmhgRHCoQCObdE2pRFdVygUipRKZUKhEIosMXfODDKZJFathqYpJFMxQpEw1WoFXQ8iSypjo2NcsmoxpVw/4XCASqVMPBEjly8RCQVQlAlqputSq1YJhXxLhP7BEbKZNLbtYpkWsqxQyBcZHBwik0kC0NMzROuURvLFIlNbm4hGQnR1D9LbN4wegCktWTTDYPvWDjLZBGbNN6t94rl1mLUi2VQSTzYOTBRKE5x9q+bwzJoNTJ/ajK6pSEKmo3OAgKYTMHQ8z0MPKLiO7VMmFQ0hSeiahud5VMomubEqiWQQRZXYsaObeCLEC69sZO7sViQhMC2Hfft6CYd11q3bS0tTBtO20DWNWqWGoqnYtokkScSjBlpAQ5JlbMtBVlU0RcXzbGLRMHv39VDfmEaWfEEURVGQhH/+SrKCbU748wU1cvk8RiCAaZqoij+rWS6VkWWFkbEx4vEozzy/kenTGgkEAniu4xf8qgySgm3bvsKgqjKlpZHfP/kGmVSEWCyKbkQYHC5y1LzpLExq1FLTMPQInhAHRHw0XWdq21T++q+/xHUfvxobB1mSCGkGvR0FfvXvj7Lw8CPxajKf+dRnOWz+Ipqbp+ABhy9cwnnnnoeMi1kpUi3WeOihhzjp1JPI1mW56aYbOe+C89E1hZUrV6BILoGwyuqzT2LeYVMZz/eze0c3u3ftZH9XO5379tA8ZT4/uO1HnHjiKsDkzDPPxJN8mlxXRydBPUoikeSYo49FIOHafjJtWiaXXfpRrvjIh6hUKyw4bB6//Lefc/zRq5DxyBeK/OtdP+fcsy5h5oxWbGuc/fv3MGfuUq6//jrOPe9sJCHx6qtrmTljKl/56pdZcfRRRKNxVp95NsVSmVAkjCRLVMtlqtUyY+OjJOJxHHei6HA9yuUysXiMYqFIOBhk8/qNfOlLN/PBi86nWBzFMPzeSzwJD0GhMI6qgmMpPPzgo8ydN52oEUQJGJxw8olEQzqyYiNQuefuX3L11Vdx443XUywXCIeDROMRJCGomlWCIZVwKMott3yHY5cfTywR42N/9VEOX7qQ1rYG4kGb005Zja0IGusamDF9Dp0dncyYMY2RwRy5XI5QKIRlWzz7zJPMXzAH06r6lGkJJDTisTQf+OBZ1LCRhM4XbvoSq08/lVy5yMUXfIDPfvZGtIDO479/gK/dfDurjz+Hxx97jI72PZRKBRYdvpBINI5te6iyjB4MYtsWL77wHIYRIRTUKBaLBENRZFmgSiqmWcW2bBTNvyd7jsv4WI69+3by2rb1PLDmPu7+6Y9RdRXTtEinEriOSc1yCAQCfr+q41PoZVn16cW6imcXUQJhHFRioRDYNo0NzWRSKbr396HqQQwh0dnZzimnnIbjeLj4xXkuXyISi2FaLtFIgq1bdnLqKWdw+urVKDjUqlXUYAzXqhLQNQKqRrVcpTBcwLFAlSN0tw9TtWuYlk2xVKVcqpLK1qPKMsJ2CYbTyEGFYDiE49gYuobkVNi25TXwXBrqWrC9KnPnzccTNXB1amYR15BZcviFZFMx9u7+Fdf+r7+lvvkwgvE6EqnphBMhdm3bw1iuhFANsg11RA0d4UoY0TimVWVktEC2ro50XZKhsTEaGqeQHx9j5rQGanYBD5/lkM/1EVCjjI+OEIsG6enpJJVsYHh4EEmRyNY1snnzdpqbZkKliopCfV0rkVCGeMLg6Wcf4gMXnk5j4+E898z9rFhyDOViH9VqjZo1TmtLM5VyD/f+ejuplgamzJzJfb/9Z6a1zMOxy3S3D6MqGuve7GDa7KMoW1mGi0lizXP4xx/9M8sXLyRVl0TIAUZGRujt3c/yI44gFjHo3tdOc30d555+AkunG9x85zfZm+vkslPPp1AeIxbUcR3YvX0bHkEa0v61biGwJPCEQTAcQXgOAUmnYlZRVQkJD9uyffTK8+/5kiyRaqwjGAjgeS624xINGMQiQVLxDK++8gdmzF1AU0MrriOoVCs8vO5RgmqQS845nGphkD3doyw5/iziiYQPkAgFIdy3o17vSoHE2/rqJos3IR20fPJ74q3iZRJN8/AmqIXvr2vxrtx6gvXmTuhY4PosuffznnvXMsm/1t9GLfX1wiZe3mSiMNH/9nbPPRef8ikkaYIJc2gBl7dt/0GKlweOlXi7YqdfG7zFMvTN5P33J33vfMVQXxQKwZ/Vc/c/mpb53zkcz8HxnD/+wf9gyBMnx0knnTix5J09YP8/3rcL9kAI/mPH7mAaqB/5fBHbtv3RJQlN14jHIiiaStuUBuoyScrlKolkDITL+NgYWkDFtRwMXcdzHaqVMggJTdN4Y/1WGjMp2lqnEgwFGMuNsnbtFoxgDNeTaWys5+gVhzE0OEqhUOaZ59fieVBfn8G1bRzLIZtN4zom3V1dyJJ/04yEQ+i6Rj6f982HJYmxsXGE5PvmVSpldu3ah6ppWLaNkCQS8QiNjXX0FFw8zyESDYHnkc6kcF2XSrnCpi27cWwHIxDARYAkI8uCSrmEcCEYNPx+vESMlpY6hoeHwfOor8sghEu1UmV4eIydu7spFEzGcnmWLpqJbuiUShWqVRvP9XjkqTfxXMFpJx7BzOmzUfUgNbsC+Hx48G+Sff3DnHrCMlzXY8/eXgYH8rS2tPgIq+seuBtquo6uh0D4ibNtu9SqNm9u3E1jYwpVVXAch1AwgCKrnLRyCa7rsGnrHvbt66W5KYttOQwOF+js6gHXV7Pcur0dx/YTRcexicUjvhiKrBAwDBzbQXjgeT4Fp216M44r4SIhhOw7ErkT3ocojI/mGM/lGB8fR9dkduzqoJAvIwkZx4FIJIquq9RlEziOyUmrFuPhe/YgBJqiUK1WAXxJb1kiXygihEQ4aLBlWy+uKyEkuP6sNiqVAnPmTiGRTHDbbT8iFo3iuA6RWARZ8o3vv/H332RouBdZcuns6ECVNb70xb/myo9ejqxKhMIG3/n29/jdw49y881/TyqZ5se338Gjv/4tV1z2YR7+9W+IJSNk6pJs3LSeI5YuwjBUXOGg6DKS5OC6VTxbQRI64VCcZ59dQ0/3AKeefBpnnXEWmXQd8xctIJ8r4dkee3dswxYOmqbxhc99gTtu/zGKrPDqK6/xu98+zu233YHnyLzx2nq6Onv43SO/o1y1OHP1WRRy49xww7Xc/t0f8snrP000nuKzX/wqy5cuZ/asmSxevJDrrr2aUjnPZZddwte+fjMSMr+870EqtQK3fvtbqKpOLJZGkmRisQiObfsoRCjErl17aGlpwbIdCoUCAK5rI0k+mj48PExfbx/t7e3cfMstdHTsZeeuHVTLFh4uu/fuQZElYrEo/b1dODWLvv1DjA8VGRkcolqtUjNNOjs76NjXQyAQ4bcPPcSSI+bw2OO/5rvfu42x0RyuA+3tneBJ7O/uIZ8rcMN1n2J0ZIRatYysCRxsdMNj7avPoOsONbOEZVfZtmU7X//aN+jrH+LJp57m9NPPwDRNLMvimONWIpAJGWGfwiW5SLLCBed/gFwuh6QIBoeGqFZN9nd1E40muPe+B9iydTumaROJhfjyh75MqVTksAULOPa448jWZXE9l1q1xsjwKLIk4WJTLleYPW0h6VSdbyg96dvoCYrFMmNjY2zavJ5atYJwPdate52QEeS3mx7lozdejqEZ9PUN4jgu3//+D6hWaijC4I477mRsbJzh4RFc18WVNEKRGLquMjrQiyPJKHqAeCKBXS3RvnMbALlcDsex2bVrNwM9vcyYNo0XX3wRSZHZsX07xWKBeCKOVbNxXAnLcpgxYwbrNqxjSmsriVgMVVUJhsLIkk1/3356e3oJBaPkS70k00GGhnpJZFIkEmlS6XpUNUA8kUHRNTRNJTc+TrVq4kmCkbFRVE1FIDEy1INtV2hqrGdoaJTh4RwvvfwC9XVTQUDVHsAyBf/2wH309vYQDCbp6t1HONbEaN4m3phlaLxGQ0MT377122RTaRxHYnR0lGIxT29/L6+vXUddfcMEZX2ASq3Czu07mDFtOhvWv85YvkbV9BjqH6S5vp5EKMyWDespFEu0tM0gmqpD1lTS6SShcIhFh80nYGjs79rJQP9udu16g3JliCeffIJFi49FDjSSr+Q5bPEShkbHKJXzhKMRMnVxKuUykZjKJasXM7dNYueG9Vyw+mLCoSgBPUShUKZSchF6lDkLlzN7yTLOuvh84tEon7/x07Q0N1AuWXgSpLMZ/vD884wMjTDcO8hA7z72d+7gu9+4jZ7dT3LPLau44/PTGFMe40fP/htPPfcHZEli+oy51NXF2Lm5m+/99qd8/9GfoetxQqEIuhZgX/sehoaHGB8boVwu4bguhWIO27Yn0B/H91tzJCqVGo7jUquVyGZTBAIB9u7exsJlx5LJ1mHaNtWqyXf+7QcsPbyVUiHP2GgnmVQSIQRtU9v+wjzn7XFI+uVB8Zfmwe8cV0wsez+0TkiHZrbZjvO2lqk/N2Qhv72l6j8Qk2P8uWNNKnD/OfE/Hrn7r4y3qnLfy074NqmHRJKE578/0eXJpA+e63oHfLbgLUROCAGSPyvg8o5ZlMl1T3B3D47JmYClyxZz0Se/xYXHzvoTduQv2fv/gP3B+8X7DPleyNyhRFfeH8ET7/P7n4l0Tvqe/BEpTiFchodGScWS/gzteAFFE2zf3sOq45dgli02bO0gHA3T19MDgK7KlIt5QokIyC5msUY4EgKhYdZMmhqzbN/bTSYTJRgMEgiE6erupbmlBUVxMSs5cEANaCSTaQxNwzB0HM8C28W2bIQiUSyaOLYgoAfZvm0HdXVxXn9tO41NDZi2gxoIkIzq4Kk4totVLZNMpnFsv0gJ6P5yTVP46i83csGRDRTzJVzXQlbAcWSQLBrr65EVA1mVqVmCaqlMLKQhSR6u6yDJEnrAQEZm/Ztv0tLSjKQarF+/ncbmJOFoDEUNsnfPAIqQaWkKkUknWb9uN6+9vpsTTliOosKs6Y1YtqBYzBMIhLFdG03SfdNw2S9gJFkhGpbp6RlH0zRGx3PU16cxjACy4nPdhbARnk+VEMI9QOGQJQUPmN7aTKE4jmXWkGWFPe29tDTX43oCWVHIZpMYQZWXXtlNKhFjwfwmevrGyaSTbNy8m3mz23A9l1//9nU0ySMZ1xGSj9qVChVyuRLDI2OEwkEkWSApIKHiOh6lYolqpUq1UmVoOIfsVAiHA4SjETwHPEeiVrapa0zgeqAqOq7nUSlVUBWN0ZE8jmv5FNrJ2VYhGBwcx9BCOE4Jwwjg2hLCg6amBE0NsYnCt4prKzyxoY/ZrUnufPhNzj3nNOLJmG+xoAVxkfGEjBrQiaWiOA4EAgaW53LWhedhGLB5w1o2vLGBn9//73zy0zcwa84cFhy+gKNWLCWRzLB56x5ee/MNzr7gHBYumcPSFYuIx5NUazVi0SQ3XH8j01rm0Nc7RktLlq79fQglSCia4YU//IFjV66g5nhkG6cSUBVWHHMERlCjXDHRlAC5/AiLFizmjHOWs3VDJ4OD/SxZdhiLl86ma992li1dwe5dXVx5xYeoS4a4446fcNzxJxPJJpk7L0tT41Seefxl7rnrTk495xz+5kuf4qqPXoEI+HYn6UyYhYtmEY6qnH/BOQyPFtEDBsFgBMt2kWSBqoa49Vu3c8SiozCCAdKZJKVSDtupEg4nsG1fzEhIMjXbBkklkkhSqJkkIxozZs2ivrEVW1IIa2WMQARNj+IIFcnV6Gjfz933/Izzzr8ATTH40t/8HaefcSZN9fWsW7eD5qaptEyZwuz5M8nWp1m8aBnhmEapWCQRz/LD2+7g5JNPwjZdHvz3Rxkc3Msll16IWS7jWS7CEPR37KOuaTZFx2T39p2M5gb51KevQ9VkmhuaOP/C09i89TXMisb6TVtoaZmGooXwkKgM99I/0MPV13yMS87/CEsWHM1nPnkDd9x5G+FoFD2o0JhqZKg3R7qukSuu+iRnH3MOHR3tjI2NkE2nmDZ77oQvncxgbx+vvfkqc2fPR9d0dENHkkFRVYSA0bEhXNsjHA4SDkdonjIFTZW57Zc/JDUrxfkfOYPVq0/kxTUvcv555xHWNOKZJFPbphKLJ3E9WLhgLgFdI51OUq2UUXUT4ckM9I1R39CIkBU8z8XzbELRGMPjY8SzSUpli1fXvMSM5iyuHCKRSPNXf/VxPnzFpcQyLViWS/uO7dSnksiqhOtqhAIytXwn1YLDaaecwydvuJ7XXn6GumSEZLyOaCDE+OAearkeHFzUWBxhBIlodaiKQb6QJxBQ/L5ks4on2ZTyvdSn5hALhrGsErlCD1qwjob6OmQ89nd3MnfOkYTr/B5kXQ4TixoURsaZtWQJqeY25sw5klCmBXN8G2bJJpaYTywlMz4+xKqjl6BTRhgpHFNGVgMY0RjzZs9lsHcvmVQY25FIJWWamzL09Q4xbfoR6EEX2U6gBXPYUoj8/2bvvcPlKs9z79/qZdb0WNoK6QAAIABJREFUsntT2Vva6gWBEIhmTDNFsg2EgO2ASxzHTk5OghM7iZOTuMQlOXYc995xi7ExGGIbI4osCSFASKi33evs6TOrfn+sLSEJCYQTn+/kJK+uubRn5l3vWtPWeu7nfp77njyMW5rmyN5dLFm1GF0T8KoSblXAqw/znW9/ii1bdnPta9YzNjHMxPQUrV1zWLLiPCKRVvKVEQxNxJseRRPz1Bo2slCgUXcIBIFEKkM21sO/3PMNrrn2bShuhEgmgd2QOXZ0gMmpISKZZjpaWhkePEY8Y2LXEzyx9TG65zVRKU5jpRV0LcLi/tXs23uAeEuM97z9nxidHubpZx/jTTfOI5WJELOidDdJXLlC4/wLXSLJPbR2TdLaOkF7126uueoiLrviYloWxHAj49z9oY9wbGSAKy+4LKywGRnExyOZyaAqMq7tIIoCgSCxeddu8iMzdLQ1kR+fplybIR7PMHhskM75C6lVHPIz03zhV19mw4Zr+em9j3PLLdeglI6iR2QKpQprL74ez7LCJF8wq5J8CnMncqaEtyhKJ5TggyBMnAThhTJ8XhBPicVOsF+zcwRBOKH4fqZx8nYBAZ7vzVa+zca+wQsKnMc98F5QmOeMPXdnBFIn7f7E8R4v9/x3VgOeHrcGwdnV8SE4fil+sbqo8EKf3fHHX4mgyn+Du99onMOHfzblHU79sE65f3Ip55n2cRYBmePj5ps3nhvA+42/u//nwd2ZHjsZHP/7d/5ybN0ZwN8Zwd2LN9M1FUmUECSFIBB4fu8B1q5dzb/98gn6ervJZRLksikKhRqdna2zUr0+oqiiahpjwxOz0vUunttA1xS6Opup1kK1SlGE1pYckixRq1YAqJTrmFaEiYlJdj5/kHQyimFoyIrCU0/voqW1CcuMUK1WURWZjo4WgsBHUxQymSSTk9NomoxpRiiWCySTCX76sy309DRTLJSwGw6Vch3LMhAEgfGSS7tZIhaLMlMoYZo6Bw8Nk8mkEAQpVM7Cxak30FUZx/PRIhHsqott2+SniuzefZQl/W1M5SvEEzESUQ3TCn1/Bo4N4dg16vUS/Yt6ECWJltYMCxd04PsNZDnAd32279jH4HCe9tYsqgYg4vsBDdvhkc27mNvdTuD53PvgDs5bMYdE0kDXtdmOcJ+pqTyC4KOqGr7nUyqWkCQBUeTEBWTrtr20t6WJJaJoukZLa4QAB0EIwm+RALKi0dPVTKVaxHGrdHe1MzE5RdyKcODQKJlsgsUL5mJFQu88WVEAAUXVaNQaVKt1rIiOOOtlJ0kioihQLJRJJVPUalVyLTlcu45hhexi2N+kIYkC5VoFRVZQVY1SqYgZMQEwTQ1Jkgh8D1lR8VyPIBDQNZ1Gvc6e58fIZtOMjo0hywqDg+PE4xaSLCGKElu27uFIUWLFvHZ2TyssWboQy7II8ENBGklm27YnScaT2NUGTs3l6Sefpa2lg4btoSoyuUwTvb2LWH3ecjRdoqurFUSPSrmIYRhcd+3VXH31FVTrVe6++26ueNWrOXZ0kI9//BOsWbMWSRCZ09PNJz7xz7R1tNDW3s6HP/pRbrrpRtZdsBY9oiAIAvmZIk7DZmp6mq1bt7Ju3YVoVp2IYRKPtLPxxjdxw02v4vzzV1EqlYhGE3iOzX33/YRXXXUFN268jj279/On//PP+eKXvs7K5ctpyjXR3NTJRz76YT7/hU8QiWW4ZP1aypUSrgfDA+Nsf2o78+fNJZ3J4tgBqWQSz/dQVBVFlnG9GqIgMDI6xIqVy3D9GoWZSQxTRRRBUy284+W3okBhahxTV0lErVC2XJIwLYt6w8aMWNi1OrKiI4gCtlvBd33SmRzXXXcdf/037+WCNSv44Ec+xF1v+T18r0pzawLPd1i4cCFbt22mra0dwzAYHDhMNpdmx44djI9Ps3nz4/QvXAQCzOuZz3333UvP3HYi0bBMORoxcG0V1VRJJ9O0NLcQ4COJEvn8OOlUE3O6FnHo8B4SSYvm5iylSglD1ygUZ2hq78RB5NjRY3R1dPOOd7wDAZHNv95CrjnLP330H/nZQ/dxxdUXcONVV/LZ73+Nx3c/AXVob24jHg3VOFVdI5lO0ze/j1KliKqEFiy1Wo2Dhw7SlG2mWq2hSAqyovL+b32AJw9uZ+kFc3jjXW+gv78fzdAZHRnhvFVrSKfT+IGDasoYhsro+AimqaHpOsPDw0QtC9/32bbtSdrbu0LD6MCnWC7iOA6jI8MkEgnMiImp6eBCPJUglo7R1JxlZGSYd/zhO5ElFU+oEzFVPN8mEjOZGh8lkcrh+j6iqjIyMcXNt95MJG7R3tWOL0kIqkFgRPDNBOlUN/v2DdLW2oMum/iSjRc4VGs1ovEUUdNElTUaNZumbCs+HqXKDAQ+vieg6CaaKvHczmeZM6eXQFQYHtpLPB4BUaXh18ilswi6glOv8vgjvyKT6+CZ7ZtxA4/m9g58QSKZSiPI4HoOCCIDBw5xYO9+cpkmio0imUwU3ynj2Dbf/tpjzOnpQ1IbVBuD1Itw+Ni9VKYDuro6KDc8euYuJJpsRtISjE3OkM41YUUjuHgs7F/KyiW9lGbyJDJdtM9ZhtMoh31fgkp+ZgBTlOno6yc/dYhmq0bDsTDNFL6vIqLjmzN88qNjfPrrH2XjhhvYu28v8WgCRVYQBI/Lr7yUsbEhhgYGmZycZsHihTQ1J8hmspRmKhzYP0pnWxtbtj5EX3+UB37wBHH9QW5//eVcuy6JFQ0jOE1TGB0dIBY3ARlDl6mWZqjXSrhaG8k564i2LEOLtVMuV7j+svOxi88xWjvMF+7/EfOjc+me2wGBh9uwAR9RFhAVkdZ4jI7mHHWvgp7MYikJXKqolsnOZw8Sj7TyxUe/xBtueT2vv/lmyvkZ7r3/+9x6/fkU8yOISpSiG6NzwUKkAETOBO7OHN8cFwQJ/NDsOwyPghPzzxaXHY9zwxLDs4dNp6tongBGJ7UxvQDmTtO1CLwXetlO3vfpIHB2HJ9/wp6Ml34N5zr+PWu+aF5w8h+vzArhP7Wgym97nE2N8zjL/FIU8Uup75w8TqeRz0TVnuwNci5CKy8vsPJbYuH+g8eZfhDBaT/o3/z7+wJoE4RXotJ5jkxfELDz2d30L5yLKOn4foBtVxEFEwIbQRTwHJd6tY4kafz6yadZ2NdGa2uWRx59mlUr+4ioGsVylWQ2QSE/Q9QyGRwep72jeTYLJuG5/qwvjY/rOFQqDUzTnDWuDhuYCzMzxOIxPN9HFCV812Z4eJz29nY0PZT/npmcIWKZ7D9whKVLF1Iu2yDazMxUaG3pxnELlEsNstkchw4cpb0zgyIreD6UJ/egRzQc26Zh21iRCJ4HqirjBy4jIxNUSzV6e3uYmi6iqCoyMqoh4/oelZk6v/r1Vi67aAXP7Rtg/dqluJ7KsSMDHBkYJAhcLj6/n0LNI5WMh43ZkojTqCBKEvWagxWJgaAwPZ1HUV0sK8MTv36WCy9YTK1SQ9W00NPH9RDEAM93UFWTwPfC90mWEEXwfZEgAMeuY0ZMPM/Hn61/F0UN17MRxeOG9QH1mk295mKaFgcPDDJ3fguiAL5nhyWEgoKuGkxPFigUKuzcP8j6CxZhmjq+F8qke76PXbeRZBnB96g1GkiShKZryGqY6XQdj8ADx66hWVHqxWmMaBRRVikXSwiAqqpIioAkqQA0GnU810VRQiN5SZIoFMtEozE8z2X79gOcv2YxrtNgdKhIuVqltc3CsSEaizA9PUMmm2R0ZJLxiRL/+ESD7/zZtcy//e8YHzrCdH6KQmEGVTGIxeIokorneTy99Ul++IN/5Y//+E/4whe+zL5DR7jjjbdixSL09i5iaOgARsSkrbWJeqOGGMjs2rmXI4ePcfmr1oMsUS1XyGRyIPgMDQ7ynvf+L15/00Z27dzFxo0b6F7QxT/8wwf52/f9DYosYbs+nl+jXqvSaPjEzDiiQBh4Og6f/MRX+ZO776ReEyiVh2jKtQEClWqNwweP0r9gQXgOlQRkVWXnjr189tNf5O//7v3YdoUbrr+ed7/7zzlvzUoaTon773uEN911O7IqUK/U2b9viNbWFO2dbRRmCqSSOWy/GlpQyBKqojA2cQxREInFkrhu6J84NTlBrinL5NQk6XQrpVKReDxBEASMDR5G1ww8P6wRiWazSKLMTL7IvT+8lzvecBuaLoPoUJyZRlESOI2A3bv30regh4mRQbKt7UiqiqH42F4RVYkiBBqO2whFXZyAcrlEc3MWBJ96DeyGQ6FQoL29hXo1oFSeJJ7UEEQX1xEQcWlUdapunuamVhq2DYChG4yNHaGcF/j6137Eu997J7ZdQ9N09j6/n7nzeqnUahiWyUypRDqWREFk6NgEMzMlvvbNL/G+v/pLHM8lXxwnlZIYGawQtVLc/LpbueeeezCiBm97xztBAD0wuGbRdUR1k54lXTi2gyKpTE7OsHXbYxw7OMZz/nPcetNNfPsbX+PyKy7jjW+8g+aWZlRTp1ZvYJoWXuAjoSIGAWNjRzGiGtFYHNd1qFWrCL7C9h1PsXDhAmRZobmpmUajBiJMT0yTzqURpPB8LssSnhdQnM4Tj2Wou3UkFXzXwbUDYrEUsqIxOrp3tvw79DerzUxjJFtRVAOn4SAINp7n4Hug6QYRqcxPvn8Pl155JVK0GTuQaBTGiZsqDR/sQMFxPEzDYnJyilqhQDRqkcxk8FwPTfNxvdCOIPDBlWUsVaAwNYluaPiSjO/k8QFZTmG7U0yPFmhqb6JUKIHjkch04FTG0QyZUqVBuSrS1JRgamqIaFTDdQSK40Xy0wUWrzgPTI/JwX2UZ6aJWk0Uag3a2zpo1GwmJvNs2fZv3HXLH7Fp09foX3wh+4bGWbBwEYqsYdds/CCOrI+zd+8W2rNLwDPRlAHu/+kvuPrG2/HkOKZaIPAFPEdjYnoPzYkmhGiCPVu+Q4c2hCPVCQIRWZTxXI93//lD/OHd17Nt1yRmbAE33HQbuhZFVjR2PL2NBQvmsn//fs5fs4bC5BTbdu1g3YUX49Z9Hrz/Z1xx5cV87StfZ+MNG/nKF7/J+PAmbjq/mzn9eSJKlpoAmXQrjZpDtTyDZcnUqgHRRITJqSKpZAtBbh1mup99B8fpW9DL4d1b2bH5IS5cmqNWOIamRiiWx+nq7uB37n6MiKxx65INpFpMfr35GS667EIUUcC1q7iuh0+A70n88CcPcO++R3jkgZ9z5NgAZsSiVrcZ2H+E7933XVZ1VFjVn+PZXWOsvPKtXHbzzUgECI5IoMz2wx1X/D5LbCuKEg3bRplN+h2PO2VRPkXh/Xi70HFQ5wd+6F03u+zp8evLxXMCZ1fAD3wfURZfpNzpee7LlnKevg68ENcfF295pcItp49XAhYlKbREEEQBURDwThNi+S8lqPLbHGf34HiZ5+Gc0cLp9PTpa56r6ePJ69x880Y+99nPs6qv4yX2/J8T3J3Lc+e4OnC8vOCVb/eSIwABEUNTKBSnMQ0VARcBBzMSCdk5WYQANFVl06YnmdfTQiqdpFQsk4hFaNhVJkfHicVMRMWkVKpgOx6pTDbs+/UDioUShm7QaFRny+wk8vkCmUwax23g2HVqtQaarFCpVokm4hzcf4TWljQR06RUDMGRLCsUShXS6RS5XBrXdVENFVkwsKwoguwjCTKGaYTfRzFAFHx2PLMbWY+wa+eztLSkkBUFXdMoF4uz2T2XarVCPJYgk4nj+SFDNT46iSwb2H4D3VQRBIn2phxWNEp7awZmQevRo0PMn9vKgr45OIJExDBn2evQBFZWdERJRVFVAsKMi2FqBMDkSJW5czOhWqUQoCgCoqIiySLVShVFUrAbLr4foGk6giRh2/asaqSAosqAzL0PbKGrrQlF1nhyx27a2tKIUlg+7doBkhzKIKuqTK4pydRUnljM4rEndlEu2BwZGqe1OY1hqJimwpy5rUQiGo7dCANBN1TKsx0Hw9BpVKt4fsCmzXvo6WyZ9fDSUBSZUrGAFY0iSDISPqIcsn6SJIWCML6H49qh8a0gIEvCrFdiqKQqigL6rA8YgcTBQ2M88+wx5s9rxqdBR0eOzZsPsrC/C9d1EAio1eo0NaVpbU2h+GWmRvL80e3XoLctJsAPyzYdn+9+6x4WLlhItVKltauJiy5dh5WIsubCNfR0dLBo8XzSTUkMy8IyLZ7e8QzxRALHdghckR/d+wDLl67ij//oj3jTnbfzyK+eYN68Bfi+zfjEGHPnLGTZkqWUSkV27XyO8y5ayyUXXUS1XMRzbGRVxfFqqIpMMpFEllRkRaFer2JZFk/v2E0maxCNpHjm2edobmpBUVRqjTLptMWPfrAJK2ERS1hUqjY+Nnv27MWu12lvzWAlLK674RrS6TTP7drPVZdfxkQ+z51vfSu/e8stZHMpBNmjXJkhallIsowkCwwND5NMhkJBETOKKCmIooSqqaiyjhVNMj1dQghUbNcmFosznc9TLBXJ5JoxIjFsFxLpDE7ggRACismJSRYsXRAydk4d3wFZ1ZBlhWjEIpGMksu08JWvfZvB4VEWzO8lEonTqIeJCUkKcLwamhRn44bbuP32NxAELo888ive+Y4/4c1vvhPHr+L7PtG4ydRUnnK5hu8FBIGMrqcJvCqyoiJJYqiKKUocOXSMnjk9rLtoDY7rEdE1ZFmjVnH5wffu42c//imXXXYZuWwav1HliS0PcsHadWzf9hS3/e4Gtj2xhaa2NtK5LIFjk2np5kuf+xwf+vv38+GPfIQlK1Zzxx2/Sy7ZxuNPbOKGO17FupvWYrS4HM4f4rzLL+Qb93+Wd/zF27nutqs4f+VqLr/sQt7ytjvp7ZtDMmURCCaVepFEMonj+IyNTXLxRZfw5rt+D0UXsKwknhfwmc98gQvWXMihg4e4+0//jLe95W3E48kQ4Mpw7MgBstksk9OTaJqG5/ooWlhCr0VMCjMl/vgdf8jg4YNcuP4yFE0mEDwOHnqejqZWJNlAEDVkzUSU1bAX1nPxq1WmJkYwDJlKsYKlxamj09nWRL1UQNbT2H5AUC9j6SoTJZdP/eOnWTCvl+mJERTJJZdNsnfP88yZN49itYaiKARegCiJjAwPhsbZgoKm6pQrJTRTRtIS6JqOYAsMHttLW+cSZAL8hovvSRw6shPTipNKZgicBuOjA0hCQFO2CQEFUUnSlGsllc1ybHwAJz9MOT9NS9sczNQcTDPgyKEjtLZ0I6Lzpjd/iOs3LmFR31rqjQqaFkVQBEbHjjBw4DmSTVWoRclG53PfA59j6YoEjhdnYd9SAtfHdsvMTI8Ri8aolGqomoMSaWHP9u1IgYonNRGNBLi2SL1qIws6l70qRVQq0Zru55P/tInWnjg7nnqapStWUq5XePhnv2TF6hVU7RK14iRmPI5pxPj6V7/BsmW9DB05yq0330ipMMwHPvB+VvS1cP2VFpWyRSTTQhDUOXxgmEcf2cyihYsZGDgaJljrMqmudRhNq/GNHhq1OhFhgsLRzRx49hfMbRPRhEkiukthYoxkQqdYKHL9xR1csz5Fuu0gkeRemnoEPv6vv+KhZx7l8X072DW4i775ZSYbz3LFNQs5dnSYf/3xL9j06KNkMzlsx+WSC67gG9//ISsXtlGeHObQkSG0RA/L116IjIASyHjiqeDubMyd7/tMTU0RiUQQTiqv9GfFUo6XQPq+f0o5YnBck+DE8i+Oc1+qfFF4KXkQIVR5fhFgZJZdPG2cjeE7nQn0Pe+M27/S8UpiVVEUTrFQOx3syvK5M3f/acHdSwMrzgm7vHKlxePbnaqWEwaWIW0qCBCqIpzjWpJ4QknzeG3y8f9PUNln+Hf6cQfH5WgDQBRItvcRrRw7i6rQ//3A7j/nOH4CE8LMsqmj6RFKMwWmJwoYmkC1OEzgCwizAGF4YATXDajV6xQLM+HFMpfEcVySmRy6aSD4LpFZc++pqUkUKbQXKBWLRC2D6YkKjUoNU1cwDJXC1AxiIFAuNUgnU2za8gxLFy+kUa/T3JxidCBPxIqhmQbHBo7iB3VyuRbsWgNJlvGFgPxkAd3QEEUfz7UZHp4kny+F5YpCgOs7pJNJnHqNrrYIBD6yLFKpVLBtF90yAAU8iUJhhkg0wdjYOIm4wcREEUHyyGTT1KsOsiji1nx27T5ENm0iiDaCItLS0sTYaBHLjFAr1TBi+uxvz8d2SyiyPgsiA4JAxHNtquVpDC2CZkRRdCHMMMoSgSQzNpzHisYQRQFZUfnGPY+Qn6ygq6G/nOcISJKA59soiorr1WhvSWJGQiY0qgUoWuifF3gCjh2WnBqGQhB4+J6LJCr4nk9PTxuWZVAuNshmEnj4yLIUyh0HIrIi0WjUUGSdp3fuZ3BoiiefOcicnmZiUZOIIRJPWtTrVQqFIpZlheWUjk2jXkVWFQKk0P5AEBBFiYmpGXRNDZksp4akiASBjCDKIEiAOKtsKeI4VebOa2bBwlamJyukMjF836OtNcfBg8eIxUwsywyb+UUPzxGYGZlg3cWXkIxqfPhrv+CS9Zfg+Q0EwWbF6lVUGzbPPb+Xpkw7sqTDrBVGJGFiRhLs3XOUSERDlxVkIUopX6W1LUa51uCCC9Zy08bX8s1vfxWq0Du3h1gkQrXs8NS2Z0FQaG9rZqZ8mGuuvoahoUOYRoo7f++dXHrZ1fz4u98il8tx7dVv4fJrzufhhzbTN7cVSXPw/AQrL1xEPJ5idGiQJf2LwdAoVWyMSBLV1Fi2bCWxWJQDe/YwdGwfudw8AldGFtWwlDkR55bbbmLNmuWcd95FOMIkCbOTjRuuQ5IU9j3zMP/7n/6Bxf39ZJq7+cQnv4pt11m0eD6iCLbtIykKkiiFqpuFAuOjw0SjEpomMzY8FtqBVKtYhgGBgCQZKIqKokoh06zIKKIIvkt7axMRA0RZYmpqinp+mkgiQRDA5z/3RX563y+47Mp1eF6Dno4OorE4+fEJrrv6Wu74nduRUXnX2/+Uhf3Ledf/vJ1GvYimJGjpaOLGm24i25xmaHQA01QRhQDTSHJo/zi33/I73HrzBt71B/+DpeclyaZbmC7UySQzyL5HsrmZcn0aIwq1ahldNRkcHCASjdPZs5Ctm56nb2UKWYkjI/PpT3+TlauXkG42qFYbxBI5LDPBxhs28NqNGzH1CE/u2ML6y9cxZ84CJD+KrrvkMknWrFnDT+97iPPXX4pdr5HLRNix+QAbNm5AkmUefOh+Lrn0QlBEqvVpUukWpibBjJtUCgVMDQ7ve5aYpbFyyYV0dMxhungQ04wTBAHLly2jVC6RSVjcfsftRKIGAyMD4Dt4boVMJgUepJIZGg0XQ1eo16epN2bQ1QSOXefmW24mnkyj6yq6quN7AolomoYPBw89jV0rU5qsIAtJDEPG9R2m82VamjIc3D/G3r2HSKRTFCb2YeZasNU0P/jO/fR2t1FpNPAklXg8x8L+LrItOZLNrRjxJsZHp+hb2M/4yDHyk4MgOWhGFAQTK5kmZkHgQL3iUM6PIQslxEClVo+wbftz9C9YRkO1qeRLPPjgIyxcvoZULMrExAhf/fq3WL58Pa1dbZSm8ti2h2hYRDWJvdt/gVOdoam9H6Gu0bV4Ga5eojo8yde/ch+f/fx3ueF1N/DMzgd41x1v4L77vocVc0nrEbY/UyZlFBGdBl3LLiDl+Rw48DyBrrB6/U1U3TSyXWL/wed49PFNrDvvQhBlhoYOk0ylGB2qkGvtpKu7k/ae85l0RCRtjKFj47z5rp+w9ro4OTOB7OhowiSrlxU5svswT27axtIlfXz5q9/g1te/kYTVYMejWxg+MszCxUtp1HwuuexGrKYalt7Ox/75M3zp49/hf/9lPxdd3EGhWCCd0qg3CjjONIZmsHTxEhzPwxNFjLY5LFhyOzPVOMemRrHkHFt++S2C6eeYPPw0fVkd1ApSUCHuZrHNAMfzaG7NMTk9iqrKjI+NokgmyZTAtRe1cNX5KS5fFWdNv0Gms4XOhItQy3Po8Bi33P5OVF3lho0baco0s//gTnpamrn0ovUc3vcM8VQLq699HR1t7fiI2LKMNCvB/3LgThBFIlYkTLKeHOSe5OsMoZn5KXYIASCe2pN3PNaFsDtCFOWQ3ZvVpzj59pKJfoRTgNqJMswzWRXM9rZJJ6lUhp50syudtB9h9nUdv538nBe8YOdwtrLPU47xeLnpbL/i2SzcTq5MCzi9f++VlWX+vwnu4Bzb4oKXzBac++IvfMlPbu48t6WEFzV3nknx58WbnXoMohiq+fhB2ICaSaX46ZMD9MYapx3jfwO7cJzNXO8/YJxUEy6KIlYsRhBA3W6EQAMBWVapVBqkU2k6u5rQVAnX8clms2x7aidtrU1ErQQTE5NISli65/sOuUwKx3ExDJNEIk693iAaNbCiBrIsUihViUXj1BoN8oUCkiqwZFEvlVKJwcEhFFmkZk8STxgESIjoaHKUkdFR4okYkiiBIKIqKrqmIophI3MqnSCeDEvdarU6e/eNMnfuXCJmhPd8YwdXrcjgez6appKfKRGJGAiCyNTkDJIkYhgGxVKJyckZOttbsCwF1wkb3YcHR0m1Rck2xdGMGAEmdkVgy5bn2XXkGAv7cqimgyToYXJNkJAELSyZ9DxEUcTzXSBgYrzKTx56hqVL2mk06hD4CKKEIEpYEYu9ew8Ri5pIksjShd10daWIx02CQEaWZfzAQ1FkggBEUUGR1dnGcQ/TNHE8EAUlNGqVQFWlUKhGkJEljZmZIoYRgs5du4+woLcNTddwHR8BiYZdQ9VUJAkURUSSZFpa0rS3penpyqBpGqIQkEjGEEQBRVaJJWIEvk+pWESWJCKWMfuaROxGCMgdxwn77mQFUZJRFBV/1kvTdUMfO0EAWQqBYOinpmPbAoYhUa9XEEWZp54+yPx5rVQqNQaHxmltzSEkdlPYAAAgAElEQVSKEjt3HWLVqnl845e7WdHXxSe+v4nXvvYmBECSZaqVBrpu0t7ZydjIAGZEQ9MkbLcWsoUIxKIWghQgBM4Jw9YADzMSD3vWtj/N2gvXkuuUsRI6E9PjJNNRyvVpZiZm6Opsp2dOC8lkMzuf3cP7/vrv+NKXP0cirhHPZJicnEKTDb7yhU9zYP8U+ekx5vTmUHQTWZSw6w12736elpYWvv7Nb7GgbwG6JmM7NXw8RCHAdW2am9rQIwa+57FoUS+qEtA9r5U33fF2omYr1XqBO+94J3e+/dVsevgpPvbxv+WqKy7l5t+9jfaudgaGR7nmNdfiuTVUTUQQAyrlAppuMjExhmM3cOwazS1tHDt2lFgsSSqTASCRiCOKEgMDA6TSSSQZbKdOtVbGNCLh9cHziRgGkhLFFxSisTSJeI53vfNPWX/xei697BLWXbyGcrlOR0c3D//yMRb3L6UwPcOPf3wfb37Lm3D9OnPndbBw8WKqZT9koMUKimpQr7rMn7uQv7j7LzB0A0kW8HyXbDbFm9/6OiYmSly87kYuv+J63nD7rSQzaXy/Rrk8iSCFlgQiYUn445ueIJVOkcmFgGN0ZITLr7yYUqmCrso0NbUwNT1JT88cFEXjoZ//kgULF7J65Wq6u9sp1yc4b9V6tmzezZe//FU+9JG/5MYbrmd8fJy+vnls27qZnjm9tLfm+O73vsV3v3Mfr7nhGlzHobu7B0VVUUWHwsw4UdPEVDXK9RmymTSaohOPZ4jG2kmk4kRjIqKgoqraLBsflhmbmobre0iyTCweQ5NUavUqoiRSqzn4YpX8VB5J0jCNCPV6mOSRJRlJkRkeHqG7q5disUC5MoPr1fF8kdbWHKlEipl8mSc2P0Fbe45ScZqOzjaGBg4xb34vza0tKLqIYSRQZBWvXiIdEanaoVqvFU8gSSH7BxKKJCAFDolkOuze9z1yuRyT01Mkk1kkWcFxXXY/+zSNuse2LVtpaWtCkCAeS+EGoaJrMmngOAIxM0HE0pEVgYceeIIrrng1XV3dTE/nwZ2hWpxBVUVKpUnMeAu6DHue30NPzzw2b/8Rt93yPj72wS/zuo0X8cF/+Bj/40/+hFxzlnlzu9GkBm2d/TT8GG09HWzfsR1VryBKGoGkg+Ah6xotLTkmx4fZu/Mpeub34Xoya9ddRSBGGRjaj+M2mN/Xx65dO/nZQw+SSZq4HsQSBl/51H1csLqf669tIR6pQ7WO7deI5hZzeCzFkkU1li7PUfeGuO8HD/Nvjz9IreYxPgHHhvcQsXSe+PX9pFMZ6mWfDdfdxoIFHTz1602sWxtB03t59OFf09bcgiKoSH4MWW7igZ9vIdrUTq6rg3j6EuraIo4eO0ZKKVGZfILeORJiMEZnV5wZT+DWux7g1ddeSrqnjF0V8DyXUmm23F7RyaY7UFWLwBeRFHjkkYfp7OxBFAVGju2iZKf4/ffcz1vvfB3/64Of5oaNr+VH9/2U/FSeteuWsfO5bSSjPiPHnmJiqspF191CIpkiEEQCUUKarXx5OXB3VtDHCyQFvJiJE2dNxk9d6iSCZNaC4Gxx88sBp1OeP42BO3me73kgnAoGOV04/bR1zni8JzN/Z9nfmbcNd/ZyuhGNRgNZDoWaOEHm/BcBdy854Rzj9N+UuTu+gxcyBC+g6xM06kkNoKI8q655puauM3ypjisFnT5OVhl6EZcX+KGPCGHwJggifX3zef27PjArsHIO5YSvdBxXjjyBG397wPGFDMap919q/ku/3JPfj3M57nMBx8Kp74EQ3veDAE3XMS0LUdYQBajXbFRNR9Y0fBzGx6fo7u5EEKSwNDNlEQShBcLoxBSJRIx6rY5IgGboiFJoOn706CiJlEU+nw9LsuJxKtUakiyGgE8SqVeqaKZGOptkfGQCSdCIWHFmCiXGJyZQVYHW1mYQBYqFIpqmIooSRw4PEImYKIrC1NQUumEgSxIT4xMsX97PyMgQPi7f2nyEa/stbNshCAIGRibYtfcoc7ubUWQZy7KYmJgkZllUqg2iMRNJtCmWaphmBPAxtRRSoPDYoztwG2VicYjHNdauXoSiGoiiHn4KfsBXv/0oi/vmkM/PEI1ZANiNUBo6GU+zZFEXiiagylqYLRQlfC+g0bBRZJFoLIIgBLO/p5B1D3yRI0eHicdDo3BBEHly+35aWjKhqIrgYnsBqqozPTFDoVChWqnh+z66oVOt2qizYHjz1udpbU7R3JRCEHye2XkQTVF4bPPzLOhrJwgCREmgXA6N7kMACoosocgK4IXnEUFElhTqtRqCALqh4doett1AVuQwSSCJs+awQngeQp7tbxdwHBdRmk0eBWFVgaIo1Go1dMOkUXP5yrc3s3pFK6om4Tge2XSaJ7bspr01jRUxEESBIBDwXA9J9hkswIKOZn64eT+v3XgTdsNDVzQkScWbDYjBp1ot8+BDP2PO3C5c30eWFXQ9ZIJLhSLFYoG29jZ8Hz7/hS/S29fPtddey/O7n2PBkqV4nknUTPOD7/2Aa6++mgVzO7DtBlZCw3VUGhWfN991F6997Q3cfPMN+BjcduvtfODv/5xVy85j1/NHkUSBRUu6kTQDXdIICJg3fz7FcollS5cyMT5MOh1HUxWmp8dpNOqk02lkUUbRFTRVRlUkTFPCpQqBxR23v5XLLj+PW3/nJl518dv56799J9dcczWJbBP1Rp3J6Ty5XI5CoUAsZtJoNDAMDUHyEASFWq2CpskYhkbNdslmWxBlhWqtgqlHZs8iAqlUElnVcByHRqOBIIQ9n4HnU6/WMXSDctVDEUWe2voUn/zUV3n33XcTsUy8oMHhI3v4y/f8PesuXMfKlav4l099lq7uLt76+2/G9qpM50eZ29uD47oc3DtEc2sTMzPDGKrF4LFh3nzXXaRSCWqNGnW7QiQSCrfUigYXXXwlN//Olbzt7b9He1sn+dIUuq6C76EqCf72fX/H1Vddg10r0t3dRzKdxHYaJFNpFi/rxa6AoYoohkR7Szv/8qnPcPFFl2AYGh3dnciygmFEeMe73smtt93I/T9+lG9/64dohsI93/ssmh6jq6uTeqPGvLlzePfd7+XVV11FJKpx3Ws28v0ffI977vken/n057numtfg2mVam5twHY9ifgoEH8OIAArvee/fsO3Jvay7eDXj40dIRtO4+FQrFWRFxjRNSjMzCIKIKInMFGZQVYPp/BTReBxJ1lHUBgQSrisQMWIIgYzj2MTiMWqVKqqmEbOSjI2PIEo+Tc0ZAhQ0RcVzfSwzQq4lQyqVQtcNntv1DMXyDKl0DjMaYWx8BFmNo0kSTnma6YkjBJJFMpNEEMB2A2Qlgmno5CfGCNwaZccNe3YlmYmJSaJWKuw7nk3utGZbkCSZ+b29ROJxZNXAt122PPksbW3NENRRApkvfumrXLR+LcXCCCtWL2Vg6CBNLTF8qcTAwcPcfPvb2LjhegxNZLLg0NSUQdV1SoUSv/zFIB/40F9x0foesvH5vPZ1GzBiEZpbm/niZ75E/8I2ilWTW25/F7e+YQMrV/TRsIskEx2k0iny5SKPPvoYXZ3t2NUZFvf3UXEkFC2Oj4rjelgRlXS2ldGxUWynzoYNGwi8KkKgYPsV+vuXkkrHMYwJ1Po8qrVBtIhK2Y7x5a9vorc5QWdbC7XKfno724jG2ti2bS/bfj1A77xmvv3ZTTz26AMkjDoDB7fwq4e3sbAnIGO5XHVlN75o0tkaJRmX8IIanj9D0Uvw5HPjvPqGu0mkz+Pg4BD7Bw7Sns4ztf+nqHaeqO5RmikyPVXCr7i8+pL5JK0KlUkHUQTP88Lg3vexogIzFZdSfRxNquN4MG/uPOp2eP3pbk5Rp4mqLVIqTPLs7mH+7N1/zooVq0hEk8hSmscf38La85bx3JPb0TSda279PRClEPAI0gnm7oXY5bSKL0E4c3wXBIiiFMalwkkM1Uns3FkFAk+JnM4O7I7v5/jN971ZcTD/BGMYnPT8cZ+6Fy1BOE8UpVAZ82XVN0+P1V+YfzK4eyU44kTJ5UuUmQqiECbZT1hrCSf+/i9Rlvn/7xGc+uGf0X7iOLgThVPrgX/DXjw4O+h70bzjWZIg4JZbXsdPf/hd5rdnz2m/r3ic/J3+LYO7s+73XOa/9OxznPObvr4XFKJESaVaqRIxI2i6iid4iIKEFbUYG51AUmQ8p0EsrqFpOvV6nVQiytTkFJYVQY+Y2K6L5/pIksIvN+0gEYuSy+ZCX6NiCSui4XsueAGyILF77yGaWrIgSli6SblSDcsrohatLU3IUmh2qmgysizgOQ6HDw+TzaXJ52eYni4wM11lbHwKu1Gnu6sZ1/WYmJhG1w027R5lTWvAoWOjdHe10NScobe7nUKhgG5qjI0XqZRLiELY35dIRbGrRY4cm2bL9iMsWzKHSrmE7dToX9RJMhVBNRUipglB6O9Tr5YREJFkEd9tUC3XODo0SSphoukKsiyhqjqi1MBxGtgO7Np1iOaWdNhjFMgIskgiFcdz3ZBxUn2efvoIv3rsAP29aX74wLOsXjE3LM30Atpas0CAeNyEVJFwbZcnn9qP73soksboRJ5MyppVOnXZvuMg8ahBJh1n65N7kESRnq4WBofHueTipbgeHDs6BkAsFsX3mb04CvgBoUWEIISePUAwyyQKooQQCKiqDEEQnlOkMIisVqooqjy7nYggCQSzPQ+iALIk0bAbCIKA6/houkq1WkHVVVYu7wlZND9kQHXdpL0ljWHqlMtVnn7uAKamMzw6Q3NTmg/8+Ai3XtLP9NQoF1xxPQf2H+HZp5/hG9/8NstXLscH7v3BffzFe97LB97/AeyGQySi8auHN7Fr126iMZNHfr6Nnc89RzwRobWtiVXnLSOVihOLWhw6sodstp0Pv/+fWLNiKcmozfTEIcozMzz+xBYSqRixRCti4GGaFsuWLuX++3/Ks0/t4+Mf/xcy7Spze5dwxavWs3LpChqOSyEf8Kl//kfqdoOuOT24gY8mSth2Bd+r43lgWWmq1QqSBJXKNIGg84UvfpUnHnuCiy+6kJHRcaJxjSuuXMvo6Bg9HYt4zcZlvPWuv2TDhhvwBJ2f/+Jhli9fhSwqmLqF53lEI2lc12dg4AjpbBOSFBAxNHY89RSJTBZRNsN+LRzy04Ww1DoW9uwNHJsgl2sBIRQ+kSQZWVL48Ic+wvjYBH/2rj9kzbI+Fi+cy9/+3T9w+x03Y1o6jtPAMHSueNWraGnJ8dfv+2suvWQ98xa0YVo6qqahGxFkWQcUWtvj5GcKKGKC8dFh5s3tJhZTmCkM0rBrxGIWTz25k0yqhR07n+T9f/9B0s0y2XQ3hw8eoLmtGachkB+ucccb38T4yASvueYqdD1AU2MEgYfnOwiijBEX+M6XHkCR66RbUsiyygXnX0S95iAr0PBsDNNi796DtDQ3EzOz9C/u5Yor1rF+/Vq+e8+97N87yF/91d/QO6+PVDLNgw88xIYNr6NzXiu2B+9997v59Kc/y7at2/nYP36C2++4k09+6susueBijIiFpiiUy1UEWeDKq69k2er5oYJl3adWHSaeagagUqliRSKIQDQexfFC9l4QZBzPDYWrZI1DB/fQ1TkPWdHI56cQpABdN6g36kyMjZPJZWjUK/i+TzyRolq1w35EI0KlWMEwVAzTwrUlPAfMiElHRwf79h4lmkgjySp+YCMFAbKkkOmahyzIHDl6iObWViRRwy6WyU+MU6tXUQ0dIxqdPXfJeC7EoikUTaJuV0LrFldiOj/FP//Lp7hg3UX4qBQmitz55nfy9j/4faqVEvGIx6q1a9l/YA/tbUkCUScWb0LVLFQ9QizWxB/80XvQjBimphFPxCiUSwwOT7Bk+RqsWJIHH3iAhX0dPPb4VlxHYXJ6mo6eVtpbmhHlKIGks2pVP055mmQiw+at21m9Yj2Dx/bj2jaXXnI5dsNFVEwOHRpAUTQK+QKJuIooF/G9BGOjBVRNJ5VJIQsykyPDqHKMQnmGufO7qToWI0MBol4jmowQ2AFCfZr1a1tJN0cJPIVYxCJuqjzx8/t5zQ2r2L/vKW55zQU0p6u84y2XkItXmd9doD0ZYd2aCNddeh6BO0U2HUGTHBoNjzomspom0XkhKy++CcXMYRoqZbtOm7if6sCjRFQHUfSplIuIgkw21YJlakSMKo4zQeCZNOwG5VIZVVaImibjwx7/9st9LFo6H69eAUmiUq1i6Dq1ap1KRSYd91nY28THPvcLDD3O7n37Wbx0Oaqs8uRTu9m6bRMbb7yCg7ufQVVldg8VWL5yFQgivqicYO5eCHfOAO7OGBWJp1ghvKhdiHO0FwjOPbYKmAWUZxNfOcu+xFmT8jNVy4ULB2e8f6b1z9izdy7DD05SGT3zEE47vpPHf4O73/I40XN3nK2bVdMLbwKnyraGDabHswIvN45nOo7XJp/uaH8uIwiCEzDED3w6l6zlyDOPk4qaswd1yuzTH3iphWe3P5m6D9+HQOBlszP/EeNEliQ4/biDs5yAXo5x+z9RpnryMQTUy3XARVQ0fDE02VbVkNnYs/cACxbMZWL0GBEzgY+LrChIkoChaYxPTBGLZhElAZ+APfsH6WpNUynVsKIxCFyMqE6t2kAQFFRTp6U1GyoqBgFaxOTo4WESiSiGqeEFPuMTeVKJLIHnUqvWqNcccq1NRGNRCAJiMYv2tlaS6TixWJxSoQpS6Ie26/lD3PP4Hl57fhNNuVQoSOIHPPbrp2lvyeA6AUODRQRRRpEFKtUi0bgJnonrCixa0MPe5weJJyNEoia1Wh1F0QEVxxEQRRlBElF1CUk0CXDIZOM8tm0vCjqZtDULbMIaekEQkGUZVVFoac+yZeuzZOIRFF1BDCQalTyKFl7KPMcjGUsiCSJNzWnamixUhVn1TAUCmxfK9gMCT0BRJLq6molErJDZqFSxojqjIxNUSjXm9nTR1JTGcRy6O1tIpCKohkI2Gwch4PChAVRZImZFuf/nT7Ggt5tDB4YozdSQBY1fPryTOXNy+L6HLEg4DXuWzQtO9CzUGw6GGZrGS0pomyHLapgfFQLKpSKqpuH7Hr5fAEHC9SQ0RaNuV0K2UBARRYlDBwcpTteIxQ0CAaanS+imjCD4WFGTtrYsViRKKhVFUTx+tXkP1120jNULOqnGeoiYFr1z5rNr5xH6l3aSzqTo7uri2muuplqt0dzUzMjwKJ0dnfT2zsOKxFi0agW9C+ZRmMmjCALf+vZPWLy0D1G26evrQ9ZjjAwPsGJVP5GoQqlSRosnae9ZQCrbTt0tEYvq3PCa25DlCJIkcv66xUiSz/O79nPs2D6mhgokYwm+8sXvMHx4mLbmJPv272TZyuVEo2k0DcyoiaJp6FoMSXIxdY1SsUQ6m6MyU+SSS9Zw8SVr/z/2zjzerro899/fb81r7fnss898ck7mhExAEghhCCAIGAYRESfQ1mqtrUOrWOpQta1D6a1zVRzq2CriBIoiglREVMYACWROTnJy5mHPa173j30SQwiTbe/t7e37+eSTvc9e495rr/0+7/O+z0OYGBgywrIzNNwQW5Ng1MjlOth88QuZrc5i2zrzBxcgpUYYCUDBC1rWIBPjM/R0zWdo/z5y2QKgksu345gpPLfGoeE9aJrGP17/eTads5ZKdQpDs3nPX7yDM07fiEDljNM3cfUrrsFLPM4493QGBwe58tJTyOYNEBEXX3Qh1739fZy9aSPv+qu/Z+kJK+joaCMKE87ZdAaZlMBpy4EfocQqiuYQRAJVtu5Nvhtw112/YumyZXhhDaHqaGoe3VDxa2ne+efvZ+fjT3DllVfi+hPUqzU0TSGTcdi/Zx+dpR7O2nQBixdk0cw6L3v5y4nRUM2YqdkRqpUqOx4/SF9pPj+89VtccvkLIBIgfQI/QUqd2356M+vXnkyj4jMxNkHTm2RqvMynPvkVvCCif2GRwfnLeHTL43zwIx9i3kA3TlrjkhdfzJ79O8im8+gKzExOoqkpXnHNK3ndG69BV1wWLzoRy0mxZduDzBtcwMc+9k9sOGUdEyPD6IqCpiWMTR5iYMFSms0qEvD8JkkckcQhXlAlDD2eeGIf7Z0FctkSYajiBU26cwUqlRqqbhOpFlJLoScNPG+GUmcHu/cMU+psx0k7KJpCKpVCoBJGMabjMDldabWVy5hKo4qm6zxx/69oL+bZ/sRWFs0fJPYCpGFhZjIEzRrl2VksI8X4wUPs3bmFtt4l7N23j4UD/ZRHx4ixCP06Ug1xXQ8lTpiamiGIwEo5NN062VyaVatWYJo69eoMH77+43z0g+/hy1/6PCedeibbHv0V/X19ZLLtBKGFEcNjD9+OX5kkpxUwnAzf/ua/smr1Qvyogq0a3PbDX3DG6ee0LEBUj4e3/JoTTz6J7Tu38tnP3Mj7PvA29u55iLZiO209FtVxl5PXduKGEdsfP8iJaxcSBHV27XoYU+q49SY/u/0eFs1fxeRYlVx3EUvmmKkPY2dP4MZvf4Pzzt9IIVVEJnUsqxfNzhLLgJGRERA+ttlOuq0L4XQQRSkSf5gwmMIy09jCYbY8jJMVNKIZ1pz+ItLmJC88tRclHuKE+TYyGiFteRQyXXT3xbQX25isTiH0HK5XI63H+AE4PafTPu8l6Ok8W7c/gpFWCaRATm+lPv0LMmZIElhESkDgK6TSWcrVKaYqHpoWYpppmiFEokq2oBDHOpoVMTOrIeMYEQU46Qw0HRzTJYkFiWGTL6aYHGlipRL+7Z69rFy/ieXLl9Pd0cm1176D17z8Gtp6sozv+hnCq6A5Dv2Di+hfvAYV0JOQeK6AeaSV8lnA3eH8lDkrhGPbMo9OfaSUc0JszyyKgmixVi3NimNaKmXL/1lKpZVFHc3QHfX4uIzdYYbviGfc4fydI10tx2P8jp53e/Ls25PVPo9lK598+r/L5Q9jhqPbVYVs4YcnaWkck+a3Zhdbx/d8fO7+fRqf/5/GERr4v3AcLUtrWiZ/9dV7//N2dhSY/M+O5/3eP107wf/FyOSt1k0qUDBiiySA2kwdmaicvHoNQmg4Th5N0wiDhHKlSaPu02y45NJppBQEfoAKnH/GSnp7O0hnbQ4cHEI3NCI/wrJtLNskjiLCICBfyDIxMUUSJTz0+H5U3aTeaBIFPt2lNqSMQSSksw65Qpp9e/e1pLjjBMdJseWxh/HDGuPjw6h6jGOpKJogm3WY19+P41ikHAtD12g2XdJGEbcpSKUtlp/QTnshzUy5RjqdQgoF23KpNcZxMpLFyzp5cMse4ghM00SIiMCN2Ld/P0JxgYAoVIjjMtXqOHFUR9cicjmTTNZGkS3FSClb9hBxLIkjldCHtauXtURi4pgodklEjO8FJHGC14yp11127x9FKtDb14FlWegtozxAhUQhjgVJrKAoJmGYEEcBmayJotcpdhgtNUsljWUUGB+fQtMkj2zbSRDWUdRWlS4IAsIwYsHCARqNgChOWLm0nyTx6e0v0l5Ks2P3Ps4+ewl+4FKrNYiiBEUxmJ2tEkdALIhjhUbdIwh8/KAJcUQSRZBECBIqlQrpdIogaMnTa1oGKU10TSOKAqRszeLpuo4QMDY9Rd9AAT9wUVWVXD6DaegtZkMq6LrG0IED6IZCnERccfo8hEyI45ibbryZv/2760k0yR+/6XW85U/fxN+8+73YtkOtWmNqapJarc5dd/2CsbExNM3A830mD+4l4xgsWbaYbEcnr3vD1fh+gzgJW0yRnuA3qyBUFDNH9+AyHMvhoQfvJwoD4ihBV9OsXL2KCy48l4sveSGLFg0QRxEbTzuDk07cwJq1y/jQ9e/nlFNXsmBJJ0uW9/OGN/4RxAn1apWm60ICnhsgBARBxOTUNMViOyMjY+QzXSiJTa3qcfPN3+eGz99As9mkvViAJCGXL3LwwAhSUZGKghQtX0tD15iZnmZ8fBxTT+O5Ptmc3RIA0tS56ypp+QyKEM9r0NffR+C5xEnE9FSdjvb5vP4P/5yPfPrTqI5NELnccsu3ifwQ27TRVI1cOku2fR5OrptUoZvOvoW87S/fjmrrPPzgQ/S2dyCkQDcUFC3Gj8uEgU+9WaNWL+MHdaQa4Xou0zMz2I7DgYNDDA3tw7azVCsNEBJFGqxbfxKTU3t5y9tey9q1qyGBcrlCGPpIGVMopJgtT7L+tBN57/vez6c/8xmkolBvutRmVdoyC2lUVO64/RegVbBsB03p5LvfvZnJyTJ/dd27+c2v7+Wcc19AbUblnX95LYuW9LDupHP4yle+RoLCN7/5HYh12gq9lErtjAzv59DIQUbHx9FUlfmD8wnDEFXVePU1V3HX3T+h1JEhZRtICV/68mcQ0mPlqpadwWuvuQaAfD4PgG2n6O8foFatY+jpFhNTD9m9c4hq2aXZSEilM3R25Qn9kCSJeOLxraTs1izx2Ng4CTGWoSIJkYaDYmbxE42BRYvxfb/lJ7ntcQK/1WYbxyGu1ySXy6IbBrZtk81msG2b1RvOpNgzwLoNZxAkEk1T8DyX8bExhoeHcLIpunu7GFiwgEK+iOPA2vWrSDQVq1hCUXQe37aHONSxzTRaxqGrvxdNUZBBTCadpl5vkMllqdVrWI7Dddf9OdXGLK+65hU8se0BVq1Zx8TkOIgme/Y8zGRtmlUnvYCugaWUg3EiPC655CImx6bRtSy+57Nk6QJqtVk+/4XPo4osf/z6v8DSipy24Ty+ctPH8BJJR9dq7GyR6kzCwMA8JkansG2H5ctPplnX0GWJ5Ys3MbB4EfOWLOb8zedTC2osXrWEqZED5HM2pXwbju6ycd0KZqcnufnW29CcPIfGHySRU4xN7GLeYJGejnYO7d+BJjyUyGWm5lMcuAhZPAPZuYwyZRRHI45tpFvg2j/5HN6UJJUuoKYcGoqAVBZPc6gDbjnEq4TEjYjmjBWREFsAACAASURBVEc63cme0ZCxZgk1s5QgNcPO3dtZMrCUHsNkxy9uZuLgz0mpNo16iBtXiQKDH97yG2qVAJmYfOlLdzMzIZmZDNm3d4ybb3oUTXSTsjsIfOgfdFh1YgfFDoEfjpMqBmh2QqMmef/7fszYyAT1eoXZcki5FvLb3zzEvL4FxJHC3/3N3xNR5cHfPEZX2zJiEsamGwzMXwRJ3OoYedIkiXiyEMpzjKRlyPC0r0sh/8vnzM8WSRw/Z4uzwxFH0e+8AY9nqxa3FGylFEc6hP6j4r8Nc/fvl8Z/PnFsdeIoQZWjKgjHHfI8qtpw3C0f06t8bBw9d/ekQzjmyI59/tIrL+dlxzU4f6b37ZitPB1QOszg/QfEkzZ/uIf7uJs+9o/Pdh7/juM7survu50nryekZGZ6gtCvQDSOVDRct4mmKdz0g9voLnUyMTaB5zcoFArY6TT3P/gI2ZSDqmtEcQRJQuj7FLIODdfDckzSKZsoTAjCGM/3Ueak8DVNZfsTu1i6dCGu59FRbMO2TZIkolwuk0rZIGFqagbD0FF1lXwhR7PRJIpCBIK2tnZ01cQ0HXTTIgxchBD0zevlO/fu4vK1bQghcN0mAsm+sX0sGOhkcrxKteKjKrB9zwhLl8zDNE1iv4rrScrlkHQmRzqlcv9Du+jrLiGVBIFCLmdAHBEGESQaSdgSqLHMDMMHZllxQh+pjEUUh3P2CII4BkVq7N45zIOPPMGSBT0gWjOpcRyi6jqqoiOFyiOP7mdgoIuli7uJYn+usvi7amQUHW47gThJ+N7Nv2bBQDuappAQQmKhqhpSxEgZoGoR+UKeOA7o6syiGSpSqgS+jyIVGo0mUuo0Gk2EAmOTM7TlTUgSLNuksyOHZrTYStuyCYIQz/Upl+uks2mkbInutKp4CabREn6Jw4A4ilEVBdfzMAyTIPAxdB3QIBHs3j1EqZRDCIUE5kRgEub1lggjr+WRp2jUajU0TcVxMoRhAElEOuOgaRq+56KGMcXOfhISPvSVH3PVS19OR28HmiZYNL+HNatOAqnxy3vuQQjJ4sWLyOdy9Pb288gjj1Kt1Fgwrxff99FNgzCJ0VWJYSjouoGhp2iUpzjttNMJYoFqWPihwKuU6e3pRjdM/vrdH8AyMkyMj9HWluWEFcvYuu0xPvCBD/PCF17A17/+dVatWcLggn4GF/bSP9jF/IWDPPbYE1hmis5SEWTE0P4DFIudVCoVdEUjlU4TRTG5XJ7JsSn+8I9ez6WXXsLgwn42rD8JNwhBSlQZ02iEdJS6mZ2p0NaWodlsgGj5FO3ZvZuBwQHcpo9pGgglwbJ10k6G2XKZKIzIZFI4jgVzrbK6btKohUxPl8lmilx11ZU0aKCqElPTyGXSbFh7Fq97wx8SxxEH9x5k184D7No9hJ1u45Zb72D9hrVEkcv4oWn+6ZP/yMtedWXr7hP7TE0dIlvoJQ5C0qkU1UaVyelxHCuNaepMT81y043f54orL8PQbO64/Rc8/vgTLFt2AmHgcsMNHyeVMVh14moy2SzZbBZdVwCBaRuYlsH5550HgJOxCUIF1wtIpWgBwGKadetPIJY1zjrjIv7X9Z/j8pdegpQqLzz/Am754S0sX76cgwfKXPHSC1C0mLvveoRXvvIyVq1cx8DAPG7+4S24dZWXvWIzlhZiOSrpQh4RCw6NjGBaJoEfYKUMzn7BmShSkEQJWx7ewmv/8DWMT4+h6ZJa1WXn9l3s27OLxYsXcu+9v2H+4EJ8L8AwTcIgplyukMvl6enuIZ1KU6s2kFKlVp+lUfXJZVJ0dRVp1htohoFuaBimgSJAERALSNBatiWaSr08g+3YdJQ6qTcaqKpCy/hdMjE5ThRGRFHIzEzLk9SPJGGSoKgajUadoFElAaQC+bSDk0tTrzepVmrohoGTtti6bSuJhFyxyPT4JKBw6w9/zKpVK/FFSBJHWLqJTGBsfJRMNoOmttq8JyYmKBXzaKaFk7Yo5NL4oSCXy+N7dXRVkO/oJQrNVjKquy1T8CQgnclRr3pMTgyTyjiYtsnadaeiqA327t2KZsVMTg7hFAxsqw3DyBPFHgQmut6yQsm3daKaEtOO+O19DzA4v49ybYYogeGREdK5DFESMjM6jKpbTE2WMbQytpnBtA16+hYTSY9quY6ppynPevR0LuDQ0A5y+TRJ6FKtTqMYOcqNNPOWrmXWC3GsRZhOB2Njo+QyButO7idbbOKFGrsPhBT0GTK2iV9vIOIQqYEfRyRSYXxmhvaeE7GKqxlYeSGVuoQgIaPq+JUxRnf+kKz+OIWcQtRUiIWCkzfY8uAe1p18MooiCCOfrp4c+ayO61Xp7MnRrPv09mepVGdQtCpDeyuQSCzbojzjMz1dIJ1KEQYRa09dRD6dJZPVUbR53HjLg3zpy//KBz/4Yc4++wU4Toaf3nYz5517Ede99U10dDk09C4ueekrSBQNlLnfvGOaoA6X68XT5HyHmaYW4/Y7nYckfrJA4fEsD+RxljvM6rU6cJ6qNi+OFkE5omuRPPXx3D+pzOlfxE/OzWNixJEZ9NbzRLRGI46c21Gzd0erYj6bcMrRs3tSEXNM5vEVNYWEOIpbAnvx4fzwWLZS/K4jcC4veT5tmf9tmLv/16sC/94Q8tkrLjfe9HWu/cYjDE+V/w8d1fOMYzFvMve5Jk9e5tk0Tf6rC4IKodBW6iHGYGKqiu+HZHN5okQSRAoT05OUa2UcJyYIq8i4yfy+djRDQbNMLFNj69ZdqJrFngOjJInEa3ps37GXKIKDB8fxPY/xiXEajTq1SpW+nk527thDpVylq6OAriqEQUCpVCIRKmEYYRot1cg4bilCptIp8oUMrl/FNHUECZPjE0RxhOFkyWQLKIrE1CSmaWEYKrqhohs6p61bwcRUmWw2jWkopB2TjvYcSSLZtXOImWqNgYFeSqU2qjMztJccztq4AiFUfvXbx9GNEFVa/PjHjxO4CrfddS9NHxTVACVh06ZVZPNOy7ZAV1BUBdcNEMTMzExipxU2bVyM2yy3WiulRFFa9gxxLAg8j2KbhVRiVE2iKnNeeULAXIvn+PgkCTFhGJDEEZe+aF1rXq1Zh0QiZISQEZVKGd3QAdECpkLiNmN275pgcnyKhJYlQDqTIk4Ctu7aTyZrsmJFHyJpDZJXqjVi0RJEiWMFIVUSEaMokMlYKAp4XgNNF6TSNrphUK/7CEVDNSyQKrGQZDItSwPbtlpsZRIQxx5LF/chFIlUEqLIbwmtIHHdkDiUSKmTxEnLV1HA9OQsXtMnETG6brB/3yi6bvGDB6ZxmyEz07Mg4MxzTubtf/pW4qCJ7mh09ffQXmzj9I0bWbduLcPDh+jo7OGOn/0cQ7eZnSnjomOmMigyIg6miUIQwqBS9qhVQp7YP8wNX/wKp596OmGtweSBA3znxu/wk5/8iNB1+dDf/j0nn7yCa9/5Vj796c/SqEtWrTiNtWs3MHRgH9e89mVMTM7Q299Pob2AnTKolAUHhyqk7BQz08PMzs4wb3B+iyVPWfh+gCpVdM1kYnyKIJngTX/2B62iSdqiVqsSRyGaKtF0jUymjenpCqVSB5CQzafRVIUwDFi2fClxFGCnVCrVMkmkEPgqv7znV2SzGWISojghChWmJ+pYRpH3vPt6Vq9azZlnnMVVr7wCN5glo4SIwOXOO+7CdeGmG29iZmIax3QYHhrmw397PSuWrqQtleOExUvxyxXStsXpZ27klp/9iCh2qVbLKMIik+qhWYdsqoPLL7sKy0jR1dnHRz78YeI4xjJNTjrpJDRdYWhohI9+9JN86hOfIooSXnPNa/jkJ2/gO9+6nXn9naTTGQ4dGKZer6IpKaJA4DZ9HDtFKpenXm/iej65QgHXn2Xnrh0M7R9D11KosoeG18DMhKQyBVJ2DkVReOOfvAFNM1m0LI1lmRhqnptvvpH9Bx+n2O7g+zXe9pY3c9273sWeffsQsUs2axHS8rKarVSwDRPXbaIYLVXRoBmw9aHtPPboburVJoEXUKv6eJ7PCSuWs/aU9QghufXW23Bdn+HhETTF4M47b2NqehTXr6FoCUFcwbZNfA96exdSq9SIIo9qZQpFSoQqsVNpKpUZoshl394ncGvTbH/0UZQkQiYNstkcruvhNputtnFdQcwVaUqlNorFIq7nkcvlqNdq6LpKHPpsffg+Urokk7Jpy+dQpCQOfCanx7BTFv0DAxSK7dx3/xYWDC6kI58jmh2nrZRi6bKFXPbiS6k1pmnOlFGT1rFGCnR0diAQTExMIoUk5aRIQoU9+0YJQ4XabAWp2jTrIV5V0tu+iOqky+4dD7F966MkzQzV2YDJqUkqlUnCyCOJIixbJU48RoYPIISg0FZAV1VOPvkk0noHjeooqhxHRAGqojJ0cBs7t49w8/fuYnoyRIgUmm4zUymjxZKg1mB6dJTq9CSWBotXrEbP51mwdC2VxiSpYjsoCo4uUKMGtXJMOt1GsVhA0RJUM0e+VEJLWfTNX0zgQXd/gWaljFI1sQvL0PMr0Yun0LbgYtoHN6FllzBdN/nMF++gFhaoh100mceMmyPJrEDJryTVs4He5Rfg0kf7/LN4ZPshLFFmdufdNCfuYOrQzZRKoKttREongRKhGpLybMjg/B46urMYZohhBcxfUESfU45VpMHpm07AD+ukU20oop329g6kbIGHYr6Hz3/5O+wdOkQkQjo6HAIvYnJ6hL/5uxtQ9DYODO/hJVdcwsc+cT3/8q//zIZTzuVrX/kYr375Rrr6BnnNH78DFAMhEuIkIXo+jNHRgOr3iKclJ5KEOJr7rf0PyOXj8PkxbEeHorUKMs83nqmr7Om2GYTB78WUPpf4b8Pc/adGMlfdeBrk0BK2adGrrdmvuf7e4ynvHNXfG8ctk8Q4jo5C9K1qwtON1x37xTjyZTmC8FuhCHmcpeH8C84ls3AtX7jhC5y0uPdZTnzufI+dtXu2eL7L/6fHMxzHczlW8ZQHv8f+n3z9CCGxUg66mUciEVLhM1/9Ia995Way6Yh8wSaMJE4qgxdGFEsZnJSGIVX8KKK7s5Mg9HHSKmESMTFZxdRtDEvQ0dlOo16nPFPFtFI4aR1F03FSaVRNwbBa8uaarrBnzxBeMyCdzqKnBEJJUKVJELiEXkjoRVi6w6GxMWamp+np6WyZkSuSKAzQdZXP3XIfm9dkqFRqaFLht/dvY2CwF01TkTJhbHyafM7BdQPy+Txh4JHL6cRxFj+u42QNmrUIwzJ49JEhGs0mPV0dRHFEX2+eLdt2c8aGVYyPTRH6PqZuEkYxhhYSR00CX4ICuiJIEolpW1hOy1xZqhZBoCASHSESVMUgjkPCKCCTs1ClgpQqt//8IQYHu5AkSJGQIEmn0wjRAkOqqqIoLRU9y9JRVIHnhUipousWCJVtOw7QlnP44c9+zWPbhzj3zDVYjk0QNucM0nUCN2Dxgj6clEMSQSJCmq5HNptFVVVmpzxUxaTZqKKbCZZlYxo6ggjfD0HVEFIyOTGNY5scLjhKIYnCBE2JCXyfJElQNR3PbxCEAZqu02i4GLqgVmugqSqKVFEVvcVc6Tr1Wh3bsqnVypg6qIaKH4GmqDSbTfL5AqsWFEhli9hOirHxCVatP48LLzsfqap0d88nCKEyWyWTTVMpV1FUlcr4FPXQY+nqFdxz51109VrYVo5qGQJfI1ZiJifrfOQjn2LDxg20OXnWr13FpZvP43WveR0vOOscTjp9EyesXss3v/4tpg8e4g/ecC2XXn4Ji5YuIAgD2pw0Pb1F+vp7UNU0tulg2wYTkzM0XPCDllBJd28RRQ9JZ0otNVERMzE+TraYJ0mgWa+hSZdUpocli1dSc4fZvWMvMmqiWnnsbBeIBE2LSaVsKpUqhqkSBz579w6RyebRdEkzqFKZdrENkzgOmJwao78zS8rJ4AURUhdEjSne9c73cd75F7J79w5OOXUTO3c/yF+96y+JIx0v9LEsm6uuejmvevUrufbd13LBi84DNaTU38GFF51PLBOEKnjTn76BE09eS6GtxMDCbuLEJxEat9/+YyzTIp/p5+KLz0UqMe95719hWwYiijlt7amYukMiY1asWUS1Uuell19B6IUsXbScc889m8psA8PSiKixes064iAhmy2Sy3WQBB6PPPooffPn0fDr3PfrrfT196FrNvv37yUOY+b1LeE97/pbTl2/EU3VuPsXdyJlwEB/N27DR5Ea9/zbr/jspz/GRS+6DEVRqdXKXHzJ+XQPDJDEKj2dPTia5PyzlzKwcCHS1Hnkkcfo6+pgYnKS22/7JUuWrMR2TJr1KTTRhm7qoM3w6AP309ffR2/vPB6472HGRg7R1d/dEnFRTUpdPfT0DOCksgglodDZQ09nH9VqBc0RaH6V6akpMrkCtUadYtcAUprU6022bnmE/v6FoMDevTsxFZPvfvv7rD3tDLq7uxg/dJCckyaKWzmBoDVStH/fEO3FdogTdu3cRcpM0fCatOezuNOzBMLFVELaO4scHJ+gUY9wPQ/TtogUhXYrjVerMTK8j66OIjoRP/3JT/C8ELQUjVoVJ2VRKGRQVZ3Jod3kCh14fkjcmOLeu+5g/rJ+whg0tYBClfFDuylkddpSXZiWQNEyRBH84Jaf0Nk3QDoX0tu7AM2ERJgI6ZNrK9Bsei2fuckJ2nvmYdvzUYVkdGQ7hVwbuUw727ftwrAc2ovt7N29Hc+dJGVk0NU0X/7a13nda/+U6657O2eedSr5goVltVPIpAkji+7eZcxWXcxUHikcGrUphAgRooO618Rt1jFUGB3eQndXF7qdJ2iGVMYPEutJSxk1zqHQRTabZuLQTjoyXRzav504Dkk0ncRqY+f+Gk53N6a+mI7CQs5+wVrSy3tp1pczf+MVVFyVXnslvrSwc0s4ODRJf1cbM2Pb6M6MMbn7VsqNu+hKn0BzNs2suJOrXzXG/IV9dGTG0BPJ7OxOHL0dU/HQjAEaakAawdhMyNAB0O1p0vn5DO2fJoxHacvMZ3RqhEce3EN7rptGfYxT1yykmHFIQpc9+4bwcJmqdfP4ATg4VeEFZ52OikZvZx8bz9hIIm1+dtNHWTqgI/NLOePczcSqJBECNQEliYnnVL2PzkOfxFDNMWdSKkdsDQ6zaUerth9m4J6TmvmTQiKSORP144mrHEcN8ymzcM+iRH/4eI8o28e/U5dvnXNrnTiKjnjiieSpM3XHqmtKKYmiVvdQSzn/qcqfR2zXJCRRfGT+72jG8KnnDImQRz6XOAHtfwRV/qPjmZP61nV1jF/eEcxwDLg78nqCUCTEc/8ftfwRsPZcjkwcX0Hz2ZQ1T950Aa942/VctmEh8tlA2BFM8jzBzX8ZcHecOPbzeLpjPTx0+59yCAmqphJFrQraisX9SGIUzUQIgWMbeI066UyWMPSJwoAEies1sB0LTTcYG5ugrVjEMm0c2yaKAhTVwDB0OkptHBgepqOjSBTB6MgE+XwORSp4rsfoyDj9vd2kHYeYOiQqqmgxdKoUPLZtO8Vinobnks/nKORzNJruXPuTj6ZpjI6MMTEzzdmrOzFNHc0waS8WadYaJHGCYVpohkocwI5do1RrVZYu6aZeL6NqJqZtoEoF0zCJCejuKpHP6FiOgaLMCZj0tQRkdE3FNFSCMMK0HRCtG7Gu2q0KuqLx2LY9tBcz6GoLQEupEscJt93xAEsW9fCNm+5ioK+Ipqtoc0ApimIG+zsBDYmk2WiQiARFqkCC67ogFFShoWsmjXqEaTgtJk3T5mYXIro68iiqpLezyEkrlhAGCULEc/tRePzx/fT1dSKEoNFskiSgSAcpVGZnquiaTpIEbH1iL3sPjqCrtLyt4oCZcgUSgWmZxEmMaeiEYYgiFGqVGoIYSdSSzvcDpKIipERT58RWYoGqaMQJ6LpOHMeoqkoUt8RZWmyCQZwkmIbGvv0jFAo5DMMCYtJpmySJ0FWB1HPEScLizhxa34kYpkmSSP7xo59kYGAB6bSNZVpMTk0wMNBPGHn0DfYhRcySxQvIZoskoeD+++5DUxNEDNlUFk1N6O3O0gyqGJaCpihsOOUsdmzfwwf+5sNc9pLLWLxgHj3d7Xz5q19kcnyYl730Smw9zdve9mZu/9mtvOSlV6AoKj/47vdZsHgQ0zSxLBtdVynkC4SRj6pqBCEIBGNjY/T2tTwRBS15bcNSCZMaum7QaE7T378AL04olnpoNupYSkCUJEShII4j/MBFMVLkCy11VVWGmEpIox6j6SqV6iymqWM4GeJEosmYZmUK00hx6mkbcDI6y5YP8s5r38Grrr6SwA35g9e8kc2bL0RVDE7bcCalUheXXXwpmXSOnTv30tZWxDFSpDNZTMPmJS+5gs7uPEHoo2smzbqLZugsWbKUbCZH6CesW3cKCxcsQNUFflBDMyRjoyOMTYzR3z+fhfOXc/HmF/Hmt7yJy1/yIi686Bw++elPsumcM7nuumv5szf/CYeGD6FpOhPjE9x7768ZGxsGVNqLPagyxf33380JKxfQqEd0FLvRdNBUi80vuoR/+F/Xc+LqkzEsgw0bTiXw4F3vfQ+XXnIpg4MD/Pznt/Oiiy/Bc10mpiZw3SZSUcll8/i+x7vf/ZdcffXLEarBvr37WbZ8GVGSMHpoivVrT8HQdVRNwTazJEqNWn0W08qx9uR1pNIZoqRVgF1x4gkQmjQaTVBivvG1Gzltw+kIESEUH4SOQkzKMUAq1Gan2Tc0SqG9E9XQSSIfXRfEkU+1Vqa9oxdFRBQLOQI/ZPWaE7FTKaIooNCWJ45CwhjcZnNO/Egjn89x6NAwuXwey7Q5tPdxpKGgGCZC1UmQlCdnUTSLbL5EWzbd8j1TJFGcEGoZVCeLlirgoiPCiEWLllAoFrBTGrl8G1EYUW/UmZ6aoquvm1qzJaNvGjm6i/ORqoGuZjmwdwZd06jXK0QRfOLjX2DVmuVk2pokcZl0BtqLBt/82p08/MAONpy2jsAVVGvTqIpKOp0BBKX2HJVaDdu2aNanMWyLeiNiZGyavvmDJMTsHzpIqXMeut5Gw69gZXTmL+5lamaYk9aczS03f4+1608kCkKmGsMEiYthRLjeCKV2g4ZXxvMqRMSk0w6u51IqFBgeOkQiXGKRIYx0Htv6GFsee4QN6y7BMHX27N1KOpsQCZWZ8jiK0Hjgkd8yMRpx0mmbmJ6oMr9/AT/90Z1EQZ1UMUPHvNXUZ/vobJvHVKNKV6mTh4YOkO8vIoTKQE8vI7tuZmpsO/WZ/aSVADtYgxfegRR1LKWPi15sk8oHtOU1avU2Hn7cx8nrVJqCfWOH+LM338W3bz3EztFOPv8vv+WkjZfzlj/5HFe+6nI++0+/JtfRyzs/cjd3PjjJSMVg92SNhQstfMVi1yHYut/gjrtGuO2O3Ty+a4obPv9FdCPhwS3bcDIFent6eOzhX3LeGcuIRUj3onUMj87SXiqh6NpcR+acIN6T2imfKqhyPEsDwe+UI/89o1FxFD8pD36meNr9PAvj91Sxlye3WR7bxsmcuMnx/PKOXj+Zy+WPiLw8Q54sBEeA3eFtHW2h9lRV+NZrCa2Wf/V5CKr8fwHu4ih+htmt5xLPtuJTjdDFsRf7MRdeLBIURf5OafOo5Q5XRZ6L9UFCAod7czl6U8/+LbnipS9GdK3gqrd+hCueMov3pLPhOb15R1iww6v9XwJ3x93t0XNvyXFG9o4B4b8PmH2e0fI7EQhF4gcBUeAzOTlNvq2DKIxQFYHnNuau34RqtUYQBGSyKZI4odloks1kkaqOoigEgU865RDFCW69ztTUFD19XXMgQiWTbs0GJXFMFEQ8+uhOqtUq6ZQJ0sNQbWq1JmPj44yPTbB02UISIXAyKQLPx214BEGIaZtIISmXq+QKeaQ/ggybCMAwTap1jz07D9CWz84JnShMjFdIEkFvTx4hPaJQR1FBUfQ52X6IYhchFCxDww88VEUQhiFCwn0PbqW3t6NVNZRKSx5ctC79OFSJ4tZId3tbHkW2zHsROmHYshZYtKAHIWJWLh9E11vWCa2231bFr16vs2/3BA88vANNgfZSoQXakgjdMFCkThTViOKAeqOJbdlESYCqGoAgSUJiIhShoKo2d9+zjf6+EpomiQJQFYNCLoNUE57YsZeJ8VlKpQJPbN9HKqUxOjGKYcTohkZPd5He7mLr83JdbNvCcSx000SQEAQ+UgoMw8BtuNiWiaYpxElIo+FjOw6GYc7dWxSmJstYtk0cxjSbLRN1VW21iEgpiMKE7/7oHpYt6kUKie+HVKp1VEXB0i2Q0Ki1/NniJGbvJLRlU8RRzFs/9EVeeMF5qKpCNp1j3uAAlqkSRgGFXI5ao4ZmSnRdwdQUVF3SnI3wvCaplEGhUEAkgve+572ccfopdPfksZwMge+x/Yk9dJbm8a1vf4/3vfcDfOGfP8+ChfMolfJsvvB8li9dhKk7fOB9H+L977uOy664lK9/4+usOfFEujpKKHqCqh8GtIKJiUPk8234btTqshBg2Tbj4+MQuhTbSuzfN8TY5CRSqxOFLVN7XTOwsgX8RoOCY5JELhPTM2SzOeIYKtVZ7EwBKVqiPpFXxzYE0zMuiirI5tKYpkGAgq5oDO3dRWcpx9bHDzKwoA8/aiJUwYsvuYjyTBnHzvGVL32DK696CfVaE8dOYVk2G9av5YXnb8Y2U2RyNkkMF2/ezGWXXYoiJJqRMDMzg0ABVCzHpFKuUa3U+YfrP8RXv/yv/OQnP+b1b/wDFDXmsUe3MLhgIflCBttKc+lFL6HU3Q4EmCZAk01nn0cU+6xbv558rp1iKY+qaTSaDdIph0XLFqNKnfa2Tv7ibdfx6qs3YxiCJNT4+R33YDsG0xNl9uzZxwUXnsetP/oJa05cSSaVQZEWZ593BpZlcfXV1/Dxj1+PYdog4IYbGWrqbAAAIABJREFUPscpp6xD1y1MQ+NP3/wmPvVPH0doElXTqFdajN/Q0F5qswG2Y3Huuedwzz2/4exN5zI2vovOrm7cuoKqKsQIGr5HrpCjWpuk4Ji4bh2hKZy2YSP33XcfQeBSLOVQhMn2bQ/T011i1+79lLq6UHSLVCZLGDQxDYWxsUOYlkVnVzeoGnHgIsIQ1bRJ57P4QciB/ftRFYnnuSS0ZjFbbfAJqZTD7OwstmVzaGQEGVbpX7iIcrVOJp1ny5atDPb3EUUCRbM5sO8J2jtL6IbJbLmOETdwdIEpI2bHhkkVOvCjgFwxx4H9+5Co6LpOGEVk0hkU0yYMm1iWycholQfv/xWG6aPrCd3dnSh2SDbTgRcGbDr3QjRb8PBv76G9rRtLzzB+aIZ1p57EaRtO4uDwo5RKeexUlvJspfVb1GxSK0+TyuSpVMaJ/BpSc/jmN3/I2rUbiXFxLIVSqRPTyLFrzzgd7YM0GgGpdIZsth1TyVCtlxkcnIcQETVfkkmXCJoxaSfN2OgkYaLT2T6IbbUztHeUUimF53rs3ztGZ087Tr6b0A/o6u5gYOECDhx4lEq5zkDfcnxXYbY2Tk9fH7HQWbxqPl69TCplMDq6n9nJnZy65iyKPW2YuSwzFfD9Q8zObiEQBoqv09fWTdGeYevdX2Vq/48o5aA8M0aprY3Eb1L3H0ZRFoGawvU1NNXBDGLUOI1QE2q1Jt/7icH7P30Hr37d5ezfkeG1f3YFnfNKvPxVZ9DfX2TndpUzL15DGC9m8bpFPPTgXl5x1R+xb6jGffdP8LOfbScSC/nmD37LjXduwbB76V+4nM994RM88OCdhIFg1Zr1VOtNFg+28+AvvkUmZxEpKc564Ut54LcPs3DpYhRDI4piFFU+yatZHK2hMDdzdxi8HfGtm8uX4uTwLNmTweCxM3WHZ+2OF3ESI2n9Hkvl6S0Ojs6bWvuIf8fmHcXcxSI5viH6Mb52T5mhOwp0xXOe0a0FmLMwECRR/JRcMU5iVE2bW+Z34C6JWwqhUjlKTCZ5KgN4PLB65G9HgT8hxP+Au2MjTqJnpYmfOZ6N2TrexXj8KsGRV6UkiZ4dgD0n+wMhnnIhP9czFUI8g9jK7xn/JcHdM77wlGON4meR7v0PjBZDpWKYFulMBqKYfXuHyRfyICSWIajX62RyGZIkRtOMI73pM9OzqJqJ77kYhsrBA4fI5p05YBLTaPikHBshFIRQ0A2NWr3O9l372bhxHZomSedsAl/F88qoukKh2EUq7aBpBlKqcyqNIZqio2oqntdE1wzCMMKwHf7trrtZuqCTVMpCJDGxH+D5IdlMikbDpVn3CQKPgYEu0tkUntsgiQp4UQ23GSKJUTULRQUSiSKV1k1SSKSUhEFI2rExzZa8/y/u3cbgYF9LkIaYn//yCXr7O0miJoqitT5LOdcyEsP3br2XE5bOw/XrSKHM3Qvgsa37KLXnEQh0XSGdscilNfp7O5iYnEXTBJ7voaoKgR9j2BZCqjjpFFEcEfghSaxSr7nYtk4Uh2iKjduMcWwV01Ko1+qEgeD2O7fQ39dOo1Gmp6tER0eRhx7eSWd7nmwuTalYIInBMBwSEuI4QVMVpKLgex6ariIQhL6LbmitH1PR8sNTdW2OqdNwLJNqpY5pWQgp8f0AKRJUVVIul8kVnDlPvoQ4ASFUBCGL5nei6a0W8Zt+8FtOWb+kNbcQQSIVFEUhTmKCMOCD397Gi05ZTK1Ww8stZuWJi1AUSWdXO4ahMDM9xV//9V9z1qYzSacdUHVmxiYZPzSGlckwMz5FKm0yPjrKe9/1QVafspJzzz+PkfFpSp1dGHqeCy96Mde+/Z184hP/xB+9/o8Z2ruDF1zwAto7StQbHoViB8WODpxMlr//x49x1RWXUSzlqDXrDA4MoEoYmximUilTbzTIZ9PYjonvhgS+RDNUJsbHMY2WMmo2bRIFEdl8kUJ7EcvUScI0I6PDaIZg9MAQU3Oy+Xoqh1QlmmoxOTFJHAU4loYiJFNTEyAgpFW4SKVsJibHmZ2dIWMZqFLHSDn8+oEH+dlP72H9KWuJUUkSh7EDh+gs9fH1r32L97/vvZiO5N1//R7+7d/u4tLLNnPq+pWMHppAUVVyBR2hJLzylVcRxT7fv/l7rFi+hlQqg5OyMU0FhCSJJW35ImeddRpnnHkaixbPJ5fNYugWmUwezUwzNX2QqYlxNm48k7df+w4+9YlPsnrVGgq5IiQahqGTTuV5+5+/lws3n4WqKJTa23GcFE42xezsDFHgsX7tCrL5NM1GlVy6SDad4VWvejVveeuf89nPfI448bnsxZvRTcnBof1877s/oGewByEkl156MeXKJLlskSAI6O3toVQq4TgpvNDjnHPPIox8KvUGs9PTvPKVr+eNb/wTvv4vX+Wzn/kqr7r6Kq6++tW85PIrma0eZOH8NezfO8bWrY9w/d9/lAs3X0S1UcWwdLKaxvZHvkNlZopcpgvVhkajzsKFixFCJXB9eroK7Ny+lc6uQRRTI040bNvGNHWqMzPk80WCADQzTShibCn57d33oKcdgjjB1Fteo6qqYhgGtVqdzq4uTEPn4IFhmo0Gtu3gODZjY6O0tXVTbXp0lToY3r2HpScsRyQhYRyimSaWAQeGDpLNFclk8uiaxAsjgihm587dOCUHy7GIg4h9ew4A0Gw2yWazc90FNqbm06yM4qTy7N41wooT5lOdmaVaC3AKKcIwws6YICQHR3fS2dGPky6xbesBliw5iZmZ/YhEAxGzZ8cwhfZ2piamKJU6sG2H+myNlNOOqvuEXpMwCPny577GLd+/hRdtPoOkNs3enTuI44g9e3bx/W99hw2nnoyME750wz+zYPEAnR0d1KpNbNumo5Qn8EKcTBtSN7AyBYhjkkSl2aggNJck8jB0h3SmEydjMT02hRZ5VCuTFDraMHWFtmIHuiHww1l0KQm8gH17DqIbIQ/85mF6egZob2ujq2TheWVMJ8fuPYfImA3cmVmaswfo7VoN4V6mdv4Ib+rXZPSE737/Lk5YsYaf//IBzFQJx2mnYRjc84DFj3/5CJ/54hZOP+9U/uL9P6J38WbM9k7Gpy1kYT4Hx+q8+a0f4fKXbeTee/dy6aVXY5sqY3th0wvX0z9/KYXuHLnCUnTF5KxzzySWPu9499spdPbz+j9+A9lsgfJkmU98/B9YvmwR3/vedzn77PNZ1D2Aaefo6c6zd+tPyWozmOkcZtsAS1aewv5d+znx5BMJZIJQFBJ5PEvto8AdT21NPBwtUZWn5taKohCF0ZF5smfyhWsxgnPCI89h3u543XBHg7sjLOTTbOppwd3cc6keAwznthVFEeIo8HZkeUXB9dwj+xSH88YkedYcuNX++czg7vBz2TI3/x9wd3TIp3Gsf7oQc73FLSeB57DecwB3Qrb6bf83e28eb0lZ3vt+35qnNa+156nnuWm66YFBZhBkFGxaUXHIMedoBvXoMdFoTDQxJieDOTcmMdeooHFEQUUERQQZpIGGpmnoedy953HNq+b7R+1umoYWMMnN/dyPz/6s/uzdq96qt2rXrvU+z/MbEhAvnFCNlV58E0ZxRDy3+Hq1vnYnb3a85vJakYSbb7oB0bWSt37wr7jx3EVz+32V0MWT3z9e9fl/K7GLj3fhflXiBnc+vJOZapOsY6KrygsX6PicT+beCXFSYndyx+8VJ8OJqx/z6q/BnBqSEAJJlhMRjUKKRrXCof2HcVu1xN9GJP5tkgiJI4HnhaSzDoqkIUnJAj6bLxDHMYePDNPZ3p6YE+sGmgnlch1FkTEsh2IxSxy2sGwdSZJpNVzsVBFFkyGuISsqMVGizAk89tizmLbGLx7dzvKlS5gYH8O2HHbuH+TcMwqEEdi2TbXa4slnjrB27RIqtRqObTA9UyZr2cy6LSwzojI5i5HRsC0Lx9ZRFZlYCogjGc+P+P69v2T5kj6iOIFGxlGEoshIQkESGvMGuvCDpGMlSRoLBoookksUaYyMzJDOOARxgIxM02uybEkfqpCQFQVJ0RLlzDgkZQkMwyRGQlZlYkknbSkIRQYCLCfNrl1HKOby7Hj+IN2dJaanypi6SRgGDB6dQJIE+w8eo63oEEchBw9OceDwEfI5i0wmg9tqMDZeoVRMoZsKmUyKGIkYQSpl8IOfPk1Xm4NpGsiKQq0+gaGniSOJMApp1mukUgaxiIliHUVOOIKe66Epibm567ZQ5OS5FQspSfakhIT71I6dDPR3EBNh2RbEgtAPUVV1DiISIWQZRZVoNl0QMqtX9iLLSTU3iH327B1E0yRs2yYMI4bH65y1bD6aprFrVmFBfy+qqhJGAfVGg0wmxevOuYT77n2AFct7+fu/+xcuuugSIklw+7dv5+xzNjA1Vaa3bzHz5i/hBz/6JpdefDmEcOTIfrozycJ6wzkbOGPjJp7ds4ePfOQPePOWNyFLdTx3hJYvIQkFfIVdz+xj/rKlZItpRsZGUTSLhx7dimmlGRhYgGVZxLGM68rohoWixwQYmJaKEplMjo7ixTG2Jhg+vBs/jrD15ANV13M4mSKFthS5Qid+rCJJMoacZnL6ALadw3ZySLpAUlW8ICCfsQnKM4mfoCRhOzlqTY9CsUDddfGiiDCWWX3mGuyUgyypmJqBYpvUfRfZkCl0FIgjj43rVnHtlZdwdO8uvnHnD7jm+qvp7C5RrkxjmgZ+6GHZJsuXLSX0TR577Am6u7rwAx9ft2numeWWt1/CxW+4gqOD41xwyTnMVMZIpTMIKSH56yLDAw/cxb9+4QtIeoYD+4f5xJ/+OW9802aOHTuGJCtYto5uS5QK7aiKRrk6yZGje8lnCsgxbNlyDb/7e+8klNIYdh4vjNBtg7e+YzOKlqK3dzHF9ja+e/utbNhwHvVmyFR1gjNWrcB1Xaanppg/fym+8HGDJsViDllWCFCRFYUwFhiWjWXbZDM2v33LO6g1pzHyKpe/7nUU0t08+/QzFAoqnW0Zntv5PPX6BAvmreGmN2+mWp2mLV8kaMXUWy5t+TYCYaI6GT7/D//GFZdfmRg5Bx6KZtJo1CmVuvhfH/gE5158GcViBtetEngBKcvBDWJ0w6A8NYLhNzl4dJBSTw/5lEXeNgkilWq1RRi1UIyA2ZEy7vQ0R0drLOopcmRomFS+hECQdUx27duDlcljGTaptIWsSmx98BFKxSKyIWOoOj+++8cU8xnqlWnMbBsICUGEpggUOYMm6yiKRCpnk8+XSGdTNN06jWYVQ9L4h//zz5x77sXIImbpwi4CtZ37Hnme53fvZv3S+Zh6SK3SpFJNxIY8D8q1GTp7eqg2GjRrFVRdplKrMm9BP2HgkW3vpN6oUp8ZwensJYxCMpZNOhpnaCbNu9+5mYsuPRPJ0glp0dG9BNUu0r+4l/UrFyCcFEFjhEsuv5RjQ3v5nx/8MEGosGrNOurCZ3K6im2ZSKJMHJUZ2/McishQbO8HVQHJwLTyaKbEVHmcwaPDCMuiv7eNwd1PkO88k3rTZXxqmompMoVSJ9PTTbr7O6hUypx79gXEeHh+CyFSBFGWI6OHWbRwFT+7914Knat48tE7aR65ByvaS+SP0ainCLQWe/f4rFxYoFCYx3Tkcsv7HubCcy/g03//Tc593bl86nOfo9C/iZu2/B7P7XmW5/bNUomK3HDjTVxzySYeeugOPvQHn+XT//vjNKuTNNyIvaOHWbVqBbJQ+dEdd+E16ixafAbbd2xn09kbabkV1q8/i5lymY7uXl7/+ss5PHiQu++9h7Vnb+LZvXuIJA2/FbLt4a/z2P130pbPMTgruPiad2KZKT74sY9w41tuQhKJCJ+MQERzS9O5FyJRmj05OTtdh+nl/j8Ko6RjNdfBOzk5jOJoTkgssS6ShPyKkMoXr5fiFyVWJydAQog5NczTD39RMieJE8naiyCSL0LTceJYAvFSz+o4RpbkE7zD411MIQRhosd54kue4yiefMzTzTG59kkyKZOclyz/Jrn7d8WvyvpffsCr6Nydus1x0ugpxzpeCfnP4nm9Uty4+Y286w/+HlvxWdBVePGb/1/k0Em/GjLq+QGfe2CC3/rQx+hdcx56/xq+/KNtfOWOn3Hl+gUvPaeXPcfXct4nbftrXq+kKyOhKxqGYVCrTtPd3UUU+RB7+J5HtVbHcRwajUSi+9mdu5icnCafyyMrEmnHxm155Ao5FEUjDFxMc051sRmye9cBSoUclWqdIIgRxGiGgeu6GLpBHMlAUuQgFvT0tGM7BgvmdSOEwNA1YuC9//xzLl5kkM9ncd1kodmWz6AoEkLETE6VURWV2cosXd29PL9zP7XGDL19fUiSTLPZSq5ZrCBJMrIsWLqoA4RAlhSiMMD3A4aHJykUc2zbvpeenhKKxJz/nCAKI3wvIAxCMpk0W5/YRV93J4gwgUUIEnXI42RvSRBFEYaeotlMbAqEAEmJiP0GkqohqyqyIpPPpAn9kO7eElHsoqka23ccoLO9SC6fiJ10dpaYmCyTTmUYHJxgzZoFOLZJrdrEMGzCIML3fRxLRzd1ojACEm++NSv6yWScE8mULCKadR8imJ6aTYQsogBN1fC9xLrC830MXUdIgnqtgWUZhHHi3ycravKhLSCMQrrbu6mW6+i6dsJHR1GkJKk7XoOJE+aEoqpznc3k8eN6yT3T092RjJeTiuzf3TvMDecspNVw+cytP+b6a69kamaaXC6HbhqEQczRw4MsW7KIZqtMNttGKu1gmDrr16+DWMZxbGQZ9ux9Ds0wyGZyzMzMsObM1QhFYd2GNbRaDaZGx1g8b4BlK5fS3dnF7PQsraZHLtfNvt37eP/v/y6XX3Eha886kyBokcvlcUybfD7LQH8v5dlpHNtGUQTNRgvT0KhUp8looEg+cSjTdFtotsPhw0dI5/LkS134EehGCk1RIGzh+h6qmhQCVEWCWEIoHkEgkcrmiPwWYZQUCybHxxBhQLXeRNUMpmdmMDQdy9YTYZp8HieVIp/J8uQTT5HL5jBtA1WKKE9P0t/bhUTIwz99lCXLlxBEsOfgIDe//SYgIuWkGDwyjmOnCEMgklEUjenKQZ5/fhsrVy8hFiFhM+IzHz+fj33yjyn1LKe9vQ1ZiTH0xI5D1w3+7dYfsmHdevr75xNHFrMzowwdPcr/eM+7cCyNXLFIs1nHMHUGBnqRRIymKciSRjbTRqyoqLrNRRdfTCafRUQQBi5EIZokaJYFkmiQyUikzTxLF6/DayWLuhWrlqHKAl3TcJwUrusyMzaIZVrEqHixwFYliMLEPy72CL0WQSAxPLKfbL6NoJWmVBJ87I/+kM1vvoZybQTFKDBTabH8jBWMT9S46IJz+NCHP8DRw4Pous3IyARpxyCVLqIaac593QYgJAwiLMMhFD6WrfPczp2sPXMNmUKROPSwDJ0ohNFjkxwdGsFyTKS4AbEgV2wnigXHjh7BcSxCIWMYOq5bR4iIUsmmVZ9CdjRsK6TQ1pMUGiSB7zYolArkciWIYxTg2ed20NXZSaFYxA8DypUmZ23cRKPp0dM3D03TGBkewrYsDhw4SHdvH0Ho8cyOHbS1taGrNs2mRzqVplZvkC1kWb3mTCp1l3KlxW//1lu48JLL6evvYfWKRbTqkyiaxXv/xwe45prrOHhgP/3dvbQadXRJJ+tkSWcsYinGskxq9TpB6NFsukixIJvO43p13JaLIkuMjI6gKeNMjg/itmSKbSux0wqBD81qmag1gxQrzLY8Mo6GF0i0l7p4/PFtvPvd78DJ6tiSR9bKEIdg2CZhFJPrmMfPH9zK/AX9yJKPaZo0Gw2CsImpq8zvbUOSFCZnqmhGlkw6zezUOJoqYWgyum4iCajVqhiaRnV6BkmBqckJbCdN2kqx79BOdFljcvQIa5YUkd099BR0vDBEUVpEkcP49ARtfRYNNea333sXW95xI6rSjZru4Prr38SNN72Hj37002zaeCGKEmAZKh3tvWzYcAFuFNDZ2cWtX/8K//iPtxIEAUf2H6aru59CsR3imImpSfr6+zl700Ye2/okF1x4EY88spVNm17Hc89ux7EtpiYnmZqe4hd338u73/42ZifGKKVTKLrJjm1bOX99D21Z2Dvu8bb//gFS+XZUKeLGLW9OPgflOfTHXOJwyiJkzlBcnPRfr2E9E7+wjj7VGiGOX+jUnVaT4tUe5lSti1exrxclmmGYrNhOo5nxcuNOhmOenPQKWXoJ5+54gyYMQuIYlLkk8FRe3qlWCSe2OZ4ozm33m+Tu3xm+5+N6HqqiAqevTpyIXyO5E3PwsBcROI8f6yTO3fGXJMvE4pWFVn6tP5FTFCOvv+FaFpx1IQ/unuEPPvdNNr9uyUu7Wy8z7j88XkVb+zQDAbj5r+5mywc+ybnnbXrRu2euW8OV117Hu/7w/7BmIEvWNl6+g5d8M/fjq5nHSWNe07xf2h0UJA9ey7KYGBsmk83gei6+5yIrKqZpMDY6imkYOI6N73qUigW2bX+ejrY8mqrx5NPPkUrZpNNpJJnEp6laQ9MM2tqKjA6P4rk+2WyOqekZUukUqqbNmTQpyQMpgie37aCnt50g8OY4XwGKrOK6LtedIZN2HMKYxL9t7nEmSzK6rmJZBtlcnnzeotEImJmcZtXKPpC0uWTQQZIUnnnmELmsBSJAiCjh4sURkiQThgHFQpYY6O5pQyJiZmoK1w9RVQO35VOpNHBsnSef2sO6NUs5cmiUVEYjDEJkWTnRIRfERHGErKgIofDdHz3KkgWdc4q1IZWZaQzLQUgKYRRAFM9xEiRkOcb3Qnp6OtE1jZmZ6UQhS5ZxrBRCqORyJrMzszSaLuPjZYIA9h0cZPmSXsrlKoapz/G9BIqi4LlNFDXhdjUbTTRNRdcNntq+j/a2DE7aBmJUTYU4xjBVDN1kbHQaTZUwLQvPayFJAlXVkoprHCfJqiRBpDI+Po2mKzRbDYRIIMBzYr4EfnCCEyCJxGMvTiALSbIniaT6KiX3aaNe44fPzPKmcxZx6PAQP3luhJu33IDlWERRxMTEBPlMCVM3kKSYVqNOqbMLJ2Wf8Fbcv+cw9/3sfrq7uhiY38fKlavJF/J0drbhByHlSp04DpElSDtpHnrwQVauWsn73vd+3nLTzeiahZ3OsvnGN3P77V+lWLJQdZl8tsi+XfvJpDPkCw6KHGNZGuWZKZqNOoqqIQgolyc5+Nx2fL/O0aNj5NuKWJZBqaMbO51L+JiSRRzHTI4NMjYyiJB1LDONqip4QROvFRJENSpVl8OHBinlU3hBhKEZlMtVcukMkm7iOA6tZoN8Ls3IyBBOykGWZKanpsgYDu95z+/QP9DH/EV9NKtVMmmHOIo4uH8/3/nmj1i0dAAnV0A30kgS6LrC7GyFKy+/gQ9+8AP87V9/jieeeIozzlhDsVBg+bIzmBirY2hZZF9mxVLItW+k1shj2gFhCKpi0WoFeF7AQG8HWx9/AjMTUq1XSDsKy5ctJ5VyMHUFZInf+Z33cdXVV6IbGlGYmBVLks7Q4DRWJk210uDWW29l7bozqc3Okk7ZHD5wkFw+y7FDZUwnZNfz29DkFM8+vZ+vfvVWLrr4bBrNGqqWiCZJsoxpmkwfO4plZonQiKWYwf37KRazHNy/n2IxTxyHCEln38E9/OL+R1g5/wyEbLH5prdRrdQptnWjKim279hJ3/wOTCfD8iUL6OvtYWxsiju+dxdj42MsXLwQoehoqoUXVgmCgAN79zM+NkG+LY3nBTjpFL29HVRrdTJpmwd//gDFTBu6oTMwf14iBiWHxLGM6WQwbQfbMqjV6hiWQxC2sGwbVbaolFt0lXow0h1MT4wzOTaJZdsEvsfMxGjCn84W8Vsuh/bvww9cQhHi+S6OaWKm88iyiqbrIASqFGHbJkJImLaNaWnMzszQPzBAHIKqWoyNjqGbBpZp4UUtxscnKRTaiYXCORtX0tnVjUxMHLioSkzDDZk/bzH9/T3ksinGBkcolgpUyzV01WS6MoFlWxiWQbPVQDMMAq+FQGJiqkzK0UjZDnEEipVGdjW8QKF7/gBCbTI72cQ0LAoZm53bt2LaOaxCB16tim7meeyRR7n44gvond+FrEgo3gzHDg9x99330dFewkmlqfsSS5cuYnr6GGlbZnqmgufVkOWEPzx0+BBtbe0YRg430pidGCadcQg9l4MH9mOZFqapk8/miEIJVQHT0MhkM4R+zBOPPkgmqxG6Pv09OY7t/SWWPETs1zGdPJHXgcsoQxMhn/+/9pOd186WN/0tO/fu5IJLLqXQ28sTTz/FspVLOPvsdYyPDvLoY4+QS+V4duceevrnMzR8mI7ObkxToaPYQxx7jA6N8Pl/+EfWb9xI4DfZ/vQ2UpZBs15j74GDKLLG8uUriCJBMW+hKgrDQ0MsWbQEF5tUvp1qrcnWJ7axYXUbD939bXQxjGXKLDnvLSxYtprpySm++Y2vs+6sTXOJyFwVL+alIiAvU/Q+XfcOXsqxOx2f7Lhi5YmF6lwX7niiFHOKwOAr+EKfvI/T2TREIkY+4SfHC2iv6NSEbm4u0QtJWxRHScfulHNL1umnJq4v5tsRxyd6OLKsJJ/HcUwUhi+l/JwCEX2hs/frJ3f/v/G5+48MTdOxLPO/ehr/5XHhJefz7du/xlZvAVs+exdT1eZ/9ZRedWz57F1849tf/ZUeIl+57V+Yd9V7+Z0vbuX+bXt/5f7+c30UT6niiBBEjJAFsSzoHRgglnUkxQIMiC0mJmaTblmrwfj4ELatU6nU2LhuJeXZWaYmp1g0v49sPk8QBPhe4mf23TseQ5ahPDtFNmMzOjqO57kQKdTrTSDmzh/dT61apVqt4LoNNmxYRRwJVEVDllRUVaNRb/KXdzwFwNR0GU3VkYSEYZrohkYQ+Pi+z7HhSWbLNSYmXGq1Kl3tGqadwW2l2NE6AAAgAElEQVS6qIqadNyimO7OHBMTk+i6QhgkMsTJwzhCVZQ5k1QI45BWq07KVMnlM9RrNcIoYvvzhzl4ZJw1axag2wqGraIoBvf/Yiciloni4xWxkCAIiIIQ12tw3ZVr0XSJ8nSVwBfYpgNIhHFMHCVqh81mE1mRcFsBz+w8hO+57D9wiHQ6i6woRIHPI4/t4B+//FN836NQzFKpNGi5PvsODLJqeReGo9HeXUTVVI4eHSUMQibGJqlU68RxRKVaw7INYiERxAFr1i4kW0j2DxJEEq1mE0kWtJou+Xwe3VCJidF1HVlOoC1JRy6RtW61XCQ1oLe/hKJKWJZFrVYnDGOCwEcwJ+oUJwujhIcXE0ZJcidLEp7rEUOiCum5WJbJzRsdYmIOHBnkb999HpqmMTkxiawoWLbD8PAEqUyKzTfdQLFUIp12cN0Gs+VpytUZlixZwptu3MwX/vk2nnxsD9decwNh4BGT3KeirnDu+ovI5Towc3kuv/Z6nnrqeSwjxZ/86afI53P4QZVNmzbhuWFiGBs3eOyRXzI1PoPv+ux85mmOHN7Pwf17MU0VQYCmwMTYEPlsiiVnnYuZ76R7oJ+ujiKN6RHioEXouwzu34UWwvTYEO3dbSxdvRYh1BPPAD9oJVX/ao3u7m7yxTxyHKOI5FrqRgqhmCiawexsGQKfoNWkmM8TBwGz01Nk0g5f/dKXeM+7fptNm84hjH0k3cSLJYRm0Nk3nw989EP0L+4mDl3SjsWn/vjvmJmuks5YfO+O71CrV3jHO9/Ghz/8AVatXoHnxoQhtLVn+dKXP09NnqRnYAv1SOPS168nCgWRr1OeitDkLIaapZgvcsbqM+nq6aO9qxfVNik3mzSCgFu/+R083+W2275Mq1VnZPgYgafhBx6+36S3r4fq9DSR1+Jn99zNnud2oFgpmr6gb8ESQlQGlvRw/gXXUmpfTr4zhyTPcO7rFpPOgmOp6IZKvVnHtAxazQblRoTjFHjoZw/hlsfpGJjPZLlB38LFBEIjFBqqqbL6zIu4+por+Kd/+p+MTUwzPTtBupjCC302rV1PWzZNZXoYTWryutedgyRLGKbF9dfdgKKBlc1w4Mgh/LiFIpmoqs7e/XvoG2in6UY8s2MfrZYgFJDPZYhCn41nree6q68jFlV279lBpVLHaylkcjnqzRYzlWpiLWBYSJJAkiLCIMQwMqSzKaamx4klcL0miohxmw1EFNLd1cHM1Ay+6yIhaCsUWbJ4IQ2vRb6U4+iB/UwMH+HhB39KszpNHDQZPHIIKY5otFpkckUqtVkkWSQcW1lFSD6dXUVUDbygTnlsit6OEof27uBn99xOodhLq9JicniMJ375OM/vOUwswao1y3GbZWanhhCGSiRL+ETc9ZN7CUXMTLmMH4U03BaBb1DMZPGDKh39RQJZpzJb4eCefYwMjaMU2uladiauMJgaGWfoyDj1Wov9R46xZN15CFlBMyxabsSHP/xx1qxdSjavMTY2SLVco6UqZLvaufINl5FNGURuDTVs4rcm0RQfISJymRSOIyPjoUoKufZFiBAqU8dQRYuu/gUYTo5MqZO1m85DJmbf3ud45BcPMz40g+95VKoVJifHCcKArvYsXR1Zli7qZ3z4MH/8Z/83KDaaoRKFIaO1QcZmS3zq0wdo6ArzSlvoWVTDcnpYsHwljqLy395+Cw/e9wsUycZ1JSbGZxgcHOO6665laHQv3/rKP/P4Lx+hq1ggJQK2PvYL7r/vR7zznW8hk1KhOct1l18AboWHf/Zjrr36ajq782RyGorRolWv8dSTT5BNOXzlS19E8of4+7/8IJ/7zPt55uFvUzl2LxeuzWNKTWq+zprl69ADiQPP76FQ6HqNS5P/WIrNr/KC+1UhKdKJ1392SHJSbEJKmiqvZk4nzysI/aQY/HJeeVH8K/f5whykOWu1Xz9+07l7uYiPt45fZdfm1+nccRLp8lXEa7VI+LXiNOfZ09vN5ptu4L7tw/zxP3436eS9inH/mXP6VfGWv7qbb3/na8nwV7H9VVdfwdd+8EsUf4a+ttzpj/ufdZqndihFotSUwAdDdE2i1fIxDAsZmTiW2L5jJ/MHuiGOKeTzbN+xG4GCpirkChmy2SyNpothW4wMj6JqEhIaq5cvIopbaJrG7t37KBbylGer7Nk3TFt7lkajTi7tkHIcLNNAViQOHjpKOpVCEoIgCGFOFfDR5/azaUGKdCrNc7sP8+DWXeTSOpZlUKs1yaRTOI6FH0SknSw//+WTzO+20Q0HhMRsuYZt29TrLVJzIhCSFBOFx1WzSGCCiDkqp0DIAlkSyHFMJMsYpolpWvT1lMikE0UyhMBJOzTrTX7xywNkUyrptIMsJ5W4I0dHyOdzICJkBQLfY3BwijCIKGQdvDCm5XrICviuh6EnhR5JyHS2F+d+XREpJ83w6Bi5XJr5Az2ctXoert/CsgzyuSzEUMpbFIopIiJkWcVzPdIZh0bDJZfPohvyXAVwzi8nTgjWvu8jJJnAdwmjiOmpWTIZh5ikW6lqOhAkhvOSYHpmBtO0OK7SG4RB0hGM/DlOnoKqaeiaRhyHiUqaJOF5HrKi0mq1UFSVKEwSvhMEblV9gfM4V21c1JVD0fMM9HeRT5vIXSt5avt2nFQKy7L4ypf/jU0bzmLxkvnkcznCMEZWFVy3BXHEz3/2C3TNpKdnHsV8B5ajM29+LzERsqRx4xu2cNfdPyAQIZppEQuZf/3CrXz6Tz7Fnj27+KOPfYRbfuvtrD1jI4V8FlkFRYP+nkUUi4nVxKGje1i5cgXl8gxCxFQqs9i2g6ppGKaGj4GkgCoZBEGLlKHQaAUYpomlyjTrAflimlboEsYKlmkiy8l18oMmhpYiW7Tw3JhMNkdlehw7nSFGodVs8frLLuea668mDkNy2TQTk2N4nodpWSiqws6dz/HpT/wpH/vYn6JaGk2vgiR0HnzoIbp7+tANHdW02bNnGxknjQhlJidr5AtpFi4aQJY0vvq1r7Bh43qGjg1SqVa44MJzUVXwoybrzlpJqDTRwjb0NLzvd3+LesXj+3fewwd+/yMcPnKISy+7jMcf2sp73vN7XH/jtSBMmt4s2UyJp55+hrPP3oSuK7iei22bmJbFQ/c/SV9/G7Is8/hj27jt1i9x1po1vPXmLfT3dqJYGcIwwgtCkARjkxMMDU1xxuqzyBZsarOjrFi9mGODh2nv6MYPA+q1OqqicfToEf7yL/+O17/+Wj77mc9w883X4KOjaCqqqlKuVJmZncUyDeLIRFNDBnp15i1ax9DoQbI5kwif1198NY9vfZQN56zGd0OiSGJoeJitj21jZrLCJVdcwLGhIyxavAjikCiSqddqrFq5jFplGsPJYxopLMNCkWN8z8dxLHbtfJ4//MjHCalQbO/CMBwiL6Tl1hGyShglbFriCFVTmZmZYO/eA3S093BseBeGJogNjWeeepgN684GWWV6apLx4SHmz1+ErBo8+8yzRL5LqbNIvq3EgX0HKGQyKLJKb28342NjiDhmoK8XhIRqGLiejyxHqKqK54W0mi52yuDQof3IEli2hQgFhqYjpIhSMUtXVx/1WiPheioK+UKBSA4wNI3Qb+H7Dax0AVlJeKpLl61CU0E3dcbGRsnlczSqEWlbSSDAxAjZxJRlivkcfhgR6i5CN5CFSVQP6OnpRVIE2VIeHwk5jAgVg6xjsW/fIOvWLcSydMYmJnGcEkOTRygWutB1A12LmZ2dhCDE9xvYloGQBCOjU2SyNqOjo+iaQcPXaZUnaDaqdPZ0MT5VI4ojgjAR1XvmySfZuGk9fsunf2ARjiMjJMgX8oyNjJO1VaZmxqiUawwfO8DO5w5y4fmLaFUncd0At7Wc2dYUY7MuH/uzT/LsI0Os2mCydu0VxEJl2yNbWbhgGceOjpDOFCkWujhwYDc//P4PuOqaK7n3vp/wzrdsZtHiFdz+rVvpKnZR86sErs+BQwcRiszeZ7ez/aknGR48ioh93vehjyLLgn2HDjAwvwdHt7nnnnuQZZVntm9n1fw8UXOGc9YtZfFAGwM9Co6iMjI+zJnnXsmTTw3yyMMP8YarrmbZqjXEJMXTF0EuT9O5S4qqL6i2n96G4NWhm05AGU/pK52sL3Gy0uWLO1nJ67Umh/EciiV+GZuDl4uTO3CnE4E5dU4nLw4TvY4oeZ1gX82dRxy/vLfdqZ27E00JcdK/v4Flvuo4LdxSJLCmOUE6TlzgEz+fwj59icn56XhbAoH04hv7FW7UE+3q+PTG5i89yr8vkmtyUiI5d42WLFvM5i03IrpW8vYP/TWHh0Y4e8XAv+NArzDZ15jYffLL93Hxez7Gmzbf8BrmkFSmLrjodXSvOpfpvU9iGdpptn0ts3k5IZbTJOenQheYu5/i5EET+xKaodJs+DSbZWRV0FEqEEcRbquJH0LKcVDk5CE8W2kghEy5XMO2NI4NjdHR1gEiRtZChKonCUoU0dffTbaUo1hIU6vUMHQdRUlge6ZtISQFVdHQ9QTWMDw0hCKHaIbN2fMFT+/cR19vkXq9xrJFXfR0dzF4dBxCsByLo0NjHDo8jGHqTI1Ps2xxG2gmiuagq3rSHdMTCKeqzZGSYynhjkkiQY3EIGQZ328QeC6q7BArMZJQcFs1xsfK/PAnj7N8cTeqriELiAMfWdFY0NdFV3cHshShiBiBQiadRpIlZEnBbbk0my69vd2kHJ1fbjvA/Pl9RL6PLMnsPTBMsZgnmpM5liR49vmDdLQXkWQIAzh8ZJxc3kZWJTRNI4xiwjAknbVxUuac8qdCFMqoqoQk+ZimjoTKzFQZyzKRFWUOsjInCS1EgiSNOCF+IskKmqYSRzHVWgVFllBUjVgILMNAksRckpjASwI/YGJ8FtueS04l+YSvn6YlCn6Vah1ZaGj6C1XGKI5OVFhFDHHk4XsukgSe7/GTp4dYPNCDJAmarRClZwkzk1W++fVvcvGFF3DGmhW4fp229jZ27zrC08/upru7h2q9QTqT5dEHtjF/4SK6+jqwMgpr185D11Qmx2aozFT5b+//7xwZOkA2nyLyQyI/wDYkFi7uobe3lz27j3DD9VcxW56ce1ZrvG3Lb7N+40Y6ejtoRS66qjBTrtDZ1Y9uphgd2o8kGWRzXUxO17ANDVM12b9/L5IssO0uJDWi5VdRbZu6G2GYOsMjh4i8SZBDgtAHImQlRA4VpqfK1BoNvnrbt9i4cQMH9h3kZz/5Cb2d3Vx/3Q287ZZ3cd111zBTHaWzawVWykaSVSrlGr19fVx349swUjKKGqIgcGshDz2wlbM2LAZknt36OPfe/TCrVp1Jw22wdtUy+np6aLV8VEOwbMVaVE1CluC2L32NKy87C11VOLz/MLlcB0KkaUUNZJEYBO95Zj9/97//mu/d/lUuueQs4qhC/7Kl3LT5DXzhC19kfGqWVYtX48UhfT3tpE2D+uxRdF2G2CSKHG7/3tfYsHETkiLT0V3g0ssuoDl9iFIpQy2WqcxM02pWMC0NRTFwDJ0VS5fwrW/9G+ecvY5Sdz92uoBlFQkCkw+9/wNs3HAOmVwRL4Atb9pMGLV4/VUXYzopwjikWavQbDSZHh+nkM2hKQ5RXON7d97FitWX4jgGuUwKU1UYHRykd8EKRicm6OjqRqgBkWvyl5/9a2644Y3Mm99LylFJORaK0Nn6y6d5bvtuVq1azq233YYsp5jX3Y5tq9RrFUw7hR96RFFMoVTk3PM2cNGll9HR3o4sJegKLRY0Ky7vfc/v8rZb3k4YJxYcSiRwdB0no6NINoqWxlQMFi5ciR9LaLqCaeiMjI1R7F0AhMRxAyulMTnZgkAw0D9ALKvoaRPdsEin84hY5entO9CtRFlX1hQkYXL44AFkfBxdw3M9OoodyKi89c3v5vzLN2HaaVqtmFKhhKSa+JGHZMhcefW1FPJdXHLuCjw3YGqmSrGji3ojQFYzaDJMHduLbuaoVxqMHBsjm84jJJcgAknSUNExNIOW7zE8Nkqps52wojC+v4rlHKbZ8EArcGjwSQqpboJ6GSdtIEUuimaw6oxV7H12O919K5DkNIrUwG+abNu2lThsUZl1aWsfoFIvU2oboFprEQFpqz3hwWopvECilMkwWa7xyyeeYcny1Rw7fIDO9gLlySoHdh1j357dTNdadPYUKWQFvrB4+NH7Keb70EyF8arK0J5HyUfPkhGjXHqhxr59U/zzv25nZMTG1WIuuOIWNlx0ObLQWXfRKkxrPpEfI4I6K9csoFrxuPPOHzF/oIvxqefIWjksI+DuO75IX0Hg6C12PXUPU4PPkHPqTOz6OeuX1ljcNoM3/DTd5gH6suN0pyZYUKpy8doitjtM5chWpNl97H72a6xeJKhNbuWs1RYlPWDpohRLlrbR1dOOJAyMYif53mXUpmb51je/zf/61Gfw9BSIpOhygms398WciN9xy4NYmuPjnYAgnkY4ZW59+krK4setEBIO/EttCiRZEItoTpU5RJKSz8MT8MaTXsfnf/x1vKB5Yj1/qjI9CbXgxLjjgisn7UeSXrBgOBUa+WvFHNRUzJmzE0MUxsln+kncuuPm58ehn5FIktHoBMwU5JOu+2+Su7k42R/idO+/0vi574BEAegF/smLtnw103n5eIXk7lUrZv4HxssZKZ4aN7zpes657CpE10q2/P5n+e4je1/BK+9l4rgq0X9A52/LZ+/in279ymsfeNKxJUlgzTuTD33yc7z+rPkvs+1r3vlrnsPLhSwEjWYd3bDQTB3NtFB1k5brMzVZYfe+gxRyadJpi3TGJvJ8TE0jikPyxTSFfAZFUZBkmcnxWTRVZfDoMMV8FkmWCbyQMPQZH5+iVCiSsh0azSbPP78P3/c4enQIWfhIQiKXSyPLcONnf0xbOMbGdcspV+oU82lyuSxu0wVCbEtnemaW7q4O2gsF/LDB8oVdKFqMkA2EJAMRiipoNet4rodpaLhNl1qlgWYkQi5Pbd+HrqpzYjACWZJpNgPi2EeWE4Pyp7YNsmntYtJZFYTEyPAkhm4hpBDLMUCE+L7L7EyDI0fHKLVlEISJybquYxhG0gETEn19HQSBSxDW0TSFYj5HFAjiGIaPTZHJZOloLySWErUZWm5AT3cniqzhuj6z5VkMXUfTNeI4JowgFjKQJKqDR0fn5M8nMQyNY8dmSKfsJIFDxvdcdE1LoCFCICnJQ980TVRVIQaCMMI0jbnygSAMQsIoRBISrWYLSUq8BRVZJp1OEwQ+unZcREOZg2Im3Th9Lpm//YePsWv3MEsW9OMHLqpmEEVzkEcEiqoiyzKyrLCgI41q5IhjUBWVQ9UM/f3zufCC82i6dYQwMAydkeERjh0bYV7vQnY8s5Mv/suXufD8i1l/1nrKszNk82ncwOWOb93J9FQFx8mSzRa5794HWL50KYZu8aY3vpnly1ZzzoUbiERItpDjqmuuwY9ccvkclmXh+R7vevfNZDJZTNPhrW++hfe85xZyuRyTU5NEYYxpqsiqhaIZmLZBFNWp1ap0dnSTcgo88/xzWE4Gw0rhBkmXo16tUsjnkGSB32qhiIjRoSOYmsJMeZbOzg5GR6fYsOlsyuUKO3bsQJJlli5bimZoOFaGDRs2kcmmiEMLSUrUX8MIdN3EdmRkWeLMNWfx3vf9Pn//N//Cnj37ufwN5xME4ORy/PmnPks+neHw3n0USt189I8+wdT0OAsXzkv8JiWBZVhcd+01pNIlECqlznZabg3d0FCVhCt6YO9ulq5Yy9p1G/nIx/6IK666CsN0iE1wlBzf/863+a13XY+sywgZJianSNsp9Hwi+Y+QUOSYVWesIYwSgaC2tjZqM6OknAyKk8NDJ2s5aLqJqhpUalWqMxWmp6e46aYb5uBKMWHQRFaS6vTrr7iMUlsb1UqddWeezfXXXUmxVMAwdWZmZhGShqIayMgosookVMLIR1Zgx44dLF60FMtOChWtZouOji5qTY+ly85AlSy+8+3vIyGxceNGBuYNcO+9P2XRovn4vksmmyGfy/FvX7+NC84/n472LjrbuxkdO4RhJoUtTbPxgwaqqtOo13nDFW/ASVuYhkUQRohYsG3bUzjpLNdedy2aDoHXxI9kTEVHliVanke9XscPAiYmJnA9l/1Hh8gXSgRhTFt7J/X6NEHg0tbeg22XODY4iK5reL5Hs1FHVyWOHDhIV1uRieGj7N63h7VrVjM6fAy3UceyHCzLpL2ti0ZdkM1afP7zX6Crq5dLL7uIbKYDTXb44r98kfGxY8xOhcxMTaGrGm9+82a6e7rQLYdWK0DIEYeP7GHewDwUxUORYppuQKNZwTQMstkCktDRhMrYeJlUNkvdrWMoDookkc/licIYVXa572c/Y+GC+Xz8o5/lsqsvp6OrmyODg6Ty+UTESdGplqsoikyhqOJHIYqmknFS+I1J+nq7abg+nQP9xJJMFLeIwhhNVWk1G/zFp/6c/t4uirkCfisiNiEKffo6O6hMjiNriVBOf998KpUa555zAZ5bp6enjampcWSh0NZRoDpTBX+Cp3/+Nyzv1DFoUPerjIxn+fZ3R6mzkPd+/J0sO+tanHw3IyOTLFqwiJtv2sJAfz8d7SX+5m//BmGb3HPvz4mRSFsWjz3yKEu7a7SpRzh7mURveoKsOkhQ28m6M9ox1QlKRQkRSqgytLdJiGwPsWkhZzLY7W2ghhQ7M+QLBm0lkxWLlmBrKeZ3L8Wrq1S8cWYqU4wMDWFqgrqrYGfSuEFAttRJLUyx/twLiIWSFD5PrE5ORgslidTxTlV8EmfuVyV1LwwXL3lfkqQXbScJ6YUl0cskd8cjjqOkyMlcx+1Uj+goelGydzr+2kvmPDfuhEff8Z/neH2nNRL/dSJ+qXKmEC+c/vFjyMoc/PI4HXBuA0kSiR0XEtJvkruXj1fzizpVvOSlN/Txzt1c6+6l0kKvdjovMl580U14clXh5O1f8ldw+nZysv2vEadUE+YwcC9UR14hNm9+I5s334DoXsVwVOD3Pv0Fzl/Zhamrr3Dcfz+e+6++8QDrtryfm9+65RW3FfDSP/yXOf7rr732xZYQwMv8Yk47/qSjvfyYl2z6StdA8PgT28g5WTTdJHB9gjDEtBxM3WDxwkXUajVkJeFMabpEpValUEhTqU6j6WlqtSoIgSIp3PPTxzhz9RLq9SaPPLYDXdUoFbI4tsWuXfuZLVdoayugSIKh4XGODo/T096G2wh4esd+Pvj1p7n995cTBD75fBpNU6hXGyiKSuCF2I5KFCZ8NVmRuPunj7NyWS9P79hLsWgkwh8ocw9ViSgU+J6PJEsois4DD++irydPFAi6O9tRVQlZDnFbHrd970HWrlyCpIA8Bw+1NB1JwGxlGiedwrItFEVFlgXSnC6yoqpMTVfp7mxDliUa9QaqoeC7ATGJpLgQUlI1lAWarOK5Abt3D5J2bGRJUK7WME2Nnz6wjf7eEkJAJpPhuecP0Wq1yOXSeL6HZZnEUcT373mMRfO6+cXDO+jvKdFq1slmHYQsk8vmCYOYtvYUUewRhi2iyEVVdZAErUYLWUm8yiKiE3+bcSzNfSAlXd0wCJAVOYGqKhJj4zOYZgK1EkKiVqtjmgZAYvswhwCQJJmxsRkcJ4Xntdh7YJQbrzkPVRW0Wh4gY+gaiAA4BZkgBLKWI45iZFllf9Wiq7OPSqVGe6mdT3zyL9i0aT3ZXIauzm5kBKtWr+Zrt32NI4eP0dfbTd9ADyEhiipz7oZz6evr5+ntT6OqCoNHjvHMjm2cvXE9j299koMHD9LZncP36xRyefbs2kOpvQ1JVoiFICmMxsyWy/zgjju5+abNFDuK7NmzG9txcBwHz/eYnmlgpxxMR0dEECPY/vTTFNtKaBqUiu2AgixJNKsBumbSanioskk23Y2i2ghJxzbbGBk9jO9LlIp9/OLBx8jlM5yxbi1Lly5F1RUUVWbBwgX4gUulOs2ffOJvOP/8s0DAwYMHKRRyTE82EbHOW29+Nz/+0f3c8MYr6OruJZM30bQUKd3mrh/czRuufAP3/vQnbH7rZq666koe/PlD3Pmd73PJlecjkKhV6uiGTCjrfP8Hd7F82TJUSSGODESkIIcKIlbxggoPP3o/bW0my1Z2oBktJsddWpVRVq5YSLG9g6GhSZxMBts0IYwI/CZeK6BcKWPZKvf/9CFs26KtrY3Z2TKObeNGAj8UiDjm5/c9SC5XwrQcgthFRae3v5OZ8hipVBohqVSrFXRDJYpihJwiChMxpm2PP8Yt73oLge/TbLrccccP2XjOBsqzZRwn8bmslGcJ4jCxidi4AU03iESMHwTYloPnRxw+PMjbbn4Hm296E4sXL2RmeobhoSG6u7tZuHBBUtAxNcbHx4miiPPO24CiaEjCQFFlBo8epae7B83Qabl1NF0DYjRFob2tHUVPCi4Sib1KrlBiaGiEYjFLrTxOJm1Rbwo++r/+kAsvuBjTdkinbXQzKZiUiiVKbW20GjVsU2N6eoK0k2Zs4hjpbJ7J6RZ+q0Fffw+ykqhuarrD7Ows2WwOP/DJtLWRzRWYmZklZafY9sRT7N2zm96BXmJZQhCQcYp8+s/+glveuTnhYU9MMtDbi4hDNmw4j2996xt85zvf5utf/QbXXX09RsaBWMayDLo6O4j9CFU0eOCBh8mX5tP1/7D33mF2lnX+/+vp5fQ2vWcyCSGEEFIInRCkSEdABBEEccXddcWGCspavlZUULeouLuuq+DKogIiVaRDGhDSk0mmZOqZOb099ffHmQlJSCi6e/2u6/vdO9fJzJznvu9zP/V83p/yfrfEeeKJP9LT042qyihGgHg0hSL6FLKjKIpKsZhDEH0i4SDp9CiNTUn+4fv/yhdu/Xv2DK6jId6JEQAXn7GxSSzbZmDPABNjYxiqxujEJI3NzTz84BJyIvgAACAASURBVEN0dDdSrTlE43ECpoKm+0xNVwgGgliVHLrmcvrqdyEpEnoghCBp6LqK7/gkk0lkRUOSfSKRBLl8BtsrkEwl2L5lA6om09TWjezYOFiUCkUGtz5DS0IkoFVwnBqC0cnnvvog85d38Omvfpq+vnOpWAIbXlrPnx59jKMWHcNRffOZGB+mUMhiBoME1SS5sTGeeuRBhPIgx8yL0xYbR/fH8YUaYiiKHu1i7oJliEoIQQqgRyKUajYVxyJXqaKVRrDyUzilKpVsnlI6jV0qYJUKjO4ZZfd4hfbuhXzlGz/kmCWnMvfIpZRLCs89/SIdTQ1MD+xhy9pn2bVpPb3dvSw46b2Y4QgI4CHCzPfJ/uDOmykNmQUSgii9qe08y4Q5KzM2C+ZeN3V8RMR9/WZr6F9nnDxw7gOBYj27zfXdfYSDswBsfyKTWZJBYTa9Z+Z1QN/9XqJYjxwyk5jmzXymNJMm+ZbEie+gzX5enThR3CejMKOvVt8mzvy5n104e1h8f3YOaR8RC/wvuHvbCPztI/WDI1l/PrjD9xHlg/J/eaNXYV/3gxCB77NPK+O/te2fM/3nXuCCQDgc4qJLLsTsPoYxP8l1t/yAXz+z/b9PIB34yr8/zo8e3U4lPIcbP/PZukjr21neYdZ8qHbJpRfxpX/8LRs3bWL5gs43YsK3GP+O2lvM4fke7S0NpEcybHxlB8VsFk3XMMNBXnrpVcp5C9e18X2bqUyOUKQBMxBFFg1U2aBUtRFFAd1QESWZeXO6eeAPz3LssUfQ2d6C73iMTaSRJIGOjmYcx+LJpzcQNA1CQQNFEpnX14LtOeRLOa5bFcdzLAIBFVEWESQRz/GQRblO069LZLNlEskIr23ZzinHzUcQVNrbGkC0UDUZp1IXUEWQqFY9fv37F1i0oAdBlOnr7USRZQYHJolGQ3iehSdU0bQg87qb0PQggwPD7BkYo6khSsAw0XSBWLQeiZQVue418wWymRyqpuG6PsGgwTMvbEYVBQxDo1qroCg6AhKVarl+b0oSnu9TKdlomk4kFOSl9dvo6kgSiugossTc3nYERFRNx3UgFg2RSARwPQtD1+v3kSAwt6cFbAddlomGTQxTwsNnw8u7aGlqZPOWASLhIJqmo8/UdJVL5X3Cx4Ig4OHXyRlm73lBRhBmazSlGZkHEVmWKBaKBEMhZFnG931qtbqUQalYRFHleuaBD8zUbT73wjbm9nQgih4LF/RQq5VwnAqybOA4Pp5nI8ourlv3Is4Kp4siPP7KGHNaU9RqNUbcCLFoih3b92DoQfbuHeXWWz/Ph//qeizbIRI0KJeL3PHdO7j99tv56le/wmmrTsX1XMyATqlYRpZEWlobCUcCLFp4FH29XVh2lVWrTuW45cvoaEsRi4R44pHHWDDvSERNxvehUq1gWzZjY2naW5toaozT1tZANp8nEo1gGgamaWKaJsFwDFlV8QWP3HSJSrlCLBahWssTMhQMxaRarlGrltCCVVyvQDAskE4PIukRdg1uprEtRTaXw7NqNKW6EQUN0OmY045lWwQCBlWrCoKHJHl4rkU4EuCkE89AM11qVpVUQxxJ9PnO925n0eIjkBWbj3/yI1x66bl8+/Y7OO+CczCNGO859wKyuRLXffhDXHT5JURiGuPj4zz71Et84fNfQg7YCL5MwAzhOlWMcJg5vXPwHJ/MVJ6J6X4MA0TZZtfOVxCrSe64/Yfcesuncd0CTq3E+WdewzXXnUmyOUHNibJ3IE1rRzvFYp4Xnn2GgFAmFmmgXKuya88Ofv/gE5x80smEIyEQIF+2UBWdarFAUAVNj9DY2Ibjeoiyh6GGEEUHSfKRJRV8rc4YKwi4js+2bROsXbOe+X3dXHHFRSiaTKVaZf26Vzj5pJPJlTMEgjqeZxMwdVzPJhgKomkyxWKp7pDBwzRMyqUyqmownclx1ZXvQ1J8PCpokkGpXELXNH53//0sW7acSq2AOcM2mZ4aIRpOASrnn38Bf3zsWS6//DJK1TyuXyYcjoFXT3NWJBnHtxH8uqYknoAvSCiKwr/e9RNWrFiEXasgqnHcms0tt9zC8hUrUHWZLZs2sWDBQrKZLGN7B4iFg/i+jeg6DOyZoLUzRbFcJp5opH/7Njo6Ohgb3UswFMKXAgiSwmNPPMG8I48glGyiWrOIx1Pksnl6u+cSChtUrDyaKRELRklP5rnmmmuZygyDWK9rfumFNZxz1tksW7GCL932BXp6erj+uo+iq1GUCBRyRUr5CtMTae791b20NYVZdMwKqk4Q1yqhKhLReJCJiWGMRAJdNBDtMsO7XiFTLNPSnMKyKmiaRCSU4IknHuei86/GCEqEQ2WGd05heWlikQTBaBJdNxgdHqKvp4dQoIVoMknNqtDT1clEaRpFMUlEokyn9zA+3E+y+Wh8xyKd7qdUGCXZ0sNUfhpElTt/+COOmXsk/XsGGBweIdbYTCoWpVisoBk+ljWJ49pEgwrtHd0Mj03jlXI8t+Z5JEFC98b52S8e4rTVSyhWspRq3azbupvv3vFrXLsBQ5GxK1X+6xf/ztFHLeTpF9fTGInQ3dXGQ488yNlnn8dvfnEXYS2HIY5w5UU9tMRHUGUX0zAIti3G7D6BSmaYXGac9MggtUKazPAUQaWIV8oQkYPU4nMZK4cQ40fz2ye288iaMRafeS2NC88h2HsBC1adx/ZpuOCDn2SophNvOx09tpBHnnqZE884m96WVnb27wbFRIl0kBOTdHZ24nvuTETOfwO425egOWuLvEWaJXCAzXiwSPns37N6bbPacftqyfyDbepZU2h2DTPsnIfivdjPbj+UrMDbAmg+yEo9c+KdmtLvDATut37f3wfuhP1A5gHLOmhaUZiJ3P0Z4E74n2UB/J9p1Vrxf2TRr3sVDn1h/3ccK9/b7+Tu9/c7bZ5/4LjXQ+0HXy/1i/9NV/6XShq8xXiBurzETR//LGPjYwDcc/O5B44XZnu+3tK5Ir95eiOJSIC7nx2kuamZO37wrT9rbYclpHmTNUO9+2WXXMmPP3YGQUNFPByQf7Nj93avm8PMMQtU7n/gCTJTBTRZIBIJEIsG6evtoFqz0FWRNWvWcPTRR6HoOqFIjMnJDEFdQ9VN9KCI4yr4rket6tWjbfkcZjCApKpUCkUUWeK5F9ezcuki/vDYi4RDGromoWsK8+d3s3nrHm773SZ+cl0vriOwdccwK5Ydxf2PbSAS1JnTlaK1JcHYWIYnnt3KVZediKIqOB6UKmkiegvlygCmGQEpRKVUQtOhXBLBcwhGTDzBY3jPBC3tzSiigCDUqdcdz2J0JMOfXuhnQV8TC+a3Iismz7+4kd6ORmRZwjAlTDOI54rs3TtJR2cKx/YAj72jIzQ1deA78Mv7nuGKS49HlgQkSayTNeTyM6yTMo5jzxDZ6HXZBFHC81xsy8J1HGRFJZsvkEzG9qWF+DN1dr7nUyqViUTDeJ6HbVdQFBPH8xBEAU2SKJVsVFVAVl3sGsiqjGU5yIqCpiqUSjUURUKSoVpxwPfrEhX4r38JzvyXTU8RjcfqqXK1GoosUrMcBFHEDATwcREFGc+FUimP54uEwiFEQcS2HSrlMk8/vxVT0zn+uCNxPZtyqUAwHERRFHxBwLVsPM9D01XAQZRUrrxzE7/81LvZtWsPH7nzGRRV4XcP/RrbqeyjfZYkAdf1qeYz6KEwvqDysx//nN079/Klr96MqNk4ro0mC8iSRK5UJBCO4FgyuixTLOZYv/ZFjpg3j2KpSk/fQgq5KTTJpVBzkYMmD/zmft69+gwymXFMM4DjuExPZenqa0aRA9i2j6aYCKJHJpMmlggzMTFGKtlWf95LIp7n4tZq9ai3buILIoroIkp1sXhRBMeVkDUB3xfwbBGoMDGeRtMMwuEQtufjOR5T6SkK2Tyf+sSneOjRhyiUphEEMPUQjmeDr5DPZ4lGA+RzNuGAyde+9lWO6JvLqnedzGmnnc1La9chqyKTYxV+/vNf8qEb3ocgukhyFUWI8bG/uZkLLzqTrrkt9HTNw/MkBFy2b9uG45TpO6IX1xZwrBzJVAfT0xVu/Ou/5vbvfp8zT1/Nvff8G6Zu0dqSYrqskkhGqNVs+ncOoSkCii5imBF+8Yv72L5xCzd/8TNoqsBTjz7K6vPeNSP3kMPzfZqbGsnlp9HNCKCiCD6eK3PxRZdzxw++SkdXFzXLJpvNEY9FyaSHMQMBZC2Mqib48ic/TaopyRVXvZdoQ5DR4Sw7d/WzcuVKqtUamuFQqiroAQVBLDA5kGdscpI//P5RrrzyMrrnNLPpte309h6BKHlYdp5KrkQgGMEV6pG1r3zxa3zqUx/D9UD0NYIJA9uykEWoVsts2rSDzrm9RGJJBrbvoaurEzOg4OPg+TU8S6NmF5BkF9fxicTjZKczVKo28ViCSknh/gfv49JLz8P1quzcuYPGVBIBlUrRoqmlHUGoUCjkiURCpNMTCBLEmxro376TZCiOJ/tEo/F6BHEm/XB6coKB/l0sPHIBUrCR5x9/BsnzWXr8YrLZSZqau3A8kfH0KLFwiNHREcyAVpdYqBUZH8vT03sEuUKWZGMcu2zh1TzKjgOCgW8VWbvmBXb293POBRdhZUdo6mxCEkr4eQNbjaBFDfb0b6U0naa9rZuvfO2bfPnrt4Hkgu0jywLBYJwv3PI1vnjb56haOTRdxbVh545h2lt6iEdDnHn2cr5/5z9TqjjMX7CAXHaMSCxISE3w1HMPsmjp8RRyYwSDSQQpSNVxiAZdfMegkB8HyyQ9WSXc4O1zIquqRnZ6kEQyikgAqypiObvYvWs3IyNjzJs3n2TDctaseYZTTlpKdmqcR/74AhddfC6l/DiOVaBmm/zm7nu54Mwuypl+fGeESlHlRz/dSOP8Rbz74ncj0sTWXVtwBYF3rz6VcqFMsTiBIsTYMb6Lhb19/OHeu5nXEWJem8fQ8Ms0NkbITo8TC6cwG+Lkp308L0utIuHXpjADBoOTFfaMVjnqiEU8/swWrrvhr7nrRz/gps98hc27JnnokUc4bvli/vO/nuRjn7oRMxDk6Uef4+4HfsM/fvc7PHDff3Hiyatpbm3he9+9nb+98cOsX7eOnjmtPP3go3Qmh9iyaT0LTnkfsbaV9CxaiCwqCLxuOwqigOC/MSXRm7FPZwHbbM3cvnEIuL57WMKR1zNN/EO/7x7Y3xN8JEF6W/bw4Wzng+c4uJ9wGMA6uwue8/b6+W+xxP0PyWxf13XqkkwzfBuzckPCQcdPEL0DxkrigYybiqq+bSP9f8HdIZrAoalK/28Hd697Yd5hexvg7lDzvvDcGtKTadKTaSLRCL+8+1ecdOIJXHvd1QRDgXe6ijdd2zsFdwfs08zvV7z3Gr53/Uk0RA+xtv9BcOf5HiIC2akM9/z6jyzsiVKsVEk2pFi0aAHpiSxbtmylu7OJjo5W0pkc8WQSSVWQJMD18UUb11EZHxmnWq6nEO7eM8is7llbZwvRaBwRmW3bdpOZLrB52wArjp3Lth1DHLdiPjff9RifOqeJ3p5WXt44QNBUmciUaG5MsnZdPyuX9lIsl9nWP4qma7xr1RL+8Md1aKrOWafPx3V0fMq4noeihXCqDorqUq3Cmg1bOX7FAlzfRUJBEPwZT7xaj/DJArLn4tgS1WoFPSDjzuTmVys2iqIiCD6aquF6LpZlI8kCsqQyNDBOtWoxt6+DgYFxLMult7cNRKceHfNmJQTqD1vLchkcHKd3Xge+5yB6Po5Vo1ytYQaC9aiEWAeGoijieR75fJFINEy5WMQwzXrahweqLlIq1nhl026OWdSDLCls2zZAZ2cC16+hayaSpGBbHrphUqsWyeXKRGMRFEVGlkWqVQtFkbEtBx8XTdNhhjWsVimhGSa246DIdR9mJpshHo/iOj5I8kw6CEiSSM2ycF0XfSbC6HsepYLN2nU7UTUZMyBj1Tw62xNE4yEUpS7BoBsmxWKeSCyA58o8vc3m1MVz+c2zmzn/g1/kxBNP45Of+TgXXnwuoiTVmThtG0mSmB7fTaq5g8npCnf94F/ZvXMnbV2tnHjyMk445QTGBkZpbmkjEA5QtgogqHiujSwI2LUa4+PjNKYaEDQBq5qjWswRic9FkF1EAbZu3kbPnA6K+RqKYvLlr3yN797xRUZHJwgEIgTNAMVSAc9ziETCqKpK2fXJTk+hyi5WpUC1ArF4gsn0NJ3dPfg4VKtVctkcmqaRSDYhyQKWVcN3FTRFoVoroigCHhKlSpkdW3cwf94R2FWXQq5Ic1s7gmTzq1/9ilNOPp1kKsoD9z/MWWedwejoEHffcy+f/cxNpCcm0RSdTG6S5uYOKlYVI6BSKvp89CMf4af/+mMQPAwNhgfH0Q2DeNKkUoF//OFPuenjn2TevLk89NDv+c4d3+S737mdYt7mzNUrefa5dVSqHpqpIkg1Xtuwld/ddz9f/vvPY1s10oVRIpEotiVRzDk4jsMDv3+QxqZWPn/rF1n//DNoYYWhge0YskCsuRVZkqjVLMbGxmhoakLRZCRZx3IEpkYHiUWS5HIlFAWC0TD9u/rp7ulGU1R8sUyxkMdHRVVimILAdGaCeDKGIEoUCg61WpV4Iorr2xQyaXwxSihqMjXVj+KGCUbCOI5TN5AHdxNLBhBdhV27BogkE/S0N+H4HumpLNFYnEImTygYxPM9bNtD12wqNQsHFU0LEdIkLKBUqRBUDfLTY4QjQSYmxwgENIKRFnbs2EzPnE5kUcN3XHKZHL+4+x7OPuvdJFviVKo1fN+nubmFSrWGIPn4HuhagFyuQNjwmM7kSCWaefWV1+ib34cnS/iejep7FKoForEEeAIDewYJaHXyonxummQ8RkP3Qj7+0Zvo7ejkQx+5Fl832TswzPjwCK2NIZRABEWRCIYCZKanCBlhSpUqkUSUXH6KQDCOU64h+RJGJMyegWGsYobGhjiIIrYocd+//QvnXHgWgbiIobUii0GqTpFyKU9DqpmaXaNctjADKuVqFtGXkSUfwzAYGh7CNCJEYyalcolq1aa5aR7f+sbtfPSvbmB8fBdtHQtQRZlf/fKXXHj5Rby6cR2bN+xgztwUcxYcQ7JBZvvWIbo65iEpMqJUxLU1Jid2Uy34SIRomxdHBEqles1ssilJNpNjYnyK7p5eSlMTBAJhajULAYmaVEGyQlTsKdDzaJbIxvUvsmLlcorlChte2sMFZ63i1XX/QFyfQLVDlEWVm774MD/7zWbWbXiYzrajGRrZyooTjmXvjmE82cWxZX71i59y9uqTyEw+S3ciQ0JR8QIelYqMoYdBhVxpEmsqj6pZGKpAcSrKc5szyIFGuhefTaLraIKywE///R7Ov/BcUg0hfMujUvWY2NvP8iVzKTsSkm7w8vqNPPrAE0i+z4f+7iaefekZTlzUzfb+MbLTOaoVm/7d2whqJi+8soP2Jo+p1x5m3rEr+MCNX8doaUYWDySL+19wVwde8Pq+Hq7fW81zcL/ZvuJMjXu9BGWmz2HAne/V14IoIEkSwkGBpncC7v6vTMv8i9tBsdH/rjzc2bkOFWJ+QztMbd3Bhaz75uWQUV7eVsroX1r79hbjBWZvHP+A1bS1t9I3fy6LlxzNEQvmcellF7PiuGUzNQ5vnONNV3i44zi7tv3B2v5rfQf7fcklFxCcs4S//9qdnLq4+22Pe8cUpm9Iza0PHx4aJZvNkYrpmKZOMGjgODbp9BgtTTEUVcIVBARPRpZV8AV2bt+NpgTY2b8HEY9ETAJXoFwq0tiYIBIJoCkChiHP1KJV0DSVWCLM8qULGJ9MY5oqr23czSkLddqbE4xPZPER2Ts6het59M1pY2ikXj8hSxIrl82lUCzT1BhjdHyKU044FnyXF9ZuoaOjDauWR1ZUXMenXM6j6DItTSlkqV5D5voeoiQjIJLNFHn5tX7a2xoZHBghn6+hGTq6rtZz5X0RVVPxfA9NlbEsG9tymJzIEI1FwHeJhIOYhoHtlEimwsTiOqJogV8XhFbkeiqnMJPiKAgQj4cQRW9fOkldB87DseCVV/cQjwf31RvYtluPcs2yW8kSogQ+ddkIRdYxVAlVkVFUiWg0UAeHoowka8iSjOvYiKKPpmtoel1L0Kp5iKJHpVIXN5ckiVw2h2nouK7Hli0DpFIRBElCkuWZ9I0Z0eKajSzqCIpc/wKHmXXOiqnW6ywq5QpmQKGlJU5TY4iGhjCpVIJIJEitWkJRJGRFAwQ0TaNSKSNJMt/8bT/nH9fLK7uGaeyex/kXXMRPfvKvnHra6YhinfDF8zy+d8edVAoVBoZH6OubR3dHO++78r0k4ykef+Ipjlgwn0TCoFSsceNHPsGioxcRjIUQZiKLgqCi60G2bd5MrCFKMBCkf+tucsUiklclHIzS0NRdZx40DSRF4LiVSxEFgUAggFWrUq6UkSQP1/XRNJ1azSGfz2MYBiKQzWUJqBqlUqlOCT/DFppOp2lta60TyYgKIyNDhCNRHNtD8FXGJ4fRDAE8EcezaGluIZ8v4Fhw/28f4shFC6lZJRYsWIAkKoiSy2uvbmbJsUez8bUN2DWBOXPbaEyl8D2Fv7/tywSDETzfI5YIEQwGOOuc03Ach53bdxKLhuspiYaGSD3F17Ic4rEkN370w5ghjXPefTau52OYMS6/7CwmJiZ46OEH6OptQkFCFGTS6SyJRIpv3/49zjprFTu2b6W1uZVMeoquOe388Ic/4m8/9jdcdc3leN4IxUqZWLiDS867lhtuvBZECUVWCIejCL4NOLiOiyarFIsZdF0jEq4fp2w2S2dXF9/+5rc57bTTcDwBVdWoVmxeenYdwcY5fPlb/4eTTluJL0jIogeCiyCIDO4ZRpcVyhWPeDKGKNhsf6Wfrt52Rif2EAhohCJhNC2ALsDwyF7mLlxEITuNJCl1tk0PqrUKPhK266IZErIkIkgeGzZs4iPXf5STTzoJMxxAkgVwLYIRvf4MkiXiiRSVcpW2tmYymQymGUWSYCqT4dTTTieVakBURSLhEKYZpFAokclMEw4GZyQeRBRZoFjIsm3bdppbmlBUCcf1iCUawbcoFEaJxhrIZLIEgyFAwLU9Wto7yOSLJFtaKVYsLrvkMlauWE7ZLuOLEqYRpJgtkJ+a5q8//gmuvvpqJElE1VWeeORJunrasR0LSdJRlQgfuf5vsCo+n7/1y3zg6vcwPLATRYJwOEiyIcXERJ7f/NdvWLp8KdF4F5ZbJmgIdYkVycRX6vePJPoYhoqEQTjUiG2J+L5INBpndHQvwWAQu+ZihuMsXbqEQNAgHI6Sr6UZG9rG6auWg+6Rmcpxxqp3gVCloaUNr9bAPb/8L0448WgymU3oRpzdOwcJhSUkQeKDH7yeiy+9GNtyCYYjqKpBuZxH9EVCQZOR4d0gCARCIXbv7qendw7l4hh7d26lqaWBULKRgOCxecNaWtq6aehaQHOLzPNPP0pj2EO1LFRZZevgBNv21ig4RU457UwKeZcdOzYxOTaG7yhky+NkRqqY3k7m8AJtiSI1L4+jR/BDTZTLFaqVItXJcbzsNAG1kYFJlYFyI90rPsix59xIc9NR/NOd/8TC3jk0NDXTnoiy5vmnWLBgLlMZm0A4Rrk4TTE3iS+oOK5CLJZi+bHH0NzUjUqGn/7gS+DBnd//PuvXvcZVV13LiuOX4TlTzFs0l7bGJUwNDrFrx8v0LTiWZGtrnahEFGdMkjfamMJMDfOsDXKwGPk+ohTvwBq7d9wOtrER3tQJ7vleXXhdEF/nrZgdO1tjN5smenC51YzTdt+4fW/Xf5mtxXurdMu3m455MG/HrF2wbzEHzSXsV1NXN0+FGebrA1Nn4X9r7t5xOxyByv7b/8fa4Zh9mNHDOGj7/x/smW/V3gq71J8Vwl+29j83dfTg/m/191tNJ4qces753PHLP3Fkk4SmKG85x/5R1bf3IYcGd5FwiN27hxkdH8fzHFKJCILvkkgqSJKPrmkgyERjJmMToyiiSyykogUFAqbKzh2jhAMhBgYG6OxsZ/P2fnRNoVoukUxGGNgzRKlcYnxigobmukh2IhGmubkB7ElMVWDtqzvoamtiOlemqy1JV1sjmq4hCC4IIp7voxkiogCS5DO/r4vJyQyu6zNnbju/vu95+rrCCLLK2nXbaW+Noxoqgijj2DY7dw5imjqiXAdvuqaRigeRJRkzECAcjiJrCpIsUi3VU+cQ6zIFgm8zPj6NaQYJhSLUZQFchvaOUKlUmByrEYnXPdye4yCrGrqu7RMVnZUAKZXz2E4VSfQpFYuoqoaHhO85DAxNsXDBXCRFqDOQzqRNzEbWXFdAkgVy+RyyArv3TBINhzFNnUK+gKKBLEtYNRdZqYsnW1YNXVfwfRvXrZOluA489/w2UimTaDQMQK1WIxQyQQDfgYaGJIpWJ13xEcDzZ2iVLQTRxrVtShUXVZVmpAwUJEnG9+A/7n2aI/vayUznCYWiOLZAtVzX1vN8C1H0cR2XwaFR4vE4jlOv/VMkBd/3uPv5SS45vpdHX9jIPb97iKuuvIbv//CfOe/887nyyvdy2aWXEQqFWbjwSOb3LuJ3D/4e17WY19fJd7/zPVaddgY//Id/5tjlS4jHHQwjyrvedT6jo2MkmqJ4jkt6MsPL6zbS0NCEqUlEE1FcS2T9S9s4cdUS/s9ttxIJt/D1r/+IlScu4cW1zxOOyZgBAV2NUCgWGR4cwAwZTE9NYRgGhhmkVq1hl8toioqoGkTizaiCi6aq5AtFGhsbyRfyKLJCIpGkv38XhlnXbCwWC1g1l8sv/QDvf/+lSLKDImuMT47iuj7lUpVwIMqXv/RVzr3gTETJJxQOEAwESU+PsGTJMYyPjxCJmixevJJbPn8TK1cezzXvv4FvfOMbNDY18/Kr65m3YC6iIOD7NSRZor2ti5HhfnTDWA8iSAAAIABJREFUYN3aV3nkoT9x7IojaWtrQ8AnmYrjihbVWqnu4LB9PnrDJzjzjAtYtuxkCoUKt916K54lUKnU+NMzT3Lbl76AKkrouszCo4/h3WefQXNbgnPPOxeXGprhE9ZbmZhK09YeY/HRXYSjScbGxpmazqAoEoZgoSoisiggeB7BcIhqtYbgQ2a6RNUqk0gkOWP1uyhXKviChiBIyKj84w9+QlciTntKIiRPoVoZBsfHUDWN/l3DbNq4i+72Zh5+5ClaW5vx3ArdHX1s6X8FzfTIZtNousF//OK3tKdipJqSeKrE9ESaaDxJ1XJwPY9g0GDXziGi8Qg1q4QWCLNl68t0NrVx5ulnEk8m0AwND5dKKc+a9RtINjTi+gKCpCGKPoV8hmg8jl3zQBVQDYNXNm5k18Ag7S09uC7YTl1TUhIF7GKZaCgIrsPA7l00NLTS2dVOOj1KQ1OctWvWk2howvPKyFKJoaHJelqx65LL5dCNOMNjE/TMn48jSLiuy/CeIXzXZ2RsGFX2eOZPz9HR1kVreyfXXX8NruuxYf0GWlpa6OmuZyaYoSCyFKbmjPGeS8/lyIXdLFzcR1OqAVwbu1Yil8+RK+RJtPQyvHOQJYuPxneC1Jwc6fFBLNtF1MK42FQqFpoqkZlKkyvvwapWCUUC+FTIpKukGpNUKxblkk0klgTBJZfL8MlPfprjTlpFYyTKv/z4pxRsOOrIuUynM6Qze2lsaaZqZzj++GVIrkhAi7Jz9y66e/rIZkYoFStcf90NGGYURTHYtX03uUwBqzxBKBDBrhVpaYkiag7jE4MEwiqS7CDXPPzaEJpmYoTmMr53N8csXIgWaiTv6PhVnagZxbP6Edxhxqe3Ixh9PPBQjps/9U1qYoZXX9mBrkocv+w4vvnt77Pw6C7Ums7OF+9i/vIGpnJlnJqMaNvI42kMpUwhP0rejvLY01n2OL0sXXkj8Xg7VslF8jxe3vAasdYu4l1d9A9ux7bKnHDSidiSjFBzaWluoVYrEUsEmZ70uPqaD/OTH93F8889yTfv/CcWNloc1abxn79/Ad1U2bq5n8eeeIZLLr+IO751D9ddeQH3/Mu/094XQ7HHGE+7rDx9FZJUz4TZX8f5gCYKSKK4L3HzUBwQoiAeloX+bdejHVxc9lbdmSFKOQQIfL2cyj8kuKtrBrOP52KW3+KdgtO32rd6hO7wNu5sLSG8DkjfQKzIgSDv/z1w5zi3vQ4pBA4tIn745vuzelKz/gtx38+DxRXfrM3q3tWZb/YrHAUQDtLCewMpS327IM7OIx54Yc5ceJ43I/q4X+HqIdusdsmsY+JNJCDesh0WSL1jmLKvt/8m0G6/M8nrUIbDAt9Drm02Ijd7Ax4umrjPm/POopX+fp4VgONWLkfrWMx7/+4bvOcAVs1DfOTMa9/zTDiMw+Cwa379nMqiwPDINLph4nn1MYoaRBRVJEVE1wQmRodpbWlC1TQqlQrVsku5mCaoacgKtLV3IskCAVMglYqRTLZQKFdQdZNqtcrk2Bh79wwSjoYwgyYPPfMUi+akSMQTFAs1+gdHiUZMtmzbQyig89za7YiiT8hQCBkyXXPaCYejSKLGdCaPYYrkcmUiYYMF8zrxXQtf8Olob8H3NfDqlMGyLJKIx9i2ZZRMpkw8HsAXPURZQJBEnnlhEx3tMWTZB9/Fcx18H2RJAs/F8TxisRg+As+/9BrZTB5FVlEVg1e3jHDccQuQRBfP9xEkpe7EE8FzLWRZRZIEHNtHVQP16ELZxar5qIqGpEgoskHAUNm8rZ9ENAS+SLlSrNPsSzKSpFCrVREFlbHRLIlEDMGVGR+fIhDQUTQFRRJY/0o/Xe0tlAoFNLUewfN9AVGaSb30XTxHoaM9iuALMzIH4PkCgiTj1Gr1QnBRwHF9QGZ4YIxoLFyvO7I8JNlAEDUG96QJh0xsu4rrOXiuxWub93DCsgX8/pH1LFnch+/77OjfQywaRtMDOLaNiIYgyiRTcWy7OlNDJ808iyT+8/lx3nvKfDYNpLnl9rtwfZfmVJz21gbee/FFmEGTcqVAWJf55u3f4+abP8GcnjamMmmOX34yZ591Nnf9+CdMTWS54v0fZvXqc/nJT+/ipJOXMT40hqEptLU2Ew3FuOWWW7nsisuolKf4/UMPcdSiY9m2ZTfvOudcdNNk9eqTEamxft0rHLvkeDQtQXpiLw2NYeLxGIYaoqm5AZF6uqeqgSfqyKqGJEqICLy84WUi8RChqMne4VFsv0Y0mmDntn6CqoZmCmSmR4knokxPZLnyqqsQRAFDD1Au1dixvZ/Ozm4mxicIRwNcfsWF4NaIxmL4ElTdCla1RDicQtNMBEmiUCxx/nlX8k8//BdWrTqVWKNJIBGhp2cBAzvWEYk14SNhaPUIfdQwQY8TSrSgijUiQRFF1jDNMOVKEbsqYBgS6clRKiWX9131AfLlNJ+79SbOOuscVq8+k/auHuYv6GNObweqKuIILhte3s3Xv/51ZNNF02IU8xb/efd9ZKZyNDc3EEok8H2HaFhBEHWUgEpjIsnkyBqMRAdVR8DxJSRFwbFd8tMuvuiCWCLRFEdWFGzHAtmjOD2BZVdQNJ+mmMbWrTt594Vn48gaRqyHRCKBLKs0tbUy94he5IDGUYvnYwQUDE3n+hs+wIdv+FsCgQSqHsYXZYSaRe+8ozADBrJfxYym8IUyO7bs4HOf+BKr37WC7p4OKqUq9/36QZYtWUIkEqZUKRNvjFGqZhBw2LF1G8lUAx1NjRi6jut42LZDZjrLnt17MYxQnSVSVVBkiVI+S1tTnHKlSDCg079zB55j09bWgmZo5EpZNC1OICqTm5zCskXGJ0dIJeYhy1U0VcKqgWG2IosCm1/bRFNDA7IoMJ4eoZIvYRWmSUUURMkmFAwxODBEczJB2fNYsOBoRvaOcs/dv6C5NYosy/T29dZrdKUowyM7iUc72PjqTl5et5ZQOEImm6W9tZndr23mdw88QSDSRm/fkeSnJyhPl8hbUBVH2LRmmPt/9x/09i7k/Asu5cLzzyOiKvzNR2/hgvPfTUh30LwEUxOjhAyVoBoklIgSCMQY6B9hdGSK9o5WRNGjkElzxXuuxPEcfvZv/8ZV778OxzXRBB2PGs0trZx35iWsWnUuNbuEi4WgKARDnYiKi2tbtLW1Uq2WcAHfmaJSKSKpJqaqk69kCMUbULRGRN+nqSmO4mmItQCqKZLPFahaFuGIgmPlGcv62HaJzlbQFYWBXS+jKyNokosZaiURUTACVe66+2HOOev9hEyfvjnN7Nqxk8cfvBfNMCiWXGINMnaljGiVUbBAT1FTEzz7msMxp3wUjKUsP/lCjjruJIyIwaYdQzS2zeU/7r6P1eecwLyF7SSCfTS0yChSDDPkUc4UGB8aZiI7hazV+M+fP8S3/v42zlk9l0pmF0KhyLWXLOOMVS1Eo2kWdOj0tJvM7VxAxSoxb14vJ61exVPPrueMc87k6GOX8cwjD1DN7aXzqBXo0RSyeAjmAFGasT/qwG6WDGWf6Ph+Eby6HNg7tC09YZ/zVxSkGft3P+PoENp3cGCm2iy4O5gF84BI3v424yxwmjGrRalup88Swfy59vFsoGL2GO3fDkXwcsBY0cd3XWCWXOWgQJI4w66JeMh5/h8Ad/ZtB7zxDsEdHHhi/9yT7M/o3gH7NDcOv6aDwchhth8ErA7OhT4cRPJ99udbqId2/1JWzYMvXM/fd2O8o2ne8fa3Mf9bpIH+OePeVps9zjPzXHrpxbzvDbIJbzLcfyNT1VutbZ/HR4B4PMrOnQOIkkQ0HGRqOs/ugTGCpsneveNIYp2UA0HEsj0k1SCoKYxPDGGaAp7rIasyrmcDPnbN4bWN24hETGRRIZvN0taSZHBwFzVEvnv3Y7z3hGZEwWbtui10tKYIBTTGJidZvLCH3UNp4tEQ5ZpFPBaiva0JJAkEHw+XaDSIrmt1LTddRETmxbWbiccNdE1HkkUEqR6p9qjXqSWTUSKRIKIEslz/IrIsm77eVkTRx/O8OuARNTzXo1isAGKdFU1TcWyPtS/v5tTjF6KoEmbAoLM9BaKD5zkIoo9j26iKgFWrSziIKJRKJSRZAd/DqlmMjeRJJRNMTk6hGwqyJFMuV2hva2JgaIJoVEdV65TuG17ZSWNDjDVrd9DWmiDVGMF1aiiKgSwJmAG9fl5EgVRDHMdxEIT6vqiKNkMT7aMo9Sjg2EgORa4zB1YqVRzXxQyYSAg4roskQblaQFN18AW2bBukva2eQqZq2oyvxycaD6AoEoqsIkkaf3xqIyuOPZJqpUZna4qpdI5INEJDKoqsiti2Bdj4vseePWNEwmFUTd5XG2BZVRBE7n12D5eccAQvbh1i8fEnoakKvXPnIMgSjz/8JLGGGEZAQxQU/vjkE3R0dCFJKmteWkN7xxyu+eC1TE2nefrZp+js7OZ7t9/Jqaecyty+Odz0dzdx3MoVBIMBHBdOOeVULLvE3r3DLFu6DE3T+NjHbuaD111NzSrheTZT02mOP/F4yqUSsViYQCiG5Qh4voakmtiew/MvbSCWSOLg4Vo24bCJVasyOLCHlvY5mKEgHhINTe1okk65aJFKxkGykBWFVEMzjuUTDtdBtCB6eC7IUpiWlhSFQoHOzk4UReHbt9/Oxo1bOGbJ0XzvO3ey9JgVGGYE26qB4CHJYGgGN3/mc3zoQ9ex8oRlaKaH51YwlQCBsMaaNVtIJuPohsRkeqROVOF71GolkrEARrQRSVKZnhzDq5UIRMI4no3jWDQ0NCCiEY6EWHjUAhqb6rVKqqZy8oknc+sXPoft2GzfPIRt2YxPDjO3rwdBUNEUgyuvvJxvfvtryJJMIZ8lGgpSrtSQAgayIlEti+ihMJlMFcM0cD0bHxdFFrj505/n/AvOxAjIiKKOIml4rkClVCQeb8I0VHShhl0c4+gTzsHyBVQtyve++zMW9s1HFOv3g6rK2BUPWRbxPZdSucDFl15AerKApqtEYzFc10GYIRwqlkvohk5dHconEU9y8cUXIqgS1aoNosRxx69kaM9umhqbcTyfBx98mCPm92EGQrS2tlEuVjENFUWpO2tkRSUcayDV3Ijt2shqAHwHq1ajVMwTi0XRjSDpdJrOzk7GxydQVRXd0HAdB0OLkclOEg5qFAoVenq72bFtBEGo0tTciqrpINTrmXp6exkdHSMYClHMpDlifgeRkMDI0HYCkU7y2SJdnV1MpadobuzmZz/9OStWLGfJ0oWoilmXbVBFctks//T9n7N8xVKKebjhr27koQcf5r2XXcXjjz/DySedhuhnOOrYpYiKQltbB1dddSWlmsqV77sAVS6giT6XXP1BUqkmPnTtDXzmppu58D2Xc/wJx/HZz32M0884ieG9FtPZEnf99JeceMo5iFK9TnV8fJynnvoTi4/txrVUXnj2FVw/RziUYvHio1F1mcaWKIYmMj4xiI/PgnlLefTJ++nubqWhKYmhm9TEKr6jE1KTPPHI7wgYAq+9vIvB3TvpnNOJEdFpaY4RDoXRVIFsdm9dU9SLEok2oIcl8lMZHMtiYmKc7Ztfo6urg2o+w58e+z2SW0PSY0yOjiM4k4Q0j0Ixh1W1mMpLPLshzfkXrsaXfapelZaOOO+/5sO09rYxnhlm3rwVjGcFjlpxDjk7QeOc0wh1nklzz/GUnSDBeIyqX0FWBaxajb4jepAVm46uHlxEQrEAlity3RU3ctH7F7P2uTG+/JXPUkkP0qCMcNunf8xjG57kh5+9lEL6WT56/ZmcdeqRtLTnsAuTqJ6AYXg0N8g88dAf0TWJO370IIsXHs8xS3pJTw/w+OMv8tgTT9LeaGIrERavOOHQpAqztV8HpWHu06gT9wMyb2IDHgwGXzd86o7r11k1D1yE53pIMyzPBwzbr9++yN3B7S04DWYjdXU8td98fyG4O9T4g2sT3ziWAyQh9klOvCHaeOj2v+Buv+b7Pp7n4nkujuPiui6SIP3lRj5vgf7/UnA3AyJmL25/5t+st+DtgDZ/psbtjZGxw6xp/7eFN27/c70dAq/H4w718t/Q+y9ohz0fB0bF9h0Lf7/th+q/39v12qU3HoP3XHoRf/XZ2zl3Re8hP8vf99NHFN7Mr/Pm+1DXdhGRfJ/JqRwDg5P4vkBDMsJUJk+xUCUcCpNIxtm9ewgBAdupGz/xWBuKJuM4Hp6v4dg+gu/iuVVK5TTRYAAfgb0jQyRiOp2djdx+7wuc2ZlnZGSQYiFNrVpkYnKU1pYIjm0RDIbQVJ29oxk62xuYN7+XqUwBSRFRVBXLqqKqKiBhWx4+Nq4HXR0tMzVuIu4MPb8oSdiWy6Ytu2lvTc3ssYuqyICAIqvk8zkUVSOXLRIwAqiKhoeDaer89g8vogoqvu/guT7zejqR5DpQkhURX/DxPKuuI+fVUxxBrBfuixKZbJ6hvWlSqShT6Wki0QjRaJDxsQkCIR3d1PBciWrFQlVlXtm0k87ORD0t05eIhOt1dMlEGCOg4LoOolQn3QhHdRynAqINnorvw9MvbKSjJYlp6vi+UBcY11WKxXqdmyiodYws+ITCQepC4hK4LpKiUKnUCIdCCIIEPrS1pOrpY4U8kiSgKgqu69Zr/7x6eoDve/R2dwAgSj5rX96OpirouoQ4wxwqSwqKWheYDwX1+he5CCMjk0QiIRRFolwo88rWIU5feiQvbB7kxDNWUarUgbGsakzszWGGVRqak9hVn+NOWIKuhvjlf9zLpZe9h0KpynXXX88Hr7+GU049kYnRUUKhEAuPPIJlSxfx3IsvcdFF5/H0U8/Q2zsfWVJIpkJMTWUJBoNousaRRyyis7sFy7IIBsI0tjYi4OM6VTRZYDKzB0M3EPARBAvbtuls70TXFFynCq6F5zsU81kaG5MEAhFymem6iLxioMvgOQ4u4PgOhh7AcyR8T6JUyqGaNpPpIUSpXm+ZTk+RSCQol8uIgsA3vvktrr76b2lra+PTN32e3s6jSTSF6qC8UkMRTSqlLE/88UkuuvRCHGzsahHZd5EIUaxWSaZSxKJhPM9FNww8X0TVFFS5noZbqzpoio8kCYzsTROOpcAViERiACiqhySJxMIJ9u7dS0NjjGwmR2dnN2bAJBFPcMUV1/KFL96CpmhEwwnuu+83tLS28v4PvA9BdMjmhmlpDFCt5rFcGwSFWimLJppUrDLJZNPMc1FEkRUGB4Y4fdU5+IKLLNdJAXz3/2PvvcPsqq+738/u5fQyvUozGlWQQAKJXoTBNBsBphmwMWAIzjUxdmxDnOIU23kT27EdO05inMQFO27EjgvY2BAwBlEkJIT6qMxo+syZ08/Z/f6xZ0Z1QDi+93nve7P06JmZXX77t/fZe5/1Xd/vWsunUi4hCg5eYFMv5slN5ujoXUygeEiCh12vsGJpN7qiMDY+iqxI6LqBjIusSFSrVXQzQrFc4+y1Z3P5lVdgezaaGub57d6zn77FSxg4dIhUJoPnutRrZVyngipLiIKHiIcieRSLZQTCXpsNmSxm1EQSwjxlRdb58U8epae3F88P0Awdp+4iihaq6iMJKrVaBd/zyaSTQICq6qiqypO/+hVr156J49gkE3E2bnyRwNXIZJIIvkA0lsDxa2QyTUgiuL6H67koisS+/oMkk2le27GD1tY22tqbEEWfwYFhAk/HjDdgmjKCaFOrVXjsRz/iL/78z7jzznfjBjU+8fF/oTHbRDQSRRZj/OGH7+OOu27EDwTuuPsdXHLRW0kkYpTKBRYs7GJocJBUQxfbd+yls6ubV7dt5m8+/ddMT+1BVQ26+nqx3RmGRhBwfY9CtUZHe4aly/oIFIPOjjSZpghnnnk6uqESzPg0sXiUiy48D9d3qVaqtLU309vbDVQIZB9ZExkc2M70ZBnbrmLZdbKZZpLZBMuWLcb3fXa81o+EihTIbHttG3/5ib/i7RtuoGfRMgYO7KWzNcOml58JG8FbAp5TZXx0J/Vinf49r5FMR3Fdh3plhHg2Rjal0NeVpmirlAtTLF6ymEiiAcmIMTIwSmtWploaxjAjFKZG6Whp4R+/9gzr17eQamhGN9tRvCiF2gSakuXHP/0hV7/9NhxXp2ArFCydoXEbX9MwTQPXqdPY1oQtBkyODLP55VdpbEpTqozxyssv05o5g+ncMJqRx5pWePGll/jkX3yct67r5es/fpabrurisnUZ7ryqi2xCo7fHoJw/iOdYmLqG4ApUSxY+AqPjDqf0dpJpkNkxXmblsjW0tjXT0tbBK1tfY+xgPwnN4IGHPoGvZBEEO/QnjviHKCKK0mGW7AiQdxQRgoBPCGBmgYwfHNGHlWCub9xRFhxWlh2V9zYzvjhPMZW59bN94ubxi47tZ8eRy444n6PnFMzEzI9e53kuQeDP9dDzfe/oHn6+PyPBPPr4cJjxnNdXDo6e7+ESnEcwj0FwVOPyI+1/wN0R5nkutu3gum5YqnyGOZFled59fif2JsGdNxvxOGa74/rcva7A8QTTOO7vIx7oefd5/fVv2mau+ZsBpr+t+TMM6huB0OPWzgeojkp2nX/Mqzdcwye+8lPWLogiSvNHX07quh4X9WIOCfu+T2M6RUMmSa1Wp6O1iWq9QjoZJ5WMI4oCQ2NTyASIgUO1WsEXKihKCsWQw/5WQR1J9lBkFavq4tRB13xe27GHvt5Osg0xbvn883z6+ijZpEZLc4JCXsDQ41TKFq4XYNs1ilWfQskiZmqsXLWYYrHMv//4Zdau7iUIwmdsaHgMTTV5+cW9tHUkEWUFAg9RVGYkzWFRFAIPSVBobWqgXikzXSghywKKouDYNnbdIRqNAiKmGWVkeArDUKhWi8iKzOLeDh79yVYk2aEpm2bPnhHa2tNhDpoYtu0RBMCXEUQ5rK4pquGXgBiC0Ww6TRC4uK4Tsl+iQzSqYxgajucSuCqFQpFE0qSxIYJpatSqNnv3jjA4NE5HexOGoSBKQCCwZ/cwsUiULdv205hNoygao0OTxOJxGlMxJCF87gVBplSq4DgOhm6GhVucAMuuEYuF8lvDMLGsKrIEpUqNeCLN1Hge17UolapIkoTrOkRiCq5toyg6AwdHcD0PXTfCm0fwEAjzM0UxoKOjgWwmiW4qiKJAtWJRKVsz/RB9dF3F94PQ0dY0JDGMuIqSxNdfqHH9OYv4ws+2c9ONl6OoGrl8kXgywabnt3H6upUUytN889/+nXPPXc0Xv/AwT/7qNyzobqNrQQ+2bbFmzSrKtRKnLF3EueeczX2/917OPf9Mrr32BgxTp7Ozk09+6m+pVqpU6wVMM0I2m6VSLdGzsIsXX3oBSVBpam7HExzwPexahcC1SMazYBns3NpPc0ML+/q3kYzFGDi4D1ny0TWNcqWEpils3ryJdCJNPKIzOT5KOpFkeLifQqFIJtvMVL5ExNDxAxnLcpicHEaVUiTijYiihiRFME0dz/MQBKhbde68804yTRHyhf3cfvsNHOjfS1tXK/FEBKvm89SvXmL50nbOO+98BEkkEH0imsGuLa9y1x0f4Cc/f4K3ve0SDMMgCEJQKSkaVt1CRELTI1j5KcrlaTwEYukW3LqAICosX7qS+973ewRSnrGRCcolh/ve93/xznduwHF8ehb2kkgkeOzxx5AVlVOWL+e229/DW9ZfxRlrVyGKAomEiRdYBK5GRNYRxSiykkGS4YkffoeF3QsZnThAMp3Ftl0kUcN1BFRVQZZi/MH997NhwzVMTg6SSMapVcoYpoSieog+IJrUxASVXJk//+O/4rx15/Clz3+WS684l0OHDtLR0YmqGARBkS2vvEJnVxd1K0DVErz3zvfQ3NpEEARIiowZ0ens7KFULtPQ2Ijne3iOi6pJyCoM7t1LYzrB8NABrFoZ1Yzx7UceZXHfUsbHxjAjOnv39tOQbSJAoLe3k43Pv0BHZxe246IKEn5QJp8bpThdIpFKUSwWUFUFu15jdHySxsZGdu7cSU9PD5IiMzR4kN5Fi9m5fZAFC9uJaFHcwOfV156jobERQzNRVBlRFslNT9HQ2EqxVKZ30SJkWWG6ME2tbpPJdvPkL7eyZMVCyuVJFM1DV1Q0yeLdd9zGwUNDZJqynHH6WfzoJ99gySkdZLIJbrnhLlw3QJZSCHJAJKpQKuc4fc0plMs54kYLXmBwx52/x5ozTueWW66lWhymVDhEKrsIVzGR3VqY+69LrFizkmQiTmFyiIW9fVi+SS03SUSPUC+7fO/bP2Tx8j6K+WkmJ8bw8fG9KNGkiKzU8R2d4YOjxFIdyEqKb/3bd1l9+lqmpkZYsmwR1VqN3kXLZpxtGbsucO8tf4Cs1Fl99greft27EJQ0yC6TQ4dIGAKrVy4ikm7BKktY1QItLSZxJYLlHiQRj+BUFVwr4ODAOKlIHCufp2HRahTJxXJ9AjXG7j17SUdSWJVBYoZNoVgmqgs0Zwx6O6Ls2SVw0WXv5GeP/QqndohsSxzJaaGzrQ0zYTIydIiWthbS2QyL+xaTjcfZv30v2zbt4Bc/f5FFS88jHvU4fdU6SuUir2x5jsvW3UzNf45SaYzr3vopJku/4DdP7eUP7lnIhgt6ufK0Hr767ce46MouIkIz5eokhfIEiXQW2zbQDYVc7gCCVEGJxfCjEoZkUy5X+PaPD3HzLVfy2c/8Ez0LV5FoMGjKKIj2JHoyQbarY6Yk/zG+iHi0b/Z6zJwkSmFV6xkQd2za0AmZqxlwd2xmz+x+nuchvE7PuTdDKhzPGr5+es9xeW1yWOESBMKG6hyd5hQEc/LOEx3vZIuuhL8cDe6CwA/TTOax/wF3MxYEAfV6Dd8L8+yCgLDseeCiKMphgmUmL+5wDt3RHeuP/X+cHZtfJwShwzp3cxx/s89KHOdkfscAqvmqYh5r80sv37gFwskyesKxS46Rjh63/rgDza49GpgeN/eeSZdaAAAgAElEQVT/RqsJPwjCXCpCbfVxJ37CB26WnTuSPzxmO/+Ngd2snX/BOcjtp3Lj+z/FO87tO2rEw+zlbwHujmQPBQEkEdd1eW3XPmo1i4mJKqlkhFq9ylQuTyaZYOHCbqbyFZLJJIaW4IUXX8ZxfMxIFkNSKBVrDI2ME41qyLKHqLnomoNpRvjcT57nL94mMTFRIt0Qw4w2oBsK2YZ2ntsyRjqh0NqUIKoqLOxuobOnhUCU0HSZZX1ZHNdC0VTEQOLnT2zhlOXttLdlqXsV/KqNKJUoFR1UzQBBwLbrSILCY7/cjFN3SSSTjIzmaW3NAuA6oKpRJiankCQfRQXDUFBUFVU32LvvIIqnc9Y5vXS2N1GpVGlpSaApIXAK0R0IgYTjhg3dRVEkCBxURaRWrWLXbEYHwwqbhmmwZfNexoaqmBGFgaERGtININQwdIPh4UlSaR1FURkengYfenubkeSAMBNdplKxSWdT1Ks1UskoiUQCzw14ectuerpbePbZPXR1NQECvusRS0RRTR3Bc2ck3j6JWIqBwbCRu+vWERQZEYNiaQJTj+J6DpFoHFULECUZRQ17ZAmSiiAKJOMGoqTPSFv9sDWC6COIIoEoIksSoiziOjaO6xOJGmjG7LtKhEDEcRwkSUWZuU66GkGURH6wcYy3n9HNoxv3c/kVV7Jn9wFSqTSSIFKo5GlrbcWQI5xy6nIEOcras87kuuuuYHJylD27nueaq6+nXBbQDRNJs7E9eM9d96KZJoYhUyjmMA2T7/77f7Bt6w7OPWsdkahIIh6yLH/0sT/jLZdeSntnC7ncKEMHJhgcGKK1tR3FjDCeK6LFdBpaM9TcOg2taWquh2YYFKfzFErTJBNphobGWNjTjhmTMCMy0YiBhYhlVyhXLHQjgq6AIStMTe8nFW9m86bdJJIK3/jXH3LKynaGBwcJJB1VmynQo4iUq0V0RUVXUli2T++yLqKxMOdPQKS3pwdR8Qk8iRc3bqIxnUVRIZnNcPXbbmHt2jNo7cgiCCL5QhFd15gay/Po93/A/n0HaEi2c+99H+JDH/szTulbRbVcQPDqjIwM8Icfvh9VUzCkBj764AOsv/AqahWLs844lXyuwj8//G9cfOlFNLW1cP45Kwl8n7vueieSUkFSQpmg5/sMDY6STEpU7Aq6GSGfK2GoNrlyifbOlQRSFU1VMFSDahHuf+DdXPn263D8Khuu30CpUiVhGoyPj5BtzCLJMUBB1uLUbQ/XKpKMpjhtzSm0dbTR1rmYWFrCtqLsH+inraOJ0ZEiza0dmHqEPbt3kUyYqEoVT5aQpDTl0n6S8S7K5RKJZJxioYCqiWhuDceScORGpieHiDUuoF4DVVRJZOJkY1FuuvFG/vhP/wRB8EilG3CDAFGDYtmip28JgiSHz5WiIMkymhalXLb52Q+epaenid88s5G+xUuIx6N4XoXAs5A8CUM1EHWRQNLo6Egw3P8qiqHgSSptHYupFApYOIhaHMFT6N+6E1EyueLSy/n9997HC0//GkGokp8q0NLcSjoVp+4ViehNvLZ1kKpdId26hGRDG80tHVhVnxs3vJunn3mSa6+5BsHX2bVzF8uWLWfz5mdZ2N2KG7j47jR7Xj2EIES56MqruP+Be7nl1g3osk/gCahRg0giG35LO+B5Kn/zN58nGpNob1xItTZNc1PDzHetRyKdwPZqEETp7GojmopgOxbf+e6jSGKcjo4GDvT3k01lUGWZdGMnBDXs6iTLFi+lVobm1hhuYDIwNEZnVkPRYvzwP3/BilMXcfMd76VvRQarUuXAzj28/97bWbFkMa2dvUzmcnR1dhAIBmPDg7h2jVKhTCTZQDzVSt0SyRfLHNixCS2i8aunN9LcHWUq51PPj2FEVJoWLKAxkSSTbmdifBdRuUa2MUlxukapMs3SFYt56jfP8plP/ohki8gVG66nWtCw3X727dlNOpVl0YImRgaHCAIfIyrgiDVeeWkfRkTlxlvPo5if5o8+cj/XX38T3//+j1m58hxuuGk9w7ssvvFPX+ahD61gcnAvn/zI6SzrTFGo9dPQ3MD5Zy3ELZWRpBKe5KBKKp7loMsOjhCQbWgjCFR0QSKjJ9g7dAhRUPnJc2P0DxT47Bc+TxDYxLUYf/LRj6EpZc678jaaO3rwmQ22H5E7NsOoCQGIiPP4S0czescugzknZ85XnpNpijMe0Kwz5Ash4Jvxf+eYuRkf0A/8cNnrqMU8zw3H9YM58CUIAr7nHQXGBCFkG+caos8AWR//hGB0Nt1qNhXhOPbySJD6OtfoRDZ72iEjDkeg3DmgOR9rB/8D7uYsbDzsMncBZzbzPRdFU2YWBcfdsMI8yZ3z2gmPfziSccIkyzcAMifLbr0eE/bGQOIw/BBEcaYYy/H7zDvKG+iD32icgJk8xd+BRHb2TMIKcyd4wN6QyfvdsZXvuOFahNYV3DAD8g5D298S3B1joiig6zqLejpYtqKPpmyS/oPDZFJJ/EAgHTfJTxcoFkvUaxbxeILWliYSiSjxmAGizlS+Sk9PF4m4TjyqUilDpejz05d28s6zGvHdCplUE4IcYLsyAQ6KIqPLLuVimcaGJP37hqjUw1YDih4lCEQkSUHXDXw/IHxdO2QyMZy6hqR76IrM5i07GBiZprO9GRCQJPA8kQVdzQyPjtPSksVzA17Z1k9TQxxJkti3fxBd10glkzz59FbSsTgEAaoqkklH2H9wgsbGJKoqoakC1XoFuy7w6vaD1Ks1MpkkvuejKFIYABBFxsaniUQiyKLCyKFp9g9N0dGRxXFsmprSWFYN35PITdVpbDaRFR9VVXEdD8PUEUWVaDRKQ0MKSQ6BkCwrlEsVXDfsqSbLErquUiyWsOw63R0NFIslMukY08Uc2UwG3/PZf3AY09Rwqg6KKqPoGj5g16vouoqmaYiixOjYIOlkEwQKkuQiSQq2U0FVTRCCOZmr67lIkoTvCQhC+OUqimLIKs8EQYIgwHFsVFUl8IW5QNeRVb00XQPCoFilZCErGqII331+jBvOW8Z3ntnJre+8mYaG5hn5XIVEMolh6Dz2+M/p61tCgEOlUkAQPdrbm+ntOYU9/Qf50Ic+wCWXnYcmJ/F9H0F08IUarhMQjSd44oknufHGG7j1XbdSt3K0dXQwlSsxMjLOTTe9Az+wcVyLqalxBF/nyf96mkW9vaiyjkidUj5HxNAJPCesYqpEkEQVVVQoFvIYuk4sFkeWFfwACrkckigjqwaTExN0dnWhqRq+D5KsEk0YuL5GW2c7U+M52js7MMwooqRy8YVXcv1112GYOrV6HlUXUKUoIiqGEVbrVBUFSdTwHR/T1KlUywS+TDyWgABcp4RmKgwfmqJQmqCltQ0BAU0LA5GDgwdZ0nsa27btpalVwvUV/uUrX2HTyy/z08ce57z1V/DrXz9HOpFAFXxGRkusXXca1UqN884/k5/859P88qln+NWTv+Cyyy4iGY9Sr9dJZ1IomsLw0BCC6KFpMkHgo+saqhYWJBIllVgiytYtr3D+RZdSq1cRJRXLquH6HqIUYf0l52FqSSRBQZZUDMVA1Q30iImgyjhugF238TzQ9Qj5fI50MkPNqqJrBtO5Ik2tWfA0uha24DgW1VoVP/Co1qu0NLdimlEsW6BQmMZ1LIrFGqIg8cTP/4u//9zDXPP2a3G8Kvv37sWMJRkbHyObzqKICtVSjXLZAi2GaUS54porcXCo520+97m/59SVK0CyiJmx8H3texCAVRlHljyGB4dIx5u44z3v5v0PvJvu7m4838OtV6iWqyxZtgpP1rA8iJtJPNelUipQrFbIZFvCdimei6zKmHoUfBdJsLG9Goqs8r7fv4c9e7cTT0eIJ2N0LuwiwMN2a+hSE/v2v0bv4ibwJJpiChNDhxg4MICkalxx+QV88AMfw7NN4gmFxct7ODC4h1NXruSzn/ky69aeSzwa5RePPU3dLbLh7Rtoa22kUs6za9ceHnnk31my+BRi8TgjQ2NMjk/zj//yJf70Tz/Ol774Bdaceh6mJlLNj+N6ZYrFKTa/8CyyLBFPt6MlVGrlGtFIigULenn4K//C6tOXo6oChqniOy4V2+dzn/8cnZ1tmBGZF17eSFN7GlmK0pBppFDZR7FSY926c/GsOp5RQBQUtr40yuOP/5hLLjufq6+6iEqtQGurTqV8kEIxh66LqIpMa1sHhZrJ1OQUVq1IMqYgyRWSDW2csvRsFEUhnukhFq0zNTqK7BhEtBS2sI10bAWTBZ96YQ+aFqCbWUr1GoviJmeeDeNj02hqH1t37KOjK0V3Zy81W8aq1zg0PMFkvkBjSwNWrsw5Z52BqQZsfP4lDg6NctVb1nHHbbfyX7/8BYO7N7O6S+K2mxs5Z02MVT3LWbE0SirWzabNw7R1ts5I6i0kMXwnez7ICvhCWDTMAzy7jKFK1ByX6akdGHojY/tLvLa/zHkXXE0yHsX36tSdMl0tC2hOwyWX34igJggEb0b6Jx7h/x4DXn5bn+wI2SEcXzPi8HbzsF2z20vz5NcduQ8zFSpnAvCiJOAf0XbgyGMe6YMfKaE8Mct48gH9E87rdfabPe3D2xyv0vr/NbhzbOvPjqJJ52PuCGYaFM4mi85ogiUJRVWOThI9aseT+1APs3nHs3yz2G0ucjGrNT629Ok8/ezmYw1PJNOcZ3YncwaHtwuOX3osIxc2vPxvPvzHTUHgOKB7MuMfs01wxE/pyBK3s9vNRYROroro8Wzmm7cbbriWkSDLnR/7+zkm7yg2deYCC8Jsb5ljo2DHfiiz1Vh9AsIXmx/4GKbGggXtpFIpojGDyakcHgLD43kymSzDo0VMM8bA4CQvbepnSV83qqqi6QaFQpn9BwaRBJ9vPn+I69aoKKKMmkrhOeD7BTRRRFBCGaEiSSRTSaanJ4nFYxi6ysjIGKIgsOXVvWRSCWRNxnUDSsUSrS1hXsrEeJ5kQwzJk2hsNOnu6ghZNElEkmDfvgkkKWBhbyuVcoVa3WLr9kOsWNqFLMkMHBonEY0iyQKN2Xgo0Qx8gqCOqLpkMqEEEyHAsV3qNYeGhiy1epWehR1IgorrO9TrZVRFQxAlNEkLK0OKIi9t6aezI834+ARNDfEZKaJEzbJY1NdFIIT5urblE43GZgJAMtte20upVEJTJURRolypYJoGsiySn85jGMZMbzgBWRKp1xx0XeXQoSn6+tpwnPB+zGbTSIqMIITvJoIgLAvh1XFdl0rVImJE0DQBz9X46RPP07OgCVEKj2XVfeSZap2qLIdgwQdJUpBkgfCRCCtvSqIwlzcgiWH5ZllRgSCUFdYtFFVBEIQ5ObssKbiORTSmYll1/nNTnuvOXsz3ntvFO657Bz/47o/ZsnUzp522gkQyTqlUZumSpUxN5FENjanJSQxdx7EdRFUk2xDj3PPWUKtM877ff5C3XfNWvKCG6zroZhTXhc6uBWiGRKmaJ5NOI0kauqHR0JTk4a/8G11dXWi6RktrC5GIwerVq3jyV0/S1taKaijohsnQ8AjxRIL9+/eRSGUQEXAti+aWJjTToJCfwjBi7O8/yIKuLkZHRoil0viegCwDQoAsa3i+AJKLH6jImkQ81kg0qfHOG+9l/SUXcvkVV9DUnMUwwx6MnusiBKGzIcsBmiZRqzrs6z9EOpPG9WrIskYxX+Xee9/HhRdeRDqbRpYkIkYD0biBa8/IoGQRP/DY/OIWvvyP/8RDDz1AzSpy3oUXMzBwkFNXrqKlrZOPfPAjXLL+EmzL4gMf/ENuvvlGmlqTZDItxGJRVCPOZW+9gOuuv5JENEI+N00smWBkbJBoPAqChmNXaGxo4dChMQw9Sr6Yw4ymcD0XHwdFNlCVCGVrEs+NIIg2RkRlbDRPtqEBwfXDHM3BQb7+9a+ztG8F9bpNuVgiEomzedMm4rE0X/zSP3LBBedSKpTYcO013HbrrXhemCsqIKHoocwslWjGNExkRUaUff72b/6KSy6+mqA+zdTELtLRLqYrg6xcuZxde3Zw2mkrcaw6qUwjO3fv4sc/epSLLr4YwXOYzk/zlX/9JmevO4MrLnsLH/nIhxCEACUQqFXqxONRGhozlApF4vEoI8NDxKJRFFVlZHiEUrlKOtPI3XffhePmEUWN/HSJdEMTZjSD4wps2bqJ7oXt+FYdq1ZAlGWSje3Iqo5rVbDrVVRNw6mXmRg5gBmNkmhsojSR59ChQZaduoxIPEatLiDLSsi6y4S9SHWZJ3/5NAsWLMT3PBzXI5NtIpvJMjU5QqFQ4mePPcZHHvwAp512Nj4+lu1w5przQfQYGxmhpaEHPSqy49UtdLa3kMmmSKYyfOpTn2b9xZfS0JhG0WSSyTgbrjgXKz/FW85ZxdUXX8w9H/wAqiIymcuRbmimMduMpsfxXRHLneK+9z7Ewf2T5Ker3H//+4maKRLxNMODY+QmKkSyBmtWn0kkksaxXbp7O3E9i2yyDUXyeOXVV1jYuwICEV3ymc672FWL9sYO3rJ+HatPX8rg4G7qNYvB/f20Nzfi2g66IaObOvl8md07N9LalEJXPUSxiudkMGJxMk1pIqky0+M5ysUiS/qWUKvl0JKNVCt5Gps7GZmwySaaqNSK/Of3XuKc887BtbahuB0sXxHhH//+Yb7xtW/y0jPf4eLzz2JwqMgTTz3G+sveSu+i5fT3D9O1YAG33nY53/vud3juqV388Ac/JpuNUR3byl/ev4Yr1rpceMlapkfHyCY1atX9yHKZulNnOjdGW7NOIpWiVCjg2BaSGL6HFV3BcgLSmV6mchNEFZlysYigJSnlBAJiuFUXV8jS3LGAvkXdeIHLrl272fjss2juCNt3D3DauetBDGZYosPB5mCGyZv1P/xZlVVwmACZW+f581bLPJFEcV4f+0jfd8YvnutZx8x31Hw++uyxZphC3/dngOXhnLfZKppHpgSdFGCbB9ydrJLvWJbvqL+lY/YJQp901uQ3aM/wfzy4c52wz90bgTv82cjBLB0rIEsykiyiKsc3yp61k22H8HrHFzh8k4qCeDyAOTzIm8IQ/2/0uXtdpu7/+cOfHHA8Zpsjp3Vk5OPYHLyAk4vI/I6gK7F4lOvfsYHf/4uHuWp1x9HiV+F4tnDeaJUQsichIxPen8EMcJWkUEKgKCpmRKOprZm2jnYWLOymsbmZhYs6iMZNdENnQXcbm17eyuRkjslcid37hsgXLb75SonrT0/Q3dfGMy8eJKVJQIx4NoMnZwgCCasaVm0cGJ4i8Gs0NqQplkuIBGFZ8KYM6UwWURUhCAt11KphXlM0phIgIXganj+F44iIioxjO8iygGEkMUwFWRaQFYVIRGPZkg6+96ONdLRkyKYTDAxM0NQYJxrVmcpN8YvH93Hq8u7w0RKiBNQRBRkBhe/+x8ssX9aAoSu8snUf+VyNxuYEihJeM9+HQwdHiUZ0xqdyrFy1GEl0aWlMMDgwRCIZAQgr/kk+uakysUgCUVSoVKq8snUv2XSG3XsPccqKbiIRA0mW0U0tDB5JIZNnGAYTE1PE41Fcz2XTpgG6OhtRFQ3dkBkby/Ha9oO0tWYRRAFJVSHwKORKmJqBIFjIqkYklmB0aIJILMq2Vwc45+wufFdicrxELGaw/bVD9PcP09vbSiGfR1VkNm87QGtThoGBIRKJCJ7nh/JML+yhKQhQr9VwXRdJDvvXua6Dqqgz4DVM7BYFCd/z8IM6lWoOTdX58mN7edf6U3n81SFq1RrXXnsD7R3NaLqIKstIokSxVOfKK9/OpW+5DM8LiJgxKqUKxTJ4rsy3v/FDVi09h9buBvoWd6PpMpoSxfUDEFQ8H8rVaSTJR1PjCEgUS5NImsOZp11EpVQhk87i2C6F0hgQsLC3h2g0AopOIEhoZgzNMFEUD1nVIXAxdQXfA0kUZloIBMTjKdLpFI5jU6pWUSSNSNRgz+7dJBJZNC1CtV6gVLFRdRWnJvKBD97DP3356zS3tZBIakSjxkw7DR9FManWQ7bO8y3GJw4hiSbbtuwkGjOJJ3TedfudtLcuYMM115JKJXng/R/ikUce4V3vejd3330Pz/z6Oc499xw0XaZSLrGkbw1nnbucfGmY9pbFCIqMpukgyDz81X/lC//rrxEC+Ma3vs1nv/AP6KZLtZYjGW/mzNVnced9t6MbYUCkVqqRjqepujaC5CHLCoYRJ5mMUS5ZJGIZqhWHSMIAQWVychxB8tDVGLJkUPdyxCKdINZxvCqZdAd1q4rnWDz00Ie55tq3c9a6NTz7xAuMDh1i8ZI+okaEr33jEc4//yJSyQzpTApBELjpphsAgXKxiiTLiJKCH5RQFB27piIKAuVKEUlxWHfWKg7umkRxcrz4wk9Y2nMuTR0LsK2AdevOoVKuEY8ZSIpOW2sL69adjkfAU0/8lFNWncqadWeDU+T3774bURAoTOdozCYZGR5h1elryOcLxGMmAhCPxymVSnhEEGSF9u4ubNdDFVX6979GfqpGd0cPRVdgYqKIEARIQoWoKVG3CvTv3IYeS4KaQJYEpoYPks1kqNkudn2SbDKOIOkIWpyEGqWppYWh4RECSebzn/lnzj/vfARJwLLrjI5tIma2sLzvLIZHDiDHs0i6ye233s7Svh6WLjuVfQe3oxseD/zBh2lo7OM9d92Fbuh85tP/wOoz+mhrauHeux7gyrddzrnrVpNMJdixYzupdJZ333E3Wza/TCpjIggeghDg6Rl8UUPUBN624WaqQViYKJ5qxgl0ZMXA92TuueNu3rL+dG65/RbOXLeSM9aeSrk6xNTUCIruEVBmOjdGR28X+Br7do1QrwVkm9PU6hUmRqZ48cWnOO+CK3nkWz/Ed31wy6STrdj2HjQtR25iG+XiXgyzgaeffpl9uwfo617Er596hvauVmzXwXZ9Hv3qV2jJLmDnjkMk4k1MlfYzOlGkubGPSrGMKozRmF3Or597FkmbxtZiVHMpNm16lLVnX8LzG58jmqjSEGtDESex5ASRRIFqrsDFFy/kklPXcOoSg1/+6r/4+rd+ilbeSmloH1/74peJ4nPPu9/H/XefxUVrW0iwjz/60Gk0BXu46tJVxNIJ5Hgj42N7Sae6ECUVV3CIql2gWKTMBGK9RsW30VQFTdXxvDD3uVypY1kBD/3Jz7j8shVYpRKBJ3Book481kzzggheMMR/PHWA5qYWWltbkCSdPXsPcs9734NT2MF02WLtxW9ltgD/UX6QcLQccJbfCBuWe3MgSxTE341zdGwO3tw0wsE9zw1zkedTvgFe4M0Bz7kq5CcKjs8Cxzfw++bGO4bhO3Zub2Svu92xoDgQjvJJX4+1gzcH7oTXa7r3v6vVrfLJTToAz3cJvABvJo9FEERkRUIW5cPJo8wkhh7bduC/Qc/Od11PVBHodU2cjZZ4Jx7vzY32uiZwNH09Txbab33c2fFBwPf9wzfyMZT8CcHdG8lYZxNSCV9I820/GyWZ9yE6di7zLJ893ux40gkiLv4xL5WtW17jL//yU3zrw1ciSkcAuyAIE9ePvdJHHHMuRCHMnuXcRic4iXlkuoKA63q8/MImVizt4+DBQxwYGGHjwTE+cO1iKpU6jdkmqlaOUr5IY2uGStkj8C1MI8LQoQESsTilikc6YVAo18nnC4i+SyIVobW9lXLNQdMSCKJKEPjUrQkiRgLbVSmXSqSSOo5TxBfiaGpYsMO2HAxTZ/euAVpbGnBdm3jcwLFtfF9geDjHwGCexsYIPQs7GBwc5bXdw7x1/WokWQglh5KIF7hIQvjZWnUbRRVx3bCHnSjIc1elUqmiqiqyElDI1zB0k2q1TiKpE/jiTIVdB0UxqVWraKYeMsJI+IHLyMgkkiBjmiovbtnNWasXs+W1fSxf3EkkGkGSVZ55ditnnr4kTBIXYHxsismxaU5duQir7rB950FWLO/CR8K2q8iKhOcEJNJxnnvuNc5cs4RyqUAsEcfzfGRZgcDFcUGWZRzHYWoiRyxpYCgqVrVONBHFk2TqlTJiIKCbEayqg+25aJrKU/+1mZ6FzXQtaAmvmUDILs08874f5iW4roNddxEQyU+XaOpMAwGioIFoI/gi7394B5+751KMs2/Ftnw++MDH+KOHHqSxKYNllxg4OEBX90L27T1INptib/9+du3aRUdbJxect5pCsUitbmO7Am1dUeo1i3QqA4hU6lUkW+IjH3yQP/tff04sEUfwPOq2Q+D5yLLEdGGCTDaFJMRw/GkET8VyLKZzU6TSKWKROFNTE8RiEYrFAulsM6NjY6RSSQzdoL9/BwsW9mJVbSTRpVKrIUka8XiM4ZEDSGqUTLoZx/HQTYlicQpDbWT50jN5ddtLPPTgH/HJT/45vl+hVMmRzrQiEOC6Dpoq49g2ohxBkKywWEAg4toWP//Z0+zY2c/G5zZyyWVXcOGFZ7BocR8TY9OkGzMhg/HSLvqWtFCeDsg0mNQcC8OMosk669at4WN//CDr11+EKEUZODCA5wm858738u1v/DORmIonOOztP8CZq9cwOjZOc3MLhekSyYTJ1m1bOOW00/BFsOo2hhbB9xzEGZbW1OKUp6fQ9YBDw/1km7uQZZFcLpQwa5qKpJh4voznCwjUqRZzJFIZilUbU5SoVGokkmmmi2WiMRVFUZnOTeP5Hgkzhaj6OE4FRdYZnxgmamZ4+EsPc9+9dzFd9onEZRRDJhA1RN+jWCoCAYoqEzENpqeLJBNZpqeniMY0NNVAQEOSRJ79zdOcu24t5XoOXY/iehK1Wol4MobvKNQqoMo1HK/K3r176VnYh6FncD2LQPKxnTqmHuWb33yEt19zDalkGrtSxZc9VMWnMjnKZKFC94JerHrAK5u28vm/+xpPPPczXvrNU8TiUaLRKJVqAQSBZDyOIEp4gkZ5cghFkYkkMgiShFWvo4oy+/fto71lAVdcdR57wR4AACAASURBVDn33PdezjhzNd/51ve49bZ3EImaRMwEuBYHDuUQ5QhupconP/VxPvfFv8bzfb79rcd59DuP8B8//D579/bzp3/yCe6+7938+R9/nK99/Yv0H6iy7twVEARUS2Uy6RSDQwO0t3UiChKi6HLzTRu4+eYHyDbE6VrQRiSikEgl8VwPRdEIBBnBtXnpxe2ctnYFU9P7UF0HyamB6lOxNJTARtRkImaWSCLOcP8BOhY0kZ9yQbZJJNPs3voMhdwhTj/zApwgRuDVCAILRJ+nn/oZrR099PUtZ9vGFzA6VrAoNsbO3VMkmlsZObSL8fE6lZLCRW9ZS664n3S6E9Gps3PnJtJNMYJKFasyTiqTJd3YjW52UyaHbp5KPl/j926/gW9955uMTRUYGyuwoN0jluzFiMHgrh20Ny8nl99HZWorUX8UX61TKpTIJLPkJnNkmpYiCKOMDU3T0NaL5OykYHdw/0e/x5c+/TYqpTxe3cZUVPzAp+bUMFQFQRaQVBk38BFsGwQJ17aQZZlytU4204Bt22EATpKJxgzq9TLVWgVRMhCRwoQtX0QwAgTLY/+BIh/92808/NdnUbIsGnSd7fvhYKmJK6+7g92DeVatWoHtGbz/pjO49oq1XHbbQ8RaOg8DtTnf4HB+GYB3pFsRBHOEx8n2t/OD0M+dO4Z/xH5imIsnHVEhcy7Hboaxm9t0plDYbBGYI+2w/370PsIxvtjsutnlx/59Mnai3Dzf8xBl8Til35FVREVRmLu24bGPUd7NYgwRmO2//TqmqOpJg5H/s8HdjHmuR4A/JyeUZ26UuQv7vwG4O+5hOGb5vMd50zOb304a3IkCkiDheu5vNf5vBe5mbb7repLgbl7wNmPzgb9ZiZoknfhemXesY1jD2ZK6N1x/K9/+6JXhGAEnBHcB4cvU9/w5SW44ryNyJY+QAB+9Jxz7CYYVFd05Xfyr+0ZYGC/geT6KLKKoMo7tUbdz4IqYURl8Bdev4XsOEjJWHb7zo1d41+3nY1VraLLIps3b6O1pIxIzEWQDWYoxMjZMa2sbiDaeLxE4ErZdp1jKkU7IqGYcAhnPlXn+xR2sWNLB2Hie3t52LLuMJIZywnK5RKVqkUom0HWVwBOoVi3MSISBg8O0tTegaAq+781IMcLcskqpTCA4KIrEyHCers4OHL+KIofSRU3TCXwFzw0lJrZdw0fANCLYTh1ZEbCrUMgXaG7P4LgWsqAT4CGJIvW6iyS5IIg4tkelYhGLRti5e5DFfe0Ypopt1ZEkA1/wkRCZHJlGVTUmp6YxIxKNjXF8QUbVNKbzeWLRSFjdUotQyBXJTRdpaoliRiJhkMp3QVCQRBEBCcuykRQRx/EwNB3LdiFQcJw6gW9hmDqvbjlELKYhywK5QomFC9LEE8mwaW0AYiBiOTayLOI6DrIs8dLL/Sxb3IVVd/jRY5s5a10nXV0NGEaMQKgi+AZ/+LXdfPbeSxjInEZjQxbfV3jwo3/Cp//mb3GCGiAgSwqSpFCvV6hVbT74gY+yfMUq1p+/mjPOPIcP/uGH+YMH7seMKiSTKTw3bHCr6hIbf/MS2UyStgWN1GplgqpHOpPC98Nc6nrgMz42TEvzIsyYR60GqqphGCbFYpmIrmBZFuVKnmQqSbViIUoSvh9We1M0CbtuUa3k8bwS0XgT+ekqLU1dWFYdQXURUCEQESUPx3WolFwCX2bji79BkxW6utoxowpNzRlKU5Mk01lGxsbJNLbhIRD4IrLqh3mRdZ/8WD87XxthyZLliJJPpiHLgQP7EESRm2+6hceeeJxYxOSSC6/m9DWdXH7x9Zx/6Xn8x49+wsToGL93321UKhYEUCjkaG1dxMYXXiQejZNMp4iZdQLBJxAkDDONrgiAiO24KJLGjl07aGltIRqN4gc+lmWRiKYo5SfRFBtRrOPWXaKpBsqlSWSpzvjoCIl0N/2DOU459Uxsq4Si6niBiCBKBL7FYP9uepYsxUMh8ALy+QJOpc73v/1dbn3v9WhaDEUyOP+CS/nlL36GqovUamUqZZtYwgxZZGRkUaJSmSAWi1Ms1dD1GE8/9QKnrjwFQQTHtWloyDA5OUa15NC5oANBcKlWy4hEuOrKa3js5z9FMXw8y8K3HGJmDE8RqFdrlMt13ve+9/NPX/0SrufQkG0jN1VkcP92li1fhhuEUvdSzubRH3yfa6/fgKrKDO3bTrK5iaGxUZYtWQYiiIJMrWaHbRACnancGC9v2cj6i9aTL+RRNQlJEunf08+SZUsZHBqmIZ0mFo/iOC6aHsezXQ7s24/nuJTL43QvXEAkEQ0r1Eo+sixj1QJcR2FycgAEmVg8zYMfeZD77rwVLaLQ2rWAqqNQHq7z5X/+HDfedA2FQoGG7hRLOtaxe8ertPem2LDhHp785eO88PwzdHc1Y5fLbNqynUg0xtkXnsOBQ3vpaF7I5OQEmWwW27KIZ7LU/XHwRCTHxKpO4fsTDO7rp6utl3J9FEWSCLwoVbsUvg8RUKQkCCJ2rYrrF6gUXHTDQZPqRAyRmCFSLEwxMrQPSYuj6Bk0RUX0m8lXJd7xrgf49Cf+jr/6+4/z1c+8k3//wROsWXMppyzuQYm0MFYcoW/5MqKJDLtfeBzZ2UHSELBtFat6EEPxUNQE5ZqAoviYqQS+dgaCdirRphYm9zxLLJOhKEYZ2/Y4QyMOb7n6Ip544ml6epsYG5ymu6UBp7aXsfG9LOruIKgVsEs5bOKo8ihyoCJrUag5+KpEqebhVnSkaIF01ADPYXp6HEk3EX0P00xQq7vhd4c7TTqTZXhkEkNPYGgupmkyNj6KaUSQVRPXdUAQ8FwXJJlapUosEkdEwBJFIlJArVii4oCuGwSiiFes8tjzZb776wk+/vG/RpUM9u/bybOv7GBpssj+Hc/xp//wAyJNbW8K3IlCyN7B4WKDb2TzgTtBFAn8sKiXF3iIM8BoPnA3u8+JbHauru+Cfxh8/a7BXeD7+MFMgPXIczwJcIcfIMois278sf7irB8pzqixhOD15/RmwN3/N2WZXijLPFkTZ3p4iOJ8CZRvjn6d7wM6GZs3l27m0/c5usfFfLl2oiSF057FQ+FM5n777U1AEmZ1zsGJeaFgPtB59BzDyqTBnARgFkqfDEUebnoCiv0N7DhG7k1ejhPpqD0/BFeiKOLN6sB54/sk4GgZ6JFg9h03XMuLBy0e/LtHuOas3hOWc5kj6WYqKx2WcR4Lu0+g+57Tsx/ePmSuw/E838epDZKMGciKjFV3+Nr3niGm62QbE1QrFSqVKSKmjuWUqZZcZElA0QO6F5hEIhn8mXw1L5BQFZ1INIYoy0xNFYmYGqVpC03TqBRrbN9+gI6uJmJxHd+pUbfK1Kp1CsUKS5a28+hPX2D9Baeza/f+sCKiolIqlUmmE8RioUOEL1AuV9F0jSDwyDREEUWfIHCRFAHRh6ef3U5TNoke0di9e4iW5gZiURNRUpAVKXTsZ/LLHNdCViRczwIcEskUtmVTmZGHvbbtAH19nezYuZ90KkaxUMXzHAJ8fN9HN3RkRcF2HCJRE1ESyCQTCEKA7dTJF4oYholt13AdnwP7p5iaLjA0Mk17WwpVExEkgWqliqHr+L6HLMsICIyPTRKL6hgRY4ax9REEaeZLOJSVSqKCgIskSrge/Oznm/Eslyee3cZpK7tQJIlUg0QiZvKTX2xj3eoVRKMCW7btQwwETEOjUMih6xGseh3Pc5FkkeaWFIYhEWCxqDdNR3szihxKbYMgzMF74tUCV5zRh9i6ClUx2H9gN1ddfTnRmImmGSiyQrVS5/HHf8HCBT1oms4FF5yLogq0NbdyaGCS88+/mLauRjRN5asPf5VkImzv8X+z995RcpzXmfevcuzc09OTAwYY5ERSJMGcRFoixSQmUaItK9iiKMuyou21V2vLitbaSpZsK1DRCpZEr6jIIIo5gCABkAgEMJgZTI6du6sr7R89AwwGAIMsn++cz3vn9AG6u9633qqu6r7Pfe59rqKEtHZ3EEsnmZ2eYH56hunZOQRJxI5G0AydfKFILBHjqSd2EYupWJqCqes4lRqCHyLICqIkIisKjlOnXCpj6AbDQ0PYtkUYhoyOjtPe0t4AeXWXTKYNNwipezUUtQGgRVECMUARDSRJRlYE1q1bTVdXC/FkFPBRNZV4PIHjelhWhJCQcrFAxDYIA48wFBACCac2z9DhWfr6VlF3i6i6yFvf+g7e9MY3kcvPcd4F51PO1/jGN77Dv3zlk/hunnRHM/39vZx15iYqlRK2keTwoQk6OtsJA5n3v/8D3HTz69m//3n+9Z++zrVXX48o6UiSwdz8GE7doVKpEIvHSKQzKKqGKitISAgheATMTMyiSh6SUCVXzaFFLIYP7UCujxOoGYZHp1i7diuHBo4ghqAbBnWvjiSLOI5Da0uGcqWGF4CieBRyk8STOs2tMVraepjP5VEUjbe99W0N1cbQR9V1NC3C9kcepb01y/T0JKKkodsSlbJLreTQ3JTgr/7nR2lta+XOr32NTZs2IMsKb3/bH3HOOReQyWQ4PDhAJtOM67r80TvejCA2enh5tZCpqSnK1SKBF/CRv/04hwcO8T/+xwcRRYloxCSfy+PV6xhqnXwuh23HCHyJidFhNmxcTSJh8uzOJ+jo6iWaShGLJ3nmqR00ZzPIksCR4UEyzWm2P/EszS1J0k0JNFVjbmaewaHDtLa0k043kcvnyabjaFaMIBQIfI8AgUMHXqC7u5NiqcDKlZ1opk61Wmd6Zo5Mpomx0XF2PrMPy4jz8U99mttuvZV9z+1m7YaNdPeuIdvaiabpTI+PMTw4ypq1PZx2xnqas0maOjsYH8zzt//rLzn33DM5NDDCBRedxx23v4Orr76an/zsbs455wL+/C/+CtOIcPZZ24hGo9RdB0mGweGDNDWlicTTUC8xfuBxfOaolmcBFzsiEWtZQUVUsGP9CFqebNd6aj7EU+0EAsSznQgqJFNpvnzn5wnqLj395zAwqSJafTy3/TnSbRuZmCrSlkrgK0dQoj4r17URS4ds6j+d5khI2QnIJD0O7b2Hp3fsZnV3Jzsevo+eZpNqfpD58YOkY3E0RaZazhGzVEqlHGbExvWKVPMwPLkHJVpGBGYLc6RaUuTnhmht30Ay1k45nyOWbKN/3WrcapXV/WvRky0IrKRU0RiZnibWnMRKrsANy1jROGWnRij6eGIZjwo79+znwUf2cPppp1N1HETFQLOSeHiIMoShQ7WaxzQSlCpVBgZnSTetpVwcw3VBFBQkqdEvUFU0nLpP4AmYpk00YmPoOhNjI9h2nGq1Qkgd05LwXBHDtJidKPC1u/czkhe46bob+OD73kfPqpUECFx3xXlMjw2hJNto71mBKElAeLR379HSpUVfRZIIw2OAKVzwW16O3xYGDYJgMaWT8Jh3EwQ+ocgJ4n0Nv2sJwBQW9/fSAKyRcQKCJDayUMJlvtnyQPwrJG0Wfb8T0jTFxm/xiccfNNJcxYXzGp7oV4ZhiCiJC6qZx9RLX0rv4///NXevENy9tP3nwN3vagWLH/CiCMvSv+XWkEs/fvzy//329sp66R3b87K/JRf0b3XOfosxJ+znFU7hB8HCuQ0XvtyE457DMfbt5djStgxHC5IX5mrvaOW666/hG7/Yyb0PPMS29d2nPKajeeAvF9y9SH3kv/7kMZRwghUtURpYT0CUZNJxk7a2DkZGJ3hm9wire1uplL2FCH3I1FQZy0gyNV1HwEMW4LHte1ndv4IduwYplKukU1GGRyaJWFGGh+ZQhBC/7lH3HBJJC0HycKtFCHRMPYnviQRBwIa17eTmC8iSTDQaxfP9Rh8oQUIUFb77o8dZ3dvBz+5/htWrWjl4aJC43dRQHwwkRBRqlRx9vT1IsoDr1di3b5K21iQ7du0jETMYGBgnErHIF0qUilUsM8LcTInnnh+lu6sD3yvgVB0efmI/PR1ZUkmD8fEpOjtaUFWd//j5U2zZ2IuqKXieiyhpeJ6HqipIYiMF/Ic/fYy+7mZ0vdEfLwgEQsFnYmwevy6i2yJbt/ajqDIDQ+MYhoChW8iSTBi45PNlSsUSYeiSbYkB2kI8JIBAxPN9ZFmlVKrx3R8+RmeLgWmZhIJMV2uG5uYYa9dmkRQRvJBc3iVqR1i9Ik2lPo+pm9hWhEjExvfrCKKLpkVRFAVNlxFFgTBUkCQZQRQxDQMvqDVAvCsiyRKiFPDzp2e44vR+np/UaGnt5DcP3suWLevI5+aQBYtCscJjjzxJe1sX9/zqN2zduhXL1ujpbUYWDL7+je/xvg9+kFjCIJWMcOlll2BHLDo62hke3oMZjeILMlEzSjbTSiqbRTdtBodH8AIgDLAsk5ZsB7ohMXnkIE88+iirelcwNjzCfKXaEIWRJARRQFO1o5kbpmkCIYZmUa14xKMpjIhNEEIQuIiKA4EIoUQ+X6Ber0GooukSjlNduGcamQd+6FOt1ig6IWEAqqYzMzFCJhnB9+vMTo0Rj8QQAxE7qqKJSSLRKJruI8oC55x1AZZtc865Z1OrOxAqnHv2eaSaJK589Q287V1/TrUcYCkRvLCGJid47NGddHd3gijx+huuQ1YEOrva6OttJ5E2EOQKU3NDtGTbmJudpVqpEo/HKVQdFFlBlRVCz6fuuChxk+ZMB8MDA0SjBvHs6bhBjJRpo1ZLuPE1dHSsxDSjjA0fIRKLY1kWgiwwMzNFLBKllJ9HNy2QFGYH5+lo66VWD7DiKSQMTKPR+zMI6giS1GgOLEiEgcxDP/slbdkMK1b18Zl/+DzZbDvNTe0IgYAqeVx5zXU0ZzNs23YmyWQcTZd59atfg6bqRCIRypUStmWi6QpIVbY/8wApo5lf/PzXnHbWGahRFSWQ2bL5VfT2dBKL6Xz9K99ky5Z1VMvzePUymUwMQRBw6wEIKldd/gbWrt7Mt7/5fbY/9Qznv+Zyqm4dS9dJGAY7nn6SzrYWmtIxnt/1LIKoYUcMVE1BkXVisTitra3IssTUzDSpRBpTCXFRqNVcdFVCEENSqRieVycWtaiWK9h2DEkx0VSLu+/6BW2tHbS0dvCrn9/LxZe/jtL8LAf27Wf1+s3ccNs7ufC8S9n+2KO0pyNM56fIFydpaU1hWRHKnohXc2hvi/CVf/4On/rc36HKIt/61re48jVXcdq209E0m5tuvIWoEeMzn/o0s/kCp52+Gccp0N3bguDXGB2uEdNcnNxTtHVuJJ3cSiqzkpJXw/ar5OdHyVhZynOPYggpchMDKF4VJzdMSyrN2KEdxNWAnmaJtd0mQ6NT7B8o0LtqIx/731/lG3f9kutuuQqvdpg206c4O0Vnk0WUeaymcRIafP2rD3LJtrNY3dWMuXodK1ecw/49e2jr0AidUb70uR9x6auv4F1//gUuu/AiypUSqWwzM4UiUlznnh/PMZsP+bd//ymXn7mJpv5LKeQCWjWJshUiBA51Zxg/rOJWEhTnhxDEEmNTDj19WeYrFWSljdbui5GNXgJJR1VaaWpZT91LoRsrSDZtRdJbufDC32MuN4ukaCh6hPHpKi1t63HqErKso2gmTrkOokzdi9DesRUpmKNSrhGJJEilmqg5ZSoVB9+DUqmKomsIIQvXuk6tUsUPBELVIBRl5mdzDWXWQp0fPTjGNTfezMXnnsOq/pWcfu4FxGJRvvrZT9Df08XgdJ7Ttp1znH92MnDHgtDWUbB3KmLkZLbE32kE94/5LyGLYi4nsl2hcAxMisKphVSW22KwnXCBWRSAIDwBzPmLzch/y4y8l70eeTG768SxRwUWETiWkrkE1P63B3ee92GOXpAN5LvU/CBs5Cif4v1FW7zwTuxRd+xCbzgEwUnfP2on63P3EqhiUclnuUrQIqt1FFwtMDBLZzzWHy5k6W1y/G36n7fl87xcuLcUcgjHTXSMuXrFwG1xzEuM/W2B91L2VTjZ6+Hil9LxbNyLrWcpsBUWviwXTVzoqh2GIRs2r+fIjMMv73+Abeu7T50OK7DkE176OMmGR1m74wHg53/0CFt6JPqzDYc+5FhBbzxuE1JHVxXmcxXaMjZ+WCcUVAQ8XM/F0CV8r0gynSWUA3y/ghzUiFhx3LqPbZpUK3UmDtcRDQfXlxEkgUgyxIxYiIKMW6sQhCbP7h5kxYouBAm+8e+PcdYZq0kkIwSBy+7dBwiDgEg0Sr3msbG/FzMq05IxkRVIZeJMTY2TiMd5+KE9tHVYDRW/Uh5FAcep0N7WgiBCW2sTkigTi5vIgoym6nz7R0/Q2RYlFjNpycbx/YDxsQKpVBM9XVkUJcQwFaZnctimye49B9mysZuxqRls22x87KGI59WQxEaJehAI9K/oQNEavfWq1TpCIKPpBtGoSXPWRjVkxsYm8ep1mhJR5udrmFETUXQJgwp2NIGqKhimQRiI+EEjilqp1NANHUUSKeaLGIbBiq4mzFiEIyNTpJJRQt9FEOtIQL3m4gUiz+8ZavT8M1TEUEZRTQxTg4UfUlWzGiy86Db6VwUqpUIRSRKRFvsMiTIiIEphg40PQu57Loc3Mcq6829h13PbsfQM2596hs1btoBX4YrLrmZ0dJ4rXv1aNMknFo3x0MPbSaQ70XWN007fxE03vI5KvkBPfy9erUhuegpJtkjHshTzORJxC0UzyJcqaLJC6AfEY3EEBFRVRhb1RgpuySGW7CBXqtPS2UnVd0k2pfH8xVR8mdxUDsOwkVUTQZTRtcYPsG4q+GGAU64iqhZ1wFBEpicGiMYMKk6VaCJN6NVQJAHf9xsRVnFReVfEtG3UmscjTzxDZ88qNNNCFkFQLaKxBE7g4HhF5sanyHQ18+ijD/PofQ/Rv3oDr3vdldxyw9uolObRZIsPfPC9vP6a89F8hy2nb6C7ZyWKLhOIDpWKR26+ys233Mxb/ugmxBDe/tZ3cNGFF6AbIVqqDUUMEWt1qFsoZoxIJEk0lgJBbtQDampDa1eWiCaSuIFLrVQgP3MQXcvjlCYRvRwPP7GDjo0XEWtqQQwF6sUZIqaLqBigpnBrPtlklEo1RDejzM7NY1sG45PT2NEIiqIiCSrjY3swDQVJkBERUTSloXCoKszOTdGxehXJbALfq7Np/UbiiSZcwccJqxx8fi/T8zmSiQiS5CNKdRy3xD2//DWpphY0SUYNAgLBZ9+evTSlmmlKtKOZKskmG6dWJWYmKVYnicXjIHkUq3Octe08SuU6omhTrQSotoVq2FTrNYrlGa66+tX0r1nJhvWbqdYcOjNxBg8Pkk638P3v/ger13TRnG1nZrpKW0s/H/3Y5zn7nPOxbZvC1DiF2RmspILrO1iWhSSKiIrBoYO7aGpKQqAg4uCJEAQClUIFTQ4pVD0QBaYnx+jOtvHFL3+Zy644H1Ut8etf3M2K3s2sXN/Hn33gQ1x05hbe/2fvJd3UzIqVvRTqMvO5KqYWZ/DQICu71vH6a6/lDbe+mf41p5HKSCiSzrnnXkAkbvLJj/8j0ajFh//mf3DLG29l7/4hbnnDdbh+nUYGnkQYqiRiIWFQYWreIZpZTa44xOTEfsKqj8csU5PPk470ka88TzTSR8kLsRJR/KCAJ/l4YhRJVfHdI7gzU4jCEQxdJ1+x+OG9T7KxN81F6zax+/mn6WrdRqa1mYI/T8716LBNpmYmaW726ehJEcskMO04rpSkp92nNvos1AI2n+FQKXrEFIXMiiyCHOLOBkScKqLSysT8KJFIgYvOWEdx7gCGEqD6Xcz696MY7fhzAs3xJvREnP3PPsnKNWswk924YYrDu59CN3y6+9YxX87hzo6htyUhXAnxLkanZ0h3bkCMdKFG+zDSIr7SwvOHptASUTIta6gpdeyEjiZt5nv/8SW6OtZj6AItaQEpPEK5WkLwHIrVGlZThlCwmJ2bJZtJomsuihxS8QIESSeUDCxbB0AWBAxFpVidxclrDI0Uqdclak6G887fRq40y+OPPs7WdZvoW9nDwDP3M5uvcv4VVyErSqMcZKHOOpREQqGh2h0KJ5adHOfLvAzyoyFsJiKExwO55SJyx9QxF3ybMESUTlZqcsyWqmDCQj2cKB0TVWGJWuaSWLi46F8v7NMP/eMA69K6usWe1ydj3V7SloDbo/MsHrPU0AjwF0CeKCqIi577y1Dp/28A7twPH/fCMvAWhstq104B7nzfQ9G0k9TBLWeblo9fDu5ONv9LfFDLrt7FhopLlXqEhZutsfsQWVIWUuuOgb9Tqiv+Duy3nXn5uKWRm9/WlqtennLfvyNWVRLFBaXAhYd0fHuF5SzcS+534YvlhHUuiKVs3LSOba++kn/9P0+yISMu1FUtn+NUzN3Ls589eYiN7QEbe1LIisLSkMHi9SaKEoVCiYcfH2DLuhYMQwZ8ZEHAqYeAiGVHcOs+pmWTiMWp1UPqjseqVR1MTM6woqeNZFoik9WJxGwsWyNmNvP44wfoaEviOfP8+Bf7ufSi0xgaGsHzHM45qx9JEqmUq/geSKFMteYRjUW459dPk44bPPz4Xvp6WlA1g2rVY8fOQWwzZOXKLoIAFNnA9wV2PHOYcimgtS3L3Nw8pVKNaDTa+NFAYHpqjgvP3YCmamj6QmNpMUBVBA4MDJNJJ5iZzaHrMpFoBFlWyGaSGKZFxLZQZAVZUXjiqb30drchiDKBL1B3PO67fxfdHRkq5SoDA1PEYzqKKvPQI8/R0ZqlVnOo170FAF2irb0Zt+4xP1tElnRkRcZzPTzPRxQFHnpsD53tGXRDpe5UkCQFURCZnprjrl8+y4bVrcRidqMYP/RxHQdN0ylXHOLxOK2tMSAkCKBW9RCkRnTT931yuTymoSHIEgIBxUKJ3TsHaGtLo6jywo9biOfXcZwahDJePWQ+l+fqC87k3x7ZT9eqrazZ0EOhUKCjvRPDsAhckeZMK+dfcD6//9Y3cI2pQgAAIABJREFU8Iuf3c1Vr7uK1tZWPvHJT5JI2qRTSbKZLHfe+W1WrunH0i1sy0JQRWRJRNMVQsCpQRjIyJJ/9FqVRIFiqYRl2YRBSDQaY2Z2mpUr+/Bcp1GAL4RUizl0VcarVdA0hYpTRpQCqrUydcdBlERUpVGbpygKoiwRBh7DAwdp71lNvS4gIqNLCoosU3PqGLpOuVJBljVCGqxy4EMpN0u2rZ26W0PXVQLfJ0Sg7tSYm5+jWqmhqCaSotHR3sVNN93KVVdfzvvf/2e8593vZ+vp67jg3Et4x7tup7e3C9vWyTS3EEg6iixRzM+jahKyIvPmN7+JeNKgVKhx90/+D7e+8WZqtRKm6jJ25ABmJIIeTeN6HoQhQ0NDJJNJdENv9J+URCanpjANHV8UUWWLTHMrupmkUPFJNffQ3LICRbWQ5JCRwSHm5mYQZZFEugXfF3hmxw7m52Zoas7ienWiMZt6zaEpk8IP6siKhCgExGMZBEEmCD0GhweIWm2U8qUGqx26xKMRCD0OvLCfUrmMEdURJYH9e/YROCF9K9fyqU/+PWeceRayoqIqOh0dK0kkE0iCSyyqUKw5dPd24wUe0oJEfLFYI5PKMDc/j2GYTE/NNWqAERkfGyOTyfLMjl08+eRTbNyyCVXW+N73f0hTOktUl3EqZXy/ypo1beiGTTrbjOt6fOKjH+P2d96BJCqMjo4iiCGTk4NcfNl5SLLIW/7gLdxww00oWoJv3vk9znrV+QS+giA5xOJRAj/E9TxUdUGkSYCZqQlSyRgoCs/v3snnPvdprr7m9fzTl77MdVddTXtTMxu2bsEyU/z1//xr3nn7e5iZmuJTn/wkzz77NJdefhGK72JpEvGkRXdvB/v2jvCTu+9i6+kbOPe8M/H9Ol/4/Je49OJLcV2X/fsG2XraRq666gosW+WMMzfz+utuYXJiiosvvAhJUBmaOIQfBASIRJNZioVJFCFOtrkN3ZJQrQ5i6c1MlErEW7YxfGQ7qaZ2YtEm5ibqhGGZwHVRZQcpLGCYTeTdOKvWX48Tqozsm+RXDzzG8GiZoDTB1rNmEdUypZzEF//xHno6FPpWrKSzs4VUU5QgdDA0A13RmR/dQTYiMlV6ks7k71Op76SrPUt+Osdvdhzk7776BF+7b4htGzdz/68f4w23XoEpe8iiQLk0g8M0gthJtrUfCY+hkd20d2+ko62XF154AcOU0BWX1uYsc7Mj2IpBLT9JvjjO/hdqaBwgN7OLwf1PsqYvw9zUALpa44kHt9OV2cimta8iEQfd8Am9ZgKvmXS7Rix6HqFlEc/2MZnXUaNrmCdLpuN0MFqoYOO7RWRJwDQMZmZyeJWAlriFV5qjPD2ApNmUS8WjNfTl4iy6mmBkpsLeEZ8P/+2nMSyde++9j6tfdy0f+9in6WxNItcnkSIxzEwnzdnMAmmwSCZw0nKZ5eDOD/yX54ctKs6/RDnNcnYNWFJScgpbFLNb0oTcD/2joO647U6SwXQcKFzGRh473sU5/nM+5THSZvGFxj+NUjGxAYBfwXz/bcGdHzSQuBAIy1ixU83jo6pqo0fG8RMue/q7A3dHGbsTtj45AFp6wYpLHP7l8rCncvf/66DfS1sDhoTHoh/L13OUfHppVu4Yi7qg6neUOePkMrgv08KlSpSn2O/idgLHjuNU2y1uu8jMnex4ltdUwjGYddrpW/DTq6kOP4smy0eP8TgCWjgJY/cSh/7Gv/85731thqaYcdxaG+dtcYJGnzND1xgZnSKbiaJpEqIUMjc9SxBKqJpONGajyDLFfIlKxSEIBCQhbKT1CSGz8znsuEa55KMpKrWqj+uN0dIWQxBBFkRMM4JpKmSzSYIgIAzrDaGjQGTvniP4nk/EthAlgTWr2lFVqDsBqYTJ3v1HqFUDzti6GqeeR5Y1BEmmXJ5lZnaO3u5WTEM9Wgje1JQGJH7zyDO0taQaPedkiUK+jKapzM7Nk0rFCEKXvQdGmJ0pMT1TpL09Qxg0voSnZxoKmWNjM2x/5gX6elrINicaNQGhRIjA7t0DVMse+wdGmZzOcfar1qOqIqEgIiE0HHxZJp1q9P5LJuP89N7trF3ViWGYhKGMqjXSSmRZRlYUerpakGQB33OR5QbQqTt1BFFg/eo2vHqNQqHC1HSeVFNkIb1T4tndg2SabH523+OUSzV0pZHG5ocugihz10+fYNOGXny/3uj5KQjIgkQ2k8QPA2RFgrAR+RREAUVWCUORX927k/VruwkFm3t2jfOmP3wrXlAjlUrw+c9/kc6OHr78pTv5/T+8je6+Vm66+XredNutxGI2N954I+l4jEtffQlHhodJJVNcfPHF/Og/7qKzpR1d03niqcfoXbkaWVOo11zGhqf47r/9gN6+DuKJBmvnei6RiE3d9Xhh3350Qydq6xRys0RjNgIehZlpUskETrWCIgkMDB3GcatEojaCGOLVG3URxWKDBT18+ABuvULE0Ek3ZXHREUWJcrFExLSouy6OUyeXzxOxbWbnCmiaztx8jogdQdFE6k4JQh/btnB9CUEIQBCxrSi6ZmEYFgIuoiDytnfcgaL4EAZceunvUSrP8dADj/Dhj3wERZep1qropoGkWIS+hyKHhEKApshYttGQCkfimmuuxHGrWJZNdfoQ5VqFSKqFUDQRgdHxcXp7e1FVFdfzEEWREDANY+F7CtyaD6KO46nEEilcwQIEwnoV1ymgqSaxZArNsvF9CcGH973vvbzr3e/myJFBdFNDVWREWThajy2JMJ/LochxQsEjoI4difP4b55lemqSbDbFwMB+0skUe5/bz8pVq1E1DS1iELg+tVwZSdJw3IDXXvlaNFWh5tQ4dPAg6XQzoiJSzE8Rjcgga4hio56nWqtgWzZCoHDw4GHe8pY/4LrrXk82m6FQKBAGIslUHFXRue++X3PVVQ0Www+gs6uLro4udAMMTaMpm6DuFYhaGSRNQVYlrnrtFZx/zoXcfvvtuF6da6+9mptuuop4qqGKefFFl6HqJqPjhzjv/DMpV+c4cuQAqq4wNTmFqsrYUQMBiapTw6lV0BUVNwgYOjJCW0uG11x2CXYsxnXXvp6+1WvZdtrZ2E1xDrwwiueXaW9p57Of+Rw333Q9P/n5XWzZvJGnHnuYSy69mKrjsmPns2zacBqbNm/iPX/6bq59/Wv5xEc/zRWXXcZtt91GZ0cPq1ZtYOvW9SRTMXL5aQTB5bprbiSdTHLjDTfzxjfdhiD6GGYEO9ZEzREIanNErAyaYXJkdIC54ecQfAHDLlHK11jRewazE8MU8+NYVg2/5mCqdWbGDqDKBt//2R60xDrs+GayLTEOP3M/l73uPH7807v4yz+5kiazj1rJJdMscNa2OAkjiWlISLKLU8tTq+RJ2hZOaYrZ8V34lSpPPlUm3l6kVk/x/R8+yse/OoaROJtzzryRx379azZsuoAf3H0/F160kdz8HKJk45WHkPQ8rW0X8PzuXRi6SqI5ShDEERQNyzJQyDO0/zf47iC6MkZYG0d0h/DDCp/66Jc5c71DRJwim9aYHd+LHMzj1cZQjMdIxESODD3J3ue38+zTu4lbNRxvhD/8w4+x7dIEsXCWwswB2rMppsdHiNkC9XoJUw9J2iGB5+G6JVynzsxkjrt+s4v+lX1IiomHRjRm4rp1wiAkn58nalvIooVkxvnMt55k/bp+Aj9gdf96JFmhkCvQ151haO+jPL3nIH9wx3sRBPE4pgupUY++SBosT4sUhIaw27Hkq8Xg9vElRKLQ4KHCoOF7L74vLmSBLPd9T6iDE8XjwNipANiiIMzJ0jiX+oqLtX/h0uy4JfOcsv9deLzv/dvaYqlVSNDI9FimNvr/wN0yOxW4E1lE8MsuhlOlCoccZcKOt/86cPdyhUGWmyhJxzGMp6qJWxRDOcbs/X9nRxMCFyNDyyDob8XoCcLxkaMl1PnvYq3HdrOcvT25narQNlhSu3eqaNjS7Ze+JssSWudmbvqTj3PDuatOstiTrOlFlnnTx+/mm3esPWGK44uVF0FsY32r+lrRTQvPb6jqiUKIJEkkEjajYyN4gU+1VKJULDA9O017WzPVWg1dV7AjBggS2588QmurjRFVUWSRmgOmFaNWrZDMpFB1CVEQueee3axa1YZTrSMApq7S0hpjejZHJGIShD6+VyMaMdD0ENvSyTRnCMIK9VrI/GyNRMpE03ReODhKe2uGex/axer+NhSlIaTkeQFj4zN0dmfRdRW3XmduvkQsFkEUJMJA4v4Hd2JqFhvW9tHd2cq+A4M8t2+Ynp42bFvH0HVMXaG/v4N63cH3a3iuj6oZPPn0Hvp6mnn46QFuvv5senuyVCqVhkqYCNGIgWXqPPf8EAghkYiJJEtkm2IYmoQki0iKjOvVCfwQRWmAOEWDQqGArmvUaz6KqoMgYlkmqipjWAqaZpCMx6lVGmD7yacPcfqW1RiWytqVXSiSgiiKHBg4QmdnE0EgsKq3HV1TyeXnkISGsqXn+8iKiKJpjdsqDJAkkSBo1OK59TqHhicIvRAjkuSup0e49prXIslRCsVZLr7kAqKxCK1NWdKZKFvP2MRb3/LHqDqUSyXe/5730JxMohppalWXfH6aeFRly5mbKBeq3PGO9/BH73wnrm9SLpVx3Sq//6Y38Cd3/DHNrc0MDhxGkiQsy6ZULhH6AYcHh2hv62ByfAjL1ikWcwRuHTeU8DyfSDROKEgkU2ni8RSSrCBLCvFYnKHDhwmCgGQySSRuoQgBchhQqnjYBuRzc6TTGdxQQJUFVEXFMA1EUWR0bIRsSwbL0hGEgFI5h21puLUyphWjUPNRRA9F0REFhTAQyU9P4hUnqZWK/OVf/TWvu/IaXNfniYef5Ytf/Bzf/tZ3OPuCC7jl1luwbAsI8UMZUQgoF+eJRJOIokSpWESVTTRFQRA9KpUiUTvB2PAAfWu3MDFdJGpEOTx4mL4VKxo9ChcU31y3USMqAHPzc9TmpoknLEJ8ZFVCEQKcAKSwyrOP/AJRFEikMhRrHqppIgkyoePw5rf8IZJhoipgGhoBPpIEg4fHMTQTUVIZPDxMtrUFQarj+S6SEEGV6sQSBrIU0JLNUi16PPLgdnp611J2qpixBLqgoAoCZkTj0OFBOrtaUTSREBdNkxkZPUwymcDQNQ6/cJBMOsORwUEyiSSeU6dcrfHnH/oIl1x8Mbe/862omsz4xGEMU8O24xSL8/g+yJKGoRlE4jqNWFzA5OQooiIQyjp1T0K34qiiznve/17Wb1hLKhnl9jveTqVaRhZVfv+2t2BIKqlMllrdQ1VVorEIdiSGadmNc4+PbWskE00MHxlCVhqBsACRQq6KJlp89gtf4uprbkBXVEYPH2bPs4/S2rOC1994Ex0rehibmGJl32r6VzfR2RHnzq/+iH/4zCf57Gc/RTrdxNpXnccX//Wb/PBHP6OztZ/7fv0zPvSBv+SJJ55hcmKaKy65nH//wff4whc+z9e+8g2+euc3eX7PbsrlCp2dXdQdeGHfDkZHRvjUJz/O+NgoHc1dPPTAI7RkW5EVhacffprpuUPotkImu5Jo0kJQVKLGGir+XgIHMhEPLSxRKU2imxK1/CAJW+Oxxwd5+nmRta86DTtus3/HU/T0xsnG8rz5+rNIJ0XypScQwhL5mRxKGEEU8lSrBZxqldAHyzSpO2Wc2iyKXCUWyVKqyvzt/76fHfvnmC538q0ffpYV/W285jXncsaZSbacv4Ebb/kT7vzWE/zDPz7Jb57ezjUXrUQNs0zVdpDNdLF9+wA9KzciKjKBBELgMHpgO51NEOQGqOSGUEUR21KRq0WuuLKfhKgg+HUIQyKWTi43jalJCOVmBFdiZmqEcsnjwV9OcMGZcYLaLBefuY6YVkAoNQSMVDmkMD+B6E6CZPLYY09j6BYRzcN3clTmcthaFDO+EbF2BN+fRU9WwVXx6g6KLGLqBqoZxXd9coU8Uhhl7WlncvdPf8VXv/ptNm/ZzNfv/Byhn2dVa4JKEOGC115zXEBcQABxmd94Ep8lDMMTwN0Jfmi4pNyJJUBrkWw5wZVZBu5O4tu8XN9usU/d4roWgSVBuNCW4MRWBkuzsH7b/b6YHQOOC+f5hJj8/wN3x5nnOx8+vr5twYSFdEwhXMIKgbC0/m4JBXIyx7wxz/IaPPH48ScOOMnj5Hb0hlp60b8MEwShQUOHx0usCEv+XWTKfneNzhdu0pfTouCkw5ePe/Fzc9QEoZHuCEcfJ0SRFt5fVOR8OSInxzF+S+ZafCy2QVhk6I5usyRN4ITP7yR2lOVbeCwHeSeMOwpUj2f6brzpenJmB0zuQ16WFvpy7aaP38233rWepdfm8cMbrx098qNrEHBqVSbG50gn05gRlWphirl8kc7WFvL5OoXqLJ1dLTRnWqjVZolaKqIoo2hxquUChUqJjs4kvg+VUhVNk1EViWpNQJJUHMejXKkSi6jc99A+Vvd1860fPM6WTZ0cHBxFEKEl24QiK4iSjmqoFMpFItEo01N5InYC01KR5JBf3Lcb33PZvHEVkhyyamUaQZQQESnMFZken0FRFWIRG1XRkCSZSMIEIWD/gWFswyQRiVCpOIyMTNHamiLVZJOIGagSHB4YW2hULlF3PO6+ZzsbN6wAL2TkyAiJhEksabFlUy+yFDbSZcqNHnuHDw4TtU1K5Tqt2TTJZBRRlhElGUPVefyp/XR1tLJjx35aWxMoiozne2i6huDLBF4JxZSpViTARZYNZMWnWiogKSaC6OOHLhNjVRJNcVb1d6DrAvn8HJqhYRgyhqmQiBsosowk+vhBFVkGTTWQZQgW2EcfHxGRwA8aoiqCSCgFQCOVs7+vhWTSRtOb+MGjB7j+utfytre/j6tedzUzs1OkmpIUy3lM2+bwwAiXXHwZiq1i2TFqjs9XvvJNursjHNx3mIcf/RVNmSzlgocg+tx+x+383d98jq996e9pac3Q0t7K5vXr6GpvRVEMmjPtiLKHKFcQRAFV0+jo6EJRVOxoAkkxyBXKROJJ/FDEMBOEok2IgaRIjZoG3yf0PArFIqlUqsE4iSKqrKPqNoJqYdgRxidGScSzeJ5MGIRIckDdaygxzszNkM1kcKoOuqoTeCECMrJio2hRglDC1HU8HERFoFybo+7PEo23YESbUU2L8847A0WN8eV/+QH9a1fw9ne+idn5Oa679kqyTWlkWQNFAMnEMiSe3/00Le29CPUKgecgaAbFwiEidg+CHyVwxzDaV+DXQ2K6Tr5abrSVUGUOvHAQyzSxkzaVShnLsCAQqZZqDB7YR7ZtBVIo8907v0Vbu4inRRjcv4sz+9tRm9YQCjKGpjSCAApUqx7v/pM7uPyic8hVPGTZYG56klJhhli8CcuMIyp1IrEIftBIjVIVi2olJPCmyGSa8F2R53ceQLF11qzuplacIxZN8e/f/DfSTREqXpFsWwdNmQzTszOomgkoWGaKlrY2vKCGIMpEUq3U3TpeAKpuoRsRdu16ju6eTlb19xCKLo4nEk+kkY0qgigRiUeoVCtohk48GUM3Reanx0lE4iCY6FaAQhaUeURRIBB9LrjkYqKRBMXpafbs2YUsitRcn7/6649y6203MzYyzj2/+iUR00QUYXpmjohlMjRwkJ6OdmZmS1gRFduOgm/glKooqs1f/Pn7uOXmq+joX8eRoWE+8hcfxAg9Lrv6Wm64+kOsWrGJt99xGz/75sNE4zk2bN5Ebl5j167dfPQTH0EzdBKJZv7XX3yCK8/bjGqbHDi0mzve/nYuvewMZmaGePjX21mzpY+f/PTnNKfb+Pqd3+Hn99/F5a+5gM7uVmLRBBOjOVrau9AjAfc/+AirVp7JdCnHd777H5y2dSuEdVIpi4mh3XRlo1TyE5TmjmAbIaFTwa+UcEqjlKoDDda9IpGrDSPURcr1OSIt11DxZ7n2qmsoFor0rV/NT378AN0tfcjhTjqTvZTKk8SiacJQAKlMqqmfwQMDtLf1IhrN+HIM383j1usoSoTp+Wmakhr7hycQrY28/U/fRXvrOgIH7n/wYc656HpMpZVvfPVf+OO3/xGKodLbPsfggMia9U3kZ54jggGKQTU0yM0cJhGJMTp2iEjtIIZUoVydImGalOdz+JjUKiXc2iwICqplEJQSaLpCrZ7H8+qoikrNLWOaFtl0jPPP68At5zFUGfQpvvuDp2nrX0tzrJPR2Qk+9HcPceHFK9F0kb/5wINc8poYuiiiaxbjMzOEckBLuoaVUghUj0o1j+TFqVRLjZT5usjgWIVdszU6xTL//KP93H7HhwCBN73xFu6/915ufeO76U6IzOePcMWNb8ZKZJBliWBBsTEQjhf4aLgYIr7nH+dXHQV/AQ3xE1E8ym6d6NcKjX52C/VwR4PwS7QlgrARcBIWesGdFNi9AugjhCy0VVn4C4+NXwowj/phsOhcHj/P4nGIi8eybD+isDjwpRe1AHaP+o9ICIg0PJNXBuzgvwW4e2VqmcuZvFPV4L3YDP9l9grA3WKKIzR6li29uX53gO6YBUF4/HX/20YyXuG4RXneFwNRS9kuSXppYPdSANAPAqRF+p6lkanF8/DymLwXs5ea42Qpn5qm8f5PfZvLNmZP7Av4EnbTx3+yAOyW7+e4Z6dci65pqHKDMVZlk2KuwGPPHKKrLUulUqCro5NcLk8QVHGqPkEgIssGd9/7LJs29DQi85UyO3cNMjY+R2smhe8F2FYEWRYQJTANHUmEXXvHWNHVREdLlGjcIh41sQwdECgWyxw5MsncfIn2tiyiqGDbUb7/4wdZu6oV1/VZu6qbZMLm+z9+nPVruhGQqJUd7nlgJ+vX9PLkzoNsO2s9nuexc9cBLFPlwKERmtIxUqkYuq6j6waHBsbZsnkFz+89THdnE0IYYFgaTZk4br3OU8+8QEsmRXu2mf0HD9PZ0YJhNCL/mqYhiAKSKOA6AeMTeVoycQr5Iqqh4voBttloySBKEAY+QejT1p5GEKG9I4Ow8N0UhjSUK6lBEFB3NXwvQNMlZmfnkSQHSQmRRBPERqq3bqioqkzo+8iy1BBEEUVy8wV8P8C0THwvwHFqDfZGbABVVdMQhEYATFFUPNenXC43GhhrKiIStXKN6ekZwtBD101cKcGH//kH/Om738kvfvVzDFNl7do11F2XkcFJ0uk0l1x2IZreUEkMfA/Pq3P+eduI2CZ9K9bR2p6it7eHaCxBPB7nhb0vsGXLVt52+1vp6OsBERKJOPFUAklUeeqpJxtqp7k5VCVBPlfE81xSqQS1WhV14bzqmoqk6xD6OOUcEVNmcnYWQ1MRgKmJSbwQVF0lGo0SBCFeEDI6NtaovRMEopFoIy2zXMT1i2iKSRCIPPfcHnp7+lAVqdEiBYliqbygwNnoqVqrVdBkCdGXCb2QWtHB1hKMjB3BNmwqpQKmpTI3n+PCC87HjEgUS1NkMu1omoamqriei1uvIIsyQughCAGylcb3PWYnx2lKxgnxmZ4/gqAUUZUQQdTQVZ3BwREi8RiDhwdZsaKPI0eGae/owA18TNNquBQhTIyPocjDZDqaQRZZtaaPWKQbuVolrPso0WYEReOF/fsxDLORlhWo7HzmeW668Waee+552jo6EcIQRZGou1VUw0AUJArFaVy3jqpGkCWYmhxBVsC0LQIkJE2j6tSJRi1kCaYnJ2lp76R/ZR+tbVlMywZBpuYUURUZWREJQ59QCJifGqNSzBEGHvWaw/DhMbq6uhCkgL17drJl62lkmzswjChOxW8w6CFomogiRak5VWRRJpVKMTM9haLK1GtVFEUhkcrg+VUUWUeSA6rlKhIKhWINVdZ5+smn+NAHP8gb3/gHPPfcHtau62fnzidYtXol3V097Nv7Am3tXbS0NO5lVZXI53PU/Tp2xKZSclEUg2Jxktm5PDdcdzO//Okv+dXPHqC1pY9tZ11CLu/yj5//Mqs2GqxY1cHOJyc45/wurnjtJWhyM1/52r8wPTXPZZddxsTYJC3ZTq69/lJqhUk8Uefcc85h5Mgw3//Bd7nwggs566zzufzyq7jtTX/A2We/imTC5v3v/QS/9+rLqZZLDAzu5JmdD9Dfu5500iZ0BX70g7s565ytRA2V/hWdTI4eZnpijNaWJIKqEEomATKibDI375HIJCkXRxGI4DkGsi4iypCJNnPw0H5Wrrmejp5uZMWkXCoyOzvKmWdr3PXv38Oyy5hxk5gpMzc330hrrlfJ1+ZIpnXKlSkKhREUqUQYKGi6hluvE08kCAKV+x6a4tLfezOnnd1PLJokFCX8QODI0CgHXzjEq845m3yxyBlnn017qpXPfeYbXHhZBl3IYNnQvWoLHjaZpiyKaZAr5QiKh9F0n9J8AVGQiCWSOJ7Ld77xFKedsaqR0eCCb82Sr5WIpXpxvAyaUEYG5NDDcytUKyWqwgxmvImDIxqf/sJOrrlkPYF3BN+vkzS2kUwMYesal1/RT1tLBAGJQqFI74oe3LqL5QtE1QRCTUcJMsiKSuAHqJqM49ZIGmdSqbgkNY+nD0xz2rZLEEUYGh7k6mtex+e/+E/EdYd9zz+Lkeqlb80aWMimWkzTXu4jh2F4TFBricNwzAcNj9brndRCYWEfS9Iql2RYiYvplyJIL7N33kva8iypU/jWL8UWHvUrF9nMk6aSvkxwd8LOFwRbXvnIxpr+u4G7k538pY/F/N+XqsE7tf3XgLvFItCldlQqddkF1+gXcuz5UXn+pbnOv2OQt0gnL2eUlixiccNTTfDKgN1S5uyEuRYfi3M2VPtO6Gv3IiYIwtH6SmGxJm7BRFFsRLKWfZkttkJ4sdTKFwVrSxnBhWjQy2mA3tigsc0Vv3cZo36K4eceJ5OILN3B8dsvzFupu/zi4Qf5wLXHp3SeHBsKJ3ltIZgQNvrHOHWHZ3Y+RyyqMF8u0dZBYHpRAAAgAElEQVQcQ9Vk9uwbpiUTRzdgbt5B0wwODk2RTkRIZmI4NZ9Hn9rF+WedhiZrgEChVEZRFSSp0SbCDwNMw6K3o4mDh0cxTZlEPIJTdZBkGd0w2Ld/mHyhiiIrWEZDIfH+B3dw8TnrmZsvYFsm9XqdvS8c4cJtm5AkiaHBMULPp1Su0tqWpqO9iemJGeyISVM6hqRIeK5HPBFFU2UCz+eRR/cyNV9g84Yempqi7N8/gGmqCKLAfL6AYei0tzaRy5XQVJ10ykZakHYPw0YzWQSf3Hye5/YcobMti+dViSejxBIxwtBD0yAMBA4OHCGRMFEUhWq1imGaFIulhpCPKOPUHARRwvdLhIGAYacYH58ikUwjBiqS4PP0rsO0t7UQBAGqKqPIjbhgEPgEPjzwyC56OrMYlokkStSqNURJxnEcBEEgn69gWxEEUSafz2MYOoQNhS9N01B1ldD3qVUcTNNEUURM6/+y995Rll3Vue9v7bz3yalyVVd3dU7qpFZoBZRRjggkkeFirsHYxhGucXrGNthmgG3gEgwmCJMkAZKIEhJCqaWW1OqcQ1V35aqTw87vj1NVXV1dLQmwx7vj+s0xzqg6O6y1djzzW9+c3zQIQoFhZtg+HHLFFZdw4003sGjRIggFumbwlx/5a847fzMtrSlefPFZ0olskx3TFcq1Erpi8sB9D3PBlnVomkw6lcNuOESicfL5ccyYBbKEpE4LiejgS0xMjBGJREnEsrz43HbGx0dZ3NfLwYP7iEejqIqMECG1agVV01FEiO818N0asUQWgaBWLZPOpNFNC8M0m4qakoxQm+D+ZP9xLENDVjU810NRBEJyCEIdx3bpaO8gBDzPRgiZMBSEgeC5bS/wex/4AOvOWUvMMpAClwMHXiAaDTB0QaVQoqWtAwIQeGSySeqNOropo2khuqFSLtWIRJv3hCwL3EaJWqmIJAtSqTSuLxCyTCqZYKT/KKn4UvKlSWynjh4m6e/fS75QpWtBH5FohM7uLkIhKJXLZHMZJKFCCEHgUa2VURSZtmwaPdqB62rUah5j48cY2PskmbYUSrYFu1bDsiLs2rkHWVKJWhnGhidp1CoIKeCpJ37JssVLGRkewfN9DKNZ+qBUnSAaiaErJnajgqL4RKMmEMXzQdc1QikgnoihCojFLHQrShg2GB4Zw/MkxsfzpDMxVFXF8z18P0TXNCqFCXzfprWlDafeQNFiJJNxhkdO0t7ZQj5f4M477+HC8y/missv54LzNrG4bwmmqVApuMiKTK1WwzS15sSMLBGLRQgDj3K9RqVYpFgawVBj6JqJjMzD33sIVVJZfc5K7rjtFmKxDKlUDjOqs6C3HU3REAj+8A//iBtvvAE9orN2zQre//73Eo9HSGczDJ4cQ1E0ECGeVyaezBL40NneyeWXr6O9u510S4q2zhzX3Xg152+6iaWL+7AS47z7t95FECjs3jHIVVeezx1vfCOf+uS/8sQvnmbHy7sJpSIpy6B3+TqefuaXrFy+gogV4fnnX+DDH/owkhLnJz/+MV/43GfYfN56/uLP38P993+LlctWcsVVt/Pxv/8c5fwwmUySF7dt5z3v/i18UaOnuwUChyefeopkKkPfoi7qdgMtkqBScZgslliwcDmjk4NUJwdIp3uQlAR1r4LAwcBAkjzq/hKMZJxaxSYRj/HwQ/dTHq/zzCP9rFmxkd/63S9w543LUFQZw1TwgxAzmkbTIngetGUy4LoY0SSKLFOt1pBlmSP9ZW66/YOMTAZ893tfZmhgEDOSJKLK3PfVf2N8cpyLr7gCH8EPHrifJYu2cP6lF/D0U/ezbulGqo1+HEemVBZE0h2UyyVq9SJJMYEi1ylNFkDWMaIxSuUiK1acD1oBJ4RAytIWW4xdkfj2t79DJBLgqi5+UKXh5PGo4psKRiOK3xgjPzrBdVdtIpsdImGspFA6wsI+QS7aiSpZCGUQu5QgEA0kWeA4No5j4yoOZbuKr6r881cf5ZxlCwiEh6orCCGoOy/Rmgkp1Q0++51DLOxbwLpzzqG1rZW9u3dz0223ceLQDsaGh7n5rndhxROvDO7EKWA27Z/O5M4JaYZpC4JTzF4YzAVWzQmk6aLnzVIHU7zKtPK4EGfk0/0qNlc1c8bHF6f6k6RZAHWW3+WHPoqqouk6Qeif0oWYDWRnlb+a6xvBbIX7Oeul2QzmqWVNn3XW8f8ax/zfDtzNtfmSI09b/38IuJsrijK9DM48hlcDbf+54Zi/ov0GbNb87U3/mS38P09+3q+Qa3dKi0RMPWhNqVwxC/FMs3anDeVVwJ0/T6jn3G2mFTenGcnXCu6aSpzN7RKJGM/sn2B5wpndwZyja4ZhvmGTyeKO5Ly3rZgVljy9ZP7BN/uVZZlGo8HCriyeH9K7cCGWpuMLQWdnEiFgbLRKtW4TiVp0dbVhaBKT+SLJWJzuzjQhgqPHJ1nQ204sEUEo4NRsRicKRKIx8pNlTNOgvT1JJhtHlmVe3H6IRCLK6EieXfsHed2W1Rw6MsTivk6EFJJNm2zfcYzFvR24rsuOPYcpFW0629NUqiViMZ1UJkZHW4pypUoyGUOVZVzP5fs/eZ41K3uIx+JAQOC7jA6Pk0ol0VWJYrlEa2sS0zJIJBMMDU2gSDL1eh3DULEdm0wmxr79/STTcZ7fvp9sMoZju2iGjiKFtLUksaKRZv4lIaocUinmCYF61aelJYOhqwgkVEXjvu89y8GDI6xe1YPdsDFMc+rS+jh2A1lTmgnkWoiuCMKgTs+Cbnw/wPfDZl6XkFBEQK1ao1Kps3xZH08/t5Pe7nYkWUKWZGRZbRZfV1Qsy0JIKn7oYpgysgSO7SApCrLULIUQ+AHVWgndslBUDUlRcWwbzcrxxL5Jbrj5Wo4cHKWzsxOmwsZvuPFqVFVgGgadnT1cf9XN3HPPW0BIaKaBLuvUagEDg/up1SrE4kke/P4PSacyWDENu1QjnoijKhIaEqNDQ9gNHyuq093dy+233sPdb7mOtatXEAQ+nuOxa9dOTp4YoKuzHceucWjXHlrbO9CMBKgWYdBU2VRkGUkSCM0EZJgC0z4SkkQzJFIKKFZLBIHE0SMnaGvtoF6voBsqQgqR5aYQy/joGI8++ihr166lZ0Evb77nLgg8vvalL2AoguVr1+H6NoocQ5JT+GEN1/YwdYVGrYisx8hPjtNo1LGsGL7fLIh+9MhhIhGLWmmCXCqJH4ZMFsv4lTyKqiMUg2Qqwch4P7nWdupVl5ZsDKeWp2/ZWmQzReC7hGFIEIa0tLXgBwGSpIIA33U5ceI4He1tGLEOGo7P6NBRgtoYeFUiqXbi6U50SUNWJfbs3suSpctp1F327TtALBahd2E7iuyzdtVK9uw5wOKlS1BUGUWJIknNGo+6FsG16+i6iqpqVIoekqdjKBq/eOxR1qxZjuM6HD18AMKAyWKJTDaKacSxbYl9Bw6wuG8hrutjaJEpcSMVKxYjmkxQrtawPUE0amEYOp4boOsRLMtgy4VbWLConauvuYjly5YQj0UZHDpCOtGGG3pYpoHnOVRrZUwrytGD+5GkEN00MbUIjjtCxGhlbHgc1fBpiSexDA1fdWk0JhGSyVe+8h3WrFlJS7ad9/32+7n19hu45y130NqeIj9Z5n3vey+NeoVarczgUIlSoUpPbxulyhAt6S7yxRoH9+9Fk32sRIJ1689lqP8khizRu2QpGzacz8n+E1x39XUUCyaf+ey/cMWll/Ged72DO99yC+dtvoBlS1excdM6BocG+eKnv8BkOeTa6y9l29bn0XWTFStWcunlF/Pe//k7vOUtd/Oud76TR376U9at6mX5kjUkkzlaO3rYeO4GIjGFhuexZt1aTgwNEU0lGc8PoVsGCxYs5u8+9Xku3LyGZ5/4OZ0tGTzfQ5FdioUCra0mchAiGz6qYaCbGRx7iJhmUmvk2XMoZNWmlYQI3nb327BrNre8YTP9R59i/YYC73zT+dj1BkIKqVTyzdzOepFKvUE8nSWfL6LpJpKsNsWNGg0i0QgHj1RZvmk9S5ZtpKd7IUs6O8hm0+hBiYMvPMLlV26h4gaossl1l1/Fjx59kkVrND72v/6D229aQCIZIT9ps2LtFvYe7efgjr0EXh29fgy3PkrEkpF0C81Kk4ylcNwJFKOde78zyMc/+xipToNv3P8cvryeLa/7A/7gQ/fT0XY5jz06zMf/9Sm+8t3DvP66KzBjFRYtWoqilUjE23n0icdZtqqbdHQFdXcCSbWJx3ooVQu4Xh0rYjExMYZpmkiKjym3Eno5nn6+zJoVMpGoiSTLRGMZCuMqOiZf/cFz7B70WL5kFel0jmQsy8DAEKFscd/Xv8zK5QtJ9fSSa+t8dXA37VmEwVSu3elRR0HgI8vKqX3m+mLh6dvPiJ+81ontKZvOo5sBhXPBHGcqzU8D0+l+Zx3MTN8hIZqizYSH/iq+5Ay4mxnHfOs5bd0M2ze7zNpr6u10+28H7l4tD0pIp39eM3NyqoXTv52ln/ls7uyCkCD0p5bNarfpBAYzN4MkywQEp8UMCyGa6X+vgOH+U+Dda82xO9v55myQ4Uww+5ptJgRTnrp+8/c9+9rOzrGbHeo539jnArvT48/PPub5Qj1nrtXs+2xqFueM5VNjORuAnL1s+cplvPF3P3amyIoA1w+4++MP8/XfWX0a8yumcuxmCE9BM6cBgWD6xT4X8E01SvOK6aaJ3fDZses4xWKV9p42+gfGSWcyjI2OUS0W6enrxIwYSKGJZvl4FYNSpUwml0UWJjt399PdlSMkZGwkT37cpaU9xchwCUPV2f7yAD09aQQNnIZNW2sbAsjmkqxe0U2pUmLVikW4Xp0w9OkfGCViRKk26mRbEnR3Z+hozfK9Hz3HmuWdqFqIpMhIikqxWMGydI4eP8axgRGuunQVvusTBDZCllF1k7HxPD09ObLZBJ0dWTyvhoZBKLtouk4yEeMXT++iuzOD70qYUZlsMkO1XqW9NcnRY8NkknEOHRlEDm0UyUc3VSQUTp4YIgxtMi0xPEfDsX0MU6dYLIAIkSWFnq4ky5a1IMsKityU0ndsG91qhrHZDQfLMPBdF98voyiCYtnGjEbYvec42UwCz6khiRAhFBRNR9UVFva0EgK+5zWLqwYOhD71eh1V1/FDn8CzIRSEKCiKCqHA952piQUJVTdBBMhCmsppCNGMND96+QRXXL6Fj/3Fx1mxajFmPIKkaRA4yLLGNdfczD13v50brr8KX9QZPNmPqcQo5vOMjuUZGChwyRUXURsvEYvoVEtjREyFjo4uJsZHMU0TTwIzHuM9b/tjcpkuYtEEN914E+lslonyEPWGQyrdgxVV6enpQzdTKGqcdOcCqjWHAwcO09Hahhy6eJ6Popm4gUStNIaqeUyMDqBrJqg6Ah/bKeG6FUwzQ6Ph0t7RzsTkMLriE6ghuqmgOjZVP6Sts4PVa9YgFIGmmEjCRzd0epcsYsW69di+Rq1S5/DBXYwO7mfr4wdZu2Ylk/lxVENDCIFXHcWxbbzQIJcyGJkYZGHnSrx6HivVwUShxFf+7Uu057LoUh0nUBidqDI2OkYiqvHQt7+K7BTpPzHM8vMux0emXM4TCqZUIAMUWWnq+sgqkldjx7atrFq3CTeUcaSAuClxdP8LdC3I0mhEiKfjBEIQhE3hoVQmRYCGFclSz1f5yIf/gnu/fi8XXnQurm7RkW3n0OF9xHMRYtE0iAARCvbt3UM0mUFRTVw7YHJ8gp889F3Wb1zNZH6clmwnmiLxkT/7KH2L17D+nDVMTBQxIzLVyihrV61k69bniOhJDCPCieP9tLVnKZeHMHQDUzdQFQVL16kFPlbcwHfKhL5DEHiohkmupZNScZixsRFact0osky5MoYfOKiKQcRIUK+dJJldiKolKY8dwA/HSMVWE+olhG6QUdNYEROheFgRFV/r4t+/dC87n3+RF57fRXtnnPe+7+2MT57ANCN4XoBhWhwfOIhhRhByDGFrLF/SxeDIS2SSG6hUXK6+4jJM3eT6625GYPHGN72HhYv6MAwYHazxJ3/6QTZsXMNH//5vyXYmuXLLrXzyX/6Yz3/9axSGPSYnB/jfn/0iIyND7Nj/Sz70158gGokRMSr0rd5Md28vY2PjPP7zR/nHT/xvrrn69UwWxrj+1ssZywuiyTaee247t995KxPjg/zph/6Yc/p83MYoh44Nk03FUa0Urq2i+Dqvu+JcUgmD9q5F7D1coHPhIoTwsIvjjB0fw0pHUUMoFcYI8VDrNUI95NCeXWzYchVuJMk//j+fZOnCFfzh//p9xqvPcOTgMOvXdGMXjhLPdoDvNsubdC7EEzIRI47jjqJEUkhmB43iANGERLVhU3Nl6nWJRq3BkePHWLzoatAUDu1/CbP0S5b1+ZTyJX6+bRurevt4/Jf7ufzGlVTyddIK7Hv5B+QyvdhKDVdJYUZ7WLrhYqKaAcoenNoo6Dkkx8EtjzNWGSfbsYCX91RAW0rRMXj9jfdwwx33sGjtKloXL+KCy7dwzvnncs75F3D46H6uvuJifvrQPlTPI2KWyeYSHD5aZPHSNehuSEEcRxMy8VgKx61z/FCJ1rYu4qk0QRgSiVo0yg1UFRrOGFdc1IFluYRODAWfybGjyKaBqIcUGj2MjHvceNPr0TWdzo5uOju6iUazFMaOceL4AbzQYtWmzUiSMgW2BCIU+GGINFvJcXaYzyyAFkyVQphh9sS0n9CMpAqnJvimweLM+mk/+Gw6F2exGZA2i4Gbrk8XBP4USJoWhWmWcpohOoJmaOl8/pQsS/h+MFPnb7ZfJskSgdcsZSMk5RRwmPauwynPahbgFUIgS9KM4xtO1YOd2R8BnK7M+V8N7sR8tOP/6dawK7/RoH9lcBfOiUeekZ949f3D2WGAcKpwYjAnlFRqKn1OL5dlpbntnMKGgQjP2Pf0sf0n2K8goCLm6fNMPmmm4SZz9Wr9ztvRqdkaIWa1MWefs4KyuQOdM/sz9zl4rffIK60/A9zRLAIt5u4r5rCIZxvD1N87b7+Hb/3pDTPb/dEXHuFv71l8akycXgcxJDitnZnLy6zQC9EsxH3qPMwBmgjGh0eIRjRkuRm+WiyXiMdMRobGSCQ1ovEIgW/h+EXKeYNYwiSUgUBCU+OMjY2SSkVBQL3qEUuoBKEGgU8QeHhuyGNP7uCyi5ZjmFYzT1KRcB1nVlhywOGjQ6xYtpjAd6aiP5q1uxo1F0O32LP3MKoC7e1ZhFAYGy9QqdVZsqgdVVEJwzq6GaVacdh/eJCFC9opF8t0drexddseNm9Yiu/bHD2QZ8mKNhw3QJEh8DU00yHwFUCnUh6n1qijGyaaZJCfrJBpjRK4drOUgWESeC71eoGjx8extBTbdh/h5ms3o6oysiKaeWF2gCBE1SRcB57aupcj/ZO88+5LAB8IkRUF3xc4doHRkTKpRJJoKoLne8iSRhgIvvD1R7jn1jX4gSAWTzaJqaAZ0lavN7Asi9B3UHV9KmWgGYocBi6KouJ7AUKSkISMkALq9TqS1CxGq2rN91ej5mI7NTKd63nHP/+cN9x6C5dddQ2WAZ7j8vL2XWy+YCONhk3g+Wi6zujwCA27Siwe42T/GCOTBS656Aq2Pf0End0W3b192I5LrVanJdfK6MQ42XSGcqlEfnyS7u4uStU81VqJSqXCwr5F+K6OrHtNRsfTKZQmicUi2HYD0zSaQih+A1XxUVWJIFBpuD6FUplINE65UEDTZZKpZi6ZqcmMj0/iejK5XDuDo2O05jo5cWKAdCZK1NLxwgBJEoz0nyDR1oZhGFOvlRDJh+MD/Tz97LO84Q13EIYhuqoThi4vbtvK6lUrMGMWX/7cZwm8Kn0Lu8nmVlGYOEkm20Iy040m2xw50c+apefx4rbHyPYuIZVMkEnFOXnyJNXiEGs2XMyzz++iWp6gNdfK8iW9OL6Lp6goWpTQd1Fl0GWYmKyyc+cuotEoy5YtY8/evaxesRjCAKGaCCHTaNR46bmtbLnkQsaLE6iejOs3QEhE4ykkkeRfP/mPrFqyksJEmQ3nreXvP/4P/NMn/g6huDRCl9pkg2XLllG1S4Si6TQeOXSAvr5ebE9GkSSchoOmKAjZQRIqARIBgpee3cbw0ASTkwW2bDmX7gUd+EEDz7ORZZNYMsrkeJmtW5/jvPM2I8leM29QNPOq+o/309WVQTGSCEnBs+vIooHjBIRCQZZ1ROCgKgrj46Mk00lUTaPeqGCZCcJA4Io6spygUXdRpRK+20AmQ6CU0XQL19Pwg5BACBAyteoAdqlKRLUo1xt0tPZQqkwSiehoWjNPWMgStUYZXTNQZAPfdbCUgLpXRNDB2PgglhnFilhse+457vve9/nABz/MV/7939Cpc8cd7+B7P7ift7/9birVEq6v0ZbqxvMncAKJL3/2fnbv38qW86/muuuu5nff+2dM2ntZvq6XRx7ey9PPP8yh/fsxNZW+vl72HzjBO9/xLu6775uMTvaTy6WIRZPoholuSNh2hY/9zRdYu7SDLRddQMfipex6eS8rzllJrVJGCgKMeBy/PkY0lkDIUT7/qc+zceNacu0hoTRGW8t66pVRJiZGkHSNmD1OaKqUB48waS+gb/OtaHi4jSq2K/HhD/4zI/0vcNcbMly6qYtoVCKcYlOFbuI7JTxbI5q2GBgL+NKXHuSP3/9m/GAc09Ah0PiDDz3AJz7zbTILM4znq3zyH/6B0RM7+PA71hCNB5Sr7STXvJ2P/uXH+K0PfpCBA0N874EfkJYb3HB5lr4FEp5hs2DlTZwsJFESaYr9uwhGHyWtCRxVx6kewzAjlOyF3POBz/M7730fN93yFjwZXMfGC20SqSSup+DZ4Ng1DE2mmp8knYxzbLTEYz95kF889iQvbd/PR//wYvqPHuWuG8+hKtvEFB3Xc3D9MvnRgHjapLU1w4mTx0mmEuiyRLlcJQxDFFnHrlYxrDiS6VAoSEzWI0jVUb75s308/WKRv/uHL9LV3UW1UqKzp5NvfOOnLGwJeOzH3+Yz/3E/9UBGkk/Pc/OnfkNP/eCf6ddIQmqmOAHhtCjhFDMWhEEz5HwGuEwtn95umrF6DcJ3r2Z+6COLphaApEgEXjAzhunjCsKg2ac0vyK7kGiGSDLbLwpPWx/4IJ3GTvpz2ji9XUmcSsEJp4T+hKRwNvt1zoSqaa8ZE/5fwdydzeY6x7O/z8ugnNXmzD5M1fKY6We6dt3svL454GFmOWJ+BDa1bgbZi2ai6fQYZ2Rdz4J/XiuoE7M+Z99IzPtwz9eWNDWjcbatBczEGL/qXMVsimnu5xV3EzMASkx/l8QUSzUHiM9tb+5+Uw/o3Nw7Maeo+LRa5xlAjTOB4nRphFcSiZn9fbrtueum2b03vPH2JoN38TLe+LGH+fS7l7/K+Zl7Cud52Z2xaBbzhyAATEunVCqjyvIUoGoW5DWtCMXJk0QshVqlBtT52WPHaWtN8+PH9lAu1FGkENPU0HSFes3hl1v30JqzcG0PTVfJF0Z5fttxigUYnhhlSV8nsizhui7lcgVVbYYISrJESyZDqVBDVhxcx6NYrmLoBrIsMzw0QWtLmmq1wZ4DJ0lEI6SSMUbHJ2lraeHlXYfp6k5j2zbHj07Skk01yyFIIboeIZO0CAnQdY1GzcfzGxw9OkprW5owcEGpUKtVEELGiqpYhs6L248QNaMcPjpGT28WWbb48reeZsM5fdiNKtGYRSqR45FHj3DLTRuQ5CkGF4Eiyfiej+O4GIZOGEh0dbRwzqoFSBKEoYfve5RKJUxDo1IpMDhUp1z2ybXEp4REFFzPZ+PapRimgWHGARURSkiSQFEUjCmxFyHJTD8NrueiqwpBKGZqaEqSRLFQQjdVZElu1r+TJRy7QX6ygGVa6JaCpKTYPhRyz91vRbIkBA61QgFTUbGdGkcOH0RVAup2mdbWLIlECtcNSCRiLF6+HBE2SMU00nEDLJMQCSuSaCozRkyKhQIR06JWqrDtuedp6eqgq3shqVQOaIqeyJJMpVxF1ZqiL4iQul3BtFR8ByYnhohEFMZHT1CuOTiOg2GZWJZJPJpC14ym+qlT5eDuF9FUHbC4+673cPHFF5BIpIhGo4S4RMwYipD5+SOPsW7TuUjK6YnxCgGxVIrlK1ejSj5jJ/aze8dL9HR3I6smQrVAtdhwzmY2rjufJYtWk2vtIJJI0Ld0BV/98tcI/WYI5cR4hX17XuKSK69C03SErBJLpEjkWggDmXKxwIqVK+jsXEjNl/BlHc0wcGtVLF3jmSd+wWD/MRb2LsY0TFpyzZzHjo4WTpwYIpVtQRIhoe9SKU6yevkaXDRcYUGjipANkqk0kiIRUufcTStwapOc7D9IIpfl1tuuJwhcopE4miHwfIl9u/dx4shx0q1ZVFXGtFSqpSLReArHcRAi5KUXX6SlLYkQOnXbI5Q8FvUsJpnMYrs+Cxf14gYuhmUwmZ9k+8u7aG1NkUpnaW1pQdVkXLeOZSYpFktoukoiFUfTFZ59ehvRSBJFN6nkh4knk0iyRhCAKusEhGiGQrVWRVMsJifHiEQtXM9FNSxc20FRZCoNF6+hoJrg2xKqrDAxuJP8yAlMVSY/Mkom28qdt7yJt7713aRybWw4Zz0D/YNce+0NeJ6PAILQIwgEqqxxcvA4ZlTh2SefwK3LKFrIQP8hwlBF0yOYMYsrL7+EWqPBhRdcgNtwWdS3mN7ebhLJKOMTY7znne9j0+Zz+Mif/y2u7fBPn/hrHnjwy3R2tvKjn3yHv/ubt3H77e8gEevj+uvPJZfK0btwAXv27WHH7l2kUhb33HMP/QMDrF6ziva2hfzbF+/lvm8/yOZzL6BUrHDLnTdg6BFy7TkmiydYsmgj+CUOHnwJ1ZCwYjlUSeUXTzyNrKpcuL6db37zIc674Dru/UPr2nAAACAASURBVI8foxtxQs9Dt6J0LeyjMHiISDqH4jkU82UUox1Zddh7YA8SBivWx3jTWzeTSMAzzzxF2rKQFB1N11CEi6qF6HKMWDwBcoRG3aZvcYZ6YxRd8fCdBhsuW0Wg9zBSmOSFl57i+qveSm38BAszflMcpVznxQOCm264iUCrkbaSbNq8kXu/8XHe++4bKRQG8dwi/QMFotkleEGKlDqA6h6m4Y5Qaxhomo1LjPf/0ffQUpv5/T/6EBP5IQwtIJSjFEslDMMgcDwmJ/McOnyY5cuXU6rWGJ/ME7pVNp1/Ppdd/TpiaZ0fPPAAt91xPTHjKIpioWARiej4YQVJaGhaSKlUoKenk3q1Sq1ewzJMfN8nCEIiZhIrHqPiVnjymSP8+70vkGvt5jPf2UngJeno7sPzAk4OncCKaixbsoxGeYLHfvEot7/tHc084Tk+x4wy5NkdgtN8l3lVM0/LNZti+6aYNCFJM/l3v6kJIQj8JmsXziI6ZnLcwln+3tnCLedxmMWUDIMfNMupnQbsOEXeTR9nU8tjuq2p4FZx6txOp//MZ78uxP1vF5b5avZKjvR83+dpofnnbGDwrEmX8697LRacRgHPk3MnTXns/x8Sr9OA6JVy/eYDP/81gxEzoHo2VX829uuV7LXUpmOmn7Osn7PvfG2edXtpfhA4U5JBCN5w52288QN/z9d/Z9WshMKz9X/GkrNucwoIzp2V8hGyjCTJyJKKoiv4bp1qpULEsujvH0CWBcmoRbU0Tnt7Gtd1Wb6km2QsghU1kWXwPJ/+E+Ocs3oxlqnzH/c9z/Il7WRSaTKpCOV6iUsvXoPvNidR+vuH6exsQ5IUHvzRdixDRVEU4skkhw8N0tbWhmVG8H3IT5aJx6KMjU8Sj+l0deQYGBylr6+T1mwM3bCaRboDD0nIeE6A53tYUR1Ch4H+SV7cdYilS9r5xZMvs2hRK5LwsHQLI2IhRIDjeJhGEkkGzw+QQrBrDtFYhIGhcVpTMXbvHeTc9b3oBhDKFPIejz+5i9tu3YgQIYoSIAGqouL7Pp4XEI/HUBSZMGwqXSqKRLVaQTM0XK+BpUsQNDD0OLnWNMlMs5D8+EgBRZHRdIUA0SwkHTRnlBVVaubQTYkFCdEEehDiui6yJAh8j0ql0Qx3xsfzXDRNp1ot43keumGCUJAUGcM0kRWNas3Girax4tJbSWViNOwK0YjK6PAQnd2d7N+3i97eXhp1j1y6nbpbZGx0koH+IXp6O9i/4zk0NeDgwX00bJdi0SedTHP86DFiUYPKZIFkPEnDaRBPp+hetADVMHHdgBAFUBmfGMJuuMTiCRp2FSQH0zTQVB3fE3gixIxEmuOtu6TTKQrFIrrRdB4JPHTdwG74yIpCqqMLw0rg+gGTE2Nc9fpLUFRBiE/DLjI6Os7g8eOEoU+uu/1UuPzM8xEQCgmBy4P3fpbJvU+RSad46PsPsmnzBSSSGUK/Gd4TygoOMr4kUOJJJFll4aKFKLrJsnNWkcm1MjB4kL5Fy5FkBR+FQMiMV6rEDJO4FcGMRrHrFcbGx0jFIpihjVeaYO+O7cQSSZatWodsmRiWgaQoCEXGb1RIZVsRsgaew7HDB2lf0IVj2/zw4R/Su6iXmKFRrbogScgqaIpG3baJJFr49OfuZcXSJbS0pcll2jh+dARNiTAyWmDNqlXsfeklupcso16ziZhR8pN5VEMnDH1EGBKPRhgbOg6egmUkUKSAQrlIOpulo7MN1RAIIeMHPsl0mp6ePlRFxWkEVKsNVFmjUq1gGBph4GFFVSQpoF4T1Is23Qs6qXgVhNOg0XDRdZMQQblaQDcM6jUPw4pTq1TJtaTxfJdyqYQIBYbkosoeshbBNBOM5Q8jOSluuf523vK2t+CHMl6oIBSNiGVw9eVXEosnCBWF22+9lpe37+TS170OIbkcO3aAto4OSoUakWgEVQNJjZCMREnHuhkd34MIFT71yX9n8wWvI5FJg+8RTST5qz//W/btPMK/felL3H7bHYyPjtHV3cPb33wPiZzMbW94J1/98hf42SM/Zmj0CJpicuGWC9izdy9fv/e77N6zi9Ae59lnXmTD+nXEU3EkVWLZsgV88lOfotHwePyxxzjvvE184QtfxHUdbr3tJpLZGIGQCZVmuLalZvn0pz/NpnULKZfzJDIt+JgIX+KGG27kjz/0J3iNCn1LW9i7Zy/HDk2wYmU3Xe2tJBMpxkYLqEGBsZJNdy7F80/+gkCxyKT70PROBvr3s2zVeXzsbz7Lt760m127DrFly1JiuQ4qrgt+HV+TaVQFpckTSJRZ0ttG6JUxdAUj0orrJ3h2q8sLe3yeef4wb7nz93ADFzWcJBct4mghDa+VDZfcguzYTAxP0rVkKd3dbaxZXsX0i1R9gZAd4pmFJLs3YspxBo88hl0I2bqrwuLe5n3T8LvZfkhhdLzE/3jPXcTiErt3HqKlcyHxRIz+o0c4fPAwK1YvprOrDdtpsHPvLtasX8vgyeP0LlmGLDfIxV2e33aS3u4ustHjNGox4kmZfGEEhIOqRJGFjSyFVCsVmiUJPGShUK/XSWeyFGqjeI7ByOAI61etZs26Tr7xjcfRE8t4y9vfzfVXXcrBA7u49porkcKAb37jX3j25z+iUiiR6uhl0eLFM/7LbJfgFf2TOduHUyzZWfeZlVs2Hb75n+kD/kr+1Gvcbro0mjQTUjotFjNF3jDHl5wjXXAK+HL6ivnG9JpGdKb93w/uPO8vT+eg5nzE2Rm6+S50ENKc+Z2z/4xN1bubCb2dw+TNa9Ms3q9pcxm+02ZMYGbGYFolU5oK+zu7/Qb5bmcdI9PRzWcsl4U0s8bzfY4dO0YqlXptDc933s72gIpZ+XJTAG86BFOWmkqGM2GR881GNTucotClmZfGTPz1WeRwp5m9ufcYNJm36f1mx2XPtWCqz7PaNNs5PfZw9nL48fe/zw0bs6du/bM3dPpninI8/X5orpvOwzvTJEQooagqjush+Ta+72KaCpJwiJht6GqGgeE9pGJxFMnASpgQ1lA0jUzSxGs0r00QQCSiouoKy5bkONY/SiadRNcgl45g12F8oshTz+8hFlVIxg0k4WEaBu3taR744TacagMr1mTzHvzJcyzoitNoOBw9McjivjZ0U2P7yyfYuKGPaq2OohgMDR3BMhOUKxWsiIUVMfnZ01tZ2bcEP1DYsfswm9cvpV53WLyoC0uPYpgR/NBFUUEEGgMnRkglNCQpwHMMRkdOEotGSKbTSIrPrn3HWb28k3g8hixp9B8fJJtNs2hRDkmTkCUfzwnZvXOETK6ZF6rICkePn8AwZHzfRdFkfD+gUq03i0QbJuUphsrzdVRNJvBdVFUnlUwiEFTLVQLPxfdAiABEc/ZRUxUQAtu20RSa68NmiYQgFASBhBkxkCWBJAt830MWIUHgEbEshJCoVcs4toOhG03GTAZFS2Es2oDneYR+gCqZ1Boe8WSGQtEmlWklk8vhhT66KmjUy7S2JTh25CDLVl+AoRpYZhQUi77uBAf2v8Sivh4kdI4PbCWby6FIEaqNBrquQ9AgDJq5Y6EcELdiGNFm/oehpiEIKBcqjI6OETFN3EYB23eRBIz2HyPZmsZQWolG4th2Ht8bZnRkBFNPgxQ0w/McHc3waGvLkYh1EuJgmQJNMnn4Zz+jpauDNevXIRDIwiQMmzkWXtgsUaF7E/gTx3n2mSdZc8kNdK26lI0XXU6oaFNsvN9UViWc9VMT4ntes15ZJoXvh/gS9C5Z3ZyA8G1cz0OEIZohgyQ4eOgg6WSSXS9vIxOVGD+6g/u/9hkGGxZrN24mmc6h6zqSL+FLEr4EhB5Hd26nq3cpdV9BhAGyrFI8tpeqPcja9RcjyTqu5xNJyJQqk2iKTiGfJ2YlGR2Z4HOf+yxtrb1s3/4yF245n6efehzhm3T1ZpAV2P7iblYtXYGpqwSKhB5PU8/XMGUJRUBomGSTCzCjFmOT/QwPH0W1ssiqglAEx471s3fbDkwzgR+ExNU6pYpDPK5SLo3hOS4tmV4mJ2ziiQzlcpV6w8N2a7S0tOAFNpoU4AUKZjTSzMsJPSqFEVJZCwRIwsAyDBo1D1nW8H3QtICRsTJmVMGueER1GcuMUG5McOeb70Izs4RamVq1Sme2FbsyQHt7lmqliuRJ+KHNtddeg+M4+J6LppskYwmG+seoVIfJJFsxJIEWi1K1R6jmR+lZsoFPfOrPueD8dXznGw/wV3/1Ke5606386CffZf++cS64YAXXv/5m+g8Pk4qbOGEUA5WxEzu49KoLCSXB8SNlFCXF8YF+krkurrnmGjZvPIcN6zaxYt2F5EtHKI4XWb9iJRWvztXXXMb5523gP77+LTZt3MDll2/h9tuvB6nB2OhJDNnE0lV++tBT/P4H/oa/+rs/I5qMUywUSEZi+Ogopsdb3/Yu7JqOlrLQNZ2Fi89l02Wb8esjJOJxfDdEZhIR2MREyMCkTWfK4bEHf8qjPz/G1gOP8p53v5vhwTy33HoNl121igu3XMpnv7GPnu4yHVYcT4K6G6U9nUBNLaJRdDEDD0dxUWWLIDD54peeYfW5UYxYP1de/mY+8td/yb9/8SvcdesW7MI2FDXHP3/6QS686Dae2PoYPe0tZNu6eNMd/4PycIUlixtk4lfhNvZjyBrZni2MDe0iomuUC9t56v4X6VuoEEkoPPNSg6PjCp//yj9w/PgJ8vk63Qs6SUYajBU8nJFR9r+8g2xXGj9weOD+77B+5TqoyhwfriHCGoFkEGtdRzqZpL0jy4ljPu0ZlWJ+ENuViKfiWEaCRtmhVguIp+NIUoqX9g0S0XIkEhblik/N7uKlEzbdXe1oWpn9Oye49Io7eNt7f59YW4RCcZzN55/L0NAQ5WKFKy9Zxp49L3PptTdw5c1vQlXFDEt1qp7z2f2UaZ+jGdU0FUEmTs+5O7XZ6SqRM+50eDogmxvt9lrSX3zfmyIUpNP8q1N9hkhTmgxiOv8tbIq/hGJWSYY55vtes73pMMsZtq858Bn3cS5jJ+TmZF0IQjSVmpvZDhK+4yKrCmHQTKtonu8QieZv/q+i8j7b/huAO/cvX3GDs9SxO9sNFDJHVedV6+D9Zqzcb2JzodR08uirMWgw15n/r7O5jJ6qqiSTCX79+QpeEdzNPIwz9BNTsc8hQRCcetjPsjtT4/1VWNBXzLWD1/Twzg2NmKeTV1x+8+238sxP76MzG33VvqZ3e03vlKnQA9+fU8SUU+eXIERVp6SYqw66LvPQT55n7aqFNOoVHF+Qyy2gXnaJmBqT+RKlso1hKvz4FztZtqibJ57eSU9nllq1RqPhomkKR44OUrddurs76GhJomsa0WiEwcFx2jtyqKpCV1uCrs4sw6MFkvEYltmcTXddh0W9nZhmhGPHhlmzahGqOjUFEfpYeoJtLxwhk4mQSMQJA4clC3McODTE7n39XHzBMhzXJRqJMDAwxvjEMHsPHmfxoh7yE1UUFVLpKCECSdIQngNBnb37TpKKxkjFoyxZ3IWmNQVR7n/4WbacvxzHsbEiTQauVmlgWRH2HhigrS2GaTXrpyViCRp1h0g0RjiV+1av14lGkjiNOpomMzHus//QIF0drTzww630dOSoN2wkVeHxp3fS3p4mGrOQFYlarYamqTRqDWzHxbBMCJvvCs9z0HS1mWMRNsNbXM9FlhU818f3AiyrWSKhVqtjRUx0w8CxHUJCyuUiRiRLJdpNLB7F9wMkSWqGlYYh8XhyqsaZhiSgWnDJpjtQlQiRSAohK9QqJXzPoe54tHa0se/QEZLpFkYnirTnWpFkk2qtzvDIILqpkTB0ZEnBblSRcTk5UCAWixB4AYqqMToyhCQLRkZGGBkZwbF92ju7kFHQ9QgNO6BSG8UwdDQ5QeCotLW2U3cKCElhdHSCiJUCfDLZFmQEvu+yc+dOWlrbWLF6FZ2dnfh+M+8iFAGy8BG+gxYEHDl4gMd+8lOefWYbd7/zt2lZsKIpaqOohGEzcV+aU37lbM+1CENEGOLUajzz5M9xShNse/oJVq9ZT+C47Nu9h5GTQ6xYvpKR0Uk6epewZtNFLF2xmmg0hud6yIoMoUQoQRD6WIrGjhefJNPeiWlZ4FVQhMfE2FHaO5eh6mkKlX4iRhzf9xGByvEjwxTzzRp/n/n050klM7z/fe+lr7ePZ59+gccff5pLrlhMKpejOGbT3boMM62iGAqFQh5LNYlYUSYnx0EKkGSFt979fnoXLKVv0QoiVoa9u7bTms1gaRoxy6D/xBA79+yG0EXgMzpSQ9c0LCuKYWnoumD/oYNUqwU6ulvwvAa6bhKJRJFkmUMH99HdtQCBoFQqomkamhSlUq6CJNN/vJ9P/NMnuOCiC4lEmoIsCJl4NEdAHU03qFbqjIwMkkyl0fUInu+jywbZ+AImC8fRIjm80OPQgRfYs/vn6EYbhWKBZCqFruvIskIoKyhaBCuu4fsavuTjhxqlYo2ujoUIWrj7rrfSkl3MA/c9SrU2yg3X3sG5m9dyz5vfyGWvu5JrX38jJwYPcs76pQyNjnDHG27iHe94J9FkltLEMF/7ylf4+49+lHTKYmlfK5oCE/kJGp7P937wEy66bBMdHQvoHzhBe2c3QRAwPDTA3Xe/iVQqSrlSIpVMUyxUaMt1UcjnkSSfrq5Wfuu976RYHsF1awwcH+QXj29l84WbKJbG2f7SDh568CEuveQidrz8ItFYGln1qFXrIKucODlOPJXB0dKosXbivRvx9QQ5ZZRVm3q4+OK34bgSUStBo16jXM4zMTHCD7/7TVpbzyfdbiHZk2RzPdTLwzREA8MoYtsDROMLsCyDfDHPt+5/gZuueyc/fHgv1914N7e86TJueP0t5Ed20pqYoFitI4we0h0rWL9pI3/xv/6Gy665mTvf9DZ+5/d+m7tu2cjXvv9tSqNp2hdkCFSLaPYifvroo7y0tcQtbxNM5BXe+z+f4JzNG7n57jvp6e0l8AJ0zcCpV6lNjmFZUQZ2PcbWX36Hg/sHaU11YcgxbK+BreZpjAyxdmkH9dI45cIo0YRPreHxkT/7V1avuwxJsxBCRlWKhL5L3ck3w4JDB8cv8fDD+9m0bjHIRcxYg58//Dwv79rH4o4Mki/Yc3KCJ54/QFvHehZ2rWXPnl08+rOfs27Neg4dPIxbKXHf/Q/zJ3/+VxjJNGI+Ju01gru5PuZZI5xmT0SHZ66X5GbY4nRY5WsBd9MCeWdnC8PTiJwgDKbeg7xiSKiQBEyXcnhF2YfTw0BnZPdnIsbC0743/z/9uIMgbAqv/Jr2/4M7ceYNOF9O1PQNIIXS6bMI0pnbzf7OdK2KeSwQYfNG+k8GfjMzJnMsnPl7FkA7z3+/ts09prM8ZNOM3jRXFIavjTWcIaBeY+hkc58zr20YMqP8dEZI5PRLjFNnJAya4/OnxG+mt5vNxs2dKTpj7LNnkWYtmz3W6bopZ2XzBIjppOb5zsE86CwvOknX952udDUnTHMmRPXMFue3qf3mVwKdTqwGgYRtu8iyhm3XWLigG1U1UJSAVNrEDWQ0WVCujOOHKqpiYFoyKxa38+NHdtPbmSYS0ZjIlzh6coxFPe20tmRpbc/xwov7KBYr7Ds8xPhEiZ6uNgxLo1quEYtFUFSJA4eHWb58AT9+bAfrVvWRSkXoHxhlx65jLOvroVwpoWoqqiohpObMnRvYOH6JRNJiYnQY01Qw9QgDQ5P0dKZQZJkwhHQmTVtrjNZsiiAQfOOB59iwbgGNho1lWnie4OFHXsAXPps2bcJxBM88v5/xiXHGxvKkUjEK+RK9i1qazLocAB6KUKnXHZYsaUdTDFzfQ6DguyGTE0UQzZlCRZOx7QauU8ULKoTYqGqMZCLG0aNDbF6/glq9TjwVR5Ylehe0Eo1Fpl5hHpqmAAJV0dAMY+q+CHBdl2adreZspaIoSLLAdX0kITeLmHsuqmoRAJIiYTccZFlpitoQ4iOhakkaqb6p0gIydqOBaZnUanUmxvMkk0l0TeHIkSNIUp2xiZO0tqcIcXBcCc+12bVjB6tWn4MXBGSyGSLxGIYZJRFJ8/+yd95Rdl3V/f/cXl5vM/Pe9CqNepdsucgm7t3YxiaATQ3NQBICAUKHkAIJ65fkR4vpmIABgzHYGHds2ZYt2ZLV2xRpNP3Nm9fLLb8/3pvRaFQsG1bW+q3keF157j3nnnPeLefuvb97fzeiiKJrROrqkRUdVZJwLJdCNsN0chxXMImEI+i6QalUJhjyoKgKlXKJxsYEsfoEfo9OoVBElEwCgSDTmWPkcnn8vjo+8N6/Yd2G1SAV0Aw/oWCQj3z4CyxY0I3XZ+JRRUZHxzA9AVRDR1HVWcUOZoix4Mff/x7f/sY3ef3Nt+K4Er5onJaepdiSB8Gt4NRyRZ7qXWLumiQI4EqIAqiigIyNJjj0LGhjYN8e/KaB3x9j6/NbWblyBQ3xOH5vkHBdHEH342hBVBkcx5lliBMksWpNtm1K6Sx7976EPxIjFmtgx/N/QHJKxNvijI0VcV0TRS8yMTJFwO9BV0y2Pr8DRZAREfjtb37LP/zDF/nyV/4Z1xW49LLL+d2DD3Pl5dcwOTWJZpbw+LOISgCPqZNLpyhmC2h6kGMjR4k1RLBKZVrb47S0NjA8cgSfz4uCyMjQCLpm8Na33MGb3v5WNqxfjcdQqnGERYW77/4JL764ncbGGF6/SiaXIxj04roWpqealL1UsnBch7r6KLKiYjsWllUBAa698hYef+wPXHPtNai6zJVXXIFjW4CDrErkMll+ds9vaGiIoKoSIjKH+w7jD/gZOjZCNBwmn0yxd8dBWnsTJDMpQsEYzfEl3PUf93LjrTchKwKSDCIqsqwjKjJHjw5StrKkkiWC4RDpXJloqI5Hf/8YO3ZtZUFvJ3v37WI6PcYb33gzR/onaG2LIkllkPxceNEarr/hKg4ePExrW5w73vZOdG+QybEk9XVeNp5zDsuXL+HSP9tEICCRSiepizdQrJR53aaLKRTG0HQPgiwzNZVGFBzCYT/jY2NYtk19QxzXESgXbRAVHnnk9yxZvgjTVEhnxgmHfaQzKaLRBtatv4BUapRwKEJPVw89XZ1MJcdYuHgJquShlJ9ENwJIsky0roVsQUATZQzKlFxQJQWxNEgytYPMuM4jjz/Njl27aGpswucP0L2gm7qIjS220D+8mUSogicgIbowlfGx/YVhmutWIOkVKuUiZdtixYqVSEaFb33rN5z/ukvxBiM8+9QzhL0FTPqxBJ2804Tgqacu0UBvzwo8fj+/+Nk93HbtBRzY8yBrL1jEt/7tSRYtb8IMeNA1hfZYAon7iKsLSSxs5aJLW/nY39zPpde8AX9AZuuWF9AkmenpSepDIb797W9SmdjKpvUhOroE4gGNz3zi07S0LSPRsgJLtvGFovhijfzkvt/SGV/KcDLNBz/yt2zfv4WPf/YunntuP2+65QLGxlJIkh9Z81EuRRAVl+Vr2pGENF4zRN/BPAu6VJauaqMxqjE8nuPTX97GmnOu5oqrr+bA/udINC6gp2ch8fo69u7ZzXe/9jWC9Y1cedPNyLoya3g+IeRDkk6NoM2ROWby3LmuM8teOT8v83Elxjkx1m6+3DQTG3cmZW1emfWimp/fbnaqxxG8GQ6LKmOleML8Z6cwl0Oj1u8ZgYAZ5U+YaVMdX6rJfO6clApzr4csyTj2jIFP/qMk8f9V7l4Reas1mxH854U3zkdvT46xOwNqUxN+/9TK3WvNYfenxOoEqZbAkjNbWv478MGTAoDn189VrOYuICedcyKRjVtrI4rCrIfn3P5e1RxPs1Cerq/q8/jqxmiI1/Pnf/NNblxfd4oOX11fZ1OqzJrH1/xcLo+mKuCIlK0yqXQOQ/PiWA6CpJLN5QlGGihXbMKhCBUrj2WXaW2NUygXCUf8jI2nWbemHUPXEFDZs3eQeL2H6UyWlcu62L5ngCW9HRwbGuWRp/bRkojw0ssHGJvIUB8zWbQggaZpZDJ5DE0jFvPzm0e2sWpZN5Wyg6KqTKen6esbp1i06OpsAldGFcpVIhXVj6Hp+ANexsaSVCoWPq/OE0/uZSqVI53LcO66NrzeMOVSCVGWSCbTLOxoIB4Poao6xVKO9rYQifoYHlNDFES6Ohr5/s+fYlFXAlGg5kqpI4gSjltAlrwIksCRgWMc6Bukoy2GP2QiSgLFYpXd0q5UEFwJUVRRTb3K7GjovLDtAAsXNOO6FooiIglVdNJ1FCYnpwj4/VBzG3Rq98yqlFFklXLZolgqI4pS7WPtoqg1Bk0EVE3EskCQBETZQZE0Muk0psfAssrsG8ryTw+McsP1N+DYEpIkYJgmU1NTDA4MYBgmPq+HsfFxenq6sUoFvD4/5bJNqVRG0bwUshkW9HQzNDKKZDsU8im8Hg1VlsgVSlTsCrYLguDHthUs10ZVPMiKgqxKBKMmoiQiCjJjYxN4TJnp6SkkWSYQ9PPiiy8hk0fXdfJlB9PUKBclwuEQ41P9XH/dJiRFxGs2UCqXEDUbXYnQ29uBIBSxihkEFDTTh+YxmEeMhlMRQJRZsnwFl151FbakovmCNLZ3gOsiUX5lI9W8ehcFCQfBqrBv58u8/MLTPPPMZlzFg+IJopomCxb14g0GcLUq4uSKVXdPUahQKZVx3Sr9d3UtqbpfmaYH1XGpq4sRqWukVC7T2tlG/8s7CDS0oZkq99/3BLmMS33URz4/jcerUixmmBhN8sRjD5PLp7ho00b6+4+wbv0qPD6FJ596iGWLVxNpaEA3JJLjQ/zix/ejygJNrU1UXChmHLSATqmSI6Br1Dc2MtB/lPMvuYxDe46wdesODvcNEY+3cPnl11DXlsAq5zA1Bc0TYHJ0jAsv2MTypSuIRMMgWPh8ETxeP5KkUciXEGURQZBRZInk1AReZb0gdQAAIABJREFUr49ioYRu6IyPjfMX77qd66+/CV3XkWSB1FQSv88Lgo3rOgyP9nN0MMW6DeuQRIWJsXESiTgIEAhEsYoWijhGQ8yHaIQJ6H4uvvBSFi9awutvu5nBviM0NIZxnBLFgkuxaONRHXAKlAtTtDct5PHHnmRBdw/7d20n6JE458JzOXpkiIaGelLTU8iuwrZtj9PaGsFUG7jhDW/k0ssupKGuiXt//hjnnrOKgi3yT//yL+BUSDQlKNkV2rs70QwvmWKBUCSGKsqEfD4mj/UTjUqMHD1GMBig70gflXIOj+kBS0YSTb7+f79Jd2cPT29+ikWLFzCZnKC9tZPpdJZCoYjfMJlOTxFvbuLYyDG+9Lm/Z9mS1UxNZPjP/7yLSy5Zx+DQOG998/tY0tNJcyJOoZBBlb1MT5fY8uI2YgGYTo0yPT6CKIURiiJjww+yZNFKVm+8AJ83xM9/8Vt6epfjqnHisRwTh0dINLWTz0wQ9AVJlgRGR4+RiEdALiBSwbJdPN42fvxfD/DRj30eb1SlVPRSzJYIecqo1iBlR2H1eW8l3NSJI5VpjDdBeYpPfOJDbH7iUd715ytRygK9iw0aEm1k8hqurpCdBFMfQXLzyGWFfHGAn/76ANff/DY8Phu/J0DfoT78PoMnH91MY0sjIeEYTTELTSpTmt7NdZctZP++vZhGghde2opH86GpHrZt38Gq5avp6O5BV73YlRzX3Xw7q7rjjI6N8fDjfSxe1IorwFf+9Rd4wxUefmAf7W0+BEdAlEsEvTqZUgVV1Ni8Pc2WHUmOjY+zcv1aGhoa2Lx5Cx0dzex8eSsbzllJ/+6t/OXHP0a0uRXbrSAJNePP3PWnyt51apnlhDXqRHnqJF6A2ePirJL0p4y1q07iFdC++YR2p5gfHEcPZ0Tr2f3TxcnNKncz/RwHCuC4jH4C2OBUvcdm6gVB+l/l7kzlFZW7M8Xj1eKKBMQaYjPH7WzWMlDzqXWF2kZNI5eq7c8ggVdj5dyT+px9IOfsO+7cPGzzkKE57efmvzuhzHkwz7rMnfurfOlmfKdn9+dtc48zp+lZj3IWmk3V/XLu6CfXz7hoOjWkTJpxh5pj9TmBvbR6YnXRohYLN6ev0yF1J0795AVlZvyZfUkUT+2uOR+RO0uEdKbcfMuN3Pbhb5yo4L3GFWS+DlyN5xShxopVDReq3QNRRhJkJFGikMtTLJVRRIWRsTIVV8HQRXTVj276sN109ffbGpIromg69bEQriPw+0f309lSD1KevftGMAwF0dVpbg7g9Yl0tsVQJIOh4Uku2LiEkbEJFnS3srCnHUWSMHWZx556gcU9zew/OEaiuZ7ehY1oqs7+gwcZHBzAZ8oksxWWLekknynxqwe3Eov4EQQPoqwgag6lXIWh4Ul6uluxLYeW5gTTmWkWLGhCNz245Ry2ZaHIOsFQEASF7duPMjE6xbMv7KW1MUqlYmFV4OFnXqanu47GuiCRcIjkZApJktBUBceyMY0AVqWakD4c8jE1OUbAFBEVlVLBxufzAy6CYjA4NFlNrmx4UDQRRRNpaY4hiSKCLCJKKriQTSWxBGfWVVKSJHDLOLZVQ94crEoZWVFRZBld17CdMpKg4roVBBEs20WuoZyC65KZTjM8nERRFXTdwLYd/vYnR/jud79HrlDhP7/zbV7YspnVq1czdPQofn8Atyzg9flwHYdCIYdqGpQsG18wiKwa7N61HZ/Pi657kFyXQDSAJKtMp/Ok0xncQhaPCenJY2Qnk7z7rbdz1RXnY3hUhifG0b0hksf6OHzoAJFIgOeee5qmRCsSFpZrkcplWdyxEE/AhyOoNXbFJJPJIYL+AK4lo2leguEw+UoeQfFi51Tu/cV3OG/9MiaOjLFzcJDG9lY8PvMkxQ6oMZ7OxM4JSLKAriqoslylQhMERFfCFUCQhWrOUrHKQFrI5vBoBqVKBatSqZLcuC6SpoEjo7kldr3wKIsvupY1GzfR0rmAREsb3kAAJKmakBxxlo68GtBC1QVJFKspfUWwbA0Bl1IpzU/u/THN0SCiHsByITe2l6Ej+2hpW8fo2Agr1y7jA3f+Jbfd+hayzhgBtQWxlKR14VI6uroJRevw+IIs6Grl29/5AZGGEDe+4Qp+f/8f2LhxHcmpCVTTT8+CVejBMP07n6azOc7LOw9QLmRINMRJZctY5TLhaIR33nE711x7JeOTI9z+ljcRifgRyJBNDRAMx7BcjXI+x803/wW6KbJsVS+6oSFgcOhwP8FYhMmJUWLhIPlCgV/f+zhf/Pw/cfW1V2EYBpn0OH6viSopTE6PkC1MYJqgaqB7fEgSFHNFZFHDHw3S27uIVHYIny+E41SQZR3T8CAqRURXpeSWyZRFfD4NhyLXX/t6FnYv5OCB7bR39VKxKoiSgmkGkGWVTDlDBYNYrAcXieHBXbS1d+BIErHGZmRJZXBoEL8vwpLFq9l38EnWrltLY8MyfvfgMzz77H188AMf44v//GWuu/ly0hMlbn39bbzz9rdzwXkbMKP1HD54iHAwAoqBrPlRZAtJ9JEuZxkb2k8oEGff7kM0JuoI1bfRmGjCtS2mp0Z57g/P8cO77+b8CzfS0hoFewqfL07fwCFMUyceb2RiYhTDE8J2VQTJ4JYbr8Yb1PFHgyxbtRZdM/EaftasWkCkLkC+InLffb8nFAnhD8osXLoCn7+du/7tO2xc20tLRzu6XyDg97LnxSfY9lKO7g3L6PI0Ud8aYv+eLQQjzTyx+Vmw87Q21lHKD5DwiJhqGVfIYDoWactHWevm3Xd+lxsuWcH7Pvxt3v6Oj1PKHMJ1NAYO/ZKFTTGefmEMy7eIhroYA307aGho5N1v+3dMy+Uzf3sOjdEGtECQmF9BVRxyloIvuIRI13LqAzGy07sZSQ5h+GwK0w2Em9YwcGAfgwNHeN1lV6B5Eyzr7WXHrkN87fs/YtO5jUjeMEVHJl+p0BIVkZLPcMHlH0Dw+Ujmcyzs6aYhVkfFSvP0s0+zcs1F+I0QaiDGA4/vZdehNEt7NDxSikvOv4BgSGbpsnZaGuvJ5TNULBkcD2bRwdI62D9wiNvf8zne+953Y5UtTE+QNQu6+NBnvoxTmGRg97M899LLvPMvP4iFgCxouEKVqVmYIxedTmGybaemDM76F1bXv1rc23FvtqqsLNRyugmCO0escWsy9XHlUZTEmlfDPFTwFHmhBYHZ3NAnyNZnMJLP3eYjdrPtajLkcUSSOfF2HEfoamEqsy6ks8jeicqdIIhV/o4am76AgDMTayjKSH+kYgf/q9ydfTmdhn8aJeOV6s/mnLkWD1c4rlycjA4eb3/aFAgzloTXWl6tcvdK9TNo2nzd5NXN6sxjzF7PV2x4nBTlLH7nXIROEP945HUWBZy7P88tc+5cX6GzVxzv5ltu5B0f/xbXrInVFsTXdtXnniYI4DonupUef16r/2QzWZJTKXRTwLJLeH0KdfUBgoEGpqbSjI/lUVSTcqHE4NFxTI/LVO4Y+byEP1i1sE9P5+jsbMB2bBoTcYJBH6om4boSkqwhyyp7DxyiORHnZ/c/w7nreplKTWOYMqIoVF2MomFcEUZH0xTzRUZHJ0k0RtBkia6OVhxbpCEWY2R0EkWVWba0A6/XQNNNbFdANw00RSLeEOXe3z5Ha2MdfQNHWbyonUK+yMREmv0Hh2hpbkQAfvfo8yTqwmzbcZhz1vUyNpnEtizq6gKIssiqFZ0omkw6VUCRXTRdQpJAU3SSqWmOHh1ClFxs26VYrhCJBMjmikiSgCSrOIJYdU2UJWKxEKqqIMkSxWIBTdWwKjaVUgVRZDY+0ufzVxlNhWpqA6tiUSjkkMRqni5JqdZlc0VMj0lyMoXHa1IqlmtuvUIt352Nbbs4toumafj8XgxDQxJF3vXtw9z9g+/jlB1eePZpbrz+CjZsOLdKAS+IxBNxDF1D02UOHTpAMOzHNPz0HR7ENLy89NJOehYvJBSJkJyaQvcYSLLIwQMHaIgnKBaLhIKNlCrgoKPpIW570x2IqsR0Ok0k6EcVHWLRMNG6Orbv2MnqtWtRVI3ho0dJJNrQtSDjY8NYtoWueSkUi8gShMMhQCSdzqGINla5yLGhI4QDQeyKxTnnrOPYsSFUVaezt7dK5HKWRRZlLKuaKF2UZtyABBBcXNuqCiy2hVMu8dSTjzE8NEQ5U6SQy+LzBxBEgUp2HBWHp596imCsnkRbZ01gcE4ab66bu8Bxw9Txd1fAFqrkN5osUcpMc/ToEboWLmZ8bALBzhP0+ynYErqpEQ4GOG/jOj77yU9y+eU3MjGeI1hvcsft7+GG62+grq6ee++9l9REnre+4xaikXqO9qcxDaiL15NKZXGR8IVCSLpOczxOxdKI1TVQXx/Ddh003eSfv/xPrF+7DqtSfV7WbliBoWmMjg7T1FSHaVbdF3VTI59N8ue33cHylYtR5Cql+u5du1m0aAlT6Ski4RCu5VCxHHp7l3LTTdejaRKCICPg0t/XTzZT5KWtQ6xZtZFspoTXDFCxKqRT0xiaVr0/VEhPF1FUB1nUUBWd8fEpREFi7569qLqKKFUIBRpJJXOksilULcDoaJJHHn+EJct7kZRqKIDj2hSKWZxynrpIAFmqMD09Sigao1gp4/H7sB0Hn9eH36djuyUE0SHibaO5tZlyZRJZLfCWt32AX//qfqbGR7nikovxBIr09LTS1p4gWhfgk5/8GldcchmG4YBaxHU0bCsLlosjutiyDlqAaKIdzRfAECQO7t+PN+BD1GVk1+YDf/lBRFkiGAgxfHSEX973AFdedRUIIj/9yX+xZt0aLMdB1zUMQ2diYox8IcvosTHiDY1MTIxRypc4eGA/vYu6CYQiLF60hHi8nkKhmk5FFCTWbrgAS9TIV6roSGZqhICpEo8UeOSJEXx1IQRcojEv4XATL27pY/2Kq7jt7R/j5tdfwaOPPU/vsiUYPp1p18XrAd1OcfmGDUxXMixecyFPb3mcjZuWcmxA5qXnfsbq3m4kYzHxnhUM9B+jubmZv/nQ57juth66Og0a4xAMmuRyE1TKOVwXEm2dSIIHzR9htH8HTn6AoG8RlVKZe3+5hZ2HBzj/otdx0Z9tor9/P7//7a/pWtCMpKg0hIPoooRfqdAQCyMDNhZ52+KRB/4TpxQhEKwnGJPQPHFyxTwDfYP87Cf3cNU1l+LzGoSDUX7/u8cJhJey+8BRRiZT6H4PSj7P5OgYphbEIsBYBQaOJPnol35NwW7jne96H09vfobFSxfz9//4BTZdsolVG9bz1S98hAO7dvPeD3+EzoULQVYRBXnWKHQ2RmuxptQIxwWk2to2L9TGnSfHzveemxd75rq1pOnz4vHmh0LZljUba/dKcz1TOZuYvvl/C6J4YkzgHFtajTmlWjenH9d1T5Q35yKcZz3b05f/McqdIFbpxB3n5I/f2ZT5KNkrMly+FgbM+efMsDE6zryXwz1xq5XjyZtrzWbmXts5HXp2VuUsX44T+p7zQs5H5kSqFgtXrMLRUs0iffaxXvMQrJn9M7oxnmGhqlmWZuLRZkgNzvSi2zUmI7fGeFntp+YuWVPO3DnjnXHRmFEuXyFe74TfO/93CwIzlvkz3S8BsCyBBd6JOYvP6Yd6pSnMlOMkEMdjHI+PKSC4IAkQCEZJpfLoqoZheBElSKXHyRcrNMTD5HNpmhINTE+XqYs1YVs2z2/bz+atfZy7tgvTo2LoPnL5LIoscf/vX2ByPEe5aBEOBdi87WWWLOgil83y5LN7OWfNQiqVAqWiBYhULAfDa9LUGMPnNYgEvSA5DA9PcuDQCPF4nCc3v0wmW6Tv6DitTTGe27aPumiE7/3kGZYtaqmxiEl0tcfJZPIkGoNIsoxhmPzXL5/lsovXcGx4HN1QiEX8DB4ZZWh4mr7BUS46fwkNDVHy2QKaoVYtkw5YZTA8KtNTaaanq+QQAMGASTgSxEWsphiQREyPjiQ4qKqMJMtUKhZupYgky7iCiCSCrCgIosjQ0Ci6rtLfP0IkGkBSFRwEJFE4wW1clsWqx0Et16JjO+iGgSjIeL0eHNfBdh10zaBcqSAIUClVsCoOmqYhiCKlUpmf/qGfwPp3cusbb+KlLS+yZ/deLrpoI/l8Eq8vQl9fP7puIskyiiowMjoMLgT8IXa8uItVK1eQSWdobW5DUBUKxSKBgA/bLjFweIC29nZ0TUfTVCpkECSb5NQY8ZYQI+OHMD1RFFnivnt/Tm93J5lcHlFQ0HSTYCBEoVKmPhrGsRwUWUfzypSKDuVSBY+qADYIVVdh1fSRTY4iiBJ1kSjZ6Un27t/PQw8/wrLlK0nn84Tromf3vsxsolBzh5w5WkX2BBxkwWXzE09wcN8evvvt73DnB++krj5KZipLIpFAkiVe2PoCe579PUcO7kQ1PSxbdwGuUDVcHGdCnrEU1wQfp3qPHLuaW02ciZuhtv5KLoamsvfll/DqOivXrca2IOQPcqS/n7bOHnJW1TJvWSWmJoY5/9zzCQfiSKqFbHpZ1LmIzU8/TVNTI7978Hc8+MBDvOtdd3BscJTtzx8kFJMIhcLcd9+D/Me/f4tLLtuEg4pYcXlu605+evfdPPzIQ7R3tJFKpbn62quRJYnfPfQw3d09OG4Bj9fHrpd3EfD7eeqJF2jpaMXjNdBVFUd08HhMRoZH0HWd/Qf20NHRhawplIoFRoaGEBUNWRaRZBdVExFFBVkRiIUjJJMplq9YjCsWMTwimVyScsUh6I8hyZCcGqFYyBMJ15HLTaLKBlOpFLhVxsy2tnZ8Xg+lSoFiTmR0ZIpEWwOmEWDvnoNcsOlcfF4N23JxbFDUqnuwaWholCiV86geD6PjWeobo2iqjKZ4mJoaI5OdwuvzcXRwiFBYqTK7jubpal/JQ48+QnJsiO/d9Q3ecONNBEJBmpu6qIu2cHD/AKlsP9/8xle56pKrqZR9aJqK4KaplCpopsnA3mdpicfwGwrl7ATFvIWmyxSKBcJ1dQR8MkXLwuv3s3fPQdpbO5BUlZAvSjAYpKOrBVHRkRUZRXbRdZFyBVRVpq6+jueffY7Wlk6uvfp6Nl14Ps3NTfQfOkxrVxeFbIZCMY0gSkynsmieADv3D+ALRBkZHiNWF6FSKlHM7mBySCKxqItP/d0XuWDjNaiGh/XnLePgoWfpal+BoAQZGs3S1hYllZmkUfNgFW0w2/nYP/yal7aNc+DwNAODKZYs3Ujfob30dCaRnSkKaiu+cDvDwxPc/aMf8b53fwRTauOTH/47ov4gvoCD5KZRVQPLdclkp9BEiYoawmvoTI8dAnEEEYee7rXs3ldgz8AR9uzZgSTaXHf1ZRwZGaazu5tUqoBlefnBd75LQyyCpip4AyZmJEy9R0BS+/n9gw+xdukbODo5wPjwOOvWrmPDhvUUyxkOHtjHv3z5q3z3uz9Ei0V4dms/W7YO8p1vv4CjGewaKPKjX2/l4FSIL/zzQwQ8LRyayJKquBSmp+le0MVP7/kJ77/z/dx9z09YuWIJo7u20L1wAbd/8MNIsobgVhnMRakqjziOe4JcclokTJwji7jubLwdHOeCmPWAq8mvDvYJxmDHqZJ5nRB7PFcwdI57Oc3t51TzEubJcKeLwTu+Rs8BVGYGdeagg3NlmtPZ9ecdq3rdSbNVLszqIXOVuxlZsVIuIUp/XLwd/A9S7nBnEg7+kZfsv5n18gSF8hXKKxOl/FETObtm88+ZscLMQ+pmmDtFRERJwrHt1+Y6ehbzs237jPqLIArYlj0Lq8/090oWHBdmE1HCcdRKqJ0/w3Q0F+k74/zPYswT2r/GegHoXbLwuHvmH/GAnDCMMMe19KROq0aKUqGIKLqkp9MU8wUy00VcUSIU9mJoBuWKUyX7AFS5mix7bHyKBd1trFzWxaGBYwwMDfPwI4dYvizO4JERJoZLNNQZVOw8kZCXFb2LmJ7O0NbaQEdLFEmSUBWTe+7bworl3Vi2UzWYiAKyIiGrKo7jEAwGaUw0MDI6wcKeZhRJIuSrxoQ1JsIICMSjXnRFxrahkC+hqCI+v46sqLiIVMo2q5e1gCwxNj5FKOCnkC3h2jbDY9MsWtCEi4Pf7+Xe+7eyemUX5bKFgFqzejoE/BEOHZgkEjZxHTjUN8ZDj++kLupFwKVSyJGanERWJAr5NOMjo3hVGVGqKnSuKCPOZr8UCAb8SJLC1FQBf8iDrFQV7erzVk0/4joOiiJj2y6yVGPHFKBSthkZmSQY8iPg4rg2CBK2ZVEpFRAkUBS1Su3uWHzpV0f4yD/dhdfn5dCBA8Rb61m1Zg3HRkYwfT6ODo7Q3NyC1+NhYjzJVDJJNl0kFmvki1/4Z2644TImx8eor4+SnU5hmn5USWbg0AH8Xh1dNxkbGyWXy2F6PDz56CN4dB+lXBFdAccqEvSFSafTtHR0UbBcdm/fzt998tNcfe31lMoWsqGjShY7tj+DIBSpIKPJXgxVI5Oa5LyNG1i2cjlNrR1MJPOYPhNF92JbAtnsNM0tcZoa24g3tRGpj7xqg2G5XEYUBBzbOR7ALzjIOHzra1+jq62VRFMH1990C2XAlRXCjQ2ohs7R/iP0dnWTHjuEWEmyYcO5iGoQWxBQFbUaqF+778f/BVmWsS1rdg7V1CrVNUcSRAzHZnhwkFi8Hn8sjO71U8gWSE8mMU0vpbKD5gujSCZeVUHXRIL17fzbVz/J0uUxNKmNh377GxZ0d5PP5Xl+y/N84UufIJsS+NTHP4VIirXnbMDnD7Bk2RJ6FnRR5/fz+GObq/F1iTDlvMWtt91MNBZFklXuv/8+2trbWbt2LZ/61Ke5/IrLKOYsBg+P0NXRQzDsx/DpvLxzO7FQE7nCOIqsE6gxsLa0JpAkFQeXYqGA3+vl4KFBGhvr0HSJbD6HLEMmM4HrVlBVibKdq74Hloskang8PkRXJZ1J4vHIBPw+8tkSIyMDhEN1jIwNEk80MJVM4fUbPP/Mbjw+HV0NIksupuFw/y9/y+s2Xchd3/g3Vq1dh4iGpvpJTacI+AMIikJyZASPP07BCfL+d7yTm2+4goG9B/BIJq5qEQyGcS2D297wTq664jJUvcoM/Ov77uOCjcvp6Gzg/R+4E1fSCAb8/Pa3v6NQyCBrNmtXv47nntpMNBrk8MABotEEQ0O7UCWRXK5MIKIzPDKOrhkUygVUnx/bdbArFtMTKRzXwvAGqDhVArloNEhLUzu2rfDTn/wXy5YvwBV1pqcnsMpZrHIGUY3gYvH1//h3uju6+Mq//h8+99kv0tnRjiS5PPLII5iqSiQcZmJ8GJ+/ifd/4E6uu+4KmuNRNFUk6A/iCBqReBeOVocw+SQP/GYbl197K9OpPAf793P3PT/kzW+5g7GhNJ/54udIjqdZv6qViF9hMi2jKCbJLDz0xAAf+cT7WLSiiQ9/8r1MZceQLD8mO2lvbWI430i+qGCaJn926Uby+QJ2aQvXXb2A5rhCY/MkmhRgcHCU1rYFlApJbFfA176WZCqHV3cRrXF0VSeVPspvHv4Db7j5vSzu7aGlrYX9fUdpalvIY48+htfvId7azlVv+jBjY2MUCkWc/CRtrW3ga0W2fcQiBqJwgFJWYPHCpYyMTPLwo4+z8bzzGD52lDvueBP9fYfp7W7gvAsv59IrL+Jdb/8oH/3CV1i64nwO9SXZsXOEWKyJr3zpE0wVC+zctYf3vOdN+LxeHEfiscc38/Y3v52P3vk+iuP9tC1fz9LzLqoRI4EjHZdHXJdTKk8nlfnK1RwXx+MAyXwFbF4snlg1MJ5WVn8t3nDzzp39XadJszCj3Dm2jawqJ4XSVNtwEsp4yunW4ufmz2s+QjczgiLJtbCWP07X+J+j3FEVOF9Jc3+lMh/Bc2oC7UySxvn1oiye4IN7VmPUYufmx+SdttQ+0ifFctW21/yIvAIadspT5u648/4+xUQc5lhhav+bm/futOVsrsscC5LDGVwuZxYuqLmMnQVyBnPQuqoSckKOROaggbW+TiUEziJ181FCgVO7Zc79baf5LWesn1NOGX83f5h5CMCZijDnvxOOS2Itzqea4Np1RAI+H6VCkobGGPl8FkUWkUQZCQNZUchn85SLZYaHkziVauLtsl0hHo9RKhYI+BT8pkm8PkQoqLN9zwDnrluELEtMJicIRcLs2n2EaDSApsGTz+zksouX4dggCSqFQolKuRrDJAggixojx5Ls2XeQ+joNVfUxlUrR1t7IA49so7Oznr0HjjA1nSboV9m1ZxBcm3A4SMUSyWdy/P6xl4gGA2TTFRRJ5sjgGLH6IKZfw2N4cdwykgyCK7N9+yCJBg+CKxIMBbCcMhOTU4QiIUoVm2PjEyQSCXbu6acu6qE1ESBar+P1BiiVypTtEl6Pn3x6Er/XpGhDITtFbmoMqVQmly+h6AaWZVOp2LiCRCTqxbFtFFlh7sogijA2PoGuG1Xkz3UplUoouoKmKwTD3ur7KArYjlAlT5EEFE1BcDUEWeLvf9nH959O8vXv383IsTymV6ClqQ3T40OURFTdwHFBkRQcG0olm0996rNEIzFGxia58cY3sKh3GY6dY/ny5UynsyiKiiwLFPM5HNshHK7n0ME+eroXYDs2+XyG5rZe/KEA/kiIsbEcU9M2wUAAv8+PLMnomkrJLnPzzbdiGiamaaLKKrlsmbpEO7oRQlP9SLLIy7t30NAU5y3veDfRaAOVbB4KeQS7wPDIBKo3iF90GTm8k1hLO7bqQXLKuO4MG1ptm+dmZCMjugKKC0KxzNOPbSHo9WBoKqLqULKL2IIHn12knElj+H209S7GFWcovUVc28ZxHDxBPyXXpm/Pfh6+90F+efcv2P3SDpoWLyHg92M5Nq5by605dw62zbHhYYL+AIIkIoplXEGnUBJQRJsvf/XDXHDe+eSTE6jiGMVchSNDQ8iGSTACqig9AAAgAElEQVTgx2vqTKcnUU0DUYZ0KokSDLB4UQ9WukzMlHn8ud/R3dnIi1t38cjDW/iLO9/PQN8Q2196iRuuu56ORR04ThFVCTA5OUAqlaQpkeCHd9/DmnXLefThbTy/5UU6WpvoP7iTZSvOR1RNZE2iuyOGUVT5zW8fRPUbtHUlCHlNjvb3E4uFefqZx2lrb0ZTg8iyxOh4H4ITwO9xyeeGMQwTRQwSq/cyPVnE1EJkUwUcsuBKpNLD+Lz1uC6ouokriNiCyOTkCIZPQTM0pqYyyLKBZmp4vTH27Rugu7uTdHoalxKCZCMKBqbhJZ+fQJVLlMplVixZSDo7geQzSNQnEKQyb37j+9i39yAbN27AtRRKjsihw/uIRjRuuupccplJVI+PfAlMv86ul/cTjdbzxttuwxMKgCWyZ98Bepb2EmloIWh6SaWGiNV3MFHMsXhxK4XCFJJZT3pqM6puccmlF2NZeeoaBIqlHEFfL3ZFJBCN4w/GsFyJiiOjieMUMilioRAVK0MhH8AfLeDaRcJmNxNTQ/QffJm//tu/5LNf/BLZgoCievH7TULBMENHxmlsbOLAvsNs3LiJSKyO89f08qtf3cvy1avxBuv53a/uZ9n5Kzk8coSWtsU4YoXrbrgGuwLpZBk1aCJp1dxgSDo+Xwf1cROfZwxXb6CzdRE9vQtZtWIlsuvwnbt/xPvfczsHX97B8sXVvJP/52uHWH3ZJt77zm/xg++9m21bdvD1H/yCK695B5pi848f/xhXbUywZ98A375rO5dceyVev0YsmiAUjrJ/3whGRWP82FNEgxGsrEa0K0pxqowkeylkxylUVHzRLgzTw+DgZnx6kPqYh6XLurnzw//A1i1j3PqWWxAkiYAnyERylJWrF9PdmmB0aIjhCfj6XQ9iOwblfIaO1jqirdcTiHYwMvEAQnI/mWQBwUhg1LVybP9WQqEoO/fuI5VPE9AC/PqBh/nWt37ExNQxxkeH+OznvshNt9zGLTffxPU3Xsy37/oqt779XbzjXe9D1yp4DIP6cCMN0Xb+7kt/T0fAJhHz8baPfBZdV3EFB4SqWOm4VU8k8RTBxKeTTVxXrMbUMUM0V92f2eazZs4cn+GpOJUMAXNQtzNwTpwUQzffTfMUIU+CIByPCZzZhOocTogVnNO++jfV+D7hzMpdldfhxDg+y7aQZLGW03TG10LAtipIfyIG/f9Ryh1w0s19zWXWja4a+Hg6C4Fd+yi/Wp/fk/yUz3xCbcj/RlRxZqz5lpo/Rdd/VHDgycV2XaSzvP6uIDCf/vd08YEzRaDq9jQfoZur8AHHmemqjV4RqRNOxc4wW/nakbu55ZZbbuQXz46z0Dd56m5ehXI3/5yZUnVLqCqy6XQGRZYYGx1HlCzKlo2hR8ikbXwBH9PpI6TTRbxeHa9Hp2/gKI1N9UxnM9RFA3z9B4+xaX0v8foYW7YdoKWpDknWWNjdTP/gEKIEgaDJL379Ah1tDZSKJTymzoN/2E1XS5T7HtqKIro0N9fzqweep6khUCUTEQRe2HaQ9Wu6ESWXoaEUHo+Gz+elo60BQXRojNcRCwfw+j00xKMMDo3SlIixdet+CuUCkZCHaMSLqguMjSdZsKCFdCaH1+PlRz99hsZEkEW9bURjATweCRDZsn2AwSOjlIpFWlvrsCyb3bv7EQUBVbaJ1/lQZPB6NAxVw66kUWUJRTQo5DO4ooQsSziVIpFYE64jcXR4J66gUSnL4ILh0VFUCUkUsC0LWVFOvF+igNfnqZJ11Iqi1NA7ONFt16668kmiiG05OMDbvrmXb33vPzl3TSdCxcaj+8iVpjG8fgTBAsdGU2VUVUaRVUSxmkbhda+7mAULF7B//wE+//nPs+miC2hKNDHQf4R9ew9QLFbQDI10JktdfR0Tk0ni9XH2HzhAS0szqqoSCISwrBKCKOIxfSTiCcbGRrBsh3yxALi0NHYiiDA+MUI6k8TrDWLXjEqiKCNLCq5r09SUYHJykqlUGp/HgyCK+Px+0GUamluQFJV0Osmv7v0F573ucmxBrCGk896NecqdSgnJLSM6RT7w/r/g9r+6HdnUcEQRWQyy7+VBEnqZD77nXXQsWcqSc86pxrvUjEEnWrUFFFmmafFCNl11FZfdeitLLriAaLSuZkQ6tRHLchyCgUBN0KiuQYIjYUo2h7f/gaDup6uzlZHxcUqVCIVCBtMXJBSOMT01yfT0NJFEM5ZtM3FskJjfwMJE000mkiU8wQSRQIRYfSN9fYN4PR42rF/Kz372Y7a9vJVb3vx6tj2/j4a6ZlauOp9nNj/DX/3Vh1A1L3/4w9MsXtzDFVddSXJqjM6OdgRk8rkC4XCIkaNH6Gxpwudz8QQ9LFq+BEGwsRyJr991F2vXn0PXgkX09e2ioa6dqWQKSZZ5w03vYNNF56EZKoqkYpUdSu4x/EETy82imxZOxQBXxef3o4gBvH4NEGrsqyI+j8Ho6Dg4EAqHyaYzpFIZHFugri5KLlfC7wuiaQaSKJNIJMjlplAVMA0Vwx8gm86STGZZuWo9OA6lco5rrryJCzedx6G+PbR3dOG4FSLRMPl8joIl4Q/Xkc8XCQQCZDNZ2tqbyOVTZPMTTCWzHNi3n86eTmLxeFUgdAUKpTTFokgkpJEcOUaivpmJ4QzNTe34PA1se+EA5669lIkxjdbWDvYf2E8sIWJbGoosI8kCgmBxbNAhFOpk9+6j/Nc9v+KKKy9jZPQIODLj4ylyuRSyGOLSi69EQ+Gv7/wQ6zcsR7Qr7Nq+m7pwI5Yj0NzcSMUu4fFqSKafFWvWoKkqpWKOz/zdl7j9bW8n4A+iaxq6GADbAqeEJomIikylVEGWNCqlCo4SIJs6Rl1Q5mc/+A77DuZJZ/OsXrueVCbFRRduZMfO7bzrnX/L0y/sJdq4mJHxKP9x11exkCkLk+zZOcxff/wLiHh54L6f8b53vo7W5gLZsoQR6WLR0tV89KN/xfXX3cDhg3187jOf45LLIRRIIpYT6L4JymIRrypSsXNULI3pgkxL2xLSqRR+rUwueRTKRfz+ECtWnMuu7dvI5CfpWbyYyZFxQuEI9913PxF/CFcRqUu00tTWzdade7jw0qt5/qknkfwv4xRG8FoRTK+XXGknjz38a7rqu9kzmGJoYISRw0MkB5KsvngNHQu6uPjCcziw90X+5iMf44WtW4lFY/z85z9n2fpz8coyjS29/OyH91If6OLAwWPce/99hBoDDO7dQXr8CK4ocuXNb8aRhFlCkaqsIpy0Bs2uRaeVMU70Gpjf7lRMkdWKE9Gzk8rpZPczoXHz25+mD3ee4f1s5PVqk+PX68yN57PszwAPc44hzOoTf4ryv8rday0zyp00Y7E9db2kSIiS+OqQu/8PlLvTxa/9sQ+mAK9aGT5dmSX3gFoS5ldoT1UwGh+fwOv1zJlU7R7Pu75zr7fDqRezuccty0YUhVkk7wRf8FNcz7OKuXut9TPNgMVLek+L4P0plLsZ33QBKBXLqIqErqoMHRuq5gRzIJMp4zEMKk6OQCDEwOAIQb8HQxdRdZNAwMCxbSI+jd89vhcRm8ULWxkZneTYcArLrtDW3oAkCVhWhR27RlnQFScaDTE8PMZ56xZQLldYtbSDviMjNMWjdHXU4/N5GR+fRBChvaUBSa7GosXq66hUSpimwbFjY3i9GqIoMzIygWlqSKpCLBpAkWXqoiFiMT91sSCSVGX/CoeDqJpKJpPDME10VaSzPcE99z/F8sWtBII+nt6yl0s3rWL3viOcf85iBBE0TSXRECEa9hMK6pSKRabTGcYnkiiSg21nQARV8VAs5NA8XiRRoJjLohgh7IqFP1BGUf2Y3hiartYYMKv3QpKlU35s537QZ62jnPRNIpfJV5k3qT7Pb/vWfn7ww++x/fkncAsTpKbyeD1RUtlJfP4IU5OjGIaGWsuJJ7hV22w2myOTnsZ1YXp6GkWS2bJlCx0dndgOqKqO6wrUJ+pwBRfLcjAMA9d1qatvYGxinNGx0WoCdaHqyjudymIYBlOpJPX19bOxg6lUEdNj4PWbINggqGx+5hlisXpsx8axq3noZFXGNE0EUcbr9eIPBNB0HcU0sNzqxzgWDrFm9QpKtlhlTj0L5c4RRFxBQDNMLr3iSixRxmcEqbgguw66ZHH31/6F4dEx3vuRj4JqgO1Ucx65zklrguu6VASwKy6K5kFQVKTaTKSZPEzzFruqHFIzXNWENhEB2Snyo298hXPPWY9quki6SiDSha6LKJoXSdXweg08XoNcyUYURfymSjY5jhGoQ1JUTH+U9935EW68+kpCkSj79x9gcnycS/7sPCaSU9z5offij/hIp7LE6iP09ixhydJOVqxezZ49Bzh3w0ZiMT9IAh2dbUiSxMvbX2awf4BFS5ZgVSq89U23ceXV5xOMRchkc0xOTNDXP8TV112L6fWBIKGrLjgal112OaZp8o9f+jL5/DThaAhNlinkCuRLKTTViyzLTE6OEw7XIYkipUqacslhYmIURdGQ5KorliKJ+AOBWfcyURSQJI3kxBSBoB9F0slmc8iyjKpqWHYRy65QKuZxXZt8ySY5keInP76H9eduRBIELKuIVZHRDZlQ2INANR/Y6PgIhq4jGwFApFwqYWgaluMgywKWlQe3RGt7L7npNIFQAMt1mZ6YQBBkwjE/Xk8EyhkMw2B0aIzHHn6WWEMIwzDo6OjmjW+8g2uuuYFnnn+CFcuXY3g0BFfFcWwkEWy7xIc++GlisQQ+v5+LLzkfRakiGV5vENt2cByL6VSOaMRH0KOyakUvDz/yCAGvh77DR3Asme07t+PxGBSLOTKZFKLpx1B1Du3fS2tzIxs3vI4d21+itbkF23E4vO8Yg/37iUb9fOFzn2fxsiXIkobHMHFdB9kIUc5P0hBUaK73k7cj5HIFYvEm9u3fQyJeRzaXo1zx8Pf/+K/86Ke/5N13vBVdL9LR0kU+l6F34TrOv+QKxobThH0SRw8/gSxMksx62XTlW5AUDzdcfw2f/NSnaUw0cs9Pf8bSHh+tjQbFnICs5ijioTCVwvR4cP8fe+8dZ8dd3f2/p8/c3u/2orJadUuWJdm4g22MGza2iW0wLYBJIcmPkIQkBJIQkrwgFIeHEBN6BwMGgwFjbMfGlm1ZsqrVtdJqV9tvr1OfP+7e1Wq1Ki7JHz+eo9fV3jvlzHdmvnPmlM85Bx96IIVixPH5wwi1LJ49RUBXMOsWzzw3QN+ixWzespMNl1xFd1uK3Xv28vo3XEcxn2frtudZsGQ5/ctWMzA4zMK+ZcQMkZ17NnFo1wBLevqR/DVUpxVVcnhm89dYtOB89u3dTjiS5i3veB/HJ4eJx1v4+le+xptuvInh0XEMw2Dr1m24rsuy85ZjVyZBUBg4sJ9CrsDu/fu56+638/Ajj7B6QYJKMUcgmuDSa25oOJyn02P+t427ZkRv3j6fcM7Gnes6M2k/pyCwTsPDdZ0ZhNGZzm028k8QptFK55JONNe4m4e/NB0pfLVSv37njLvTwe0EkXlvULO86kyuWNMrcGKL+Q/cCOeBJ7zkXD9BEM7e/27WhHKnGyqelt+cz8uiOZG6mWjlSzTuZlCDNB/y+YWGMLP1rOPN3nqeY8/Lp8lr1uVxZ8LuzVM7+YH3+30n8XGnC6c0I3gCs0Pzjb+zveWz59dsQ64ptGbaJ4jCzEk1eTbv5UvFtp+0/GUYxucC0Xwp1PRqzRbknuuhKDK5bAE8kVQqTqlYJ5Hyocgy9boLrtpQesJhspk84bDGnv0jBP06T23eQ3d7C+vP78PvUzD8GvlijSX93YSCflw8ZEkGRA4dGWP5si78fp1sJkc0GkPTDLbvPMj6dUtwPQfPcchk8kTCIRRdQVElvv/T39LREkeWZfx+Hcu0UBUZRRaoVmqIkozhN5icyBONhrBti3K1QrlURpYldF3DdTyGRyfw+Q18hoYkSoSjPmRFYeWyHupmFcs26V/Sg2EYLF7Qwr4DA7SmU4yNjGFZFTKZcap1k+17BljY00ZrSxpJsqibZSzHRTZ8KLKKCyiaSiyZxrIsMplRwsEQlbqMphoUCwU0XUOSpZMKBsGJBO6T55rXeD48j3yhiKaqSJI084xoqoLreliWzbu/fJgvfekLYAtkR4/QnlTp6ltHtmAxPjUMokw5W+TwwQFETyIUCON4Npu3bGFJ32IESeK5TVvY9eIuLtx4Pt29ndx//wOct2Y1qqHTv2wJ41PjpFJpJFlpCGNRauToui7xRAJREMnnM7iuSygYxjYdQtEQoiJTLBYRJInMVB7dZyAIoBsB6qZHR0cXuuFDlCTMmomiKoBLoVDA0AwUn47reTiii+vSMEq9RksaT9YRJAXBc+czoRAEb0ZmqKqKacsIkkKpWkcx/ATwQd1GEQX++9Ef8ujPvkhxqsjb7nk/RjSFI4lIHqcUZJpNmiOiCgaiKyB7Hq7YkCFuU6k55XkUZmSu53nIsoZr24hWhdGB7bR0JbA8m2yxQiSZQhJ1aqaHamjU6yUUVcY1TURFxrYcorEYNdPGNKts2bKNr3/tW1ywagmtC3r50n99ibfedguxllZeeGEXH/+nfyYY8LNu/XIct0h7ezvnr+/D8fzs2LGHqfFJcpkRuhYtxHEcdF2jf+lSfvvUk3zgz/+CqUyGf/34x/nyFz/PytUbCcVbUFWF1tYkjmVNv6QlqpUsPj3CJZdeQktbiN27D9C/cgmyCM88/RjtHRHC4V4UIYAgaAwePUa6JcpUZpyalSURbzh7BFGiblqoqopt2biOS7lcRdd0FElm9/YDLF68BNMqoSg6hUKBTDaL6zmomsLYyAjhcATP9jAiaTpa27jk4g0cO3aAeKKVUilHPJrmBz/8NuGohq5rCELjXtuWze7dB+ls7yIQ8DORGcFQDUaGh4jHGvJGkHxkJicIhIJYjkXUp/P1b99Pz4JOrJpHbmIUTQ/gCTI+TWXJqgUYQZG6VWL16vNp6w2QbtcRRD+yEEeWy0xNjuH3+fBcgcsv34AoWHzuc5+gtTWKP6AQ8nUgoKJoVWTZTzThx/ArZEsThOIGS/tWEoyGqdsuA4PHufiy9URjUQwjwMc+9s+sXX0eoiDxlS99nSuvuBJfQOUL9/4HP/zeD3nLW+4im6uxYFGakfHD3Hrzm3nqiV8S9AWplE1yhUkcx6VQcAgEEtj1DIaQYd++vTz59Ga6erpp61hM7+JOItEEr3/DNRRrea67chFrlvXxw+99h7fe8SEuuHQjNdtl66YtrFiUwPAG2bZ9J10L76IqhxAdG8+1cGybB370APFYmkd+/N9c89rV6L5J6laId//hg9xy9Vo8zwRNJxoJ4nightoo5XQEaQCvWiOXmySeXoRVHWTN0g3s3jPAeWt7WLxkKarmZ+fu7QSDIRKpVur1Oi2pFsxKlVLdZuXSt7Bp0yhHp/YyOqlRqx9i2ZIWetv6aAkMoes5JEPghV3bCEg+/v3eL/DOt72Lv/mbj3B06Ag33XAj3d3dPL9lK+evW4WZHyacjCMKNuXiMXqXLOb48AT/8YlPsbFPRg0n+It/+jT7Dx4hmoie/G6Yp6jc2VJWZkCVs9KFZsMwmxD/U5zATb5zCgaegG+e2bhrsmvqUrP3O+n7LOOxqc97YiMA0ERVzeegnknfmeHVXNl4Z54x785rNDBv7tLUi8RpB2RTP5pfI3559Dtn3J2OZhtws8lz3OlCBydPsBP7zX8rXMeZqaL4kqJws3meybibFdJ9tWGMZ6S55/syI3fCPN/OtH62ITaT03aOx5pLM4Jr7jFPdy+bx5oGR5/N8Drb+pMrPU3znK40KYjCmeGYJw5y5tW89Otz2+238J3/HmJ5JPcS92we84RQPCGj3ZmBiGIDxmybLorqQ9MUKqU60UgbsixRrubw+wzGxrNYdRdFUVBVj4gRo1yqsnRJD7IioyoytltHkgVGx/PUa2Wy+QKKLHPkyDipdJq+BSkMf6Py4c49A+QyVbJTZVYs7+XAoUGCQQ1RFPH7/dTrJrbroKoSa1ctQlV1zHods24iy/L0djquB5quIQgChqqjKCKiDJpPJxIIYlku5ZLJzl3HWLS4E0VRkCWJSqWI7dbRDINKuYaua8iygiA1XiiiCG2tMbZuPUwq4SeZChBL+AgG4/R2d1AqmdiugG3L4PhRjShGJIrrgujVKZRNRF+UemkMRS0jOO34wjFE0Zp56ciyiiB5c2TcnET26fxhZRq2afj0mbzRJtmuTa1u8ZlndD7yj//AfZ/5JMl4F/VKgZ7uFFN2FA8fwZDEyNBxtjy3g2VLV/LII4/R272IqlWivb2dWs2kWimzYuUqFFlm955dnH/+apavWIFpmQwPDxGJhglHo0iyhCiKyIqCpulYtkOp1IBqZjMZdEOjXqsiSQqSrGDaJpVKoym5YRgYPh3Pg2rdoViqEwwH8fkaTc5FWcKq1RgdGW7MwXKJUDiKKIk4QqOar+TKiJ6H7HkInoQpyoh44LlznsPGd0kUkGWZUrHIJ//tU+x86H72b9mEahU5vGMzRzZ9m6FjR6gWS2x/dg9xJcF7PvQBjHAruj+MYDvM1h/mkyeuALYgY4kermTRzFU5eSSnJ1WUEAWJH97/fSYnBrnsipuJtm/AJ7SSy48BKqrfT920kCWPSrlIUPJwJRVX0qhZLpJoockee3ds5e4338qiha1Mlsr0dHYTUhSGc3W+960fgSWwY/M2rr3uJkLBOKIbZCozhS8UR5N1AroPzy6jhaPouoEsi+RyE6zbuIE73nY3F2zYgCjCikVryRcdMrkiuqqy7fnfkojFqJQq5KaytLW3IAoavqBCutWgd0E3riAiig6hgIAq1xDVAGNjxzH8EtGYj+ODNk/99wsoip9oqIeamUXTdeqmCYhoisrw0BDJZHpGSVUkH4YvyNTUEKqqEQ75cT2LSCTIxPgknR3dVEp19u05RDjVgYjLgz/9DqvW9GJbPv7+H/+WCzdeSltHglBYJ5PJoqkqtVoNEFja2c473/Fe2rs6WLpqKU7VJBaLs2XLNro6erA8l4DPx/Hjw0iaSlTXWLB0FYouIrsyx4+NEG1pxRY9IiEVWY4CAq6r8I2vPsjFF1/J2ORRFAUGh/bh2gVSyQTZTBG/Hub4scMs6uljzcr1dLZ2sXdgK5KbZv+BAxiBKpWSS0tyIQ/+/FHOW38Zki/JDde+nne85520dLXTubCbgF/EdUBXQ1xz1U2EZIdfPfQwP//FI1x73c1IaoEL115INBjhB/f/kNfdeB358gjRRBCfL0lbSiYSTmIEApTNHLX8JO2dK3ng50+zZt0qWvUXiUQSJNN9rFq5ht0HJnC9HNGwgt8ocNXrVvPTh0cZmczwxx99J3q6k3179pBsSfPME08wdPgFFncX6FrciyWu5ODEEX71wM8577yVZDIZlvavAM/gj9/fRyw6Sb0QRVQFNqx/LRH/BKqepVAXKeUnCYUS5O0AgteFoh/EEGQUTcXVTZb3K+iizlPP/gZRl/EklSuvegMf//hHaYl0cOjgfjpaEzz92M9Z2BZhuOwRSCi0dK+it/9qPvWpfyXuP49f/OohWhdJjJV8rF/dTas3iXp8G489+wxvf/ed/M1H/op1G1dx8cWvZfu27fznfV9k2dLlJP09dCVb+MM/+ztef+0t+OUEv3r0CS69ZBkreywCTp6Nr7sRLbWIcCiIrMozBozrnmwInXhPnE26TBtxTd1mzn5No/Fc1dZzNe7O5Bif19CbzVMU8Rxvhsfc6KHneSc5OWeWuy7i9PIzXxfhpOJ7s8fV3Fea7gf4/yJ350inM+6aUKQZCMspFXxORB/mwmJmvAucmDSnNFRsrvPmGHazS8UKwjSoZ57JeraoXRPmKZ5aSOV/hKbHKzTHd5oI0emmd9Mj0fx4Z9z6DNxOCeV7J0rwzzemWVGx2ZE8Yda+giDM63k5qfol52bUzR8VbjTcnJZ1J49l7j4nDnbyuTTnize/wH25NNcIXHXeSu764H3cvD75qjBvRjpPHA0kRcHDQcJhbPwYxYpNJCKCJTGZKWBaDk8+fwDD0IhHI9RrRfx+lVKlgqSIGIaGYzt8/8HnWbu8j1Q6TCIeJZcrsnn7AIt60+g+GUGQmJwosKCni7a2GJoGplmnWK7i031MZfIEAgYDx47T1dmC68IDv9jEsr52HNfl4OHjtLYkGs2ebZlKtYaiKOSyJQy/jqYpmGYdEbnRFkMWUTSZ1rYIiuLiuSKeJ+AKFobubySmSyKKKs/IFhEX0zQ5PjJOLKyRTCdwBRUXvRF/EQT8AQNNVxq5KUEfqqEieI0KiLbpIHoimiyh6UEUNYkR8uPi4jgCuu6bhiVLp8iemfsyx5fU+CvM+/KVRJFn7Iu55573oIgeG9Zezj997KO89R1vR5AjOKbJm264ibff+XuEAx49PX2k0mkQBFLpNEYogOV6GH4fiqYhadDR2UY8HsezBb71rW9zwfoLiMXC1OsVfH4Dy7JQNAU8F8us4zoOgWAIx7LRVA1F0dA0nWq9ypGBQySTbeiaQblUQVV0cGw0VcFzHXJT47S3pHAdG9t2EQUZWVUJRqKIkkY0nkJUhRmlRHDBEzw8oREdc0UPVRDBa7SKQABF0amWKmiyyL7duwgEfHz2H/+Sp3/6VV67dgGyXGTF8i5e3PUUPtXECMToW7Kc3/z6UQKxGLe/662UxQCyruF5zpzHvvmjUbSleW8a8CUPERfBE5lPFs+6taeQK2h4ZoGWeIilqy7EC3ezf8/zBPwmPn+MSDyKZ5lIbp1qaRxVtlFCaWpVUAWHQuE4X7rvQVZtXEPYSJEKFSHUzYPf+zFLly7kr//u89xy89W88U3X8PrrruHh3zzBrW++iUK2zNatv6BaqhCOtWFVK+zfu4fl6zaQHS+Tz2Xw+Q001U1NX8kAACAASURBVE+17qEIZUYGJlEMH1/48pdY3LeGBYvTjIwO07d8NYYaIjtVpLU7TbFcY3DoCPFYHE2NUKmaaJjkJhqRXV1ZjCk4RGJxCoUK2UyZRCrI8hWr+LuP/jOXXnER0WgI06kiSxKqpGFXC4TjaURRIDs1ztDhHbS0t4CiEA2nQHFwXfBrfmrlPLZbwa05FHM1Fq7sJz8+yaXrL+bd77mTdNtKLMsg7NNJJVViiTSC4CfqD+O5Bp6oYAQMzLrJ7Te/Ac8T+eb3HiQZD3HsyItcfOllVB2NS19zBfe8990kYmH279lJIBqjXiuia0FETSPiizE0vBPDqBMwkoT8DrlcHkmSWbqyg6BPQ5FdJMElGmjDH+nGdASCIR+l8hSG6iIaOon2dhRDozsZJRSLYbsekWgKWc4xNpYhHgthaDL/9q//yn3/+XmGJ4axzCKKW6OWq7F5yxbau1oplDMgQf+qtaRjEXSvij/egj+skW6PsfmZZ1jc30lX60JGjmVQNBcj0Iqo6OTzBTxb4r++8n3WrVvP97/3XdZfchX+SB/FyX1Q282Pf/FLilNhLrpkHYLi8Ffv/zSrF1+LKDn0LFhAUOsmO1ol2h5HVfz4zAp9nXvJjVXZtjfEimvfzP4nn+X6W27BH0lj1uv8+pc/Ju4fR6vXiQdEHKtKyXSIR0xEyUMSQ7S1tmCVqoiKzU9+sYuLX7ME1b+GgX2P4No1vviVJ1i2eCGCWOHZHQV++K2fsKjvYmLpFLogk+xO0trVgaRrxFMxFFlg1ep17Nx+gGSrzuRkgZtvewsL1lxCzYly+cV38eRvt1Ctq1RMGS9U4cYrV1Eff4G+zgiGJPCL+7/Mku4kMT+s6O9h5+6t/PRnT4JbA0tkz94nKI7vIH9sEy0REdPzE++/lHS6FVGRECQZb7rBeKNv5ql60an5asK0/jzdlLy5nSjMa9w1dprFr1lA8HQGXzOnYw5kcm6BFVEUT7SvmkZZzDXqTg/pFE/ohvNs1ygOc+rgmsaZKE4jS2Z9XNdFEOXGb9Ft9Ayc/ohC49iuayNJ4nSsRkB4FXX531njDmZNknkMrEYTaU5ZPmuDk3icrgrPXCOt6RnwPK9RJMj15k2APxO5eEiyBAiNFgJnoTP1d3upNMPhJSoTcx/Qs0WezpVkUWIuOOqEAsvJUdfm8lm5eM1rfy5QyNOtPytMYVoAzJ4jp9unsR2njnnW+lfjPs6MbZ5lt95+C795sU59fDeJkPHSmZ4GW9B8loaGRqahSAKJeIRy/gDRyGKOjg1j1R0yUyaXX7yagF+lUCjgujV0XUdSdPz+EJ7rIIgSy/o6eeiRbYQCCrIkEotFWLygZbpwSwlBkBq5Wj6DcrlAOBLCH/CRTscRJYFEIkqxVKatLYVt2QiCQv+iThynUTG1JR3Hw6NaqTA5mcc0TfxBA1XVUFWVYrFRXEFTG+XWG5DTPJqm4tgmoqggICFJaiNqOV0OuVarIAgCuUyhkS9XK9OSjqL4fEiKwlyp0/T4CYLUMCano2mypHDo0CCIIuFoozCMrMgz8OFGI/MaoiQ25MXpps30clGUTs0fmLPPxx92ufMtd3D0yFFGj09weOAod939Vo4OHiOZTGM6Lhs2vIY/+ZM/Y8PGi6BuI6kKsq4RbUtTrzX699mWPY1qcJFEiUcefozW1naSyQSRSAgPkJUGDDOXz6HremPuIyHLMpZlIQoClmkhigKyLCHg0dLSgu24FApFItEIkiwxPp4hFIohChIvbNuJIolEE/GG8oKLILiAhySL0y0gTo5wOp6E5wkzH58k8fhvHqdSKhPy+3n88d9QmDrOL3/4HTqjCns3P45XL9HR0UHddYkkQ4SiMXoXLuPr3/gBu3a8yI8efIQ1Gy7l6ptuoy6paIpyFlfX3LVz5MBLlceKiidKGMEItiuQnZiiq7MN1xMpleo41RKypCOIGqo/wnimjOSpvLjzRdrbI4yNHeA1ay8kGIlj+GJ8/F/+g76+pbz/D/6I977vLt50+5vI5XLseXEvXd19dLQtIhlL8PqrrueOu2/hNa+5nLpZIhIP0NnTjulY+A0FgRpjY0PEY3EkJYhZL/LJf/0cl11xBVe+7iLuvPNtLF+5kN4FCzHLNjddeyOXXbwRXwB0yUe1WOHx3zzKksV9/PLnv6CzYwmxWBrV0PGcAJLm4NgOsigRi8dBVSkWCrzhqtdx9aVX8LZ3vh3XsRAFBQkFVbMAkCQNRdYJaAlCkTTPbd5CJKRTrVRwTIHhoVGSLS0YIR+TmTLBaApV9zFxbA/bt+/i69/9Gtddfwv33PNu/uC9vw+ugKz4QVRYf/4lvOueN6OpOpIbRdZNAtEkqi/GBz/4YW5+0410dHVRtRxESeGOW67FtC1sZFo7F6D6fRhqAL8qk5sYIpJKghAinujFdEtMTRXYufMwC3qXU8yZpJJxNE0hX8gSiYWpO1Ucy8F1QJZk/P44ntyonPvUbx8lFItTtyGZSlGumfjCMUIhFXBJRJMs718GsoOs6UiCSMCvUauKtLa1oKoCxeIUX/3yj+hoa6MtncCy6nz4r/6OjRdu4PjoGJdffQ3vvOsetmx+gZve+EaGBkc4dGCIaDhOvlAgEPCztH859VqZm2++HtuuY7tB0v3nIfskWvVxfEqRZ5/YRii0nLWXbWQwO8jGjZ0cPLiLycw4miawfcswP/3e94j4trGktYujIxkmau0Mj2Y4b/UGPM/DsT2OHDjCU7/ZxEOP7iSVslm2JIoihJA0h1gsiOuYWE4d27GwbZFSxeLCC9/A2PEyjuwjqAnIosVDjw9y5aXrsCqDXHXFMq64PMTOrUf47rcf5Lw1C7jz7nu47fY7qFVNHnv4EdoSSYoVm2q1jqJBPlNF8WnsfXEfk1OTmJ7Lpa+9nSc27WYyp3Hdm+7ik5+4l2CknSefeJZyPsvtN52PT8rwutcsxisfBHsnaxdFOH+JTsqYQNMGuWTjAs4/rx9N9WMk+lhx6Y24rogoWHjuLAe+N92VThBPEiSnGD5z3hvNtZI43QT9LHlszQBLMwo2b2BDEE7lcya9djrK3qxif9pCLWfR48+VhLnJ6TPLm3rcXAB/43xm5xiKNCOa//uRO+F/tRrjq0S1WmXeQTcjd57X6N3SbA80kyP0CpGvc6vv/E+R6504zikh39Msf2XUMIRneM7JxQNvOlLVDHcLzYGeeSyn8Hmpw5rtCpoZyll2Obcr43oe0hx42lw+88GnhFnrT1o+41Q4Q3uGExufzOucRnwWlrO+n43f0E8+TCriO8tW53jcpl0tgGM7OKaDLHlIXp5jw1VCYQPPhnzeQpIlssUiPR0xRkbHSKeTSLKKEWhEbAYGRujpaUNWRCzTZfPWPWxYt5Qjg8dpTUfZ9Px+rrhkDaZpggeqIc9Ug3RdF9tyUFSVarkKCPgDOpbl4TgW4CAgYjs2PsOHZVvUag66Ljcqc4sKzz+/n+XLOpGVRvlmWW143xy7YSg0PHIKtu2AB7Zdx0NEVTXwHAQRZEXHdWwc20SSJERFA7xTvHezf1mmhYCALEmMjE0RjwZQdQ1PbADzHNvGEwQkWZ4Vipv+7xSvZfPGnOb3HHrLv+/m/h98h0K+xGWXXcnVV13DP3zsw/j8fkzTbETDRRdV0jBrJo7lsHXTkxwfn2Dt+g30LlxArV5H01Rsx8FxHHw+P/VanUP7DhMKhJjKTJBKxkH0iEbDOJ7L8ZERuru6ESURXfMxPj6OaVsYukGpkCMejRKJRdix4wWCwSDReAuOY+M4DoZhIIgSjuMiSSL1eh27ZiEpAnrAhyC4NFoZwFzQjCiIjePICoVCnkKhRDabZfnyFRw+fIRKpUwoFKKzs53C1BhPPvowv/jpjzlv48XccOubiaZaqNcrhKSGcSiJcsOoFSpIShDbE/FUBVtwEL3mc37C2dScq41HRjypLLcwR1k4m9xs+tVmthI9HE9G8AR8uGQzBxjLZBgaG+PiCy/Gqwt4noKuB0D2KJWL2O4EX/jsD7j+6lvJTI2zdGUUUfEjG4AX58C+AX7wje9z621X0L/yfD71yXu56623Y+g+fEaQfbt2MzKaZfmaDhKJThShQtm0CMZTODaojo3jmRw6dIjuzkWU7CrDx15ked8GPFlkYGAfa867hOHhA/iMILKsM3ToGLffdiu/fuIhgqEotmVTq9UIBAM4toNhBCmWclTNCYJGNxUri64bqIqKZVu4nogig2uDY7qIkoPr1rAdKOTKFEuT9PZ2gaBjIWLgwxEFXMEmP34UXdexbJlAKAKShyRI1OxGMZxnnnyEjSs6OT7p0rN8AcWCh67pbHv2ORKxKC3dLfj8AQYGhohGVQI+A1wZy85Td3WikST7XtwDnkusJYqmiuzduYPlK5biuiK1uk0wHEXRBHITdfK5Cbp6UmSnppgcz7Nk6QomJoaIpdux6h7FXJFAQEWRXRzXxjA0BgYO0bloMYKr41gOolgmk60SjCYREFAFC9u10GQZwYPh8SyqL0JLOkg5X8AsVxgcOMLCZT24oh9F8qiVJrBcAduqUy2VicdjKEYas5SlUChiOR5BLYykeRTKJQKhBJsee46Fizrp6GwlEAjjyhaGz8/Q4DDpVBvjI2OkWqM8+vivueD89XiihSQHyB6fpLclgiMc4blnHuXo4Dgrlt/K1m0H6etfTyGfpX9ZJ4GwyAtPPYwmT9HTKpAdH6LmBdh+tIsVS7v51Be/T0Av89l7/4VDO3fx8I9/xvMH97BxaQTJ2sWtb7wDWS6CKFKt1xrFN5wywWAnSkBnbBwsZSEtK9bir1U58uIDOHKJwugxutNpymWXRDSGKUgMTY3z+BNZtm/NsWjFUm665SYWL+3k2U2/4Sc/286ff+AveHH/FvoXrkUJqNgVCyNg8Gd/+UE+/+/3Mjw4RDSYYuDosyRiHShKlHf//ru5dONaOrt6GTq6jYFDO3jLHddSszbztS9tZsN5UeIxHddJ4g+oZKdyrFi+juFJgeSa61m7dj2IDtBwQDbRQU3H+exc7VMRTnOKhUzLztm6aVOeNnk7njOjE85Um5yNSKOh20rSrKrBzZ6g079dofG8nUnXnrvPrMHgOg6SJM+z1+z9p8dinzyGU+nEckkUmTsiT2gEYdzp82vWxJydgiN4p+P98khR1XNWpv9/GbkThOlmstMTdnau3Cui/0FDWJgVej5Tvt2rF9+Zy3e+sMych785rDm467Mzf+Wjnh39Ek4H1+TsEbcZfpzFCGtGVubhPx81Mdqn9SbN4d0YxCs0fmezZJbBeRZ+/+f+rbTpGSJ+/ZyNgNMet+nEEhtRqFyuiCAIyGoCXc1RydbxBAFBcqnV66QSYUTPw7Q8QsEAiq42jCtBQkRE0zVEyUUUFB5/6kUWdsVJpWKoqsKCBe04joUgguFTp4VoYzK6XqOBeQNWJ2CaNtlchoC/kQcILpqqoygy7rQTSNVUJEnAcRxq1Tod7a2Ah6LKOLaDbZtIkojjOsiKjGN5VKplNE1E02RUTUdVtUYvP3n6hSMJjWIdooLnSTh1C03T8LwGhOOU56wZ8XXBtCzwBIaGx0gmY7iiAK7baLchNmAh3vQrpvFiPtP8PctvwLZd7vyrz+A5Aqqic/db387NN1+HLdYolgsYAR1EcIQ6rmfheS7BcJhUS4ILLtzA9s1bscpVQvEYkixRKpUolcvYjsfRI4MYmk44FOX4yBA9C3rw+w1wXXKFIslkAsu2GxE702b//v3EolEkSaKYz6FoKrIioxsasqKgajqe61Kr1giFQjiChSc4qKpMrV6hVjKJRCN4goMguNPiYdrLOwvmnsll2fr8FpxSjj/9oz+mNRnjkV89xCXXXEs8laCruxvb89AUGT0QpLdvKTff8TYuOH8NaiCKJ8pooksVFcmnY8kuVcFEkGN4kg6SiouF6NXwvEbbiiaqo5mDe0KuzE0POM3DdZZbPONV92ogSgiuwNF9exBtgfbuflo7l+DUJbSIj2wmR7VSwq+DXStQLhp89t++yLt//+0sWtzOBRuuJai3EInKRALdfOPb30Bx/dTqFcDPZZddjOOWUXUHwydQyI6zffsuKvUK/UvXYpVz5Etl/JEGJPeH3/0Ojz/+OBduvIhy0UEPpPjo33wE2QuzeMlKYgmFSsmmZhbBE8lWyqiyzje++QPecMPN6EENJAHLdZAUhUw+R74wge4X0XwOriegaz4EoGbWwQXVkymUs2hBA2QVQ7XJZEcJBAxcx6ajcwF+TWoYc6UCmqYwmZ2kXq0QD/sb/eskCReBQiXPs48+jwccHz7I6v42nGqGeEsvuVqNgC/CNVdex3ve9R6++IXPc+XrL6VqFYgmowT0BPv2bGfHzofpSHTiD0fY9sKznLesm4nhCdq627DNIos707h6EMey0BUJnywjiTY+PU4gEqNUL6E4JRIpiWzmGGGjBVtR0DQVn1/AMifw+VUs08JvhAgEIhQrJrJoYFsWut9C1v0IsoyqGLg1m1BIo5QZRZdB03Se3byLto6F1MoVEpEQ1VKOeDqGZSuICOQyo8Tii1CEMJnROp/4+H+yYHmcUnYMAYk77343y5avwPBpaKqOT/XRv2Qpk5PHMe0yP33gQVo6DWq1KuFwnGODYzi2ybGhg6xavZRoOMrhg3vRTJOHfvkrYitXU6jFEasdXL76AqzyQ7TE9lPJ/YqAOIhYGeDRB+/jvFVhwpER4qH1TNT2kW7tYzgfIxXweNM77mHFwjWUS1nGjh0loBhs2XScob0jvO8Pb8AXy1HLWgQCQURZIxJLUCtnqZkilp2jUhxB9a1Ei3ew7enjtCXCkNtOZ0srNatOIOUjmzlKtSDS3dZCV7vEioV++pd0cPvdf8qvH3qCeHQZb3/XOxg4fIQVq/v5m7/+GK+5/FLu+48vsOK8tQhGgIW9YfLFLLF4C2rAI+Zz2HdolGSynfNWr2DVJevoau9n3drXUZzy85mvPMWH//YHGKGV7N5f4Pdu+32efXYHlVKJkaEh+rq6WLH+ShTNjze78rvXjKg1xcvpjbu5LwyBk9FJc/WsZqRO5ORiLaI03S90Wv7KqtIwEE8TsfMEzlp48LT1K2bglGfW85s1N05/7rPPen7DrrHaO2kYYlOqz74ur7LG/jsbuWvS7IvrOs6rls90St+MeTwITc+GKIgNr8WJFWfkPZ9HZO4yOHtURjiHbU4we4n3XuDkCN//FL2SOTkr2nimVhWnQRnOGsJp9p0N+eTEXHtJIf9z3PZU0NbLoyaf5pzyaESLPv/h9/G+Nyw8mfkrlEWe14A8ioJEvVIkEtQ4PjLB4LEcPT3tBEMBqpUyuVyV3gUdiKqEazdMFkloXFPLaeDXbcdj4MgomiLT2dOCbdZRVaXxwhAahk9jzA2hXipUMAw/P33oOS6/aCWVepGOzhbAnb7kDUNtplH9dHTWcVzqNQvbcQn6fdiWCWKj6I7n0ogmFbMUp0ZA8dHS0YXgCSCccMR4gOe508vdhrXripTyWXBNgpEwrqhi1ywUVZnJJXAdl7pZR5YlRBHKpQr+YGD6PnjM9h6+2vSWe3fx/fu/OXMNXw7VqjWO7txLR28PmVwG3e+nbtYIBiNEIlEEUaKcK1Mql4nEIoxNjBPw+6jnM+x7cSeKz0/XguX4gwECQT+ve91r+e43v4miaeiaRjGf49nnnufiyy5GUXV01cDn9+FRnX6RS3iey1SuQDwWo1arzRSPaVQta9wfRfexe9M29m//NccPHmPF2l4qNZvLrr6Rr377x9z93ncjKzKyJGHbdiNKOpvOEOFvXL5Tr9/MuuZ7YMaLKzTmyoxy0PzbrL7bXD/XETAXBnQySQh4oowsCex9YRO+kEqpaNHRtQhJA8dykSU/glLEcxWsmoyiCChumcxUkTve+j5uuu56FvXGmJr0uPnOW9i69WlwVFxL588/9E6++qXvsnfvYRy3xk23XI3piGiiTbaYR1L9iGaJwWOjdHcvJhQJ8p53/RGf/ux/YNqjbP7t80TCvdTtKstXLmByapDOjjTFfJVaFTo6eti8/WmWLV1DtWIiKwI2NYL+MOVymYBfRtU8KlUbx5QoVQrEE0EMXxjBVanVa/j9Ogf27CWeSqH7GjmuqqKSzU4RigSplEq4tkA4mACpzuDgXmLxDnQ1zNEj2zGLAuF0gFJWp7s3jiA5oMioWLzwzBPEUmlau5Yjq42IulkDmxKu7SMcSnDw8Db6+nsZGhylJd6O65hUyxn8sQCu4EPwZJ545BEu2LgaTVcoFLPoukalkCcYilGumKTSbZTzWWp2lVA4joDKjie/yarLr8KmF7M8TimfIZlKUa9bVMplRMlHOGpQLhcJBeM4XgnBDTA+vp94NIGuikwVHXRfinwmQzxhUCrkCUejHNx/mIUL+3AsE1l1KRZKeK6MEfZTyJaJRDRqtQI+Xxpcmd889ggXX7IBUdHQXAdZsZmYFIiEZJ7f+gzpVBxFU4mGU/ztX3+U995zDwsWtoMQom5OcmDPdiaPV0h2p/nyl77Mxz/2T+zdtZt0V4TW1EJ8eoDNW/+bzlQaSRIYGT7GC1s3s27tWrpaq0RCMfbu2UbALxJO9GO0bqTmhjjyqz8nmLyQcTlGMNjDYz//Jne884OUshk+9Jfv4w/ecyc/e/AZNj/9Wz71iUsJuhKWWCUQ8FEqlrEdh3g0QKFkI6oR/NEApXKEF/aOc82NbyOfn8Rf20J5Mo+qjjGZnUSWTYLGQiyy5AsSAbmNo7k8+4/k2LOvzo4dm7DqMVavS7LpySN88AMf4+pbLqFumoyMjvCNb32H66++mMX9PdQdh3g8TSaTA9vFr7Xy/ObHuOzqq6mVynz6E/+GXalzzfUbOTIwgSwG6exsZ+Hy1VQq4zz47R+xrt/Pzs33c97Vf8Wqq1+H4kwbJoLwkiJ30wtPfHdP49Q+l35wnCk6djLNRPDmbC7OVoXFE0Gb2ZHD+SJ50NBZRanxrn05NNNWSPAaBWnmMeJOR820jVeLfqcjd3DyRX8l+UyiNAe2dxoo3uzlMx6N6RDxjNf2LGM4pYeRcGpfo3OlZi+lV52EV98T8aqTcOKBPpul+4rOZLoAzUyy70uhl2ncvVya8fDPmlOSJLHxqhvZ8cRPToZovsKDiqKEpmpkJ0YJRRIIio+gT8YpZdCDQUo1G79PQ1NEpnI5NJ+GKMs4jo3n2niugyhLSFqj50w6GScaDWLVqkiShKqpJ3omznruXNdFkmVURWFBT5qBo8N0dqYRRRHLtmaqYjXTRJsleKrVOpLY4KvrCpZlYVoOjuciSAovbNtLzAfl3ATBoESyvR3Hk6YNu4a+LdAAvni2S6mY5+jgEILrUKtU8Wwbx7I5eHiII0dHmBgbp1Iosv/AEYaHhqmVKuzefQhNgmODI3R2tjdgI4I4nYz96tyX+eihHUVuvuXGaf4vvVqtLMkoskyyvYvDRwcJxxOIskIqHSVfyBEKBvFcD0kxqFdNvnbfV7AKVb73ne+xsLeDxYs7OH7sIMvPX0syncR1PW6/9Q5E2SUUCaHqCqmWFvr6+/AH/Yg0GndnM1lEEVRVY3DwGMFAEEVVqdUaxr80q9JZc4pYJZO//os/413veCPhcJjHNu/i1rvegRyIYYRjtLal8RkGA0cGiCcSL7mg1RllwDTSgVlKQQN9MOu6T4/1RKW1eZShubbenNUiAs18hKEjhykWS8RiMaLxGIbhR1Yscpk8gYAGtsbrrrieW9/8+kbuajDNrW98CyvX9rK4fxEvbB1gYOAoiixyyeUriYRT/P67/og77rgbRXVRdYdYPEAi2UlmYhzbcYnEEmi+MLoeYmJkDNmzuOaaZegBmVx1nL/80N/xB3/8R3S0xZEEF18ghiDKRGNJduzYw/Obd/GjB+7nTW+6BcMvkyuMElL9TIxOcecdd3P7nW8HWUcSHfz+ED49Cq6GXc1h1W0qxSKPPvIwL754iNauIPFUEsf0YTs1DMOH6zoNR4oY4NnnthKJhEmlW7HqNURPIxhScTyLZNdiYrEko6O7OHZoO5LrkhsboaOjHX8kjqKHcG0Ln8+PJOk88esnef89f8xdd9yKLFbRFQHd0JicHMEX1Mnl8xg+AxcZWRSYnBhhwaJeJEkmGAxTyBUp2QEk2YcsyLiWzfGJCql0mGJujONH97HmgvMxcRAJIbkKgZDI8aFhEokWRFHH8EtIkkixWECWRB557FG6Ohbj86uoikZ2ahRJkVE1H5/8l89w0SWrcZ1G1DOZTlM3q5j1KppqYPiC2KaD65mEgn7K+TK1ionn2YyOjNLZ3oIsezy9aTvJZCuiKlC3BWrVETrbu1B1g2AggO6HC9atJRAIEQ6HmJrI8A8f/TRvvPVuPK1OONTFr3/1BPFoC7955Ckuv/Ia/v3e+zjv/DWoukgstZByFdo6+4gnuxgczmFEgtjSIkpignT/+XhyNzU3BKYFQoX9ezaxoO81ZPNVVqxcii+aIJPNs3TpWjq7V/Drnz/Chev6iUdNdENFFOvs2TXK1LjFor4WXM/Gw8Pnk5mYHKE7HSYcUImlOinVQmitS5BrJlJlAEcUCPoTFApZTNvG74ty4z1f5aqLFtMddli7JMCVb1iGv17lxhuW0tvdxcO//Al//ZGP86MfP8ANb3wD/St6kD0JUTL45td/iqa0km6NoUgKdlVgePgwibYkkiQQS0S4YP06gvEE/ctWoeoB7n/gZ6xYuBpREWjvXs6LB8cxxw9guhIr123EEeSGnJgVaWvmb59OfgnM9AiYJcPml2/nqvucs440K4J30v6zxLHTrKA5i+8Za2EIXsPp+gqoKa9n1+w4l3M6Xd7ey6Xf6YIqcOKiv9JCFae84Of7PV3Bx5v1rwlhnLfIxjxd7OGEcdes9jnXOHspqsYrNuxOA3k8af25sJm74FWEuunk6AAAIABJREFUIZ794NMq/PT1nwuZPBHfY8ZQO5dRuTTgnM3yttVKFdXQppOPG71RPDgzNOA0eXxnuz4vVfmeS/M5C1pXX807/vq/uHFd4lUxIITpZOtAwOC5LfuJRSMgeui6Qi5fQNdkwtEIRwcnaW1PIYgi0nTSsTzdSFsUG1Es1xORRIlqtYooMQ1vnFZ8T1is2G4D+y5LEh4esiqRTkexHYd8voDPb2CaJqZpN3rcqdr0nBAQBQlJFhsQPgEs20XXVBTJRXZt7PoUqlwgGnEZOT7KsaEMiWQDvonrYdVMxsemKBUrWJZFLlMgGQ0R8vmQkYik4iiqSmtbiva2JJ1tKZKpOB1tSTo7W0kmg/QuaCEY1AmGVF7YfohwMICiqicS0Wc7Kc7lHp2jsLj1//vE2Z/1Mx1mWu4hiESiEYYHB4lFIoiSzPDQKIKgkMnmuf8H3+eiizbQ2poiHAvztvfcTSQRJRANEPAF8CQNQQC/389TT/2WxUsXIUoigihgO/Y03KeR86SoCprWuH+O7RIMBBFFGUESkWV5xkjyvBMlsC3LwlB9XHjRBRwaPMiFl97AhkuuQFINZFUjkUriujau6/KNb3yLFcuXoyjNyN2Zr825wMBnWk+cBEUSYBrs06yW21QETigEwsmfuTl5c0bYmCYitm2z/8WdLO7rIxQKUDWr5PNlbLNMMt5CrZZDRMbvC7J48QKK9SIjQ2N84d7/ZPmaXmq2wz/+46e44tINfP9H32bJ4sV8/nNfJpYMcOedv8dVr7+E8y9YjWH4cBwVWYS6aREIRhg9fhhdV2ltayVfzCJ6OpqRJhqP0dPWR2/fEvbu3Eo6HkLU/bz44n5a25NMTE3w5S99m3//3L0Uilly+SkioQSCIBFLtFCt1Vl3/hqyuQlCwQATEyP4/T5EUaVcLXLFla/n2uuu54IN60mnE8QTabKZAooqoms6jmMhSQKKqiApGh1dHSiqgu2CKheQBR+Dx47Q0d1NPj9JMZ/H53Po7FiI4k9h+Hxks3l0fxRQ2LFzOy0tbRwZOMaqFctYt+48ho8fYUFvL64Do6PDGD4N2xFIt3Rj2VVUTcfxbGIRH4Io4TounicweHSYzs4edFWmXi8jiB7pdBpRtDHrdXoWLMG2O9ixYzvhkB+ECrmpCsFQDNexG1HJYBLX0dj+wj46O3tY1L+IgD/J8ZGjWKZDWA8gKTK2a3HBmgvQ/R4+X4RquTHvs9kxqtUquhrCcyW2b9/B1758Pz2dXRwbOMoH/uTPufPOd3LrLXfR2dHDwt7FTI0O0te/AheTfdsPoGoif/r+D3HbbXcwNjbEnj17ScbbUBWdY4NHCIajfO7/fI473nwbf3jP+7nt1hu4+rWXc99/fo79e3Zy/c1vbPTAbEmSSCYwTfj1I4/y93//Ma679ib+6Z8/wW033EImv4uP/O0/sGHFbSgxj2PHtmMNPY2t5bHy+8nk4uzcN8CGSy6mkB3EdvKk0jFUTaOvfwGqUiKbr3Dvf/2YNf2txKOt+Pw6gmhhmg6WaSHJAiF/gB//4CGWLeuhVq9gCyFEfw5JguzUELFgGLMmIes1igWbcDTBhtdcztp+H3ZlmGRMx2WKJd29lKv7WdzTzfo1/Vx9+Xo2PfYEW57ZxHe//XWe+9XTPPqLB9jy7ONkRg6wuncJQ4P72XdwF2PZvUQDcex6jYBPJxaPoOkBPnPvpxAEgYs2XoIquxStY/hCfo4cGeIH3/sFo5lj3HzLW8HQaepB3nSfzrNXy/RmrwBARDrhHJ6BuQvnXjhQoIFeO0PqykzUznNPRr0xR/SJIM2BfzIjQ08YeU3Z3CgqxinvRUFsQDRPWxSmaePOhrUinNQf7+Ttm9fZa7y/hFN7671S+n/G3f+U8XA6aM48UbfT0en6dsxuDD0fz/9VOtv1e6WRp/814+4EzTQsn5Pn0jTI4CwGWXPzaV6O28jtUlRluuiFgyAKFEslAv4AlmWent/pjLvTrD/tdq8S3fymm8+t2fnZsKw0I6YCDiLdbSk8y6JYr6NHooQ1yI2PoodihKMpZFVFVRTMahVXkBAFAdty8ASZcqGIIEg8uWkX4ZCPQCiA6E0L1lkGetN7p8hy44kRmTYMXRRZxZhudK3IEuJ0EQ5ZkREEEdfxcBxn2rhr5Ot5CHiOye4d2/ApWaIhhUg0RjEHViVD3ZSp10Vs08Sn6DiOQzgcwB/y4w/4CaUiGAEDT5WQdA1BEBEUBVcQGnmZogSSjCuKCLKEi4YnyIiyjqIH6EjFeO6FPfQu6GLk+DiBgDFtQM2KRp+NznGiSD2XnNuGZzmM59koIhzav4/WZBxH0AkFonz205/nV798hI98+APYnkWqM02sI4nsiniaSN0DQwnz3Jbt9PYuYGx8hDVrl2PZFoLgnfwBQMSsm9iOzX33/Rfr1q0jk80SCUdOcWjJ0w3eBwYGCASCIMigCHQtXoTp+gn6dUzTRtNkRMFGkGXq9TpX/l/23jvMrqs6+P7t02/v06TRjGQVyyqWLBdsy5ZsbFwwuBdMS0Ix4PelhwAJCRA+CCSBJASCUxwCBAIJoYZmbGxwwRV3q9fR9HJ7O2W/f9wyd+7cGY1cvidt6TmP5tyzz97r7LPP2quvC3bWdG/tGW5fyDw1Y0HUlv5mJXZJq8BH0xtg3nazBOEOoeD3+6jk0khUAiGLSDyKzxdGuBJD9SOUEtVqiWQiiWVG8EctRo4Nc/O1N6D6VIxgkH/71vfZvGGQD/7+e8EJcfjwGC/bvpLu7l4mJ46SyxfRlAA+fxhNkeRyeRwJlpIlGY/yyG9+Q+/gCioVBd3yo6hZIhZ87Vt3cvZpG8mmR4n39pBMpXC9AsVSgd6eVXz605/kmuuvYnJsmj//7N+x7ZwzGB0d44Id56MrNtnpIcKRFBU7g8+nY/l08hV4/evfQu+yFRRKJSYnDrJyYBOKZuAp4+hqGNup4nkelUoJ1TDwvCqKKtB0A6d8CGSAQDiCFCbhQBVN1ZF4OE4MGUzieeA5Np7roRsBvvzlL7P25HX0L1tFxcmQ7IkzMDiAqvlwpV7LEqqAUCyqVZ1gUAVN58ih/cSjQWbSGVxHIqWGbUuG9jyO55WJp2IITaB6RSbGx/GFU0xlHBw5gz9QJaAnuPMnT3Hqlq34A0Gmp8dYtjyFLXNohoJhgOFzsF0Vz9UJBU1UVeeSHZfzqitfSSDsw9RVdu99mvR0me7u5dh2Fd1wiYTCaEqA3/vA73PzzTexbHkCRZ8mXzjEre98I4cPH+GWt78JXXfwBSUJn4InfCjSw5Q+/KEIXYkVJJMpkt1BNBnhuutu5pZb3oZmSH58xz388SfeS37qGM/8+jBnnjNILGJyyYXncsWlOwl2JQkEdXp6Uhw8cJSuVJSTVg1w+cWXEI9FWbd6NX2bViG8k9l22rnogXFS3SvIju7BnHyGYE+cUno3Dz9cYt3m0/CFQ4zvH6Mn1U0+XSQa7GLvkXG+8Jdf5MH7J+hZfhpTh3/NhlNXYnvTDA2N0Ne7CtNUwXNxK5ItW69gYvIwml5leCJDt7ERWywnMZBifN+9qETxlEls2yIcCUH2carVMRI9XWSzCpGARcXVEWKciD+K4ngEfU+ycd0AiaiP6159IVe9MslFO0/h5MF+or4gdvEBXOnysY/fzkxOw0+ZT3zsYxzav489u55j1aqT2Hrqevbt2YOp+xk6kmXz1tWowmTqWAHH7OXBJ+5h0ymnkejvRUWZI/A06M0c48NCSr7mXlsPQapb9DRF61gjbhEi2CYztnkxwBxDCS3X20lfUxG2BE86oBn+0E7LNbWWnX4hWJB/k7P7y5yfPTnPFf9/hbsThHbhbqlJNF4wLLCQFwoybQVP1MokKIra8YXPxu7Ipo9vLUlHPaNP2/GiQuvH3cG83XyGBTJIHheOE7+2ID6LQMM0L+XSy07MJWY0uCpURWlhVOdqfeb10doXs4xboyi6puu1xA/lSi32p31uj2cRXYqpn7lrQBVKPbX+81cIXH/DNdz8u7dxzZmLCHidaH/H1VhjxqUA3TJQFYVKtoBu+LB8AYYOHyHkNzFNSaWSo2rb+AMmSAXPE2hC1gqvKrByoBvD0OpxVHLO87c+bUNhImrD47keqjI7J0IIhKKiaypID89zGTo8QSwWbWYvxLGxqyXcaoagKOBKDysQZyLt4KGRXLaOZSsGiCXD+AIWaAqaqSPqVqam+4cUNApQNyzDAmhGZTfOZeNH2VzLaAqDy5bxm0efZs3qXqSo0YvjCnbP49WrA9sbf7XMajuVETRqHbUfSn2TlSgIRUNRNXTdoFIqMjkxysaNJ/Pam1+DNECoKq7rIl0X26sxySqCqmtz8ilrcZwqlt/Ctt366pl7yBZUVFXwsrO3M3RsCH8ggGma8ybA81x0vebCGw6Ham6cuoFAQwgb27MRmsCVHh6ilsZe1WqZUJmtCTWLg9JxHmQdsblt5x41hZI6607ceGX1e5W2ez3Pq89vw+ug/iaaQu5caP6mUVOAOB6uaxPv6sWyAriOzdjYERSlSMXzsIJdjI+OkM9OEE8mmDw0Si6TR48F8JwiETPKsu44r7j4AiQ+DEPlqWceZMup23jssac4fGCSzaeuZWIsjT9iYpoGAKVMmlhXP7YD3T1dWHoQQwXL8hCeSqkCv/n1Q5xxzpkcGhslnujF8um1Qva6j2QkxoUXX4iqaERjUfx+WL/6ZN7xtrezbetpRCJxfu+DH+XKK69C00OoeoB8qcpHPvSH3PHzH3HWy7ZgGIJ4Ik46U7Ps5WZA1xRMMwCKgu7TMFAZOzZeY+JlGUfpQ9F17GqBsSN7KZWi/PqBR0l19ZHoCmGnpzBVE7sC3/v+91m5bgPf/eZ/8Kef+jPe88FbGR8+hhXuwRMKQ3seQKmMEOoaQDeC3P7lr7Fp80ZM1QHbIT01QzicwB+Mo6g6pVKJRDJBd/8q/JYAqTE6USEYD2D5g7hVB5+hEAylsBQ/piFJ9IbwWz5KdgXbgycfepxILEImk6G3pxdD9fPog8/i84NpKdjVCpe+6pXEkl1IT6NYqnLbn/2SDadX8JsRNCWArvsZGh7CsAxuuPG1FKrD9PatIBHvJRFdRsifIhSPY5g+enr6sXwxFF8U008tQU/ER6Fos2FrH9nCMNNTWSKxEBdeeD4Vu8TBA0f4l6/9O5dffinRZIKDx4bYsfNKspUhKp6fsgum1El2R6mUdHyqYLI8Tbevmy/f9mmWrUqSWp7CLtskYkE0C3yBAEMHh1m/di1TxRGiRpSSLeiKVLnn7v2IWIKJ4aMY4Qjjk9NMjk+w8dT1XHPdtbzyylfyR3/4cc6/6EbufWAP6zcmCMpNlKtDPHPoabqsOIpfx678Bs0Xx8sdJhhUGc4mifZG8KQNbhXHniSTrRIKmRiGh+E5uMKPJw1Mv0ouncZzc1hGFxPTY2i+Mm5VkEh0sXJlDFU5iiFzFCppVq2MEA9nOWlA4jOzXLYzybU7l3HL+27D0FwC5Hly114evP/n/PAHd/DGN76Nr//rV/BbDuFQnKNHh7n9n/+JQMLgiceeIiEnOOXULfjD0VpZNkWAmK2puygfV+dFlHoR7toeWSdEDWeSlk3Y65QsDGataZ7EE7MKrkY9uwa/08ye2RizvoM2/vaEBEVB0ZSal7ugmYG60W97jbzaPfW9Q5nFrtHueHLpQoJrg+eTso3OK2pz31CoWQxf7CSM/+MSqrS6Yb6U8EJKIbQmX+kU/NmueVZVbU5q2QY0AkjdFyOmbiE3wBMVxpY6zhL787xGUprjj+d6HupSLG4Na2nzC2/RYrWM2Z4g4Xhrak67umAsqReYbiFeLya0PELH8xcCN1z3Or72fzecID6LC5bS8/C8mnXTtV2kK/GcHCNjY1SqBVYsS+HzWeimguOo7NtbYnBNL6Zl4MqaZQ0ha1mdW6AR4z07zY23KeobEvXEFI1LCq5j17VuHk65Vsfuqad2M7giQTmbp1i18YRDb1cQTyqY/hCq4QcJUjT6bcREdfoGF3nfS7B8IgWqUJmZmgZcIslY3TNTghQLhT48r5dv7Phg/a+Fgr4X9wVtBOR7UqIKBadiMz01hVD8lEo5Vp00gOtWcBZArvZaJI7toml1HBb8XurlWuqWdkXU4jR1XadWd3zuGJqm4ThOR5w9T4Joe3fHiclYOHHKwl/f3HsEXksyn059ttIa0eJHpKq1ufE8p+NITTFcA8VVMTWd7PQoim6gGyquZ5PNpolGFAxfN4W8gqkIpifG+NEd9xMNBfjcX36On/38DlxZoFLIYSgOM5OjCDOFbRfw+/0EgzGENPmTT/0lTz3zAN/45+9QdPMc2Lufg/v3ce6525FCYloaUtiE/FEqZQWhlhkdO8Ty5f2MjxSw3RI9vV3kcmVU3URVPd5xyy2869b3MjQ8wSWXXIDtVfBciaEpjIwcZeWqAQqFEobuQ2gqQlVwXBuhariVmgtupVohFouiSoVyJU+5mkPTVFThwzBDVOwqmiHQ8XBdyGSmUTUVK6xTKdp4FZXcdInB1WvwpEOxkMPxbMaOHeXTn/kc//D3t/OVr9zOJVdeTswfpVy02bP/INVSgTN3bkJRbQojVb56+9e5+g2XkUz2MpPJEwrHsXwmpVIR0/AhpE56ZoTx8QmCoQA93T0IpczUxBSqEuCJx5/j3AvOIZ/L4LdMBOCgowuHSjlPKBanUMhjmgZHDw7x2c98nj/42PvQdZ1gMIQQCmPHKoSiGiglXNchaGnk8kV6upZRLFbZ83SentUTJGObSGfT+H1Jpif3E0/EKGQlQsuhGj727t7NKRvWk8tmicW6cV2Jpqrkcnl04VGsFskWHGLxPu78yX9w8aXba/GFjkB6JaRUqZQcfnHXfTy35yHeccsH2LvrEGMzB9h58aWomo1phHCqGjNDR1i+pptsFsq5CXzxIE//eg9btgwifAa2oyGlg2X6mZmZRuBhKgJDhZI3zfiEDXICjv2MBx+b4Lxr/xDLZ1EoQ3/Pckb2HyGYCvHlf/wiN153LYZucsnFr2Vw2Upec9M6dj1+kHfcPEDBKGM6aUqVEBUnzsc/80/86cduJJefZuXpO5DeKnTfSo4M7yJhHuLY0f1kZ8ZYtTxFpTCOphtIRaNcruBJD7+u4ElBuVolnkySmZxEtzzC0RSVPJQqDplijK//3RO858MbyEwdpOr0cHRfknjfg3SnBjg2ugdRKTGd7+O54SD/8q/fw+8LUJQ6kWAPb37Lb3PeznNRFDCxueKVV7Bj6xo+9Fdfwgom58TZSbFE4Y6WxH5tCVWaCQOb5bGUWg4xp3PSwdbSZNAizC1U1qDtfsd1EPXMn033dbdz+YTGPS5ek/YCKA3ZtK3dicIsvZ47J639KfXzF7t82v+YhCrt1hWlXqy2wWwqQpkTy/ZCoTleuzlYqRXObdTwqOmCRfNaTXqQ83yB2/2DWxnkhs63Ff85cX3NNsfnFxd5oKZA0jxfrN1C0H5/+3kn69UiFsKOVrP6Pe0M0UICYNPKWGdAa3+3aMhbXPsa/bmNzKoNzQwLz+2cWL42UFqEPGWR51y64DeXyT7eXS9kbVx/wzVLc9E8ARBCoKgeqq5gmBqGT0PxR4nFu4gGghzef5jJw2PksxlUHRQDgqaB51YxDR08d9Z6BS3zWhcQXA88iaYK7KqDa0s0Rasx/K5LJV+glM+jKwq4DtmZNJnpNKX8MYaPHSXkU3HtLGogQSQeo3v5clRfGNMKIDQLFAUpVGreLTWrXG0NdXqvi22YS5msmsBj+SweeuQp+vt68By3VoOpNplz278Aif417/8S199wDbMr5XidzR1bypZPvX5i6Dr5com+5b04nlfP1LZYv2I2++mi38MsLRF1aV1RGi5Gcl47b4FNdfZTbL/eeewF61k26VDr/bNH05Lc8kytLpkLXe9E+5pW3cYUUKNrQtas9k3rtFKL9zhy8DACl6mZCSzLRNNUXE+Sz06jqEE8T+XwgX08++zTfOTDH+f/vPv/sP3cs/jGV7+MqYVZvW4lE9PTlBxBPB7BE2UikRjZTBUrUOKUDeu59PLziEajVF2HWCzM4OAADz/0ID+74xf8+Cc/4cKX7+Shhx7C54sRDAfQDB3D8OMLhAiFAxRzWQJWEEXxk8tl+cbXv8Gtb38He/ccoa8/hW4KDNXHo48+ysbN6/CocPTIUXq6+imVK/UYZwWhqBi6QFUFxWIJ07AQ1JSjEhtfUOfJJ54mGIyi6gZCUalWa3Ft+UKxVvTZNPBsiaIYOK5EUW0OHtpHqiuJAHp7e7jssisYHhrGMHV8wQABn4EioH9gJZVSkWq1QHYmjc8f5bm9+znn3C1IoWD5/aiqRsmewQp6OE4ZKRXsSpVgMEAq2UW1WiU9M0w03o9hGIQDYAVjGJqCIlw0HRQ9RKmQw++zqHoCzfBxaN8u7HKON7zxzSiawvjYGJ508fktPG+CUjlNNNjNI/cf4NFHdrN9+w6e3f04il4glrAYHttHLNrHTG4fmbTLgYOHWLVmAAUfqq4ydOgwA4OrcKVGOJKkkM+STk9iBXQKhTQeFXLFaYIhE8unkYr3Ew514Tcj/Pynv2B8fIyenl5M0ySRjLBxw8koikkylWJFfzcHDu4j5O9BUSt4jkSTGsKAL912OyuWJ0nEkqS6VqD5NRTVwnF0BC653DSFfAGBgal7HNj1DP2rB/BFB7B8ESLhGOFQlQNPPEHf8k24Er76z7cxsCqIPxBj377n2LljB/fcfR/v/fDrGJ8aYiZ3lF/eNY5t7yfcexZBXxVTVPEY5ZTTN5KMzIAcR0gHWZzhZz+5k5ddfC1VL07/wCa+/Pf/wJqTBvEFVCrlIoqQJLv7KFQlluKSyU7T29fH2Ngk/oCPUqmKXS5TKRfQzCxCdxkbO0h3b4WgT+NXv36Ap596jJ0712IIi0jAwidgdHiS3U/fx++/7XxOXb2Cg7vGeP9HPsKhA7t52WmbwC7wN1/4Ele8+gaeePh+Nm7ZQrx3+Rya4skFEqq0/iZEk2fu5CIuaUsUKGvZydvj3hqbRM1JRTZ5YU96tT2thS8Gaha2VpfLRoye1rCKtdDLluQrjaLsnufV6GPzeVrat9HZ1mepoeedkJzQpOEtSfWk56G288EvIvyPccvsHBTa0Oy2+Ah3aPuCoENiFcd1qVZtdF1HVdR5QkiTb2pk0RQNIW3+Imu9rxX/lzwObzHhbgngybYP/kWc82bfTZQW77v1g4OGB2ane2ZdDWpBsErdNaB2LGaaX3DsFgZw0aQ+S5yfVsGmdn689i8MXgoBDwyoB0FLQBU5VBXMYITU8gHiKwYJRLswjQDZqUly2UmKhTzFfJHp6TSxSJhG9dFyqYSqaUjHo5gv4jkuCoJKucTkeBoVhfGxafbuOcj+fUMMHRnGLpUo5QsUc3lMVVAtlzEDAUKhLoLhLmJdPfgiJoahIl0HIam5RApZU7G0MtYIFFlzw5wPL3D2hVvLmC8dBvu7ePThPaxY0YsUEk+ho+vL84X9w1nOv/TVLF0NsMiaB1RFRVUUAlGrvu41QAcx34L2gkF4NUWeqAt3TS3qiSpMmh0ubdiGUqiN0ajRidrR2IcWphHHu77IbY3/GsqNVoFQAeEp7Nm9i5UDywlFA2h6zWJjmj40RVK1FXRDJxbT6e4Oo0uDTaetZ+2a5Zyyqp9Pf+KvuOxVl+FpFuHUCqr5CYaO7uP+Bx5h7UmbUTTQlQiabmCXTcpumlDAYmZmko0bTsbvS3H99deiqJIV/f3cceddrD9lDZpmABYHjxwiHovg2FUeffAxdu09Sk93klve+mbSM2le9/o3c/U1l9O3vAu7DMv7+ikWZxgdHWZgxUlkMzavufl1vOENv4VQDTRVZ3p6BEVVCfrDqIpGoTBDJpOvZdZ1bQYGB7HMIFVHomka1VIW262gqxaG5kdxrZrbpnAJRA0ct4DrVggG/Tz22CPE4wny+RJ79+zl7HPOwheI41Yr3H/fPXQv62N6apxwIEky1sOxiQOctf1UMukZpBAYhq/Gj7gm5UIBXIuxIzkiMQvDNBBCoKoqpUIWM5AEKhTzx7CCCaSssnfP08TiIVDDOE4F17XRDAPXNUnFAiSjARwhELKWTCqRTODzGxzek2flwElMTB6jfzDBqo3LCET8hCM9uG4US1cJhZJMj6mEYyrFmQjrNq1jJjtNMNyLC3SFIziuYHhkig9/5KNcdO5V/OKuB/n5z37FBTsuQ/fH8VxByAwR1IJogRJ79z1BKGLR0xdmeqxKV3cXlqlSrmZY1rMOoVZ56umHCQXiDK7oY+9Tx8jnDxL0m3z0I59h50Xnce72HQSDGvmZHJOTeRzFJV+0MbQgnlcmkYrguh6hYJzczASiOoNqlKl6ClEzxNBMiJA/TcId5dFn7mXT5jMZGDiV9IxLNj/CtTdcT3oqg4JJLLSOC3aew2+e/AGbT74cX6rIBz/6La6+/GwCxgiWW8X09WMpKpobZCo9TdxfZXrqEHp4BfFl66g6GTasj4E8QtVWiIT8OJUKqBqOakIlRyQWQKJg6kHSuRmWpTYgXRtVTeMWUoSDCVat8dEdOINKIc+KgQFOPsWP5Q4wnD6EIsJEw0EcNc9pp55BMT/JshVxirrC5/76dq5+5SvwGwqUK3zqs3/H2edexNjB3dx77z284urrUdVZoUWyNOFuvgv5bMK/hfjqheLeGvSqlW4pyvy4Ndd1O+5xEm9W0KvzAbXcB25NkVvHqTWT5byMm/N6nftMAoEr3RMS8OYp404gTOj5wH9/4c6tfLSxsde0wg2pWda1+a2M8NIz1jTrWSx0ve6r6zX8lhsLXqv5Jddit9oEgpYsaTWEaotOUzRc163FkGi1eJR2XFqFuXbBrt1hqt1a09DsnhAsYC2b8yyLtF9y7ONCFr1FQMIcQenZctikAAAgAElEQVREGaPnK9w3/bcbSVfaLHbt8ZbtAqWqzJbTePKJp0imkrUsiB3waX+Hrb8vCVeWZn9pv6fxXlVFba6z62+4hj/4wh0UpodYuzx2Aj0uBB4N5rcGBqCCJ5HSRROg6Sq66SOcSBKJJDBNP279m96z9xBHDh5mcuwY5XyWmfFpcpkZNOExPjFJtVKkkM9SrVSxfDqxeIiBlX2sGOhl5Un9dC/rJpqKEUvF8UfDBGNR/OEohs/EsGqxkTWLnIoQKohmSVJmqUh9hgV1wW7eV/cizJNSr5WngNAYGx7G5zMw/cH6723NX8CwftNl+dbLjtOq1rmiKIsqIhVVqW2mqoL0akgpikRKh/Y5kg0tr2iP9Wt9oIVj2Oa0qcc4Hg//Vqi56jb6b8TSHWcWjkPb2r//Tm2fP/2anZsaQ1R/5madxfpu4UL68F78VJGBKKZi40gVM+jHLqYxZBVHKsxkyzz68JMM9K/ljLPP5IIdV3PeBduJ9w5y42uuoVRycUplrnrlhfzkB7/kNW98Hct7VzF8aIpwPIzjughF4g95TE/liEQiBIMhSpUyiWgMK6RgOzrStvnlXU+w9bST0fQS+/buZt/TT9AbG2T3ric4euQo+3YNsXnLBgy/ztToFMuWd3Peudt582+/nR3nnYcvLEDVsPwRXKFgBA0uf8UlCOGhCBdFOPj8AUwtiKIIiuUZIpaGJxVyRRtFtcBRCAT82JUSmiKQioNh+NC1MFdddSODq9aybFmcPc8+SHF6hPTMOAOrNhKK9KCrOtFoF+97z+/x/e9+h6uvupSqY/PFv/oCmzefRrQrxb//87+x7cyNCMPFsoL4rBjlYoFgyEcuXSQYcnClis/vY3o8TWYmi+tmCEUDgB9PK2OpITzHZWpqDCsQwO9L4EkNu1Qh6jMxwz6eevwp4tEuslMTWJaOIx1sBD5/iFJmikA0iSt1sB0icY2j4yMI3SKRiIHrcnjPc2RmJgjE4uiqRdUuMzlzEMsIkEj5qJYqKFQ5enAX8WiMvQePoOge6cwMN9/4WsZmDrBq9Up8IZNQWEd1Fd74urdxzfU3cXDoMJY/Rm9PD8VyhYN7x3n6iWfZuvVUHn74YcZHM4SCQT784Y9w1pnncGzkGKlwih/99EesOmkL0USKbaefxv59B/CETTiRYObIM6TiKXy+Hg4fPkIoGqSQHcJQAthVG9P0CERjeIbK1GSB5V19oAVQvTy6FcYJxelPxvncH7+fU04+lW0vPwdZjXBk3xCx7iQFSmDrfOL/+xiaDDAx9hznnvM7nLbF4Ne/HKVgQ6o3RrUwjM9UwdQI+KtkymMMrjqFzNQuTGlgBLqI9WxAuB52SSVfjvNHH/sGq3rPpDtSpWLnCQeiaEKlXMzzplt/zDmnJRAiixWI4ckqjjsDwiRn70GYFqZXQsooWRngofufYuOmFMVqBkMxsL0pnjjQzf5n05x9aoC+SIzRDCxbto73fuJzfP5LX+THP76L8fQRfFLy8mtvxjLNWp03oc7W3ZxPoFqEM6UeDlCjsQ3a1sgdoSpaM2N4ex+tcW+znmmNpGVu09rVbA91fnqW/27cr6gCx60JcIpQaoIYDT5H1kIs3Fr+BUVRa2SxwcN7HqIubIn6UELUsgkrilZnO2d5uUam+1YBsfXwGmRXFTUjjfRQVFFPAuPVyiK15G94KeC/vXDnSe+jjcDFmgn3xet70U23wQRrKtKd6wq0ZBFS1pKqSCSqotbcLV1vnvC2ZHzbzhtaCFVTF3RNWrizDsLdibR/vuMsERR19l033lMjscpLpi2p99uw5M2/vPC4TffBOiS7UuiGvuB6XainExHuThRa72l1Ywa46BUXcMr2V+Eevvd59LzU8euKmfrfDSFaaiZoBoY/iD8Ypm/ZMvr6egiEonT1LgNNx/V8mH4/XX3dhGNRQrE4sa4EVsCHauoID1RNq/dZE5gk4LmSpsuGaFEGvZRU+XmCXS6z9+Awg/29SNFBuFsidIoZ640F2F/pJZGML3rfrAvywv23FsSd9aiRHYVC0boBLwgv1svo1E+r1WzxcdotdC8Ik+cZGtBa927Oe6hr7xrYHdt3gEcf+A7F3EE2nXIaJc9m167niEUSWGaIfLGMZlhUy2Xe/c53ctbLziBfgO98+7t84P1v4dtf/ybdfV3cc/cv+Pa3/42Pf/wTnH7GeqLxOOFgjL279uLaJW68/kZec+ON5DMz+EJ+PM8jn8ujqyYVJ8uhw3t4/3s+wmWXXsH2HVs5duwIimLS091Pb28/v7j7QXa+/EyWr+hlz1Oj3P2re3nZ9rPRNMHJ6wcoFfNcf8O1+P0+br7xt9m29QySiW7yhRKmbmFqFoqm4LhlFMVDqAZC1LLkSgmFosfIsQnC/gAqDoFQiKmpKYqFItVqFUMtE/D7KedsdpxzIe//4Ht4xSU7WdHfj+toWIEg4VCCatXFH7CQjuC0LWdwwQUXUS6W8FkhLrnkEiLJCIoq2LRxJb6An2LRobtrgGrVwx8JIhH4AgmqsozuCkzTR6FSJdHXha67FItFsjM2pi6wTJ2R4VF8VhC/P0bQb+JKA7eqoil+jh47xh0//QXFYplTt2zlV3f+ir6eHpyKTTFTJpPPkUwkGTpyGMMwePzhu1m5chU+M0hA8zM2OUpP7zKEYhDwB/Acj127djG4ajX+QLDm9TBzmO7kGgwjgCfylEpV+vuXY+gG+UKWnt4klhVk5YqV+ANBvvuDO3n0kQe59KIdmIoklIzgulUswyQUNNm4eTOFygzL+nsIhQMEowYXvfxKYtFelq0IE/Cn6lk/TUzLpZAZoac7wc9+fAdrV68HPcye/ccI+Hws741TLaSZmB6lq7eHmfQM0zNp3NwUgUCIVN8aCo5F1S3w55/9Ilu3XciBg0XiJ63lrLVRSiMPc9cP/oRlyY14QYuKa9AXW8Fd997Fre96G4OrB7n4sisI9MU4NhTil7++l/2Hsqxdl6S3bxmOnadUSWNnLITQePSRKX739/6DC7draFQp2QahnlOZKewjV3ZZt34zv7rne7zsZSEMI8BMegaJhyOrXHbJWQQiZap2Bp0VVJxxBH2MHLOpelkGetfgqmPYoovXvfnvuPLi0wkGwOczse0yB6eq/Nlf3MOFF/SDCDA05XDfk8P09Q3ylre+gScef5C/u+3bZNMz4E1w9nkXEonHQdSSibWXGZhLoxr8jtqR7il1ntWV7jzPs0790LbvqGpdAKPD9Tkxx6JJ+2pu5W7T4NE0wHi1bNdNhZmizMWpPYRHrVn4FKHUFXxzcVfavTHa/jV4wVbcWve3Rib2/xXuXgB4rvfRWV26QAqvyaR1WpBLtSi1v5Zm9p15pua5En0z8w/M9znuBA1rnqAZkNpe5679mFdugc5sSbPiXotg17DizbLRbU/cwSRP6zO0WNrceq2UOb8fD9otdEv0RRZC4CyQMGWWCJ1ArZUW6FTrpSPOUjbbN4S1hmshzNqiOmrqadPWt7RTOxReUduEq05tTgTmr5F2e28LTqLh1tB2j5T84Wf+kZ0bE88bjyXhKmqWiIY2TcFFU2BsZAy/ZSAdF6moWL4g5UqVcqWC6wm6elMoKqAKNE9DkUptrXsgm1q52lPN+uYrLe9EzJ+o+dP0/GGh17eUvgXEohFK+SLRUACpdRA0lrg8FqKBt37qW9xww7Vzu2yNA5ay+f9CSDcTq3jzM5C1ejEsmOJ/PraLXGvzYKgLPgsW/u7U+wsS1hZTwSxElVvv63RdLHDUr7Y815z30CbcBaMhTlqzmsHB1Xznuz9g7cbt9HUvx6t6KJqfsiij4jF29Bg33fQGjh0bR1dLeLaHdASXXHwtjhjnlI0nsWPHdhLxFFLaJJIrUVF517tvoX9gkNO2nckTT/6GbWdswQpYVCoOumZhWQFQK3R3JVg9eAqGZRGOKRw+NIpna/hDJrqp0dO1nGIlg6br/NvXv8F3vvdt3vqOtxMImuDZ+Hx+xsemkOh89fav8apXv5oPffCDXH3Nldh2mUDARAKFXBFdtxAoDI8cIRAIUCzYREIGU+PTxBJxHFlT/k1OTdLT21tPOKLiScHRo2M4jss73nEr0vMIhIKoho9orIeRoWEswyBbKqKqkJ6aJhwM8eijD/OLu37Mpq1bcCQonsrf3vbnnLxmA8FgjG9881usWbMKVYGqXUITFjPTIxw9chjXU0kmU3huhUAozJ7du9l8yhZsJ41dlYRjPrK5afx+P6XSMBPTo0STATTDJhaJk4il2HbGNtAl3al+0pkMkUiU3/3A73PFla/CrpbQhAeKTsBnMZOuIIXJc089S1dPgky+AoqOYlcwfD7OPncnb33TWwmGArXyMZ7L+PgkPb1JhALReAw8FX/AIpGKUirY5LNFVA2Gju7nsUee4XN/8ScIAV/72jc57czTEVLD0E0cp4AvEMPzbBQD8rkC1YrC/3nXrVx2+cvRTZNMPkMwGETBw9QF5WqJeLKbtes3YBgBVFPS199F1UkzOnaQ5St7SCTXIaVCJNhNqahRyh0iEA4zNDzJD3/4c/q7u3jFpa8gHElw55338bLNW1BWnU9fzxqShT0czd+HTJv0pfr50c+/xVVXXl9b4/EEk1MFNL2fgvcQl+y8jh/84JsMj5U5sO8oa1evIBq2qLhpFL1Cf/9yXnHxyQR8Zez8OJ5dpujpmO4lxPsswkmdM87YjJQRdMVBN2pZlaX08Nw0upHC8AkCVgRHZHHtEK+75Wu89rqryKTvxHO6UDW49NIukkGHXD4NHrgVP6uMfi6/ugfDl+a699/N9RcO8A/feZALzt9BNBblyd88wuDAOtKZo/R2JXj5BecRSXZTRUMV3hwhZZ7XUYMXkLOWrDnQiKFr6kPnXm9mzWy34M2hdnXFvHRrgl6DvxNilrxLiaLWvGkaYVZCMhua0+o5pbTt5026KeaWM6gxZDQy0Df45IX2A9H2r/HMjVjzxl7WyGqsCvUl1w//t8+Wadv2HKQlNZdG2RCUjhMEv1RYKKNPe5aduYLU4tl/5kBLtqFGtsx2t9ATLUjezpdKasJde9bNZns5q5HocLHeWcuqFq2DtAu9C0AnArEEmM9cdrZAPC9omuoXMqO1PVuH8bwWQbdTP+3rzmu4CNQJaOtUQm1qF3v/J+xl23Zf+3mnq2p7NlYpKRZLqA9/7nlbHpYEYq4gjBBIT6CpKvlciWK+SChkkZ4ukuqOo2qy5l6h1ksQCJANFxLZUGO0xbQ22jU1bQvAfwbhrs7DK1IwOjTCwYPDnHX+tvkdLnlRdH77AMaOD8/tsuUb8zyvZYNcCOmFJuxEH34pE7+QcNdwtXyp97P2r3YWj2aLjrSpk/ag07U5vbZdbzsX3pyrrqYiHJPHH3yQDZv6UE2TUnqUQnYCIxzD0Q1KU2m0ikGq52RGRqb4xIf/mDfd8lp2H72f17/xFsaOpuvFfU3uuuPXnHn2Sdx5z2NEwibrVsfZfMZ20tNZpGJjGJJiIUcy3odlBFEUk4qcRtoVLBGjICsookoxpxIKRBmdfI5EMs7ocJFQWEXXAxTGDhBfdhLCjOB6VRS7hPRULrv0Kr7x9W9iqvDwo7+mUi1x1nlnEI4GKRSyCEwioW5ymSLCdDEMD1BRpEV2/Fl0fxdGIIoLmIrg2LFhYrFojcnWwjh2gWAwRC6X57wzLmLbmRu49f/+DomuJLFIL9nJSYaHjrDhzG3oqsOBfUMkIklSiTC7dz3Gqg2bKNsaP/3unVx62RYEfkwzwNj0CD29XZSzGVI9cSpFFbQsmUqZgJZgemKa7kQIWw9TLExQzpXJZg+xcuU2hsZ2EQ4FMAw/akUjZ0uEBpVSFq/ioOk+/JEYVsggP6OQL0yD8OjrGaBQnEFUC/h0laKnEQkmKDkemVwOQ1QpFqaxQnFCwTCTh/YQ6emlWlFQhUo0FiCdGyXoT+EpE+RyRaLBZRTtPH4zSr6QIRy1sEsBdF2l6mRQ9CqP/mI3J60fBN2PP5BAyiK/vvdBLrroAsYn9hGO9qPrLtPpSSKhGHf+9Am2X7iadPYYqeh6Jqb34zMiTAyNoymS/rWrqdouqmZQKJUIigB/9dd/yQc+9AFsz0MoKvv2PkpXT4yAP0p6poLiDNHVu4xyWXBw/xi98R5i3T6yxRKq5mN09CjlyX2s23IJ05ogvO/nHH78q4wUk4RW/xY+S6XqlFm9dg3vuPV3edOb38bWTach3d2UshN89gt3sKrHI24eZc2gSjSxmumpCXpTfQhtD1nXT9IUqIofo+dUJh1JPLGeSslHyAhSdR6mdPg5VF3iuiUUTYA7he1sQTEOY+Cgainy1cMMDWfpWxZDyUDZnSIejjIxlCXe1Us6P0Uo5AdVMDFaxEpOEZjaynhhD3gqH7rtEa648u0cHhrn9a+5mqoj8Ycq/PWn/5ZC8Shf+OfvIn0xDKq1WqsL0anGb15Ded55z1+Iz23PmrlYRkpXus0xGuN4LeFJiqYgvVq7RjbMTklPFhqj6QbavF7Huc7beJ6DpulLlgu8Bch0Q7mpyoWyTr94cCLZMl9Cbu0lhIbo3NAOSAUhFRSh1szJioZQNBrxFK2JLTrFRs3r3vPmLNrGuVc3aTfO29t1urcV5i3ChsCliOYC96Q355jTd3uHra5QzBoD57FYLePMvV1BVdSWexq9tHfQVFXUWi5k6VsIGvc3T+WcY37z2u+Ngu+t7qXt786r4+VJ2fy7HTev08fbPva8SZuLc/uao+EK2slSrCi1DKqeN2dstSV+r8Yizs162omQtv62kH5/MXsBx70+96orvbllNoQgEArwxi/uXmSERk91IbzDdB/XcVnWtW51/YHwQEHiOjaWT2XPwcNUqh7RZAhVBw+3FruIgkAFqSJkwxItmROT2zhvjFM/WOhYaMLaP4/F+pg/AUt7Wc0Ystr/EpdYMoRqKjjVlsQkC43TceDFb/jd93244+8Nt5OljTH7ULXNrnUij/vQtE+snKfU6ox/jRbMJjFZCq6Lb+Zzce1ksZRttKyBx+L7yvMROufi4ikCTxE1Oq6IebMqvBI+XTA6vg+fLlCdMuNjUyS6VuDTTOx0Edd1CaYCGH5JxUkTiVuEQhYv23YGY/um6FkeRg8G+emdP+cHP/wm//HjH5NK+fjrv/gYW05Zg64pJCJx3vK6t/H5T99G1B/B9VxK0qUobPLpPNNTDiWZw9J1FNWP0FwckSca68U0Y0RDKqLqYqg6ZT0JqkZuZggnX2B6qkK5MMFHPvg+dMvhrp99G0NzuHDHufVahAF8/h5C4SgKLrufeYpb3vROQsEEmgql8jSh7lW4nqSaz5AZGUJ4Nn09vew/MMyHfv9PuPGqyzCNMoIqlmHxmT/9KNe88krUsklIS/K9r32VZCzBaWedi2ka6GaYeCpIvMckV5hm7dbNID2iQZNzt29j584r8AX8zGRHWLO6n4nRo7h2leee3YWr2kiRxFKSDB0d5m++dBu/uv8x0mMHMYVJVyrJ5GSRe+99hHi0j8nREl41QrqqYmkCQ1GxQt089tgxurqW41SyaLbLxNEDhPwpYqkwpcokE8PP4feHmM5N8tMf/piCm8cTJXTNJhCwSPauIhaN4lQK+MJdVG2FYFTFF9aolB1UzcZxK7i2QSnv8dOf3sn40Ahf/PwXcW0YHZkkV85w3fXXo0gN1TFIrOhFsQKEQj6QWe6+41c898wTjA4dZFlXL08//Qye48PvV8gVpkgEc1TTLkH9JIZGh+npWU4oGiTW14URTlIpSfz+KJqqYWfG8SyVt976eqr2BLqhoOkaqeQAmeEp9j75LI888DDVapzpcYVK0Uc4mCLUHaHsKIRDCSYnJkhPj7Ny4+kItUK3EEwZfax8xXtJ9sTh8Bf4zT1f4aQVSVxh8bf/8PdsPn0D+eozDA8LtMgGtq4f4OQzT+cPPn8f371zEgK7QZNM559DiBClYi+3vvMOporHyIw/gDr1FNP7nmTy0G6kIlCNDcRPfQ0VrZ9cQVAsSQpuBN2cIj9TwHUFU+N78ClhTuobwCJGSVYIhQeoeknM+HIylTKuJ5FeiImJaVJdQURlGTPaNAfHc8iYwZq4n7/4wme58aarsSyLZcuWY+h97D2wj8GubvxCgOvgSjm7F7sSRcIce5NXO5rC1gL8qPTmhhLZjt3kL+eUPOhk/aMWYqMKtW7tErM8Xz2fhSc9PE82BcAGTz2HR6p74SwUNy2l7Cj4NcK5VNWgVs5A6XjMsoCd+1ekgiIVcGsJjf6zwX9Rt0z3o4tdVxSlGURZy3g4WyBxSbDA5i+Zm0jlRGFBd80Wc/TxYu/mPEGrGbvT9RZQVXW+lqXNPF+7f5E5eoHWsvaMl+14LAYLtZEch7Fqsf4tPsBxUVgIsSZ+nRKqtAYdNy15zMbiCcQ8X+92eLHiMU8EGoJ1g4G88abruOm9f7NgBk2BaBJyuUBB06VCbSrqmkNVQVVVulMxTMvEtIzZYtAvpoVtDgIv8HqnNkvGcX5DXdPIF0ukUonn8azHv+Erdx3guuuu7nz3nHW5tMGP58Z5vH6Obyl8/nA8981G1svW554/B4tdXwye33w0cRON1g3a0WbFVEBxNEI+j4mJMfI5j3i8C8P043oCTbXo6e5nZqrCgb1HeeyxJ1m7ZoA1G3r46u2/YtV6H9FQP699/Rv4yB+8j8svPY/TTjuDM84+lRtvupr9+54j1beCyfFJVFXyrne/nV/d+yQDgyvxpIMQHk7FJRJKoKoedtVhbCxNOBzhzjvvpn/ZALoa4tiRIXq7U0xlZgiHk5imyf33/ZKNG9fgqn5K5SKvventvPG33oxqwPotW9F8fsoOZItlgj4NoTpU7QqDKwf55Cf/kNe97ibcKsTCXUip4jqSSCRONlMkk6lw/wMPsXnTqZx79tm8/ILtRONxbNvD9TxSvT4G+nv54Q9/yLKBlahCQagaqiEZGT1AJJgk4PdRrVbYv/8QmckZkBqKqlOVFd7+lluolEsYloFhqNi2TSKRQgqJKgROxUEqCrFolNO3baMrlcIMhDGtCI8+8STLVwxStgXdvT34Q1EMK4BlgM9voqgKlqmwcmAZhWKOH/zwJ5y8bhOf+uNPcOaZOwlF/Zi6iiIcTCNIrpDmgvMv4tm9B/GbJkHd5D3v+yCXX3wulq6Qnshw2xe+yvr1a5iYGMF2IF/yqMoSsWASIXQUYWJZflasHmRwZR8BE8J+Hb8/xMx0mk1bTgVDIWhVmR4fJpmIYagqfStXcfpZ2wiEgghNkEiBWw4ipEG1UmD42DRDx0ZYvmI5vb29FAoT7Hp6L6YWwm8FiUUC2E6VbGGacEjHCtRiJo8ePkgwFAJFUi6miSZCGJqfBx94gvMuOJ3777+PcDDE8v5+MvkJfD6DI0cO0tvXTS5dYWxsGJ/fYmpqAqHEKJd6iPemIDBNQj6Bak9RzOV4cs9BelMxNE3HlS6P/OYRtp1zKqvWrEOTHmdu2cCffzKHL5Yhag2wojvGSGYvl1y0EUXkqKQ3o+oTCL1KxZkgFe8iaHSjWzGisc1IK4YRCxPQQwg1jVsto3gBXF1iVysIWcYrp/EFI+TzU1h6H3/5mR9yxtn9WBELdANDT1KtmpTLk5SrOQLBNRw8YKNVp+hZ0ceVr/4d3vyWW3CEis8XQFOgLxnikSefY+uZZ9X5kRYl6rwwkxr9U4Take+YQ+ta9uBGIpJ5IUwL8mUS15ufmbJZwkzW6kE3rXoL8c1zcDoen3Si+0kb39aWobDdBfTF363mw4m4Zf7XtNwdB9qtZ4qq1NLcK6LmothU3bfdV//XsLy0gyKUOe6NC7Wbc482m/2nE3jSm2OK7jSmUk8EMRfXFoscszrehn67mXWofiw0RietjKBeJ6rFB7ujYNduzToONMsLQNNPusEItrs1LdXKumgduTqOS4rJe77eXK1um/WjYUVs4NZYJ40CzMhGDb2aYNfMvroALDU1b+Ndq2JuxqZ2m8dSbCnNWMb6+3Jdl2/929e499mZjoLb3BqNz4/MNZOryNlv0fM8XNdF0zUUBVzXabY57kMsPFDz6FjO4HgWvaVYzVoFzxdE9RUcV7J61YrZzVSCbdtzcO9clqEVkYVhZXx+SurO393xzJM18LzaZM1a8Jq90nky2ixUTdq9uCl0rlWxc9+daMtiuHd67rlWxOcr2NVAmeM9MYtzbYzO86sotbkUUqJ0yAzaKCjsSpCOy/CRw6S6UixfMYjtSvKFEtJTcGybasVlYPlKDh0+yurVa/j7L38B3ZK4XgVf0CSbyfPl2/8R16kyMXGMUqaMZytoSpBNm7fj2Qa5TJUjh0fI5SpUqw7T02k0VUVIF7vqUSlXyWSyuNIjEomQTmfQNYNPfepPyOYyfOtfv4krHXyWhc9vkMlkOO+88xgbG6HqVIjH41xw/k5ymSkOHRsiEo0yPZMmHo+RjCVwHZdcJoNEki+XeeCB+6mWSzz++OOAwJElFM2lWs2j6R6/efIZDhw8yOFDB3jD628mHAniOh6Tk5NYpkEsEScQDnD1NVeh6YK9B/YRi8UJ+kOs6F+BdOHo0SGKhRIbN5/K+lM2EIslUYVOOGThOC7333c/hq5z4MABwpEwjoTMzAyVchldr2Xok57H97/zPTLpDChlUEqcunUtkZjJadu2UiiUyOeLmKZOemqC6ekZctk02akJQlE/9913H6+64koymQzvfvdbMC1Ip0fJ5cfZu3cvM9MzTE2Mky8UcDwPn6Hj2iXOO3c72Zlp8tkM1YrN5i1b+PrXv0Ms0sNH/+ATVAsOyUiKyckJHnvsCVRVZe3ak/CkRygcZHx8lFy2wO7ndnPRxRcxPHKUaqXEyPAIfcv7sG2bcrmEEJJKucK+vXtxHQ/PsbFME03R2bv7AOvWb2bdyeuZmprk2//6bdxykGR0kK999VxZA/4AACAASURBVCtUnFGeeeZuPJknGknhOkGq5RKFbB6f6ePZp59l355dSE+imyZCKFz5yldz7FCWdes20NUXYnj8GXw+i0OHDhGNxVA1jfUnn8KGDZvwW36SyS5QwYiWcY0YunUJa9ZeRD53gFL+AQa7IpSyZe6563F6lg0yMZHjwOH97N19lPN37GBoNM1YVrBn3yH+6av/zv6DR0l1CYLBIobu4zv/fg+xYByFMl1JldGRXzF0+IcMHX6AiYkxDh2psueAhzBTPPbUIQxfGFX3YZl+fP4AQih4Egq5MopmM5nezS23XkEkFCSTt8nmJZWqIBT34/NZxIK93P+rQ/z91+/kzPPOYve+Q7zr9/6Io0MjnH/+BTz2+FP8/M67ue/+B/nRD76PhoeUsxb/Bi2aQx8bXkcLhAPN4RXrde08IWueBC30uNFPwyrX2Leb/XidM9M3krqpqjZXeGr013o0Eio227C0cKiWPhe9LhQUVZuPI+A5s88jpfefUpD6z4jTSwYNhrV9UcxeV5bMSC8VPKf2MbjSbZqYO7br4Ia52O8vJUgpOyYx+V9YGiiKMofx9DyvybAqQtTdCf9/wOMlWM+95/0Or/38Uy9qn4vBnJBmIZktWP3C9WSLZfv6zwISUHQDdINGbDGArusvGu4fvXENN934+jm/nXCm3Q4wN17vxQVZd9s5HixE6/8rQSv96HhdyFpJEUCRDg/ddze5bI6J6XGsoJ9ypYRmaQRCBrqmUyiW+PM/+zSf/OTH2LjxPK698t2874Nv4kPvvZ0f/8f3yefSWKbBvj176e6xeOChOyk7DqOjRUZGh+ld1sW3v/MvVCozXHTFDnqWJ0C6VAoFXv7yS9mz5yDRaIx0egbDFMQTYS64cDuf+vTHMf1V3vmeN5HLTZP8f+ydd5gc1ZX2f5WrOofJeTSKKEsokEEEASYIBCKbaBuMDQ447trsrr0O2GQbbByWHG3wGmPARMtEgUVUTqPJsae7p3N3VX1/9PTkkUYiGH/rd55+eqrq1r23q+reuuec95xTUoSoJIlEupElHVGQ8bkMyCTpatlGf88GDj1sGT3dbRiqwEsvPseVn72Yd958F0P3YDi8WIJKNBQhFo2yZNE8ujqbkWydeDTLl67+Ju+9vZkjVhzJ0cccSV1tMTdd/5+oqookavT09A0oV3V27mhHN5ykc2kuuPgibrjlZ/SFUmQTKutefg235sLj9dHR3UM/Nmkk1r6wllDLLgzDwfMvvoggCPh9fnq7u8laUFFdDbZFJt6PwzBAEDjrnLMoLi4ml0zy7JNPkU0kcCgymVgYl6LSH+rGykQJ93bicDsJBHxUlPnJpNPU100nmUjj8uh4PG4uvegzGKoXl9OD3+cjmUoye+48WltaqKypRFNMulq3s3rNKXj9xQiyRrCqhLe2vsvlV15Kc9Mm/vu7X0Lob6Rv+8sIUpb6+lpS6TiRWCdS1kZTFKrrZhEsn0Xt9NlMmz6dgFeHTC9lVQegOYuRdINwIsbm995DRSDo9rHlnc0kIw5+fcfttLS+zy03/oxdjV1cdPFlGA6N3z/4O8xMinBvmMsuvJw//P6PVJdPoaczwhWf/yJZU0BEJNwbJx7OMW3qDEQkDj/oBCxbJ1hcxje+eg1ut5+rrvwKXR19FAUrCIdiFBVVYBheUgkT084QiYTp7AiRTYk4NBHNJaP7y/FWHIh8wKWUzDgOOdNLX+OjPHTPLzjx+FVs3P4ORx19OK++/BpOqYyi4nKOOe3T3Po/J3L6OacxY950NJ8bw6oimxBwOz1ccc0yErEQiinR1xbBrZqI2a040u/zzF9uYebsWhpqlpIQqllxwtfpz5YRSiXJxjJgSiQzEklbx+sNguXD7XahunvIWRm6egN85upH6I1YtIfbcbv8RMJRDlhcyn9973ModgtTgkFU2eSWW28jnbGpqannqqu/SiyeYvb06ZDJTBh7YSJ8WGsIcRRzbKJ6P4o1y0SwzL3nXx2vjAXIqvIR9OjDxT9nQJVM5kPttDk6cIqdHllgL3zafdEWFCCI+XCyhcFmmiZSYdG/hwAoe0PeKjb2/II/3z5BFPL5qMa0McghzWOi4COTDFYyPIfcB0YhCMSouiRRyl/v0YYEe9j3MOxP8vLhfRioZI/HBSZvlZvMvSvc+4J2v3DOaHFoT0/W0IJ8gJIw2t+IgmXX5ulbrmTFwupJ9X8iDNE5R16uoRQJ/5j5ycYeDMwyFgIIYFrm+EqQwjAQh/kfjL744xnCyfsPj2xq9Fgbv60xdU2Gijys7M7OCDPX/Hhk0xOe/2EKxPs5zw3SKz++52O4sLr/gZ3Gsxzu7eEYf78g5H3AC+M9J6ZQMi7eWfccgYpiKopn0x/fgMvpIW3L+DUHCVPDEmQ2v/symgynfupC5s1fyDlnXYSVkzjqxFn88mePceFFZxMsE+jqStDREubRh+9izVnHUj/nEHw+F6mEiqSkiUfCJNJpSkrLyZgmmgTZTIZIJEk4lKS0yiYWT1BWWkUymcEhSSiKQk9PH53t3dRMK0USXSiqk7QZx4pH6ekJocgaiqLRl+6nvm4qkqyQSuRIp7Nce80P+c53vsnFl1zAw488xH9c9xO+9uUv0rJ7J9G+HlYcdwz33/8Ijzz8KBd++mKOWXkEmqGye/cuvF4fHp9BIt4PaEgoILkI9/VRWlbCbbffxsXnno3TqfPoY38km5ZYunQRwTKNLVveZ/7cQwinWikOVBINJ9FkkaQuo+QyCLkcToefnGVhCyYeh0rWskmZAoJtgihh5XJkslly0Sg5W+ar1/w7d9zxW6RcJ+9u2MLCpcvImYAZJicZpBIRVDuNogVIZxLIooiNxKbNW3C7vVTX1KDKGmYuSSab5H8fe4KmpghXfuEziHKM3p52pk1ZwpOP/576+gbC/UnmLljEjt3v4HdPxev1oLtjRCMRIqEY5aV12LaJIGUQBQcZyyaeTvPEk09z3llrsG1I9YfxaQL9Up6KG4tm8HorEGzIZVK0NjdTEgyQMHs4/+wv8vDv7kI3XHR0bsMpTcHwxmnc2UJXSOYbX/4KqUSY51/9Mz45i+IpoakzjN/tIJOJIZgav7jl55y+6lhMM4srUEWot5nZc1aw+twzefju2zBtC93hIJXJYDgk+kIR/L4gOdMiGevF6SgCLHY3bae8sopsNovL5WHXrp1Mn3oA8UyUWO97JHY+yxsvP0dH7ExO//JyXv7LeirLZuB2epg6dTqh7j4sSaG6xsOKpQt54FdXYvXvxvBLxNMiipZF6+um2a7gii88yg3XrWFZhUG32YIpuDDc9YCf/kwRnpIlFFc7aW9/CS3aSC70DsmsE0dpNbGOt1EUB7btQdbTyLaT3p4Qfb1hgkVlZHLd1FbPJRpN0tj0LvVVDfT1xlm/Lc11d77OyceexLxF8+npi/Lm3zeze8OfmFFTxo0P/Blb1QctOjYgiUI+l6y450iPw33whm8XYAn2YNCTQgwJmHgdNTSzTaRgHQp+MrFybvSaaHS5kT6CYy1147Pq9hQzY0QsjoFrIY9j3fuo8P9/QJUPGdJAAvIhjHau/Bj6oMjI8idMG2DZg9ETYUirMuiQOwHLaq+a5lHHR1u6PgpYtvVxrgP/oZjI2jsZNmEBewuAIogCx3/pNs6/dcP+dXJ030YL19j/MMFuMrAnSNExiL2whccUF/afzvpBkc5aaEuuHNze2/j9v4TCtfgorZAfFrI5CyudIuBSIBclGXuN99b/iUw8jkMtI56JsrtxG+/8/W2+8bXv8cSf1nLXvb/gv3/8TVacMIdFh5SwaVMT5198Eq4AbN26i5JyhXlLp/CFb13J9CXzOebIk8mmRM5Zcy6WmUYQbDweN4IAyUQCy7JIpjL86o7f0N3diSqVUORr4LW/bUCXg4iSg+bmbv7nzgf40Y9vRBZVTNOms6OXJ/+0lpyo4y+pQnH4SOagKFAFlkyoNwxksUmzbv2z7G7dyj333sn1N1zP5RdehCJL1DbUsfK0U+jrC3HqqhO47/47WHDgFDJmGNvO57bz+wL09vah6wYejwvdoROL9xAMOvnSlz7P2WefTm9fB2kzwWmrT2bGzHqaW5p44vEnKS4q42vXfIP+WD+2bVIU9CJKFmJOwu1w4/d5eOfdNxFlk2R/H2+99jKpWBjFziLYCmbGIhKO4dDd4JBAzXDHb39C1uogJ6osXrIYK50gEe4gEc+iiApYCormI5WK4/V6kRWVaCTEwvmHEQyUEk+GSOXaSGfSOJ0u1px1NnNnzyQeTWKoQQK+enq6+rn1l7/BXVyC6lKJZfqYVr8Ij1unq2c7He0teIx6vJ5i1r/5NpKkgq3SE+1DUxX6Ort4+tE/kgp3k4hHSWSzoLvQ0FCQKPK7SMXaUVQLUTaZOqMGUTUJBsu59977MQwntiny6t/WE0/0oyluSoormT6jkp/degMvPP88Tt2L7ipCFiQy4R7+cO+duJ06uibyrX/7Nk//5SWqq2dxy023MX/uXH78o//k17++GYfhwNANYrEY8XgMK2vi9XhIpdKokoysasTiUWRZoaKiimzOpGl3E6IkMGVKPR0tnehqgKLSxTQsuIAlhxxDbe3/0vemwsrjrqSkvIbaadPICRaeUg+dnS1cddUXeeLPL/A/dz1Dy+4mSERx5bJY4RimcxqlfpP77ziHivIIEUNAUotIJJLkUl041BCSuRVDbeKpP7zIFZ++D3/NCt7YbuGrmI2giYiKF0uQKKusJBFPEO3vQVZMquvK8fo1/IEAr7y2lmQyRlFRkP54GFHOMLOhGI8c54tXX8Wc2bM584zTOXP1KubPX0gimSQWj31k7xhJkEYw0ybNOBsWNGXEbsvEskxM0xoTXKtwbLIQBGHQPerDhCjJ49I2Pyn4ZL+tPmYURDlBkPIfRATEAan/w20r7xc4zK/CFvIRh2Bcq91wPzppnAfKhsEIalh5zvLwKJwwJJxN1vQ92to31jevIAAMiQ2FhOJ7ssKNOT4Zn729+N7tDeNqkOxR3yOaG9uesIfkn/vVJwau6QQ+d8N9OsVxhOwx5WHcZ2df3L4GLRMTfGDk5Xr4d/fmBbxhBWzsSUuSn1QBblIvwYndwSb2uRvttzfwGXS5GlV5IpEkm81Ovu1CMxOM7/HGgevof6OubsgCK4riEItgvzA537y9PSCFoCx70v5OFHF3bxgSXvfNKXJPUX5HYqI6h/lJDjqOjr5Ok71+jBjvMhqKKNC4eysBv5eAZwaL5xyBbWaJxDcTiUepqCjBretUVE7jrPMux+Ot5aEHn8XhKMHt8eIwAtx6+83IioTDFSAVU7ByOh5vPYZjCn97+THeefev/PbOHxFNbMTGwunQiUbDKEo+el3z7jbOOOMsFi+Zi+4EQUrT2rmFaLyZ3955L1u27eTzn7+an1x/M9FIlrbmDv70pyc4esUJ9MdSCKKKKKlcdPHnsLM25Gz8bi9NO3dimyme++uf8QYN3AEXnT0dtDY3kUomMFwa4f4+srkssXiEeDKM4RARpBypdAJfwAcIhHqi5EyTVDKBIFgYmkU6HeXnt95AW3Mz/qIAuqEiKgIbt24im01z7LEnUlFex3HHHYvPU0ImYxONxJAlGYckkUsm6WxrZfqsacQSMXxeN3X11TTt3IGAhQToiooqywiWha4GsS0DRXIiChqqQ8eyLVKpfoJeJ06Pi3S8H1lUkBU30Vg3TU27kWWVssoSusJvIih9FAVK0OUaNF0gHk/w4H2P8PAjD9Eb3Uxr+xZs0qStTu575GHcfi/TZk4ll02QTefQDYG6ujKCAS/HHn0Siqyy7ODFZLIpXnj+bwSDPm64/ie8te4Nbrv5RkSy6LqKPxAgmc2SS5uIpkp/OEpJsY+smaKzs5mW1t2kUjHMrECwKICswqZNW3jqib/SHdpNqDeGougYmkjQ7+aLV16J3+slFrc576zzsBMJFs9fyOZ3NxMJ9dLb00NndxSPv5wDps8gk0xyzTVX4/U6iMViaLqGoqr4/T5EUaSrvZNwqJftW7fhdDhxuXRSqTia6sTpcNAwbTqyLBOLxfAV2STTHWzfvYPWhIS75NMcfOAJtLdcx86Nz/Hv3/42kXCEJ595lmgqweyZDXzms5eQNhV2tJnc9th22jNlmHoFt/76RbpSPZDsw6ftomlzmpPOvQvbNvD5PGBGadzxJlaqh50b76bEv5HvXnsKGdvNcWd8m52dBoLkwXBNwfAW0d7RSc6y0XWNdCaJZafoDbXR35+gvr4WTYdsNkc42o8s57CtCEGvzj0PPISkKaxefRrz5kynpaWZVCqF0+HEZvj6Lc/AGcEbEEeHacrDLCQ/H/gMrlkKfnvk/YELfnZ7jY5dwDAr33AU1l9DOVTNQSHPNM1JUfILsG2bPcmZo2N0jOvfJ4618u0PY+/jxL+Eu3EgiTKSKA+mVsjzhT/cNizbGmEVG709EWwY45wKA/nJ9pPK+UExZMkTPnQBaBC2jbmHwDMfFkzLGqTpjthv2yOE8X8mfNQ89ryA9z6ReOqfwo/tY8GHZIkzDB35I/TRvODnGz+yuj/JEMVCipwxUvW45f4ZIKgKskPDFfCTNg0Sopf2fhEbD4lQDFH2kElm8TgMvvyVL/Gbu+5i9RmrOfPMC2hu6sZGpqm1kW997SZ2bItSUVXFYYeuJB1P8uBvfsXVl1xGZ1sjdVVT2LGlhUzcAky6e7pQNQldV9j0/iY++9nPU18/lXC0lzffeA9F1jl6xTEgSJy86iQOPuwgLHJoTo1MUmbdG2+y6vTjUPQMfqeDrpYWbrzux9x+y00oco5EIsL/Pvoo1RW16JKHTFambso0JFXkG//2FZYctgxJFVFEkWwsxu7dOykpLkHXvBQH69DVIOFwittv+wWd3R1MmzoNWVRIpOLYdhan4UBXdF5e+zo/v/kOTFsiY0q0tvVw6qoz+Po3vsaWzdtRZAdHrViBQysi3JNm9ennk05bpOIddHXuBhtaW0Nomo9UTkBz+aism0oqJxCNdtO4azOaapNM9vHqUw9TEVCxhTSCApveeYNMJo7T5yen6qRycXQ1h6ZAzhaori3H7/eTSCRJxCOUFE1FkTyAQjaTxDA0urt66O2LcPvtt7H4wCWIePjspdfgcRchy2mS8RAKIKQEXnrlQQQrSy5tE+3r46mn7kR3iESiHeSsGMcffwxSNsvpq07h1NWnYPichFMZMtks5JJIuRiK0wGyhwceepovXPXv9IdjVFfVMXXKdIqLy0mm4+TMGF3djSxYOJs7776T2gYvXV0dFBW72bxhB92dPaxefSq7GzchyhoXfvpSKmunM2PxEezc1MGfH/8LFlm+8vUvs/LE40mm+nhz3Sv86Hs/omlHK8lkkmh/P5l0io72Dpp3NeJxufE4nNTV1AACPb2d6A6d/kiSTDaLpip0dXbicrnImhpmClQkigLluKbV42+4lIUHHU6i+T6uuORcAk6NQ5YsQ7KcvPbKy1RWlRGsLOL2O+8jlp3C40+8QX8kwYqjDqYqIJBOBumOZFH0cm658VKsZA+CmUHWdJy+IE888SRlho86n0l34+N0bnuGl9f+nYB/NqLpxx1soDecIJFKo6saVk4m4C/B5fTQGwoBAooqkMpEkCQBv7uI1rZOQrE0L2/qZfVZZ2FaNj/60feJ9/ehKgrmPli69oRC+oLRlrr9xd7WJqI49t0nSRKy/Mm1mH1S8P9lKoQPjFGWJKEQsdKGkbEGCyH3Ji/5SYo80MTIPCGwZyuGQIGfPBajLWySJOetjeOUtgba3ZvFZDDapiCM0889QWAocmR+0ypEh/yAPnWCMKzuoZ1DKRbEfDTBD6Od0XUUctRNsoKh7/E+o4vbBW75gC/eQFu2ZcFA7hexkI9QEPLWvgmehfFg7eF+53K5EekaRvdvr3aNgfPOXHM6P//928wvSaPI4r4aRPYbH5cgOdKHTRg3eOwITOa4sPeCI8JLfwgoRKcVBIHzbt3Agw/dM+Z5Hwz9PGHagD33p3DekGC09/Kj+zje93hlJjo+uu7xyoxHtRxPkMtrkEeWE/dlPhiqieHXonBthwRNe8yxPf0GcXjEOEFAE7Ok0Ej09VFeV0ssFUZVdSzbxtDdCLZEKp1AkCTcRoD773qQrY2NbNq8luVLDqS1McGi2dN4/LEHOGzFdELRKEvnLqWsvoYFiw9g/gF1VNXOIZ3NUFpWyx9+9zp1DZUES6vpi7SQCsfx+f0cdezh+MsDuN1eAuU+sHV0KcCKQw/nwLkL8HsNNKdGU2MvrZ1xSouKqa2u4C/PPsW0WTVkzCzHn3Qiim6RSkok4hnSWQuXt4jdu9v4xe03c/AxS5Bxc8GaMznlpDVs2rKRiqoSLNFEVVUMw00oFEVRHTRt20ywooJlhxxGLmtxxgkns2jeQu69+wEOP3QFtgK2oFA3ZRonnHwcsqXw9BPP8aPv/ZSjDj+GgE+npqYa3e2mo6eb/u4ol1x8PvfceweSbOH0luINFOPy+MkkY0R7uzHTUfxBP7mMRjrTi+Eqpq83SpEniGTLTJk9j93t29AUHYdchL+8jHgqiyyrWJaNYkt09+9CdzkRLC9ZbGLRGG6HRG97G15fA4IokctlUBWdeLIXXfdw0MGHIik24MRlyKw46kBSZho72cHuXRuJRCKU10xFFUt45rmnKC4JoBtuchYgi2RSJo///k+YqSytrc34fcV4PSX84fd/ZvqsmXgMLxeccy6nn3YqZk5AsEyWLjmQIw8/jEzGRlZkYvE0WD5yZgpNd5JNiSi6SaQ/immnmDF9FvFYhGkHzKatu5ODDj2cbds78fmKsC2JrVs3UlkmU1k/m1lzZ+H1e3E7PRQXFbHymMWUVVVx/z0vcskla9DcEp1d7RSVTEFzCGClcAaqUVUDOxPBxomiqGiyQX9/EodDpbenk6JAGZgq3Z27SCdSFBeXEu3rxs51IzoDGO5l2HYbm//6OHff+xCKp4hHHvwDK45fTKl3FhvefhM5YHD6WafhDxq8+LfN/O31FuqKHHgcAllbwOXPUhztw1HsJp3KEe7tw5BVFsydiihDJBZh4YI5xEPtOIVOXKUK20JlKLluNDOCle7B5QlgZlK4PW4i4Qhut5ei0mL6+iLYpkk6mcKS4zgyOoZQz3Nvvk9tiUig7AAe+N8neOSB+1k4fzpVHgWn20t53fT8WnFgfSFJA+vagQjbg8uAwhwjSYMpkQbTWNk2oiTkXdqGRXAeb44qwLTNAZ/y/PkTlRtKpZBXuuWDG1sUgrfn5728wJdPiSQNm1dHRhwe65ItDis7Tvujor+P/ivsFwbWS7lcDknas6/ih419SYXwL+FuH1CgEw6G9C+MhH00641OAPlBMVoAG7FYH932JNsdvXgaT8jbax2Fvw9IqRzVsTHbg4ufD8FqKEywaNun/u/jbx0UGQbOswbEscGgIgIjcr0IgpCfpz6ER0gUR6ZNGE+4mywOOXQ5+tQjaF7/NG6H+sE7Nwl8nFbC4cLd3gtPutJ9KLwv2HO9F/xsIw89fM9AF0bd870KTnvrrz00Z0xCuBOEobQo+zpPFASviQMgjT+eJ0rQPrYvIwWrieqbZG/H3R4SuMXBNoe3kc1msSxrDB1/tPArSiIgcffPfsRhS+eRSIuoiozLZSBJJgICHe1tVJRXcN55n+Zr11zN4oUH8PwzL/OZz17Gc3/9A4sWHsi2jVtZsHA+Dmc5HoeDLVu20ty0m2lT64mkY2RyUYqDBpj9NEybSzSextBFgt5S4okYZRXlmJZNV3sHfneQzRveoK42QDKcoaW9jYMPW86LL77ID37wU6bNmEFPZyvf+sY3OOzIlUxrqMXjKiKVyCKKEl/4/NdZddppTJkyhd5QBw1Tqzn04KNwGE4EWyeVSKBqIkuWLiabtQEFTZXp7Oihs7OHDe9t4jd33M3hK44mZ+ZwOwyOP/44vMEiDjvqCPpTcWRZwqE5SMYTiJJFU/N7zJnbwAUXnQFinGVLD6G0vAxVk3G5nVi5FOdfdB4Ot0440ktbZyeBgI9cLoWqiGi6gsvtwnA66eqKEih2o8gS3V0dlJYGsewcogouvYRIOIpJP31tzTgMDUlWkCSFnC1gpnWe/MMTpGLtlFVU43AYSALIsowtKlh2ClkRkGSJ555ZS1GwFI/Xg0WapqYdhPs6yabTVFTVE+/XCRbVsntnJ1NrZpFIR1i6bDGZbAZZlpElldbGRmTZAMngoMOOoqO1keLiAOlcgvqpVTTu2oTbqXPmmSfx9luvUTOtjvVvv4zX7yCVjRNPhHG4BKL9nehOC0WFXDaFy+2hraUFXdKxrSTNO9pZv+4NXnjmNRp37CTU3c2SxfN55L6HME2LrTs2s/igA1Fkme3btxDvj/P0ky8wZ84C2lsbmdIwlaOPXYElRQmH+6muqaGtqROXS8HrdmOaEj3dnSST/Xi8XhLJKJFwL7rDwS9u+zXLli3G5XEQj0cpLvLT0xshGChB1WWySZ2dzdvxFRVTUl7L7OkSpcE22t72cfjKT/HHJ59GFgRKKzTe/ftGamuX43S6eeDeJ3nplU3c+dQmrrjgUIJFLvqzEj3JHJlsAklWcbi9ZEyTeKyfdDaDw+EgEg6hGRrpRD+5dBYVN4Zh4fM7CEcjOJ0++iM9WLZAoKgISZLpC4cRBZAlFV3VycS9hMUI7ZkQG9d3cfFln0OQ/Fx3w39z3llnsObsi3hv/TriKMxZuhSsgTljYA4cLtyNnqnsASFHYORcYzMgXI3K+zzR3Dg6X93ehbth5Wwb22bMO2Ks8nG0knD0rn2ct0cvNYf30baRZDnvd/8xMjv+z+e5+7hQCMQiykOf8Xi6wFCuMwYsMaP83wo+cvuKsUkg81oSq8CRHtZ+4TgwGI5/IpN4wRdsvD5JgjguhXRo2A/1ZeTYKlivOVhiOAAAIABJREFUGLTojScImZY1GEFzqD8FQXqUf97ABCVOlFx+AmvZ0On2iE+h/vGomZPGPub/K1wn07by3HbLBsse8nG0RuaJEUQRSRiiK4ymNuyDx85g+Ymu017rGG2VtG3qTvseF9+2aQ/tTd4nb2/4SHz2xunbyJfRHnyu9lVWm3T3hVGfyVQ8tnLbtnlgZw0PDgh2hX3DLUeF/yfOCTf6CRv5KbxwC/nuJr7Zo39LvtyQQDg54dCyrD34wY3f9sQC2t5Gz+g+7g/2fA9HW0tVVUNVtQn7NHj/yCfQ/twln+bBO39BabGf7vZm+qO9RPrD7Nr5HlWVJbg9Bg8/9EtsoQ+HFuemG24mkYxz5jkrefudv3PEEUew8e33ueOWXxCJ9/PFy79AbWUdORScegWhTohFLaZNn8G6detwOB3ohk48HuOVl9aSTiYQsfB7PSiCgqKYdHXs4LZbf8aJJ59G1rRZvnwZl118Eddeew2HH7mMm26+kZ9edyNdbSEe+90feWXta6xf9zbbtm7Lh4RXJQynwuvrXiYr9hIJN9Ebamb5kTPZtOkdbNsiFk1y/rmXkEnZVFTUkErm8HqLmNkwA8kWceku3l3/Pv7iAC6XF8Ppxuly4NKdXHH559m5cxv90V6m1M3lz396kc72PlJJi1B/hLSZorunjVw6SkllAJdHR9VkSssrmFJfP+C3A4l4ArfbDaJEKBwhUFTC7qYW3nt7PTU15fT0dSFokEz2Iwo6LqcXhDTFxUHcDoNYtI9Eoh9ZVgh6K5lS3cAhy+ZgmzlkMZ/zcsPmnaiaTCqd4L1336anu4vt29ooL6/ENNNEw/2UV1ZQV1dPXf0U0skcpdWluH06DVPLePT3v8XpkYnH46TiaZyGl0wmzfU/+SmGprN0+VJaOzqoqqwikUyw/q03eOONV5g3ZyqaJtDc0szcRQvIpR3MnXcwW7a0cf+9T1JWMo3O1hRedx07t7Xw3nvrUTSFTCZLTU09TsON1+WnsqyKkmAJl15yCS2NTcyc2sDmje9w0YXnsHDhXF57Yz3pnESkN0RDXQ1Ffi8nnrCSC88/j3nzD+Hfv/MD4rk2Epk0DreLVDyJ3+Ul1tsHkk6yP8Ljf3yUnGAT7Y/gdBsUlxahKCKrV69BNxyE+3qRZLBFhfLKasLRKJKiY5sOZs5sQJRFErky2mP1TK0/iTkL/0Yi9Dxfv/oqDj/8YGRN5tgjj+Wm639IMpvkh7fcxP2P3sfTj/+OVH+Ipg3v4zB1auu8OBwBfMES+iJ9GC4Hbp8Ph8OBJFqYmTiikMHlVCDbRV/jKyQTYWzZQ7B0Ct2hCF5fEYIg0dMbprevD8GWEEUNt9NDOp2huFLjvoe38P3vv8wVF55OJNbPrm3vc+v1P6C+voabf3kvjz/9AslsDgtrhP+YZdlD+e4mmJkK+XgLDLFCbuYxEdhHrDdHz2kDgtleckMPKepH+rnJspxnLw0kOB8qbw3kELbGKActa0AwHUdpOF4/CvWM6fNAv4SB9X7B106ET7Tf3b8sdx8GhKEHAcEeqTEYR1Mxnl/SoGVsH9eqw7W3hTqEAVP5cK3KoKZGELCHJXvco0Wu8JsKctXAPxPTOvfsbzW0NM3/TRSuXRSEMQNvj7TOPQhvBcpm4Xtv6RaGa4WGl/1Alsf9tOSNrWakZW80FWJ/LawfBVafeTrnXPNLTltaPEHwF6Hwzz8txn0mhH21Jk54tyc4tv8X7LxbN3DWNTcwf8G8iXvzoTzzhTFUoNbsg8VzsO1C+cmndMif99E8UB/Ymp8/Y8K69ywsDljmCnTtCShQgmBj2hJWvJe6qfV0djTjcKi4PD4U1cDjEhAFiUwqSc6KYVsJPJqBaghU1pXh8QVIxbK0Nu1GJMKrr75EbcMMli9aTjwe54WXX+bxhx7iyCOORDQUVL9GdXk5OdsiHGkhFYtTV12D0+0g1BfGUDUSdgxB0PF6KjjmmBVs2NZEWXkxpSUB/vb8Wm742U0EAy40TeDEU0/A73ZQVlKKJIosXjSPA+bP5Mkn/0RZeQm2LVBRUYUv4CMXs/B6SnEEVRbNW87bb79LW2c7X//GNSRiScyczW9+czcnrPwUWD24/V7+7VvX8qmVpxALd7JlUxNut4NkIoKIzMpjV+LQFdrad+FyFDF79mwkScTrc2OJEk6nQTbVTyIWwh0oIZPJIUk6CApmVkRABhtef+0NKivqsAUbzeEgZyo43CqKJeL1+dGcznyy+ayIafeTySZxaCXg9JJIplEVkVwyhoxNX6iNA+bO4J13t5FKJWna3URNTR2BohL6Iyl03aC8vAK3K8DCBQuQFZuNmzaTiJmc/KmzuOzCy7jn7vuYM28BT/3xUZyGjL8kQHl1LaFQG2Wllaiqk1zOQlFlahumomoibpeMxyXy5rr16Iab8rJaampn4i/y0RNKECitoi+WwucJkMyEcXt9zJ+3jJaW7ZQUVRHvT1NdXUdxSSWCmU9p0di4k5wlIqoWPT1RBEnE8DlYfshySivKqayuJZyKojkclBZXUllWSTwU58wzz+DUVScQCXfxhS9+jgce+DPvvLuZsz99EopciplLYOVyZGMW3R3NBMqqaNq5lZUnrMTh82BlJf77e9/jqCOPo7cnCmTp6m5H1Qx01Us42ofh8OBwefJrN9VEEk2UnANVhZwhUFSxjGC5i/629TQ1tnD9DXcSKJnCL3/zPxQZBjPm1OPyFFFbWUIoZNER2kR3ysljf97CktkezKyJYKcxs0mymRiK4QTbIhmPgpWjP5JEc7mJm1HKKipRsEklbZ584o/UVfixsFF1nWzWJGfZ+L0+FEmjvz+KJMr0Z3LIFpx7xmm8+fd1LD/2SBy6m+KAj9bWCEcfv4JXn3mU/mSaU049A2s4Nbww/xQscxPNQIMWO3vEPgFhkKaIMBREZbResLBm3H+mzUglYGHOlAYizNvD3I0KbYhjWBbD/i9QL4e5w9iWmY9+OY6Lil2oj3zMi7yr1se/ePkXLfNjxohEywMRNhlMnptPmm6T13gI9qjF34CfGHb+oRx3YV4oIw57sZP3rbMsE1GSRmgZBPKJsi3byvOTh1mQRqcEsLEHB4GkSCNDoNtDZvnh/ZpYdNhHIaYwOAalvrz/3B4XUnuxxI3XFYGBdAt7OW/47xpN2RpBBdhf+ud+CnmD1tZhfZBEeVDLNJobLknSwPM01t6zpx4MHf8AVolh9+fMNadz7jW/5PRlxUPHhz//H2Ru/CCGk71hr8YxAdMyJw6Nv6dzB3PnFRoZ/tSN9yIaW35fctg993YL33mkmZrlZ/HVr109ocVxOE1xpO/XMNrzpJ/foRf8hC/XCc4bfk2HfufY82zbRtV0rIEgS/tK6cz7a+x9dExU79h9kx1h4+wtKGXG3JqR9Y0mAgzSMUUJ07QwHC5eeOQh7rntP5gyYxpKVSWmJSDn0rRtWU/ctHD7i8jkJPzOAL0dIeYcUEnOqREJ95ILd4DZR22Dk5JKnSk1s7js8v/iossPoqvJZuGcao771JF0tLfS09GFYklkJQe6qpBN2RSVltAbjdDeEaK6dhqoMpdc/BXWnHUh3X39+MsqKHNKZCyRnCjT1rmd6XVTkWQTxHyOR0Mppr03REl1OfFYjPKKcubMnYXT7UDVFNxuD5YpcPMNN3P4kYeAYJBIdSLh4bm/vEp99VT+/MRaUtFeNr71Kn5d4NhV56DrGnNnz8PrLUJzeDj7/FVcfsVnECWNnAW6YSBKGok4JNPZPMVVsnjvvbfo7euhtLQK3RFEd/mwxSyybCALKtu3bCWV7qe9ZRduXWZKbTk7t24gUOSit6cLt9OLmHOzs20HwdIyTNPGzNkYqkqsPwe2gGklSPflCEd78BcHQTFobWnB5SrFtEQEVcTlLs5bAZsbUR0Kv73t15QEq3jsd0/xw+uuY8msOsI9YWpraknGu/n0RefT0t6I2+uitKwUw2+QzTloat5BqKsfX9CHogBWknB3O2RMauqnomtuent7eX/j+1hmDtVwYDhdyIpMqKcLh1bETT+9kROPP4K0leLG635IdcBJLtzB7uZ+3G6Vz15+GXPmLMLvUuju6sDpcOALFqPKEq2t25mzYBrf/e5POO30E9m1azMer5d0UuLuO+/n4IPm4/MLKKqNwxWgqDTI1JnT+cEPb+Wkk89g2rxajjxkAbt2bMXpEVAVN25vgJSVoKS6ElX1YwSDpHM2W9/fSVVlCVNr54Ng4/HbKHoQ3e3G4XURTvZhJzPkcilaWxpxORyogg+sXqxslFQ6jkt3kRUU2rtSNFT5ke0WioqcpCJTWLishmNWHo5D9/LrO+7BErxMmyIRSddTWX8MP/3Rj8nGJWrrS5D1bmTLjSbmSMRjeIwaDHcAWcuBICMKGXLRLLrUg9Nfj2CmmFI9A82AdCKKIkOoN4QuBdFED129jWiGF0m3EXMRSstLMcytqEYRu0M6Xn8pW3d0sauphff//h7NOzZQ5JE59rRzBtdYwrB5pWBqm2j2KqwtCmvFEfOfnWcZCQhDQpOV/x5RzrKxyPv57bv+eTgzBAaVfraFULDOiTKCIBWoSGOWW4X3SUHpKErSoGAqiCLJVBxZkoaWMMOIEoXfZtv2oAD4SRfu/kXL/IhQSKswSN2cIOTrB4Fp5ijQMEeHc90f5LK5/aKG7jcKDqpMMmzu/zGMJmEVKBGFez4RrI8hquhk8fDv7uWezeWcf+sGrrlr69CB0XLNPxMECPX0fbAKJqT9TeLsSbxUvnX/Ns6/dQP3vhbn4Ufu5ZDDD5qYSjoK+5te4IMh314ikZxU6UwmSzgU2u/WRFH6B/zG8WFZ9j6F9h4N27YQRYFQJIrm8GHJXna3RakwFmBFgthZg86eHkqD1XS2dtPb3U6krxXbipLMZHFrVTz5+HNISoaM2cVvbv0bfW0OfEGBn938farKpjN/7lL+8MeHwQa/vwi/34/X5+Sttc+Si0dxGga5LBiSTUWRn1BHC7lklPNPPhyXFaIuKKBlOiitLOWLV16O1+3lpJPWoMgGmRSkUzYO3cMVn7+MPz/1v+iGiKYLeNxeFNlBOpk/3tHWhWXbnHTySYQjUSwrhyo7KC7xohlZnnnuDzz37P0sWjqVo088nJt//XPeenM96UyaVDrBW2+v48Clc3nhr8/y9F+epLe7E0lO0BveTcbsoXqKh+9e+x0chgq2zZJlS5lWN4VtGzZhJlOIWRNJ0LFNgVQqzrQZ1RzQUEO4t4ecLaA4fRxw4EEkYxaG7iSTiyOpGRrqp2DnciiyjCjA66+/js/rJWvmSKbSdPQ0U1tbRSZtoUpOamrr6Oxq477770OWNLKJCIYi0FBbg5lI0tzSxPMvPEs42scdv7oDo7iMOx96hOtvuonevhBlZaXMmjmbadNmkMtlqQhUU+wNUB4MMGNKJX2dUWTJgagYuErKUYPFqIpCU+NufH4/DQ0NKIqbttY2DIeML2Dgcrs45ZSTOGj5MtrburBjMscetobPXfF9mjpFlhx6IM2tzTxw793cdtMNWHaG4pIA8WQUQTDJZJPccN1vSPXrXHvt17n/7t9xwKwFXHrJJbg8ApdctppwpBNDd6BpbhRFpLauDlnWuOqqLyCINr+4/W4yaYHysmq8Xh+WZZNOpdB0HU03iEdaSMfCRHt6mTtrJq2tbZRWFOP2uOgL9+NUM3h0CSGXo9gdJFhUgsfrR1V0dMNBFpFoMoXq9KM5g6iSE8uWsEQnbXEnHtFFQGjk5WdvoWzGAmJxjeefX8dnLr2M1196ho0bW7j77vsBmx9c90Oae7rQHPWE+jQkzUDWXTiLZiC604TCW7GyGbDiOIxiTHyEkxm6u98hnWuis3czKCEs2yKTzmEYBtt3bqax41U0w8Y0+5EwIKvidlUiaeW89EYTzzz9GkFfNf957ffp7e3hoIMOZvbcBcQSaaJ94fyb50OmE4qCuMdccpZp5gUpy86vM/8BEIQBd6lBw8sQbMvCYTjGvS57o5J+UvEvy93HBWEgKhr2oNbYtPPREIUBTcaESR/tUd+jDgr2eBSdvDBZeFgLUTJHY7jAWTCzT0Trm2j5sVdDx0QYxwq3v4EVChgKcjOyvtEo+OkMt8gVyo/f1eGaqn2kZA3zRxvcHtnp8ffvCcM1+GN3jYA0oG2bPF3zwxW0Fx24gDPPPI3jTj6Z875+B6cvK/ngzXyUuoAJL5MwGDHM6XJMfP5erH6TKLSX84bO/fv2Lr52XyOPrevm0XXddKnTOfjsr7Dy5FWcuWY1p69eBTCuIDN8bIymY+YDlUgD2/noPXt75occ3AttjZ4Zxj9fHGAkmGYOVVUmZSmUZQlVVZGk0UKaMMpncCJMdo4ZbT0b3bfxLLB7rmNiDL9uEyMf4W7s7xMUkSm1UxF1lcUHH4Fc5MBbXozo8KMHKin1FtPdG837yGkCHo+LnCCR7BeYOqWabK6P4sAUKqqcdHV3cdcvX2PWrBJ0NcPLazfyxltPcNzKUzE0Hy0tu/EX66T6QuRyaXSnE0TQsdi8YRN/fXEt8+bNZuoBi+mLp0DW6E9lSaVzZNM5qiuq0XUvoiDw1vq/oygyG97fwnnnncXchXNQdZFsOoGsGIjoXHbZFRx+6OH4/C4Qoau9E7fbhTfgJ5PKoSgCqipy8CHL2bG5mUg0xZFHnUwwWI+i2fh9PrZv34zLo/Bv3/03FFVixsyZWLZAKi7hdgVxOX0kE1lWn3Eqvb3dFBUF2N3YiAi8vf49SotKeeutvB+Zy3CiygKJWC/Nu5tZsGgxkmZgSxo5S0CyBZLpGNt3bCMQ9OFwOLFMG8s0UWUVr9eLIquIkoiqSJSWlyNKApmkSS5lIYgmpp2jsqKS737nP1l+4Fz8fh+7duxAk3Xeeudtzj33Ahqbmpk9dxYllV5WrDiapUuX0dHVjqqKaKqTb37rO6w46jA+f/kXOWjJQUQiLZSXlfLII4+zZOliNE0jHImRMeHltWuZNm0GyUQ/LreOmZaYPXc2feFeXnv9VWbNOICVK09g/oJ5/Oznt7F4bgM7dzXyne99F3+ZB80Q2b5pE7/65S+55PyzMAUTRdMRBJFMNkdXezs3Xv8LVp26BpdPpKykingswQWfPpesGSMa7cbpcPPbX9/PEYcdTTaXYsf2HZSWVqKpMg6nxjXXfJfjjzmGuvoaslaORCxLzrTJZk0kSSYaacXjKUYSZAxFJBxP4Pa4QbTQHQb93W007mpEFmRcTjdtrR3ouo7X6yOZTJPIWhSVGMT6U+hOP61N7bjdLnSnQTRu4qo9gr6+jRTpWZo3v0mwfCGh3h7Wvf4yM6Y3MGP2gfzu94+y6rST8XhV5i5cwPe/fzsHHbSCRCLE2+s38sVv/oUjD61FVzVUu4RENkFHe5TGXW0ES9zoshPJ1hFEN/FEFJemYyORTCbx+VyYZg0vPbeL6lo/kpBA0zLsbusgZ0b404ub2NGY5J13NvGb397JsoMOpLWxjVdfWcu2HVv41MmrcPr8YwPHDbPciYI4uFYYbqkbzhCzLBNbBEmWMM08e6zAQLNsa7Ds8BmwYMkruAiN95nMnGyaOWRFHvNOs618wvOhtkfPycPWYIBl5kYYFQShIMgNnGuPfDcOXgf4h1jt4F+0zE8mhIHBIooosgzkhS9BFAbz001m8S2II/3gIG8yHjMoRnF4Jqp7vMG071ExPxoMF/T2JvBNHC1v/HPylvthQ3tAAJs08Wxfhbs9be9t/96q32uJvae++KhRuH9nnrUaqe4wzrnml0NC3j8N8pP+Xu/9pIS7/Wk7j8/9ajMPvdLJqVf9iPqlJ7FmzWrOHPgsW75k8jVO+nmbHC1z4uN7Fm4KlNDRqQkm07+x4z5/j/L17DtFcrLYNz/CSc8qkyo7kfBrCykswaBhZgOay00uk0KxLZxqjmxoO6q/huLKGpI5AVFSMG2FTDaLz5ulcedG/N5K+sMZtm3fSW1dkKKiIH945PcsWGYwpf4Aps6o5itf/XdeWvsmob5ODj50PsHySrJWhmi0h6IiN5FwmqrqKdROmY4vGKCnI8zVX7iK3/7q1xx95NGcueazfPXqqzjhuOPwlpYyo6EazZAoqyimqKiIr3z56xx0yCHoDh2X4WDDxrcpK61k2bLlbN78PrVTijEcXly6jm4Y5GwL0RZRVBFVcfGnPz6Pt7iY8y84m29/7eu8svZvLFg8h+raOmrqynnnvVeZ2jCHRCKJobiJxzJcd91PKC0tpqjYB2KOjo5WSstK6ezspKy8An9xgFQmx9nnXsAPfvwDLDuOy+kgk0jjcTlxF1diIRIOhehobSboc9G0awdTpk3BMJz09kZRFY0d23fg83qJRiJouoqq6MiyhChZRGM5JMlGFmDT++/j9nsxDBmvz8/pq85Gdaps37Gbb377P1h5/ClMm1qDw3Chahr1DbWkut5DtHLEYkmqGhroC3XidgbJZixq6kpZdugifIEgZVUB+qNpDj3sELo6mvE4Ddp27mJqZRVV9VO46aabWH7wMhwOnTffWEfD1Km4XB66uvsoKynFcOhomk5tTT3JVIy6uplce+23OObYpfR1djJj6gzmzpnNtFl1yIoXXXUSiSQRBIW62hqWHzyPuoYyPn3eZZx17qm4Pd68Vcqpgq2hq0Gu+cp3aG/v5MBlc3E7vfzwhz/lhBOOxut1s+qMU/jZTdezaNFCVNVJMp3F5fTgcDgQBRHD6UBS/ciaRE+oibKKOsLREIoq09bWgcdZTE+oj0BJEN2lY+dEdN1AkmS6unp4Y92rzJpeQqwvjqY62LJzN4aWxanncBo6hy37FP91408wXBUku1+hqnY2OTNBzhZ4a8N2FixawKrTPoXf5yLS3091w1xeffUtfvWLBznk4LnMmb6M44+spqzYhyDYtLTv4sHH1nPY0TOZXleHQ1BJxPsxLQFfoALdJWOlkkiiitfjJ54I4Sl2sX1LDzNmuFAFhYyZQdF8FLk0KiqnUz/3UBYtXoQoKii6xitr1yEKJr193dimxfxly8e6qQwT7oYrgkcr/QrpmQrKP7vAvCqUs+3BYH2jJq3JzYCTmfMFG8EeW04YQxkd790wqvywaJdDnj/jC3fj1/Lx4l/C3ScQw73ysPN+ePkIRFLeZ8Ky8vsGIgIVBpkgCAjSsFDfA2yuwjKgII4M5TIb6X8lSlKe5zzMR2s4hpcdz2m20CSMXXrsbfsjwR58YPbkGzN6QTR6W5yktVAQBvLqWdZA6PF96/sIAW7CiIsfzVXcm32hUOZDdWgbbpUc9rvOXHM6P71/HQfVfHgU0n2m99pDowiEiYxjIzb2zdoz3mdy1pnheL+xh6/cu4uXGwVO/vz3WXX6aZy5ZjWaqk4g3Iztb8F3bl/Gzug6JtreO0aXHxaCu7BnmM/fvlju0+kMmjb8OkwkgE90Hybq41C/Ct/jKZny+4fOH+kn+EFnxD33cbTiW7RFBLLkI2YJWLKCnJN48bFHsEIbiYkiHoeEv8iPlc7S0dFJR+culP5OgsEKbF890fat+AJuDL2eSCzM/EPmURqcTUfLdtyqzXmXXsjM6TM56shDkCSTbBr85VNxeUvobG3j2SdfYvnBy9i05R18fh/vvLeZWXOnccUXPkOwpJjmrZs4fuWRPPTQg4Taujlx9UpUJOysRXtXB6tOO4dkoh9VgWzWZv2G9dTUVeN0OSgvLmHL+9upqirFUg1EQaensR1fmY+slUZRVC79zOf43rX/wetvvMpZ55zHqtXnoOp+JFEg6PHjVoPImh/ZcvCNr3yJcE8rp51/FrNm1JBNRNDdAeLpXjRdx+MrQlV99HU28dLatfzg+99F12xExUMqnGb7pi14Srxks/l8W5qh4g06QbKJhBpp7u6huLgGp+yjqaWRRYuXkkllcRgeNIdGPJEjmUoRT0bpaWnGqRt0d3QwpaEWw9BIp9JICmSsONlQloqKKk4+fRUOv5u6imKeevp5Dpg1F91QefuVZ0klbLZsbGXLhkZkWyPgd3LAnAYk0UVVkUHz7l34vBWISp7y2NURYvOmXXS29lFRXE13bweBgBdRAkVX8XqduD0B7rnrLg45eDGaO4DT4eJ/fvVbKktLKa+bTS7Zx5Kli5CdAa65+pscfcyxvPDKS9RNnYbHU449OKZlbr79Vo45YgXvv7GOY489mJzoxzC86LpBZ2cbthmmtLiU+QsbqK+ayvdu+G9OP/kUSjwesvb/Y++84+Oorr7/nbIz24tWvVqy3HsH22DTQnMAQ+iGUEIJhBQ65E0IBAJJyBPyQIBQQ00ooYViejXFvTe5yZYsq+6utpeZef9YrbxarWwZyBPyPJzPx6CdueXs3Tt37u+ec34HFJuN9Us/5Htnno7V42XR4uXUV9eTTKZAktEMaN7WjGFoBHriFxVZJRYO4LLbEDQNi8OO2+XB5SzE1xnE7nQhqQn83S0UF1dSVjmMRBQKiwvwhXxUlJXT0dlOKpXA0KIcd+Jcuv0hhgw5ErnQw57ld7L2szU0rPch2A2KvHbefOVd6qtr0TSDZLgAs62Vjq4d1A4dw6r1mxkxchjxwCY0Lcgdd37B2qYE55w0i/bdDbS0+iipqsBi0ohLIi+82cG4oSWIcoIlixdTWuJBj4WorbEgIdPV5UN1Wgi2RUgZCgvf+5iHnv8ciyAwafQ4Vq7eytw503j8+ZcJtTcx+9DDGDNpCpIIgiSlw3DEvutUJp9ytleXbuh9SEsyAC7XsJDvXZHeW6bTuGh6Dw9Ej4NHxoLYf13N1M8c0u1dC3PDm/bWz2wxMptkKQ1ahQwHRn5jgZSp2FNORCDbO1PqOfTPuLP+u6x28C24+48UWTb1EqSkpU/k/MBECDmfM9NONslp8GH0ALhB+Fjngrv9bX/+XVM8G/jut+wAG9N+lrvB9t3zW0j5Tqf2X/nrLXeg3Q+UKPFcAAAgAElEQVSiTL4UF19P5/17n33IzC9lxYvEkpjk/Y9/LpbOU2KfHwdx4yuU71vmsXe3cedru3mhx73y1ZU+Rhx5IWXTT6ZswtGcdtopHHf80b3lB44XG7jvfYG7fWr6tYO7fOQhX04UxZQTr7YvcJf7Ofdoat+yb5ft3A3O4MdIFPdHqDK49gQh58BKAi2p4w/4+WzZcmrLKli7+FNaN69gx4oPGFvjweOpoS2QYNWGDdRVF9CwcSnVtSVouoGkRGna3s6aVRsYNXocxeXVeAsMRCNJJNyO39eE1VqIljIwUjoPP/AwnV0C27c38Zf7/8KpJ52O1ysxZdJoSCVYtWw1ZSWV/Pm+P3PfvfcxfcZMXJ4aZs04nBFDx3PLrX9g7mEzcbnsxGMpZNHGmDGTSCV0oqEoDoed0rIyNF3DpJro6Ohg4RsLGTNuMopsRRKtPP74s5x44pHUD6vFJMuccsrJvP3GS0yfPgVkEbPTQuOW9aiKRN3wOg6ZewiuAjeSKGCz2ojE4lhVlVAgSDIeJRbtwuUpZ+ToMZhtdnbsbMHhsNHZ0cWatWuZOGUC8XAItDixSDeGpiEBhYVDKS6qw9+1E0XZTWnZcNrbdvPee+8wZtwIdmzfQUlxCWazgtvlxGV3IMsmHE4Xhx1+ODMmj+fvf3uKQw+dRfPORo4/7nguuuQHKGYZUTSIxFOUlpVTXOTGJMawlZRQUlXP0uWrqa2tYtOm9Wh6ClW18NDDf2XMpClYbel8cw89cD+yx0vN8GGUD6midkQdUSFOWaGL1WvWMGPGbBIJA0VRaNvj47PPvmDW7EMxkjEu/P65VJSX8ObC1/ivu+5i5szJlFUWk0zGeOGZ1/jOMccwcuQYCguLiKc62bVrK4XFLpJakPHj57JhTQMWq4vGplYmTRtH255Wln2xhBnTpnLbrXcwY/ocyiq9VFdXM3v2bGxWKx2dXagWK54CD5GgH3dBEaKk4HA6QY8T6PaBoGNzmHHaHShmGUVVkGUTugapuIbf56PA46a5uZPSsmK6wz5UBURJJRTyIysyyYSAapVQFI1dO3dgdxbQ2t5EodeLqpiJxw0SSYHSimJk1YzTU4bNM55Uai1VJT7amkqYe+JhDK0fT0FxIQvf/gfTpkygsHg4I4ZPw8DB/Q88g6AIjBiuEA9UctRxTs6cfwQk21EUExabA/RufG2dtLXq/On3L3PowTbiyW5KyypIaICeSj8DJgWH002wqxOrKpLUA4wfP4dCexEPPf0KCy6+ikcevh9BT3H0ccfjb93O+x9/yKlnLUCWTWlQ17us5Kzx9F3vBCknzdcg17decIeI1sMFIIpiL14b/Ltn4BfGgG0Mci+jaanelArQo5qRs//O/P1vIlLJyIGAO+GbElR+IJJMJP7zlD5AMYQeJkTdIJVKpi+KQpqFiHxn4X1lMNMvcwKiC2l2o3x1jGwrzgCxYfvTZf+SYQodTNF9x63lzue0f3jf3CXZ//+65n/vyX5WHpTcPvtJnnHsM94HIPlsEV9GMjrkLt7/Ew/cad9bwJNXjNlvuQV3rxtUuYz0JoPPppoF9jJX/mu/XeZAIFfuX7iNT7fF+fszfXPO5dbNvr5/YNX3O+UCunzPwv5cmnPvD8gSOqAuuZJrvRxo9RrM7zLY1Wd/4zbA4dkAv8f+Jf9qmi2DHcc0eN27Log5pFcZcCsIOQd4og66iKGTzqmliWjxEA2rF7Ft4woqK8qxWmJ4KqYgC24uPPNsfnHzVYwcU4csFxKMdNLashV3gYuC4iK2b2/EjglZtrJp81ZSqThHHnMMmzavR5TdWK2lVNRW0uVvw6xK6CnY3rCO4iIvxcUVPPbX51lwwQ/x+9t44MH7uerK6zhoziE89ehjvPXGQs79wQWcf/75PPX044TDMf7+9CtcetHFNGxZy0eLPuD4eccRCsWora1BFBMEuoOYTA4MMYQomrBZ7WnCEqCtvQtDF9C0FC6zyo3/7zau/8UNJPQIms9HTf1Qtu9qpmZIHeFwN+3tXVRVVyOJoCeSaHoCp9tKMhmj3S9RVlZIY+MOQt0G9XVFhEIJ7rrrHm65+edsWL2UmroyVMVEIibw0YefMOmgocipQjwFxSRS3SSREGV4c+HrfOfoo0A3oaoqXZ1dWGw2li1ZyrBhw0glkzhdbsxCnBQGTbt3Y7PbKS2s4NTTTuO++++nqLSYJ599lRPnHU2gvYmI34ezZjgOqwsTBvGon+btW/li6UpOOeVMZEUlKUIqEaPIYycVi5IMC3R2tVM3eiTBzhZWrFiG2+ukpnYEt93+B27+1a3IJh2/L8oll1zC0089xs7tGykqKaatvYNkMoG3qABRNmGxquzZ3cw1P76Nx55+HFUx8fmyLyj0eqgor+GC8y/h8SceoDvs454/3sXMGdOZe+yRxCJJtKTA0s8XM2XyGALBFLGojrcUSksraVizmRFjRrF42UqGjxiJ3e5g/eolfPjxIo4+5jiGDx9OR/suJMWEpJhYtWo1k8dOxBBTdIciOBxFSAL4O4K8+MIzHH74QXzw4XLO/f4ZtLTsoLDESzQqYbEqxGNR7HY3O3fvoLq8lK6ODlSbB5dLBUMilQIwIegxNm5ex+jxo0klPaDacBu7WPzSH2n1d6JZZzNuwjyaWvYwbKSXeHeEZn8rFWWlSKLALTf/io/e/5C3//F7Ir5PMEtxjHiAUDyGzeHCanGQjMSIJfyEkhF8fg/FXhmkCKJgxusdgq99B4ZuUOApQtcNOluaUCxOmjt3sWWTzkef7GDk3LN48/MtHDS6mtkzpuIsruCCs7/LiScex8133o2sKmmuh96tXY41LGcNyuwVD5RYJJOf1zDE3ljhdCz3/owNuf3kIToRBISsPXH/AukD4N60Xweo+0DkKv9OahWTogx6c/ifRwHzf0wEUUCWTWkz+CAY1SRJ+nJWpXwi9nVzOxB3qX+XCKLQJ1WB0ZN/ZRBmnK/Ycc9G+Buc1PKbLs8+/yTKnBu4+KFtLLh7Hb9+pqH33sdrm1lw9zrCYy/l0b8+cEDt9rodi4M+zPtaJfepXXD3OhbcvY4f3/5QH2D39fW2t8d8VrcDfY4HG/f6rexPvi53zcGJboggpi16gmBCM5kwubyMmHE0J5z/c6YcfT4tQTttDcto2/4e9zz0cxx2Gzsat9HcvIOdOxv41a33UVBYzs6GrSgpHdEiIJqT1NQVMX7yGNatWUQyuJ0iF4RDPu767S/o2L0NWVVZum4LDz30T359671EYiL+7gjnnnsBTpeHq669mu5wgDfeeIXSEi9FRW4aGjbw7LPPoekp/IEWvn/+SZx6yncZNaaG4447lLKKUnRDQUegs7WZgK8dd6EHxWQjHpHRUwp7WrtobNyJzeJh6eIVeAoKCMYMioqrKSkoQo92g+IkGo9S4LSgoPHEIw9TVV3TYxXRSQgGUU0nmhLQJSvFbhfh7naKPA42r1nHjTfcgNlu59If/5j3P/iUytphhOIJ1m3aTDQlM2vuPJa+twYjtRtBjdKVsBIMJFBNdo444jv4unyoskLA18qO7Q207W6lqnoIBhIl5RU4nC4M1UEoDlVDR+Etr8HvD3Pbrb/DojpY8dkqjpp1GFosQTicpLMbVE1k6aLF3HHHH8BkpqaujNNPO5X21k7OPHMBJOKIBnQFgrR2B9m+ZTV3330np8//Lp9+sYSpMw8hGtZQVTM33XQjbR07+XzxJ8QTIe6+57/o9LeCyQqKlZWbt1BYU4coSiRSIpJoxYhrPPzI/Zxzzhls3LyWESOGMqS2FEmSsFithMJ+Ak17mDFuEquXrELWVF75x0K62vysW7uS1tZtWJxmho8agY7Ezl2tuMwWmpt3o9qtqBYLH7z/PsNHjmf0mPFUV1TQ1d5GMmGgyFYEw0Rd3XBCoQCICfw+HwImUlqKk+efTiKeoqKqkosvOReDFFU1tciiBZfLSWe7Dz0lYTFbWfj656iyB6vqwma1oyUkQsEE/u4wmihg0n0MK5+AkJJQzQnMWpCwUMawY37G8FETiO96k9/ccD5jhpXSvLsJzUgxethQLKrKtdfewLXX3UhlTQn/fHsVH3/hozOks7tVx2Qdgm6opGIhBFXB4q4AnLgtpbR0qXiLKrBZrLTv3ExXVxd2mx2/34fP70N1mNjVLqHJYxg3ZQZfbI3z+MN/43fXXcU773zI9BnTUC0m6quKsVrUNBHVl1zHD5SVXZQkRElClmVyGSq/qhiGgZZM/ZvYnb/58q3l7j9MdCCZSPSe3mZICIx9UONDlpVuIEbOvoX7WPIGOmff37n8oOXLsEXm1h3w9gAWjx5T10CxeF+HGD36GaRTYgxavoEb6MyBga5piILYm5LhK/12WSIAKU3r7Sdfa9n9pq18Y9M3eidkzm/XzzKX9TkTNJ25PSjT52Dto/nL/eJvm7nuN3dRUOAesOb+LHe6mPmctuCIGTKmAS1MPbbYfTCRadrenH3ZL8qBcj3uS/f+bJl9SuRc/yrP2lf3F8iWNKHLXmC8d13IjMsgrfH71DHTV/q6JJtIJhL9rg8kA6VLGMiSl31dFKUsl/+9nwUDPnz3dTauWcyZp83n9AXn870TzmDGpPGIRgrdZKOk2kU0tAdfyy46upKMnTadRFQgFWsk1LWdgtIKzI56zNYaAm07efLRl9m8fQl3P/hXEM207dmNriWx2Jzs2dlMR1s3c46cTCyloGkJ4qEYK5esorKkmmt+9Ut++rMfcuhh01iy9CNGD5/DqtWfM2HiGOwOG++8/T5HHXUMCUHCqthIBmJo5ginfu8Enn/+FQTDgmjAc8+8xSFzprO9cSVTps/g8IMP5oWXXgGLhSKXg3AsiGopIBDuwFHgINwVp9xTQMuu5TjLxyOIGibZRHt7N067mUg0jsmkEosmEVUdt8NJMhLltptv4Y7f3YVsEvAFu4nGDJ544m/MP+4QzFYbZosVq82Gz9eKLIG7uIJAJEWh3E00Bh2+AB1dbYwbdRCLP32LiQfNwjB7MYshwgmDiK+DhtWL6eoq48iTJtLSthaH7ubSH9/IZZdczeQZdTjsFr74eDWX/+QSPvz8QwRRIdDaQHnNSE6Y/30efeARCq0a555/Pvfcfy/heByvzYJJMbN9xy5qaupp7+giFtpBNJmgpKIOh6OYgC+A2SJiECcSDWK2lWMxm2hq3EH90GG07ulkw/qNTJs2g/VrNzBseAW7m3ZRWFzAm2+9zsyDx1FeNw2bxUbr5re55bcvcsPNPybcbfDJu+8yZeY0qmuq8Pk6KSsvBQMi3SYKiix0tPo44aST8HcFWLJsMZKcQjeSJFFJdAuoosHqJTsZf1iaSdPnC2O3FaFaEgiJbmIxM4pHobt1K/FwITaXjVXrP2bSuKkANGxuoLDIS0lFLQhxuoMBrGoh4ZAPp9OFqpgIdHezq3EPH3/yHuecewa6LrB29Rpki40Ro0YhxoKoRZXIgEQKQ0uy9tUH2bL+ZbS4A8+Q8/jH6rcZWVTPJZdfxssvvcbMKbOIpvbwwrPPcucDD/LJ336MpgUItbRRO9SGoXYR8nWjS17s7lE89vhrmJCZN68cu10mlfCyvTHMkCESMhJtbZ14FZUVayI89tJirrr6FK751XNcccmlbNweZeOOHZx/wQW07lzN6hUfUz50HD+59vp0TmPS7paaluFk6CFKyQPCMlavfsCuJ8VXOv8vDEj4ruu9e0/ZJPcr9+WsaznvpywdM3+LpOP8YK/b+t4KfY0guTpkPh/Q3u1fLAdiufs25u4/TMSevHmybOqh888O6h9YBiJLGaAwGdKWPpf38/kry78A1Ii5lL+9fX3tXeXvIouwZfAVv3ngLnNil7He9M6jXiPEV9M5k64hI/lay+731NNO5syr7+8bq9evUjbAEfpfz7otDMqi8uVd8i64fwP3/fVxLBbzINvoaSlnLhi9QeBpGDLQa2dvOoC+ickHJlTZC8r2Z6Ub+LrYk9Zgf8c/X8f8/nqfkfQ6qvf7bgN7VH95cNe7Fves34Ntc2D+pfzW2b7XxD4HAL2fZYGaIbWMnzCVlrYAl/zo5zgdFTzy12d4+/1PmTppHPF4DI/TTfOOZsaMHkd7WyutTXsoL7VjsntwO+uQgUh4GyZFxu2wMnnSBMJhnYKSIsxWK6JswhAE3n/3Xe659xHOOm8BgUCCa6+6gYcfepT33nuHeSccz9ZdDZx51ulYrTbKy6vQNROjRg1PJz4WYOy48egpGU3X2LxpHTabgtns5nunnk40EmfGjINo3NHE+x++zBNPPMwvfnErD97/DPfc/RAF3mJiiQSioJFIpIiGwO30kAi30r67DYfbQzyVQpBUTHKaDt5pd5FIGtjtDoKhAJIkoIoptFQS0aRw0KxDMfQ4Bkl83Z0UFhYxYcJY3AVOVIuFQMifdhrREqiSQDwWRVUUEsk4saREQVEZDo+HZV8sY/Lk8fgDQUwmM4KRQhQlzKoJkyyRjHcTDocpK6ujpa2V5555AQGFYcOr0Q2d3/3XfZx8ysnUVFaSCCfo6tiDzVHI0uUrmXXwDG65+Zc88MCDbNy0meuvv4FZs8eApKFaJGSzwBdLFjGsZgbX//wm5s2bjySovPbai7z88qtMmXQwqsmFIOscf/xxHD5nDqWlBZhUgcrqUkwmqKwupdsXwGw14y5ws2tnEwdNP4LPP1vLE489weSx9Rx17ElEEt0s+mgZM6fPwhAFigqLURUbNquL7mAX7W1BTKrIyy/9k6KSQn5z6+2kUho+XwfxeAKz2cWcQw5j3vFH8Mtf3MyMGROxWU2sXL6UoUMqWbx0KWWlxaxes5mSci/t7d2UVnoxUlGGDRkBosHKFauZOm0qGAKqWSUaCaEoKiZJoa21CdAwBB2zKmM2O6ipqcDtcRKLxnA4XdTV1aPIMi1NO/AUlSIIPbllDR1HcQGJuBNfJIS3NMbwqukcdeJR/PWpR9G0CCuXf4wsmhFFmaoKF0UOmWG1OmZzilBIR9fK8NgqMJBQZYnamhLqar3YTSZctgJCwSAW/KgyaIkkqkklEE9QVFrK9Kn1PPTntygbPRp/RGTU2KnMP/kk3nrnXc498yRefOEZCsurOXj2oYiSmD7TFIXe90RuyEq+NUaUclwhs9aa7PPSXBF7XlhCT/xav5i9QYcd9NEq/d/cPV4Pw5SupdI99d7PBXf9Dy+lTBhPnpi7b8Ku7NuYu/+DkkqlT4AzpyOZB1fMoYzdl+VuIOve/rZq9KRz+CqRM19a8lgssi1KehYgSYPW3AecPha87HbSzeRfdA7E4jdg3zk65Kk4YJsHJLnWtZyF6+uQff3WuRT3eesZBpquI0lSn/Qg++xTkHjv3suZOaq850Ku5S63l5wbA4LBXqUG0PjAZvTZd6/jmWef6DMGuVau7PmUGa/M3M38H8DIYWiVBqFKvnyOmb5yr2VL5r7ee/K59+WfuZb2Guhr5dqHJvu8m/nO+SX/DOtvLdyPBn10NfpdH6h8uo6Q528hLyjMr3PPBkncO46apn9li52uG0g9J/AZcpZ83ynXegeQElKgi4jIiAhoUgJBkwiHurHZVNZ+shib24GvfQ8tOxoZN3kURqqbpV+s5aijp6ErLmTNyYa1n1BWpuEsqWfPrkYqS4Yyfe4pfL74Q2SbC0kxI2lxHDYrP73yVn567Y+RNBOB9iAWi0JSi9LR1UZBoYetW7czfdpB2K0OPv1sOe++9yo/uuKHlJYVs3LFKlSLm3VrVnLMcUeyecsmitxDWPTpZ8yaeRCFxQWE/AkC4a3E40kmTDyUUHc7mibS3LyVaNTPqFHT2NnYyMknnsvv77yNijKJispaUoIZUTVhNyskUzHMZjOSYGFPuw+n3cFfHvwLJ5z4Xcq9DhIpnfc/WsR3jjseKRklFAmAKNDeGaS2th7N0Ah3+0BLEo9F8XqLiHZ30t0dorS6llg8ziuvvMv8U09FlgXCPj+qVSHcHeKpvz7F+RdfiG6kKCr2EonH6WrZjtVcgqI66Ay3YpFUrJZSJDlMStPZsasTqyrwtyce46ILLiYW9WOyufjTvffyox9egqancNgd7Nq1E4fdQUmRG02H1rYOCgpL2bx5K6UlXkrK7HR3d+B0uAkGkxiaiY3rt7Jx41bOOu8ETKjEYwF2797OhGmTWbNqDWXllVx55VXc+bu7CXS34nZ7sFo8/ORHN3H1NVfStGM9qUgTMd3J1NljkYUCrrz8x/zp/rvoDgRxOt2cd94PePxv9xALm2lp347HVURRgYNf/vI2rr3mOjQ9jsvlIBRKEoskWLr0Q35+wx088/dHsFhBtah4C4pR7A46OtsQDAfeQhFdU9mw8QuGDR1JR2sIi13BYrGg6Rpm1UyKBN2BEMlEirKychBThEMhrDYbXZ1dtLVEGD22Hp+/FZfTm2bK1gS6O/0UFTvojMQpKSkllogDIoZsIIVMLPv8BVobX+bBP3zEI6+9z8uvv88xxxzLjoaNPPnkU+zZ3cS5F19A06o3mTGuEqc3hsWaAF1HFiKYZJUdW5upKhtGMNqEpJnBEEiKCWxSN76Am5IqN7Hubt5flsCmJHG54iS1IVxz95vccO3PGTF0JBWlRbT7wixb9Borl39E/bgZXPazq0AScwhV+nrMiD1pAnrzJAtGr+eMJHz5sB9D13v3i7DXSiYIArqmoRk6JlPahdPQ03khJZOMrvX3nDAyqQp64uB00la2jKUu28ooiSJ6j3fb3nUxbSjJfePkczv9pljvvrXc/R8UQRIQpawcepnTin773f2AkDxl8uXWy6mY996/46Qjd5OlGQZaSgNByG89G+TJ/IFaMfqV2Ve5AQ0cX/MI5v3+/6JfKQtQ7sslsHeLnLEWSeKggF26jkjttONJbPuwZ4zztT7QpjtP+Ty5cwbWeHBy9t3rePa5J3v0zQcOclTISgmQGbc+45cDBL6OV06upSftEWAwUM65fjrlKfNlZF8HJJqmYbVaSaWZDb6Gfo19Hjrkk4HAHXnZOTP3+n/OBsn7T7a+f4tdxkU3O11D/vJivzGWDdJUVqIOQiqtoSGimBUEE1TV1FNQXkVpeS0PPvQUb3+8iBlTJuJ0FFNcXUEqmsQfaOP22+9gwoTD6A4Esdt0JCPJ/BNno0oC4WgMSYK2bWsJ+7YwbtIULHaRQrvC88+/wCuv/pOjj5/HGQu+z3nnnMf48RNob2/nmWefYdqUmZx00gmYLSoBv49INIGnyE6gvYOqqmq8peU4nBJ/e/p5Dj3kCFr3tPGzn17N4XPmsX7DeopLrMiSRtIwE4skiQaCrNuwlfHjR+CyWeho28acI4/FYrWhWlRUk0IyESOVjKOlUrTt6aCytgRNTzFlykE47IWsWrue4uJSxowdQdOOBgq9JTQ1N+FweygrrSYe1zCJAqok0NXcxNAh1YQMlfbWVqqqa9ixqxmH2cTsg+cQDAQwmUBRFUSTSiqW5I0XXmTmnMPxt+/G6S0gIZiw2EqJRjvZvXMjoOLzt1HoLaelZSePPfYkE0eO4v57/8gZZ52Cw+3g2SeeZ+So8YwdNxpF0bB7ClGtVhx2JyuWLKO0vJBAMEinz0dFVTXeoiIcHgfd3V1YzFYU2UoylcBsVvn0s0WcdfapJOMphJSZ9j1tDB1aTSwOomDG7Sqivm4U3mIvoqxjczqQRRfFpTW07G7gO0dMRpRijB13FN3hAIpi5bvHHYFik9G0JIFAkMPnHo7VY0aW7HgLndjtLiwWkWlTp9PR7qOgoIB7772PArcNRbVgMpu4+qqbiGth3AVevEWVfLpoJXV1lSh2N7+74y7WrPiE6hI3F198HQvO/wHYdWyKlXg8hqooJFNJ2tt3IQsm7DYXHW0tWKxOopEEJsWCIpspKChk9+5GXG4XyUQK1Wqhq6WDXVu3sWb9alJaCo/HjSClY0GFhI4uJyirHo3JqODIoyv5069v5Zxzf4BksWFxWShyO7nsRxfjKS1l99YGgikvP73uHlTJRG2lgw1bBTRDoLqyhHCoA7PVjWRKoUsp7N5qdnXp/PZPHzNsXB1GrJP28B7MkkxxcSnPvvkBjdujrF+7msmTx7PgnHMpLK7AIidZtvQzJkyfybiJk3qAXfY7cC9TZGZtEbIOpA0hc3Bu5HXbHLRkOBB6twd7vRgg4+GUBnoZ/Qwtn0fF3ne7IKTtgLqu9z16zVrrxCyvH1ESeyyWmevs1WGAxfbfyZCZLd+mQvg/KIah98YO9ZKKGPSbrF8G3KUzfwgD1/0Ggzt60hboPfrkjb0bRDvfgrv9SI51MNsSNRhwJ0kyhgCSIPWLbxpIMpais699gPnTi/LspfMBPgbGfAP3lFVh8BUXZAG7tDrZdfOPS7bF7usEd/ks0L1xfD1grtf1RpT6Abt84C5jtduXO8+ByL7miShKJJOJfboMHYhkXEgPrM7/PnAnCQKCaGCQQkBH0K0YhowkK+za1YTXW0gspSGKMofOPoxJUydRWugklRTYvmsrq5etpKamiJaWTr5z9Cls2LAGqzVJodtDZ+duqstrQbHS5e/GbRUxkgHs7nLafW10Njczbvx07A47TpeHyVNnUF5axnnfPw+n00k0GuSVl9+kqMhDaVkJhqHz+mtvMG3mFOqr6+gORkgikIx3UV0xjFO+dzqXXHoJy5euoKR4CEd9Zw6a0U0snERWimjY1EhVSTkubwEmk051eTmHzJ2OpDjp9HUSi8WwWqzoWgpB0NmwYQPl5dX4utuIhmPousxVV97ACafMR1VNyIKGaoJUUsJkMtHa1o6sWEimNMIBP762Vlw2CzZFpiMh4O9sp7i4CIvdgddhY9myVTidDhKJKMFwBLvThQkBu6LgKS7F5bAgqQpRzcDQrKimGB6XgtVSQFJL8Iuf38Zx3/0Oc+ccxqrFi5k7dzad/g5KqyqYOmYaW3c0srutmUb8R9MAACAASURBVIqyQjRZJRGPc9nFl+JyuhgxugJvkZfGnduoqCxDlAVSSQmbzY6om1i7qoHK6lJEQWTsuDGATrcvwkUX/ohxY0djtYq8+to7bNq0BavZTmtLO64CBzpJMAxWLt+I2WLnicfv5/DDphKL+nnllRXUDS/H0OD1f76AL+SjvKycPS3t/OzKqznhpGMQBQuyCYLhKEF/OxazjdWr1lE7tI7q6mpqh1bgcno586yzKCmqxRduJRQO09zUztQpMwn496AJEm67l2OPOYR4qIuDZ83DVVxIZ3g3dsmKxWLBEAVSqSRuj41zzj6PU+afisWmEE8aYIjsatyJ1WrHrFgwWxQS8QiKYiaWSOA02/E4XTg8dkrLy1AUFUEyoQsiFlEEUwJRdNDSGGb3njcodxXywj/fJi4KfL74E7RYkiF1NRgmBVWPMmX2oTzy4LN4rApzDhrHz3/1HJOnjMJbIBKOtON2V2AYYeJakmBUYGuTj1dea+D0BUchJzsRLFBkr2P5skZaAw7mzj2am37xC0aMHMnUqTMYPnw0Tz1+P7U15Vx82U8wmS3fOHCn61o63UJP25qejgMXEND0VA/DZu7alwvuNMg+rBsA3PVZN/uAO42B1vL/RHD3rVvm/3LJmNZ7TdXZG+cBNtEZt8zch3h/ZCxfJ13CoOXLEqrkSj6Xxcz1LJKJfO0M9hnqDyyF3tOmge7ndJT/+jdBenXLfO752Htg0L/8vn6TjFtxrhUv4xqSbmLv/Dzte2fx5BWj+46NkfXy6hMHlsc1N6+S2WWErDL7/70X3L2OZ59/KovwaN/zcDBugfu2MmW3u3e+7q/fbJfPPq1lgYRsV8lc19KByFcyOg3sspil7aCe0dx7A602+/4x99XXwC6hfQHZ4PT78jIQQcpgy+9P9rWG9RJz9bQpGgKaoZH5foqeZMnixaiSCZvNxm9uuZ2Tjp3O6FGlJIUEYkLkJ1f9gmeee47mjiY8ikRLezPFRSOxuhXCoU5sigtNiiPZali7eC0jxh7M+k07GTemjo1bduD1FPL5px8x7/hDsKoqHR0JbA6VQLyFutoJRKJREvEwWiKMloxhqIUkIjFSsRSFHi9//O8HufzyS4nEfHiL7AQTAr62MIlIkM8++4CKslIcjjL+fP8DXPzDi5g6fQzxQAclxR5CyRSSSUEQJGTJhK6Dr2MPsizjdrvRUjqGYiXQ3kzQ10VJTR2qxY2uJUGL09bahKqYcLoKicYD2CxODExEgyGSqSC7d+9h2LDRBLq7KC4uIRZN0tTUjLXQQ4nXgSLIxIJJ1mxYz4gRQ9GNFIpJZfu2DoaOqMTQk+zZ3YmryIwtKeDTdcyKnbdfe5uJkyZQWORm6dKlHHLwDEwmkRUr17FkyToOmjmCsVNnkErJJIMpwrEmkgmddWs3sH7tZmYfMpe6+lrchVYEWSUa09m1Yys2U4rq2graOjvQYjqK3YUqWxCSOvHAdjzlUzn6mHk8+/cHMSSd7599MX+5934efvhBjjv6KD5avIZjZhfRGRA4+LBjaVi3lmRMo27EBN546QlGTpzOgvN/wNIvFpHSovi7gygWC/98bSEnzDuSRCyFSbJw8cVX8N9/+hNWRwItJRCP6mzb2sjMw6bTvLWDrRvWMmnSCBJ6AotqJZJKYagyBVYXimJh2/ZNlJUXkkrKNDftprDITizVjVl2EwykOP64E1i++mMMPUnSkBFElVgoSDQUx+YysNpMdLWH0Y0EkYROeXklRAIsWvQpR86bjyaqgIFgZK+VAoFAkPf/didTx03nljsf5Pyf3kBNVQWtvt1I3buoqR/HmlUNNDb7WfPZQo4+VMVdVI/HYSYRW4dDraEt0EJlVR0ffPA5UyeMBFlg/aYWamoK6di5iUefW8msQ4/ijvteRTMUDj30GI46chYzpk3B4yjkwksu5cTDRmM4vSy48HIkVeoFRL3Pv5hDZCYKSIKEZmjpA9fc9E5f0k1xINKS/vFvueXl3nsZ1/IM4MvVZX+6Grre6765L7fM7HpSnhRX/w75NhXCt9JPpB4ilq/UhiT3sxx802VfJ9kDVMgLnr7sYvZ/TQzd6JN3ZrA0xaIgfqUTwWeff5pz/7whj0JGzj4/jy5G1uV9zRUjU3Bg098Ff9mAMudGnn3+qcGondV033E60HlrGPqgLZ77k0y/mqb1Jp6F/jFx2UH4+9btX0dV/dW/d9/f8oDXi2+w6LqxX2A4kOQ+x5lR0gSRKTNmMmr8REaOGcfdd9/D5OkjKCgpxmodwu13Pc+f7n+YdY0bsHvLWbhwNf7uTsy2JA/c/QSr1jWyaXsXmNx0dvoYMboQsy3MhIlDUU0K9fVFVFa7OPI7hyBIFh585K+YLXbC0QRlxZWE/GFi4SjLl6zDbqvilFMu5703PuTySy6js2MP8aSfiy45g5NPPhl/V4hQd4zvHnUqv/3NHRhozDthHhPHTqC0yMb/u+5iasvtmE0qhSXlJA0Tfn8wPV91je7uAMlUEpejEMFQWLl8A5KoEuhsxW53UlU7FEkQaN2zFcVkIIoypWV1eAqqCPjDdLZH0DWZpsZmVLOHwuJqRo0ZS0dXFy63lY0b1mAyGQQCHRQ6HXR3+uhqaefcs8+jproK3RBRFAtmq4l1a9fT1tyBLCkUFbmwF5axfWc7LoebYEcTxWVWCkvsmBUznR1BdLNEhAQV1SW0Nm/D4Sjl5ef+iSrqvPfBPzFbzFRWV3LwwQfRuHMX9fX1OF12kgmDrrZOdm5toKq6ikhYI9ilYxJKcVnSMV7R7naS0U501c2GTeuJpaLEDIFguJO/PnYfnkIzl//oHPyhdqprS2nr2MP4iWPo9LWDpDFyzFA0I8IJp57B3595hmefeoplS1YiizJ6UoeUwfzvnogkKoCEw+ngL3+5B01LkEykkCSZZDJOSamX1WvXkcJg/IxpvPL2m7iK7SBGcdhVbKoNIxnmrt/9AT0scv1PbyYUCrF5UwMmk4WigjJkk5VlS1fy4osv0NCwEdXkQkuJCGIKhBCVQ4pI6RoGCp6CcjyeYupr6wl2BRFNboqKC0lkMd5miyybsFjMzDnhYrZ2bGXWrBom1DoJ+FuoqR1Bqy9FFAelleM57eTTGTdqIjZLKSf+4G4eefotVEs9zXuaKSup4IqbXuIvz22nuS1MMhVj0sQy3nnrPYqrpjF1xgRMisyNP7uYN15+id//1y0IokhxcRkPPfwof/z9r/nHc89SXT0E2az0A3ZfRb7J62V2YvJ9ltN1ROj9979FvnXL/N8u/YLqxd5/aRfOtFVBN/SepJbp3HZ5H9ieTZrYs6kbyE1TyPn7f+TRzwFlg0/6PIj2eqx3+3LNzOcS1esam6d89t+DXiBzgec30JKX+S65469nxgd6WUSzx0fHSK+s2QZAg965lplvfedc3+/9vdPmE3CM5eM3X6SuzNXv/r9OBNr8UX748Bae/vvevHW6riPL8oCkHP1a2c/vOLi53NcdNteiNhCAHMg9sD8JTPbczS4z8LOR+3fu3Og///cyuA28gqSvC0LuuByYZTS76v4smAdmWfzy0kP21m989j5b/XXMq9EA60o8HsdqsxOJhJFlOeduxu0qnQpHz+WJ6yE8EiWZlG6w9LP30JMpdFHGVVzMYdMno8W6cVsVFD3JjsYQw0aX4XG5sFssWKwF2J0lxLUoXocDmyISTSZJJJKsXbkeh81NIhZDMascefTx3PzrW3ju2dcZP3YskZCPhvWN/OjyK6isGMLfn32BcCTB0kUfYLPZOPfcc1HMFiKxIE5HCbffcTs1dcUs+2wV3iIb8085AZvdCZKIrOh4vS6sVjMm1U48BcFoArvNgkmVMQwBxaRiGAIOq5k1a1ZTVz8ERTERjwRRbQ5MqhktGUdLJgAB3RAwBImkbmC3mrDZHIQjYbyFTnbu2ondZUY3RARRwdfVSmVlNaFQFI+nAEWRSKWSmK0ujjp6Hu2dzTRua8HtdqBaBEaNGM5TTz7NiGGjWL5sOc4CGx8t/AB7QQHFpU5KSovSniCGQO2QOrZs3YbVYsVb6GXWIYeiCQajh9ezZ9cuJk+djISVtxa+Q119PdU15VRUFhNPJdm8YRs/+/FP+f45Z7CtsQmnzcoZZ5xDeXkNWxrWMX7qVGxWB3/64z0cc8IJdLTs5NwFp6GYVUTNxs7trbz80usk4ylmzzmYYWMmEPHv5J33lzFy3DQcdjsNDQ089exzTJ5xCOFAgJKCQr74fBl//OOdlJWUUV5Rjcvp5oUXXmTWzFnE4jEsFpU9rXt47JEnWbliDXV19bhcbhw2CwWeYhYsOJOrrvkJNrubaMjHimUrUGQLDoeNMWMmE4sl2bylgdlzDmbN6g3ouoHL7UIQUzQ2NjNx0hRkWSQaCZHQUljsFqIRP4JkxqSY0VMigiQSCfnRk3G0ZAxdNhOP+KmuqyfZcwYmZL2fMilmJNWFIBiMHFpJw9olPProI8RTKmOGjSaYkHAUCCSSfmSTyqN/f4JYpITKmnK279jD7q4tWE026kfN5Ol/vMXsqRMJhUR0OUh3qIQbbnua8RNncdQxp/LSq++wq6WVTz9byoSxU7CoKnV1FVxz5aUU2lXOu+xKTHZ7WsfM2kKPSzd7P0M6FAfDSLNaGkYv4+RAa0omXm1Az5RMPFvPO1/vcbvM3sP0ZWzOWtsMo2cspbQepMv2Y8nMWffyWvQMo9fIkd7LpvdUmWNbg7Srupi1V0nvRb4ZzoLfumV+K4MSQ+h74p3JuZRrQck2oeuGPmhWzcy2oDd26OtUvrfTHIAzSHe0/cr+6uU8N9msnL19Z1MG92n6a9LpmwTucmM784C7fot5lttlxg0zw+6azzW433wzcs7ZeuZzZjROPWVB762RI0cybtwYnnvuH9ktIIgCT1w+Js8XyuO+mXOtKxTjike3AmSRpmR0ShN2OJ0uuro6MZlMfcYjV76qW2Z/tlex1yUy+95AbJn5wJ2RiVfNMKZluZhKkoTR+9IV96lf/2cxv+tkNpNlWvfBnKP2b+NAXKfzfeeB5F8F7rJZL/Ndz5XBlstXzzB0PvroYzRNY86cQ1EUBejrltnH9TlXV0UB3UA0DAxdxxRrYfmnm3AWKcTlTnytCR558El+f8cfaWvfgCK5ECQf3V1+iosETNJQPv5iPaVVNqaOGklrux9XaSk6KmuWbaamajwWp4iz0M72xmbsdgufvLucCeNHU1Fu48F7n+a0M0/F7LBjc9pJGBrBndv58wMP8stf3cqIUWN4862XCPhEVq/5nO9f9F1C7TqGlKC1I4jF6sFT4kIxaUQDMaKhBGazhRt/fTvnfP88poytI54KkUpqNDY2MXr0WHbv3EIinkA1q5RXVJIIhzB7iklq4LZI+LqCLFm2lOkzD0Ywyei6hllKgW6mYctGhtSWoQsamgaK7EQUHGiJLlTFQvOu3bR3dFFW46GopIRYTECWHWiRdtat3kZxmZtIrBWTKFFWMgxfe5RNmzcxYmIJFdZqQqqKpMRwm20sWrSIosISHE4Xr73wDkccO5fyIeUEglG0hB+7qJCKpbB6vfi7DBYv/pi5h82ivWsHhUVO9rTG8dhLSMZCaIkgHXGDCSOH8uKLL3DoEUcRjwVxeUvwtYcwi2YEMUB36zZ0IKIp1A4bxpqVa1FNEgUFZgLBJJX1EzBFGwiGrdz712cItLdw222/QlQtmCxu5kybxJ9++3sUawG/ue3n3Pjz/8e2xl3MP/kUookwkpwmvwgGAxi6wYbVO9ENnRHD63ngkYf4+J1XOOP0C5HNIifOP5J40kYysguzWcZuLyFqGIT8MQoLC+nsasPhtBALa5x99gJ+edMN1I8sRDUVcfihJ3DLrb+kqWkd5154MZFYjHjEh8c7BJNJQdeTaHoEVTYQknE2b9pKxfCJpPytiFYndk8JuW6ZGTGAqC9G69YvSEYaCAUS3PqnFzl9/qkcdtIZdAfbqKkaQktzCkFJ0r57EQ/c9xDLP+1g/IRS5h9uIRqLUOAdyqvvrODt99Zw3XWzefjh5VQMP5wfX3ohZZWldPg7KS0rQUuqvP7aGxxx2MGsWv0B61Z8QcrXwfV/eBil0NObGxX2gjstJ+ZuoD3gQLK/PHW9rJuGno6v13VESUoTpwCaTjrRuSj2xLzm1BXS8XhpUJjfHXN/kpu3biC3zG+y9e5A3DK/BXffSj/JTHZdj6cfxkwwqyGiGVq/DfhAkm9rnO/6YO/3bTyrVM/pzn4l3379AKVfDFkfgGXkBXPZ9dJVviLwPFD5Kv3sD0Dua9zz4qMBrAyZDWomAXPWBrNfl1nNpz8bPad5e4Ou88VPDTZ9hSAIXHThD5k//ySOm3d07xe55KIfAVBTU82111+ZZfUQssCIkeca/a5n+tnX+tufyl7M2oQbfT7n1tkLtIR0sHqe79zfzTK/ZW1QbrWixEAP177SFeQHYz3PUu+9wVssB7z7Fd9zXy3Wrq8FdSBwNpiUBwCalsJkMuVNVr4vyS7fS6Ij9WyUhDSzsKjn77M3fQMGmqEj9czrhJZC0sFmUnnvrbeoHGLB376H5i3tTJ5eTyQUoqyskD27m1BlG69/9AI71rg49sSJVI2oxOUegqZ3IGoW4pEggsVDQUEBnW0+UjGdYMzA4/bys6uu5vbf3YbJJhDYE+Pq667gist/xKFzjiAUaGPN6g0MHzaaYDBKeaUTdDtnn3U69z3wR9xFXnbv8nPRDy5l7txDOPnkeYydMI6UoePzd2E2pRAMEVIGD973EFdefz0JPQKCTncwihYxsNutdPjasNtUbAUFJOMGVosdgySKZGFTw1rq6uqIRjU6WjsoKnZgsZkRZAlRkAl0+NG0BIlEkpLiMkLhLnY3BygtshPo2IG7cgwOm8KKZV8wZfJ4dN3C2Wf9ELDzh7uvZ9P6JmbNnk4kGuajD5Zw0CHjKCkpJh6JIosSScGE39dKMNDBkOpKurpS3Pab27j+uusQBAG7y4NsglQigixCpCNBSXU5Hf5OVAk6drdQMqSOZcuWMXzEcDq7OqkbUom/pYU7//Bnbr7jLiQ1TiKRRDGZ0Q2DSCiI1WoDwUBRFe6+8w90dYR46623GTGylnv++y+sXP0WhZ4q6oePBkGiIxhAM0Q8Zif33fMXLr7sHFSbit+n850jjuWe/74Rh9nL2Enj8YdaEUQZu6uIRAoSiSTJUJz3Fn7E/HNm0N1dxpKPFnL0iUeRjElEg02sWL6VyvoaCtxOzv7e93jhucd55OGH+eGNNxNqbUCylGGWBOIJHcls572Fb+MqTHL5xbdwzdXXEAp3cf6F57J23TKmThuPriVYuXINQ4eOQDGpaSuSqGBSLQQ6WrHpe1j47ieccMZ5SFYvejLe77nVetaeSDiCzWrl8f++BZdZYfP2FM7qKlZ89jmVNRWccPJJlFVWsGXDWqrK6rj+6qu44oqL6GhajRFLMWnaKBZcdjOCJnHX3Tfx1sIv2LixkZtuvomUnqCrq5Pyklouv+YqhtaN4oarLufaS05l1pSDOf0HF6IUl4BiQc63XPTs8XLfrb0gr/f5T7Oy56Ym6GW7lDOGAPrHqIlpFkxJyvUWyN5m9AeV6fy6Ru8eQdf6Hlr2rs37SdGQC0BzQVxG22/B3b9RvgV3/xrJPQnRjVSfeBZDZ1DgLrMgaDn39wveDsQSdaDgThB6k3B/LZK3nW/B3d4uBTRd788ytT/Xw57//0+Au0y53N9hX2BjoPvZ4C4DZrKfnWyrlWHo6D05/QbKr5gplwvGviy4E0Upb3uZMcju+0BAcPb47ctydyDgTpIkNE37HwV3A41nRr46kYqRNd6DB3eStFenXKB1oBY8TdOQJAlJNhGPRbGYLcRTyfS3GCS4MwwNUZJ6D2F0EVRRQhZlAl0+jGSEZV+8wej6GgxBJhgJUVpaQsOGLUQCOqvWrmLVklX8v5vOx+asxlJSxK6duyh016GLrZiTBq3tQV59/T2+O/9kyqrKiOsmrHYHyaTGqpVLKXNWsqNxK4pqori4GFeBDUMXefCBRzj88CMoLFJx2Kq4447fcv2NP2P5ysVMmnAQhx9+BB98+A5Ol5lOXzsOdwGdHT68BW5SSQ2rxc4bry5k/MQZFBRYCHQ243E6SRoaZrMFWVKQTSY6wt143CUkkilWrVxKUZGTIbU1xCIJRMPOho1bqKkqwuksIBgLY3eaCXV1YxgyCxe+wSGHHETz1q1s27kHqypxyMGTsZcPIRTowtfVjtvpoLCijngkTjyYRBRbEUw1XHjh+fzXH+/A6/WAZGHRoo+oqS7BapHweivQUhCLRXC4zOiGmW1btlJbW8uOHTtweRUsio1oOEFZSQkhXwjBbGJn805C3SH8rW3MmjsNLanjtLuQBJmUKNG6u42zF1zAxMnTuebKH+At8iDKBtu3b8HpLEVVLGkWyViCSLQdb0E527ft5Kknn+HWm28gQYCAT+aJR57goivmEfSpeL1V/OqWy7j5V7/FWeikvbUFq9lLTDPTsO49hlUOYfPW9YyeMpNAIIjPF8Rmc1JRUYE/EGf2QTM54/vzmDR1HodNq0eTNdpaOrCaA3g8w/nHC//k0FmHccH5F/HWu2+A5idkgL9xHU7vGEgECcfDGLKJqsoqOrvaicdEGnfsoqOzlaOPPYY3Xl/IzNmzcXptkEoQi0YRZRUp1I1uUmnr7KR5RwNHzJ2OjsTbHy9h2sy5mM3qgM9jLBZHkiQwEtx+yflMn13LknUlnHDmUZgVGw6HnVDIj0VVefe99zj+2GPRtRSffLyCTz54m9POOAVrQQkVFeXoQjeBTo1PF33GRx+8TWtbK6NHj8JbWITNVcDkcRO57MIFFLsEfnrzzRw573h0QUIVlfwr5X7AXe+7uIdoJVfykZhkX9MNHdkkk0qmDhjcpSWFntJ7LX9fBtxl65qPfyL7G3xTCFRy5ds8d9/Kl5NMsEfPv3T0ndhLdqEbOrquYZCmhs24IUomKX2a0+PLbQg9mzbo82+/0uP/vM8iGT2z6gzE+Ne/eSH7w+BAz/6U7+k/7aO9N1l6vqDlAWOMBvu4ZnQ+UKz2VcDdYMcpb9U89XKBFPnnSK/fvNTjW99n490TC5ApK+6NFc1YJAbSJ9daNpDPPvQHfgOBwD565ekjXXYv2Mre6A8cb2n0uT9wfNpeXfK5V2YA5r/iEC8Tu5sLjPrG8Yn7mD5C770+idqz3DP3N9n7s3Hmf2AHGp/s+9l9Z8fQfnV3TKPHSmrkPQvJLLl5axp762YSlPdvp2/7uf9ywbfR416r63pOBGs61iS7bq6OgpAeQz0TofL/2Tvz+MiqMu9/71r7nkoqe9Lp7vTe9EIv0NBsjaIiigvIjOK4IOjrMig6jjMqvA46zuiruMEoILgBDioqyiIim0DTQO+d7iS9pJPOXqlUaq+7vH9UVVKpVCXphnFwpp/+1Cd97z33LPfec87ze1bTRDcMsrqGbFGQrXbalixmz55u3IEg3oCDXXteRpBERFFm976jvP8D7yAcHqX7yGE8bhfjkV4sFhuKYmff3v38+flddBw8wrPbn2LL+iX09veCJHJg936+9ZWv8dLuffzwhz/iPe99N6IMfl+Ao0eOEE/GaGqso76hhd07O/jxT37I37z7chpDS+k5OsSG9RvoOtiJoceorvEiSzZkwUYkPIrH68M0Reqam7FbrehakuraIKpqI4uIancgSALh8QgWq5dsRiCbMagKBjl25DDV1dWoFjuipGJqBqotRf/AEP4qB6nsKFpS4P3v+wg33PBJZFmnrbWNBUsXs2rNWpzuAF1HulBlFYfNid3mJBLrx2QC1SIyHu8lm4Lzt24lEPDTc6wbtz+AqkiEQtX4PB5efPZZ9u89RDphUFNXjaGZVAWDaJpGT08Pfr8V0VTwOr1EwifIaDqK3YrD5SQUqsVpdyPYZNxuF92dHfT1HqW6rhHF7sI0Ja7/2IfxBFyEx8ZQLBYOHDhI24J6dD2O1W4QGe/lQ9fewAeu+SD+gJ+tW7cxMTqIaRFRrH6MTJKGhgV8+cavIeoCK1cvx+61oWc1LIqdl3e8hFN18aWbPsUV73wXotWCag/gsDu56867aG1qoi5Uw5lnbmLHC4+zcfO5BGtqcDqyCKKCx+HD45NJZgx279jJGWvXs+nssxk90YGqpOg82sc17/47Oo/186Y3XkJNqJa0JjAw3IHP3UgiNUJLSyuCIuCvCrBo8aLcWiApTAz343NaGJuYwEwnMAWTQNCLz2tB1wVUqwOvP4jN5pyyQGHmfiHLck5Yg4etF2zldw/eRWvIoPNQB0F/Nffe83O2nreFO2+/C7fLgb8qiM3upXfwGO/427dyoPMYi5Y08cJzezhwYD9N9e0sW7aYreeey8XbLsHl8rFt23kMdO3kmccexOuycftPf0LbqrWIsoooS0imMJm3eJofLzP35QLPV0h/IAjCjJQExbnhdDMnsJzmo5zb7nJtGGZuHRDEyfsM8oJOUS67zpqGPs3SZdq+KU7VnTs5P51bwUWotDWjMBaz9Gm8duhkfO5eyxrI0/TfTXnG3iT3k2Upl+BUVadp+bSshpbVZkRY+59Ac47JNJFkaZJxfCURD0/TTCpEbCyO2lhKhXeUY25fve/v1YzymM1mpo0hV+/8v42KjuyvYh9PlkrbnjqeCoiS25jnLd75i9NcprF/DVQAdn9RMs080yfkTLYkEUMSSYpZYlmF+pYtCPYAulaLz7MMq6WewcEkf3PNVQyMj9HStoYV65YwfmIAiziCVQ5z4KVu7nvoT7z+zVfymc9+nus/8REeeeA/sUkGqfExRk8M8O63Xclnb/wcD/z+IVwBP66gJ/cMJIG3Xf5mAkEvBw/0UN/QyA/v+j6inMFiS9PY5CRUZ2HN+hauv/7TjAyFGegdIp00iUdjRMIRRsYiKQ6m2QAAIABJREFUqFYrdisMDPUxMBYma3WgCS5e3HkIQ7Eg2hQU2cn3/+NHfPuW23lxxz6uuuIasmmZSDhKMplAM7MM9CW4/qM3EQ1L2C0hPF4fb3j9pdx448243C5Go+NYPXZSmPSFxwkGg3h9fgKBatJpgxpXM6ODaez2ZmyuJVhsWRoaq4mNx9m35wCGkMTuUHDYnPQcG6K+JogqKYiCynhkgo9+7KPkfGI1MtksIjIWxcGlb7oUzYjhC3rZvXcXkpJL97D/QAeSJYCGSmv7QupbQ2zf8SwZQ+eCi7aiquSAmt2JbPGybuOFRIcVHNZaMCxUV4UwDRuDQ4NoehZRMohPJIhG42iCztnnnoHd6eSL//c6Lr5kIZvPWY3T4wVBJZXQ2bBuIwG7DZukkEobSI4AWV0gndG57rrrONzdRXhkmEce/BX79zyHagikY6OkklFEQUbTVGz2IKmUzgVbL8DttNKyqBGfOsFQbwerlq/kqad28o83/hOxdIa+wQliSRl/lYPrr/8MoboqBgb6qA6FGBkdIpmZwJSSyIKE224hFRlCEjQ0wUBQRQ4f7+Lgkf2IkookKbgcLgxNm3XKFKLXqtYhJlw2rv/cA1TZNWqd4/zqp7dx7OhB/vMX93H5pW9DliWymo7bF+C8885DEBWWLVnP4w89TTQcpq4qyLe++W3u//nPwDRJJjI8/viTBKr8jBx9kcRoNx/7xIe4+Zu34JRsSKYIhgDCf806IUpSDtiJuSThc1FBYCuLck6bWYFm2980XZ9XW/OlQkR50zRm+OH9NdJpzd1pmj+ZOaluTsIrIskKBUdXQRByoWSLNFizJUwvqZiZeq5KRWfWOYPpFUr+nixNU/CVatnKaLLmYA4LkUlfiRZsVprU6JX8iq8X93MWTVHF06+03/Mee+5bmBkZs/i15v4nKzKiJObKTQ5tfhrc+WhlZtPUVTLhK9WwFY4LEs3cYyhut7hOafL65NMo0STBdC1XcV3FmrNp0tOTHF9pe5WeV2kbU9cL/Ziu1azU7lz9rNB7CprS+VLpmObqz2wBbKbe/3zanxnh8mSo8E3MpvmbjUo1eNN7NlNzLgiV+yuKYh60C0yGty08Bt1gfHAMh9WObsQQDZP+gR6sNgmvS6Shwc6+HS8yPhLG6bBy9w9/wuZzzielZ5DlZoJ1VVx8yWZ+cMvdnH3OYsLjER56+FlaWxYS8Lgw9HGWr2klHUnQ09NFVXWQQ53dhBpq+e0v78PtbiQtGFzxliu44JKtNDXX8P3v3UrLggUYaQ1JtBGoaeGSt76TgRNjtCyoJ5HOUt8YRJRkvG4H3d0vM3hkgCq/g70vHaHK7+FEzxEaaoM4bQ70jEEsovLTe7/B3t2H0DIp/u2rN+D3u7FZnWiaiSQpLGoLccbqlTQ0ONGzMeIpkU2b1/D6i8/hz08/hShbGew7SkOomnQsSSapYXf4SJs6VreKJGhUBxuJxkaIxyM4PSEUq51MNkNdXSOKaAUzQ3RiiFCoDkn1oNoFmhfWYLe6OOOMlYiqygs7dnDe5nVkdchqsGHjWYTqGujce5CVyxcx1HuY6MgQG9afyeCJXtwOL6IoI1sshGpCfP/W77Nq9SpcfjdmVufwgefYv6uT1kWtqDYDQRY5eOAIHm8tl13yeiQ1gyBpdBzs4sP/52Nc86F3o5giv/rNAzQ0ezElBw/89hkWLVpOdOIEdrsDq9XBWCxK1hR5bscROg71cKR7D+tXLmXXjh1YbU7+444fcfsdd3PlVe/A5nRhsXqACHZnNYYukdETTMRj/PHhJxGcfmrqvFjlKD6HB3/tQiITceKmgU3IYrGq2JwSkpggMjDO3o4utmy5lGeffJLujsN89h9v5F3v+ltUEW791jfYubeLlWeeh2KzYrXYsdg9qIqD+NgEyWwKxRXAkO1885avctZZ58yYd4aQX/3yk8zQVFRRJi1kaFx7CaFQI2JmlOUtLqrtGl/++jcJBur5zrf+g71799Db14MqenA4RDBVnt2+j0cf+xMf/8RH+NYt/8GvHnwAq8WgqdrG7md+T3VDIzd88euMpCQuf8dlGIoMZs4UURBFdMRJgX3hV7weSII4uf9ORqueJTKlgQFGQZhX4OVyVhcChXOTN+T2a2NyUcrv90ZuLcmF0syzCsURyKciJ+f2PxFRkHJViNIMrV2xE0BpJM9K9iCCKOaiehe0g+WXwP9WOhnN3Wlwd5pOnfKTVpIkREGYTC45eXme4M40To5Jm5NeRXA389rJV1rKyL/qNFefZoDfcuYP5uTaWvybMnl4FcDdfItWeE7lzCgMw8ijCABx3ia6p0JzAYL5nC+9Ph2QwRSbXRk4ljMtLI5kOZ9+lrtW6XiuMZVLuQA5HxNZlqaVm71PJ6PhO/l3XGxqWc6EtBSwz/XsKoG7gvlkoarS41Pp98lqesvRyQHh2euYkhPl/2PmzLgsNgeYJnaHFZfLhcVmw+lykE6n8fkDHDnUSV1DI3Z/iH/52u188D1vZHRomFQ8QjY1hikLnLV5HRNjUY4eHcNjW8Avf303iGlaWxbw9BMHaW7103Osh4ZQA5GRMRLjvdTU1fOlL3+XN1z6Rg7u7OKdV13BRDTChnXr2Ll7H6tXrcbpciLbLGTJ4lAkPC4ZLZWl4+AhHvjVb2hoaMDhtFLXeAZxLcPqtZuIxsP4qj2oNiuSojKRTIMWZ8XylVgUiWs//F6qq6pIZ7IMDZ1AN9IYZBA0DwhZNC0XaVFV7PT07URRLBhZP/UNtYyOjpLVkoTD/fg8fm668V84++yzUVSJcHScPXteZqDvMCuXLqTzYCehoA/BSGJRdPpHOmioW8q9P36IxsZqfH4/x44eR5EsWC1W3G4nsmqhNlTL+OgwdmsIq11nIjFEU8NyfEEZTdcJBkOAjXvv/SW+gA+ny0kiMYFhGmQEOGvzZgQjiSKmkXBjtbnZu/sIza0h7JKEhMDeXbupr63jjjt/ypIl7QiCzG23/oBvfuMb6EaCVBK8bh++6npk2cGyZSuxOTxIsk4qqXOid4DBwX68HicPP/QwH77uw6xevY4bPvNhrn7ve5BVlYaGOi5/21tRJAWPx8VENIXDJWOkwdCyXPvBa7j09W/EyIqsWrGYsdF+UskEpq2ZYz3DBPzVuKw2JCGNKRhopoIgufC53Qz0j3DG6tWMhgfxuGp4+9uv4MJtF3PVFVfQVLsIj9tNQ1Mt4+PDCIKKpmuoJOna9TQBv046Gae2vgG/24m/qrbMpCmdQyJ6PiiILIrYa9tZvnwFmcgwJ7r20dBWx0jfUWQtRrivk937d3P1u6/C5xH53nf/HxdtOZcn/vg7XC476zZuZvdLf+Z161tJD3Tw1It7+NQXvoxo9+GuqUVSVHLRTabSGcxmdCjk53iBd5trDzALgZlmCBRLBIX5/xtF5YvrNfI+1rkgT2IZHqBU8Di131QSWk2BOx2YG7SVWnGcBnf/DXQa3L3GqMAoScKkmjw3UYycyU6e+RbzEqFSmpe2paidV4MMM9eTOdsu1YZV5nrKa8yK7ykGSqW/kvNGGQZ+TioH4srVUXyuRNszp1arcG6+76JSHyrfcPJXzNy14iAi5bVq5WV2pWOtBEIqaaoKm0I5v7PSe8tdq3QOCpqSQnvijLKFtielkiUS1nL9KAU4xeMuBmmzjX+2enNaJoNDBw/R3NKClg/aUehfcXtT4yquT5j8TZl3lpY1S8pWpkp+mIVnVW7cszM15b6v4u+nvL/aydJ0UFjcj+Kxz5+mNL8zffOKxzubiWfpWIQiMy8TEwQxp003TQTRJKUZxGJxnn76WcKj4/R097L+rLVYHTLXXPNBDnY8RVNjO7IlSnikF0mtQcsO0rmvl4cefoZbv/ddevt7ePOlb2LJ0mW8/V3v4UPvex9et4eh/n4WNjcRiQ6woH05yRioQpqzz1nGjp0vs7B5NTd84ku88W2v4+D+Axw+doTGBU04RCuCptHRuZ/ahmZsNgd+fxXLli0lm0ngqgohihoydtKpOHv2HMCiWpFFkCWDo91dPPWHDtavX4MqCyQSUVLJLLV1zXi8QTzuABrDvP/qG3nrlatRhAVYLDHCkREsFg933nUP5249E0W2UFtXi8NhwaaqJGJpVqxYgUDOP6sm5EOWFGw2L6ZskM1mOdLdy4sv7Oa887dy5dvfy+qV69mx4ymWLFvK8eMDLFiwGN3UURWJl3buxuf3cXD/HkwtQzQyRlPrIpBUTJJgqgiSFcMUaGyuR9dNkqlxautqMU0Jh8PG6Mg4Xp+P7q5uEskxArVBbDYZ0+jh6adeRFZljvf2cuaZZ9K+YjX79u2lfdEizj93E1a7E01PoCpeDnZ0Ihomfr8LXYvz0O9+RyhUx6aNW7j2Qx+mq/sQL+x4is/98/UMjfbi8zt485veSCKZxmJxYLU52blzN+lkmkwmwy233MZ5529maHiMH959O1/5ylfQDRGHTWNsqJsqn4+qqmZSQhKf34ZEjExmjKxgJasn+MI/fYFzN11AxjBJRKPs3bOTdRvXcd01H+bq9/8dH7/+oyiigU3VWLy0gaHRw4iyiSq7yWYzWG0iI4M92PQoyViC7U88zmDXS7SsPBsxnwuydJoW5pZg5iycCmke1GSGJE5cjavxLdzIipWb8QWqsNpTbDxrIQ3+Wr7yxc9x5OCLqEYaOXuCRS1OWmoUDrz4GG6HncOd+6ltWcCSDefSsnAFpiKBDJKZM52eTGdVtJYIgjBt9RSYCqBSyUpj5qJCTuNFflyTPnnlwd3k/iCY0/z3RFHEFMx8fr0iIRJmLsKmrORMwU1jht8fpomU33MwTQxdm1qfi+8pgND8bUW6wkn+cmrneW3S6Tx3p+m/hQp58woREg3TxNANdFPP5UaadNA9eRKgLIN2yjRfkFK6qM0G7krLlLZRYYGUBHFaZNGCFuakOcK5QFS5fpxqGycD7l4lKq2pNJKXIEiTubxmz5FWvu/FJpC5+oQZ1ytteJPvbLKX5uT5StqiudoqpuK8daX3zZXOoJI2aorZnwq6UgCo5bSDFaW3FTR36XQGRZlylC/0dTKwR5kxzqy70ruc/V0VU7nIqTAzWmi5esppSMsLPl59dqByFM1TA3ezReWcTHUgCOj6/D1OhJJcqaaUMwGThZw0PmuYOG1WDh/qQDZNrKbM8f6deLw6iqgyOGrQ3nIWifR+svEECd2LxdpLjWcVt91+P1ltlKOH+7n0zW9l8aIGuo/toam+jsGBPnw+O4JoEGrewMh4Fj1mxSqN0XksyhmbVqJlo8imhjPQTDYex2K3EMumOLy9k0cee4QP3XAN4zENuyQjSypWm4Jqg7RuYreKPPrr51jQ0kBT6xKGh08giAlcXhVNH+XYQSs19RIj4eO0L15DLJZmeCTBvff+mmuvu46aGi9XXf16fnrXbxmJHEc2I9jtTaQ1SGbjuO0y8aiOw2FndOwEejLB4hUbGTwxyIn+Xh76za9Yf9Z6tmy9mOiEjmKbQDBUMgmZPz7yNHVVblatWcqnPvVRbr75ZvYdOkSopplnnnmey976eqyqhCErqIoK6RgP//4+zjrrMiITJraAjN9pZXhoHFlW6ezcx5JlLXR1DFBd66SxsZFUEgRS3HnnvbzzqqtRrAp2EbKCBauiEI/uwuJpIJVIU1VVzeDQKPv3dbN8SRuHOzuQpTStC9cyFunFyLgZGBimrckLQhJRNnC5qkjoVvbs2k8oVIu/yo3TWkN4dBCv38nY6BhNjUF27tqL1epCVKw4nE7ecfllfPOWr7OgZRk2ZwZDspHKRFAUGxbFTceuX9NSG8Rmq+P2ux/kvR98N+hZJMFAS6cwvUFUMUb37oN89aZb+OxXv8azjz/GBVu3cHigh907dnP5lVehWhVcDpG3X/IOfvSTO7C57Yg4gAyRRAxB1hgZOkxDw2IUxU46Nsbw0ZeJyq2sWLkCXdMmU+UU0rEW5takRj8/fXXZIGtIqEIGkhHSFg82046YyNCxexe1TY1oGY2Ozp0sWLCQh3/1MIcO7kQ0M1R5/GTig1z14Rtw1i/EalGwyAqmYmJKJoopYjA9OqVZRkhYahcw3zx306xJxKm1RaA4crVOaZZjQzCnRd0s7FOl6QoEEQxtKs9daRTOXNvT9wgh7zun5X0gC1GiJVmZEQVT07XJev8aApCcToVwml5TJBRNtGLTTcMs/L/gZzUL/aW+0yJmeTafm5Pqz1wAscD8Fi5PFSw9MXv98wCVxcx12b68WvQKQd3MZ1Ee3E1Ll5BPij4FTqY2tVxur0lDjVnbLgUDs5klzhVRs3yqg+m57orLlQLGymBjJogsV18plYsCWWoqU45mSxNQzqSx8A7K3TeXmWdpX6c0dVPX9YLGKP9OpTmeeyUtZSVwPFffypSY4/q01gFhzvx208vn6JUFT6ls2lkctn028DdX+gUzv6ZPCl4EEUkwuOfuO3nTJdsYC5/AZXXSsXcP61a3M560ousHGekfIZ2ScdpUMpqALkdpbV1LV9cQH/i769l6/pm89/2XkYgG6OvdzusuOhvF7ueyy6/mnvu+TzohIlujnDiSxultoP/EQTZsPZuspCIaAoqoIosq0fEYjzz0e9729kt45Hd/5vY7f8C//utNNLQ20dd3BLfVwF5TSzZp4c9PP8aStnV86jMf5qc/+zGHDnYQqPIR8C7k+RceYdXKjWSyMUxBxOF28+tfPMjA4X6Odh/hS9++mVQ6jVfNMnB4LzXLVjMRkYnG+qgNrkS2ZRCzGk89/2MCnnOoW+BBMlzYFZl4aphHH/wTz29/kS98+dOIeHFa0nQdGyVU10hP9z5c7gasFgmHQ+SZp/7IqrVbefH55/j85z/LHx75PYqrCkXWyWZTWCQLmmYSjUY5fPgIjQ0NHO7tYuXKtWCayCqc6D9CVbAVWbCgZTJgZrCoFjLAymXn8uLTj+IIuVAUDSObxWZ1MTQ6gcvpzHln5U3kJ0YGEEWBa677KLfc9m/89v7trFyxkE2bV2KKCq877xLu/tE3GJtIs2DhKpKJBJ/8xPUsXtROqKmOFctWc9ONN/Glmz+PLGWx2bz43AFUi8LRY4epDdVx9FgXX//37/OTe79LImoSiUYwRQFZlbCax1Dty8CSQM6GEK1xIiPHcXkDaKaTo12H8PtdIIjU1jRxvPMoLq8DfyjA0aMD/PrnD/HWy7bi9oocHxyhubYFyemmZ/+ztK48AxkLGT3L6MgQdruVf/j4P/Dt7/8Hg4M9WIUkFpeP0aEIrS0LEewOMqKImTWQzQxZXSArWZDNqcArlaw4pgUSMXL8kZEX7pmajqLIpNLpfMRiYUorJeSilQMIkpRbOYVJdFl27kNhhZ2KfVBIV6CbOpIgoU+amOdBl1kKsApNFBKNz2yrUFc5mlK05cYhiqXWETN5sWKgJ4giupbN+a2X8G1zJVgvpdcyyDsN7k7Ta4oMpk8YAzB0Dd3ILXKCKMwdZfN/AbgrlchPnp2vdvE0uJtk9nObY0EbUXCvLldrZSoFTDP6eIrgrpwmbS5wN18T3VLtY7nr5cwyX01wp+v6tBQJcz2TApXXhpVPZl4Ad5PmqIW8axXe2SsFd4WAN5W/nVPTouX6/D8P3E2SICGJJookMHSil5QGdoud22/9HsvamzljxVrCoztZ1NLGD+74Me9937sJjyRQrFkeeehZ/AEZu83LgX37ecvll9NYv4jRRBw9Nsxg/yDhSJZ1mxYh4CM8FkbTdNzVi7jy8rfyk5/egWYksVrsGIIFQbazv6ObULUXm1NkZFAjWBvEperINjvhsWGEdBTVb8UiV5FJT/DSsweZiMU559yzcTrtPP/8c9SGGpEtCZoblvLjn9zFm97ybv7x8//Ix697H9nxAdatXklPVMftdTM+HsHn9SAJIqmEgaKaJFNpZKuMEUtgdWaAWmxOC4c6umlprSWjjWO1VpFIpNm9/3lamlaTiYa58cav8L3bvo+uxdEVk1h0Ap/Xj2gKhCPDGLpJTaCahx58iKr6etrbW3C7bERGxpEVK7d+91ZuuOGT9A8MYLWmeWH7XrSsyZvf/Dbuv/8/2bR1Kw//7lFamxtYt24lWT2J3e3khT8fZOOmpaT0nDYvnUjy2CN/4rK3XEYkEmFsbIzFixdhSHYeuPc+1q9dh8dXA6qFDes28v+++Y+ce/bryCgaUsaOQRQNAYEkRtrL7bf9iAsuWsr6s87kaPcJAv4QdruNHS/soqvzMN/57i08+/xjJJMT6JqMx+tk9crNvLTzj2hZGUWx0bqwnY6OQ+x/4Q6WrX0Xhl1HNAIIxhDHOrtoW7SKtK6yce0Knt3+NOHRMe668ydsWLuFzsP7uPCi82hsbOXI8S6a6nwc6z7AkhUrMQUHMV3kwLMP0drWSvPCxWTSGqYhoWugSlnGE0kEwUDSYhzoPsLy9sWMRSIEampRXT4yeJDQMXRtpidZOXAnipOaP03XEc2cGbUoSZNmhoZuIikyAmDk+ahCepNiEDNfcFcoOzWxp45eq+CuWGMniCKGriGWy6H3vxTcnfa5O03/5VSOZRNFMWdzjoBg5v018pHXim3BhTL3/1eSkV9QxILNfCkDXwyYihfLwnG5cwWa7V4ownYlIy6uu1w7ldor075Qcs4wTYy8Xf5J0ZyKjFf/rZXWWGrgWxzluQAGZgdFlb6ymcBn/oBk5rVS8FeqOcudzwHQbDY7CTpKzTdLgd9cgKwcFQddmdu3bA4BR8k4yx0X319s0ljuOUxpNWdqWKdrLM1J6XTBB6y4l8Xgda5xnZxWcb7Pu5Q5KUjDc1L2mfnqCuB47ppfWWCVyiKTwnOs1IdK12Y+D3NaCwImQl7m4vT4UWw2NM3kjDVrqK4JIIsOjh7bRXisl3O3raDvhMCDDz6JrMBFF57HwOAILQtDrDpjNbLkYShyiK5D3cTGh3A4HTy/42Ua6x10d57gcPc4Le1V9B3v4Oq/uxaLVSUS7iMWjfCjH9/OGavbcbtEqvwuxqKDLGpfgcUqE5sYYzQSJRisQctkUS0hRNOFKJjU1jSwffsOFi9cjIlJNqtRX9+MKOqk4iKKasfrUrFabCxdvpRgtZMDnXvxVzWioOHxuIinskjyBOnMOE5XgOHwfhyOAJGRQZz2GkbHxohPTNDS2kDWyIKoYIgqRlanutqLnhYIj4e5+m/+hr6eo+zrOICiyng9XvS0hoSI6rBBPodZS0sjNTX1RKNjmEYWLaPxb//+NT72sY/yxBNPsHLVKpxeGy0ti2hbuJSvfe0bXP2+95LNZlm6pJ3W1lpi0SFGo3E69u7jq1/5OivWtuN1+pmIjFBbU0NdTR1WtwvVYmVoeJjG5mYM0+RD7/8ANTUhqoL1dHTt413vfDfPPPsYZ21ejy6k2P7ULqLjYyxatIjjPf107O9k9+6XMM0Era2NyKLC8NAQDoeM2+VnZCTM0aNdvP2dbyYWj+LyqAiCwGVvvBqvr4pde58inhrj+k9/FMVqEh7oxOpYyOdv+iyXvemtmLqGy+4lmdJIZlJ88u9vwNB1HHY3n/7MP/H0s9u58aZ/ZumShWRTSXz1HqJjYxw/fIxMJo1VkFi/5WKu/tu/5djRXpoaGtizZx/ZVJqqKj99fb2EI1HGIxMcP3KMNevPJBENEwr6GA+HOX60j/raGhBkdMNELBKwCEJ5ayUhp4jDMM1chMvCPjb5A0HK8SW6kVv8BFHIhe8vTLbiPb3CmqVaLIiiQFdnJz6/f3J1EAs+znmWLAcQp4SQOf6sRMgjyZNuA4IgopvaNNNO0zAQEMoK+wr3G4Y+45pu6vn2ivcRfSaIK6z1RWt+cQ4+yFl35Fbx2ekvyW+eLJ3Oc3ea/mpIlEQkRUZVVRRZzS94M//9xfqTT8z8v4UEckzn/0Sq9C6nwFrhN/v9p/pNRMbHT/qeeDyOaZpTkUDn6NsUTWkpBeHU+zwbzdWncn2cz1gKoa3nV7c5rZwk5H6nSn+p+S5JuQh5xb8CaZpWVluW8xX5K8+4VNBIizJZ3URVTRRFx9AThEI+sIzgcNk4Y8XriQ43ICsBfnH/I2gaDA33snT5OWjIOP21ZE0LikugpdFDfZMfb8jPm975NgQjxcjwIPfd8xtGRocIurMc6NhF70A/sXSC6sYQ77n6HRjZIUZ7dzF6opvY6AmikUEkMlRVB6mrrwdBQrXYECWDrB5lKHyQofAu3nXVFciqyP79+1jQ1oIs2XnnO95DOi3woQ9+gk0bV3Pu5vV845vfIWnItC5dg9PpYPB4N+Hj3fQd7qD/+Chjo2m0pJVQsJ1weJhkKk5f7yhj4VHSqXFGRgZIJDOYOIhFowyeGKD3yDGqnG4cLhsn+o4QqnZzwbZzOdxxGDEDv7n/Fwz1HsNm9eHyBJBViWQmiqTI2Gw2FEUlnc5w7TXXYrFaqApW09/fTyor8eLeA/z4vp/zkb//KLH0BL/97S9w2GUy6SihWh/NTYs4friP++75Txa2t5NNpXhh+wsYRg50JNImsZTOstXriMTTaEaSx594hPVnruHmL/8L516wks989nNc8fb30j90CJdd5OILtvIPf/9J7rjtewi6j+985xt88aaPcd7Wi5GxMHhigJUr2jGMONU1LhYurucHt9+GIAhEIhG0uJ9MSsDiiJLQ9rFk4VnUh5ZiVb0Ipkx1UytuXxWf/fSnCPf3gWnj0UeeYt/evTidCps2nUVkfAKQ8Hqq+KcvfJZMNsmxY508/dQfyGpZTFNky9kXsPaMjXzgqiv506OPc7w3yvKVWzhz3RaSE2mGhwaJRkd5YftOwsNRamua2be3m2OHB+g6eJj+vl6CXj9NoQae/s29WKXy+4xUsseIeTAnFa1JoiBME76agogpiEiyBHkZtFG0Bs53TUslk6TTGdra2iaDqYh5/7NKJIrirDlnJ8clSLlYCyUmpx8DAAAgAElEQVRkmMZ0a5vCeV0ru/7LkjRpjfNKSTcM9JPYv/7a6bRZ5ml6zdGk2aaei2dUkBaV90Gq8CkUys84PT9O0CgEiShj2liWyou1y1+br7ZlrrZPtd7Z6pgnlTpj/yWovI6g+MRcG9rJyOxKtRvmvMDHqftsTafK0T5nH0OllAjlgqQUm3DOJw1A8fVyZpql9ZWer8xw5LRZBaah2GS0YA6ZM/WpbBparNkrB4iK6yunsZxrHyxX7uT98KY/lwKgmytwytxBY14tWfPcWsG5zDML5wtgtjjgiiiICNLUt3Bg/wFsehpBS+L1uhgeT7KgrY24Bql4hIA8wXgsQjwZpy5Uy+Ej3SiqzHgkQkPtcvbv78ZmVRkPDzIcHiOT8NG+MkBd/TJiqSSmGicYbMMqGLhsOj39QyRNC1UuNxPpGG6HleNdXfiqmwnVh0BUUSwekoYGho5FhFQ0jqlmiQ6F6evpwx2son5hMxbdTzw6QDQ5Ql1dLYlxg+effYFYrI/Xvf4CJjIqFsnBeDiMx2PHFAR2vLCfc7ZuIBLrw2kLsmP7CzQ2NuL2eBgb7OX6Gz7DPb+4n0QqRTKV5MDugzTWVaGqGv6GlZjpURw2BUN2kYyksXtBkTxomSRjE8NgyKTiae752V2MDIX5zGc+hy8YwBCziKpAckLnj488jdNmRdRVfH4n6XSMMzetpL//KMPDMVobG0hkBK74u+u47ZavUVcXYNfuvSxsbefl3bs576J1CMg4rVX8+1dvYdGSes676BwsVhuJ6Bh2ezXbX36CTWdtQU9Ad+cR7rzjDm7+8j+TTmZ4+pkn2LhhA889+zLj4zHeeMmb6ezsZtmKBRzr7ieRjnDnXbfx95+4Ho87yJ+f3011KEQ2PYwqGzzxzF7esG0rdp9OY/NqFMHGA79+kE3nrMfhUgj3HCYQbCYcjmJzWlEVJ1ang1Q0Rk9HFxnZhmIxsdtt+P3VjA0fp6ElRCwxQVYTUewOug+8RLXXhTvQwJ/+8CIXXLiFI8e6WNC6kD07d5HNxmlfsgi7zcPPf3o/KVPnyr+9Aqdd4Hf3/5YFbQtoamnhocce4oJt5/P47+7jgou2UV2/maSaQtJK1p6K07GgNssdlvIkRtGaVgwGp/iAEquEglXEbNYmJcdSkYasNJBJMRl5PkwsuEIULCMqBEgxKb/+zuTvChYWxoxzk/0yjZzmsNRXvqQPpecr0WtZ1H3aLPM0/VWTSW4CKpKEKMmTfiblmBsjHwlphllhwSyL0tPzmxuCWJIz7VSAU6V7TtoEcp7l/wtMIedu8i/X5twtlS9RMIebi4Ev1uZN30DmBwDglYO7SpEq51tHJZ86mAr9X/qbKzJmORPQufpycv0vhPufDsCm7psJVkup8Nwq5TksNXUtZirmY95artzJg7sSoYg5/dzcrrXl2Y7Cd/vqzMX5vdfSvk5pw3PXC/OtIHwzAcQp805d06mpCeH2NCBa3IxEonj8HkZ7O5mYiOIPVmNzekhMZDANmWRSI5FM4fYE8AeaUKxWREVgcGSQVFbmT088SduyxTyz42W+82+30NS8mBVr1pBM2YmHj3Pw0EEaGlvxeYMMHT9CqL6GkfA49a0LEU3Yv38vIgad+w8hCGHQszlfcZuCzebB4XQjSmDIBqJsYbgvjMWSRbWqSBYYj0YIBJw0L6ilq/sQ9fUrWLpkBedvPZfWBU2Eo0NUBf1oWoxsJkZ0ZIz2hQs4eGAfdaEg7movGzevYWykF4w4Pm8twSofiWSCxUuX89Mf/ZK2tlaS2Tg2u4rNFeDgwZewynaiiSSR8RM0NjRgsShs3LCas8/ejNvr5+UX96BlTRSrgirbsCg2Vq9azrGeQzz86O/ZsHEj4+MxQrVN1NY28IY3vYVPfOKTSIisW38GmWyU6hoPbr8NxRRx2BUssoQsCOzb/TKJRISGulokFLIT45iotLUtJa1LvOdtl/KBD7yPTWdvRrBYUEQLTS0tOJweQrXNLGhr45ZbvsGLL+9g34E9XHjpeagOgU1bziLU0Mzt3/0RPX1D/PONn+XGL36cRHKULVu3ER4cpLG5HkFw8+1bbqF98XIaGhsRRInIaD+//812kEVs7izPP/EiH//Ex7jmmqs5dHAfi1e2U9cQQLWKZDIpnnzsGZqaWhAklYlYmiqfF1URSSRTCIbMt771Axqb6li6bDHf+ua3aaipYdXKZezfuwdTh4nxcTZt2ozdYuPQnj043B7uvPt2Ltp2Hh6PC0VSWblqBX987HHaly3K25DLFFIInIy8sZQnmcxbV8r/FK6X/CuNgDlHc1PHRSaPlUgUpVz9pSCt5Fg39Lx5pjxNWCmKUlnh5dSaVnx++nonSlIuaXklE/t5mt5Loph7jq9hhdfpPHen6a+aBKYWmZy5gICcB3o5s/NiBs2ctF2f9issKoV6CoydMDuTPifzNh8GqoiJrHR9VjpJjVwhZ18mk8mZMZQy6qXl88x6LnyxOGnHf1I+XAX7/5mdL1F6vXrgTxAFJFHOR1ktV28lYFX4O9OXrnz54q9vSnRaMHksljLO9cymAIVANptFkqRpGqipumb6ws3+LRbPkpnasUob3XTN0/xklKV9KdQzG5AtziFXbjxQHPxkejvFfc0dzw9MltNUlvajoNksnDMMg2QiiaIok/eWz8VXPrdfJSrnQzeVesGcdq0cYCr4r0wHq+Xfabm+zezLfH315tLciZPvZHqd5b9HBCPPWpL335HyPkQiumaimwlsXiuDQ714HODzenF5nGDCzl37Gegd5uDBTnbu2s3aM9ehmxrpyBBdB17C41D4t5tv5mM3fIq1K1ZQXeflc1/4Ljfd9HHqG2qYiPYSi0SoDaVpaKvnRP8R0vEwjz7+PEsWN+OwO4gnkmSSGQIBDx67BafVwuixw4z0DKNNZDje3cF4IoOR0WiorUdSLXh8VdgtNvbte45gKIQkVeF2BVBlB8m4gdtdw+8eephP3/Ap7A6FUJ2XeDqLqojUNzZw9FAXmiERGY9SHaolnkjicgSoqW7A7Q4iKw7SsTjDIwOE6htIZUTqqgPINgXVaiGbTAEGAaeG1ZT4xS9+zdbz34gqeTA1KwN9I3i8bv74hydpaGwhWBNgcHAIRbFS5a8iGhlhz/59XHvttbi9bh79wx9Y0NbGg7/7NV/8v1/Cqkoc2vsiZ6xfj6SYqBYLiqji91Vxzz0/Z3F7O4c6D7FixTLWrFuDINm5594HWLt2OYlknJ/86Ods3rQGTInWBU043BYwc/tFLBElEo1w6/e+zznnbuX8i7ay7syVyKpKJimjqjaCgRCmobBytZu1Z67l4x/7LHpKobV5ORktSyIWp7beD4KN1SsX01Bfzy9/+SuWLmtHS+ucuXkDjS31OFxOdjz5J/75xn/C5fIxPhYlY+hIks5EdIJgsIpdL+6hrj5EIpmgqqqGsZEBLHYndruL4RODbH9hF+duPYvjx3vweLz09Q3RvmwpX//GN9i0aSu+oBPFZue+e39OKhajadEi3nL565mIjZJOJHnumRdYvHQ9Hqubu+/6FlvPupisJOUjPc6QkOSn0ExBNUVzfdr5/JycLDObAGyGJi+/p+agUdmZb4q5V2caBqaYB4zTtIcGklzk/1YC5iYFiHn/t+nJyc1p+0Nx+am1bqbrRAEEFoO3snt5QZI0eWjkgtKUockUCa9hYAenwd1p+h9IhdwlucVFypkL5BfDctqIyR+563pB+8DcjOnsHZknuHuldZxE+YIET5blsv2fAQsqMNvFyUNfaZ9Outx8yARTKCzYJwPuyjCdszUzbbMor9UqBSCVqBhQVtJmaZqWD7JRGWyVB3fzKTfbeTMPWMtr+uaiucYN059PJYA4P3B86lT8PiVJYsrUJwfuLBZL2b7DzKTwlcqVtpcvUbb8TNlNufNzmbLOf65OvdtXDu6KNZjzqlOYztAJgkQBCJomKKKMLDnweWoIHx9EV2F4aBjJMDA1nTNWr0W1ylxw0XnEkxG8fheyuxpnVRDVWcvlV36I8EgH8aFRUlqM6ppNBIIB/s+1H2fDGStYUNuGwTij40mCgXqSkThrznkdI31duJ02wiOjWCx2YhNjpBMJtGSS4WwWR6CeoydOEGrx4vf6IZ3h0P4ujhzupX5BI2RNWlqDpNIagiyRTI8TnRgiWO0jOhGmbfFi9u3dxfoNK+nr7cJf3YLVamW4t5/BviGWnLGeUF09ff1DtC1eQv+xnSDrWF1OUCQ8NjuJVIxAsAbDtBAZOUogVI2sOoiFo1hUjXDvPqSMgSEq+GureOCXv6KuthpRyjA2miSThlBdDXanDKLMNR+4lvraWppa6vF6qhFlCQSTqqCHiYkxztqykZSm0997hPbWEIrTi6ZrYCiYho3tO1/moosvQbbYEBWJTEZjcDSCr6qeMzdswZBTOOwSSxeuZN9LT3DO696OpEA6OYaQzZDWs2T1JFXVAdatPxNZsWOYaWRVoKqqhmwqTnNLkL7+g7icInteOkxj8xKufNcVnH/eGkwSfPKTN/Gha97H9hf/iC9Yg5aKoqgW7rvvHpqa6xgfzZLSB7HarUhUkY0fw0Dk4KGj/MtN/8pFr9uGqkoEg9VoWVizehXH+45isSmIooTP5cTicJLRDAZ6evjxT+/nmmvfh8fjYmHbIsaToNpsRGJxBoeinLttIygqS5Yu4+Hf/JY3vuVSJmIj2O0KLrudZ5/aQUvbOgaPD7BooRebHMLq95Q38RdyUcNnzOtK8/wVrotSXqA4W0wDSZRz5tQUtGsCuq5NrelSDhSVaskMDEzMKW1hqbAxH3m4EIG4kItuag+cSwB/KpYKZkWTzNe6xq5Ap8HdafqfR0UMWkFGLOVV+VP+H3kpf5nbi52SC5q+Ql2lpg6FSsqaYc1nASi3OOd/sy9IeUZIKPnN1s5JLHCTsvW83f20O+cL7OZq0ywpN2V7Nu9+zkomVGYoKzHb+R/G1EMQQGBKC1H6nufU4DKloZpqZ3ahwfR6c50wDIMnn3yKlpZmJEnKmazlUwmU3l9+rLl6Ko2h3Fimn5v6nnNAZgr4zAZeypk5ltMeFs6XAynz0TiV0zhWurd4Hpti7vszhZzkWTSlvF++mJ9jM4FlOY1d8dhORnOXuz75v3yd5ZePwnlJKmjYKpvlzv5dljueGbVzlh7PcX16X0wTZFkmm80UhT7P/S2YZRbMrQq/6XXkihtGFlEScAersViCRCfGiIwOExlOcvUHP044GuHsc7aQThnYLSFcNhe9fScQzBhHO55n7PgAWfM4TQtXcqRnCDM2ziVv2Mry1cvx1rhJjR9neGAM3XQQSQ9gRSdQv4jxsSyR4XF8TQJ2hxcydURSe9BEJz5PLTV1bgL+Wsb6XsYQoDq4GFnoZ/B4L94qN5rkBJsHJAsICi67k2w6A7qJz+9gcUsdyaSOL9AKRoRMKs1TTz/Hizv3ce65F5DRUri9PmTZxshALx//yKd522VvITkeRnY5EcjkgpcoFlRHEovYRCaZxem1IEkaplTNUFSkua0Vm91OQ0Mr6UwWi9OKaLGR1VPU1wfZ/swztLTVsmHt2SxduhpNS/LNr/075513Iel0Fl0Ei0dFVnyIRhafs4pD+0fo6x9hcOgoqQmBeCyKL6BycF83vT39LF+6FI/PwsCRIVpbmhhPDSGKMqJg45mnn+b55/awfOVispksqsMDNgeiECMxnsAueclmQSTJyGAYp9uPZJGQVR3V6sLuqCFtgJYCi12hfVkbbcvbyQiwpKUdtydAKNRKKp4knkjjcPpZu/FMqmoCWJ1Oav1WMvExZEUg6GlCkkR8VT4ufctbkJUMitWLKStocgYFFxarSKjGx92330Fziw1Z8aDpDmqCPlavXEXA78Y0sui6wfK2GlLpJF6/h7PWL+RHP/gO9YEqnvzDY3zgmvdgt1uxu5wkkylGB0dZsWgRILLz0D5aW9s40vk89fXNqC4Xuq4hY2AwBWiEwqQoTBBhKnL4JH8wbQKVzvaZx+V+hfZKScwL+5icr3mho2lMmmeagokpiAiSDIKIbuYy5JmAIEkgigimkN9f84GyRCnnIyiImHlerHTvyAG96X0rFj6W7jdzkVnY5/N7QaH+SQ2daSLlecHT4O41QqfB3WkqkCgIKIqCIOYTdpq5iEhzMtlFplk5pnq6GaeRn/yT9QhU9PsrJaOMfw6UT0o9rW8IeSnaqwSEZtA0W7BTa2W+IG2+0sdXleZoY0bwnfn1aT7vfDLSmVBeC1a6KRWYeFGUaG1toWCWqWna5Dc5ex9e/eeZkyYX8gzNrtErnC8At2JJ9Kn5p03RqaRfKLQ7+XxLPz9zevDuKUlxeYahnMau+Lg4rcPcfZzf2Kd8Pueqr/xxeXA32/Gpk2EY6LpGPJ4o0XxOfd/zeo+Fv/mxGLpOdY2fgx0d+LxBLrpwK2+8ZBt6JoEswK6XdjAS7sTnczM61EdbU4jB4TCy4qMqWItkyXL06CAPPvIIgsXKgsWLsTgCLGo/g2Rcoarai6JKZHUDiyyjqiI2UURLmFhtTuKZEXwON6FgLS+98ATRsVEWNVzM0y/cT12LE9I1jAz28cLzOwgGg9itNsRMDLfdiq4ZhMejOD1+IhMxnG43BjJpU0QwdCTRSmNTG4sXLcFiF4jHx8hmUoRHR6kOBdl09nlYHXa6jh6hr+cYfqdKKpnE4/YSm0jjcFoZi3YxNDCKKEgE/NW43B4UVSGRHCI6HsFmt+Ow2zhxop9kPIHf5yMWnUBRJW679Xaqg1VoWpy3XPkOBEkmlUxSU11FKjqOze5kcGAQM2ty6FAXq1ctpuvQTp7605/Ztm0LSCKBQA0LFiwgm80yMtzP3Xfezf5Dh1izfj2//OnPWLJkKa0LFrDtDZeQyGr88te/YcWS5STG4zicLlRJ5cjhLmoba+npOYDd6UBWVGRJwmKTc/6VCR0jAx17ttPf28fmTVuIjSXJJnSsrgzJzAi79zzHoiVN2Cwe7r//AX541x1s23YBXrud7S/8GZvTS99glN/+5vc0L2xFM0RCdU0k4qO4XG4kWSKjZSALt976XRa0NrFpwwZs9hpMMYvdIfDL+x6kKhhkLDLKgrZmFFXha1//CudfdAEetxePw836DWsYC0dpb1+G0+lk5+5OfMEQiurA7rKzb/8u/vTkk1y07UIS0Sg+j4/+sTiBmmp0wERmEshMGTDPmCOT680c4G6240pzb9q5kjVrco0zp/KHmuRyyOpmLmDdNP6pcP+k24GBKEqTrjKF66UxEnL7nlEE8Cpbu0z2tbBGVwJlkxg5PxZm9s3MXz8N7l4jdBrcnaZplDe3FEURURZz5okIuZC7BemXIJSItaYzdALTFxJBFIu0eDkR0GQdwpRkX8+3PYPxosxiOwkUS65M026VW8zyfmyvFCAVa9VK+1kY5+R4Kyysc/Wh6P6yxyeryZvunDRH4VMFd1Pvt2DyUfb2WQQG5c4VA6Dy9810IBdFcRqwmw1AFPuOzS6nnSmzLVCpdq24z0Lxd19SvrhvxZqtSr+ToZM1Dy1n9loK7jBLtV5TPo9l7y8zntlMTEtp+vVC3jsm/84cg4EgUN5cq2ydTHtHud/s3/f8aC4t35REXRQlZLlg5lrahjClMZ/FKiDHYE0BQUmSMTFpaWvDX13NYO8xvv71rxPwV1NTHcA0M7gd1ViVENmEQHQsxrK1a/FVNRGPhYmPH+HMzRew5ZwLsdhcBKr8IDo4fqKXbEqkv/8ELr+Tpx5/hqpgABTY/VwHNVUhJhJDVNU0kU2GCQ9FSCXDLGxrZXTkCIvbz0ARFzAWPoxVUfF6vDisNmLjEQY692NqWVSLBYfbjdVmI6MLmIaObppYHA6MrIGkWHj8iSdob1+MKWYx9DRoGgM9fTi8biLjE9TVhQgE/dT4qsmkxomMjeEP1iCgMh4ZxhsQCQ9NsLBtFalUmj/+8RGWL1sBpobFYkESBURBxqaqJGIx6urr8fqDaOkMK1csIzo+wtp1q0ijEx4d42f33EdbYwvZVBqPz8tXv/I1rFY7O17azrKlbaxeuwLDkDCFOF5/DYMDJ/D5qvjUJ/+BN71pG20LFnDBtotJayYBl4NUOo3b5yWRTmO1WYiMRUjHEnzkmmv54HUfwyIJeDxWjvb2YJLB4/GjZzSOdHeCIiALFnqPnuAzn7qB173hfA51duOyenjhuZeo8laTzhg0NDRQV9fM00+8iE1ROd5zgo9+9CNEIqMImSwNra2oNjc+X4CF7UvwVXlxuzxkU1kmwoNY7SqyLKProKVSPPrwo2y76CI6Du7HEGtQLRkG+g6xcd1WBgb7OWPNcgQhJzQ+/8KLsKgqmVSC0XCEeDKGlhW56+6fsXjJEhobm4knsjz40KMsaGtFlAxCNSFMLcWSJe1ohojd40EggyhKWK1uDD07x5QsyU9buqdWoBlLICAUrT+VwJ2RB1nT1rpCtMq835yYd4spCDUnrTYK62RRfVPmkFNrB3lBlmka6LpOIX1PqVlm2b1VFJGEnHlowTcZyOfJK0rgXgHcSYKAYeQiMxd88E6Du9cInQZ3p6kiCQXfmhzIE/N5UgzM6fbs8wEp5U4X/pVoNSox+CdT96n26aRpWj0VmDmhgqbyv6QPZajcQltYgCvee6rgrrQZYdqmUXx+/lQKGHNUCvZOFviU68/8/almr6e8NmxKw5XbyKUZYyoFPpXq/0tSOc3dtOMyKVQEQZgMNlQAGzMl2QWN3uyMQOk7n7q/PLgraEznMoctrxE9xflQhqYA/lwli7+ZeTCaFb+BPMgWcr4/uXIimm4gWxSa2xax5ZwLESQLbp+fRDrBM8/tpKF1KXUNQSQ1zsCIRv/oESbCfZzo6iGtZZAEG22tbRhaEkWcACFG64J2/CE/VpsXLWHgcDpR7f+fvfeOk+Sq7r6/lbqrc548szO7s2E2J22SVlollCMSWSAbkZPB6XkxPDb4feHF4CAw2WDAQlgSkiVAQllCOa1Wm/NO2MmpZzqnqnr+6NzTPTMrgS3xzNlPfWa7q+reU7fr3nt+J9pwWRuZmgoyFTpFs6eLmBHE7W6kocXP1FQYq2pjNDiIphmMjQwgiAqSLDEwMghGBlI6o6NjJBIRhk6fIhIcxeOtx0jHiEWmsDusmMxmQpEpVq5ejtkqk4xnUEQRq2LBa/cQS03isFhwOqyMDfeRSKn4Ax4UixUUC7HwOA/c9wzLl63ArBq8552f4J3vfDtOt5VTJ3r46t9/my2bNmNWBMLhEPFwhO6ebixWOw63B7fNxne/8y2uufYSjh87hKALpONp1q9dj6++AbPdistqAV1m3foNbN+5FYfHhSYIePzNNC7yoaclMlqS0HSEdALq6l3UBTyYVBsZXcYbcOKwO5kYG+fPPvlpLjp3O4oEre1N3Pyhmzm4/yiynObg/j10LlvLoQM9rFi6hngkSjIaJNDShtlkJuCxc9nbduCsW8SyrpU0NDTwuc/+GStXLWPRoqUMj/TQ1zfIwX0n2Ln9LJ599jk2btiA1aaSSosIJhMnjhymwWXD5rShpaIM9XRjJDM8/MgDrOhaAqKIJKqYZJGzNm9lsH+Q1iY/n/7CF7nuiqvw2l1oehyft57p6QnsTivJZIqpKYFv/tPX2XrWGgxZJxnX+MlPfs7Z5+zC4/Px79/9Kvv2HmTJosUc2H+Qlcs7aW7uwGkTOXx4L4uWdWAkUjz92K9ZuWIZGV2c/556hutoLfDGHODOqMgWXQbu8pQDdJWKuIJbeUXruqFTmgilFPyV7i0lLRX7riTDKICzymtESSrIDpqhlytKC86tWYBoGHohBm8B3L1JaAHcLVAtKrg25IJtsml3JWRJRpYVDCMHWvLCtyQUrWIVlquqVGF5kmQp+9+Se/MLVj6LZX4xqWLKK/4VKpfDImW0rMApFbRfr1NYrvpsOeGs4rkEcq4K8x2XPM1lmZtvO9X6zgdr1xKABaP8qBinvGbQMPLAS88K+RXX5+OFZosVO5PfYDYr1usHe0XLCDnLUKlQXvxcjIMrns8/P5RaD0sBTem9ecpmmiwHFqWApJqio1RIKA+YPzOabfyqfRaMbMIAwcg9rWBUHOVW1Urr40zKvXu5envZ62aOQW2AC3mwX11vUQ3YlVrEZgLK2v1Vv14XizGI+aMS4xbfqXztw/Lnn9n2/N7XSj7ziiMxJ0yK+VjIHAOiKGPoAklNwqwq2F0qJjnN8FAva1avZKh/D163ynQwQXgqwWO/foyzd21h49kXMdjdTSqh09TcxskT3UxOnKTBv4SRkQFUs0Q42o83sAi/1UEiZiA7YiQzUQ4dOEkiPk192zLsDgdH9p/g5LE+fI2NmCxpFJOM1WXGbWtAsTrw+BuwmawgCaSFUdrbNyFKKiYriPEY09EpLKoZPRIjFh7C6W0gFo4hpxNIZhuToRCiZGJyZJT2pRsJBWOcOrGXjpYuDJuAoEAyYaAlRJqanSgm8Hg8qGYT111/JdPTw9gsVjzOJrpWeagPtPCO69/P2y4+F0dDE81tjdgdEsGJ0/z41p9y6XXn4WlYjN/bQUN7Kz+49Xv0He+ho20RFodKOqlhdbix+2wIpgxm0UEkksRqsSLoFrq7j+IP+DCZzLicLsKxMI2ti0nEMwyeHmDvq6/R1OYkHB3hhhvfwVQ8w6O/fQqZEIGGFlx+H6+8upcdZ5/L9Ng4qtmKx91AKDGEtyGAxWJh/6sv4nHakW1eYuMxHDY7J0+e4GOf+hiLOtv5zve+xY6zz2FRRxuneo+yeOli2prq6O7rJdDajpBKk06maWhqZmwqgsWiIxhWghMix3r3MTapsXr9BqKRCFarBU3L0H+6H1WRSURDLG1pYTw4hauunqmJflAtmK12FJMdUVZRRAOnqmG3yry25zhLu1rZvn0TL7/wDMsWt3HBBZcy2j2EqtcAACAASURBVD9BndvPxW+7iL6R0+x58WXcHieDg9OcPDpC5+oOWv3NHD14lEXti9AllRQaIiAbBnphD87Nuzn2TKHGkbfUlYE5A7L1YIXCfigI4owYuIIcUBKDLYpyfjKjG5nCWpqtTFxeOqiSW1GQ8pJZlrfCvpS1/JeCMvLPXfhrgCiUPVxa15AEIbef5xWxRlkmzzxgE4Ts2lKZOCYPJsXsA9Yc3zcTLYC7BVqgGiSIEiaTCUnM+YnnAoV1Xa+ZSal6Q9nlSxblqgtH9pJywU/T9HIXzkrLUI2uRLE8APl1g7v5UKGPMxPearfz+6e8n/w8mCi/ryDM58dfr7hOKFxXC+AUz58ZSCmtFVctnq3UCjdXBs75PFul62TxumrtVNeSlrt9zuSxkte54tSqff5D0mx95Z+rkuf58F/dSi/OeOVLf/PiOOaLrBtVjhmtVnyer7tw9ec2qvE9i0xTHYjOr69qbZXxknPVzL59tZPVSFnJC1lUMDKQScv0DwyzomsVyYSOLFuRpRib1q8hmQrh9bYQT/RRV+8lHBnF4YLJyRTeQBOGYCKl6ShCE9PhCJNje7F5dKRYI1azi8bmRpavXkoskiEWTWI2qbS2tCFlvKiWOGPDI9iUVoYndtPQ1IGiWOnufom6RoV42I/ZPo1qN2FXmzlx+AiNi1rByDA5McJAdx8WVSEaGicRDfLs73bTtXo1zz73PCMjI1x69WW8/+b34at3EIlnMFutyLKEocPo8DAOawNPPPoidf4ONE3m8OHD/OI/72Dx4iXU19URnAjR0NDG4PAgNqdCW/NSHvzNQxgpndbGZlatbcPp8TM1rnPw8PPIgsT6tRu5//77OXr8MF2rlnLo8B48XjcIAjISY2NDuD1OLFYTvX3dBHx+/HV+9IzBF77wt1x62SVYVCvj4xOkUyk6OxdjMgu43V7MJitWm4mVy9bg8TpJZSTuufNOJEOgZVELksWE12cGZKw2FUV2IEk2jh48gdPuxe7wc8tNb+fSyy/B7vEQSiYxqTbO2rwTURBJRCJ0LmolGAzywvOvsH7jRoaGhzh2aD/f+vatXHXtVTicNrSUgaqaee/73s/nv/gpDAR0PUUyrtN7cpj6Rg//9oMfs3Tpcrp7TuHzOxFECZfDTcDXgJZO88W/+QJOu4MnHn4Mf2Mj9U0NWBwOvvClr9IeaGTFspVY7E5WrN1AIjnBY48+wqrVXfzjrf/M+RdfxKc//nGOHD7K+9//pxw/fhKzVebQwSNouo7JJOPyB7KeBrqRjQ3Ob0/znGOznS211OUpW45nDtmjsNbnPRkkSguJi4JYdszlE1Oc38W9pNRSZ+haxRpQ0WLZHmYUgGIe2AmCgChJ6CWZPGf2XcljKYh+a9ACuFugBapBWe1VznVTlBBlEVEqaqgFUcDIWcrKshaWWqRyWngMA32OBC7ZW8qF39qWp1ptlGru/nuWomxSmNkWRqq7SM7XMjcXzaJJK2gW57AS1q7vVbp7CjO/r9B/VgKx+SSKKD5GcTMrd6Nkxvf5tl8PcC3ym++3eqxTUWAvBYIzwWA1YFv6HlezNhYE8pwrTC0L2BsBeHPF45WOZy1rX+m1pVQZP1L72oqsdhV8VbP45s9Xi6mrPR5zg7vZ3sV8opt8TJxeBcTXBnflheVr0/x+y/z7WGr1zN9dHSznf0MDQ9cRJRlRsmGxuFnStZJIJENwKsrA0DCpxDgW1c5EMMiho0NY7R4CdR2kUiCKMlaLC5fHyfDIECaTimJOI0oGYkrD4WplbPxZRid68AfqOd0/zYvPP0fnkiWc6ukmUB8gEQkzMrEXiyqSimvUtyiYzB6C09MsW+YnONWHondi90eIx1Ok404mxvoJNNYhKxLxWAwxrWNTNcJT40yHE4hpAYfTTktLI0s62tn7Wh/XX/8+YskkdmcbE5MDiIaERTVx+PA+HG4rSBBLRhgeO826Nes4e8e5WFQr8USUlpZldHf30NbewtYdm0lEU7S3LeE39z3APXf9krPOX08mJfLjH9zJVdeejUmw8Xdf+jLf+Od/ZOWqZVhUEYfbRnh6iqH+YRTBgmqVsTvsjI6NcNcdd7K8cyWCAJoB11x9LclUmiNHjmJ32EimEjQ0BrCoVpIJjRPHe5DlNKrFx4HDh7CbHaxfu5rVa1cTS8RIaimsDoV41GD3yy9w7OAJ2tq7kAyBQwcO4m9o5G0XbGc6HGbvwSM89dTzLF/RxcMPPMJLL77A6pVdiCL87sknueiSqzGpFhrq/aCl+OAtf8qp7m50NBxWF8l0mHPP2UU8Oc3y5csIhcPEo2kC/lasVpGB/lEEQWH95s3UNbhJxONMTYT47Gf/hne/83r6evtYt2YDf/7Zz3HDu96Bt85P78AQ7373e1nW3EL/wBA2l4tIMoUoG2zbuoXTp3vpWrkSTYezNm/G4fShGxI9vd2MjY/R0zfMlVddzsDp40iKimSSEAUZETFb7qdifgmzHKIg5twec+tzznW8oDTJNSdJcq6UUJX5NnMCFuZhcQ01Kk8XMk9WKo4KO6lQuZ9VWudqeTyUl+kpZbAsa3rOepflRSu5tyRpXo7HGXKXns2W+VaiBXC3QAs0XxKy7o6iJCErCpqWLZBt6HrW0ibkNEW55CpZUAPpdAZJFtE0vcKqNo8uBYqr44wTbw4S5gEy/jutMFU6r/7/skvmAndz6RuhFIzMBhTOhF5PWYCZ9PosJvm6QrXcAyuprExIyd9q4K6QZEjTzghU/aHoTPspBbWl1tVaIHU2oFqp0KlmAZ2bz7nB3WzPmF3LKAo/+dd+XuBuvnRmY1xp7a355PnxIzduAmhCGsmcVY6ZzDYCDQ04PXZ8gVZ0zYJkUTlycpTt51+KLlmRTCoun4+DLz+N2y1hNunomRSDIxP46vyMnO4FwYIkezApLpLxFBJpVnYtIxIJ0rlsMRNTExw53I3b66e+fgWeejupmInp6DROr5WTR/qwqk48AYVo2EQ6obJnz8ts2tCJ2W4lkxJIhDMgpknEJzBEC1bXElwuAa/fwVDvCcREjCuvuopIeALVppFKpGlorMdqthGJTGIya9icbpZ0LsXlcTExOUI6FUGRVO6770GaGlr4y8//Je989404XU4Ukw1MCSanomQycPV1lxFoXomWjlLn9hKPx3Fa3Lzw6m7Ou/BCdD3O2EAvVmcrbqeTz3z8U1y0623IqplYPIXL4WH79rPRMxKPPPIgixa1EovGsNqcmEwKjc31CKKO1+3kF7ffzZo160glM7itNu686xGWr1zKdHCYukUtiFLWAmSkksRTKoN9k6xZ045JiGNzBxgdPc3ixfWIso7Dv4h4XOe73/4+n/zgh7n/nvu44tJz2HXhTjKSRFTTWdnezrGeYZpbWgiND2NRHfT0nKauoQmr1Y4gppicHCI4kcTr9XPqVC9TU0G6VqzinJ3n8Y63X8PatRvxBRrx1tWTTms0+PzEwyFaFi3mWPcRrrruWsLxOJ/4zKdRpRTT4SmampsRtBQ6aQQZFFnGabUSz9jQM1l3/7GxUbq7ezBbLGzcuJ0NGzeyYuVSvN4AW8/ZhdVqwmrSCAZDeAMBDCQEQcqW7JnHLMuDuHziuCKgyoO88nVaFMUs4KvSWi1wVz4fZ4K7/CZSC9xV1q8TJSmX+KRkDZqPErAGuCu/v3xPMnSN0tj5GR4/xsysnW92WgB3C7RA86R8fF72b7ZopyzJKLIpezan9ZYlmUw6g6bp6HpOM29kFzwjp5YWBAFBEhGRcmteLmamBojIa5LKFqsSi5QgiXMrzgEqFuySpewMBkIoP/6nqZKf2XgrqBHLY5SK8WUz47KKlpeSQ9CpjNsThGwweD7IvNTyUtwoStupZG1mRsw8D6VWoiJPlS57+WeaL+VBRS7uUzfKrHiappfEVZXeUwRotTbebHxEkf9SKmY6y94fjyeQZblkDIoxaqV8zka1rHTVMnbOdk01ms0yWcuSlB3P7O9fWcsPikC4ljVtNpBX+v8iX3kACdU03PMBiaX3iAjZyLaSVzz/bs4/kUotqjXW1d27K+eOKMqU18PLzWEEyL8/ZNdcQ8/OU93QUcxWTFYnkXQawWxnxaqVjA4Ooes6NpsLQzBT1+rhwP7X8NY1YPEG8PqXoJplBMnEiRMnaK73sv+1I/j99ciyhmC1IzLNxPBJHM4ArSvPxmLXCAXHSWdSOM0tBMenkEXwBbyMT07iMq9m9wsvMDVxgLPWL2YyNElGsyHLfjBHcDtMWGwtSLKL/fv3EPA2oKUH0HURb90a0sY0uhAGXcMkiSikiaQS2KwunGYP2AMM9A0Q8PnwNbZiRiE8cYJGb4Znn3uG977rU3g9ZsZHptHSCRwuN+FQlCXLl6CLSWLJSUyGBZ/bSzQRxmJyMt4/xPYNW1BMPvYdnuLgq0/T1trOO97zPhSryvDwaZx2O9+89VZ2bN+BxSXg9rhxulyktDQSESQBrDYTkkljMqbR2dHB0489RnBgAI+/mfb2Zp56/GE6W7yYXQFEXcPIpElLMj/85ndIBKfoWrwEwZpBEDz46jxY7A5U1YOsp0nFI2zcuJYlna00NPkw2eoIxePYpBhxQ+bx3z7ET378b7zzPdeTNGKokgVFlDi49wD/9A/fYNWaLhoCSzGZTHz0ox/llg/eQp2vjngixjXXXM6+l07R1tbC3375C7zy6mts27CWcGKAtGFmcecaVixaQyIewqTqnDg+yKc/9Rdcf/21uBwWwtMZwqk4upFCSycIRsOQinPFFVdyzTXvYMni1cTCBvuPHuW8c7bSc3g/g6eOc3qwH3+Tj0cf+zXJ+ARru9YxMRnG7a0nreVj2OaeYQbFAuQCWcucQHG/yp8zDLFQriAr6WSzVIpCMQYOIae8zrtK5lzHBVEoKLjL529u78rtyWIubi8b51ZiRRTz2XTzTBctcsW1oaSEjaEXMliW91fcpbKAMZc8pfxE2ehUWg3zMl7+kPIZ0d8i8XawAO4WaIHeMOmAIkkoiglRkpBEsSxFsCzLpFIpFCUbKFwU6AzS6Uxh8cq6FJQvHsWMfDOtBDMWqPlaaKp66P/3g7TqEOcP3elcgGEmV1UF/xpmjKKAXD0dfrE+WTVAMRNcQtFlbiZPldeKZdfPbY2q5K28/dn3MaGkkDaUusVU9lsdGBXfeUVRSq8mv9kWhfnq8YzzpVJAVQ3IzSdusZZ76Wz9VQN1pe9BHrxVi+crbasSpNVSAszG11zgbqZLVG2aEY96hlTIklfRXy3QWO33qnZUj20tb0xSZMyqCY/bg2pWCfj8uN1uTCaFcDiCIAcYGwoxOjBNe9NiMnqGVDJKZDrEiuVdRNJTODx2fI1eRFWn/1gfg6f7aWrpAMWBRR4nONSDy2HBV99EJJHiqSd3s3rFOqYmT4IkkYwbNLW4SaanaGhsRBSSuDxJRBHi8TgjQz14A3WYVRWTWSARD2O1ZNdts8WJy2VFkmAqOIXDbudkdw/T00EsqolEJIpi0jESccaGBvF5HYTiGQINLXgCS1i8fDvJeIhgqJ/RsUnsDgt2pwtZMiHLEiZVIRCoR0JCMgTsLjsudysnT+xnbLKHFAPYAzGO7e/lrK3bEAWRV/a8yuo1KxkeGmXjxs14PF6i0RRWi5VQJAhoSAiIioV4MkE4EuEjH/w4F+46n+VdXXQsXYrFKaEJsHzVKtweH9OxKPW+ANOhEHabmSWLV9LU6ub04ElcnlYi0WlsdhOGkUbT0uzbtxubw0rbonZeemkPLS0dWNxuVIvI/ueeorFpCS889xR//ddfZHBwnKb6VmKpOJF4jJWrV7PhrM1ImPmTP72Fa665gnffdANgoJgkwuFpWlqb+NGP/p1r3n45Z+/cwpazNtF96jWGh8bQUi7uf/AeWpsDGIaJVFJAtYn09fXx1FNPsGPH2fT29uNweXFa7aQTGVraOhEw+MD7P8DE+ARf//o/smXbFjrb22moD/C3f/8lBJOJXedexjdv/SHvf98tiLodUUry1DNPs3bjRtJauqZCt9bMFIVy+WFm/L9QFmOXBXYV8yo3HzVNQ1aUgovjbGtPNmxlpkJsPiVjDKPa3gfkkqJk+y+2o+UsgJWWyIpGa7RZnUShmsz15qYFcLdAC/QGqbAsGMWaLbKUK62AQTqdRpblrBBXqj0CSjNMlQns+QWP7MKjG9l4Eq1Uk1+yIGm6jihns0hlM3xWMjcbqCn5bo7YtDKaKYXNfc88aN6g7w0ttOU1ckp7L3XPqJkMpQLcCWR/c60QpD1TKK8EXDPTQxctc6VUO66rupW3prVxxpFvv3wo85Y8saCJrT4ERWtnkZdqCVWq817dIlbSeslR+20oBUnVAFilpWwuUFb6G1XGw+U/VwoKRWA7O4iqtCDOBipLNdbVLI/VBJfZwGEty2P5uzJ/Kue91m9YquQQC3+L41QJ2qq/a6XW5FLKa/rzR2nymcLz6VqxAcNA17RyJVhOQY8gYLFZMdmt1DXW4fVYiYVGMatmJFHHbncyNDRKoGEZ6YyAYrIyORHHbZawWF3Iqh2bQ6X35CP4bG1omQQ9/SMoNgsrlq7m8P4DtC9yoaOgawLBaD+rN2xgajpFJiYxPHAEm7UZh7uDSOg0JpMVk1lBtcg4bDb2vvoqS5Z3kTZShKenOHLwKHabjVg8RNvipaRiQeyKzNj4OLHQIG6Hi+lgCElL4fIb2DwuzHYXPf19WFUJs02guXER3roAB/YdIVDvI51JIisysVgaRRD5uy98gQ2btjEwdpw1q7vY+9o+4hGZTesvJhKewm6z0z80xFNPPY3VamPRog4GBob405tvIRbLsGXzWVjsFtKpJH5/Hbqh4HC5sDrshMen2HHOTh59/AmiqTQ9p/ZT39iE3eHlpz+9jRVdnUxOTuHzepieGEA1q3jqLDS01iNjAyHBxMQYqllFUaClrQlVtfDpz/w5l112NT3dfdQ1N6IoKZySwc9+di/v+5P3cPMHPsyucy7kvnt/xZIVi/H4fKTSGc7ddR7bt+xgSccy1m1YQzQSJKPDVDhEfUMDwakgl11xGZHoJF6fjd7uk4wMD+L2+FjauYHV65bx0gtPcs89D3DVNW9HFyJcfOFFbNu2A0GUaWxswO70YKQzWK1W3nvTB7ni8kvQ9ex627l0MeHQFKlkiqeffY6PfPzjdCxbhmqDzo5GpkNBHC4nup5i1dIOnn/+OepbFhUSjQj5eWhk8wMIglCwx0mCWLTM5f4VpIEShVxesVI+zUrLjhRuKllv9ZzFbvZ1VRRLFVLZOVrpkj8bOKymOMyDrRnfi6XXl9eCLU77ytjA6gqnfMiJAG8pYAcL4G6BFugPRqKYyxAlSRSwmCBQ+q8UBEhSSZapKtrqfOaqXFhJGemGAbksnuXrsFAuzMyXXg9Q+32BOzE3WH/QtbRWcolygbqm0FvFwhoMBrO/k1x0L6kUyGdaYV7fmM0G7mp/nh8VPWiEwucz4Ws2QFP63Zm0WfKJ0ueqZgmrdt98rHPVAFe1NmYCuPk9x2wulrO1WXTvlCh9/tnen1oxe7quzxB2Xg+4O9N7KoFq7tvX0WclVQeZhe8qa25VnBfKvbORBEBWsTkcRGMxDrzyEqlUnFQ6QyqtYTPbkMQUgpDE7fIgmSTMDh8WVUFMDYPThhZvJxIZoamxgVgoSSozRlObDbszQDohMj0VZfmaJYTCGUxqHa/teRlFUJBVP7hErIiIooVEKk0qnSQRiaPKDlJpg7SWRsYgndJZvryTSHgCs8OL0ww9J45RV9+Croexuup48ZUDfOXvv8SOtUvp6x7DZHagCEkefexZ6ht93Purx/jrv/w8f/G5v2Rw6DTB4DAOuxuz2cnY0AAb1q/lS1/+Kte8453c+8tfsnzpUsyKGbvdRiDg5+DhozQ1NXPw4EHcLjetrYtwOd1s3LSZJ373BF1dK3nhuZfYtGEbPX19eH11hMJRkskkZ209C5PZyqJFHVgtLjrrfEQjKRxOF6GpMZwOO4rZzoO/fRC/FTxOjWgkRSpuIGrjTIWS9PeN0tK4CE1Lk9EVdAQuvuhiLDYzd9z1C7719Vs5+5z1mESNddsuIhQJcuVlVzI9Pcbzzz1Ca2MHgmYwNjTK+997Eza7yuHDxxgbnWD3q/tpW7IMj9uPgYRqcSDJMqrFRDqVwu/2s7h9M8ghFDNYLF4effBpPvVnH0ZUEphVGwcP7MPvq2f7tnO45cM3k9F0poPj9PV28873vofpiSBujwuL2Uw8EaO+IUBLZye6bnDX7Xfx6AOP4PE1Uuf14HDYMBQTiUia6PgYsViajs5VaDm3zKIONzvPjGyQWE0F2nwt/Pk5VQnuytewqk1VabNSwVS5vpbH3L1uquCnqtKr2Ous1xbWiTfG0f8InQm4e4MjvkAL9H8XGTmhTBJFFFnBpKiYFZVsQiYRSTIhSRKapiFJEplMJr/iFRsRsla7YibO6oG9yUSi5FMu5sfIlm3QcxmgZpPSdV3P+dMLc6/W1dr6PQG7LDNGLjtVVut25qLnfEjLHTqVcQvZzSX3vVDjqCCL2YrFYiMUjmTjfSqsZPMrWTA75YX5orufQLYOn8h8lmdRLHe5qU1Z628+ZrT03sqjaF0rcEnlr1WqdS11Vcy/p9UBVIn7UEn7WQGgJM12zpJWCsxmaqPnjqnLny+1ypXeWwvY5XmuJkBVloAo3i9U9CmVjMnMe4t8GYXnr/Wcs5EoisiyXFgTZhuX4ntSakGd8YTM9tuX8l9qDT9TkiQRURQK7+IMLireiTISRBBEBFFGEOXC5/ycMXTKDl03kNFBkKlftAKzuwlP3XJUWz09faNEE+C0uHn58cfpPfQs8YiOx2blu7f+C319QVSpkVA8wt2/fpxILEh39wi6ISFojTzz9EEyWhNJaYTwlMDUqMj+PXvYsfM8MNtQVDNaPMTwqX7iwQNMDozjCQRwBlqQbE7ARMDWALKAyZbgVM9ByAho6Wl6T+xDsRqMpSZIhXTEeJKrr7iC2+5+goi5jtvvuIuhU8cwqyo3XH8x7Q3L+eTHPsl9j92HoU+TIkTHso1EYgkUcRib3cCQZMbHwtzxnW/zgQ+/j9Vnb6N5aQdW9TThidPc+g/fYGK4j8sv2ciFWzfwra9+A9JJJDHKX//5x3FZdc7fsp4rdp6HltK4cNe5fONrX6EpUIfDbGXfS4c4uu8U02NTZOwSk9MRvnvrj9i+ZTuuhjoC9X4uuHAXkivARCKNyWElIxhEcdPcupwV6zaAGbT0FLGpcewWE8OjA0iqzAduuZmf//IHyLIF1deB12siELCj2iQ2nLWcv/j8Rzh2qpfGxgDtHU04Am4+cPNH+NBHP8LGs7bwm/sfZFFTPSYhweTAAXoP/Q4jPoWRgamwxuR0hN5TJ/C4VgBeHnngcXZsPgubSYFEjIfvvZdVS5fSfeoEP7/jNkb6Bzi49zX8dW0sX70Vk8WE7NZRFIl/vfXbrFzehWoRycTHObhvL0eOHuOzf/Hn+GxWjIzKnT97mL1PHePmP/kUztYuBvpPoYspDEFHl0QMJGRdKcxKANEQsntpFdINvepRmDaF9VrO1pFEKMyjPGmanpt/5ceM+alnMPRMQbTIW9olWSm7buZeMMu8Lm0/d13+2srSCwIz97187U5EMXvUaPP/FhLeSNzD/xSlU6m3HtML9EdNYi5gWdN1dC1DJpNBEHICjKHNuF7X9TkzNRlG1vEif11Bc59f1GYYecrbkwQRbb6LWbV14PcI7spaEosb1Ixef6/rUX6Bz/ee+x3m+VyiIBXq++Q3vXKqzet83DCzrMzX8vX7h8K1QGEtgXt2V72Z50uTxeTdK6vFls20SFUDW3rZNdVKCpwJCcLM5Ci1rqvGa6XLaP65qv3u1doodQ8tarVrueTqhfsqqVpSnlrjWARTZzLHyn/b2WItq/VZi0pjdTRNrxq7MydnBfd3vexzrYQUecWcSZHRdQ1NyyBJMsHpKBYxw4mDr6EBqslMJpPCbIK21ib6B3vY88oQVofIuo0rScfMaMIUguZC0zL4PConTx3iK3//XT7+yVtYu24xupjm1ZeeZ3nXOehmjUQogRmZjs4uJuJHcch1nDh2FEmQSCVTtLSvwuEwcfkll/DDH/wYb3Md4ZFePHWNxHUTw0PP43F7GRoaxW530li/imgwiNVqIq4lEOQ69u1+hoZ6PxvOupDpkSEcjQ6ShoNUOorTJJNKpsmkBb721W/wl5/+LC8efpmVazfgtXuZHtvHt279Plde9S62bt/C6GQ/0ak04xMRNmzayERwDIcsMTE1Qu/pATAUfL46jh45wbnnXsDo6DiGEebU8QFOnurB6/Ww89JN6EkzD97/GC88/wRfufWr+Dz1WTdaIYmRBklSGJ0Yw+31IGTgwNGj1Nf7GBs4wZp1ZxMKT+P0eEDMKZE0AUNIo2kpQqEpyECdv53T/T3UNzuRRCcTQ4OYVDdXX/cu/uue/2Q6NM3tt9/O33z+80RCI8RiUexOB4jgtqsMjUUYHg4yPRakscHPO296L48/+TjdR49z+dvfw8uvvIjL6SAe14kMHyBlyLR1LEbSU/QMjNPc2IpiUhClNIl0jOhEBKfVhWIS6BnoJpVM4/c288ILz7Bt+2YuvfBa3v6OS7nhxkv4zW/vZsf2d7NoSSfp4CAda7eQ0pJkRBFJkJA1kYyoFWZWvuzBmZAgVC9NU6p0K11jKmva1ZhM2TYLa2dl6ZdqytVqc7VG82WgVKxag1g3sgqtmuu3Xt5Xad/SmdQ0fhORYjLNe4FccMtcoAX6PVAhYyZFbbooZZOt6HomJ/MU/byFosprVsuepuu5ZC7Z+Lwyl8zcfXmLXl7Nls+CNWMTKLg1vQ4ANU+hS6g4Sr+HnAhYxQV1RjvSG1h8C+NZ4b5mnFmhesMQCtaQUsq70c7OwsyYR56KRgAAIABJREFUgmqWmdLrc/9j5sjVHi1RnNlmueVndh6BGRk18/cUk55U8lb9V66sK1huHcuDutLMaJXxWhS+L1q0jILAIctSGZApHdNqzzbb93m+5spsWWvMarlc5ts+85i5StBUBMF5i2cejOYz35X2Nxtv+d8jH3t4JjF5tRKlVALK2lT9XPV3v/p1peCvgjvKx83IxkTnBdVS74aSsU4DGgLpjE5a01GsZgYHB6hrXIQ70IFhRPEG/IyNTzE9HcXhtrN23VbqGnzEEynMJhuSrNN3Ohu/l0yewCz6WL9uDcuWNTI81E86E8Nps2C1+LA57fgb6onGbDg9CunkFNPjIbw+L5FYBJNZYXh8EKtF5sqrLiAUHiA4laH7VD+RcIYXnn+NC857N7GQk//1ma+wqnMtqfg49Q0+pqbGOPDabgL1LbQ2WYhMDWMW3YwPDXOy7ygjw5OYlAyq2UsynY2Hal/cjiQ7GA8OE4smEHULp04d54Z33khdYwtHjp0imtDRyLBm3Up6e3r51Cc+gyqCbDLYuGUDiUwCk2Cmp7ufF59/FYvZjtdtYtu27SzuWERDgxdkBYfDyS/vvIvP/dnncDgV0AysFhuJeJzTp8ZJJjWOHjuOz1/H8Oke2jo6CDTWI4ugWn3c/V/3sWplF/19vVgtKpm0gI6G2SyjWhRMoonxiQiaAXa3k2QihMNmY//+Y9x730N89GPvx2wx09vTzcZNGzCJOjoSw2PTWOw+wpFJFLODJx59hta6RhqafHziM58glYly/Pgh/t///Tn27X4Rr83Gt//562zduoWGxlYMRARDRzNkbHYzkpAhODrO9/7tNnbt3Mn+fa8BOqrVhpYBvz9A/0AfZovMxz7xQbZvO5eG+hU8/sh+Lti1GbPDg9dq5qmnnqWjoxWNfEKm8tIhpclS5qtOqQaksmtfNn+AUWHdm035U4gbrlC2gYBeVmeuPBlXPnZ2vkmeZuyRJfO4dCxmXTsQcjGA2atFSUYQRSRBeMtlyczTglvmAi3Qm4BEQJZlTGZzIU3xfCzlWYCYFeaUnCAnigJSLoFLJRnk0/oKCLn7qlo25nDjfDNQYTPQ9IKm/Y+BaoGvPzTNdLn8w1HWKlTc5H8fbqtFMgo1KKu5fv4xU96dSBRLUprP022zlN5I3Eulm+qbdfx1LTPnNZIhIBkCqqKiKiomQaaluRW73YYugsniJTidprmtC5ujCdFZTyStc/DgPrRwGI/Ph2SWWbt2LU2tLXh8LfgbW2lZ5gBZRVbacVnauf0nv+L+Xz2KWVIZ7zmOw6HTN3SYWMjNRDCNaPbR3rWRQMcqOhevYGRoEqfDQ6DOS3OLg+3nbaGhpY6tm7v43dP/xrGjD/GVr32cdVs8DA72MzQ5QX3bch588CUc1jjxUIITJ4IkxCSHek7gcDnwOayMnzzB8NgQumHg9vp5ZfcB/uOuX7Bu/SrWrF5GIpnA6W8A0U7fwBg/+fm9/Ob+52lraWF6fIjHH7ifn33/xzy3ey8Op4/jB4/Q4qvjtjvuw9fQwFQ0yDMvPcVX//GbHDh6nO/88McEwyGcTg/xWITPfvbT2G12BrpPce/dd/Nf99xLRhfYcfF5hKMTrFjRhc3i4qEHfoOga0wFp4gm00xHklx3/TvQNAO/x4NJlDjZfRhFFtA1AUM3EQ2P43Zb8dW5GRkfwWy28sLzz3PPvXfy24fuIzg9gcOhcs21VwBpDLMds9XJxOgETrMFm60RSbZx4QXnk06Hue22/yQWiWM2W+jqWk48kaG1rZMTp3ppaq9HFmyEQxm6Tw0z0DuBarMRDk0hiRomBG772S85frybjo52nnvuOawWBy0tLUwHY/i8bXzpi/+MIJkQZRP7Dxzi6muvQU+BbojY7SY8DoGBnl6kHCDSZ2ZDeVOQKIuI8tzryf+kK6Rh6EhSaXmV+a0Pfyy04Ja5QAv030yarmdj8XIkigKZTKYQa2QYWpnroqpaiEYjZDQNm9VGKpXMumvO0wpVCZKEXFp9sVR79XvaQObbypk5+OW/rOE6eqZrmFDsRUCYv5OakS9LUHRvm+mmJhaAebZ8Qf78fHupGEGhPLjeMGr/5qVlDIr8lLdX3b00z1+tX+/MXO4qXfhKLXXVeCrcVWGNmi2RSp7ycyCv0KhtWatueSr9vtTFZzYeq4HWWvxV3luZ/bMaVY5X5fPGYnEcDnvB9bvWeM/F//zAWd7qpxXKccx33anWTiWZTSaisSgmk+nMWqvgXZTk2oKboZetp1SC3ArhM5lKkUqlSKfTIEAqMsX05CToGRLxKFariN3fgEl10X3oMKu6ziaVnsSspMgkM/T2nsbrkZiaHAFDRFXs1C9aSjAdxqG6sUhTRKIWvva1b/FXn/9fGEKCZDzBffc8zM23vJ14xCARmUKRZQQlzIF9Pew8eyfjo2NMhcbRtARtq5aiJdJEp5L8ry9+nesufye7ti0jkzqNySZw9NQkW87eQTKVYPczT9Heshqrw8FNH7iF7/zgR3QsW0VaizM9HULLCOiajNOa4oknn6ezaxknTx1h+/btjPYcIxwOo7r8PHDHb7nxpuuw2QSOH9zL6i3XMBkc5+jBfjZuWUo8pvDpT32Mb/7LP9LY6CeR0JkcO8LASDerN15AkgSkPUhKGlmBqbEgYyPDfPF//z/8/Oc/QbW2IZJBkkdJTgtIGTuf/KuPcusPb8XIgCKraFoUScwQmo4hCQ4e/NVd3Hvvk9z6rVuJJMbw13WgSCYSmSix+CR1ziZi01EsHjcpRWJ6ZJAHH3iSL3zpCzzw67vYtGkVI4Nj7Nl9mG1bz8Ntd5JIRDl0bD+r1q8A0gyenqCltZWh0WP465by6iu72bxuLf09PTzz3EtcdPFFWK0qDz/8ENde8zY0TSSRzJDWRLwePy+//DRN9Ys4eGg/6zesIJNSOH7iOHfffTe7zr8Ap8/POTu3o5Omp/skRkRi9dZVCIqIiIKe9woovOzZd7nWqpx3wyx8JlsTElFAEqR5bZeVrozzOa9pWTBVel6vUlKhdK4WkpTl47ZLZBUp57kEuVi6sv5nrreVlYxm3GMU232r0oJb5gIt0JuYpFzdPDmXSTMrlBaFSgMDwSiK1Fomg81uJ51KMTIyis1mLVw7Hyq4veVlG6pYVf6bwd3raruaQPp6+C51CTsjjvNCN9QCa3msWe7OeEbMVXysHodVjapZ5qoBq9qum3M6+Mxxfn4013tbzY11LiotZzCbO+Vcfc2Xx2r3n8n1r4fy95pMyqzunvNt6/XyUs0VdB53Vf3WMHQcDifJZKrMg3K+70iessqxWZQTJevfzDWjQiEiCtjsNqwWK1abBT0tMDUVpqGhCa+3DrfdRSoGZpMZVTKITBzntVefwjBCTIVG8dc5mQpHcLh8xJMy17z9ZrafvRW7Q8Xl8HK6/yQuq8rll13MgQOv4vc76Tvey7LOTkxKHNUkcf/9j/CVr3yNd73nBgZOT/Gtb3+f7t5+/uqv/5ZEQqE+4MJns5OIhNi0cR12p5UDh3ZjtZuRVSt1dY309vbjdDjxe2zE0hL9A6c5//xzON17lObWJTzy0ANEwpN0Lu5ksK+fsakpdpy9C2SJNRtWYTapWMxmXG4vvX2nOXvbuZisVm77+V28+vIBzrtgO1oyQSiYxmIWcTjdPPG7J/mXb36Tcy+4kOtv/BDvv/kmlixpJZFMImRSeOz1aOkIVrOC02xCkSRuuPFdpDQBGMQkexBEGxlB4qYPncvXv34H3//mr1iz2sGhAw/hcS8lkzJ4+eX9rFm9EZtL5d3vu5kUGQKNfrRMhtt++nPOOfscVNWKZFJ48vEnaAjU47Q50LUMizva6evp5qab3ksiksJu9+Dze/nu9/6VcDDMbT//D0bHR1i3fi2RUBTV7ERRLGTSSRTJSnNDMwIyv/3tI2zbvoX6hgD9/X20NjditlmJxxM4XE5+/MMfs3nzWSRiUQJ19Rw+fJhMJoOhmTh29ASiaGLN6rV0Lm7BJMnYzXZMosprr+2lu+ckXStXgKgUXDELb23uXS6UK6jYIiot9FlHy+wcKK1vN9Nlvtr8mj1WvNR1vNR9O/9XlOTcHluiqBOLMX4z1s9SRVapZ8Is4K70OWf7Qsy5ZL6V6UzcMhcsdwu0QG8SymiZnOuZTul6GI8nCIfD1NUFgBJBXRRmtTwJlNcCK4BFTSsW8Jxxk1BoG8ComVyjRp+lGvJZqFLraJyBFW1W99bSfUQQyhPXvNGF3SjXVlZaVEpdYWcKz5WbZa3Ns/i9KIqFZDwZTUNRZAyt+jNUCra1LHbzAYDlVsdq45y/Xp8hSFQ+Uz5mcfakJVnBIFsUVyxkm83zVq14e2VSkmoxePk2ss9dGfA/OzgRyoQgfcYYlbYzH2tc6bWVPMx2fXXeagHK6qClmkV0PuBuNv7y78jrB6v5iVq8P5/gpBaVvrulSR+K2UeLFgtd15BkJWshmBF7XP4u6GhZi0aph4MooBs6kiCBoSCgk04m6O/rJRYKsaJzOY888jDnnL+Fie5uXB4Xw8ND+Os9RCIhzE43JtWCgY1EXMLITBNPjBDwtRFNBTFrCWwOB/v2H8RmdyGlRYaGg+iM09K8hIRmpn3RYvYffAGHrQV/o0ooNInFYkGR3IwM9pNJhFjUUo+nvpGT3d00t7URT8SxWS3cedtt3HTzR0gkoxw/9BxtK7YzONBHc50PydBA8qEoArtffYUN67fwwgt7OOdtF2KxeJiYnMDmVBGBSDhCOh7lxPEjDA1MceN73sNDDzzM+eecR9/QHux2N+moE7PF4HfPPM269Wvx+L3ousaePT2ImUkuumgrDzz6CM1+B7tf7mHzWatpa23GZlXIaDAyPoU30EAicwiz2MVUOMHy1cuJTseZjo7y91/+O/78I3/BS8+9zAVXX8zPfnY7V11xFT6fD4tDJJXWSGaS6KSRMmC3+tE1gyefeIyLrryQkYFR9ESGm9/3Af7rt/ei6ToWi8quc8/nwgsu4/obrmPTpjWEokGuvfQGfvSjHzI2OcaSZZ2YVYWTxwY5uP84N77rCkJTk0RjCX559738+7//lN2vPI3DbqO79xQ2m4WUBk67g0cefBgJieDEFO2dS/F43VhVC/FEkuHBSb77ve9z8cUXcdlllxML9WO3e7jjzrvZsW0nncuXcOzoPjbs2ILscBYAT+VMywM1XTBANwqftVydPUlWSKdSzAhfn8U9e76u23lLW6UFDvJWfqnwfyifm9Wuq9V+nkQpm0jG0KtnMQaQhaKlD6pb7t7KVjtYsNwt0AK9JUmSZSRRQpIldE2HnAAmKwoWizpTkCrIRrXne/5M6b2KJGMIVBWaCwBIL6jQz+gZqmkSZ72+7P/ztDqU9DWT/zJmyi2Ub1hrV1ubWRn/NLfwXOtcufUor7UVRTEHmmsnAJmNZuOnGnAqt+jV4nHumLpqLoyVoCBr7TQKAf55UJYHQ7PxXYt3TdOySY2qFCivbGPu7+cuuzBf+n3Eqc0N7mZq4au5kc6Hl1og+MxcO6uRUPHXQJblWV3GKl2xqvddUhsxD2RnNlRxR04wLu08N/dEQUSXwBAMRBn8AQ+j0+O4XT462pcS1XXCqTRmqwv0NBPDJ5HFFAFvB5PBCRTVjMlsAh301DROVwBDFghOhNAliY6lKzGrPkKhUXp6hxBEiSWL1+NvtGK1W1FMOvFYmv/vb77KBefuYHpymP6eAZoWtRMJhxkaHqX79BiL/V7C4TiqxU5ocpjGugampuLc8sEP8YH3XcX0ZIi6QADFZCEYjiFrGQ7s340kaAwP9BMPRbA50owPT0BG4tTxvixgnZhCVVWCI8NceMmVhOIxjhw/jN1mxuGrw+OvZ2h0mm//261sPWsTViVNZKIfMTZKS0DHpWbT5S9fvZ5weIRtW85jOjKKySISjISxOSzUeWy88OTDjI7GaGtu4af//lXq7TYUUcXudLLrwrfx5S///1x73fVYHSb27jnAzp070YwkmViKsdEh9EwKPZPGZQ3QfbKX22//D1RVYP2qVZgcNuwuJ2+/7noEUcTlNNPX08PVV1zPBRfvoqmpkX/4h39g5znncsN1V+Ov8zM8OsLiJZ3oRpwTJ3rZuGETR48fwukUsDssLOlcwi0f/QiHD+wlGovg93sZGhwg0LQIUZKoC9TT3trCi88+S6ChlUDAg83u5NprbuSCC8/FaldZvXoFgYCXU92nsdgsrN2wBq/fiSjIWEQBq9MOqhkxn6CqxnwwcnqSalawYmmb2u9/rTk2Gxm6ViURS77b8rp2tdaJyutm48MQjFmBHeTAoiSVhJpUtEn1klNvJVooYr5AC/RWpIKGTkCSZGRJRpLknNVFQMj5y2dTF+e110XLQsFKV9HeDGGm1CUif1SQVEOjVoukvGvHPICdmHfhoMxZo+yaOZfgmlbHEpcxKjaJM13YjcradlAL2JX+Ldx+BlkJS1or/M16dpYLnPnz+fg6QdARhLyFrfZmqetGDuhkE3LkP0uyMiOuIu8aV8wKWv0Z5rYcVQcBlfF0RR6z2fzMZhOh6Rjj41N4vE50PYMgSLk2yi10pRY8UZQKP3GllSo7ZsXac5VgHIqgs5LXymedLbZvNqq0MtYCTnMpCir7LrZTq+fs71fqtlqd7+p8lI515bPMaKHKOzF7Yp3y9734zs2MKCq+l2LV368a78U2cu5nVfgQ8gqTsvVQKHyfraqVVVrphkBzUwuSWSGciOBw2HHaHExHYzj9jZjdLTz6zH48Lj+qqkI6SaPPjur2MTJwjMnRXpr8TYiiF0NQ0AwVQ7QRSQfZvnM9oubktw/9F1LGgSJPs3f3y0SnIyxtX0U4EkW12jjWcwKPbxmKMI4Yc2A1mbjnvu9w2493c975q0nF+4kndPy+Ri695Gp+/PPbyUQyDPQNo6pOfv3rh1m1sg7F5Wb1pq38+lcPsWFZF1/+yj8xNTrG8y88i2KV6WpbjFUK4Guy4mnowiJofOu7P+BdN15LW0c9FotKJBLB7W5k0+Y1NHjgVN8wre1L+I/bfspDv96Hp7mBJStXokjDpJUGvB4X6XgfUizCkkATUQZJZNx4HVYUs4InACs6N2Ngxm+RiIRGONl9kg986JOYXV5SWpLtW3Zxw/W7WLN4FyF9CF9DG16PFz0SJkmSF156hvPOu5DNm89lz7691Af8pOJpzKqbkydO8+ijj7Nh83pEJY3NbiKtgcfTgifQSCQxRTyZYumylfT2DPLKnr20NPq4//47uPCSCwm4lyIrHgRFwOqWcNctYnRoDLfTibupnv7BcVTinDi4m5O93Wy44GKWL12GZujEkzEuu/Ji+k68xLZtO2ldvBzBYuHGyy/DbFNZunI9FmcDF5//Nj78J+/nWPcp6traEWtsqkbun2CQtXgXFLbl7um6oZVnliysH+UZLcvXvXztzVJvlfJ9pvS+YjZMgfI9KJul0sinyM4dcqE0To4Xsbw93dALz2dUiW2H7NYoi2JBCZ7JZBDKnrP8evktbrWDBXC3QAv0R0WKopSk+M4LKkLOjU3CICtsijnhd4YFbDYBdJZzxhlZ7oxsoPe8grWLFqma18yz14qGC39mczk9gwbn2e1cVrM30GeNmLviM1ZaaapvYEXBuQjsi5tyJb/Fjb58T50LqFYHd/OlUCiExWJB1zM899xLrFu7Hl1PkbXsAbU2+QqQM9f5vIUw/5xihaAxWxuvB9RVtlH6uVo7eWAyfwA1+/d5yrsNzw20ytvMu2DWSnBTjYdiX3PxVQ1Qzs7TXFlfX+/41KZy9+R8eQhZlpFlBYtqweVy0dfXR31DAytWLEdRZMwmE08/+wwtrS0YhpnI1Ah2u8rhE8dQpRCyHCE83YuWmqTO5yOTiSGb7azfspqv/u332LFjFY899iDn77wAZ30I1QE2h4eu5evRmEYQotx55y+IJsd417s+RUYJsmTJZiYnJ3B5g4DBiWN9iNi4/PLzcXkdPPf8s1x19WXUuc3IkkA6mWD9+o0YipVrr7mUE8ePcN0Nl7NmwwoOHXyKIycOY7KmGBvpY7D/OPUNPj70wZtZvWwpp7v7OH50P5KuYZIiRONR3N5GJoMhdp1/HufsWsSKtW3EQ2YGuxMEpH5S0QRYVFLWRr7wVx+jdWkno+MpnvndS5y1eSOKWcEkeVDNFk4PHiUUCaEIMpGJEL++6w7u+dWjnHf2OWzfto5IJMzKTZswSQqyrnF47x5cvsUsW76MQMBL/+kB/H4/hqHjdLg4f9fFXHnVRey64DwmxoP89Ce3s7i9k/pAMw6Xg1Q6RjwWRRIVnn3mOTZs2sRPfvITLr/0YjZt2ohithLVxhCkNB/+4Cd44O7fceWVZ9Nc5+ORhx5iVdcqVKuN0MQompZh9boNZHQBr8vOL++8m0Q8w9133cc1l78bUXJz4mQviViMd73nenaeew4To+MYaYOtW9cTiwXZd+A1Vq1biSTPnmxIIA/GsnuwWFFuIJtFWywLV5h7PlQq5WrF5FF2vhSsZa17WY2MXqFoq0y0MkMxOg9BIvvcJeu2oZe7eVaw+Fa32sECuFugBfqjorywp8gKUi4YOY+7NC1TCKwWxKwU/HsBd0K2dt58BSIBEBHntyj/gcFdTRDyPwTu5ntN1T5rgLus8CwgCGcG7nQ9X98tX+OoeubHauAuX1OvNmCrDu7mmyVTVVU0TcMwYGnnMgxDwDC0rBa3hrUvD84q6xFWs3TlAUc+ti9fYy/Pw3zA3et8M2fwlP88G7ib7Xye59LPc43vbNfkzlb9Ni8wvR5wl/1uNo35mx/cVY6zKIlk0mkgWztTJFtmxKyqmM0mwpEYFosZQxBQLSp2mwOLauO1V19AR0MzdKyKQk/3cer8foJjY3jcPiKRIKrNg8Nl4fwdb+elVx6ktTmAVXVQv6iZaMRgcGCcJYsXY7VbiMdSNDW2Yreb+fa//oI1W5pYuXIXyUQE1ZQkHtXRdZHGJj/DI0M0NjchiPDSyy9iVaCxPkA8GsHq9CBbnQz3d7Ni2WJGxobw1bnxel3oOixuX0zq/7B33mGSVPX6/1RV557u6Z6c48bZHFkWWDJIhosILAgixisKYrrIxavXdK+Bn5gQUVEJKgqIICogEl1gScvG2d2ZDZPz9HQOVfX7o7u6q6u7Jywowu13nnqmq+qcU6dOnTp1vuf9hnAIUYjh8bg57+xz6Fi0mMCUj5oqLzazBXeJylQwSGlZLb/93f2ceNImLJKMjMzzW3bw01t/ykmnrUayeAiE/TjsDkpdZlrnL6Zt/jK87ioUJYogyihxG719hxj39dPY1IiaUDl84BAvPPcMazeczBduuoGPfewD1NfXoJrtWAWRe++5CzkWRzB5aGiqZaC/D1epi5tu+gLnn38u4+M+PKXlrFm/lM2XXsbN3/oO3/3uD/j2t77JMRuPo7+/H4U4VdXV+CZ9LFu2nPHxMY7bdDwmUcAkCiCZES02QsEQZW4PyzuWU+KUMUsSC9oXkIgqqGYJt8NOOBzG460gEkvQ33OQG2+4kauv+hD79x3kb08+icvl5qVXnkchiNtTQmNjPXaLnc995gYuu/JS/L4Jyiu8zF88H1mZnnESdPFIJUQEMY+WA0JmMJ+lcCdKJt0HYG7CnZRi35IaIqk4vOgYfzW7/CMX7nSxa1V1WrXM/2vCXdGhShFFvM2gNzaOx2MkEjHk1Op6cuIzwyA2vWFL3sOzdYE+1+Ezn+gy55d7tmPYdJP3fNfNCTugFhQyCl/ySO2StDyyVlDeOgmpUAmkJrzCNKEStProXVYbob+3jEOVudVf7zZfX+ac2kGVUJEQhAQw9zhJM4U60JARjLTjGVW+fKzmTOygPl22gJnrIe5Ivr357qGQoxb9dYzsW6Zf5p+k6VVatf9GG91C40E+gT6fuubsoG+j7DxziduYrXKW2z7T7edWKfkcNffyopoRaEVRRJQkFFUhGAggAolYHIvq4+9/e4rV61aB1YzHUU8wMMxAfw8hf5iySidTgTE8njZiip+xfhdLlskc7NyOXawgbG4mGokhqEGi8T5MOLjtxw/yHzd9FIspwratrzJveS2P/2UbF5x5Ebf96DY+8KErKK+xMxUZpsTegN/nY+/uXSxc0E4oJjN6cBulLguO8lqcdUvxiHG6OvfT0NpOBIWd27tY0NaEfyyO0xmhtKaKqH+K4ZFxSiuqGR+fpK6qnIfue4wHH7yD239+O3ZvM4d7BpATYRqrVnF4aCuCqtDTuZ2Ok0/GrpQy1vcacmCU8uZWRMpxlDo41DXJQH8nZeVuXnmxG3+wn4s3n4PF5KL30CBLlyzhtVdfQbDW4PaaqSivJZLoZceOEYZ6D3LpxZu55tpPEQqb+NbNX2RsfIiq6lrkuJlYLMwVV17N6pUb+OwNHyHkj7Cncz8VZZUM9R1gyh9l5+49qFKChx5+hCeffIJYPMbY2DAOp5eh3oM8+cSjfOLTn+aPD7zAshWNiNIUe/d0cvoJZxBOJBgZHafE6sRcasXr8RIOh4hFY0RicSaGRjj/vAu55Tvf569PPMWxm9azd98+3v2es+np3ceSxWvo6+tFUSzs2dmFw2VHTcisWNGBy23CWtGQ910zcmraviganBJp4046bEzhhSy9Gma+RRnj8cyYVvi7oygyqiCkY3RCxhmMmv5G6NRJRTGtiqkoSnJB21CmKAqoslqwnkDaoYoACJKI+A4Im1t0qFJEEe9gCIKArCgIqUmd2WpJTr5kOcfL1BEUnvfwTMxGOvsbu3qSefxHrbAVnKyl7AFyTdYLJJ+9sPLGhTuj3WR2WZKo2Sgk7R1n8naWUfmbuU4Z2aMQo5M/pIJeEJgt26PfUqUDYkp4nR0bPBPLNd3iRLZ9ZKbtCwlg0/WBfHVJHiucfrbv10zs5HT5VFXFbDZnedCd6Y3VC2fy9d+IAAAgAElEQVS5AuvsGesjF+7y5ZnbYkH2/ebWTVHUNLOd73wuUhNUSco4cRAETGYLsqIkHWKJYHeUYLXZEQQzTz/+G/oOD3HU0SewY9c+yptbCcthnG4nJWVePKVehoaGMCWcjPUP8OCfH6W2LoHX5cBtq0aomsRRYsU/EaCtrQVFHubYTWdTN9/J5EQ3i+Y5sZvaiauH8dpq2XVoFzElQXXjPMbHBZSETOeevcxrawNZpqSuHXNigp7926mpraRneJTD3btZPG8xgaBCIJCgqaWBffueZ9vWl1iwwEoo7MJCnO3bX2U84Gci4KOmpoYnH32eK997ORWlKo/8+a+sWbUKt9tONCZicycoLSllpG+MOvckQ4eGMDldiBUNBEYGcJqrGBrYRXV1DQsXtVNW5mXlirUsWdHGxKSP0WE/Da3zGZkaIyTHaG6s5s+P3s+C+avo7Po7CxpbsZth1B/i0g98jJVL52G1CSCoiKKFo9Zu5Ior38upJ59GS8s86mur2PryVubPb2fzZRfzxS98lpaWNhTFzInHn8y5557Ly6+8QlNzA3V1VXzi45/l4vdcyKZjj2FweJRlC6ro7HyJpStWUVW1nJ/ffhftHUu48b+/yFFrV6MqMv2DI0SiccwWG/6JMXZv38+1116L02lDVeNMBUBUHWw8+nj6Dg9gExNM+n00trfRvrgDt6OU5SvWIaowOtCPu6Ym/7ih+y0Jeq0Z4ztnfF/yhz/IzZM7Jmnqn8bFsMJaA0rm+0Se8SBtf5xtLqBfHDQybprWCjl1Md5M5p8gCrlKMG9DzIW5e/tbGBZRxP8xqIqS9eKqsopJNGO3ObFZHZjNNlQltWCnihlPBBqSs8z8WwEcWeDiae6BAlN2YQ5BxXV58tZdfzypw5Gf5dMmuYXOG2o7Fxfw2urjXBm/zDWl5KaKeZjEJHugqMqM1nD6+ohidpBw7be2ryiqLvh64Y+2Fjg8O30yT9K5iZgObaAJB0YnJ8brp9tIkBGEGLNh7Yz5C6k06ts/Xx5ZllGU5CanXHyLopTlaEU/+ch3PF+/UBQFWU5k9QOjo5LkbzFr0wRc/bPP9x7OxjZPq68sywaGyrjllmF0NKN3aJJvy1evQmmmGQm0Gug2PZMspPtdbv/Lht6RTfJ9VFMCneaMR8h5J6aFIELKqZUkmpNebBUVOR5HBOR4AlEGJR4nEYtiMsFp536Qi95/DX3jARpaFzLU14PD7MblqMHlqGLXthdpbK7BXe0lYTNRX26nvGQ5mNrZMzBI716VMlclZVU2gsEADm85gjjO/m2HiYdtSJZWbvnhvSxadgoWL1x4ymWsXbWEyfFxwj4fijpKeVkNMTmBucSOqMq46payZU8Cs20p8dGDlLqq2N21j+s/9Sn6Dw2z4+W/47XX07H6BMTaldjLnIxHBdYfv4mm6gVUlVahSg4++Z+fpnlxNYMRKxdffBEOu0AomsAuBDm8s5PBg/tRsBH0WZgK76ehqon2qhbMZjN7ul+jpnE5JoeD7a90MTg2CHYRm81La+samptqCfsOcem7L2Fey1JGhsc57fSzMYmD1DvKiCuTtLXWcf+v7yY+6WNyuIczTjkJj8OKJAd56aW/UVHtpay8lPpKN9u2v87JpxyPZBLYuvUlDvX7GJsMc9Kpm/BWSkRGX+HkjcsotTuJhSJ87av/hcNlQ7SaUKIqDzzyFKs3nsqefYcY6evmp/fdw1e/fjOKP0F1tY2IKFHb2MBdd93NUM8A11/zKSKJKCarTEIOs37Neg4c2MvyjkamfF287+prePn1TgTZzqa1J/L3x57BYbfQ37uDhx66l6efeRGRGCYkREVAPx7q3wZF77kSFQGV9CQg1V8h2We1sDhzQcbBSsZWu1CA86xXJTWWmUQp6ZhIJRnDV1GyQo9o34tMMHMVSZQwSabk8VQ+QQWTZIKU4xi9jZ0qpNg6AZSUoxnN19g7gbWbK4rMXRFFvEMg6rwBWiwWzGYzkDFenk54my1mEiL+QZzbkUF/v0KB49Pme/PuZrZ2UXNlOGZrczddvTTmIjPpn01OPYOUU2pW+ZBrq5evHY5IfbNAeYXKKORp0XhckkxpAVZ/fiZBzliHbGZzehYwW7hQUVVNmNKuZVSpzL7XpL1itnfQjH1htjA9UzsZhX99/adTcTTev7EtdFcgmxmYyzMvzABPm8vwHGaTfnaYhgFJXctkNiFIEuWVldjtDgRRxG63EwgG8U368NY2MDUZoHNHHy8+s4XF649HwcYnr/s8o8NBwnEZs1mirb0BWQlTWr0Al7sGKw66Ow8SjQkcdfRanDYrcsKM2eZg5/5tNDc3s2RBI117+6itK0ewjGO1edj18gtUVzlpa2mipr4Zs8uMILmIRkI01VdgNUX4/vfuZMNxy6mtbSLsDxGNxhgbnWJv5y6+953bWX/0fDyldgb7xjCZBAIjMR7/y9107n6Fe+9+AKtTIBG3sXNnD3v3b2fJ2pXMX7wGRbTS0z9ItbcesyXG1peeoK6ymdo6O7G4ihx1ISeGGRvtx2q1sWP7fm76/H9jM9tR5SnsJU4UQcJqdVFZXkPfwASPPvYY7fPqqXI6uOTSS7C6XPQO9lNR20pX1wF2vvoK2194kZJyD1XVLvr69qGqEVxOBw8+eD9Wi43f3vsA37n1t5z77qvw+QOYhADVXheHDx5ANFuIKSo3f/MW/u2iCxga7mXf3te46LIrOPGETVx+5aUc7D2Iy1WJqAr86Ie3UVFRyVHrN7Bm5Qp6DvdS39DKrbfdzoP338/myy5j/4E9fPzfr2V4cBi3p5yr3n8FFR4HigA//9kdnHXWmdhsZhwOO063F5nU4qNxrJup32Z9e1T0cTvTPTj9TuQycmlnLei/ETOpXc8NwgwLpsYxN9896Jm6pNCrW9x6E+Y+/woo2twVUUQRaQhi0ltVPBFHScgpxysGVcsjHPwyShzJODRiSj8+WyGEdFB0Y4BzPT+kHoF9VzrvrFbcsydcM6fLdulsvIZ+8qupkUyneqj/f+QwfNilVJ0U7WObHcJCUVQkScy7WqupoWmsR7b9Qr6nmNrTTQSMH9n8YQIEQ7qMPduRfn8KTTZmQr7JiV5tb+YJv5innfJfv9AEamavlRqM4UjkrL3CAm1mAnSk0N+PFndwppiB+vFEb+Ont/XT9jUGMbe86doke7QolHa2tnhavy+UXnt3ZmuDl78ySXX5HDsoQUWOJ0hEY8SiEUSrhcmRHkzxUoYHDhDBxl133cOGdUdzy3du4dYffQ+zNYbLJeByOijxVjMyMASyQiwcxmQ1Mz6xDYvoRhFKmBzycWBgDyefcjZuh8DzL9xHmXc+VXV1xGNVmNUJqutdRCMyFnM5w+NdOG0uBvtGaait4f7772Xp8qOIywpDgwEEZYwNJ52PmhAxm2Ic3DfGl77yeb7+tY9T01DNRKgbU2gef3r4dwiiQAITRx29kRe3vsJZZ51LqctFTJygsrydcV8vbpeHzr09LFzYRO/hfbQ2t/PaC8/TvKiFkaEErU1eQoFxVJx8++Yf8PGPfoDBgT5srjImw0H8ExPMa2rFZFLYtmuA13e8xsYNS9lw/FlEEyrBqMydd/+Kg7v28++f+BAlZii1munqG2DFqoUc6N5PVVUdk+MRPF4Xk5MByjy1bHn5FX5730P87/9+GY8jTGAqwGc/83lu/fHthKJ+xobjWF0OSlwWhvv2UVbdzMjQCHV19aiCynD/EGNjYyzu6MDpcBCOhPEP9/GTO35FfVMLq9atwYbIQ39+jKuuuoCuXQfp6FjKsD+KkIjx6vNPYfN6WL/2KCRBZso3itVaQnnbfBRJRFJkkERURTEIL2KavVNTHrM1uzZj0HKjzZz+vS0cSkdOO0dJhtPJ3+fnuriYzpdm7LLtA2cDVUmyiKo2nqjJ+Y6gJp22vJPUE+dic/dOuu8iiigiDzR9d5NowmqzYbFYMZnMb9w+TwcBYdryVCUp/L2doKlrGaGpI/4jUEh9rZDK2MztquV7K9s+Ww0zyUTlxpQ7opJnqUo3U7p86of58xvLma1CbGb1WZKkdMy9NwJjX9H65WxVpvKVYYSiKKng4mpWnfVqpRmV0lxVTSOMIRXeDngz+mm2eqmAnJAxSSYsFgsudymCAogiFpcde7kTK3He/95LuOCic/nmLd/iuk99in37D/PsM9vwT4r0H9yPKEWIyJOE1ACBKRf9vSP0HZhCiVWwf+c2hLiMze4lEJdY0LIK/5iDLc/uoa2jlMaW5fiDcYaGxhjsHeCl57YyMXSYhtpmbr/jfnZ0juBwxKmuXszzT79OTbkDd1kC0TyJ2e5n8bIaPvihyxAVhUTQjElqpLzOwxlnXI1JbOGUd53DwgXH8K4zTqF3YA+vb+/GapU487TziAXHSYQmaVvSzlTUSmPreg71H2LNqk309e4HcYJYOI5NUtm3by+XX3EpDmec5ctqqW9fxOq162mtb8CqJqiuKWd0zM9lm9/Pso7l+Ib3ctet36Ik6qPepHL5hZspc3spryuntK6cxoZqvvblr7J0yRrMgovxUT82i42tLz5LJOxj3fIGoqF+xkd72bV7D+6KGm7+3g94/bWX2fXKM8TlKA888BB9PWP094wTmZigubaKEpuZaz74MRobK2luqUVWQmx58Wn6Bg/yzNOPcuONn+WCi86lpqGMl7a+wGWXv5df/PIXLJzXxtPPPsYHP/JRrrv+P4iFZBZ3LMRsMhMIBJgKjPHwAw8STyTSPUmVk4JdoXdMEuY+tsxWKBNFKenwRJ3G1u0fDE1hPed42qFcEVBk7ooo4v80FEBOxInH41gslrQal6LKM+aFPNNaUchh5yBXtNCYOoEjsLHTIR6PJ9VP9eNYIYZursydhoKM3cwfkjfO2CmZOqmaDd7MMLJys0MhO7uZysj2LKlnw7JSGZglLTSDXmCai7A2F0FhJka10L6x/MLPMVt41du2TVOrLJWnmZ/t9MydarDJVNVEVjq9uqYmCObYPgqm9G8AEXlGNc58njoLOTExQm9vaDgzbT49FMOErpB9zXQM3XTnNcxVtVWDLCsUcE6LIIrIurHWbDInbfYQiUZjTExOIAoiAz19XPRvm3E5HNz/wI/xeq34poLYXV4QLPTv6SQSCvK3J57iB7+8lycefohXX36G3btf5eprPkaJM8HUuBmbAyoqysHsJjAxxS9+/gvOOPdcEpKE25QgFBjEbnHxhRu/yanvOovHH9/C0FgfX/ryZ0iEg7QunEc06kMJj2O2lRGK+KipaeDwgUGefPZ1Fs+rodRrwl3Ryu/ve5RzTlyFrbqJErubBDK7tnXT2l6C22lDKq3AYjZjUmGwvx+UEHarmwf/8EfOOOtk1ISIo8TGzd/4CTf858fwBfqQI1bsLguC6EVRRf7+3N2sWnEpf9/yIKdt3MzuQ1t4+PfP8LkbPkEw2otkqmZqzI/dU8mHrr2eX/3kZhIqBCMhnE4XTgkOHuzjxRdf593vuZy/PfU46zeswizJ7N6xB0W00drajs1mJRqNEI/LxCIy3jIvMn4SiRFUxU6Zt4lgOIosCtxx281ceMHZlDhdhGNm/OPjLFmznB9//5e8tOVRzrpgM+vXrOfyy67EJFlpbK7FbLJxzrmnsmzlfGwWJ089/jc2HncMglWic+cBjj15I6LFhCyaEVNdL62obXjvtX6cCWGS0ZIwvmtJz8ZS+reiKOlFnOmEN+Pi0Rtl7HLKNzB4ipxAb5Onh/GcxuQJgoj0DghcrsdcmLuicFdEEf+HoZAcDM1mMwlZJh6LvqnCnaYaIhs/BrwJwl1K/UJKqXmlJ5n/YOEuY+M0c83fLOFOkMSkSq0gpVRAp7/2v7pwl+vCOqOuNxtW9I0Kd7MV9mYS7nJtVUipwc7m/cmovSbv+R8j3OkhSaZ0qAqtvTPpZxbu8qkf51PVzBf4PB8yk8n8fS6fEGVUk3w7C3eQCakgCRKynECSTJgkM5FoFFWWUVSVEqeN/p5RrCY7r77yAh0dFVjtTvZ1drFw0RLC4SiRqUnUhMpZF1zMX/52N1bFw3N/e4bTTl3J7v0v0dq4Dp9vlH37D/DTO3/Hrd+/lUgoTERWqW1t4rbvfJ2rrrqUWDiKWbAxGTFxxWXv5QNXbubYjSvwVtfj8/kYHRuiqqqMgcGD2O0uaqqaGRqaoHP3Xo7deDSB0DCxuIDTU8vjf7iT0959OZ/42Ke44n0XcM6ZlxGJTBAOxrj5e99j82WXoMhhFi5sRREEBCxEYwkmxgc5tHeI+gYPZrEUt0dk176XqXCUUlW2GMEaYGT0IHVNLQSCFkRUvvHlb/LV//cjQlO9fOW/PscNn/4MapkDCw6UuITZbMLisWC1uRkcnEBRRTxOE/GESlwGu6OUeCSAxaJilkT27d5PibuWg4e7Wb1mJVargx9871b++vhf+erXv8Rv7r2Ly6/6MPNaW4iGpjjQtZuatjbC4wkqy6qQlTBTkWH+4/ov8MGPfIAffPcXXHzJ6Zx95rns3LGPgD/K3v0HuOuXd/L1b9yIHDfx0IPPUVNv5oTjFtHcupjtu8aorbKSEBXaFy4kLkhIYuY7lmTL8wt3+cYqvXAniCKKnECUTMRjsbT6fpKpLxxiILvMmUMhTAejsKbtGV9hMc8xDUXhLj+Kwl0RRRSRhjZAykqMeCyeYYw0IWW2BaUmK6qiZHnyMlrNpAWnIxF+svLqbHCMZc5yjFMMk9ic62hIl6tnojJeMZNJhLz/5458n7msyhxhuXq8OcNpIduk2TtKSQp92sqx3kGI1rZzbUejEJLPOciRlDtbJIUcTWibqZ2zhSHtp6qqiIKAWkC4MzJ/SeZQQRQL2wMakRaUjDadhkUZURSJRKJYLOasNsttv4ydpabaaQw0rwnoxnzJc7lTuULPaLbCnbaAYBTmZivcpa+Xsj3S18cYOzInlqTxfvLYIGvjpCiIqKk+E4/FMVvMqMiYRAtyLEHQH2TH688SDoZY1rGEUCCA5Cxh3bpjeOzBX/P+D36E+x6+g0hYxmk1ExzpxeRwEouUUlpqwmozMxkOMdI3QH/fIGedfz6KycTw4T58k6OYRJVIJMTBg6NUV9YSi0aIRqNU1JYjyHFq6mpxlJYjxwKEgwp793XjLrGzuGMhCdlJ/+ABPC4Hdk85DtmHX3Dz09vu5Nrrz8c3BoJZYcfObsb7Irz62stcc+1HKS0vZWziIG5XOXJCwWoT+e43b2PeokoWLVxOfWMZdif07vOzb/cITm8fK5Ychc3STFgcomv3IeYvsPP6rhGioTDrVi1jYnyA4ZFRaho6sJps/O43d3PB5ssIBqOUlVfhLPUw1tfPjl17WLpiBbV1Dbz22ot4PCU8/eTT1FTUc+IpFzA+0cfI2CA1lc2EgzIV1W5CYR8Wq4Xf/uZhrrp6M5Gwn5A/hGy14LE7sYgSIyODKJKCiJWxoQEaGxYTUUcZ2LePisomegYn6B8cxyxJLF7SRnl5JT/7yd00NFTwqzt/xI9+fAeBsMTEaCeK4GDt0RtImEB7R9JLQ2lPuoWFOr2dXFY8OSVbhduYVoNeeNPyzQVv1AREhGSYEVFMfxH1gmC++ghiUriba13/lVG0uSuiiCKOGKqiIIkSNpsNi8WCMN2y8ywhCiKiIM7BQmn2UBTliOwMjJi1K/TcnICAyWSa0enEvxIK2RS+1dCYO0mS0qEUtN9zRbajlPzhEebyzOeaXu+qeyb7PFGzQ0SY1XrETGqPBe0089rpacfI2vLltVotecvSytNsE/V1SyQSc7JTPfJ38a3DdLaGRmghTHIgCiiq7nkIKVZXMKOICqopitNjZuXqtaxYuZrS0lJ27tjJ2Nggf33k17Q0VvHTH95CtW0Nk6MxVMnC9p2TXHLFddQ0LKSyqQXFKuJ21FFTtZDdO3p5z79dTTxmo66xkbr6ZtxeDw1N1YhygLIyOyvWrKF90UpqGqsRhAhuj4vh8XFE0ck999zP0UcfxeLl84moMRS7k6ZFS3CWeQhHQkRjUV7c+hLLV6zGPyLxsx//AZu1hpWrjmfxEjfXfvpSxqcOEFenqKkso7/nANWV5fgnx7j80k9yztlX0Ny0HEH1cPjgFL/7w1PMXzKflvm1BP0OrK4pwrEh/vjgq4QmXVR6rDz60GuYpHbiogdzXOHnP/sFMUXh8qvei+yX8TpcvPz8s8jBcX595z0sWbCAUruDd51yMq1tTTS3NnHGmaezatVqpib9iKLAQw8/iNVq42Mf+0QyrIkaJxQIc/SaJURDk3R1H+Qnd/4eSXQjK1MMje/G6Yb9nf24S0tx253s2rGT+//wB7ylJYyNDVFTU81Df3yYvzz6ML5xmbHRYepbYNPxR3Pl5Z8kGlZxeVTKvCXJBShVSKtk/l9GIZu7IrJRDIVQRBFFZJCmCwRQkxNNSTQlY8uQXMFLztE0BxRi3pU+Ec1rVcaDl2pgLgT0E9RslcCk6pfucFZGIfM/lT+r7NTx2TJ26ToLAqJ+wmy4TnrT3YCipuqZcjGdFJZUBDF5Lhm/J8OwCFrgnawoRdNBMGxaUG+VZBCfIxfOMhN44zXmWs707TydkxKjOo++rbS6af+TfS1TVrZDj+wYdPkZ0/yCzlyExjfDuUYm7ALo21vVnq2gpvsUKIiidi5/jMXMvRv7V6pcnfOT7PS5bSQKUtI5UuovM5XSNq2PaL/zP/uMoJMKRo+YYrqT+cRU/CtFlQ39JyMYalv2M8pte0FNBShWFMS8ddKrA+vrSN79fM93OpZSFQRtMEtvuWsmhndMVUDNjIuCICBIGZZBWwgziVJyXEJFUFQEJdmWgsOB3elCkmwoioQYV3GU2OkZGuWW793D+o3zOdw7zgXnX8HVV1zMJVdcRoXHzL7tOykrbeGi866iYV4lbe0nsOH4FqSIwMHuTkQTKKoD0arimxC5/4GHsNutlDgk9uw5SH1NJaoCv7/vTyxfvpDm1nr6BwZw2t1MjoW56LxzCE9N0tHRjqzEGZ4I0t7aSktrAz2HhmidV8/CZR34g+O4S12YpBIqPXUI8RhxqwXJ5GCg9zAVHjsvbtuKx2FiqGcfYxMhBMHBksWLCUX6EBQzVXVugv44k2PjnHveySQSdgKJGBdecgoTE4cZGRimo6ONZatXU1HWzM9+/F2WrVmHt9xN+7w2AsEQD/zmr1xw+ftQ7CbOO3MT3vIaAoEgFVU1jI0Gueq97+aXv/wdHm8jG9ev5JQTNuFy2uk5dJiy0hL+/PgTiAkLi1oWMD5+mIqKKkpKXCRiKmpcwDc6giKKlLutyPIwG9edQ1ffKILkIBqKc9cdd3DNde+jqbqW737v+2w4ZhOP/ukvdCxrRzTLuJwOurp7uP/+33HqaacQNwnJdynVk9ILQvr+aYhdKYomAzun6P7r1Yu1+JrJOHH6UrJCCUwz3mtlpseWlPfK9LiuKFn7GrTRRFEUVEXOYfq0hSE1pUWkr1tStVTKtIOqIohispXeZgtEM6EYCqGIIop4U6GQGoBTag6yomTi5wGqwUZPNEza865S50GW2mahsWm2k+s3OrbN4jqKomR9+BRFScYbVNXUTejbQcBoNzX3NUhdO+aUPzfksxdLnZm+BopRZWf6dip0PiPcFbqeTvDROQWYvTCWbQtYqA5vHdOaVqwqeF6zHdEcr2h11asX5rtHo/qjXlAqlA5AEAwu+2fEDLaFqf6pTRAFgyqkIEz/fDS1zmzhLr/wlrETKiTczQ752Ox8badBTZ/TqXXPcM2842UqbEKyDtnPQUm1s5hSBZdFMAkiJlEEWSUU9ANxuvd3UelpYNf25+hYuoJgJMjWl5/k6JPOJ+ybRJTj3H3HnWx+z2amYiF27T7A4sWNPPXYX6itbOGkdy1GEqvo7DxExB/HU+amxGljyj/F8lVL6e7qpGX+UrCVsnf3i8ybN58pnx+rzclfH36G9ce0YXdYMAml+Md6sZVKKJKTgX4Lwwc7ee65p7no4gtpbKpjMjRFW1srcizIM888xuoNJ4KiYrWaCAV9SI4aIoEpunduJxIKsnzZMuKKB/CTkCfxTY5gMpUyOTXC0OAYrpIKJiaHWX/UYkq9dvp6emltWkwoGiQWEQnHhqipWszLW19mwjfCiScfy3DfOEFZRjI7iE2FKK93MtQbY//eATYet4zhgcN0rNiAKph56P67qS5p4O8vvcCKdauwlbrwuJw019Rz+qmn8NfnnmBieBCLzYbD6WDc56exsQVViLF1y0s0Njbw2tZB/vz4A7yw5TlWrVzChz94NfMXLeKz132WT1x3LZUNtQhxBYvFhCAl+0k0HKJzz15a5s+nvKUps9Ca6jeqUZXaGLrGoLFQSA1d/x0w2shLs7Spy2eDl22PnVEJzcqX+qYoSipEimTKez5fXs1uUJ82Ldy9wzAXtcwic1dEEUXMiPSIojlaEAQkUUIQpdRKmZBcmFeTwdQ1pwuKmlwD1FYYjezd9BfVVsRJsWSzjIQ3E+M2VxTMqxKLxjGZJF1SPeunZ8KE9D8l6+M613rNduI6sy3ZkbJQRjf4MyG/Pdbc7NyMQlihMvOfm6l+ekYq97qZNP9oGBlUrY2MbZ3NQCW7d/7A5nrkE070zFgyj9Epi5r1rIyvlHbtwrckpt8fzcY23X/Sp7VQCrmsov5esq+T3U6F7nl65E9f0LZPUfMyezruI73NVBNNQ0AbD9W8ITYykEQxyU7q9iE5ligCCDYrkslKSYmbaDRCdYMXJR6HuMjCBStxuwVcbheJuExTbRXd3a+x+X3X8q1vf4pHHvwbixbUMjYsMTw8Tm3tMvbu76Kmrp7yiio6u/ZjsTkIx+OoCZHxqQCqJGJKWIiGVKbGI3zxpq+yas1CTCYLu3d1sbfzMEs6Gunad5jqqhYsZgv1dU3EE3FamhuoqvBgc3mIRPxMTIywcGZG2rwAACAASURBVH4H9/78z0yM+amoqsdqryIQGsHtLaO2sZma6nIsVgv2Eit2u43uffupqCxDMntobmmjtq6equoKKspihENhLFI1SqKSQNyPKkfY8uwrOEocDPQOsG7NOixWhWhslEBokNpaNyYhzqGuQ9htNvy+KTasW8Plmy9m0wnHMzI6hdXuIB7xs2TlfOJqhONOOhaL1UR1bSMHujuxOSTWHbWBhByhxF3K69t2sXjhPOLxAL7hYcoqa7E7bfgnokRiPr7/vVtoaWnG4XASCoU568yTcTgtxFFQVT+h2BS9fV0MjRzGLDnYtu11Np1wAhaXEzkhp3tIkvUV0/1WEAQUQdEUb1Jq4dr7k836i5KJRCKue7/ENPOWM1Kk4+Fle9rUrpth7PJrFmhviaoqOYKbvu5aqIVC5/OPazq7QT1r9w7EXJi7d2obFFFEEf8EiIDZbEGSJMwmczJ+Xp6pTUEbE62clE2eEXoVsX81ezZFVjBbzLNKO5fYY//q+Fd4BoViDWpMz2xjESbvpfCCg15V6a3GTP1fU5OeKb9+09RY/1lQVDVrM9qo6W333smYaTw0QpYTeSe9qgCyAAlFRRVNqJg4cKCbuFiLt7KaEvc4+7p/TXR4PyM9+3G7SqhvrEdRp9j9yssc7t3JhRdcjMWiUNlkZemqNTjKbGw8tZ2G9nlMhkIsW7WGRStW4KluorahHa/LTX/XbhKxAfbufo6pyS6+c/ONrFjTSlvzSrY+301TYzt/efpxSr3z+Omt96JEeomLIo8/9RS/+u1viCsxLGYzCAI9h/qZGI3zta/fhN0RJyqPESVIVamVgH+SmCASkkWmYnESwji9fYdYuGgJzz27FXdpGT/60R3YHCV0HeiiZ+8UTquX4ZF+Glu8WJxOyr3V7Nl5gLb2VVSUeYlGIiSiYdxuG+Wl7fgGo8SnREJ+kamxMBZLCLcnxO9/dz/Ll62kvr6Zb3/rFh588BE+cu2NnHz6RciREi488ypURWX+wnl84rqPEwqHMbtKEcwOWtvaSEQD/PnBX1NqsfHHBx9CSYQIB/q56OJzufaTHycaSTA8NEl1XRW+qSHGfQNYrfCN/7mNscEoNZXzWdC2BovVwujYGLIiEwqG0s++0DdTEqRZ2aDLibgu7MH0cWpFUTLYD2dDGyeT4RRy2XxRMiU3UXrTHZxoZReRjaJaZhFFFPGmQ/NgpapKKuZXkr2Tlez4X4XUN2f3gqvT7qYZN22MM+7/U2D8YOri1unrUqhuOcffSkEjvxqhNhEvJCTIBllfMj62WTBuxvhp2rH8q8QZIW+mcnMZ1H9G38h4kpwNtHZNGOqW8QqZy+bqFxL0Dmr0TJzG2mULWNkTOKFQP01jdiFT0jXNUQPNPC+96qPxt3ZfqVKmLf+NMnhGtUxjOJG5OCEqlHeuZeYEjMmxVU3+T8hxLBYro4cOAHFikQA1lQ1c/t7rcTrh05/5KKFwgOUrljA81Es8GiERjhOYjKDYItQ1tiDiweY0cestv+aB3/+J1pZGzjn3NOrqyzGZTDTUNxKPxylx2jDbRPxTfg5091NXU0pZXSv2khI6d2zHpMZYuHw1I+NjNFZ5iPj6kG11YPawf/tWPN5SaupL+K+bvsVNN92I1V7OU489RkdHMxE1SHlVLVZTCc+/uJXlyxdjtZoITgW56TP/zedv/E9CapStzz3NOWdfgNkC/uAINkspZtGCL9DN6OAE/rCFA3t2sGnTamweB70Hu6iqqMRqsyErcUaGJmlqaiQYDKAiYS+twSqqvPbySxxz3EkElARyKEF/3yiDkxMsWtTE4a4wP73jB3z7298gEgvRvXMbHUdtIjjRjc1WRm/vAdrbWwmHE/z67gfYeNxRNDQ14pucwmyxsW3ri9x//yMEA7DpxGVcfumVvLT1JWRZoaSkhM997np+98CvEbDQfWCAjiUL2bntJdaffAIhGayaQKbvP/r+kNM3UqrROpXJQt4wCx43dE9VlnOEvXzql0ZkvHHLWaFSZlTt170fqqbSnWoB7Upyar5hNltS6d55C0RFb5lFFFHEWwop5YbYJJkwW6yIgpgU3ASBPN4G5rySDdmsXl62cJbszVuB2dbtX+keCrGP/0xGda5M03SrzXPBW/kcZrq2sf2TTmfEnPNvpP4a0/ZGYWQO0+WnvGzmY10VRUnF48u2aysiFxaLlXgijqemDUdZA76Iha6eKe749e1s2LSBhvpGbv7qdzjUtw+bXaDEKdG9Zwcd7c2Uls5jw1FnEyfK/u4huvsP8OM7vseNX/4P3nXemTz8hyfwuGt4aevrDA9PEIz6GRkfoLNrDws62hj3T6AKcSIRH23tdSxeehRyTGDrlpcZHAnwzPNP8PLLz/G1L3+Zqz/wcZ595iV8viBf/OIXOHhoH4rgY+XadoaHB7Bby7EiMTU2Tq23EjkUJuwLIEkSN3zh03iqbFRWmrjiqovo69/PRz9yDU5rDddf9zkmJwOgqlTVVNLe4mH5+hWUtSzCWTUfk1SOaFO46567KXUtoKm1nd6+YUpcFfj9U+zf9TwTY4eYt6AZXzSIarIw4Z+k52AXK+cv4anHn+faj19Lc2Md/slJ4hETv77nIXbt6CXkt4CqMK99EbJswmFzcdnlm6mtbcYi2uk71ItVEJnf1sqnP/lhPnPtRzjjlE184tpP8otf/hKrXWLtUcv5w4M/wTc+yqQvyp8e/Tvdr23hyb88ghINY5JmpykyHfIxa//sMt/oeKSHnPIBoMc7UbCbK4rMXRFFFPEPhyooyRU3QSURT2TbzhkCn4Ne6/8IbOXyOJPQQ4uXk4M3g9mbkWmb4aNTaAVzRuZu7sxT9qppxi5i+nRzx0zM3Uz100PP2hn/5wuarbcnSZWat2xtNfuNesLUlYi+PXP7YeH21pCJkZdiLQvEc8uwQblsXT42zOhcIRtzE4Y1hyizmUfkF8qFtLMYfTlaHfV5jCqcxviBhftpoXfjzXrWs0U+i+HZxd6bLXMniMm8giQjCApBXxAlZiI0FUJQI/Qe3EtTQxPeyjKGhw6gEsbnG8ButdJQv57/+dotvP9j52GXFhKMT1BV5WVycopEAoS4gLPEjtmSjIOqYgcpweSEn5/+5Od8/j8/SSAUo7NzD1biPPCnF1jeMZ93nX4yNpeLnp1j9A0OsmT5PLp7ttOxcClme4h9e/qQTCql5ZU0VJfz/LPP86nPfoV777udaEimobGZqcAEBw7so7mhgVBCpcThIOqfIBROkEiEqamtJR5TmJoKocRF4vEBKsvr2d+5k7p57VTU1hMNx7CIfoZHeohFzOze3s9pp29CjktM+nwEwgN4yhxUl5fx7W98m+tv+CK79w1QV1HKWaedzhe/eDOf+fzn+MmP72RobDfjY1Nc+r5L6N6xHVy11JRZ2LlrB4sWLCUelfGWVxAM+Hh2yyusXr4M4mEsJomtr+7B5ZJYOG8V23a9yOqVa/nhrbfh9VbQ3jaPDRtORBAS9PTsxuqQiU8mVSgdNVU0LVqOxpbre5JKxumJ5mAlV6vBaE+by7RpxxKJZGBwkymp7qgxd9q4ojl1UeQE+TCTKrtWXsarppBm5LLKEQVUWcn6LmZsdlPfgpQDFQ3vZMaq6FCliCKK+NeCoGKSTMmPkCRhNpmSHwBByB+AtAAbN6dLFpioa0Gh82R4Q9crUAvj1WdIPlMdCt9TxgHH3JBv0l8o3ZHAqNIz08c3qXqZ3xbO6OBjpvpljmW3j2b4n22k/+YFM59OZTS1N9uSMgKtsby0pqRRtTF53ChM5XdMYsTcpkaqKs+q7xS6brKOuZ4o9UK8/plr95Rx0pD7TPNcuVCNZqzzm4/8fVQ1PMsksykUzpXTtzL/VRVExYaEBafDzWh/lGuu/ihHrV/Dof79eCpdTPm2I1lVRLOFivqV9I/a+PJn389pp55Fd/fzlDs7OOfckznphI1ICAz3jfDInx5g5erFdB3cicWq4PDYGR49SInHyqmnnUQiZiaeAKfdwVj/ABe+9wqsZoUyj5OEIGC1B4mERwkEJmlfsJBDB/bgLrUyNhrEZnOD6sBhteK02Vmx6lga51cjWiyYLDbMNhNjk+OISgyXt5pEVGDb1u3UVLdTXecmFB2lrMLJ+OgkX7rpy5xxxmlEw2a+8dX/ZdGyJYwOHqLMYcYfP0h15SIESojGQuzd28voSISSEg+19ZUkJAuBySnWr1nLyOAwk0MhXnvped797gvpWLWBRQta2LV7B2vWtVNdXcHhviGWLlxERLVjlURcbkAVicXi2OxmOvdto7llHrGwD1GN8drLz7Nw+bG4y5wc6htmxZplxGKTvPbadj509cfpOTRM/8QgP771Dmo9lUQmQlS3LiYSjdI3PkZra2tGMDJ0icw3rZBwV/hblD1OJvclvR1bes0ylaeQFodkSoc/mBYG4U5V1IJealNejHKOa/MDkyQhJ+JpAe+teKv/WZiLQ5WicFdEEUX8w6EFZk4LbWpSdUySzAiilDaIVpTkxKaQV02NY8q/Cq4lEjKzHP2+hmkEhOTpzAdO0PLmTSumvjs6b4sCWWkVVUnZCyQnoqoqZNIizF2eTGXVvJAaPaUdCQp7Ics/4Z4rUpG5EBEQ9DGPDEyLtp+P4TE+E73tnb4MvcCWz27LuC9JyUm0XnhIJsn0NGM98q9KG59rtiA3F8Eup/9pudTU6rxCludEVdXmP0J6Px8bWyigeTYUQCETL0/MSpePDRCE5NNVVSGVTw8JLUaemnKnq39fVFUkGe9NAESSsfqEvPmT6QVUVc4WzFW9t9PkOzg7tnl2/VlJhejTNuMtarEX9U1pPGbcz5QpoJArqGfKkTL9TTcWJZnqDKurn5sLCCBGUVBIyAKSVUIwK7S0trFk4WL6Du9l4cKNjI3upa66kqG+SVTrIOefcz6VdU0IihM52sP2PX2ccPImJJOIt8zD0SefQigco9xTyeiQD6+3FEE2UeGtxYSF4YkBSks92O1OGlpbkASorq5GslgIB/2MDSn4/D7md8zj8ME+mhsrSAgluMuqOPfM09nfdYBjjj0Ki0OkscHLxNAkTpeXzs69NNRUYgb+/KcXWL96HatXruTG//w8kfgA7tIK3N4aEphxeas57oTjUUUzJpvE+g3LcJXY+cp/f4UTTjwZp8vD4OH9eB3VlFYlmLd4GUpiiHhsmO4DIzgFEXepgllw8uRfn6OhuYa4aqZl/koEk5MPf+jf2fyeM1m5qJUdO7Zz7MZTmAqZCYb6ERMKZlMZTz/5PB5PJU899TTtbfNxOpyIkkhlTQvVdYsZ7tlFiauSq957FUowzoJFS9lw3KlEImGuft8lvOeC87jl27fgC/Zx+hkXcPc9P+HEkzZx+20/4pwLzkFWcpc9BciE4EmdVZRkvEx9rNWsPDmLW+j6UyYMi3aBrPGU3AUyUZLScezSpam60EC6Y5polhw7kt9q7XfW3aVDpujOqWqyn6fqrciZ8eCdzNpBMc5dEUUU8TaBFj9PD1lRSMix3LSKkvwgiPlDFedAc8KRFhoMH7gCBai6fJIoZvLnfCDFHFUxbZampVVS6oJaXVQDjZU7GZ4BxjoYabE5oNAEuJAjkumEr+mhCR3ZAlkhVbx89TIe02KfzSSAFi4zO50kaUKy5vFNK9egLpwW7maj4mdULS60b8g1jWCiV+Gb6XqqqiBJ0rTx8ArZvWSuLc1YJ+18Ukg22t4YHbToJowAJN+NjD3f9PmT10oYnn0yTSY8QMJwjULtNXvhTg/R0GT5nKQUUq/U9guVWcixSj6hWtE5p8p5LIKSEnolYrEEFpNCOBhnfGCUf//wB/n5Xd8iOBZjfGyK+uYqYpYBhMlxLPZy4qqE3+9jsLeXdUedx1Q0gcMjEg+aQJQJ+Mex282gWFFVEx5PKYKoMDE1hstVScAfQFXjVFVXMDE+idnixGp2sOP1XZSWuojGw8yb187keADJbMJb5iYRDzHpC9Pf10VHRxv9Pf2YLSI1DW0kFBNqJIqIyo7dnUgiWO0mwuEwixfVs2XLq7S0tGCyibgkC3FVYGgsQGVlM3ZbBJPZhAAEwyFcFoUPX3kVl2++kub5dTjL63FIZm749Jc46ZRLmPR3s/HoxbjsdZxzzjn88q5v0tOb4Ps/uJtFK9q47vr/4vFH7uGiM9ay55W/4+44kYaGFZjNcV75+xbqW9qIRQNMBSaxWCwsWLCIoD/E1NQoNquTd7/7Mv748H1MTsUoc3v58FVX8tFrrqGsqpr/d/PX+cx1H6W7Z5SNG04irozim0gkg8iXuLhk82YeeeoJYko82VfyOCOTJFOmjykqkjQ3b7/aGCFKJuREPK36rKaEOzkVh1FK9T/tvCCKKLLxvdOEO1NaO0eLk5vuprpviSSKads5bXE37UhF985pObRD+rLf6cJdUS2ziCKKeFsgLx8mCMmJIioSmYl0ctF67sO3kJoIplcE06wGmX29IJE+nFnVLDDlykqXVBVRUyuSmXOgnxwb1QHf2DqVtiqbZG9mVo8rxN4Y2zVX1U8fCy27rLkyeoXSaxN2I+umr0eh8qZj6oztkq8P6V3wq6qeackWmPTlZtix/M+xMMuXm05f9nT3qn8OhddlM+Vk0qi6vpe5ht6xif45Z9SvUiypxjLnEfiTQp3GGKpZZeX2q9w+mkyXqSfo+kJK+MtaP8lpGm2xR02x2eQwu5l20feR6dtPg2KIoyfo2hQy9671mSSzbKyz8dlmWAhtL9kW2SxsPoiilF4oMTJ4+nvQriNJEoJZxmYr4aEH/sj27TtwuiWEeAl2SwneChNTgQnkSBi7vQRZgXAsQnVVOX39fjwVlRzqPUDIF8RkEojEwjicDlzuEhJxGYQ4475+zBY7NosTm92B2WxibGwMAQlRMBOPJ/B6vcQTCZqbW5BMIj+89Q4OHOhi4YJ27r3vPtasWYvX6yYc8lNVXc3hwwfxlFUSCISxSGZQFCqqqzBZzIgmEYfTjkqcqspaZFlBFFQcJjO+qXFsDic11XUIksrw8AjdBw7i9ZbT3dnDkvnL8XhcLO5Yw8jYEJIq8sjDj3HV+z/Mgo4q/MFRtmx5mdWrlrB+/RIWLVhOd9dhHC4z7Y3NnHrGyQz7/VS1LKKqvgGrpYyeQ1387LYfcNpZFwBxqqorqayqZGLcz4P3P8DatauIx+M4HSW88uqr7O86RP+hw/hGR7n7V7/h/AsvpKWlCUlQGfcFCATCPPnMYyycv5gPfOhqTjnpFFra2qhrbkEyS2kHZSoqqqiFKhCznn3aXjPnfVPQNEm0TZblnLAwgiAmF1IFIfVe6dlyJXuc0sZtUURVsp0faWWkx86sRYns74mqZPp1cvFCzLDRurdO39ulVHppjt+htyOKaplFFFHE2xqiJGCSkgFYkyoZqUE976RtBggCWRN8Y37jqnjqY6TImSCtBQrOcyzD+uWz7cud7L8x4U4T6mYrSBRCobyzYeuOVLjLZ/dWSEDV217lCmv5VY4K7c+mvsbJeEZd05hm+rI09SZmYc8323bMsMUz9ctswTQjFOb2uayFDJ3Qlzye+p+HVRIFIcuLpibcaUJibh3T6+2QUlPW1jhEQUgHNc8InBKCmEyj2aGl2YX0/WS/36qqFHTeYrzX/DBMhtPDRrZwZ+wT2WElCvc/7e6TV8pvWzxd/YzMcX4mWQterSIICgkSKIrKosWLuPrDV7O38yD/8+VvI5nCLOrw4HXPw9uwkNFBH2Xl1XgqahkcCHC4bz/Lli7GrNqornZSXlUJghm7w0M4HMdTWkswFMJeYiIRV5HlpL2ZICjEYxKoEjablTvv+iUr16wmHErgD4To7T/Eu85/F2tWLmZqcpR5i5Zjd9gRTQrxRARFVoiH4aVXtlFbV49vYpBIZIp7fvMHAqEIS5Ysw2qzY7aY8U2EeeZvz1HlreAPf3iCZcubcViihP1DKLIDp91JqauURCSOu7yasdFJ6ttdiJYKLGYBMyITEwOUVoo0NLdTUuJmQftqdu3aRWhiCkQ/a9Yt4vbb7uaxx/7KhZdejNlZwk9u/ynrNh6FQAlmc4QLz93E+Di8/NoWamrLiYTDnHbKORx/zPGUlbn548MPsX7dWj53wxfwB6KEpnycc/qpfOST19EzNM7V7/8w8bjAJRefT4nTQ229h6bGNi66+GxGRoZRBZXmefNAW3jSnrkg5I13V7gvFVLPVrPGAEgKYmrKy7W+nHSw8TyaEznhFFKsnqoqqYVWJec6uoqkxhrILFCQ9x3RoBRykPYORFEts4giinjHIhqLoShy2pOXktbLLxAjT818BPNCd15RlPzOVgAQ0y7btZhhhWy/Mvv/4KFKt3Ka/zyoSsaCUdQFt9UmxHpWMduDWi7Dku/4XDGTGqamKmhk7qYrS4PmYtuYPt9kX0ubz1uhvh6pGmhXLLBPwbSFVTnzI3NPmoMATYDKxIaandphEnoV1lyBNL9q7GxhfFYz9Zl8DLAxfT52OLvsjD1QPg+nRlVTo1dNSLIaaXVV7RXKmWem+oSSr93y1l7329j/ZteumbprArnx3pKqdtPZQCb/q0l7XwPjnEjEMVssDHRO8cNbv4PdJnDGGRvp7trBa6+8yuf/+1pe2vIsy+Z3YHE303Wom4a6eqyCFUwWJhMCkiRiN8vIcZmpcT/xiMrw0DCeuhpQBSrLy1CVECMjXSxYtApZtRJJRLGZ7QiCyFlnn8v9993Pb3/1MEcfs4a6hgoCAR/V9e3IkSGcFoXt2/czEhijuqKOxpoWfvWL33DJJZfij/oRTUFUQcHpLGX00BBl9WV07upk4+pj8SUC9A0M0tDaRiQao2fP67S2d2Cxe7j+UzdwwZkncMzGRXTu3MLaJaezt3ccT1WQrU8PsHydhNlWzjN/eg1nRQOLG0sp9zj48v9+n+s/+0VUOczOzm0s7ViG02kh4B/G7GpGVeM4XQ4OHzpEIhaiorwKq8VGSYmHKV+Q8Ykp7rrzXp558hn+43OforrOTmtHB8HAIId3DTE54ePR517ns5/8AJGJ/ahSGS6viy0vvEBTcyuxoJ/amlYkix1PfROCyaC6nPI2LQoioklENej8KobYsoVi2mkssKoqCJJBHVv7RKbG0elCDWSrC4tZ+QpBEsWkh04tnUiWl8x8wp3eLl8QhRx16Xci5qKWWRTuiiiiiLcdREkiIcvEY1HSEylBJu8E7E0U7gBkWZ5RuMswXnO4qSPBTMKdPg1kzWDfKuEun/Az3fWMvwulma5uepVDDXMR7grb7L11wl0mKHH+e9bXXy/cFRKYCt/P7Os8U9+YSXU493yuIDqTcDcz8jP3imEh5q0Q7jTk64/a8SMR7rSJsBYD8atfuJF//+iHGBrqRyKB02nDIVXT1dPJlqefwayYaGyt4piTjmNyfJip0RFMzgZigona2kqGB/twO0RKSitxe2oZGZ0kocYxYU71ywhWkw2XqxLBZEu2sWkCJSEiyxI/u/2XTEwGuP76a4EEshxBNYHdnCDq9+MPqLiqqzGZzQz19VFTVUM8FufZZ57gpJOOY6B/FEWWcJoltu/bzvrV6+jcvg/FKhOPh1m5ooOB/j6mxoJ4yspwe72UektBKEVOjCIwRjzoYP/e16lrdCGHXCAN4a4+ge5t+5i3tpWD+x7DLVmIyjZ6hydw2qH/8DhnnXshP73jTi676jJ8vlHGhsdpbpqH1WpnoK+P0dER6uprsdoshEMhkIN4vI1MBmMcPHyIDatXcNtP7uBdZxzD3u19VJRZqZ+3mmM2rOOPv/05E/4EcUWmff48du7aybrVi3jt1T2sPWoDrpq6dC9Lx4XVhRISJQkhr51q4bAHmTQZ4U5NC2fZbLU+EHrhvjt34Q7IDmlQFO7yohjEvIgiinhHQ5FlRMBqsWK2WDBbLNOqbgDTsFtC+iOSV53LoHompVY1BSFpz5KPichR/dKuIRQWVOYEXZ1nTJd9QLcZ65o9sdazMnpbuGkuZlBNKwTNaiJbEJ45n66ElGA9W2hCuJ4ZSU6gMwxOMp2a3vK1UUblTm/5IRg2/f3N3bZSP3HSfou662eeVcaTpbEN9c9LHzBYfzz7WRotWYz3NFOdc/tGRi2zMLOdrxytntn10tdNzdtfpyk1vWnqZ/ryFEFFETLtJmp9Qkn+1qt7Tv8cZ24vff/Stnz3IIoZdjGfAx0hqz+IuueuoMUN1I+HWV6KRZGL3rOZcETAYavi0IEQX/nSz9i1/2Wq66u48N3nsWBRE8cddwwjwxN4Sr0sWDwfh9NOe30ZUyOHaagpQ04kKKsoJxiP8v/ZO+84SY7y7n+rw+TZmdmc93K+k3TSKedTlkCAhJBIMkYgZDDBYDAYDPi1DRgwWcIyIGwwIHIQlkEZZZ2yTqfTxb3b273NYWZ3Yof3j56e6emZ2dk9Hcmanz6tvelQVV39dHU99TzP7/FHw8RiYWRZZteu3WRSGmoIDDnJ+MRBMtkRsrkMCB2PKnH166/ibz/0TkaHh8hkNRSPikwWI2MwMT5Lc3snqbkshgatHV1kTA3hU+nr7eTQwXFuv+0ehOllYirBsceegKz6aWxup7u7j00bNjA5MkJ3WyvrNm0GWZBMTRGfGeav3/tu0prM+EyalAlr1/eRTYLqi5OYzDGWehx/aIrv//ettLSdzv79Ka6++p30tK+ms7mXk044hoED+2hr72Lo8BRadpa+7l4GDw4zPTFFfDrJqlXr+PsPf4xMOk08McPhwd1kc3ECIS8r1yxneGSKtsZ2Ghuaufu+B+hZ0sPY4UPcc+fdPL19Nx/64EdYu3ozT257jpNOOoX77n2QUDCAz+8D9IJSJwnJ2kxR+LczX2xRFooKmb0gUuY6KaSCYmddWz4WVyJksmRad/1efJiAO1+elRPXcgV3u4ObhlFPUr4A1C13ddRRx581iquCOrqhnHnXeAAAIABJREFUYxqg61pxGlawzJGfc89v6Siz3BUsetUTPFeKBQMwzNK4PclWyl7quFshVmFh51WP+XOzZLrJNWpPpF302TUUmtI4qXIrXTX3PPt3pf6ez93PvpfKsWBlV1Qs322Fsy1/lRYFqjFuLgwCgUWaYMfTGKY1AXL2mbON88XTOS3MC1eInFj8PZQyey7u+loWviMvq0g04WauLFjqyEcGGnkXUofivDALXjkqMWracFri3KjEtmkzu9ptKrqdOi0rlduhKDKmEAhNY/uz21myZCkTwxM0NTWTy43h8Qd4/plHWNrTRDDWhiFipOfmGD+8n74VfcRH+8ll08yms6ih1Xh8lsIhSTL+kAePFCSTyqFpGfxRD6oUIJfOoGeT+CMxwEQ3chhGlpHxAZqjfXg8QRRPluEDo6TjSdq62slIGo3BAIeHR2hu60YoKoZhIhmzTI2m2PHiixw4sJdnn3mOT3zqY+RSGrIm88jjD7HlpBPxBnwEQyEyWg4jl0MWJqosMzM1isfbQFaP8/3v/g8b13Rx2kkX89Rzt7K673Qeef451jR20NAbZc6Y5o6fPIVuyqxes5znn7qHV1x+EYcPT3LHHfczPTPB9e96G7/65T0sW7qGVGaMCy68lExWIxKJ8t3v/DcbN26kIaKg5VSam9v42o1f4fJXXU7UF8HXoJM1w0R8Ktdc/Ub+/d9v5NFtD5KYnuPSi1/H+Zecy9e+/lnWrTiOvXv24guGWLPlOCSlRoydpJTIglNWLNkoFw63Nc++sjCu5cMR3BY561CRNdOpHDrlspblzmbaLLh9zsOWaSt2umlY8mzWLXeVUCdUqaOOOv68YZr5zZoQS0JClhUrd55ps9YJ7FxZhb8uN6xSywiFOVwhnYG94i9s1xMK+wqGOVt3s/eTz88jin9LLQlWRcX9C5wEL8Qd03le7QLLrC8LVZwWfo5YsDKyEAtPQWFeREoEmyDEjUq5ypwT+dLyTYQokv3YSq2b9KXYrtJySl0hnX1gJT+zSEYEVr45S9ZskpDS+7Lyy1FoZ3m8WiWFbj6lufQeS3rQtbn3l8JaKFicxbKktnmU9MUqfZUUdCfpiTCtzc7FKOcVOkmU+gJUd2G1FzWqt8seomw4c+cZmHm+z8ptd25uN03nBNqqx1bubEIVpzU5b1UxDAxZ0NzcjM/r49D+/QS8XnKGzujgMN3dbQwMHkA2Vfy+LNlUkt7u9czMJfA1+pgYHKap6ywQs2RmJQ4PHqars5FUUkf1qJgKoEpIus6B/f14vH40TUb2yAgEuWwOrydAY7QXQ4NsOonQJNrbO7j7voeItXUQaWzkxedGaGpux+tRSM2lUSUPQsCNN/0HmzaewNlnX8Q5W08mHp9AUgSoKh3tzcSTGqrqRUsmkCQdJC+q4uXRhx4i2OAlEU8SjTazdFk74cYY/rCHw4fjNDQFaG1J0Ni8krHD+3nXW/6Bi197BqeefSITkxPcc+e9bDpxFZrmJZ00SMwMoeuCNcs7CTcIjj/rXMb6nyUSijFwYIje3lW0trdz4mmX8p6/eiteKclZp24mO5vmuz/+AU2NDaQm99EY62T1qmMYHhpm+dKlTE4Nsfa4LbzmytfQ19nEVNxgeiZBz7I2fBEvAqVoqS8wxAoMYbtVWt8eSVZwu9lXl9FSi75kb3kyFFvOdN0ojJXFcp2eBnbOO8U6x9XOQgSFPR4ahsWeKcsVv1WmYY9DjjErz8Yp5Zk0ZSGV5Z78v4o6W2YdddTxsocAZElGVT0IScbQdZfyVv5FqKZ8uF0sa00yi/TP5ekD5rc4LVK5W/R5802aLUXF6aZZuY1HhsW66iwUVjqIeZ5X5dbgVIZK3UkXwmxZm/W01I2zdL9dZ7krZPEcS6mbj4BEuC4rbXc1htOFPsdyJbBYfq10DLXqMFyWgMXgaFn0qr0L1RYdql9nvyvFrVYb3eQt1ZQ7Z5sqlmO7YBZi7arlNavwLudl69ChQ3R1dZFOz/Gud76Liy86j3R6lnQaNCOJJAtGRg8Ta2kil8qSGtmNZowTjPaSyxhMTk1gmhrhhghzySQNoTBejwdyfiRJEGsOkM6OAVaeNJ8vCMjMpUdQvDqHBnZjmEmSmSyhcIjevh6mp0fo6g2SmB1C8WhkMkky2SSZFJx++unceuv38ftVFNWkpaWVT378U6xevoHJyVGWr16Fz6MyNzNNOpPG4w8S9AXoaG9BVUJse+wpRkaGaGmJEWqIIUnQEA7nZTnDYw/vIRSW2Lj2JA4PHGDbtufYsuVUZuJxWpv7eOSRe7js8tNpjEXZeu7JmHoSWTbJ5rIkZg8zMz1OsEFF9WikUmNcdukltPc2449G+fntd6HIEuddfCHNLU34fH7GxicJBgPcd9+9zMRnOGbDKppizXzgve9i53NPc+VVbwLDZODQfnqWLcE05aLYQX7RUGCK8tx3i4lJrXSemc/5ab/v9iKnfa49RpXlt8svSLkXSgvfVnuHaVpJzqtAki1GWlPXC+6kQkgoslxQQF9OqLNl1lFHHXVUgW4Y+Y9SUdmbd0B5SWNk5Zxq9odSd6VbsJNAC0mUupDWcrssuJ5WOV9YH1R3EvX5Uapw1lKcKpGOOD/wtb41CznPGVsGRQXGXfdC61ro+e7rQLb6uNDdNonAfNaq6v1pWbpKJzmSVE7YY51vE4nI+Zgte3/lmMXy5+VU2tyxNwuVD1vJK54/P7voS4EdfzY/M+dLhS1LblfScnfMhd5TsY+c7piyLJFz9ftik5gX91dLYeJ+rvn9tuu5ImEaebueCelUiqH+vYT8IWamRmhta2BiapZIo59EYoZgMIwpqXhRGNx+O0pEJdh6HgF/lG2PbuPEk0/AlCUEJj6vj4mJCXzhGXzeKF6lCYwQv/7NrZy79XxUxYehg6zISJIgORsnHPCTNObwqGEyqTSqR5BN6yiyQFE8ZNMyb3vr9Xz7Ozdb75oMyeQcydQsB/fvozHcyvo1m5jT5pjNziKhI2kmusghecP86ue/5A1XXYGWldi3fz+9S9uQlBySGiKXSYBpsG/3AN0dYWS9Fc08yM7nJvnFD75DuKmNB554nI98+G94+P5nOOvctaxa08TO5/YQCQkaoq14/VEySY1Htz3DJZdezMT4OP9z2+30LVnC7T/8Pn/17ndz649u44yzL6apr4GAL0BX1xL6DwyypLeHXbt2Mz2VYP26DTz11KOsW7kcv8fL9u0vEGrpYGx4nL5l7XStWok3GC19qA5pk4QEjljcxbwj5YRalYlXnMeqMXG65dAUomSxyVbubBdowywNCShen39vDEups9027etebqQhdUKVOuqoo44qUBQFT4GIRc3v/cOsF+m69TGUZdlh2ZuPecxYFHHI7xO12rrwcmq7XVaDHd9WLc7tDwXTnhkv8hr35Gm+/nSzex4tuIkWXgps+bRX94vPxTxq5UMpqcjRksNKdR3Nd83u49I4OxNd/xN4n/NNMAFdgK5IjI4O07+/H78vRDqlo2EiyRFi0SUk4iZ+b4iUkSDY3IcaOpm5uRRTU6O0tbegql7iiTi5TJZkPMGz257A1BvQNR8TEzOYZo5TTzmPbMYkmZplJnGYnJZG1zL4/R6m41OYwoMQKlpWsH/XAf7+7z7Fgf5RDF0wMjLIzd+8kd17niMxN8P0ZJxM0iDSEGPjxtWkU4f50Q9uIpPWUFTBgYP7ePHFnUiyTCwa45JLLmFqcpLZzBiILNlshqnJaYSkkEjOcnDgAMuWraG/f5L7H3wMySMzMjbG6//yzbzyNa/gu/95Mx4zy+2/+QEKQR6450XWb9hEe+9SJuY0Htz2Iv39k5x51lnMzo2za/dTbDlhJRvWdPP5m24iqc9x1jnHcszGdiIBnV98/5uMH9zH37z7vVx/w9/w6X/9HLkcnHbGxVz3zg8yMT3F/Q89zMOPPc+SJZ0cHhrkxq99FZ/HV/PR6rpxRDLmJkapda6t2Emysui6Xir0P5Fv4p8y6spdHXXU8bKCzbYlTAkJBY/qw6v6LcIUOxDGdK5Gumbxlg8g1vApY5qisJXDKNlkWYAw0fUcup4D9PxmHRciz8xZVdeUSjc7mMdWmNzBPcjWZsqYZWQqlduIMPIWxPwmTAxTtwg9RJFtshq7pZO5z/m7NorurtUIVNxl1Sq7PGZJKsTCzRfv51RAKykSVv7CYp/N51Zbrc1OBctyezKwcjVa/e5mBHVeZykiGk7ZAQkh5MJmPW/JIZ+l/VfRDavms7Jlz2nJsu7bVvJsptFK/Va9L+z9pfJty0KpomjXLS/IEm0gl2zuOsqPl7rLuvvJkETJVt4Xxets92a3Ml0en1nKjulmyaz+rhlUUtZdb3RxWMhbdpwlSULgkWWWrTqOntUrmZobZf/eJ2lqaUEoMolkmnC0Ba83iBGPgxoGodHbGSQSUujtW0JGV0lNJzGlWbwNsHz9ZoYGNFSPn9a2Lqbmhgn5G/ApPmQkYpEIucwQpmYgpBzTUzN4MEjFJ/jMp/+JJUtW8Yl/vA6vN45pJmhrCzM5PsDyJcsJxtp45oWdpLJxZN3gXe/4W44/fiuTcZPndz6FVwPVFKzetIqZuMHM1CiRsEpTczO67qN/z278qp+GxqUkpwUeOcSy5auZSaQRSoD2FpNb//1mTt7cyLoTT+H+xx5kfDzFkvUr+OhH/xZTTrJp81omZ2aZHOpn5dKlrFuziU9/+ovIooGJ6fuINY2ydMmxNHa2kzMyfP2Ln6Ctrw2TKdBkzjr1ZF79pjfyzN4El130CgKeENdd/zY+9IH34gtBxpxETqY5bstS4vEUsYiPwf0DeAIBhKRhCgNDMtHcqTKcMpBnrbRlQDdNazNMTCHQTRMhy/nE4qbjXXO78EqYQmBgnW+UyLaDDKXiOGntl0TR8m7kv7+mYRSUNJvt09R1TF13XJ+vR5Ks+FTTsGL3JFFXXmqgHnNXRx111IEVn6fINtMYOJL7VLmiPHfZggxSNU4qcV+R3FYu97VFd8zKpS7kE1iuSNkskHbZpS6E1ej0i9fPZ3Gq7mJmTYTtSYabBGQh1r7qsYz27yJTZqUyF/v794FKCqb7eEWyFFOUhn7hFrVShWXemNGqx6rI3yKxcDfDSkqW86+b+KUcpusdKL8Dt3vb/PdkumViAV3g7m+3TircazKO62qVW+m36R6Xyq5z/FuydkyMjRIKxRg8MExztINQRMHUs8xMjdHaFCGb0wj4ZAYHBmnv6Gagf4CRiRkaW5pRPSapuRTR5qClPBgefD4Jf9BkejKJLFm/JyZH0Q2dYCBMxtDxeBpJ55JEYi1Ihsruvfs4/YzTCTX4MXSDjvZehgbH8HpCHDo0QnNbExOTUyxbugyPqjI3O8KFF13EU089y/IVq1i/YSO7X9hFW0cnQvHQ1NTM1NQ0AW+EmakMCI1cJo3X52fX7j3MTmdIZ5JMTAwjC4N/+MgneNOb3sSqtZto7FjC80/tondJDz/80a85+aQtBEMyzU3N+DxhYtEOZuPjKJ4Ah4eHeet1b0TxghAZ5mZM/L5G9gw9Rm/3JjZtWoPkb6QlGmMumeC2n97H0qW9PLP9eTyZUU488Vhee+VV/M9tdxDwwDve/pfEJ8cYy2VZu2INfd2dNLa0sHztOjTFWkyQEEjORcj8Xys9jyg8Y90mXbHHPSk/xudJSQzDsFw6pWKKH/JSVJQn6/92ShY7zs8+UnNcLEQZ5McuV3xxmQwvYGyqFaf6fxGLibmrK7911FFHHQ4osoLX48Hr8yGgmOOubEJc/LDZW03Lh6jhzVcMoMr/O7/lf1ctf8HWsdqw3UYLbcgzB0r2v+ch6nD3Q6WPvtv1rRhHV5qLbT5UU/6c9VZWPCu7I7qvL7rolVoRF26FrF72fPdU2n4Jm5CnRDFw3XvhOsp0u4LFxtpKn4nbeuRUFu0+cLa5khXRhjsnot1/uq6j54mMnJLvLtfdR/O11dFjFa+pZuWt1vaFw3oXDcMspEeodHz+rTKKcukm2bFQPd9dqcXELqea+7LtQmc6rCeWh7Ggt6+HVEbnJz+9k127JsjMpcnOJenpamdmZpT45CTJnE7P0qWYuRTRcAObNh+P4pXwKBq9fZ0EgmESiTkaIn6CIQ8H+neSSscxcxIGWZqaIkSjDaRSaXz+CJLiQ/X4SKaT6EJm+YpVdPZ0039gL7IS4CMf/X80NnVx++33MjIyw9joBLt2bMfrkfEGGtjbf4BQQwOmEKxes5ax0RFe/4Y3kk7rGLpMNpcjGomQnMtwwzvezddvupG1xxxHONrIxrWrOHDgRaLhKMuWrEZIWb7+ta9x1TXX0t63Fk3yMzs2QCoxwcOPPMKb3/AWgoEg2azBQw89zpNPPE8g0k1Hz3LWrVvOXC6Ojo5MJ+HgUgaG+uns7uPe++6hsa2PaHM39959P7d+7xZ8gRAdLSv56N+9hStfcyErl7Zx/KblLO9r4o1XXMG111yHJ6hx9ZvezDe/dRM/+MmtjE9PIpsyXlnBq6oIo4INXRKFOG4bspCQnTJiWOEBlk4vKo6H5fJnWGNImbyW/nZvtquniZWGozgWFGHLoaFrxTJNs5jjznQSuBiFfXXMjzqhSh111FFHBQgpnyAYK8ZAz2nopuH4sFRyOyslSCk/blpB4dXG3ZpmCPfxWh9mNxNZpXqrlFGwCLmvWdiaYLVvi23Zc5KjLNYiZpdRjWRjoeVVDeB3Ha+2f7FtXujxSgq0s78qozrrnIXaMTVOJatyI21rrr2jPDdipTbaz6tSDsQSK3GZbBUVzOKzzefUspUdMf87YFBqkRAu8gbDpXRJNfpJA2RRtOAdSX4t3WXuk8u6O1+2Kz+em3Clqhy65ccdo+SM/Syca5DJKtx12x3E/H7Wb17ByPAQS5b2sOOF7YweGuCM885iZnyEZx97lE3HbcTfvppcRkfR0kwlZok1x/B4vSB8yJrCgcFtKFIDo8NJjjthEwY6pmm5o88mU4R97Sj+JCAYHBqnta0dw7Ca61UhHp8jldJAlwg3RIlEvaTik2QMCW9DCx4tx4ED+7nn3ju58rVX4lE1VFPldw88xOnnbkWWFSDN9MQUO7a/yHHHbmQ8nkKVTL5x05dZt3EVO58f4GMf+zgj47vY88IAqzduRMvNompxhndth6YQI9MBjt+wGjOXI51JEwqFyWazTM+mIDfLI488xDmXvJKutmUM9e9k//7tbNy8AcNoZ3r4KVrb23j/3/8Lb73kHLwxwcHD48SnY5jyDKeefhmXvfqVfP8bn2H3zt14g0v550/+M//17b9nVl1OS4OHtGnQ0dnLwMAMHsVgxdq1ZEyBJksoTqVfEph6acoM0zUmWosvOrKsFN8rV47TonzliVPcFroqMW/VXL4tt1CjoGTaiyOVczRK1nqmLGEaJrquI8tyYdFIVVVrAWNR5GD/N1AnVKmjjjrqeIkwDYGhm5i6iTAlFMWDV/Xh9fgpTqRtFrDqrn5OFOLiijtKt1qwk3IVNvd1rpi8ivacWrDj+UQFZbJCGwqxeqW/hTARFXzW7Il8NddDp4JRTdFwHp/PhdFdphvVLEhu98CF1lMJ1ayJ1axOxf35WDmjGM8pRNEaU7stVuxeMY6v/F4qtdW22FlwyZOwYjItZk4dO74PJKz0UxKY+dg/h7JZVN7ccigjSWqhfGtxxBktZrXXeb+FfpJE3tWr2AY7Tq+kn00zvxkIw8i3uyinEnrJ5n5ubqubQl7UdQPJsBS1apshAZLAkKzcdkKWUFTFitYtkTG3Zc/qp2oWu2IclVGyNFN4bnkNqThMWHVZllQDQ0iFzSxsCj6fxAWXnUXr8lbi03Eaoj4mp8cZG0+wpHcZpqGRSsVZv2EFT2x7kqn+SYy0xHB8mlCoHZ+qMDUyzOSBg+Qk6Oo9hrbuJTR3dGAoMrPxMcxsHF8oQCAQw5A1TN3PXCrJ8qW9GFkN1VRQTZPRwWfwqzkyyTma2xsRag4tlyZrGMSnJ5Bz01x/3evo6Wni/PPPJRgMYAqTmfQMzR1RcrlpdCONphmofj+bTtiE7I+QnZ2luSXGh/7fJ7j0ir/gRz/7OZmcRmPbGqY0HdXnRzZ9fPjvPkv3pjcRifWx9dSTmMvNMpXKoHhb+eIX/otQIEjUc4j2jrVcde0HeM/b3sn2x/bxgx/8L6s3nEWOGHP6LL++7bf07z3EP/3DW8moneREiFNOPZGVy7xsu+9BtNQ0r9h6AolElhUrjuNg/zNc/cqT+MmP7+Mvr30ze55/jGW9vUSCARR9mA/e8Ga0XBpNKHg1qdQFN5/kvmS8Ksi/tVnjh1yw8Jp5GbLi6ij8WzOMgljaOSBteXLH8RlYi5ZClq2cdZJUskmShOogXpFVBcMsfmKEJCHlc9MKexHIotEsKCm2R4mVL+/lp9gtFvWYuzrqqKOORcAAVNnKnwe43GAW6VRw1D9SR1Keu83uMlzHq7W5yn5r8i3yemjt9jlXmN3xZQtFtVik+RSiSsrX0USlNriVvtI22NYb20JZbj20V7Stayo/tyO9j1plmqY9Oyu9P0fTC8+8ar/biweO82vLsNN9tFK/lvdTadWLpYif75iouP5RUrcjik/kXdvsZyYJ8u7OzntzFui2LOfXhlxyWnJFVRk2Mc289a/KOUIIEvE4o8MjCMOgraudw0MjrFy5igN7D+Hx+vEoPtKzWVavWsrnPvtlNm1YQ3OTH9kXoH/POLFoJ4EGBUnyEZ+dwefzMjM1QyqVIhKKMD0dJ6eZeP0y/fv309LagSwUUqkZ0sk0v/rlr1m3YTWBQJhsVtDa1k48PomqSiimhs/rwdBy6FqGc848B38wjN8fJJ3Josgq4XCU5FyGTFojGm0GZGYTKSLhKD/76a/o6+wiGAwjqz4mJkZ561/8Bf/66X/lmOM209vdTioVp6MtQktbmKef28Wq1S2Yhk5nz1LCIR8/uvWH7NjxNCtWdoM0SyAa4cDALi48/QqCLW3MpaZpbo4Qa/BBNsOzz/ZzyhlncHh0hLXrt/DRD3+S3o7j8PsjnHveSXzx81/mr9/7Pr7/w1/wha/9OyElwIXnn8NpZ56JLkms3biciTGVw4fGmJ3ew6tfdy1N3b1k8n6SQrhj2EoXpqw8oI74cMeCmZX+oHycsN8ZwzAxTLM8fx625a2oSBoLGKeLuenyLpcV5ZTy/RXk9eWSuNyJehLzOuqoo47fEwqfGdOKRVNkpbAZGMXcZAIQAlmSrU9hLQudwPpIm0ewMlko1xmFUSwjm83Oo9gsTrkz8vddsEC67knI+YlE1Xstj2MDZ2Ls4m/bZa+au09JK02zpIxS61bpVlPpsFvqUMLm+12tPdY5lZOQV4sbLLbfUopNw8xbqMrjHUutl1Y9tqXHNPUSK+lC2lwOd84st9uloz2mieSyGtRUMO33pFCEgRDkldZqbaqlqJe2sRi7yLxtquTa6+43wzAcZeavq6SzOtpeYlkRFCwPTnt6kbvJUuIHh4aIRqOFciTJbotdjmsBYJ7FDOe+gtw7J+XO2ErTwO/z0dnRQcbQScSTBHwB2pob8QY1pubGWLq8C1NPkUjM0dXZw4c++G6uvPwiApEYwUAbmmYyPL4XnzeIKilouRzNzQ1EghGQZLz+IFOT43h8ErFYMzu2v0h3dw+qkmVqcpqTTthCOp1ANwIoqoqmpTG1HH6vF8M0UBUFRVXYu2cfug4NkSh//Z73ccH5F6LpJoYhaGluZ++e/QSCQWRJIRgKYSJY0t3B6OBh7rjjbjxeL0uXtRP2Bxg+dJicZrC8bwNvvfYGWps7WbP2GPpWNpNOpIhGA0zPZEjGx1i2tJcTtmymvaeT1GwbpiExm9yFqcX5nzsfZNWqXrwq3PWb22lsiHDymReiC42mpiV88ctf4D3vezuptERjs5+hiR2csnkr//alm7nr/kfxBhtoizawbuMK9h7YSzqdpW/1Ej72gU/xwD33oXin+dwX/4srr74K3TSRVE/BxVEIYVmJ9dJh1x1jWvyXLdvW4oKiKCXvrq0kClGeLNxJ9OVOlF6LTMtW6mzZs8Y43W5sSYydW4ZLZLuu3M1/bl25q6OOOuo4OlAUGVlRMDDRNB1Jyn9AFzKhzlstXprFqPK1kiSRzeZQlEo5iRan3AlJslJJVFhVtU8X81gfrEuKykjxt/vf9u/aLoimaVokMK465mvDQnAkFsDyMo6s3sLkqtCbNVbG81Y0SZYKbHnV2r9wOJhbXYpRccsrFxXrq1Vnuaw5J32l7pjW+bX73jF9tfvR9q50HK9pLaiwv5J77fyWuwWWXbJOIgiFQvlFjdLrypW7/M/8X7eVpry+vAtyFcKZ/NIHAtAlk+FD4zRFI0yMDeHxBWlsaWXfroOMj8wQ6+6ls6uDjevWMDQ4QP/efaTTY3T1RNF1mJlKEI3GmBgbR1U19FyagcNDtHd34vOYeDwNDA+Pk81kaGwK8cJzjxMNRwiFwoBOMNqCYeT4qxtu4MJzL0XFj+T3Mzw2gaT6ae3oZm5qhmxO57VXvY6DBw/R1NzAM089RVNLjN6+HsYnRhAy5HIpvD4PXlkjk5zlvPPORVIVwhEP9999Lx//6CeYnEywefNKLrvsAv73N//Lsccejy/g4aF7n6MhCsFwM35ZoKgq+/r7SSSytPW18U+f+CynHH88Zk7n3LNPw8jOEg75+MVtt9PY2sfzzz+A16uztOc4lvS2ktHg1h9+h1NOOZ1bvvVzfnPXgzQ0tOP3+XnnDW+lKawzkx7l4ktfwfe+8wMeeugBlnV38OorL+bwTJwH7n6ak044gbXr15BJZZHyOVMLcmFWfj9s2XAzqRYko4LlrbDQVibIpTIlSxKGbhQE2R0nW7hMiEKuV/u3WcEyuJAFt7pyNz/qhCp11FFHHb9nZLJZDEMvWKHsiathzk/eYH/iTPL+XMjIslRMUlugulNhAAAgAElEQVSDTGIhMG1rhCShaRqK7MHJhFb80BZb44ZlZTNdx93ni5JV3oK7oSvlhKYZJRNpJ3FKpRVd52TWyehYuoJcbbLgtkSVorYyVL1PFkqgYrezmmWtopUM54Q/LxvCcF1rK2NWvzvrc0/sF66o1jqvECGT/2sT3jjIEkpQTVZsyGDmqdwLcpMv2XD3i/27mIuxcpnllgUrvUf+KtesUXO3qMSlzUCW5Xxbitfpjm4SQiAZle6zeJKxSPYDmwbeJrpQRXFMkCRRJHvJd5b9XjgtuZqmlVpcCu3Ny6Nh3Xkmm2X789tZ0t3N8OgIfd093PAX1/GRj74DxWigpTnM4NBOGro6mR2bIBJtZTIpE41GSM2lSUwnWL92Paovx/j4GE2RGEMDB1ly7MkMHBhAGBkaYyqHhpJ0drVgagYeKYChGAgkJElhcHCIXS/uQk962XrxmeiSAULh+UcfYPOJx5LU0kiKTEBSSGUySEqQbFrG48uQy2Xo7z/MmlUbyWZmmByfpK2zlXRmjumhcUbGhmhqbeUrX7mZj33yn5FFAoksGd3H+657I5/+7Ef4ze2PctaZZ9C38lje++73EA76uOGGv8SQZSR9lJnJER7adogDYxpXvvJcQj6ZVStWsnvfEB/9fx/hi5/7JF5hoKU17rrnYS659EICvkY+8y9fwZCmaYh1cNftvyWgKhyaGeKqV1zE1q1bMZQAPsbZc3gv69au5bkHnuCYLadx6OAMs1mVS173OlJG2kppUMiZWbqA5x6H7LdD1w1rMVKW0XUNSZILciK73lM9H58noMT9Ute1gpdBvrZCOdZ7YeTHfCvXnW7ouF1BS92SbWF0L16Uy+nLEYshVKlb7uqoo446fs9QZBlZUa2Jqpln4XT6Yy0YljtYcQX/pa9zFa0rNstaUVmyY7ryZ85ThsNlrLi34nk2LA8c0xGRZEFR1JJzF6Ik2X3qtqqUK6aLw0uzotYuu5IVqnqdNc4TpQQ0lpwUlY5q9c1f52LPq7wQ4JSx+a9zw205tJ/3fNfWktfy/U7juvsW3csnToIHK47NJJvNoigO5j+Xclf5Na1t/aum8NuTXTuGSeByuy3pq3IlvsQlrsw643QYBY/HQ2trK+FQgJb2dryKylVXXoluKrR19uWVoyhmSsUj+YhFW2hoiNDY1E4ukyPSEKB/3wuEWzo4ODBMW0c7vkAQoerIQpCaS+HxeEln54jGfIyO7CMYgng8SygYZGR0BL/Pz9zcLKedtYaBoR14vODzysiql3g8gZnTCHq87Nv/It6ACiaEwiEwJeKz03R0tKIbGtl0mpbWZnI5DVlSCEfD6JJBW3cnJ51xJvt3D+D3KHzj5m+ybNl6zjjjHLwBP7LSSKihhfhMAoTOhk0rUOQcHZ19XPna13LxRZewcdMWTj/rPL7yxc/w8IO/ozHWyJe/+nW2bXuS87aeQSY5w6FDA0yNqfzzpz7JxmOXYIhJBgYHiTSG2Hr+FlaubOI1V72B3u4uxsYmiM/OMTJ0mDvuehq/r5mGgIkp64RDUR57Yjvrjj8BWc27bxfetfnVH1sabOIVW06cSpfbUmcvrtixvyV1mO4x11LkTEe5tszZC3ayVDyn4phSRd6tf798Ubfc1VFHHXX8iSOTzQCGRfms55nJany6ZEnJr7jblPR5iwiVbEe1YAXi6zYVvWlbsUQJPf1ClQ3bMjmfNav0ulJLi82AWKDbd05+TYNcrtSt1BkD5Ya9clxsT7UJf2kb57PgVSZ2KbVGuuEkO6mVT8qdIqJcua21Zl20bhpG9TY599v56NzP2v7rtvg476N0ElmYMrpqK7VMFyd7tRSw+e7ZbZlzn6O7js9vuStXoJz5FqUFpi2obO2TJIGpG8jC/a7YzKx5y1qVRyvl26HrJrqew+v1VT2v5J5csrMQ5d10WP4sS2beiiMreeVBx5QgN5dmqP8gs7MG6WSCrq4owaAgMX6IxrYORkaHOXx4mLXrtzIzPUFTY4jk7BQ5tYWWlhiKZJLNzpLNThMKNpJKg9/vw8j5mI4PEYl4SSZm8QbDSJJisbDm71BRJbLZFOgeDE0l1tlIMj6DCux8fgctXTGiTRGmp2fx+RvweUIYpND1HAIZI2dyYGAfP/nRr9i08UTOPu8k/AEPGzZt5P4HtpGdzXLtNdfwzne8k2d37uXyV15Ce2cIPRvkpz/7Gd/+j6/x1Rs/TWdnlM62dvbvHyccCTI4NMjDDz3C8MgUr7z0HFqaInznv3/Iu9//UW75xi286tXnEvBL7HxhBy1NjTSEmslm4JlntqP6wkzMTPDKS85iavwgzR09HDwwyPe/+31OO+lU1m/cwNv/+h+ZS0xzw1u2sv7YVXzrGz9G8rXxqa/ehMevuAhV5PxzzKcMcY07tXw9JElypEaw+l0zSlP8OL0NLNZNqy6bXMzpIm+nXdA0rTC+uePynDGnQkgFy50dn3ck6Ub+L6KeCqGOOuqo408YQpLw+wN4vF4kO/ZsAdqZW8E5GrBW/ouWHVmWCxO6xViu5gukPzIULQhCCDwebyENgDXh1au20T6nEsvkHwp/qgunzrQLkiSVECm4sVgZqAVn3N5RQ4FCslALR2N9/6W0VRbWNh+KVtXqdVgyDEIWeDweDMyS7WhCkkrzo5W1hTyZkirTt2wJB/e+wOpl3Tz/1LM8+9iLTM6kMZQmwo2rOXbz+UxPHyIS9dAQCuBVfcTHx3nmscdIJSaYGDmAlsoi6Sajw4PMpabRzWmEmeSJxx4mHAhx+NABxkcGURXY9cJ2vAoMDY4jCZXtzzzJzV/7N558aBtBX5CZuTmyskCRQszGUwSDDegGpLNxBgb2oyoeNE1GCJOlS7t5//vfz3/e8j3mxqeYGR3n3jvvoikcobk1yG3/8wt+9rOfcdKWE8gkZ8il4zx8/5287opLOevsM2hqjCGhcO9dTxGLxBgeS9LRs4ZXv+pyrnjlRfR0NIOR44Mf/ABDw8PMxsfxeb1Mz2S48ab/piESYGRslFwuzYknbaB3WTsXXnouw+PDNDU3oag6PUuX8P4PfJAGv5/p2Th//4/v4dd3/gRJbiXasJzpKZ1zz72IcENwHtkxai4oLVw2pIrje2nuyurnzbfYVKmthTHKMIv5LOtYFOrKXR111FHHHwFafpXT6/Hi8/lRPWrNa1RVRdPcUUAvDVbcQ/FTYBhm/kO7uEny0VbunEqI9bv48ZdlZd5cb3asXiXSiD8U/hyUO5sp8Q+l3OFiSj0aMPP/2ailpCwcR95WUxTj3irByeo6Xx1SPg52bnYO3cFq+fuQ64U8axOQFRUtp9HcGMHQMizp6WP92g0E/M1MTRt4fe1MjOTweCUaGkL09/ejyB6WLV3CqpXLyKaTGNks2VSGdCpLe3s7kgyp9BjhqMLJp2xGEjm6erqIRCPMzc1yzDGbiCcS9C3tRogsHR0R3vu+69HTWfr7+7nu7dfT2dPNyOFRAoEwquIhFomRSiXoXdKLiYTP4wMhsW/fPkzT5Lvf/TZtbW3Ep2f4x49/gmR8Fk1PoygyN//HzURjEdpaGpGEwdatZ/OlL/4b5249l917drNnbz/fvuV7HOg/yK23/pip6QRer5fJyQlkCVpaGvH5fczNzvK3f/s3ZDJZenqWcNPXv8HSvg2sXLaa5vYQ4UZYsrKdTC5OICQznRhjcGCAbCbLU089zcChQ0zFp9nb/wKBsIcTTjiN8YkEK1asZfnyFRjzyMDRlJF5x1mXG3yl8+bzbqjUVtuj4I85fv+5o+6WWUcdddTxJwIhSdYkzjAwDL0kgbFpGhS8MQEkUbaqmY8CwmJbt2IanG53R9Qm5rdfFAlZ8h9v012XTf6Sd/cUbte9xdboPK/QinknArUmrQuN73O7PNbKwVcaA+eKY3EzFdaaWBcSmdt1z0/G46zH6e7prteZcqLa9QtX8OZ3e128RW2+51EtntLttlkKy+2w1ErgdhWtNRktLb/Yr7YLrtvNsuhWVstV2Q2LeEVWFbLZHEK23dScymyRzEhy0MzrulH4bQpKCDNK25Ev0z5Sw5VTCAlNyzF0cAhZS3Nwzw7Gh4fYcsqppAzweFWMbIKxw/to7ToWTYTxKEmEkqW5qY3JiSkiDY0cnhimKdbA7PRhVJFDUWNEY22YssLkzDiNgSgTUxOkMlnauzvJZnMMDw/S3bmKVCqB7EkzMTpDNByjtbWTwcERmlra0PQ0CB3dyCFJfn79619zxRVXoOkaRlZGI2m9xxp4AyamppBL6+SyaXbsfIaezmUk4kmWrexlbHSGZHKGtuYmfnrrL1l3/HKO27SF4zZs4SMf/hCr13WSiBt87l8/z1uuu4qt55zJ4Yk4jz72OCdu2kh7LMhkOkk4GOPOu+7n8NAIqbkp3vb26/D7vaTTSXTVi0eWaWwMkM3O4DH9PPHMdhpifTS3LOXg3qcZHTlMX08Xzz77BCefeBrD8SSbTzsdodhPMP+sJAGGWfg2CEkglblKF5+jDd20vjWKouTd6ytfU+6mXVlm3OOpgHnz4Om6XjJG2bDrUWrEEb5cUHfLrKOOOur4M4Rus5VJEl6fH9XjQc5T2zvdMSUhWR/xPwBMzJKEs24UXCVruNAI7I/1S7feuF3abPeg+RQU21Ll3P6YK8NHahVbaJurnTef5ce5/+i72f5xcbQsekdHZhZmFbdjl3TdstZLiDxT5ktzPdVNs7AtFlYMlUxXTwdpDbp616P4OkhrCXLpaSJBmb07d7Fm4+mMT0wyOX4AXwBktYltj+9AKA0kMyaSoqJ6A5giQMYIEIlGmJ6exCtDZ0sMU9EwhElXzxKyGRlZhAgFA0xPjuLzykyOTRIIxGiIxZiYGUf1GWT0KWTVWvQIBsIAnHHGGeS0HGNj4wjZ5OCBg0hCRla8HOyfxDQ8ZLNZgiEFjxKmuaUFX0Bl5ws7mJ3dT2o2zdazX8OmzRtZvXIT37j5O1xyyWUsWdLLb+74XzYes45XXfEaLr/89ehmkFu+8d8cu2ELP//l3WzfPUFjcxtTiQSSInHDO9/BGWefQf+BQ+zZewiPp5lkModXjfLWa9/H8GCWV119HatWb+IbN36J55+4h76OHrY9+gRDI9P821e/x6GRYc666CKEkzUZkGT5iL8Jpsm870atscoeT+v400GdLbOOOuqo408EzimbaRgFhUhRVBDCWpg19CLrWInFwVFKRcbIRcKe+FWIB6xUorXqa5SztblOLhZ75JNTN+V/LpdDVdVivzgC+t3smZXdhop5mZyWKifDpNN98Wi6K9Yqq7gqLrmIExbWh+5z7EUCr8+PoReJEipZFov7F6pMlBPOlG5mnlihmvXWaQVzX1+tLsl1vLK10A7Ns7qzWK67C50Mf5VQ2ifFspz73OyX1Ult5+9X+9kbwrKMCyzZFtiyat9Psd9s5k/n8ywyF1q/pTyjYYlLnev+qjJ12lYZoK29g7l0hkA4zNDAQbwY7N25i4DfS7R7BX6fxNKeFiRJRhMhlixbgT/oxx/2g2kSa2zGwEcg1ExGy6LpEppuMj09huptYHx8inAkRlbT8QR8ZBKTaEaOWLSBocEhepcvY3pmhmAwhOLxkUnlkGWVmekZvF4PJhKBYABN0/B6vQgBmp4hFIwg4cUwTL7zne/R091JQyTA7bfdy6rVyxFSjoaGBh743X0cd+zx3HHnPRwYGOSM005n2dKlDB0+wObjV3P8ljPI5XS+8a1v0dLayle++nVef83VRBsaSMxlSRseUnNzrFy1HiEUTFNi46Zj+MUvbuOkk0+j/+BBXnhhL1PjM/zlX76FWLSBLVtO40tf+Bpvv+6tPPzQPezpH+ayV12CkCSuufottPfFEKoHoSgoUl5+JFHwoLAfjrD/luWQk8qeqVFi3S8fC+yFMNud2IbtNiwEZcdK6szLS7XjThf7kg1L6RTzvCMvJ9STmNdRRx11/F+CaVrTQMmKu3Ou0lZLSnvUUCnWomITrZmmezJhmEUWR+fV8zFMVjpeyW3HWZ4zbUOJQlTBhbKaQuWMQXO3oTjpX9hEY77JsVvhXEg5IGwvvfx1C2pGxYmaEIJcLluzHUWltuwIlfuhtiujpmnIcm1SoFIFqnJZletcrCtoeT0LU9znUcoWpdzVhl2eQJQw27rfCftZORVZa75uFWDkR4uypNTztKT6hFzGFAYNsQCtHY0E5GYyM+OMDg0yMzNFoK2dSEDhwfvuZtsTOzh96wUYGPgCHgyh4VM95DTIaBAKN6LLMpLiz9vjdXzeRhqbmjFlkD0SmWySoEdGy6UBaGvrYGj0EIFAmPHxOLmcoCnShizJqF6Z6ekJotFmBgcP4fP78Xl9qB4FRZaZTaTxecMEggobN26ks72T6alp4tNZBof68QdUfvjDW7ntx7/luuvfwEWvOI/nth8iPjPCE09s4/rrryUUMvn85/6Ls885h5aWKMceu5GTTj6VF7Y/y9jYMGs3HMPt9zzIces20RCKcsMNf43H4+PFF/Zw9tlnE42F8fhk9uwa4MMf/jtOOuVYunoaeXHHbhob2zj+hBMIRgP0D08xMnKA1auX45N8dKzoIK2ZSIoHBRCyXKrYlT2/BSQIF6JEliot9MgVLPmmaVqLDUKgqmpV610t5a4aLHdxua7a5VFPhVBHHXXU8TKAHaOna7mS+LziCQtwlXHHyLmusT/MzvMLlNXYTGdOeusqH3ghyOk6cj7mzh2/dnSJO5ytp+yebG6WWt8/+74qJYEuKZ/SCXZZK+zJdQXWuNK+c/Z2aXJz09QX1UdO68tLRbV4weLE0aGAlvzGtd+NKvGZFVHtXmq5j5YS8lTvwz/EFNLdTwtDWQyf63o5H2NXCwXXO8dEveCG666zShn2+Yoso2k6iiJbd5XU+NLnPsPVV72GF3c8w/bn9nHN69/I7Xf9kGuvfRc5j6XQi3zdsqSgGwZCkshlM2iSF9nIkZubITs7TSqXQpYFvkCA1KxBJpOjo7eRmZk4E6OTNLe2MpvKsXpFH4cO7CXg96KGehBGju98+xbOPP10Wrpb8Boy04lZNEWirakFITyMTuwjGupGVSWyuSwej4fxiTE6g34mZmcZm0pgpA2CwVmaWo9jNnOYV5x/Of/5re8Ta/aDnCXa3Mzs+BzDh0fYseNFPv2pz/DzO37J5NAhAh4f+w6M8OGPf4r/vPFT6HhobIrR3dfBrudeYC4zTSDYwqte8xZ+9uNv09reTiqbwcAkFPJz1RVX8/yL+7juLy6jvXs9F593Al4lzKHBETaffbq1kJVPZQNUTWKu63qJF4MTTqXPnd6kWt7FwrWuV7Gw+GC/W+5vkVQ5PYt7jLLHWUVWMHQr5Y+QpHr8WB6LibmrK3d11FFHHX/mkGQZTdfJZbOlBxak3LksFzWVO1FYUXUVlP9bpc68m41R4FcpJbZYTIzXwvN3uZQ7s1RxsuuvprzUIiOxr6vUdue5C1Huyu/JbqO931KoF0pv/lKVOyEkjHx+q+rPxraKut1x//SUu9rluC3F9jM7mtONosVNkuQFM98uRLkDhxtnoc0OU29JAeUW24U+CduCYzhcmSVJQpZNJASZZBq/188dv/4VEn6OOXEFLe0rSGWSVn0FWZJKy0NDxuTBe+9m88b17Nq3i5WrlqLrGj5vmFQyi2bkUD0SyXSc2USc9o6lzCWSyJKKYUAw0oymZZmbS9Lc1Mjk2AyNsQYk1eDQ4ADt7UvRNIPJmQFmxnV6+toIBEJMT00TCITY+cRDHHvyKVx6+RXc/LV/JzM3S3NrK5oxx9DAMHffeS9vf8e1qH6ZrKaTm4M777ybM888i+Rcmg99+CMMDRzixptu4l3vfB9Xv/6NPPHYXTzy8OO846+u45o3XIluCmSPYGZqjoC/EVWKMzQ8ic8fIRCMcMXlb+DzX/gAXrkRSZiMzkwydHAHV77qGhqa20lKOopDuXMqeVBU7pxu5s7nXHzudeXuzw2LUe7qbpl11FFHHX/mMPNum4oso8gyqmqlVdD1XCF2wf1VsGIyTMqmdcWMsvnf7kmvpdRVjK+zLpy3rbarpKXUyAtSQiq7NtouktXjOIoejY57EQI7Tstqi1QSo2QzR1ZzU6yk0LnJWYrxalJJ91WK/6vmKmrrcJJk77cc1qrF/VVzNV2stc9dznzuWuV1FPvGjgkrXR6oKIUOuFUK4fr3kbiCHjnJxEtb+3Ze7Owfq18WQ0DhnmzbVEKSyMcMumNiC3FzlcvTMfP6nXWxPUZY1+bjnyRRMRbKXYe9L5vLohsmSAoagpVrltLRtZxANEhazxXzedrXSzI4yH1MScM0TTq6OvEGQqSmUzz++DYk06Ap1sy2xx6ju7eTfXt3093Vg66ZpBJxPIqHhmiUnKYDOsFQEJAYm5zkm1//D1asXYOqelAMiURyjpmpGRRFp7NzGabIoGkasWgT73//h7jkoq0Ij8pVV1+DJCQ6OpZwyy2f5+QTTuPF3Qd49OGHSaVT1kJaRqAZOqaAbE7DHwjy9ONP8qWvfp0f3PpTNm8+jte++jLOvuBCXnvV1Zx6yonEoiGef3En6AbjwyM8/OB9hMIR9u07wKHBw2zctJGQ38NsfJLWpk5WLOugpa2Nro4Yh4bGkf0NBMJ++wHkJcpKZWO759tjsntccbPezjt21FLuauwoP155jHOjkCfPyMdOS+5ljJc36m6ZddRRRx0vU9iumhIgZIGuaWhaDiidA8p5Vx6zmltmNeVO2JTqIk8rX3R7syYWtSj6i+6GTtdOWZbRdb2iIlF5QmArEqLiRNlJEV9mwSxL11BysKqyWc2i56zfOakyDKMs6fxCrY6mIaBE6cwzJrosptXcDZ31LPQ7X6mM+Vb/F1CiXZLrtw33c3DLTqX63PdSa13/SFn8Xqolr5Jyd2RwW+7cUKrEsZZb8izowsxb+2zlrmgdcVpvFiM7kiFjChNNzyGrAi03h1dpRJOyaJqOxx37JSklsWKapAMShm7gUT3I00kUj87+/TuZmpxh/YZNZPQ4pikR9EcRQiKXTqAbOolcinQmQ0MoRk4XhCIxkGS23fc7jjvlVPxqECVnkpGzYAoy2hR+Txs600yMzdAYa2N8bAYPCUJNTQyNTdIUaWLwwDhrVgt2PDmK7G+huy3KwUP7aWiMMjoWZ3//Ds47/wJ8Hj9ve9v13PSFL3DWBZdyznkX8O53Xk/EKzB8MT7zL59mzYoezj//VDy+AE898TQnbT6Oxx57iOWrT+bLX/sy733/u/nVbbexZmUz3W1rmYvn+O3dt/DM9kPcdONnueWWH3HDe/4OJWTnw7GVu8pumc6x1ZYF5/OsTmp05Ja7ase1PMOqM/7ZaoMokU235a9SnN/LGXW3zDrqqKOOOgoQkmTlzoN8fJ5lnbLyC1nnFAbVGjF45eaABU6u7Q93fiZgEWvIyLKc/8DXHtbLXR1FZeWubPbhbmPxeIkSWF5jWb212lWEe/JUZKa0/pbGqxk6JSknqujWDriVluKKvZX2odTlz1bi57fu6YtMgeCMFbSur3w8n74jL0u1FaR8n1TI0SWVyUnlfqh+fLGoPp+SZYmcY/IsI6FjINeaHdeArczZclWzPKmyclcoYwEKqZ1DD9w58SiUXYnUyF7EKO43qcTI6IZhavnrrZuVXO+oaRpIskImnSKVSoNpEvAa9O/ZS093D4am428IkJhNEAyHyGSypBNJvA0NzMUTmOk0it+H1xNCN3M0RHwk5rJ4VRUhmWhaDtXTCIbGxOhhIuEgRiZOPGViSH68isr2558mEmjG501ABrbv3MfWSy5nbHKOa668gt/d/xM0zWRqMomWhfvv2cad99/B9X/1Nro6Yoh0CuHzIRMhk0nR1RPj+WeeYGxili0nbWEmMca/ffY7dHV1sGbtcmKxBr75n9/gqle/ipNPOxdvuBkpN4mkedi5aw8nnH0aOTNlWVQpOt1Wi7mzn381uSh6QCwM9jOx87AKIazfrnGyltumW7kzDGtxz6Z6zWUyyLKMqqgLbtvLAfU8d3XUUUcddRRg58+TAFVRUT1eZEU9AkvM0YCllCmKUmViISpsFpwpCyzFVBSsiC/VOuJEMSeatbld06q5qs0HZ345azMwTWfOPfLueiaG4TzPvd/+bZRMqovsiDYdvptWvJxS3KbDd+YB1HW9xIJaioX1szsXnLN8wzCPWs65Pw7MwqbrRiH3nJx3ZZT/KO/U/FhIfx+d/H1HD6Zpoms5PB4viqKgGTq5rEJ7Zx/xxCSGlGZoNI7qCXJgzx5kPUVzaztziWna2poJx5pQvR7iiTihYBAhJEIhP6pXwjCzzCXjSCLNbGKMUCTA5MwEOX2Ozu4W2jvaaIw1snrtOu594Hc88tg22ro6mE5LKKqfV1xwPuefdTrTk1n69w+iqgbLVjZx8pkn8cjD97Nu9UqaIjH8wRC5HHz8E5/kDW94M08+uZ1QJMpZ55zNP/3LZ+jtXYfXZ/LkU4/y4s49vOEtb+Ois07nwgvOZ2hoEFnS2fPCdgYODyFUD0hGSf/M90SrPUvbFf1PAUYVC53TylfHkaFuuaujjjrqeBnDMHU0Q4P8CqoQLpp6YZSTqgDkJ+vWSnGluCrb9FTDh6esWHul2XmeWXYOWApORQrufJ12q9yupNa11T8j5eeU3pvbFdJdv5XUXWCUrJqXWrXcro5uy1rtb3OpJRBkK4m8KD1eaJNQMEyzhregu8zi/bjbbuXdsywGxfPnt6K5jYL2deVMjwu33Jlmsc1Wu9zX/P4sd1C0skn5NAWGYeQtZe6ONl1/nTBLLMhlBCquWzAMnWeeeYZNmzbh8XgwsGTSPk0yLUWzEhNmcWFEciyMUEKyguv8YhuLfTufa3JJ26tYgk3Xc7Etd27CICEkZEkimUqSSmRJJqeQpTSRaAiPp5lEYgr0LF6vgqyGMPQ4E91LTnYAABJrSURBVJNxorFupiYHaW/tQcgmydQ0shIkFAoyNT1BMBQgk0iSTKYIR2J4fD6efeh+Do1Oc+yWU1CEINYSIz2rIRjn2ce309LTy+zUOEI3CDU0Mjlpcu99d/A377+BF3c/h+pvxi+r+D0qoWCAj33yH/j4xz8JpsTMTBxJlslm4siqBxMfo2OzLOluQtc0PD4v2x57lOW97QQbIqTn4uzc8TRPPfUsx5/+Ss654AIkX8ZauEGAJJCFXExwbytsR6C4OV04bRITQ9eQ8ilL5ku1kK88/1BNa8wzzYKFDyrEjJqmtahUqN8eB3TkvJeJsoB0KS831N0y66ijjjrqWBBMYSAJSxEB0HKW5aawultFubP3mUbRZQsqKESLVO4qT4Ar1V493s6t3GE621dMa1BNwaul3FVvl7N9tkXM3vf7Ue6KLk7qvMqdLFvHSyxqVcqsFLvlpFQ/UuXOPl4uK24sxi2z+Iz+mMqdyPeJaRoIs9RSZilUdjuqK3d2P+ZcCo5bufMHAqSSc4V+NIUoUe6Ea4HEfgrWe12MBS1p1yKVOyhd0vl9Kne2O+BcYg5VhunJUeLxScyMwdJVq8hoOTy+AKaWIzc3SiqjE2ldipaeJBHPoKoyQs5hGmEQJpFIGF3P4cVkeGSMWHM7GoLDL+wn1t6BoQj0XAK8MmgKzY1w/10PsG7NCUQDfsbHp/jJ/97P7hef5+P/8FHiiXGaWiJkJBNzNs09v/0t0cYYm7Ycj0eB8fERNF1ClX1EI2Fkn4dc1sPlr3wjH3jv27n55q/wzVu+TkPEz49/8CvOu2Ar6ckDPHbvrzjzomsId20k3NyIUOYwDalUucsvbkgF38eFKXfOBRXJ4dZrmiayomLoRbfumpY+l3InS3KB7RJqK3f2QkFduZsfdbbMOuqoo446FgSBALPotidLcp4ExMxPtIrU5UUGylKXRSi6Bdrsjs4YHHeNpTBwurrZx4tsnPY+xyYMEKYV6yHAZr90b7Kct2ZhxwYVyy9VnorKYtG9sXJvlf+utM+6byEobHYbKjFu2myYQth9biDLEla+at1Rlunor9IywcgrtWbF41a5JkJytslZnuk41+4zBZDyE2yB8f/bu7MYOe46D+DfOrp7+pj23FfPFXvsBHnjkDjO2ixogmMkE3hgWRwlEC0mEHggPCCEduEB5QEBKyGF5VAeskt2xWqjhayWK2KzXIlxNlkwMjixjcckduyZ8TlHz/T09FH1//NQd1VfExPWab4fqeVxdXV1df2rZ/6///H7C7hBg5OhLxgI1h5O6/Hm5kSvf3AepKI496UbKjt3BoL3i1f21nl61yt477hHD51j4wC9GUXaDyiA8y/8Q2SlnQXQua7W85rmZWmVdkU3WnoWLTTEtlqpWlfEGaKryMBrVKkEDubPZqrrMasL1alcK/Z3yL6sqqIEr46wM2v6ytn/uQLXIrSP/+dog4EZ+MRWe4z3mlgsHmwAkRKxeAyaHkMimUYq04ULZ84i26ViaXEex39zFIpZQP9QDksrRWQ7MxCGiapZQKYzBV1L4tLceYyPjeHc7MtIpAQKhQrSmSwuXryCky+dxE1vvhk/f+YX+OfHHsOd03vwf4cOI6EDiXgcubER/Nf3foreoW4sFy9h+02jUIyriCsp/PsT/4T9+/dhdXEF6+U8br39FuQmcvj2E99BpaKhr68HJ158CbmhUdx/8KPYvm0zujd1Y3hsEqpRxN3vegee+fkhHD50FHNnZzB6wzhGJm7Am3bsRlUkkMn1QOgCMaF7t6SiQAoBBRqU0HfOnx1T1XR3+Qkp/euKwl7Cwlt31BmyaQrT+uaozi8LNHy4Q0T9vz8Ue5kG3z3iDRH3ltJQQ88DgN4g2cufs41ky2RwR0REEaqqQtd0a00lu6LQeH6bF5QFK3PNgrvaz+u6DtM0agzRRLQ3sE4l3Jnn1Sw1vFWJbDRsrvH7tLKPm2K+xYf3OsXtGd3I6+vNB6y1rf7SD9EWe0VR3B7Cjc+LaRRI+fZyg79WltqofT/5A5pW9m92Tq+NHZban8cK2J1lQHyBUJMzCieEDwaL0Z6R8NfD3xvsNnI4gZ8bSIevm30udnCoahqEKdykP1LIQHDvNB6Er5sXTISOG+q5C88Hdeal1rrHND2GZEcS83OzmJ+/iM5MBlu3bsVa1YRpCmTTSZildejxGJLJOJYWFhHT4+jt7sXc/Bz6BwaxXixDmCaMagV9ff04evS3yE3kMDjUg3fsexvm5s/g9jv+EocPH8aWLVvx/Au/RP7SMqRZxPBAJ0YGu5HtiWNi4iZMbpnAf//PT1AqV7F16xZUKhWsrqxheHgUD33i03j726dx8/ZtyHZ3YN++d2NpeQmVisDXvvp1xGMSO2/biWw2iz17dqOkAFsmd2Lm+Ck8d/hp3LL7LUikU1YgBhWBZV1k/e+o1cvqze31B3wAAs+Hy0hGvkPNKf5WLJsz9LfWPWDYvci1enbVDf9e+fOwkeDu+phVSURE162YHkNMj1mt/oBdYfAnyQguBdBKpcB9vf0wQ8dx5gXZe6N+JdwTTRzhtAw7vXb+IM4fQDlJBqTvdQo0Ldxz6B03eD7R3iqv56K1HiDvXFoL9mptD3Naxr3KXvS9/JWrcAAZ7mFzA2T7Xymilfno529Fo+GZds8Ooglh6gmee2v3TrRLotXXRYcS1t/PGULrVXatR7Be7CRpcR5OMh3/cbwA0bfdlJCh+YtCmO7rnTlyQvEephQwpdcbGn4vb4iyCMzjU3zb/Y0+0WQ6IrCf82g21K/ZNa1Uyti5+y0YyU2hv38Ua4UCxnIjyGQymJ29gLVSGYX8EpYWLiOTTuLC7DmUyhXocQ2qoiOTHoCqSOixGAyjivXSGsplE52ZFBaXLmFqaisW84u4Y89urK6tY9cdb8UHP/IBrBSXAUXB8RO/x9WFNRw7PoMjR49h/93vxvT0Xpw9N4eOZBqd2S5s3jyF/3zyCeSGx/CrI0fx8u9nMPO7E9i2fQfKVQPFlTwKhTyuXF7G17/xKBIdOv5q10489eQ3EdcruO/+g+jJDUFXVKhSgfDf/7WWEIATiOuR6xcM4tTAvOFwmbnrzTWhINpDG/594SRschoQhBCQsBrvNE0LZAi23puB3R8DB7USEVFLFFVFIh4HYI3iqlYq4cba1o/lLrZrb7CDvGs6P0WJVDYaVSKbzf2y5qW8tg8YDBbfWNy5XNIbYliLBCCFiFTInLl9/vT610q4ldHgOUZy6YQWcX79y8CZ6/faj+AE3qZZe41Iq5FhowGzdW6N1jMLnkOzeZDXD+ue0yA0Bf2DOVx49TSSCQNHn38WmZ5hdA+MIZHuQlesgpdfOYVUIoUbJiawUqgimepAuVKFqiaQyaaxsrKGRCKJ9993L5574Thuu3UbEvEkTrw4g+HxAegxHeWSgZSiQUlKvOeev8HKUh7J9AiMagl7996Dgw+8D1AV/P3ffRaxuED/QB/unN6LpYVV7Lh9O5J6J374g6fx0Mc/jBu3jeOFXx3Bvzz2TXzjH7+CfHEBx46ewvj4BGbnziKrxNDflcdAP5BMd6FiVKFpmpUkB4qXNMe+z01nGQEf/3y5MNMUUNXgMNlW75G65SGlvZZdMKQwDMOaL8lhln9yDO6IiKglaujnYKBX9g378fcohNdCc9jP+wIIVdHQrDIupYj04DjBhVVxCfbIBSnu/l5afrXm8405vRam2zNY40zr/N+6NkINBqLaBuvUtRYWD895Cg6HCmY3rHdM/3EVJzGNEnwu/N7eXDxfz58zfC8wRHejg4X8PcLuT/Z7utVcd7vVOyED+9X4lPZ5OcFivQQsze6B+u8TznapI1guwvrBHhYJSDeoC64RJ6WEFBJm6Jw0xZ+gxVf+mv3dC2fXVJ1PFi17RVrb/TGdpqkw6wzTbMYpf2sIp9VAEJzHafcUCcB/P7il6cxDrXGbytDajYWSgXRGRxkCqMaQ6p3Als2TeOnFY9i58zYcP34E41M7UV5bh1oqoK+3G+fOz2EgNwpNq+DKUhHZbBek1FGWEpp5FXFtCt29Axge24xXT8wjljAwOtgFwxSolrJYXb2MeEzH+voSSlLirrveigN/fTcuzF7CPe89gHQmjXK5jGd/9iz23rkXa0slXFlfwv7970Qy3YOTp8/ixolJfOJjD2Ao14XS2QWMj3fj/KsSYyMj6Bnog5ECtoyPYWZ2GdtuGrbnsAEChlva3rp2Ws35jf517JwsmACg6yqECCd3cr4LXiNCIMGJr2z9wyzh65nzl6Xzeivo1CBNE9JO0qVCCdyF1pxOe61D4I3aHnbdYbZMIiK6Zs7EecMwYBjVWnuE/l+vctzo17tTga8/FNCaq9d4SJc/y2bjRcybqV/B91eoovtKQLUqXoZd0dpocOe9Z7M5Y8Hnm/3N9yqF/s8UPFY4yPOGXTlDQFU3qcK11dZqlWP4c9VbSD24X/2eqXDZbTS4i+7bKLjzv4Mb3Elvg/+e0TQt0JvnXO9gcNdo6QRr2Gz4+cC5CAldVd1hfpqmWsdWg9dvI2ujeQGchIQIBKzh3vWwjQR3ih5HpbSOdDKB5YUFlKvLKK4VoCkSfb29WCuVoOlZpBIdmJs9i2RSRyLRga6eHiwv5xFLZKHrGi5duoyOjhRgVDE3N4dUZhMGB4bwzrvehWee/RkWFi8jv5LH8nIBH/7I/Xj00a9haHAIHSkNCaUbprmGI78+jU998iF88YtfQqVaxebJCfT09OHMKwX8+NC3cO+BD+DTn/wCVtcu4773vxcfffBvcfnKBSiqgqtXFjGem8K99x7Evz35H5DGKsqXZ3Hj7n0oKSXvuiF6V4YbJ5wFwcOLjfvLz9kWLTf7O2I3BBlG1QrIfImf/MFdrQYmZ7u/0cxpvAhnz3TvCadRLVrk5MOlEIiI6P+dYRowDC8lttNi7G9RtrZHhxZF57jV2u5/3j/MyOndeX3+VNRegkGxt9fqsYsGOcI+RzeFuawXVDQL3prtF9qrxt/8epW0RkG0/3nTrbzp7vOaL0mLbHpu4aDdmp8jfcs51Eys4+wbIAIVS6c86t8T/nmd1uvrnWPQa+u5879DuJIM3/Zwb5ezn5u9Et5n8a+1JyChhuZChp/30xQVhmFAc3pPnB5XpdZ5tV79jr4W0DS97tBTh1t2NZZWUNyvirN+mp1YBsKKaMsJzM/Oor+nG8KsIJGsYD2/hnK1gmQ2g3hHBjMnT6Kvtxtd2SwqMoaOjjgAgXhCx6nTZzA6MopSsYRq2US2sxMXLy5gYHAIiYSGuTPnoegmEqk4iusmLrx6HIrWibLIY6x/K7p7O3H40GGkUilMT0/j4Ic+hNVCER984AB27dqDr3z5MQz2bMKDH3sQi8sL+N4Pvo9Nm7px623bMT46hdVlgZIs4quP/AMOHngP0sO3YGrHSDCjZOSaaPblCt7n4eUM6pVRsOc/GHwJIawFxn33n7W2qVrjN5r/nJyC8pZGCJZbaH9pNQ4yuGtsI8EdryUREb0udE1HMpmyl1bwKhPF4rq7j6ZpNQK761s4EYmVIVTUCPic4YMNhkJag+Jej9NsWasJFMKCqf6DrzeFgJDCHT72pxJO8NMOnIyHprSSmqiqBlXVoGmqOx/Pr15ZmlLUqfTV6nm2hvx5yYaujRRwF9z+YxFCwpQmhAKYUqJQXEIipQJ6FWVzDb87dgwJUcHVuTN46TdHYBoxTE7ciGQ8jdOnXkGpWML6egmz586isJLHcG4EpXIZpmHiqe//EBeuzKNSNVCpCCws5dHXO4Snf/RTQCbw+L9+GwktjXR6Eya3TMI0i3j+f5/Djlv+Aqaoolwp4pFHvozPPfwZ3DV9H777nefw1FNPY8fNU/jC5x/G7PlL2HX72/C5h7+ETd1dODFzAo9/63Hkr5zDZz/zKeTGxzEwMd7ytQjfC8I0GveQarqbfMV5RI6pqlB8x3S+50KIwHa6/rwhe+6IiIiIiIgoiKE3ERERERFRG2BwR0RERERE1AYY3BEREREREbUBBndERERERERtgMEdERERERFRG2BwR0RERERE1AYY3BEREREREbUBBndERERERERtgMEdERERERFRG2BwR0RERERE1AYY3BEREREREbUBBndERERERERtgMEdERERERFRG2BwR0RERERE1AYY3BEREREREbUBBndERERERERtgMEdERERERFRG2BwR0RERERE1AYY3BEREREREbUBBndERERERERtgMEdERERERFRG2BwR0RERERE1AYY3BEREREREbWBPwBSUXJwpzPPmwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image = skimage.io.imread(image_list[2])\n", - "fig = plt.figure(figsize=(15,15))\n", - "plt.axis('off')\n", - "plt.imshow(image)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAJKCAYAAACPoLzRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXmQJNd93/l5L7Oy7uprpufEHLgGAw5BiAApUyRN6rLX8qXDFG2Z5oatiJXPtbxW+I/1JUVYGxsO2+tdhezVenclhWVb1kVJ9tIyLYmHKIIEQBLEDQyAwcwAc/R91ZmZ7+0fWVmVlZVVXd3TPTNo/D4RPT2d+fLly/t93+/3fj9lrUUQBEEQBEEQBEF4Z6PvdAMEQRAEQRAEQRCEW0fEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAUDEnSAIgiAIgiAIwgFAxJ0gCIIgCIIgCMIBQMSdIAiCIAiCIAjCAcC90w14p+N3OvZOtyGJAawxOFqDSTXNmtEbKj1cTimMMWilRm5m1faHb4xB68FxBGVVr73pEYZwoM7BtbbbNqWGxyUc298u7LY5Lo8FrcCEFtd1x54LY+3YY+61JXXsWVUmjy+uM7AWraI2oRTE7VZR+SQu/XaEE7RppyidPb5jjRk4n8n9K63RYTi23gCbeY12RuqeGVedVdhue3X3t020X2sHALOLU6h1tFEYjnl+9gmVuubWbv+8OY7utTW9fWYd1qC652c3OI5DuM39kIVONCN9XeI2KqUmOuadonrvh93Vnd5eobA2zL5Jx5zfrP1PdM2zXjbxvuN3ZHefjtbQfVdZc/vvYUEQBOHWyXnexD0YEXfCXc04MXe3kSVUx5a3FoztiQetHIzdeSdZGI++BeEibE/gd25JHAp7RG9QLnoLxaKw0+mgnegd44wYzBEEQRAODiLuDiBK60Ghkfroj2RoNFhFHeNxFr8J0FqjlSI0ZmhUeruuRlrUTSLyjLVYBke7tVKYCS0vk1jtILJIDmyXOpq02DOxZQm6lkRFwjCHMeHA3wPbKLUvQneikfze/iYf/c9q47j2xxbEcXWPW6eU07NYpS0d1kbLlFLjn4F4s703kEbW2V1YXndjWdqxhVHpaD/dNmZZ+7LapHqWXKd37uLnbpzFcLv6t23uhFa3ceV2cl577bWgHYVJe0TQPe4R95ZSo4XvuHMxto0jLIRZxINHAEEYdPcbC0CDdqJuQFzjJM+iIAiCcPei9sPl5d3E3eiWGaOz3DLHdG6NCTOtHEqbzA5NtL+oviDw8Vwncx0w5OI3KeGQ2+fo9mftw6SXKYVWeuCYYhfR3TK0j11sHwvKtHuaHlO11RprDUrpkS6U47CJzmDc2cu8TkrvWOCHCTGa3sdeoDOuWfpdFnecTfTHwLKdMv49aaIBlTBAOy42tCit98WdcKeMc/Gb6FxkCJpYLMTL9vI4h9wdE21ML9vuWMaVH7Xf5LaTnJ9Jjj2uJwwDHGf78dRRIni353nUez2qNPu5jt9Jjut22zL47IZhiJ7AJV8QBEHYG8QtU7itRJ0HcffZLVrr/ry7u5QgDHEdcb0bRRj4t2yREg42jn7nfW7DILL09TwIuiJR7nVBEIS7l3fe10bYFmsMQRCQ73bGN+t1ZqZnCLof6lFopba17qVRWuNo3XXhiUaB+yP7u2t/jGG04IktVtvRs4ilxNMoS+RE7Uq4So4sk6o/6Ro1xC6FXWwZs9b0YufonpWi7wI5yoKWtS57R2bHwi7r+tyx+ZMZ1p8BbjGgCPQ7vdaYvpvjXrNL185o09GuiWM76mr4Xk7/rZTCmu5c0V1e2/RcsDAjKM5Q07Zxaey1K+UWmWUN3Endu2WUS2eyLY6jb/m9ObTfHd7b8fst6VHQe9fF7xw0Yfq90r2GOmOZuHgKgiDcPkTcHUCU1uQ8D7oR7Eql4rbC7lYwYbAvHXaNIhwh8LTjSodBuHWslWAge0B8DncrakN5lu8aepFlzc6CO5nufD6b+BbEEln8OgRBEG4fMufuFrmb59ylGZqDB6C6YbyTH/IxQk3pwT2E3ZD3yWAl8ah3N0AbxtjheW2psN1JAmxvkn9awE06dy9IB1RJW7bGzBdJtjVdTlkVjWg7ThT6fMR2o/afxGJxlJ54zt6oMP7bzbkbtS62rsWdOK2dsed3XJ29NlobWSecftn0sdt9cOFVidukdxl2OOAwylqjtSIMg1TZWxMz0cYTBjraBp22Su/Q6qTiLvgujVX7+Q0ZlwohuW5oXl3CAyFrHt9eBHeJrILbX7tx8wZ3tL8RaRMmbcctkXWv3sr9270+kcVWhL0gCMJ27GTOnQyoCbfMpFEo301EbmHv3sdLBo3eOWhH9ULl3zVYc8tReoW7kPi6doM0hcbQd+gXBEEQ9gJxy3y30us4qWgezy6FyLj+V+b8kvR+MiIx6kREuaEk21l1ZjQiLax0bEnrLtdjIoBuh1YqmlCYkbZAK0VoTdc6ML7LolC3HGkT4rls/bmFWvetiirLMpiwGsRWO6VUdK53kYw6iVaRUEhbLveL3jy+rHGqcYmed4AJJwulHwQBOTc3lIYjkx3Obd1PbmX+6X6yE3fZoesRv1cS8x+TFry9mVOnhi2G220xIhroJG3KsmJa203BcAvzMccyyjo3wf27XZTO/vXtzvEbWG2G3/1d7o6nRhAE4e5F3DJvkXeSW+akZKZQSBN/2BX9/GCpjkByvpw7JqZ/YOJ8WXpo/yYViGTcOmX6rnMm3QUwAa7r9DqyWo8PbjAJ8bMT/3aUMySkRgV0Sa5Lro9dFtPBR6w1uCk1mQzsEvTyiw2nNEgLLTchBGNXz6ztJkmnkCYrkEv60me5lyaPczKLZyr/YTeHYmhMLzhH7/ooduQ+lxXqP+36mCTtBpksa3vBhuLBhe5ya/qCNLNt6WdusIzD6MGDHbtlZpRPn4NxjApSE1W+D13xCesOggDXzRi/HCNMJhV9kwRi6b0XHD0ybYTjaMIgHClkYkalUbhT3+9x4mubDaPfSo881yrhij/Jvew4wy7+EshFEISDhqRCEPYUlREp0cadvrtK2gpCPzjHpMnoY+J5p6EdnKu1lyQtpbdaz36Go48Tob+TQ9473Ui+6WAtSjmTWVf3CBPaSMxniCETWpzEoFMWYRjs+F7eb+6m5oS9aQEJcdf9LVY+QRDejYi4O2DEiZSzlu12tNWO6Hhox8GEowOxJEdPkxazNLsaAc5qzxhrg9tNsJ7c/06sE1nEHd9eB9hOJiiyrHnxsiDDYhf/bUaIFmPt2GAY6bqS++27h23b7AGsNZkRS9P72m+Srl/DnXjV7cLbsf7DSnXdWG/VyjQq3YBSvXWxa51SeqTFOyozflejRFd4Cy6HUeAYM3E4/rFWo+Sx3GrAj7SlbsK6VIawAwaEXc8t0hhIuT1Och7TbpaZ50T1n4usOrd7/yQtdpOkhugHlbEovU9pOSYNrDLqubOGZIqK5D2iJ0zRMs4lNn4vxV+n5Dcm3Uqx8gmCcNAQcSfsCuXoQWEn7AmjooQKOyfu2KsxOQaD0ODegUwIxoRolb3jqKO78zot4GpnZPqQ7QglMNJExELwrkcpTLi9y+dOSEbW3SusCVHa2VcXU5OIdmtTA1C62w0SK58gCAcFmXN3i9xtc+4I+yOgcSdv3Mc9XpPs1mWmTBhBet7byP2kEyHr/oh5sn0mDHATnd5x9Y+bGxjPF8uaxwdgCXdluRtK6ZAiPXcuJjmXLSu9QrrdvbLWRHO+Ep2pSZKBx/tLzqvLwkURWIu7Hy6IcRsSVacTp08yHw+6896SYigxdy36PSqNgTM+6k9GSo5ebIpkvi6lBjr1TiINhkUPBMQYmCeU2rcdcB3LCC40Kcl6b9HiuNuk3gNlxwXe2Ekb09dqp8c24f62C4QyLgXDJPUm606mmuhZ7c14a3uSUSkQtis/7hizArns+Hh7z97w87LdNuPm3A22JR6g6Vo+E8GNhjwS9vAd5uisL6MgCMKdQ+bcvYtRrovdwQh837ox5sOcDJqyxzhay+dT2Ff2K5BgjNbRHC6xtgpZ9CPXOv337W6TCt5F9BLXH0APjr47byxgDW5GQBtBEIS7EfFEOEAYGBB2Sush0WaNGeiEZpUZ4jbZJq3pRkrcgxxX0VyT0XVkzf0bVW6grNKgNOY2nRSl9JALlFJ6wGo39jiVGiqfJAjNvgdrSO5/t3Px0qP8kUUzYQFUCq1Uf35SPP/RmvHCLnGvGWsx1vbLJ9bZMQrRmHC0sOveL+MPrlsm3t+4c5Rqb3rZbrDW9n4ymzdCiCjUoKUs6ziTy5PHN6q9cfnujzUZ5a3t/pjhn6x2ZOwvPl6l1MDPQFMylsXL02VazRa/8WufAeCf/NRPY61lbXV1oE3J82uxA+c9fi8n76P0NUnu1+kGuRooY6OfdLvTxxhbJdPpF0Yd76hz0qtDT3CPW9tz6ZyEXlvHfJ/S74BoYf9eUGRf1+GKEvdH6n5K7iM0ZuAnCAOCMOjl6TNM+D0VBEHYZ8Qt8xa5W9wys7pKQ8EuemHZh3EyOnBKq2hUdh9co5LulqNcNsehoZ/zLv74Jlwx08fpjLnPx7lJxp6Asevmdm6Zk+wjPj2xqNpNyoE06eMbVWc6yqK2UWCciSJo7BG7zYE3JpsGJuna2j0XrhMLyjGWuwy3TFAYmxC9Sg+4YULkijkKRUIspvYbBcYJu53OqI44KEyW8O275Ga1s7fDFHvXuRy4V7SKcv71XGLjICLBZOkrRl2/jFyXyXXR/ESdeRGjdWr4Ou7SVfXLX/wDPvKxjwLwsz/zr/lrf/PH+Omf+l/4Rz/1D3tlGvUGn/qLn+79/UsffYQb9QbHpqZ7y6JzE7X33z/3Mp9d3gJgbnaO9Y11/u7f/Tv85md+m0996ke4/8H7+MWf/7ecP3+On/1X/ycPPfQQ//in/iH/04//BP/iX/6z7IZm3NQ9t+AwRDsOWkf3WLiNZW2cG+dO3D/TywcXpr9FSRfrtHu9Gln3QP3pa53Yh+t6BIG/M5P9PuSeVEoNDSSabjudMd9jQRCENDtxyxRxd4uIuMvccVzByCJ7Ke7igBnJWRrxnmP3mrtJ3Kl+pVEbb5O4yxIRB1HcxR26XhDTu1TcJd+9o8RdPEcxnlOYaWUVcTd0Hf/eT/zP3Lh5nbNn7uX5F54HwHM0na6l+mc/8BBLzRZn5+ZGNnfUPTOJm29S3I1aH4bpPHzbvwc+9YWnAfj13/iVkeIOSy/6q6N1Zo7N4ba+88RdbFHuRT9NPcM7DwG8P+IufT6SuxAbnyAIkyLi7jZyN4u7NGl3zOSyLHGX2HDkR68X6jyqtF8+8XdWmSxxF3/IwwlvX6cX8bv7nzhACsOBYnQ4oo2MF3fj1u2EAXGXquN2Wu4g5RoZ2qiDuUepC0xsaRpTX5a4y3LbTC9Lirt0ag0zcM2i3xO5m44RdxCFobfW7krcwfCxxpa4nbqnZiU874ueWGR153Mpd+gZ7Ddg/LOcbGdcXo2IjNh/pic8iPRlzwqnP45u+a98+Sv8wZe+zNeeerLXwf/B+Sq+sXzywrm4cJRbbuAemPw5S2SvGFg2irhsf0BhvLjbCaMGKf7BV5/nUrMFRPd6LOI+fc8cG+0Ov7mwOVDPb/zmr020v2SfIE4Qng46dUuBWEiJtgxxFxOn55gkLYXv+0NJ63fcRmui87xD18p0wKXxJF1vu++2xHy+2KLX+3btqCWCIBxURNzdRt7t4i4zal+GuOsVjyMoZlnu4rlEGUnTsxgl7pIWShF3GW25C8Vd1kj97RB3cYdYp0TAfom7pOVuJ9wOcTfqWb6d4u5Tf/G/p9kVLJ6jeV8xz99+7Hy309ybDBn9OyB24vyByb8NJjQ4vVwXB0vcJfebLpe1fZKLS0v85HNvAsOib5LonHejuMvKp/hOEXdJy3faw8aROXyCICDi7rZyt4m7naQxGMltCkc+yXajXDQ1owVteq9hIt2CzXDTTAuhSdelMY6TWX+aoTQNiTkxuxF6yY7IuDkcaWuRUrov6ndgOckqu5PzlBQ8LrE464r+CQ8/KQbD0OBot++eZaIk4fGtY9Xotif7lXGf0lhLHJjCiecxpTugYxi4f9IdfNXPFZbseGrtJG5/jUpdxx2NKYx77rLE3bjnNUPcDX8zhgNbpN00V5ZXmJ6Z4amvPc0//afRPLK/dHKWnKPIOw4fPnXP6DanRF3UhnQ/Ol1GARbH0Yn8fTsTd7tllLgaFHzJdu4PE7klA994+zq/uNTi//p/f65bPvtej926IXrP3ErgkHFibWtri0ql0i04Rvj1BvcMobFYZQcSvqfZs76ONSjl9N83e0TsYjw6519XCMbfjcQaScQuCAcfEXe3ERF3Y7Z/l4m7ANvr1N7N4i4ZyCOn4+iS7yxxl7TqRZ133Q9c8A4Vd8k7950o7upbDT796b8CwN+67yjXtxp86Pg8R6emutupESIjEmKjGbbYaZ2eyzRC3LkOYRCmymzPXoq7wWO7+8RdcqDk9y+9yf/z5hIAv/6ZXx0od7vEXT6fo932uwW3F3d054abbSJj7lVfR6m9Tw4POxd3WZ44YuMThIOLiLvbyDtW3GUIuN7HOzMi3zYdxknLTtKmCcQdZMyrY7Tg6+/iFsXdmM6Y0WpHlrtJ9jeuAxHva5IycTkTDga/GNfOnZB1TNkuj4NlYxGTjBw6Kkn7qGiSEQlh1PPSVYRhiHadHYm73joUuhvQZDfizliLTR9DL2+WHeqIWqu64dv77TLWRm3Ywf7HMi54yajy8X+77f3Uj3yaVquJtTCTc/mh41N87MypSSrr/W+8S+Xo7bpbT7CPLCvZJHV3l27jgjmJi2ZiyYj2jd7/fjHKdXPUuiurK1gLf//ZNwAoFgv80r/7RRiThHy7PoXj6KE5fMntJnXZJIzfE9GfySTmEwV5udNkBVDS/RQXw+zOKpf+PogAFIR3JiLubiN3WtwprRMJV7tWoIygJZASfruZY5Uh2pROzB8IU+XGWAQyA7FkkQiSAilXlNSZjwOxZIm89Ly+ickSBZMI3VSZAeGXcoXMstbtxajwJC46eyXu0iSPKSl20oMHcblRgi5NbPVycHp1wrAws8b2gkFEFXdHtq0lNP1ImFb3r28YGhzXjfZho7kusbgbascYsaWT8/9sdhh6Q8KCGp+f7j3qOronAnvNZ7AsGEz6GFNlk+W1dgiCIHN+5cAco+66T/7wXyQIAgB+4txxzs/OkM8X4y16e4r+HX0ubKawSayNhdLQfDxF36I3iTjrW0FVZoXbbT+mxASCKGb842QTVsf+sknbMVg+3Q7VO/bdPtKR7u8POhgzfC771ubo75/9+gtc7oTc8H1+9dd+eYzVaXD7qI6eXyWO62QKvjRaq5HlsgZMhvaVasMohiJcZkS9HNwg9d5P/N371k3w3XAGzs9gEZNqd+a57Jceva8E8Xw+k/g77k+ICBSEuwsRd7cREXci7gYQcQfsn7jrB1cZFDtJcaeVHkxlAL3rYY1B0+8Y9TpM1nStZKrnlrmf4i5qc1qwxe1X+yfuMsoHgeGTP/wXAPiljz82orWZCqz7796LO0uy8zqm/u65HnRBvHvFnVIKY0ziPt8bcddvzy2Iu1QTssRdovTQdtZasJZPffEbQy6dyfbFDFjqkobWcYwptx/ibryA6jMucMvdLO7S712ltYg6QbhLEXF3G7nT4g76c8qsMTgolFb4nQ7a8wbKaWNHu1BuJ3pGRcIcJ+4mZdycnxFumYbJ8uNN4ia5a7Y5d0o7PQGbJXZiBtwUU/MpblXkbSfwdhRQZQeMO950uWT+vYnypQGq19wosmWspxQKS9eV0dro/CXmmcVuoD1xl+y49nKqRes0IzqiQEhftKXbnBR3yZx3Q8ee7qV2hUnU1+27b3ZrTW1tevOfYmtmogW9Y8iyChpr+XM/+EkA/u3H3o8e59abanZsOYk70kp1+9oqOlvGGLSOz310bftujLrnfhnVG1vlVIbsi1GoDCEd1zkcvCRZ0ziRN0o4ZomWEVUw2Ias9gyTFnO36p5pE4I2tWaM2EmSPs7s4x7dzlHbL61v8DMvXaZz6Aj/8mf+Ra9N27cno802GigZaRnszg2dKD/eBPPydmrd2658prjLyMvnJHL2pSPy7oe4y2zriIE2pXXP0jcUjXrXexMEYVJE3N1G7hZxF3eMk531dEoBEXd7zJhzlxR2IOJuFL6NREoyWMMkZIk7rR0UitAE7wpxN5pBcbe0uMw//Pv/iKXlZf7JI2c5MzuHtYarV65zz6njE88fcxzN2so6K6trnDp9AlBREJuu0Oq0ffxOh0Ipct9UPeUXuyOmO+YJoZc6v0lx1z9WNbDt8LI+sRtd7AY56riGj31n4g4g8Ds4jovSamR7Rrf74Iq7ZHRQpWBpc5O//fQrfO/3fi9/9a//D2PaI+LubhR349ZJugZB2H9E3N1G7rS4G+l+uB2pzvyknfEeCXEXRQ+zGYPgCfGzy4Asqtsxs93jGhVgxdG6N8EewKro3IwTd4G1uNvkZNsROw1Wkd6W0cc3TqRlCUCbsObuFclzGLsw7oa9yOuXvteMtT37T7r6zA7hmOsUW4WckVafycS6tWYoGmgWvTlETt+1q2fLMpH7pcWSc93ePa1RWNW/z7FEsxAtWEdhQsOP/49/F7WyzI8/fIrjtanuyQCUYn1hnUtXrvK+978XAK36Fj6lFI6raTc6uK4mDC3WQLvZgtDi+1G8069982U+8vh7aDQaKKV49pXLnD5+HNcGPPf6ZfL5Ih/78CPUm1t0Oj6zs9O02x3qG02e+NZF/uz3fQfaKqwGJ6cxoel24sHNO7TrbYwf0ml16AQdZg5P4bgephMSdj35tFa99oZBiAksOJHVsPdUdIVlaEA7kXUxOg0ZLnBq4Fe0rleue38NuNpqiJ1PY/fC/pVNXelJ7/v0vZJ04cxaN6lP46h9pUVDd02muOuV2rbm0ZZMw6e/+E0uXLjAP/rJfzB2AMuYsJdrMqpzcL/JqJ3JRO57zU7dOkdtm1rBwDCGcgbknOmGA43f4To1sdg6/b+TEZfh1t6xOwloFaOU239nddudvqp7/T0ShHcbIu5uIyLu9lfcpa16d6W4U5og7Aar2O3Ha4/FXRj4O7KETULyHCrHiSJR7qKe/RJ3SdfDJO9IcRcfSy5H4Ad4hQKddovXX3+DM2dO42qnL+5iYWcsJjR84s9/il/62GNRJ12raGBEx8LEYK1mfXGDynQRrTTtehsbhjRbAaVSjk7go0KHZqOJdhxc18HzXIJOwBtXrnHuwZN0OgEYh3arA9bvCiDFf/vqS8xPF7j/nqNstTqcOj7P2sYa1kCpWOC5i5c5PD3FuftPYRVcv3aTZ1+7yvvuP8Ph+Rk6foeLV97i2OwcpUKeVrvFCy9f5eEHTtAKWlTLJZbXGnzjtSt85MJD+O0Onpfj7ZsrBKGhWi5QrRb4xiuXef/5Mxw9epitjQZLKxtcXV3hT3znB4kel1RHORZuWc9f7BYar0rk6+jrue45Huhji7gbG4Oka1n8tRdfYemBR/g7P/HjIwomLO/Jd4eNnrGet8OElsrdsB/iLuklENX7zhZ38TvVdAc/emkz4nnSjivum4JwC4i4u43cSXGXDKTSG73MEndJgTTiBT0uPH0m3VFSx+l3TtWOknFl1bn9q39cagQn9mixUUdrO3G3VwTWYsIA182N/HgF1uJO8MFNu9LGJEeo99JlcyfJb/crbcLuSHU8jBkI3qFV3Okl+74ake4jnr+mtYMzJhjKxG62I85r0sqglSK0pmchstZCaHAcBxQ0my3K5TLGGILABxT1zU2qU1PRXMNu+U/88Kf4lw/ew+z8XBT1s+uqHbsotlttVhfWqNUqtBtNdD4Poc/WVoPpqSl+4788ySf+9HdgbYgN+66NzWYbr+Dg4nF94QYnjh1ifX2LS1cWOHZ4lqdfeoWPPnaBYrEAwFvXFpmtVbl6Y5mH7j9BYEIaW23qjRbT01W0hkazhTWrB6R+AAAgAElEQVSWudkKV95e4plXLvOBC/dRKuS5emORU8eOUquVePPK28zNTON5mlxOs7y0jsHlyZde5zsfew8tv0G1VKLjh0zVarx5+Rr5fI5my6dcLlKrVnj25UscmZ2m3ulQ8nIcmquSzxfo+D6//+SzHD80w333HOfF16/y7Y+ex8255AoOzWaLMDTUalPcuH6Tw0fnUMqiia5Lp+2T81y063TnF5pux7+nAtNXnWGR1LtTetd+eI5hljtqss5JyIqkuRtReOtupKO2/9tf+RbLHZ9f/41fyfKX7TEqeEkyouV+ibzdYo0ZPqb+ZNTIrVQ5qMR7KRZvaXEXi66ka3g6RU+4xwnWt2dAlk68VfIbJsJPEMYj4u42cjeIuwF/9+0sdxNYqUblJ8ssq0ePTDpZYi9j3sFOcsmNY8hlB7t7S1pcR6qjdcsCdqCyYWvdKOE2LmlwVnTQcewk0XmSneTuu92oMSfAjhPByc5U9yyGocFxdM/qBrtMdK81ge/j5nKYcFgoJp+v0BqsjSxxaI3jh2itMXHgAsdBEwnCdqtJsVLEGs0P/sAn+OSxKf7UuQdQKNrtNrR91lY2uPTWDS5ceBDVbFPv1CmWZsG2adbbtJvrHD95mmbLx8l51LeahGGL0vQsOQ220yI0GqsVOc9hc6NOtVjAOIrrb77NsWPzLCyusLVZ5+TZE3hasbXRZKu5xcnjhwlMyNr6FtNTU1gLq2tbaO1Rqbh0/DZK58BCEAQcPjxFu9nCDwxhqHDcHNev3+DilZt86LH7qVTKtJtNbGgIbI6NjS0qNQ+lFDOVGW4uL+N6DqVcHoNifX2TUqlAo9nk0EyNZqNJvlSk6OW5cXOJ5fU1jh6ZIefkaLcCtLbkvAKri2tUqhUuL65y4YGTYGB1bZNGe4vZWoVyZYpGy+ettxY4cXSeRqtOdbaM58YpIgxOzsOrEFnxrMaGNgowY6KOvAlCXM/tWje6plfiZ1KhnZ6TZ18GDUzNGnQRHYdS9ARn3yVu3HY29RtGd7ltQmQN77dXyvaXpedbjkbzqS88za/++i9nzJdMuOynRF5WuoJx89LulAAc+b3UesDCr1PFYsHWa3fi29Sz3CW+KXfOBXKcTMsa8MheZ63Bddy9apQgvOMRcXcbuVvEXS9qlYi7ftUi7jIRcZc4zwNeXglLuNK7T3Tf69FGlnKlNeEE4i7eu6MdGo0m+Xw+YQOKLHBx4JlP/NAn+P5DNT5x4Rxhx6fZaKFVZPX9wlee4aOPX8CGhtBVPPvMK8zOFjlx5B46nQattk+t4lGo1DChwYQhb711k2PTefLVMvWtTVA5tPa4ubSCVZZ7js2hrcI3IdWpEu3AYAKDMT4vvvom77n3YRrtOp6ncV0nshxi8ZttvJxHuxOQLxVRhKyubfLlr7/Gxz94Hs/VFDxFox3i5nJ88/k3+OD7H+Z3Pv8kf/Tx96BdC2iqlQJXrl7n2LF54jveAnnXY7PRJOc5dBptlKPJe3mU1viBz+bGJusbW9xz8hhBJyDwAxbXVjlxYp7l5Q2myhUazQbFUoFOs82Vm8u8fnOFC6enqBSnqJYqBCagXPTIeXl8ayF0+G9/8AzvffA4U9MlpmtTNBot3JzDjbc3OP3AUQpFD1xF0O4Q+iGdto/runzhq9/iox98L8VKHu06UdqO0OLkFGEQXemhODuJv/txRSd53qK5h7b3Tdhum7tH3MW0201+9IkX+PXP/MehdSLuRou722+5S7J34q5XKiXyxMonvBsRcXcbuZPiLgiD4ZfeOHG3y7ll44JnhIkPTPpjqSfc3biO8ySumvF+Y/FjwnD0PL4JXFST7Ku462IcZ0jUjXO9tMYMCPr0ulHbJcuMSjuQ/KAORUS7w+IuOSE/fXwq7LfNWot2HEwYCaHMjk4iul4892XPxV2CrFx2gR2Mh2cUYOHy65c4fd99tNsdHK1xHIcf/sRfwBjDL338cX77v/0h3/PBR8FGCdlD3yef87h2Y4njR+dBK9qNNr//1Wd5/yNnODp7iNWNZaYqs2zU16iWa2hHYR2NMpYbNxY5eXwebQ1GhdxcWODQ7Bydhs+1xWWuLtzg9LHDHDt8mIXlFUzgs7DW4MFTJ9E6JAgCSqV53KKD48Lq8ha1qQpOXuE3O3TaHVrNNl6pQKVcZHOtwdLqFsVijmI+R9FTWF3g2o0F7jl5lHarRbFYpL5Vx/VyFLw89XqDb7zyGveeOMz8oTlcJ4d2NX6zTavtky8WaLfq1KYqKDSLi2tUp2s89eyL3HN4junpGl7OQVlNvpBjdX0LheJ3n3iOT3zfh1hb3cQYH8dxWV2vUykaZmZmWV6pc+TIPI36FspR+Maytdak0W7TaHSolHLcc+II9UYDRzvUalOEKmR1eRWlcxTyHpjIelevNyiVi3hejma7jZtz2Ko3mZudYnNzC88rsrW1xfRcjWa9RblSIufl0J4DvbQOKuXdN85lM+uZHHbP7AuvQXfSfjk1IM5Gibpx7FbcJTv8n/rCNwCGcugNiLxU1MyR5bZZvp/Cb5L9WGvRvfPd/a6liybFXSqP650YbOt/U3Yn7qwNgMHvTjyYNW76QG9KSsZyCeAiHCRE3N1GRNzdPeIu7jBEQcgOrrjT9HMbZq2D8Za8gy7ulO5GXsSOFHcKhbVhb55dUtwp1c3nFGansoBbF3cW2w100k8aHCiLDixvX7rM3NxRfvwnfoL8yhJ/76EzfPHJl/iuP/I+HCey4Lmui+Nq/E4HsDiOGwVW0RqUobHVZH1tk/mjsyhyrG8sUytN0Qmb+HWfVtChXKly5e0Fnrn4FiUvz/d8+D2Uih71rToBUKtUwBquXb/BsSOHePHiNU7MT+E4lrW1NqVigUZ7k/mZKazj8Lk/fIH/7qPv5eKlm5y7/xTKNYS+xe90KOZyBNrB+CGlcpGNrS3euHSdB++/h2KpyPpqnS99/QU+9tg5SsU8axtb+Mbn0PQM9XqT6bkZfN/gN5rkSx6LC+vMzkyxvLxIPl8CC9MzeTptgx/6NNst5o8cizwDgoBnX7rE2ZOHaTZ8tFbMzU3z27/3JB9//Dylco7V1RZuTuFqTaVUxit5fPGr3+Cxh+6lbQ1TlTKO59FqB3zz+Ys8fuF+vHyR+noDozpUaxWCTsiv/+4TfPJPf5zf/+KTfOSD34ZWis9/5RkeeeA015ZWuHj1JhfuPcGD953m5s1FZmar0b2qLeVCldXVdZ59/TLf8djDaN211nbnVVZrFUJlb5u469dxd4i7qN2Klxdu8s/eWOTf/Yd/m2rP3om7+Nug9jgoVXo/Iu5uXdyNy8snFj7hICHi7jZyp8RdnNsuLe6SL78B97Bo5UR1Z0X2223Y+1tlnMtbOrhKUtjawbB1+yLK9oyE0Ewfb1LE7FUgFRgdTTMZAMSoyB3mTo1+OloPBA1KolSq7com2pk+P5O1P6uTEHcu0oLNJCL0DaPBRvEX42fJAsYaHBvF4zdWce31VygUS8zNHCYIDJ/4kb/E2sY6P/fecxw5Nkej2abg5Wk2Onzrpdd53/n7IqtPs0W1VgENG+sbVIol2q0meS9PaDW5nMUEPtp1aLdarK9t4TgOs3PThKbD1pbPi5fe5vx9xyBwKBeLBIFPoVqg0+4wPVNjbXWTz37xGf7Ed76XoK2o1aqsrC7j5VyqlRpr6xssLK5y75lTYP3I9dQP2NjcwpiQUsnDdR0CYylXymgnR9iy5DyXThjNJww6TawK8JwivrVYE+Ioy7XrN9mqh9x39jgWg+NqujGScFyXpeUlLl1ZppQvcPTwFKVykVdef5sLD51FaY3rKgLfZ3VjHdM2zB86xHpjCy+XwxqDsZZSsczm5gbVqsfb15dYWm8yV6tRyBVRnk/RLeDlXbSjWFtfY37+KCtL67SaDRZX62w06jz+6DkuXbpJrVwkDAxKwZFjM7ja4vshOa/A4tIKQRgwPVWlWCry5htvMzVVpu0bNja3eOiBMyg3xyuvvsmRQ7P8zpe+xUcfPcfMXJlmq0WlUsXJgQkja3Sn1aE2V0E5CmU1Vtne3MxGvUmxXIzEn0qItX5Iz/6yfWTUp2JQQI5jlNBMo/mDy5f5hesbfOKHfogf+HM/MKZssp7R78+02HIch+WVle7c0b1x64zzn2YKx6FgOskNU9+7xPc8/S0c/87eXfCTJKobVKh/TiY7vxPRPa7kYFta3O10cC1dVvLyCe9EdiLunJ/8yZ/cx6YcfEwY/uSd2G/0UrXDHf2kz378n5Rla9u6M5bdsfkJaWtg/B+lhtYNfhdTH+Lb0KnZNSp2uRo+3sHQ33Z42S6xJttypxL3j1VdIXmHBoB0xhyamKG2d60b/T+STNr+tGXCEIYhjuMMy0VregJu6Eep6D9O4p40BheNUeBYh/ryBtVKhSuX3+Kv/LW/wf3f/Ao/eu8pPnnvKaZnpzCORivNF7/2LPeemCc0lpzrUCgVeOrZVzl96igmNDz1rYucPnmU1bUNcCBfdLGdBivrN7CdEMhRr7e5vLDMzOw0i0srlIsVLl1b4MEzJ+m0Q6yxTM/W+K3/+hQXzp/GGEO+4FDLFygVPVyVww9auK5LJwjwPI9ypUDOdTChxegOWjkEgaFYypHP5ymXK4Cm47epbzXxmwHodcJgC00Tx21Tr2/g6TwvXnwNRymu31ymUq4QhA5LaxtMT5colj0CP6Td7tDpBGit2VxvcfTwHIcPTVMsFghNSLngsdFo8OQLr1DJ5wBLbXqG5168jOkEaA3VuSq+36FaLrK51cTv+DSbHWrlMp1OnXKpwBPPvsrZU/NMTVVotFqYMGRmZpZ2M6BQ8CgUCuTdHMfmZvHyLrO1Mqvrm1y6toRyNIfmpmk2t2g1WiyvbfHylbc5c3werTXFcplauUixVOTK24usbm5xaKZKs9kEB4q5PEVH8+a1RUrFHDMzVb7wtWe5//RxtOtgDdjQsLKyRk47LFxfxnVzBJ2QwA/xPA835yRSAnStbkMPyv4y/vU06f4n+WYpTk9P82dPHuH+jUX+zc/93/yvv/jveeO1N/joH/1Iqqwd2G5kjel529ZSKBQy30W7fQ9HEWxHiIsdnDtF8l2dnqg5/rwlCo7b4ZgadKo5k53fyRic+6mU6p/rOB5AsvSoPkJWzQkrbfrnTg1gC8KkOI7zU5OWleGLdyBK60yrXXK90jqyCKU+IobRY3U650ZuYkplvugMXUvE3TDqZc1d7U8fWEuz3abjBwTbiaMMi2rvGvaKjAipv4u2WWNw3NzgMtu1BCeuvVL7N2chvofHkWW1S5+XrHVKqV25IKc7XUppcjkvvZOo9xpYHOXgaAfP9SC0KGsJ2j4532fh6hUIfFQ3tcXFl17FNZa168v8tR/7G3z/n/8k9f/9nzP9K7/Mv77wIA8fO4by8ui8R6gMee3gOZr3nzuLDQynjh+hWq2gDHzgwgOsLa2grOFD3/YAhB2OHT9EztVcv36Dtu/juRUCXHABxzI9VWJtc4NDczPk3Bz3Hp3HdV1m56a5trREo1Xnj330UW7cWMbvhLQ7IUePHiIMfa5du0G+kKPglem0QrSruX5jCdd1uLm4TCFfpNnq8J+++HWCAH7nD59hYXGFZ158jblDhzAhhGGIq2pUSoe5eaOBX9eUylU6oc+l6wtsbW5RKeZoNOr4nSbH5qYpekUWr6/TrLeZqlXxg5DQGOYPz7JZ36JYynPpyk00UMy7HDl2iO/69kepVquEIbiuw4kjMyyub/LG9QUcx2Fqqkqr45Mv5Dh85DBerkAQWhZWNzkyP82f/NgHemkgZg7N0NjqYCxsbm7SCXy8Up5iKUd1ukipUsAPQk6ePMLHP/I+zj9wilarRaVcwgCH5qapN1porbny9k0CP8RgCQOLq11uLm+wudWgUi1R36jz9W9d5Px7zvDtjz1IsZAnl/f47g+/j2a7xdrqBp/78tdBQbVc4g+//jz5Yp4wCOh02lhj6LR9lm+u0qq32Fqv8+pLl8CANbHQA3q58pI/TLBucqzd6XjQre8TpfnLjz7ML338cX68qmj+b/+EH/qBT+y4mrijn8Z0BfNOBd2+CgZrej/WDP4kSb8zs46h9+7c5tve71ts37z0+crcb9a7OtVvyWxTRt/mVgnCgCAMonnMxhCEQa+/NK7fJAh3I2K5u0XuhOUujpqX+dKz/Shmwx4etpf3KusjqrRDGAR9y0Vqnz27yG205owblbPpj8fdZLlTCteJAiFE4ZwntJr2hFX3GhgzdK4HjnnimhP7MFn522zvV9+Da//OWTR/xkzUWYpEYLpzldouPQ8pmUNqDyLHxfed0pqO32FzfZ2XX3yJpcVFjh45wpUrV5iq1Xj14kWWLl2hkPOYnZ6mrRTKwltvXuZH/+pfp/zlzzP/2lv84z/2YZTVuJ7LlbduMFOr0Nhcx7abmFadINxiY2MNVEih6LKysUIhr9BOgHZCbNvSbDXodFq02w2CIOBLTz9HDjhyeJ5y5RCf/fILvOfcWTZWGrz11irvf+Rh3l64wczUDJ6r8Yo5giDg0KEa9cYWU9NVfvfJb/Hg6RMEQRS11tUhU9UyjbZPfaNDuVyi47eiVBGOQy6XY221gdaaIzNVcirHe86dxXGhWinid2B9c4v5Q9NstZv4YQe0JV/M4XpT+HR49OELTJfyOBp8v0UuZ9G5kEopR8HL8dmvfIsjMzW++uyrnDpyCEPA1FQJPwhpNju8fXOB6VoRr1rGb4fk8x55r4DfqRMGIZVSkUOHp6kUStS3GlSmqtS3GnTaAY7OoR3N8SNHWd3YoFKsRnMJG00azTbaaPLlrgXTdVivb+FqC8piCAltlOB9dWkVV0f3mlfI02kHFItF8o7D3MwUT774KveePMHC4iJbmy2OzB/ivpNHUMpQbzQ5PjfL8WNHaAUtPNfllUtXOXn8MM1mg3y+gJfLUfZy5Ao5HK04c+oYRiuK3b9938dxcriOg+NE7+dqpUzQCQjDkNBG6T3Sz824KLwZD9aOyH6099ZyN3qVww+eOc7/8a9+jn/zmf/M9//An9lRGyZ5L01SRjvZ8/9GVzr5yoGceGPakrZ6DVoNM7xBxrR35Ps3w3KXPj+jxZ0dcbNkTEPoWe7698duLHcj1g60s9e2rsu4tYbQhBhjcPZhLqYgbMdOLHcy5+4WuVNz7rKCqcTsxtqS9FPPiuy3G5LBSHYy523SBNFDvvXJj9Yug8dsRxCaXu6lvRqVNUxggctyoUy4mIxL7p4mvj+sNb1cbvE1N4CronxqY/PDpetMzVdLXpuArE7F/rFdpNBJcaztBROK41qG3XmdIQE5FRLiknNcgiDAzbmEYUhe5bAYrFV835/5Qf78dJEPz89TrlSjICjtADC0Oms4yiE0UK2VQJfQNiQIWywuNml12szOVKmUyihjcRzN4uISMzMVmi3D//elr/MnP/oIhVKpF+6+3mhQrVbodHysteQrBUzbp+W3o3QMYZSmoNmoMzc/j7YBGxtbePk8ruPQrDfw8gXCoEO+UozcLf2Az3zuab7/e76NtfU6Wiu00kzPVFlf3cTL5fjsV77BR953Hozi0JGZSKi1OhQLeRZXV8kXS5QLOXy/Qz6fxwTQCX0cx+HF1y5x+sRhbKDACZiuzhIqS6fdJOcV6NSbuLkcz738Jq9dXeQD7z3DmZNH8X2f9c06nnKpTuewNk+rvs5avcVmvU3JeswdKlJvb4D1OXzsJCtr60zVqjTX62xuNTlyeAbftAiNwXWLbGz6HJ0/RidooB2FCUNMGBKEIcpafD/giafe4Hs/fg6lS/gmpFgpoZTm6pvXOXJkFr+1RWBCKtUKTz73Gg/eewzluxRLJayp46o8bR88T3P9+gLzRw5RKBRYXVtncXGFo0fnWVha4dSJI1hru66W8PKrV3nooXtYW11ndm6W0ChcBwITgjFoXaS+tUWp4oHNofAxQcjXnn2ZD773HM1mAy+fw3VyPPXcRR5/5BzNepNStcTS4ionTx1DK4Vxu0NGsXux7Q6N2RB6c11Hz59LaYlEeRLbjJtXp0mKheHk6zun1W7wuZMP88kf+eRE5ccJt1tNlJ7M3WfSAdCSI5Tpb2ZqtNaaRBsy1qUZVXYvSLbF2nhO4egUNH3GzP+zQDwY3W1z1pw74wwKLT0mENYkxN8ybfvf+DAeUE94tZh47mRiGUTz+cYFgBGE3SIBVW4jd0LcGcCkxN24EMHJdaNeOttF+NuNkLnt4q63s8kiYU7CXRNcJnlMGSJpN+IO+ucwK7dh2PtYj859N9CGxMcv/WFM1pNkXJ3j9htFxIyeARMGY+vJComtdBQRMwiCzG2CIIDQ4OYcHKVBu90oo1EETlxot3zam5tsbG0yMzPDT//0P+WZZ5/FBoZf+NCjbK5v0ul0ODQ3g9IKYwI2VlewRrG4usz9Z8+S8wpY7aJchyAMcY3l1ddf5+yps1gb0Gm1aDc7TB2a5sWLb/Ce+0/x1PMvc3z2CHNzM2zW6+Rch06nw7Ejc6ytrjE9W0Nrh/X1Taozh1h6e4FSOU9lqoTvd3A9j631DdxciYILG5ubTM9NEwQhm+t1HMfDdcEtuGAsjtYsr2wRmoByMYexinw+j1YKL5/DWgj9gJuLy8zMzvHm1Ws8eN8pXrt4hRPHDlOZLoO1LF5fJl+M3ll/8PWX+Z4PP8rKyibHjs8S+h1MqPGKmrXlFso1vPz6ZR5+8Cz4AQZFLpfnt37/63z8A+eYn5/FGoPvd1hfbVGdLlIpVVlZXsLLO3h5j2s3lpmqFqlVS1gDYQcajTbVqSnaYQOloFDIcWNxganSdNcaZyiWPAg1WiuMsdS3mlRrJdrtDvmCx2svX+PI0QLXrmwxNWM5dGiGRiPgxvImR+bmmKo5bG428fJVOn5AZbpIGHr47SbFImysNrhxc5O52QrTMxXWNxssLm1w7txpXnv1Te45e4LLl69x/5kTrK9t8MQ3X+G7P/x+FlbXmJ+p8dtfepo/9bEPRrn5Oi0czyPnanSnw7Wbb2HxqZVmMdplZqpMo+WjcyWC0I+Cr/gKraP5e8ZavFx079W3mpRKBWxOUygW0I5GK4PSLi+9+Don7zlCpVrJiK6Zfqbj53fkI5linLjb3tKS2PO2e/qvr73Bf7ixwX/81f8waeP6td+imEsLufj+GtzJ5OIO258HOPT6G/e9TQSf2kk+1bEMJGPc/sJnB79KizvVb8socaf0UDTkZJ7cW8n3N26ActyUgv6c13755Dm9Cya1CO9QdiLu5D57l5Hlky/sjNAawn2yDL5TsdZkRt/cjiDwt517N3a/ZvTc00m2zVweRy4Nw76eRgEarR3a7TYrNxa4dPEKf+tv/B1+7Mf+Fr/4V/4yP9ra4Bcev8DPf+ACuZxD3lWUSxXefOsm7U6b5tYaK+vLzM5Nc/7cebTOsbXZYvH6Cio0PPPMy6yvrvPi5bdpbm1y4/oCpUqRmUMzBO02D509TmBCHn3oQeamq9Q363zrpSs8/+oVPv/0SxirKJTK1Osdrl69id8JqW9s8tqVa5SqZdpBNOfr2o2b5AsFcoU82nOpTJVp+W2cnEttqobvG5545gVsENDY3KSzVadSKXLl6io5p0A+7wGG0ARsbGyyWW/i5DyOn5gn50Ah76Kw1EoFlOsSBiFrqxu89tYCpWqFqblpvvuj30YYGr705KuY0KBzebxCkbW1DfI5hzffuslmvUOlXCZUkC96BGGH7/rgg9RqZQDq9Tob6xtUy2WKxQJrqzepTJcj108Mx08cJV8sYpSm1Qlp6SbTR8s4JZ98PnKVNgZqpWm26k1cR+Nqhd/qRM+3UnSCkDC0rG80cLwczU6H+RMFtjY0a0GDVidP4EfuwqVCHu1Cq9lBqxxfffZl/HaDjZUFOvU1mo0m7SAAa3jq9beoTNX4wlefx/MK3H/fCVZWVqmUC2yubDJbq7JZb1CdqvK9H3s/jgvNRh1Ha/74h76N0IZY4/Pq62/T2GjRWl/n7ZtXyOUKzE0fo+E3aNbX2VhdYHHhOkF7Axs0CNt1bl6/RuiHGGNpNTvYrvioTFUIreWpp1+msdagudbgma+/yOJbC8yUK7jo7tzc2+aVv+f88fvv5Rc+8ih/9ZM/cqebsic43UEq4e4h6ztowqD3E8/pi38EYT8Qy90tcicsd/ELIStUvKv0iDlVuydpvUq76qmMl9M4y1aWhSi9bBLr3Ljce3tB301x8PgGMudkTAvZ6bGnmcSNJGu0Nb0umRZiKGVE123FWIsxNhqhn6CNvb1kuGyOuw8mGfVMrtup+2aWZS5Zj4PqpTQwJsRqjbKWy69c5NT5+whDcBwPR0W91qAdoICFxRuUvSmWrl/Dc13+xJ/+fk6du59P1zweOHqEY9UKK8t1Dh+ewgJBGNJer1OZnaFZr1OtFli6uUK9ucX0VJnKbI122+D7IXmvQM7VfPYLT/FdH7xAzs1RKBZYvLlMdaqEVuDmPZYW1njh4lW+4/HzNOttcjlNsZxjs95Ca5eXX7nC/WePUpkpYwPF1mqDynSZz33pGR5/z1nmD5dpG4WXy+E3WyjPIQhCFDl06FOcm6bTbLG2vMrh2Rrr9Ta/9+Qz/MmPPU7eKWFMB99v4ObydNoWnJCvPv08m21LrVTmOx57iLW1NWrVEvVGi2KpSM7NEQYmCvjht1nf2EBrj5npEtYqbtxcIp93qdVmCDptlOvg6TwbWxtUa2V+9/PP8O2PPYDjatqtDtPTZXBygMJV0Gy3yHkahea/fOGbfOzxR/jy08/z0W8/h+/7zE5PodwcGEWr1cLNOSwsLHHx0gLnzx5jZraKVdDp+Fx84xrrmw0eOHuEQ3OH+OZzr3P6xGGma4XoeMqRa+q16wtMV0u0Wx1m56o024aclwMMQadFtVrjrbdXUNrw7Mtv8JHHH+bim9d473vuo/JmM3EAACAASURBVLFZ54033+b+00doddo45PnSS6/wgfvv5cj8YQya51+4yKPvu4+FxXXm5mawYYgGvvni63zg2+6n0+7gOrCxuUUuV6BSq7GxtsHyWpPZ6SmMH/Klb7zE933nB3jqmZd47JEHMMbSbm4yPVNkY2mDljE88dIbPP7AOTxX83tfe5Hv+Y5HcLXD1EwNCKOAEhZC31LIezT9Jp7rYY2i1W6RdxxCazBYipUyhWIe7SpCPwDHiaxR3bm0Nkw8kzuK5phkyCS13dtgTPnhd9qnvvB0Lym6GhMRM2mNeUegbOKd3j8GGLRAWmsjl3I3GiDbD895HefpM3akVc8ag8Lp5R6N2jZ66slA/akcfz0yPHh28n0d5+GSzDmY/l6N+4Yl16U9U8S6J2yHuGXeRu6EuPO7OcpE3Im4g9sn7oJuZ01rddeLu+Sz4SpNGAZo7XD1ymVOnDpN2GnjGY3vWhQu1ipaLZ+15WWWr11lpjbFjRtLvP7q6/z7z36GsOPz8489TMcqyvkc6/Um+YJHoViMOki+z8rKBgs317nn1BGajTpTlTyNep1KpYxXKILj0axvUSgUMKElCA2elyPoBHg5jy89/Rznzh5lplakUK3RabUxQUij0eCp5y5TLeU5c2IOR1lqc1MU8nmCwPCN51/l299/noWbq6yubHHmzFHeePMaU9USK6ubNMMOFx44hee5uPk8fifguRfe5PSRGabnZ1FY2vU2hVoBi6LdapPLe5iOobW1yVZzi1KpTKlYYW1jg8AYtuptSnmPnIL5E4dZXFzD8xxKhSL/6fNP8j1/5FHynkeu6OGogOXldaamqlx87W3O3HMMYwN+72vP89j5M8zM1PDbAQvLa0zXyjSabc6enmdrs0GpUCbERikYCjmM3wJctFYEoUFZhyAI8H2fqZkKnVaTZqOJdlzy+RIGg+tG1tZGo81UtQAovHx03RqNJkortDIUixV+63e/xnd/6BHazQ6u1rx06QrnHzhNs9VmaqoSBUmyId96/hIPP3SGvOeytbHK1FQNdI6rVxeYn5tieXWD6akahXKexlaDMAh46rkX+KMfeISwAzdWljl78ggLS8s0/ZCXLr3NYw/fR6VcwIQGEwRg4InnX+V9983TarfJ53J43hQ+LUDhUqA2O8Xy8gZvXV/m+LFZSsUi1WqNZr2NH7bQRC7GodGUa0Xy+RwqNKwsr2Ksolot8+LrVzl/3ymUilJ8mLBDoVhBOZpmq0mlXKXTipK/t9tt2p0OxWIejYNS0Gy2cFzNZqPN1FSV6lQZx3UGOvIJB/3u70ktFvsr7gB+7cVX+M8rTX7l1375QIu7LPdQawzGGHR33tqdFHeOdgf6M3dK3GVNB7gd4i75XRy1vVhp391InrvbyJ2IlmltlNDWQj+CYDwqB92J8ImfMR9EQ/wiGR8hK/4Zzi03OC9PxcE4ujXGP+kInPFy7faTZPfKpCJ3JbcntX3WT+ZHWKnoWEceZZ8BMbuDqJvbic10aGiTcWzjo3n16xkg0d6sSKm93D7dyJs6UVZr1Uu2belfw6iAptlu4bgOoe2v00phUmc92WVzlBq85t1J8XHUy6jJg6PI6d9RmX6UzLGkOmTWGtDRIEfkWhlFlrVYDs0cigZHjKVVr7O2usHK4grrK5tcfulJGhtrnD19FoDf+8MnqD3zFf7mw/fyQ/feg8p5uDmXdrNOuVzA+D7Wb0Wuasbnzbeu88bVNR48WSP0m2hCvGKZ8lQNJ5dncWGZublpHMfBD3yWl1ZYXdvgc088x/n776HTanLi5DzNZpPPffkZHjh9HLC4rmK2WuHeB+5herZG2AkolktgoVFvcvqeo7SbbYqFPJ6Xp1jMMzNdplIt8fWX3+BjH7jQ7Wxrbi4uUy6XqFUq1KZLrG+sYZWhHQTkC0XWlldx3Shxc7WSjyJb5j3yBYdnnn+Ts/ec4fLVG5w8dgitLW2/Tbvt88Rzr/Pw2ZMYZZmtlajVyvzW57/G+ftOs7C4yOH5Oay1tNsdCoU8hYLHicNzzM5NU8i7uAXFocPTrK1tUJspom0U2TEwAaCoN1oo5dBptUEpLl9dAANfe+ZV7j11lFLFo9FoUan9/+y9aZAkSXqe9/gRd95VWWdXd/Ux9+wsF9hdYimAhAAIJAGREBcgCDPKjPwjmkmiIAlamvSDkmhGymikCT8Ik4ygSMqMWoKgwEMgFnvfB2Znd86e6Znp6elr+qrurjvvuNz1IzKrsrKOqZ5ZNLTUfG1h1Rnh4eERkenur3/v934RV67fZn5mmszC985f5NTCDK7noqVAa0ma5UMvo0+SJLieS5LESKE4e3Ie19W88vpVAlez1ely+tQ8F6/eZHF+hm63x82b93nq8bO8cuFtAlmm2+1TKpeRqqCrliIXrRSvv/0OV67foTlVIaiEnDtzBqFddBBQrVfp9ROQDrWpKZSBRr2CoyRJlqGEJMktS4vzaCeiWpuhXG+S5znTs9OUyxEiN0glsMbQqFe5eP0W9XKEyTPiOMbzXb7y/df48ONnefn1K8zNNHAczebaNpVqmVanR5blOFqglSTLckxmyY3ZEQlaX98i6Sd02n063S7NuakiVnW4ICEQtFptPM+hXCrjOZpOq0OWJGRJRnurSB4v5G6/8mAQaXIF7aizxRHlDj/vyeY0/8nJOW5+8TP89d/8Z/ziL31yd7w7oG99v4IqD8XE2Bg7TA9jjN3nMC3GALk7Nv0Abmmkyboz1o/TeA+pf9S+PfWo4wGZnbFu37xnbN8heWSBsfQ5u+918t2Oj5nFPEgeWG5U5tC2jh07KFXE5L7dMbPYjDWkWVaARKn2z30OvfIH9u+DPYha5gfg7n3aHwW4M/aAoOd9EsF7Dh5Z14OsBR0F7g5KofBux3Jjdlp8ELgThwykR63fHgbujtv52T3/Pz64e9DBfndMejjg7qAEsEe1JctzlNaFgALseU+T6+7jUzC5D9ztd3FKqfYsKhz87N7bJCrPM27dusVUvYFWhdiIUkWaj7//v/xdls+d5dWXXuZffvq3+MhHfhTfC+lst/nt3/zbPPXEI/xnf/3X+PzXv8V/58XMuy6OEiANNk/J4y5i0KE7SIl8l3urdwl8j2Qw4NRck+lanShycDyPUqPG+saAjc0OURTikpIjsFg6vT5TtRJh6NHp91AImrUSRkG5HDJfqyIkxFlGbxATOJKwViLNDVprzr9xmUoUUqmWCuCaFeqcaZ5z+8496pWIJM3wfUWv02V7u0djappyOSBLc777wkXmpmbwfZ+vPvs6yydO4LsOg06HRr1K2jGEUZl4AFeurnLrxganl2dQbsZUeQqtJKWyS6VWouT5RL6PxiAdQa1awmJ5bHkerR2u37pNc65JEsc06jWMzdFa8NlvPs+Tj55m0OtjjGZ7o0+vkzI7O4O14IU+Ugmwgjyz3LixShbnTM/UcITGcTRLczNIZdncbuFqB+37TNUqKKWI45T5ZoNBHJMkCZVyGZNbvCAgqvpYY8lzy53b6zQahccwCHw63R5aS2amapxZnqPf7bK0MMudlfvMzk4z6Awol0qUAp83r9xifrGK40mkIzFZiuMJ+r2Yeq3CdLVErVHBCV3SXo9Bt0sQKNI4LkRkEsvK7XXKlTJZYujHA3w/JMkMF6/fZXn5FK62XLl5izAMaPUHROUG6+stoopLf5AQlUp4YcRic5pOu0e9USbNEhylWT65QFTyqIUOG5styqUSWxtdvJJPrVZiMEh5/s2LTJXLrG+0mJuZwvVD7t/bYGt7m6lGFSUUV67fZWO7zeJik+3tNmHg89XnzvPI6UWEEESlEGty7t9fp1Yr4bkFjVZJTZ5mJGmCMQZrLFLKYf9wnF/z8UHa3mMPcl5hJT/gz5+Y4eJn/x3/+W/8H/ylX/nlvTVMjn0P2t8/TFC4x7M0AqW77TisDVK8u2/0uJfe763l6NewD3gOd5ujU+YcT/zzCHA3MT4eZPv1ao5ozw80VdT+enZw6yjlz/j2APOcD+yHzz4Adw/R/kg8d4x12ENvzGj16cCO7ggv3nGojVbYorcQQxVEdre9QGh3cj+eF2/82L6mUVAcrCg8PJOdpsXuOTa+gjaqzwwV/XZWCsXBEGx83/g9TW6S8RU0seffkc+JBxu4D1shfLdN2CJhtoH9g8iok5fF89oDlIUo8vWI3WM7ZUbbmNdVjD3HPc+O/Y+NsXKT3tndWdz+b4QcvYbhPTH08I3q1UpjTY4xOXr4/iUHDa6j9WJBEndpVqqQZ9xcuckrz75EtnqT577+LTburLFQyZitepjUpTlV4uaNN3FdyReevcgzt67xX3zoo3zyzBxGapTnYozF0QGDXkZUqiG9Mt3uAL9UpVafRToa5fgI5ZDlKakB5TiYDFrbHW7cXePM6Tm6vQ6VSoUsy/BcB6EVg17M5Wv3qEQhQehRqZRwHJdBr0tYLuF4AZ/56vN85COPATBodUl7CWfOLICFJCkoiUIbXN8lzwwmN1Rq1YJ2F4ZM1etUajXu398Ek+NoxYnZOn7Z5/q1FaTOef7lqzz52AJaOzz38kXmFiu0Wl3CkiD0A5aW6lgMSivirIfjKlzfxWQ5BoEQGX4Y8MbF20zVyggreO6lS5xcaNCoV8nTBGtyvvzdF3nszBJWWh5dWsCQIq3FmpRB3KNcCQhCH0yGkIIkzjH5gDxPWVnf4NFzp4pJssxQWhCV/SJBupSUyiF5v8fd+5uEUcQbF29QK5colcqEfoBUktffKkCxyAvlzCAMCDyfa+/cZbpe58rV21RLJaLAo1SOQIJSDlfeucPi3DQmHuCXI1xXY62h0+mzcKKBlj7xoI/juAjHQpLT6cRoX1OqlIj7KV/5zvPMNed49a2rnFqYJzFQbZRZ29hkYXGaQTxgfnaOJE5Ikox3Vu4zVyuxvtnhzt0WC7PT2MRyZ+Uuc3N1Wt0Bng5xnQApQIiM/iDBD306nS55bimXy2QYPCfAcS1Zathut6iVKyjfR7qCs4tzaEcjlaSf9Al9nzRJcD1FvRpx89Yqc9N1lpemkFjCQNPrDnjikUXyPEEIGPQGOI5E5ILtdo+wGrFxfwNXOxiT0Wt3EKb4PadJjonTQo3WczB5MUHf7W8EQkiEFPv7t72d3USKtIN6pIN6pvF9+60RhnxyeYH0ue9wa+YE9XrtwHLH7euttcMcg+8N2L03ULj7LOzw32jXnnFsYhzc84TsIQPkQdtYldYIrD3kXRxxCwc53kb3vTPPOeAZjFgn42PeaNudDx0O7o6jEDRZrxoyYA4ci8aZPxOet2MxUQBhTDEmMvzm7sHHAoVAcfjcYHRPOcPvz3C+9IGX74fbHgTcfUDg/SEycUCMnRjLqXLMSvhBEOvNMAfYscpOyj1TAMARsCwSqx+QE2fITxdipNJmDrxuEcRfgB3zPtWnRuc/yP0hdu9xdN5B50/uyx5CvOt4LFqxAnr0ux+9l/caz2jYv2Awencjm2yDMYYsy0mzDC0kK7dXSIe0rneuv4MSw3QEAFIipEIJgbAGYYfqr8NrGmNYv5fz9S+9yPe+/grvvHabp8+d48Vnv8kff+ZxnnxqicB1SQcDPvbxx/i1v/V3+R//139E8ytf5Df+2GlOlqfQJYmVGtd1C6ETzyeNe1y+cRMjDZaEmcUm0rXEcZf2dp88y8nSlPura9xdXQMLrufywhtX+fGPPYk1hqBSI7fw0uuXkUrhKElmDT/6oTOcWV5AKYXrOCDADXzSLIU84c984kMIpRBSUipXuPrOfWya4LmalburBL6HMRQJzbM+c4tNkiTjzp1VoihAiCKO7v7aJq7nYRFYZUFattpdPvbMo/zCz3wUpYp3Uy0FhEHIm9dv0hsMqNQDhLSUyyHbrS6uVkhhGPQGpInF9QoPUprmLM1N4/ke2lH85Cc+RKfXK5J/b3Xw/YjWVo7JFXmmEE4RT6O9AOU4KK34xsuvcu3aDYyB7Y1W8V2RDkEY8tFnHuPuvXtFegpdxEnGSYZUiqhcwpgihu67Fy6ihODc2Tleufw229ubGDLu3buHVBrtBbxzY4UoisjSnM9+4wU6/QFSCmaaNcJSQFQKSOI+na02GMH2dkG/lY7F5DlXrt3EYnnq6dMkg5it1RaOcHBdTdwbIKRBa5iq1cgSQzxI+ZlP/Ci37qziK5d+v0fge7TbPeZm6mgFSktefu1tWq0uUkrOLc4jhMTzPD7+I4/x+T94iWolZGF+CoRkaqqJ4wmyPCbLY7Y22my1OiilmW5OcfnqXTA5g26fLM9xHIc3334HpXKQMVLktNe6RGEFV4d898VrzDRn6Xa73ForqLT9fgwKpCsQGHKbs9HaRirB6mqLNC0AVhgGxP0BXugy3azRaXWIk4S3rryD42iiko/Sw9hYY4j7fZJej9bqFr2tLv32gHSQYhJTsE+sxeTj/ePBue72djWHLR9OArvDAKDdByzmPvN/84t/4S8eULaYNB9Hs2BEOZRS7Mlxd5RN0kH/v0IBHd3Dkfcy8XhHZY+r7zCu6H0cZe9jzYGOmPdMnv/Ac6pj2IPGkR81BksoYiQfYC43eqbj23EUOz/Q8vzhtQ88d+/THqbnrhgk9sanTZo1+TE7kgcAFhOrRu929r74Oru/vXvKHDpwja9y2T1NmfQM7pQYeTGPaN+eiibrsBYp5IM8HUbsiHfj309SHw8CQg9iR1JDxqgmx6GdjGz8m/NeoOc4LXNn376FzV2ajaB45qtra0RhhBaS1Xv3mWnOEMcDpuoNJKKg0AlQSnH12jUCK1lbuU9nY4vLb76FSXM+/9nPMV2ro7XD+t07/Lvf+ef8yq/8Am9ffB2rDQvnnuBf/v7X+Ce/8zn44rf5GBm/cGKOPxW5eFohpMXREbkYYHPFV7/zEsvzM8VvLh1gKOhn3fY2/XZMELh8+duv8MTpRZQSbG23qNXKaEdRLkdgBVO1gCxNGHR7xIMcVym2N9tUo4h/89nv8vTjy7iBQynykFKSDynXd1ZWqZR8TJ7hOQ5ZnGCNJctyTp1aoNvdpjeImWrWcbTCGonjekRRCZOl5GnC3dU15uan6LTb+KGL67m0ttsgICqHxP0ec81ptCdJUouQOZ72qVYCPN9hfnoK5Qg8N0BgUcrBcz2s1aS5ITewvd2nXI2ISgFBEOJoyVZri17Sw/dH1DxFFPj0+i0eX15g7f4WYeDjuJI8jZHSQbsapSSPLM0z1agitebq1Tu0ej0qlTJbm23K5RDPUQUwdh3u3dukWi1jgRs3V6hUSmxutfnoM09y/cYKlVLAibkmQgocRxH4PlEpQmtN4CravR7lSol6yWdhdhrXd3EdB8fRGGvo9Xr0e0XM6UxzGkdLHFdghKJWKRGGPnGnT5qlvHzhBgvz02AMNs/pdNo0Z5tkKaRxiucqvvP8RWan65xcbDDo9xj0EwQWQUq/byiVItY32rz1zl2WT8wTJynXb62yOF/H8xSPLS/yLz//PT785CmENXRafVzXYW11C4sljAKmphtcuXKL0NVcfGeFSsnDpIZuu0etWua5l66ysFBDiYzOZhtjUqQCz3eYqYdobfF8l5npGspx6fcHLJycJygFdLZb+GFAr5NSKkXUakX8qNZ6GHea4wYeg34fXwuiMGS6UePb33uN6akypShke6tNnuY4nosQlrev3Cm8iEqytb7NxsY2jlbI4TZu7w5wDgNtB5U7YK+UYwBkt8wnlxf4y3//N/iLf+lgkHdc4DVJjzxu+fdt+6oRRxw78sT94RH7H9e+83ZynwqxL8zhQBv3VI7Gr/dIad2XGvCgMhPj44PSNI8OpdjlsYzosMe5h1H9u2yksfbCBPg8vJ3HCfOAIketscNI+uGixU57j1XDB/Yw7ANa5kO0h0rLtHYnUfROh2lswawYbWPALmevsMkeyHMITXOPCQlDasMkLXGnDXK3qhGdcYcmMVZ2X9Vj4G7UytG+XcrDLq1wdD01cW5xkCHAKuI5pBD7aJeTXZQ45J8UEivsrpjHxHnG7OZ5mgyGHgc1k+IyQhapVcf3qffqHRs933HguI/+sX/Fd0TL1OzSOBjSOEabFSCEAgowZce2UU3mgBiIHfnz4b1bIQrRn3FqyXDFUA3VLbXWKJOTCRc/DNDKkmcZ9XoDEES+JkkHGJGTkfGF3/k9tNHcuXabm3dvEPgzaFfi6Cb/+l99jp/72Z9F0qNz7yJZ+xoffuo0jh/yqb/z63z3/CWS51/gr801+eVzCzy1vIgWHlvrG9TrFbSjMQi0ht5Wgu84nFpoYvMMG2dcvb3K2UeWMMbQa/WxEsLA59T8PFYNFUelJEtyjCkog912RmMqxPF8Vu5vItKMSqWC62hevHCFJ84sMj0/jee7ZJlBe5okTcnShHJ5Cj90QaRkeUIpqhQqisaQ5TkpMdVGE6UcsizHdRVZ0sdRFotAOw7rq22aU01QKe12D1d6NGdruL6k140plysIRyG1gxUWmUtMnpNmMY4I0FJizAAHBxVoLJZeu823nn+dJM6YbdSpViOU1iRJTJb2Wb/fpVKrEfiaeNClVqkWXG4UnqPQjqRUDYnTIrYMK+l3YyJfY5TELYV0NraQrsu3XrrIj3/sGRwPtBTE/QFu2SdNYgwCzy9y1fmBJgxc7lzdZHF5ASEsoSdRrsILfLJcsHa3xQuvXuXUiVmEtkjXxVMOvd429ek6G6vb9HoDkiQlLIUYm2MtTM80Mcby2a99j6mKj+sodOiBFMR5itA+UhhOnZpGOA5h4CO1JElS0swghKbfT1HaYeX+fR5/bBnPj3jr7TucPDmP4ykc38VkKWkCoeNw7swiWZbQaFRYXd3i2q0VphtVPFdR8V1KUYgQliQbIKzim89dZHO7QzkKKEUlQj9g5d4aTz9xinKpyhe+8wq3N9aIHI9S6LG0MENuBfVGlUE/xpo+xiS0O1tYk2KTjFIUsrG2hlSQxjmDXkoQukgjSBJDuVql39vmxvV7uIFARS6uF6KUKgCuESSDGK0crt1Y47FHT7K5uU0ySPnqsxd47NwiW1stWtsJ126tcmq5iXYk5VJ5h1rcaXcQRuD4btGnDcUPD2LB7e6bJJ8dFBBwyLGiU+UgUPMXlhf4lb/3D/bF4Y361ePYJPvPWosajjCT9Lv3CuwOonBKKxBj257FtsnLjNMpJ0MXht7TgvWvJlgyewpOtGn4juSYMJvde461FC93LMRkdB971KCP8VxGFE6sLb6LdiT4ZUGpPWBxTwMP+wx7aJiSQnVzMuxhp43G7FAmRy0fMZCO+14NBRNpNPbuuT92FUh39xxso/YqqRBDfYWDNzHc9tM8zXDc3lmUHo3zY7GFo9nHB0DwD9c+AHcP0R52zN1oEn2QcMakTR56ULGVg2OlJsuM//fdvXq7VY+Bu4kB7ahVsQO7tLGFtsNUvx5o/UmMDZIT5xX7dweeccuN3TMojbdxPIh90oP3oLZ73+KgvTt1H1S/tWbP92DfuxKjBQJ7uGjKAbEPdgjOR+Cu3x9gseihqivA1vY25UqlAHnDcq1BC+s6uEqhMJihFye3GQkGZQROalm/sYIWgkZdE0UZfp4RaEuvdYl3Ll/gxz/a5M0Xvo1nWnzmW9f4jU//W7754iV+6sot/vKT5/hwlvOTj59Biow8UazcXqNccfHDiF53QGu9xfXrdwldB1cL1tc38AMfFGx2Owx6GW+8fZPTS4tcvnqHyA8JIg9rcxxH0+308DyPLz77CiaD6ekKYRigtMIY8FwP19FYIfjGCxeolUKefnIZIcDkhbdHCYuQmsEgJR906XZ6BGEZL6qSxIVKpJQSx1GsrNylGkYkgxhfeyRxSlCqYKRGa8n65hZLi036SYcLr9zh3Nkl3r55iXJURitJEPisrd3H06qIfRKKwaDHG2+/w9xUAys8DIpOr0unnaFlihUKPwxxleSR0ye4cecuYeiT5DFREJKnljzvorTEWAfPK5HlOUmS0O8NcKNCNdQaWLmzTp5kPHv+LU6faNLtD/A8D6wljVM67TYfeuQkWTZAaYc0zfB8D5vDnVubhH5I6JewaUqn0yOIQkpTVTbur+J5LsJx8JSLsYJ+3Ofm3bt84qNPIARo7SBUhs0tjqdRwuPF197iicdOE5YC8jxHSVlQDeMU13N45OQ8jqtJ0owwqCKFRljN737xWT70xKnCg6U0d27eJ/B9et0e5VKFL3/7PCv3t3j03BKzMzVa7RaBK5mbb7CxvkmpXCZPwI98vNAjrLikcYaQFt93CX2Ps6dPEJVD0tziBRLXddjc6BKFZdIk5vTSDEsL09xb26AcBnQ6PaYaZYLAI0tTHjk5z5mTTZSS+J5DELpE5TJSKlzXxVqPIKhQKTfQKiDNLS9fvM7iwiyR49Jpd3C1ZX1rHUcpuoMejoI0gX43xXcEkeOQxP0ihYTnYbXi899+malqwNNPnMLmll6/ix84PPXoCeJBhucplpaaRJ4iT1OyNENLwBriOMGResjCGKcAip1ub9zL9v6cXGLi78H2yUMA3vvxsE2OyZMT+fdqexb1Jo4dCe6O9OqNLyYO49wfILRgrwrk3mNKSaTYz/qYLHysZz1WXu2EfBT7dlL4PGBIxIMIqqhx9XGl36PAytHljwvuRibEexd52fmVDZ+dGcXz5VmROmUUcmH/cNNTfWAfgLuHag8T3O2sAo3zw4/6vY5JHB8qtnJkx3DQqueEHQDu9lzzkG1kubFFPNH4SuN4C44Ad6O6cjtadBW73rD3Ae7MeHzYARSTQ4HTGIXBisPXiyc/j2/7PWIHpEvY+Tvu8dx/tVGs23hSViHEwQB5fN9IVGWsKXludp7tnnclhmkRbLH6KoXY4fG7jkNuLVYIsizDWltQDE1egBprcbXFES69zQ1WLl/hn/6TT6MF/O3/+W9SJyXZuM9br7zIp//xP+SZJx+haZqEVQAAIABJREFUGrm0N1a5eH2FOIbp2Trl8gL/6NO/x//5b77IX/cinpEx/+mTp/m5mQYzsw2kVlSjiDzNaW23GPQHNOrVok25KWhgWObmprl7d50kM3z5uTc4e2IRz/cpRxUa01Xa2x0qpQCDYapWpT8oKHmddmdHtfLxMyc5sdDEdRS97oAszUkzy5effY2zJ+eQWvHo8gKNWoksj1FCkaVmCA5dLIL1tU1mGk2iUkROTsYAJR2UlvR7faw1PPvqBUqOT6kUIZWi1xvgug5gyU1OmuV4jovjOFy8dJvlUzNUKz69bkIQ+ABFTKHjkCQJwhq04zHdKOF7Pl/42kucmJviay8/z5Onz5LlMdpxGfQGhafT1UxNVfF8r2i3KXL9Oa4AoXjn5iqB6+JFPq7nYLIU7SiSuEhp8O0XX+fWyho/+5M/hhIG1/Ox1pDGCa++9Q4zjTpRqUSe52DBCwO05zLoJkzPlEnTPo4rcRyHOEnx/IDc5ESBjxcGJGnKa29coVIO8AOXqUoJjOXajRWmp2o4uvBACVlMsE/MzSC1YjCIscC9u+v4nsuLr11kvtmgnxQJzaNSmSTtkaYxUhseXVrECbxCMCMvBFaC0AGT4YUBj55e4szpBcDgOkV+vkFvgOu7JGlKGIZcv36HmWaddreDo8SQ5pijtMTRmv5ggBQ5Sjo4riqInInhuZcvsjDT4DuvvM7pxUXura+SJxl31zaZbdawGLZaLb53/hIn5qYol8ucf+saJ+amiu+RsSiluL+6Rhg63Ftbw/cdvvSdCzTrFWaaNZQX4AQOSZ4xv3iCuF/kuOv1Y8plDy9w6cRtJJZ8MEBYwcrKKp1um8dPL+A6ApDEg24hlhP4OI6L6zp4vkO33aFeLdPvJUglUZ7md7/0PZ48t4wZehNGKRnCoBDF2TtHfb/Arqhj79/D7RdPL7D21S9S+omfAgpQMumNm2jdodUeRHk7Drg7KD3DYfUXbdhrhvHz9521u3g3cUzKo+9VyqPH/FEqhvHTRucYYxkfusfZIUeNuQfaaGFWyn1pEsxYAyZTIBxlxwF3O6J2xjBiPZnJGx4vN7qnA66/f760W0bCu9Myh9ffOfY+4vvHF6iLucHh3vAR2MtNPvTsFs/9A6/eD8Y+AHcP0R4muLPApGLUkZ67iQ7owcHdMewAcPcgJuV+asNxwd3OPjHKvTYWw/Y+wN04qfRBzhvldxu//mhAO2hgOujYfo/Y/v07ne0ej+fh71FMrFYed81vfKIxyoe3r24xjKOwY59tQVM0+SjGYHiMYhDPc0Mcx1gLX/3sZ/CUx8WXz9NZW+X8Kxf5yR//E1x641X+3F/4K/i1Wb7y3Iv8lf/y16ideBRVXiScOsviqUV+/X//p/zTf/FvWb52lT8duPy1H32GTIErNbkRSCTb6y2UhvV7W3z5a68yVSthVUacxNRKDW7fvo3AUK4GxEnK5dt3manP8JGnHyMoS7a2NpB5yvnL1/nQY8uYLGdqro60cG91jdAPqVVDvvTsizxy+iSbm22CyCXNEr7+7OsszTVxXY8T89Osb25z5+4agevw/QuXqJVdhFCkcV6sWmsHIRTra5u00vuUyxE2F9hUILTCGlt48Kyl3UuYqdeoNmrcuHkXISyBp+m0WwQlH89zWb/fIgwrnFysESd9sJJ6o4oxMBjECOmCKFZgkXD58grVis9gEPPEo2dwHYmnMuZnZjHSkmcGaQ3KcRjEMY7WJEmCMYI0iVEa0hQq9Rr1SoTEgHaAHGyOIiVLU7R26PcG/MmPPYPQmrjfQbs+AgvW8Mbl2zz56Dk2NzpkWU4YeUityI1l5cYqtUaNwPOKb7IjcVyXzbUWG5tbrG21qVYiep0uM1NlyrUS2nGGCbcFtXIJIQSr9zao1RtstVsIY3A8DwAv8FBKcevmPWZnG5QCHyEFrq/RjlOkohCqoLcZCgEcXQg+CWvxA4+oFNDttos25wbHkaxtbRBqD+26xImhVAqQSJSSNKYq2DwrQI9UtLtdEAYli/hCJcFmCULoQokyCnG0YnFuGmklZ0/O86Vvnuexs3MYY6mWQiyGaq2E4yjqUYlyuYTJLbUoIgwDPC0YDAYoKSkHJd56+xaDfkrJDzi7NM/0VI0kScCmrN67ixYWkxjSTKK1QknN/ZVNer2cJDc0603cSki7m/PCW+/wI888Qr+zSSUK+cqzb7A4WwYKr+nWZgeUod3pk8UpaZ7zhWcvsDg3heu7lJ2AUjVCe5q1e5v0en2aMw3yLEcowWRM+cMCdyMaou96Ox68QijkqJoPB3cHXfFBPXfvBdzZPWUObtGB7BfxLvf6Li/iYEEcsXNs/PT3lTR+jJp6VMzdcWLrRnYscDd63mM3c1DN++7rWMBrfE5yHHAnDj/2gLYPxh3jtezSbwuKrB2CPjPKQcsHYO+92IOAO/EgbvUPbL+lSfLQHqBh6H0Z+2HLA5QoH8jsH70eUn4UxeGI7+f4ecbkBbd8OPDb4yW/OdR2hGseQFDWGFskCmJ3MBipaB5XJW1fnUOapDE5ajL+bxxYj+77gPcplcbk2U6Z8Wd6bEXQibJCgBnGwHQ3NlGhi5CCUqlMr9el6qS8c/5V2vdavHjxFZ58+gm67ZT5uZNcv3eNWrXBbHOZPNe4oaJSnaLdThi02tQq0MkC1jbvM9VoEIYB3W6P9fX7/K2/+/fo9Af81Rx+6k98mHI5oNvtk2eFp1BKUSR3NZZuu8Mrb17hQ4+dJvA82t0Wvh/S7/eoVyusrKzx3Gvv8LEPnaJeqTA9W6O13SX0Xbq9DtoLkUOF1udfuszycpNyJSDpxDQXZvi//s03+JMfOcf8/FQx4dVqOMmHi2/fYmG2gclTuoMBiwszdPt9oiAiSw15nrO+0eLqzXt85KlzuJ5Dv9cjKnso5dDv9glCn0F/gNYOyaBLVKsVK9/GgBHcW7nHzMIcypUk3RSpMvLE4pU9hFSYJCOnWNSRUtDt9AhLAUJIVm7eZ2q2Thh6WGvI0xSEIsstg36PsFzl0qUrLC/N4kcu3Y02mRV4no8X+EgMQlriLMVRLgiHQb+LEgIpHF6/eJWzp2cBQRznlEshm9stms3GzsCe2wGuH9Lb3iIqNUjjAXme45UiBoOYfqdDqVQCYbA5aMcpFg4czaDVISiFGCFxpOD7L73BiflZnn/jLX7+P/zjYAWf+cpz/KmPPkV9qkoSD3jptSs8/egySilanT5b222WT86zvblNc356SIP1C2ENY+hsdymVfNLMFqI1wtKPY8Iw5OaNFZYWmySZwXEcpJQMBgO0coCE9fv3mZ6bRUqPLM6QStDqtAm9EM/zSNKk8GQmCWBxXAdHOuR5htCSQT9GiMK7mvRTpC5EhdJM4LqqmLsZS5In3L23Tuh7NKo11jc2KVejwmOqBNtbLWq1Ot12AjJna6tNc7pJr9fi4qXbnDk1R1QJUVIiRZGaI067VGs1vvSdl/ixpx/DmAQhBEHFwVdFDsN+r4+SLi+/doWFmTrNmSpKQZIPMInCcQt68Nr6JtP1GmkuaHe3qVVLuK7L5noH6Wdcu7zFU0+eKrx2ApJej7t311lcXKDb75FKQcn12Wht0mzMIIqga4RUeJEPIh9Olo+CMAyPHzbhHf98/P7+V589z2/+9qdRUh1aRohdSulBqtHHsck4up3Pkp14tHF2RmG7NLzd9EFDWp0ocoEqqXcWMo8FpPYmTz2wbXD0WHec8VAIWXjs3+cYfpQdpcK5/1keXm58XD2ojh9Um3bKWINUes8+medHNXJU+QO3Z9JG4/9oAd2M0TAPm0eMz1HksMjonGzcGzl5T++7tf9+muO6x55IfuC5e5/2sD13k53w++//jlHBOIf8D8GO4q8f9iM3e+gBxSpfIWJSiIG832WhyZi78dx9kx630bHRIq3YU0/xd5yWctBAui834LB8ARYPVq3au4K2lyoxPuiOAN/4SuWotBnGTgipDo2fGLW7qGT4fyWQxhIGEcIayjmsXb/Fp3/zH3Pt9Tfp3tti+uQjdD2PH/3ETzA1+wiVqdOEtQUWzyzRnD/BZqtPLizVqYjcJHQ623S6xUT4n/3zf8VP/fSf4tO/9Vv8V3/jU4iXX+Bn0w7/8UKTXz5zgkbkU6uW6fUGtLbaKKH44h+8yCOn5guvwt1VjM0JXIXruDz/6kUWZmpEpZBef8Dtu2ucXV5iul6mXi8jZTHhyLIMg+WlN66yODvL1vYWWimWFmcohwG+72CtII4TPvzEGaamq/heAFiUlsRJjDWC7716heXFabR2eOnN65ycn0Vrp/DIDIGgtIrpRg2tNRtrW0xN1xBSFuIuueX+/U3urKzz6qXrPHruRJFvzykmzcakOBq0L7l/f4tqrUyaZTz3wmXOnJ7j/uoG3pDS57ouAovveRhj+b2vPcdTjyyBKr5TaZwgAKk1rqPRjsJYQbMWYUyGtYK1jS3mZqeK+MJuhzTPSZKMcljCWMv/8/vP8dTjS/iBS5pkVMoRpXIJR2k8V7O+vsU3X73I42dOIpUmSw2uVCjhYPLC27u12S7orVqhpMTRktzkeK6HyfPCw0hB5XYdvUMd7rQ7nJifIiyHLC9OIxBkaU49jNBSkqUJQegzM9UAIUiTFN8P+Mb3X+fxs0u8+NrbLM5NE0QBCFF4iIRAINFOwL/43T9gabaCo3WRWF0IOp0OEkEQlgpxIGf4TqUgzRMGgx6O69PvFOCr0aiR5hlxLyXPUu6tbeBojR8Ew+5KsrXZxvEccgNZmiEdRZzEeE5InhXP+4t/8DKnFme5evUWzekaiJxGrULge4jcIpXCD3ysEMSdLlmW0W712drq8dXvXeDDT54FK9na3OLMqQW0I4kHMQLJN559jROzs2QkDHp9njp3iqjqIdE4oSHwK6RJkYPP0RqEptmsUioH3FlZpd/vIaWgXPJpbwzo9npEYYDSktffusHS4jSOoxFCUiqXQeYsLCySJQOE1PR6fcqVMve3NnFdj+1uzPRMne98/wLT9RJRUEI7EpMaep0BF167zomlGZCC3JpCDGunfz0I3B1uk56j45z3Z5fm+G/+wT/k53/pF3dL76PTcZA+xwPZoZTE8Qn7vouIHfrfSOhsZAaLlMVC1Oimjwfu9n8Yb9uIYnmceylSQwzHahjSMkcg2BxwvePbKOPpUY/8OCEjB720Alypned92P2+F6/j8Siidi/4HAq97K9sSMvcEVp7/7bz7obzh/H4uslnuHNFuTt3HF9ascNje6ip1hZ5eCdUOz+gde7aB7TMh2gPnZY5YQ8H3L1bV/k+W/AewN1oYjdugtHq5A8e3O0M1OwFbFAMloVG4f6Ljpcd/X+UVHZywN1Tx5DeyNgK53uh8BxE+RTjAedSkg0VsQ4bkHaKS0GSpCgpIEu48trr/P5v/w6u66K0j/YDPv5jn6A5O8/Zpz7G5maXV8+/wIkzj2LwyWyGcDM2V9v0ejGVUoM/+2d+nk/+ws9T9gNEarBOyK/+D5/il/yEhcsX+ajM+KtPPc7Hl+bp9xLam2067Q5TUzV6vT7pIOXS1TuUfI9LN1Y4d3KW3KQYY5ifbbK6ukW9WUVZyfR0g898+SU+/pHHEdYQBj5hpUSeJTi6UEqN4xjlaPLYEgYBU40KXuAgEGxvbmMyQ6lWQdgckxviQZ9BMmBzu02aZpjUkOcZU5UyWIHWirnpOmEpJEnSQpQjSbh89Q7N6RppmoAApQQvvHqJ2elaobSYpHiupjldY366TlApgdbEcYLNDa4r2NzYxvcD8kzgRx6WHJNBrV7CdTWOo1FS8t2XLrDYnCrUCz2PhUadIND4niYepGjlsrXdJ/Ad+p0OXuCRJBl5Niiol4OMG/c2aNTKZHmGtIZyrUSWGl565W2WTs7xyHIDqdyCGq0V2nH48rde4dzpBfyoSC/w1LlTOK7D6xeu8O3n3+Kxc4skccLrb91gbmGKMPRJ44ROq4/n+2glESiEdNGuRnsOQir6nT7KLaZwN27cRyKKfH5Skmc58SAjKvl4voMferi+i9SKbm9QJI+XglIU8sjyHL/7le/y03/iI3ihC0AyiJFSIlRBP8zSlM52i8WFOn4pAKWxJsOVEj8M+Maz56lVQgLfZWt7Gy/yEQhcqXHdANcLiEKPe6tr1MplnnvhEo88eoJGo8LWVou3Lt+iVilz7+4a2+0ejqvZuL9Fvx9TCj0cR/P5bz7P4+dO8Pbl2zz9+BKNeo1aJSLNYvIsZ2OjxdZGF+0pvn/hEqeXFvj8V1/gsXOnCKOCbhwGESXfIYx8/vUXv8upxQb1RgUhNWkcE4YBU/Uyv//tl/jo0+fY7rTo9XtEtRLtjRjXjYm3DNp16PdjrlxfoTk9xbdeeJWzy/NYA9PTVUp+HeWCG3hI4RCWyyhPEwUK1y3eQRrnYCS9boswqLKxscG1m3eZn2vS7faIyiHv3FhhYbbBvXvrPPPYWaw0hOUyucnBwP3765ycm8balDzLcB1vgsL+YOCuOO+gckef96eX5virv/6/8Yu//Etj135YdiR8OZKWuTOhfp/gbs+eB7h3a4dqi8N7GF/0HNPJeU9mRgqZ7/ddHAi07LEEUt4vpfSIAkeGWYw1YKf8D9r2/s6OLjM+d9xX+sDz93uCR4BvROscB37/fxNw+QDcPUT7owZ3Izne0Tb+VTdy4pg94JiUWCn3TPhHNurEcmHGJPHlnjrHO5Zc2D3S+eNlJzugcSlhYYp4lZF88DjYm7y/0WaG9DfJrpS0xaBUEQMm7N4UB/viB+zRx6SQe/Ld2SHYshgEFiHsDh1jVI/dEQQuYJode2l2+GE3KH1XVnokRCIo3gdCoJQit2aPVPakd29PTJzd9RoKdqWNrSneyc5KLXbP7Y7HzCkpMWLYZAG5cbDCILQhCEto4M6rF/juN7/Eqxcu05yZ48Mf+yhBVCIb5h+7fvUyiycWiNOCznj6zGO4QL/bwvcdTGqIt9tUK1UINT/3H/0En/qbf4fzX/oqP7l5l+CtV/hzs01Wr99jZqZK0u+gnIDuRgtrLJub24Sei9aSQdwn6eW4nqA5XWZhpkGtHLG9uYF2Jf1BTL1SBgPVapksT0h6cP7qZZ556gxGaM6/cpl6PcCVPoiYLLf4XsD0TI12q1UoDuaGjY1NGs0GfhRis4zbt+8xNd3AiXyi0CuEIlwP7fncXVnlxNIccZJQqYZIqXBcj0EyQCmNsIpauYIfBmxvtfFcjeNqHK0JPI3vu3z/tbc5e3oJx3FJ4ox2q0MY+HS2u3iuh8Aw6HXxSyFhFGKxGCuYbtYxaVIAFFyMyaiVokLlMgjQSmDIQRhk6JMlfQSK51++yqmT02ivyMunXZ/A1eR5hhu4zDSm8KMIsgzth0gpSdOYxYUGBkG7PZTKFw7kBkdqbC+lNuuT5RlpalHKIIBms0Kz4VFrVFBa8Owrr9NvJSydnMdgWF9bpVqfIjMDup0ujuMgpKSz3cMkOVlWDPaO1ty4vcbJpVnyPCMzBtdzcbSk2+/huoWoTeAHtFttsjTn9775PX7kqbMYa4nTAR964hSe7xG3u2jPBRRaOaTZgK2tDSrlEnPzhcep1+3veE57/RTHcUnbfeZOzICFQCqM0HS2etg8wQ/L9Po9PvPNF/j4R56i3+6ztNjA0YqtjRaVSkQYelQqEaWyTxT6+L5LpRzhOYrvvPwmy8unOHuiSb87oFotE5Uizr/2NhoBuSSqVQh8n8xk1GemObUwQ56mhArCskOn3cXVLkJkzDTrSAEnmlUc5ZCn0O30yBDcurPKTLPObC3C2ozmdAOTW5SS1BsB7VaMF4VYo7hyfYUo8in7VU6eKOPqIsUKWAb9lDTt0dvKWG9tY/MULSxhKURrFyUdXNdDOpLvvHSJSuhSrZW5d3+T5nSVLE9xHZ/FE/Osrtzn1t0VfJ2DkHi+hxCSG7fucGJxAVxJnkKeWZIkRztF+hWkRWQ7PdwBzJP9AG6S2rnfA7iHj7Fn358/OV/E4P2lX9pXt0CQZklB3XyAeai1tmi2YLff3kf/E0ds48XE3pQ2o4VDIRiJ2AsphtfaP2nfZYFMXnuyzXvPPYipUkzO7ZCQYjCj8U+KnWMH3cID2QFU0fdiB3r2hsDqKM/f+7muNfmuZ/DgEsWcwIIcee0mxVOKBu7+PWRxPrOFoNKDupWPA+6ElMN3OSaoMwRmQqrD3OQ7ZcdTT+xNJ1Ecww5TN40SsmfFYqvSejeDhxjO1XZmYz/8QPADcPcQ7Y8a3E3aXlq8eIBjB4C74eqePaJT3yt+sq+GA8tNXn+fXPExOkchJFqIIqZot9Yd8LTPi7bvozjWsb0rUHv2HDDYHjCBmHishwWl73gBrdlZlZqkYo57D2Hv8z7siVm7q/550EruOLgrBlhFATwlJt3CU4b+2iZf/b3P8U/+0T/k3LlHKTfn+WMf+QjVWhVrLSt37iCNwvc8ypUKWZaiNFiRYcnxHQ8DOK7Df/2pv8Hnv/AFfm7lCs6rL+NdeIM/PzfNT5+cB2sxaY6SgsDVZIni9p17XLq2wtJ8Azd0qVaKHGRRqUy/32d7q8/SUpN2r8v8fLOYvFhFtV5j0E9xXI/cZmSpRXsO9WmPQDjUqmU2OxvMz9T51ncuodwMx4sIw4h3rt8m9DTVeoWN9RZRFIDNuXH7PtNTNTrbHWr1Mr1ujOtpettthC2AZxR6VCohaZrgBS5ZlnPl+h20EtTqJZJuB89z0L4mT1K0lty8c49ypcTaehGTFEYBCzNTJHHC+voWX3nuVT764UfBWr57/k2WT8xilcKJSvRbLTbW2zz30kXyOCP0HYLIJ0lj0mxAlmYEoU+n2ysWRFSR+63fH+BIn3arR+A7PPLoAmkck+dw+doN5mcbrG+2CStVjFSFwqOjyfOCliSEIPBdtltFfrU0SXAdxUtD76Mxhu+ef4szJ04gkHi+w/p6C8d1UY5DGEXFYCwVSzN1lk/PkaRpEVeXQFT2EUiuX12lUg8hh89983lmp6pUqgGe55LnOTOz0wShh9YK7bjkmeVzX32epx8/S25yHO0Mc0wKgjDg6UeWMZkFIVGqyPgY91K+98ollpfnURg2VtcQ1iPyqmRpguO5YIqJg5SSCxeuMtuskSYxMzM11FAFM0kSpDX04oQgisjylPNvXuPxk4uUKxWEtETViHanSxT6uK5T0DJRtLa6tLZ6lEsRKnRAwMmZaeJuoVL6/Vcu0aiUabU6XLq5wtOPLhOWA5RDkYsuSRC5odcfYCx4YYjvh3hBSH+QUK5WGCQZFkGeW2q1Miv316g3yti8ELopRRHlaoUgcOl2C69tkSNMYIyg24555Y2rPHZ2iU6nV6Q3yPo42kVLRZZKut0+WmsqjRAtBV/49hvcvLPJ0lyjoKxmMYYc11EsNqcplUPeeOsaH37qUXrdLp7nEMcxWZ5RLYUsLixRqkS4jub8hUvMVgIa1Sm0Z+kNCm+zECAUbG+0wYgip5cqFhaHgdgT49vxJnl7J68HnbO775PL8/zK3/uN/XnwhjFSk6qax7v+qI4RWHlvkUhHg40JIHQAuNvXnuLTu15rkuECxRgjR15Ddpcad8ahH4T9gMDdH4XtxvEdOqKPpUHYecB7P7M7jxCTZcfMUCzo/mGAuzTL0FLtmcuJnXneu9t4qV1wJ3aOTbZ4dAvFd2so4sJuMva9z+KH1z4Adw/RfljB3Uii9yCq3tgZw5WfsT1ybxLQo8DdqKwQIw/Z7grSeNuk3WFhH9huGF+9FLufJ9iX48plxwJ3olDYnLzcQeBu12tmd1bDRuV2VyiHctFDKWRrzEQ7Dlcb2wmZ2Flw2wvERvSD3O7WeVxwZynaNVr5Gr1rU1xouCIJeW7R2QBXK66/9SbP/8HXWb+3RbXcZPn0Wf7Yj3ycfpLRS2KmGg2SwYCt7W0WF0/w3/7qpzh//lU+8R98glanizUW3w9J44TWVout7W0+/z/99/zaU4/wM9UKgefR7w/Q0hl2vJBlOdsbLS68dZVGOaJSr1Iteaxutpmulun1+vi+x9ZWGyE0pZKPRNHud1BSsb1VCKY4nkOn3aNSL6N9jclyPvuNVzh7YhalBaHvkicZlWqF9naHp586Tbkckuc5vu9RKgfkNsN1XILQJ41TgsDj+TcuM1UuoZXE9T1u3LrHTLMOxqJdF6kkQejzlWdf4tHTJwGB1IpoqMCopKHX7aOUJM8N25vbCAFz802CKGB6qk6aJri+y/ZWmyD0wVo2W23OLS+QZhmPnD6BseA4Gs91C+DkOcxPN5mdaaBdVSTiDkMGgwFSFKIc2nGRoqCJCiTdVpco9PDDCAFk8YAkTfCDgLLvgbREpRJSSqSxuH7hkbNGoFyn8JQbixKCNMnxfBeQbK11mZ+fRUgNmWFqqkhirh1F6AckaYLruQgLSmp6vR5KCbLEoBwNUvLya1dYWpgGBMbk+CUfRypONaepTFXY3moThiVu3rrHVLNGGifD/FgKKzIWZ2sYm2FzgesHfOVbL3H29ALWWrR2MNaSpRmer9nY2MLklsB1CINCoh8Lr71+nTcvv0OtXAjInH/9LRbnZzDGMtNsIJUgtxbl/r/svVmQZFd63/c7211zr6x96equXrANgJnRkKJmwqRIi6bECGooSyRlSxEOK4K2RNNiyPaLXxxy+MGiQ3bIctiWnxy2Q2LEaIabhuAAM5jBAAMMgAa6G2gA3ehu9N5dXdW15X53P9zMqqysrEJjFpCMmK/jRmfde+5Zbt485/ufb/lrpNBEYUySpqRRTLFWzBWwTDA/M0mx6KOUIAzCHNA5Ns2dJr0gxHV9XnvtPaanKn3LVP4dpXHC9lYT23X4t899n5/96af47rn3eObMMvVKgVa7AwLSLEEiMdJw7r2POHliESEkL3z/PCdmZ/nOaxc4c2oht8wLiZKa77z+LivLMxRLLgBK4H6/AAAgAElEQVS2sajVymw83Obe6hqW0TiuTZzECPIY1DjNqRwqhSKNZpMTJxYxlkWr08bWDnGc8Nwr5ykXbd794C5+UVAulsjSmIXZKtPTVeI4JggCjNFsb3dx+4Tv1VIBpXKAbFsGx7HQ2hBEKd974wOOL88T912e4zTKrdRJStiD1Tub+L6PMTZaZ8RRipKin4hI7XlnDK8v2QBQHDJpjr02CvTyOodj9YZ58HZJnwfrxscs3gcoFIRACnZdKEcti2PZ3A8dy0FL3F6dQ64lWYZAjjH87cWU738G48YxtHaNs2L1Fe/dWoYJy/tQ75NCvEHs2bh2f7zZAn48IkZj0YZEKnWA3mFPhjeexe77t1t25EnIMfUPJM0ypNZjrx9lnQyjmEwKjMqTDD3KRv042a9XjpC/H9GnYSPB6CuaW4mPduf8wTgJPz35Cbj7FOUvKrgb3X0ZC+4GQEoMTxpHpNU/sCiM4+MbA+5Gmh0/IYzuxmUHlpfh2x4V3GUj943eO/qcxtEk7O1QDixzuWWAbHwc3pFyCLgbbv8HA3fiwHedkSvoWZbTE1y5eoVvfPXfUPEc0rDLX3rmGc6dv8Tx00/TFRlS5cBpZrJKmmWs3l+lWCoSxxHL88f58pf/Jsa1MbbNg3sb/Oe/8zv88XPf4N+/fpmJ29eYEBLPc0jChLAX9i22it9/4ftcun6b5blJbt9Z4+TSDJaRWJ5Fp93i2LElNIJGo8NOo4UkT8iQZgm27VIsO3h+gagXgtCYPtFzu9vBKbqQZJw+tsBLb1xkqlxBWxmlko8xLmmcYOyMh+tNfE9z684qpbKPshRGWQggSRKkhOX5GWzbwbENX33hNb7w9GmSJMJYLqsPNrEdG20ZlmdmUMoghCQl47nvvsXTjx1ne2ebSrXM5maDSqmE0RKtFLabWzZfe/MiM/UKSitc10FrjURwYmlu9/2K4wTLNmRpQtLpEmWS2/dXebjRYn5pmiSL8SyHKEyxLZtOu0sYxnQ7AXGUoAUE3ZBvv3aBqQmfXjfh29+/wInZOo5riOOMty5eZmaq2reiRcg4AmPottq02yGenyf4WFt7SMH30I5LLwyRQuO6AuMIemGHmYVJoiAkjPI4KyUEakBS3QmxbAdj8qQKWtlIrRFasjA3SdwLMbbBuArLc1m/u45r2dhFl147QEuLm7dWqdYKaKUIegEg6bZCSoUSAoUyiiiIWZqbIU4S0iTbTZxju4Z2u00YhZTKRYqOy627q1QnyqRpyjuXbrB8rMzK8gKZlNRKPlJKtGV4uL6BY9t4jkdCSmOzQxQmdHshpVIBqQVRN+TCO9dZWJhESGg0Gzz34tucXp5jY32LcrmA6zms3n3I8eVFtps7bGw2UErg2jZxGOIVPaRlMFmK51rUqz61SomdnRYz8/mGgNGaNAHLspmZmeLWrVUmJiuUHE23EfCZJ44TBB201kRhhMgyFqYnsD0Hy1YIKXEcl163R71eIY1DavUalm2RphlROwMsnn/pIk+cXEHp/hwiBcaxefuDD5mvTyGU5MnHF5iYKDFTnWBy2mftYYOVE3MUCpqHm9uQZVSrVe7dXWd6ZhZlaVqdJnEYkcQpSuXUEO1WDykUX3vhLF965hStTg9tDJ7rUCwXWNt6AJEFOsb3bLQRxFlM0OtQKhVJ0wSRQbfTpduPs0QOrx0fD+4OnZgPu7oL8Ob5jX/2L/i1X/87+8DGJ5VcUR1d80cU+R8Q3O0/Nwoqj7BuPAK4O6y9PTngynLg2idWrY+w1B0VS/4XQsaA/sPzLByuwx16/RAZJE75pE9OKLnP1fNHA+5G9djDx3EUuBsezbBFb99x8LY/V/ITcPcpyqcN7rKPmazS3IF9PA/L0G9iEJMlssH5PiARgkT0f1D9emSWc4ZJ5G75XX9v2L0PMbyDkmdTFH2AkwxgkVJkUqLSdM+nun9ucKhsKGZs0MTuDuhe9qdhq5YQAqmGdknFyDH6LAYLfP/z8L9s12mb3UxjgwxRqh8IsQ8A7roEyP6aK8nS/cBuHx+SYDdD8XD/8gQS++MId9sAEkEOSMUYID0yvt3nLUBksp+uO93LkCYEQigcS/Hu+dd55fnn+PzKk6w8/ji6NI326wSBYGp2kvsPblMtT7K9dZeJiTIbDx/ilSZwHA/f9cnijJCMUrHEnRs3+cf/9X/Df9xc4xcrJX6xVuDcxY+QSZ4d8cat+/Q6PYRK0VqSqYQTc3MsTNYoFHKus+mZSaI0RWpNe2MTY9sIJbAdzc5OG6UkfsnnrfNXsLXm9fNXKRjN+uYOvmuTRjFSKjqdECMVSmiuXLnN0uwEt+4/4PTKMplWpFmCkhB0u/S6udXutQtXWajXWb+7gevZ9LoBz79ygdMnFmi321iOIkWxVK9j2xrLskELPMfOE514DloqOt0e3V6P1k6DJ1eOobXBsTVhkFKplhESenFAnGqUFigUYaeH7UqMVjS3WmjL8Pvf/j51z8f37dxSZmlQkjiOQWlIIQlD6vUCWSzYaWxjW3bfQqZBQLfV4+7aJsVSzvlmOy7LM9PYxkMbSbXkU6pVCHoxjutTL5ZoNrvESYrt2HRaAVKBMQ5pErGxuYEiQxsb7TlsrD7EaJmTlScJcZTiOC5kGUYKbJ3HWNy9vQpZSioEju8hlaTX7ZFFCdKTKCHpbrfJki5usUAiBMbSJGT4hTzr4vdevcjxYzMYI3GMwSt4kEKWZDxY3SJLU8KwS7HiEsVpHnfXauIX3NyqGceAIInSPNul4+RE7lGENgLPdbh7e52f/sJTVEoFoihBG4OxHZIoJu50+OYrl5ifLeIUHG5fu8vsbI0oTrh67R7LJ+ZzPkCtmZur8fD+Jq7vYHmGx1cWkSp338xEimUUQRjj2DaOa1GtlLj44XVm61WiOMEv+qRJgqUNL3z/HX7m808gtMIvuCByoBqnGWtrm9hGE4ch9VqVOE4plnykzHCLDlJIlLFQJgfP2sotWkGvSxKF9Ho9vJIPUuLZhjBO0CKvd2p2mu+8doGJqsf0TBnXMqRZjO3YkMGJpVksN+dEabXaeF6BKI5Q2qLTCnF9hyyTlIpFHNcmE+AXHN5550NcpSgWfYyR+AWPKI65dv1+Pl8axWNL07hFG8+1ufrRbcpFH6lSClaZze1tpicnQCUIobhzY4O5uRooTRRFSK0gFXzt+TeZm6jQbbaxXRuh5O5subdEin0bdI8qAytVfs/ejP23lufIPvdTKK3H3ncY2Bp4UAyMdLmFcegYrEtZ2m/qBwN3B91N945xfdufXOyQBXVf+SMO9qKg8vT3w66EAwV8MN6hOkesc8Pnh61/Hzf2sf0dqXvw97j29rU7sA4mCVLkeQtE/51Ih+rYx387JIM3cXAMl9ntw4GG9/S74ZwFe4BmoIv1j2wvD8BRMpwDYZAjQRxx7TBJ+2MdlB2Onfskx+hzGj5SuTfGjL08D0iJktle3OaIiH1v3yFHlvaty3uHGASGIpBykG8hPz45/P3h5Cfg7lOUP2sqhFE5Msj1yN93tnsMgOGepeew8ruN5mdGCuYuHmJ/6V3/Q3YDh7MRTphxFsa9poYCl0d27DL2UvYPZ8walznrSIuaOFhuFGTuC54W4xfQYXccJeV+Lphsz5qW9T9/3L7aHmn5YDEbtiLmfvajcXkAqUkRCpIoQmZ54hdHGf6f/+1/59rlu/ylz32B6fklLt28j7ErSOWgibh1+yKXPrjC3bubHFtaYbpS4YPLV1g6cYIsSnnztde5+uFV/unv/i7f+NY3+Q83blK+eomf8zzeu3qFpbkalnJYnKvnLoCuxfRklVKlQLns02h1CXsBaZJQmyhx7r0rTNcmePn773NieZ5vfvcCn/3MKR7utPA9Q5oJ7t7fYrJewdiC5aUZPN/m1PE5er2A2dkKxbJDhgKZ8tLZdzmzvEQY9bi3usmxpSlKrk3Q6wKgpUWn0wUyCoUCXqHI6ePTpElErVqn1Wpx9r2rfPGzT2CMpFgs5MTTAoxrkYmMJEppd1o5kfZ2E8eStHq5tSAOQl4+f5luJ2B+fpokTfjwyl2qlRLNZps4TagUCmRJj24QUPQ9iqVi/s5JhWUMRWOYmChj9VPK/7sXv8epuemcNFwKSKFYcdASbNvDLfqQpP3U4pBpQ7vZZeXkMYQUvPn2ZRzbsL6xidGKtbUNpusVsiTBdgwxILSk0+iiZG4dcHyPF75znulahXKlSMH3MJbJKR2EwCsUsByLOE0x2qC15s7tNSaqVXa2HuZgxLYo12r4ZR9bK0QCvWaXcx9cZeXUMd743iUaW20qZZ84jVhb3cR3HLI4xkhBe6eBZdtc/OguNd8jjhJeOfs+KyfmicMIy7J46fUPODZfhxSUtHjn4lVmJ3P6A6EVWZKiheH8O1epFBxIwfZcMgVZlJJlgs2NHSrVIsZIer0QtERKm689/wpPPbZMIgWnF4/xre9eZGaygKVdMlKM0SwuTPPG2YvUq2Wef+ksT545wYO1h7mV2LZRQpGlKcVigUvv38Vog9Iy55hTGbaxef/qTWqlIrZj0+t00VohNTy5spBboro9HMdGSUW3HbD58CEf3LjFTL2CNjZRmHD2wiV811CqlWg22hjHJu4lXLh4lbmZOlJCFEY5lxgSZTsYyxCHMfcfbJIm4BU9LEsRhD1Wjs9ybGkWIRTGc1BKsXZ/g3ani+/lNBVK5e6pnU4336SSkq+/+A6nV+Z44aXzrCzP02p08IsFkjjF6JRK1cexLba2moRhmGe4nZng8pU7zExOY3m5G2mWpmxsNfrzpSKJU3zPphf1EFnCpY+uc2Z5hm6QW/iuXL1FtVgmSbo8dmKGLNEY25AmGSIF04/T25s5s/7fw27/g7l2zKLA6LUxc/XZ1zF/+UsjynX/OCr+ZxjQjC4IIy6N+3xCR9v5AS0mQojddWnASbe3lg2toz+IiWPkntF1+cB49+1ujrfOPapV7jBwOKhDCLFXZgAWs6yfKOjodkd1iXSgF2Q5zVByyIb8yFsxtk8HdI3DdBkhkDpPgLXfhffRrHWjxoCjLGf7NvVH6j+qnkeRwSa6GKLJGNfX4U1+GLxLPx6XSjH0LNNs4OmU5Dome8mJBt+j7L8/u2P5EfblJ+DuU5Q/b26ZR8lR4E70F2QxBEJ+eHAnxpUGQLHnMvFJwN3+ciMT/sjCsW8MP0JwNypH9XHXqifFHgmoknl2skGdj0h4ugfuDk7cuSvE+D5lick56RTcu/Y+199+m16rw+knPsPpp59ip7OD49lMTc7y4NZVirUyftnFkoozjz3NysppMhXR7HSZnprh6ofX+If/5Hf49e11Tuys8ytTE/zt5UXCoJf7s2eauckJ0sRw4/Yq5ZLL3bUN7q49ZHYyz6549+467129y7PPnsF2LIRUbG02mZmuM1Uv8+Ib7/D5xxexlOTcBzc5PlOnFwRc+OAGT5xaJAxCkjih1wmIohjXtekFIVpZJGmK69ucXJhlc71BoeRQr1ZQWuYk60GXQqlEsxFiG0Wx6JKkGZlJ2FzbIY3zz6WSz7H5KYQA2zVcv3YX33XRKkOYfNf5/LsfUa8UaLci3v3gNqdOzKNVTuKsjGJpaoL56TrdTpfcciopV0pYts21O/epVyoImeAUCkghaOy0eP57Fzh9YpFOIycFL1V9hBSkScLC5CRBL6TdCUizjFfOfsDpk4t0mk20sejFPWyjWF/f5huvnOeZp04hkxSRJnlyEMvg2A5zU1O0ez3euHiNlaU5bty8z2S9zkuvn6PiWgg0jq1IydCuy1y9xB+/eBZPK+7f36Baq9Budbl86SZGSr739nscm5lG2bklY6JSotVsIZSm2WgjhECLjF6nTZZkKKmJ0phqqYDIJHPz01iWotRPz//uB9epVSu8/OZFTi0v0u0EbG7sEAUJD7d2uHTtLn/ti59FmjzZy9bmDtuNDnPTNbQSSC0o2C537z5geqaO1BopEr723Gv8/Jeepd3rUCgVSdOMXqeD41kYYygUXRzfIgxSHMdje3ObQtHhxOwEIFDGpt1sUSxq1ta2uHLjAY89fozG9g4PHmxQLRcpFDzOrCzy+8+9ytLcBMVygSTN6LR6hEHU/w7ymFHXc7Ftmxe/d556ucjJ49NIY/A8iygKcBxNEud2eMtYWJbuzyOSGzfvc+zEAieW5rG1xe179/F8m9mZKgXfcPbCFebrdZTUSBSlgodla4TIOPv2NRbmprh+/QGOZ9BkpFFIqVwiTgJUH6Rblku3k2d77HR6fOXrr/L4yXlcz+Hsu1c4Nj9Ft9cjDCPe++AWQqRMTtaQUrOyNMWVG7e5t75N2XWoVis0mh2K5SJh0ENoDVj0WgHFYhEyOPvuZZ567ASuJxFpShBEXLh0jc89fQbLaPyiS773kVGuVtDaMFEqcu7DD5mrl0jijKAXUqkXsCwbY2ycgsnnTaDTahPGEdroobVh3Gx70Lr3yUTwr/7P/4uf+vKXx199BHB3cGEZWV+FOvTaDwPu0r6r/vC5cZ9/IK115J4fFtw9sjzK/aNl+rkAjooxg4P6UTZ0f9YHeD8yyDEO3PUrHyQQ+fTA3ai98YcHd0KpIX3ocHA37poQw75ePzoZl3xv9/chBpyDfX6+fiKbYXfgn4C7v6Dy5wXcST7ev/wwWoFMjCSKHZnMxlEopP365G7PMjKp+m4B+bFHW5Cn75VDR6pk7l4wBtiMcx+ViDxjHXvm+cGkm2ZZnrwlY9e1cvBp4Jsod6/sd6kcK2PA3bgJfrAzM07SXVcBwSAyfjAfZLL/xPplhj+P9mxQTyaG6A6ygbsru0ec5d9DliUomZDqDFKdZ56Mt3jn1W/zJ7//FZZm6pjaSdxSBaEEkoxOo0XRL5LGEaV6jSgKiKOYW7fXcRyXIOwQRz1+57/4J3zlj/6A/6i9gXjnDjfXH/Lk6YXciqQkSZKDLG1yfrBrN+4RRQmNVshkrcyx+cm+O4NASUGQdKmVanz1Wy/z1PIiQSvALzhcvPQRT56YxzMW0lYcX55F9BMtLMxN4hYLNLeatDsh2ljYtsO91VU8xyZNU7T2iJOQu/cf4DselmWBrQiDGEWCV/QRytBtB9i2JIgjIEMLQbvZpTpRIkxCHMti/eEm5XKBTGqqtTJBENBpB5DmIL3g22Qio1T0maqXsFxJ2ItIs4Qbt1aZnZlBakG326FcLWAbC+0qoqhLrVAgTkKUlDQ3N/J4RWMxW6ux+uAh9VoZIVOMY8iikHanh18osLaxzeRkFdexqJc8Wt2A6uREvuMeZiQoHMticaqKshSO7yCUyl3iXIdSqchX//RV5idcFufrFMtFarUKmRBsP9xm6dg0Bc8hTfNU2ZZSZAk4SjAzWWNqaqL/nQvOfXCD44tzVAsuaRrjFksIBFGSYRwX6Wp8z6HbDjAFD6Ucom6A0aB8G5FJ2s1WHq+YB+RhWYbFxSksy1CvFtBaYHsO33njfSYKRaanqjz7zArKUrx17jIrS7NoBZP1IrXpOkqB6znYyuGNdz9k5fg0UdqBCJYXcloDx3cI2hmvvv0up1YWCXodspyHBY3iK994hTPHZxAiwXYKbDW2gRQtBQJFHMe4juGZp06QJOC4NgXPoTZZRRqNUIKV4xNUqxXiCIxtoWRK0AtwXUM3DCgVS3zjxdeYnyhw8sSxnB/QctEyy92oM5DS0GoH+BUf17eII8iSjNfPvk+t5KMtgW0M3bhHq7XDZL2GVjmX30SlxOsXLrO8ME+3s8Odew+olstEIXS7DbTSCAT1ao2rN25Tn5nICeRTiZKCMAzIYkm71WL1wQakgtW1Te7cW2dxdpLF2Ukc28F1PWQmaDdbLMxOYjs2YRDQ6fYoFTxWFqa4v77J7HSNnZ1mHmfqGHqdiOs37nF79SHb2y2MhpMLJ9hubWNbBmMZpNDMz1SIkwBL58T12rWxtMPq+n08z6fbCVienaIXCjYb29RKRZIkodfoEAbbJEFCZ6dHoeIhfYWFw/aDBqVqgUxlu1zge0rxwJq3Z8X7eEwxrFDn8rnZyTyD5q//nZGio7kA96gIZCpymp7sYEjCGPvO0Eex//gxyICaATFs2RzsOGZDj+CQ9secHjjyDHu5jCuvDhnXsHvksDvlAAQdcG8cc21w/yAcZEDNlAmxmxl4nOzWPeImudv9gUVw/NM4IAMdTolc6xjV5wYuqAf6MaRnDVuQsqFr445BiEwKB9wnR+sf7Wd/gIy+k1LIXF/L9mgaBlmac8+iwy1y/UoHgz3yOTH0uuVqlkAJiZTDluZ++UG+gXRI//skP5HhhnaHPkgUmLtzDtQ8KXKgR5Yi+26eaRKjBOxSaPVdSQeu9Wn26EQNPwF3n6L8eQF3goNuDp9UDtvrGZukZVxClcMsUFmWg7PhU0MT8mE7UQerGT++jMFOaLbv3L46P8lzGQPuxvbniCrGxcQpKXML3qM1faCeo0Yg+hN7nEm22jG+8sg6Ad/6g99j9fotVlae4Jkv/CyXbu2weu8+C4vz2LaFtG3CNEFZmjAOyaKMLE7zWLIwwnccfvO3/0vefuFb/NOTS/zGyhLvXb7OM4/NQ5owO10njiIuf3SbyVqJMIowxgCCou9iGcXcXJ1ur4tf8NjcbmCMoVgqMDc9iUgTlqcnsT0Xp+CRJCGLs9NoZdMLuvgFlzTJ0FKzvvaQarUCwM52k6mpCTYebnFndZ3jywv4RR8pNagOItXEIRhXYLTOMwpqm3YnxFgWm+sPibpdMlL8UgElIIojtFKkicTzi8RBRKVa5f69h+xs7OA6DsooCrUCMoOtzR2K5QKdVgev4GE7eYxNu9XBsm3qExUyYtK+K16a5P22tIWWGt3PGOq4Fm7RJ4nzrJKOZ6Olodnu5ETkmUFIi53tFr7nUK0WaTUDbt5aZXZ2iqy/ddHrdfB8QxDkdBJe0Sdsxuxs7mCUwDISoTKiKGRuoky1VqVWr5LnmUy5fuseTz15kiwBpERqRavVoVQu0thpUq4UiMIYISR+wUUIiaM1xiiqlSJBL8JxNKQxSqTEcYgRkqjbo1jKOfKiIODDG/fZafWoFCp8+OFt6vUScZyipMRYeQbNJEpy97uCS2u7x3MvvcUv//xPUa15lMseEkmagJEay2hAYDsOyIyPPrqNEoJC2eHE0jRSarS0SZKcBDdJMixLk8QZKytzSKH46h+/QcHW1CdrdNpdjs3X8f38feqFXfxCEaNdojBFZprrd+6wcnwWYzT/+usv8bknT9JsNLl0+TbT0zWyLEZECrRkbX0Dz7EImh38sodQhk6ng2UblpcWsHwfoQX3767x7sVrVIsFjGXxweWbKCGZmqkhUPSaMduNLQoFh/nZOuWyj2U5NHfaFIoFSl4JpQ1xHCG1QApNt92lVPS5dusOTz95iu3tBkKA59kYrbGNRZYmTE6UUUqQRgnNTpNrN+/xvfOXWapXMUbhuYZiwePYXJ3HTi8ipcByFNpIms0mURzh+zZrW9tUqiX+9Te+y2ypSn2iSrHsUy+X+4pNitIgMkkQBtQnK0xNVGm22tQnijz37fOsLM7jF12CXg9tBGEUkaWSNBUYo0miGKUlNz96QLVU5c79NSZqBWzHpVYrkSSw1ehRLFTAJPkGkC+JeymW8vk3/+5bPPvECt1eD8e2dufxKI76scn9OXWfon7E5Msw2Nl//m8tz/Gb/8f/zZe//CtDk/VB89yel4wYuTLeU6N/5ehO/YhlTLfHes38IP36OHA33lbDfkvWmOQjh7npDV876KGUf8g+xmL3Q1sTR/sEu5kckzQ9aPH7OP3uY1wSlZR5VuExFsqjLGyHgbvhMJC9QYy8qyLPYJmmCbn36MfkLz30XR/p04H7+pa7IeXxwAZEtr/8j0tGn2+W5e6cuUtn/7rIO5QkaX/3/tEI2X8C7j5F+TTAnRiN1xojOcD54d7YwW7PgfbHgLu9nYu93cLRSSAnmMxJOXeDfgcv/FA9R7W37/whE8PuruYQmecBX/VPIo8I7kZ35uTQ59H4ONG38mVD1z6m6X31jLs2LHk8SYqIQ1TS5fz33yLoBDz51GNMzSxyb22LQqWGMg7HFhfp9bpsbW/hWDaW0oSdLkYbskRg2w7n377Af/tf/WPOfHCev7+8wM9OVnjl3Accn5/GNpp6zaNaKuL7uTvhRLVEEIX4ns8rb77HmVPHyAR8840LnFmewfM9rt26x/KxBZTWKC1J05QwjCAV2K6FUim2bbO+scXXXz7P8YVJCr5Lu9XFthwsS7K52cjpCnyXxnaLYtmnWinl/EkqRUlNGuXg9IXXzvHEyWO0Wl1snceZffv1izy2skCx5GO0wvMdvvqn3+PE/CSWo+l2Oly7c4/pqRoAvW7An3z3POs7DXxL4/suQgh2thpoS6OUoFQq0u22iZOIOE4plUtkMQiREQQhnXaell0qidIxUdCl2W7l4CFLEFlCqxNi2w6Wk8cUvfjy25xemcPxXNbWNylWHPyiTafbwnE0Ak25XEBIgevZSKnwvDzhSRTmnGy9bsi9+2tM1Mvcu7+G59oorYjCEFLFH3zjDZ48s0Sa5guL49okacafvvgWp04voKTi+vW7lHwPYykazdyV0ViG18+9T7fb48TxJV49/x5nji+ytdWg0wnznWeRJ0gw2qLT7hJEEb7n0QtC1jd2OHfpLs8+sUyp6GG7Bq0UQoCxcoCcBAm2ZaGMwnVdZieqaCWI45gsTZFSI0WecMUvuMRJjLIMxiiKrkOpWKCxGfOHL7zBYyfn6HR3KBRLIMDxXNI0wbIcOp02YS/BtwxKZZQrBbRl41iaXhBgOw6WrYmDBInga994lZPzk8xMl0AKkjjFMZparYxRkkqpwK2bq/i+y/sXPyKTUCkXkEmGsTXKSOIowy+W8piNJOP69XuUyx6e4yCAD27eYW6yRrPdYXF+mjjME4SsP9jA8zvWHFMAACAASURBVBw838uto2FMr9Ml6AZYjsWVa7eZnqmx02gQhylaaVzHxrYNrm2hje7Ts2SUK2W2t3Z4492r+I7D9Tv3WZibZm11k1qtSrlU5NSxBdbvb4KEQslDKYntWFy/eQfXzV1EW60OYS/i+xeu8ORjx6nWqgRBzOPHj/H6u5c4sTRLEiVkwCtn32NpYYYskxjb4Do2RtukpFSKBZI0Znl2mue//y5rDzdYWZpFoNHGEEUJF977iIW5SV587W0mq0Xmpqr8/rfe5HNPnMzfG6EIg4BGs8t333mfz5w5Ra/XhURgWT5/+M2XmKw5PLY0j+vaRFEGmUCZ3E1eKbVvTh0AjgEOOGoZOcpgdvfeKn/5V391LwZnn+Vu4M7RtzilGUKoPKbowGbpEegn27++/lgkG7KMsX/9zvYp+of3YTjOfF/VYxWPvY8Di9bu+joUHzdqnduXYGUU8A1TL4zoBmMzeh+VWOUTgrvBRvbAADo65IEON/z/QHKrXnJ0CMeYhzhMqzDQPw6Mu28pRAj6NPL79J7DwJ0QYp/OtTeK4X7kf+dtqqFzux3c+/EMt7Pv3MFxHQXuBtRUw+M7cNOP8Wcy+nxHaU52O5ANnvMeCMxdOpNdwvdRwPdJwJ0Y3/BP5FElCsMf+wMU/aDcPyuR6d4QUyke+VqW5j7IUmlkkgcmD1xSRsseVucBOcJcv+vuclSZR5B91A9HIbG+7MbSib24unQI3AF9cMu+a+NEjgx9uOzotWFR2uZf/i//nKWJAqcXJphaehppF+iKEEvZBN0e3VaTiWqZTiBYf/iAdy++w9/8D/4G7VabSrXKf/KP/hHfefklLvxn/ylxHOPZZjdwWKpckb380R3OrCwRBQ3iRPHy21f50mdPU64WETJjc2OHiYka91Yf0u32mJurYynB5naLWq3K1laTiclKn15AsL3TolIs0mhso3VKmjq4nsNOo0mtUiZNY0gF3375Aj/7xcexXY+gG7Kz3UQbg+u5/NGLb/DFp1coliza7ZiN1Q7HTtZxChZS2rx34Spz0xXKk0WyIKMbhngln8ZWA8dSXL52n4mqw8rKCkEnIMlSjO0gZZRb50oloiTBsgxxEJHGcZ6gIUuRRmGkod1pYjmaTiug0ezxyluX+etfeoZOJ6LRbnH69BKIhCRMsJSV63EqI2g2gBTleCht0eo08T2fxr1tSpNFUkshULmbVpqxs9XANhZeycszbgY9XMcQBGA0kIRI7RAnKUIqsiSm2+nR7QbMzEzR7jSwLYsPL9+j4jvYRYcb9x5wfHEWrUFpCwub1MmwpGJno4HvudxdXSVDcu32Gj//Vz5HkkW8ef4SX3j6cbQtScKETquHWyySRCFCpmjbkCYCYwRxlkGUkKQJQS9AS5so7eL7Pp1uD8d2SJMEqQRr65uoGOpTdbAERmniOGHz4TaFgkccRzi2y/bODn65gKUlSsEHV29TLnhMVcv0uhF20eHN85d48vgycZjywrlzfPmv/jSO79Prdrh3ZwNUytLcEi+9do7PP7VEoVhEOx5p0CVOU2zPJu4GhL2U7Z0GpbKHZSykTIjS3F3M8r2+V1pKHEWEXXj/8g2OzVSZODZN1I2QMWCnCJFx9o2r3Fxt8td//hk8x2L93gaFmkupUiLOMlbvPKBSLeK6DlEY0233cIsOJAnS2KRJxs3rd7l5b51/72eepLHdxC46aKWxHYs0Tfnoyiq2o5icrOS8eRkYrUiTlKgX5pl34wQhNF/95ts8dXKaz3/2MVZvryGV4bVzl/hrP/c5bl2/z7Fj0widEQQRrmPv6mNJnNJqdZEodrbbLK7M0m72eOPcZU4tzzE3VySJc9fSKA158dV36bYSfuGLz6JNiJCKP/z6OX7p55+kWikDESKzub+2xsREmTAIcZwSFy9dzpMy+T7tVhNLSdDgGoHQhX52Ujh7/gqnTsxQLZVZ23jAZH2O1Qf3WZicJrMzGus7KK3QWqBsB6Ec0ihho7XFwuJsXwnbsxwMg5BhHeswK91R8ve+8xZf+erv5fO4HAaR+9cqme0ByjhNkVLsrWsHfD6GFP1d39IfJ1HzcPv9dW0X3A0BjyPWTNlf99Oj1viBDK3DSuYZggdtZP31dBfcDd82BICOunagb4M+9Z9lMgyAxrlDDvXhUWTgVvlJ74P8acdJ3M8wenj9o/KobajdPYb9zwD2P4e87Ag4Gyl/qIwr+yjv65i6Dxg7BEihEDI98G4N3rksGary6OyCP1JJx+nu+76X/c8g649XCLnvM4DjOI886/zEcvdDyqfilpkdTu55VBaoUcmpCfI588BuzNC13TJpeqg75UCO5NUTYndy2bXwDd13WF+G/cJ349oGfu39OL0Udn3GB8dwSuBhOoPcxXq0jf3Xx/lV7/b7Y2TYfWZw7MYJ9uPjsqH0vZrc0iaFOKrpfvtD1/osBhlpfmSKKAp5/o9e5PrlC/zSz36RkydPI2vH6aWG7e0dXKNIhUAKgef5kOV+4lGQcuOje2w0mnjVCv/gt36Lv9vq8N//8i+QJTG9bpd2LyKOI5TKiauNZbBUbmWzfC/PkJdmOJbBsg3KSKI4Jk3hvSu3maxVcGxJFIWUylUajSbFgk0Uphit2N5pkkQhf/LieU4dn8ctujiORUbGn3z7bU6fXCCLIoTIWJyfxHIdgijEsl2M0Xzn9YscW5jis0+cxHI0ju9R8BwmFycIexG2cbh37z5T9SpRkLuD+eUCSQxffe5VPveZE6RhytRkmSTNMJbhu2ffYeX4HEKmKGkIg4Qg6uVE1DKP0/i9515ma6fJ4mweFxaGEWkqSOMMWxsuvH+dz59ZoVjy6QVdapUiSiqytJ8h1iiSNEFbCmMVwEhUP57IINBKYTku59+7xuLcDDs7TTzPpdXpsrGxTZakFMo+yuSUG1Io4jgiy1JSkXOFWZYhjUHYGaSG5777NieP1THGJgwjpmZq2JbCLxcwQmBUhuvYWJaNVIIo6CIy+M6b73BsfhbXsbhyZZWnzixw7aM7zMxNMj1ZRpDQajbJAMu22dnZptftYlkGS1tkSUomMozQxHGPVqPNjVtrTE4U8dw806TjOjkZep+moFwp4Zd8kLmemMQRUkreuHCZUyeOoW2DNhrHc3Acg7BsCEPq0zO4jsmzRsYRju2wsb5FteTil3zOnFii126RRAlrd7dI0gQlJd1eB88xlAsFLNciIUIrG22yPNFOkkCmePXdSzz+2BK9ThclNHfubVEueWitCcMIoRTdToDjWviujeUbLK3p9Xq0Ox2CboaxMuZmJpmfKZIk+aaJV86taxkZnXaHF159n5WlOUjBWIYkg7AbcPPuQ4q+R7fXZWKyQsFzeLC6w/TCNK5rEbTa3L+/gVEWtbJHp9XC8VzCIKXZ2CEjoReEWHaBdruFX3KQUvHU6SWqpQJaSVzfxvMc3nr/Go8tzyAR3Lh7j6Lv8NzLZzk2PYntaBqNNkEnyZOXVIs4nmFrawfPdjh1YgFJSiYFSFAiI4sFJ5fneOLUAratOPfuVZYX5jh5fArHttC2Jggjbt+5x8zMNC+8fI6luYncxTTLk3y0Ox2u3r7HzEQF27cRwkJrQafT4s79B6wcm+bVN69x6tQiWmTEcURjp4uQis3NDZRWOK5NL+xx+dptqgWPOAkoeUWSKAWVZ7obzOX5/wdB3FFWurHrQ5a7Z5qf/tIIsBud4YdoeFQemD1cvtNpobVmnIVsj66gbzl55A7uxfyJkXVSjsR1Z8NBdwdHeYRVb8/CtVtk0MZwxugs3Y1hyuOS9o/vgLVpxDqXbySr/bF3B7q5Z4k7QIEw0DnY00lUf92WSbJL67Srs3xCy93AaseujnBQ9TgMcgzrGLvnDiFv3+eOepTlcbh+MTj69AoDfU3uz5UgR3qZiIE30v44vmE9bY9CYXfH+8CPaJDLYdwxjtdu1DNrYBXMsnT3ndrNyTCw5AlyuqwxSTUPsyj/MDJsOBtk0Byc26/77adjoP87kAPdVcDAAqq1eWTL3U/A3Q8pn1bM3WHpdA+YgMeUG0wCw0DtKJC2e254oei7faSwf0LZBVR718ZNKLuTQpbtlh8ch8bqDeobqfewc3LYReDjQNojrn2fFNwduH/gErHvWfSpD/oTz/B9KePXZSkEEXkmJiJQieS3f/PvE3V3+Ks/93O8/fYHrDz2NHahStRu8fxz3+Z7L73MRKlMtTZFEqX889/9n3n6yWe4fXeVSrFArezyP/3L/5VfXbvJ3z29xNbmDhPVMmRQq1VAwuvnLnFicY40S+j0AopFH9uzef+9m9y5t8GZU8coVFziOEQKSRRHGFuRBBnzCzMYI9BKk6aC1y98yKnleYSA9bUtyuUyhaLH6RPz+VeWCZo7bTzf5qnTS5BkdIMQ49m565QxdNptkjig0+7x3vXb1Eseaw83kAg8z0ZIg1ICx7Z5/qU3+cxjyyAzer2IO3cf0my3qVYL3F9/yFS1jLFcjC0hi0nShGrBQwowRhCGMW9cuMzJ5QWkUXTaXRzHoeRYTBRLeK7Lg9WHZELgOjZSCOI05djSNOWqT0pCkmVUJsp9qov8N5JF0a6FpdcJydIeca8DSKSxyIQiTRPKJR9jVJ4u/uE2lYkStXqFUrkACtIENu5tom2B53s5DYHMsykGUYRtK9qtFiITPP3ECnGUoi2JsV26zR7feesCxxdn8Qse240G33zlEk+emSElT0EvpOL08gICgVN0mZ4os7WxzZXbDzh5fA4hwbEsWp2QNFXYvkWv06bR7FCt1UhFzhOktCTLMjqdLo7jsbGxw/vXb1OvFvB8i82HO7z29mVu3n1AteBha9jZbmMZC20UvV6PJIkp+y5vXvgQJVNsowiCgLDby2kGZEKShli2TdgNsCyNsiQzM3WMY2MsRYbI4z0rRWxLUymXMNpCSkmrHTA5VeXDj25Tn5qk+bBJt9vGdR2kcRACSraFrRTPffcCzzy5gutZkMRIlcfSBr0elu0gVYrjWERpSqPRZn19m7m5abRKaLaaeI6N65X49qsXmJzwcTyN0i5pkuBYmlPHZrh7f5Xa5AS9IOTtdy6xcmIB1za8fvYKy0szBGGXUrlApeLmv7cwwrVN/iwsw3PfPcsXnn0Cx3eIgohqpYLreCgt+eD6FeamplDa0O0GhJ1uP/tshG0UURAxVStQmyjjuj7VShHbcZifmMw3nPsZoQpFlyDosbnVpFwuYmvD1186y8xUiUItt2batsXW5ibFUomH6xu4ngPA7HSFOImwbM3megO/6COAarlImsD8VJVuL0DKlILrUS0XsbTm+NIsiRgAiPw5SynxHIcLl6/zc198Nud41LkqWvALPP/qBWp+icnJCS5dvU3RL7G8OMft2/fwLAunYJEmGVEUYznWgfn78MVi+Nrh5Qbz+W/8s3/Br/3a395V9MZLH6ikSW6lGSpmjBm5bwjskO22M6BB2T1xhMumkGI33f8wMNtfe//yYeBqqN/j79y752A80p5KIMj20/k8AmjaTTIy0DceUTsfF7Ixjlsu7WdBlEId1IOG6npUydjjtxslyTgK3A23c1SSmHHjGwdkP06ONGwNg7Mht8+Pe5ajhoJhOeq73jMMHNGp3fv3xjjqnpkX2w+ER+PyfpTgbj/YzmMUx/32RxPnDD/L0e78BNx9ivJpgbtHTpYyrtxu8pNPBu52X62hH9ZBDry9G8dZ7gayl1VzTCtHgLsDsXNH/Pr2xvfnB9ztljnwLPqT+sj3lTEe3CWAiARZr8dX/r9/RWfzHr/2G/+AhcVlEuXw7LOfIUgzdpoN6gWJV8nTla+cOUFjZxNbSZ584gy//Vv/kNOPP8t/97v/A4/feJ+/NzVFqVwgjCLWHm5Sr5VI0hghMoxtmJ2okSYpTsGi3ejSaDSxtGaqVuL6nVWOL82xtblNuVxECo2xLNIkpRdEiCzfPddasNPo8NjJRRApUhmiIMR2Db0oV8S1hCRJuHV3jXqtTLvVJcpivGKBXruLBrJU8AfffJOnnziBUimfObNMtVLBczwgIwpD0kwSBl3iMGa6WqZQ8DCei+tYFAoeURRhO4bHVhYo+AW6nSZBGPLK21d57MQs29ttjFZEcZ6Jc2F6iiAM0UajTZ6WfmKiwtbmDpP1CmEY4BXc3PUtSdFGoY1BaU0QxljGQilF0IuwHJc0TYmDHo1mG6MUt26sMT1bp92N8IoFlMlBojISbTQPVtcJexGWa+F4Np1mm/XVTTzXAwm2Y2FsD6Fygu5Or8f2doPyRJmo1yUK8ngpIUEZTa8boE0OSkqeQ7VepdfrUSn7nFxZJOlloCEJ8wB4pQVBGNBpNvE8j7AXc2JpBtu1yNKUKIwQCN5+5yozk0VkGnPzzjqz03Ucz9BqtrEsjRQS23PQ2kJm0AtClhZmiYIImSnOXbrKL//sT1Eo+CQp3Lv/MI8/SFKQGUZrPM/j+u1V6uUCWmlefOMdlmeqCGUIuyEiEWRJiG3ZrK9vobKUKEoAgcxSlFA8/8pbzFTKxGnE1laLF773Pk+cXmSqXuHOvXs8fmaZLBW8/951LEfgOBa20WRZTKHo0Ytinn58mTiJMUaitSFJM8Io5msvvs7JuXmkTNHKwnIttNZ5TKjKaSXK5TKtVo80TZifrqG1xrZtkiii3emhLRupFVMzE5AlGCMxgF/wiXoB9zY2mZooUSwUyBKBkDkxeZJGaMfN3X0ymC65uIUCSIESgp3NJlkm0MpQr5XzzHH9LWzbcegFAY12h1KpSJpCqVYhk2CM5qObt9nZaVItl3IrsuPSanWxbIHvexitMMbQbgc8++Rpvv/We6wszva5qhS9TgfXcwmCkK3tBsWCl8fdKsXWxg6vvHWZJx9fZvPhNnEY0e50ef7N83zhqTNIK1eHtTG8c/kaU5OTOL5F0uvheB5ZIkhjCHsxx5dmSEmQAnrdHkpp2u0eU9USD9a3USLlo/uriFAwUSlSLBU4e/EjpiZ8skyQpQLj6P78O1jnjpr5xwOtw+RvTNco/8IvjnfT2rcCDNa9TxBzN3Rtdz3ZXavlmLoGt41uBj86uDu8b4eDu8PvB5Hlm2FykF7+EfUdrdTHPNOj+zJc17hyA0+cfqEDffukMf37a9p//pGwxSE60JH9+KRWxkcEOYd+R2P6+AODu92qPhm4G/eYDhg+fozgblQyxuvwR+n2PwF3f4byaYC73JozBA6SZNc9YJC2d/C3HJwfuraX3nZv9273vv4xdhUb7M4M+Tzv0hD070tEBlKQCVDIfeb7YdfLfoX7d336x7iAXXHIwRDQ202PPACvu1bBHJQdRX0wev2wf48iwzste0HzB8c0OIYpFIQQ+1w2M6ERIkGlkKUGpZrsYGFHCRsfNfi9//d/5Jd/5Zeoz/8VhM5QykeSEHYzXn/xG8wUDaG08J2IIOhSqvlYqeDW3TU2dlq8duECv0mL3zi1RBloBz2azQZKwOLCHKkUWJZi62EHocBxLXaaLWzjYyzFaxcvc2p5nq1Wg6XZGZS2sF2LJEp5uLmN6zoYaWi1GtTrJYzRoCRZkmI7Vu62oVKcooOQiihIckXNsVHGUCxYGC0JkpT2dpui75IhsDwXhOLYZBWRxminkLvHGYXl20RBl1K1zNr6JoVyhT/+k7d58olphNJcvXyXer1IGAbU56fQRhI02yRBiOP6IDJOH59BOjbPv/Iuzzx+giAMsFwH0hRbKoJeOycvtyyuXLmNbWtcz0JbGs9xSfsudoKMOM4BhdGaf/unr/HY8UUcxyZLEhIhyBJBHKcUfQ/Lc0ApXAPbG5ukcUwaZyht9TdqJA8ebDNZr5KlKUkc4foGy7JoNlo4joVShjQKkWQ4liZJcwJ0qXMuPqUlaaKJ45Buu4NCs7OzQ32qgsgktqVJ4gjjemRRB6UtOo02juvSajXZ2tqiVp0gSVJW1zaoThfIUnjh5bM8vjJP2As5dXoBocgB8eIMQTsiDjIyJEYBUrCz1eHh2ibn37vOz3z2SYRSaK1xXAuV5L/cKx/doer5TM7VcTwby7YIOj3iJEIpycqxZfySgxAps9Uy9fokQa8NMiWONXGaEUURjmth///svXewJtl53vc7oeOXbg5zw+QdzOYMLAASIkgisRggBpihSLssynKVJUoqUpTsoooSJcumaBqiadMliUSRtIqAQRAgsFgEYrHA5tkcJu7knXzz/VLnc/xH33vn5p1ZEBBV3nfqq5npPt/p0/1193nP+z7v81RDhIEsa1Eog6d9xkd7QUrS1DC/0OL999/GtcvTuIFmZHSQxfkOSSfl+PlL3H3bfrK0pLJGgpQehU0xWXkfzEw3SyFyZZDa4djJqxzcPQGmrD01WYTrBWgpac0tEFSrpEmEIQJhcD2PsOJjbYrSGpNLpqdmkcIQtRM83wNhCDwXUxTMzLcIXcX4xChJnDI1NcPTLxzlXbvGMEXO7PwsFT/EcwIkEisMUScmiTM8T/P8628w1N/HE8++zoFbdpOnlitXZnC1pCgKxseH6URd0jQrdeisQTuSRr2KsJaZhVkG++sUWUK1Vi0JmCjQjkORafI84fTpi9y6ryRsylLDw984xK37d+MHHlpDNfTI03ypjjyhWvW59V07mZ1aoLevRmZSqmEPu4dGSW2XqJVRqYYU1tLbU8UmhiPHzjI8MogtLHmccPnKLIdePs/efUNEzZjWbBvP95GuA8qQ5V20luzYMchI/yCj471cmZ5lZrbJXbfdguNojJB89clnqZqYMAxQro80poT7A9dzK5vOANvOD8sOo3Y0v/5nX+BDH/pBtmJoKeVuyj92Q25n/cy45igbhmRtQYnl33xhZ40pNVfXBE+vH9MuyRkVm5K7rB/buoPfoK2RV1jS2V2B8S1DIe1GdM/qzJAwdg39/o0uCrfMhG3WfOmzDDtUxqzQ/m92vK0yZZtQ6VzfZ5f9qo3nsLq/ZcmG5fNdHscan26d/7WZT7bmcyP+4PoMsDUbjrPicy6NaU1mb90Jr4ZibnvtxVq47OrPdbTW0jWU1zN26+GZq4Fe6zN4m2X5btbk8nE22ym2XlhvlslbXvCt93/VTSzuvpvVt+/YO/b/O5NKlXVVb9OULSOtqRJkypLnDXqinH/9G7/LqycO8bO/9A9wwx3gxMRxsvJCUjLjwfc8wLHTp5DScux4kz/+1MO8+vRxHvnSX/EL/91/y/wX/h9+/9ZdZEmprXb60hRDff2MDA6WFOASHGG5cPEarueVDIZSUG9UsRiOvfEmH/m+B4m6CQN9vXiez9cfewEpFN04YmC4l+mZWWbn5tmxYwhrIYkzZqaaVMIQayyXrlwlixKUgTzOqNVChJJ0uhGXLl1DK5fFxYjQDxkeG0QoSRIlXH7zGu3FBS5cmSKs1ZDAky8extMakxVUqlWaC23GdgzRabdIiwzlaLIspxW1QUAnTiHNyeMU5Tn4tZAsz0ronZSYzHD3/kke+daLmByUlUxNz7HY7eD6IY7vk6Qpu/btoLe3RpYV+L5HvkTzLLVCOg7dboKUkjzL+ZkfeT+5SZlfmOPKtWt0uxGLi03qjSpJmpOm2RK0SOG6LnlWQjeKPKfd7qK14rmjZ0nTlDhOcD0Pz/XptLv09NTRuly0CQlJmjA7v4AXSBCGbqvDNx5/hSzNSJdo5Wu1KlJBb1/JemmMIc9yOp2EPE5ZbHZJ4oSwFmKlIKzWePnEBb782AukScbkxDCyEMzNzPOeO28lTqHR10thLAuLHbTjkMQp33r+Nb70jWdwHFU6bsaWkNZGlYfuv4U0j/jio08zN7PA8y8d47bb9jA03Ms9dx0gilIEkieeeR2Tw3OvnsRzPIq8QKgCCnC0R56XbKslsEDwxUef4fKVKdrtLmElwGaKR795mDDoxZNVrJS4voejBI2ekFrVp9lu0jdQpd5TJc8L6o0q33zuNT7w7tuIk5isSDh19hI2F/zFF5/liUMn8H2NLQqePX+Ovzh5hv/6mSP82Fef4NOu5JdffpX/6qnn+O0z53jvn/w5WZJz8eIVlJZkaZPPffU5Qn8YjKDIC9I0W4HAzszNo7XCDwOuzS6AlBRLdZpxmjI+NszO8REW55uElYDB/h4+9sMPYpQgy2FgaBihNVYalCdJkhgpodluobXgPfe9iziNqFUciiLHFAWep/EbPkNjA2RpQp6kzMw0aTUjtHKwFvK0IIozbtm3G89zYYnc4sixs6RpvlTHUmbEd00OUakHXJudJYoivv/+gzz36nGyLAMEjuty5MQ5AKwVtNoRVy/PMj/XIksKKmEVx4e5zgzVMAQkp09fLoXenzmMUpKhvgZFXhClBY7vEicxD92zl7iTYLE8ffQkfujiuy5pVFD1aiy0YgQgpSFLC4YG+nj99JucOXOBOE6IOl1++N33It2Q06fP05qdxSpZLixseX99pyYEeFNXEEKxVoD8u2NS6W0JOABMka/5/JdoxhaY1WwZ/5ntv9Tr+I59Z5YXBXnxN+c+fCdz9x3a9yJztzEutirCti5yUX5h/b7l3LNcFZnb5ChbRVA2wzuvUNiu2rQCnn/ridCYYgUqsiFKxcY46WajXhnVCux0m+NtkVH7a7etCrlXmVgf4Vk1JpVbUqEJHIWOFvn8n3+KU0cP8Ymf+zmGJkZA13CcKu3pyxQWDh16geGhAUzSJjaCyb23MXd1mk4yw/mLZ7nn1IuMXLzMP3j3vZw7fo4Du0c5++Y0lcBHLemVuZ7L9MwCQVAlirpo6eC5HlEcU60FKC359nOvcubiDLftm6AbxWXWFMvu8eFS6Np1MIVBybJGTGqNUpo0zXn56BlOn7tMf0+NoeF+JJLmQotjJy8wMtSDH4Zoreipl4yR2nHotDsIXdKTh2HA3EKTgf4GYzuGyIsMqRT7JkfJsoyLl6fo6e3hW0+9zo6hBlHc5d7b9lLYgrm5jydnagAAIABJREFUDu+6ZYIsL6gEIafPnKcaBktkPQLHVWhHI7XmG4+/wL7xYe6+fT+u5/FnX3yc9z14O/OtFkJo5uebVCohNs+RwJcee5mD+yc5d+4y1VqVNMnwA480zgBwfQdjCzzPRUuJ6yo816dW88nTFJRDlmVILMpRpJlBaYfmYpew4uO6JcnGvbftx/HKejFbCK5emWNopI8kSXFcp4zoKoV2PVzfQ6vyfnIczYFd46RZUjI8aotyNEpZOlFawmPzDIHi6qV5ZucWCCsB1UaFi29eKzOTWiNTePDeg7iBgxWWh7/+Igf2jNHoraC0KpkwRYHNLKYApRR7xofZv2sUv+LTajbJc3j4W89xcM84fuCRZQl3HNyDAMZHh2l2unhOWfv49KsnuHhxmsmhfnp7G8zOzhN1E8bGh7k8dZnFmS6Vis+Trxzj4P5JsjSnWq2wb2KIWq1SShfkOUXRRbmSsKqBAsd1ybKUPM9pN9v09tTRjiKoehhrSJOCRx5/jg+97y7yokDpshC+r6fKF06f57dPn+IL509z2yd+jms7Jtj9kY/xB19/FGssrnbY1VMhMtBsx1jP55d/+b/nqOPwQ7/6qyy+63YevZyz58c/zPjHf5B//J8e5mSjj9879AoPX5rlz89dJXDgifOXuGdwgLHxAbIkQUmFUKqsP1QSa4uSUEaXtN9JkqG1xvUdsrQUyS1MhkDSacVUKiH9/T2kWYxUirASUq/4uL7LS4dPMDE2VEorCEiTUsbC93x8L+Ta1AyN3kpJ4oFFCouxBQUCPwxJ4hTHcfEDH+1pPN/Hq7i0Wx1GR4YockMQeowM9qIcies5vPb6KUYGBzl/6SoDvQ1cx+Ovnnqd++/eS7cblaRPyuIqweJii3qlRpbnuK7DwX07EVJQq1dYmFvk6VdOMjHaS6USUOupkSQxWjvsmRjFDzTffvpV+io1gkrAxavT7Joc5sq1ORrVKmma4yCoBC55YQhDH8/zqdSq9NYb+J7mzTffpLdRp5DXoYLr3uRcn4W2gZWtQkl+YHwY/e73bTl3rAFabuhym7lrPSJmE4KTjV9ZIlFZNb+vmR+X5nOxROqilcasoHi2m+NuYo5dJa+wfm5eqbUSSyzU62vul0wtt13u8kahh+uyNzeUulmu7y//A2/BNbB+2/KvsRmIVCxna4TYqJO7vN2YNQglVo1j3UDXfrbLxG3lD274rl27b7NnYuX+W2q5Gr667jDrS1WWa8+WBa82ZD+Xfp/VshsrUE+7TAx0/WfccD+J6zV262+nNcQ+b4NcZTUseFnS4Hrtn9mwbTvbWM963W4mc/eOFMJ3aN8LKYQNBMjGsi318fp9q/9/I1ICm9n67y1LGohVkE2zdt92ZkyxwgS2lSzC6l42G7Vc2r5MAay2uZdXyxX8TbHlMa2GnIgccuXwwqNf46Wvf5m/+/d/maQ+QREJiiRCBBaSgosn3mT0XZOksSUrInSRo8M+funv/TKzU1f58kd/gKmpBcYmR0g6LbwwZG6uSU8t5NmXT3H/Pbfgu5qkSIg7MSfPXKXVKvi+9x/g5BsXCF2P/qEGjqsQqozeu56HdjRJkiCKAu1ojIXjJy9gC8H+/ZP8+Vef4RMffi/SlczOzGOMoVoL6LS69PX3IFRJV2ytRaAR5FyZWmBifBCbZ+RFeT1mpmYZHhogzTOU4xAnKVio+R6YjEK5ZEmEdhRySZ+vPdclCCWXZ69Rc+r0DdW5NtVioL/B6TPnObB3N7lNWGx16OtpIIWDcCFLMrSj6cwv4nkucVawuNhlcLgfKLXufN9B2CUosIWF1jyeW+PrT7/I3XsnuTq7wH133cLiYpN2J2FkpB8vdDh3/gqTEztKx7goePL5o9x9YBwhJDooiT2sydCOwhhBkRnSJCWo+CgteePkeVzhsGO8B6zi7NmrVDyf/tE6QCnPkJUCqV4YUJiCPE4Iqx5TU7NUPQ/tKpoLKX1DNTrdNhLBY8+e4IE79jEwUEegaM1FKGU4c+kKd965n9nL89QHylrCLMooCtCBj/IcZGFZXFjAc6HICiqNOmnSoUgFLxw5zXvvu50iz0sIkeNg8gSkW4qaey5xK+aFV9/ggQcO4DkuzfkOPYO9ZFGHLOui/QCRS5RWPP/Kce46uIvPP/ocH3v/fehA4OLihQ6vHjvNwf27wQq+8dTzfOi9d5PkBVJJfN/FZDlKV7CyvCYIg9QSqR1OHj9H4PlMTO6goCCKulTCOu3FFn948ixfPHeRPbt28tk//UN+4zf/Fa8cPUq3m/DZn/5xJCGFzRGqFI6vegFSwGJrEcd1eeaZw9x/z0G8WkhnfhGtXbywQhQ1MQk0GnUkGb/0yJfZH1b49oWL1OoNdk/s4Df/x38KSYf5hStM7NzJz/6dX+WP3n07CMX8zAKDQz1LmbMCm2d0Whn9gw0KkxInlkrVQwo4e/IKs4td7rhtL51um56ekCQztFsRjhSEjQCsJE1TQi9gbm6eRm8dKyxFVjA71SSseYRVhyhKwRgcV5HEKb0Dg8TdBEdrPvOlJ/mBB2/H810q1YAo6tDTqJGl1+co5SjQgjzN0FKTdHOSPAYscSdhYLCfNI/wPAclXYxQkFkQEVL5XLh0hYGBPhxXc+bURbCWgUaNM1dmuOPWCYTUaC8giTp0Fzs89fwx3v/eA3jS5cKlafbuH6fT6lKrVXn98FlG+hs0empIVQaPvv7UK/zA/bfSTjKMyegbGqXIusTtaZSuUh/tRxjF1vBDu+7fG20Z6SaE4Ocfe4HPff6zmzZaM+dtKHy6GaDVRtmC7dqtp1wvNy79vbTNcR2yNNuk//X29sa5nrZ/tSRSsc1icv28v566fytbf7zNpARu5Jg3crzVx1r2W9abXEWuVmzRpTVmWz9nmwFs1tnNfXcLH3A7W+3brZe4WrOPJdJAKVeuz3oBkM3kL9SaxR0IdV1mQ27iV24lwbFaouOm5DpW+t14LZeZd1fvkxvgzTdnrh/esAP7TubuO7T/LJm7Ml1Vipuvo5Bd3nf9m+sjPNvYVi+pTV8CS1G9Esld/lnRuXnraJFdFZ1YjdeWQl4XAGfzjN2ylfUJdgV7vtqKddhsi8WKsr8Su70K27/0nbwoSoz4Fsd7K1t9zBt5hFdqB63FdT0sghe++Q2+/NnP8OADd3HrA/cymxjOvnGO3h6fQhXYzOHs6TMMjQU4bkicFTQ8zb/47X/L1Fc+z68d2MMndo4S1nx836PIEhzfozAFfuCgPU3oazqtDp7vkUQJtVqVnkaNOO4yNNRHxfeI85RGo07U6VLkOUE1REuPqNMirPgIP8DkpVRGb73G0Eg/WkuGeyqEFZ8k6uIHHtVqiO+7dKMOjXqd+flS7FsrzcL0PL7v0Wl3S8VrBK7rEne6BIFLlioUOTPXFliciTl1/hI7BntLaQdrOHbyIiYT1IOQxWabWi3k6IkLzE136e0NqdWrOI6iOd8m8Fwc32N+pknoByRxShRHSAEnTlygt1HHC33SvKR3HxzqpbXQohK4SK1QUiMdQTvq4IUenheUDIndiD27x5hfbBEGPo2+BidOXmRicgQs9PbWAUNhCiyK4f4e6n09CASuZ8mSgmPHL9Df1+DChcsMDPTSbcdIIZBK4TmawaEGUZQSVnz6ehs0m10cT5cZQeUSdTs4XklSM31llp7eCkVelBTzvk/UjQmrPq12TBD6WCRvXpih4Zei7FEcUal7aO0wMtIgK1IQJYyyKMAY+MrjL7F31zCiyEHJJckBF+n5pHGKwKHV7HL24gx7Jkd5+JvPcnDvJFbA/EILheTQayfoqXj4vqKvp0q1EiKMJai75HmGsZapa02eff4ke3YNUZiCHaPDKCm557Z9SCXxggDtCHIE/QN9LE5PsbA4z56JEfxqgDUwN7XIN599jf17d5GkXYQoyjpIUYDVCClxHY/XTp0n0vDpUxf5v89P8dXpBW7/xV/k0489QSUIsTPTfKiA99Z6+amDB/iZg++iOd8iqAQIJdFC4BhLUeRYCUVhSKKCibERwkoFR2uk1PiBz9PPvURFV+jpqxBFEXGW8Ik77ub+oR18eMcYP33wAD+2dy+t51/mV/7Dp/h/v/JNjp84ywfefR+vyl7UPQ/xM5/8d/zdu+8gTVOeeeUYuycnOXL8LFmWMbvQYmS4DyskqSno7Qno62mQ5wmgiKIuYRjy9AvHidsJI2ODvPbqaeJuTJblPPX6MSZHBiAXYAUzs/MMDTSwQuB6itcOn6O3VsPzArRQRHELm1omR3vxA82lS9PUwoBHHnuZvZMDeE5AmqTMzM5RrXnYLAerWVhoUa25uI5GSYcr0zOcvXyFybERTG5IkwQpcxa7CzhOSBxFzFxp842nD7N7Ry/1algy8LqaoYFeup2IMAiYvTJPrREQxyl7d46yMNemVq/Q2/CxSYzyfKJuxtOvvcFt+3ahXYXUitn5JvvGhnF8l1NvXmTX5DjzMzN4riYIq5y/dIWBnj6E3gxGuflMsdr3Xq6bYRWZwt/eNYbznvdvNiGsmbPWVtusng3f+rNGVNyu2y/s9Xq8dT6CQJAXBs/1yIt06RTLWXON/7qSHlkumrPr9r111sgu1RQvn98GANKqa7G+zmyNTMKG63aDtj7Ttj4juIqvYP1n5dy3qrFaabKRHXGr9mKT+2bFk1tVF7itb7EZWkssIb1WznOjV7XeX1JytV7A2ntkuS1SbltH91akfatr9cxqf5DNfb/VGS0llphX10lkSVZlPwtY/2iscCmsv9dWJYTXJ4ffKpN3XYak9IWtAS3VyjGstRtYMjfrc3mbMRYl5ab3yTuZu++hfTczd1tlq9hOVPw7wfwuR2KWu7yRSNZ22cCVyM6qyOY2GcfrFMjXt20bHzQldfJmL7t8BWayBKDYLDK5ZG8rEraJrY7gbdvnEsxEOy5pHCNcDzfu8h8++UkOPvhe7rzjDkwSMzc3h5DQbLcZndwFKXz0oz/G//H7/xfjE6O8/NLLzE9f4ZN/9O/5/N/6AO04ohK65EVGxQ95/shJ3nPvHWgt+NoTL/BDD92DkIIszpibbxJ1U3r7AiphgOeV4sjdKMP1XRxH8fxLxziwd4KegQbGGvI4Zr7ZpFGvYqVC2rJeK6xWKdKExcUWWilq9QpZbjBG4Hk+nW6bSiXkcw8/xW2TE+w7MMbpsxe45ZadICxSa0xRrOiFWQOf//qz+NLlh95/kGq9yqcfeYKPPnQXrWZEWK/Q11cHrbGFIY0j3jx/mYk9O+nMz1OvVxFKoL2SLj/LIG51CYOQF4+e4JadYwwN95KmKcrxUVITx13SJEEIWS6Ki5woyqnWAqwpSKKMsOIzMzvHYP8A2nOw1tJpdgiqAUWeY4xhdm6RHaPDtJptgtDH5AYkuK7GmlLHSmpJkRranQ6e64GxKAVJlqKUpsgt0oEgDClyw9HjZ7nr4D6uXJ1iaKi3hM5qF2MNnueDkFy7Ns3QQA8z12YZ3DFYCoVrTZ7AG6fOsHNimFqjRrcTkSQZff09ZEWKMAGvHDnCPffsxBYhvmNJkgTtOXTaGRcuXmVkuJfAC5CeRGOxViCUwhQWx5FkhSFPM1xHc/7NKSYnRxCU5C/WCrSjEI5L1ErQrqQbd6hUQgQGV0uiKMMLQ7CGTrtNpeKDdbC2WBKmLTOT3U5EUAnIkwLtuTzx7Cvce+dBAt9lYW6Bvp4aKEnc7eAHIcZAp9OmUa+AAaMkzajL33n6MIUp+JN//7v8o1//FyRJwm/cdzd7BkZRssxOSMdlcXa2JAABtPSZnZlmZKIfKRRxklIJfJJ0GYFQkhigBNbkOJ4mi1LiKGFubpGdO8cphCWNMjCWsFqjsAlYQRpbgorLiy8eZmZxjg+8/8ElHSRLEsdoP+QXH/4S3bjDH/yv/wv/5Dd/i986MM7kwDAmj0iSAu1ItHZZdoccz6Hb7uI6iumpNoaUvv5e8tzQWmjSP9hAa4+oG+F6Hkop4ijB9Uptx2dfOsL9d+zF9bwS5ml9XnztOA/dd5DZ2Xn6h0KUDGnORwShjxMUGCNoNbvUGh5ZLJibXUAgGB7tQ2B47qXj7J4YodZTQwq4dGmayZ3jdFsdTp69wO237kE7iqidgCqz0tcuX6PILUODvXTjiItXFpmcGOLsm1fYtWMHjZ4K589eZqC/H7/qMTM1S6NRJUtiqr0VMAULswvMNxMmJ4cwBTzy7Rf44HvuwPN8vvb4K3z/g7dy5vwVPFezd2IYpMTxXLTnkFvLzMVLTN6yi8JsB8Fc+76/Dg1j1QLiOjTvHz/9Gn/wmf90kzPMzTFCXp/z1tfdmZV9621NWHLFOTVIVb5ry/4UdoPreWOZwhJaWGyOKtrm/LbKzikpKW6SKXPZVs5ri+/fqF9ws5m7rUxu49dt1W6NvVUmbhvBcbOOJ2C9oPtqW+PnrHsW1mdY12Qst8mEbXe+N2OK6/6vNeuu+apzWS9i/naydett9aWSskQore/TGFMyay9tW/7/attuDDeTuXuHUOUd+65byR74jq03awqQgu6Fs3zja1/jwz/xt7nj7ntZWGyTJAbPCZFGMDE5itCa2akrfPrP/oiJyWHiLOXLX/46v/dH/5FHPvZBgkbIU68exXM0YVDD4HDPrfuweU63E/F9996OUnoJHiRxHYcT567Q6O0BpejGKXGW8/zrx1GOYGFxkTsPTOI4ivm5BbSwGAO9Pb2cvzCF6/hkaUkEUhhYXOzSN9BPradBYQRK6jJ6rEoGRyEFP/rDD7L3wA46zQ7NZoTUDouLTWyRoSVkccSrr51ES8FPf/QhZFCgZLmI+Mj77qOwlnY34tFnXqG10CRPYqzJkRTsv2Uv7bk5+gb7SLIEpR2KglJCwHHoH6jjVV3uPriPoaH+laiZECVDm3YVjd46YVhqmvmBT6NRxXFdrMnRWuI4sqSRt6WTZ4whimIsZbzFdVwCxwPg8WcPE3dSvvTYIaJ2SVIiEcRRDJR6fn/1xGGyrCDLE7qdDq7j4WiX5kKXV187Q9SMoDDESUw36uB7Lt1OhOe7tDvdJefLUqQJ/QM9pJlhYHiwFDaXAsfRKF9w2217QClQmlpPDy8dO4d0FI4XEOdt7rvrAJ6ssTg3X0oHKBepBLawnLk4Ra0WEoQeWkuSNF3i7BNE3YijR08hTIbnSBSWXXuGUU5Zd2GNpN1NUK6m22qWGRcJnuuRxAVxJ2fq2jxKKaS0pGkCQKvZXSpMtyRRRBpnZEm+svgvmTMF77n7AIGrUKLU27t8eRYrQC+RuKSZ5eyFKYyV/A9PvcZ/88xhjtzzEL7rMGALnC8+xu899D4+9aEPc2B8F1BGgT/7yGPEUcRjz7yMF1RJOoYvffNRao0AYSVohXIdoiRBeRrlCLRWOK4miaNSMy0xxFEKQjA0PEhWGIyxLMwvElQ8cmKslXTaEU4gmJ+b47Zbb+Hd996B6zvMziwQRQmu72LzhH++71b+5EMfYfjZFxFS8M+OX+AXn3oJ11VgIEtz8txy+fI0JssoCoPjuly6NM2ly3MooYijktSkVq8irMEUCY6rcFxF1I158dU3iLpdtAv33r4Pz/PwA6e8163h8twiV69N8erJsxQFdNoxX3/+eSwRncWIqJXhao8oikjSmL7+Ko2eEKlKJ+bug3toNKoApHHG4ECDhfk5Hn3yFW4/uBfHdUFIwqpLGAYYAxM7dzC5ZxSv6jM138TRkk67zYE945y7cJmz5y5wcWqWw8fP8PyLxzh0+CQvvH6cIPRoLrYpjKVAMNjXQ7fTwRqD1gLXdThy/BwHd40hFdx+YCeekkR5hlDQ6TS5duUyGktvfy+nDx9ZitDfaD3X1kAYgN997538/r/7P29+0vgemrVm4wJIyKWs398Me7sLu3fsHfvrNinEW5b9SCkpir8+mOZ29k7m7ju073XmDtZFQLaqr2N5s7ouUvpWto0Wzg213Q6TvW6fUWpLbPWa81uOqKw7lARYl6VcHY0pViKnZe/LUbjvZu2dUWpDFHAlQmoNCsBQOij4dK5d5huf+Y+858M/TLV3P81rFymMwXNdBgYHeOWVV7jt1jtodTsoP0TkGe1mh3Y75Z/91j/nF6KM99y7F991wSoycoy1+CLka4de4Cc+9BBT1+bxAo9aPaQoCrAOWhlmZxcJfB/pQ3uhQ71S49rcAr2VBn7VBVnSHHdbLZQSeNUqWVxgC4MtEqZnmzz1+mk+8SPfT3uhzfTCPJMTQxTGUgkrZU3SEnTCmpQstXhuSNRJcHyD0ppXj5xgz/g4jZ4acRwRRTHtOGd0ZAitBEWWoR2HVrNFGAYgS1hXX38drCCK2mitaTY79PU1yPMMJTTGgONprBTkRQ5G4mjoLMR4VQcpPJKkhUZjihxVCxGFxbGGTpRgEYSBh1WKPEnpdLr0DPSAMKRRArlGuQJTWOI0InRDTpw6zy37dpaLC1dx+tQFdu0ew6QW13MwNieJUtzQQyCZnZrlsecO89Ddexkd6WNurk2jXiPPLdeuzbF7zyTGpiXxEJIoicpsl5QkcYrnuUxfm6Veq+E4ktm5efoG+jl2/Dy3HpiksAXK0VAIkiTC913yvIQZzS+26OlvoLRL2mmSppbp2Q79jRA/1DQXIgZG+2jOt6iEAdZavEoJ8c2NpTPXwasEBFUfYXPyNMPiorQg7uSEdQ9LRrfTJfR9ut2YbpzRF/h08giERFrFtdk2u3ePksUJ33z+FT74wD1AqcnV7rRp9Pp02jGHDp1jbEcf+/btIMsT8iSnNthAFJbZ6SkGB8ZodWYQXUlltEHS7fDUkVN8KirIC4NWiizP+czHfwqpC1qLi1SrPUhVZtBbi4toqdHKIUlihLB4QQgW3jx7lXojoFav4gdlRjfLC1ztY4Sh2+lQq1UpclPWbXbbeNojz7to18dxNFlRsDi/QL3RwFiFNGCkRaLIkggpCoR26HYSGj01sjRn+toUQ0MDIBVSCU68cZ533X4L2LLWLktzlOvxS488zK6JSV4/eoxf2TnMrjBgdLCP1944xXvuupP52XnSrAAyevsHuXDhKkP9FfxKpfwdtCaLWuR5gZS6JBcJHIRQJLnBFinWlCQ5eWao9lRozXd588IVdu8ew3E1UkGSxthC4zoahCXNM5JOQhBWaS60aPT5eF7ApQsznDp3hT07Rzl09BQ/8v57+Orjr/NjH7kf7UhaC20q9RCpHYwR5GmMVGALgdYeJs8wRYZBY/OcvCj4/Dee4eM/+B6ksKBKyGYeGaRSdOM2oa957MWjvO/uW9DCIUsjaj29vPTqSRqBx9jEEFq5pKnBdTWdTot6bx1TgJQaK2HmyllC2aC6dxS98k5fPYfciBuwDDsr235ldB8f/5mfWj+LbPP9zeQIlnqWElPkK/OdtNcFwzfICNjrbI5CyLfM4r3tOfMG+QCMtUvZ7y3GsWr8N1MXBxsRO0qWASqtN7KIble7t10W70Zr/ODGMnib2erzXp8tW9fw5ju/US6GTVBXWyLHltqszuRtN+71/Sh7He64bdt1gQZpth5vQXGdiMXe+O9gl7KBUgqKfO2zsOxzSim2rudbQmqt2bZJjd9626z+752au++hfTdr7m4Em30dW72xoFuom1jYrenjBkayadv1oOqtJ79l/aDVsdDlFmvOb/khWn942ICRX/3uWOlrhVVp8+1/nVZsEIS9fkQhLLkEIyHqZmRzV3n4c5/hJz7xS7h+lcuX5jG5YWx8hDTNKKzlyJFj7Jjch+f4LM4ucOHCWf6nf/0/8/PRNN8fuOyZHKZaDem0Y9xAUhSSqalFpC644+BetCN5/fhZdo4NksQxR0+cI+sm+KFLrVoyVL7w2gkmRoaJ4phDx04w1FPjhdffIE1Tehtl3ZDjeUjlcOzYKQLXodFbx3U199y1FyNy0izhxSPnCRxFHCfUahUQlHWOhaHbiZFS8e3nX+XWW3bR7HRxPZ+RwX78IEBIgVIaPwjQSlMUBVqV1Q1xklCr1+l0Ey6cv8TIyACYHGNYYuBzcZSDFII4TvA8D2SBsWaJ+Uph8wylNK4f8OVvPcPZU9fYu2eE+ZkmSguU65KnKRaLF/oIVTo8rx0+RS0MygWWBK0drLFMTy/Q6KnSaXWpVn2Mhb7eOjkF2tVkcUJPvUaWJiRpiue7NJtN/MBlanoWR2ke/vaL/OgPPIBS5TlUKgGO54AVhBUPazMs5TnEUanbZowpr89SJjwMA7SjUbokH1FK06jVabWa2MJSZCV2XylBlmel3IWQVKohtihQSqG1xPM8pJRUqh7TM3MMDfcDAj9wOXPmIiPDA1gLJi+YmVlEAHGaLWlklY9ds9VFKIEfusRLWmnVagOTFxS5JQgC5mc7VGrVUtxbKQLPZ36uSRCGvGvPBFE3ZmZusQyE6HJRU6SCg7ePUaloLEW5WEoL/ErA/Nwix8+d58lrU5wclLzvY/fws59+nKNeyKF2wv2VgN/5yMf4kcmd/Nydd5BmKXmW4gc+WVpgbQlBdV2HNElpt7pUqhVq9coSxb+iXq8R1kIczwMhMVZSFCmmMGUgxtMIBEmSIoTA9Rxmp+dK7T7tUhQWrRy0doi7CXGUle89kaOVxPM9LOB6Pl/55hPsmthBURiUEkxNzdA/2E+SJIyODJXZyDhCybIuzvM8fvJdt/CDI8N8X1+Df3P8LDs/+hN84eI1HrkyxQ/WK1SqAfVGHS01X3viJR6871Y8T3Dt2iLdTsTFS1cYGuhBKoWQEs/3aXc6+EHJqOkol04nwlpLvadKkRU4rsPgQC+vnzjD6PAA7VYX1/GZn2sRRTG1epU0zqhWAtqtDoUp8HyN67o8dug17j6wm96BBrcfmERgGBvrR0lDkReljIjSKCmRCtIoR0lFpx1x4vh5qqHLidNvMjTYj9JQFAX7d46Q5xm+77Ew38F1fGZmZvjmC4cZH+rHdTwUxdo0AAAgAElEQVSGensIfBfP9YjjGCklgeshhaDe06DZ6vDFb7/I7pE+evrrLDZbJfTQGITjUKtV6Sy2afTXwFqsUjcu9LwyRV+vKfrskTf4uV//J9i3FCpfbZvPLct9r66zW6PRumFOWs3sZ3BdD7OJn3C9WnDt+G/YtvMRVvkrluXF1+bnvpHB82Zsef5dLuTfOruy4ZdYXSO13RFuZnH3dv2OVee9PSvA28g1rK7R23L/qr7X1TuuaWrXtlnd682ImN/49V4HA7Vbj3e1iPiNahjDdf26kry1fE9ef6iXD7F1Td5m2nerRdO31L9DroJGl3/fTM3dO4u779C+m4s7wXV62DXbN1vcbSBP4eZfhBsqmrehM9lQnLtZu+Uq1o0vD0P50Kyud13petV/zBYFy5ZVL5KVL67+9+qIpEWum6jKd8A2kSS7RFhzExIKduWYm5yVgNDxkcby5CN/icpT7n/399NMJXliyLpdPvWnf8q9D9yH54c0W2323nIL2mr+4gt/wSf/4Pf5sauXucfAQF+dTqdLo1HHWMHXnnyR2w7uL+u+ipzB0f4SNhdFTI4N0+1EtNsxjWqFasOn0VNh+R040KgRVHy80GOiv4dGX4PdkyMEjkZLTbebol0XKWCwv4FfCQGL64UoBEVSoGVA1ddMTI7geU6ZxdDlJNpqtnBdH993aQQ+nq9R2ilp6ZOUJM741rOvsG/XOEVhsLagUg2RWOI4X4FNSilRQKVeYW52Hi/0yLIUR7vEUVaSu6gSOmqFxNEOcSeis9gmrPhcvTRLmmSM9Ve5Ze9OhDS8duQ8e/aO0W3HVGo+zVYXLwgwWYa0hh1jo5w6c4GRoX6kBFc7gCSsebQW2xw9dZ7RoT6KwuBXfLSjyIsCiSjp6T2Xosh4/pUT7JkYQ2pLrV7DcRzuOriLNEup1qoo7ZS3iCpJHhxHk2QRnucjbAn5U1otiUUb8qzA8x1YKrrPiwLPdWktdjl8+Cy7do6gpebQy0fxHEW1GoCgrK1yHLAwM7PAm+evMDjUT5bnSGHpdCKK3FKp+OQmJ+pGDPT3cOiVI4yNDpN0IzzfQ2pJb6PKEy8eZtfkOLbIyExOrVYlSWLCakCW5KRxgRDluNMkpVILSu22vCCNYzpRSprkhDWfyxenuTg1w87xYZQSBJUKvh9wbXoOayye6zMz1cTVAUHNRyKYjbrs+ckH+cbZM4we/AC/+/knydKY37n/3fzo3r08sHMn2tHEcYw1Btd3cbWLEAopFEopHMchSVJcz6Pe0ygfVFHWwz76+DOMjw4itVwKQEhMUWCSBLD4tbCsGRWylIxQJcFAradOVhi0dpBqqb5ClAuyJ597ibHhQQIvIE5iHFdjhaTbTrjrtoMoLXD8Uqakt69RyiB4Lp12EwV4jiLLy4X54vw83XbCkeNvMDo4wM/efZDdSQd/YZqXm20evTaLc+4c+3aNo5SLtpZK4IIjqFYq1BsVqhUfx3NK6B2CfEmPME8Lzpy+SOAHXLg0RasdUa9VUUphhaGwhrGRQZRS+IGH42gkUOuvIpWg6nukWUpQcan31SmSlCLP2T0+RE9fDeVI4jjC9x08z8dxBFmaMT/X5PEXj7FvYhhhCw4fPgs2BywTY4P4vsPAYB9KCfKkwPVc2s0uQRhw5vwVxsdGyJKUShhQ88ughaMVX378Zfbv3EEQuhTWsLDQor+vgev7zMzM4bkO44O9XJ2ax3UUnu9hilIeIgg8rFDUehscf/1lBgeGsZhN67e3s9WLu2P77+Duu+/csLgTq4SXl+fvFVKODRPhagTPWpp1wSrx5usDWPlreZ9UeommfWPm5qYWdyvSSKvm+s3aL7dZ5VsIsUzGtlUtmb3+uQEr2RSX2TRWOtm6/yX7XizutpRMuJHvsXQvmKVrt6m/9nbMrv39Nvhr66/ddf9mvQzEdbKZ6/fO8v274tetF0OHDQQyG3y71Ud/q8XdBt9reQW2atNNLO5Eydy3fPDrfQqBlNefi9J/2fi7bnYmq2U4tj7w2vbl8/rO4u57Zt9ttszNbpbNF3d/DbZF1mn7tjdw/E0Wd3YJsrfZzb36/LZ7cW63uCuMWSE6ADYs7sphbRNJYjkaY9+y7dqxbgElEBadFHzlM59jolcwdvABDr1+nvGBGp0koj0/w/d98Pu5fPkalWoVx/UwxvDBj36Y6onX+eSH3suVNxe4NrtIu9NlZKiPrz35GmODfdxzx27aLcPhU29w64FxjPVot5rUGxXarS5ZZnnh9TPcfus+gopLUeR0O90yC5IlWGnLxYPVIARpmlCrhVBoTp65xPDoAKZIcMOAqJMgBWSmhbQpC3MLpElON05LQWTfx3Ec5ucXcLQiCH2kEPhhgC0stoAsTZFCEi0tUHfuGMSaAkfLco4A5mYWqFRDvvLt5ziwa4xOq03f4ADWCoKKv6TzRbmIL0BJhesqrLG0FkvKdc9zcF1FYeHKpVmqoYtUBbVaDSfQjI0MIh3FU8+9zu7JYRztUWQFeZLgSMitpK+3jhCQJDGuW2Zv0izB1Q4TO4ZxXI2rnPJ7eYHWir/85rPsGh1GORqJYKi3H2Og1WnhexXarTaOWwpq55nF0Q6GnFKxSZJlGb5XOpdCCpQDSVLgui5ZmhNHCZ1OB891eeTbz3PL3gmyNCNqJ0xPLxJ4Dk+/dIT333eQnr4GhlJrzxSGoigQUhEnOecvXGVsYohuu0vouwRBwFPPHyPLUsbGh/A9lzzLGOjt4bN/9SSjfTWqtYAgCOh2Ogz2NBBSEwRqCT6i0NrBFAWO1rTaHeIkxRQ5tsjJTId2u0uR5uRxTO/IAD09DfKkTU9PD+OjQ4BFOxJjlzSHtKXRU6EwGY3eCq4v+K2XT7LvfWOM3jnOr/3xC/zLf/n3+Ve/84f87kMP8fN33IFEECVJmdVUkiSO8QMPiyWJMoQUXL54lVqtiloqZk/iFO04KCVBShSCneNjLDYXqNdq2CKnKDIcRxK1u+Qmx69UMHlW3s9SLmWEFFEUUanVKIoMpSVRFOF4GonkwC17aLUWmbm8wOBgP0IL5ucX+dLXnuT2A3tZWJwjrFRBlDITynWYm5nH83X5XrQFynHIs5yrV6/R3zvIyOAgtWqFwihc7TPRP8rjx0/wvz1wkJGeBkop0iLD1ZJK4GOExPP1EoTYxZicvDCYwpAXBsfxeeON8wwP9BPUPPr7eqiGIX/x1ee469aSaRIlSaOc+YVFoKDdbeNqhV8PAINJS2ImqSRGQJGmvHr8JD3VChaDVC5Yy8z0HBiNH3jEUUJvT429O8dwHU3STZmcHCWsuMRxTE9vncWFJn4YYk3B4kKXLMk5de4KjWplqaY4o1JxsYXi2VdPsW/3CI4j6KtUqQQ+QhiElmhZOnhKO/iuwNUOMzNN9kyO8+Lhk+wYHiQMKyzOtcAWZGkXGVbw8i5WeHiuwMrtBcJX2zK86uXLl/m1F9/gt/71b5bBzfWLuzV+67q5Z7vF3Tpbo/u2HbpHiCXI38a+lvsQUm2bWdtk4Jts237sb9n/TdhyFnOrfVvZ92Rxt/p7piizrTcC1Vx1L6zPjq1q9LbG8Z30tWXGbfXibnkhs9LlJuNfl+nbLiv+1ou7dbbc96qdN7W4W+uQbrlPijIIfSNX7u1mcN9Z3H0P7bu1uDNc18dQlrW0savoZq8/6OsocDexDfIAQmCWoi8Scf1h2y5jt2JvHQlb23atLVMKC8QaKQRhLUatkikwFmGXaJBZ+2wtn/vKaJeGJJceXWHtCq3uZqO16z4ropPLtQqrFo9vleVbziQqURLiWlykyEAIcuPie5p/+As/zYc+9FF23PFezpx5k3/6j36FfXtv4d/+9v/Ox3/yp8iimN7+forc8Pf+4a/wxYcf4TMffC9/a99e2nMt+odrjA4M0tPr40iNpzSjw71cuzaHVob+RhWQSEsJLwROnr7MyEgPg711XNdFSsjzlCCoIJVCKYc8NzjaITNL4tuuw/TMAo4W9PWWtUZSO+RJzsLcIo889jKjg3UqtQbd1PDMa6e4/879xElCtebTajWp1WqgFI8/eZiJXSNgBVJKZmbn6UYZ9VpQRvu1pN3q4LhlTZjWihdfPsXwcA++X2Hfzh1LZBUOAoPQ0Gl3UQaUY0uh9DinKFKUdkkSw2NPvIarS0Hnbx86wmCjhrEFb07PcGDfbqIoAhRIgTEpk2PDSOGgJBhR0G0XeFWFVgpTlLU7SlJSLWvFzLVpqpUQqQSddge0i1BmaVGi2dHfoNvukicp3SQudXoRpTSBlpw5c5kzF64yOthb6tTlGUJYZqdmqAQhRZFj8oJDLx9lcmyUPLVYymxNmsRgDNV6FcfRjPT2cuiFoywuLrBr5yie56G14OLUPPv3T1DYAilkCSdRAlsYmvML9A3UmdzRT7vdpRL6OFogJOycGKa/v47WmjhOCCsBmILJweFyQeO5OK6LMWXUv1oLSNMYZcvoe7fTRQrJC68eZ9/Ocf7y0eeZGBxksdNldNcovuMh0PQODVOkKdqRKF1mjZIswfNdoCT+SaKC0Fd0Wl3++Pg5fv/cNX7847dx755+fvNzr/OZx49SlYKP2To/umcPrvZxXIfc5CRRjs0z/MAnLwocz6PbbKN9HxD0DfRi8ox2s4Xvh6XchYaiyHG0ixWCwhiKDJQjkNLjpVeOMDDYh1+rE8UZnusQRwmVagWpJM3FJpevzDA82Een08XzSoF5z3XotLooymumlGRwtIfCFmAtWZxy8MBerM0IXJ+cDCUdhMzR1uWp515ibHgYvxaSpzna95HawRUapORLj36biR3DhJWQNEuRwtKz0OXXDh/nZ9+1k1ari1YOYc1FugKbC6Juhzy3PP/SUcYGehFI0jSnUvEpcsOVKzNM7hzB2IR2q6wrnBjtIagGCKnI0hzfkVgUnhfga40ThmBKKHRmDDYHKV2ELDUte/8/9t48WM/rrvP8nO3Z3u3u+9Vm2ZblLXESh4Rs0CEhQw+QkEom3QGmu4HAMF0wzXQBw1RDN11TXU0B09QMRVcNTVNDFUN6YEiDs5DEcbzEdrzKsmXJlmXJ2qW7v+uznTN/nPdevffq6kp27PRMVY7qKUnvc855zrOe3+98f7/vtz6EkAodaCggiBVhEBBHghKHLR0PPPo8MhMMj1b6LPuS48fPsrLaI09LHn/mBDfvm6EocprtJpNT4/SyLo2hmGolIU5iumnB0tIKdx3cR1IJkRoq1Qqrqy2WV5vUKjFxkuCcQynh2V91xMVLiwwPV5mbHGVhaZl6PUJIzZcfPMT8VJ1KXCGo1Fi4eI7K5PQ10IX1Gac/x/QBiqOXLvHLTxzln//xn/CZT3/Kh4uzjWPQF/X2SIbPP91QFrhKCuHaxYkr25Uhrbe7Ij/gbHHNvq4YwDdwPMq++TCAAm2D0Gy1LVxZopVCXHFBryA9WxDMGy4bi8bbOKw7LehusY122veGpBe2GcvG+V1joXtDyHuASv/Kc7fVgmGTHWjhhlwYy3bX5UYW7aWXplj/+6r2bpONd6WdtzU32bFbjrrddRb9dqJvE/rNbbKNnXAbz7sQatNz6HdJtnPshLQI4RFsj8a5jW1TvYHft+67cty+pMG6TS0EagCR/05Sgr7n3H0Xy1vl3HlnZTPqtLFvEM6+ahXnRuHsTUfa7Ny9mWjg9co2qzCbRL03Tm999WWg6boTdlWXO2vPXHsoV1aPrHWb4qGvh/Jt7UPi8+uwlsDlfOXP/pQPffgjzB98G912TiWp8P3vvZe5uWk+9EMfZnW1S+5Cls+/xn/3z3+FP3v32/hQEhEYyZmzl0mqFbSRPPvcq8zPjxFGMYdfOkWn02Z2boqytCRxSByHrK75UMRz5y5xcXGZ6fERanUv2uus9aFwcQVrLTZLCQKNVBqURvQ1WZRSxFHEMy+8zNhww3+sigKs5cBNs4wM1+l2elSShMuXV5gcb9AYrmOtpbnWxjlHZAxHXznFvl0z3jG3nrDg7PlFJiZGEEKSlzmVqs/R806DZXp6nCzztOwmUKRpF6kERVFuhCAGcUiz2fP07wKyTpcTp84wMd5gz+5xxsbrJJWYShBQr8XUGzV2757BOlhebhFGEUprstRLBqS9DBNoet02X77/eW7ZO4sKNDrUaBMgpKDb6WGUolqtsLTcJAhCgijceBZ9KJQk62RkeYnRAWMTQz6UDUdSiVlZWmJ6apTZiTFUGJDlBVJJpNScO7dIoAKyNCeMJVPjI0ip6LRTelmKVgolFBcuLTI8XCPLMsIwJA4CJscaCO2oDcXEScjE6BB5XpB3ex4hd4JXXjnN5MQoYRCQ5yUiDAgCw0svn2K0XqGX516oPjA+7zP3TqZSijCOGOqzh7bWWnzz8cOMNWpoJQijiG6nQxAZJD5M9JUzC+zZPc9wHPHcS69x8NbdaOXz5cJQIWSBMYGf+6QPY03Tvg5f6ciLgjzN+cVDL/HlhVV+82ffxyffu5/P/v797Hrn+/nmt77N5z/xcT62bz+tZtuPMTAIBWtrTYrMS05keY5Wyovd4xBKebQKiZQKrQO+8dATPPzEc9w0P0OcJAyaRFopwjjAlo7pqSkvzaClXyhRijCJ6KU5SEGlVmdkfBisw0hFgUApQ2nhmedeZKhaIa5WCENDXhSU1iGV8uGcsiROkn4+BwinWGuvEcc1KibwfWqNECC1gn6yfdrLuPPgzSRJDYfD9gkNbOH4zB138pE//T/52XfcTSU2FHnWf5YNJgworePYybNMj44gpea+B57i4uISu+fGmJ4eQwgLwlIfqiOkwAQKrb2QOTi6nQ6nz15iqFFneXGNSj3y6F9WolVAnube2S4KsClFVrC81KSaJJjYUNicsiwpiowwjqEU7JudZni0Qem87iEOojAiDiMWl1u8666bEAZQUE0iOu0eY6NDdHspQRJilGf3lfhV9DTNWVhYoSwtJ05dpLSW6YlhemmKEFAWJUJLXn31LPv2TBMEAYuLK4yPDdNudakN1dg7P0kYhyjlyZpcllEZqm368G812tbabQ5fXuBXn36Jpd238OO/8S/49Gc+5esOzBxXz8mDaN2biMxsKoP9XjuU7/WgGzDonGyxI3ZAWujPN4N7rppr3zDp3+tz7v5Ll23Htk3k0E4hi4M2nJTqhq7d4ML25l+vU9Yd6OuACtshuNZZGLTzbuCoG71sqrSNg7Xxz61MC9uPxf+8vqD/5j0jgyN7k5QeXpdz9z22zO+wvBVsmUJKiqLYgOu3ao4MsjKuMxBZ5wXAd4q7HmR1uopF6r/UczDIvLQ+9gHNla3aKINMSTtp+m1l+NrKVrRtm/V+B35bb+9Z9zavTXkCFbntB1RYS2o0dFb5k9//t/zkP/kVUuvzZbJsgfZal86qIwoTHxrXafHr/+q3+Ld7xsgLRxgGtDtdkiTmiSdfJoglb79rP888dYLqsGH33CxffegQ+2ZHOXjbPi5eXiHWirLMGJoeobfWwllJr9tlfGocKBHKsxkaLThzdoG5+SmWLi+jjaZWr6C1pCwdUgmkkjx36DiVJGR+dpKsyDyC5CDNcqZmRsizwiOTZUEchfS6PZ9PZzQl0G2ldJpr1KoJJjR0e6nPKQHCKESbgMJ6LTSBzy0rswxpDEuXlhgZG6HdapNUIqy15HlBVI09SUeZsXCuxVcee5af/sQHWFvpURuuokNFmUryrAfSIqUmTQuq1YC026UoNb1ulyxLGR5qEFUjiqKk1WpTrdSwtkmoq+SuxGhDu7NGNRmmm6UcPvIS9779dkoENvM09912l0o9ocwteZqhYkOkvUH/n778CB//8LuRyocJZ11LUo0pixSEwOgAhKfId6Wg1elw4uRZ6knMvpvnSLspRV5gi4IwSfib+x/nR97/LkxgkNprv9nC8fkvfotP/OC9oB1RNaC13CGpxgih+qQfIWkvpdvtEQV+ojFRQrfdxIRJHxBwOGEJo4TSFrQ7PeIoIM9yWs02Dz/zMj/03ruxpSCpGHrdzKN+1YgwCnBFSRjHFGVGlmYAPHf0BO+4+yDddo+kGpJ2Uh499BJ/73130V5bJUxqFGXptQRLn8vVaXd46LVzPJJ3+Zc//YMobTi/2OKf/ck3OXjLfspnj/DJu+/hzttvIkt79LopzgqSJKG0GdL43Ldes0AYSRAatBKeSVUFCJvT6fWQShMFxpN49HIqlQqyT9ChhMYCeZqS9lIaw3V63R4mMH04BPI0pyws0oBSsh+CCyAQxlCkXYq8xDkIQq8/Z0uHCAKUX2L2tYUP/e6228SVKk5auittoriC0znChZx85SQTU+NU6glZx4d+OleS24wkrJLlbYrcElUaCAGvvvIq87PzSF1iC8eDJ17k/eM1bFGCgyBQFBaU1hRZihWKbrtHrVIBl4OA1WaXaiUhDBRpWqCURChPqiOkJ/BZWlqhUa1Q5gVBJeLY0dPs37+LtJcSx56ko7SlXwCxJbaUSKFIez0OvXCCd9xzM2Vh6TSbVEdqSHw47NpaSlI1nDh5FlkqRkZrZHnO2MQwzmm+/dQR3vm2W4GCF4+eJtQBYNm3bwYdGvI8R1hHmhbY0lKpxaTdjCPHTnPrLbsITMni0upGyHVRCgKpKISj2+5Sr1fJ05JzFxYIjabWqGF0iAoFpdUELsdUFTKIPeFR2uFnHj0CwAc/8H6++eBDzExPc+78+W3nmU9+4hN833vezf79N11hE1yH+PqzkHfy+4uNG/PL68+p8vln23JNb9vnYDij2DEYcXNxbNPuGjmJztorQUJ9fVO4WiPtjZZt8wdvQO92a7vtmERfb57l6y1bQzTX790mvbjvRMuY67Cf7qCFd83+2CLsfq32W67dG9W225Ytfv0Q/UycoixR0mxuOFj3qlzXK/t20pm7FrPlYLv1OuVAN2obgF7IzU6xtR4F3SkmVQfxDV+07zl332F5q6QQLFde7HWtmfWy08M9WLZS9CrnroQcbvmICGs3Xvbt2r1lZdAhvZEPpxQb2jZyy8QkBmA9h/MMYOvI2+uYqAYpaHeif97qMOZSopxDOiiLLoWqcejhB9g1ElJWd1MLMy6dOc/cwbtYvrzGb/zqr/Hb//o3+b3f/10+mnZZPHGeD3//nZw5v8BwfYjVpSYzu0Z48NtH+MC9t1MUOdrEvHryHPtvmkIZRbebEYcJF8+d4+KlFpNzDaZnplm8tMDYRIMid3j2QW+wdnspsoSg5tGAlUsdRsfrXLx4ibSXMTrcIA41hbW8cPQcN+2foFoNSbs5YVzl//niw1SrER/+wDtBSIp+CNfkaJ1ClVSqFbJWRpb2+MYTh/nRD7+X4y+dYd/+OYRyPm9JGdprTZwT5LZkaKjO6lKHWq1OL29SbVRprbQIqzHaSrIsw2mJ7XVQWhMEBtAII1m4vMxQreqp04sUZx1ZT/PQU0/x0R+4ly/c9yR33TbFzPQYaZ6S5pB1cyYmG8SJYGmhR7WWUNgSZRUiAKkFWImUFisc0klsIRAKup0OZZZz6Nhp7r39FtbaXepDVT+p2JKsVxDXKjhXknZ7hFGCc5Ysz/ibrz/JT/zwe7Gl49L5JVbbLXbvnsIEhr/84qMM12Pe+65biMIYJQLWVpaJY0VUrdBaawGSM2cvsWtuyj/TSmICz+Dp+uFQQRiQdpq0m12qjToPPHKYj/zAPbjS8dyh49x55y4cgqJ05JlFacg7oI2lcDlJpYYKJGVe0FlJCULBU0cPU4vH2L9rmtZajzB2VCoJ7XaP0BgsgvufOMx77z5IGCra3S61WkIUBSxeXma4NkShBQqvvZdlOUp58WETaPIi43/41lOsioDf+al3Mjs6xcrqCrJS41//5WGGw4hf3rMPpwKUKpAipLm2Qq3mx1rkBcoYytKiKen1MsIgxprAI9FYhLDIMPLfVCHoXL5MdWyYQgiWLy7SaDQ8+mpLbFEgdExme+AykqGxDUFc/4nKuHRyiShWVIeGsEWPQknIO4TJCE5qyl4XV6QUhcPoYCPPdD100RkvUt5ZXkUryWPPHOGD7383SkvywiKxOFFSOosrHEIJwjChwOtBmkAjlIS8byC4EpcXmCgizwukszitKIsSqSRaR+QXjvlFwCDElYIyz8AWqDDcQMqds2Dpk/ZEIKUn9cJRlCUuz8nykihKEKVnrdVGUtoeWbdLXlp6vZKnjpzgB99/L4HxCy1+/DXKUpDaFoHz3/2ydDiXI43X3iuyLqW1nh02F6wsN4mSABNGCBTdToukUqPZbjE63KDb64DzjLKdboZSDudKhofHeOnYaUaGK4zPDNFrF7jcUakFtNspYSRRWiCF4r4HnuR9b7+bIJSUhUMbqFYrNFc7SO2QaFSoOfXaWXbPzSIlfOSv/pq9+w+SZzkzByuM3TLO3reN3fAcs14e//OjnD/W4o/+/R8yPjG+4xS41ajfPE9vzd0TN+QUXuXs7AidXFva6Op+B0CSdUdumzbScU27442WQXuluFbI6YDjttXx267IfjfWWqT0eaTXavdmOIAb59B//8DndPkDvn4n3zp3lc237fH6Zf1eCCmv6Uxut+C9IWvRH+NO93RHSQf6z7AtrxJY33S8LPNatDs5vGL92z3AEms3X0vRP8R2jt1ODl1u7cZ9WXfgtjp51ytbxdYHx1luGU4Y3rhz972wzO+wvBVhmRb6mjVXwGqxTaji+r5rle2SXTdqb9knBmK+Xw8t7XdcBiH9G/m4D0xaW4Mvt4aRuIEZ5vWEmLyRcEwA0XcmrRRYG/H8/X/L6ZMn0ZVpOmnKyHCV2Zl5Li+v0Otk/MAHPsg//sVf4J/VYm6ZmoYyo1oLQAiGRxqsrK5SH6kxNTZMlESYQKG0ZnSsgS1yTp+5TLWaoAOFFJaxsWHixKCNIY4DyrIkMMFGTECn3eXJZ4+xZ89c/yESVJII8GQKL71ykT17pz1qU/HhaTlqDeAAACAASURBVNV6Ql6WRGHMwuIyd926h5nJEcLQsLK8ypkzF/nWoePcdWAPURKSdbpoJYiikJv3zHHx4iL3P/0ie2dHMUZ6dkAL3U4PbQzSGay1fOvpF1lcWGHvTbMe1TIGgaDXTZFSEYSGIAzQgcE5KIsCaTRxGNFu9iht2hevVqyudXjh1CnuunU3u2bGGB0foigLkiQm6/VIkoROt4eJDFooVldbNNc6fO2hI9x+cA/ddhubFeRFjlSKIiuRxhNtmDBCOMn87DhrKy2qjSrffPw5JkfrAJigr5VmvFCyEArpeWrYNzflQxclBEYzOjbsQ/KAsXqFA/v38Opr50iiGK2FRz9KB3inrddNiaOQLz/8DHfcuhcpPcIaGMXq6poPS8RhtCSKQvK8ZKReI04MzbVV5ndPkGUZ3W4PpTV/99Ahbr9l1j/LMiepVNBa+/DXXo8vfONJbt07y/zcFKdPL7Fn9xStdptqLUFpw7MvvkqgDePjo8xNjmACxUsvn6NeqVKWjjAIOX9+keeOnmLf3imkdHTaHYTso11a8dOPHKLbyPmNn/p+Pn7vrRgJQoR85vf/liOX4c68w39/9z3cd//D7JmfpsxTomqEsxk6Uji8lANCoAT0SknSqJGVllgqEClZ3kbgQxqXF5YIjSGo1cGECKmoVGIwPrxXhwGFcwRxQBDF4JTXbrMOgaMsMvJuShLHKOno9BapjQ5jVIIREUKWuF4PFcf02l1PJIRDGYM0YBKveWjTDoGWlEJSGR5mfnoM3V88MGGEFI6izLFOIJ1DSEFZWqTTPPfsESphRBRVsDb3GnVOkBcFWekJV8qiQEqJNoa11TVMEPDbD3yLv3r1LD+8ZwblvMMotEYg+/mcGcZ4lNEEno11nT78/LlLDI80kAKiKPLoaK9LnER0uil5UeKsII7rhEGV/bv20O40iSthP+xYkedtbJYTauXReuXzLYvc8uzhEwzXqz49QAmUUHzpgafRBNQaCVESUtiCpcUVRkaGeeK5oxRpxvBQlTzPybKSPC/pdFPm5md54vARDu6fpz4cYkVG3ivodHvoUPPtp19iYqyBFIKisOyaGGVxaY1jp15jrFHjvoeeYvfEKK12h+X18Osg4OVem//pyCnSg3dzoXWSH/v1d3Pgg3PM3jHO8FTyOuaXfg6QEMzdOcaBD81wvPUM//GP/pjzr6zw9nvetm27reF4m+fpLfP5TqGQm3vZpv72xbpBhtDrL/heFaW5TRslJUKpfuTAm+PcXRuXHBzbFbtj0M66VtmoIQRKSuymMFTfrixL5EBu3HdS1s/BOrfBKn4j47xWcbCjfXUtMplNBC5b22zjvAilvHTQNWzJzce8znVy1st57VBFCbmew3TtShvnMgiKbL6WG37zNt1cl1V9PRVnYxHj+u02lR1IWrYOR39PCuG7V94K564svcjoxkOzZeXCs6Zdn/RkJ+fO9RNe14+hrtPuzSqFcyAGna3Bc/BjusrxVFdCH624koS8k3Nnnd3Uz1WOH+6aDp8aYDxy22yDuXmbirSIskQWBa6dkq8t8e73fxBZG6ESBjQ7LVqdgne+5908+cyzHHj4IX7mjv2sNXssLCyyf98snW6XpBITRpok1oRxzOrqGpcurzA2MgTC0Ww1+3pn8NhzR5kYqRI3QoIgRhmFKyRIR6/bwzlQxos4GxMyOzmGVBKXFygpKLLch9Uh2Ld3F2hfHympD1fRRhMYH54XVxJE3yAKIkMch4yN1Llj/ywoSXNlhUoSUVLSaXUJQ6+Jd/etuwgDgxKeTl7006xNFPM3X32CmYkat92yi127Jnn4sUPMTYzinOPhR59n3765Pv2zAAmldeggIO3kLK80ieOQr3zzSe64bTdpVtDrlsSR4p7b9rGy2qTSqFIUBWEYsrLcwgSKaj0mrsYsXFrBOs+UaJRiaW2N3XOTXvC8uUYQRQgReCIX6d+QE6+e5uyZy+R5j9GJMVaXV9i/d54ojhA4vvC1R7l13yxhHOOAvJf5Z9F5nTylpKdXT0LK0lIWOUEYcOHiIo8/f4x77z5A2ssIIsXaSptTr11kenYUhO477TG7ZzzDZRAGKGPI05RKJe6zdWof1p1mCAQvHD/F7NQ4zx49zthQFWU0SS0hywpuv3kf7U6TSjUmCKHVztBakvcKvvXsUX78o+8jKwvCKGakViEIvU6e0oZOJ+Xwy6e5564DYAuEFPTSlNmZITppG6UtRdnjySOn+Hvvv4e1lWWq9QoSy08/9gL3X17gY3//Vj5+717uuXkeJySBqfKT/+6rvO9Hf577H3yAP3jv93H37j3YPGVudpowiggjg1CRR1N0iOgjgLYsKdMULUBkXaQr6PY6Hu3WBqUMvXaHJInptjvEocD2epCltFeXyDtdpC3ptVtU4hBpDauXztBtLxHEVbBes3F1ZZUorGBJUSYAV6HspTgNzbXLhCbyshzGs5MaUWJtgY5Dvv3oYeZmpym7KSdePcno8AgyDEEKsm4bHSjK3KJCQ1nkCCEwQUi31aYofPiyEzmjw1VqjYRer4sxEXmW8uKxY8zNzvgcPimxtkQq79AGfR3D98zt4UduO8jjxw4xWat4WQwh+PwXH2BqqE69UfNaitrngmqjyPOiHzIdcP7MZS5fXmJkdAhblhRFTqfbplKJCcKIosxotXvEFYOMPIqf9jK/wCEFvV6HdjsjqQRIE/S/oxJnJVNjNYIg4MWXzjAzPc7yUpOD+3ezsNRkenqEssiIjNfK+/wXH+FjP/Au4iDABBqttV8MUo7x8REQklMnLpOEIVppoqhGnuU0hmoIoTh8/FXedvBmmq0W9aEqRiuarS775idJs5R77zrAF+5/jL2zY3zu0Iv8H88e5v61Li+UKR/79beh5lNu/b692CLDGLBiO5IGwVaHa2OPWJ9DrswjApi6bQw50+bQhUf4D//bHzM9vJep6akr7d4C5+4qgodB1sot9PhiffDX6LPok095u2Lw6DvbKqKf7/9mxQcN2itOrDtbW2wFMSAVcQO21KCf6pzr2+PrFkH/uFJel117UItw8LetVsa647Nx3EE0cP2evI4r5nvdbPMNLjJckyn0KqKU6x1oMzHMds7dVdIIm9oPkPAI4YMStuljnWhGbrUjt5PkWD/vzQ9Gv37/2R7IubtqvNvlDG5wMgyEy4or9Tddg82m6Dbn/D3n7v+T5S1B7jbCBbZHj65oeexcdnTuBh7E9X07tXuzimdmug6SNnB8qRSuHIDTBz46Ozl3bod94Fd8rnUFr0fIci3nLlMlMYLnH3uKX/pHn+Ynfv5/JJOStHUZpSKOvfwyv/Gvfps/e++7+If797K46PM+Llxa5MD+eVCKQCuSaoK11pN9qIBKEpF3fV7bpYUlJibGKHNLlERMjQ7RGKpjsRgdkacZp09epnQ5I6MNbOnQoUZKSeEsOgmwvYz26pqXHwgSijxHB9pPztJitEeEXFngipIyL7h0aYGvP3aEg/t3e4cx1GRp5vW9hCAIFN12h1qjhlWSUGs6nZ7X41pZQzhBHMf+2+2tBJZXWrz9zj3EiRdKDsOQ1soatSCgm6XsnZ/BKvj8fQ9xYM8snjFSUqQ5acfxzadf4Ja90xy4aRarNGEQoFCcPn0aIyVJvYGVCsoSLw5eQYXKhwSmGc8ceZmb9u6lVk0QomBypEocBxTOkpUZtUoVpKbMM4TzuStjo3VqkWGt3aHRGCLLUi++bhRCwMGbdvsPvpAIqX1IZ1kSJRFlAWtrbeI4oixKemlKlIQ4ZxkdGWJ+aoS4EhPGAVpq4jDmzLmLVGsB33ryKLvnpvjCVx7jxOmL7N81xeLiMo1GlTTLQHhphbJ0KC1ZW1lDCNi7Z5ZepyQQika9hjSSTrdHpVrFFg6EJesWIBxOKMoy54HHn+fCYpcD+6ZxtqDMcqwraLV6BEGEwGKt5babdpF2Uyw51vkJLzIR9WoNozVJXGH/vhkslv/00kl+56UzvOODe/m5H76Lj71jD2GgMEHA2lqTE5dWOK7v4FuPP8Ynbc5n73kHRdrzpDNpyjNHXmbXrvk+CiaxNgNpAa8BqITwWxxTZAVBXEHXNMbUEFYjpCWIIkrrUFojtKfB72UlplIlTmpkhSOpD1E4RQFcurjM5MxenLSeZU1JwjhCoDGJRmiDiDVSCvJUUNEJQmmsClFlQVHk5O0mrXYLIQSTo0MImSPImJjeQ1E476zaEof/Hmntcx7DwNBca2PCkDjUhFFImVt0GPfvgeGlY68xPj6K1pqR0Rqt1SZGa4qiQDpvUiulEfg55cTLJ5FI1kKNKDpUTIhWktv2zZNUItK0h3MW5yTPvfAyExOj3mkSgiCMqNerDDWqPldECAIlyfMMJRyXLi3RWys5/MJpxkZqKOUQSIIwRChFkaYomZDUGmSug7CaoszpdTPCKMTokuWVNebn57BOcObcRSrVgHarQzUxBEpB4dBhyIF98wSh5vCRVxgdriGl1yt0CqI4oMhSpmeGMIEjzwvOXVigVmuwvLRMo1JharzO6bMXqdcTsqzLykqHtVbKxNQoSaRxVvA/nzrLR/7pz/DYk4eY+uAI7/nMfva9e4wo0BS2JJABL7z0ChNjdZB6m8XD9XlnpyKu+tf63zMHx7gojvPv/sW/58/+9PN86tOffIuQu+3GdK1ImsGF16v7tBvkKFv37ezYXXOx9A2W7W2Zq527gVrX7fOqK7HNjRVCsi7pcG3UZrt924QCbj3itv29Tudui803iFy+URmI6x53W8fMS0DIbcNXr372tkX/riIb3O6Z3XLPt3Pu1ve9Tuduo97gdbr2Lf+ec/f/x/JWOXfOuf7Kq9hYpdgQirzBHDi5ZYPNk45gXVlrs0yC6q/WDLZbL9vJKWzIFryec5Ryh3ZXELxSsD3t8A06dxthEgNVr0WuIoWgtG4L1L5FCPbK6DbqCymw1iGEpHVhlQf+7j5++pd+jSgKUEISmIj/9nOf43My5cfnJqnVaqS9jMnROmVZ0qgGrHV7DA/XUUbT62V005z68BBf/ebT7JmfII5jsrJgbHIIn2ElWV5aotGogfQhaUIIemlOpWEYGh5COIktC5CCky+dZaRaR4QSrSQmDAmTGGtLsjTj8uVl6sNDSCtIez20kPQyL+b8/Isn2Ltnjr1zU4SJxoSKUy+d48EnjnDznhmccAilaXdTkjihs9bjyWdfZv/+OWSgiMIQaTRIcMJR5AVOCu5/5BAH98+QpSWVapUsKzl/fompmXHiJKKX9fjmw4f50Q/fS2574AQiUHTWOixeWuZtt+8jSkLyssQIv2pqhWN4qEFSiwDFtx85wu7dE6hA4cqcYy+eJgw0Sgv27ZlDaclXH3qCPTNTRLU6VhTEQZWyKPi7h5/hxRdPc/ttuymKciNEbWl1FaMNX3ngOW67eZ4gVJRFwXNHXmGoUUcrEFLjCoctC9I0pdPqkKU9nj92itGhOr1OxmOHj7J/1yzdbooyijIvUFpjtKIoLa+ceo1bb56ntI7ZiWGipMJYLSHRirn5MZy1FFlBUg1RQJnlKCPprPXIsy6VJEICy6tNRkYaGK1ot7u4wtJqdvnbrzzLbQdnqVRrHD9xlnol9rTkueDg3mmGR2ueaVNrKo0YYRV//bVHUUIyPjpEu91GaE0QhnR7bb728AuMDMf+eTQKHRo+/cBTfOpT9/D2e3bz6Q/ewsRQBeGglxboICAwkk/97t/xgx//LFOPf5ufvONtRJHBCYEWjqwoiKKYXbO7EKpECoV1gsAErKxcJg5ikI61ZhPVZ57stHvgSlzqKIvcr4ZJSda1/F9/9TWaa2tMjk1i8SGGynPu+5DULMNoDaUj7WRUqiFaGUrnUQmBQipLluYUvYLjR48zPjpKoCXSKLLCI1oov8IvgwiHwRZQloKVxWWGGjU63S6vnTjK2OgQLz79baZmZkAYenmXyGh6eUkQRx7p1hopDUpKdGAoy4K00yMODUk1RmvvGFbqntVSBwEoQxgoOp0O2IIy6zG5axYlCmbqI4yOzXHq3Gsk0lEUqddczOCpJ48xNzdO0c1wZUlcSyjzgiLtURR5HyETpL0uQgVYCyYMSdOSV05d5vvfdydxNSLQEQhBluZIZTFBSNprY4ykyPvf41IRBF5APetkxJWEvCz4yy8/xF3792C0YHJqjFYrZWmlxZNHXybSAbV6TNbLmZ2aJstzHn/uGLU4QRuHRtNstsh7cO7cEkFgmJ2d8EyfUtFstXj+pfNIoXj00DFumpoiThJGR4b46qsnmPjFX+YX/vTPuek9I7T2rXH7BycYnmkQhxFJLcE6xSunL9OoGhpJTBIbSmeuMt6ujdtdvXfdtdmM1fiy510T3PqBaQ5deITf+oU/4Av/+W/5+Cc/vo3Bu/X/g2jQlppyexIw+uO4MrytDmvZ77ePPq3XE0Bf48sfYDNyIgb+XDWe9UXWbcZ0Rbz96rEO2ig7LUZfsWM8Cf76MvEgYieuge5tOnexedtel+/K9d6IiFpHvpy7Is20/u/+ti6fNBhCaksHUvQXCsUVRGvTduNF9I8hERtjWT8uzm2yx5wQG7JUanMnfe4ttyVM9Nplqw06eC+29Xo2np2Bn9zV25VzWUf65NXtlEfr3PozbcXApdscJeYXta597baWjdDL/qbWbUDkxmszOLQdi9vcYDNI6zUmXX/BWCv1Pefuu1XeSuRO9kPBtj5139FKypb/bxcbvVP/O8dQv47j38jxtjp0mzq6MeduqwDsTgQpQogNx28rarrde79eX0gvuKyl4Pknn+Y973sfK60OY2Mj/Jvf+T1qX/5rPnfHzSgpvYg03qleW2sRJSHVeoUwCtBIXCAxxpBEMQsXltg9N4G1jl4vpVJLEECeFZhA8+DDL3DT3ikWl5eJTATA2TOXGB0ZIe12EUKgjGeoU0IRBAHtbhuJZGFhmXq9hpCGp547RqNWIYoCFhYWqFWrZKkliBXGKOqVClEQYULF0tISgdEktSq7ZsYp8hyjtHdKOz2UdFhy9s7P0u520UaT9lr9sEUocktZFGDhln1z6CBACMnFi0tUKhWOHT/F5NgQYRKRZzn7984RhAapJGVZEJgQm1sao1WePnyChcU1ZmemvHMrJdY6iswijddOO/bqGW7aPU5RWFwpGR2pEichS4urpN2CIAqoGsPlxRXq1TpZkYIFEwn275pl7+wkZWHJC5+/aK3jvgefohFFVOKA0YkG7W6HeqPKqTPnGKlVWLi8wspKky89+BTLiyucu7jIvr2zVBsVpidGydKMKAnZNTmBW0e84hhhS49yZDlYWFhYZXx8dOP9aK6sEScRE+NDZFlBs9mmKApsWZBnXisvS3sIFMYIlNEoYwi0ZyiUEqK4wv2PHOb2A/uYGq0SBoazJy/xzIsnmZ2aQGhBHAeMjjfQ2uuPib5sgDGasUbMrvkZtBIEoUIagdEGreD2m/cQqpA/+co3+V9eu8BPffYdfPqDt7G6ukK9VkEqTZ4XFEVBklQoipJ/8DtfRknF6Sef4r+69QCdThMhHN1emyQKkEr330nJocOHGRse9SExwpH1CjrNVSqVhMuXF6kmVXAKYUq6nR5JYxilvcxHr9OlUq9y+637mBgdJqkmKKWw1tLpdFBGIYVESe1RSFdSa1TopW20DihteSXsyjm6rR5hFDI01KC52iKMQr709YfYu2seSsHy4hrGx+yRZwUPP/4sz7xwAm0k42MTBFGFitbgCopei8RIumji2DPDKq3RStJtNlFaUxaWNE3R2ueiOleS1OKNPB8H0GfnXF9EQQhPhmJzWpdPE4Z1XCEQusDEFU5fWkSkyyxdWtgIkZoYG8LEBmdhaXmN4dEhH7odBwilaK91vHSKlNjSEiUhSgnCIGJkOEYqSdpJcWXJiVNnmZwcQSqBtXjW1yjyTriEIDYUeU6zuYazjlOnLzI2Okqv22F6YtiTvCQBxoT0ujnTo2PEUUyUGP78Kw9yx/49hJFmz9wUlUqCMV7HU2tBGNSo1RKSasji0hJxlHDx/BJnLixy4KZd1GsJt+ya5m8feoZ/9MjDnJ6Y4P8+dJTah9rs+75hJvaP9fMPIQwsUoZIIWmnOQ5BEhqckERhhJXqqrnojZdrz08HPjTN/vdN8B/+9z/mG/c9xg999MM7tNsBLbuGw3T9sQwwYl7XubzWGLZH0LYb05W5eztka6DH1xFpNOjcbXXEroTT3QCSd516WyOibiQSaFN+oMMzS++AlG5X7A04XldApwHb5iqHaov91K8zOIo3RTLgO+7jWijz1Wjc5rSd9et0/Tu0I3I3UGeDq6FfXUrRZ8S83ilsQVI3PcBy0+i+59x9F8tb5dxJqa75cdv24yWEX12+zsuy3tM6IrX+kN+Qs8XVH9LBGPKNdusMa+t1ByH2gfFe/3h9guWtcdzr9MBbXsi+LJJPwnXrTKPOow/r66JKeYSnHzM9SJ7i+vXZEiqywxrnponh0QceYLRWIR6fIg4jfuXnfp7f3DfF5FADJTULF1dYuryGCRxPHj7G1Pgo5xeWiEyICTVpL/XojVfRJK4ltNpNGvUhiqLktfNnGR0aIkszWq0WY40GY5MNKkmFbquNEJakYgBB3tdAk8ZQpimldVxaXGJ8fBhbOhpDdXBQUDA7NUbeK0iiKsZ47a8gDsBCnhYYrcizlC9+/Un2zIwThSFaSpQUKKWJ4tjrnKmIZw8fZ7jh0Zm4L4gcqBBKn3ButKLIrEchQu2dEuCRp55n18QwK502Cwtr1IOIr3/7MKO1mGpfakCjybKCougSBJpqmPDEC8e5ec84aS+j0+lSqSRobcE6Fi6tMD5Up1KN0YHh/LmLVKt1lFbESUhSjRBSUGQFkxNjVJKQlaUlvvHIi9xy0xw4wV9/41EO7p9nda1JY7jGpYuL3Hv3QcYmR5iaGKLX6vDkoRPs3zXHzNQYVji00kzMjLN/9yR7d8+ye26KwBhcWXqU11lOvnaOqfFRWq0WZVn4hUVrMYHh0sUFXJmxe988DgiMz3NMex1wJcpo7n/kMLfsm6W0Ja1mj7GZMUxoWF1pUqsmICx5adFhRKgEgRKkWYYTmmMvn2d+dogw1oShoVqvcODWcSqVhDD0emi2tJTWIpzizKnL5DYlCkKcLQlCxUvHT1KNKigZ8Rf3PcKuiVF+5L77ySYkP/u5j/KZD91GlpcIoUli70ghDM1mi3qjSi/LeDU6yDcefIT/+LEf5iM334HSmqiSgAxYXWoTV+uAX6AQCGpJQNHJPCmNEQQqhqLN6uoajaEhlDBIKVAqJEgiWkuLaOn1EbUJ+qvOJWEU0lxtetIghydkcZKyKFhdW6VSi/rfHYErPRqotCdRAC+iq5TGuRKJIklipJDsmZulzDPOnr7A6OiwF9BWiqWlZYqiICtS3v/ed6FNANoQxRG5SmgMT5CjaC5cIEkqLJw5S2N0CIfAOkGRZRsOJ7YgTzN0FNJcayOEQxuDVgYRaM8QXJbIsqTIS4IgotfJuHzpMqPzuxBaoYRn2uwst5jffTNVo4gqVZaXm8ShIYwTojgmiQxagnRlH6kTBHGEtKUP9xQSpQRpz2tFvnTsNK4QlEWGUpbx8Ym+oeLfMa+lKv21LnOyNEOiaa+0UUHEyHCdTnON/fvnCAJPdKOVxihFGCqOnDjO3OwEWhu6qylJpFBakGUZQkBR5rSaLbCSXtGm1W6Rphljo8N0O21GxoaZm5/koccP8XNPP8NzJuErly/yiV96P+PvrfKhT95Bs9kk0JqT55dQQUK7ucqLxy4yPpoghCIyIfVKAtJhpObihfPU68k2y/N9EoyB+ePGzNidanmcYObgGJN3xzx38RG+9OCXOPT1Y7z7+9694ZysOx7XEgN/o86dEIMO0I2M+/rOnVRqIzrpKqSuP0FvhzTKAbHu1+PcXcnBu/pcbiT3bqdzW2fg3FiU75/DYM11cpTN7TY7d2Vp0VL6/MXXNaZr3591O2+7CKR+w031Vb8vn6qxGWW+9jPwRsoWNPJG+90BsduosgWNG3TuNjvybsfXbiBobmPbWjb6eyOX5Rr5f770mT77m/qec/fdK2+2c1dai+zD4QKBK0uUkB6G7kP824VGrhOIDMZqb60ngbz01NjrjhDCIwe6v/966NtGnU3Qvv9t4wOyZdVn04dFCKSUG+cyeD6278w5cSVEYL1sOJDWbVwLsfXPusNq7VX7nCsBd+UDPiibsOmlFZt+2yk8U1KSC4ctSiJp+KN/86/4+5/9x3zuF/8pP7pwio/OTXrkofRjPfT8caqVkEcPHec9bztAJYmIdUCRZ2AtRZ5RqRkvFJzlBLEhimKOv3yO54+f4O233kqvl+EEaBNw5MUzzM2O0Wt3CZKAsM/kGEeyHyrqx7m6eJm1tQ5f+/Yx7rh9H0Wa0el0sFi0NkijQIBGsbyywrHjZxkfHSbQGqTAKUlZWmKjOHHiEnFguLywxiNPvMz5i0vsmh9Hq4C03eWpF19l/5551jpdgkgQRwFlaRFK0mp30Sbg5aOv0ahVERKyXheBYHK0xtBIlcnxMWamJjCJ4eD+eRqNiNZKk0qYcGl5gVpi6PQ6mDihuZwSJo5ds5MUhSOKjP8wCj9uWzqeevoE0xMJJkpQaJYWFli4sIYJA6zMEbmg2kgQofZEMSZEOEu7nRFpwZ0H9oIUxIlnU4xinyNntCYwBqU1e+cnPXuaUkijCMMAJR3COmSgaK+1KVLPZFjmPYIwYrheod1sUxuqYaIIEwRoqZCuJE8znjzyGjftniTPO7SaHar1Okm9QhRVeOyRo4wMV5ibGScODSoy3tl2CiMCTBTiECipUUqxvNykZx25FDSXV6nVFEvLyxgZEkYeRVFCkxclrXYTZ6FRrSIoMQaiWBFoiS1KnCipRDVGhqpcXlzkzPnz/OHRF7nnx27nV378U4p/vgAAIABJREFUnXz/Ow6iZYAxBWFYwYmSbicjMLC66lG2n/r9r/IDn/w5/uJ3fo/feu+HsNKjjLbM/PsdBFSqIUoZRJHS7qSAl4NJhqosXrxENa7QbrfRlZhKfQijQx58+EkmJxpEkQELYaWOkxIlJQsXlqiEEVoHOCdZWloiqdcoysKHJVlwhePk8dPUwoQg1lhn+dZDzxIGkCQJvU6PIFTYAooCrAMT+JzOVrOD0p4Z8q+/+jAz4yMEsV9oGRoaYnJinOmJcSrVBCEdRadLp9MlCg1pViACjdIRUgnKfI2y18OoEFtAu9XEJAlJFHjNxlrN571KSRxFtJotVKDx5CSQ5wXKgDKxFx+PA4ZGJlhZWqaSJDin6KwtUzrL6bNn+YvXzvLOyRGUgriS9EOMcrSRtJsFOlQYE/cXZ0Jya2m3VwGv7RiGIVjH+OQYx0+eZmpygkqtjgr6X3QhsVmBUgEPPXaI0VqCQ1CkJUoK4kqIEJYwCrnvoSc5sHeWoixpd7ocfvYkS8trFKVjZmYa4UAZSRxo6rUazpZEYUC30wMs1VpCezWj3qhw+fIyYRiijaFSa/DHTz7L7544x4Ef/WHSzLJyoM1P/MK70fWMbjdlqBZhlCEtSqxzjFQjlAyoN2IQiicOvczoSA0lwUjtZUTSDpcWLzE0NHrVXLluOq4bZjuXG6u1ua6gPhYR7sn4lz//vzI9NcWu3bs26oj1ehu2o9jkSLkBVsPBWe1K/1tDAQf39TcHG3JGQoCzA+Gbvp0Qnhl14999o3pQ3kkIgS39wqZzDiWll0nAE29stad9aorbGPHgtlPqyHbhnDfi1DnXp/i/DsJzlQxC32Bf35zwDLRO4ENRB8bm7ZN1ghNxnfDZ11eEWE9xubIN3vmNEFE223JqB/mEt6b4+zrIzGrlQLioWH/mxMbzNugUCmk37qeUV2zCrak5PrKBjU24gdDhLa/Eej873YrtHMAN+9fulIPpEcbBzTlJUVqU9CzNg6+g0vp7zt13q7zZzp1bj8Ve/xg4dxV0vF2oolTKr3wNPIHbrWh5mHgQavcP4o1qcmz0vd58O1Ruyz63+cerHvStSc/bvQgbfdl+7tMOE+H27+AW+H67jOhtyk7hmRL/oZYOHn/oYX7kx/5r/uE/+QX+8M79njjGCdJOyqVLSyRxSNrtMTszweLyKrtmxzHacOHCEtY54iQiCEOa7Q5pryAKY774wBPsnhnjwsVl7j64F22gUo1otjqEJuDywgpTk8NorRBKc+b0JYqiJKrEZFnO4uIaxngyhqGRIQ7eNIctc4o8o1qroKTGlWCzgjDQFFlBWTj27J5FB5JOu4PUGgSk3Yx6NaFRrRJXIqZmhrl57wwzUyNeqyxNabXbvOPum9GBpl6toY1AqIClhWXA06svLa9y+uIie/fMoEKNURIhNMZoFpdWqNUbFFlOlnYxQT8UrNVFBwHdbkE1qWGtIGrEvPrKBazLmBwZ8WF1SpJnOZ1eG0rJwuUVrMqZnhwmTCJWllYYHWvw5YcP8Y679xPFAUoorHW01lKCyCOUDz91jHe+7TZ04Nk9lVDYEsrMI2x5nlEUPjS22WxighBjFGmvi7RXGOOMNnRaPSrVhCzLqFQTwijgP3/9UW7dM8/qqqfKz7OcQ8+9xNTUOJ1uj5HxYabHRlhZXSWOQsrCG77gyHoZT79wnJnJIawtSdOSahLS6+v9XLy8jBJgbcmlhWWGRkfpNrs8d+wEN+2aQUnB9NQYEqhVawRRgNKa1167wNDoMLVKhHQOJwqsK/rhgQYdhCjtZSvStCSMQ371+VdYG1P8wa99mpFaRBgnWEqMDtBK0uuV4HLyNEUriOMq/+B3/w6pJD+Wl7x//y088vjTHLh1/wZ1v+sjDlm3jS0LmqvLVBtDILxGXpEV1Kp1XjjyMmtrHcbGxrh8YZEgCtmze44szVHa+OgB51k0bVkSBhFHj7/C9MwYnV6TkWGfu4oFiUM6S7vdYWJinDCOabdWkVjmd81QG66T9TK+9PUHOXXyNPW4wuEXjrJ71wxCS1xp+Yu/+Rp33n4LRZZx+817GRpuYCKDEpKyKFlaXOLIsVfYPT9Nlnlq/mefP8aLx15lbnoK6XwUhdSaoDaFjuvYbJnm8hmWLpymahTLXcvwUM3P80KhjWZ1cZnGcMMbnzjOnT7P8PAwhfX5iUWRUxYFxhiUFhRFhtEGFRqGRkcZHR7mnXv28tmvfIP/5ubd2KKguebDfYMoJIwMRZmhlCbr5ahQ0mlnJFEdaSRCKk96hScOmp2e4Ivf/H/Ze+8gy677vvNzws0v9es03ZPzIIMgwSCSFkhKlryigkUSFK24ZtVasiwHRXu1W2s51K5seUWVd1XrsF5rZe2SlCiJlEiCYgADACINQAyAAQaYASaHnk4v33jO/nFf97x+0zMYgCDLW4Vf1Z15/e6555x73733/ML39/09xq65aeLBAO1q4n5CnPRptdvMTtVYaq8w1ZwiSWOq1QCERApJlhbMNmpEYY1vHTnOzm3zbNs5y0SjQhh4DLoDGs0qSsmSKEqVz2dRGPIUgiAYOncEnuvhex7HT5zhvz91kVvu/QifOfIMnW6XuR91iQ553HpoO1IKtIRKVKU3SPFcie+6OK5LkhakWUxRJLiuy0SzSZLlRIFHnMYkebkmbJ2fx15nPXq9YhzXk0P3zLPqn+Gf/cLv8eGfuLccdx05M9Z4qF9sxty4sfFVK/rmg4txQ8SO7d4YOVxrM1reqSz9JNdp9OW4Mj425OuROnItspVryeZ5dqP7b/SXvpaec6Xv19u4g6vLQmwafx3Tc16/CN2rk9J+G0ISR538azs3tOSKcSfstUsRjB43tkuM6cQb9q07AW509lcf92quozEGNdTnxwd9w7j7LsrrbdwZU+ZkrXm1hCijMOthGK7x8lojWxn9ajPjbs2ft+bRQCDlULFQ+povlNHo22ah/c3u+3FykitTvfJd2e+ah29jjZiNFMHlOa5FNDeb2+iLSQpBwehz+uqMOyk3GqGbnaM1EissLoZPf/KTfOvjf8z/eOdNpP24LP6JpMgKzpxZYKIRceTYSXwl2bt7G0HoceKls+zavpX7HnqaUxcW2L9rK5VqhYcfP8bubfNUPYdatcLMbBPPd0mKhCwtqFYiknjA3PwMrdVOWdMuy+n2YqrVCsrVaCHpdmOiaohB4HgarSWOViAMSmmSJCPwfV489jLTkw0WV1vc/+hz3HxgG8tLy4RBgHZ0WSMuCLBKEFUC0jhBasEgGSBVWWes0+mU9P6mQAnB8RfOsGVrs4xuSFFGCKXC9z12bJ/j1JnzNCcmGAxiWqtdwkpAVA3odgZ87bEj3HbzbqTWtNs9pNZILalMhKWnPvIp8owtM1M0az5FUiYhS6VKKKoUKOHQanU4uH+Oi5fb+K6iPlFHacnN+7bTbnVwlB4aSBmf+uzj3HxgFmEt+3bMlcQmfqk4mqIg6aVcuLiI4ypcLfDCYMgW6pClGV999Cm2Tk6Qpxl+GNBe7dBu9/jCg09x28GdCCnodrtopWgGAcZYKpUKX3n4W+ycn6Ee+Dz45PPcfNNOet0BYcUnTTJc1+ep508wUa3geC6DXp8Du2aZnW3yV998itsO7SMdlPXGhFJcXFjmS48e4dDueZrNEtonCsuurbM8+eyLbJ2bxhQFlShEaQ1YBr2YVqtHGEYsXFpECouUHp4fIqzDZ+97nH17t2NsgdYOJ0+e4xeefpH/55/8MO+8fR+CAtcPEVKR5TFpnGFMipQ+JutTrUT86098gydWG5w9f5Z/9973Ya0l8APmJptlfqQt0I5GKkW/2yNL+kRBSFiNWLi0TBCG5FnZJktKEqBnXzyJKwTzW+dLQ04YnjnyInmeUW82gJzWaptqpYI1lqnJaUAQ9wfYImfp8gpPPnWUrbNN4m4brTVfe/gwJ14+w7YtZSQriXsoKWktt9g2Ncmu+S1UaxGz002kEDieQljB/l1b8QIX1y3ZKVdXW3h+Sfc/6A947oWXeMfb31Tm0UiJyS3PPv8S33fPO+m0O3z5649x06E9SK1RMsGaHKmqBNVZwopH2m0j8pSgUiPPsjISIgRBFNHv9cEUJIMe0zPTpFmGF5bPiut6GGMpTIHWsoxUUsKtrJAUeRmF/sDBQ/zUF+7ng7u34rru+tzj/gAv0JgM4kGCo0IeO3yUE+dOs3Vmil4vRimNUpoiy2itdHjzbQdKlstqSL83oBJF9HspR547zb5d26lEEUppoopHu93C9wNeOH6aw0dP8PzJ8xzaM8v27TOstFo4nkuR53iuy9PPv0QcJ0xNT5DECV7gIaTEcTyWl9scO3GaiXoF7Sj+hydf4D+9fJaP/u7H+PTnPsdjzz7MX/vFA1x2lpifn+LM+SUef/wEUd1nYWGFx7/5IoM8Z2Y6YqnVRSmPL9z3JLfespUsz0AoJqI6ldAvmUCFIfQikjQpo6HXXU2GS88r7Lc30OaV5NA98/yX/+sP+Ovv/pEr464teUNiNnG9aIzlig5w1WRGoyBXs0V0ez1cz2Mtyl6OvTb40KBZjxjKdZ1lrU2e5+tKrYWNVPljkM1RWOZVp3ADxp2xI9EeITbdRvteh7oKedX+cb3lleR6cNC1fWrtXK9znq9WxstCjM5Yjs1pHQW1if62JqM6YafbLYuJwwZd7LXKKGRSyHX6lSv3xTgsc/j3KAj2qkjadQy48lIPI7Ob7LsRw+6qSOGGc7lxkbJcQ06fOUO9Vtuw79UYd8K+WnP0DdkgWZq+rhcwL3KkZZjTsfZCLOGZa1Jc52ZRI7/neDt1nd96jUhEKY01xTX3vxpZy//b7NjRfWbNwTgGaVjLmxvdt9k5mPUX/pU+pRDkI8ZuCctk/YVuzfUfuBuJZBqjEWS8930/wGfe+w5wfQZ5htYCV7jE/YReZ8BgEBOEJdvd08+/xFvedDNKC5YXV6nXauRFTqvdodmskRaGrz7yDHu3TJMWKXfcup/+YECtWcNkYAvJA48+wfe8ZR/Sjbh8cYXJyRrkGUVu+asHn+IH3/MWHj18lDtvPYD2JFprBnGfIArAOgiTY0xRGqaBJu+ndFcH+JNNpMnQSnLx/CJCCCZnJ3Bcl9Zyi8pEFWEsJjMkfYshRWhDtVIhj3OMFmglyXoJfqXC4tI5PEfTH1hmt0yzutqmUq2wutSiVq/x3LMvs//gdpTUaFeRJDHSQpwZqlNVBsvLhFGVy0vLTG1pIK2LiXPSLKdIeyg3QPkgrEee9IaMfBm28FnpXiLwBJWgyRe+9hQ/+J5bOX9xhd0Ht5LGKcpKOq0+0oFBHDNRq9HtJExO1cjymH6coITGD32sKuEpnVaHIAjJshwtnRKm5jpgc/LCYKzkwoUl9u6ZpdtugxUEfgUjDU6g6Syt4ocRSaePG/ikg5QcS1SrAoJ00CfPE6qVgDgvCLyIpcurPPH8i9zztltRrsvq0jLTU3UuL3dxlUMlijhx6gJnFhd491tuodfp89XHj/Kuu26iXq+SFwM0Dv04ww19lIQszcCUZBhFkWELgRCaT/3lQ8zPNnn7O27GmJwsjQk9l6SfsrQ44H89/AjPuxGf/ic/SmEyJpoN2q02fr1G3ElJ05jKRB1RCArTpSg0Zy9d5jc/8RSf/Pgf8BM/+bP84Q/9EFkCX7z/Ye75njvxPElqDL7joTy/XMjzDCNLozSTEhfBaqtNtVoWrHZdB2tLCFQ66OAGPoUVoDUqycrC2IVlaWmJZrNJnqcMkk4ZRcvKyHW1Umd5pc/qaoddO6ZBGrK0YGFxlenJKVxHUJgC3/MwJkMIVVLgD3NjS4IfQV4UPP3McW49tA8nUIRhvazDOEjIRUHgBbRX20RRVNZpLAqUVORJzkOPPoHWDnfdeSvaczh/+izbt28llykgcayDkhrhWAZpikpXENahMIZCavyogpBlHcYiS+gMBjSbk2SDtCTDEaUSLIRGWIsxBoShyA1SWiyKc6fOc/LCBd7+5jswpuB/+sLn+c07byKsBJii4MzxBU4tXeQdb7qdlZVllLLYIieKqvhRSaDS7fTpdgdMT0/QbnURQuK6DoefPsZb7jiA43rkNsXRLq12h2otJB2kZc3BfowUGmshSTKyNCcMfcIoACzHjr7MhZUW7UHM+955J3F/QKXqs7zUYWGhzW137kEqyYnjZ5ifmeTvPHmM3/tf/gV/8ud/ytOXD3P3h26i3YuJgpCvPfw83//uN7G0ukiz2uDMwgrbZ+oIm3BuocOOLU1Wu8tYFP1E8cA3jvGeew4wM1Hn+dNLRJFmx+wkl1e71MIQoxT9lYsUeY+57Qc3XSOuEyy4qt2mbJKvURIDn/9nj/OpP/vjKwWa13LVh8adNeOxHMAO0UJScnWs52ojZlR/tEPUgjEZUulN+7fWbNhXFgQvj137vD6audK3kWvr9vC4tatprx7jRvQjYy32FSCHdpO+R3WUtf1XQTFfpWw2jl7H0q7/eN/WGHDluqyNJ0dutWtxNazpUtfaNypSlgXMr9ffaxEzVudZGnvleoxdH7tp8bxh09FUnLF21gwJDK25bh/Xk1eLfruWFHk5fp4XuK67YZ/jezc8yBuRu29TXndYJgypubninUBs9N6MYKOvhzcfl81eQevelyH+21C6KUa9L6MPsTFjcAquLFqjn6FcRIRSm77kCzFE5YvyJSO4gvte3wBrhtjp4XejnqF1MpjRExRrL69rVB4aidxdD0t9Pfz02nc6h0/+0ke5p2+YP7CzZFlUisVLizieQ5ElICV+FNJabdOLBxzYu4tOr4Uwgs9/4yn275qlEvlUaiFKKxxXc2j/DprNOpONBoefeoG9u+ZZWV5h0OsT1Tzm56bAKJS0SK3I0wTthziBw875ST5z3yO8771vpdvtU61HKC0QRvHxv3iQm/fN4QY+pgClFHmcs7zcptGc4M8//01uO7STIssBaM43aa/0cIRCWYOSis9/5TC7t84ShhLX03iBjxWCOBnguQ5Ll1tUGw2sMrieh+OE/OX9jzJTq9JsTlDkhmolpN/rMz09xX1fe5w9O6axWMIootuJeeDRp9m3YxbHVbSWB3zzqRc4OCxmrjxFkiUElQDlevQHffww4uEnjrJzxxxHjp5g185JHMcjqlYxMuXggW0MkozZuSnSOC6hiFJikpR2u8+W+VmEMGgJSZaRFZYw9NFSUFjotstCzSuLHRYurvDE0ZfYOTPJ0RdO4riSL93/NIcOzKKlQGuDEAq/VsF1FEmRU+QZeZwQ1WoUWYETeay229SqNVzPwXEkWZagtSqjfp0uYSVCCIHre2yZrhNUKqAE1VqFLC1ot3vU61WkA56CvTt28ZkvPc5kvcLOLRPMbJkqC0r7AXlR4GiHpJ/TafX4/Fef4OCeHcS9Hr4XlLXxHM2+PbPMNpv0eh1qlTpKQjHoE040+ZdnT/M7v/pBPnLPrQwGPdrtDN+PEBIcpXE9je+52CIFcpR0+N1PfYM97/4wv/yPfoEXfvff8rO3vakk4PE85mYmqTTqYBW+55DlCVm/Txb36KcDHCFBuigs8SBndblNtV4jzTO0VFgrKIoMgSDLMgQGZXIKk5MMMi5euEga99DkSFuQxxmOUz7vWmuEEviOQ+g5eFFJ6S8VhKFHmmVkaUyWpURRUEIvpS1zgo0gSTM+84VHOLR3F1lsqFR96vWQbr9XKp1WYIuUbJCBUjiei3YV3dU+K8ur1CbqSCmZm51GGEsUhFxeWOToiRPs27MdgcLVLgiLVWVEWiKwRY5IXRaWlvAihS3y0hmHRaqS6l8Oc0a044CQWFMyqCqlUI7CFJbCGPK8QCHxPYdd2+ZprbYIo5Dv3bePX33oUd432yRJUqbnJtm5bQsICH2fsBaVMGTPwRSCwSBm0E945MnjhI7mK4ef4fZDOwlChy3Tk8PfJ6a12sfzHKpRjV6vjTv08ruex31ffZK9u+dJ4xTf82l3WlQbfslQqiUzzQbbtjRJswGT000wgigKmJ6s8ufHXuRXH36Gvzy/zJ+cOosf+qwcPEO4X3J0cYHF1R637t+BQBJVQgIXGhWH1W6P/iBFO4LjL53n8mqfiUZELajw9HOn2b97nttv3c7CaovAVUipsBY8RxN6GoXhwSdPcGjXDs5dXGB6ZnaT1XUNRjaWu7YWMRpv94pygzBJQIsyive7v/l/8Dd/9APDtuVWBjrW1uSxPLoNUQcxdtxo5GO4aK/Tt49EWq6CYI4cNr5vJHp2FTJmRJeRRYGwFjnkHxi9JuM5dteT9TabtBsvAWXFRkKaccN2PYdxpBg4cA2469Vj2NFzHztmY/22127w59hh8YrRCNLVkbvxiNuobmXHtlHdbUMfo4b+NY4ryhygV1VGa5xUTwrDsDIA67lq63+P/FZmjHdhNM9uXGw5fwtDIpbr58ltJpvl3V1r25T0ZqhbymH5gzKKbRjNx5PKueHI3RvG3bcp34mcu2sXZrTr/17rxnu1pQrWH8fRMPJaxHAE5nhlfmygdx2angAoMaz7NjyuKMxVL/m1G3i04uN1PZrD8cahl5stBlcQIJvl5F1t3L0aLPV42+efO8b//mu/wt0YDuzejilAioI0yXjqmZMMeimOkqRpUtZWev4st9+yhziNOX1uCd912b11honJCdIkQbllIdy1HMs8ywg8l7m5SawUeIGL77ol6YdfkgRgCrAW19UUxrC62iIrMm47tAfHK+GCQehS5GYdjui4mjzPUFLiei4my/G8UqHdv3sOW9ghu6BCGonnOuVnR9FeaXHT3u0Ym6MdB2MhywscT4NlCLt0+cNPf4Vb9mwri3hLh73bZ6lUQy5fvkySDAgCjyzLWFxe5ZZD+3jhxEmqw/NLk5hGLaQ2UcMaQ1SJ2Ll1GrWWkG9tuaqYjGPPn2R6qoqrXbbNzSKkoB5FXLq8RK3RoNfpkyYJlWpEkZcg3SKNcR3NwuIq1eYEJsnRjku73aXf7xFFIX7kk8QD2qsxXhDgeYJikOF7Po1axK6tTRaWuxw9dZ633HmIA/u2khUJ2vWRCgRlMds8zQgih26nN2T9c3n26MtgBRP1OouLSywtrxL4HkII8qwszWALQ5bE5T0swYtcnnz8RebmJonjGIyh2ajS63VxtMYLQr78zSe4adccW2ebeFGIzQsCT6O0Q5ImLF0ua/OdubDAe995J3mRI7A4ribJM4SAwHMZ9BOq1RClBIUxfPSRo9x77118/127weYgLfEg4dKlZebnZrC2hPjmucFxXLLC4Pohv/2fPs1/95sfAxHz23//N/jh2+6CIieJ06ETw8XEMYNBQlgpiU56/T6OowlDjfbqZd5fVhadrzVqgEU7ik6nt65dKC3Kwt3JgLjTBgSnzpxlbrpJd9BnemqClVabE2fOMlGrlhT+psDzfKSQnD5/kWoU4kU+flhCVYvCUK838IMQhCLPC3JjiKIqnc4ATMaWySmMyUmyFMcpnTJKSoSwQ5KWAs/1kLpkA0zjFK0UUTUCIVhaLnPlGpMTIEun0I5t82hXY4wp63OuFYTOc9rtJaLqJP2sT32mTuhVcWxIlveRWoHWYAzxIB4yEDL0aluUFFgE1pSGhZJlvl6WZXi+hxCW3qBPpVoF4O6JGlXHlBBuW5AlCYU1uL5TPnvWot0yn891Xb726DN8z123sGV+hl1bZigKS5GDF5QF6rPMUBQFjUaVNMkRwuK6Hkpplhdb3HxgH9bmxHFMVPGRWuI6ijiOqdVK4qVaPaJSieh0+mgl+dbZc3zkiw/ywx/9KA89fpgf+q27OfTePYT7hwyfKmd+fhLHDej1Ex45fIzbD+3CUKC1wtEuU40qoacJwwr7ds6iREFqFcdfvsC2uQnOXbhEtRowWaty9nILjSH0XeIsw3Edts1MI4Tk1IsvsW3XjvEl4+q1Z2yh+vb9/K/cw563zfLYhQe4a+5dG4dfX/RufBYbjbvh/6O6wqtA99hh3UhrrjaE1szNDVFPO64Lrff0igbdjcq4fnTj/W7Ul0YNveuNMdr/uDFxVRHz1yijbvXrGXfjba73S9pNboMbEaH10DG3CZLruuNd0fnKtjd4n924L2Ss7fjv+frLZn2v3+J2OAcxzpzJG8bdd1O+o8bduIdp+PeoQTWOyX61xt2692nUAzWyD8ZesuPeq9G5j+2/FjFKOd7mfWzWHobwDVN6XtYim+t9rY0/9LiUfY71Kiiv08iidrVP7NoL3iju+hd/8R/y4c5F3jY/iVcIgpkJHDyyJMEPfXZs38LkZINq4NFt9zl/YZmb9s/j+wEPH3me/fPz1GohWsOlS0s0Jmql8iUEg84A13fJ8xStIE8LpBBIJLktmVOzNC8ZBpVTLpLaQUkHrSTVehWpNN12m3q9ipCGPDNoVyEVXLqwVDIh5jnnzi2QZUVJrqIl2lUICvqDhJMnL5FlOfVGhSzN+OyXDrNnxxbyolTy8tyU+XhZWiZ/C0kSJziew637d5JnGf1eD8/RtNsDtFY0mnVQgvNnLzPZaOIHPp7jMNmsUqlVOX36IjNbJqnUArL+gCyFx58+yu5d81gsRZZickueFijHJe6nNCdrxL2UNE8QWuAqRb1ZI0kznnz2BQ7umidOsjLHy/OwStHvlnBDIwzVqkNWlEZw5IY8/vSLNGpVlCjzv6TSHD16gpn5JsYakizn/ief4dDuHbgCqr7HF775KHu3beGhh59n354ttFp9tFQYa8jihCCK8IKAxUsLbJmd4tTZyzz8zDFu2b8d33MJwpALFxaZnmky6A3oxwPqEzVsAWdOXsJXLlu3NsiLHK01WrvEgz7ac1hpDeisdjh0YDuNZp3l5Tb3ff1J6qFPJYqwWBxHUa/XaK120Q4l8ycuUgq8ICBNCrTjcPbsJWZnmziuw4fvf4SP/Mzb+b79DR59/CihH+I4Fiz4nkPvaK4FAAAgAElEQVRzskq7U0Z7sizF9RwGcR+lBT/5b77AP/6tf86P3PtT/OLUHD9w2y3l/ewGeJ5L3GuTxR3CSoTBsnDuFN1Oh6npWQaJxfUikAaZCxYXlvjU5+/n4N6dGFvmjn3601/j3MVzLC0tUQ1dfM8ZGsJlPlt/EBOEHlE1oB8P8H2ffj8hqExQnWgyiA21Wh2jNM2ZGZR2MUIhhQvSwQt9pPQokCA1rueW9RiVxiIJKhHVWp1KvYajLNVqRLvTJQh9sjTHdRVaKEyRrHtplRBoT9Pt9PF8H893Stp+a1m4tIgwhtpEHWNH2dlKJ5VBotAgLdIqPK+ClRn9dJGwMkW/F2MLg+e6yKETpPRClwyEeZaX3nJ7JQfaCkGaFEglkMKWsFEERWFpVOt85PP38/6ZSSwaKVVZUiKN6fZ7BKFP0i+hd+fOLXLHzftAlSyJ2nX40796mDfdeoDCpISRz0OPH+OmAzuI45ggCOj1u3heyKCbUOQWP3LIspSvHn6ag7t3ICycO7dIrVahRHkZOu0Bj52/zG88c5wP/dZv8Y//6FN8/6/fSTKzyp0/sBtHWzytaFZDFtpdTJGybXqKpdUuU42IqakGpy8sEgUl2Y6nXUyekiQDvvXUizSnI7q9FM9VHNgzjxGSWq2G50eYIqPIUxqNAKUkne6AldUejivxA480XaExNctmTHuWtWV7Y5xOiGFEY5j79drUyPHVd/N9SsBTFx9YJ1t5rcYdjJyHuPL3eF7dmuE2buyNlmYo53VFvxk18kbX5bXvBVfajk3odQKyvnbj7tXkWG1m3I1H7ay1KKXIhk7Yb0dG8+xuxLizQlDYzemBXq1j/qrjrRmyYI6e6xp7+dWRw/XPo3fEMPJprL0mourK/Tg2getMVjKqS37njbvNInhXoo5rOa8COUJEC28Yd99VeT2Nu2IIlXglr41VEivL7Yphb4fHXnu7nshhF4IrybVXwR5fQdYesM0eCqkUeVGAHdLrXidCvlnZgWKIv9cjL7vCFozSvAwJhDcYdlKUUFNrxNDlNDqqZXFpmTAMx2ZwbcjmBz/4Ef79W28CKZH9Psr3kVJjyHnx5ZeZnZ4BAY4D508vMTXTxAs1M80plGPZu2OOtDD0k4Qg8vAcwWq7z0S9Qk5B1u/jSI+l5TZO4DKIC/wwIMljlPJLo0oJtAKKFCkdTp+5iKfLcH5hLFYqhIWlhRYUBk87JL0YrRVB4LK6sEqSwBcfeoa33LWXVrtTGndKIlyfOB6wbesWzl9YYWqqxvLKEtOTEVPTkyAsDx4+yv5tW5FaIR0HqTSHDx/DczSVaoRWElwXvxphSOmt9PHKSgL4fkSWpFSqHucuLvLS2fNsmW6SJF1Wl8q6VKHn89KJ89RqEVOzU0hHIoVF6xBry5IR/Tjj+NlzTDcarKy2mJys0l7pEUQeq8s9avWAHVu2stJpUa15uF5Au9PBkR5+4HFpYQFTZKQ9hR+G5NZw4fIqJ89eYut0g6jZwGQZDz32LHt2zGGzjEoUIJWi6gY0J6ISIpklHNyzlSAImJtuoKWDlAYv8FhdblGrN0u4dJbiaIEXVZhsRuyen0JJgRsEKMch9B3iToxWEj/yKLIcgcPRY2eYm2uQFymuH5Tsjtbw2BMnmJ2eoj5RRaJxXI2wgjCocGD3VhwNaZ5SZH1Mrhj0S3KNeiOi1x/w+HNHmZ+coshTwoqPLSCL+/z+i+f4cneJ3/v5H0AVoByPIPSZmmxglRyya7pkaU6jMUEBaKVIYnB9yb2/fR//4fd/g7/3D/5nPvFjP0BQaWCLYlgXMSfuXmZh4TxSaJQMcXzF8kqXieZ2/t8//SJ33XGoNBSs5NLl89QrE9y8bzeOp8uIj5Ds3jXBdLPG/PQEnicwuSkdC+4QuiglflhFOC5RrUkQ1picahL6IVJKfN8r89GkRCuNye0QAjNUuq1leWGFLM7wfEWaJAipMQW4rkdWJGU5Eu0hg/KeyOIYYQzWWAKvdM5k1kMKQ7/TJvQ9cpMTBAFSKhRlmRCs4OKFJU6ePMv09ETppJGgXBcjLINeB8+PEKqkkpIUGAQmS5BFjnRCtHWJsz6eUijHAaEgzVB6qBYpMP0c5RjKIu9gBjlf/+YjzE1PoVyJ0pp+p4vnOCxevsSHbjrE115+kScffprZRgXHdTh96jLNRgUpXVZbXWr1qKRPl5IjR15m1545iiIvWShVGWFP+wU7tzZxPZ88L3AcB1eHUGScePkstXqI63kEkc/BHdvJU4vrS6woI5+99oCf/fI3+eSFBe75yE9z+OmnSe9c4Ob3zhBFIYHrkuYlq6sClAZrLDMTTYRSPPbki8zPTuI4iuMnL7JzNkJISVFInjt5iUrkMTVdJ8sKzp1boTlR4eylJaq+T5KkaOVhhCKqVDHFgMjzUMqjXmngeBIpHFqdLpVatXzvsVFxtdhhBHUU3ndFuRZDe7B0Sr5aKJgY+1xu1+KSPnTPPP/6l/89H/jAj3Ot1feGx7dmA85MjMA7NxqPV4y68XGu5zSGK2WPhDEYdTWUzw51lKvGWecqkBs+b176YeSUxvr+TshmZRnWdCErhkR61iKRqFcovYAQV6XCjMsV/U+Mfb5y/cdr74nhP+MU/qOQR1tsnotXEtVcca6P1ju+4tAv73U5NCLHXRRrcymMBck6AngtNUeqK3rZqNMdxvLeXoVxZ4bPqpSC8VJeG7oYKZkw7syxQ/SSEBIp1BAQe/3jhBBX681rMNO198TIGG8Yd99FeT2Nu7Wb6hWNu9EHbsy4+7bGX+vzBkLzm4mQcgNkc7xvOdxfFNfGpEPpqRkvd7D2AMsNkNAxz+A1Fiu75hbaRMJKtMm+YS2ajTFSPnzv3+IPv/fNwxZw4cwFoloNqTWdVpfjJy4yO9lEKLC5ASM4e+4S1WqEKSxKCzrtHvVGjbASlUqvEkw0GyVsUIDn+5w5u8DKapdmPaJW8WivrBD6GsdX9LtdMpPhVXwG3ZzFhVUqoU8QOHiBS5xkJURMCBYur9BoNojjDKUVSIn2HBaX2xx+7iXe//1vXfcSeYFPmuZQFARemcR78cIKW2YmcR2Prz7wHDfftAPX0WyZmkAoyEwJ57N5wZbZCawovXBKK0SeIwtJMTCstjvMzE4wiBOk1nz5oSdp1iK2bZ2j2aghBAySmOnJaY6fPkcl9JianMAPJFEUIoDWUoeVxRUsUKlXQVh2zc/xrSMnOHVuifmZBr7nA4p+J0Zpi1YeStmSwCKHfi8mM120knzloWPsnJ2nMRkhBHzjm0cYJCnvuvsW7n/0CHt3zfPFBx7nLbfsx/MdjCj7KfKC0HcQUuCHAdYY3Eq1rHGny/yiwlgGg4Sl5RbNWoWz5y7iez7K9UDAqdPnmZps4LoO2nWx1pKlKSfPnKfZrFMUFmsMcT/l7MIih/Zvx5iCvChhlKYomJtvYIXBcTXSKM6du0ijHvLoU88QeS6+p1BSUK01uHBhiaeOvcxTJ07Qafc4sG8H81OTKCEIKz7dTo/f/NYLsEPzd3/yHu65dRtZapGqS54mTE1tGRrY5ROW5jmVKOLipQXCKEAqQMZ85He+yB/9h/+ND/zUL/GpD92LVKCwZGkCokBaFyklzeY0vg5JbR/HqRD6FfIi5eZDu/B8hzTJ0I6L62nSQcYXH3iAA3t20O12SOMeoV8h9HxMYdap/bXr4VVKw6Nar6O8ks5+/Z1iTcm2qTWnT52lUqsihgZep91FqfL88izHdV20lmjXJU0yoiGzqBySXDmuCxak0GBzMIaoWsXxfLTnk2QJeZ4TBSFCGgoLDz1xhGatgUCgHUWeZRTWgJWsrraJQp9Hn3qWfbt38OzRF3n8W0fZu2snUio+/mef58DO7aVCXa2QZ3H5HvQjuistgrAkefEqPr1+D+VIpBZI6wIOEoXju2RFztLFldKBJwX79+xkEA/whtcyHqSsLLV46rkXOLh/L3O1GQ5tiYiiAIQgzw21Ro1zZxc4ef4ic9MTSKlYXe2wc+ccg3hAEPgsLq3ieyXUOEtztKP5s/u+yf5dcwhhUUoQxwMmmw2eff4UWpWG7h/f9w3SXszszASe5/Fjf3E/Z2e38ra3v41LCwtM/A3Dge+dRkvF2UvLVCLN0RdOMVGvk+QWSYbn+BSFYHllBc/V1CdKhMQg6RL4DoNBj0bFodPt89KxM+zfPUsvTskKy2SjShhUOb+wgpAlwUvgSQZxH63A1T6DNMfzXHJT4CkPUxhM3kP7Ea52xtaRNQVYrK8ZrySv3bi7sT373jXDb/38x9bLJbz28cfW3g2kIuP7XmNcckS3uSb5yahxNx5BHDHmrCnWDaf/WmTN+F/TW6wo2dKVdm5MrxtHcb3a8de72ST6Ka6OLG0Y9xo5aeuR6uGsRokBxwnKX2ne4ylAa1IaYJsfs2FOr8K4GzXormvcbYYIG4opzJCBumy3wbi7xnGjAYQbeU5ejXH33a5Q+IZ8O2IN12RNWs8olSCH26sUKcQGb8zo33LoYRiXDd+Nu1E2zH3I1mZL74gxdv3YtXHWNotYh16Ottsw7iu8pNeOM5vm3w3Pby3mfRVAs/Q6j76N/tV/+7f5g7921/BAENbg+A5SyZIIwPVIehbPd0qaZivodDvEaYqWmgefeJYkyWh3Y5Yur6xfA6Vdzp9fIM9y8jQDqdm5eyu337oXz3PBcalMNBFuiDSas2eWEcalyBSuH3H0xXP0On0cz8MKgetq2qttsJZdu+f4vz/9IK7nlAVAlSLPYGpuin27t6A9RZakBGGINZS5OAK67S7aUdx62zyrnWUQhh/5b+7m6adf5JOf+wZKaS4vruD5HnE8QGBwfV1G/7QiGcTgCfAElxZX2TI3zWe+9AjWCgwFP/J938PU9CSt1TKyqHRZkPjz9x/mtkO7qNQi/GoZQVxZXKK93AajmJlp0JyqkxdFWbAczR03H+DySg+sJM8L+v0BJ09eKosa24IkjimM4E/vewgpJdMT82QxfO/dB9F+QWZKlsd33X0rlcDlL778KG+79QAvv3yGd9xxiEo1JC9yGs0G2nVKWFa7S6vTG0Y8NY7NKPodOosL9FtL6KEhvXv3NjqdNmHgoV1NtzNgZaUFtsx/ygpLkWYUWVk+Ycf2LShZlqvwPA/X17zplj3kRcG5i0toAbYo6McxWrnYTNFbzRgM+jz5/EsoJbjrlj3MzU0ilUQozWCQsWV+hve++07e97ZbeNfbbycexIRhgDGGf/fYEf7N2eN87B/9dd7/ztsxeYK1BWHo015dQYgCiWV1dRWpBKYoEMKSpgkzM5MoJbHG5e/+x8P82Sc+zs/9nX/AfT/9c3S7yyULpzVICedOnSS3A85dPMfi4iLClXiqQtwvcCNLkpWU+xYDBoo8R6HwfIcs6WDyjCyOsUVGp7PMIO2SFH08L0R7HjrwKNBINyS3ksKUca6yzEuBUgrXc7FCML99DmsNRVaQZRm1YS6ekBLP90pKdq9kcI0qVdKsLB8wGAxg+Nzq4SJu8wKlHAorMEIjPJ8gquL5EZ3WKkmcoJRidqLJoNdH2IJ00Ec7qoRY5zlKCbZun+Oet9/N6ZNnuHBxhcDxMLlBSod7f+j7cR1dKk15CmkPG/cwaUYYhvT6LaJKRGE0QVBF4mCtQz/tYUXGYNDCAkorpmamqEYRaZZgpaXaqFGqHpIoDHnuxZd499veVj6rRc7PPfrMumNucqbOC8dPMTc3zVvvOETc72ON4euHnyNOYzzPwVhLvVpFq7KUguNorJW8/z1vw3U1vX4fY3L8yCfNE+5+081s2VISr/z4e99GLlJ6/QF/++Fn+NxnPsO3nnuW3psu8u5fPjgMbxi0suzcMk2WJuzdvoWiKKh4ZSH0NINjpy4wP9VAK8GWySpRoPDdKjOTMzzywBl6/QzfVbz3e28hSeOyhl2twuREBd/1OHd2GSUUgzjFVYZa4A7ZCx0c7SGExHEEX374WRwtaK22cbQawuuuQM2uUtaGy4y1dn1bk80IO16rvFIvP/ZP38IH/uaHNtUl1pT2b2cuZXqEGTp7XwcV8wbZKK0xG8jbyjJSw03I9eLtr9u8riM3MsZaFKfUrcxGA/l6ut56G/vtKfBDnW5TXcpeh/1xqMPB1fqZXIPQDsVswrw+Ov71REqxQS0zxlxTD73Sxl5TZ9zYzpT66Cbf32jbcdFKlaz2xmzKOH+t+Y5+fqV5vxp5w7h7Q74tKaEor+2413rsd1se/c1f4e+/+WYArCxfWGdePkOlXi0hUoWlyA27d03RarcQCIyBlU6XQwd2cnFhmbfecQA/CNi2bZ4wcLFFgXQ0aV6wdW6aleUWeZ7x5GMvkMYp1gE8hc0GaJsTtzvkUnDLbXsJAwVFjBQ5e3fOMD3bxFiHxw+/iBIuoRvwic88RNaP+cnvewvLl5fQWC6evYQwlrTbZcfcTKnQ1QKWV5aBAqnABprG9BQShbQuDzz8Aq4TIKTk0IHd7J6dRmvNw48c59SLFwjDCriaPCuIwgomlzzz7GnOHLvAysXLTE2EHHnuBO97x5sJKxFxkrK62kFqzbkLC6ystEj6Cd1+zIFdW8sLLiHJUoQKeOHlc2jH4dNff4LMUhZGFgZjLcdPnOKRZ57hZz78TvzAwYqMo8df5vabD1DkBXmeoJVGeooPvv+duK7kwsI5/FDTWon58v3H0I6LchSWlAN7ttPqJczMTrFr25YSFiEsWktEltLrdHBdl2dPXqDRrBFEAY7ncOHCJdwoIJyYJprZSWENtXq1ZBPzFPVmhNaWyUaAdhTPHj/H8kobQ1kbSklIkpT7Hzk6VGRylNQEoUetFtLp9NizawdJnDAY9KnUKhRFRloMUJ5hkCc4jscgLtBeQKc/wAlC3EoNNyprgcWDmIlGnUHcxoiMn/zGYaL37ODnf/E9/PqH3oFSgkqg6fW66CDEqoTJyb34wSQpAxRlTm6cl1Ejx1GkaYIxOff+9h/zDz/6M/zxr/w9/vMPvY9uu0u9EWESTS8VCB0Qt1okrTbTjUnqk9tIZQWDQQUFFAHN5jRxPy/vOy0hTUl7PfK4y4++7z2cOXWOIjFoAQgXz28wNb0bvz5FITXGChQKRFHSqiPLSDRgbGmc2SFyTDsOSmvCWoQfBZw7c2FIg23X812U1BQ2QzoCP4gQSpelREQJl0mzGGNTpFcW4cZYpAWZG6zR3P/AEeqTpfFr0pQ922aZma4iRTnPXq+LkJLOSocHnnyaC5cucfjJo2ydm6Xd7xMFDsuXL/Nf/uxzGCEQjotyPWQqcKNJRFBB5hkqCHDcCYTr0W2vIExMa+kiQuR4boUihV57gE0TBr0OwrFcbl0mrERI6YBVJOmAhYVLGHIO7d/JuQsXyYuMMHT4ox//IKd7PXqdHkmvxcxEFdfVSMchDF3SJGWqViWqh2RZxrNHT1DklpWlNoNen3any/MvnEZ7kKYlG6a1CiFLhlVjUvIsxRrL4YVL/NvugOlf+zVyU/BHJz7GT/+rdzPZiJioRSR5ypGjZ5DkpGmfvFBYIMtjsqLLhcU+x05fohpqukZipEYZQXe1yyDpYWybH3z/QY6cTHnpYsJyb4Dju9QqFbpxQpKmDNIl3n73TrZMTnBo9y7aA8NiJ+ex5y9gyJBKUBZd9/i+d91CO+7iRnVc7SCEpBhX0v8rlR/7p2/h3g/9re9I31Lp9Tp3b8iNy3UNof+fyI0aQm/Id17egGV+m/J6wzLFJjSx6yF6IWD499p2Fc3yhkD9Ri/AKGXwjSw/o2USrCjJChQbw/ijI6zlyo0TnazJhkTakWM3m/36PilAlkm+Ul2hQbabnN/GCJ0ZKudrntRhBHK9OPkoecx4yNyAsBhbsPI7/5JtExNX9llwHIe0m+C4IRTly6zf6zMzM4Hn+CVrnjUcP3mB2akGzYkqfsVjZbGFH/l4vsegH+MOvf8Ll5aZnJ2i0+rz3PlzNJwI31co6dFuDaNDvosoDLkxuJ6DSTP6/ZSp6QaO71DEBkGBowWLi6vs3jpLozmB9hyCio9yXLTj8PRzJ9i6ZYp+0scPPawp8x89z6XX6UEuKApKIpYi49C+bXTaHcJqgNYOM1NlbbPbbt3Ly6cvsHV+qixRYSDPE5Sj2LFjC8KxNCanEI5kZrKG6zslVj4vCEOXPM8Jg4jWap/+YEClGrF12yRCDgmFDEhXIq3EFJa7bt4LpmB5uUUYReS9mOZ0ncl6DUe4dPod/LDKRBTRWm0jhSSs+Hh+UGYpGTh7+iKTkw1KGv2cm2/aRmu5haMlzzx/iihy+Z63HOT0mfOEgUcQhXieXxLDhCGu71IYgzaKei1EGMrSBq5GK03SH6CxeIFL0u/jawdrNHHWR2kftMYWhpv376DeqCK1xtElO+ag32bXtnm+fvgIe7bOs9pt4QceUin8IAApyXKDVro0XIqcoOLzl18+zEy9wl137kd7GiXKaBWmYOXyMs88d5w92+c5/vIpfunZ4zzRb/P+D9zBve8+hOOEFDbn4YePMTnllx5HNGkSM+i1cIMKRg5QBHhumfOlVcnAaVE4WvMTv/05/uPH/jn2s5/l7n23YWxIkS8jvRA/qGBsgUl6VJsNTGHQfgMrDTIrMErg4JQJ+qakOscU5GlMkgxQSLQuYcODOObZl45z8MBN+FGNP/zEF7njtr2YvOCxw0eYnZpGaomWer22iuNqkriEbVosFBaBpcjzkil2+D5QUiLVFW/0WtRB4SCFKOHHQJamOEqXSnxu0NqFIi9fQwY67S6u41IUOdu3zoLSXL60RFgNEa4m7sUIKXB8nywvoeknz5zlPe+8m2oYUa14DOKEXtznlgP7qTfqbJtqEAYh3XYH7UqkkpiihJgJrSHuE2cdXCfC81wsEi8IMXlJT/9//uFnePfb7yC3FtcNSOKEarVCkpR150xhyJKUiYkGWZKTZ5bHvvU8vXaZ/9psTvCJp5/npcPPcfuhXdQmJxBC0Gm1KYygVq8yN1vCTV3HZXKiSlGkRFWXQT/noW89z1vv3I9Uij/53CPcftMukrSLzUqamNNnLlGrV/npBw/zy7//e/zpZ77I4LZzHPxrW9DaATsgzwWXVy9TD+vs2jZFnMXEWUk2YbFUwwBpBVEQ0KwHxIMeMxO1Mv9FSQwFX7/vW9xxx00EnstELSdwHeam6yy2LA88eIT9u+cRwuK7FRwt6SUxUkmOnThLYSwHd87QapdlEcr7BQpKVmNjBdVKdNUaV95LdpMIxbVhX1dnIF1PNmu72dq/2fiCNO6jBxG79+x+hXE2k6sxbxtKA1wDtidhHcHzStsGnWAdXjnW91jOXZ5lJSJn+PeV6W5yzW8AojlKAvNKjKDjhDFr440ed8WAsyW6SgzLT40WwJaSKwQyrzzHV6vXrc+NIcSRV9bdrtnHsP0VshV5zYifEmWu31qO4ahsxrOwJkZAbkyZE601YrT+8Voum1RYYzc+amJsG5F1qOhYBL2c51p+81rfa+dYzuFafV5vvLWcvrXjR3PwrurHlNfIGHvVtXwj5+67KK+7cbdpEud1j7r6q/U+Nu4bzdW7kZfA+tGbHLfZlK5a2G5gjFecw7DL0iiTY+Nfz7gbvkytHcIvxdgcr7P4CctHPvJz/PDFl3GcjXkUAjBZTmulhEKZomToDKOghD4JxeryKp7vcPHyEju2lVA7hERLly994wmmJ6tUa1WsMRw+coxts7N4oUPgO+zevoXHnjjOgf1zJTtfkZURIFlGCB3XZXWlzaAfo5SL1i5f/PqTRI5DZnLyPOehp15gbrLOU88dZ+e2aT77lSfotDtMVCNc7aK1oF6vgCiV9WeOHkcYQ6NR48HHnqXiexx5/iV2bN1KUQyIqg4PP3aMrdNTKCXxKz4SweREFcww+uS45FmBsgpy6CddwkpIr9PHkpd1ooxg+XIbRE4QuDCsnVdvVKhUArqdLv1WH8dR6MDF5BlRECClYGlphWo1wHUd/MAlSzOUBt93yPIckxvOnr/I1ESV5nQDpQxZnHHp/CLKUZw5ucDundtRjsb1HCo1D89XFJml3e2xe/s8pjCl0usogsAnjVM+95VHkVimJifIsxxT5DQmI7TSFEVZ1DpPCp4++hI7ds6VMGADaZyVkGYJeZEMnRIZQumS0VAyrNNWEuF4rsfySpdDe3bi+x6edBEiRYiCxx47RrNRRkZ8z+ehJ46yf9cceVFw88FdFGmGciRZWhb4HsQpCFNGiD2HrzvLvPUHb+Kn3neQv3H3HrR2iAcJYpiPiDVMNqeQKiDPLW7gEXph+bxJhaMEhZUIEooiRsmAPOvws793P5/+o4/zn3/113nPm9+F0JrWxZdpTE6QWhdtcoTp4TkRTtUlqNSxuMRpwjcfeYo9u3fS75ZU/ub/Y+/Noy277vrOz977zHd+c9WruUqqQfNgW/KAhW0MdjCO8QjGscMUaNKLdidxSIckwIKQkG6asAhJVpp0M6UxjsFgjCxbniRhWZI1lYaSqlSqeXhVb7jvTmfce/cf575X7716VaqShCGr9Vvrrnp1z7TPueec/fv+hu83t5w6dRrXk2hTArIDL7zAaKMOShEEIfv27kG4pbzGLTfvLAM3SrJl6yaUECycnyeIApRyhiUuBs/z0EaX2RShKLTFWlFmB63F6JKBFuWAkGit8YOyl7KckMGRzjCj5yw7X8pRQ0ZKg9blxB0PErzQx/FcXN+jSHNarQZZmpFlObqAwSDGWEs1cEjimC1bN1Now8OPPs7Ondv57Bfv5w037OH06RkeePgJdm2ZJowCQJT9lUKCgX6vj+c5KM8vZSUKQ2E0UBK4oDNcLxiyVpZ9hFJKHLeUSchiTTJIcRxnqIWXIR2J67ns272TjRsnqNeqxHHM7Vu2smciJKrV0NaUbLWqdH3aC4tUaxXm5xaIBxm1ZgM/8BgkCVbDjk1TVBLFELsAACAASURBVGsVkjTl6OmzbB5vEgQehdboHH7mmSNc9+GP8M2HH2Gw+wg3vH0z1gzIsgRHaIQsS+SjQCGFQ5x1iAJFt99HSZdGNSLNMhZ6fR57+BCHTpxj9zWbMKagn8RgNUlWsGffZh557FkOPX+UDVM1amGduNAkOdy8d8swzCc5OXOeKPQ4P7uANoYt05NsGBvl28+cIPChUa+WJb9C4gjB8RNn2blt0+XnupcN7l7K1ul5WpeYZf3jTO4aoR2d5uapN6+z/KVsfXC3ctn6PUtc5Exfia0Fc+uBOzPUfbxom/W2W7PtSx73CrZZ73yztCz7XcpmrfTx1vdFhiBx+auXHuPV+nUXbc/FY7/aX+gC+aq4ZLXl5bgcLresVF8pr5uUajW4u9C8NlznSsd76TPUxi6DzeFBlrd5ueXKSkmklBf661Y+k2vdzxUJjNfA3d+gvVrgbrXI5Gq7CNyt5EYdZvNWfS6suHqzq3wJLEdxVm4nSoam9SItF0XZVp7fGvHzy0VqVlphyj4GM4zKXC5zt5LAqyQoWxk1u/BCNcN9XrDVLGfv/8BH+b233Lz+gKxh4dw8aZpRq9eYm12gVq+WYyw0aZIPG6UN01Njw+sHcS/G9XyeOHCYG6/fiRCCzkKHdrtHsxFRqYcszC+irSHpZ7gehGGEI8uSxzCMhpFqQegHSAFnzy0MSSAMgySh2awwMTGCKwWbpqfYODVKt9Nj+6YNbN02ST8e8MgTR9i1Y4qoEjDoldHpRjVa1pPaOj1JUA1pVEJ816XfGyCQ6MIiRclQmsQpB55/ka8/+gzXbN5ArVZjfrbNI88cZNv0JE88/QJbt4xz9vQCGGi2KujC0G73uOevnmL7plGUFEgr8AMP33dotzvU61WqtQpxHCOUwBYWrS1fe+gpzswuMlILCEIfC3iui5SWLM9x3ID9Tx9l3+4tuIFHnAwIIx9Hehw5NkN3MWX79g3gpHzlgf1smRonSRLm2x2UcBhp1UiSnOOnzrFl8wagZOQSSDZNjtFqVMiKnGqlBPP9fhcpXawxHD9xlvGxGo1aiLEW1/fIMo2UAukotNb0ej2OHpuhFioGg4LAc9FFgUSw/5kXSQYpUSWkMdokS1M8X2GtJkkSkiQjcDyiwCuzZkrQqldQEvK8wPNdDhx8kemN44DBdRweOHGCf3f4LO/74E1Uto5x3a7NeF6AtR6OCokHBWEYUeg+rvIJIkEyyPnjP/kat9y8B2N1SUrjWqwWxIM5HDdEZzFJrgmCBh/+t1/kc5/9Td72ng/xy+/6frLBACUFrq84dfQgQeTQb7dxAkWuFVJVSfMMJUvR9i2bNmOsprPQxdoyqjs+MQpYoijEkjPSqJPmMYWRNEdGMEA+nHjzvCj7CmX57Bqth8LvZkhe5JKmaamlpU2pk2glzx04iCsVfujxa/feS2g0G1ujZTR56Z2kSxZeKaEoirJKQpbvDTsUa+53e7hDghzHdUBKokpUkgmJ0iFRQmCkxfcD/vTur7Bz82aisNSNzAtNWKkAJVCUBqyxbNs4xUNPPsMbbruJLE9pteo4UnL3V/+KPdfsYP7cAnPzbcbGmxRFVmpJChddlNIERZZTrVVL8OE4pEmC4QIwTeK4DEooj28+8jjbtmzE8zyyIisrEpIcawqSPOPAwcMoW0or/PSjj/Pe6QkKXTA/u8j58wuMjjbRWiOAWr2K48BjTx6kVQ+RUlOr1/B9F21ykn7OaC1i48YJrIX/fvgov37iDNKxnMye4nU/sgVMjiMKtNE40jJI+jhKYYxA64woiLDG4CgPR3ogIUkzQt+j0+9z/LmTvPvv3EmaxYSeSyN0mZltM9Zq8ud/8Tivf/1u9u3eRZINQEQ8+ewL7N4+TbvbI05yvnT3Y3RjzZaNEyBdrPWIApdBGjM1NkKjEXGu3cN1FFJIFjsd6qGLDIN1mQOXbdmZX/lZJ8PHpX2AJTOrHMx1wNOazNH6663MLLEskXA1JlZmmoRYMxXb4Vy1zna8PHC3tp9/3czd2nLYlZnAtdut2RYuztIJIS6ZKVxv3VWHHm7nuO6qPkaxNsNJqWsrhlm6pXLWtdVal4Nbrya4uxKGdItFCUmpHDv8brjR5Z6DldVaS7aWmX09v9Cw4vpJiRL2YpC09Bu9CuBODu+jC/7shW2WPlcD8kpgv5oE5krA3RIZ4MrbWDlXDu7Ey3rQXrNly7PsVbmAl6tSlmuaLM0KNL92GcBFjbhLL72XatB9GVaseAwdLrwgoMwuL5lcM8ylZUJIxNoabQFGXyBeWfpOrqA2BrBrr9owuq51gbXlOZeECmZYBVFq5a1l4hTiwn7e/4GP8gdDRsxVuzZlSl0pwROPPs2+vbvptRep1uvkuaEwliLNCH3BsVNnGW2MUtiMeq2CFwTESULoRcSDQakTlxa4nsfswgKtWoW4SKjXmxSZRbnQ6XRpNpoYW/BX33qGN7/hBuL+oGSh8wWpzXFzh5mz80xtGkVnGUiJUoo0M/ihx9xMSYYy0qwivVIkurfYYWJiHOW49AcJnltm0Io8xXNctMlItKFaqTA7dx6HAIykWg8okoxP/+W3+eB77qRS8egPNbvmzrc5cvost16/jSAKyfLyWp8/P4uSknotKEXXUTz82AH27thEbguioEp3ocv41jFsYTh7/Dybt09hbJlVOHn8HLt3b6I926bT6TO1dQN5mqGEw4Fnj3LtTTuYOX2e/kKfbTs2EgSWc3NdGmMBFadGnudoNyeehwMvnOC2W67BWI1rAN8H3aXQId985Ene9IYbibsdao0RkjQGmYMBN4jwZMDBA4eoVEIaIzXCWkSWpwitSJIezWaTdFgq5wJYjXUcsEPGLF1QpDkLvYRmvUavF2OtIe6lTE6OYazB8UrNQl1kCCmRthgGDIqSAKXR5NxMm/GJFnmRIaVhEMfUq3WKJCaIavyDx57lN3/yzdQDj0GSlnJEehHr1PE8h3hR882nnuR1e2+kUlcU1iBVhNF9pHVJdUYtqoP0KHLLuTMHgYJ+rNm16zrOnTnO1MYt/NM/eJBf//f/jvd96Ef5j3feQWN6kvjUIdJU06hW6fS7iFqLsDmKycBzPQQCXZSZS1OUJC1GCLI04wtfvo833HAdExOjeL4iHvSgsDx7+Ci33HYzOBaMRMqSVMTYsifRGFs2rltFvzcgrLioJZ27SlCGbKzg73/hL+inBf/lP/1nXF+DlfzET/5DiiJHSoul7JkTSg0T/HbZCxEI/stdb6U6Moo2unyRFRZtChzplSXrWVa+nzwfnccoxyPuxeRxQTQa4ipD2u+D8OjOz/PIMwd48+23E0QeIJg73+FLDzzKHTdex7btm8izlEE/5cSZc4yM1qlXIjzfI6qFnDs1ix94jE6OoHWZqbNClpm0bEAhFUgXZc3w3UfJlitSpPQBF43li3c/wC037GZiUxPHcSkGGVhLXOSYPCcMK2UQTBfMzLaZnJriA//5t/mzj/4AmXV44dBxIl/heLKUH2kP2LFtDJsZlC8pRI7uS4zM8LwQkVkynXC+t8jPPX+Wn/3Yd/PV00+w7fYGhXCphD5xltCLYyaboxijyYqccwsWZVLOn59hz56NDDKXWrVCZ5ASuQZdCNp9y+TIOP2kQ8Uvf7vjMzG+YxkMBpyb67J5yyjjjRppXuA7kucOnSZqVBgbqbL/mZOcPFtw0/Xj1HyHDVNjLPYHNMOAbppikVSCECklhbGkWUagBCdPH+eaHdsxTniRsLK9zFxrWSIOg2VlrWVvVS5NdxcVWrJm3Vert++pL73Iz/3oLzMyOsqVw4Py/JYDtsPKGG00n/vs5/jDP/x/qbV8Xv/391EkBc996QgTe0d56vPHAPied7yDn/qZn3hVxr9k6xGYLBGsLC2zV9AP9mqQraw97trv193GXujXVGv98vV8uMv4dWWZ4tX38BlrS41CU7aASCFW+XGw2pdbu2xp/Je7/1ee45KvuBYUrkfysrSOvXwp21WZtSUz9eVSfktlvsYY1ha+mhU+6NVoEoq11KErx7Ti/Mya4wVBcMWo8jVw9wrtNXD3twfcLUfa4GJwJyQMIyir9ssFcPe1T/2v3LF5mvUjosPIiZKcP3mWsFpFOZLF+S7NZoMv3PswN1yzmdFmpSwzKwSVus/sfJt6rYZ0BY50yxeuLzFZQdyJefTAi9y8eyeeL4nCEJQkyzJc1ydPNEIOBWFFgbIuX/2rx3jHXa/HSJCFJk0LZhfmmZwcQQ6FxLM0pz7a5PSxs8zN95je0CKohGUPl7D0ugMc18H1fJRbXqdep4+jBEEYMohjFKDRdBZiGrUGZ2ZmmJoY4dSpeXbu3gJGMzu7wPOHT3HrDdey0O4wMV4nTjOaI61hiUxZ5qacsm9u5sws4+NjgOT3Pvt13v76a5iZ7XLTLTvBCnRquP/xJ3nHG29BG0sQRnR7XaJalc98/j7edN12JjeMceTYGaQ2bNq5iX57QD2qYGSBwNDpxjRHGkhpWWx3abSamNyQJjn7Dx7m5uuv4YnHD7B7906yZJHJDRsxuUE4quwdlIZ0ECMKQT8b4PgBge/hKZe8yImzjKgW0Wv3CEKHpJcTZwNGR1okaUGn3aFWi6i1anQ6XaIoRJiyNFg6LqYosz9ZmuEpmDm3wLGzc5ycafPe776dxW6H0dEm7UFKa6RRRsCNwWQZRW6QSpDlGb7r8OmnDvCFrubTn3onWMmg30MpS+AKMnyUG4LuIaXL3OxpfKeKU3GohmNo2yeOM4KoiSMzbKHAgd5iTLXe4Oz8ccaaY+SpplJvcM8jT/Frn32Ur371v5Oc7SIrI9jPfI5s0MfkOXnvKNJ1wC2zUX44juNXyfME1/WGIdDyfrXG4LulIHiWZjyx/xl279iO53skcR+pLN1OzMbpaYTrIBwLVpXERaa8r5TjYk0ZW417MVobwkpJv19ow7/6+r381M99kt/9/f/Ok88c4K3NJm+f2sy2rdPU6jW+/cgz3HDdLk6dOcPG6Y3c/8C3ePMbX1eSrmhLu92j0azhDeUUFrsdXmjP8RtPPQ1YPrx1mndfdzOO75bvL0sJXE0xrCMqpRJK4XmJzTVWWkwWEycxea5RriKKqli7xOYHnW6HRrPFZ/78Xq7ZvIF9e3eSJhmNVp04SwjdgBcOH+HavTvLUiStka5LOughBQjlIqRCIsjzGNcr+/CQBmlLhat+t0vaL2i06vSSDlFUo0hzkjghrFXo9xap1RooKSiKAsfz0drwo3/5F/zGnk0s9nNOnp3lht07+dojj/M9d9wAxuJVfYpsgOsoBIo8sUjPEMcFD+0/yP9VWF5/8x6OtY9y60e3EXou/aRPM6zS6fdQUlCNAuIkRQCu49BOevi4REGNwpTv80Gaoy20GiGL3T6h6zK70KY1MoYxmgcfeIY3vOl2MDla5/hBSKELlLAM4mSY9XdRjiIrEiqeR5y5LCzOMTU+Qi/NCD0XTzlkRUbZqakQKkDaAlcZzs3OMD29mbzQSOlwURXJZcFdOaGVmZy/eXBnreHPfvExPvunn+ZqwN1P/thPMzc/z80/uINtN45c7VEBOPitszz7xVP89E//JO9459uvch+r7W8TuFvaw9qjfafAXWEtzssoISy0LoPggDPMqL0G7l4Dd/+/tL+V4G7JLgXy1lv2Mq0YlhXAhRfS1YC79ZatZxd651aAOzuMTC099EvpcmvXzdwNV16x16VJ0g4zdreus85qs9qQ9mMc10OoUkA5T8ssj7GWs2dmmJ6ewmiLX3FIkpRuL2Z8coS4G5MVCdVGi7g3YNCO6Q9yMpuxa8c0joJcGJRwiPs5SZzy5POHuevOW+jHiyjrlWK9jkcaZ3R7baY2jtHp9gkDB1HS3eC6gsJCHqccOXKe3bu3ksQxrueQ5zlRtYxCa11mIorcoJRLnPSIKg3QOToviNOEarXG408e4sS5ed71Xbew0O7hui71erUE4YUue8iEJEtiAKJ6lWwQ47qKtChp/nWuyZKsvE5IhHXADAhqdfq9DtVaFSkUxhZYhppkWPpJTLefMDk5SXt2nrENY2S5pTe/QKVe5U++9CDf/6bbCWsuRku++ejTfPcbbye3CULA0UPnQOZsnJpCKIFUEpulqLDK4uw56s0GJ06eY+vWDYAiLXqErsexg2fZeu00aZ4DGiEUWV4QRgFZnjM/02Zssoq0IY6riQcpSrooR/D0c8e5ducUYeSTxKVzWK1VKbIc13fRBooix+qkdDwz0AaszkBaKpWINMsBQZ7n+IGPLgxe4JLGKT/60LP8/A/ewPU7NqGUJDMFtjAErmR+doaR0SqD3MGN6iijyeIeed7FlSGFynGo4Fcl3cUY6VTwXI1jXXAERpdOp1Yujx04yf/5+cd55/e+gY/9nffw3HMH2LljG/WpLbz3h36c37zzTjZOT7Jw9iihJ8mtiwpHCAKfOB7gRyFWCwbdmGqtSq+7WPZt5QUUBf04QSAI/BI8pElKnAw4dfYsI60Rtu/cAsLB2JJF01qLUFAUZihFUGZAOu1F/MDnk1/5MufjGMdx0VrzM9fv5s0795S9iL5PZ2GRaqVCXpQ9oGVZq0+WplQqHnGWEYQBJiv43c98kR963/egC43nutzz1Qd521vegOOXv3GW9vmH93+THdu2cPLFF/ntd70Lo8usYJmlthgKTKFJBgm1eo1CC9AJadwlSwssklpzBOU46KLgyf0H2Dw9RbM5yiOPP8ltN+zDaM2X73+IO267keZIncDz0NpQ2LKfsCxp0mSDLl6lXooTGwtC0O8u4PkBXhBQ6JIm3pGCxfk21jr4nkel6rL/qcOMjjQYGR3h0392D+9713cRBCGdbptao1X26KUZ9xx8hrdGDpVaBddVtBd7zM0tMNaq4Qpbam+mfYSR5LGhMdIkznv812eP85H/7ZN88l/97/zdf7GXTj9GmIJaNWCxt4jvNHjhxRNMTLaohD5h6NMbJFSjCGN94niOKHBI8gJb5BhkKYbuNVCOJBl0CB1NSo0wCBgkMN+Lifs9Tp2Y4cabd/PkU0cZawXkacrePbv45ref43U37cSYjMBzef7IOUabEZVandBzUUpR6LI8VCmXxUFGNawgTMZ8e5ax0RZalRqc0poVU8Zw/rnMjL5M4yXEJefoleVuF8rC1gYzXw1wV86Bf/ErT/DpP/5vwMWC40v2z//Zv+DAgQO861/ejv8yD50XOd6wVHGtPfj7zzFzuD8EmVdvVwPgrtSWHHZ9iUzcS9mlMngrl6173Mv55UsyUVYjhVq5w+U/86IYBtVe+bUo1gQulvw1KcRFy1YN8xJA75IAdoUZW8oCSLWi5FcwFAd/9VlFL8fweaXgbumpkcu/z8X7dFT5e2l9mTLb4T5LkP0auPsbs9fA3f8Y4G75gVt1vcq/P/DBH14B7OBy4C4dZBRZQZ6moKHaqFAMe+wo4MTR02S5Zb7T5Y437CXLMjzPB+Hw5fse4Za9W5HFAG1zas0mQaXB3Nk2p88tcsMNO8oSPeXy/KEjbNs6ieeE5Jnhc19+kDuv34nyFGdn59i9bZpqvcrswhyNRhPH9DhztsemzVtIbE6RpFibUonqzM/3cKWl0+tRqdWIohAlyz6l2fOzHD+1wO03XU+q+3iBy/zcPLVanSisstju0u0N6HYStmwfw3NdMIL7v/UMp2bbfOBdd2Ctob3QJwoC5hba1FsVxpsjzJw+R2O8QVALsNpgc835mTkGWcbUhhH2P3OM227azWCxS5zlTGyYwJocYzWO45IaB9cRtOcWGGm1wCmG1FmKZw8cJk5jbr5hB0me4sqQP/3SI0RVy5tv3UOzOVYCgXRA0k9BeIRRwCAZ0F2Ypzk6QdLpUqu3MFLS6Z6jEUYoLyTXOQePvMCuTVtRvo/RGt91hzp6CWNjLZK0h7UuXuiSFZrufA9bCOqTNf7oTx/grbfspD9I2bVjCiNkmT3Jc3AgqFYp0hSTlxPYi8dPsW/vTqTroHWG1hpXOWRZTlCt8JUXjvA7x2b5/U++jaLQuI6P75fgJsvisr8szpiZmWHnri3Mnj1HVA1I0z5hZRRPCuba8zRbm0j1HG7hI90UK3zSVJCkHUbqo7Q7HX7qv3yL937fXbztzlF0/yBPP/4it9z0vYjWNoQ3QtY9TaA6/N//+vf45Nu/i/5gQBiMoj2BlT6YBIpS+04FHtKWbIJFXuA6DkVhOHvqLK1mHaHMkFhMYLTi+LGTPPjks7z/e++iOtbAygIpSkZKMSQ7SbIBQVQpJ3lrMbng+37vdxgdGeF72oof//i7KYylu9ij3qzRH8SEoY/nOmUJpS5LZR1yDB4PfusJpidH2LRza6lhV2ikhjTtEYYVDj13lGuv3UShBUWuGcQxX7n/MXZt2cT1N17L4sIcn3rsYd7y1u/mK/fey6lz5/naj/9Y2SshFSIryhecAoOAvCDtLKJcizYKr1In1wXSShbnFxmbHMOkWUkC4zh8/p4HuPOW6xibHMVgkJghq7KDkJIXDh1ly9YNZIM20fhGHAxojXQ8FJq5uQUarRYmKUiLBDfwkE5AnhQ89+wL7Nu3k/lzs4xNjYGS6H6KdD0s4LqSwSDhS9+4j/e8/a1kWnP/l+/lrjtvLKsdbB+MxA18krRPZ+YcfjiO6wXMtefYun0LP3T/t6nVauz6gSojkw6e46KkA9JjvpsQuIpqGOE5Em0NvcGAMKogcDBGgJKYIkZYH20VjkiQUpEVGqE7WL+FtODYjFwbokpAmhmyQhK6grTIyLSl343ZMFphEHdRQYU8NyRJj2qoMIRIUZLVGCkohhIaru+gs4Qkt+QaGl7GyZOn2b1vH7H1CcrZbxmsLc8dLwHulp1e+FsD7gA+dtOnWAvuPvH3fozbP7GN+shagfZXfrzL2ed+4VFc1+GP/vgPr3jPfx3g7lLHuFL7mwJ3QMnG+Spci7UAzlk6pjWvOrgr9BKwEf/DgrsLDYGX9iMvx2v6aoG71whVXqG9WoQqguHNs84NsVYa4XLLVmesV5R6LEcJh22iS98N19Fr9nOpz9pbUg5v05XfLw3BGDOUBSijPCsbcMWKz8UXQwwJVC5Q7DqqpFJZRdVbfnFhLEIhEFgrEHLInGTNsIl7TUOrKElVThw/ycfShTUjspcaGUZrbFkfxJmZWVpjTbAw6A1YmOtw8MQZ9l27iQ1To0ilUJ6LUIC1TE+MUKtVqTVG0EC306XmBVRH60xtmBgy8rmYIqNejQirVYwoI0E7to0yNjmK5zhMjY/iRgFHDp/BdxzCwKcXlwx2xmqiahU7BAFnzpxhYnyET9/9MN1uxraNo0T1iOeef4FOt8+mzdPkucYai8FgiiGRi1Ne7/u+/Qzz7T77dm/EVR6u76M8h6nWCIOkRy0KUI7HfY8+w5nZBdIs5+jJc2zbMsV8u8ezh46wcbwBwuIFPkI5NJs1BJJWrQJKE0RVtDH4gcIWhmSQIoUt+xxtjikKiqxg0CsFkI3RbNg4ysR4C+k4YASe67Bpqsa2DRPU6/XhxClRXoCSCikEni8Bg+tFzM92GJ1o4vuCPBsQeD5BUKfb7eNGPuMTE5w4fZax8QaOdDG6wMqCNDG4vleSgyhJkVkc5RGEAd/af4DNGya49cZrqNartJo1jp44Q6tZQxcFjucQhCHt2TZSCPxKCNJlcuMk1hZkcYJTGBy3bBz/6H1PsPf2cd74pmv5yHfvQaFQjovje4g8Q7oeg34PgaAoLI3WCEhFWGkilcT3G5w9e5yid5qxyZ1o+nTn5wg8ifRa9OYXqDbr/LP/51vc8I4Pse2Od3P7plnSc99GyxYjE2/jxje9nzODjIAeRXIarzZGZePNvDGX4Fbwai2SOAGdlRIaRuK6AUJJQC+/bxzHAVOQxjHSluyMh4+eYGy0CUIiXUVY8XndbdcT1SPyIsNRPgiNckpghqPwHbcsRzSGJw49xz/+5oP8wbvfw4f37OH6fduZP98uiTxCH61jPD9AKY88SymyAsdxEdaSxDHCKiYmmjRGmuRxiqDM8Jfah6Ugd2u8RZJmOJ5XvlOk4djJ02zZOInnSqJ6hffuuZYbpOIzB55lrNXkvT/3T/jhf/Nv2elYpkZHyQuNo9wyPYvAUCC14IFHn2bH9u04Ch56+HFajQae5yA8lzzN6fcGPPfiCa7dvpUw8JHKksUpUSVCFwZXKUZGa3Q7fSpRUGbyEGWZoCj7uaTjohy3zFpLB8fxMEVBd76N1QVjoyM4voPOMhyhsL5Pv9Pl6QPP0axUUMrh+n3X0u13qdVq/LNnnuYD28ZJs7JHd26hg0DgBj6OE5LmBUHFo96scOh11/Clrz/GrZ/YwOZt4yB9PK+GVCEgqVciCi3Ji7x0foVCOi7CluXlQoELFLogKzTuUtTbasDBGAdDhsRhtj1HFDbo9ru4UuB5Dr1Bn9D3UcolCBRIiedHy+RchRG4TsjRk3NYLJ6nCByP9mKPIHBKRtRh+WQt9OkuzrNp6w60CPCsxgyJRC6QbQxbzwTLpClr5X8u/GWH6wzB1PCzqhd8OL3ZNXu4sN+Lq1AubCsuPb+uWXPpc/OG71r+9hf/5S9xsP4trnnTKH6oLrn1S+79ZZQGAuy5ayPXftcUv/TTv8mHP/LBK9toyDqhrF32Sdb6S6/YhscQQ19oZfnsenY5spWL1l1J0rIUIGe9azi8f5aPvvRZZ6yvgpU+3oWPHt6Tdg2hjBACZ9X65RhWelZLHyXkqjEXS5BmKH1lBUjXLfuczVJLzBIT6qufkLpAcnPxvlfLJdjVH2uG5dWrdnZJYCeHv7Fd4Yuv2XqFXFcZF1y+jiVBzy9e6Tm9Bu5eoX0npBCuxtYHd2L1/9f57kpfglcjoeDIYS/J8LxK1+alzRiL4zrDh2p43DWUsCVQvHhCg9XRzpVLV/1PWD74oY/xI8ncOssuPcrOBQVA3wAAIABJREFUQgff91BKUQ1DpKvAwsLCIqPNFi6SsfEWSgmkUnQ7PZRUPPLoATZNjXHm9DkcXxH6VbAl8YAxBUl7AbcaIZUijlM810UAhc7LrId06LS71GsRaZyglMJ3HTzPwYsC3NAnikLacx3iTkqtWaMoSmbBLC7Yu3MzGyZa1GoVBvGAqbFRsiynWq0TBj5fe+hpdm7ZyH0PPsuOLVNkWYZUsH3TJNs2lZpTQsrS0coyqlHISL1Ko1XH812alYht05Ps2rWZjZNjpIMUgaXViKjWq2BLavqZmTkC32VubpGH9x9i+5YposjHD1xmz88jESjHw/EDvvXQU0xPjvPUwaNs2bKBSiXAcRVGG5RQLMwvogCM5ejx00xPjyNFWXq5pAdmjebRpw+wYWKiZE40BWEYcn6mzYtHZpjeMkaa5ORFwcJCh0olIAhdlBSMjrbQhebBRw+wddumoc6iS9KPCWvR0Bkt71MpBdumxxl0OyS9GCksYeTRaNRZ7PRoNKulI+h5uJ5LEAXkeYznl718jhR84fBxfvXQSd7/ob0krYCPfvd1yCxl9vwCzWaDJM0AjXIsRRyT5hqFwQ1C0iRjbn6eIHBAJziiilAdQhnRWzxBWuSY1KDTOaRJ+fhvPcQzbcvt7/o4d73xFore89z3hd/gdbe+h923fJzU80jjPmn3BEqfx/cj+nnAhi3X88Mf/0nev2cv0vFKBzdLMNrg+yHOMOsDpbNSpGVJZZEb0qRfOtGug3IkE6MthFR4UYTjyrIk0lqkVCVt9LDHymQ5WEuaZDh+AIXmo3/+ef7nO9+Cff44QhecOH2a6U0bCT0Pxy1lKhzHQ9sM6QpEoTjw/CF0WrJUKk8hHR8vdLEIOgsLBGGIUg4WS55leF5ZXmm1xvV8Cm1xAp9dWzZTr9cwxuI6HkIplFC8/5rd/OCeazn4tXt58PwcP/Erv8jnnn+B3/7SPbx717XlMzDcX7fbpxJGVGs1isIwMdZAG0OlGpYSGRJOnTnHjumNVGtV7vn6X3HNjm2oQJYRbDkEHgoqtRpzs+epVFsstrukWUoQuJhC47ouRtth/64gTWMwlmqtQhRVuPsr97Nz22aEkOSF5sjhY2zYOM701CSOq5iZmSdJUr72yKNs3jDO3SdP8IPbp8iSDFf6VGouuU5w8JaDEj/+7ed428/8CD/787/Fj/zam/DDKtZa0rxY1hzsDPqEfoDrBChXgVC4rssgyRBY8kKXLJ84ZWl3GJBrzZmFLs1ahJQSpTz6aR/fi3A9xbmFmFathpQORigCrxS1Nwx7mYRgoTugHkYoqfB9n84gY8vkJIEfIpXi1PkzeJ5DNaygtUEJF19JTp89SbXVwg8q5LacaywGK4YOuF1NAX+5eW45wHkRQIO14G61XQB3L3WUtQ7jldhNQ0mE97/vg9z5P23BeRUSg6/Un9lz10b2z/zVVYG8VYHmVxvcLe3X6NI1fzk+2yVA1yp9vOE6lld+DV9tu9w1XXvLrHumy4B3ZW/ZOscZAieWfcClvf/1VRtefSXj1f3+y0zyKxlcL/I/uWjZsk/9Grj7ztl3QgrhamwVuLsogrAiY7ccORguuVwKeUU5pBQSU8puDkHUxdutjlZduPmXGMKW/r6UFMJSBGVJxHHdmImxq8Bd+RJcKgO4GPit2DsAH/rwj6yQO7jy6+4oNbyMsqTpHoqhh55PMkjodAaMjtURwpKnOQ8+/jzT4yNs3jhOUWh83yeqBIDkKw8+yd7dW3GUwnUkC4uLSKPxAx8vCMjSouxJCsseu6DqkqR9lCsQSjI3u0gU+SApSQ+yHIGlUgkZpCVAdF2Hbzz0BNu3TNEYrTIYxFQrVe7+8mPcsO9a/uiL3+CmPdvYtW0Ko2F6YgTPU1SqUelgFRmDuE+1WsHxBNoYgiCgPd/GIjhy9DStVp37HnoSJWFqchSh4GvfehJfSqIoIIlzzs3N0axXadQruJ5HpVKhVa1w8PAJRlsRWZbSbNYBiRd4SCkYH2kQRiGbNk1SFDnthU4JOmXZc1OpRMRJQqVWwXMdXNdBKsX8Qo9qJWJhto3vuUxPjtPtJkS1AAWcOXuORr3Kjm2bKHSO1oZavUauNZVqRJFlKCXQheDgoRPcev11SFUKn3/7iYNs2TwxvD/NchO8MySmCSOfdrvHzOw8I60aOOU4weI6EkMZtROAqxR5kfOJbz7FQtDj733orVxbN9TrIWFUQwhBlmVs2rwJa3Ic10e5ipkzZ0o1FNcncBXS9fB8b5gRtfieQMqU+XMnMDbHFClB1Yfc8mO/8yTV6Wl+7BNv5+9+77sZHQn4/J/8R/qDk7zlLb/E/lPPop0zVGQPncRUg1HQNbzGBF51kvNnj/P5v7yX9+26FuUHYA1p3Mf1KijXZRgvpyg0FokYsq8JoNPpoZQa/k4lmAiiCtKRSAdK+QEHaygFzx0FVpTEPIWms9jhH93/df7yhUP8p3d8D3ma4TqC7Vun2bZ5moXFDr1ej0o1wgqLRCJVKUdhrGZ6cqJ870iB8lXZ42lybJFTiSolKLAGpBhmiYYl51KAKGUXpASbW7rdHo5y+ct77+OaXVuGFQLluY7Vmrx3xw72f/kefucb9/MHv/+7fORXfpVPH3iWj9xwHUqWGVzHkTz17EHGR8aZm53nif0vMNpo0uv1CaOQVqvBQ99+ivPn5+nGCVs2TKKLHMd1kUOgJvAByTe++Qi7dm7HDzw8z0UKRbfdxvfLfrvPf/E+rtu9A8eVuE5AYTRFXsptTIyPcPc3vsn2zZt4+In97NuzA8/3SdKcMHDxPZdtGzdQqQZ88YWDvHO8RhiVfZJCQRiEPPv8UXpFwq/Ppuzbs5c/f+Be/s4/voUktyyV+p04M0erUcNYSyXwgbL3pMCWRE+DPvXAQ0hFMOx7y4SP6yoMAqk8RqIQW2QM+gNc5VGkbRQOYIhCB4GkMDme8lGiLH+yVqHzgsBxMNqQ5TlKQq+3wEhVYUyBIx2goBlVqAY1njt6hrjXI3BS+oMOG0dbOF4FJSSOGM5fdpiBWG/uXEO/vx5l/nrg7vK2Jph52bKvq/clrhu/g3/wM3+f7/3HN13m+H8zQGPPXRv5pZ/+TW679VZGRi9P3nIl4G4ZOLxsWyOPsOKzbvXVSuH2S+5yhQbeMP1bcnuzHJx4SWBzpeu9ArsacKfNJa7HmutkV8hBXGRC4MgLz9lL/WpLma+Xk7i8VPbucusDF37XK7inVh6jbDVau7z8d1lCYcWyqwF3r/XcvUJ7tXruoGzaXa82+1LMS+uZXWcf69V2X7ame+0+VyDGy7H8vFxby4ykV744tR1mTC5edyWTJgDKlppUGgqnAFsSfWALVCEp+Tw1n/zYJ/jlO24AKRDaYNXwAVtiIVs1mtX/K1KNzgqk6xD3OnhRBQpNZ6FNFFUQSqKNobPYYXrTBgptyLMCrTP6ccxIs0mn06VSCfF8j15vgB+4LHZjRsab5HEfrEEaj/1PHuX8Ypd3fO+tSGPptztUR8ZZPHeWymiDudkOYxNNhHVQCopkgONKhIr46v2PsGG8RT2oEjUDGtWQXqdLEIbEcQfp+iyJrxeZLcWebQaFwfECZs8tYIzkW48f4vu/5zbiZJFqs4bOXKRUoDSf+/yD/MA73khhM7TOGAwyHKVQShJFIbPn5/jqt5/j7XdcR73qohwH6QYYa/CUxOqCfj+m0WrS78f4gY8xhl6vS7VaKUWLkx5KOYRBhC67lsBYdGw5fuY0GzeVGbkiLTh7ZpaRyQY+ARq4+8GHeP873sDJ47P4vgRrmNg4ycLcArV6HRWE6CQu9RFNWeZoDbiBotfrEIX1YYBB4liDEYpBkhN5DtYRWG3RWUxe5ERBVMpQ5H1wQopUE4YhcTagWo/QcYqWLmjNv3/qeR5ZSPn0p96JckvyjzRexBqNG9Xx/ZAkKyAd4AYhvU6pf9hojeJ4Hlls8UMwOub4scNs2byT2fPHGR/dTG46JOdn0HmGakygZMEf3rsfsWE3H/yh9zA6+TriwSKR0Bx+/ot43MC2a7fz1fs/w86N1xAow9ncZdPWfVQqtRKgSYXnOxx99nEcFvhHn/pN/sM730alPoaxCcUgQ6gygyWUJYsNypFIZcEqijynv9ijFrmkeV6WCroujvTKiUxYrLBkqcZRDo6nyNK4fO6lBKuI+wOiSsSLR0/TqIY0W7XSV6Jk0ARQ0kP5iixOy/IXo5CeQjllL12eJ3hBgNAK66TYwgFRZmc0BYsLHZqtssw6y0pWTmMMjiqBRWdxkVrNR7ou/V5/yLjoIAGdpggEC+2E0fERpGNXRdr+yRfv5sXFAb/88z/Pf/31X+Ofv/EugsAl7SaEkSUrwPMjvv7AI7ztrjvoLvZpjtTQpqDd7pLnBZUwotvvs3HTBDYt6C/GVEcbIKHQyTCL6JT3pdZYneI6CqskFkPaL/D9Ko8+up9bb7uR7sIc1VpIlsZkeUGt3gCl0Lqgtzjgocf38443v4577rufu+64k34vY7Tlkc0fwfMqWDRZOuAXn3yR5p597H/med73C3dQ6AIpNQrFuXaHiWYdYy1ax7iOgxAK8IiRiGQe6dVQQpYabtiSIMWDXj/GF32EzInTnMD1eejhc/iVAKcaIHsDxrZMolzLMw89yfW334bvCbJBTKXmDANBpXRBVkiqocJxA0Zqo5w5fwal8pKV2atihEsW55w73yGqjjI1YrEavKhOTsDcwgJxf5E4tpw6sYDnwOhEgzB0qFR8tk5vwos8tCnQwsXaHCFclAXs6h6hl1YSu7ytDJBeap5a7TFeekZbGsv+L7xAfdMI224aueR2Lz2ql1r/pc77ykDJ537h0ZdNurLk9xS6ZEheNbphb9hL9TKuZLV8Kbtcj956ftmV9A1eznfTa8DF1ax7pXa1+7ySnrvLsWNqq8ug+opdL/l+JYncimOhl6u8zBo+ipW+61rGzfI9r4ZELn99PZsXxjkck1zh2y4xva+4t5RYvSyIqlf8o72WuXuF9p0oy7xERfW6tm40ar0H52oGtk6a+NW0taNbVYpgKQVT11l3+bSWVxVgS/FpaxTClkLZ1ihyCSiPn/zhj/Frb7oBYQSr650vVQ6z+n/9Tm/4e5iyxKiwWG1RUuG4ksJolCs5cnSG8fEWUlE6r9biuS7KkWV03fdI4xTf93F8j9APkVagM4u1gvmFNhummuzYOjkUAlaYPMELI5JBj6AS0qxXy0yCthR6iGMRCOmwaWqEsdEGn//Go9y8bxdKCnq9HtJRNBtNpPR4+ulj1Ko+1WqVLMlJ0xTXC1Cehy40+59/gbe/+WaElLieR6/dR4gca3IG/YLdu6YYJF3OnJ1jYnKMIPCZn+9gjUU5ZQTqtpt34zsORV7qt3l+QDIoyxH7/YRGq0F7YRGl5HJvpTGmLIvzA6C8tjNn56nVqmRpgtY5hbEcOnaazVPjKAGLiwPGxkYIAo9+v8vjBw7yxht2g7G0JkYIw5AojMpyXlEWVTmOIstz/uyrD3HT3mtxVCniLKQkjpNhSVvZy9hdnCcIPZQCqQzIsvTPdRRBFIGQGFGSZri+j+OU/Z/KKUts0jjj4w8+xcSeOn/v797GB960u+yxVRIhQecFlaiKcrwym6E1nqMw0qE/iBltTGJ1Rrdzimo9IO4McKUkclxmjj6NSBc5fewQrs3ItYtRkl/69BNsu/l2Xvemt/OOd/0Qfm03eBI/qGBzRaM5SXfxKIOFFygW5ijyGG19RjdfR625ASjPdXbuLEFQoT4yiXUqfPqP/4Qf2LmVIKwPm8wtSqnymTUOrl+WYuepHcpg6LJvMs/xPJ80LQjDClmRgDBl2Zx1kEiEEiWrZlSlKEqwV4qzSzrtDi+eOMXmDZMoR5Rlc7LMUmEtzpC1teyrAyktSZLguC7tuTaBCkGCJkEXAkf5GJsPBZnlkCJfkaUZRmsEFtdzOPLiUUZGRvG8UkfPaHDdUlReyJKxM01S0iSl2gwQUpRsqMbiKAdTGN656xo+fN1e/o8/+kP+6a/+G2750Y/zidtux/d8cp0SRHUE0GrUqFSq/PGf38uenVvRWtNoNXGkIvB9RkbqxL0BUjl89u6vc+P1O8EaXNfDYBn0+rh+Oc4iKUrAJzw6Cz2++sC32bltM4Hv4vpltUA8BMKu6xNEEcuSDItdrt97DUkcs2lqgkajyjMHDzE50UTmPQQKa1J+/JHnuPn1N3N49jBv/19uGDpJJaGINWW22mJAOAjpYGVAYV0c0QZjkU6IoxOs6bKweJr+4ByRSjh3/jz9/gDhtjh9PmaQhbx4LKaXFjTGWtx0/bVUR5p4UQPpVnBqLYJIInyPerOFMT6F9ZiZTRgdnSLVPkqFPPLwMZTXI9eWghaPPrnI4cNtUuGx2C0Y2zjGxNhGFrMCN2pxZrZHvVqjGioOvniGY0fmeeNbbmTf3q3kRnPuXJtBP+HssRMoR3PsyFGmR+ooFWCKHKTmcuQJr8TEZcEdl1y23poP/rcj3PGRnZfd7gpGdJXrv7zt99y1kV/92f/ABz74/qs+wsog8cXAa23Z66XsykvxLrveeiDppbJ7XN53W5tVu5p1r9Sudp8XMtarr+96PA1rtyuXDcn0Vux6OVG2TiHohdLHNftb7ciu3mpI2LdUavudspX9ehfkUIYZSiGX83ZLyxzXe60s8ztlrxTcGS7ot1lrUWtKFZWUr/hmW1kSooalmktp/1WfS0HIv2Zwt4okpfxiedmytsnS6MQKshVbgrMszwFwteLYC4f5yj1/SSg8zp86xuzZk9z9p3/BPZ/5DD/7j36O37p+H44piVGCSsixQycIAh/Pc5ejmJebCvM0RUmJchRGC/Ks4L6H97NhfBTHL3ViPE8xOTZKnCSkWYbjOAx6MdVahTzLKYwhS8ssV5pmJflEIThzYoYwqnLPfY9z476tLHY7VCOvJKwQirMzMzSadQJXYaVL0htgC82J42d59KkXuWbXFiylFp+wBcqRbGg2eP7gCSbGmwgBSZHjCPA8hZKCVquBtQbXVXQXB1RqVbQtS0Mbvluyz6U5X3ngKa7ZvgmtU1xHopwQz7dEVY96rVH2R+qCRqMGUpLlKY7ngNFYbYmG5y6sQDlyqFXmMOj1CKMQLyw1yrIkI4gCwjDg8aeeY8PEOEIIKtUKeZrjeZIiz/ArIVunN7IwtwAYas06eZ4z6PWoN0J2bJ3Cd32EVOQ655mDxxgfG0UI8AK/pIRfaFNt1ti7Yxt5lvPcc0dp1uscPnqCyfERXNfBWkgGCWHgcfrMDFiNVaVzj5AIYUkyg3TKjId0XIw26KJg/7lzfOqJQ3zfu3ZR37uRsWKON9y4C9fzydIBjufT7XSG/RUCY4dPl5Ao10WhyQpDvV5FKwXCEkRV8iwg7b/I/8feewdZlt11np9zzvXPv5eZL31l+ao21b5bSCMLEhoBE6uV8G5WI2AxQwwRw25MzC6zw64YTDBMiNlhBAgtIAaQWNCAkGlkWmq1N1XV3VXV5V1mpTfPX3/2j/syKysrK7tbbmJ3+1S8qMy85tx7373n/r7n9/19v0FzjunLp8h7DnESYlqKn/vD57jYLTN22wR3HzRwXIM9R95JbNYyg2tSECaNpSZXLs/S6ZzGVTEqschVB+lEHuN7j2A7JkGvweLsReKgzfLcNbxCkXJthHdMX0JZBlEoMT2HXqdDHIfoBKQyQSZIJTBUBjiyYnCy56AX4BUKCKnoNH3+9nOPcuT2w+hUMzu7gOc42F5GQ7YsC601rWYD284mRCbGx7L7W4JlmcRRitYJQdDLJkoMM8tQOzZLKwvkC3kEkm67g5eTfYqoIIk1Shr4fiej1GqBFJkZulQSyzYxLQMtNNVyBT8MMnpoGCGUidbZGJKxoARojduv2VPK4vSJi9RHBrKxK83YB2ES8D233UF49EVeiGJaE3Ue9Eo4nsP8/DKWKSnXKnTbXQyySYFyqdQHuYqF+Xkcx8QwDEzL4sjt+xAyxW+3MUwno4pLIIkJkgTPy9RXr83OU8pX2DU2jJSCrzz5bEZJjkIKuRyGYxPHCRcuXMWzXV588TQ5xyUKfYoFDyFTDMtgsFZBGBIz9vnxr73AO/7Hf8Lff/F57v/pUXbdM5qBY6FZ63QzX8gkE9RSykBIlVEmkxhDatrzZ1C6ycLyNGm8QuD71KtD2EYOYQ5xaSmlOriXfEEQCZtyucLuXeOMTw5TKhZYWGtTshNOnpkmSeHalQXqtQKlQpG5pTauY7LW8SlXSrR6EbVqEdN22Ld/DMMsUquMYDouI5M1dk/V8VxJsegyXvX48ldeYPeuATzLw7BcLl+bZ3SwwOhIneGJQdZaXapFl2LBI1fMMz42xOjkLrS0OP78BZbbIavzF2m1GwwNjJL0rRJe67tzp8KCrXvaHkTcPHF5829ZO/S20R2233xE/azItnXtO2339bftJr0PvHmYo3OP8aGf/4/8wA++/7XsbGPyON3I1N04dfxKwO1Wy9cFUbZScm/ofhM9c7v1X037hsFdn7r59X4rrxncrZ8nN16Pzfu5KQZkc1JjB3Cns+VREvVtK/QGPs7KJrZQXTc63HKMm/reiLdvQocCw1AZHV1sOZjXCJRvuCZb+hVSXQeoaZIBzz5tVb1ec/fta98ouNP0AUwf3G0dyNZFIbTenrL5Wts6hNveB/K/Dbjb2ru+9TOYDUrr16h/vRzL4srVq3zi93+f5dnLDBRtFi6ew6LJi89+hbjZ4omXXuYjd92BY5k8/PizLC0u0VpaoVYqk2qN6zqZ97Dcqji6Bdz5MUqp7OUmJToOGRuukS/mSOIYx7ExLYter02+kMcwLHQqSXWM72c+WqaV1X50uz2UoVhZWuXp42e44/bd2HmboXKBJEqpVstZzVAYsrC4yK6xUbpBRBrGXLu2xsBQduyFYglbgONaCAnttQbNRpec59DrRPTCHp5l4OVcmg2fl16+gonAdR0EfeERnYIWWKZFz+/Q63aR2EhDcvTkae46MIVdcHAsDykVwoRus4fnZWDQdAw6zQYaTZRmx56kGp2kdNo9hKFYXW2R9xyEoYijGEmKMg2SJMUwjQykp2CYJmEQMlKv0etGPP/iGUaHawg0ge/jei5xEDE3u0KhlMP2MpAl0HRaLfKVMkEQYpgGMeDZFkNDFQzbgDDA90NMxyYMQ+y+wqBOQpQysG2LkZHMRiFTqUqxHQuNjWValCollO2SxjGJXqcMS5IkptsXifjRR4+y+0iVIw9M8kNv2YfjeYRhzNRYnTAK8dwCK4153Fwxo+BKgWm72KYiTaLs4TRsDJHQ7bRZvDZNpVxCJiFJHKIMF9tw0IFPEMRYtkmCwWcud3jvd76V0WJA2rrCyK59uIOHKNbvRUsD2wyIQwGJz/T5M5TsZfKFUdq6xOQdD9GOcuw+fBfKkLTXzrFy7RLNuVlUGOJaXXqNGZrzMyRnpvE8F8fNZ0qwSYpUGiUkWoCSJjoVQJJRY9I0y9IosF0blAQlcD2H2w/t6fsPavKFPCDptny8gk0URYDGdh163cxDUVg2Ik2yzJjOJil63RbFcqFPf46yTHcSUcjnEH0FXSljDNuGVKK0Jk4TLNMmjHr97x+SOOHvvvBlDu/d06/JamNbJkEQYtoGUkAcJSAzQRNEShJlQYXo1/fFccL5CxdpNDsM1ytZ/aYhWV1ZxcsXCP2QxlqLn7jnXn7z4c/xUqJ5W71OLu8h0hRlOvh+i8mJMRzLotloEgYZRTTvORieQ5JCu9kg8NuEYUIaR1iOQ5JqYt8niUPccqFvri5oNXtZDZspcT2biXod27VRQtBoriH7wjEXr84wMjTE8HCNnOcQhD0cF/zQxzSNvoWB4mceP8on//gj/Nn0Jzj89lG0ckiF5OzlBQbKBZ56/gwjg3Usy+or3PXpVWGX6cunsPQaSiQIK59RnGWNi9MdyrUR2pFAGTGek2KbEUKbVPJF/CgkDHv0opgoiInDiG7gow2bg1MjzMwvcvbULLcdnmJuboW1VoupsTppKphbalApepimRbvbRRkmz7x0kXOXF2i1WozXi5Q9gzhVhDpi3+4pjh49RX2wyqPPnuQNt08xu7jMzMIKI7Uyi8urDFU8DNPCNEzCGNAWf/O3T7Hn0Ch+mGCmGpMuczOzWKUKtml+04QxtoVx3yC4ew099fvbCQR9ayaAtzYpYPKhYT72oU/y7ve861VRJcWmgH0d5L1WcPeKx7gDuNt22bcd3F2fMP962teTucsW3tjjdvvZ/ph2ytxlf1SyT+vetI4UcsMCa/O6/V9ufQ4bIGuTeml/x+ktaghfK7jbvP7NmbubLcu0zoCqYdmvg7tvV/tGwZ0AMhW1TQNNX085TVK6nR4nT55nfHQMvY56driPZNqvO9vmk65LumoNUt5soXCLTF7m05X5+exkjbDVTuG1QtHNLMuN2ckk7c+2Zdcl87aLkKnN2uwlfuZHfpQTj32Vgit5z/e9l8rwLj71qb+jF6/y0INv5Xd+90/5/g/+IkeeeYFczsX2XA7v28uzpy6yf3IcIVI63S75YiHLoOl1L5Pt5kdhbaVJznPpNLo8/Njz7N8zyUsnLlD18gSpJo0iLMuh1e2S8wrEUUKr2SJfyOM4OUDTaXd59OmTDNfKVAdK5Ap5psbr+N0eSgjyeY84jvni48fZOzmMsnNUKkWkmWUgnHyex469zK56FakMpAG2qcgVXFIBpmFSqpSI0oRT565wYN8orufS7Qb0OgFj9SqDw0Mo06DTCynkPQQpiytr5D0Hx3VYXWlRrRVRhsVQtcbxl89Tr2T1PZmsusCyTYKej0j1Bh3WzXkYhsHa0gpHT53nwL5JkiTGdg1K5QLdTojrOaRCYFiKwO8hhUm31cNxzQ3FvSjKPKQc12J8bAgpJc3VBuVqla4fYroOhXIOwzTo9kKx1NaUAAAgAElEQVQMaRH6PuVaBQ0YRmb8vbS4RBwLHNck6AaYOQ+lDJZml7lydYFatUQcR5i2Sy5v0vV7WJ6DkAqdpijTJE41ykwzqpUAdGbY7roWURhxdnmRf3n8PO///iOIUY8fftsdDJddDMNCKIkURv9ngeO4KJUgU0Ead9CJwrYVvVYTkSYYtk0iDHRrFW0ITKdApeixMvsC7bU5lIQoCbh65lkM3ePcYpMo79CUinuOTBBHgsbSOXQqGRw5gDN2D15lAqF8ROIhlIY4zp6pRGPl6wyPH0JaZQoDWZbUD1YJ5s4SdhJUfpA9970B1x2g1fDJGU3EmWskicDOF0BkdGESgTTsDEwJgdApUdDL/pZmioV+r4eUJoZl0u20MU0TKdKNsSVJEpQhMG0zA0vSQJOSRtnYaDkWxDpTuhQWSZSZwhuGSRTGtNttFAIlM0AnZLYMITAdDzT4fg9lKmQSk0QBUpkYZma67uVzHN67G+II5RpYjkGagqFM4jCb1JFKZoBWgiEkcRSjlMmlq1dYmm9QHawQtLvs2T2J78fkCnlWVhrUBqoIIeg02piG4vTZC/zi297GIyeOM/49381n/u5T3DMxSc8P8Fwzq5GLErx8jmefe5FdeyYwbYuoF9FYaVAdrGF7OZx8jpnLi+Q8G6UMLM/DdBx6a1lGO44Snj9xlmopjzQMpGWwtLhCGqd9FgSYtsS2PIaqA0gjpd1pYiiNbTuZqI3QyDTi/Z/6e975s/+U3/+j/0J451ViJHkvT5ykmMrEcyVKwMRYjYg4ozRLTRS0mZ+7wtLsLMP1YZ5+6hLDU/toxzYROSyrTCIEa60utmkTpykFx+PC5RXanYBrc3OU8h5PPXqCUrWA1gkjg2UK+QH82Me1LJYaHUZGCpimRa1cZLXZxfMcFhaXslrPMCSOYvK2RbvX5fQLl9i7d5jdE7W+Gmqeth9w9uXzXLgwx2237QbhMzU+RKvTYaXRzqxH/JCRoQpKGXzszx/jwIERpDC5fO0ahgmmITm0d4TB4RrzrZTVpTYETVbXmgzWqiANrr/GZXafbvq3ObzdSXRs/T1549vzenB7veDglYJOscPnlba71X5u1cdra3oHkLS+R9MQjN5X4Fd/7nf5gR98H6D7cvwZI0rq67YIkkxyf50BJDdlSNb7+IYA+CZK5ebMDFzP2G0Wp9u8vtbp9eNmZ8rkLWMwIWFLNlDeEM9t7AHQN/ShtlynnZbt1DbWE5J1UuFWcLcBmrYBtdtl8OgLW21NlgFIJbJEpHwVQiqv8tbeKoC0cUx96uZNoivrYHldzGYbJtzGua6vu0l8R/czjOv7Ftej7WziUacb+3ydlvltbN+smrstpZ9ARmNyPZdcLtcXF+CVb8wdpmM2L7ppsNwhk/dq1ZFeC9/71r3d2KJMT4GUBE3mLWTriE9//K9otVf4wAc+wB989A+548hdfPQP/5R/ePhzPPPEY9x9+2382Z/8JXGoOPqpv+O99xzGzbl4noOSghPnL3HPbXvJFUs0lhscPXWOPVOjN8z0bNc6a21s28G0LA7sHQOZUso7hEFAsVSg0Why/tI0q2s96gM1PvXwo+zbVcf17Cy7JDSW7TI+VCNOEqSAVqORZfQcm6jjowyF5dnsnhrBMFRmntxqY1o2ppIYSnJg9xhJkvDVp15ianKY5loL13MwTBMlBAKFEFAqujjSJAwjCuUCxYESrm1k2QcBjuPwuUeeZrBcJEkzitupE9fYs2cSKQUL80sYpmJ8eCCTV08zdVCpRXatBEhD0Wn1mJ1fxnXdTOrfsdg9USeNQ7xi5muX9HUFkjgiDhPiIAUd47p236w0JU3JaA9SkkRRH6gpojAkDQVfe+4F9k+NIQSEfoghJEIL/uqzT3DHgV0oyyCJYebqIrZl49oOcQSu54AQxHFMksQUi3nKxRztdpd8KUcQBUipcDwXv9vDUAqhBJ1WD8e2CMMelun2M4SCRqfJl80uB+6foravxvvetB/HcTBNs1/DlRKGIa5lMTe3QGOthe3YGKZCJIrFaxeRSZMkyYr7i8UqhpKcOfECQ/USCxePEUYxSQjzV15isD7G9Mw1HMMk6Hb4lU8cQxUcDt6zj2vLIa2Oz8DgIBfOLjBYNhGWx/D+u6iO7SVOPZShkdok7tcQWo5DsTaB4eWJRUoqMwqdIQ0MBeeOPclAfZzRfYfppDaul8crlrhw8SqVhRaJlti5HBqNShMMyyZFkaQR6CyoUIYkjROaKysoBAiJZTmAIF2fTFIKLQSttWaWSRaCOE5QUqF1QhSGBFGMMg1M0+6/QFOSOMFybEhCen4PoSS5YiFTyJTZizCKfNI05uKFy5x6+RwT48OkKSjbxhAuwpQkIkFIi8iPePzZ5xkbHkDZBqTXs3KpVJiW1Y+JBFG4Rmd5FdMpYNgWaZJSLnkMDQyiSSjkchx76RTdVocvf+1pHrj7DoJegGEYOK6FZZvUR+roNOG79u1BXDzHk06Bjzz+ON87tSebWCDLRpu2QdHLkS/mMkqjYRDHCcIQKFORpCmlYhFpiQ0lUEHmKRkFPlEYUqkOkHfz2I5Dp9Xja08eI45jJsZHslradotCPs+5s5cplUoUCi6dbhdlKP6Hz3+Joe+4l5V6hc8/8iTlt7W49927gQQvl1G6w9AnSXyU6WEYNmEU0Wh3WJq/xlBOcG2pRTE/gLTz2F6J3fv34Ll5TNPFtjLAVMjZ1EoFco5LEEXMLKwyMlSlmDcZrA3z2HNnOXzHOI6Vp1xwsAxBq9tmtFak0epxZbrBRL1As7mGFJL6UBnHNIjjiPn5FRI/YGy4hjIUEkG5lqOYd3AMg+mFNeIkZmSwwECtQHWgiGkILFNy9tIC3Y5PoeCxZ2yCk+enqQ+UkcAdt01xYXqe0+fn0c0FBgby1CpFbNPh6aMXefDu21E5j3MnZ8jJkChq4ZTrZCYKCrnta/XGzNJO2ZWdM3jfSo7NrXr/Fva2Dbhbb5q+mubP/S4/+IPvR65TR7fzDe7bM/Ea6ua+Gce7AWw2Aa8tK2wcN+wcc21t18HddR9kJfrjAZsyT1v63dzHTZVrOyx7Va2//XodW7bTGzOj24G7jVW3/CZvAe62V+L8eg74ldtmVt22pVI3Hcs6AhU3gbvrm4ibrst2/a5v9zq4+za2bzhz108nb27rv64r99iW1Qd2KUJc571vu780vWWK+IZeNs0cQB/cbTY53/ySeQVwl/Z57Gk/dbzem3yVL4D17Td+7xuXCymxMJk5P8vffPwvEL2AT3/i45x+4RilXJVTL1ziN37rw9zz4Nt4+DOPYtmSkWqR8dFhdk1N0Og1efjZZ/nlg3sxlUl1oILWKcuLS9y+b5Lzl66yutZifnWNdrtF1PMZKBcz1b8t56y1JooiLCVotdq89PIlhgYqGJaBTlJyrrUxW1MuuIyM1JAIRgcq5D0bZZgoJTl3fpq8l8cPepTKBZRhZEIfaUqj0cLq+/vFcYxlmpnnnxQ4XibU0Gp3MZVJpx3QbrWZGhvGdEyIUro9H8fOxFAMUyFlVlfXWG3R6nSRUmEoyczcIjKVSCG4fHEWx7YolQpUyzncQo7FxSUC38e2HM5emWbXxBCGqfC7XRzXIY4StBakacoTz59kdKAKAqqVIpZtEMUxQeAjyGoLhchob6Ef4OUslDQ4ffoy7XbIi+cvUq8WM0Br27RbHQzTAKFRhoFpmgR+AALSKGVkoJyJrTgWAL4f4uZdxipFvLwLUqKUolQqcvXyDNWBMrYnEErg+51MtAMBEiwn85zrBj28XG4jY25aBjpJIA64eHmOYqkAOoJY8zPPnOB9338P+T3D7BsZpOMvkM+X+3QNSa/Xy6TqEfhBgOU4eF6uL1ohiBONNCWSiGZzmSg1qNZrdMOYVAisJODymfOUhnehghV0c4WjJy5RyI9QLVcxFPz8Hz3LSC7kn/z3P0E7qfKZz73MmdPTjI0MsmfyDubmz1IbGMIs1PBFnnJ1EkSE1CZCZmbOQkk6QUycxHiejVIKSCDJRpco8HE8C5RNr6dxcw5amfzsz//P/NDd92Babj8DkRJ2eyQ683rr9bobIiLNRguzL0IyO7tApVKi2/VxPAdlZaqqSIkkq1dLdUqapKSp5tKlq9QGKpkapZSYyuhnc2N0kmbz7zIDclGUIIQkjhKU44FpopXZnylX1KoVBiplDNPIxpZEgyDLxEkjq7+1bCZHhzFtCy1ldq3IrB2kqQj9AEMKDAUCC9uzSHSMUka/9jdFa8Xq8gKkml27p6jVytx5eD861diOjU4Tmo02fi+rGRVJSBIF5PJ57rNz/MCv/mt+5/c/wkOTU5iWmYmtBBGfeeQxqnmPQjmfAXBDISQEQYDSkiefeZbJ8VG63R6SFCkEMRLLcNFaM3NlgdMXL5HzXJ54/kUO797FwUOTGE5Wk9dc65DPeaRpBvwlCR/80iMc+N438fa3vJN//3t/RP09ivv/8RQahVCZR6ChbNCaU2cv4zkWtuMBEtsUeGZKkoREMSyuBJw8M8PhQ3tRSjK3vIzrZNnJ5bVVHnnkBHfdPsnTL5ylVinjWhZHX7zIbfvHkULS8Tvkcg5xohgo5llYW+PshWuM1j0arSZXp+cpFhycYh4vb3JlbgXDcHjqmdMMDlY4uHuCfDHH1bllnnnqFHNLLcbHB9Eari00KJbLNFbWuHh1gYmRUVzboe1H6FTheBZ+18d2bVabAfXBIpcuzyBkzOmzM4zVS+RzDoWcpFotMTO3ytjIIKWix6lLc4zXq6z1Aur1IgtXZwhin6GhMkookmxefsvb8JUj01eTB7shY7LlPbs5M/L1w5tvPbjbnEm7GSzdvP6ht43yxF+f4sEH7tt+G1g3cSLz3035ZoK8zTS+m5Zt/vvW7J6+boq+3l4TuNtkb5Wu77//Hd8AoLYys7YxTd+u/5vA3XZ2CzdlrbKW7pAZFVmQd/O+Nq0rhNjwt1v3Pd68bCNWFOuA/luE7Ljxftouq3dLcLd+fLe4L6TY/p7JVsjuk9cFVf4btG8U3G2b5t0CsjK7WjKjVC1uePAMqUjjGKn19Yel35I+BWH9szW9LskesOzB3mEWZYeBRou+F4vYhtagb4SKm184yfpglmpSGSOUJEhitDJopT5GT3H8q6f4xB//Lrun6gwN5njua/9A2dI8+9xRLl67yhvf9Xb2376bj3/8jzh44F7eeP8bePSxr3HHHYd49ImXuP3ut/C2uRXq5QKGKalVMuDm5HKEvRhTScLQp1zIJO9reY+VhWXKgwOgDHSaXH8e++OPYRq4XoGRoQqarObKUAY6FUgFHb9LdaBCp9fBdgo4hRzYAqGzADEKEj715edI45BKuUCr5/PIYy+wZ88IOadAEgagsvoev92m1+kRk2B6DsRgOwbtRsznnniWIwen8GybNAWvlHl7KUMhlGRhcZXZq4v0Gk1KZS+jdaKJowTLtjl7+TJRFNFs9zh4YAov53Dq1CXq9SqDQxU63S7HX7zAPbdNYSjB4uwa+XIJQ0h6vRDH81CmZGq8DlqwuLSCnTOwTUnc7tEJInJeHmk4BN0utuOhDANhSlrNFUbrNWYXl/mO++9EKoFbKhD5Mc2VLkKnWFKQJgqpdBbESjNTiez5FMoeYXcNjcb2LFACxyuAMIhCzeryAkpoBoZKxGmEYVs0VxvkckVirVG2gVAKMDAME0OZ/UE0EzSK45CEBEM5DA3X+OfPvUj1UI2D37GH975xP4kwiHsNHAdMt5pZOxgSQ+pMHS82iYMend4aVrGMgcJVknZvFce1WZs/T851CdM8V6ZXOHbsMvv3THLsmRfRQlCrj9HuKrAHuLjgMzG1j0Yr5kc/8ii77v1x3vmOt7L3rnfwiU8/xfDYfRy8806+7z3fy4Wzn6dgSxaWVqgM7aI2eoDBqSMkwkXIGJ0YCKU3aB6mqfpG3aL/+EvSJKbd7lIYKLAyd400jjKKLwaeq/j4n/4F77vjtowOJEAInRmYezlSnWbUwSDhM597nD1Tu7AdG4nk2Mkz1Gt58qUiCRKdxpm4jsw88II4zKiYQmJYWR2t6j9bljLotRrEQQfHcpCWgVQGURgilYlpZuA0jHpEfg/HVhmIN1RG1VGZgmYcRTi2m41TShMFMU8+fYzR+iAkIToOEBgIaYOImZ9ZwvFcdJoSBSGGAL/bwbAtlOEipAMyU7dVykIaEtv1aK+1swk528yykIZFkqQ0VlbotNs8/eIx9o2PEkUxoRY4nodUgh/7td/kNz78m3z4kS/zUL5AmmTXc/fEKLVamXazh99po4TCcR0s26DVblGvV9BxglfIagzTFNIILNtAaIGXF4xNDEOcMDEwyGqzw9jICHEQIVDky0Uk8FNf/AKXcyX+0Y+/k0986vO8dPkk7htbHHrLEEkU4BiCxQ7kPBetE7RI0AiGajUcxyLRCQ6CZmOFxdYywwO7mVkLsDyPe27fS5qECB0idMKVmRWGSh7KsLn90CRayMwiQ0kuXVvgtgMTSCG5trRM1JtntDbK00+cYGSyzlqrQ5IkhH6XK8sRtVoFf2WFpUZMmsLeyWFOnrzAQ/cf4tGvvoRdsHjiqQtEcciDD93Jgd1TPPHcWXZNDtPq+Zw+cYm77jrAvskJPvcPTzGxa4SjJy/h93zOnF/EdCxmL86w/8AQ1xbWmJoYZahoMDRUxXJMYj+gF0aMj9RRpsmxk5cYrpcpWj5hnFGzryz2uOuuwzTnz9FdmWVxaZVarUwikltk8G4GcaIvqtCHBjvCqxsZKOuZgfX4Umza99cXDOubSJ838IK+rn2+9mNY7+36P2vSp5buJV8sbF8aovvXtV+ashOw28kLb3MstREfbaHabZ4839xujpOuM6TWPzu1rXFcItZJBQK1TvZN0348uLmfG+PKDSCodcagkHLjsznbd3Pmbpt4cR1cSXHL89haMnQj2NnhPhQZZS07MwlpNmmndSZwIsT1hABcp2duT63cvgspMg9fIQRbUxybj/ImkRad3XfrmUV5w0ds6GlcP80+SJPGdeqqZhuC9la6dvb/6ybm38b2DdMy+zfVDe2mwtMtWaTNMyNxTKr1dc8bsf1wm+3n62uvPIu0/ROz3VZi03GmQhALDTiQgqsM7DRm/rkT/C+/+AHuubvE/Q+8h/nFFcIw5EP/9v9AWUV+4Zf+FW9++z+mVh1lfnaWciHPl77wOQ7dtovbbz+A32mDtFj7yj+wr1yiFwRM1CusrjZAp1y8NMOzJ89Qch0qxTyX55eIkxitU1pdn+WVZXKuhePY19Pwqeby5RkKXh4hBc3GGk7fe41Us7rUyGhXjolp25jSRquYNI2xDAelwDINDKmYW1nkngO7yOdzJIlmbLCCZZt88u8fRQmdGSgLTeCHVGpZxkFKRdANEDJFKoNSzqSQc5mbXyFfyGEYkm6nh21ZBH6IY5vkcy5BGCFNhe04tDo++VIepRQj9Rq1aomRoRpxHKIsRSnvEScxoCkU8+ydmsgyBFFEFKfkSzmSKMoCXjSpTuh2OswvLNNpx1QrJQI/wXVyaJkJfehU43jZMX3yc19l32gd0zYQqaJWzjKpqU7wO70M/KnseXD74LHZauJ6DkrJjFpaLNDzfbx8FcNykRiEfgxpwuLcKs+cepFDu3dl9Eil8P0IJY3MYkFobJGwtrqK62ZBvlQhUZRJ8vt+gGkakAqOLSyjj1SpHR7iu+8eZ9/YCGHg0+20SZIAx81xZXoa27JwbBshJEEQkyIwjCijeLouSpi0m8vMzk5TG5yEOEFHJs8eu8DufbsZGqozNTnOl770LG960wMsLTe4dGWBQwf34XouI8ODKCX5wEe+xFe/8FlOvXSWctllsF7lDQ8+QKVS5o577sU0FXNzF+j0YoaHKkRaUxkawquMgsyDjJCY2Vt1B96KoRT5fIF2KyRsryLiNsuzF7AFtJZn+MxnH+G9hw6jhKJfKEyv1cKwbYKej5QKrTWdTpPx8X4NX6/L6MgQWmf0TaEUSgmkMLh47grFUgHDMvG7AYahUFIilUGn3csouUlCEAbk8gWeeOYlhocHkUJgqIwGmj2jmQUFcZJlKATEUea3F/QCLMvqi9Vkb15BFgAPDw2iTIM4irFsC8MQNNbWMAyDVqNLsVImTgIMA8LEx3IVcSxJUh8zJ0jjbNZHyOsve8fO6qqkSjGFAVrQbrQpD5QplopMTU7QabfxPA/LddbJ77x7bIIn1hr8+E+8n3DvBB/4nf9EMQnZO1gnDELcnMunv/Q1JkeHkSKl02lRLJZxXJck0n1Lz4RWs02z0cCyFUmc4Hkey/NXqA7VsPIerpMiSDBszcLSDD/9xa/xHT/5PRzcN86vfOi3UQ92OfLOOnvvH2Wt3SbVZMqugcaxrT7dC6Iks4MRUiKkwAIa7cucvTDProkjKJXiWgZFx2Wl1SHnWDTbXV584Tz14UEc2+bZly4wXq9x9OWLXJ1eZHZ+lQfv2MuxE+cZqpYYrJRQRkirJzlwYBI/iuj5IeMjQ9TKRSZG6zimpFZ1efH4Ze69ez+XZ1e48+AUlmmQKhgerDE5USeIQ5ZX25w8fpLbj0zx0qkrVKolDuwb4/K1Rc5fmaVYK3H81DTf9aa78Tybw/smqJVzjI4PorXGsmxmF1Yo5WwuTi8wWKuw2uxSrRRYa3ayer3DuzEMA8swsCyPSsFmdKiKazssN9uYRowMu/ihxqsMAdkE6SsRKXeiJr7SuluW7tjPq2tbwd03e/+v/ii2XrcznRe4Z+RNwDZ0wxs2fuW45lbXcacs26uh2t3YzWsD2DtTKNd/3o4GeOvs3C2Pc1twt01bj5N2ON+dSoZ2BnfbZMS0RioDncbrmiObVt8JsN+qi776urg5l37DFdxKLd289JaX8Obs6ebJl+2y7Dfto///6ybm38b2zTAxv5V5+bqR5YbZY/+GSLju0SKT5KbtNva75YZRm+++rU/ETsf3SjfehqLPjZdivb+UbYClYaDTFD8KoAckIX/3V3/OyRee4cd+6H3kq8NEOs/f//XnsXMWJ069wMr0Fbox/NZv/wcSofBsm0Zjlaef/Crnzh7ljjvvYHVpmfZak3/3B/8Xn/6+76PX9TkwNUEcB/hhxLnpWXphxL2H9hGFERJJoZQHrXnkmeO87f47WVtZ4cryMt/xpoduemC1r0klBEEbUzlIQ6GTlIXZJRprHXIlB0NJBgeHCOMmYZBQzFfRKqHT7pB3c4RhQBSGOK5HikSSgpScOXOJkfoQpiEplDxWVteo1ip0u11s20VoRUIXQzogU/x2iJKSZqeHYxl0uz3q9QE++5WnePdbHuDYibMc2jeFk3NZWV6lWCoglMi+ECVIw5j5a/OMjA2RoJG679UXZbTO2ZllKrUiYRjx9PHTvOONd4NICcMoE29wMv+6XtvHsiz8wEcqiW3bpKR9GqtFnKZ4jkOn2cMyLZQjOHd6hnzOY3RiEClTgiCi3epRqpX6lBlYXlyiVivj+z75Yo40hfZal0I5RzeOMYTAMiRBzyfoRZRLZXq9NlLZ/be+QBrZnJg0MjGetWsz5Ip57EKROBYYUhOFCToV/KtjL3Oh2eQTv/w9SMPCssHv+AgiLLuEVIJOp4WpEjo9QaVaRCcp6BStM7NvISM6jQ6O6zG3cJGRoT34QZN8qYAfuHz+4S/yhrvv49rsArV6kYHBGpEf8vLJi7iew+69Yzz33El2T40wNDTIe3/t/+aHvvd7GBiqkRiaN9733czNnOH8xTN4rseTTz7Fv/iX/5o///hHec+73sL8/AnsZJV2a5U9hw9jVA4xtOsBUtVDxC6ImJ3MehWCNIoJE4WpGyxPn0LETXSaI0haWA+fQNkerptDGiZapOiwR6oslMyyRlEYEQU94jTEc/N0m03cXI4wirEtB8dziZIIoWWmOkmagSEhiKOYKIjw/YBSpQhkz5sUApFmdENJjE5Ao1lbW6JSrZHG2WxpZqAtMC2zT7NN6LbbeF6O5eXMGgEhEVojpUkYZpYoaEh1hNTw1See4m3/6M2ksUYrxZWLV9g1NUYcBViORRqnKGnwt5/9Ct/19ofwig5RkKBkRqlO4gBlmSRhgGFYxKHGNC38OPO1jJMEkaQg+uO4BGlk9O4Pf+XL/NKHf5skTTJgG4VIpfjYRz/O57/8KLvGJpi+Ns0Dd9/BSy+fJghjCvkic0tL1MoFut0eQmtSBN3Qx7XtjHEgUsJEYzsOv/vr/xODg6MInfL9//SfI4TJQz8/hCBksLIXKdq0ul1KuQpxGqCFgRYmMQYyzeoQoyjCNC20jknSGJ0mtBuLFLw6puORypQgCHn57DRxrBkbrXL69BXecP8hHNPkzPQCec/lmefP8eY3HGZxtUGnGzA5OsDc/DJTY0M89vhL7LttnMFixNHjqxw4uAvPM0kSQZRomq02QmqmhivoJGCuEWAZNs22z7XZZYoFi9F6DT9MmZ5dYqxeYKI+xLWFGXq9mOF6nWeOX0CnmoP7R8l7Nt0gYanRIUlTBkoe84sN7tw/ydGXznHP7bu5PL9C4AcYaUyulOfC5QXCSKKCDgdum2J2sUkqJPumxlFolMrEYT/1t8/wjnfehWlJHv3Mc7zrrcPML8xT23s/1XKBWKeIJO0LMGVMnpsDi5uD3Fu9mYW4Xuu01SsLcUN11zZ9XF9/vT7thu37+7hxq29tHLlTnLohHbOeQAOO/tfT/Ptf+ehG7LS19EUKccu4ZrPp9voYuXXM3GzAvb4frbOJV7geu910rJvivJ2MyndqW03E1/sXUt4cD65/T9vEe5vPfyfz9JtMy7dRc9zuWLY2uZUy+UoxqJCkOr0OhLZZX9zoYU6a6ptMzOWm1PiroW1u7WUncLuTMfpObfN2r6bFWiMF2K73qjd8Hdx9g+11cHczuMsCNrL6P8hG3S33WSw0tjB45kfNu2wAACAASURBVMtfY3H2NAsL8+zds5d77j5CO0wxygPk3AGunjqH5ZogYz72f/5H2r0Qy7Z581vfyv0PPMDZU+f4t//m3/DBn/4BLpyb5YEH7qRUdJl6+hlmpudIophSoYS0LVqtNvXBGlEcYShJs9VlYKDM3OwCy2tNkkQzVCtTtBWNVovJg/vJjKOut7DloxyHNA2JgwTDsSBOefypF9k1PMj4VDYT2/O7WMoi8HsUCg7asEnjGJ0KtDaIwwA/9jEcCysFw3aYuzZHGApOXbzM3YcnGRoZRCCI0xgdCVYXu3SSNSZHx4mTEM/zWFtq4BZzmKZCKkW70cJ2baIwxc0ZhH7E2nKHSzNznJ2d58fe+w5IIZECkaQsTM9SG6rRaHcp5osImVWCqD4oWl5aY2CwSq/TxfEctNK0Gm0s08XxTJqra1y8Ms/dd+6DNCHWmjBJs7qoNCEMEi5eucausSFs28bzCjTWlsjnS8QiRSYaIVJAZDVrfkSxUsAPAhSSbjsgX3SRKpvbDv0si1Mo5bNbq397hX5IEHZxrQpXr01Tr9cIwohypZhNlhlmRmEJ/X5pXUalVQp+9CvP8Ye/+J3knTyCiDSNEcom9pugLVJCDNsjU/VPiDsNhGEjTBPHdiHpgDDotlr0WvNobWCaFU6dPsHo+ASBr+n1EixLsu/QAZpra5w4cR7LdLjvvkOZlYRpszA7x7X5Ja4srPHFqwYPHDnC8EidyV3j7D84yXKrTdEeI+wu8fhjT/HVRx/hJ3/yJ/mt3/gN/rdf/V9ZmOuSKy+wd2SEl449yuj4MJWx2ymM3E1iRhC7iFcAd4aQkKRcuzZNcXCYgmMQNheZmVsmaJ2j9tUzSMMmilIKlQpBGELkE6PI5fIkKaAFvU4HxzXpdgMsKQiiCNP1MkqRVPRCH8exsppSUyFQxHGMYShW5htYtoGbc1EmoBSiz5VJJSRhhGXaZNSiTO4frVGWzGiQSMKwh0xihNR0Oy0cO6t5C6MQy3HptJo4bg6NIkoTXNfDdD2iIMHAIEp6gMC0HFrNFrl8jjTVKGUQdDuEfkCpXCYRmmZrhUqlCqlBt9fEdhyEslDQ99ISICAOQ0zLJvBDojBiba3B6OhQNpYbCqHh17/weX7h13+DQsHDD9uYRua1t7Ywj+lVeORTn+INb36I4ugobq7KwqVTjI0f5PFnnuHP/uRP+L3//Ht02i0WFhcgSRkaq4ByMQybpYtHkamPHDhCseiQ9kL+5sp/wo9Tnnv+DHfetotc3srqY+OAK7MtJkcrJFriuR6pzmocZxdXqORzmI6HwqfXWUZHPS7OpRzet49Gz0fJFM8w+MJXjnHX3ftBaC5fmePQ3gka7S4zcyvsnpqk3enSabfIeQ5dP2BieICEFMswWG11GB+qMLdwgeHqbq6tNDl2/DytlQ7vfPd9NNodRqoFLl6dZ2pimERILl+dZW56iQcfuIte2KZWzPPJ//o8b/5HBygXLBqtLgrJ2FCVudUGlmly+uI8lgmeIxkoFykWCvhBxMLiMsPDwwA02z2eevwk73rXPTzxzEkmRmqMj9WYXmqTaBMRNrEsm6uzq3R6MbumhhisVLly9QIH9+0mjWNytkWYxijpIPA59/JZHMNgYGKYSq2GSBWpSF81uJPi1qBnM7jbeN43Ft4a3G0Vjfh/K7gD+MyvvcAn/uJPgf//gru0fzW20z94Hdxt3/6/Au5ep2V+g+3rpmVuKkDdthYTNgDR5oJZ0Ftq5W7dttbX3cgkfjXHmKWq1aZ93ERBSNPr/P30eupd9uvwtOgX1aZZXUoSBQgCPv1fPsHll55nbW0ZL1fm0OEj1AbH8UpDzEzP86XPfJaH/+YzPPv4w7zlzW+iWirxt3/9Z6w1e/zID7+PP/vY7/PY40c5ePh2hocH2T08gO2WePa55/gPf/yXvH/XCH43ZLBSxXIctE7xLIs4imh3exRLBTzPpd3s0PUzVcbBWgXHsbEdl3Y3YObKNAP1gQ1xFw20VlawXDdT5TNV9l1IqFbykGRqFJZt0g262LaHk3PRStNp+li2QxjHnD55hWdPnGdpdY2xWjXLMkiDF16+xKH9k+zeNUK+mMu+f6kwbYew53NpZpZ9e6awnKxO6vnjL3P6wjz79o4QRyFocD2PZ547zUAxl9XBpCle2aFe9bjz8D7SIEJrgRYphhLYhiRKwTRdGitNfD/izPlLDFYLICDRCYZUKOWwurKK61qksWZ+YZVCPodE4LkWOtEoy8y++yTF9vJIqbAdi1qpwsOPP8edB/Yxc22RRMSUSmWSOMZ1DZTlcvyFi7iGQy4vs9od16PVCHnkmaPsmxolTjRCahzHwjQy7WOdZHS3NI2J05h8ziOJU0qVIu12h+pAmSiJMq8xqWg3GwghUYbJj335WWr7Tabum+C9D07iWAZpHKIUxHFCEsV4+UImfS8lpuhBKmk21ygWa5iOjS0h6HboNRcx7ByGWyZXKCMNA7tQhtRheHScU6cvc/eRw7z40gX27B1ldbVBGMSYtoQ0IQoiPviRLzOnB/jv/tkv88KlNR64+/aMuqiyupHFxVVcYfIjP/wDfPf3vo/LV87wUz/1QVwvzzu+87v4o499nOmZGRbnIx577HHmZ85x5/334lRHsXLDaBEj9HWVuKz+IEUqtTHOqI2BSGO5LkkcYRoG0vJw8nl+7pf+d967by8kkoQIHYOOu2CaOE6RNI0I/R46TkmilMefPMr40BDdoI1r25hSEScxwlBYjk0cJoDMFNVEFjilaYrjOCDizCOSmKjXwTJVP9OuCPwupmWSpAkqK7ggTSJi3yfsdkmiVpZN1AFx6CMFJGGIzsRdM+sL0yCJItIoJG+bxJFPGgUInWQiLspCCkUcB5kvZSowzSxTqYysVlMZgqWlVQYHhpACllfm8Vwbw8xEjSJS1HpwKCVJnGBaZpbdNkzcgodhmSgt+gFIysX5WW77zjcRJwLbzmU1ti2fbmeNK1fnuf3eexgcGSMMfAyV8p//8C85efJl3vn27+JDv/Wr/OxP/wtIl2ktLmW1w0g6zRbt9jVGJ+8jNnqw0gSV4oervLh6jLDb4ND+YU5fXGSgrIgSkNKkVCpi2h6GYSJIUSIFUnp+QLngoHsLXL46j5YeuWIVP5EU8g46iRBxzLMnL3Hb4T2cODsDOuaO/bv4wpee59DBCYQUHH/+DPcd2YMftTP6qG2xuNKg6DlcmZ7n8vlrTEwMEseCXM7l8efO8PY33cHU1DC1UgEluzQ7MbabZ2ZxjXPnZzm0d5zbDkxw6tI0+3cNkCQm0g6Zu7aE4XiMVCvMrjSplXO0/IBUQ7Wco1ouMDJYY261TbWQZ63V4Mmjc9x7+y4uzCyyurJCbWQQ05QsrbY5uG8vrW6XVifk9MuX6TQ7SNtASEmtVuLatWVOn7hCL0g4cXKW8Yk63SDCNlIee/4cI/UBCtUa5UqZSy+fobNyjaXFWZx8GWmovuopWz7yBhrYeu2d5DoAW6eV3VAB16/VW483xI0LyaBZn+Aorvd2vZTs+gY3ZgN3jidejbXA5vO7VdsJ2GU1UVu27v+6/8117qg9tKFrkKL7tWDrjPIbt1sXWLl+/HKbv21cFIQQxJvAsFQZ0tgJtG0nyqHThK0U0J2sCbaCjfXaLbFNv9drtm5um20L0vXau2363+Ykbvy5/0nZJOa3RbBv/XyTfq1jRp0XG7V+af8cb/j0978BTNfvX6U37A90KvtBpgadWSOst42ciLgR7L1SExqUyqzI0H2lzlvdoTvcwOv1eKI/uXfL7Xb4rPe7PtXzuqDKt7F9/eBu8014o/nipgXANjzqb1cT4oaZPNgG3G0e+PX17YRYH3hBaYg1yEjzpx/+HS4dfx7Hdbn90CH23HYvhcEB8qUqLx4/wfGnj/PXn/woP/sLP8v9b/lOzNjnQ7/26zzylUc4f+YEWnmcevkUd919hK8de45/9jMfpD5c54//4Pd441vfzV989nP8xZsfpNfN6p6KlQJREuG6Dt2ODwgMy2B1tYXnZobjlqXQOsVxbRA6M4VOE2Kd0FxqMjBYASXRUjA3fY1ypZxNmyKIghAhJGEQEvhhJucuBW7eIY0FgR9hKgulLVLpZ8IgnsWBPWNMjg6jlEkagjIMxkaqKMDv9nAdhziKIdWsLTWJ/ZBdu+uZ9Hgv5OKlWQ4cGGXf7nEEYKrM8L6x2kQKQSHngEgzoYk4hCRGKJPHnn4Bz7ZxXIskjFHKQqdw9uxVnjx+jno1z77/h733jrLkuu87P/dWrpdD5zg5IQ0YQJCgwSCQokRKYgIFgDZlWaJMrdKx1rJXu14tj6y0kryWqMiV1qICoyyRZs4EQBBpMJgBJqee6Zy7X34V7/5Rr3u6e3oGA4jmsc/hb847Z/rVfVX16lXd+/v+wve7YwDDMohihW1btNseH/3so9x+aBe6bmI6NtmMC0phuzaWbWI7Lk3PT8rPmmvCzgLd0NBkzFCpwCNPn+Rltx4glbGSOIWIWVldwXEyxEHMqbNX6OkpJsDHMDk3dpmXHdoFKCKlsCyL1aUqYRjiuC7tVovzYxOM7hjk0qVpSqU8upWQcmSyqYTwg86iq0BIwU8+cZIf+OEDPPjaEbqzOq6bI47CzsKcUMsHQRtNkyjlI4iRQieUEsN0iYM6jcVZ3FwBv1UnqC9QbbYBk8pKHcMwSWWyKHTSqRRS6gz0d/P882d41atuo9FKSmf/8YkzfOSJKZ4Zb9G17x5++v0/xcFdu/nI3/4tH/3MP3Ls1BmOHH+OxsxpPvnVb/OFb3yDt7/lzezft48//pM/w2uHpFIuy8tzTM/MYZk2l69cJooVx48/xQPv+RFMCzQ3g53qBxkiYp3Nnt1m3SXZeYiFpiVU2lK7GvUU8PGP/T3v2H2ASEWERAgFYdjGsdMIqdFuVmk2Q9qtgOmpeU6PjbNruBepCYIwuY6GZSOlRhzFPPLw05TzeRzHIIb1frsoSJrWv/bNx9m7exTdsImRxAqkmWjY+R2Rer/VQkpFHPsEXgvT6DhXIqZdb3cy0QHQIa6IQwwBgd9ECgUdRy8K24RRmJDpRB6GhFiFaKaOCmNMwwSVMOaqMGRicg4nnSaddonCiLnpBXq6e/HDAN8LEkIVzUATSUZOKoWKBXEUoOKQMIowrSQYEvgeSiTF67f29FAdHCBfLKBixcpqBc/3GOrrpm9glFQmRa1apdxVwrItbr/9MDt3jFLI57BUhN8GaUeUBodxrRSzM3MMDAwS+k0kKYJAsLR0jJ7uQUxd8eHf/TSDd7gEKqCvq5t6s47rFDAMG9OwiOM4IXfyfcIYlDBxHReiJvNLKyANcrkSppEi7VrEcUQQxSihk03rnDg9zvJinXtecYCZpVUO7h/BtU26ChnyZZcr0zPsGhohBlJOCtM0CUKfgd4yO0Z7QYLnhSxVm+ze0cfpCxPksymmFpYoFLLkUzl0CUsLS9SqLfr6CklJZaEAKiKMdMbGpzm0f5TuQp4rM/P0dvXzxa8fJV9wOHdukh3D3fhByGKljqnppK0Q20jR1Z3i2NkJBntKmLaJH7R55slz7Ds4yuNPX6Cr7JDNZCmVUuzdNYLruKxUW9Qbbe44uAMvDujtLfH6u3YTx4oYydxKjQO7+xGAa9l887kxXn77XsYvXqa7O0u5PAxSI3HrtmTVtlmiZQe0rK3KGwlX2PDe5v1sJFpb0yJjy6e2txsy+70E+27s6XrgDuCv/+Ij/OC9PwJ0HOQb9pltvsKiE+i69r1ENDuMoo64tti07UY9dNtT98fXbHtR0gTr216if7hNn9kN++yul/Hccn2ToRuzZoncjuKqVMP6cW9wzbZmHcXGNUxt/u6bkopbwN1NFykKiMJoE/v7Vj/45nazEQS/qI9es481chbt+4Qq3zv7p4K7NcV7pbZhV1pzul6AzfKF7NSZM3T39ADXTlZrcanr3XtXCVBkEvnaErETW8YmkaiEuUhJgVSAH1KZGuNv/vIv6e4qsWv3KAPDezh35gzjkzPEnse3v/UwBhpDQ0NUa6uk83mE4WCnu/mhdz3IfW/9Mf7u458EBT/8wz/E8PAQ506f4I47buf8uQvcfdcrqDab/ETYAAVXxucYHu0nRmHoOkEYoQmJYRkEYUxXV4E4ipFaMtmozu+wsFyhXC6RzWUoFHLEvs9qJSnLkkJiiwjdMPCjmDhUBEGEbZtIKbF0bT3T49XaqDCmXqnjmCZjVybJ5lw0oQMJK9MjTz5HTymHm9FZnK/w6c8/w6ED/Z0oq0TTdKan58lm0kzNLJDNOQRBQCrt0t1VJIwilIrw2m1MI5ENEEKSTrlJf5Nj4gcRKrDx6i1M22TXcAHTTmGZOpqQtFohTx47xctu3c2h/SM4rsHKcpVGs002l00YBh2Lwwd38Y3vHGWgu0wUhehSUqs1MC0DP4g68gQWKMnJ02Nonfs38H0MK2ELPLh3J/VmC9PWkEKnUq1RLuVp1EO+9OhxDu7upVTOY9sOYRhQLhYxtES7y3ZtVpcamNJiYWEVXdewHR3XMtE1nWIhR6vlYVkJgYVSilq1igA+euoCj4YVbr17mAffsI+07aDJFK6dQ8nkHpZSJiWCukxYGg0TiSCOAzRpgjIQSlBdnaFVn8V0Cpw4fZHJyTn2HbydhfkK5a4udN1IQAiCWqVKo9Hk7b/9Dzwz1eTpiSb3vfcXObnQ4lNfOcLcwjxnzp/l3vQluoPTyMUj3LNTcrgccf+re/nxV/XTp7f5uR89xEP3jrLw/JcpH7iP3p5eXCfNyOgoKMnCwgL33vs6nnvueQzN5K1vvY/bb9tNs7ZAZJu4mRGkrpBKZ2PRyVbtIwlEKkZ0MgFSXmUO04SGeupJbhkcolltoOkamWwJs8MIKTSZPF+mxWe/+iivufswt9+6l3aziWGaCdA3rY4GYFLemnYdMtkMvu+hlELXdQI/pNnRHtwxMkAUhSiVUHULXRJ1HCqzQ+wReBEqhtBro2ugCFmYX0KXoGkBmpIEXoBGjOc3ECqRDCFOGF5NU0eKmDiIMXWz4ywkJcVxFBB4XiKhECXZwXqjhm2nyOSySMNAlxqKGNc1CYIkSGDbNn7bR9NilEiyMHEc8ujjzzA6MpQw2kqF0BJwF4Y+umkjhOS9n/sC97/z3aRTNmEckk3nKRRy1GpLVOsejVqNYrEAAhqNOm7KoVat0G7WkWT5X3/5gzzw4EOYTjdj508TK/jyF7/M7qH9ZEowO7tEb0+RyxfOMz83zpe+8iy3vmEHUaxQuLhmFqlpKBRRHBEEPkqRCM5rkmq9QWV1jnq9RU/3LrKZPJoW0/YboBT1Ro1syiGMBfmUy/BANwuVKk0/oKeU5/jpy5SKWVqeh6ZpnD07SV9vF45pcHFiJrnuKFYqdYq5NEIXhCFMza4y2l/GMHWKGZdCNsXk3DJNL6TaaDPYV0IzNBxL5/kTFxnoK6FUQBgKfL/JYHeJ4+cnicKQQi6D5UgKWZdDe0aoNOp05bOcuzzPjv4BVqqzHDm5wN4dJS6cm8SPPCzbZs9oPyMj/dTqbfq6XLrKeWzD5Okj55icW2H8yhx33bmHVrvFcyfHKZZz7B3pRcUhz5wYQ+oSKRIJDsswMHSdfb1FGi2PqfkGGC6V5VnakU8hnfSGqk1r7GYQIcVVEohN2SXYtuT6mjWdtczOdRyA71LLzo2c4pvJ2L1w9u9a8LpmffvK/F8/+4fcf/+7ErgsNo+8cfbxeu8piFUngLkBeG3Jfm17ruIqk+bG7NbW7/jidOdepH94jfyAuiZoLzeOvWbfG67ZJrAsN8srrN2nndEbyUquzS5fn+FyHcutSVfIDXJZik17Uqhrfoab+Fk2WRwlwG7jd7iZLPRWuxG428joeaNzW9vHmozJ99kyv4f2UsFdfM0Nt81EtjGi/k+wQiFhJZTbPKjrJRsvNDkIsQ7tNr29zdD176VJNAUPf+lrPPnVf+Qtb34T/XsPMra8wNlTl3n6ie+wujDPt774eQ7u3cvf/9dP8S9/6ie5/c7X8NPv/9e88Y0/wOmnv8WffegPuOeuOzn2xDd5+d2vI51y+buP/g2/8L738Zl//Cy1ZpNbbzvIv//t3+PBPcMYlkFXOcm26ZYJcQIQdF1HxQppJDpm45OzZFMutu1w4sxldowMkE2nEVISRjGGZVGrrZLPZxNWOCUh9Gi0PCzHxTAMVpcrHe0pnUatAQKeOXWOoZEBpCVwcw7S1ihkXUw9TaVSIZ1OI4Rg1+gArVaTubkq/f0l9u8oYGVchCYQUqPZbFHuKaLpOsVCBoHAsgzq9TqKECkdDFNHl4IYge+HNBotTMvm0pVZuvvKaKZJHPmYGvi+wDEzhCpC0wSVlTrfOnKSe+7cj9dskC3lmJqaor+7ByF02u1Ek6zdSpgsB7uKNBtNgsDDtiwMU08AlW2hdzI8KorpLRcRJMx6fhDgpDNYtsXi8iq5Up7V5QV0aeE6DvV6E8fNMNiTI5+3sVMurWabKA6wrTQChee1QUIQe1iWhpPSSWeytNoNMpkUraaHbkjGx+fJZdMIBFEY8tHzVzgqVnj/P389dx8cJY4jbCuTEL3YEUtL49hOnsBPHE1dT0r2NM1gebmG47goInw/RIolVldWKBbypO0uLMckV+hhcHQf4+PzZLMFzpy5RK6Y5n2//1k+9I+PUYtz7Lr3R/jF/+VnefXL7+KPPvz/8rVvfpPXdV/h/jtz/OChPD/7Q7fQ11NEMyS5Uj4RGZfQ3VtExgopFHbKRDNM8mmXi9UCf/Znf8or734Vk+PTfOyjn+LBB+/nP//BH3Lu3AV+4Rd+nna7QjZrUFudJVUukSvuQokIsQXcbTVJ0v+rSY2r89GaFpNgz9IKMSF+bQndFtRaPkpXCXjTjCQzpRQ7h/qxHDOhyo8igg6DpWlbmKaB77UwDImVctEMHd000SS0Gi1sy+Jbjz1Nb08J3ZRJWapKJEfWHVFN4rc9NCloNKoIESJEQODXabYDpqbmKGfTKNGgXg2YHl/CcSVE4AeCbx89TSlf5shzF+gvZzANgWnp+J5PEHnoukLXLAK/DZFCNw18308kO1wTpIVlWQnwjECIkDAKMC0daRhEQYhlGTSrS+iWgxISIWFkeAiQRBGggk5mtCMLIUziKOTjJ0/yY2/9UYQW0fba2FaWtlcn8lpkMiUcx0bTJbouWF5ZIpVKk81laDUaDOzq4V/+1E/R8hcpZHJIKXAsC9u2GejexcTCd6jU6uwefiWXzj/FjuEBYr8JQxGWLWj5iiiKidRaGE9hSEGj5WHbScb19MmT7OgyWK5GuMU0ioDFlSpHn5tkz1ABx1DUmh6XppdpeDG2qbNjoIxj2xx9/hJL8zViTWBbBvPLdZYrHqPD3TimRinvUqnV2DXURybl4IUhlq0zOV2hXMhy/ORFyuUMz5+6TFdXjnLa4ZmT4+zfNcTJsRkGewpkXYvRoe4kM6rHCGGA8MmkMsmz61qkbY2B7iyOZaGUIIiSsu2WH/H481MM9GjEsoBSTe48tAPLkaRTaU5dnuer3zpNT1eKgyNFGkGEoZuk0w7VeoNXvGwPgphLF8bpG+plx2AX33n6DKEAN+UyN7tCa7XCyMggKEXLazNbqzM1M0tXTjBQEsRBCyEFi6t13HQ6KSncstpudDjV+t8vnOW7upRvCsl23ttu5PX3uV3O6wUDxNttu+6Wm/t8so8b7V+w/3X93N7zagBeZKvTDfa7ISP0Ipz+rQG169mLA3cv0rbJ9F0f3L2Ab7g1K7xdZhKIo3DbPrybsauJuqvZufWs3A2yti/Vkn7XjYkW8V0Hd5uq4W4C3K0N+T64+x7aSwV3SoCmSeJOvfVajbPgqkbJes3zdYQeb9akTBi4Yu1qbfNmItbt97tR70N0SuNQcUK6gEBFilhsiOMok8RvaSH8Fh/+/d/h21/+NGlZ5wd+4G1cml9G0xz63AL7D+7jzrvupm/nHTxx5Bhnz15ESsngriFKXX188+sPszh5mosXJ3nogR/nr//qL3njffcxdvYkQgU89N4HKQ3u4lX3vJYwivj208f54FAxocVH0W40EXrCkvjs8TP09ZZAgFJi3THLZzN4XoBmaKQzDrIjEDwzvUDGsQmjEMdJJUA8jFhZXsHNpGl7UQISJeQKibRApCLcjAsqZqA7ATdS6YhY4jU8LMum2axjGjpR7KOUwVNHzrBzZx/ptIPn+6SyWZRQREGciIhbGpEfYZiSykqdkycnqVZb6MJgebFFsZTCa3sYtomUGleuzFIoJM6gZVmkXIdmo4Zlmliuw9FTZ+ntL6FLxdLSKvlCjoO7RlheqSBMnVazRbFQQjN0mq0aruvieyGO7RLFIULAE8fOYsikF8y2Eq0xxzbQpI7vJYQYge+hmyambSTELDK5z23HRiKx3TTS0IjjEK8WIg1wUxbpTJYw8LFtnVathaYlgBWhce78FL2lPG0/IJXOIkSEbdlUK3Uy2TSaYZDP2whN432PHeeV/2yAN73hIK84uIdEFN7HMA3C0MOyTVqtgHSmRBC0E22yyipSF+iExDJFynKJZYPZyYs0a0scOzpHX2+Gkyfn6RntZXZqlVq1hmHAr37yCB999BRm9z5mgx5+8r3v5Qff+CYOHLqVX/m1X+PsE19iZ/MJ3vHyHt6w22akt0QYBiwv1vGDmFTKZXZmkXLRTfo8oohW3ePxI+cwDI1qpUq+lMEPQv7Df/kav/RL/456vc7ttx3mTz/8Id71nndzy+138P4PfIBjzz7L5//hr9k3YGDSJPQ0cj23gA6yw+1xXdM6oE7TNpRbJ0/3O9/9AO/Ytw8hNBAg0XFzeaJqDctJJXOEVEihYdlWIoYtNEIvJAxivviNJxnsLnYAnYHf8Pj6I0+yY3gQXSYloJNTs3zu64/xo295YyKjAUlmPVIEs4FWvwAAIABJREFUQUgUxeiGiaYLdCAIA4LmErqM8Zp1NDxUu0Y24yBEjNAy1HxF79Ao2eIAjxy/hOXm2bd3H8VSESOTwbVt4kgRRhFh6CHxMdBpNRtkMkkQpt2uE/htBDFRFGFqOlEYJzpyeiL9IKSOppv4vo9h2SglwLAQUrE8M0XG0kEYiQyDphELH00ThK0IU7NRQqJJyXt//ddxC2lkELC8sIRMu7QqFUw7j+kaTJw5S7l3kEptCVvVaAcSqaeIglUIdey0TjqTY/rKJco9KdyUTi5fwLQVjr2TX/j5/8Ab7r2LnfsP4OQL5GyDZ6vnCCODWGk4ro2p29SaLTKOSawcHjt6gdFul3r1MqZmshp109tbIvIgChPNqQO7+zg7NkGgJMdPjHNw7yjjY+OcPD/Jnp0D+EHErqESvgoo5HMUshksUyPtWpSL6aQ/G0GgYLVSY3p2Edc2ELHO2PQiu4bKXLl4hQN7hhgZ7OP0pQm6S3mG+kukbIOeYpZG28cLY0xTI+U4fO6Lz3DrLTtwHJennj3HUtMjaDdZqjbpKmQI4oilWpNSOgHg1XqTgwMS3chgGJJCyuWJZ8+zb/duiENsQ/Caw6P4oYdp2azWAjKOw3MnL7BvzyBnzk9Qa3kIw0jAdl+JUycnWFxpkHUkehSw88A+Tpwb48iT57FcAy0KGCiliMOQQJrkSgNkMiUs0+HKxDTTswsYhkbKNRFC64CTThvHpmf0asmkInGI1yQr1kKyAtb/Xvv/1Qoc1dly9f8bPQS5xbHdCg82/r3dFHNtf9v1s3I3Q/L3Yj2hX/+5P+bd73nnttvWeutu5LxLdfX6CSAWiX+0Xe/eDe0mU0jX9NVteEVbetNuBjLFqM7cLdYzYNfb/2afE9b76ra76te06Wx5renC0ekY3bDtRqB4oybepmMJgRBXs52x3Nyzp20Cfh3VP7WWob6BjtzGnMo1X1GuC6m/KNtww6xl6raWisLV8906BhJCLtWpohECNP374O57Zi8V3AlYL6kQYu0GuzaicvXv60wKMiEhuJkJZmPM/mZu1Y2TGaxN8MnUH5PcjEoIRKTQlaAdReC1+d3/81c4dfRx9g/1cPiOgxgpF5nKcvTZ5zmw8wDHjh7ho3/3d9x516uYuniROw6/konLl5mbm0K3Bb/167/J7pERBnsLnDl7hVe/+tVcuHiWVNri8Cvu5q7XvIqe/h4uXLpCX18fjz/xON8+8gzv3jVE2nVotj3yxRy6rqFi6C4V0A0dEDzz3FlsXSOTTRFGIZqUVKo1simXOIo5c/4yveUCvucl2QcpaLZaBEGQVGMEMU89c5F9B0YSwBwnC6Vm6HiNFgLB5PQ8uVya+bkKn/3GUQ7tHUUBhiGp1eu4GYfqcpOuUg5hRLQaHpmsSxiEaIZGFEegwHVdQj9kaXGFUrnA+StTTFeWGejNk80nQEDXNTQd/HZIV08BIUWSGSQBsYZMFq44jrF0HcsyMA0Ty7JAaExOzJLJOOTzaZxUGkWEpgssw2ZyYp5iscgXvv4UlWqdfM5h364husoF2m0fy7ZRcZwQW0jJ6kqFymqdfD6PYemEYZyUaqiYIPAJ/TApcYsVmq7jNdu4rpPo+hGjVEInv7xUJZNJE/oBumFw9NR5Xn74IFIo3HSKSrWGrifsoJZtoxS02g1+5shZ3nX/Hbzn3oMU0vZ6H93S0iKW5XT00wSV1SrpVJYoVISRj6YEQdjCdYrUlhbQLEkc1glCi3yul/m5NuXuLpRmMjIyxNGzV/jzLx7j0BsfYvTV93H33S+nu5Tnxx94gN/4vd/li1/7Cg/tW6Jy9hu87Y48r7ulTMpNAgpdXQXqtTrpjEvoRyws1bgyPsf+3f0oERMrCIKAdCZDKZ9maaVGVznTkesQvHrYxBh5PXt3j/DlL36On/3XP4GKfbp6h/nt3/odLpw8wc994EGuXHgGiU/v0AHs4m6UHqApOuUmW5juOqU0am0eUddqG33s45/kHfv3g1D4voehCaRp4bebySKqa0RRgJA6dO43pRRR1MZxLfbuHMBOpZGaJApj4hh6SyVs2+b5E2cQKAYH+ziwdye6nug8ChItPIHk0tg4pXIJIQVRvUJtaRFNxuD7qFjy9LPHGCx3c+LSJFMrTQyrRDpVptrykYbN1x85xmtf+XIuXLzC3p0j6GaWditAlzrl8jDVWsjY5By5XAavHSGIaLSayfmbLioClMDQdLxWnUariWFoCE1HSND15Dw1TaLiOCmjaSyB4WCn0wSBR+C3sFwbRYQuElImv1XFsCAII37pO4/yw295HV47YnpqguGRYYTQMBAgTTAExfIgMQrTiKmuLtGOLSLPp1arks/l0C2DeqNOMZvj8vhFBoYHee6pZ1mpzyBElXe+8w0UewooLcXxo09zYP9BznljWJaLoZsEUcDkXAWlQmxLA+XRnbcg9KlVE8bc1bpgsepx5NvPsWv3AI22h5AaXYUsQRSxe6QPXep0FyVutoCumxw/dYlyMSEtyadTINq0WjVsIyaIJShYrtbJuA6GLsnnUpTyGcamFiiW8qRsg0N7hzpl9BLHNTl3eQbXtkjZFiqOyaXTtIIA0PG9Fl09BZ49MUZXuUh3OctwTxHHMSnlMswtr5LPpjptERLT1CllHNKpFLbt4FoO9ZbPzPwy4/NL7BksIbQQgSTjpmj7bR556hLlcp7Ab2GYGn09BVptj1I+zeBAN5/59FOUe3OkCykc20a3bEzTZGZqgbe96WXMLK2QdXUMQ+KkXNxMjlBo1Lw2pmkghWCkr4sg9Hn++XP09JaJ6YglE7LWjbRxjd64dku5pp93g6zalm3XG3czkOSGxxBiW9D2orMhGwHsTR4fYN+9fQybh3Ace5utL9xPdU2mUlytarhKuqJual83Yzfyz66bZbuBrcH8m4fF15Zdgur0d4prx207ng4Y2z7r9aI18bYpy7wq9bAW4NgI7uT6OVzz2gputavASgixDuY2/n/T+G2E0m+E29dKQ9f6Djcl9bZcn02ktFu2fR/cfQ/tnyJivikosU2J5k2ZuJb05LrH+y6k9jfGCoVIenRMJViaW+D4E1/jS5/8KLv6SgwPdnHw5a+hZ3A3rcCmXluhr3uAP/zQn/CRj/0tzeoyR0+c4ZlHvkGmy8G1NQ4fvo3PfOFz/Kt/8RMYQClvMTYxzvmLZyiVuqjV2rzhzW9itdokm+0mnUmTzmXxAp/ipfPc1lsmjmIs2+w8wMmDITWNGIXX8hjsLdOsN7Eci2ajhaZJJqfmcG2Teq1JpdYkn3a5cHkKQwoy+Qx2p5xMCKjVq+zc2Y9pWcl1UIpYJZkFgSAKIjIplyhWlEoFektpDFPyia88RinlkLYdECaaTCQAnFQmKW9se5iWiZAavufjt0IMw6ZRb+I4Jrqhs2NoiOXlFQ7sHcGyDB4/doqeUp44jHBsmzgOQReEEYgo4OSpyxiGSegHPHd6jIP7dtFq+6wuVwi8CMPQmZ5dolTMoEuJ5wkgRGqCOIzI5jJcvDDBvh0DjIz04GRSoEBqOo88dYr+njKWY2M5NjExKooolgoIw6TVqFOp1DvnFWE5JkKB1/ZptxqYhsn05Dy2o+G12li2hdA1Qi/Ctm0azRZOOk2r2USXkEtbSN0EDAxTR9M0wjDik8dO8lvnp3jvP385P/LyneiGQRhFoCKEEIQxWIbEtmzabZ8wiJMMYRgkvAVIVpen0HQT03K5cukshp3CTWVBBiB1Cl0JuPrAhx/lU985x7/93/4j973lR/nkpz7B0ePn+NCf/388cKhJeuUI73xVibffWebhR57n1kM7KBSLSCE5c36CbMphanqFWr1Nd1eRTNokjkOGh8pMTk7TP9CN1HTiMMYPw6SUdXEVTRekTJN6rYVA8tCvfZh/8Z77yaZsZqcuMjw8gI9NV6GLcsoBVmlWJnAtnZYeUui/BWEoNKV1ntstT39n5dkYvd444pvfeJhfHBhE65AI1VaWiNpNYgSmBo22j2HbqLgTVZVJGbTUJNVKDceyabfaxIDvtYiDJKChaYL5hXl6e7pIZ1LYrk1SERB3RMEFrUYbFORzORQKzZAJw6Q0+Njnv8a+kTxLtSr1KEbXNPbuO8yevfvJFcu0vYBUKkuj2qanlCGTdcmkXVLpNGEccPHCFAvzi/QP92FYKZ5+doyppWUWVjy8IOTc5QmGu8sEYRspY+I4RNMgVhGGLlFRCKGP3251Ep6JSHwUxei6nmiXBQnxjGbbSCGYvDKFY5qJAC8x0jBAajzw6c/wdx/5I4h0TMMhV8gQqZjYizGyGosLC6igjUi5CBERtX3ajYhizwDLU9OYrsvxZ59n5+59aLrJ8vwyn/vc1+nK5/jMpz7BnoO3s7owTV93CTfdRxyEjF08Q/+OA3z6q1+mOJim5fnoGmi6RU8hi4p96o0kkBKikc6UuTzfYG5ugcH+AW67tZc4joiimJNnxnFTTscZkTxz4iK6qGO5BSbnljl8YJip+QWWqjVafoBtSHrLRXTd4dHHTnDb/hEEgpRt4domc8urpByLlKORSaW4NLmIbdqEcUCkwLVNhntLzC4uceK5swz1FxBCZ6VaZWa+ykApRaXe4NKFeXbu6EOImCAMSDs2QRgxu7hMJmXj2jbTSzWy6RT1Rgs/hjCCCxNzZNJp9u/qp7uUJ/RaVFsBfiC4MrPEUE+KbMbBtgz6e0t05zPomiSfTVFrNAgjxSvu3MPkzBI7h8pMTS9ycO8w7Vab3aN9fPOx58nmU/R2l5MspuUgOmRbKgZD07GdhKnU0DQiFTM3M0NPdw/xutt643LH7QSZtxt3M7Z13MYs4c189nr+yXbv36hVZCM8eTHgDuD3/u1fcP/973qBUdvb9uBu+2D8/4jg7iXbhmMJTW4AiS88/oXsxQueX1uWeVPgbrv9d7gR1l5r+94IrKSQm8TGN31+24zzdQ+3YYzqkPDcaMz1t30f3H0P7bsO7jaVW6y9t01ZZofgRHSA3VrD5Q1LC4RM+ldewrmu7X8t1qcJQRTF+PVlPvHHf87c5ecZ2n2QaGmMva99Gwfvupejz5wmne8jnXURVoHjjx/hvb/4s9z/1ge49/X38NnPfZ7xyQv8zM/8K6Ympxm7cJHDh0a467VvZqWyRD6X5RWvfA0xIT39vbz23h/CdB0G+vtxbIP/+z/+Jjt37+NlLzvMNz/xMe7o7sa0TRAQBxGKmCgIWF6sMDU5T7PZQutE2ev1JksrFSZn5ijlsiwv1zh1cYql1XoSfdckO3YMovy4U9KQEJxcmZiiq5TBtGyiKEmXKxWjGxqh7zM/s0q+mCHuhBZ1Q8d2HQ7sGMD3fPLFDAqNscuT9PeW8Joe9UYLx7ASuQUVgYRqpY7fbFLqzlGpNrBsl0uXL7J7aBQhAwI/ZKC3C13qCQW972E6Nr4fYkhFFEYU8lksx+Thp0+wb2gYJ2Xw+a8f5fDh/ajYJ45jBvt70fSE+UvTBJqRsGQiBJatY2gC17WwHQshIQoCpC7pLaVZXWjgpgRCxfhemDj7jkUURdiOhWMlwFK3NPwgxLBsdF3HNiRoGoVSNqGdX3PYhUbgtalVq6RzDlGksExFqZwHzcT3PHQZoSL4icefxxzS+PF3v4b77zlAq9FASEUUhICfCB37EZpUifCyZiQEOiZIFaI0DZMmGgFerYJAo15vMrxzN82Wj6YZnD0xyZeeOM1Hnlpm5ODdvPeBd/L+n3qIH3vgJ2Hia7x+OOBQfoWH7h0hbWuJwHWsUEowOtzP5OQC5y9MUavUmV9YZefuPsbG54j8kDPnpxgc6MawDAzLoFQqMjMzxcJ8hXw+g+2aNGp1/LZPJpPCdhzmF+bo7+umx5Vkhg6TKRYQRolLl8aZujKBoWl09Q9iaD5pLaDdnqeQK9I1eidh7CCEjxDa+hyxlW5bdpbDtaVOCUUsFV/93f/EHQMj63FbFSiEHkGog5301YaRQNdIQJmSiIRShzgMMU2bWEU4tpv0jBlJ6aZlWYRhRKGYw7DM9YCR6miqCDQMyyAWoBuCwG8hDSc5O03n8K23kMp146ZKDA6MUuoeAjRQCaOm4QiUJ1ipLvDk6dO87JZbcTIurZbHkWePc+vB3fT192CaFghBTznL7YcOMTo0yPzKKjtH9zI2u0g5lyEKA3SpiP02hi7xAw9T0xMZjtAnCn3iqE2rUUkkSMIAy3WQhoFAokutwyyZQdMFKql9QgqD9372s/zXT/0XkAYISRj7CE0mmoGaQIY+2byFZmSIAg+JRdNrU+orouIYO+NgSMm+Ow5Tr9exLBNPwV13v4Z0uUR3dzeHbttL2HKZnZsh1hxalTlKIwNYzgB//+H/xvAr0phGQirk6Ir68gz1xgLoXSgksRI8duQCr7h1L60gYLArixTw1W+dZv/uboSIWVjxmF5YZedQD4YuGenPk7UEw/09XJpcZM9wDyfOTNDTXabVSII21VbEHQdHuTIzSymfQqGYW64w3FNG1yVCaFiGTiHrcnpsiuHeEu0QHn/qJN1dGdLpLKPD/SilsCwDLwzoKWeZXW6iGzF3HT7EpckxlmoxvaU0uqbzte+c4bUvO8Ds6iq2ZZC2dKIwwDR0LMel0vAQcYipRWi6wfmJCouXztA/MkA25XJubIZ9O/v59lOXOH1uFstSdBXyrNSqWIbg0vgShUKBbMqku5zn0lSFOw+NoOsxS5U2pqEwbIOdg32kbIsgVOiG2SlfT+Qzojim1vYTwK2bZLJZStk0Z86co6+7SCgN5AZ/YLsyszU34mb6zLYdsu53iE7VTlKyKehUAYnOkdd9DolYzyaKTiJHXG03EWuQ9Oq/9T7+TZmLqxmw9f7Czj8p1va7ofLpeue/5Vj77+3ntt5XX/cabC293PiKBevSTlev5+ZM2MZM3nXB7AbCka1+3g3lBzae55bXf19TRMklX/cBb3zMzRm8WF71TZFyUznpjWwTIWbS7HP1x1Da1VJLlfjAa3IQKLG+LdY2H0+KuFPSmTAXb044Xi0Tjkmye2u/tdxG0mA9E4dYvzbr44SG4Cpg3HR1vg/u/uex7za4i+Po2olhuwiRuFpysXHLDaNG16ubfhHnqkTA2uO2sLjMp//oQwizRqY8yu49B6guTtG/+w6ee/pZZFQnk8lRD3yOPnOcW/ftxS7kcaSNYQrGLl3hwN7DfOXLH6Wnq4vBgSG+/KVHOHPqFHt3jvLEo4+RKRZ461t/hNEdO5ianWJg1z4qK0s89u2HmV9s8vzJ09zz+tdxcPIcruPQbLYwDZ2JiXly+TRhFBMGMflMBr/lJyQejRZPnjzP/GoFzw9ZrtbQpEY7CHAskyCOkqixbaEbOsKUaLqG1/bJ2Caz80sdyQM9+Q06UgiaLnFsi2ariWMbgMKxdfx2E8uySaVdvLaP6QhsQ0/YN1MOlm1g2kZCOx8nE2Em66LiCCudgkglxAgpHctyQQhsO00chxiGQaPaRhgmpmnQqNWwTIiEjuXYGJbJrqEe2k2fdN5lz0jiCBm64PL4NKZ0kFLg+T6GoeO1PHRNols6l85P0NObYW5xFk2YRJqAOIJIoWJJvpQjQqHZJoZhEIYhmpA06w0keqInZkoECROiimKUAq/RwnRcGrVmR2cHQj9C1wzaLY+T58bZMTqIZmp4bQ+ExDBN4iDk/U+e4PU/fJAH79nFvsEu4jChuPdDH9NISgstM4tuKAxDR+IgtDWNI4UhLdr1xYRu3JdUKnNYVoqJ2RqjO3biBxFuKsPvf/Jh/J5X0j36Moia/M0//De+8MXP86auMX7wljRpGdHX28PM7CJR0MZre0xPLeJYNlcm5rh8ZZZiIUXatmm3PHrKiZh6OmUzv1jlwJ5BYqXI5DIIqRGFCtDo7uni2IkxslmLfC5Hu9Wm1fY58uxFdu/sT0BL4PObf/FVlpbn6O3t5uMf+zhf+cpXefObf5Dp6Rluu20PXnuV06eP0Nezi2L/LjTDRmDAhojzjRbpSAoQOh/8P36Dn7vtMCqOkSpChAFSk4Shwsk4aLpGjI5lmeg6BEGErpudOSPGNA1UnFxuFcXEKkQpiKIIzTLI5FKoyANhoKL4qiZVlLDuSg20jpitbq6xU4KUGkqJdXZFXdcRQhApWFxYwrJt6kt1HEej1a6RMhxcJynhlVJQKpZxUykcx0CKEM0ycRwTIRVBFNDf30s2l6Wnu4dIhbRbBn4g8KKIKPDRhELFAVKLE7HyKEAKhWFohKFP4HvJsyIkUrdQQiMOE72+MAoIVYQuFO/7wpf5+Mc+QhAlMhV+1EaPwBCSVnUFGfng5jE0G0dqRGhYVgIqK5UKdiqNaToYeopY1NENwfPPPMVwWhAZCVOw6XZzbmyKQn6EXXt2II0MvpBkUpL28hznL5zDGW1B7NFq12itztJVzHH2cgXLLZKxXSbnltkx3I2uaXhByLPHL9BdzrBzZIDpuTkunZtidPcIhUIaS8LC/CK9PQX8WBKh0ZWzGJ9bxDRNvCBm50AXS9U6QRBz/vIku4YGiaKkHLzpNdH0JPvrBwCC589dYXSwhyszcwz3lFltNOgq5kmnLFaq1WRuEdDyowSw2SYZxwAMvNAn75qcn5gjm8sy2l/g0Sef4/b9e3jm9AT5tI1pmDRaHo5l8PTxC+SyDl2FDCnLobcg0CyDZmTjWhbDfQWCKGDvzl727uwh5RqMzy7RU8xjmiblYoYjR06xe2c/x06ep787hyYVrmXxyHcu8Mrbd2AYGpen5+ktpqi3mliGhhAKTUvWgYXVGsV0iosTc3QXs2hS0vY9smmLMIpxLJuN9GZbiSVuROawnW03RGzYS+I5rLn2EqW0hE04aBF5TaQ0EnIgJTpBIAjChEQjKa0Wifbt9Y6/bQZvQ9aocyZrmGhz5uzG32Gj7c3d2WnR2G7s9e2mAPIGP+2mMpVbvPj//kDtpdlLyhR2PqOEuFb24GY+foNKtm2B05byUQC1pZxyYzBk6w+6UV5h63lu7vvbunFjNZzY8t73wd3/1PZSwN217axXb6DtfvOk1Cxc3xara+vobwrcvcDjtRZh2e61btJAxTH1mWk+/J9+n8rMBR76wM9jWCWqlTqVpWkeO3qexUtTjI+P86EP/Tmf+vu/5wtf+hJBvc7he+7mmcee4akj38FrVHn7u9/Nc088wr69u/ji5z/HO975XvbsGiWby3Hg0G3cesstnL8wxtzCMjt29WFoBul0mr379vHaH3gzh287iK4p9BPPE6sQyzKprdbo6SkTeD6+5xH4ISfPX6armGV2bomp+UUiFdFdyLNrsI+Ma9PfXcKQGqMD3bTabRZXq1SqdVKWRTqbIg4j/JYHcYwuBYVSgWq1hWWZCCEwTBMVK5aXK8zMr1DqyuE6KWZnFkAlWSupJQ3NpiEwNIMoitEsLXFURYegxo+xLJvVlSYCnSefOEdfXwHDjqlWWxw7domR4a6k387UgAhNk4yNzdNTLmKbFoblIqSkUW9gaDq+F5DJZFFEfPorT5CxDWxTx7VtwjDCtHUsS2Nyag5d0zAMLaEML+YwDJ1sJo00zKTPjaSkQUoDaUYIkSzqtdUqhq4RBD7plMPnvv4U+3YNoRk6mi4JgpAwUpiWSRz6REpgmQa+5yGlYHZ2iXQqheWa9HWXEJpGq9XC0HRM2+bBh5/hzW/bz7vv3k0m7YBIZCiCKEI3JJbtYmiSymqVVNoljmO8tt+hdU9091QUoesGx44eo9ECFUGpf4innr3I5HSDUiHFg//Pl3nnT/8aA3texu/+0X/ml18bM2rNc+9um3e9ehjLsRAxZHJpAj8il3GxDIsoUtiWheM4lMp5hgbLBL7PzNQKPb05+ge7CH2P7p4SveUszVabhaUqSkWk0ykqqxVmZiukUjpdpQzZfJooDNE0jXwxR8axSaUcvvrwMW6/ZZQ/+8ZZfvXf/BtarZiz586wY2QHdxy+kyiI+JV//6u86/73QNSmVMxTbVRQmomTKnYmjeSp3qoflDzfslNmHBC2GvzJH/0pbxsdplVfwvfatNs14rCFpTvE+Oixhm65xFGUsONqRqe3IOq8FFLTaLea+J6HaerJMxlE2K6N77URKBq1Jk7Kodlo0W62WF6qMDE5TS6fJo5idF1LRGhjRbPRSBhtwyjp8xOJ4Gzb87FtE8c20ZRCxTqXr4wTtzUuXpmhVEyTySSOcjrjkBCkhIn8g9SJwjDpTTUNVKzwWwHnx8bJpdJEkc7DR07SCBQ9pV4iAnRTQSTw/TZSJmAvDgLiKECTChWFaFLhe3WkjAiDpIf0F7/4ZT47Mct9H/gZHrr/ftqNKoaRBE5Cv41uQ7O9itdcQIo2lmWgRTAzdQWhpXFSFkIoHDuDiCW/8cEP8sbX3UP9ygQ5x6RdvUhr6pusVOeZOXWCnnQRmUrx5Le+Q33pMoQ+Y899CVGforW0yH333Mmjk4+Ttg1UGHDlyhw9A8N87bFJBvqyeH7IhbEZarU6i5U6e4b78KMIx4R6K6KnnMXOpkg5Jn3FLA8/foLbD+xCaILxuRoKmF9aJZPKUirk6C1lEEKQTqUo59LMLlcwTYMLE3Ncmpxj93Af47NLpF2Hr37zOY4fG+PWW3egSUEYJf27vV1lzl6aoacrg+e1CbwAaUjmlhqU8y6GprFcq/Dc+TkGe/LEUcjOwX6qjQa2IXDTJmnHZqCrhGXq1FttuvJZwiggnXbIZ1JJ+RcBAg8vitCMLCcvXgGpyLgp4jgmisC1bfIZl8uzyxSzWVqBx87hbnTDZKC3RD7jknEdPD8kX3QJwgjLNCjmXASQTaXWfc0wBj8IEUJg6walXAYVw8TcEq12i1LW5vLELN3lwian+0aMkVs3Ca4SpNww66WujknSVzHEgvG5FWq1JuOTs1QrK7iWwZlL06jIZ3F+jlqzSRyF5FMWXquZyM1ogrCTaYHWODU9AAAgAElEQVQXX7q4zhqornWUBNe8dc3n1mziqVX2H9i3eV9rtlmhYL3/Cq5igRuRr6iOLtrVktKrr00Mp2tSCFvsf0hwJ+U1XuMmmYTr9LBtBHfX+JA3YTcEd6rjA28CbxszhtuDOzZyU2wBd8lvx7alxkJBqFSH3ZjNfXYbxt0MuFvf541KUjf08G0lWfk+uPse2ksCd9sQoGyle91o03OzZDKZ9Qlhu/LLmwN3N7abeQBboU5lYZG/+v3f4bV3HOKNb7mHiSUXw7b57d/8Le5+5a3ceue97Owd4qP/8Dk+8P6f47aD+7DSaR7/1sO846EH6M51cWVijP27Bjh14RT+agNNU7zz/nfy2Hee4PX3vR6lSWYWFjuZqBS33347lfosp48/xyc++Sle+c9eTyv2adWWyFom7/vTv+Lto71IBLoUtBoN4iik7XlMzixQa7e4ND2Da+nsHOrFMU12jwySL+RoNBqJbluzjZSS/t4SzWY7WWQjhWUaNGpN0q7DlYkZTE0wObdIX18vURgBAikFS/MVMtk0advFyaUI2orKSg3bNTENgyhSmJZF0PKIQzBsk1iL8ZsR0tDQpUarmdDNW46F6zp0lW1s1yZWFidPX+SVd9yC0HzazRaxSsrVGo0GXd0ZAj+RKfARhO0gYdzUDC5PzDE5sYQQMS+/7QC2ZaB1JqlL05P0dOWIVYxru+RLOZqNJiJWKAPiSEdFSfTb0DSEAD+K0E2DSLVRviRse0QCHNvCMg2iIKCYyaDrOoZlEkYRrbaP1HWEpqMRIHUdw9LRhEYYBBSLeQI/pOU1EUqslyt+7dI4i0MWv3z/q9BUhKYZtNotUpk0QpoYZsLIqZQEFSKRCD0kDiWGYaEZMbXqErrUmJqYJpbQWG2z58CtSA1mJhZYWqjyB49e4vyyxo7hYX75f/93vL1njF6xQn9PARWFZFIuQuP/Z+89wyu57jPP36lct26OwEVGo3M32cxiEinTVLAkUrSoYGWNbMseW5YtjZ6RvTOWZO7YK9vrsB5rHWbt9chWtGVFkpomRYqZTXaO7ITQQCNcADenivOhgG50YIu01t75oH8/92kAVadO1bmnqs77D+9L4PscPTpOMp3g2LEzmLrKc7smGB7u49CxSRzPDtO7dIFt2+QyaVw8kANSiVCGwTRNAgIK2URYa6nJRHSNTCaJpvq0Wg30SITADzANg+dfPEY+k2RxqYrtOIwM5rlrg8E/PT1NOtHHxOQJ3ve+D/CHf/iHLJfLfPSXfp3PfOazvOUNr2Vq8jCKKnAljWS2/4IX4uXAneu6BEIwceIlPvzzv8z/+4bX0WrWUHwJKxJHkhX0uIqkxglUCXwDSQ7BnCsJcAN8L3zRKopY6U8gyeA5LrISaiEpskKz1iAajyIpSlhkHgTIisBzHUwrQiGfR1VVNEXGC4Jw/ng+ZsxYWUSBIkm0Wx3UFUAWuA7NRh08D8WQicct2g2ful9l0+gwzUYbRZGp15YwIgbdroOqm2FdrhcWuzcbLRRZptNsUyz24bU6VFo1Ts0ucsdNt2JGVSwrggg0Ai8EiODh+6EDzvM9wGdifAFNVpF8n79+9mn++NBx7vilj7D3pXH+4g8+yf49z9Kon0aIBfBkGtU6iicQkV40LY6pRqiVW8TkZfB8AslHjRRotSs0mzUMI8bnfvOzNGtLbN9cRJh1GpKCGusnFR0kkroRSxXsPvSPJBNF1hV6qMweZbgvQ75oMl8q40VHyQ1dz5f2P8K+g2eZq/lcvX0LdVuw3ArwWgsrTMIysajJ+qEiqiyxVG3Qm7HY9cJJEmmT+cUaTrtJKpkgm8uwUGkSM1T2HZlh67o+ktE4pWqbbCJGqbKMoRshOUrg0ZvJML9cpr+QYGwgxzMHpxgqFgAJBxge7cEyNYQIiJg6pipz8OQM6wZ68YMOqixIRCwgIBA6EUOm27WpNuus7x+iXK+HRFKyhqUKNE3B9R2E8NG1MOW063q0ul0imkQ8YvHNB59n3Wgvrq9jqjEsK8qZuWVSCYNiNs3Op4+xbqBAqdalXO9y5ORpcrk0AgldFTSaDsuNLj5h+cLz+0+xYbgXIWxURUNXpXChKCnIskTX88I6VRHK8JTrLdpdG1WRkWUJVVUwdJl6rUI2FaPreGjGeXKQVwvuXklkKayrg8n5Ek8+c5CIqfLs88dJJmJMHh9n64Z+ps7M0VPIoqk63doSxbRO3LLwHZtWs8Xy4hKl6bPMzi7SdAKiUQP5XO3WK7crUd6/GnD31T/7Pu961+Xr7nzP5w8//0fs/Lud/O2X/zv/8NWvsOfB3fzlP/wNo6Oj9PX3AfxIjoMrRSGvJIXwvyK4EyvlP2vtQpmEVXt5cPcv6veKkTtx2TXw+X4vD+5E8PLgbrXNZcEd0gqDqLggwnfxmb0ScBeS/AUrNeVXtgucCz8Bd//29i8Bd0EQIK/IHax+zk2Iy3hBotHoBQ+EtZP6XB70CtpfG3270gPocnS653q4yJ3nB+CLAL/j8vuf+gRPPfx1NMNn8/U30OnIzC1Vuf7aaygWsiRzgwhJsPOZJ/jUb/4HHL/DqfEJ3nT3z/DMrl2MHz/BF/7i/6K8eJajR0/x0M4n+PR//DU2bNlONj/MP3z567zh9Xcxtn6MVLqPwfWDGFET1dRR1QSSIvGGN76NA3v2o8keA4ND1Ls23/reQ7ytmMNzXdqtFrqm0W53KZebnF2sYKoKfekEI/09nJyeZdum9ciKylJpmXw+C0LCdR2mS4u0Gi4bRgcwVA3b9VBliUw2RdfxOHLiGMPFHGfm5xko5pFUiUCE+mClUoVsNoHttKksVZBlyPdmUXUDEYQ1SEISdFstjIiG73nMny2Fufr4KKpCtyWYmioRj0Zot9vIahgN8pwu/f0FhBwm4+qmGT7ihI5uSnhtUFSNrmvjddsokoRpRlhcrBG1IkQsFTNiYMUNJFnwzJ4jbNowQjppIQSomkxABwmZZ188Rn+xh06zhSpryIqELAKEFta0uY4bapD5KrKi4PpdIpEogeeDJNHsulhWmObmOgH1SpNkKo6iSJRLyyi6gZAknI4TCpz7AZ7noeoqiqygqTLve2IP73jHtYxt62O4kCJwPWRFwQ9cJDlAQiYQPorkITwbPwg16oQs4XU9um4bp95Gi8ZwWg2aDRvTjFOrNMnm8tSrVWYWy3ziyy/wS//p83z/0Ufplae5Z4PPh163jgAY6M0wNT1HIAKyuRQzM0vgQzqTZnryLOvX9aLrKtFIBMdpks+lyaYtoqkovhcymO47fArfDYhZUXRLRwQy7U6XqekFNE3Gdj2Wy03iSROQceyAeDzC9NQiyWSc/QdP0mp2GRvtRdMUKuUmpcUag4P9/MM3H2Kx1mbzxg2MbVofRrPaXa65cQf3v/3dnJ2bxQpqqLjYvkVhaBvymtv74ueDJ2R0OaB65hRPPPFtPj26hW67giZAGBHkSBzNMpB8Fdft4LsBSGEmgiJLKIEf0l3LK2m4fujV9R0HRdZoNJtYEQvXcQn8AHwvfIFJEgEhAQtIODbMzS6QjEexuyGBhiLJdFvtFUITkGWBCATPv7CPVCKOZUbCyKwaRgaFLKOpJgulJQLZ46otG/ElHyseR40odNsOnhBowkVVVCRZxfc9dj1/mJ5invLyHJPTS/T25QkQeI6PpWnsOXiUQi5NLJ5CMUwMK8t3Hj1CKpsnlkygyBIf3PkY3xmf4Jo3Gsjronzp+GmeHl/kbXfH+ak7crzhrhHuff+f8I773kRu060oapby4hz9GzehCBe3dJxmeQ4zX0BEYxiJAbpqEiF3kd1x8Gz8Tg2nNUW2p8i77ruT48eOkssO0LE1AjmGplvUPB81NkDP4BZy+T5SPXkKo1sYn63y/J6zWJEcV+24AdXQ+avP/D3qIGzbUiQQKgeOTJCIKpSqPnPTx8lk86QTOo7bYf/JebJxjVK1jhWPUm145NIJao0Wsai5IhVTw/YDdmweYm5xiUTcRMal1qyTTcURgUzXbuL5LooqkUnEWay00RSdDQMZOnabl8bn8Ns1igWLXNLCdlySsTSaqmE7XVTJZ+/haVxfkE5YCEnlwe/sJZOOEItamJrBcr1COm6iawbNTos9hyZodR2Giv3oisnswjK6oeJ0bE6cnqaYLzK5UGHDWA8JS8PxJXTVp9rqMDO3xPrBPO1uh7HBHPPVJl3bIwh88rkUUdOg3mpyZmYB2/PQVI2Z2RL9+RT5XAYJmJ87SzSewHYcIrpOx3GwDB1ZkpCFwHVcbMdjz4EJ1g3n0VQ5JPBRBUu1LlY0je26LC/Okcnkr5zetXKjn7vfueLul5iLz/TMEnarTSFjYTsyAwMp0glBMpNGVWU6bhASXQmJZCqFYsZoeYKW4yIpGvlsnkw+y4vPHqFvII1ozDE7M40RT+GgYsqrAGI13S6s6vMRK8+q8J9/rjZv5ZrWlmCteZ6t1vqx8vtqu9XPS4/P8u53vX1FwyDc7/63/xzySzpBDdbnN7Bl4zZu2X4rd+54Hdu37OCOq+9ArqvMHyvx+S/8Pm96490XYIO1sg4vv+b60fGr/xXBnR8EyJw/twvn0JqRvZgXYpVNMjgvaXBJeqcfZo8ILhVRFwGcY8e86B+AkFZmhxyyZ577iPO/h7y6QRixC3wkSVxG/Dy4oA8CkKSwVGT1s3rMIPDh4lq9lSuQkM6fy0pdH/6a2lJZIeTJECBJF6SIesgrZ7ryWbOG94PQ+bRa7aooyk/A3b+V/UvB3aU38mWTIH+kiZWw+Tnv1ZqQ8ZVIVoJzHoGVJNHLdCvJoYaTj4Jmd/nfPvlrjGRyDK/r4X0f+QgzMzWEqrDjupuYPTvN6YlJAs/nz//kv/Kzb7mHrt9ldmaGW2++mVq5zPp16zhx/Ci1ehVN1bjh+tdw+MQJ3nT3HZSWK1TqLd78lntJpmLIqomsyxw7fpzh0XX4yPg+KJqCLEO71cQRoOk6+XyWZq3OFruFa9vIkuDs7CKJeJTDpyfJxmMM9GSxogZzixUSZpRqvYkAIobOwsIyjutg2zatTpu4adHtOPT15zB0jaMTM/T3ZtEUiVarReC6LFfqJCyDaCIBcihGnIjHCAiZ8hJRE1VVQECn3aHbcZBUGSSBbpn4gYSiG0RjMXQrgiQBPtSrLXp6syjqSh2TptGoNVbqFSR0Q8PzQs+hY7cRqooSeAQ4BEIQMWJ4dkA0EcPzAhRVQsgyiWSMiGXQqDXQdJWYaaBpCr4nMDQL34VGo42mKQwNFFF1HUNXkRCMj08TiURQdJ3qUoNEPIGQPHxPwnV8XN9FFiq+D7qhhdps9Ra6oRMEAbMzCximhiSrRGIxxk9Mk8kk6NhdNC3C48/tpZhLoSmCDz57mPe890befvNI+AL1PRRZsLy8HDL5qTqB54dpsAFUq2VMXaNebyHLAYqsIhsJ6stzpPL9+EKiUW/hOjB7dolif4GpqTl+7k+/y8D22zk1eYYXnniQv/ro1dx69QCpRBRNVUhnE7QboVi7qes4tsPQcB9GREfRBHHLoGO3cWyfVt0mFpdIJuNohoJAwfd9NF2jp5AhlUpy+Ogkg4NZpiZmkYXE0lINI6KRzaTJZJMoqkTgCZ599iitTpPB/l4OHDiFCGCwmOXMbInFpSbzi1XSaYN2o0NS9rHjG3nwwe+QiEQ4deo4vX15Dhw4wPzCEoaq49VOUejtwcoPY2QGUNamcl1S2yuj+F2apXF6954iavUgC4EsFDxJw4hEEIFPp1FH1w2QtXDuE5IlSAI8X+A6DkIWCEnGdz08P8C1HcyIERJGKEpYjxOEKb6u3UaRQ91D13Fp1Fo8sWsvxUySeDKGIMDp2LQbLYLARZEVWq06shDkMikMw8BzPfYeOEo2kyQej4VpZ7LEzNwcw4P9qLqKpkXwnLD27/FnX2BsdASv3cbzfLrtDk63g64qxOMGhqGQS2c5Oz3LgePHOTRxmq3rx9i+eSMxy8Kx7ZVauzJfP32Ib8yM0ykKBm4v8ujTp/F9j1ZnmZ99+3puu72Pe964hd5Cmng6hue3eNe9W/n4p/6Oe+97G0lFxsr2EIlm0IwIQTRHJJoiKB2lMfUsi3PzuK0Ke3/4PVL5HAvTDdodk0g8wcDoNloNh3h+hEJhAFWLYRhx/s8//gLXbdzAX//FX3Drba/FQ6fVDZicWmBhqcHvfOYBUtksN95yC57n8fxzT7H19b1kEzHK9Q4bh3vJpeJETIXtWzbSaHsMFjKUKjWu3jhMNqbjCYmBnjyKqmK7LqMDaXzfY2p2kZG+JIloNNRpCiRcz8V22mSSUfYcHWe53GJ8fJpib45mpwNBcK4OudZqELMiaLpKLpPF9xUIBPGIxf4TpzlybJyrN/fieT6xRIzRYg4CFzSNQy+d5jU3bgDfxwsEbcfh6NFTRCyTVDRKPGGSikVZqrfRVRVDVUOSJw0ScYuIYdKxHZKWGtbBIajUlrEMk0OHp5idX2S5UqM3n2Gh3ObMTIm+QpTphSrL1TrDPVkGenLELYOZhTK9+RTlus3OR/fR15egWakgm3HiER3Xc1AVZUUyxEOIUBJjsdJkfqHK6FAPjhfW6rmeT8zUMFSVqKnR6raIx5MEQuZHVTNJa9YEr4hVe7UNMk/9cA/rx4pIikw2qSErEXxfpZCK0XXClHpTNzg1WaKQidHqtKk1GmQSCSRJpdnt0nEchtb1EY0YqJEYhmWwPHcWt1FlprRMLp0M0+yClX5XVt+CC5nA1wKLtVexdu1zSaqlOP+fAPxpi7vu+ikg4PhLp/joR3+Fz3zws2R6MpcA3wvSXleOu2NkB7/1mf9Eo9vi6mt2rOgUhzXAl1tEXcr8GaapXy6C92rB3ZXKaF6Jg/+ytlLfvHbMz2266PcL7aK162pe67lUyUvB3QWkKZfd9jLzeg2D5dp0SmBF2uT8z2tTG31/TYDkCleyevjV9ucuBTinFXjeg3C+3cUUn2uv7wr1f6skROdmSOCvHO/8iK8S8Siy/IrBnXglgpE/sZc3x7Zf9QB6vo/8/9W4r4C4yz0Y/HP0sJdOZO8CcBcyRV3O/MDHadn8/id+hau2jbH9pm0k8uuRlQSd2jyleotYMk8yYvBz9/9cSB0rafzGJz6JbTfYtGEj5aUlvvvP/4gQAQcP7eOjH/1FZkuLqHKEG26/nWZtnmLfIF0HzkzPcc2OTZRrbSJxlUAoqIpGp+3wlje/le9+759ZXpwhk8zQaPvUymUmJ04StwyGH38UoSjomsbpyVmm5hfpz2UZ7M0zu1Slf7BAu2nTKLdodBvIkkwmEaNUrqDIMqmYRbPVwfUDWi2XnmISRVLY+9IEw70pDEWiOJBj1+4DrB8eQVMgmgs9+3gOiwtVMpkkpYUlkgmLIIDp2RJ9xTx7Dpxmx7ZhVBVUI4KsyCyXypimge9LLC8toQoZSdGp1GqouszQcBFvRevNcVwUTaHT7oRkLkLQbjcwNQXHF+B6PPjkPt5w2w14TgsrmWRpcRkJn2QiwZe/9zhvvuNGookoXjcUeg9X14LpyRKBD2Pre2jU2+hRC0WR8IRADqBda2BYOrKsceLoaSKmRrZYxPPaOHYXQ4tQrbQxogaKCkuLixQHBkAEtGoN5meX6R8oEBCCcc9xQ2HubAIhy7z/h7v55bvHuH60wNxClaHhvhVCBTn0tnkejm3TqC1jJbL43TaaIiN0c4Wd0afdtFE1D12N4HgSrYVDKIlRBD4Tp+bJ5kJJgl/5+2f5mTvv5MiJCYrNF3nXT1+NFY3w0vEptm4f4dTxaXKZJM/vO0Yhk2SgmENWFA6+NMmN120MU7rsLkgKgegS+CpSN2CxMk2hp49a3aFRb1Gptlg/1s/ycpXT4/MMDWRIZUy6nYDxiTm2bxtjYmIawzAoFnO0u03iiRS1xRpLlQUy+QJyINi3/yRGRGf67DK33bid5coywyMZJk8vsrBU4/cfmeWu295M0tSxEhbxXJIfPPIUH/noz7PzoW9x13U5Dh58hptffz+bb34ztiOfu7cvfi4EAXi2y1vvu4+vvvVehBFGbSVPwZNXyJs8N5SRECqSouLj4XXbSJoJbhdJ0XDtbgjChYrwHJBkHnv8SV5z3dUoqozn+eiGjt91kKSAfRPj/M2p01xl6HxvfoFbs1luLxb5/P4DXJOIccx2aHcckmfnqfUV0HWNgFBzzHECZPk8A2jHsclGDCodG1mVkVYWVyGYFExMjrN+3TCdjs/+A7u4autWbk9YPFEq8X+/7hbwVWTFDyMmtocnVJr1GpOtGjFZ5wPf+CaSrhOLJfiND97BzmdeQuDxznvSvO6OIRBhepcgdP/KWh7bDYgm+qnXbIx4SN7RaXd56onDvOanf5N0RGZxcR6vG7BUXSBQJewGDOZT1KuTSLEeDCtL0vCYm/eoLp9h7KprqDs6arfLU48+Qt+GfkZ6+picmCSfL9JyBJ7TIhJRiURNqo0WiUSSdqvDxPg0mUSOQ0cPcfcb7yCZTrHnhef4vT/5A3p/JsXG0T4kIXjw4ecx9TZ33nFnWJeIgxeE5FLNyhKLDR/T0OnLp1Bknx88vocNm4eImlHils+Tu6d47Y3befDRvdx12xbK9WWyqTS2J7HvwAk2rstzYN84G7aOoKmCqKFiagoP/+AIvcUEmZTJUG+BStPn6d3HeP1rr6K0vEBUjzM+NUFfXx7bF+QSUY6fniSfyxKPRwmQOHlyinWjw0zNzuNUyoxtXs/uI1NsG+ulXm/x2OOHuPv1VxMzZCQlSq2+RDwapdECVfZptltU6l2G8jqO5/HS2TaBF7B1XS/goUgqp+fKmLqBrsBSvcPzz53gvjdfT8zQ+No3nuCq69Yzv1BmaLBAMRsnEAHCD5AllVKtjuN5DBZSyJKMs1LvabseslDwA4HtdAgCiEV0lut1FkpVuq5g80iebrtGId+DLWSkwOVyy+6XW9j/qDXfarszcxVe2n+M4dFeak2Hdf0pphdbRAydM7Ml1g9nMHSVhaUOlimRiUeZLS2Tz8YQksaLh6e4duswgd9BQtBqd3ADBcuArm0TM2JousaJyTPks0kCx6fe6qw4gGTyvQUswwgX2aupdqtXeplLuBy4uzj77tuf280/fv3L1KpVXvzacbK98fPtL2l7Kbhbu23f83v4wO++Z4UkQz63lvI8H1mWLhjrl5N8WGuvdk3ov4L9L7f2u6IJCd/3Xn27H3FMCJkz15q0Bmxddlvgc1lbC+5YBdfnAd3any/edu4QV2DIESuvyLX7n9u2wgJ97tzWnIuQLjzfwDv/sy/LF2yTOb8xWGWWXj2O8Fe6CJm3w2OH/eia9oq/mJ9E7n5MezWROyFJeF6YxoGsEEhhOsJqWuTKTlz85PK5sgdGwAVRutWfz9P3Suf6OLffakroSvu1bEY+AUHg4SPjBhrf/tJX6JTnGdiyGS/SS7fV5MXnn8X2FTK9oxzb9SBn50s8/fxe3v+hD/HUU0/ysV/9FUqlSbK9Q7zwzDMMrS9y3bUbuHr7Njq2oLJc4afufj1eIAgUC99TKPQWifXlOXXkOEulRbKpHDuf3sVgbwG7VeedH/oIhiIhdI2zszO0mws0620efvhxXnPLzfzSF7/GzarK4nKN5XqZdf1FrKhFIpXCx0FFol6pU23WmF6eotsUNNodGt0OpaUFdF2h7Tt0Og4xS8Pu2qTSUebnavTm02SyCY6fnkKTNVRFA01FIUC1Ini2gxW1eOHFo7QaNnpEwbIiHDoxyfrhQXoKKSQ/lA3wJahW62SScQLXQ9NA1VSS2SSqLMjmk8TjURASjmNTq3Z5fs8herI5gkCgqhKnJs6Qjht4LsgoOH7AcLGAoWt02x4PP7qbDRsK1GsdZCGzddMQkgROrcujuw4x3NeDJATdtk82lyGesFiulolacf75uy+wcWQARQrlBAIh6NoOtfoSPcUcVjzKoz98kWwiTiKdptOxmTkzz+zcHL35JG3bxpRVHNtB1VQiusmzuw+SiUVQNRHKEUgyH3hyPzsXy/y3f38nGwbzGLpGJB5F1bQwOlMpYRgWtu2gqBKmkUKRZSRVQdK0FS+agu9LqDh4rgS+gyYrzC/NkY7lCDwVWVb44Bd+QKSwnU2bxzi6+wf8+p0WQ4UEe/dPMjyQI51JMTk1i6LK5HpSjI70ksulmZlbZteecXZsHGF+rkwsGkFSFGrlCmYkiiqrHDxymkKuj3bLxzAER49NsmlskHa3haaG0e9CPkuz2SaRTSMLBU2RqFTabNzSQ73RIhJN0G7VOXbiLI4tmJiaZni4F0kR4IOmQGlxhpGhHPWGTa6QI5tNcd9rhjhaTWPFdb73ve9z4zWvpeu69OTyHD18gGLvMCmtii9ktOQAetJaSSdRLiEG8FzBp37jE3z+2h0EfovwMWXiSzKSFIDn4dlOWDcpyfiBj+85YWSt20JVdIS8WmRPSCqCRIDHYH8/mmkSeC7zSwv88mNPcO073s3vfOfbPDYzT9XucKrdxtQ0JmpN0ju288u/9At8decPSCRTlKtlmoaKamr87JuGmJ1t8tN3Zjg23uXjH92BrnSZmG5x7xv7KFdcfv6DI/Qko7w02eCet/Rz/FiNgbyNJBScTouALomowVXrs+ydXySdNPmnk+Mccip8+aVTVBIB2nqXcbVM340RDjbb7G3VGezLMtRn8tH3DnLPzxR4010p3vrGPoYHEyFhEiqKbiIkDUmO42KiW1Fcr4VhpfGcNrJiIKkwumGIB//5KK3ZU0RiDtFMDuH56J7Ormd2c3ZmASuWpWd0HeXyMl1XEMn2YKoOTgtkzSKqSfQM5onF0pQXl3E8lS9+5dv85n/6HMV8D089tYcbb9rOyVPP0lsYYv++cR743c9w041XccM1t7J/917yuRil6Xm+8+Aj3PCmHLphoSgmVjLChnXreWH3fqyYTLsj4R6rv68AACAASURBVAuPhAWu59KTyjB+doF8Nk0QSPQNZBGiSyoq0Ww2Ge3rQ5F1XAETk7OMDRQxFJ/9h8+QyiRx7CayrrCumA41Lv1QK7NQzBGPWRw6sUgyqaLKgpkzc6TSMZKxON964ghOxyYVaxOLJphbbtCbS1NbrrOwtEgiGkPIPjFDwdAMfCXK3OIyW4cytG2HUrmFokmg+OQySQwlQNNlOp2QUdfQFc4uVtg00ofXnGff3pMMjwzQXxzAVGBi+jS7D41z1fphntk3zqahPAounu8Sj0VwghZbNq8jm4wyUEwjSw6KqrDnyCQjvX3UbRvTUNlzcJzR/hydrk3HcYjoGvKKPPm+l8Y5/OIJBofyqLKM7XicPjZN70A/uUQC2/WxIsY5uva1q4PVyNuVQNzLR/GklbRI0FQDTXGIx6Jks1naLiTjETTJI2EFJKJRdE1DVyC6kn1iWSZC0ml1WiQiAqfbJRaNUG+2MM1Q+kZRfJzAChmifYdkMku1UeP4mQYjgz2kU3Hi0RTLC1OUSvNk8wU8z8UXMggZFZfgXETswmu63Npo7eddt3+YQk+e977vw7zxtjdcsu/LtSW46PhC0Nvfy+yRBSYrE/QPFNduekXnpnChpEGwNtf0os/lIk2vBAq+eg6GMPK1tmznx0kX9cR5QpVLeCLW9uGfT988n5K55hhrPuIcJWEolyOQwlz9FeR/cZ3aOXKcNZIGF4/12vENCF6WsVK6KPUz1LwKneSX1uMF585HrEo0rHx8cT4NU6yc+6oUUagEFNbfBtKF9+lPInf/hvZqInchw5tLEPhIckjHG/jhJD7ntRHSJR4LnxUPzBW+q1UvzgWei9WUhBXvghwEL+vtkVZAIYQvC98DxXP4o//jAaTWIj/7jnfjGmkWKw0ShsLpEye58TW3s/Ohx4mZXWptl6mpeX71Y7/KwuIi//kzn+GTn/wkmUyWBx54AM/tkoqr3Hvf/XziP3yW/+cv/zC8zSSZ/vXriJkRGrUGZyuL9BSK+EGAIsvMTJ5hamKcnkKBgeERzkyeJp5OIXsehqJQqdRYXq7geg6f/t0/4OPxCLoEw7399PcXQo+zLMAJmRRTSZO9x44iSxr5dJJas0E8arFUrrJxeIg9R08RMVQkITM22I+kwlP7j3PdpnU0mw10TQEhiMejSEKg6yqBYSE8F2QVt+MwceoMhXwK09Kx7S6mqdNut3hyz3Huvv169rx4lBuv20ogi1Bw2/VDL7+i0Gk30DUVoah4rhcKCLuCRrmKZoqQsUmoqIrGzkf2cOstW+naTeLJGPV6k5gVRrM6jkvUiOKJgFa9yd5jJ7j9hu2cGZ8jFo0haRKRmMkLuw8z1JPn8ReOkk5EsCydm2/YHqaJCh9Jkum2HVqNDqlMjG6ng2aodLsOsqrQadn4XRc9IhMx9ZBAIBAokozjuGGKhyzTaXRQFBXN1Ln/+9/nm//5XQRCRlFNpiamWLduiE67jWGqdNodZEVG0RU6zS6GqeP6HsulZdKZJEISyCIkwHAcl2q1RiYTR8gazXqVeDJFt+Ow5/nTfOyrj/G2O36af9r5MB+7Pcsd143R05Pn4Z27uem69cSTGgcOnCAat3jp+DwbRnpodzvIkuDq7Zt58pn93HDtehqtBp7vYUUNYgmLmTMVMrkEsipYnlui0WyTiEdRZJlIVKfdcmm3HBRNcPDQFLfcuI2ndx3g9tt34NoOu/e+xNxcnW3b8lhmjGJ/gWqlQrXSIWYZTJ8tMTLSg6wozEwvoCk6U7OzbN4wgOMK5ueXyWWSTJ5Z5IFHl/jYB/8dxUKB737ne2zcugNTF9xy61Yajkzt9EOkEwaJniFym+9BqDpC+EiBH0b9V14eu575IQNPvwB4REyTdtdD0UxiqTSeALvdDiNafkDghR5OSQJfqOC5yCsRMgi9pZ12FyMSAeHj2j4fevBBvv6l/8473/N+vvhXb8dzHQJsHLdF1Mqiqgq1agVFkdGjsZBa3XcJPJt2s4thGkgKdJpddENBSC6Nagc/INzX84gm48iahet6BCJAczsEnSXKtUWazRaZlALByjNWlpEVLdQqckKJB93I4NgNJCWO4zbDe1AN064d28YwTbzAx3Xd8F4MfDzfD1OmdZ1Op42QTDTNot1xiKaLuK6DpgpAxrZDMIysEPjw4Pde5Nod95LObUCN5VEElJfmKM2XyWSzVKoL5HI9PPfc81x7zTUohsH8mXFy2QLf+f7jPPfEd/ntzz6ArvfysV/5RbK5FO9693twbZnf/S+/hW17fPzjH+f667bw5a98mx3X3MSf/vkf8a57buetb/85FspVBvpG+MevfY3Scon03U0836fWtBH4VGpL9GaL2E5AJqlQKpVxPIe+niKnpueIWgYxK8LE2SVG+/tRpADPcymVa5SrDTaNDiDkgAPHZkgnLcqVRYQUoz+fZHp2ku0bRig3HQLhY+kaC+UGM2cW6XZtrrtmAwouuqYjhESrY+N6PpOlJjHdQxUOiWQviqzx/R++yK03rMf3WhiqzmNPn+KO2zdzemKaTWND+EGA3e3SdR1i0TiPPXWY9RtHOLtQJh8N2LJxlIVyg4Sp4jg+R09Ps33DAL5XJx7P0XZAwsNxHX74wxcolWXuuHPrCmtmk6nZJv35FF3XpZCM8tgLR7jh6jGanQ77957m9a+7hsMTZ4jp4ZI+k4xQrjXpyWZAgKGq+IFPpbJIPJ6h2XZpdldlkUJZF7tVpt72GerN4rjdEFhFIgT4F+mCvTJwB5eJ4oUUoYgAWu0O7WYdIck89P0D3HLbBqpNm1MHJ3jtnVuJRS1anTb4DgvlJoMrKbZet00qGQ2ZtVGx7TaB57JQadGTy6LKXXzfQtZgcXmJfCrLzMIy+XQUxw84dOwMvT29pOI6MQ3+x+P7uenGjeSzGbwgwBMBcnD5879sauYae//2TwJw8Nsv4V9cA3YluCREuJBfaRKCjPP2e1/+Pb70lb87d04Xj+/lwd3FYOcK39dlIk3/KpG7FfPWtPtxsszWHkdILw8TpYujZBeBuwv25fy2iyNpgbg0cndu3zVjePFYX2nbBX1fFGE8F50T0iWRu9XJEvgBFyfdro1Url775eaMd9HX95PI3b+hvaqauyDA973w5udCsLY20HyxvZJvc7XV2ofIefpeca6Py1G4XtyrQOD5Eod3PUPj7Ek2blhP37qN1Bouhd4i8zMzjA6t40tf/Tr79+xnplTi8aeew2222bptG7FkgtvvvIM//uyn2f3Ew3z4fe/gbW97L+vXjfDkM89y3c13sGPHZlKZBIulWXJDI0yNT9KqN+kt9uF44RjJskxCl4knUiRTaRamJ4jGLIxIhH279rLrmd2Mj58kHrf467/8b/TE4xSbTUb6eli3boSl5SonJmZIxqJUKzUc1+bo+GkK6RgLy20SMY1mt4NtO8xXGti2je+7JOImU3OL9KRTPLf/BJqm0JNOkrCiNDsOhqFTr9ap1esoQkKzokgrHqDA90gmomi6giQJ9BVRdSHLjA0NsrxUpa83S7fbRTM0giBgamKWZDKGkAXddgdZVlithg98mJ6e46ndRxgdymMaEb764FOM9fcyOpYD4OnnXmJoII+uaWH6GQHIHkYkpG1WDZPBvgLtZhtZUTlzdp75UpliIYcmy/T251g/0stQXw9Hjk8zWCwwO7OIFVNDdicCYonouYdOp2UjIaHp4aKrXmniCY+IaeAHAlnVODN1lvHJs/T15JFkhampWT6y5yAf/vAtvOv2dXQ7YJgGqiKHTJmOszJXAUng2A5CN1EIQoeFomDpFuErUcEjwPV8BNButQlcF1WTWV4q06o0eNNvf4ns0A2cLc3wqdcZvGlbhqSpk89HmJ2bZ7A/jRXRkFWNXCZOqVTnxus2kUnHcRyHbDaB6/msGyly/NQU6VQWP5CpVbvE4ynsTodOq4sVtdBVCdNQMQwdUDEsE4AfPnOEYm+SYm+OaqXO4lIFRQ5IxCN0Ol1qtSZXbx1ClgyazTpWNIqqyrSaLcqVNtGoiWnqLC5V6LQ8No31sFCq0tdfpNVsIMshs+u7b+3lgS89RXV+gXvufRPHTx7nkUd3ks2l+ZM/+xve/IbXsfuFZ9Bkj1huGNVKgu+vFIuHTp2u4/CN3/4cO/r7kPUItu2iRyxsx8M0DQi8UOtOkvFcD1lWUFWFTqeNIoEsKdhOKDkhK0pY/K2q1Ko1NNlHee872bt7H5s2zPDh912D77o899xRJicX2bx1PYHfxfd9rFiCgPDex3NCunm3i25aCEmjWa2iaiGBg+e6qEoEM2KhqjqqYWJ3nVB83ZVRXYfq4n7azUkWFgJmZ1vkCwWQoshGBA8D1YgTCB2hClBMvMDAl2RkLUrX6aIYUbxAIGsmyBqOD6oUEgUpskbb9fBRUYwIri8RECeQoqhmCiNiIskRVEXBc2ya9RpGNIEseUj46JrCpk39PPpUBVn2kTQNRfGZO3uWL37xi7z1rW8B4RIxYwwPDxEI+Pgv/zrlSpPBwSKvfe313PW616MbETpd+N9/7/f44Ifew8b1Q8xOL3DzLa/h05/+BOPjUzz4nR/w9vvvR1EE97/jXoYHN+FJNn2D/Si+Qi6bYPO2Mabck9iOh2UaxCMRdM0kHo2y9+gp8pk4pq5zenIeK2qSSSaIR1Q6dodUIsF8aZbpuRKFbALHs0lGLSZmS0RMnaOHJwlw2bGpHy+QMRSJnlyEUrlGIZ3DVEKm0ud3n6Qb6Fy/fSNHjp0mnbI4M1vCMHQmZxY4c3aZbC5Fq1YmlVR48eBpRocLJFIK+UQCK6Ixu9RgudLm9PEpRtb1kknEOXRiglq9zUBvGiMiM9SfIRHRWS5XGBvKoSgaEUND4LFQbrBcaTI1NcP6wSS1VpdGo0nXjRKLGPT2pxnoN5hdqLJuoBdBwK694+imTDyqM79U46oNw6iygmUaxOIWQhYUc0mS0QipeIyO3WVuoUwsahG3TJodG0lItNo2ri8xNb/M408cY/umfr774B6WqjW2bxhB1wz2HZ8hn83RtVvhvSnO19Wtrhd+FJvjywGgALEi5h3gOS2SsRgt22Pzpn7a7QbHTy1SGMgx2Ftgrlwnn7Rot5tEozFanfA7D/BptDtIUghaO12P5fIyiiIRjVhMnjlDT7aA49m4wYq8DtB1bAzN4MhLZ5k8fZatm4epNRps2zzKvr3H6Lptcuk4njgv4P5qI1NXF27h/vvfw51X33lpndf5QbjoD4QvpmDN3y5qe9v22/n3v/WrvPOdb7/AwX45C+vCQL6k5vnSfVeB4iqUXFtndzlb5Uk4f9rn210yVmEY6rLs7WvH5seJ3F0wxishNHHRscNMsjXnuzblUQhYI/weRsH8c3V05yJn5y5pJXNtTa3defWMtZHXC8/zglq6S4bpSvWq0rm5cEnN3Yp5nockLkzLXB0XifOnvzrFLrffqr2ayN1PwN2Paa+WUMU/Vyx5cYHlj2eXm1aXA3dX2v/cuUgq5UqDb/7D35IQLa664bWMn5nF60osLC9z8MA+1g2PoGkRvvaP/8Th06cZGF0HrTb33XcfLx7YS3Ggn3VjV3HNddfwhb/7ewqJFI3qIpu2beH6m27F9du0mw1MTSZWGCJqRGnXWjz00E62bN1Ms17HUDVMyadpu5jROIVklIe//zCaZpKwEly95Vp2PvIwD3//W7SaXYYKWe4Z7GNgsIikSHQ6XRrNDoHro+kC13UwVBlZAlO1yOfjmKrBXKnCNVvWs1itsL6/QDadwHd9pmYXMRUTTVPpyabZvf8ks8sNhvvyNKpVdENFURWMWCzUAAp82vUGx06exrJ0VFVFCIlmvY2kabRqHZ588TDrx4pEYiaVpQp2u0siEUfRZBzXxjItPM8PqdlXNMKi0QjpSIR0PoPrw/aNI6F0gqzhejajY2meff4EQwM9fO/xXQz1ZsFWqZVLBL6GYuoIP5RliCZi5PNp8pk0jWqTVD6LpAokFWRVojcXelSj0Qhd26bTsTEjOu1WC0mWsbsOhhlhdnIeRVYRkszeQ6fZvnUMx3HDF4+QUBWZ3nwW4Xtc9zdf5nO//U7esDWHogQg6dSqNp1OG9NUQYTCnrIi0bVdFFVDUVUCSaZSKtFud5AUhcBvh3IEgQeyRuD7uI5DPB6n0vRAM/jU3+/mjvv/Iw/9cCf/5f4e7hqz0FSFUqlGx3bodnxiVpRsNsdzu06QTkUJvIBkPM5SuUKn2yUWjxBLWGi6jOd5JJNxFFXie4/s5oZrx3jkib3ETCUkUonFkCVwfRfP9ZmbrZPMJKlUKxSyCVzfI5mIc/bsEtdsH2VmdhHTVCj2FsB1kBWBacZZrlYRhMy4qirI57IcOjbB6Egv7VabarnJQH8agoDSYoV0Msbs3DKpZAxNU1iam2Z8wWV4qJd7f/Ze7rjtTkpzJT760V/joW99kzvuuBkjotHxfZRYHk3VkVZeRpKqsvxnf871/UOY0ShKJIEATCuKEbFoNFoETgNF1sCTkFUJEQg830WSBV6nEUbApACBhN21kZUQpH5y13N8/aXj3HWrw9veOkQ8aaJqChI+fQNpxjYM4XkddMOnXmvQbjlIqoqqSEi+g207ELgEhOm3sbiJQMZzfZ784QscOHCGgwfG2bZjM+VKnaef2M/gSBZTMekuPoIkm+jWIIEsWC636R3IougmkpHCR0XTY6iqAUoMRUui6nk0M4GqxtBNC0VNoRspJDmKJEUxrSyBbGLGc3jCIBbrQTfTQATDylCv2Rw4OM7QyAiy5NLtOjzy/ccp9qSIJ+L4qLjdBn5gg+fRteHEySO0yhnWjW1FeDLZtEY8GufkiWNs2bQOxw+QpIBjx45yy0238cDvfJ6zc1Ps2DHG4QPTvO997+H9H/gAO665ic9//nO87W1vZuPoVn7rtz7HW996N7/wi/+Om266gz/7r39MuTbPa193G3e/8b187Nd/gXqlzNOPPMHouiKJlMUDv/bXXHXXCLbn0mjZPLH7DAM9cYqFGC8cmCASj9BbyGIZKj4CSbi0O21M08JzPGxbolRuEbcsZOGQS2XQVZVatUpPPk4iqqEKhbbj4rgddE2j2XbotCqoisLoUB8T0zOoiktfVsVDIZ9OUK41Obz3FIMjfUQtk+mJScZGhxgeGsZ2AlIxC1W41Ls2uXSe4f4MmVycYi5Do22TSUaJRSLouoKqRlmq2kycLbN/zzTbNmfRdYNqo4EvfDTNpCefZmy0gKKZqEYMVTWZm5vi2MQsmq5x9PAc1189yHce2cfG0QH6+jL0ZiwqtSqWGeFbD+9lcCjLU7uOkE1HyKWiuL7PC/tPMtCXR0iC3nwOVZYo15r4gc9yrUkkEmXXoUlc3+fma8eYLS1z3dWj1OsN+notOt0Wm0Z6KDfr1OstMqnEZYkuXi1V//mNIHw4eHyCTrOKoun4gUCRJVQ5YGigj4gZ4bHnjnL4yCy5nEbS0tCNCBDWm0WjUVqdDuoKY6EQCpLwyaZiIEKW1GrTQ9Ekvv3wQfp74ywtL9NbyPPc3lMMDfVw7fb+ME1V8jgyucC6kQKmpjBbWiaZSL7sQvpK9sifHuS+e96GMZ4ilYu/PLi73B9+BLgDuHPHnXz+C7/P69949xXB3SoByCsBd2FX58Hdj7rqIAguJEQR59td/L37vv+ykcV/FXC3Ymv7ElwO3K1BO5c5xoWSBhcf+9JAxysCd+eu8lJwd8X7ZU3E7+XmpO8HLwvuxJpruFw3PwF3/z/avwTchcxKF9q/BrjzfR9ZiPP1dWujepfdP6SkDRzBi498g3ZzkdvvfiNHT86ycfuN5PJpXnzyMRLxCN998H8gCx2heHzwHe/hrW+5h8GRUR58+BF+8NBD7HzwW0jdJZr1EpuGx9h4zTa0aJqvfuUbvOb6HWTzeRTFIJ3vo9tuYEZMAhm2XrUNlABdCpicmubsbIluu0OjWqPe8mksN2nVW3zrn7/J5JnT/OCRnRRyeTaM9nP/e9/Ph//2i/yUFaXb9XjuwHFGizmKhRTz84vgO8wuVwgCjbHhHoQQzMzNk4yZqJJAk2UUVeHM3BJDA0Xa3S6u12ZkaICZ+SU2re9jbKSPerNJu9sh19dDfbFOIh1FCiTcwMMwDXKZLKokg5BQFIVGrYkZMdEMhXTcIJFKIEkSmqag6RqqJqNpGjIC2w9QDYlO0+Ohp59jpFCg3WpjxQwCJ+Dw0dMkYxFUVcFzHXY+vYehfA8DxTzffvR53nznjdTqbVKFDJFoAlkJ2Qgb9QaGqSMLwcOPvcjM2RLrRoroBqG4tKKu0EtLqIqKIktYcQvf8VA1DcMwwvQyRcK1XXRTpdluoWmCbMbCtEw8xw+18NyQwepTB/b/T/beNEqys7zz/L3LXWOPyMg9KzNrUam07wgkDAiQ2EGAWY0Zr2OPt27sbrwDM2dOd9s9025sTo9tbDDu9hjceMyOkIQEktCGVKoqiVLtlVVZuW+x3v3e+XCzSlmlkgDbh0+858TJPBE37o27RTz/9/kvvPOnbuEX33wzqQC3UEBKgwce2sf09CilSpF+18spb1GE1hIhFUIKvH4XxzBJ0oRypUyv00dpC8d16XUDHNeGJKLX6bIwv8qHPv0gf33XPnpewHt3nuJ9t25jbnaeasXlsX1HeMnNl1C0NcOjTWzXRCuIfI9C0WV2bikvXizFyOgQUmgOHDhBtVpmaWmVgmNz+Pgprr18mlOnligXDQbqOXATIuLZo2eY2DaGtk3qtQJpluKYKaYpMQ1ns0Mbs3//Saq1MoPNJseOz7J9xySLyxu0Om2SKKZereG4Lqadu3OmJDi2QaVSoFx2WVpdQymD4ydWGB6u4diabs8nCFMuHa3z1SMdrrn65XziEx8niFJuuuWV/MHv/zZveNvrEaINwQpJ2iUNMhrj04RZrgX4ybe9k7fvvoI08cmUgTI0pmkQeL08VNtUxKlEGpq+18cwTDLSvPtsmihdoLWxjlso0t1Yx3VtHjt5jPC1t/OO12d88P03UCxbkOUFTRqnCNMBJIaWKMMijgyK5Xqe+yUNlBL4QYTlupiGy/6nDjE3u8jQyCBRFCKExnFsbnrZlVx13TRJ4lEsVtk+YdFdmyGNV1BOGWFWsQpDKN1kbHIUbVYwbAdllDGtAlI7ZNJCGyZSuUgpiKKINIuQyqTb7WAYNkIKhIQ0S3IKKKC1SRBFCKUQUpFlAsd1mJgYJstCUAYkJtPbR0lFSH/jNGQmbnGQIE4wzAKrS+tcf8MuPvzRz7Bn1xRJHFJt1LANi+bwOJ0oo+hkJHFMtVLnzW+7k+888BW2jY+zuBRzxRWXce3VN/CR3/9t/pef/gBKCKamdnHP3Q+wc9cY4xPD3P76N3P1TVfwxEP7ef+73sTo9C5+7hfeycb6Kt/4+te47TUvB2Hy15/8H7z3HXdyUhyl53mUXQstu7i2hW0UGGnWEMBap5OD+STBj0JMo0IURxTcAgXXwLUUBw4cxXRdykWLntdlZKjK0ROnKZRcbEuw3vV4/JHjTE+OUii4rPZTGrUSq+01psaGqZbKWKZNueySZgLTtBiZGKLZcHEMxUCzQquzQNF1iZOQ9fY6Dz96iF07JghjH1MXuOve7zI9Ncih46eZHB9gpeXl2XpCcvDJfYxNjvCSq0b47r4TTIwPUHAcFBl9P6ToGIgsJswUWqQYSlNyFbVaBdO02TXdoOslXDI1hGnCM0fn2bf/BLt3bqNacrnuijEKDjTqNUYGBugHMd/45pNcecV2BJLVjQ6NsoMfhNz19b1o22JquEmyeX3tmGhScW1s2+DozBx7do6TpBlFx85NFjJFq9NhsFE557Z3tmO3tbC/6CN/9aI6rty0WeJaFgXHoB9GVIsOIk1AawqWomhJRocqXLK9wVCtxEqri2MZaG3Q6oV0vRaLKyHFwgBrnZP0fEmcarRWlBxFIvLfkyiImBorUauUcQoOvf4Glmky1KihpMQ0FB0v5tTsCpPj2yiVy5imyZmZ05SqpXMAKiPd1DZtHoQt+5WcZdQg6B+1uOeue3nlDbduHqt08zcvyyl12abhvDirOpTn0TDZ+niB4bYKXHHbnh9I73hhzuh5dv8XTMyfO2tbzuOFWzib7nBhnXcO7EhFSnZuq2ef30rdPNsZPBt/cLYujZP0RQHrC42t4ERtGv8JxLlohGzLcvmDTWfJLbq6LI8yUGIz2iAT506BEHmuqJBi8zxvPSBiE6tdRGd3wTjPnfOC17c6Zj5fS5lfL1v162ddNskUZAIpFEKm55YV4rnggzzg4Kx+dDP2Q76wFlH9OArhRzd+GHCXXKT9fXb8S8HdRW/4DJR8jkmecf7NvnWkaS4SjaOYb33xXsqlLqVSjdHx61nfWGZgZIzV5SUee/hRPvU3/51Gc5CXv+IW3nrn2/nuow/R6/hcffUNpEmEZaZcdc2VXHfdZdz9la/yvg/8HA88+ig3v+RWfuLlr+Iv/+ovueEl17OyuvLcl5eEUzNn+N3f+wPufMubiBP41j13c+N11zFz6jTdjTaNeoOg1+Mv/uLPIcs4evggrmPznve+h1/79d/gP/3pXzAxMcmrShZZBuNDDQI/oNf1WFlfo+d12DkxynKnRcmyOHRihqmxIcqlEnNLK/R9n0a1ghdGWJZJuVxiZu4MJbtIqehQrZWIo4THDhzmykumCVII+z1KtSKrC+s4lQIgMExNlMREYUS/16dQtLEcmzgOKFVchMiBmRKK0ItRWpGQ5lEPhoHv9+l3Qi7dPsp9Dz3N1LZhpBK4hSLDQwNILVBKEYYBV+yezvWRhuCyneN5blyW4Tjmpt5NQpxi2xaWZYGA0UadwWqFbq/H3NIyBcfGMA28vkcYJJvhwqBMgwyIw4gkigiCENuyaLV6HDyaO5wVSg6Fgg1CEvkhWZrxvq99i3d98OW8UEYEUwAAIABJREFU9toded7MpkNir9fHtExGRwbQRu66Z6gcSGitCP0Qy3HJyKkMGSm24xDHCbZt0vc8pFRobbG8OI9MEzrdPp/Z2+ORfU/z9d97Oe+4cQDPizh0ZJbdl0yysLjKyMAg5VoJx3FIhcR2bA7sP4qUgtGJQQytmZlZZGioxqOPH6RRLdLueDSbdWxL0+30qVXLVKolqpUCzWaDOMkolZzc7CCMEaQEfX8zWFiQJTGraxs0mzVm5xcZHxshjROmpsbw+j5zC+uMjg2ipWB0qEGt5rKx4REFMb4XILXEMgxMy0IbBqsrGwwO1ul7IUurHVrtDgXX5ZlnzzA9OUSr1eWJ2R633/4WvKDN9PQuluZXeeMdL+Pq62/hyUe/xXhd0eks4gcOI5OXIJC8/c538ndvvZMkikhTjyQB2ymQJRFpHJEBluMipcydJ8kz7aQQhIGPFHk8hRT5j6tpG7z7n77IQ3OL/NovjlAqFxHSIIujHFBHYQ6UshSpJL3WBqZpI5XKAW2ScvCZowyNDGCYNkIo4jilWi0yOT2OlAqhUgzTwnFt/F4fKTPioEevvUTqr2K7AsMpo/Qk2qmRCQ0iQ2kLyy6RZimmWSBNo5xygyQMPdJUoLUBIkXrPGpDawMhNIGXa0YNw8Tv9/KORpqzHEAglco7mYI8u00bRHGIY2oQIUnqo4wadqlMnCUoqdhY3aA51KTX7fBT77meweGXYZiSft+jVq6wuLhMZWCA5aWjlEoVlDB5/0+/jTDoYhllpnfuYr3XY3J8gu7aKaxig0984k/Zu/cpvnnfA7Q6a2zfvo3x4XGiuM9n//7/4/VvvI0sMRkbGsa1Clx15TV8+q/+nNe++nU8ve9pbn7JDfz9336e4T11TC2puYokU7S9iKKtMbWgXHARIo8u+MoXnySWCdWSQyY0fb+DlglJEjM+MkIQxjiWwdxKj6t276bnBwgB5WIRu2Tz2OPH2b1rgmeOzNKoFnMwc3Ke1bU1Bgcq+GGMY1koKbBNzYHDJ9Basb6+TrVaxZAWSSLQ2mR0pIwUijgJ6Xgx0lQ0qiWa9RJaW1iGxbHTizRrVZoNG8uyKFqa5uAABw4eo1atsLrRo1Eps7SxwcZGm0qpjJIazw9Is4SjpxeYHhsijeHM6joDJYu1VhvHsRkermEYiiTJOHbqNJVyiSOnVyi5Lksbmw7Iw3Ucw6DoWJxZXUdrkz2XjvOdh5/Fy1KOHZ9jelsTP/RxbYs4STBNhWUaFGyNVBm2aWEog3a/S71a3gLYfsCxpQC4EPidNVQ5vbiGSCOUYeBaNhsdP6cSKollmqRJhqE1Qkoc2yZLY/xIYFkuZGWGGoIkyyi6TRaWNmh1PEabFTpBhOsUKDgGgphKqYQX+ERxRLNcxLI0GWCYmiSJCKKIUrHAA48dIzMlQRRgJzFrPZ96uYSUzzXUznWhznW5MpTKaYdaSj54+y9x9+fv5vqrbiIlI4oSlKFBSaIUhNLnzOeUYZ7zQ9g8UM+vuTgfB2QZNIYH+Mw/fYZbbn3pRQ/92cJfKQUXiTI4Vx8+r7P0HL3y7LJbIy6SNHtRfV3ePcpXe2E28nnbueC5rUZ9P7w5ywt1APM9uDAe4LzPsYV6eeG2t2oaL0Y3PReh8fyD+MLbexFa5nn7k138sfW15za3xUnzQo3fln3KLtBTXpyyuTkhoH/cufuRjR8G3L3YbM6/VoDl1i2c5R3/IASG/MLMwec9//hpZGowveMyZhYWadYrrHf6/Lvf/E2GR4Yplht85KMfpVRz+MYX7+YlL7uOPVffyJFD3yNOuqwsLzPUmGD60ssYGRzBqJTYvmMbvh+wurrC7kt3EkYx5VKJXr9P3+uxsrLK6Ogok5NTPPbwg4xNTBP2u/R7PdobbT75l5/kwQceZGCgyOlTJzhx8ij/5rd+g+tuvIGXv/qVzCwu8rrbX8cdt72Sd//Zn/OGRgPIOLkwR6vXQhmCPTsmafUDyoUyx07OsHN8hChJWdtoUSuXMbTmzPIyCoFlKsolh3qlxPpGH8syOHD8GFOjwzTrZaTMcAoOpkjJDEW1NrCZX6iAFGlayFRgGAZOwcH3fZQy8qIRQZJGSKG479v7WV5bZ3JqhHarR7fl4xYdZGZy78N7uf0V16K1RCnJylKHft+jXC2SkhDHEXGS8Pjew4xPNDEtAykESRRhKMXGehulJIbWefEZx6RJrgDef+g44yMNxsZGsCyL2dOLWGYOitMk5fjMGQaadUzTQElBp9Wm6JZYWlqjOdRgfGwwz7Qz89y9KAw5urzCxJsu412vuQohBYahydIYZeZZUtrIH0pCr9dBawNtGrmpjIQwCjEMie+FuKYNhJCy6cgYU3BLJHFAmiYkUcw7/sOXuO/Zdf7j24d4xw2jKJVgGgZBlDExNkgURriuzenT8zQHKywsrFAsFlhfbeHYBsNjAxw9fIqhoSZK50WTVoL5+XXq1RK2YxKEPguLGwR+zLETs4yPNojDjF6vSyYSGs1BCkWbx757iB2To8RpglIZnXaPwYEBMkSuuRGCSrVIGAR0ej0u2TXB6tIqq6sbhGFIqV6BLEGg2f/0UYaHShw5MsvYcINWt0cQhKyudZmYGME0FVGY8PTheRxHsXP7CN2ux3teMc6H/vQLXHHpFXzqk3/FK3/iFv7n3/0t//DlB7jpmsuYP7aX9dUZRieuozF2KW95y5186jWvJvDa9Hob2LZNGEbYVg6kTctEaJ0HqcZxDtSVzEGNyjWXYRSjlCSNE5Q2+LcPP0YchXzuM+9GaSPPdEKQpRF+r4VUmsAPWFteIg09sjjAshyETCDNAWCzWQUhkFJsBs8KnIJFkkQo7SCVREqNYRoYbgmlIAtbGOkaYWZgFkYw3GGicLPsk2AaGrVJkxY6I0vB91oonc9TS2GilCZNA8Kwh1KaIAjQhqbb9pg/s0i1WgahNoPSfZTMXV+FSIlCP3dqNS1SAWmcsjC7hCEXCf0+htHAKpSRIiYJfeJE4rouURTgFm06rS4/9XN/xNve9jqq9SKnThxncvs2UplSLzVYW1nHckyiOEHEmo997P/kjW95A0om/K8//yv87M+8BykLKEPSbrX43d/5Qz7zd5+iXC7w1S9+ldvveBVr63127d7Oh37tw0xPDlGtl5BGxstuvYUozqg1m8QkfP2L3+LyV47R6fdptTa49/5nufzK3XT6PRQRpmHhBZtgZ95jzyWDfO/Z4xSKJSDG1AbPHJyn3qiSZClnFpYZbJTp9GNc2+R7h08wOjyMlHDVnmmS1KNULOCFMabSLCy1mBofwHFcbNNgcW0DxzJIk5iBWh5i3qiUiBD0ez6OaRKn+Qz/WjtCKSgVDCzLIohg74HjNGoOYZQy3CijTANSD2UWiWPB408d4pLtQ1RKZUjhsX1HqFerxJFC6QSlFJ7XQ2YGtXKB++5/Ase1mBodot3tcPDYKpdfMoShBZWiTZIm1CoutmlTL1fwQ5+ya1EpFWh7EUeOnaJQtGlWK+w/MkejWuTZQ7Osrvm84ZVXM1B1aPW6+GGKELC4sp5PfsU+xU1d85mVFu12h+HB+g8P7raO5/E5FUEYE4QJWtvsfeYktmshpaTsmGz0vE2b/7xieejxQ5w4tcLU5DBKGjx96DTr6+vUK5qSU8QLA8oFzbaRZp7nF/kkSUi/t0GvtUqpPEgQhfhehGkXKTgOrU4XJSDOBGkqOXh0HmlKhqpFYj/k4ceOMjpSI4giCo79POC1tcslyVBZyn2feIre4QPsHriW9eUFYq/H2txxVs6coNva4PAzBzBEhm2Y+SR5ekFG8AuAu61Dbjb1djV30dhZv2in62wJKKV8XrzC2c98sZVfjJZ5IQh7USqufK5PeDF/hhcaL7S9H3S8GL0zydIXNFk5j3p54Tq3dNAuVlKnaYq6CDvuRcHdi9Ay/7nj+4G7c+MFwN35lM1NwPdjcPejG/9ccHe2Rb219f2vMcQWQe3ZTl5KLt69aMeO/GYQOiMMNMrvU0jWmb7iBtxSnX1PPUkQ9bG0YGxkkPvue5JTs3O8+73vBmGw6+rLuOur97DnmstoDG/n5KkZ7vral9i5fZqxsZ08+ui32HX51djFQazEJ4oimtNXYDuaXq+HocApV3DsAiozePLxpxguKJ7e+zBSuDz4wIPUKw12Tk2zcOY4p2dPcfn2UV77mlspOiMEfsrU1E6+851HWZw5iibiG/fexxtHB1FZhpFCFAVsHx7GsDRhks/Kh2GPOAkI44T1Vh8/jKiVcypQEPgUXIcgjJhbWCdMQ0QmqZglzqwvMjE6jsg0IEj8iF57Gas8kBuNhQF+u4WhXXzf59TsPCXXAqWR0jhnn3vXvU+wa2qMnZfklMo0TjENg7nZJarVCl998BHe+OqbSIIEy7A5ePAo9bpDp9XbLKTzs6mEplYs4Dg2GRndbo80kSyvrDE41MDUJnEacfjwSZRQFBpVlFZMTDQxHU2v24MM7nn4AJdfMsUX7nmM9VaLay/bgWHkcmdBbo6R6QRDG/hBH9MCz/MwlEageP9DT/IrP/9ypJK0WhtoNItzi5TrJYIwQGUJWSoQ0gShsN0CSuXR7GEUYWgbpXK6n6kz4jAE0yLs9XEcizhLWF1q45rw5ceP8L9/9hE+879dy+X1gMFmgXarg1usEUaSJ546iG1K5hdWaQ5UKRQ0blGysbZEGAqUjDk1u8r4+DhZFqGVQCtFlCka9QqKjIJt0/M6FFwDJRXDIxYjQw1mz6xi2QaO41CpVDj0vaO541ujikCzvtHi5IlVHNPF1A7PHjrFYLOO1+0AIZZjs768gmNbBHHA6nqLwWYNx3I5cvQormuybdswYRRRKloUKy5KGrRaHXZuHyXwPZ5+doYrLpuiVDSRmcTzAyQpx44vsX9V8uY3vJ0P/PQHaHf7CHOUJx+5nyf3HuSpmSPsurrJzdf/Ep3Vhzl6/2Pc0GygtMa0HJRVwnI0aRzl2VtRTJZJBHk2FyLv7Bva3KRCZZBmSKGZ3Vjk3z/8MD/7/l381oduQyqJkPn59brLmCojExaGaaAMi0KpQRYHlKoNkjggjPMp+Cjok0Yd4ihhY3WJKGwhSciSGIkgjtaI/R5aQhZBb/0UUW+Z3toZlEyxCtsxSoNkIg9XlyqnRkdRiBaQJjGSnJ5kWhUgJE1DpNRkIiNJUkxl5yHlKncwNLRioFnPnWK1kU9caM3K4jKGLSAOAIFSNlEcolXK/OwpzHgBrCql+ghHDx6jUq8A+WdxbYvW2hqSDC0UhmVzx21D9PqTmE6BTBpIpYmCENcq4JYtwtREGA0qJZdrrtuDckxmDp5mbW2FG19yEx/56Md473vfwWtf+xqyxKFsa9717rfxE695KT1P83t/+GH+7W/9FlM7LuWaa3bQaFQxpGJ9DVbbR7n/G08yWJvkphu28xf3f5mR4RpB5DM1NUClYGJaFtIQxFGGYZpkSZ+JsTFKhRTPixgaGsExFTOn5kmCiFqzhmFoNlp9hgerGFpjGIparUScZNi2iRd0kVLihymzCyuYpmJ8ZJBKsYgXeJDEuIUiWkm0gDBTPH1ohnLRxDCKFNwiy50uSilsU+I6Do5tIaRFxbEwdMa2iSZKmBgmZElMmoTYjsV6x+Pr3z7IrTdtxy2UECJBSoPxkUEsE4KwS7Fg41hlpMhYaS8zt9zn6iumKBYKdPyQmltg/+EzTI9VOD3fAmXiFk08zwMS5lfWODm7wlizjqkFBUtTLutchpBlOCrCUIKZ2VWuuW4XmUxZW19no9XhyX1zTE81GW7kRktlp5JP2IoMISK6HZ/hweY/o0jIu1pna4SzT2ZZRppG9HoeQRBy8swqa2eWufrKCWyTXPuuBYYukSQJrq0olR0mJ4bxw4AoEQwUUsbHhknJb9AkiXFdTRxnKJmRyowkTXC0xDINojRGmw4D5TJrPR9LJfh+l0hY+aQNkqefnuGl11+KkgLHsdh1yQh9z6dRNlHKQKhc0wcxAgstYtJUEKcZy7OnmZs5zcm7j3DbzQ3mTwi0lKwtzpAlAZZhEfRauBaUtODwUw/RWp4l7K4gpcIwTJJNwJdTMmVOtSM922rbEiklzrFC733sbq6+6sotlLqcXpfBJjjOnochMtJz9ML0bCTFZueM7HwapRA5cTRJzlJSvz8i2aq/O/v3LIA9GzeQ5t/sF93eDzK2rgelUekm3fUi4PNicRbZ5vLywpbmee3NFwZ3ZyME8vVvoWEKzotCuPDgn404yLhYlXx2mS2U2LOg6+w6hdqk+Ob/Z+nZ85vl1012/iMRkpScNXLhJs9GIgggUxnIfF/SLEVr48fg7kc1/rng7l8T0G0dURQhL5gNOduCv9hlm6W5S1maSkSvxTc//ynqw2PEwmJldZ1KqYjr1KhWh3jw24/xk299NTfdeB3HZhco1wZ44v77eeC++zhx+AinT+zj2MHHuf6qXfi9Df7kz/4Lv/P7v8N3vrOPKO4zPT1JL4gwbYdCwUFJQalUREpN7OcFT8GxERKeeeYQlWqZcsXlk3/9Zzy59wH2XLqbcqPKdTfeyNi2XTR3bmej1+L++7/JrTe9lKcOPEOpUsNS8MS+A5T6XZAJiJRt27dx7PgatVKB5dYc24aGc91aCiPNOlEc0qiXmV9ZYWpsiDCMiOOEZrWOZZostzewHYVrukihMW1FHMT0+j5R2qdSG0SQgDBQjs3MiVm+tfdpbr7mcoIwIo0SZk7OUSm6aEszMdig3++TpDmoS+KUMIiolAtYjsnOyVG00gilWFhYYmCohmkZuMUC5XoFbWkMZfDkvqNsmxwhJdrUNGm+dt9errhskk6rSxzHBH5Et+fRqFfRSmNoiPohrdUetu3iuDbbJwaQUrB7+zjNehnXtUBkJHHukqh1HsHQ7/lUKhWQFoZhst7t4l1Z5mfvuIYkzUiiBMMwMU0D0zKJowjLslDa3AwczxBJShpHBP0elplTVA0lkSKl025jOy5SG/TbbRy3iB9ErK23SKKIt3zsH5iw1njXVXXiWDE9PcVd9+yn78ccPXaKoqMYGqywtt5F6dwttN6oAxb7Dyxw+WVTGFrT7/s8/sQRymWbOIrQWrGx2mJ+folypcDs0jqenzI0NIBhSZ59dhFSjWVZVCoFPK+PYUqqlSK1ap1yucSJU7M4jmKj1abrbzA0WsY0DGzbZmWlTbsVUa0X0To3LKrUyrm+zTLpe30WFvsUbDenUouIgcEaaZpgGApNjMhS7GKJoZFBRJKQJimtVp84yVhabXHDdbt58/VD/O7HP8eRQ9/jXe+6k/kzi0xNTTB38lle/+rL2LXr5TQGKvzFH/wJv/ryO/IfISlxCgW6nU6eRSc0wrLRpkmW5OdeyM2udJbHceTaDoVA8bv3fo3PHT3BZ//mPThWjG2bSPJjnwXtze8gA6mMPLPQtBAiw3JdwjgjExLTsVCGQRyDMkqYThnbLVEo1kCaGKaN1AaZ1MhNXSA6Q9tFTNvBMB0yo5CbuggwpSBOArIs77ykcYbUioyUJAmRMkWgN39Bc+plDtA0mRC01rpYtoOUYJj5/isDhM6IogCv36VSr6IEiKRDGqyQxevEnTMQ+jzxyPfYff2tFMqDZInAsS2+8I/f5vIrdqNNg17Pp1ipsrqyAUKyuryOFAZvfPcfcONVVzIxNkYaJ9imSXdjlnKhTOSleL0zaC0olga55xsPcPPLruTqa66iVCvw0ptu5eN/9glec9tt/MIv/jRpEvCWt76ND/+7/8DLbn4lTzz5ODfecCU333wthlsmQhBmgl//4M9x+x0vJ6PKtsumKFg2i/ZhxgYqxLGHZdskgGUIQj/hsaeOYdsWtu2itUIZJsViEZEJltdbjA01MByDkWYTITIGai5CSA6fnKdeKaK1pNOPOXZmhThKMUyNEJpisUitWMCPQp45fIrt40OgFGGS09hWWh1cw2Z0uI7tGHh9H8sQmCrFMSQog9V2iBACL9wgSTO+d3SeZrUCm9erY5qkWYZlSMqlErunxmi3W1SLDoHfwnXLpFlK3/OwLINKocCzJxcYqjsoBWmmKRdtCrZNEvc5+OxJBocGqNZKNBtVsjRlebmFYxU4MbvCcLOGZWqUktz3rf0Uyi6tbkCtVMq/G0yXDMn4xABaZbiWRb1SYd+zc7zqlstZb7dxLQOtNOqcxiynRC6ttBgZGvgX1QtbwR1ktNq5ntU2LVpdj+uu2UHfj3BtByUlWiqWWh2kSGj3PCxDUy7YmIbNdw8cZdvoMJDiGILV9TXIUhynQpwKtDKxlMXqeg+hDCqVKkpaeIFPSoIWko7XZ6BWodXpYxoms3PLXHvldoKoQ61sUbAt5lc7zJ5aZKBu0WkvUXMdfM/D0CZev5MbTK0s8uzD3yGWfaqNOreM38Gf/cPj3P6St1KuDOBHGZdceg3dvo9p2pyZOYRRajC2bQeWZdJaWyDqtpmbOcpgfQAlNTI7R458DhtsASfn+qcCTn33JNe99trn11s8Z6d/kb7eFgB2fp9t67JbQVr2fTp2FzvXF9aBYhOQfb/t/SBj63rEZnfyhTqF2cVA42aN/KL18YuBu62f/AW6nxd97UU6gRcus3W55875JqVz8//zzstFjt/FunMX3c4FGSc/Bnc/wvHDgLs0TYDcAfFiLfl/jXGxG3HLZffcZzl700lJlqYY2uTBe+/n1LGnGZ3ehVVqMLltgn57g3ZvhY2NZZaXz3Bm/gxPHXiKz332sySRj8oSTs7PcvLoETbWV3j0icc5cHqNh/cfRBerfP2+B/mFD7yXP/qj/8jV11+HXShRqZbY2NhAK8nC3BmiMOWeu+5i187tfOlL/0inH7Bj+27+5L/+MQcPHmF8fIg773wztfIwN93yEyjXZtcle/jI7/8hI4NDyCzjwP59VEouc7MzxKHH5/fu5+3bRplbX+WSyW1UqmUGahXanQ5xHLOy0aZccJHa5NT8GQytKbouWik2Oh0WV1eJo4RDMzOY2iBNE04tLxLHghOnVjh8+hTHjy8wOlSnWjExrAJSibz7EMcMNKqMDdQxdG4dDxlDQwNkm9li/X6PJE4pVysIAeurLRaX1qhWCzmTTMrc1jjNKFULWI6NlnkyjpCCMAhJkpTxsUG0Iel1PfYeOEatXGbPrrHckVAJvL5PuVJioFnlzMISZdcGKQiCiKMn5piZW2R8tIE21SZoNUnTBK/vY5g5jTLZpHIqDVHso4zcAfSP9x/hTe+7Cdc2SdMUKSRSSpIkIYx83GIRAShtnNNFRKFPvxdiahPTMsiEJI4T0izDMDWeH+bW8UmEVpI4yWi3Nvg3n36MbzyzzN/86rXQj6lWJDt3jxNGHjumh8hSuOLScQ4enaNSdhCweXyGSVKPTqvNtm1NTp9cRCpBnMTccM1OHnj0IFdeNkW326dRL2JZuTvp0HAT3/MIgoh6vUSz4bC0usbExBBxHKClydGT89iWwVP7T9D3ujTqRdJEcMmuXSwurWNbNkpL+j2P5uDA5r0vcQslLNtACo1E4tgWhaJL4Pk8/b0zTG0bYnV9jVKlnAOTKCLNklybaOQAaWO9DSnUaiWmpseIwhDXsXly/zFOZ8NsG5mgvdHm85/7e84szDLWKDDgrvKKO36VX/7wb/M7L70Np1JGK4XSCs8PcEsFpDCJkzxfMYlj4ijcpPQIvL6HZVukWYof+PR6Hj9719dY9n2+9NkPkMQJjmttnr+YfrcLgFQ22rIQOu9ek2V0WxuYto1Eog1NlmaEXoDlOCitETKf4RZCoaRJRpJfY0gMIzfmCf0EZRXRykFIG2VUsN0mfr9HHHfJUr3JN09yMCckUmZoEZNlPlpp+p1VTEPR78wxd/IItYpJlnlYpsq7O6sLpHEvz5sMIwI/RIY+OuvhdWYJvHm81hqGdthY8zm9GCG1w+DEdkq1Ommcx9+kaczkZK67jOMQt1BgbXmFdqvL2PgohVIBy3J4+xuuYGz8FgLPJ8tgdXmF48dmGBmdIhEx9Nax3TJxKrlk5zSFkouQBkqZ/Pqv/Fs+8gcf4ZFHH+a9H3gzL73pZWSkFIt1PvaxP2R5aZbf+70P02l1WF5ZolwqkoQhP/WzH8TUMTMnNti5e5xf+uWf58yTfbbd1ETJlChTGIYFcUQQw+T4CEdOzjPUqBImXRzTJYoiWp0ezVqVDCi6JlGaopQiyyRZJnj22Dw7tuVGVrapOXxynit2TtDzetimTavToVSwcS0TwzSI4oQoDjANAyXBNhVKGXQ9nySNsE2LLEvRShKmKUprbNPk4e8+w2U7h1jvhowNDiAIWW4HdD2471v72TE5wMr6OkJm7Ht2hvGhKmGcsrDSwnVznZuSkoKV32tHTy4x2nSxLYNKsQIiIY4z7v7qYwyMDVGruhhS4ViaTr/PoeOLDDZKzM6vYpoGlZKNbRpU6yU8P6FWK2EbgjCO8skNoOv5DFbLaCXphTEnTy5g2hrHMSg6NkkqsEyNH+Tfj1JI2r0+zUb9h6kOLioNESKfiEnSlDML63zv0AzT4wM0ay6CFNs0sE0DrRQg+Oa9T7Dn0jFMw6ToWLT7XRzLYebEacbGR2j1PJCCwUaVrheyuNZDKhAYaB0jNbiWoBd4hDE4hsI0LA4eOollW1i2TbfbY3Gly45tDQxlUHQdgiihF4SM1CtEaUyp5OD7Hn53nW6vz0arRdpfYOnEQfxeH8wiE9O7aS8a3Dx9C9cP3cjRYyeBjOnpncydOUMURRi2w47d12K5BQI/ZObkIUbGtiPJyGKPoNei7fUplSp5/iwp8sLk+AuGW2gwec3IBVWY2OzcqbwDdMG52ErjPAvunrP/3wQ9L6A9OzvSzcm6i40X8lvYVMCd96p43uvf5/E8z4fcZETywjECmRDnhGrPuV+e3c/NiAFxker1ubc9b7wYgDvPEGXzz7lIhS3LvNDVMuiJAAAgAElEQVS4GB30ue2dJ4g6f39fBNxlgHiBbQohcnf9c9vN0OrH4O5HNn4ocHc2BuEF+Nb/GuMHXet5BixZhkgEq6ttel6Xm26+me8dPoYWgm1jo1RKo1SKQ/zxf/o4H/zln6Naq3Hn6+7gHz/7//LNvft4363b+JnXXcMN2+q87ZYr+OW3vIyfueMm3nrdBO9/zZWI5WcYqNqk5QlGJ7ZBluadsShkoF6j4Fbw/D6rK4vs2jFFvTnC8WOnOXpoH8ND23nb29+E1+9w1RU3U64OMrFrmj/5+H/hg295J3Mzp3jFK16BHwfMHTvEg9++F5XF3HHrTfztkVl+8brLUUqzsdbi1JlTlAouBg6NWhEhyQucKGWgVmNheZ1GtUqjXmKgUkEgGB+pk6aSMEzYNtSkVilz6vQGuydHeMlVeyiUXcDHsovEcUJ3o4OlBUJKjhw7Tang4DgOdsHMKRQKhMo1TOVykS9/8zGSMGRiYoRqtYyQ+ZezYRokScpTTxxieLhGr+exvpzb5WutcCwHVO6iF4QejllkaGCA2dkFmkOlXM+mFY6bU8y0bVAqOYgkRlk2fhCyffs4zXoJy9YorRCZQSbya7RQdNCGotvt0+70MAyNxKLX9ym6RT74nb38tw/dkRufJGne8cgyFpeWieOYYtHB83wMqfB9nyTNXa1MLXjgoafxg4DGQJUMyeLiCtV6lThJMTfF+ooYYRhIKXn///01/P4GH71NUnSKLC/3MA2Dar3CwmKLgYEBjh09w+BAiWKlyOBAjUIhL6iyLOWRx45TshzKlRLPHMxtxrdNDHLs2CmuvHQSBDSbDTba6zQHKvR7ISdPLlKvWlRKRVZW1hgYalItVWith3z5rqdxtGR2cZ3tU2Ps2D7E4GCZfs/jke/OsOfyMWo1g2qlyAOPHOTyPdNEoU+n2+HAwdMM1Ms5kO2ELCyu0e326Hf7jA5W6XR6DA7V8fyAWqOONiySIEBbmn6vj5aCbq9PvVon9EOOn17K9V1L68wvrTM8VOcLexe5ds/V3H/ft/nt3/wNHn/qKT76738Nh1mGdryO13QXICuS6ATT0GRJhlsosrrWouAWUAL8bhuyDNt1kVpBKtGGotfrogyJaWl+/ht3kwFf+Nx7IRMEfp8kjgg8HykEpm2hLBepbLIsIc1SlMqdMG1bQwZxGJOlIYZyQAjSOEQbijQJiOMQsgQytUlFS0miDOgSxX2ESDajMXx8rw0SkiTEKZQw7DpKSOI4xnEMAq8NmSBLPLoby8SRjxYCKUNMQ6ATKJoWhpSkSUJGhywOsS0Tv7dG4Id0WwGG4bK+sYDngWHWEXoCdI1e7OBlNsePtxkedBkaH6bXbnPm9DyVaikvaB2XXreLYeSanjSJCb1cu2e5uR4wjrpE0TRSKrIk5Wtf+xo33Xwb0iiR6IDv3nsfO/dcibQMsqSHMlxWVjqkseTON7+Nd77rPfzmh36dTLWpFQbxgg5XX3sNt932cu68802sra/xwLce55ordyJFhibjkccfpjFU5RtfeYRLd47xlne9kZ98+wd5bO5B0jTk0b0nmBgfQWUJrlMgRlCtlLCUIE47SGHiB33qpRKPPHWMqfEmXhjmFHQkWloYSlCrlmj1fGxTk2QxOyaGmZlbxHFy8yDXNjANyUanh5KanufTKFkkWYYSGXEUEEsDUymyJMa2XYI4wTRNhMw7/1JKprcNEng+jlPAdQyioIvrZhQci13TFYpOiZnZOUaHGgzUqmx0u1TKVRqVBlHqY5sWfpCb7ShyOUKa+mz0u2jlIEkxDJPq8CCG4zJSL3D0+DxDjRJSScZGhjF0QKFQYHigRqvT4akDxxgcbDDSaOBYEknESrtFvVImThLiJGO93adom9i2xc6pJiXHzgGtlGhpoFX+u93u+XS9kErRxXWdH6I6uNg071n5Rsbs0hoNt0AmYmpVhzgO6fs+ps5fTzNJu+tx4/WX0PV6WIYJkFM5g5BLdwyRSZOv3L2Pqy7bRpjEuLZL3w8Yqhe5+56n2LZ9Asdy8fwEEkUv7JHGMVLZlAoWlp1npzpasdryqBRNbMsiweKrdz/JJTvGSLOEwVqZIIFGtYZbLVMfGKFUrrAwf4zTSylWfRS7UiMVPvv+xwIladKdCzhx+jirKwvMnDjIUHMMw7KwnAJRpqgUijh2Adsts7y6hFty0aREfpuChhOHn6azvk69UkJo+0XBXb8bMHXd6POezzt3Ofi6sAY8T4Z1wcrPLvv9HM+V1iRx8kPr4y7MSP/h3k1OT70A3AHPcwQ9f5tbup4Xgrvnwcsf7MO9GLjjIuDued3E71NAv2i8wgu/6XlPnbfvLwLuzqdP/xjc/UjHDwLuhJSkW27OXAD9ArMS/8Lxg67tLP03ShKElpw5dISpeog0JQtnVmm120xsm+LRpw6QxTH/+eP/Fx/9yO9xz1e+zMf/6lN4Zw7yu+97NS+ZLHDVzinCIGFkYohKtcJXvvYddm6fwI8DpACnWGVyqMTs8WfQzZ00ygU6HQ/XsNCuS6/rU7JNHrr/PpTpcuzwCQbqJY4fP8bllw5z2Z4dxGHG6ZkVxi/ZTqVUY+bkHK+85WpSy+VP/5+/xO/OsXNyG/WGg5Qpt9x2OxvLp7nZdDl07CRxGBPGMX7g4wU9qtUS2jA5eXqOVEgGG3VSYGljnZLrEsQxpgGmkDx97DiOY9IP84JwZLBMkobUaxZRGoIwEElCpk2+9dABdl86lbt6YVOtF0Eo/DDhwYf3095oMzraxDBymtquyXFq1RJKKaTKXfeU1pvnSOB5fSqVErZpsrbWoVwuYzo2QRwS+xG2Y6O1QRD0c9OV1Q1qtTLaNPE8H8s2EVlC4AeQpgi56dIVRXTandw8ox+y98BRamUXoRSGVkglCfsxpmlQKhZpr/dod3tUamV+5uF9fOrXXoVhmAR+gGlZm10eH5FJkkBSrpUgy0hi2PvUs1RKDqVC3mUYHhpgeXmFkbEGSdKnVqkTR23SSJJkCSJLicIIadl84D/fxX/96Z184BUTDDSHmF9Yx3Ycjp5aQiTw7NFZdu8aZHCgQiZgcWGFYsnFNEyW11sMDDeoOBbzy6u0Wm22T09QKRdwLAPbNrBsl29/5xl27hzCtl1Onlzm9Nw6V1y+DdOw0KbGdW067T4pGdoQXL1njMf2H+GqPWNIQ+K6kjRTPPzdI+wcb1BvVnEcm9WVFo5lUiy6eP0Q13HZMT2G7/ksL7VoNisMNKtkWT6bH8YZ7U5Ap9PBNE2q1SJpltOKiQWGaWPYDkEQEgQRnpcgVcrE+ADjowMsLbXQUnJ4JWRo/Eq+ec+X2bvvCW5/63vZvavKzJFH+c0//jSvHxqlF3SoVptEkUdKhjRMHMdGKoFQijROsQslhJSEm4HEUii0qUnijPf+0xcA+J///V2bdJEcFCVRgNePeOCB/YyPjyBIieM+SirSyMupl1GCSNk0XJFIbYKSedRAmua6PsslTSFJolz1qUSuWxQRQhaIwxStDVQmSNFoq4ClNEJpkigjiX2UEiBS4iRDWy5xHCGtMvMLfZqjEwjtIlSJMNaECRjFITK7SGZotDVA34dMaNzKEFaxhmFaHD54hGK5iVQ2xWoVbSo8P+YrX3mUzkaP06e67NipqNSnOX74BJM7JpESOuvrnJmdR0qTWqOJIMb3fNY2+riFAiLLCP0AgeL/+OhnedVtr8CuFNhz6W46nS5WpUDme+y4/Goyy2X29AnW5k5jmkU6nRb1skkYax555CHiLMH3MqYu2cO37/027Vab//bnf8n05Da+8MUvMjm5i0su24FIFN1wjalmg+VFn8ZgnS99/m95zWvfyJ9/8tN842+/zbW3T1OuOFSKFmGaEcYpSRJh6QySDUyjzHeeOsbOyTH8JGZspMJ62+fYqQ22jzYJgpCnD51gZCCfNPCivOOWZAlZBgXLoFoqk8YhhmURZ4qCY6G1oFwskCAwpYEQgmdPL+KYEkmGaTikJCRZmptIJUkeaJwKpMgwTYE2LKI41/RK5ZCluROi1g6mpXBtk7YXstLyMQ2TKOphSpNWv021NMA3v72XXTvG8uw7bbO06tGsFvHCCCVTJNDvblAulxkfGWTf4dO4toEiwLYrkAX0fY+CaVFoDjNQdonTmKJj0un1qRSLhGFMp+fjWgZrays0G1WiMMLSiiRLieOYMIqxTU3L87AtCyUVSki0ITD/f/beNFqS86zz/L1vxBtr7nn3/d7aS6slS7aEJO8GjI0XsI2NMTC0Z1hmhsM50PRwemBothlMN/QCNDO0DTYGM8Z4k21ZxpJtWcjWUtpqL1XdunX3PfPmFvs7H+JWqUoq2ZJn2j0f/Na5HyozMiMzIzPi+T/Pf7Fzt9YXdc3XOjcUElfWIVpAEISUbQcpEsolB8dWZGlELwhQRt4k2elFVHybNIvJhMJ3bOI0xbJt4lggpMP5+XledeskYdijG8b4rkvRMUkzyfBIhZJjs7S+zFe/fpqDB/vxrQK+YzK3skWp6OHZDp1uiO8V8FyJ73nEWX79uu7ACDqL6IVdbNsn7LbwXAdTOkRCk/XatBprDE9fg2179FerbDVDZrYVH/yrj3Cgf4K+ksHkUB/1eo0jJ86gLM3JJ48w0N9PN+wxf2ERnQlGRidZXTiLY9kIaZBkmiCK2G5sMnf2GfoGhzEsG2mqPB7FMMl0DsqEAK9gMXiwRqrZjd/ID5PU5E0lINu1+8+nR1wRJp5b5D/7d3ECBs93u9TPO8YvGZpdLk17ScAuD2S/CHguataupBJeru27/PVf6RXKFcjKkM/GBghJLnVEf8cXdznYynR2xeeh9bOaxksvT1/5953W87Z77gcn8tepudytUz8P4L0YcJfft5uRl4HQ8vtRCN/L9aImd1rvBkbm4dQAIruY4/H/7bpars3V9pIJEGlGoVhkc2GFsKPZ6STYXp2xyT1YysFzHT579xf4zx/9W9531xT77Cat86d5/bVj/OSb72Cn1WFqfJgjT51iz/QYYS/Etm0OHpxmeWWNUqmA4zr5+5QmY30VPvjnf81db3gbfdUyrV6XzfV1UgJMMs49M0u1OsZHPvohiiWPc2eO8UNvfBNCuqw1e7z6R97IN7/xdfbvmabku9hll3vv+RLVQhGpJcuLJyiVXaIwJNzZob9e5g/uvp/3XLuXRqtHuVBAKYXvefTVavSClP56jYH+KuubDQq+x+TYMFpAq9XEswpkOsN3FfVKkTRKGRsZRANrmx1c2ycOoNsJCHsdiuUiU5MjaMjpjGFOY0wzjW0rFhfXuebAFKZl7k7Fduj2OmSJxnYUAL1WC3SGaUriMKRaK18kaGAgsR0DqTM+9cUHue7gDHGcgBBYSu3qDiTKUAg0CwsrOMrczYfz0VpiGCbNzU0818H2PKTlEMcpRdelXCrS7XRQpkXQC1C2otPt0mp38DwPE8kbP/EpPv5rP4rnOdi2RRhEBEGIYebmFa7vsLG1iecqbNslQzA6MoJbcIniKBdakzIyOogUivXVVUxL4DhlTNvAUhamIfmFP/obPv7PK3zk58ZQMsWwbD7+qScYqPkM9FcYG66zstLihmumefCbJ5meGca0TIIwZGCwTpRE1MpFsjDFskxOnlmkWPAYnRhgZ2eHNE0oFouEUUy9UuSbR06zb2aMKIk4uH+CXi8EIVCWpNNqUvCLWLbFN4+cwFYGI0M1PNfCNBSW8mk1Q3QCe/ePEQQhWQYFv0Ch4PHEU88wPNSX218bEtsyyZKIdqvJxsYmOtU88dQs9VqRwX6FFOTB6ZbKL4QZxHGwS0eRzJ5fIeglVMo+oPG83I21r14gSWNeOe2h+ydYXNnm137l5/kvH/owcdhip73Nrx68kzQNKJbKKGXTaTfzxoKUSGFcYhfEYQ/DskmS3EQnCvN4BikMore8kc99/h4+/fH3kiYphiFIkwSdpijHJcsy9u6bwPUsDFMR9iLSJMF2C7Cr3wyj3G0xCjpkcQ+diby5IUGKDEGSAz9LkSQhOgPPL6ATE0NJ0jTDULnpCELvBtpnCCRpGmIqg7DX23V/1blmzzCQRq5bVaZFmiQgcrBiuS6Gssg1hYoo6OH7HoaRG4ggBWEvolar8KlPPcSdr3kZaZrSanR54OtP8Ja33MH0zDD79xUZGJ5BKpNySaGcvPERdHv0D9YolupIabK2vIVl2QyNDPPQg0cZGCizurLJ6lqDz/7TLJ//7Bd5w+vv4p7PfobVlUUWTp9heLhMoCPSuItCMDo2xebZRxg/dD1BqPE8h9e+7tX84z9+ijf/yI/iKIuP/JeP8dd//1E+8jefJBEZb/vxt+OXS8zOzuECa0unKA3fwIX5VRCam+98BbarGRsc4fZbb+eJrW8wNlBD64yHHjnB3ulhTpydp79aRcmIIIE9k6PsdHpkqeDxY7McnB6hVLLY3ungOhZjw33MrWxRKbnUKy7tbgNpOBw9fZ49Y31k5HELaIHI4GsPPcX4SJ1Wt4XvVAiiDZI0pV4ZxCRmo5VQLvp89RuPsmdyBK0FyjBp9drYtkGSpCRaIDHRGpRlowwLKQVpKtAiYqvRxDBMfC/POPzyPx3h5uumeOTYPDNjNbLMYHlri5nxAYIop4iXiiUWN7YpuiaZjrBth1LRo9HYpBul2JbB0adOMzLSR5pkZLvU0SwJKHg2Rtajl2a0ey1qRZdGq4cwoRvEVIsFpGmw024xWC+TaJBa0wxijhydY7CvhGsZGELQ6QVEUUy1VNil4L24cvxqRX+GJg5jltdzR85uEGKaik4QYSoPz/Xpxgnb7S59xSKWbZNkgseePovnmJR8m26Y4CgTJVIGayUQHqlOKfk+SarY2lnngQeOcfjQHsIownNM9uyZQKkMaeQh6YY08SxJEHYpehaCOKefas3qxgb1SpkgiuiFESXPQxkanQbESYRdKGKlJptLj1Edv5M0idjcbmIpk4//y3u5fSbh7a/4KepFl6nRQVKdU/YPjpZxPYUWUC14bG1ucujw9Zyfv8DA8Bj1SgHSHmnSY3FhkT3Xv5rxvddTGxyltbXG2WOPsvjM4xRcC4WJkpClIVoYrF7YZurlo5f0V3/5Fx/mT//Tf8aUJqdOneHgwf15JMzVpldXO3Y8C4wuGarob2f/8eLX5QDthe7XOo/Vem49+bzHyYsmKc/X7j2XFnr5tPC5zyPFs/t9scAr39/lk80rp53fLfB9qeuKAc6zN16xzYsFd8993PfB3fdwvVhaZs51f5YP/V+LlnnVfV/ltkzkF4+sG3L/vV/GSgJanRZnZ8/xG7/3h9x7//38yFiH1x7q4513HGRysIrneRQ9l42tBlEcc25uhYG+CgMD1bzDJw2azRZ+qYjruRR8nzAMEIbIzRSCgNfeuId3/uof8oa77kArg42VFba2OqwsL9PrtPjYxz+GNALW11bzi3nRwyvWufmm2xgeqXPPpz/DQw8+wPFjRxmeuZ5De/Zx9vhTDIzVOX/mNLe8/BaiCPbs3c9TTz/NbXfdxHSQEAYJpWIhB0KWydLaBiPDgwgDZs9fQJkGC8srWNJgdn6d/kofjaCLEAbLW2vUyhWWN5vEYcjS+jq3Xn+QM+dnaTQinjwzz8RoP8Wih97l0ydxylfuf5yRodJu8d1lfHQAv+QipKbbCfC9Aq7rY6tcl6d1hrIsDNMgy8AwLXSm6XYivvXISSanhjBVPs04ND1JnMY4no1pGaRxngtXq5dp7fSwXZu+/gpRkuxqmHZPNVJguy7KsnNNnzRQKjeasG2TJI7IYkGhVCAMA5Rt5lllwuCPnj7DT79mDwcPzCANSRwnWLbNzk6LcrmMNBTdbkCx6OPZLpmGXtQBITEMgWna3Pulhzl0eJIoChBC4nklkDEiUwTBNpby2G5s8w9HNvnYL9/M/Oxper2InZ2Uou2wsd2kr69MmAYcPDSdX8RtyYlTc0yNDdLt9ii6Xp4/awieOTuP6+TatumJYTKRUK2VSOIEy7aQJvi+Q7nkYlkK37fZ2m7k9EQpOX3mAiOjw2xtNrEci8nJQVzXoVItowzB9nY7Nw7INCPDQ0RpzLm5ZU6fXmZ6apS5uUUGB6pcmF9ja6tFreYhhGBhYZ3+vjq27TA7v0ZKxt7pfhqbbcIoZbuxQ7XsYduK1eUNlBJsbO6AltiWTRjEmEqy1WgzNNTPw0dOMjRYpl4rcuzEAtfc8X5edsvLafR6vPVH3kLZivn9P/87fuqWHyCOOkjTwvZthE6Jw9z2HAkSiZCCdqODoXJaq2XnFEppCH7m81/gU5/9PH/3V+9AiDxvMYySPKcuTlGOmU8HyPWVURTj+SUsywRhIrQmDDoox8U2cvaCqRzSKCEOI6SEIOhhOcW8E54mGEauH03iiDSNUI69mxVlEoZx3ggJethugSyLMJVEKQ/D2NV7aglZ7vgqpMJUJhDnnXSRZ6RJqYjCLlkSoExx6T2kSYQ0ctMdIQQGBte/fAZ0gqlclDLYu28EyzYQpIRRCyHKJNEmZDZCqvz3lSVIQ7C0sEmaZDzyreMgEqq1Ir7vMjA0iFIWcZzwtQfn+K3f+k3+9W/8Jj/14+/lljtu5x/+/pPc8bo78Ut9LM8+Q6lg0I17WLqHURrkHz/2t/QPF7FtyWte9yrK5SJby1s0twN+94P/hp9530/x5Xvu5vWvu53x0UHKhQqf+fQXuOWuH6BUKjM+3EfU7jA4Nsn62hpZEHHfffex2lilMuIDBqbtcPrCCjcdnCbTCY7SOI5Pkgm2Wm08S7LTiRgd7OeLX3mUfdMj+K5DgqZaLKBMkyRJiNMMjcnUaB9pGiN1QIpJhmRhbZOdVu5mWS85JESIzMS2HaSREqWSkltAZyFDQxUcywYtePjpc9QrRVzHQohcmyognxgLg61mE0vlOs5OGLK62mCorx+QBHHKyGgfjiUYrA2ytbNBpVCi2ldCpymObZEmKVGmKfkelmkRR3lm4/mVBuNDg7nGME2ZnhikVPBJhNoNuzeQpk0QpYi4Q9H3EUKiDEGYxHiuQ71cpNOLyLSmv14lSROUKdneXMOyHA7OjOLIDMO02ekELK028ByXgme/JHD3QrWBTjJKnoul8ibPVquD61o4StDYaVPyfKqFApKYzVaHUsGjr1Ki222B0PiOD9IkSyPaUcqZ83Nk2Li2QydsYpHrTsdGKrSDlHa3Q8Et0Og0+OLdR9i3f4JCwSHTBp7r0+pFJFmGVA473R79FZ+MPF/TtW20FmTCYqfVZrB/AIkmiFbYWutgeHWeePwk+/eO0e52mfvCE+zZO8OBkZt48qkTDPYVcIpljFTgWRpXmZw+Nct6q83MzGGiOKJSrWJIA8tIWF8+R8Er41QHUX6ddruHZ5m4bgWESSfq0VzdYmPjPItzp+k0mjQ3ltnZ7HDgtnGk5fAnv/wn3HXD63jloduoUqEi6iwcXeWX/vX/xMjQEJNTE9/xOF0ehfBCxijf9XdAf3tgebFUzcSzQenArhQju3Ljb2PM8rznveLO3fp49/G73msvef3/Adxd7bV81+DuOev74O57uF4KuDNh1zb3KnRMmVuHX10lKq+kcAr5/Md/u31f5TZJBJni5FOP8Qd//O9pnP4Sb795nBG1w7vuPMA779hPdtH8o93DcXziNMbzfZaXltludCgWyxQ8xdraJp7nc3b2GXzP59zcIv0DFbqdFpZSSGnktve53yzvumMf/8Pv/AWvv/VWxiYO8i9/4Wd4xStfSyo8HvjyP/CGN/4oO+sbzC+scvtr7uC1r7mLxx5/mL5qHzfecj2PPfoYr3/169nanGdraYXWdoPb7jyM7kX0hOSaG2/gvnu+xgf++59jYnSUd//Zx/j5W65BCMny2gaushkZrpPGMUmqSaKYtc0GhmXgFT32TAwTRAlZCpWqj5KKYqlEoVhke2OZ6/ZNMr+2QaebsG9mhH0zI7S7IVmWMD+7Qd9ACcuyKJdy/YTnuQS9EN9VBGGITgSGmRes3VauYVpfb2BbNqlOUGbu7icMk7DdxDAFe/dNohwgA2XaSFcRxj0M8gBTbRrEaUQUBaRxhO8X2NjcolQsstPcRklBkiSkcUaaRQgtMKTBseOz2KZAyfxbYlgmpiURRv4tlSIPr07ihFt/+AC9VkzfQBFlGmxv7ZCmGtuyMMz8VOp6PqZhEQQBtm2BAGXbGMKg1dxiaqKKIQUGCVLZpFGPNNE4riKKMt7/x1/mqdkV/sPPXU+aJtz39WeYHBvGthXrGw0OHtjLqZPzzIwPoByTUqVArVqiXHA4+uQsvmNj+xadnQ62Y1Ppz10XSTXFmkevExBGPUolj631XGMWhF0kBkmcEIUxffU+sizj4UdOowyDQrFAczOnWG5uNqj1VQmCNsrOIyjq/VW6nR5Bt0u5UqJcdim4Fg89fIKp8RE63YCi7xB0YWS0n8bmFlLYFPwS69ubOL7BTdddyxfue4wDB/ewvLKNUjHDIwMEQcy58+uMjgyhVIE41pw5t0wY9ZBSsmd6krPn5rnhxsOsbzYolT0mxsd516//BW99+2u4/rpDNDYtHnvoS/zatdflVvBRQqFcJ4rbgMpDy0WGFAbxxe9PqYw0NYY0c3AkJd/oG+CbDz/MJ//mnUgdonVGnGgs0yGJU1y/SJqkSJmH1humhWcrep0WyrLptjYQItstUPKAYa0F0lSYVgFNiO2U0Gm0m8sYoCwHne0aDJkKIQykVGRphtZg27nhijRtkjjAMG3CXrRrbS0Jgm6uFzVctI5J4oA4zM2CRBaTReEugSai12ljWwZSQpYKTNtCmCqn2GQapRSZkYfVa22glEmSxFi2oNVoYDs2rl/FUBLbLvLM6Vn+6Z5vcejQNCAwlMcXv/AgaRryituvoX+wD9OyWFpa5tjTz3D82Dmuu34/Dz58mtfe/gZuvekA640EKSW33XU9SRYgOli9CVsAACAASURBVCGV8jDS8Pm///7jNDsZY+N7KJaL7D8wgSkkK8trzJ0/w1NHz/Dw4w+xvdXkJ972bt73/vfSaDcINjdZmD/HDTfcSv9wjcXzi1i2w8MPP8Le6b2YVsDc/Bwve9nNfOhP/5EDrxqj00sZqFaolX12Ol0arR6uVyLTeWi75+Qa3+XVbcoFg+sO9Oe5lkY+VTUNg4efPsfUyACG0CjToNsLWdvuoWyFqxSrG9vYpkF/fw0pNUqZuYuuYeQxKtpks9nC8zx0ltGLApJU8PWHjnLXrYfyStJQnDy7SLXkstOJ+PpDxzg4PZRPhbMUUzkY2qBYtHDsIt0oRBkmrm1i2xZCZGy0QwqejTKMS6HraWpgKBMpFGEYo4wI05ToTNLcaSCsnBEipaDVWCPNUpSWCCE5Nr/JQ4/NMTZmUXYGkLak022BTlFpkMcXSYlvpUihkDpBa0GpUGBtc5s4SYiyDKVslFR4vkvYXsIt1TCEmRfc36ZmvTwa6WI9IHY9+jvNNr2oSyfs5RmkholrW/i2h0wDXM9np91Dp2l+npdid4pvcvzsKnvGh2h1thFZzj4RwqRS8Cn7GikVlkqJUsXY2DBppkm0QSdM6atYKGkwOlGl5Jl0gxQpQrpxQsF3SXWCY7vEcT4Jy1KRaxUFaG3wtW88wTUH99PtpjR2ztBbnccpjVKwoT44iKHgq/cc45dvq/G3D65y2+R1zEwOYdgKEs2pU+cYHiwSZTA1PIjnu3TbMSvrS1iOQpkZm6srpNEOTqGA6Q6wsd3GkhrlFAijAGmY9A1NMDA4RnV4gnJ9kma3zUBfjT/41O9x4sjj9I5YvOyum/PIqwQwJAgQpuTVN7wKO/BYeHoNb9TGcZwXPoi7lD8hngUNz2VmXR5qftWG/u4k7Hmh35f9/+I2idZ5dp4Uz9I/c97pFTTHTDwr8dHi8ud6aeBOIhAaDHKnzMtnkhfjBjQCeXnkAM9SLAV5WP0l2uVl1OOcNae5FDvwfJbkf5V1pR5PX/Endt/vSwF28H1w9z1dLwXcXfIwuorWLsmyXBN1tW/dc34wL1Wrd7Ut3/Fj7+UWf5Vk9lFurCf80KtuRxg2YZwS9gIcy0IKwerqBl954BEO7pvEMi3QGSvL6/ieTRzHbGxtce2hGQxTkWnB1NQ4I8NDWHZ+IVCWxdrqJp7vIKVBu91GGZIfvXWKR/75Xh4+cYGx0XEajSalksfs3DMMDwxy6OB+Yi35iQ+8H8OQ3HDgAA/c8yW++LnP86Y3v4WNZpMHv/FPbK3Oo9MdCmWbbruJ6+bW0lOTY3zu7k9SKLuUzJD/8MQib6iWWN9qMD06RKfbY6fdY355G8NMsQzJ1OgolmEze2GFTGdEURffUugkIQojmu0OrSCk3Ynpqw2yut0gjhKeOH2Okf46aZZQ8Fxcv0AcppQrBTS5ZkpKSJMMZTl8/isPs3dyFJ3p3IlTCMqVEqYyWZrf4v5vHmV8qI7jObkNu8izupIod61M04xmc4dKucry0iafu/9Rzs/Nc93eGRpbHcq1fgzTwFIm3W5IpxnR7gQ5LUnHFIplesEO0jC4cH6NydFBLNsmkwYGiizLpyemUkRhRBwm/OzDx3j3nfsYHu4nTjqYjotfLOJ6DtJgV/cX55OcMOKpJ8/w5NNnmJwYQUmdu+YJgVcsXawu0MIgzTSuXyDV8L4/+Sf+4n2j3DIa0NpeQosCG+vbzEwN8dTJ81xzYJKllXX27xtlaWUdZSlsy0YgqdRLDAxWiJMUv2jn1NxOj26zjeebbG3u0Ot02d5oMzwyiEbgui5hr4sUEIUR0jLwCx5RHCMMwdBglUazQV+9gmEpHn3yGeoVHyU0yt7VRZIgEMzNrzA9M47OMp54/DQ6BdtR7N83TrHo0W53KRQcdpoNzs4tMzU+iutrkhhs08WyYXK0TqZTZheWObR/ElNZRGFCX7XCdqNFGic8deocQmTccHgS21b4BYcwzs0rHMsi7qXYjmbvD7wFRw4R9zRHHvtL2o8c5xUHbkSnKYYpiOMwB1WmhRAGaZYiZIZpWHnkgRTEUUocxxiG5ANf/hLHjx3ho3/5rjwiQUgQJtKwyNIOpinI0gBpWugsw3JsojAiimNMy0EYElvZSKEwDBu0zI1+lCJLU4gjoqibR7KYJmQSy3ZJE31JK5FEMci8wEvTlCxN84s50Nnp4LgmiHwKjdYImU+osyxBEyOkkU8HDWPXVc6k24sxlYMUDo7rgZS0W21AEkUx0jAvmRglSYKlLAQKKU3IMgzD2s3us4gjjeUYBN0uaZZQ7x+k2drGcU1K1SpfuvvrvOlNt2MKSalaYWtjG6UU9b46ExMjnDh+jqGhKj/8g4foq93FxtZZpmbGqdaLbG03KXqDCH+A3/uD/4NX3nwYS6Tcfff9vPLOV2IaGWsLkGQtShWbuDXIkSe/xVe+ch+/89u/zUDVybM86338zUc/yhve+m5+74P/jlfecSvKsAnikPGZAbZbS+jUp68+wd9/4tP8/Afewz986AsMX1cizQK+eO/jTE8NcGZ2memROqZhkOndqILGDgP1Kp5lYBqQYZDp3CzEVoqxwRppmnBuYZntVq4f8x0HZbmAwcp2i9NnV9g/PUhfyd91D8zjMc7Mr+I7NiXPIUliPNtCSo1ruaRC4zoK27LYanUxDBMljTyrMU2olbxd/WXu5qsMk3bQQWcmhojZbLb46n1HOLB/nCiJqfhuHjINpGmCFHkjTKRdELnbY6INokQgDEWaSWp+ibWt3IYfU6GkTTeKyUiZGvBZXG5wYGY/2owQmcBSNrbl0gkTpGnj2A7dMME0HMhikjjkrz75BDdcN4Pv2dgKwijmwuI6llPg9NNzTO+fuKzQ/851wLN6LoHEoNOJWd9qkqQJvuvgOx5xAmEUkKY9LEuBVNx97xGuv2aa1a1tKsVCTm8WgvHhOnESoUzFg08tUCqYuCrXJ2ZZgiHzz5E0IUtT4jjXNra7XSqFEmkqMA1IMvBsm7Pn11ldb2NZNkpIUgQPP3aG+dU2e8ZLhHFCuxcAMD41zPHzS5D2KMsGYWrjFIdIpIXWAWdnNzjxsVP85A1Fbt3/biwlaQUpjiGxDEH/UBUlLIQJrU6TxaUmm82AYq0PnWX01epsrKziWJJSoUwoLGqDoxR9n8yQhN02lrJyymASYzkOUZDhOT5eaZB3vuuH+MSnP881IyWKdg3bcsACnYfEXMHckoagcb7Fn33wz3nNW1/1nY/jcyDTxWf6jmYrUiLl1YHfpcfpi69JPi+y4ZKJyOX7ec737rsFdzrLTdmerXEve87nTS315XcCuV7RNI2rzkYuNTcue9LvPbh77p3f3Qv4Prj7Hq4XA+4yQGdpLowUAp47yuayoEgpieMYU+0KpS9tf/kX+vng7iL/+qpRCJd1c97znp/m5f4yP/uG66j4Dltra0yM1PFKddo7HbyCm+sEsnwAP3d+kYG+GucvLHD27AWCXo+llU0O75/AVpLh4T6UaWJaiqHhYXphiKVMmo0WnW4H1/OwbYckyrt9jm2xtbmJ49r0lYr0iSb3Hl/nrlfewp/++z+mUCvz8htvJAzavO5H3sTw0AjnzjzD4twsR586wsyBQ5w4fpKDh66hViqxujiHa0tW1zY4fM0efMensdNjbPhadloB9f4RHvnWMX71V34R/5kzBFGAZRp0e7mRxIkLawzVSjhW7va4ttVksF7l9NwFyq5Dwc9tvovFIvOrG9xywyF8z6VUKjI82I/OMqI4YnJkgELBz4Gi6xNHCULrS0WoaRjYlsrz5jwf05KYpsSQgkyD0BlB0KPeX+fA1EhOhZOSOIwwTBOdZTQ2W0Rxgu1YLC+ucfqZBfbsm2CkWmRmvIYhBYWiT7PVRJk2SRxz7OQc586vcezcEof2jFAseiRJmmfoCUkURxQLDt1Oj0/e+wjX7h/DULnoXusMy7LpdULe/JZrWVpaoVDwkFKDNJBCEvZ6SJHR7US4nouQEsOQDA31MdhfxSu4RHGcB2VbiiSOQEiiJOFTd3+VQ/smUcrkJz74Bf7Pn53EtmwgQZkO7Y5memyQucU1XnbjfpbXtuireRjKYGFpk0xrTp6aZ2u9SbHgoGwLSylOHD/P0loD17YY3aVKlitlet0eq+tb1OslVlY2sExQymJtrUmtVmKn3cVxHbrdHq6Tv5dSwQUtWd3Y5Mbr97C5ucPpM8uMjQ8hZR7KHAYBI6MD7LRaiAzCMGR6YpShoT6WlhfxfZdiwWd1bSPPhLIVZ04vU6747LTaSJnhuvn0a3F5g5ffdDA3KUhSHn/iGUb6q7k+LQrYbnZI4oyFxU3mFtYZG+3j2IkL7Ns3imU7XLiwTrFS5qGlIkdPzfHpv/tr/uef/2GqZ9bwS/35dGvXvEcIxU6zi2VbmOrZrmazsYPtWijTQtkm7/yHT5ClGX/3kXciRN6kCoIA2/VIoxjD9JGmhZQO6DQHdMrENI08IF4ZOYUny+h2u/l3RBlYjkeW5MYUCIlpgZQWpikQhiTPnktJs/SSw5y5q1nO0jSn1RoGcZTkrpbdHVItsK0cWJqmgU410jBJ4wDTtNBa4zgOWZKgkViWg1L555FlGUma4voFpCA3JWq1ybJdcX6miYMQUykam1t4BQuNAJESBSGu55JlGsNQWJaL1pJ63aNSqxAGCfVamWLZZXZ2ma/ef4QnnzzPTTcdACH42Ec/z8tv2U+1WqJSq3L3Z2Zpt+fZs/8akjShVOgjihK+8Y3HuOXWG4miHkdPPMOP/dhb6R/uw3MqPPDA17juhuuwlc/Ro8f5wR98Pc2dFkuLi/SaC8zOLVIsD3L7Ha9kZX2b9733XTxz5kne/9Mf4AP/4ucQMjfXqNWG+F9/8/f5xV/8eSYm+vnwhz7JDa+fZKfbY2ZmDNsyMAyDgi3R7NKzhKRScNEZ9MIeGQkFr0AcxXnjJ04wpKbRbnPuzCI3XXcwv050OhT9ElmaUfYdPE/hOibKNAjjhCwDSxkYBriOyZm5VczdZtFWq0XJL1AtFVGmJIhjKq7HY0+fpVD0OX52kcN7x5BG3iAwlUOWpURxhu9IukFMHHdRpuLw4Sl0LkTHViZ3f+kRbM/m3OwSEyN9nJ1fx/cUlinz3EdhYgjN4soak0N9tIOIvpKHo0xSITERpMC5hXVKXoG9kxUQCsNMaTZ38DyPIIpp9XoUXIc4Tjh3YYX+Som5hUVqlRJGweOr9z/JtYdGiOJgN08OlO1QLFm4BQ8Dmdvjv4gRwLOOhDntbXltlVLBp1oqsLSxTdkvYpka1zbodLskaUIvznjZtdMI9GXa3BygxEmEbVtoDEoFh5Lnk6QZrfYGGflU1ZRxrvWWJo5lYhgGcZLQDXpEcUgQJ6xuNKmVHEoF8DxFwXdZXFknERZhFLK52mBktIZju/SiLDfX0DAy0E8UBsjeEittD69YRSkTR1l0Ok2Mx45x96zk1v23okyLo8dPMjQ6RJjFPPnUWfqrPsI0sU3FwtISTkFz3fWvoOBW0alCyhSpe+gsZbsb0z84Tq/dxlRq11U3YWllieb2JvPL8/huiSDqcG7uPMeXZtlrTTM+socgWqfZ2KDo1NCGyE3Ndmnf4rJ/hw9cwy/8L/8jb3rTD2Lb9gsfx+eAhuzyKddFAH81sxW+80jgIji6ArTlvbLnxQZIIS4LIn92Oqx1tmvck9euLwRyLu4jTfPIBCl4Pkvtsvd7CeJdzly7OLkT4nnA7uLE7vLnuVRn/7cGd5dP8l4M0NvFAIZS3wd336v1YsCdJi+UpZCX3XL1JUR+sk6SZwua521/FXB3te7N5ett73g375gJeftteyh5DkIKwl5IY3MdJTO04WJK2NzcxrYsNHDy5DnGxwYZGxtjYryPc+cvcG5unaGBKhcuLBAHXfoG6qRJgqksPL/MysoKQRBwYX6VmT3jmGYOIixl5D80IahWyyRxSrsTkXRD3vLKKe6993Oc3U547etfxer5OWb2TlMeGKC93mR54QJ79k2xurHEa37wTRx57AhEKXd/5vNUCx6b6yuUK3UOHp7kiUefJIw1ftHnG//8ZVbXL1Aue/QN9vGb9z7EuyYH8L08y61WK3Htwf2IVKOUYHltlb5KhYyMw3unWVxcJd098fbCmNHhQTqdNjqLCMOAT3/9cQ5PjyIRpGlCFGYIEWK5HoaRgxzLsojDnGbTarcplQvMzi0yPFQn1bnOyFYKyMOqE50SBl1s2yFNM0xl5CcJrek0A2r9FaI4YqBezQNslaRU8nAsD0M6NDY7nDp7gdm5VcZGBwh6IWMDNfZPDtFudymVixhKkoUGWmhSmeC6Fo8+fYrbDh/AKcjcTMWyiKI8S++933gcY32d17zqFrY2tylXi3nwfBzTa3ewTImQCtu2c2c6Keh2OpSKBVqdFo7rYxgmm2trFDyLVje3CT98YAZlCN7zwS/w0V86gGtbICwQgkRblIslsjTFdRWmZdDXX0OZYLk2w4N91OpV+qolLNNgcWGNvoEKS4vrjA0OsrHdYmSsnzQDv1hES6iUCxSLFkurm5BlPP7EaQaH+gFzV+hv863HTuJZFgKN5bhkcUa3E1IuKaTMO+5xLPB8hyzVtNttPNciIwfCOs7YaXdZXt5geWmTat2hXCqTpJr5pSV2mm0GB2p0OhGFQoXVjWWGBjxMVeLo0VmEMOnvr9LaaaMsxeT4EI89eorhoTJ+wSbqJRhYKFNRKuYh0lsbDYaGa8RpxtHjS1QcyYf//lF+7ZffSZLG/MK/+t95/3U3IFwHQ2hyLyeN7fo4rrc7/dI59U1CGPbyTnQY877PfgYh4eMf/gnCoIkQ5FRGTa7jTFO0kSEMvTvF3J0yxwlpmuWmB2GEYQjCMMBxbTKtMZVJluYaCCk0mTQRIkVg0mpsIKXENBU7zS0c10NnOo/r2KWuK9Mg6AVIlWfZBZ02rmNg2j5ojSGh3WpgmBYgUUrR63aw7bzA31hawjRzEyPLlCRZiAayDKRU9Lot0ALHdjCVIk5ilGXRauxw4thp9h+cJtMRGZDEPSxbkaQJSST46n2PMD+/wszMOCeOHWegv58HvvYEN9x0GC1SioUiN950iJtuPoiUkkceforXvv5mRkaHcVyH9dVlHvzmFu/5ibfSaqUIqfjC3V/mo3/7YT7zyc/xc//d+0ik5Mabf4A4WCMVCWnoc/Ls13ns4RMc3HczMwcLPPXEWXzf5ZZbb2VywGb/wRtxC7mba71S48//079leKDAb/zW75JpKBYqRKGBsgXDQxOMjPZhyogfe+s7OLL2CMq0cZ2c0dHqhWysb1Ap+SxuNLFtm4XVNY6dXGDPRD+WKYgSQGQoU+X0W5GiDIPJiRHuf+g4QwMV0izDUTb33vcwe6YGqRXd3MQmzTANczcmIEZK2Ol22Ds2QtE2WWt2GKqXmF/bpuS79MIQz7VRhqK/v4zruMyMD2GYGiHz0GlpWoRhlLML4h4F26XsKxbWtnnskZMMjfSDjkmzjD0zYwxUKriexZnzCxycnqAXZ5y5sIxjG9jKQWQhykwpOg5CWYRRlwe+9gh9Q4PYRkakYWxggK22pl4TCNKc3mhCKiSNTo/+cpEoCvFMg0xrSrZFp9fFKxQpejaHDwzz+KPHWDwzR7G/gpAZjU4XU8Q5dVrL3SL7xYM7KQWLq0v4tsa1iyRZkk/khEEQtrFNhWfbGCIBIdnpdCi5NmGa8aV7H2XP3jFMYHOnges6aC0pWBlxYnJ+pcn0UJW1zSZD9THWG22+9vWjzOwZY6cX0u4GlH0LKWIqRYVpuvRVK5hGRpTE+F6ZZk+SCZ8v3vcUr3nFPvbvG0Apm/VmQNkvIISm1+nheHlTNm4tMLL3Zja223i2wbmFJnf/m/v4V//ih3j1vndz9OEjjA3XGRsfRKQpMnOIDRioVUhTjWMopJGyvLBNrX8Ar+Rj2oIk6EHSJktCvNIwQZRRdFyOnThGX63Go488wOLSPEG7i7Dg6LGnMJXmtz/6u3TTHu9780+SmeCJAnHUod1dYvHUUXSaIdGYTh5jcTkIePWNr6Yx22Lo4AuH0z8XNEiRg5arNfdfqmztEha6fHJ2lYndxf8/N/z8ogZP7Na6Bi88KbwI7nJWm8gnhc9lqXEVkHSFROnbvZcr9yy4DJz+Nwd3l2/4Yrbblc18H9x979aLmtzt0i2lvojUL+88yLwrbJpomVvmCsRlwI5dovXlgO75P5cXCop82zvezdumQt5158Erx9JZihAmy/PnKVSrKMshy8C2DCzbZnZ2nhOn5xgd6sctehimYnpmgvOzCwwP1lC2hXIcsjhjcGiAKIywHcni3DJ798wwNDKAsgyyKMipVMYuH9xQJLu+wApIdcr2VpM9I330i5Df+atPs39qklhLZmb2sLh0genpCTItOP3MHEmUMDU+w9LSHEp2uf6mA4xO9DM1Pso3H3pst0jT7Bkv0+z0uO3ON/Cqu17NTmOdW/dPYj8zj+d7GMKhXC2wuLLG+tYWmYbBep2zFxYolsqEcUpfvcTick4H6oYhru0ghGBpbZ2hkQEGSnX6B2q5QNx3MCyBbUpM22V7exvPddBakyYZQbeF77lEacrY6BhR2EMpE8NySLOMZquD7ToIyyALMwxpkJCi4whD2WRZiueZSJV3trJdEHj82BxDo3VMmTuNOb7NyMAA9aqPpSwsBa7vUK4VqNaKRHFE0AuwPcXJU3MM1evc942j3P6y63AKeZissvMMH8tWNLY73PHGw9x6wxRRmLCyuka1WsU0LGzLRJoCaZrYyqTX6QIhjuWRZTGWY2GZDkJoslQgd4voYqGYU56ShPf823v5m1/cTxz3EEqgtUTZLoaE1aUNzl1YQeuMzY1t6v0FDKfEE0dOYisL1xZYjoVfKeO5BjqVucW57zF3YQVTShYWNhgZ6SdNQuIUNrdbTE+N09hqc/01+xCmyeryJq1Ol7W1Fi+7dj9BEFAs2rRbbZY3GkxN9SOlwnFczs4ucvjwNFuba+zsdBgd7qPX6eQXCwlZmuH7HtuNLp1eTKvb4czZFcbHBxnoK2EYJsVyhXLZI44jdAq+XwApmBgbZGNri76+IqbpIM0YnUps28JUFqdOLSCEwC96bDab3HjdJE8cPcfttx3GVAWOPTVLFHZZ22wTVg5SKldY2jb519ODVIdH6O50KBQ8tBC4foEoTXOzEplHHyAlEoHjuARRj1/68r1MTc3woT97K6a5yzxIM4Tp55M+oYniFMdy8/NYEiKVRxZ3MUyDJBVYStLcmMPxywjDQWcpIk2JohjTUmidooUmDnoYRu4s6XpFDKWIoi6OW0Dsmry0mg0sO9fdgYmhTIJ2E9d1c6qo4UAW5no7w8ayHXQWkiUBwvRI4xgtLkYwaLyCn9NCEcRhLzcZkpCEbRy3gCEhCmIajTa2ZWFZJlkWozNBqVpC757Tpcgp6cryEBKeeOwU192wD88X1PvqpEnK2Hg/ZBGOozAMSbcTsb6+wc5Ok2uv35+7jZJgGIpea4fVjSITMwcoV2usry/zR7//H/l3//EP2b9nL/fc8wVuuP4gpgzZbrSxLJ9SrUCtUKdSKTM01s+xk7N8/KOf4MzRE9x44438+u/+Nq+4/U5+7Vd/nbe/7S1YjkZrwTWHXk5MiE41vU4b10notRtMTNRpbGyhhcmZM7P8X7//CQ6+pn+X2mVQcFwG++ssbbSxLZuqb1L0PEaH+skwMJRNmoFpWOhU57oyTOIkxTA1owM1JClxGnFhvcuN105gWYpzy1uUPZezFxYolwoEQUynG+agrVJlfWeLKLPIdIJpGpx8ZpF2kOLaPo6SZBripIdrmbS6PXzHZnV7G2VYGNICHQGQpAZJCp0o4cJ6QH9fmf5qifXNbSrFUt6QFSmdMCPTBsKQxFHA/olxTNNiZW2Fol+mHcAzCxsM9FfZ3OlSrpVxTcmp86sM99VottvUKg7tdkgQxhSLdVJhILXCsy3a7R1c22K71aFUcEl1xoXFDVzPw3c1SRrRP1BjbHIc17ZQlotJhiU1vu2RyTyb9Grl4eV0tLyw3a1p0xSRaRy3TBQGKDNPVcu02DXZyo0y4szAMXPDlkQLDCkQlsNw3SfJIlIkhpQ4hgap0MBgrUgMlIoVNBlBnLHZjhgeLFEu+CRpiu3kzc8oDPB24xRM5WEZDkEUoLOYrz54nDteMUWl4KAsCwk4SmLKjK3tbQwlKToOrcYiYa9DoVBHCJW7PycxD33qaTZ3BLfvPczoxDBS5TmShjSIkoi1C+cZGBxAa4h1TKFYI0Sw0w6IgpR2s0Gt1ken08ydG60C5Wo/QbdDpVpDKotipY/VC6d52bUTjJQKTI0NUbdhYqyLuVaHzKDVC/ALZdI0ob82gqEc0iRgcfYkURBR7R8kSXdHY+JZN8rf+u3/jbf8+JuuWk++4CSM//fg7lIdmeWgzrhMx3e1/V3UyMn8LL17GRSXbs+uxpO89D5AZxdjHnYlSeIq80Vx5d8VfYyXAO40Gr3LTpD68pnplZO8ixq/+7/6Naampr9rCufFSATES5jivdAkbxcDfJ+W+T1cL0pzd/EHcgXN8uLKu9cZcNHz9RIIfO7B3j3AL2i8ctn6pV/6Fd7Qv8k77zhwmZD62cdkGpIgwDVy/YBGYNsFDNNia2uLaiV3FBQCKrXibkfe4vTxU1TKPkoJHMvEL+TuVaay8D0faUoczyXo9ZBSYNo2SZTT8rSGMAhIoxhpSNbW19Fpgus5LK9uEoQR733VdahojSfXEt705jczMTnK2bOL3HPvV3nVa+7Esg0WlhZpd5ooJAvz5wl6HSbHp1ltdThzqkGpYONWh+l2OsyePg6kbK9tsdNapLu0xmDRIwoFm5sbdBrb1KpVhgbqhHHCyMAAnmPR6oQIqdgzPsS5+UVKpTLCMFnfXGffzF6kcGnuf6JUKgAAIABJREFUNPA9lzhKqVQrpFGK7eS6JccvoMkzlpRlYroeOksJgtwlUimFTjNM0wQtKBQ8wjBCSRfLzTO/Oo0Ez1dESYLQec5ZHCcgMwzHxHNcPMfGcWza3Q6GMgjCGLQijQIKJQ/luHRbPXSWO8etrW/x/7D35sGS3Qd97+f8fr+zn95v3777nZk7i0ajzZI8AsnGBoMdjAHbARy2hIRA5YUQ4L3kvUpCUglbIEVCigd5LwEbF4RgB5uAS1iWbdnIsixZy0iyNOPZ97svvXef/ff+OHdGo9GCXalyvVT5d+tU3dt9+/R2+vTv+/tuj335JAeXWlhKYdouhw7OYzoSaRbdSuyupEVRRLlaonWkhe2aREnIVGsCcs1Ou48feLsdNALDNEEUqYovPn+eSi1gNB5jew5GlhGFIXma4bp+wf5ozY/+5sN8+B8cRhgp/f6YIKgzGo4wTYudrR2U7bGwp0mjWUMDg86QYX/E/MIMa2srjKIxvu8iJYzDAb5XIstgZW0Zy5LMzU4z3Wry7HPHmZttoqTCNAQvfOUsBw7MF6mv0ZiFxSkMw2BmusJOp8tkq0aSRLQ7I/YvzdLrDzBNh63tLmsbPaZbTbq9EY2JCl89dYXW3AzKtMiSBNc1yVJBGMYcWGqxstxncS6AfEQcWQQln0cff5F62WFqulGwDZaFoaHbG5LlOaWyh6Vc8iwkiXKefe4cqxvbHNo/R07OYDCiVvLo9UZEcUyWpxx78SwH902zMDvJZ15apTR5K8sbq/zxx/6An7r3HpTjkCcRju8jLAdjNx4eMuIowrIKxlSjSdOU33n8MZJanf/w6w9gCI1hQDIeYvkltB6ilIcUXlHuvNPGK1URSMLREKkkQqgCsEhJudYkxywSL6Nwt2i8SA1E6+s+KCGKgBWUuq5yyPIi0CJNE1zXJ8ty0iwuuqPyvJD9SAkUSgTLtQsGEoN4l4Eej0Jsy0JZJkopRsMhjusQhcV+DGFw+uRVGpMt5K7XxBAF44ehMU2NzlJs08U0HaoTNfI82w2XGGM5NlFYyFsHvQF33HWA2kSZNM4QwuSrJ87RaNSxHJs0y5DCRCmbjbXtAqy7Do4n0bnJQw9+kWPPnsHxD7G0fy+mqTBExsysxfzcnRw5cgtRHCIlLCwu4NUmqVYqdNav0g8juv0B05NTKEPxbW/7Nt7ywFv4pV/7Df7lL/4yv/xLv8Gv/Mq/YW3rHP1Owp49exAyJcoifM8nTSI2N5e5eqlPFI6pT1Ro7wz48lPP8ov//P/iq92nyHVOGEU4jsAQilLgoJRASRspColmmuVkeVqw065NkiWkeYQScncTxecFgziDWtnBtWwG45BK4BHnmolGAyVMTLNYVDFNE42BFBYVv0h27AyGzLXqNGslbNNACcU4jNhsjyj5JlES49oOgRcgDIMnnjnO7EwRluTaNrlOMGXO5ZUejbJNqx5QLRcqg1FYsIWuVRR118o+tZLLRnfIVndMJfA5s9pjYapGlhucP3+F2WadarlEmGvGYcrVtU1mW1UEJg8/8jyLizPkWYwUksF4iGNKtFaAxBAGtm0SJQm90YDZVgvbLCSPlmlhCEmmFTov/ItRDo7rFvOBXeD26mmHeMXlhgFpltPuDil5HhvtNpbMse1iP73RkJJt88XnLzLdrPHg515gz0IT0zIZJyme51AplTAth+3tLeqlEl/4q+dYXJgkIyeJQ8hCdFb09HWHMYHrsTBVYxyOWd/uEuc5JddmMEowhHtd3p+mEVIpBuMYnRsc3NdCSYrgLSXpj8aYUmIpgW1KbNvDtCSCEf1BihVMYJsSDEk3yvi5u+/lgLwdr+ygjV2FgBBoCtVAvTFJliYkUYzlOmidc/7CCt1hxOT0HFMzs1y4eL5QOFgGSZ5h2mW67R28wGdrY51L54+TZCMmag3MPMTxXQwdY7mnuOfwO3GUZrx8lbHucXltSHlmD1eXN5iZmcPzA7rbK1y9eIbRYIjnetiOQwHTc47edh9/8p/+G9/63fe9+n3dBQo3W3FeC9wZRhG49vWmRL4eoLt53DRTfVn2eMP1rzfy/AZ2TuyGZu1KP99oentjKMzNXXav/L/XNOAV3zmGeOXlN3j3rl23d8+e3UWP17+PNxo3Brq86v7e6HbX6yR4lYT0m+DuGzi+Vlkm3Lji8OqD7sZo1FcdBjcdVEkSI8XrHyzvff8H+OA/+vY3flCGZmNlA8dxcetTWHbRKTPodqhP1NnY2Gb/vgWWV9bZ2eph5BmnTp7F9V2CksfFq2vUaxWUMDl59grTU02EIShVymhD0253cF0XIS067R0832cwGDLqDXCcohza9V1spYjCmDPnr3Lk0B4uXFpl73yTO1qKf/DrH+Tb3/otBKVJ/tPvfJDve/+7yHo9Hn7wISpuITd689E3USmX2NnqcGD/YT73+Yf5jnd+B+98zw/R72xz9sTz3HP0XpRVFA5/4nKfB3yfarnETr8LOmenP2RlYxvbsnHdgnUruw47Oz2EFCgDTp07x0S5hCEcLq9tIXWG7znFcxSS8ShmPIoY9ovEStevFSuFspCfZXHG2som9XoV5droDPIk48FHn+DC8gYTlYBKpcTm5iamshgOQp588ThL89MkWRHkMBqOGfYG6FRjWW7BiOU5lrRIkwida1ZXtzl/eoV9B+bZ2t4mCUOeffECK+s7kOdMtSY4cuvewm/VHxFHIVon6CzHFA6jwZj2To+Hn3iBI/v3cNvvfoif/8HvRBgaMoiihONfPY9rKdJkTCnwGPT7hQfKsonTiMtXNtm3NI/tWIzDEI3GtE0c1yNOM5I44sf+/af5rR+eJfACdD7GcVzyzMR2FHEUY0nJiRNX2LNQo9/tUQrKXLqyQ5Ik+I5JFIYs7JlDKkWWFEluURRj24I8g9ZkEd7Q7nYwhUWl6jAOh/iVCs1mle2NNpXAZzAMycmJopA4Sen1I+rVKqtr29QbFVzXwnJshDAwbcXePTN0+11qlRJXrqxw+OA+jh8/RzXwSOMUaRUgZWKiTp7lTEyXkVpgShu/5nP21EWajTJTU0122jtsbvXxfY/Tpy7S7UW0pmoIAVIpRuM+/X7IOEo4cnCOar3OxUtrLMzW6Q8zpmdaXLi6zptu38e+vVNIIThzdgXTtnjoqWXm5lpcWVvh3QuLaKmwbQWi8KiNBgNG/RjXV4xHu+DfshC7EuB7f+5naNXOsLg4UcgexyN81ybVAoFPFI5RpoGBies7aDLSdIQpTRDGbh5YUdCb5wZyNyVOGBrTLEKChCj8c0IIMi2Lv40coVOiaIwQFlmSYlkmWZoShRGWZRdssZCE4QjLMlHy5T6zJI1Ryi6CY0wFhsC0LXSakmaF1N00TaJxVNSOSAmGpt6oFJ4zrYmj5DqjqY0c03KLpE5R1H9IU2HshiIUMk6JaTsYhkKTo7OUXrdNUGoAgrOnL1OtVgrPaZogVCH7feH549z75iP8+Z99hslmA8cLmJws8Za3HuXn/tkf8P73fi+OY6FzSbM6x7mLZ8kzjW1b+CUXDM2418X1XcIUZhZmqdZqDDo9Pv7fP8bhO2/nkc88QnsQ8Yk//zgP3P8WnvjyU7z5zXczMVktQofCjI2dNVzXx1QS24QrF9eYnZ+lUq6RMKBRa1Iu1/m1X/jPdOtD9sy0SLMMncvr4RtSwHZvwOce/Qr7l2YBTRiNkVLRHyd4ro9hmBgCRvEYaYC565+UMkMaFsMwpho4RFGM77jsdDu7wNEgSRMsVaSwbnaHOKZL2fPQuz4aJRXdcSHNVKbDU8dOsXdhihPnVtjqRkzWfZq1EkJKlLB56HPPszg/gaUEQVBmZqJEe9Bho93HNC2UkmR54WaylMS2FJ1BB0MIqiUPW0kqjsM4GrK6NeTg3haGEDz0mWc5tDTPZM3DNBXVoOh2bExW8T2LLB6S5AaeJeiPRvyPTzzH3J7J4vyRpyRphjZSGuU6Wkds94Y89vhXqU02OXVpg71TdXKtSXO5+3l+fXAHBQC4EQx0hyPIr7EzCUJmREnxHB1bMhjHzE02WVu/yp23HmA06lNyrcJHqyyU0GRZQtmz0UIyPTcJaJI4wlTFAp8QNjkCx3UZxjFaJwS+g2VZVCsBphBcWevwwqk1WpMVyp7LOByhLItLK9tcurLFvtkaJd9GCk2mNVIIxlGMMAr/ZJTGmKZgNOyihMtOqBmMhpiWzaf+zZd45MkX+J77jpJrir48Ka8nXOa6KLxXSmBZNlmeobXECarFgkWlhu/71Op1pLQgGZElEa7foFypkEoDWwqmWy3anU3a2+sszEyT6ZxeJ+L/+dzjzAqf6ZkparUAkHS2rnL+/AvUyg0qtQkcv0Y/zlmcnaW3dZUsGmCbFobtXvfi7d27xF98/s+59813v3Lq9rL7bHd6+Prg7vox8I1IEHmN+38jcCeFuM7sGUaRzH3dFvoGNxQ3KtDE64PQ1wR31/bxOuBOvwbwu7lS4cZ9f00A+LXA5BuNG/Z58/6/Ce6+geOvA3eGEC8fCC9/Grn5sBc3bDfc+JXA7pqp8gZgd/PqzY/+yI/xx//kPX/9A9ewsbqF5QTFilMO/eGIUsUhC8dMzszSH4Q8/dxptrpd0Bl798wTZwm+53DhwmXuvvMWhuOU2VaZIHCIIo1U0Ol2GI1jvJJDEo8JAgdDmEjToFwtI00XQxtsrG3g+jbhOGN+eoJLl1dYmJ9la3OL+flZfup77uPpRz/NwuHvIMu32Lmwwj3f/jamJ8qcP32cSFf5j7/7Hzhx/CqVCZ/cUEzVK8zPzfJbv/nvOHj4CA+8492Euc3eAwuYfoW7brufL37uEyx6JSzbZaLRYH1jm3wEh2/Zz3qvR6c9xPN8ltc3cZwCRFVLDnEypFaaJhNjao0SlukgyIijEY6rWF1rUyo7pGmEV/ZAmQgMBu0O0rZ55sVzzE7VsbQgCodYtoURC46+6UDRG5fGWLsSTNMyWVqYI0tibMtiPEpxq27BEoxTHn/yOAsL0wjgI5/4AtO1Ekq61JslatUymQ6plX1AsP/ALGfOL3PXkSW2B9uU/SoPfuZJ7r7zEKQZ5UrAaDRiFI35q8dP8Kbbb+HIgb1I2yCaCviWwzMYhiBKUh586Ene9V1vwasGlKs1ojjB9YrEuDjq09ne4fDBOR597DgL87PIPCPPc0xlkSYxaTTih3/rU1R8xTsOKUzbIs80ynZJDRA6R1k2mc6Zmmly/KWLTE9XsO2AasOnVq2zur7B1kbE7FwFnVmMoi5KFoXfZ8+sgBbEccaJ05c4fHCBwXBAEupdVrkAIr7vkKQpWmuqtQqOZaOFZn5xGmkq/F0/2/raDuVqmTTXRZBGt0fZDVjb3GR+cYa19U0W9zQR0mR7q0dvp4/nFxUPtmNz4ewKswvTXDi7hld2GQ3GzC9OkmUJSjq0piaJwpjpyTr1agklFUHJRUnBmbPLLMxPMjfbIgpjdnbatJpVglIJx7LI0pxKEPDSiQu0JipsbvXwfI9/+9lNvu+d72R9c4t/MlNienoWnSboJCXJFHY5wHUDTp66QBCU8MsllF141yQ5/+r5Y3z4Dz/CL/zvDxSMQWww6mxhmGXyJELLHCEFWZahLEkSJeQZOI5FTlwk/mEDGYZQhTTbsMiS3ckVokiXDAe7YRsaKW1yHWMYOeiCEVRKAhmIogzdthVZFhGPY2yZkecptlMmS/PCxC9zTOGSZwYIE8OIyNKkqE7QAqls0jQt/IHaREgwjJQ0ThCGKiSnRoJtlUBo8ixFSkmW5CgjZzDo4QQueZojpUmeFzJzISx0ljDsb+MGZdAhEsmV5S2efPwYhw40aE5M8MSTX2Hv0iJry1fwfcn8wgxJmnD7mw6wtrxNsxkQDftoQ/Onf3GSuw7dwcLsHFdWL9KamWJre4c//fjD/Lvf/I/8wAe+n9qkz9pyj3KpimXadJZfxJagDYujb30np19axnQU7/kb7+JDv/87/MTf+bvkORw8citlp8r26g5RtsHSgaOMujtEYQfTn0XkORBz8cImeTJiZmGR7mDIj3/gB7iYvEiahmijWOzQeYprWmx1hkhlcsfhvRiGJstzTMvAkprBYESaRsSpxhQaV2YIA3YGPUpug3OX16iVTHzHI4r7jMc5Zc8BwyjkvxSTsVxr4jzFRvHi2YukBsRxwpXVTSoljyiKiNOEnV4HabnMNCeolAIur20wGoc8/8wpDhxYwDBS5qYqDMcxJT9AiBwDiePYmKpEGKf0R/0idt/IGIwGHD9+mpnphcJ/5lnkueKLX/4KlUaTsiMZhBllXzIz08JSKUrYCJESxoI0TxiMRhgGeF5Arz8kcGqYymKlPaAWSCyVXj/3P/3keZotH8e2iKMYx5LMNit8+ckzVBoO1ZKPUiZCyZum+a+egBq7l6UY9AdDyqaJaTm8eOIsrckSluljKUE47mDqAa5boj2O6fZTmg0XyPFtG2kYDIYJTzx1mmbdY5CMcSwLTc4wirBJ2B4IPLeEYzsMx9vYZoAyBeNhiDBsuqM+pijqDcquYnFmknJgM4oGKOURRmOa1TL1mo8yjcJCkAiybEzZr2MYRTT/Vm/MRKNesG7xGonyybOi2/Lyl5f5hb/5IxxM9jAxVWF9MKBc9pF5jpI2uU4RpoOJCVKR6qzweuUppmnx4uXzHFrYB7lEGgrX9RhuL2M7JmEqWNneZOPsOaZm5hiMh1xaWcN3TGYaNdI45/9+5MM0RIO3Hv1WDCNBCItLF0+x/8AtzNRL9AdrPPHFc7Tm6/ie4MxXLzC3dJBnjr+ADnvo3MYtl0EW7+N8aZF///u/xTvf+Y6X54piF8zvCsFeAfau1R7ubtdYrmuevOKztMsocS2o7+UFgGvXZQavqDh4vU3uMoPXCs6vzUezG/b1ehDr2n0Ui36ymMdeE6u9jmQSCibteuXBG4zroTLX5ckvb3mxDHddpql3w1eE2LVJ3fBzDWm+giXNd6W0N9QriN3Hq2/6G14NQF8rAPHaZfm110wIjDy79iYC3wR339Dx14K7Gw+uVxzlX4Ma+lWrAq/htZMvhwy89/0f+NqAHZClGbaAOBrj2AqpJJ2dTiEhNG2GozHPHjuOZwlsRzHVqNBs1mk2i1TIfm+IEgLHcbiyvIwBVGt1Mp1RLpWo12sM2iFKWChlY6CL6HIt2N7cYWdnG1MJSoHLufOX0TpDSfjq2Ssc3DONUoLhaESzZPH8o5/ktne8j6P3fiu9UZ/OxiZRNObpZ17k/gfuxrUcPA/ixMC1Pb70xBOEowG+77G2fJVvue8envnSlzn91dPcf9/9/Os/+e+8q1HClAIj15QCi/54izAc4SgbREat6tMfdRnGA2qlMhKTJIb1nTa+65AlOYHncf7iVRr1KpkGS5oEJQ/LVIzHw4IJkXK3Z0uxb2GGfn+ARJORkaYZk61mYbJ3TK6dFh9/5hT7F+aJkhEb6x0wNJvbberVAKkE42HM+eVN5ls1BLA4P0kSxxiGQlqCclACozjhWo5DplMO7ZtnZ6vL5FSTNImZmazjejaeq9je3qZSLeH7AfNTJZJ8UIRFpDmnswG3zE0ghMDzHO64/SBCQL9dSGod2wEk0jQxpY1lmuQa1ja3mWxWCqDruWghEKbFf37oGS5sRvzXn70X36tgKIU0BErKQoqpTE6fukKtVKLd6XD5yjbTUxUuXtqgOVkniWOmWhOcOHmZtc0tdAa1qs/y8iaVWoXTZ69y5JZ9eJ7N7EwDreG5Fy7Q7oyYnq7juA5xFBavje0w6A957qXzZElKrRpgWybD3ZCUkycvsHd+iqePnSCNY2rVAMs0aW+16Q/G+K5Nvz+ivdOnVq0QRTGNyTK2ayOkQijJRK3K2QtXsE3FzHwL1ywqQVaWt6jXPbIsI001X3j8OLffuY9hOMJxi2LmqVYdISWXLq1i6IINNK0CxK6sbhD4NlIa1CsBveGIwHc5f2GDjz5+kp/68b/PwQPzlC9fQlkOea5RSuHXJjCEQXtzh0a9SqVRATL63T6OZfI3P/ZxfN/nQ//l3UjpY+QZ0Wgbv1zno3/yKe68cwkhLeRu2qrWmn6nYMCVKYnjEUrZRGFIHA3J0xTHc0iSCNuxCpYuy0AbjMdFcqehd7+wDU0chSjTRUpNkqQkUUqWZVi2zebaFrbtY9k2/eEAxysRRXEhd4xHoBOQiigKkVKTpRoojPrheIAUAtMU5GmCqRRSFn5Ry/bRWcbqyjqOK4nHRcG9VJJRv0+SRGBoPC8AQxEORygpC/BpQJqkCGFgOxZxlJAlIZbtsbnZ5uh9dyBkjmHYzO+Z44uPPs3hW5dI0wTTsrGdMuhC8ZDnmqBaRijFgw99lXvefA+1iRL16gQaxUOf/Aw//IPvZnF+mltvOUjY7/P//t4f8Pa3vZ0zZ8/QmmiysraNE5TIyfizj3+Un/rpv8Pp0+d593e/i4mJFr/8q7/GkdsOsLWxwleOHWP/ob2Ekc2xp5/kzjvu5Pc+9Md8z/c+QKfbZXZmiWpNsbmzjVCS5Uvn+NSnPkdzqY4pFYZhYO32YRriWookhHFRVWAYEmFITpxdZbYZ4LkehpBEaUamTaIILl29wsG98+Q6xTId/urxZ9m3Z4EwzTBNk1GYcHW9Ta7Bt+0idCrVPPnECe656wDnr6yyZ3YSQxus73S4eGWd/YszzDSr5HmGkga+Z9OsVFjaO4tSBUMcxjllv8RTJy4x06yx3R0xDCOiWHD28gr1is/jT5xic3vI4aUlWlNzPPjwE9x7xxIvnblMvVqiOxxweN8MaZoSJuA5ki+/cIHZqSpJlpPrnJ1eSJhmvHTiInccWkAZGaZp88lHjrG6ucV33H8E3y3SF5Vy6YxTDuxfwndKGLLwYbmuxzjJmZtroI0cx7JI87yQ7L7GfOPVkwSNoQVZkmLojEwXr4kQGlNZLK9v4wcu3TDFVAGVwGGy7tPvd4EiNEMbgihuMzPbJAMmywFJmuHYHrkWdEcRUjm0ex0MZRImIbayMIhJM80nHnwOp+Tw8GdfZHamjDAMwjSjM+jx7Feusm9hAkvkRZeeVCR58Zgf/MtnmV+cwHVM0jwlTTPWNgc06lXSeMiot8Yo85iaaLK63eX0/1jloU89wve/7btI0pgTz51iemoGJQowI0RhPTDyBG0UieBJmrG13S56CxODVmsBXJf29hpu4KCzfhEchcIr16iXqzi+y3A0otfr0So7OLZmqDO+eP45PvCm7y56TIM6ENKcnMa2BHkW0QgaTE4aPPfUCwinQuAHBJWA/Xtvw/N9Lpx6nonphYIF3R3T5h6W3jz38twtz1/Bxr2yKuC1p4w3gqzXsum8XKmxy/L+NfPHa0NQALprtQk35rFkuX7D6oVX9Nxdfy6vMW668OtiwXhjBu/lBNmXmbhXBbHcLJMsftn9/dUs29fCqN78PzdexnUAmb3MUn4T3H3jxxuBO0MUvpBXyzLha7O63qxofq1/KVYWTv7Fb/PT3/0m9A2rMK/zqNBas3l1nfbOKsoUmLbDzmab3s4GU60ptne6bG9tkUQx9x29k1azzqA34LkXzrK90yWKYvq9AfVqBaEUe5cWIM9xPQulFBq5S7dHeL5Ft9+l0+lSrVbpdgfYtkmz2cB1HKIoYW66QZKmTLYmcS2DXBuEYcTsTJNMZ9xx22GM7VP8+L/+Xb7/3e9mcnoJ27bobG9w8OA03XaHw4fm6fdGeLUGBw8t8f3v/0Ee/9KXeOsD30pve4ckjhn2h7x04kucOnaecTjkrtYEgyjCVh7jKMUUJlEYsTi7wOZ2j7LnMzsxR1By2ext0pgM2NjapFVtsbbVYTAcEyVxETBiOxjA6voW9WaTeDTAK1XJNeSZ3v2CzbGUTX8wwC+5CGmyudEhTzIst/BetNtd9s3P8KlHn2Jpfopazce0FI16gzgaF3ISU7K0OIm5GxEeVAKUEri+j+2anD5xkUqtTJamZGjGYYRjK1zPAkOytbXFs8fPszjbot/r4bgOGoM8NXjpxctMT0/s9p1p7n/X7di2gzJtdF6EoAgJg94OtmVjSlUY+g1Jngn+8COf5vYj+1jaN4+yTEzLpN8boEybL7x4gff9b/+KH9p7jvGwhyE0Yb9DnqWk0ZjAKaRwk5NN2ttdatUSUxM1DAmOWyZPI1zHZGVlg8OH5wjcEpeuXqVRaTI1XSPXOVMThV9ua7uNEoqnnj3DPXfuZ2G+wdnzqzQblSLKP4qwHQff9Zifa9Jp95iaapFmKYbQmJZg2B3xhS+d4Og9BxgOxhhGIS9M05QLlzdYXt2m2xtR8j10VnzAXU8hTBuEotPusbK8wZ4Ds5R9m7NnLxD4AXEYofOcp587ydxMkyePnaJW9Zidre2CpuILbHV1A9syqVaL9EwhDaIoZnOzzdxsk3KlhLIUaEG73afTG7FnrsljVww665usrZ7kDsdDWQ4asG0bw/LQWuN5DgaaNEmKsmilyHJNvLSXf/5Pb8GQEkVOEoW4vgfSZGnvFG7gF0sQSUKWpiRxwTZ7JYdep4dfqhax2bLouNRpTo6FwZg4Thn2hzieV7AYvkcURsXKspJF/YsuZHhaGygFhmFhW5I0SfCDMr//+3/J0ftuxVAmQiqkEuR5RpblxGGKMIvgk/Ggj2Xbu5KYwm+TJnFR8WIUYM/1SkVpLzlxGFJv1JEmKOVcP+dKJbGdIoxFCkG33cYrBYAuJJxJ4evTOqff7VKqBBiGJElSJiZKGIbAcR2SWGA5JlqneJ6F5broPMOyJHEYk8Yhcawx7aKr6YN/9Aw/97M/zWC0jSkcTKm45fBher0r7Nu3hG27RFHId77rbxDHIdPTLYQTICyHUqlMlqXcc/ftPPbol1CW5tY77+GXfuXX+fCHP0S9XAT0vOWBu2m0yly6ssqdt9/OeDTiltsPMhy1qTdmWF/vUgogKNeo15uHzHdmAAAgAElEQVSUfI//8jsf47Z3zGIYBkoIdJYWHYRaYyrB+k6XiapPlCSsb/VIcsHCzCTdQR9lmVimSZJqpLD4swef5dvuP4ClXJIsQQqbvXsm0doo0pXRPPKF49xzZC8Vz6bd77O60cbzA06eukJQ89g30+Lc5VUmaiVq5RIzky06wwGeYxMlCU89e5L5VoOnj52kVq/i25IkT7FVAc5nJusIw+D4yfPMz7Ro9yMOLTRwLItnXljjB773DkbRCMsy2LdnkieeP8v9d91KGIcszLYYxSN2uiNcx8FzBHtmWmQ6wTDAtW1q5QqVwGb/Yot2v0+eJQR+iYlmiX2LU2S6CM9KUgNlKjASXFsjZUKmReHXEQIEWEJTKvnFd2xWLEC86tv9NcBdhkYnmsFwTHc4pFr2idIMJQWmbdMse5imieX6HDt+hXoA3V4Py5Qo6RC4Fv1hG8cqUS2XQFust7u4liDPE7IEHM/n4U8+zX337CWNY8I44cyFLXw7xlQ2d92xn1rF40137sE2FSXPwXMtLCnQwsQgpzceo1SxOJilEY984QQPvOVWGpUK2+02jiXxHRvLtHAsm3S4QpKMqU8skaNJdc7Pv/sfYp+3aE67pHHC4r4ZTKtgMIWhSHODi1fXClWLAUIW0R8aQcl3EMJG+hN0tlaoVCbJhU2v10EmPSzXpTqxSBQN8cpVDEOycvUU9YkSvm1x5fJV3v9Oj7J9GNe16HS20LmBKQXSkCAstMxY3xjQWphi+fJ5Gq1F0izDsTxMy6W/c4XVy2eY23N4l2GCIHD4+X/5C/zAD73/+nt84/v8RuBO3MAavep24mVm62Zwd63i4LW2V8xF9Sv3eyM7eL0n73UYvBtLz5WQr973y0/wf2rczODdOHJ2/XDX2Lld0Px6csvrz/M1uvNunqXf+PfXA+70NTbVEDd1Y3994O7rg8DfHP+/G6PRmH/xj/4u+6YbAH8NsAPQ5FleeFCSGC8ISLRkot7EsQzSNKRccphu1hiMQoTpoCyHzfYAQ5gMRmOOvXiGUskFI2dmZpLllU0A4iTc7UMpPqhBrUGOolFrMT3fIskygkoZy7PoD8doBGlmcPLkeeqNCcIwYW1tm8urO1SqBTAaRRnaEDSbDf7rz3w7P/Ez/5h2f8SjX3icmelJkniMY5uEowEzMzUuXjrLvv0LfPijf8ad9z6AX2kgHYdb7zjC/sOHuPf+u/i13/htHs0ceoOQ6dkWm50tDu5fwvIV2hnywukTDKM+yJSr2+dY3dhgZyfBosbcVIvtzpBaJWB5Y5tbD+wjTjKUZZHlRQw+QmFbLgYCnWqiYRGioikS6kqlEqZZsDMnz64WPXe755dmbQLPk7z72+/Gki7dQbcoH080YZQilCIcDbEkSFsyGA4hKxIHi+JRKAcu/d4I0y48RYFXotsZkO0Cl8DzObJvgYc/f4wLF7awTReliij3SKeYpo+Wmu2dLu3tNuPRmDTNGI9iDEyyTFOdaKGFJIxHjEZtli9d5i8ffJQf/8F3oqTg4oUrCEMhhEIIk+FgxKNnEh7+3X+Mziw8K6DfiTh14kV838T2TLqDLp/9q6fIsphKIyAchVy+vE6nO+TF4xeJo4QoGlOtlInTmMe+dAYhNaNBTJKmCENw7CtnkVIw2axz8vRVDu2fJc9TdjptFuYbGBo+++jzKKWIooh+r08YRtRrJU6eucKpM8vYjkOWQ7lc4vDBOYKgxESjTm2igek4WK7H0aOHefM9h7j/W25jce8sJ89exbFM4lG4+z0h8VyHwaAoj99ud9g730QoWF3dpD8YMjc1Sbvd59679nHP3UskoxCdZeRaE0YR09NNLl9dRxgGzx+/SBAUgSKVcsCzz51lPIqKFfkcNrZ7OJbizLkVttvb3Hfvm/nUY08S+D6GMHCcIuk13+0UyjDo94dYlkUaZ6AFfxBGvO3+HGlopLYZ9dfAyMjwyZIIP/BJc9B5Qp7HGEaGMg1M20bnKeVKBTAxKHx940GIZTl8+Pc/hYHY7W562WRu6AzbsVG2izA0WZICgjiJyNKMfreLgVFUbgyHGCLnp//h9xKH42Jiq3MkkMYJyvRwggkMYZLEOZ4XkOsYqQx63T5S2hhSYSgTZbn45SpZXsiBCu9REWIUhSFCFnonnefoPCfLJLbjkGYR5apHnibEUUSWpUhVhL2YpklQCoijEAOJ5djoLEYIiOOIBx98nKeefI49exaQSiFlEfAyGmwzHu4QBDbPHztBniYYucEv/vzdiDTBIsP1THIjwbINZvbcguXXUJ4DjmB9bZUsz/h7P/mTDKIenW4bqSxsM+BzjzzB4VvupF4rMRrHfO7zn+cLn3+UQa/LRz/y55w7dwZEwsx8g6BkkeUJQUngOBNcurDBxOQUnfaIKNKsrG6RxPAXf/qHZHmC1ikXV9YZhhFxkmDbNqaSTNZKhHFCdzCkVS8T2BZSGrh+CcssZJwCTZbFfP977kJImzBOMAxBfxwRJynj8QhDZ4zHI44cnsdSBjv9LlkeM9Oo4ToW9ckyS3MtPMfiln1zDMOIs5dX0cBktQxIXMvh4plt2t0xhw/NYJmCPAuxZEYUD4mjATudLUBz55EFyr5DGIUIkXHy/CVuvX2WOLMIvAr9QYRjKSYbZS6ub2GagiTVeI7H/OQkExUXy4RhPMYQOSXf4QtPnyDXmuGwh0GGY5so2ybJcqolj95ohDBMlHQYRjFJFuGbFcgEeZKh8wTXkugsKRa+jBzTLAK2+sPh1z5JMDS9Xba51agWzKprk+UahOTMhUuQRaytrXP3kb3oLKNWKoE0GY5jdtptTCMlyyMEfSQ7TE9OYDkmnqlJox6uzPne9xwlSmKkDmlvdbhlaRHLcbBMhRCand42GEUH2sWVTeI0IYw1F44f57FHv0qt1sCyHLIsxSTh6JsPUPZtpIQ8lwgETz7zEp4NSmrCaECWanJdSAOf+O0zvOO97+XAbQ0sBWU/QOUmWZyR55BlMWGaceH8FqmWKOUUXnMJgSPRWU5iZDz25UepGgaWLdECJqfnMaRkp7PB6dNnUY5Lrz/ky099icO33smx57YJhxkHFg4g+2sYQpOmY8qBj+15hR+ZlJwcHWfM7VmgYQr2LDQ5f+ZMUc9hFSK+2vQCzXKZsy+9SJqkBUOk4Z/96L/gfe/7W1/f5PB/gZFl+TfMD/i1jmvn/f/VxzeZu//J8YayzBu0usCuvGF3E+L6lun8Or399RzoP/SBH+MH9qe8/c59X/sDNgTjQYjOY4JSGWU62LZDkkZUqnW6nT7CMnEsj9FwzJPHXsSVBrcf2c9Uq8LlS8s0J3wmmw3OnF+lUnYYdPtUSi5ZBlkCp86cp9HwyLSBNBVZkkCSIC0TyBls76Bsk+5Oh5WVdQ7dsoc0jjh+/Cy1Rh3HNImTmG6nR783YnKyTrfTQ8mMH3nLrXz0zz7Cd777/Vw4f4Ynn3iJq1fW2H/wAEmccf+33oUfVBh1IgJrxLnTl7mytsMnPvYh7rpjiTPHz7FvYZK3vHkf/vlLRIMQx1aMhiMm6jVM4dPu9Nk/v8Dmdp+pianCXxPDZm8Vz/ap1T0MJHNTVSw/QEqTeBxhuxaB57C1scMwy4jaW3jVWpH6JRXDwYgHH3uSfa1CypOlMXPTVSxb4njudfmX4zqEYYxpC7K86A2TMsd1ApI4Js81hjC5cmmFqekWnU6fCxc3qQU+eRaCYaJMSZol9HaG+L4DWmNaFt12j49/9lnuv/sIyxtrHH3TrUjTRJgKoTLmZwoJZp4beK7J+aRDs1knz0KkadLe3qJUMtlZL7q9tKERuaLcmGCiWSYouYzHAyYmm8jdLjJlmfzk7z7CTqfN//F9BzF0SJqnKFMwOzfHOMmJQo3vVZmaaDAaDBmOQmoTZXy/hCUlSdZFZJpKrcZwHFGpVDi41GJ1uYOUGj/wsDyb+bkmwlSsrW6yd24K3wuo1EuUSiUe/PSz3HZkH7WSi++4SGXjujYnTlyg2awyNVOjNV1n2Osz7AyRSlGpekTjBNs22Ni8ims52L4NWU4cxQjg8vkVDt+6iLIVx5+/jGsbBGWLNMs4f3aVsB+xuDDH8dPnabeHLC3NUK2V8MsuILh0aYtLl9a4tLzB3sVJMATPPHuO1fV1Duzdy+OPf4Wj9ywxHMVs7wzo9oa4tk2W5UTRkDhKcFyF77skqSaq3Mp73vZd/OknP8JP3v82dBwWq9S2RW4UabvSkDiOx4XzlylXS/zqmdOcPP4cf/tv3UqS5ZB1MaSPabvE4z5FWbdECsmwMyzSdlONbdpoQyBkUVEw6u1gOk5xzBqa4XDE4VsmMB23iMhWkjwvQkmi3QqJKAoxrYIty7IYJQyUKjwV0raQyi6SAfMMDEkcRbuySJNwOMT1PPLdRaVwNMS0TBAatCSJE9zALSZYUZGOZwgQpAy7QwxpYwhr95jPkNIugKCRksYR0nRAR2RpilQWSZxhmtfqPWKUWQNCDEMVoCdXGKII9ckzge3CeDjm9tsPMbcwTa7HRUeXa6GExLR9pO0RJzkTzTJGbhBGGaWSh+ndgrQclBZEEVxZXYdRF2UrpGHzwd/5I26/dZbRMOXu+95KxZJkSUarOc0f/N4fcfe9d3Dl6mX27NnHxcvn+dmf/gU++pEP8j3v/1GO3nsLXlDFdaqFt9CC57/yHI6qUp/wUfkYy/SYqFo4AtZWlxmMB2ysrvHr//QPYQ7275nGstWuNDVHmhbCUHT6RQfd2k6HSlAlzVI8yyJJM0ylMIRBZxRxeXWbmWYVYeREybgoCJcOL528TK3sF35nBGGaUwnK2JZLL4yxlcnifIMrq5tUqz5JmuIoyTiBnW6Xum+DkbCyNSKoCg7tncN1A55+6SylcgVTWvzFQ8+zf/8ijm2hdYrreMQZlLyiMmG62SJKM1qVIgTGVg6r2zu06hXKvsOxE5fZ7vSYbTVp9wakOsdWLjrLiKJCrlivVcizMUFQYhjGuI6DFIrBaIhtSdrdkM8/dRaEpha4XFje4ZljJ7n18HzhQyUjTjIsq6jacF2LPMvoDUbYto1tW9d9SddTCncnG7lROKlynUGiyfKMYTTGcx3SJMJVBsp0MIWFYWlcrwTCRxkRjuuTaUA5fPqhF1jcO4VUNmh2w718shyePXYG23OpVKuEu8FZtmni2i6NRg3TAo2iOxgSZzET5YA4zlje6lOvVDBlEbrk1idotsrUAgdT5kgJhnCwlMR1i6ogYRhYSlGrVhC2hcgHEK5hBbMMcguJwd97y99GnzQ5dGAKaRaS6dxICmY00oRRTOA5LM5NYipBkiUYu3Ouk2fOoUwT3/W4cGGLg2+6DdPyGfXalP0SOxuXKFmFD3ScA7nmlkOHcZwSppXiGCGWDb/0icf4toN3F4FMcjdt1xBkwPPPv0Rjag+2McSyXaROuHTpCmtrPeq1CkkasbHRYc/iAsPty1hOFeU7GHkRRvX2u97Oxz79MY7ed+8rp3Q3sG43/9w4MkO/wi93rQ6AG46fay68lysOAF2ER91ce4AGLYpciGvzWsnrsMevUWauDa6zewXLpK/nTGgjf9kgd/MU9oYag6+H1bsWbFKUrBePRold3+rN+3wtueTua/FKBlAXWRjFTjBNSZZn3OhjhIIhvNHHV7xeBTN7bUO8ssC9YBCLRXvD0Lu/m9+UZX6jxteSlmnwctfda14vdq2X1/rvrgWp3LxdF1AL3vv+H+JP/s+vzV93bWhACkjDiDSNSJIQU0mEgCRJ0IaJ77tsru8gTcHUdIN+r83Bw7cglcL23GI1yhTEacJ2J8R3ii8d27IYRRHlcolyKWAwGOO6AUoYCGESRTlaF3H8juNjWQq/XKLk+yRxQjSOqVUCTFthqeJE02xOsr6xjmkKytUynlsh1ym3zrdYDGI+8vDj3H7HQVqtgDvvvJ3PfuYRSqUJnnrmearVFsvLZ5idXeSBtz9AtdzAdqvsP3CA/miH1sQsP/HhP+d98y0uraxQq5Tp9IfUqmXyNAEDxuOYeqPO1vYajmlh2zau69Pp9Si5kkrgF11hpkJIWL68Qa1WolarcfXyJn7ZoOQqpF0iScZINHsm61iOYjAYUq0WXVqm5zDsDonDGNu1SNMM01QMhyMkCse2GfTHDMd9lGvh+C6mEnglFwxwPZ9a2cEybbTOMR2X1cvrlHwPQ2bkGTz27EssLc5gW4rbDuzhE59/nHfcdxeXrq7QaJaJRyFmptju9BiPx/ieTTSOmTt6kOFghOMW5c+WMhmHY46fvMjevfNYtkUcR9iWzfMvfJWZ6Qls1yJK4iIEIY755NNnMGuL/Or3VVDSwrTNot9Ga8SuB821LXbWtzHdKp2diJJvopVEScXjT5zAFCbCtDl7ZhlLgu85XLq0ysWVHaQSRGFIvRHsyudgPBpiWYqTZy/TaFbI8oyZqSqua2GQMxiOUJYEbVAuOygzJ0sStjfa1CcaeOUStmMBOXGccvHCJtOTFU6eXmaiWYI0YzAY0+2HlEpyFzAYWGbR9+RYDoaWTM80GI4jHM+jXq+is5wwSrAsG8t1cCyLSuCwsDDNlaubLC5MYwjFlYsb3H5knjBMmZ6p4/oujpOzsbmD7/hoNM1GjTRJ6fVHBK5EScmlKztsGU0e+suH6KcD3rdviSyOiZMct1RBqiL5M82TgrUCfuqzn2F7Z4eP/PEPI6QiHo/IowFeuUYYJrtF4BnCKIrFlWViOTaWbWMYBqNBlygcIwyN7QeMBkOUlKRZTlD20cL4/9h70yjJzrPO8/cud489IjMi99qrpJJkyZKsBbDdNouxAS/Ysj2227gB03h65hyMmcZND2doGqahh+megZnhMDMNmMU0YwxmsS3LiyRkyVoslUql2quysjIr9y32u9/5cDOrSpsR0NBf/NaJOnXqRtx7I+KNe9/nef7P708U+kilSOKUKAzRSmI6Lsjce4od6WSSxPiDAdq0kEqhyFH67MjTMpH3+eZ9exnaVAz9Yf69a4FhmAz7PeLAz+1EhUAbFjnJMpc9ai3p9yNsz4UsQWQZgR+gTYXSuZReSA1CEId9UiSm5eRJFSUJ/CGGaaOtAlkU5oFoKhn2N7DdwtWrrXYVWVLANG2yrEuSgJIWtr1jPr96hYcffIqpqYM8/NXH2bNvDMfR/Nlnv4Y2XXx/gkqlyHve8xFuvel2fu3f/RJvf8+7UVKQpH1ee/cN+EPFL/7ir/C6O2/DdWykkHzsYz/Bv/75/4EwgJ/9Vx/nRz78o0RJwNlT53n4rx/grW9/B5tri5RKLv1eRBRKDNNk0O/QGmvS7fp85j//CXtmbsSsOsQIDGnwn3/v96nWW7znXW/nocuPMtkqYmiDgZ9Cln+3S+vbnL+0ylRrDM/y8Qc9TNPk1OwVWvUKQkAQRVQLHifPzTMzXiMIIzzbZRhEdAZdDu0bJ4gSNtsdHv7rkxw5NIllGZy6dIUsEVha8KUHnua1tx7gqecuMj4ywvx6j5lWnXKxeFU+7dkOKSFzSx1OnznH/v3jXF5Y4/LyFnffcRDTyHAsDUIhhSZJYG17C88xMQ1BRk6ITBKDc3NXmB4bJckEhjY5O7dC6AdMtepcWdtkvFFgGARkIsOx80q2aytWt9uUPRstQSlBkkQ4pkGaxpQKNnsnyozXcqn0Aw+d5j0/eAfd/oA4AUmC61j0hgGG1gRBjGflnqJb7SHlUuFl7/OQL5q1hLnZC3iehxCCrfbOfpXJX93/FIcOjCNEgBYSQ1tcXt7Ec0zIBHOLa1TLHuWqRYbAsBwsx0BT5uGvfR3DFcxMTfPs8YuUKwIlixTslDQOCYUBaYQmwzDMfDEsBJZWpImP55gUXYMg6OK6HkVb06yX8YMhm50eaQbzyz2+8fhp9u0Z4Utfeop63eKbz5ynOtKg6JhE/Q2WF9vUx/YQhwkP/OpJLs4tMFOymZpoIoAoSnC1SRgHxGmGMCSWaSJEilISoQRKKJI0plqr47kuWknCZMjawgK1xhQXLpzGcT1MbaPpMxz2mJg6RKfbo1yu0Ot1IZZsdNv8H5//A7JeyBtuuRPIgRsZMRITqaDVaqKzIWcvLiNNl6JjU6pWaQ87tKaP0O222bNnP0IbdNsLLM2fZXL6KKkh2LXPmnCnGT86+qL15auLcLIXPW23n+uFEs+XxkuvJFN8oYn57j5fOq4ntr74fHKIiXqJ/PBbtS3lPqe7a+GXbn8lO4Uc+JK+MHDbCdZeeH7f4tgvf0JX/5mm6Y6Re67Sumbb8JKTeZkdXZNjZjv2C1q98BP9dnD3jzhelc8d17S8rzReYJPwSs/bCfLe+c77+OOf/aG/3Ynme0YCYX/AdrdL2XMxTIMwCNHSwnQdSCN63Q6pyLBtm8WFVS5fXqder2BqzbPHz7K9tcHaRptDB/dTcI3crDyBWq2CHwS4boHBMKRU9Lh48QKFcpErC8tUq0WkFERRgjIUUZLkKQsREYURa2vbzC6sEicx/jBkfWOLjfUBr73jKFJJ+oOQOAqwbIf19U1u3dtgOTC5845befCrj/CuH34H93/xQcYnp7nntbcxf/EYvW4X3+8w0hzh7Ll5jj97GtOyCRKL48ef481Fi5HGCKZpkWUS27Lx+32KBZvucECzOc6wt4HvxxRKHqEfoCVoIyNNIkzHzX2rDINq0SXOYpShUGRUKjWG7Q7CcUjiBNvx+MY3z7FnXytHuiuFHwakUYJXyg1ebce6OldM0yAYDnn+3Cyb213GR6pYjgNZxjPPnqRZq2KaFl956Gn272ny/IlLFEsuTsFjc30T1/XwKgWUzDi4dxKtNA88/Az7ZsY4vG8CpTSOYaBNzcD32Vjr8/Cxk9x2dB9kGYEfEzVM5uaXKRScHViMgWkaLC5coVorE8Upjucw6G5RKhYpeEW2tnqYpiKOE9yCQ7znDfzRZz7LD722nGcIszzQTzNBGkcow6DbHXLq7CKTk1W8kkG/F3Pp4iIjI1X27h2nWPQ4fXqBI4eb2LbE1iamobjphhkqJYftrSHVWhmtNN12FyUkhWKBVmuEXruL1prVlU2q1Qrr61s4jo1h2Gxub+F6LrZTwLRsbMtEScF2t41pGAT+kK3tHiXPolJx6PcigihBKkmtVmV9bZNGo8Hx5y5RLnpcml9lcqLGseNnWF3f5vLcGvVqiYtzi+zf38R1c5PdYjHvhUujHPGuTJOSp0mzGNs2KRZdTEsi0SwtrlNvVrhyeYtapUSjWcQ2TC7MruRWHSrl3Pnz1KpFpmfGUFNvZv/0QbZnj/F9R24kp58ZmG6RKPTJdsyl4yTiI1/6Ih+47738xI+M4XkeSsYk0TaOWyFOJIZpEQ6GuF4FqWBrYw0lNUEYkAFhEOB4HsrQO8bkuQxLAFIbxFGCYblIkVfxtWmghEIgyY3PU+LAB6lzNHaS5F5z2gSRIIhRhkNnexPLtgiDCESMMiSBPyATCtOw0IbOe8AyME1NFPoIYZPEKdrQeb5MSaJgCFmCZVgkSUScpnzuT/+aW247jBAJaZrs2DyYee9PmKBNA5AkSYpSGsvxdhJyEMfJzm3bQFsZ/jDKZdRxhKEM4mgIgD9McJwigR/Q620ThkMKxREmp6ZQZsLUVBPDsciE4IYje/jaV75JEE0wNd1CR0MOHDhAc3KCPQf2Mtjq4jpFMG3amwPue8/7CcMOUuc+cN/73W/FdevYjsP7/pt3kCYmv/BLP8+dt91DFHe5+dbbKXsV5ucvcOHiBaSWGAZMTU4ThQZeUbK6vMiNN72Gi7OXqJQqIOGe77ibeqPO9EyD3/l3f8oNb5wgTWUOUSLh1NlZDsyMUil7KGmwunqJgq0RymKkVgMBgyBgZX2bWtFj72STK6vr2KZBmkrSLMmTOqnGsFwMpRifHOGJY+eYGm9Q8BxGyh5Sp0zNjODaLs+fmKVSdalVPdY3N6kUPOauLFPwHL7+9Fn2TlaZHBnD8QxqhTLHTsxz6OBeGqUChhYoaRAkCdvdIV944BjNVo12bwAipey5pGQIYXD29AWmZ0YYBgElz2VqrMb0+Ahf/NKT3HzTXlSWIYXC1CaGadP3fZQSDAZRnsjQCj8IdyokubTSNPLqTqffp2CZvPamvfihT3fQo+BotFIsrm9R8hxMw6TX76I1rG8HPPTwBW65eeoVYREDP8AkIRx0SKSmNwhJk7wP0DI0hw+PYxngBzEZO36TxBRcK5f2ew6PPHmBmw+OUSramJaBP+wilGRqzyTDYW5GPz5eJQoyjj15mvGJEnEKfhhStDTHTl2i2mgCMYL82GkaEUTg2TZRHGKZFoNBn0uL68wvtbkyv0q9UcFzc/Jzq2JRrHq0ah4Tk+PYlsNX7n+MkVpMknkEqpTPXXEj++P9HNhTw7Zz65QkztslMpGilMJUuf8mArIsJU0i0jS3nckrePk96dz8ZSYnb0EZilZznDNnTlKtVRhuLGDbBexSEccpE0YB586fYmqyRUyNP3zgd6i3qty7/6Y8cZZBmuWqmCSLEZkmiiOqtTKnTp/FKxQpuC6X5i4xMX0jtXKRJIrY3NoiyzRahnh2BWk7V4MKpSQ/+cl/wfve9+5ry8K/Z3D39xmvJrj7m4AqL9db9q0DLMm3Cu7SNPvbed/x4s/wbxncvWD/18s583f16oO73U3X+gOVfNHn++3g7h9vvJrgLuXlS9XAVaTqtR/adQCVl3nNhz/wAX7vE29j19zwJcU9XkhBguvK9uRo1fm5yzRGq2xt93FslzgC17VYX1ohTWIsz8JQNoY2CNOYi5cu89yJS2y2l2hvx9x15020mqOceH6W0YZNEkmeeuo86Jh6tQyZJBMGy/Or7Du0h+2NDUbGKuTwWbFDhszBCX7QQWkL0zIQMmOy1eLS7CVsS6ENyR133ES/28c0bJSRS8niJKFY8qhXy9TTbZ46s8Btd97JpdlL1GolTp54mpRcJLsAACAASURBVMn9Uxy67Y2EukSp5DDowfTkJGEQQAxz80/yhnsOIk6cx7Q9LNOm74doQ7Gxuc5gGFIsVeh1lhGYZOTG1K5tY9tmTnnUBlGQS95EriUhCncqtIGBNCJCNCWpEbaFyhImJkcI+gmX51ZwbAvXtQiCkCRO8Yo2ZBrICIKE0AfDNGk16zTHCkTDEH/Yx1AKhUGxXkPohD1T4yiZ0WjV0baNzFIMy+DpU2cZq41AFtDu9LEsi6nJsXw2iAzTysl/WZIS+CGmoziyb5o4TUhJ8YcJs/EW0xNNLpydo9EskWWSubklJsdHcB2HjfUNbNvAcguYKiOJY0qVGpCiTM393zjNr//BF/jtj+5BaYXSJskOoluZGkFOCTVtm5W1DmrnJ3D23CKZiqiXWzz6+LP0uyHNUZNGc4zYz6mIYRwgkHz2z5+lXvcYH69z6vQ5xibGcYoF/GBAr9fF80o89thJ9kw2eOLYKUwtGR8f4fyFOQqWy/Z2j0LJYXtzi9NnLiNTycqVDoWih1NwSFOfomfR7gwolRxCP8T2FLZrUa8UCENNtWpjmoJqqcHlhRUKrk2vN+TI4THqtRppnKB1iO2UcSyDxSuLFIsuytCcPDNHo14lpU+pWswltMrm2HMXMA3J5PRIvlBRLgsrC4jEplQpsLq6RqlYYGx8lLNzi9x09DCPP3mJddXgtsMGf/bos7x9cgZhCFzHQ6YabdsgBeGwj4iH3Pze99OonmDvvgpamrTXl1DGDuBC2/kiRQi0DMmEhbXjXRnHeSIiTRPicAcgsWOELYRDkvhIkQd6wbCDaWp8P0Wo3ChdmQ6ClP72NpZdyH20LE2GwNY2SZYhpUmaxujMwHYUaeqgTZkbpCdgGFYumd6BeqSpgcgiUqHQpok/aOMVTMKgh9aKKBhimLnJuVQWiIwkDLFMheuZKGUQBTGm7ZCmoJVACggGEaaZ+xgaRl5dTKOALIsxDIsojLAcizRWGKYiSTMsxyPLMoIgwrJttGECguFggGU6SKFyz0avgBIGmYpy8FImiaOUI4en+YVf+BTvve/9/PFnP8O9r7+dyfFxhBCUq6P8+V88QK1c5ZOf/Bne/kM/yINfe4K77r6LtfVLNFt7+djHPsLb3/Z2Tp+cxTIj3vLD72Jp4Syvv+t1pJlgbWWVSsNhpFHHdAa4xj6ybMjP/cyvc8d33M5rbr2Vfm+VZqvB9vbWDunSYGn1Cl6xwPe/5Xs4vfVMXslMUlzTwi1YGMrCtiRR0qFSHiMiD/7+/HMPMb2niVaSWtkjjkO+8vUzHNg3jed4eV+ebTMMYjqDIZZWnDq/wMzYKNMTJUytuP+rz7J3usXAH+AVXEgS9s1Ms9oe0KwUUEpiaMny+jpjjRambVB0C8wtrxDECaP1El7JYn5tg3LRwdKKrU4P27DRKmVsvEKaJNimACTtfoRjGzz53DluPjKGki62aeYAnzQGUo7eMI1jqt27PHNLG1iuh0z6RGGMoTX9ICNJJScvLDJSL6JkwtLGFpZhoYRECElCbvWgSAmivKLUHgQoJXAtmywTWKZio+PzyJeP8ba33YEy1Uvu8btDGRYrc6cYHxuj78dUyjUKrk3R0cRphFa7Ms6QQZxhWxa2ZbC61SZNErJ0wMz0FHEsePrZSzhGn3K5hmFo0jSh6FVZ21ql5JbwPEljrI6lHcIkoWBZ9MMBpXITIUI8FZOmMYMgwrYt8vWqJEMhSPCjENssMNFqUqoVaNUrOJaLa+eLcdv2iKWNpyWDVHFkKmI46FCdvBkBPPirp/mpT7yTY187xcHpSp6EsUy0bTN7/gquZ7K8cIVyfXSnApaQhiFpJnI4TZbtXBcgzSQEAlWoMTrSwLQMWs1xtGWRhD4OMRsbKxSq0/hJiMyg4NUplGyenHuON02/ib176+hEEcUR3zi5jPB9KhUP0KRZhKFNWo0qKXBlcZXJZpXOmo9TLjIY9KlW6zz+zLNMtUa5fPkso1OHd5AvgJB81y2vp80WjZH67pf/io/r58WunHL3cb1M8+8a6MkXPV48EiF2ZIi5bcIuWCVNs9yjUQikUkiZ7XAHdoWh32pkryjZhFeuNMKrC+7kdaAZIA/8dw/3KtqmXiyJzUQuP75+aCGvSVtfsstrUJdvB3f/FcffxsT85TfmW18Y3O2MF02kd77zPn7vE2/b3Xjd39e/ZDfoEy+d5BmsLC1hWya+P8RxXIIoxXLcXIY46CNlynDYpVQsEwYRrmVRLtpMjY1ScG022xu0Gg1OnDjP3a/bj2XWiNIQaYRMjrdYWlmjVq2iDQPXNXA8E8tydiACOr/wSkmSJggBtmGTpeAPh0hgeWmNldU2460RyqUCYRhTb9TYbrcplUpsbGxhWSZKSE48dwbXtnj0iSeZ2neUfs8nywTT03vZbA8pl+pcvHCJ2QtnmRqrMnv+Wdpbs1QrUCwf5v4vPsinLm3zOg1aSTa2ttnc7tAbDnNfmCzFkAa2ZZFmCUEcs7a1RZLGNEeqZEJhGbkZuGVoUilxbJt+p49yIuYXFxlt1VlfX6DoeaSGjcjAdhz8oU9jpEoUhZjaYXNzmziOCMOIMAwIgghtKCwrt7oIhgGFgkcQRPT9kFKxSByFrC5uUfDM3FdGS7SS+P0utuMy2RrBNE2EVrgFDyUFl2bnyXbonWQZhmFhuw6Glcs9n3nmPI5pcfnyKjN7Wsw6sLdVZaxVx7Rt0lSQphnVRhmtNcWCC1mM1BZCZMRxysbGNpVqCQT83Kce5/f/u5tI4hClDfp9H9sy6PV7KGXk+vQsR1yPjzV2qFkSy9Qc3D/B0pVN9u0d4cqVNq3RMqVShcXFVTa3O5QKLiur29x8dJpG3WUwGDLo+7S3B2RJTMFz2NpoUywWmZ5sMPB7VCslxlp14jhmdKSOW/SYnVtkvFlnbX2TffvGETJlbLyKkkkut0zzbPv5i0uUyx6ViodjuKSYpJnJ8ZPPc2F2jUqxxHZ3k7GxJuVygWLBYTiMWFrcotms4rgSoYyrGv/+0IcMmiN1Tpy4yFizQppJhDBob/doNWtUqyU63R6nz1xhdKRGnAS0mg3uf/AJJlt1JqcmeOSx4xw9eJCl5W3aUuLN3M0z3/gq5xfbvGP/AVIEbqHMk988yfhkCyFh9co8P/nYExw//nX++Ue/EwSsXDlJqdxE6SpShQhh7IBnckllikQolS+iDU0UBmjDxLJs/OEAQ5sMBh1s2yMTASLTxElAmsbEYYbturm0Msvy6Xf1Jp33fFimRZZGJHGw0/+mieMEqSGMuxiGorO9hOWWCYZ5j0+apDvI+xz0E4URkINjDO2QZSqvUsYSrXOLiizNUNoAkRGGIRMTLfwgwHF3rlNS5nYK2sjfdxYgFGgDUiKkMneuD7vZ/gRI6fe7WLbDbtZNSpmbpCNI4oS8t0Xyqd/5PLe/7ka+/MBj1OtFbNdha2OTjfVtHCeHPCwvrfDf//Rv8OM/+mP83M//W6Ikplxu8eDXvs6hwzfwwQ/cx0994r/lrjvu5vL8FT7+8Z/mL/78z/mRf/YBVpa2OHLjATJh86EP/xj3ve8+MiEYqdUIw5Rz56/wkQ9/iA986H1Ylk2/7/N//sb/yxvfdDdv+4HvQ2Y+aRYz8AO67S7lShXH8UiSDNcr4Ec5IOrff+K3mbq7hm0ZCAS2qZAyJ7ralkkYJzhWLomd2TuBZVgMg4gwym0z9k6OEUQBphK0+32yLGWrO2C80SBOYqpFO/8MZf5ZzkyO8JdfeoaJiSolzyVNhygFiyvLuK6Ja7kMAp+RWonLK5u06jlyf6RSxjAk88sb7B0fYbxeQJKglGJhdYt6rUCYRJS9EqaWWKai7HkEUYznmLTqZYqeiRQhSRqwsrmGa0mUNHYgWbn4TiIpug5pmgCKKAXHtrAMyWZngOe61EoF+oMhlWKRgR9haEmw8zmdurCAY9vML27guQ4PP3iCG2+YQeu81211O6DkFmlMNKmXSrlVwtXVwIuCO1L6nU38BDyvSBgnHD99iThNKRVy+moQhogMXNelO+xDGlEvl9BS4EcRUiTEacxYs0ml7LLdHyAywTCMKLkOtgVPPTtHoegQJxlhGFPwPJ6/uM7MWI00SdAyIM0UgyilXCzR7fQxlEYbBkortNTEScowCKmVPQZBH0NJesMBBdeALCGIE/p+SJJEeI4mGSyTJBZBVkKLlJ+578N88Ef/Z14ztZdGsYDjOCRxSprC4pVF6o0GZAaFcg2ymFRIusOEeqVIGIUIRN7XJwVpFhFFIWcvrHD6zNO4bhEQmKaNTEPCwRapkphWEc8r4ToeaRqDlNQmPM49eYGDB8axVP6tjIwXaZSLxHGI1g5B6GMaBkJkQES1VqfomlyePQ1WCT8I6A/6HL3pViK/R3vtCtVqE+0Wdgzr82Xh3DdWOfQdM99qZfmy8+L68QIrgv8CVbyXP8a1qtXuMTJ2lr27NE0pkezSKv9BTuPa+byK4O5qkeTlnvstgjsl1YsKK1dLky8J7nbtHDJeLri7fp/fDu7+q42/S3B31QDxuskjd50PxXUl5+sqeL/2v/xH/v0HbgWuza9XnBO7FWuxm23IF1KPP/IMSTjE8Rwq1QZpJnCLBZSZZ8wt06Q/GGBpk1QpDNNgZXmVjY0enV6H6YkWh48cBJGxubmObWjW22uMjrQ4fWqFfTN1pFK4nouWKRcvzVEuV0iTlMEg78sSgnzhpuVOAkYjhSSKQqTIWFle5+ZbjvDsc2fQImFiYozFpRVmZiaJo5i1lQ1GRurMzy1QrxTo9occnBwl2Z7j4bObWCpjZnqGCMnZ54/jGoJ77r2L+ctdDLNArxex3fb5nrd9D62xJo6OmNkeUCl7GIbJ4up2jtPu9SAK6PR9kAlb3S5KaqrFAgM/pN8PSMMY1y1waX4ZW2ksy0aYimMnzrJnzyQ2kiRR2Nqi390GbaGVZjDsUR+pkWUpURzTa/fodn2klDskTZsoDClXCqyvrvGFR55m3+QEUmlsx0NqjVOwkQi0UIR+gOk6DDp9hv0+/V6AYWrmFpb5ymPHObx3miSOSdMMz7VJ05QrV9Zpjjb46jeeZs9UkzTLb27liqJa8igVXRzH5v7FBe69ZT/a0ERRyvZWh+W1dWwjwx+GWJZDmqnc8oGdXhfPZm1tAy0Un3tqjh++q5YbvguF1JrYH2LbFkKZpDKju9FmZXkL27IwDZtz5xdY32yzvLLO5SsbCJkgMXn21BxxOGB8vMrkxCjnLywzNdFkbn6Zc7OX2b9nkoLrkGXQHwwhTVhfb+PaJl9/8hSTEw1sM68KnbuwyOhIjSAOmZlpEcXR1Z9PtVJieXmdfn9AFCb0egH1RoNqtcRzp+fYt3eCtdUr2I6BMAStkSr1isf5i0scPjBOoVQgTVKWl7cwTBOvYGHZOu/jIu8x6PaGRH5Cp90nixO6vT7TM+NIZRAGCSvLW5w+u0C14jEchAwGAa2mRxRITp67QKVUYWJshJXlNW46uo+Ls8uMj9U4OFnj9JaiWQw4fnGL75toIZWJaTlMTU+ABKkk//zBh2jUPX77N95KZ2uNMIio1CYwTIOEPsEwhkwShSFOwSaKUyxD4g+H6B1YAUIihSbwfbyil1d/bU2aKpIkQEoDpfN+rtz7ro8k77HLshilJGmWgxLSLKbf7WKaFmiNYZqAQpDleHKtEZmFkoIsBcPMpVTasHaa8jP8Qcg3HjvG1FSe1EjSIb3OOlkaYNgaKS0QoE2Dfif38HJsm0F/m2Kles22JstQSuZ98jJFKxdB7ptnaJc4CSGDQa+HaTmEgQ9SkMQxQgjiJEYbJmKnnyNJkhxiI3MIzOHDU6Qp3HB0P7ady09tp0QSRZQr5VwSWCny3PE+b33bW9hc38DUks/96Z9x97338rP/8l/xXa+/l8Gwi4hNfvu3/xNLywvc//mH+cxnPs2tr7mTeqOANCze/a77uHhxjqizzvTeaVKl+OJffI0jR/bjD0IOH76BT37iV/iXn/wYaezw0KN/yXhrkk6vT61Wo1ioorTByROnSeKMYqmOP+yTJCHvf/e7eG796/SHPUwjr2ilaYxjW/hBLiHzg4w4ybAMxdLGNqPVIlJKDFMipMbWkiwL6A2GFBybasEjSVO0FrS7XeIkzQE3GWQiY6vb4+iBKZLQx9BlDG1Q9Ep0fYjTlOPfPM7Y5AhpCoZWec+KyIEi4yNVIKPT7RPFCQXHplEuEkYphsoTjl/4q0e45aaD9PyQ5bV1WvUyhgFBDIa0csP6zKTkVogTH0NLtjs9HNvh6ZMXsSwDpMBSFn/5hSd5zdEDgKAzCPI+W60wtMnllR5SSkxDYBkGWikc26JUcBkbLYOAgwcmiZJcKhkEEVHcoVzQQEgQ+9i2c/Wa9eJF/PLcKQzbwbA9bMfD9wfUK0VqlUpeTQ+DHZP0IL8WZylapvSHeUXFNF2CMKJUsLEsh27gU3bz41mmRRilCBGiDJvl5XVmJpqE4QClDaZGWzz61LNMjbfwwwE9P86lpUoSp2BZJv3hEJmlKGUAOrcmyAIKjs3y+hZFV6GUwWAYYFsORgaYDulwhaC/Tq15lLafsnJ2i6PVd3DAajJ/9jJ79zfo9zs4jg0k1FsNXNvCsCR+MEArTYbkiSefojlSvdoTKIXIq3YY+GGP+aUtvu/73k6t1siTDttdTMslDXs4jglZgrYrCMPG1hqhFZ975K/4p2/7CI8/+Q2qZQ8lEhzhkKZhDmrSKVkmEWRkaYprFlhdW8IWJlahwPPnL5Klmv0HDrC9tc3c/GXGWi3mTj7G9P4bSMiJ21IISnWPn/zkv+C97/3hb93u8w8R3F3PhPgbqmzZdUWG3cpexm6/HjtSd3U1uLtmW3Ctgrb7SHfM0v8+8d+LbRHkjofdrmVEHnimf7vAbqenNA/hrku4XLfvF7+X6yE4r8TlzLLsanCXS01B6W8Hd/9o4+9UuXuZifNCzfELt3/6D/+Yj7zWum5/r46q+eKnlF2PpcUFWmMtlOVhmGZOhFOCNMqQ0sAteCRBgnYdLMskS0Jq1RFmr8wzM9PEtBoYVkp7e5NDB25ktD7KmXNnGJ8oQpqysLTO9PQE6+ur7J3ex8WLV2i26piWR+DvmBZLQRxlKKUIfZ8kE5iWZmNrk6nJFmEUYRqS5miF50/PkiQJW1ttqtUyg76PZRrEUczClXlK5SJJFjPYXuWvnzvLYNAnjgP+4ktf5Dvvup2tjSXCLOKm22/k2HNP8drbb6M+OsrvfeqvaLdjvveN96DOXMTxLEabo4hUMlot0Rv61EoelqUZhgNmxqeolaqcn1/ENmziOKW9tc7Jy0tMjI5ycnYeHUvKzQqbW22KrkMYrFOolLAMD6EhGQY4hQLKUmRphkCilEDrjEqljGVZfP6r38TIJFdWNkmTmJLnYiuTmQOTCODLDz/DeLOGYRvITJEQ8NRzFxiplCgVXDrbferNJqaZZ7zvvOUIG6sbuK5NnKYIQ7OxtsWFy2u06mUO75+AbBf5HqGlwdLcOv4g7zH8pW+c5t33HmIYBpimxvUcRkdr2BqUNHj62DnGJib4o898idtuuwEpYNDrUiiW+Mj//hWSNOUHX1siifJ+JaEEMktIkgyhDZRhYKG5srDBYBgRxzHDYYTnmbSaVZojZfYfmCAKMrSRcNcdh4jjiOWVDTrtEEipVj1mpsbYavexHRPHdWiNj2CainLR5dkTF9k3PUG1VmM4HKK0RitJp9OnVi3lF2QJrmlz7tw8Z88s0e9G7Ns3xezlZcZbDR596gR7Z8ZwLJNCocz2dh/bKaOVQmBi2WCYCWls8uTTz7NnssnpM5cZbZWwrDzwN0yPleU1tKEpV0toaVAuFzh7bp7piQaINDdAF5JKqcz01CjPn5olimNWN7YYbbj02nBgX4uFhS6lksvG1jaLS5vs2Vvm+OlLiMRAje7h7teMsNJJuUVrDG2CECgl6A98/tkXvoCpY373/3k/yXCVcDigUKoQZT5hX2HbZZTOECKHLcVRQBLFyDRm2B+QAoZpIEXuyWZZBkkSE/ghtm0jpY3WAiUdMiRxHOxUihO0snfkYDGkGUpZRMMBmUpJ4xTHLZEqC5HmMjepUkh9hsNNwihCmXlfWRQEKJX7aaZpkgcMhs3+Q1MEwy7a0Cjl4ToFkkQglU2cDHLv0Yx8QSsU/mCA7RggNLsENUTusyeQxGGXLPURwifwu2glSHISQN4/JU0Mw0QqA8OwECJFG2ZOtU0StN7Zr8ihWZEfYBgGF85dZnSkzsbaKgXP4c8++xC3v+5m0ixh4dIChYLLqbMwMd6it7GIa0Mah7Qmx/nuN383n/rdT/PTP/0J7v/iA7zv/e/lRz7yQX7p3/wH/umPvBcyTZINyMIQEnj4wa/y/d/zHXT8Npk2mDs3T5JF2KbDjUePcuTw7VTq8E9e/y4++tEPU2lNksQBlkpZW2/T7w1oNEb4X//D/8Z3f8/3YloKbWo21tf59f/xjzhwbyX3wcwyhkGAZeTyzJMXFpgcHSXNYnr+gJFKgSCOchVE4mPovLJt6pQ4SUnS3JNTKDC1SRDErGy2adVqPPLMadbWN7nntgNkZPT6XS6trCJkiGlIjp+a5flzK3zHHXsxbQvPcriyupEHDTv3wjTLSNIUyyzw+Qee4dDeFoPBkE4/pdvvUS2aTM00GYQJSQIzYzWGQUS738W1XVIRgsjwwzDvhw4DpBDYlomhBK5tobVBrVoiDX1uPDTN5aV1nj45x8mTS4yNVzGNjK1uwDMnFnjNoUksc7dKJhkGIVESMQwHFBybMIwQIqPTH+LaHrZhopRJd5DgWi6Gqa/d63erIjtri+XZ56mPjmG7RQZhRMHMgUtIRZomGIYiimMKlmSrN8Q1TSxlIrWZkw2lQZbZKJVTJk2dMgxyy4+hH2KbRfrDLuVCkdGGu7N4zSFNpgTDFtz/lTMcPjyNrQVJEpPEAdrO5bMiiXFNg0trazx/ZhHDMiEL0cqkViqx3e3gOSU6/QGPPH6WteVtJvdMMdxagHhAaDUouAUe+62zfPXR+6llJQ4cGuPMU8dpjk/Q6/YwtIFpaNIwQcsc+KMMA0jYPzWFEFxTEgjB8vo2F8+eZ3xmD20/ojkyxuzFC1SrVQqFIhmCsLeBbRl0/QGFyiRKGTx3/Blsz+ODP/6DDFcDZi+tUytIXEeTkZApUMIhSQIQAkPnZOE0TekNe7iWS6xSlte6HDx4M67n4NgO2vIwtCSNhji2h+0Vc/+5nfVhtOZzz1teh5Cv7Gj2DxPcvbr+tPwY18tCX/iKF9AyX3T4ayCS6/8vv+b+lyjuXZVcil0F3LWq4iu+p1dYc0ulyLJsJ0EukTtSaynk1fN98UtfSNJ85bEb3O2GDN8O7v4Rx99kYk6W5ca5WYZKU0SW5RMgy15Bq5zldCF5jQh0xD+W7283WSJeUETeTRzkr365ebmzLQwS0kRyZXEFy7SRpHTaHQydZ9ilSIiTjCAYYsgEyyiAlviDAVvbHWztUCgWOfHcWY4cOYjh2fhJwsT4OOVSkYXFNW4+epgsE8RxhuGa1GoVotCnu93Ns+HA3KUrjIxUyfnluRzUdmyGAx/TNFldW6HgFVlc3Mw9qxyLifEmqdRkSYLlWPT7PSzHZe+eGQxlUKlUuHm8wrPnL/DG730LN+4/TKlSp9gY4857X89nPv1parUZuu0ujhEzM1Ej9dd4+qkT/P6zZ9kXBISDkEajQqfbo1kv4xYc0iRlqxOxuTWk2w84engPq5vbeLaJNiQ37t/DVqdHa6TOWqfN48dPc8fRw7gFE89r5A3cOkOq3Mur0+5g2Q4SxRNPPs9Ys4GSBso0MUzFWLmCYcO+vU0sZWK5ilLBIN7x42nVawwHIZ5nkcQZiR+zb884GYK+H1JtVBCJn2ddy0X8nWDG94dkSYzrFSl6NmMjFQbDAZZnI6XJoOejyVCmgeUpKtUSQRjy5Y02P3D7FK5tEvg5LIIsIUzVDoAkr9TddGSG0A/pdrsEvk+xXOIzj13gf3rHKCOVCobOEDKvZEqp0KaBECmDjR6Wozh/YZ1Wq0SjUaVUcJibX2b/3mkq9QrHj8/S2slmt3sDypUS7XafbrfH+dk1WqMNbFeS+BHdXp9TZxepV4uYlskTx84xPT5GkvYpeR79XsB2u8PISBXbcQmDIaZt0V7dRpoax7JASEaaZYpFj9lLy+zZM87YSAXLtjBNk0ymXJrdQCQRUsZYro2QEtcr0O5sc8vRgzz5zBlao2W2t3s0R2oMBz6b65tMzoyShEM67QFrK202N9vs3zdOt9+jPjJClgriMOHLDz1Bveqyb98kl+dXueXGA0ipSbOELz14in17KwSBz74940xMNnjiyVniMGNqskrgjBIOFrjnrjv4if/7s3z2/Hk+e+4sf3L6LD/xa7/MH/7RZ/j0f3o34XCdxA8oNydJlUMaa0xHorRESAORDhkOhnilRg7AIcsx/FmWJ2iSFCUUWQpRGGJZKu+F9HuYprVz00qIogjTspAqN942bQMhJIN+kC9UhMPi3CLNiTGSLCL28+AsTkKkNJBSoXQOwEnCPBGklN6RcxoEw0FOIowioqiPZRdJkUjivM9XgDJzIiBZnsQwtKbX7WDZZn6t2jE8z9KUQa+PZTtopRj020hVQEgLw7Dx/QDLdonjFMNykALSJASREEcDpMxtSwbdPgXPxR/6GGY+p7bWtjAt2NrcotHwMB2Xrz/yDBOTFfbt30eapPzh736O73rzHViOzaNPbHPra28j3QlCJ/cfJkrg9NnTvOX7v5dSpczluVluvnmGqNdhdKLASKOFtBzOXLzMWLOJU3L4/U//CVbBptWc4pnHnqHf7rGxuc6jjz7Km//Jm1jbvkxjtMVHf/LDFEtlhMooFIpEicCI4Zd/5T8ys/cQm6tLvOa2W68uXCIUidT2PgAAIABJREFUH/zg+zjVeQ4hIAh9Sl4BsnyxU3A1w8jHcywMbaKloDcMcRwXx7ARacJWt8PQ99nqxow16jz8+PMc3jtGb+BTLrhstLuMVouM1sssbXRo1quYWoG2adWLKJUHPGPNGkpEjDRqWIaF1BLPtvPfjFAIYsJhD9d1EUKzsrnF1FgF27aI4oCxep3Z1Q16gaRWdLAMiVC5ZHB2YQ2lQYkM23BwTJvnz88yWquhlCSOfAZ+im1muLZAY6A1IFNq5SKelXHHa/ZRcFw8y0Jri5sONdjsdPj8Q6eYHm9gyASloOBYeV+mlVNVLW1QdG0Scq82IfOsfy+IKTj2dVWAHJcmSbl0eYEojHCrdTzLxpA2fhiy1W5TK+T2NRudDrahQZkINH3fpzfskO30Y2kJrpWw0V7HMUwMqYmSJLehKda5/4HHaLTqGKbEEJpMCLTURKnAtAxKbon9+0bRRl7J9hMoOB75kkjRHw5J4gGuXQQB1WKJIIpRWoNWWMpgs93GNE2eObHIW7/7Tkg3iTsX0dWbcEyXLE34sTf/OL/66/8XP3TrnaRxjyM3HsKyLR59/JtMTE6jdAZpQpJmOMVKbsNCRpLGGKZDlIRXxVK2ZdIcHWFrexu/P6TRnKA+MkK0U5Ef9LcxtUSkQ8wsI1QGpluiWm9gmRabw2WWT/a47c4bOX7qHI2ii9QpAg0i2QGvmSAkWRpDkuYkTiUIwwQlNHa5wflTx9GWhdYply/PcuCGmzh77FGa0weR2ri6rNu//yD/9hd/mbe9+y35WjRNSXdR/dcHFTuPVMgX2HFd35z3rQyvk93nK0Um5XXwv+sWpTuPF1gYCMiuDxqzvK6121WnhcjVPIgdmeq1ClW+6xdJEuVLW45eQsR8lTYJ16qBeZVOXN33C/d/1Xz9JedyzeR9d385KOzan92eRsQ124mXs6i4voXw+sduCHh9FfPbssx/xPEtgzuRZ3ivloB3X7Mj/9ktT7945P+fX3GWvvJbuJb5kie8sJXub6jk7WxKo5Rut8ehA9Mk8YDFpdwCYGNtmziJ6Hd7mIbOqW7BENNwEDJDZDFKwtLKKq5lEMchzdYoyrSJ/BxSkArJ6VPn8iymFiRJiOeV+PwXHmF6aoyl5VWKRQ/PcykUPXY+GsIwvJqlieMEQykEBrOXlhkdKSNVRpJENEcbFCsVnjtxhj17pzF03ptlmhb9bp+NzU0ajTKtgklVB6wMytx62+08/MiD1OseWRhz1733sGfvHpaWVhgO+hgKZi8vcHkA99iaatGj1+sRJjGXl1bpdn1s06FYcFBK0Bqts7HVZarVoN/vUysX2er2kVJyem6eRqWCa1tMT48jVF7VkIYmCCPiOOFPvvowN+yZwjAVWZLQGh1ldXGDh795ggN7poiCCMMUOCUXyBBpmoNbVE6Tmp1d5tSFeVojVQC++tAx9u7fQzTscP8jzzLdGmVzo4NjW0RpXtKP/CFuycOyDC7MXaFaL/L5Lz/JzTfs49SFS4yWS3ztG8eYGhvFKngIpbBthwceeZpDeyc5PX+FN9x7GCkEDz/6NPv2TZGkKVGUe1adO3eJar2MaWhMyySNU5546gw/99nnqFWrvOM1uawnjmOiKM6rLWlImqb0ez0KRZfZS8t4TpEzF+bJ4oxB3+fA3gmOnzpLq9lAENPp5qS4509foVYqMfRDJlp19k03qdTKFIpFllc2sG0bxzAYDoYImVGteChtkpLgeRZambi2yZWldcolD5FmBEFIdaQGWcZjT57myMFJSpUS3fY29VoBw1Bst9toLbkwu0C56GLoHWx+lqJNEyUVSilKRY9er8vePZOsr22z1RlSLDoM/QDPy8FBWZZ3UYdRToa8OLeE65o4bm4zcO7cPJOtKpOTLRbmlxmpV9jY6LC8ukWx4HD4wBhhEDM5MUKWpWxudbg4t8F33n2EctnjodmUW2/aT2PqFt75/W/i3T9wN2+6ay8/9OajfPkrv8XHP3YbaRzglesEUUqGzhHpUpClCWmS0O90MUyF5bj4wwDLznvHBIpet4e9g1f3B0O0TFCmJggTyBTD4QCtBRkp3XYHz3OJo5gsTdBakcQRg/6AUrlEHEeIHSNxy7GQWkEKhmkjhQAiIKerhn6Yf5dZCpLckD1TDHo9LMdEGgbasEHksk8h86SI3umdi8PcUUgbFkkcEQyHGJZFFIZ55ji/eWLYLlkaksQZluOidN6nF8cRURRgWvkiNQqHOXFR5d99miQIoUniGMf1gBwglGWCYBhw4ewso2N1StUKWZITV2f2NEmTmP/vjx+i0Siy78A45UqJLMv417/4x9z9upuolmuMNlukWUa33eM3f/M3ed977+Phhx7iB976Vr755DkMr8dNR+9Ca5f3vfeD3HrzUU6dX2BqfJzTx4/x3g+/D4HNH/7B5/jQBz/CnoMtfvyjP8qJUyf4+Md/ig998EMsr6xQLpd3AuWY+cuXKRWKXJg9y+tffzdveMM99P0OQdDj/2fvzaMsTe/6vs+zvdvd76197+ptumeVZiQNQkKyJBBgi0Vg2eCwGBvbMSTYJDbOIcHxEgwB4phjHDuB4BxiOA6EVUIa7RIjaTSa0SzdM9N7T3dXd3XtVXd91+fJH++dnp6VIYcoyTl6+txTVX1vve97bz3v8/yW71KpBiXyQCr+2Y//G468cwqw433LEqcpUegReH4pElNkY3uMHM+ocbfEUgkknlel3WgwTBOWFjrkuUNKSLKES9cOWJhuEQWKiVZE6GsOekMeeeI8izM1rIXTF9dZmpnC8yRR4JfiOpS8zocfP8v+aMhEo4FvDNZJCnIOzbcxWhHnBZ7WXLy+xdJ0h6889hzNdg0rJFEYkqQJS7MTJWrBCJQQPHvhMq1GjRs7I1q1CM9TaO2R5BmBZzjoDwk8n939fYwS1KOIUWb5P/7gy1hZcPbsFSYna4S+x5HVOZoVH1tkaK0xxoDUZQFYKpSQFIXDOlnOubygGkaEno9QLwaXL3CYBNAfDVlenEdLw9W1dapRDQc8/IVnqU+2EUrQqNbpxQWb2zHNakGR5wxGkmatRn/YA5GjhOb6xhadRpvtgwH1Sh2pHFrDxGSdwPOpV6KSUqE01jrywvLv/+OT3HViEiUzRqOC3OVUoypKaFwWA4rtbkq72S4DbCd46vRlOp1OCUFNYzxPIXVEWjgevP8YKEFv5zKuiDGdk1y/eZNP/+JztKoRx/2TTDQMCwuzWBejpWH50BKCgsALyLMM43k4qUqUSpGhlMbmKcaYW2buvf19gijkyo0rDJOy4IJQaKG4vHaZVmeSZr1Bv7uF0orhcIj2SgGsXrdHT/aZiCaJhz22tnfwtKMahkgJ0pZ8+KzIQZbzPysyMmsRRYHQmiwdEdamWF05QuB5GC1ZWb6D1EIYaM5+9WHmDt99Gy1HcP9dD1BbCMui422ZzosdqdvjxNeOEV8vuXO3JTDAS5O7V776ZT/d1oZ4QQFyzLEeH3T85ZWcuzeCTntFcnf7e3wDzciXd/Be7zUvOc+rvP7VfPxeGK/XGX2tj/M2WuKt8309ufsajj/NxNyOv8KYRHkLc/vaE0oIwX/4jd/iRPoUke/dVsl49dO8Ghn0JZcxnj5xP6bZrPORhz7PkdXVkh8gBNValWa7QxCUUty2EFgbMxoOQaQkKTz//DZCK9bWN/AUbGxsMTc9wfbWNkoW7Gzu4grHHccOMRwcMBocYIzh+NFljGeo1SKEEOwfHOCcxQ8DhBRoo0tvMOco8gw/8DCeYXKyxfbOLkkSMznR4draFkJ4zMy1CcIIpVTZvfM9Llx4nqKIabTrHByM6O4dcP7qWf7wYx/l5B2H2N28zs7WHrmw9IYxxtR485vv5jf/91/nm97zXt5+12FOffkpFup1Ir/kE/japz8aoZAUIqM3jEljy0SzwvrOPu12HS/wqTeaVGt1mvUGE+06i4szZZu+cCgjGPQGaFX6gi1MTFKvRqSjfgl7CgyDeMi9Jw9hvIDtrR2iRlQmy2lBnqUUWUZYq3LhwhoVL+Kuk4cJqqX0+42dbQ7Pd0AJji/PcXNrh4WlGUZxTK1SKTe1oPRdy+OCWqVGUPU5vDBFkec0KjU+8fAp3v/ON5PmCUHgkacZEkGoS++2B2cn8Q916B0MOHpsGSFkWYU3mn6vz9zcDForRsOCrzz2GEuLswhh+KsPhvzmF67zA990GGeL8YbGmCc19myq1BmNEra2egjnmJn2uHxtj3vvPszG5hbHjs0BPo16jeGgy8VL68xPtUmSlNVjKygcvu9x9co61hUsrs5TqYY0OlUa7SoUOZWglLyfnZzG5oLrN26ytz/kjjtW2NrZodaosbG+y40bW3z+K8/wnd/2dozR3NzYwuawt9fn0qV1JiaaCARTnTbxMGE4imlPNNnf69FsN0jiGGMMeZbiBRFJnBBVPBYX5vjio2c4fnSOSs0vYUJCsrfXp9GImJ6ZoBL5tNpNlC4FQYb9hEajwu7uAWvrO9SqEVtbuwTGZ/9gQBCU60gUVhgMEvYPBtxzcoXNrR38QPKTv/yHfNd7HqRXFGxvXCSPS9GEn/+Vf8Pf+pvvwKIJoiZCaaQ0479pqdZntAEbU6mWAa5A4Gk5lvgHbSTGqyKkwgnQRo2VL0vhEpsnaF+VVgIphGFAPBoRBAGQlWITTpKlOdZZ8jxFaUmlGhAnI7T2xp5jOVpr0jgnHcPBEBY/KAVnhChl5J1UeKEpLVaSAqkFrihu+ScJAc7mjPoHBKFPHPcpi9Bjk2Hn8IMA5Ydj2A+4caBd2KJUwUUgpLxlwG2MIcvyUrXTZjgkWWbH5uYK6wqU9LECBI5Rv0cYerSmGhjjkQxz9nYO8HyD0oZhb8TKyiy9QcxgGNNpT2IL+N3ff4Yf/IHvJx300WENkSfEgwybF5y84wS1qMKlS+dZOTrNxPQxgkARxzHvecc3cuTQFFoplg/Pcvf995Hmgihq82M/9p/xQ3/jL1GtTVJYx9LyKn/jr/9g6eEZhVy7epWZiQlGoyFzUzN0Y8Ob776LKxfOENSq1KIQJRVF4vjIh/8Ym+e85c1v4srBRYJqiNEe/WFMNQwpECWsN08AN55vIG2OUoZLaxu0600u3dhGK1CkVANAeHjGAIqdvQNmJxsMk9IfbeMgITKCoyvT7B6kxGnGdKeCkhbrxoHoeI9VSBZmOsxOtFASBllB5HkkhSltM7Climqe0qhW+KOHHud977qbWiWgFQji3jZBpVbO0yJDCA8hIYxCHB4znQCLK5UusXjaECcpioxhEtMMBUXh8IOIvcGI59e2+aa33UG9pvA8gzEGz5PgcjwtyQvH9kGPWr2OEIqiGHLQ75dxhii7Glo6lNakWYHx1G3cnTKQdlgatZAkE+x0R6wszPHJr5zBeJLl5Q4TtYCKH3EwGBKaEhUiZEBhHUImPPrIcywudGhUAkapIwwMTzx9ldmZSR762GOcPLFAYS1G5vh+RJaVcOtnL9zg0voBc5Mt7r93FqE0npAM+nt86pPnufPOw6TZkEHcY5RasgKur2+SWsHjX73A0so0U506RR5TZCmokFMX1plo1Kj6GdvbF/GKLle3IB6W4mbrj+1x4co17p4/Rta9wsTUBBpBYTOks2gpidMRUkryvAChMVqTp3E5P4xPnlmkUAhXEFXqKAG+X0WgaHY6Jew88Mrk1Pgc7G2i3QgvrOLZHJSg3pjA6ID5EzP8w//hZ3jfve/Ej5o8+fRXWZqYwBnB2TMXqU3OQD7CibIYcPbSWbKsoF2vU7gUT/s8/PhTHDpylG63hxd6KOXT63ZL+Hme0Nu9SXNq8SWdqZ/4xz/Jhz70wZfGpdgSHviSOPD/XnKHUi+JVV8vuSt9uG/regl1K/59VYPz10jupBS3ungvPF7La+/2Dt6fltwVRY4x+iVJ3Z+WRL60U/jayeCfV3L3wvvWWt969uvJ3f8L43U7d67c3F+AYN4SSPlTxt//+z/F9fNP8c1vPvyGr+OFzvir8kDH/6wTZFnO0sIkwzFcSBkPpUsVS1yBNj5eGDLsDhnGCVGtTrNaZWK6wcrKMtubuzx/bYtWq84jj59l6+YusxMR5y5c4uQ9xyicQClDtzdCq6jkEMR5KU2ejKjXK1QrdS5evEKz2QRRYJ3AmKD01MqGaBOgTUDgwdVrazSbrVJo49IVnr+4xeqhJfZ3txgMY3w/Ynf/AGETOu0ONze2abVavO3OY/zbT13gn//0P2Z9fZeN/Q0aYZtqcMDpr1zEFpLCptxz79t5+NOf4Xcub/BDJ47QbFaRUlGpBHjSY3e4R8UETHVaCOVodRrs9wfMLEwjVYjRAqklYaOChwRXkOcpWW5RulQbzPMMJTRRJSBOEoyuYXxDkSW0qg2KiodMHOkwx6sY1Lhqa/yQOBmRFaWFwqW1Ddq1Kleev0ml0WBxqkVvOMAVZeek1WzgaY0faJQQbG7uUK1EbNzYRCvJuefXmGxPoDzFKI65ubXDsZUpwsCjXq+QxCOcC7h48RpLS21qjRrCaX7+oY/yFx64lzSP0dpgXYZEcXDQpVILsa7gzHNnuPOOwxjf56EnznHfkSYffHAaCkdBQpaD0QajFLl1+H6l5ADKnO3NfcLQoHTEoaUpbt7YIqqUsNCt7QOqFYMSGYUTrCxPY7Ho0OBrj8eeOM+h1RlaLVXCTSxltTsrsEWGMRLPi3jy1HnSNGFxZYqNzW0mp1o0Ow3Wr28xPdvB9wx3Hl0hywuMlgQCtna7HD06TyXyKfKciclJMmvZ3d2mElW5fHkDIw1OFhivND0GiRISz9dkWUEy6rO6Msm5y9cIAoNRGmn02PJAkCcxeTxiZ/eAWq2KZzyef/4m9WqE73nMznSoNxs06iG1Wg0hJDfWD4izmDRJefbMGrWqYeegW3bN+paHnn6et7zrG2lVOlRdiOvM8blHz/Jjf/MoJmqhvQrKi8jzhNFohPYihAxQSCyCPM9wXpUiG+GKgjwtQEmEKCHmnoE8KYO7PE0oiox4OMT3NcNkgO97CBRO+di0h/F98kKMEzJdJmAuJ6j4WGcxno8wOZ5XYdgbUtgehgTnErLMIwg9sjzF8zR7u5tElQ7OWYa9GK1KlIPUGmVUueYKAzi0tFiRMRx2qVTaxHFMFNVIsxyLLr33lARlcLZASsCVQuHWxQgKlNRIl5am6cpQWIHWEikdxgQkwzL4zpIUL/BJB0O0F2LHiQ0YjOeRJH08r0KRWnY2t2i2Gnzk9z9LrV6j0ZxACMnEZJWN9R12NneZnGrwm7/zNN//oe8jajTZ3jxge++AyfYUR44e5iuPPIMrqhy/5yh5bhkOu+hKg0tn1/mFX/pnvP8v/jDtlqVWrRJFIVoUUEi+5b3fTrPVZJBaqiZhf2cdlXt89KF/j0oPc+jwCucunMPoFtJL+Lf/0y9xzz33kBeWpfkptvb2ieMY42lkoDlx913MLSzxSz/9qxx7Z3PMnw5AOJSiFO4wIYWV4DI8o8kKgSUf87oUp09d4t67VuiNYiJjyKzk7NVNZloNrMgJvQqBV2GUZAySFCWh6iu071MLa9iiwNOOwPfGgj2W3PpY6wiNpCgK4iQnMKW/3OOnz7Ozu83UZAuLV1q0KLjnjkWkKY3gr22sYzyJVC925XESpUt7jGpUxYq8PK6SfPzTp1ldmSttL6TB1z67g4RKtUqcOZJBjxs7A5oNhVYBgxg6tZA8GSKFpBsXoD1atTpZWgpthdLidIVh4eELSZIMCYwoiwAjR7Xqj33zxsIVCLRz9LoHfOWr57jj2BJ73X3uXJxEGQ/tGXa7AwLfxzdgjGIUFwQaBqMEbSKOH1/AKMloVOCHAfv9IRPtCs2Kx9LqNGmWUQt8bAF7+3tk2Yjf/cQaq0cXuXu5WXbCRE6epxRphqc9plfmCHR53zTCkP6wh1CGQQKdumF+vs3MZAvfU2gZIfAxIqbmayIvZ2d3k8CUtInO4iFCr8rsVIdvu+v9fOShz3L/RJvjd58oU1stUNYgBKQUBJ5HgUehvLKbXmQ4WwrXSVewvrGL0B7akyRjZIAOBLVKmyBskhbFLZ0Ao+Cgu0M98MqcxDkyK0HVyfKMf/7vfhZPK9564i20GhOcfvY5pjsV6oFHVI3IbYwnFChHVGkQaU2tEpZFNeXjtMUOC65v73BoYYkrly8RVio0G02UDgkbdXbXLtOstDBRiJUKZR1vP/lOPvLwh7n/gTfdov2IUhnkJTDNF+PP8iGcwxUWLcQt6OULj9uTPeHcSx6v2WUAbnkrWFcizG6jH738HCh163thy98rY2Yx1mx5WeL2ut21W8Hu7bjGV4wXOJYvQENvIehe8n5fCqG0Qo4LJ+W9f/t1WF58ToiX4itvD8VfK7mzr9EVfMEi4gXfvBcS3K9z7r6G43WTuxe++TPou/7UT/03/OyH7uSb73/jiR28/v126zKs48wzZ5A2Y2JmaqwIV5qvFkUB1pJmOYgcoxVRFDAYDgDHzuYBWdpnanKCg96AB+6/mxPHD5HGMVk+KtW8khHr1zfo9QbMzk2QpkOMJ6nWIpTySJKEer1JmmZMzbbByRJiVV4dglKlLokTpFTEwwH1asjlyzdI05x61efe+w7x+FOnmJqqUK81SUal0IctUvZ396jXqzhn6R30+cCb5/lbP/dr3HWkTaezjJCKa9fO8Z73fjNSVKlUJZeuXuHU6bP85z/+d7n59FMEBUx2anS7PXCWQ4tL7Gz3CP2AKIrQply4jDS4opRAd84xGo7QRiN1Ka6gdYnJzrLys3wR1y1QvsJagRZwsL9NpKpkAoIKeF407mKmdA8OyIdgc0GeZkzNdMiyFHAY3xCGPlE1RFiHLRxffeY80xNt8jwljnOarQZCa6qhjxCSRr2GHwZ097vUqiGVwNDqTCCUZHNzl3qzxuNfPcORQ/MkRYrLJTjBLz59hfumPZaX50vDe63IMsfpZy7Q6TQJ/ICZ2Sn6/QGeH/Brnz7Pe++slSILtvT9K8V7snJxFS9ADixJ7AiUIcsL5uYmOHP2GvNzk1hn8Q3U6vWxP57kwuV1JieatJqlzYKWglrFo1oNuXZtk1qjUXIcZYExmuEwJvAjisIxN1t2pq9c3eD40ZWxz1hBtRKwfnObajVkf7dHFPkUtsACrVaTXq/P3l6fIChNrb/0lec4tjpLnjo8I2k1Q7a3B0xNtsvF3xiS4QhHgTaKSiVi/eY2h5bnqVQrwAv+UoIszfC0RhtNtzui1Splt0fDEbVKSJyk1OtVrHVcvXaT7e0+SZoxP9diaXGGejWkWfOpNyoEgc/iwhRSOBbnJrn3He8jHnapVz1+9L/8Of7pT9+Hkj7K98qKriuFP0pJcl2uAfkQnMQPfCQFWRKjlEHIEhpc8sc8bGHH/m1e2X1XZYXRWksY1nG27HRZm5WqkUKUgYFW2MJSZAVBEJAlKa4AW7hSYVIHeH4EWIxXQejyfhKUBSNrLWFUQpaTuIfSBdube9QbtXFFVZScJAEOy8HeJpVKB99vEA/7tzZMqSRKylLY4dZcFGRpTpZlKKXI81L4BEr/SikVWZYQ+D7OQRKXhQ4oUMYQRBWyLMUEHsPeAZJSMbOc/6C1xBYKW6QoJUiznKWVaW6s7+AcfOyjX+TEiWUmJ9tMTrWJKgEu63PoyDvKIoX2CQLNX/u+H+C7P/gBPvmZj3Lu/HO8/R1vw9qYZrOF8i3SSo4eXsC5Gh/78Ic5edc9bGzdpH8A3d4Wc/NNHvvSRX7jt36NpYVpZmcX2bzeZ2LGY37+GJevPscP//Df4Qd/4Aewos+73v1ePD+g0Wjx1ccf5cjxk9zc2KDVajE92SYZDukf7PMdf/HbeGL7EcJxB7RUnCspCAeDEZ7WOBzWOp468zzz0xNYW3pbzc10iLOERqXsIGll6DQjBqMe0xMtNvb6DJOEZjUgy1La9RqDJKc7SPCNRgpHnCYEXkSaW7LC4lxM4CkuXNvEIWjVIhyOJ888z4P3nqBRC0tfLcDT5TGcE+QFnLrwPBvre3Q6bSphSJbn+MZjt9u/RQcoxRKK8XtQHFudoR+PCDzFwWDII48+x+LCJN1hQhBofCV45Inr/IW33YHvGZSE3KZIXSoNG6X5yEceAU/ymc8+zaHVKYznMRz0uHz+IlG9Whp+pym+b2hUqwgpbg/VAcGNrS1Go5io0aJRCen3ely8vM7U1ASV0KcaeoyShCwv2OvGKC3Is4ROo4RuCpcjpeTS2g6NWo1GJcDZAiEcg/6QdqNObgVp3qUaNtDGceLYFIFnKGyMEJCniloQsD/YR3uOiheQ5RmDrEDYHM/zGSWWRx+7zJHlFvUoQMrSH/Kjn3qctc1djq7O8PSZ6zzy2HW+8S0LDLtrtBpzpKKB70n+6L97mve86xv4lsPfysH+Pr6nCY2HRGFdjCscwoTYPKXbTbm+tka92SZJhmBzfK1JbUoYVEvfXZthVKlzIKTg4GBEUI8wXoBvfIoctDZEYYXuzk38ik+SxPjVDlb6KK148vkn2N7b55vf9B6kU1y9cpXBwQ3m52bxtXmx0yolw+GIMKpSFCmRH4ItcLkgrEXc3LxG1JhjcekQV65cotVsoY1ia2OLdrvJtQuPkeWOemsaK8uk+dd+93/lr/yV7xnHgq/e4XrF//Ein+uNmJH/mYLNV2livPwcr94NHHeqbruAP1Ny9wbHy1/+kuTuFR24267z9WCnr3juxfFayd3rXXaZiL5UbuXryd3XcLwuLNMWf6ZZ96M/+mP8wn9y3ysJly8bb+jeepWhjcLTmjNnL1Gt+FSr1VuBmNESTyuSNMXZmOEoQ0tNkSV4UUTga86dvcT6xhbf9K5vQGpNPOwTRQGnnzlH4TQ4y9HDKxSuIAwMgR/y1Scu4hsfpKNRbzAYDPF8TZqlWFfKZSMco1GvbEM7VRpZC4fRHut2Krx4AAAgAElEQVTr24RBKUW+sjyJlhFzcwslX4mUUZJy7uIad55YJQq80s5hMGI46DI7M8m33jfPf/sfHuHBB+7l0KE5Dq++hVPPfZm5meP8wR/9NjmSVnOC/d0tPnp9jw8sTpMMR+zudQl8jVOWLIuRBtIiARS+F2CMwdqUAokQCt+U3j15XqC0IksS0jhBinLxHMUJSmrOnrvC5FT7lo9eUAnYuHkNYwxhWCfPC06dPsf8/NQ4eC6QnqTWiEiznMqY7G+ULI1ARVl9K4qCM5fWqBqPKPTZ2evRaFTZ2trD831eWL5+9+Nf4OThUilsOBiRxAW+71OrV0EImtWIIAzwA8MXvvoMk60mD+3s8SPvvxcpDXEyKuFBWjE3N4UxHo8//gxTk22i0ENJ+PVPPcf77ojQSpeS9Qj2t3epVSOsc6RJghQ5w/6QIKrypS8/izGKZrPK5naXubkJtnd2aLcbPPPMRZK4hNz6RtNqN8vNd3sfS4HvGeJRzOTUJFmSIaRkMBhgjEFJQ7c7xLnSW/HUs5e5755jrF29yee++CzLi5MMugOSJGVqZoL1jR1m59ogJMqvEg9GpFnGqWfXOHnXYfZ29jh5bIHTZ67Sadeo1oJSpKDZ4YuPPsPK0gxGezjr6PX7JRfHD6jWq2XVTSjOX7xBp9nESM2g2+fxpy8ipeba2jbLK9NorXnsyfMcPTyHFKW/15WrN2jWqxx0B3i+wFFw6pmrnLt0g5XFSSrVGrt7ffI8YW13j/aRt7K0skp39xoiqDM7B8ePtIkTgfFK7zWpFMNB2XVTYyNfpSn9oVyBtQnGq4BQSK3KhCwMS8n7QhCEButykiQmiRO0Lr3Oijwhy3K0p8uappTkWX5LwlogyJIcWwjk2PJASFDKK/la1jIaJmWQ7wWAu7UDZlmOkh6F9fCMj5SGeq2CtQWjwaAUYckKpHQkSUKl1sQVlngwIKgEQAkXVUqDTcnzgjy3ZaBdFKixx6JSquQ6SEWWlvdzURTAi9B6rX2KIsEWxRj5UIzvC0Mcx1SqFYpcoJQlHg7ASYa9bvm5aIkSgvZkk5nZafI85xsevAPtBfhRUMrr7+0yigsuXBIcP7qApw2CnPe+993MznU4cniF48eOEfiCnZ3LSBeS5gP2N3bZ2rjAA/c/wNbmHq12CydhdnaeRjMgL1L+1b/8d/zCv/gHpGgarWk+/bFTfOmxj/LWt70XE4RcvniZb37/+8iLhAJJVGkw6A/Z2t5kYnqWVruDE7IMpAtX3pu+5pf+0W9w9J0TWFvQ7cXjPcVDSMdgNMTTAf1RwuGFaawThL7BMyU/7traBvValcLB+vYBjVpE4JXww1Y1ojfsEQaCShBhLUhhOHXuOmfPXOT40XkskizL2djtMdGokie9Ev0RRBRFge8pNvcOOLY8y26vxyc/+QR3njhUBm42ZZDESBWw143pNEKWF6axzuOx01eYm6yR545KqOmPUnrDjNBXKCnpj1ICX5ey52MurUPSbFZ59sI6qwvTbOz1eerRZ/mmd70Jlw4xfkhhCwLfYJRhEKeEgeHkiWXa9YCTxxfxDQzjjE4tolYLqEQ+X37yLM16hXo1pDvo4wfhi5GCKO8tIwWT9Qqf/swpjh+eotWo0e602OmPOHXmCvNTHS6vrTPRbPLQJ05x9tx13vKmoyS5Q0iDFBYpLLVqucddvbbBVLtJoRWdRo3NvS6B76NUyEMPXybJCqYnJ/BkTO5K5cBeb40o0PzeHzzHoaMn8JVlGOc06lWSrBhzLx333LGCtQW+FyKFYpDELC50uPv4MknhEFqzengBmVwlH/UJ2ifJC8Fet+Dn//Z/zed+/Ul6vV1mpoPSR1akjGKLMlUUgo9/4mGO3rFI5Ic0W42yToPCGEGWxSi/CtbibFnEyguHVBDHljQX7OyUxamiSDG+ZGPrJkEUolxOYVO0EORWEBcSrQy/9yd/yN/+oR+iJVpkWcGRI0e4dnObmckaWgDOIsYKvwKHH5X+d3mWoqQmcxlaOhq1aZ549mmmp+dYXFjizNnnaNTr3FjfoAAq1ZCsv4fWHn6tAQ7efd+7mTzafm3lTPdKXQaFGHv7vdiNe0G+X7xu3DouKQhBnMRACYF/5Wte9j8vD1xvu6aXJ3elf+Qb5+D9fzm5c7jXTO4K+9p6GWKM/ri9e/n15O5rOP40zt0bHb/z279HevNZ3nH3of/HkrvCWqq1Khsbezx36hmCMCCsVkrRj+FwbGwekgwHVKotwqA01623Wmzt3mRmapnAl9SbLZwQHOztEUURd51YZX9/wM3dAUcOL1MUGRcuXWAw3GdxYRanHDMzpeLejfWbdDo1CqtQUpFmIwCUlvT7PQIvQitJ4QqM9qjW6lxZ2yhl0JVjaqqNHwYoA4EnyArHYBAzP1uqWiEVjVaTIDJUazXOX7rBj/6lt+PNH2V7ZwNPzlCpOcBnZ2+DD37wr/HxD/8+zarP8twU/+LhJ3mnF1AJIzJb4BkfIwyB8Wk0GviVGsooCptTFDnKD5FK0+sOeOTx0yzOdHAux/NKuI8Yt/H9wAcnaNZriByMB6m1KF1ByQA72qaQFuP7TE60Snih1CjfYPyIIpMYXzPoDxA4XObwI5/BcIg3FnSYbjYJwwAhLIGvybOMytgCQWvNxx5+jG95271UmlW00YRR+Vl//tGnmJtogbNs7nQxSnH63HnefPdRwjDgQ6uzqPkGf/zxL3L3XYfHFaWymru3t8/hw8sYI7BZihLw21+4wHfe3+Fjn36SI6tzgKAa+ezu7iGUohL6pHlKUKmitKMeekxNtknTjNXDSzxz5hKHD83glGGqWWFza4fJdo2wWvIIR6OYwUFMVI2whcP3PA56Pawt8CKDUiX3yXgljCr0Q26sb7G6Ms/6+k26vQHLCxOEFZ+d7W4pciIs8ytzdPf2uLm+SxhU8I2m3+9z4+YB7XaV0Nd0uz2WVxcJIo8b6zu0Wk36gyG1uk+tGrB5c4c8gyAwBGFA7kqjbZxjf/eA+YV5njtdFlf297scXl2k1W6isTRaZRK4sjDN7u4eu/t9rLXMzU/x1KlLnLhjiWYzYqJTo1GLOLwyh3CK6ze3uHB5k/vvW+V3P3+at77n3eMkM+Yn/vGv8U9+5vt54qunWVmdI4t7OARpZgmCCGNK41VnHXmWl3PL5eROoXQ5t6UELUu+WZqmYAVx3CdJRlSqNaQad7Gdw3hZKeygDHkSk8ZDPL/0NJRKkKYZWntcvniN9lQbqRVOOJRUJPEQrVVpp6AgiVN8z8OJskNewhsTtJeTpUOkhHgwLAU0rKMochAKpQVaG4rCIBiidIp1GpAlV9A50mEPpT2U0WSjIdr3x/FKaYOgJKW3ntCkwy7aM2gvoHCCZDgsDdEl5FmKVIrRYEhYqZCNRkTVOtaN17ekLFoVaYEQGVG1wVNPnqcSGsKg9H7c2tilVvWIkzIpzrMUBPi+5B/8o/+Nk8dXmJme4fHHH+Xw0RUGgx6TE0tsbfbZ2LhEo2GYm1pllOVUgxq4PdIiJQpDlg8t4/khG9vnwAaEwSRve/tJLp97hon5FbRX4bd/8yH8So8H3vxu1m8O+e7vfg9R5DMaxGwf7KGVoRJVaDYqeGEVRFlAESrCBCFxlmGB7/zO7+CpzS/grMPXBt8zDJKsTH6wVPyIi2ubJX8u8pFSMhiVwiu1MMD3PJCST3/mKZaW5vC1YZTFgKBR9XGuABEwilOurN3kztVlDq10yG05f/IipVOvIWVBPEzJnOE3f//LvONNh0FA6Ht89otPcWi5wz0nV/nKs9eY7rQRLsUzHh/57NN02k3adR9ETmYtw8SyNFXnoD/C9yWBCdjaH1ANNQivFFDp7SGVx8b2AYNhRiEUnhIcW15ESEkQVJifbSOkourlfP6pNRZn2oySnEgblCr5U06OOclKcTAYQB4TYxB+BEXMZCukXono9kY0KhFSvaic+EJyd+7yVQJP0Z6skBcp2g/ILRwMYiZadTwlmZ+aIC8sC4tT3HPXEda39vjKExeoNRs44ciyAc3IZ5jluMJx9vkNpqYmiUcxkW9IkhgpHIqE+07MolUFWyQI7RMYj2Z1gsIq/KhAyYSDkWBruwtYqpWIwllOPXeF56/vUK1V+eTnTnP55i77u7scP7xA4SzWKdrViFrVknSv0d3LyCvzxPEBn/+X51lsRfS2cy6du8DhpSbpKEVqyd5+zvmLp1hcnub48RNkaV4W2aVF6gpFPEKQ44Rga7uHsA7fk7gC9rt9tGcYxpa9gx7NqSad9jRKeGAdlaiONgFFMgKbIIsUZTzC+jSFtXzxzCN83we/h2K/hHJevHSO/e0dWg1N4PkUJRoUJcuCNhaMMQil6Q8HbG7v02rWEDJhMEzp90o15cXFQxRZxqEjh9jfG6DDBkbk7O3eoNaYRpkSJvpjP/0Tt7p3rx43vrw7V/7sbgsqX0y23kDsKgRhtcKXvvhFFhcWX/bkG0juXnK+l/3eq8S4/39N7kqkzKtfh32VpPvW8YR8BRfx68nd13C8VnJneYM3yHj86r/67/knP/xeXhMs/OcwhICiKOjt7XN4dYlGq0Y8tOzv71HxNUIZrFBI7ZOP+viVKtiMINQYE1KrV1m/vsbk9ARCKKIo4uq1NZQxNGpVbDwACrZ39pmfWaJZr+EHAZOTk8RJTp7ntDpNClsGkxvrW3hGY7SPUqX0s6RAKAFIijwvBUV8TTXyybKcMDR4XsBwlBHnjmq1zqDbp1r1cEVBt9dl2B8gpWFrY49jh5e5sXYZc3CZp9ctve2nENmIycWjaC/ixvPn+La//L289cF3sb+zi5fscbcWpEVKu9li7cZNiiIjqgSkRTEm4gNCEoY1er0DQj/C+LA0M0VWQBAFWKsQCnq9PlEYlp+rsGjfQ2rIsgLPeGBtKRNvAkiGDOM+1bCOUACS69dv4GmBUYIL59boTDaRUpHHpUiJEI4isxRWkaYZn//qaeZm5ggrHg4IAg8lRCl2s7JInIww2pAmI9I4RThYnJvCC31AUatVGIz6TDQbRJUQqRQ313d5JN7nW99xH9JI9vb2efLpC6WCaSXCKEevN+Sxp88wNT3FHz52lQ++tcUdRxeRuvxbCikIAkNRZGQ5CFmqDAo0QRjR6w4Jg4h4OKIS+py9cJ35+Q7X1zbwvIBrawfMznRQ2hBVShXXIAh59uwac/MzhIFgf39ArV7jSw8/y+rqDDtbOzSqdfb29xCiVOwbjTLywjEz18YLDIFR7O13WViYwlJCbs9fvMHqyix7OzsIZbjzxDJCW9K8IAxDtjZ2sGlMp9XgydOXWV2eJfAMX3j0WRZmW1y5tsNwNKDeqJHFGb7nIaVE+4qdrU2uXN+hdzCg06mijGS/26XRqONHYy9La/H9Ck+dvsj+Xp/F+RlmpttcubZOp9UAIZAy4DOfO83G5g4P3H8HgRHgLD/74XXe9ZZjrNx1P4NhytvevsjEZIdf/tcf551vX8QLQmxRYJRDuAJnC0aDHmk8IKw2EFqgTQWXC7RyFNkIIQqKscm70oo8zzC6DChGwwFClAGqkoYCr4RQpjnalGuKUmXCIkS5FdoC9vb2iUJDPOgjkAjpMMogpSbPR2Nz4xQrNFIK0ngE0qJVgHOOwPPLjVW6kqPrWbSqUvrEG+LBCFSBMSHOKqTIyy6dVvS7PaJqgzzLkApG8QDP88izMoF0Nh1DCHMKm6P8ACkNNkvJki5BWMOR3+qcK+WhTY5wmjzPx53IEvKZZzHG+HzqE19m9dhhtPJ59IunuPPe46RFgRCCK5evEUQegR9w5vRFZuanMUZTqUQcO/YB3vr2t9Ad9FlePUQ1CsbKxim/8iu/yvu/9T1cvjikPVUnzx1+YNjaPmBiosXM7By/81t/zPx8jebENF6lgfIM3/1t386P/N2/x2/91n9kZmKaathl0F+iMT3in/5XP8973veN7HT3+OxnP8bi9AR725tUKhWyAvb39qjX66RJSn9vnSTLiEKDLnpoXeHn/t7/zD3vXeLZizdKNEJQKj8qpQHBVKuKpwXdYc7O/ohOs4Z1GcoEWOdQSnDi6AJpkSCEJPRDsiIpYXSp4LFnLpFby/LcJJ977BkOL89irUUpgVGKwhb0RilBrY7vSY4fmuIzXz7L4kIbrRQLsx087ZPmCcszLVxheeLsdWY6bQ4vTTLRCBAKjA4ItMdU28NhOXVunYXZKbI8Z6pVYTgaURQ5vtEoZfCcI0eRoaiGPsYP+T//4GGywQFeYPjUp57grpNLaC/i6GKH59e7paCKSohzgZY+YBnEGVmW0qiFBH5IYHz29veRRUpOQG4lUVSBMVT6xc0dcCV3rj8aUa3Uyw6bcGgcjVpI6Ek0IDQgLEZZ8iyjUauwsjhTdhANBF5EkjkKp6hWfBo1jScyPG2wUhEYhSNnZmqC3YFg86BLLQq59Px1atWQ3rBHmqdMtSe5uNalGgpmpxrs9DKKbIAQjpnpSVqtJmna58SxBZZmayzOz6O1xgFaUxZ4BpuIdB/TPEI98pEq4D99/9/hZ//H/4W3HbuPza1NtBjQbrQRnqTuKWZmZscenAWFAOkswomSA2801qXIQrI9SKgaD+GVcO0gCBDWYYxi2B/hpIcJArRRICX7+3soV9oqFNkOUkUIl7NzMCKIKvg7Ie/7rnvZfr7gqacfZWFumeEgZdjfYaJZx2mFcJYkzkBKtHCIagM3GJJkCWsbW0xMzJCnOYP+Pvu9Ie2JRSpBubcXWYZUmnptbOER99hav8bU/BEs8M4T72DyWBOp1EumxS0K2rgVJsULfp7lQ5TLKJIX+XUvHmDsE/EaAWWW58wvLIB8qc2Ck/IVj1viJbcEVsYcO/fSYyJu496VVYvxU2K8Pb5UaOXPmtjd/rkoOVbutOOziRctyF4YL7EsEy8/jrv1eK1zCF5pQyFvf9HLhrVuvF7yIndRKAQSpfXXk7uv1Xit5K7Er7+xWffjP/6T/OKPvOPP8apeZwjBzNQEUhg8z9A7GDG3MIm1ZWCT50V5swiH0B4KhzCaXr8MgPa3txAIgqjCQbdPaDRXr27whS89zYNvOUkcx/i+z8FBl95wxNzCLBZFHmdkaUa/2x/LOxc0m3X8wNDd67G2dpPORJs8K6GPWpXQJSccDsvFy9fJM0er1SDJChrNegl9yiy2KAgjQ78/RAqNtZZaLWJ6usPFy88zHPaZnp6lWezxlbWMI3c9wPraGg++7a1cvnCGfpzy2U99ltWleaJI8zOf+DJ//a6j7O33kKL01arX6whpyLJSuW9raxdPSaQqBTzieIjyAjzfI0kTjOeTJ6NyUbaOwJQiH8lwBKpckdIkRRtNGlusdXiBj1EJ/b0Y5WswkmoYEYQhDsfkRIfRYIjnefhBgNMgtORPHjlNHqfMTHW4vLZBLQqwhaUShgyHIwrnMIGP8hRhLURqgxSQjhLiJCGshORFQZHlbG8dcPnaBq16HUSpJBiFAT/7J2f4jgeXkUqjpWJisk1UCdGeJstyoqhC4BmarSbXblzjgcMtHJZBv4ca+7NJIUmS0idMKgm27GqlaUK1GnJl7Qanzz7P8sIEi0tTCOXRqFWo1qpMTLaJ00GpeJgknLtwjWoUMD87SZFlHHSHaKm4enWDu+85xIVLV7h5c4/RIOX8pZvs7g85fHSWVqtJlqVMTXewzpIkKfOL06zd2KAaVnj8q2d4+zfcTWYLzp27yvzcBN1un89+4SyDwYjVlRlwGbVam739LkcPz5AXlnMX1jh+eIGt7T6e8Th+xyr7u/uMhjlFbjGmhBJWalUqvkerXuPxJy6xujwLzrG7u0+1WUMg2d09YGd/F0+XC/qgF+NwFLmj0SiFWJ586jxJVvDgW47z6T95mgfuW0Eryb/+w6f5vu/9FpJ8n0Y4gfAyKpWQd77zHp47/Syzc40yKRslpaCFEHhBiOeH7G9vIUWOlDlCeAwH/bHapEMITfZC6dkWKCNRWhOGEZ7vl/6RlQiHLdXuxJiy7gRFUbwELiSFpN1p4gceXmBwCHyjyq6gcChtSNME43kUuUOisQWlqAU5pbm6xFnAFVirSEb9spumDEWW4wcSbQyME3Zri1KtUUiM8UizwVgtE2yh8KMqUqlxZ9DDFkmpNmv88fkttsjRWpEXFs8EZdIoC5TyKGyKUj5CG4osw+YZWzevEFUbKFNlamYazytNbQ8dmsEPQ8SYg7axsc3s3CxxkrC4ukga98suJILf/8gZ7jp5jGolRErJM6eeYWZ6mm5/m3vvOUqSDThx4jhp3kfTB+lodRbwanN8+qHP0u0Puf9td+BEiBKaQbfH93zX99JodviH/8VP81c/9H0UpDz19HN8z1/+AI8+/HmWFpscPXmC1WOHqE8s0Gy3UULSqbXZ2rpJu9Wge7BDTSuUUYS1BtYFWGv54Ae+ncc3vsDSzGQpQDL+s6dZQZo5Pv6ZJ1lcmGai0cC6nGqoKXI17rwVCATX1m/SqIblniRzhLNYC74JmJ9t4fIcXwlmZ6Z4/sYWB4OEWlTakxhlEJT8qDxLCT3D0ZU5/uhjj3JoZZJRmhB4GgFIqUiznMWpJqfOXCQMFd5YQTq35fwt8lJBdXayilSSwhYURUHkBwhb3peoUsb+i488wzPP3SCsBHz+4ad5//vu5dBCmyhsUBjI8rT0XXOWZi0k9BRSOuI0K31EsxG10Ec6y2A4ICtGCCFxKCLfZ6+XsrG9R6MWEgVlJ/qF4dBkSUrdlyibEgSlcmfgeRSuYBCP6A+GeJ5i72CHJBvSqHXQUlBYyArLY0+e5/DqJLZI6fWHPPyFZ5iYrhL6BqUUhfCIRyVn7WDUJ/RCzl68ydraNscXW0y0K4yyEdWoWfJWraTTauKyfc6cucJdR4/jeZLAD3noU08S5znC5mxs9zi2MofDlfBtV5TcdAq6B5eRzkf606zvDHj4l8/z1ntP8EDnQYQcoKVjeWmZQAusLdC2QGhFRlm4ctb9X+y9abhl113e+VvTHs987jxW3RpUmsvGVuQBScEGYxssI4+YbroZmyk0dIfhgYx0mqQf0mloTOgQHBLGkBAaaGNsbGxjybJmqUqqebxVt+rO0xn3vPrDvioNloQNCZ+86tkf6rn77L3Pufvus971/7+/F7EXLh3nFtcNyPOU69dKb7dvbAmBky5pGmGUJsssWxu7PHf6MkduvYOla1cJKlWMMuz2OlxbWaLug6MMlpxChCR5wcGbFggmDVuLA4zWjI6OcenMKcYma1R9Q7fTJ7GgpEI7LqnNUcrH8ytoXzPRbBInlqdOnuTorbfQbo/x3IljoBz8sIbr+3h+AMZy7eo1HKEYdteYmFkgFxKtJT/yD3/spdW7V0CtfyWkxxfPF19L3N3gmHw17WQ3osFe6zUvFpgvPcdfR8y92rhx3S+8EV71/b7oWr7a8XJS6csD3V+yry39di/ZY+86vybu/hbHfw1x9/aRjf+KV/RXDAFSSU4/e5Faw+fp46epVhXtiUm0NhhH44aVMpQ4CMmzmCzOyfMYYxzqjSaDXo9rV67wyGPH6fUjjh69naNHDzFMMqRy6XQGJFnMzESbpaVlqmHI9s4ugyhianoCqRXXFtdptusIZcoH4fhIWZEQljwrkbqdbod+L6FSrdBu1alUPBavLLGzM2BycpJ40CcaRIQVH2UEu7sDhv0yT6nbGxDHGTvbXVzXYZjA1MQYM07ET/7fv0/gWF73ujt56vEvMTI6w/75Gc6cfIbLl07w3m95D43FZba6XXzHRyiLlJozZ1epN3yyJCHwDEVhSdKIwPdxXIlUmjyJcXRJBhzsbhNWK0jHI4+GSNfD80saG5YbXjgl89LjYwwFLoGr6W1fxRUS5QQgQShJnmY4RpcTbG2QlKtwKytXuWluBEvBkcMLXF1a5+nTVynyjKmJFkmS4/mGXq9LMsjQRtDvDTl26jKzk222djvUG1WSOCVNIvbPzxBWA3r9PmFQBja/a6pN1FJAGfqcDgZUq1WifoR2XIQoCIOAOI74xU+c5t131hj0Byhh8CseWmnE3sQ6twqjJf1uH2EdPK+kiLZG6uybmeTpY+fZt2+KLz1ygpGmz7nzV3CMZH11hzwBLVymZ0dJ4hiKnGvXVhmdaNPv9pmbG6XAsLPVod2qMDM7xsGFEeqNCq7vIZWi2apjbcHu9i5jIy2OHTtPoxZSbdRoNQPOnrmCQjA+1uDatRVc32NqvM7mdgcJDAcpSZZx4dIKsoDBMC5bBJOIgwcnaI5WGfZjwqCC0QqtFUkS47iGQadPvRlSAAcPT3L2/FXmZieptxpoWZAlMb5j8B2o1au02y20FJxfvE6jEWI0DKMhM9PjtOs+V6+tcN+9t9HZvsYwGnCqO8r73n0XiCat6ZtotVMQOcaR5NalUZdEwyFBsHcfUhANBhRFjtICpcoojiSO0MYgUEilSeNyUaHM7UxKQBCaLMsZdHepNZtYmSOFLomqex41sUcnk1KSRAnG6D00fo6UqmzVjFOiXo8g9EnSGO1UsHmC0AYhxI1nT5ELpJLEwwjt+AghSZIeUvlkWV5mg4lSFKVpslfFE+R5gVay/NJUmigaltRDqcrJnxRIFNgErUrCSndnl1qtRmenwyf++Ivs3zdGUAkBh3jYQ8kcpe3ewqoCkZNlYLQEIRHaKfe3BoocYWOQEikLvIrHoDtkd2sHP/QZmx7FM4YgdMjiIVIbNtd2kcrwLz/6Sd5//zvp7uywsbZKYVMqYYt/86v/jvu+4V7GRqdwXcX2Zge3MYrUPmdOn2VnY41bbruVr3vj6zHGQ7t1nvziQ7TCKotL20xN1XnPu97Lz/zMj/OB7/hOfvc//yZ33PwGDu1zufON30iSOkT9Db7t3d/LN7/j7ShPMswlRJInH3uCm28+TH+oWNncQGvFPW+4jx/4kR/EaI8vXXgIoe1jGHAAACAASURBVIc4jkO338FVkvXtHVq1Ohevb3DTwhSIHMjI0gIwKJmRZFEJ7klzapUQx7g8e/Ya0+Mt+kmKUBKF5NGnzzA63iQMNKfPX8Vzy0Wgz3z+ac5dWubwwiwSSW8wIEoipBYcOTCBVobAC8mLmCjOeezYBfbPttHKMNKuI4QgMIYsS3GUIYkTCpuSpDkFOR//i5PcfGAa11VEcQ8hXba6A6q+h+c4TE6NcsvhKXY313j96w5R9R3iuE+Sw+Z2B20MY60yo9RaS54XuG4FrRSuUURRijYehYUwCOh2etRrbRAOl1a2mR9v0GpU6Q5jamH4kolhkadcXd3C95xyIUD7BIFHvAcwcYUis2Bcj9AJyXMHLROyvCDJMnzXY35mlGeePs/MTItcONx68BArG+s0ag0GiSZwJXkWY1yfMKxhhWS06TM14dOPIpLC4ZOfOskth6fQCta3t7l8ZZlLV/u8/uhhhMpK+nNWcOTwLDOTNSyK5ZUdVjd3mBmvl35fC1Gcoumi0x1S0SDXHvV6lXY0x8d+6/f41je9h6ee+hLrq+vUAgfXUQwTiXQNRWb5/MNPMTY2jacEJfTIQXtVkkEfLQsCr4IsyurgsePHGQ4jWo0GtsjQjiLNEw7dcgdBGNCoNbl+9RJKKiqVkFazjch2cZVhmMRcu7bOvoWbQAiKes5P/qt/wAP3PEAcD3C0ZfHadRTg+B6bm9uMj7TIk5Rnjp9hbLSJrI2RRSnW5miZMTMxznZvSJIkSONghWJ2eo5ed7e8J+OMZnuMWr3K+vJljOMQ1EcRovTejd808qL5nvgyH4+19oYH+oVp4auplleYw+75jgHYq8h9NeNGtEBRvLrH6MUi63n99RpVuudDvr9S4ff8/s9XAV94/68l7F69iinlC+d+/tgvj4R4cdXyeekmxJfX/IQQL3gYX/b7+2rE3WtCcb42/tuP9z7woa94X7v37280LGR5wU5nyCc//UW2OrsE4QjSQnd3h0GviySj2qjiOnLv4WKx1pDnAltYhlGG0A5/9xvu4nV3HkGrgu2dHoHv0hwb5frSEt1uSpwJmq02axubTE5OMDk+xs7uDkIWtCfqCCUhz4mzlGFvgLKWHEGaRWRZQbXaptVukGYxjqtYX9ulGlbYNz9K3C/743uDLkbBoDdg2O9zZfECUTQgyXaZnBnDC6sMo4zxsSabW1uEvuKXvv1W/tOf/SXd3g6PP/EsJ58+w1Znm4XD+7nj1qP8+Se/yDs+/mnm5yZQpDTqFaSW3Hl0gXq9Uk5CSfADj2arTm/YKVexshSExFpBqnTZghhHdHb7aM/FRj3I8/JBICXKMVibY43G0bIkdjkehXGpNWfpdmMGnU1kkmJlgXYVuUwoioxPffwxpJD0Nlc5tH+UThFjQpfdnV2eOrfIN775FqbHWiANvheSxAkCS6UakAwj8rRgGOdsdHuMjE9glS2vC1hcXCHPLaHrkgxTtDJIoUF5SASf+fzj1Eda9HtdkmjAn33qQbLUMhgMCTyfPM0JA596vc4zpy6TZZa8KMiKFCsytrfXyNKEJE1Z3lxhe6uPET5XLy2T9BPeePQmsszSrnkY5XFgbo7eTszM7Bgbm5ucOH0RUWS4XoWg2mJuYR82F+z0I/I8p7e1w8EDcziOQ6/Tod/bphbWUEKDTcnTElvcao/w9PGLbK8POX1mGZvnVMKAI0f2cf7iMs+eusr+hTkG/ZRK4HLnLXNMTreZnG2TDGPuet3NDJKMyekxhDUc2DcJwqCFQdqcYa/P9eubaGmwWc6g0yEnxxhFEBgkgtvvPExe5KgiobPbR0iP5fUOg2GOKBQnnruM1oL56TFc4/DYUxeJIwskrK4PGRnLy1YfUdBsTLG2vkSe5VRqozz5yOMkaU6/0wMkU9OTvPt9v4HnuWRJjlBFCXYIQopC4AVVsDlJUqDxUSZDOSG9QelLFAr6/R7Gq6LdgCjqoUyK6ztYYigE6WCLLB2WHjvpYW22R4oskEYBOb7no50KaT4sw8mHPdzAJU7LimESxyjjQyH2BFuBEAVJHJNEEa5XIU8z0iRi0E8o8iF+xS8FllUI4+J5IeQCW2QURU6/H5e9XjbBNRZRCCSypOH5IXHcoxCaAsGgu4vnl75gKQzf9K43IbQlTWKkUPhhDa0DOtubJRSAlCwuyliGEv+JoMAQIJVASw1ZD1HkCBSbq6toLbiytMGl81cx5KAtSZLzu7/1F/zH33mQBx88SRIPUCrHc31qNcPo7EG+4/0/xcbGJUzho22XOFpjOOjhOgpTuATK4U1vuZv5W+7ADT0eeugJtrdWWF5+lk985v8jk/DMicfY7g9Q1Tr/0w//OA0d8vM/+4/4Bz/7j5m744382cf/M0UaETpNDh4aZ3Skhk1zPAE/8MM/yuHDd7K7lvJDP/5PmJg4QjqQPHnsERJbUIiEL/3bc2jtotUevdT4eJ5hs7vBO+89Qp4P6A767PYGCK158okn9rySijw3tBvtvZlJzsyoSz8qcE2ItJIkFRw8OIXAZXM35q1vXODQ/CiOcrj5tsO88213s9WLePbMVRxTpxa2iAcxrin9jcM4o8gsQeBx99fdhLCSnX5Mt5fhOVX6cUqSQKezxrFnL/IHn3wW3w9ZXu9y31uOgMjY2t2iyAs+99BpqpWAKNkiygQIzSCOOXhoglboE2hKkeXB9GSd0WaFXj9ht2/5y0dP83t/+CXyIkcbQWfYxzgabE6UJGVOXrPBVmfAH/7RF5kbr5BZWF5fRYvsy6biRjnsnxkDJTBKktqYKB8QujVsYUksNGohjrIlGEwkFLYECA3znLOLSxgJt962j94gRSPo2QHzczPEmeKPP/kMwyhFKYco7pMnCVuby2iZkKQC36sTDQdMzdYYpn263S5aKDY3exw8NIXjKox2qYcutdDgGolAo4zl7jccZN/8NOfXdjAm5M/+/GlcT5HGQ4osAjJagcuf/NNH+IHv+jDfdff3sLG1xNj0PPMLtxE2DI4XIIoeqc3JioSFiQrGDtBGkKcZeZyTJBGOp1EZOLqkGecW7rztNuanJ4AIqQRFYTh74SKOqnH92jp5ljE9u49KrU5RFKRJQpyWXQae6zE2OoEVhjSK+Hs/9Q8Ya7VIsgS0w/kLT9PZtTQqFfyaYXZ8jDSPcRyPN7zhTmw2IO9uof1RusMBWMit4snLS7jaYX6sxcnTi5w5dwa/4lKphTiOwHUcesOIyfmbWL5wCp3HiD0P5vr65mtOAaWUX4bgt8K+ZEOIV8T0f9mxCvua20vOURTY4gX6Yy4EhXzlLceSizKiQcpX34QtN1tIbCGR8tWFZvHirSi7Jp4fQpVb+d4lL8Z1Pv+ZCFnceP1LWlCFoHjRdb7SUOSovURMyUsJmFKIl2yWAkSOkMWXbV/N+Frl7m84/qaVuwf2J1/1Of8q4Mprv7Zcqd5a3wFRMDM5ytTUBMMoxnFchFR0u31cx6XILWur63iBS71RRypJmkYkScLk5CRhtcq1pU0uLy5yYP90KRiGCVUP9s1PsrXd5frKOlPjE/T6O1y6fBXH8Wg2WgzjmDzNKPIMi8DzXISAwub0u2U1rt/vs73VoVarkiYZJ04tsn9unMtXrtGsN9ja3mYwLEPOXddgtGF2epwg9NDaxWinBJ9kMc1GFYvgyrUVtHF5550zfNfP/Xvede+bOXX2Od761rdydfEaTz76JH//J34CnSZsnjpBRRoq1ZBKpUKS5qyubNJo1m5EHKRpilEOSVLgOg5xmuAYTdTpEtZCtNJ4WpCmKUWSIJUkGkQ4jsPWxiaeo7FCYYsMqUtfii0sSIFXCVFOwfrGJp6oIKRBCRftwsz+ClJYJJLWyCyBU+OxJ88hJbzx6BybG30mp8dZXFxmdKwBoiBNM/Ks/KyHUcT4SJ2qcXCND4CWHp3dDtNT40hlKYqUbn+AYzSOZ/gffv8h5MYK7/7mt4DN8X2PwTDi0MF5kjSiVquwu7vD2143g0OPorAc2j+7B6Yo/Z7WliHQruti85xarQzAfuiR48xNNzl98QoTE43yYZrnRHEMSjAy0eT8hSVuPjzP6tou42M1ilxw7foaa+tbHH/uMnffdSuOUbiey+raJqOjDaIootlsceXqKkIW9AY9fLcUFlopRkeb7O7sUql5aF3mFNq8YH5+in37Jrh+fZX+oGxT2u0MWF7dpt1scP3aJmfPX+POo4c4c/4KNx1eIIr6rKx2sTamVnXpDTpcXdql1a6yvdtBKUGlWqPb6eG6Hts7uyXAKIq5dOkarVaDy4vX2d7pMT5aRynNbmeA6yhOn1tm//wYRw7PcPrcZa6sbHD3G25l+foya6sbCOsT+hW2hMeb7jqK8Mb43//Vv+ad3/w6HKdsY0yznG9//5v5wHd8jA994E7iaIDrBQz7Q1zfxxY5WZJgXBdsymDQBWsIwgCpVfnlQ1F60ZIUrcReIHBJ1IyGMUoaCisxRpMkfVw3pN/vAwWO55NlpW+kJFWWFTmtNcYLyAtLHA1xjETIFCkLsmxIHKVIafD9gMIWZYh2keF6Hp4fIJVCWInSBklSgmGUJI1zjHFI0wRtROmvoAwvBhgMhmi957HYaweVQuD7PtGwj+O6dHY6NNp1oqiH63n0uj2KfIiUBW5YwxY5URQB0NvtlNVIrcsVW6lJkojl6xt4vkYpTVGUxE6Epd1qsrK8TqXiYhwHJTXr6xvc/8B93HrbPoLQ5+EvLvIN972dk88dZ3rfAeYmD3Lw8Bx33v51fOQj38793/Z+lAr52Mc+xhveeAsnjz9Nu1bnQx/873jHO+5hYd9BfuWXP8q9993Lvfe8DW1c7jx6mK3NXZ577gKPP/ZFbrvzjTz82BepV+pMTzjcc8830Rtk5IXls5/+NN/6Le/k+NNP0ay3WF67xqFD+/mff/xH+F///vfTajn4XsL6xiWKwifwA95w9A4+9gv/hfm7WrjGYZgkeLrK06euYzGEbgWjoREGGKPZNztKkluEzEmTgsAzREmEIw2IMjYjKzKyLOXEhWUmRmslWZUY36nR6adImWGLhN4g5gsPPsfdrzvE5ZV1rlxfZrRZoZ/0CXxFVkT4boAQkvNXypiERk3iOZLF5VUGUY/xVhvjamamZojygmdPXeHrbl5ASU0/GtKohBjtMjU1QpRG1DyHziDhoUdOcNvhfSRpQVGk9KMBWpeT5GoQEHoen/z04ywvrXL3XYe449Y5pNR793S5CJAVZeuv57glEVoqFq+uMT3TwncdHK2QUqO02YtCKOcYeZaT5ymulvSjGEcblPBYWlklyXICN0BJRXcwYGWzx8RIG9cJ0TIj8D3a9ZDBMEITU68YsjwmSUHYAiUEY2M1RBFzeWmt7CZQhla1Qn+YUQmrKAWOEjRaVWyheOyxsxw+MIswMDnSAnLWtvs0Qpc4ydnoDAg8Fy01jna4vLzJaKuGAPbNjgEpadzHph2M16AXB/zrH/s1VpZ3sX3FcNgjSRPOnnqKdm2SXm+bRqOGFBaNYGxyGqE03WGG6zllpVgqlONxbW0T45bh2nmWoY3BFhmOKWOUCpsyOtrixOnLHDpyM0WRobUhjoasra8wNTkJWWnZKCx0+xFRLgh9n3bR4qf/4fdx8Zk14iyiVZmgPq5xpOLyuTXGRmrkRUGSFRx7+lmmpmbIAeW6aGPQeYy1BVPjLSq+S2Fjqh4sXV+muxuTpuXz13F9fNeh19uliHr0hjGV9gQSy0/9/E/zwQ9+5WCVV54nloHdr7jvV1GpewlE5eUB4K8BE3lxCe419BpCqrLl/0b3oi093C+umt0gcL7odS8/zotaPsXLmyZf1BZa2Jfu/+LXfyWfyiuGrb98H+yL2jJfOr4WYv63OP4m4u69D3yID7z1pq/4XDcMpn+DIaXCUoIFnjtxganxEVxH4wXe3h+DRFpLmqRIypVzP/D2vFIGKcFoh6Vra8zMTbO0tEqWDHFcTRhU6Pb67G6uoo3DxtYuWkm2tjuElTI4O/QrfOazjzM53qBaCVld3aDeqKO1IrdlVcsPAhAQxRGtZoNet8/2ZofJ8RZL169Tb1S5uLjKbbcfodWss7m5RZHnDIcpnd0O/WGPaFDgOgrf05y/dHkvp67CzNwM7dERQt/jllrBP/uPn2VhqsnE5D6qfp3t9U0uLl4kHvb4w8V13j8/hd2bOLp7UQuDwRCBpiAnzXJc18NojzSJEFKSxDGeUUTFXgzCTgcv8CnSjJwCoxSD/gDXMTiqDI4uAysFRZaVgADHJbMCjY/rS4bdLaK8RzzMGPYzgqqPtj5CawotEGQEnsvM9DRaOVSrIXmWs76+gzECswc0iIcJn/riU+yfHaPVqkI2RCpBbhOyJKPRqLG728EYSZqmNJpVlJEkacYtjuaubzxKtRqwsbmB67t7EQ4u/WEPLAS+R55GOGoPjy8hTlKUKrPClHweGy7o96Mym7DZoBo61CouM7NzdHYjfus/PcLdr9/PMEmptWpsbu8y0miQpSmtVo0kTjl/foWJ8QajI3Xmp9sIpUFAbnMqYUivM6A12mQYpTQbNcTeuluagJQZSZyhjaLVqjI22iSKMur1KrbI2N7awfUMrXaVdrPO6uoOR27aj+8arlxZp1b1ue2W/ex2ukzPjHLu9FWazRCpfBztcenSMmEQsrAww18+fJxbb96H0QrX9UmSmPW1HbBQrVZ57uQlxtt1lNaMjDSYGG/x5LEztFt18qzg2bNXEEJQq5RZZyOtKvvnp1lausxYawJHQxK7/ORvPspP/b1vJKVJYer8wR/9KR/58H0IW5CmKWlWYsjf/763IEQPozXY8pkQDyLSJMHo8l6M4h0q1VEsOVp6ZHnpfcJa0jTCdRyiwQA/8LGIMuzZGKQ0ZXZXkSLI2d7qU2vUMUaXbTV7X7zYHK10SfwTIGTZChqGLsKmSFUlz5+PSFBoXeZKSUVJqdVqL2vOIU2yPRCDgKxXZuNJhZJlG6nSgjSO9qApKd1uSfDUumwLLfIMqcsYj3QvokXKsl0nqFTKFX+3vA7HdVBaIlWBkAF5luB6Ho7j4gV+eT5TQkTiKMI4ZZSAF/oIm6OUS16A2vPduq7D7m4P3/f53d/8U956z1E83yNJhgihuHBumTfd+25GW6OcPHmS3/7d32V+/jBRvMU73/EhpuamSOKCt7z1zUgV0Qiq/J///P/iox/9ZbIipUgzjj31LK+7/Qhhpc2FS1c4fexhDh6+jY/+8r/h9XfeQi40b/n613PnrXcw6F+n17d0BgN+8id+mp/7xz9Lo1nj+77v+7j//ge46013ENYC3v5N34gjDbVKHdet0mpPkw0GmNAnDCv8xm/8HjfdN0mWg+OU0TePPnicRtsnDA15XhC4mu1efw90Y7BFQsUr8+jSLMNIh24UEwSGJI2JohjteEy0ajhG4bkCrMcXHj/J/EyDRx8s4w1Gx5rktkCQMTtRR2pFPWwBeyvje+1YCMFos06clBEbFb+KVAlSeSAtu8OMZgiukVQqijQTPPiFY9x0aJbuIMWS0a6Fe97LjPHxFgLJZz/7FNOzswRehWdOXmVqvI7eQ+AfPjjF/vkRjBb4rkucFGUkjlFs7vSoBC5FAXqvCnPy/BJff9etKCVJkpjVjR7GcQkCD17o8iKOYqJ4yCCKkcqQxhkPP32J2w6MYYzmU58/Qb0R0Ky6bGz1aDfrLK13cGSKtZY4Sbl48Rob2yntRhXf8THG0B/0efLxk9x2eA6tBafOLLJvbgaAwbAkspaVjoLBcECtEmKkJqhX0VoT+qqkoCJoV2usbG3TrFbxHAdrLacvrbLV7TPWbuAoyYnzS7SbIVVPldCQwSb9WPGJ/+MM3/qOezh/8TRu5lOvNdnaWKPZrJFFu4xPjyKEwFMOeZ6VtG3j8/m/eJjJqQmMliSRRXsNHnrw8RvRPXKvrVBKQS4ysJbuTo8iN8wfvI00zymKjDTNEEIyPj7O1WtX0LYPOeTkNFvjCCcoYSSOw5NnHuIPPvUn3PeGe6kEIY8++Dnq7VEmJxtoCYVw6A8iZg7uw2YDEBo/bJBbiUx7WJvjYss4GK1pV9skImN8fAblaKqVGq7rs7m1get6bFy7QNzfZXzhNgSWr7/9Hn77T36HN7/577yiELN7weavJfKEfQ0R+NcUdzfEVlF8udD7slO8IM5e2kD6suMX4qX2vJcEiZcwlrKz8fmg8XJT8oW8WXhpy2cJeHmRuFQvtHDyPBTmyy7ktUXoy9/XazXglffkq/zsa+Lub2/8dcXdhz78nfzeT7z7v9FVvfqw1mIpwzKP3naYrc1tJqbGUNKSRjFYS5ZG5HlaIv2NIhkkrK+tY5Qky/ZK1sIyTCK0SCgyy/6FwwyTHg8+eoLX3XqYR5++wMzECHOzo2iT4DkhruPSbjeZnxsnrISkSUq1ErK+tkFlr/Wxv7OLG7j0egPCsI6QKb7ns7KyzuzcKLs7Per1KjNTEzz6xHNUQp/x8RG6vT7GOGxt7eI5IdWqx+bGMv1+h1tvvZNao4HrB7huSag8deoCjtTcPVfhE6e2GW4PWb62yPrqRcYP3MK9993LiO/yS0+c4MOHFtjZ6ZR+HFlgjERrQxhUS6FsSoJgnqYoY1BSkmgP3xFkeYHfaJcUPSuRnkJKgxsEaOMw6A8ocotyDEqZ8m/e2vKBlmdYU5BnLsaR6BQ8R5FmCY4yZCIqs7WsixCaSrVCVsRYFSGNU/qb4oR6pcHDj59gbnoMVMptNx8sS/w5KCfkiWcuMT09ihGGwlWElQCsQktFfzjEDzxsIQmUJB13ETbB81wczyfJMrqdDu1Wm9MnFhkfG0WIHJt1sUASp3h7ExaBJElyjGPKdjup2Fnb5QuPnUUJCD0HzzU8/dwJ7r5zBGtCRsfG2Nns0qg2OH/+OleWVpkYb5ElGc1GjWE8pChykijBCwPyIkdqi96r9ORYtGtQQhAPU+I4o9FosrvToVKpA5Lcws52j1q9ijGaZ0+eZWZqFKkFGxubFAXMzY0zGPQ5fXYRLWDhwCzHjp1ja7dHOkyYnZpgc3ONZqNKWgzQssz+CSs+vqvo9Yd4ns+5i4u0WxVq9RCtDVubHaqVgKWra8ztm0aInGeePcf0RJuRkRZKKxbmJ7jp5lmq9Rr9QcaTT1+hXfGotwqitEacw2PHz/KJU+vMtiY5es83EYQ1Hrh/ngJVEvOM2aPFeSgleeaZZSbHNQKJlCWxFJsTBKWwcAIXihBLhyIXZMkQ43qkGUhtUY6HVC5Jmu3l8bnkeVZCCVyHNC59S37FAyRKumRpvtf/YrFFirAKQelvUUXpi0NAmuck8RBEmVknhUeWZri+T5L20aZcJFCqpMVa8j2RlpJnBY4bkAwThEj3wtENWjtYaSiyFM8Y0Jo0TaDIEBQo7WKzBOM4oAxKBnvEy3KVXGuf5wm+yqlA4QClAMvTrBQkSVq25uzR6tKoRx538b0aSZYy7PWQWpKmPcrYCEW4N1GTUnHH0UOEoUe/q+h2u1SrVVauX2fh5ntxpYNSKe9+4BvQskF3cJHNNUGlqTl+/BgHb57hkSfO8j3f9WP84Pf/MCNTHmsrEaeeO8a73/l2/sU/+1+4+fa7+NVf+x3e8aa/Q2tijJ/7p/+c//E7vx2HLls7S/zbX/893vlt76E9UiFXGfff/x7Wdrdxaz7v/8iHGJ+dJR12qdSaBLUWrXGXTBYUxtBNMobLFwnH6vT7Xb73wx/ixO5zfOHpS0yNtPAdw+23LdBu1IjTAk9rkjRGCoHnVnni1BW0tBS5RDsBm/1eSWe0DkpZijyn4vp0o4xq4JLmMUq65MUOs5NNArfOvoV5rBAYIzEmYGNrB2M0UWZ59twVWnUNNsJKQRQNqXgOsU0Rhd2b2A9QxmdtO0HZhJHQY6df8LlHrvD62w9g85hmO6BW8SisRORDBoMeuBU8lWNU2UI8NlHCXTKb0axrpDRYShHnOqqkS1ZDCqH4yy+eoNkMweZcvLxCo9HcW4DNOHVxhfOnlxidaPDYU+c4MDvCtbUu7WazrEbZAikE3SjGlyBsQhgEKOMzjHY4MD+GkC6FHXJ4/zyVQNGNdliYaNDtdVm6slrurx0c5TI+0qYx2qA36NPr9tiJLK1GhUa7UQa8S4eRtkfUj3F8jaMVeV5gpUVLpwRkCMMw3ix9YJ5P4GjyIqfTT3ju3BVatRrr213iLOfS0io3L0wz2qzgGsgzODQ3SeBpup0tfD/E0OeTv3SNH/zIdzM9fZCpqf1sXN6hoCDpD9jZXmaiOoJ2NCeOnWFkvIWVgutXr+B7IQdv2o8WKWW2kMD3XfaNNPHDMmoozzOkkOR5itAKrOLy0hLSG+H68gpSuwS+T24LKmGF69eXGBsZQ2R9XGNIi4gotoS1EaJhl7GpSURdcnV1iRHVJBgboeI7nD13kvlmGwz0h5ZTp55l38QUrhDEeY5XraKkgqQEs6WiXJCNi5xL11cweGxsXqXbyRifmGTx8kVmZubJLKVxsL9NfWx2z/8u+O0//R0+9MH3vaYQu0GffBnwCv6K7rC/buXuhUnol13Da43XEnfPi7MXjvfCvqWf7gUR++Kj3BBir2QpfNl7f75DswQNvvr1fiXi7sZ4rbrPl9skXzjH18Td3954ubjbY8Rhi+I1DY33zw2AsgT7ajf4V+qvky9ZHXn14whevBoChbBIJdje2KHWqIDSUFiM66KMA0iUcXC8kpJVqdZJkwFBJaBRr2LTFFvk7Nu3gNUaozQi72NtRrtZRRtNo95mp9PDdQK0kQzjmOXrW4yMtdnc2iGsVajVa2UWWAFpliOVxnFKBLVAk+U57ZE6WZqxvrpZrjTGEWkSkyR7QsN16Wx12NjZYf++SbqdAVGaMT07y2AQce7MRcJKyOLFJYo4odcfcvjIAeI04j2vn+HXPvcs3/cd7+f4M2dZBDw1wQAAIABJREFU2N/m2tIFAs/jqdOX+ba5NsZ1cPyQjZVNdrd6jIw26XR3CIIqOztdtGNwjWIwGIBUFHlSon6RKKko0oQ4z3GDKsmwTxzHDKKYaqNRtmNoiaD8ktG6bDUQUlGkBY4qiHs93GYTjIOrIersoLWH0T65ykmytARDaIOULsoK8jwjrARIFw4cLHNolBIUuWXYi8qwckcxMdlEOS6ffvhRNtZ2mRpr8yefeZiF+Sm0hCRO+NO/fJojC9P8zOeO88DX38LuTg/XrfDvfvPT3HLTLHF/QKfXoVL1cDyHwc4q2rg4e9lgWZSQZ308zyONh2xtbuAYzcZOh2a1Rui7jI41SLKc2ZkJXL9KrRpwdXGFq9dWqFQUOQWHDk0jhGRlY5up6VE63T71WhUhSk9UnpVh271uD9d36HW6nHxmkSgZUK9XOHv6Omsbm1QCjzyOWV5ep1EN6ff6XLu+jecZpibHWF7dolarUQkDXNcvce1aUa+FVMKAKI4ZHWmzsbnD7PQop84tsnBgjsuLy4yNjuAHVQaDmDQv6He7zM20EK5H6GiytMBzfYbZkNGRBtEgYqRZVu5QksnJUVwV8EefeITJ8RqO4+G5Dtubuzx38jIzU82ywiAC/NDlwvkljhya4wsXhnzL246QmQl+8Ed/hg9/+D7SJEE7Lv3+oGx9thYlFOOTo3zwI7/CA++9tcyISxO0W0EU22xv7RIETZQWZJlASIsbVsjitISOOC55kpSeB0pITpZGdHfWCMIaWZLieA5SaWxRMBh0GA4HeEG4V7Er782iyBGyhAKhJajSr6qUhzESrEECUbSF4wYUhUCqHKM8or3QciU9hoNtlHZRWiFlSaGUWiD3YhgKyqBsJYqyJVNIbD5ESYMxIUhDng6IhmXmZpFlKONgraDf6+J4PjkRQli0E5DEXaQsGHS7ZRuQhDgaIqVAuwFpFFFkGcbxkaZGZnO0kWjHY9jv4VeaJL3uXmXb0B8O8B3F2bOXMUpijKDVrpNlQw4fmeTzn7tOe2QGU9EExqHZqBL4Y4xPVQirLc6cucyB/fsYmZznXe9+J0JCN7WcP3eRt9xzF2mccc83vI2dzVW+7T1vQ3uG1fUejjPKUw9/kvd95IP8b//i/yGsNfm7b3kdpJr161eweUIQ1Ont7DA5UuP4U19kuJPSao9xffUqvqqzvbbGv/z5f8Jdt99GbWo/rq5grcYanz94+I+5dn2ZuekWximrZldX1zlzbom5mTG2e31OnFqiM8x44y2zSOXQizN8R1D1fKQouLaygu96KOVQCEkzVFgrwZZ0TbMnutMsxji6XOySmuvrq8xPN2lUfWxhWZgdLzsjrKafZFT8Kr1Bhhaw2+/hKkXgBWhR4djJpyjkGNXKAK010c46U1NNhtGQ0WYdIUvwWBznLC73mBprIjDs9mNqQYDxKyxe22RypEF3GOP7ZTafUQalNYP+EKUlSrgcmG9R8VySJANhqVVCCpvRG0TMTrQ5fHCWfhSxf6bF6TOLzE6NldETRpYVc6ko8oJur4uVkijJsEVGXkiyvBR/w6Qgiwdcu75GNaxiTANtXNKsT2oV9TAkivukWZ84s7h73RhGlaHovutikWxs7bK20WVyvEGU9Ak9HyskhS3Kjh8tyPIyGgQUIDl7ZZlnT69waXGTIwdGOXZqhX0zIeBhraRV8UAIfJ3R665A0UXLGGUEcdQljuGukaPcdtsd1MeapGRcfuYyrutx+ep5iiyj2aqidc7YaAvtKrRQaFMu5D6/MIBQaO2jvDG0D0U/AikZDqMSXiEFsihtK43aCIIhc/tvQbsuu7vb7Gxt44cuSMvKyjJ1F3JZkCU5mXDIcfEqVRbPX+bX/+Q/8IPf/700GePq1UXOnTqJX6nQajbQyuK5ionRNkJZhFZYWxK3kS5p0iHPEoo8Zbeb4BqHpm+oNSpcvHIV1wuZmZvHr4RcuniOPI5pjU2RZilSe4TVOgBHGnew8ObZV81XK+eK5WTxlYLPX1HcSfnqqsPuzXxfDm950f9lYRG2pGRKBEqWi9iS0gMtLIiiQFhbLurt/cwWshRxN7YXRJsQ9iXbi/d9PgD8xvkFZWeFlC/stzdHE8i9aqV6AWLy/LZ3PGHLj0CKF7ZXFIw3PpK9cxT2xRY+oEw4EHuAFvuSaiMI1AvnfNkv8Gvi7m9xvFzc3fhVWPuq4u5X/tEP83WHXwh9/GppQy8f4q8Qdzd+9rI/WAv4jkscxQg03c4OURIR1CoYXdIN+70Sy53EMWGlgrAp/f4AazPSaMjilTUuLi5Rq4ZEacJIq0GvH9HpDrlwYZmdnV2arYACjRf4GNdjbGICKcBojTYabUpEvtYS13cQolwhL4oCISCOy4rihYtXGW21qFYqPPnMaW46OEuv16fRqPHMsTM0m3UOHV7g7NlLWCyVSkAUxfT6EZ5raLZq7Ozs4DqGxStLrG91qNbr1Co1vvnOKf7Ln36cMxsD3vv2t/KFz3+eD7zvAY7ecZT20pW9B6AsK0djLXKbUa2GJHGGMRrX0yA1ru+TZQV+pVE+G5TGyhL7H1YqWGvRjovjeoSBX4Z+7ZX8xV4eXL83xPWcEkYgBHlhUZ6PRJJnBXkhccMaRQ55HpEMshtttVBWjIXca8EtBFiFtRmFzXnw82dotf0y3Nv3OH/uCu12kyxO0FZy85H9UFhuPTTPyur6XpVNEGjN2OQo/+/lZe6/+yB5lnP27GWiKOKWm/ejtSyDvoMy3Pm7f/U49eEyBxYmEUiefPIc+xYmSVJBnie0RppgJVppWs0am1tdzl1YpuIbgrCC53tcOHcRz3M5cGCWayub7J+fLI35xtCo1Xj62FmO3LQfYwxRFLN0fZ3x8RG01riuQxRH+IFPYXOmppp0NndZWNjHbqfH6EiDQRTT76dUqhX+7LPHufP2ffT7fVwjybIyWyuOhvQ6PbY2+2ihiOKMkYk2QTUofTkzoxx/7iyvv/MQUpWI/6eeOsPM1Chnzl1lZNRnenKax5+4wPxCCwFlnEMUE4YV4ijl6tI6tWoAwnL+0jXGR9usr25xYN8Yne6gDP4tYtbXt5mZamNtQaVSxfc8KCyjI3U+/6XTXB44PHLiOvfdex8/+kNfj6VAaw8pFa7jlvdOHmOBIk944L1v5L//7t/iQ+8/CgVkWUQ07BFU6hS2IBp2yqDuJAUEWjvEcQR5ihASxw8RSqNU+UXluAalHXY2S0psnmZY4ZZVtTRHSFH6GrHkWY7jlD47Y1wG3Q6uY4j6fYyWdHa2qFRrIBW2KPY8IDkIWQp4zzDoDShIQKQYE5aBsBTs7mwSVAOwGdGwj3HKDEfyCGshS4YkcVpO9ouCPM/RwuD7IUWeUeQx0TDBdV2UKsVnniZgBUVWlMh1bdDGQUhDUQhcJyiFqS6rdkJKtNYIqRj2ejhG87nPPMrhw/P0e138oGxny/OcLEsJPEOt2cLxAh783BMcf+Yst9y+gDKSX/zFP+fY40/wtnvfTjaM2VheR9oSWJBkQ246uB/yAVuDIRfPnmZz7RqNZsCRwzfzzNPPMD0zyy/8wkd557vey7//zd/n5puPsrnd5bOff5Dv/s77cYIq77n/W3nrm95AHCf0t7p87/f9EPfc9w6OLEwQBC6ZEDTHphgbm+LsuXOEriL02lgE3/Qt3wJuQDpI+div/wc217cZH53gxF+cYuEtNaqBQ5ZbtFRsd3rcvDDNQ4+d5KYDs8Rpyv7pBoiAvCgI/QKjNCubPYZJxuxEgyy3OMqhH2VIAVlh+dyjz3FwfpTtbo/Qd1FSlp0ytiBJEhxPUA180tziOQ67/R6B52P2ng1xkkCR4kqoVup4rk+aWdY7q9Rq+5gbi1CihXE1c3MTDAYxCElhKcUMAs8oHn3iHM2RBq4jMFrz9MlFGqHPWLtOXuQ4WmMFDIcRvqNJcnC0Sxj4ZcWoiLGk9Ic9pBI88vg59s9PAJbtnV3SLKUaeoShT7vh8aWHTmE9j3azjhQSW1jyrCCzKY1qjcxaBkmMQFILQ546cZFmVdKo+LTrAVIknDi3Sr3m4QUOvqOJswwlBUsr6+z0yr+xZrWGkgopBYMo4+OfeIL5hUlOn77G7mDA5GgN1zhlJR4FWYSQpqRfK/jSk+fpxYILlzdR5Lz5DXM8+vhV1rZjbr1pEs8NOXbqIpuDhOWlFXwuo7IdRDEgirZRRYcih898tMM333szNx15M6fPXaQ91mZwPUJawdTsAiONOseffIp6o0pYcSlSuxcMniMUZEm5iOS6PlIZhAnp7K7iG3XD32gpkEqiKCm/QqesXV/jwrUtZucXqFYCxiemEFLgeh6NZguG22hHE8cJldoIfq2NMWU7bLLd5QPf827Wz26zdO06tbCK4zo0QpfCphgly4V0LYmHBVcWz9MaGyeJLdKW7e+ua3j8/2fvzcMkO+/63s+7nLXW7qqu3nv20Wi0WrYsL5ItDDgEjA3CGztxSLj3hsDlOuEBHhyyEcx+k3ADDuEmEEIIvoBjQ4Kx8YqNbEmWLNmSZpE0a3dP77Wf9X3vH2/NaDQzEibJw19+n6cfabqqzjlVfeqc3/L9fb6PPs7KgUMEIkdKSWd+jq3dlM3NNSpxjfbMHL1eFzMpmK2eP8X8ylGQgmoz5uT6Sfbtu9Zc/MZx418WKwIYYyZJ1Y0i2+stF+AaWeY1ieYLEpcrHbhJI+LqXdhrj+UlJJ326lj4+szWXpabXrfNyXZfMha/Pkl7qeTu6vd07esEksKUrrAprn/sxd7DV5O7v8Z1XefuKj3xjb4C3/LAO3jvu77uyr9v9CX6qxAxb5SwfUWporVYAcJAMhyjlEZLgzGC2AtZu7hOVuY0phuk42QSYBo87RNXagyGKY1GkyyxDMZdDh5YRmvLqD/kS186TZ7nrCx3WFycoSwtuzubNGtVosBna3MDzw8IwsDJZpKMMIwor0pwtHZzK4NBD9/3kShaU1OcP3+R3V6PleVZ6o0GpYFqrUkUVhgMBnzu4ZPcdHiZS+tbJEnmJJyL86yv7WJMSZpm5IVBeYJ6LeLMc+ssLs7RmGpwYKbBN965nx/4pffz9rc8AFJw/O7X8cu/8Zu8dmWePCvpdJp4YeQCPlNiCoOnHSlzNErwdOiqO9JVbKRQjIcZQRyRJCnWQp5mrprj+SCdwbPna6zhylyPMQVl6YJqpbTr/iFQwmLLkqASYqTA0wFBYLFItJLOmFk6T71La9vUmzFCCh559CSLs7Msr0zhSYnw3Lk61ZomSxLyPGeq06ZIx3jazdv1BwntTsuZx3saoQTfsrLAp9fOYbOMfcvzLM5O0Zx28A9rLFopytzwO586yQ9/81HStE8cxyzMt5EeSC9AScHeXhc/CNncGKIUTE81mGvPUG/USccpipS4ViVNCprNGqNhn5OnN6jXIs6e2ySOPAcRyAt830NrzcnTqywvzk5uKALtCUajIY36FJ7v0euNMEA0kYVu7O6xsjLPcDDg9lv34QcahKHf20FQMNWaQfuKKI6pTtcYdAc8e2aV+aUppFCUuev+dOY6kwTEMNjdYareZHt7Dws89fQ6nU7MvkMzZGOJFzoJ7UMPnaIShpy/sMX5tW2Wl9rs7nRZWZ5jbXWbmZmWk0UHmkE/YWNrj/37lqhWq2xv96nWQh7/0llCXxLWmuxbmOb3P7+K9jV/8tHP8vYHXjWRVlsGvS6eJydVR8WgPyaOnFT2gQfu5W3f+W/41jftQ9gCqSuAJAgabrYuiFG6iilTtBegPI0VHkJooMCWKcZa8txQ5iWj0Yhave6KW1qRJyOMzfHDCKzr9lkjCIKIPB+jPYmxJUpG5HlJEIaMR0MqjSZZmjlSpvTY2VinUY8wMkRJwWgwIAgj0qQgjGKyVOD5JUKEZOPEFUwKS5EXKCmRwpIkruuotU8yKlBa4oVuFtALBKZUKE8jhCUIAsoip8wTpBchZYCQekI3dJ11KxRKORKoU+y42VehfRdIypL+Tp+P/elnuenoMvuOLHPyqYucO7/JiacvcP7sBjOdFk8/+Syt2Smk8vn93/soBw7McN/9d/PBP/wkR286yi/+6p/x6+/7VfrpmDBs8lP/7B/xile9DGMFU7Mz5KXgyaceZ2r+ML/7W/+J73vn2wk9F2wsLR0mo+QNb3wDhc2572teRylK9h9a5uDhQ9x+yy2khWDcW0WaAZmJ+A+/83t87sGHeedb34QJPcJKzI/+g3/At77pmxgNtvnYxz7NK+55LTtbO9SqIem4TzlM2d27xNe+4XWEgaY93eBf/d+/wvw9M9TiEDXxnwt8SVkWHD24j7IwzM80KEtFacZs7e3Rqk8zTAoalYiza5eoVBqcX98mKzJatRCpfHzfZ3F+GmtKanEVaxRpbpwCQkmUFoSBjzEaazxOnF9H2YxatQZSMex2qUU+m72ES92cRi1kY7dLNY4QaEapB3aHOJimNAV2Moteq7oCQjUMJiAwy4F9HTyVYIuS1a0+u8OS2akKvu/uxqWBohTUI01eZlh8PvXwabxQUQt8RqmbUxZSsLGd8Mo7jlJawyOPn+K2mw677g4FeZajlc/i8hxbe10WZ6dcgTVL2drdoxEH7PULHn38GY4fmqU/yhlnJYudFpXIQ+gqSWEoipz9K4vk+YBKWCX0FN1RSTWuIbyQ0yfOcfzoEnmZ85kvPMPJUxe49dhh5pY6zNQ0cS3i+MFFlFQoLRhnJZ/8/CkOLrVJUoOkZHtvl0Y9ot2IOHpgmi8/cZ6dfsrX3XuU2dk22JzPfv5p3vSG49TkDtPVAX44jQw66GiaNAddjnjsPwz4uXd/PeWgy8cefIy7XvkK/LDGj/3Me3jNLa+mt7fLxuY21pdcPHuO6akmZZZhhEUJiS1dfK21M5rP8hIZ1IhDxXBvjyAMMdY4ixShOXP+PLVmDWE01UadSrVOFNaxQqE15GlOlqRsb28Qq5zSlo7WGFQwImSnu0MlrHBg5QC/9B9+kdliH4kZsrywQF6MqUeatbVVphtN8lJMYGyCZrNF4AUYr0JhS4o8oTA5S51ZNBmlkXhBgE1TLq49R6e9Qmng8S9+kYXFZXwdUqvXSfcuoestorgCWN77az/PO97+wCRQFNgJjOoKYGTSAbvR/J2bj762cTCZFxNcn+Bd6XK9sIP3UsmdnXz2L4CYTLZz48Rv8hT5UiCWl07unoe53OD1Vx67cRdSSHndm7hMFBVCvHhyd+37cS98XnE3+c9lC4Wrj81OuuKXLRuU/mpy99e2rk3uhOEK+ORGrvVfCR3zpcAp11F6rtUH/yXbvbKkwJauYuUFPlhFMh5TrdXIspJqMwQEWsZoX7F5aZ3mVJNLG9s0m1VG/R6NqTra0yTjnHSckRVjtHIn6cr+FU6eWme7u8l0cwqBk3g1pgNGwxK/4mGlxGQZ42Q4gah42BJGoz2U9sGA9iUIxfb2HqGvGQ8znjpxgfnZNufOnmf/vmWstcTVkGo9plKVzM62GI36BKHP0uICvcGAffv2cf7ceW679RDT01Ua1Rar62vMtOpIoZAYosBjMBzy1lcf5j2/+WHm5+Y4cNMd/Jvf/wBvmW+TpwlCCaSQCCEpbME4SQgCZ7Yc1urOrFsLinGKDpzUTEiFMAZTGPJxSSkMYRxRlgalBGXu8LhSCUyRIqRFSR9rJRJBkRk8PSFASZCepsyNkxFMvGztZZ8VYyiyHB14NJp1LBalPAKlCAPFI48/SbXeIA5iTJ5TlBl5ZtjdHVGLI3QYU+KM2ouhotcbUK1VCOOquzGUgt964ssMt3a5666b8cOAZDxECUccdPMlmt/+2OO8474WYaWKLRRZkTAej5GywNMevu9hjMTkOf3BkDTJOXX6IquXNvCkJY4ivDBECvA9zdmzGzTrEdUo4hOfPklRphw+dgAhPbQIyE1OZ67Os2cuUvF9PN9DSQ9KyVNPPUutFjPVarK+tkWzUSdJUtqtKQI/IIh8pBCcu7BOZ7ZFrTFFvdlm/fw6X/zieeZnm3gqJIhC5hc6KKFIh3somwEuwB+NRly8uMmlrR5TrRqnnttiodNiMEyZm23Q3esiSkUyduCSzZ1d8qxkYa7FvsVZwkBRq/vs7QzZ3u4TaMGF1V2UcnNic50FnnzqDM89d5F6PaBWq3H2/CZxHNHvjZhuCo7MOsDHu3/sO2h3GkjhqtVxNcIiKUvAlkShT1HkoAJ8P+Dldx5gph1e8brztGI42CWe+BYGvsJYRZ6NgBJjMnw/IE36WFNBKYVUliCK8X2NLDNsUEdSXjknsBqpDRYH9imKFC19dne2kdrieTEg0X6AtSlKRUjpMRokk7k6idSaPBuhPQ0YLJY4CpDSUJZjtKxQlglBGCCFQkiF72kEzsRYhRFlYRBSo32DkII8Kwm8kP7ehpPTW4VUMeNh19GBixKwaM9gjXafkZROSiQMtshJxglRpYqQCqk8rC3ASqzwCMKAg0eWQSoE0J5pMb8whS0NL3v5rVSrFTY3tlFSU4t9br71CEsLU+zt7JKX0Ol0GI8ucfTovYTCklcivvFNb+EjH/woo90BNx86wBOPPs0v/Mtf4Q1fezN3HHs5vcEuO0PJd37P9/OGr3kdv/4vf4NjR2epNdsUuaCpJDt7m+D7bK+VvPe9P829978aI8ATbU49/WV+/Mffw+LhacaFouIb5qaaVBtLyLDKLbffjpBQ5CMyYTHKZ2dzl5/8iZ/ljtvvYml5iSAIeO199/AbP/1+Dr1mHl9p0izh7NoWc+0Z+smAOAxQykciefSZixw9ME9v1OXkiWdZmK3x2GNnOHZohjRPqVVj4igizTO08PG1RExmLssyZW1zE1MmeEGVcQpBoBiNenzsT/+CwzftY366iiTHmILCSjwd4OuABx8+wZGDHXxPOwl6XmCsIQ6aRKHACJ9snBEFEUU+ZJxoR2r1fS5cWifLE4QwBJ7HX/z5U7z2lcdAp6jSMshKwsBHaY1WHpEX8Pu//1nEeJullRaVSLuATlq09mnUqyBC1zHTkqIcUK/VGWaGqq9Z3R5x7uIGpTXMd6aQwpsU/iyDJKU0OZ2Wu7YjcqbrMR/55BN05hvUoyqnzq7TrNWQWiP9Cnv9IZ4wNKs+Z1Y32esXHLtpjmoU8OBDT/P6Vx7nyKEDDIYjFAmFKWjUqjhulZnY5VQYjVM6nTpFPmI03CFHMVVrsjtIGYzGnDm3x8vuPECzWeHE02cYW8l8O0CV5zHGUKnPE4QtVNzA90O6Wzn3mePceyTBZgNkkJD1Bhx/xTfwyJ8/zGcfeYhX33wvUVwhrtbxQ49Lz13iwMEOwp+AkcrcGa9bjzIfY4FPP/Qwhw8eZNTdwfe5AvYQOJl4r7tLrV7DU4oyL9nYGRJUpuh1d6lUGyAUW1trLHRajAfrThKsLIgKQVSjFoSoKCId97nvG+7il373fbzhzteD0XzxsS+QCcWR/Quk1gdpiD1FksJoNMLTUJ9aJiszdOmOK/C9iRrAI0/HeFrhV+d49Iknkcbjtttvw+SacdonjiskvUuMutu0Fg8AgvvvvJ/OTdNXErGryZFXL60U5ZWunIsRJS8CDrm8rAUsRkkHKLJuy/JqDzxcLnT5x0jxwudOZJAOmeKus05KabElk8Dm+oTxaonm5aTpcvIjpUuIwF5JHK8kkOKFSdNkgAqwz0NUrpZj3vB9T/aL65orddnCgOvko0YYJ7lUYFBYJMaAsQKUcvEvuJlJcVmEetn657LUVFz52wkhvtq5++tc1wFVrib3XPNFWv/YrxP53v/cDq9pzf1V6JlXP9cyofIgSJKUMisostQZa1tDXAkoC1f6ytIRlbiC8n3iwJ+QgwqydIwfhLSmmpjSsHbhAuPBEEzG5uYlDhyc5/TJ80hybDkiCkMG4zGrF7s0mrGTZWrF7maXuFJBKYmSBWla4vk+UrrykR/4xHEFJQSNqQphoGi3p1ldu8RgOOLw4X1YCydPPMfCXIcP/+lnCEPJ/pVFHnnsy8zMtDhz5hwLsy329vo88+xFBoMEP1AsLS4QhxU2N3cYjRN836PdavI9X3s7/+jff5g3vu5VbGxu8dqKh1BqAgIRDlaSl87kOytd4FkWhFGIUmoiaVH0u2M+/8jTLM61yNKUP3vwixy/aT9SOaqm1gqtHJBFa4/SOIS6wYB09ExrJh1hIbFYbGlRyhHoPE9hSkhGIzxPI5VDsV8xjs5yjE2RnqEoEg7uX0BL17nq9ofEUehw8VnBpx75EtO1mDDQpOOM6XYNREFU8RHaMho5qIwu4Wv+5ssJI5ckRJGzERiPEsKwwoN/8Tg/9G33kIy2CfyIskgJwggsaC9gNBiiPZ/uXp8sK2g0Yh770hleedcxag23rbwoOHt+g/EoYWq6gbEF9WqN3V4XYwoOHehQq1Y4ffo8j3zhFKPRiPm5FtONGrVa7YpGYmtzh6xwtMyd3R7Nap1nnltlasrh1EtTcuHiJdrtJsPeGF8rNjY2GY8GlLllcbE9+Z4YxqPJ3Jr2MNbiBz5WuM84ikIubeywODtNuzPHVKPC6voGi/NTnDu/yuFDK+ztJTx58gy9/ogD+2aZm21SrVU4e24VYwu2d3vMtFs0GlWefPoso3FGrz/ilpv38eBDJ8jzgiBQHNo/zyc/+yRFWTIzXWOU5jTr2iHcKw3u/hv3Meh3iYKALM8wJnPecVLjaeU648rD3cJL6rWAb377v+adb7sDPZlJU8rJH8fDxJEHheu2KRWgtKHILVIYfL8ClAz7PZR21wZhS6wOUBjAWXuoy0bunrNbcVVbR70MoyqXHYjSZORIkVIjKFFaui6gkhNSpTu3TVmglT8hH4LnBYxHCdpTZGmO5wfuuyAgTZIJAfPyrIR4QcW6KAqiSoUiL901SID2Paw1+H4wsfKwrtgiC5RSTtYHIJ3Nh5YCgSFJEsoin8zPlhR5TpZmKCl6B5v6AAAgAElEQVQntM6CQa+HtSnag9UL5+nMNqg3K2TZkDAO6O72UVqxsNDGDxUrC1ME0W38yZ/8CfMzc7z7h3+Ev/MDf5s/+NAHedndd/Pv/t1v8tM/9U/YGuxwcOkgsd+nWZG85YFvRSjDm9/2VrJszGiU8uSTT3H6yRMcve0Am5sXmV+Y5fit+3n29CrveNv38X3f/zaW5jvs7O0wtziDEnXKPKMz02ScJMTVClJAliVkwzG1Rh2Q/Nt/86u85z3/hO/57u/m27/jHaxfWmNmps2//NX3cc+bjrK6uUUUaTqtJqWx9IY5/XHqzLuzhJX5DgJIkpz5mWk8T3Hzkf0IWVKJHASoNAVrWz3CQKJ0CSj3GZeGahwSeAFyokBxpsKWI4eXqFciSouDixhNHPooKTAUdGYqNKoNisLgaZx1jefzwQ8/RKXuUwmCyb3TstEbcOrcNgvtGGkK2lMzfP6xsxw7eJjAF9x8/LA7JYTBIgmDECVLrDUk2YjSFuw7usTswgKlkbQb03z2C6eQSlGLA/rjjI9+9GFySlpTDSphRHeYEmhJbzDEWMG+hTaDJGWu0yLLXFd6t9enGoc04hgh4PzaBrPTdZRWLC+1iELNaDxmtlXD025YKBmNqPgKIwS90ZiF9jSBltQrIaYsiKohmU0wtqAalmxvr/LZTzzB8oElwsAjK1yyp7ShVtGMxoKPf+oUd9x6M6GvePrZVTrtaZq1Kgf2LyCUR+BpWnPzHOj4jLdPUo9CploHGKTQHWUEvs+H/ukX+env+7/4wZ/6dT7+hS3avXsx5RF+/v0fpL+3zp133M3b3/oWNk50GY/7SGGpRy1mFkM21y5Sq9egMARhiJSSrc1tanEF3wt5+vQ5jt/6cgJPkyQD12iyFiElnucx3ZrBGusUKFpy5sI6o6xkZd8++r1dgiBwSVSWUKZ7+F5IkqcIFdNPCjCORuz7IT/4T3+UOAy5uXMT9VqD4bhHu91m7fwpNtfOM9PqIESJVB6e7+FrhQqnCGOffDQmL0ZcNrM2wsG5JJKN7XWCKMDYkpISKyzzC0sIKdneOE+Rp7Tm9yMndOz/4yd+iHe848VtEeCFvndXkomvMK60l+f1rqjVXvx1V7p4VyvbriRR10gt7fWP3SjhupzcXSFdihc3Mn9hcnfNY5eP+ysckbpsSP5S8lErrn5P7jElLnvZPX8g1ybRLwWQ+askd181Mf9fuC5XP+wNzq4Hvu2dTFfj//mdCK4/M69aV1dmLpueX+kj3uB1FihNSZmnNJt1huMRvqd45OEnKDKHM8+zDD+OAMF40CPPM0rrBpWHwxFpmhFFEWfXhywfvImDN9/Ky+5+BZKMe15xG7V6hfnZFsl4jJaSu+661eGSoxhrDN3ukHNnL1IWOYNBl2ZjCiEk1hrGwxHJyMmsSmvo9XaZn2+x1+1Rq9VclS5LEEqxudllOEj4+je8iixJGQ6G1CsRpigBw9bOLu12m1a7zU03HcL3A2q1Krt7XTxf05lpIRGMxylnzl3kV773Hn7g//xRfuzdf488z0FYhHBo3LIskJPBV4OYoNU1trTkqfP7yzOLrz1e/fLjAPi+z5u//h7KIidLUzztvHaKNENpjcEi5MTr7vLfzxiMMWhfOxx24uh/AEHgkyU5QihMYdypAZjJtaLMS5fkCY9Ax4RhDYuHNYZL61vMzEyT5jlZnjMz2+Ib7r+bwFf4QUC1WQMkRS546slzZGOLKSR5ZnndvoNEsZOfas9RL0fDBCk13W4fXwfkpUWpAC0Vnq8Yj0YOTFK4z2pro0ulUuP8uU3WL+1y/2tvpzsY0ulME0QBlVqFY0f2Aa4TXKk45H4U+dx37610ZtsM+z0OH5jljV93OyuLMzz51BlW1zbZ3t6hKAryPKcz0+LI0X2cPb9GNQpJkoT9K3N4noMiRJWIQ4eWSdKEpeU5/vxzT7G8MEN3t8f84ixhpFld32Zjc5OdnT3GozF5mhP4MVkp0Noj9D3GoxHHbz5AWIl58C+epChS7rzjINXIozPdZNh3Xd80z7ntlgPUmzXCqsdTJ56h1apTqcQ0ak1OPnOBJ0+cQ2lFteIzP1PjzNk1ajWfIFQc2DfLuQsbfM19txEGmn375kBYPA+q1Trv/a8nKI0lrtZIszFCgtYennaea8PRCGMhzVI8Jej39vB8xR/94Y/zHe/6Q5IkIcsKpHTzc9VGg7hSR2uJVJJhf+gsCFRAkrgEx9qSxlQDMCA8ytKZeOdZjlIahGA06BGGEWk6BltOJJ4Cz/exQjuJWT4kiDRhXEF7kiRxcAHP9wnDEFOWV6QrUnqAIEtLpApAaKKau54EUUie5SBcRdoZZHsMe12S0WDi1WfxvBDt+SgFaZoTxRHpeMR41AcEnhcilaIsctK0JE/HJIMNTJldkRKVZYnWmrLM6O5sOruLMHKSWj8gCH2S0ZAg8CiKAmst0zMtHnvsHL5fo1JpMtWaR6sKfjDNH33gz9FBxH/5Lx8DacnSER/58MP83b/39/mGb3oTw81N3vWd34EXaL7rXd+NCAK+713fRRRX+exnH0YpePbUE2yvn2PYX2dxoUGSdQlqU3hhyC03H+PXf+s/s7cp+OG/8xOsnzvLz//Cz3Lvva/nU5/8C85fOMHKgVle9vJbCb0GH/njjyBlgIwqTLcitrfW2d3ZRhjBL/zczzPuD4mDgHe89e381w98iG//9nfyM//iX1CrVRkMBnzwd3+b557dJo49BIbdwZDHT55julZ31wat2NrdcUWI0lAPQy7t9klzgxUFpTFo7Tqwz17cYHbKzbcNRiN3rS0MYeBTWEsQhCgJpcmwpSEKQvKyxJoMiyDNJHvDjEs7PfLS3ROqsU9RwDiFnd4QY2C71+eb33gXw1HKRz/+CEJIPvihP2d1q89rbj/E2uYlyrJkkPRYXp7CUJKVlrLM8RRs743QvgOFSGvIMoESIaFXZ207oVnzmG74XNq7RBQGLLSaFHlBsxJzzytvolYNefSJ0yjps7G1R5amtOoV4tDNc4aBT1kasqKYwEygOxhjbEk19ti/2OKTn3yU7b09Z2heWCwFSTbC9yRKGDxRECiBEZY4CNne3SP0DEIYtBLUY59WvYkgIM8VM9Mdvv6bXkutEpHmOWnuUYmmsNYnDCpUA8s9rzpCNxlRloKFuRbdwYi9fsbaxiatWpWzF1ah9xQXn30C4/tsmgUGmY/SMef+YoeHf+0io3HCb/7MR/nRB97Nj3/bjzC3z5E0//G3/e985NOPcfjwChc3d/kHv/5uatUqWim29s6ysbpLfXqKS+c2SVKnjijynPbMNEpLijLl/ntfRVEYNrd28XynVLDW/d3SNCXLRy7AEorBeMRoOGam3WY4HNKaarKzuzWxRnBhs3f5PuxrKtUaQRCSjMacPXeW9nSLX/6pHyOO68SViDQdsLr6HPsP38yxW447Gw8EQhriSoS1cP7cswxGCTpyJPGsMBSTeK40hlEyYr7TwY52GO7tMdtZRgqP3mCAFYr23H6UNZgiB2sn0A6eb11NlhTSddgmqyjLSdFaYibxhrH2KzIxv9aY3LiWm+u22RubbjtY3AuNwq8zABfy+m3cYJvXmpEbY1/U8PxGz/8fXdbaawYDX3rJyc9lE/TLS72In92163/kuL/aufufXFd37qy1VyS5bv7C/eN3//Pv8Z5vPvy/bqdXnVQ3qrBcL9V8Qavv+v81lpNPnaA0Bdpz1fC5+QX8MAQlCeOqk3LYgkH3ovORUiHCgtKaOIp49plz3POKo0jPY+PSDhU/5MxzW5y/dIG7X3EP6IjWzBzbWxepBAGbGzuMk5RGs04cx8wuzGOlQintSEnKAyPxJPhBgJCCosiphDXSNKfdnqLdmebUydNU45Cw1mBxaY7+YExc8VlZmOGJLz3N/HwHayxR4DpCe70eQRyQjguEsoxGCdu7O+R5QpIl7OztkKUFvucz02nxXW+8k3/9/k/zK597lG9sVSlKQ5KmaC2gsGxs7VBrVtC+C2KdgaZkt7tL4IcIYTEm4zKZaW19nTiOUFKitSOdjYcjgsjHWEHS77oOURAihSbNnLm8lIJud5dqrYIQLoAR1nVKlAaUM4MuiswBL6Q7HqUuX9wkRVG67qP2UVIS+moCmxAIKShtTiUOKHNDXpSMxntEccDTZy5w8MAsSlvSLMXYgkeTAcudGnmeUhaS1QvbPH3qjHvcFMzOz3N6dZWYEdqPKMoSIWAwGBDHMbs7QzztUaQZtVpEXKtgjGV3Y4dub4RWHo8//gyNRkylGlGpVVDKUKtVOX9+k/p0g2ycO4mqsNQbNdqdBlHou5uuAKUU/W6f3nDA/GyLnd0eUlqUgtVLm0w1Ks44fvKlDeKAp585z/JMB2tcYrC2ucmRIwfwI2fjoSU89cRJpqcjtO8jSkGaDlxXyQuwQvDUiXPMtCPKouQzD5+iMzNNmRuefPo0b3zDK5BKoTyPZDxmaXGR3d0RWnusX+qxuNiiKEr3mQSK2ZkGgyTF4qS5o1HG6voeBw/O06iFpGnG4kITk+6Q5yH//Us9HnjzPSA8dBCRj513U5bmeCogiJ3cujAliIIgjLEiQOiQt3zDbXiqhy3LK1TJIjd4vkeWjinyBO2XE4PVAHebkni+pChch0r7NTzPgHTUOmOE6057GmMlSkt3Y7SaLM1ch05NiLKmRAiJFDFZmiKVIIjqjAZ9EM/72xV5ihAeSilsmSNx8uWyGCKkJk9zR8DTHlgzgbi48z+u1slz48zWJ7faIk8ps4yiKIlqNXQQYEtHMLPGUuQpUvuEvqK7fRo/aGCE7wh3JplcTBVBpUqZpYDC9yTJOEFrRRy72R4HcYHhoM+x4/tQynV5jMlJkxEf/NCnuPO2fUzPznHnXcfwdcxnPvUY9933cv7gQ0/ywFvfRqUasdfdZWVxkbOnn8H3LNWmxqvXWJxv09/t056f408+foHXvPIYo71L+OkuA69D1VesnjtLbWaZ5555iH/4Q3+PL37pU/zA3/1HKJ1x+rmHqMfLpGmP9fVdGvUOhw7MgacQSuFbwWhQ8uBnv8Cv/Kvf4O47b6Y1M8PP/OzP8p/+/X/k+K0v40N//F/54R/+IebmOg6wowzv++e/w02vn6e0kkpUZWa6jdYZoa/5bx99hLtuO0K1EjEeDUjTAbMzs1hh6Y8GWKMJdEhpBNW4gpKC3nBEu9HmsRNnmWpUJ9JHxTAdooQmnPg3jrOCKNCMRj0iP2SUpFxcO8fKwixnVrcojSL0YgbpiM29nOlqzB/9yee467YDaCWoVWKefeIMx289xC23LDFdjQg9TRwLhKqQFoJ2s+6usUoxHI/wtMSXGk8HjryHxPdSJAXnL6wS+wFTjQae9omCiFbDYG1OHIWcOLuB74dM1yocWJxikA85ONfAV5Zx6goDjz56klfceYzSCsZphlaK0XjEwsw0O70+42RMoxqwb2WWsrQYo7D4RL4gL3KXmBg3O1RKKLIe1ahOGMZ4gU9/UrythAFlNgCpOXVhg1aryXCUEEcxUgqCsKQ36rvvv/bZG2VUwohK6JLlKPD5whPPsjA3x+JiBSEtVbHNdvcMJrqd6Xabhufx8V99ioc/cIKbOsf5ppu/nvtueQ1Hbj5OUpQIk+OLnLIssUXKnYdfyc/90vt483e9nbe9+W8w3rCMkgRlLOvrZ6jHM0y3QQoPoQQW4wqnUjrrFKkgCGjEEePBLgLnJ2itK35r4YEssQg21jeoNPcxNzdLGMVc2tym3ZqhSDJ2L21Sr1rK0km7yTNEtY2UGj+q0KxWeNWR1xIvV9FDj8efeJjlpYP4Xsxod4NWs4qxEolCTK4T0ioq9TZrW5tMN1pkwy5C+eRFQRB45EWG54WIsmBxaZn+eEQmFO3WNI1alXMXzjLc28SMd9DVNpVaA4vka+58PX3VY3p66vk5OGsmyckL5+ncY/YFMeNfBvu71upAcBm4cn237brnXq1yu24g73Kp+gbrBdt5ibm6Gx3vi23yr9i5e35fLz4beHXn7vL2r939jd7ljTp3l4/7qzN3f43rcnInpBsUd7rficZ58kf6pZ9/L2965V89uXt+9k68KCnF7e9qLfWLN9RfMBx7+fVYev0BtWqFQXeH5eUVpKcZ9LpEUURpLVq5gfIyz+jv9dG+IgirKGVcULq6ytLKLCdPPYfnedhS8pE/e4TZ+QaBFPi+nhj9ajYuden1hyyuzFOazOHIA8nu9hae1uxsdVlbX6M9XccqidY+3b0eYB0dbOLZNU7GmNRw4eIalWrE5sYu7U6Lhx95nEArAp2zs+Pmhi6sbhCFPsZa9vb62MJQUmKMpSgMnZkOm1t7eFrTnp5ierpBrVF1Zsx5yX//xGd497t/lPjkCaRU+J7HaOgCNzd36GOM89nCOrrg7m6Pet0ZiSdJSRyFFGVOY6pJlieEkYNBKCUY9nO2tnaIPElcrbO+vkMcBq7aIyWnT59jpt1CWs/Jy5REWYXBOqKoVCjrdOt5niGkh0Tw3z/xOfYvzKK0QgjF7vYe1VrVYe+1JElSksGYL598lvOrG7SbU/iB63oEvofnhWxs7HLbzYcYjxIwikqtQmFSfvKTJ3jrvccoC8tHP/Ygd9xxhFa7ycq+ZZqNOnmWEsghjXqMkqD8iGSU4AuD8AIC38f3PGrVmO3dLnEYcO7sBoPRmL3egJWlaYZpiic8Tj+7yuKC8y9KBgWN6SpZkhDE/iRZsShT8sijJ3nuzCU67Rpra7v0ukNGoxGNWp2HHnuGm4/tZ297QL1RxQ+UM6MXio3VHaZaEUVmWZ5vE1cjhIRqJUZYjTE5Jsko8hLt+8wuzmBxwYIVoDzpCh5WImXJoQNzVBsN8jznpkPzjMcZUnkcPrRAaUuUdnN6GItQimo9whQFccXDGMPmZpcDB2ZpTjcwxlCrhMzOziJRVCqa6UaTNE+p112hY3Vtl/O9HvNzN/MHD51jqlJw8OB+5ESzn6RjavUppHbD2YN+jyiskGUOziMpkcKg/JC3fvv7eOc7XkaRD/C8iEF/myKDKK6gvABjLH5QoSwyxKQrW2T5hMxq0f4E84ymFD5Suu9ZlhWYMpmAaArScdcVksoCk+futV5EUVowCQKJEgLhSQI/wGCRSjMajdE6nBiQK/IiRfk+pbHkeY6wJX4YkuUZyqRgHCRKSokOnPGzkAap1GSOQaK0hx9GeJ6PlIoiKxgNXMKONRhr8D1HgTVGEVfqJFlOEAak4wE6iJ2sWkqE9CizEcr3EcIFf2lScGl9Gy0dHCmOq3zsw59haXmFP//kIzSqPjOdNs89s8Ha+i7znQZhHLK9ucXKyjxPfvk0f+dvvZq9UZUPf+RPueX4Lexs9PiJn/gnvO1b3oyVGi9PiarzzM/N8PDnHuEb3vw3+MAHP8xtd92LDZtoUpJkTKuzSKc1y6EDc9Rnl5ldPMbv/M6/Zf/+gzTrc/yLn/k53vTNbyeMFXvdS2hvBk9DXoyQnqYA9h9c5pvf/EYqkc+g26MWxXzv934P973x9dx12y3cfucdjMuctbOreCogHfeoHNV4SjJORphihBCavCxZWJxCK42nXHfVoDBlSuC7bqzvCZJ0iKDEDzwnbyxLIl/RalWJQ39yvklMWQAWrdWEU166LoUXcuLsFvVYEsYxoR/iK0s1ivi9jzzBcitmnIyoBILR3h4zsw164xRPSDaSnPlOHSk1WeExzodEkY+UGk97COXIr2leEPiem59RkrxMydIhvu+RJyO0jqg1G/jaIij5zMPP0J6u0x9DoxrRHfZZaLeQwCc+/SUOHpgnz8cUVnOpmyNQ/Lc//iJDqzl+dIXCZEirkQhCDX/0scd52fEDSClJsgztxUShT+C7op01ZjJ/avnjDz3IzNI8vX5Gs1YjKQxaa4wVhF6M8hQbOyO8MIIyoRJ6lAiqYcDeaEQchpiSCakT1rb6rG/uMjvd4o8+/Dmm21PkZkyrNcN0TeHrEFnu0dtepTJ1E5WKh68j/uOPfZpf+4X38mef/Ax/9+t/gGGS0u7MYYwjpgZByHjcRSmnPoijmMX2Ibr5Myhy3vPL7+XWpWNgDc+c+jKduTZVz2OYJHheAFagPFdwLW2J9Dy0jkmzEb7vUY5TCt9w4cIm0+0mxpZYI1BCE8UxT506RWYl3Z0unVknGw4in2qzCknPzYkJRSkDBoMCjSUrCyfZVh5xK+dHfv6neOD1b+HChWe5ePYkc8vLVDxFURYo7VOkY4YZBKFy1k1LR8jGPYSyaAm2zLASPOFRloWDOll48tQZDi0foT/u4emINElZWFhAFilWaWqtWRd/CvjJX/wp3vGOt16tXbwuiblWceYUEi5QvA7adxW6X9rnu1LOXsulJla4+bqrZZpX5u8mdgcvOIYXWB1clWgJgXUgi+f3OZnLc1L5G8fE1nKl0/VScswr71c5noEQ9rok7SWXsZPsTF6ZKbz84zYoX/gZ8MKETk4ov1f/7nkTiOd/Lm9LK/XV5O6va11J7oTAGDejdpmCI7D82/f9v/zkW479r9nZDc65y4OWV5K7awZHX/jy639vjCWKQtJxxvzcLIWV7O4N2N7eohIH2NJgrMAkCefPnaPenEJqSRQ6A+kwjNnb22bY71GtTxNXYi5tbtJphxw7foyZpQMk/V3OnLnA2bPnabWnyIoCjCWOKmxs7uJ7io3NHeI4ptms02rXyPIMqQMkAs/30FpRFIWriALJKOGzD36ZI4cWGQyHtFttpC5pTdWoVGI2N7eYn5tjdW2DRqNKUUJZlviBolIJKEvL3GyHOI4YDQZgSsqiYHNji337lxmOxzQaDbK04P47D/Ijv/y7/N5zF3nnwWXS1HnrfeBjn+P4kf3uAgSYwgWyXuARhxU+9ZnHWVnsEE4G5/d2+3ieIgx9yrwgCD163R71Ro0o8DDWILVHmTtpgwPeKLp7faZbdYoyQ3pyctE1CK2Qys0MaU+RTiq5AoHyNAeXFyYyUgkWgtDn8S+fcqj9jT0ajbqDPLSmWJyfxQ98+r09wtiZRmvfdWWF9BBWsbWxS3OqRpIMGfX63PmyeUBwaN8SD3/+JEEQsLa2QaNZo96s8N3/+jO8/dVzFEXm7ByUvHI9V17AU0+dpd1q0GrXeeLJ55BCMTNTZTjM2NwasNsfsLLQYnmphfY1yTDjscefY7oRU6tVsFi0ctI45fksr8wwVQ04c36Do4dWyPOcUZow1WyglaRSidjY6NKcqhNXq3S7I9qdBqefucjc7AzC1/ihD0BpDVubu2xudxmOxozHY5QSrF/aolaL2bnUdUlwHGILSz6Zf3Fm9TlFUVCp1rAKKtWY8XBEHETkuWFrcwftOQ/JLEsoy5RK7CF1SKNZp1mv8PDnT9GoRVRrEcNhn/X1PmvrXVrtKhcu7NGeqRCGIcNhyheeOE277bG8eAcPnhvyt77vaxAo+r0hWTqkXquTpkNGwxw/9PADDyEkWpco3yPPc3xPY4zgu7/j6/jWt/8/fOubjyDQRBXPVcJliVTSGYWXxlXDlabIc7SWWAxKSaRwQYEpnDk41rjkXkm0X0cosDYliqdBSieL1B5lOcDYEt/zEVyZMac0JcJODMsRaOWjPOFm7TEI6zvAEY6KJ4XGWIP2fNJxzmicEFdj8jxBag+skzqPBsPJjK+k3+0SRdXJjNwYP1Bu/rVw83WepxgPhyg/BOVhESTjhCJ1790LIqw1FFkKRjhAlTBYI7AIlFJMtZp4fkSSJDz19DO85r67yQvLqZPnuf3Om8nznMWlec6eXeWO227iD97/pxw+tMQnPvI5vu4b7+Psc+dQeh9tL2N5aQmpqrz+9fdTSEtWFLRn50ElfPnRZ/nn//gXuf9v3sVNB48jEJx86iJ7m9uYtOT73/W32dle5/Wv+1p+8If/IWfPnOcH//67+P6/9QP89m+/nwe+5Ts5eqxFreLzgd//EGjLdLvK7u42lahBaRxAZP3SKof238bK/mUWl6fZHVyg2Vxgpj3Nzs42XhRQ9QMG6ZjX3P9a/vTEh5FSsLqxw3Sjzslzl9g31yYKfPqjxHVXLwdkwgmXSlNi8pIzF9eYajUQWhH5IVEQ8tCXnmHfQsfJsCazs54foKRidzhGqAhPeHz8Ew+zstAiLcY0axWqcY3/7w8/w9JKB6kEtxzuoGzKfLvGOBlw6NASUnmEXsyjJy7y2rtu4tL2Njt7fSeLa1VR0vLxT32Bh59c49Yji2zu9pipQ7dfIohRXu5sAnD35v6gJIp8isJijESYnJX5mMFwRDeRTFdjyjJl0N/DDwM6s3VcfVhQr9b5s48/yvzCFMsrM1x4do077zjkrqFK8/ipZ2lUQ/Yvd0iKAqU9wqhCWWb0RwPyIiMOQsqiwFMK31N0lqZpxD7IEiECPC3I8gRrMidrtbC506PVqOJpD609ojBw82SeR14UDMc5Smoeefw5FuZn2O2N6EzXOHxwnlMXdliem6Jdq+GrlN7WOfLRKiKco9lo8gf/+Iu88+7vpd8d4V0KqKUhp0+e5OiRm5EIzpx7juZUg+GgT70aU2QjJIKNnW0Wl27iZ3/z17j7ZbeyvLJIJ1xm0NthaeUYTzz6eWaXZlHSoJXi7JlT1OpNN6PueZQG/KhGlgwpizGecATM1vQswkKRJgglWd+4xMbaLp2lfVSbLYQQNKem6He79Pe2CLXC5ENU4IpxVnhUmrMoKRBas756gSAMWLp5ij/+8Md59dFXYsqSKIpZalX4zOceZmlhHhn5pGPDF774RWbnOtSbM2zt7DkJeyAROGovQmDLEgQYU/LQgw8TNFsIU2IKJynv93YJPUMx7iLDKrXpjov3BNx/5/3M3tS+Omj8y0PNFzQCrnn+SzAfru3O3XgG78Vn6G68XpiRfSXJ2tXP/UqeL65NNL/i9fx7uaFhOzcM259P5CaJ3dW/e7A7PNAAACAASURBVKn11eTur3FdkWVai7HmuuTuWPb4V6yrhedn5uQLThR74zPk8mMvIru8dr3gizg5ky5rkddW16lVYtI8p9Fo0tvbdIQ55dD1ZZHRnulg0AShh5IBwlNopalP1bh4YZPpVhshFDvb21y8sMa+fcsoP3C+Lqak2xsSBpJGPSau1Nnc7jLdmiIIfKamptwMGkzw5R5ITTqRNqVZ5j7jEsoyY31tg0pcY3Z2iufOnufgwX2cPn2OzkwLgEsb22jtYa1lbnaasnRQEjkZnrbGEkUxUrl9NBp1+r0xC/OzGFvSaNTZ6w3Q2kMKwVtfe4Q3fff/xo/91vv5ppU5bGnZ3O5xcN/ipJRkKdICP/Aoi5xet0urXqcxVaXf7xIEIY996RkW5qaxpaC71yOOQ8LAyYWUcpQpPwjwPc1zZy5Sr1VIk4xaLXbSS2nRXjAhP7mhff5/9t47yrKrvvf87LNPvjnUrdzd1TmoFVpCWUKAMOmBSGaecV4ee7xYY+YxNn72ePAYR54eXvYy42ewsTEPBwYMtjEGgzECIyQhCYVWq3Puqq5cdfPJZ88fu7rVigPPY8+8tdi9zlpdfe8959zqc+/5he/v80Unb4N+D8dxSeIM0zIxpNjQ0G/AV0LtbzbSrGE5JqZhEYYhjqkD8YXFJXzHIs0Vvu/z7SePMzrSQJqSKNSgnXK5SK5yXM+imCpK20aQpoUQkqMnz7Bl8xiTU2MY0iCK1vni43O89ioPxy3S7QxA6UA4SxIs0yZLIg4+dRbLVIy26jz82Bk2TzcYGamSZRkHrtvLhdl5Wq065y8sEQ5CRkfrlCoFbe5uS9IsRqlsA5hh4LoOzUaV+cU1beIrBY16jWKxQLvTw3cs8jzDEBLbsvE8l2rZIwwzbNcCBfMXFyn4PuVikU6vx9aZKcqVIq6riwIqzZ+RWSjF6nKfer3C+toahUJBd3BzDXWwbIc01eCbxcUO7XafZr2ikyvHJktDpFDkSGzbJs9SkiRl2A1J8oxaowxKYEmTsbEGiysrdPsR5ZJNpxcwN7/GXbft4d1/fp7bp6Y4HQteffd+jh87hW3bWHZC0fbo9hYoVybAyDdmPhMMlRGn6E50v6MBDZZFq2GyfXuNPFMMhx08v8igP0BaNoYBSayLGNI0N+bqDExpEYUhUloYUhuYp0mEIU3CMMI0NdY1iQMsy94gc0oGXW11YkmJRr8KyHOCINAecknCcNDXXbIoROWpxoLnG1JTy6XbXsO6RL9DEG8cQ9oWrq9NzS3rEqUz1abrGybsppRIUxdfsjwhSxKdbCY6mTUtiziI8IoeyYY3n0BfZ7brYloWWa6T3X6nQxYPcQol8jRHmjZZmhKFgfboQ8/qTk61QCgG/YAjhy+wY8ckaa7IM8Xy8hpzs4vcdfdNeAWHq6/dTa/boTFS41d/86+5+46X0Zzayfe99h48kXPNDQdQcczFxTmSWPBf//QTvOtdP83klikunJ6jUvcpl+pMTDap1us0R0a5/oabaK+tsWP3Xl7/hlfjOJLXvvZ17L/qag49fZgbDuyl1+2yttrh53/h/ezavYs9u3djOz5CKDy/QKVcYWX9NJlKcJ0areY2TNdgYXaOWrOuIRCmoFCo0OsP+PhvfZI9L5+iWi7i2DaVog8KkjSnXPB1ZzfXM3mVQgVT2ggkQtiM1GtYpkuam5DHSCGYbNUYRjGOZWmP0I02g1IZjmUAuthVKHv4vkuzViVMM+67/2lec9c+OsOEerWAUAmu4xClOY1KkUGaMwwiXMsGA3xbIkTO7NwKM5uauiuIQaNZpd6o49sC2wTTtIkzwUMHT3D4Ty/y9FdmOXH/CjPuHg40DnDHptuITwl+7ifuJTlT5an75rjwaJs9d1WBBM8yOH1ujmZzhCRLieKM4ycu0mjU2Lx5FMcEaQi8kslIvYrYKGI0KgWKvsV6t8fXv/Jtrr5qG0EYYJDh2C5RCkKYes4JQZxq+IxtmTiWRJo2ltS8wiSJMA2DHIdcSYqeBYYFQurChWGSZSnDIMQywbYcCkWfPEsJUxitFzl5fp6J8REgxbdgaek0jtWnVN7FoSf6PPJfL/CBX/wP/Pz7f4O3Xf9WFuZOU6+16HUXqFYbLCxcZNPmGYSUrK0sIw2TPBsgDYntFnCLdW7ZcysnV85wzdV7+MBHPsQbbn09g8FAg6OGS5S8OqiUWlN3ryzTBJGRYyBMF8eSpOGAUKUszq9QrvmQZdi2o61OpEOlWuPokXPkhs3YxCiu41IuVXAdh4WlRYyshzBNDAVKWPjFpv7ON03q1RorK0uETpuHHn6SUatBv9emVC5TLUgmpme07QwpjiFoNMcoOhLbrxHFEYN+j2JB2yElcYTrFhAquyxbHx+bYG7hApVKiy0zu8kRbNkyw9L8GQq2IBUm1cb4BjVP36cqm4uYlsUGReY5geHzg8YrgVOXbBEubeI7SO6EsUH3fqGM5aVolM/a2SVK5nPP7XljhC+4dDFZXCZpXvn8S7PbV4JYrngTzzn+SwXVz7yX5yZ3Ks+RL/Ja9Zy/f6fTdN9Ncvc9oMr/SysHPS9igEZs5Lzrx39Ef7F8F+vSh0XjYtWzACnAC1wFL4y3fd5r1LNhK5f7w+gLe3xynIWLa+S5otdtU623qDZb+GUfyxLkQoApcRxLz3qpFBUnoARBd8Dua/biOhaub7N1Zgtbt2zT1es4xioUmZyapNPvkkQm/WFAnkWUCg6+KzFtyXAQ0VkLyFUChqUDuCTE8RzSPMd2XExbU9OCoE+l7LFt1wSWKRmp1VhYXKBQcLE9n7mLK2S5yfxijyQ2GAwCpme2kGAys3MXIxPTLCyv47kOQRiSpglZnmJ7NivrPY6dPEenH+M6PrZtkJEQhSn/5wfexwd//7d496NHEJbNnbcfQIkMsgQjyTEdG5FkmJaBW3QYG29y/NgZbMti0O1y44GdWLatb5iGJFMZyoSi5+G5DsNOSK/dRmUZYyPam61YL+CWXKIkAiWRgMgzgn6ofQGFQCqwPUffnG3dvr9E2BQohv2Qs6fmSYYZSprkSYZbMJCWxPaKSNumVqvguEXKpTJxmJFGWvstlJ5FSOKY3EhZWVljbWXApmaLg2eWta2B63Dn7VdTq5UY9Lu4lqRUHkUIi/Pn1kizmGKxyt9/6QFMR3cjVR7RH/a4/fZrQOjq4y3X7yCOIA5h684ttNdWaLWqHDx8iqnpFqvtNsWCh2NbrKyscnFuCYE20bWkwfryOufPzbO60tHXx45xjZ0XEMcx9VqZ9W6bXKXMXrxAEK5oOZ3jYNpSD6LnClNYfPW+p5i7uEwUCU6eOsPs7CJZpui0A5JU0O2sUinbXDw/T7Fk0VlbJwkzFuZXELaNYTokyRCVBNhS4Ng2U5tabNszhuVIzp1dBjI9l6Mkrm2isoDO+hpHjp4BCaOjFdI0YXV1QJYLhsOArZunueO2fbiOx6ATceDqnWSGAmFRn5QYdgHDUOzdtwfLFpR87a0Uxy6pCkhjhW0USMIuYRwy6HcxLAdTpXhOBsLiFa+8mn/31o9iWhalSossH+B6NkpBlqQYQpJECWk8xPNNBqEijnPyTENUsiTS/nCGoc3JXUsTYPM+Kk8IBjFC6MS2UCwisEixEYZJmqQAuIUSpmUibQe/3ERIE8M0sFwXkHqmz9K+c5VGE4WN5XgY0sH1iuQqIBeKMBiSZYpU2eQYGNJEqQzXkbDhJRkFQxACy5IY0sQQDoZjYpgWw0GXKI4IY4W0XFCpnlfKM5RK6XcH5GlGmmQ4XgFpa2CRkA5h1MeyDVxfExcNYeEXCmRZjlIW1UaZt3z/yzk/u4Igw/Phjruu4Ybb9iP02Bhfv+8RCiWPLFplZW2NLduuR6SKv/3sJ7nhtpv4ww9/hF4nYqJe5P6vPs6ObeM0mjG99XXe/75fRwgbs1LkQ7/3WdaW5rnzlu30VyWbtk/QaAiECllZXuHTn/wbWq1JFpZOMwwlaVpnZvtV/M5v/wq7ZmZYXVxDpX1sx6LX67C+voolRrCMGkvLayyvLjPotxmdnkY6LguLCxhAJhVRkBLHWtlAGpFlfc7OLTG3sIKUAmFIHFviO4qan9LtD5hfXscUCQVPIU2DJAkpiIRgGDKIIlLQMJ4c7nvgIErlxHFPd1CTnKDXJs1CGlUflST0+h1UXuTuO/eQ5JKF1SGf+IsHIQXTKmAaBfpBimcXGak1SFRCq+YxjLukScy1O+s4Jqg0JwpzTNdhdWWNLM/50r1P8+gfd7kxeSWf/PEP8Rcf+30++vEP8Wcfv5d3vPlupsckxYrgptsP8A9/+0U+/OHf5M/+8o/4xB9/mndd/X7Sh8b4s198kp07d5GkAb7j4rlw4/VbOT9/kU4vIMkE1ZLP2FhTz5OJlFPn11lf7xCFAdWyyctffS25iomSPqkyMDCp+9ZGkCdZ7mUIUzEYRkRRhsAgThVRmupgQFl0h30Onlhmrd3n7MU1BoM+Ko0ASDKDKMspFatAzrHTs9SKZVbW+lQ8m0SYbNvWoFKycOM5ls88SKXU4NyFUf78fY/xhsm7+fDHfoH/+X99P2/d+zrWVi4gsiFJP+a6/bs49fRxWvUJXcyyJNVyjTgROHYBQ0nCfpc8DlldW+Ljn/prts3sxvdshqFBd32RickJtrRmMG2BNCS9fsKFc2cQudiAw0lct0gcxSjDwEps8mhA3A9BQBxptUHJLRJ7Efuv3sfoSAshJO21NV0QszzGpmawLRvLNMnSGNs1iaKI9mDAoN0jRdEaGeFjH/80r7/rZWzdto0giUkwSXOFiVYRpGFKJgXVokXuuyjLIh10aTVakKSYQuKYFknQR1gWUjp6/tWI2Dy1icMnLpBvdIfbnT7KMLWJfXcFJQ0dm2ysz/zm5/W40CU55JXbS6w8zzdQ/y+k+npx8Mol0EpuiMvbZSDKC4BRhJE/b1NCoYSOQa7cXmoJJXRRCPnCj21sKgOVPfNvl4Alea5QZHrbOP5LHu+K870kTb20LjV1Xggrc6WU9XmP5epFt+9mfa9z9y9clzp3CmCjxSqAJx4/yA8fKP3rHPS7m/n8jl4nTalx3qagWCljWybhIEClisWVFVqtEYQhyVWO4zkoFGmWkuYKoXL6/aGmYZomTqFIrdHg7Knz1Bs+pjI4dfwUm6ZHaY6O45c8lhZXGAbRZZ+4L3/1Ea65ehfLy8vU6nVQakNjLul2uriuPiYKnYiZFkrB8vIqFy4uUa0U2LRpijTNCYOQfn/IzTddQ5rEhFFAu93lwtwCBdemWi5y6uQZXNvEcRxOnDpDsehx8vRZ9u7exuTECJZlooA4SkBlOK7PLXsneOd7f59CucTrRiuYhsb/W45DECQYhqDf04hladqsLq7heibKyPEdD9u1NcZdJVRKPv3uANfzSeKYLE156sQZts1MAOJyNVqpHM+16La7lMpl4kgTCrXE1NY3qizHki5JqDh/bp5mo4oi2zAzVyRRSrNVYzAYUqoUIM9pt7vMz69cNtstlUssza/z6S89RJ4kbJ8Z112eRFc0H3vyGBMTTUqFAs7G/OLXV5eYKDsUiwV93QuB47okSUav3+Fzj5zlp96wC5TAtGHX1hZClkjjgCTJWWsPWFlqU6sWWVzSyfbZ2UV2797M2voajbEmtm3T7Qwo+T7T0y0OHTlLo1nmicOnuWb/Tga9AYN+gJAmpUqBerPMYBBQq2kTbMfRMstOu0Oh4FItVbAsl0ZtBInNyvIKcZxQ9AsbFNSc+fk1xloVJidbNJs1atUCaZpTKGjUeByljE+NMTe/wuapUZ54+jy2lKRpzsjoCNLwaK/2MU2HXEXESYppmZimSZwk5ElGkuT4BQvbsrBsmyzPabf75DlUyiVGmlX8ogdo64vV9R5BGLK0tE6tWsJxHC7MLuN5JqVShb97bIV33LYX6lfTqAfc9+UHGJuoE8cQxVAbGcFybCQJGRGOVwJlUCgWyZSit75EpTpCEAWYhsmr7tyqfb4yhSHk5aTLELob2e/1KVVKDPt9vEIJw4A0ibE8T89OKUAYZGlMlsUIYWyQUl1QGblKNgzobbrtVVzXQuWp/uxYtoYfKO2JZFkOeZ5oefEl5pjYqMxugFikIfS86cacYZalWFYBy9KgoSQZYhqafGkIgZQWSgj6vSGlao0s04FQlqTaDoYUISxywHXdjUo0GFKCEERBqJPEgkcchZiWSRSGGlCDIs9TDUAw9LyrYZgIYdDtdHBdByml/l5xbOIwZHF+hfZ6h+boKFmcIVC4vsvmrVs4c+IUjm3yznfewsGDy7pbgoUpbRrNJjt2buXhh+/ndfe8kb17t2kbFrtKr73My24+gGHCtQemsU341F9+mgM376RcaVEo+ni+R9Gv4vsVfvbn3st7f+7nkVLx4T/8CHv3bOOa625ACAchTArFAovLq3TbPRrNFoP+gCOHj/LJv/wsf/iRj7F35ybOn7rApk2bECrj9LkFxkbH6C4v82M//iP8xsc/xLatkyAEa+0+E60qvSDAsbX8fhAGeI6JlC5ZnuPZFoahiFPFaruHZSgsx8OxJIZQmIaFUD1mppr0hzkF39Gz4ZnCMi081+Wzn/0m11+3B8NQ/PnnHmPn1gpF10NKyctv3kWeRUjLQhomihRLZKz3+nzxHw+yZWaKWqnK3335IIZl0WpUNywcYizX5djHz3Hvuz7AX/3FV/ite3+N4WCdfnedanOErN9DqpRisU5z7GrC0CSPHU4fnccw2vzxR/+UZmkz1abJzTfv47YbbuG60Wv55B9/gS3XjpOkMbaU1EoFnnj8ODObW0jpEqcZnuvQD0KydAXTNJhdGFAq1pBCE2QtaSEQfP6Lj7Fpyxhx2sa1Pb51aBElbDzbYHaxjWmbfPqvH+GGa7ZszO6boCS1sqNVPHFCuxdSKxeRhsmn/vpBdu4YB6WtTUYbDdIUOsOIkUaZip0gwpS0fZReb0DXnOTBj67xP979Zt746lfw2NNnUUdHKcU5raZgYqxOa6TG0vwxyo0Wws7ABL9YxhQa2NRur1HyBXEywHZdltfa+OUKd+1/BYvxHD/4Q/+e9YU+/U7MylpMbrYpWLr4LI2car2lLQosE8N0Md0CpshRWULGgHqziet6pElGKBK6Q1106i8NCHMNSWrUa/iex+raKsViESEF6WBZexHGiU687CKOaxMM+xSKJVCKB44+xC/9/G+ydHyR00ceo+A5NKqu/i4TBtLcUCnlCnILIU0y4RIHPSxTf49FcaQpw4MQQ+aYytRewGFKkEaUyj6t5gRhECKIkMTU6mPYpcaGLFOnD6Pjo4ztGXkeSOU7WbpV8Uz4eOnlasMjEJ7pfD0PmvJceae4YrrsWUCXF4eIvJQs9LnrmWM8s88X3c93vM8X74E9+7z1856hX3D555f6jT8PsvISOZw0ze/JMv+t1qXkLt/AwWpakOSn3/UzfP/tu77j/VzZ7hYv8gdefJ7updaVumOBeMEesCJjaXGJldV1mqMjiFzPETmOjVIbso00wzQN4jjCEJfmaCws08IybcIwYHl5jUqtijBNPNvl3LlTLF1cwnEsHNemXGshLYMsjqlXisRZTqVSYueOLfS6XWp1jYXO85xTpy/QbNbwPOdyBSnnUkVE69A918N1HAq+jWO7ZLmi2WowOT7KU4eO4PuO1tXXSnTW22yaGufbjx+kXvYpl4o4nk+x4KOU1unPXpgnCIY0GjUMS1f60nhIGKYkecqbD0xz7PxFfuexU7xteow8FwhhYjkOpqETXtvWVbZOe51S2aNaKyMMXUm65LWVJSn/9NAT7JyZYhhGzM4usnfnDFmWkmUpwTCk2x2QxVqaUSuXWW8P8XwXVE4URTieg22a5EB3dQ2/5FKpFUiiPtK2CMMYKS2+/uCTbJuZYGlllaJrb8jbFJMTY6g8RUo9gyWlwemzS9x121WYpsHC4iqjYw0GgyGNagUpJe3VNp1un2qtzAe+dZKtxYxGvYoh9SB1kqT0+kNcx6DTnuPAjhZZBkHUw5YShINQGVJaFAsFgmDA1OTYhvwWts6Mst7u0BypgyExkBw/Nsvm6QkM08CxdaKxfdsk/W6fpeU2EkG1VifJYjAU5VKZhcUVwiDGsRySNMTzHNrtLoZIGUYR3W6Xufll8jQnSzOq1QoLi6sUSwVKBYf1dhfHMem0e3ztwadpVEscP3WR6Sk9q2PYFs3RBgcPnsCUNlmqpXlxmuC5krX1VXzfxvO9y+jn4TDAkibSEERRhsp0IjEMQ6JhjCVtTNNm7uIavufS6fawHZtOp8vqep+ZTS2KRY+nj5zDMg0mJ5qUSh5x3GFmbIRW2eP9f/RX3POmmzCkwebNm7DtIhnWBnXNwTRyBoMeeW7h+SVUloCUWFKhhEuUDHCdMm7B4+0/8BHeds9uTOkwHPQpFDzSVPsnep6rA0JpIpSis7YOCGzP03CVDVS0KdmQKmcoZZEmCcLQZukCa8PrTkGek0QRea7I8pxBd6BlqnmOlJBmESrPkKaDEIpBt6tVEoZBmsQbMmSh51KFTZrEG4oeA0ROlgRo01tto5DnGYaUWJatz9MwNpQXkixL6HVWUWjIh5TanyjPcxQ6sXM2CI1RNNTgqSzDsk2SJN+wOMm0XYPQs2RK5SRxRKFU0OTaOGFpYYE8V5w9c5EkVUhDW2tYUtJpd3B9j29+49uMjTaoj4yRpDnF0lX0+gMsr0C13mDr1hlsR1EueaQSVpdXmZ7eyqNPHOHld1zP+fMXKBYcesMIT44wUtvK7374d2ivDtmzdxdhEGpce9HlwHXX8OTBp5mZ2cJrvu8VGKbBkSOnabYmuOeet/KOd7xtwz9T4nsFin4R23a4OL/If7r3P7FpcgTfLeH7Hv1el8lNW8mzGAuFa3ucXDvCP37zSfbummakXqY9CHAsk8On5nnwoSNs3zqO6zpgaPhKGEe6uWCY+I6Na1kgbW0crjIUBnHSYRBECCy+9sDTzGwaf0biqwT7r9rG/U8eY6xeYP/e7Vgy50tfeph9ezdrs2ClCJNE/58Jwf1fe4TpqVH27JrBc1xmlxe48dot1KslDAxmn+zwqsY9vHbP9/Gm195NpxOwY9d2RidHmBof5bc/eC9bNu/k7IkTqDjk0JFTjExNsbK6QJz0eOiBr/O6N72W1YtrXJydpd7yUSKiWGyCyLj7ltexu3QTv/aeP2DbbS1W20P27NhEmqf809cOsWnTKJ7rIgQcOnie/bu28vjT59i3Y4I4C/BsSLIYx/JojtV58JFjXLVjJ2kWUS27HDv8NHu2byXOFCPVEvv3bNIkRtMkzXScUS0LHNvFtS3q5Srf+PZxRkeqTG1q4tk2lmmQ5Rqpv94fMre0zkTLJh126aw9RSZKXDzi8j/d/j72bZ6mNVbjCx9+mEIumT15kM2bmkyO1HEtB2nktJpjLK91mD13EbdQp9vts762TKVeJ0tDov4yvusjLYeFpXU2b91NHMX88ef+nE2bJxkcziiWFQsrJyHMOD97DmkXKVWqILJLI5wIaYPlkEZ9VBITDPV99FJn6umnThFJwWitiecqvv3UKfZcdTVxFCGkQblUZhgMkVKggjUwBFkOntcgTExt15IoPE/DmT72+U+wf98MRs/AlCnTk2OYIt+wAVAMU5fjJ48xMj5KZtl4bgHLr5IlAyQJlq27rlmakJkmD3zjEUqNMrZrYFoug76gs94niEMqlSq99UUsMyUKIyrNSYQpeUaeBT/7y+/lLW9/0zOJxncYSxrPSYsu0zZ5JmG6LC18qeTuctbz/I7hc5O7K7H/+lYieSYpfPFz1eejz0bxbODKSyV3hhSX42Rtw6UuSzefJdN8yfO+BFLU2yWb9Ev/lm3EsFzx2BWp7jP7fJZm89nS0O8mufueLPNfYf3TV+7jU7/wpn+VfX8n3iPPXVeSkPIXqdwYhk1zdIydO3ayOr9MlucEcYiwTSq1GlGUYAC9tQ5GltNeWSUeBmRhiDIMbN8lx2B6cpze6hKd5TnOn5tlbSUnzFO++cQpaq0RICeNA1bX2qyurlPwfdggPeYqQymI44g0Sdi7dxfhcKghCJk2g5WWxDA0vrjb6SIMg3Z3wMrKCgvzSzz19AnOX5gjSRImJpqEUcCRo+dIs5wbb7yWIIq59uq97Ny1g+X1PimS4yfnqVYaREGKFBb1SkOj0JUEQxve2pbEL3pU6lXe+447GG/U+Prel+G4PiLPUVFA1B/iFDaq9aaiUvWxHYc0EQyCAMhJohCETRDCK2+9HixwbI9DxxcwpCZiOY5NpVyg0ShTb45gew6PPHmSQqFInimCYYDjWgy7PYLBAFOa+I5Je7UNucnqxQ55KjCEQRgNeeWt14GA6U0tVByRxDEPPn6MJIohs/nKfYdIQoXtGLz6jqtwXE0SnGhN0Fnv43kmhbLNEwdP4LouRd/X/mHALTdeQ6lURCl0l8SyKRQLWHaRrxwOSQYBhplhqKKWiDkJ0vE4duwsWRAyPlbh0KGTWKZgeXWVpw5doF6rkmeSxXPznDh8is3TTdbXV7lwbhlDKQbtIcP2kJWVDtu2T7M+HNJeXiWLcgxckDA21uTRx86wutSlUKhgmR61ap2lhZhKcYRGY4Q9O7ewZesEI60aJ85cIIpSBDoR27Z1krMXFrCkAGUwNT3Orbdcg2EKylUfkiESxcTECMJI2bypQRiFVCou0TDSw/XCYHaug2H42E4Bx/XJk5wnDx1nbHyEJEi1cbZl0e8nmFJy8vQFGg2fPM+wbRcpLZrNEmmWMDu/TKHgs3/fVm2ye24eRMbaWsy51YTVfo5leVRHyuzat4uVtQFpGvB3n/syD37jES6evUCSeDz4tWOY5AyjoZaxpRAl2pKg6DfJBQhZ5LP/13/gV3/j0+R5D79Y0RAS0wIUQRCQpQrDsAkGfUrlIsVy6WypnAAAIABJREFUEYOcNBxiKI0yx3AJw1zPTCUBtmNi2S4CbQOSZQYCjzSzsd0KruNjIfA8SRwPiIIOqIyg30MaBnmaIZSiWCogDX0TdhxbE2SlwLJ88lwgTQFqQBwP0ZZmEtPUptdZniPyhHjYJ41DkqBPGA5BaQKnNAWVRh2yDJKILE0Jem3iUMs3HdfBkAZJHGNgkyZsEDw9DBOGgwBD6MRVqURLzUkxzI0btQKkydjUFH6pwvad2xhtVRgbrVNvVrE8h8ZonUcfeIKbbtjPfV99jG43Yfb8PO/8sZ+kVt9BGCdIW5GS0w3W8KslbLdInAqOnzjL7qu2EEYpe3dex+ypWZrNaWKxSqExoF6fQmATBjF+wSeMOywsnaBcyzl46GEW5vvEMXzi45/iZ3/hPUTJgH/86hcwHAEipNEskYuQIMhoNOq85a2vYmntMIfPnMKuluglIcVmjeWFowzjLl6zyomjT3D6i0u85U03sd4fsNAOePTgOVzT49odm3jNq27AdTw6g5hcZZgWlIvFy0GeYRh0h0OeOHQY27LIhIWSCccuKILEx7AyLK/AkTPzGEKQiQxhKLI84ZbrdhBnfR4/eob51ZjKWAvLtPj24TNazisFQTwky+HaW29FOiUsKwPRY7rRJE8V5471+eQvPcD5f57n5juvJxkss9aZ4+zZM3zm0/+IacL8xVl+9Vd/jYnxaa676/U0tmzl6ut2kw/6TI2NUR+Z4Iff9W4uLAx481vezuu//1ZGGqMM+zHv+un3YIoKTzz5GLYt+IfPfZS3bnk3Zx9tIx2d2Lz6lbtoVFyUUpy6uE69oT0BM9Oj3Y/0Z0kU+Psvn8S0LHxbccfLNtMdLBJE66g85zV33UqURow3ywipIB9iGDHDOMCyBbYVE4SGlmzHXaRpcuuB3fieScGxOXp6nizNcGyLKAto1V02T9UI104CMYG5jy/97gq/85P3snhxlv/8hx9l/pGcG26+jhEv59prNzM5VsVwJJmZkOYxJAmtZpEd+/Yws20zk1MTTI6Nb9xPTHzXJ84iojSkNT5OEIU4jsOw3WN7c4Lfvu+D2F6ZoC9Jsx7X7L9GJ+55pu1OhPb4lVKilCRJYpIk0J37oLdhqabYd/V2djSqmKyRqiLNiWniJOHg40+Sao9y0jglCWNdxDF0EXdhYZ65+bOkeYxf9Dh69DCdbpefv+eX2L1nmrXVIStrXTqDiDhVnJ2bIzdMinbA3h17EXlKxWvRTwTh+vKGJDAnTmKUUqRphpMrbr79esqWR5DYHDt6lJ27tzM+M8aO7TsxDEm7s4phansYkeVkz5Hxvfed//G7jh3//7AMQyLkf9+pyqW57H/L9b3O3b9w5bn6FRCXjRwl8Dd/9AFu3LP5u9rPd1JDEYj/ps7dM/N1V9Qurpi500th2SZCCiQaxJGnGtmhAGlITp86Rb1R0z9vmBN7pSLBMMCQBp7nsLy8jG1ZuG6Bs+cXcSwIwoReN2brzBRCKEwkQa+NX3CwZMagv87SUps0gVq1iOk5OE4BRYZj+yRpTLfXw/WKYEiScIgw9LGlKfEck+On5ti1ZysF38O1bQylOHt2jk3Tk2zaPM65c7N4no1f8DFNl0cfexxBTrlQZNP0GAcPH6HZrLB1ZhLLtSiUigghEcRY9kZnD4VWpxm87sA0/8dH/oa/mVvgbTMTJFmG47mkkTZuVmlGmqc4rgN5jut6BINA00fJcWyTXq+LZYBlWYw3ygyDPsVyiWAwJFc5hXIJhEKpnLHRESwHkiTG9X2yFFzPRboFDJVyYWGZ0bEGaRxRa9aJhkPyLEWlKdI2yTNNRAzDDMdx2bp5hDhW+BWPndvHicIBTqHIl/75caZHR/A8B9PWcBjbsTGk5KEnTrJvzybcgs36SptqHjOzd4I0SUiSCNd1N2AukjQOuGq0Q7Vo4dgeaRzoWbsUTAEqT0k2SHcT4yO4rkelVMEyBYWiy5lzs4yNNlla7SANcfmSrY/WEEJhuw7N0TpREBP2Iyq1MrY0OfjUGWplH9MUtEZKVGpV0izg7//hEXzPYmb7KE88dYyp8QZzF+cJo5goyhhtFImSANOQGFaCZZU4fnyORrOCaxtU6yUsS9MhLTPDdG2SJKBeq1It1gijhIXlNhMTTbrdrvbj6g6plIvMzy1hm5I0TZCGxUirgSGhO+hriV2a4Vg5llvAdRxc3+bpY2cpF2wsS1cOJ0ZHaTRLOJ5Fp9dDZQazs2uMj5UplHyu37sPy1D4Ww4wMWaysrTA17/yCPuv2cvywjLXHNjH0cNnmJ6Z4OSJk0xvGsP3fKShkdLCtAn6AyxbkEQxQmnp6H/56IO87Z6rCMMupuWSpiGWbW/Qa0MsW1dULUsQhjlCSCzH0XLJTAcmSRJiOx6mY4MhEFyqYArieIhlOTiuBgbkuVYR2J5LmqYaWmJKbShu2KTpkDhOtD+jIcmSgCzT8uH++jq262vriixDmB4AcRBQLJXIlUMS9wmHKzj+CKZto1ROrgxs1yVLhhgoFAKR26RpjO27kBsIyyFNUmyZg4JeewHHr2BaJhhSe/wZApWlGli0QbE1LA/ynGgwwPGKBIOQKEixbJtcpUThEMf1ePThw+y7ZiemNMlTbanz+ONH2LJlnF37NuO4NsWKzVv+3X6G0SiDXpuLs7N89MMfo2QVGJvZim8Ued///iv0gyHXHriBd/7Aj/CDP/gOHBMOH32EklPhyMFzXL17N9fddAOD9YhiqUiaC7553ycxhh53vPY1jNQcojDjlttv5dEHH+bN97yBNAtwXJv24mlKnk/YC3BGffI0Io8VlfIotuPyy+/7NW6/5XakIVi52KFRa9IfdLHMAls3b2bVOUeWZ3zrW8d48/ddT5IlCCPVs7uWyaHjZ6mUChtqskwH8pbUPogI/vmbJ9m/ZxpbKs7PdRlveFTKBRbWI8JhSKtewHY8hkFMwTH0tW1ITOmxabRGyXeYHq0Rp0PKpRqWA2kuOHJ6iUNPnSbKEjrrqyAUpWIZiDj4+VPcUn8VNx24kZ/4iR8jCgMMZ4Qf/dGf4md/7n/ji//wBV75ujsZaTQRwkT5JmsXz1Dw65SKddZXz5DnyUYXfoVmucQP/tCPEAVw7XXX6m6tZVApjXL19VeRq4xwmHPhzIC/+MgfcO6hIdtvaxDGGYMoo+S5rK4ss3PrFHmeYcmMiWYJU2aE8ZDN03Uc22BxcZV6pYC0JFJYmCLHMiBPAixLEiUKaTu4VglDKcKgDxgISxeVZNLj+FLIY986xPhEi0HQY3qsRhDHmDLFEB6+7JK2T1MsVTh10sN6qsK9v/7bLHUWOH7fLHdddQdnThwl7l2k1ahgmyaZUlimjcjAEA4nT57AkCZBLyTLXKIkRVqm/vzbPv3OHJZpINIcwy5jWz69Xhdv6GCNS8JhRn+hw3izyaapUQxiik6JJE8RSs9uWRhgayKuyiIEOQXPx7IMzI2ukMTAlAZxnrGyvMDayjpr7QE333IzCwvz+rMuBK7nEXRmkdIGMyeMUqr1aRzXhUxRrzWxTMmf/PWHmVse8KFP/y67W1vZPq1tP1IFJc8lyZSmELs+hu2Tq0zPF8YdsiTSVjCGtgJI8xwBJBkEccTsfI9ibRQjF4RRhGHb1NyMLBri+BViJfCK1eeFgkcvHmHLzDOx6SUOw/PiyitsE670gMvR0ny10bl9XqipFEIpVJZjCnH55+dZH8AzXalLBa8rNh3rSq280ACBZ8ezl4/3fHXbc593GZ5yCc4int/Fu9Tl09uzfyc5amP+DoxL98tLVgy5wTMWDs9+D1dKVGWuO7aXXCQuDRiIy78zLm/Pfg+CXOnX5nmGaVnfk2X+W608z38FdKsaQGU5L6t0/788pRdfV144L5Ajig2kv+W5nHr6KXzXoVhrYEqD9bU1xkab2IWS7qqrnCyJSdIMx7FI0xzX8zCEIAgjSpUKY60m33joCV79qlvYuXWa48dPMHfhAkJlrK33aDYqYGSQm6y1++zZt5PhMGAwCPR8izBI0kQbflv65o/Sn/UkTvQckyGIw4iV1VV8z6HZHMEvFrClQ5wkzF2cx/VNHMdnemqSJ548TBJHFIslDGmxvNQlDLpMTTRZWF4lywWVUkUnKFkKIsWxXQwhWV1tayS7ITCkyZtunOFvHjrNZ87N8/1bJ8mVHuMVWUoc5xgG2qDUMBDK2MDfa4BMliYUC0WyVKEMgVf0sB0bU1rkWbYBXtBv1tyg+eVZhkCQJtrYNM8zcpWTJDGW5eh5JmEgpEGWxSgl+PL9T7Jt0yRCCOIw5u++8iibxuqUKiUs0yEYDjEtkyCM8TyPXVsnMKUkjTOiMOUb3z7E9i2T5Klix+YJAHrdIQvz6/zJw49z5617OXNmjiQKKZc0gjvLIgqFMg8+dYwdU3XAwrRMev2+JltmMAxiPM8FJVlrd5hfWqZW8yn4DmEYM9oa5f6HDrJluoVf8CiXigRhiJQKv2AihIm5IRmulEucOjNHfzhgbn6NqakGCIFl20hTcP9DT/Hqlx+gVCmQpgkT4y2kaRKnMfVaFZVrDy3TMigWywgjR0qbUklSb1YYHWly5uwFGo0qy0tr+AXv8g0jiWO8gs+Zs+e5at8W5haWEBg0amVczyXNUnzf5tz5eVYW15FY1Bo1sjynXCwQDAM8X0sc0zQBBJZpMDrSxPc9FhfbWKbNo4+dZGK8jlIGWao4d3aRA9fv4vipOcZGqzx2bJHzSz3e/Wt/wHve8wP4vsfU1AiVWpXpTRMUfJ+de7aR5ylbZqZAZMSRNgge9Po4ru64Kj0spxMfDL7/7bfxwP2PsWPnOFmiPSa1x5yFND3ITaSxYVpu6o6WUury5zPPFaZpIVBkaYK4LJUR9HsDDENgSAtEQjAYIAwL09Tdb9O0UZkOOrNMV96zLMGybOIoAgHDfhvb8bAcX1PlLP35TNMM2ymi8hzLlqytLpNnGa5t4nqWNjKXAmFoL800DpFSaq88YRBFEa7vEQYBWZpgOTaGYdBZb2M7NYQE03I0OEZqQ3MDQRAOEAiSJMd2HbIkRQGO65EkMY5XIAwiOuttHNfV/mJZTqvV0LM4psnFC/MUiwVGWjWKpaJ+Tq4hBHEU8MM/9bu88XWvZ+vMbv7kox/mi1/4Mj/wzn+PayvuuONWrrpqP5VylVfeeRd3v/oV/Mz/8i6ccpE0N9i2cxf1ZgVDWvyXD/0eL3/5nRimYMf2XTSbLX7mPe/lLW98I+cvzGI7Nm/7obeToUjCAUF3kTiyqTea2K4kzU366z3e94u/xP79V2G7PtcfuIlCscTc7CxREFMolBhpjeE4Jh+893eYvHGEv//Kk7zp+15GZ9hDGtAdRFimiVKKCwsrbJmaQEoLMJAyo9MPcSyX9X7EVbvHafcHREkGOHzt/qdpjlQwDTh7YZXx0Sbn5lc59MRRtm+bQpgWaQ6WzMjzFCFy4twiVylVv0Ac9zENh+nRBlOTVaRhsn16glKhSJYrTn98nvf+9PtobdrBy67fxvLqAhOTY+TkvOY1d+PYNp/728/z5c98grve8BpSx2HhiTOMzTTpdUMeeuBR9uy5mVgNiJM2jtnElBZvees9hFGPasOk5I8zObadVHVxLY/ucEh1pMnY+Ch333UH7/7pH2d/4wD/8Sd+j5vfuIssT5EyZxgm2FLgWRsJRxjieyaGkeJYBdrdPsVCiUHUBirMLbYxzYwgVRQ2Cju9AL5y/1NUKmWiBAqugzQlea5l4kfOd7DImJkeR1oOw6iP71QxvAKOClmaewLHbtHrNvnR63+MLeMzfOGP/pFkxaNRa/LYY19mvNVkuuWx2omYmz3BSKNBOOxjOkWGYYDjeFRLJdbbAWfPzbN9zx7CoI8wJAXPp7c2i+vY5ElGJn16/QCBwdbt23ngyMP8xI//IIvHl2g1Rnjk2/czOTGBNG2ePvok1XIFKTV5UjhlpNRgpygYMnfhLPVmU9vXGJqXYJgGOQLTdukNQm686XbWVtfoddcoF4uoPCMKA9LhIrblMgx6IBxMu4TruwilLTwMKdmzeT+3vHkvn//8V5mpjDAx1sB3LVzXwTGlDv6zHKdYJkODoNrrK9hSkWeJtmpEbXTvUjr9kPmlNuVSjU4vplStMNYa5dy5M3iejyMiLEOR5lAo1TC95zMf7v2j3+Z/eMfbnhv5vXjT4DnJ3aXxIZ2rvXij4ZL/8nP39Zxnvejrn/3859I9n3XmL/H6S7sRl8/pRV/3IvHwc4/+3Lf0UrYJVyZ3Qiktx/1vWEqpy76s35u5+zdcaZr9irp0xQvBL/3iL/OKPc3/x9f9S9ZLXtAvtJ6b1L2Q0PeKh5M0Q2QZnd6ASqVCvz+gXC3heD55lrGwsIQhNyza1QZCPFUo9NxMHEacPTtHuVJicrRGqVLBdj0Krkkc9FFK4DklsgzWOwPKxTL+xnD/yVPnGBtrYVmmlsgJtQEjEAyDIYbKsRxdzV9bX8N1NII9GAZs3zGDNC2WFpcJwku+ZMukUUyaZaytdLUX29IKSZZTKBTZOjNNt9MmTRMsw6JaLtPpdyiV/I3uQ06aZHR7PaoV7S02DENcx8Wybd5++04+880TLCyvcNPEKI88/jTjIw1sx8UwwLYtwiDh0SeOUik7WJbNcBDhFVzCICAKY2zbJgxDDS9xXe3blGnPu363w2e+/CD7tk8Tx9pfbxgMGfQH5GmOyhXScnBsi0FvgF/0WF9dx/OK/NUXH+LNd9+JMDJMS5JnGft2bGFpaZWC72/gxnOSNMfzfPqdHo8fPs7M9ASGKVmYX2X/ni2YtjaoNqTB0aPnWVvvsXvnVj547CQ/+bqXMT7RZDAMKZULSHnpC1GyuZbprkqmE1TXdcmynJXlDrVqRQfQrsPF+RWSJKM1UiVOEk6evsjx43MEw4DpqRFNMDQl9XqBhx89yvTUGHEwZDgM8D2XpcUVXNthtdtherxOtzckGMZUKiXSNKJRKenEAMXqSofjJ+ZwXQvfd1hYWqM1WmPQH2KagkcePU2xZOM4Ll7BAaElO416geWlNUZHW3q2MNYUtyzLiaIB4+MjZChKJR/P9Tl1ZpZSsUivN6RardDvDcCAYZiwuLJGo6HtHqQhOHtunpHRFr1OnxMn5ojTAGlY2LbNxflVRkdqBFGA51u4rsuTT53lmv1b+ObDT3Hj9TtJM4VSLr/+qW/xq7/8QSanNRXt0MEjVGslTCnpD/r87We/yOaZaR791hPMbN1Mt9MDQ1Jv1EjjUJuCJylxHBEMBzrpzLP/m703D5fsrOt9P++wxpqr9jz17t1j0pnnMCYIBgKiyKxoQDhHUK+KXofrgQMyOeN0UAQE9QDCdWAeI0OAhISQsZPudHd63vNc85rf88fa6XQnMYpe9f7B+zzr2V1Vq1bVU71q1ft7v9/f58sv/frf82OvvAylnFx9BeI4RkqJMSlxFKAth0dc/kmcYNnWmZgEk4G2NWkcgQBt5cAMv1DMzxTtIDIPKSRZFmCIUMrJ4SpK5os4Vt4XKlUOWbEdG72VWyeklYNOMIT9FlGYR3cIBFJBt9VGK4XjOli2QxwFWHaZzKREQS+nD6YJynKQ2kJKULZFEoZbMRWGLBNkScr87BLVWgOlU8JumyhIcFyXKOijlSEIc5XSdjw21tfwfRdt2SRpbhVN4nyBpljyEULz3j/7FFdfez6u62M5miiI+NpX7mBmxzitZptiqUiWpXzmk7dw3r5pCsUSL7xhmkbjGubnZ3nmtVfy6tf9LH/+nj9l18w03W6H2++4Da0VJx4+wOvf8AbWNrp85jOf5ilXPZXlxWWWl05TKlfpdppUylXe8+d/wm+/631cce1F3PSTr6XkF/jUZz9Bu91h154pLOXiKA+7YFOvDtPudIiSBL9QRSYZjWqV0bFh+v0Ugc1P//RPc8stt/DGN76BT37qk+w5by/9Th9jMpbTBa6+cgfNbk7V9V0Xz/bZ7LQpFRxGBupYSpJlCWEUoLSD7+a91AXPQpDSqJSxLYtywcUteqRJQsG1uHDPNEGcksYxl1w4vdUXmuKo3HqslAABStr0wg5KOmid98trpUhNTLXgEqYZS8e6XOM+hxtveC5GSJIswLIDXNcnjMAv+EB+7b7uuuuZ2T7Btu0zBL2QarEEliTsG8bGx9norTI0MopJHWxt0eu1kRLK5RL9IKJWa4DIECImbq1goi46C1nvNxmrDXHs0B08fOw0P/ezP8+JOzaJBjYIwpjhehWpFJ7r8oWvH2BybAywOXRsgVrZp15yafcjPvnl09y9f54XXH8ByBDXKWNJTbffoVJwmJ4o4XmKcsHJZwBCIskQ0kZqi6VDRxmeHmJ2YYVa2afoS+L1OZYW72F04pkcb7WZWLyEj//jp/nCF2/mx57/o2QYDuy/lYIVMTFWw9Yujq+olgeJTEySpjjSQag8A9CYmEwZNrsbjIxvQ0sH27FYXVnBkTFSGCzlsNmLGR2bpNnczNU+p8dTrnoK3dmAjdUmRkuqJYmSUG8M4CgLoSS2ZeFVh3MFJO4jAK0Kef/ilvIilCToB9x3532kuHSTAk7Jo9lrMjO5nSgKieOIWq1OFqxhWTZGgF+s0wkypJZIk5NMta34/U/+Ps9/3vV85lNf5OLxSSaHJ8ijP9MtS3qEMJJOGOMXBxFoot4KadJBSYXIQ6tz2FMmOHzkYaqNMVqbqyA89px3PvNzsxigVCrjyogsS8AYuv0Qtzp4xvXyyLjukusY2lP/188nxbmKmDhz95PPQR8RCsxZ+2ZkiLPVvnPgKvLc21uziCecqIr8O5srbOKc13jsfsAZRU7Ks6IP/p3F3SPxCmfDVrIsPaeAO6e441zWxffiwBNbfdvwfaDKf+owxrz17D64xtp3Ga79B1Ey/9XD5CsKZ76JZz30pOfUVn+DkhRLZU6eWiCLY2oDNYJegFYqByAoQbVaR2qblIw0ykjimChOKJTKbDSbTE0NEwUhjaEhohSUMERBnygIAMHiygalkoXrKlJjqNerGAOen5MXlbLo9LssLa3iey4GsC2bIIyxHYswikjihCgO6fX6bK6HbGxsogUEQcjw6AjN5iaVssfKyiY7d0/jFzw63T6XX3YR41NjLMzN0e11WJhbx3Id1jbbVEolCn6ulMVJHiJqWzYmi9BWRmY0nucThhHrG6uUSkWed/EYJyu7efuXv86Pz0wTRRmkFnHYRCsLp+AyVC3g+QUQEsdSCKXphyF+wSJLMiytkVIR92JOnljGK3j4vsREERefv40oSvH9HMzi+A5SSg4fmmOw2uCrd9zN+MAIUijIDEIl2JbP2GARI1LiLCKKA5Q0yFRQa1T52rceYHxkAO1pstRg2RaIjMnxsZykubjCUL2GViJvNpaKe+45xPBAhcmxQdKkz2dXNnj5M3eRZQHDI8MIkStyrlviwYMP0xi0cbVCyIAsTgnDDIFEy4xWc4OR0SGOHZsjDFKUhM2NNlLD7p0zTI3UOHF6nQsvnKLVatPvhZw4vsBAo0y1XKLTTyiWcluN7WmKhQqNis/cwhJK5lmBSZJS8IpYjs3x4wuMDlWwXJuBgRKlUgGpJIP13H4bR4ZCqcjMjmGWltawtMayXDZWNyiWfPqhwbUtLJGyMDeH6/sIJVhZWKRWLZNkEUoZpHSwXAfP9jh9eonp6TEeOHASUAwNVZieHqFW9fnKN+9ifLiCY5fptRKUgPVWk8ZAiZGRUbqtCEGGkimOqxgZHqRcLBH0+4yN1VGWZNv2QdIg5DP/9CB7dp+PpWI+/61bKbgxu/bsZGJyGCEE3V6I4xbYuWsXG+vrrC8tMzI+hO+7OHZuf7RsjZIWcRKhlKBQrNDpbGJZLq965bP5kz/6GLt3VCgUfIxUWFoQ9pooUpSbZ791Ox08z80VZqlI0jznJ4l6RFGC41fIspg0jlBYQIbWgrDXR1kCpSVKKrRTRAhDFCW0m+sI6eVKjsgQUpBlKZicQgkyh7RgSLMI23bJDFiOQ9gPsG0HpWwczydNIoSy0ZaLSbuYTGA7PnEYkGU5MThL8wUJicFyXIRyiOP+ljro4PoOWucLeVJnWNoBpRAmIo26KMcmiVNsx8XSucJrSJHECGOhLJckTvj8Z25l155pCr7m5i/eya7dU2hLIRXs2bOXUyfnqFZrdDsR5WqR6e1DOK5PHKY4rsMrf+p3yOKUy668kGa/z47pKU7PN/GKLjv37MK2qwzVhhiuF6Boc94VV5JsZrzpja/jVa/9ebrdFrXqBEIKrn/Odbz4FS+hUKrjFMBxHC669ApGJkcxxAhj0+1EzB4/TbHhIZUhiYr4TkA/SVnvdqg2PAYaExw7cZinPO1KfuEXf5Y0WGTHthoLc/PYhQI7d8/wp2/7K4YuL7Kytkmj2iDNJF+65U6mJkdyqEeWkBuh8r4uSzgkJsHWkmarRcHx6XQCFBnNbsBwxcL1NNpzuOWuI+zdNoCUgu/efZChwTKWUrQ6fWzXIckcpLAQMiTLoOC6JImELEJoTRgHWNrmro8e5n+++o1oJ+WHX/iT/OiLXs3koGR5M6AxMI7UmijrcfDO/ZRqdY4+sJ/Lr3s67XafqNfDLSXQr/CTr34dP/qiG4EYW2l8r4AxgiMP3UdjcAzL8+g3T9EPmoRph8bwILZXplQbwfFLrB6+gyhsMbPnIgZHp/B0zMVPuZZD/3CIT37wWyBhYFsNy3Y4cnyRmW1lpMioVQcQOmWz06Vk21x6wTQjozkBUyoPKWKkYgscEdMLA1zLJ0m7CF3g1OIatVKJRDicOHaC659xCbZWaE8xXLTorj7AUtOg/QkW1jZ5vvccPvSRT/DGH3wDF07to9/coNM8zfiQz9jgMGQZqTBoI3EdBxMnaKlye7a2kBkIqQlTSbm0E+kIHGERpzFGK1TWR5iYDIXl1+htbjA8NkKapvzVZz/C5z5kJ3nBAAAgAElEQVTxeXYO7KMxKlk7up+h4dHc5ZMalBBIk5JmBqdQodvtouMUiHBchywOcC2bfmbRD/tYrmK4MUKcpiytrbJn53kM1kfIMERJrkRnqSBJNlAosiwmwKE6NInrOSzMnqJUrJKGMe/9uw9ww1Ofx5e++Hle8eznsnLqCKV6AylzRU5aHhJQfh2TZQSdJsWCpNmWrLdC7ILExClCCVY311EC2v2EqW0XEGcpA8MjNHstLCUYG6phojZJ3AepqQyM4BXLT5gF9zO/8Qu8/OU/es6k8LHTQiFlbhE32ZMWf2cy5IQ4R5iTQpwp8NLMgBS5U0I8xtb4iFXyUT/mE9omz3lvWzudvc+ZMvCM1/Hxls2zo8Aee/xzrJ1nFYVZ9igBXwBkYotvcpZldOvVH4HmZVmaq22IM1bLTOYh549seb949i+Kl48d3y/u/hNHlmVvfcSj+5Y3/SYvu3ryv/gdPbKa8MTglCcv7s58sxAmD7zWWuP6LlLmIcvdTpdyuUS0tXIf9vr4BQ+koFwukRmolKosL6zS6zSJozC368UZzY1N7r7/wdwWZhRG5IHZWZZisryQshyXtdV1igU/p2AW8z6knJqncnonhnarSxSGVColbMvmwEMnOf+8HbTaPar1Go6tWV1bw3VsxkYGuff+w8xMj2FpQRT2cK08XN11PdbXm4yPDyMASyvanS7FUhHH8Wi1Wwjyldp2q0cQ5EWl1hrP95EyD0HeUzN8+1gbGbbZValw+3cfoFS18Wz/zAXSciyCfki/H+B67tbFIocMJ0kCBrq9HkdnF5kaHyCKArTj5xNJmdMoozDmoYMncCybickhbNdm++Qw2lL8/Ze+xUV7p8EYwijC9TSOp/G8Eq31LrZyEMZC24JqqcTnb/ku44MVLG3Tava458ARhus1fN8HI6hWy8RxRBTHhEHEnQ+e4JJ9O/nmnQ+wfXKY6553HqODDTCCKE62LHA2/V7AoeUm2xoWvXaPjDx7LzUZru+zuLiGZdusrDVxLR8pDf0gYPv0EEEYUa3W2NjYZGioxtrGJmNjQ3R6faZnxlAI1lY2aQyWOfTQacoFnzjK8DybMIjIUphd2OSCfTtpNltkJkUpiRK5cmJSw8LiOkkUU6tUiNKEJE1ZWFyn0+zQ6/Xp9UKKvk+316dWK4GAFEO320MC2tX4fgklFQXPZrXVpVQpE4ZRDh6SFscenmXf+Ts4cfIU46MDrG90KPgejpIsLK5z6SXn0+tv0G53WFpdQ+mEh48vc/7uaaIgJAwi4jTFtq2tgG3DgYPHOXxsnqnJQTqdLtVamSzNePDgac7fdyHv/vwBGrVRbvrJZ3PrLd9mfGKIQqFCv9+n2+1y9OhxtJTs2D1DuV4hjROyzBCGAf1+j063h+PYue0GkdPaVJ7T+bbf+Rw/ddM1pElClhqiONgi5lr0+30cJw/0Dvp9giDAcT2UVgS9Lp7vYdn5goSUeQZVmqb5SvdW0HsQhBiTkiYJRuRqXZqkuJ6F0gohTB4GnqVonWPSkzQiCqKtnlCZ58uJnHoohMCyMpIkAGKyLMJ2CnlrhIE47G/lpBmEEnieTxzlRa5A5DZQrYijHN4gRN6Np7UkTdOtH/b8WoLJP4c4yvLeQq1JkohsK67EZIYwiPNwdVthsoxKpYDve0DGFVedx3e/cz+Tk0P0Oh38QhHHkXz1K7dz333HufDiaRzPIgr63HPXQ4yND/GdO47wutf+AoVCGRB0Wsvs3H0Bw0MDdLpd3vDTP8fLXnojypK4fpU4yxBhyjVXn0+mNL5nMXd6npHhOkrFLM8v8+7f+2P27tjLb7/zHTzt2mcQhSH9OMCkgre8+S3s3b2XkfEBWs02d95xPwMDBbxihZGRSWzho7TN8MggExPjtJpNNtebrK2ss3ffZSjHQSvFJz/9OXY+bZBKoUSaJcyvrrB393Ya5SJxkqKkIkoi+mGIMTltNUpSMAJb26QZtHoh995/hHK9Ttn32P/QCUYH6mRpRK3iU/ILuL6LYzl4jksQpbiOBSYjMzFKSLLUEIQJ3X6EIcF1HQSGb77vMO/5vT9FWgU2mwEvffkrqA2N4Pp5f7DWNlJq+mGPgcYQC8tL7Ni5m/XmGkmQ8cH3/w1XXX4tf/GhD/GLv/JLFMseQa/Di1/8MpaXV5nZsZMdO3Ywv7CMX/CxqFIoDLG6HKBECQjZ3GhTKhVwKjX86hCra03CIMbYPsrzidpNXvWqFzHslvnwH3+FiStcJoYrFP0S/3TLfezdOYqWOdHyoeMrCBkxNlijH/WxdG7vX291KHg+3X5AwfOwlEuaRXS7bbSW+bkfR1TKLvcfOsbISA1X+2yu3EdKCbdQpVGrc2PlZfzP3/kT/sfLf5lMSfqtRVYXjjDYqOE4FsYYOqEhySSWBanJ8qgRkXcd9ToxtmcIerC2tsLDR09wwaWXopRNFPSplCtsLB7GdV1cyyEmn4MIbRNnKd948Dbe84e/xds/+C6KzVFmLhrGU7nt1tKaxCRkQJiCciq4rkvU3ySM+hw/vUK5UiHJcreRFAItJJZULG8uEguX8bEpTs+dRkqJ1oogCDl0+AADFQtb23T7LaRTA+GilcSzPYSEAwfvpzBa4NtfvZfLG/sYGa0wMDCAZVlnaJOpychMhtEeWmmUZdFrrZGlIXPHH2SoMYSWGkSG7xQpluukwqHd7bB713ksLC5RrdSo1xrMnjyMIsydEkIirQLdbozr+4+b5T3jwmcwsvdRd9kTFVJiiw78zz3+yDhTPD6muEvhTHxCTrsUPJEr8Z/jA/5L7rR/riY6+z08mTr3vcQiPC7O4ZwXOkeOO/N08Rgi6OMiIs6KkfhexveLu//EcXZx97/+9D287Ol7noj0+u8aT3S8J2wgPeuxcx8Sj/55spWCM5ZNwyOZTrZjIxAsLSxTqZTRWmMw2LaNUIKwG1DYApvkOV4JGMHa8gbaMiwsrpAmCVEQ0xhssGv3NAuLyxw7vUK9VsTzPDzXRlkWBonjuBx5+CSDgxU2NlqUK+UcTCAkYRhsWbcMtm1haY2SmpXlddY3NlGWYmOjR6Hg025vIoRkfW0TyFhZ2cB3LWxHMr8wz8rSJlGUkBlBliYobbFjZhueZzM7u8zU9DakUvgFnyTNc2mS1FCtVJBa4fkeWts5eGYrV+mGi0d41z8d5P0PHORnL93BwEidIMiwbYWQMif6yXx2qR1Nt9tHSwvXd7AsiyROcX2X7dvH6PZ6nDq5wODwMFJLTJLj40+cWGD79CQCg1t0ycgtHnEcc+m+HWAgyxIcq0gc5l5911d4rk0YBFiO3Jq42wxUfOoDFbRlc9udB7j8gl1nPtc0zQiDPsurG9RqVTKT5ShxWzM6UOX19x3mtc+5IA9GFRJL571Y7XYPz/WZXd1k6fhhpqZGEMrGdnSuTEhNoVSkUquipKBSqlIqW9RqRU7OrjI2WkNIizRNcX2Hdieg0aji+Q5BGFEqFvPVMJHiWh4nTqxQLnpImWGMpFAoMjk5xPzcCq6rqVRdTArFkpdP0FMoF3181+HIkZO5jdLzKBZ8LJnbYDbWOwhhSA14roYtRP2xY3PUayXKtTKryxt4RZ9ut0OlWsEYgW25W18wydBgg4cOH6Pb61EuFlhZaWFMSr8XMDIyyMLiKgWvTJYIZrZPsb7WZmp8kF6vj21pojhgeGSAh47Mc3puFcuSdDsBV1yyCyOhUinlK6YZeJ7i4WOb7BqrkVgzeM4aWZYRxwGOW+D4sZOMjo9wy1e+zdTUGAcPPczo+Eje7yY1fiFfgCgWiwgJWltkJiWJM2zLJstSbvqJZ5PGawipUEohRR4ML5WF6+VqWZpk+AU/X7WVeayAZeVFSRjGQExOI80LsCxN6Hf7SCmxHAe28NNK56qrZTsY8j6z/GuT9++BQFl5AadVvq9SkjRNUJa99d5CBPaWbbKAwAIpSKIIbSmUEPR7PWzXJgoTlJZIIWk3W1uFp0UUBmRZgrbsrR4TQxoFKG3nxE8pkSpDKY22PbRdIM22VHBS4jBCboFllLKwPYeVxUUc16JUKWNZmkLR59TJWaYnR2i32liWRZZl+AWXRr3E1ddehBQZ7eYGhXKJyclJEHDDc87jh1/5Fr5+8ze48YYfYGB0gCyC65/5LK68/FqkNOw5bwJpuTjSRqg8jmCluUC5OkYaR7zrXe/g6muuJOx3+erNXyeJJdc/41lUyz5vfOOv8NIXvxivXOU1r3kN73z723nvn7+fpz7tagrFIhNjM5gsAikxWCR9wfLyHI7jYIyhVC5SKjWo1gZJ0AhhOHXqFHt27qJTWuD08jqVYh7Ncet3j7FtokqSJixvdKiXPSxtMbfSIkujfEIeZ3z9tgeZmhjiSzffwwufezWuZSGk4pZbDlAfLDM5VMnPEZVH85xcXGO12WZicJBWt0WcxGiVgVFYUvH5L9+NcjTbRhukxvCl332QD/3ZH5EpF2UV8bXN4GCDyCRIlZEEASePz1KvDyHJcfRBv83S8gZBt8XUxAxFt8p3b7+LV//3HyNIIzzPxrNdnn/jC7j4okt5/X//Gd76znfxlGuewcTEGMVqAWmBVIZ+f5N2sw1Cc/rULJWhUSzHx7Y8KpUaslAiMwYddBmYqLJ9eC/1coEXXPpyPvanX+Bb/3iIsWsG8TyNJQXFQpFMWtSLBbqhYP+hWaZGBnBsge95xCmA5OTCCg/PblAtOxQdQZRlSCUpWCU++eX7ufqy3biWpNOcRRgwzgTfes8J/sdNb+PnfuE3+L9f9PME3S7fuvUbDFVsZqbGECJDWxojBButlFPHjzE0WCc1+WKalCq3WssEmUkymSKsCtu270LbHkaAFoJ2q0ndy41IcRhQrg2j7AKdfp/h4RG+sf+bTIwMoBc89l28i/vuuJ96pcDK8jzlYh1la5TWCOXgFBv0+23SaBNbu6xtBBQKNq6r0UYQRAnS5E6VSLkEoWCgMYzvFyl4Lhsb64wMDyOVQGdtpJEIrWgMzZDFMDt/kuHBEZI0YmholJf91LO56ikllh7q0mjU8gBz9SixXGmNkYpibZg4iMCyKShDEncYHhlEkb+XIA5ZWlgC7VMdGKNcqRJFMb5XoNVsUfBtkmAT24LUCKR2QTqEsaFQLp3JzH10Pim4++G72bV7xxPPHc8exmCMOAs2wuOOJcSjz3pEyZNb92Vbqp3ZmlM+9vn/fy/uHmuffFxxd2ZyfraYYs76m9//RMXdv2V8Pwrhv2h8/Nd/6D/kuJkx/6YIhH/reCQIMsOAlEgp8X2PbrdHmhqam22SJKa5uUmlXiWOYzqtDkmc4nsekNCPu0xMb2fvvvNY3exQHxpA2jZhkNDcaHH1pbsJ+j3WVtZz/LhStFotDh06yo7tk0glaTQaZFvhwkpJHMchSmKUznH1lraYm13mocOzjI3WKRYclpc2sS2F7dl4rsviyiaWrRkfH2B2YZnV1Tbbt82wY9cOllfXkNKwvLrG3fc+zNFjpzhx6jQ7d2wnS/JPIggyHNfNLWMql9KjMCKOY8IwZn11A5MJwjDGtmw+9HPP5of3DfAPtQn+6J5jfPM7BwmjIA+E3WjR6+Y49SxLKJeLaGXR7faIwhjHc3PLTxLjKIuwm7K5so7IDEJrlhZXOL20ShT1sT3AZJgkJgkiBIo4TNnc3CSMgtwy5iiQGWE/oNcNcRwPoSTKkmhbMzQygLYl/V6X5WaTQskHkRJGfTISpBLUK2WU1hTLBdK0hxAxlpUxXMp7LdvtzTzUNUkJgohjx2bZv/8w7/x/v4Pn5Fa6T3z6mwS9DlmcQJZfHh966Bi+76KUYWNzA8f3aLZSllbWAajUaviuw8jgICYTmCxlc63N8RNzLK03efDQLPNLTS6+ZBdLayucPLnErXcewHIVQsQMDJYYGi4TxE3+6ev30O/3OXlyidX1DZZXN8gwDAxU6bT6HHjgKCZNSEk5dHSBvXtnmF1aY3R0gKXldfq9gDSKsYRkdbnJ6vIm5XIJYzLK1SLNtSWysE8cJliuS7/TJ8syZraPc/G+vSwtNRkbrTI6UmRwpIHUAklCHKf4BZd77z9IFIWcnFul2w/QjsXIcAmpJRddtIsrL9nD1OQwnX6AbecKhBFmK39Jc+/JdeI04sNfu4e//9RHuOyay3jqddcws2sGx9Xc+Z0H+bu//SKXX3kJt99xP2vrHbrNHkpp0q0fY60t4jja6jHNw8Adx0NsTTCiOOalP/F3eTFvDFma4boFtOXm/XdbK7dxGOaTFpNTXqUUeAUf13OxLJXDhWS+QCQEFEsVwGz18OUKNWz9LG7ZYizbyRVEo5DKBSKSuH8mZ08pSb/fz0EvMp/w5+RWSZrG5Da/LFfrZEbU7eQoc8fCkOEVCiRJipCCUrlMsVxCa4Ht5JCDXrdLlmUkUQgmRWuXoB+QJhFSuigp8ywqUrRW9Hp9pLRzqIGV5+SFQYcoSKkPDoIQWJai22nT67bZtXeaODMcfngeqT1OnJjjm7fcSbPZ4SN//UUMgjQBJS2OHz1JFAYIIfjr//UC6oNVXEuxtNDmV375l7j5i1/l0IGHufLSSxkeHsP2CijRo7W+gNSS+sh2mmuSYn2QP/vgBxnato2R8R3c9N/ewOGjR4hEwJe++jX++iMfIdWafjfhz//8vQhhWF5ew7Y9SAVLi6vMnV5FWzbKirHdlNu+fTv9MCCOI7qdHikZRlmkMkNLxcz2Ga686nIQiqmRBnGaUvI8nv2U81EyIksDasW8OExSQ8kv0Aty9cCxJVdeup2HTi9RHqxwbH6FLGlyemWFG19wLV+8+QCf+uI9mEyytplnIO6aGmb31AgZKbalcC0PJVwyACV50Q89Bak1m52AIA756F/9JZ2lNd725rdB3Gdl9iBpt0d7bYl+N2B+bpZf+L9+nvmT8zzruufS3eyxePwkg9UhZqZ3ceVlV2JpuPqaC3jogbsYqBYpWBau61GuVPnbj32M59/4Q3zqs19m776LAEFoMrphRLVWoV6vMDE+yeDgML1en4N33kZvfZW3vOWtBDFkaYCKYlRkaK60+eQnPsveXft45tOu5w/e8Tb+5r2/x2/f8Fv88U3/wLEH18mymMGKjaVSLJlx8Z5xDH1Ozi0CAqUUBbfAzslJCsUiBa+AdkpUSxW0UJxeWWFmukwarLG5cpS4fYL5TclDn5vl99/1u7z0J1/Hm179G6SZ4cTscXaMDeI4mn4SkWQZURQjDEyMFrjokt1IbbCkxndcyBKioAsmRUhIM8Hd+w8SpRkWOlfMXZf6wACtdju3uQnB0aMP0Q0DBmp1Os02v/3m/8nFV1zBN+Zup9/pMzk+iO07lKsNLNclCgKyOMb1XOI0pt/eQBkBScbOiTK+FpgUjISNzSZesUicZex/YJZqeYjTp+dYXl4kSRJGh8dYW1+l4LuIreuXUprV9TW0gvGRETZbG7Sabb74lS9gOx6H97foNRcRClbWN7YWqAVpmpClGVGU0ekEOJaHZfv0ei1UJlAolNTEJqXbk0SiiHLrYCSWnZN8HVsRRS3S3hIFK0MoibY8lLZJsxilc4XwsQh+g+GWW775pHNAk2VnCPD/3mGyx+fDfX/8x4/vF3f/zpFlW8vnTxhw+D2c04JzPMGPPH8LzP2kKt0TYV2f7HUeXXwQZ24/jmxk8myhRyxaUZxw2+33kmYZWZrRbXbwLZvFhUWkVpTrFbTt8LnPf43TJ09x4QV70b5LqVwlCmNmT84TByHJlkp2am6d4aFR6vUq84ubrK61GRoeZnOjSblaQkkbIfMmZ6kkcZIglMT1fIzJaVJJkuJ6imc8/QKCIGFjY5NnPftSKrUSWjmcPDXHzNQQAkmjWmTHjm0MjY3S7edWNNf1KRdLFAsue3YMMjI4wMZazPFTCyAM3c1NLJ2QRoY0yZWIIOhhOxKtNdrSDAwN0m63Ucpw150HyDLD5TNDvGRvzLKT8ZXJYT56zyEspSnXy/jFIparUUIhRQ4KMUYQR/n/WZqlW8qe4sJLdlEZKNLp9YiTmEqjzjOfdimOZ6FUDntpbgYIrYGET938bQ4dXsD3ixw9chqlJbbSpIGgWCogHQkZORgDyddvvReTKYrlIq/84euQWqK0lVP8pCKI8hXcbquFyTKk0BgEv3z/cX7/NT+IZXkUSxXSOAYTgxBccvkFXHTFHgZqFS6+aDuW0rzoxsvzAG2taTZXuf0797Fr+zQiybj/wQc4+vAaJAolMiqFMpaCLIm49fb9tNtr9NotLOUzPjlCY6DIQMNlarLOJZfs2CqipvCKPk+9eifzp5dYWFzDdTXdVogj6jz9mvPptEOGhksMDZYYGCjS7eafaaFgsfe87QgBm6tdzt81RhD2uOyi84j6MZVKJW9ul4bz9u3EcT2OH13CsizCXkgaC+qD41iOx8rKKiZWIKDf6dBqt8ES7NozSq3h45bqzM0tksUBU9tGaQyWsB3JpZftZmxyiJWVDpOTw2RpyuzcJmEvZHVpiV6/xdLyKs/5gas5dnIB389VyDhOSOKIH7pmL1dcspsTaz0++DefJE6iHIaSxigBO2bGqdWL3HvPfsIA6tUqBw8e5dP/+BUUig+89+PYfhHHLRAFAVLYebC9CWi31s/gnj/8wZ9DmoR2cxFMjNQWSQoYQafVQmt55uKhJPTabVJj6Hb7tFtNhLDJTEYUdrdIlYoo7mGyBC0NxiQIJfLX14o0zYtNhCZO8ogBjMCgCHqGdIt4iRB4xRJpmhL3NxEiwSAxmaBSq5NhEBI6rQ5GWFheEWULEAqJRRr1SeM+SRyAyGiub2wVmgqDxC/U8sUdy8Yt1EmTLoWCk0MYUMSZQCqP9vpibmdKIUkFSRwRhV2SJMKybOwtJL3JBGkS4Tga13Norm9w7Ogs5+3ZRhq12XXedq592pVsbHZ5zX97IVJafPXLdxMEIQWvitIJaZzhWCELy/OEaYuhoSp/8L4/wm24vOInXsxtt3+d2WPLeCKi15cM1WZYXz9EzanztW/8NWsrq6ycPsLJI0cQJmJp/gjv+4t38863/B5veutvEiZ9/uSP/oS1tSUatSE+8IH/zYc/+j4wgl4rRaVdev2AA/c+QNIJeN1rX88PveAG7rr9Ln71l97C0uk2q3OnWJs/xOkjR1hdm6XdXsCzKnzm7d8hCENq5QpxEuM4EESSzDgIofncF+6i3Y0oupKv3XaMUwvraGmx0Y2I212uunAa27a568ACg5USZV/xqldcyfXPOB/LUjiOxNYSW0Oz28ZkGf0Amt0uQhhs5ZAkMWnW58IdI7gFn5fu+nXiOKI0to03v/lNOfSqNkM76lNrlDh48F6GJs7jM1/4FI4X85Wv3cLJ4w/yu3/wXrphF9u2ue32b7D3oh0o16JRrdNZbXLq5BxHDx7ltltu48df8uPccdt3uOMb3+B1N72GdrPPsQNHsYzFxz/2Kfqh4vVveD1JqPjgX36Ei6/6QU7Nr3LTq1+JIiSLOqAVDy6s4NkDnFyeIxZtPvv5f8B2NZkOOD53mHtv/y6vf8ZruHH4p/jcO+7nE+/Yj++7tPshSaIYGRwkS1M6nQ7NTpMv3HwnF0w3MFmypaw4KMtjfLjKeSMRjlyhXBvm6PEypYemeOsbfo1Xvvom3njj62mvrnHy4e8yMlBjerxMyXPIJGgjwbEQCJIgxiQJJoPUpARhiFDiDCgiSkI2NlrMTI0wMjjA6flTeLZDp9sijvuUKzWyJCf77tpzIcMjI8zOn+ZtH/stRsaHGKoU+Yl9r0KiOLmyQpKmVMslsjBAaQspJUEskEbncB5MvkBsuyAFWZIgUMzOzhN2uyRpyuhgg5mZaWZ2bqfT2yTLUsI4od3vE3fW0JYPMgM0lWIRITM6nS62ZVN0fe5auY8vf/5z/P4HPs7Y1Ci2SRgfqp9p5cjdEQZhV/AKFTLfp99aRQmDdK0c3pIF3PKNuzhyap6R8WmiKMDSio2VdZZXV1hfmWWsAnFnHaUVlnKIUnAsG5FESBKW50/nc7azqI5CCI4cPfZks9Ezilxut8zyTRqENLlb6TEZeo/cJ7fma2fvI4TYikXIN5OCSc8NKn/ksUe2c6aiwpyznS10bOGuHt2yR4/12Oc92TH/uf0eO87sR3rudvZ9T3AcmRlklveAKiHIpMjPPSkerR8e2f4/Gt+3Zf47R5pmb31EW87m9/8bXLRb44xz8uwv4RZt6N9+1Mce/Nx7z6o8oyhGKfXET1OSUqnA9m0TtNpt6gN1er0AgaAxNEjSi3jogSN4nsv46ADlSol2uwtJxuLCEmubTdIoZrPV5M67D3LezmkOHzmBbeW2hHvvOcbePdNIJZkYG94KEE9BpGSGLfVAkSYphizvv5NWbs+0LObnl2m2OgRBxLYtXP+3bz/Aebu3sbq6zvDQAHPz83hFn8F6g431Te5/8CEKnkur083xxnGM4zhMjI0wv7TM0FANbWviJMSyHIwRRFGM1mqrcVZgJAiTF8CuazE42KDX6bFr5wSFos+zL5nkeZdO8Ie3HWe/dvnQA4d48bYxwjDCdpxcEUpThBB89Vv7GR2skCYppXKOcG+3u2itsSw7j1LIO7GRStIL+kgDnu/mP6BJwnk7phgeqmHZklKpRGZSwiBAKSu3rkmJ5eYUwxPH56iUfIaGazQ3Wmd6CtIsRUtN2I+oVEsYDH7BIwwihBC85vb9/M6PX55bQ8IEk5mcuqkgR5fnhNMd5Q0GqwXCJCXodXFcH6Vsgn7C+kqToUaNoN9mZKiBZVlsbDQREpIYllfWGR5psG1iECUlaxttTJbiuHn0hevatFohyys5LXV9o8nI2CBaaxaXNpgaH+fWOw6wffswtitBGmqNAdLUsLy4ieNYFIoOpZKPbTnEaYJShvJADallns0WpGQmplD0cH2LxcUl/C31qVTKi5+lpbXc0is03fL8AYUAACAASURBVG5AvV6j3WlTqZSIk5hquYjUGiMU2rKxbJvBRo3jJxcpFou0Wn0OHprl0OE5BuoV6hWfI0fnmZocwXNsTs8uUyh4rK032b59gvsfeJiJ8UEcz8nPB20TBHmvo18a5stfv50X/sirkHqeQsFDK2h32jiOx+Z6h6uuvZR2a4NrnnopX7n521xw4U56QY9nPOsapBR01hYplkpYtoVQFt1uQLlaR0hJHPUAyUt//APcdNO1ueKXpmgtcuqntkAI0iRFa4t2q02hXEJKiZIS33fp90Nc16PVbGHZml63l/f1CYmwClt9awnSpMRpPy+wRG6ryomGcuv4Oo8mUIrEdFCqgDCafvMEUW8ZJQt0u30si7znUtoYFJ6vkUoS9vukWR9B3uTf67awvWpOtUzA8XyUFI9eE02UW0v7AWDyPpksI00NWZqgLYUQFlHYzoEuWa72S2WDYAvMYpGlCVLlq+5J2M9tacrCdj1GRqrc9d1D7Nm7i/vuOcLAYJ2BgQKup8lMzNBQiXK1wm3fvIOde2dQts+xo0sMlAO2z1zPb/7mbzExMM7q8lGKdYudO57CW978Dj784Y9wxVVXMDhcJ0lSet0uV15xOWtrG4yNj/PRj36Mpz79clZXl+gHIddfdyNeJeb973s/v/jGX6Y+UMEgOfDgQXZsn2Zpbp1f/ZVf5SlPv5ILL76UL37pS1x22WVUykV832d6Zpo77/wOr3jly/jGLbdyz933c+3Trqfge0hpkaYRf/ePn6bdiLFsjWcrLJ0XHo90oZy/Z5LDJxYoFGzuu3+JKy/ZRp6NmFEqFRiuF8EYDp9YY3llje2TowihKPgFIMGzJM1eD60kYWw4NrfBqYVNRgbKOJYkMwGSjChJsZTic++8h/f82fv4+Z95DVmY8mu//Cvsv3c/f/WXH+KFP/J8ojBh984L8MsOnfY67eY6yrUp+jZXXnUZo2MDPOcHXshPve61nDp5gkajzAMP3s/YxCSeZ7O6EdAYHOJNb/1N3vCzP8P05BRzc/M859nP4j1//HtMTY5x+aUXMXv8GC968Uv4wec8l3e/+w9ob6wxvW2KOE6p1xsYNI7r4zkKz0nZvW83K8uLGBOzurzG9p07iKMM13EJe3M4qsiH/vID/PVf/AFP23YDv/iqt7N0T5fMkrh1RRhFaG2zb88UQhp6YZTPBdIYR0fQmeeh+5a443+nVKMxXnztjfzwi17CfXfdzw07n8eRww+ydPohpraNQhrg2JowzVBG5DZ5qbERpCbLF4oBbVl5Q79RSJ3/dgqjcBwXpziI1A79IEQrSbPdouA6RN1VlK2wtEWY6ZzeXany7UN3cMOznkkoU07etczweJ3uygmGRkeQIifT2q5HloKxC9iOQ9zfREtIopROv4+jLaTIWwAnRkdIk4QwsyjWRzg5O8voyCiNcoUwimk220xOTNDbXMS2JFmSEBmLtc1efv1Doi2bbqtFVy/z9Kv3kTzosGv3EEoY4iCPR0qJSSLD/qNzjE/PIIxAxxAnbUTcQwhFhkZoG6F96gODKOUSxwn9fo/hoVHW12apuII0boLUSOkSZzFVz6Pf24AsxNc+QdSjXGhg1LnWzOsuuY7hPY0nmCk+bpL4+H9vFV9PZK/MHRuPjy6Q/wL/4XvpgTtXu3iMIMJZsQ7/xWLh4/vzOONtNVu2VcMTWDSfRBH6fs/df+JIkvStCMGLf/RlvPTpe845n75XJ+UTNrb+K8/QfzbI8dEdnvT2OYWdOPfxPPIgJxnldsSIqB9hEJw8fppisUi70+Wuex5k377dSG3hODZRlHLkyDGSOGNqrA7CsNHsUa9WkGRYlubY6UV2bR+iXCkSxhFK5+/D2+rjESKn4uUQk7x3bWN1M/9sTZZbROOUTrdLwfeo1MpopRgfH2Fubp6i79Dt9RloVFBac+jwMTzHpt3ucOkl5xFHcQ44cS0c1yFNE86/YHduUSMnxwW9CCEFjquxrAISSZYYlAYpFQJDkkTMzi7SqFeIkxBh2Zg0QirFC6/aybUzBV7+tO288m+/zT+eXibYbHLxyCBLy2sU/QIWimLJJ41jgn4eGOx6HlLlrxEFMd1uh9nZFTzPxfEc2p087Dz/YTEoJbDsR4pggbbznsijp5YpFXwsy6IbBLAFrxkaqhNHEWDwPJcojMiMwdK5nS3q50SxR7IMX3P7A3z8115AmqZo26K50cR1XKTStNotCn6BoJ8H5A54MULln42lc/JWp9ujXC4yOFDi6JF5oiwijlJGhocZHmmASSiXfAYH60RRRKu9iecVWd9o02iUsW2LTqfP0mKTKDKMjzVwHItKpcytt+9nZLDOqdMrREGAMYax8QHE1nm9udGm4LuUKwWyLNuCYhi63Q6FUpE4ien1Ajwvp6NGYcLC4hqWJfF8j2LRQwjNieMLDA3W6HUDVlY3OT67xNS2ITzfY31tg3LBRlm56nzixDyzcys4tsYr+oS9NmEQUmvUMGkeJn/sxDxPv/ZCXNchSRIatQqGnJ6aZQbHtbGtvE+xMZAHqcdRbjOL4gTX8/jOXQcZ37aLd3/yDl778ldSH0nRlqTT3qDRGEJJm7u+e4BqtUCv12Nicoxuu8355++iNlDDcZ0cjiIFqxsbWJZECI3lOBig097AtjRaW3ieYHrKwbLdLUBKbqk2Zov4umXJzGMLFL12hyzN7YpZJrYCyfMFAKXzwi6OQrRlAyIHtpgQrVy0dvIeOqkQIqPfbWMMRHGuhCVxjCN90ihFiz5x9xR2YRCvWEcqGyFyaqcxkKQZJstBKFlmsJ0iSjqE/QzPy88JIbZCaqUBkVstMRlxHKK0s1WgWwRBkMdzqLx3L80SlLRI4y5SWbldVGtyXlqa/55jUFsRJ0kS4RYKW9/bbCvPCqamJllaXGJqZog06dHtrJKlfVyvjOu6tFpNtk0P4Tg15k8eoV6ps3vPNK9+wx/y9re+ieGxEbZNjXHi2MMMDVZ47vOv40deciOWk2LbElvVWVo5ShxK3vH2d/CDNz6fvXv2sTy/xjve9ds89znP4z3veT+T28Z43nNfwN9+9GNcfPk+mutNzt9zPv/Pr/86X735ZprNJs+47unU/w97bxolyVne+f4i4o09cs+svaqrunpvqVu7hCS0ARIIkEAIBEYCCzBGHptVNowxRh4GxvaMDR6PfbkGm8XmDgyX3TZYIIQEEpLQ0t2Seu/qpfbqWnONPe6HN7u1osGce7j3A1Enz6nKyMqMzIzleZ7/Vi6Tz5fwPI9yxWVwYAC/3eG6667l6PFDfPiP/hMf/eM76MQdskRn4sgJvELKd//1Hs5+xRh9ZY9WELD74CyqpkqGRcFjtdliZa3FQE+Js84Y5onDM3iuw/ziCr2VEs1OiyRVWKn7XHLeOIv1Bo5hkyYRkNHodDANmxOzJ6kWCtiWRV+1wPGZOUp5Rxb3cYprOXzjTx7h2//rc1x34y2sLhzn2PFp3vLWt3L++Rdw4xvewPzCNJVKmb379pArFvmrv/wrXnThhXglB6FZ9A9WWVlY4vrXXM9f//e/5uyzzqG3d4g77/wZf/XJz6ArNsur8wwN9vHqV11NmvlkkcIn/9snufCC83jFq64BRWWt0aTV8Tmw/wC3//7trKyuMHlkL6vLa9xyy9u48Y1vkNmnGcRRm/nZKT71yX+kpzLG1s076B+scWDfQYRhUKrmicI2xeIAb337rZiWxVe+/E0++P4P8PobXs3kw8d402XvYJ04g5o/TDZtcun6K9j7/VlufsnbOa/vDLTdj1FdbPHWN32C11x3K1vHqwyMbqW5vMYf/+c/ZbQwiiECRocHsAyVnO2RpAmW6aEoKRnw+OOPUynloMsAUhWVJJQIx4M/eZhqfx+2bhHHsPuJfeQr/TTaHfoHhoiCNsIw0UkhXJWRAGGMn2h4XokkiXnne17H8soqhiigdFTiuEVP2URLE8IsZSWMObp/N+VqP7lKH0HgowQNskSal8VJit41dQIgSUgNlb0HjzA3G3D2uecidF1SKNOEwI8QAkwCkiRASSEz8iSZwPVyoMjz4Z37vsf7PvA7vPeDH+NlO3dSKEjDFMuQGnlNGCio7N17jPUbN2FZGtL0KUZLfDptn5MLS8zMzxFlOfr6BzFNiyhKqFTLCCI6a9O4po6iaximQ5ImpElEp71GkkljqbBTx9QNGu0OTr74HP3YH/7ZR7j++lc+f+34dNrZsyloz9PcndbenXLJzE5VjrKFOaXNP/1cijRY+bnRBC9Qq6ooT2vpnvrtVKj6/++au+cxN8yUp97DKRnUL0L1+3Vz9ytckiS9Q1EUVp78IedsGn7G/qT84t/Zv4vC+UKWrqfue2Y2yXMP3n8P1VN52i/CMLEdm8nj02jI/CrTdShVy1RcTxa4hTz1tTaFvE1vbw+HD01i6BqPHziC3xFUajqKJl3pSgUbx/UwbAvH9Yj8CMPSaTV9aV8dJaiqKikMmoaSpViWLT+DLOXE5AztdocoThnfOEgxX6TZaMtJv6qQJBHN+hqWZVKtFYjDGF2TWXFhFGFYGvX6SUqFHMIwKNeqNNcadDpNco6JbjkkaSYF4opCkoREcYTfbmIYLqomReNxllCrVaT+Js0wLRc1zRC6dlrXE4YpN1ywnpsuOYO/+PE+vjWzxGsHBkgVqNbyGLaOkslmIo4jWu02lmURhSFxGhO3Fe55ZD/n7FxPu9XGsjQMXYdURWgZaQatdoiXL+K3G5AqmK5HOe/RaDSwbZlrtzjboNZTZGVlhWI+j27IZiRKM5RUkQ6NQsMyDBYWFpn123zw8cN86Q+up92KcT0XRUmxbJ0gbKNqsllUtQy/EzC7HJCzA3nR1FQWFxZwbBfL0oiiFkK3ybk6ti7wO01WlusEQUC5t0S70aJRb2IIE8MyJVonFAzDYnZqkUI1h5qmtBoNdEPFMnSOT0yyfv0A09OLrB/ppeF30DSNnGtjCDkcsCyTdqtNEgcEYUS+5NEO2l1EMUNXTBorDdRMY3pqiVzOor+3RpZIpEZoBnEUUyjlaLRaLC3WGR7uZeOGEdYWVjl0ZIrh4V50x0bJMpZP1jEti5Ghfpr1Nq4l3VENWwaFP/HkMQwdqqU8GQl+UMe1C0wcm6NaKTI9f5K1tTalksCyHLIkIQ4DTNtCCJ0gjDhy5ARhs47rFDm4b5nLztvIf/zUp3jrb15DHEc4XokwTvn6V/+Vgf4KRw5Ocd6FZ3HfvY8QRTHFUp4oCPG8HKvLa3iFAq6t0emEpJF0o82yBNtx0RVBGIWceeZW0nBemuOgkkUxadIgRSNLMqLQJ0ti2fSpKpZtkaUBcRxJ7UeWoirKU8OkLCFJMnThEgYdUGMMK08YthCq+pQAP1PQhIFQNUw3R5okdDotqXH0W+i2g2JUUIVLmiJ1g6qOogiSJEOIjDT2UUwboQvCziKaqiJEgqpaqEqCooREfos0CZElRApZDApouoomDFIEqqqeNnFRhegawITopoMqTDRdI01ioEOWGmRpShw1MTRJxcqyDEWTQ5HIb0EaYdkOJxdmGBgeIElTdMMilytjmDlUobG6tEKxVMI0csRJSL6YR9NTDCfPK6+p0vL7WT72EMutmELvenpyDnFWIO200Z08pmJxsnOIWt+ZGGKG6179BrKsw19/8lPkCkXedds7KFY8zj7rTN72lnfwlptv5ZxzzsBMm/zJH32UHWedR75U4X3v/wCvvu5V9A/0MTWzyG/99tt402+8niTRsIwc7baPYRh4Xo7rX/1KlpaXyFVKOI7AcjVS4Morzmc2O85ao40f+czMr7BtwxhCqFhCML/aZKi3Rw62NIXR/gq6gFYnkBdJYaCrAqGneI6DZ1l874cPMz7Wz8xym5xroJFQKxYJoxhDJNi2RrVcRDN00lTl6IlpJu+d57N/+0VOTM8xUClzcO8uLrrqZSwtNrj/xz9ifH0faizI2TZeLqSxpvHjH9/Pho2bZTOf+jy5Z4KBkSFKg0OYtsm64SHuu/sHnP+ii7j5Lb/Bh//4I0ThCmPrNrJuYAN+I2RofB0JEZdefgml3iqa0JmbniHq+Bw7NoVj5xF6mzPOPZ/JqSXGN27lnHN2kpkqpm2SdiLiVsrwWJHzL7iUWOvwj//zf/LiK16KqURo4SorixpWoUyumDKxd4p16zYR0+HhR4/zxc9/ATXT2LV7gqXlRXZsH6FQKHDZFS8hSVscffA9xNkg06s1Hn10F2ecuYG1ZoATG3z5a39Pf2uMsX6dSsnB1nU0TSEl4bS9fZqgaoJyqYim6aiqkC7XqQJCxuGMjA6jqZnM/kwTnEIvtd51FEoFsizB9fIkUUDQmEfVUpQ0wc80NKuAqtoYto3Va1KoVnnHbe/hqjNfxA9/cBdae4FyTw1VzdBilcH+PjLLQ7U9dCUjbnVoBCG6mWJ33YAzNUNNU0AlJKbRanDuuZejipROp4XteKRJSk+5yursEdSkhaHAwkqdtQAqvf0IodNca1CfbHLOZdtRkgU6B1RGBobQRAIkZFlCLFQWVhvYms3Q+iq50iDttSamU6K9NE2YtNAtg6m5OertHOdeej5EDpYtmJ+fI+ksY6V1DCFQdB0UFb+xjKJorNYjosRgYbVDpuchUwjCFjYJqpVHEaY8l6ZS7HPnQ3dy0xted1r6A9LfQTll00/WNUtRUVDIUjlolpmM3Uo0fa5JCpxq2rr3dYeAiprK/aP73M8AP5QXuD23QD39HM94zdORBEr3Mdnp27NNBp8dk/DLrnv6T6pIs7pTt6dr3pLuAA9VDj2fjm7+XCZolqJoz4yOUDX9183dr2pJkvQOgAMP3cX2sf5feljwy+pNfxFk79+LCL7gOkWOW7IkYXb2JPV6k1q1TJZkhGHI8kqdk4srWJbAcWziJMU2VIaHB1BVuOyyiynVSqhpwvzCIv19NeI4o7enh07HZ35hjpznYloWfhBgWZL+sGfPfvr6ellZWcbzJIIRR3GXDlfgwKEphKpQKpUJo5Q0jpifPymn7KpCX38PT+w9TBinrFs3zOzcSTaOj+E6OY4fP0lvrYdCvkTgxxQrBWlvbpgEvhR2J3EMaUKKgqbr6EJHM+jyzDWpD8wyoihGUxTmF5Y5ePAwvT1VDEMQRQm6Lh0lD+yfIF2e4703nM9FH/8sn318L/f7KXpTaveKloVpGSRxQhDE6LqBaRg4OZsNIz0QRzimAWjESYJhaOi6haZpGKZOHEesLDdZq7coFktMHpunVCjw0K4DVAo5egZ7aDbbGELSCdMkI45SOq2Aex7ZRa2QlxSYTsh1372L9932Uq6/aBQlTXnwgT0MDNTk6ev0pAyazbbMKbQcnjw6x0AxJQoDVCVFQWaHKWhEEYR+QJKl5As5/DBgZqFBT63Mj+9/knzOIggj2aQ6BicmZ5mfb5DFMH9ymf6BCouLawwN9mK7DhkqPT01mo02cZLiuCa1apFKqcDS0gpRFKJpGgsLy2RpxvJqA9uSKKZu6Oi6SRRKeqlXdDEMk5MnV2g126BkzMws0gkCjh6bZXJqgSAIqdVKWEJnZVWGEadJytjYIHPzixTyHlEUI4SKoiSYpo3j2izML1KvN3lkz2HGRwfJezZP7DvGyHAvQlPZd+g4lapFqWzx2J4DbNsyimPq+EEL17V5Yt8JensL6IZxGnnsdPzuxVfw9z/aTd2PufnW2xkYkiY5lmWjpREH9h5k45ZxdEPn+LFJypUcYRRSX21y6OBxNAGFYr6b6agSRjG2l5O23WlK5PuEUQc3LyfEN9/6OW68YTtZlpJEkcxB1AwUII5DDMsijhPiMCKJUxRVxTBtUjLibvxCGEaksZwwC10niQM0oUjUU5FoXRwmMvw8TeX8t3tBzLpFh2GaNOtNvLzMFRVCR+gGQSAtwBVFmnHrQjpxZl3tiZLRpWCq0nhAN0iR7p+abmJYHhld44JERrAkSReBy2SkhmEYJN3w6zTtUsU1afSkwOniR9NMFFUWNJoqaDQaWLaNJpCxDrpBlqmE3fxOkCHxaZrxswd2U6uV0TWla1gjA99VBdIkotVs4eQcbKvEyskn6ClfxPDYDnTh8bUvfZNv/PM3edFF57Nw8iTlQhVFaBhajv17n6RWGUGoBpNT81x6xStohwGaruOHKVde/WL++m//lnVjY2im4KVXvwKyhIMHdmFYHrZtogmVT/yX/8r//bWv0GzWSdOUH37/+/QN9NBuNfByDmvLdTSh4hWLxGGHNElxbId8ocTdh+7jxw8dYsv4KBuHymTIa4ohpNPq7v3HGB/uQ1VU1to++45Ms3F4gIXVJoO1Iq6l4doWSddWfnRdD+0g5O67d3PmthFafiAzEzVVniOF6BaoKUGcUcp5fPC1nyBIFcpeAUW0GBncwIED+zANnbPPOoM4DbAMkw//4UcYHBomUwxe8pLLqdRKFAouzWaH22//EG98402E7YDBvn6CwKdUq+DmDSzT4Ikn9vGa667l7h/+iG9885/RhMLtH/x9PvGnf0KSdlidmyPnuFz/2texaduZ9NQqLC2tcNa520hiHU3V2LV7N5dfcSmqLrXnX/iHz7Nl0yb8aI7+oRqWnmNgcJBisYguVNYWF1loLlGprefYxCp+exnDLPCT++/mmmuu5cH77yMIGrzrd26lpzqAU8gxuyBjAaL5+3nyZyHnXHoLG7ZvolQdwjTzNOs+x44/yVf//i7O374FQ0txPKd7XMrjTOiCNEkxTatbUNM1QkqJk1jel4GaqbRaTQzNIOhEPL57H15plHyxgBByKLS21sBvN3B1BVWJJS3fLRFlOmurq1i2xfi5wxjCZYxR7vvxt+kfGmPdSB9pFpMlCnseeoSh0QHQc2h6njBooCgJD/74IQbXjaCqMnuVTJX5mYpgZjLAsPqoDVUIw4iFhXkykHTbUoFmfQbH1lAUBd0pUe0bY+nkIo7l4ngef/G9T3HbO9/O3OIkhx49jJLE9BRcaVCiWER+g06rSTlfRrdtdKdAHAQohkLcWsU1TRRFww/aHD8+i267aKpKsVhgaXEeNW2gZtLwSlMgCX1SxWCt6ROrLsVCDyv1Nqg6ru2xsLKGQka7tUauWEVTtS6elnHP7nu46Q2ve0bNdyqb7qnG5qlB/6lIg2ejZc8XyP3Mxk3pPi577rpfcnkO9fMZLye3J0kShHaKSfKsJu3ZNe4vu+7p2/Ssz0F9vnXd4+IZH8/PfStSK/6M5/x1c/erW7IsuyNNM7YaC8BT+8HT973nQ7f/Paje874upwYbL9ykPXv9C6F68gCUxZOqqs9/AGXyxNBoNhkbH+HxJw6Tc6SdvGkb9PTWuP/Bx9m2dQShS/58HAYcPT5PGAa4bgHVEIg0Ymp6luPTS9SqefI5F9u2yNSEE8fn6OnpwbQM0iQgSVIGBvvQVB3T1AnDCFVTadSbmIbOI7sOIjSVnGtTqVZYq9eZmDjGwECVdltmd3meRxgl9PfVmFtYoFIssffAMQYHBjgxfZw49okSH8sxiJMM23VQNR1V+u7LrLEoRNMNdu/eR99AL83GMq7jdfNgFMhkFlKn3cZxTQYGetE0lSgISGKp3/F9nziJueSCMwiCgM1lizvedj1LC7Pc8qbL6NlSxd1Y5ZtHj/H9hXk+e3CeN4yPANDxO5imjpKmNBttklTF81x8v0OaajJ8WahEoY+q6Nz90D6GamVKpRJ337+Hl15+rixCLZ3jx+aYnllkZF0/mhDU601OLqxwwVlbuPn+XfzFvffzjrdfydtefh6mJZG9sNOmXC5g2iZHJk5QLhfRdR0Ax7HRdZMjR07wJ9/Yzesv7AEy0shH0w1sx2FmdpnllTaOqdPq+OQKeYSu0z/Yy+TkPOODNXTLYKC/V2rS1hoU8g6Dfb2YpkWz1aBUypPPeZJql6bsPTCJa5u4loGTd7Esk7mZeQJfUnxzeQu/E1OtllhdaTA8MkAcSZ1jFEbySMgU2h2fVqeDEDo9tQrLy6uYlkGr1WF4qJeCZ+P7EePrBzgyMY1rmxi6RqGY58jRaXr7KnieK6mtcYzlWrSbdeI4pdVsMTu7zFB/jcAPqa81mT+5Sn9PmY7v47omrVZAb38PQSdi6kSdjJChwT7CsEXHj9gwPkqcRgjdQFVUFrqUUSF0isU8hpPj8akmb3jjO7G9VQqFAqqmkAQtbMdh965DjI4NU64VCPyAdqvNS152BUcOTnDGmZvwcjlpOtKokynSmTEMQnSh4TguupkjCCJ0YZF3NcbWezIUnAzdNFBUSQ1OswRN19E0gaZJOrVu6qiqjqqd0oxqKIqKrhuAShonGFa3cVK7yFgYdSnZMaHfIYpiwiBA1y2yLEZOjTNMy+p+lyGtZhPdtGX8QhhJt8xIogh+p91tkGTKrSYMNGGjapK6qahG17XXJE6QTXuaoWiyYNU0aYKgqJJ25LfbCE10i5+MoONLirQmc/C0U66giSw2VFXmTxm6IE0TGeYex8RRhqIKiXCSoQsTRZVh6iPrhmg1W7iuhRAaZNBuh3zlS//Mjp3jCMNAN1QWZhpkSZt3/cHfc+WV57EwP8O2LaNc+KIX4eRyMm9MU/nrT/0d1XKO337X7Vx15dU89tgTXHzJpfihjqKpRElAsVim0lPgoosvoFiqYDk56vU2qgLjY/0MDMoohq985cv84R99BN9v43gWaQzr1q2jUMixsLBAtVbh85/7Ildfcw2K0PA7bWzbJkVFQ2ffyv1s2zCAqWckSUwYp3iWQRbLeIXjkwsM9pZRVYW1Rps9jx5hfnmNzRuG0ZSUueUlcq6DpqpomkIUx0zNLXPmtiFyjoWiQJQgUQgkWvzQoweYmJhh4/gId/3Ffl720muwPRuRJqzW50kzC89TJSKtKCgaPPTgw5y543yEZnPnv32X8fXjOLbF1IlJ+geGueGG10iWilvk1a+8jpvfejPF5Ex8zQAAIABJREFUcpnFpVn8TsQVV1xBrexy+RUvoVCssnXHVn7zrTfT6TT5i0/+GffedS+dTsB/+L13YzkePbUKlUqVUsWlWOjlbz79t7zlljez78n9DAz1oxkGO3fuJI5iFub2YugOjl3Fc2wUNeP4sUnybpk3/sZtvOiisxje0I/rutzypnfyuhuvJY0TisUSo+sGKNRcmq2An+3exVUvPof9j9xJuvoYD+1bZdM5F+EnKX3VIYJ2nTu/+1Xuu+ch3nZTL3ltPZblkmYRuia6zR0yM1JRUFRFIvVCkCQRmi5Iu9ryOI4kEi40kiwlASan59l45k4s3aLTaaGqKrZpsTA7gZq2sUyDOE4wvSq6XcSzdTSh87t3/AGf+6f/i2vPuYZms8XU5Cw9ZRvD0BG6oGewn0xV0K0yqmIS+stkrTqDwz3YhkZGRhRmMl9RaExNTeOVK8wuzjHUP46iQKXSg+O4cjgUreGYIISC7/u0IihV+lleWsG0TEzT4m3vu4nG2klu+8BH2d4/xsaxIYgjFD0jQUNXDDzbIUljhFFCM3MITFRTZWHmKIKUKE5JFMHW7edTrfQTRW1WVlbwXBtTC9C6Q6skUeh0fNqRSrl3HNMrU2+tsX7jJnp6e9iz9xEct48kCdDTDmEmyBWKXVQpY0vlLMbPHzzdxKHIyB9N1U5n3NGlWJ42WDldfT5VPz5vffo8zZ3M9/u55eovvJzetp+znEbrFOUZA8GnI3myiuX07TmyOJ5qEtPuAEl+Bt0Ynyztei90/Tay51Ivn7e5627fMyitL5DroDzbmOXXzd2vbknT9I4/+ejHePHGIvBzUOTnufOXReqe8Rz8YsjdL7pkSCeiU+YbP+81ARzPQdVUxsaGiaII13GISYijjNBvs26kB91y0ISGrWvcde9+NqyvMT91EtNSaDdbDA/WWFnrsGFDjYX5JZQ0w3RcHNvE83LESYKiCFRNyANJVeh02rIAVBQ0UpI4JI0jNowOMDLah+FYeDmHyG9jWwYLi8ukacrS8gobx0c5eXKRocEqaaZSLHoIXeXw4Wl2nrGRjIxWu00hLxu2NIE4DkjSjE6rRS7n0m61qZZz6ELHsT2yTKPTbpMpKWTS4tixHVRFFoZZlrK0uIRjSxTgVDFumRa24zAyVMXQDS4+cwzd0AiiAMjYONjDRVtGeMOlG2HI5btTJ/jyxDT/eHiO2G+zY6gPTVVJkwRVCPwwwHFtkigm7ETEGRw8Ps228SGSLGbjhn6pDTJUNEWjVfcZHRtEmHLyFvoBX5ld4GuHnuB1Owb5+G2vodWpky/kumitNAVxPIcMKOYL8mKuSrF0s9VGqCalUpFvP3SY6y/oldT8OEIYHmEYYDs2D/zsMJs2DuD7IfXVFrt3H2bd2ACtZhPXNlhea1Eo5FhZbfLAw8cYGioSRIE0WwkDkiQjX8zTWK1TKHr09ZY5cWJWoj6qII1j9u0/RiHn0tNbQdNVGqs+aRIzO7tMtTePYRqQptxz/y7WjwwAGq5nM3fiJM21DlGSUO0psrSyxshgHxMTM+i6wLEN6o024+uHMYTGw7sPoioZmzeP0vF9kki6zS0vLmO7NlOTixiGJptgTUMIgxOTC3T8CE1ojAz1kqQxYRjRU6uye89hhtf1sX79CJYt0DQDN2dh2i5RLOnKku2iUl9p0NdXwrAsDh+ZYrBnlPO3DmMObkUTJ1E1gS5U4kwlnyuQZinVSplcLs+jD++j0fA5Y8cm8gWHn9zzM8Y3jmC7NqZuSQqiohAEIY7rEUQJQRhiuzIaYXikB01pgpKSRCG6YZIgi2ihC3lRTSW9R1FSNF0hy+T5JI5jVE1DGAZZKmMKpOZOEMepLAhTnyTsIEwbv9XAdh0UBQzLAlUjDjqoiibdOuMYTRPEUYhuGqRxDKSkcdyNKZCaGaGnZGlEFPoIQ6NVX5X0pDRAQR4D9bVVbMtBUWSYsGHIcHRVEXL/S2KEZkCWoOkCVZURHSgKwtClmUoWkUQJKJqk8sbSpELVDNQuApdlCUqmoWk6uiXvJ5UaP0UVRFEkzWWiCL/towlBo9HGcl0+/7nv8sabroAsRrccsjhmeXGJoeE+Xn/jmfjBCD/54Y/4+te/zaWXvQjTKzF17BjlgTyXXfASTi4e5Lbf+wjV3gJershafYk333Qr9ZUFztm5Db9TxzU9NDWm02rQqQfcccfHefm1r8bOFwmDJs1mi7PPOZdOJ+ajd/wRl156MZ12h6ADF15wCd/65ne47bbfpadWoa+vj1YY0GnXabd8apUeNM3gcz/5Mq4lmJmeplAsYpoWd977GLoluO++vVxxyRn8y/ceoX9IolFnnznGyGAF0xTUG21q5SJJmkgXVaGhKNBodbBNTeaf6gJD6BJh0SUyM9Jfo1Yt8S8ff4SPf/iP+MpXvswFZ20nTZpYoo923ETEKZ/85P9gdGwTlpvndde/kShWuOqqy9m2aSc3vPZGhgZG2LxhM5PTM1i2wVVXvJzLXvpSfutd7yTyQxYmp3nXbR/gLW/9TY4cPkRPyeNv/ub/5OLLLiffU6K1tky5XGXnmRfw0qtfzZZt2zF0lb7eIrlcie9855+Zmp5gZSVm3bpBDh/ezyc+8efceustZEqGYZpoKHiGziMPzjAxsR9T17HzFkI32PPYAd78phup5HV++pOfUawW+dIXvsVbbrmBwb4qQ4NjVEt9NDs+qq1w7jnbCeZ+xuzur7H5vDeyppaolXoQQmdpZpK4c5Rybglbgw2Ds3z4c3cxluujWCzRabURetcU6RSdT3kKWVFVDb/joyky/iRKVOIUdj22i57eER55eDdjmy6kr3eAo0cPo6oKuhC0Wx1MLcFQJfLfbDbRnQorjYB2fYFCscaLt7+YK3dcRpzC4uI0q6vzbBnrJ4kTUFTJftEc7FyRIOqgx23SpIMu5OBaTWS8gqaDpVtEiUmjUadQqtJT6+fE5DHpii10XNsi6ixDGnTPb+AW+2h2AjJVkMvl+Ls7P40R+zhORH6hiq1r9BR0HnvyEE4xh7+8woOP7GN8/TpCAkynjJ8mmJpLQId7fnQvY8N9rLUC2nEBI+dQX1tFI6Gnp599Tz5KydExTJtmJ2K1nVDp24Bu55mZmae3r4+cl+fhn91HqVhmdHQjSRLienmaa4skqJSrvaRyfEFj1Wf8gqFuYddFu9JE6o+fVhMKVTyHAPlUPfiLN3fPplH+sssLoXa/6PIc0OPpf57SAXbvPCWDOtUsZki2VpomT3vMs5/k5zd3T39ueCHkjl83d/9fLnGc3DFxeIKdvafymSTfVu7Qz/y+T7OET/GBeWpycFpg2aXzvOCi/PyW7ulrnhOt8EKQMtlpRyNNeypr6tQmPQXTZ91tlHqY0A9JooR228c0DWanF5hbOMmG8WGSTJHbkGRkdBjq76NWy6MLOH58njhS6O8r0qr71GoleWKJEhzPJYqko+T05CymbqCqKqEfYBomaSqtjJMkJU4SDh+dwrKka2Jvbw+LJ5cgS+ntrbG61mCwvwfDNJmZnmLD+DiHJiYgA7/t49gOjfoaC0tL2LZLIVfCKxSkVkCTiJ2Sgm3bUh/Q9nE9myiKUBSVMI2wHJsokMGsKgrNZgvT9hAktNpt3Hwex7JRhUm93qBZr6Np4PtthJABv/v2H8UPUvr7e6UTYZp0i8UMXQg2Dte4bNsgrzpnPTvOHUcfy9GpmizkFN77b7tw/Da75+bYWitjWjZxHLNz63qSNAM1wXYsSf2ydEgSfnTgIH98ZIoHVpe5+GVbcMeLnH/2OsZ7PK688kJ0Q8Vxu+mxqExOzpIv5EBTSRM5ydJ1QX2twdpqQxqRmLLYvv4sE99vYakKj+05QbWWw7RzZGnK5vEeJo7N0dtTRVFgy6b1kPqksUKuaFLI52g0mjSaTc47exRV1TAMg07QYm6mxYbNw6wtr0EWMTk5i6Wr7D1wnPVj62RhYOiMrBtA6KJrgy3wg4BiuYDnWqBK9KTRaLFx/QjNtTZewUNBoRUEjIwOkqURulDRVYk+qUKhb6BCLu/huRaqAqouWJhZpq+vghA2szOL1HorLC8v0261yecNvHwRxzLINIV8KUccx4ys62dkpJdqOUcnCKiW8zSbLakZHRvgyb0T5FwDx/M4cmgKNROsrq1RrpaJo0hOwDOI4gjL1LnzB7vYvmUdH/jiA6wuL/Hw3gW+9/27ufaVFxPHCUKBhfkFarUa//Ltuzly+BhveOMrOXZ0kunJOY4fm2Ot4XP+RWfTWltFt6Q+AtWQLrFKF3nSdLIkgQyEpvGK136K33j92WimjYqkvqiakFlwqGiaOB3e7bd94igBRTaCQujd/DlVIjqeSYqK0DzC9iK6JrOmIMOw3C7dM0HTBAqg6TKQnBSSyEfJUhQy0jhBN2TjniYpaRqi6SpJHKIJE01YCN1EQcV2PBTVQDdc0jQmSQKEJvVzkGHYJlmmUV9tMjszR7lSka+rpKiqkAyGLsVJ1bo5d2nUpXBmXRRdoCqyYc0UhchvEUQhiqISRz66KciSiKDTkUMXYaKg8e2v3822LaMszM1T6eshDmJmZ+eo9fRy1rkbOHTgKP2DciBycqFJLl8EBSw3z66f3c3issO7P/AhSp7H4uxRxjdUaa7FTM2cYHzDGbQbKwhDw8sb7Nt3gA9+6P1s374RRVVZN7aRqckDOE4RVZMmJeeevQNhAKqCYSoszh3D8/JMHZ/j8ssuotVaQ2jys/j9D32Ad/zWO2h12pTKNgCPP/Ygk4cXGRoeIlEazM00uPvr32f03EGeODLP6NAAB47NcfbWEXKuzqZNo8ws1sHQUDDQVIXp+QUcW+PQsUXyOR1T6Ke/q7VWB8cwKeRcLFNmIs4ttTl0YoET03MM9VVQFUGSwcHJRVb2tHjn227m3AvPQbg5ouYq7QTUzCTWLS5+8UU89tMH+eC7/yNf/cZ3ueol59Hf7/Hknt189Zv/wjve9R8w9BY/vfdB5qdX2LHjDPr7S/RUy1x33Q2s37CNe+/9ES97ydXk8yVU3eGlV19NGDR5+Kc/5q4fPMDmM7Zw62/+FgcOHGZhYZqx8TFMs8jqSpMvfvGf6Osd46HHHuG6l7+KWrmPzdu20zfSg22aUm8aBhiGy2c//wUuufhlDK2rMHl8lnJlgEpvP/mCTSeIKFVHEGaBL3zh7/jjj/wBj/zsXj79+a9w9nk72bR1C0XPY/bRL3Hi8UcYfvF7aTYFOy46j6P7nuS/ffpvSCZN9v90Hk8Z5X985xvceOWZ3P3wLFdfeDmmbqHoXfOhJDlN2YujGF3opFmKqqiyrugWE8LQmJldYcumEfbve5JYM9m05UziuIPr5Tk+OUmpVEUoIYImConUGysarteH47kkiYLhePitFpCxurbE1LHDXHLhDrQ4IlRNHnh8N4OFImZliDTM0PHptNakPjBNUDOFMA1RUxVT14nimCRTmZpvEaYZxUKRWq0CWcTC3CzVvhork/twvByKqtEKUwq1dWSZRpam/OW3/4q//cs/Z6RvmDf9zvu4dON5rB8uohsG1XIRWxiYjsn60WEZoSA8YsXGMgzQEub272LL2BCqqvDQ43vJl3qplisoWYKmGSyvLlMtlVhtdIgUm1JtHUGsgAqN+irrN57BieNHcN08pXIFBfDbEblCDk23yLkei3OH0TIDq1hApApuyaZ3S/V0TflUrScRb7patWdVqs9bU6qKzEXOFIVM6ZYNisTHhCZOV5m/zJKm6WmzFLmpTzduefb2qE9jp73Q6z3zPT0T1eve1/05/R9dl8sMidSdep+n3uszFXdP6RhBNnpPvylZdvr2QkjPKbTz1E0Tv27ufmVLkqR3fOxjH+f1L978nHXP/specNf+90B5L/DYX1ZLB10xraIQxZHkKp/+v6dxsk/9dOlIuikpd61miycen6BRbxEGMZZhEIcxkR9ybGKKUiFH34Ck6j22+0n6+6tUexyiQOXgkUkMQ2dltU5vby8oCVmWSQ1KpuDmXKI4lhcJoaEKjZSUNEppt9ocPT5L4IeMjQ+hKCrNegvP9pieXmBy6iSz88vU6000TaHZDBka7mN5aZnV1RWKpTyrK3VSUpaW62iqoFzOkWYKuuUgFNCEThB06HTaeK6H7wcIIYjCDC+flxPLNGVpcQ0v58mw9VAifpZlkiYpSRKCKnBsiziOMS0DTRPMzs6Ty7n09/bw3TsfZdsZo2iaitAFnXaAqmokcUoYxBhCCnGbzQZCU7BNA1NXuenK7Zx5zhijm6pY4xUm1BhrXYn/NTHBp/YcZS0X808Hpnj1jecxq7TIbxkgy2n87msvwfaX2LBuEF03cVyTak+ZZqOFLnSSLEEXOmEYsvuJ/YyuG5AxCsemKBVKhEGA48hIAd2QOouH9h9joJSgKjpZHNJbqxGFkfw+LYskzfAcG8syqddbTE7NkWUJq2s+Oc9E0TRyxRzFUp6FuZO4rksUh2iayuBgH7oOKhGG5VGultEti/6+Kvv3nqBSyjG/sMT8/CKWKVAV6LTaLK42ZBi7JnjkwcP091ZQdbA8g2a9w/zCEq5jUSh4pF1tVZqmhEGE4zlMzS5SLhUlOqkLwiAGFDzXZGZ2CU0NmV9YJo0ihCbz5wzLIJ8vIURKp92RhjVhSLPZwfMcfN8HJaHd7pDEYDkm99z/BMMDNWzLRBca1UqR1bU6pm3guDZpmqILnRMnFuit5VA1jf6+KqZpMjXbZjznccsHPsbux+/lssvOIo5CDh04ytDIKHd9/37OveBMLrrkXKanp1leXKXR7NDu+Lz82ksoloqYloGqQNiOmJmZxct7JEkkM5nSVIaEK5CqGd/6zgPc8OpNaApkqGRAnEQYutTbCU1SLuMoQFXpukuqaKpGu9nqol3yb1XVyTIFhQRdqKBKVAtUVFWQJCFJkoACSSyzF+M4ls2cKTiVx5SmGYqQQxnN6GblhQFpHKHEAUK3AYVWo4VhmmQkgNQDGaYHCt24kYi0m91nOzqlSoEgDGQupaJLAwZN5hkqmaShGabZbb6l4VOaZKi6LkXwXQMWRVGlFXx3ppumkilh2hZJDKqi0W412XnWFlqtBgcOHiOfczBMg2LJI4oCwqBOb690A43ilErVky6/cYaqpgwOlfid2z+DGkYszE+zeesmUlVBUQTvfc97ufyyK7jqqpdw881vRCXj4P7DZFGDWsWTeYOpRaHscOToBMVyEVt3aHXa5PI5mu2mdE1VU4JOxPC6cQxT8NijjxKHGdNzJ5iZm6JWK7OysohtOhimRF2/+517+Pa3v8Mll72I48eW+dcHvsUZLxqlv1agFUTsPTjJtvEB0jRGCJO869BbzvPI7sPs2DJCzrUQQlArF6V5RKuDbZg8+PhxeitFLF0QpxGzS01+cPcTjK7roVZ0sR0dSzfwQxlgf/KBk3z6zz7D5PEJ3LzHvgOHGelfj2HZrCzNkzdi2vU1HntiH+++/f24TsyxI0sUSjYf/ejH+fw//hMDw4MsnZzlgx/6Q9JM4zWvey3vefftvOb6Gzjn7J3sOGsrfX1DoMA73vF2MlI2jm9E13SEsBjoGyVXzPHKa1/G5IkpvvH1b7CwsESpUKbT8fnev32Pbdu28eab38zywhLv/b1386rrr2N0w7CkNHevxFPHp7nyiqt4/Ik9tJsraMLA90M6vs+/fudbbNs2hpt3cHOC2277baYnJxkeGeKaa19JkCUUSzkWl/fS3PtThq/+fRoT+9l89lm0Oia3f+QOfvtlb+bAYxNs3DpIfbXJK857MV/4/k94zxtG6CwPsuuxfbiFKrYKaBK1U1RVMihOSRUUULMMUmlAlMYJKysrVEolNLeI5fYx0D9Mo9nAzRep9fQBYOoandU5lCwhQQGRB01HFQbLq0vk3SKaJhBCEPg+cbhKtZgjiQNcx2GwVkM3LbBKJEmHJGrxxK6HqFaqCE0nSTR01cAw5X4TRAonZlexCnk2b92KqbsEQRvX9TANk87qDIYSk6kKaRxgeDU03WVldZVCIc+Vr92JSsi/fOvrbDPPpdaTx3WyrgbROI1IZmTEKWiGR65aYWV+Edc2ycIVdMMkS1P8RLBt29ms1VcBcBwPMjhyZD+ul2etUafaO4Smm5IlhGB2cZp1A6OSst6ln9u2ixzCZ0xMHKZUdIjDiHypj1SkKJn6nObuqRJTeQp++wXqTanVe26jotA1YQF+2ebuFNX9+bV9LwRg/L+DFD7zBX4+4vfsrfuFWXUvWPs/8z38urn7FS5Jkt7x9a99jRsu3vScdQqnxKlyecbX9GzR3dMPpP/d7fmW7roX2k3+t/q8rnhW6hSeNsV5nv87dSBnyOmC63ns3nOQlbUGcZLQUy2zcHKVQwcnQYPNG0eJswzTNEiCAEUV0gij1WF8bBDHtahWy7TbAaqu4nk5jh2fotpTkYWlrnWLRkGaRNK8IFUQQtBqtBjsq1Iq5bBtl/n5RdZWG+i6oFLJUyzmCDptsiymt7cXx7Np1lsUCzkqlTLFvMfyWp3hwX6KxTyFYp4kk0jmysoKtmWjqOC4NqpioCgaQqgyu0dTURQVtUvtk9bpIUmcMHF0ikIxj1AVhKaiCh2/42OZUlfjd3xy+RymKdGgTZuHZJZXFKACVvd1wyjm+LFpyFLJ7bekLXucyIuHUFU0TSOMInRDx7MthKpw1ng/b7pyM+ds6OelO0Z54Kd72Lp5nIkjJ6g3WoytH2JooEK7GbB//zF0kZLzXDRNcN9PdzE2OoiiqqRpwviGYVRVoKJQLhUQumB1ZZVWq4VlWYRxRBj4PHhwmu1DFooWMjN5GNvRcbwc9ZU1sjTl6LF5BvprTE7OAQrrRwcwdI35uSZCV8jlPCYmJikWctTXGgRBhOu5/Ns9j7JhbBjD0lldXSNNFeqNFqBwcnEVxzIplwsEQcjiSoOx0UGiMCIII/r6ehBCsLy8AknG1MxJyhVZFDuuSzGfo93s0Gm1aTRbuK5DkqQUijJkuVYrIXSBaerMzi1I6nKQsLBUZ/P4CEHYobdWZf/Bafr7cpRKRWzHRlE0wtjHMm2CToCTc1HSjOmZOXJ5G8fVIIHFxQYP757g5VddwClX7tXVNU6eXGJicp4tW9ZLG39VJY4zWs2AvfsnaDZ8ZmZXKJc8PvAPD/BXv/9mFtQK//TV73DT6y+l02xSKlWYmpxmfOM6enpr7HpkN9Vahe07ttLTU+KiS87B9Vz8jo+qZizOn+TxPQcYGh3E8zwgI01l9AVkrK2uYDsON95wCSqN7oQ3JgqlS6LUpMncTF3XSVOZZ9ZqtNB1mySJ0E1B0AnQhdHV5SSksUIUrSE0Gz9sYxjmM/TJQgjiOMEwZGRClqVoQiGJMznZVSUtLEliNDUl8AOyRIa8R2GIbuikcUwUBbi5fPd9RUiHbgGZdDGLo4goCsnSFMu2IFNQdYGqaPJ8niTQNdGJQjkEC8MIskzqDFWNDA0hBKhS25J0NSJZFEk6T5R0mRuyKeyWQLRbPkIYtNtNXNdm3dgAmaIgNAVNl+cQ6byZoJs2wjRJwhYKCT/64cMMDpWwLJu33XIx/+nPv8lt77gZNEGsGChpyk03vZF2u8P73/s+dD3BtizeesvbuOWWW+kd6KPZbKAKlUOHjlIqVcjlCnzo9g+ToSBMge0YeHaeNPYplEp89avfpr62ghA6H/vPf847f/u3GB4eJooTquUa83OL5HIl5mZnOHjgCO+//b3kiib9fev40j98Bb8vordSwjQM8nkbQ6ioKvhh0tV8Qyv0ZfNmGKAoPH54iiBWmFlYoVrysG2HA0cnKeV1VpoB+w/McOG5ctDa7DTwbAPLcEnSFNMQXL/1FkqlCrVKmTCO6R8aZnVthla4xOG9j7N39wHu+sE93Pr2t7HvwB5++uP7ME2Llu/z1re8HTvvkikS+dm6dRuLy2u85JqX8fobX8NnPvsZNm3czHe/dyfnnXceW7ZsYvsZO7jkwgtZXFzm//j03xNHCi++/PxuVE7Mzh072bp1Jw8/vItzz9nJu267jVt/81Y2btrEP//rd/nT//IJmvU6Z59/Llu2b+wiwlITdft7P8grr30F5XIOJUvYfuYOZmbnqdV6uefuOzlj21YKxV7iMMAQNsVymZm5OQbXr8crOGjRKg/e+Rn2HQlZCfNs2LqdTrPOm9/+Tj7w6t9j8sgcajpP30CZ5bkGxUKO7f2b+dhX/o179j/EDVdcj6YnQMzi4gKeVyCJ4250idSZxkksQ6279vwkCoWqSxJmrDVy1NtrGJaDqQviOEbJ4OChfVRLBdaWpjE0ndV2gqoX0W0TVTXwcjlptNOsY5kmT+x5DENrUvRcDMuEVGZhql4ZFIFIYxJ/jVq1HzXNiKOQVpigJjFh7LNwcoWVRsD8coMtm89kcWkBJRMY+v/D3puHWVLWd9+fumuvs5/Tffr0MtM9+wwzDAOyiRsIiERAQFAwaEwMJMYlj9mMT0ziEhOjZDGJb6KiJFHjGsUFFQU3RJYZYFhmZ9bumd63s9Z63+8fdaaZgcFHkzzJ9b6Xd191zZyuqlNV3dV1ft/7910EUZiyJQzZTOnTpgNRRKzniZL0OfTBL/0Nt7zxFjqNhA995JOsKQ8TdBboq+QJggDHtlOqKCktXSrIVQZS7ZuUSE0wOXmMrOfQWJyj1Lucdickl81hmBZRGBPGLZYNr0SqhHyhRC5bxDJtNBSZbJ58Nke70wEVEfgBO3bsoH9wiDgMkDLCcXNEsaIxf5RcsRfTcXj4/q2cefHmZyCUE2rM56g3hRBPa/DU8XrwaTbayXXl0+BOiOPUxucsQ085TuXG+fTpntzB+78J7lJ2Qkov1ZaMZE7o7En5U3V9J2v80vOUJ251ymv8j4O7UwurfjF+rhFFyf/0KfyPDU2wRI+59poL+eUbL2Ptqn6ajTZ79h8jm3VAb6LNAAAgAElEQVQ574KzUEphOzZSSTptH9d28Ts61WoRqSQgu255AqQgjiTlUhmA8fFJEpmahcg4QUnJ1HhqYCMTxUK9RZxIgnaQFnqGIJdPZ5yPjk8ShD75nM3AQC+lSoHRY+M0Gj5BEBMEERNTM/SUi0RRRD6XJYoVutBAxmQ8l07bJ/BDpJQsLtY5enQyBbYiIAg7KEjpj1pCu9Ni6yPbsQyDxUaH/U8dxm/7+IFPq9XCsk2ErtNqpbPhi4t17r//cdqdFqapYQoNmUSYukarsZgWw6Zg5aph6g0/7WpYDlGi2LZtF1GQsDA1RZIkmKa+9NCxbBOFZGG+gWmaOI7NljM2YJgWp21cw5Yta9C0NIw58AM67YByucj87BxCCM4+exNBECI0cJxuoa3Bk0/sIYoi0BL6+nuZnasDAtvRyeQy3LF1nDiGxqJPtVLBMm1iQjQRoynJ+tXL2ffUYQYHqzi2RavVIopian1lklhx5NAx+nsrHDxwNAUJUcKuPYdYPlBGU4rZ2UUcL0e+kCOXdclmHAxd0FfrYfdTRyiUcmzauJr9h8ZJFMhuJk+n46cFuQo5/fQRntwxys4nDuEHAVMTMyRJQiGfYWG+wbHxaTRhMDo6nlr6GwLfbxElIQND1dRtMohZtWoZR45MsGf/JPliESkFhXJaSM7PLTIxPoVpu8SxZP/+CfwgIZPxWL6sH9fzUCrGtk2yGY8rX34es7PzjB6dQegGBw5NMjJc44Jz13dnYjWklLiek04GYJGEGn2VIpYtGKnmueu+h1mxsr8r2IbFhQVsx2ZyappOp0kQtFmzbjUP/ORRfnDPffQP1Pjsp76KVCmQadebZHM5znvh+eTyOeoLC5imhWlaS3mIhWKBJEgQykAqjSBKaM7PggxRMqDTaSB0MAy6tEidTqtFNp/p6jZNNA0cz0UIO9XiqRjDtHDc1HjFcS0gJgxaKBXRbjWXrl9K2S0gBUrGWLaFbpqpPldoWJaO365j22mXMY5jssUSUrNIYh/TFCQyTH+fUQiaTLuHkNKQdAPdctA0mQI0dDTN6j7rFFHUJvID4jDGMi1kWtVAd3IsjiVxlFJOlUo7c2GYmkLZloHQFK3GAraTdrp1w0hp5CRMTs6yuNBkemqWTrvN/Ox8auTQNWpJtc1FbCtDHEs0oWHoFrqhcdnlz8dxDfygg5SSv3zXORh6Ghpt2B6/9/u/x4EDB4m7utD5uWnCwOerX/kKB8cWSHDIVSrYeZPB2iq++IWvM3Z4nN9+2+9w2WWXcdttH0+7qqQTbwvzC1xxxeWcc+65bH/scT72j7fhunnuu3cr7WZEsxnwxS9+ic9+5vP82q/dzN33fBPb0VioT7O4OEvWczhn42q+etd2fvjQDoIw4oc/eZzjbn1SKfwo5ox1w5iGzrad+zkyOcvmtcPsOzTFpjUj2LZBKesx1Fek3m6QdTKMLK9SzNokScJQtYSu60zM1/n2vTv5ynu2U+4dYnxinPe+9z0U8jkC36deT6iUlvHE1qP8zYdv5w1veCvf+eZdFF3BtVfewMCQxze+9R0azTYfu+3jtPw2tutRKBT40b33IpXEdjV+6RUvY+fOXbzyyuvJehluu+2T1Pr6uOl1r6fWP8B55zyfl116OVMzY1x99TVMTy+wd+8e3v6/3s4f/N47uP2f/5mLL74Ey7aIgoB169Zw+ydu55ZbfoNlQ8uXPnPjJAW/H/zLD6KQDAzVWLtuHY1Gg3azxXXXXcc73vFORkbWMzY6jwxtOm3JwuIi6zauo+EHRJHPjq0/4KxlOa74jfdx7soKv/quv0QLJTc871JGjxzkyPhh1q49G+UnrF5fRbdSPdbvvvxm/vl9lzJ9cBYtipEyQ39tOSjSZ5Muuvq6qPu5oaOZJpGUOLaJChUoQSM+zOCy5TiuS5xEuJaBjEOGav0c2LeDTK6Uus1aRbxMJe0cGyZKwM5dj5PJZTg6PsrCwjzDI6uwTDM1aUkSlOWiuwXCoI2pwJBg6Iq7tm4nVIqipWFaqSFVxuunXve5+JKXE7Yj+sp9FAupc3Kz2QSg2WogLIcwUdhOljhRZDJZwkXJZ2//G+rNSXJFwQaxksX5o/RUKyQqxHNzBGGI0FLXXlO3MC0HqSTtZhulJUzNLrJ7z2GiKKaQL2HbOraZTqbZjoPtepQLVSan5qlVl9NTLCOTmPm5WQxdcGTsMN/77j088fhDTE0dY/v2hyhXehmfOIpnGQhipErI5pZR7R9k/OgBRCKYa808S7rz//fxn9Xrqa65yv8Xxi86d//pob37yNZvc/7GkWetOT6XsKTDO3m/kxeN5+7KPaM93jWg50SXo6ePebLY9cSvn5aPd+I68az95HN3/WR6fppIOddo0NtXIZt32HjackwD5qamabbaHDo0ytzsAtVqD17GQ6oI3w+xLRtNF1iWSb3Rpl5v4Xlu6oqpaVQqqWua3+lg6IIgDChXykSx5MD+w2Qck9pAhUwuzz3ff4R6vc3gQIWJqTk2bViFriVMz85iGjaObdKodyiXcgRBwOLCAqNj4/SUChTyBSQaXr6IIE4DlHUTw9LRTZ0oVlimwLZMhNAxLI8kAtPQmZ2ZRNcNGgsddHQsT7Bm9Uga6+CmxWFKzbBBmURxG8twSGREb6mEV8xhWjZ+GGI7Lp2Oj24ITNtBKY1t23aw6fS1KJlw6OBhysUSg0MVFubrZAs5TMvqFs4aUun86IfbWLFiiKOjU/h+BArmZmcpFjM0Wy103aDV9slmMuzac4Dnn38Go6Pj7Nw9ykB/lSQKUzqdoRP4YUrNU1DtrXLXd+9n/dplTE/O0Wr6VHry+EGIlsBLhjvkC1kM00IaWXQjg55ExEma8TZ6dJpqpYDQFNm8C5pk++P7Wb9uCGGkOlXd0PADH9Ow6OkpMzo6y5bNG9i77xC79o6xbs1ygiQi47rs3nOE4eFlTE5NoEsDPwjJuAZ91RJREKErjbbvMzu7gIak1tuD5Vr09ZWwRGqNns9lcPMegd+ht1pmfr5JLuMR+AFJEiNQmJa1FCyuCYPA7zB6ZAohFJs3raXRWEQXCUiFTBLqixGVcpGZqVlsw6JW7UEYgsAPsWwdFSccG6+TyWTQBESRTAFztYhMJKtWL0foJpquo5IEYejEcUy71ULoiqHBGo88vh8pNTKOg6/nuOGy56Nqm/jyl+/ghle/BC/jYpoGu57cz8qVg7hOjrmFeWzHYnZ6gXJPns1b1jN6eJRcPoNhu2x76HEq5RyWaeJmUm2p0PWlEFqliTT/DsnVN/wjv/LL52BYFpZtowmLoBNimCYyibs0LT3VjiZPd98hZSokiezqk40UyGGQJDFRINOZft1E6DbIeCnMPA7b6CI10PDbIJMGpmmlgeC6Rhwl2FYGhYbfCcnkcktaZsPOkMQJpmml96dUCN0iSSRoksBvp7OuUpJ0nRYNUxAFHaKOn0aZmGZq4KFraKQdiSTqgJLda0ujSzRNgVYnicE0MujCIk4CVJJ28hzPodNsIISBlymwMDvDd+7aynkXbCFfzCGlyZHDx+jvL4FIKeCG2X0m6npKGXVsEimJEg0wkMLFMhwefmA7q9ePcPf37+L0zS9hbO9Rtpy1mdWr1yCEya4dB6gtX5a6CFouGcfEdU1mZmYo5XtBwKpVq8jlXYrVApYt2HzGZqrVKolM2LPzSYQm8MOARx9+jI3rN9M/VGFmZhZLz1IbzPHIth288ppXsjg/z6GDRwCD62+4DpUIvvDZz7H3wCFWvLgPNR6zZvMQ1WKGFctrhHHC2ESdA2MzrByqIUhQGlgipD9vEsQCTddYaCyS9WCu7lMpFCjncqkrcsZEKoNvf+thJustVgxW0TXorWTp8wfZ/tBWzjl7ORdf+jIW6w5nnnkRl750C9/77gOsXlHjrf/7D3E9g0P7D/Khv/44B8eneelFF3LG5ucxN3+ExmKboBFRqfTywE8eo91u8sXPfpqXvvhibvv47Xzvnu+Rz+VZuarGsaMTPPTgQ9z0utdxx9e/hpSSDRs3kM0avOrqq8hlPd74qzfz3ve+h907n+TmX/8Nznn+2Tz/gjOpVot85B/+iYNHxvjW3Xfz5je/EdtLc8pkkjA1NcVtH/0nXnTRhSwuzLH7yYN86K/+lge2PsRv3HwLuXIBTWmMHtxPT38Wr2TjFSsk0sRL6vjH7mbu0KNY1Rfg5Hr4yrfv4f2/++vceMtvceaKFxA0p9iyqQ8t8ZibmiCf8zCN1NBJ1wV/+E930Og00PUM+/Y9xdBADU3XCFSqy0VIdHSUipFJajqklCBKfAzNRDN0ZiYmqA6uodNpUsgVMW2PMIywbIveWg3wcAsD+LFE1yGOUj3f0dExlg+tZP++p9B1RdIapVTMYhk6EiMFXpUBhHAxkiZBZ54k9hGGwYrB/jSeR9cRpkYY6zyy9XH6VozgeUVm56apVvuYW5xjYX6aqN3AFp3UlEeFhGFAK7AwbQ/Hc2kPNhgo9XNo3xhvf+f7eMULrmDNqgo5O+3uKKVh6CZxIrsdG4nh5pGmh2zOYDl5LH+WZQMVhKER+j6Tsw2qg2tph23ai208zyRWCT09vYQyAdNmbGyccsFh9xNP0FtSlMsWy/vLZFwwBIwe2kPeq3Lw6Cj9/SMUcjn27NuB5WRpTR8iky/z4NQj/NIrXp7qpTXxnEBP1/SudjJdTiwFl/LmVGrCIjSBQANJas8gQNdPdn38v4GNnu7gHXe2OPVBnqsDeNI2z6iA6brByq4e7+lSXaEdv85UfJ1ecHfRjpsKnagR7B4j6U786ZrGUrh7d0ihoTQtlUl19xBdl+ZfGKr8N44oit996//zqVNq7n7qUKduN2unWJ5eqS3te9IOz/HyaT50l/l5inWnGunN+PTrdqvdpUOdvL+2BErT5bj2RRMatmNj2galcpHGYpPhlcspFLOMrFxONpelVW8QBN0sIsvAy2bQhIHt2pTKRXTDwNANDMtgYX4Rx3WxbJv5uYUlulQcRwgUE9PzOI4N6IyNTnHB8zczOz3P0GAv9cVFWp0OnXbA8mUD1LvW4rVaHw8/sZucl4Ycu46D0gSFfAHLtZifn8A0XRQai4sNMtksUklC36dQzDE3t4CTySM0ycL8HLZl4uXyuI5NsZRDypgoTBgbm6BWq9LpNNJgVqnxwH2PsmJFjThW2LbB4UMTFIu5tEtmOalbVdedT0NQX2ywZtUKOn4bmUgqlRKGkdK0UnCgaDSaqelMEFCfa+F5Fo5rUcgXl0ww5hfSzJtGPeAnDzyJTBIKORddFxSKeXLZDH213q5OwMawDAxdX7rvYhmjC5OR5f0Ypk4m47FYb5Av5HAdB01pBP4MTsYFDJAKIRImxvZTKg0yM9PgyNgEy4d6mJqeQdc0DMvCb3VQSjIxPcvOfaNs3LCMjOdiOza6EBwdn6W/WqbaV2Swr5RSbkyL+bk5an0VpmfmGRqsEgZpyPjR8Sl27jnMzOwCy5f3ohsmmlJUynkOHJrk0Ogk/bUipqkT+R0efnwvA4MlTFMBgn0HxnEdjanZBkEQoknJ7EKDXNbDsNIutWEalIp52q0mtm3geQ5tv0Mu72HaNjJRTE8v0OmEOJZJ2/cxbIND+yfxHJ3xiWks00bXdWzXYWZuBqmgt7eH3fuOUC4U0nvdc9CNVFdm6AaWZWM7Dp2Oz4qRAWq1Ct+/93E++1ida89dxTe2HWTLpjOo1cB1bNqtDv0D/USRz30/fJgzz97Mnp37uPyKS/jyF77JqtXLGB5ZhqZBs9nkxz98jOHhPur1OrlcjnarhWUYJHGMbqQTP1HYwbQsvvTv93PdNRuJg7D7jNExLavbwYoBMG2D0A8wjJROmcSyC34MhB4hhCQIWth2amyi6xqm6aLrGjOTU2RzWUwzBdVoGrqmESctdD3VtmmGTqvZwXY8lEoQhkMcdlJ9oNCAuKsbtFNznXYHy7FRMmUACJFqmNLmW4JlpUYwSikMQycKI2zXJPCbWJZFnGgkUYyuW6ncXiWoOMZ0XAzLRhfpzwFNYAiPOAqR0idJmthOBgXYjouuaZi2jRCCoNMml8+zfsMIuqkT+AG2bdHTU0h1lpZJ0AlQUhFHgCaYnJgiX8ilsSvZDIYwQDeYn55janKWVetXsnrVAK967fv49de/gW9/51ts2rSRD37og5x99pn01qqAvuQCaxgG+XwBKUN27diH5+XJ53LsPfgklUoVy06fMyqOiToBfQNDPLnzCXRhcubzzkEInW0PPUw+V2RsbD+f+7cvsuX007nja1/nLb/9Vj7zqX/h2hteTbGYw9bglptvYbm1hivOu4LSwgCfufUO3nrt2/nQO25HSzr47YDVG3q5576djCwrkyiF52VpB4qhapGMZyOV4MFt+/Bcm0e272flyAA/enAHg7UyW05fjR+GHDk6ybKBMl/78I/58J/dypr1a+nrWUecSJrtab5/z7d485vezJp1a/nGV79CuadENptn5Yo13PqBv+QTX/g0tm5w++2f4oLzzyWfcVm5ejl/9aFbufLKq7j6lVdRrVbxLIMjY0d493v/hKHhAb50xx2cd96LOefcc9E0xY/u/SHNZoO//fCHufaVV3DnnV+n2lvhrW97G29961s5cuQo69dt5CMf/Qithk+pUGTDxo0sLDQRQqPSU2T5yuElKpwfBLzoBS9EN3V2PvIkq1aP8NJLLuSVV11BpVqmWMiya+eTrFq1jGzJQVhFTEPHUG0m9/6Q6cM/otGqEBg1NMNieNlyXnfzW3nby17Pnv1PsmZoMDVMMRIMS2GbZpdaqZFIyQs3nMOGlaspFYv01apYAiQ6YZTmTOoCHN2GrtOibVkg0467oet0oghhpwYhtWqNOIq61OsI09QJg4ggirEcmyiJEJpOpVzBNC0yXg7T1qmUyjy+7V42rF+PUArTMHn8sccpDazAyaeZbrI1CcpAmBoqidGVRJMSy/KIQhs/iRifn6Snd4R8sUipVKbjt4kin9rASuKoQ85Lsy07fpMkcRifrFPu6eWh+x/gRVddwMTEAWq9Hl+/63sMZwo4po7TpZzrQgctjYjRNBAKMDO4uRLNZpNsvhcZNtANSZRINKXRDOC+Bx+hv9ZHNpNjYWEG1ysTBiGd5iLbH36MI/t3Ue0xCdvTFLJZSrk0S8/UdbJelr5aL61OncNHpxg9cpi+ahWhCcq9fXi2ybs/82d89tMfS2mmiqWIl2d2pYQQz64Vuy9PiiRYkgU9rcFLqblPRyhIqZ4F7MTScZ/9/f8ICDzVNfzc73H8Apd0hCzVQJo4OddP52ngJp9BvjxRjnWiTcvxbxqGccqGzsmZeOr4f39hqPLfPZJEvvvzn/vCzw/uYEmAfOI4FeQ6OWPk1DMBpxongjv42cHdMwGnaZk/mzhUdY/RnXkQKs2UKvWU0XStm+WUgj/VDZhMJDQadRbmG7SbPrm8i5KCKAoxDJ04SjVqdDVwUsVYlkF9sY5E0Wy0mJ9rkCSSwcF+ygWXKAlpt1q0unSuOBb0lPMEUUy708E0DYrFHvr6qrTqTaZn53Bsi2VDgzz4yA5GVq7A1l1M2yIKfTotn4znEAQdFCmF1HU8VJKQqJBsLodu2Bz3tJUywjQsbNvBsnSEDroQxFGMpgmKOQ/HEwR+hEwCHnpkH2vXDKMRMTc3nwqwdT119lOKZrNF4Id4GZd//+q9rBwexHFNpExIpELKGMfJY5omugauY1Lu6UEhcTyLbN4DDfwgpFwp09NTZni4RrVWRrd08oUsmpG6XNm2g2npzM3OYVqpCYZldoOktTRb7Gtfv5fe3jyGaZDLZTAtM6WYKIlrx0hNQSxpN5vEYRPf18iXCxwbn8HRDbysQ6lcZOfuQ2S8LL2VMr4f0t/fS28ph2EIGo2INNBZMlAr8oP7HukWBmmofRhLMq5Fs9Wir9ZDo96kUCwgTJ1SuYhrmfTXytgZh1azQ6GQ5cmdB9m8eR21aoFGs4Hl6EgNan1lvEwGJSMajZBVK4fRNEkuk2HZYB+TE7N4tkMYRjTqTTKujVQxtm1T7ClhGSb1epNcLoebyWJaDtmsxdz8HCtXDxDFAZapY9smpUoeTSiKpRLHxieoVIrYrsvszDxDQ33MzS8yOFBl28O7KJczZLIOCamBi+hmtD311CgLc3VyOQdTT9h02ir+5Z49DBkxi3Yvk9MTnHVmP65jsnfvQfbsPJhSMteuplFfRAgNz3OYm19k/WlrCcOImdk58oU8p29ez9YHt9NX68U0dZAJtmXiBwG2nXbDbC9HEifc8OoXIcNpDDPV2rUanS4QkwRBB8uyCcMEw9BTepRtdDOw4hSwopBSEccxUSgRQmLaBkmSOuxZttulYYZEUYJhmqgkwnScNGYEE6Uklu2SxAkyiZBhgBDdmXnNAi19/1YjBiJcxyKJI1r1OoZh0G40SGKJ7RgEfgMNHUP3EHrawTNMA6lihJZq5IRwECJ16dX0NJRZ00DXTSRdjY4MEUIgVZqDZFhpnEsUSXTdRKEI2m1E1wUYGRH40ZLboGHoGIai007d/TRhdjP4DKK4jZuxyReLaMJAQ2KYZprZqAVYlqB/oBdN6Pzw7od45x/8Eu+79cv89lt/i0azwQtf+AKCsEM2n2fsyDhhEFEoOLQaPocOjVKqeJTLAyAFXsaj3TzGV//9m2zacCYy7NBuNMllPVqdiL++9cO84Q1vxHNdPv2ZT3L6xnUoqVi9psbFF13MG994C+dd8HzOet5ZXHvNJRSqNWSksWProwhbY2h4hH/8+0+S8Wxe97obCYI2b3zDjbxgw3mcVTuTizZey9c+8l0e/c5TnHbpMIky2bn3YOp+KRx2759gdnqRc85Yw4rhAbY9uZuzNq2g7TdxHIvRoxOMLOsnn83yx6/9ELf86s1ce8MNRGHCzt3bCfwWb7rlt7FMi2I5h23oFAu9vPOP3sPll1/Mq155KdPj02x/8FFu/9Sn6SuXOGPLBp7at5MLX3QRmqF47PGH2b13F8/bsoqeSpnV69YTawZrV6xGx2RyYprf/b0/5Ibrb+AlF13A2edv4oO3foTf/f0/oNLbQ6flo0j44z9+B25GUG/4fPPOu9h8+mY2nrGG519wLpdcciGlSgY3k00/87UULMVxm057gVqlxvbtT3Lvj3/C+o0buf++BzFUkzWnnUaxVsPUXZRmkdQPcOyJO5k9spOg02HVeW9E1/IUMxa3f/R2Ll5zOU8+toMLzjudrKchwwhhp59DUgog1bzKJDV2SpIYTSh0TaGbNlESIpXOY9sfZmBgACVDlACd1O1WCJ1QSlSSECQ62dIKMpkMQtPwPI8oinFdB7/ToVFvkcll0QS0my0y2QyHDh8EYPeeHWQ9j507ttJXyVHKO9i6gaZLSr0rKVT6EKaHiEMWFybY+sA2nFyWrGVCN8ctCEMa7YCFdodGW2Pd6o0gJJomMA0T13UxhU4Sz2OqCIAojFFahly5QKHcy6d+8jnsMGbPgaN88jNf4uoNL2JwYICFuaMUckXQu8HdS26HGlITNDsRmhJ4TpZ21IK4RRRHKb8rkSy2OrQXJul0Fnn00Sdxsxm2P/oIfnOKkhuT8RSrRvoxjYRysUqspWZUlmmTqLgr6lL85b/9E4/se5QLNryITz7waXbteZIvb/0WW5/ayg0vHmLd5vNQVj5lZizhiWcYlJwA2E4oHk+5bbrqGc0K7el68lSY67nW/Ue0ecfHfxW4k1JhiGd0NJ9RG4sTrveZ6Xs/tWJWKXA+5apTgLvj4xeau/+B8UwA9hxbnbCAdqK9KyfeDKfu3R1/pU74WvruklJTLH3vuE1rCkd4Fn1ToU6wcn2a4nl8++PbPCteQWNJT3LSH/PTJ5jinO7r4+3lbQ8+ipYo2q0Ohw8fIwyjFHzkMgyvWMbgsn6CMGRqagI/8EGDKIixLYd6vUmiwHGzoAxMQ+E5DnEicTyTKE67By2/Q8Z1yeez5HIZ8jmPwG8zNTtNFCfk8gV6a1WmJo5xaN9+TMOkr6/G1OQi7XZIoZgn7CwSJV37diXJF1ykjFJtjtJA6TRbLYQucN08ukgpkUI30BBEEaCnbpOGYSJjgWW52LZNFHcoVYtILHJ5l2PHZnj5pedimBCFkkKp1P1BK+IgIpGK+7fuplQpgEr4lddejqan80KJprNQr2PbGRYXF9i/7yBJBIkS3P7P3ySTzaTie6Vhuw69vUUMQ+PAgYPYtoGuKUScUiaSSDAxOtnNIYNyb4lMJoOh6yQySbsfuk0iYy695GzKpQp79zyFbsDczCKZfJab/u5uEilJwoRHHt7J7NwUppPDzRRpNNtYJtT68szOLhIHIWdsXsfE5DxxHLFzz0Gmj01QKRd49PEDuI7F5NQ0mYzD1PQiA9V+lg1W8TI2oYwJOy327RljYbZNHEryxQK79u5lYXIKQ6Qho61mh9Z8k4OHpgkjyWmnreTBB54gCmJy2Tyg42VzZPNZ4rBN4rco9VWYnJgkjnSyOY/9B46hmwbtqEW5XGBqok676YNM8DtNVCIJfYlMEsaOHUNoEpkE7N17gPVrV6I0RbFSIlssYDseP/jRY+jKYHGuzqrVg3gZl907D1CrlpEyIOiE7H9qjDPPWE0ul0EIA1O30IWO7y8SdBoMD9WYm2vTqgdYjst3v/cQ5XIvywb6CGPJb/7Wb1Cq9KAZLmvWrSabMSkXS0RRh1ptgKGhIWam5wk6Id+/+z6U0uir9hN0QmbnZhgdm6JYzBOFEZlMlkazlYIn5aSZdjK1Z9Yw2LZtLH3koGG7FlHYQQgNGUuELomDCKEZOF4BlYRptpuuszg1RhhEKKlwbBc3Y2JYNr4fIwxJo76YhqNrCiVZMhYwDAuZaIS+RMkQGSmQaXcsjhQIgWFlAQNJAkqQhLD1wSeAGIQgiSWZXAXdMDFsg0w+Qxj6uF4Z3UU3iL8AACAASURBVPCIogBUSiNrLNZB6SBshK6jaKIJDaEnRJ1Uj6MJHSUjDCJkEqWkHk0QBQtomiQOE5A6ug6Ls5MgY5Qm0NDxOwHCMjFdBzeTMhb27NyPphlk8z1Ydg5NN/jkR+8k8Ns4tk27sQBRAxU2UBL27z6MbpkILGxTZ27qGEIJjhyeZveOvfzR21dz9fU30mo0MG0XIX0e/sl9vP9P/4JivsDjDz/BRz96G4bhkCiLo0cOIpOQt73lzawYGuCcM1fjGi1+/P3vs+2RnbQDg7Aj+ZXX/SYoncX6PC996UUsX7mKhr9ANt/L0alR/uVT/8zlL7uc37z5tzhy8Bj33fNdzjxjC2e++GWsXreCiaNPUekpsH7zau6772EymR5e+8tvwM0Psdj0ec87/ze3ffzv+Ld/+TQvNq+hsn8lo1+uE0Qan/7Cjzh4ZIoXvnADk4uLbNt9CE2YGIZFpVTBMkw2b1iNaRp8+U/u5/DB3Xz847ezOHWM2fo073nX+yjlqlz72uuZmZ7gzE3ns+b0TWgi5u//9s+55KUXs+/AJPlcmelmne9++wu87NrLsDM1Np9xBo5uYnkJZz1vE7/1mzdQ6R9g5dq1TE+Os3v7o1z00su48fU3sm7jGr729X/Fy0qGlvcjlEXG8fjjd72PWGpojsXV17+aI2OTzM+3mZmZ5B8+ciu1oTK25xLGAZoJpXLv0iewhiIIAgwS9CQkTqZ4wSXn87rX30jGjLngnJWsWb8aO1ckiiBWAXY8z8Effx6zbxjNrVOpvRSl2ei6y7H5SWQmYXb6CVauKGPpkmYrRnfd1K0ykiy2ovRvME51d0EcIwwDlaS6bRJFsxniOoLzz38ehqmnoCGRCGHSDjTmFnwOH5rl0LE5fvLAHqIYdM2g1WoThAFz8/NEUUichARJTBRGNJodCuUeYhSddp1ipYdaT465yafw7IiwU0c3dBAKTZh4xQJKmCATAr+BqRLO3LKRUtZFmSkglVJiWSbCgYP7j7F+0+nM12eZm59FCJicHidOElRUpzWX1iJBuwW6i5UrUekfZvzwPJ+87cNcet1lnP/8Lby4dzOaU2bHrh309NQQusaPH3iEvXsPgFBMTC9w/+N7sewMlpOGtetOFtsyCNsNHDN1yjRtl+FamRecezqbVi9j45oyRSfh9DVVVg9XyLgG/aUClh5j6DajY4cRmgG6SRQHKeNBfYPs4Ff487dfRC2b5/xrzuTFm9bxp3/yLv72z96F5RX46B3buesT97PzWwfY8dUdPHbHbq655gZe9arXIoRYWgCUpk5ani4G1f+RYymEdtL/T3wNXcdg+V/L0zzx/I+bv6DUc4KpZw6FTKVIQpGok/00dKWdtMQoYhSJpmFw8iK0pxclBEqIp2vxkw4oT1pEkiCSBE1KNPR0URqa+hkaLCee6y86d/+5kSTy3f21GkP6/HGe5c+2o9aFRcfbvSev/DnO4OQ2+M/9Nj8TB/mZszGpucGJszLAEtQ81eH1RGGJ1HQjSBIGB2ocPjLGxPgMHd9n68O7GRzow8t4ZLMetu2gaQLdMAijmEzGQwgdFUMUhMxMT1EqVZmbXcQQqQDZ98M0ZsA0SSSMHh1HKUW93sI2LVatGMHzMoyOHkMmCTOzc1iWQbWnysTUNGvWjtDqdKj0VBC6hVICTdcxTZOw4yNQGK6NaVvYtg1GGmgchQGakrQbTXRDYDsmGga6LkniAKliwjAhnZU38FstDENHKY1cPovfCXDcDI3FOq7noaERJ2kYrC50lg1W0bRUh2YYFqZpIoSGLgTZTA6EwnFdslmPJEn4tzvu5vU3XIaUCVImS8BXFxoaknwh1+0EpB0B32+Q2s7rOE5KfQXV7TKkXUcpFULotFs+rmOjKUFvtQchtLQbIhVfffAA151f4+jRSVavGKCYz5EkqT5K1wSP7jjI+nUj5HMmE1PHaDZjlg30cfDQKEP9eXp6shwdn0LoGq5j4jpeStOxUs5/0PFZmG8yNFAjljH9tV6e2HWEak8e3dDwHIMwUri2getYlHsqTEzOU+0t0Gq36LQ7ZHMemYyN6zqEQYhlCRbmm2SzBTqNOsJwMU2dbClP6AdIpXAdi55qCTSdvlovR8YmkbHiwKFp+vp6UmMLI6VpaiKl9PVUisRJ3NVcpO6QKlGYhsauvUfIZiwcx6bdDiiX8mkIepwwO9tk+bIqtuPg+wGOa6cGNjIGpbDcDAodzzKYnatTKmeJw4ivPDrNteet5mPfeoBXX3sNpjmHkgmmEAgNRlatxM54jB4ao9FoMDjYz+OP72XDxlUUCgX+/Qt3snHjGn7wvfuRMmHTprXEcYxl29hdQKcbBlImqFhi6DqWIXjTb/8r11+7iSROHer8TgvDMHGcDDLR0QwdmSTIJCQOIzTdoNXukC+VuxoCQdBJaZ5SpkAu9iOyhZ6U2CJiDKF3IwQgScI0vDyKSaTEsmziOErXKw3T0onCGF3XkVIjDHw0IVm7YQTDzBIEQfo7Io12SLPzLFDp70fJGMMg7QwqieO5yCRAxnHqVplIEqmwTIvAD7Ds9B5VSoKUhFGAZZt0Oh0MM81iC4PUrTOKY+IwBE3HzuRRSYIuUrdbqXSESF0Qe3v6aTVaS1rI+vwsp29aQS6fJYl1jo5N4mVslJJIFdDXXyX0A+IodRGem10gk8uzZcswmZyHMAQ3XncON/7ah7j+Na+lpzTAfH2CV9/4GoQBhw7v5YZXX4/tWSgt4OEHtnHbJz7JTTfdyMBwAcfzsOwcv//77+Ltv/c7NBcXicOQf/305/nAX3yAm2+5hcOHR7n5jW/mLf/rlzFNi1J+OXff/R2+e8/d/MUH3k9PtZckUWzd+hjXv+oG6sEcXiHPueedT9j2ued7d7PleZspl8oc3LWTnlKBF73gAoSjsXXrw6xaPcL6Dau4/hWXY8wW6T09wbAMKgWPrGOg6wkbVwzypW8+hlJNcgUP2zTZtW+UF/VfwKdv/xTrN27mO/d+jxc9/3lcfPEl5HM5Lr30Jdz59e/z8U/8A5qZ8IH338rVV1+DbTh86Na/5sDuQ4SBT7mgoekutpHBj+bI5jLIIGHPzp1YQjCx2MKwMjhumZtu+k1+9abXc+sHP8D40YPkehyWD21GSJfRo49xxcsu58pXvIK9e3eTJC2SMOTX33Azd3zxa/zuO36HI0cOk/FcsoUsiYzTglgphGF0P3NFmo8KxLGOpmXwLIfRsW04jk6lvIzGwizIGMfLIDSdfY99As8tUswXufdH30V3N1DpX4fjKHY8/hR/97HP0BMPs2H9ILYQOLaBZugIlWDqBoYmUgBF2s2enp7FsTMYpo4udGIUluOlk8MyBiWRMuUcyCSk2WmiWya1apl8IUOiJI3OAp5boFwqogCpgWOldMZiqQdNarTbbYQm0oLZdGh12titcYolh1q1j1wui6EZIECzXHS7BykjwiDgJ/feydBAH6aVsmqE0JFxqgkMY4VmFBlavo6F+gLFYoFKqUqn4xPHkvm5OTTpE3fmyboOQazhxx6Ol6fVbvBX3/gbrvqly3DdDG9/x59y1QuuZKG+yOqRleRsSOKYoWWD9PT1oktFPpun1ldKo0FMF8O005+nitETRdOPMXSFpikkCaZtoutQyGXJOgb5jJVmZpo6nbCDaTnoGuTyHhnbotNuYJkOoS/5p7t+RL5TY8OWHn685wH2ji6w++A4jUc7LOtdycb+03jZWS+kWZ+hp28QROoEfOGWC7lwy4VM7p7hTe98CzfccN3/oXQ8Hlz/3F4OzwRz8LNp7v4znbtTDqWeda7/kXFi3h6QTtKd5IXxHIdf6lB2nThO6tyd+pxSjebJ2+jmL2iZ/20jSeS7h0eGee9f/DUv3rLq59v5BGB0Ij/32WYnp9h16d+n4xqXeMrPMFl51jFPXH6GIU7YTnQ5zZom0uP9FGLo0jl2gWwcx9z3wHbWrFkBKIrFAu1mi7FjM2Q9D8vUcTNOV7Stc/DgGOVKGcM0abdaaFLRarZxHAfL1llcbCI0GD06SScIqNd9NAGu42AaDn3VCoahMTk9T29PCcuyeHLHPrZsXkuSJIRhiIbsOs/BwmKDRsNn+bIBNATCUKnjXhSBkuhCoISO6oaMS6XSAOMkpatEUYTSUht4lUgsMw04bdZbqTW+SO2hTcNCyoQwDHAdG8tx0A2bZrOB46VFfapxTGe1NE1hd/OivnrnvQz09VBvNHBskziUIBS6ns4Q6UJw2oYRTDvl+0dhiCb0tJA1UpdO1/OAdNtEKpQKsEybf/ncPawYKpHLZlP6jUot36WSXTpOwhf//QesWN6Lm3F48KHtDAz0YegGpmlw8ZoIy7bJF3LMzdTZf2Ccyal5CnmPudlF2n5CT2+RY8cmMHWToaEa01OzeBkL1zXZd+gYtZ5+5ud8bNPG9TyCMMAyUxv8MEroq1YAaPk+C/MNVizvI0FhGRp+ENDb00sUhezZN0Y+61Aq5Wm3OuTzHt+/70nWrh0im8tSX1wkn88SBhFRrAijGNfRODy6QH2xTq6QwTYtnnjiIMPL+pibn8cyLPYfOMrw8irNRkC1N+20CMdgfHKGTM5DE4pOK8B2PUzTxO+EgGBqcp6xsWlaLZ9KJUsm47Kw0KBYKCAVjB6bopjPUa93MAyBTGDf/jFyWRvbNWnVO5i2iy5S0BFHIb29Febn64xPzLNtSudNV5/P5+/bzZUvv4yb3vBOrnzFmRw7MoqU4GZy7Nq1j55ygeGRYTQBpVKOvlof9/3oQS697MV8964fICVcefXL+NTtX2FifJJ1G1YzNTlJsVyi2VjEzeZSWmIc0GotcPfdD3Pdq85CiNTN0ctk6LSaRJGPZTsEfhvLSumTQndT90Yd4jDNcJRJCgqTxMc0dISm4XoZABIZE7SbgCIMIwzLQBeApmPoOnEUI8TxYHGBppnIJMIwbZr1BoZtgpJpsLkwSOKka8etQGropk4chqkZS7fTq2kQxwGKFBgalk0SRSlItxyEMLtGCakuVXVnaJFpaLkmRKofspyuVflx3QkEQUwum8EwLHRdR2kSpOLOb/yYkRUD6EYap+C3Ozz4wGOs2zCC1qVZe/k8vh+gCUGj0aZa60WSRiqYlocCIj/AdFLKZqfZQTcEjptH6LB/7xEuv/Q0/vFj3+Ks089i5dqRNJtM6Czr76PV9nGzWfygTT6T48ILL2LlqhHQCiiyxNLm1a+5CVRIoZBjZmqaK658BTe97pfxfZ87v/ktrrrilQwtG2DPrqe49prX8P4/fy8vefELOHBgL6XefrJZm8cefYirrrwc27HJZjKMjR4m4+VZv2ElfdUqy5eNUCoqRlYPk4iEXXueYu3q0xg7cox8vkjQ7mBY8Pbr3kN9X8xCscOa5TXyWRelaVT7CvSWUv2ma9mIhsUbXnkLa1du4Mc/uY9XXXMtRw+Ns2rtaVz6sqt5+1veymD/AFJfpNGIuOSlFzI9NcHZ557D9dddy5qV6zjjeWfgeoK+WpGMk8V0QCqTeqPFmjUrsEyHTkfj2OFJSsUir7zqKl566UuIZUCiItx8kThSfP2Or7JypIfFlk82U+D619zAtddfQ19/jWuuuprNZ2zmyZ27+NznP8f1r34VpmN2teypZlpfCoNOP1N1y8bNeIRRyEJjD65XpKf3NNq+QSkHj9z/A3K9fRgZlx/f+Xecf9Fb2PnEnfT1rqc49DyE5dBstil5R+nvrGTtxj4sw8I2QBdpbmU6Aa2zZ8/jFIuDaDJEonC9Ap2gjS4E6FrXeErDcrJI4XbjF3TQdSJfUij0kM14xEELJaHj51iYD1m1aoTpmRmmZ6bo6+8njmIM3WS+sUAhm2fnrifo76txbHySmfFD7N31EKtHlqch6WGCbmiYroumO9jZHoJY4rkuneY8A729JHFAHKWf7wINAUSJZLHp88TupyhX+qiUe2k26/h+QE+lggKqPX20FsYpZOy07nFK2F4vdtZCVwbz8SQXnHs2193067zp4jeyY/sDKBKG+3qR+AjAMLrPheN1mqGQmoWmuwjdRJgWsd9kceYYtpfHEBKpEmSSoCmR+niolPqdEqY0dM0gkSlNXxMipXIrhWU76XkKxdkrNtJb2cDooRhjcTUZv8DmodM4+9xz8MMOtpult1JkYnQPvb0DYGd5puXfcZD35j96G695zat+aoH33FEEaU16XGv3zEbfcb3dicvxLt6Jmrul9/5ZGycnDNXNbj4uf9K01ESt+2Kps3cq0PfMdafSH6oTa+PnOAepjrPs1AnX2t1eO169P3s8HbWglhh1xi/A3X/fSBL5boC///hn/kO6u+Pj5I7XT7mJu93BZ8LC/woh6XOe24kgVDt+K55sunLS9px8PVJKhGlgWiYrVyxncmKKjt8hl80wPTnDmZtPY3Cwn04nxHZMEBpJIimVikxOTqfZblbqwBerBMu2ieIYlSTMzs0xX6/TXy2hMBhe3k9vb5mvf/1BVq8ZotFsMHZ0EscxUVIyMlzj8Sd34Hoei/U6hqHj+yGVnhK25dBf7WN2bo5yuUCrtQAypt1uk8llCaIIoQlkEpOEESDT7objooRIQYZppZ23KA3u9tsh+XwJicQ200BwugHxnmMxOz2Dl83xb5//LiuHq7gZFyVh5+79LCwuUOurImVKLzt6dJw1K5ahNMH8/CLFfJZDB4+RydloEuIwQheCI6PHKJSy6MLE0DWmpxdwXY/J8Skc20Y37ZTymqS6NscWBO2A/5e9N4+24zzrdJ9vqHHPZ+8zDxptybJkO55jJ3YcJyFMGewMDnSg0wyBcGngsuDe1aEH6KYvTd+h6e7LTJMAuSEkgdAJEDCExEns4DGybEuyZumcozOfs+ddw1ff/aO2ZElWgpNmse5dK99ae+moqnZVnb3rVH3v+/7e5/eqm69DCEsQ5HCK5laHL33lq+zaMZv3EqWGA9dfQ2ZSPF/TGKnkUAsh+a1Pf5Hb9zRIU0NmMpobPdY3muzYNsrJ08uMN6okScbE1BhFV6Olz7nz52g0Rmi2ekxMjBPHFklKpRpy5MQ8tUqZfr+P52lKxQCT5RJik1kq1QJLS+t4roMfemglcqNTqRCOS6Uc4ihJp9UCIUiTlNmpOsVq8WKVJU0MZ8+tE8cJE1OjmGxAUKxQCV1W15u4WpNEKY1GhfmF85QKAY1alW63y8hIjSDwiJOIqDMgdEMWz6wQaEGcyNxfLElpd7q4jsPp08vs3DbJ3NwE/STC0ZJGtcrS8gZJkjI+XmN5aZPRepUz8yvMzU4hhaU+WiWOIxyvkDdg2wxhUzY225RKJY4cPcvsdIO/Pd7n3ffu47PPnOJTH/9jMil4z7vuplwp8/CfP8L6+iY33LgfkyScOHGS2kiVx79ykDSJOb+4yrV7dnLm5Dm8wKFer3Lq+Dne/J2v42/+6hFm5yZJ05RqrZTbSxgHzwvxXJ+3vuUurG3mPWYmQymN4wkG/XY+wQ7yCrxQDtZI0jRCkZD0OgjHw1pydLodkA178TrtDkKY3FvQdfMKpJv3oUb9Hkp7KOXkgJOhf5TWGik1DKWYeTIFlNKkiUXqkCzpImVuua6dIkkUIxSYNAGhcb0A7ToIJZFIHF+TZeB6PiazJIlFaRepBMLmE4cozvvrHCefeCeRwQ8CrM3pplmW5pJupXAcfwgZUAy6bUwa4QZFtu/cSWYGKG1zmqer2Ll7GqVcHvn84+zcNYtBoLQPtkd1pMrGyjr9fo84UoSlag5i6XdxgwCERGSgA58khiTqM9oYYWK6xP69Dh//yGO86vbbGUQJSnsIY/C8Au1OnyiJ2FhfpVQoY0wKjsTxFFJHOH5KZuAPP/pH3HffvSAMnW6LWq3M/gPXc/CrTzM3s49f+c//mX/7iz/Lo196gvHJUcqVIp//whPcfPMebrn5WhwVc/LF81hjWFo4y+zcLtwAzp07RzzI6PUsxoZIr8pYY4QscflX//IXGBudYs++a/GV4i1veBBj2/zBf/wku+7fQyUM6SYpgWsIvAIak1uKfKbHzXfdRqXS4EO//dtUCxX27R8H7bC6vsh1144zOj5Be7BE4E2iVY9iuUCxWGBtfZWPffLj3P8db2ZifBzP77O50cELHBw1QmwTytWAr371OTaXBjz/3HN025vs3TtL1/Q5M3+W+vgk2qsRhoY9e8aYHt2OLhQROuT0whLf/fbvzuWOJmHPvl3csP8m3vbAW1k+v4T0VJ5QxBKGIfbK6aNykDJF+xmlcJpSeY5IRuBv4SaST/3hh7jxrnuIZMpN20eI1I1sbXyOYy/02XfnG4jTPoePP4Nob/Dc554jdEqst9YYH6+hhMJYg5KaKM2ojc2CjgmkpN+P6Qx6RFGPUqmcT6DJcKSm0+nz6NPPsG1mOx4ZWWbZaHZwXIUSEWtrq/hBgY3uFqOzDU6eOE27tcXc7HaQgiiK8ByP2CQoIWk06vS7LZ564XFu3rOTa3bMYjxLllowFqFSjOsQRYogbKB0SpIYhOmiTBeTKVrNJrVhu0McRyAUW80+N932eoLQw3N8wrCA42iarRbtdhPXdemsnyUsuCTGkqkiR0+fYHSsRms94tZ7tyGlh5p36bQWmds2Sxgqyr4lGfbqQs4dMDZFaQ/PD8iswguq9Hpd/EIN4g6hysjIkGRIJK7jI1XeAiOUJM5SomRAEIRsbixTDqpIJTDWkmSSQTTIFQjSYo1ieX6N8kiJQjDB6HSJxmSZWmmC5dUVZrdtQwhFp72BJsELCqhCDfU15nL33ngv/+EXfok3P/imv3eOaLPsslYj+PpglKsFa5dKNy+8Tyn5TQNWrjxOlmV5oGXzAsKFcdX+wSurbVfpP3wlwZ1l2Pp06b4ZFk2+TnB3xclg+VZw9486LgR3737oXWQLB7/p/bzinMTXzF58rfre5a+LlMuXHfflPX4Xqnv2QvrwYqn8im2uctSXWu7yTIUxuV3jFx95nH17d1EqlrEZOJ6DFRalBdiMaJAShEEuwcwyXClzOaEAN9Ao5eYyKGNJE4NWimazy8zkGLWREsrJM5xKGZSwlIoFysWAVruDJTcE7/Rion5MlsG1u3eRJDGClFI5ZKRRpVAuoRwX1wuwaHzPRylF1I/o97p5tlJIgiBESTHsSpQoMtrNDr3ugGq1DELi+X7uvRPFWHEh85qSxPHFTHwaxcxOTxAUg4vgjWIhZGJ8LP9mbZZn4cMQ13MJfZeRaoV+1Of4iXNUiiW06/LIo8+wfec0jdEaWjp02m3SNA+Se90ujdEGy0urlIpBruMWmmTQQylNP4oohgHKHWYGs4zQ99g+N5lLOB2HJI75/CNPsP/AtbRbnRxCMsQD//KnnuWttzZIooTPf+EgN92wi0q5gOO6TE01OLewgtaChYUVKrUSaZZx5Ngi0xN1PM/F831On1um3eszGMTMzdTRqkO1PI4xCUr7nD17nrlt0yglyJIBlXIZYw3lio/JQFvL2fllmhttlpa2WFlbZ/fuaazWQEa1UuXEsXlK5YAXT8zTbUfMzDQ4fnyRqck6/W7G4vlVpqYa2HTA4lKLPXu3oRzN+MQY2nVRrsINXHwv/5yC0McPCpgswfUU/X4CQpAMYgqhRxJ1KJXLjNQrHH3xJDMzo7SbHZTQnJxfYM+e7SgtOX5igdmpOmlmmJ1tsLm+wUi9nMsLUzDRgLNnl6hWi2hXYxJDu90i9BXbtk/yh48ucs/uKscW1/nl//3X+bO//Ev27CgzOTXD8vImr7r1AJlNOHb0OO1Wj9kdc4yO1hibGGX/gb184mOfRkrJt3/X/QRhyMGDx7nljuuZnB6lPjqK6ylMkqG0w8baIv3uFn4YoF0fm22Rmbx6ZrI0l9AOMgqlkaE80hIPBkiZ4rou1iq0XwCZ++FZHKxhKHG0SKFxPAdjMjIh8u/bGNI4AZH3rlmby5b7nXY+AbaQZSlSKKyFKB7Qa7Xw/AJKSqTskiY51CFJLFakKCf3uUqTlCTqoLTKZcyDCKkkSjsolctBMxPlVUAvyMEtmaW5uUEx0Bgrc+8xrRGY3JtLpJANLk7yrBV0ux2SKMb1AqTj4QcB7c01XF/huB4CjTWwvtZibWWT2kiFnbtnc3mwgT/95BfYvn0crMZacBzNC8+fotEooKTHY18+xNlT8+zYOQvC4dTxM0xM1rEotJtX8Su1Mo8++SR7976a0YlxIEJngm53jUFvhc3VNa7du492Z5PlpRUOPX2Ew4eOMz0xx+HnnyfupTz5xEFuuPEAm8tLFEbK4EoKocf4eAPtCP7kTz7Nc4dOsrBwkvvf9Ea8Yokjhw4yPl6lUGyQZVVGJ2oEQcBzzx5jenaGbidhenIW3w8pVUfQWvO5zz3M9ft30+sk/M3Df86P//j38V/+669z88138JUnnubNb3gz1x+4ge+793v41GN/ytOHjtEYa7C61c2TTmh++M0/wft/4P0snT7OSKPKj/zEj9Dc7BOWKty0fz8vPPsC49O7CNwy3TSiWBwnsZZ+EjHSGOd1r72bVnOJTCiwPu3eFiaDfq9HZ3OLcrHG3Ox2ijWXfQeuoVAqsLHV4t/8659n2+wuPK2ZHS+zePYsYVDGKkmr1aJcbHD3HbfjeuBqxdLKIhkpflHRam8yOTtFwXGI4i6Oo3HdwssgatJaskwgcJHaJcOgkGhCMuVyx+u/E88rYDZ6bGyt46YrLC3MU5u8iaWFdYqFCnHbcO7U49Sq1zA1XqNcKqBlAbRBCofUpGjHY2V1mUrgY6VESodHDz7H7Nw2XKVRnkaYDJMm+IHP+PQsQRgQxYa1tRVGR+someW938UyGIsnIe3DCyeOsm1uO5WRWg4W6vU4dvwZFubP4Wl4+qm/Ju1sceO+68AMUKQopZHWIKRFOD42K1KqjZEJQRalJEkHG7VwHE0qDZ5XxGQDhBWkxuHYqQWOn16mxYKcqAAAIABJREFUWKtRqzRY31zHDzzSKGZkpMHK+WXCQBFqCzbFCUboJ4KpyW1sbG4SFkJ+/jf+E/vCm5meHAcc5k+eYHqshqed3M5HSqzK5y2O0hjLkBwqUZ5Lc2udQEs2tjbRrovIoqEMHYQaemSaDJMYXJ1XDz3X4/GnnmNqZhywuMolHgxwHA8pM2wmQMY4oU8UpWhh8gpi5tDPYGbbLFq7CJH3HQ9aqxRLNZygwqVWBXCBw5C/XnX9zSwfWWNib+Plcz07tMuyF2SaV4rDXl6d+3p8ilyp9FKV7UI17x8ksDPmotLMkj9DpLz8WJdXEXNPu4t9e4BhyKMQEisEyuYpl68ryeSl4O5iFVAIhMiDSyuyq03VL3tJAVlm0I77ioO7bwFV/gHHQ7/06W/6vRd4KP+QQ8DLBM65alNcvG7sFdv/vUHmVWSdVzv3l2SmL5XZpRTcc8/t+SRICc4vnWfQ69PvDJDCwfV8RupVBv0B8+cW6fX6uL6LybLhsfLslONqtOdSKBaRUtHtRpw6e56RkSqlQgGBYO+enZxfXmNxcYWllXXKxSJRnNLrRYw16viBS7VaYqvdotvvsbHZJIoiXE+TmRwgkqZpjnaXgjiO8T2HarWC0hrf9zFpgiGvmJo0pt1uUygWePKZo7RbbaSQnD27gFY6l4U4Cisc4qhHvzsAFOVKBT8I8AJNIQwwJqXfH1CulHK5WpYRBiHYDN938TxNamK6/Q5hIeDAgV28eOwsg37E/ffdQa/XI0kiUmNYW8stIi4YlSdJwtTUBEkckyYpGJPbSiAplcp0+30yC1IoBoOITEiko1A6D861drn//jvIrGVkZCRHyQuIBgP+p9eW2Fxv0m33eM3t+zh9ZhHXc2m22iwvrTPeqLJ9bpKpiRqFMKcg3nvXDfT6CRsbbXqdDnt2TXHt7lmu37eTeqNKq5uQZimHj83z3z/zNLt2zpBGEY8+9jx/9tfP8PzhMzkhU2i6nR5eUGDHjmnCgsf1+7az//rdzC+sYZKIhaVVzi+tcu3uWYRV7Lt2J71+xKAfMT1RRUvBoRdO5VRT00eplJ07pzAmZXNzC2PzLKodYq3T1A7tbzJWl1dZWFyhXC7gegrXdWi2OiwsrBKGJYTMsfyzs2NsbWzQH0Q0xusc2L8boQTFYshovYLnF9jY7LCyska1Vmaz2aHT7WMRBMUyy6stUpPS3NqgVCrw5MGTjDZGOHXqPEpKkjjm8GIX6VgmRuvcdPP1fOoTDzM5PU5Y8DEmwvE84iTh4FPPcuL4aaLBgDiKqNbKtDs9tONw/PgJ3vDG2+j3ugSBj9K5XYDSubyxMdqg3qiDzXvXHnjPR1BaIpWAoZwoLASAYX11HSEF4ZAiakxGp93ODcTJyEwOZ8HGgEFrgetq0sTk8IYkRskg96WzKa4XXOyHs8YQFkMcV6O0IE1ikjghjnMrgXKlRhxHWAxxZLBZjFICrWXulUcuJ3M9F2doceF4Hq7r54TPQZxbHViLdgP8sIDNTO49KAwjY+MIJ0Rrlf8e5CCVzGqSOCFNLXGUe0QKpQiLRfzAI45j4mhAe2sL13VIkhg5fIA7jmZzo8mXv/TsUH5l8Pwijhty++3Xot0Czz17lGIpJCyF3Hrn/uHnJzhx7Dx7rttBGucVUN91c6qwdTh2+Bi5fYzhh37oDfzAj3yAVqdNq9PjN3/nNylWy2g/YOfuvZw/f56RWp1GfZIb9u1lenKS1laHm2+5g5HRCg8++FaEFBSrRaJBF2kNva0N4ijGErNj5zbigeHbv+ttZFhMAg8++ADadXB0nuD69//hVzBS8fpv+zakE1Kt1FmcP8//+cu/RCEIOXnsGA++7W34XoFi0ee//e5vs7ba5AMfeD8vPH+CTqfPpz/zaSYnpvnsn/81//yun+QN997Is8+dYrxa4uTCJn/2757mzd92Px//2IcpOJIPfvBn6Sddvvjol3nxhWfp9bvcfPdr+NH3f4B/8tD3kyZ9bDZAowhcnyTp8Ucf/2Nct0S1GFAISrjKY3VxHteR/Ot/+a84ffwka6urZKZNc3MFaS2+CkgSw7a57XheSKffxglc2t0W2tU0GiN89KMfJknzflJrLbt27KRcKuE5BUZqozmoKW0hhcBzCpc9mS9AGrIhQVoKMVR3vPQUtkKSZpBm4IUVNjcWUEmbUgbjE3NMjE0yNTHKtm1z/PofPUKtOIowIu91d6LchkcqkmhAFLUZHavmz3UJVqS87vZbaBQKSJuQdjt51UYpTJoQyAxhQPohuhjk55MZlFLoTCGFpjJSJgxT3njXzXRXDjNYPcEjD/8pG0tLpJ0O3fU1XNHnzptfxc5dcyjbwtMCpVyMNQgpUY6bU6KLRfpxn62tVaKkh6clZClJEpPEiice+TuSJCPLUhbOL1FtzHDglpuolWpkWW4UrrRifXOVxfPzzM3NcerUEaKkTS/N8ApjCO3Q7rWZmpzCJCn/9p/+PGsbS6yvL3Py3FGKRZH7tjoSqTXGJGAyTJYQG0MmJIPUIN0ig37KxNROkl6L+uQcOizjOF7OMUCSpnk/sXZclKNzKwitiKIBr371rRdmcWQ2AwxS5DLNNEmwsU+3Y1hYXEBjkcJy7swJlHaQKLa2tjhz9hQnTxxn0Ouwvr6UyxRfQZtODlu5+jYXrsOvN64GT7lymZSvsJL1zQxxaXHjSkLEy8elUJmXdiFfVp38RoaU6vIF9mV4lUu2vbSI8o0fS/z/xW39/6sjipLLPsCzf/FfmRwpfxN7+of/HsQw8Ljyjzbvm8uuOKp4WUB26Z6+9jGu0nV3lWvqwpJcP25zTLCFhdPn2Fzr4fkOlXqF2kgZiWRzfYOgECI19PsR5UqFJDEM+i1KxRK9TsTG+hZf/sohXEdx4/U7cH0XrTSe59FudYjimDRNcF1FEPi8eOws1+3Zwbn585xZXOGt3/k6nn7meaYmG6RxguO7jE000DrAigypNOkgIUpjCoWQKI5RmSGDXP5nUqQXIJVEYjEmf9imxuBoRTqkCmrHwSQJzVYHR7lUSpqtrR6lcol2dwtH5VAI13FRriSJUzzPJ00Nza1N6vU6ViqkhHgQ5f2OQuTZWpsiyCe3g36U92c4+qJGXyhJlmaX+7MIw18//ATX7Jhm2+4pNjbaVKtVMhuDzfs7BDIPXIlJ4hjfK/EXn/0Sb3jDbWitOfLci9TrNWq1KkpLbHweYzM+9/mnufuW6+j1umTWUiiELM6v0u70kUqyc/skrW6XmZlJ2s0WVmpC38FaQxxFeIVijqBXkiiK+fRfPM3tt8wyO72Ntc01ykUfkwoKBY/5xVWKxYBOt8vK6hrWKDxXsnffdlpbPYzJqNaKeXXVglQ+504vEMUZjXqFtbV1LJK5mTHml9aYGquhfYcs7RP1uxQq43S7PWr1ClEUA3kWTymXLEs5c2qe8XqZF44ucsst17GxsUG5UqS51aFY9JDC4eSp84xUi2hHUSoVybKMOE554egZDuybo9PtEQYBvu/TavdxHId2q01jtIzjeViZS3uEgswIzp2ZZ2qqjs0yMgNnzixjBfzCw03+4KfejHYUdv+D/O6HfpsffN9trK51qdVGcFyFELnHnMksC2cW+cvPfon3vu8BnnnqIJVqhdHROqVSiYPPHOLmW/blFUIj+JNP/BX33HszrutQaYzk0tChNYAVirc/8At84iPvAkApH2FTTBojtDOUIUr63R5hWMSSDT0gB2jXJxnEOF4O9rGZJU0TsAapXIQTELfXcPwGWqfEcRfHLQE5VWzQ6xEUAzKT38vy61sNQTmaJBngeT6Dfp7dTqJ+LtFNDWlmCMIAx8ltXoTN+88G/R5aCZSWJEmGdiQmNqCGsiNrcXyPXqeFkg7SCxAmJopiglIFpSSZiZDShSwnFidJPLRxECRRC+UopPJIox5g0Z5PZgRaZ6TJAClL9Lo9/MBHCMis4NSJeUbrPkGpzucffgyE5fXfdhdKOqRJwsbqKpPT42Q2JcsE3U6CK3KC68y2WbQborVASksSZ5i0xUM/+Bd89KMfprmygONKGo1Rui3L4tIZsjTj7W/7Xn7tV/43fvwnf4ZHn3iSgY0QSYfm5oBnDz3Hjfv3U6iUWF5a4vEvfInvf//72WyewfUKDLqWer3Kj//4j9Hdkvz2h3+VU2cOs337Lj758c/ywDu+g7WVdX7u536RW197J+9994N0m+tIDMpzSGLJr//a7/LDP/oDHHvxKC++cIT3vOd7SUWCIqA/aLK6uEhlfIpTJ16kErp0ux4fPvervOq6OVa3uvzULf8rg0EXx3NJraBUKuaAm3hAZ2MN5YfEMsSP+qwvtwkaBQa9Jn/1V5/nn73vvWRyQLsLlbDE1sYpFA7KgWKhzKf++K951e03EBaKuK6DKwY88sijzM1sZ/v23aiCx7MHD2OzhNHJcUqlMuVKCSUVJk44vzRPqVSkUKphM0O706RQKqAIcT1Fmkb0B/M4uka5PEl2lbn3heDuws+Xrbu0lUI5sPEia8ef4NyZz7CQ3MXdd76JWnWUta0BP/xj7+U1E/dz0/5pHA2FMKDfbyMdjWslcZpgpRgmRIZ9VHEKQmFEwsrCKlMzk1iVJ02y1KD8ClZ6JIM2mAhsgskMWmji2OAVXIyxiDRBKBdhDAQuWWLQriCzGhPHCBIsEl+79KLBEPefS24tmkEqqNSnSJIYpRRKO7SWT+HqFNfRRAML5PC3LEt48uAxnGCCW159C71mD+3kvqFSSSwZ3U6bShhy5tQhRooaVJmecRibmEYolcNaugmdXofGSI3Fs8d4/JmneN2d+5BK8dgXn+Gee25BigwpJElmAIVbqGKVj9AhJs0Qjo8jM2xmOHv6KI1qCZn2hklwOWSi2kuAOgJh7LAtweTPZ5Pm95XM0o8M2pE88/RBdu7cyUi1QmINykIvSjl6dpNbbroLN/BIshgbJ5jWPO1Bl9m9dyH0sL1nONe7VEZ4sagnBCeSIzzwjrdesu5KmeLl1+GlAcql/XRfb9mV4x+Kppll2cW56YUixyslaF7cxxX1MPUK4qfMWrKL/YmSLDMoIZBCgc1e9pldGBf6FS+cu5IKxw9ecZj3LVnm/+C4IMu8MN73M7/8Cnvvvt5FcUVNdtgU+krHpRW4K9/2Uq3tytrv1x4X2kjzfMfXPm95ISsiBCY1F5t9hRCXrLv8pMrVCt7wxlodqWKsZXV5DaU1rVabzGS4jkMcRUgsmYEkSVFS4rguSlhWN1poR7Jz5zZK5RKnz84zPTPJ2npe4RgZqXHq5CI7tk/Rardpd7u86dvuY2Orw9lzy/S6EafObVEqhQSegx+GpFmGEArpODjKJep10RjSLMH3fMgscRLjFUowzLZJJdHaJTVJnjlNDUJkHHziBONjDbqdhM/+5WNcu2cGvxBgs4QsiggKRYKggJIaISSuEzLo94njPo16hSSDLIlxtKLdbnPq9DkGg4iCF9DrD4jTGGsMWZbDPLrNHmQax3OBDCn1EOgQoR2FMRk7d05TG6mQJLnZtUkHZCbGdQOSNGVlaRWpIfCLKOWQmJi91+5ACoVSknqlSpLGhMWAxY0Wm/MvUCn61MoBJktZPN+kWAhwHYetVo9WO2Lb3BiZTTFxyvET88wvrBINYsqlAu1WF61dtIRnD53A81zWN1uMjlTYuWOOkydPMTUzgeu7COGwvrxBvVHHdRxCzyFLMuJYsnfvNlzXzw2r+300GS8en6dcKtJp9+n0+uzcPkuWWVxfUh8pkmSGxkSDp548wdx0jWa7TVis8eLxc8zMTrG1sUmr2aFSqZDGKe12G8fV1GolHn38KLffvo9Dh47T60a0tiIslkajSmIMnWaTVr9NpVTj8NEXmZmbYnVti+mxBn7FI/B8zp1aJooTQt8hLPpsbjapVEP6g4h+P0EKC8IiFFQqVbrdTdIow/MdCpWQUtFnLEgYq46yutWisf8+7nr1nRi7RLVW5k8+/jD79u8GmZLElniQ5LYdWjA7NYnF8JUvP8OhZ09w8KtHUErSavWYmBzHWsvEVINCsTiEqSjipDdMOOb0yNtummF01CEHnQzhTtolb1gXZNEA5Tq5XDVJiQcRrptLmpVTwIqELAWkh0Ahsy5KhQg7QEqFFDandAImSxDSQGbob55C+eNIMlqbK9g4Rg1psmmSgwnI3NwgOO6hPR+hcvknJrdXsFlGmia5gboWJHEP7ACpvBxW4rjkR85wdECSdFAynxBaJI6WpCbD9X1MarBJH0cI0syS2byfz3F1noyRFikytMy9PvuD3FDdJEluMRFFZJkitRna8XFchzTpExRKnDx2mkZjDN8LmNs+S7vTx3ccpBigHZdOu0VYqBCnuVTvbx/+O3bunqQ+M0FmJFakuJ4DWJQwZELx0IMH+P3ff5wbb7qBYqlGq9VDOYpDzx7CZiXe9Ka3sv+2Pbzt7Q/iAL2tRcJSlfZWTLFQ4TOf+D2a/R6vuvMOitUyxZEiQWEKVMBWbx0vjbj/9a/mvnvv4gM/8jPcdNNNTM/Nsuvaa3CUpddsMmhv8sBD34PERToGxzf4hREiE3Pna+/m4DNf5Pbb7uZffPCDvPf7v4czp56mt6WoVSp0e5bf+LVfI40iXnvP6yjVXD75Xz5LcV+Bx37lKNdfu5vxiXqe4FEBq8trbG2tYbIRDr9wijOnT3DdvutYXV1kcm6cLE34b7/6e9y4/1Zqk+OoUJOmi5w/d5iwOkMxHKETbfDP3vcTfPt3vZFiuTqU8hdZOneEsbEprtl7Az3T4czZE+y6ZhcjtTqFxhSlUpmNxRXOHj7Cr//m7/MHH/oIb3ngQYp+QK/bJPAEq+dXCSolHEfQ6WzRSwIq1TGEulwhc+GVCYOSPiKDnnIwysUmAzbPP08QTKIkJP01fOUhggLtlUMMFp6jvuc72Fpe5/G/fYQ9+6/nQx/7JDuCBpNTY5w4eYKFlRbVagnfZmTknnrCGoxQCDLIyCVlwqCEpD4yRpqlZCbFZoZUxqhUo9wqZzfPU/Z9hKNQVjAAPFJsBh4OqUlAwepmFykMjlTYOMPYBEuKyPJ7SIqi3WrR6gxYWN2kXK0h3BKFcp1ev48bukjhEg9auNqgREbcjzEM8qSWdun2Yo6cXuHu197P0cNHKBRLLC+fZ7TRIBoM8AMXJWCt2aZk27SjjIEMKFWqaKnyZI9SbG00KdV9nnryOY6ePMxrb9lHa2uFoFBiYmYcLYYkxCxDCAcKIVaHBF6dXnuVsDyeW7L0mvSjhNH6OINBjNAGV3kk/QHWpkjhgEiQqUIISZIOkNJF2AzXDciswVECoxxOHTvCSL3G1OQ45WKRxBi63S4rrSbNvmHftTciXYc4GpAmCWlmEFlKMuhSmZiGK6tRlyYH5IX2HMv//ZFf493vesfFCpgRL9lpWXH59YkQXFZ8ukJmeSVI5cKyC+ObkWNekIlenGte9iuJi+d14ThXzqvtVebal0pPFVyUYUqGwexwcnxlP14OUhnu9+KqfP9KqIv/l+rqRu7WvnTsC5TOb9Ey/xHHlcHdux96F0svfImC7/0P7PXKYOsbD+7+/nXfyP5e2vbrh6QXsj9gjEGql6pFF9ZdasB+gWLkFny80Ofw88doVKqUqkUcR+eYY6VRSuW4eUfnPXZbLQTQbLZ5+tnjTE/UqNXKgKXfHzA+VufUqQWuvXYnzx8+Rq1aJDURGxtNTGqZnBhjq9nkxImzeJ5GClhZa3HXHTfgOA5bzdZFGl6W5ZUrx1VYLEFYptPtIbQl7g9I4zzocpy8DyZJTA5qkAZHu0ObgQw/gMpIgWt2juVEMO0AeYnfcTVRHJGkCdampCYhMwLfLxClFmsFynHJUsnJE4vs2nUNycDiFQOiQUzSTylVykil+bvHD7FtbpqlxXNU6+XhTTql2+0SDRKkcFAy/z6klHR7WzlsBoHNBNHAAJLTpxbRGvwgJBokuI4GkWcS4zjCcT0838Vi+ZFf/QLvuG2Kx558kZ3bZgiDInEcUyrlxrRaw8R4hV6/Bxik9mm1B4yOVllZ26IYejzz3CkmxiosLGwxOzOWS2S1z/pGi6efPcJmt8l0Y5wzZxYol1ySqMu5pTXqjSpCSpaW1hifqFIsF9HC0O9FdAYJaQazcw3SKOPJp49z3d45Dh89TaNRJggCBoOIOE5wHIfV5XWKZY9afYQ0ySj6PsePL7C0vM7oSIWVpXVOn1lidmqMc+eWaLXaXLNzljiOmZhs0Gl3mRwrUhurIYUi6kZ02imTUzXCQkC17CKkJjMWz9FoHXDkyBnCgkuh6HLi9HmWVzdYWmuybXYC3w9ZXFihEBZJoghjM+LI4Lg5Fv1Ljz3PZKOB6zo8dugMt914I1EU4e+4mTSNydIlosjQbDbZtmMWazLSJOPxrzxFv9fn9rtu5IVDhzn6/Bl2XLODtdV17rjrAIefP8U9991KNsyQHzp4lLltk+SJAoEWFmEzBv0uWMPoeANBCzn0u0vTBEFGPOiTZVxM+PR6LZQWSAnakSAMm+ubFIolEH0EeUBmhUA5DhaJlDkgRAqJFoJBu4Xr1cmSCC0jtC5jUkNYrKC9EKkcev1+ntjIDI4XIGReQVcqGJqmx/hBiElStOeglGTQH+TkS6XRSg8/Z00c99FO3mdnkgSpUqSUxFEfbDqkE4PWDr1elyAM834Mk1f+LySz0jhCWItQHhkahcDzA+IoIfAC1ldOEpRHkG4RRztoV5NEQ89AEzM5WWfQ6xIUPBzfoVTwCAI9tJqww2u2j3IE2pGUCi7lagWTJrgiRXv+xT4eodQQ4OLy6f/+OV5//3fR3GpSKFSIo4y1hWV+57d+gyxep1YdZWx0nB/4wR/igQfeSZJGTM6MMTZeoz5xLWfOLjJarnDoia+yubbOtm0OSb9JPZzlK1/9Krv33IgRAW9997vxiw5p1MNVedVBaY+H/+YRXv/GO+m0tjj63Ivs2nYdCMPy8gq1yjjV4gieW+GdD74HPwhITMgnPvVpbn31zczO1Lnv/nsolAIKpQDfL/N//cf/g/5pwfe+80H+8GMfo1KpEoRlwqLPb/3W77Pnmj3UJgp84uMf5qGHHqIfZ5SKubF9WAjYuXuCa/ZuJ7WWUlim6I6hVJEg8Fg6f4rxiSpv+a538PhTn+PO19yCENDrxhSLZeqjkwgl6PcTxkavIYnzCnXN9/kXP/sz3Hbn7dTnJrnvza/jPe96O5uryzTbTbrdTeKkT1gIkDoeVmVy+fOl0Icrh8XB2gFp2iFdO04YtegsHePEob/DdtbYWHqOzeYWIxNzGDw6q8uYXpexfW8mTqA0ElIuj/Grv/NbfP9b3kurtcn4SB0pDIFbJJHkFe8UtFPEmoh2K8LxfaxMSDNFZiVJ1s/plZlBKgVGkmQxwnOZGN1GlAKZD6YHF8ArqcU6EXnaV+P5Ci0VqAyrFV/40pNE3QETkxO5l15icUMX5XuMje7D2JhyZWRoqB6Qmogk7mPTNlkcY9O8v8rRYd5mYSGykjAss7S6xN7r9ueVvShCOw6VcoXTJw5TLlVJBhGtXgevOMrIyAS+66GlS2oyorhLpVTisS8+RiFoc/0120BpyqUijhR4SmFtlifChcz7IGUZVwfEaQ+/WCWOBiibYKWHVtDrbBJ6GieoI92AzUGC61RIlOW5Z05TmyriOB5WOiRJgiMdUhujlAQjUFIwUq/hKk1mQcjcKsP3A1rdFkvnF5mb24Gx0Ov3KZcqONpnY2OF9voC47O7QOrLL67LIHov/XzPjfcyuWf04v+/nvWauCK4u/ge+/L9fr1l38h4me/yFUNd4YF3VVLFlcHdpSWRq1dLXn5sLp8rX/k5vWSpYC/G1Vc1eb9in98K7v4Rx5XBHcA//elXWr37WuNrX0DfyLstQwnmKznG19gif31jwd0FAp64yrqXjaFs1NGaTqtDuVwiMbm/1gWpidIaqRS9Xh+TppRLxSGBcIFi0efc4hr1WgnH0ZxfWqdUKlApl0nTlGLB58jxU0jI5TOuw8hIhfn5RXZvn2JqcpRKuUCjWqTd6tDpDZiZmRz24OQTUUlOzesPBmiV9wSZ1OSEraEPnzeEi8SDFAu4rsIaiVKWkVoN1w1ptfoUwgL9bptCsYQQitQYssxhfaVJv59SGykPq2wxSZKCVcyfnc+96ZwE11dsbW7xwounmJsZZ2Njk83NJo4nCXyPXq9HqRiystymMTaGyAQZOcGyUCwOqYMCpfWQsiVwXA8tNQLFwsJ5ioWQyckx5hfOM1KpIoSk0+kShB69bp8gDPKslM2I45g37jY89exJPO1SKQYorQlCj263j7U2J086Lq6rGWlU+PLfHeG6a6ZRSrJtbozA9zEmJU0Nzx2ZZ8e2UYLAo9ftUq2U2Ld3jtF6mUcfP0K5GGDSGL/gMT0zhTWWQa/P2GiVoOChtcuXHn2W6ekxksRQq5TwXM3aWpOpiTpxkhKnMUmSsLbWJIpjqpUSJs2YnhpBaIXr+2RJRrffZ3p6jNF6maPHzrFz5zRZlrGx0WL3zlkcR7K8ukW5XEAozdh4jdXFeUrlGkePnkVJyeZWn8Z47tGYJgbXc/GCgGcPHqPoe8zMjmOylDQxbN8xxeTkKJMTI7hOQBLFOEqSZYL1tQ063T61Wo1+v43IJIvnN2luRczMNvjFT7zAQ2+4jaAQ0K/M4Tk+Qqzytw8/xj33vRprLZ7r0dxqMj0zxanjp5nZPs2jn3+S17/pbgrFgPHJOsVigaXzq5xfWKFeLxEWQmbnZmi38v7NKBoM+15sDiBJUxw/5MuPfIWpyfIQKgJSWJTM7wP9boS1GWGxMKSU6Qs3CfwgQApLEsUMen20dlBeQJYmOcxE5NVvsMRRRBCWMFlMlm5i0jbCqaJdN8dsE4NVCGFxHEliErQOEcJgMovSOoekSEXUH+B6HjYzDPp9ALx+TuPLAAAgAElEQVSwCFaglYNyFINBHyVzybB2FFoFxFGPLMsICrmnpBAC13FJ4hjt6LwiKiQmyf34pFR51VXKnPqmcuJAr7OBFSm9XgvX1bieh1ABF1QV1qZYa4gGcf53FkX5PUNK4jjF8z1am1t4nsfy0gaVSi5X1a6LVJowCACRBwcyQ+tcGq60Q2bzHqh3/JM/4p3veB+Tkw02Nrb4uQ/+PHff+Tq27Zrh4FcP8cb7X4eWIXEc0ev3uOPO+/C8gELBZ3HxPOPjE3zwf/kpvvfdD+IHdZrNDSamR1ldXqVcKfPBn/xRAqFplENc3adWziEyWxstev0ehVKNu177etbXFol6LcqFEhtrbTIZsW1uB3/2mb/h4Yf/hrmZbXz4Dz7EgRv2Yk0OrUniGL/gsLK6zsTkNB/+vf+HW299FT/4Q9/HOx/4bq4/sJ/v/u63MDk5S6FUJY4y5mbm+PgnP8pdr7mXe15zF1HUR3surra02m1qlQrGao6fOs7kxBjSKjY35nn0ya+wfVsdzw/o9/osL3a44+79CBuwML/EaGOcfipAwvy5sww6EY7n8Pzzh3Bdl43V87zt7W8lNgYvCMEaFk6fZcfO7dgsp0gLKRipNhj020RxhheWcRz3ZdWMyx+dFiEN586eZGLHXg4fPUljejuVmV00RifppD22X//anAwsHEZHfeaPPUVt9gZMJGmMVUjiHp9/9Cled8NraG8NqI5PcvTkKdoDQ9zrUwpcsAn9qIfWHmvryxTLFUSW0ekMaLVblAsF8gT0sLrgSnr9FIsmGrQJSjWklnnwRW5x8vSTLzA7OYPjapI0BZENPV5BWElmBNPTk0gNytFI38cL6yBLWBlTLNboR1FulC4kQpj8Xhm1OXHkWaqVOlILpCvBGvrdmCeePky1Ps6BA7cQxwlJGlMoFGg2czqm53q0Oz1MFDG94xqk0KRD03PlaM6cO0u5XCIaJJTDEeaPPcfc9Bwrq+do1GqAxWQ2nzMIiXB8pOsj3SJCOTSbmxSLI1hittZXKZQrRP0OSRzh+iEZhqif8LnPP0qxGOIXSkxMbCeKe/Q6EcvLW5hkQLHgkSYWa8C54CNqc6VRZvO/9TjJ+ybPHF9i1469aM/FkN931bB15cknv0Q1cBid2gbay2d7F0VdL1W2LqNFCsFP/8LP8OCDb8svQjXc9IqJ4UXvt6tculcDqly5LE0NSl2wIrj61BFeslO4GBz+PcHdldXvq53by5Yhvua6S6tuXyu4k0K8zLj80uDOklcor/xdcqmqvOwD/lZw9484rhbcvfuhd/Gen/xFHrz72m9yr99gNPd13n0pzvXyi/OVBXf5v99YcPeNrruwxUhjhMWFpVzGJOXFBmOEwHUdpJDE0QBjDJ12lzhOOb+8QRQnXL9vB4WwwOREg2azTRAUePqZ5wn83Fcr8AKMzXtoojjKjc7TmE4/otvtsr62Ra1aoVavI7D5Nq6f96sJjZA5hTPut9BS4WiN0C5CkPvVWInILFLkptFpmuAonzQd4GqHVmuLQinEmJioH+G6HlLl4AXHk1iREfguSmiUkrQ7LU6ePEchKDAzNYrJ8r65ODKUK3WOHllg5/YGo2N1KiNlgoJHalKqldyouRfHKCcjcAFyGqUxJkcw+x5bzRaB76GUi83AIvjCI4+z/8A1dNttPv/FJ2m1euzetY3l8yuM1KsIoXI4jFBIrQBLqzdAJC0cR3Fg307iOCJJYp48eIJ91+3AcRxGalW2Ntr0BwmtZoebrt8B1tJud6nVKrxw+DRSSraaXaxImZsdQylNreYziFJSk1Gt1ZibqRAGBYSSuH5IHGVkqcHGCanNiJKIQRSze9c2osRg0oRSweXM6YW8OV3noI6xsTKVagmTZNRqRZRSrK1tcfbseaojJZR28+/I0/hhiDEphYJPoVSkWitSHSmztbaFMSm1WoWNzRaDKKZYCtGmSxRLJsbHSU1CtVogyfp4XoijfRw378VsVEpUK0VanTZCCBr1BsdPnuXoiXka9TKO43P65DlG6zW04/P4U4fZu2cWPwxwfYG2mqnJUZZWm8zNjPKqCYdaYzrP2s4coFgo8uQTf0tzs0O/32VqepKNjU0C36Pf6WGB558/hu86eWBtYo4ePsXq8jpCwn33v44o6nHy5An8QKNVXmGOowjt5hAeix1KfxX//Kc/ynveeQArc6iCFnmVL7MC1wtRGuI4n3gIodDSwVhQQyPfOALfy2mwKRaZWbRyECLCmBxA4ng+mXRII4OJuhQKJfDCvDc2idAqQikfm6WYNBqaoiukJpdLpxFSePnxtcwhMFKCAKk0UuUedmmSkmURnheilI+xfWyWYY2TUzSVpNvpIRC5fYNSaNcliYdyV6nod5q5qfPwRmqtJUlTjImIui2CcBShffyggjGK1IBQmkG3hZQuWZYQ9bqUylWkUrnUGIVUDs8ePMLk1ASVWoVBv0+lUgUsSZyAkGjHZWNlA9f3UFpjpUSRB5gMKW3v+N4/5GMf+T0mJuooR1AMS2gVUquM4o/4TE/MsXPHbr7yxa/wP//0T/KjP/YB/s3P/zLPHnyBW2+9iV63z3NffYz777kd3/f41//+P/H/svfeUZZk9Z3n594bPl48ly99VlaWN+0N0E3j1PhWS41poGnRQiAWWJlBCDRyM7vaHY2Y0e6Y1a60MiMJNJI4C8JItBg0WNEC2lJtqrq8zUpvnw9/94/Iqs4y3SBpD2f/4OaJc/K8eO/mi5cRL36/+3Uf+sWfISiPokyDJw89xA23vJbbX3EX5+ZXOP/0f0OqjFpjhLmlJuWgRI7BHS9/Nfe//V7GxxtYpsFv/ebHeNWrXkZQrvIP33yMWi0gCAIOHfwud7zixfzaL/1LHrj/Pn7/9/6Iu++5m49/4pOcOjHNW9/yDlZXp0nSLuWqQ5IViGYc53zqU5/hg+/7EB/44HvZtmMIzxtFpznlwCHOU9rrK1imST8MSSKPSjlgbXWJ5YUVhocnmNpxHQYuSuVUqwP85Lt+lhe9eB+uM87Q4DBJEhFlEts2qAQezbUesW6xfft2qtUahlNQcJUy0almeWaRj/3Wx3jNXW8g6Ql++Vd+lXvueTO9fkal5JChKFXKXPC7e77mLhNF9M1AvcHy/HkmhwexTINMCvpLC0wMehjaJVUOiQBTrzBz5jHmFxKq5WGaK8t859GvcsvNL2f9/BqeVWd1ZYaSM4BUgoX1mNMnn6UfG6y2JIaKGRxq0Gmu4TkmURrSaDSQeaGLE2LD5COxyYyMdrfLE994nB17r0OaAt+p0usm+BWTXXtvIo1XkcIk1wkKg1SnkAnSMKVSLeO7dhFr4ZQwnUFSaRAlMb7tFZp3Q6HzlCgKCcMOSkAadfDsCmkaIy1BFktswyDJclKzxNTUXtJMYwhZZATGEdVqlZWVFYJaA9cP6K6tkCqTXnsNIcAvB+g8pxRUaLdbOKZHq3+MsbEJMCKqfhV0CkKSS4UqclKQpothl+lGEY5bKr6bsgypclzboR/3yMIQxy0RpZo8SkDHDI6NMzhQoxw0QPUxRUCmE8q1IWwzxTQ0eWaglE2SdZDKxLFLLK4sYJv2Bo0SEAKnbOM7FnPzq7hejXK5glSSMOwxNjpJuD7PUrvNwPCWglV1QYN2ESF4zrPhwnn45ce+zH3veFuxX109J+6FmrvvZ+S5vqiHe6Hm7rn69sLbfuHm7p8yXrCu3YS6PV9zJ75Hc3fhZVccixCbIL8fNnc/8HG15g7gbW9/G8w8tQn9+h6WKZvP4CvOJXHZ9kL7Ln3e5hPsgu5NcCWaJy951QVHIbEh7N38157bB5fOmV/4e+LS536vxk5sHL6UgjRPcW0XqRSddg/bsUjTlDROioLbNIiiGMuy6fZaLC21EMLg2mt2oUURSJ4lGXOzi6A1SZyxstpB5zHlUplyUGJ+aRmNYHGtxeLCKo36ALku3PkajXqxym4V7lWGaZLmEVKZmLZA55okSbFtm2Qz9SrPQECeJSRxSprkIApjCKQkTXJc1yJJNK7nEscx2YVVQQQL86ssL7WoNUo0mx0aA4PUBwJs20RLwblzs1SrFRzHot/t4NkGI2PDdLtR4WCWC7qtHr7n4gUeA/UKvuuhZBG2q5Sktd6iXCoVtLFcc/CZ44V9uSFpt9pMTy9R8RxKJZ/RkTrXXruncHoUOb5vFY6fMqfXb6O04uTJs/yLjz/Mm28aIApD2p2QweE6mpRGNUCgefbwKaQs9IC+ZzO1bYyHHz/Gzh1bmVtcJM8EUmmU0pRLHjdevwvLNJAiY7XdJ+xErK22KAcuQhjkOqVeK9Pvhkg0vu8gjMJFdXlphfHRcdI8wnZsTCWZn19gYnwQLRV5mtDrdlldbeM4DoYhieKMlaUWa60+Y2MNlpcXiHsa05V0O31cC5Tl4JiCLIuxbIP5mXlc3+LoqRmmpsaQuhDGx1FCq6s5N73E4HAF27GIwha25bO62qZUc0BrTMPCtBTHjp2kGyY4nkOedKnVBhkbHkBqMG2JYXjkskBKZ2dWmJwcRJkCjcGDX3qc/Xu3MzQcYJiSUrmE6dURUpMP3YIyc956/4f533/753noG4+yY+dWTNPkqQOH2L5rB3PzS5Q8myROiKKE6667hiTucu1N19HrdWnUfD77mW8gUAwP1SmVyxsxIzZKyQ3qUZHZlsQ9rr9uG4Hfx1LQXFvDKQUgixgBlCLuR0iZbmjnBNIwydOQ5to6WsjC+dYonFdN5YEU5Dojy0EZAcrQCF1EDOh4Ebfik1JHIdF5SppEKLNCP+yRpTmm5WIaRoHAC0kax2jAUDlSJMRxBjoBoUnjHGlaKAlZEmPZNqBJ00KHV3AQCgTOMB2klNieB3mGYZeIei3SJMXxK/TaTSzHwbItkjDFNI2CgrhBe4q6LUzLBpETR30MQ2DKjDgKiXpdTMPELQUk/R6mqcBQCK2Ioh4oAVIx2AgK4xUkUdjFchRx1KVcckAUyOj87Byf+dzDXHfdFKZpEYZ9LoSvf+ij3+AP/vB3ODc9TX1gmO7aIiUv4ON/+ufML65x7e49fOHBLzC5dZzhsXHe+RMPMDo2wSOPfJtXveJW9uzew5/8lz9maa3FG+6+h06oeeub30FuKLK0x9pqk2v3vASlFWHU5Nz5adZbPv/5d/8rd919D0KAZVpUKxV+7K43MFgvgVmiF/Z52R03YwY11rod5s/N8rrX3sHE9j380R//Aa+98zZuu+MNCM/kth+5nSOHpjEUvOme19DrLNAYHscvDZBnDsoo0Ml+2GP3rp28931vxyn5mHaA0BHKEswvzFMJfHzPLpr6OGdt5RxL66vs3LULJWKW1ubotlsoV+B6PlGa8/b73ozt1DF0hzCX/PXnv8jwYINKuQTC5MB3T7Bt+14+9m//HTfdcB2PPPwkQ8OjmLZBc7VNOwy5885Xc/zwCTphmze95R7CqIfrS/qJRlketuNdQVXbrEvKc02eRMydnybu9jANAcIiigVLs02Cib2sLD/N1//ub6kFQ1hBCSu3WV84xYFHnmVwy1aWl1fZOrKFG15+B+FMTiVwMdwKA0MDxGEbW/URskQ/XGJiZILHnnqKndu3cubsLEE1wHc80JpUSCQUzqi5RpigcnAtk+GxCbBM4igmyVOkAMOsbnyXuijDKfStQiAtD6Fs3FIVYVoYrg9GGW0WKLmhFIY0yIE4jzEUOLZNa20Jx/axTAvbMlhaW6Wfm1QVaLMwrcjTDJ0mrLY6NOqDBe05zZhfmGNoaIh+r4drKMIoxPZLNFdXGBkexTStIpYJE0VGlvVZWZvn9OGn2TLcoNns8MSBg0yMjZGkPdLUQGgK1N72iJII2wpAx8S9Ln7gF/4B0kSJnG63S6fTIvA9LM8BDbalcB2LKOwWJlM6LLI0lcQgBqEKB2OpUcqi041I0pSwF+LZVhGdJBXkAssSPPTwk+zedzMrKwvUBgYRUqLTlOnp09RrdeqVCk5l4DmEalMNdzV65jee/AbvuO/eArW68FQNShSmVMX3TDHJ5uYu05chZ0JRpI4WhnSbz3EpjOeEfC9QOV/eED1vmQwX69OrbVILnu8nEwK9sSlVNHQXtgvjas3dRT2h1oWBygYyqi5xzNQIURjYXX68xZybmkB+2Nz9QMfzNXcAb/u5f3MJPfPiKar1lSefEM9tz32rX9h5xdziKr99r/FCCNzzzfK9GtPNr7vk+Cjg6CzLXlA3cOF1BTSt8T0fQyo6nQ5KgmkVNCplKAwlN4w2DVZX13nm0GmarZibrt+F6UgcxyWJUyzTphKUEGh6YYhjW4wM16nWy5imSa1WQwjB9u2TZFlGnKTFZ6NhYHAA07E2HCtNup0WaRphGgUdMIkzLGuDwpAXtMQoinFcB6UMsizHtkwsW5JrvYH4mShZNJppmnDmzAy1anUDxRCcPX2WwcEa9XrAysoqnusX+UJGoTVsrrcxDQu35BLFCaXAp1z1kVLw0LeeZGR0kJlzC4yOjhD2YhYWlwmqAZZlEkY9LClJk5hKrUJKESXRbnfo9/rUG1VWVlep1crs2LEV1yts4R3Xot+PWF9d3zCWUMUCgTRYWWrjGiYri2vsc5cYH2nguDblssvZs3PUqlW0yJmdX8ZzbZJYMzu/zspak2rFRimF79lUAp+SH+D6JgNDNeqDdZSEXi/EsV0saXD01Axbtw6RZ7pwk5MC0zTI85RuP8T3HU6cPsfI6Ciu4xU3DJ2SxRG2bZDrnH6U0Wn3qdXrDG9kB66utajXK5w6PU+mM4YHA4YbAbarGRwao9fp0W62CUo2WZqhbI3lemitKLk2vV5I4LmkcUavWziiOW5hgjG1ZZhzZ+eo1yvESU6lVi30EViFOU1YnEdBqUB2HMtEKUVzvUOlVkZIRacdkecx56ebrK002bN7CxqNbbugJbNzc2ybHGJ2dpFyrYwSiji26LSavP83/i/uffMb+YtPfoZ3vv1l7L92J2HYxS95VKoVhJRUamWUBK/ks237JItLS0iRUa7VePKJg1SqAVu2NLju+j2kmaZcDeh32piWXVwPZuHemiYxUpqMjQ9iGW2UNLFdH3Rx94vCHlIqbMtGSIlUJsZGwLthOriejxISxEamk+0Q9rvkeYJhWChpIUVK2O+BViTd8zilgCSpFcYpaQ/TLNDDwhDIQQPKMIGcMEoQUm40bW5R6OU5UpoIoUmTuEB1C3V8YYKSFceU5ylyY+EECtdbyOh0VnFtmyzbCMJVCst2SOME23ERykJnGXHc2cijsy4iG7bjFdoiDUIppIJ2cw3TdrFsByENdJ4iDQONQqki79O0iozPTrNP2O9jmgZnz5xnYLBKv9fHtm163TaW65JrqNUr7N05hGOZSMPCMCS/9j99gRtufIAfv+cuTAWu7RTxC6LEkcMnuefNd3PLi67lwONP8rrXvxIQ/NVnP83+fbv54he/wDvecS/lss2jjzyOZQa88a7X4Qcun/vcp5k5P832XbtZWJjhwBMHePDBL3LLLdfhBT5f/epD3PmqO/j8F/+au378bvygxFNPPEtQdjDtjFp5mN/67f/E61/7Wj79/3yKXTv38Fv/y29y110/Tp71CQZqvO2t93Lq+Bl27thOUApYnFui5Jjs278LaUhQhYGVadq0Wm1sx0DnmqBUxXYcfNcvEFpDcNutt/KzP/NByAsn5U4YE0YpYZJRqQQEtQbCMCkHJU4fP8ieXXswDcGzz56gVh2g0+4xP7eAZdlU6nV2Tg7jl6tkKWSZpjFSxvUUr3zFywi7IaVgjHveeCe/9OEPcPjkKb7whb/jta9+LSdPnKLecBkZGyIMYwYGRujHIb3185RrFXKtLi58XrL2u4GUSG2TpilB4HPq2DkGBmosLU3Tj1fJtaLu1BkdnyRcf4SBxo0IK2Cxt8j003/H8Mg+UlGmNjDIZz/zN/yXv/kzrp3Yj+95nDx9glqljrIDtk3twDBLrLaXue3ma+iuhyhD4Fh+QT2UBgeeeIyx0dGCFpgViwu2aZORYplOkcUmTVy/RC4hiWOksghzSYqB5ZXB9NHCJcoFGQoMG9utkYmMpJ9g2oX5UZIlQIZluuRJShL28KtVwijBMk06zSUC28S1UqQQKCnJ0oxeLHj4iVNMbdtOmmY4jku/HzJQb6CERApFmmsMy8ZxHHSeYXkenXabw4eeBqE5evgU7WaPM8cP8bKX3Igkp1Qps2V0DNuzyfKMs4eP4I8N45qDCKtMrkw0iihsU/Ic0jwlTQoNe5qAbRlUKx5J3CbpN+m3FjHykKi3RpZ0sWROHncwpaDXb2E79sXYizQtFsvacYrn+VQr5Q0DJxOtCxnJ2dlVPLtKlnfYufM65hcXCMOYWqVCY2SMJI7Jc41XHbi0ORGXnm+b0eOjR5/lR9/6xkseE0JssDovzY0rTGUuBRo2l4kXET4upX5uFqkVhIPn6Ir55jkvuzZeaFwCUlx2TFJs4pdeHta34TReACTPI3IS4ooDTDfcbC+ngV4SpXA1qqe8yuew8V6UYfywuftBjRdq7t75jrfzhc98kt0ThQD14j9XSp6/Xdo0/n/Q3H3vOZ8bV1y8FMVPrvX3nF9IibjA7VYC23NwPRelDMIwpNVs0++FnDl9Hq01Z84uIIRg7+6tVColTFsR9iIsy+Lzf/Mtto43SLOM0ZEGvu/w5DMnGB6q0mx1OPD0KW64fjdLy6ucPjuHY1m02x12bJ8gzzRIMG0bKQWO5ZEkIQLohU181yPXGd1OF9MovhBKJb8QfQuBTjWdbqtYqRcURbCCbruL63gICbVaGcNUF7O1qrUqhmWS5oU2rhSU8FyXPM+wLBPXdbFMh3arxZnTMwzUyriuQafTIwxjBgcHqNerLC0s4nluYTKii5tonsZYnothmnTaISeOnKMxXMWyTEZHCuOSoFxibXUN07BYXFyhNlAjjhP8UgkhClTPdS36YYxlW/glj9WVdc6cnWOoZtKLIwYHasRpRL1eIU2LBtx1HAZqNZ46dIag5DI12cCyFc1myNBQlcXFNfySs5H71+P0qVlGR4eBnMPHTiNzwbad4wgh6Hb7OG5RuKVJQq8XU/JLxFFCpRywsLBExQ84eWqaWrVKliTkeU67l1CtegS+g2FZpNnG6mCWsrCwyp7dUwwO19BpwsGD55naMcrSUov1tSaTW4ubn+l4zJ47i2M6GIZDGPYolWt4ns93HjlKpxOC0HR7PYaHaxsh5UXuW6kcsLKyQjnwWF5Yp1R2mZudZ3WtSRAE2LZFmsTESYppGKysrOMHJcgUWseUgwbfevQwzWbE8uoaWyYGiKMepjLwSy5f/9YRxgZd+r2IysBWPD/gr751lNtuvZ7FuVVefec1HHrmMKOjo0RRjCEl/V6Paq3G7Owcu/bs4utf+we2Tm1heX6BOM3YuXMrQ2OjDDeqtFttvFIJ01JYSiEMgyyJicIE13bodro4Xgkh4dd+7eO85EWFXjXX+qK2s4CWAVUU3HlaLPjojUUHoQvNTZZqwl6E41oYhk271cJxLZJ+D4TAtjzS3jSmNw7SJEma6DwjSYqiXio2aM4GSRJjKrXx94vvKWUUsQfJBoonRH4hGJa430FgYVoWyBylJFmSoSmKw+KGXITaOrZNv9cBkaOUcdECPktSDFOS6xwpNIZpFxl4OiNNQnReBJ33u02ETgqzIcstKFtGsQjU7/fReYKyHJRhEXa7WI5FFPUR0sH1TCzbJA5zTp9apORZ2LbHwWeOMzE5BEIhZEGZtlyP5to6jz96iN/7k/N89CO/QqnkY9sm0+dOYxkK13Vpra8TlEt89rOfY+eu/VTKJZyS4v53vpsbb7iVkeFxKpUau3fvI+z1+fjHP8EvfuTDtNsJJ0+e5Lbbb2fv3mt4w11384qXv5Q7Xno7t73kpRhWTrvd4cabXoztwL1vfyt+UMYwDL759a9z9txZXMdlZGiAa66/nmPHDvGql9+Ga/nsmJzij/7kE9x+262YnoVjOXzl775BGvc5efIsv/M7v8uBJ57mNa95HTmKJw4cYvvUGGmS42xoKUEU/9so5I/+4I+5+UU3YdkG7/vJd2OZBkpq+r0OfqWGVAblchW0xvZKhGGMkoKgUsG0A7pxxMjgKJ1uyM/8zM9z/XU38t3vHmZkdAsi7RNl8G/+14/xspe/AtPOMKWDkgLLgsGxcW6/ZS+Naolmz+YNd70K25ZUqwFhlPHhX/gIb3vbW8h1iA67nD74TQwlML0h4Eq79gvNXZblKJliGDmObWA5FguLC+zfv59+3MRXAd1wnaC6lYX2Km55BMv3qYqz1Ou7WF3tU6kPcc2e63jgnW+lOdNDaIiTjE6ni+cFSJ3R7+ZkOsOyqrT7K9QqdRaW1wr34KTLli1b0XkKkoJWvcFIybIcKW2UX6Ic1IiiHlmqyZOYPM+wPR+ZRFiGIo7DYhHDKAxCbMMly0Isy6If9XDtUmEmYpqsr68i0RimhTRshFQ4jlfoXknRWYhjGERakykDwzRwbZtavcrC4iq262DZNsoy0HlGnmcsrSxgWA6249JurWMaBt1uF8fzGRkdo+xVOT99Dsdqs3/PKEmS4bkeOstRQvLMwSMoy2Bycgo7GCbEwDQlcRzi+VVMq2DQeE7hRq3zBJH10XGXrN9CpDFkyUYkQY5lWUgtiKNoA4VLQAqUNDbyMAtWRJZn+I4JWUaWxoWmzlAkSYKSBrWBKq5SOL7N6XMLDA6NUqlUmZudplKpM3v+NK31eYa27HjB5m7zePCxv+W+++69Kl1Yc9m5qp+/uQNxRXP33ESbG8fnkCzYTGn8x43Lm7vNQ25GyC7bpzc3gS9Ut1+2K+fqnhffKyfvkkD5y5xYftjc/QCH1vo3nk/0qQX86r/7fe59+Z6rntgbSx1XjgsrB5fhy8+DNl9l3ud5rzy3irCZhil4zrZVi8J6eJfWeScAACAASURBVDO4WCRaPUfZvHRONmXp6U2PPtdMfs/G7sImxMXr6sJrpATTNvEDn1KlRL1W4YkDh/mRO2+j2+sSpwnbt0+ghOLsuVlGRwe5dv82VtbWiJOYZrPJzOwClUqJ0ZFihXT39nFWVtfpNLtkcUzJK+F5LpZj4LoWWph0NnKmWu0WjuMiRIG82Xbxe5rF2F6ZNO7T7XQwDAuhJEiJTnNcx6PV7WKZkrXFZZJYEIWFjXu+4eIXRzFZEpJlqqBf6hzbUcSRpt3uo9GsrvYQWvLpz/4DSmiGBmssLi/i+y7KsDh2dJpK4BOUAxyvcH/coPyjhEJIg6WFReIwp7neJUoTAtcgiWOUoTb0ukWEQ5yk/O3ffZvr9u8iS9INRy7IsxzHstFkBfk2V5w6eZYdO7bw9MFD3HTjXtI0Recm3W5Ip9Pmu0+f5tz5RaTOsAzF0HDAwGANZdoszc1SqUgq9UGWV1axbZsszxkfa5DkMb1uRLUccPLMHI5pcOr0PGMjDRQSx3XItUApyfpqH6GLYr3bi/jytw7yypddV7gaSkUUp7hWYbIShX1OnZim1Vzl4DPT5KlktdliamqEJEo5fPIsW7Z6lEpVHNtHoDEcA2kpjh4+QZJIqoHD+to6vb7A903On59nZLjG1LZRgsBlaKDO6tI6x87OsHPXJEmS0+10UFJjuyYray2yuEm5WqNWr3Lk6AlWmj0ag4M8/fQZtow3qDWGSOKQxfkV1ptdnj58nNtu3c727aMsLq8wVHeJOh2ktOl1ekxO1KnVK6yutMiFzcrKEl98apafevdP8OSTz3Dr9YM89thT7N6/B2EUDpKO47Awt8DgYAXbtZnaNonj2FRqHguzC5TLA7RaTRCSL33xIZ46cJgbbthNp9vDdlw67T6VWplOt0tQrl10WvvEXzzE299ybbGinGVIIYh6LfIsw7Rteu0mcdTF9S2yLC2u9bxw15QbrrhFVEeGlIUbXJ5KLLeEFjZa5mjDQEibKGpi2V5BQ9WFiUEUdbBtD6QCXRiwKFW4TaZpWJzvumi+hDQQykKZNiBRVqmIM5GaPMlJkxikgWE5G3N3EdLENHy0NIooB2UjlSTPIc1ybNtCCINMQ3FrTyErHHQtzwehkDoh7ndwSkPEUReFJoqKMPdcC6TOsEt1on6v0ATaHnE/wrF9lmcXMD2fqN9GiYh61cIfGMQ0HYYaJbR0Li4WSNOi3+rxe3/4DSrDb+DnPvgAQmg8z+fpA8+wfcc+4qSLzmOENKgNlIjiiF079/GWN72d+++7j51T2wgqAV/+yjdYX2uye98Ef/gHf8q/+p9/mRx44sCT3PLim1BK4vs1jhw8wo6d4wyNDJAkMb1Oyn//0tfYt38HpWoJU/nMnZ9B64xtW8YYH9/G1K6dLK+dwLMqlIMKn/qrT/EffvsP+LEf/XHuuPOllKsDeGaZHMHknnGGBkZ497t/mjjMGBgaYc+WISYnJjh29ByWinEdk7//2pfZtns/SaZB5HT6TTpLCSuLc1QCBa6NUCZhFJOmfSy/jCKntz6P4TeQpJw+cgjP9BCmU6DlMqETpmhtcvONL2H71E72X7uD5YV50ljzr//Vx3j6yaf56Z/+Kb7w+Qc5cOBJOv2c8Ykp1leWqQ2OYnoVBgZKNFstZmZnGR0b5dSpY/zEA+8lKJUxdY9qo0GyfohTx04zde3txT3x4n1UkmYZWhiEcU6nuUK316Lba+FXRzh48Cn279nJ2dPHGRnaxsryAokWKKFxHJfFk48xMLGb9TOP88xjn6MdGkzsvJa0vcxX/vsX+d0/+wR33n4n09Nn2bFjD0HZJUlgoFEnyWMatTHiKOGx7z5BL8xAKcqBxEwstFVEIeVaQppjGIpM2Bh+jSRNkYYgTiPMUglpemhSpJZIQxLFIQJJLjIMwyJPKRZDdI403CIOxTDodVtIKfEqdfI0xVEGmdZI0yTJU8gVciMmJUFgmQ55XKD5URxRClx6keDI4UOMj08yNz1HJRjAsBSuWyw6GEaGZXkYrodtW0hD8dgjD7G0fJqxhsdQtY5pajJlo9OQswtLzM4vsG3rBOUgwHJLmKUhXLdUIHROGZGlWFKRxTGt9hr10SFWz59Bij4yisiFiSEBKQpfACEL3ZyE1bUQrWwMlWOrDS2uEIgkRWYQxTFCSQxpIiVkaYyhXLTMkanCdAwOHX6aKHeQpkWlXGFm9hy1WoPFpSWCwAcdUhuefP7m7jIO4yPPfod733ZvwXQQ8iK1UiNRZGx+5BJDoI1FfiULuqbQRdax0M81NBdpmbJ4bHOj85zL+ubfL93QqpgPQS4upV4qXVAjJeLi35VCIZEIeSG7VW+iQm7UoCK/eDwZ6pLj3bxdcIW+UP9eyKAUQpBv6J01GlQhdbl4fBcaOL1BHL0I813ZBP6wufsBjjwvkLvng4bfcd/bWTv2CI5lXP0JVxvPI6D+/tC1F3rW8+N9F9++2Oz+8/288sLLroYu/lPxwM3zsrHKXmy2YzM1NcHxY6fYu28bwyONYmUdyeTkGLPn5wl7fY4enWZ4sI6hTKqVMmPjQzz6+CGmJseQStJcb1OpBiQZtLtNzs0s4doOaaqpVAOqlUrhsGlK1tfWUFIShxGmLel2uvilEmEYghY4jksuCjv0OIxxXZvcANe1C7GzW8L1PRzbwPFcWp1OsQ+JlAZHjpxkcLBOv99HUfCzXbegv5UrAZKUKOly3TW7sW2ToeEBmq02vldmfGwIv+yQpjmf/PSXueHa7aytrmFYCtsxMUyJaTrMziwRRSl79m5DCIXve6RphO0WDmVSCizTYM+OyQ39EoSdmHKphBI5SuVIZZLEGY89fghp5HzoLx7j13/iZo4ePY1jSVbXWjiWwnEMrtm3naktwxhKUqmUOHFmjrLv4DgelUqN1bWUwyfPsLLShgzW10KGB4fodHr4XomV5RamkjQaNY6dnmXb1hHiOGG92b5oYrK+3ibNMqQU2IaFJGf6/AJKZgQlpwhX10Vg6Fqry9j4OEHZY/v2CSo1j+07Rjl27BxDQwOUfZtapc7xE7OcPTdHmsYEboDn+TQGByhXq8RJDDpldW2dJNU4ronnKabPr9IYqPLIE0eYGG8wuXUCgaTX7tBsRmSZxjItPNfHs0tIWaAvJd/Ccx08z6FW8Yu8NNPEMASuW7hvpknK1NatCJkzOlIjjlOOHJtBKZM0TRkZHWJ+fpV6rY7hDOK6Dktrq7z0zjfxuc88yKtecwN79+3GMky+9qWvMzE5wRf/5isMDQ8yODhMFKdIqfjyf/smw6NjrK40WVtbx/NdXNejMVTlRbfdhJIKb8MVz3bs4mYqIcs1edIhjRPees/LSPN1lLLo9UJM2y0cMR2XLO5ju+UNy3RRaFLRGKaxcW0X4eOmZWFZNloXiH2hJ1smzxJMw0FR5EyVSj5hr41j+ehUI6XCsc0iW1KqIgzYKKigQhlkeaGXvVAc6DRGiOK2jM7Ikl4RAC8kUimEYRcons7J0hTbdTGUIMv6SKXodtZRRorODYTMybMUIRRSSSTFanUSJsUqs95wz9OQZxJh+ChVIDKFE7CB1jFx2EXrvAhgD3tIkRN3W1heiTzXrDe7eJbA9Wyk4WI6FSylC02fVSLud4vPyVR8+zsnOXh4mJ9+/0cYHxlBGYK1lXVmpmc5fvwkO3bvwjYcOusZb3rTu7jvvvuZn51hfHyUd9z/JprtZSa2jGM6Oa9/453s3r2DUqnCi++4hW4n5Jc/+uu86s7b6XXa/Of/9H8SdjTbdg5y660v4sG/+RI33fhi/KrDdddfQ5z10Lq4BtI8pFJzybVkeGSEXmeNA4+do1atMzNznle88pU89tgBdu7ezUBjiPfc90HOLR3gRbfdwkNffoLHH3uYX/jQhxgcbvDgg3/NO955H7bv8hu/8a+59/73YFglhse38+1vPsa7H3iAD37gA0gchsdKbNu+lTjto6UFucR3HLI8JevFJInGq45CmqGUxgt8LNvhk3/+aW644VqyWHD8mWPsmBrCMzuIfA1tmAwP1Xn00e/wk++5n3c9cD9f+tJXeOXLX8OTT/0Dd//4jzI/dx7f8xkcbvDww98uHH41SKkIygGNehW/5GMbCcee/ibd+Sc5c3SF/S9+HdKtYqjn6oYLi7JRt03c76C1xvM9ykGV9bl56vVhhFWiPrKNbnMNxywiNQaGR5g5d5pnH/0a+/bvpzt3DLM7zzW33k4zTBgc2sK+a27i8OmT+KnL7p17C7t+pVDSQFPka/Z7babPnmF0ZIqprQHVkodp2sQiI43BMAQZGYaSIBSptgmCOijQuSwo1llOHiVIEYLOsLwKqQbHCTCs0oZGHZI8RkkTw7ILc7Ukxi9XiKOEOE4Qlo0wChQrjhM0OVmWkOs+Io/RSUSaRJimRZImCCQz58/SKFv4vkeGCabE90vMz0/jOQ6z87O0V9uUbB9DJpw/d5a43cHSXdprs1SDIWxHkpsJNqA0DFRqNAbrKMfH8Gpkpk+eJERRiOdY9LrtjaijPoZl4NsQr8wxNz9LUKoilEEr6mJZkvPT0/h+pSj6MdBklFwLUyVoBIZhFIhepsnJOb20zmNPnWdqrIEyCvM52wroJl0OPTNH5qRUHY9arUqSGCyurLN1chuu7SOFolav0e22sE1JqT7y/M3dZTXZV7/7Ne67rzBU0ZfVfZcjW5ubuyviDq6Czgkhr1pLft9js2btsmnk1erRiw3Y1XRul743uBKZvOR5z+mSrvK2noNKhJSXfk6XmaZc/t42j39Mc/dPwzd/OC6OPNcXU+Sfb/zlU9GVD26QhYWUVzaG/xgi8WXjn3xhXOie4OLxbOYJb/4dLkMRrwI9/381LheqZlmxCrjvml1YtoFpFje/brfHzNl5yDXnZxbYv2+SUsllpdmk2elx4KljOI6DMhSdbogQknKljG0b9PoJA7UyExPDVKsBhqno9XtEcUgv7DMw2AChKAVV0lTj+yU6nR6ea2Kbheul4zlkeUYWZ4RRVDhrhglhLwRZgAlxEpNmmoHGAL1un8WFJY4fP8/+a3eSozcs3RVJlqHJ8XyfNEmAnFtv3osyCn5ZEieUSwGGobAdA0GBZO3dOYrtWAyPNJDCQOeCleV1lKUwLUl9ICCOehw9dopur49SFjPnZpFC0u/3i28nnSJESrfdJqiW6fT6mLZDmhdfvFkGR07MsnfvDnzX5ejRc9imSTkIyJOMM+cWKZcDup0O0+fncX2fxaUmd9x2PaYyicMEZSoaw1VuuW4PhjDZsX0LQuQsLy2ipGJxcZkkiZicHGZtvcXoYJXDR8/SDyNMpZg7v0CjUWPP3i2stdrYToGgeJ7Njm1jjI0N0+mGzM+vgpAYloNrWXRaHUzTQRmFpvD4yWlGhqvEUYznlTh1eo71ZoehRo2RwSGSJGZxaZmlpXWifojjWBimYnLrEKNjwxw7OU+awOBAmacPnmLHthG8wOfEidMsLMxTHSgxOTnK3PwaBw+fpdXqIZRgbXWNsNfHch3KgYsSGtMyOXJihuWlFZ586jhJkhFGCXGakWUxSdTfOBcErU7C+PgwQkj6vYjx8Tph1OHn/vBLmDY8MxfS63X44Pvfh2Ub9Hs9Zs7PEEUpKyurDDRq5Llm5vwMZ06fIUkibEfx9a98u3ANPTtDtVYjyzL+/muPkWcZR4+cJM9zut0OhjJorq8iZaEJM+2C9ouS/Nc/e4gkiahUy0BeZExlKf0wpkg/LlaXbccp1lBFYc2tDIHrOeS6QLZBYNmFpshxRnDcATQ53d4CtUYdhImUFlHcRqgUaWS02sukSYoQgiiKgWIFGJ3hOCVs20OqwozCcj2iMEIjiOOUNNNEYUISFTEZkoxkw/nVtCEOQ6BwA4yi3oabr0AoRdTrgC6opsXqcQpoTNsjE2DYBb0SQsKwiWFmIDVJnJJlBSU9zwuqlR+USeIchEWvHUKu0VkIOmFkfJgoTMhSkLKIPNC5xrQL6uu3/+EJDnz3HG+675O86KU/y+t/9LX0OiH9Xpf5mUXK5Sr1gUFe/4a7aDe7G82l5E//9P9GiISXvuwlgCbJPEyzgdBVfvHn/z3/8bf/mCefOMYH3vtLGLZHmkomxkZYW2gzMbqVPE05ffood975apbmVxmoD7CyNsvS8jo5Bo5bQeKSxkVumqkMTNcm0jEyj/nOw4/Q7q6ze+8elhbWOXL8CFO7d/If/8P/wV9+4nf4yZ96PzPTM/zo617Cm99yL0eOPsvNN1/Dh//FB5jYuR3Ldfj1X/0ID/39V3nNq1+F7xp88cEHuWb/Ts6eOYptmLS6qwjDolodxXNLWI5HGCXYloMT+Hi+S56G/MpHf5mZc9N0e12kZfGen7qfKFojiRN8r8rC3CIHnjqA61SolOtorUjjDCElKyvLbJsap1R2eNkdLyfNNGNj43z1q1/m/PRZbrv9JZw5fYIgCBgbH0MpSafTJk/76KRJ0ptl22gVVERGhm1Zl90NBd1um9baMoFjUC4FhL0YtEm7F2KYEik1ZH0sy+LokaOEYUg/jBid3MZr77qHM3PLWIM7cCZuYGX2CeLVZ5k5f5S//vxn+PD/8JN8/Jt/wdLyAkkS0Wp36Id94jhGaInlGuzat4f19ROI1MdQGXmmefhbj2AHFloKJKooX4SBMu3C4CjT5Ghs16UvEsxygB2MYrgjpGmCbRVIfpz2kSov7s3+EF6pTBiF6DTDUIKw18NyPEquj2s5SGFhmg4lp4wpLHy3DDggXYRUWKaJZRpYhgFkDA+PUnI96uWAM0ce5dzxA5w6egiRw+LiApOTE0xOTZCQc3pmDt8CSzQZHvS4+eZbKFcFwhA88feHEdg0U0FPaJJc4ZSG8LwGhraJ4xjTMgmjENfxyeMY1xAQ9+i1lkjSiImJUYQZ0utJjjxzBJFpRsa2FriRUEhRfI5pDkmqiyY1K/RxKUV80Xhg8ZqbpzBMRZqmoHPSrItlG4xOVCiXXDQaU5mEUZco6rO8XEg3bMdGCknJ84miaKOOvdTT8flqyc997lMARQD9hTotz9F5fkU9LKW4+NhF470XrJkvrzS/x7hoQrL5jRd67ytQvc1OKJc5olzynnR+EUV73hiSPP8nNU9SvQDIc7lLyz9z/BC5+2eOF9LcXRgvuf0lnHz8a9QC74p9OtcFBH+1cdmJ9X21bZusa68y4fPO9f1fTt8f1bJ4zj8fubty0g1kUYDO0w0qhYnnehz47hE6nS5LK2usNtfp9nuMjjQYHByg5Lts3TJKuVJGKUWtMUBzbZXFxUVqQRXTLlCuIHBBKVzfA6GJ0yKbyDIdDMvGMiziJMFxLJIkxFAOwlBESVQU260uXuABBoeeOkKjHmBaRhHP4BQh1lGaYAiJ55ao1eqEcRfP9TBNC9t2iOIYL/Do9fo4lkO/10cZkn4/xi/5CCmK5swQRFGI0Bu6AsfA8z36vT7zcysMDg6gtcB0JJVKQBz1Kfk2A0MDOLaNEgaGqQqdX8ml3++RZzFh1GdwcIhcSSzL2nAsdFhbWWV1pcVtL9qP53t86svf4sdu2cLBZ2fZtWOcKErZvm0CnWWkWcbAQJ35xVWa7T4zMwuMjQ6ystzGKymEiNGp5OzZZUaGAkZHy0zPnafkl5BSUy45BeJlWfT6ETu2T2C7FpZpsrbWxrAN1tZXGR0ewLJsOr0uE1tGmJ5bZKBW5fEnTxBHKZ7nEEYFkmcqxepKm/VmmzyNGRsZ5Oz0LIMDdZrNNoFvMT4+SGs9ZG62xfhkhXI1wLZsXEshRMZacx2/XOX4sfMMVMt02jErq02u3beNoFIiyTIcI6VeL2NYJmsrTcZGawwPV6lWK+R5iKkETzx9iqGhMr1Oj0NHzzAy3GB0pEESRQwPVbGdwrAgjiNq9YAsifCDgDTJcG0Lz/PotLsIIej3U4Kgyt8/u8Q9t1/Pj71kK+bEfqZ27mRt+WnK1Qq1ep2Tx8+w/5o9TJ+dIU1y0ixh597tOI7J4488zt1vejWdbp8oDGmutxgcGiAIXBzX4dBTx9i9bwdKSdI0xfNLFwXfWphFjlUS829/+0u8/c17ChMkKTGMIiDc9sukSZ88T7BskzRJCu2ByBGowhlOZxhWEaWQa4oGUChyWmig20nx/QH6URfL8lFmUeDFMSjlYXsl4jAsXmtb5FlGv9tC5ylK2mggSSNMy0IjsJ0NqqRSmLZf0EKVgiwnbBdRAlkGed4lzyRZCq7rE4W9QicnimvVsQSGYYEwaDebOJYCZZCjQFEEZLsuQnhIaSFQCKOgJRXGKTmGsmguL+O4Po89egQhDA4fOs1AtYQy8oLiZTt8/rMPUS47VCoBf/z7n+fmF+9nZXGdB973aV73uveyZ+ftvOdd95KgCOMYy/BwLUm319swe3KwbYdytUq7s4rrGNQHPYRKOHjwGcZGp4h1k+MnDgI5D9z/bs7NnOD4qad4/etfxXon4fiRE/zc//hezpxa4f3vfx+/9NEPsW37BAcPHeOjH/kV/uWv/gJKhZw+s8af/slfsG3bFDK3ede73s1b3vLmQpMpJf2oj5VGvOLVd5LmPT75yU9z+tQ8//5/+00e+s7DnHz2BC+/fRKjtB3HNoi7p/mrz3ydbTsmmZqa5Oabr2N+rUuSxkyONZiaGuN973kX83PnuO8d7+Tuu3+ENA3xvYBSxUfgo6RNt9+i1w2xTQNETqQ1goy0v8orXvoaxsZG6Kchaa5Jeuu0u0sEfoO33PsePvizP83I6Agir7DebmMoi/37ruEv//zTPHv4CNffeA3d3hrHj55BY5HGKTt2bmV4aIg4i9A6K85dKVlcXGJyyyjdTov1pbPIeJGTJ06z/+ZdDI7uIjcql9z64iTFEJqBSgmDlFzamMrEMExSmbO+vsRg3Wdp7jS+XyVPUxpDg2idgeFgew6Pn5in5O5j+3Wvo3PycfrhIt959BhkBmdPHOXuN76B6WdWyYmRyqBRH6DT7SKlIu7DyRPHKPsu5bqFITVhN6Q6FnDi0ElGh0eLe2aU4Pg1Uq02tOVFDI8yBGmY4RguGX2yLCGJ+whylJTkibkhKYhJ0j5C2cVirtZIcvpxglIWeZoS9VdZb61j2gbdbgtpFnWPZUgcxyfp95BK0O/26YU9DEOhydBKYijJ0FCDkaFBFmZPkZOwsHKeQOXkaZN2q8XJ40cYH3VwLHCtAJ0lGNJktbWK4QSM1RzWuzmeHVAaGiTJBIvzs9hGjlUqTKukVHR76wS+QWtlBp10SHoxmWFTcmx0pJBuwtD4CLYWJEITRnFhgiSLnM61Zp/1ZhffszFUEQ9FFgMS6blklsaQAiWMwvwp1ThWGWVkJOsRyjXJYs3p2bOgbK7Zdz2FeV2GFoLpsycYajSwS9WNbOLndDEXGpvLq7iRvYUpmTKM5+rGC34Jm4xRLttFnueXRHJtRsgu0Zn9I0YhJ9rUhG1q9PRlc75wPaqvfN7FpvAqyN0ms5SLr/s+kLuragyvSIK/CHFeMc8PaZk/wKHT/Dc2a9eu+D9tjKb5/7L33tGWXOWZ92/Xrlx1wj3n3Bz7dlZ3KyAkBAiBkECIIGFjko2NMWN72QZ7vOwZx5mxxwEHGGPG2B6wPwPfDJ4PDybDDFEESYCyWlLneG/f2zefXLn290fdbnW3WkJ4PF7zB/uuWuuuOlW76oSqet/3ed7nGaHSP/2U9ZfPw859uU93VPH0y0XNnxdLuqrL/YAvPuKzON4zb3Uh4vh/JLm78Iw0+SRlU8L0tjEmp8e5/8ED7Ns5Q7sVIIXO44eOkqUpaZpy4PAxpqfGeOyxQ6AUKlecnFsnCmMmxoeoDdULwZs8J02zQpK4H0OeIrWMdruJ69gkSYrr1kilIEtTbN1k4cwypmNgmhZ5rnHf/QfYt3c7SVKYVEOGIXWyJMG2bYKgh+uaiDzfpBdqhEmEphRhr4ciw9BN4jTF8zx0w0Apgaafo1y6pFmO49lkSYLvufR6PTbWmxw9usD4zDCWLjh5vLBRMC0L3bYwNInUNXKVoVSKaRmFr4zUCaOcUqlUCOFkCpUp1lc3+Mzn7uY51+xmY6OJoYHl2eytdBgfbVCtWjTbXRYWVzEMgW4bdPsxQT8g7IXMLS5j2waTE0O4nkESCzobMSrPWW+tMzo2yIMPnaZes8nzQljCsh3mzqwTRjFbZ8eZO3OWU3PL+K6NaUkOH1xky8wwUVwoj83PLWNbJoONGqiUwfoAk1Nj+J5LEPQRSueJQ6cYG2lw5OgZagM+jmtR8n2iKMZ1bebmV8kzRaXiMjxaJQjjIuHQcwzbo9fr4jo282faNDf6bJ1qUB9u0NzoUquV6XQ65HmEYTsgCvNuRE65UkFKk8UzKwg0pG5Sch1cp6AgDtbKNDc2MG2TtbWAtWYTx7a4/6GjVMo+laqHkIIsh263T71exjQl7U6f8akR/LJFmkU8fLrHTVeOoUsD6ltp9jr89m/9MXe++ibmT53C1MHzfU6emGN22wR5VghePPrQASbGx6nWaoyNj/LwfY+z7+odHD10gk6ry8mTC7zwpmvRZUEjFhpIzUATOWF/Fcu2IVeYusEbXn8zuhYBiiSOCt83BJrM6HVWiaMExy2RkxfCLL0uplOhs9HCsi3CXh/bLtHvdDfNnQHlQJ4htQzDtDB1jSjooomsqEybcvO2J9Cljq4XKqlQmIzrhkkSB0hdomkSgSBLM1A5SqXkWbxpJ5KRZkXyaTg+SilUFiCEgeWW0TSFygu/sjgKsWwHlfeRuk2c5kjdQCOjH0RFEJCnaNJASo0o6CGkThK2MCyTJEmBnKjfKxCaTX+6KIyZnBmmXC4xMzuN5bpI00CXkizV2Fjvo8mE//TnX+XDH3+UdnuYG1/84/zYj72esYkx3vSWt/PKV7+O5ZVTWMogzzqsrzZZX0nQtJAPfuDD3PTiqzhyFRnjWgAAIABJREFU+Bjv+oM/YuvsDkzHxrZ86vVh1tZWOPjwUf7LX/4Vr3nVHcyfWeCFN17PyPAgX/zi19i7ay87d8wSRCG/8iu/zl9/4L2MT43yNx/8KMtn1/md//Dv+dRnPst1z7uJ7toSb/iRV5IGEUIkmIbN3n1XAdDudKj4NRI8ms01jh05zs0vfjHXX38lG50eV2yd5cUvvpbTywv8u1/7j7zp9W8kyQVf+vJd3PGKV1MeqPH4/gf50z98H3f+0Eu477unOLU4z+DwCHku8D2fXjchCVssLx+kWhlmaXWBu++5Hy2LGBka5eSJ0/iei2W4aEiEbuKXavSDDlkcoVJFrTyK49Uhz3jFq27i3nvuZ8vMLs6cPY6rw73fvpvl1RU2WgvcdtstHDx4hO1b9zJQ9tgyPYznCgzHxrAMup0ug8OjZHFOs7PG0MgwUWoS9Y7TWVtiy1U3I9IIvfx8nPo2cpUVD7vN4m/QadJcPYtfqdBJNNKgS7Pd4cGHH2FqbJIkCSiVq+TKwjBt2nGCVx0gTBUSjSyC+7/+dQ5899Nccd0NpKqPFj3G1OA4nV7MC2+9HZWG/OM9/4s9Q7sZHB7b9H/UsS0b3TCwrZgD+49Sr9qYtgNouLZXfO5piBQ6jx44yNxqyratUxhmhTiO0HQLTRQFnyTpYeo2mmahaaBrFnmukFKSiRBTd5DSBKXI4hBNgm5a6IDIU3TbRAiJ5Tg4tlOwd5RGu93GcXyaa6t4A/VCDMso+tGU0jD0zXghVzz8nfvZMruNSrlMY6DCcKOMoQt0XSBFyPhQFduw0HSTRGWITSTHNR2GGwNESlCuVrDKNdI4I+p0qNaH0N0BlErI4ghBjmZaJN0NRBqia4JEFIRLISAVGSpRmIZWiG8ogWEYCJGTqRRDM8mVTT/tU/W9zUJXhjIkujIgi+k2+/S6PXzPJlX5pp1UiBCi8AUlQ1oWx06tEHRDpqZm6QcBumFy4tgxJiYnC4aC0HAc54L+TgptkSejLUDwtx/7AK96/W2bydgFHWei+Jmel//f7J27VOX1IoXKC/rqVH6BFYASz5jsXTj3OePvJ4+hnlzUxRHwM8eTm914QkNoqngeKIUiv2j+C9VAFYDKOIc2Kk1DiU1LMCEuWnRt8zPa/LwufkObaOV5wYmL4/gLxw9omf8XjtmtW3jjuz795Ipn+AKfMi64Sr7nHv9EOuelQ3uW7pMXbnWpkeU/x1Cbf5d54eKT2MyshVS8/kdu5ejJJbZtm+TQ0ZP4ts1A2SUKAupljwfuewRHN/A9j6X1LuWqRRhFlCtl4qhIApeXV4sekTTHtnWyLGFtdQNTd4jjDMu06LU3SHqtoqqc54yOj1KuVNClQZ4GvOLl15MLgZI6jutx+OAZDh08gRA5uUrxSw5pFiFNnSRJyJIMQ9MxLBvb8bF1n35QNEh3eyHd5gYPfPcRjh+Zp7kRkMQxtmVtCor0SVWO5xVy98+5dldh1K7AsBR5HqHrOirdNIfXBHmekwtZ9E2lCabIqJaLRvBOt4+hF4pcnmdz56tfgCbgyNE5lpZXUJniwSNnOXt2jWqlzMpqi6npIaShI4XG6ROLDDYGaDTKXLFjCtPUWF5ZwzBtut0ucwvLrG000TSbM/PL7Nm9hZGRglbqejZnzq4yOzuMYWisr7coeS57dm3l+KlFIGfXrnEe3n+KUrkEQjE+MUin1yNNI7I0I4piNCE48MRxKr5HptpIKTg5d4btW4fxfLdISmSO61msrqySK8X8whqdbp+Dh09TrdeLQCPX6bVX8DwX261Qr3ns3jVOmCRoUrF12wRCy9hotTBk4VWkS4nruVimZG7+DHEUMlArYxiFeE6n12NhboEk6NNs9pCGg2PYaJpg584p/LLHjS/Yw9hojdZGF8u0UZlA5YIsUcRRyqNPzBGGMe314rgHzsbopk+SKj7y0U9hC53FlYR+GFIfGWd6x06+8Lm7SOKcpbPrbN02SxTHPPf6q2lutEjiQub8mut3MjE1ydpqk1a7R6nikWU5q6urhdgSm8g5GrrhkUQhSRLRC3oILeKVP/JBkjhA13U0TRSeY5mgUh2hMTheCIcgEShs3wMi/EoVqZvYng9Cw/VtkjQmS3OyNCJNc3TdJo4DckEhUKLpxFGPOOoRhR1QCUkagyga5XXdRDcsNE3HtByiMECpnCSJMEyJJhV5nqFJQdJtIUXGOR3jNEuLxNHyClNxda7R30bXLXTDKoRfpFH0QgkKtTtN4fgOuqGRpglJ0CbsNsmzBCFSpGmjcoEuXaRm4fo+y2cXSaMWtuOSqYwkzPncp75CnnUwzJwkSnnvf/46W/b8W/7n1wRu+Yf5zd/4L3zm4x/gN3/932DbNq3WBmGQ8MG/+QBKQBqW+dwX7qJUGWZ4bIY9e6Y5fORRfuc//CZpluHJMnfc9hr6zQ5HHjtAZ71FFkQ88ch+PvR3/y+/+7u/z+P7D/DOn34LD3zrXrTMorXRptvdYKBWReoWW8aHGakP8amPfZrDjz/GO3/x7aQqYtfOXSRxztTsFGGakguDQwcO88TBR6hUHP78z/8KQ0jSoIchYhxTsWvvTpyBMn2hkSeK46fniYXG2Mw+3vuBv+KzX/4af/Rnf8PP/9yv8P6/+ku6/Q1GRgd593t/izyx+NwX/jsvuW43JUdncLhBmEa84MYbyTWTgfoE6AaN6hBX7d2B67ocPniEY4eXWFoIWVk9QS9oIYUBoo2QKadOLfHx/+8LzC2usNGL+Mh/+xgjI6OMT9Tph2ts2TrLwuIKJbfMjm27ee61z2dsdJIr9+5jbu44zsAU7/zV36OfeThOQZ/s92PmT51BaiFpEKMShRadYf99x5ndPk3UWmFpqcmBx+4ljltF36gmQBWUuSyNGR2skcUReRJi2jZJVFD9gm6TiuexdnadL37+ayAEU5OT5HmOp3t0VhfRVIu9u+u85s2v4uyxB/Fr0wyO3Earf4Rt0xkPf/NzyDxmZrRBq9EkChIOHnoMQ9dYWJzj1OmjtJsbpGmHSrlSWBVJrVCGJUFIHaXbPOfG13DdC5+PyjW6YYdMKUxD0usVKF2cKlKlyPOiwJdmMZqmobKUsNtHZRlB2KS5cRbL1BHKoB+GCMNBGS5hFLOxtkyeJszPnaAfJYDCtnS6cR/b91EYmP4QRmkSWW6QmRZBrPO1bz9KJ0p57g3PIUlbSCMlSSIW5xbRVEaWBBiaKBR8sxjSBJKYTJPkho2ySyininDrxJpLr93HkC5OuYY0JLpMydK06PVWEWpjDqJ2cY/JFabUCguZNAdyciRhCFnuoQnIyMiV5MjR0ySphmfkTA2XN8OdHE0YyBzSvE+uNJySj+kURV4t188HRFma4LgOujA37YyKtgopJdVKlaPHDuM4Disry/T7PUp+6Znjrc3xng/9yTPGa8+mTen87/qieC6/eLnMnJeb+8L1QlxiuXWZub7nuICaetnzfIZxjpoqNO2i5fKHeXrK5z/X+AFy97858vRiWubTIXdQiKsce+CrDPhPpWdedlz65YtnqT/5NHD6xfnQ0yN3z554eelW3w8M/s8wnjK92JQxl4hM4fsWjq2zdLbJRqvH+Ogga80OSyttJiZqxHHMQNmj2+9z3TW70XRJGEXYjkXJ98jyjCSMMQxBr9ujNlDj2PFTDAyUkFLQ7IboIiVLioeUadlEUQ/dLIRTpBDEcYTKM8IgIgwiZmfHsWyTOIqLXjlNkisN2zaIgj6axqY5qIYUGt+69xEOHjjD7LZxev0eYxNjNBp1et0uX/7Kd9mxfRLTNDEts/A+khqWYyMEmIaB0DQatQqdTg9d14mjiDguEr1Wq4NfqSClpNtqcvrkSWzHRzd1LMsmzxXtTge/5JJmKYZlMj46zMLiOo5jMVXXOXR0kbGRBnEcgyY4fWaFsaE6M1tGWVtfpzJQolIuM1C1efzQHJY0qDcqlFyHLEuxbZPV1XWyNOPEwgIzMxM4jo1l6iRJxMBAhSRO8H2P5ZVVpseHEQiWV5ts3TKJ0ASnzywyODjCsROLbJkZJ+i3MAwdTSg0kYEmMC2f4dEqtqlRKvskSUqr3UUoDc91KZfLGFKj5Du0uwGD9TLN9TbdTg+/5NDrtFla6VKp1DENjX6/j18pbaoxKhQJlYqDoFAVLXpBCxXSeq2KpgmyLOT03DIDVR/Pc3Bdj4WlJlGqGJ8cJYoSOu0AyxJYhs16cwO/5PLwIycIel0WzzY5u9RkbbXJ9MwoQT+iWi0hDcnBQ3PcfSLijmsnMWyb+89k+JrGXXffy5vfeBPSAMvWGWyU2Ll7K8ePnqLZbNHt9fE8h1azzfpai5XlVU6eXGTnFdtZW1lj4cwat99xC8tnz/Ltex9iz94daLpx/tpL4wxzM9mRholA40XP30nJjRBagQarLAZhk2XRZq9ahtAypLAQukESRli2hyIHBVkGWRYUyJiS6IYgL4A2NENAntBrtzF0E9u26XcDXM+n3+1jeRVQOYKMJMpQuYLNPg+hKVSeF/YIeVHk0KWOEBJpFUi1lCZRvyi4CAEql+SKgrKkSTQKF1tNFnL0aZYW13BaBHW6bqBpOlI3EbqBUClxFOOUq4S9CApLNqIoQghB2A/JU7BcjzDI8T2LqJ+wbfs4P/0Ln+Ajf/8Et97807zoJa/n7W95I7e+7MVUqjYqt9HNmHa3jS51LLOMbXnYtuTs0mkmJia4Ys9uFpfmqdbqqEyxfccWfvlf/xYf+fBH+NJX7+btP/123v3ed/OWn3wLmqGT5jn+QJkvfPYrzM7OMD4+yWte81Le9Sf/iVtuexV7r72a5157FXe+5rW89o4folovIw2LBx5+hF/+1V9mcX6ZHbu3Mzk9SnXAJycjihLKlQa1aoVbX34zn/3MFzANn+ddfzVZFqNESqZbSN1hdbGFzE36/R4p4FV9Th45hu/bzExNsXx2mYmpAV78oheS5jnDjWlWVs+wupxw7Q2zWJVhNClZW13GsF1+4R3voFIq4Tg2C8srJFGO50gsR2dgoMKW2VGqdYlXqhH0+0RxB9sqo1TO0OAwO7bvYnnhNJWKx9TYMH/8J+/jOddczejYKAtz63iWxR/+0R/zrXu+zW0vexma1HFdi8f2P0LQj0mTPlddtYs8y9ENC8/zcRyXk0cL+qvreKwuPEzN38bp+fvYWF5Bd2doDAxgWB6muxlwKwjCgLJtYsiiiGo5LsurK1TKHrPT46RRQrvd5JGH9lP2a5xdWyDLcgbqNXIh8EouXtljoFZHG97GkGPjuD5tNU3FMYjap9kyobO+sYpulrjq2qtJ7BZGbwDdFPT7PSYnpthYXaLXXmd6auy8F6XQiuJzqgykM4Ctu8RZHz2X5KbEsTya66voloFjmighC9XPPNlEc9TmPVQvLIEShZIZzqbKseOWMDavP5WDqSlK1QZZJrCsQiE27ndRaYJpl0CAlIIg6GO7HrruoJseuu0zPDROozEKlo2mD2KXaihdwyuXsJwyQncwbB+lWURKYnoDKMNDdwawvApSd0EzMURG3OtSGRov/DANgygOCPsdDClxHZPWyhx5FkOeo5QgV4IkTbDdEnEK3SBj//7H0ewK+594gkplgEf2H6LZ62LqDoZeaAoIUxVOCFJDKI1+kGHaFuvNCHSThVPHadTraFqOELJ4VpsWYRhuFo1TLNOkHyu2zGxjdW2V6elZ6vX6JkKX4g80LrLcuDh2K/7/jx/5XX70zW94xrawZ1Pfv2xSc6mWyCUG4d9raNo5wazLzPn9JFHimVHDpwqqXMBU0+TTvDfFpTmiEAKVb57a93GeP6Bl/guONMt/5wI0+RmHpqCx8/n89u+/h5uvnuHpyZBPQ4G8QFL2yZefmgCeG+qS5UJ4/amv/e+PYubNYyjxrK6pQnr28hteSiN9OjWni3cqYPrh8Qaf/Ow3WFtrccXOKUbHapR9n2rZx9B1ltbOYhiCw8cWQAkWV9bYumUSx7ZASLI0xzAl0tDJ0xRpGOSaRqXkoVBEvQ6O6+MYRXKGaaOSdJOylZKroo9AZQm2oaM7HrWGj0oTkjzAcb3NSpNCpQlohT2BbhQGqlIzuOvrD3Lt9bvZs2+aLI6xTI/Dh08yPj6EZVns3D6BYZlkKieNc5QqRCCEKnqHCgGUlFxpSMNA0wWGpZ03R/c8nzwvPlspip4i1x/g05+5m7HhBp//4je5Ys9WQGGZJnlcJLmOaZBkAbW6xPNNWhvraLqkuR4yMlTBtHNywNAtup2Y02eWqFQ8JsZHcF2P1kaboycW2DIzRpp1OLsY4ZYUe7fvRWhw6NBxgiAGIXDdEqZlcvzUPGXXJVfglnzqjQYCxdLZJSYnGnz3/iM877l7+Na3H2J6ZhLTdhCahuN5rKys0xgeIuoFZBlYliLoZkRpRKvZYWl1Gd91SVMdx7UYHhoip4ehW5tm3RqHjq0xNtyg2+ri+SUMx0KjCNSlAVmiaK730W1Jr9Wn3+9T8j36/ZgzZ1awHBPXd6mW3aKKHaV0Oy2EJhkaHCTuRdiOQT/uUqtVWZg7S22wgrQkhlA8sv8kW2ZG2bFrhrGxOlKXmHqG65nohs7ISJ3dYwaeU8Uvufzxhz/PT/3Mz/Cf//oDuFrAtm1T2JaJ4/h8467vEIYp1153Jd/+5sNUyyVKJZ/aUJXjx+aZ2TJGtVzmwfv3c8vLnodjm4RhyJ49O8myFJWlKJViGHJTdt/YNGyVoBIqFZe3vv1v+eE7ryDPJJo0USJByIKqWZiO60RJSJoUPnOaLMRMCnW7bnEdKIFQhaqkylPyLELXNRBWIY8ui74Uy/UBiWmbSJUjRU4cdTGkhaZnxHEhxJBFGbqhkWUxnW4T0zKJwgRNWEgJQugoJdBNizwJCiqZNNC0HPJskxyQ02mvIYAw7GM7JdI0wbRNet0OupQooZPlCeQBmixhOR4iizFMiWXapGlEnmVIqRMFIdVGhX4nwvFNfvjNf0/J38eWLXdy7dXXkvUq7L5yin7QYmBwilOnDtMYGsb1dKR0OTO3TmOojmF7CEIs3UMzMnzXZ3n5FJbIkaUSeWrw5a/czZ133sYN17+Qz3/mM1xz9VW87LaXk5oSz3Xpb6xDp80P/djrqNY8Hn7oEGapzU+97acYG5nA0jUyqfHyV9zCQN1mvDHJ/ocf5KUvuYlyycHyDDQJucpYX9/g0QcOsn3bbvY/8gh/8f6/5IU33sxb3/bTfOOeb/G2n3gzaZbiWCU2VldZPD2Pyote1R//yTfw9jf/CFWvQbOpSMI+H/irP+OlL76WmR07UdLDcj3OHDvO2NQsXsPHrQ7hSANNpnh+iTzRME3JkWMHyVROrewT9NogNDzPxtDdwlcw7ODqJTSzEFUJgg6OU2V1ZY1qw6JS9UnCiIHyMM+/8XmAIE5Sfu8PfocXvuAFrPbb/Ku3/gRhvMbf/PWHeOnNL6dSh9nZLUwOl7FdC6fig6aQRkFxlNEyjltlvq9jLX2XjdV15jc+x54dbyDPU/Y/8QBXXPUilGGQbgqwZ82zzJ85ghIRup4jVYrvlDE0l0TPUfSxTJs9+65icmqC6YkyzeXjm6q6GUmkCIKE5kaHqm5y6vHv0m8vU7Whm6ZUShuo1hmkgFMbMZY9BJnG0cW7eM9HP8rrbr6DxflldNmj5Pj4JR1NWmQqwhJFm0IubQx3AHRBEqWkKkJmEk2HOAxwXZ9ev4tpWNi2g9J0NFLSJMWQbCpt6ghAlzpp1EU3XJabLaQoxIyk1MgRpCojT1IsXSfNQizbJkxzDF1HaDppGGFZFnmasdFuFcq9SkMXCmk6tFtdDNtH000My0caJRx3gEwVtii6U8fzBojzHMvxMAyH9VaTkgaZ7pPECaZnkSUBvSjCUZArDcOvkidt2kvHMHVJvun5pzKDr3/3QYZGx7GSgAOnlugEfaZnr6BaG6Iy0GB0fAavOkycW+Qy4eSRBYZHXBwsUg3yNKPdDbn/3scZmxik3+3RbDfZOjuN0ARZlheem2iIvCgSI3IM06Lf73PVdS8lyzPK5TJJmqBpcOix+xgcKOFUhza1H56M4i4cX/vql/mzD/1xEdqpc9IOTw3CLhUxuTAxO0ehPEerJBeAdp5xdanOyXlbBFEU2GDTbPyCuPBCWqYQF1M2z4WiF9I/n265KHi/MKC/hCJ6aXKniYLKqS7IRjUuNlovKJyX2CbkT8bJ3w+L7wfJ3b/geDaCKufGua/v1lf/EIfv/yq1kvM9trx0tbjM//+H0bHvY1x6Js+2YPLsEL5zaejTb3ueXb1ZFRmslmm3u9imxcnTi3S6PWq1QiRjsDbMxMQUGgZxEhLFKagM13PQNJ12u4Pr2aByoqAPqjBk10ybOMkoV6ukSUQc9jFtm1yITS84MIxCyQ4hiKIEhLaJ5CjyHGyrUkhMK41+EGDbhcDDxvo6ruui6zpZphgZaeCXfXRN47Ofv4cd2yeYnh4lTmIMU0cIUVg0xMlmT06KaTqsLbd44OHHGR1poFSOUFnx0FOQZ6BJgyiMCMIQwy7mSfOMb96zH10qrrt+D6ZhsGV6FMe1AUjjlPXVZTQNhkeGsW0L0h66NHAdiyiKWV3tInUYGanRXO/RanWJgoDx0Tq9fr94n1nORrPD2ZUmM1MjnDi5xNhIg1rVZWW1jWVJ6vUyvudQHfAJ+yFHj8yxY3asoL9pkvX1DnkWoQmoDpRYa3bYsXWKr33zYZ733O1IofOpz32HLE1o1Cr4rs3GRos0TbAtG8vWMA0HoSmqJZ/RkcFCeMa0QBSKZLajFeqqmqTd7NMY9knSkDgN8MouKs84dfosjUa1kL7XJPfef4iJsRpRGNPth5TLPkePzTE5MbRJiTHI0pT5+SX8cmFEX2/UUUIjikLW1tuMjg6iFJQ9l26/j2kalD2P4eEKQ2NDBfKjS/qdLkeOLTI62iDLMvI8ZbkZMDk2SZJmfOLeo7zlTW/CzHRe/dqrieMQx3ZAFFQT13N44vEjlCou3W6XUqXE7LYZNtabTE2N8ZlPfJXZbROMT46xsbFBrxewcGaZSsXHcR2UUkRRgQCHvV7RK6I4L4by3z92D6+7YyfSNFEqJwpDdN0m6IeYlguisCuwNj/jKOigoZFlCkPXkbpFnmXEcVA84KW2KVKgIYSBJooeHUSBuAkNkqRHlhe9C1K3yPNiP8M0SdOMNEnRJGRphuOWMU0bTRZ2GWmacs5cVogCHdE0yJN0s5VZo91sFQUDx0M3bHTDBNRmH1G8aRXBeSpOFPQwTIcsy4iCHrph0troYJjF9WeYDmEYkGcpb/mZT/KqV/0c1+3by4FDjzC7dSudYJ6ZmS1YloGQAr9UpeRZ3H3PvYRhhO06DA+ME4d97v76lxmaHCbDoR/0MK0Kjm2im3qBAkmDifEhyiWfv/+v/0i9UWNkZISxyQn+x0c/yuz0DLVGnSBJ+Npdd7Nly1bGR7dSqwxTKrk020vkmcl6c4PhwREee/gQf/nX72Vmepx/9x9+g+ue9xzKpQHe8c53csstt2JaJgf2H2NxcZm/+38+xC//8juRus7g4BDv+qN3YZkaN73oxbzjHb+A0CAMI0bHxlhZXuE1t99OfbDBo08c42P/8DGu2LmTY8dO8dIX38Z9Dz1KrVpFaBEf/Iv3c8MN15HnCY5lsL6xQRJHmIaPY9nEUUStXsN3fDq9FL9Uw7Z94qRNlmc4rsnKyiLVAYdUKaxN2f00zbAdG8uUHDs6T9kv8Wfv+SOCtMPs1lnu+8793H77HTi2yS233kK1XGJmeobR0WlWltbpdtsMDQ7T63VBCvxyiTAI6PdDdF3H8Uqsri5S9XOaK99g/lSfkdGt5OkQuZZx9MQxrr7uJeSiKJiE/T5xGBA0W0zPzLK60cevjPPA/XfTGPJIMhPXcsgV6KYkjLpEaYptl7CdYaKwh20b+L6P71fpBBu4lobtGBya/yKze9+EVbuCvthCd+0hqqrHiTMtbnzRK/nqdx7g1/71v+HT3/wHPnnPF3nuzJW4rokldTRTkJMgsqLw6TSmyOKMOI2wdAu0HNcp0Q97mIZJFMf4pWpxfagMQUIU9LFtD91ykLJQfQ3DANM00IRBksUc2P8EjcFGYVGyGQtkWYqhS+K4T5ZkkBVsB10aaFISRSG2ZZPmKZblEcdZYX8pMtA1bNfB1F26/Sbtzhq+VyHLC99HTUpanRa27aObhQiaBliaoi9Mso1F3GqNJI2I45RyqYQwHXQJ7dV5vnXXV5gaHtlk7ii6vYBOu02qGZw4Psf09qsYG91KkumMjU7j2B5pkrK6tkrJLVGrDFAtjVAd9nng7ocYmBiEfoBlWwS5xsRUHSFiKqUyXtlGF6JADzWJ0DTSJCbLEtAkhm6zvNqm2RcMj04idZ0sLXqVpZS4pkkctfFqo4Vty9OwvtLxiCv27L443noWAd6lPXcXrnvSF47LomVP7ivIlNrMgc4R5y9/DpdD+Z4V/fEZkJlnSu7E+fVPjjzfLOw/w+H+ifoxP0ju/iXH95PcnTcpRNHY83xe/44/4PU37rjMhs/ix/jPmNwV0PxlVDafNCa5WCjlaXjEF57R94WEn79lP+PlwPd8r0Js9t4VxsZe2WdosMb+A8cQSiNOM8ollwcfPUy16pDnKe1eiyzJsG2TgWoZ33cBgdIgiyJM51yylaOQyKSPlgWkcYhh6BimTT8McSyrUEQSoOk6aVTYLZh24bUV9vuFsqeUBL02SRqg64o0TRDoSN3AdR3iOCCOU+6551EMHVSSYFo6Y8NDeGWHdqcDKsd2ikCkH/SJw4hev0u5XCXsxywuLrFnz3ZMUyfPM1SW0e8HOI5DHBfUMdM0Mc0iOBUCTNNi165ZShUX27ExLQMNHdMuHpa6lBhS4LoOG80W+x89zuLcKVbXm/glj9rAAFEcUil7dDoBjUaDTrfL9NQQjx04yegriUHlAAAgAElEQVTQIEmSoFShYLllepgwiuh3c4aHPfLcJIhajI0Ns3h2hdW1JnmacHpulVLZoVYvY3suJ04sFkIneYzKI0zTZHGxxer6Otfsm8EyHYJewJbJIaIoptvp0RgaIOr36AUR1VqVdruJrttYjkFzvc3GRp8sy/BKHqaVMz+3hu87pFmG1CX3PXSUydFxqlWfPM04fmyNoZEqpYrHmRPHyNIAhWR6aoLW2gYIyDKBbZo06mWUKqwOCuuCAENKUiX41refYHZmjJXVJrVaCctySOOcBx46zOTUEI5jQy42EcgScRpi6BpJmBKFMfsPLbJ1doRv3L2f7VsmCTo9pCzjl1z+4ZuHuOO2l/P+9/81u3bV2bZtOydPnqbdbDMxNcHo2AiHD53gFa98KQeeOMgNL7iG48dOEkcJYxMj9Dp9qtUy5XKJdrvD6OgolUoZz3cRCizbKRTdophSySHoNTd/+za6bvC61z6f1//43/Km1+0hSVNMw0YIHdtxCcOgqLhqbNImC2TOMIp90yxC08xNU3GQRnENxUmCpsvz94okilB5Tpak6IZEaBmaMAqDdECYJlmqQGmkaYAuizlNy0XqJkoJVF5YTRiGXZy/FKRZgq4bdFot0jTGtCxAYdrWprQ3CM0objV5glKqkHvPQBqKLCkEkQzTQglFGsfYlkOSKk6eXKQ+WKNUKrN6dpWPfzLlqn13MLtlluFag6HxETxvknf/6Qe5+eZbeM97Psz73ven/MRb34JbckAoJscnaDQa6JrkM5//PLt27mT7llFW1pcoOTUqFZtTxxdYWWkyMDzE0UcPYBk6eR7xr37yJ9m5dScjwxP8149+lMefeIJ3/uzbOX78GIZhY5aqrC0vMz09xZf/1ze46qpdvObVP8ztr3gtP/9zv8idd76WNEz4g9/7Q+bn+ySxxQtfdBtrayG7r9jCa+68g4GBKnGS8Ivv+CXe+hNv4ROf/EduvfVm/LLPVc+5Gikl+x96hF/6pV9laXkOv2SRqZxKuYzvuTz0yCM0xiYYGxrmOft28vFP/iNvfdvbMBwHTdqcOHQAmQXcfscdxb1MN2itN7HsAVy3uC++793vYXJsAolF0E34sTe/mVe/8mWcXZpjoNqg293Adix8dwCVJayst5GiEFXQ9Jww6rPR7DA2Msziwhn27dvD3qv3IHXB7t27qdfq9MM+D3/nPiZnZkjSPmfPnuETn/g4P/TDb2RtdYGhiRl6YUh7fYVarUqn1aZWqZKbPs3lw6w/9lmUdwN7r9iDCjz62mH6PZPrXvJSDG8QTVeoKEdkAkyD4dEJ2r0+cZQxUKkzOFhmcXGBamOUNC0KjopCnVKZLt1Y4567v8PpIwfZtnuK46cXMOw6lmNhuCWiJGHELJEHCcsr+xEyw7JKWOEhhgdcfvVdf8frrnsb0XrERz73P3j/n7yPD3/iz5lbfoRP3H8X4dE+1cE6tutgV0ZAL5GnEXkWkSY5hm2B0IpCoG4ipUBqin6vR56lZGmyqVhrkKkCecoKbxAMoxClipOESqlBqnJs2yGJA9I4IAoChBCYpoHt6LQ6TQyrKNRq0sSwHdI0I8s1DMtFNw1UmmCbPppmIaVJlqQYVmEHonKtsBcRFppm47gVNFEkg5owSZOAKAjBdJAqJc4zsjzFMV3iKCQO2si0Q9pbZWhkEMfUSZGcWmzzxLE5tu7YR27YPPf6F4Hl8+BD32LXnitZXlnE82zyPMa0CiP1e+69i7HJIUxRpz45xN1fP8hKGBFGMVMDHrqpYQiXKAmwdAtNFPwnpekkSY4uJbouAY0giGiGitPLC+zctoc8y8myFNOyaLc7hJ1lsjykOjz9JNLEk+J7AoG3x+QFN95w2UTq3LoLEbMLl3PI2sWiJ+cMx4s7+flOvwv2uxD1K8zGzzG31CYad/Gc59HAy4aFT40bz21/OZXNp+6vzs+TXxKDXi65k+eS2Ked8WmSu2cB4P0gufsXHN8XcncRRi1445vfwK+956Pcunfo0i2fxWT/tOROXaaR80mG57NADHn6Ssg/Nc385+vNuxAGzxAauK7Dtu0zbN06xeTYEHd9/QGu2DrJEwfm2b5lCyrLCYIQz7WZnB6nkJYPqNUHCDpdDMc7L/2uhKTT7WLbNsKwCHsBaabw/XJxswDSNEPqBiKLi5tBlpEkCYblkGcplmkgNZ2gHyI1C9v0CxxfaMRRWKhzRillz2V4dBBdhySN+cz/vJddO2bwPK9IHrMMhMKQOkkY41dKCDSEJqhULVAaX//mfcxMj2HaLtLQEVKAVsiqF8GoIA1TsiTHMCRKFQIR+WZyrLKc/Y8dolotQw6m7XLq5DyVks/WrVsoOwFTEw3OrjWZn18jDGN8z2KwMQAa1OpVVlY3qFR8SqUqQVSoErZaXdIkI44T2q2AgQGbjbWE0dEKWZ7juxa1WpXjx5bYd+UuyrUyG+0WQRghgInxYTzf4cix4zQGKowND9IYLBP0A+bm16gPVvn2g4e44Xl70TTB3Pwiw/UiUQnjlE63xcZGn+pAiX4nwDJs5hYLkZhma4PpqRmWltYoV8vEUcz05CCOCaurZzi7coahRh2nUkZogqOPP8z42CDSsIkSkGR4nkO7E2LoklOnV2nUq5tCHzm9bkijMcDaepcrd82w//GTbJ+doNvucHapiW3aTI03WGu26HX7BP0Q13dRKUgdyHIefegopmVQrvj4no2OoNGo4bkumVbBc03uvG6GvL4DIQxedNNWOt0ejcYglWqFL3z2SwyPNJg7cZaV5SWuu/5KNKF4/PGjXHXNlTz0wCPs2r2TQweO4/k2upSsr7f44ufv4Yq9s+hS0mq38H0fUzdI8hDb1tFNGzAQQhBHES976ZXosollOShVSGfnKiPPEmzXIgxCDMMkCiIMyykI2hpoekqeFwibadqkaVpQiYUo/IU0nSgMsSwLqSvCoOjPS+MUMkBlqDwiyTV0vQj2USlSKyxDlNKQEsJ+D6kXPXdxmCB1raBTKoWGKJI5wzhPvdGkLChkhk6n2cJ2LNK0oA9naY5l2SiVFHRQIQpD9U2zcoHk4MFjbN++jSxP+dG3fZwP/MWXeM+738Njjz3Kr//Gn3DN3l2UB8vURyxe8MLnEcYd3vD6H+FHf/RHyVVMp9el22phWxbdbpcoith7/R6U0lhfXmZ8eJigHbJ45iCz0xNstFIqjSqPfudB/uZvP8K2LTP87M/+FEODNT792S9z0003MTg0xCOP3c/09Az/9td+C98ssf+JB3jOc66kNjDMsVPf4h0//1v0mjpXXbOXe++5l7Df5Z3v+Bluvf0lvPz2mxibqLFl2zBzp+ao1QaIkwTdMBhq1Hnu9dewZes0w8ODfOnLX2F6ZhqpS8gUjcFhpJFTKjksLC7QbnUwTJOZnTuIgoTf/83f5hW3v5yhkQb1kQpB0qFUqvL3H/koX/7iF7jxZbfRj1JWVtcwTYd2M6XasMjzkKv2XI3vFX2zv/M7v8f73vO7ROEamggol6cwbZP19RZprGHpLtJy6PVaGLqJYUCaxtSqQ0Rxi4nxcZYX1uj2Q3qdPlEU0O6uM1AfYqQ+RKQyVpaPMzk9zpX7rsCzK/ieRSwk1WqFim+xtrqGaRT9hP0wZLThsHboAbquiWUu0PC3YbiDrK+3mNy9G4QLxMhcY+H0IrXRIQzXQ9dTXF1x9vRxStVhdK2MdBQ5KUmSs7Cwhu/XyaRCWDoDZZvpoVFKNQevVEOTJTRNkimNJAjQB+ugt0EJpiZvI4ojfuFdn+V5o69hzBmkE2Q4ns2te24hWE/41P1f4jv3P8aHfv0VPP/VMV37UVpP7KM6MYxUOZohSOKQsl8liEMsxyPPUtIcgl6XOGySp+mmlYlJLgyyLEdTcM+3v8XIyBimaWwKjsTYloeQGqZdsCVcx8Y09aKHrBfgOB5BmGLbHmkGUZxjGibZZuJgGT5IRau9ipZrxEkfaUjCoINAoOtG0WurSYRhksQZ0jJISek110nSEMuwaTZX8WtD2HmMKg0i0wTD0ACNLMvIWguILCLXJLZtk6YZDz18EKNU54Ybb0eTktrwGIbKIVbYThm3VMIyLM4uLNJpd3FdD69UZsv2K8gDcEs5S6fXycUSY8MTHD4wTytcYnCgQbvbRVoKch0NURTCpMm377mPsbERNKGRZjlnF1Y5cWqNW2+5nTOLi+i6gZSysEtaOoPMuiiVUhudPU+MOheP9XsxrYEVnnPt1efjqqdEXJegcU/3+mXHU4UeLtrvIoTvkjDv2SB2z3QOz2So/tT9v7/k7nLrnjLn0yV3z7AP/CC5+xcd309yp/FkFSNXOSjFy2+7lQMbBo1k8YItv9dXfC7FF1yErl06LvPaU37oF+PmT113bv3T8ILF0/z/bMelFg1Pef1cheeyk4tLlgt79DSEKkQPBIVZvGka7Nu3Hb9cIg771OolXNdgbHyUwaEhlBB4vku3F+C5Dq7vQa5hSkGWxUhDw9AEURhiGE5BKdMV7dYGQilyBVIrFKmSOEfTdaIoxLJMkrBHDpBnKMB2nM3PM0eRkiUFBc0qleg0e6yvbFApu+i2S57kzM5M4pUsHnzwCUaGh8mzDF1qREGC7bhITTv/k8jR0IQkCmLGxgeRsgg0lRKIJOXRx44wPjqMoKCeffaL32RqYogkTjEsgzTJ6HV76DoMDBQKj2gFRcj3PWy3UB7UtICFs+uQK7r9kBuu24MuNdZaTdaWW5i6zupaE4FGlsTousbqaoswille3cCxTDbWQ6ShqFVdUDbzC4u4ro2u6xgy48xSk8HaAAceO8LIYAPHKx7uti0ZGxklVwIhNU6dWKRarZJlGdV6GdeWOJZBr9ej10+oNxqcWVzizPwa22e3YJsGKlX4JY9S1aHb6TE1M0i1WiFOAjzf4fSpswwO1llf66AJjeOn1rj6qn2YpmRtpYnrOcRhSLUxydJyEx1Bq93nzMIG7X6XRqPMzMxU4VMoBKbM6AUJpungezZKSI6dOsPU1BCu75GGMb5noESGynUeePgEW7eOFn1/eo7KBUmUYRgQBRFlzycKAwzToLRpnv4bHz/MS/cM0kvgV/7wIzx832MMDiksx2CgXkNoMUPDdebnlrn62j3MzE6zurqKaTtMT43T7XTxfJfJqUEeffAo01vGGRquMX/6LEokTG0ZIwgC6o0GipwojgvqYapQGEWHUK6wLJNyyeD3f++/cfPN19DrbKBLizxPC+8qYZDHEVLqpGkfTRUoKZqB1ByEAN0wELKQTy+u4yK5Q+XouokiL3r2dAMhCgqmblrkuSgsG8iKKqrKicLNvrs0RzckcVCge4YpCYMeumVi6IJ+t49peURxgtR1DN0g3TQPVnlhVJ7nGbZbIAOmWZgBa7IwdO91O8T9Ht1uyCc+/nWuvHoHpiFZnJtnbn6dX/33X+fqfW8gSxIee+IgH/j/2XvzODmu8t77W6f2qt67p2fXaJcsWbK8YmEHbIwx+2pszHaBvDdhTSAJcEPCDSHJDSGEF5KYC2QlkAQckxtC2BcbjI333dq30Uizz3RPb7XXef+olpBk2diBm39ejj79UVf16VPVPX2qzvM8v+Wv/56XvOQ6qrUClz3rWfzbv/0Lmzeei0hs/ufvfJhCSbB2/Xp0J0cctMhXKjQXG7zz7b/Gq1/7elTVQJUKvjeLWRpFtVQsx0ERMbOTBynWBsjrOn/5v/+Ot7z1TXS8ZRpzM1x8+S9x6y3f5jnPvpT1q7bRbCxz9dVXcfjwUf7mbz/P61/3yxw/fpzt2y9ipdNgYKxMruQyOjrMR//0L7j6hc+jkM/R67YoFgssL3QZKJep1groho4qdFaNjaApOnt3HyBOBBdfcjGqCkkSkM8X2fPoo5SHimiKykB1lEK+QCojDj18P29609v4u89/nh/e8j2GhtahGw533HknW8/ZxLOveg5XXvNCrnney+gsTrP93K38+N77qeQ1itUiaqSxtDSL7eooIuD617wMPV+ktdClWKlmVBqpZj5rsk29UufBux/m9jvu4ryLd9Bu9CjlSgQyRpEW3fYCkdCp10rYlsXU5Bw3/vnfsvOyq5BykTRVKDoVWi0fJ1fisYN7qVSHMun9JGZhqUMx5+KaOqrpoAmH7soUc81JysazWO4puPW1TB5c4NwLNnPDG9/Nv375y9z0zzfzuX/6Z779vW9z05duwpkq85kbP0tZrmJhf497vv4YiSc48sA0namIhQMNZnct0Zlu8Z3PfYPeoYA/+sxHuOMH9/P3X/pX7vzxvXzh85+jsbTIn338z1lY7tKcbfGBD3+Wr3zjHu795t0MiAl2rjmXVrdHsVRmdn4apEmlVmNxeZHL1l/AWHGUam4L++4qkbOeTXXtBChZYlEqegah1nV0VcXvrhDHCUcO7Md1LPKFAUwrTxgm6LqOJlJARdc0BgeqOGZmq9LpNDDMPD3PR1EkmqYRRRn0UEqB73UwHRNVtdB1g6XGCppuYBogROb5FkYBjaXDgIJh5BFKdm1I0wRdt1G17F6dxJmcvUxDmssNFJmwOHsMN5eJ64Reh0KpQhrE9LweRF0U3SRJJKHfIfWbSOD2O+9j3fgwYRDixwbt1KU2MEjOtdANnW63jW3a+JGPH3jYhgWqzCrI+QKTRw/T7bQp5PNYjs7RY8cZHh1lfHwTYRyyZs04cWry0KP7aLcbrCwsUazX0DUDQ8D88hKrxtYj1BBNNUjRuOfR3Uxs2EK33WJkeBW+18W2LPbu3QMyxVUThic2oDmF09ZYUZBwyfXnsmbt6j4U/uyru9PsDmRfDO5Uzt0pFgdnQi9lvwp36nFP5eU90TLvVAXLE+OfsDI4W0h1Vo5g2q8E9tk+qSpO2hYIJT2dj3faOYsztrPHqUc+W3AnUokiOfl4qi0VZ1gqqOovgrv/qial/NBTlTU9+UeX6WmJgvrgAHcf9anJBVRxxq/9rAOJJ09V/NQTUU5//jQInSchmqcGjGf8/584oQzvDacHcrKftXnCgZ/kiGdcEBRkBpsUoJs6I2PDLC81OT6zRC7X5x3lcwhVwdQNfM9DEwJFU0jiAM/z0QydJEqJkxhNKMRJSBQGOLbbV7yz+4s8DV3P4GEZ1w6kFKRJgmXa/cpZTBJFKAK8nofjunQ6HXRF4Nom5VoFYZgYpo6mq2imjiJ1LNvAtnWazSYqOpZtI9UsgPV6Hkmaomk6URQxOFjnyOFJ8nmX2elFiqUyd939CCPDA5QrpUz9T9fZsG4CyzYQSky72eGhh/ewetUIYdg3TVczrpNEoqiCNPbptZf4j3v2cvn2URSlw0C1zq69h7nrwQOcu2mcNFFwnRy1agmFGMt1kSnoQmFkZJR8rkCpUmRiosbk1AwjowPs2T9JFMS0Wh6u4xJFEtsySOMAQxckacrhg4ukSYsoTnEcm3a7h6pm4gmNZhvHsbEdlyAIUPEh8agNDDI3t4wkZbBWYqXVptE3lZ+dW8GyVWq1Al7Xz5ToDJNHHj3AxOgAaRyTy7l4fo+R4QG6XT9Tc4wSioUC+UKeKIUkzSwVCkWb+bkGF5y3CSEEqqllZtxCQdEEQsKuvYc5OjVHqVBg7cQwS4sNfD/kzrv30/UXyeccdu07xvh4kYmJQR58eD9pHOP3QnIFF9u1KFeKHDh8nFLRoVavEQYBhq7ynd0dXnTBOEvz83z/oeP88cd/j+3nlXnw/sdYt3YtKZk66EP3PkKtXqHdblEoFRGKwu0/vJNzzt2MZWVKpvPzi7RabUZGRxgerVOtlsm5Bb7x1VtYv2ECIbLkQLfdxbJd6PM4wsDPhIhQmZ1tse3cGmnYRjVsoijAcTNTY81ykQhMU0dKHalkptIy9SFNiaIws1cRKkLJqimqkhL0mpkyp6ahqqDqOnEs0XWHVCYoIiPg65qJqqoEfg/bzWXVNyH6Zro+QhPIVEE37P4czap1ihKj0LcKSdM+RyXu+1cqhIGfcVY0rY89AikzQ2bbyoOiks/nOGfLBLplkKaSP/rorQwNP4+v/MvX2bblAtatW8t7fv3dDA0PsnnLBt773vdQLFWYX5znyiuuYmFhkaPHj3LvvffxzGdcTBwrTB2cIueaWDmH19zweixNZ/LIIQYGiqystFHIBH6kAu1ul9VrNhAFGST4pddcza5dezn3vIu56Ys3owuD83dcyMjoat7xnt/mgYfu5zXXvpzhWpXf/uBvkM+bPPjgnYwMDWGaOo5lYRomhVKea1/9Sjzfo7nU4rYf3ca2bduZPjbP92+9k0su28n0wiKmk+PF17yCG173OjZs3MD+A7uZmFjFn33s45y3/fwMMh7HaLrLYw/uplIZ5ld+9Vd45StfylAxx8iqtZSqBaycyvDIBH/44Y/wkmteglswOXJkL0IEvOZVr2Drtu2ous7EyDATa1cT+x49P2BpySMIIqr1EkvNObrNFuXaGq553it4zRtfz6+9631sWruBarHCkt+jVMyxZsimWB2g63VJUoFjuITdFmFvBcepkKYxzeYKtWqZzedsYGLNGI1Wi2qxgGorHJ8+zg9uvYN9uw4zPFRjZblDqVjEdCxMUyeWgtjI853vfZMv3vwd/s+3HoaDKX6jy8qxFkknYfGY4IoLnsMvbX8Wl264iCu3P4vLtzyTZ29/FsVyju1bz0fTBLar45by6H1fxzAKkWmCVCJ0Q6MyMEC5muOK867g4nMv5aI157Jz804u3/Zs1uRH2bnpGayvrseVJZ574dU894Ir2br5XCyriNRUrHwZTTXIl+rk80WmJg+RJDH1iXHG63k81aQ4NIIiDITIkjyqrtPzPFzLwe95SEVHN12IE3JFF9Ms0vWaCBUs2+HhRx5ioFKn5/fQNYVUaEiZCTCpmknge/R6Ht1eB1s3MsVMGaMqkla3R75QQKYKfm+F5soK5XIts8DRDFRVRVNUbLOA0Iy+uEjmQaoqKqHvs9xYBqGh6iZCtzEME9t2UJG4joOZs9C1AqbpkEQxaDFhFJNzK8g0gbhF2llARhKNkIGREfxuTKzXSFWTVWtWYxsWjeYyju1kSxGhksqUSrmC1/WJAp92u42qqLTbK9Rqg/S6XUzTot1u4/kepVKRKE0JoohqqYhu5CiUCxw7tsKRww2qA0VSEfPo7uMYRZPDR46z99AxFjyF88+7BIRgaWEePwio1weRimRkZAxLj5FpF92pYrr5k0un3//c7/Pu33/ryW0p5Wnm46e2U2GXytlsA05Z6D4uUDrLEvZMb7yzLu1OC9JOhFeSFPmky9jTYJ9nVuCEOFkeOBtbLkl+IuZzItkIfdDVifFPjHXGtjh14+TJ9Cla/eTjyedndjtj3y+Cu//Clqbph57oh39mOyXf8Lgq8Nj4GIc6DpXgOD81THo6hLaf9/tPvPfnGNydmFTKqTtOHu7JRn3qRzxZ6DwZ8EnyxQKFggtJimXaaIbax6PrKCKTLVY1Pau6mBZJAqmMMS0bUokUWT8UBc3Q6XQ9LDvL6HfbXWy7r+onBIqSef1ESQIyE2EIg0zRS1EFqlCzCpmi43s9dC27bERhduPLJPdB0xWEorJ71yS33vEI69aNYhoqURgjhCAIQpI05YH7dzE6MsjgYJXm8gKDQ3U832fVqmFy+XzGE0pTFheXKRbzCEWhvdLGzheZmppnYs2qzI+t3e5f2FSETFE0I1OvImG4pDI/vYQgZbnhsXHTOEP1AmmU0Gh2kWmmTphzs5tnHCX43R5LjXkKJZWlpR6WaWDqBkKoVCsFGo0GG9aO8dCjhymXXXQhWG50GRsdQTN0hseqeF5EPmchU0nPC4j8iLmFJpVqkXwhT6/XxbIMOp2Ig5PLtNs9JsaHgZSl5RWEolAp5ZmeXWLdujHm5heZnW0yOFhmaWmFRrPN2tUjRHEKQkMIlUaji1AFYRgwu7hEpZwj8H3CIKbT9jhwaIZVozVUoVCrFJEIGo0Wfs9jYb5BsVBgfmEZ09Ao5EzWrBpmbrbNfQ/tZ+2aYQ4cnCWMfXZsWU8YSTZvXIuUmaG2kqqEYcYvdFwHVRdZ5S5noutZgH/w4BRJkvD9fR6vu3IrhqGgDGzByNU5euQRLrpoC5qmMnNsGoC5+QYH9h5i0znrMXWdH/3wTgbqVfY8doAjh6cYHhnk8OFJNE1jYvUqEglh4NNaWaZaq1KrVghDD1Uo5HI5Wu0OppF5vmXVRBMpNLZunuCVr/00N7zmApCZyAiK7CtmqpAkJFEP1TBIkpjID9GEoNtpYzl2Rk6XEUkcZUqaKRiWSRRmUCpVM4mCCFXPrDNkFKDrJqoQJKkCSoqiZqbrGdFdJc1Ic+iGkQV7JJnNgtCQMiFJfHTNPJnzUlWNKOhlC0bNJtN9ECRJiqbZGYxTCDRdRaYy879TYkI/wHBsvvPdXbzhTR9maGAYKVLGx4eoVof4wO98gJHhOtu2beWG111HrTLI819wDf9y0/9B1wX1ep3rrr2eb/3Hd/n+rT+klNMYHR7GKeRJ0pQP/Nb7ue76VzE3P8Xg8Dih18EwTEzLQjczI+g//PBH2LhpI//2pX9k9/4jrF13Dvfd9yDPvvwCPvXpTzE8NsKrX/JSbr/tFl788pex7+AxfG8Zr9tjZGQEtY9UODI5ieO6qMKhubLCm//br/COt/8qQtU4emSKT3zyL0mChPGxOqYBaRTwuje8EctRmVucZuOmjSQprJlYR6lcxbI13v3r72Z+uUsae6xdt5qdz7yQfMnksXvvYMt5O/nwH/4pL3vlK1CkztLcLOecs5ZSJc/s9AKrV60n8pcoDoxQqVSJe126QUDQblGpD1Gu5imU8nR6AUJYNOYOUx6u84Y3vgq3XOKFL3g+M5OTDNZK1IeGaC21GBsbwfO6FCoVZCK46R//hXxpjOHhARRLI/ICbNui53UJk4DaQIl8uY4uQ2LNQjdsdpx7LpdceNT4R6QAACAASURBVB6apvHlm79GrVpkae4Yb3vXe3noWw8zqI1SkgXOX7eDZ5/7HMY2baBcHcGxK+h2CaGpWaJTSiI/43VbtkXg+/hhLxN9QkEVGkjQNIEf+JnVSirJuQVkokKakCQZvzqIInSRoBsGqDopCrqqIpOIFAVDt7I+hkaagGnoJFIFUnTTxLUtbFPPxHm0TFE2Xyij6zqmaZEkaSYippl4vS6a6SCTBFPXWFxcxHQcQGRCSWpW2Qv8gIFqvV+tBxmnKEJi6DorKyvkXBfP8zE0AyGUTPxICOI0IVUSCuUqcRxDqqCKkHyhhFA1kjRF1yCOY5JUEskeSSoxNJvYAyFSklSiGTquWyAIfAxNI/R7qGQBSti/78dRiILaX+pEGQWjUCJMQhSlyV233U6hVEc1YkzVZqa5wsz0CkMTm8gVigRRyKED+xkZGkEVAl3X2bXrAeq1eoYmUgSua9NoLlMslhkZGSPtJxfDIKRaHaDnd7PrjtCoVuukiWRkdIhatc7ySpetF56HrggsvcBcM8QPI/yuwobNm8jZNSrlErlSkZHBMYqFMo/ueghDNzNaRHcBTVOoD29AqoI4SjmuH+F3P/j+J1hDPTEs8wnb0wzunko77Zj9MWIp0XQd+RR97c4M7tJTBFDOFtydrCiiIBTlZHB36ihPFNwpp26c2VtRznh+Rq+fIbhT/m8YT///qfleIDmDMPp02pnf/+zMLNXJb//M8Vt/9DO2fy6DnjHkKZP3SX5LZ0Ivz8azO1ufk3vOAhU9bWKdZg+RvfvM0c8Y4LSx0iTF7/TQFAU/jrBdC1U1M/+qNMQ0zAzWqEikTPE9jyAKcQ2TnreCYeTpeT1My8Y0LUCgqDqKCp7XRhd6JhqhqaSkeF0f284hBUR+G123CMMIN5dDKjFeR5LiYZk5hBAITeC1OswuLDM+NkbkhwhLI+yFOHmXxsIilWrGdwniCNtwM8Us4qzyIRSEqiI0LftW+4pZPc8nn8uzvNTEsTN1vQzvriBVUPvqVIqAwIswNYHQdaIkZc+uOxkuZyIj5UoNr+cRxTG+F1Ao2sRRTJImSDWmkCsTRwmB73F8Zh7T1BmoDTAzu4Rj6piGxtJSA92yGBqscHRyjiBWGBt0cfN5VlohaeTT8juU8gWqQ1WCXoCQktnZJcZXDbK80ibXh7R0VlbotHrUBwZYbrT6pOyEMFIRAvJ5hyiK8IKIYslG01Qkej+1l7DSbJHPldi7/wBr1qwmlRB6HSDGdIoEfpdCsUCn1SOXK3Lk6BSGIagPDPQNZE32H5hh4/oRDh2eplIuECchfhhSKQwilJCFxRXKlQIpknwhx+TkcQzTRBM6u/fv55cu3Y6uG3z/tocYq1eZW2py2WVbWW40CbsJ9ZEaUdBDN2w0RfLv376Tb0xX+Mw7nkMaKnxnoUZncYXjjUfZvL6GqetccfXlPPboHuaOL/GMZ24njiNuv+0+Xn7tC4mTCM/rkSbw8AN7KJTybD5nPd//7u1c+syL2PXYXrZs3Yjt2Hz7G7fwopc+B0VA2PUxXBWhuX3ltozzmiQemmahKCkkx5BCJ00TVEVmlbnYI/IDrJyDUDJBkyDwSZMU09ARQiEMElRdQ1UFMs0MyDXdIuO5xRiG2ufu6aCI7OaekqEbEAihkqYRSeKBzGA1WQUu6cvEZ1AvSIjCjBOqaTpRHGbCFNIgCXroporf87MKpZJmMGwEUeCjGwaKEESRpNeapVgZy/zbYnj1G77IjX/+UWzHYubwPAvzs2zZuhnNdOi0fErlAvfcczs7tp5LO1jhN3/7D4ijhIGqzu6DC9RrNS7csZ33vOd/EK7M0Ot4HJ+Z5qJnXEKKRBoxXjuh3VwiVx7AURRmpo4yunWCJFKZ2vso733/x/j0pz7JX//NF3jtDdfzxZv/iquufAHzc02Gh4eYmpojiDs89+ormJ9tsGpinDRJefOb/x9u/MuP8cm/+AS/9b7/wU1f/AovfcEV/MnHPsmLXvwqdmzZxtve86t89m9vxFFd7rvvAQ4dneTv/+Ef+OKX/on6QJG5hWXyxRJL0wvkCiaOq5PKiKOPzdNrzjC6eROJGuPaEbHfo7GwRM9z0FTYtmUzdz26jw2rNmFbKtNTh7n1hz/mtW95HWEKulwmUkf420/9A/f/+E7e/7vvZNOW1XRaPcxSHVVENJcWKOTLEEWE6EhFRdHA67ZxNYUvffGfuOZZz6cwYJOKHP/yT//Mta99DUmSYKsGYaSgWymKpuAYFlNHj1AqF5Ek+JHEdHPIpIeLxoOP7GHb+RfQXpzhze96H1Zi8b43vBel702XVTeypF1zpUmpUkEVmUBQkiYIIUjihDRNsSyT0E+IkwjSGFVIVNNBKJAmCUkco2oqURyQpBJbd+h53YxXLSW25ZBKSRInKOj0ekcoFgcIQwfVFtnc6nUwNItuZzlLUOoOlqkRKhphu4mdK5MmAaqaVc1Dv4PrVkg0nbCzjCoMDMMmJSWOo+zeGXQxdIsoTgkTiWXZBIGHITTSOEXRRXZ/lDA7N8tQfYiF6WlK9VomGKWaNBstNE3PYPZpQBKDISzQFGIZoBCSxgqRDLBMh9DvYui5jHfZa2EaNpqSKfeqIhNH8/wAU9XRTJsojkhliiY0FhZnqVZqyFQQR20Mp4BhmFkSSlXx/Ahbj+m0WliFAqQJJhC2ZvD9KOMCq3Dw8CRhMszoxmHUNDMK1zSNOPKIYklnZYWc5WBWCpCmHNr9CKWBOu1Wk7FVawnilE5zGUOzKRQKHJubYWJ8gqXFOf7u63/PcGGEydYM733Nu9A1g3ariWXbLCzOUS7Vs4SSgFRGmIaFpplMHp1iuF4niGNMSyNOJF67zeSh/UjNYKyiUx1bhaTGbbO38N73/fopHLTHBxyn+uBl2z+BTz6p2Xd/qFSe3jdN5cnnSZL2D/fU1qinjvFU+57a/+mYkyenSWVk8/VECCnS01487bWTuwGewnk+laZb5lM+8V9U7n7G1vP8D4mTF+2fveXyOT7+he9w4XiWff75tv/Lwd3TOpOn0vsnCkiP662cZYQnDe6epLOigCKRSUKr2abRbFAqFbIbqKoBWcZfSoVer9P381KIooA0TlA1iCIwLSNTEVRVVFX0P0GCYWoIKQjDkF43kzQ2DSO72CkKSSKJ4hTTzBQIV5pNWiseQmT7el4vk3tXoFqrgaLQ6baxXRddU/HDgEIxz3KzSZqkmRiEYRHHEUIoqJqKbpgkaUIqU4JeiO9lUuqZzYpKFMU88tgehocHME0rUyf0wwxLnqaEXoDjOnieh6brzM8s8dGvH+GKjS5uzmFudol8wUXTNPYemMIyNMIo4ujUAuPjoxw/toDr2PhBgKYaDA8NkMSSleYKQii0Oz5r1q4iSRMOH5llbLRKvT6AKiQHDs1QKuXxfJ/hwSphmLC80KDV7mLbBrm8S5r25fYVSXO5y559x9m0cQ0xCu1mC8dxyRULBH7Inn1TVCouS40Wk8cWcB2dOIrpdjO58uWlZgZlnV9izaoBNF3n0V2TbFg/Akhs2yWXd7j3vr0oKCwsrrDS7jC/tML4aJ355RUWl5ZZPTFKKhUOHJhmabnFmlUVypUKP7jzAdodj+HBKq7rcOToLF7PR0GlWivR7XQZKBc5eHiWnGuzZvUoqkhZv34cmYJpWBw/tki+4JAv5HjgoX3ZbzGV3DYpue7y9SgIPvCpm1g4vsT+Y/P85m9ci+saKKisWb8GTVUIw4DB4WEefXg39XoFN+diGAZTR48zNTlPLmczNj5KvV7hoQd3s/Oyi3FzDkhYWlpiZHQI3TCxLIsg8NA1k26vmXGu1AwaqUhIZcorr//fXPeKzX3bgBih6aSximE4KIqO18vsFHTdQNP1PnRSIoQGIvMTisKgD5ekX3VT+pU1NRMt0k163RaW455ciCh9LpDWFz9QVe2kXLjQVJCQRDGqriJl2lfGzOBTSRxlWdokQTcya5OMyyeJorCfFMqMuqMwOalgu9LokSYJb37bV7j04ks477wdtJsd1q9bx8jYMKnMVAFnZxdxHZc//8xnSZLDPOPSUV79qst5xUsu5cUvuoyXveRi3vTfnscVz1rPsamHeO4LXsdb3/YrbDxnE76MSBWJYTjIOMV2FTTLRmiCYrVINwgQqBw9fJhXvOx6Ot0lioU8b3/7O/nTj/4Zg0OD1KqDrJpYxbr165g8cpBCMcfXvvENTN1gZGyAa697Cbph8/xrrkbVBLVKnUIxx81f/gpve/s7+OAHPsBb3/GrVOoV/uR//THPe96L2LJ1E9dd/wqKJZdOq4WbzxEnCeVijv1791MqlFFVgy984TNc+ZydLHcWMM0CtmFSKg6Szw+hGRa33vIDhKIwu9Bh/fqNSCVkuTnHziuvwDAkqpQ05xt0Oz2KeZM9j92DVHXOv3A7iAwSHEYejmUS+hFLy8vkizZB2CbpdbBNE6FbbDnvfJxyjjD1mZ9epFQsMjg8yPzcHN/6+tfZeM5WGo054jhCJuA4LrMzM+iGQbFYodFqk3cspo4f4yP/76f5xy9+ie3li3nOBVdx+Y7L6Pk94iQhTjJYL2TJAzefI4nj09YNSv9aa1omURgho4D7772DWq2WGSSrWqaurHDShkQ3dNIk7s+ZBF3XSNMUTTcySHESI/TMX9EPEoRhZD5cSXry+I5tIVEygROpICMP282TpjFRGKIKDQUFVdioioFQNILII0kkmmGhqCpCqgihoQqNNJWZRUChhKrqqJqGpuvZucoUTdOAbC4JVcVybHTTRBOZwmM+X2Cl1cSyTdrtDo5rsbw8h26pCE32EQISTTMzvpTMeLepzJA1xAmaJpBCyThzSZJVshUdFIlQ1ayglGS6B5ZlZvwzN08YR6Qywe/78mWVNDWzEzEsZNTD68yjKCGayJABfs/j0PGAbRfsYGl6juHREaIoykSnXBs/8AnjAMPS8DoeedugvbJM3qmQxhHt1gpRHGW/AU3wmX//K+45ej9XvfgS9FLIzp3n8dLXvpTrb7iBufYePvTpj7NtfBv5YglV1TD17N6eL+RRVQXf97Esi6XlRQxdI01jbCePpqjMLS5TLNco29BabHPTw//O237vXVx++cVcd90b+eIXb+ZLX/oyRw5PcvnlO09f351FWO9xwiRnaXGSkJ6CbjtVhOUnz+Vpr/209tOEXM7W99T+T6cYc5pYiiJO26ec/uLj+sMTVe7+c+0Xgir/pU350H8msHuyiulllz+TfSsGu+67jYnBys9ycll7Mk7dWWCW/+nDPK2+p06EJ/ouTlqin7Kr/1nOFFk588KD8jhu4Jmvnxy7jxdXNZUkTaiUSmiaQSqTvmpXelLQQdN0kiRC11V0XUcmKUkSoggd13XptD3iOOFHP3qA0bEaAL2Oh64LNE3HsW3uvOtRBuslVF0FoaKJTC46jkOayyvouuCBBw6yatVABkULQ2zbyoxXTZM4ijAMQRAGuHkX2zRJSCj0FRxzeZcwjhCqwDTNTH2sz/8zTJNHHtrL2vUTKCKTgYZMcKVaLeLkHOhLgkdRhKFn/D3D0ElIMS2HhblFhNDYPzXDeeMOcRTjug4zs4vs3jdFo9Vjw9pRTNNkoFZCNy0s06Tb7aGpgkNHF7BtHQVBLm9RqZYyTkqS4Hkx69aNYZoaSwsNipUitm3SbnUYHKkRJxCGIYYqMQyN793+GOdtX8/+A8cYHxum0+lSLBVJY4lpmmi6wtHJWVRFZXGxgRAqcZKwdvUokFKr5CgXyxiGge+H2JbF4uIKc3PLbFw/Tiwlu/YcYaBcwM076IZOp9Xi4OFpTFNnbKROrVqiXsszWM1jGAalvEK1YtFY8uh02pkaZqdHqZzjjrv28qzLtjC+aoSVVpdWu8uhyXnWrx7G74U4jkGn08a18xTzLj++dx+uo/PYvikqBQfTMLn3nj1s2jCEUDK+2dhIFdPQODQ5z6+9fDtoFqZh8+UfH+CfPv/X/MNNN/GWN17DbbfeRa1ewclZTB46gp1zqdYGKJbzjIyN8Y2vfpfVq8eoVusc2HuQXM7i/nseZOu2zXz/u3ex57E9jI7VuefuBzANgySR5PMFkjRFKCq6KtBNiySOyCDFSb8SZvCql1/Ce37jczz3yjWcoNFqWpjJCcVdkBppnKCgkMRZFjrzCsoSZ2kan/RyVFUN2Q/+pExJZYqum0gpUbWM/O/7mVqp7weoisoJtctep4Nm6P2kTSa0pKoaYdhB0wwURSWzTggyOXEJhpnxfxRFQSgaiiIRigKKim0b3PTPt7Bh4wRB0KPT9pienuc9v/1D7r3zPm688UbyORc/8Lnl1h8yPDaMZVsIDX77gx/C7zzKReePEAUhg0M1UFTuvfN+Gs0VxifG+M43b2Hd2nEqtRJvf9sr+MM/+Bjn7bgIP+jh5F0UqXH4yF6GBgZptxoYrknXD3GExS3fv5U1GzezaniQhcU2Gzau4fNf+BwvftGreNOb3kK9NkijMcfM3AIHD+7mgot2sPPSS+n2mpQrOVqtRQyngh/18Dor/Pu/3oxml3jDG95Ar9Nh56U7yBUL2I7Ltq0bmJqaZGzVCIZp0vU8dKmgmyATQafd44EHHmLr1q0kseSSS6/if33k07zwmlegKSaHJifxIsiV68wtLnDZL13J7NwKlVKRIExZ6XaojQyThJJudxnL1Dh6rMtg2WRouMRVL7iKtgdh7FOrDiKFRqezgmtbGIaJZpksLS5QdF1cJ0dzZQXbyQR2lpbmiOIO4yMTdDstygNVTEvnzh/fgY/ENMHVNF784ut59XWv4VM3fpaLL34Gvh/w1ne+G3Yb5NUaF2+6hCt3PIc4CkhQssDANNFVFcuy6fV6fYh+Vqk4wfOBLHkRx9lvPAt8BKHXZWx0VXaXUrL7UxSFpEmC7Vi02isYpo2mKNkc7P+WU5lVWU7MhyRN0ISNppv4YRdTM1AVEKqG0OgnHG0UNUtcaEIQp5m/q+XYpFIiVI04iVFESBT52GYeVdMyr0kJSRqiKCmpkvTtTRSEqtHpdlHJvL+Mvn1KnKYIoWKYFigSRctEk3rdHr2uz/59+xgZGaXT7VAo5JESSoUKiqKhGyaRH6MbAk018TwPy8oBoKoKmlCygFTTTnLPdcPM5j+SMAqI4hhN1dENlSCIMC2LMA5JEcSBh6EJEpmCJKv8pWCaBmFnmaS3hCGSTLQJh4d37WNw1UZGJzaiWwqDg4N0ul1mZ6cplcpMHT5OtVzD761gGZLUmycNFrHMFEmDgqViagrL88fx2j02PkNQytd41Uuu4ltf+yrr1m8iRSGnJ9z/4MNccsn5vPrl1zKxbYSP/NXH+O79tzBRHKNULLG8tIzv9ajV6kwdO8b4+ARpkhIFHpaTp9vp8Gdf+Tg/evjbvOzKFoPrC8x6JVr3x0TLEc8+79lcseMKrthxJRvqG3n77/wa11//qpNrphPcuxOP04hG8vTHqRYJZ1ohnMqryywJHt/np7VTA8UnMk0/s++pVb6nG9wpIltzSuV00OapwV2qKCfFVU4BW2bvP7nxEzu0k4+ncS6/CO7+C9vT8rl7Gq0+WGfNhVeycvBuTE37mcb6Cfb3LFBIKX9uVceff+XuiZvkySfoyfGfJLj7yfMM25z55vTNjzU1g1maVsZ3SyWamvENwsAnlRkHKA4j4iTEdvLomoZhWghNY8+uY0ysHsQyrcwwW0uJwph9ew9xzjmbUFVISQBBp7nCzMwMedfCdXKEUcjI4DDNVoMf3/0o52xcSxInPPbIAUZHhpmZnqOQt9FFFrTFfoimqfR6HqZtgaoQRzFHJ49TLBRIkoRmYwXXdUEIhgerIKDRWMo8+PyQQiGfKXDqWcXNMA3iNEEz9Awql6bohg5CxTZNdMvij798D9deVMexbZI4IZdzGBmqMjE2QJIkzM8vY+g6piNYXmrSavWolEuMjVZQNRVF01lZ6SAErKy0ODo1w/p161CEJI5DoiBm/+EZco7FUL1CokKvHWAYKoePHqPZ8rj0gs2Efkyp4KKoGn6YYuc0ZmaW8Hs+tVqOVrNHtZij3VrBdlwGKnmOHp9ludEhTSMs02bf/imqlSKKojBYL+PaJiAynoVlYZk6KDA9u0TesUjSJDNIL+RZml9mpdVmdLROs9Ei8ZdJ4pCFpZDQ75FzbRorHkMjdSqFHKpqZfysvuXEQDlPGIQsLK2watUgoR+Qz+XRdBVDh4nVw4wO1igWi3i9Ds3mCpWKQ5JGmI5Dmsakcczx6QbjY8Okio5A8IUf7CZoz/La172BOJhmaGiIRrOJbemMrxrjhz+4j1UTI3zzaz9g85YNBJ7H9PQsB/YextBVLn3mRaQyYXBooK/4pjE/t8D2HVt44P7drFu/mk67Q7lcRlGy37NCxp8MQx/DtJAy6S8edb73/Qe55ppziAMPRSYI1UYqFprIbA4MMzM8VzU1WwAgiYKoD5E0kP3KRKZGG5AmKYalEwQBMs0y8kkcZrLmSh+ZKTMBFVUTpEmKIpRMSKW/CoijBFXV0DTZ561mVgmSbHxNtbPEiKkRhVnQmqYJgedjWBZLc3MUS2W8nsfQ6ACO6/L+37uDP/293+GX3/rf0XSFKPERArZvPx/LNJiZneVLX/pL/ujDbyZfcNl23laqA2Vq9axCY9sGW7dtxTBN1qxdRa/bwbR0hFB59uXnsm/3/Xi9zFhZ6AKhJCwv9BiuFFB1Hd0w+dyNf8OW7duYWLeOh++5m//5wT/lgvPP48qrLmd0dJSXv/SVDNTrPPDgPTz36qvZsm0zzcYShmkTJz612gCOVSBSNAwdXMtkYmSUQOrccdvtfOxP/pjjM0e4+gUvRDMMoqDDqrVDRLFEKBaf+MSn2bJxLVHSJecU+Pu/u5kg8CkVXVQ9xcrrPOeqZ5PEbR57+DCbt67DKVq0vRaVyiCqZvLpT/81z7p8B/c/sIvtOy7g+PQyv/++3+XCnReiuzbDY2u58/ZbqQ0Oo7plxkdXU60VmZtbxHZzuLbO7Mw05XKVdq/DYHWU40cWSS0TN5cn7K4Q+x2Wp2cZHqzS9WNMVSVIIwzdYP3qdaxav47heoUDu3fz+tf/Kt/77vd5wQufz1ve+S42WVu5+pLnMzRSQxcCRfb5mZ6HZmZiPkJV+7YYcZbA69tEpGQ8zUxBW5DKlCiKaLfbuI6DlLJfidXQ1MyvNEX2lUhFNic0jSiRpIGP0g/qQEFJFRAyg2miYKoGqSJJ4hhbt5BKSmtlOeORpxGaoqMoKn4YIhOPAB09zdYGJz6DH3g4hoNMU3TTwWt3+vfFmDiMEKqBTBU0VSOMAnRNIwHm5mYp510UVA4fPEKumEMVKlEcZ9X5KAJVEPk+YRRQLBQxDYeDBw8wPjZBmHQ5fGgK2zZRNIgSnyT20YRBL/DIuTmSpD+3yeDehpsjjVOSKCGNYtI0wdBV0iREN02khFang9BFxqkXBrph9i06YsIwwrJcer2M+26YJmoSEofLRF4bNVFBV+gFUBzaREKZbvMYC9NdKmODmKpGPlfAdV3a3UVcx2Tu2C5cM0UFLDVLLYtER8gURIxqpPzND/+BC9c1mBgeY/f+41x00YWMrV6Dqhkc2H0fOy66lDSN2bd7Px/9xF+QJgntbpu3vPVVjGwc4A8++3Fu23UnX7/rW3z3gVs4fPAgX73/W9xz4B7++2++jm//6GuMyylm2j637m5z0dirOH/zM6kM5nmcCARwxY4rqKwtZgH82dZQT7b+eoqVNU3LUBpPl9b0ZOqdT+VcnnZwd7KgcIaJ+SljnuDHncm5O73fWU/wKZ/LL4K7/8L2dIK7U0vPZz4ypO6JaP4nf2x79YV85GOf4LJta56sEPUELatNnfh3cu+TlNp/lvZkIyln/DvbGZ553mct6PUrdycqbk/5hOSJ6uWJI57RtQ8hy4ZMCP0gg2kZenYhVhTiKMxU/gwTUzfoddtEicG/f/0OLtqxFt/rIWVKu91m87kbUUV2LVBUFUUIZJJSq5aAAM/PuATN5jKWZTA4NIzvdwmDLppm0vU9xlePMVgtYObykIToOpQKDr7vY1oGcZpJRAtDQyYx3Y6HIgULsw1CP8AyHBzXwnJMTM3OFEANFUXTEIrAdlxM3WBmehYZJ/gdj+Zyg1whj6KqaKogCqOsYqnq/Yt8tigJuh5fuecI114yyMzcMvOLy7i2iaaBosSYbmaSW6oU8Xs+tm3h2AYyTWmteMzPLVGv5OkGPpau0e1E6LpLsWBz6+0PMD5aJU1URicGQYFDh49z5NA0K80O9WqB6fkGQ9UKB49Ms2rVAM2VJoVCnkLeYGW5jW1qFIoOEgVdFRw4NE0u7zA0UmVpscXIaJ3h0RqmaTA318w8i5SYXi9gabHD4lKPKIlwDZW7HzpItVIiRWKaOp12QKmQJwwSgrBNuVIERTI736BcKWTm4wIsp0beMdi1b5pSMcfs4jK1Yo7FpQakgoce3ke5VOAHd+7nwgvWMTBQpbXSIZfX0HUT0zKwbB1JSrPZIZEpQRSTy2dKoj+68yDDg1UM02S52WH7tvUkaYTtjhDGCV+7b5JXvugGTNViYXE35UqB8bFRpo4cozpQY2Swhp1z2L7jHH70gzuYmV5kx4XbWZhfYuflF9HudBgdH2Vhbp764BDr1k1Qq5fI5ws8eN8uqrUid/zobiq1IsVSAU0VIEMQAk03SKIQVVUwLRNF0bj6eTu59jV/yfXXnoNquIReA8MykChEcYiUmYWHQpglWISJrgtU3SSNQpASKQw67RaWY5LKFEXR0XUNTROEQXQSBhbHEUkSYVqZaIoq+kmKJEFBZH50ug5AHMb4QYBhWKRJSK/bwLIdhFAzeXckKDq6ngWrmtp/v2Fi2QYyEdx/327WbRjlTW/9D1743Kt4xqUXgKqzML9ItVLFchwee+hR3vP+9/OWN+7g8h7LtgAAIABJREFU0mdsIU0kAwNlVC2mUMix65F9VCp5mssdPK9Lp9vCdty+cIyBRKIbGtVamd177kdXxhkbHcB2BvDb09jlGj0/RKaw48ILufGTn6YxN88zf2knuw48jExMLnvWRSSJ5D++9TXu/fHtrLS7XLBzOwVXp9duU6gOofRFYbygi2v5BCEI1SFJOtRrFRw7h0Thda//Zd7xtnfy7a9/k5e94pU8cOfdGbTNa3LFpVv53i33sOOiS0gFqKnOd7/7HZ658zKKhSoyCXnwkQeYWLcGUwv49I2fY8PqCYaHXHxPsrw8z86dFxGLlCP7jrB798Nc8IwtvOhlL8Zvh5RdB1VTyZeqVKp1jh4+TBx1WZ6ZZGBwiMBfgUSQz+VJUh+hWxzat5uBqkG7O0cuP0YvalIuDLEw3yZMJA8+9CimNcjgaAlTzxEqTZwkQIgiXhDxW//zd7hy9TVEzYQXXPI83FwuE5wJQ1CVDAaoKGiGiZAgSPDjBM/r9ZVVIY5TdKEghUCoIoP6KgpCKqi6RhJEZBYjAVGYeS/GcYyuGZmokGZxoiqm9UU/Wp02uqYj4xRD14njgDiMUA0Lmaaopg5S4AUdDN1CJhFBGGCbblZBVFQ8r4frOERpimUYGX9IUzA1kzAI0AyNbreDLkwUGaFZNlGU0Ol08f0e+XyBwOuiKArf+97X2bBxK6mUFIsVhGaQpDGu7aCpgjiKaCwtEYYBuq7yza/ejFusMFAus2fPHu6/7z4ueeZObCsTYMnlC+ScbFGt6wZCERimA0lGTxC6nqncCpUgjomDFEVJsR2Hg4cPUSyUQaikqHh+iGVoGIaOadikSUQYesRhABKEZmDaTpbMNbKgN0kSes0p0rCLqZnEMiQITVpeyujIGPOzxxhZvQahxbiahuf7fWPxiOmpwyTePIPVEqpQUHWdVNcRZuY9mwiBqhmYhsUPH7uLG66uEnancPJ5PvTJf+TfvvkDNqgb0OM64bLOA7ftoqINs7owzob6BjYObiIflzm2bxE5HzEVznHDddeyZ/9+jLwBfVn//7j5yzxn4gI2rr6Yqy66isvOfS6dbpNipYKU5uPETk60d33w3adV705tpwoJpmn6E8VznnpwJ+VPD+xOQPTPVv0700RdkaesMZXT+55+3CeuNJ65TyYym0eK+jiBk1NtCk7aHZA9TpgzKKdHlY9/nBzsiVUzT7SnE9z9QlDlZ2xBED3lL/DJcMVSJqdsPb6SdsN1r+Hzv/WirMr0s/7NFOU/L1X0ZMP+jO+Xp9QYsx1PkuU4ZbL/pNeTfCapnHaCTxqIKtBYbmIaBqQpmmEQJxLdNIkCnzDwkJGHZhrEoUKSxuRcA8/3yeWLKEIlTlVUUtqdLvliEaQkCn0MXaXX6RKEUR+aYhAGGY9N01JU9L5JeR/aIkAqKpHXwzJNFhcbRFGK5RiUypXMMF0oqGoGr5k6OsOa1RMITaAIgaYqtNqZd47vBaRSQbe0n0gYC4UkSbOLl1DxWh6Gky1iha6gyEwtL41SDDuDNKqKyuShaW6++wBXrsq8v1ZPDCKlyvzCEmOjVZI0xbZNPD8gn8/TarbZd+AYY8MVojhmZHiQ6ZklWl2fdRN1Hnx4Hxecv5nlRpOBgSrHj8+RpplH1I7tm3jooYO4jsW6taPsP3SQ9avrHJ6coRembD13I/Mzx9GFw+Jyi8nZZZAwMVRlbLjG3kNTBH5EqeyC1Ol0MiXT7edvot1s0Gi0KeQdbMum2+3R7vbIOTaHJ+foej7rVg9RLNrYrkuSKLQbbdyCTbPZYmiozOJCC98PCaOISilPsWjx6O59BGGBwRoM1YeYnm3QbPdwLR1FEbS7ETKNGBsfYHJ6nnUTg3jdJON4EWBZBQ5PTnPeeev46rfu5kXPfQZezyOXc1lZadFYblEtFygPlIniBBSY/f/Ye9N4ua7yzPe/1tpjzVVnHjVbkiXbsjE2xGAbsGNmYsA20E2mm9BJOnNuJrjkJunQkPn2TXenM3Rukk4CSUhiwhDCZIztYON5lGTNR+foSGeoc2rc8179YZVkDbawCc3tDyz96lc6u6r23rWraq33fZ/nfZ7FJWZmx5HuNPufPcw9B5Z517/7JdZbLdr9R9lzxXY67TbLS6vMbNzI0skFZjfOkmQZYRDg2EYISArJfV95gFddfy1hFPC3H/00l+zcxNUvv8z4MxUKfPZTd3HNK64kivo4ro9jCdM7Y5liRhSlFIoFLOWYn7EQhFGEEinR+uN4fhHbt0lzBUKSJRF60CtkvB8VURBRKBVJ0pyw2wE0bqFEGvZxfVPxtZwivW4L27bw/bKhjmHmhjgKcFwjVGTbLlKpwQIqjJl6miMto3BpCkYKdAYiQ5ITBiHKVgihyIUpiIS9PqVygSjs4nhl4jg0/llZxo/9n1/kj/7ovxL3E752/91cd/2N9HoBQRDx7u/7Af7xb3/xzPyi85Q4yVDSxnFcbFeRZ6Y/sd9poSyFX6gQhSmOI7Bsa6DUZmhMeZ5y6+0f4e8+9hcI6RGuL1MZmWBtbQXXt0mTgEMHjjA7PYXjOqysJ5T9IRxnlXZzBawyX/ny1/jSl+7m137z/8IROZViibVehu9r0jDCdyv4qsf8Uge3PAx5TqozXLeCEDlvvvlWLt9zGT/7Mz9FoVTg8Qcf45P//Gl+/Me/n4KdMLPtZXS7fZprq6wurjN37Ag33/Ia1teb+I0qDjG91gonTnYpFoYZGWsQRS1OzC9y2eW7ObV4Cq/eYPfWSzk+f5zHnnmS3Tu2kacCIVPywfwf9PusrbWYnp4yrIpcoxzQqcW+fQfYeek2up2T+KqOyKAfrvAL7/9tfuN33o8nyuSeRy40yikgU0Fz/RATo1tJWOHEkSV+4ud/mQ+8+xeJgx6VSp0sy0nzlDyPKRXKRFFMrsz8qYQizxUij8izlFy6LC+fZGx0nDzXfO7z/8Srr3sVlaEGnKZx6cFaJyXkkCShUXUNQzidEOSCXq/N+nqLsbExkjTGchwsqVBS0O31KRR8kiTBdXxDt+wHCIFBCy0f27PJM0UcrOM6LspyyMmIogjf94kHdMZ+YIpxeZ5iScsowJKhLAGZBTon6HeMWBEK1/NYWT7J2PCQ6S9LcjzXw7ZtgjDEtmxsx8K2HPqhkfnPM4NUplmOLQTdbod6fZhe0GW1ucrhA8e4/jXX0Vpfp1T0QAvcQtH01aUptjTCZFHYJ801rusjBsezNEb5M9d0Wm1K5TKWbYMQpEmC51gEUYTtOmRpSp6loDWW7dLv9SmVSnQ6bUrVMmli5qzu4iEcWxDHKdKxuO+BvZRHtzFUKXLJJdtJ0hgpYH19lUKhihCaxx+7h+mhMuWCmXs8r4iWEKcZtuMS9jomWVVqQOPLaa10sZ0Yy/KNxY4WSA2p8mmMTqOxEUITxzEWkubqCo7joFyjqNpsr3HJ5i3Mzx1EpwEiCbEdi1LZw7ELaCHIlU2hNMLyapPRyRlQHlK8sMrk5W/dfpFoiTP2MkqqMzHcSxE8+Xojz/Mzx7nw2OceR5yFQOqXYCj3fOd7epuQDmkcme/7RYRYTourPBfen05wX+R5nFb6FC/MpPu2oMq3cLwU5O5sXvH5H7g4yy/k+XKUd972Tm770V/jna+65F91vv9LxqACIcVFiw7PO57fwPxF7uSlHOyC5+oXpIZqNIVigVOLppE+T1NcS9JpNSmVfeM7pwRREOHaxvfOK1ZIU41bKKK1QsicdOATl2uBziJa610syyVLTM+eXyzQafdZW+8wXK8iLJt+kGDbFt1ud/BbN7aZUZzQWu9SqdaoNeqsNtfxPZ8gCFGWTZZnZFnOyHCDkwuLFMslhMyJowTfcYwBlpL02x2UkgO5bdNYH0fxmfcehF28oocUkvvveZjZ6QmUbWO5DlmSgZDoHAqez6///QP80JuMxH5OyvzCCrVqCcdxOHBggRMn1kjilHK5QL8fUCn5JHHK9IYR1lrrDI/VkELSXm9Rq5Y5OreEznOazRZjow3KlRIj9QpPPnWAK67YRBgEPLX3CEmSsdIM2LJhBNdxcG2fguNybG6ZXhBw1e6t1CsFhNTUh6uEYUSlVGBqcoShRh3XhUyntNZ65FnG0EjFiK1EEZataHf75Bo8x2JmZpyn9x0ljiKUsMjSHAgIghTHlaQJVGsVekGIshTFYoF2q8Vwo0qOxejYMMr2aLd7bN48hmNblEoFpqZGkeQMjdSYnBwjjUwv1959C8wtrhBHgqnJOuiU43Nr1MoeT++do+DZlEpFKrUSjz99iOkNI9xz95NMTgyzstKiVikR6gITo8NEWcbnvnaUv/yrj7Fh4zDP7t3PzMwkqyurjI4PYbseTzz8JN1un7GpKVzbIgojPv3JL7Bj5yaiKGB+fp6rrt7NyuoaMxunjVBKJjh2eJHmyjqNoQZf/Nx97Noxg+N5mDwzx/N80mxgGOwaNUqpc6Rlc/v3/Dm337oHYTnkuSQN4wHdUpgeHOkb4TGZkufGNsFxbFzXQSob2/MRSoE0lDXLUliWRbvVxXEVSZxg2Q5xZIQm4ijCcWx0nhv5dAECY5AuhDRBgDR4viYnjvpYbhHH9UizDJ1EKMsBxCAgzIx4j+NhuT7ddo/W+h7e9oabwXJM0BqF+L5Nq9niyNG7ed/3ficrS0263T71+hCHD80zMTGBtBSHDh6hVq8iLaM06nkFbNtGSIunn36WoaHSwOxdg8jINSjl8O47XkunK7EczY//yE9w3Y2vQEmJY7vYyqc+XMYvFlGqgCwqg+rEq1hZzh//8ce47d98D29+600goODY9Ht9bLeMxmLtxFEWT51gdGQzmZA8+vBD/MavfIh7732Af7n3X3jF1Vfy5re8nje/5fUkWZ9avcDQcJ0bXvcahkeGqFTKdIMYx3a4+/Nf4ZP/cCevec13YKkYTYDj1dCZxckTTbZs38Xv/8EfcM01r2JubpXNOzaTa4GyPRyvwh1vfxOWYxPGMNqwSTKJchTHjx6lXC6zutakUjU+hifXulQrRUws7/Dbv/2fuerKq4niDl6hjFsp8KXPf5G//vhn+Imf+QEW5o7juCmO8FAKLCmxvYyf/ukP8smPfY7Lhl7GjVdej1IK17KYX5inXKmRCY2tXLQQhHGE65XIAkM3zi3LUHotBZaN59pIZSw4Zmc2oKTEGtADtc4RQJamA9aXBJ2TRBHSdkjzlCxLyPOUQrnG3n17qdfrFIsFJNBqreHYNspyyUkNk0NaRFFMr92iXCqjLYkQEqU0SkAUxXzh85/mkh27aTbbeJ6P1mDZlrH0UAOLnzxD2g5CSbIkQWox+K1Ig2wriRKCxYUTNBojSK1ZbjYZGhlD5xifV0vS6/VBgLRslDDBeqfbwbYsBEaRWSsLocC2TEF16yVTkOWUiiWkJVhbPYXtGO/YLI0GKpoJSkks1zfrX5LgWgqBRtoOUlqEQZ9Wp43jOGaeUBat9poxRU9zLGUhtOk5FxjIRgAFzyNPYvKoS9w+iWMLklyz/+BhcrvKyOgsuy7dSa3RINM5Moe5uWOgLJZWlgjDPhPDDUqeg2NJEBBEIXmakscJWRyQJREiz0nDPmkUkSWmz9f1jCqq6zkomaPIEWmXsLtC1l8h65wiDdYIe8vkQRORdYi6q7gyoKD6JL0V6gWbkqsoVSoIIQnDiF6/T5ppsiRB99cQOsH2fCzlPR+ecGbYwwrf9y6Q+j8dV+mBFcy5m18ccvdixvn9eFI8p6J+PionXmQF/3Rx+/RrL4bukfOckMrFqKh5jlDyG3/Pz4fknXe8b9Myv4XjYsmdPAuiNX1dzz12IS3zLMrgCzSX3vGu2/nQf/8UlzQkZd/9VyNl34yhMQbacHGvP83pptnzv69nUzVP3/j6s8LXffPivNu5W88/g/O3aA3laoVSucLKchPbspifW2Rp8SS1SoHVZpOg26ZaLRDHCZZURJGpWAqVk8aJUdcyDsfkGTz91KFB0BtTrlQQQuG6LnFsTJ+VVCingGU7uJbEltqgBUEfx3Vxi2WElLi+R6vVoVKvsHJqhXqjhso1vW7PeL1IhSUF7fUOy8ureAUPaSuyLMFCIpQkSTKiMEEK08wfdDusLR1naGoCnQl0mjI5NU6SZwhlKnLGy8hCIDl66BhfObTOrdeMkkQJCydWGB4qUa0U6Xb7OLbFzMwYfqmArRTtXpe5+WV2btvAkcOL+J5LmkT4xRKu47J//zx7dm1ByJxatcLRuRVWl5usrwcsnFwniiJmJ8cZGSqj0UxPDdHrBbiuj8YgoJVaiXq1QNjvYPsuo2PDnDq+RLnqYbkOy8sdmitrbNsyzspqm6HGMNV6Cdtx6fdCVpfWcR2LU6fWqBQK2K7LsbmTXHn5JrqdlJmZMY4cm2dqahTf8zk2d4p6tUwSr7G0vM7E6Aj3Pfg0SgnqtTq1ehmRu9z31SfYtXuWhblVqo0SpXIVrQWLC8cYHm2Q5oKnnjhMlIQcOnqSV+zZNAiWSyglObHQZnqqwchQjWazy5GjJ7FUjl9QVEplekEPIWNmN4yibMXxdUHa77Bz4ySl0at485u+k5/9ld/iIx96H9J20EjiOMPxbMYmRwl6Ia7l0+m2OHxojt2XXcrQcA2BJIoSgiBC6Jx7736MobpPFITYlmB+YYlTJ5fI0oyrv+MqtAbXto2IiRLYCvNdi0LQEIZ9XLvM27/rKm7/t/+d275rK921ZUrVGkmaIJQDeiB+IkxhwrHdwTaLNMkGwWCOwBnMJ/lA0CEnz1Jcr2T65jKwByqAjusNDNFzLMv0Tva7baOQmSfotI+yPMJ+QJZmuJ5PFIYoZRQ5tdbo3CLPJLbj8sSjzzA9O0tOwh3f/XHeeccvoGyF4zv0un0efegRduzYzO/+/p9x041lqtUSlfow//D3n+Pyyy8hSWJGJ2sIcmxL0hiuoiwPrSV5ron6EbkGTcLk1AhZppAiRwptKKluCYkxdP6hH/tN3vLWN/C6W96I7dkU7Rq93hLCquPonKjfY3VlEaldXN9COSXSGHZffjVeQSCUQQ6DbhOLOt14ld7qCsJ2GJ3exErrMN1Oyve+90f5f/7L7/KWO97O9a++ni9/8T4mp6Z49sCjNKozfOJTn2bXFVdTdnOiNEB7RVorTSzLwfF8Yp3y4Y/8Ju9+9/fy7N7jNOplHn3sEcZnx6kWJUsLEaOjw0zMlsDy6UU9lCsgyvjzP/pDRkdrbNgyxvLyOn61Sre9Rn1oE1YuqVR9PvbRr6BbTTZtnCTKEsKgS8Fr8KFf+zDf+/134HglXGmxdOIku152Ne/9vjvodBIqjUkKhRJJmmArxW3veS+7i9dwxfQuXnnZK9AiJ+q3EFqQSUmtNkQcJViWRFpG2Me2JFmYIm0XadnINCFFDNQtTW+cyDEkLZHjej5KWchBe4EY0L0EEolRfzUIYI4GbNvFdlyifpuZ2SlyAZnWKC0oliokOkfn6aC1wPT+hf0E5QxYHdLFHvScZllCu7/C5btfiQaUNEqGSRiSxi0sp2zWcZFjWS5Rr4USyiSveQZCY1lG2CjPc7I8o1A0VjJRFNColYmjHmvNJtVK3VjrWBqlQOgMnSVIFL5fYXl5jXLBAYkRQCoWaa+tY0uJ5RQG3DZJ0O3ilyvGr85xQeYIctIkxHJ8UsBWDhJlqNuWsdtIk4g8XqdSLgKaJI1BgWsbur7OEywp6HRa+K5DJhSOZfxtpWXj2BC2FpFZTCY0lmVTL5Z5du9TbNj5CtrtLvv37qVcLpEkAVoIxken8D3F8tICpXKdfpxjWZDkkqVWSC9IyFSRWNsUG2NoWWSt3SeTiiCKUErR73VYX13GsVyEzojjAMf2IctQg2sCRkzKth2UlAiMsm/Y66OUTbffI0rB9XwOPvsM9dnLKBbH6SQCyy+zOHcEnYaESUS5MoZQL5zd/cyv/Rx33P6O52Kn08X8gSH76VaNs8eLMSN/seN8WubFdpvrfOA9fC5F8/x/+iwldnh+Oudzj50+qkZfRJ9CnNdKJIRGkw8+rpcQrQ+uaQ5oJc+hfr4Un7tvttb+t8f/4vHB//sDtKdu/P/7NF7ykIMqST4QkTh7PKe+9L/fSHXGzKYZyo0ql119OaMT4ywtrxGFMb5fpNOJUMLGsV3qQxWkVCRxhuu6ZFlq1ich0HnO7l1bqVXLfOnLT9LrJRw+NIcAGrUh7vzUvaw126RhFyky+mFImGagHEqlEutraxSLBYqlIlprZjZM4fsutXrFIAVSU25UsB0z2VueQ2O4TrlYJE9Swl7I8tIq0lZozIRZKPqgQNiKYrVKpTZC2o+R2vTy2a5lDG3jCKlzI/+uNUpJRkaG+NX3vJKHHnmWYtFHSZtKucLc8WVWm12e3DvPqVOrZFHE408cZO74MkEUowUcW1ylXCnjWC6t1Tb9XsCO7dM0Wy1WV7vYjs2uXRtASJJcU6uVGRtt4Poevl8gicxC6/sepXKJOAo5cHCeMOghdUy33SIOAx5/8gBRluLZDpVKkY2bJrAci1a7T7sT4vk2x4+fQEoQImd8okGlWqRW8+mHxoPMcSxarR6rrXWiKMCSiiTSBEFIpVyg2+sjlUejUSfTcN21lyGEpFQu8fTeI9z71cf4jlduRyrBI08dZvHkKlrn3P/gE8zOjJKlpip/5ZWbuezSLbzrHa9m75FFpHSIgpT5hWWKJUWSxnS6HTKdMjFRI81yhofqRoghyhkfG0MIC51LykWP8YkxmqtruLUCYxum2bZ5C51+n7/92D8wNjbC00/upVgoo6SiUHB58oknqNWGuPyK3Xi+baiMjk29UaXdahNHAYWCy+jkFFMz01iOxe7Lt3LtK6/kTW99Hd1OF8/1SHNBqVJDSJsMSa4FlltA2a6hdZEhleDv/ub93PY9d1IbGR94zllnki8ljW3Iae+6fn+RpaXDKDsjSQK67Q6GuglRGBtqm5QUymXSLELrlDSLDD0TyLPU9DVJU0GPwgjbsY1aoTKKeTrPcf2BqAKYgkxukMMkMb5YpxZP0mo28X1jFXLbv/1b/vj3/xPEfWxyglaHh//lPmZnNvP27/4Rfv7n3oAWDk8/fZA7/+6fmZgYBiQHnj2KEiWyxGZhbhWtffIsJksjjhw8yNNP7+XAswfRmoFBtFHxTbOIar2K1qlR5uy2SOIeK8tLlIoe/aBPp9umubpMkiWESZdjc/PcffcD5FlAEHRYWT4BeQTEdHvrWJZGaButBc3mKsVilfHJaYbHxgbG8SVGR8Z5+zveTqVchTAkCrvc9KYbqZTrXHrpNbz33/x7Lt3yMpQM6PQDLFEg7UG9MYQQgv/44Q9xy80382d/+ifs27eXf/78Zwn7IXv2XMlwY4zF431edePl3PmJv6HfsXBI8ZVApgmWrbn1He/EsnxaayFDQ0P0ez3CfoC0e0TpCilNrrtxF9fedAO9bo+K7RIEEe1Oiy/f/SXa7Q6u67Jw4gT9bpdn980hhW36Y4uSfr9Fc3WJR+58hve/62fo99fAguW1ZdCCfj9ESWcg1a9xPcdQ4XRu+i+RWLZ1OmSk2+3xxS981hQKHIPQJWnK6uoqURSxvLxk4ketzyACSsgzCpdJEptihzAqjWmaksQJrfUmaZRS8or4jo/luKbAJW2EstDSQto2uZTYvsdnPveP2K5HGPcJo5A0SQbm4RNYtkJZAttxcXyXcq2GUDYPPHiv6XvVEp1nRqEzC2l1VlFKYVsOcZwQBIFJJgY+j3HYw7Y9pPJxCzWGRyeJwoBDB/ehpI1SNjo3CqJIuOvLnwOdEkQRcRJTLBZ54J7PUS44KAVaZIMk0wia2LaL6/gIJHkGWkuy3FhCiEF/lJSCOAnRWW6KO5aLckqgPCzbw/WLxnJGmvA+TXKygRefRuPYijAMcGxDPW21lhAyG/BmBbnOUZZg0yU7UCph4eRhrnjZFXilCtWhYXIErX7A6lqLnZdeieX4lKtD5KrAWjdmdsMuNm/bzdjkRuI0J889ED5+aYzJqUsZGt1OpbGJVNbIrDKyMMSxE6ewiyNEOfSznHZoLE6WF+fRqaa5dJK1XkSzG5GpIk5lkjB3mNiwi1h7RJnPhm3XIjIblKBYKlOvD6PtEiMTMySdJkFr6aIx0LXjLzvnb61zo1KcZy/wim+P/x3Gt5G7f+U4H7k7G+69gAj4DUJt5yN5Y6MjqKkryBee+MZ2aHZ6YVPn+bDahTDbhbs563lf7+2Jc/5/4XGeQ9XOgjyfbyentz8vT+D0Nnnm3F9IiOZCIZcLh1QaLTASuAKK5TK1Rp1aYwhh2zheBctyOb5g0CiljN/QWrM16KsTJElIFMdkeU6v38N2bIZHhhgbHabf6+MXfDxHMTk5yXqzied5OL5PmmuUsFheWmZtvc3IxIgReBCGxqt1TsFzzWIlzYVJk5SC7yMdoxhY8Ausrbch0zSqNbQUeL6HZVv0+l18r4iwzOvDIGdtZc2ItQy8afr9Pq5jE/RDfN894yf35BMH2L/S5tWXjWJZFnGUcPDwCa64fBuuY1MueniugxKCoaEqnq3YsX2WXAlmZsYIgohjx5cZG20QRfFAsbOEsgTLK00qJZcwivFdh40bRrEcxeHDc1SrJcqVEmG/T5qD41pEYZ9iwVBUJRn9KKHVibh050ZGxutkmUQJST/oU61VCPoxWzZPc+jIHNs2zxpZew1LS2tUqiXKAy+3YqlErVrEUoKJsQbzC8vMTo9zdG6RXj+k0aggECQJrDbbnFxZI0k0o6NVTi2tsWnTODNTVdIckiRlx9ZJyuUK+589yiVbJ+h1+9TqQ8RhSqfbp9VqEwQRmzdNceTIMlOTY3iuzcYNY5SLRYSESrlIrVZmZHwIS1k4jsJ1bJRlbBFA8EN/8CC3XrsFx7b58d/+U15302t45plnef3r99BcWmHT5k30+33m5+aZmZng6OFjTIyPcuTvNxyIAAAgAElEQVTwMY4dniPPM1ZX1ihXCni+S7nsMbNpI5PjI9z1xfvYuGWGQqnAoQPHyLKcmdlZHNcmSVKEMO/VshRxHOF4JiDTGuKoi+MUESIniTJuf+e1vPM9f8y7b7sChPHSiuPI9BxZNkma4zgetu3j+1WU9NC5hVKaNAsGHo6ml0ZIo16UxrFR+JOGEqoH5r6G4mLoab1uD0epQUIpTD8ORuBCCIFUEq2NjYMUFpbtYCmPcrkIOqO5nvMff+txPvwffon2qcOIXPDlL9/P7IYdjAyNcOdn/4Tf+Y0fIegbeu9dX7yfSsUfoOUBC3MnqDaM+FAc97FdSTZQ7azX6zi28SJUygjrGGrqwKxdFQx6YpvK+TNPPctNN99CEsRkIsWzfEplC8+vYTuKUqnCjp2Xo3SG7dhIIYjbbT7wgV/h9d95k+lLagtcNyYJMz74yx/m5lveiGNb2EIh8jK/+Au/xJNPPsmlOy/jrrvuYs+Ve9BkdNfnsMuw+7IdbByLaHcDhkem+fUP/w41t8Cf/9Vfsm3rFt74xtdTa9RwbIUUcMONN/DMM8/geiXCMEfkOXHS50Mf/g3W13q8/GW7CbohZIowVfzVX/wPXv7Kayg1yvS7XUqVGq6lCGNIejaPPPIIl+y4Em1DvVLmd37zt3jV9TfgeQ62JVHKxnEdip7H4uIiOy67iiQJsB3JB97/q3z0Tz7OlSNXs95ao1ysIYWFUg5JkoNOqFZqLK+3Da01M8bY/X6AQvPsgf0MD4+gtenfFML4Iu7YdZnxWtOg84z5+XkmxsaxHItSqXxm3TL9k/mZm5mKDCImhTACXpZlaPyFEnd96QtMTEyjyUxfc6E4SCkxVN7B2mkri61btpNlOZ7tcfTwIYaHhonCEKENRTFOUp554gkaw0OkqVEunJyYotlcoVQoGjVW6WPbHo6lDK0wM+bfRpjSIEeWMsyJu+++i5XVJqPj06ytNalUyxQLBSxl1g1z/UxysGXTZnq9DrZlPO5cz6deapBkKdK2cJRCSvPbVrahVB86eADX9Sn4BbQwRRvfdQnDLr5t1iyQ2EqxvLxMmuYUy2XC0KjtZnlG0fWI49Co8tpm7XQch26/i8gS/GIJDXTb6xRkSp5EZ/r1hTDryOEjz3JqKWLr5h0m2Yy6RN0mjWqVgmNjuQWiOKZQKBJnKTk2Y+OzaCHJco1t+yjLMX20UlOq1dDKQlkOnX5IfWSCTgyVxjjCqdAJczLtUyyP4hZGqE5t4eCJVUZmLqUyuplydZz66AzKqeKVhki0RY5NozHBcnudkckJkjDgyNwxatUajuPQ7gaMTW1CJwnzR59ieHr7OSIiZ4+tWy/h0MoBZmanL4ifzsRJ32RP5rMVNF+KB945YoEXi+3OR+cuQuc8+7GLIXdKqgFFb/A6eRab7SUF//rMaZw+ns6NJ6P1bVrmt26cn9ydY9B43nP/NcndOX8P7v+P9/8eb7lm4ze606+/7cX2tA2e91Le3vP+8C6WrHGRx17Erl4oufv6I+c55xJhMHqh0MKgY5bl4nouQ2ND9NoBSEk/6DE8PEIURRSLPo7rYPsupVKRcrXM8FgNz3PI05xuu08/6NIYqpkeBcenUCwR9PuQafq9LkONGuVqFdt3z6EkaK1ptzq02x08y6Hf6cGAJGtbiiiMEJaiWq+SRAkn50/hF3ws1wGhcTwbmZ+uNyf4fgG34JPlifGGUoaCKW0b5diEvR79ICDohcxMT3D55imU6HFifolqxaNYdHBcU8F2lMJxHBZOrlPwTK+aX/TQSqNQ2I5DrV4hR+N7HuvNDraUNEaqCK2JgphHnzzA9q3ThoKTRlSKDo7v4hRdom5AmGR4nk2/1wOhWFnrIpRkfGqCqelJk2ikIW6hxNfuf4ZKyaPaMH1+R44ssHnTOKsrbb5w95O0W1127NxKlmY89cxRNm7cQHOlSalUZG1t3dDy8pwsTxkeLlOvVbGUZKXZwlEOtapPo1YELVhcalIsuDSGawjA84s88LUDbNowQZZlHD5yik0bp3lq71EmRkc5ePAEwyM1SrUCBw8t0lzuUCjaeI7F/MIKxYJnPKqCGCmVQS+zBDR0ex0q1TJRHOA4FlJJ/uZfFnn3DTsBeOBoj1ML8/zkj/8Ult3k6Sf2c3JxifHxMbbt2GiQrVyzYcMsQdAjjBIEFkMjdbrdDsPDdfyCi7QLnJqfZ2SkTqFaxHM9vvT5+9FZxpOP72f7pZuMUEyrhWMrdJ7iew5BP8AZBGdCgs4VQdDD8yrIrMOtt34Hb3/3H/Lu2/dArkmTGMe1jVCQMIblghRNQpaFaEJDaVPCmBHr030ThvJtWabXJgpjlKVIE3Mf9voDPy1lPBvjyPyGB+p7SZIYnzHbWB7kOoGBiXoYhWYaQHPPvfv49d/+Gj/1Ez+F51uQB4SxYmbjDv7h0//EwsmHmBousW3bRjqtFktLS+zZs5Pdu7cxMT3C4YOHuen111Mq12mvdxgdHUdaDlEQEQYxaEmtUTkT9Pd7PT79ibvYsnWWbqdLrm1WlpfwPIckzvm9//Y53nTLDVQrdTpBC1cVWDhxkHJ1nCTKEdIi1xEf/6uPs3HTZhzbobPa4tXX38wP/uD7eNvb3s5tt38vb33LjdQqQ0xv2Ea1ViOLA1aWlnjXu36An/zJn+QV117D0NAIr3rt63j0kcfwLYeJxkacQoN9e4/x5Nc+z9TMTkr1UV525RXEvSZvfccdPPbEYwwN18nSjF6vS7VSZmVpiU2bN5OkcPjIPAcOfJWJ0d28973fzbadY+TaoRfErK8H+IUa1179MpK8A3ZCpVAFaXH82FHq4za1YomENcq1IpZwiKKAK152JYViiSgOcF2X+fmT+AWHteYa27ZuJZM5QuW8+z3fz/tu/iFeddkrAUGz2aRYK6MsSRT2qJQ8ojgkzTRusYjvuIbabhkEK81zhutDpFFAqnNyTNHNUTZxlpAkCQjIsgzbdlg4sUCpaMywDYPF9NScDl6N0bMeSPcbmxs1QJuzLANlsXnzDoQF0tJmkZOCXGkcIUjiiDDsE0UBB/Yf4vHHHmJqcprP/OM/E8chx44+y4bZDRw9Ns9jTz3ExPgsUbtLtVFl4fgJSsUiQmpc10GLlDjtglKkaUSWRThuAUuZApJtK8IwpOAXybMMlGJ6aobJiXEsKSkWfLpBF7dQwHimRoO11Kbb6yJ0jkTy4IOPMD4+iVIWd37i75nZtIVKtUYahIBADhRtkyRkYnwSAca3z7GIwi6ddgshTZIphIVlGRSxUq7gFwrEaR/f81leXqJcKBDFgaGQhhFe0R8UcsCxHNK4T6Y1juuRJwlJsIKUOVpqBtZ9yFwyNz9PsT5Ft7tGpeSTOz6FcoUo1TS7fWqlEv1ehyxNKBQKCGVxavkEfsFmvbnO+nqLkaFh1tfXWW2uUK8Pk8Sa+WNHyNKM9bV1pmdmkVJSKZkCYrVaQQtNr9+l2+2yfdsOLGWZ/t8oJE1j9u1/monJaSDD9xyiKGRidIp2t0utVKVWHaLbWcNSwvTiyiJ+sUKeBySyQKHgv2AC9eH/9hvccfs7BrGUvOB53+zk7hwa5ktI7s4e3+rkTopBZnc6uTvXJ+HrnO3Z4yyJwNPHG1yDbyd338Khtf7ls3vnTkupStPMZCZfzGd7dg/eS/msz/9Sn+bfvu3Wt/ErH/kdbrhi84tC2QY7O/d5Wj+3/RsZQp6Rfz1dQXzepyHO3J/mPJ/72POgdQOVPc0Fv7fTL3zBRPBsTM5UQy88M83ZNZILd2u2yvNeYe4FGJ62GOwnB6/oYVsK13YQjsIv+ob6JeVZMsF64MMlUJagVC1RrJRwPBe34OFaNvPH52k0avR6Ad1uSLHk41cqSG06HKUQpGFEGCVY0sZ3BFlujG2lFERxYihpUqJsRRomSEswMjmKGiB65n2awMF0exg6miUVcRQjpWRpcY07P3UPl1+6mTxLCIMQz/XZt+8o+w8epjFap7t6nDiGoZEqtuXRWutz4OgiE2M1sKBUcCmVXILILO5hP+LU4gpJFJBGIf1+SJbC8FAVLTOiKGFxaQ0pLTZtnuXUqTUcz8ZyHErVOgvHlznw7DwamJoZw5Y5vU6LLMs4udxh69YZPM9BWAZxUQZ+YWK8QcF3aa91KVZ8RicaZDpF5DmX7d7E7IZJhEzJUo3vaLqdUzSGh3jimcNIAcNDDaq1IkfnTzI7uxFUypHDC0hLUK54LC2vgxRMTtWwlVE0s6RNu9MhC2K2bpzkC/c9yOREg1Mn1xhqVBiql4jjLtObp8jTBKEVQ40KT+w9xrbNYxw8cpKVlS7bt28wfTZJj+bSKfYeXGbTxhHWV9Z46JFDbN40bsRBckEcxnzm8Sa3XbedVqvL3/7Ls3zw/e9n/vgiSXycy6+4lMOHDlKrFSmWKoDEdmxa7Q79fsDGzbMMjzR49OEn2bV7O0mWDBItiaVA2S7FoodAcOjAEXbu3kKx5DA2Nk4aJ3zizi+RpCkzGzdgTIcdkjRD6IGlhiWwLGfg8ygRUvPe99zEe977+7zxls14hRJg6G9ZZhRFhVUgi0N0nmA7JdOjxMCjbtAfhBLoFBB60DfnkGMEH6SQKMdHpznrK2sUSzWSLMVxHUAPJOcVlm0T9Pu4vocUNpblAoI80wip2H7VB/iRH/4w73nnmxgfraCQJLGFUB7X3fxafvYnb2bHJVM4rqIxXEfokGKlQZqkZEnE//jzz/LGt96A5xfJ4pyHHnyS++9/lCsu30mWh9z58S9TqTo0hkdN4ponKAnbd2zFdgVSutx7zz3svmKXMVb2PO69+yFuefO7OLlwFNv2KJV9ypVhbFuTRSH33fsQs5s2sGXjFt74hrfy9lvfwciGYYrVCre85gYWjuzjfT/xI5SLRU6eWKDaGKEy8FCsVRo89vgjvOGNt1DwXT7/hc9y1RW76bT6/Nwv/Bzf9d53sry0zGWXbWfHFVfxHz78u9z0uhuoVMtkUvDxj/49rdU19uy6nPVuyNj4GPMLx5ndNEO3Z2i8CsGWLXt46tmHGJ8Yol4d5T//p9/ljW+8mbDf57Zb38o7bns79ZEx0kSS9CNyHTE0NIXMHLpRC9eu4KoijpRARhyH2AiyOMb3BJ3OCjrpMjY2TbO9xvd8379ji7iEG6+40SC85ORJzAMPPsTG2c2mF04pwEILgw77SpDp3PgpIo33XJaCcoxfXJIBCY5ySHLj1Rj02xQ8n5MnlhgdGaXeGELZjkGu43Dgm2qSeMtSKAlxFCG0Qioby7Lpd7rYUhkVWa3JybGVQGYZyvIgA4VhqSjLQtkurlegXC4zM7uBcqXCJTu3MjRUZ3Rslrvu+ip53uLVr3gdxxePsfGSLTiOS6VSwrYthFRIIZFCI6wCIs1JkwDHKaPThCjNcCxFFIegNeudNq7vEoV9Tq/hynKMfUCnz2c/cycry002bNqEZXsIJbBsB8+10WnA5u1bKBZKJGnI9h07aTaXOXH8CFEQUKpUsWwQWiFySRyH7N//LOMTI+zbv596ZZhipYSlfLMmC0A4xFmK43kmCck0IHnk4fsZGRnHLRaRg88sTWKE1sRRSJyEFHyXMAopekWUzBBRx4ilSGU8YJWNFjnDjRHqJYFbrFGsjmAlglbYwbUK2AQo6ZDnCq9Y5OTSIvVag0KxgGtX8IoFiqUClm0jSfE9kxzbjsSyXIbGGlSqVdJMEycxUdwn0xkShesVQVoMNYYB6HbauI5PkiZUylUajRH2PfMMrlfE80sE/Q4IiY4jTiyfpN1eZ3RsjF7QRwmbOI3oByGdToe1+b2MjU+TWw7PF3HduOdGxnYMD+Ixicl2JZCbOGPAevhmddeca5Z+4bbzY+I8z7mgX24QxEklTGHxxTDChFmXNIKVZhPfL57T86byHKH1hTcGRZpzqu/izE1IY0nxfLcLk4Ez0J8RadFGVE8Cyra/ndx9q0aen4vcPZcriQu3nfn7QhWci42LVSxufMPb0AtPvGSU7UVvfxH7ezGvvNizLl5huQgqeNEDv4Tr+zzJ3TcyhGBAzZEX3YkcCMvAgMcv5RnuqBaCxmgDDRTKBSrVMm7BH/z+B2eaatIoJ80yHMdmZaWJVyph2w5JlOC5Lpk2/Ru2bdxWThuRKst6rhL2fCcpBN1OFyEEtVqVrZsnQGuDCglNv9djamKYzZtm+OR9T7GhIanXy7iuw8MP72Pb1inGxmosrzQNlafX5dTKKpVSkSeeOs7c8TWUpZmZHMa2fQSak6fWKZVcut2ASqXM6Ggd33WwXZdKsUgQRFTrNZZOrRDFCf1+zO7LN5PEGV7BZb3dRmSC3Zdtx/YHIge2Q57nLJ44RblYQipJkmdUyj7KMrS7LMuo1OuogQqbEALbcXB9B+VIHMtmanqCer1OlqQmiUBTLBYJeiGTE2M4ls1au83IcB0lLZI0pbnWZWJieBAoCZI0x/M9PFdRq5aZmqzjehb9sEN7LWB5OUBZGULauL7H5Hgd37OZnBhm4cQKCyeW8HxJrVZk4cRJFpZ6bJhuUKuXmJqokOWKvfuPMzExysMPH+CBRc2br57h8KGjfHHfEu+541bKlRo//fMf4KbXvozp2SmK5RJPP72XMAzwfQ/HtRkdHzXGypZkYnyU/fsPU63WWV1eIwwShoYafPofP0+eaWzbolgpct+XnyRJEjZvncH1XS7fs5ux8WEzx6FJknCgZukalC2HNItRlkQOejfSNOdNb7iSH/rRj+LbMZdsHze/JSHO9CTlWQxCo5RnZLeVHAivaBPAaAE6R0qzPYkjpLJI48Qs/FLR7/e5777H2bptA5ZtCix5lg2+9hZplpKlKa7nIbAhF6RJxj/90+M8+USDH/3B9zExNopVdki0JkkFv/Wb/5VrX1nk5376Du77ylc5fHiB666/ljRNEQrWmy3KlSKOa7G6vMauXVsRQrPebNPr97j+tdcas2TbwvVdtl96CUhzXbrtPko57N93gPGxUVzPZcPGaaIwxHU9BJo/+JMvMTM2xkMPPcw1115Lpg0Sq5RFlsPGTRuAnBSbm2++BUlOa2mOxvAszz6zl7u+fA97rrkaV9n8l9/7fa599at5/JGnaLVWqQ/V2LxhF7/3e/8vr7zu5dx8yw18/K8/xUMPP8wP//APMDZcx1Fgq5j7H/gc737XDwxEQHJWm6vs2X0JOy/bzdGFk0w0CvSDANstEKbg2AlCQqHost7qsnPLLLZtIS3FhtnNhEHAL/z8B/nLj/4pn/zUJ9hzxS4cS2IXyvi2wrc0aS5xHYXr+Git6AVLzB09zujoJAvzB/ELPkK76MwiSwM+//mv8LG//ht+7M0/g5SSMAnR5HRabaRUzM5swC/4xnhcStI0w5ISa+AxmGeCIAhYWlkyFPVMM78wT7Ho4QpQFmRpjkYP9qGwLIdSrQZSEIV9JJmZt12jPhj1+9iWIotj0jTGdVzSNCUbiEg4toVSlvmOkxEFoUGn4gyJQbaPzh2h4HskqUEVkyQyypfKrAEIgWc75DpnenaWQtFDKJd77rmPS3dsoh+EuIUCcZIhpbFVMZ+Vi60s2p02Bw8eZmh4FCE1Ms/47Gc/xZEjhymXyzSGhrAtB8uyULYy9GYpKBWLbN60lemZSZIopOCZ+Z5BkVLZHkmckeWao8cOM1StUCmXGRubolIfodddx/WKZmmUCuVY1GrD9MOA8ZEJDh8+RKlcxrY8PNcliWMs2yVPQ5I4Ik0iEMaCZeelu8lJsJRLmiVkWYorJXEU4Lo2zbVVSpUqynFI05wg7iPidaTtkqYGUU+iCC1yCr5RKn3koSc5enSVXrxCv5sxPj7O4qk5CuUh9u57mrGxMcoVQws1ojGG0tvtdEjTjHqjhhCKhx57AMfxWF9bZ6hRJ0sybIkpEiub5ZVVhkdGEMoU4p5++lGmJqaI4phev4fneqZfWdkokRP0+8RxwlqnRbvVwvddjp86BVpyankJ3/EIeh0q1Rq9Xp/6yBhJb4k0k5Qrw6TKeLSdP7wxB88zBa+Bvw2nhfROI3ffzOTuYuMCwON0wvc8IU2W5eT5xQX/ztnXYCcFv3DBYy+I23299qWL2TK8YHInODdbfGnJ3bcFVb7JQ0pxxh/jhYYQL+6yv5Bq5jmysFJxx0c+efaDF79duLMLt79YFPD883wJrztfuegFh9YvnCc9B72d+7c+96EXmideqIijGVSJLnL+L3Q+WZaTn0HSz9vD4PqcrSQlhRzkddIgaMqomiEYoHuSTEPU69NaWWH+0CFarSaphFOLS2hyRsensLB5/OG92K5LL+ixtrbG4UPHCNoxYRSesdo47RljTlcP7vPBzVCDGkMN5udOIKWhQ0ZhwMmFUwhtUfSL7Nt/BN9zeO3ujYyNjLC+3mTp5DLXXL2FR594BtuSTIyOolNBbWiYerXO1x47zDVXXcKW2WF0Llg8tYpfsKlUS/T6EWma06hXyDLN4uISh44eR8oYx4FcZ7RbLcbGh5meHuPlV22HXNNtdpk/eorp6RmGxxsgBVoLQ7sb9LDMzEyQ5yaRcwfqcVEUIaSN55VIs5ywH5BE4QC9NF5rpfIQyvPNlcliFhaXsG2byclREJAmKalOsS3F7OwYru9SrddotUKmp8cQyqD2jz5xCNf3SIGx4QZfuXcfc3OnAIHr1siyiGZ7ifrQML1uF50k7N17FNezOXBwjlddt5tXXLOT0bExUB6X7riEa6/cSsEvMDe3hFAuvU4X11WkSUKr0yPPwXKKbN64gYLjsTC3CuQsnIrpdnt85e4HOTa3yOpyi5kNsyAUaMn+pw/wta8+ytOP76Xb7bPnysvotNZYWV7iwXu/ygMPPML1N7ycnbu2oyzYsWMz1VqRLdtm6HUDmqttVlZOkaYxaRqB0DhOkSgICMKekfonw7J91td7JNogarZbxPdc/uQP/z2v+86bedvtf25AAKkQ0kWQg85RyibNjNhPlqYIKYnjPlGUoJSLlEYEJY4CM6vkObZrgtq/+LNPEoUZr3/ra0CKM+IVWZaRJilf+Ox99Dt94jAhCiKWTy5y7Ogie675IPffL3D9AtICt6CIg4g81tz4+jfyqx/+Lqamx/jLP/sEt93+Vl73nd9BFCXcd88j/NVffIEvfParxHGK7RV586038f/98We46wsPkiQRr7ju5f+TvfcOs+S667w/59SpePPtHKZ7piePNNIoy9LKNiBsy5YxBhscMGBswMQX9t2Fxe8uBhZ2X/KCAQOLzYIxLGAbbMvGGBtlycphZjQ5dE/3dE431q1w6v3j3B61RiNZcuDZ93l8nuc+c2911amaunWrfuEbOHbkOPl8QJAvsueyHYRhC4FFmmQmIEEwP7tElknCsNn1y/K63G5JFKfcd+c9/MAP/hgf/shf4CoXkITtBGl7WE6Cb0t8FdJbCTjyzHHe+xM/z9LSPDv2jrJt7y4qlSJvfMN3Y8kC9doqOqyzZ89O0kyyXp9h564tBDkPJWxuf9O38rnP3cHH/uoT1DoR0i2QkOPa61+L5wfk8nnCdsjIyChWrki9GfFTP/Z/oQKH+toKnbUVcjpFSR/XcUl1zPDWQXS7wbGDj9PWLRaWpujENX7v9/9forTJ973zu3F0RNaqk0Y1ssylkWSQWdTrIZ0w5umnDrO2nLJ3zwHIJI6qomSOVruJ5yscx+d1r7ud0S0TaJEipCDn51DSJpcv4BZKFCtFGu01kjSi0WxgKcG9d99J2O6QIc2z3ZKMj41jWQo/57J161bjpShtMmWTZhqhY5IoxnU8NJB0jEWC6/kI5Rk5fHODx8/lEVJhux6Wck0HMEsgS7CVIo4T2m3TFeu0IjzbRkqJHQSEUZMoCRnftg3HDfBdn04rJHBcpLSwleF/p0nC/Q/cg5CQKzj0VPIUchbf85Y3Y9k5Ai9HY72OQuBIk8jm8kWSJCHTGY5yeebwEZq1OkopUIqrrrqe2173JkaGxxEYIZIkSYjaEZ0wpt0KiTqxiXUyiyQ2fKQU0xnUSYKyHf71S//KHXf8A5VyD/V2C6GUOYdSMDMzS9RKQKagY8g6KCsh7/loHbN1xw7y+QJPPvU4nU5IFDVpNhZN7iEzhCWxlKJQLBK2O+RyZSSQxB2E0LTCOmmWkiIZGBwnjhIsIbAs4y+bCkG9LTk7OWeKL54pLEVRhM4SLrtygvFxC0mblbmDPPbIZ3jm0Yd54tH7qVZKhheftqmtLeNIWF6aIWwZI3THVjQbbe6880tcdeUrKOQrbN2ylaeffpx2q0mK5JnjR1hcmKeUKxC2OpCmPHTfnVy+72rCMEZKm2ajRZwktDst7r3vTupRjbXaAkefuo+zJx+jEnSoLZ9kafoEM+cO01hfJJ8vGopHlnF++iwik0inj9npk9SWziKxLxne/NB73kdXFY/NWC3jc5d9XTztNsaLwTw3fPU2v8AoZW4U68AUB7U2Bb+L59u83ddlZM/OdQHJJ8Vzlj93/9nX/ZxdPL7Zufsax8Wdu0uNC14az3Zpv6qxOdnb/P573/Y96JmnXt5kmxIP8RLw0i+0jtjUuXs5l+lzcMwXlrHp3aWT0mwzZvKi7Ow5p/Wi9vyl5HAvniDL6HZ19KbFL/ZlXfw/7n43mfnbRt1lA4u9sdeL08bN50ILCGtNRArKtcmSjHarQxKaSqqBchbRWPRUy2idMj19nnI5T6oTPM9lfbVOEnfYtnWYc5PTVKoV1tca+IFHnBgzzg37jQsFJSHJJFhCEEUxPb1lVuZXWFtdZ2Cwn0KxgK0UTz59hL2X7aS1GvGPDx9h95hibmYBO/DRUcrwYJWnnjmJEoIojpFZhu2kFAo5ysUitbU6lbKH1pJ8qcSZE9NUe4y0eTtOWVteZ6i/h3KliBSKJNGUCgVWV2pY0mLqzDw9Qz0cfPospaKL1m0sKyXIV+hExqcuSkz2rNMUy+/6WhwAACAASURBVJIgjZpdpjOiKMF1DZ9rfb1BznMMT8b1yYhNBVBrZJYRhSGWZSOFRc4LaLfaNGpNZGZhewrHdVGOS9RpoCyre/041NcbFPI5Ou0O5byF5xXIRIJt+YyN9VBvNKmUitz9wNOUgzKX7csThTmjTKpThodznDq2xqmz80xs7aNRb+M6Nnd87mGyTNLXW+apZ06xd+8OU41dWGGwv4zvK0plh2u2lSkFZfzAYbyi+MRdD7Nn9y6Ehld/y27OTZ5loK+HoZESnXZIIZ/nwfseo7a6RqsVcsWB/VQrRer1JiePn+aqa69AZxkjI0MI5fD0Y08wMjrCwsIK23eO8cRjR+jvCZg7f55tE9uxHBupFBKJZdtYlmWgK4lCENPuhBSKVRKdoDJJSoqwJMJysCyPd779VTz8xHl+93c/za2vHAJLEoYRUjm0mw3iKCbIBaRJAsLFcV0kGp0KUh2i49Bc47ZNmsbYts2+y3biuQqBCQA67Yizp2dYX6tTrvQwsWMLAvADDyHgB973OV772p/k7W97B7mgxHXXjGN7Ln4wxPnJKX76P/wof/nHP4eXK3Dm1BlueeX1TJ6ZYnh0BKVsHrz3SRAhb33Hm0gSgcSmtrbOtolBJs9M4Qc2risZ3TJKkgrajYhmc5l8qcqTjz1OT08vc7NzVHtLKGWRLwWcPjFFpkNyuRzCcmiHEZVgG699/ZvwvIgbX3ELILscL0mztoDICsSWhyMidGLRbmp+6id+ikJBUqt32LptF+fOneft73wnf/Anf8x7fuh9bJ0YZur0Ir/2gV/lXe9+J6VyheHhIRKt0bHita97NTfe+AocV+E7hv9ovCQlx08cY3h0lEwI4naDNG3ywz/yTmxVRjt5/vaTn6JSKTG6ZQvNZhtpOUjL45HHn+Da665FJiHjEzuRygEhSdIGUtmst9qkWESdJl7OZXVtDdsWnD05S6Xs0FsaJI7qHDs6yR986M/pUQXKPYMsrU8y0CdpJyVyTsRf//0d7B+9nDgyfoeZyKit1/BtzyAdHMd42nkOcRIzMbGdKGzguXmiqI3v+QipSDKJ1qZ7JjOwHdGVU5dIacQyRGqgYrp7L7SUAgGOo7piIjZRp208HYU0giCWRSbAVjbN+ipKWTjKIY7aeLk8iU5NYUKnKGV3g9fus0V1If+ZEVYxcMKENNHk8yWKpTLtVojnFWi120ZzLI0NRNByaXSaKClJYsMR1Inhmjmux759+wzKxFaQxCZxTCPIYnxbkejMdHssC18pbGVx/OwZltZq9FVLuJ6k3WyBFijbYnFpHttyWF49z/79B6hWKsY03XERlkLolL6BIVxHkWYZSZqgtSnetdsdcgVDgcgyGOwfIdYpfiGPzCTtVgPXtiDO8GxFu9Ew0Nkkw5YpnU6dwA6w/DzKC2h3YjzLokMCWYpOIxxlY0lB1lmn0lMkSxMcxwZtkDBt7dKMNPH6EpNzdQ5ceRmD1SJD/UXSqE5tbZFDTx4isCNOTZ3i5ImDpK1lDh0+xuL6PK1WjUNHDmIph4OHDnN+dp4jx47RWxnAziJOHD1IX6VClmqefOJJTkxOMj/7DDsndnD4yEES4LHHDzI7d4yVpTkc2WF24RyiscLwQAWpAvbvGMW2JY7lUCm5VEv9TJ+fZ7nWYve+7Sjp0T8wSJpqFlcXcZ08dtam0DtKl2T8nHH3U3cbS4QLkEITF1pSvvxC+EsYUkgjJHKJLp1BaDzLV934LLqJX7ZJlX0zlHPjbxvrb4wNK4QsM6QAuelFF3ppYRL+7AVeMttoKXTn7dKKzHvxnJcwdw4Ekg3rg0t3K547vgnL/DccLye5+0aOt/7kf+Wtt+z+6jZ+ITnJi9e5xPjGJXcvuOFz3opL/+l5U1wKgngp0RX9vE7hy8nEL73uVyIEbz42IQVJFLMwv4hUFmdPn6NaNQp6aSr4x8/ew97dEzTrbeI4wbYtyqUS0hIUi3mUUuTyOfK5gOmZ8/T39vK/P/EldBrjey6lcp76eh3bMT5hG13KtZU1fNcjTTPINMpWBPkcfuBTq9WYmpyhVC0ZA3QElq/YMdxHWl+if7CPer3B7PwqA4O99PaUmJpe5LFDZ7ni8m3kcjlWVhrMzi+yZ9cWdCZwbMXCwhKVsmce6JlmYHCINImYOb9Ef3+V+fNL5As5oiSi2leh1qijBHieTb3RYGHBcNcq5TJIu6t6aIIahEBJI4afdTHxQghsyyJNEwNVcgOkNBwtA/0xkD6tM4RURhgkExd+H/NLSwwN9xPFRgpcALX1Jvc8eIxGM8RzbcqVIsVigZmZ80zNLBF2QtJE8PjBkywvrpPLOVhSMDe/gpBw9YEddOIWJ88sk0TGe/D01Hm2T4yxZ+8oOkuNT6EFYyNV7rr/CLu2DWK8fjWuY/HU02cZGenp8g6MN125PEgnjhno6+Gq17yNoZFhDlx5BbDIQH8vtu2xOL/C2NatPPrIk7z6W29mbGIrExOjrK3M8+QTR9izbyc9vb10Oh2efuIIzxw+yTXXX0mlkqNYLHD8+Gm2bd/KM4dPsXXbCNt37yQKW11D8u5DS6eE7RDlenSiJq6Xx3Vs4riJZbkszp+hUqqSaAMriqIOWicMD4/wum+/mUOH1njvT/0tt9w4Rm9vCdfPdaFBBmJsSUHYbj4LtXLzpDrD9YzHneE5C4RUZDrlnrsepadaplgqkc/nWFutIYXAcV0++clH+M3ff5zXvubHKQQVnjl8mEKhyKHDhziwfzd/9uE/50Mf/hA33VjifT/yFh556CAz56a5bP8evvSF+zlw7ZW4rsXc7Bzzc4u88c2v4diREzx4/2PkCzbVaoWe3iq79mw3QQuCXN4njiNaYYtmM6HSU6Gvp8p99zzE5Vfu445P/TOXX7kP3/Pp6+8nX8gZdECa8sl//CLf+R3fT6vR4EN/8kfccMONWJYk7LSxbcX6ahPH8Uh1SKu2RpJqJs+c5qd/+ie4/vrrOHnyJNu276BUyFMu5jly+CBXXXEFbt7j/e//L/zKL/0yJ88cZ3x8DGVZrK2tUyj45PI+rufSCVMcx+PxR5/kk//waQ7sv4xqbx9panzYzp+bZ3V5jVK5ysFHnuKJx5+i6AdsGxmiEYa02yHlUokoTLn88n3MTE1TqfTS7ETUamuUyzmWZ+cZ6h/k/NR51pZX2ToxDkIilY0SHvfe9WUWF8/zpS89wDXXXkbf4DC33voaFqMphraNUCkMsDLfJkxaOG7Gba+/jZUzTT796U+yd89lxscwSWg2GxesTnSS0mjUcW0HadnEaYKybSwJSZJ0VVUN5zNJYhqNdZLEJFadKMJxXaI4QlkWQhqfKusCbC0jSRKjbCkgjtIufFN1u1xJt0OocF0XrQVpqkF2S5JCkqZJF3LvYFt2F3JmvM+EkLRabWP1IQyKSNkKjbGwcV0X23PMto5No1Yj1Skz0zPkch6+75uuuTDCJY7rYIzWMzzXB4xqn5MvY7kuyg+IMwlpjO7eQ6VlUW/WKBeLDA8OkaUJlrLMtZil3WKrxFEuZ89OMjgwTD4f4DgOtu0ihCCJoi7s2jyjlKUMd9YynHGjxhujU00U6i7kO2N1eYVCIY/rB0RpRhy3QGqkDdLJsKRNmmVguaANfUJJ0EmMLR1UV0Mg6nTIkiZSaHQiUJZFkpqOr5QSK4rxbU2pUmFsqIpMWzhCkHNyFEse/X0ldu4YxNEJQ3399FdKDPVUGOrvwUpCxgYqDPb1Ui3nWFmc5MrLdjMx1kshJ8gFgsHeIo6d4HuSnoES/WWPas8gRTuk5OYp5xQyXWH/3u2M9vbgC82ObeP09fWR95UpqskU3/VJdYcgVySXs3E8h9nzcyzPrdM/MGjEoqTh8Y+PbWd9ZZZceQC54Xu3KVd59YFXM7C756LgpYuCeBlR0ksdOk1ftKmw8Xva/Hnzsktt80Kx2EYMll3ibxfixG4S90LjwpG+bIrTSz9730zu/g3HiyV35mb9bJ9ms03C13t879u+h1/99d/hlismnl14CeLppoN7cbjmSxxy84+KLvb54n1cavcvmkJt+rTBRbv0ii88x0tI7i61+vPX+uqSu42bhNj4V7yw7cLFyx3bplQpmYAgTVGOg1QSMsG+PdsNjyuMOHN2hkqlSAacPTuF67qsrdXI53PozHA/SqUS41t6mdg6zvHjk/T1VYx4hLLQGaRJCmnG0WdOUfB94iimWW+ABMuxcRybXC5HX18vqQW5IGB+boEzMzP8/uee5voRD7+Q48ix09xw/eVkCGzbZr1W46br9zI5PY8UFlJkbN3ab6q/jsvM7ALbtw2hdYiwbObOr9DT108ShSwu1cjnPdZWG6zW6vQP9qBFRqHgE3gud97zJDfesI8sTlhebSJtRZalKMdGSkGaGEnxTtgxUKBUEydGNENrTaZTkJb5voRJBoUyUvw61cao3ZJGWEbZNNZr2J5PLm+CEyEtok4HpSweePgo1165i8D36RuokmamEl4s5RgcrFIsFfDcAj1ln20TI4StCGVJAt/Dc23yRZvZ2Qa7d2/h4UdOMT42SH9fkVzRJ0N3k80UrVM816O36pPPByhbUiwVmD0/x/7LdxB1LQB836XTaHHvQ2fZvmMLnmvB4OW02h3SNOWxh/6ZbRPbaYchlXKZTthhaHgAx3WYnpk1/DBHs3Xbdr7wT/dy4vhZlpeW8QOXkS1DDPRXOHTwMOVykZHREYQQPPLlg/h5n8ceforLr9iFFIJ6bR3bdVhdWiJD0AkjcsUAtEKSEYZreF6esL1CEoOwVFf9Lca2BWmaIC1N/0CR73v7ayj3jPLRv3qQX/q1f+ahB4/xmlv3EHVCLKVQ3VeSROgUlGP4TGGjBVlGEsdYtgOZpKdaxg8CktR42wnAC3ze8xOf5ejBRX78h9/Hb/z6b3Nu6hyve+3r2L17Nz/zcz/DR//+4/zVX/wcb/7OVzIyOoSlFEPDA+R8h9W1dc5Onmf/gb102k1y+Rxj44McOXyKc5MzfOdbXkOlUuRf/+V++gd78DyX6akZisUCuXyAtDL8XMAXP/8Ql12+HWVZlCsFXMdh1+7t+H7A1OQ5iqUC2YZQkrT4wC//HTdcdw2f+Nu/4VtuvY1OFFEo5LoQJE0+VyLwbGorq9TXGwS5HMVygQNXXsno8FaKpQpnzp7h83d8DpKUE8eP8cY33oZWFm+47XXU1mtIBaVSEddxcW2HublpMg1+4LO21uLd734P73nve7jqiqv477/+m4yPbWV2dp7x8THe9pZ38oM/8EMEQY76Wp3TZ6b4Xx/5MHt37eCPP/IRXv2qb2F2Zpa5mWnOnDnNjl276EQJk2en2LZjHEFCuVgliVPqtSa7du9hvbaG4wYIqTh96gxnTk0xNtZP3q8wNF4lVyihkYz19iNaaxx//LNsH3MIqttIBXzhc3eS1xXGxrZhWRaOrUijiHKpgAAc20EpG8e2TTJl2TieR6vVJI6N92K9vo6FMDYdyrqQjNm2g23btMMQ11Fd5dUIYamu0XT3eanN/ajTCQm8ACkld9/zr4yPTZClMQILqSyiLofMUjbSkiilDBBOa5Sl6LS70GfbIZMSnWWmUOEow+eLogu8O51leJ5Llmmi1EA1ozgmijq4nmeMxXMuiabLWVYX1Fq1TvE8lzhJTWdLZ8yeO4fvOWidYFuSdquN7XjYSpljch2yNAGtkZZFqjWWpdAk3TnBdV2OHz3O9h07sB0bnWosZRLRJO6gbNfAKNPYiMu0WqyurnYN4I1ImRASyxI88MhdTGzfTuC7eJ5PosH2XEiMMI5l2aSxJk4Sc3/HKEGjYzqtGlKC65h7SDtsXvBuzXTK7OQ5CqWioUxkGp0lWFZGmmnuf/Qphnt78HMBMSmxSJHSQ2YOnVaCG9ggIIpbRunZUSjbxvUsXJkSOBbjo8O4doYrNI4SWFaGEgKJRpJiW4I4jnjkiScZHxnAzQlsB3yvQCcK8X1FksTYrmVg75lGuRaWkMSxINYxlqUIbA8pJSvL01xzzc2kOkOnmmazwcjoFlaW11hbniLIF3H8/CV5Kx/4nV/h9jfeduGztKxvSGIHz095NnfrNl4Xd+BeDGp5SXGWbicPxHOSODCF/uf10V4gns0y/SxP8UK3rmtGnumvQMX6xiR34v9U8+j/v4w4Tl7wBIpuW3mjPbzBxftG4mzf9ba385Gf7f74usndV723l3BtbE7uNNnzk7sXmOe5nbtLwxsvbCtebN1NW23608XQ1xfr3F20xxf9ywvP8Nx1sy7ReOP/Ljcl9S8Gy8w2ptEZUkjWl1fxCwUTaGQpYRxhSZiZnGZodIL5hVk6Ycz27aMXHqCNepNCKU+n0yaNNDpNSGJNkC8YZa2qCWSiKOb+Ox/j6qv20Yk6FMpFmut1hBIUK0VsZXehS5BJgY5iWs0WxUKRucl5fuJjD/LnP76P9modN/CwlCBsNlFI1htthDAmvPlinsWFBUZGh+jEmfEeUxZrK2scOX6am15xDbWlZQq9/awtLhul0HYb5SoCPyCOIuOpJB3aUUgQBBx55gxpElPtzVHtK2FbLrZjEyURynJAQNwJcd0uvCs2DziJyeviVAMKraOuyIxAZRlJmhKnxsBbCwtL2sSNdZSTZ21tlXK5yOzMEtNzCxy4YhfLS+v09BdxulDPsNMxVWZpfueO77O2GBG4AmFLY5eBprbWwFYea815Hv7yOm944zYcy+Xw0XPs3jVgOnzCNZyiKOTc5Aora02W6yEH9o+xvFhn//5tWCSsNtYYGhyALGPy3CzHji1z2+1vptNpEBTzJJe9hXYYEvgB3/2WN/GRD/1H1tbXGR0tIYTNFz53L699/bdhe5LPfuo+vuO7byVL6vztx/6JN7/1dpStePjLj7Nn905WV+YY37YdhKTdjrjjU3dx67cdoNjTRxyFeIU8pBrbcUhI0Z0EncToJGZlpcGWrQM0221sp0jcnKNQGSLJEkRq+MOdsIXOQnyvlyQNsZRHkoRYtiKJOihbQmbglkkc4Xh5/v3//T+46spdfOqzT5rlWjBQkUzPhcxMn+bV/24rU/MB84tL5PyAdmiuzYHeMm94zQFef9v15IOAO+96il/+jb9hZHCYRruJ5zr83Ud/Hi+wkQiiKGF5eY3B4T5DPUkF9937KNddfxlx1EJKw1Xy/IA01aZwwrPdmkcfeYpXvvomMjRhax3XyXHixFmKpYBqtY/1tWl6yv0or8TKyjzVniqZttBohDCS9LLbuRA64wv/dA63UGSsUmZg++U89PC9jA4NM75tC0JkNBo1dNTh3n95kgPXXsfC4jl27t7GO9/xXj78Zx+m1lhnYtcYJ0/MUSzncRxJuZKno1MDn23EFHMeOoOlpQUKxRJTZ6Y4cvgMaZKwY+8YH/7Ih/nRH/kRxsbGWJtv8/5ffD/5cp7/8cHfJguNaEonCvmzD/8lf/rhj/LJT/wdeUfyK7/6G/z3//ZrBLkcd33xE9x4y804QZ4gl2NhboFKqUwQFEitFIFkYWGZ3t5+dKvGqbPT7Nm3j1Z7mcAusrh4kmppnFpnmVJliFQrYj2PnYLnbaHW1oj2Ck6pyAf+n1+ktF7g9a/7DnSmDbcq1WgSlhaXKVeq2LYy91IpadZqFMpVPvMP/8Drb38jjm2j0wSRZWS26fJYQqKlEaySUpCkCcZasUMnSrDd4EKBL+vCKLPMeJgiMjpR1FUctI0PmrQgS2g0GxQKRTptI+SRIXFcB5HR5YxqMlLarQ5+rkiWaWPVYAmiyBSDOnHHcP90hpTd+xMZaDh1+gQ79l5mnkipIBOxsRFp1iHTxLGmXKpw191f4FW33EokNDKJsGyfk0dOUukpkysXUY7LnV/4NMotUVtf4JWvuBnH8/HzRURX5COMQmxlk3SPJ2y3sV1FJ0ywLIuFxXlWV5YY27qdXD5PEjUBF98zHHLXVUZYq1Dl6acOsmPHBEpZpDrhvvvu4dWvfi1SQCesIaSF63hESQ1pFVDKJNlxHOP4LiJLjQqo0HRa60hSfD+Pli5pCkq5SGFRqy0Q2BA3VyEzibRJKBQkGdiaqNlGORJLOAYpIEznV2eaTOpuAioQlkST4QpFmIYkHVO0RYgLFhpCCmScEmvNk0ef4doD1yPjNmkSkwlhqA5ao3DQaYhUisTSWIkgE5o0zphrRPT5OZSXQgfuevIgV+67jv5qRtiJsF2PRivlyJFFdu4dZ2hwK4888RiXX3klQlvMnnoU5bmM77v+khSSX/6LX+YTH//Yhc+yK9T2jRgXJ2obvLnNyy/FpXs5Y0PFfHOIKjcldxePF7JCyDKN4rnbbZ5Hyhc5Ty/Ay7vUsH3/JXcbvpncfY1jI7nbSNj+LRK4rzR+5QP/lV94/fjXb8IXuUaem9w9b8NN239lsGP2Iu9E9/1Xax2yue1+Yb7uhxdtXG5K0F7OuDi5u9SxbF73AhzgovXTKAEydKJJMAFHfb1J4PtoUuIowXcDDh46yuX7d+PYDo89fpCdu8axbRvXcUizrGuwKUiTmMbaOkEuRxwlTJ09T29/hbn5Rfbs247VrSwKnn9+4zCiXlunr7+fNEl52299jr/6yf1E7ZA4jghbEY5SpvvlWEjLot1sY/uKfL5E2GiwMDtP/0AvjXaI69noOCTNHJSSNOprDA5UkORIpYBUcH52jtEt/ayurJIvFllZXGNgtJ8kjHn60Am2T1Qp5vuwXYsk01hS0Wq3jPGvsrp5cnYBOtJpNfH8AJRNlhlyvaMkmVSANpwKIYiTENty0GlMojN0LLBtBRKjnoYiI8F1XLQw5zdJYlNd7/722+0OXi4ganXIUlNNbdRCisUCYbvFQw+exCnGXLH3Ss6cOsuufWNYpCQ6YfZ8jeGRXqPktrhKqdqD1gnra00cx2dxcY7xrSMG4uU4ZCKlvlqj3WozMDDA398/w/ff9grOTs5QvuUHKVSqeIHHn/7Bn/Habx/k0MHjVHv6SJI2juuBFlx309W0WjXSJKVULvD4owfp66swNDLA6dMzbN82zsz0WUZHehBWnoOHTtFs1FldbHHzt17FyvIyoyNjPP3UQa65/gBh2EZKyeGnj7H/wF6ENLwbzxa0mmuU+odBmPPeXFvEcQMc1yfVkjhpY9s5WrUlvMCj1WrjB3kyLXAdiQY6nYi879FspcRJE5Eq/IIRmPnyA0/xylfdxIMPPUyWKm64YT+dsE2uUOSvP/YZ4o7mrW97Dbl8jpnp8/T2lpmcnGb2/CJ9/VV27tqObdvGxkDHtFsd6rUmfQMDODY4nsfU2Sl830cpm+lzM1y+fy//8s93c+vrbkJggXSAGCEstBYIHZFiJOvRKUJm6FiTxBnNdgtByoP3PcFr3nCraSwTk6YZluWQZYrPf+ZfuO7G3Rw9OsdvffBz/OwP/wIf+cs/4id/7O1ccc2NLK0vMjQ4SLvRwvdcVpfm+M3f/CNKxQr7Lr+cW265gShp43tlTp8+TyductllOzl1+jgT27cjUDjKJxKJsWSZmmJodIxOq03cTpk9d57/9dd/jeMofumX/jPKFfzxH36E7VsmGBvrp96O2DI6QKUnTxSHtJsxv//7H2J5qcbv/eHv8Dcf+9+86U2vZ3VlhtlzbfZdvYu1xRW27JpAhA0cL2BmeY2hSgAaYunTXF5BuAm+P0S9PYtvVy8gD5I4xHMUSRgabpmwefiRR9Gp4IZX34ReW2V5dZ7+ie1ksaZT63BmehpOG2GUpZVl1tZXGRoYxfUUjXqdMAx5+LGHuP31b8YSGVGSoCybOE556onHOHDVVdiuMtxdz+P+++/m8n37CYpFIzaiU7KoDbaHACxLojFm5Dox/M84SbGVucciNPVGi0IuTyfuIDKNsRBxkTIlSQw0bW1tlXKpQthuITJNmibkiyWiKAYEmZRIS5HphKjZRNgunp/DWOII4k5MlibYtkRrie24hJ2Wga5r0GikZQp+rhOwtrpKlKZUy2Vc16bRqJNlGe0wpL+3H61T4jQBaWHbNlmSGJXPJCHwfZI0ptEKOfrMUfZdvtMklyjy5QpZprEEXRRFRpKk6NR0rY4eP8H27TtRsoNyinQ6IUoKtCVp1xvMTJ9j1779IAVJ1EIJ0JaDpSXN9jqFQg9palAMse4gdUqiTQdWZJoobKLjmLOTp9ixYzd+kGO9toYtMxyviLIcaq2GKaAkKa6jyEQEYY00CZEYyKaWRlFSSpDC8Iu1JTj09JPs3bsfW2RklmXM6LviTVErxfYs0qSD73jEUYjo8iYvPO/TFMuykMIzHHA0Os04dfIYuy+7gizp8sKFMZ2P4xhhSePRqWw6kYWrIjIZkEYtoszAX30X4jCkI21sLBbWa6ysRYSdlCsPXMPcwixho4ljaWwVMXHlvwMspE7QmwKk6ROLvP7f33whbrEs9TKioq9tfE0CKF+BerQ5SRQXBT6bkzx9oTm3yVyc5ypTbsTEmTBQ6K+UY2X6uQljyrOiMNZFx/JykrtvwjK/xrEBy7zYAkFK6yt+qd+o8apvedXXxsF7GeM5WOcXX/NFPr2E/Vxqu68iudu86UtCpH4NkNWXwrH7SutnGWQ661oZZCAktmUTRbGR+kawsrJqDHV7qywsLDI+PoptK1Nl7iY2lpRYtnkIHD58kv7+Hg4/c4rLrtjN3Pwil1+5F8tRWEpd+C8L8dxTnCUpnuvSaDSwPZ+P33+ct948hADm59bQqRECWFxap7e3SrsV0mq1qPaWyNKYOOpgWYLF5XWKxRxxnNJpdoiTjCTTKFcRhg3m5mv09pTQMqHd6dBuR/T19yEtaHUD13q9Tr0esmPHMO12jHJdsCxSbbqFlmUZPlbUQWjB/NwinusS5IMuzLerHppqkjg2PB5pfJ46UWSq6EmEjhOOHJ1iZnqZlbV1mo0mxWKOdqvDwUOn6a0UcBwbKQTNRhPHdqjV6oYv4Pa1DgAAIABJREFU07W5SOIYx3URWHQ6KQ898gy2LbhszwTFokQpn/XaGj09vdx1z0F2TGzhoUdOs3VrP5nO+OJdT1MuKooFH2ksrTh8bIrhoSqnT89QKee6/DNJo9amXC0hgyoDvWXOTc4ycvW3s+Hes2P7OLBA/0CVPft2MjDYy+TkFDfedA2IFCng2JEzFAoBEzu2I6TEcVyeeOQphkeGyRdKPPjAUYa3GH5k2hFMn59k72Xb6esf4p8+czc33LSfqBNiqzwnjp0g1Sm9vb0IyyFOMlINmZAmcZEWUdQhlysZ+Jm06HTa+H6AJkO5FrZ0L0Dl2u0WyvVYX1sn8F0OPX2c+YVVBod7TVHBEkSdmMceOcKWsT527RmnUikzNzdHqiGfD9i5Y5RCqcDgUB8f+4tPUK+1GN86zuDwIL29ZSwLHM9HWYIkbuN6eZTt8MyhEzzy4NMcuHbfBd5mzs9jOxY9PRXSNKOvvwff9wlDE5RKBe1mA891sGy7yyHpoimExZ1fvI+BoQHyxTz/8oW7edW33ky7HTN1dppypYzOoNVqoyyL0S0D1NZqbN+5jdu+/V2MDPby5rd+B54jEbagt3eQWq1GLshx7133UG+nvO6227nuxpvZNr6Vj37sr+itDDLQO8bQaAGdpuSCIgND/XiOx+rqKuVKCaRECigWitTmFwlcl2eePswHP/hBfvEDv8jrb7+NTtjikQcP8i2veiU794wRRjWUKPIn//PDTGzbQbnShyUVN9zwCpI45Yt3P8A73vF9LC8vokXKVVdcyzvf9f28+wfeRaoFURSyvLJOFgvo1IjClum+tzWubxO1Bb/63z7AK29+DUqmTM+colLOkcQpnUiztt4i77v86Ht+FNd2ufGmV5AlMe12i1yxRKfZxHdcfveDf8ji8Vl8P89A/wCFQol63RTLCrk8fhAwMjJGvVFDWaZAdeLkcer1GjqJGRndgtVNpCCjWulBWaqrsmjEZTIdk2aQpglpHIM0wb/juMYvTdnoLEVIIDF84DiOCDwfMBYMtm1j2Q5RJ0KnmkKhSJYJ4ljj+nlsL7hQNLUdB2lZJFGMY9umsOUYZcckjiBLUZaFJRWHDh/G9/OQma7F8ZPHKJfKHD3+DNVKr1HitF1yfsADD9zP1NRps/9cAddVBF6O2lqNYyeOMTw0QhyFWEoQhzGpTnCDHCiFtG085bK4sMCWLabQqFMNaGxLdoVLEmNdoFOSRGOJjL7ePhMU2x6ZMFZB0rLQWYzn5KgU+0myNhZGNddSDp2oY7ziLIGQNp1OGzJhILNI0lTjOe4FVepCzqBSLNvCsmwyBGmcEORyJElCkM+RpgmOZeHljIVHnEr8wKfdbmDbiru/8BhahPRUe8kySawjlOsyfW6Wnp4+bEeQxSlCGW6mAM6eOEq5t8+I4FgutXqE4xqfRYHCc90LsEORda13hCDRGb09/Wgdd+12om5HkAvib8oyKqS2JcmyNvfc8yiF/hKVwCVLIwPFlYoH7nqU4dFeWo2Uo1OT3HDTq2g3mwwNDNPpJIZ/nrSoDo4gpDJdpU1xSbEn9xze3dfbvPzFxtccT79ILKeUgSFfij7zHGjmhdjIvFFwgRf67G42Vnq22fOiI7t4f8/OdrElxTc5d/+GYyO5u9jE3CQOL8yxeyn8u411Ln4ZKf3sRVWKvvdt38OaN4q7euLCss0QanGJ18se4rk/g29kcrdpl1/VAT9rov7V7/vl7e8rH8tLWV8Iy3ArAEvZxFFC3ElxHYf5+cUuUV3R01MFAUHOeLNEUYcojk13Ix8YWV4BjUaDtdU69UaLSqlEFHeY2Dl+QYXUpD3PYtv1Jt6msm1sR6FcF5nBJ+4/znffMEjU7hC4DlmWUms02DI2wOzsCidOzKCzBInF1NlZquUiyvHo6SkRhh0K+YDMspg9v8TaepOJbWO4ro/j+ITtddIk4/z5JSa2DnPixFl6K0Wa7ZCFxRVGx3qp1xKKxQBle4TtBspRWBjokZTGkyoIjJG867sm2MkylHLM+c40OjNWCH7OQ2pJErdwlIUlLRrNGqsrNeZnG4wMVhkbGwQyms0Wff09VCsl/LwDQKvZIp/PI6TA8zzIMN1SnRgxA+Xw6ENH2bZ9gLEtA9iWw+OPn2TbRB+HDp2HDBxH0Fct4Qceu3aNYlnQajbYsW0Q3zMKfEeOTDIzs0qp5DM6PEClUuTJx49SreRpNUOOnZwljSJiq0JftUQhX8Dfej2N9RXKxQJZ5vBtb/xhvuP11zE9PY0fFJg8M825c1O0miE9vWUcW/Lk40dRKqNYLHL0yCnKpRL33/sk1d4CQWDx5BPHSdOEvr6Aq6+7Fj8wgannxVR7BpidWWR9fZE4yti+Y5z5uSUW5+c4NznN9NR5du7ZQRqnWEriOn63VilJEo2OM+I4Mh0aDWtrbRzHI0kjkCm2dPD9AIRFpVpkYHAYqQS28kliyfrqKvsu207fwBDt5hrHDp/i4NNnWZhfZWTLEAKLnp4qjUaT62+8iqmz0xw9eoLxraN43etvaX6eak8PlusZS1sJ49tGmNgxTCZAOQ6e5zF5+hzV3iI6y1hbbWApi89++k6uvm4/YadDs9XsBt/KBP1pQhSFKCUgk4yODuN5plu+d88ePNdm9vwchWKRhfkFisUcQVDEUoaLe//dD/P+X/k7Jo+uMLfwONXqFuamFxkYGQChcByPLM24/94HyHkBW0Z7mZuZ4T3v/hn+03/6eYaGq6RZm6lTp1hZXgadEMWQaE0QeJyfPUepUkVk0AlDcjmXDCgP9vJdb3srnuuytDRnOt5IDj/zGJYDW7bt4n/+6R/znh96N6nWnJuc4f2/8F84duI40+emGOkbpKeQp78aELeXGBrZxoGrD/DJv/8MJ545yf4brmF68jy/9au/zW23387J02fo2zKKjCzuvfdfcVWJ7/qu25k5d5beaoVSscT81DzLKytkCsLUWGK8933v46d/5me5Zv+1jG4d5bP/9Dmuu+p6BDbv/w//mXe84130OUM88vDDhFHMwMAQtiNxHQchNbVanWKhRD6fN51/Ienr66NaqeAFNkoZ/zqkCcEc28FzHGS3y5KlYEsboRRxEhvxEc81SA5014tNdblCilbYNvct28zbaDcIfJ9Op40lTVfEVpJaY51MWKwsr+Ioi6hTB6EM50l0OUNJZJIhZdPpRLiOA2mCo4wdSKo1x0+cYGhoCN8z1+S5ySn6B/oplyq4jlGKTdKMThgyvnUrgwMD9PX2Aim2n0PZCsu1GRwYwrEVpBodxViex/nJM6ytt/BtYyqTyYxSpWg6eyLDcTws2yUTouupZxHHEcrB8LJdjyxL8VxFFGkgptWok/M9dARaZIRJiO4k2I7f7RRqlFRIbXHm7Alct0A+5zE7M0uQ82iGLdI4RGQZsTb+ke0wRCnoJDH5QpE4SvD8gEZ9Ddf1WFlaNNxVZZMkHZS0cPwCWijyhV6i1GZ85wA9fb2mKytSHOGATunt6cV2JEI4JFkKGShpo7OE3v5hLDQ6S5FCcfTsMUYHhkGbaySOI+NVaKkL36nQGUpKbGXEZdIsNcJvOsVStkm+MkzxV2ekloAIRrcN4aYKbbtIkUAmQUNQyeEpRVDwmZuZZ3hkK4sLC8zNz5ArVGiHIWl7GS9XxMuXEVn2vOBkI7kzfMevr3n5i42vKbl7ocSuC5lM02ch9BvFt43XxjDnf0OQ5YLf1fPi3lRn3aL6Bj/whQv9QNda4tnO4jeTu/9DxkZyt5HUbSRkQFcMQT8vSdv8ZW9cr5uTvY33F+bsKviZpI7u3F+ZSxcEAd//H3+L77xxu9mmu3wD4rh52cb7S16CLyC8ckFt8cJ8zz0i49y2sc1L/2FuPrbn2xe83Nk25rpEV2zTfr7+47lH//K3ftauwXYcEp0SRSHT52axLcUjjx/i8j3baHdCqqUCk+fOI5WN47qkUUiulMcPPPzAVEClFCRJSgYMDQ+QLwQMDvdzfm6Oak/VXHMX39REF5PelfiNI0P2b9baLC8vE67PMuxbzM8t4QUWrXZEpVxGChvHlXTSDrt2jXVNgDWenWHnApr1NjrNiOOUYjFH30CVgYEq9XqD1aU1HEszN7tIT18veV9h2xalcpGV5SUqlV6Cgke7lTA6XKXTarEwN0uh0oOyDA9F2QaeKSwLZUsyJPX6OrlCHiWN+MqpE+fIBz62bYL0NDF8xVZ9lai1Qhq3KZZ7adTblHMBrudw+MhZtm4dwfEchKWYn1synQ6R4bouUVdJr762boIgpRBSkqQJAk1fOWC51sASNo8+dpTe3hJxlNJot1DKYmS4jBKQJk0sEXHo0CTDA8NYDijb5d77DnP1VTsZHS2bbigZtqVYXUsI8grXkoz0VVhtRnzk/mluv347yon59h/6L/zQe3+Yj9/xN1x91XXcec+9XLFniO07tzJ5dopSucD+K/fT29dDo9Gmt3+AXD6gXC5jOzb33HU/uSDH9bdcw4MPPM3ExCg7JiaIwxWiMGV+YZn+oQFjSl0ooCyb1ZUFxraOoFOL06emOHniDPkgh7IkZ8/OsmPXVmorq+RyObLuc7JeW6SQK/LIlx9idGwbFka4xrYtPv43/8C+y3ZgOQJLGB+msBN21fVARynHjxzn8NNHKFeLJFrgB3mUE3R/N5OMjI3xyJefplTJc+ipI+zcPcEdn/o8YZjgORZbxoc5dXqSvoE+iqUC0rIRmSBNwy68xgTzGTFxJ8RxchRKeTJt0W5GBH6OVmuNQt7Gcy38XBHH8XAclyiKu2quEs/zaayHPHjfY7iezamTJwkCnyzN0DpieWWF4eFeWs0mfX1DRFGMJIMMJvZOMH1OcvKZJ3jvD76dL931OHuu3E65XKaxXqcetlFBjl279rIyP0ulNMraapMffN/3Ui4XcF2PxaVV+nv6OXnqFP3DgwwM9aEcST6Xw/OK2GKNJIVEQ6QKRK0F4to5cp7LzMwM01MzDA2OcN+DT3LjK24hlyuSz7tcec31JHHKwECJOFnl2259A0HO4+3v/F7uuONLXHvzjVS3jGGX+yANqfb0MDo+ykf/8uMcuGw/rlK87vZbOXdumv6BfpYXJ2lEIWkn4jOf/Udedeu3Uq4O8vADTzB99jiDI0N40ghLlCujnD19lmKuj7e/9Tt56JkH2TK+k6uveQXNuMX8mbN86e6H+Z0/+j1u2nkLQd5nz97dCCGwPYcsjVg8P0m5z1zHCGi0GpBpGs0GyrZRtoE/WsqGVCOkJMX4tOokwVUOnU6HVEdkqcR3PVqdOp7ySNIOqU5JExCWBcpA8C1LmmQxy0jSCCVtHM+i2WriuB46M9xS3/bIREaxkCdNNYFfII5CHNclQ6Bs2UVOOGhhgU5p1OvEcUyqNa5rzNELhTyFfI7lxUU8N2DL2DCfv+Pz7N63n9QWhI0mrm9E4Ffn53j0safI5Y0CcKpByIz1pRls1wMgyVKkLbCUje25VMrl7vkzfq1x3ME0dzJsYWw60rhDoCwsASgXHUlsCyxi4jRFS4VtSXQSYklFJgXSsrEti0xrI+yi0+4DShI2EzpZSD5XYWVxluXlZXJBgGXZ5Dwf1/dJdIptGWGvJIlM4U9A2FyjWMwRJgkiTbtxlsDz8rTaTSwp6YRtE68lEWvrKyjHRnk5nKCC5w1iqxzKz5NiYftGzTaKY2zbAeUjVILCIk1CMmkjhbEc6i/3Mje/hB+4+NIm6XL6hJQo5RKn/x977xkl2Xned/7e+958K1eH6hwnIsxgkAgQJEAwi4IoRpCyVrLSeo9ly+u1Jfp4JVvyWYuiJdkKx7K0x1rL8poUJWZSJAgQAJHTDDAAJufQM527K9etm979cKsnYZBIitoPfM6p7q6qm6rq1u0n/EOYom6kTiQSlEi9PoljLCMVx0l64jqJilPKShiDLrBRrLVDJCp9r3SJYxh4po2mKYjAdTPMrawxNbWFvnI/tmdhGBbN5jKFwgCmm02vO1fkff/x//lD3v3ud1zotP8gC7sNq4Kro5g2qE/aJbn09z/NUyiU0C7muL3v/8YtUQqhSRJ64muXiKOk66bDNylE6ha8gZaSF3P+i69P9dIpyYUVN/bbE2C5aJLwyvfgR8XdDzE2ijutJ9t7aVwYsV/xuHbJyXHlelct/L6Pk/gjH/0w9/7K/8VH79hy2amiXXHSfS/xeut/L0XN5etf/Pn9xlWnZT+A9+D19/u9rnc5NjK9p1EqFXE9E99vUhyo4GY81lZXUXFIEkdIqeFmXDRdXoRX9hIQIQSGYaIJgW1bdLtdyn1FTMO4arGsIem0O+iGiSYkkR9z7OhJDKmRzWXYOdFLFPsKnJ9fZWy0wuraGs1Gg1w+S7GQRSUJjpfyC6LQJ0HQaoUUSgV006RWrbG6WkOXGmEYEkYxtUYbhcD1XHSZkralbmDogmq9w8LicioAk3XQpCRXyKUJvoqRmqDdbmJZNihJEqcdc8s2L/j7aSL1CBQCulF0QYXu9OkFBivlVAAj0ag3mlSGB2nU6phSMdhfoFpvUuorIYQim0kVLaMoSjk1SYJt20RBcCGZF3FCtdrA87LMn1+nr5QnCmNGRsoMDPThdzvMzoySzXopBzERBFGMqesMDg7w6JMv0+m06bS6VCplWq3U0LjZ7GA7NipJKJdtTEsnjhLOnVtndssoj768iNttMTwywppW5Jbrp9m1fSe1ZmqGe9ttYzz52B62X7uZyclxTp8+TbFU4mtfup8t22YQwEsv7mN4ZIh2u8VNN9+A7Tps3jxJELQIgohqtcrLL5xkbKpCqZSquwohULHi7Jk5Bip9mKbkwQce5cfuuZPK0ACZXAbPc3hp72GuvW4ra2trqW1BpGGYOkkM+aKL41jUG1VszyPRumzbPosuDAzp0ek2MAwDw7Dw/YD11VWSJOLE8ZO85bZdrCwv8+zTexkcLPHAfY+SzefYes0WdCPi9rddz0ClhJfJ4WVcvIxNu+1z1923kc3lkVKyvraeynALwRc//w22XbuZrh+gEoiT9BvleVm6fogQ8Jd//kUcx6DeqDM8OkI2n0M3bM7NLeC6Tprsq5CuH2JZJnEUY5gmg5UyhWKeyvAAQug4jkOiYqI4wctmyecLdFo+Dz7wMFOzYygFH/3kZ/h3v/4b3HnXOzEyNieOn6FYytHXVyZsdBkY7EcjxJUhQgiyuRz797+M4zoYhkEcK0zToNvu8tQzT3HLW25FIDBNi243RNNgeWkVxy6hS4skaFHIGER+G0u3MTN5KkMVpK4zOjqM5erk8y7V2irfffhZdt2wi3azxfjYCKVyifGJKX7rtz7Nz/7Dexkd6ae2vMhALgcyJuwGeI7Dzh27KJY9pJFgmoJMLoPUTP7oj/+Ee+75CJ//n1/g1z71KTTdRAQ+zzy7m8/+zRd5/3t/nN3PPsXY1ESaKyWKg/uO4Pt13vuu93DfN77JDTu20KwvUcoVGBgcZf+xQ3zgtvdSGRokSRJa7Q62ZREEAW4m3yPPpJ51upZC1B3XQ5MSS7dRSnLy5GlKhTJJEhKGISoK8cMATRopuiKOsC2LbhAQhF00ZXDmzGkKhSK2ZaIJEEojiUOUiJGahu93kZrENAz8IMCxHdQG/E7TUVxsFBuWThh10+u5btD1A+IkwtSN3r8MgaGn00HHtrEdm64fsH//ftZXq9iWzfLyEtlckZOn9nHjzluYXziPaZtkMhm6foxlW+RzWaY3b8X1PI4cPcRTjz3BzMwWPDdHHEW02j6e44ESCE1i9KDhCEG1WuXgoZcZGBjEc7NIkRqy67pOp9PBMEzafgdUzNy5OR54+D6mp2exHY8wCJCkiqK25ZCoVHEwSVI+mmUZ6XU2jnFshyiM+Nv7/obRkSmynkf/UBnd0FLhrcOHyBUKPZg81Op1jh07wMz0JrpRjJsr0PYDkkSRy2SJ4gipa0RRgCJBSo04DrHsVIHacTxMx0VTDipRhKpDIh3QDIIELDeLZmRxMn1oZgbHziCkh2ZmCaWOIUhtLTQJKjVsN+y0caQh0KWeTnI0rddwTXldzXqbnJcnjmLCsNv7nLUL9B/Rm4bGhNRDgRIGGTfNLa0eh94Pu9BrTsyfP8+Z5Sozk5tJkpggjMhms+iaJOzWUZpBrtTXm9xdnsV8+eEvc+/HP5Iit37A+dNr2Ua9GduDNx2XbPPKXW/AeeFqReflUzbVa8Jt2JBcGReGM1wNzvr6r+VHxd0PMV7b525DVIMe1+Lihyd6KkqvUE68otBLf18Ua0k9bcSrwjrTUfDFv4UQqcn53Js0OX+1eJUp3lUX3SjPrvI639CuLvn5estdbQJ5OYLzhwHGfPVjeqMhe+pT4ooNaD0jbiE0ms06jmPgWCbrSwtkbI1qrUbfQB9uNoOUG7y5C/hgLtoyQLPZ6EmwS6T+6lLGQkGr4SNEahZ77NApSsU8Z8/MUS4XOb94mtWVNUZGB8i4GVqtFkrFDA2XQEEYRFimiUoSLENLJ4q5XJq4KDBMnU67zcBACYXi/MIaoyMDlEoFdNMGFLap0+50abe72LZJrd5hbKyffN5Fkzq1egtpSJIwotvxCYJuyt0SgmathWlaaDLB7/qpp5QhU4iqUgghU/K6piF1SaGQ73XuNBwng+nYhGFAFIRUqylP0PUcdNMhjgJazRa2YyGlThzHOLZNkqRiCbKXXPnNdiqvblmsLtfJZz3Ozs3jODa7nz/CylqN4aESjuui0Hjy6cNs2jSCQFKtNhkfH2CwUiaTcTlw4MyF64lhGmQzHo1qjXp9GS/joUmTvoEySgX8yYPn+LV/8C50XfIHf/Mg77jtetbma9TbLd5+59v5jd/4LbZtGadUyvPi3pcpFLNIqXPDTdfj+12Wl1e49rrtHDt6lJtu3kWURDz+8BNMTU1w5NBBlharZHIehVIfL72wj4mpkfSc0yQH9x+hVMpTLpdYW22xvFgll8tz/vwcY+OjvPTCfq7fsRVNF6ytrnPm9DyteogQIZqup0WrSpCGQKGDcrBNh3ZrHaF1Uy/IMKRZb+K5GfY89wJhELDz5h0olVAo5bnu+u1Ypkk257K4tEa5XGZgcBC7Z2b8ra8/wtrqChNTo2zaNJOeFyLlTR07fBzXs1hfrxIGEX19JdxMlvv+9rts3pqKQySJYHV1GRRUhkqU+gpMTI3z5b+5j5t7UM8zp84xu2kSRYxp6RiGk34d0+weqaeWD4ZpYxgWiJhWq02hVERKnYMHjmIYOjtvvAYpNQzD5Mfu+hCrK8v0j47STRRL83OMj05g2xZSaRimwfLiHE8++B1KgxU+9an/k1037OSB+x9jcmKKYj7H83t2E0WCu+5+BxEKQzc4d2aRXK7EqdMH6BuY5tFHngEVM1gyeXnvfn77M/+J66+/jkRzcV2P+YXzDA0PolQEQhHHMddcewP/7jd/mxtv2EG326baqlIq9nHDjhuRVoDnWGhJTH1tDS+XpVats7K8SibjUautkaiAQjFDLltACIfrr93Fdx58hE2T0wyPDtPymzzx8He57Y7b+dBHP0Eum2VwsB9pGyyurVIuFLjvmw9QKrlMjM5S6SvRaq2SRAHLi+uU+/r57hOPMeINksvm0A2D/QdeJOtleGnfi1hWjmzGRSMVIHEdB7/rp80vBc1WFdO2yRfyhEEnbVw5DoYhMW2HKElSzzpTx/dTdUihCebnF6nXa4yOjNKNuimdIhFITdFsN1AIHCuFNW+IjCSJQkpFGMVo0iBKFJbRUwEOA3RdpubjIpW8Vyia9TpB0MW0Uwi6rqc5R5LEtNpt8rkiY6MT2I5JMV9gaWWJUjGLabnpeSjADwKyXg7VU/FE03jwwft4y023MTszRdvv4GZTteX77/8moPPss09x8ODLbNm8FRLF2to6TzzxCJlsliD08TIuSRJjWpIgiNjzwrNUKiMYloNKImzbZcfOmy4gRdqNOomKsGyPTqfL6toypmVg6BbLK0tksh6tZv2CynG9usbOHTdhWR7V2grZXAFDtzk3N09lZAzTkERBlwQN09AZHRlDl5Jau4M0HBwvR9j1iROF1HUs20x9Okm91jRNA2nQ7aTeskrT8TtNkihBxRGhX0MmIbqK6Tbr6FpCu5HCZ9t+CyU0LDdLSIJh5AgSiekVsU0L0zBAKjQ9VZsOwgAhJY1WO4U99qDBKe8wLTylNFLPPSEucO4SII4STNPi4af2Usr3kXPT/23JBmdfExiGnQqwxJIjZxYZHhhieWWJiYkpEhRJFLO6eIq+gWHsTB5xBecO4MChffz4R97/PYupKKUuICFekXO8RsF4tee+3wneBSsFoV2y/R4OLUl6Uzj9wr7UFYbjG3k8G0UdqReeFIKNGc6VqDugJwyorri9fryZ4u6Hx4b8UbzpkFJedhNoFy46bzY+/umv/YCP7kfxdxFhGF682CBIL9vpTWgRmg7FUonK8Ci67VDsr4BbZOaaa7DzBTRDR2iXq0pteLpsRK5YIIhCLpMevUpoQmDZBufOzhF0fcamByn05ZmcmuChh3YzUHDZcf0kCqjVa3S7AaVSkXrNJwj8VKhEwdzZFYQy0KUFSqfVqEPc5cypM6xVGz0PqPQi2e34rCwvk8lmyOczhGHKW0iShFqjTcZzIInp+glRN8LRNZbPLRIHiiiAJNTQRZbaegsva9Jp1VIeh2liWymnJI5jgii8MM0EiKKY9aUFWs0mQZCgEkEQgNRtyv19TG7djDJtEiGJg4AkgsefPIxGSsS2bCvl2KRvOFEYcfr0eZysh5WxWV9bptLvcHpuEcPQ8Ns+b7llKyNDBeI4YmF+kepqi5tv2IyKA7709d0sLtewbBNd1zHNNMGcmZlgZHSYEycWESiq9Qa5XBkwQUWcOHGERr2FoQmkAYgOGiaD07dijRUwDJ+g4/Pvf/M/sHXbZvbu2U+71WJ20zTNZpPE9IbHAAAgAElEQVSlxQX+9qvfoVgssrK8TC6XpVarkSTQVyozf26BKBQEfsyePS8zvWWSW2+7mcXzazzxyB7arQ4DA/2gBM1Wm2eefoZ3v/92ul2fbiB4+sk9bNk2QT6fcggrQ0NMjo9TXa3S7fqsrazRaMTcf/8LgMPC2WW+/Pkvc37uJFGsUKJIc3UFXWp4+QwqaXHbHTcws3kGqTtI28JwXL70pW/TDjuMTo0wPFyi06ryyEOP02o36XTaOI7J5q0zCCF4+MEn0KTG17/ybc7PnaNRazEwOMjq8hqmZeB6NsuL87z3A3cSBj6HDx1DSkGrVScOY557+iVKfQXQYt71rhv45le+zuBAkbWVBVrNOiTQrvsXkockSaCXsJmmjUpkT4mwhet5KBKWl1aYnJpCaJDEiiQWPPZoQKIXKA4M0mkt4+oRd971VrKZAlEcY5QcukKxtNLm7js/THW9w4H9x7nppjvYMnMNJ4+cYn2lyvLCAoPDwziZLKZlY+omf/yf/yvtVsT41BCRErz1jlupVLJ0/A5T22/hl3/tM2zeeRul/kESAcNjw7TbXdrNkJf2HkEojyju8Ku/+st84UufRRgRfaUKS8vz9FU8oiBgvdXEGhjAGKzwxEO7qS13WDrfYGlxnVazy9DQGFI6xJHkv/23v8C0NG659UZ23XQN9eYCzc4S81Wf1eVz/Nt/+c+YX5rjV//Vp+h2Jb/92/+Zo0eP8HM/97+wZetmlNRYb9VRWpbf/0+f44/+8M8xjAxxGLF5Zhvz5xfRpWTXrl0YhsaOa69DJgH19TanT53FMCTtdgOrJ8SB0Mi6BYTS0dAxDQsldRKhESakAjBJRBT6kMSpUqXQsGyLqZkxduy8niAMMHQDpUkC4ZNoGp6XIwrjXgIdEyVdEhVjGjqR0JGGTRIpLEOmjV2lYekuSSjpdiN8v8PK2jyGJpGaRj6XY3VlCaEJVlZXes0EDdMyyOZdlAxTzqepMTo+TLEwgjAcygMVnnv+SdaXVwi6NU4dPYopbBq1Ku96+zsQcTfl3AmNr335y9QaVe758Q8xPjpBu9Pmfe/+IFIIqutrZNw8N+66ndtufRubN23FNXMcO3yaKFRIofHW2+4CIQnjhK9945tEKibw68RBh/NnTpJEMXYmD9JAN0z6Sv0YukESQ1+xwpkzp3HdLN1ulygOKJcKVGtrfP6v/4rBSgUlBUESUCzneH73U5w5cQSZhNi6TnN9OYXPCUneMVBJwsPffZi1tSqGbZMoQavRJQ4giRSaZhAnGroA19QRSULsd5H4CLUC0RqWSnlqRFVUsIYMa+hJE9WtYwQtgtpJmnNHqB09RlibQwZVNL9OJ0l5gJp0MKwSdmkCqzCOnhshW6pg50pgOmDamK6LZjnEGBiGmfK5NxRSAYTC9iyUCnnvHTsYziu6SJJEcvjYYbpRgC40VBiSBB2KOY9rJgY5cuIMppWj2w2oVtexbRvHcdMJ4qsUHM24+eaSmh/F30v8aHL3fUYUxb/5uqPpjSmKuuL+61brV1b2rxxLXynacim379IIuyHX9r2x7sDG0EgTgjhO0C4pKN/MREr1XrJ6xbTvtad/l/LNXu8YL/ZZXrmNK2d3f9fxg9jLZSadKDaOXyFQPVUlxYbQCWi6lnZohbjwdl6o44TgchsKcQHTfmXXTdArApME2UsUunGCYeosLy1C5JPJFHjooWexbYMaGv1uqgIZ+BHFUhbLsdB0Hd00kVLQ6QQ4nkOxlGNlbY1soUij7hPHMa7rEkYxpVKGZiPAciwgxvVMHMdjcX6NerXJ0mqDjh+SyTi0mz59AyUEAk3AuflVHNclXygiDUmj2aZaaxHHPvlshj17j1MZ7Gd9tYlhKAyp6HYjTMtGEzIVt/C7qQl6HIIK8H0fz8um3TcNOq12KrsdpQWz7dq0Wl1UFDE7OwIqJVCn3BmBUDph0EVosP/gGcqFPJpI+UwxCYND/eSLOXRTosmEcrmEYVhkczb1egdBwpEjc+zcOcvkVIUgSPleUtPIZl0cz6bt16kMFhGaZN+Bs0yMDaFUwpPPHGLb1s0IJfjLx0/zD9+1gyTR+Oyj+xkfKrJ5agf1tQWisI1SFr//R3/CT3zwDrZu34KUOralkc8IHDfLyy8dJIpjGo0WExPjPHj/YwwMlHnqqb288313Mjo+gt/p4liCRx/dy13vvI2pLRPouoaXyXDfNx5hYnKY2dlppJby7q7ZcR2WDv19fTz8yAuoJOLlFw4wPT3B6voq1TWfM6fP0vW7OJaBLhWuqzE+PkKpv8Lc+WWGh8oYbj61nugGBImGZbssnJ8n6LQpFosIpdiydYwk0khiRalcJg5jxibGcWyPs2fOMX9+jltuv5XVlRV27txEp+0zNj7CmdPnuP1tNyJEwvDIEOVSkdXVKoOVCksLSwwMDnDs2IkUcqs0Bob7iYIuh/YdY3J6Css2mJ6dptHwueHGGzCsFKqnmw5hmE7B/U4LIbvoIkOjuYqmOUgdpLRBSDQhCfyA5aVlWo12KrCAYmR4M4Yb8pXPPkxfyeJTn/oDNs9O87u/+3vceOMt5LIO1ZUapWI/0tP4xZ/5RW69+S62bp9geCjDpuu3kykVmBypgEzFIjQSnntqL7ffdjueYxOFEdmci0hikm6HWNcp5LIUsw6NVpW1hYPoiUu30SFB41/8i3/N0aOn+PF73s/8uRPowsZz8kxNzdIJIjzPZmFhhUKuksruhxEZM8NX//ZbAGSyMLFtK1NjgyzOL/Hnf/FZts6Msn3bNJYp+frXH2LXLdeTzRc4eew8OdfiK1/7GgtLNSbGx/m5n//fOHhgHx+6551Ua20qQxNIU6dVb/FvfuPTtNs+P/uzH+Oud9/JF/7qcxw+eZI7rrmtZwqemmt7bgbTtrFtj06nRaUyCLokBpI46E3hU1sVJVN7gihsI6WB3rvo6oZJEsepwmOSTkOD0E9tFIIY07Z6nXwNlcToQqY2AF0fy3ZAS0WcOq0qSaxSWHki0DWI4y7tdpso6gCCtt/GMFMP0G435IH7HqRULpDxMkShAiJs0yIJQyzH7sEmIU5iDN0iDmN0x0LTNILAJ/VvS5id3IKXczGkycrKCvPLC/SXBzAMi5VqDdexefaZZxgbGaNUHqDVauN5LpWhEQxdo9NsYjoWtmeT8bKEysfQbWr1Nfr786BJuqHP7t3PIjSDUjHPyPAQ+UyBWIHjOGTyOTRdoou0uIYkbc45Fi+8uIfAD5mZnOGlvS/Q319BGhaa0NB1kx07rkNTMYlK85a5k2e4bvtWMp5Hs9UijCM6fhUlEyI/IFJ1pJRMbRrFNj3idgtETJLEaElCGHVJkgikThKFSNPAthxImki/SZKE6D3lTw2NJFQgdKKwS7tVT73rECSaRaJDtyvIZjPEsQ8qRiU+um6ga5KoWyPptml1qkgATUMpgdTNlFvtZEmQGKaDskySQKF7NiKEMO5Ng6OYRGjpsQiJrqUqnrlMEU2LUSLlpMco5s6tUw8giXxGRsZYXl9jZeE8pf5+guoCeqbwysldL5W4afZWRq4bTAcOgsvyzzee41z9udfi3L3eNl8xxetBhDfuy6tw9S6o26vepEspetpzaEKk9KU0++p9b7WUC6fSZSQb6/WOXyXpOppE9JrnSoFQV9eOeLPxI1jmDzHiOHn94u7CstFlhdIPMq60Yrgyduy8nvhNQjNT+GdqxL7xBf+eTsurHdNrbuj7L5O+X77f97bPv6d4DRhD76/LHhNCS7H0F8l8F5YIgoAoiFmaXyab89AQFPIF/E5Es9Fhy9ZpTN1g/twyjvQhSfAyWRAJhq6zvl7D0A2atRbn5tcxpOTEiTPMzIyyXm1gmBaNWpN8wUOXikatw8pajWzWIZfPsrbaJI4TBodKWI7NcKWIbQkWFlL1Ql3X8FsNNGlimQb1RpuHHt9Pp+MTBhEToxVarTaLy+tMjlXQpY6hW/itGnNnT9Oot8l6bk+qPEHKFCJdXW3gZUw63QDTslJ/swj8boco9sk4GRYWFrFNnThMeHr3YbZumUyVMDWAGFREEisWFtbJelkG+8vYjonUJVEYUa02cByHMAixbRtNmDz17D76+1yUCmjW2jTbbTZvnQIiWq0muVyOJ588yHBlgMOHT5HxdDSZiiUJTTI/v0LeswiDLqV8Bl2T2J7J5x6f46fuuo4oDvnqMyf533/ln2A7Fn0D42DYLK+2KObLjI1Z5AoFFPQ+v2VGxsaY3byJcqnA2PgYSikO7D/CwECZ63Zu54FvP4YixrYMkkSRzXtkcx6WYaKSiHq1jq5rJHFEkiQ4rsNLew9h6pJzZ87R7vrsuPl6jh08jm6YHDtyFNP2aDVrZDI56vV1brjpOpRSVNdqKZ8yipGa4uknnmN0cpKV5WWOHj3F2MQwcRRzcP8htmzbRBgmnJs7R76QRZM2ftvn7Jk5CvkCzz7zAkNDJcJOkxtu3skXPn8ft731VlaX13nisefodHxyORcv47HvpSM0620euO8JpmbHOHbkOLl8Fst2GJsYSwVn8lmiOGR8fJSZzRMILeVSJInCcVxqazWSJOjBLwNsx0WgY5oW9XoLv9PFtjzOn5+n2+mQzeb47oOPMTk9jOvauK6FlALXs3DtG4hVSK1hsXl6nH17nuYj97yPmdlxPvBj72Gwv8jpubOQaBRKJZaW5tk6WqbeaHDH3e/i0P6jmLrFZ//fz7Fv3wF+87c+zSfu/Sls2+Xo8SP86q9+ire//U6kFBw9+BIjA8P8yj/+57zt7js5c2aOQjGP6zrYzhDves+HmJq9juFKP/fd9y1mZ6fZcf11uG4OTUh+7/d+n0ymwLbNY3T9JieOHOerX7iP4cESL+7Zw9BghSNHnuc9738PM1s3o+k2fqPK1776NX72538B03FxvCyR0ti6dStB2GZtZZ1ctsjC+SV++mc/xN3vvIO+XJ4DL+9nuNJHp13l1/7lr3PPT3yAxcVzZDJFtm/fxuGjB3nb2+6gWluh4JV45OmnePeNdzO/cJ5EJXieh24YdH2fo8eOMjQ0nNoKRBFGbyqiSS2F37VbJEmAigWmZfV4manfWJKkFgepHYIkisMUaqs0pBbTaTUwDRORkEr99ywx0sJEp9mqAwmmbqVwZAGa1OkGPoZhQAKem6XbDdA0gWmZHDt2gnzGY3S0QrFcZmFpkdXVdQYG+gnjEMd1iZMEFacCD4Y06LS7WIaTWnS0O5yfWySfz2EYkmazThSGKE2nvzJEX6nMenWNWq2KbTnUG3VmZjZh2zaPPvowAM8/vxuApYUl1qqrWLbDAw9+lanJLXSDFo7jpoqWuoFjewgNysU+om6bQtZjZW2Nw0cOMD4+yemTZ+grlVPIshBYtpdycnWDbtdndGicRquFm83RN1ChVq1y8uRhMkaW5/c+Ram/H8vKkAgQKqFcyBKodLqpaxoHDr5EpZRDqojEb7K4UmX13DmKTg4NDWlpJJh42TydoN37PA0cx+2Z0is0YsKwgQrqLC43SISJoV9Ex5iGAZpAkxLbdtB0mVriCPAsQaQiYhVjGxYqiYiiGJIIDUUcBViWhQo7qKAFkZ9y/5IwNUaPowuokKTbRUkbjVRp1ND1VMVXN4h63MQojjGVidAlhmaTEKe2HbrB+bkF1lsNdt34VoqlEq7nMjI0RLvTZfHUQcZmt4JhoV3JuRNQX+8wuWv4MhuEHxT17bU4d292G1d2uy/Xtrh8P5f6IL/arqXULhRxF/vn4rL7G2igFK55SXH3A8oOf1Tc/RBDKfWbb3zhnlLmJUTLi9YJrzWlSjsFyYasKuLC3xu3S1U6L6zXU+vceLx5YjdGj9N1cRlxYT70isOl9yX4Xr9oV5vOvSG+3pvs2lzl9vdYan1fX+TLhruv2O4bfFW9jhNKpcsn6TF1Wm3CbirFLRDoUrvceF4IdGkQ9WSqq2trLC+t9Lh8Hs16nfn5JdbXa3x27xwfum2UbtvHyTicPHWWOE5YX2tw9uwSUgoajTb5gsP4SIX19SqeazO/sELWs4AEyzJwHY+TZ88xOV6h2wnxOwHFYobVtTXOzi2Ty9gkSjFU6eO5F48yMz3EqTPn8bwMtuPguR59RY8wipidHuXEifPMzoyxvFrj4NFztNtdTp5ZYXZ2mnyxiK5p2K6H1A2WFpbJ5TJEYYxjWyQIbMdFJWCaFo8+/hJD/UVcN01QlEpot332HUg95lAJ69U6uYxLEsc0ag1ajS4nTi0xOjIIQtEN2nT9LqZpYhomhm4SRxEPPPg8uYzD7PQwlmWyvFylVm+xbdsMiVBp11CDqBsxXBng7Jl5pqcrSF0SRxAGAUEQMTLUx3q1yUOPH8DUJY5tYxg6X969zCfv2oYuDb7wxFHe/773EEYt1tabIGKKhTyTk2N88mf/NR/90O28+Pw+Ws0uKys1PK8IxKwsr2CYqffc2toaKgHHtRkY6MeyDMrlIoVCEcs0yOazPPbwU0zOjHHowFH6B/pYmF9isDJIs1mn6wcMDJQ5duwsW7ZPY5o6U9OT5At5Nm2eoFQeojLs0agH7LplC889/RJj4yMI4ODBkwwNDyCFpG9gkGw+Sz7n0N8/QBTGfOlvvsntd9yMbhicOH6a0ZFxfL9JNwzRpeTMybNMTI8zu3kKIcAwJdlckbXVKkIT6JpibGKcXM5heHQITcCJY3OMT4yyc9cWCsUig5VBjh87RT6fRdcVcawwTAOQtJpNatV1zp8/z9pqHdvJYJg6URDz7fse5NrrtyNEOilTxCgRYJo5pIx5ae8xtl+3mWzWQwjF0HAfcRyi6xKFIJvN8m9/66vcfNMuBBrVRoIwFpiamKVvPMep0+dQIsH3O4xOTBF2A6RuUirn6HZbfOAnP4g0sgwPDyNVxBOPPsT07DYOHDzAhz78QQ4dOsD1O7fzC7/4S9z7iX/Az/3CzzHQ14+dcTh+co5Cscjk9BiaptCUpNmp88GffB+2C3m3yLm5U3zwnvexZ88L7N69l5GRfq67fhvXXnMt5xZO42aymEbqBahETKHYx/HjZ7nng+9D0xW6NOiECRlTQ5cmmWwBwzb51je/xZZtW/ncZ/8n0zMTZLIF3v++D/Lrv/5v2L3nKTZv3szqco3Pff6LfOWrX+bj936U6667hXs/fg//6y/+Iv/+07/PdddtYeuWGTKZHIZp8X/883+O7tjcteMuXn75RSYnp5C9/5txHLO+tk6xWEKXkuWlBSzDSCe0pBDa1GKgg2tnWK/VsUwLTaZTfU2XKSw7UamhtCGRQqfZaKJUhOtk8LsBURRe4OhqWmpoH3a7OI6dcuuiKJ3aCQ2EhpSyp5itpw05LU0gpdCZPzdHuVQik8+CEDhOBk0z6IZdVJLgBzFB0LOFaTVTTpZhcf8D32R2egqVCAxppdYMQtFqNDgzd5ZisYRp6iRJTD6bI5PJpUIr7RYPP/wd2n6LO9/2Dvbte4Hbb7uDMAyYnppldGISDcHm2e2YuoVuarSbbUzLwHRcQj9EaKlAYCFfoNXpkC+UGegfQJeSfL5IGEdIXaZS8olClzqW4+Lm8oRhSLFYAC1FSmTcLKDIZFwmJmd6zZMIW9eory9Rbyxz7Oh5VByyNH+ETZum0JKYsNtBofBry/T19aXNKNlMLXMsC5UkRGGE7WTRDYug00ZYLpphEcUhSnSJgg52ZoCXXnyB4Uo/Wo8TGycRiN6ELVb4nQZKCVqNDtJQ6L1JYxSGgLqgxRCHqWXFueUqJ48dYKBvKOXJKVBxAipEkKBETJJEuI7BM7t343oetm0hNI0kiXscsYuZQkiUjpdUSLvlI6WBpglsr8Tp8/NUhsYxDBvDNDl7+hTFcj+WFpPpGwBpXijuLtVP+POv/xn3fOTHLhMMURvAsu8z7fpBiNxdmM5dcV9wcTJ4gWu3scwbKO4uLdIuFnOXI8dS9czeUEQlF3Jz6KlxXg1nJl7juSviR8XdDzFeS1Dloj2C7J1glxd28MqTeUOVZ+PvC2IkGwg70m1c6X13tRCk3aaNfX7yn/02H7vjlcbmorfNq+MbL9nxxv1XjTcAhXxFi+fqpdkb28drPXe1/XwP8YaK0ausc6VQzmuM5K+0e7jashcL1sufFYBQKaxACRCahogVK2fnkNLkxNGzCBXTbXcIu11On5qj3fJ73L60iBGkrzHukbQX59PExnJMKoODxEnM2soage8zPjHM4FCZpXqdG2Zz6LbO8vIKfeUShtDI5T2ErhiplBgZ6Ud3HM6fW4RYkMtn8HI62ZzD+uo61bUGIlIMVsrMnTqHNFyOHjuXSjzHik67TbGQxXE9ak2f0YE8nY5PXzHD2fNVctkMuoRM1qCvVGZxcQ3TNFher2GbFltnxugv5hifGKRVr9NqdDh1rkqj1sQ2Je2uT7XWxLNt1mt11lcbFHJZqrUmQRhy7MgKjiN5ef9ZVtZqSKkzPFShkPdYXqxj2YLB/jzHjp/n5Kl5tsxO8tze4+zYNsXjT++nr5xDBQGGYbG0VCNXKHDs8GnanTb5vMlQ/wD7Dhyjvy/Lykqdmekh6o01FhdXKJZMqkstDMdjeWWVyekK7U6bWtVnbaXN2loD13bxch77D5zi7rfv4ujxBYqFLMvLVR47FfKxt27BMDTWFubZdvN7cV2HfMZjcX4V3dKJ/DqV0gCbNhfIZDySJCSKEgrFLC+/eJDJ6XGefvJZRscqjE2MUCz1c/bMHP0lC8eyKJTKfOULf4vnmRw5cpIoTtg8O0LfYBknk2VkdIzzc2fo7x9gYnKUfLGEbmmMjI6m0wipYTs2n/8f32Tr1gqZXJkzc+dYOrfETW+5kSOHT7Fn9z7uuvt2/vpzD7G62mLTpgq6FvG1r3ydrm+RyVoUiwXKfQNoukYh54EmMN0MUlO4nofrWpiGTqwUUhOpkT2Svc+/jG5o9A308+QjT7N1+yy6NEHplEsFHn34KSYnJ1lZmcd1LV584RBTMzOE3Q5HDh6lUMhycN8xhBbTbrcZGRnhuWdfZMuWGXzfJ05CokhjcX6VgcE+vvGlB9iybZZO28dyTBAakd8mCQOkpUCT2JaJbpqoVIScj/7U7/CHf/AnJNE63W6Gez94Gx/5iXs5emyBkdGtlCr9GLaH5RSYXzxG/0AJRMj6whKZzAC+MvnyX/0lW7bM8h9+79P88j/9p0yMbeKd772dUrnA0PAARiypri/wsXs/gONlCYM11hrLKKVx601vx7QC1tZP4DkDJIHB4sJppmfGUEowu3mSiakpHnt0D5/4qU/iOR6Dw4OYOZOMV8bUPf70v/wxn/zpe/FK/fzZ//1f+O9/8af8zE//NEnsI5XHw9+5n1xmiM985ne55eYbUCJkcmoGy7DYeeNmbNNlcWGNLVu28Uu/8Mt87GMfSr0d+0ZRnTX+8T/5RwSJxI+7fOLjP08Y+lx37Y3kCy4zs9M8+/RedKH44Ic+ylbnOk6eOEKj3mB60xY0I4VDJkJQzGdS4SrTxPcDPNdFMwxajTVsxyOWEi2RnDl9hlJ5gGajhhIJpmkjEg3D0EhUBLFAlxZhp4Nj2wgEYRRiWBZSt4miAN20U2uMSIA0EEJHS1LIp9AShEpQoie7niiarSaOZaAZaZEZJTA42E99vYmjOynkUposLM1hmxm6vo9pG3z1619h0+wsrpdB6BKlCWYmp+mGCQqFY1nESYzQJaZrMzRQIYwiQGLqKc/v/Pk52q0Wu597jre97W7Gp6aoLp9nx46dGJ5Hob8fQYiUGqZlohkmijj1hyTGsBxOnDjB/Q/cz/TkKM1WBy+Xoxv7eJYLQiFk3DPiVsRRRBLHhHGIYVocPXKU5555gbHxcSDh+OETdLo+Ti6D5dhYjoOhQeQ3OLd4mk6tjZfJIITJ0HCZdq1KxtKx9VSUxLA9LNPByru0O4oTx48xNDqCHgV0W3VsAqqJSHmTJOgINNUl8LuEUQPqdQzbRkVtJibGiJN0IhYnMSpJaAQaDz71LIaZIVvK8/hTJ1ldX6fc3091LUCIFq7jEXUjVJJC+IJQYRgSQxNYtoPruj36RYQ0UoXnVK43NUSP4oROdRnLsHFtG0SCgtQ6opczKCV49MmXqa/VGakMcfLYIQr9FXQUC80GluUyNDCBUBr19RXqvk/Z9Ti/eIqhyc2paqeQF3OZXjoy07edmZtHLxsubDz/RvybN+JS8b+/i7haVvmq+XJvISF4BYQyEVoPmHlR43LjsBPBBUcDlagLG9E0DdGjbGgIlOgJsWzsZ+OIhMaGBULS88x7reL2R8XdDzFeq7i7VO3yjeKIL1XruRJ//HrQy1dsi54VQ6+4+/xf/fVVi7uNbQouP/Ev2CW8ThH5/594vcLze9nk97DeqxR3r7r4Gz62V18u5TWmhd7qwgqNRgPH9Th3fomBwRKO53Jmbp6JyTEOHjiNShQDg/0IAfV6HQTYtoVSinwui2kY6Kbe82uReJ5LrphLJzm6zu988QU+8pYKhq6T8TzCIKRea5KohFzeI44SNJFw8MAJsp6L1FIVRE1KojDGkBoZ12RxaZ1IKVqtBiNjwwTdFuNjFRYWq1x7zQzdbphKUZuSeqNBua+PZsNneHiQubkl1ter6BoEQYxlGRiGZH29iZexWV6ucvzUPK6Vqo5pUmdmZow4jEhU0uOtWDi2g5vNkM9liBOF0+Mebd82jiYVI8MDmIbG+NgQ6+s1vIzLsRPz7Nwxy9zcItlMlrGRAbqBz+TkIHtePM7tt16DZZns3nOETttneLiMEAmHjp7humtmKZeLCARLy2sMD/ez58UTTE1UeGbPUa7dNotScPzoItVGm4mJMkolZLMepqHT11/C9cBydJrNGp5joVTMyHCJtbU65VKGbx9s8OG3THP/Q09xvBZx1/t/Eqml5+VHP/5JPvjhn6CQzTIzvYnPfe4Rrrm2jyROhWWazTaDlaFkxl4AACAASURBVAG6fpeTJ87R9QMOHzrK8MgI7WaTMAnp6x9kz+6Xefs7b0fToN3ucOPNOzhz6lTPELjNN77yINdcu4lTp87R31ckjELKfSXmzp7B81x002B9ZZXb33oT3/3u42zeuonBwX4O7jvCk4/vZXJ6hLHxIQ68uA/T1Lnz7ls5dOAgjzy4m23br8XxoLre4NCBUzz3zH6u3bEJv+PjZTJIqRBC4XfaRJHi6JHTDI8Msf/lQ+i6jutlyOddhkeGOLDvCDffupM4VlSrdebOLLGwcI6t26dwPBfX8Wg06uy6aQeNeo1cvpDaZyiB321TKOQwTYcwVAyPTHDm9BwP3PcUM7MjjE+M42VcpNQYHavgei6GaQJaD5IncTMelu0gNBOUSqXgpc4v/aM/5X/89z+jWl3DsSWGmefdd70DL5snV8rhuBaKBJRA1w26HXDsDKePn6Svv8TC8jKPPvYUO6+9kXJ/EcdNlR49L4+btYmjmCiOmT+7xMjoKEpofOOr3+ba7deQL5WxHZskadDpRPQVxwnDACFivIxHFAnKpTKGoVNdb3DjDTdz9OQJfv1ffYqPfPTDdEMfqUG32+GOO26l2WlgO1nuvutdvOuud9LxWxRLRT7/uS9ww65ddPyIbdu3smXLLHEUsDQ/x+hIP9X1Dqbp0Wr6fPkrX+eP/uA/kstl0KWB45n09+URUkPTdfJ5jzhIkGgUS/185jOf5pa37GRmdoxHv/s4z7+4l9nBGbLZHNMzs4RRgGmm0vOaJjF1LZXBjxMMw0i/Lz1J+jBMi48oDHEcB12XZNwMHb+N63gARFFIFEdAKmbi2DbSkKBJDDMV79CUQtPTBLzRqGM7JkHQAZF6HBq2m5ogx1yAi5qmid/xU46TlGhSEscJsR9w7ORBygNlhEjPp3whx/r6OrXaOkOVYW7YsYuUUyewrLSRl8Qx7XaHZrNBPp9Lr/Fa6rtVXa/ywt7nmJyYpd1q8/B3v82NN96a+nCOjvPgQ/ez/ZpryGSyRHGcSvlr6XncanXSbQnotNs4XoZECVAaxUKBzZs2k3E9TMul0Wji9nz84ighCWVv+hmnfHKZHo9hmOQLJSYnxhEiJokDKgMDOLqg21xHBA1atdOE7RoiTvDcPKZlIE0dpSnOz53CbzVxbANFhG25NNsNpCmxEhNdV5T6chhKEhkSqUG7USPr5kgUmLpLIhRBEKDLtLhuVdfQ9VSROo5jTOkgRKr+mCRQawZUay22bdvJ/Lkauu2w/dptaDLh7NnTnFlo0j9QxA+DdEIpU8h5MwgxDB3Pc4AkhfxKgyRO2DDXFoK08ZMk9A0OY1smUkriJIXAm7p5IffQhMbQaIWhyiBoMQMDfQgNwm7EviNnCYMug4MTNBqpcFBxYIDD+54nl8+QLQ8i5YZF0uW5zO9+8Xf4xCc+evUM5Ypc9TWzmTfJ1fthxZX5mLo0J9547MJzly64sYG0uIvi+KIwzZUAtgvF3cVcUUiZTnJf4035UXH3Q4zXKu5ebbp2qTTq1XwzLhgdbjzyGtDLV8QVo/FLJ4Xvec+7MVcPX3j8UsuE9EF6jYeLY23BxeHVxnn4iiO48mS82jG+2gkrxOW/v694E8XdVbs34pW3H1B8r8Xd5RO8K5a7BP+teh2iR7/7DCPDg5RKKYF9aGggNXrtdKkMDaIQVAb6GRzsZ2FhCakLPM9jw5hT9H4ITUNIrffPpLerHqQGAV97+hgfvrVCGIR02p20y60LTMug2+3iZTIYUiPnSdp+gO04WLaDoRvUaw1yhQz1eg1D13C8FFrZ6gYUCw7HTpxnZmoEqetU63VyGYckiXoS+RLLsllZXafR6BAnMfPLy8xMT9LxfY6fmmdqvMLBw3Pkcy7XXjsDSYTjuWh6KlG+vLSObmjousGeF48xUikjDZ1uJ0jFBnSJZdv43Ta2beDaDpmMy7cf2kM+62CZBp5rouuCcrmIrtv4nQ62Y4CuMdhf4sSpc3RaHebm15meqnDs5Bz5nMnk+AirK1VyuSydTpNyucC3HtjLHW+5Br+TCm44tp0K0yjJ+OQQtVoV10vlyp9/6SgailKxhCZ0XnzxNLMzFb798F62bRlH00BK+M6hFh9722amJka5ZdsYDWcIz82ikpiP3ftJ3IzD0cMn+a9//hf8zM/8DCsrR9FI2PfSYVzPpa+vhGWlogszszMMjw2yOL9IsVigMjqM1C1qtRr9A2Vcz2FsfBRdali2jfv/sffe0XZd5bn3b/Wyez+96RxVSzbGsnGRC26AAdOCSwiQAoSE5H7JdwkkkJtccgmBG0jgyyAkZFxIQhKThGYIBhdchWXLqlbXkXR0dHrbfe/V1/fHOpKOZFkISHLzB3OMPcbaq8w51zlr7/2+83ne50kkUFWNeExF0VTKizWKxTztVhNFkTFMHUWORHuCwEMQIFfIoioKvufR1dtDb1+J40fG0E2Nhdk5brn9OiYmJrBbFkPDq0imkmzb9iSeI6EoCmvWDVLqLETqcaGHEEYKhHMz88zOLLJ31zE2XbGWbCZDtVInmU4AYJgmVqvN9uf2sGbdMKl0ltm5RTZePkw8YbK4sEguW2T37r30D/ZQqVTwPTi4/whmwqSjo0gymWD7c3vY/uxBQtp09+R51fWbiCdStJpNDh44QqmjiGFqSGL0A+46Doqiouk6sqoiEFl0tFttAt/n7fd9is9/7k9xnCaKqjJ5agJVTfPgt77OrbffimZqLFUXmTgZ1RO2Wzb//NVvcejAES7bsJ6dO7ezZu3l5FJpPvI//pCNGzex9rJ1WFZrWZETTo2fwjRjxOM5JqdOkcmk+dLffIVrrr4ezYhjqCpazGdmsk7cKOLRRFXBUCPEslJZwjASmEaMyekJfuu3Psg/f/UBLKuJqEr4vgtBgOc5uJ6PZsQhhEw6iaSIBILA3r0vctvtd/C+976fN73lTdHnzTBQNQVRCvF9jVPjkxSLJQ4fOcyRI/vYcuMtZLJpXnj+GRLZAn/yqc9wzVWbqdfLDPb10FHqYMeeHdxxx60UihkWl6YQQ5V16y/DXfKQZQXHtVEkicD1mZg8hSBJnBg7RiKeQJKjRKxer6FrOqEo0G42MTQdx3UQJQmr1WTbtq2sWrUaUZKo1iqoqoIsK7iOG9XyqQoIEBAJT7iOTeD5tKx2hDYpCrbjoUgKsiDieZExehiGSKKMKJ4WdADCAFXTz/wGiAI0G2X6egcRhCgRnZufQzcUTD0W1V+JKt/65r+SSqZIp7I0mk0MQ428P0MBXTeQFYkTYydotyyOHj7EYP8QqqqjKiq7du7iphtvxbJtJEnE0A3Gxo/T399PKIgR8ugHuI6NohpIooCsSLRa0TPm+AGyqtGo1Ze9RAMURYuk/ht14kYMRdIIiQzcHTtKbkJBQCBAU1VarchIXBJdXDfySq1WlgglGUHwSJoaVtNjsVxjz77dqMkMMSPB4cMHiZlJjh3eganFSKcjaq4kK3iBTKvp0/aajE3MYnkavhiSEiO65KGxccamFilm4jgBiIqCrmp4noOqx/FcCzHwEfCjgFwIQRRwPI/FyjzHT0ywes2VFEtdqEaceNLEdQLm52pYTkjnqhEmxqcZO3ESu+2Ty2QQAoGtz+9ieGgQfHeZhSMsL5JKRMIyy0mbGKE9QeAu/z4vPy/LZTiSKOH5HoIgoBBEixSChOhDQPSbPjY7TTrZRTKZQdFUDN2k7VkoskgyGSOWykc/9uJL+UJP7HmC++9/+wXtB86PVS+WvP1XTOzgp0/u5GWxuiisPhf1fOkY4Tl7X7rv9MBRja4kyz9L7v6z2sV97i7czmU5vjSwF0VpmbN7HvpzKcnGRU4xTIN/eeDvWddXOueDd/F6v/P6vBBl+BIooi8/wH+x5O6nGv4nT+AucYAL7nUdh/mJOVrVBqtHBpBiGiBEpr+EiIJMo9aislTlhRcOkoirxBIGhqmeMUGVFXlZ3Ss8gwKeuafTvIYwjObqBzzw9GHuujyNJIr4vs/iQoVMIU2r1UKVZCRFwwsFZFlGUz30mIEgSIyPTaGqErKiR3x+QNWTTEzM4QPZdJ5CPsvh46eYmZqkmE/jA6KsoMgGkqzQajdJJeJoiozj2HQWU9QaFjFTx7FdquUWI6u6SaXjSIrEkWPTZBIG1UoVx/GZn6+SjBsYcY11q/tZWKigGTqz04skEiYnx6cp5HOMHZvB0CTsZo0DR6e5bF0fHR0FRFHEjGtomgKiDIKHLAvYtk0QSsxPLZBMmvQPdNE/1IGuq2QyKep1h/GTS4RhgOtaJNMGgS/QarrMzJUpFAwURSOeNJEUgfnpKnv2n2T1UDeOE/2PsukEuVwOJAfbblEqpClX2rzyinXs2zdGR0eBZrPNt3Yv8fbr1yAKIrOVMrH+TZQXG2iajOtHHlieI3DjzTcjShLNlsH4yRfYePlqVg33I0pQrVQYWjWIqio889Q21q0fYXp6nnQ2RuAHmIbC9MQpMoUirWYd22qjGwmefHwrA/29PLd1B5tesYlMNsvi4iLVcoNMNsfi/CIT41NkM3Fs2+LA/sN09fXi2haHDxwhVyyx78VDZFIxNNPk+LFTXHHVJmLJBIEv4XkWybTA5s23MDzSzeTkJLZt09tfwm41UBSB3Tv3MTO5SKFYRNdVbrj5GsIwqsHbt+8Q3T1dTE5MomsaHZ0dpDNJNFNFUQXypTS6ZqBqGnMzCyTTCXr6u3Fdn1g8RczUkBWBjq4S25/dR99AD/tfPIhlW9zx2i2UlxqoSoIw8DDjKvG4wc4d+xgc7F5WRZQJgtPfF1H9tNW2CMIQTZV457s/xy/e9wsEgUWpI83JsQqdxQKzi2NctXkjlWoVRUthmBmSpookyEydmuKq6zaw5cZrUGSZP/rYH7Nz1yle3LWNt7/jbfQPriEW10mkYoiyzIljJ8kXS6RSGWRTRFIC8G0EP6o/fO1db6WvZ4j+rnV88lOf5Orr1hKGHvFYmmOjEwwND6JpKoaZ4qMf/Ri3334Djz72FJ//3Of4uXveipGME/oSjz78JKVCkWSiA8v1aNtLNOrTWJ6AKGpsuel66rUGO3e9SDqZoljK4xsa3/nuDxhafTlf+PxnuW7LNeTySa688jIG+jr5k0/8Oa+6ZjNrRlbz6DN7aDUC/vaLX+bOO16DKJSxrSqJgsjMzDQdpT4MI0Y+V+QD//13uH79qwhDCVEAz3Y5cugQgwODKJpOLpdn9OgRjh49xjPPbKW3p49EIgGSjKnqtGptNN3k4Ue+C67PwPCqyNNSlZGlyCNRIBJIEUWwfQc/8PHbFp7voGo6gqyiKnKUxAUBkipg200C30XTNAhDfM/CatcREBFFEde1kUUJP4RW00IgRJIEJCmyKpiaPEkmXeT48RMUigX27t3DyMhaAi9gaXERw9B56omnWSrPUSqVkCSVmZlZJFFA12M06nVipkkxl8eyHbLLKHu9UWd09AjHjx9n374DjIysoqunF0WRCTwH3/MJQghCgW9961/o6u5BFAVkI4HreRHF0rUxTBNFllAUFcuxkFQJU9eQgLbfWE7eVJYWZlEkEdduIYoBoW8jCQGe28ZzLTzHod1oIgkCSVPDa5XxXQtJC4inknR0DVJMZ7HxKeVy+O0ygqBSnp8kloyjaiaT0ws0LIFYOs/46BwdPf3Ius70VB1UgYQpkuss0ZfSCSWBpl0nmchH9ZShgyCbhKKPKjj4noskK/huRL9emK/gujLrrrgJfJujRw/SbLUo5TqQJYFCKUdXXx/OUhszW2BgcIhjhw+SLeZBEFk12EUYOEiSQLSSGgnv+IGHIIjIkoQkR7WQ8rLIjrCcfQnL9MnAC5FkKaLwhAKu73NG/lEWCASBwPGYm2uxYdOrkFQZ0zRZmF0gkUvTrC3Q0VlCVGKnOYoviTrqYpWbbt5yUW+5HwfB+6/WftLkTl5G+c/GgSsD/YuPEe28SHK3fOxnyd1/YruU5G4lUrdyVSPyPAoRT7sdnmkRVrISWXv5urqzxuaX0lpSlk5xIbp2GZZ5edNIQFiu21s+53RSeDrePwsq/4h2IVTskhK7n7R2Tjj3dXrznA/cfwBKd6Y/zunz3Pq5H18Wd2WN3WlINfACGtUmzWqddD7L9MwSmmGgLQcPzXoDWdNwbXu58N9n42VrsW2bhx55njXDg+zfd5SOUgGEaFGB02pPKyuLT2vqLP/vwyCgw1igIxFjbnoJZ1ll0A/AtSxqS1X8wCOVTkfqUSggyPiugySF1GptFhbKHBufI5vOMTs9QSwmkoqpqIZBIAiInk/fqgFC3yduJvA8qFTKnBqbx1AVzHicpaUqyWScyekKMdNAlhWOn5wln0+g6wov7B6lpzNPIqah6irZVIyJU9M0LZf+/i6atRa+55JMqiwtLOG5PvsPnySfjSEJLrVGnXq9iZnIkDQV8qUcLctibnaJxaUlZqYrEAQkzCTNZpNypUU6lWN8Yoqe3k62bT9EsWBEamuCSOBbZLJp9uwbY3ahgu+5CAgcPTHNhjU9SIrE4kKDZDzOoYMnGFnbR39/ka8/+BxrRzpRVJljx6YiYRPDYGG+yqnJRXq6C8gqdHalsaw2xWKeP//GC/zq3dchiPDAozu54upb6SzmmZ6bIZOIIclxmktTjJ8cpaMzz/jECfLpNfQOJPnOt77HmrVrcB0Xy7JRVJnegW6+++ATXHXNRgQiD86nH9/OlZs3RzVEuo6umTz79LNsufE6HnvkGa6+9hWohookypw6dZLBwUG++53H2LBpDd293UxNzdBoOHR2dXJg70Fq9SaOF/C9bz/J8KouNr5iA/v3HUNRQNNk9u7cz+7dB3Ech/Xr12O1apFkOJBKJThyaIyunk48x+bIwROUKy06ugpMTU5T7MhjNRvohkmhVOQ73/wup8bmqNUa9PZ1EwRutCghSuiKTr3eQJRE0pkMCLDz+b0EQcip8UnyhQyyojB2fIJWo07vYB/FUo6YrjIxMU8mE+Oxh5+hUV+io7sbw4xRLOQwDAPHt1maX2RmeoKYaSIJ0GpUUTUNEYefu+9P+fyf/iVf+Ku/4O67X0d5rs7AQB8hIa7tYDkuXV09BJ5Hu9nATJqU56o0nBb9fd3Mzy6yf88B8skib37Lndi2x1NPPsmjT/yQ6669PqLnGTLZtIFqxmi2GowfGaM8XcY04wxevorFuQXe8yvv5s//7DNsvGoTb3v7W1A0DS8IcdyAhKnxtrfez/3vfBdT48eZGj/KlVdfz2tf/xruunkLnl0hlpVBMujs6OQLn/8iX/zrL5NPCaxbM4xm5Pjjj3+KO25/NdNTS8QNhwN7T3H8xG5uuvEGHKvFY49+ly3XXse/PvA17rzjdizbpmVb7Nn5Ine9/lbaVg3LsunuyBI3BO69/61UqxUOHVskl89SzKbo6F6Nopjs37UdWRT4zF9+gTff9BaW5mc5cOAArbZNV2cPM7NTaIpKLB5DCCVWj4yw6YpNyKqGpmqUq2Vq5ToH9u8kmUhQyBfpX7WKVDoJQoDTbrG0OI+uRGi2H7rIkoIiCKiajm4YyIpMrVbBDxw0I0YQREqbkhBZ3Kiqjm07eL6HLIoYZhLX8nj88UcYWrUaWdPw2i1sy6JRWyIeU7HaNk889RhXbb4eWZYoFUuEhPR2D4AQ4noevf19PLdtG69+7evo7upFQgJ84okEE5PHly1eItVO3/dx/TaaGSdummQTcYodPbhOm2uuuhIjHifwfHw/QFP1ZSqrwu49O7nzjrtQzXiUsIYC+/fvpZTPo2sK7nLdv+daqIoAAQS+jR/4iJKGYztIikjCMFEMg+mxJQ62n8KVx/ncA19hy7qrkQjwXQ+7bZFOgG/VUTSJwAdBlMD38V0LJRYnZsapLEzTrFdI53qRRA+raXNiZp6lWoPV69YjChooIh0dfciiRiobI/SjmtzD+/dTKHbiCwGybSNpKpJsIkoKjt1ClnUCu07guMiKjiRIWC6IusbhA0cYXrcJPxDo7OhBM3Sa7SbZXJ6WZWO1HYy4SSaTJnBCjGSc3Tt3ECoyxw8dJVsqIiMiaAKSKzC11KZSr5BLpfCWfVSjeDKIlP4JCRFBCCKpfkUmCL0zYniBYGDbPo7toqsGjtXGQeDg0SWGVw/SatQQBIF0Kk7LFZg6/AKdw69AkKLE7kwAsCKGefv73rQsSiK8JEY9HzBYmdytjHt/HErmj1PHt7K9xH7gIqFWwEvr6s6Mv+J1uq0oMzz7EgS8cEU8v4LuJgiRT7WwLMoSRhuIpxN5QThTe3f2BqL9AWfj758ld/+J7VKSu5eyFoVzjokvk1hcGrIm/Fi+ID29vbz11z7Gz21Zrr27SHJ3diIvnfO/Uyr0E7SfEOV6yWX/jgndOd2+fBL+7zsOnBqfRJYUGs0GkiSgaSrxhEmlVkbXoroQgpAjh06yY9dRFhdrTE/NMjLSz/q1Azz19AtsvmojhAFL82VURUFSpLP/6xUrSY7rRmiyH9BqtHj4+SOodpVk0iCRiHH46ATJhE6lUieViCEp0Qqj63oYus6B/WM4VmTwW8hncCyXfCZFtpCmXK7iOT6L8xV0wyAeM/Fcn0QqQoh+8PQeejtzaDJMz9VBEFAEgUqtgSgL9PQWcG2fmbklag2LDeuGOXFims2vXM2OPYdIJ2McPTFNKmGQLWaQRAFVElFlGS90EBBIJnM4doOBrjyqIiNL0NHZTSKRYM+LY6xd24dt21i2jaLIFHNpstk0rusQi+l4vksiYaAoArqq4PkBvX1FDh+eJJUw2b7rEEMDHRimwczsAjdvuZxcIYWuG4wM9xFLmsQTMeKmzs7dR+kopjl6bJLu7iLrV3dTr7fQNIXp2TIjI304vkMmk6JYzKCICmNjp0gl4wReiKyqPH7E5i2vGgYh4JUj3ei9Gxk9eohGpYkmaiwuLPLi/r0MDg5hmjFERLLFbu75hd/mf/3hL9JqObRabRzH44dP72BgoJtsIcXx0ah27eknt3HDTddyanyCVDpJtVxBFASaDYtqrcE1116JaigszC6gKDIL8wt09HaRSOjkcznmZ2ZJ57Ls23OQaqXKNddegaarTE7MoogKjmMhCPCKq64gHo+hGwbDI4MUSymWFmuUOosc3H+UF/ce5robriEWj/HDp1+gsyuHaegMrhqkt78bTdcYGOzHdV0M3cAPQ/bu3scdr7mJnp4SASHFYhYI0Q2N8lJ52TdSYveuF+nr76HdbjO8aoh4Ik4mm2Ly1CTFYpGpqTka9SbDw4McOjBKPp9l395RrrpmI4Oreunq6USLmUhyVHOFECIrCvF4nGw2i+24tJptEsk4nufx2T97jk/88e9z+PBh3v1L91GpLZLO55k4OY9umJRKJQiiekY/aBOLy8iKQnmhysCqAex2hfe+531cdeXVzC/UGFnXw+zsFOVFiw/+7q9x4vhRPvShD7NvzxGG1wzi2iHPbn2OLTfdxMBgmoWl46RTI2TSMRzbIZ/Lk893kEikeOg7jzDUP0Lg2SzOLfL89hd4zetvp6szT3d3B5lclnarwp5dO7hy83UsLXq0KotMnjzBbbfcyNve8Qa6u/LoZhw3EHjb295MvVqh3WijmT7z8y3e895f5KmndjLQm+Ca66/GlxW2XHUdiq6w/8B+hoYG6ezqoVqr0jfQh2dDNp+i0WgSN9Pke3pYmKnyD3/zRe5442sQETh6+CBPbv0B7ZbMU888zebBTZTLZU6cHGNkeDWaqqBrMWbnZkgk4liWFXluhkSG44Rouo6hqgyuGiIUBBqNJuNj46QyKRRJxfeiWk3VkMnmk0joPPP0IyQSCWRZpN6qYWhxNMUkED0kQTnrnyVEdKtGo4FhGCiKikBUb+94DgODq1AUmXqjiiyG6GaMdC6LoCjIgkRnRw+Hjx6gvFimUa9hmhq7dr1AodBBo15H13RWDQ7j+x6PPfo96s0Ws3OTHDq4jzVrNmA7FmEQkE6n2b1rB2vWbOAb33qANWvXR9/7jkN3dw+W1SbwBR5/4hEMI0YmXQBAVES6ursihU7PRQgCLKtFb3c3YeBj2xaCCJ7dRJFlXCdA0SRk2UBSZRAVXNfhUw98ku0ndvP/fOTd6IUa86dGefCbW7n7la8nDCXmZ0+gaRpmXEYOBdSYSbvdhiDyFtQUFVlR8UKBeq2GJMlUy0uMHdtPsbNAIpkmFBNcdvlmBFEmmUyRSCRwPRfXdUimksTTOQ7uGWOpMsPgQD+EHp7lQOAgmGn8ICQWi74rw9BDCgL8wMHzXVRFYXJiAkEx6OqO2A4TUyfpLHVhGiaNZoOYGSMWi9Fut1A1jWPHxojHdDqKPXhWk1xXB0f3HaN3oIsT07OIKIweH6WjowdDlQhPe84tq6i6no/tg7LMqBEkKbLnOO3v5gfs2LOTUnGAtl1FWa7xtdwQJwjo7u7Hth0QROq1OrIUEjptir3DrEwyTgv7Aby4Yy+bXr1hef/LJ3MXSu7OjzMvNVn7SVHAl8RcFwnBVuKTl2JWdqGpCIJAABcGa85H5YSz15yF/y5c3hT+LLn7v9M8z//DC9XOrUTrzm/nm5Cf386qbJ5F91aOsVJRMwjCl+3n/D5Pr5jce989vOX9//OsuMr581+5LHH6fXj2vJXJ3Y/8vP0IK4WVKx+nVzrO0DtXImCXiq697Hnhucd/EvropVz3H5TcnTU0j7Z9z6eyVOXIkZMMD/fjOi6nTs2Sz2Vx7DaGYdJutfH9kGajTWdHlldcuRbDkJdZGiGrhno5MjpGJptGUWU0VUFUxDNUzdPywSEhsiyzMDOPLErMzy2weVBHEkOazTaO51HMZ7HabQRBYG6+RioTSbufPDmHLEEybqLpGrll8+1Wu00Q+NRqDTLpFIm4ie/5LJYrpBI6juNimjqIEoO9JdqtFkHgk0mlEUWoN9oYhookiywt1ZAlmZ7uIl2dqTEhBAAAIABJREFUeebmlijkI/GXzlKOhYUya9YO0WpaOK5Po9GkVEhz/NQMMdMkkYwThiJNy6HthiTSaRwvkrp3PZ9qpU4sLlOt1ClkM8iagm15HDs2TSKhYRgi8/NVdM1g977j5DNJ4ikDTdMoFLIIhPR05hCFyA/LsRyq1QZPbTtAvdrCUBUq5SqqKiNJAqVChtAPyRXSxEyDWq2BbbvE4zqqLKIbJqoq47kerWYLWVHIZhN4ns+OvaP0dBf51o55fu66EURZ4MjEIkp+BFXVSCQzEMoopsLlr7iCRr3FR37393jysScYXrOK97znl3j7ff+de99+M99/6EkGh3rRdBnTNMjmMvT0dNNqWXR1d3L0yDH6B3o5evgwhqZQKhXJFXI4jsOB/YfZvm0nVsthaFUfW5/azroNa3j+2R2sGu5HNzQ0QyeTSSPLcOTQKMNrRojFdDZctpbJySkURWVhfp5GI7KTKBQLPPnYswyODPLs07sQRYFX374FQYjoaxsvX0O9WuHQ/lH6BvpQDS1SgxVE9u7eRyoZZ3p6mnUb1uK5Lg9+4xE2bVrPD5/ezuDQALt3vogkikxOzLDth7vZfPUVhEKAETM4sO8A3T1dLC2VOTF6kkQyzsJ8hauu3sj3vvMYiYRJNp/m2NFxLts0wpFDo8iShKqpNBt1TN0gFMIIZSCSQFdkFdu2ue9df8bJMYc333UnKAJ+KJAvZkmnc8iyTqNeR9UUDFOl1RC47/538Uu/+MsEgcjosSPYLQ8jbqAGEq+583UYpsGaDavJpDMMDHWTy5QYWNVFJpPh9a97PQIiazeuYd8L+7l689WIpkyjXqFVa+PaMrZbxzB1Vq0a5MknnqS3uwdFUrjvnvu5/563UGtZ9Pd20T+yGs+x0E2Dx558mv5SB8WOPMfHZvjwhz7O3XfdwYPf/hYj61ajJXSS8SQt20XSFOzGEqfGT7JqYIRAgrXrNtG2qwwOrKNemcXxbBzb5sSRUzzy2CPoy6bbuWIXr3/DXbz9nnv52lf/jTVrB5AllW98/btsuGwN3V09PLv1B1x9wy38xvt/g9tvv5Wrb7gBXY3zmtWvIZlIIMkqpVInuXyOZ5/9AbFYDMM00XQdTTcwDJ12s8V3vv0NBoeGsR2bWEzH9jxUVcP3AmJmjEQqiSBIyJJIKp1FViKxEyGQ8H3o7Oii1W5jGjECP8TzPcIwQJZ0XMchDHxc10dTNSBEViTCIBIj0XQDSVUJAh/LaqMpKpKk841vfJPVq9fjOC71aoMfbt3K2jWX0dXVRTyRQFZl4rEUB148iCiKjB4dZXJqnN7uToZH1lDq6uHU8VFuuek2VE0nnU1hGjGq5QqZTI5ytcpA3wCSpKIaKvgh257biu0FFHIF1q5dj67r7Nq9m1JHJ7ZroygKQighCS5uYBHTTURJIhREjHgCRdJx2xYIIpoep95cRPQVLKvMJ/7xTzh0ajd/9YkP8Oq7rsRrVxF8hWtuuJfh4WtISjkalSqGYVCv+bStOjE9QSiCpui4XhtFVnFdF9d1kVSdZr1OoViiXF6ks9SFLEksLNUIRI1sJo+umhw6spdSoQN5eeFFlmQq1SqdXT185vt/zbXDr0QWQtxQRtd1bLtNLJmm2bQI/QDHaUHgRtREUcD1bE6enKSjfy2pZJJ2u0kykcJ2nEjoS1ZwbAfbczl+/AidHZ202zayKqEoGsXOLkRFo221qVVmqfoJdElmzVAvcamNrJkRcieAL4GIwORUmT27RxkaKOH6AbYTEDOihUbCEFVR6Sjk0OUA2/dpVhtIps7+ffvoHlyLGUtimjEMXQdBwqrOIEghyVzXOVoNK8U/vvDIF7jnnrctvxWW41TxZXUizolhwnNflxz7XOT8i6F6P0lyJ4inPYA5g5ytRODOnn+hPiJGy4WPnA6goz6j/HuZdcdLkb4z78Ngma0VRsJRkvSz5O4/q4Vh+IcXEku5mMzrj/S1E85N6lZedzpXevljL5NcLO8/7b9x3/338ef/9Dibe41laPh0R5zJtsIgXH4eV0DpQXjpVMxo4IsfXtGXcN77lXvPQusXe/2okU5/eM4/8aXUzwuddc49rbyvSxr//Lm83LvzZ3aBgls/xG3bpDMJuro6aDab6HqShfkK3d0lVE1hYW4JRVY4PjpOZ3eBRr1NOp1mcnKaru4irVab6Zl5Vq0ZIHCdiNaCgKqqkVqZICCIECwrPnm2iyJqzEzNUyoVmZ4+SSiIdHYVEYj8mjRN59TkIscnFhkZ6iSZSqIoAi3LIptLE4ubOJaFKGsgQL6QZXqhQiETw3F8BEnD9QMy6QSi2MZq1VCNJLKiMjs9j+dLqJLI0lKd/oEu2pZFLp+m0Wjhe5Hf0ZEjJ7F8h87OPM+/cIh8Jkk2nwVBwPM9PFumo5QBUaRU6sC2HLbvGiWXTbBn3xh9PQUW5stomoIsakzPzDO0upvtL4ySz6UYHZums6PArt3HuPrq9TiWxVK5Riadxg9AVQQKxSK+DWHosbC0iOd5zC9UyObSfPPbOxkZzuH7Ppet66OzI00iaZBIGDy77TD9/QWmZuZJJBO8uHcUU5Hw/IBcIQMEnBybYfTwFKXOJKIY8rUHX6CzI4kZN/GFgIGBDgI34Ovb53jrtSO02g26ChmOVHS6ugcJ5ZBqo0zvwAD7922jkO2ju2cVS5UKt995J7mEyBvfcjf3/vzv8JE/eBchPn29XfzLA4+SyxoY8TiaqvHk41vZsHEVo0eP0mqEyLJIMqVTKS9iWy6mmeDY0Umsdovhdavo6u5i69PPcuttWwiDANuKfPoqlUX6B4ew2jaZfBJNjaPINqvWjHDk0BiHDo9y083X0mq3aTabbNi4DlVTWLt+kPUbV3N8dJztz+6hUMwgSQHNZp31GzbwwvZdqAJoGkyMz5BIJFgqLyLKUkQXtgVWjQzw3LYdVBaW6B/qYXBogK3P7MT34fbXbOHEiVOEoUcqmSDwfZ56/DlGD49zx103I8sC+XwGSdKRtYD+wT4M0+CKzRsIQomtz+xGFEJEISSVyRAKAoosEwQBruOiqhrHRo/zvg/8FV/43CfZcuON6PEUui7SmSkiii4nJ2dZmPdIxKJFjNmZqBb07jfdShBYqEoM1dBI5tLEVYdHfrCVVasHyHdlMRNp5haO0XZtBtddhtNuoakZDh+coL+/l2pliY989H/S1d3D0KpBCFX+8gtfZvXwEFqugKoG7Nz2LJmOAr39JWRF5OfvfQexRJJ8vgNZ1SkUCzRqbfBE/uLTn2XTlZfR03cZn/vs5/nQh3+TbL5EqTTIquERLKuMIkucGjtBMZVg67b9rN+wgUa7ittKYrsVMrkkew5sw/M0lsotFDlEVUOuvvZ6soVektke3KbD2998L9//9qO84Y03Uq9VKRQSfO1f/5ZXXnU9S+PjbL7+atJpk2uvu5YdOw7xm+//IJqWRXUE9LiJrCjk83mef24bm195Hel8kfSyt5sUBhBKyJpENlVgz/4X6MqXsAMfRZSQJBFZkdB1E0lS8PGRFBVZ9EAQ8X0RRRRBUWk3bE4cP0kinUSRZTRFQggCXnjhWXp6+kGQeeSRBxletRpJlJFEJXpOFIEwDBBEGVUUCFwH04wR+D4bN25CUmQEScDQVYaGVxEKAbqhEQQhnhfw7A+fZsOmNRTzHeTyaVxXIJGNxGwa1TbZYg5RFhDFkDAIEESoN5vksiUMXUY3TJ5/fhv9gyM8+dQPkGWJVqPB32/7B/7tuYeYtacZrZ7gr//li6y5XOfxPTt48/3Xc3RyBw9te4Lb3jTIZ770ZUr9Bp/9p/+PR/dsZeuBHzJ+9CiPvfg4V669HhGLv3v+a/zVFz7B6+68HVEKkFonaXsFipledo0fYf36Icb2jFEoFQkVmROjU5gxgXwyhuOENOs1dF1G9AOQVBAVgmYVQ1exWnVa7SaEHlarjarLdPeuxrJtTowdZ2R4HaIoUCkvUa9WqdbKFLo6EJH48O+9m/s//Gu8au0W9u18kZ7eEpLo4/kehhlHVkxCX6AdtHjiyW10FUvEDJ1MKonbrrJoh6RiKXzPo9WoIwrRYmksHufY8SOsGlpHs1ahUCxh2w6T06ewLIdW22JocBhPjJE2dLIxGTfw0BQJVxZpWSCGIaYmEbo+yViMzp4MgQt+IDM7eYxYMhKKkqTIY1HSZEJfoF5rACG1hksiN0A2W8SMJQjcdiT8Ewo47SlQ4mSLRQhfGgOFYchv/sH7YFlszQ/CZQXmszErwflFJ8IZSuLpOOt8eub5ydlKb+Yf1c5P/EThrL/d6RsQpSiWuZDQyxkAJTx7H6EoEoriGWuCSBvgpfoX58yfKCZfaewuiAGCELICizkbNy77J7yUBMqKk8+laArij5fcCRcrivxZ+9HNdb1z/oCnkTRRFM5sX6itNIB8ufZy11+s7x/VryhKy3z/sw/Vn3z8k8we28sn33P7OZ/m8DQquNKscnnfv9dTc35y93J9XxpSGF5w89yOLoLqrRjtksY7y0F4+bMv+Pn66ZI7EYF6uYZmqtiWR6vVJJ1OYTs2qipTqZTRlRSTU9PEYxqFUpEXth+gp6tIrpBCliVkVaZarpHMppkcP0VvdyehIKEYSrQaKRApdSHQbLQRBYF2qwVAJpNh8sRO0ukkR0dP0d2VZ36+TKNp01nKUG+06OjIYNsOuVwSLwgIg4ClxQrZTIpGw8JxXdKpOIIqYdUaxGIx5ucrZLKR0mJ5cR7Xt8h3dLO0UKWzmKVaa+N7HuVyjVJHnv2HxtA1mbVr+tE0nVarhazIEXVSljl+fApVkRno78bxHBBF5FCgXC1Tb9qkkhmWFsq4rs/qkT4cz2Vqap5SR5bDRydJJwzMmE6hmMex2iwt1enuKdFoNgh9gWarxeTkAuvXd6PIGqKsIisgCAqzk/Pk8gaCYtBuNonFYri2i+e7/ODJA1x/9TpiKTVSN5MkJidnUSWNUmcG27KplhukkyZHRk/R2ZEjlcsj4GFoCgvzSzi+Tzyuc2R0lo2XDSMrIkHoU6lUKeTyvO6Pn+HBj74NRPDDkHDtGxAEaDYDHMehs7MTSbMIA5P52QXiyRiGItOsL9ByPcYPneSBB/+W//3J9/PM4z9EVHQ2blpNIpniwL7DbNi4FlGCyVPjmGaKUyfHWbdhNYIIkqgRhgKTk5MUS3l002RmcoZ8McuJ0ePUa002Xb6BffuOcvTIKG95+13UFhY4fuI4mVwHguAhySIdHf24rsPz2/Zw2aY1JBIxZEU6831UKS9SKJRwvcgstlGvkS+m8JwQP4B/+Ltv8q5fvptW3aVer1PqiBTg5ufmOTl2ivUb10XorO1SKVfp6OpYVhEO8DwPUZR4ftt2Xrl5E089vo0bbrwWw4jBssXC/Mw8O3ccRjdEbrvzZnw/QlkEQUYUJR769mO87u5Xk0gmcFwHSYgK7n3fxw8Efv0Dn+YPPvoxMpkUQSjRthz8sI1gge3W6RlYzeKCzYF9L7DhsvUkkiY7nt+HpgsYMYPVIxsYPXGYRLpI2G7z6CM/4J6ffyuW0yaWLOL7dRBlJFUjsOrs23OY9773N1BkiQcf/Ab794+ybu0wpd4SvuvRqte5+/Vv5A8//kfcetsWrHab8VNL9PaWEEWfxx95gtWrV9PZ3UVASG1hFj8ARYuxtFQj8Jp84AMf5Pd//w/4/sPf54Mf+m/82af/nP/xB7+LLwR4jsvv/L+/w2f/7NP4QiRNL8kSv/+Rj/O+9/0y8bhJMhWnPL3IyfGTvOKqy1iqNUnFk2iyjOf6fOIzf8HzP3yW6lKZ7z38EK1mnbmFWYaGBjl46BihFfD4U9/jV977G+zff4DLr7icj33sf/HzP/9LNA+XUXUFQRBxbJt6rcHBAy+i6gavuubayCxUCCCU8UOP0AFFk3BtB0VXCXwfP/QI/ABV1hAlEctuYxgGVruJohn4fmS+7fg+4ydOMDA0hCBHaG3o+yiyhGVFjArDSAB+ZHEgCPi+F9Hm2i1EWUGUIpaFazuIqkqrUScRS+A4FkHoIctRPauAiOPaCIKE53qUKxVSqRhTk3Pk8zmy2TQPP/wwrXaD1931BoIgYm7IosTk9Azd3V187etf46s7vsadr341lVqd//3xj4NdRtRlzFQO00xTrcwiyyqZdIqZlkXCF1AZJSBLs77I0X3PMbLmCsrlEEGbRJRADnrRYjLZ/itwGou0awtomRLPPvwQG7fcSikBc5NTpGMikydPkOjoRmiVqShryCczfOg9H8VXHX7hdfcjhSYnjj/HYGcHejxOvbKIZqg4fogX6Dz+9FPcdedt+I6HaZqMj40iywKSIOMR0tm3kbbjETeT2HYbQZKYmhonk8qAqJBIJlhaWqARm+SWLTfwd3/6T6xfO4QpiQgEhLKBEsvhBgqqKCNQ54nHH+IVGzaiqyKCIBGEMhNVKOaKSEIY0UNrZRzPI51KEzdNHCcEWWRhYYFMKoWh60xPT7F7106emNzKXWtupj4f8oqrCxw+uMBVV/cg+wKzs1PkMyXqvogmByQMBcKQyVPjpHKdxAwVPwiQxOVIJBQgEEHwQdGpVANe3LsLWc+x+ZVXY6YTNOtVVNXg1MkjCO4ia67Ygq+YSBeIk/7oK3/E17/+j/jLC/6BHyCfF2+G/oXCHXE5lokOXihGXRnPBkFwTpL04zRRiASqztm3PF6UfJ3dXnnMC84id2euO73hX+imzpt/GKncy7J8Zp8gBme2z/xdXkLZvEALg5fuE6KEWlaUS4YQfobc/ZTtNC3zHLEUXvqAnd+ic1cYRK5o56Nyp9tKYZXzVw4uRanyjNz9mdWSqIDzhi3X85o3vQ2p9wr+/vt7+OqTh/jit5/l2Pgk128cPIPYEZ6d7Zcfeo5P/OvOs7V7p28qGuCi8/j3aD9yhAshe+cfv0jvAiwnORc572I0zYv+/y89ubvQdWEQ0mo0UHUVWVaQRBGrHUQmsKKILJk4rofrOBQ6MjiWQ3d3J0dHT9LRlV+mG3qkMyk816NttYnFYwRuSMtqRRQSx6FabtBstBg7NoltudTqVVKpBAIhdmuJw0fGGZ9cotlsQxgy1N/B2Pgsc/MVLMvG8zzSqRiiGAUpR49NYWgGnuexsFAjlTRZXCwvey0JTEzO0bYcDF0nHkui6SqiEC1GhIGP60cr1KapYhg6hXwSWRZIJE0814vQ5jCS+W42W+TzGQxTw2pb1BttZEkk8Cw0XSWbSWPoBuVylaHBLlzb4bldRzEMhVQiRm9PicPHJhjq7+L48QnabTsKwgiJJxMcH5uk2bDo68pjxhW2Pn+Qnq487XYLz4fnth+iryfNiRMzFAvZiLoSBiD6DPT2cXR0gmRSw7UdVE0jl02TSMSpV5sEfkA6GUc3VbKZOJ7n8/Xv7KazkMCy2yRSZuQz5QXEDA3XdhFFaNSbZDIpXM8nk0yzbqALVVF58dgkUm6AfD6NqsX5P1/6Mtdffx2LtQqOZ1GpVUgmk7TqZURFI51MsThb4cZrX8V1t76DX3//W7hs4wYkWaJWrdDZ08nD3/0B3T0lsrkciqZgW22mJubo7O6iVquxd/eLDA0PUatWqZTLlDoKHNp/iPUb11PqLCKrClMTc1x19SZ0XaG+tEQynUBRTPKFDKapU6vWeez727j1zi3UqlXSmTRLi4vEEgZWq4Wqauzdu5tiMc+xoycodXTQtlp4nseB/Ue4/XW3EuJBKCKKMD0xha6bPPzQU9x65w0IoshTT26jp7uLXS/s44Xte1i/YSQqdg9B01S6e7rx/YDu3i40XSMIgsjPzA144gfbeN0bb6VYzGJbDjt37KdUyhKPx7HaLTZcvpYD+w6QTMZRZBlJilbwJycnmZzr5J3v+iUOHTrM6tVrARHHbSEKEn/3la9w8y23gB/SbkW1WF3dXdTqFdKZDL/74Y/y6ltuIxbTaTaq3P+OX+Hqq27gtttvotGoYdkWiqIjyQZWy+Ho4Z2Yukk6k+Ad77iPe+99BwISW7f+kE1XXIaPSxj6iAK8+13vJB03mZiYxkilqJbbxOI6jXqVTCqqEY0lFbzAR3CCiFYkK2QKBWQBfuGd7+DZrdvo6x2gt6/AtddfhSD4KHoCAZlX3/JqJFmjYVVpNlqYZowbbnoV//aN7/PVf3iAG161mdnZeTzfoae7lwMHj7IwN4PdqtFZTDFy2UYW5+f4jV//VUpd/bz3fb/Khg2X8Z2HvsfG9ev44Ad/n7e+5bWYsRy/9du/zT33/BzPPfcsf/yZT/DmG++mXC5jmAaqojI5Mc7IyBoG+wc4dOQAiUQSRVcQBAnbalErRzVrgiTi2jZHR49EnpimSRhGFCzfdXHt9ln1U0FAIkSRJBKpFIIU+ct5rsvC4iKpTBZZEREFiUOHDtK2WqSSqeUFizCiFgoSkqQslyaIkVqwKGKaBvVGHVEI0VUFUVRZWFjC0E2mZ2dwXRdRlNizZydDq4ax2y7VWoVQcFk7vAmVJH/6b5/i0ORhgpjL3/3Ll1hy2/zDg3/DJz//MX7hvvt57W2v5vprNtPRU0KwFnjkkadYs3Y9tUaDTCZNq9lGEES+9KV/ZvNVaynPzGO1F2nWK2SSEo7jku3Iosl9xIwO2t4M9vwEoZ6k3vBJmwGnJufoSuuoyRJzJ16kvDBNJp3BdWRsZ5r23PM07DiNSo3X3nMXuw7s4YFHv8Etm7awuDBBPp3ADVwkMQQkZDkk9HxGBkZwnRqCpNCoVZAFAUXX8ByXVruJE0jE4ylqtepyAgG+W0cKXVKpPLZlg+DzF//8t7z5je/kV37v11mfG6SQTyIQomsaru+jLtMYCUI6SwVUSUKWo98e23FwA5VCvgM38AiDAD/wabcaaFqEKC4uzJNMp0mns0zPTBGPmWiaxrd2fYev/J/P8bkHvswr178CVUyzZJcZO3KCof4eEskYkiKxbfuLpLNJTF0i9ENSySyCCLIsRF6lvoMgRM+MIIJl2+zdd5hjJ8e48bY3sGp4hIWFaTQjhmHEWZibI7QXiSeyxIrdiKKCcF5cOjdV5SOf/m9AlMicLts4naedKR26YDRzmpK4HMVcIGY6HZNGvrpRdvpyKNtF7RUucN5KdO/8+PnMdYL0knmdxuvOMMZW1iEuI3unrxCWmVsrk0NBWDlR8dLj4gvQQCP/OxDln9Ey/9Oa758rqHKm+PMSro1WJ8490/dfHpL+aU3EV66IRA//iodnue8rrryC2++8jXvuvYcbX3s3Uu8VfPyL32bnlMen//FR/vWZw7QSQ7zvd36fe++7h7f9+h+dSfAEUfyp53ip7UePct4ZZ6iGlzLHFV9R/yH389Mld77rIyHSbDcjY1VRwHMDjJhC22oxeniCnv6OKPmTZAQhxLZcCoUsuqGCALIi43s+MxPzdHQVcRyX6fFZcvk0nuUwMzVLLp9lfHyS/v5u9u49wqZNa6lX6/zz0/soqQ7JhEkuHcOyHFYNdrBr7yi9XTkgpFxp0teTp1ptcPLUIum0Sa3eppgvkcqYlDqySLKIJglIqkar1UZRBHp6u6g3m0xPzyPKKpVylWw6TggomkoYBlG9YbVBOpUgCD0kUeDkyRlEoFKukctm0HUNRVdpW21CN8D3feJxE7vt4LkB7ZYNePz/7J13vF11me6/q7fdy+n9nCQnPQFCQkIJSFM6UlVARWYcnXFmbDPe68zl2kYcrNhGdMZyFRUZFAQEpFdp6T05Oefk9LZ7W/X+sZMYQoig85n5xzefneSs/Vu/tXay1trv83uf93mamlI4joNu6jQ3JmhuTjM4PE40EiIWDWMYKpoCpZJNY2McSa4bu8djFi0taXLZIromkMuWCVyPZCKCKCiEDI1YIsJLG/bS1pJkaHiceDLK6IFZFNWjrTWJ7wYMDk4yOjpNLlPghQ27SSUiBIHPzHSOaDKML8LsTJFT1y5iaGiazu42JFmkWrGRZQUzpDM+NlP39+tsQVFlbNfhK7/ewyVr+3GcGs2JKA1LzmLXjr00tTbQ3t5IsZSjMd6EKNrgOowNj9PV1USxKuBWq7T19GGpLldefhkf+d/f4tprzsAHVKUu9d7b14lhWgefVyLxuEU0GgVRQdcVUqkYhmXx+G+fYdGyBZSLeVpaWuty8XWZN7Zu3M6ePfvo6GynWvVQdI3BwQniURNZs1BVnUVL+/H8Kr7nMjebJRpLIssCM1OzEEh0dLVQqzo0NTczPTVBIhZjy8YtlMs2EnW7hl/94hGWLFtELBlnaHCI1WtXMbxvmEd/+ywnrVrK5le2Mm9hF8tXLkGSlTrdznMoFgvouoEkyyiqXK/UVCuHKXm+5/D4Yy/gODV65/Wxf+8BzJBGOBpCVRVUTaWhIfX7vglR5JIrPsMjj23n3e+7gcnpSbo6uxEQGNg7SFNzglKhzOlnnYnn+MiihK4KaFaYXbt2YoUtwqEQixetoFZ1uO66a7juHe/gqmveQXdfN4YaEIpqILn4QcCdP/o5q1asZHpsE40tC/ADj+mpafJZlwcffJDGhiYWLZ6HKPkosky5XEYSBDzRQZEtZqbmuPGm9/DOd1yJ57jYFcjnyvjU8JH55Ce/hKaF+PTNn2LVimV1wCfCLV+4lfl9S+jsbCGRimLXXARNqff6imA7NQxTIRQKI4ky+XyF7/3bD/nQB99HOqGQ7OglkozgBiLbNm1lzanrCCVSOKJMNJpiw8sbmBqf4gc//hFfve3LtLQ1k0on6Gzv4ImnXmLLhuc45YxV3PCedyIEMDoyxtjMJOv6T2FmeobZuVli0RiGYWDoOiMHhkilGghFIuAF5LNFhMBGQcQJvLqNCwGJeApFkXF9l2q1gqLpB6uxAa7nYxjmQTVhj0qlSCgSBUHGqZRQZRndMPA8D9tx0TQVyzQIhaL4vo+i1qmWkqTiOi7VahVBkiiWysxOTxDRVGrVGrIhFDQgAAAgAElEQVRSt69Bkshl8jSkG3jo4V/TP38h8Xicml2ju6ubXCHDwK4BfrXjXopCkf/4+Xc59aIT+cBN7+G8c86mu6OVO37yM/7hHz/C3/79+5mdnSGfL/LLu+9m/sI+ovEQxXKN1tZ5gIAk2Di+TTY7SyIRYXnvEnSrjGV1kSmN4vkyjlMjX/RIdSxCNSP4soiomlRqAeXJrUSSSYqzZbRQFDs/ghKNMbJ3L81tjbi+ghUSKGfG0CpjGMkQubyDr5mcd9YpPP3MRsK+QFNjE5rkoeg6Aj6+GxD4HpLg43v1RQ3HqWIaBgdFAqgU6pXQREM7oqhg6DpzmVksWcAtT6EKNQqFPDOZOdLpZuS8ROeqNn738PPYuSLLFvUjqQqB5+DZNTRFIZAUoC7KVSnmwHeRFRVJUijbLroeRjMMfA9mZ6fp6uhmeHiARCJJrVREkERsxyOdSiMAxWKeNf1raVwS49Lz1/K5f/83zl5+FqlUikQozI5dm4mGG9A0iY6WFgxFqFedpLqtB0K98CzK4sF+LglF0hidGCNf9BnNlNBkk74FC8kWczQ1tSAgMDM3h6ZArTJL9/wT8FUV2Q9e7d8G/Ot/fp5rr70SAP8IoHQI3B0GT8fLZo4D7g4POfze79tcBMTD4OnIY/2hOf6Q3sWRERxHRuX3GO2oXD0IXiWGGHAccHf0P+gbiiPz8/q8bwbc/ZmW+SfGIVrm8SiYx4rXo0++ESrnkWOOt+14ISAS8Ory76ELKAheuz0I/FfduJ7/+zHvueG9fOcD6//gMf+UeGO0zFfTPI+13+Gf36DC6JujZR7nvSOrgEf7Fx73+EcSyuurN5IfMDs9h2laOATIAkiSWJ9WEBBFCceuUamWEAUZ0zKpVmoUCgWaW5oJJBB9qFUcduzcS1NDkiDwaWhIMjU1g+fZNDS2EAg+vgfjo1M0NCaplmv4fsAPH3yac5dYaIpIOhUjW6gSDlkM7B1jfDLHvHlNiIBhKphGiFxuBlUzMQyTUrGEpqsMjUzR2dGAJMLOXeOsXNHH4NAIne3NqLpKPp9nLlMgHbUIRcNkimUS8RjlcgmCgMDxMGJRxACqxQKKriHLMpVKFV0zmJycYXomSyoZwa757Ns/gW37nLV+Ofl8HlkWKZXrQgWVqk06HUeQREYPTCPJMrouksvVRV/msiUW97czNZVBIKC5swFLj2DXPAJ8FLXuSel7PpOTc2zbMYLrO5yzfjmSbiAKQZ3W44lkMxliqTC5OZenf7eRc9YvRxBENm8dJBwy6Olpplq2CR2sRo6NT7NnYJwz1i6l5jj1/gDHZzabJxGPMDoyR8+8ZuSD1QVVUymVa4yV4yzsakQgYMvwNIsu+SC65DMzlanTUXNTpBJN5PJ5VFnBdV2MSAxJdhFRCTyHQFNwax61fJnv/fDHrF4Z4pTTltf7F3xwqjYbX9nKgv4+IpEwAS7btu1hybJFaAfN7DVNY3J0jHAiimGYZKZm2bRxByevW4UguAjURWI2b9pCa1srhqFzYGiEkZEJTlu/msmJKVKpJjRTJZuZ47knN7FwcTfDw6OsXnsCrlevmmx4aRvrzzqDwLfJzM4RjseQRIHBgWESiRSu5xBPhpBkFd/zOTA4wTNPvszlV52LKILvS2zdsp1lKxbheR5GSCfwAjzPpVyq8dSjv+P8C89kLjdDOtHIHT+6m2Q6wuq1qyiXKjz12EtcfuXbcPwKiqLhOC6KKlKrVDFMEz/wefs1n+NfP/sZGhvb8fwc5UqNRGMLgqhQy+U5MDTBbGaS9evPZOTACAdGJmhqaKKan2PpsnlMlwN8uUp+vEZvV4RyTWXowC7mJsY5YfWpOF4Rx/NRVRNR0iiXq9ilLNMH9tC3ZB2CIFCr1ti4aRObX3qBa69/F3okjBK41JxZ3KrFjl2bePrxlznvbefRv3Qhnm3jBzYIAg/e/ziTkzO8/69uYHpmAqcioikSc7OTdHW3UbN1vvzVrzK4fz83XH8Dq85Yg6TITI3sxbCiJBIxMtkc6VSKPTt3oKk6ba3tZLIZHv7lo/TM6+buB37BR//mQ5iREJoexxddiqU5DNVk1/YBUs1RLN3EdzyMaIQb33U9t3zhFgJN5kffvZc77/ohjz7+IJ5Xw3Ec0ukGKpUyn/jrf6I/0cbCJWsYGhpk3vz5hEIWgiAzPDDIxPQEJ65ZgyyA53l1L7cgoFQsEAqFKZbKZDJztLa24XseCHW14o7ONqSDBsPlcomQZVGtllFUnWq5gmFqCKJIIV8kZIbwAxdBVKjWKpimjn3QzL50kLpdLZcRZYlSucqObds48YTleG4VXQ9TLFfrY6o1nn/2WaLxKEuXLEUUBG7//g/Yae8jmUjwjdu+wt+++1reesFFXHTNu7n9ttt44tFn+PkvfkKtlmdweIi+jhZm5sooVpHBPR4TUzsYGijT29dGR1eaatnh1PNWsfWlA/zVX97IPff8BDMdx6kVsAsusmkwMjRDPj/LgoUtzI2M0jGvl1AoQW5mjtHBLZRrWdq6FpJu7GZybBemYJMt5LA9kf4lJ7Br0wZE3UOT82SKAg2di3FGXiAWTTG+9yX2zSbpP+MqNj76OBt27+W8/ouoljIIpTEEXUMRfAIvQJTrFXHP8yAQsZEZn54iZem4NZvZskPIjFEoFVmwaCXj03Ww5ZWrzGV3k7AsCrk8VvNCRFlnaN9O1lxxEqbksGD1qfzi5m8gC7WDlRwBQRDRYt1UAg9T0nCx8ab2k3McLMVkdGycrv7lBKKKakSwCwUy2Rl8AkS3RFgLQBDxlRiRZBNz2TzRUARBgn/58ef45lc/QaqhjTPOv5Zbb7qF8ckxsrOTjOzfwcmrT0ZX64v0vueiSDJ7BgZobugkYgn4fh3geUFApWTz8uZtqEaSk1evRTPC5Is5ZFnC0ExGR0fq9iyVWQoz4/SvOQdBkg8LeByKm39wM//5y58dLgYcgi/HokC+kXgj+Sm8ljr5ZuPo/QP/98DLF46iPgq/F0KReDUN88j9vKMyQunIAslRWipH7vdHReDjHcwZpYOgUVHVP9My/7vikBXCm5ZpfR1gcUip8Hj7HEte9niSs8eMIKgrWh2jenes5tGDjzU833/1+QVw6WWXILUt58q//vSraZr/hfFGr+ijxx3v5/+yKuMfom7+gXFv7izqtF9V16jVAgZ2bsdxSoSiMWzboVKu1b1UpADXs9F1A8f2kGUJy7IIggC75uIHLr7nsn3bftrbmxFVCdVUEfyAdGMC1xUgcMjOZYGAhsYkgigwNTnJ954f5b3n9RBPRkEUSKRiZDMFMpki/fNbGR6bJhTSCYdNPD8gkYxiWNbBVcWAsdFZFFmmUKgwNZUhnYhTKpVIxMKopsbgwCiqpJBqiDA7m0UQ6r4+jl1jYiJDOpWivmgp15UEFQUEkZGRCaJhq85PD+o0GkVWGRqZ4KQT+6lVazQ11X3LRElEVRWi8RCe56EqBpomMzk5R6FYIZWKkkzHiCdjNDcl2D84Qk93C1t3jdDT3YFdc9i79wDJlMUTT21hy7ZhDoxOsWxJB6am0pSOUbMdTFPBsW0EUSCXLeK6AZqu8usHXubUU+YTCunUqlVaWxuJxcKHv4hsx8HzfcIhk517R5kcm2F6rkDYChGKRolEVAqFEqGQgWZojI5OEIuFse0aiqJz+70vc9ryeYiCQGMySl5vI7BrmFYczxWIRiJMTA5SrTp88Yu3ce65F6MqMoEX4Puwc/tGIvE0IjA3NclJJy8jFl3A3330Vi69eNXBy1mgubVu7/D0U0/T0dXEzi2D4PtomsbQwBCO45JMpZFVEdcOePD+Jzjr7DN47JFn6O1rZ9++QXRNw3Wr6IZOLJbgpRe2EE0YNLc18/gjL6EbCkHgE43H6OpqYeuWHZx+5tq6iI+uoSgqvfM6sZ0yUxMzxOJxNF1HlCRiiTiqrqAbCpIEpWIezVAJPIEFC7tRVZmabfP0Ey/Q3tFMKp2CIMBzHEQEhvcPk2pI0Devm//8+QN09XSiaxrhqMWJq1ag6QZbt2xn+Yp+FEWhWCgwOzPHwN4hJsYn6OhsJzOX4YYbb+MnP/oe6VQjsqRgGGFEQcY9KGakKiobN26hs7MN09KJxeKk0w14rsP117+Pyy+7hAsvvIIrL76MG9/5F1x44XoeefRp9g3sYdniJXzsozez6ITlSJKK6AfU8jlyeRsCl8amFLIuI8syvieiShb//r3bee9NN1IuFzF0kYHBXczNVOju6mLNulMQJTB0BU3TIfC57/4HWbtmHQP79yFIPuFwiMamNgaH9mM7dcGkn955B5ddegFXXX0ZXd1taLpE4LgYuoVh6mSzOWLRKEHgc+/dD7Bi5XIqtRIjo+Ocd85b+Iv338TXv/VN9u3dR3d3Dx//+Mc5+4KLqJQL6LJEIhxBi8dQdRXV0MjM1mhJNzB/YQ8TU6OcsX4d5513Dnv3DDBv3jxKhSKmYSJJMt16N22tHURiMdINTUBdTTCfzyErEp2dXciSgoCALMt4voPr2mi6ieO5mJqObmgH++JkXNclEokS+H59pSOoZ3a+55PPFfj1fffTP28Boiwwl80RicbwCBAkCc+tUq6UESWpbrcQBKiqWmeWqAqKpGAqKl1tzczOTqNpJsPDo/h+Fcu0mBgfQ3Mt7t7xK65570Xsm9hFxS3yf/7xk2iizMYXN/D+D91IV/9axnbt54QT+7n//vt5/IlHuOLKi/mbD3ycyy69kC/f9g1am3qJROKccOIK9g9u5byLL6OnvQNqLsXaDPv3DfPhD3+EH/zwh6w5eR3VsoeuhZieneCG69/NP/3zP2GYOpPjo5hKwMTEFImGCCHLpKOjn2pNYnpiB8loL8jg1nIgSWRmJ7F0EcNK41R9WppXEEr2kpvciWGoCLM2ofYFWPEeElaSf/3mN1i/dD2zsxnGJ0doSSUh8AlEBUWpqxAfWtn1MZjLTBMJWXhuwFy5giAqHDiwl1RTG8l4inwuR7lSJZuZRJEFJFmgZPsIgkpTQwNP3PMSZWGKnpYWVFsjEgkhygqCJKOoGo7rY5oxBMHDDRwE0WV8LM++/QN0d7bi+lUMPc7k5CiWoSEQUKkUMUQP3ykhaQoCNsWig6ZbKKYKosRpS09jbthlujrKTTdcz4c//0kuPvUiUrE4kVgDGzftYGB0P/FkFzu3vERDcwvJhgaskE6hVGLPwH6m5mZwA4WaKxGJt9E7bzEbN71MoVSiqamJmdlpNmx4GcM08Wp53EqWREM7oUTj4cXxQznJp370Ke66+6fHzFcOCYm82XgzYilvZvwf3P+I6lkgHHXmR/TCiUd/qiP3O+oYR8K31zog/Kn5ZXDYQP1QhVD6s1rmf18EATcTvFr24nBV6Ohy0RFxaFXhtSqXx+63O3LssbYdbYx+tOzsa5Q0D/YnHTUbx6pV/b5HL3jtu0dMefU1VzEjN2OPb0VX5KNH/o/GQebCERvemDmBcPTraLD2eg+eo98ThFdX8454703RMg+tlgkCmiGhKgF2aYLJyUmaG5JMTs0yN5cnny+QTqcol6rIksIjj71AY0MS1/PYsmUn6WQcSZJIJRPopo6ua7iex8z4NI7vYJkhEHzyuSKSIPPgI8/T3JhmbHqKl0ZLXLQshKrpyLJMuVQiGo/S3JTE8xxaW1PEYiEmp+eoVGwy2RLVao2QpTIxMUkkFKLmOOi6wvy+dqLRCNlcgXg8hOfXKWyphgQ1u0oqmWLrtkG6O5qpVKsYmsrsTAbP89BVnVKxjKarbNy8D1UWCHwXK6RTrlSIROp9e5alYpo6kihQqVYoFMtYplmvVAsBumHy9HNb2LH7ALGITmdHmnAkcpi/LwoiiWgEx/XRDZWQYaCqMlu2DdLZnqa9NcmiBT2YqoKiCnW/rIrH8MgM0bCO77r4HuhGBMuUCRBpTscplSu4rguCwIsv7aNarRANW2iGgu8HFAolIpEQC+a109qUrCuEVqrYtRqKLJHJFBgfz9HWliYStnAcp07DFSXOWr2azVt2kErEGZyYQW1YwNzUOKl0E7ZdY2pqlPaODnxfYMH8fly7huOWCJkRZNGjIR1h9+4xErE4kZBGOBJi/9AEN95wDd/+9q8Y3L+LZSsXIEgige/S2dOFHwRsemUn4ViIxsY0iVQcXZOQVR3HrSKJCguX1vdpSCVQdQVN0xBFiWgszG/uf5yung7mMlla2xtJJpPMW9CL77poet1aQpHrXnFWyELVlN/3Lgd1qrEVihIEUCgWEEQPz3VRVAXXrSHLoXpVS5DRdBXN0HFdD03X6O3tRtUUPM9FUWTu+eXDdPd21p95gsi9d/+Gt199IaZl4fk+mqYjiAKiBK0tzWTmskRjUaanpjENiwODo5xw8jJmZ7NcfOWn+c09v0YUZDZu3Mwrr7xMd888VFXGcwvEIyrZXI2mplYam9LIisDefXtpbGhC1zXWn3EO4ZDC2y+/nEolz+DAGLIh8uOf/ZrmphZWLFnG4888w6UXX4BdrpHJ5Ni1fTcrVi5DVlRu+8a/88orL7Fy5Umoqk61WqPmOixfvhRJDHBqPi2tDZQKNlZUxYyEicXCFHIZJEnDDzxaW5owzQgnnrSc5paGek+YKLN/eJDunk7y+SynnX4aoZBFoVBAlgVwPdxaCUmSUXW9LrYj1fuyFi7sALFGJGaQSnfgOyX65vfR1t1DS1s7tZrDkkXzCJkGpqkiKwaaFWFwcJTGZJxatYxhxvjKF2/l9DPOQLNCxCNxMnNZFEXlZz//KcuXr8BxPK5453WctuItiIpGIEhIQoAiq4iCQM2pHXxO6OD77B3YWweEinyw+qqhSAevL1mkWCpSLBQxdBNZkfBcj61bN9LU1Mr9999DZ2cPnueRSKZIJBK4vo0sahTyeUxdp1KuoqkKqqohKQreIWPqwEdRFAJPqitSCy5zmRmi8SS6GQY/YG60zFcf/Dqnn3cKsW6TRDxGX3c3H/3IJ3jXDefTv7iNbG6K005fR1vrfL773a8zOrKVdevOwrEDcoUs559/Lvt2b2fR4gXsGRzF0pLc9q0vkp2tcv6FawhFdLZsepk7fvpdTj/1PDZv3UT/4vksXraIwnQepxbwm4d/w6LF/Vx/w3VUyzVAJRbVKM4O0treyVy+iK6EGBubQ7eiqHqNXG6C6al9CF4O1VQplaexK1PUnFEUIUvNmWRkcgi7NIaix/EyO6gYjZRtib17N7N15wDrl57Bls2bMMNR4mEJPwgYHZnE0FX8wAMOLlgLNpZpYKkaqmawY89OOpqbaGtuIZFIk82WiETimGGDzOwcmgqxSBjHDUBSKZdKNHW34ooZlp1wIlN7ckStej4jiOA4Dl7gYJoxbM/HKzvoqkpE8Uk3p1HFABGPoeFhorEUiBKyolIpVyCwEfHRDAPPreI6NqpuougG5VIJWZLqpu6VMLd+/zauu/YKvvmj21nctoR4KoGkS7i2SLFQprNnAVu3vkg61sjQyAgvbhwnGosSS7Xi+iLlCnT3diOqEslUmoZ0E5IsUalW6OroRVXBkFx0TUE2YhiReJ0VI4gIBHz+x5/jF//549fkfNJhhcnX5oqv1yd3LF2II/PUQ9uPZSF23Dz2OHE8cIfEUTn6GwN3HGrrOaqKedQUr93vj4oAJKleiPkzuPvvD98Pbq5WK0jSESo5hy6moxFFUJdlPdYFeuTFy8Fm7TdDmT28v39Q+vWIm+l4KyBHe+gdGYfMK4PAx/f9YzarHh2hkIXRuZLrPnYrF53c9cZUj/6rhFgOznPMz3KM4UfWKY98CP2h5ajXAL6j5n/VsV5dUj0uyPvDRztqN0FAD5tseP4VolYMwSsjSx5Nbd3EU3Vj5p07hkjEY9TsCr7vYlkWba1NGLqOHwTc99CTLO3vI58vY5kavhAgBDJD+w9ghaKMj87gOR6xSIitu3ezYtl8BkYnOLFTp1YtUykXEQOQRYNyycGxfaolm9HR+srpbHaW+fM6cO2AkGVQqxZpbGlm49Z9tLcmmJjMo6pgmVFKpSL5YpFyuUYoZDA2PEe1ZtPe0UjVdjA1E93UKBaLqDIUizX8IEDXZRLxcF0CuyJgGAr79o+RTMXwggArbBEIAaFICE1VmZvJ0dicQjZlysUKkqzQ1Z2mORVD01T2DowzeGCS5oYEgSDgOwEHJiZJpOIkkzECMcD1PPq6G9i7d5Tx8Tka0xGCwOXZl7bR09XFxlf2cPJJ/Tz0xFbyhTwNiRBPP78LIbARAp+xiSlaW5qQJJFw2GRqKksmV6StJY0oiUiCTD5XIByxmJ6Zxq3VFSAdx2H/4BiqppJMxUgnUuzfP04sFkJWFDzqSmpV16CtowVRVvnty3tYedrFpBtbEEWZWqVAU2sbuUwG3TDJlvI0d7QRiAGBEGB7LoIQ5cUXnqdvXgcVp8LcdI3mpjS65tLfs4ieeSt5/wc+y+3fvZ9rrzqN+371IL09XbS2t9Db1wmiW6/yCwGBIBF4PggaouijIJGdnUCSBKxQGD+QKOdtFi2dj24ptHQ2Iwt16lC5XOLAgXFUVSAcCfPg/c+yZ+cQ8xa0UcrnUDWdu352P109nYiCgKgI5PM5QqEQmloH1gQBkqAhyC7gUCkWyM6V2bNzH6lUAlmSyOdz5PM5orEokqKwYEkfsiJhWhGeffJFzjl/PXOz0xiWxovPb2brxp0kk3E0TSWXLbJty16ymRzdvW0oikJHVxv3P/ASCxe+jZtuvB7Pc/jcZ27hiksvIWZYVGo1fHQEL8/I7mewbQcr3Ei1lEGUBGIxnYG9e4hFG/nS127lhZc3MH/+PFynxplnr6a3awGqL3HJFZcg6yKXX34pslDhredcyvx5yzjjnJPxPZvLrngX195wE1de9nYyuXE0w+Xu//wN609diuv46GaSf/zHv+Nt511BKCpiGjH2bX4Bu5ZDD4WpHlwc8lz4+te+zqrlPYwOHcCteFx6ydV8+KMfIhI3UYIALayDZGCqJj++/d9ZsWopvhggaSEct4Jt13Bsm3KliGXGsV2NiZFhwmETP1Dp6OjDtUEVRbL5OeKJMFI4zEyuiibozAxlefqJ++nrbqeQnUOPhenr6+Uv3nsT11/9Dja+tJVyJUdfbz8nrlnO9PgQG155gR27Bzhn5XpczyMQAjzbxnYcAsCyLGyvhihIIEAqkSQ4KIiiSCo+HogyvudjVysYeoihoQMk0w3IkoKsiDQ2NOH6Nq3N7fXFINkjZMaQFSgVc5QqZeKRKIVcjtHJUSRJxrQigI8iyHgBBIJY/471bCQRdu/ZS2t7F5/96efYO72Tq2+6gJ6TuvjBD77JM88/Rc1xWLx0OS9v2cSaNatYte40TDPCw/c/wZYNe9CUAd524VvZtWeau/7fd1BCMT712U/znhuu49P/8hVsx2bpogV0tC/kvvvvYsG8RbR3NPKD79/BhRdezlvOP5OtG7axevVqJiansAyLf/jEzfz797/P//nUJ1AVl8Cr8Ou7fs3fvv8jXH/9DSTa5iHoCWKiw/ZNmyjm8hRmZki3rUTwfKTAR7Na0NQo3T2rCKRWUq0rKVV9nHyWkF5ElpehmQ6FzBRawxLmMhVET+eJ371If3o+vR2djAxsoa2zlcCHRDqCJIsQSAiSgO8F4AWokojr1hAE6GhuQlNFFDlg/74BWtuaKdem0fUY4WiSctUmaqiMTo6ih9OMTozQHEnyye98CalS4lPf/yKXrj0XWQAEkUAVEF0Pz60iy1a9n1S2EHWNSjWPKtZNxmUZim4RQUii6yYeFbxAw1RsCtUqsmoiu1XEoIYmgecriLKOZ9cVWU/oXcVX/t83uPqys/mP+37C2oVriUTTKFJ9cauxsYmO7n4yRZ/ZbJFTT1uHEUojSxqpdBOhVBqvUhfx0nSLamGWcDiGIqtks6NUJ/eCrCMbMbRIGF0xAB8CgW/9/Ot8/2e3H+6rq7+EOhXzdQT/DqU7RwOz1+1zOwaAO14c6ft89JzHAoqvERk8AmwJgVB/HfoVcPh1yKbg8OvI4xx1ooezW0F8zX6HrRCE4I8DeoJQr9z9Gdz9z4RtOzerqvKGaZnCcfzvfj+IujrlH4N1hGMDRzj2TXa8945VTTxes+qRk779isvJW51c/7Fb3zhV808FdwdRz/GA3Otte/VD4E87jWPGsT7bf8nnhd5589m6cQOtzQlE0ccLJGRFp1wqoSsKmq7h2DU6O9swdBOEOkhwPR9DlalWa6TTCQYGhmhtbcYwDIaHx0il4nVVTgXK1SJrV5+Iphuc2OYRikZwPA/DMAgQyReyGIZKoZAnV8oTCplYIZ1I1KJWcRmfzOLYNrIsI0oS83vbeGHDbk5YvgBZEQl8Ed93CIcsisUylqFQs32qtRqJRATf9xkaHkdXBRLJMEHgE4lGyObzhEI6QSAgCD679g3T3d1OLBpibi5DyNIRFAkBgcD12LZzP90dzczNZdB1nUxmDllS6lYGgoBlGaRSUXq6WhgbnaJm22zbPkSxWqWjrQHX9ZAkmUq5ikBAuiGFqsqMjk8jiCJLFvXx4ss7aWqIYJgqixZ34Ls1mpuTdYGJWIhQOIQqS0xM5IjFIhTyJdpaG2lIR5GVuvDEr+59AcfxaGtrwDJNPM8mFA0jayKxmM7g4CxNjY089ewGUikDQ5UoFsqEQmFqdgUzXJf1lySPkCFhtncRCUt4roTvOwiyQrVUwHFdkqkUgihQKdbl4WVJIWTptLY2UciXsMwwDz3wWxYubWV6qkAilkDRDdadso7uplbue/AV0g06/f3d9eQKH0mW0DQDQQRRVHj04cfpaG8lOzfNhld2EYg+gS8wcmAMTVd55umXyWTnaGpMocoqe/YMMjM1gyTL2HaNto42nnzsGRYt6Wfpsh5++YtHmLegk9GRMU5ecyKz0zMEgYeuGyiygu957Nu7n98+9E/brzkAACAASURBVCSJRJSNG3bQ1tlZ/79WTAYHh1m0eAGbN23liUefJR6P0tPXW/f0FOsqiJ7jUavUSDfG0Q29LrghSORyGU5avZxKuci2rbvoXzSfru5WUukYsiIhyQpXvvMLnHzCBSxe0su2rdtoaGims62Xz3/+UzS1pMkXSnzta1/nreecg1118Zwi6fY+du7dR8g0CQKfWs0lFAqz5pSTOP/8s5EVkcmxKbr7eshmioyMTzMyOs6y5QspV/Ls2T7Io489y7XXXkcyHcWXJK64/Aq62uLYto/rVhkePsBb33oBVlgiFosxMzPL0qULmJutMDkxjqYkuO4df8OFF17Jyy/vYH5/N4qqUiwU+fwtX2DFSSuJxxsYn5xl4cJ+5i+cz9jYKPFwhOeffAJRlLFMjZ6+DlxRpFqpYSgGmUKWaDROoVgkl8kRi6XYvnUPDak4CCK6YVEslLnkkstYsWIhH//oJzn1lLfyo2//lF/ffzcL5jcyl92NojdiWmGiyTQEErVSjb/8qw9SLlXpXNDN7d/8PuectRJZjxKxQvT1LGT2lSyd3T3IkogQ1BU+JUlC0zQ8z0PTdXzPrydTfoBw8PkoS3KddklAZmYK27UxLYt0uoEHHryHrs5O8sUciqogeBK+4GE7VfBViqUCsWgUWZIJhaIM7NtH4ENbWwdhM8Tdv/wVjelmJKF+zQqigCRAuVLG9+A7v72d8y8/k/e+9xpOO+0EAt9nZrrEueeezbuvv5FFC1cwf0EvsViakf0T3HnnL7jowrfS2JBm+85tdLTNx6k20ts3jzWrltDXv5RbPv9lPvXPn+HdN76HPXv2suGl7Tz17G/56795Hxdfcjkvvvgc5557AaGQgevbpBIq8WSSsdEZHBeuesflXHHpFZTyeURFI5FM8LWvfIlbbvkckaTCwNBuIjGdqZJLuKmNhq55iJE4I0Ob6OxqJF8YR/Zm8IICs8UMDS2NGKEEU8O7MBURu1akVhFJxi2qc/upCi24rsq8eV3c8/BDnHXCGYyOD+P6DqVMkXAohOtVCTzw6jaD+J6PKNVtJQRBrPdO+vW2BM91UE2F/UNjNDbPo1QskS8WiYQt8tlJDDNEPNVMJJxAxOeUBWtREvDs889z7qq3IEsugesiSQoiPs5BU3tfkA5K6ft4vo/o2QjUK1y66xGNxwgkCdWIkEimKRWLhBQBUdXQVRnPd6k5FdxqkVKlwujEGIZuIIoy6xauZWJzhu1zezjhtIX85Gd3sGrpKizLoly1EUUFzTBIJlNk5maIROoLlAC6oeNLDtlsHhGo1qqUS7ME9hxqNU+ooZlUcxuOT52VoocJRIFb7vwC37/j3w6mGK+fM77xNOUPg7s3M8/rFUf+0PH+9EracWiZx8yfj0SvfyS19M/g7n8ugiC4uf7ncccAHLfi9Zr4E67Do1cwjpSEPbr8ffhwx7whfk/TPLRicqgn6Fjmk0fOJQgCpmlw9TVXIbUt50P/+wucv6rv2Cf8ehWsI0VI3sj2NxCvC/ICOBYr9RAYP97Rjss9f53PdqSq0uExR77eaAgiARLtrWn2DexBlUEQZERJxrQsVEXBD3wamlIEfoBj+3iee3BlUSaVSmBaBgiQTicZH59AUzWCwCeRiOLYNSRRoG9+J2Ojs+ybypEwXQKgWqliWSFGRmYIPJGpyQKjo9m6rH/EQJJFIuEYO3cOYZkaINDcnCafL+B7PooskUxGKRRyiMg89cIWVEFGlgU0VULVNEKWRqFYQldkRiZmSCUjZHN50ukEpVKRWDyC43goqopu6kQshVy+imWZGLqKJAgEkkgxV0RTFDKZAi1tjWiqSqVUIRINIYoK2UyRUMggly+iGRo+AbIk4Dk+nR2N9Ha1IAgCxULxIECV2bvnAIODkzQ3p9B0GVWVeOa5PZy5filWuK6y+MRTG1i6uBtZVcEXeOzpTaQS4bqRcjrFo49uorUlSaVSIpGI87sXdtLSkqKQL7JkUSe6oWPbHlZYqz/ohQBVlYhYFlu3DLL2lH4iER2nZvPoU9uY19dKoVojHG3G8VwEZO58fDPrzryccslGlGH/wD4amloQvQqu6yDLCvlcjo99+ONcduklxKJRMtkpRFEkHImQy+fpbmvCoYKuJ5FlERcIEHjsscd5343XceKJZ/HyyyP89GdPc+99D7L+jJXYNQ8BD1FS6Olpp1YpE41ZtHV21SmbepjZ2Qyjw6P0ze9gcmKGlpYm5mam6entY//eIaLxKN097XiOz/jYJEuWLmRwYC+nrj+dfC5LY1MDqmqwZdN2ZmZmMQ0dURDYumUHiWSS1WtPwgqH2bxhJwuXdBHg4gcO8XgCVdNobWuld34XW7fsorG5gcGBQayQRTFXYHhghJHhMdq6WhAkiWwmhxUOoykClmVhGDqphhS7d+9G12Ui0RCXXP0vvPjSKMNDg3zs7/+efH6OZDKFKGpEozFWnrCM3vk9SKLO284/k127dtI7fxkBVQIlRDSSYGDPbuLxNIlEnGq1iKZruK7Lzp3befG5Tdxxxx1EEo2MTs5y+umn4FPDNAw2bxogEkuw7rRTkLR6b1AlX6RanObZ515h0eJFRCJxqhWHUFTFjMQYGdxPLBHmV798iB/+6AesO+VsFq9YQCDZjIwMsHTZUvK5PMVCiWuuuZa29k5U3aCjs5OWlgSCJBN4Ij/43u2ctnotd91zL4uWLcJ2K4STTVz/rhtZe/JqJE2tgx1RJhaNgQ8hM8wLzz/JiatOYWR4hEgsypVXvp2xA3kCoUxPX4J1q3p52wUXI4smChrPvPAK8xYs5J/++dOsP3UdkWikTpM1dTzR46v/+iUG97/C2jPOx9J1PvjBj3LmirciaSJB4KJICqIkIYh1v0RRlCiXyzzzzJP09vbUKb4CKLIMdZ0+BFEgYlmoWh2EZbJzzOtdwOT4JKlEmv0DB9i3Zw89fV3IssRzT72AoPgk4ik2b95EuqGJ3Tu309LUwp79+9BNlRXLV+DYZXSt3ms3umeGr9z/RT70iXeT7LG44rILSKZaUFX5YDlB5oH7HmLt2nX8zV9/hIcefJx3vvMKfvPAw0TMGLlchvaOZvzA44yzziSdirJn9whDo9spl0osWrGMxQsW83cf+Hu+/I1bWbF8JU8+/gxDB3Zy8poT8GyFbds38vM772H5soVIosT07F7CkST5nE1zcxc/+/FtLF58Ap+75YusXrOWaq3K2952DqmGFJISJRHtoJSr8uVbbuObX/k29971Kx687wHu+vndXHL59VCTiFgRbFvigYdeJJnsIWpISCKoqkVuNkOquRnXEclObETUO2hqXsBMdgrV0OlJ9GMZYcbHZ2lujqKoAbIkgy+wb89W4skkkiShKgqaqiFJ9d5JCA5/32mqyWy2SrKhDU2RmZvLYDs2lXKOsGUgyiqaEmbXvm3ImsZ/3P9TLjnrLLw8JBIWuqyCD57vAj7g4yMgSiqCpKAbFoFTpVjIoWsqvqJQrcziVrII1SISPjY6vizj2lXqVFIBRZZwi3nCkQTTs7MYhk61XF+sSzYlOWP5mQy9PEPnyhhVOc8zv32BE1esIhDEOhvMD3Acj2x2Dsd1iEZjTI2Pkog24lZdFLGMMzuCItbQdAU9nMaulSnnM6j4lGoOqholtS7Ju9/zLvD9uiXBEXG8it3x4lgtQn/KPEf+/egc97jiK38kwHoVC+6QHdkhWqZw0OIg8F+Tt71pcHfQmuzwPIGPTz1XPLT3n8Hdf2O8GUGV/y6bgENRvxlfXcI+1rY3em5BELzm5nmjN+lJp5yKkdv3xga/+sTe3PY/NN0b3Pb7w/yJ4O44+xz3/SMtG44H+IL6b4KkYdeqFAt5EFSKuSzheBzXBVVTECUB23bwXIF8LotpmfVmfkEgwKNcKdVBoShSLdfwPI+aW2NqKsvIyCzTMwW8wEXQddJhj+GhcUZGp6mWyoRMk1K5wosbB2lIhRCEgObWujDF7GwB36sST1qMTM7Q3JjE9VwM0yAWi0Lgkc3lCIcjtDWHUTSVtvYmarZDLBHFcRw0RWZiapaujlYmpudIxMOUijb5YhFBkIhE42SzWXQrTClfJpWsizY4joesaeQzeTRNRVEVUskotmNj12xmJrMkU0kCX+CxZzbR291MuVyhXK4SjUWQJAnf8RgZnyWVjDAyMkm1ahOyTFRNI2xqbNo2TDJh4ro1dF1mfl83ruuAKFGtOFhaffV7ZGSKrVsGOf30FWiajut7BF5ANlugv7+j3oshaoRCOqIAkYiCptcT0edf3E48bOK6dRGIybEZEjGLcFhkdq5IOBpB0zUWzG8FET7zyxHOObEXSakDf11XiPevxRdFQpaCrqiIik52ZoxqpYbruYiSyKnr1pBKxRgaHCCVaiGTmcUMq6gKeLU5orE+pnMTRK0oVc8hFIqycvkKpucmURSVmm2zbPFiLrnkSr5wy0/48Me+zMOPbmHTxs0s6GsCQUGUAiplG88roWohZqan6e9fwL5du+nq6mBmJkNffx+7d+6isSnF448+T1d3E8ODIyxesoggcNm7e5j27lZ0w0TXNXbt3EskGmHliUupVmqEIhEaW5swDA3Pd1BVmQUL+/B9H1mu9yQGAbz04iuk0kmGBg+wZOlCZLnu/xiNxrjnroeJxqMossS9v3ySVauXUq2UcJ0aiqohILJ/YJBoLIJpGLz/Q9/hW//2ALd+9mYuvfgiTl2zls989nNcctmFfP5fbuW5Z1+kr7eZVFMLmXyVqbEZSvkxOnrShFIpzHAzgSAyPjBCS2sLu3cOMDs7RXdvG56voio64+NT9LX18ejjT1C0PS674lpaWywEIeDpp15h+47d/O3fv5+qX8KwVL516zeIR1LsHznAs889R3//Yt77nvfVWRWlEiMDw7Q0tiIqEgN7hrnh3VfS19dNsjVJY2OSW/7lVs4952wi0RgbN2yku7uHDb97lpBlELhVUo1R8gWbdEMTbY0p9GQDZ19wAbOzc0RMA1m2uPjSK4k1xDF0AwERBBHX83EqeUQJNNnlzjvvp6urk0Qixpe+9EW2bX+ZD3zwL4lGY4RTCWzPpJIv8vgj93L22edw8YWXcPXlV7HhladZs+5kfMFDUkWoOVx2xXpOOOF0PNFHk0VefGEjKaMBU5NwPIex0UkisWhdbZD6d1qtWmPBvH78wEcMwHEdqtVavS1BkggEsKsuNddHliVKxQIjQwcIhzR0XcMKRenoaUaRVVzXp72jncbGZjRFIxKOIEkiTY3N1GpVwpEI27Zuoa21AxGP/3vH53l6+7N8/Na/4+or3w6eg+fbSBIUinkMU2V4cISQmeKkk5ewbftmzjrzLczN5VmxbAHdPR088vB9rDpxOStPXEEkluDee39L1S3S3tZOPlPl2//2HS654lzcWp5NL/2Ojr4+2ttTdHW38pc3fpipmXFu+9p3OGXtchoauulf2M3k5Bzz53UzOZnnqSdf5EMf+jA3XnkmTZ2L+MwXv8r7bnoXsUSIWq1KLJamWKnxvW//kBXL+znr7PVc+86ruOCit/D2qy7muiuvQo028L/+4R845Zy3I4eSLF64jN/c8xCJlgYGR0ZJN3URNqJM5KdpbV7M5Ojz+GIEx40QiSfJTBcI+RHyhRzTk1MEfpF0Oo7oS/iCSyLeUGcJCBK2beN6dY8513UQRAlFUbHtGpOTk1jRGM8//xw9vd1EY0kKhRKWFUKTPcq1Go6jEI5bFPJFVvev5uTT+8gOlzFVGUVRyRbnUPUwqiIREBC4DrKigSBBIKJoCpIo4Lg1JEVB8AMUWWfDxt8xNDZMMmIRIGOEogiSjGO7uLaHburYtRKGLmFFYqiSxNTMNC4BbrmMJLs0hzu587d3s2JlJz9/6l7uevJXLGvuJx5PYkWihEMmASKGrjM79f/ZO+8wycoy7f9OPqfCqdzVXZ3DxJ5IHDIMOQlIVjGA6K6u2UWBNafVdQ2fugYWVBBQjETDgCAgTCBOjt3TOXdXdeUTvz+qGYaZAQnrft8fPtdV19XV9db7njpV51zP/T7Pfd9DqH4VqzyG4JbRw2GK5Qq2I+LKAfr79hLUDSrlPN/8/Y+44QvvJpxIorgSvnCwkfjrAWR/7zgQ3L1iXvUGwN2BU0hzLaovJH7CPuf4/d/3Wit3B9KTaoIqwn7daP8Ad/+L8YKJ+aHilThzr/Qj9H3/RWn7/eKQfDefl0UeB/UcH+J/ovAiOfbl+phFUaqxvsSDxVpebYRCIW65fwPWzCCNqeire9NrBHaH+ryvaplXetEHDnFuDhzy2hb828d4yPUOVeHbDwBGYknqMi2Mj00iyRLTU9NEIkGK5fKc0pvP1q27SKXi5HIzIAg89tg66uuTBIIhSvkS0+MzRGMhBEkkaIQQfAFJEimXq9TXJbnu9rV0m2WaG+tIJWNoqsbYWBbF0DDDGku7W5DwkRUNVZVQFI8t20dxbViysI3JqWki0Rh6UEcQfLZu7SNZFycU1BkemiSZimJbNr4vIsvgOFVsSyQc1imWSqSTSSrlCuWqTaahnpHhaTzHIZfLEg4aBM0Qjuvh4zM1lSM7XcQwNERJYO1T22lqTqPIChue2s5sscroaJapiRlOOG4JsiKhBxQiZhir6jIznUWSFZqaUkxPzfLUs3tYurgdx3LJzZYolS1WLO9gbGqSulScQDDM2Ngk2YkiI8NTTE9lMWMqAaOmthaPh/Ftm3v/sA7R9wkGNTo60yB4jI5m6e0frnm2NSYxDB1FVti2pZeVK7qYGp8CRPr6x2hrbeC+NesRPIEFC9tr9wW5ph4qIJKdmWBp1zzwRAQ8PnXrY1xw4UWUikU0VWV4ZISAEUFUNSLxBK4P4YhJNFJH1aqi6iqSEiY3toOAphAKJZFkDVuQqOTzVMoFNqxbS0dnBxW7jGaoaFoAMxLHKzlogTBHHXk0xx52JN2LFnHc4ceyc3uWb337Dn5y51+45771/Oo3G/juD39HOZ/npJMPp69/go7OZiyrgqGrxBIpZMEnHA2QyWRwbJfRsSkeWvMYJ512ApVyDk1V+PnPfs9Rq5YTj5sIgocRDtTaszwbz3JYt/YZ6jNp9u7uYXRwGF03UHUD3/dxqg7xeIJkOk6lVMWqVvF9F1kW6ehqY/PG7bR1tnDKGccgiWCaYRzbBl/ihk//F9fd+N88uX6At7zlo5x51mlcddXljI3maO9sIRILsLJ7AalUimOOO4aVhy/jz39+hGgowJvOOp93vPMKGls7iKWa2L17L7Ii4tkCDQ0JssNj1Dc3U7IdcMGr5og0pInoBnt39DJbnuTSK99EW2Mds+UCpWKVaDBA92HzCIY1iqU8qizTvWQRX/vat7jqbVfR3j4fM2zw4INraG/pprmlHsuuEkvGKEzlWHbkEuL1aTzHIhQIcvZZl/C+f/4QDQ1xTjnpDIKhOK2tzbR2LCBZX0coEsYmBF6RQrafRGMzAdNkNjtNOhVnYmKGUCRMKBDAc6FUKmIYIp7vIiCy8blt3PO7B1h96mqOOOJYHnroT7S3N7Bs6XxOP/s8KtUqN//kVlYsPYw9O7Zx189/zgc/+DHQfQ5feSoNjfW0NrcDNqpo8Oz6bTS2JKmUXCLxOE7F4rOf+SJTs0U64+0k6+pwbY94LIrn+thWtea7Jwmosoznu0iiiEvNCDw7k0MUJVRNRZAkSoU8D9z3B+YvmIcoCWQaWlCDBgHDQFIkcFw810WSJXxBQJZknlj3F5LJOjY+txHX9Xh+47Ms6V5KU0OGL9/1FS666ize+ra3cOUVFyKKDvnZPKGwgYxMRUzgVacxtCCJWIaRwXGGh4cZHZpm6dIlNLckMY0Q3/rP7/HJf/s4n7zues459yICJrznnTfy9IYn2LT5ed519TXc86vbefs17+HxR9dy+uqzWHHEMnZt2UH7vHl89rNf5D3vfS/nXHgaSkBn+dKleE4Rx8rSO1gAUWbRkoV0dDWxeOVJjAz0cd11H+SP993N/K5mBN9HFFQsr8gRhy3mzjtuo2teja9qWQ6CIOGICrf/5FbisSBd8xeza+smzEiINY8/xi9u+wWnnXY+smJSLMtY2GRzWWRZRCr3k8gsYFvfMPNaWymMWuiahmlGCQZDeNUyiizhijKlQrFWBZVrVRXbsdB0A0lVEPGRRQkPAd3QEUWFctmjqaUNy7axLQszHKVankKVJTxRp1yYpaGhGUmUuWPNPdx07+0cv3AVmuzz1HOb6Whvx7YccD1E0Uf0HQb69xIyE3iChhaM4Lk2sl8T1l+7dh1KqJ4l8zrRVAfJh43Pr8UR4Klnn6e9NYUgGQR0HUXy8Uo5XDuPKPpgVykUZ1F0nYARoTXaRMLIsG7rBi658DxyuR5KSp5v3PZdisPj1EeDZEd3kwwpiDLYrkfZ0ShUBRrbliAoJiP9E9y38SGeG9pDNA2GXODL37qFe+5dwzx5Hvf8+D6++P2vccnFF1Kzwjo4HRHFg4VTXni+dfMWYvFYrRL+OuNAMZZDdolRMxN/YSy8go7E6wR3nigcRL/b1+g1x4vzPA/xwEzyZXh7Lx3jvSSHe0luKAggii8RbXkt4O4fPndvMKpV+2VP4BsFdwd63h3K0+6VwN2rif1bRg+sygn7yf8IgsDY2BiJROL1LzYXN990C/ff/wC/uP5Nb3iul8TrFGZ5xarcHKB9pTF/lyvoNX4WwfcQBGGfQW61XGRg53bqGpopWzbBUBDX9jACASzbxbIqBIJBZEmiXK0iCiITwxOAgG4oBEJBxoYn0A2NoeFx6lJxkskEp/3brdz3yeMYHJqgPh3niXXbWLKgid6BGVzHIRTUMEM6nfOasO0Kmq5QnC1RLrmoqorj2IQiIcqVCvF4FEEAy7IQBdjw9HYaG+poa21gYjxLMKCQzc2QyzrIiouhicyWZ0klGhA8m2y+ws6eMU48ZinT2RkaMvU1NSsRPM9B8EVcB0RJxvM8ensG6exqxqpWEcVam065UqVcLBNLRLAtizV/eY7Vxy9FUTQURaZnzzAzs7Msmt+CpmtUKxUMw2BsNIfjVInFwvT2j9G9qJ1KxSKXKzA5lcXzHTra0yTSdcxM5TDDYXr3DBA2dSKRCL4vgCBSrpZRZLEmYe/7Nf9IQUCQqCUsuo6iqvhuzWFHlKXa8UONK+RTazV0PTxXZHJiln/9dT/XHpli9cmrcH2Xu5/cwiUf/Aqe56JpAfAFStYQVsFGFFUkUSEcjmA5DuVSiXw+h1lXTyk/SUALEQolGBzdgUiAtGnS09fLwkWLmJzJEYnG8LwqdsVBVjT27txFMBElXZdiemQcMxElPzHCTG6WhkwHj/zlz6SSSQqFIscdfxp33vpTUGUG+/fi+wKeKHHReW/iorddzr9+4CP87k8PoKsy+UKRUDCEIonYrscJq9r4w8PbWH18J3t6h/jBdz+Bqqn41MSoBKHmO+h6HqIs4TkuO7dsp6W9Dc0wkBWB8eFxgsHwXJU4iuvYeLbN+PgMPXuH+fI37sG2baJmGDMcJl8ocPTypczkynz8Yx/jyiuu5K7f/grd0LAti507d/LEY+v5p/dfzdDAXgQfpqez3HjDp/n1b37D0MgYrl1EETUUWSQajxGIhHA8n9zMFM9u2MSxxxzOE48+ihFN0NLSQnOmDlSNQqlKeXyYYnEzDS3HcPtvH+LyK8/mkx/9FOedfS6rV5+CKzpIgoggibiuS0ALIIkKzlwl6oEHfs/ades5bfXZHHPsEnzPRddVBCVAxaqiKSrF0Uk8XSM7nSWdyfDxD/0rRx99DGuffIJr3vNWmprb+eFN3+dd77yKto6FSIJNbnYaSTKYLU1TyJdpa+ngrl/8mnPPPw/dkCmWZjGDabL5EeKxCK7r8+gf/8LgyChHrTqaaqmI5VgsXbYQx7EIG0kmJyYJBAw2P7OJ1nnt/Od3vsmXv/plivkyT6/fiGr4/OXB3/Oea99LMBBjdHSKeDJAMJrAKuWZHJ9keGiEL37j21yw+Bxy+RynnHQqVrXKwOgomYYGBBxEAULB6FzLlUepVMYw9BqIF0CSVARJoDRbwPctRoYncDzoWtCO6IsMDQ0QTyQRAVVTEUWRTVueZ+mSlTX+nigwPTlNIBDgueee4v7ta7jwrJN4y1vfji8JBANBytVZpqcnqK9r5vaf3M473n45JVHHzo8TCpk4jsgXP/cVrr3mWn7zm18znRvh+hs/wpZ1exkYHGP1GScxMjpBqj7F9TfeyPRklRNPWslhK5bzsztu50P/8i48RKoVm0xDhu/91000ZhrJNKTZuqWHfLnA9Owk3//+dxke6QHHJ6gHeOTRZzntjBPQDZG16//KsmUrGdyzl8b2NqpFm3gsTKmao1IqYSYyDPX1EwgEePe17+P973sfR69aVdsQ8R0KsznMUIDZsgOWRbE0S1NHK1bRQZI8ZmYn0P0It/38ZpZ1H8WCDgEv1wMhh4072mmbv5CNd++gsSkCngM+PLvuzzXz+rY2psZGSSVjOB6Iko/nOXiehyAq+IKLZfvs3LmX7vnt+KLI5EyZyekZlq88FknR8DyPykw/ou/gG0lMM8HMbAFD0/jUTz7NyMhePnzmpcxva8NFQ1d8svmaEE/cDOL4FWxXIhiux1HDKJqGZxfxS0XsyjSO7SBIoBsBvGoFy7aQxAC2YDOZFwirMgHNq1XyXAtdEXAdD9f1kEQZWdWQJJWBoREMrWbQHgybuJ7Dgw8/yPqJjXz4zU2EVIemlna++9u9lCrQM5JD14M1k27PJRw2McMhvnTDv5AriXz+a9+kd+8ePnXR1XiOTTjTiRaKIr0AKQSBeae3EAgYB+Uc4lxu9MLf8GJuKiBQqZZrViqvMw7MR1/OA7pWCPEPGndQl9nr9J3zXoXPnu95SK8nEfc9DpbZfOna+7/6Wnzu/gHu3mC8Erh7IQ51jl9Lj7e45AAAIABJREFUhemQoO5/IV64ePe/iP8e4fs+F190KQBvPbEdgDcdt/Tvtt6BcchvYr++aqiBPJgTujnEWN87uOf69R6L/zo4hXNHV7uJA54ApekskuwjIKMoCla1iiCKWJZNoVgglUziOAIeHrquMTE8huBLWG6FUCiEbdlEIiblapXZ3CyypPLwM2s5dXkzRlAHBMZGp5idLWE5FRbNb2VXzyCVqk1LY5rGxjS2a+E5HjPTRYZGpoiYOtFwcA7ASETiYQb2DmNVLVra6unZM0LVsrEtn3mdjfQPDiGi0dgUplQsY7kW0XCEkBmgWCjjOi7hUJCJ6WniiRi6EQQJ8D1EQUbwJR559Dks2+G0Uw7HtS2GRyaZyubpbG/AjEZwPQdR8KkUbRzbo1wpY0YCyIqKVXGxnSqyLBIKhxgeGqWxqZ4n/rqd5Uub2PD0Lo4+spvN23pZ0NWIrEgUS0Xi8Siu6+B4ArZlo6oKtlUlEAqCD74nMD2TJZWKki/kUbUAnuORn50lP1smly/S3JwiGo+Qm54lGo9RLZcAH0XXsa0qRiAAPhTzBVRNZePGXtpaMnz4F3u57aNnAR6KqnHJv9/NT2/+EYFAkLE9G0kkkljOLD39BTKNaTKNaXr27KalfQHVioMsq0iaQskqk52aRnEh2RDDQ6cwNUk8EQNRoFS2KVsWuuSyfftu7r77Xm688UZ8RUIUoDCdxQiZCHYJXxDo7RnCteE/v/ENhkf6+emttzE9OoYeNnj8sfU8/PDDTE1N8vGPfYyWti4EZCamhujsaOMvjz3CEYcfzjNPb+PYY7rZtmMXKw8/CstxcDyHiGlStWyeWfs0G55exzVXvwvBt7n3j2vQAwa3/uxOdFXF831WH9OIbJiseXg7hWKJb//HN+jr6+XsM09n984dpNMppnJ5HMclEjEx4ya+7VHMl+jZ3cOWrVs4etUqWlqaEVTwHAHH85mcmOL6627kp7feBNRaj13LY+fWXaRSddxy2+28//3vYNumLfT3DuD6PieechLRWJSKVSFuJrjmXW/n69/6D9SASW5qGkOCouuhySFOW30i65/6C8VKkPvuf4g3nX8y+ew0maYMDpAvzBAKhZiZyQKgyRr4Mh4lTNPk5h/9lDPPOJfpmXG++Lkv8OUvfYHp6UnmLVyMYYbIFwtM9AxSsGzmLWxFlmVUScXzJG666WauvfbtyKrCzPQMdfVphgf2kkjXUbEskpEEU9lJjECQUNjEclw2Pvs8S5YsnquKyVhWEUXV+cynvsC/fvB9ICsIaoiebbtpaGhg08ZNHHfccZStHD09e1i6dClf/PzX+PTnbqBczaOoEqocYGJ8jEgsgozAhiefpbW9hbGxQQ4/7HAKnsr2Z56ke8kSdu/qYe+aSVJtMXzfR1NUSuUS23fvoqOji3gsAnhMTswgCD7pdJqaGbaD67rIiozvi3MKmzaaKuH7Ep7n4wo2vuPjIWCoOrZjI+Dj44Hv4npizbPW8/jWXd+k4JW46f98AwERSfOJxjJ4uPxlzRpOOOkYXM9GFDSsYoGAIVNRdCTXZmDvAOmGDLoewKva7O3dS0trPZs2baCtbSHrNzzNkcccw203/4JkvUlnx+H85p47KOTKfP8H32XNn+7h6GOPwC1a6EYINRRkemqcLRu3s6AzQ0PzPDRDx3YdbNdBVF2qxdpmjVPxsdwqsuQRTUQolouUsxWiqTS+W6RSdnBdm3BE4+GH1rGwuxtV1Uglk8iyRKFQRJJFfBF8r8pXv/DvXPGOd3DnT+/k+hs+gRISKWXLaIYGvkN2dJKq77FnT5GuNp9MOkXPpt+Rq9Sz7OQ3s3tHD32PDtLYWM/kxDh1yTp692yjPh1EExVcx6Jv7wBtbW01CoEg4Dg1Q3rL8dmxew9LF3QhyyJlB57btJvlhx1LqVLBdW286izpkELW9kml5lMs51EUFUHy+eyPP8+x6W5OPvJoVN3D86qgmPieg+BZ+J6FKGsIoooYSCBqJp7n4NoVsGewSyUUXUTwBJyqR9Xx0HQRPJuSI6EiIcsOvq8zPZ3FTAaQJAXHrt1H/KqL5dT4cm6piO8zB/hkKp6N74mIYgBRNnB9j+89cAt+SaEgzNLW3MG2PTupT8QoWzZDo8N86sIb0MIKkXicYj5PpThBZXqYTGc3RqIRvP1MvgWB+lVxGhrqDso7XlUB4nXEa805XzQqf3ms9PcAdy/M6AHiqzlef+687n+QL3ZhHvz8gLX/YWL+vxiuW+PcvdZ4LeDu9RJQ32js45u9FiGY1xmXX3EZV1x5OYuPOYPFx5yB1LScb/xsDZsnBb566+95dGMvP3t4O0fMTxINHryL9EbikDy8OR6dsN9z4NBluheA4P8QuNs35+t5p+8i+B6SV2uN3LF5A+nGmlCArCj4AmiaRjBoIAoiiijjuB4eLtF4hKc2bKatvbHGPStXqFarGIaOYejs3LEXjzLzm+uQNZm167fSvaiD8YlprCo0N2UYHckhiSr1dSZlq4okSUzPFIjGIkSiOrFEAF0JMDY6TU//BJGYQWN9rR2wXK5QVxfFDOs0N6UoV100XSSdTrJl1x7yRZemVCPRmAFagIChsXtPH6LvohsaZiSCLCt4c7dcAZHduwdJxU3mdTZRLlUIhQI88/wulna3I0oilXIFFwc8H02tGb4/v7mHmVyWpkyaXbsGqauL4fkuHj6RaE25c2Bwio6OOlpaMjz6+Ea6FzXT2z9MY2McRdFxPYGnn97DyNAUrusSi4fRA1qtumrZeK6HKot4vkOxUEDwfSRJJRDQmJnJ05ROEgwHKRZKVIpVCsUKiWiIfL5AIBBA0WQc38OqWOzYPsxMNkdrSx2DQ5M81mdx0bFdCFKNt/mbJ3dzwZvOqyXrURMlHEDWWmlKN+J7Fr1924nFdbKzFolEGt8TGNo7gB42iJs6GhVmswXKPsiqjFu1EEWJqWyWVCpFPjtFW2sbjZkM8UQaTxQpFisEjRAIMrokU6xYyJJMPJbmrDPOQlUlFi9ZSLVcoK6xjq625Vx04QXs3L2dZSsWgKfxszt+ye9++wvyBZvzzjmbcrnKxHgRQ7NZedhK8pUcITOCoWvkcnne9a5rOPqwIzn7rLOoq0vx8B9/z6mnrWZJ9yIuO/cczr/gPFZ0L2Vy3OH0c67i6quu4KLzTyMUDWPNlokn4oi6TMEqsunZHbS1tRGNJBAVl1x2lnAwQjKZQlUVGhszyLKEJIvMFoo01Nfxxz88xLuvvhbXsQgEDfoGBgjoQUKBMB94/wfINLdy3/2/4fRTT0XwahLjmzZtZtGSbqxKmZ6dezE0hY6FHSiqRn/vXpxSgWRdHKvsccU7341kxHls3WOcc+Yqtj/7DIqiE45GmMrliMcjgE84FKJQLKDKGooso+oCtlVl/vxuJFGhta2Bc06/gB/fchtNjc04xTI/vOm/Of2cs0AUSdXVY1mzqJpMb+8WGjL1dHcvplwuMTA0SFNTE4IgY4Z9UCRERaWSz/PAvWtYumwpll9FDcjEo1FkSQNPZnRsD6YZRkBnyeIjuOVH3+bo44/DsmV27ViL51dYsLCDcESj4nsEwiHKjkVL+zzSqThmUOfZp9ZT15jCdRyy0wUe+dNafvCDW3jX1W8jmtDBlbn0bdfQPb8VWdEIh0Oonsb4xChQU5wTRYHBgT4yDZlae64gYOgqpmni2A4IPrZtoygqCGKtKkBN06RkuciqRLGUI2wEsR2bB//8IFbF4tnnnmH+/IV4roPn2ehakNt/8kvufOYXfO87n+WSN51DsVQmnc5Qqszy1FNbaWxpoC3TRNgMsGvHDoKBMOvX/YVFC7qoehKVYpFMppHJiQkkWSIe1Ugl65BkmR/98EeMTFqcuPosPCFIKmZw2JGLaMosYMWRraw+8Tz+5V/ex8euez8uMjs3bmfTpq0ULZt0fZCFixeBNUMklWRsYpiKVSKejDE2PoNjVcG3iMXCDPTt5Uc/upnFC5fSPzTA0oXL+esTTxGJ+cRjSYp5i8svv5wPf+BjJNNpQlETSXIpl/Mkk1GqVoVgMIzjljhi5VG0drZx2PIjSCRjFCo5IuEIgiBx15330NEe594H/kDAyHDPfXew+uxrGN64HUnagRKux65WeeT+DXR2zSdsRBmdGKMwW8Ep5xGRECSbSCyKJIo4noUg+giiB66DLEkk6mpCPlalwnRukv7hIv1DA2TqM2TqUhSqFTSviuU6qFIMzy5iOQ6SIrFolcbkgEgqGkLSyjhVF0+UEbERFRHRl5FECU+wqRRLSIpR45YH4+BDKJSgUrUpF2ZQtDBPPbOJYDRMUNJRFAnRKoMi43tVAkEJ1RdQBYnBgR7CQRNRV5BlFQEZR5KRAyYoIRxUzFA9khald3QSMxxHNXTa483E5BgXn3wBjUaGE5euYkXrEg5rX8nhbSvINKQRRAHHtTFDJq4nUM5N4vkQMlP7NrNfyEU+/sXruPLKSw/KOg7MC1+VmvqryWZeY875wrp/D0EV/xVyMYEasIM53aO/Pdvc4BfnrHHqXub5AWv/g3P3vxivBdztzwn7HxdXORD1v5HxL/z+9utjfkMXqz/XNuj7NfUxwNtPhfPluHLHHX8sRx51BJdfcRnnXXQxl11+KfEFq5Calr/i46mBCi2rzqW3HCK17BSu+/pt/PgPT7G7b5Djl7YftM7LnTJh7lSIYk2N6uX6L/3aB3nFUyDOzffCnK84bo5A+7fGvvQg9vtC5/rABUmknC9SKc6gqhqyruPbVSqlIsVSBUlWQREwAhqqqoAg0N7VjGZomLEIEjKaJmHoKr4gETQUYnqJqZkckXCIpsY4uVwOQ1MxAiq+6+FTZn5XE4FQAFmSmJrKoYgCkxMzqIqCrhv09A6RSJjUp0wEX0IQYXIqi6JIRCJxBEGiWCgzOZUlk6nDtiu0NtTT1FiHZZfJ5UsIXs2SwPdEfFEhlUowPZ0lEFBxXAcBAaviEAoaKJrKjp5+ZKH2ntbmOmZnc+iGgaaprH1yB+m6MOWSy/0PPs3qk7rJNKSwKy6hkIoRMHjk8U00NSRrrco+lAplQqEAjuPhWh4NjXXUpSPs2T1A1bIJhQI0N6eJJ8Louk7PnmHsaomwGaWUr5KfzSNKIm6lihGqtTrv3j2I47g0tzSgGjKu67Hhqd2oikp9fRzb9dg7MMbGrb1EDINSvko4ZCJLAk3NKVRDo74+gSLKLGppwPd9FFnhrse2c+Vlb0YU/NqucCiKKLoUKiVmcjMYgTABPYKmG4yNjWBZFopcJhgymc3lEUSBQDDCQO8Aden62g61rFAs5alWS0Tj9UiKSqq+nkq5TKVY4un1T7Bg4Tw8QSBfsMlOjtAyvwtP9BgZHqGvb5DCbIH29kV87atfp6m1nomRcYb6hjnq+CNIRJLce/e9XHbpJQzs7Wd6ZoaqVebsC04iaAaRZIWd22vnJjeTxQxHiARNjjr2SETZwXdcUg31vPmSKznv/AsxoybV8iypTDstzR2s+f19tLd3Mj45g1Uq07FgPo7rsmPLdloaW5i/eD7RSJBf3vkzZN8nkYqgGSqeL/Dpz3yOhkw9ru8SDidRBJVP3/gZFs+bz9LlnViOw9T4MPFYis1b15FuSHPCSWewpLuL1aeejmX7rH/qWc678AKef/5Z5s3rolKuoKka85cvRw8oCD7UpRsIJ1I8/+x21JBAqj7BJ667gZCks2jhYgLJCKWZKh/68Ec46/yz0TWdSrlCpVLh/R/4MOeecS66LuC58NjDz9C5oI3Z0gh+qcjA4B5WHr6Kj3ziepYdsZhLr7gE0XMplfKonoIkanzuc//OORecj2V7aIaCHjKIB6NYVh7bq6BpQcaGxogGI2iqQTAcIJ4IsGfXTkJ6sOa5qCsICjVFRCWA58Hvfvtrrr32/Qz2DlKf1Gjv6satTtCYaWR2Ft528dsQvFmOPWIF9/76Lppb2wgGDSqlWcx4HbKi0dc/QDRaR2t7I0HFpSka5Ee3/ZJPfvSf2LDur6hKkgf+9Cfa4+0EgyFcx8eMRfA8j3RdA6qqs2f3HupiScqVWpucotTELUbHRgiFQ8iyiIeA73pks1kMVWNsdBhF1fEQkESRxkw9ZjRMV9d8PMdGEAQG90zztXv/g8/9x0e46vILMGNRiiWHhsYMrpAnGonRWNfAlmfXo0V1ylWPTFMbDhbReJKJ6QrJRIxI2KBULjGbnyUWTTI1naPsFNiybTvnnvsWbrnlTv77h1/hsvMvYLY4RVNzBz+86ft0dizBDJicctLxhMIqCDpbtu3mpNUnU18XQZQVLKuIaOgIkkG5UsWxa9XKgKIgST6looUnRWhoNVm25AgaGiM4pQp16ToU2UHSo+zduZfRoSE+/NGPky9OEgwHmJ7IkpvNcestP+bE449FCai4jkO57CNLJkYQKk4ZwcnSt/lp7r3/CRYuW8aKw5Ywmy3y3LObece7rmRoOAd4zF+xCqe4jeFNj6NJKstOWIWT1ahWK0xOz9DZ1QmayPp1vQRjSUKmjEANxAtebePSdXzwPSRqPp6iKGNGY0TDJs2ZRhzXRwuahI0QpUoWBRtbllADJoqqIAoi37rj5zz8zMMkxDCCliCkq2gKKKqKZ7mIsoht1ewRArqM4JTAd1EkA8fzsQA1GEEzothuhUwmRljXEcWawJ1hmniOC4I697sD13OJxxIIko/o18Y98ehfSKdihPQA5fI0OFXscrbGz5RsSoVJsCvIuAQNj739O9ixfS+pmMDTz69jZLAX31NIpusplSqYoRD5/CyGqqEGoxRmxwgnmw8CSSevOJn0guRBXLYD+XCvphDheR6+571UMfyAOBS425/XdyDHb1+e6tU6n/bXhdjHxRPEfRw5UZjzoMNHEP2XAL8ax+7Fh+j5+zzwDgR6vu/yAgPv0CZcL3ygucdcfrb/GsIrnbB/gLv/d/FqwN2LF8CLgObVxMu1zB5abIN9KKUGRnh51HLA+Jd77ZDCKa+R4+d7bk35cd8ktQvhULsh/1OAt6m5CVEUiMZqXIozzzqDSy+7lBPPvnAfAPzeLx/l6z/7E796fAe/nHu89bovIzWv2Pco9D6FIkn/M6S6l/pOvOywA1/xX7x7HXquVwpBIBGPMzjYhyTq5KaKlMtZrIqN73mEo1FUVdn32xTgRXUmAQRZYmxknIBhMDY2yXi5SlStYoZqbZU+HqYZIpctUMhXiEcjNGSi2LbD9HSO6elZEtEIu3sGCYdMYokojz+5ieXL5mMYKoIAPb3jJBJhotEgui6zcXMfoYDGdDZP5/xWBB8kRSZfrMmGe76H7bpMTs0Si5r0D47T0pjG8V10VaRaLqIFQggI3Pbzx0hGg2zZ2sfy5a0kk1FKpTKKIjI7mycWjyAIPuGQRjQWwfNAkSEU1lA1hcGBMUbHs0SiBt2LOtnTM0g0EmI2lyceNfF9gTWPPMfy7k4E0UdSRKJhjXAkRrVi4boehXyRsfEs7W0ZTDOE78sMDoySSpkYAYVSsUS+YBEIBZmemCEY0Nm2s59kMo6qqTTURbGqLlt3DRANG7S3ZYiGdBKJFOvX78SxHR5dt4NypUBDurbu2l05VnW3ISsKIPCrx3fw9re+lVKpTNg0sW0HSRJRAwFc10ahtqlgRpMkEnFkRcITFbLTE8QTSaZzBWRBI9PchuP6lMo5ZEkkGArx+GN/paOjs6ayWql5/ymySNe8ToqlErYg8b3/8z3Kszli6QT33nMfxx17HN/85jepT6X53e9+x79d/1k2blzP0mXLufOuu3jg3ntZvLiLE088hfvv/wPbduzgAx98P50LO3CFKr6oIiJTX5dBVVTWPbmePbt6WTh/EZoiEjYDWK7HbCHLu95xFREziCgqWFaFZ57bSFtrK40NGYaGh2lpaeLuu3/LwsVL0fUATc0tiJKMI9j4tk1rYwPxRAJFl+kfGCGRTNOQrmfJsm7MSISPfODj1CVSbN+6jXdc9XbGpkYwVJVgKMGXvvB13vK2ixgdGeFnt99OfboRWZaxLZtVxx5FuVzk3vvu5swzT6dYLDA1PkG8vo5quUzEjJDLFejrG0RXDTJNdSBCpqGZE48/tlYRMeNsWLuB9/7ze9B1FdUI4Ts5qsUpLr3y3QhOAVn2wRPxLAFFUwmFVIb7t6CpEvfd9wRf+tpXCQYkYtEoU1NTTE/PMDE8wbxF81l9+mkEAxqOVaVaLeO7FookoWowNjRIMJLGNKNUqiW0oIzruZghk1gsgqIK2I6PqqoUi0UUucZH83yP7u5FiL7PmvsfZnpyiHx+irpMK+NjOX7zq9/wz9f+Cz+/82bOOP1UvvLv/4UuC3iuRVtXJ5JYS37r6pJUKg4eEp/51Ge49OLLSGW6CGphQoEoN//kVp7dvomTl53AuqceJxmrw/ccbMfDx0UzdKKmSS47hSBK5GdniZgRLNciFovj+36t02Eu6TN0FVmSCAZDyLICwJ8f+jNdnYswtACyJjO0a5Tv//n7XPXBK3j31W+b89Ur4woS4ZCJIAq4XpXB3iGikUZUw0A1VFxXwLY9VF1BQsGxPILBAP19gyiaiCRCIBDlq1//FsuWriCVzhAOhTAjMh/9wAeYHO6nc/FCJEGmtamVSDDMDddfz0knHk0oZFAol2lpa0A1VALhCNmpMcJmGEWW8EoFfAQCkSiiquNVc0yOT3PLf99B0fJp70yTTrUwW5imuamJ2++4i/qGNGYwwr994hNcc807kQMytlXB9SASD6PhcsqpJ7Jx09M0p+so5ovoisqf1zzED266g1OOO5lbf/Rjzj7zApJ19ezt2U3VqxLSdRYtXszY2AQLFi5ClS2mZ1zidVHCTj99e7exeMkSAq0dfOizH+aKs67EdRxmp8ok6jSsslPrKBgfIWKGEQURx3VRVa0mCicKyEoQz4VCqYCiBGst6LKKGYkyOjGIhIehqAiqiqwEKJYKaLrK6NYh1JjPcQuOYXh0ClmsEDFNREFEFEUcz8fzJRTdwPOq+J4LroXjFBFECU0z8T0VX3DxHXji0Ydp7+gC10UUar6Kvigymy+hqHINXAniPqE7gRqXvL4pgypo9O7tJxKJokoy5UoZUQTFCOFYVZyqhWfZRMIGfbt209zaQiJh0NXWRktjCxOjQ+wdHsEwDKKRKINDA7iOT7liU8yOEG9oqdmFHNDfmJoXf4lwCbw+ewRBEF4R2O0b8wrA8eWMymuaJC8VYtl3jPt9HnHu2PdVKP0X5zuwwFer+Es10HhQ7rYfdWdf99ScpcELj0Pke/vP87IVP4F/gLv/l/F62jLfKIj5mzL6L1wQ/8PFwRcXeA1jfR9BEA/anfh7grsX5jqU5cMLccxxq7js8su4/IrLuPItl3PFlZcfNEZuXMa/fu4bnH545xs/npce3Ksbx363jtdxbgRqu1WGFkYQfUTJIxCIY9sOdY0ZJFk+eNoXdsAAURYIz3HvqtUK1//iGc5YFJ4DKeD7HqOjE1SrDvM6W+jrG8eMaIiygmEYCPgMDEwgyxCJRKlWbOyqTTweZs2jz9DalAI8qpaNosj09Y/T0Zrh+S29LOvuRFRknnh8Ew11UYLhIJVKBd3QiUZNAprKrj2DNDekUDUFI2iAKGC7HoIgIUsihy1vJRYPUheX0HWDvr3jJJIJmBOfCQRDlEpFIpEwnleT0a5Px9nw3HYSsSDhsE6moZ7evWNEIgGe27yHpoYkYTOEKErs3DnEqqMXoioimqEgigIiMpWKTf/gOJGoiaGJhOf888xoEEGAgYFxnt3cQ3tnA2YwQKFoge8xMDhNS0sdrU0pnnxiNw31Ee57cAOSJLNsUSOBYBBBFNEMg3KhSFdXM5u37uXIle10d3egaiqKorFifheKquB5IpZd4e71PZxx+on09OymPpNBkWV8fKqFSWzLRZQDyLpZS5TyObKzMxhmkvzUONFEEsNMUsxPU7IqzBbypOoijE9MEI3EicdTKErNK8zzPHxhFlERETwdTQ0zOtBPIpbi8FUrSdYl6e5exOTYOBdecCFtXZ2ohka6vo3//OpnOOPsc2lsacculOha0EkwYHLueWdy7oVnIGsioiIhiAqOX5Mc3/TsZjRFob93kMGBQQYGhnjggXs48cTjCZomeiCGGdTx3TKTs9OEgyHiiRTVUpFwOEprawujo8OsWLkcV/SQZHC8mhegVSpiBHSGxkdwLYdKtUQqlWZoaBQQCAYDZGemOP+SC2lpb2H1aSeTLxb41Ke+xFmnnUg2n+PkE09AVj3KZYs/P/QE55/3Jnbt2sN3vvs9XM+itaWJ4088FnAJh8KoqoaiKwSNEIVCkd49/dxww42cfdYpNDTVI8shHnzwCT7/2X/j3HNXY4QNFi6cR6mcQ8DBUHVKU7vp2fYUze3LERWJYqXM2rXP8dSzz3DcySdhexCJ6ATMJr75rW+yctlSHBdKxSpvfes7ueKyt5JoMHHdKqODA3z1K9/m1NWn4Vg13qkcNJE1CU03EOak4G3HQdMMqhUHVQnhui4TE6OkUg34gKqqc8qJAqIIUzOTBIMimfY0rV3L+Oj7PoIWqOcH3/8hLQ1x5i1cyZsvuxhJCXHUCafw4B9+T1vnEh55/Hne9pa3ctedv+C2W2/jn999CamGZt5+9dV849s3sfLwLqYmZ+jvHeJD130YaafO4+seAUTisRTJWBgBgUcfeoh8sUQ600AwHEKRZHbs2Ekymay19LkeuqqD6+PWane1e6IH69c/SX1DI7+7+zece84F/PGPfySXy/P9NT/g0qtPITs5yV/XbeTU1SeiBcKgKehykO9854dEzTjJZJKtz+8hmgoTSZjous7k2BS6biCKIpLoEgiYDA6MEdRq3GLf9diysZfvfP8HLOpexvz58+jt7+X6Gz7KGWdczvB4nivf8V7OOvvcmjCUU+G8C8+kbJfoG5ggJIGDC3RlAAAgAElEQVQouYTCYXxXRlYqiCgYeoRScRZFVQkYOn09u4mF4+zt2cPypcs54YQTGB/bhWhDImZQtj2WLl1ByAygB0TOOvN0tFAET9UJagEU1cT1LXzHwVVEIvEYfb29lGfzTE0MU5cOsmLJIqIBn5NWn8L2gWGiqRh3//wujj7yMHQ9hKaFqEs38q1v/xeyncWXK/zpD09z+MqF1NWF6dmxlvWPPcYXv/Ilnv5zH+FYkGx+ikS4Hkl1WfvXrSzrnge+W+NsiSKSKM/x2AHPx8VhYmqKydkyfQN9LFiwlOHRIZJ1CQKGjm/ZIAv4ok7ENPE8KE9ViM0z6G5aQdgIMDraR10yiSLKuIAkgeD7yNKciJMkIwoS+BZWuYxlVxCFGi9f04KkM10ICExNjxEIBGsm9qKI49p4Vs3aQxBEPM9DkgRAxLFtFElCUAWGR6dBEAgYMjWvW4/+wTH6e3bQ3tWJpku4jkNDppl4Isq6J9fT0tgIXploPEJPXz/lcpnm5lY01aBSLaFrBqJfJdHQXOPEH5AcfPG7X+Hcc898yf//XnSdv7XGa6U11d60P7g7wBLslcAdL+aTrwrcHeyJcPAx/QPc/f8fr6ct842K2Lz0h/8yc70OnPRKlcJ9F8J+v19RPLS/2wv2Cj7s2/3x4SWl7peLQ1lAwIsE21df9XzlG8BLC2kvHfeilK7I2RdezMXv/wKXnrDgVa37snHIaushLnrfP7Sf+v5ja9tTf3u9ue9L1VUC4RABM4yiq5jxyL5W0n3rHGJOAQFRlhAkAUM1uHtDD+csMwEPPWggSwqFXBFNVVBUkUg8jG7o4Nv09Y4T0BWCIYX6hnp818J2LMqVCplMmqaGOJqmMTI6jaoIbNzcj4hCa0uadCpMoVhgx47dxCImdelUrW3N0BCEmgePaih41UJNpCUaQVZrxuKqqiMJNSK9UDuhiLKM7YEoeChSrYVG03UQQNdUfFFCFlwmJyco5Mt0tDSjazqKYTA5Nk4wJBIMR2huSNT8i1wB17Gpq4/w1yc3o6vyHLgUcV2fnTtGGByeYmpykpbmZjZv66G1NYEoQD5fprOjkfbWWntZqVQiFg2QzZWpViv09I3T0dVMU1ME13VIxcOEDJV712xj+dIWHNsmO50nVR/FdSwaMzHMeBBRFHE9F0mEqaJEKKDjOhayrDIu1rHq6KMIhUOEdIGhvdtwXBFdCyMpHoGQTqVYopKbZDqbRdEM7NwkRjRBf88QY3sGae9oolwuk4glEOYqMLIsYrsWldk8siiyY+sOWtu7GB4cJRINUyxm0TSdjs5WyuUqYyMj7Nw6QCIeZWR0O00tbbS2ZchOzZDJJFi84khULciCefXM5KZpbW3i1ltvZ2FXB4amo8kqVrXKL39yO51tTXz205/j1h/fjO0KXPGWq5gsjvOOq68mPzHOZRdfysWXvxlZVREkGUVVqDoWxdkq5UqFRFxg9+49PPnEOlYecTiSquA4VQw9iG2LBFWFz9zwed588ZXgFRgenaAuVY+iyqTrMwSMIMFwDbR89pOf4tRTT6VgFaHq0djWSiQWoVop4jgqw8MDXHjR6ezasZcFi9pYvXo1DekEgViEYDBCteCgqB6uJeNJLpYgY0jQ2pLmsrdchh5IkM2W8BHIT05z2RUXo6oy44PjqEEDVQtQqTroIZPB/q2EgiKBZDue7YIv0trWzNKly7nnd7+le+EipqdK/Pgnd3DpZRfyyetv4I477+B97/snLnzTBZimie9ajI1NcNPNP+ZTn74Ry7GJxmP4CGRHppmcnCSZzqBKKrIoY5UtcjNZwskUouJg2RammURRRVxfwBdU3EoeTVMZHu4nGjXxXYVAKIQkSLR1LKCjtYVcfpapbIlgWKJSKZGI1xGLRvjq17/Oe957DWeecwr923dw2+13sWTeQuItjYSkMPn8JNdd/3mOP2olDQ1NFJ1p1q7dwPymLkrFAulEPR0dHTz0yJ8oFEscf8IpNDVmsKsWqqzhiwKhYJhwMEi5mEfXDRzfQxBBkJTaPcT3cQRoa26iODvN0hVH4DsOX7/n27zzfZfw7muvoGrZnHDC8Zx75mpExUESJJ575hmamxo4/PAVJBI1G4ZMSxLEmvG1WKqSiOkMDe4mnUzjuQ5bN2+joSHJZG43hqZzwye+yO6eQS44bzUnn3A82zZtYXTg/7L33lFyVVfa9+/mVDl1VXVQt1o5gBAiCTAYDCYMGZtkcMSRsWdssGE8DmAPjuOAPYABJ8zYfsfGJjiDbRFMFgiBAKVutbrVuXKum74/ShJCiOCA51vv661Vq1r3ntp16vTtW/s5e+/nmeSsM97OheedxfHHruaKj17Ot7/zQx78030ce+RBuKKI29SYP7ef9c8+S9CScBoNmpUa5YrIV7/2JQ4/chWeH8T2Wqz5/cMYSg833nAthxx2Msk5XRTGdxBOxDATEVpo+G6DYqFJIBigWa+hGAaVRhtR7JDHCIqHJwi4dhNV1tC0MIIcRJZUgsHeDlFMK4DvN9DDBoWawAVvvoirr/4PtFgXleIUzYbLv13+SRYv6ufIo4/lm9+4jss++mEcawnHn/YuTjv1TOIMMTY8hpIJUpQK9ATmMZWbIpXpZc78frZvH2J6dgpRiWJqPpWGTy5fR1dFto1sJ5JMMbRljHgsTCoxB0WXCcfjKJ7GzNQQpqFSr+bIV30820EUBaLJFEedcBAb1w7jCwKF2WlSyS4kVcADFFEE38dFwPdsZEnpyH74HUyhyj6+XUPwbEQtiGZa+IKMYVq4noeABKKA03KRFBlJlsD3kQURwRcRRBFJlnA9D99xCYVCBCwLQXA7mwKSRCwaIt3VhSR2QKGoyiiigNOoEE+lkWVhZ98e9HRnQVQ6BCSSTDgcwnZsqqUJEokekKUXxUW/fOCXnHfe2S+Qw9pl+5TpolOC+XJxmOd5Hf3knQ07u//tyTcivNj3S/ncM0bcO6so+B6S4CPi7yZr2RXn7YnodrXF7K4181083+sQte0MgHe32fg75/sCzoVXBne7yjz3Bex2lWzu6zP+A9z9He0vJVT5a+zVZO5ei/d7gT6eKHRuSvt4L8/ft1D6q7E9tVP2nsNf6vOVbG+fe99Ezj3vnL8NwHvxG782Y/ceLwh4rtdhafTZXYL5avoEfaGjc7h54xDHzRcYGZmiVKmQTqdoN1udkhtdIRiy0HSVtu0gCTKSJNBstdk8PE7AsiiWqkRjEcqVOpFIgFarxY4dOebN7UNVO319CxcMsH7Ds6S7IoiCQKPRZu5gP/V6A1ES0HSDmakczXoT2W8zPZsnEDRIpGOAsPNG6SP4LQQctmwZQRR8rICFqisYhtwRGPdB063OF+rO2/TI8DiJWIaNz+1gaGSCXL5EKhkmEg1jWNZuDRvfh0qpimGY+L7DnDlJdFXD9VxkVcFpO2QyUXqyMfr7e8nnc2i6RCQcAlQUtVMCJggCjz2+mb6eLjwPTNMiFNAIRwKYloHvu+RzRYIBiyee2saiwTSJRIgHHtmA7/lEQiaqrqFoCr7ndwSYBZFms4WhxZFlFUVR8H2XxUefgarKtJotRBHKlSpWMIKqakiST6NWR9csIrEwsXiSgBHA1A2MgEE0FqArEcZBQLMCiKqKioQiKaiKgSIrDG8dIxKLMDDYS6PmEAxGkUQV23YxTRNN03jrW9/GW849n3yuRDAUYiZXQHE9NFMinIozMGcxT6x/gEhMIp1ZSDqdoVqrE48nCAYVBAk8bFxclsxfwqOPrmXLlmG+deNNSJKMrqssXbSYVDzCH/7wW5Yumc/SlUuZnZ3BNIL4rkS72aDdbJDNpilMjlAr1xkcGMR32uimha5qVMs2z20Ypqc3yn7LlmCFgqxb+wS9fX2MT+8gGDIY2rKBRDyCIikEI3F6uhKkulLc86cHSAQjfOXrXyedybJtaCszU0VEQaF/YC79PUFsUSSSyvLUYxuIJZJYlsr2ka3c/du1WKEq8VQvtclpxsa2IwWCNFwZt+Zy2WUf4+ab/5vbb/8p77747aiqiigoNJse0XAI3fCxAhqbnxmnXjWwYhIiGrMzM0QiUUTRZ+HCBYyNjvPDH/4fTj31TPr7+znn3LO48C1vo16rYZoaZlCjVm4RjoQ57LBVfOzyT3LE4aspFPJEwhH0sEUym6DRauHZDlNT0yTiCTzfQ9V1BGxEIGAFabfqiKKM6/r4XhNFltF0E8uwyOdnMEyVSqWCoVr8z09+wvr163nH299GNBZnydJ52G4DK6Rzwfnngy/xjre/hy9+8ZNs3jqGqVsEY3He8LrjkbU2n/ns1aQyvfz8Jz9jXl8vX7v+WziTNke+7hhkXcTHZ8ni5UxNTZPJZmi2mmimRqPZYaA1DB1EH0UUaTSbGJqKLHYCd9dxURUN1/dRJBnHcfmv267F7Fa48Nw3c8DKxShSkFgsjiD4tJtVXFdCFAXSXUkcu3PPbbVatFpNPE9E0zR80cVT6lQq0CgLPPTg3QwMLuCWW37M8mXL6M7MpVppsWLFfpx++kn0zJ3Lnx58iFyxwq2338lRqw/gw1d8gKu/cCNPr3+Eiy56Ozd861rOPO1k0CSeePxhxkdLBINteucvoeGLBBMxxoaHOfNNJ9K2W4TNLvA83vqWt3PZZR8jX5ph65YdvPXCtzM4fw6pdBIQqNdtDFXvME+221TqRUrlIoah4fttVFnER+mwhbaLNFtNFCMEskIoZPLYw49gyDK3/PAWDjz4AH78o5/Rm5nDPX+8myOOOIJwJI6samimyYn/dAJLli+nVt1BV1eCBYvmYxpB3nDiSaT75xNI9lOZXEtWa1EszEC2m+u+cwOHLjsIPIdkuodqvcXQthGS8Tj5Yp3tI0OEI1EMK8yzT2+kWG4TTWXIZvrI5XIokoLjerTbJXRNAVyMYBemGUASRQxTYe2WB8iG5zNTyBONpinUKkQDBvid7xTPl6g1HCRFxHE6FST+TnZE13FwPQeh3cR2asiCgKwYOL5EMJTkj/f+gYF5S5Bkt9MHthM0KJKM67ogCTiuh+MKiJKCJAN4CJ6E43akIWRJ6kguiAKyLHdYXV0wVAVJFBFkGXwPURSwXZt1GzaybNlB6IaB6zs0Gi0Ev4URinU2xfaKD9Y8uYZzzz37ZTNpe597pZhtV0JB3KsEdF+Ml68G3O25qf9q5ykIwgvJVvaoXmKPnzqv3RkLv/AULyy/fGVw93K2K/mxr1f9A9z9He0vAXd763LAi2uHX+rYK5m8U9Nr1+tfyv6c7KHAi+fhv4z/VzVvf98NtS91M3ilTNxfY3s33u65NLvOnXf+OUi9KzjrA58Bt87S/szu+f4lJZMvspfysa8s3av53e3jWnre3avI/O1+n072L5GIUy9PM6+/m2BAR5JVFFFEkUUEwcfzPFRDxbFdCvkaguSjaSqxcJBavUUwaCJLIvFokEef2ExPdxJFVjoln+0WiUSE2dk8sgqNRhN8Gdfz8X0B3dCQVQm71eSpp4dJxSyCIYt4MokZCCCIEo1apyxQliVwHVzHIxKJYAYCDA3vwLJMJEHo6LpJCp7n4Tg201N5AkGNkBXA9W0y2SDz53eRiFsoqkGr3UKRJH7y8/twbYd4IsrItnFisRAPPvo0g3N7qJRrmAGr06yPAL4DgtDpzfE9urriOI7DI49uZGAgTaFQRJFE5gz04bs+T2/YxmyuQCig4+zszx7ZPo5tOwQDJn3dSbLdXbSaDSTRxzINorEgINC22whAs9lC1TQkSUTWYwi+j+O5nes3sQhB6KyjIMiEQjH0gIUkSMzMTiBJMppm4voulWKVZrXJ2OgUqCK6KjG05TnarSbBYIDc7DR4LrVqBVkRsRsN4ukshqHTaLZo22V8wUZVoV4vgy8zMzvDWWedRb2YxwoYJDIpBFll07ObCYYCHcILGeLRBIIrIlkan73y87zuqKPo7ssiCbDmnnvJF0qkuroo5ct88hNXcckHP8jW4e0ce/zrURWR//ziNegBk0OPPoyudBLTClEslpkYn8SyTBRJJRTSKBZm0VWdUDjF2I5pkpkMhm4gCC6O3eCJxx9DlsEwBERZJZWKISky2e5uFFWnVa8xOztNMBCh7YrUqzOEwmESqW4k3+Wcc8/jc5//Iu945/lEwjEajSaxeBTPa6BoOrPTZR57+BEWL1+GYzvUSjWuuOLTvPd9F+GikBvbzrwlCwnHumiUHN50xulcd+1/8f3vfZdvXf8N+vq78T2RSrmB3W4xOztFqZDDbvtcfPGH+MjHLkcUHFpNh2g0Sr1ex8fBsixMM8gTTzzFG094A89s2EQsGmPTpq2k00lUXcL1WlRKNT595ac58YQ3snLlIWzcuIn3vPs9nP+WCzCCeuf6dl0UScMKWICApnVY/1ynQ9hUyhVw3DaGbiII4NhVSsUq9VqDSy75F04+5WQ8t6O7+JX//CqXXXYpg/MGEEW44cbrOOSQVcRjcaq1GhMTE4iSwFFHHYGmy0STafK5aWRdYvuWUQ5bfSAXv+dfePPZJ7N44RLOPPtMXt97Eoe/7nB0Q8MyDDRVo+3YZDI9IAooigzA2scf64BWQ8N2XVzHYWJ6ClM38BwX2/VQFbUjjSDLfOmWL3PnI7/gO9+5nqfWP8Ep/3QqsiogKzq+79Oo1nnwgYf4+jdu5I1vPJZ8boa773qQjRs3sXTxYgJBE1EUkRUFQZDIzeSIRBLE4lHmLZhHpVKjv38+Q1u3cOVnruS00/+JTDaO49eREGm3mozv2MHb3noh96xZgxEIMj5dYHjzOs5803kc/4Y3sHXrRlLdYXxHYPl+gyTiAUptnWKhSHfCJJ0eQJDauLZIIKhTKk5z0Kr96UqH6F/Qw4KFGbaPPsMH//VjxOIRNM2gUWrguGCYcqdHLxhC0wx0VaYwm6NSKfHYIxtIJRPYro+iWgStAM1qjXvv/h0HrNiffLnK6WecQCiW5IDlhxAPBDn55GPp6unnP668ikx6DrMzkwwM9OK0PdwWrFyxmlLBoZgfo+14tBwRD4O+/gGa5Wka7RnmLzuad158Lnfe+wtiYgLNMEkkMsiaSW52Blk1icbTlMslEl1xMt0LmbtwHl2JbgTJxTSCiHTKGxOxAG673ZGmUIO0bY9qtUy14tC/Io2bNwiFAxQKBQRPIpebJBKKks/N4LmgaiaV8jSKaFGvtgiETDzXRZY7ynGe6yDi4zgtbLuKqOmIokRXOkuz1cYwrZ3UHC6O7+H6Loqq4PvgIfPw/Y+Tz5dxHRfLUJFUmWef3UCiK4u3q1oFHw+fmZkZto1OEo3HsHGQZRnfdREQabUctu2YYd7gYmq1KpIs0aq3Kc6MEEulUXZq6Ql0BD4EQWTNuj9yzjln7w4P9tyIfykiFUEQEIXnEwH+zo3/XXHe7gd7x5cvjgP3FZftK3Z7OVKXXef2zDR2Nrufj0U9Ye+KNH/3kyiIuxkyffbIvL1grn8bcLevzqo/B9z9ZcIP/7D/35rj2P/bU/i/2m6741YuuOJrvPVrdzFZKP9vT+evs1cAic/T8UKu1iCVjrLuyc3gS2zevJ2p6TyVSo2RsSlsx2F2dhZJFInF4uDDA49tZGKygCyCZWjUqzVkSeCglQt4asMwgUAQw7Q6fQSCwJMbttGTzRCLhJmertLXlwVB6JQbShKqKqKpIluGRsmXmzRtkZnZGvgqpmkgigKVcgVJ0bFdgVKlhevLhMMWkqQjCAbVcpunnh7G9x10Q6KnJ4XjtrHtFvgivifQboLTVmi3bHaMTzM7Oc6q/eYwNDLLhqe3oasygujR151AkhTC4SD3PrCuc+MXBWRJ4akNQ9hOmx078jSbbQAWLcjgey6qqmAYOvfc9ySPr9vCiv0WsGBeD7qhEk9EeOa5Ufr70kzPlnAcl0ajxb33P0mlUkWSRLLZJLV6Hd/3kEWZSqUGgOe6SKKIpirYno3nufieRzwew/M6X+oeAo8++gSlchnf99FUlUAwSLVaZXxikkQ8STAQ4v41j2JoIVwX5s9fwGBvGkNy6IpaqJrP9PQolikjKy6bNj9Drd7m+ht+QKOmgxMiP+3wve/cRj6X433vex9bt24lmQjRnY3i0SKZTrD6mOPRjSB+w8ER6lQKDl/9wg8Ym97CJ6+8ElnVqFQq/PhHt3LqKWdx6KFHYFkRYvEoF1xwId++4SYGFyzkzl/ciWVquG2XOXMXYUsq0Uw3rbpApquHvjk9TE5vR0Kk1ayhqiKSHsQMx0hl+7n08k9SLVU58YRjuevun3PGma9joL8PVRORFRHPb2CYOu2my9jIFHN659OVTILfAc+Dg314ns3k5BSJeBTTsjj91DNYc89v6Z/XgxXQqDeqNDwFu+mSisQ4+NAVCIILnsI73v4Bbr7lBkQvgmEY9A32MVvKMzVe4NzTL2TFiiU0mmUuuug8bLdFs1Hnwgvfiu8JBAIy37jmGrqzA3i2yrkXnM39j/wBTYlTrdYYGdlOs9UiX8jRajYZ3T7KU08+TbWW4+Mf/zilYo3LL78CVdMpFHLMzE5imBI33HAdhhEimUixdMlS/rhmDbmZPPmpaabGxnjq0bV84pOfZGR4GwDDQ1tpNZu0Wg1CAZNsJo2qyFTKRSQBZEUiFo8giBL/9c3raFRb4MloaoCLL34Xiirx5S9/CUmS+PjHLyOVSnHiCachYPDOd15MqivKgsV9XH7FJxEkH9XwiScDfPazV3HoIUfw85/9EskrEU1E+NXdf2DRikWopozrNMAB14M7f30rtUYF27E7RBVILFu8EsEXOpkPWUXRTAYHF+EiIEoSuqIjih25iyt/cCU33fwt7rz9F4gCPPTgo9TrbaqVJpVaDkmCtu0yf95+PPLQWsCnK53i1FNPZ//9VzK0bRuiBDO5MRzXplKpU530kAWHhjfLRKGKFQiyYP58+ucMcMO3v0q+OMbM7BiO02BqxzaWzh/g3LNOQRMcook+7rztHi46/zS+fs1XOPSwQ3Bcl8MOW02jbPGh93+V0e1TCILKA/c/wV13/IKND9/P+NgMjXqbB+9fy5euuobvfus2utOL+P3v/oQiJ0j39HHjjTciKSrFUolKscwZp5+JYwu4bkcWxPNUPE/hoT89ym233o4k+hxz1LG4toMR6UfSYoxuHuGy976PQ1esxHNtFq5YQb1RZHJqlnKpTrWQxzJV3nzuufzz+9+P6muoSHz6367g8g9/hETawBNqNFolRoc3kQgbVGdmuOkb30BMHYmfWcWKlYu57647kd0Wi+b1Me+Yfm6572Ya9QY9vd1oZphkMkN//1wGBpegGwECgRCqrrFtaBP54jSe3+mT8zwoFst06lpEpqbHURQVRVFxXYlAOML20Y1YmsriBQsJmwEEJcrQyBYUTcWwZAShhqlb6LpAICLhui62bXfuzYKAaFoIvgi+jdAq47bqNBt1TFUlEgni2iqyFkJSQhhmDFUL4foKju0jKzKZud0sOXApc+YOoKsGrut19PZEBcXQUVVt96Z5KpFl2cJBVMHFkEw8txMbup6H48D+y1cyMTFKYXYKr20TCYSJhBPILwFGDONvK0H197ZdSY99mu+xW4Pub22vTU7iFe0fmbu/0v6SzN2uuuB9yQC8muzUy47Zh0/gRdsAf05WUED4qy/QF73fvuqQ9zGnP5dh9KXs5fz4vo8kiS/L/LT3685+05kEBw9m/ZTPP//HTX9dyear7MfbfWzvzNu+1nLno1qt7ZY52KefvT/wHuP8XeUIPrzjq7/h7MO6yPammJ0p8eRTwyQTQZ7ZOkEkECQWDSMCpmkyNjZBLBZhcjrPiv0WMFsoYZkqmipRKpXQdKND3lGu0mo0KJcbCPgsXjQH3xe5+56nOOjA+SCCaepoukKpmMexfXynzfL952MFgviOTSwaRJA8REQatSZW0KLddNi4aZSBgSySLCJ67k72L59Ktc7gYA+NZgtZMfAFD8d2MC0TX/TwfB9RFKnXq/g+xONhjICBZYVYumSARqNGNpvinvufZtUB8xHlTj/EnO4Eo9smaNs+qq5hGTqmaeI4rZ3AE3RdwvOgXKoSDOv0ZBJkM7GdjG4qjg+SLLJleJSwZWEaGqIkEAqaRMImoUgYVdPQDB1Flvjd3U+QiAaYnCyR7IqgKCqj0zVMM4JhWNhtG0EQKVt9WMEAoijSrheZM6cPzUwgSEInY2d3evXiiSQtu8Xk7CQrDjkQ22ljBoI4noSgGMzOFHDQESSLeFeatu2DYJFOprDrTR578H4OOuRAQiGTqz5zJZd84D3ccdvPOP/cN7N0yXxmqhUcREQkdFnFt8vk8+NIss72kVGymQyVap6xzUPEwhHK9QbRWICjjj6an/70Z1x/7fUsHJjHddffSLvt8r5L3sevfnE7uZkZkskuNmx6mvFtw3zhqs9w7tlnYQsuuqHSrDfJpLpxaSNKOkNDk5jBIKKg8eUvfYl/v/xSfvjjW/nc577A4sVLmMnlMIJRBMWi1bZRdZNisYymqgRDFq1mFUMzqLbqFGe3oQYTqJqB3ywzuX2KT3z609x2+22cdNTJGOEgoVgYU9XJT+9AlCSMoI4mOAQNg0a9jazpXHf9jex/4AH89Cc/Y8mC+dQaDRTNIBqJIIotjnjd61GNEKkuE0UxWbHfKq69/hss7F/A2ee8iUAsgO877Bib4ID9VqLqHulMmmAgSrmcJ2hZhEJBJscnOfPMsyiVSrzjnRcytmOIj17xQVy3xfDWUZYsXkUgYFAolJicnCIct0hl4iiqTCQa5IH7HmPu3KVMz1Sh5XLoUSsRZIOZ2TFiIZOh554gk+lmfKZMMJRCNR0kSaPWAt9pYRkqsq4SNC08XFRV4P/8+EccuHJ/jj3uGBYsnIckG/z+7vu59/6H+aeTT+I977kYH4/Z2VmOPnIJ4UCCcLiHcr5Eq13jiiuu4KwzToIY5roAACAASURBVMAMRln/5KO85T3v49TD3sjI0ChmwOwIPCswp2cOlmrh+T6qLHDnbXewcMmCTr+uKOLYbUS/s4cvyQqCJNNoNfjcj67mw596D6efchqCa5OfHiOSCnLGyach6AJ220YLxsF3MDWRZDbBzMQUrztsFbKqIBsG117zNf7tso/xzve/F1EQScTD1Gs1rGCAQESnVCoSMAKMb9/C+vVP0TPQi6aF6UoNsPm5ERqVKumeJMFIlHyxyuZto3z605/jqWefZnZ0As20uPIzl6PrItP5Ajd+6xbWb/gd73jXBbiBPv75vf/Kt7//FaaLDomYh6oapFIZDlm9P6sOX0A4YRCJhQhGfXA8to8OEbBMtECIgKVyxqnHEIwZ+K6AoSaplaepVreTSS4il58hlUih6gbBYJyffvsW5vTqVOsyg4sXMaevG8UKMz02Tb3hkMkkGBndwh/u/xMD8/fjdasP47r/+gYnnvYGUqk0Cxcu58w3n0a1XGHd+mf4xnU3cMyRx6EZEcKxBPncJLGAT+/CA5FDS8iE4cE/Xkt58jFk8QDisSZHnnE0v3zoN/x8zR284cBjGZ8cQxYFJNlAEAQkSUU3LYKBOLPTM+A4VEtbMRS/U3oeiKPaRSS/jS8qfO03X+V9bzuVD3/xao476Diq1TpmMMjIyBA4MqgihmmgyB1g6LsuoqggqyKu7YLgATK+a3eEqT0fUVYQ3DpOq0KzXkaRZDzBo22DL0t4gkKt3mbDhhGCoTC2bbNp47P09fQgCZ0YUlENEokIgtvCR6DRFnE9r5Ol810QfCRFw3FsPAFatoMnqDz+9FaGhjexatURDG0bpru7j7HJEarFCUKJLlTD2iOW6MQEdz92N+ee+3zm7tUWf+1Z5SUIAr7nIYoSCM/33Ami8HzQIjzv/5UycXvO5ZXGiILc6XND2E1qIAhSJ2u3R0wlCh4i/u6H4D/fD7h3Vm+fZCi7fe2R1vwz4tddmbt9Zd7+UZb5d7S/NVvmnunqV+vrpYDiCwc+73/nD6980e2kdH0l2trX0l7uM/mey75Q577Gv5yffTUCv5xPz/URpQ41biab4Zxz38xjo03smS2EX0pg/a+llXopILav4zy/KqqivniJ9gZ6LwUUd50TOnT6Zx3a0XnzPZ9KtYymyPT3psj2dFHMV2m2m1QrVbKZBL4AU9M5tg6PsXTRII1aA89xmJjIIUkSkWAAXVNxXJ9ipU4iEWFyKkckHCQc0hkeneS5jTuYO5AGwPc8ZnMlulIJJEUBQe18SUqdG7XbtlF1DQQRx3bo7k6CIOD7HcAmiSKKoiJrKrbjMjw8iec4SIKAqulIkoTjuiiKgud66LrO1PQsrZZNIBhmejJPMGghCB6GKZOMhjBNlXK1iiRCo14nmYyy4dntVKt1kokIoqRQKpRRFBlJFnE9B0XRCAYCPPb4c2QzCUZHJxneNkE608m0SKJIXzbOQ49vYv/95mG3O2U5gVAAURKRVQnX7WhGDs7NUClX6e5JYegajVqDt3zjcc45YhECUK83kWSF8JKjUBQZ1/PY/NwmfEGnUWuA4KDqJrbrIusm5UIOM2BgWQZBM0IhN0MkHGZ6aopYNAVyh4ZeEmFixziJWBzXbVOvFvj3j1/FOy9+B+lMlla7xdIlSwgEA6w66CCCoRCWZWEELHRVp9XyEAWZ2ekR7HaDhx98lP1XHYgkqdxx+x289z3vojBbZGjbdvp60lRzFSRBpK+nl2xPN7+49XYu/ei/ku3NkkomWH34ai7550v43Gc/y/L9l3DiiSdgWhZIYRA8irkpBNejVs8zO5tj6eKleAJUihWymQyhkM5MIc+Klfvhi2AFQhSKRQzNQFYVsG1MwyJXrFJptKiWJsFv43iQiITxBZFmo8z6dY+Q2zHNAQcejGYGOPO00zDCBrqpMjW5A1FVsQIhapU6gUgGT5Bx3BZz+tLcceddzMzO8Otf/YbDD96PRYuX4bgusZDFioNWMDoySSoZJp3pplwpk+3r4Zg3HMf13/omrYZLd2+Sz139Fc44/VRMS8MKhGg2XExLoVqtUivbmKZGNB5C14LYjo3ve3Sl09RqNUzDIpHM8IPv/TeO7aDIGtd8/VoOOeQgWs0mlmnhewLXXXcTJ550ItnuDBNj04RCIgHDpKs7TqVWRVUEPFEmlshSyudoNAuUi1UC4RCF6QkUrVPWpygGqqJSrdbo6+7D8WyarTqu32Z8coolS/ZjamKWG751DRecfzayDI7bJBrJMp2fRFDb3PmzO5i/aAlHvv44fnf3vTxwzx846PAj+eOaezll9SkkEilkVWR6ukAiEQHRpVl3qNRqKKrI0sXLcf2OwDU+iJKIJ3jIqkSrVefKW67i0ivfxxlnnIKmqvz3929m6f7LUA2dZrXB7++6j77eLqxwGGFnFnd6ZhZTlVm5cjmGoTFVqKBqGvP75/KWt5xHw2kQS6SwHQgEIkiiTavVYWZ1XZd0Kk40EUWSDNY+/AgiEj293ehBjWq9TLvtoKsWg3Pm8sTTa8hkDa761FUYgQBdqTiu55LLFcl2hXjXu99LpqeXX//kFyyeG2VRX5qwWabpyfjIRKJdFKtj6HqEZsMDQUGToxRzTZKJFL7oMpvPEzB1dMlHVrtptQtIagvVjBKJRbACXaiWx8UXf4BjX38cQ5u3sPHpSVYftYSNz43ym1/fz+uOPZDvf/u7HHXUUQRDnevIMEwOP2I1hmEgyTYPPfg4Tr3N5k3PUW/WGBhcwK9+fTe52TznnH0Gn7jq87z5/PMYGx3GLk8xf/ESZmYLeL7Khe/9EIctXU1v2EBNP8vUdmi2ZZKxNOe85RyUtM6nvnE1jZkyPd1z8UUJ1TDYsmkjsUgI0wBNbaMpOpoZwhd0fF9FsKv4TpWZmRznv+ssgoEkv/vlGpZmFzIyNkx3tpdqrU4iGmN0psDItmGiwQwBa2evnODCzrJESeoABNdzwPeRJKnTk0dnY1mWRdqtEm27hYjPfX+4D103SKVjRCJx8GyCkTDRWBpVlPDwOt8nskar3kASJJq2x0MP/YnevrkokoQsdhIJjt1GVTTajSaGqiP4HoGgiaSapLt60TSTYEDvsCg7TeKZHkRZ3SOW6MQEbaPB4Ucc9mcGLi+2Dq7yX9Aa9Fq13Oxp+2al3I3ynp/HXgMFxE4sLLyYDHCfPndLIewa1CEgE0Xx+XO7/Oz0u6d5O2NzcR9r8g9w93e014JQ5c+50P/SPwpBEF/Fa/3dY/+37GXn+BLg9LUmXRElCd/zXrCD09PbQ2zhobzpkteAeKUzgVd3bNepnc/7ZDR9hczv3rZjtshFR4TA71wHuqWTzWRw2y4PP7oFfJdMJkYkHkI3NepNG01TCFsWs9M1FEUk1ZVAkGRs18c0VXaM50hnE4SjQQrFEolECFkReWTtRubP7yGdSdCb7cJxmkhSp0E9Fgvz4GOb6c7EmJycIhoPI/hQKVQxLI2W7bD2kU2k05Gdjf8tBAEkVUPwffK5MmZA4dFHNzJ/IEs+V2B6qoShKmzbPsHv73mWFUvn8sgjG/Edj2xvF2vXbaVVbSEqPuGwhWkaSKLAyNg0QUvrZAbQMAyTdrtJtjeOaSgMb58gHgswumOGbDaJ43lohtEpjfRdstkIitwpxYnHQ0iiiO24WJbBtpFx5s/rplypYZkWxWIV12mhyDLgc/uvHyIeNDADKsFwEEVV8X2XUqHMvet3IJZKLJjXR7VSZd3IFNkFKxB9j+GtmyjkbT7/n1/htFOOpTA1huc6yKpCq9VClXU0RQNfYvvQCKFQkGefeYZIOIRqGoi6huA3KRYm6M5kGRkZRlEdJDyOPPIkHl77INlMFs9zMa0AmqZhOx66YdBsNztaTYjoegDX87GCYQRZZ3Decnxs6pUmxx93PI7T5BNXfILjTjiRYEBn3br1LN1/GYOLFmJEAvT2dDE+sZWvfvHzrFx1GFu3bGXx4sXMnTsXxZCIRGNsHR4hZkX5nx/fzOojD8EMptAME9vzkbQO9btpmoyOjPKhD13Cp/7jMxRLRdqOS7lSIZVM4nkeiqrw3FOPEEsl0QMWgXCIVCRCrVrB9XTatSbhSIdII52IEkjGGZy3iDvu+BXd2RCZvm5Awmm5xLNdmJpFo9bEU1REWeL737mZQw4+lNPPOJU199zNt274JtNjQ0RiKVzXIx4zafmgqyFKhR3oVoJILMjWLZvIZHr5za9/x/iOIqtWLmfF/gcTiQVAdNm6eTuSoDI1PUokEuKuX99H75w0hcI0nqNw2aX/hizrZLoyaLpCo9FmYmIaSVBZvHgRN974Xd777veRiKW48IK3s23rGN+85lr+66Zvsnnzs6TSURYuWICm1FBFFUdQUFWTcCiEpoWwPZVowGB8fJg5vf34koXkg64ZIGqUSzlUJcD6J7dSrzb5/Be+wAXnn4cki0SjKSQRli5dwCknncDU5A5i8RC6rlCrQSyRQFJlFq/YD8PQcNstDtxvKcsOWIkWUFiqLqLWqCPJIoLoEQnFcD0Hx7bxPYdIJIHnt1FklabdRJEVarUarXYLwwhy5fev5P0fvYDzzz4ZSdFp223ats1ATze+LCKqCj/6zi385NZf8MbjDscVRUxVxRVErFCY/PgIsZ5+XKe9MyshEQsFcJw2sa44AjaSpzA7M41hKFSrDTxPwm7bGKqB47ZoOy4hyybT3UW5WsMMBRFFg2g4wuzUGNVKjrPPvogDl63mrrvuZt26jVx66Uc4//yLkASVBfv1EwvF2fjUelasPJhVqxYQCGQZ2/EkyfQyVC1Is91G001EAqxbtwEPh8s/+AGe2zbKoUcfhd+2O2DH8fjv7/+ArmwfVlBDllQKU1VuuP56tjw3xvL9B5jbv4xly+fSlTb43ndu5oR/ej333fsY2d4ICxYv56jDDmVo6Gkmpyp89COf5MCVh1IuFZnJTRBPBNl/6UHc87vfsOKAxSzdbz6yYbBg0QJ03cK3RSbGhll54EqCkSCDA72Y4TiRoMzM+CbOu+hiugfnE+nuIR0JUsptBLtKd1Rkx3OPMb83yqnHH0T/gE842eIT136Vg3oG0WWPZqOEbbexAhHUcDeiatK2HWQJfMXE0HW+88cbee/bzmfztjEWLV6EXFNJJJJMTk/R2zfAjulJGsVZ4vEsz23dSl9PurPvKEq4O8lOfN/tEKQoHY1Ez/N26ih2Ni5930UUQfA9FMGjtzdLQFdp2xUkwUFVJHQtjCC2kSURH4l2q4nnNpkt5LFME8duke3qwtAVRMmn3bbB9xEEOp9JV/E9j6npSQwzQrFcp9ls05VKMbFjjGqtSr08Q7pvHoIo7RFLdGKCh557mOOOP+alY4dXafvie/i7gLuXKz/b/f7+PkIgcXes+arA3T567kSxQ+q0eyN+F5iUxBcN3/Xff4C7/2X7W4O7l8s6veos3V9re+w87PlH/he72xdJyt47GHvYS5HLvNhePOa1WpMOPa/I8zs9L06YSQice86bedMln+GNq+agydJLg7I/d547dwD3/N3vU+B8j2wbe5UQvCjTJwjPU/ruWjvPRxR27ap1WBjffc3dnHVIhp01DQAoioRuGQwMdOG5HqapY/suum6gyjLtZhvBFzFNlXhUY2hklHDIRNUkJAVMU6JaamAZCqPbZ0jELer1Ev1zeilVKwQDOoIod3Y3fR/Xc9F1nb7uBIIkEoqGETyXUqmGGgyiyuB7ElZIJRCy8F0PWQYXD9ex8W1QLZlGo0UiHmN0bIZiscLypfMoVGqUynVWr5rHM89uZf5AhlbbJp6M0NsbZTpXYv7CLnxfYHJHjifWb2HVyiUoqoYgQG66wMYt2wgGdFTFQFJMclN5kkmVmck6jXqLRDKGL/gIsozTEqhWCrhNn0JplnYLGg2BzZtHSHXFCUcs6rUq8XiUP963nt6eLhTZo1KtoSkqyxbOIRgP7qbLLharCEgEQgb/81iRD555CJIEkXiMj373Pg4/eA7F/DTJaJa+gTkcfdThaIZGMJ5BERWmdozT09XFyNgQ6XQvrVYD/CBbt21i+X7L0Y0QDi1quVlUUSUe7yVfKGIYUUw9ie05eK7M9u3beHrtRgJ6kC9/4fM06zUGBxOIvkipkEPQ4ghKnu9f83OCehW8JOFgkIfue4bf/uonrDrkQERdwKk3WXXo66jVS8hyANH20HVo+00UPUQi6rJtyzbmZPu46gtf54yzT+Hgww5gYqJANBQG3+emG2/g2KOPZmAwgaoLVEstyuUCAStAMBCiMFOg2ayR6U7y9ne9jUIuTywc57GH17F44TIkyaHdbiEJkO2ey//85A6WLVvRIXrw24hyhFg0St0RaBQnyOeKCIEYuqFiWEEkReV3v/wVrz92NZ5gY4YD1CvTmEYE27UR/To7pmY45IgjqFdyOCjc8r2fkpudIB20iPf24SkyhckZItEwqizxg1tu4777/sCqAw8im0kjCC6rj1zNwkUDlKsN5vSnkeVOZcEf7r6f/Q5YRSBs4LgKS5f3Mz07jmao2DYYpsCXvvBlTMNi+YqlBCyLr331GkbHxjj88FX09vRSLJZRNZdTTz2LW2+9nWu++VV8sUUyHaXRaFAuNHDENo2WgmVEmZgaR9NDCJKKLEpMTW8lkUzgqSr1ZgNdcBnbcB9uYT0EUmiaRCRmkMh2cdTrD+Gu393NYP9CpqbzJJNJHnrwUeKayJy5/cwWy3iSQilfoFosElA1BFVFEmV0Tee73/8+TqXOQw+uJSTE+O1vfk9XV4ZGrY6qiPi4yLKCYRqdUixRotluo6sWCAKqqnL1jz7H4ScdxL/+y4eYnplENXwEMQKChKzKWAGdYi6PaWisWHUAb3zjcVihAIYh0q63EV0bu1pEU2QkWcV1HWr1FoXJKSr1LWR7M0yMbUFRQshiGCug4DozqHIWUashyiqCZDA2Osumjc9xwLIVjI3NYlphVE3HbU5hOwW8VpJkOkBhNsfv19xPIJDhLee/kVNPO4t3vOOf+c1dD7B4qUk6sZyxyY1c+uFLecNxx/PEE0/zb/9+HSefcipvPec81qx5kBNOPIlvX/ttouEoC5Yu5dSz3szhqw5manKWrmyAVsum5YkMLl1JyBBZt/ZJAmaQ2fIzZHsWMLIpx+oVqwnEZfRABLte4phTXo/TFBjZOsv1N/0IWYNUJkR3Vw+93XM45qhDSacjaIpBpVZFkTV2jA1z8imn0Dc4CKLM9MwMuutiGBFOO/98rr7y03QlYvzwezfx8IN/ord/MYoa4PdrHmKwN4bjO8iqiu5DuudgbvrBrRx61CEo9XGc6iSSM4viV9GTIm89/2zq6izX3vZLHn3oCY456mR+//t76EqkOuLhCIDC9bd/h/s2r+XzHzmNjRt/SW5Woq9/Cc28QLvVJhQMo6k69VKJZStWEY6ECQUt1q7fQK1aI5tJ4zqtzqaWKHeyN44Lqsq2beMYuriTJdLD8z0kSQah02PuuTay0ulxVBSZLUND/OlPaxlc0NshZRHZ2W4hYRgaEj6yLCBpGpIgYbtNbE/Gd3x8z2fN44/T351FlAUkUWVicpzR8RJLluxP27Yp5GfQVbBUiHbPZ08SkV0x1YUffPOfF7PsZbtKMPc0UXxhkmF3meZrEccJL/3YxbTNricfOqBujxYWeHXgbu+yzH3FZ7tj7D3O7Tq2k4NgXyvw54A74a/VXPt/3Vot+zVbwL9Vv9m+fL78oOcbS//W4G7vz/RyuzivlLbfF+Poa2Wi0AF3/h5rs0srZZdJPA+4XHyuueLdvP+MI3dNds+JvvjYK5kgvKgG29s3PdWLj+0NAvcCd3ua60O1XEETZRx8VEXFa23v3JOkXb4FBLEjrzA7nScUCpGbyZNMRWnU66iqgiCKTE3MEk9Gse02IhKCL7BhwzZWrlpIPl9gZHuOnmwCRZUJhS1836PWqBMMBGjVGiiGgSx31ty22+i6yTPPbGXx0kF81+70Sfo+ngAyKoWZAuGQQcN2MAydarWKbmoMD03SbvlUanWOOGQObVviV3ev59jXLWPDc6MccMAiRoaGmTuvj3K5SqXSoLcni+c7gI8oSsxMFwiFAjyy9hmWL+mhWm0RjQbRdBUBHbARBIF6rcWv7nqSU05ciWPbVEtl0pkUTz87hOP6LFk6l21DUwz0pzpSDEKTn97+OCuXz2F2tsLAQIZEKkwpXyIUDiArMoLYAa5/uOdxDj5wPiOjkyxe2E++UCAWjbBu/TBLlwyyffsOrrqrwDUXHsTwtnEi0QifvvNZbr75ehzHQ5EDaLKA7zu4jo2sqeCC7ws4jkO1Uca3ZaanxlmybBmNVhFFUXHaoOkqnufRajZZs+ZBDli5jA1PPUe52EJSHZ5c/yxnn3Emvb0JdE3tsLwpCr7QxFBjTOyYId4VZmR0O6rSRdtts3HdY7zxxMNZ/9Q6Viw7lAcee5Tp3Cxy22XOvEEWLBpAFnXGhkcRZZFMT5ZSrYEie/z81jtYtngZZsgi250lHA5x/XU3cPSRq0llkoTDIX57920ErW4OPehIBLGAKAdwHRAEiZbTRJYM2i0HRREplXPkZnJ8/evX8J9f/jL1ZhlFUQiFgjQqVZptp0PVrum0mxVkWUdVJSq1OpokISsakqRQq9cIBDtSFhI6QyPPkO3JYupBdkyOkIzPoVjMEYtFQZAoFqtYmk6t5fEvH7iU0e0buPNXd1Kqtrno3ItQ2i3uvPe3eK7P+iefpac3iyQJWAGNdruNFYzSarfQNBlcj2qthGVZXPaRT/HRj1xCpTbDpz55NW99x3tZMG8eb337O/n5rbdjGAKNmk2hkCfbl6FcriBLMmeeeTbLl6zg3e95J+vWPcqJJ5zEo2sfZ+UB+xOOBNFDBtVaiUg4QrPaoulM4NomiXgXLjaSpGDbLoIgUisW6UonaXgCqt3CF2BmdoZEIkqp0tFH0zUDXxRx3Sr1ch3BkzECGjff/N+ceMJxhJJdiAi86YyzuP7660jEM9zxs1s58YTjCKZSzE5Nsm14iHkDA/zkjl+y4d6needZbwMEtg4Pse6p9ZxyyhnUq2V8HwKWhWmZOI5No9kgYAX41M1X8aX/+BSJWJBIqhfbbuPZTcZ3bKe7d5BcPkcsEUYWJCrlCuFwiGqthoCNophIqNheh1W31azhNJto4RDtdgNVMfFaAVS9zcknnUd3b4obb/omw9vXEQrGiUcjiILB9h3b6OkboFZpIQkKxfwMxfw48xcu7bAHSzbVUoVqvcScnoWMjo4TiViEImEEBep5H1VTcHcyMRYq2yjPigzOzeL50GwWSSbTtFs+1UaF7kyWpzc8x+e/+F2+cNVHsEISbVw0JYrTnkDUTWRHRJY1Dj1kNbf84Ed0D3QhovP/sffeUXKUZ9r3r3JVV+c8UZMkoYCyEGCQQIDIOYNtDDaOr3FOu/s6rfPa693XeJ3Wu95lvfZrs46YZBNNziigHEaanHo6V67vj5ZAgMA4nu/7ju9z6sx0z9PPU9UzU31fz33d1/WOd97AxWdfTale5uIr1yL6JT76ke/yN39zA6pkkyoOsH/3bv7+Mx/nKzf+M5sffYL27i4Knf3Ivkd5dorpmRlkUSOayDA0NMiTjz/K2rVr2b59O6874XV4nouoeyTMIt+68TvsHN7Ppz79cRQJFDVkz+7d9Pb0oCgKrtWkXJqhkM8wM3aA/bueon/JaQRSkmg2huP4+L6AIhm4lsOVl17J1776ORI5HVEKkUSZH/3odjKJCD+97Td89UsfJxpLYLl1ZiYcunpTzD73C2b33YuaGiDMrOaZO2TMhIRISDwaIxQVJsbH0FWFTDLJ8MgQrttA9BokUwqqoiAjMzo9TSaVRZZaVgmyJGHbNpIs4/sOgiAiiiKu67aqPSGtzz8nQNNb1EkncPFdD6tpEY+n8MMARRQJBRHHtZAEgRCf0dES5XqFBT29B30bJRzPYmK6zkjJZsnCpcyWSy1FX8tHklwaU3vpX3EygvBycLf0gqNee75yhDiSoIn4kpafQ2Ne+vyfO4SXOpcDR/JjCMQXjxODV8nhDuWKR/R1OMLPDj4XSK2c+0jvgKKqrznJ/Wvl7o+MMAw/+eJqyiuPPSS/+rvMuA8HQH8Oz7rfOedhOw+SJP0J2sVe4zUctEd4rYDv8J8dvsYrjfE97/mbxot2hw7SJg7toryyFcOLTTJf1gJ38EYMIaEgsObUc3njh77CBcf2v3z35g+IV3sPXjb3qwG/wyp4h88ZAkIAlZk6O7btw7Vdrvn6bzhnUQKBoHUjCls33oAAEDCjJpIkYkR0mrUGMzNlTLOlMFet1kinY7heQDQaBVEkkTDRdA1N02jvyBGJyKhqSKNew3VdYvEosqy07AVMHQhpNhtEohF836eQyxCGIY8++hzFYg5REhDCAMdtmbk2rSaq0vJ/C0Kf0A3IFzMkU3E62nM0GhUCJIZHZ+juzNLWlkKSJCK6iu+HzM5WaSvmGRoex3NtImaUQPARfIm773+a9euWMTQ8g6aqeF5APB7FcwOGh8eJxiLs2jVMIafT3plFlgwSiQhTM7OkEjE0RSUei2DoMqPj4wiCzGy5Sn9PO/lcjFw2wePP7qKzPYXdbFKt1TFNA6tpMbhvHFkSkSURTZYxzQhhGHLzLx/jmOV9bNy8l0ULe6k0fbriOkcvnocfBtz67DBXXXEFnhe2qD8IBGGAoimMHhgkYsaQVR1EmYimYtkhrufiew6KqiBLOqWZOmPDw0TjcYxojGKhDcPQuPX2O+np6WfRgoUsWbKYTDrPvv3bKJXLGEYMRdUgkKhUHVLZJFPT+0maXXz1n/43CSPLsWtex9e//q+cf+6FTE5MMnhgiDXHruH+u+4lm89jWU2mJkt0dLcTBBKCoCGEDiP7x2hr7+TWX9/BqaeeSLVaQ0RkzXHLue1Xv2bpfHKgEQAAIABJREFUkqUM7R9i2eo1RCJRSpOjuM0KoWQiCjKf/vRniUchny7y1je/i7PO3EA0FkXTVJYuW0wQesTi8YOeUSJ2fRbHtonFokCAoWsIgsD2bZtoL+RQjBRbn9uBJkjoEYmx0VES0QSlSo1sLonvuLiWTzSVZGpiimJ7lkcff5KkaZCIxfCRkFWFU046lUsvORdBFihNlTjnrLM5ZcMpNG2Pp556ks9+7jO86U3XIisyb37zmznn3LNp1l0UVWFyahRN0dENFcexOWntaezYvYkly5Zz3nkX0N7ezpYtu9m5cx/rT17L6aefzqWXXI4ZNRCQ+OY3v41lNfnIRz/ASWtP5oMf+AA9vb0cf9yJzDuqFzMq02zWWv2FVh1dj+BYHrIaEI9nCbyQqZlxotFoiwbmOEiICJKAj0h1poykyhiJJJavYGoamqbi+Q6CJOM5TcxIlKjZoij3984jGlPRFA2BgMsuv5RMNsPg3kFWrVpGZXaGUqnJXXf+mva2ArFIhM7+dlJunngigR/4JJNJenr6iMWimKaJKIjYjoWmauzatZt7HvoNl91wIZdfcQH1Wo22QjuW61OulMgX2hjdP8mtt/4GVdZwmg6GoWM1LWrVBvfcfS9HHbUQSZLZtHEzqWwGXTfwfR/N0DAiGrZrIYkileYYoVTj6qveyLkXnUQYBOTyBSJGAjHUqFljZNLduK6PKMoMDQ5TLGbp6h3g7W+/gTNPP4NaeRrdTNPe3k3TmSab6eP7N32PY457HYFgYRhJRoYPMDs9ja7IXH/9B3jXu97KG696J8cfdyxt7S3rmVq1xsjoCDNVi+6ubv7lO//NNa8/mwP7d/G97/0Hq1efRrNewoi0oWkitmVz+WWXEDMNAkHFcSwuuOBcisWQhUv7MfQiUphlweI8uaRApT7L6KjLm6+5jm9/+5tMzUzS29PP5o07kGWJM848g6tefxW5fJbpmVk0XQffZ8nRi2i6HmvXrcNzfVRJIQwqSCjM6enhiSeeZd3atfihhxt6pGJRNF1nZHiEkZEt5HNRIrqIK6qkkl1896ZfcMN7P8glZ5+MHHj4zQq4TSIpgXMvXE/HnByykGBicpJ0Jk13dyd9c4qcteFURFkgFFzEwCKZzOKJGl68h2wmzsi2x5nd/gjz1q3jlkfv56mHn6S/px/dMDEMg9GRYcRWQQ0/CChXGkyM7iWbKWLbFlMzdaJmBEkUCAIfz2/1vgoctEkQRPzAh4N5kKooBIGPYkSQZBEnCBGClrWCqqpIskTg+/i+i+MGPPfMkxSLXYSCSyAotGUyiKKPpygotKiB27Y+h6im6O/pQ9MMZqanqZZLiFIAvkWirQ/x+apTi7U0um+agWO7/6C85fD85UWMo0N5RxgSBkGrVUj8MzLSXu3cjlQnO1Ie+Jpomc+PfmGelzHVwsO+hoc9btkstPqAXz75X60Q/hr//40/ULI2DEOalvXHLx+GBEH4sqrdK8X3f3AT3360xlVf/OUfvfafNwQc22bn1r1senYnpXKDr/3iQb58fjsTEyUc22FyYhrLsvA97+BLQhBaSleKqiCJ0kFPxJZC2L7BceymhSqL2HYTWZMw0ya21aRcqWA5DXxbxGmEbH1uHCmMsmP7IK7nkc5nkGQJWZGJxqMEXkuwYGRkAkEQOH710UiyhmN71Mo1BHxUQyORyRzUtRJRVZ3h4UkIfVRNQpag6UIknuC41UdhRjSEwEUUQNEjbNy4h7ZCnvvu24jvBDz+9E4CPyQkQNcU5vYVQBDo7OwiasaQRJk7f/MUruOQTLZA7sDcLvr7cgyNDOF6HoEkMDQ2w/ZdYy2FQcCMahTbEkRjJvl8lky6ZVXguTYnr11ExFSJJ3Wy2fjBv1uPXCZCzFQxDY2t20bZuHkvkUiEKy88kVhM59hj5iPJAtdsWEk+n8GyLLKZNIYqI/ohhiKhCD6SLCFJrdt+Z1uRcnmWpmVRqTXZtXsvZ51xFsViO5lsAc8DqxkiS1EUUUaWFCzHxXUcbNfhumuvJZPJsH37LiRJ4J3vuoH5CxdQLLYTjSa45+6H8YMIn//8V5icGeE73/02uqrwkXe/nqTk8uQzd3HF5ecyW54mm82xbt1adN3g/PPO5+b/+SWqHKFatdmy9Tl+c9c9PPbI4wzvP8DtP/8lAz1dvOP6N7Nx89M0G02efXYzo2MHkKQIBwYn0LU4jYZOMh1FkCok4zliZgw/CHjPe97LgoF2tm58imuvvoof/ef3AIgnYsiKSDqbwLYsNE3B0HV0TaZQyB5UbLWRRIGxkWEWLJjH1PgI+4dGuO++h9AUnUZtis72dibHS5jxKDMzMzTrjdbOug+FYsuvcOnS5VTLs+zavg3b9RAIGR0Zxg98nHqZVFSn2JUj118gm80yf/5RfPWrX8FxW0bY//7v32VkeIQPffhjqKpGNpdG1TTgoEKuprBg6RK27z7A7sERXLdBeXaa99xwA3/3ib/hTddchyQIVCqz/Pjmn3D2WWez4fQN6LqCZggsXXY0Pd39DO7fj9WsMzaxH9+3MQyTRDJBGAYk4il0LYYs6DiOQLG9gCS3kjdREpDkECOiIIgBatRE0AQUVUTXVZrNOuDiBzaeayMrLdqa53ns3zvEti17iBoxnOkpBndswzAUyrVp3v+Bd2MYMrG4Ti5b5Ec/+jGu7aAoEh/96Cdob+sESUHRDSRVJWpG2Lr5mRaIFAWSqQRTMxNsaTzFZ7/zPiZmNtNsNqiUK3iejygp5HM5xkdGSaeKnHHqeXS19/HkY1sozZT44ue/RC6XY2xsDMcG23JZtnwRfhhSbzTRDYNSaZahkSFkueVDmcllUVQTLZJkerpMvVkCP0G95kEo0bQqEMjUG01cz8VxXTRNp1zx+NQnvkCtYnPHbXcjiiqeJzA8NkijbuN5ARMjs4ihQdOrggS333YbmVSe4aEqU9Mljll1Mt/81n8wM1UlDEUSyQy3/upOLrv8DQwNjfGf//1vTM6MsmPbDi446zIqjb18/ot/y3RplOlqBdlQMRMmDz7yW1TJJJVOMFsdoy3XgywpVOsT6CZ0dfZiiClws8yWG6xcdTx33HoflbLP05t3snLV8dRnxrn3vvtIppLohsHc+fNJZ+J0dBX41S0/I5lOM1utEQYhD9z3AHapjECAkYzwyY/9HaIXcmDvIIHrIysGldk6AjK9c1YSkQsM7irjOHk+9fnv8aZr38U555zGyPgEW3dsY6Y8wVR5P6oToTmt8ZH3f4Nvfft7hMh4YUCumCUIXCJmFDMWRVFFHKtKfWYUq1xG822c9Kn0rn8/QXYeo/tu4Y1Xnch7P3UVP3zkR4iSRNO26OvvJ51qQxIU5rT3kuuYQ9MxGB2dJEQgnogiaiGBEBIKIUHot9gZkoAoSi2GEAKCpBAIIv7BBD/0LYJmA00I8f0ALwgIBLDsBoIYIisiTavB/GXLQQY/FNm9fT/P7h6kYfmobgtIQsiChcvp6eqkVm8gSTKW7RDTJHAtIrqBf1hucwj0lEoTf/4U5P8lEYThkVlR/x+Lv1bu/sgIglbP3avJ6B+KV23oPHzcn7Of7jWsIRzqyxLEFxlV/jHxmuigr+Wa/5B+NVrXpKrqEame4Ut6/166u/TCcy9+3cvW4LD39bBdqtVrVnPZFZchdizlxh/fz5e/fyc3P7CdrXuG+OFvd3LOMQOv6RpCDu4c/YHvwctPWKA0XcIwDKxmy+ftF7c8yIYNaygWMqjV/QRBgGnq+H5IRNdaHHRBZGjPGIlYDEIf33eQFBlRhohp4jkhYeCjySKhHyJJIa7TRFUkRFGhPjuFLMLQgRLZQorHn9hGo+m2/tbEkND3iUR0/MDGsaxWFUCVkUWBaCzS6n0MmtjNBoqqEInGsC0LUYAw8JAMBUECARFRlNCNlhVBKLR84VolSom77t1Ef187o8PTmBGVrjl5RkbHmTuvm6GRaXq6ilQrFQIn5KHHN7N6xTyshsXmzXtJxDUGh6ZZubwPx60Qieh4rshjD+9mYH4bgiC3rscXcB2H+fM6Kebj+ELr/VNVAz+02bp9P23tOQRZYmpyln2DE+RzKZ5+di8Hhqbp62nnzrufZP7cbrzAw7EFFizsIJdPYhgqSAGW46EoEuMzVVLJIr7nE40nqVRqXHT9h0BRqVVmSEVEBFnHdV2Gh4aJpvM0bAczYqBpEtGIzhmnn4YgikgaCIRENJlduzaTKmQg8Nm3YzuxTAbfDTj/nIt425vfjBsE/O1HP84XP/sJpivDFIpZyuUpunvakWWR5csHkHyBdaecz8aNj5HNH8Xdj25hz7bt/MOX/pF8Ps7w2DjFtgy+2yCbL7Jo/hyspsUP/vsHdLfNZf361Xz4I5/krHPPYu0pJzIxOU0skWJipESjZrFz+27u+vXDeM0mZ5x3Fs9te46etjgSIpWqS6XZxPcdolETSQJRMWnr6uUTn/ks7/ng+/EEaNSqWLUG2WQOQVIJQyiVx7EdkZGxSYpt7UxOTlMuT5LOJPH8ABGfuBnjmGOWo0YVBEVhZrqlOvqut32YCy86C0GMosV8mjWLiBnD9WQUP0TTDSLJGIoSEPohuWKUsZFBiu19JDJp7MAlREQImxgRkw+8/+848YQVfOB9H6Snq485c+ZwznlnETE0KtMl6s0qZiSC1bSQ5QBFUChNTpFOxHCbIYlYnK6udlauXM3WzVswYzFuuOG9fOGLnyNXjDNbmaBRs2nUS5xy5gY0XcBza3TN6cJ3IZXKokrguyCLEKoythvSbNQQBJfACZEkhYmxCVKJBKKitSi/joMs+a3qcdDqocVzmJicJhpPc+/t99HXN4+ZcpmG06CQ7yLXlqdctnl66z46u4pE41G0WJTLL7oYUQbLbqImTK64/BIyqTS6FuGWW29nZNN+5s0/CkUWKZVKyIpKLlsEAr5681eJdOqcc+XprFu7lq1b99DZMRfftcm0FzAUAysIeOyhh/nZz37JO9/3fj744Xehmj49cwrkc2lOPHEtumGwbNXRaIrNzMwsdbtJUjcJCHGDgPpsHUU1CX0ZWVawamXq1QZXX3ERb3vL26jbDgg2shjiSCI/+fF9LF+yAqs6xeuvej2dHQX6+7vwgxkUOeRjH/tb3vfBDzMxMoWphhQLA8hGjFXHz0dR0nzqbz7BKaeex/kXnMEbrn4HklFmdnKclSds4F03vI1//e7nGBkfJQgCJEXm5p/+gve+5x0sWboAVZMxFJ1nn9nO6uPXoWgqq1eczM9vvgVDSNDRnUBRI7S1L0LRQkrlURJmG8MjE9TrNWRVxg8E9u4dxBFF4pk46bhEz5wOVq1eQqU0xq5dO2lvT3Pb7Q+weeOz/OwntzIzNY0su3z8k59jzZo1LD56MTu372RsZIh8McPCJfOQwoBdO3dz2y23U+wZYHDvTu649VZOOuUcdmzeQraYR1NDbLuBHfjEUhk++fHP87GP3sCubY9z3nlnkE4VyaQLxONZmvUAIxriuDVWrOxj4aIeMok8vitRmpkglU5iORZjI2OEnoTj6ySzeVyvhgfUZ6cwE3kKA2uwqxVqI/fhVjZy2rlX4qg2t/72V/z6/juY2zafRqOBbkbwvICO7j5GJmfZvvsAMVVB1Qw0TWOqVOfJpzfS1pUnDA6qI4oqDz7wKN0dbQgEBK6HphggiiBKuK7d+oyjVd0JDwKxIAgwdBWB4ODnTkh7W45UItoSd5FlGp7PE09uZLRUw4ikaCsUCIKQaCyGYpgEzWkUM0YsmX2B5HMwZ/36nV/nsssuOtgj+PvFoT66Q8cr5SJHMi7/c8WhjrdDh8iL8z/h+Z65l+SG4YuPI8bL1DIP6797fk7x+ed9oSXUcugAXhEp/FVQ5S8Yh8Dd4bTMlsztEWh7B708XjNYekm/5aH4XYBLEkWCIHhN/yivCPIO7iD9qfYvjuTn9+f8RxYOlcJfQlN82fNHOMfX2of6MtGXw74/EoUbYM1xa7j8isu4/IrLOPnsCznvoosRO5dy77Zp/u3WJ+lJCaSifzmz0MmRCRLxGIIgYFkWRy/uQ9UUtm55hDmdafwg4OEn9iACpdkq9bpFImaSTiZo1GoIAriOjSQpBL6Hqmt4fkCz0arwNeoNYvFWVYswpFmro8g6W7YP09PTRuAHZJNRenvbyBezBH6rCjY5MUMymWXPrlFEUSQWjSHIApIgMTtdYmpyllQmiW07iLKIpqqIgkizaSHKAlajiSwp3P6bp5g30AX4BIGLohh4rs/OnSOMjFXo686wd98EhD6xRJRo3MT3PTo6cxwYmqCvr4swkJkYm0FVWnYJnR1FVE2hozuP59uIQhzDiLBpyzYWH51D1kxs2yUSMREIMKMqsiLhuALjIyUipoIohLg2ZFIxEENkRcI0TVKJKGEAigzPPLefhfM7mdOV49nNO+ntLvLU0/uJxxViiSjNZhNZktA0nSAIsW0Xx1ZJpOMIoogVBMR7VhAIIhFNpjI7jRyJIssS2XSqRYONRhBFgdnZEpIokEymiEQMGs0qEgK1SgVNUZEEDUGUQRBxrYBYLM5Rc/uxrSYf+ujf8m/f/Vfuuec2jj/hNGQximNLjByYIm5GsKwGmVweXdfI5FvAaV7fXLq7Olm37iTGpga54MILqdcrhIBjC5gxhZHhMebMmc+zTz1JZ3eepUtWkU5HqZRKNBtN/uum73PKaSfT0dGOZdlcfvllEEAik2B0fJTOtgLVagNdj2JEElh2hYgeoVKpEY8nKM3OsOCouWzbtoM5XV2EeOTybTRtkYnxoZa6YSpP6El8/gtf5IILzkdRZPA8DF3Hs12isSj7D+wjlkjg+eD7FRRRhEDA9UWWrFiEpiYYHT9AptCJ4/qEfkCt1OSJJ55AUkWyuQyqESUMfLL5NIgxbNej0ZgllTCRRQ3bsjjrrA0Iisr5Z28gmUxz/4PP0t6dx3GabN+ymUJHF7IsI4gt70WrYXP1VW/k/PMuwbHrZLJZrr76Gq68+g3MG+hBN3Tecv1biCdjSHJANBqhXK5gRlWiqTSJZIxsJofreFi2QzSeoGk7SLKKGziEyGiqiq6rmIZOo9nAiJiUSjNETZOxsSGSqTiBKyHIAp7roakqltVAVzTS6RyVap2f3nwrqXicTCJOMh4lFCTcpss3vvYNHrzvLk48aS1GTEfGJfAUKrUGgiShqQK6JhOELvf+9l5OmbeBgYF5mDET3/d5+OHf0jOnl8mRWfaEG/n1Hb/lgkvOxHcEtm3bygknnYhtVTEjJpKictO/38Sc9hw9vX2Uai6PPPww17/19S1zc13GsX1c38OM6tTKdbygTjyRwYwmsetVjKiJrGj4zYBoVGd0dIypUoVidg5iGOH8867kogtez9XXXo3dtIloGoLZsvhQ5YDZmW2sWLmOlSuWgwBmLIaiKKw98XU0Gk1kVaCjI87Y2H4UVWFw3ziF9hwLFy3E0EPeeM3bmTMvj6AYrDtxDVI0x89/9CNOOnkNS45eTBB4yHLI8uXHsGhJH4qq4joulhuSTmfQVRkjESeVSDC0fz9WrUp7ZxsXXXIVJ6w7FUloICsKpSmLRCJONGZQqdQQJZ329jYS8SSxaIyR4QNkMglct0mxvY2BufOJx+Mcd/wKVq1cTiGX57Of/Xve8/4bOG7NsRQKbeiRFEMHNtPRXiAaiTAzNYsQSZFu62LJmmOZGB7l4QfvZ8G8o4jFsvTNmYPdqIEQUiz08fgTj2M169xzz284/fQNJHNpJDWCEGjcc/e9fOhDH+Tss8+kPG2BpJPKdCLLIhs3baZYyKOpMmZEZnxsnMB1aWtrQ5RkEAWaVo1kIoqhGwihiCRIJDrm0tc1l/LoJnbc/Z/MW7qC160/k1XHHs+nvv551i89iVAIcQIwTZNMJkNbewe2U8cNZAhVNNFiXl8/BC06rhCG+IFAqTRGsasN3wsR5YAwfEEePwhDFEVFFCX8wG9laIJI4PsIgkQQ+K2+NQEUWeaRR59gfLxEsacTyWv5y83tX4qASzSeRJYVfM/F0ARmp4bJFrtRI7Hn84ND4O7eZ+/lyisv/YNyjJeKAL5afnUIALbal14srnL441cSXnmtee9Lz0B81cLLYTDwNeWsh6oA4gvjD2t1AgieB7Lhy6meovhKqf9fwd1fMg6Bu0MRhoeaQV9eyXulXq1XjSPirlcHd0EQIIniHw3M/hTm5a8491+gMnm4VYIgigSBf9Br5JVVOn/vNQ5/fNj3rwTuXil6+3o55dT1ZI46lp88tIujku7vN8EfEoJAytTZtWs38biJETF44z/dwelHBeSzSZ7euItCNoFpqBwYKTM6UaGzmGTnrhG6u7MEgd9SsTRa1TRRblXKKpU6gWvRaNokkq2eND8QaDYtJCCWyNBWyCEpMq7TpNGoY8YMXM9FU2Ui8Qi+5aDpLdXIzq48sibjOwE7du6jvSNHMp1BECVkTUWQJJymhSRJyLKEpGgoqgphQF9Pjief3EV3VxuhLyFIYNs2iqLQlo8TjRu0d+RJpmLP+zmKsojj2HR0tIEQEAQ+E5NlolGdfCGN43lYdgM9oqIqGl7ot3oUfJ9sLkWIiCLJVMqzKLJJpVIlFAJ0Pcr+wREKORNREGg2Wj17u3bu5bktgzz81G5kEcbGS7Tl46xY0tfaKBIlZqarGLpCV1eBXD5K4PhUyg00LdLyPPJC3vbdnVx+4iK0iHJQnMZCa19MuVrHtuqk4lGqloWhadStRkvRFHAdB1EUDlLqYO++fXQUc8TMCJPjY4yNjrB31whTpVk6u+fww/++mXqlyrGrl7Nn105cdHzHxvVqLFmy7ODOpcAjjzzCUQNzUQyFpuPRLI20qqghbH7yMeYu6ueBhx7h4ksuZnamgqLqfOFzX+GRBzex6phlDMydSzITY+XSxXzzW1/muS3bWLl6MXXXZ7ZW45hjjyVmGjSbDa5783XsGxwklTDo6u9i4cK5DA3uQtMUHnzwIXL5IvlCllqtzo03fp3e3l5SqSiRqI6uRQm8Jn5YI5pMUSo10TXIFfNs27KHxx97mje96RrAx3Ys4ukc9aZDLJlhfGSQnv4uSuUyQSAze+AJOnsXIRsplq1YDoKH58ktfy9JQ6TVC+E6Ddrb29GNGGYkQXl6mmppmvpsGcwIqiISUXVkUWZqukQYiFx1xXU0HJmObJyhoT3Ecp089eDDZDM5Cp2dBEKIrhvs3TuIGY2xd9cejl68nEceeYZmrYHrh4SBy3EnrCGXMVF0Ecet4botIZZyZYZ8voCqR/EFBUmU0TSDgJB4IoUgSqgRCVkxMCMxEFvecKHv4Xkuhm5QrlbIZbKoqkrgWQwPbUMUwJc0IrpB4LmooojtNAjFkOmZaU5bfzqnnnIqEU1i7fHHM12v4DtNNj3zKJ/42xuQzDi+G/L0o48RSjqpVIpEIolVqyFKEoIk8cVP38jinsXc8otfoukRkok42XQHX/vVP/M/d3+Df/7KN3nDdReSz7UBLgNz+/nAez/IunWnISvQtB1WrVjF9OBmsrkCqhrh/f/rHeza9gzJRBZFExFlA8ep43sO1ekG5dosgqjh+g0mxyYxEwlsy+Od17+b449dQTKTJZXNIYk+jUaNyYlxrnvzNQR+vSUkI2l86dPf4X3veRvXXn8Ft9/+COecfQ6Tk+Pki3maDYeRkUFkVcQwoqQLBTy7TDxmMluepbvQhydUaNYqSLJN0Ijie0OURm1q9RJaqo3+zizzB44inU4zXZrBtm2ymTncf8/TdHW2cf7pZ3PxZZdRyBlUJ3bRqFWwGjaLlyzj32/6OatXHcMdt97BPXf+mssuv5hoTKfZcLnnrntJJOKkc1lu/dWd2JZFLBanVq1Rna1TKk2RTqUR0Pnud29i3bpTmK2O4XsOXd1zeOM1b2L79m309uSYrVT46c9v4yc/+ylnnH0uetREkER+c9t9/OAHP+SU9SeDG/CLn93M265/A7Ih8PBTTzO3t4ChS8yUqqRScdLpFGeceR6jQ5PMNBo8/tgmFEHj/vvv5ctf+TKqKuGpMrICqXia615/HpdeegGyISFqOgHQtBxS2QK2G6BqCrIoI0ngNGxUSWJsbAgEhxANOZ5BlE1y3d0MPXMnI/u2EygRrnvT9biJgM996ytI4x59fb14vo9pRkkmc2zatIX9g7soFotMjQ+SSmVBauUkoiiQzeVpegE7t+4k354n9EU4qGAtia3PA9dzEA8pPAoinu8dtFdQEQQRz/MIg5BoNMGcvnlI+EyNV+no7caMp5BEFUnRGdy7B1EMqNcmkcKAbHsPPlKrEMEL4O49n3z7nyzteC2b54eDwCOJ8b2S2OBrVdr8/cDdi07sNQw6gkrmS34WwiuDu1ep3v0V3P0F40i0zNbuwwtjRPHIVasjCbG8rCp3hN/wawGHfyo6pSSJr3meQ9f5svEhiNILQjJ/kdL74X15gtCqZvrB85TJP3ZuQRBf9rsJhReOF5b+Pa83DFi4aAFi5zIuffdnuPSEP8Iz79Xoo4cOWWLvjl0UMymu/D938/Wr56AbKpIi09VRQNN0nn52EFEKsSyfhfM6SCZiPPjIFub29fH4M5sp5hKIsk7gg1VvoKkysigzcmCc3v42arUmjz65ixUrFiEaBpIAltPyodIkhUASQRAPeqz5TE7MopsRQsGHMMCyHBRNQxQEEjGDsZEJNCOO1awjyTIEIqquEwRw+6+fpJBPoBs6odCaVwo87v3tNrq7s0iiiCRK7NgxjCSKZIsJRFHk0ce2kojEaNTrGKYKgoznOlgNm0ce2c7qlUcxOj5JOhUlahrouk4YtsCtKups2riV7s4Ud9+/m0xSRtdiPLf1AG5DIJ7WUVSBPdsmkBWBiK4gKypbnttFMh5lcHCKfC7OCccvJJ2K4zgudtOjXrep1JqYMZN8LkEiFUdVBWzXwWo6jE9UyGaZk6idAAAgAElEQVQS1KtVBAK+d98eLjm+H01VEAR40z/dweVXXcT4xBj5YpFA0pG8OsPDOylmuiiVG5hGBhBwXIt0Io7vCUQjMSw/IBA0pisW7b3z0BMeD9/7EPMXrmTv5sc5eslSLEHFRsGplzBlnfVnnQf+JLIYIgYCWzZuYnqizIc+/GkuvOwCjEwB37YoT07x6BNP0dc7h6NXr2F472727z9ANp2hWMwzf143sbTAp//+U6w741zESIJVJ5zAqWechEQUsTnB9q07MZQkHf0FHNfjzA3n0N/Zz10P3k42VUASAub291EuVek/aiGCaqAbKqHnsH79qciqwcUXvYFrr70eMw7pVA7PExkbHaOYS2L7dUQUNNWgUGjjk5/6FKefsQFF1bCsMqah4XoWmmlSmqmiaTqzs1PEEwa7tzyAJOj8500/ZOFRiwh8B10xsEvDjE/tIxJLUCtPEUgS8WQMGQfbcoglU4SyQlQ1mBwdR1VVREGi2WzQcERu+dkthM4Mp556Gh1z+ujuyPKWa69l2fJlpHM5sskUH/nQ3zExOcvSlYvZ9NiziJLCP3/jG1x21YUMzOvhhLUnAAGB22S2MoMe0WjWqiQTSeKJLIEgYZgmuqYgKwpOowqE6JpKGPj4Yct42a3NMLTjXvZvvJ/m1F4EVSSUFcRQwG7UGB3eQ6atD9HLkMxoOM0qkhBSKZfRVBVFlWlUbZKxDF/+wo2UyoO84c1vINfWgazE8L2Au+66h0WL57Ft+x46u+Zz/sXX8f2bvs5b3vg2JoeneezxB/j0//4c55y7kF5lBQKweMlKsm15PvNfn+LdH3wjxVQHt93ya9761rczPjFMrtBOoz5DMp4hFk8wMDCHIAyI6AaiKPP5L3yNZUvXs2Xzw+hKijvvuZ+e3h7sZhMlEkfVoiDq6PE4yWSMiJ5FURUSZpqJiT0kUwKXXHIpgWqzf9cWutt7+cFN/8PK1f1oEZsP3vA5ugfm0JGQCXyb+UcvIJNqpz03QF93N+VSlXw2R62+H9XQIQzRVINo1KRRn2RsfBIzmmV6qorlVlEPWi6Uq7PoYop0PEU6U0ZW09TG9+D7Ud79/o9AfRa3IdDWtpRUutUfKWgBF1xwKel4kp3b9jIwbymu4JArJBBEn1NPOZOhoUdxKibve8+bSKUSVEolfvTDn3LMcYtoa+vgM5/4Mr+57X7+4/s/ZGCghz27x/nSx/+eJx97GkOXmdfbxfj4FLVqCQmVwbFh8m15HNsinUgSaAlUXaavq4sLLjwXVW5tAljWLL1tczj99PU0bZvKjEtPb5ZQsNGVDrr75+CFFfbt2YJsmKiGydCBaaYmq2SMGPt27WZe/yI+8/fv49q3vJMb3vshfvo/3+dNl7+VX936ExYtW8jixUW6uvpRlBgNq0lg1fE9l1gsxcR4iVhERZYUbKuG7XpEYzqiCIqooygQuA5uaCBn+8kXehHt52DkUfzCfCy/gVpyuPS6M3n/P36GM485nUplBlmN0NU9h7ZCJ/fc/xhLF81FkQVCX2wJqkgKgioiKjpbn9tJd2c7Ev5BmwyJTZueJZvNIMsyfugjqy2ZlImZKtu3b6PY0Ubg+hhqhECRicgytlXh0ce3U3KrxBMFqpUqCCqV2Skc3yOXLxA0Soh6nFg6D7LQUo8UWtBubHCGgWO7/vA85GVpyWur4L3UJuHQ+CMKshxG+Tz0vYiI74ctgPqS/fzwoAnUodcEB49QEF9ViMRvTUUQBiBJiEKAIIQvPsRDRbvW4zAMXmy1wKHU8eD5viRPk4RXbuD6K7j7C8YhcPfqAoavYSfhsH6u3wXuflfIkkTgh3+SqtvvAxJfsTIpvLDb8pdTQjp0Eq2b1PNr/0nWD48I7v408cKuz+VXXIbYuZTv/du/snSg4/ef6lXA3aEIRIn3/ueTHJ0Y560b5rQMv0UV3wlpNqpYlkO91uSEYxeQz5hs2rafSq3O4gXt2LbHvLkdKKpKQIvuKssSExNTJDIxCl0Znn5iG7IYEo1oBL5H1NQRJIFmw+KW256kr7eAaaiMjYwyuO8A+UIeMxpBllsUk0atiRFRUVWFQBCwmg7xeILAd9F0pfUBgIgftmT65/Z1sGnjbgq5NLt37CedjBNNm8yd28n0ZAnf97HtFvVTliV81yP0AxIxg1Q2iW6o2JaDEIJtWyQSCfbuH8X3Q9KpKMlUnFq9QaXcPEgzizC4f5yRyRnmzuulo71Is9YkkZEwdJlSdYSOtg7Ghsrk82oLoCkCtXqdrs4iqqZiGCqaKhFPJBEEgXwhhR7VMSIapmFw221PsGnLCH3dBcZGp0nEE6i6jiD6RKMaumGgqAq/erbM1ScvIjxo33D/9lk2rD+bQj4LocPk1AEITJKJOWzf9QzxpI6mawSBixFRuPeuR8nmEsQTOpogIgvg2xYRVUFRYqxctRpF8xkeHeXA0DD9A/N5xzvfxR13/Ao9IuPadRYuW82OXQfItXUTT2ZYsHIuO7Zv5LgVS6iXZ9AlgWS+nQUr1zA1NsL46AjT01MsW7qCnTt3oSkasqzR393Ljmc2s2juUn7605tZuXwpDz3wEHPmdGFGU3z5K18lmYrR1dWDazdBdNBMj1PWn87CBfMQJKiUp5iYGieZThCJqCiexMTQHiyrRDKa5Kc//gFnnLaORrVCLJkhCHzyuTy26xCNpNi5fS/f/NZ32XD6ei655Dyadg3HbSAJKs9t2ksi1s7Q3mcYmHcUk7M12rp6sRoa3XMXo5lp+gcGiBoGd931GwqFPEIiSzqZZWZimnQ6g5lIESJQmppE00wEQcCMRanV6yRTKWRVpdZsoKsKXhByzlkbOP+8C/nH/3MjS5cuR9UjnHf+WSxbvgxdU9m+dTunrD+NE044kXK1hG/bLF+xlLPP2sDAvF7i8Rie35JYr86WicXTuA7ks2kCQsbGxhElGTNmHrx9CEgRDUlTCSWRQARNUdm94yn2br6bgfm99MzJMjkzTiTZRrNWBlFHi2cItAjRoMLYyGOosolumMxMTyNLMo2mRTSSxnUdGvUK/3LjNznhxHWcd/75iKLE7OwEigbHrFmOGi+QiMZRJZ9zTlvLW972DjLZCNmciqoKrDluLU88uZeUVOB9X/8Q+2Z3c9m1J3HO+eeQyuUodrZx8ob1GIpKOptFECGV0QkFMCMGzWYZy7LxgwDP8xk4uouegQGiaYVUtkg6FSOXy+G7Lo8+cC+qAMmogdOoEkoBQeBhOSVc1yWbyyKLcXZsncC2GuiqQCD65NoiJBLtaEqOdactY+68RYiiiKSqlGZdtm3bTKHdpL0rTiqbJmKaDO7bTSaTI5lK0Wg0UWSNaCSF3fSIxHTMuEgiHsexYPfOUTR82ubE2X1gGEHp5uEH7sWyZ9GjJm9/+7uoW1OsWnM03/7OVznuhLXY7gyykKbWHEcSJf7hS18hk8xTaC9iNS0MLQGyghoxWLNuOXpSbVVfk0mWH7OStmKO2VKZUzaczsBAHx94/7uZmZ7mrLM2cO07ryHdnuZ1644nkorRv2gh3X09DE+MtTYuQ5iamEASBGRVYXR4P7FoipnpKtde81bWrDmBYjHH/Y8+TCJbIFfMoJvw+BP7+Nf/uIWzzl/Gv9z4LVavWIWhmUTkKM1yA0WQ+buP/g0XX3cm/Qv6aNoO83sXsnHLTj73+S+waP4CXEr0dK2mNFWmr38xk5MVXNcmCBwENUkq24YruJhpnZnRMWKxKPV6nXgsiu1a+J6IIBmI+HieTxiE6JEETSdNvv91XHPDdzm2zWZZoR1HkxBjEa655joGp7Yw8WyFTFuGMAiQRImBuQNMl6fZPzpOzZGJx6NYVo2IqCN7LnO621EUGRkZz3Mg8Olq78HzXQQOoyYioOsRFE3BjEQRJHA9GxUVX4RK1SZdbKdaa9HMG7UGsXgWRY8wMzlOVBcZHh+kZ2ARkmIQhgfrWAdBxrMbH2P16at+//zjd8TvquAdqSr3+0QQtJgFL8x32FzPZ0Ev11Z4NXD3AhALW2yl18CPC8MXKqCvPmcrjmRefij+Cu7+gvHSnrsjWSIcpEsfxh1+Ocg5vMLz/BwvWeullTFJFA9SeV9c+QOel5R9tfN6xThoSXBIVe93vebFOymvNOawf9bDCMV/NrB3CMgdPv+fYK2WZC9/GLh7FeP2wwYdvBm8wPFevu6sP76Kd1gcWv2yL/wS1RvmIxctwHcdDuzbQzaXwQsEQiHA0BVUVcHQVO55YAt7BqepNW10XSSR1NA1A82QkRUFAEWWqNWq5HNpbNuBMKS9kGkJ1oSwZccwvT0dVGuzmGaErvYckahOpVRBV1USySiS0qoQeK7TkuyXWsIkqtYCcpIk4fsBju0QhiFWw6Uy20Q3ZCbHS6RSCexmk2bTprOjQK1aQ1FlFEWiVm6wf3iaQj6F4zpoqoym6RgRHTOh02zWMYwIvhty72+fIZ0wGR6dYP7cLqoVm9lKDTOiEIlGiRg6uqERBCLbd+zh+OMWIYgiB/ZOkM3HEYUQI2IwOVkiokcQRZloVEEzY0xPl0ilU8iKTHm2hiiJGBGVeq3J8NA4sZiB63nousHoyCSJWIRjj12IpEjs2jtCLGagaTK6oSBJCggts/lfPj3D5WsXIorgeQEP7Kpy9FHzAA9d14iaUYJQRDd0cvkcttvAtgU0xaBWb3Lj177GeeedS73eQJAUyuUG0ViCd7/7fRyzajWjUxVCz2bh0kUctXgRAgp79uzj6//yT5yw7lhG9u7k9W+4nv/1jnfx0IMPMDY2Qke+n7vvupuOtgF6B/oYHR5GkkUazQaqrDI9McKCRUu4/54H6O3ppaOzi/JsBS0fY8HSPmQjyrrjjuWWn9/GaaduYPvu5+jo6Obk9esRBZGPffDTnHfuxaRSBX77wFN0dbaxd3AnhWIeUdKRFJVUIoXjWGzevJW+/jnsPzBMNJbhjDNPI1fI8dCDj9He2YGqqtTrdXRdx7ZdYrEod9x5KyevPZXt23eQSifRtQhCAP/1/R8yO1Nm5fErECUZMfTRZIHntjyHG6hIhAcrux4LFsxv+SEKPpOjM+RzeRRVxRckVFXHdS1M3WBqtkQ8EUPTDRAFBEmiVCqRSSWIxKIk4xqiIvO6E45ltl5G0WU6O9uQJQlJENh/4AD/8KV/5LIrLqHaqDIwMIAR0SmXxsnksgyPjAAhsViU0GuQyWZJJtM0rTqu61EotmEYEUS55b8l0Eo0wjDAd1wCP6A6O4kk01LOVCWGBreTSqbIdRzNxPAeFFlBUyRipszQ7h0kU0mMaIHR8VES6QyxWAJFVvjx//0JqqojSwrr1q1m9arViIpApT6DaZhIskA0GUcMW9YLsiwTTUS45JKrIXCJR6OoSgQznuLjn/0HHtn5MP/3pn9j3brjiceTBJ6IKIY4ThNd1alXasiKiqrLzEyNoSoGoqhgRHQqtTKe65KIJ9D0EDFQmZkexzRyRE2VIPDZvm0Xt9/6W45bs5bKbJPXX/0WTjltPclkAsQATY/gBwIjwxNEoyZtHRkatWlyxSKPPPoU8+bPQ9YkqtUmjhMQSi2PxFS6wMpVR9NolMhnCtgeSKJEKmfgOa37XKPZ5P9h773D5LirfO9P5aruqs5xgmZGMwqjLEu2JFtylrNxxLKJxkSbZWHZXTLsNXtZ8t27S45md2GXsJgLmHANJhjjHCRZlkZhRmFy6jCdu9L7R49kSZZlm+Xy3vd9OM9Tj6SuXzhdqqo+53zP+Z5YLE69UUeRLXzfY2pyFFk2iITjiIJMMBTg6d176Fm4CElUWLmil2BQIZPtxvdsFvYvAh/+7gPvZ9srb0XVRBREFM1AV1U2bjyL3r4FzOZzJBJhbNsFP48qRqja01QrrdRczxWoN0vgi6iqhh7Q6VnYzd9/+INse/nNKGqL4j8SiiDLOo4Lhdw0IStEIhalXC5jmiZzhSJT01NEY2ESqQRPPzPEl7/0eXRN5+qrr6LeLBOJx0nEsrj1EhNH9lNuOPzbv3+XqKbxute9GsHXOXx4BNXwMMM6LjXO3rKebHY5z2zfy/Klq/jJD+/BilosXbGIsSNHWLxiFffc81Me+v2vOOvss/GEJolEiOmxSSwzSjHXwApZuG4dt15DD6gEjRDlfI6m7aAHIyiaRa2SR1NV8vk8c4VD6IEwO/ft5NqbXkPMOsKhwz/g4P5R+hb2MzlVIxpO074kzNs/8V4uWncxjuMgSRoBM8bw8BQjw9PUqxUCVhTHqSNLIg4Onivj+jairOB7Po7dRJQVPN9vpT67Lngg+D5WKIwggOuJDB4cpFprMDw8hofCgQOH2HDOFiRRQFIkdDOAKsk0KgVEygRi7UQSGTwkRKEFDAjzgfGv/+Yubr75xj+K7XGCHXIK9E4U5nsJz597QSKW08hR8hePFhrm+ccRuwAnIGmCOK+P95wUTW9+vN8aeEx3fJ/j294dzd47+RBF4bl5oMfJn527/0vl5Jq7o3LqNmPPIlsvBc071Xw48SZ4ISbH0+l1ilHHbvYXM0eS/gBWzT8VgPfHFt//g507QRRb806/QWvs0bXn/3IUxXvXp7/FxStSL2HT5yq57WM/5spVMi/fmGFJRwgEkVA4REBxmJzMEYpGcDwXEZdGw8G0LIK6jCQJqCoYusyi3iyhUARR9LFtF1mVmRibIpGI4Ps+sqTgVBr89vGn6V6QJRaN0tfXBaJIQJfxfdADQXzfwXNAUlR0y6RWrREwNAKGzvRMnkQsiiSL5ApFApqEgMjIyATpVJrt2/dTrTp0d2fwBR/TDFDIF8m2pwiFTDzfQ9VU5Hl/esczhzl743JUtZXKFAqbTM0UMMNBPMFFlSWmpnK4tk86bpHJxEmm4giSSDIZI5mIoGoq+FAo5DECGqIkkY4F2L5rP5Ig0KzaxOIBVCWIbdukkm0giswWc5imxdhojmQyim07yIqIputoqoqqKTi2Ryab4ODBURKJGOViidHxWRRVJpGOohkqyXQYI6C02D99HwQVBA9RELn8rFUwz5YmCgqHyhYXXrwBQ9OxGy7FQoXp3Djl2hTRcCeS5PPAbx9HkQxCoQhXXnUhc4Uyum7hyTqCpPCzn9/HbW94M/v37uADH/4k/b29dC/pxvUEbr7pFVy29RK6etoJWhqb1q4iZCb40Q//F1deejHNaoXDB/fyqluvJd6ewBVDfOvfv0VnOoLTrDA5U0STfKxYgngkzsjIGKW5OcKhEKrQJBkQePqRHezdd4CR4Ume2r6DCy/dQqFUpFqusqRvOeeeu5y9+3fS3pkhkU6B55NMR3BcB0UJo+tBynNldEUnmIigawaCbCBpJrm5PHOVMnv2DbNy+VLwmJ+n4PsO+w8McNFF53HeeVeiqwbnbN6CJMroqsx5F2wmEFQRzAi+00Bya9SK00SiAXY8M4RdLtG3pI9KucLQ0CC6oTM3NYQiR/ny1+9i1erlKHoQBNBVmVqlRiQabdVP+kcDUxAKh1BEqNlNFNnDsZsg+ciqgBkK4LgedrPJof37WdC9kFtecQuO6/N3d36Irq4uDh0c5Kx1q5ir1IlGI5Tm5ggYBlPThzECgdZzp6rU6nUODA6RymTw/Rbduu/7yD449Sbf+/b3UGUZVWoSjmdJpLsJ6xKjRwYpzVWIppYxVxihUalgyj6N4jjJtoVoeoqy7RGPWmiqSqVcJTebY2n/Urq7+vjwhz9J98IgZiiC59voARFNNCmWqwTMILXZWSRZJhSP8ZkvfoWP3Pn3vPtv38O2G2+hmK8QisY479xrueDyZbzx5tvYetkVyEacmBFkenyYqYkxEpEkN920jWuvvYEHHr6f/qVLW4QWSpB6rYERkLGsVs2t16yj0CIVee22N3PFNRdx4w0v561vfTsXXno2WlBCC4gsX7WYdLqHmekJGs0GzaaDEQgSS8ZoOAWcZo1o1ARPYmn/2XjiHLXGDOVCkK//y1dYd9YGItEw69aexa233kJproSuRdGDIUQRZL2BLBrk8zl8BMKhCI1GmcJsjcHBQyTiMVxbRFJkDF2hUK9wZChPIhJiLj9ELBFhemqKX/zyEZav6KXmCTyzcy93vP4OmoKA4EoMD+8iZHUgK+A6JarVWRRdQzNkSqUyH3jPGwjpPfhime7OlYyPDGOoBqXiNGbQQlFVGs0GQwcHiZpBnnpqF5XyDEEtgtvwiIWTnLvpfK695jI+/clPcvaZZ/HX734XV1xxOb7rEo/G+fGP/xeLly6hs2sRF563kU0bN9K061TreayAxb9/47v89hc/5bzN61nQ18Ftb3wdj/zsaYbGdrF82RoMw0TRE7zpze/kksuupd4U+MdPfYx1axcTCyss6lsOsoOs+EyMj9LRvYpoVGDjptXMzuVwvDL4TeKRBKqs8Pgju5mZzJOMxahU84RDJo26R61UJJHJIEga1bqH55QRRQHDCFDLN3AaMn29nfz8x7/grAteS3dmFc7MQ/h+nrHJKaKJCLsGtvPh97+XH/z+p0h5nWg6iixJtGWzdHd1cmh4F7WqyYGBHUTiScYnpxjac5hQ1MLDR9f0VqDFdZFlGdtptv4uigi+QK1ex8dharrE/sEpNEtn+fIzSWVT9PQuQ0BDEmXGxsawrBi5qQkkmohKk1THMkRJabFyCt58O6HWe+g323/zf8S5g+eiccccvj9CIP4oWiYJAs58UP64jZ6z77xGz3Hu/BMHnnDueOfu+YlA/+zc/X9STnbujq+9E09Cz47KCQ7Y89Hi8Fw08OTPTxjLcZ+d5rl4PgTvhZDEE8Yfl/F4/NwX7dydpN+frA7vjyACLcaqo83QX9JcQcD3Ts3U+az4p34JzUezLrlsK1LHGoae/DWR07BqCqc4tn3sx1y3VuOGjWkk8ahz2nqV+fgogTCRaIj7f7OdTCyCrBqtH/B6g4mpPOVyg3KtTtgM8MzeETqyUSRJRtVFBM9HN1Rct/XD4LoOoiLSlkrz0EP7CIZ0guEgzUYdfI9yqY5uBJAkGUVVaDYa+LaLZeqtmh7PJRyJMpcb5amdR1iwsB1ZMhBEgXDEwrEddF0hkQghq63+QKIocmD/MMmMheN4PPLYXnq6M/i+jeNCd0875bkSuVyeubkSTrNJIm6BJzMzOYNlhTACKrqhoagGTaeJ44HdaCBKIqXSHLLcMsRVTUdSFWYmc4xMTLNqWT/btx9m9RkLjhWjF+dK6AEF33OIx6MIgkwwbCDJApomkpua46kd++nsSuMJYKgtVPLBx/ayaGEGQZBoNmyy6Qjf+eEjRAIaQ/sOkognkAQfQZCQZRHRc2jaZaxIFkXS8D2PRrXO5m23Y3sq+eIMAj7JWJx4Iogq6kh6EMcV6GxLYAQCOKKM4rnImoDtQqk2i2ArJCJhzAC0dXYjCmWuue5lfPA976UzvYCLLryQJ596mM2bNoMnMDY5w9q1/Zy5cQMf/9SnuObqy1i8ZDGVWh1BCPKKa1/BBz/wV/zFHR9iydJegsEg9973KzafswFdDvHr3/2OZatW8K2vf4MlSxehqh6W4fDLB3fwyle9EjMYxFRDDA7spj3Tcvq//517mZrMMTM5yaKF7VSqTWTNxbFdao7A7OwMqbZkK4XOUanWmkQiEWamDtGezRCPxunubMdXTAxDR5V9hvbvQVGDLOhaSKNUYe3qJdx8042IuETDBvm5ApVqkXA0ghUKouJSqdoEIhmKc3P0969C8atM5Ep88tOf42UvuwZBcqkXa0Tbsqxb048rKMgCFCdGqczNoZkxfv+73/PUY08RCJo0mkUMJYrr57AdGVVWqNs+aiCAETCp12xMM0QlXyBgBgklExiWSbVaxnebHB48xHlbziUdCzMyOUU4aiL6EtFQiOnJQ0RDIVAMbLdJYWaOeq1BW3sbhbkCEyMjZLNZPM8GBETRpzMbZmj3EySSbVjxLIpu4Uoaoe4NjO7eSbKzg4CZAa1EMt7L9p2PkYwuZHz6EPG2BJKvkS+U0HWFXH4SX5RQFY2VK1eTTS7kC5/7AvFojCW9S5mdncWzpzHNJGOjk/zt3/4NV19xJdlkin/46Me5421voX/FMqxUmOLkAdIpmbCZ5rJLLyEQSGC7BWaKM0TNLKZVRCLO5VdtxankWdi1CDQdx3UZ3L+f9rYsgu9SrdSwPYHPfPHbnH/u2VTrTa6+6TqsoMEtt7wC3VCwa0WsSAJfNPCqZd72tr+he8EiNm48i/GxQyiKiCR4LfRS1pG1MCgGE2OjRGMZIIAku5y7ZStXXHYJr771Rt74muspzVQZPjRDuZwjnQ6Tm5yi2VAIi3MIugGKzOiB7QztH2HRohV0dGSQNJe5EnheCcdpUC/VacssIBSNEEqGcBs+gpLmQ+//b6w5czNhQ0Z04H3v/zAve9nlSJLAwYPTLOlbxEzhEG5dR/JnCETiTI/PEYlGOGvjpXT39VAr23h+mWbNZnT4CXRRJBLL8MMf/JQV/auJRaM89MDjIOrs2jvAL+77Ndfe+DKOjBzh4PAEhw+Ps3HjFn7ys3u5/fbbqVUr+EKTplNmxfL1NO0an/nMFwiJ0N7RiRGykPwmkZhOwFRo7+zj4//tU3T29KCbBm//63fy0Y99jGAyRbM2i1ersmb9ajq6Otj/zB5WrlhMoVgh29aFpgdoNBr09vQSNCwkpcn4xBif/fznuOGGWxDRsKw4c5Uqqq6QSqrgzBI1ZXwlQKPm8oUvfJmNF5yLgEG5mCMSBiOQpF73MPQQwaiFEZRRJZGF3Sm+9q+fI5xcy+DwJB3WLFYkRrUUZsf2Z1ACUc46ez1VYYap/QUEQWjVttoO0WQnHe1ZFvYtxQwaPLP/IIuWraFaLJIvzLFv/x4KxTKhWJKxkQlqdYd6s05+roonaTz+1A6yyQRmKI4WiDCTK5FKZhEEjfGJUYJWGNexCQVNRMFD02UEr0oonMIIxRFbyZ7P1rQ3M5QAACAASURBVKjN2zhbrtxIti3zku2dF1OGc7Jzd3Jbqj9EjqF/83ib5z/r2B2t45sHJ48dEsyTXQknIHU+4AktHgUPH9FvoaSSILYsp6MkC55/zCEWEBBFmZZVLoLnw3GtD+YVOcbseZRki3k9OI1t+Wfn7k8op2LLfPbcfGGneJqb9Y/l0xx/p74IOa0jJgjHUjJPOf64fY7/bv9VApcX4+QJ87Vdf5zauZcgx/UuESX5xU97rhf9QjNOPf6keeHe9TD+9POucnS07brc/tlfcNkKmevPSs0vdRod5qmY29qiVKo2+KAoCulknGjEpDRXprszhRUMsnvfMN3dKTgaWPA9cB3AxfcFPA+KxRKhkErHghSe08BuNFC1VtpVea6Iokr4rk25VGI2lyMWi5EvzrXqMWQJKxwgmUiiGa3+dPV6FdtuguATiVmougyCz9jYNEHDIJOJUys3ePyJQWRRJJuJ4AqgqArgo+oKAUMjEony6OMH6OpJI8sypVIV0wxQmqugGxqS3KpdVWQBu+mgyDpjozPM5ObwfR8rJCHJGpqqEI/FqJSrTM7kEfCxrACu6xIIBlovb1HEdmwkRUDw/VaAwG0wV24SCQfQdQ3f9Xhy+wGSyTD9Sxfg+xL3/vop1p+xGCMgsXpVL5F4gHBQQtYDSFLrTqlVqkiqzNScjWUmsG0bx2tdf61zJaoMgmCjGjoN22d6egZf1FFkDVXWKU0P4zbzaLJNuVxlasJj+86HSJoxHnvsUe788D/wyCO72HrJxXzsY/9ApdLgjbfdTiyWIha3WLl6McV8Bc+z6ehsZ3RyjEiyjXM2X8rT2wcYmzlM/7J+fv7jX/L6N72GgCVw2aXX8j8/8ykef/QZ/vIv38Hhg0f4zBc/wyUXXM6uJ55iy/ldJNpX4kshjEiWlSuWYlomr3zNrSxZsYbu3kV89a7vsWzletauXkUilcY0w3z2819m8ZLFFPJzRGNx3vXO9/Dy669F9m2KE2PIKvz7t75O94I0tbpNLBqlXmvg+T6f/fQXeedfvY2tl1xAW0eGer1Bswn/+Ol/5rY3vIH/+U9fYMGCbgRFojAzTjIRppTP0xRVZNGnkJ9DD4UxzTjQRDQlwpEgl196BboeQJYUAvEQqiwhK0EUCfK5HLFUmkDQotGoIvsyk6NTGEaITCaEJAQ5uH8fAd1sGSCCyPjYGLqq4TkuX/j859my+RwEUUYP6AwdGqK9PYvrOZyxdg2iqhEMaqjBIAFDY2R4FFVVGR09iBrOkJ/MEzIMJmdz9C7uQ9ZVAlaQVCqFhw+SiCcJIMnoZpzuJWsJmRqeY4Mko2hBGrMzhNO9mJEMfjCKFejm4KHdJOMRCvVpOjpSeG6EZrNO0JRRFZV8rsk3v/UtVqxcyV13fYP+JcvZcv459PQu4Mtf+xLnn3sZAV3lc5/7Nw4eeoJ/+O+f5eKLr2DZyixvvP1NZLJxZmYnEBs2I5MO0UQnru+gKKAHVPSgiqIZbN26lTfe/n6axhwQJmyo7Ny+nbbuHmRZJWgEmRyfwQrHCJgRfFFk46b11Kp5VE3CxaNWauC6Hvv3HQAZwCUU0AlEolx66WZS6SSqJmKaIRoNG1lSEAUJWTcQBAnX9vHdJnajjqFr2M0G4PGDu3/DddddjhbI8D8/8zmWLO2mf0lbqzG86qMHdKoNh0AgiiTqSJJF15Ll7D34ezIpi9mxCsGAhqHZ7B/YQ2cmTaWSI5kKge/S9BQUSWDDmqUsXdRBOV+hVqux6eyz0JQmpdIoK5ecwcT4ELYfRA8E+fEPH2PZimXUGxVCZhi3UcNuShwenqLW9EBw6F6wkkMjezGCOr19CxkePoxpacQiKfbu38Xtd9zBd75zF5ddehHTM4e59PJNXHzV5Szsbacnk6CrO4skQSia5fBwjr6VqxA8kXhQpm9hN4dHxxkfz/HTH/+chT39fOfb3+OGG69h6bozCFhBOtq6ODKWZ8uG9ciSyrf+7T9Ze9YqzHAIu+lQmSnwpbu+wytffSuiIvH2d7yPM886j0cf38lPf3EPa9eupLOjhw1nnsurXvt2Lt16CbGQjmiXmBifYnx8mnRHLxVbQHRlvviVL/HX7/1r7IZD0FCZK+Yp5OZoulVUVccMWLz6VW/nyisvnM+YUDlr7Vpe9/q/4J3v+yQ7RzKs7RqnVniG5Ws7cRyBiNlLWzZEtCNI7mCTI8P7sUwTTVNQFQVEAVs0yCazGIZFtG0RsmbRu3Qd47NFahWX3kVr2L77ANFED6FYB7v37WPzlsuZzFeIxhcgyir9i5Ywmy+iagbBYIhKqYqEQ60yQ3luCoEmsm4Sb+s5rgbtWQPi6CdrL1zx/PbCaeSltOJ6qW2ojsmzKWvPfnTUQZw/TiZlOVqneMIyxx3iSTodpeZrBedb4E3L7D1+Fic6cMejj0dto+Ntu1M4vi1nWjitjfhn5+5PKCc7dycjbf+3olIv9Ayd7JA+by2dxzGk4o/BzvlCIszjTH9y5+6k/Ow/xT7zm51ylCiKp63DE4CRmSKmMMmVZyQAqNXrKLJ82vvRF0TKhRzxaAxVN1sMowhUKlUeeGgf+WKVwyM5PAfypQqLezPYtoeiqEiixGNP7CEdC7NrYIzhI7N0d2UpzRXYPXCQRCSIXWtgRcNIgoQsStQrZfYPjtLWliEWT1Cu1ghZZqu2QFApzZVxPQVN05BlBVGUWo3JAzotp1LEdhxCIYv8dB5FU3hi5yC+L3DWmf2Iko8kyIgCyKKA50k4tst9v3mCczb2oxqtmjVNN2jW60iSwvYd+wgGJCRRwWnUMUyTarVIKhUlGgkxMDBGZ2ca35f5yb0P0d2RxjA0FnQm2b5zkEK+TjYbpUVfreI4rbRJz/Vwmz71ah272UTRdKz5nlye69HenqZer6PpGpIssGRRB82m00rndX2azQqC66JpJswbEo7tIesyk8U6sVACVZXwfHjrV37LxRdsoZibYWZ2knAsSb3pUqtUiKba8G0bV1MYPTKErhl4aOhKmFjKIBiIE7NkYrEgt73hTaxft4F6vcaq1StZt3Y9N1x/NbfcfAtWKMyunQN0dXWC4ON6LjOjk3zh81/hiccewWuWuO6mV1Aq5TnzjDW8+rY3cuHW84hH2zj3/AvIz8xx550f5rbbbqM+O8vPfvQN5iqTLFx2CcNDQwi4DOw+RFdSpFmvctaZZ7JkaT+DB/ajyQaf/ad/pmthBlUX6VzQQX//Ul53223cccdbmZycYuPaxWSzKQrVCno0AYLMytVrMIImuq6iqhoAlXKN7vY0jUaDzVvOJ2jGCBpBAsEA7W0J0u0Zzj7nbGLxMLbXIJNtZ2R0FEU3iYYCDOx4jHjEIpVIMjNxhHBQRQsGKRUbKLLe6lUl1BBFHbc0xeTkMIYWoFar4SEiKio//P53edc738sdb3kbd/79RxgYeJzVK9YxsHsXju1Rq1YJmRZBM0itUsHzPM5YewYCHp7vkysWSIcjHBkcwtQ0Dg7sw0okKc3lUTQNWRSxrBCVUpl0JkbUUGgWyuwf3MfqM89svWdEAV8UWtFroVWrIvsi+AKC4ON6NoLnkpuaIBiKUKp7SNUphEg7siIiNmtUy6M4/iSC20HDzZGMLMa2m3i4CFIT2xawgmmWLu2jUqmyZvUqsp0JDh4+QibTyerVZ5KfmWZo6Bkuv+paPv6Rf0KUfF7/+ttYtXwD09NThCMRXNdFE5t89Zs/Y9fAAOvWL+PH3/8JsUSc3/z6AZb1reUVrzwPXU8jKhKWFmRybJKSLWKYBgIi5WKZW265hb5FK0hnM3iijyKrSKLA5PgUoWgCx67y4O8fYO0ZqzBCJjh13GYdQTNpNmu87z0f4pe//DUXX3zhvFEoIYkSddtBQOKcDedwy7brSSXj7HjqSSKRCIFAgmx7mLb2CIJns379KiKxOMFwhlJuirGRA4iSgjnfi7JSrhIOJ1EUF0UJkS/ZhJNJXCfATG6WxUtXsm3brbzmtjcgGxaup9Co5Nm1e4Cly/vZv3+AG258Leecv5W+Zf3c8opXc/bZl9HWlaZWmiUY7UAJNnj9697Bm97wJpp2iUq5jluV+I9v383TA09z/U0vw64JjI7v4dGHd7Bx89nYDZ8Hf/8o/cuW8uiDj/Mv3/oa19/wctau7SadaiObamNyfJRUrI2HH3yINevXkpvMUas0kE0TK2pxZN/TqFKAWFuGmeEZntj+DIXSHK99zTYMI8CWLRvRAj6xZDeFqQmCis+6jasQ3CaaptLR1cXQ4QMs6OnmB9+7m/vu+Rmf/B8f4f3vfTff/ta3uenGa1izcjXf+tevs3HTUnp6luI6Dr9/8Le8/z13EI1o1GoVCnMlHtsxyNp16/jL299CxAyydMlSDg+PsXLNOiRBZGp6hGw6jWVFaTZFQqEItXqNs9afiSRXadTqmMEEkqpx441XIKsyiixScnw62to5uO8+3LmDJNozHDxUQJJqBNICn/nuv7Is04+qquzcuYNYPIlbrzJ4aJBkuh0cF8ex8RyXdCpNMBRn9/5dbNqwiZAVpjpXxPc9AmaYTCJDqVLGMHTK5QKKojM8ehhBFBkc3IFpKCiiTbM6RzAUJxRvR1T159odrV9X8jMVus9oewGb5Y8nL9m5O5lX4cVOOw0K8pzeecf/4yRui+focvygE9Z5Ed/reQL5x8ufnbs/oTxfzZ0giIii+CwMfHI0wPOeQ7JyMvHK6ff1n3fs0XOiKJ3kbJ6e+OT4saIonXb8sZRTUTghFfVUY17y88pzkcOTFD1B3z+JzL9EPN97NiXTb7V4OPb9jsf6efE6ir5/bJp/Mnx/Ulrm8bLt5ptO6eB96ju/ZX23j6XWT0B0FUV54evl+VhWmMEDw4QjITzPx3VatWuhoEZbJkKxVKYzG8PQRLLZCBNTM4Qtk/37D7B6ZQ8OPol0mI7OBPv2D9KZbaM9a1KtVRBFiaZjU6nU0Q2LvQMHUVUBRRbxXR/DNJAlmQP7x0hlY2h6gFwuh2kGGdh9kEBAQ5BFRMHHaXrMTBewTIuRI1Mk0gmKhTKFmQor+hdgmAq5fAFZEVFkne/e/SCLl7ThOg4zM0V0TUYRXVRVRZBUBAGq5TpdnVmC4QCu63Po8CTxaKDFQCnLiJJMR2ecZqNBtVImapn4noMeUBFlibZMnGTKQjEUcH3qlSYPPfQMVkBncHASRRXYe2Cc2VwVy9LQDQ1RFlEUGUmRUDUFSRSZGi8SCOj4gocgtJqHN6o2niAhyFCr1mjUGzzy2F462xO87nM7uHXrGdiOg6pK3PP4CNdfdS2iGiKWiLWIMVwfM5oin59DCkIAgWg8DpLMbKHAm2//AJmkyeiRAazoQgKWRqWcZyY3RTqbZMGCBZTLc9z+5rfguk1+9pN7OP+C89CCGoWpae788Cd45Ru2sf6Ms7ngoq0sXbkIv+EyfGSKUDJCLidTmJpiYUeInTuepndhLzdcdwGpuMWK1f0sXtnFtde9hm989fNceOHFTB8ZYseuZ0h0LuGB+x5k7dp2amobybjBPT/4EVdfeD6aqdPbsxhF1XCEKrmpOv1LlvOZf/4S1738CuoNB1lSmMtNYUYyOF4TVdUIBC3y+TKqZvGOv3oXN756GxdcehFaUMXFQVc0fDzS2SyNegFF8hgdGaajLcve/YO0ZzqJRYJU6xLxVDsVx2VseoJENIKgGtSbLsGA1eqt5brzVOc+DVciGs/iuwJmPE6hXEP0BBb2L+TIrkf46X2/RrYyPPCrB2jLxpjOlznzjOUEQwHmqkWsUBjXbXJ4cB+RUABfC6F4MkFdY3JqL0owQqUG0aCHGjQpzs5AvYSqhxjcdT/27AC7H3qISrNGe99C+tasw5t37BBaKUVHW7m0XhstpNn3WuQBv7vvJ+hag2S0m6qkURk9QDTdyZE9j1AY3o4kNhCdScJCmIrtoYfaaXp1DMMiP9tAUQV0PYRmiMRjKSQVqnWFr/3zXex8YjtnnLmad7/zdhYtWkgmm+DKrVcTMqCzL0LNVnEbFaxQDMOI4CkBLj5/OSuWdBOKJFi3dg0/uPvnpFJR0gmbV9/yDq66+lpEGhQnj2B7Ml/44l1cfsVGtICBFtC57rorSMSymFYABJ+6K1Jv2sQtg1phimA4RTKrEwhE0aUAoiShaBpeAxy/yJXXX8sll12MXagyOlFgtlAlEYmgKRau63Hrba9tkZPJFl/66jfZfNEmmvUG7R1ZDC2IpgXxXFq9QhUN0XeId/YjKRo1O8+ufZMojSFCloSsqEiqgqQFEVSV+372GCMDe+hZtIQLL74ADw8rFGQ2N0NU14hHM1TFJtdccwtvecvbWNjdQcRSuXzr5eAH0QyVpg0RS8dp2Hz721/j9W9+A6IooRkB5KhGT08XV1y6mdEjzzAzlWf5mjNYf8YKGo6LphnEwhqTk4MkMwt501+8BUMXkZCQZZ2Hf/8IESuEYUVIJ1PYlQpN00SVY2i+wte/+lnWrlrFE08+gujV+fUDT7HtFa+gvbsLLRojNzaFJMvs2fMMoViGSEjg3p/+mpXr+mjUXa65+jquveISkukEmiSjqwG++R8/wgzG+c/vfZ+33XE7A/ueZmDvTnzf4d6f/4qLrjiPgBkjnowh600EweLwkQOIaCxa1o8kiVxy5RUsWbkCu+Fz990/ZumiDAougiNx9/fvwWl4dHdnKZUr4It8/cvfZGRkjHWbzkTUfaplFw+oN8okQyGMdBrFWoYfFMmGoxQO/ga3MMZcJcxc8SmuuOxS/vn7/8nmVVvIpDI06iXqjRpL+pZSrVTxPJu52SJGMMDkxASBQBAzEALfw7Vtqs060WgSSRGZHp8kE0tQLuaZns4RMC3ioRgHdj9FUISgISOILoqVINrWh6ypx2yVE8yd+c8+8Z8fZdu2F19vd8zm85677FFE7Hhz8OSm4/8lFA9ORMyO6SSeYr0W4tbSl2NpnKI4T7yC3wIthJZZ53v+UVjv2PcAEKQWYOfjP6fdwXOQvecRVxDw56/LC5X7/Nm5+xPK8zt3L2DQzzt+x1L9RAlRFF90u4Cj40914zx77mQ5vXN3sn6nG38i1H3qNV5yLd7xc18EQcv/G4jo0f4rx3Q4Xs8T1Hnxup0Q33ne6M+p0cptN9/E/T+/mwXpGI7n8+jOR7l+U/t/6dpIkoSmyiAquI7HPT9/AtnzicYs9uwdJp0M8+SeYZB8Fva0YwUjPPXk44QNiXq1gms3UWUVWTVIpdNowQCS6FPMlRgaGscMBIglYpSqZVLpJKGQSaPpcf+D+yiXqsRjJp7fRJNUqvUayWyCptsknYhRKJSxLAvPFmk2a6iaxNDQCB2dSWZnZ0mlo6TTSXL5IiICyWQcQZSZniwwV6zQ051CEkXa03HCYQtBkOfTbF0kQUTTdHbu2k8qGUZEJB5L4CNTKzWYGi9SLzc5cGCUgKFimiaRsMXOnYdoa4sjqyKqLODY4LkiBwcnePDxPSRjFgeHp8gXayxZ3EbXgizDo9MkIlYrOporUZidwzR1irkSlbkq9z+4j0OHxsgkQjz22D4sS0WWJEzL5De/38GyJT2oikZnRwJN1/j+o5PcsKkPRZEQBRj3Yvi2SyyV5OChvaRSyVb66cw0d37wA2xavwlNU5manMV1YdfOAV5/26tIxOMMDY2zYmUvngtzc02mJgokklECwQChcAhHEpANjXgmhREyEX2IRsJcesVV3Pn+f+Sqa8/F82xec8vfcNllGxFEmZnZac7bsBrfmSPT1YEei/Lgb3/Hnj17qJSqZLLLGdizn7fe8V7e+4F38NBDj7F85SrK1SqDB56hWa0iy026OheRGy/Qt2QFRbvJls1nUKvU+epd/8L6M9ez5ZxzGNj7DPF4iN5FC9ADGoYRIGDEEQSP3Ow0eCL58Vkef/gxXrntZr75jW8wfPAQETPIoQNDlAtziIqKbdvYjoPgKtTrLn/zzvdx/fXbcJowPjpFLBamVs4xNXaEwvQk/Yt6GR2bIGCGEASJffv2EY8naDQaaJrK7PQMqWSCZrNO0xGoVEtQmWHiwC6yYZlFfb2sXreeUkNi584drF3Wx/aHfs/BGYeutgVIzQZ7B4ewTAsAy7TwRR+JOrOz09SbEpYZJR4OYHtFRvfvZWpqnLov0nRtBFklkumhd8NWUj3LkYzQc4J+z/dukkSRfGGOhR0JfNclFO1E8WbBdpgaHaI9FaLWbBKKn4UWWoCj19ECURTDRJZ86o06wUCQWqOIKoeQZIdqtdoK5OkiQVnhvAs3kcyGCJkpuhYsJJntpNKcYnJ0imgsgaYl2L1rB3f/8Pucc+4GDh46RMyKcvDwMJn2LJVynZ6ebjoWdPLm132QL3zlf+DLVcxgmvxMiabTYMOGtciCQdBMUCpXiFkmnldDUQUcr4lbKRDWJX7+4x+wfOliKrUxQmoH5blZyrUSrldDlFu/AZoWw2nWmRl6hJGJUZat7seKmMiShyCJgE21Nofo1wCf2ekcixetolqfJBKOcfjgGJGgQKlSpeF6uHYdXVfBc5FFsGSZRHwhkyNHiHcsp1yuMLBvkFQqgwAkMyo9HWFQBAJmFNGXMBSD/GSBLReex5pVC/nbv/ww//mj77FqxUoy2SS+b2NZBrrZZGw0jyTVaDoVxsaP8I53/gVNp84jDz2FacQozYzQuWABjihjRjOETZFy1aFRsZH0CA8/vJM1azYRj7eTTkbwRRA9+N39v2TR4qWEYkkkTWP40Dj7Duzlye076evsY8cTPyFsiUTDvXR191KrNHn8safYevllhEyDv3zjbaxbvJD3fuCjfOe73+OSrZezY/sOBLHBeeddzM6nHqbpqVx11bWMjY9hhcKEQy3m13qzyL0//yVvveMthCyDf/uX76HrFoYewgxG+N/3/IR7vvcfXHPZVhq+QaMikEjpiFITU1Mpzk6Tisd59MGHkGWLM9etJ5lOogRjyHqQ9Rs3kV3QRa02zb2//AXdC7uRfYnN520iFDEplUoEjBZJ1sz0NFbEpFL0UASdSHgBubqEoqSJZgUE7zAq+6mM7mPTwg6S6Rl23j9LLKEhunWOHNqHETSxnQYhS6HRsBGlBp5TQ1EgEo0wOT1GJhZjenqcgKZhRS1cr0HAkKhW82jUqVemsUISsbY0smaR7VyFHk4iK/J8HPr5nbu/uvP2l2S/nWDznbSs67WyDE5Ok3w+W+UPYsgUW304T63TKdDJk84d7wQez+7+rI3XujLHnLujcX7/9Gjg6eR4QpXTkanAn527P6mcilBFFKUTCjqPHs/eSMdHK/zj/jzxRj8dOnfs5qKFEp6Izp16X+ZZMD3POxZhaRWfnnjTtyDnVl7y8Y3HT0Qen0UapXnabOEkpM4//qF4KSKc3mF8PoKZP7Qe77To2kn/jydEV07WU6BFmOL7z6ZuHvPRTpMGcPx2z4n0HJ/TfdIa87p1n3E+L3/bR1jdVmN5V+K06x+n0inPHb0Wiqry1JMDFIslLjh3FUdGJrFMg1Qywv6hSVb2txPQFUJBje07BmlLKtRqFarVGoauo2itl6xjNxFdj6ee2oMm+cQsDV9WMXQVSRKRNR1ZEjD0AD2dGSq1KolEhHDEYna2SDhsgQCS2Goq/ov7nyabirJv7wjhiIooiCTiSTzfIxgM8Mzug7S1J3lixz6y6RiVUhVZlSmXSiQSJrIk8/CjA8gi7Ns/SrVeJxoNIQoCTtMBQSSdjtKo1Vp02G4TSQNVDtBs2EzNFAlHdHYPjGM3bTRVZFn/AiRVxHGdVr2NIiEIMnOFCoYhsnxZN52dKQTBIx4PYds2XQuyPPDwbqZyRfqX9XDf/bvo7UlRb9hMz5Qoleos7kszPpmnZ0GaZDqK73pIikx3VxsgMD09w8Dew7S1JVjW3cXczDTJZBRBgK51F9GW7cBxHdoWpPF8j8mJKdrScTZs3ICqBlE1lWAwzPCRSRYvWoHk2YxOTrBx8xbwXf7q7e9mw1kbiSdCxJOJZ59930MSRYLBIAE9gCfCxPgovqiyZFEvmiFRmqvy6GNPsu2mS5EVHTNkIQoSUxNTJJNJFF1hUU8vi/tW8PBDD9K/Yjn3/vIXXHTBNfQtbSMeSxJJZuhf0suqtavo6e1nUX8vxZkajz/+GB//+Ce4461vIRDwUFSdZDxDJBYDT0BTNe795a/oXbgMURVxvSalUhVdlwEfu+5x+RVX84EPfJDzzz8XQfZ54MEHOWvDmZhWkEQqjqYbqPO1bfggyzJ9fYsJhSPIioKqiAhCA0SIxhN0LOhBknVCpoksaxweHmHx4kUt4h7bxvc9opZFs9mgUirjOGAEdWKxGJFwlIE9O2jv7MCxa3Rm2rj22mtob1/AxNgYP/jJL9i1cwc/+9nP2bR5M93dPaiSxNjYOIlEG2OHDhCNJAmlkji1KvmpSXbt28eS5atYtnodmfYOzHiMRCKDYcZAN1rBRfyT3qenSs169r2gqiqKHmTPrmcIBUPsePhelFgnEUNgbGqcSLoDX5IQXY2ZqWcwrHYESaRcnEUQRSzTQlI8RDQEyaVYzJPLzaHqBu9657u5dOtFyJpEre7S1dVJpd6kYsMPvn0f0XCMW255M+//4FvYfO552LZHPBlFxSART1CsFpmZyBGNW+zauZvX3PpKMu0pPAEEScGyQniOTVA3uPzSK3jd69+AqoDTLBMyLUBsUffLQVCCpLp6QQ/j1Gq4roDteC0CHctkbHSEcCjeytyQZUJBHUH2qNs2gWCY0cMjxONpfAQkSWJ6bIp6o0IkYiKLOpm2JJ7j8+Y33862l53P0Mg4ZjhKOhoAUUFw6giiSMOeRVRDNMpHCMcjuL5OOp3F8zyceoNgIINTqtF0RN76tr/mxutfRrOWR5OavPXtb2cuX6HuKJy5YTWqrOA6DVy3zsTkFP/yjf/g63f9O296862YpkkinmDHnzrrDAAAIABJREFUjqdJt3UQ0E2cpsN9v7qfFav7qZQrKLJGuZgjFE1gqDJ1e4KF3VlmJkbwvTK52RnUgEF+YoblKxfieiKyYTGTzxMPxUlnMsRSceIRi0JuBkWP0Nm3lJmpAyzp78EMKySjPVx3zTV88lMfp6+vi+07d/HpT3+SD33o73jtq16DYoAk64wfPkD7wuX87v4H2bRpE8gVfE/ms//0NUzTYGBgAFHwwHe59NIrwYfZ2Rn27dvPjTfehOLPsWhpL+OzJdKpDhSlwfTkBKYVQZRU6g2focHDrFy9nEqtSCCgks+VkGWBUjFPLjdNMpWkb/EyfBSy6SiOa6PoKoqiYjer2E2bdCZLoTKGXW7iSrNIqolTr+FrJpWaTSCUJN1+Ob4q4OkHoF6gd3mOD3/1R5zTv5pwyET0G2iy22rjoSpomoxv1wioMrXSDJYqkS9O4Hl1DF3Ba1SYHj+I06jTqFdABt2MEIq2E4m2E45l8WQZUZ5Hop7HLBEEkTv/9U5uvvnG57XFPM9DksRT23ynzFo8PmvNP73dxR/m3LWC7UcBE/GE/Y7/7GQH7nhdTm6GfpSs0D/OnhZECYR54jhBnL+Uf3bu/n8lpyJUeT5E7UQn62Tn7rlyOnTuhIfiBXJ7T973+GiJwHPh75PPneoBPH6K2OJlP/ZA/5+svXthROql1+Odfs2Tv4xwjEXquQtx7Msfde583+WoU/28+59mt5MUfV7dtm17Obf/3de4fkP6tOu/qHMCuB5EdAnwUHWJto4E5bk6kUiI4ZEZRkbyNJp1CoUC0ZCOoUM0bDJbKBEIBIhE2vjN7waIWSF+89B+Vq1cRKotgxkLIwAD+w+TTkRQdR270eDRRweQgb5FHRwYHCYejxMMGUiixA9/+hCy7xONmizuW8DERI5VK3uYmZ0lFo0zeiTHI0/upaszzexsmXjSYGFXmmajSb4wRzhqEgioRMJBBEEmbBpEIhYd2SSJdJSZ6Tx79gyD52CFLXw86pUquhahVnNQdBnPhUKxxOhUjlWruhkcnGHt6j4eeXyATMpAkAQUVaNRdfBp4joijz6+j8V9KQJBA0EQSKXiqKqM7/vMzhZYe8ZSUqkIsqqwZHE7CD6WZTE6Psu5W1YTS0TQVIFoLIrnNfFdHxCRFQVRFAgENDrbkyCItKe7sEJBHLvJK//xf/OqW25C8EQiiTiDg3so5PNksm04foOm52CGkjz5+GPMFat859t3UyyU6V3QxZHxIQqlAnd/94fccP0tCKJLZ1cCkPjhD3/EV7/6NdpTGT72kY/S09lFKhbHlQTSySQuEq6fJxpu573v/Ts++on3MT01TCAYZmY6h6BF6e3pZnhokI72OIV8iTfedgeKLLH5ovUsWNBBpSximD6JWIImMgouP/nVr+ldsorcXA63JhAJazz6yKNokkCuOIGum3zoQ/+dCy+8gDfcdjvr121AlVU++ekvcv31VyEpDkHLRJNlbNvmrru+yT984pM4nkvPoh4C4QDLVq3i8e1PIsgSAcukWWsSDBrUajUmxkeYmBjni1/6EpdsvQhV1xg6OIAo1rHiafJzZVTdwvNlRg4PUanW6OjsoljIE41EmM3NEovFsGvVFoGLa3Pw4GE6Fy6k5opIikk8ESHe1kazNENtdgZZM5jK1Ukm0tz+ptexfv16Lr/6KhzHxtA0ZEVmdmaGQr5OT2cbgqCjRWRCukosGqWzazFyLI2PiOA7uJKCIqnguoiyjeLaLXKfo0X8z/P2Od6583wfVw6iiz46DngVsivOZnZkkLaebmxkiqUhqtNFOuMKbiBDo1nHtxsYgSAgMTM7johOvVEEUaA928Wu3fvoSLT6DHb3deO6NpomYgseou5y5po1CHKeO972emq1Gcolm40bL+B1r38lI0MTTExPkWpPEDET5POTLFq8DCVQYGKiRNBMglLjn/4f9t48Tq6yzPv+nv2cqjq1V1f13ulsnU5CSEgCISCLLLIvAYO44YI6ooILLvPMM+roODP6OAqOo6gzjhuCOsiIwCiCKEIWIAvZSLrT6SW9L9W1L2d7/6jupBOSAOI8M+/7+vt8zifpPnff5z6n6r7Pdd3X7/pdX72LsD+EKurc+t53IWsysuzwxG9+yYL2ZXR3HeLd7/4Ab73hYgrpEaiWMQ0F3d+IZFSxbAVDNZBEkXwuj6GHmUwPkSu7xOpaiYZkhoYmCEfrCfqDeGhUKlU0VePO2z/BjTdcRywRRlU1srkyuq5x48brEStplECYQCjGT+/9Hos6V6AKLt/97r+xdMX52J5GADCUEEUXdE3DtWwMTaVvYICgYVGwp7nyijdj6DAxuh/bmiTgS7BnzyBP73yWK694PZnJDIIEsuShKjpnr7uc+39yP2+66UbGRyewLAtBEDH0EKVykZ07t9My/3TGxvqJBQP8813/xEWXvAEkkb5D+0iEE8iuii4GcMvwyK8eYuWqVRSm80RiPnp6+gmEEwyOjiJUHUbHx1m4ZDHFwgT3/fhR5i9aQ6otSdcLPdx33wNccN4lfPRD/5uu7m4++LE7ODw1QntLE+GIydo1a0hPpKlrjDKZzhM1FAqOxOJFnUQjYYqVfjxL5YzTz+VDH/oIX/nHLzE8MsDuXTs599zXsWjxfCYnxggEAzz1zFY6O1KsP+8cPFlGlQ2y2XHa581nMlvEDMVRVD+t7YspFEYpFCYRZZHHHvk1e3ftZElHO0HTYNu2vaTqW3BckUJuEjNkgghDg0OEQj5UVWdqahq/2YBqmThiFsdLUBzfQ6QxRbkQpr3z9QxWMzQtuohk8moaT1uL6E+x8bpL+OYvH2b3gQHWLF+LZbvYVgXdUBE9CUfzI6ka4owSpCbJ+H1BcD00f4i6ZBO6GSY1r4NorAVfqA41GEIUJDxFrNV9s8A7BQNwqHucv/7aR2urwkmMkrmpM6/G5ntJZOxl2r0anMhxm9vPiSJ1L3fdWaftSMqSJM1pW0vT+Z/o3Al/FK/1zzgCy7LncBc5pSXtuh7SzBejFtk7cZuTqWueyEE4UT8ncyRqEUMRx3GOXMN1T0TrPPlNvKr2HgiiiGM7r4al+JrxSr7Tr5rTPfucj6n/d9wCIczpzzs5FWDuGI5vI87ZNZrTTe0cwknPzWLD9Rv54YeWH3sdeAkdotYBp/xcBNult6efxoY6XEECUSKfKVCpWFSLRXZ3HSIW0TENg8z0NB0L6jk0OEkylSISjTMxliGbKWH4ZaLREOVKlVgiSndXH8GQj0QyglUsgSBg2w62ZaPqOoFAgPse+AM3XHc2rl2hVKjS3TXCGWsXs3nrHjoXtxI0A7iigGu79PcNI7qQqI+xf/8BDN2lc0kHliOTzeYY6J+kf3iSC193Gjtf6GPRgnoCARXNr2FVqsiyyhO/28Hrz13GU5v2cs6608nlM1Qsm2QywabNe1ixrI30VJ5oPIysekyMZAmZIRAcJicHqG9oBFHDqhbRdA3b8sjnimiawvM7DtLemsTv8xGOmbiWi+3YSLKEKElYjo2qKjhWdUbQ5SCnLWvBdeHJZ3az5vTFqIrAk0/t5dKLVzM0NEQqVYcgeEiyyOBkkab6hQiihOvAW7/yKD+5919JZ7PURRPgKZSKWTyxSv/QYUJmgFJW4uDBgzS3tlAXj+O4LqKgYDsl7vjQnXzjW/9KuTzOX37yE3zpH/6RwbEBfvT9h7jj9g+wacszXH7l5cgKSLJI1XMRbBddUclMT1IuVRBFH6PDYyzsXEA1P83w8CQBU8OsC1GqCoz0jZNJ97J82Qpcz+ZQ1wEsW6KxpZ1g3OTff/hDNtz4ViwcDh/qoW3ePA7s78Y0I2RyaZrn1aNqPshOIxsi73v/X/O3X/0satkDy2b7Czt5sX+EW95+M6oi4rlVNFXEcytMjU1RyAr4TR9V0SaSiCIqAf7yY3fyf/7hMzhWBi3QSKmUp1Ipg+vg90VRVQVBdChVMvh8GtlsGdkIIglOrT6aKOCKKngyll0mYCYYHtxLsi5OfjrP8Og0rfPa0A2Dij1DzRegalmUJwYJNrWCJ/Kb+/+ZhpYFlPIW/d1ddCxfTjgyn7HCBP39h0imUkxOTHDFlVfgqQa6rmM7No5joUgS7sz6UKlUUVQZWZRwZif6kXfDid8/tfXl5OcEJAa7XqSv9w+suuDtkB+nlBlHNhNoqp/pkW0oRgg11I6mFRgZnKCpYRGe5+A4LplMhmAwiCvIRyjupUwB13MBh2AogOt4SKLMQG8fEgJyMMqB/btZ0t5MNFXH1GQW27YxVIdYooHJqSyxeJKh/h5ExUckHgSnSMXVUBSRcn4E2zLxvCr+oI9f/8cTLF+9Ek2X+dxf/RVfuutrBAJ+RsfGqEs14FHBdR2sisd0Pk0iGqMwnaZsO0SjEbLZHAEzQC6bRTd0/H4/WOBSplrK8bOfPMibbrmVUjmLzwhSnMqhBgIge1j5EWQ9hKZoTKXT+AMG+WwF1wZPrOBJIvWJBNPjDkIQVFHDrZbBK6DIPh579DesXXMahdIk8dRCVNXAcUuUig7xeIzeQ31IskyyIUFmusTkeAbdHeCnv3iGd97yFtJjPfhi7UyNjxII+FB8Cj1dhzlzzUpEscJ4wSGg+clOZ9m66VmSyQgNTQkQHMxQjInBXhrnLwJXpefgQToWttPf18fCBZ0U7Rz7D3Rh+DTGRsZYf9Z6xkfHyBXyTIwO87NfPsZn/9cdqFqAXLGI7ZVRBJ1SrkC4oRnDFnmxew/1LfU4roLnuDy76TkqlUkuvvRSNN1g65bnWLfubDJTU+hChamCxfNbN7Hy9FW0zl/E2HiaQ117ONjbx6MP/YHPfvaT3H7H7fh8PgIBE1FS6dl3kK//y+dINraTmxylWMhiJhuxsgVGxyeQNJ2AaRIKqWiaD13z41QEvnr3V7ntg29GwCSfzTM5Mcmy5cvZte1FGucF0f0q4xMTNDYt58DBp0nF40hSI4aaplgp4zPrkByXasVmfPIwza2LUe0sg4N9aIteh+lW5mzg1ubg9de/mc/c8hkkp8rk6CBaIIgvEAShpsLsuu4R+X4AT5Rn5ulspIkjP79knp9kK7lctKCtzNnnnHmMPXq87SfO6C0c/7sTtX0tcF13pm/xmJ9PhuNTkmbbS4J0ouYnv+7MM3XnPjrXQVGOqqXP3qcoCjjOzLVfZnzHw5n5zKVXUF5LUdVXbEn/OXL3GnFM5E44SpE8eQTt1AmWx9ANZ2iRs8Iox7c70Ut4lhIqzNGy9ebIsM5+0Y8PR9cijicPkx8VaXmpSMpJd2AEOPkS8t+P46mmp8aMIye+lMZ61Lmb03oOHfPV5L/N3Sk/JvlYEOdEBV+amDyLjRtv5KaPfP2YCN7sQj+Xyjsr5yscO+w54/fwRAhHw2SzBXKZHAHTz+TkNOnJKTyvhF+XscoWVqWM5YiMpos0NTSRiCexbZvhkSmam+Mc6p0gHjdnXgY2qWSUQMBXowg7Ljv3HGL+vCYsy0ZVZRRVZVF7Cl3XAZdCoURDQxxJEWmor2Pr8wewKuWZ/DIRXdPIZAtMTGRY2jGPaDRF/9AEoWgQXdc50H2YC89fiSJL1NeHMQM+ypUyhqEfyX2NhgKIkkxbWz2lcplAMIShywiCSDwaRDU0wqEg3Qf6iQR9VCoOw2Pj+E2NsKkjSDr5okUwFMRDxEPFdUCRZZqbk0iywtDwFD6fgioryIqCpEi175Jbyz4X3FoNxVRDjKplgwDxsMnWbQdoaoiypKMZVZEwzcAMHbr2cv/gd7u55oxWRFEiny1wy8c+y9jEBOFImO79PWx65nmS9Ul0XUMU/ciihiSItHcuxm8GUHw6iq7h2Ta6LrFhww0UypPEInW8bv35WFUbV5G4ZsOVbN32LIP7u1h1xul4Gig+DcFya5s4eGiagieIuJ7AO2+9lbPXrWZ6YpRUfQP56SKJZJJvfuPf2LZlJzFTpbW5kZH+NFPZLK4r8dE7Psp569by4/t/QueSpYwOHqJ13nze+c53sW7d2XQd6GbX1mc5Y8VpBAw/fYcH8USB++59mAf//acMj+b58j9+mb/89Kd4atNmlnUuxudXkXCR/GH6Bg4TTdQTqk+RyWcJ+f186+6vs6C1kQ0bNuIpBjnLo/dgD3WJOLlcjtHhccKRMAgVJtODJKItDA33k6pPIrk6+1/cR31THYpPwXZkVNWPrCoMDx7CdiVUw4crCaiaD1lRsB0HWVZxXAdN0yiVShweHSFW30Qpb9GxYiWp9g4Gxya49A0XE2puIxCNoPo1zlx/Dq3t7XQsW1bbvZfEmfW+Zhd6tQWiZmQIHpIkzwg1SS/L8DiyXpyCqim7El1dv2Vxx5lENZFdO7bRtmAxDjKSWGZqKo2kGAguZDLThMx6BEHkYE8PsiITCoWQZYlyxcLQdaxKFdeWqBSLPPTww7S1zSMQiOG5HlMTE7iiyZveeCOXXHwRm57dzsIFNZpgtSwiawEkTSFfzWNTITPVSzLZysR4Fs3nQxEV7EoFSdMx/RqCKLJ7526+/4Nf8JabbwLXoy7VTktrK4gOuuHiegJTU+NoWgBZMtAlm5HBYWxHIBKNYlVtKpUqju0QDkeoViwQRERJYWJqElGWWdqxvFbv0xMRRQcLF1kQOHyoHyPkI+CPUClXMXQDSVLxBwwURULXfQRMP9NTU8SjSf71nn+mrSVFIKBTLJUxAnES9XUkG1NksiUmpoaJRePIkh/Hy1IqVygXq6RSTXTv76GhMYasFAknO0mkwtQ3p9DCUSLhCCIOtlPhXW+5g6uvu5pYQwMT2QrJaBxNETB0gdb5YXwBP3WJJmLRBkRE4slW7v3Bfaxa3kY+N42gGViiyM9//CDti+vRfBKNqQ6am9rYtWMHsViUfHG6Vs4kHMSvq0xMTLF334s0NTeAoJAvWshClelchlDYAM/CUIza+iiUaW6Mo+oBuru66Vy6jP37DtA4v5WSbXPv/fexZu15hBJ1DIwMEa6LEIroLO+Yx333PchvnniS5StO54wz1vD6iy5m544XuOC8c5mcHuG5PbtYc/Z6+vpHiZomsg9ECcbHRlm2tBNVCzA5URPz+uIX/4GlSzsIRhR8uh9XzOHz6aTT00Qb6vH5JETHwVR9IFfRNRXb9ZBVndxkmmg8hYvIWDqL6XPJTw4TMQ0su8jmJ37JwiWLEEXfkTlasyNFbrrpBlIdcd73vz7MhWuvRAuYIMogSHiIIEi4CDUhNvFY52Vu3bUTzvM552b/P9Q1zgXvW0tLa9OMHXDy9Jpj2VvHpuv8KXHSNJyTHHNpn3PbvxKxwrk17mYxdxNdmNVcOI6l5nkzm+9/xM3PRu5eLmoHry5y91+p6f7/S3iuW8u7+lP0NaPe82r6PFG72YWipuApnLru3p/x/3r8+wP30z+WPfLz8dRajxlD8BQLN4DgAgiEY1EKpSJWIUMoaCBKIocGhphMF9B1P+Wqi2bIM/lKUfbu66Wvd5T58xuwHJtKxcYwDELhAP6AD1WTsW0bEMhki5y1ZilVy8YfCFAuOVQrLlu2dJHL5KmUK/j9Bn4zAJ6CJAm8bn0nw2MZQuFQrWyAJDJvfhON9VH2dw8yPjlFY2Mc13KoFGyWL2nBc21kRcKyHZ56eheVkoPrShSLRSqVKmYowJZndyOLHj5DZqB3AFVVcRwHVVPZ+8JBKuUqoaAPJJFsrsrChS0EgyFQfIiqhiSKTI2NUy7k0RSBnp4BKlYZ17MJhnws6WzF7/dzsGeA7q4+RFFCkiQURaWYK9DVM8LY6DS7XuhBVtRaLS6/gabWaDeP/HorI8MT7H6hl/1dvVQtC0EQ+Ptb1iMoEoqmEIqEKORtnvnD8/iMCMPD43Qf7OG3v/095XIVw6cTCBiEYhpuqcpfvPs96IJMfiKNIHhYtsXBg134fGFGhie55pqrmM4O0tbQgipYnLfuLK6+6XqKVpH8dIau3XvY88IuXM+l6jhYrk3FrhKKhHno4V/SvqCdpcs62XjTjciiw45tW3n/+27hkovOY2RqAnSR73z/x7S2LaRUtPjg+z/I2NAQd919F9PpNG61TD6X47vf/S5PP/00ra2tdHZ2smfPHqrVKlpQIxT18/E77+BTH/8wulTmwZ/ey+GePt71jrdRl6pDlgRGxoYRHIvGhiSqJDJ4qA+fqqEZBu+97S8IhusYGR7Hcx1Chk4kHGLf3hepb6gnW5ggGPQjiQqhUIJiKU8kkiCTrlAqjBGJBLFsiWKpJoHvzMyxcDhAS+t8hkan0M0QoUgY23VQtFq+aT6Xp6urC59h0HeoC8Gu4BdcnvjlA/R376d5wQKkcAzJH0YydWKpFI4gHHOcCK7nzeTDyH96jrxbYGqiQiy6kO6eXhYtXY7t2MjVLIIrYAabCfiThPwhHEdAVQI4rkNDYz1BM4jneRTLJVzHYXBwiFwhj6KoXHb5lVx4/oWEghE2b36an//HT7G9AoGYxH8++lMaGxrQjSj5XJZI3M/n//bzvOPmm3ErFqqnYRVdYpEGrrjsGmLxBK6g4lg2pVIJWfNxxx2fAE+jrbWTTc9uJjM9yshIP5/8q0/OlKnwEAWNqlUkGovUcnwdAdm1kUUBvxlCljUMI0BdXQpF0RgZGUMQJKyKjSfKBIIhHMfDQyQ9MUm1XCWXniJXnAZcNEkBUeXQwV4EQWZ4eIx8roxtWyA6pNMZPA8isRiCKHDT9dcTNnUy2QkESeH5zc9ANcvEUB/zm5tpa1uArHpYdglR0NA1nXgyzHRmhLfcfBMDh3oJ+AIIok3c9MCxMLQo1WqJOz/+UaKRMA889gjzl7RRKmZRXI8dOzYxPT2NXYHe3hFET+Wb3/g2hw72M50ep2xVufnmDWSrCt+/9+dInkCdGeCc81eTSCSIR1MUizkcp8pkepjevhdZtLCTAy8eZPDwOAJQn6pn7Zlr0TWN4eERNj//AuGAD90XIhCM8ctf/Iq7vnw3nmATiQTwaUn6+noJBoNYVYve3kNUCxU8W6A+VkddXZigX6exrhG3qrBv7xgDvYPcd/+9fOe73+W97/sLNm3dSl19PRdccCEPPPBTSsUyF649C6vk0LlyFYKu4bl+kslmli9dwqGu3bgORCIRypUSN73xzVx80eXEIklU1cSz/Az0jyLLCnZhlLHhIaqOwhvfehuZqS5EVFQpSqWcI55oxKqCbbtEjSC9vUPoZjOWo+IpYZD8qKJ67DzzxGOOn//7vay+cSmf/95naiyiOYcgzPqEr22uf+Z7n+HyO1/3mvr4M/7n4M+0zNeIWVrm3PDsy+Jl6HAvB0EQXxK1+1PVXvNmFI3gaNh9bvj9+Pv7U4bf/7txyrkw87wF8ZWF9sUjOzq1v3NfZR7gK4Hnukgz9FLvuJ0kXJdN372Dle2J2YqbJ8SRNMEjf380Onj88yjnSmTGx8kVChzq66O1KYUgCoyOpXFdjbZ5zezaO8TK5a3oukrPoXGSiRD7Dw2wbu0SfvP7nVxy4Uo8t4rrShi6D9u1EAWYnJwmHAogiAq/emwn69d3EAnquJ6LINd2yjZt3s261cuwqw6i4iFJCmOj00TCYbK5DEMjU7Q21WH4/IiiiO04OLbD8NBwzdG0KliWRM+hYTLZAkuXtBIM6mQyeRA8DL+IVVEIR/1Uq4Br89TTe2lrbqB/aJBz1i0lmysgSSY7tu3hvPNPxxYssGuR9Wq1QrFQIBILUC5VkBUVRVaoViwmJtLU19eBAJZjUS5XMEN+RMuh6rl4toZj2zy/az8dCxoIR4OAhySIOJaNrhtMjE5RLFbY1zPEReevID05RTAexhdaiGPB409somlRO/Vnb8R1IRgOMzw8Srlcoq29FdeplX2YTE8Tj9Zx2Ruu5Wt3fZV/f+BB3va2t3LVtVdyz9e+wqJlpzM9nuMDt93ObR98Lx0dLVx/w0Y2bX4KcPnC397FX/3vT4Foo4igG34OHNhHS2szLjq6IZAvZNBUP4Jnk05PImAQNIJkCyOEw0luv+3TfPErH6VcdhgZHkDHZLJQBiT2bX2GWOsSduz8Peeffwnf/Kd/YWR0jA/f/mGWLV9GoTiAByQbUlS8Wl0xSZS5//6fIpXLXHXNNXzkox/n+g2X03n6UjqWLKR79y4Mf5SWlhaef347kbBBPFFHueSArPLLnz/A8tOWk0wl0HQVv78OQ5EYHumivnkh6ekpRMnFNH3YrsjE1DiReASxWisZ4/fXSmeMHD5IKNVMcWoUSakg2WEG+g4wb36MithEJOajv7+b5vgSPM/CU2D37hdRhDIr1p5JvmojeALqHOrPse+KY9d5yXVrMtqCRMlzqYwcpmvbs0jhOladu/41bzQKnoQneICNg0M5UyIU8DM6MoYejlDOZYiaOnYpR7nqIsoS6al0LSpumISDEUqlMgHdYXx6EkUPoulBitkKv//tH1i+dCF1qRiOYyGJHsVSEd0fxbEsNDHElmceZ7R/O6vPXE8gOg8zFGRyfBLHddEDIoYRRFN9ZNJZwjEdUbFxHYGA5mPT5udAMFiwaAkeoxhaHElQ2Hj9W/nRfT+g7GYxg37KtoVbzRMOSGQmXQKxOIWyw9TIJG+47EK+8n/uYeUZpyEWq8Sak4xPDxDSLORAE4VCAU3TKVcLBAJ+KlWLaqXK1NAwqQWdSF4Jr1wgX3aIxJJQLpLNadz/03u47vrXMz0RZvHSJmTFZfmSs/m7L36S88+/rFb2QqtFdovFEuFwmLe84wPcc8+X8FxQMckV8+zfv5nVZ51HfjqPJEmUykU8ByLhOKLnYZUmKKs+DJ9MsVhFV03wMpTKMtmxKYKJMKqi4Dkmn//Cx0jVt/GeW2/F8PlIpydQFQdFVHjowf/kissvp3/wIIIk8Z17vsO7330rkigTCPjRzACKpOCKBQ53TzA5PsQjDz/IHXd+iqqto+sik2MDJOa1E/D78KsCh/t7CGmZB+eMAAAgAElEQVQa07lptm7t4cqNG7DLLh/+wO18/St/x70PPMaNG97AwOB22lvXMj41SXf/IdoWLuSx/3iYXK7EW966kbBf4WMf+0sUzc+HP347z29+js6OTva9+CLPP/cigaDBW978RkZH0vzbt7/Fe/7i/fzLv32fv/30BxAMmbGJEXRRoigG8UkeP/ze/fznY1v48U//lXK5QLmapWvnFi64+A0M9o1RLVRJtDSgKCo7dr6AD5k3v/d2tj//OFZxiCd/t4vzL7yYyakxfGIRT1YJxRMgSmTSE/iDCaqFHLovyuHuXxAygzhelKYFaym7LgI2rgQiMo5ogVdFcgJHVwBR5LrrbuK2Sz9CIhU8wo06IfXymKjTrPt3tP1I3xTffPJu7r7ryzS3NOJ53jG5dKeiZf53Ye6KdiqrV5i5+SOUVY6WsRKOy2nxhKPMNuG4Xmcjaq7nIYjH0lGP7+dEfb5cO1eSarbcn2mZ/7MwS8ucS8N7RXhNzt1L6TKzoeiXq5PxsvCO0ijnhrKPvz/HcV8SEfr/No4VSnk5HBsnOzZp9k8F0fOO5tId170oCHzhnoe5dFngBEIsJxjncU1O9LlqqkZf3yCxSID0dJ5iqUrVcjADPsYnS8SiIQ4NTKFrMsm6OOVyGVF2a4aq4LL2jCUzeUa1KHJ392Hi8RDlchm/30BVFfKZIg3JKP0DoyRTYcrlCqqq4roe81rqmU7n6D44SDIZwbIcpiZzRKJhdu89hOnXqUtE+dXjz6NIAB7ZbI76ZARFk3Bdh6l0nqbGBPPbG7Fti937DlFfH2ff/gGiUZOAP0JmOoMi65TLJRbMbyJgatSnajlXuq6Tnc6RiAeRZAlPcJFFlYGBIeoSUWRFRhJlRFHG82rzVACCwcDMfKlRUSVJxkOgUqig6Crg8ehvnuP1F6xCFEBRVUREioUimUwOzfCxd18/iboIrW31WJUKogClikUglMKybBYsbOW9//RrNlx7NbbjEAqG8JsmgUCASsXCc0GSJapli3KlyusvvIgtW7fyh6d+z/r161nSuYTNm/7A0tNOx6c7LF60hL/5m89y440b+NAdt2E7ZaazU1x++eWAg6qKVColPE9A0xRc18F1JDzPBq9WEBpHJOD34zkKP/nJAzQ21TM+NsJ1G64jPTlFZrpIS2sr8USUUqlENBKmqSFBXdLk0P4hXLvI5mc3cdsH3k0wLJNqMvmHL3yJSy69hMNDQzQmEljlEpVinjNOX0YkaCAINhddfCFnnrmWcDRCNpMhO5mmqXU+zzy9iRWnrWB0eICBgSHa2uejajqhoMmijsUYfh1REhkdmeSJ3/6WNWtW4bg1w0ASoVgooXgqfiOC4Bg4Tgnd0AHo7e1FFEHXDZxqBTOWQNNMptJTGKaPuliKJ594jPpknEx2iKqXwQjoRONxVEHADEcRZBWR46jcx0zF440SYWZt8dCdLD+/74fYtksw2Uh9U8OfIHJX21gRqK0pm556kgULF1EsFvHrLrLsUSwVKFlVNF+YUsUiHImj6AaGrlEo5PHpPjzRxQNkSUUQJKoVhxuvv4Fb330LluOgqAqIArIkI8oioaCJ63o88NAv2HDDBnzhBL5gBFWRyOYnCIZUwtEEExOT1CXrcHGQZSgUsuQyRbY8vYs77/wEt3/0g2g+mYDPpFjMo2oSITPG57/wOTbccA0uLna+TDyWpFgGXVFBkkBSiEdi3HLLO9E1hWSDiajKCLqA5jNQFD+uJ2IYBrl8nqDpI18oUC2VCIVMIqEIKBqVchGrXET3B6lUbSbHRknnh6ivS1AXbaOh3aTiTDIy1sPb37ERnywhylnisTCyZlKs2iiaTr5U4Y03XU21JOHz6XT1PEtjajGpZB2FokC1nOGRR3+N54j845fv5sprL8UVBDzdmHE+S9hVl4A/jOOWEQQVWZTwB3289W1v57v/ci+3ffCdnLnmLH7+wM8ZGxmhqakNQ9MpFS2sissDD/6MM9eci98IYRgaoqSweEkHY6NjREMhRLFIadrjqae3kJ6cZN3ZZ7Ps9FU88eQTNDXU0dhUh+CIlPMFnt+8hUQkgaJoVC2bpuZ27v3+d9AVhZVnrEQJSKxZs5qf/ewnLO9cxv6ufoKmn/bWFIZQpvvAi1x71VVIgKpLtM+bT9VyWHvWGbQ0ziMYDJJM1bNseTsXXbKeXH6MppZ6Bvv7aGlt5MX9exgdGeNHP/4JV159LflMnnA0geiUWLy4g40bb8YqZ+k72E97SysBvx8UBce2CAV8uJKMqitUK2UmxzK8+a1vIR730XNoD2esOp8nn3ycjs55OKKAIutMjkxiFytIVJFkiaG+bopWkWigHlnSqFjT2K4L/hiOZOBzRURPxXM1BE8+ZtYLgsBNN91A26p6PvGFT5HymonUhU5MvzxuGcllSgiCwOd/9Dkm7Qlu/cs3c9NNNxAKBY/O+DmbwXOpjP9T4kBzh3Eqq2r2ecwVxZgrFnhc41qLGXXMuahVvZtVzTzOHj6laMFLx3IieDOChH9qWuafnbvXiFnn7vgSAbP/P5GRPFfc4vhyB3PLGszyh1/ah/eS3L5Xnjv2MvC8IyUNZvs92f3NnjtZKYRju/WQZlSF/rvxRzmlM9yHV/p3x+fO8TKfzx/z2TmWRTo9je7zHfHfZikaAnDlVZez8WNH8++E445jBnuKD+boPYjgwnPbuzBNg2y+jKqoZHJlpnIupbJNc32U0fFpkokIqiLT1JRAkgSmpvNEokEKhQKqqjM6MkEqGWN8YgrHtgkEfOze24Pp15BkgeaWBhBA03Qq5QqaomE7LrpusH1nD3gQiYQIBk0mxic52DvK6lVLqFZtdr/Yz1mrFyNJIqbpZ3RsmlDYJJ8vEIvX8ZP/eAafJmGaflKpBLrhI5stsK97kO4D4+w92Mei+Y1HyoRIEsi6godEIVti284X0Q2NcMRElgQsywHPo1KpCTF4Xi3CW61U8TwBWVawrAoeDpu3vEipYFPIFwlGfAiOiKQqeNi0N8VQFBGralHKVXFsu+Y4CAK6phANB9h3YADT1HFslx27evn0f05x4zkLZyjXEhve90nMcAxB8ejqeZF4rI50OscHb/sIiWgD3QcP8OlP/w1Ll57GV+/6Cu9+1ztYvnwZ8+a3Mn9BO9FQkFRjEx5VGhqaeNObbsQX0Mjl82i6Riho4rg2oihQqVjUtJIEDJ/G0NAgB/cf5lvf+GcuOO88RE+hr68PMxTAcyVWrFhK0Ayyf/9+Uqk409N5HnnkN4SCJiPpMeY1zyM3nkYNKGTS06xZs57tO5/lwtdfRSJRz+O/+QPjI1k2XH8tum7gIeBTTXZs204uM0Vzc4rB3r20z29h+/atGL4Aqt/H5qe3EgnE+cu/+hy9vb10di5m4cJ51KVS3PSmN3PttdfjDwUYGR0hV8gTjoXRfT5GRydoa2/DE20USUHTfCiyTjZ/iOHRPsywSsAfPpJGHQ6HUTUNp5Ijl68QCISwrBKObRGPJujp6aNSsWhunociBinkqgTNBnAVBCrIuo7r1fKmj07kYyenMEfQCWo7wqrgMdrbxV1f/hLv/+BH6Fh5JvHm5DH6Tn80Zne6rSqqK6B7WdIlC9MMkstOEQgEyGUymMEgsqyTy+bw+X1omsZkehTDZ1C1qziujOs4aIpCtVRGVhTWn72O/r6DtC9ags/vR1FVbNfFdSWq5SrT02NcdOE5qGYDTz+ziSWLmskWxtB1BVESkTQTV3CQNQEkl9z0NKYZ4eab3s35r7uY1WtWs7hzPo5TxirblMppKhWBeMxk5crTSNWnePiRR6kWLe6++x6+dc+POPvMFag+H+lMDqdqc+8Pfsb8BQ0UihkCkTo8qwSWRa6kUq3k0Q0dTVMpF9KEAgE0TQHXxZNVJsbHiISjuJ6DHggjKRoBn59fPbyJRCKOYZYoFkSC/hiaEiJkxhG8HLFYEssWZ+TvVWzbwTT9ZPNFxoczyBJEoyE+8uEv8ODPf8IVV13Plk2bWb16LQ2NDaw760xCYR+WW0FT/VgVi3whRzyWopAvo/sMKraD59qMjY7xjltuYcN1byJgypRyRZZ2LKajYyFP/v4ZWlsaCZkhqmWLy665ii9+4R85f/0q6tvmE40nQBB4YdduysUMTzzxJLKisv6C87GdImvPOoPndu7k7HXrePTRX9Pc2MrO53eh6yKBUJS//4dvcOkll/PMM9tp72xhVcciMpkCDS1t6KEQB17cwTnrz8GuiLQ0NRAM+nj814+ypGM+9Q2tGLoPxynSN3CIjo6ldC5dysj4ELd/4BNcfPGl9Bzs5XOfuZsLzruYj9/5aapFmYULEyxd3snaM9eweHEn6Xye5StOY/u2HTQ2p1ClMumpEcygn66D3axceTq2ZxGKRCjZLpVKlaAZ4vBwP57noBs6U/lxzlzVydDgAE3tC8gXynQsXsDo4UN4rp9vf/t7DPaPUSq6+P0q8bo4muphGCFUfxxdVyhkxhh5cQemKjLRvZPc9F56u19AMxSKlWkMIzwzHefU2BUErrv+ahafM4/k4jj1SxJ89G/uZFf/Ln75zMM8ufNJmjpT/H7nU7zxfdeRXBSlZUWKhqUJNm7cwPkXnPvSlA3PQxSO5pS9XK7bf5XDJ56izvGrde6OjHeO03oy5044krh8bD+SIOK4HrI8q4J+kn5O0KcovrTPuXABQRRPeS+z+LNz938RJyqFALUviShKzC0RMLfN8bshxztTR9ue2BE5+ruTiHv8sTjBeI8/fTxeSSkESRJxTuio/vfgjx3Hq3XuZnGKqPwfPR5ZFNEN/YRO82xvGzfeyK3/+x6uWJV41cFi8TiH03VdgmaAUq7A8OgkiqygKDKaprLytEWEQwEURWJBW5InN+0lM11E02TCERM8D01TUVSVnTu7ScTCjE+maW5OYZp+crkcLU1JdENDUiSGR9OYph+rWsXn95NJTyMrMo7l0JCK4vf7qFSqqJpMz6Eh5rfVo8gyQ0Pj1MUDRCNBtjy3D0USkGUVXdfQdJ3eQyMsbK+npbWRx57YwaJFTXiuy8joNGvPWIRf11m5ohlZlpmeyiGIIg889ByLO1LIUq2unqZ4NDbVAx6e6yCKCooqI4oCuqEhiFCtVCiXy0iSzOZn99LaUkexWCAWDpFIJPAHDATJ5rnnDtDS1oAsiqiqSNWyMHQD1xGYnJomHAmhGzrbtu0hEvRTn4pSLBZr1FNB4A+HKlxzZiuOXas55MYXksmX0AyZWCzM9m0v8MPv/4iP3/kpfvjD+3j7LW9mww03EI8l2Lt3F4319Sxe0lHL0VJU7v3B91lz1jrGhqbQVB8H9r9IU0uSoBlnanIKRdU4PDBIKBxDFHV6Dh6mt7+bVKoOWZZoqGvhsd/8ilUrT2c6ncOmTDY3RSwaJ50ZRhElIpEkmUwBVRM47bTTSDXE0PwhJgYn+ebXvsWyM04jVb+QvV3b2fLcTi68uJO6pMmmzU9z5tp1zJ/fzq7de3j4kUd58ndbOOfc11GybcyQn3J2CklUCIYjBMNRFFWlrq4enxYgHE6we88uzjvvHIaG+kkmUzS3tDE5laappRFFlRBlCcMwcFzoWNxBtVphOjOOrhv4jFreneFPEowkERUDu1xhcGgIWZaQFZlCoYCVz6AGQriVEprskUtPUBeJIvgiRONJFC1AKT+FLyiTKYxQLE/jN/zImo43E9U+Fsc6d3OhIbBv+w4Kk2NctvEtqMEIFUdAECsIvDp1uBPBE2pGhypJFLMZipkBYo3za/vYSghZVDE0hez4KI7t4DdUNEVC8ByQxVpUV9GQVD+qKuJYFqYRoOzaNDU0oSoikXgKx3WwXQfLqqJKQS668FKefXYz115xPttf6OHrd3+Vm66/FEHxEDwdM5AAWcTnNxAVmJwYxWf4kUWFa695I6oMyVQCV6TmiOYmQPC49we/QNVcFsxvR1ZVmppbmL94KWevO5uh3kNcec2lyJqOZgRYt3YdquLjoovOIxZr4Mc/epDlixfwta98CRsVM2igqmotb9kpUyoWKBeLeJ6L6jcJ+HwUCiWKhRz5soWq+dm3axeBsMXSJcvw6RECYZFcfpqqXUaSbZBBkZr5zr/cT2tTEGwbRQYcG0VJsHHjldyw4UYGDmW5+6vf4K67P0847ue5zfu49dZ38p73vZNgWGdqfJqQX2Xnpq3EG1vxBQxGh8YwzSiyKqL7TUShxiro7+/n909uZt6CFMlYnFKhgOt6zF+0gM2bf0fPwW6+/o1/ZkFHJ1dddimDgy/wi0d/x9q1a7nv/vu58qqrCIR1Fi86G1+kjD8QJBEz2b1nB/MXL6CY8/jVo79hyzPbuPyqK/CHNeINTSzsWMXffuazjI5PcfqaDqyqzfyFS3nq91tob1tAOj3O2OgY0+kpPvfZz3D+685lXsditu05QE/3KMVqhfrWOurr6hgbm0RWNSqVAmesXM8b3/hGLrn4Eq6/8Qre/o6buPiSc9n67CYufv2FPPbYE6xYcTqe4LB42WJ27trGueeso1qpkEuPYNsVug/2sHjFGZSsEoJiYVfLyJpOPlvhJz/+Oe0LmmhoaKBSKROt1zEEgWyuQsmWMUMa5XyFHc9tZ+tTz3H1NRv467/5PB/48IcxwyaeIjGdmSJqtlCRJygXpwlpEaT4MlB9hCMmudEx2tuWouhJDC2MUKOinNBOmJtKcd11V3PFlW/gTW+6kZtuuoGOpR2cd8G5QM1eEE9weMf1NVcw5GXXh+MMj+PryP2xOJXj+GqduxM1PtW5EzlizsxgJOk4u/0VOHcnchjnwpt1Pk/e5Aj+7Nz9X4RtO585kTDFkajaiSLlc0LDs2HeuefmFkA/VaSnhqN0wdfiOB0prP5HOHferMLQzDOYVU46PpooijOaTDO7KP+VOz8ngyRJJ114joy15n0fe9Jzj9S3eyV1Wjzh2ONYHF/g/o/73DyhVnNvlpZ1DETxyM7/tddfj937+xP2IXizu3XCMQG8E24oeOCIDsGgTjIeZNmyxXiezLx5TfiDAcyAQcCn8/tn9iIKAoVSmbHxaYL+miqloso4tk0qEaVaqbDnwACGpoLg4fcbWHYVSVYRRBm/oaHKNeXXYq6ILMv0943i82nohsYTT+0iGTfRFAGrWkGSFLa/0EMs7mPevGa6ugeoS4RR1dru96O/2U5nRyP5XJFQ0I+IwPjYFK3NCR54cAvnndsBCJRLJbbt6KWpMUYo7EdWRJZ2NjMxkkcWbZAqBINhREkA0WOgdxjHK/P4k3vpPjiOIrtEIwFs2yGXLZPJZVm2tB1BEtENH5KkoGgSjz+5jc5FzTS1JHBsm6mJLOWKhRkIsvW5/Wzb2cfyZY1AhXyuQH1DHKvqUSiUmZrKEjR1bMfhrW94HbIigyuw8Yu/4JLz1zM2MYRtZQnodSTrGjnvvHMQFZf161dx0YWX8MEPvJ+J8UHmLWijc9kKKtUKnmAjKgIrTzuTbVu20jZvId0Hd7Fq9Upet/71XH/dJSTqkiBIBM0IqiZg22XC4RCBcADbETB8QUqWgCa7LFy0jMd++yyrV3TgVnMY4RiyYoAkYblVdL/G9779bR566Le0zm/HEGQcCVadvZrKVA6/LvGH3/2BnTte4NJLriIUjKOIBosWLUTxOQwPTnHZG97AlVesJzOd5u1vfxeXXXEFHUsWUSim8fwx5GqOfLrIrhf24WFh+k1S9Y24eCxYsIDx8TS9PYMsWdTJrm3Ps+PZ7axafjr56TwB06TsFFEEl0AgjCqKTE1nQPMxMT5CyO8Du0qp7II1heO4aEYMTZfRfSEyU9Oomo9itUi5KpIvy+iajChWERHw7BKioKDIYUJmkj2799DanMASA0izIbeZNUdCRERE8EBxHFzRxXaqeNUyv3rgfiYnejjr0quRNF/NSRdBRDnKwHgNi6zilXCE2vzt2b0JDJOyDYbPRLOnKebTWI6HrIeQNR+W46H5TAZHxhAFhfGxCYJmCBmHnp4XqKtLYlkSE6N7sCouqqqjSwrbnn+Ounicv/u7v2f96jN4y81v5bprr8bydPDKvPs9b+PZ7dtINi2hr3eQUCjMyMgIZkClmCtTF2tkZGiUaCROsZQjGAlTdbIMDw6jCBGidSY+f4TWtmZWrFiFGQwxOjrKtuefpbEhiiRorFi9CM8uUqwW8Gs+3nnzWzjv4nWEUimKuSmWLutANwzu+vo9vPnmm0g2xNFUH6VKFr8ZwRN8mKE6PEFAFkUmJybRFBnBDrH9uS3kMyOsXr2aaLQeVVcRBAdJMXEcAU0L4HkKvd3D9Pb3cOGFZzMxliUSi6JoGp5UE1Z5x63vxhElxjLjXH7xefziof/gvHPXc/raVVxx9WUkG1NIisJA/xCmmaBtwWLylRKVqX5MvSYIk5kYIajrFDMFRMlH6/w6li7rQPTCnHfROt72zrchygZuuURbSzOP/+c2CvlppkZGOGPtGmL1dSTrE0RCEaximcmxIUK+KKoBdXUtTEznmc7k8csav37wEb759a/z3vfexjUbr2J88CBd+w5z3/33sXptGyHVRBNF0uMjdK5dg4dHyK+THhnlq1/7NhecdS6IApOZMitWruDw4QHq421k86OsPOM0JsenEEUD3RdgMjOBP+jniccf51N//XF27z1EwBB5fsfveNctH+ahX2xi7Vnt/NPd3+IH3/sRZ61ZzbyWJFPDRapOFY0807kC8dR8kvULyE6OEQkbWMUKTz61leamFKrk0dTQiILHoa4DtLVECGgxRicyROJxwiETO53nrz9xJ2IgghnTiEbrefSRR3jfe95BrjiKKksEAmEsD0xFpXvvHsJhP6quMDkyQDjZhhZrBN1Hd9ceUqkQVVfEQkYWbDxvJs9+5ph1qGbf23Pf3aInIFI7HDxceMmBIBxViBSE2u/m2LSnOo5XT58d02vFqbo4Ifvo5RoK4IlybdwvyarjiFroEftUOFaNfDb1ZZayetRWnG1wgnrUc4IdJ3XdZgug/9m5+58Hxzk2cjeLUxn+s9TGE0flXtnEOErrdGdk7U9RXNvzTn7umOue2LFzHe9ISPtE4fjjnblTD3zmH3GWfnricP/x15lN9H2t68bc651UJfKE93C0EPkruc9TOYAvNbpea7TVrS0ux1C55l5QYFhqJ5De8dKF0fOoViow+1xmP8sTXqj2l6qqUipVKJUqRGNBJN1AlSXK5QqKpjBvXoqWpjiKIiIKAjv39jM6kUYUPBzbIRQ2KVcrdC5pQ5MlfHqtPlAkbNZ2jZ0qiqpQqlg4ts3BnsOMjU6SSsbwm34Amuqj+P0GiBKhcBBVlWlqrOPZ7d0MD0+y7+AYZ65ehIDHlucPcNnFK3Fdj3yhhOHT2bnrIGvP6KC7Z4BypUr7vBSCICCJEolYENux0DUFUZZBELGsPAHTQFV1rKqHqgj09w2SrI8QicXArdUvWrG8hWrVQdd8HOgaZm/XYUy/SiRcUwqUBBG7arFoQROiWHtmht9AVWUMw4/rOtTVmSyYn0I3VGRFRRAEqhUbMxigq/v/Ye89w+Q4q7T/X+XQOU1OmhmNJilbVrYly5ZlyzkbCwfALCx4CQbMsmYBs+TwgtfAwga/sLZxWGObjBHYxjlKDrKSlWZGk6d7Oofqqvp/aI00CpZlw/J/P3Dmquuaqe6qp6qnnqfPfe77nLOf7s42nnp2G7aqUlfbxEvPbuHxpzazc6LEdde8l1defY15805CEmV0w2B4cIhwOIhVtthw5VU4bglFkSnZZQQUEF0mJkbxSCof/tBHqKurY/euPcyZMwvDMFm6ZDmGpqGZOq7oYBgGg4MD6LqGJMpMTowzOLiXaKgKQ5VAhPrGOpobGtE0kYHhETyygWrqSKKAIssgCHR39bJg3mJqqgPc8PFPsmLZQloaqrn9Jz/lscf+xPpzzueCiy/BtovYtoOuGXi8fra/vAdT07nhQ+9lVucsdMNLx6yZzJnfia7IiEIZxQyherzs3bOHBQsWoPpDqKJFU2Mzjc0N5LMZVE3FNBWeePoxlqw4naa2JmzJwhPUwXaQHJG+/kH8sTD5bIL+vTuojgVRFAGnXGD7tleoqqpCsMrkcwVyhTQjQ/vQJBDdMqZXxVC9qLJKMOChaBWRRBXHLhOrr2MylULze1ANBSuTIVBVXelTdaAIU9m2UWT5QFEUFxDJyQKCbfPixodJDvWzeOUp9J68jKJoIAlTwcGptefQHH/HS4soISAyMTxEKKCjuCbhkI+xoW0kMiU8gUgF7HkCDA3uIxQKUijkMD06mmyi6TJlJ4esGoQjMYolB1mWkAyFcKgayS1RsEfp6OhAEDVOWbkG0yNjy1k002UylcPr85ItFGhqngGCzK6d29A0EQEd3dAYH09g6n5E2UIUXRynRCabxTA0Mtkk9Y0xRFEmlczh8/qJj8d55ZVXiFUFqK4JYxhe7LJFIhHHX1VNKl2gXLaJNdRgWy6yo6CoCo8/tpGu3i56e7toaKxjIlfAZ3gRrRSFchGPx0s+l2UyOYamm3hND6qmMjG2hTlzuzAVHcFxkVQNSXQoFDPImoDPbyJKNulsEtPQaGufQdHKU1dVgyA5JJLjjI3HMVWJQrGIpirU19URjQVYecpp7N07TDqVpaamDgGJ4aFRWhrqufY972XJkiWEvTHCNVEswWZycpSxsVEMw2AiPkG0Ksa+vfuIhqpIpZN8+EMfoVgqc9+9D6F7/FQ1VtHR1cPS0xayatVydu/ro7q6BVFVsW2X5hl1hKIGuUyBctnlk5/8DBdetAZD8xAMRJjVM5N1F16OP2Rg6BITEyM0NjXS0zEbjxZg73A/sboGquvriATqePHZl+ie3cX2N7Zy3rr1hGqqiGeyrFx2Cj5fgFw2y8j4Hrq7FyAJGsWCzf6hNIZuogoCHtGlc+E8gl4vt//wJ6y/6BJuv6Lpw+0AACAASURBVP1H9O8dZcPlG/BHvaw5Yy2XXXoFj/7x95SdJB1dXfgDHr7y9X/j7PXnkExOsnXLFryeEJIsUrZcfN4QjQ0x0pNxPKZKtpDD4zeJJzJIgs5XvvpNqqsbiMVqiCeGWLJ0BUuWLSYabkWW4F3vuhxBkkiMx/EZBsVCAVcqEU9M0tbRQ//QBMP9Q1iuQG1dDMeyGdm/n+aGWvbufAPVzeHaJYxwHYJjHzbPpwDVkfLKyjf2QYfrbTWlch3nhPyt41Xb/v/LjvRHp7crOOh3crTkfcqm2iEcaZIgHmwTeig96YCE/hg+WCW+PuUrim8ynlsJBknSCX2QfwN3f0V7J+DuaIbv7duhSA0HH9bjneutxpne2PxIm4osHLbvz72HqVXhLQ49EkT++eBu+gL4do48BO7e6XiHdh55AX+uVPUYTOMRFggEuO7m/+K8BeGjDpVkmQPobhqrfOxxKs+ZhOEzyaczKDgosojtVFhRx3VRVBVJlBgZieP36dTX+JlM5ggHvGSzBUZG4uQyBbwenVQqx87dg1RFgxSLJQrpJLt278XrNXHdSmPP6qoYJavMZDLHjl37iUX96KrGU89vJRL2Yfq82OUiiqKTzebxmCqqLGLoMi9v2cfcnhb6BoZxbYFI1I+maYhCpQhIOOSnoTZIqVSpYOn1+XEcG4/XqFTFsl0QRLyml7INVsGmr3+YUDCAzzRRTQ3HFQgFQ5SKJQJeBa/PpGRZVFWFmDmjmmKxhGnoOI7Dj+9+jIVzZmBZJf746MvU1oURRYFSsYgogSyLlIoWiiZRth1EsSL30zUDu2zjOg6qrLHjjUF+8kqZcxa1Ymga7e21nPmeT4BisnXL67S3dTCRiFMuOYyNjyJJAoNDwxQLBaqro/T17aV15kwMw4frOGzd/joUbPz+CPMWzmN0eJzeuV1857vf4Wc/e4j62hrqGmtQdRnbUihbNoqsAxqm5sM0NLxGgEf+8CsWLl5MNl9CxsURHUx/EMUVyJWKGKZJoVhEFETKNvzrv/4bHtXl0g1X09pUS//enaw87WyS8Ulu+dKXyeSKLFt6EvFEgmeefoY33tjFXffcS8/cbhKZFJdeejGODe0dbeheAdFxKeazFF2FibH9tFRHeOGpx6lrbiYc9JFIZjA9HqyiwAf+7u9ZvHQJba0z8Hg1dEXF0EycsovgyljFPFX1UVLxJB7NIFrdRN5W0ASB0aFhent6iSfHCHkCGKaBosuEq6qRlAr7nEmNUcy5aIpCMjWO4fWjKR7KdoFcIouh6QwN7ScaDrF9yxZqW9sqVdWEaZNzWoJ/uWwhlzKM791HPJVi6Zln4KpBypKM6BQrjsY0+0uAuzICiiCgiy57du+kfkYbZSA1mWBmWyvFXA7sMrqmE44GUBSZiYkxisUChmmiazqKrKPoOonJDP5AgJJVwtQhk3ERdQ+y61T6QrqVPLO8lUFRZBxHQTVUPF4vkqxUVAqOgKaKpNMTNDS1oKgu2VwaXdeYGIvjNf0USzbRSA2KrDMyMobXb2Kafs4//yIuvvgy7r3r5zz/wibOPnst8cQkPq+fXCFLOBzFReant/83s9racAWIT6Z56N6HaO+eSW11HblckVAogqboBAM6dtkmlcsiiSp/3Pg4M2d2YpomyWQKRJAlmUwhSSZTIhitJl1I4PH6kUUo5jOUygK5fBFZrOTWybILgoOuquAIFK0c5bKF1+eHsoWAwPDIKMFggFQ6i2HohCNhbMdC1SXKTgHHsbDLDmtWncbvf7+R4YHdaMEgwVAUQzPxmio+v58/btxIe2cHhZyFx+vjzjvvoHNWL5+48RPIksm6dUuRJZsbP/JZli1ZRDgUBdlFEGUMj8HDDz/CU0+8QGtLB9lMHFX3csbasylkxtnzxgj33vdzunq7iIb8CKqLKxsEonVopodwxMdDv3iI8887nfbWNjKpJJIoYJg6t33vBzQ0tPGHxzeyacurvPHqTpasmMs/3PARTj55GYLgsGvHftKZJI3NMQZ3v8HG3/+K3p4ObFFkcF8fXlNnxSmns/WVpznr7OWceso6Pvv5r/Dcs69y0SXnYfo1yjmBweHd9PYuYHw8xdJTV3Drrd/ljNPWcvVV7yWTn6SuNoLXa+LzBMln4lilHLfd+l3WrF2LqmtIkoeXnt+MpposXbacr3zlG5y++kwe+vkv8fsUZrTNQJBLOI7L97/3n9x3109511WXo8gC//zpL7BowUIC/kqxn9c2vcHCpafw+GOP8OnPfpFLL7sS2wbd9BEM+OjbvQPTH0JR1APT+q1Tcg6BO+FtgTsOMIL/rwG3E7E381XdaT7yoXzko2/wzW65Evw+/JyHOMCjfTBhetLzQfnWMcYThEOpTW9hfwN3f0V7W+DuYOTg6Fy7Q8eJJySPPCTpO3Dc8cDdCYAvQahUwASmNU2vnL8SpXA5sooSHCimchAUvPXD6TiHmkQeCzQe6/3TIzDHkny+nSTf6fdyXOr/qPO+PWB3fHbvCL3ANJlmhTnjQPT+BCWbJwiuL7r4Qi7/+G2HNTg/COgOXMqUPPNYV8vU+3DBBY/fT7FUIj64D18kCpJyQOdZRhBFwlEfXq+BiEA6VWJ8PEO+UKRzZh3bdw3R0lSNY+fRjQChSJSnn91Ke1sTvqCn0tvOo2GXZPKZLJrq4tE1VE1DVhRefm0nqmjQ1lrPo3/aRGN9PaVSmdpqH9EqH83NdRiGyb7+EVKpDMuWzMbw6KiqzN49Q9TX1yLJlR5C/Qf6L5mGj1//4VlmddQiScqBfmUuiqhQKtqUijk03WRkYoBwuApXFNi2Yy/RkI/BwVGefnEXCxe0YZVtREkB10aSTQSxjGn6cMUi2WSeuvpqCukEriiTzxepikWQZQVBkCgfKKKSzxbRVB3nQNDFKRdBkNnbN4YvoNHUEMHvD5PYP8RkOkV9fQ2x7lXIkkjv7FmMjvRh5wt89avfZuWK5YTDQbxeg4cfeZxZPV3s2ruf2kil6qYsykwMx7n5M7fwwRvejz9Ywy233MxZZ57D4396kg1XXc3zL2zmlFOXk5qM4zoOhZzDbd/7T7x+nT17dtIQbeXpJx7hmRdeR3BsfviDW5k9dzZPPPICrS1NbN6ygzt+fB/LVswhmyliu+MEzQjtM6v4tx/ew5KTeklMJPjvO+5l+dKVbNm6mU994mN0zZpBySoQnxhn167dvPzSJr7x9S9zx113cvPN/8TLr71GoVimYUYDg/vfIBJsxVUtkvE4XlNHNjzImhdZVCiV8iiyUGHtPAZdXXNpa5+FrAlkxtJ859u30tXdjmbYWLaMpBtItoThMRkf2IkuOxTzSfKZPA0tTWSKRSbGEpSLKRynjGb4KOZsUpMZdN2kYBUx9UYQdaLVMSRVA00iE09QEmWSuTSFXIZoKIytmpBNUbYdVJ8CZYvXt7xGTUMdVqmAW8rylc98kszEPoKhCLOXraaIjIALjgscIyfnkNbqbW4Hov6iiKJoiPkSD93zPWbN7sayJGRJZiKeJZnKo6geBMFAFHRGBnfilMoogs7kRBJRylO2SkiSB9vOIYoOtlUinZpEIoCh+/jj7x+lubUX2y6B4FIqlFB1gWRyklzGxuvxUHbSpJJxZEGnf08/VbEIpteHpEJiYgLJ0bjgnEvonLWYlrYQuhpi/8AAkiTzL1/6KvmsxYy2dt53zbXkkmn2DAzwgQ9+EASRxx5/jDk9J+E6LuvPupwN113FkkXdyK5GMiHz61/+ipOXnURVzIfjligWLELRGoqOjZWfoFyy8BphhkaH6ezqxHZsREXC0DxkJ4bRNZWIrw5kEdstEVS9iBpIjo4iuui+CJJtgV1C1Q2+/fUfsnLFKeC65Itj+AN+LBv8vhCWYBH2Bym7FrIpoasR7LJCuphGNv3ICtgli4g/yujQLrxBg2LRIlcK09QYRLAUPKaIZgTJTgxRSozhDXbyrW9+i/nzZiMINjNaZ7F1625WrVqBJ+yiCTHOWLMCQ7Po2zdAdU0LDgJ2KUUsEmFO7wIEVGIRP6Im4gsavPT86yyYv4CW1kY0VaYgahStApqqkM+X+OFt3+OkkxfT1t3NHT+5m46emYSqa8Ap86Pv/RcbLruGW//t23zxlq+ycN5sWjqq0dUAP/nRj+nbtZerPnANH//gDTRW+RkZ20/Xwnn0zp+LI4n4/EGikRiZfIqqqghPPLGJ3dt2s+eNLXzhls+y6vSl6IbIz+5/kKXrFtLTvYxXXvsdv3ngd7Q0z2LpkpMwfBJXv+di5i3o5b++fwebXtjOvAU9pLNpQsFGTjltMaMDacbG9hMLN6CpfubM78Xr9zE4OIZrJ9n88iucfPJpZHNjPPjARpoa2pg7dzZXv/fdFHDZvXsvT/xhE+effwaD+3dTX1dNpKkax1b4xS828k+f/Az9O16lqdlLspBgcrQfORRj90vPUj+zm1zZQZEFNPLYKEdVSZ/yP0SpAkhc1zmudyYesQJMtUN4p+DuWH7a1LmcA2X/nWks14l4MEdKQI9llZYDIrjCQXB18BrcirRdcJnmXx1roCkyruIBHFRsidLBcx7031044NgjiA6C4B5Kq3KmZJviofGEoxk88QRZO/gbuPur2ttl7qZA0JuBO8dxjipQciL2VszdW9shav9Iml88sE8UhaNaIEzXfp/I+Ec+wycibzwyJ/HtjjHdJLEiFUR45wvXX96mgfSp+/uLsXqH2+VXXMZnv/rvrOqNHLb/yOIp0+1YewXAdkA3DAQExoZG0TQNRBlBVMCxERCQVRnBBVWWGY+nmd3dyMBgHI+pIcsSkbCXgf1xbKtEVdTLy1v2omkqXo+P+GScUsFmx879xBMZUrkc0XCAnbtH6BtIEgqYIJSZ3dNMX98QQ0NxXBf8QQ8CIptffoPJVIali7q578FnqIroyLJMoWDx+NNbiIRNHvz1i/R21leYwUSWhfNmUiwVUFWZ7a/vx1AlUpMp+gdGiEZ92GWRutoIZcsll8lRWxtFlmU8Hg+zu5sPlEyWuO/Bp2ltqsI0VHRNwrElXn5lC5GgB4/Xwy9+9yJLFnUSDgeQFQnbthEECadsUyzm8Xi9lEqlA0nvArgSmXSehoYoui7z40f3cfWZS6hvqKK5qZ6rv/swV115BYVinnLJZvu27URD1Zx97rncc9/dNDc14rjQ09uDXS5RW9PA3p17MHSdUrHIk089xTNPP8eM9lZKVon77r2bbCbNjTfeyP0/u58P3/BBHNeqVD8slHnllS3ohs7JSxbR3NjI+MRuGhvauOfOu6mvr+G6a6/msouvYO3a08hk04yMJhEzI0RDBrGqNlQ9yJ133Env7G6qqxvxeVU2b3qFiy+8BMuyuOmmT3H99e/n5ptvxu/30TGzg/raBjKZLHfddRe9vd3MWzCPsdEJZs3sYs8be+jq7sCyCriOTixWRTKTRVI0quvq0AyDYi6Nrun86le/paamnkgojD/oQ1VFdFVk/vxFWGWXnz3wC2Z2dOHgkEtm0LwevAE/ZRcERSdfKuGICpJiEggGmUwkEBQNbyiGhIvtOmQzGcLRCOlknqeeeZJw2IdTypLK5ZFUE7/fJBQMUVtTxd69u0n2b0MRXeyyhTfWiCqIbHv+Cfp3vMbmx5/BzVqcdcY5zFl1KtG6NmxXRBTso2bnn/cdMGXTJOWCQ3xwmHwmwYzW2Vi2w29+81u6ujoJRfxIYsURzGRTyJKCqus4lCnbJWLRGLppMjaWwLJLFApFTI9JIBBkdGQUvy9AKBSk7ORRNZl8zsYqithll759fdTW1bB3dx/RSBRV8WBZDj6/RiqdQNNlJNmDoXpQZIHly07i5CVL2D+0E1XW2bZ1B+lUmrPPWsfw6Cg9vR2AjaKI/ObhPxDwBXj66T+xfv0Z7Nv3OtEqDxddvB5ZcynlHFKpJGawzIJF8/ntb39Nb08P5aKLafq4/vq/49LL11Mqg2oYlByLWCTK4P5+wuEQkiACDgGfl4lEipLtkrdsTK8PWZIoFvNIggqCzURyHENTsEo2uhFk3oIZiJJCYrxAMBBAEDUUyUPZlpFEE9FWkAWdQknilk9/jl/9/AFWnLIQA4diPoXjCiiqgSdgkIgnePaxZzjr3POJVins3L6LRx79DT1dvaTTKT53y9c4eeliTjllOcVCke7uXkRR4CM3fJQNG65CkUW+/fXvMW/uPGRFpnpGM5PjaV5+/iVaWtvBFRkZGeLzn7+Z+Fic5GSKYt4iFg0yMjJMfDzJxz56E0sXLaSluR4rb5ErFskl0xUQWl1FfXUtgZCPvn0D+P0eNj3/Ak8+8Sgf/ugH2b+/H6/Pi88bQPGILDhpEZ1dcwhGo6xbexbds3toamtlcHiMVza/QuesLlwHyojki2UENMLBasKBEN09s3BEm4cffpy29mZmz+6mVJTwmn5CIR+PP/IUD/z8FzQ01qHrMj6/H9Pw0NbYRWfvbEyfgCjZBPwRJhIDtDTOoqomxO439pHMDOMNSAyPDbDgpDmEPH7Wn7ue0Ylh6qt7SCezzOyqJhB1KORcDK8HWZT5yY/vZcN1V+HxByjbCh5PELvs0t3ZS6hGQ1ZdyoU0/fv2IksBgrEYkYCXUq6AoesIkkLREQ60Fjqev3lAKHWcGX9UQHface/Ejs0iHqoEL0oC09vmnciqdSLXdEhueQRzBhxe/OAtkvoqJzgw5tT5xKPB3TRm9HivHRzvkJzi0Hhvo33Z38DdX9HeDNxV8uDEwxMpp1gPjsfcHXgQjvG0VxpKShzrwTyMWXoHuGB6LGEqQnJwXPfwxpaCIBwWmXlzoHp4mwc4emIeL1n3WAvE8V6bGu9YNsXUCeIh2dOJMH3v2NxD4x6ZnDtl0xlPQTxigf5fAncAp59zIc88fC+1Yc/Rz9+Rvx/nMir3JaAYHoJ+nclEHOUgeBYRpUqQIhFPIikKfq+Oqsl4PQaNTdUMjSQIBH3IQCKRoqGhitrqMDXVNfzsF88SCXnpGxjF69Eo5EtEIhp9g3HSmSKnLulmRmuMXDaDpir4/AayLJDJWPT3jxAOBdi+cwCfV6G1tR67VKapsQbXcXnkia2sXzsfUbRxbYdCoYSmyYiihSSKhIJhivkifq8HVZMJhHyYhkEun2dsJE0qnSSdyROJepElg2dfeI2Guhoe/NWzBP0qPq8PVbapqY6wfdsewlEfruOiiylUw4s3EKCQy1FbG8YwVGynjItDZjJJOlXE9Hop5POVnDZJpFQsHZDPKqhapQz8WFZjVlOUYjEHCNz/zBtcfME5KIrE7bf/hPraatpa2ylYWebOmUcgEOKB+39BTU2QYDDAwJ5BhocnGBjYz/Xvez+JRBJBkbjyssu56ZMf5oEHHuCkRQtRVJmOmW3ofp1CsURiMoXP9OPxKCxbuQwXhXIuh2hCIFxDV08nNXUxVM3k7nseYNWpS+ie3UVzSzvDex9nZleM557fQdOMKHPnLWFwaITZc7vwmCID/aM4tsxjf/odn/7UzWze9AqXXHo5XZ1dfO5zt5BMZslm8mi6znkXnsWDDz7EY3/ciGXZvLz5FeJjY0SrQ+iazp69OwkHQ2iazNDgXgJ+DdPws39gkFKpxB82PkljYxWmKSPY0D/Uj9cX5pZ/+RrLT1mNrskomsZvf/lrZrU1srtvENPnI+j3UipaRII+xgb6KQEeXcIfCJErWMgiDA3109o6A03xUnYL4BZBdPBoGpPxQYLhalwsRFT27dlLVZWPhrkr0KuaUH0hPGKWFx7dyPhEgoVLlzBv1enEWlshEkQQVWwqfa9EwQZhunLi0Lx8JyDPse1KcEKoFPUSxEo02srmiY/tQff48AbC9M7uAVwS8QTBcJBUOk6+kKKqphFVM9BMA93w4Doig4PDVNXU4jG9eD0+9u7tIxaNkctNgGjjMX1YloXr2uRzRS686HJmd3bz8Y/eyNozVjGjvZlM2sJjmEiKgyS5eEwfuuZBkATyGYFkPEk2F2cinqO2rgarbNG3bz8LT1rIRz/6MT59002kkwky2SyuInLqsmX8+Pb/5MwzVxHwq/h9LezeMYbXWykUJKoe/IEQ21/dguH3s2DBAiyrxAtPPUVXZyerV50CooWqebEtBwGB5HiSgF9BVhxU0YfjZrFFjQsvvJwrLj0bw/CBK5JL7UdWzUpQX5Txek0KuSx+j4+SLWCoUSTJIZntw9BFbLdAmRz7+rahq1AqDDIy2kcg6KetcQYtTVE6OjrYu28XTU3tFEsWmi7iCJUKvo2NTYRjYcbG96HKXhYtmsf42CSCrDEcz/LTu+5m3Zln8fNf/or4RILXXnuBGz70UTa/tImbbryJ977vfdz2gx9w1rkXUCwVEdG4+t3XIDplbvjwDXzm0zfR2tzKzFkzeWTjH8inMiw8eQmaLiGIEte/70NQzODzm4zHsxTzOXpmdVFTU834+DgjA/tJpyapqalHQGPJSfNZsWIBqXyWjo4uUqlUJSBXyhOtraOquo4brn0vDzz4PyxbvZxgJIZkyfzb9/+d5YuXo0g6m196nuefeokf/fA/CUWjDA2NsWD+SViCxcDAfnpnd7F69en0tPfy2c/dwKqV57HgpEWcedbpaKpCKpkiHIkx1DdAoSBz64++xznr11TaUrkm/3TzZ/i//3EXF1+6nsnJSW799v8lHK5i0UkrcWyTPz3yMB/+0E1YZYuWmQZVsUY2XPlhzl9/Ha6QBFnFZwTIpCdpa5tBNmMxPJgmmUhhGCXu/5978Ug+QqFmvvbN27l2w4fxhoIUczlk1Uspk8TKpPGGopRFDzI2jmMfVldhyu84zCc6zrogHQjcHwYG/wy/6NjjHABJU9LGI8afzvIdq43YkUVcpvtuB33WihzswDUcB9xNYw2PZNKO9A+n+o4KojhF1R1aY6fJO6fu6+g8u2njHbqYqQs/YeUV/A3c/VXtzcAdHGK1DiH46a8d2PU2/rGVB/sYVXmOOI97QOb3ds5tO84xzzU17pFRk2MBtjfTOr/TPLfjAa9j3ZsoSgd04sf4fBAOB8bTFI//mwyec0Ks5jFe/18EdwD3P7KTk+qKxwV3x3uh8lS7iK6DIIAtS/hMjcn4BE65BKJ8UCqiKgqBQAC/z0Mmm2NwMMHmLfuY3dNM3rIJ+rzs7R+lobGW4aFRZFmmu7OWYCBGTcxPMGCgaSL+gE59bQ0dM5sp5HMYpoxddpFlnaGRcerqo3i9JtlMAb/PQyqVZsWyHgq5HJFIhEef3EJXRxOmJoFQxutRKRZcNr0+wKkr5uDzgyjKJCbyJCYyRKp82G65Ije1JQxd5bkXdjF/fhOhA3kukqgSCXp59vntzGiO8fzLe+iZ1cCBmiGEw2FQRARJQGICb6gBQVKoDnkwPCYAsiQiyzKOnUdRTJ58ajvP7R2jpyXKHY/soj7mwVAFdg5nyUxM8nJfirOWLuJXT71KfVUQj2lw5T98jmw2g2EazF84F0WGba9vIRCq9F5LJtK89trrnLx4NuViGdMI0tDQSC6XB1Hko//wERYuOZnvfvv/8M1vfBHbgXC00nZB13XyVh5DN/H6/ezZuYdYTQjbcUkkMuzeuZX6xi4yxTTegIdYbQzZ8HDehZcyuK+Pl1/dTGdPB3Nmn8bPf/UYv3zwcU5fvZpsqYSi6iiGgKEI/OiHP6anex7tHfV88Zavs3TZcsKhEJIk0NrWTjQSQ9M0isUiC07qoaunl1OWn0Qw4Oe0NaeRyyWZOauLbH4A02OQGhsjFvYzNtRHqZhBUf2EQiFmdXZy48c+zfvffy3Z7CTpZIaaukZyBZvVa1ZT11CFxzAwvR4a6xvIxQdobG1jMj6BqQhkU1m8mkBmcj+a7mViaAC/z4Ntl8lm03i9Hsp2meRkHn/AoFjKU19fRyZvI1opyiUX2ZTRVB8eQ8frVxAlDcUpkux7mYd+fCsiLmdddT34Yhi2gOQIqK6DRLEiwBREXMGFaXXfJEn8s/KSXVwkUeaQRLzizOzftQfBnSBbyuLzViHL8oG1ViedyhAMBNA0nZJVIpXO4DECOMhMjo8jqRKKopNKpjB0nWAgiF220TwimUwKnzdEMQemV0WSRU49ZQWOlaWpsZn29hkYfgFVMZmIj2KTx2NU+gOWLZCUPEsXncH73/93vOc91zF/7lLaWmdQLFpsfmkTX/ryl/nv//4Jf9i4kYAnQLS6Bk0zGd7fxy9/+Usuv+wCJifHcQRYs/p0ZrTV0zlzIWUxR/uMLjSngY2PPcJpa9Ygyw7RkA6IfOlLX2PVqtU45Txu2eH89ZfzgQ9cTyIxiN9vcMPff4oVKxeiesJ0tHXQ1uAjEU+RmJhAlzLYVJ4tV5CRBB1DUbFKeVwJCuW9yLKKU/IQ8jdQLsrg6kSj9Wiin2I2S13tDNJJkWitn4bGOkTVixIIky9UCvkMDe7Go/txBAcz4EfEwLLSqFKQK991Be953wdx7DKC7XD/fRt539+9H8eyaGxuoH1GHV//+q0M7R9m5fLFpHIJzlq/jmdfeJ74wCBv7B3gwssuZd0ZS4iEo2CrdPfM4evfvIVr330VViHLyLhFVU2Y17e+gl2WgDxFx8IIxnjsD39gVvtM9uzag27oZFNp2ma2sm3bDh56YCOjw4PMbG8mVtuAY2u4rk2uECcWrEcUVG679V+54ZqrqG+opnXWDBJj42RTJXa+sYu5c+Zxz9338sPvf4OVy1Zx9bsuJ15IcPaZZ/PYo0/SNbuHjo56HnvsT0TCdVx55XqWndJFVWwWk8kUg4N7qKmtwR/w4/P60RWZ9Wdfzje++3V8HpM9u/ro2xvnoQcf5L/+43ZGRndTU1vPurPW8MrrzxEI6YQjfnymnwfu/yNdXXPJZWx+/OM7OP2MJfTOa0CSZV7f+gbRUIzaqJfhwT6uf88H6GjtJFdI4fVbdHV24iGNL+Jj9TlrSRXG2bZlKx//7RpqewAAIABJREFU2Ec5/4IN6LpKfHwMWZLRTQ/ClOrqiB54cIRvcxwfRHwTQPVO7ZjBd9c9GDyCw73YI8s9HM9nOq7veaLg7ih7cxpxyn8XhEPg7piHHdXB5gTGOwr0Hd/+Bu7+inY8cDdl09kimGLgDo+sHI+JOpgEemSEYfoYByezw5FtEaY0wMebuJVn7NiRnWNNpukMmihWmphXgMzRUZ9j7Ztub6alnh6lOSpCc0xzD97nwZK2U+8/jIbisP/HwSjQIXx7XMbtRGxKwz5Vhvh487zCugpvsv0FzHUOX0AEgaXLlzLp6UEbe+FNRzssXWf6zqn16GCgTKgkFgsSPr+PQrGIopuIsoIsimzb2k9f/wjhkBfTNAkGTRTZJZctEA0F2N8/iK7J7No9TDQSQNd0RkbjDAwME4kEmUzmiURjOKUi+/buo76higcf3kT3rHZUXWR8LEMunyPg8zM0NIGm6fgDBrU1IYpFB0GQmBhPEgmZuDiIsl1pDmyJ5PIFTp47E0kVEASFcslmZCyOJIv4fCYCEvc/+DTbdw/Q211LqWChSpWGpqIgISsCVsmmtjZKcjKL4MoYhks+X8Rj6EiyRCqVQ1FkRNHk1S37qKmuQtY0yuUSg2NJvvibLPPOup6k3kpgzvmkPB34q3vQWk5l4SnnQu0CtIaVBJsWUjX/XNpWXkY5XI8Wa6J+3hnkgm3ggKzoICgkkwnCVY385peP0jO7l3dffR2z58xh7ZlnULIgmy8QDAfZ+vJr+AJeMoUsgUgQn2awYsUyXt++k9aWmXzvth+hqwbhcIwvfPbrrDx1ER6vj3R6H9FojLvveIh8uog/FGRgcDuzuzpxRSgWLIQy5LNp2mfNRELGowvoholh+rjg4gtwJYXPfPoWVq1cicdQmUgUWXXaamrro3hMg/XnrCdWFWUykeSLX/4GZ6xbQ7Q2yvyFCxgc7qetrZ1sJoUrSPz7f/wEw/DQOrMeUVKQ5WAFUOQtimUBfzCK1xelUHZIpEdwBI3LLruKeDKDxxvgnAsu4LoNVzI8MMi3vvFl2lvqyBULDOx8DY+uUd3Rgym72IUMsqrhajqmL4gnHEYTVcqiRVkUcUWdQCCKpkAmmcT0GDi2i2l6MXQPg4NDxGJhxhMFqsNh9g+OMREfozripX9whOd+/xCDA8OcfcUG2roWY4s6ouDiCOCI4AgVRsYRpnpTHe5NHLnGToG9ihDkOD/TIuaV5UFEECRcF4plF6UUJzU2RlvPEizHwbIyCJQpZLIUizlU3SSTLRL0+xBlh1Q2U2lnYgpopp8tLz1PKBjCsvNohokraCTjSaLhOhzbJZtLIOBlYiJJNp+mu3cuTa1NIAuUSzZjqRJ+fwyf5sd1HQo5G0OXcO0Ay1fOoqG2gYvPX4PpNTn3vCu54JJzWLz4ZJYuXoShqMiigKQrZHNJykWoqapl4UlzkBUNv78OWbR49zXX8KEP38D733MNsity3rnrOP3MxWi6SktLI5IoE9HH2bdjB+vXnUtJFpFlnW//n+9zxaXn0jyjBTMYRjV8dM1ooWRrxEdHqaqKkClahCL1PPnUJuYvWokrlChZZRzHIZ3LIkgygqIxMjaCR22kVE4hqxr/8aMf0N7exOhoP7JUJpVOo3m9pDNlXn15K52d7Qiyw9D+frxqgGwqSSgcIRiuxnLG8RmNjA/sQEJA80VRDYGlC3sJBoKoikJDYz1dXXNwxByxmipeenkrY6MTNDc1sGx5D3fcdQ83fupT3Pzpf+RLn7mZYG01m555hjlzZpOeTDFnziI+9qlPcc756xiLT7Bs6WmYAYV4PEkikcfvD3PSyT3kHZeIz8/X/uUbrF5+KoYhk04n+dAHPsp7P3QdmfwktTW1zF/QS2NzI4rh59VXtlPIJLjrznuYP2cB+8dep1wo4zO8dM1vQ4/GKBSK3H3H/ezY28/VV15KTSxITXMrV197Ldt2bqG2oQU7k+SRjX+kf6ifrp5ZSJpGVVU1y5cvplgok0lZiCLc+t0fccUVF7F7Vx/5rIaqlbnlls9x63e+iKYpTKTSKIpGW1sjPd09tM/sxvRLuMCvf/04a05bi2GYJCfHqK1t4qLLL2B2ZwvPPLmJyy8+jZc2vUjP7KXk0ylqYzN53/XXccUFV7Jpx4vksj5GRrez6dVXOfXUkwkFwpSVKob7B9AEB8Pw0dLcxvIl68hnR1B9Mju3v0HIF0RRRSRVwRY1KjqaY68FB7/POdrPqzBQfxlgdyz/7EhF1WG19A78MVXPYSo1TZSO0+duurqLSjVfnIru1BXcA2SYi+tUcu+mNkcUcIXKJgqV/Lip7XDX8PAf+8AxrihwdEfhQxUy3w6YtAUq56QCrE/U/gbu/op2IuDuSCnhWzFh0497s9eOtEPvefP2ClNym+O9563sWDlzU4vDOwVCx9NSn8jndMxzHpQ5nvhVCaIwbfvzmnEe9en+7xBwJ2huZQE6mNRbuRiPaXD5x7/HxYurT0jJW+mHd7Q+fApMI1QWcc3QGRkcxe/3gSijKgIN9VHik2ny+QKKqiCJAvHRDI7rEg75GBxO0NZax77+UWprIpTLZepro7y4+Q38XhPLsvAG/IyOjLB3Xx+xqI/Xtw0yoyXGK6/upb4uzONPb630G9NU+gfGKZYsAgE/o6PjFEs2ewdGyebydHW2VUrr6xqhgEkqOYmiGRQLRVRNw+fz8Pgz22iqr6JYKNDVUUtPVyuC5FIuuZTsMl6PTjqdZ2wkhSSJ6IbG7j1D+H06VTU+dEPH6wvy0qY3aGqqQZJl4vEkpmaCK/L61j384wPDrLvi41x03nloskKpVOSPjz3FsmXL6JrbQ8kqsm/PHkxZ5c6fPkhvby+pTAKfVyaXyVFVHcOxRWQsFFEgk0oxPjpEpLoKQSrT0hzB4/HTOWsWTc2NBIN+Muki/QNDeAwvX/7KV7nwgguRBImvfOlf+PlDv+FnDzzAxFich3//O5qbG5EkkVkdMznj9NMoWHn8AR+mxwRXoqOjl/q6BvwBL7/97a+Z1dnF/n3bCQdCCBgkEnl0XeA//v0/mTu7k5LsUNdQSzoRp3/3HhYsnItlFQn6o5QEiFSF0A2VTZteIxQL4AgiwWiY22//Ie+9/t0kJivNxJtaZ+APBzD9JpIjc8qpp/D9H9zG2WefhaopuE5l3vtUF59p4AuGGUmkyKSS1NbVY5cdFMWDYzuEoiGWLFlMdW09li3QPquTxpZmfIrGg/f8lIWLZuNIOpufe4b6xkZcUcHUVAoll5LtIosy5bJDPpfHtksU8xbDw/00NrawbftWaupijI3tx+fXEASRbCpBdUM9uAoBXxBTdinl0vzu/h8Rqm1m7cVXIashREnDFssg2AjuO2tGPn3trBRWOPZ2vDxoRVbx+zxk02lE1cTj9SFJkJycRJUNBEHA4/Oh6BqT8Tj+gBdJVlEVvdL4V5Cpqq7H6zPJ5rL4/EFkWUMQbGRJwXZcFF2mf28/P73zXub2zicS9vHcM5t58blX0cUQX/vGd8nn0rQ01vDaa69y10/vpL6+Hn8wSiQk0D8wgC+mMTKU5PTTL8RxRCS5hNfrIZNMoigy9U0tWOU82VyCr33ua1xw0SWUBAHJNCnmJvDqOot629jZN0wmkyYSq7DWs3pmksmlcGwLOViNakYrEmZZopy1aaytRleLqIFqRF0DQSQcCqNiseHad3PN9dfh9/gol8vcf/99LF+6HEHzVtqgpBOEwzFcx2JyMkFVtJav3PJ5fKZCTVUVLa1tyJqKx+PD4/HhCgLBQABV0dlw1bWsWbkUyXURHRFRl5FVENwCsmQjyEGKpQJVdUHGxifxeb3kM1lqGxoZio/gCjKaJ8AD//NTZrbPJJcr8NO77+YDH3wf9XW1NDU1kYjnWbF6KRdesI7h/bsJ1oQRyjITE3kefezntLS0snbt6WimTE9vJ+OjI9TWRtnX1weuw0R8BEkso+heyvkCzz33IsnsMKesOoVvfuNfGR9Pcf755xCJRpEkg4suvJyrr76Os886j9WrT+eFp//EuWefz+c//89cu+FC+vcNsvGRx5m7aCnlYoGA3082V+TOn/yUSy65lEAwwtYt2wjHorz/A3/P9e//IGOjI3R2diNJMjW1UQyPTCY9iVXKs+HKD1Bb28TXvvoVzly3Bo+pMjQ4TMesHn77uwf4wN9/kHyxyKuvbaFpRis1NWEcJ0NNbZByGcZHh9n1xjYivmoe/9PD1NfWIgsyr2zeQXxiHM0Ab0zntlv/m5tu/idqZoTQZQ/5bJoNG87Bsbdgau0snDuH2d1VLFh0OvV11Ygo3POzh0hOxpm/cD5Do+MM7tuG5AooiORLJRqbmhgdn0CWJILhKAUbBFFCxOHNbDq4O/r7+y9jx/Njj2UVFcAhNZp4YE16q+MOjje9WmVlxzQW7wgl2bRrOwqkHWesqeMqEs03B3BvB9wdzlr+Ddz9P2knAu6mbLpmePo+OPakeHu5Ey6HHhn38G0KTB4RoT36+IodyRhOp+uP5Qg4zuGVmE6kqtH09xyP1Xun4O4Qi3coifdIsHeI4TzW4NNYwCO2E1t0jjjbX2D1fDvPw+HXPHWfwhEgT+TyKy7j8o/fxsWLq49Oqj7iPt5aJiHgCiIIMrJrg1Mmn8/j83txcRmfmCSTz2PlbYoli2Q6T01tjEK+yPMvD+D3GaQyGSTJJhKOkEym6JjZhCgJJBIZ0qkcuUIe7CLhgMyChXMBh+poCI/XYGg4TkdbLbsH9zOvt42JeBrLKrCnb5TOjhaaGqJUVQXAlXl96z6iUR/5TIZSOcPTz/URDfqYmEjx+LOvM6u9hprqEAiwfccg1SEvqWQCUZDweVV004OiygQCBpKoULbKRCNeVFXA7wtSKthYVpmXt++nu7MR3DKm34dVKvGu773ENTd+i2uvuZJsPofp8yAqCn6Pn5/ceQ/rzl5LPp6kVCjRv7+fnjk9bN+xg7knL+aB+/+HtpoYgVgMUQTXEZEUjf1DIwTDMQKhGOCAKGAoBtlcjrq6GhzXYXhkiJ898ABr1pxKKp3ggosv4dprr+Oyiy/ivLPXc+mVl3H++WezeOlJzJnTy5zZ3fTM7iGRmOBjH/8gF19yFYgOqVSedLpAKp3l69/6Fj9/4Od86qZPIIkK2dEk/3LLVzht7RpUQyGbSrF+/TkEggaSrZKezGCjcOOn/5H2lhZaW5owTZWxkQyqYtO3ezsNVa1Iks1zTz+F3/Bw2RVX4eIgKzLJeA7XKpPPZBgfHuGPG5/Edgqcd/46kpN5XLGIKChkc3kyxRKKZuC6ZVQcFM2D4ErIskwiniaby7LppReZPaeXkYG9VEer+P5t36VrViuZbInf/u5JVq1bjyq7KLKANxBGNfxMpnK4ZYd0YpxcuUzQV0U+naSYj9NQ10g8mUDzBPAaAUxTY2x8mGDIj6b6MdUAqqFTdCxEO83Gh+4gmxvnrIuvo75rCa4jYiHgUAZERFt+xwT+lELE5egA47HWiiPnuCAIuLaLLCsMDY9T39hMLpfF49FQRBlZVnBcF02vVGV0bItCqQBIqKpBenSIwmQcfzBKPptGM3UkScayXAxNwbbLxOMJZD2KothURfy4VglFdUglJkhOTtAxs4m1Z61h4YJuVNGieUYHbe1N1Nc3M5kdZHDnDuob5uB4gpx7xpk89fRzvPfv3oXrWHi9Jnt276K+roZPf+azzGpfQFt7J6vOWoGDxPbt2wkFVKxciSuueA83fPJmautqCEfCyJpEIBxCcAXKlo3p8YKtMD46iOlRkQw/99x3H889v5m1Z56N6xbQdRnbyjHetwfRMDjvvIvJTBbw+jyUrCw+n4HfF0FXVBRZRtZ1RJsK+PcaqEKApStX0NzajmH60T0qsqZhmn6KBYeyVcTn87BrVx9/euwprnj3ReimgdcfQdFNNFkkOTaESonVK69gw6VnUbYUnn35RerCfjTNoCyYuLZF0O9jaHCAlroQwUA1X/jCl/ja176IoIhseX0zwUAV3T0NFKwc2VSammgVBbvEjR/5BLlSkQvOPZcnnniOQDBGQ0MjW17bST6TwesNoWkegsEqkpMpVE2jpraJQiZFVU2M5aeupGxLNDY1Ybkp2me2kS+k2D+wn6uv2cC9993NP//zP1EdizFrbjeiorJ67WpcQSccqaJcKrJl0xZamhpwcWma0UZ6vB/Na7L27HVsuHQ9NbEYa1evwW/KVDe2MDAwwtjoMB0z6rEdidxkFq/h57vf/Q4jIxN851u3UV0TIxz1YDsO1VUNBMMqk0mZsckSPTO7kbQyXq+P0aEJXnrpNf4/9t4zPK7yWv/+7T57Zk8vGvVmWbZcZMsdjAsYU4yxARda6ISQRpL/STskQEJOSE7qSSWFQAqQhBIIJUAIvXcI2MZNsmR1aaTpde/9fpCLLBcMJ8l7PmRd176uKU/bM/Osee617rXWSKKLymA1mpCnYVorVQ1BfIEggmgQ6+/jtRdfpa5pMu1bd/OZT34Il8sgn3Vi2Tke/vPDTJ88id6Bbn5/5zOcvHYhmaROeVUEG5NSMcOsuYsJBv0EQiE2b92BrvkIR8vGWDGiA8npJFIeRhEEtr72NNW1NVhmaRwl8RAg66D/63E64CDdcXR17g6lSw4c58gDCHsYVeNrP9t7GGBHlR0Tcf9AgnBgbpKjAHcH1as7xFnwUOBubz9RELFsk/HJVg43/wEijjuXHr7VQfJvcPcvlFLJvA7eD+h4D87wOLEsG9ti35/zocDWkWid+yc8/Bz7Zf8Gm+han/h4/IY71MY7mmDc8UB3IuVy/PPx7cf3O1oq63iQtv/5xPs6cLFjNEn7wLfGTbVvfXs35yGU0Dg2wL49fqTC5vvHnriW9wZ0B7y/JxHC+PEO6i+MA3mCcADAO1qx9zkABcYPPwYIbTRNpqe3F8kuYssOdKcTl6Hj87qREOjujlEq2WRSeTa928PUpgjbd/ShaiLVFWFefO1damvKePn1rQjYeDwOOjsHKY+EQDAZHk4TClciCDK7u7vY0dHPrJn1eLwuJAR8PjdPvfgOk+rLGI1nyBUyvPj6VsojYfr6higWLNLJPJJoYdsq2VyJ6prQWExXrshIPIOqmPg8bsKBMkQpQ6FoMppI4fb42L1rGFEs4Xb7eOvNHVTXREEUiMWT+DwaQ6NxwpEwFQGNbL6IqjuRRIvLf7GD717/VXRDweVx4xQNDIcbW1bZ1v4uZ555OqViiVLR5IILL+astetIxodZsnQxHdu2sbuvj7CeJBydSndPF50dW1BsBbcjxGhsAMNdJJUZ+7NxKBoCFr2DAwiqgi9cRmvrDBy6i3fe3orH4WHKlKn8+Cc/YduOncxvm4HmU3F4AlREo9g2OFwGTzzxFBdd8GF0p41dAl3SkHUVTRcppeJ4/JVsfeMVvAEDl99LVW0jlRVhSmaCnv4BghEf+dEc3/rJTznm2OUIlsCxi+axYPECBvoGqSor556HH2BmaysPPfAwLS11/O7Xt7L+vIt4+c2XCPoNchmTu+94kNtv/x0rTjqRH/zop/zs579iVttsFi5YiI1AMOSlaDuQFJ1kukBjVYjkyAiKw0MiZ6M7naiaTi5fpFjKUFYWpKa2CnWPJzmeLXH//Y9y6omridZEuf6GG7j88gsolkq4fQEKpomqyJSKGdLZYYxgJX6vj02b3iISLaNYFEiPDlBeXY1dTKL7PCCIWLZMyZRJ5jO4XCIp0YOW2kb7m8/jitQw+6SzERRjLO5EGNvD2Hv26P/CKHQ4qvvh/ksm6nZRFCjZIqqYYGTX3zElB16fTj6fI56MM9zXharZDAz24PUE0TUBu+BCl1Uk0gzGMzh8AUb6u3AHI2iajiBCNpdAVbP0Dfbg0t184pMfoWPTTqZNn40R9KGKPqoqGwkFXdhqAU9ZFIdDppAdoSDahDxesvEeQt4QP/zZ3bQtnk0m18d5a1exds1GOnu2UtPQgmmXUJUSO3duZVrrIl565UGOnT+fnvY0u9rbufhD59DSNIOymgouvOxcREFA1Z0MDgwy2jdMLpkjFDQAhZt+9UeqgkF8ZRGKooycsVFdTn51041cdsll6F4NARPLtvGGwqSTWWRFIpkaZWh0Nzt39LFg/jJGU+38+Fs/Zua8GSiSgWmJqDpoepje4X5UpwfBVkFI0bN7C27dSSll8c3rv8/SFQsp2QVExcmatRvxGA5sVNKlxJ5EOyK6J4itejju2OmAwEjcZnbbdGSHE0lW6O7u5O5b7icSLhDyT0NxCtzyu99gmiUaG5rw+4IEK4LcddetzJx3DOlYCllzofh8lLI6q9bMYc6Mqbj9jfz05zdywSUbKJoZLNPivvv/xvSZM7nvvvuYMaOViiofoprBcPgQJYXBgQG2bO6iuqoa0y4wb+5c+nuS1Nc1UlEZQnIJTJ0yC9k2uPSCS1l+6ql4/BrmaCe25iaVSeHz+IkPF6morubKK/+DNatXU+aTqJ9cz4WXXgZFB7ncAIWijSccQtRNAsEwzVNa+e73fsn82a0UzCKq08m6dRu47777OemUE7n6ms+y9owLGR5KgJhhcKibiy78JE89+lcU26a5dQ6pdJxkOsPtv7sTv7+etze9TW2FH195LZYNquZClhXqaoIMxztpW7SYr37+65TXVHH/Q48SiVTg0kq88Nbr6DoEq+aydMVsCvkiqVSKUqFAqZhhd08vyWSWoDtIV3snNXWVpOIZnnz8cV549kVEsjx0318QBAWH203frm6sokkoGMRWXNgI2FjYgjnOs7XfWLv3EhGwLWvs+SG8eR+EtDT+fHY0YTiCIFAqmYf1+L0XyNtLwdx7jadijqdh2hPvzxprI+wJnNnXVhzzfY7vNz7Z3V5wt19XCuxLZriHGrrPpyKMGdHHHJN7D4Fjr9l7zmjvt3Lyv8Hdv1D+meBuYk6NQ9E6RUE8arfue4G79+Md+0clIRm/aY/kpTsSZfNQ6zqUstrT4oivwZjV6mBAdIQ5hANfP5zsLcPwfj6690fJhb3eyqMbYz9F8/0CPHGfrrIOAOHjRsbjdo/VfLPB4VDJZNI4DR3bsgkGPXg8OpXVfnx+lWi5D6chUxMNk0hkMIsm3b0xzJJJKOAmkcgiShbDoxlMyyIS9vHYc9vI5TK0TK4iHs8R8HvZ2d7Htp0DBHwu5sxs5q13djGlqYrBoQRtM+sxDIN7H3odt0tleksd2WwWXdeprIrw4KOvITLm7SiVSoSDHpwOB/c88BLpfIaG+ircLidYNobbjculUSqUcBoyiUSSjl39hENBhoeGcTp1nK6xTHhevxtBgo7wWtadugqn28AyRRRFYMfWHdzwjW+z/MTlaKqAYbjJZbIUC3E+fOllmKZAPl8iWhGiWCiydMVytr/1PEawgUAkQDGfo78vxnnnXcgnrrqSkZFhDE+IkmlRzOXZuXMXtXW1OHQdRZYY7k8j2CI7dmwnk8owaVIjP//5L9i8ZTOKLDGzbRaCKKGIMr+65WamT2shGAhw6223s2TpsYiixK9+dQtbt22ltXUGAb+XOQsW8fQzT3P6urVkMxmaJ09FliUsu4TbFUGSVZ549BEu+fDlxIZGePrJJ5kzdxZnrjmVBx54kOaWNnS3A13TmNo8GcNwM29BGyOpBKOxQaKRcgRkIpEoq087Bc2hgg1z2+ax9ow1OJ066UyWfD7H7l2bKRZGUcQUhVQRbyCEbYuomoNUPIEiSySTScxCAZ/PRy6bZ3Qkxtf/6+ssXX4iS447jkIuy/BgP4sXLETXVJDA7XaTiMfJZbMkY0PIMgSDYUpFk7JwmPjICKIoEhtNoRkeRkaGUR0ustksHrcf0zTxeAJIooiRG+Lu3/6E6cecRNWMxYiijch+6uVEvf/PkEP9l0ycX9hzsJGsDLn4ML5ILfl8CQEZWXLgUJxkMjnKyqtJpYv09e/GqXsQZZFkcpRQKEKxWATbxGF4SSbiyLKELEnIaBQtiaDPy0knreLYBQuprqlh565OHIrGxz/+MTZsWEt8qEB5WSWXXfhRzlxzNhlLopADWxQZHhrga1/7DmvXrkdVneiuEKGom4i/HEtIYTh1dNWNy+UlUlbFooWzGRyM8bkvfpn1Z6/lo1d9jIZJTdjYKIqELGokE3Gee+457rjjDhYsmM/g8AD+QJBrrvsKp5yyEFULcO3V32BWWxWh8hCrTz2N+//8AFNmTANbRlUc5PMlHKqGqigUC0V0l8G0KbN5/vlXaGiqw+sNUNlQh23r5JPDlApxhntj6IrN6OAudFWjt28nTj2EYMsUCkWqqqKYtkAwGMKpO4inRhke6MfwuhElAVVxIIkitmnjcKiEAn66u3bT1TNEbW05I7EY6XSKUNDPLTf9mjlzm5EVF26fweRJk5kzdx66Q+O73/gZ/X2DnLpiNaZgkU9nKRSKiIqKIlq88fqLVJQ3cdKpa7j77rtQFJFnn36a5imTaGqajOF2MH/+NH5366855phjkSSFG274NouPW0wgFObOu25n0TELwRL4/v/8hIHBPm6++SaOPXYRI7Fh2nd08h//8Xkuufgi/vNzn+HCSy9AUlR0lxefx03A5+ftN7cQrfZywYXno+saNVV15E0bWVPxeDT8kSiFgk0hk0fSJIp5i86du/nJj3+AQ5P466OPcdySpahOhQ1nn00gHGD5icu55447SKVz5PN5miZP5cqPXcrM6TOorKyhLFTBVVd+ksxohlLe4vyLzsXvN2ioryZXLCHKJUyziG3ZKA4Nn9uFKinoDifPvfg0H778Mj7+8Y+x9vRTaZ3VilksoDndFAtF7JJEMScQCBr88a67WLL4WPzBckq5LKZdxBcK4PTqTJk6hbq6Kqa01DNlSgs1NZP53W9+x4qVJ2F4DIYHunF6dMBERMZGRTgCTVNA2Gf8/UfE2x2tTNQ975XI5WhHlIqlAAAgAElEQVTCdvbJOG/ZREB3QL+DnGz720qCgDjuOoCVdgRa5kFev/Hn9glFzPeCu/f7qf8b3P0L5YOAu/GWjUMlVjkwfe3B/Q413/j+wljVSix7YumEQ6WXHbMkjE/yMlEO2Hz22Jr+UeDuUIG2459PtCqPty4fynt5OEV10DhjTw459gHd95i5xs+xz4u45zqS8jlgDXsS67wfqueh6FLYB2fGGk/BHGuy38IkCgLWoZT4BI/sxrM3cP7nfsbaeaED1zDhmnhPhyIW2AggSuguN2axyI6dXbh0DZfhQlYVdKcD3eUgnyrS0THEwFCamuoKBoZiRMv8VFVF2N0zQDBgYNsWg7EEAFXVYbI5k+bmRma0VBAt8zM4mODvm7vp6h6kZUo11ZV+JFHkob+9STJRYMrkKsrLgzz57Dt43AqRkJM5syYTi8XYsr2PUsmiUCjQVB/l5dc6WLK4BcvKkUzlcDo1ZkxrQHeoOBw6ti2AINI/MIjhctHVPYht5XE6NSorynjwkbeorQ4QKQtiWRbFvInqULno51s4bs5iZMNBIBDhwQceojLsxWG4OOeiC5AwkSUTVRSJj46STfaRzeZ5e/NWWlpnsmnT60iiCLKIS0jiiU5jeCRONFpDIpmlddYMyisrcOgGhYKFICpse3c7f7jjXiLBEA5ZxqXKnL/hIoLBKq6+5os8+9TTFItFPvPpT/P8889z9vkX4nX7kcQipgl33nEHK1euZFdnF7u7dlEZrSabSzF9Ziuzpk1Dwubl11+jNuxl/pIVFPI5DJeTyy77CEuXLmZgsAdNFlBVF81TG5BUBZfTxR/+cDv5XIoPX/FRTll1GrWNtUyqrUJRJL50zXWsOOXUsQLzUomA04dpmSRH03zkio+yc+d2li5eTGV5JR7DzYuvvMi0lql885vf5dFHn6KurIneriFmzphPpmiRSKT50peuYc7s2Xz5S19m7uw2VEWlv3sA2wQseO2VN5jVOgtF1XFoMq+++gKBgJfGpho8RgCXx8nb77zDlKlTyGbzlAom5WVVDIyMoju8ZNIZujq7aKhvIFRegyxL+HQFRXcjSRqx4VG8Hh9WLseT99/K/X+6jUs+ez3u6OQ9GRPtAyzstn2IjfYPlvG69nDWdtuGfMFCyAwhUaQk6MiyA03VEQSRfN6mvKqSwViMQDhMwO9DkAVSmTS+QBgRk4GeLnS3F82ho6gKoiiQTCYQbQWXy08mE2fjhoupqQpSVV3N40+8SG1NhNWnn8zQYD+ClEESsgQjPjzlEZ574oUxY0xNlB3tu1i/fj3v/P1tPvPJ/8fHr/oE6eQoA/0j6FKSe+58ELcR4MZf3Midt9/D6jWn0z88yEUXn8vAYM8eurhEJlXAFkQ+86nP075tE8cvW8ras9biCwfweMJYVol1Z5yMZhi0b9/JKSuWE6mNkkqmiYZr8PpUAqHIngQ24lhyMbNE0SwRCoeRJR0bi0DQgyyqVFaVYdl5dm7eSkV1GV6fMZYQZbSTqroGBFFDN2Tc7mpkRSFfzCBIeSLBMnbv6mc0nqCutgK/30siHcepuxFKRYqFPAI2mVSS4cEYtbV1BCJeMItYpQKhYIBMMoXHW6AyMhVfmYIk6DidOuGIj1w2wcrVi5kxdyqFQoIVK9ayauUq3n7nXSZNmYoumBjuAPf++SEuOO8cXnrheR595FFqKmqoqK0gGAijaSo7drQTLQuRSuTZuqWLdWevw6E7+MUvf8kFF5zD8PAQbsNNbGSElScez8aNZ4MtUEpkaGys5eSTlnLHXXfzpc9/jkQ2g64bKLKTrs5d2JZJb28vLdOnIiklBKHEi6+9w333/plZrdMR3QpmScTlcTAyMoLfG0YWVPxeJ6eftpzyaDmbNu1k2fFLyeWHsUomIiJWscisac1c95WvUT+pmSkzp9PfuY3GpmaGYgkEejnmmDZqa3ysXn0sP7/pNxRyaYqCg76uLrCL6KoDw+mmb2gQXzDM4O5+aic3sHzJCl587jnWrDqZzt5+MqMxdLcPWRRxqi7uvvP3TJlShdOp0t4TY/7sVq796jdorIti2XmGhpM01FWya1sPtpXD6fMiCBq7OzpZsXwxWzvaqaisIFfI8M7LzxMNR8aAY1FAlA4P7uDwzKCjoWW+X0P14XTP0TKTxp+VDptYz9pvsN4L2GzLQpqw1ongzrLtfW0mXuPlIHBn7WklCAe3PhS428Oa2kf1POKdHyz/Bnf/Qvkg4G68HMpbdVQxXUeytgpj6Mvm4NIJB6/T3tf/cPdw0Hv/QHD3XnI0azoaj+PE9zKZDIqqHqb1wTd3pO/nqMHdEda3t4yDIIwprr3XocYsmeYeCtchgN8h5rRtxuiah0iGMnFt69af9b4pmhPBnW2DgDWm/C0LWdcIBnxgQmI4QSabBRvMosnu7g4yhQyzW+twulSCQR/tnX1omszkpip8PoNQyI8o2OiaTkV1kHDYi6y5GBoaQFFkXIab5qYKGmrL2Lqji2iZF0WV2NHRz6qVc8nnCkiyyDtbdjO7tZ7KygijsVF6eoeY3tJEpCyA122wZWsXc1sb6OsfpK42QjjixaHr3P7Hl+gbGKSpoRwEidvufJmKqBMsgW07+jDNEuXRIIlEmmKxQKFYxDA0nLpOIp7nv/7cwY9/fgv33P4AxyxfztNPP8Nbr7/EnJlTiVRVkSuVSAwP4zEc7O7aTXl5OYptkc2aNE+fRjw9Slk4QHv7ToKRMAFHEdFZzR1338ukhka8Hi/1jbWsXr2aJUuWc/XV17Bq9WlkEynu/tP9XH75JTz12KO88/e3aKiv5bkXXuPzV38RTZLIZLI8+/xznL56Nd19fUxqaGTbtnfwB0JEI1H8fj+ZdJoli4/lggsu5YyzTqOsvIo3X3oZUYRQeYRbfvgdGifPwSoUGYkPs7u7l1WrTkF1SDi1PA6nn9FkklKpQDKRpqq8gtbWFjRvGYbhIpeKMTocY3BoiOXHH48tqkiiTL6QZeub25EVgUQizdx5C7j00ovZsmkTDz/0V9pmt6G5NPr7B3EbXrKZPDPa6qhrqCGVTRMIRunu7mHdWevo6e7GMAymTp2Kqii4dIP4aALbgu9973v89ZG/sbu/n0UL5xH0GcgujdHkCL5ABESLuvo6JElGEkWC4SpSmSJOnxcJCd3hIFoWITEaZyQWw+NS6NzyFoLuw3AZODQHCCJu1SK56xVWXvJJ8o5yHIBi5jBF5cCEtP8i3Xo0IsoS6VgPhUwCSzKQJEhn06iKjCyrJLMJkEqMxkfJZvNoDhXTtFEkDUkw0VUZRXMhygrFYgGHQyNXyGOWMqgON7GhQVavXkdTYzn5gklPT5xUsp9wOAC2TUXtVLzuAFWN02ldeCJXXbaR2tpKUqkBQqFqwmU+QgE3J590Au2bXiPga0BUSrgUm4cffoqGpkmk8zFOP2UDkWgE3aVBMU844CYVz7D5rc1cfNmVnL56FU88/gxf+OwncGgqJcFmcHiA9p3dVFRE0GSLbNGDaMWxiGP4JpNPm1x0wRVs2HgKikOlVCpQLOUoWUUUUSE2FGN0ZIRQJIRNEYdDJp1OM7C7F00tIVtFTM2FKErYpoppJcGowbIVCvkklgXJVBLDcGLbMNTfhSg4KCurJJXJkC+kMTxOJEkjn81gmyXcboPenh4GBobweX3IugilEoqiIAqg6xqRchE7F0LSSzhUL6IMplnk4ksuYMN5V4DiQhCcnLvxHBRRpqamlv7BIb779RtYuepk3D43b7z6OkuWHMef732AefMW4NB1clkLw/Dwxc9eh98fYMmSJZz/oUtYvnIpkWiEtrY2fJ4gTqeLwcFuWqZNory8gmQyiSQpKKbA4088TF1jDUuPX8ltt99FyTZpqq+ma/cQZdEwplli1sxWzj/vStaesQpRsdA9HlqaJ+E2PIguJ2Iuj6iYBKIR7v3j/Xzh81/krTdf46yzTkV3evj8Z6/h9DNOJ+zTGOwbYvNbm6kqL+fRvz7Ol6/9Cv6IH8UpkR/N097Rxc7OTubPO47bbr2P5ctPRnU4aZo8iXg8TvPMORiKzr333MNbb7yDQ3UjqyW8oQr++Ps/YYsQG8hy629vo2VKEy0zW3n2yUeZOr0VSRAp5PPMndNMNt+HLOoEKxpQSiXqGqYiywXKoxEUzcOzf3uC3s4RnvzrX6iZPA1JUNjVvoVUcoCGhjpG4wmMQJiaYIS+nn6cbjeowiEToB2N2La9p6zU4dsIHxDcvV851Fn3sGeeMWv72MN9Dgn7ICB6qIoGRwNWD5uI5WjB3d5u/wZ3//dlL7ibKEcL9g4ABvaBP4/DlQGYaGkdvwGFvT8yYe97B3rrDqIrsj/o9ajA3VFSEP9RcqQ1TfR+7pUD40j2Zr08MEuoLMvjvJH7rT1759xv0bInvHZwHb2jiTGcuOaJCsqyLPYGEh+Osz5+TaIkH5FOccB7AkcEdnvb75WNZ2/gZ39+m7ay7P61s18RHcmTNzbWBGsbYx4+xaGiew1cuoqqyTgcEmXRALWVIXq6uxmNDVLIlQj63Xh8XgRsFFVFUlTcHg/BsBdVVRElEUkU0XUnqqKiKBKJRBJZlCmUSoRCIWRFpqE2jGlZWHYBr0+neVIluWwB27SxbIFgwI+iitiWyYsvb2FW6yRcbhcvvbaDSY01DA0nefXVbaxYPpWW5gpKloVpmijkaJnWgOJQyKXyBIM+/IGx5BkV0QjhkBNZ1XnrzQ5e39RO7TFnM3tWK5linJdeeI2TVh5H6/RphCMV9HUP4VA1soUEJUvjndff5Ze/uo0XXt9CQ8s0XB43+USa559+g1B1hKqaaopCCN0pUV9bhculkE6OkstmmdnWRmNTE719/cxbMAuvW8fMFqktr+EPf7id2upKotFabEvgkb88zFCsl09/6hOsXHkCDodCOp2ksrICERXd5SAaruC3t9xCMjFAy4xprD/3XNKJUSRkahurUF0CqWSMFScsZ3d3lmC5B0P3Mmv2NEqWiW07EAUH6cFhNEWle+cwPq9NWaiOP9/3JxprG9A1J+l0knzW5pabf8vCufPYseVtrKLJK08/idtXjqY5yKZTeL1uHnnoIbZv207t5Kk0Tmniqo98mHPWb+CtN95g4bz5VFRXExsaZduWbfiiITxeN6ZVpLtrFy3TZhDrGySeiNPQXM9dd99JVU0Nq09fy/IVS1m0YA6hcJBUJks6n2Vqy0w0Xad96zYMw4kkahSKCrJmIikimCVEBTLpURR1zEruNDyYlkiouhGH4gCHE1EwySYH+Otdv6F1xRpUVzkOScLCxpbkfXtor976/x3cCfa+zV0s2HRvfQ3FH8UfriSfGSSfLeDxhomNJkilsjgcBm6XgUtWKGULCHYJw6kSi41Qsiy8HoPBkQQ+w6BrRzt1NTUIkgvTEvD63WiaiGkVkUUH1eXV/Od1N/Dcs2/hD0T4/Z33QDFBY0MV55+/Dt2hIIoiw0NJrIKT66/9L2qr67jmy1/m3HM+hFHuwu31ADahSCU33vRbLrz4I5iFYXxBJxIaO3bsplAq4fV72bFzJxvPOosXnn2dj358I9HKKopWEV12c+uv/8SaM07DLsHbb7+JIOvU1k9m3boLOHZBG02NlZx44lKSySJyMU2hBJagoEoSkqqQKcJbb7xNMBAGEWRNRZCcSGIJwRaRZQVFF9FkjdHEMF6/m0w6h1N34nS6sOMDODw+RtIZVDtFeU0DmXwOQYBSwaRYHMUWAnznW//NzJYZZEppZIeK5vZy0fkXsWHj+bhdBqPZGOnRNI888jjltQ343BU4fWPeREkTEEWdO+56iHkLjqe5vgnbTCMI8J1v/BelYpGGhnp+9pOf0jhpMpNaZrD17XdpmTKZr339BlpaW1m2YgW6U2F4KEEqNcrrL76BbKg4HE7sgs3undupqy3nsSeeQddh1Snr2XDOqfg8lWTzae6+40+0zZzHUGyIhsn1GF4DUZI5duEcqisrKYoioZCTQrbEFz5/DbPnzSDgNSivqOTW2+7g2DkLcTl1Mtk4spkjmcng0iL87Ae/46w1p3HhleeydMVJOMQMoqRw4eVXgJ1HFTJ0trcze8EcsiWb5uZJfOozn+KUU04BS+CLV1/LGWecyczWVvL5DIVSkW9+9384de06XIaT+sZGiukEgYoyZs5YwL333MO5555BarQdrytEbd10Nr31NstXzOX4E5fg9nqwrBx33fsnZkxr45vf/DZPPv4401omYZcy3Pb7p6gIu3C6vVz71atZvuxE3t3Uwa9/eTMbL/gQoaiP1rZWXF4nt91+O2eeeQZur5unHn+WG67/Dgvmt+EMhQgE/fTv7kAxZFB09ppfJ3qkjnRCPdy5c7z8q9TUocDdvvORJRxwU2N5UfbE4FkCgj0WW4i9R63ZBwM7OLDNXuC1t0CVbZpjAJE9IG38tccTB2BJIra4/0IYu2zEA2L4xlNA/w3u/g/LPxTcwWFpmIds+x7zTvRojVEvDz7kv1eijyPFZfyz5UhrOlybiXTOPa8e8PygcQ/7fdkTmn3w8ggT5VDf1dH2kyXpH7aOiWsBWLBoARs/faAH7x/BFLMsCyQRQZKwBRFLkLFFhVC0jFBZGR63G1EUKeSypJIx4vEEEqApyliguAiCLGLmiwiiQKFYwLRNDI8LURAxnDqFQgFJEscApepAkWVKpTxm0UTVHHviAV0kk1nSyRztu/qY2lzBG39vp6OjlwVzJ/P8S5vp6BwmHBwrvv7Km9vZtq0fhyLTUB9Fki1AwONy8872nQT9TrLZHKoqIYoyoyMpaqujfO1vw3zk0sux7RIup5PmqZNwGgaC5qJYzPH1b36bFSefgu524dHdJBIJzjvvHKa3TMUf8mOW8vTs2sX3v/8dzty4Hq/HSzGfR5QkNG3soItlozp0gsEgXr+P5klNOFSNQrHI8FCckVic4xYfSzodxxeM8q1vf5fLLr+ESY0NVFZWcf8DDxKNlrNo3hzymQR93bso5ZMkEjkCkXIWHrcEy8qiaBoBv5tCochjjz1NbXUtFZUVvLl5FxXRctq3vk0ikcDj1fH4PWTSGcqDLjo6e/FFK6ksD5HKD2EYERobmhGwGB1NcMtvbub4Fcs5+ZQVuH0G3oCbZCzBM48/zubN28lnCkyZPJWf/vhGGusmERsZpaOzh4XzFzCl1sfAYC+NzVP4zR/u4oUXX2bR/EXcc+99LF54HOed8yHWrFrDd77zfZ5/5mnqKqownC5E1aamtpJwOEz/QB+33Xo7LS3TsG0Bw2VQXlnBSGwYWRYIhMvo7umiu72LnvbdeIJBVEUby5KKgObQyeXy5AslVM2BoqgUSyXa392EJ1xBpnsTz9z2fVasWotYNRvJKu2hyx9syPlngbujSea0T8Y1EbHJxDrxl5WRTKTRNRVfIIRlgUNVceoa+WwWp64BIi6PC1GWKeQtRFlG2eO11FSVTCqJy9DRNZUSIImQz2URRQVFFonFBjA8MqtWreWJxx7l7LPX0tQ4lZt+9UtOPf1kVEUAy+b1199mSvN0fvOzmzl19Sl09HTysas+SXtXD+XlZeSTw6jOSgyvxMK5c+ntSKA50nz1+h+x6LgZ/PXh55k7rw2PVyeTTfPwPffg8niZc+xxfPXaG1i69DhG4oOsOHEZQ/ERDJ+PYMSP1+cmlU5w/oc2ojtEbMmNZuhkCiNUlFUSTxcABafiwJKLKKrOYO8gLdNq0Z0qhUIJSTBwujUcDieKqmGhMTqaJuAP0NHRiYxBrtCDqsqk0xlcHg+yrGKWigiyk0IJnE4vb725marqKt54YxsvPfcca884nd27OyivKEe0BJYvO4FA2IMkmaSyGRQcfOELX+GEFafiCXrJZEs4DS+5ooJZyJOOjXLrzb9hwbyZfPc736KpoYFjFi3ipl/dxIL58zl++TJExYXP56C+oZJJ01qY3NTEsmXLcLkNHn34L8SGY8yYPp2K6nIkyaS+oZbFSxZTX1+Pqjr46leu59LLLqQsXI8gSJyz/kp6BkcIRyp46aWXee7Vl/G4/dhFG69m8JdHnsfj03DrJvl8ks7OTjas30jA7yMYdOEwVOrqanB5RIZi/ciKiuZwY3hcCIKI2+XDG1BJZkdxaTpDO1/F6W3k6eeeY8b0Jjr6+5nc0kI6Eae/q51UFs4770P88he/oaKsgvvuvpsN61djFkdQ3R7qaiuZP3sWXdt2MTLSh6YbaIafvh1dDPX1csrJK7n44ou5/BOfoG8owxUf/TRDwzGOX7kc3eXm9DPWc/qpp1HfVMFwrJerrvo4vT09lJVX86ELr6B9ZyfBYJDmyVO44KLzeePN1/nZT3/GhvXrqK6r4g9/uJ1ZrS30dg1RFgjhc9sMDGxjRttiVq1djTvgY/OmV/F7vVAq8eozj9MwZRaKOGZIOsI2P7I6OEpm0j9LjnT2nMgaOsCG/QFTlE/0qu2tBXq0/Q4l+4DihNf/De7+D8t4WuaRPGQHyDiziW2Ni7F4j2/6aDbZGCVO2DfN3tf2Hx7G3tk/lr3PvT7mBZP2eJEOPnTAwQUpD72GQyiSD0BbFcX98YcTrzHa4oHF08d/PhNB3MTvZ6zY+z6/+SHuYU+5gD0yPlXvB5FDUSzHf6bvR44GYB4xjfDemL1xxc0P8ugKAhs2rj9smYT3I+PtFuN/d7A/46hlg22LIIKia6hOHafbg9fvQ9NVMrk0o7E+krEhiskEvX0dWKUiZtEeO6yLIGgylj1WP0tVFSRJAgT++thrlEXcaJoCko2mq6STGXZ19NLRM8DctmZ6e2LMmFZHbW0ZtmUSDBjU1/iorA0iiQINDbV4XU42be6mfzRGyONBdxn09Q6RyWWJj+aoKI+yu7uXbLqEx+PELJpEZqzm8SeeYOmypciKhKobbN+0k2u/+AXmz5vE8cuWIYlgm0V+/IMbWXzCEmyhQC6Rorevh5rqCrwuJ4sWz6GsshZRFEmn4ng8XuLxOKVSCYeiIogiLsMNgkA+nWJ3+2584Qj5vMU3//vbNDQ28JeHHuSscy/Apes8/Mj9LFywmK3vbqO1dTY9Pf1kciY/uvHHnH7WGqLVFXTt6qc8EiGbTOLxBEhnbZwOJzvbN/HSi28zt20hHe07mNLSitur4fVWsGv7Tp568ilmzmhFQEVyCDg8ZfziR99m1tzFuNwqJVNlINZJNpXHMNycdPIJqLqbm266hclTpvL0M8/TMquFttkLqG1uxFfm45W3XueKj1/BtFktlJcHUREJRjxEwpXc+acH+O9vfJt5s9oIlPmwzBKT6mv56f/8mCWLFxMuC7Py5BUsWb6czZs3U7ItFE2nLFzB5ZddyfBwgrM3nM13v/d9fvmLm6itq+dXN/2KxYsWYpp5dmzuorIiQmV9FWWVZfT2dxMI+LDtEoJZJN7fx67tW8mnksi6k76+PoLBIJLq4p2HbuaNN95k+fmfwlHVgsIYmBHFA0u07NVpe7bnP03eD7izLYtdu7ajFIYRVQVFVpAFjWQyRTqXJRkbRVMkEvEYpWIeRfNiy0XSmTyqGkAQbWIjozgcToqlHA6HRkf7drBLWJZJX88u3C4vRTPHUG+W3buG+M8vfokN69fS1jYdVc3jc2uctv4csuki3//Gd7jxxt9xyaUXYFFgysw60tkRFsxp464/3sZA9252dAzT2NzI319+gXCwkpIosKXjdRoqWvn9Hbew5vSNTJ1ej8fnJJUo0dkxSKQ8jGkW+dTHruJb3/4WO3dspbq6GgQJtyYj2hKCLFIq2SiyjKoovPLyKzTUTqKYzeB1G9hyiaFYjOuuu5bpjXX4QjWUTIuGhkoyiSyWWURRx+LxEnkTSdEQZRlR0pAUk0w2RjAcZUFbG1dc9ikcioapjhkARoZjeH1R+ndtxyEq7Ny2jYpIGE+Zn29983v8xyc/jOJ0Eo0EyY4k+NtfHmXOopnYdpHN7+ygrLwKigVaZ01h7qLpWPkCn/jop1i6+DiGu9sZHmpnUnMzk6fMoamlBqcrSnVDHbJosmLFCgqFAoFQkPLaMnyGgejUKVg5REVGEUW62ndRVVFGXW0Z7Tu6mNo2m7DXx66OXQQrKpFkiXwWZk9vwR8O4XWHKatwo6gOZk1t5tFH7uXKy9dRW1WDWTCJJ7MMJrspJkdxewTKopNIj1hcfvFHeeyxx1i6ZC5l5WXIsgPD8JPOlohEKpAVF4WiRTYTR9EgFIyiSiai5uHHP7qDYjFPX98Qt9/1exbOX0R5ZS3pZI7BoSSvv/kuM+bOIJ/L8uYrLxOPDXPt178Ooo3TYyAWioyOdBEuLyMUquD+hx5h5oyZvPTsM1z9n1/ho5++nJFMApc3TCQURJMcnLdxI6tXncLoSC+KJBIbHKRYsGhqaqS+ronOHd3MWTiLN97ewuf+83rmzG7m8cdeoK1tFooGwWCAmspqnn7maV58+R22b9vJyhNOwuUL0Ng8BUWVKZpFHrrvUcIhg1AwAvk0yYxNoLIOizQyBg5dx5YO3vdH+59+tMykf5YcFbgTxoqJH1CO4Ajg7kisp4Mok0d570cCd3udi3tlL9h7v/JvcPcvFNO0rjvUj+SIf6LChMdH+S2P32SiKCAKEoIAlnlgdseJP6SJ67JMex+nem+Nuv3UxoNru00ES+8nLvBwm2gvcDvS5zQeTB3aNX9g4fTxwG/8GsaLaZrjqKr2vvs9xOwHzXfw+o7eGj6ePrp3rH+G0pyYoOdIoHJ8DcCJsve1D1Im4aCx7Ak/eeEQxhBAwN6TwWvcGgQBBBHV4UBzuimVTEzLpCIaxTRt/AEXyWQc0bKQLBtVkinks0iygCnKWKJIbZkbh+5GFkQKpomIhOZQ8Yc8VIa8vPLaNkIhP8WSwMOPvUFZyIFtFfAHysAa+4yefO4ltnV0sXhRI2URL7KmINgCO9v7GBwZIBIKsLtnhNqqAO/u6HOgpSMAACAASURBVKWzp59XdvVx2sVX0Tx1EobbySeu+jjLjz+B++6/l5UrjqexZSaq5sBw6iRjMSa3tBCNlpHPFfGHQjgNiWwhjqg5kGUXuVyWQjZHMBTBRkQEDN1JulAgm8uDYGOWisQHR/ns577AGavX8pGPXMzS405g8uTJnHLKiQwND+B2a6xbdzZOVeerX/kKjfUNdHV2ct9D95JMpVi3biOFItz869+yes1pfP+HN3LXH+/Ca+js6uhkUmszdQ0NWJbFO5s2UTdlCtlUnv7eHjLmKMefeDKmDYJUGKNlZtO0zVpIOtOJYMl0tfdiOIK4QwFS6SGcTp3tm7eQScaxzBzTWyajKW7yeZu6uiiKKjFzxlQUwWaot5dgRSWhyjJ0l4vXX9mCIKqk0mk++/n/x/y2WfTuHiI+mmHZyYvo6R0k5A9zz11/pDri440tu1h2wgL8gSibN2/nd7++jdbpbWSGk8yaOZvReIqXX3mNc887h9rJkxno7uKll96iu7Ob2vIKZCxGUnFCkSrMbIF8voQlJKiqbkCUgmgUcFZFwdYJJDfx7Ls9bPzIZ1FdPgTbBMYMDhNp5PCvOUQdOe53j07esxsFQcTt8ZLu7UB1+lF8UazsMOmsgDsQwtA9KJpKyTJJpOIYbj8iDkTBhSRJKJKFU1fp7+8i5HbQ3d1FJFqJohk4dIVAOEJ6NInmNCiWRBonN9De2U44GOSLX7yO45YsJxfvQxUCuLwi09vmsfLEE3C6POiGjdPwI8gKTreHSc3NXP2l60klE5x22onYqSLXfunLrFp7JgMDCWIpi4996qPEMzGiYT8jQynMksC6DWu4+kvfpGHqDC686Bw+/x/XkEgmmb1gFvF8gtjuXTz19HPU1NdTSA4h6wa25KAmGmEwPojb68a0oa+zh/qaJmrqGvBXhnG7LTSphGkLCIqLkm2ybetWKiLlgIkiWSTjg2iqExEF3eFFEGQu/fDFOHUv8USCgNNHsRjH467AQmR4dDcurx/V4SZYVoXX42TZcfPRgwbxZBbdadA3OMicBfMQSgWSGXMMvEY9FC2TpimTKRRMLEza5s7G4/XijUTw+A3sksUNX7ue01avw+dR6W3vxaGZuF1OZAl+++ubmTt3Kj/8yS3MapuHZVs4HE4EWeDlN1+gvnoaHn8IQYTE6DBurx+n7uXGH/+CttmtSFaONzdtJhAIcN1XrmHl8cdx7LFTKK+qpXXBbGSnj6mNdbz80qv85Ic/4MorLmTSzCkomkly0OJPd9/Khy46h0s+cjGWoqCKKbZ27ERC4ZknHmNK82RMu4gkCyA6kCyRno5tpIoZBESefuJhzr/ocqrrKjht1Yls2rSJaGUl13/lq6w5/VSqKgKYxSxb/76FRQuXUF7biNfIk82mUFWVZN5kNJZFsBW2bNrE7NltqE4Twc7z979v5aSTTkSwC8yYMQmhpPOjH/4IWRbJ5jL86Z57mTptCsVigd/cfBOi7Gfa7DmkCwkMp5fJ9ZP5xvXXM725Ar/PS015FaLbRXd7H7WVddRPmoTfq3LM/GPJZFK8+earOHQBSRbw+yJMmjEX25ZwyBJejwN/WZTh0TiGptG55SVqJs+AkjCGf3hfR85/iIiigGkeIgP5e/TZdw5ApFQaq+F3EFV0TwjS3pIIB8qE5HhHkPFlE/bK3nP0GB1zvyH8cP1Eyz6A+nmk66gXNkH+De7+hXK4IuYfxFP1fsSybAQRLNMey2p0lP32gQuBPQGz7w1QxoM707QOiuM70lxHXsd7j/O/LR+wN5ZtLx11b3rb917ne4O797u2fwW9YeIc75fmdah72nj2Bq79+aNUGyn8huMfsMgP1k2WJHSXjsfnQ1AVXIaLocE4LqcLxaEjyBLxRJzEyCiDAwOUskm8moQgy2QKRSRVxak7KRVKZFI5crk8iiYTjfjZvr0Hpy7TOr0Gw+1EdznJ5yx27NhNOOSnIhxhanMjO7YPEg4GcTjUsSLlmzpYvrgFj9vD4FCCutoI1VURqqvCXH33Ls4/52wEYSw+8LTTVjM0OMQJy5cRCobwB3xgQyFfRFUVQpEyhoeGUVWVdLpALpMjnysSDJbhMlzYto2iqICNaZp0du2kZKbw+CKUikVM00LXHciaxmlr1mAJIhs3rGfWrNm88/bfaZhUx4svvkQo7Ke8vIqPf/RjfOX665kxczoPPPgAX7vhWpomTRqjn8WGmdrcxI53t/Hc008yZ+48/vrXR1i/4Uzc3gAyGrpDx+t24ZJFXC4dWZPGkt+IMk6XE92psfntzQTCQZ5/9nlEyaSivBqHw+Ddd7dSXh1GcyjcefufGY2PsGTpElyGC82hATIINg5NIpnO4Pf6KeTzqIqKwzDQFJX4yAgBn5eZs6aPlWmQLP74x7tondlGWbSMvoEe/IEgbsPDmWeuoYjFkuNPJJkZwaGpbN/+Lld94mO4XTrf+9H/MLN1OsuWLGZ3RzunrV1NLpsl6PdR1zSJcDSEKAlc8bErWbf+HDRdo2P7FqLRCopmjnQqTyFvgcMmoDppf+tJHnzwAc44/zIU3RjbU/b+zHUflJL9v5X3q5NVxeKlJ/7CpGmzyJVsKJlY7IkpS8XQnQ4UVcWpuxke7CedTKDKoIgCyewo2CJBX5hXX3mRpuYp5PJFSmYRt9dNNl/Aa7jJF/Nse3cnVdWV+LwennzsKc4990N8/es3cNq61bzx2rtoikmsZ4RrvvwlFs1bRGJ0gGCojHwuj9Opc9211zG5fhonrVjJc08/yTOvvkNDcws3fOPrnHvORiIBFw5FwC6ZCKKIphk4HS7WbziLU089kVdff4PXX32NN157FUVTWL3mZLLpJOHKRpqap9Hf300oGKFoWiiKzOjwEP5QCCwbWZFo37kTw/ARLS/HcOtIgkIuk0WQRETJgWUW8fncWCVIJtK4dNeevTx2ADWLJcxSEV13EIsNE/T7yduQzsYQLIFUcpBQJEo8lmTVqtM4eeWJ2HYJXVPJFnJkhoYQZIkf/ORnHLdsBQKQz+V59bmnqaitIhQMUirtqdOYThOPxXDpGqLsJDEaw+XUWbf+DDq6OgkG3AQCfnoG+gmWlZHJ5zjmuMUMjiSZNmUagpWnp6sPj0vHNkvU1dTi9XoZjQ8SrQghyyKyImFjsnnz2zRNrmV0pJ9ZbbPpGxhg2dLjqa6qw8zb6C4H/nAEXXNQtFNMm9nCshWLQS1hGD5SMQuPV2bW/PmUlUdxOnSEfAlNd+MyfESCYSorKigUC+QLBSRZwbKLKLKArikYHj+WaTJj5iw6O3bj9/uRZFBUAcPtZ/mypWQzGQzDjcNl4DP8eP1+Oru7iEa9FEolRuIJvO4Quzt7OGfj+Zy08hS+94NvMWfe/8fee4dZVd37/6/d99mnt+lMh6GDdASxYwVU7BpNNIrmqjEaNWqKufHGkuqNGpNoNFFzk2iMsSUqohJjAwQFpPeZYfrpfZffHwMK44CAJvf+vk/ez7Mfhn32Xuuz11l7nfX+1IlEgxX86pe/ZfzY8YiCTFd3H6WiycuvvML8+fO57Tu38+qrrzFt6uHkcnnOueA8rKLFm39/jZmzjuL1Ra8iijB2zChqG2ppHjYCty/I+k2trFq+ildeWci4wyZTV1tJW3sX5RVlVFcNQUBG1w26urqJhn30dO0k1t1JrK+E2x3ExkFRBFTgz489yJgpsxCkQ0uu8llhWTaSKH36hQPu+WjPaVvIirzfEKXB17UDLxD+aS6VA/MyDHbfYLF8+8S/yd3/fQyMudvTInFQcQ4HiT1J2sHMqY9cQNnbxXCgJnmgC+TAcgODt71vSfYXF7dfeTn4wN3BLI37b8nZ6+i3fNl7WcAORLaPtEn94ViDyvWv0szvPQ/3ff3u70wSxU+k/+1P7d3fxrHHHUPZmBO488cPMn1E+KD42SdI/KG+Do4DgrwrYBkEJLweH7KiIcgKgiSiu3UCwSiyKuM4NulMHsEpkErEcWkSIJFKpAlHgv31oVwaLreL6qoIkmBhOiayouIy3MRjSf6xdCObtrVRU+lj1drNrNrQRlN9GLdhoOkyQ5tqWLJ8A031NcTjSTxeHVVTyOUKLFyT47S58/B4fMRjcdKpDGURL+9/8AHBUJhUb5Kn//Q0kbIwgVAQEFFUBUVRSMbTXHjhl1iw4CuAQyaTJh6LAaBpGrZoEwr5UFUBRFf/Odsinc6guz30xeI4joNL0ejt7SAQCvCbRx5l6LCheLxu4n0pxo4dz/qNG2hoaKCuvoFgxI/P62Hjho2EAz7+8Lv/YeLEiQwbOoyZsw5n7boNzDh8El1dcf74hz/x3z/5EY111Tz2yCNMnDyBZDqJx2PgcQfoaN+J4daxSiVMbEaPHInbMJBlhbVr1jFh0kRKVv/mfuWKdXh8HuobG3a5l7qRJJXeng42bd5EXV09pZJF585OdEVD1V2IgkjA56evr5cbbryBWUfMoFjIE41W4zLcpLMpxk6YQE1NNbIMoqiQs8EsFiivCCJLKpWVFfT2dJFO91HT0EAqlWTs6FF07Gzne9+/g0u/dDHdvX2Ey8P4/F56+3o586yz0HQ3DjZmMYOma6TTGQzdg6ZreAIanatXsuzdlzjz4itxhWuwbAfBNvu1u4Mkf4LBLewH92o44Nj9JRWEQT7bhQNV4kG/IqyU6cQQi6AFkGUdVTWwHBOP4SYW7wTE/nIfio5Lk8hn0sgSpLNxguEQfT1x3IYPj6EhK/1Je3r7ugmGyymULKyShSw6VFfV8s5b77B2zSpOOeVkomVR3l2yjLFTpnDVlVdz8YVn8saidzjqqMN5f8UqQkEf+WKJ7//X7Zw0+wRGjhzJA/c/zFe/egVjx41h/NSpdHZ1csWCBUSjUVxqkVK+uIvQnc/YMRN5+513qKoq48LzzmDOvLnMnDoNv9fNJQsuw3GKlJI9aIEKHEfALqUoFCTeXPw67/zjDYaNHEE6k8EyTVwuF5W1tVgm9HbHsEoFdM1LMhHHBlTFRSqTJJNKEvAF0V0qkiAAIql0EsMwSMT7UBSJfCFPqZhFVWVUj5+SlUIRVdatfh9J9FFZVcWlX76ETZvW8cLzzzNm5EiQBPKJPmRZRtZdNDQP5fqvfZ3Zs2dTXx0ile53iTV0FxvWr2f9h+uJRsowNA1Z1vD5gjiCQE+si/KqcuKJbnLZHMWSiKhIyEq/okVRffg9bqximlcWvsmkSeNob93OX556nobGIfgDXnp7u1i3dgORsgiKKjBr1uGAxZtvvMaocWMwDA9PPfU0q5Z/iNfrJVzhIZku4Vg2shDi6zfcysknzUUSvEiSw87WJJlMF5askMvlyGdyrFuzBlX3EQmGSST6uOXWb3P4jJnYu3Qnsuxg2TaFkollCmSyKXq6u1hw+VV8+cuXIMkWuqs/LlaWJDRVo7uzh4IJN9/0DU6ZdzJlNVEkUUCQVERJIZ83iUajnHfu+XR3dnPOeXMJhiK0beukL5bi8MNnkMsVWbZ0BUNHDGPSpIlUDxnCxHGTOPucsxkyZAiRcAR30MfzzzzLRRecSzpv8uyzz/LG39/ApRt4AhEU3UPbzk7+9tfFBDw6p556ArKqcfa5Z9HZFWPatGloqsJf/7qIRx97nBNPOhasDHapQCqTpljwcO+99zJ+7EgC0QjtrW3IuR52xHMMqW/Yq4bvP9MAsVupvr/94v4wMMRpt6fWR/uUAXupPUNcPrp3gFvmfte+/Sm99kHsBt53MOTOFoR+g8NBLvr/Jnf/QjiOc1v/D/O+idw/24r3eWB/muTPI8j/Xz0Gn6W/PTXYB5voBPYm0P9qDPbcB/IM1q4fuj0vHYwcHnnyGfz57S5aPD0HLtRAIn+oYyMIiFgIto3gCOxOXtVf/9np/8ORcLBRNQXD48HjDyIYAYJ+L6ruAqGEY5UoFnM4goUq6/1FjHUZl9eN5nKhyiKSCG6vi4njG2hqjOD1BaipqmBUSw2r124jHFSRZJuSpVPIFbBNk8aGSjRDo5DLo2kq8758Bx1dPXj9fubNOY0zzjiDdKKT2ro6BFlDc1Rq6+qIlpfjSAK6ppNIJEgk4rh9KueffyG9vb14fAqypOIPBPD7vSiKQiqTxiV70JQgXb1duAwXqqqhaSrtm7Yj2QI3XHcDp556Kj19rWTSac4//0JMu0Qw4OdHP/4pm7Zu48hZs7jz7ruZNGUyX/vqjRw56zga6oeyZtMmjj7+RFasXk/JERgzupnvfvcOjpg1kbq6OmqqKtm6ZTXnXzCXicecgqK42LJxG4GgF1V1EQj6KZlF/AEvqktHsKB1exu5XJ5wOMR5553DvHkX8MJzz3LMMUfSNGwYsqYhiCKW3Z+ZzB/UMVxuBEnjgQd+yTtvvcOY0WO44cYbmHvKKSxdshSfL8qype+zctUaJk2czN9eeoVp02eQzaVQdDdFM0sg6Gbhy4u5+ebb+ODtN2lprKGzp0B5WSU+r5dvfvNWTjr2dJ544mneXLYc0e1h2sTD6G5v5Tvfu4OxIxvRRYloMIJLUnBUB0kycGtuenraiUYrUVUNl0tlw/vL+HDV35hz2e1o3gAlJATHQRJMbKR9xo98Hmtsv2Lqk+Ru71fowF8+QRSwM9uJde7EW95EojeOP1RBLpekVCwh48EsWfj9bvrineRLCi6/j0A0hGYYKIJOsZSnZGYoZE00XcHComlYIxYKoqKgShrpZC+SoPL+iuWcMPsYTDKUrBTDh42gvLyJXz34c2YcNZmT55zODd+8jhtv/g6qoVBdUc7s40+gc2cHd95xF/f++udoARtBk5FT7dRVRfnKV7/OzCOP77fMeN0UzCJjRk4kFIxw2IQxaJqAS9NRdJU3/v48o1pGEqmsBquAlehEUx0y8QSCoqBIIcqDXlqaakgVC8iyhNfjxbIsZN2FaUExX2L96lVUDqlAsAVef30JjUObkWQHt6FjlSxisa2UzDyaIveXAJBEuju7iEQiKKqMpvdv/OSSgFnM4jLKCVfWcdLs0yiLRqlvqKamtpzXXn6NsnAYWZGpGlKPrmuIZoGIV+fImUcjKC4Mvwu/x4dL1UhnMnTu7KS8egSSouENRehoW4ltu7n/F7/hiCOPJ18soGs6hjuAnXbIJ1O4FJlCNs177y6lrmko6CqVNU24QxqGz2DilJn8/Gf3MXHiRCRZ4cknn6NuSB0IYFsWAgpDG5oo2RLRSDm6qlFV7aOqxoNuaCSTDt1d3bzw599z9vzZbN+6Ck2WcXm95EudbFgVoybiJeAPorsNIkOqsZ0EPe1teLweTj5pLjfe+A3mnXY6gixjlxx0lx9BMtAVnaKZQdUVTp93Hpl8BzYmiuwikYpjuFxYpk3Xzh6iVbWYpSJNLXWYQgGzYIGkIIgKXq9EKhnD63UhihaqapDJpQj4/YwcNQzLMrFsC7fLIFPM0jS0mWXLlzN6ZAs2JWwnTz6f5qH7HmTe/LlknTQ+n8akw6aRTwt0tqXp6erlD7/7A0//6c/cdvt/cdt3ruW0ecdy86238PAjj1JXO5Qf//QnjBrdwHHHnkBb2zZq68PIikZnLEl1YwudPW3MPnoajllg084YPW2tzDjtIqrDBh29CcKh8EehKYMl1/u88M8ybOzLU2qwfAufH7nbtzyHSu6c3R5k/yZ3/3dhmtZte1q0DjSZyMDJP5h2dbAXRDqELIkH8qIN1JQMjA37vPHPJnu7NTv76meweL/dMWjAR/GIA7E/DftH2qTP8dFE52Mf+QNJ/jRY8pn9Yfd3Le7SiO22LAyM29szfnL02NH89uXN3PPE28ydFP1Umfpj53bJLxz48AgDjl2NgbC3PALCx+VthP4/BFFCECUQBCQRBEkCUUSUZHTDQNdcZFM5OttjKLKNJOukExk0TSOVyiBKcr/F2hHAKaDI/do7WRaRxQypZBaPN8wLLy1hVEsVsizR3RvH6/GxdftO7nm5g0kzj6OqvgJZgrlzT0HEpqyqlu1b2wj5Qmxev4of/Ph+PIFKaqrLyaXjKLKIIInYhQJdHd3EY0k0Q8Oy+jOktrW1oWsqbrcPRAEkUCWFQq6AWSpRzJfIFYq4PG4mT53KunWbGD5qOIqi0t3Tx9K33yMSihKPx7jg/LMIh3x43AbYBebMm4OuqSiaQnlFBElx0xdL8OGalQwpq+KLl11CKp8g6IlQLBYYNXoMoXAFsmpw1eVXkEsnCQf9VFaUY0sSJVtA11RETcU2HcLRCNu2buflvy3kxONPxBfU+O97fs6ZZ5/Jh6uXY5pFIuEgjm1jiw7Fko3pCNz74wc4a/58RowcSTAc4JSTT6Gjs4PGYc2ooozlWNTW19E4tJmWphbivXFWLH+P8ePG4HF7KBZKrN+0hiu/chmzjp1OIpmjqipMoVRCljQ2fbiGYSNaqKmtJhgMcPJJs6moijBp0lQSPTHqapvJFUv4wz6ShTQ9PXG8Xg+iIhH0l7Otqw2PavCbn3+HePt65i24HVkQMJ1dSYsAG/GjufrR5KbfcUiUJODTE1XtF469a77v34MCPrbS7xOCg4iDYDusXPwMWAW8lXVYRZuSlUDXdMwiiHIRUSzh0g0E3Bguid6eHbg0F4neNJChmMtSFq4hb2bR3T4sU0KRPbvipR16OjcR9FfTlYpRXz8K204iOCHuvutHnH32fFKJIm+98QrjR03ghWdf5N03l3L2+fO5756fMX7KYSiKwYbN73HqCXMJhg2sjEnHlm1UNgzH8AU4/Yw5bFy/ihu/fivHzz4aj8tHoZTC7zfYtGkTO9u6wRZZ/OpiTj55LoFwJXkzh6IKuDwBRD2KqvdnwnUbPtau3UR1dQPp7iSBgJ9MKk0+k8KlhOjpW0dlRQVVQyrJWaBrOhG/F58/QtvWdrzeIIgiLm8UlztALJVCU0R6ehJ4fX7cHplc0UGWAxQtB7VkUxJjmKZG+5ZtDG0Zxne+ewtnn30a3oCLKYefQrAiTDGdQZIlHFWisqaK3s5OVqzeiixpuAw/muajJBSxLBe33/WftDSP55JLL+PLC75AOBzBp8o01NUgqQqaZCDLIr977AmaRzTRE++lrKoajzdEvhhHV2UK6Tx93d1UVUQo2TYOMlOnTSCXLyJIRUYNrcPt0SgUS6guF5lsHlXR0L0Kjm1SUVmNohjc+I1vMXHMZLpaOxk7uoFodR1uo4ayyiBvvfkOoUCUcn8YR5Sobagnm0vx3nvL2LahkyH1DfTt2Eo+04s/0MjQ4QJC0Yskt7Nt0zZ8XoNSqYjmEsAy8HmqkOQi4bIKSiYkUylqKmuR7SKxzlY84SBFs8CY8WNQJJ10PIdVzOPxhRAsC2wNRZZQVAlJl/nL0y8wdfJMtm/rRBQltrZuZMTIFmrr6rj88quor6plw4draBzejFWy6evsw2v4GTl+BLfeeBvrVm4kHStguDWmzhzP5CNG8847/6CsrIKmoQ107ujiiJkzaBw2jBNPmMODDz3MlCkTiERCPP3UU0yZNR1dV3GLHpat2MTIkcNJJVqpDpcTrCjHF4ry9xdeZNYxx5MrpMF2KBVzhIJRTFtClGwc4WNvnUPZsnxcvumTx0fL0gGG8Ox/OepfN4Vdbmq288n4vUG9zNibvO4ZHzeQiO0ZDyfuulNwnL2vGyTubn/lFT72gfpk7ol/k7v/H2BfMXd74kBJ1b7O7Un2bMvk02qWfV5y/K9nbfsn9jMY8fvkgjE4UT+kcTnEFXTPWw4xs+/B9TeIBXewMRw/YTzzzzqTG27/JceNjRxY2xzcEOzv2oGf9ZO7A2hdELAdB0GU0A0XwaAP1aViOw6qohCPxclmcxTzRWJ9adas2Ux1RCe2s5sPVy+nWEhQEa7GkXUMt8HQYVV4vQaKrlJeFUZWJfyGwOrNbcw+90vE4kn8fh/RsgjbtmyjvS1NOBjGLBW56IIv8IOf/JSGpjryqThmKYWmGxQKArfecjPxeIxjjz8WSRJJ9nbg8/vRDC+xdA5NVRFFgXg8gSJBT08XqiaTTMaoH9LM3/++GEE0aWioR9NUfP5yWrd1MXx4HYbbx98Xv832bW2MGD6KVDIHgkJ5VCaXybNi2QdUN9bQt7OT6677GjfdchPhiIdMJkd1VS1PP/U0I4cPx+f3ort0rvzyV3jo4V8yZcYUAsEAhVKJQq5IvC+Gogo4gkomkSCZTlBXW0d9XQMejweXobPw5VeZMPEwRo4cTjAYxLIsTNOivb0dRVbQFJnDpx1OtCyKLIt4PC4Mt4ppF9nZ2Y6vrAKPx019TTUuSeWCC88nHAnT3NxEpDxI646tyLKAz+MmOqSeaCiIaOa45eabqKtvQhQ0qspreeCBX/H2knf42vVXUVYZ4v33VrFo0SKmTpnK4n+8SbQ8SqQ8jMttUF5eQSwWQ1EUMkIMd17ld498lXNOvZIJJ54GmndXuQp5wNQTdmX2dQZJ+vTZyN2B/iZIkohlWft/V3YpYGRZIt2xFk0q4Smvw+2vIJNKIMsastxfmsTn9ZJMp1BkjZ6ePsrKKnHpHuLxBI5ZIhotJ5GMk4nFcfu8oMpYkkBXRzuOZREKR4j3xvEFwkyedCy/f+xxhjTDl794M9OnT+fLl1/G6tUrOfOMM2hubmTS5MlkClmGNTZwwmmnU1PVwPCRjVRVN4EDCy6/grPmn41pSSxdsoJYX4rLL/8PvvnN71JdU8Gjv/0dh8+cSkdHN9+//Ues/GAdd971Qy677Eruufc+FCwaGhqRVJVsLo2kSGzZso1IqIq/PreQBx98iNknnMhb775LbV0NHp+XDevXEQxFkRWb//nd07QMb8Aw3BSLBeK9MWxB4A9//D1/f+N1xo0fi8fwY5klNE3CpQY4fd4ZXPiFLyBLMogStmkRT8TR9SLZfIBvfvseZsyaRDjo5/zzz6WquoJ0JsNf/vQcOHnqG5rQXS7S6TT5bIZItIzzzr2Yl196lWeefoajgxWsaQAAIABJREFUj5qNbthIos5fnn6CKRNGccqpMygLVFN0+ig4ErrPj4lFV0cbLrfOsJZmZEnktddepbenh4bGemRFAVEiFAlRUV5OoVSko62Dtm3b2L51J3VD6nh90Zs0D2/B5Qmguf1ImoFHNzCLeUzLZmdbD44lIkoCJ885kS2bt9LcPJKCmeOtt5dw/72/Yv6ZpxLwRMjnbV5e9CojRzfT17udXDbFww/+ilkzp3PBhRdz3XVXoxkGpqCTKxUJhKqRXBqZFHR0dWJZeZLJDOlUkbvu+gHDhzehGTK65iIcKKdYyJDJ5ymZDpKqIskmPZ09PPSrRzjyiKMpWQUQRTRZxBRLCKqOrOoU8iUW/m0Rd97xE155+e9UVVZx1FEz0HSVtWvX8Zc/P8v5F56H2+PhP664kq7ODk6dO4e29nYi5WVMmTwFUbI44/RzCIS82BRxKNBY20RjczVjx44iHAoybHgLC19ajCRpvPjSIs4//1yy+Rjnzj2afCpOQ1MzhseH1xCRxBKZVJwdO7YSTydIJBPMmDqTyy+7ivrGZsIBFxFfkCVvv01tbQ0FRUDag/wcytbiQI0Mn5ncDZDO2WcSvL33ZwPJ3YFa2fYt777dMwdv52NjwSf2lv8md//3sb+EKp9g63tY0AZ+Nti5QXEIPsyDtbvniylJ4l6WrAMpd3Cg/XwaJEn83EnkntqiwSxZuzU8A/HxPf1lEAaLnTtkcneI69tg5O4jS9ourf8hrBEft7mHHzsMbsH9hEx7FHI/cd78T9TD+6wYSAIP5NH2knvA/Xs9gS3ssegLu5IXSkiigCgL6G4dn9+L22fg9RnU1pdjWjKSS6ayooZItArHpeHx9Fu70ukUnR192KaFLMvks3l6O9p4bJnJaWedhdfvQ5Rl0ukM/kCAbCaGx3CRz+W4bMHVbG3bSiRi8Kv7f4Yie9mwYTNvv/suX7zgS5xw8nGIko2mu+lLxQmFgyRi3URDXkRJIZVOs3LVKoZU1WGaDrlMgUikjPvu+RlTJ03le7fdzrzTzmfz5s1oisKqVauprqpm8eLFjB07gmVLl+LxeBgxooXq6go8gSCG203j0AY0j4vNK5dRXzeEaUceTTyWQRByyA60tnXQ2NTIbx59hClTJnPsybPJJOLkkkk8kQCCINLd1kn79h1U1pZhOTpuXUJ1G6TSGRRFIxAKUyjlmDnzKMrLy1B1hZ6uLnwBP12dnbh1Fy++8FeaGpvxeN289toimprqWL16Jd1dcWLxFDVD6nj9xZcZN25UP0GXYcrEcTz8yG8ZNqyFXN7mySefoae7j3FjJ1DMZXl90bs8+OBvOeGo47n7h/+NNxBk9JgW5s07mVmzZhEKRbFKAjfddAsb128gHu/lg9Wr+fpN16PoCpqhItgCsqzQ19dH97YO3l34EKeffytKUyOKoCJYNoKoDrp27OkV4Tj9ro+7Z/hnXQcHbrZse3dm4L03OZ/+G9MvumVaFASLfLwTSdZIJdNouh/LtCiWcuiqtz+DaymPx+PFcvJYlkAmk8If1EgniyRTGUSxSKAshKLIZFJJNFHG59VRJRFBcuPWDUzBYsfWNp566tdUV46kZGUZNbKF5hGNTJs0gyuuvJwjZ03hJz+5h69cfSW2VeLaa6+isbaeaMTAzJvkCjB10jQWLXwNRZNRVYW7fnA39/7spwwdVk++mOCwCeM4+cT5jBg5glu/cx0TJ49AVj3MOGI6J51yAmU+hbfeXsGQpqEUSllEQScUDLJ8xRKmTJzA1OmTyJRSTDtqKj+4/QeMHjkKwzAoFEp4fR6+etWtXPyl+cT7egkHw8RiGSqqy2lsamDqtMn4fG4EO4dj23S09mC4XEyfeRhen0Imm0PBRTzeiSxIpPq2UVHWyN0/uZ6mIQ1MmzkNy7FIJlME/CFGDWuiqjJIZyLH4leX4FG8PPb4Hxg3eRoXnjePMSNGEwj4mHHkTHKFHkBh2vTDqKsfzhN//CuzjjmCzUtfpKJ+DA4ymuygax6+cOHlnHjibDxujbFjx9A8rIl8PseGTa0EQkF6+7qRVQldMSil8xgqtLW288c/Ps5Dv3yUOScfh2OZ6LrGm4vfwOeLsGH9+0SiNZSX1/G9/7yDqdMmIatQXV3H3158lfETxnDjTTdywblfYv361UyZMhOXR6asppF33nqX+pYmRClApLyJ4aNHseBLF1MUTZK5An6/jluL0Nq2nlzKoWnkcPyBILpmoCgymzdup6ZqCC0jmvB6Izg2bNm6mXDAg+zyIehu/B4DVZARsBk5fBilYgZH0SiVimRjXbg1H4Lmo5hP0rl5JcNHTCEY9nL1NZdw0RevYtKEMcTiMVauWsUZc8/kt48/yvxzz+KUY45j5hFH0N3Xh8vnwRcWcEyN6752I1OmtRAtj/Dhh+upqqpn2bsrcXsFbFOksqKc1tYORo0Zii8k9CdrAmzTwaioQ8DFzTd8m5xlMXbcYeSLEsWil3y6CIJCy/BhZBJd1NT4mDhxOts2r8fSZEY21/LXP/+JMZOmYpZM2OWeeSjbk315qg3EbmveoZK8geRufwkE94rDG4TcOXZ/7bFDeuLP0SAhHOKm7WDI3f9O+pz/h3EgBGewF2JPc/ZA0/ZeLmifYYLtyxLVX9z8s0/cgXIfCCzrk66Pe7Z3KDjUMXL2cMO0bWevzVl/XT3hoGvSDdrPIK4L+4ItfHzsKZttO9hOf9bEzyLTbmvCwLYHlWXXZ5Zl7XX+qaefRD/621zw3ysPWY79ysjHX8VHLqoHMdf2ukp0QHQQhF0H8JEXv9PvArLbV6W/QLiA4tIwPEE0rx9B1VAkBUEUkTSDYDhK09B6XB69P3utY+Lz+uiL97DpzafwKCpSwcbrkVi/dgd19fXIPjCCCkefMovxh43EsWDemedQ31zP7BOPI5XswxX0UrI0slkZy3RobByKZUv4gmXEU0VsRHS3h0nTptPR0UUpX6JrewebV23igou/iDcYoGlUPS8+/2ceuv8BipkcjbXVmI7FyafMZtzkkdz+w/+kZexw+jIxZLdIPBlDMSyyhTSaIlPVNJ5jZ89BtfO88PwzaLrC8y89x6wjxyGKWaZPmUIqlsLvduH2GniCfvLpNIqoUNtYx4gJLdi2hlXqI5lLI5kaiiPy9BNPUkwX6Gnt5cbrrmflmiWkCzl80QiOpBCqrMHj8TBzxpE8/ugfeee9JRw9azp97Z10dDrccss3aKxvQLZEIhURMtkclm1TzOYZO2UaDzzyKybOmISuyzz77J+YeNhY2rZuRhYk1q5djWZ4qGuoo7wszJO//wNFU+W7t/+ABVdew0MP/YZ4LMG3bv0WiDanz5/DTddfQXdHG9gShbxEQTYRvQ7BUBkrn7uXsuFHopXXIJfAEiQsUcQR973G73l89C4f4Du8a/p+dOz3WlH6qFj6QBn2B8cGyxFwJJny+omktXLyOY2yykaCZR78Hge/10D32JhWFrfLQzabxXYs3EaEVCJLMtVLPl+gorYZlz+EqkbJFBUCgTJcikAu04suK5hWge74ThJ9vdx55y3YaCBaBMrKOPKYmYg2tK5fh0tTCA2ppKs3TndHH5l8jmilyqoP12MrFRx12skYukhn+w7aW9cxtKWWKxZcwWOPPYrbq+P2uolEavB6g7z8xrMcf9JMnGwcMZtg9OjRBKIWb7yxjJLPS3RIBV5DJ+CJosgldE0i6AlhBAwKVoaysiBiUeKyq69AcXnw+mSqakKILheLlizEo0cIRyuwkfiPa75Gb6IP1SXh9urYgoltm5TSKdavfQ9bhaaWUTiyh1C0kvdXvofiSKxYsoqS2oDoFnjisUXU1tSxfecmMvkEoXAlBSdGe6wLxShDkx1mHjGRoaOHcf311yOYWR7/7dNUVzZx+mmn0tuRRvWE8CsOfn8V2Ww3zz39FLHODuqnzSdvi6RzOWzRoKutl0cfexgrX+Stfywhl82Q6EtgmxIP//pxZNlEViREgsSSKdxlPrb1xnAJSa6/5mpeeeUFkmKYSMDAEkWmjh/JScdNY/SI0Xzx3Evo27KKb1x7KYahIikaJTPBlGlDiSe6uOM7d/HSX58g3dPNtQvOIZOJoctF7r/vZ4S0MiSrwB8e+wVXX3YtaasXWVEJ+oeQSdjs2NbOto1xrvnKzZipHFZeQhe8eEM+Jh0+gqaWIO1tG0AqsrNjMzo68VIeoZQlpApsWreSNWvX4w4GiFaX4fUZCCWLV196Fc1dwZ23/5QVbyzGUGSefP4lKqrLOGPOfLyBKr586fm89PIiVMVg7pzTaWyu5pyzT8NvBNnY2cbVX7+BQKQc3eVn+/puXJ4Qv7j/PsL+IGtW7mD0qOn09ORI9HQQDUYwixJHHTWbO++4k0RfhkJaYeXq5eTyMVwuD/fc/VOWvLWK/7juMnzhGnZsbuXGr13Lm4sXct9Dv0CRPXzx/MtwRJMJ02fTE2tnxLhh+A2NLBLDJ0+Dvg5sitjSAcRu7AODha182vX2XnusA7vfEZy9DnsQeXfvz/aEhYOFgy0K2GJ/qQLJ6T8Gfvb/IoRD3UD/G/0oFEoHPID7y1q2p1Vv4Hfyebkw7m3R2jsOb88X41DJwudNxsQBxOPzxKBk1gFBFHEc+xNjsPv6z4vcwR5j/098zkPFYOOzv2ff87uff/pZPH7NmAPraPd3f0DP/7GVY+9z/a4ae5/Zv8XvIG3f+21ttxIu1hcjGAzgSBJf+OkKnnvmd7SuXc0zTy+iur6M8eNOoiDEqW6qQREUUpkcQX+AbCrdX58Pu59sigKOmcUuwbr1mxjW0sCO1i5M06SsvAzd5cJwe3EckCSBF19ahCpKbN+yDYC58+bQ1dmFyy2xdtUWRo0exdIlSxk6rBm/zwU2OIqKz+emWCoCsGzZcmYefjhbt24kEq7A7XfzyouL+fDD1Vx79ZXkSiYOOSwLLEx8Hh+PPvo/nHXWWWhKfwFZSZKx7SyCowMqqXQCWZORJBFZ8rBqxUqGDqtlydtLmDppOiUzT75oEoy6+cfb73PYxHEYhkqplIWiiW05vPTiK8w79wxSfTFER2Th4qWMHV4LSCx85VXmn3k60UiUWCyGJEsk40lcukEsHqOzu4/Ojp2kk3FqKssZMWo8K1eupq8vjlPKsG7DJtraOhg1ZgKtHTsQEPhw9WrqGxvp6evmvvvvQdUkoj43uaJFIpXC4/WjKhr5vgzfveU0rvv6t6kaeySOICPaBWxB3uc8GXzuHNxMHEjo9lT6HMz6u9/kAnv+Fgk2fa3r6N6ymaGjJ7Bu6yaiAR+yamBaAoV8kYqKSrq7+5AVGd3dnz3T74lgC/3vZceOtRj+KjTDjSpaCGaaVDaLU3Lhj4RBNMlmcni9AfL5PGbJxOP1kUn00tXdilctJxCN0hHr4MQjT2HR4oWU7DyyneWWb/2Y0RMmcPEl59OxZRN/fPwZMsk43/vhf2EYbsxSnq7uHQQjZcQTCVwuF62b2ygvj3Lrrd/grrvuxB/x09uTwDA85E0T2wSvS2HduvdpHjYcr9tLX18SRwBFEeno6kBy3FRUlgECqz54mzHjJiCoCpYDmqPQ1rEJjzeA19OfZXTT5k3UNwxBEGzMXBaXoiDJEp3xDF6vl9bWVurq6lixZDm15WW8/e77/OTe3/K9793IB++v57ijJ2EEDVwuA58nCnICEQPbdvoThkgqIGOZJt09bTzy6ye48fpv0NXdRmxnkoaJQ+je3E64eQTZzhUEQ03EU2natnUyZtxIHErs3NnK0rdW8t7q9/nOLd8ARSNfTODS3eDItLXuYEhdBZlUgdu+/V/ccNPXePBXv+aGG24FJ8XKFSvxuj1ccdVVfGPBOTRPn4tH0iiv8rB9+yYMV5BCCTweN2vXrWXo0GEgmACYpoWuu7HMIm5DZc2q92kZPR7LcfhgxWratm0hkezh2GOPZtioiWSzveCImKaNXZR55DcPceb808jkUrz55hKOPvZ4Qv4oRSeJoigkemMUCwVCFRFKhRyFtISv3ODeH/2UKy69DNVwsXbdekaOH43gWOSTKZLZPFVVQ9i6eTuZRBcl08ITCFFXV086XaKzvY3qhiHkkmk0l0omkyQQ9NObSFAWqeTII07k1puu49VXF3LLrTfQF+/BsiwS8QItDfWkinneXLyUSCjA8JYmXn7pFcprwhx//Olc/7VruGLBAoa2DO1XOEolNmxcz5DqJnr7uljwpWv4y98eI5nRad2wGsPt5pGHH+acs+ZiWgLb23cy89jpKLKEXSqx8KWFXHTBWWzatoPa2iE88/vfcurFl1N0QJP1Q465OxTsTuRi2/bnltRlsP2Zvct2Jewug2U7H8VAW7vdJff87F+JQySUiqoe8I3/dsv8jDiQmLvd2J/1bbDzn9VSN1gfgxFHSZL2SpF7qDzjUOXdZ1zcQbZzsEXFP3Gd8HGvA8fgQJKT7H3Dnm0OLsBH430Qzf6zMTBV+54YmGhnX9ecc+7ZnHf9fZwxpeyfJOUg/e5xDEb/Bh6fK3YNiNvj3tWBzVNvdZHfuQYj/zbNlTpeqYOFT/+RSUefRCBShmmBoqpYjk0ymcBwuxFkqd/NVhSxsiaJWIEdW3vwecJ4Ai58Ph8ejwdZkhAlmWI2w8Ln/8bosWOprqnGdGy2bN9K0OslEgng9nipqKnmlVde4bT5p5Ev5rAKOV55+SXeW76GMWNGk8n00NfdQzgQxbFszLzFpo2bKKuqoTwaIhIOU1lRRdEs0tPVScBfjsvjp6c3wbjDxmG43eRzBdKpDJ0dHZTyeeJ9aRxL4M9/eorDJoxFFmVi3Vla21sJBL001NZxzVVfZfKU8Tz2+O+ZMn0qP/rhPcw4fCqqAp0d26mqriaVzTJp8iTAprO7h0BZlJZh9VSUlxEKR2hqbEJ3uVmx/H3efXcJTU3N3HP3jxg3egzr1qxjSF0tZZEobpdObe0QVN1FXywGCCx//31uueVWsMHrcbNy9WrGjR/H/PlnctaZZzD3zHlEysOIkkw6lenP4+M4LF3yDtmeNfzh4W9y5ulfoOnwUykhI9GfhMT5J8RD73XdgP/bB7J6DJYIYA8l3/5+dxzRxCf56Wr7AEkSMbxBvKFydM2NIuu4XAaI0NfXQzgUZceOtXR2dGLoURwFdFUk2dOBL1yGIIsosoOuiJiijtuI8uhDv2bM+MOI9caRJJGuri6eeupZ3KqCS3f3u6kJAX7/hz8xdephXH7J5XgCKkcfexzdnQXuuPM/OXz6ZIJ+H4Jo88v7H8E0He69736OOvIIVE0ilcoiyJBOJwmFAqT6svh8Qd58dzmzT5qLqmVRCLJixTuossHOHW1g52mor6RQ7B8L0yzhIKC5FERRIhgoI9HbS3lFlMqqIezs6KSYT9PV3kY4UoPHqyGKEqViAVF0EQwGKRTy6C4XCCKJWBeCpKJrBpIgEvQHsG0bXTH4woUXcPU1X6W5YTQBv5tbb/1P5px2Ei+/9BLYEju29dDYWEHJcujp7aaQK5GIx3C5VHp7uigvr2T0mDF4vG5u/fY3OeXoKRghP489/Bj1I0dgSClWrlpPfXMLic5uyiJBNm9cT0VZmDVrN3HxpRfh0lSKjkNndzuOIKFqOl63xi9/8TDDW1oYM2o4waCXKZOm8fP7fsWkw4+gUMhSFg3zpYvOphhv54tXfZOayiE0NteQL2Xp6enCdPxIikg0GuRPf/wzU6ZMJZPOk0ykiEQDqLqKIEsEyiI4toIgiAypq6G5qZ5hw1qQFZnu7u2EgzUkEglESSCTKFFdXUFZpZ9IVEdzBdDcGts3t1FWHkLXXOQyBTraewn43Vi2hccTRhMtpkyZgi8Y5u47f8S8uXMQZIlkIonf60NxabTtaMXlcmG4JNp3dlEyRV7622s0NzeSiPcSLPNjFvMYhkKhmCEW60GUVAyXj0su+RLd7Z2cNu9kcArUVJcjSDKRgJ9YPEFVfS3DW0aQS8cJBQ2u+/rNXP/1GymZDkPrG1m3fiOpZBqfx0eukGPd2rXgqKxY8QaOaTNl6nguu/xaVMXm9tt/wOwTjmHhC39DN3RGjR+DN1RGJp2gkDN5/dU3MHSduoZm2tva8OkS3kA5utuAg3RS3J1I5WAhiuJea02/19iB103eHwbbnzkf1/zqd8Xc01tqQCzcQdWo2wN77Xl3hfPs133TsfsJ5SE+7r9j7v6FOBhyd7D4VyQd+ShT4oA4tX8lPu/nPOCN0n6115+XMIfW//8WDpQYf9r9Z519FmbFFN57/WkqQ+7PS7wDwj+VyO0HH2kyBQlVSLAzV8RfN4tJR19ISvUx/YQv0NO+jd5UAbc/iCM6CAK4XAaSLCOXbCQHVr+/kqVLnyGZ7KKyIkQ06kHSDTasX09VVRWappPL5VEFmUceephsb5K/v76Yhro6Zh1xBD6fh+7enfz2N79j/LDhiLZDdXk5y999l3Qyw/BhdbS2tdPd2YcvIODSDWprmpHEPD+//5fMmXscxZICQp58Ns8Pf3gv0bIQHrePXMbk8osWMPuo40j0xXjj1dcoK69AEiUUWcWrlXHTDd/kmGMOxxZSlEdqyBeSqKpDRXkNjm2ST2eYc+o8SlaaUslh1JgxnHjiDHBKuF1uQv4yCqaNrvvI5y1irVuxbZFkIkUp3oGlaKzbsAHHcbjlG9/iueee57rrrse2bQqlIpXVVYTLIlRWVZHLZikvL6OYzxEMRmhtbWft2nUcM3s213z1WirLyxAsE5fXx+hRowmHQ1x77bWcffppbNu4lR/c8UNOnHMyggj5dArMIstee53LFtyG97AJKEgolPq/f/HgrHZ74lDJ3QE7Ju+D3H1a3yUnh2KqbN+4mLraGmzZR8HWyOfyKIpDwczS3dOKopgkEkmqKkZTU13Lhq1vE/WF6I734vKE8fo9JJIJzFKOVKIXzeejVJLo3LaBEWMn8rN772P8YeMpFPP87Ke/ZO3KFQxtHk4hlydZdPHWkjc47tjDyEuw5oPFzJo0laEjZjKkSce2Mpg5iw1btnDRRedx4cWnc/zso6moCpHLCpSFK7nj+3dw1pnnsGN7B0PGNGA5No/84iEuXfAlNqxeTzYX58d3/Zo5Z8ygPFpGR2snP7/vAU446VRkWSKViWEYfiRJoFAooSoGd//X95k+YwqprMOSZUsZObSBbCyGJ1SNiMTGjVuprKwGodQfvyc52E4eSTSAAormQkSmkMtx7LHHcvGFF7Jt606mT5lIfWM94bCLSFTnuONPIRAJc/Ssyfg8Hm76+k00Da3A4zfwugO88Mw/mDJ5Mql0nKrKWkpFhUwhhqQInHTiKcgqICsERYn7H/gRM444iqaGZjq2dVI3IgKyTDBUSVt7nLraSvzhANu3bEKyZWqry0l096FKGm+/s4zjZx9PrtTLkPIhxBNddHVv5phjpnDR/HP4yn9ciSOJ7EwLlEXcuEJeaspdBMsqWLpsBcOaJvO1i6/kjLnHYgRkxk6YQKmUR9UU/AEvXk3BLhYpFEoUixabt+5ElGUUVSbem8IXqMC2BfwRHbPkoCku+vqS7Ny5k2g0gqpoLH/vA1pGj8SRLEKBSpKZNnp7uzFcBt+//U5mTJ+MpEjobj+F2HY+3LgGbzjIrCNmoco66VwWj9tDNplGkB1KJZNAMMAzTyxi05YOsCXOPf9cNm1Zxfhxh5FK5SmPloMtoGkuQOSpR//Msrff5sW//o6TzjgT0xYwvBEsXBSKJm8uep0nnnyBbHwr+XwJFBc7Ywmuu24BqWyOnJlh28ZWctkcy5Ytp7evj+ZhzVRVVbFs2SpGj6nk1BPn8KuHfs5ZZ11Ky4hGLrzgEtZtXMX8sy8jWhWhVIwT9QV46qlFNDY04HKJjJ10DAVHAUVBN1SSPUn8kQiI0kHXrT0UDJ6078AV8gcLZ8BT7al2+zzJ3Z497jq5f6k+pVzN/nAw5O7fbpmfEQfjlvlZ8VlfhL2+692ps/8J+IR1EGEvt7l94WMNyO5/PrtGZ6BM+2tvf3GHB+yO6YAofTI270BLZBxoH7tNVIP19WmQdrkiWIO5VezR5r7GY7D+9reOHJSb5n6xRxDy/z1evBfeWbuTo77yALbVP68ss4TjmHS0byHdm2XTujVMnjSLyJBKBE1AERRKjoUgyyxf9BxN9VFSqRweX5iSJbJ+0w4OO/wowEIVbRSXQbyvl3Q8iSgqrF23jrFjx+LxeOjp7qKmqoJNGzbwxuvLmDRtEvVNtXT1dBIwfKiaxJtv/YPDZx7Jxo2baWpqRBBEksk4fl+EZKqH277zQ+76we3k8yk6u9qpqoiwZtUOtm/fzvgJzVSWDaenZxvvL9/O9p0bmXnEdEaPbmH1ivfY2Zqhrj5MKilSP3wkLreFlcuTy1m8+NJLPPfc01x22Zfp6otxztlnUCxlyaQKhKMhRBG6OncSDpZT3JU+X6KEWTIpFW0cB5LxXkpFi2y2n8jFYnEKhRI/vPvHfP/73yeTyXDrt7/F7Xf8mA1rl7Lm/W0suObL/PaR37B5y2YKhQKXXnopN99yCyeddDKTJ0+msqyaJ596ksamOkaPGonXa7Bh80YaG+uxJJGqaBg7sYPXn/8jzTNOo2bYGHTR5KPo090WO8f++O+DxIHEag/chu12yxz0/du1xju2tU+ZPnUNKjpYkshrf3qQE086mW2dO6isa6KQEshk82iagmNbeLxuUpkUquwmX8gSDLkp5CxSiRiy4ccwVBKxXgxVorurg0C0BkEEQbTJ50r4fWEymTztbTv5wfd+Rm1dkDPmns6W9i6OPHEyZlpl88aFOLbORZd8lZ/cdTcP/PwRnnrmN7S3tuLxBLn+69+kraOdXzx4P5FQBMNwEYt34/d7cRwJVZUxLZNErB1VqqA3tplQoBrbSqK5DRTZR5ESquxiw7rtXHP113ju+ScRZcgV0qiyD1mysAUTSVQQDlv1AAAgAElEQVRIxHvZum4jw8aMw6UHKBZzZPMp3G4dWZBweQJk80Ucp4tMyiToLwcBLMFGFW162lsxFZAFN6LowucxMAI+8tksubzDc3/6PaeffjrZUh4Eh3w8jWPL/M/v/8wzTz/LM4uepNCbRdDA74uQySZJpeJUVpbjMgQ6u/vwuKNkczlUMcWSJSu47MrrWfruEjRNxsFCVrxg97BzWzuLX36XybMmEYhUYLi9ZFMxWjdupJBXGD1tCPf/9Nc8/uTLLH17EbF0Cn/AoW1TOzdcexe//v1/I7sUFFsinxPoi3UgqQ6hQJRVH6wjnUwwdfJEik6JYChIW0cH4WgY2RFI5bIsXfwPRk6aiM/rR1FU3n1nKX5VRPEGqKqMoskO2VwaQVL4zWNPccVlF5LK5akIVXHeuVfQ27eOX/zscXRXB55wM7aqoSkOmZ52EEQMl5t0KovLreJggKxQTKQw7Ri9fTupqf7/2DvvMKuq6+9/Trvn3nN7mTu9MMwMMPQqIKCAoiCoIAiCLZaYxJai0RhbYqpJNBrzS94Yk6hRYwn22EsUK4IU6W2GYfrcmTtzeznnvH8MAwMO44Dlze95832e/dxy9tl7n7bOXnut71pVpDMmTreELFnpaEtj1RREC6T1OK17w7z64ssEK0az+NQp3Hjjj/n+zT/ENDJ8vHo1I0ePxulwIAgC8XSGzRvWU1RQQFFxOfPnL2Ti5KnYNCfTThyHjSwFReUkEmH0jInH42X7jp1YrQ5i0ShPP/0M/37zA/76tz8QyPHQ0R7h1bfeYMXyJaRjWRSHBTNlxWrpZNP6PZQOGUxbc4g3Xn2KqqHDqSgN0tXVSenQaTTX7yK/IIhpKHy05j3ee2sVS5ctxV9aiB4Ls3v3PiafMBvkg66SQJ/ukodv+7xumZ/V39HU6YGAdMD1ckAYgKwWxAFyA41+2uo1JkGUjjny+X/dMr9CfJmWu8MhSWK/edaODp+OovaloQ+3oL5w0HKo07Pa/FVa9b4IS55p6n27fB5lf5+98/6PY7gf+guqIEoCelbv18X2aPtbuuxs5EEncMH1f+CMAeTFOzKEPr/+J6Io4EQunQ6SgKln2bdrO3XbtuMO+BlUXEJ+wENXOEwmm0WzOelsbUVSHViNCJvffYr2lnq8TpV9e3cRDTeza+tWysuK0RwesqZIJtXO6tVvM6RyLJlsisHlg9CNLLIsotqtZM0sbo+L4cOGEYl2Ypg68WSCQI6fjnAnJWWlZOIRBCNDONRCVzhEbiCfB//6IOUlJZwybyaqRUHEglVxICkG6aTOrNkziHc2kooavPDCc3S1Z1i6ZA6xSCv1tXXkFpXwzrvrCBYGaWyKcMklF6NZNSoHD8bhcmFVLYwZO5JgMIfJkydhs1lpa2nDRES12shmM2TTWSyKBUkRQVIgIxGPJfH73eyu2YZd82J3uvD6fOzcWUs2A5dffhXfv+5GiivLsMgymXiS3//uHsqLveTnBJFlkanTptDR0c6K5cvJyQtyxoL5+AM+3njjNUzDZNKk8bg9Tvw+N578IGWDCrFqFjRZZcsbT9JQs51JM+eRW1qBqlnJptIHuRMHnpXPcMvpBwORB4c7UPU/Sdgv480jj+mz+rRIIqmMgc+m0xKqxeULIoomElYS6TCZTBLDFNCsTjSXC90QSWczxJMJ0sks6UyWnECQ9lAT0WgEUVYoKS5FkBUA4vEkbq+NdCqLy+lj7ZoNzJ07h/c/fJ2//vVerrj8O8gWG7/82S3EI2Fuv/MvjJtwPIuXLGfokCGk0ilWPvUUo0aPYOKE43nq2cdYfu4KXnv1NZwOJ7t27aa4qBRBMkinM5x44kwWnjmP3955L1u2rWPWzFNwBPwkI+2gG5x++mLmz5uPz+sH02DM6LFkMgkMM4FgiMiyQSYbQ5EUskYcl8vTHaAJE1HojsS74LSzWHTGSWTTGVRFpCvWvWii64CgoyfaCIc7cPuDqDY7FlXDMCGtg6EnUUQr7a2tVA8fhSGYmJKE5ghwysz5jB8/hqphpdx8y/dIS1Z2f7KZvIAbQwIw8Hl9vP/++yxf8jXmzp2H5rSTDMewSTrBQD7f+sbV2DWRfbU1WEQB0aqSSWW4YMU3uPyb1/LoyieZMP44Tj31NIaPGEthQYBHn1jJtJmTqBo0hJxADmPGjcAw44iGhm6YzF84DZvVRnNzK831e7n9xh9RMbiIksGl6Ajk5+Zz5x2/4biJ42lqaGXnzj1UDx/Bvrp67vzNHcycPZtvX34VO7bsZvqU4/nJrTcz/9RZvPHKvxF12LNzK4MGDUWQRPxBD2WDSlF0A7vDi2iRmT/vREaPHok/x4dsE7DJHi676AJGDinHag2SE8xHVhTCXSHiXVF276jB43Bw0WXfZsX5F3Lt9Tcx66TTiMdj2J120mkDUZJ59ZU3qB5WjW6KeP05VI8aw6ChVXz09jNcevnV7GvcjShBScFgXnnlde749Z1MOW4qTc315AQK8HpzadpXy+yTZzJhwhg6O9twOgOsWf0OxWWF5BcWYrPbUa12dANi0RjDhw+norKCSy65iKuvuoply5ax6ZPNzJwzi5//9OfkBXMoqapi/mmLOOv0E9i5bScPPfx35s49lcHlVeSVDOWa7/+As5cswyqpPPn0v1i58jFmzJiMN+CgvKyMvXX1+IMFuF1OPnz/PaqGDEFS1W6J0c8ieH+5mY8GR4ogfyQcjVGjO0LmUYxrQPO0gU7++rfYHWzvv26Z/yvwVSp3R837OrBfHzsJApIkDohH9XlhGMYB4urB7vtR3AShXzciOHpL2MCimH6ai3d4Iu++zlPvbT25TQYi+I5ZuRMOfn5WN6ZpHrjOA7nGvY//8PH1TpFxLFbks5YsZul376EjHGFchW/A+/UYKg+R2Z9XuRvQuIWD96LQ66QPsPNfP/wBJx0/lj1b1pOOdFCaH+Cj15/B5Q6wozmMwy/hys1HcbiQrDJkMrz7+rO0N26nIM/Hnt3b8Xo1KisK8Xg06nZtJRZpZ9u2HZiGwfDqsYiihCyLpNIJ2lrbUBQJM6OgySpkTRob96A5NAI5Od255exWkCRMU0CSTCyqSjyVorC4kK6uGCNGjMaX42XTpvVgwpzZJ3H55VfwxisfUr+vHc3mRDdixOPg8sj8+813GFReQEFhkEhnmrt/fzeLFy6nvmEXbU1hJk0ppa62kbUfbmbNug+oqqxgwqSxOJ12EE0M3QRkzj77HJYsXsKajz6muLSYd1e9Q2FJAaqqoadTZPUM0WiEQCDAxg078fsDpDMp9u3dx1VXX8XNN93Eiy+9xKgRw3nr328xdFg1ba2dDBmSz1133kUoHEOSRaZNP56333oLt8eF1WpFkiUmTBhPc1MjOUEfNpsFX8CDKmToaKjhsQf/jNhRg7+wgBEnnUXGU4BsmmSz2e48RQdui2NU7np4Gnz2s9Sd/uRQ9Mu5G8CYesuqvvo3jE4MRFLhfeyo2YisetDTCfS0iGSRMU0Tr89LW6iVRDyCTVGJR7qwWaXuHHiRLiyijtPZ7XqsG5DM6oQ721FVK6rFRrg9jN8fIB6P4PLYcWheBleVcP755yNKUTrak4wdO4h8XxmvvPk2v/7ZreQV5pFIJrj99ju57LJLuOnHN/Ls0y/wzAuP43R6kSWRhx95mGVLz2Xzpu3oZgxDF/nahZdgswnc9qNfc+99v+PJfz5LVXUVnS21aO48Viy/gMcffYK1az5ixYpz0PUk8UgEI6NjZAWamhpQJAmn5sKiiIgWN8lYJ+++9SHpZApT15kyeRIVVaUgWIgk4jjsdmRJRZEVEDPEOyMYpoSJghkNkY524NFk9u3cTagjgiLZeOjhR/C7nRQU+OkKt3PV5dfy+GP3U1CUz96aWmRZQbSqLFu4mLPPWYKiKWhWjVQqRSCQw+iRY6ioKicaj2HX3BjZOJrTQ1soim4micdSxJMZHH4PsqxSPaSa3LwAJ8yZjCglmTxpBFXVY/F7rfzktjs559wLEPQEJQUFuLwe6mv34LA7sdo1GpubEdICDmcQl11j5qxZrF2/lvzCElSLg+uv+z43/fAHhDtChMMhcvx+fH4PPr+HTZ9sYfKUqZwyew4zZ83A1DM0NtUzZuxYxk6czHNPP89pC07C4XIRjYWx2qzYNS8d7S3IqoOXX36BwkIHBfnDUe0CitVDR1sTg0vzmTTpOFJGFqvNQlpPk0ylyC0swOvx4XBYsTocBHMDnHLqqfh8bkRJxGZzEo0ncLic5OYEkFUFUZKRzAwWVUYQk9Sue5G8wtFYHBIOzYVFVlmzZjXf/NY3UFQLDrsTwzRpD3fwyvMvUj1sGJrDRnl5KeVVQ5g6cSySbCEaT6KqNkRR5v4HHuSM009n8aKzKCgsZNPmj/n2t79Lc0uIj9Z8yLhJY5k47jjq9taQn+9m1oxZFJYEqB4xgSGVpdQ37GX9xl3Euzo4a+nZNIXaEbIGyXScRYtOJ55IYRFK2L2thdFjRqJb4tTVNDF8WDl1tXUE8gsPkRF9pS/oS7nr4dEdjaLXO1rw4Ty8I8moAbutH+089stQ7g7I9P1F2O9mdaC9/yp3/ytgmuatfeVDg/4VgqPvqO8+PmNs/W1E7HWTfZHK3SGBY75g989jzpVylKtNhyvSvRWegQRbOZr0FV8m965nvAO3PJoHcg8eXg5VYgcucEXTPKASLVu6hIknL+J3K9fRULOZoUWHKXl9NCn0/vJVE+kOR+8J/Wdg1ZqtTDttGZ7cInyFZSjeIOVjpqL5gwTz8wi3RWiq20NbzUY66j4h3rgTNdZINJalOWFHcRWQWzCYvXv20lm/FYfURk5OAJd3EHaPG1mzIGQEorFOwuFGiouKaGlsJzfPhW5mCXWEsCKxYccqqiqKadxWg2K30doawu31E+0Mdyeidrm7g6IkoticVhpbGiiuGoZqs7Jr925GjRhOWVUxebk2Xv7XY1SOGc+bb76JU5aYf8p4PEVD8OUW89aqj1CyMOX4CTjsNsaPqmL0uEn85o47KSguomLoEIYOG4KmWYl0hrFYnVhUneuu/SmP3f8XshgUlpcgCgIBfxCbzU7TJ2/i83sRTJHGlnasHieZZIJYPI7bE8DtsDNq5CiGDR3K5s2bkBWVjs4Qk6eOJ5BjZ9TY8Ti9HsaMH8Vxs6ehOVWqR1SQSMfw5RcjSBYkIUXp0JGoXhmn3sm//vhbXl/1Kp3JLOOmn8zwaSfjKijvXhAze6zaHHof9DwLA32WD0wAuiPlDvR5MoVDy4D6+AwPjW453WvyIXLgOcsmTKyKlS27mph0/HyETCdmJo3H60RQZDraQ2iaRjgcJicnh6bmBhxOG4YJsViY3PwcWlqbaW9vx+kOYmbSiMkIjkApqsVJOhLD7vKQSqURRBPNbsNikdm8YSvDxo3AzMjEE1Eqh42kIxHj6qsuoyuSwuly4s9zcsaZS/AEcpgyZSonzpyOkdGxqQ4EVWZI1RDycz047QaiYXDm4gux+11MHXscF1ywnFTaoKikiHmnnEBB3jhGjS5F19sZO34EHo+fX97+K0rKBrNvXyPvvv0Bv73nPs5afj7Llp/P6EGVJEXwuD243Lm0NicItTdTUOInmOdHdeXRGWlFRQDVQVrX6Y7fJ2BxeNA0O4os4LKkiMfTNHXo6EoOF19wKW+tepkxo8Zx+eXXcOL02ZBJU11ZgMNrxWbz8MG77zNuRBWiKHLhhUtJxqLU7mrFbld44rHHuf+vDzHn1Ll4A06uu/YWJk2YitProy3cgtVhkszo7N3XgNvrx241kQWVwqIyLKqNVNZEttgIBIMkknFEPcsp807Cm5ODVQWLNci3v/tDTpt7IoaZprWpmW9ddiWL553Eu6s+4Nl/vc6o40/gd3fcQ77fieYQWLhwGYaYIZhXRH5+HsG8AKFQA6G2esqKisgJuFmz9n2KSwOo7gCjJ83AKqfZsasWt9/B+MlTaOpsR7U5SCUNwi0duFwW3JqDYIEXQdW47db7GDLEjiw04fQUotlziSWSOLxuBMUgm4nhcecgGmksFpX2UCsVlR7aQ00U5uej6wIWMY1FMol2dmC3WZAtNq7/wU3MnjmVeMZBPL4Pn01BFPNx5fnQ00k6O1rRBRg9dhQen4u33nqd8kGDefqp55k6/Ti8OVZM3cK2TdsoyA0QS7TT3p7gzjvu5sPV6zj++KmoVgUwsKPy0D8e5We/uoVBuUEMyUZBXhG/vulWJk0/DqvbwdghxcSjcTSHBcnmJmkYfLzhParKRnPjLbcRjWaZN28emqbx3Wtu4Mqrl2Po8PBDzzCy3Mcf/noPJ82ZgRFuIKc0l13bd5KfX4bDEURWVTKmgWTqB+RY76AnPYpY799HCq5imsan5FlfimBPnZ52+isDmm8Iny6GaeynBfUhYwfS5uFCt1c5RPHbL5AFWSKbyfaitZjogtDN85MkREk85gn3fzl3XyEymaxp6OYRlTvog6N0DIral6HcdUfJ/HI5TP3xPY4Fx+oScDT79SVEDlzLI1zrz0J//f4nBVbpUe5637OHc++OlnMnHrbN6DWRXXTmYi6a7mH2mOLujf85p+IQiJJIS3MbgRz/kSsddpxb6kKMu+Du/ZsO3ZbNZslmk6iKRDaZIBWN8tHqD3jvtX9x8tzTGH/iaUiSRLi1jvptH1NaWsALT/+NKcfPwR2sxpU7iGhSByOGjExWj9LW3obdaqe9I0J+YTEWu5NVb7zEcdNPIh7tItLejEVzkZ+bTyadwaIo3euJpkmovQOLVSEc7sJqVbF7/UgmoBtEu6JIkoiFOCIpEqaALFpJxNI0Ndfh8uTi9bqx231c+52ruP23d9DV1UV7UwuRrMjTK1dCJs3gysHMPfVUnA4r5yxdyv0P/IOOziY2bazF5nTR1tnG7JNmQixBhx6msDCPx+67i+rqaTicAcqrhtGVDCOZCoqs0tjYTCaZ4oorr+LWW2+hpKSIJ59+lgsuPA9FEdDc9u48b4Kw353dwETEQEA2DNpaOxCycUJ161BtNvIDeTz4yD8YMnoEM2YtQLbaSGcMzP2LU2J/z+nRyrgDHAwBwzQQBfFT3g0DaqZfGd8T4OezlTvTOOg6f0j1tIEsyxiGjq7rtNbvxO/W6OiMklNUQMO+BmyaA5fTg65n6erqwu/3k8lk6AjFkBUZh2Znb/0OCovK6GhpwSqaOAoGI0sKixecxv3/uA9BsCAYEggiG9avYfToCkw8zJw2ldfefKPbfdnhwCKZLD7rPP7xyCMkU23IkpN4LE5bqImS0io2b9rI/Q88xjkrFjN+wmgi7S3IskjNzh3U1HUxdMQoikvzeP2Vl/nXs0/yoxtvQNJUmhqTNLVuY9TwUQiyBAbccccdhCMm13z7O+zbu48RE8ZisalkUlGkRALF7SASieHz+tn2SS3Lz13Eiy8/habZsWtuwtFOnA4/nYkwHrcbI5umoa6W0vKhxKMRVEViX902CgtK2bJ5N4MHD+WSS65gytTRXHTxZcS6Upy7fBlPP/0oeiaO5nUST0pcfull/Py2GyiqLKGloY1oVxfBgkIcdju33vwTxo2byojRFQRyfJwwbS5Tpk7nqqsvY/OW9Sw4fS6ipFBf30hxcQnNjTV4vAH0rEkqmcbjsSMKEpm0DlYFq5lhx64afPkFOC0Sc05ZSk4wj78/dCcYAqKgsPbjtTTt2UV51UjaOxPcec+dzJ4xjVPnTCNQECCdVnC77cTjGZ578k2GDh1KXq6fx594nG9dcQGJRAITUC12kDXCnZ2Y2SbsjiCmAYsWnsPzL77AnppdPP7oQ8gSXH3tDYTqW3B4oKszxdxTz+P11x4mFm8gmFeBaViQlSxOJUB7VysOnwtBUhGyYSyyRjabAlPuXngWRTJ6llQyhixbMA0Rm81GZ7iDVCpDIOBB1+0IUiuymcBi2Nlc14Jmk3E5rVhsGomYwZoP1yHLVqoqhpLR0wTyXGSFJGQs/O63d9PS0sCNN12Px+unubEVu0fDbvMgCjLrPv6EstIAza1dDBpcSiJeT8OOTYyaOIWaUIIn/vIMK84/h3hnLcVlFeiGSWt7Jx6vj672VvZs3csD/3iYr517FdF4CF2PkMlmGT9xIrFolIWLFvPUo4+i2h3sbdiLYsbIL64k0lJHaWkxe5pijJ48gbSZRtKNAwFHehS4nu9wKAfuSLy7buXus+XZ0fD3jjVtQk/bAuKnZHhPr+Kx8qR78fF6c+4M0zgkgEvv1AuSKB6SU/lo8F/O3VcIwzBuFXoltz7UjH0EBV3g6MO/HsOkt7/VYEEUuyd2vVagj2Rp7Pn/WKyQXyavz9yfvkGSRHQ9e0hfhx97X+G+j4S+/c33X8svUsHuo89jCppzLIsF/Yyjt5XukHGY3UFY+hrb4ZbKQ8794cPtte2cpUsYMmUBv37kA2KhGsrz3V/MgXwR6OWOaQKaXevLRPspy0cPctwaz63pYFj1sP3W0IMWGkmSkC0KgqggyXZUh4fSymHMmDOfwsHD0WUrhqigOdx4PW50awBPoAinJ4e6unqyhoypi8TSHfjcHiwWK4oik84ksco2ItEIgmiSn+vCIbu7g+dYIJNI4nQ6EE2TWCpLe0cYzeHEarNhGmC12XA4nIiIGLpOR2cnhWUl7N62HYEMneEQkc4wdocdRyCIP6+UXVu3MLi8mFBrKyfNmYUpi8iyhTdefxOvL8iE8WMYP3YEgwaVEGptoXFfA88/8xwWi40hlVW89uorFFdWMvn4qcSiES674Gucd9m3sckag8pHs3Xzdn73+3sZOmwkfr8LWbKSTqV57LGVNLeGOGvJEt5+521Gjx7OmUtOR7LIrF79ESUV5SCKIHavmopGt4tMLBanZW8NG9asJuAQeP/1x6nbtYENH6zhG9f+kMDQkZiiE+im1JkI+5OBd19jwzS7J4WfctkdAHq5YUKPRVxCkqQvPiVK77F9VpjuQ55zA/bfq6IoYgrd7p+CKOL15dJYV989UbJ0K9mKYiEWTSDKAnaHnQ3r1uNxuwl17AUxTSTWiiLaESQTh2ZHQiFh6tTV1bN86Vk4vTYMHdZ8tB6Xy8/NN/+QRWediiC6WL5sMYIAVs1K1siQiMUxdImx48aSSoR44flXeOjvDxLwe0ilBUrLynjo748Samph4vhRuH12/nb/w6SSOqpqI5MyKKooZkhVFbleDyUFBbRFEpQPLmVwRRU2u4+O9jDtbU3MnjmD6SfMwW63U5CXx4OPPkBewEdeMMDNP72NE6ediNPhZPu2rbz40iuoNokTZ52IJMhk0nEQLGh2F6l0EkEAVZFxubqDu4gCSAI4AwUoFht5wSCCnmHM2ONYs3YtUyZPRHM6Of+CFbS2tvC9732XUWPH4gsU4fcGqN2zk+LSYkRBxarZUG0q2azIvvpW5s2bD0YcWVRwaB6WnbOUSFeY6uqheH1eTjvtDC66+GJisQiappFKpkmnU8w+aRazTpiBgMGSs1Zw+uIzkcwsbq8Pq2YH3WD+/IWcsfAM2tpr0bMyWQNUq0w8maR65GhsmsaCU2Yz6bjxqHYVj8eNKMpEIwmyeoaSQQWYQoqColyOmzKRUHuYXbtqKCkt4y9/+QfDKodw9qIzOO/CFdTW7sHr8bNj2x5OnHYCm9Zv4Oyzz2LS1HEYooe9O3czuDKfprpWLr1kGaGWOCWl5YiCzJ133sVxk0dw+49+hSJbKSuvRJBFEvEIpikjWRR+d+e9TJl6PLv37EInQzKdQVFsbNy4HY8niKIYtLW24HK5+cG1v2POKaNoa67BTBtk0Ein0wR8fgzT5Prrb2brlj28/OLrdHR00NjcQNXQMkRFRRAMZsyYwdCqarxeH1k9gV1zkErHaKhv5tVX/40sWxk8tAjdNHA7PZiiDU3QqWsK4SwZw7WXXME5yxZjddrRTYnOzihWqxWXQ6O5sYO/3PcnVpy/nDdefpNx40agaRJVFRUsXnIx8+aexvev+y6hrhQ33HADq95+m4u/cSWhxg4a9u5m375a1q5dx9QTpqMf5obWl+tkfzmZD4oToV+u7yH16H+edHj/hmHQ46BumJ9OpXB4eoWed25fCR8OHEv3rwNFkMSDYrof2WmaxkEqi9Fr/8Pr7d9XOsJcYaD4r1vmVwjD6ObciWLP6vDA9/08FhtJkg6kMDgWHGmCDn27GPbgP8nQK4rd5u0erltvfJYyd6yBVb4sHM34+m7gCxxMP/0fS06a/pS7nm/Tpx/PkCkL+ME9L/LnF7dy1nG5R9XHl4Lex9nfpNhkv7nj0w/HLfe+ytJlZx94EfY+d7IOIiKCBIJgIGEgiDKCaaDqaQQEDEFGVB2oNhfe/HJEe5C80lKyqVYaGzeSWzCCmsad2Jz5CJIHXbBhGFCY42D3J+/TVbOXnZsfwm0DM+PEoZooNjdJ0YZds2Kz2cnqWRSLFVmUEASJcDhMOp4ktyAPp9dNIpMiv7QAjzcfu7MQh7eQ6374Q2ZMn0m8K0uwqAjTAoqmgSFjc7jJZCz88Z6/cvqcKXj9XkSXF4/PSzprUlxSyap3P0IXbOQXD+aU004h2dbJP59cyXHHT+bE2TPJDSisfedlBlcNpaExwksvvc7p8xfQ1dHKug1bWL9+Ex99uIZV736IzW7jO9+7kuKyQtJ6EotqIZiXjypLSHCgmEh0NtRRu+FdrJYoRYUFvPveaiTZysLlV1B92hlkFDdO04okZDBMMITuPYVe1/fzuZn3zRUWBeFLznfZ46ExkGe31+QN4cCUB0EgY+iEWuvxuO1YrA527NhJbjAfXTdQFImuri5Ky0pJpVJoah52u59kTCCY6yeaDJNKJEmEU7iCXjweN06bSjIJkiTjdjuQFJ2gt4Ktm2oor8rHqdlANEll0kSjXciiTLg9gkVRcAb9FBZXMu/0MxkyYgR2m4wsw5lnnknTjgaaWmqoGAiZzKIAACAASURBVFrOxEkzKB0yluKKPIoG5RIP7cPUs8RTEt//4U84Y9FCwtEWVr+/AWfAgcvhxGIqbF6/lTff+5AhlZW43U7yCgv5cNVq1n64jmUXXkLQ66GlqZHi4jwGDapg0aIzMAydTBqsfo1sxiDW1UJuURGpVBJFkjBNg2Q2SiIZxmoVkbDSUF/PN751BXMXnE5+bi6mDlVDB/HKa69SWFSA2+1iydJl+IJ5XHHl9TQ1NjJm5AiyCY1Lv34VKy48G0Gwks0qjB43CkXL8tBfH8bjcjN5ykiyQoohw8qJJyMoFpEJE2aQE/QTjUZQLTLZjExbc4IdWxtZeu6FZKQ0511wKYoisq9mNxarlT21+/B5bCQzKQQ5jT/gxqb5UWQbLq+VnIJiTNNEtVq480e/YNLx07G5PZCRSKUM0gmZVDLBL2+/m6qqkXzzm9cwe9YC/vCnezh5zimIsoXnn3+WRFcXt910M6oziISEIEqMHlNNrL2NP/3pD5x00slcdtm3mVg1iPamRgpL/bitKllqKMwbRcYwSMYkkskMQ4eXMXvuLNZ+vI6SwiLCLXtJpmXc7lxMU2L8+Ara2ptIpuMoFgW7LKAg8tLzLzFlwmQEJYvDZaOxoY2f/+Ru3ln1CMMrqyjMqaapI4rP60Wz2XnppXe54LwL+f3vf0919RCuufZSJk2eiIGOFSt1e7az8tF/snXDLl585V3mzJnBhnU7kCQLRcUl3Hff/2HW7GlkEgZBj0K8o4PO8F60vAp+dfsf0Jv28otf3cbObevIG1SNbohEuiI4bCqhpmayps7ME45n2PAJVJR7icdDdHZG8LmLmTVtIg/85V7Wvr+aZ158gdtvu5nxI6t58tnXGF7hJa+wgLzKUXz45su8+dbrTJ95IqYg0VsaHSnewYC4dl+ActdX/+Z+pa63+2hf4zuknb6UuyP0IYgHlTtBFPsxUvTqqz8nih5L6OecW/5XufsK0aPc9aC35aLnfu3LIvZpf+RPWz7696rs9kOWBqDgfcqicoQJ+pEsjb15V/3hiA/Vl6ksDbDtoxlD70Azx2qxHKj754HVpSOki+hv3F9EjhjT0BG60y8f0lbP9e72sTcPfD8W5c4UhENKf9tOPuUklp2zlEtveZBTRjqR+klP8aWj59r0dgfpba0ZwOrkWcfl0ukYgU3TPv2SEoVu13261/pMQTzwqUsyptjt0989ye5+oUmiAIKM3ZmLKNjYt3sbRXllrH7vHUQypOJdtOz7hI/XvM+EaXPxV1bREDIYXDWCF57/J+37NtFcu5XKIaPJxGKITjeyJNHV0IBoVWloaiAYDOLOy2F/zFpkSQZEJFVBViVMM85JM08inYzi9cns27kZj68QVVJQZNi+ZT3JaAezZ59ITlEBTc0NeB0+Xn72BYYNGYyAjsvhZvr0SThsKnrGZNPOXbz12puIWagaM4JQc5iyyhEYhkg2neL4aZN5/sXnmHPKqaxb9wmCZHDjLddy0TfPZ/yk0ahWBcM0yZrdnBBZEZGk7iTxIjqZdJwtH7zFykf+yMlzTqGzK83WnTWMnzyNGfOWYFgdWAQVGaE7QiFCd8hq09j/Qj74bB5YLe4JuHO091SvckB1+hJl5IFxDriP/cfah6uCIkOss5OsCZKZRbUaNDXtwud1g2hDs9uJRCPYnTZamxrRbCp6tgtTELBanMiKHclmRbZp3SOTVLIYWFGRZRVFs+P1eLn3j/fhccgYqWa8eeXYNZX62q3s3LKDSVOnEwvXYlHsCEIn6VQHNlUGxYKRTRPrDLNt80c8+/wznDB7FhkzjVXJsmf92+QVl5LKgs+fg6basFoslFcN5Q/3/JGg10VpcTkup4t1mzbx8BOPc9GyxWAkcPgsiIKNCy+8AMUis2DOyeyt3YVmVzCR2bGzCcUiI1tAkCRiHSGC/hwyRopUqgsZhUi0AU0twGmzsPnj9eQVlBKNpHE6nLz+xissXHQatbW7GDNhJO0dIeyO7gUXh8NBItOJmU1z5vwF/PIXv2BI9TCu/s732NO8j6uvuhLVJoEY47rv3cqMKVMI5gZ59B+PM/PU03jw/n8yaeJEJElAQCeb6cDvsnH1N77FtFkz8XjdbN62gSuvvoh1H75GRWk5ghDD1BW27dhDfn4xTk3j+h/8kLq9e5l2/DSSsTTRzgSxSJSdO3ahyiqGrvP6K+8wpHoUkmLiz3EjSBJ7d++lqaGWRCJJpDPJB++twuNy8ac//hnNInP7z+5iwekncPpZiwjmOMkaCWSrjdbGvXhzvdTXtlA5eDC1+7YxftzxTJhczsgxU3jm5TcZOW4SourB5vRimCY2LYlFESjI92JRbKTiBsPGjMTtdeHRHJhGjNbWenw+F+GuZpyOAn7z679wxvwF2BxWVEmieFAlqtdHe/MeukIRgh4vl1xxHosWXogvWIpgE3DanagWkebmEKHmbr7zeReczcyTJ7G3tgVdz6LIEqrVDeis/uBDFp65iCkzxiGIGUJtTWzfsoPyskKmT5nJucsuY+3aj6iqGERBQQ6KGqSxpp7jJ0/FYnMQKCjG6raSjutYxCStTc3ccN2NzDl5FsHCQv72wN8ZXFaEIufywgsvUrN7O4qYJRqP4HK5WXHeGYyuHo7DJbPxk3qqhgWJd3WxZu12Nn+yDc3lp7RwMEF/HorXhdQrdP/h3Lfe3LsjBlTp+f0ZMqe/yN09OJyXd6Dd3ovEPe9qs9sVrTtubfenuV/EmvvHedC+1q1sHWL1M01MoXurKIIgmLC/CH0UTKk7Qqd56DviU5AkuuNcfHXK3X85d58TmUz2iCewx1XziNy7Xugrp9hA8pdJoth3vrJ+YPYRvfKLwEDC6P6/wtFw7iSprxwvRzf+o+H2maaJYej7Xb/6rtNfH59HuRMFAV3P0kO06WvR4cB9LAhHdMvsb3xHi97tLzpzMRef4GHW6OJjautzodeq4BGPpbdyd4Q6K+7eyMqnnvhcQ/kU71EEVZIxskn0dAbTNIjF4giCgGKGsbnySOp2dDOLZlUx0glkWSabbGHju6+BKeAqGEGwvJpoZxQhk8KXG0AQBCRRwhDpJoVL0qfHkdExdWhvbSEcbsXtcGJ1BehqC2GIWTRNJZM2wFDYsWs30WiIseNGIysOVEVi44ZdtLREqaxw8cQTTzDn5Llcd8OP+eXPfk7ZoBJUr52Ojmbyc/NIpVM4nB4QuvuORCKokg3ZIpLNpjAFECUJUdjvQoiBboogKqipNC2N+1jz4SoCbo2SiqG4B1Wye8smKsrLkSwWTCRMUUIShW5+8H7E4glsVut+nsfhrgxi9/MqiJ9fKds/iTpWa+CAnrGjzr3X+31y6H4WQaQjmSUdbaezvYXi4gI6wmE0m51ELIXFouBwOmhta0UVoKsrisNhI57MEAgEUVUrug4p00AwdAQRshkZwWji7rvup7FJ5JabL8PIinh9DhKRRjRnPi2tLbR3tFBYWoRqtSIIGfS4ga5HMAUTm+pk195mKgdVsbdmN11tMTZu3sjsubMJdYRItq1l6pRz2d5US55fQ1I0wnETSdH450OPccKMaSiyxAN/v58bbrien9z2UxYsmE/tzp0sP+9cGlobefi+Bznn3BVYXQ5q9u2lqrSSUHsTixYu5dnnXmD+glP55a9+xshRI3A7LWR1E5MkFsVNNqOSSDegaX6ETJZ0OoXmdJPJmMiKCEKWvbW7KCmtIJFMYLVY0RSRZ556npPnnEx7uAmHx4tm9ZDNZDHI0hIKY4oSFlEnFU1js5i8+Nz7tDTVcME3L6EzHCEeTzK4fBDxZAy7w44pmFhsVvS0QWtjJ7JFxOW10N7ehs/nxzDTiIKCoRug25gxbQYTj5vERRdeSEaPUTVkKG63C0WR2LOnhtKyIvbV7eWbX7+BlU89RnNjiDRZigp97Nq6lsrBlXQlDNKpFJs2fcIJ006isWkfK1c+TUN9iNt+cgMP3v8oi8+eh+azImYE6mubCBQP5p67buebV1xO69528qoKSMRCxNpMBDqw2K3U7mnB6fJQVuAFJYOilpA2dcxUO5pNQ7EohJq7iCWjuFxWspk4VotCfUMDgyqHgOAg1NhKTo6fSLoT9AyaReP0hefxuz/8jeJcmU82bqa6ejjtHfVcfOlV3P/Iw9gcNh7+8/1ccdW3qK2poaO1k0AwF0UTcLotKNhpD3fgdrsItYfwuJ10hNopLSnj443bqKwqQhAUyCSwu9wcN2Eyd9/1e8aMH8mcExZy1/9cjyx7ufGGm/nZz37N1752GX+9/09Y7SKJqM5Lz97H0mVfA8WFw+VAkFU2rd/A4LJy3lv1AeWDi9DsKls37SSd6WTa8SdQs3c7DkcZiprh1dc+YNrsEeQ7c7jxxlsYOWoUd//PX3n6ycfJpGNYrCal1aOOKB168+SOxJn7vLnwjratnjqC2R2gCg5ayXp+95W791McPLNHkRP6zXvcg0Ny2/WTX8+QJEzDOJBj+FhxNJy7ryjR2f9HOODDctBVswc9v/sqfeHAduGw0ms/8yhWAw4oA59xg/U3pr5g6PohfKK+0N+2LwOH93f4CtFnjcUwzEPK5+2/LxyIAnWA03N0+/fV1tHW0Y1DJ36H1+l97D1R/QY8pqNQBOmJrnXY+FY+9QQN2mRW3L1xwP0eMw63yvUMrb/zOoDjO5YE7ofLB8M4LC+lAalMlowpYwo2EO04XDnYnQEsrgpSkoKgdAcISGdNsqKVpCGTxsPY6acjWzVaG7ahpCO4NQmXR0OUJQwgY+jdL8Jeil2Pl4CuGyBLGILAR2vWYrGqGLJEV7SLj9d9SKi9EwQR1WZjzccbaGzcy8QJU7CqKmZaJ5lIc/ddvyXa2Y4oysyeNYemxlZ++9vf4vN6+elPf0o8maSkrAiX14XL40IUDUTBQJIEZElEtgKiiWxRUBQFeX/+TzAxDRFJz6BkYmxet4a1H61m9NgJTJoxi7zSCjAMbJoTU1G7c+iJIKDvd/ERDxS7Zus+fkE45P+eZ6UnUMvnhXnApbf3f4eulPf+//A6/TduHINi91kDTrHr4xeItuzE6bJjGCIedw6ZrI7dbkeWLYgoZBImoiSSmxcAZGRZJhRqZ9fOXWzbsgWrRSGdThAONZFNR1nz/lq+fvFFVFXl8+7bq1iybBGJTApBtrNn+3acDiePPP4ksUgcIRsFQ8Rq92BIVmx2H2ldpK29gz/+8W/4AgFe//cnPPfiW1jtOjl5ApOmnkTKBL87iGT1kEFEsQgochaFDG+99QafbN2K1+tn965a/v3vtxlUXsFJp8wm3NVBQ30r889cQFesE6uqUJCbSyIdJ5iXw8onn0Anxqp33mF49RhsqpXW1kaaGhoRTIWMHieb0dE0H5IgsXdPLR+t20JWFzF0C5de9G3QNQoKh9Dc0oosyXR2dhKJxXB43PzzyaeRVSvNTa2k0xkE0aQj3IpsUXnx+Zd56dlXyc31k9UzzJ8/j7mnnYrdZaegtACXQ6OhbieazYrF6iCWNMlmdQwzTTDXiYBEKhXB43GDYUFPZ4h2diKjsmvXTl59/WVuuOF6xk8cz4gRo7EoKuGOTuadehb5+UV0dnXi8QX4x6N/RxIz+HM0nlz5EJDCn5ODqNhwuDRcXifTZ85AENOUlOVx6dfP57rvX0UqHWX5ikWseusDslmTb37zKh566HHi8TDzzzwdRZW55tvfJh0Nk0lG+dO9f8LhdCPKIqNGDuOZf/6DLBLNLa1s+WQTv/r5z7upT7JMMp3B6VGxKSJtja1ksBDtMrnzjj9j6hodXRkEQae5fhe6DprNhWpV+cltN5KT78JisVA9agQWu0agqIjnXvwXPp8XiyJy7gUXEI2lyC3I5cqrrmbvvgbiiTQZHVpam5FlhQf+9hAWUUaWXHj9BbTHohR7Vax6lKadG0gkE0TDcV548V/Y7CKReIxrrruaQeVDyc8twaY5KS4u4N4//46A30tjXQtej4sLL7wauz2PW2/6OR+9vx49myYYDHD5Fd9izOhq/H4fqs3JD2/9JS5XMVu2NHPxhdez+sNVtDTXkxcMollt7NhdxxVXfp3jp4xl1WsvkON3kpvnZ9Oaj/t8F/fAMIzPVNoGUqdbnpiHlqNsSxAEZEk+UMcwD52v9P7dpwFlf53edaUD75MvFl+GQaXf/v5fW1T+t+NIlrveqwSCIKLr+oBumL5WFw7A7L5BekciMg9bLThaRaR3X8eixAwUX/R99plk3gHg064E3edSkuUv/Fx8kdzIw9s8ajfJAVov+zwHn/bU6vP/Q/oYYNS+HvR3PIvOXMzdX6vA77QNqK2jwpH67c/1cv9xfu0Pm5k/0sJZ0yr6rHbJvTt56JEHj3lofVn/+4tienj93r91vTtHW92m16jbvYUdG7cy/5SFeCpmoHg1MpJENpvEqljQ9/MbjLRJPJJEQsSlKej7g5MgQEtzDUUlxaSzGbKZLKlkEqvNTiqZJJpOQlxiy5r3+fvDT3LLrd8nkUiSEyjm3ffeo66ujpkzT+Tcy67grHnziHS2cOsdP0axHHp9BdPE1HXMrEFWURHQEcQsqiGDKJHUM1hsVpLtXWxct5poVyv+kkpGjDyoWEuSTKQr2m3B6GWl6+7gK3rx9rG6e7jV7vDn85ChHSH/wRcpX/vyIhCEbsvmzk9Wk27fQklZBSnTjqI68fmDNNc3YwoJPL5iRIvGzt07KMz1U7d7Nx5/LslsJ0UFJXSG44iijMflxDBMooYFs6uZTbtbueaa7/Lk4w9y1Teu4LZbr6Nq9Gg6OmLccOMP+M1vfkE8HsGmepFlk0g0jGKRsGsuFMWCbpgk0km+vvxKfvmbHxMsHEQymUBziOhGguf++QwuRw433/wT/vXqA3jdRUQTrchmPl3JOrzuIAtOO5vf/8+vaKyL8tOf3cZ3vnsJ00+YQzwWpaO1gdLK4YwdPY7Va9azcf1mRk4cSqYrjtPpoqGpkUDAi9UqEIuG2FWzg+KiwVgtbqxqhM6YiCI7UaUIFlcJyUgap12krb2BWFcGTdNwehQSyRgyfpJ6M+H6NO4cBw6vRkbvnsTu3bEbRBvJrMKgEi9rPtxATr6dyy67iRdffZStW7bzyMPPcNNN5yCTSyodATFNV7uJotjw+T0IljjpVIJ0LIvDH8CW7QTTyrZdISzWLHn5OSSSMTStiL01tdidDm77yU8YWlrFxV8/l66uEFitzJm5kDfffYrOtjRfv+gbPPfSA0QiUZKZBHa7B1GUsGkysqrRuLeBPG8BtXs2Y+JG8xt4PGWIZgRFcdDUsA9B1cjLcRPr6kC0O3Cqfh748/8hruvMmXEyuYUayUwHRtpBKJJE0SWC+fl0Nbeydvt7VFVPoKjIgyA6UUwBAzAUHSOW5qwFi/nZr35D1cgC0qaCzWLjyaf/xpjKCUTCzbR2ClRV5RPMzUEUBex2jVRMR7Y4qNvXjs+ZwR3w0BHpZE/tPoaWVXPlld/jRz/6EToyP77pO9x5111YHT7smkxnVzsP/30l/3rmcb5x2bfYs6eWSy+9jFC0E0kUcDmdbPtkPcWDCzEyYFddpCWRHVvWUpJfxvqPNzJuwkgEWWZvbSN+j4dEVws2dxBXroeaXTsoK8zFpsps315HcUkemTTs2B3i5ZdeJpFMkMlkyHXIVFVX0tAUpqZ5D18//wd855rLuO6H3+EH11zHddd+n2kzppGK1mDzFbJ9Zz16LELxoDL8g8owERF1vS8xcQiOFMnyc1nuDnvvdssgA9M8qHwZ9Hg+iD0dHtHSJwzAlmUYBorlMHnc+/APj+2wP1qmYZj7XUL7hi4In9tqB/+NlvmV4nDOXQ8ORNDh6LhKvffrC8J+/sfBOoe+1I/2Hf+fGizls/DlBETpmQiL/zHnYiDH8qVYRI+kxHEs/x8dN6m/4zl76RLIm8T5P7iXYfkKOe4vUMnrb4yHbbvxoW3c90YDr25Jsfg7v2HJ2UsYdcIilEEnogw6kaXfuYcyHxT4HQAEtCTlkxZ8jqEd5EIe/l8P+tp2kKJw8LeAiSBIuH2DcHlLyC2spjGk01S3kd1bNuAiQ8OmrSSamti9fh1vPfcclmQ7H7yyktY9a8HIkoq0Em6pRdET5BSUkRYsxDMKqbY2nE4vqHYkzYnD5uS0uadz4cUrmHvaAmxODYfbTTjahcPuwO1xodpUNnzyCWPHjGThwgUUlZeSzR58o+pC9/nXDYOW1hZk0cA0TCTBAnRbfM1UhlBjMw37arBYrYwZP5FgQcEh1k7T6E7a3h1Z97Br/ZV5FfTFq/2sVAWH/OpuxdD3c6e/HPf6T7W737Lpywnyzjur6IimyCmqIps1QZBxef3oZpx0WkdWJPx+B6rFSmd7O8G8AiRRRZYVQqEWGhrrCOR6aAs1oNpUNq9+l1Wr1pNNptETKXKCfmafPAtFVbFYHNTW1DJyxCj+9Ic/M278OOwODYvFgsViIRpLdF9XWcVAYeb0sUybfirDhlYybNhgIpEOMqkUsqgyYsQY/vnESs676FxScUgkIyiSZ78FEs5ZfjZWq8iajz7mlDnzUVWF4pJS/v7AA8w8cSYd4TBXXnk5iiRSWJxPOqVzw/e/z5Chg8jNz8E0dWKRCM0NITzuPPyeHGpr95KIR0hnJFwuP7GuCGnd5IJzv8aECaOxWE1EScbjCQASDfVtOOw+WlvqOeec81i05EzsDismAlk9hdftIKNn6Yp1UZDrxuERcTlz6egKM25cNQGfl+HV1UiygarYsWoWorEYDrufxx//J8XFRTidTlLJDI11reTk5aBnEqzfsIVrvncdpWXDqawYisPuI54M8/HHqwmFmrBZFWLRBCNHVWO1qTQ1N/LC86+xYvnZ3P6L/yEa7WDevJNx2O3YbD4inSlCbW00N9fjtDkIBHJpCrWSX+LHF8gnEWvBTAvYNJVIV4JEPI4/L4/O9lY+2bie/JJSmhobWPn4oyxfcTEvvPwOEyZOQpYdWFQfgYALi9wdqVMUVIorCvD4gqiyjmmKJKMRsnoKSTERTZO5c+dSXlVBMhVBtbr4v+ydd3Rcxb3HP7fu3b4qqy7ZlnvHxgEDxhRjOsaACcQFTA0QICGhBhIIvBBIAiHwQmihJXQIBEzvmBYMptiAe1Pvq+176/tDkr2SV7KMgbx3nr/n3CPpztyZuVczv5lfx7YYP2YcJeEq8gsDFBQVUlISpqO9A8eGeDyJqqjohs5555/LwbNn43L5kFFIdiaRJJnDDjsUPa0z74cncerCHzFh4kTmL1jA8fPmADaTJ0/k6DmHkEjGOOSwg2lrb+a++x5m/Lix6EaGouICHn34UcaP25N//vNlxo0ejm7q+PPy8IcKEBSZpe++y/gJU3j+xZeZNWs2uiPS1rCJqspKGlsi2KJGMBRGdrsRRI0H7rmL/faZjmAbPHj/vTQ1NLP4jDOorBxFUamfO//6d2YfeiDTpk5m3gknYFomhYWF1NfU09oaY8ToCRQVFLN6zQZKKyq75XeDdzHJRUt2CX396rr9gLfuZ31iBWTHk9hOSDaIqHM9qaB638w9nq4/nZ5uB2zf6ba621Xs9rn7HmGaXaJxq/swIkrbJOS5JOs5Jw9dE8Oyu533tzt3dEeF3DqRt38+W4PXn9Yp238q+15/z3ybWr0e5ravtmmwppKD8ef7pkzOdkRgFxZhf2P5rtfZQP0Nxt/QNA1kWRlU2wPhu3jPgcYvCAL33XM/zy1ZQlWByvULRn/zwKF937O7vw1NnfzqsS0APPHkoyiq0kuL3rM2DF1H09xYfbVCwMcffdwVQW2Q62gwfroDPTuY5yzRRhQkBKfLOdw2HfRonGQ0jktOoxsGqVQKt+ZCUXxoLgfHTtHR1s66dWsIh/xsWLeO0pIqZF8Yf6gEx8hgSzIV4yZiiRKqYdLS3kZzayPVw4bhdnu6gg0oCmbGJJ3JEMoLkEmZON3JsxVRwKQrJLdpWUiagqWbKJKMYNs4Zpp4PE06ZdERa0eRZGrWb2TcqNHklXpRND8mMr19x+A/7YWQO/CAPWjNXZeZc+66g4pc9y3AQUJ2dGLxCLLqBz1BOhnFHQyTjNXjdRdgmQaqJrJhQx0hjxtkN5LsIpWMEQx5sB0LtxqmMxLBpcrUrv2MTQ0Wt956K3f/9VZETQBRwKupJJNpBKErOmBpWSnugMTKlV8yctQoYtEosViS6uoRHHXE0Tz5zLNEW9dx+eW3cPsdt2JbCVrbW+nsSLD41NO4/74HOG3xGbzzweu4tXw2bfmUm35/P3+69QYQbCzLAMdGETXicZ21a1czZPgQbN0iFU+iuGQKi8O88PyLHHnEYbz88ttMHDOS/Ip8brnlNs495xwK88LUba7l7aUfcNKPTsB2MgiOgeYNopvw8dKlvPXBB/zkJ+ejagqqZmNbDnrGAduFpiisXrWaV19/iQsuPB/TStDSUo8saeQVF2CnU2heP9GkiVsyaWrdQknBeDoTEVRFQhQkdN3Cpaog6NRs2Uw4XMZjjzxLeXkpJ8ybQyqdwTQyzDrgUF5/52VkxaazvZNN6zYzctxIJAkkWSASjVNaWoqu6ziOQ836ZjpjnYSCftau+Zpb/nQ/9z3wZ/KClTzzr39yyOwD+fnFF3DXXQ/S2RHD41MRZIN5x5zAcy8+T8rOICs6khWgsXYlghGkqLKYSEeKaDRCXkkYjyqwYc3XlAwbgWNmqNmwiZFj9mbtxpVM3mMCpmGwZvUmWhuaGDWsjLffXcrRR59GsFggHjOIta3HX1COncwgqQp6OoZhO/jzi1BljXQqii266GhrIeQP8I8Hn+Gc8+fz8bIPKS0ro6S4DEO3UBUXhmmSiHf5oCH7kdF459VXmTlzb1Sfn/b2Fo48fA5/+NOfeOHpZzh41oHsdcA++DwaTc3NFBbmEY20UFJSTkNDEyee8EN+e+1tTJk2jnQ6hi8UBbLJrQAAIABJREFUorOukdVraykfOpKOpk18seZrjjtxLpajobkE0E0ibXGampsZO2E8eibNnbf8jsOPPBp/QTGhwjDRjg6KSwtwKV5EM8M7b79NcXExLs1FwBPCEW10U+bM047gz7c9xZoNXxL2+qhprmHW7Nk4lsmiH53OnGPnsH7jRo49/iTGjhlOMp1kyMhqDCuTRYu2pSXI9rnrQd+ceNn3chOUrdLHnGWC2BUWxe7eUx0cREHe1nYOzV1/GEhzl23hIsm9916Bbpqby+oiixw7/Sg4bcfBFnoCk+0adkZzt5u520X0MHc96GGyckU/3MrcieL2DNxu5m43c7cL2FXmztB1FEXJSWT/tzN3PWU9pmMnHH8SAIeOc3PqIbnNJPvpCIAnl67l6eUpRFHgyX8+0avK1jWRg7nDAcsykeTtifjOBqPZFeZusFYComDiOGo3U6XjOC5wupLOO+iIoogoiJi2hYOMbRi4FBVTcMAycEkW6WiEhtr1tDa0kUkZNDStpbi4gtLyUbz0yuuUhIuZMHUiRRVjcLlsJLFL0yrJFpYoI0sSpmWhImKIgCgiGw660G0a6NhYGQOX6iIZTxDtiJDJGLS2NCOIoPl9FJcU4wv4ESUJR+4KMtW10fb9dv9hF/Nc/m//x5g7ARFsB1UR+WjZp+w1YRipWDO64sPjDWEkLaKd7YhOBm8oj3Q8hsefRzKVwLIgncqgqAoenweXqvLVJ+/T3JRi9OTp7LPvVN568zlefuktFpxyOktfe4k9po7ihRde5YTjf4jfH8SQ4jQ3tVNSVI7jOKTTBgF/iGUff8zYSWNQdAnDsTl1/lk89NjdnHTSfE5dcA7xZDvxRIyjjz6K/CIf6aRDUt9CVfkeIOtYpsCJ8+YjovLoIw8yf+E87rrrTgqLymmsbeJf/3ye8rIKTNOgvKKEYdWVtLXWk4qnKawcyupV65k+fRoL5p/EzX+8AX9eCMexcakKsmCTsgxcmofmzc1UDq3CsCx028LnC6EbCRRVIhrNsGrFx+yzz3RqN8fxFUgEfCqZdAy/FiSDQmtjDXmFBUguH6Klo2cyWJbFlytX887b7xEOl7JowUL+8Y8nOeKYaei6zT+ffJ4T5y1EUQSefuYxjpk7B00Ree5fL5POpFhw5qnItoVXEli/uRZNkxEkgWg8hculUltby/Tpe9Pa0onX66O+rp5hlRXIko9NtR+RFyhj0+ZWysuH8c47rzB5r9EUFw7hxhtuYfHiRRSVhDGNDKJgkk5E+ejDVex70CQkIQ+XS6ClMcqVV13B72+9iaBbwbEybGxoYsTQEWCm2VTbxMjqYaiqxq+uupb16zaSSVrccP0llFaUc+LJF3Dq2cdy7DEn0LjpExwxzN2334nmdXPJBefRHI/R2BljyqSpPPnIg5xw8skImMTbW/h0RSN7z5jElrWrGTayCkXSWLt6EyNGjub0M87lwvPOZeLkClauXM2WLZ3kFfr5wfTx3HHbfSw85YfYhoyoyRy6/xH845H7GLPHSIwkXb6nkkkkkmTpO+9z6KGHs2jBIo476ljmnXwUgmjw3icr8Vtp3nr3Heaf82M00cuy9z9m5oF70RIxOP3UhZzxo0VIjsJhxxzEXjMOYsXyf5NxRM447XTuv+dubrjhei694hIa67cgS258BQWkkikuu/wKLrzwfBRLx3J0ho0YT7xpJYGiPbj6t9dw6tHHoRaqFIWL8Hq9xBMiW9Z/TSDgIb9qGM11X5OMZth75iwcOUt79i0zdwOeTf4TzJ0kIEm7mbvdoH+fO0EQtzFc3TW2RvHJ4VOXy4eu7z3bcpDkrtnUk+G+r3o6GwMxbJbV+/leURFz+Ot8Vz5ouRi+wT73bY8Fx/7W/e3+T6+v7sPozvxfvgsMKtJp90aQq17PHLv0F5dTXT2MV197rVf5RRf9lP0P2H9AH7YefNOott8nBrtG+q7zHqsCy8piQp1t1ggDoUc4ZZsWmirjGDEEHOLxdjZvbEY3LNKxdlpaWhk9eix6OoPoWKRN8IRKaN6ygfKqodiOQax5Iy2RJPFYBJdqEwwPpaCgDFXzEIk3MXb8NCRZQpEULHkn6MBAvpPfB3aSucv5/xP6av6y18bOaCr7j4g5IGwDW5DRZJm0E0dNKbz/xt8YM3oM/qJJWJLaFUXUyBCJR1FkCa87D8PWkRUF0zCIRDooDIZIpnRaW5toa7MpLS/ihyf9kCeeeIT6mkaKikIkUzH8ssCPTvspS154CoEo3rwSvvhsBSPKwmzZtIWR48cRTaUJ5uUhOA6Rlka8bhWPrxjTtDlx3nxGjhrFl1+u5Nxzz+SIo46ksaEDn18llY6jaT5My+LHZ5/L3ffcgSTraC4/7e1teH0udEOkZksdN95wC//1m6soKy8jEYvh9ripq+3gppv+TMWQQs6/6ALsjE4iGiNQXEjzxlVUjZlAJNZJOC+E7nQdco3OFrz+MAIippXC5fLi2C4sOrryXdoaup7CMHVklxvRSJNJxtCChTQ3xNA8Ch6vjKyIyHQlkE9ldN545S0UxYtlGWgeicKQi/FjRmMILkTRhW6Aqae4/Y5bOf8n5xNPRgn687j/nkc4as5+uFwysqwhOCozZh7Fhx+/wU8WzeOXV1/HqAl70NDcQjDPiybmEYvWo2c6UV1BMoZDcVkBy/79JiPG7otfkZHdGpde8iv2mLwHRxx5MOl4J15vAYlEOxnT4dGHn+RnF51PSu/E7w+RiHfQ0Zjgrnsf4trrrsEWDATZwTYNkk0trNtSj+qOMrJ6BpJbIJkS+flPLuCmP12PnjZoi3Uyduwo6ms3Ew6H+PKzLYybMpH25iZaG9vwBTwsW/4pxx4/h1deeJk5c49HEDK0tK0hv7CaeCyNbKcQNC+2JZBO6YSC+Tx4/90sPm0BINHe1IisuXD7/dTXN5KfX8ja1RsYO3YUksskHoWW1i0UBodz6uJF3H//w7i1GIloBlGUuf/++3nrrXe4684bcBcMQZNlBBHETCdNbR2UDx3J4sVn8fsb/4ChK7z+1F9pt0zOOvsifnPxr5m23/601G5m7LSRVJaV8q+nn+G8c36M5nJx8NHzef6pR7jl1t8yYc99Oe7YY0nE4tRtrmHTlnomTd2H1V+8y+jJk0lFbdyqi0RqE6YTQjc7KS8dQyLazpIlz3LwrJkMG1FKKiNSv24tVWPG4csPgSDkZOTEPnuus/WMuxOaux3R5IG0ez39d/chieLW/qQ+gjDLyUp+3rcpa3vmLudQ7H5o5QCRMqHL506W5a3j/KbYzdx9jzB0s4e974VczN22w2cOCcAgmLuubrr9l7r/b9ZWScngDp39HWB3M3fsZu76YieYu75Cg28T3xZzl91WLvx/Ze620hnbBoFvzNx12RaI6IaNLNkIgoOIjGM5IKWxDQfHMUEwaG1pQkgYZEwLtz/Ein+/RfWosXS0t/PZh28xccqeJDM60w+cRUqXUVxuVJcLR3KQna68e4IA1s6k/t7N3GXhmzF3NlaXGW8qyssvPsnhxy1g+Udvkq/XUznhKCIZC1EWwM4Q6YyQn5+PInmxbJFgMMCGDRvILyhEdQno6a6Ims1NTYQCYa688jo2bqjhiMMPYsaMH1A9Yhh2poWC8lEkYkkuv/QXXHrpNfzh5hv4zVUXgqsAjyZjZ5IokgCqh1i0Exwb0zJQFQVDd4jFEngVjblzf8hNf7wVX34RN954Hdf85iouvewqTjvleNo7WsCSmH/aAkDAEdI0NW+kMG8CyUScFSs+Y8yUvfCqIj6XyLKlbyLkD+HNF9+gefMGLrvuWmJtHbz5+hssPHMxjU01VAypItbRhEt1kbEE3G4NIdOJqXhJRjoJ52lkBAGXmE/KbCYeiyMKbnw+D53RDlyaG5eiIYsajqMhSgZ33XUni09f1GXa7Bi0dMTx5RXgUt2YusBnX3zKuHEjcAsSqqIRT+i0dW4gFChHll1EIx34vTayz4fhaEQa6ykuzae2ZjMVlZWYehJZKqIzGaNl01rKh1QjqxpeX4APPlzKiGHjWLjwRG6//TcUFgzBxksoL0RL3WZSViOaUMa6jRu46477aO9o54knHqYz3k5BQZiams0E80tQZQVZEdHNNJrLza+vuJkf7DmaWDrKqYsX89zzL3PEMUfz5Scfsfqzz3njw0+46c+X89oLyzns6IPxaHl89vEX3HbrLfzuhhtobFhPeWUlhSWltMfiNNY0MGxUFeDgpBJobjdIMnUNjRQXFCFJErIMqXQC1R2gvT2CT3FQ3H7aW2N0dCSprq6msXUNeQV+3JqPjG7hcQdIpy1amtspKy3m5RdfZ8b+e9Pe2sCWTR2k9XbuvuNx7rzvegIFXqyEw5Jn36G+cS1n/ng+omix+qt6XnpxGaeefjR+r5dUIsqqVWsYWj0c0xIpKi5l+Uefo9pN+AqKGVI9mTMXnsXMQ/ZFUzV8/hCTplQSDASp29TIe+++y9zjjsfMZCgYUoQsufn6yzWk4xaTxk2mrW0LRx19LO+/8xK/+++/8cKSl3n+2Wdwe01Wf72O8oowl178O/74+xvRzRjhYo01a74iv3A4m9duwOX1sO+sA3bI3Nk9QVf67NWSJO0ycyd200w7FwO1E8xdVxtd4/r/wNztDqiyi7Bt+5rcTj5Zm7DQfWXnSegp2u7w3NuczrKsXuW9EtIKQvcPoVd7PW30nHGzE6RvN0pn28+eej1Jq7Pr5ErE/k2QfXDJDjgzWGZtV1MqDMQgCIKIIO76O+Zuu28iefs/d9DMYoQGxHbOwwOZzfKdfLfB9t+fOWlfc7Wu9ZO7iZ53GOhdBlpD3ykcth93T7/bCZa2rZGB1u22d+0Ou0/PXits1eIJfUyzu6IoDrCGHJDFrkTsiCKC022eLtgIaAiiC0F04/WFUfNL8RWW4fLnUz1uPL7iIRRWjWLavgdQPHI85aOnYKkhPKobWZVBAht1KxvpDJT8O9f62on11mut7gQGfi7HeAUBScodwCk3c5f7Rk+grR1U7j2WwdRzbLbtWw4WNl3MoI29YSMfvvsS1cN/gLegmpqNyyksLcHrDxHpjFFRXoooSiQTGQzTJhaL4fV6EXDIxBMIOHS01eML5qFpHvac+gNmzzqEfabvxYf//pDS0iKuvOJqDjvmGOLJJIfMOoy3XnuX+YsWIIkCqs+LLEnoaQNFVtFNHdXjweX2YepxEvE4dbV1DB8xnAMPOITX3ngDWZFwHJl333ubgw4+gL1+sDdTp05l+KgqbFumoCiEprgxTAMcB0XSsEyTaGcnQ4YMwzR0NFXB7w+iaDJ77jGFyRMmEC4JY6aSvPrKi8w4YAbB/Dws28ZIx9FcbjweL45tY6cTgEAwECKRSiMpAh1tCVSXiM8XojOSxO/343Z70TMpZJcPEwmXIhCJtDNt2p6Yps3KFV9SXlGF3+9DEQQ6IlFM3WTkiGFk9CSJdAoLF9gC773/Dh9/9AWTJ09i3brVVFZVoCguBFHGtjPoGYHSskpMy0IUJGRFxe3WiHSm8fkDGIZFLBbn5j/czNRpe7L4jDP52113Muvgo/l61Wb0jEFnNEVRnodQuISKqgrGjBvH4YcfRjIT59rf/I6ZM/fHsSU2bdxC1ZAyEC0UycVvf3sDl/7iYq647DJ+fskv8Hq9jB47Ass2GDmslOFDhnD4cScAGp8s28SIoSN46P4nmDB5KPPmzSMQ9FJeUYUgKoiShGnolJaXopAiEmnH73OBCC0trYTy8smk42gekc7ODlIJEdWlkTHSiLZJrDOBZVkUFRUgOiahonx0Q0d1eaivb8YyLfL8Xrxuhfb2dlyqRri4kLbmJn58xvkcccRsPl62giOPnY3jgCqojBo3jmHVQ8joOj5/kLnHnU7Ak2HucUez5JmnmT7jQMorKljz9QqGVQ/n3Xfep2pIMQ1bdMaPn8xvb7iUq6//OQcfdCTFlRWMrB6Bqvkxdfj73x/gnHPOYdXajciSiG3reH15aKqbhx56mE+WLadi2DCMZJJwSTFvv/Mev7zsYooK/bzy4vN88MFSjj76CI47+ofceffd7D9zGslUFJ+7mKbmNqKdcQ46YCYrVq+iuKR4O3rUdVbsTizecybthiRJ23LP5diHoUu712PmmbOs+znbsXtZpnUFvMvSFGY9K2bRX4ftk5ZvJWt9SF7Pc6IoIfQVoGXD7m5pq/Czhz4ODLE7ifmuYmcCquzOc/cdostXbuA6jmNvp63ruRzH7qUpEHIkzc2uD2Blha2VJAldz5ALffO37ShNwzfN99YX35Q52+WcT4Po/7vQUObqb2tOrf8UvqF/juhsu/pv+rvLZ7izY841LxwGP1e+DWR/s4G+2w6R65MK/dyHXnTHtpxtuSsHOYZcQZ+68mr2tiLYbr0IDggOkuAgOQ6CYHfdcxREeVs5goMiWFsvARnZcVAFG0dUEB0J2XFwYeKIDl3ZIGVkIesgMSCz/83WV/ZBpO/86SugyXUN3HiOQFrCTtIcR+h99YLY59p+3Llh97568uOxfa4oWVCQBAlR9TNh7iL2nDWPLz99h2jNcgqCULd5HThuCsMjsQwXuhNA8YXobIujqTKCGMftS2NmEtiZVhwhg6a6aahv4Jqrf839D97P7CNm0BGPgG2idzZipGSEtECq+TPcXh2/10RV/DQ31pFur0VPR3A0Fd1SiHW04WQ6yFcrGFo5jlAwj/o1dXz40YdkjARud4C/P/YAF118Pnl+iXS8DskF6YzNLy75NUFVZvmy93FMHy51OGkjQTBUzOtvvEfNqrU01Wzm85Ur2NKcosgbRpE1WtoaqFvXTn1rjOmzZhCLbKZ283KMVAOiaBNpr6Nm01dIsgX+PNJmjLSZQXV5qV+9noLCAIalISMjSTIZPY1lOvhCAUwzgZ5qIZVqBVlAlDUyhsHUvaai6xaGqRNNtZHvz+fTZZ/xyUcfoaeiBDWZPLdMe3M9kyaNZdGpJxCNRrj1z3cRzwg0tsWxEDFSDpgKF5x3MX53PnHTRlFVjHQnimTSWLceRTKwzQTnnH0aeT43N//uNk484Sc0NcT44L23WL92FSVlBbiDVSiaF9EVpKxyBPmhAoZWVLJ40Tmcdsov+PqrTbz69Cs0124hFnWImxGuuupXPPjgbTz01MOEC8qoa92ELbuQJZ316zfTKbhRxCQSFoccOglHTjP7qBmUV1URzFOIdmxAT6e48opfIKDj9Wg4mGysbeOAmSdg2i6inVCYV4me1BFkDcE20NwiNgkEJ4NbVogmUvz6N38mkJeP5vOAomFmMqz+eg3YDkOrivnXY08Sj3XSGmugoDhI5bBCTMPEpeQTLi1i7IQJ/PTiBaQTBjVrm/ns08/wuDOsX72aP/3+Ft57+130ZIIb//R7kukER52wkC+WfUE6qTNmyjTszggjqroiqo7fr5SE1cniRT/j/TdX8teb/8KKj5aikGTt6vWcedoiDj98FilL5+H7b6GkspiiYACsNC6PwtXX/pLRo8JYuk5Hoplnl7zF1Vefx6qvV/LxJ19xwOy9+OWlP+PTjz5g7eplnDh/Dk0t7fg8paxdvZbhFaMYP2407334Lpn2OgTHwULF6cMyiN3xIERR7HXlyk3XU9aL8vSpl12np6xv29n1pD6X5YCNiI2IIDh0HcFtHOxev29HAbvPt7loZPbZV5C6L9HuSoOQlfu0P9jf43kjG7s1d7uI/lIhQLc01XEGFqBm190O25uXDYw+k9PpkrQLORi3vvMt+7n/jZaEuQ4nO/p7ZyEKgwn6+/8XYtZEHiCly/8J7Oxc6dGA5cJA62U7Zdv3+d2EHi0cW2mAk0sDmOvRQXwfgcGleNnmMiEMuv++Y/muBAa5+vomZf+b+xvM3tLPg13yg+znt0qsHURZxuPxM37KZG6++U9UVxRSGPLT1rQZv0+gLZbGNHVCXpVAwENnrJNoZxxZchGPpFAkibzCIgTJhUfzYpg2sw+Zzb+XvcWXKzcyZdKeVBSP4Mr/+jVfffUpquBln4MOR/W6kFWJ/GAAzaVgAx3tHfiDXhKxGDgSn3/xCe+//yl7TtuLvz98J0OGjkLzeDj+hHlc+NPzKC8pwetzU1CQRyKdwe12serrtSx9YxWffraSqXtXIirNNNW18/GyT5g5cwYF+QVs2ryJstIyRFHgkYfvJ5BXQHFBKRVDylj+2XK8Pj8lBRUUlIRxqT6ikSShvBBurw/b7jJ5zqQM/N58BERc7jTNLc0Egnk0NDRQGC5CkSXaOzoAF4riQZO9SIILxSVjdgtqMuk4Xp9GKqljGl058CorK6keVoVLc9HR3orbq6GoCr6gj+amCLYFJ88/GX/AD4CiSHg1GUGSqK4egqIJOI7EO298QFVlFaFwPt5ACMXlQnIplFUM5ZjjjuXyX16KR3WzbsNaRo4agWEYFIQLWLFiJeXlZciKhSSKNNa38sH7H7HvAeN5/vkn+dkvzqJ+SyNT9hqLabgQZIeNG2o45KAD8QWDSJqNLGlYMYFl79zN8FEzmT37KBbO/xGaR0ZRJILBAD6fD0ERaWmL0NTaSUFBAdXDR+JyaV0BmvQMgYCLY46ahcfrxaN5efOttxgytIJISzNGOk48BYFQEfFUCs3txuMPUrNlCxMmj0V1iUiSgyBKFIbDmKaJnskQ8oVIZdIE80KIpkVbaxMl4WKQ4KQfnkgwz0N+oZ+P/v05b76+FM3lRZE0Vq5Yg6xK7L33NC766cV0RiMEg35crgCpWAxJkRAVmfb2NqLpJOMnTEaR3TiWyI/PXMzV11zGJ1+8z2FHz8ZyBOIxi8WnLKS4uARfoJAjjzoWJI316zdxwVlnMe/Ek4mmkgwdMYQ///l2rvvtNTS3dPLMUy9y8KwDSCY7WPHpFjqTUaZO25twUSWiJBCJdJJKJCjIz+err77g2SX/4phj51FaEqapuZVgfgEC9vZ7Wg5LoMEGwBsomN03ccFxsur3nOZy9te3ze7bkiRtZ/qevX9t32HPvf7pqQPfWgLzndHc7WbudhEDMXe2bfeabAOjS93b10RTQMx5uHFsezsTs1yS5C5JR4/tZZcUoT8Trb5mkt8WkzfY6H09yDYP7e+53qaoPaaOXTbTA5mR5pLEb+13kMzdzpio5iJQ3+dhdZeQZZIlCNtYu+wD+v9Vn8JvYm4HbDVZ3pH55tbnun9KkkQ6nUZRFUzT7GVakkuz23PvG/uYCtvGLYi9Ta23yw2U6/E+7zuYddjVrdAr309PhOBvytjlgiSJ2zSROcawHXrm8S6YWO7UAWMn1kTfw0yPxvTbpg/btzeQRCLLQiRbS5rVhmmaOIIMsozlwKwjjuHNl14kE2sm5HVIxJvxBIopzC+gtb6ehqZGSorLUBQPPm8eeiqJ163h8eehWzaKolFeXsW5557LQw/fw94/OIwXlrzA448v4aXXHmfUqFFEOiy8oTCBoB9H0BGMFO2ROLIkY5s6mzetp6x8KC6XH19IZcrkvXj22eeZOn0yw4aO5sWXXuH0M0+hNBwk0h4jlkjgDXnQFBeCYDJ8WDXDRhdy8KwDsE2BwrxCCsNlVA0p74omrHlZs3YtmqZRWpLPqDEjKSqtZOGPTmGf6ZMYNXY01dUjWfPlJopKikkk07jdPhRNwzBNvF4fejqFz5sHjoxpGciqjSQKZFJJ/MECVNlFOpPE6/XRGa9Hc0Mi2Y7jpHFpHjAdkokosiwgSiLYChf97AqOPno2qkskEolg6Bbh4kJWrVnF88+/ytAhlQQDJRx88CwWLJzHqYtOYdWqr9lvxn5k0jFURaO4pJB0Oo7fE+Txx59l6XsfMnnKaL74fA3llRV4fS5ESWXmATMZPWY4kiLR0taCpKpMmbonPp/G8uXLqaysoiOyGZei8dbbyzho1iG89/b7HHrYEdiGyMbNWygrD7N2bR2lpSFsy0FTNVweDUvQERwX5576E+YdMQQlMAXHtNhn333w+lzcdcddDBkylAceeJDi0kJU1Utl1QgQDZ5f8gqYImY6TjCUj2nGSaeiCLKKbTuEw0X4/BqFeUE0VSQQKGRLTRPBPD9ut4xtCuy9956IEti2QW3degL+QhKJFF63D9t0aKirZfiIEQiSSry9jQ3rN9DU2EaoIEA6bXDddb9hv333Yvz4KQwfOoL8UJDOaIKrrryaq678JUOHDeXjTz+mtaWdispimpoj6IkE6UyKwuIwmt9HfkE+9fXNpDsNisJ5RDsbmTx5AsVlo5GEIOeffxnVI4YS8nv5y1/uJL+wjMLiUq649FLmn7KQQ/abAbKCI8ucftZizj37x0Q6OiguLqalMcaBB+zNHXf/lUnjDmLW4fvT2NxJc2sbAjYXXvhT9pw6harKKl577VUuvvRifn/jTYwcMZb1a9cyZuwoTKe3m5Ddbf6+bb/oMtPsMavMhWyTSrGPWWaPtUQuutsTad7J6qfvle2/LGTtc3330+32AkFAFrty8fSYZfZ1T+o5k/baD3vMNAeAIEk7vff0h91mmf8PIEoD+75kQ0AcMAzsbuzGziCXWcNuDAxHgKeffjrLb+37gWXZuxTkpsfcZbDYGRPpbwN9zXKyrx4IgkTfFAK7sWtQVBXRNhFtEwQZQ1A5/sxL8RUMY+OWVtoiGWQjQkekjbySSkaNnIAoSmQyaeLxKP6AysqvPieVSuBSVSzbJBQMsv/MA0mnbNIZi3knzEUX4px2ygVorgC33f1Hzj/nXOo3NNFa30Yi0oHq8aNoGm5VYvSIcWiaRnusHV9oCO0ddTz/4tOkM3l0xGI0t7YzbuIYQkEXjz/2KDZdfqHJeJzGulpGjahkzKQRFJUWs+zDZXy94gueefpl/vHQoxQUFiOqMq++vpSykkraW+soKCglpZvc++CdBINuAiGNjB7lzbdfRFRU/KEgLp9KLKkjSi7aWtqwdYOOjjYsO40kmwiECfkYgcJHAAAgAElEQVRKSXbGEOVu0YggkEymCPjDOLaG31NIKukQi3TgOBYCYJs6WBKKonDrrTchKyIdkWZ8fi9HHXkcHZEM4yfswXNLXgMELB1+ddWvSKaiPPTQ37n0kovRFJk1qzayaUMdTz3xHHraoTPSzJQ9J/Pzi39OQTDAK0tehYzD159/QSbRxmsvvErNui1kzCR7TZ/GtB9Mw7BsBEEkFovh9/nIxHU0l8YJJ85hS8MGDNOhtLiIouIKXn3tA5546lmGDS2hIE+jorKca67+L+KJGIqQx3PPP8upZ52MFhjFaWcs5qzTF2JYBk8+9gyWJVOQX8qbr79PZWEJ7Y2NfLXyMywsfjR/IWPHTKS0OMwt/30HipaP4gkTi0YIBPy4XAqiJNASjyCIFvG2Lfzmyiv48K2XcDIRVExeWPIiiaiJLGkUF5cgIFGQl09bRweJpM6kyRPw+rxoWpD84gqqR0/kzaXL+GrlV8w+5HAuvugK/nbPI8QTMYL5Ltx+g5IKDzfd/Dt+//ubufyyaygrC/Pu0g9pb4+gqgq+QICVX64krWcQBAnREqjbUMNfbr+NTDrK3DlzaKhpZuPqNfz93vu49uqfs++MKaSNGLFYB6GgD0dP8ttfXUR93dfklYZxB/y8+vLLPHTPvYimSTISZ0z1MI49YTo/mr+AU350Lq+++RS2ofP1ii+pKCvC5VJ57PFH2XPqNN57731OP/0cln30MT+/+KdccumvqSyrINbW3JUuaTf+T2B3tMxdRE8qhB5pda6UBD3IFf2yb9l3Cce2+03HsCO/j4Hybu2MZi5XOwONJVfkzv7GIYnidtFD+3uvXGMWBWH73GWDeSdB2Npv31DygzFP2Gn0zJ/ves708gWVemnrpD4qGDurbNvzg9CW7OK7bCeR24XnB/M/E3sklFnraLBzxbHtnOYZAwf5+c9oeAebrmWHcLrX4HfwGtk5QbfSX2eb1FXsk6+o539n2dnz+rv/vgPlZxxU/sNuSXKuPHcD9Zdrbg80pp1Brjyu3Z0ixxp448l78fg7mbTfPJJOMTXr1zBy4iTicR3RksnLh4a6zfgLqojEIrgdlZqaWoory3jigSWEwiFu/vOfufaKXyK7DWTFxZgxk2mo2YzslggVBgiGAvg8+aiajGmnqa+po6ysCkVW6WiqweX2obiDXHzZFVxy4U/RLYOqYcMQSRCNRZDkII31nfzhD9cTckuctGAOE8ZPpaW1mXA4D0FwMEw/mXSKdDrNvLkn88prz2GYCRob2vlg+RecfNKJuDQZUVCJRFvx+d3oSRGfzw2yQ8JoQ7B9qJJCrLOTvEAQWxBJG50YGQN/qAxdj+GYKfSkgeb34DgijulgyhqSYBFtbcSryvjyS6ipraUoHAbHIRbtJFxUiGGYaF4v0bZmZFXFkjQ6m5oJhQKs27CGqspqvD4vtTV1xGMJJkweSzqlc9WvrueySy7FEqLkBfMRRZUP3v2Q6dOnEelsJxAIkIgbxGOdBEIeQoV+zFiKjKVjAvkFhaQSJpKkoBsZBDuDZegIQghHSqF5A8Q6bdLRBkJ5QdxuD8l0AkmSURU3uq6Tyhj85PzzuP/+e8hkbP794SfMmLEfkpJh/Vd1DB0extRtFp9xBo89+hi6kUFWZDpb27npj3/kyit/SUcmRkm4irbGdmq3rGXS9Cl88u/luMQQQ4aH8Hg8xKMxfnPtdZx99nmMqq6kpraBEaNHks7EkCWJpoZOlv37K46fN4vNNWt56ol/ctpZF5AfyuNvdzzElrqvuOyKq3j+xRc5du6xyKrC5598RrigGNnn4fSTF9LR3sqwUdVs2dzA3+6+m/ywF68viKZpGHpXPsL21gaCoTw++mAFo8eX8uUXGznkkEOpq9tMWWkAy/YgKA7/uOcfzJ13LP5gIT8++0LuvP0m/vLXOzhuzrGIkk1+yIfP7eHjD5Yzcd99ef6lV6jIUxg3bgyNrRGeevYV8sNVHH/U/mQMhaMO24877n2QknAx6aTOjdffyFW/uoIlL7/CaYtOwtDjvPf+cvbZbyaGkCI/UMATD/4Dy3I44uQTEB2RL1esYJ+DZyKJPcqF7ZErz91gygZLc6zufHfZfnl92xzMGPoqOxynK69qdmTo7fLc0RVSqveYsnLgbUtI2rtTcftYGd8Uu6Nlfo/oMcvMNj/qD9vK+t/sv1M427bj7Tf7gR/ddlAYuHxHyNXOQGPpW3+gcYhZ6v0djTdXv9vU97lNV/uD3W1O1WVmkNsP6dv9//ZjWvCtI9uEVex1QBf7nNb79SXb4Rh37V129bv2NZfdUdtb51XW34OdK7Is7/Sh+j/F3A307oOOykI3I+XY34nwSshi7nror91jnoPQ28+QbWa02Wad/ynZZrYJ/A6FY1n20DvzHQea27sKXde7/FOy+3McLGRQXMRMGaIbad20mVBhOeVDK/j88xUMrShFMGLU1W6mcsgImjpTFBUV41JdtMfSmJIHTVQZP2EUn322nA2bmjlpwQJGjh+DqEmY6TaKy0qpGjIUl8uDaZh0RBrojDZSWVENCLQ0t1JYEMYRoK5+PccffzihQCHJTAp/wMe99z3LvvvsR6y9Do9ic8ycExk+tIIRoyoRpTwiHXGKisvIZGx+dPKprFz5FcVFpZx3/tnYjtVt9mdx8KzZKKpMPBFHlhVSqRSGbuDze2lsrkVza6iKiChqOLaNaZhk0jqa5qa+vpb8wgI62iJk0gk8bg3bFkAU0FwajiNgOxIuWSUWiaG6PCguBduy8fq86HqGYCAPSYZ4vA1JdqOnE7i9ftIZA0WFZCpDc1MHb762lPFj96S2tp5wYQEev5e6hi2cdNI82tpaaGlppqg4jK4n8Pv8aFqQe+95lBdfeoUZ++5PLN5O1dBi9IyKKDWSTFoEgsXYDoiiRCqVor6umaKCEjyan5pNTZhGBl/AheaW8YYCmIJDyjAQBaErpYkgIogSLk3i+OPnYNkZBDFBZWU5giMiiRJ/vuU2Zs7cH5/Pg9cbpmpIFalMEstO4AmEOHLOMTiyjEvw8fsb/8De+0xj9NhhtHc0cMufbmXCuB9g6y14NTd62uH5f73CvIULcBBYtPgMjjj2KHzBEEguvIEg9917NxMmjieQV8D0ffYho9s01tWz57QpPPXkEg6cNYMpP5jUFfDGsigoKMTtdvHcE89y0gnzOO+nF9MaNzlw330ZP348v7n2OmJtUSrKilBVC69HQlE10ukExUUl1NbUkp9fwqOPPszQYVUUFoSxHJt4Ms57b37APvtOx8Zh9Jgx+PO8TJwwhuKKMmrro9x7372UlFXy3vKvibeuZ/q0WTz+zJOE84upqhqB1+Nn2bJl+N0St991N7/73Q0oFHHXXQ8QCga5+OKfct4FZ3PKwoU8968lFJUVEk/EqaoaiixofPH5CnzeAlatWsuee03l048+5sUXXmD2YbMRRKFfH7LB+tp9E/T4eGe3katNqTvYSi7SvrV+jtDTPdHSt9Xt6VfsVa/3mMRt9/vbH/uYtO8KdvvcfY/oYe622gjTv69Yz52t6Q+ygq30ti3uHX5620S2v7HUo3usWWPZKvLubntbvb4+Zb0jdm57z61+fX18UwY6L+XyUxrIh6nvvb5+gX1ts7ez0+555e1MrLPrWFkLu7eddvY36Ntf30AR2T/7fq9cyFk2gLara870RGjaOWZ6h/3mxC4yd4Pp41skfP13Mbj/R986uTYOhy6p5TYfgcGPY1e0JTu7IfZoFL/pRup0H9x6b1RZ/peCwHabGFm3srr9Nhi7XIxYX1/Crr6ErUxfD+3YSs+6x9WL1vT1A8wx/v5STgwW/dGqnjIpaz7lbmBb3cEMIlcfO3WwcuwdMpxSDmm0QPctUaawtALF68Zy/DTVb8YxOhg6bBSRaCeWnSYcLscyQfO6cUsqjXUbyC8qYfqMQ/n15ZchoFNUGEJWNf7r+ht45bVXOeTQg3jiH48ybHg1/qAfy3S47trrKSkpYdy4sXRGoli2Q2FBmIxp097RgU9Tqa+tpa09SvWI4aT1NNMmTyERb2f1qhXggOpxUVlWzPJPv8TnLyCZShMIBRFlmWOOOYoxY0dz2eWXsOi0HyKICgF/HhkjjSAqxBMJ3G6NaKwdHAlBkHFpEm6PH9GxiHTUoWohJFFEVVU01UVnNImsiPi9ARRBIJWKo2guPN48wOzSGDgCgmNjWyaBgB9HEDBNE1mWaW5pRk/rmIaJg4VpWqTSBrLkoKgqguTCpSoomouKynJ+fuEv8HsLeOWVFzj4kOmomkowEODjZZ9SVlbOF59/TbQzRl5+EEnKkE6lmLrnHjzyj0dZ+u57vPHWm8w6ZBaqqrFhzSp8vjz8/mL0jInqktFcLlasXEFJuJhnn3kB204wevRIHKH77CBKqKpCJpNGN3UU1YUoCKQzOqIAiWQSQRT5dNkyNm+oJ9aZIpNKM3v2IaguN1u2rKewsBiPV0ORJTLpFKqmYegmK1asYsOq9axd+xWzD5tFPGXhdQkcfviReH0hRo0ZjmULeL0BZsyYgT8vSGtTPXvttRejxo7EMERaWyJoLhcjR1dSWlZFfrgEx7bxuD34g35cqs3E8VMQVRMHgU8+/opwQRBZkemIRZkwdk9amjeRSCb59NMvOevMhfiDbg6YeQCnnXYGbq+b4dUj+PiTz7jskiuZOmUPPv3sSx5/4mmWvvMBV115OWDgdmu0trezcV0jt//3HaQzSYYNH0pRcRGKBF9/8j4Nza3U1cVpadjM7bffTmOnzujKUkqLQhx06JEE/QEM06A4nMfqrz9nysQJHDX3GBoaWnn08Se54vKf8+yzj1NUGGDoiDG8+fILjBs7hqEjx9PW0YYswo2/vYFRo4bz6JPP8O8PP+Dll14gEemkrbWVvafvgzfk75c+7PR5ZyeRi7Ztpxygf/Fjv8xdN2kVs/aUrUHUsg43XWQvO6XVVuJMf2kRhH60nN8Eu5m77xF9A6oMFEGuK4dG1v1+mLu+E0QUxa0JhnfloNQ3mEj3gLcOpW9ZX20ZdIdVl6ScB5a+h+LvAjtLHLqkTDuQ0DvZB9btivrt97t4TUEU6TcHnuMg7aT2Z2ANzI7wLWju/hdgZzUYO9LgZQdD+b6w0/N+MBqhHaBXMKacY9lWtnVDlHpo3M4zvwMhl4Z0sFrTvvRs+wrbfhWl7elFrnvfFgZFM4V+//hG/e0YO2YEc0ruBQHJsZCwsR0bOb+KQPk46NzE2s+XsqGmldKh1QiqTGN9O8XhMOlUJ04qg+CkKCop58fnXEDAq/G3v93BKQvnU1VVyJuvL+Wvf/0rAiazDjiS9RvWUVRSSDqV4fa//I3hw8bw+qtvM3rcSGKRGP5AEMO2UBQFnxbA6wqgeTUMy6ChsZF06yYEUuQXl6K4giAlMFMG1//2Vk5ccCIFhfm0d7Ti9XsQRYtkMsrcucfgD3kI+vNxkHF7XMTjKf52771MmTIJSRbweUMYuo1uRPG4C+hoa8IwWtC8xWA7tDY1YZkWoqTh9qg4DvjdLhAdHEHCdEREwSIWjePS3GCn8fo0DEsnrWfwer3IikwgECAYDCBJNh3tnUiSi6LiImTBQZZUHFHCtkGSBeobtjB18p589eV6zjvvNCQ1RTKdJi8vH487n7aWdh55+FlefvllDj10FoIZ4Li58znk4COoHlnKD0+cz7q1Gznk4EPpjDfy6Qcbqa4eynW/u5lkKokii9xzz93EExH2nDqVqopKWlo3kJcXwufLY/WqNfh8XlRJoba2Fn/Qj41DTU090VgMr+bntttux+8PMmnMRC74ycUsWnQal156MXOPPZZrr/0tR82ZTX44j0hHO/W1DTQ1dRDwe3ArHsIFpWzesJqzzzmdaCzG4sUXMG/uERi2RSCUx6ZNdSDKPPfiEiZNmYgqgmBmqCgvQZRUOtsTXPKzyznuuLkgpQj5wyTjaWLJOBk9jZHWsZ0k5RVVqG4RQdAYMXwMRiaGIwp4/X4ktw+/26a8LIxbdlFaWYBlJ7Fth5HjxjHvxPl89PEXTJj4A449ai7hcBiP208ymaaupo5ln3zE9OnTEIQMpiHw5hvL+cttN7PHlMm4fS7uuedvTBw9ktKQmxFjJrJw4Y+Zf9zhHHnMkaRR+efDTzJ3zlSaGkzue/BuDj54Ju+9+yb77D2Z++95gH0PnIni8nPMnJmYZoIDDpxObc0mhg3fg9HDyoklIlz3uzs5ZdF8isI+VFnglddf4vKrruHw2QfywXvvc8r8BYwdPZrW9jaGjKreCVryvwsDae5kSd4q/IOs93Oyzw99tQ/9n9u3PvMtRcqE3QFV/qPI9ufomxvOti1s28Kxu3Pb9eLz7K1Xdt66rjKnO9njrh0qszVwPfmLdjp/ncBWsbdlWb3G3XP1mDwNdPUdVy4fn+x7Oev0I6LpYqJ75xjsr4+udxJ3Ks9fz+89JpjfJnpy4OWU9gvCDoNj9KchyC7LVTcbpmn2thvv830EQcDCwcLBFrb52/U3lsG9uM12turfEnLmROw23euvfq5neu5l55L8JmPpGxnsu8BAWrvt+nW6tNd9YVlWzjXWNzcnbFtfucr6gygIW/3gdoRcNGqwdCsXjdtKD4Q+f/cp75Hk9qz3naFrgxpbNx3NhuM4vb9Lv3ntciPXvMpmIrv2E7ZdfemCKPXrU5PdB9AldMyCJUiYdJvcOTYuIUPplMM59IybOeKEhSx//2XWf/o2RfluNtWuR3GXEbMdHHcx8YSBkeygpaWO1es2EU87CIrEPXffTd3mdaxYtoWFixZx3bV/5IAD5rD03fd55NE7GTO6iPN+vIBIQwMVlcUgisiKhi/gZ+OmjTiCgtvvwkqlWPrGe+iYKO48GrbU8OHrT/LIfXeSV1LalSPLsTHsNI5oE0sk+OsdD1JROoo//eGPpBIdpPVGDKsRPZVGFXT22mMclmnicYW59db/xuNRkWUv8UQnGUtA9QxHdkB0JLy+IJ6Aii8AmktGN1K0d0ZJpUw0SaF2/Ve0tcYpyCugo7mOVLKVjrZ6kvEoXq+XZDSC5QhE4zEyegJkL6H8AlRNIp00MBUvHYkEgqUjCwLJeIKKkqHsvf/eXPrLCwiXlWFYHgpCVXS22Tz/7Ku4NRc4UaId9cgWrNu4jocffQhVg4kTxuALmPzqystJZeoJeEPMOfFYTjn9LC76xSIaGtZSWRbiqst/wmkLzwYBDDIseekDFHcxf39gCS6pHBGRVDqF313IPx94nsb1a3lzyZtYsSh6KsF5517IC8+8hCUI3HHXvUjuFI888SQrV33Nzy47D0F2YekmTzz2BCOHj+TBex8kL19DcNv85KJT2f+wA6it3UJpUQk333oLGUvE7Q4QjbTjdhscccihrF9V/z/snXd8G/X9/5+3tSVL8rYznDh7kJBJEjIIe4awd9lQVgdQOijQllHK3qPsUVpWyygQRtgzQEjCyJ524iVb1j7d3e8PWbasyI4zoO33x4vHEevuPuM+9/m87/Pe6HETQwbN70fzFCFJJv5ii4ceuRvTjGATZfRUGElJoWkyLpcH1eGgvTXOlqYGdB2ee+ZZwq0tqE4XdruGEWkj1rKFTXVtbFjXyMiRw1AEB5GmMGZK58G//pVYtIURQ6p59V9/o7mpkVBbC9UDghxx5CGsWLWCs888m6ef+ScvvfAhnqIAZ519ODG9Hd2IEg61cu5ZZ3PfvX/j7y98xkcffkbt4H5UDh7LmwsXMW7wIK645jc4PIN47Im7OPX4nxBqbmXcpBm8unA9P7v0Spoa2yj32/nsky9oaQ7x5ZfLeP6Fd3j91RdYtznExD32pH/Qxool3/Dmm58xYMwIjj/2bH52/kVs2LCeq/74ewbWVtPS1sJFF13Ch29+gGH0Fl3ih4Npmt1oZW+02ETEEjJHPgRBwrIELFPcqnw2p50gFoiV0XHeMPXOHHiWYGEJFqYkYW7LKuN7xI+au51EvuZO7GDAevMpM3uRqAuCiJE2uiluhOz/d1pQsrUvWaGw/rmSbikvKmeftSD55k55KMRY5JtAZv6WumsgrIwkxDTNjBllwTaErZjn/HYz+/tMg/kJm3PD3Rcqn+vDsyukVz0xWT3d09uRj4La2h6uZyFmTa4EAdMyM++gl371Gbkh6fPD03e016fyueUKnSvU3tYd73u/e8GOaNR2ZM58n1LSTJ968KHoOARB6LYuLItOhqc39PZd6818phB23tQ04xubfZYsbcn2s6f1XOid9ZQiIiNY6r5eu+hF3/ouCDuXb7NPplEFtIF9Ff7k19fjtQ7fHEmSSAoGouxg6NDdqR4wmicfuJxBg/0Ey2oQBSVjTigIpA0Tp9PGrJkzsTnshFqjJFqjvPX2a/hLBrFp00puuPEmDjtsHq+8+AETJuxGKpEmmYBBQ/qhpy1sqkzS0rDMNBUlPvR4FMmholsKjVtCDBs5CtXuwdLDTJk4nBGjJiApTvaaszemlaRxSxNlJSWIgsmzT/+LivJyjjrqIExTZsnir6kqr2XLpjhuj4LP70YUHehpeHvhO8yYMR1JkkEW8XjdyKqMJMqAgSAaSJKMIChEYzE0VUNRVIx0GkE08Qc82G1FgEHA76UlVE+RP4CmuojF0hR53RiWgU22CDVsxBIUNM2B3eGmpbURWXMhyQqtzY04NBf1dfUUed0kTQMkFUWTSaaSaKpF2oiy2/iRmJgcdvD+HLL/fvz2Vxfzj38t4JBDD+KSS37NmScfhyWkqKtrpbW9jZdefJGqqgr23/8A/nTNTfzyF7/j5htuZ/CgYbS2RrDbbKiayuBhQZqb69BsGrfcfiOHzj+E9nCcn/70AoL+csZPHMXwoePQDZ0bbrmVuXP2ZJ/95iLJTm6758/MmjWXBa+9yu6TxqLIGna7kw1r1zJhwu4YZpx99puBaTpBdGMYKqplYqYygVY8JcXo8QiarPLSS68xccoESov7s2LlWg48aB+SejuiKJFOmciySUPDJnRdQtNEZMVJXf1m3E4XyUQcX1EpsVgUU4/g9vq4994HOerIozEtA7/XQ6QtwvMvvMydt93F/EMPxWG3IyIgOx2k9Cgfvv0B5/z0dATFTmVpCV5VxFdcyeo1K7BpCl5PGatWfcth8w9CFASGDh3Bq/9+CX+wCI/XTmuoHZfTx4Z1G9hn7gE8/fQ/2X/fAyirdrHb+KHMmr07NmeaE046lWOPO5stWzYybFgVqk1CECU8PjflwVL+ePVf2HvuLMLxGFX9+uH2FjFj5hRGjxzJurXrMQyDitIy7rz7XqbNmIHqlIg1x5gxdRLDhg9DFnQ21dczdvw4Dj/iEDasWc2wUcNB7LLfyaYm2JpO9hwsakctS3JdZDJ7lR7MM/OFkhnNBIIgItGdznZZnBTQzvWpT7nRmbNuAB1pbba7tp7xo1nmD4iezDK7ncvfAPRiWtk5YXMZqqxB8PfA3BUyWco915NpVp+wnf0VBXErSX4h8zJhGxL/3ghKFpbV4Xi71Uan+1hk7+meCLOPD7QLsauYyO1FNhfNrqmz094h7+/tLN+tXKFzhdr7nrCTpo99xffN3PXlnvx5n41O2xuDtyvXyq4xNe1O27ZFq3uspwCt6irfvc5sE1IPTv7/ERRg7nZ5EznVioIBqJiigqVKjKwdwbeLvuGbpUsoG1CLw+4imdTRVJVUMorL4SIejyPY7XgEk7SQ4OEnn+Oq311GaUU5V151JW+99QannX4UXo8Ph+qnsW0TdtVNKLQZt8NFa6gBUZFJpS2wJOxePyXFXlS7DxOVfzz2OKOHD2XtuhbsLi9NTetQbDr+oiBuR5BHHnqMM84+GVmU8fk8eDx+SstLaQ018+xzz/LEo/9gztxZRCMCV193Fdde+wei0TDJVBxTT5CMhXE6VEQ0BFEnFg+TiBsIlkhjYxOh1lYkUcDt8dDUGMLvLSVpxJEliXBrhFgkjaa6SaZMkrpOIhEjlkjg0iQSbc1oikysvR3LhM31y/H7Mr5ZqVgLR847jr1mz0VRwelwcf01N/DNsq+ZNWMPUnomwqVpGrhtXhAFBJvKrH33Zd6BhyJJOscedQxrln+DqOo888/XmTJtD8aOGYEgGjRtaeHI447pEHCYeDwO/vbU83g9XkpKi3G5nfiLggSDAebNO4gH73uEUGMrh8+bzX77H4pBBLe7GNkGgwcNw2MXkTQVRbVTXeOjyFfB8FEDUVWFd9/5hGCgiKqqEmyahiQpxKI6Dq8bU5Ap8nrxByq5+447mDljEqlkG4aVxOPzUl5egd3h4rJfX8nll19BezTE5i2NVJSVYVppmhtDlJQEUQQPS5cto6S8Eq/HQ1tLMz6Pm1gqxd1338uee0ynLdLGpInTUFWNUGsjX3y6iFdfeY2jTjyJo445GtWmcdMtt/D6m28wdfJkTNXin8+/wLRx/UlLLpoaW2moq+PKa6/iqCOPIRxOcNSRx/OXm/5AsNhHIBDktjvv5fWXX+K4U47HpgnYbR7++fwrDB85nPqNK5k8aQJNzQ0Iksp5517A4fMPRdU0BF1kwOBKzj/zAs4//wyWLVtJSWk1J59yBvseNIfBw3fnyCOP5ejDD8YuO/j6q6XYNIMNGzbxu99ewRlnnYnN62Tm7L3QEymqSwOUlgRx2S2aw630ryhBVDXak3GcNoFoW5iBQwZh0uXKkqGHhSNB76hwaGfL9MzcdQuDkqlTFDsteXaEuSvY/o/M3f828pm73JD9Oyal31qenZEy75wFbTa8vygKGYVGVvFhZTc6Xf3tDFLQg9IjF7mmbd2k2XnlMmaSHWZtHaY8fdN8dScO2Wh4uUQjX6PQzfzUtDIWf3ntZawfM/3MSvGFjucRBDp/5/pEZscmH70FW9le9KSJ25kNbV/mYUeInK3O5zJ3nZpOcetEy7nMb4/t5WrnetLU5QUT6n50u3Hrc1sBU6wAACAASURBVFtp83LO9yFIxA5hG2MrWh1TyDIRrD4sqB6b2bpcNpDR9k61bWl7C6GgFrsXU8RcGmJZRo+awe3BzmrKuzT2WRphbbVee6s/l771ZNJbSBCWrT8zXh10Rtw19GLHIXQefU3Xkrvue5s/2cjBQk4bgiWRmakmAgKyp5xBu00hFmpg6bsLKSpS8RZVoYsxdD0NhoUpyUhpi1Ub1jN56p58+skHpHSJ0844nfb2dha88Xc0xY8uRBAkG62tzZSWleFwewnVr6e4uISUIGLzuGht2czbC15i+ODhtEV0EuFGRo4ehW73E29rxe9zI2oKdmcJlmixaeMm9pw+F8EmodpM0sk0KVMnFk3h8/ooKbZxzFEnEtMV3G6Ff774EntMn4bT6cTusCNLEg6nC0GQiUaj2DUHCBImaZxOB06HE4/Hj8NlJ60LOBxuVq/7DimtINs9mJaOpGoomg1JUlEUFQsBy7CQZZW0qaCbAj5/gDXr1xMs9qBpTiTFhmizYZfsvLLgQ6bvtQemnqJ/v2qCgQA2uwNVkdi8aRPuomKMdBwz0U4ilUayu5HkJDabh2uvu5HZc6fhDA5it/EDsOPg1bfepiQQZMXXKykt9/GLiy7gzDPPpLysiilTJlJcUs79997FlEnjWfDa29xx11+Zu8/e7D52NMNGjMEV9GLJFqriRpaTJBNNvPbvd5g6YwqWCe3NrVSVViGIOnpKpWVTMxeedzkX/uIUYvEUJmnqN2+hfmOEG667nhnTxuDxuFnw3FOMHTua6kG1yHYvrY3NxGIGpNMkEnHmzJzBDTfcQDohMXH8SOrrNyHJMm6Pi8su+QNjx47npptu5OAD5mXelTeNZSmcd/YvOPm4c3nw4SeZPnUKLqeNeKwVX5Gb6gHDGDJsJE6HSjplgGQyfveJzN3nYN5a+CbB4jLmHXowG9bX4/KXIigSTpeTQw87gheff447br4bw4SZM2fQHm4lkYpw8AEHccTxR6LYNSLtKdatWscXXyxi+uzZRNuiON0BXn79RfaYPIGS4n6Iopuvlixj1vQ9efPlV7nlzpuR7W4isTTxRJLjjj0YRRbx2j1MnTSKFSvWECwOUOR3samunhVLV3Pk/GO57557qK0t49STz+CE40/GX2zD5y9GUBT0lMGxp/2UuXvvS7E/wIYNdQysHcLfHn+UMeN2Q5Tk3qnMLmbs8ssZVvcdQu7nKJ+2ihZbZXzusmTIoem5ZvCWsE1mL+sqU2g/KkvSLpVw/sjc/YDIZ+76sknYXnRp0Haqls7od1YBk8nuG/Wc833wRcvX/vVk2pS9IXeTvb3jVEjDKIoSYkf423xNY+f9Qvcy+YxeNym+AKZRODJpT6aafblvZ7Czm9ptogcTxkKau96YpJ2f9zsxcIW0eR3nTctEUZTvxf691w9Y5187p0Us1EZn2P8fQHNYCL212/lBlbIb/P8u9GTC05dn6hKA9X3sO5nCLB3sxVrgP4VtPYu4DUFCNsUEbFtib1lgiSJFpdU4JJn3XnqIYUNHk5RlXJoT01IIt0VY9vViLrvscqqrqnnt1ZfZa9ZcFixYwJOPP4KiiMiSk88++4iSQD8Uh5u2lkaa6teTSOhIaoYxMgwTVZEZPmwY9RsauPPu+4mE25kydQ/0VAqbYqLZHVx66eXMP+QQYuEYpiIhaRKmpSLJIqKioOs6kqDw1/seZFBNDW+8+zHNoUZqBvfn4AMPwaYqyKqMYRgkE0mSySSYAtFYHJvdRjKZwKYpRGMpFFWlPdxGNJqgra0Vh9NGsNhP2kyhKhKpRArTMojGYyiyjMPuIJVOYtdU2sMhFFkGRSGeSOJ1KNhcHhRJIx6PgwWDasu54ve/59yzzqWluZ1gsZ/q/hUoipWJsqnD11+vQ8SkKOBHle0IloJdk1AVlWnTprJu/RqKi/xAnNamBEUeF2VVpZRVV+FyOJkxY0/q6up47rnnGDCwEofLzujRo2hvTbBs6UpOOvlUREkkHg2zcsUqRMvA4fBimSbhcJikbmLo8NWSLxk0aBD/eu4VVM2OngSn08v7735ILNqMx2Hh8hZhpA0kyUZ9XSML31rIvvvti93h4s23/87+BxzNyhX1FJWkcTkDeP1+dD3FhhUbMQ2TVd99x0EH7ENxuZuD9j+Zn5z2E8y0xeLFSxg9agyHHDyPyy//HRWVFQSCbjTFg54WmDBpN2bNmYxhJgi1NeP2uonFY0TaE/h8PjZsXEdxsY94NEQyEcdMp/H63PiKnIiIhNtM0kYKQUzh8TtoDDUxavQ4Pvl0EZf+6iKCxUHisXacLhVdTyOiEI+ksbs0FFGkdtAQFi9djCinCZYHGDF2JEsXLaGlpYXGxib+9MdrmTZtCsOHDiVhpgi3xTnnnAs47JDD8PndKBisWr2KkbuP5r2332XYkCGIksLnXyzm4MOO5u13PyFQUo7frzJr1hzeeGMBAwZW8u5Hi6geWIvmsDFt1jRKy0q44447mD1nNn9/6lnmzpmNooloDvcOUJqdQ7e9at61QtvVrm1dL/StF4Fdb8ydZYIkdw+U2GmGT4cV3n+IufsxiflOIpnUrYLOmwUScWel14Zh7JDzfSH0RSKeDXCQ6yOzXUm6e+lrb/Vkk4LnPm+hwAZbd7jj3wKX8pOZZ8/l51zKBqbJd/jPLZObsHKra9uRWH17kC2bm+i8e8c7/u3j9NjZzX2v678j7UIXE5y5N5VMompappt51/J/b3+H+haMIx5PotnULtM4QdyqbEZbkpdYdFflW+uoTxB7Dzwh5g1DwWTvO4m+vP+CaR160dhsu0K61k+OsMg0rU5zzf9WdHOWRyjY16x/X8aUMjNOhWhPfj2FyuUiS6uyQVS2l5YUDCqVLb8drzHrf1io3d6u7Sxy5326I0BMAhlPahOvPvY4qlDPyDlns3ZDKwMH9kOWdT775DuG1A5A1tK8/K83sGkeDjlsLpFohHcWfsacvSdz5x2Ps2btan77mwuprAwgqSqJeIIXXvg3J5xwAs2hBoxEjETU4pnnnua4k0+hyOdmwSsv0NLQzAcffczPfnkJHpeT9mgcf4kf3YihYkOQLRzOIpLJdkJNEUKNbVx88c8YM35PzjvjJNauX8fo8eNYuvQrUnqCadOnIisaGzduJBgM4na7EbBoDYdwOu1Ypkwo1ILNruJ1l5LQ29FTcWLxFD6vG02C1rY2ZJuGotrAFIhEYkiyhNthY0v9JlwOO+2GQHVVFVtWfoXsq8SmSciCQtPmZjxBGyIK6biEJaY7AueYyLJMOqGzbPEy7nngcf5842VYioWgC5xyzGk89PgjuN1uli9fgcPtYu2K76jq76e0fByaHcLhZtzOIkItbaSSSZwuG26PC9MwsdntPPP3l3nu6ae54457ePCJBznv/DO56vLfcfHPL2bV8m+5+LJrOOknx3HgwQezZMm3DB3Un+JSDytXruG4o47jlFPORFJUvEEnt994K++8+zzXX/kXdt9zL1auXMsJJxxPSm+jJFCObuhIiowgGWC4WLNyE9+s+JR99p8NoopkWRiJJKZhcfSRx3HtNddRM6SaLxevYsCgKh5+4H5+9osLUWSFUChOeziMaZoo9gQyPmxeFafDQTQeQREFHHYXum4gCBKGkUaWVCKxEG67k5QeRVMcfPvNGr5a+gVTJo6lqmYYQlrjpReeZvZ+M7FkBYdiIx5OEouGaGsLc+qpF/DCi0+jp1uRJCeKoHDllX/g/EvOIegO4A8EaQi1IKRTfLvyO4YOG88/Hr6b8RN2o7SiCkV2Ek+mKS8OgiqQislsqW/krw8+yOLFH/L03x9hy5YmErqBaFrUb9nCN998x9QpMyjt5+C6q2/m17++nA/fWciqVatYv3Yd8+YfzqDaYfz0pz/nppuvpqg4w6hKSKxdtQ6n14ffY+fgww7h7UWfZ3xMO2D2QvfzE4/nQ5YkzD58F3NpoJF3e6EtXWcy8t4CUvXmKlUgkEpu3bkKhXQ6JziWKHdaO+wq/JjE/AeEYZhXbEtz02UyaO3chqoA+lZPVmPWXVu1K9rorZ4utfjW2r3e6s5EBhWgwOaokIS9sGazy+Sq0NFbbqlC5l89+SRuL3KZn4KmdtsRdn3Tpo0osoqiKNvfkT7BKmh2qKpqj/P4h9LcpXQdSZK6CH0P86WrPzunOdsa2efvnXjnt/Z9pIzYHs1sof7usHlMVmiV83GzLLr5qP43Idun7lExpY4AwN37mzXnEfPoTPZaPnJT4OSXy4VpZj0/uteVayrfG7Zab2I2su720/Te2vy+E7wLloVipZAxcBlxwqqfAaOm4PdI7Lf/0fz80t/j8zqBJIs//44Ro4aT0sPcf+9D7L3X/gyoKWPKlOm0tSV5481X+OrLb/nr3Xfw6ysuZ/jo0UiKhN3uoMRfSnNDM4Hiokx0VksmGNRoCLXg87soCzgpL65l3/32wxNw4CsvI+AvYd3KFVSWelm/fBlejxMjraDYJP7+1LOE2+I0NTZywy1XkI6sR1GSuH2VDKoZSHVVJZqmYFoiHo+XUCiEza4RiUZwOh2YmKTiJpZg4XA6aGuJkTZiuNw2nA437W1x7LKZie5pwLq16/AV+ZFFCafThmno+HxeTNPAFSghEoui6O2kJA/t4WZ8Lg+a7CBlmSz+8nPO+MnZzN57D9pCbbhdPl59dSE+t4+77rqDm2+7BZsWQHN6EXQNv60Mm1uiOBiktbWFSEJnzJAB9BtYQSJlI2rGcKoy8dYougGBYJCiIg+NjZvZsH4zIhKfffY1p556HBdedBF/uvpKGpo20r+qP9X9yom1Rdlv//kEAkX4gsUIkpOn//You08YSzBYwjFHH84tt97Op4sWcfRxh7F+3WrmHzGHsbXTePKZf3P6aecgyRAKr0IWZWwOO7F4hERKJ6Y3kEw3sPvYaYiqQCgcwa6pGGIcSxQ48JB5nHXuRRw5/0gssR2b3caUqZP5+uvPsQSd55/PJLbfb78DmTBhDOXlNcgOg1QqgU1zIcsqZlrAMCSSKQvQkRWJaLQddDmT/8yUqajoT2VVCQG/G0vWeHvhR4wbPRh/IAiKkwvPuIDJ48fhcBhs2tzCoQceh9PpJhoLoypefn3pxZxw7FGMGD8Ku6qyZvUaYskk3y5eyrsLF/LRe1+Rihi0tYbZbbepHHvU6Xz25UccsM8+iJqMYNlJJnXGjBzNvMMPYePmLdx1512UF1Vwy+03stfsvbDbXdTWDsOuqFSX17L0q+9Ysngpw4ePZNKkKWiykz9edRV33nYvTk0ilWzju2XfEG4O8fbrC9lj9hRaGhtZtmQ5hxw1H7EjwN22aP62BL89JR7vqR7YBZo7QSRtmduIg9GL5i5vr9hNINaDX/bO4EezzB8QhmFekWXekolkR4LjbZfbkQ1V4eTBVrejcL1dG6/skUWhaJn51zqryKk6P3lwwf52+LUUarfrmXrqb+HKC/l5dI1J1xh0EZLCCeEzz1c4tUSX2VXhfuealHaOXd74FBrXXCl9T++/p3EqBI/Hg6apvd6/rU1a735X3Zm77L2mZZHNxZe9JiFkct9lfctEcau6C7bVU9TMTqFA1625UWZVRemuxcgp18l4dfMNFKDH5+w7MmZ1Zs7v3pm7PPP97vXsJCRJRNdTnYKN3uvsev7897lDEAowznQJsb5P7KiALHe9Zo+eNiWdpjVWFx3oRg870Bl1k22bmme0dpnobl31U9BMvhC28iW2ssGjuj9fxm9Y6ObXV/CVFNoImUYmGnGeZcHOCiXzfXItwBIkLEHCECUUTGRZQPFWYzZvYOyIGnTNRiwcpqS4CIfNQTolMmXKDAYM68cTj93LxRdfRjptctKJJ/HoY/cwb/585h9xAJZp4tRkdCOOy2agtzdhczjRHA4Um4JddVJcXoqRNmkPxbjv/n8wZveJaLZWVFGjpaGe8opKorE0JdW1rNu4GVVxYRoGF5x/Iddefw1DhlfjD5Rgc9iIG05cjhIEOYUgp0nEJdJmGkEUSaR0XEqUtGWi2pykYnE0mw2HbNDS3ILX40NP6aiSQDjcQFHATlNriHgyjWQrIhjwowgiouogqSfQFBdg0dbegt1mI5VKodoDqJKA2+OjqakZZIHnnnmBObPnsGbtSsaOGU/aUPEXF+MvdoKlMn36XLY0tJJKRUjr7YTCTQTL/dSOGgGCQKAoSGnQQxqTeELigP0PIugo5tGHnmBjfR3jJ00gHotz8MFH4PGWEmkKcf1Nt/Hnm/6Ezx9g3hEHo0kSetTi4ksuY+qUcVjoVA2oIFjiIdLajN/jYsrESSxZ+gX9B1YhSi7GjB7LvMMPY9P6ei686DxiMQGbz0lt7WAS0c2sX/U1WzYLfPbpV3i8Ppw2gSeffJm2pgbsssKzz7/DlAm7YRkxWpoa8XlcSJbG5oblHLDPgVhikljMxF3kp9TvoLysP3abl+Gjajn/pxdx77230b//QHxFTiJt7cTbk0iCSToZJZVOYdcMzOgW3lj4NjUDarG7XMRTMTZvaaS8qpymUANLvvySUNMW7JrF4GEDUWx2DBO+XbKEe+5+mJN+cix2VwCnTePmW69laO0AKsoruf7aa7ni6isYWDuMLz/6HEV1kE4KBHzFvPzaG5zz05/z2FPPctY5xzB23DQkh8Uxx/6EZ556kqFDa3B7K/n2m6W4XDJOh8jjDz6Bx1/E4IHjsTsMZvdPMG7MKN77dAnDxo9Hj7bz+aJ3MQUdt03DZlfYfcJYWqONxBMi+xw6F0syEWUbsaSBqyjAlJkzMIwUC998h73m7k1JVWWGjIgipri1pYqYsw/Ip7X5+6+emLv8vVQu/ZZEAVGg8zAsQBQwLRAsESyhY2ciYgiAJGGJYmaPkiFIiIKYSWkgWAWP3lD4e9CxT++IMr4r2bsfmbsfEIbR5XMnyV3qabHAh7W3ICudzvoIHYmsC5nZ9Mb0FEjCnRErZD7UHZv8/IWSiCdIJXVsmrbVJie7gARBQNd1BMTOwCS5yA8okpsOYpsM4DY2C4Ig9hj9Mp/ZzR2DrG9L9lxhxsLaiinL7VfukfsOs+jG4ArdGalCz749jFtfkX2n+XMsV8vQ07HtvlhI8tbCikz5vPmWoxkSBCHDzPRNytEj09Xp4ZOxKcowUnkMXPZabh+6ndvVyJo4W9Y2ncm/b6SSSVRVy3mfW2/A+xToJufe7dm859KHLPo+t3Yeu4JB7g0ZzbDYMeUKfMQFsWOaWT2mRuipvzsyPoWETflpXKDDF7OH+/PpQ/53KiusKCRA25nx7rV8Dg0QRZH+QY1F77/BkNGTiIVDPPv08wQDZZx52llEUinisTZmTZsEksRtt93JntNnMGfuHCoqKvh2+RLKy8tRnGV4nXbCTRux2eyomkZ7NInd5UEUYoiKnWgkSlGRg2VLFzOgZihlgQo21q2mtLyUVCKN2+1mvwPmc+hhhxMOp7DZNU446URUTeXLxd/Rb0A/ttRtpqrfKF795wKq+/lIJZsh6UH1aAiSiMPpIJ3UaYskcXo9KIqFiYJpmCiag2gkhtPtJNzeisvjRE87USQHPo+ftGhgGUlEM41lgaKpWAZYVhpJBlWzkU7GESUbmi2TSkJTNRwOOyNHjcFK61SWlZKMtXDl5Teyz377Eihx0d7azkeffEplRTUV/coQFIsivw+Pz09KT7Nm7XISMR2Px0FjSzMOl58TTjidG//yF+YffhjHHX884dYYZ515NiOGD2fY0CE88uhDPP7Ew+gpHUMykJBoaWyisaGeU04/G6cHLFPCFyjFtHR8AS8bNmxg48Y6amsHYuoSaStBSWk5kqAwZtxQIrEIDrsNw0gjqBbJRJiy0jJqaseyeOkybrjuj8yeOQ23o5irr72a8y66iIm7TUSxGYTbYiTiKYJFEquW11FeWQkyJOIpBEGjtLQc9Bj1dQ3YnU4sCQZUDaRygAuH20EsYmF3KrhdLjTVQ339OoqKAqSSMdasXMHkGXuTSKaw2SREATxuJ68vWMCQIYMpKamiqDiAqcfw+IKIooQsyZxz7rkcdsjhjJ+wG2+9sZDq/v2Zf+R8ioI+7rn3Ls46/afE4lFCoQjV5WU0bmng3LPPwdDTLHjjLfbZdzZDh4/khr/8mZl7zuWdhS/htvtZu3ED9z34MO2tMbY01nPjDTdSM2AAe82dzrBRY1m7Zg333Xc7Bx19PFHJwcRpe9Le0IDq8mDXNF586SWOOuEkhowaTjQW4/LLL+eaa66nOdRAJBqmcXMLV155JfvuszeQJmVaDB0ykKJAkPc++IAhQ4ZkBElWh8WC1SWs7W61lb+/zBAnoSNWQj5JzBemFaKZnd8gBNKG0bF37iArWal7to7cdAV5wt5dFSFTFEUMI8vECv/RgCo/JjH/PwwLi20lFBZFEbvD3uWb1AMkWd5lfoI/4kf8iJ2HIPbsU/ojdh6GYfQ5Yb0kirvcv+L7RKH+/rc8Q+mYyUw9cB6vP/M4qtPPKWeezqIln/H3fz3JmpWL2GP6LB587EUUxcGDDzzA6LFD6D+whGi8lZbGCFf/8Q5Ew6KtsQHV7kArKqOuKYxNlbFSUSRZI9QUobqyBp+3iJ+cehxvvPUKodYminwl6LpBc6iOzQ1r+fuTd6FJYQYPLOIPl/8WlyaSirbx+IOPk0xYfLdiOaYYZ99DJiMpGi5XJXZfinBLPRgxJFIIkkmgOIhhCiQTFhkRlEIklsARcGOpMp5gJQnDhSiLxJIxUskYhqmgJw0a69fTUPcd8Xic5pYW6jbVkYzHSSZixCNhBFnGNAzaWtuQZIloLI6RiCEpGkNGjeX6Gx7jocfuQDKjvPDkiwQDJYwdO4rySj+SouJwOkil01iA3e6goqIEr7eIRYu+papfDWkzzV333cZdd91JMpli4Ztv0t7awu233Mjll1/KnNmTueu+ewiFGohHomxauZL21jAoKo6AG9UmYKZdGMRpaUlgCRqReIr+gwex+5RRbGnchJVOsnHjatJpnaOPPpa0kcDtsmfMFTUFj7eIAYMGkTQSPPa3R/nHY4/w13tvoby6mFtvuIU5e+2Pbgj89rKLaWps5YknnqdmwHC2bNrIoJqRJOIyZ517Pv37DaC8ogojbREzRf768JP87MJfcduf72Ds7mNRtRKMtIJBnGgkiWGlCYWaqKoZDjY3isPHoBFjWb18PbffcDOt9XVE2xJYaYmhg0agCnY0twPV7kWWnOh6mlg0hmlZPPnEk5x6+tGIUoqGhjpUB5iWQTgcY2DNCLZsaSQajXPhRT8nkk4SrCjjwccf47hTTmLfmdOpW/8NPhv89jdXcNaZZzN3znS2bFzFH6/4PU888TB7ThnEwQceyN+fepbJk6fhdMkkk3FmzprK448/xiuvLCGesPHXBx5kU90GrrvhbgzTjk3z0doWBkPgD1f8gVOOPRFZSeLy2HE5vQSDpRx55NG4PS4isTCyKRBpaaK1oYk7br0du8OBCF3m7fmCMMPA7CMd3VEYpplhpHIgSBKC1LtP/PcBSZSQRAlBFEmn0z94+1n85yn5/1FkTO+6pAjZc9kjo5Hq+t15j9XBkPXCRxV0dC8gdc9oUTJmQNky+e1dddUfSOt6nyZhb86u2XCw0JXqQMwJlZ779zaRI0G2rJ7zaGWCpghdz9nt2tZEJlumk+HtMDHc6h0UeC+5/e/tWvbv/Of9Pk3VsgFguvsS9R6mPn8OFTR3FaU+B1UwBQFTEDCwMOiKJLhT2hVBpEdH50LXert/F6HTRG87nyvX3zb7e2chy3Kn+Wp+3fnnCrWbf4+QU1ehIx/ZOZY7R7J0rS/IaJzzghd1CFsLtZubAkUQdoCu5ECSpK2CMG0LuetGkqRObbJpWmT/M/M9/AuU35WBSkzTwjDMbda5FT3q+C9Lt03DwjDNbsFlMmlzjG3O1UK0rmd/5p6v0UHPTTQC5dVMnD6RRc8/RcpKcciRR6CJKr+/5Lc8ftf97Df3CF565UOSlsiiJd9SVj2Y4mAxN914JwcfdAiHHDgPd6AM2elBsyuosoYoqURjBoblBMvinnvuA8FLoLyGM04/hWgswcuvfkJrm4nd7kFRZGRjI5LDjpkIc8Wfr+Dv/3iOIpeHaXuWEW0Nc93195AyBKLR1djcTprbDZLxLQSKy4mEWkmlIxiSE0mwYcaSqLKJKqpIskIgGCQabkHEwLIMbHY7lhHFYZcRZYVQ3TqSqXaKKsvR3CXIooTP66GsvAansxpJ8ZGWPBnz7FQ7zoAD3UwRbmykqXktjZs38NQjz/HH637Fv//1Cj85aT4Tx45hy5ZNrFn9FevWLifc+C1CyiTSFgUhzZo1q1AsH+vr6hg+YgyYaR649z5OO/EM6hpWMGHyJKbMmIzmcPL5ksXY7D5OPOkCREHAbvewbm0TRa4SHn/kUSLtTVRUlBKPbEbzaJQE+9EeWY9EAjmdZMnH79MWClNSWkFTWwyf20lzfR2H7b8PVqyFWKtEOg4fLPwcPWkSTxmU9e/H2WefzKtvPYfsdqM6Knj8+Xs48LA5fPD+t/zqip/xk2PO48xTTuLWm69ibUMMVANZVrn1Lzfz2cJnuP6PV/Pisw9w1y2PEQqFufGmazn+hBPZvHY9qqEQaa/jy482sHl9DBmNIp8TQdBJRVpQEFi5Yj2Damq57PI/cOOdT1JSWUysfTPh9hbiaQtDT6I4LUxBZMXXa4lGw0RiEdZt2oSmuVmydDmHHTkPIabxxMOP0R5uZs5eUwhWq/iLPTz2yN9Y8PqnLF76DatXfs1PTjiR4049nbc/2cC/F7xA/2ovyVgrTld/xk4dDjaTlB5DdXgprXTxxoL3+OUlv0JzlOKyC2ypX8Onn33Cawv+RWWpi0P2m8mgITWcceKRVPcPUFHpZ8nHn/PgQ49yzV9uZvXqtbSGWgi4HYSbmxEt+Ndzr1BX105pqAKMMwAAIABJREFUWQ3hcCOS5kCUbNRWlvPxG69ntqs90dMerHNEUeyWPDwf20Mrs2boCFLnYZkWVn4Av44ja8dpdhx9hWWKPR6dfenYhojwHxWW/cjc/X+Oq666sqBpz4/YNchKwyVJ3KEN5Y/4Ef+tMAyzm1Dnfwnbo5XbHkjy/631LYjSNr8P+fMgQ+t2/JsiGwImLiqGTWbmWRew+pNX+HrhiyianaIhVfz0Fydhd7cyd8bu/OmKXzOouhwSCb77diWCAA8+eB8333o1v77sN9jUAE2bY5SW+4jFwghiglQ6iqLB0cfOozW8BT2pI4oSbreLww/di0R7EzI6PrcDh78//kA5UUth1aImZk7eg6XLFvPUPzai2kUeevB2HGqSxgYRBSdFbi+iFEAUbETCaWTLg81mwzTTaKqGLMkgpjCFJAgJSrx2WurX0968GdlIIEgqkmJDN0wqKwfitBUjmh487hIEROLxGKAjSDqyIOBzu8E0EEUPJFUa68IUFfcj4B/Oxo1ttMVakUWTkWNG8ZvfX8nTL/6bipr+zDngYKprB+Et6semjSEUnLzw7Cs01oe45o/XoElObr7xZkJNLewxeTKrl6/ApvoAmROOPRO7XWXuXrN4/fXXuOfuu7js0iuQZZlN9V/zwEO3cdxx86ms6E80bIFgR9AlojGD6uqhNLfEwXKwpSGCyxlAFCRcXoXSAUMxVJULLvslKdnBo489QSxqEI/HOfu0c7FJXhLtEutX17FudT1+fxktzW08fOfDuCSZJx68h82r17L/oXuiOTSGDpnIks9XEY1FSRktpIwWJs46gnX19cw9YD777DeV8847iWiihZIyHyef9nNQJGJJgUmzhnH1tVeQSLRhEGfl0g18+OYHrF+1nNoBZXz48ZvE4k38/JdnU1e3mS+++JaBA2qIx8MkYiFIWciKh+uuuR1FzkQT9ft8RGJhxowZCRiIQYVjTz2N8uoB2OwONq5vxeFwIakxxtZU8NXHHzJjziwee/ZxNjes4cjD9uf4Y89BsTl5+vlnmD51CpGWOOmEgddRypNP/YtLfnUB0/eczC233sKzz7zIiuXrsCwJryfI4GFjaI+kefmlNzATAk3NW8CyqKkZzPzjjmb2zCmsW72M4046nqTh5LTTzkM0TZ59+m9MnzYZQ0/y+WcfU+QNggXh9hDnnnsOwUAx6UQCUvoOr/kfsevxo8/dTiLX5y4fQjaOA1snG+5NGtrl7G8hdmiXcv05cn0p8v1ruv02zQ6b5p79YLKar96wLSVDth+5/cvtZ/7fhZ612zOJOT5V+f1F6Ig4J2zTlLRgeSHfjru75iK3/z31L4tCARZ6bDdHFZv14ck9ujQCYo/vqtM/BqFbcJHt1Vz09j67+U72Mm96K5c/xj2d/19EZjzMHn2TgM41W2gMoGud/l8YD6BzTkKOaU4fkKUb3W7voJl9bXd7/FizIf77cn9v/rNdfr6Zo3NNmt0DAHXdn13TvTe8I2lNREHoTGaf/U4Uqjf3OfK/H1mpd74fXm5KmN58KbP57brKS5gdaSG6xtDqVk9B5Jw3LAHdEhAkGDSoBoC/PfEoEyfOQUIkFIpTFPAzbPgwyioq+e67VaRTFm+88QYnnHg8Q4YM49mnX+CtN9/iyKPnIckmsuBEkA3Wra3D4/HQ1NBEZWUlaROaGhtw2G2kRQt3kRc9nSaVTNMaaqW1OYSsaJRXe2lv38RXXy1i4+Y6bDYb48eNQbJS+Etq2bBuNfFIM4HyckzLwu10EosnUG0qoZZQJqqxoJNImUiSRDyRwOmwISs2ZFkDSSGZ1tE0O5Yg0t4WoqmhBYfDg4BBOBxGEEHVJFJ6AslSaAu14na5aYu0oyBx0c9+wd7778c/n3uBadNmMGXaRETi+P1lVAyoYMrUvVA1ASudoe/t0QRLvliGz+fEoYmcdtrp/Omq3/LO2x9Qt2Ej++03k1/8/GKqKwYiaxLlFaWsWr0Wt9vG8uXfsGDB68iKxuHzDmXjxvXsMWMiA/vVoKg2VJudeDyKw20jHdO54KLz2ffAAxElBUmSUDUVt8dN2kji8/nZsKGJSDTGkUccyeGHzWe3sSNpb29HVg3WrFnHhPGTuPbq65Fli8lTJ3ckehdZ/NnXTJoxjn0POBCbajJg8DD0lMm/X3mTY44+hiK/F1GCIm8JodYwB+0/hw0b2ujXP4goWbz26mt43QFOOPpA3nl/AcMGT2L92tXsO+cAUukoDodGqC3Oi6+8zLzDD8cSRCRJRrPZMEyDeDSJmJYp8hfh8Gk8cP+DuO12SsoqGDNqKN6AE5vNjs3mQsBAUUVsdg2baLBxbROqXUN1qlRXVHHHHfcwduxIPC6JiRMn0dTQREvTFvoNGoTP6WHWXvsxdMRgBgzoz5QJk5ARUTQLw1AZO24Ms2dP5XeXXYvbo1IzqIrRY4ajaTJun4uDDp1Hc8sW9pq1J98t+5ahI4fy4osvsM8+BxBqb0cigSobLFuxli8/+YQzzjiZNCayILB61Ur23ncvvF4besLC5bLzzrvvYLfbaWkNsWVLIwMHDCRNDymeCi73wtq8luZmHHZHZwAW0+gI3kbXdyZ7LX8PZOXoq/Ld6Cxh63iZ2Vv6FqcTtg53nS0ndPrtdflf73qlyY8BVX5A9M7cZSaCkTcR+wpJyuSL6hYkhEIbjR5+Z28Uuv/8vlCofztTT8FrOSHHd8XGeFvMXW/YnvazSY97TIGwlWlTz+0Zptltk7q947C9z/d9z5v/NXS+wx7mYHYj39fgGv/r6GIsOgJ5mMb38mEr1O72oq8h/nsTahR85/T8znsKKNDXuntD57jvxHzLX+e5v/PLiaK0VZS7/PLZ6xkBUVdQmr6OvSVaiIKJaOnIlk4IHx6fmxkzR/H4ffchkmDl+tXcetcDeIoClJRWcc/9DxKLRDj3nLMpKQ1yzFGnYLe5ufX265GUFOvX1nHM0adSVhZgt3GTaW+L4nS6SSR0NtXXIQoWHo8bHHZMBDSbnZQpEGmop8jtJBAIkFZFXn3xfeYfdAKzZo/DwEVZSTHrVi3HlItIRJrxF2kINgcCBq3NzdiddmRVRlHtqLJCe1szCA5UWUVRVFLpNAndwu7yYiAjKRlhq2WJaGoau82VCdJAErfLg6oqpPQ4omixbvVGysvLMA0DQYWWzVs4bN6h1Dc3UNO/mmee/Sd+vxeHZuJyF2OKBvGEiB5rR7JUJNNEFw0uvfhiDj/0ABx2iYsvuRRJiFFa3o+95+zDVVf9httuuZ0BA2oJlPrw+mwMGzKc2qGDqKyqoLy0nEmTJlO/eR2jR48j1NqAQ/Gxdu06Uuk4/qCbpV9/wWsv/pvfXPUb0oaB3aGRTMZwu52Ylk6kvQ23q5RYe4poW5hf/uxCln6+lKr+fiRRoqp/kBHDh1NeUcXee8/l/Q9eZ3DtYCwxCYLBtD1mYcpJkBUEMY0kuCjyB3j7nXcZOWIUM2bswRmnnYkiu1m5YhEuTUBI+3D7bTicDior+iGLDjyOZmyKxSH7nsU5Z53B8Seezscfv8eQ2sGMmzaVEaNHg6RgmjJvvfEmny76kqlTpyEIArffdAeTp07kr4/cy+knn4lgpXEHvTicJosXL6KyaiDRqIHDIdPa2sLXXy+jCIH33ltMzbAhrNywHMlIM3PPfWho2EKwwgmWTKQ5jFMWWfjRlwyvHUwamDBpIoIIHpsDI2mg2HUMUyFQVoQm26gsH8bosbXUDC4lEg5hd2qYZopYMoXP5+DLRR/jsTmQbAo+XxFXX3MDoqagJ9ooLfbQb/BImtd/hyHqlPUfQE1lJclEivLyMkKtjVSU9+ejjz+gZuAANJsNj9fH0q+W8cpL/2bSjGkdpvbbpv+FaSUoitph4p4xCTdyTLmzdCUjUNp6D/RDM3fdg/hl6hDFDmHXLo2TmcGPzN0PiJ6Yu6wvSjetlkWfpNK5ktP8aEH5H8dcCaxhmHmLyurWnmX1nPqg0Ic3V1OUSCRQVWWbWp9sO319xmxfeoskWrAdoeP5ekz/0IGu1d/9XM6Gqy9RmQpFP91KCo7Q4/vNLVeov4XedX67uX3J1tN5vkuAtE3kao16e1fboxX5T2NHmaXeNI6dsLq0NJZldWrie2Lusr6pha7lajD+G3PB7RL8UBrJ7RSY9Tjfc+hybwm8e6LLufVn/s2PdtxFp/pCP/uMPIuJnurYVr3ZdZ77fD3SuA66my9gzJplZsbOzGk3u3a66stey2r8sr6XnfVhIYgZvxnTElEFA0lSMHAyYuwkQg1fsPLbd7ni17dRVR1ElKNMmT6SgVW1VA/qh6EnGD58KB9+9AGq6sDnCfDhex9xxe9/R0VFP+69+wG++mopm+saufaa69h37ykMHTKc+vo6fG4vyXg7Ds2BLNhQHR5iRgzTsqGJEkOHDacx1EJVvwosK42vxMuG1avxe1zYnSqSaiPWbmZSIcgyqqqxub4eLBFVVRFkE00WiESjOBw2LENCJE081ooiCMSj7TQ3NuFxONFTAo1N9ThcErFoAtXuYN3qTbidHizdwBcsRreSmGIKm+BEUGRsLgeqLKEJMutXrWDPObORVQ+NkRZ8bhfR5k0896/XeO+j93n66Sd47eW3+dmFv+Tu+x5Gkpy8/e5bjJ+0B3+5/hZ2mziWQ+bN49QzzuWNt95j7l4zWLt2Fffddz+Tpu7B7Fn78suf/4Irr7iU0UOH09wSpqS8lJvvvA2/P8jFl17KwYcdyMDaUYzYbQKq3U5b8xYsw8LpdLKpbh1pU6CirIz2cCOxaAxdT+D2ugiWFePwehAVGdXuJqYniCRaMcwEU6fMRFBtCKhIokIymuLGP9/G1AmTkQSNpoZ6nC430/echmEYnH/BefztH08xevQY/KVlxHQLQYkRb29HkWTWrF1HSUUJi5ds5OVXPuK75cuYOGES84/an9l7zsBfEkS2BOLtYfREnC8WfUJFWSl7zpjB2tVrWPTpQh577BlOOulkpu8xlfffe5/PPvuIMWN2w2YrIxj0IxgaLa0rCQb82FQvA/sPJG130r+mCq9TI9kawWG3Y9NMNA2stEFzYzvxtMiqjXXMmTGFcCLG+LGDCXh9OOwKhhgnUOXj2uvuZ9Wq1ZQEXNi0FIMGFyEICZZ/9zUeTwnxeApNdbBp+Upsko2fnvMLRLuX4cPGUFUeRJJVqqsrWL9hE8OGjeGzD9/n0Uef54ADDkOVFFas3sBfbrmWqVP2obi0hE8+XsTAmn4MqOnP3XfcwxFHzKNfVSU1A4fw5acfUzO0FlOQQBARemGaCn8fO4RDHf6/Vuf5jBWbKElYgtBFVUQZBBGLzCFh0Pkr64KfTWuASDYxFoKZ4f6yUb470iaAQGfeItMiG3y7q4O9KFOEjEefxffD2MGPzN0Pip6Yu4If8T6+b8tkK7OuTJ29bRqzH/qMyjpjqpNNLtn18e7sSgFGpVCdVmZ+I8vyNjf6+ZuEvm5kchnUbaE7w1wg/QMZf5rsJiRr2tqNuRMypnXZDVd+GPN8ZjP/nkKMV1Z70dszdGPuLDrNqAptpPLHptv4FBIS9GDOltGgFH4RuzKwQz52RFMNu4ZJ2577c9Ejs5WdP4KQIdsCmc0n3Zm0XA17T/3oWnf/BYydZWLmmJgWQl/GtLu1QEd9P4Rispd3uC3Guns9uVX2TLe60zexgy6YBdao1ePz9yRA26HpUKANqY+5ogpX1zF/t2HGD91pZLb+QucLlS80p7oJrHK+U5KQMTvNvjtJFvCXjyLo8PHqK49QO6QWRfOTTjt55913qK6sIhxJ8PqC17n0kospLS/m+GNP5JNFS5m110wswSTUFKKirJQB/ftx6KEHU1RSyleLv+D9t9+hZnANHo8D0zCxDIhGwkiSiqK5aG1pQJZkHA4HGzetpbi0Ej0ex+nSKCrtT3s0jGZXEZBwuewoskQ8HicQKMLp0JBEkbQudQgBTRKpjMBU1SQsDFTVhmVZuJ0uUikdSRIJBH3oeooiTwDdMAgGgjQ11OEv8WAYApJkEo+HOXT/IzLMS3ExsVQSQbcYMWowaVNnw/qNDKwdjJlMY6Vg3O67UTOgmil7TKXI6+WGv9zKt999zWW//jmWZTCoZghz587B53NjCSlGjRjJlEmTuf+evzJv3oFYhk6wuJigv5jdxo2nduhQ3E6ZDz5YQiIhYgk6oYbN/PGqy7n/4UeYNHQ4UjrNv599idphgzBNnXg0woB+A/H6/YRamvDYZQxk/vznPzN79hwEQUa1azz26KNMnDweSdEI+IqJhGMoisAtN9/D7mOn8PhjTzJ+7Cg+/vgTxo8dz6OP/o3dJk7gmGOP5qD998Nm04jHEgweNAQwaY9ECBQH8RZ5kUQ7piXx8EOPMrx2KOeefzGXXforRgwdQlV5CcF+pbiK/Bi6wG9+fTkTxk3k/7F33nFyU1ff/0oaTe+zuzPbq9e97Bo3DDbGNphejcGhQygBgoEQem8m5El4EgiEQAi9BAgd08GmY2OMccG9rL29Ti+S3j9mxzu73uoGeV7//NHHO9LV1dWV7tE95/zuOeeedwGffPIZvz7/XNauWcPI4UPx5uRSUVmJ1+dj8bff4nFlcfDBk1BQCAcgroTQ661Y7XpiCZVEXCAYClFX14AvK4P6umoUNYHHk42o16it34ZFlonGFDxZBVjsDsw2HTqTmXAojNViYsPGdXg8LtatW8th045h/j13c8FFF3PfnX9m2tTDCPtjSIIOQUvQ3NBIIhLnymtvYtSoseQXFPPt199gcXiwWQx88MGHVE4Yg8kgk5+fhy/Ty7hxB9PaGqCwrBSrycDxxx3B++9+Qnl5EY8+9hDlgwZjMhmx2Z08/tjjjBxZgSTB+vVriYcjFJeWobV/BnoLrtSTnNA0LWkkFYTOeVzb9+04r8u3K136df0ea+mqpqZ2mhZ18ul1SanUKU3CTrTMNOwDg+b+VAj/H+O/NcAB7J0ADZIo7tLavBT+m4NG7Md+9AVZJ/d6XFMVNHXvhrH+b8TeCsjy34y9kUqhawRPDQm9IFIybhpzTr+YFSvWICYixNtqOeG4w7jrxhsxSAKVFZW0tjWQmenihRdeJNvnZvP69ciCREXFCA6aMpmSsmLsdguPPvoyxcUljK0cioRKzfZtoCbQCeDIzMDlzkSIt2C3m2ltbSURj5Gbl00soWI3mfFkeVBECavLRXNzMxazHiURBTUBSpzmhhDRWBxNjBONRpBlMJkl0ERUVSEcDhAM+lHUBHqdnmAojE4no2gxNC2OrDeQUMBgMJJQEvhyvCQSYSRRYntVPTrJwfsLF1IxdhzVm7dz6rGnEIuFMBokXn31HbJzsknEEkQiCY456njMRpnsLBe+bB+HH3UQ8+b9hksuPQ+LQ2D8pNHEY2EaGrcRCraQiIYxG2SWLP6aW++6GVXWMf2Io/BlujnttNnEEirFpYPILhnCSy8+y4JXn+aU006jcvQIZBEuvuQSEmocQUpwxFFH8/brH+JxZGI124kENH5cspRMjw/0LiwmF1abm3gijqIGOe6wYzhj9qk0b9uOpmjEowIPP/wYihbh1JNPYMrkqThtNlQ5xhXXXobBpqewtID7//IQTz3zBFs2b2Db1s08/ODfOeGYE3nnzTf54sNFNFXVEWwOcuQxpxCOKEyaMJlYOMqJx8zEaBR46bWXuOOP95KIahiNJr74dCEtTSFOm3sOlZWTePapF4nFVQry8mhprMfh9DBl6mRMFiMTJ0+lpKQQo8GCLDu44oor2V5dSzAQxqA3IYg6li1fgcFkJi+/iHAkitVmIcvrYev2GiJhAbM5i7jOgt3jJREJsm7FUiLBNiQElny1mG3VmzEZjdRs99Ncr3DG3NN58aXnQTRSVdfC0uWriYsSktlIIBIlt6CEx598kWdefI6XXn2ZcRMq2LJlLS3+JiSdxoUXnM3bry8kEdMTCsbxB1ppC7Zx6x03oSgxwv44f73/b3icPt569R2umHcVlZWT+Z8//o3CwkLMFifPPPMcW6rWk+lyUV+1jZXffYeiJHY5BYIotQdy0rRknkMhqaSJ4v+tgFV7E/s9d7uJlOeuN0v8gL0RQs/0mv5Y0dOtoOm0w5T3Kd0L1D96XpqFRYP03Hk9eRH76+XrSldM/e7Jk5fuSUt557pu3Vnz060+He3WdrSla7vT29DVy9hdf/ZEY+rRG9d79+xAusV9xzMTOydmT7+XlLdWVbV2K377fsRuyrbXrbLHPC3ajpvV+uUR6rp1DTbS9Vn2dF5vZXra11ObekXKg9dNe/sFDUSp73vaJ+iHBzGhJPqXrD3N2tmT92hgTRuYx7A/8ndP9e2uUCvTqY7dlU8/NhBvXnK8qTveyZ5O6ZdMJjmpSpcPXc9JryfV9lRCd62Xp96fJO8d1xJ2bB1pblK/BbR2GqfeYMPtzOS1l/6DWZLILighO68AX34+Sz5fxITxhzBj1tH86tw52HQJDqiYxPnn/5qyQZWsX7+J2++6lQPGVbD0+6UMKx2DNcOJ25UNioouoVG1cSsCcSLBJgQhDPEM3BkZxIljsBuxWhxsWLeGX511GZUVlXi9GWhqApvVQktDIyarmQQaiiihhFrwN1Vj97rRBDuSZMBgsKBEQoiaRDyqohMkQqE4RoMRSRbRKxa2b63HYXVQ11iDllDR6/XEEyqiaCGmhDCa9egklUCkCZPFTnNDM1o4TMWE8UgmuPKKq5g1azrN9XW4XQ7OPPdsIEZbUxNxUUI2GcnI8jC2cjxqQk8sHsHhcPL8M69jNhtYtT7Ixb++nPtuvxXVmEAvWwgEI2hBP3FRJqxpBIItWPQGTjr5eB5//HHmHH8k2SVlYDajExV0Bjfo9PiDIu+/upgxFeUouhhzTruIcWMruOzSa5l+6CGIOhtvv/EqB00ajyPDy9gx5QiyRFzUYdM7aGhYTsOWZoYPMyLJOcw68jCuvPI3nH36hTQ3NbC5aiPDR42mKDOLRZ8sZHtdDffd+wB333Unz7/wLLfcegtlpQU0B0KYjSYe/uv9ZLicDBs+Ak+Gj5JSLzffdCfXX3cdQwYXUlxYgizo+PzzLzlkUjkXXn4LBpOIv64RT4YLT6aHUCSEbBBpalWQ9VHCzVFMZolfn3MuRx49iylTpvDWO58wYlQxaGH8YZHLLryUSFsr5YOKeP7pV5g0aRINDTXk5OehxSM0+RsxWTIJRxJ8uOhjZh49Ay1UR219nGBdI8PHVyIb7Vx37d08/fzr3Hnr71DVBJLOgtmkMaRoGC6HgIKJo2aexqQDD2LqtPHorEYmTzqI+XfP5/LfnMMrL/6HaFxj6OgxjKocwW233UpJQRGff/I5o8cMwWZ2oqkR8gcXMfmgaRQUZCPrVCKxGDqjgQMPnECgLUjp4CFUjhuLv7kRdBqixYCgqqj+INbMDFQEJE0kfRGc2B5BvC+ZlCwnIQjJNXaplS8CIAlicm3uDlKmlkxJ0E6r1No3aN+Xdm4yZp+GJArtf3dmdqV74frruVPb5e/e/Hrvp2XuQ/QWUCWFfTZZa0d68A4p7WPddZ1EOvoaZJ3Ld1WSdq+t6XXoJKnXNUs7WtBPGmcKHW78LvdB3/feU137glmXfi2hhz5P0lBT+5JUVJ1OR0JROhT9TusB06gLpNa9pBYo75mbEvqwsPX27Hb12K5eb3frG0jdoih0eV77Xj4MBGKK1ttnG3fM+JM0ur3dMPrfb/uyf3umGfVevjvZ3P+h2IWqtBtIUqA6LtwfRVbT+s77mAqs0ptZqz/3m36PUU3BYDUzonI0eoedreu3kJ/jwqyPM2LiZLZUbSLLaefAA8ZTNHQk/3PffVxywdkMGTUMh9POqaf8inhMJC8/h5tvuJ5jjjseRJlQOMbcM86nviXKxIMPRhP1qJKJ6uoqGpqaeemFt1jwxlccPGUsmijxzlsLOPPcMzDojUnPW6CBxuYW9HoTJr2VRKIZSRLQBCOiakKN+AkHmohHgjQ0t2K1OzCZzPgDARxOB/UNdYTDAaxWFU2IorRTNg1GkYQSRhA09EaJWFzEZJRpaNiG01lGfVMAh9vJf954mckHTsFqsTLntNN56fmXmDhxEnq9HlVN0NDQjN5sRlNEgn6VSDCEUS/yxOOP4HZ5kfUyJqONutpWnn/uGc46ezajxw9GUQVi8TjhcJBvv17CwkWf8crLrzDr8FkIRj1mq4U5p51GJNZKJKYgYKSltpmWunqqt9Zy1bzfMXFqPh+8/xXz7/oLGRkyF19yEYMGlRCLRcjIdjJ5UgUGGRRRICfXh6qC2+kmEVVIqDomTptCWDLS2liLz5vD4sXfccSsscw89FROPv4CMrIV8kpLKCjKY/SIoYwbP5qMTA8Tx0/mjtvv5amnHuf8C3/DqhUrKSoczimnnMLixV8xaFA+rsxMph06Ha/Xh6w38fEnC1n0+SLOPudMIvVrKSoZym133Ep1bSuDy4txuOxoWoJYpApJl8n33y3FqHfgyTQwfsI4RFkgpqmMHTWKLZu3sfi7FYwYPpQLzzuXwvxMJIMNX44Xi91CNJZA0ulpa27BZLVhRqZ601biwQBOqwmbdzCyrMchNaCJZkKtASZPmMgZp53CF198ywETxyDpFbSEzBuvvoleH8fpzGP2KcfgybDhcFuoq6nBbrMxc+ah1DVUUdvg5+ijjsRms/HvJ5/ghGOPY/nKNTz/6tscPmMaCz9biNvjRq8Hs97Eq6+8RsW4ShxOE6vXrCcnO59vvvma1kCIwuJCSgpzuff2P/PBhx9y2KEHU7V5A/XNbeTk57WP3c7jWFF6j6yZmovopPYgTt3Jgq6nd6N8dcz90vbRJQhVL0pbf5U7LTU/67HE7mO/crcP0R/lLoW+LM29BeToC12jl3V4FTpbjXtaD9HXR1zrPPvY6XhfbevNW5KO9ETp3a03S91Lf8P/C4jR0HBoAAAgAElEQVTJLu1ijenqfezLUp5uTe+PFbyn8/t7na5ehp2U6x48lSkLVyr5e8eau45y6R48ob1f0tcg9tdrAB3v3UC8IwNV3rrrj97WVg3kegOGpnWi+Q60bm2A5+xTT146uqw76LtsEsIe8NpB7564HdfqzvOY5sXa0Xd725yafvleGAfd3VJ3sqQ/yp0odMj4PaXYJa+pdYQb76YB3TIJ+nXtlLzaGd15Nbs+1/RxsGPsSwogoAkSJqsNm93Ktq1bWbTwMwoKS4jHg1RWjmHV6jX8sGIlsYiCzWrhb39/jGeeeYYJE8ZRVl6GwSBz8onH8szzr1AxfAhWi4mc3CLKB4/ArJeoq23EaXWxenULTz71HOPGjWD27CnoDWYsdjennjwbQaciYkAn6mgLbMeXm08iprHqx3XYLBKizozV7kbSYqiCiN6kw2S2YHO40elk4gkFo8WCpiVw2G1oKIgayHo9RpMZTQBRp0Mv61G1ZJ9FI1EEFWTJxKUX/IaHHnqEc84+i2lTDyYzw4dONhCNxDlw0hTuuP0ODpl2MNFohCOPOp7zL7qISy+cR2XlGFqam9m+ZRsZnizMViexeJTnn/831fXVfPDOa1x/0zXIVjMSMnqDjN6gY1D5CEqLCpk84UB+fcFlnHzKSSQicZ584inGVIxl8Xc/8vYbrzPxgDH4QyFuv30+a9au5fa7b+O5Z18i5G9lyOASho8cTl6hl6ysLAwmI9u2bCTTk0FzWwTZICKKEuG2EKoYw2zJIKo2YZazcdj1iIKOw2bNQIu18tVXSzl1zhxe/PfTFJcO4c033yEjM5OlS5ayecsWMrOyGD1qNMFggLz8IoqLi/jHw/8AUcNut1JSUoIq6pB0AmeedS6zZh1DQUEBFquJDK8bp8uBbLBzxDGH88ADjzBsaBmapuD2uPj84zdwOsvxZNkwmnREozHeffcDsvMLqKptJthQy9gDxuLOzSYa9CNqCdau+Z6svHJcGTYSSgyj3ozfH8JhsfHjqpW4bA4eeeRRcvN9uFw2DOFaRElGzh1Ga/12FE3FbDUjGyVMBj0OlxW/P8iXC5cy/oCxeL0mTJY8tm/fhN1uR0Di+WeeJy+nEEHQ4cv1otOZKC0pJRIMcfXvbuDNtxZwxhlnUliYx4aNG5kzdzalgwZRtWk1Obm5lJUP4bU33iArw0txWTlffv4pgwcNZsTo0cRjEVb9uIzTfnUm+UX5mC1WMjwZNDY1UlhagobWbijsPL77mgsIgoCiqt3HoOgumF4/PGsaIHZN2fB/ULkTfhEL+/+LEY3GNej/ZCSFnT5eCOhkHYlEYpfa0X1o6p0jv/WkFPUVXGN3aKe7GlwjHal2p9rZ79xuWpJq1LX96cpdCr31QdfrpyOVmLy3NTjp7e3PdXYVKSpk6v6SYbXVTsdSSM/X1rU/+htspbd+2ZsYiHK3q3X3cHC31nD2+zrt6Dqh3WdIvQ/9SWnQSbnbM2sidlW5U9u9oqKU1o59qNzBrsvYruf3Vr475WdPobexld623ZVVKXR3n73dX+qYKMbQ0KFpEpomkhDimDQdUX+EYHMjC7/4kNHjK3Fl5BH3B3j0sRd4+503MOsdXHLpxcyffyOPPPowrS1BvBlOBMnJ6iWLqBxfSXMgwSeffMPEcYNpqG/G5crgh83L8DcHOP6IE7jgnN/w2nvPUueP4zHKKLJCPKwDDay2AA0tEdzWTG698R5W/vg1/379LRQRwg0bkV35qFoMWZJR4snAEUajkXg8RvW2zfiyvcTjYUw4SGgJNEnBYJZRYjrqamvJ8maRSCSQjRLBtgiCosMiBahrifPk0y8wZFAZRWXlfP/9D0yffiihYISi4hxULULVti1keQtBJyBFRTQpRn1NI5vXbeGVl1/D6rFz/AmzuOee+/jTn+4hHgxSOnQYUZ2MWRQJhtowmmWmHXIMt19/NQdPmsJRJ5zGE0/+g3ffWkB9XR2ixca5553L9ddexp/uvhmdPYsDKqdisZgJtMYZPbqUq+ddSCQUZ/i44ZhMGnU1rWTnF7Lkqy8ZPXIMOrOLBG001zYRag5gyzMjRN20tK7AqRtOXWATGZ5Mtm5dx6CCXMLREDZHBgG/iN5oQhFUDFYj4aYWTEYD26qrCAb8FBWUc9Ntd3HLjdcTjvgBAVmnZ/69f+SSyy+iqDSP7VvrOO7YU/nPf14EKU6W100koaKLG1CVNu677x8YDSpXX30FihqlZu03OLwHYc1SCfqbcVjzaGpoJBiLcMzJZ1FR6Ob+v92PYrUiReL43HZWLP+C0869iUVfvMXSpcsYOmQMs088mVdfegFNLxFpa0VnMCOJGohx9BY7/rpmsn0eFL1Ma1uARCyGxWLDKklsq6nGl13KTdfewzuvv8S3373Ju++tp6Q0k6eeforNmzfx8AN/o7qmgfPOP5+/PnQfwVAMNZ7goQce4Job7yPTY+e6a67k5uuuZP32ekRdlMKCQvK9JpqawyiCCUEncc0VN3DLHbfgchmQNAM3334nOTlZnPurk3n300VMnTkDQRXQqyKrf/qeohHDKCwqTlImd5InfX9fUtF3uyvbVQZ1d40d9aQHaqLzXK238wRR7Ve5VP17M5CJrNf3W+juV+52E5FIrFMH7u5krOtHTBLFHRbU/k5o06/dW1jvrhjIZCLd1LqnJrsDRW8Kn0BSqempbVq7Nai7+tKxp5SW3pS7VNqMntqwE1Kn91K0t/Vu3Sl+Xc9T0iidPbW7N6Tf007t7Way3Z1xYm+ir3tTFaX7d0dTd0uBEdstkfAzKm69of3+BtSmPajcdZVxe7Jv9pUHdHeVu/8WpIyHvaGrXOtJzvVF0Uq/Zgo7Ly1Ieh0lSSQWDWMyGKhev5m1q9bgK8jm/PMvRSeZuOG6GygfXEYoGqSluZnzLzib5555nkx3Dm2BFk466UT+9eS/eOihh1jz00ZKin389jfzcPu8xGJhvD431dWbkXVGJFnPT6s3kJPrxGbPoKGxlfKhpVRV1ZKd7aV2WxU2s4jVnU1zqx+rpBIORXC6vbQEWjGbDSiKgtlsps0fwGrVaGuOEAoq5Ba4EDHx008b8PkyMDrcyKJEc1M90VAIRfVjsdhpaYzhzc4koUQJtIXRy3aqqzbi8/m4/y8PcNJJp7J201qOmjWdWJsf0WJAlGTuvfsvnHv+bP73z/9k8qQDych0cPXV1/PJwgUkYgrPvfg8Rx15NLIliNWciSzoOP7YufzjsYf4/L1FzDxmBgaHldtvuYcZUw5CUQRaW+s5+bTZaJrAN199g9VmprR0CMedOJvBxV7m33kXOoOMzp70Rq5ctpLisjJCjVvIyx8MIiQEjWA4jCxJ6CUTCS2KJJhpbNyO0SAiCyZEUcFosrG9ejOP/etJPl30Hf9+5TUSwe1kuLPxN9Vxzjm/57J5ZzKmshKD0cR7H3/McUefQDQaJBwNoVNjGG12EgmR6s01RGMK7iwTbpeLZUtXsODdD5l98nFUb2/gwCnjWPnjjzz5rxdY8f1annr5URQtRltNDX/8y194+OGHUVWFaDRKQtXR2hwkr8hN1boaQuEAg4eUE45GWLN2DWPHVlJX3cpN117DXx6+l9r6WnLyCkjERZ7657McccShuJ0eJF1y3fqMQ4/i7fdeIZIIYjRnIukUGuvr0AFmk55YXMCekUG8LcKSbzZTOsSKLBn4dslneGw+CovKeP7fL7Nq6RLu+p/5GG0m5t9xD7IgMm/evOS33gLh5hANNW387qbbGFpUQGFpAef8+kxi/ggbt2xk0JByVCFBPCphNOuJq3Ek9Kxcuop4OIwz28GgklKqatbw5VdLmTn9RLZtWMKCN9/n+vvmozcbd7CoRFEkGTG88/yjP8pe5/L9Ue6S/SiIao/fEyVtt6jt2nz2l6bc7adl7iYSCeXW7vZ3pdR1Ry3rzzGNnZW13h0LaWVTIWS7WaDfHd1xQEjRHHuhBO1N70qy/t7WEWqk58LrunVHORooXXUgSPVvT9SsntrQXRCcntIepEOgN6W747mkQrmLotT+juycIqJrP/fHE9vpvRaFjndQTQYU6Yn+2Sd1uYfr9pYgWRSFZMAHVdtx7RS6o4SFQiH0BkOPlMjdCRiSomX2h47Sk1zYqxgAvbbrOck/d+3T9ktRcAdMs+1Gxu00XtP270rqA6mdedATO2NX2r27SE2qRFFCVVRESUp7Zzq3s7tvYTp2zvHZPxp/d99LhOT5oiyiqBpmp528siIy3RnMnn0SBx44ni3rv8PtNOP1emlobCQYt7Dw02+Q9REGlY9m9uzZWOwyBx0ygYf+/jiBYIzMLDe+DBcut4OEpiCbLAiyhMflRUcUrzeTs351DlarnaKiAkLBFvSiSqbbzqYqP1azCbfTiqDXU11TiyCqeFwuREkmHI4kc3iJAmpcD4JEIh4moYh8+833jBo5GgQFf3MVohJjy7oNuK0OHBkZ6CQZAQnJbEI2WJH0ZkS9RE6OBxWYOGkyf/nLn9m4dQtTJk3l5htuZdohU/lh6TK2bFqDEjfy3nsLmDBxPBMnTGLkqDLagvX4sjOZOWMcn3/yNfk5eaxdUYsny8p5vz4LEGjx+8kry8Pf1ITX5iK/1Mfjjz/JrFmHkZmVjSgpeDKcGGQLoeZG4gjcduftSDYDgUiIRFsIIgm++mI5OmDoqDE0N7bhbw0SaQtBVKO+sQ69zoTFbCAQ9mM0GPC3BTAYNEwWIy3NAXxZeQzOG8KWzZs5dOpE1EgLcUUlEleYc8qZeLOdrF+3kXfeeg+bwY4r00U0GmP5slWUlw7hmRde5uG/P8azTz2Dz5vFrTfeyaTxU/hs0RdcedVFCKLIU0+9yLTpk8nIcLJgwVtce93vyc7PxO128+Wir3nl1XeYcvCBGMwiCHF+/GE5ZSX5NDbW4bBCbU0VLY2NiAos/2EFbocVEZVRYw9KepvtdhRNRFQ1PvroXXzeLPQ2AZvTQYs/yHkXnIukhLBbHTQ11WMymRGAUMCPy+nEZDYQ11Q2r99ATqFMQ0MTzz75AaFIA3+6735mzz4Fq83B9BnjWL1+I8WlQxgxfDBjRozi7HPO4aSTTuK7bxeTX1SMyWpl++ZtfL9iOeecczbbtm4mP68Af8CP3qDH4/GweeNqGhuaePvNjxhSWgiSgM1pRYkHySzIo7GhjtHDB+Oy6/nw088wmM2s/nEFlRPHJ1PvkGRcpItAUUxPLaPt9HdPSJ+faBrtMVva53k7zkvNm3pxXqTLkV2kefzSaJn7lbvdRH+Vu54w0I9yb5PYncqmKwN0r1j0Z31Hn2gfWf35IO9NDOQ6vfVFX+V2Bf1tW3cTwoHWAXQk2u4WHRPCpH6eXrbjgn2tw+z1+j29C+LOE7KBrN3p7R3rqb2CIKAqSWW/t/5NobvE8Z2P75l1ZT1hX0/U92QbdlW5+6Vg1+975/O6e9d2Rd4K7Lz+rVvFZh8iFWE3mXBY25F4OHmTA6yrn7J4IGUkRSOZv7h9EqnXIZv1uH0ZlI+swJdfyLpVK/nmi0VceuEc1q/fxEeff8zUCSNRYgGcdivxYISLf3MRJx17PPW1m8hwu8nMykRvMiLoZARJQ42L6MUw26tqOOnEU9iyZSuVY8dg93hQVI3mlhY2bW3m0Yf/xhGHH0pYUTGbzNjtZsLBMDG1DUknYTBYqatpQdaLRMJh3J4s4lEVtzODuro6MrJcBINxJJ0erzeTuoYasny5+P1+rFYbWzdtobkugM1kZfWq5Sz/YQO+nBxWr1nJ4TNmcfjRMzDoNSZPrOAPf7ifzz77jGuvu4JQCAYPzaOgwMell16KTjYxbdoUPJ5M/OFWikuGYXYY+W7JCkaNHowoqcg6E/fcchsVB4zBk51JOBrH5XDgduRw5RW/JxQJIuriKEqCLZtrKS4vRDaYefof/yI3z4vP6yMWjaE36TEZ7RTmZqAaRGSzjM1hJRgOoJeT+QDDwSihYBsaEpJgYu1Pm3DYzaxcsY4/zP8fxoweicVm5ugTjqSxrRGXNQNRUrno0nlEwwp33/1H9LKR/Gwf5WX5oNPx/Asv8cnHCznmqJmMqRjF4UfMZMTwcrKznJxz9vk8+MBf+e1vL8IfClK1bSvHHHMUKnGCwWYOP2wGsUgEd2Y2gUAr8++8jd/Ou4TikmIcdicCMt4sOza7hfqaWizWfALBBK+9+RbTD5+BZDCSX5KNyWZBVEJ4s5wISHz47qcUlRQwfFgZG9dvIcOVQXNdC2aTSDhci2S0oQkmLA4rLS0tuF0uaqu3E4mEsTsdCDoJu9WOXufCaFEYW1HJRx99zZW/vYS4qnLFVVcxdfxwvv36e+yWLF5+7inyCguoravDYjbz1D9fJhiJ4M5yEg3Uc80Nt5DtzWTTxvVUV9ewtaqKkaNHIojQ0tDMTTfeSkXFaBwmB5df+XuWLPuBWTNmImhxigoHEU+IGCx2bDYno0ePpqWhkYLyQej1+vQBvNNYTjdW7YrhqpNitpOM/P9LudtPy9xNpNbc9QRNVfbYOpT+oKuXLx27Swvq6135JUxKu6Kr2z6ddthT2d3pp64Cqbs1KrtSf3+pm92tuRsQNK1TXqndwUDW5PSnT3Z17WZvdNv+roXsaET7/z/Tq74n5HV/KI8DpkVqKrQn9t4V9ETH7MuTm3awvbyIpikDp5b2A731SXft7E4GdJzQ/v61/1R7S47bpd6+2vdzY8eY0roPytKpDH2Mu7R+UtQkzV7bIZ/SkhunlQUQdvCsRARJQFHT17KL7ddN5ircsuxrJEFkw7r1FI8YjxRpJjMzkwNnHsv1F88lKysTt9vD6+//SE3jGq65/re89tqnLFywkOuuv4Kc7GIuvvRsXl/wHiH0xGUDpkQMJaoSjjawvaqJ8sEltPlbcLosRAJxJMVAW6AFf7QVp8vLtb+/jhtv/D0mk4jF7OCrL75l2PDhtPi3YDP7MFsNKDErAaEFXUxh7dcrySwt4fbbb+WvD/yBSEIgHElwxunnEAqGsVjsXHvVPMKBBoYPG8OHHy1i6qETUEU/+blDMBrNfPvtEipGTySWaMFoMbJm9Tpyi4ZgtMaIRBJ8/v5XTJ48EVHQkPUy/lADRp2HdWvWERFk7vvjXTzw1/txOj1IBoHFi5fw1YIFzLv+MhoaNpObW05Lg4rBEmbu7F/z9rsLSCRCxBMJQtEI4UiEtoZqCkvKaA1HMAsGotEIbo8dlTiJWAid2UtD1XqMjlzWLl/H9Vf+jtffe5barc00hFV8XhWdwYjZ7MKksyAQxx8LI6hBZEHA32agra2V7NxM1qz9ibFjRvLEv54lFFKZdfRUnG4rLpeDRDwZEr+psY3jj5tDJBLnjddfJCMnmfrCKthYt34NoBKJhCkfMhRRB+Ggn0AwSHZONs1NzQSDQexWNza3neqqKj79cDFWm46KcZWY7TbOO+diXnzxCdREgljtKmrDRoYMGcn333xD+Zhy4nENnWjnpeeeYdYR07FYLQQDMby5Fn5YuYmy/BIEScPvD2AyGUgk4sh6MyYxhqI3snXDRrKzi5F0BtCFCUQUrIgkxDiB5kbefP199Ho7EycegCsjE1lWiSdibNiwCYvJycmz5/L8c0/y0AMPcsNNV1K1rRkJmbUbvuPYY2ex+JufyM53IwsOPv3oS75fuZzzzptDaYmPl1/8D+MnTEcjSCgYweX0Eon6efrxF/nd7y7k0qtu4LFnH0Fv1qOpErKk24mW2SEfds1IKHRKadC5jvS1c91BUdRuaea9rbPT0tbuqez5PJ9dsZ+WuQ/RZ7RMrfd8X3sTO/GRd3euo2k7WUPS8UuZXKSjJwt3bxO03eknSRQ7hYJPr3N36k/3TPXPE7zrdK09lg5hNz2pXbGrdMjePLJd6XT9r3QXGvILwe56RbpHUjbsrgzYXY+UIAjodPJeoXkOlIGRTnnfyTDRmVSBtgdeqF+K/E21Q1F7XkfX73HXoScipeTqjhO6ePzTu1dL1Z30JnbWnTss7IIgkJ2bi2Q00+oP4SsdjNlsxGCxcc4l8xg343B85aPJGTKa6dMmUbdxOeGGLYwszOXceReQIIjOoDJo8CjWrP6RbLsOF378cQ2dJCHLEWS9jCBoGPRGmpsCmCxm1qxewwcffsioipEY9SZOPOlk2lqbqd5ejSTJ+HJyUGIiXp8bo8FNNBLn5ptvwGjyMKikhJtvvgJV52L8pAMpHlSCw2wiEgjwzVdfEGhrIScrl4WfL+Sam64mFGrho08+4uSTT0Snk5k16ziOPupYvv9+Oct/XMqQYcV88snHeNxu3n7rVSaNG8/Lz/6HJ554gjdef52nn32Ks846g00bN7P42+9obKlh1uSDsOpF8jMzuOF31zJmZClDBg9i7U8bKCocSXV1Azarnfvvf5BZh0/DbnNSVlaKoqmEQmG2bt5Cji+bzVWN1NXUYdJJuJxOdDqRr7/+ipKSEhIxFaPRjl4PJouFiL+Vo488DJvbwubNLZxz0eUcd9wsZFlErzPwxWdfsmL5Ml565Q2mTzuUeAz0ZgOZWS70BonsbC9tbc24XC5uv/UW/v3Sv5k16zAsFjMCOhrqG3A43MyZcxrvv/c+c8+YS31DLXaHFVXQoTfqcXqc2N1OYtEgba1NmMwGDAYjzz79NGPHjkVJJFi8+Dsys31YzRayXG70JiMFRXmgJTjphBM45qhjOP6EY7Fl+hB0FlA0PE4noj6Z3zASDuPLyMST5UZTNaKhKGrcSobXQzC0gXAoht1uIxpVicdAQ0WUQNRJOBxu3n7rHdas+QmTQY/TZcPf0opBb8VgEMjx5ZOXV4DNasFosrB5ywZ0Oh0etwej0crIEaMxGHSMrzyQzVs3sHHTJmJRlZkzD+Vf/3qCieMOZuOmn7CaXZjMFo48ahY1NVXYLFZ83mzm3/NHXG4nw0cMJ5FI0NgYwuPOwGyWmDHzMH5c8T0lpaWIOhkBesyNucsMil303KH1olD2anhLYzoh9JkSZnex33O3D9GX525fI5XUVhCkjmTJWu8f2v5AkiQURensNleVna0jQjfhyfkZJx4aICQVA0VVe4321h/PjSgIPVqj+/Is9ea56yngQH+D4aTQnSEh+azUjoTm/Qi2sqveyx77txcrfm91pP9Oh9pumU+94z1F3OvJe53uXRBEsddIpz8HeqKk7HKKgG6O7VEPnqYi6XR7NWhIv75VKQNUuydxT2DAXsw+6kn+6FJXPzx3fbUhfWKjaR2yuTfv58+1Vi/1nqTkco/oZkKm7QhIJPVYVlA6n6d2qqdzv6jtp4oaKILQIScRkIXIjrOCqhlQsehFSETR6Qwo8eSaZZ1epKVhO59/+A4tdZuYdtz5GCQBgzFGRDERCoRpaGikYuw4Wv1+2hrqMJhMJJQ4DrsHvWwkGGrlj/f+L5dffgmxeJRwEHT6EO8v+JLDZ02nuWk7RcVlNLW1UVNdzdlnXk5RSTFPP/sPtqzbQFFRPpFICE+GG39LlPv+fD8XXnQOtkwvFhkCzX7Wrd5I2bBiIqEYTz71DJf99kKisSA2q4vG+jaWLPmIEUMnsH1bNZoske3LJBaLkFeQy/zb7+DCS68gGA+Qk59LLB4hHhPwt8bIy7ISbmth3fp6LrjgUlweO3//+/1sr6miqKgAu9NMIi6SQMNptaNF4lRt3srVN95KcXEe119zFcFYCLfbgyzrCYZibFi3jS3r1zL9yEOwmkzEQn5UTUPRW2mq8TP7lLlcd8OlHHnENJSYQHVVHYIa57sfVjNx8jhuvPkO/vd/5yMKEued92tOPfVXxCN+TplzMiBSt72BuBrG6XKQiAE6Hffffz+/+91VmM1mahsa8Wa58PtbEHVmZFlCJ4tEohGMeo3WpjacLg+CAP62Vmx2O6FgiFgsjsHmoK2+DUOiDkt2OS3Njfjrq8jIzObSy2/kb4/dj9XuYN0Py7njjvncdc8fcWa4SCQiCOh56dlnmDR5HOFwBKfDg8o2SsrHs+KbdWSXeDEajNidNrZs2kJWViYJQEccTbYTDrdhlfU0bG8iEAlQUFyAGgqxsWodvqxiJMnEwoUfs72mjiOPno7b4yHQ5uekE0/j7w8/zmWXXUBp0SCKSwo5cfaJmE16EvEYGZkZqIpK7bYtbNpaR25hAW63nUf/8ST5OXkcOWsGssnI9m21hMOt3HX3rdxy630k4hFKSwsQJY2//PE+/vDAg7QqKkZJSrey7jz0u8jd3rx5qYiakiD1KPf78tz1BK2XqYEmdMwnEqqw33P3fwkDyXO375CKDtT5o747H/JEIo7QJXm5TtJ1mrDLsoySiPc6UH8WCKmJfueE7v1Zf9UV3eVb6XSpfhzrz9rH/pTt7/UFQehUUe/PoqN/dgXdeSo71zywOtJ/d6ordSwtsEN3E9+evNdd18T+0oxckiQOaH1tOvr7fuxZD177uqufuRslnZSMMKyqvbIMBoI9Jbu689z1smPgaA+GpGlap1QQe3LN9+6i69gW+xp73TUvjYLbU9nedecuHj9NQUBDRAMhgSAkrfwiCRTRhCrIqIKMSQxAIoKqgCTrCccCSJIBRYyRUEA0Whg0ahzl46bitjpQEzEkQaHNnwzoZLGZCPgbECUTJpOM0WjCH/CzdXMVVqudaCyE3erhmWeeRURh0KBybC4ZjyuTTK8Hs2xk3eavue9/7mfrtgRnzjmJM+aeSkPdVj5e9C0ffrqQcRPGc96FF5Gdl82/n32RsSNHcfhxZzN3zomE/H5ys3OJKn6MZgOjx4zEYnawbds2NqyvwmhwkOGzY3NkUlCcjcvpZu7cU7n4kgtZvWoVB1QMxZtXjNXpRh+OUbOpig3LN/LQn/7OG58v5KiZU7BaXWyqWsltt92EbBCJx4N4PD50sookykTjCd556x2cFitKJMqECSMYNWoEotGAy20jHIliNVtBEznttLOZUI1tEQMAACAASURBVDGGzDwviWCMWCSCqJP5dtk63BaBI2YewtIli/B6s4lHEjhsTgRUPv/yM1xuB+99+DGHzTycjRu38twzL9FQ18K8efNYvXotZosZQRWIx2OsXfsTudn5mG02xo6twGgycMklv2Ha4YdhNhkwyhKB1iAtDQ1EgmEMOh16gwGD3oqaENrTQ5gI+ANYrRasFgtxReDuO+czubIYc0YedouFbI8NWZY49sTTMdkMBOurKPB6qBg7iSdeeJUDJ41GUQHViMtpJSfHS0lZCXabk0xnDhoisdh2PBmDMVtMBEONCFIMu9WFIumRxQQNbVEcNhOSoLHxp61YzC4SJGioWYcny0dNTT0go6kK48aNRxQ13njjdUqKSykrG8pj//wnz7/4HGo8TH5BMTfffDvTpo8lPz8XRU2gahEaauoxmmxIRh0P/u1/KSwo4/slP/Dpwo+ZOHE8t9xyJ2ecPpdjjz+CYCzA4MFlLPt+OWWDCjj8kEP4cdVqnL5cJKEjp2a3srojMlXn8dqtSGhXsnrJy9qr56439INZIAgCqvbL8tztV+52E12Vu5S3QNOS4dQlndRj0IauUcJ2B12TjKdSKGgaA06c3B2E5BePVKAJTds54mQiHu+WEtVfT0K31+wKLemt6XfftRdJTvKTSq+a5sHrVHUPz6knSuRAPZS9KWwpOdbT7/S29A6t05Zse1eLVcexbs/X+q+I7XR2e7u7rqkZSH099UX6looYmk5D1bSkhzmpZGg7nltXhabrJFtV1M6K1C+A3dbd84eO9ve29Vaua107LgY7JWcfmMzY+8pdf9q0Qy79QiiKQJJJsZNFV+iy9aOavjo3TUbvfGjnZ5+SvV0t5N3JuN39fnSVXQLJXISKqiY1MSHFGtCQEHf0SrcOzR3vq7BTF6aCumgCnbZO9y4mA0l1XKTdoCWwoyJBFEEQEVB3bIoqIogyoi5pSBJFud3LJyIIkPzEqIhoKIKGZDKhMztxWk3EImHWr11Pji+XSLyZhu0b8brzMdns5Pls1G1bx8JPFjNhUgVlJRUMGpyPKrSh17vwZvloq9nAbbf/gWDIxuHTp/Ds3x/BYLeRn5/LoMHlvPTCK1SOHoXT6aAwL48fflzD76+5mqJBZVx28WmsWbWRyy6/iseffJyTTz0TUdRhMGpEAgGy8rx4fR5am7bh9ZiQZBsLPljEiGHDmTihErPFTG5uEWariZ9WbiER8/PaG2+gM5r4fsUqvvj6C+666QYMJjOtgWqmH3oMi79exqZNWxk/YQL1dQHMTg8iYUhI/PD9j7QG/QwdMwRPhgeL3YgSFTEabVitZppa6rHbnYwdXkrluBHY7G4CDS0Y7BCOmdECQVRVxOt1k5XtINfrYfOmWkxWNxl5ToySgcrKccycOZMDpxzO4EGDOPCgSby94F1GjBxG5bhRGEwCoZDCdTfezNnnnkdroBnZaMZkFUkoMY459jjUeAST2UxEgSkHTWf6jBlkZmZgsVmR9CIKCpqgYNBpyDo9RrMVRRDR61SigTCfLfyce//6DOMrxxCPBUgIGoLJjiRptNRtx+LMJy5JiHojTzz2JHNOOg6jXkJT/bi9duwOKyCwfv1a3nj9TUwGIz5fEZpOY1v1SmymbCSdgr+lDREZg8WO02JASyTQmwwY7Sa2bFpF2aBhbK1vpqg4g5qaelyuDAKhNm686VaOPuIoFn36Ge4sK58u/JpTTppLRpaRyrHD0euMOB1OzGY9Dz78T4YMHcniL79hyLDR3P/gY1SOGUKWu4Avv/iM3152AdleF/6An4rRFSxdtoyG5mZGDhvBqtVrqN9eh93loa0pyOeff8ngQWVIRgOaTuxZIWqXZx3Dfmd6u6AJSVkiiIiCiCJopP6JGqSWCySr29WPU0ph3Pl8VRDRSCp2mqbu8lrB/mI/LXMfojda5u7kCesVqclt+q5Os+E9S5Hqzeu3N9+fASt+A0BXyiDCrj+fgUZ4kiSp2zx7faG396kvqmaKdpgMq95znrvu6t4bEMWOCJb9Rb9olt0cS39/e+qndC9AV2rq7nq9fw50zZHZ9Rj05BHtP2UzHT3RR/dKv2mdaYd9l985IXuKqrw3lcAd1HXYp8nd+4O+jFS9ld8V9DTuFEXd6TGKapphSOzcNm0PBXvqC/3N3SqSpHX2djykxLAYzNRs2gLRBA6zyJdfv8nkqSeTkAVqq+vJzc4j0NyMJkogRrDZ7NSu24Tdm8u6qmpGDB1KLAA3XX8jelOCBe98QyIRYcrUg7j66qu49LJLePTRx5h/733cfecdROOtHH3Usfj9Id54/WXeW/Ap48ZVUFSah6KKqLEEECOvuIS2cIBYKEJzbT0mp5V5865n9dpV3H/vHygtK+X000/jlVdeonrbVooKB7Fo0acUlw6ipraWgoIcwpEwN153B7+aexb5hV7++fhjWG0unA4rV/3uUt78zwsIBjcFBV4GlY5izep1vPjv55l3xW/I9LpZt24tgweXEYtYQQgj6eIYDEbqamuIx0O4HDnYDDZao618t6yaK+adxb233syEKdOor93Iwo9X8M6Cdznj9LnMnHkQgqyRiKs01jUiqCqbN68jJzePY4+ezSuvvojRZMadlcnRR5/Cgw/+mZw8N1a7npamALJsoKW5hdz8HHSSTFNbG5ogEfX7cbvcfPvtEh599FEeeewRBATi8TgOi4lAKIQmJdlLakwkEg0i6QREWU80EGf1qh8YMaoMVdCRiOg5/dQ5PPPKE5iNdgRBIhqNYJBlNm5cT8mgIjQkFEWltSXAJx8vZNSQCr788ivu/cN8vv7oY0R7FEQn27euoLxkCIoqEfA3EiFOdnYRqqJR37AVSdCjk2RaG4P857W3mXbIIWyt2kpFRSWaqLC9aitqIo4oGWltbmXFqh848qhDEHUCTkdWci6JyOdfLeaLr77horPPpKmlhdziAvSGCM89sYC83GyyfR6aGmopGT6aREThp5XLGDyoELPdxSlzTuOhhx7GZjTQ1NKCz+fjp1WrmXHckSiyiCTpdgSWUpRk4COhXVnrLuCKmGJmAEKXrHLpKeqklFUnRU/fE7TMlLBqb5eSJhf3NiUT9tMy9yl6o2XuCu2v3+j1Ee95K/rPMbndW3QiTe3GwiLs/vPpL+VNYNfWQLbHBujsverP9dKUzuR9p0+8u7/pvW3z2eENHUAXdOe56Y26mV6+L69n52Md/SMIwo48Y/9tSA/s0x325PjqqfzekxsD8c7teEl27NlBVd7Lyl2PFMKfGXvq+e7u+UnDSZeyaa62nTx3+2gc9vd+e5agHcdRBfR6GaPZij3DzbIVS8jzDcdkyiLQuByzLQP0LgRZxqTXodfZCIZbcDkLiKLicttBVYknVI48/FAOmDCC1pDG7bfcwGOPPcLcuafw4N8eYNohh/Lmm29y2GFHsPjrL1m2dCUVo8cTjfg5/tjjuPrqeUydMoGWsMbcX51LljeHV//9AqJsQEIk15eD3iAT9rdx8QVnkJufz+lzz+XJJx7HH2hi8feryMkvAtFIYVEOzz//AvPvuR+D3k44EmH58p948smneOyxv3HI1GlUVIwEFIYPyuWGm/7IYYcfSW11PR98+AnDhw1j0OBSZL2bhrowDz70EGNGD0cQEoiCQMAfx+py4nS6qNnSgGQysW7DOnzuLIYW6Ljl5r9xyunnEo8H+HbJOmYdPpORI0vxt9YjmgwE/X50gkgg7MeX48Ph9hCLCWRn6sjO89Hc5sfmMDNs2CBcHhfbtm5HJyXIcGdjtVhRlSgNjU3YbHb0BgOaFkNRFAoLixhbeQAZXgd+fyuyQeLOW+5l1JjRiCLUNdRhthoQpOQ3XjbAPbffz/DhQ8jyOtEEGZNJz8knH4VkFJEwIkoCCSVCKBzF5rQlmV/okUQ9omSgfPAQbBYLvmwvZ5x+On+5+zqOOGkGmujA53GzpmoLnowMwqFmRFnkx+9/YtPGKvKLM2lpC+NyyVjMIsOHj2HOqcezfPkPjBl5EN78THzZmbhcTq655mpmzzmRMRUVLF+2jspxBxCLJ+VjJBBCE2TKSgZRXlrMxx99ScW4UXzyyQIqxxzEwk8/YdwBlWRlZvLxh58RDAbRGWDo6MF4PV4OnDARb24edY0N6F1WsnxeWlqa+erLrxg6aiSaoCFo7bKApFc/xUDojvPTKd9n1wlE2k+xC+Vzj9Ay05hCwI70B8Bep2TCflrmPoWiKrfSTskQBNotDRqCmHwxBTTUdjdxdzPZ3pLa9ngs3enUPXerz4ndQPBzeS2kNHpdV3RQyugx4lJ6uR2eBAQkndiZ1tmZndZv9CcQRbfn9XG850rpePY7eW7b56pdw/C1XzH1HqWShabomsKO8PXJe+kuqffeQEqxG0hS552onlpH3sfOinXSspdOUUw/ln6/Hb/b26WqdHwTxB391FP70nPi/ZL0P6GX8d8bvXHgdMyO86Czx24g9fQnFUJ6GooBKUtd6D2d9g8AA+4bLS3wx88gQvt6zl3LJZXRDm9mX/faF5ujs3ew85b+nIUuFNVOdMqUbG6nWwqi2E9BLXaqM/lNFjsr3F1+d7mJTpsgCIhqchKa2rR+fGMFQKeTUBOJ5ORSU8nJKcSRmYFohB+/XkGOLw9BiWGQdfhjEqqgEQ2LbG+soWrLRhZ/uZiS0jGIRIjGIjTVNWAzajzy2L944K9/xeZwcMEF52B3mDnyiJkEwy18+O6bzLv8fMaNG0mGtxhZL/Pq62+w7IdVHH/s0Zx08iyGDMtj4sFTycrKoq0twA8rV6GPqVRVVTNseCW/nXcV1dX1FBcP5fpr7+LLb5dzxKwpLF+6mMLSEYybMJyjZhzLiOE55BcV8dZb/2HO3JNYtXojDoeLDK+TuobtXHv9fK699hraWgO4bHbGjhrB7Xfdi07v4twLzubbpSs46Yij+fjrZYyuqERToXpLM2qwFVUQcLqtrFr+E9m+LDK8bv704As8/NB9qPFWrCYTV19/F0ccewQl5YVgULCZ7CDr0PQSJsFEY30jLocNQYzgznCRXVxOMBBieGkBbo+Vqu2bySsow2Z2EY2GiMT9KEoEg1VPLBEiFGzA6cxAkCSQRExmE4KqkoglMBqMjBpXic1lRJJlbDY30UiMcCiKze4gEUsweeoEvL5MGhpbcTodaJqAaJAxCgY2rP2Jpvp6UFWcHic6nUwoFMakt6FpEQQhjqoIvPP66wwtyyYjz8ew4cW4HFnUN9SQkZ1DLJLAZDTS1hrAnunDYrOQ4bERD0aRJRGHzUUkEMMfrMbjyuPaq24jGq+ntCSXcCjM2tUbGDZ4FNk+F6rWRiTShkEw8dUXX/Hr8y/ikqt+S06ul4a6amRZZu2qHynILmDNyiqiIfhh2QrMJhvxuEqm142aMLB582by8jI5Zc4ZnHHW2XzwwfscOG4C9fU1LP58IaXZXuKqnpLyoQiC0u6RT8ogUZR2UCu7Qtppbb3WadMQ2r8NQnJ8to9RDRDUdrnQlbOtCb0qfoLYsaGmauuQMqmNfeC5G4hy98syJ/4XQhI757bo+ns/dh2Kqib7sodxp2lal/xF+7Ef+/FzYlfl3345+vNDUxV2ikC5H7uNnqKBGs2W/8fee4dJdtT33p+qkzqHyWFzXkm7klAwCCxhIYQMSMJEYzLXXHMBGxxJRhfj1wQTjBEGbJOuAQPGJoksEAgRBBLSCoE2aNPs7uTUufvEev/o6dmenp6ent3ZRbLn+zznmekTKp2qOvWtX2L3ZY+j7MH4+AROpUAyHCIZsQhbin/54BdZ37ub5z33WfiMYVhVByDFos+dd97Lgw88yOHDRzh29DiVkiAa7iCR6OGB+w+hh2O8490f5gUvfh2a6TI8Okw8kSYUSTEyMsKDv3wQAh1dU4QsnXBI5+TJY2zfvYubnnETn/33T/H2t7+dv3/XO/G8Cu9+zzv52zf9NccOn+DfPvuf3PLGv+Ho4WN09qTpW9fF1Vc/gVf/8au5+rev5lnPeA59Pb0QSDau28E/vPef2LZtO35QYmBLHxt3beSv/+o1XLarn8988tNMT0yw+4LNfOxD70C5M+iWQ8c6k1RnkkKpiOv6bN+5hVDI5FOf+hRXXPFbc/smGq4f8Iu7v82eHetx8jnKs2WmpzJYeoQ3v/6taGHYuGMz2UqFiy65kmKxgO+5uK5DKBqlWCwx2L+BwPcYnzjJzOw0ph4lbHVglyEWSZFIdOMEEttx8SplYmY1JE8sHsPzPBKJBChFIZ8n8AMO7H8I09SRAvLFIrrU0Ayd/v5+bNtGKUHg+5TLJaZmpjn48AE6ujoxdAvlB0SjMUrlPKVyBdd1iYQMnvjkaxjLzuILhR8IiuUK++7fx9GHHyakw8jQEezCLIYUJBNVW73evkE6e7r59re+jRCScCjO5z/7OYqlHLfddhvHjg7xX//1Rd72trfy83vuRkiNgYENRCJRHvzlPoaGjvGtb32DkZOnyOfyqEARCod5YP9BCo7H+z74IXbs2MALX/AsLr5kN//60Y/wb5/+DLPZaa677kkcO3aCr3zlqxiGwd49e8kX8sxOz7Jr54Xc+eO7efjIw1UnLV4wt1kboFSwZOy7qj31+VHL/u+ANZu7s4TrOO03YN1ucyubppXY6p2vsAPt2Omcb7SUji1lq4eYd8hytliJC/l27fEaIaWo2qWcI5uXRrTTL8+FPd5KQz80C2lwJtKR+qDvjdKgenvEVnWukZBWLt1r5axJVuf2GBc8c7Z2ait9P81CTrSca+bsxxYZSc3Z+K4k73bxm7L3rUersdwSdbZ+mibP7ZyziqEf6tFOX1yJXXRtrNR25Zea2+bbelFXqx8vAVLTl7DDa2yLZk5tFqc5X/Ym98qG9xc0c8pVswWae75Zjqdj8Cm8oBqUXeJTLGQpFTxQDj2dPcyWhpg8keOPXv4XvOt9t7Lnio088+Zn8+bXv4VYNM7U1AxjY2Pki0Ve/opnzn3bJPvu30c+67BxwyYO7B/i8U/aS+BrIHR0zcCUCtd1CQJAuWhSo1yy+YM/eCHvef8HeOstb+QLn/8MvjAJlI9paoyOjZEww+w/dIh7f7Gfm5/+NIRZxK6YJDoEv37gMP19vXR2deE7Grd9/T/4vd97Bu99z0cYHj3Fgf0P8sUvfx7hCzr6+wkH0+y76xvEBh/LTc9+Ef/vkx9haiTHtm07uG/fPq69/ioMo0Kss4tiziEsgyqx8XW++Y2f4bqTXHvtNThOBVMIkskUx48NUak4bNqynm/f/gPe9w8f4o47bqNQLPGs33s2X/zSlxk+dg/bL7wcz/UJhIaph9CEYHz8JLlilrAVobevn1KxRDTVQShsoGmSV7/yj3j3u96LphscOXyMbTu3cOrkSSKRCN3d/ZSdLIEHkXCCilekUrGJRMIYmkm+kMe0TFzXJR6LgjJxvOKc1onCNAwEkiDQ8RwHKxxidPwU3Z39lEpFNAMSYY2iK/Fcj2Q4xtDQcYrZLNu3bcL2A06dOEF/TweelEjNJJ7oIBAanmvjey7Dx09w4KH97Nmzl394//u55Za3cP/9D3HxxXv4k9f9Me/5+3fw3vd+AF0z+Mu/ei35TIa+wXUEQnLooQNs2rwJ3TQxLJO3vukW7t/3S3ZeeBEveO6NHD16jAt278EKRfja179JEPjz7+Ztb3sHH/voR/nQhz/My175Et7xN3/HTU+/mUBIzITJk5/6FHQMVM0eTil0XW8uTW9nLmoxB+oL7FiWD3DebL4WS4SsCVBITV+2fGeLNZu784jA99/a9s0NairNUO+uf7l7l87mHNuRPEJwRupjiKrK7HmwKVvq90rK3ejRbrXKsxRatcvpRe5ZFWXFaTdf/DW5dkbk7rQO/eJ8ThemVZ1rXrzayqdOtVBKDUFVVbaqLntazfRMsNL303j/cqqlVTXVZh9PNW/Dei77xm8KrcZya5y29Tub99p2Xuegnc6m7ZcibY0eOlvbfi5KYP5fqWkEvrfE84vH8pL5tLlBuji8QpP0GjZoliuZAeimDrqBHomRSEVJJNPkCx4vf+H/4Utf+Caf+8y/Iaw8nT0buPbaa9mwcR3xRJjv3XEXz3vuc9m8eTM/uvN+jh4e5Q9f/hpe/eq/YEN/kkhI0ZWOkujqx/U8dENhmJJCtsjNNz+Lyx9zBV/9ym18/Wvf4Z//+eOsH9zEFVc9juuf/Dv87O4fk0h28rWv38ZjLtvL1PQ4VgwOHzjIv/3zJ7j40l1s3NyL0Dr4o1e9CgKfUqnC5s2bOXLwABfu2USpWGDf/b/mjW/+c3bv3sXu3Xt579v+nisf93gcd4rC9FG27rqEnbv3Mjo6xdYLe1m3YYB9v7ibnVu6UbqGFY0R+BqH9j+AFbJAGXz1q9/jFa94AZFolIpj4zsG+WIFKxwhloxSKk7huR69vf0Mdm3gA++/lX9833txKkW60iE8JYjHEhRdF8f28RwfU3qEQik6OlL4gY3UPELRGI5TRuHy5Mdeia8ksXQvic4+7FKW+++7n4GBQcbHJonHwgSej1Aajl8hGo3geT6lYplkMomu65imhR/45PMFTFMnUNWNjWBuY9JzFMVSmVe96tXcdPPvYuphdF2n4hTRnBK6GSesmZRsj5BloRMwNT7BdNFh67Yd+IGiVMzgeQHhaIKyGxCyDCoVm87OTnbtvJDJyXGe//zn4PuKw4dPsnnrZn7n2mtAuUyMT/ONr9/O059+Az/96Y/4149+lCf+zrX84HvfJ58vsHHLZgrlEmPHj3DLLW/myssfw8DAAKdOjvC1r32LdLKT3v5+vvb1r3D11U/gV796iIv3PoZbb/0gz3n2c1m/Yz2XXXgJyVQnlz/uKrbv3orSgiq5qxtcS3qcbGcuanGPXEDuGuf0ZrZ9TZJfYpGhaL4htNpY85Z5HrEiyd0KIWqBtxvOB20GvK0ZeNY85q2WFKgRS/Uh13EwTWtpm7g2dpsX2NYpn0ApNE1ftEBoFzUPgstJKVrhXHisO5doJgmuec0UorpzfC4DeZ9Lz4ntBKVf5BmV1hNxMw+i7fQVbS62WLN2bEdyWi9FXJR/LSizYP59LUCd5LJZ325XcjufXxv1rdlLqVYL5/MAFfjz3ihXKl1byRyyYk2Bms1dzVNmuwb9S8zvbc87TbyDLvbpeGYLkTOZc5s93wpK+SgVMDY+wWBv/4JrwRm7Mz895tvxuNns3sYx1yilaxe1uwMWv4Va9TzfRfkGGoqH9j3Im9/wev7xg7diWCapni4yuSz33H0vx06d4kXPeSamhJ/fez97Lt1DJGExemyK5zzn9/nJT35CycsRNRSTUxlCsQ6i4TCZyRkcp0A8PYBm6FRKJVzHpasnRRBUvQSEwjoHDhykp7uXUDiMqWlUAoUpDPKuxpFf/IDdv3UVwewQMt6L7xr8zd/+X2552+v59L9+gte+9k+pqABLSHL5PIl4HJ8Khx8+ztatm/GCEkPHJ0nGU+BICkWH/vVxjHDA7IRNYE8RT/QQjllgxnj40MPoQmLpBn0D3VhWiNGRcRJRg3AkjhMoCiWH40eG6e/voacnje/b+HaFickJYt2dFKbHSaQsMtMZBjZfhKGHkGj4QYVSPoNuWNhOASEddKsXXZMUClmEEkTCYTRdx9B1xkdGSaX7KBYn8Xzo6empvjfPB10Q+BU0pVNBoUmoFAuowKOjczOBqqCUS6HoUikWGOzvYWZ6CscuUCj7pDq7CMc78TwXXUIhlyMaj1alSypKeXKczt4Es1mX/fvH6e708dwK27duYiZfBE+haQbR7k7sbA4zHsW3HTw9ipMfQ7lFEumNHDsyxGv/5I28/wPv4itf+Xde9IKXEolGyeRGiFqdZGezpFIdPO1pz+bjH/8on/r0x3jDG/8SLVDkChUefOgg//mf/86Gddt46g1Pp7s3wVvedAvXXnc91zzxWv7sz/+cyx93OTff/Ewe+PmP+cV9D3Dd1U/m2Ngx/vB1/wtTN1BBNXRNzfulruvz61YFGIaO5zaY3tQLSRaNrdZjUc7NxUt5zgwChWBuvl6JCqiQc7FQzi3WJHfnESuS3K0Q81KbhvOLzzSH1LRF6oDn0627FEt7GhSIqtOLZT6M9d4Oa2Wv7Z6cST1qjmYeCQ4wztd7aMyn5lhlfjdbqbYXw6tZjnbRihzWS5+a1bPxuXknCq1zbFKG5ctZTba5Q5p26l4vRVx0TYq5+FyCJUWU4nQ6jWVYadu3U19Nk9i2jWkav9mxpNQiiWK79V2pFH1lqPXbubK1/fjZzgunJYaLzp1lHudHg0Dh+z6GrmEa5sIrZ5H96Y3CFRD5es98jWVvc9Nq3hlMgzSvmSZ57beUGo7rEw4bdHR28MIXv4COnm5OHj/Bd799OwNdPbzyf7+Gp17/VA7uf5i7774LIQQ7tm/ixz+6g8H+9TzvuTfhB3kqnk9EjxGNdTIyMkU4UrVdMkxBJB7F922yuRnCEZNY1KJil4iELSQGiXiCRDzKyPBJOjsS6KbF0OGH6RnoJmbYxDu7OXFgH9KMEYmEedoN12PIBJs2biWeiHJ86CiWaRIKG1XJlarQ0zWAUCZhK04ynSISCtPd3Um8O0nZKeMHGolEP+GIhlSK3PQwgRmvqkD2dNHb04PjVedEX7mEIjHKtothmdx222388M67ecJvP45cfgpflQCdStlF0zVieoVyMU9ndxcVJbErHkKzUGiYVpFSsYCvbKIREylNRkePE09EiEdToBTZbBbTNIlELQxNxwobKEMHTZAr5jDDJlIITN2gWMihh2IIwLRMwmaIiclRQmYYIXSEEITCFlJALBpFWHE6unuQmkFu/BSxaBg3ACuWRFcSTeioQBGNWRw9cpRTp0YxNZP1fb3kSxWsRBxTS5GKJ8llc2hhScQI4QTVeMtCSaIxC1DkZnMUSz63f+d7bN2y5ddqIAAAIABJREFUmW9/+5v89lXXMDuToa+vmxNDR+jp7eF73/su3T19XHPN4/mtKy8nFAlx5OETCKHI52a47kk38Njf+i1e+tIXc9FFF3HtE6+h4lQYGR0jkUowdPQIX/j85yhXyrz2T16Hpxye+fxnoxtVDbXamNC0qvaKFHLBuPB9f/H4aiXpX2Zeq83FSzlQqTqlq31LVvBRE+KcaE40Ys1b5nnEuSR3NCF2cHqB2pSgqGqQbyGq5EnNSamqv6txwlaT2MwTrga1QyEEQsqWniFrxK4dr26q/j6xWM1xgce3FqiRzd/kYrSdctawGlKvRk91Uor5QN9Vda7TxP9svT8uZWN4tupd9SS/3tNprU61+xaWZe48YgHxaTe/0/m211/qy1Ir61JlWyIFQC305Fp/CebfVf37kXXEb34BuYIxsVRd5tNeoj8oBZqun/FYWomn1KXLWVVHXIr4zy8eGuaa03VSTZ9pNr+0CvK9ROkWxrc7S3LX9ntsutBYHXK3aqjzQrn4ko+maRiGiRTa/BiE5uSuFvy82bEg/YYB2pa3zGbnamVva6No8fxXK139/7VD1Kud6ho+AeiKwAQlNVI9Xey9eC/37bufiC658jEXEokn+fjHP0NmOsN111yNnc+wfv16SqUyfb2DhONJRodG+dX+X9C7IYLhmfz8ngdZt3Ezuq5jWSFi0TjhSITRoVF++uOfMXpqjCOHhujuTqNrCtOUZDNjhEJputIhxmcy9CejFMuSwtQk6Z4u7EoWtxLglGdwNY94PMHQgcNs2LyRQBQpl1xGhkfxvCpB8fwC4xMZfN8ll5nANAzCpoFrF1EqQzQex1UGVroDIxSaCx4PjutScQv4ShGLpfA0A6FJVOBx+aV7ecwVexEiQNfDlHIF3MCgd6Af4U6RL7l0D+ym5FlotsKSGoZw8dwJCnmbSLgLU49TLnk45QoDAwOYus70TJZIJIJpmRSLRUrFGYqlLHbZQRcK17FJxKJMjI6R7uykkCtQKMwQiXcRMi1ymRymYfDBf/wwl1+2B11XoJn4nosERkZGCMdi6IGLW8zg6xHy+Rwd8QilzCSu7xK2wmTzw0gzjGGEiIei6NIj1tOBNCTFbAblC3wv4CUv+V/c9Mznc+zQQ/StG0QTEkMoPMBV0BOPMDGT5cUvfDbbNw3w+Cc8iQ988J+58ek3UyoVQUm6Onu48wc/4n//n5fxjrf/LalUCqGg4GZJp1PkM0UeeugwwyNDRKIWn/7053jlH70c23H45ne+xYUXXkh2Ypy9O7fx1Kf/Hvfffy/PePEz8PAwZQil/LkA5E3WdDUfurW5rP6AORLYXGiwFIIgOC25a0XuVG1krgCPQHK3ppZ5ljiXapnnEosEzmrhgqXeAUC70r76xc/k1CS9PT0L0qhda3ymHXWnlUsemr+WWhDss1FPXUmg5/YXgks/V3u2Mb9maa+kTo2hBZY613h/43lNSrw5VcRmbXJ6F5xFzmxW6gTE97yqfVoLie8iRyFCnN1aVtFWwPlmaqHNnJbU0vSDYEFQ9naC0rfTTitVwWyG+sD3sMw4bSaCOE9oRs5WO9125qfmF4NVC16+onznUT/Ln6E9yALVpNVdwMxv2DRUpTFwebUYi1WktIY28BbYyKr5hVw1j7p5bVEdWrVT+yqc9ah3vtLM8cpyqA+OXqt7rb61uci1be748tfpjqcQiV42b11PPGFRKueRlk6hUGDo4D4uuOyJZGdmsAyNE0PH2LR5G2YkzOjRY/Ru2ktx+ijv/+B/8NXvfYOP/cN76emP0tM9SCRq8qEP3srjH3slPd3dmLEQoUAylQ9Yt74bhcQuB8xMzbJhay/FfIGS7xILGcRice69Zx+XXnopJ4+dYtPmrQithFsJk3fKWGaB6ZGDbFh3OdP5ApGOFM7EKK4vQLMIxaO4lZPEkhsIpA6VCrYRIRrMUhYhdM1Aq2TRpU7JKVB0XMxQHN0WaOEURtjlyOEDDKwbxDItKuUKFbtMLJpieHiEdCpJIV9BSEFvXzf5QgYzGsW3PaRvo2kOWjhBoegRT3SAsnHdAMsyOXXqOOt7+6hUKpRLZcx4iljIJJ/N4Do2phHGxSGRHsAISpSKEIuZFEoTJBKbGB/eTywiMSJb8MhhGiFUYOGqEo7rVPsUgpBhUiqXCIXCuPkc8VSasi8p2R4R6VMolAmnetFlGQJBNltk9HieXHmGi/ZsYHpoP8l1W+nq6Kfi5AncEPgVYlGdL37h07zvI1/mM5/6GOvX9fDt2+/i5/fcw5+99nVkZzJ84ytf4uabb+J9//B+bnjyRXT1bOI9t36Sd3/gA4wOH6W/u58nXv0knvfsl7J//z7e8c63UKzM8KPv/5xnPO/lPLjvHu772R284Dkv5aMf/xjoAX/xt/+XWDw2H6i8Vs+lB1b1mj83B8ma1G1uQ6/pI3XjVwqBr4LTU5jwMQyj5bhrZd7R9P65/M6XZ+c1tczziHMquTuHaLbnUY96qYM2J4FrF5qUWJY5tx2pajpz1VyW2GFfDqu1aKsN3NWIA9hWmVRNJWdlg7+ddjrTtmx2bzMJ01KqfY3ng3q7lGXK1OjMZqk0l4Kh68vHlmpIU5wtuVtic3+pfGuoVxVtbN9mZLpZuzTiTMpxJlhKqrX0A2ed5apgteaJ1Ulz5eN+dVH//s68DtXHl445eqZoVFOcz7FZFk06/nI0rL7t6xeRix2htGqn5Qdc0zmv7rGmjleWQX2czlrda7URmoaQEl3T2bh1C5svuoBXv+o1XHLpXoqlAnf96C46oh04RZuYGeXDH/lXLty5k0Imx13f/wHbd+/EsgyOHx1i374H2bt3JwMDW3jVn/whnSmLdes34DigSZ3HPe7xmGaI3r5+LCuJ7bjEUylmZ6ZJxOMcPHiIgcF+lHIZHx0j3pFgZmKCw4ePcskll1AoFDFNhVKiqiQSmsULbHSVxCtHUFoeJRWhSALd0DCjYUKxMELXGT16koH+QfL5GWLhOMMTOb76hc+zYdM2QmGNcqGA6ykkJtK0iEbDREyNkm2jG9DR2YPEoFy0UUoihY7vuVihELlcloF160h3pOY2/xSmDDh29ATd/QNooTCBK4nFYlWCYJdwygU0qQhbJuPjEyQSSaLxOIViCceuEItGCXwfLwCEJBqNUswXsUJhSnaRUqlIIhTGjISZLZQIRxNkM7MYhoVphnA9H8sMETLDSKGwLItyuUI8FsV1HHL5Iq7rEgpZaBKK+RLhaIxDh4+QSHdihWLoumLzjg1EE1E82yeZ7uHQgaPE4glC0TBSl+RLeR5z+WU89cabqZQLlIpZDCvK3r17+NndP2XXrl1s2jRIKBrmA7e+n2c9//fZsGkX6wfW0d2RYHxsktHhUa647Aoef/Vl7PvlvTz5ut+hXK6wd8+l/L9/+yw7t2/jnp//lG07dvHdO3/IG295E4nO9KIx1Q65q0noFswXS5K7hRoXqhoIee6EmreLXwqtzDua3s/p9eT5wFqcuzUsC9l4SDF/1EsToD2pReP9mqZX1VaknFebOhMycrYqffOoeaYKqmpvZ7MYrVfTWnYHfS765Uol5LW0F+RRr89zFqilWWuL+p2p+t+1/tB4rXFnq1GC2FjX+XNi8S5YfZrtSJxqoQNatf2iOrXZ9jVvkEt7hVyM+nFT3561/Jes35wayqJ3oFiQ1lJ1qk+rtmvYsg1VtX7NdiFradfXvSa1q6XZ+iPcsokWlLm+fPVtd6ZYtflhiXTPKm0hz6qOjX28fj5oVraqHfMqOEVSweljPnrvnIRKrY5DruXKqYKgLccnS6E6Pwfzx7lEraxnU95W6YpGTYUgqB6aQIuEqODx+a9+losu38OFl1/C77/kxbziFa9gemKG79xxD0996tNQSpHP57jgggsImzoh4XHR3r08+fGXYfsVtm7rJzP6K5LpCNOTMwwdf5hAk4xMjBJLJRmfmiKTm8XWDSYnx/C96nwSCgs8v4BdyuPZJUKapLunh527dlEpl7Esk3giimlKSpUChXw3CaufQuEYJXmSQDeJJ1PMTo4xNplnKjOFY89SnJlh60WXUbDLGEKnXM4xOjLB2OgMyXSYkYcfwowkiKa7CEUTHDl2Eh+dbKmCFQpVNXOo9gNN04gn4kQiUcrlCh3pNFu3bkXXDFCQL+RxXQ9Nk2zbuhXD0KlUylhSMjs5Dr6DoUWwwgaO4xIyOxlYvxnDiuD50NGRxnUcPNcjGosSS6ZIJjrxKxUi0S6mc1NE4nEisV4qgYOSBl19G9E0n3S6D8MI4QclZOCC5+DaJfK5LI5jk06lKJUqhOIpFIKYpRPSXcpOhY6+LkwqbN20mbe/7f/DlDr7fvFTQoZGoAQd/euYmpzixz/5Kbbj4JZmUb5LIW+D7KCjM8ng+gH6+tfR29/N5i0buPHGp2IYglyxzI9+fDdf+OJXiKZ6mZrJE4slGD95ik3rtzA8dIqd27fQ19vF1OQEpZLDA/sOcujAYfZs3cQb/+xP+YMXvoyNW3dw7337mJzOzJkJrcIYqalSL/NdD1TV4VfV0Ul7a4Bm651HK859YIY1rGENqwKllogztoY1LAMhBL7nNyVizXYza+dqH+PVig25hvZR22Rba/c1NEOAQFMBIhB4OoCgUCyiGzrfuOMbaD70b92OZnokEzE2bN1IPptlZPgkiaiJlRygNxlhxi8jpMeWjb0oJbGsEFt2DID06OpJU8hnCEV1MrlxOvt2EbdMThw7wcT4OJs2bSCbm6Uwm0X5Hrlsho7ObnK5Aq4TkEwa5DMVpqZO0dUfQwtlOHz0GANdW4H1hMwwpUKBVCKKEEk0Pc/o8BGSVj8lXDRTQRAhlz3Ojh2b2Zj+AzTDp7+3ByU1Kq7H8NAhLrhwJwiNSLgDxw1AFxTLOQzdZHpmFJ80nuuRSqc4fvwYnd3dREIxpFZVNbZMk5IHmhAIz6YwOYJjmaQ7+nFcH8+IooUi6JYJKorrTWNZIQxL4HkBoXCYYqFAujOFrptovoYTlJHSpLu7C9tx0fUQrvAJawKnVEBpIFQMCMhmpwhZVX8AU5OTrN+4g5nZWXRdrwZJFxqmZaJrguGho3Su24pt25SLWQpFj1ve8Ff88t67uWDjbiqZMkbCJDM1Rmd3iuf//jOJJCyKY2MEust9P/sFpTxs2jGAUwmQpskP7vwBz7jpJvL5PJ/65Cf5ypdvxwxZ5PIOXV06n//cl/iz170e11fcfOMz+NxnP82b3/CXvPPd/8SJoSnisU6mpmYIm2H2bt/O7l07sW2XD9/6IXZu28W7/u6dfOI/Pjm/6XK2qKlctxXUPAiqPgbOOtdHF9Zs7s4Sj1abu9VCq6E175H7LG3DzgSL+vUq2r+0sh/8TWEldout7Ikad640TWsrREIzFb6VBDdeMeZVLU6fWi7Ux3I2hgvv1ealC4G/WNLbLARDqwDsKwkO326YjlbSoOXqtxzEnH1V7UPcTJJZu7agrE3ey39ntLa5q46flWo+nFFeQFvhDuYcgagGdfmF99QHCq/+XbUYTiqohqIRYn4+lkLNS+RrWCrswLLJ1zYjVFVVSjdMKpUyQj+zfex6uz6/xbwlpJyLuVcn5ayVaZm6NUOzEAyN6TTaHDbCUwpq84Am5/uhLgSakMxOTXP0wEOEImFCkQjRRJxUIsTQqRP09HQTeCEMU8fzHHRDQyodiQayRNn2MUyLYtnFtEII4aILnUK+RKlUZqC/j+OH99PT1UW6o48g8MnlZ5mZHaejoxNXaVjhMJWSQyKewDRNKuVpxsfH6e7pp1goEYtHUY5N0YaBwQEmJ6ewLAsChacpDC2E8m1MPYHv2UgjYGpqhEq+zPqtO3DtAvnZAqVKhQ2bN+EGAUJpjE+M0NfXhV0qE42GKVcqZGZn6ekdpFgqYWg6pmUyOztFuqOD2ZkZookOCDwq+RzJZIyp6VmSqW5KhQyRjgQTp4bo6uknEBaWriMCB9+1caWkkJ/FNKMoXyfelUY6BfRAgRYi0D2KFYVuJJg5dZB0TwdS18kXpkgleqgUFNFYGCV88oVZyiXo6AjjCauqEeBXyGTLRFPd4DgI6WBpXXhkCLwQhw79nNu+cjuv+eNXMjUxwebNW7nje3eybetOopEwx06e4PLHXcns8f2kBrYzmS2i58dJdA5w/wO/5MixU2zf2kt3YoD3vOef+NM3/TnT4ye5+OKLmZ6eJpyMEHg+2ekZZqamGNiwib9/9zv5sz99Pf/1X7cxMTHGjU+7ke/94Pv81S1/ihWJoEQ1tp/WjG41c7AEVenbXF9u9WlpZXOn6e1pUKhA1v6p/qnTsW4MYl6bE9Zs7v4b4tFqc3emaPQw1vLz0sSOKwj8OdWv8736W337l/Neh5pXuFW0W2xlx6cUdV41V4ZW5VnVdqvXdBStQ30sZ2NYg5QagX9ayqWaOAypt6VrZTfYjk1hM7u8s7Wta1W/diClVl1MilbpqAV5wZyn3nMesPvRg/O7Y9yYU5N3JgS2baNrcj5eaKt02vUIuZIyKmpqrzUPplXiqkmJP0eQFuXZdoc6/V0KAsW9995LX3//GZPT+qda2c7VJBLzdkH1956J05+mDqkWprNcjaQQ8zFdpdSq5hdCgJQIKdAMk3VbNxJPpgi8gCMHDpG0JNFoB9msjWUaTE2Mk0hEyWcy5LIZKv4YhkyTz3u4tkPSVFQy41imQTgWx1OCRCzGzMwMHR1dWJEoU5NT2I6NUgEzU1MgNOLJNJ7rI5Dous7Y6CieW0EgSSRTSAwKlRKpeILJ6Ryf/vi/8PjHXomhCZxKAUdJpicnKOSylEs2QlNouoYVspCaga5rmIZBNJ6ku6eLYrlAJjNNNBIlnU4RBArHDpiayZFMdRGOxLHtCtFIBCElmdksHekufA8MI0QmM0ksGkPqOkJqFAo57HKFRCqN7bnEQiYT49OEY0ksQ2HoBo7nMjtToqu7C4FJyIxRLpygnPHwGeGXD3yHrvQuwpEUtp9jdnSSgcENzM4WCGsuE8PjDA70UylnUDJMNBolEtMplxT4inAoguv4pOJphDQxpcE3vn4HG9dt4+ChX9Hd1c26dX1cccWVRCMxDv36YTZt2sLE2DjpZJKR6Ql0QyOdSmHoJvlyhZ6eNGPjR/ngrf/Oho072LZtG5s2r+O7t9/OM268iX2/fJCt2zciJFhhi7t+8lNc30foOl09vfzwrh/zhCdcRSwa54orHsuei7eRTqfZvn0367dtplgpIw0JmlzgdKiusy/ux7rE906HRKi/Qym1INxWK5u7mnfmZTFP4Gof0briNcyptTnhkWhzt0buzhL/08hdo66zaHHA4sEk5xYLq+HQZOkiNrFJEQJd0xCivcXzciShXjK14sVPC5LWEtXCVyeYhl33pR1wqEXlbZ70aYJR/4qXI3arTfzaT4RFa9dmxtA1NO7YtSI/NfvA+d8N6Ygl2r1ZUzQ1DWggi433KLU4TECz3zUEgVrw3tq1F6stohfef1r01piOarC3EpyW7tbG1elr1YVldSOoSvoa61J/nCkZrHn2beyvK+1jjWWqfwdyzma2nTAh9fnWVFuFPLs6LpXPYjvI5cmdQKBpggV2wI2hBIScn2tWH3N9oo7AqdqcTHVTQQgxHxuudrQMW1BLuU7iKKmm2dPTU50q6iVpDfVt1VfaJXc0fi8aJ9I6tLsRt2gMr5DcQf18VQ0WraiOER8IdIHwFNIwiKTTDGzeRN4J8ByfowcOYpkaY2Mj9HZ3Eg5bGEaceKQHoTvY5RFS6Si6mebw8UmEpjE7NYIpHXxPku5IoYXjeEKnWMiR6kwRTUYJ6SGkNAiUREgNb85BiJQamibwPQVKwzAsQrEYszPTdPet5zGXXcaDD+0nGk/hegGxaIJwWIAXoFs6uVyWcChCpeKQ6OjELefQTB1faFQqFUqFDKmEha8ErushpY5LQCwRoVAsYlgGp46f4Kc/+QmpVIqJiXESyRjFYh7dkFgCNMOgWHHQrQgCG9spkYh1YITDhAwdz1OEYykq+XFCkQhlx0OKAD+oVO3xojF0XSJDFobVS3/fRk6euA/dz2L5LpF0jJnpDB1d3bh+gDRiSF3DwyUIXLKz5WpMUQE6FWanRgnF4+Smx/CVIjc9zte//SX2XHQJsYSBwCI3m8FxSkyMZeka2ICrIJZKsG7zevoGe0l3pJgcGyGc6GR6epp77r6XDVv2cv+9d3LvvQ9y3ZOvQ48Z9PV0cPfdd4GnsXvvxfzoJ/dw14/u5jG7L+IH3/0+d9/9c65+4jXs3rmTnp4u8rkid3z3Tr74pS9z/ZOfgm2X+fZtt3PJnr1I5SOVv3CeaTHfqIbQQFrdhnPjumaB46S537XLmpTtTWk1cjdfpubpV28V6Lq+gs2ns8NaKITziP/papmriZpqjhCL1SebLdqWUnlrFQZhNexXWnkRbGs8zeur1on/z0CqWK9m2ahy2epaY1mE0Kq2B3Vou53mFsGNalXtlHtBMitclK80hMJSz9WTpJokodEmoJW65ZmU4UzKudJ7atea1SkIqlKSlSzefd9flCbqtDrdcmOxWciHmspvO+qlS+Fs+0F9PtUd4IXttNS9jWg2ttqxmWsMO9MUdWpBS5mYLLd5cz5QKpWIhEPN57KGggttsdpiM+na4vouPc/U1BQ9v+pspBGNmhvNVI4bz7Wrlnk2qK+35PR3sFHtsjH/VmqZ/oJv0sI6VTdpqv97toNlGtiuizXnJl7IKiH66V3fZ0v/OqZHJzh++ChHx8d5wYueRSJlMX5qnHRXD6F4N76SeI6NEGCYFkOHThKOSNavizN88gSpzjRCi+D4FlJ4RCMpSqUinl+mIxXH9XQKdhEzsCiVcxw/foht27YRTXVQrpQxTRPdjJHPjeOXs1hBmCBkEo8alHIFbD1KIhFHiKqEZ3ZslFgsSjQaJe8LfK+M5xSJReII3aA0O0Ui1ofrneTk8Dibd16CEe5A4C5owyox1imXixx+8CF27NzB+MQk4XCIeCqECASzUxkCv0JnR5pisUg0FscLPCrFDJG0he+Z2GWIx6ME2Kgghm6G8BAUxoaIdKbxvQLl3BRefgRDuaANktp0CSW7Ghsv8DRsJ4thBhhaDKSBU6mgSxg+eYL+zVsQnkapMEwk2sHs9AyD63uZzZ8iEtmIZ5f5/jd/yPbLL2L79u04toNh6PPz/8jICPFQii986jM8eP8+8naZW2/9AKeOHUeEOyg7k0RDMcaGR+jpSfKa17ySp1x/Ay990Yv48c+/w9DRSZ72u8+jXC4ysG4LmewIn/v85/m9m59HujvJsaNHufTSS5kem+TY4VM88cZrKbizGFpk0SZ1U9T1c7mEt8uax+56tczGOdUwF19rZRLRzrdFSf28eqVciVrmGrk7S6yRu9VH0MQXdrOBtkbuHgHkDgh8f0VqT6tB7s5GQgP/vchdbTexnmC3queZkDuUqnNJ3T65m1dXqctqJeSufqe02QbCuSR3tbwbg+U27Q9i8Tv4n0buHNtm/4H9XHzxJYsvrpG7JfGbJHeB52GaZjV+qKZBEOAphS4lvu9gSp3J0TFMqTE5NUFPXw+hUIhcpYgfCMKRFAgD5ZbQNB1dSmamJ+jp6qJUmKVYyFO2HXr6etFCFhU7QCoDTddQ0ic7PkJXz3rQITczSTQSByEJfIU0NRzHoVQuEY10cOL4w1i6ICj7bNi1mcz0GBErwtDIJN3dHaTTnZw8cYKO7l7isTie5yFCcYRwmRw/RTrZgWYYPHjffezZ81hiYZ9csUQ0lcZTVdvPelTJnYbvVz1p+n6ApulkMjPg+hw5fIAN6/rx3QqGaZJOJfnVr37Nzh2XEjIsJvM5TL1EyEqjcCmWc4yNj7Bh81aU0LBcG9+II5VCeA4zjgteBiPUS8SIYHslQpaJwMJzS8xmJkinuvCFYGJkmMHBfnShqAQGGjoT40OsW7cOQ4tQLpXJF6dJpLupFPMo10RLhgiFQhiGge/5885IPM9DCoOwbvKLH/+MwU0b+PS/f4ZnPe1p3PrBf+IFL3sZf/SKV/H+972fDeu7MCgjjSjf/f6PecqTn8CBA0dIJtLMzE6wccMmTpw8zJYtm0jGOxgameL+ffu44YYbGDs5zJvf9Ba+cNsXEFEN5S/WQGo6PmrrlyBYI3dr5O78YY3cnQO0QXSWWmCdlv4tJDSN4R3q02i2uDyTBXvbY6nmiELVBdptJHxniZaErgHVhX71/5XW+7RqV3WSbjffpe5bjqytukMeNWcnJuQiUlcfEqBmE4Rg7iO//IfifKHRs+Vy8P2gqqLSsJhuR3VXBcGyhK4e7UgXW6HZe2mGlTj/qb3z+nLVSyWXI5z1zy1KukbWmjjhOWMsDJo2nw+03ihZkESLzZ/zijmHKoauLUnTFjoOaT+ouKbUvNOQoKFZWhG4GtlZQOybkDuvcXOjPv0lnJ60i6aB0Bv68krInbeM0UOz+jUi0IA5nnzgwEF6kmGmp4tsXL+ZivRxHJdIKIpjO+QyUwRBQGdnJ5nsOLNTRbRAMbiuk3AkzcjYSeIxg2LFp7Ojj1KlQhCUGTs5TFfvejp7u3CcaUJGmmLBJR4L4QYeUquGZpEBlEsVCrkiA/29ZPKT+HiYepRSvoCm6/ieh+d5pPoGKBTyxONxFDpgQ+DgOYqyXSJiWgQyTSoVqfZ/TaFUQO1T3Gxse439yQ4YGxsiEtYJXJtINMr42BgDgwMUMqMEShJKDmJpPpnpElbYQNMDNCJY4Ri265Gdfgild9HT0Uc5lycctxg7tZ++DZsYHs7S1dNBqVjAMCLohgQlCJSPMDQ0YPjkEOvXDVAugWboRKIxZqdGQVkkk53kCzM4lTIdnUlKpYDAMkkmE4vqJoXEDnyE4+EWK4STMXxfUcplcXIznBzNsXH9JnRN59CBB5B+AQeTf/zQJzjy60Mxm0yiAAAgAElEQVR86MO34vpFenq76OnuYf/+h0h3JDh48CF27byCL335y+zYuZPe7l6SyQgXPmYPBd8lZFnz85CUtY2wZht4C69JKU//L2TV8ZmobXQ2WedRdSLURCFs8b0rDGIupE7A+Yspt0buziPWyN05QBsEp37hXcMauTuNNXLXPlQQoBvGo5bc1bASz5gCuYh8LEfuajG35n8385a5RJnONblrNh8siXNI7ubru0bumqMJuQt8DwCp6XO3PPrIned5VdubM8QjkdxJJQmqevcICaps89CB/fT19aA0iV0sIjyXiGVhaxaZ2Szr1w3iBQpJGEMrkckfRxHD0g2wfcqFYVxH0dPbx8MPP8TOix/PTKZMPB2nUilg6SmkrlG0j5OZChgY6CdkWQwP/Ypkoh9Nj6Jbisz0NF093ZQdiRAGv/rVQ2zduoVYLE5xdohUKkWxWCRihclmJzhx/DClgk04ZJLJZLn+5pfhWA4qAImGVKcX/03HdsMpJUCXOsVMnopdwDJNhBCYlsX0qcMISxCYXcQNF4WF69pEwjqzM2OUbYdwJEYqFqfgaiSjMUrZGYJQiJA0EKZFfnqcVEeUUqmMZUQQhk4u42KGA2xbI5VI4HsVJsfH6evpIZwKkckEhDS/uqYQPsNjB+hNbqTsldFDaQKpEY1Gm455VxNI30fzQRkaIvDBjBJUyuTGhhk9NcYnP/oJrrv+t7nq6ms4OXSCZCzOvfce4/jQQW644Xp+8qP7eHhkFMuIEo7ovOQlz+HUoaPsP7CfK668kle+8pV8+lP/ghYLk+odJBTSFhC2atuvkbtWWCN35xFr5O6RiWWdgtcFdF7JYG4XrcZV4Pt4vo+ua6fJ3QqwUmKz3BhfDXK3ksViKzXW1h4gWzs/aP4QTRfZSy2Ol+oL7Zw/l6SuUX3vbAJ/16tl+r6/IM5dMyIlpbbgPbWjtro4DTGfb6PDmnbK25hWtSC0l45amE6jCnK7qCd+KwlV8UiIU9eOM6V27m31/EpU0uvD0szH72yC5VQTl7q3MfxEI9mrh1SL72skP4FSqMbwDC3ChJwpFtS3Xm2flamF1qteNhvT7ZC7+vyElARKwwpciplZJkbHGJsYJ9mR4siRI1x9zZMAyBXyuG41sHe5UsQPfCwzIBrWKMxm0Yih6TZS2NglB6tjgOnZSd7y2j/nXR/8CApFPB7nC1/4Tz750Y/x3e9+G00DDyjk8tilEhqQ6B1kdmYSS5O4pWlAMD2VQdMsXClZNzhIIZfHyRc5cPgYN9z4DMxwBCfw0KSkWCziKY9SpUIsGiUWjc6rX7ea05uNaeH45HM58vkc6XSagCLKKRJLdDGbyxMJR9F0QXY2W51vI0mkXyYUTuMWM4TiKVylo5xZAq9EpZine/1uXLuMLgMmx0bp3XAhxXwWaYB0K0jNItBNlPTA17ELNoFfJJnuZDaXIx6L4LoeStnEIl3cf9899GzaRm9PDxJVdRBVt2m0qIfU+oUQ6AhmJvN8/jP/wc03PQW7OMPXb/sB3d1J+jZ305Fczx3f/SF/8IKbOXVqhsHBHgLlUSzm8QPJrosu4O/e+m5+96nXctnjLsH2A3wMNOHNEzdU1ZN6Tb09gIXXVIDn+zD3HRSIakgX0RCPtX4s170jXdcRcmVS9Wabto2hEIRhnLG0/kywRu7OI9bI3SMPQsrlB9xvmtx5Hrqhr5G7JuSuVRzBldRdKYWuaU1ttZayTVwjd79ZcteOFHSl5K7VInclWCN3rZ9/JJI7KQReEECL8bJG7pqjkdz5nocpNUQQ4MoAXB+3UKRcKKH0gMAPCAJFvlihozOF61U4cuQI0w/dy8DGDcTS65mYnKJSzvPwwV/T1dlJMp6iZ+MmwlaCkdFhhodHuP7665hTkeD48aMMj5wiZ1tsWNePlB4hU7Fh+8Ucefgghw8d4HdvuJbu7m7MaITxk8Mkoh2UXBcrFiEWj1GuOOhWGDmnuimFBBXgK51KucTw8DDbt+8A4QArJ3foBpXsNJpvU8rPkOxcj+ZrjGUeJp7aRBAEGKZRna98Gy+AiGUwUajg5ybo7kxz/OQwgxsGiZpRhJJUfJ3M7BSplE6lnCOZWo+LxHdKuK6DRMejzExmjJA1QGeig3JpBmHFMU2TXC6HaZlEKWMYFoEvODI6yfYd2/H9AB+Jxulx14rc+Y6HRMOzXT7y4X/iqsuu4vDDhxnc0Mneqy5hajSDX3L50Q9v50nX30SpVCQUthgbG2XXBXuZncnyt297O5dfvpdXv/Y1KCmRpkWg7HkCp8TCGLVCBafJHeC5LgE1T5kBUsg1crcM1sjdWWKN3D1K0eKD3I7TlnbRGDBcBdWPbjXenzgdUHipYjZxjNKY9nIOSpZMf86RiyZlW4GWm7XF+Zw/mhG/Zm0wHzOrxaS7VFs2I7pVw/oVqP21icayr6SvNSMYrZwOtUJb5EfVqY7NqeC2UsuUUsztuK6sLDW0qoNALLL7m5fOrTC/MyHLLd/PHOHUpJyXBJxvcrfUmGiGlTowaieNlnOCChYQu2oCau7S4sDdjbGw/Bbqhs2ISjM1zcb+3ozc1dDymqajSYnneUuWqT6fViRwviyI6qK2ydy1Uocu9fnWvjc1tEPuFquh+oBe/WaoABQYYQvbccD3kEJjYmKckNQ5cWKIWCxCPB5FAL3r+im7OrrlYpcDtEASToRwCy6EdKRScxE51DwxFZqG7zkIqXB9iRQSjQCBwEZh6lWSJjDxA4VSHkoEKAQSUV2IiwChQMpq2l6dDo8uqn3V8+Y2uJo4VKlhObVy5Stcx8Z2bPAK2IUMs7kimzfvwHEdZqZn6OzqAk1nduwkMpQgkYqj+y6TszmseJqORJpCfgapfPSwZHY6Q8yMYVohCsURjMQgXmYaqyuFgUUpW8J3yshomEgoivKLaGgMD48QCYcJhUNEE2mmpkcJGSmys6MkUp2kuvvxpAl+NUTD6Ogo6zduWLojCQOUjV0uErWSlDIFhoaO0dfXx/EDh8kUcnT2d9O7bj1HDz7A9m07mRibJt3RBcLg+9+7i6ffdANv/Iu/4MZnPJd9D/2Sv37bG6jYJYLAx/N87GyF6alpdu65AK/s4Bv+AnXM+rizNRi6id9wUizxzdc0HcTi7/dK5v9m5I4lHLycK6yRu/OINXL3Pwt+vd1RE6+ejWhnoXNG6oZngEVlmcu/GVE42zKd73mlFfFrvK/+WivyvJpYiYRyNdHsoyWEXBCgfMH5GsGrFbdBkgGLbe3alWS1KlMroroSybqc2zAB5qWSzWwpa2hFaGuEXmvyAW/H3vCRjHb6XuPG1ErTbn4xQNP1eU991VMLvWU22nbWo94ObSmyEwQ+htSqNs1z5zzUqklwa2jmfbKGVoSuVf66kAvKXY+Vestslk9tnmuHaOotxOItyyJE23WYf2QZb8uN9of19lNLjcEgOC39ORPtnOXmtWbzWKViMz5ynFJ+isHuQUQojJABgadhGQmECMgVJ4nGLLLZGdKpPgJfJxbvIDd1HD0Ux/OgVJ4hGduI0HN4TghdKxFIH0UYV0J+Kkcq1YkrFOmQz9joKdLxHoqqSCSUplJyqLizRKwYZkhDYuJ6Op7nEo6Eq+NZaCCpStKWsGUNavEmAYUil8tTnM2QCEWZGR3n3vvu4wlXXYtt+/zsnru49ronkct6vP1d7+CJT7qKK6/cw7e+cweXXnAlUvN5w+vfyt+87RYuvewCUoN9ZLIZRo4cZ+LEGFZE4HvgVHz6BvvYeellyJhElR1s5WJoAs3z8aWOUQvb0bAGa7pJLUAKbRnJnZjrL63nuVp/qGnSKB655O58evFcwxoe9dBW4PJ/DWt4NOF8qpeca6y2lHUpaFIuOB4teLSVtx0oFRAEPkGg8AO/qn63hjWcJ6gALNMiGk+xZctOkALH8Sjk89hOhXwhi9QEoVCYmelZQlaaTCaLwuXkiYOYYQ1ND1A4RGIWUnOZmDqFpgXkcjlKpRKu5yHwSCQsNM3D0AOKNqS6ByjZHqYRwZ0z+YjFUoRCEcrlCp4XMDs7haYJTp08wezsNEKoqkRrGYg5z8pCSNKpNK7nkcnlGZ2a5LkvegFFr0LOybN+6yby+RlK9iyPfdylXPukJ3L0yHFueMrT+OQnPsbrX/96+tf1snHjOhzb4dTQCRKxOP2Dg5QqNkEAvX197Ln4Eo4dO8pd37mdO7/yLWYmpzEMA01qCKk13Wxbw2KszX5rWMMKIWuHFAsOqO7o1B+izoPkIojWKplLoZb2atzfWO5mz600vxpa1n210WbxGutS/7ud+jZ75yvJr/78+UAQqEWHUlWpnRBywQ5+oKrXxZz0oHE3XalggTSgvg3abY/6MtX/bnVPY/lbpq1OSxOlFHMLflX1XtlQj+WkdkoF82k0k/4JMRcrcO5QLJQyrqRNquVq3leqZVjd/hIotawqdm38LjWGz3QzwPdbP7eSmJn1UHXvXgUskA4uSL+h3zem0Vzapub6hFr0/Oq+G3FOSelpTYWFfbr+9+m+LZc0X1BqaekqS0jtWqHtvtSiTI3jrd5mayVzSC2dZeeahjRrRUumOjHMKI7vE4smMQyDcNgkmYpQsYvYtkN//zqi4TjxeAJdlwSBi6FLpqYmMAwd27bRjIBEKoyUVcdrCgiHwwgUs7OjlIozaEIitBCBkngqQJcRNKGhG5JSwcP3FeOj4yAkdjmPFB7JRBjfKTM5McnMzExDnYIFHiullAvmgEAFbN6yFSsWZseeC3GBofETXHDJLvrWD9A/MMCWbevZe/GFEAi2bNrNS17yClIdCS646EKe9cwbeeDB+7ErLkNHDuNUbCwrwqYt2/nBD+8i1dEFUsd2bcrFLJfu2sO3vvx1TAxQEqmbSCmXnFulEPPH6Tq0QwYXa4i0giblsvPYbxpr5G4Na1glaJqGpskFx6MFj7byNkI3z9wN+f9U+L5/3iRca/jvB03X2t5UqUEI7f9v782DJNvy+r7POffe3DMrK7OWrl5e91um3zoLs7ENzMAwzMAMINvIaEEIKYwVDqEQOIwcliYUJmzLDsuyGI1sMMg2RkYSoDcEiyQE1sDAzDAwMMCbmbe/192vu7q79twz73aO/8jKqltZmVlZS2/1fp+IG92Vdzt3P7/z+/2+v/v6PaO105dWH4Ex8ZEEsB5U+l7Q0edCO+5OCQthCOXxwgtXcNNpbKTQ2qXTbtHzO7RaNcozM9y6uUqzu0IQ+MSRy7mzl9lcb1OdPUscORRy89y8uYLfDYkjj0w2Q8pLEYUhTpxjvjwPsSbquii/R2vjNqVMTOBDGIb4fo98bhaNy5kz53FwqVRKtJqb5DMuygS4nkelUiEKg0MdnnYdsoU8+eoMKoCnHnsEG7apra1za3mL57/yIufOXuK111b53Of/mE9+4v8gnfb4vu/98zzyyBJvfesTZLJ5nr78Fn7/81+g2erx7C//Mn/pL/8AV66+wX/3P/yPfMu3f4B3v/9rKV5Y4m2X38rm+tb2YPhdGiw+gDAKcd37+10gPSJBOCpDI8MjlQYH7yK1q0i1f5TSS6hTHdxbOnw5ADNytFNNKPwych+2LyM/SlBlksDJ3aipFQW7HY0j72e7BtegA6f1XgUvONkcq8MI5NwJhkcqk6PVdlvYYLdt++/twbLJvLbDiMKMqmE3EMNJeuDUdu7PsEBOsr17xA1GeWyG8wu3f7BjrJNk3tdge6PyqPZ5O/ot3dfOAZPOi+OMHg3ue1PvfqdGb+dOjcMYO5Va6UliHGfn/Tmcc2ZRqMH1dPuejsGVUFM0tP/8mZHnOunx2v1tkM+1/z06KadtYs7nBG/yYZVDx91qk8pCKGN2vB6Dwt12xH6cOEajdr9bJ8BOXt32+TGjPCmDZ9EklERP+B6cVgl53LtOa8Pb3vYY115+kbjUI5uu0Gi1CIM15spVoqhLOqvI5s7SbN6m11ihYVOcPb/I6vI66Vwaa9PMlHPEZDGpJmFXE5uIoLuJly6QL+QJ4g5aBUReRL5S4dbN62S9Gt1eSCZbIl/0iHSXjNb0bMDa5hrV2SWCyMM64HdqNDYUXiZP7BhsEJLN5OjE/j75zIH3zlpLFEcUioX+7ylNIS7y5T/7Cq5X5Cf+6Sf4jg9/mGef/VWef/55Hrn0CP/qX/w8l596miiO+NznnueFF17mAx/4AG99+xOsXb+BeegSP/Z3fpTa1gaZbIpXXn0ORYZP/i//K3/uIx/EkmXx7AJh4BPrGJ3wSdmh/lIyB2/wmCm1e48cV23a6v6gRmwVxt6/g1QggirHRgRVhGlJCgYMzbizMvomHm3cofbV/DpICfAoxt3wsneEMQbsYRiombLd9kFn+04Jy9wr427Sh80Yi+M4RFF0oIdllHE3PG8Sge+TSqX3dM60VsRRvKuWOCE8apxxN66dozprY9ez7DPuBkwqiA27+X7TCMckGQwmDIph32uv6lFFhibe89vvnEmCKgduf4xxl2QaZclR1/UwYisnUQJheH+TREyGOdi4GyM0coBy6I5xN6Fo+6Rzf5w293e437gbFlRJlokYdPBPuvTIYY27wd+xsRAHrF5/A4NPdW6eXreHUpZ0xqXVtpTLc1i/hs5mafcilE5TX1umUj2P1THt1RsUZ0p4uSxozebtDcqVOWInjYdHo7lJsZSmtrVJvrRIt9OhkM9B2KHr+xgcsoUStbVVzp05QzPqQuyRzeTo+T4pz6FZXyOdKZDOFAgdw8atVcrFEplycU8fpa/w3R82cYY828YqwlYTopggclm++gaZTIZKtcprr73O5z//O3zXd30P6Uya3/i3v8M/+2c/yff9hf+YCxfOsVhd4PIzT7NZ36LbCimWcpRKRV555SVKszPk0mluXnmJbjvNra1Vvv8/+2volIs1/thrnTTuhu+LUdfqsMQ4feMuNmQymbuepy5qmXcRMe6EY7PngzdkbCVyhY46QjlWBh117FHPqYuQ2/FeksPtcPtleifFEral/k/CyNJaYWI78djvhVcGRnsmhxkkryc7oaPq/4z7WPZz/KY3EkaVhzgpJc6dPIwRTUkuM86og36+mOPofZ3iSRy2s3mojkdi08Od+ZMcLDhKx3mkWu0RjbtRnajjGnf3A8OeQGdwc05xX51EQfdhwy0pJT/Kwzcoq+ANDDA79GyNwViLVmrqNkPfSztgpyTGiPe/Ze9gynGNu0nGwKQySUnjTlmLiWK2Vq4Txl1myrP02gFu1sXxsgSBxQbrzBTPUGvVyRWyeEpx+3aDxXML0OvQ6nRI57O0u10qxQp+z5IpZKnXN5mrLvL666/gpSy5bBmUS75YwjExvcDvXzutSCtNY6tBYX4WbVPENuDWzWWy2TI62KRUrhJbFyefoVia5cYrrzJzZo60l8JxHMIwTEQVDe7N3XOwVWsTtppktMsv/NKv8q53vIPf++xncRzFxz76MX7m//oZNjc2ePLyozz9zHt4/PHHCEKfmzeXyeezLC4u8uLLL/HIw4/zq7/+y7zn3e/iM7/7Gb7mXe/l/d/8DXzm3/8KjWbEf/8//0O++vqrxBYcHY29xgcZd8cl3lbHNHGEO4UYzUkjxt1dRIw74X4jHpISH9dPSIa/DRfJPlSHPOEZnGad+/Kds23Q9f8/ohbXsTd/B8Jtp2C4AzLtdd1XWy7h1Zg0+jlNEfLDkNzHIGRxUvunadNILHuMvn6YperXB9uuqzdY3/d90un0nm0PjOCT8LaNa+e+UhVjDuekznnSaB8+h6Puh0ntMibsr3+CHaJhgy9pHBy24DecjCfusPvbI1DkuPs9VEdkYEwN/r9nXtJTPnSrTArZnMTwdmC0B/AwHr/kNRz26lnGn6dp3z0DQ2BwfoYv/7Th1JP21wp8GsvLFPJptKdwyJHPGnqOR22tjudZbOSTy2XoBS6pVJpMOk3PD/HciJguYRySS80CDu1GgFENioUSfhfSmSzGCfC7MWlvhnbQIgi6zBQKKNtXzwy0R9TZIJtOEfuwVWuSL7o0uiGlYqnfzlabSrWCoz3i0PDay1d44qnLOGlNEIVjj91xPCIffu3ZX+ebv/5r+Q//7tf4nT/6Kv/lj/4IQafJpz/zaXyj+dQvPMv73/dNFDMxCxcW+ZaPfgdnz59na3MTY6HXdFh+/StE/hbvfPuTLN+6TSl/jj/60pdwqfPt3/MxspUzGDIkw94H3t1Rgz9qKGTTOYHPa7T9gNwrpWEphSAIwl3Bmnhi7p5wb4ljc9+rek3L/SLfn06ld/5/r9t0r67vYY1Y7bgnatgJwoNAyktRnavi93xS6RTpjGZlbQttXPKFIpl0jmJphkwmR6lQJJ3y2NzcJO15ODqLNWlSTo6N9RatVofIdMkXl7A6j057+CbAUS6NZgtjYlIphygM6PY6NOp1ao0GcegDml7PR7seSjvcunWLSrlCr+cDEEc+7WaT62+8geu5LC7M0e60eOGFFycen8UAhs9//nNcvXaVf/zJn+LxtzzG5sZtyrM5Ul6G2ZkS12++wQc/9AG+9SMf5G/8rb/J5cuXyeZynD17jnNnz7K4VCAiptkOeWO5xoVHLvPcC6/wL3/xWc6ef4ZXXr2BRYnFcgjEc3dMxHMn3O8YuzcfLhlmcVLeop2QlCm8K0lGhY4dxss1qVD5Yfa/98ejee4GYY6j2jH1e3YoJPSooXUnVZQ9OXo9KH4+7AmYdoR70Cat+p6ww7Zv0gj5qJDLSeGio9q7r35Sonhvkkk5d4PSC+Paf1Tv46R2T8OkczfuHrPG9BUxE8RR1C9CPsKrN5FBiNRgOxMKlR+WUTl4D0JY5nBIr3ZctLWYON4Rs9HamSpEcxoGz+3d8twNb1MpvRP2OSmMM9nOwXM17PEbjCdOCpOchDEGNWQpnKTjdtCWXmyI63W++uUv8dTbn6LV7FKdW6DXbpMvzRH6bdbXlolDn1yxsl1iwqGcyhCoFLEJUGGHXGmJTq9Fu1ujPHeJKArodOvkixls2DcigyDGcQy+3yMOfPLpNIHNkM+niKxhc3WFmdI8oNBuTK3eolQq0uv1yKTcfpihVUQx+D2fXhiiHE11vrL34JLhmdrgmBRbK3X+8HO/R7MTc/7sAqtryzzzzDP8bz/5s2y16lxYOstHvvPbuPjYeZbOnUMpd899bYkIuhFpL8vy8jKLZ2bA5lm+fhMbKnIVzfzSAspxth13/ZIkkTVjB9eM3TsAdRKeu0FY5r2yMcVzJwjCDv0SDbtlGgZFSU/S43CaPET3M9bE/TDYB5SDcnOOy1Hvw37dojt/Xu/HkiPj2jRs2PV/c8GOMIQFQdiH67pksxne/o63k81mmZ05R2Qskb9Gt+sTRYaZmQpzc2cwNiRfzBNHAe36G1jdJZdL01i7QSfYJJP1yKcrNNZfpV27TkYp6Bg8J0293gQiWs0GjoK059DpNHBTKZqbG6ytbVBdOINFg/bww4g4jjHWkM1mSbuKK6++TKfdRGNoNLbI53PMlGYnHl8UB7Q7TbrdNm9/x9t49/veRre9ytbKJi88fx1jFB/96Ed59tlf5L3f+G4WLi4ROmCGRhGsTZPO54k8w9JjZ9F5jcooHn76Eo+8/SHmL1QxyjIwWVzXIzhkCYc3G+K5OybiuRNOE6PKNeyMsCeTlbfz7E7K8zeNhyr5rjrp/e79cbznblwey7htH7UMxB6v3zi107vonUjK4p+0Kt0ehVK9V6jhMO0D9nnu9iwzQQDmsCpq44tgj/fc3QuGPbjTHN8gx3DS8ia2O0q7h/HcnSTDIhvTinXcDa/eWGXkIXZUKodCVq0xR85Pg8nHmyx3cJjnbJzACvSPQzsucRTuey8lPSZmgj9hnydzu2laKYYj/4/ssRvsy+x6fMzOvX68QRdjDK7r7GmHwUOFbV5/+QVSnsfs/Bk2Vq9yfukst9Y2WDxzhkarRSabo+CkiXRAFGs8J0u9tUo2k6NR71HMpej6AcbvUKgs4bouQdglnUkR4eBi2Lhxnflzj2IthJFPN1ijmD1DbAw3b9zk0sMXabQ26XXbdDuW+bkSFvA7PbKlHFev3OQtb3kCY3w6nR5epoiKI4wD6XwWHBfHGLTShMRYY9l4/Rq5fIFbK+tcu7ZM2lV8/O/+ff78f/oX+MZv/CbOnp3j5Vdf4cLFSzz85CX0lINCe3Kt2buOTp7f7eUGV87YGDX4bbh0SOJPRznYOIbBPZB8Rw4rcOrd+1I8d4IgPJAMcoiS08jlHPdEaxw9KMTG7Ku39mbgbh3zUc/vm/W6TMSCe6c8bIkuxiAyQHjzkSx0buLonin/3q84xDjpLJcefpS0q/C7Lc6dP8/q+ibnL8yzvHyDXL6M5xZYXV3F933i2PTz42yWOHKYmSmTzhTRbpalsw8RmTadbgOMC3EKB4hDw9ziWbq9Zl/hEohCS6/XAQyFUp5Ot0kYdJmtzjC/WCGVznHr1iqFmTLZbJ65uSpB2OLlV79Eu9vuG0pYbl69hqNAxRGbq6us3r4NxuIqTS5b5OaNW1SrVd7zde/m2Wc/xQ/90A9R26rx3HN/xmuvXyE/U+Txpx4HpXYM6XuNjWNiazBxjLnHJWfuFGLcCYKwgzVm32izHkxa7UywHZpl2TsdkUGR1GmWOYkORL9It+176fYUKe8LxIwLHzzs/nf2c8T2WWvHJoMklxk3HbVtw9sZLuQ+8H4l7wdg39/T7DeZe3XU67uznu2HZo4axR+0O/n/5G+HwRqzr8j7cb12jjP+vjsSar9RPs1xH+S1G543OPbk/aB1P7dyMB2X5Htp5/92e1L6WAlTgzD1k8gBPOx2+oqZu9dh1Pv3pBl44ZNeO8P4kOnBvHH5zeOe177irMYYszMNGNwzyb/37Xdwjyau7VGf1539JM6viWOMMVhr99RuOypa76pN90u4GLQJCK2LclxS2qJtTL3eQKfSXHUdgL4AACAASURBVH9jmZnyLFEUEIQ9crksW5ubaFcTmS6FYoFMJoV2Im6vX0WlAuqdVTw3TT6XJ5NN4wddwm6Peq1BZD1QBqUNjnIpFmbwUg5R5DNTLuCoMnOVi6i4gKdnqTXbnL94kV4Q0Wg18Xs9Om2fx594K7OzZVxXY4j4lU89S6/ZYGt9hXzaY2lhAYyl3WiyuV7nr/7gX6dULBAbnx//8R9n6exZnv3Us1y7+gb/zcf/PgaLH/emPIcHfz/GMc3gntL9+9hY2y8Ftc2kZy55jw/6Qg8CEpZ5TCQsUxCmY/Dy3dP5sXd3pHdY9GQUd2L0eVyx9zuF53lEUTSyHePaoMZ04IaXGcZhd73DCDLYbVGNcft0HefAD/agjuAo+f2jhI8etWORLJcwrhzEYWv2TdPOabc3UYzmBOtAjWNnv5Z9de72vQOUPVRhcxP373Ol9MRwyHHz9paNGT1vcK8elmkMNWvNrnBI8kY+ISGVUYwLx4zZfT8cVWzlMCUlkgIrw22KbP+6uq6HHjoVdkSY72GeN2PM3vI3HD8scxJxHPPl577C5YerhL7F78bk5x7Gbb1G1/ZIVRYJmwGOdkmnPdpBhJfOsrlynZm0pjB3HpTqi5+4Ln63x2uvv8pTTz9DYD3qWxsU05p6p8lMaYaso9hcWSE9f57Y71LMeLTCmHwuz/XrN8jmMngqS7VaAjQq7tIKwM0WsH6blevLLF04Sy+K8EyW1fVbXLp4ka2tLulSimaz1Q9tNZrf/vRv89TTT3H+wnl6QZfu5ibNRsC/+a3P8srtr/KTP/2TuOh9pQlGMX1Y/CCseDusctRCowRVbP/dE5vte87EaKX7wkXbGDUcHrxb5ilW/eimu128fICEZQqCcN9xUqPjwsEEvn/XQuVOpDj9EEodbIQLp5fDvCsGHqIHGXk3nm5SKY+LFy8QdC35fB60TyrVxUm5NOs+KkpvexBDUFBwIoJ2naVzF0mXKmytLGN7bRwTsnZ7BWNiHnvsLbz60st02w2KhSx+EHC2Moff6BCbNLnKRbTqi7r0gpBOKwTrsbR0gbnKEvl8npu3loniiFarhVKKKIoI/IDqQpVavUE6naYT+5QXqvy73/7/0GmHK1euMD9XpTpXJZ1J8aEPf4h8PovWimKhQiab5+99/O/wXR97P//kE5+416d+D32VVAXW9r3FSt9xka97hbxNBEG4K+hR01AYxlE9Wgetp3U/ZM+YkykRgD2cx2MQ2nHUMM3DorQmiqKR4ZXj2jCxXQPhh1HHfMTDmdSZtdZOZTT2w7bGz5tUlmBcwfNxoYsDIyI57bQXu89TMBy+epJCK4NtT2PA7wmbHREmOXyc/WdkctfgyMaUOpoQz6hwqOEQxj3hvUPGktoebR944Ia9dUlPYXJKrnMUDlov6bUbOrjkRvZOe3dwpJDUZMhs8n6Y9t047jmA/SGX07Rj9DyNVqM9+6Oe31H38QEHsb0tfUe9dgBhGBHFMZlMgWarQSaXprZxnVi5XLx0meUr13FdxebmBlEU0mluok1IEAZY5eC6mtDvEftd5ubnaXc6OI7DI489imcDbBiQyeVoNlp80zd/gGY3JCRFp14j6HUJIsPMzCz1egsTQ+BHtNsNZmdn8IMuy8s30Y5DGIaEUYSbz+GHAUEY9D1ZjuV97/8GQhNxZmmJdqcDWOI4BBvxwksv8LM/+3+Sy2b4R//kk/wn3/e9VMtpypXZvlds3DUeuo7JaxjH5sDIHsNer92ksMnBt8JicR0XR7u42pn6+bHWopnOG38/IMadIAj3nIMEXKZZXxDuJHEc35VyCfeau1UW4rhMI/wkCPcD1loymQwrq9eo1+oU8lWCjk+j3aPRalKeSVGrb7K4tIBSlkxhFut4qKhDULvN1esrFGarpAozbG5sUJmt0O10aTab3Lx2hfrmOo1GC1Us8unPf5Zut0k+FRN021QqFbLFGRzXUp7Ng4ow+BSKeQwxUeST8jzarSZaa9LZDKGJcdIptNYsX7kCQYAOI8JOG89xAEut1iCXz3L12lVSnstf+YHv59atV/nhv/23WFg8x8bKOhzjPeI4zl0ZCD2tyBtREIR7x7YogrUx1saAQSs7dmJ7Gvw9WK9f8HevoEOSnVG7AzxnU3cSD+mB2CcicpdDQU5KiGYkWmHU4Qsg3y0v5igOE/I5ygM47J1QnKxnrr+P8edncI9PY4Tt8UQOCWnAbs26wTIDL2SSfZ7KHU/uBM+hNf0Be2t2ntudyardaXjeqGNgIOyhd9cbPicHnIdR3riD6n1OEy45MC7HLXWYkEujVX9ynPFeuaQXbyAqM0Ss1FTTgIEHzUWh7d58u8G8Sd5aZQ2OOnqhaGPt7jvEdfv/GoWrPRwclNMvXG6VxaqjCyElGfbYDYu+JH+bNE2D4zjk83lMnGJhbpbV5ZepLD2Em0ljjE+plKOQLxEFCt+3NFo9cmkPHUe4qSyXn36CTjckjnvYVIuNrTbWNeTyVR55+p0oHZMvlMgoh9lCkSjooN2I2blFtroxhD7Xrr+GozXKgPFr1GtbpL0ivbahMvcW/viLf0jYXkGbDJ518LTL1uY6Zy8sUW+2aLTaRKaLozXXr71CxonpdNo8+tgjaFfhei6ddovbyzd4+LHL/MjH/yeiXrj9SI8+T8PRDXuxY51qg3ejQ4xDjKsMrjJYZfrFy228cz8OpnF9A+iXOxhMw+sl5z1IiHEnCMIDw/AovYza33ukBIFwv3I33g+DMhySM3cymDg6tfm25x5aZKvWRKkc9Y0VUo7CWoi3DdVMJkUcG7Qbgwrp+S3a7S2wfSXOwA+pVM6yuHgOa3zqzVXCoEcUhWANQdzG9SCTyXHl1Vt0fJ9sygHH5cK5S9y4cR2lIpTySKVyNOpttE6hnDRPPvUO/CjG6g43lm8SRxGzlSrZXJZSqUij0SA2Br8bEPcUn/vMF0i5mtdefolLFy5QyGVYWlqi2WwShTGf+MRPEIb7Rb3uJOaU3jdHQd5GgiA8MIyTCh81GjdqpM5xDshvmZLDSjYnyzjcDa/dZIlyNXYav8F+wfpRo+VKqZ2cxpNq44A9MvEn6OkbdyzTlZAY4SlJlA+YlEcyebv7vbvjzs9JeC4GDHv/DrPtfumQ8YImR8lPmWSMjSxxwf7cm+F5SYY9aYbpVDknMXgvHUYqXWmNdtyx+X9TbuRYZSBGsesl3Z8PN+5aJz1gxxW4UUqjteof1vazdpL3OwzKFuz1vI3y5O1g7YF5eZO8eoP/p7JF0tk8aIWOewS9DuXZMo6Xpjw7289lMxZlNZ12j7XVDebnFuh2fTwnhcYh8NuEYY96rYmJFI1GHTAobUm5GfwgZLZS5sKls2RzRbQJabW7aJ3izJl5UIZuN0I5hkIhTbGUIVYdZueqlCuLtLpNls6cYXZ2lnqtRjqVxvM8Lj70EIuLizg65OUXX+Qj3/4hXnn5Rc4sVLnxxlWuX7lCGEbMzpb50R/9Ub7w+3/AyurKVDmYh86XHGJUyZ7pVhzt+R7FSUdm3GmkFMIxkVIIgvDgMsrrNKqjp4c6K0d90Q+XRDho3lHez8cxHsfuz9o75pmYtvzCqNIN47Yxat7I82LZI8gycdkEI8N+h34fvkdGiaok5dvHnYeTHAyYpoSCtRbH0TvhUgAmtjiuM7VQRn9DfW9WbA4QRhgOxUwuO4V8+nRtSYQgDh2DSQrOjFl91FHrxDw9Ybl9TZlQ5kHvlIww/dDMCcvrUddwTIjmtDiJe/Aw6x1l+0lGlWawGFzXuWudamu3S3Ac8bgHxt+oUE1HO8QmBgu1lWWIa6i0S7cTkS3MUixVqa2vcfvWOpcvP8HG5iqFEuSzZ7l+88ucmVkkiGKKlQWam1usrd9ibn6eUrHK6q03yM2kiB1F4HsUcgU87fWjnx24dvUas+UyzZXXmTl7kUyhgu3VcN0yzXqD26urPPTwBayFeq3G3NwcRln85hZBaCnN5FDKw3VztDshPX+LTCZNJta8ceNVWp0eTz79dr761Rc5u1ildOYcrZYl7sUsnK0Q2YBCOU/X70LYz+WLlCU1IY5/6oFTu/2M7JTi2T33gxDhvvDU+JI7BxGzG3p+r71hUgpBEARhCobV8SS0SribmNj26/Td5/vTjjqcYSecGPJeevCJt4ukGxOTyeXYqrUIe4rAt+SyJeLIUChmeNs7niQM28xV54njiDgOqVbm8TIZjNJ0ul2y+SKFYpFMNsvaxgYLZxbodSCfmSMMY6yxNJsNrIno9Xosnlkkk89x6bHHMWGMsjG+H3P9+jUy+TSXLz9GGMY06nXm5uexFrqdLqXSDMWZIr2uj+s6dP0uVsdowGgIPEXNV7z13V/LSy+8wDueeRw/7uGlNJ32Bp5ruPLaq4Cl1Wihmj45J00qMDjB/S/Y9KDj3usGCIIg3CsO22Ua5aEZnpdk2BM0yQszat7dFl65FxxUPH3cvMOuM9Izit0TTpr0Ek5z7g/jVdjjCRusp/a3d9hTeaJCPFOsngxZneZ+H8wbhOIljcBBqOKwWbjjHRxTgP5+Y9QxmMS8gYdy8D4Z5OCNKqMwlaE2IaxxN2zz7hQ8v1dorYmieGrv3TRe6UkopVCJ0iJJD5xSaq9Xb6gA+vDy47AKLA7nH3qUKDRkctBut8nmCqyt3ebMgqLnt0mnZuj5XTKpmDjWtK0lV5jBmpggiomtIlYa102zulGnUl4i7vWYr57pC43FhiDqkUrlWFtbY3a2TGg0URjS3NykUJ5jMZ1j9fZtZsolcsUyvW4X13EJTUhsYjqdDqlMDtfxMFjW11e4cPEiy2ttzsxXeP2113nyHV/DRq3OY5ef4NOf/m3mLy5RDX3OnV3gx/72f8XH/9sf55/+xCexWlNbvk5zs84/+uQ/JlcpE07wc498V24zqnTSpPei1pO/L6P2PbyfBxEx7gRBEKZkkA80beHuwfKjwo6EO8dxapNNw0Dw4c1gfE/LIHfvQe8UHYXYmD25gortgSOtpwrVFEAPVFsfgDIcSh8xzM+BbL7I7eWruMpQqpRJu4ogbDJXXUKpDNaGxDFEUYghJo4gVSpgMSzfuMbcmQtU5hZotFrkskXypTzEDpsbV6ieeSt+2EMpSLkOVinm5+fRjiYODI1ak3NnlzDKw+9tkc2lWV1b5eFSmepclVarRb6QI5fNEXaaeNYShhG9rTr5Qho/6pAp5Oi22szlSsTdJiYM2OoaKkuXeOrpt1JrNrEELMzOkcuk+db3fyuPP/kkmaKLCUK8XJamCcjokzM/dgaU3nyvnrFIzt0xkZw7QRCSJEf0J3bsDijQei8Y9z1wtD4xA1Ur1fdsTMqZ2/5KT2tE32tGGXmTPAl64B0b4bmbZj/T5gaeFKNyDPulGMyOSNGgqHrSc7froXwwruMwo3LpDiOYMkoc5aSMPW3skTx2J5FLN5w7l9zmuEGVUeciuZ1o6Fkf5EyNylXd8V0qtSe3arB88u9pGXjexoqqJBnhuZsGRyliC73GOlGvRxj2yBfydNotirNL1FpbzMwssnLtZRbPniNWHo1mC0xIqTyDqx2CKMTVDp5yscbQ7LYo5gtYBXG0HUKNYW1lldnKAlqDiyUEuu0OhWIRpTS3rr/OzJkFiBRRr0UmWwAvhcGlvXmbfL5EKpUljvvF1LPZLErByupN5s88RNhpE+k02ZThtee/TNbL8fDTT9PrBPS6IcXiDO1Oja1GnerCHMVS6dDnC0ANfSdNwrvqbufYHdeOsSYxMDNU8sDGOzPgHg9cSc6dIAjCPULKMxyf3bqHp5PYmDelh0uQ98ObHYsljCLWN24wMzOD52TIZsr43RalfAkTB8xWl9jaahEHIZVSmVw+D9uKkJ7OgXWp1RpYY1HA1WvXCMIQL9vPzXPcDLliBb+xiTKGTqxpbt5iJpfi2itX6Gz6LJ19FB075DIu2cIMfmRYX12jtr5CpVrFGIPnubhOgXx2BjAY2yNfKOwcS9SuY4ylungW7aXwe23q9XUyWc216y+RzWdZWJjH7/Tu2fl+syJvGEEQhBMkKWeuJ006UULgAXBsHLb8wzjMiHy2fbL/d0DiPbmvE8OanVIQo7xb47wHSqk9ntBp2jTITRzkA97NkNA9hdAT+XjJNvRzW+5NEOJh7pRkyYKD1kuWUhgsfxiBk1HLDd4PRykTMWIHo6dJyw6170jhy0rt8UBOs41Jy0QjPC/JZypZYkTrvaVbTrpMwoBJZRKOqqgJfS9TdW6OublF2u0W6xtr3F65iYl92o02xvgYz6dYSdHp3CSOVkl5Hlrpfp06R9FsNahUC3T8LSxQqVYIg4BOcxXiNq36Jjo2FGcrhHFEHPbI5Es0Oz3OXzzP9ZvXeOPGGzQ3GsQhGOXhpdKcO7uE5/TVPbP5HPV6jU6njrExa6tr+H5EJpPFmBjf97l19WXSaQ+VzjFXncd1clSrCwRBwMbGGkEcsbq6irb7z+mRz19iGydZHmd74yPfdfDgheCLcScIgnAP0Y5COw/Wh0MQ3qwMipYnGWckjeoQGnbzy95MTOpsug9Yx/k4pFIp2s0W1bkLdLsBS0tVSuUUUeBTKhZp1Wtk02dxdYV8epGsV8X1XHq9LhcuXMD325TLOf70z/6AWu02M6USxlhc7VDOu2zdvk7OhWoxTydStNpdylmPVLZMsTLHWm2Tc48ukS9lmKvMEnQtkQHHdbly5SrFXJaXXnoJGxva7S4WH2MDFs8sUcxV6HbauK5HpVIh5ykcrVk6d4Gbt27RbRsa9S65XJFyuUoUGzLpNJ1mi3//m791soaYMBHJuTsmknMnCMLdYuS45yFy9ybVYYMJOXejir+P2M44z95RitLCGCXNI+a7JOmr38VTeQfH1dnr/2hQevqOerKG3Lgae0dhUt3EcfOnXWYcY724g1H6aY9niny8UV6uSZ6g4RpwZoLH+TA16pLLT8txc++mqnM3yDMbsf7wuYgTYQKDbU46v9N4GKf1/h3GW+nq/ffFJOXEURzHo2eMGVu4fNird5h5g99sHNBtNuh2Wv26cdkiftDFdTSBjUg5WVxibq+8QWXxUfxuRDYdE4QW3w9QSlEulej4XbCaKDKkUh6u51Kvb4EyzM1WCCOf0FdEJuD5r77Ce9/9Hvyojd8I+bl//v/w1/76XyXEI+W5OCkN1pB2XaI4pNtrEZuYUmkeaxy63RZKaWr1LS5ePEe7USc0LhsbW0TtBpcuP46JDEEYYLHcfPUVUrk8SxcusHZrnceevEyEJVaKaaWGhnPu9pxPx6KUxm5f55MYI92f39m/XvdDKPVhcu7EuDsmYtwJgnBPmcJASYpdjO3wDBkbsNv5n2TcDe8Hji9LPvG7tKOMdg8/tok27Bhr06w2hRDKNN/kUQbn4LeB0MmkZXbagTq2wtyxDfoJxt2wYTPOOHCGVCmTxcChL/hxUuqpJ3XXHTZATbOryhkbg5O4cKOM10E7B6d3p9CzVmPPa9IQHRdSOm7eURi1X2sN2nFx2M25PaxRN269+4Fd489S39oCE2HiEAVEcUwUxnipmPLMAmEUk8ooNjebVIoPEQTL9AKLtVCaKdHtdtnYuMm5pYdxdIGYgCiOAIU10OvV0Q4EXcv8/CJraysUinlMrIjjkFxacfv6a+TmH8ZzPdrtLjMzM/jdNjMzRbZqG5Rm5gjjkGw2TRTGxCYm5Xos37rFo+cWuHpzlUKxSkrB8q1lLpx/hNhE/MEXf5eo2eXbvvOjqHQOz3FotVukMmkMoBhvPCfPk6PGD57Fau/79KjG3aT7JLbgOvdHYQEx7u4iYtwJgnBPmcb7hNoR8XjQjbv7QklTjLsdxLg7GvfSuBv2Vib/FuPuzrJjtLge3XaTtZXbOI7Ccw3ZVBGlXeJgHdcrsVZrcPbCEjpKce3qi8yV5zFuzEy5TKfTptVsMVsqEkYWjIeXS5Py0oRhDNbFdXsYYjAemhRdv87q2m2qs+cJI592qwEE9ELD+QsXMRFYo8hkPAK/h+MqtM4TRi22GqukvDzWhGxuNnn0kcfwohp//NzLPPLk22ht1XFVhLIFgrBDueKSq5xFuwpjDAoXz3OJowgAK8bdoRHj7i4ixp0gCA8i8XBHLSEHbRNdz2HD7igdrZHlAGy/I6eUxhzio3w3vlmTyjQMcxjjbhqmOj67HY40wsCdxqgb/n3aNo0s+TAQtrB7SyGYpLjKcGjVlKURTjIk8LgkjatJbUkWM5/EcaUldELQZt89o3cFTw4TojqJSbUjk/uYZvuD65oshTAopzDYR9K4Oyr3o3E3wGKob7RIexrXjcA6tDp1HO2Qy1dYX1+nWsrRqK0Tqzxz1RJx2KLWa+N6aYr5WcLQ0G1sUJw7Q6e2jpfOgVJoFFopIhwUPfxWj/LcPM12h3azS7FYYn31FvML8ygFt2/XyeTSFIt5HFdTq93G9tosLl3EaJcwiGi3e5RKJbq9Lq7W9IKAdD6D56VIpVJYY7j66us898Wv8tHv/ggqrXBSqf676pB1ARV6z3sFdt8zE8+pslMb/klOo3F374NIBUEQhLvOPkl2ZXenu0AUD1e2EqZFKX3ipSKOquA4SmBEOH3cDzlHp4m416Lb3CLsNIj9FpFpkfEKZDNFVtZWKORclLbEbobZSoEoCgj8gPnZhyhlKwR+D9cxZPIFTOjjpdM4WtOs13cM8Xazhed59Lo9/CDAczwKhQKdbo9SsYiNDMVciauvv8YXv/AFPK0hjsiksuSKVYIwxvSaNDdXyafAb9bI53M0mg2sMXQ6nd0cQixLlx7iO/6jjxG5GpNx+yqjjnMyyrDCoZCnVRAE4U3MbmmG3clx+uGGjtb7yjQMy5JPYpJM+Re/+EdsrG8cKJ8/kLseVQZguCTAqBIBk8oGDOYdtrSAUmrbezYhzPVOohgr5HJkeXCldoRqButbs9eAPGjbcRyD7Rufx+HESgWc4DYNu565UfMGIY06sewoxm3jKG0cdz3uRFd6oof0gEfnUMc05Pm808/XSZV4mYQxZo/QikKRLRSpN1o02h26vZBcroBWLisrN8jmMsRBB4MlW54jNj2y+RQ93+fKa1+lUVsj6LRQcYxyPWzYxfXSxHFMcWaGbC5HGIVopy82kkqn6HS7bG1t8txzf0Yxn6fXadNr9/jh/+JHCHodPvxtH8TB4HfblPIzeJkZrNaEMaRzObp+hJfJUq/VmZ2tMFOeoVAoJspVOKRTaYqlAo1GY+9xj/T4T35HGGv3iDIN/p403YmoDn2feO0Oixh3giAIArtd1EQn5Kh1sKbgG77+6ymXZ9CHUJsUhHvBQcaJM0YRM8mdfJbuFuNqA6rjJm6+idBaYbF0fMNDj16mMr9Esxfy/JdfJggjKnN54ijEGp9Ot43yUrTaDdbXVgE4f3GG6nyWymwZbN94a9a26Ha75PMFTBxTr9fY2twik86glaZQKOA4DrOzFZ56+mmMMfzpl/6EG2/c4Hs+9ud45zu/hrW1Fbq9Lp/77O/RbvkEcT/0Gy9LqbJIdqZCrFPUazWUo1lfW9s2WBMh7FHEFz//hyzNLeAdoOLcF345PKOM/TtV6/BBRnLujonk3AmCIBzMvq7vIUo4HIdR37hpvHTTfBsH+YgTOxaDWZN2mQiF3W8kHNMgmLZ0xCFKTEzKSdyZd4zw3sN4eu6VwbTHuzTit3FMOrJJuWuTcueG541b7qB9HMTw8Y0svXDANqa9ssmcO2v2blXp8VsZFnUaNe9eYfWuFpOrFFEc43ke62tr5F2XjeYG5VyOZrtBtTrLjWsrLC1dAtfHGIgiQ7u+Qak8i5fJgXIwUQ/XcYmiiAgPwi6eVnSti+tY4iDC05pY9fB7IelMhrW161QKF1EqxdraCmjD0tIZmo0WfuATh10WzpwjtIq057FeW8HBMjd/js31NTK5PMYqcqUcSju428+g1g71RoNisTC6jM0YBqGdA+9mci13W1BlmtIqjnu0b8qeYuXD3yXH6demPNKWTxbJuRMEQRDuKwYhZ+NG/w+9vSk7DsOhl4NOx7EGNq1BoaYbMVYcSpHy5D08B7TPmv40hWE3fP5GncNjn9tDMrivktNRlkkuN+r3SejtZZK+7zuVZTQxhHhwLQ9ie7mjhqoOH59mvFdvGD1mOilGhVkOntPhkPJRBuCdDNPs12QzKN0vewAQhiGlmRIvv3KF2toaykmTcTO06g0Wz1TJpjWdThOlQOMyW62ANURxSBD2wMLy8k22ajU818VxHOr1Opl0hmtXb1IsFqnVNiikF/jfP/HPufF6neefu84LL71IEAVYZTi7dJErr11na6tJOlXguT/+U5q1BkEQ0O02UCZitlxBGc3WVg2lNNp1yGaze44vNhHFYgGY7v2stZ6omAn7wzNHLmPsvgiQad7Nw/fFKJTWD6Sh9CC2WRAEQXjA2CfgItwXKOWgJsiNJ7Em3peH92bgfrpvrTUH5qkK9y99gZFkLrEhNpZHHr3M+aVFOr2A/MwCXq5MpDS3NzfJZsrUaw0yWU2n5eN5eVydRas0jUadarVKKpVifWMTpTSBH3Dr9m0eeugixliCoEujvszf+M9/gM21DfyW5tFHLvMffuszRAFcff0a/+Af/EOeeOIpfvczn+Wll9do1AK2bq9hYxcTaH7z3/423/e9P4jWmudfeJ5iocCtWyt47m5OWl/oSe7N+4EHM1NQEARBeKDRI8L2hrsFSfl1uy1Db+yumMqRsMdYd4DS/ZqBk0aUh49vUhiq3R/CNDC4ju0FU4lYsB0Rg90zbdHbAjFTbusEGIiOjMLEUUKQZZpAwP1M8kZN8oruu9cm7DX52/D+TuIsjQ+1VAfM32kUytlvtPdDMfu/O4NtTBGuaBLlFfbN42jHvOd8b5dGYaeO5fgtxuwe13DJhGQI5yB8c1TdzcN450Z5AofnHfQbgLYWFMTG7ilj1g/p7AAACRFJREFU4mjFZnODjJuHlEendpNe1KY0dx43NUt9/SWq1TlarTVyxSxBtEVjo0E6naY0e444Dsl6DtFWjW7XkinkcKKIdnOdbltTKM+Rd2bomAZve89TlF6sYwOH6kyZP/njL3LtWp0f/ps/wm/+xm9gnQ7Pv/Ic39r+Rs5fOMsf/M5neeqZZ3jve95Do9PGUzHzs2VW11aZX5jfd+8rpfsh3v0/dv9PP2zTjDD+dl5PDMI72SNAA7ulEJIayy6KKB59Vw5fM2vGv76S18kOv7cfUKXP+2c4ShAEQXhTM/DuJafkPJHcP3mMiUWq/JiIV/poSBmNXUpnFjFxizR1UrPnyJcv0Klv0tu8ShimCaMMnY6LjbLEYYZq9SFmZs7SbXfp9bpopUhnc3jpLJlckdnqPKVCFb9nyWfL1KPb5GYirrz+AgvnniSVj/m6b3oPDz/8OH/x+z9Koejyjq95F2s3e7zy8nWsSRNHKf71r/wbun7Alddf44MfeB9/8qWvMD+3QHW2gpfyHhiRoBMal3pgEEGVYyKCKoIgCHeRwVfaTpdkf1QmfhutwXHdyTkdh/HcHbS/E2c4Y+oEt2xiHMc9tKDKaAPzaJ67YZId0HGGrEooXh63wzpp7WkFVXYY9nRM6qXu89BOFk2Z5P1TSvVDcLe3dZD4ylHOWFKIRg157va1JTEv2ZZJnjvt9I8vjg1a6Z3TYuKEgMYEb86wBy7pDdrnlTtknt6gDYMcyiiOWb3yGqm8h3bypL0MYVSn1VqnPHuJdDqDH/g069coFIt02h0qlSroMu1OE60t7U7IbGUWay1RFNJt1MkVinRabbLFLJu3bzNbrhKYFJ4y9MIQZTWNWo0osqytbPKpX/41PvShD/Kvn/0lPvLhD3H27EWefOIxNtZv8vClJb77u7+Pv/v3P867v/G9eJn01Mc7KbducNsOvHNJ79lA4CSyFlcp4p17AXRCrEorZ6LQDoy/ZuPe446jMfb+sQoPI6gixt0xEeNOEAThLrLdG1NK9+uq3SHEuDvilh8w427QUUzmC51UbatRZ1aMu13ulXG3Z/kxz92dNu4GoeFRFKOVxlUKGxpurK8zn9G0OiFuIUM3qmFDl8rsLDdv3uKhM+ewFqIootFsUarMEMchShmCWBGGEalUCtd1sVGDRq1OOptjq+GyWM4R9jqYzAw5R3N7dZm5hVle/LOrPPnUE/zcz/0cb336aX7113+Nb/nAN/O2tz3DT/30v6SQT/G+r38H2ZTF8RZ45/veRbfXRHve1Mcrxt3xEePuLiLGnSAIwoOD0nonDWTcR11rRTwmlwPA8zzCIMBx9yu0jdoWsDfXZIKhN660wMHf6sOUUDh5487aft0qpXbVPjX90LtpPGEDo8tJHGd83NzIbabx3A0vdxKciHE3YMjIM44z9lgca8caZdrYnW2ZoZy8UftXalsJdET+3p51x/xu2A2pnnh2h/ad7KgPl0LYs5raew6cCbfMpGfJDOZtt2PSdnaMPaX3DWIknII7xsc0IYEx4Bhobm6R1j0CnSGdzUMYoJwat25scWb+MrX2DdLpIul0GqUj2s02hWKJXmTIeJl+RppVGBvjBwFeKkPWdlm+GfHz/+8v8NSTT/Lh73w/q6s3KVfn2NqqMZNJcfv2KuVKlX/xr36Ryuw8H/im9+JlPOpNn5//hV/i6971Tr7ua57mjRs3yZdmeMszbyEeNmiHn59BaQNr+gM+e2aZA5UyR2GMAWv3eNodx913jieVxBheZnA/DOdia60n5n7ebaQUgiAIgiCMINkhHiWNfpBhhzW02228VGpHSjspuz0sqz1tgd3hEgLDkvfHFoE5gFES+xNl96dgkE81LLl/Ejl+h1GNPJH9jTiGg0oJJI1FlRBoORJa7wlDnnhMJ5hgZO3Rtpf0yg1KoBh2S33ci1ytSWU6rLE7ht1B7DzjY7zTSqvtafpTZ43FYMnPlnnpxWW2tq7TazuEpsH6rZhctshW63XKs/M0m3VWVm4ShdBqNDDWsr66hlUxvY5PrxsSGx8Hj6jTo+MrMkX4Kz/4vTz+9EU2m7f4y3/xL7F2exVrXdrdFqXZGYLI8FM//X/z0EMP88ILz3P9xjVK5RKPnH+IG9du0Y0sr7z4Kuvrt/n9z352ivO0G2VhhqIstNYYY/YJp4xjz/qDGnpKjS3hMqkkxvAyjqP7XrpTlP8pxp0gCIIgJBgl6JIk5XkiQiIcyJtZLMTRmiiO7nUz7glHKVehgBiLdRSPX3qErbVXSGG5efXLVOdmuHL1KqViFazH4uIC1954A9fNUiyVCMOIUrnMxuYK6UyOVCqHsSFdv4UJW/TimOJMkbmlOc5fOke+mOVTv/7rfOWF50g5AcXZEl4mw4/913+PQrHKs5/6FJ/5zBd46fnrtNtN3v70W/niF/6Qn/nZn+dPX/gq733fe3jvN3394Y5P7zfwhDuHhGUKgiAIgiAIgiCcAsRzJwiCIAiCIAiCcAoQ404QBEEQBEEQBOEUIMadIAiCIAiCIAjCKUCMO0EQBEEQBEEQhFOAGHeCIAiCIAiCIAinADHuBEEQBEEQBEEQTgFi3AmCIAiCIAiCIJwCxLgTBEEQBEEQBEE4BYhxJwiCIAiCIAiCcAoQ404QBEEQBEEQBOEUIMadIAiCIAiCIAjCKUCMO0EQBEEQBEEQhFOAGHeCIAiCIAiCIAinADHuBEEQBEEQBEEQTgFi3AmCIAiCIAiCIJwCxLgTBEEQBEEQBEE4BYhxJwiCIAiCIAiCcAoQ404QBEEQBEEQBOEUIMadIAiCIAiCIAjCKUCMO0EQBEEQBEEQhFOAGHeCIAiCIAiCIAinADHuBEEQBEEQBEEQTgFi3AmCIAiCIAiCIJwCxLgTBEEQBEEQBEE4BYhxJwiCIAiCIAiCcAoQ404QBEEQBEEQBOEUIMadIAiCIAiCIAjCKUCMO0EQBEEQBEEQhFOAGHeCIAiCIAiCIAinADHuBEEQBEEQBEEQTgFi3AmCIAiCIAiCIJwCxLgTBEEQBEEQBEE4BYhxJwiCIAiCIAiCcAoQ404QBEEQBEEQBOEUIMadIAiCIAiCIAjCKeD/B73vfkeHhQfVAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image = skimage.io.imread(image_list[3])\n", - "fig = plt.figure(figsize=(15,15))\n", - "plt.axis('off')\n", - "plt.imshow(image)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Figure 2(a)- column 2: elastix registration on rotated brain sections" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "elastix_results = os.path.join(ROOT_DIR,'DATASETsubmit\\\\elastix_results')\n", - "os.chdir(elastix_results)\n", - "image_list = glob.glob('*')\n", - "image_list = natsorted(image_list, key=lambda y: y.lower())" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAALOCAYAAAAKgeofAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvWmQbUtWHvatzH2q6t777nv9hm56Ujd0A5KhoTHYYjC2QmGMEQpH+A8OMEi0ZTnAdoQnQsKWDVgMJqwfskNhW5aQwA6QGYRsGRHhEJJlgaFBDmFoJjd2I+h+PdDDe/2me2s4OzP9I3PlXpk7cw+nTtU9VTe/F/Vu1Tl7Z+bOnTt3frm+tRY559DQ0NDQ0NDQ0NDQ0NBws6EedQMaGhoaGhoaGhoaGhoaLo9G7hoaGhoaGhoaGhoaGm4BGrlraGhoaGhoaGhoaGi4BWjkrqGhoaGhoaGhoaGh4RagkbuGhoaGhoaGhoaGhoZbgEbuGhoaGhoaGhoaGhoabgEauWtoaGhoaGhoaGhoaLgFaOSuoaGhoaGhoaGhoaHhFqCRu4aGhoaGhoaGhoaGhluARu4aGhoaGhoaGhoaGhpuARq5a2hoaGhoaGhoaGhouAVo5K6hoaGhoaGhoaGhoeEWoJG7hoaGhoaGhoaGhoaGW4BG7hoaGhoaGhoaGhoaGm4BGrlraGhoaGhoaGhoaGi4BWjkrqGhoaGhoaGhoaGh4RagkbuGhoaGhoaGhoaGhoZbgEbuGhoaGhoaGhoaGhoabgEauWtoaGhoaGhoaGhoaLgFaOSuoaGhoaGhoaGhoaHhFqCRu4aGhoaGhoaGhoaGhluARu4aGhoaGhoaGhoaGhpuARq5a2hoaGhoaGhoaGhouAVo5K6hoaGhoaGhoaGhoeEWoJG7hoaGhoaGhoaGhoaGW4BG7hoaGhoaGhoaGhoaGm4BGrlraGhoaGhoaGhoaGi4BWjkrqGhoaGhoaGhoaGh4RagkbuGhoaGhoaGhoaGhoZbgEbuGhoaGhoaGhoaGhoabgEauWtoaGhoaGhoaGhoaLgFaOSuoaGhoaGhoaGhoaHhFqCRu4aGhoaGhoaGhoaGhluARu4aGhoaGhoaGhoaGhpuARq5a2hoaGhoaGhoaGhouAVo5K6hoaGhoaGhoaGhoeEWoJG7hoaGhoaGhoaGhoaGW4BG7hoaGhoaGhoaGhoaGm4BGrlraGhoaGhoaGhoaGi4BWjkrqGhoaGhoaGhoaGh4RagkbuGhoaGhoaGhoaGhoZbgEbuGhoaGhoaGhoaGhoabgEauWtoaGhoaGhoaGhoaLgFaOSuoaGhoaGhoaGhoaHhFqCRu4aGhoaGhoaGhoaGhluARu4aGhoaGhoaGhoaGhpuARq5a2hoaGhoaGhoaGhouAVo5K6hoaGhoaGhoaGhoeEWoJG7hoaGhoaGhoaGhoaGW4BG7hoaGhoaGhoaGhoaGm4BukfdgOvC2cW5mzuGFMXflZ07duDFxk4frMIxpBQcys0gUPHzOXArZppbhbMWWilYrGP6RlyH1hrWWTjrkutwM/0iQUphe3GOrtsknzlr4ZwFUbl18j6sqW8NnLNwzkF3G5ydPsTJnbvVunZtD9ehlIZzw3l83fKzpD5S8Vz/N0HpDtb0ABB/d86BaLcxltcn2zz8PtQvP7PWQSmCtXK8+DKMsVDhmVNKw1ozaiOXm7aBit/LOpR4luXnS7+vHcv187XVoLWCMeV7pml6XCTPkNLx91J56XX0o3YqUrDyPnEbnAZ4NpJ9mFzqeLykY7M8nlxop69/OIaU8uMwKa/chzb0kXMO1jnAOXRqA0UE65x/Voji+AIA6xx0eP5648eSUhT7TSsFiL63DqEMG9sq52eLoe8lSvfPGl+Xza6P1FCec75PjBPvmfhsOGiSx8p2FJD0vYOzoU/E/GNd6BtXPs/1BlqrePuJKCm2dm8kXDjBhf9b65J7LgtULu2L/DLkeDKy7vA5AdDg+obvk+el8n6N5YrfZQ/mbxcihV6O9cqxsu6+UHd6l5ZD83OryA9Urjt8zv2drxsUCCa805O6Rd/ayrukhGT+UARNGsb08gDAOqjs/cznJENP/N5tOtjewjqb/C7rjecpBeMMnHXQ2ecOvm5rTPKZdRbKUVxDSCTvaG6hfD9tOjjrYplLMdd+7qe8TfI8rYcleWn9kKw7TQ+ldXL9EnrTwTkL21uosEZTpBY91yXU3ru7ljF86Pw6Jsxhq8/P2pMcE+bUFUN+Ud21dvIx8vuTk7uXX3jtgMeG3O0bV0Uk1mKfrZBlqcLnNfJnrcW6V9cYztpkYbLmvOsEEcGavko2H+W4YGK4vbiIBIpJ3j6IHVAmdOn3CxaExfMsrHXQmmbL2PXFcp2oEbslkAvUuWutEkwiOJQWci7+6+A84ZhoybhYNfk9MBBOIpWs4j2JSrjkLJRSIEwTaUlO+rDI0do/C8ZYEChea6kUJjV+USi/KNdZvifzi47SaX66cBPl1pBuahDGiw/nHODydmWLIHe558mG+Y6qc/fyshfNHYXy5gjdWiilQSDQghXhvuuegyR2JRAROqWQP2hWjuUVTbZUeWgWQpIxORf124EK91tPUjraoO+3hfZ6YjQaydbC0pjgzmHunl1cXIAAKK2BmY2/pfUpR7C1+bKylpiDIgVYB1uxRDhn4ax/Nq0xMM7CKgtN5U2rWew4hvaKypz8yNpzwGjkbkccBrUbyET95bq+LABAyQJVqcMYA0XkLZ87PmTWGii1ftIpWbmuEl3XwRiLrquQu2tuT6nuruvi72yxYwvf5euYtpTVrGcSpYW6L9eNLGKlMpbU8agxZW2eP1f08eyCt6YE8N+4jL1x3ylJ7hbshsZyF3T3cNqwICMgWhQKRpmJspik1FmobCdvEFnrSZ0fHw7O+sUlYVy5UsES65LGVxeBpaeodhnJUHfjZbkfJ+Q3jcQXc8M6eYacgwtWSi7cOd967vPSeTpsAPh5gS1iwtK24F7PvXeSZ3XmZqfEunxMTSEQT1uxiZXeX2kB92qR5O5XLNpuzWDeA9jSHq2y+fdh3nHOpqRnV5ISrE1rrH3p6fXzdLBiAX6N0ZOwCFr5HPoeL1oHHeBmlBBTbVKjzQ+gC9azfW3UWmehlQYqG367rt3YAmiNKRJE23u1GBGBOgX0l1uTyGd5V6XZZVHb5HtU7Tlk0E3YBd8HzvuLYckhB6mYIOXnLP+oWbMklkwBCmyet0HWZZNFTq0+lnOWLGl5+Qx5zlWR0Jp1obSxsqtUcdfzNpsNemNgTR9lifmk5nez2Ko1vrMsVV07wXtrgYHW+hKLe5a1qeLv/DfLGI2x0VK3vI4x6eMy/e/LF/wS3J6aFFOWsQ+Zh8RaeeXS89aC6+Fx4OsQ0pva7mMBqYSvtEiXZa14tmxlc0J8nN8Tf78CWSp+FzZ6vN0DoGFBb8N4U1S3zDp4eQ4BMEFAJyXv2unBylZYU9eGkAPLOBUcDKy14fkcH5twJlCUOiZz3MCgokyUhITTS8X8+HcwviRSg2QnmxeYwCoM5XGfEom7Sr7vbWbFSGVI485I2q7UQA4yCb1/RinKYGvPCz/jzjq/aFwInTzvQTZaWZPVpKg72hwiUvFa6GeloDJm6ZyFrcyBtTasE/FNoybnzMS4vj3CEkPwc41SKhkDJvpvSLJdln6WkJAHedPEeSV5ISk/V7FMcqaSKhnUpOHYtcXa0XHcPm/Z9Na8qsQxyriHNkk5J4CipNOSgyaN3vSRmMrvVae8FTK0heWYso5Se+Tnl3kncr/I694nlF4mnZxCaV2xpryaHDupQwHO+vbaSyhogHVSzKSdTZbZwNgnCePJ4lCsi9eN3hgoAA/PznD33hM7lcHEbhcLDC/odwUTrr7vIykipeCMHRE5IgWlXNUyV/ORG7Thw/X1fS+IiXhp7Wgdk+ftKuG8ibB72vEdl3u9/SVfWt6a4arWdV5QKqWgEHztaNgwS0jejm3gl7kvIycKNvVzKVhavAqR/PPpTZYrWrIblFJwALR4FswV3sZdrQ3Rcuisp+9TfeOCtZMSO+iNA8t1R8RmT/7JVwIxjthglViiMGygXNUV5PWVwOMwuutlZLNUpjPDZrt8lhdZDfk8qwbfsj3Pw1xmJHYrR7/0VZTXV1NMrQGXoS659jh0JGuK2u11BGO2MI52l6DeArRomQcCZ+3eJiO+qYfiF3jdYIvc/ftP7lwGE7u1BIRIQenukvIHvwe8OToaPgvWR/nZUCdVpR3WmviTtxNAkEH672XZWqv4Y62LP2vAcjMKVoy8jF3LPXQwydk/nPi5DlD8UUovWvASkQ9G4FymkBjG2xqoYO1Twi9uZDUsdLUce55nUmw/E67rhjX20jvJc+Cxx9bAxf0dzKFaa++vOfHucEAIVnOzlw+KlJf1ZaPBRSHg4UE5ij+MdFZw4Vm7uhGuScefGqyz8QeYkc2pIA+W1izx3xLEo5XyRC9YAWUbLgsCeR8/pfycs/K91W26+CMh28nrwLVrN0sOULSz/96NgaPhpwZy6LoNTo5Orq9dB4jHXpYJ64oSxlIUypo0ck3wkRrYNyKPvDknr7xstMx9YEnkyNKxbDUqRbR61Hjw4AGIgJOTkxgdca1PIF+/6bez58q+smKHr7Se3scjW7PoSUmlj6Q3sds64/vGss+cWK4FtyVvI9+XUnskpD/gmvMYHPnS+4UCIIo+bYyajEp+GiM7Su3jzOJFjhoXfMeUoiRaLUNVLsMWfFKcMX4MEEETwQSJXB/leKn2UQW5XiL/Fm0fiB8Bbrjf/KkTYTiTsSKjV1o3kDERdYx94VRlMRnvX7gpRJT64SQ+WTpKJuP5bvBLk8O95svDC06+F7klMTlWBb8g+VmioiQf6MVN2AHE8YYje8q5NVghrbXoMumjK8grh/6ipAwiAtXeXEl/ikicXGbWeM1y1cyCytdZFgOkT5F17Bc4yHXHZdZRmnWuch//svUteQOWxki1O8Jin0AcuScUUlBRZHI3f59clPjN+/6WLWyJBU7I0SU5lVJLGQ2U/exG5Sqal3gW2qa09s9rP9/TqlOj46JksxAJk4ObLIU8z5gecIDuulkym6+TuM929tujIIW1btiAyySj+fuSz4ttOjAOsWvblkg+5+or4fj4TpNlNuzuZ/YosbNPHY0nk0PB3bt3AHipYtdd/WMiCd2jxL4DlHir4G6RUHOwVJTbuNoKJM5bYy00xgCgEKjGXKvtrI5Im3Y6e1fpcLLIS15q7A9mIN2w+MVnlyzGgvXIukGdZG2QT068QCMRvMRdccGCs+SlHseh3CCpLAy4/UpIVOW1eL88TMpESz6qczs80S8vKzP2Zw52ZFxym5SCEgvxfSFdVGYbB87BgsmwPVzZ5A1FMu5p+GufC/fEqiR9QoWk0BoDqFC/dXsbXxz5ctG8zwRwgS/iPrDpjkCKVvuzsf/sdQduu61YJPm8QWij4sCgxM9Nwa5tHqRah/ckGWODvPJ6FhFKd/HnUYIllPvAduvDWl/WB5HBMlG2gq5tZ3recomj5h1fnxjNLzwe8W6llwzv/txY5/vBrMzlNNUewEdqTeS4QYrI/GzqcWIxGVvrbLA8YSLwBjBfrpQYl7/X0aK7BIrUSP4k5aMS1towVqg42rRS0IomN1VK8so52WW0kBU+9+3NrqnQthqM9WlL5vK7roXSKv6k4FQWbicf6IYFEA+oChZ9Yuv9nua6mtSSg7rwM6XYV0rtz6dzyIU5P2YJFCLrXs+7n9M/rAUpPxe1jY49YYnk8wbhsZFl1pKY5w/wVGqBREwVJJRX+ZqpTUOaZQwoE6pDo0qHaJmbw1WmNJDRKefqjuFHE/+lgQByxMy8LJZCyuTgpSTp47rTxOO5NHPXiJQ1MNHKLXsyCqgxnsjMkcQ5WeYuGKJAhrbkicLDv3OzaJRxunTJrZSaToae/W15d1cLGSSXVZnLLdlBShqOcSaEyY4yuZAcPJMMxrJF/bFcWTcnKCeCAkv8hmTiNbmfhUWMOik+VzTIaEu9kYzhwsuYktxPwvIj21HoLl7UEZGPdBmsbtbI50+Pzqe4DvbWLwLBBBkvB7iIQUqk3DX0e+n6GZzQe7v1AZZc6FuZJD5G3OR5oGIJzB8FKX0EAGsplpumGAh+lEDc3HBIJc+yMyhc267W1FRaFUhyuBf+exUteLU1jA2+g1yWH5tXB4uxv14iq2bJcMXyuPQt6eL/w3XNHK91B4hNHOvG8+2yOlegYPXKJYScp05KLEvSxylwBEszoXypRa/M28bQuouRM6vHcgCXCSLA9XGkz6nj9gl+5paQ05Isk8uwbvecePxcLlVDrCmXsYS7lJKK7xulNsnPmizzAMChdg8dPFEwyWvYP1QtjPIlQUpdmn3XfNjk5yUfP0n0qu0jmgzYlfu+XQZc16EOYX5BeUJlYcwy2doaSCJ9ZSCEvG+DrFLe4hh+nyIFrRclCZ/0p7E2jDlPAvimch+u3VwudUdtw2U20Xuw/GkQzEyuJr+ZgcluiC/wicFAylsfFLlojWRSlz9DLhBP2UnJsxUWkptNF6VY+7aaDVXNL4ZcGCvX9aYc0rbMj88SjLWDRfWArRxLfH4kpbvJ2/LGGSiloLGf/KuR9e9hHmUCqGc2QpdCpnC4DvC8/LgYbqawKKDPLcVjY7k7v7hYdaFzAVXmQDPWtRqWPP61wC5LvwfK/ilrHoAldRTrXZnnrpSOgKNYMoHhv4cd2nXLjl0SqC+x7MmAMfGzLKDMXBlM2GoBTuYkGYusg8nnnsx0XYe+30JrXQ1g4tvFfnAqtnMpkoAMIthJGite+GaUgrYsGU7kAFIgVybFtUWVi7uylBwtCk4awrkr43W5ct+vEUKmO//SkjLuC7eg5OgDZ8o7oForb6Fxg/UtWrEy1G61zMrJRY+DiHAC9XIZFmIDy9mRr1ieakuzrMw5HxxGtCHfWU2ujygJsMVEm4hgqdyf5IYLUsRETEWLF7EV1Dk4F3Jssmkv7wyB4pxMNAy5qr+jgEKQwQ7fd9luDV+7td5iyMF0gCxIkiD9uxq/OTiHDe1wQJQCc/AceSy3ZR9SM7Z4RonqxK6VKljVhl34VLRae8pKbxC2MOZW6LwMAuB6C5Dvd5o4Vp4zbsN0v3FwGgCACOrBibDZKuWsgxbvDhOUE8YYbES0R06UnVvE+J2ntILZ9kHOLjcveh/gJNQ9hURKGSyCpYTmI2ufIhjjfb6PNkdJ0Jb0mD6xUOXSza7bTLbRkiu2qZTnjtTQZyXU8t9dJ4zpLxWkBaiv8+bKXPvcW8drExmQTq6rpjerOA+joungcVNolrsGALuTxUPDoRhbBonjWJp4aNhl524I386LjOvpeU94FWS0vXzy4/D4+94gKuXjO0ykJJQTdx8yhnuVrKojfALrYVEe9aT72xiPch1f7HSHeYsgoes0+kRaNhzjl96DZazmZ8aIpC6SrXXtV0rBGDNKPuz7DPBjAYGAqVFk1etGev0+n921Wd0QrJKBVJPfLbi0H9fcRocEb1IkA/maIN9PNWhSMNZ4Oe+cA+k1oFMdLNkq8eq35XxtElHmKxbacvOi23SwvUXvtnsL359LPL3UkLCh+jKXQNh0R5PkzTlXtbyRUlDWwi54wv35qhYq9mDAxO4y7/brJqZGjMmboL67DjRyd83YR8LKQ8Ah7DABUrKTavkPDc7anSyEA2G1RUnnVQWjkZZCKU9MrW0m7vTvM8pmMp4OWFmQvvj8jngkGgcKW+AzMggIh9onQrBosTU8HLDEejSDwB+jvG/yWLBlzKbHynYoFUgpW5koYVN5k/31Ekyw5OZBUOZghUogNoGGlAYAxXoc7wgHvzpg9+0Z2c41ZSTucIEE10bo2r5YVLf1FM+G1BH7ILvymvRMk73ledgouE6wFXjK/9A64U94CfnpvmCN8W2qvKr0ApcFtn4569DpLvrXRfQEKIJGt5f3tSIV/TIZpBS2Z2ew1uLu3bvVc/u+TjA5VcHm6KgohSYiUKeABcGujbPooA5eIsjEjhTBmR3JXU2dcEXvc5m8/XFRI86hyTIrqAUqUfCDv+97kFKL/N5q3+5brjlXrizjsrLMKbhKzr5LlVmRMDLB2Bwdzd4H3n0rtc1aA91thvpWtN05H1nzqknlnL8c4PuGpZyjBajuYjL0KVLIMkwOvlINWBAI4JJcdqvkmnHxTFGmZK0V8iQXA5GkMqQ5f7Hy915lFyRZBVmmJ7gqOIeXYWyf9AWRQi3qVpqjzh+jtZ9TfDtFwJWKhaIk/5DSSZbd5XnOfMBPqraNF8Fa64QVWWfiIjkeG3OuUSxbE8E5is9XDLSCsFgIzM4Iy7C/fn8nfWoAhzhbEcWcabLuJFVeYTyTWJkaY4McLY1myZdnrH8mojSHx1xF8xu3WxLroYrkTncKzvKYGVZ9pUdAq2HjxCKQU/FOWSvLNDEghVjkSiIk/P3KzzVFolwjQi6MISnnlOi3BkorL+NLElP7S+G8isAQzGUqrUJpzpO+k7rSzvg0LOi3XfPRyR7UWJ6mYU1OvL3IMvM2ORHgB6kUMR8VOiM+c7nVWNbHZTIZzN+PLFsMhe7FgievY0l5MugJYxScJeTVK1nvlMj7wnLLJeuAmqsG59djeewuAU04SMo+1nP5WHbOrY5NMffeysufKqNmsX+UPKblubtliP5gj7ohtxh1v7BUtqc1RdKypMw8xulNy5tUS0A+B++/uCy4hd9xrhM7YEjuDZi95LHbK2pWniuCTPw92CZqHT3+vO/7VWNwGAMVwhrv88pxLX2PZs5lCVnIECGKKEtUTYicqRRhozc4PT3FZrMJPhMIhMi3ec0tKz0DCakIBKnWv5tuE33xlmBun8LzV7co5IVc7HDrOPjNLhiSsZfrloFaSuSN++Ays+HmqINzLt5vBkf0NErF8o21gfGt2xi7ObP15bF8+2p3JMGRMoJknB0RvOtELfn5HHLiNYVd1RZLJKprEJUwpBZJPRsaamjkbkco+B21tQFTGpZjyS7NkLvMzJIWJjf5zpoMxnITkOz6rYhYyY79tCgKiStKMdPyXHRmPjQFQCJhuw5yRz5YhAOASI4qx2aBZADEYAX+9PmxOIS7LoMJl1Lr/CYc/D01xlYtIgylPLHLI6MEZWKQooVjNcH2bDX0NSml0Pc+QAOnGiBFQdq6XMLI0rdatzFh5GTYOYyx4PQFixZ5c4FRnIOzgFNuloXYcIi/T4gSzlLZS2SZpXu95lmIqQMuNR8GWapK1SAyOEv0giO+3HVRE/ctHz1kSNJgVvTRGsh3iswiYifmsWtDlmZjKdYQr12TpS+RqK6BNcYHmlE0G2imoWEKTZZZQU2WyTLMWjTMPGBKktNl5tgSzEITuJSHLpGBXqWAcF+yzFyKyRJBGVnR70T7hWLJn42UWmzVOxRwlE3po1db+MxZ8aa+J1IxIua4DbvNCzX5ZUk+KV9dkvCk3HMozwg5ZgkJCbUOOh7Lx5f3wJUaIkTyUVOktoik0Uzu1klq2KqS1EvyGUgJVMyPFgOJKPTGW1Fj3joX+oEDpYSyk6xqhEjSXBgvxpg4LrwvYYjaKqWI4jy56FIY6pN1xO9DOH8mM1PEzLrBCkgEQQKHY1yImMYkz38oDojSXpfkv+Nr5KiRxSeM5YlMWJWGMc77I9IQXKWSHz36FvqNEPa/U+DgGYNkdfx8xmcwMmTRx3Ko23QcSOR9y/ka89vDhNVZh26j4/UlFzIUGq27+wTP5/w8ctRME64vNcaXN/7WwDlxD8hLiTu9e/j7suRsuVSzhlprShLMQWJel5AXH7ZIvOvy2DlJndw4MRyQc4GlbU5KKWWgrArgaJsUfGelbNI6GwO2zIIl5YJIjayYQZY5l4PPOhvbtIroKSrmlJvKuZyDYsC1NIjNbNXid2sttNKJ20DtXsuoo7PjImlnmDfEuNhnlMpxfeH7K1zwNlnmLQM/eIdCGfq+h1ZBB1+ZWBKp0qHJ6FaAiR2RglIO3o/6ke8vHjx2lXNeQUP887P6nu2aD266HhkhkhWVpC6x6cWW4DXSQuwWlIaIvF9esIawXxmTopHPROg/J6VOlfsQ/R5rgSA4PUF2vmViIC00MqVF6G9pMWeimkOJVAhDMmIa8Y5ICiwHSVmwIab14uif1jcSXoLc+RiQLCUFVRfE3miY3gfpDxMT/drUqihD4UefxmVN3Q2hfRwa3CFb+Mm2xc/2G/gvbqgIX74rzf+4Zzz27yC5wRM3WS5//5TWPiiPIG4aXTKnMPHbB3a14sV27qkdLCt9lK/qm47Hue9u7gr/EYPHjCpYPR4FNhsfDGTKWqZDABh9g4kdgEjsOKpTnuekoQwffMbMBj+5aqzkPRF+kbv+TB8cpr7w4l0/pVWQk6U5mdaCg/yvO8mH7aaVq2VrLWywZkfpIQ1SzLy8ub6Q2G63OD8/r/pTDlEg08+JyM8zWkful8w9TpAa8v1V9xEzcA5DjsdozbHxR+uwq+98ZL5OL9uzNMYsX3w654P6GCPaHqwcE905GN0o+ZAJrqKhX5Sm+CMRYoVeKRQhWspkwvUS2BK5b19WDlxkwe3YfVf/UYBwuXnjpsOrZ/zPPvtCkRqsW7qDs0CfBT3xWYL2M1ac+FnVzhhYaj9Pa7/tE2lpw3o4aw8yevp1oMkyKyiZxOUgYSuZsXl4jv354S2Rbc6dNweFQfq5L9nmLrLMUj+zLDFPYs5RI4fIhLuTu6XRra4aMjH7kuTm8rzldczLLfiYWtL0Guo77J50aKVYwxcXwzLKcirLLOv5WC5S8lkblzHX4l3nPU8wR7nTSpY+F8Zu8Kdin641S548ebgKUTtL+eqcTWUqLMljq0uUZwKQT7gcC/KeyAhlmoZxwZZBbymzI0kjJUnMWeoq2iYDroj6eMeb0woAGTmVfU6DjJUopOuQHWWZ6Po6lPJ9n0rAEK+p1BdVqailQCS1t8KRgrV9tNI5l/aRP8fGSJWmZ3nScL3+voiIhc6ClIZfs3JnpLLMSavWhBXJXzeNrHHsQ8tS26lomZPVBFKmRvPH0DfAkGQ8KZjGCdNLc9VsG1aD78cS/2tvXXSLjr0UYbyJAAAgAElEQVQ8pqJzjj8Vz/7cTJOMdTmPjBU+U+8Bxe9h8Q7nqYiTo8f3rKJRwuhd37+5+ihPpD53LKyLm/PWmBidMm+PdTZu15UUAaoL8v/K81iKLrrmmvetskrmuMJ9XXM3do1Yye8AUtiLRPNRoskybxhKD9TSh6zZkOrYdYJ7pDLCW4JHKhuSZOSSE/hNkmrtExTiL0p/qHzxPIdIKKRLmjgtXRAWFo9MRGhgZvmTmWwilPyCggVOkrgacvml/INlp45sJAZDMwdi6uHlnUW+Ulmg1H2L/D/WcmJuLzF2voBR0WyB4vD9FHwiHVK54+heupAAvNCOmK8wJ7UzUMVxg1H/TWGuj2wghuN764JFZLBsJ/fDr/QWteEK2N1icCTaR22lG3yd9lfW0s9njy2cZp2FsgpOjYOa7YI1uXbnjnXwm4puUbAxAUWA4/jIlb5SPpWPWll0TCVxC1eUkfC623dth4JG7ioYUkePP5uCDLrSMIbswzXiwJu4o3NoeJQ+dxw4Qmkl8gjtuipZR2huDQr+aat7gomJkQt0QTDEGGHJs7UDkVNEPkcdeX81HzhGpStM2ahCxga2CBtjizvhEqlVLf2O2+fcmGCSIjg7BJQx1kB3HeAGmdNgORP1LZhmlCY4G+StVkWnfQ5gk/jXBT8ylqgCgOkdrCrNafJaRQ5AkUdQND72QYne1a5D5j9MSC32tynplRbd6PoUqWBl9TkdfcCe/JrtOJhLAVIqvC8fp6UYrOLrInxeQUvCv3thd9OfL2GQooxSGH+/meFJztp8dCXIMuYI0Oyxzuf9k4FClsAYA5CbPE85gh2pBubr6DacH3Bxc24MNt0Gzk73W8Pl8FjKMueiWy6VE/LxksgtIXc1OWcOE+SNS2SeN/H534flThIWGZl0F8jImvuQUOyT4O97EVGSgObfz6G4yakphPRfv+DgQDlIon2F8PTR30pNWP5qda5ZBLnkN2GgCkVU7kNpB7JyrBMylDh+XVov+zUlkS4LzXfBCEKhoSlpo2g5GsoOEsaKFNE6P+eMDDt8LVJKWLw6gJz3XfTGJ8cFJG1g1IK5BJtVkJX6epWIJscEl33EmFh5AhESk6t0rGilYuJtlsjGaJ/JBYylgUk09jAbDxE4ATkDj0gY+TMsxgFIiscSYloMACCOAizknvHGZm2dI6cU+kpR6t9ZWsMPObc8fSwlLh/SUIzlrD7FBCX9PRyTW1ZzybEck+NomfuArJuDw9zEoCjcXzwHSBCHmc0snV4mrIP/dXpeeVpPwtMOv0aJ9biOUTvF75bCs7ogsiQHS7HOJrLLkm9bkpoAgjzI+a5USUhmzsdacqOHSQUZdh4ymKWcc+Stdh1T170L8vlcKUoI4pyUMp2fxxL7JfWuSUZ+mxD7QGyYHh/dbbLMmwQmcEtIWsP1wJoeamEwhYbDgrTmHEaIoqvDnB/lVS4wY8CMK4YNUeNKflv7uj7r/AIsBjKwDqTcEGiJAJvJgFVYhMZw39aNgs4QDVakEtY0n3PrWQBwgFVj4lg+77DeKkTeR07TmKT5ADMCDtBEA+kL/b0mVtB15KZ83BHjCvBOzPDF5HkJ6XAcXGeIALsETIgMWaiZ89iXTk9sRspjGasscM4U/e0kCIROa/T2dgc5uUpLGhPgRy1pvmocwvzdLHfi99LntVuU57lbao2rYY3VSdYNjC2F3Ka8pLnrWxuIxYr2dl2Hvs8jWC3vjaITd6Uv1gQcWYOa1W3OGsfBY/LALxIyYIr8LKlfOp6Luufy9HHZvgyKsieGzAmotZpcuK6ZD0qGKYPy+bUgKMVjo7SNpYfechfvQ7Lj7vtcKbZGsZSwVEdNxOjSj109N1UiYZRWPhHMZMgl56IlIt3VDDvWyTjO+if6pNV8Yfi88WfjYwW5CW0zYefeJ9xOr9/vxLvE2gaYGK2OiFMPyB1iUYSwYg7550R74AOM+Kh6WVtjM2xsTyyXfP41llyyRVNpTrquotUTSaqHoYyStDFBfs9ZAkuBsDoLrTaj03g27lSaJyxKIN0wLrQu74bnbRv8IzlSaGVBJCx4XAYnI+e2M4wJwbMolWiqOGa9dY6yrsjzG5Y+J7CVL7smNwT3iceGOWgusJM/VjxbfDHB+oQ9BTWZ9SMMFsr8+vJAQVeNuXZWF82FY6W01Yp3TukqlvRwzJEXxqMLhE8pHYOSxPJC3b3pk7LZ8pasZ2Seu5n1ER+rOgVnhfVOqiXihYqAKkC03E3mvMMO5CdGbhL3bmJNoTr/jl6Tr24OnAePperx85KFVX4fAp6QStUea8ootmeBle8mgvvZGj+3kSIcbU6a5e4m4dDy3D1KMLG9rsiTh7ArImHiDmi9XZ3uEjJ81ZDWDMbm6AjW9DHC6I1D4SWgdAc4G/y3buA17Yo1l1qQ2hEoWdDFQ4kAx5v3ksj6RRP7So0IdOVlbYNkbKx89PUkFhryueekxCuJqueY6JcvnkJADmvt3iV8nEdP6w6cSUTWoZUnmD6J/PCF9wmk7DrmFzP5hsBaeF88ILuNsUzrvEQzFUBOlFf5vLBuHX1vK5LBXWpkAuWsjXkW9V7u9XQhTLCNMVC6TIrWpjHZDaU6dqs3kf7uX/OKqXYZ06PbdOjQJe9EtrzNWfNqYOJlQ/7JOcT7t2Ajep8WrdpGgF9DAaujr8xWSHj48CHu3rsLZ5Y/h74fb7+lbd84hPVVI3c7QlrsHvfgKZxOQSu1KkjKrrgqv7ZdwRa7qbHA5Pe6MEwuw0Ru+q3ffV4gbzlEDFYd8Zk1YXd4yhfv9iEGVFlwzZL0Mi9iCSxRumjxflU2WETFbjepGNrfwYcOJ1UW0KYWTRT8FoVFL1sQ++T2w6JLEiVvZQSgyukkfHCDsBBfoEMobQZU/QiD35lzQ5/L/tlu+0jIpHWeLVdpwnbZhnJ9LliqFe02rGO0yjyoiSDlbPV2NL90S8ZQwXeu1kgigmI/zzWqgOTeVIgxhRQre7CY1epj+LFFo0VbOqdf/fxTamfy2Yo+ToLS7Hnu5DyQtfYoreGsJ3nST05xH+7YHk5LYI1Jyq03dMWYvKRPv0Tinwc5zwYf4n6/64Xe9rhz92S1NZCtnhaHQVhuCvi9Zo0FxkKP62nDbTKJTmFtnjvGlITzspExSyRl229xfHLH19f3/u/jk9HkKyWhOWqtkceWJqp9L/fncgXeFJTav0TCKcH+gNd1/UzeZGQ3Jp85sWO5qPzeiJdATUZGTgTWmL2u6cXTEljnc+/pcC0PHjzE0dFRei3gQCTj851LF2IqBispyzWNMdhsuixioxVXIM4TZc/KdxI9K0tA/ULIODdI6nLi48ZBLaSMTl4FS/Q0EYwBlA5SkRCWO4mPEIIq+AW8lA2nEtQ8PxXIDov2gnSOZVG5XJmDnnAych6jWilv+ZrYIefzEusguL/Tvortsg5Ki/xtNOR4y2WLaV3+ntR22UfWKseyTR3Ld9ZBdwp9b6IMlsedE7nvgJBaQchlhzyFod+AJJhKfh2cgsBXzNE7bULCtYgi6sQ949OM8blFo9Uv+364VgwBhzIYY9B1m8kNpDULRRnYhe9VTSZ53eBoqGsjZ/qASeGZ5XtZYfo1H+RSbfLZMaI9XWGQa93BWLPISpxLOFlyKQdAcowpmLcXIOaFFFbFRBUgjo3uKULy6aXBXpZp+/L9KAU+seQSnzsuW3XimirlzdWR1xXLD5LRLhDdHDzn+hPcYmvkriAi9P22SoqTMZLkPZ0moSUJ56KAbQU1yGicXnG/rJWPlp6jlufuMUTRf6vb4PzsFMfHJ1Ba4+iKrD03kWQ1XA5M3PKXOQX/CGf8d95qsmBScy7K7q4D5KtEbw02YgEtGuRbsloCVoZSNOoLn9cMmLpmJaIbLgUvDBUAt4dnnq02LliyrLF+4Q612LIl4X0E0+vhIDhs1WPwYpyJDKDSqGtRWskSSoqyN2cdnL78y5rHuI+kaaGgg3RyaKcKC7j6wtbFiJpzijsFwBKN8jY5+GvqOh2Hgwk+tFqrEUGUxDX6lFUspCVIIliCMYN/bjI+C7shtUuOkSVHWwqhKN3BGCaz0769u1oDYiTYR0jsuB0AqtdZP89vD7sgLd2XjtgKX9O5rjFBX7zkHpQk3JPY8XpYKrr2bD5eyjL3gX4rfNdXyDI5jYFElWz2FlALks5fA9gHseHm47Cclx4zWPHDONpscHR0DBChNwanpw/Rm/2LHfN6G24/mNjlLz7OqTXIytJpwVsUxuf5xMx+AXod4Mh7Sits+y3u3jkZtQfYn38AaT1Ki2KDr89UDf6YlfIXG8LyBwuWUnSpbnXBauPCfeMAKio41a9GYSHd9wbn5xfjQEpE6Q98/ij+4bHmHPyudfBlYmvbPtQkTkTRVNoTq7yd/rupQEUh2MzCHVvlzQbJ50ebDRxRKn1V3q/Qctnhh6WY1noiTkQhF9wKjCzRY3jfQe2t4OGneFywjI3kq2FDp+bjysFypu6jdfNpG6awRpZ8lfBBj9aTCWMM+t5gu+1DcJs9NYg7dkF7ZMCeBQcvGlsMpdSycvd1HqlosYOi1PJ3CWjdxZ81sL0d/dRgnAlRey/b2suB1A7zTcPB4rGSZfKzIx8zF3yhpP+clDuyLxn/zsdKcKAMzknnrEXXdUkdNcgom1Ma67WWtpJkk2Wka8srHblEimj6beJ/MgXu16U5Bkvg3dO5yJI1eeSu0T3XlHGVFtOBvNk4SecJd5ncScmf3LnNoyAC9YWLKsktxPcpydptnhmsjAQHli8mRwh5pai7EMrTWL94MMakPkQOPspVcB3PMfgpucTiJftNkY6bMH1v0IWgI0WItg0LLO1JoXNeOle4TzIXl4lStaRgmN6AtIoSwU53sJbD1Q/kl9QQxZEv2S9UfVJulrpEialSQ6TKSET8eOY8aMNFcdS8wfeAI+mNfJbgk6IzCaQgvePDrBlSKnj/vUK+s1ruwdjHg5wVQdrrHF9fHsZfSFFZTkqUzKXeKMp9CU/eMEgmCaL9bEF1Q7TXaC0kCtZ0b9mbIgguRAFkP7l43yjNExbH9QK2kMt4s8tPiuCxx9LRXK6c9Bs3bTT+x2kTumDdy/PgAZzD0Maip/z2BkugbP84IifXwxZnY+049yDn7htOivLnPBde3pylJM05h9PTMxyfnAxEtTZdiDrkvFWLTJxAEZQL8tX83VORVJaC/3SdRt+bMFmWz1OZzBoI7zui0b1zzkIpv8FQGvc2GdPK5+ML8wxxTjpHRTklR72MuSyNSSbKJHImr+0WpEKIbXPe0qZJw5g+RvKM11uBbLf0DQwXCeWouH6oRWe9DPJNLedsMgA5P16Sn3SGKyTPGUfXJFfMsbc3WebCtu3ah2ty9wHDnCc3UJss8xGBHyYfoGgcAZMCYaud508W/kk7BhVhYnmdQTeuGuxHwwR2LqT/5eu7PX23C1jqI3ff1sqGqoSkWN/42EOQltSgQnQKrXW2ig2LEZYKOoejo6NEkhPLSFeP8VdjTDyHqN9JqaqUAgUpozHGLxRqfji8mHDpwt7nUaOwkdOJZlJcdfuF6xDMJPEpDPIgpYJPjQ2+Idb/7fkEeRkRORioWJ7oGJDVVcmcomxxRQ5cQrKo5rY7RNIHICa1zlEbe2uke2kAF+3b5FIRK0t/rTHeCpaFCefNgEGW6iWb8pr9Zh75/gtEA+LNkZN6onTMKh3qyGSl/P5YQjJMYVGdB7CJn7MFT/ltQ44eGusRi0ATpMtTZGwgk2GTYeHzUrrv2+AnNIrIOeNLpnXwLczmRvahA7x12TpXjciZBprBiEzWYHqLp558Cr3p432tppHZm1kvYKa8JAJoODb6YBeUHVNl1GpimbcxaX/xte5jCzRGNM+sUUrczDjHS/JX8bOLn1tBXAWM6aE4knDhPDnM+HsV1BTWhFQzBTFd8kzuoWOUHtQb1xPh9dFj331YAwesOYTgM489uePAKM5a2PDSVVrHHRWtVFHOM2Vh2oVi3DZiB/jw/8baSH6vmnztM5rVTQUHTrHGj1mlO1jTJ7up0+dT0XpXOVr87l8WV5WDcC8gBeeMD3ghAsYQADgfwMQB6KDQb7coLU1KCx8AcCBcXJzj0y+9DK00nnry/qqm9cZEkmC8w9ykZND0IWS4WKhIOai1NshKDTp9BGZ2xphgfTNRNplfHxHnkWPfsCG/XN9vQUECZeF9OG1mTbWuD8FUgM2G/Q9lHYI0wPpjaZAFS/8+Pw4DrSQXgoS44gLVVCLBrVnAWOGTp8Puer7kdvBzPGlP/vI0HPz8KKWD3NRbSCncT2csDAHkhGUqvw8yXLkiaBqCpwDAxUUfSEhKwnh4LrriQh8mz4VKx5YTZE1rje12GzcZ5LGDP15GtpKqhx186xAjas6hnL5DRauRFu9QCwtvUy23wS+onbe0d2mEUwUm5pbZ9Xx7CJEUzqHbaFxsz6PFHkB1IyexYu1hjRA3HCrvSbk5yMc464OW8MZT6dhSGVV5pLj/SdTZsNbax+I45rwLVn+G3LRj3zjp+lLzs+PPfbAgB0M2udXdpoPt7SgoFJ8npZ2ybbY3UJ2Cpq4czdKN37P7AKsXHgtcUR/m4Hf2Tq4Pe8ZjJcucO4aJXqcHiVVJnrkEVamimFDZ3+RQyMhVtWKJhJGDfURCeJn6gnTJWlOVhV6WSC9NNi+PX5KQ/FJtymSpu6Q74AVyItsUxSjtfYKctYk1grFEhCvlgbMgP1H6+2njYj9+rVyUde2KQEuhVeflP/x5FHJLK18tQMRQ/6uvvIZnnn4dtmYbP7POhUhulKy8fYCLcWJsjiRJ5IrrSn53RAmnQ9xRnr5WQaBCyMNcehKjNM68oCiQC2PYRyxEmNMq1rEWeZj9pIwg8RkS66aRFOWrzLpBEu6tM0wWOz+OaJAB+vGDKPtSNDwHLJ9kOZqXX7LZSXbGumdNBSJPwcoapZvhvkiLOxX2YD3xTsk5E/PYHxgsY94HLo2cSSyfxbDgd26IckjODTLQUCZbTSXRHLXDOf/ezC1pApddvEt5pRymOrc8CmlwqRRIuTINc4tz5efusmA5aCl9wa7BYeaeM6G8DicM11jyjSwSSFeOAJkeU9H0inbEOsLGCawDwvydW+Q5+XmtjLko3BxFk6Mr+3dW2Jyg4TlgqWQJMkANH2OdRbfp0G/7apAVWV9J7mnJRRlmIiNd4O4yHFDeaOTIzbVE43OfL5E+JpE8Y3uHyM9xHhkVMm5bUsaMDHJXWeZSFKNCF1DtTwVwsnhGk2UeAEgpwNq9DZQSDsyWcTAgpeCMvdVBXq47DcIumLPYRUv3eMmwGLsSMdVpv7BcmavnOiCv6c7dOzjfbkE0P4/45e9Ef7Af14TEbXU7WZ4J2vUW+qZZBw5C7q1IBIdh4cq701eBGHEzdAn7As6fGCRwVlin2ZfHuYR0kfjcxWtygw/Yjp3nrSGebMlFpg3vHqVULHvsYxqbHImn6XvoroPWgxXIBqLIUsW5xO67jq3ieaG/ds3Rtxb1KYtg4aobTkzg5H10YRPmqlVVuf8ZcAVSLhL+sdchE1tRh7PhXaMI5sKyfAJrJqS59yn3sMw/y36rS5HMXysGs6wvyuvlLkSwBpMClFWAradcaWjYBY1rCER9+RUuwin4oN02CeZlEYPdmLEE9jaA1Lo8SDvVQcOuGO8Qry9jLNWT6K2XoqiV0cOyWrALq1B0TavFnUDxZ7PxVjgnfmqYuxp/ufsLk03BYtWbHsaaVQudHEyOtFJQpENggWAVtO5Kb1WMuBl8B5dGK+x7H0xH9mcMaAH/DA1WviHYv/KV7oVgK+VlhPnzudl0UEphs9nA0+a6/5YM9MI+pFIu5/vGWyTZH20yuNXcQK1gyDU3FKG1jhbd64CMzJp+jsn5QkbX9VJgxDF1qV2PJfCVAc7FSI/7xmCNvZ45kyNdLpGO9qZHb0wIGqViJN81kBF4S+i0z+7Xmz4GQVlbB4n/1raN67M0lj923QZQ5K1/7Pt8xeuDhscLTZYpkAdS4SiWDJsdy9EnS6b0mnmdd+DXyvokapEeZdRNjvrJbaWsnaVruipIwlYjBXP9IRNs71PWuLSP56J57hLt8zLXJP3qSrhsdCkJjSFapNydLSlZUnXarnML4cHDh7hzcjJYKIKVybEzV7Rm9QCGxV3cpS5cHy/aUskbpdckPnNWHEcqyOVkpEt+ni0oWGCc9QFbvG/bULcJUkCVkXyOiqlV5yWacJkfi5S3jOWTNkSj85EMh516FaRfI3klIX7Pi4nEcoFhIcI7yYp80BM3QQByOWVso5TQEsVUCIqUDwpipseIvAaOmpnLXkptJ2VDgt3B4uahonyRZfZSL0BJefIPcX3BFsQR5ZwF0gioqd8phWPlMy4lcal1JdobwMFlojw4WltdfaOo9LxLK5F1IO2DuGx7F9MgDPdczNWCDNbukuL3GcLWBqXRTOckYEpp9NseulMw4X4552YVBFyGdbkUc3gmgeVlHQJ4Q26pJLREOFjg6S2+0zJJGYUy+XyGnI189ZwL6T0mjvEF+3kiT8Uz087kOrSOcseSlDJKMbWO0l3r7OjYKUmnlEwuWZfEcrguUsk18jyrdVeUgFpyUZbJUvMl0sA5WWYNtWdyuCbC9uICQCCh4vP4LsyCcAFI5+SaTH1GlrkGu0pN98155qziTZbZcGtxOSvPGNIvammqhauEtQYbpdCv9Kdj/7taaobrguxD2bclyEWlsTkR2Vd7CMfHRz562Ir+jIvkyve84MnJ9L4tqlxaHsmSqFyXVioEKyA4R0jJgSg3eynFjQEoWEFaLwP2y/IBKsQCxU4736dtHo8J6wwU6WDp8QuX7das82MmAtxYflmKdmiDFcYiCx/fGyit0HXlZ85VFpql6/ObdOy7uFsgIXnPOCw8+5ZGyySERR4O5HaX01LIAdb3BkqN5+WcgIovKiUyefLE1J+zvHHGmEjYOxUWx2pZUJI5XJscseFSKIb/T2SrkiiFCLWYV8IwkdJKp8+v8IdbSuIeJzjrsDk6Gm2g+aBa3O/tuTp0NMudQMlKV3tN2/CdjKwJlC13ElM7RrWyRmWssP5xOVNWyOvEGotlfiznadPdBtuLixiRrnQ+L3yBsHtesbACg2VRLmzmLHpcdk5c1+S/28cLZVdiYm05IliJGpELXnYcvICDKlgKci95js9bJv2GCq0efaJUsKhkYeXXXMcc0XQubWcJnO/OW8Tc6MglfhExKbwMpCcXmYVdTTkPc3hwLwvUMUIkS+As3w9/4rDwDj5onhik5edWOu5nae0CAKWHE/vehKIJwJDnLl5GdXIsWRT6YC3MFtzByiqDdMjAHwS2bo6DztSubVRflosLYP+2NAARW8o4Xx1GC8ywo15og48y68d9jQg5a+aJn+M7K2thC9TlFQvSuu1C8rrY9wvXAi70KW9Y+M+GFBVaa5yfn2Oz6QAQttst+r7HyclxLIMf8X67RbfZ4PThQzz55JP45Cc/ieeefTaO7WCkr7bDW+48GWSLsANbwGw8zl87571T8X7KflnchyH4hwySZJxLLIhDuSqqAfK5IyoELrm5dCnJdthsqVndYmTNyulsrdLZhs7cSJV1FJ+npBL/PPqIrd4C1ptt6q+aWcecdUkgFQBpfrxg4evC8Zp0DGxSSwDPwVF600OHhOky5YF1tpgKIV6LnOPFVSuti30Yvy9+iugHfG2YscYtwa6BSuaw6ybOrvxnidWQ0Sx3NwyDj9guWe088gW/yxYiNcSX1S3dcSqRLZ8gPpA2a3F+fo579+7tpb64uFuxeGJr221MYQHkMo9dS1lD0twQJGMF8hxGh4CYu2vBoqsaEYxoCBHvP0zC0auQm4/9zby1Z/l0HvMcZW2UfltMuK01Ub6XNb5S+op7GCyplnRcxcuU4VJWU3uJ8uZEmqjWk6y8JTxfysiSuyJdlKtieU76nc1Ux8RDpoIAdl+4lGCtifsBbMmWmwdLMATMcfFOad3B9X2MROolp8CDB6/hzp0740LC9XWdH7P3799H3/d442d8Bvq+j0Q5lzHPwe89OdCiuWe3fuVgPF1IddEwRkmWua8xbZypElrjDGAnQ1T5CJhu/d1XjuAolJ2lV/AfeWJ4+1ZkDTcRjdztCOnXtuvSfpRjyphksVrbVWBCwdHcbhtKu9sWgwxN6Q537pxMpjpYVV8gZ2ssmwreG4plcbcNiTwLuy1gloQ7Fkf7l6WafjGXzhMlrzrzqjDIQ+fbw5vEctOfZYXScuFTKPik0Wy3YyuUUiFs+IpVhQ3Jlr3UUX6TShF9QnOVfxW/L2HN8+D7CiDrYs4+KypiEubnW0neSv5bw2d9sH6enZ3jfb/66/iyr/jD4UTC7/7OB/F//vwv4Lff///h+/6L78Sv/dpv4vkPfQQvvvgiPvqx38cnPv4JfOJTn8T3fvd34PnnP4LnP/wRfPQjH8NLL7+MT3z8E/jv/+pfwunDUzw8PcVrr76G09NTXGx7fOG731VIKr58J5pJl1KEnDOUQtbvAs7DFv0i7RAkhmqZujPIJO2W89zFPGgkrLMhWIZSuHvnTjFgBCcSh/MS74vtNon46YJscynYmkcLVu/pPLS8b5ViUtyIXRWFsSotz7uOZUVehaS1LlrYnGVr6sQcFHzaJsKsFhEtf+zPV/DLd9b6ddyh5XhteOzQZJkzWPqIsvSRfUhqEsCEmK3se59DSqd6dH4RYhzcZQprdpdcuK6r3JGS7bbWYBMceZXWOD19mDj27pooe87CJr/NA6Pk178kSIxEqQ/XWF1zqWny3UxOvzKELCaRyDBhEJsM5iIumuT70Fov6SKx8EyWS7vu1EofKeOTjkMRXFjxpotnX4+PGIgYsINlWklS4Yp8xCHcXzuQBC+1GupzBdmay4jl6N6I+mqyTO4ja4cFd7rmLLdZBgHplMku/R4AACAASURBVArXLcN2i+ooSA3dIKVkvzcXfNP4xlFIbpBIFolgttb7qYmCfTAbDMfFzzkYSJAAKkKynx1YTLR6h7Zp7SWPuW8hAJydnuG/+ov/Db7lW/80fvPXfwvvfe8v4Vff975iAKO7G413n2zw+c/cxee+7in8J7/2u3j3vRN8/lN38Jb7d/A5T78Ox8cn+Dvv/wD+0LNP4bOffh1Ib2JfOQDv//jH8fYn7+POnbteqhnGxi9/5KN4w907ONKEY93hZNPhWCn8yff+BhQRjrTCXaVwQoRjpfC7p2fF+/dZb387Hp6e4sGDB7i42OJiexGDkvy5//jPoO/7+MwrrbDdGnzZl31J6fbGBN5MhGVOO0VISLFjuSlREsiCJV6m72O0V4DzJ4YH33GOxAHRfUEa+qM02EUpr8wh54/h8UXJeYz6dBFIKRN6GssdpyDz480Fmxo2XqjaHt+VHGiCLc9SHnx166td80jGvIULFCe8gdRPrFU4UBITHukrLevIrXkxoIvc0GYJZbX9PkdenmOOA5nIDQSZNFzmkkvargDb29EabSlKefB8uaJvC+WZ0F4fOX0IogJyo4Aq8i4pIp8kXalElll61yYbSxWpaekY75drYz7R4eBpWSYpgtn2Ua7Khoo164A1a2Kl/TyX378S1so9S+vzVBlCcdyzzzBQ7udHJct87MndnLVmH+QuFe/gSsid0hrb7bYaKCDHIZM7TmZu4UnUZnOEvu+T7xn7IHdSk19qDzAmd6uSjeL6yV3pODluVDKpyyAp/t9EhmcNvGUt3Q03BjH8fWxLpb415C4Z3+BojYNkUAbh8OROBEhxMTX1buSOgmQNBE7EypYIlW2e7JPcOTcEs9HJYqfSZlFGTGRuxH2QBFiQu4ScBSmsC1YzrTo4sjBBFne0OYo31PQOXddl1hfhH1whd6X2xlW8Q/DP9C/HT378k/jxH/9beN+v/Qa+4eu/Dj/90/8bPvzRj8TT/sSbn8bf+NhL+Py7J/ijb3oKf/jNbx58RK0BlJBGBsI6uCQSgkPd0IxCv7LFiRftfCQ3mYtK/x6JP7mwrBL+g/Azv/O7eOKow/2NxonucHezwRObDf7df/zbcACOlcJ9rXFMhPua8P7T88z3c8CX/NNfhLOzc1xcXAR/TeDo6Ah//rv/HJAH2hHkTrKpwT/Nv0vIjWlJngQdAFxhzPJGhRs6H1TqJqTjVOavVCUZMMTiicpy3Dk0creO3DGm3lTXTe5GOeNQJndSBcXfl/qMfe7yNlwGN5ncWeNT5MgNdX/wNLlTnYY1fSTeV03uSGEkja0euwdyVzqmkbsDQI3cyYViaRe4We6uBzm5U7rDg9dexb0n7he/Z+yD3JV8/HJcltxeN7krRb1MLXvTlrvkPLhAmvI8XwpEKloOgP1b7qSVp1SWfzF6oSJ/ly7g1pE7v/iB37Ek7sNhwS8jL16H5U4StgQqnTt8CHnZb6I6Qe5ke4ZojCRuXHoNMVS/pZ0sd2DLUWjvL/7CP8IP/Q8/jJdeegnPPfssPvXCCwCAr3n6Hv74O96Cp5+4j3/0/IfxpX/greNrFuSUoldVmrohLt4UAnnhACL+rGyAjusIpcegI9kxTOZk36UpDMT58YShuvFjwHU48HI9XhfJdmRnZYuV4U9/zgde+BQujMHDrcFp3+O1iy0++Mo5fuHBGY6PjvD000/ji77o3Xj3u9+FL/6Sd8eG+kBJ7P8anie2wjmHPPhGacxKyx1b/tiCy+DNpV0td32wMM4lZx+f3cjdGnIXCdnEsddJ7qAUjOnRbbpxMJOM3OWyyxK5Yx89aeVb+14unXcI5A7CqljzZd+n5c46L5c1W/9euGpyt2YtvQ9yN55zG7k7CEzJMtmatiQP3ByBKkWmTOqq+NTlA2dpoA4iWh3URfoJHgrJK/Vp3/cxIibndbtMjrsYsKByDyWB2nf6hiXWwV1Qy5VXyqUmrXXVSTbmHZNjM5MnOF4cLZeBOn9i8BVjGce4rR6KWVtc8nqrwfRclVhpSouqmsQxLMQTIojxdfs2ayhQTOZunQ2Wr/CCCwEl/MFy8SGuTpK3kMRX5qtL2mbShSLnESstGkleH3kfRr/INkHq6EaWl6kyTNwgEAtClnN6AWUsk5yLdVhj8b3f8xfwze/5RnzXd30PTs/OAQB//Nkn8PX/1Dvxc89/GP/CW94EdEclHg9pGnMQC/1koRFesJHkcTspfh8/FYuWItgiHaSKTB+5TFEhglnXyw2TZ8ghjjvBo+UiQRoV42XES+XzkRwLDGMkJXGi5op1cChr2Jzgb1z8HPjGf/jLsc7XP/cc/qWv+qP4iq/8CrzhDc+NK8sbB95YcMWva+Neti1uwjgH41w8Tm7UiDMSIrUUxlhsNhuYvvf3mURkVNSJ3q4oydjn6lhLCuPxRFG1Q2FA5VFw0xOZyMv5Yvi1FAylRtJqBHFOBVWNlhk6TDuKOfhkO7eVKM+xXEGaeA0V0x5wsCI/ccfol6Xcc1UUrIYMCm3KfUtLR2+ONtgGOTarQrpuU5WPxjqIsN1eQHfd5DHcFwSC0gqqss6fSTO6M6p++izhXPC8VYONTXzPx3BOPn5nLCGYTqxP1pDFxFrMY5JCxF7rGrm7alwXuSth0e4Of8a7wo3cRYmpCX1x1eROYt8RMK+K3AH+upxzVVnmbuRuAJV27GhI8h1qmW0nR+WL1m2w301+pAbgYIyNKRWWkDsZorwUlnx7MVyHD9Me2hUsFd5vb5rcIbx4jbXCmiksepJX1nY6BYzx4fGZtOU7hoksU5TtCmXvg9zlPJuDrvBirETuPvXJT+N7vvv78bFPfBwE4Ns+5034lU+8hH/lHW/Bc/efLFi2apUPVqsi0cnIHf8y9FeZ3FVVkvGahdUUdXJXIzBpo1JyVz82PSeXgY6PQeW7CQNkrL9M7uT3OQF97fQhvvX/ej++8F3vwp98zzfibW97qzwhrZzSBa8SgVnmyJ0PBBQ2CUDz5C4dGotgrMPJ0TFeeOFTuPfEE3FM55eyN+zQRmB3ctcHVYhz1r8DFpI7iSkL29T310HuJEzFxy05P0mwPSZ3LMPkcb+U3MlUCsXvsZzcGWs8wdv6lA6kFM7Oz7A52kySuzw/X7EdxOMiyCMVQVfKu43kjo+TAQqvktwVLaSN3F0frovcleSRtXDtNd+5Ru7GuA5yJ7/fN66K3DGxs9bFsOL8+fD7enKX+OSJqHC846+VjkEmgPKCQKI3BlrrIH/0xxrbh53ZXPak4axFb4zfjV5I7vgaZY6r5HthBZPXx5JF3WURGQvkzkFFix0AIdMLz6/Sw30VBGzypeQg/P2yvsiknUyQUbIq7pnceXIdrim0+af+9k/jb/zoj3GzcX/T4Ts/7w/gzU89LaxVfJ3y2lPrS3LxGI7PDHdJeZLcsRVT1lMnd8H+O0HuuJ11cueLkS//xBLoypa7pP3DJ7L2eF5NlkhBKkmEsKmSWfBysoW8/6bJHUe/LLfV42d/70P4wQ+9gPe850/gX/7arx6qC7n7ahEt58idLyS896ydJXcjqfUCECn0fe8lY70BiAOxIOSSXBeUZQ5M1NmKFj+fqWNXcsf5cWNgq6XkTrQt8U87NHIn+3CGFHDOOI5YWSJ3QCrHXEruSoFcJNaQO73pYLZ9tB7mhGxKcqu0SqLcjtoR58UhXc7jZLnjtbNxBl1ID3Sl5K54QCN314atIHdrltS1gCu7Lv8vQxxKqRdkwm/WH/fGRMIqIX0Ka62QKR52gcKQtmDuWh9ljr68bdb03qqUOxFj3tq6D0g56JxkNE7a2Usm90UsBVlholfMWwb4N5GQM/jCrJBPCR8hp7MTgWGhOu3Tcnp2hrt3j4vfc3L08ZqYyy03vYYYBXOBjJSfEd11QPApS8Pu1xdMXgYi6kXIg0hUJdbJBo8Lf4vvyalkUR+PDS9PmfxbEsEkspe81WyhARPU/Hr8woKI8B3/2Xfja7/2q/EX/+u/BOeAb37r0/jqd74jEqtUCuwScsZVSWOU3xgodt4wpjBtUfH+fA5whOgfmV4aUh/CUHmsyi8WfcJtNf4e43uTrS+LFra6JHja6pai7DuSVEdZvxZQe6XnJJvvV61VtTo+8cor+M5f/z281vf4oi/8Qvyn3/FnPaFw3mo3Uq25kLajYrnjlBtplNT5xdhSuLB54zdeE1aMi4sLHB0dJfUZ60YbTs4hSqdLqgAJuelVI73pYnM8Dl3ckJDzaSYbL3RoTgr5vORISh/QEiHJsZbcxSTdSfqSMvLhQkpBg2CsGaeHCt9LAiOvmZOB5xauJMCd3BizDu//7d/GnTt38Flv/0xPCPSwBpAySY6ePGW5Kz2ca1bY5xcXuHP3xG/m7GL+le0R7ahlOUnIHffLylyzOXEiNQQjGx1rl5ettII1dhTwhnFychevPXgFpw9Pcf/+fUQfuAL5niPCU8fMYW5+auTuinHTyZ2coEoDUso5mQBO1VWzUjI52xW7kjsdfBX3lbtuDpIIKd1Fq2DJ3+4mkjv/91iqeRDkDtyGchN8igWFTiv0RloN7WiBugy8mJmfYwf/O4qWt13JHcgG5/h0YbuG3CnSceGc1jdYDkvkTkYbTPJxTZC787Nz/Pv/wbfj059+Ef/eO9+Ij7z6AP/q57wjCXjAVo69kbv4eWZdqpDA4TKG8cYWVn9veFGcVZLV55+N0qI6r3OYX8fL03whPW57zRpXQnrrx6SwbgkdlyMhyelIUZmVNPYjrFXim/jzH/wQ/vLvfQp/8LM/G9/3/f95+awJcmcdovUvHfe1Nq0HWz3zctjSn6saSuTObxhQsJBNt2eZBU6O5dp7fT25A6Xl3jRyF33lQvtkABggDUTijwfgKLZfkjtSyr9rnK2mKXDWQnUKL7/0Cp588slICpNrzyxptU3pvZC77QU6rWGsxfFRefNzKdaSOx7XtciaNTwqcqe0wmuvvobe9HgyyP8buRvQkpjfIPDCWsow40SVby8HmIxA5ec9SuvZoYGUgu3NpQnuIcC/EG0SNXPfQQN2hkstYznYf22c72yw7KzB2M4yc3wksquryuoNC9pLlENgz7Z0J7dgPEqQvKBn6v/Ihz+G/+jbvh0A8Gc/9834gi/4YgDAPyvLmy9mJzhZ+qIblNMRubCoW63k6VQ3IVbbmHCuyTou01MOPgLtgutYU6rzCzc/19fbNjU/jAmjH9tf+fa3459729vwKx/7KL7u674JSil89Vf9i/hT/9Y3L2qbIoIN+fhWril3QG659EGhfNTX6XvWG+NVMX2Po6OxukPCJgqKCSsPt2Ou2TcYqhNEql/2VrXkQMYGua8eLbotOShrgSCpJUUoqQBjqHxbN3WrTgGOcPfuHVxsL3z6F5HDdm2i88vive99L77ma/4Yzs/L+TEfJ3DEzs51VeL1zDPPwFqLi4uLa27d4eOxsdytTWJe8klbY7PZ1cKz1kokLSqsu19S9i7kpWbF3BVzxHLKkrW4DvGi7fs+8UsDPAkq+fNdpYWuVMeaVA8k+0PuPGW7toD3m9J6rCGXMQZ5MaJIwVhgc3QE02+L7efFijHGC/iIF+XTj1dZg68Ha2DwOWNfGHEhybU6tgIIKKXSPG7OzfrnpY1bfq/Z6pPLRp0zRcsUpzhIfRjlfWeTSuoj6S1gBARZJvtdDe3w/ij5IpFloEP9PiiNlG/+5f/ur+H/+Ic/B8ChUwp/7Us/D3qzQb7ArVmgyvSl9KmTQsv6cbHjxvdMcf5BaZFjQyXYOhw/GOzHioaqqu+4ITl9aRE+Piu0ofr9FKRlO/xGqQxzL3svgRlKAwL7gA3ziu+zdNe61mbRXv6E3zmqzEJ/8rc+gL/9yVfwuZ/9Ofi+7/+u5HybVcZzk7/F/vOxpTvRFY/qM1IGWRizNWlkUobxQUlIlf11d4V8Qtlfdkl71tYiI4jWVBOjd0kYJBTnVRVCu2dWOueqcQOsGSJaxs3nrAzGVpAmmXqg5IuXzoFi3pNzWyW4iiU32imo+ckNBZfvufUnLwu4Uv2G/bEpzmUOaX+yj5gzFprVNsr3q8tiKiiloJRC72TuX1bzDIHOllju+sTHnMePGfzVkhfMijVRJZgYt80Fcp77t+VpIYopBkK6CMrm0liHK13T5a1yS1MocBubz9014brJnTxPryQKfd/HF80SxNC3jdwVy2BwWd65nh17D4/czQVdkeQu8TeQx0QSto7cOVCIYFeWVUhyp2lw4J+zCpbIHaGL5MP7s7APmeiLdJWHPEgBcL3kDixLHFkBxuSOCVm+WE1uKYdqFv2jiOIimKCL5A5kxy8boiq5+8jzH8V/+G3fjq984gTf8sWflxAL36Vj0lUjdyXUAzgkoqvayWVyxxYnIcGURI4bGQPfuLwEQQhL1TLpsePQ+mVil1/DgmsrnE/hcK5/qta1KMpAKQ3CUvLZW0fuID53o/KGvwk/+Ku/hX/w8il+4id+OJCalKAjjL0pcidRJOFu+vsl/Xp6eoq7d+8NkvM9IZdoel/odbn5ltRSInd5apyc3EU5ZibPTMgdk7fK+5DT4sQyso2k5NjKQrlE7jj1Ryy7UEbtPXmTyR37CLKvX07uErIiitgnuQOF9D6dTtcfeyR37DbgnE26vpG7/eGxIXdTPnelaJlWfFc6jyNi5gFOSpDRrCRKA2eJ5U7615WOzQlBKffeo5IdLmkz+98l5zmLzeYIZ2dn2BwdFXO7XRY7k60VRHAJUa1Z7tiHYqM7WGv8i0I+vpqS83KCprtNDBxT08SXctcRkSdzOpXIpPP3zDxSmuydiouA1BrnCZ61vJtOgKNAVNJ50jrnfRRC+4aX57Qclf0r/YtE+JQpDlwin00/zjyBKUPWN5tXLQl8Ep79zM+DEEielfdUXDffW2kRNEMf//I//hW88OKL+Os/+D+CCPihL38XuqPj0Lb8XpXrAGjmhSb7KSc/bLUbE80cxRdwVlzu87nZdIBSOD898+kyMiltzdct+XzmyuIJGZmZPzstyYXTRpFQJ8uJZsf4r3Pp58RROwv3rGbFYYtI7a7K/kvPlQsmOSe55Lz4hxs2DZwDvv2XfgMfvbjAO9/xDvyXf+F7YMNYVcmcNSQ+rwUtKUX1nJWbu0Hivey83XLpDc8LbypM9fRl6uGzeWNIbjIN+fUkoZG+a9JPvwZOMM4Wu5qfnVKEvjew1o5UMfl5tUToNXI3Ksc5GAUgLP7n3stGvEe16AvjvE9f123gnE+FoK3vI7ZgxmNDfQBmI2vOkbsEqgP7AwJjv7709HLf25mk4kt97rgPOLLkXLLySTDxKqURWlpGqdjipk6BmE4cUzp2X/zHmB7GGBwfn4y+a+TuinGI5G5XlMjdlIXxppG7EpjM8AtkcEK/GgubxKGRO/JONOiUQt8LkjZD7pIJUNSR+ogsD2ZzdeRukDCVFsXyOpRSOD07w707d7A1ZjhHyYm/3iy/dk8Xq2zEUskCeTm5K5GVJCS8qI+vMx/GJXKXfK84gMDw2f/+M/8Af+UHfhBf/sQdPHOs8PWf/wcHaZO4vlFZvAbNZHYDmeAWyX8BP4uUSM9A+iQ58MFqpOVzmMsSjI2ICdGw1uJv/t2fw9d8+ZfgySefACmK6q015I7bXI46KE4Ykbu5d3Vu0RsT3SVt47+jbE6p2A/O2WqZXO5wflpHmXKkC/5xP01f8/g60lQVJA78O//vB/DjH3sZP/mTPzIqhy149SiT4/r2T+6w7DYX2jbIXx8NufPtYNm4eO6viNzxd86FPKEZrpLcJRrcgsNmMbk0ENMiKEVwFtPkDi5a7pbkuSujkbtVZZSKPWByx1ZIa8rPciN3V4xDJHclorNk4N12y10pYmbXdXj55Zdx79499H0f8pmNI0Zeqm0VUnVo5E6TAlxIAS5fajPkzn/OfTbUYYQvRI3clRbhV0XukgiSsc085tOFX5QqUvDfsRxhbbpt0ReOCEkETLYAIX95rLDcFRagSXh00ccmLIxU9vYtkbuk/0N/Wmvxr3/DvwFNwA/98+/GMBuNo1dy24qEKmuvvI76SrdmuSuNhZBLzCEuep3D6GXoQsXcvpKlz1ofOv+1Bw9w//4TxWtYRu6GFhevrNhPuUWthJzcLf2+TLlIHhtuar32vG3jI0utz2tmksIRGmvSx5LlTpLS8TgcLIs/8H//Jn721TP86X/zPfiaP/ZVkdj5nJaVeSi2odyeIlaSu1JkykVwnM9T4VGRu3zzZGja1ZC7uciZV0nuaj53c+BUCtwPU+Suh4++qToViWAjdxN4DMkdlzmoflI0cnfFWJIKgZe8tTD+S8jREqKXEzP5HZNAEyRpjJiYMSNpDKqQTRPOq7Urcf+pvIhqkw6T4r7vkzqm+nAJSn3ThwAfXbfB+fkZ7t17AhcX55EE1iSa1ppIaPh3XlxMpTyoJTy/bJRRWd4aWWlO+GRKhPiyLty/lOMI0pSkSEgXB5iIqucjkLnBTy6ryVUiYLpCYBBJwtixWlpfuFhOxg2Q1+SHHTLrHIhfRH41PixKsSadBhMPueihULcVl0dDfeKa/fUNJHUbfDqZvLCslX1RpE/KnAU6ue/hnv3U//LT+NCHPoyf+/mfx5/53Dfj3W9649AHGH5l600eZML3r+9rHjkAoEBwMTYnlxcKVcr/6thnimB1D3I6VNaHB19BdV0ok2LEs61xUOSgKfi4aQ1LBLroQeQlT2wBAMG7IjoCdRpmawBjoI46EBnBW/wieru9gO66IaegJh9e35Efd/ALdaUUehg4WBwdbXB+cQYih25zgn7bA0TQSkeLmDNeGtyxHDn0p+46bM8v4JzD0ckxzLaHs1sQaWhoOPKLtu32AptuEyyLBGN6/9wo8ipcBxDfD+vQawcy7PsKQAfrg1IgN5wDN8zUkUDwDY83OR0Pg2VTWnOKIw5Inv3QG9lHrnCOrDISSGZ1I54jdkCcxZ/6+ffh3/53vhVf8ZVfCqKx31a03jv2sbXJd+JKMfiAZd87wISNmym/PgYHasnTIiwBhQ242jtVWtdsnAPkgyrLoslgLLX3swPPS6k0dyCFCN8V1jpKwYQIofx3XLdkyon4u/i85/nN2riu4TD1o3VBRl6MMSCZ2y73p4t/iN8VxRQIc+DE4XnZQ7Fli98ob3BIhK4q64SYKL0Umn+ibUz0uLxav82t6WqEx/tV8iQbyJ3p0RVy/C5CjQyW4NjKZYoBVZJ22h5KB9LLj3DiplBbo3iSlcvTd8ESIsiJz+Ux8rxHRe6uXtN2gxAfiisKpgGIm7+gDmdt/OG/a2fxMSVJJvDoLHX7AkeIAoCTO3fx9/7ezwSiEBKL6nJWj+HhtlBKQ+lubC0QfXzVGHLVWUHSdq87EtV95Qa0+eJucUuAQA1KPwkIycJr6c61cxYmixw2BFLcz/wpZYQuLKK9T0nJaufEz/BJLEuUU4NSeubeUfx55eVX8K993TfhR/6nH8P5+34ZP/JHvnggdumhwd+vtpsJOM4rlqwn2SrEhRBQWFT4y7HD9QbS5wtTgLO4ODv3xAXA9vwCCtb7UVmDThPs9gKu7+EUQBuFrethyEIda1yYHmQtfvXX34+XPvUSXnrh0zi+d4xOKWzPDGCA7cMtnv8nH8OrLz7A2avnsOcW2mn0Zz3sRSD3pEL7CVtjcNFv0ZFCRx3OXjuDdh3clkAXBto4aOPgzrfoDKB7B2d8WhSEoBPkHFzfw2630EQ4Otrg5U99Gv12C0DBWuB828MY30dHRyewpOCgvB9UdwRLCoD/zIFgiWChYJVGCOw+kBPrSQJZvmnFu+n/T+JvHsPRzBXuKZVG7KMCBXLrAFL4wS//fPzoX/kBfPM3f8vks0yKRv7YKcQ8ZF3cSFKBtB8KapJKhsv+442xy9SYTLwzsIUgQ7PnOBd/+D/LuVX3FIFUOYo/+ef1nIJXh7ioz+omBXRaJ1FBDxVe4Xq9VIAUk7aJd6P2Flaq5eS9DpAbfm4YmuVOgK1NqnLMPix3AKIswOYhbjPLnQQHGdHZDpFsT0leyt+5zBJYuo5Dttzx9ZNSOH34ACcnd3B8fIyL7XZR1E25o5Jb7myQJZaii12l5Q7wFkmt9awFr2a5090mEsZSxK/VljvrvJWmknSqZrnjMmwtUIuI+igbFyVcoYxpy523RKtACK1zfncvEH/pj7Sr5Y5klLbQpmGXP7XcJT51dhhf1toYjTWPAphb7vhik7klsaQCX/8N74ExBt/7BZ+JtzxxD5ujE5SW5+OpPPgKkiwvXCt14KTrZJ23+joHpwYZXiJLVJ5cSA7htAWsBlkKu7cKZAmKtvhf//4v4t3v/CzcOTnC0fEGH/jg87h7coyn79+DcxYXvcFnvv2tsETojjbYnp3j4uIC5xdbbC+2MOc9XnzpNbz+2adBAM5Oz3D/iSfw6msPAPIybQVC12kopfD3f+l9+CP/zOfh6HiDl15+Fc88+1S4Vn93Xz19DcYYPPPU67DpNvj0i6/gQx99AW9+/TN4cPoarLV4w7NP48WXXsXZ+RZPPXEPx3c2eOHlV6CUwqsPHgIA3vrG1+PlVx/gDc+8LoxBH5QHSsH2FsfHJyAQzi7OcP/+XTjt23DnzgmIFMy2hwIByst42HPOkQMsQTn4AU8hYiopKOMXF06HfocCYAbrj6LEKpcayNzgS5kt1ikZMMOmBv/urX1Xa7kbtdkBP/fBD+Kv/t6n8BM/8cND62jwq8wtWPnuupdmD3PGIVru2MIoA+LI68jTO7CVr1TeEstdsoHEc1v4f/7uGeYwPY5eOWG5k+8DQ2y585YrDmJyWcudPNdkqRWmJJNJdTOWuxpKlrsuBPGyxqR+fdLaVqjjUCx30bpFTu4QrcMOlju2rllnq+P3ECx3ueS5dswhWu4eG3I3lQqhROYkUck/yz+vlcdEbEnUyznSUGvHGrIxNfeYSgAAIABJREFUG11qJbnbBXytZ6cPoZTC0fEJdCCIU8jTFZydneL4+DimN5iSOLIcEyg/fMX6ZtIiLJFwzoGPz9suiZwx5ShkpWMt/MtN7pJqee8i8aFgQfCQL37Xl8lZEbxo5N3aQLa8JdHLMDlymyRbVlzvICkNxgpX3oQABBFUCHImBwcrFmtDtLq0vmGRVoLlBRDpjESPXww21MfkstbQPAiMv8ZgdQhfkBN54MLxTAb/57/1U/jRH/ub+PPvejve+eyzsY9EYYthnYuLMGcdjDWwFrhz9wSnD06x6TqYix7dRoNjKXabDc7OznC02QBE6E2PzaZDv/X+rtYYqE7h4tzgqDuBcxd48OoZFDp84IP/BP/Phz6Gr3jXH8Lrn30aZ+dnuHvnCKcPT3F6eoo7x8f4yCdewFve/BnQlvDg4Rl0p7DtDU6ONiAQ7tw7xunZFicnJzC9wcXZOYzzbfj0y6/CGodnXvcEnHPYHB3hldce4OR4g09++tN443PP4MUXXsa9u3dwse2hCTi+0+Fiu8ULrz7Am557DtutwZP3n8TZ6TnuPXkXWisYY6Mkkkhhe3YGYy3OTs9x9+4JnHP4nQ99FO9425vjPX7plddw/95dKPiQ3hfnPT78+5/C6597EqdnZ3j57BRve+MbcHJ8jOc/9km89U1vwPMf/n08df8J3Ll7jA9//FPYbDq8+OqreMvr3xT6Z4M3vOFZ/Pjf/UVo0njT6+7hM9/yetx94hjPvf5ZfPITL+GNb3oGSmls+x4brUHaL2h6a2Mqk81mA8DBOAetFLbh3gFIAlNJ3jcQ+vEAkz508rO6bziSVWxC9oZPquP2m372l/HUk0/hB/76f+uPcg6OKDzHYtEVpF15NN34/Fq/abPdbtF1Ojkvti3ZGONNmNEVDTLYHbHUn89YJ+bB6WMXvZ8Tyee4PK27aGXjASEJncv6e7oqggvya0lMqpHAs01CAkBdN5BJAUl+AMQ65HVE0icCoUwhJ4X5Okl1ys97hetOjg2WSkWBoHKbCufJSJ416WciR2XfPK2jlHFXclfzVZtbG/lNpKA4SlIo+E3dkSIqbrbKSWDsD1jlIDR+F0ufPVIU+jmrFy6RnU7WsSfwLSwZqE9O7jZyd5W4LnInw/iXrGzy4f3/2XvzIEuy67zvd3N/+1L70rX0OtPLLNgGg5UQuIkgJXjALWgRFkOWHZZMWwqHHA6HxABlhuUgFQqZYUl2SKS5SSRIgiBokRiQBAbAYAaz9vR0T6/V3bV1V9e+vHprbtd/ZOZ7+V69V9XVs2AozZmo6ar3MvPevHnz3vOd851zuiVGOay8WU9SXN4JcBeJFnopvQOAWbMPMXCnaRqu6xKvg3c/4C6w+Kqt+MSQ0hktHL3OPwjcPai8W8Bd26LsdfEI9bBeRQHoyCCRgKKIZmgWoXU9AneyLZC6lcY9Wn+aiowQPce2TakMNS9fem8buIuaU5qWQJAyiPnqBt5a1wuAW7wUgi+D9cMLk4EE8QbB840U01/8wj9jfmGBRqPBb33ssT2elrgcypPgtQC4qqm4DYetjXVmFu7y0PQkqmaQSqdoOC6VnV3urW0wMTbE9s4uxx8+hlutI2WgHIuwBlKlUsEyE7z6+k1WN7c5PjXAdmWXx0+eRE+aCKHiOj6GqeM4DqoWAI7trR36Cjkc10UzDHzbw7ZtLNOgYTtYlommqdi+h6qpOI6P3bBJJy1mFxY4cXQqoMl6PqomQqAaghfPwXVcfN8naZkB+PcEhmFQq1dJJCwarouuaWiGDr7A83z+/PlX+fRH3hfMRy/IyFut1lGEj2EYSCmplKvkizkc2wEReF/L5SrJVALLMnEbNssrGzzz8lU+87H3kcklESJ4L3ZKFXKZNEKoAcNTeKG136dWq5NIWNh1GyuVAmmzvrkFKLxybZZHj06j64JcPonnOlyamWd+sYSDy49/6glqjQal3SpS+tQaDjuVOtNjg9TqNrbjMjrch+N5ZDIpALLZNK4XeBwc3OZ7qCgR4BAd73vr/623osMDKDrezRgA6lQv7h/chYhTwpev3eBLK7s8dOoU//SX/skecBe5BaO1pr0fvcHd3vs6qFvvHLhrec4Ppkfez/7czUfbdo0YYyEyNrV569oO7t5exOaQ0keE+/JhwR2Ee1qYMCXy/DUPfUBwt1+JqX3BHbJloezCZukF7iCIK5OA9ibBXVuWzlic2nvg7t0B7iIGB+E60ynvgbu3Wd4pcKcQWFdcz2vLqBmJ2gPc+bHzu8lBNdjuK5C4o5+d8k557lRFadJIA4+AcSjPnaZpzXp30TXvB9x1AsGovEJEoYvH7R1Ub7BbXb7D1t17t4C7tj51mUa9sncGtMqQ2ieCRCm+dFAUNXjG0m+BOz9+XquYb3xDaWWv7D4Po499GVCGBMHG/LaBu7C9qJir7/lIXCDop9IjFiCgm3TJ6hlSsQXBuYqi8KU//GP+w+/+Pn9veoDF3Ro/efpki35GZ5xf3CvRtemuonhw584yt+7c4/HTxzENE6++y8ZWCVXX0XUTzTBJZzNUSzuUdiskLZOVjW0UYH5lje2Sw/RIH1fnFvmRT7wfgcQykly9vsjwQA6huRTyaXZLNfKDAwgUHCcAERKJ43kgfV6/PMOjp48jFIFuWeB77Gzvks4kaTRshBCYuk61Ucc0TKRQqFfr+K7LzMIdzp08jkBhZ7tE30AOISSeG9DfTNNoeVa1YLyE1ILngcT3PVRFDQGgxDRNhIAXXr3E2eNTpLMppATXdlE1DUUHx3ExTQPHdYNkOY6DlTDxPY9ypUYyaQXtCAXHdvC9sA6foeC4LlbCxK47qKqOIlRcx6Ph1oNjVA1NU/Fdj9u373Lq5ATgAD61mo1pJlA0DV0TOE4DRUCtUkfFxAkTTG1s7jA0WCSVTlKv20FMsRKAop3tEuVyjbXdEkePjFCvN7gye4e1rV1y6QSTRwYoFrKMjAyGGYoVIqDUnP+iw6ATozrFZ2UbeAjb752R9WBw1zo3BEMC/ujKDf54rcLvffG32hIvShlepdNTfiC46y6+JEj8s2c/fOfAXTTqnr+3tmf3Iw9o9yB6WdvaKfaCu/tYcKK5oSoqHvKBwZ3v+2imQVSHNA6qHhTcdVI447IfuAOayUY6w2g6j42DO1VV8RwXT/pvGtwpqtqkL0YUwPfA3bsH3ClqQLcP9JK9utp74O5tlvuJuYvLQeAuLt3AW2dZhV6xcm+F9Iqz2w9mxMHkm42Re1B50Jp3Pa93QObBarVCMpnaU2ohOq8ZwxLGtL0TNfQOakd0iWHrRQdUUJB4waIoA89JOpdlZ3MLwzQRQjats7JHgLASgaIHWBcCANPDyxca4uN0RqXt9wDsNewGhm60zgs3s2ADiaWqbnrPYrErsb50zQrY5l5o/g8h/FaNmrYNKjh+j8E2oi3RehZBhr/25ygJjAftBeADhfa3fuPf86df/Rq//fHHocML2Opm6EmJWdMjIC0JM4Z6wfxRFIES0SYdiaIq3Ly5gAQK+QyWEcR3mqZFo+HhuR6GqaNpCg3bxvfA0Ezq9g66ptNoOOiawb2VTUBwdXGJo2MDXLq1wKff/yi6YpBMW2xsbJPPZ9AMrdkfVVdxvQD0K6rGK69dY2Qgx/y9NZ58/5nAiycjsBUAJl3TEUKhUqlhGjqKJppJMBq1Bn/5wkX+5vd/iPJmjVKpwldeep3Pfvxx8oUswgPd1FBUhUa9gZW0wo1WwW44+BLqtQaqomI7DfoKeTzbpVytk8okqDcckqkEnm1j6jrlcgVFM1BUiet5OLZDwtQpl2vM3r3HuVPHsVIJqtU6nuvhOw7ffOFqEMujwic+eIZE0kRRFZy6j6rB2vomuVwOz4Ov/MXzfOj0NJlMmv6BIrbj8Lt/9l1+5jNPAqAbWrMwu+e67GyXsBJJpA+GpSMUie/4KGHpD0Vtxb+qShDbqqgq21slUukE0gNVVxB4qCF9MzJASk9QKdeZv7uC53sUC2lOHJ/E8318KTESBo7tIFURxOPuealEYOQhjB0TYk/ugSaduk3FCZVz2V5UvXWMaD9Utt67l+/e5f+8ucLf+pmf4rNP/Wjbsb7vh2BONKnIIvaedhpcWgmp9ldyI1AWzz7ZKwYuLp4v0UJD15tLiLJXovW1GbfUSVftBZxprVnNz9oU8RbA63DJdlXgW2MSi4cLJ8FhShRASw/wpNc1+2Xn1ZprqlCa5zdLDLTFLR7sHWt+FvfAdSz++4Ve7LnTkCkUB3I9j41OUbrMp3icWVxH6xHrpnTZu/3Yc2ub113qqPYCXqJb34JO73tsN3D3oBLpqfu9S28lplHUQBf03fvTj7uFcrwH7t5meafAXbdjvxfg7qD4r+ibg5LIvJ3SyxP6doG76BhN1doS1nQDd1EtvbcsC2UXiZ7RvhuG9ALPYxwo9bKsSdFc8BVhoakK1e0KqWyCcr2KZqhBKmlFQg9H6ZsBd9Bhj+5QDJABtTGytGqq2gJH0KQG+b7fVNIUVWmCO6BZCDsCd0EzEejrsYERKH3x74PELGEh23D2+Z3JApptdt7k/uCulRE3AtOB9VcIhZ/92f8az3H4zY8/vo9aGPNohOMWADr2/h7et/QlthPEqD3//OuYusGJ4xPohh56t2wQPqqi43g+Kkag0AqJF3rNFUXD9+xgE5OSRsMlkbDYWN8inTERCO4ubXDkyBBrW1s89+pNyjWbpz79IZLJRBOgVxu7pNOpcJhUvv78a3zo7HFuzS9xbGqMbC6oTddoOJim0oxTuHdvjb6+fOCdN1RWVzcZGuinYTuYhoHnO3h29P5KVDMAKJl0Ctt2+eL/9y1qjs2PfPRRhkf6cd1Weu+vfesVPv3k4/j4WJpBebeM7bgU+vO4vk+lXGVjfZOBYp5SqcK12SU+9sQZhBBcvznPudPHsRs2SJ+G45BMpUAGHkTp+zzz0mWKuRTnTk5gWgaJpImuqbiuxHMd5u/eo7+vjz/55mv82JPnsBIGZsLC8yQoYLsehm7gSx/T0LEdG1ULwNv2+jZ/8vwFfvxTAfhTdQXLNJqJjTzfp9EIqK0RoHnmxQvMrWzx+c98AoSKooCiBd4URShIT6LqCrWag+f6JJMJPM9D02B5ZYPdSo1iIcPI6CCu67VnrBMhoBOg+C0PHyKMiYvrcjL+Lu4lB94XuCOWaCk0cAD8g+9eZN12+b3f+41mPTaF0KIfe2nVuBGprS4IzQRH8ebeSnC3urrG2NgojYZ9oAfusNJZ0qDTq3oQuOu8VlQfT3YBd4GhJaLht6/rbwe4g9Cj1gGwDgJ3vpBdvXXfC3AX1Qrstl+/FeDOkw6qojYT8TXbfQ/cvak2OtuL5D1w9y6V/WiZ3aQZHxN7oPczLbvRKw/jlXpQD9b9nNcNqB4GRt2Pdy86Jh57eL/Xvl+JaJ2d/emW9TIu8Vi7Ts9dFI8X/+x+k6QEKfr9tsLqcaCpKgpu2Lf4BrwnS1lIPY3ooZ7roCBb1McwpqFngp6YidyxNW7emOerX/4SK2ur/PK//D9whIMvPDzhYolEMyYgvvIocn8w20lbFMr+pKCWt611lOO4bGxuMjQ02DrO95uWY0E0jh1tE4xfW/1HGRZNVWjSKrtZlzvFDWs4BcAx8FJomhbEDja9gkqz9EKTMhoqRp7XyogZtBEqfrKlPEnp8fP//f/E6toaSU3lVx47QS6doluh073SAo3tc0YgVIFvBzFp16/c4vVbcxwbHqSYTaFrOvlcHlXXAg+OIrh6c5bjRyfwvKBnmqbSqNp848WL/LUPP4rrOaQziQBQoNNoNEgkrDDGDjRdY3drh7X1XY4dnQJFIlUHzwuUQt/1eObFiwzlcyRNg7GxIvW6QzJhIZQwm+U3X+PDj53CSloAGIaOpmtsbG6QTiVJJCxcNwD0uq6hagqu6zE/v8TQYD+qomKmLRqVGpZlsbqyhmmZgZfOaylvO9vbaLpAtxQSVgJDS1Cr1kEEFHDTtKhXatSrdVa3tnj4oWk8X+J7knv31hgcKLKwcI/+Yo5UNoVA4LoOdsMmlU4Ezx7J3btrjI8MIxQRJINp2Gi6yuVrs5w9fQyQ1Gt1qtU6fX354G87oKD7rouma4BkbX2LfD6D9H1+5ysv8bkf+iC6rpJIGwgBjm1jV2y+9t0L/PDH3o9pmPgSrt+c4/rCMp/74Y/i2A66YQRey4RBo2EH81aCqqkYyQS6rmI36vjSR1d0HNvFtuuYhsWFN25ybX6FH/jwGXL5ZFAP0HHZ3t7F9Twq1RoPnzoaxCkqwXvpeEGG5CbtOzQ47KUtBn93ftp0x8nQlBHzpHd9G5qAK6ZAhf97bn6BfzO3TrGQ59/+u/+r6ZGLwFRHObQ26YzTa+vhfXnagmOCTNZt3AGimLmD5CAw+aAOvwhYy1gcWNv39+Hli0RVtXCt9QKPrqEHtSGJvLZKG+iTQrTFn3XKnvIqEYUzAumKCNfigILpSQ/pS7TQiOb7Xlv/23SbLpkl9wN6e1hPHZRJXwY5bbWD4ghjx7e1HSVDibfbOSCRl090oX4STwIUZuj1PFSt+9geBO7a291fnxNK4OFWmpTMMEGN38qMHekxUdIZoSh0pVTSHUz2bDt2XgReD8su6wa22t7rsOh60G/RZBP53gF6umiFVB3Up+8VuHtneXh/haQT2L0nh5O3u25cvPbf/dapi45RO4p1BrQ2lajm3GHrzgmhoKpKTy/fYUcifj8B+Li/eShlpDD5qJoEbHJ9Wf7+z/93VOtVFASqVNCEHsYFaKjqIT2TovWjKIH1mh7vSdOg37GV5XJZNjc2UBSBoRvNJBjBYnkw8JGxn85vAsOy3OeY8DZCyzsEz0ewFwTGYwIDFUY2+9htc46AnZSSZ7/1HD/1U5/n+zWbXzo3zf/zkUfJpZK9O9TzZoPrCgnSC8tA+IJGpcq1yzcpZDN85mNPcPrkMUzLJJ/PoRpBhkvpu+xsb3Hm5BSqorK1WULT9OC5qJJHTozjOHaQEVPClRuzfOf8JXRdBfyAyhd695LpFMeOjeNLj93SLr4LjXoDzwsSGx0/MsjZk0eYWbrD1maJvkIORQg8x0NKeOTkZOAZ9SW1ag1N16hUauRzWcrlKo2GjaZpoWIO9WoD13EZGxkEKbg9e5dKqYqu6czcmOWNmTnW17fwHY+drR1u3Jhn9tYijVqdW/N3aDQalEq7LM4v8drFGXzXR9dUdrZ2EQiy2TSD/QXK5SrVSo25+TuMjg2i6TrDQ31sbG6j6TrXbsxhWRY3Zu9SLddxHQ8pBbqisXR3FVVVadgNNE1jYWGZYjaDZ7tsre/gOpJcNoPv+szP3mN1eaPpkXYdD1XVUIRgfnGZRDLBqSNFdE3h/KXrCF/iOx523SGdSvPJx0+jqQqu56CqgpGBIj/45KPNRD+IwOi1s7OLogQxP5qusrVVwnVsStslfOmjKa0xMBMm1XqDoxMjpBIG6UwaRBALaiUTDAz0MXFkhKmJMZ5/9RI3Z+bQDA3f8ZC2i05gHAlYKTL0zEfvYKTrh4aOrgaXB9F5RJOhGaAX+OjkEX7nk49jViu8+sqFNxER9570kmBNDdynQtA1K+Db1nbkXXszF1FE6+dB+xHRPSEEfO/8THN9F3z57qyfF47v2xLN8iafXS+RfqifhMl7XNfDse23vJ3vhbznuesh3RD5g3ru7ofaGcmDeu4OSx99uzx3DxrDd1gw2MvbBvvTMqE3taIT1B2mvEG8KHn0bzyBS+u4gz13kXiej6YQplZ2D/Tc4QuECGLudD2B6/pUyhVSqSS246DrrQ3BC61unZbGgzx37WypUEFTxJ6geAgsfi0qVev1q9UbmKZBIpnCrtdxPbdpOWuCp308d22GN0RXz138nronEIgURJpJYGREtwy9A35UL0tEyqoM78tHU9X2bJhhIo2vPf3n/Nr/+5v85pNnUXS9OWCd4SsHS3CwKqPzVRqNBrVqjXrDxlRFAMwVNUxI5IMIS4WIMFGHXWVlbZ1CNoOZzPLapZs89ugpFCFRFKhW6qwsB9RHx3FRjSBTqWHoaJrGG1dvMT0xSiqVDK3zEtu2+dKfv8APfvAxkpkEmqai6yo3ZmaZGhsAKak2XBCCcrnGTrnG2PAA1VKNRMIik0sxc2sRVVP5zqVb/NgnHiGTSaGpGo26jZWwUFSVF165xInJMXZ3qzRsh6tz9zg2NszJ6WFWVtfRVJXvXryF60tOHxshbSZwHJdj00OUdnewhYNAQ8fCcyVv3J6j1rDRVZNPfuhMQLFUJGbCwLXdoG6epuN7PlevzzJ7Z5lPfeRx7iyt4noep09Mcm95Ddf1OHbyKE7D4eIbM0xPDiE1iSENdF2j3rBRlcAgo+ka9XoV35MU8ll+/2vP8dnv/zDVWiPIAJpJsLy6zs3FZT75oXPsliqk08nm+xF5R3TVROKj6MH75vkSRWh4buC99TwvtD6DUIPaf0II7IaNlTDxRFCHizA2yw23QtVUwFdwXR/Pdbm7tMrwaBFd03BcD0PVUBUlLMbss7a+ha4qzMwv4UufyeEh8v15kulkC8h1UBxb87/dd9eka4aGmMN47lrHhe1FOFFKGvU6f+fFK/ziF/4xZ84+FLyb/xl57uJ7SosN8eY9d+HFmx6LWEffds9d5LUJvHgtumN8YDoTlOyne3RS7e7Xc9eawcFfUV+a12Lvfhrv21vhuYuSv3R6x+LyvfLchUlOCZKltfSYt8Jz1zz/kHjlIM9dlJzNcR00JUhGdZDXLrrGu91z9x64i0kvQHYYebNGiygRSq8kKZ01wB4UAHaTw9z/WzFW3RbZ+0lk0gmWmn0Kgd6DeN6glVVTdGwOB2Un7ZlNsqt071vnaxgB185yDQAipJV2biIi9lQCOqSPL2Rz04nfk4oS1oVS2zKVRmu9H9OI4nAv2tY66Y+tow+uk2foJjulHX7t13+Dv/FjP8bY2Fj7vA7BleuG1EmlnR4ZV4ZaadzDXsgwo5jSrkgG99Si4ypC4EkZZvIMEjA0aZghwIOAoqGFxXyDbJmtBAxRHJDrevz0T/9XTFsm//T9DzVrNKGEMSx+bDOXPgpakJlWAlqYVdFXcBwbAXiOipXRmZ9dYPLYJOtL92jUa1iWgadqpDIp8DRUNaCrOF5Q08yxbTzPx1B1vvHc65w5OsrgYIGVjS2OTIxh226TRru5vk0ymeDrL7zOeH+RU8cnAm+PYuDKKrfnlxjr72e3Vqbu1JiemAgAoNCwbYeFO6ucODbJrVuLDA8VyeUzuK7D9naJSs3m6fOXSaHyU3/9I3zlL77Lk4+cYnO7zNzSOh993ymeO38dkHz6w2do2A7ZbIrXrtyiUq9zZLifXCaLL4PskPWGQ9IyUc0guYogyMiX6yty8cocEyN5Rkb7qVaraJrGyuoG1+8s8uSZhxEEBcsHh/JUqlW2SzUKuTSqqlLarZDNpKjWyiSTFpl8mpffmCFtmPiO5NrsPR49MUa1Xqe/kGdsbIj1zW1W13co1+r05zIIVWFqYoSt7RLPXriCrqv8yMc/xOzMEp4n2ahs8eTjZ3j54nVOnzyK70l8z0EzNAxVDYwKQqHa8NgtbZFNp7lxe5Gzp6bRVJXZuSUmJ0cQiqDhNUikrKCkxMYumWwa3/W5t7zOa9cWeeLsMQYHi6i6ju04gERXFb741Wf5yR/+GJoexrgqBEpM3UY3DLa3Knz56+f5/g+dpljMY5gaUnqg+ChCxbF9jIQRzF1F0KjVUFXBveV1Nla2GBsaZPDIMKqpoRgKvus16wYiw4QvngQ8FFUPjDHBG0nkiduj/RyAaJrGkhjOa+d++nz+2xf4vd//baTvBfRgYqtvjLYZrSXNM6Pi5YpCO6h8sxKPT9vbXpvR6hANuq6H47gkEmZHa/H1eX8g1xZn17aGt4xLgcErHME4qGu7UPu+1Wvg2oqfh/92K0oeMTmiPSy+T/i+3wJF3ZKW3Kdx2ZNe1zIH0A7I/BhIi7J29jqvrRh5lz3R91retzYdLr5vRfNQDWPRO8Dynqy1QqAIFc/fG1Af7ZPSl4dygd5XVstu0gM0dgNbvSic3a7xoHglAp1R4XRd0/B8r80D3StzaFT0/SC1co/hI5TvFbhTv/CFL3wv2n3HxfO8Lxx0zEFUrvuRN/sUW0pgN9JZqJRGFDbZhR62j3S7LyVss/M6B41BmwPnEH1ob6TDmtJl4+vathDNn25/H7ZHe9uTrf7tRV1dnk0PPndXuf++tQL4O8BdZNXdE8XS5tIKsU5YFLbToh6BIDqyb4bHxD/qXGJFFEfT9V4Pvj/TSqAogkfOPUIqlcKyzDYwKQisgFGmTGLqX/szj3kAiFha0VyIbZLNX1rKSJSUJDD8txKUhF82PQQtr0LrO4Tgm888yz/6n/8xv//7f8Tw+ef5+XMP8amxQVBayV8CKppodcAP7kNqYSY/IRGuT2ljh7t3l3Fdh4bd4NbtJV6/dJvJyT52tiokLJ1SqYwnfYp9RRRFQxBatKVsxgsqqoKm6ZR3a0yMDFDsy1HaKZNKJ0gkk4CgvFNGVxW2t3fJZtOMD/XhuC65TBrflzgNm83tLUaH+kkn0+SyKdIpi91SDc/zyWZS+L7kW69eZm5hBVURGLpKabeM7/lsbO8wPNTPqbEh5pfWyCdN+nJp0qkUO7tVXM/Dtl2mxwYYGyriuR6O66HpGsV8lmIui6IofP2lK3zwkZNBplEhWLi3xqlTU2xtlTB0jb5ijis3Fphf3uLsyQkW7i4zMtyHrmvslqvoqsJuuU4+k6FWq7NV2kXXVDZ2Kly8ucDEyACpVILllU10RaNYLHD37hqToyP05fMU0lnmlpZ5/+ljVKt1piZHcX2PO8trIOHhE5MMDfXx2tVbXL29yCMPTaP5kqnRQTKZIPZxt1xjZLAAQDGXobxbBSSGpWM3bHZ2dpGUSlb6AAAgAElEQVS+5JkXL3FrbpUrc3c5e+IId1c2GB3so1prkE0ncX0f3dCxrCAOT1EEuqJjGDp2w+WFizdQFYX+fAZD0/mTb7zC7J0V+tJJMpkUSV2lVCrT31/A9zwMQ0dKydrKBgkrgd1wWLi7TrXSwPVsctkUmq4G6dx9HwUFVVcCWrAi0LTAM5zLphgcLICu8IdPP8vC0hLXZm5y/uptHjkxje8EFDJNVfFcj6gIZpDRMHinojWr3a/Xex1tKU/hGXtc4qL5738xOcKl//gV/sd/89tcuXyNT37fx5pHdGMGdErbmvsWgbtu144tO12/P0gURcEwjD3e0V7euH0/F51PIhAv9GYoHYCp3Ukbrc2tfavXwDWzNkcWMjqMtkJCjP7e3MPi5zWb3bsXdnZuP8+kjAxtXaTdgBkzKoqoPz2uGX4v9szs8HsZG8su+2/YYPBRaISQHXtu1zmyD/hp9vcBwd3hpMcc63a9eIbttu/3HrtX17vP3sSelxAiMKTuYU7RUoab01e0xv0A1aZXnzRN/8VDdfYtkvfAXUxkaAlCHgwwesmbBndhprooDqitfwTgLv5zGK5XV3AXZh4SHdd6V4O7eJ+hy8t+uB4FtCY/jD+Lbxx7+xNsQJ19fPeBu+DcdnAX+J3C2AkpArAhRFfd6O0Ed67rsrtbJpVMNxfNdkteUJw6ompGtQibactF9Pzbk41IKZtB0fF+HAzuAL9FB90D7sINUQjBT/zEz/IHf/BH/A+GzeeOjvPU1Ahj2Sy0jX34i9+pUoT1mTyXeqXC09/6LsPpFEtLK4yPDWNYOroRJAx46MQE1VqV/oE+HMemYbuMDg/iekHyD8d2URVBaadMOpNECAVfCtbXtsgXCiAUVF1l7s4KPgGNNJm0+O7Ll6juVrg8v0RK17FtB9/z2drZZWV1k7HxfuaXl1hYWiOfzOA6Ht948SIba1XOnT3BlSu3GR7qZ3Vzi+974hxHp0cxTR1DV8nmUyQtg+szi2xslzANFUUonDw+gVA0+vrzPHfxFoP5DFOTo1jJBEsrG4yODSGFYGO7xK3FFY4dPYK0PVLJBK9du8n1hSWOTw6SzefJZ9OomsK12UXOnZzm9PFxFBXq9QZCwPrGNuNjQ5R2KgwNFKnVGiysbPD42VMs3lnl4YemwPPJZVJ846VLOK7L6maJgWIOTdXwPUkmlWJ+/i679Tq1ep2xoSL1RgOQDA/2MTTYz9raFulMkrGhPjIJC7tcw3VdnBAAXbl1h5MnJ0laCaSE3VKFQi7LbqnMwuoKqaSJqmtYlsnYcJGkqfHR9z8EEl6+fJMjQ0UajQbZXApF19ANjUqpgu/6SMdncWGNpGmiqSpb2zs8ce44uWwSKRWGixlWNra5tbjCQ9NjZNIJBgaKTeOH7fioQsXQVFzXQzM0FCRnT0+ja5BIGGi6hmM71Cp1fvdrz3Hu2JHQayOoVmvB+6Bq+JqCqqhMDRY4Mljg+PgQU0NDrK5scOPmPFdvzqF7koShoycTMQuqhJBmR/j2KKJpO2l7n+ISfd/CDoE2FjfyxGUgleZz0yN8LKnxm7/2mySOn6R/oG8PA8aXra41+/RXBNzpuo7n+U0aZqu1Nw/uWvtPoPnuV1Q9Hm5wELhr32CibIsdyboIvGRRvU8hRCtpWOzavcBdfL/rRQ+F/3TAnZSylWG01738VQd3SgvcHcaLFwd3UsogoZVof+7xeOGm0ek9cPful/sBdw9qFYiL7PGjxEBb9FmUer2ttWgx7da/6Pv4z0H3FG/X91FF+3LTzJjYca2uQJCWYeOgY9u+j4Hm+E8cpDWDpoVopbrtcX/S94gSn3R7VpEF04syIiot0BaBgnZAFmUDi6yTrditvTTLLmCrx7yJgGA7EOp+T1GfIjqm2I9+Ebdcxr5bW18nYSWDRSoav5Ae4ocZN6MfPcxiGNAOWn3ywwUuoh0G8RqxDS6Mo6vVG2i61izY3drY28cj+qnXG0Eh2PB8XdPCeBeluXk1x1C0KFFRau528BeNr2wmdVGEwPOiZ0ZzzIMSBWG/Q69eRL1UI2AbaRK0aM9BTAd4rs/P/e3/ln//H/6Av754nZ84doSnpkZDyk/wNnRazKOadqpQcWwHTQv66Hsea/c2Wby9gFO3mR4dRugaW5UqA4XBYCx9ya3ZFV567TYTo/2oukp5t8rQUB+l3SqmZSEQLCwsc+nGPFPjgwiC+BQkbG3vYhh6QFXyAqqWkJJUKsn62jZHhvrIJi2kgNGhfnRdJZ/LUshnyKQSaIbC4ECeSqWOJjUy2RRvzCxQrrr0pS2uLyyhIbm3scX5q7PM31kG6TM6OsjOdolEMsHqyhaPnjmOXbc5Pn2Ere3dQPGUIF2X0cECz752jaMTw+SzKdbWtlBUlW+dv8aPfvrDCAGD/QWSKYuRwQJpU2fyyDAvX5hhZKSIYeg4DZuEZaEKhZ3dXUZGB6jW6kFZhIbLcxeuc+b4BIZpMDk2yPWZeYYH+1haXqeQTaPpGhNDffi+z9honkIhg6prLC2vcWnmNqmkhqZpPHb6KA27wcWZ24wM9GFZBvfubZLJpFjf3KJQzJFOJllZ3mBwIE8iYZLJpBkYKHJvaY1KpQq+ZHl9i7WNHZZWN3ni/Q9zffYOxXwGCSQTFpl0gsU7q/T355keDbyKu5UKVsJieXmdVDLBd89fZWJ4gFcvzZBLpzAtg52dXY6MDHDl9gKjA31sbZfpL+Y5dWyMU9NjIMG0NFburWOZJlYiwX/8yxeZGBnE912++p3znD42SaNhk0pZJBI6axtb3FlaZWigD7tu88jJKXzf53eefpb3PTRNIpVEVYMi9bqv49YcNF0lm8+hJi2ShkUul2F0qJ/psWGQwbpSqtYwtJAe6ftIQZiIKvBCy9DgEhlduiySTRDXjanRAoWda2zwnj4y1E/+9nV+5p//azxXcvbs6eYR7cAyfla4NOyjErSXSegEbhJDNzBNC9d1Wkpm7Ord1sze0tYrgCZV8n71lv3j67rH+EW0TIh70zr2pfD5NePC9+lPG2UyCskIn1tUBDzanxQlNPIh28psxFPie/F4sHAKCIK9X0jwCdYfz/fa9Cg/JIWqYbxVtN/E76n9/lplMDqnWZRkJQKLAVjwm/tbVOsw+i/qg6IpoY6o4km3BUg7Uv4LIcIsoXSdJ5Hhs+t4R8ceUrW9Hz2nx5ldz2sLqYhotWoPwCbbrxF8Fvvp0k/p9zA+xAzI0fPZM39j/3V+vp+SG92LR/cY0/fA3dss9wPu3k6JvGxtcyQCG29nw3GwGNs8D+pDt7ncq58HQsweIK3tJez04u1zHj0W39al2uP2IuDUC2BFsWee5+E4NrphNheJvdffu4H3lm797HVPLaWkHVDuPT4OxJt1h6TENBNoamCNV0IFQoqoLloneA/KSfgdTUS/RveuqmqHZTGYK7quhXMnvLcmuOt+f6oa0LyEiMW0iBaFcc9QEClN7X33PC/sTvBZlPREEln1gsVYhoFuAvCaQDgChIHioYTvgxpSKVVV5d7SCr/wC/8b/+7Xf4s//IMvc+yNl/g7J6f53NRoCNpa47Of5VAIBdUDTRGUSzu8/NolFM8HV5DvS5PL57ASSUolh/OX7jA+XAhqnCU0hgb7OTE9iqZrKIoklU6BUHjp9RuM9vdhmhbpVIJCOsHWdolCMYvvS9yGzZWb87x48Ranj41iuzZPv3Ce5Tsljk6OBfF4CZPljQ1SlsXgQIGV1Q2ymTSqovCnz7zC2YeO4rk22ztlCtkcK6vrZDMmubxFtV7joaNHGB4dYKQvz6OnjpHSDSbGR0BKGnWHazcXePTho1gJk0I+g2lZ2LbNnXsrpBMm27u7WIZGMZsgm04wt7iM5/mkLIOj4wM4jhsqQx7f+O557q1tkglB3NrmNoVcGsd36R8s0qg6XLt5h6PHRhBCkM6kefX1G4wNDzBcyJHJpVlaXqWvr0Aum+Xi5VmOTY2gGxqWafLlb7zM5HAfY2ODbG3tksvmyCSTqNJnfKjA1PQEdqOO3WhQyKbIppPslisUikUsy8RzPZ556RJ37q3x2JljpPMBaPQ9n8tX5hjuK7BZ2kQIybGjYyzcW6GQS9NfzNFfKJBMZYI57PoYiko5BIK261CvN1BUhT9+9hXsis3K6ibSg3w2xfTEKJ50QIX+wQLlSo2NrV02tss06i7bO7usrm5w8foc00dGuD23iO24eK6Hpuq4dZu+Qh7HaXDu1FE0XcW0DEzLoFzexdA1xoYG+IM//S6NWoNMykTTVB49OYUQ4Lke9brD7331eY5PFJmZm2d8eAhUDdsL1g1F13A9iVBVjEQCM5nAdx1wXeZuL9BfzAUKe/iOB/UrW+tL+2YTKVctI1D3d27Pie0LSnjuU1OjmHdu8/f+1a9z6sQJhoYG25IjRRLXIw9a7+MGnvixvi9xXJdSqYRhGK1rty+p9y0Pel5bXw/QONoAbnMPbMU173e+oH0/6CXR2q6qWjBqUrZ5xvyYATfycMkOcBclVYuyI0fnCUQAmCImRniMoqrYto0WyxAdAUTfa53n+z1iwMI+9JoLvbJndnreOsGCJDCyi3A/3A9ASWgyV3rtPwfN1Z5lAQ641uHi3boAsw5RVNH1vTvMNfZ8fx+sO1VVQQTlDt6MIycSiUTVNNQoKVuHvAfu3mb5zxXcRfROoSgIKZtByJ0vw39K4A6ChTxQ8iMqXuvfzmKv0d+NRj0AIeFL+lcB3LVTVINNVdNCK7KiIPG7gjshRVcLWBzc+X5Q10jpfE5NAEWTJtG6z+73FwC6CJD5ND2qQux9zPuAOyWM21EUpbnpR/eviMjySmj7jOLy2sFwdF4E7hBBjZ6f/MnP89Wvfo3PZjX+0WMP87mpUYYymeagHGYjEAIWb97h2s05tna2mBgaIGlZ6EIjMZxCqBp2w0MXJsePjPFHzzzH/Po9HpoeaSpPEg/bdkKlUDA+MoCmaQhgd6eCZRnoeuDlff3KLcZHBrg5t0Q+lWCwmCObS/Pw9DhD+QIgUFSVVDZJMmlh6UEZjMWlNYr5LOVyhVq9wejQAOBh6ga1SoOVrR1OnzzCxJEhUkmTZMKi0bC5NXsPU9UwDYOZ2TsUclnmFpeZWVzFdWzUcKq8cX2OdDLBxOgA9YaNwMfQtACkOS6DxQL9fTm+/sJF7qxuMNKfxzQNNre2efj4BIP5HEODfcwvrvDBx07x4uXrjI8MMH9nmb98/ho/8LH3oRmCcrmCACbGR9jc2EZRVcrlCpu7JUxVxXNBVxS++eoVRvvzCCHIJkwu3FjkxNQYSIXZ2WUKuRyLi2sU82lcCTKMa9zY2iaXSaFrGtdvLlHIZdE0hRtzS1QbNuNDxSBLJZKFhWUUqTA7v8JDx4eRQCppMTLYT922cR2XWq1BuVLHNEyQkvXVDQYHi1hJk9nFZWq2zchwPzcXlvjU42cp5tJMTwyTyaYoV+oksxavXL7JQCFPvd7g+sIKS2sl1rcrTA4XMTSVMyenUDQVfBdVUbhy+y7HpsZ49dJtcikTw1BJZ1KUy1WSqQSu56Frgoszs4wO9jOUy5LLJMhmkwgh+Np3LvDwiQmkBFVXOTExhJaSmIZKQjOQno/0BF9/8TzjwwMgBKqmBWwAQMWnUWuwubXNxlaJ2Tv3GOgrBHO6+W6FnvfOV020toM3A+4iKSSTPDU1wj/4nS+Ry2U5fuLonmPiy5JywLvfC9xZlkmlUmFudp7BwYGuVz+cgvmg58X6eghwxx5P4UHg7mBgBy1KovT9MBazHdwpoecuHuPXCe6EiDF/QuCkqGowV7zYswivrekauqG3J0gLk54oocdPerJtv3knwF3gSAqppzHaYddrhecLJQhdkF3+24+CCu0exoOO7QXuDp579wHump7J/XSi+2vvMOAuYDGJPfGjDyqeFyTkaSYl6pD3wN3bLO80uIsokNG0jaxLbdRGEb303X96TdH94vKANupnc/pGx0eKcJc+xK8VX9Kb99Dj5yCJu+XbXPRxumZcws80TcO2G3uyRkYLgqJqzXMdx47VbJNNSqRhmEiCOK9I0Q82Aa1JDYkWAyFEU5l2HKdJ+4uu17aZxCiXipRBHJyUqEJBQaAQ0EjiYxDcWo8REz6e7xFsnpIgo4iPCP8W0m+20TG4bb8KJL7vhkBHRlFezT5FP0LI5g8i8HJ5vouqqEE7BHOnU6mJNsP2mRFtOhCfObJJcRAh1VMlYCIHcWURxQoCaqeiRBRMj+A3v1k0Obo38MPsYX6EZcOJG2a+jJ59uKlHykY0/qrSitP7h//wf+HP/uxr/Nqv/xbnrl3gx4f7+S8fnuZoPh/XZcJMW2E7alhmQQktgDIYBW+3wcuvXOHCxRm8WoN6uUomm2JooEDKTCBQyWZzfPvVq5ieIJtM06g2uHj9Fssb6zzxyBgjfRlSCYvl9S2y2TSer5BOWaBoSBQUVWd7fZtKuUoqlUDTNDY3SyhC4d7qJmPDg9RrDR47c5yXLtxgdKCP7c0SixvLXLw9y8LSCtduLjKUz+HaHldvLnD24Wl0QyWRtNCBb5+/xmAuh2EYbGxvcW9jk6nRYbY2ymQzWVZWNpC+ZGykHyOhc+HqLda2y6QTBoPFAo+dOc7YyCDS91GQvPjGDGdPTdNwHda2dhge6iOdSZApZDATBldvzjM1McroQIFCKsXo8BD4gsvXFhkd6iOdTrC8ukHDdSn0ZamX6wwWCty9s8qRgRz4LqYqmLl9l7mFVQYLORoNh+3qNkfGB0loJq7toRsar165Rble49ypIE4vk7YQ0ueZV64wkE1y/toCV24vcnxyADTJ4p1VCrkU+VyaXDrD/OIqq2s7VKsOxVyWWr3G2VOTZCwV4Us0VUF6CltbZcbGB1D0wNO2urbN7OIKw8U8z758mZNTU3z52+c5d2yI2Tt3GB7Is7i8wfhEkfWVMv2FIssba+RSKc4cnaTm7oLqs7NVQ0XlpStXkVJybGSIXCbF7vYuqgTLVPnMX3uCbDZBMmWws13Ct13euL7CyeNTFPMpdEPl/PXblGs1ckmTRrVBJp3Cd1xKW2VMK0mt3GBkeJBMPo1pGtQbDqapMz3ajyoUSjslFDUwIt26Msvk+DiubiA1FVVRGBvqQxUCTVFxGg74El1VUTQdRdMZHBxkoJAmZxnMXLvF3MI9Ro6M0XA9VFMDbOLp3+MM9L16W/BitoBdd7NktPa3HAXBeU9NDTO1ucrn/8X/zcXXr/CpT32ieVacqhl5SpRYnG88Lqd9jWz97YWZbAcHBxBCwQtrPbYbxA5jNOqm/HcCsP0/76aARrTSwHjWvoYH49fdOBmnsjVT4tOibgYhBsH58f2QcB32g7xSzXtrQpRYzdlweSei1bdNBNleDsnzvT3G6+a1u9XDjfQPEbJCwr5LJLquo4S1Y4M++G06U6d05kOIfqLancgo1EEi1NajCZLKBPRN4YumYiWkaKVPDyWidjbHvmnYDICw9FrGyzaaoYyFEUjR1ATilMiDpPvca7UTF0+6zccU7McR3VcGD1y0nnGvNgTK3vaE3zw/fi2aJYNEz35G8lZ77pp5K4gZGmLj8R64e5slDu7eisQpB4qULc9ATOKtHQSMevYsTrXs9vV9tNdtqb6f6z2IdElCFF54/ysLggXXdV00Td+zaSJ9XNfFdR0SViIGnFrX9X0vjKNqxbN5noeqqviei+d5mKaJpmn88i//Cj/4Qz9Eo15D14P2ong9gF4etc4xjqUtaR3TY3OMXyTKftq28UeUkx5j1LQGdljYDjevBY7jkEym8MLyA71kP1+q7Ow7QayNHwNZjuPGYinCGREuzM3jaHnsusY8ysDA0dnLZvbYDsUp6nO9XudnP/93+eIXv0T2pW9xWvP5uekxnpoYpj+dYW5hiWw2jW7owThoYs/AKz4oKEjHw7M97LrN2vIamhEUv548MshAf4F0JoVmmBimgW4YIf1IMDkxSiJpIhFYCQvL0Hjp6hyl3V2ODA7h2D59hT7chqRec2lUq/iujyLBadS5Nb/IxNgA9arLzvYuz126Ti5tcu7MUaQUGJrCzk6ZifFBTCsoZt6XyzDeV+TsqSnGB/pYW9/CcRzOnj7KG9fnWFrdYKivyNziMrv1BuODQWmD/mKeqbEhEskE1WqdVDqJkNCwbS5cu82N+UWeOHeCuXsrKBKOHx3Hd11ee2OGsZEBVlY30FSVqYkRbs/e4/ixCTbWt8nnc7x2aYaBYp619S0G+gtUq3Xm766RTSd4+bXrlNwKrtNgdW2L8bFBBvqL7Jaq2A2XbCZNaadCMZ/hT1+6yNGxfiaPjDA6MoBuGXi+ZGbhLppQMA2daq2OYZg8dGyCqeF+dENnbnGZsZEhtrbKVOp1PnD2FGsbm2TTFoauUshnmBwbQlFUVja2WFze5NSJada2ykxP9OO4DrN317B0nVsLy5ycHqVeb4SxpQqJhMHlW/M4NY9a3eHk0XHm7y3z4fc9zO52hd1SmcfOHMOpB0DRdzxQJX/27BucOzlJMqFxaWaepG5Qtx1ymTR3lraYmhollVBY3d7l6JERvvnC6yDBdj0eP3Oc8m6Fmdk77Jar5DJpFKGQTpmcvzyDlB6FXIpTkyPkkwlK5TqKGryLm6UdljY2een1mxwdG8LQdW7cnCefy2AZBiDZ3a2STFhoms765jaFQpY7KxuMjgwBYGgaTq2GItSw7KUMmBB6YBDxHB/DMnAcD18INMNkfGKcq3N3yeoqpoCEYQD6AZTntr8I1vbo872ARsrwJBk/tx0c/c2JYT6e1vnpX/lXfPazn0HX9bY2g7IOtMcHd4KmA5Rkx3Ga4KRNX32TOkgvqmavz7uBO0mLydA2MnvuaS+4i8Rx3XBdV9qO3rsbhmWHVGUPla2b96tzT9n7fSyhShhOv5+HrZtEsXlKeL+6YVApV5oGxPYp1/26++3Re46N0RGjpDERK2Vv59qv1WueSV8232eIHAqRRyl+kfjE6NHpQ0jUTrxPqlCb1z6s8WLfzvVgBsWPPai9IJQloIW+aeW2sxfvgbt3XuLgTo1ZVd7iZ9uStxHcRR47Re3O8X23gTs/Xrqh1+7TTYTAc12SyRSu66CoGroWcfR9fF8GRZQNMyjy3QVAKapGqVTCNE3q9XpY4Bc8120BR12nXq/xkY88iWVa2HYj9DQFdc+U5oZ+MLiLSywe+IHBXQREe4nnhlaxcLzg8ODOaI5fVHh8H7pCr2cWs77GxW/GREg8z8c0jRjdMspUGnjtWtne9gd3UgaJGETH2tw8vwPc/bP//Z/zq7/6r3nfzCV+7tQUT02NMl3IcySXi92WTyqZCFLz23ag3Knt1l8AxVdwHZdGrc72Zgmkj2WZQdp46aPqKoqq4rk+vgTX8YJAfilxXR/dNMLMn+B6LslUghMTwxwdHsZxXJCCP//O65ycHucrX32VYtbk2fNX0ZCsbW5xcmoEw9C4cHGWextbvO/0NBdm5ihmkviuJJvPUK1VyefSSAnziyss3FtBSEglLF66eJ3HzhxHEQLD1CkWsmRSQUxfwtCZGh8klbJ47tXLjA318dqVmwwW89yYvUt/IUulVmNwsI/h/iKnpkaoVGsM9+VJWCbplMXT336FTzz5KKWdXSzLZHioj1qtzsjwIMm0Rb1qc/P2HfoLWTKZNEP9Oa7dmGd8bIiBYp7L12dxfI8nHj9B0jI4OjXGS69fY7dcI5tK8c1XrnH25ARDQ/3UKjU+dO5kUExXCHTdQAgFoSr0pVNs75RZ3y5x6vgk62tbJJMJXn59hsG+LJ7nk89mses2O+UK00eGOTY1ykA+i+O6vHFrEd92KRazWJZJX7HIwuIq3754m+GCST6foVypU6nUOXdympevXKWQTuM4Pkvrm4wNFTk+NUbSSiJ9n6W1DcaG+8jn0xiGyfGpUfA9vvnyZfozKRaX1xkaKnLu+DTlSpnLs/PcXN5CtSVTR4a4NrvIBx4/g+/77FR3OHVsmt3tMq7jMTEyyNjYEK7n8cLr13jfmRO8MbPA8vo2p05McO3WPNNjA9xdX0eVkDBM5pdW6C/kSaeTeJ5H32CeqclRhrJZVta32NreZe7eBpqEYiGL53nUaw3KlSr5QhYrYaIoCplkgqefe40TR0aRnodpaNTqLl/+ixc5d2qSSrWKYel40sd3febnl1AVhUQqgQ+4EqbHh1Fch3qtxsb6Nrl8obmm7VX1AvjRCdKaynKkibctQ9G62qYCdlw5eMefmhph+1vP8Lf/5b/lAx94P4VCHgiTJIXNR568bokX9qMsuo6Dpush+NnL6nhw6XWt7p9376NsJRKLA+MQnu3nuWu10Wqn6x3FlX9dRXoySHAiOtvrPO3+wV1QNzJMCnaIcY0yTUZURdd1UDUVXdVa3rbocm8xuIvmkhIWB98j9wHu/JBJpCpa67S2TOi9UP+bn4ediV+AZjH6+HV9zz8gxu4dAnfNsBBlXyPSg8i7Cdy9V8T8AaVXZfrok171DnsV/+52XlR0Vfp+e/HOHtfrJlFx8Psp693rWn6X73tdLxoXBQIKSpf+dB7fvGa40Huej24YPQu0C0XBsW00TWsGVStKQAkSikKlUg5q/5gWvre3oCcEi7XvB+mjNS1YEIOFUMF1XfQw+H1PIfmQHhqngojYMZqhU6vUsJIJbMduHdNlwfHCtOmiw5IrfZ96oxFkPWyer7S3HcVvyiDr6GFrHraNBTTpEREdqvPZKaGnrD1+Lciq6YeWMF+2z1MvNm8lIfiiI4g6PC/w7EV1HOPPLAasmkXqW2A2Km4OAeXSl5Jf+Ce/xPUbNwD46ZEcP3riWMsiLYhZ+QnvuVWQPEiuEwTVCzWgPwsJ0vOpVmp4jsT1POq1GruVKkP9eXRDQzcTlCsVFFWQtFJUKzau53NtZo6p8QH+7PkLqIrCT/7Ix1lZWgPwgGAAACAASURBVOPZCzM8ee4ok0dGUBTB66/dJJEwME2NWqPBiWMTfPXrr/LkB07iuQ5rmzscGenHSiaQgFN3qNYbpJIWX/zmi/zgYw+xvVMnaRmcfGicpXtrWFqCmdtLbNfLfPKDZ7m3ss7kxAjLK2uoqkKxr4DrwtLddYaG+kinLO4sLjEw2AcCnv72eb7vg2fZ3CphWToJy+Le6jojg31UanUUNXg2+VwW3wvosqqisnBnhVTColDMY1oGS3dW8FxIpRJ85/wVKjWbT33oYQYG+1CEi6pqbKxvU63UWVkv8fDJSTwcPM9lZ6dMKpnk2QvXOTY0hFAEpqGRTlkkEyZzd5Z5+OQ0ruexW6riuh5zd9eYWVjlb/2Nj7NbLlGp1WjUPIqFPFduzPPImSkUVeDaHomEBYpCebeM5/s4joNpmLzw2gzTR/oZHe6jUMwxM7PI+OgwtVoD1ylTazi8+MYsn/uhj3Ll6m2OnRjDd32chovjumzu7HB0coSvP3eZx09PkUwmyGQT2HZAORSKYHe7iiJgYWmVsw9P4+FT2qpxZXae08fHeO78DEsbVX78+9+PpkKj5pHOptkorTI+PMaFizd46NgE128uUixmKfTlcao1UqkUtZrNHz/zCk/9wAdZWV5lanIE6ftcnpmjL5NlY6vM+Gg/VtJk7u4K05MjpNIpvLpLo+FgWQZrq5u4vkchn0PVFDzbxTAN5hfv0T9YQDd1rt6YYyCfQwBHjgxTq1exDIt6vYFuGiAEUgVVUbl9cwFVFRQLOTK5LL4icOo2mioQrothaNy5u0I2kyY/WMBxnICxERnXCA2b0YscWyPaPXd7147Wyy7CEjA0vXltWS4FTeX3pbsr/OrNJf7wD3+nLaNwfPk6jELcyuYreuGD7ufFaoCq3RK/HCoWqpfnTnb9vhkH12N3aSqyQrQlIlHie1J4z1KIZqp+P7ZutxXmjvSVHhWjNSVO15XRL2FN0Xap1KpoalD/U1dboCeugzSzdCsBQOxsV/FbY9rcI1Wtq27Sa+Q9EWRO9mRsr+oBaEWs3nn0qa909OkQCVWi4uegoAo1GFux/3z6Xkq78b9LAfk2B6Tseuxb2Ze3Ah+9V8T8bZa3OuYuHk8Xl8hL1WuRPYwnLfJEqKKjcPkBlqy29oRoAYGDju3xuezyfa/rRePi9wJmsb77nouiqmFK+ta9SSn3Zmls61BgRYuXQgjiuASNRoNkMtn0eEWxckr4e7NtP7IAi9g1wtgAP4h381yvqey3mpbN9pr3FOtnvd5AVVVefOEFRsfHut53JBGwU1QNz3eaFArf9zFNsxnTFadZ7GlbUfZYWx9Mok1cbcaHxvuuiFhGu47vJGGQtpRtY6WqapjdMhYHoAStRE0qUWBLiL4Ci1rwefDTCqyP7l8JFYUI2ApFYXHhLn/3v/n7zD/9NCe9Kv/rB87y1NQIJ/uKe73nHc9ChHEVMviS5rwAfMfDa7jUq3UUKfCFQNc1kgkLyzKCmmCaCkJDVYN5b+gmqtCxbZtLMwuM9mX5wNljnDsxgVAE6UQK2bB54+Zdtja3yCYsUimLyckRFu4u89DxIyiqwNIE5XqDZMJgY3uXTCqJ4/l89dmL9OUT2LZDvW5zYmSQZDJBtWoz0J9ju7SDrmsYukE6YfHQyQm+9colnnjfaRzHoVqvUSxmuXDlFoVMhq8/f42T0yNcvDzDyePjbG2VKO1WmB4f5vyVW5x9+Bi6ofH/s/emMZZk2X3f78YeLyLeni/Xysxau6qX6dlXkjOkYNKmLcuckTk0YUqgBIkwTH6xAQO2AYPfCMIkRVoEKVmCV8k0SAKkCHJG5Exzpmfpnunu6aW69j339e37i80fIuItmS9r6WVEQ30Tryozlhs3bsS75/zP+Z9znIyNnTJRNZV8PoOsCEzDwDB1/DBEVTVa7S5/+fJlKo3IG3b1xj3OnF7Etm3+4KvfxfN9vvRTn4l0a0nguwO2dw9Z3zng3Jllrt5Z5/TiLJ7n43s+2YxDNpfm/OoS7VYXO6WzOF/EShkEoUfGMdFUjcODKuVqk2+9cYcvfOIZ1CBElQVOJqqtNj87i+8FfO/qbRZnMqxt7zI/U+CNa3c5tTDL+tYey8tzpNM27sDj2q0dPvnRC2iaQrvVwnM9wiDEThmUqzUK+Sw528JKmVy7u8bS0hyKoqCqGrqhI4AbDzb4sU8/j6LIaJrK4UEVRVZQTZVWs42TdjCtFLmMjaQIKpU6qqyyvFSi0WzR67qcnS2xsJDnsFbnL1+6xoXlWey0jqpo1CrN2JAt+MGtNRZLOa7dXkP4Iddub/KRi8soikLaNtnZK5PLp5kvzaDIKv2+x3wpQ6PZJm1ZuAMfRVHZXN9h96BCvd7ENDS+9YMbmKqMrqrs7VewTINM2uY7b1zn7sYOD3YP+exHnkZVVHq9Pu1ul5Sp0R/00Q09qqMYCN6+eg9DUzlzepF+r4ehR1TPK1fvYOoa6UKWUAhMU0cWAY1WN6LMG/owvIbh9/Po93n8/8fzDERhVpPr/lGptph2+HzB4h/8zr/g6YsXmZsrHV87nohyNubZeoLlejy2atp547Hgj9vfk+4/6ZzIawbTNAIx9mASRkXieToRkA6NlSfoD5ElcoqF7vj4ou+ddkyXmMYeGr4XREBMiuPCZWmyxMWQGTJFNzlRfxIM+0s+4yUPJsMwjp8vSWPnJqV6HqPe4PD6sXCVRGSslKTR/Z3sCft3007y3I3m/tGeu/dqHO+V4+sDz9373B7muTvJC5fsg9gr8P4M7cnbmAUoaZIYWbRO8v6ddI/jx05r7/a+J7JTjY3BHQwwDAPP84b7Eo8cMLHAR562qJj1w9qkN+xkITEOJE9qiacoCHxkRcUdDB77+r1eD11XQRIRKAgDFFWh3epgGkbUvywThAGB7yMfqWuXUDW8JJGMJNHr9RCSQImFuSSO1OSZZpENx4FpMKSwCJEYISZj18JwEkge6w+GQeLj67Dn+aiqQsjxdzMamzzh4YtA3OgaQZxkIKqvF46VSxjV4ZNlCT+IkspEljzB7/z27/PSyy/zzz95iZRhDsFmKAIkn2juEYSSgDD2CAoJIUfvR0CIHEoI16d8cIiTsdEdG88P8dqRgun53uj+5KgMROhJ0fsoRZ5e1/WxbRO37+L7AQf7ZfoDjzCEW5u7fOHTH8IwdEJCus0Og55Lo9Ehl7Wo1Oq0Ox18QmYLOQrFHAjoDVxuX9lm9XwBRVXIZnPU6g3a3UghVzWFZr3N2zfXWCoWmT9V4MXX3uYnPv0hFFlCCaFea6KbuSi+RZHoD9pRPNjVexSzmShORhJ878ptnj29xNnVJfqDAa1Ol3ube7y9ucs//OkvQAh//o3v8+GLKyiyxOLiDCKUeOv6HZ579lxElQ0Fh/sVNFOn0+mTL2TxfR9FkZEkKFfqvH1znR//zEdo1dvs7JQxsgrLCwsoksK1a7dZXCiyvr3L5n6Dz37kAq12h0ary1yphO976IaGIisQwuuXb/OJj12iVq2jqQqKDDcfbPL0hWX+5IXXWCxkePbsEpmMg5qy6PcHBJ6HKgkODsqU5maoNlqsre2wvDhLLp9md2+fXr/H4sIMppKi3R9QrtZ57do9zi/OokgSC3PFOEtp9B3o9/vojo4iq+ysVdncqnD+7AL5fJpar4VlpmhUG0iEpDM2g0FAq9VibqHIYOBy9cZ9njq7iiL7+H5Ard6iNDfDlet3OX92mXq5QRiEpCyTja095mbyKJLES29fo5CxWSjmGfQC9g7qPPPcaf7NN77PU8tzXLu/xccvrrI0V8IwDHw/IJUyqdeafO/Nm/zIx57CdT26vQFWyqRcrlPrdnn24lkqhzVMw8D3XF69dg1ZNqg1OvytT3+I63c38Dyfj3/oAuVyDcdx0E2D1966wec++yzdZpNud4CiKhimzvU7a1xb3+I/+/xnkWNDTUTbimpcea4XJc/qDzBTBt1OD01VONw/ZGYmi6JrhLIcGXSk2AgYJgpYsr6M1qfhsjTmpR8eN1zzE6VaHD0r+juMjA9hzMXcrlb57y4/4Pd/73eYKeVH69pRRToYgZMgBiITxqnwePzZtL6idFjhsXV4Gr0yYV48Ka1OkmJPTji5lk/z3CXzGDFIgonfienzSRhD5ACdBF5CjGTZsXGIKR4aQJFV/NgAnGT5nuahizs5NvbxNsEQGtMJHplZMq4TKxAnMolGx/ookoIXeI/sN4ltl47oE5PAk0cXJZ/W4vMUSYn1i+DYdab14cfPR5ZODgN5t+2ooRoi3TUI/SmOi+PjeBy8MknznaIrSxHjK/AerRO/F+0Dz9373B7quXtYjNK4t+B9GNc7a9OsZNLUvUN75GPEYT3Kc/eO2wlWM0EYA4VooQsDH0VVx44fnafrI0B0olVvKHjGPXLTR68qaiwUT767BByOxxs8ag6jWm5SHCcXIhF5lqKSAhGYUxR1wvIYiiib5dE5CiY8jT6yLMXzk9AYj/nRHvrb+PiTkgWJh2paHye1RKkav/wIeJ+guCAN9yQF0sdl1ijke2RZH15reEwsw0PwfJ9f/q//W4q7G/zaZ54fJkAY3p+UeOSIBxqOfo/nOwiijJtyKOH3+7zw8qucWV5i4HoRZdf1aDbbpFIpCENSKROkaKwEAsMw6Pf79PsDnLRNpVKn0+7iODaykFAUQavbiWjGkgRBiO/63Li7xp21XQxdxTI1MhkbTVeZLxURJJTYKPvirbs7zM2nSadt3rpyh5liDl1ThxZcXVWYm8lx+8EO3c6A0/Oz5PI53IGHKqvUay2u3l7DsXQQkEpp9LpdVEXFsk0W5kvk8xk2Nvf46LPnEVIUi9Dp9FhZLOF1B1i6iiTBva09Pvn8RdJpm5feuMrSbJF8Ns3mzj7ZbJr9vTKqqpIyU3i+H3nXgpD9vTKWk8JxLE7NFqOsdWFAcSaDmVKRhMxg4KHIEum0TbGY4+XLt/nYM2fRdZV2p8f6VpmF+QK+61Ou1Hntyh0unllE13RefOUK7VaHtGWScVIg4PzyIr1un2arPTS46IbO4X4FRZbY3D2kkMtgOSlsw8RMGRCGaJqKY6dQVIWD/TqZfBrX9bh+b5P9SoPPffRp6q0mtm1Rr7fQVJUwCKk3eph6irv3dijmHV6+epW5vI2sahzslSnkszxY36LV6ZDPZNjcPsCxDdrtDo6Votvt02638YMA27ao1Zoszs/y1vW7nF6a5+76DrZpkMs4vHLlNrm0xdJsnpWlOUzTJPBDVFkhX8zgGBoZK8Xd7QM++fQ5CjN53rx6m1a7C0HA9bsbfPxDF+h0uqTTNpIkqNWalEp5tvcPmS1kefGVq2hCMFPKsbo0i22keOv+Jtt7ZT7x3DmCwCebsdg/rFGvt8lmbJZPzeF5A771yhUunV8BBLIkkXEs5nNZHNsiqeUFkYJLGMXi9PpRtuNWs4OmqfEaELC9e0A640TxOhAnzDgKxiIolKwV4+COo0cO14LxDJvHjhpb3CLKp2OYfGl1nv/qX/4rvvSlv3Okv/h+/IhOOKGMT8giYsA23XP36Li4kz0bjyObpvR2vJsTrp3MVRQ24Q/BXWJEFULg+T6tZhNN18budxx4PwaNMD5GQoye57gR9qR7TNb9k+TXeDiBRIJUH+nFDEUiI6d7644NQxIQHH1O0zoGpOnGgQkW00Oe6ySAPtp9OGZEPRnAjPc99Oa9j23qvYjp+8Ujg44e5xrHn1kQhLyXpRAe1T5IqPI+t39fwd04tfNR4/9hg7toV1STzh30J6yAR688GLioijI8JmlJSYOkPEQU3JtkxzzZmhmEQZzMI4gzcUoTn2SsSR9RMVWZR81GGAaxMinF1DNp1A+g6TqB70dJN8Io2UYSQze8p2HcQci4UhAVtZYJ45iRafX6Yjvu2Pa/eeBuMIgKNI+vrVIMuoJplvaxfv7eL/xj/p8/+EO0l77Jr1w6zSfnS2O0oJEtO5Dikg0iutcwhFDE1JQgpF6tY9kWoe/zp199gY3NTZ49vYJlW8iyCkj4rstg4EVeIUXBc32QBWEAgR9dr9Vo0Wy2UYRM4AXYlsXG+g7rWwdoWsjK0iwrS3PsH1R59cpdlkoFFAVWFksclOsIKSSbsXEyacIQ3rx5j6W5Ildu3SfnWJw+tcDW3i6qIlPIZAEJVZFR1YgOOhgM2Nk75NmnTrO/3+C7b93j+UurvPr6DSQ/IJ/NYFkKpfkivu+iKjLtZhtV07AdCz8I2N89xPN8SvksA89jd7/CwvwMhmmwOFug3e7S7nY5NVvgxr0NTi3O4ugGTibN9s4BX3/9Bp96/ikOD6r81fevcOfBDhKwOD9Dp9PjT777BvNpC1mKxn53bRPXHZDPp/n+W9eQA8jl0oBATxkEfsBSMYuqytQbLayUyY21HQppi/5gwPKpeV59+zaNdofF2SKrCzMYisL1e5tcurDKxtY+xUKUCKOUz2CaOpZtEQQBmbTNzu4Bq8vzVOsNBBGdOwyi791hpYamqtTrTbLZPK4Xgc6FfJoLy/Ps7pWZmyviex7ptEOv0ydlppCFyvbWIU+dX6E0nyfnaHT6HXTV4s++/TrPn1vGsQ0c20RRVB5s7lJvNTl75hSKIuP7Afl8GnfgxsaFENM0yKVtyoc1lhdKqJqCpmusLpQI8NE0hYNKnWw2Tac94KW37nJ2dQ7LNNndr1JvdriwugAipJjPMDc3g6ZrfPPV63Q6HWQBMzM5mo02b918wNmVBZaXSviex+5BhbSdYqaYo9nuYOgmRdvE1BSarQ6nV+ZxXZeF2SIvv3ED13VJWwZh4LM4U6ReaxEGIYZhRIq/56PpaqRTS4K9vUMMU0MSEooqoygKvhdZ73VDQygStmWiKgpbW/uR/ArCuA8pYmeNUEP8X6LgH1/KYl1+Yl2ZPGhynTzqEUz6+DunSvz8b/wed+8+4Ed+9DNT198wXlMnqZRhHP/EifrGk4K7SQ/kOwF3Ccg9kuBlKrgbxXl5njdMCjMEdl7kfU1qco48NHHJGk6WnNPAnSIpUYx5PIePC+5OrOE2IV/HaImPAGxPAu4i0RI8FmiQ5BOA1NglHgXuHlavbhgr+QgAe9Rzl5T7eL/atHsZlqc6Mm/vF7iL3vDHpzG/2/YBuHufm+e6v5pwtZ+EN58s0A/7Wp+Y6v99a+MrQKzox8rz0euPW9Cm9pRkDjqyfbxWXlQfJiop8CT3OSw5MbExHH3GtsmyPPR6jY89+QTBCIwlsXRRJktp2N947bnk/JO4/QmNRB56AsOJz1FKZ0ShmO41lORRYpdEmA8txLEVLpQioeJ5LqHEkOaR1PSZyMMZx7wN+f1AQDicgzCIqSJHLa5HrMTx6I7dfwR6wsm/4xaEiYdMHOsvDGOvG3HikfH5TGrUxecm4C/JBRDG1NQkeUpEeQrGxpOMkSElMxpPSOWwwt//xV8i+/1v8SsXV/nSmSXO53PR/YdxHUDG3mVZikpeBGPvB+GQGqUoCqZpEroe5b0KGVUi69iUigV8IkU78ONMrIrC//uV7/DchVUUWaHT6dHvuYhQEPpRQW7HSSErKv/nv/02Z2bydNo9hBBslHcIg4BKuc7cTJ7Lt9apVltcOLeAaZqsLM/x1W//ANtQyWazNJttLF2n0Woyk01TazTJZ3MIycfQNQQStWqDVqvF5Rtr1GoNHMvAMiMPmWVpfObjF6g1apw9M086Y+D6A/bLFSq1BrqmIksStx9ssrKyiKxItNtdstk087MFbt1ZBynk7sY+miSTdmz++K++w0eePkM+n8ZJ25QKeba29ynkc3GMlMFyIYsmK1iWybMXVjh7ao6FuSL/+s+/Ra3e5EeeO08m42CnUyiKTCZtkTI1DitVStkc+WwaIUAzdfwgpN93SWfsyEMtQjLZNKtLC8hSSL6QQVVk8pbBmeV5DENDUWVu39/i9tY+chiyujyPkASGoaMbGmZKZ3/vgHtrm4RuQLvfxXFMZCXyFFYrDX5w7TbnTi/RbLSjIuu5LIGkAgG6Kkd0yFKBtG1Razax7RR7O4esbe1jGQaK7lLvNNk7KOP1XWRUivkilcM6t3f2aDRqnF2eBUkw6LosL5UIQ59arQkCup0eTsZBCAnHsel1+9FXIgjZPazQ7w9QFRnbTgHQaDcRQiLtOLgDnxv3N7l0Zo5sJk2706XV6vCZj15ia+eASqOOlTLwBh7buwcc1hqcW5plYa7AxvY+M4Usq6fm6A8GSISEfkCpkObB7j4LpQKqrrG1tc9rNx7w+U89x0tv3qDRbnN2eYH9/TLnzyygygJVlrh8/QGFTBrbtlnf3KffH/DV77yFoSrMFDPopoE7cGk22/z5t1/n/Kk5JDmiOKtqbKgjSrwRCoEsK6QMgzAMuf9gm5lCljCmmSlKkmBpcg0c/TEO6sJh+ZSRjEkkmRgJ8DEPlRBEdTZJ5Ei0/WdW5/m0EvBzv/F7/OC1N/kPfvInopU29nqLZD08QneMxhpTLYdrapySJJZxo4y/U+7nyN/J2uwH4Sgm+ghAnPYzuf/4sRPXS7aJJC4+iDNOj0CXAOQ4uVky3yMzW2KsnfTbTWoFx4sHRY8h6iNJmvVQZTwW3RP3MU3XAGQliiv3/elxb0fvP6b4EIgwNiJPH4KQxDDZyZO0CaZObAgYxqg/hm56VOZPy6h59Njx55e0RD5Gz/Q4+HnSxD0PawnoPEbFnBjbu+s/iN/HY/veIWh8p+0DcPc+Nz8IfvW44vvetHFY8MNpY1+yYRrad3Zf0+gTk1eIMzsdqSv2WPf6HsZzJnELUuylixafkbA8KYlNVER15M1L2qOtO2OWrzEr5ERmteTIBKQcWaTG+02CqqMnFQnviYWVI4tzIvBFSHgETQ8pK49BtZ2MpDxiFJh212PFQE9sU6yBw8WaIyVAYuEfhmJ437KSFDCP1atEkRqdAsA/+a3f5bd++3c5f/NNfvm5C6xms6N0WQkAnhhDZGYZ9Ad06m1UTR16TAM/wPdcfNfjjbeuoyLodfuYukEu75DP55AUFSQZVVU5PKywd3CIZRp89JnzlA9qyIqC63l89VtvcO3WFqdKWe5vblPMZ2g125ybn+GN6/dRZIlzqwtUGw1sw2S30mCukOP5S2ewdBVVUwh9uHl7nVLO4dT8DJIsk8k4GLqKY5t0u30gRJUNZuYyUTyLF2DqGoap8ubtdT7/ieewbAMzFdV4TKctWq0WrueCCEmldA7LVRZKM+RzOYIgxHYsFmdn6PX6NBttBMSZWTVm5wps7+1zZ32fS6tRYpXPfPwS5UqNVruLbVlUq3VkWSaXz0bUHz/gq996ncVChnwhy9Ubd1laKqEoMm6vy2wxg2lozM4X8d0oSUqt1kBCsLl7SClXwEjptNttXr96m6XZiJoqCej1e5hmVCewVm1iGEpE2Quj+DPLtqiWa1iOSTGfoVKp8vwzZ5BlCU1VkeQIvFZrDeZLOWxTR5E1ijPZuGSFQuWwRrvb47mLZ6hW67ieR63RIm1bbG4dsL2zR6mQwfM8stks9XqLuYUCrWYHw1CxDJ1/+9IbnF3OY5k6pUKe2/e3UITC1nYZVZX41LNnWFks4vk+pmly8/Y6lqFRrtcp5jMIBGnHZjDw0TQVd+BipgzKhzVkIVhaLJHLppElicvX7nJvY5tnLp4h9EMCH+482GK/Xme/VmehmCefz1AsRiA48H0cx6LRbFMqFfjaS29QzDqcXpwlk4uSx2QyDnfvb0VJeBSFVqdLOmMjCXj58k0WCwWu3FknlzZZKOVZnp8hZ9vcursVxcTJMoVClsPDGgvFAtfvbvDSW7f58c99CMPQWF0o8uLrN3nm7BLuwKPfHZBKpVjfOuCt22t86PxKHIsXrRGdTjeKaYwLYEuyjKLIZDM2u7uHBEEQ1YoMYeB6KLLMVNkukqVizBMnxnaM/Z/UvmKCkTAG/oiU9+EpksQXVxd44cZdli48xcxM4dj6P51+GY1TEolnZnS8LMvDJFInMiCmrMuqouL5Poo8ed6jKIeP2j/eJrJmjp0mSVJs7JssaTDsW0Tr8sMMwtNGcbSMweiRvHv9TQhBog48iU6YxP2dePw7TE4yzs6R4gQ178Z7Nu2eHvcex72F0/p4r3To8Xs+rjfFLXzn1xndx9S977jfd9I+AHfvcwt9/1cTCPReg7AfSlH0ySsOfxtd751dN4E84RFPzFEr28P2nzzM926mx71rkSCJrEwngbexM8c+o/YocDfywiXgOabVBOHQgzXt2HFQOA3cSXL0FgZhcAywTfQXA9lIoEyOTRaR6PSDYGIc09vxTJ/R+Ji6fajInPAeJ+ANQUQPTc6SpMi6OwbuEksvJLEwkWXTT6jC8Vwc/d7cv7fOP/6lX+bXzpT44soCi2lnePVEOYq8osRxddFHVhWqh1Xu3NvktVevokmCTMbBD8Dtu9TLh/Q7PSq1FivLiwgkej2PQCjIuomPhFAEoQixHBPbNDDNiEb3F994jZm0jaooXDy9xN5ehVLewdRVzJROo9UiDENmC2kOqjXOri6QSVnsHNb5+POX6A1cDFPHC3wCPySdTqMKGcvU2TuocfP+Gv1ul1zGRkgydtpGkmX+zVfeZHHORlVkyuUaacdAkUPymTSOY/JgbQfbTNHvefgDCHyQZZV0Oo1ARpZUfF/m69+9jJMyqdWbWFaKQauHgKgwuSwRSFHKekvXWJ0rYZoWQeDR6XUpFjJ87aW3ubCyiGnqhGGAFwyoVxoQBDy9ukClXCefT2OldCRZMBgMWJgvkMs5pDMW29v7WHaKg4MqtWqb0kyRdMrm6y9dQ+BRyGdYLOU5PKwgA5IiEwY+ECWtkWQFTRG4bmRtv3N3A8dOIcsS97e2sE2dU/NFZEWm3mhgWSZenG3RSpns7+0jhSH7B3VKCwXCuF9VUchmLHQjMgR0+31mZ/L0BwP+/FtvPjZMMAAAIABJREFUM1dIkU4Z2I5NpdLijetrrCwWoqRJ/R7NdouLZ+bQSFGrtikWswy8PisrJQxLplxpsn1wgJPSKZYKdLsDsnFtudlSjk63h5WKar59/41b1GpN0lYKTVOQgK3dQ1Kmwc7uAYVCFlWWWJqfYdB26XdcXn3zFqfmCnzsuTNcWJ1DNXSazSa7+wcU8hk2dnbZ3C8zP5Pjlcs3+Y+/8EnmZ/LIikyj3mR2rkit1sD3ArLZNN2+x9xCCc/zyKRTyGFAPu1w/uwCioA7azvM5LL84Xd/wPMry3z/+j2uP9gi9FzmZ2cY9H1KM2mePrfEn/7193n2wgpCCJ4+t4iEwiuv36RUzDHoeZxfXuAjT5/GDwJUTSHxoBmmzv72PpZlESDwwwAkkBVBzk7T6/a4cXedxcXZCQ/P0TYO0oSYJivFkf2Jl2+8DxEPKwY1CW88bj+xWOLed1/kv/ln/xdf/vKXJs47Bu5iuRFlKUwMYiOWRkTHTwyVU29p6rqcMBaOnvdegruETTGtBqogXv+nAMuIpZGUwzkBsE7ZNsEKGQMC7wW4S4yTIpY/4uhDf0h7GOgKGNEkn0QPnAB3seH6SWuwjVM0k5jmoyyox+ljWMLiA3D3nrUPwN373Fzf+9Un8a49auGbAHSx9+xx4tqONomRRShRcsMgeGhf0lhs2PFSr0/Wxi2HD4M7iZVxnKo5QXuY9nmXbRzQKXJUvFwapjVOsl1Gi1gQ+DHQezz4Ps3zNn0MR4G0jxAhoYgytiHFte/CgGSGkmUrECOP4pAm4kfzJoUMn5wA/FDghyGSrED8XIMwofxGRILkk4wr9u8NxxcwyiaWPKfxpyakOAZTSjxlI0pP8hMM72F0Xji2yI4ol4JQxM9HJMcFxNHq8TGj91MSIUIkzy2S0b6fxFhGlKS7d9f4pV/6FT69fYd/dOkchPE4QxHVmhORRycMffADQtdHMQ2atRa3b92lelCmVqmStVMsreSYyRcRvoTfC+i0uggJej2PQiaLIqlUyk3+8sVrPPPUEpWDCqaqoKsqAol+x0XTQwaDPoEXsrpQotvps7N9QNax0VWJIAyYXygCIZqmIwsZRVZZ2z5kcXaGcqVKpdGglLe4t7HJwmwRSahsb++ye3BANpciV8yQsgzOr55BNyReu3WF06dW2Fw7wMnqLM4YzORz1OttLDPFYBCAUDEdBVVXSTs2hCF+GKDpMumsRW/QxXNddMNgfX2XbMakWq3jmDpWykDXFTQjSrCiGRqDfh9ZArff586drciDaGhkMha7u4e89tYNPnr+LKZhIMKQH1y5xcpcCYSGLMnImgyGjGlZ+IPoxW41O5imQb/bQ9NUbt/ZoJi1qLWqmCmZXM6mXG2wspRhYamIkYpiCHVdZe+gTL4wg2mlODyoUa01yTgp3CCMY2xlCvk8kqJSLjfY3aySz+cwMwa+6+L1fG7efUBKUdA1FcPUcXJZAlkmDH1Mw0RVdAaDAFlVqB00KJfrFPJZZCFFyXHKDa5vH/Bjn3gKRZORUFl7sM+Nu4c8e2EOVVXo9wYsLsxi6CaSDEIG09JJOw79AVy9usEgGPDhi+fZO6wALuVag/m5Gar1Bqqmohs6D7Z2yOccUprM4nyRbm+AaarohkQmrVGv9uj2BrRaHRYWStxf26FQyiCEYGWlhG1HiX2q9Sa2k6FSbVDMZdjeOeDs6hKZlIVtWZxZno+AfOAiREh5r07ghtx/sMeZMwu4vouhw90Ha+QzDu7Aw05ZdDp9NE1h4HucObNAp9flwuwM1VqDjz19htXZIl//wU3OLpR448YDCjmLbM6maBl0Wx3++nvXWN8+5PT8DIP+AMdOcW9tlxd/cIvTCwUsK4UkiShbnyQIfOh2OzhOisDzEAhkSUGSFOr1yLtqKAq6ouD5IbImxevCSI6NO1EEY0WFH0OPHwG9KRLxqKgNYcFx+OKpGX7uN36fn/3ZL0ZrcWTdGgNFYnh8YiQMYuNc0uWkQv5oz9005f/JKYEnlzI42u+0vie1hlF2UT9OVjUOnMbl3bg8C0UQPbCxzzHqXPxQxkFMwmyRJJkg8I8BhQnAM/4TG1b9OPmNH2dqfOhPjF3H/w5FxAxy3UF8nwKEhBRKQyNwGBIVVY+vG09PnHDt+Bwn4x5PwDZ+3on00THgJYREGICQRKybiIn39mF9HN2flDh6eHmv40yek9oTeRSPvBOTgbYjACdJYurrKybeuPHPD7d9AO7e5+Y9YZ27R1q9xr5Mic3K970nTq0qGHlqhn1N4XOMx/WNt/fSCzndxzW9TVhx3kMP3fERxU2SYkv+ke0w9OI9ahE63vfj3W0wkcEqjIcT1aBLin0LojkZFyiRGXhyu3TCexUihgt+UisxDBOQNd1gGS34IzDtjwnR4QkxfTHWNYYLYZCAutjie3QmxrcdFbTDwGsSb+ZYbUchCPxIsI/gpyAcwsZJISKE4Oe+/Pf5oz/6Ez6zfZt/9PRZCrZ1/GYFBCISnpHWIKHoOgw8Xvjua5QbTVbmZ1leXsRMWWiGjkAhCAQP1nd48Y0b2JrKa9cfsDRbiMpRCHjq7BwAf/bNV/nwpdMIAQf7VZy0xaDTZ3PzgLRjgR9QqzepNtqUK3XOnz9FvpBmb79Mudog8Hy+9vIVDip1PnLpNJquks3YNJptBCHZdJqdvQrFYp5C3qbebEcZKy2TXq9Pq9mh0+ty6dwqvhtgmDqqKiGEzM37Wxi6wWG1juPYfP17l0lrJumUgz/wkSUFtzdAS5n0XZet3X0ydopuu0subeP7AdVaE1mSWFlZYGf3gL7bI5Nx6HSiwt+yrKBIKoWMw6tXbtFudVEVmWIhQ63ZZm42y9ZuNBdyKGi1e2weHJJ3LCDEyToM+i5bG7vkCmn6/T7ptMXaxi4ZJ0UpnyVlmbiey9zcDHsHVVKGia5r6LqBrCoEfogIJOyUhVCiWJtOt0sua6PrKrIs4Q5cQj9gZ3efjGNh21EsWWEmi24qSJLE5ev3WF2eJV/MUq23CDyfTrNL2rHZPyyTth1c16c/GKDpGnfubhCGAboWeWEB/uxbr/HZS6c5KB/imFGm3vnFWc4uzxCELoP+AAFomobneYTJeylFBghv4GKltCjzpqJgaCqWrZPP5tje3keSZEwzAthp20LTNQ4Oq/gB5LJpNC0yVFWqDXJZh6WlOVIpk+3tA86cXkEIn63dA779+jUunjnF3mGFhYUZGo02tmXipFMMegOEBJv7FQr5DFdu3COdMhGhxKA3YH5hlntr29zbOeDiuSUOy1U2dyrMFYp87/ItdClKYJXPZ6nU6jiOxVvX72JoGtm0Qz7rUKs16fb7XFiapT9w2Tms8fSFU1SrDVRZplQq8Pr1B1i6zqULC+i6TDpt88b1+3z04gqKImHbJmsb2+Sy6TjWSKApGtVaA9uxQYqsXK7r8pVvvsFHnzmH5/pUa00IJSzHjEoQDBdFJj1wx2TUo2T7cOk8tm10fvQZHiIkfmaxwH/xm/+Mv/t3f2YIRpI1cXw9DeMOj669CQR9Us/dk+x/t8cfO/+EuYxiB6Vj9MppLZxCZwzGgNQYpJo8jwhACUZewfCEY4+NWwjCWEYRHDk2qb0qIopsQuudfAVGnidN1YbAL/EKTlxfTJ6XhFwkBcaPgqnkuJAxI/nYeY9qItY7pLgw+9HSBk/qVXyUxy4Bxo/Vb/jw8g6PMaKJvwLfH87N39T2Abh7n9t7De7GwVbi95El6RFLyrTrRF+OhGonhlS8yS+LJI0VKh2TOu8puHsCeumE5+59a0cW86Flczq4SyiajzMrT0J5kOJ4EGksCUiQLGjJGBhZksYGNgR3yfaTwd2oQOkkcD4ezzc6Z/K9EEKMxWCGo4NGNx3TLhgKp6gcwCMUhnFqJ1GcVRDGFrP4b2kY7zGeKntMkI3Vm0nu5bd+83f5J7/9TwkI+Vc/9hGKlgWImI2RANX4XsJIxxNhgAhDOs02vVaXwPWYL2Q5VSqSK2QRiooXEsUuuZGF9huvXKfv+nzy2XOs75RRZYmUqZFKGZgpA1lSqNZrLM0WGAwGQFRT7969LZ57+jzddhfPDyjXGqwuzLKyPE+tWecPv/l9zswWWJyfI/B9+r0+pxdmaHe73Ly/xeJ8EVkIWp0ukhAsLc7GADxg0PeYmy0gKQLHMZEkJaLshlGMUbPRZH1rj/m5WW6tbfHGrTV+5OPPEASwvlMmpclknBSKKiFL4Acusm5QqzVYXJhBUxV63R5rGzvomkapmCcMQzrdDjMzeRAhQegjKzKpVCoyjEoSzWaLlcVZFhZmaLc77B9UOH/mFK7rsrwyDyFkcxkkIbGyOgdhlBFRUmTarQ47u2UWFkqoqhzFEToWhCFb2/vYtkl/MMA0TVIpk/vru5i6wbffuMJ8Pouha3TaXRRZQVJA1aIkLbfvbxCGIW7PRVMVXNcjk7bptDo0Gi1ymQyKpuF6A6q1OhfOnCLlmAw8D0PXabW6yLJEvdZkfq7I/kEt8lIHPpIkSKdS5LNpFEVmv1xBVRXyTor5mTzFXBpZFtTqbZy0haIpHB6WaXd6bOxVkMKQZquNZVtouhrHdnq0Wm1mSzmy+QyKorK+tUMh76DqOuXDGovzJfYPquSyDjt7ZQxdpZTPISsKDza2sUyDw3KNlKHTi+u/9fsezWYHQjAMiVv3tyhm0lHdO0XQbHaoNVsU8xnCMKTd6WJZZkQtVpUoG2rfRRKC7b1DLCuF57sslHLYlkkul2bQjbKA3n6ww4efiYrXe55HtVanNFtkZ7fM6VPz6JrGX3//MhdPn4oox4aOaWjk0ikcJ8VrV24zV8hSqzbY3K/y05//OJIS0utH9e8Kjk2708O2DAxDw7JNABqNFr4f4roe/YFLSIiiKdH6rkicXZhDlqOi8LKk4PsBZkobgsJooZhYlUeLYMw+eRTgmLb7cfRWSVb4ydksf++3/1d+9j//mchYO92pMNyX1PccbicBdw/3rpw89r8Z4A4hDeMKH9WmgbuokPjxWq4T5439+6QtAXcEx2O3JaShUXKYWO3oM4l/l0KBTzACdI8J7hAxkAvHs4NHOg5CxLF3IWEinp8A3CW035OSsrxTcPew6z1un0J6t7TO0blJQrrHnZd/V+2DIubvc+sN+k92o3GB4ict4P0oe8TRAuNHW+IJAk70Ao5vFZI0cc67aUm//biQuJCkYRH0acf6cWH0k4p7Drn2D7mnhB/uui4vvvgt/sOf+ik834syUI6dp2oahwcHFAqFKJW+FGWuPEqb9P0AWY5pq/G1At8bLqDBCYVUx89/WBxbREWE0E9SPB/xsIrYdB9EVDkRbxt67hLMFUbGgKR5J/DL5fh6gZ9kURtTVphcqCfuLEzA5KgFsd4T0SGjbmRl8nlEXspgSHGKsk1Oxu2N0j3HcxEfH41HniwkHwuy8bfo53/+FynJEr/+qWcnrNQRPXNU2Djwg6h+XRhluCzv7HHt/hrPnF0lDKHZ7FLI55Akgaqq+EGAj0SAwOsP+L+/8h1+8T/5AusbO8zOFgj86D2T5chb4AcBsiSo19v0+z0KuTR+4JOyLTzXRwQhe/sV8lmHexs7ZOwUszMzrK3vsHiqwPZemXqjx5W7u3z6mRXmZnI4GZuB67K7V2Z5ZYF6vYGTMtA0jf39Mg92DlhdLOLYDv1eHz/0GXgDbNvBd6Naeq4bFXGWZJnyYQvViLwd/f4ATTPpdnvIePieh24oHJQr7B4ecvHCM6iqTKfdQpUF3XYfO2UiZAlF0QhCuL+2ST7noBmRZ8jzfNJOmm6nh5AkDvYPyWXTZDIO3f4AWY5ioZrNOpIQmIY5VEjVlIzfcWm1u+Tnohp0g86AQAoxDI1+b0Cr1caxU0gILCeF63usr+8AgqWFOTwvpNFsYNsGQsgEfoCZShEKl1azg2WZiLhQvEJU6FrTNSRZUK02aDTbLC7Ms76+x6mVArIsKB82cLI2mqbRaXUjT3IoMHQNWZO4f3+HZrvLU+dORYk5XPA9l5AAHx8nbVOvtcCH9e0d5oo50tkMAaBoGsGgjywrdNo97q1v8+zTqwhZZXNjl7Rt0uv3cVI63V6fTL4Yv/o+e4cHmEaKV968yccunUXVFUKiuer1++iKyvZ+hdXlRQaDAaah4bseiEiF6fU8/uLF1/npH/0E0KdSa+F5AQtzM6Rsg8PDCrmcQ73WZOD6wzIOViaNoWm88uZ1qvUW/9GPfYpet0e92cJKGXS7fXRDJZ22IZQZ9AcomkKj3uTe+jbPP3Oe3f0D7FQKyzSRFRnX9fjjv3qZv/1jH0dS5MhTaZvDkgevvXmDi6uLUWZFWSUIQv70u9/lc888xdLcLPt7VSwrRblco1jMopkKsizjBwFhIPEnX/s+Ty2XuHx/iy//9GcwzKiEjNcLsdMput0umqrRqLV5+/YdPnTxDJm8AwgUQ45r6A0Xlikr61GV/riD73EJIMd8ggL+yxdfZ25ujv/ln/7GcN/4SuvFGSCH8uJIO0kEhcn1wqT0TDLmcLQGDwefsD6mGzzDMMkKHU4A3sSbdAykJPvj7//DgNcjw1rGzvOCSD77cTiKkMWEzEmOfxzvzNHRiBO2HT1+ouexyZfiLM+jXdLE3xOnyfKwzmHg+2PbY0PqQ4qnJ0Bv4qVLDo+pp2EQRkl9HrMJEVGd321ylnfbxp/b1Pcl1jWEPDlvR4+J2qShebhVinUH8WSxij+M9kER8/e5PannLjIAPnkM3aOe4iPJIY9hKZk0BIn37GVO0tsrsjxGOzh5DEML4wnXH8UZjO0/EpeXALR2q83Zc2cjwCTiunJjWdBURYlAl5DiAPKkzs7kfB2ltHiui6KqBL43dp8n1xl6JK0zsTLGPI2jAieM49qQQJbkYerkZCFKrEzSEapEcMKbIyX16CQpYYocG/Pw2tOGOz42EgUmJgFJ0hDEjfqTYjqKNNR2xj13ieVtUrCHw3fQ9yJhEgThGLCLuvqDf/1H/Oav/c/8y889z0+emo3v5eizE4Suj6aq9NpdyvsVrt18wOXrd5jN59BVDce2CZGwUhaSovLm1Tvs7VcoFXOEocD3fLbX9vnCx59B1RS6nTZpx8S0TIzYW+e7Ps1Gm0HXJZ22yGUdFEXmxp01bq9tEfoBxVIOz/NI2SZhKLizsYuta/TcAZmMSbvb5dzKMm63z165wqWzy+wflNFNHcs2CSXBnfvb6EpUgsC0DJZPzaGZKp12j1wui6ZKaKqEbptIQqFW6fLtty7z9PklmtUOhpHCMBQ6nTayHBWFDoMQ3w/Yr9TY2a+wsjhPqVDg1p0N5ko53EGfVMrEdhz6A59vvPoWgesz6A2QJAknbaEqahwTN8BI6fF3K6TX7VPIpXH7fTZ3DnEyDpKioGsKpmVSrdVx0hblWg1VjYqod9sDsoUsvW4PQ1NRdAU5joO1LYMgiGimnW4Pd+CTz2dJxaBTVVU0TaLf60UUvUyawcBFiQvda7qOEDKNZodB1+cPXniZcOAiC0GplMeyUhxWaiwslFA0CUkRUa1CZPZ3y9i2RaPVIV1Io5l6VK9w4LGyvICuaxwelOk0umztHmJZBpIMnU6XZrtNbrbE3GwUA7e+tctMsQAEEATs7pbZ3q1gpQxSlkLo+xi6Sq3eYmlpnjvrG+TyDrVqE8ex8X0/KmMQCq7d3uDimSW+8t3Xef7iGQxDjyjSYUin1yebi+iOhqazu1shl89QqzXQNI2V+QKe7+LYOpKQ6A3cqHbf/iGFQpabN+5TyGZ4+fItXrmzwUfOrjLoDtBUlflSgbliHtXUUE0d0zRIWQaWraMqEq7rs7a9RaGQRpIFZsogk7a4dW8DRZEp5nPcvbNJrdqiUMpz5fYGpxeLsfdbcO/BFpl0ChBs7hywsXdAMZtmb6/KvY09ao0Bc7kML715CyelsXtQod7ssjhfRNMUKpU6qqKiSDJPnZrlsFLnb//4p7hy5R7plIWmaByUy6i6jGpGddA0RWEmm0VCYv+wjO2kkOQYoDBawyYXxOPyNSl1MLm2TllQH9EScPfF1Xm+eWeNB/tlPvbxjwyvMaSmE33fTjLgnnTtxPM4XhMsqv0qhga1aFsYG9kiRsWTxFklFLuTwFQkb49jkcl5ePzJC+NyTlIse4QkmJZM451Q76ad8aht4547P4xi1GUpKfXwEEAb0yCP6mRJzN3EsUfAdLzxyJgSWu+IofMk7bH0mcfo49228XjGqf0lamJwlPs6dUTD34YG5KH+8N6M971uH9Ay3+f2/xdwJ8Y+DwNWw9/fQ3CnyHJMN5zMojkVCPHOwN3RmnJJcHk+n8cwjGGSDd8PIAziGnsBnufRbDRJmeaQzx8JrTG6Kkls3GidlGUZz42UWiVOxiCdMGfvBbgjjOcsphcGQRBbz6LjZEmOqLxHufaPAHdJjN+Jc8yTgbso/i6hs471ETIE3ZKQUGR54vEGYRBldGNcFoUkTlZlLC13MscvfO0b/Pf/w//E/1jU+E9XF46MO1J1gjCKR3Q9l7988RVSskLgR9eq1Or0XY8zq8tYlgWygm6m8JGRZYntnUMunF5C17Xo3ZUlTEWLPQkDnHQKWZbp9vsMBm6kFHf6KIrMrbtb5LI2L71+hdlcmlev3+GTz15gbfeAU4szhEQ1nBzHYmmuBEHIXrlKsZim3x+QyeQoH9T59IcvUG+2+OZr15grZiKFV1XQFZkXXn4bR9dIZ2werG8iSQJdN9jbK+N5AzZ3d8nmM/ieAE9w9f49njmzwM52lTevPWC+lEZSQNMUZEVDkWUUTcOxbLrNHp4boOsmhhYpcoah8cdf/w7z2RyplMnd9S0USebMyiK5fBpFVSAUuAM3qhUpRxSqbreLKiu4gwG+H1CYyXPn/iYzszOoisz+fplOr0s24+A4JkHoUqs20RUdIUnISqQW9QYDVC2qCdjt9lAUmW63h67rSJKMbuhUqw0MQ6dea+LYBr7nsntYJZNx8Fyfw8MK2WyaVquL7/lYjk2j3uZzH3uGhfmoGHe7240Au66jyCr1ep1ytUa32yMcRN5ly05RqdZRktIIrQ6qoqBqGoQ+ge9jWTaWqXNQqTE7l0dRFayUiUcEuAQCWUhRnUBZZtDvk8mkyaYdbNvAtk0qlTqGptLtueTyWTq9DiEhaceh0+qSskxanTbtdh81fvc/+aELdDo9PNdj4EYF5tMZi1qjRT6X5f797QjMhwGqpqKqKo1Wm3w+g6Gr3L63SbXRYW6mgGWbSJLEnXtblPJZitk0P/rhp3nz2j229g+ZzWdRdQ1JkdEtE98P6LQ6GKZKp9Oh1eyiaxr5osPrV2+SsSKQdu/BNkuzMywtz3OwV2Zjt0zWTmGmDJ46u8T1O+uYccmRzb1Dep0um3sVzq8scH5lgXKlTjpto6kKC8U86XSKp04vMVfKc2d9i89+7Dk2t/aoNRq0uz0UWeLW3S02tvcopB1816NUzNNt9xChwMmaqLoaKYqShCpkwgB0TeUrL/+AvXKFpy6sRoDBF8fARzDdVzOW2GQE8t4NuAP4W0uzLNT2+Z0Xvsfnv/Ajxw4cGcmm9HPCtZPQj3E5lRQUT2LDQSDLUlxeQnooG+Wdgbu4bt0jkmw8dpME+GFM7T/53B8WuBtPIiIrEYMoCP0h2HpScDdOCx4eOz7fMfdSFvIRb9RIt3mcwujHxvM3BNxNhBSd0IaMoEd6GcfmcFxbHhobPgB3Sfv3Btz5fvCrQx712I+MIAxCZJHkJYy3Dy1gj45DGy8EnkCXk16xk8DdtPPGjz0poUoQhhHt8DG+/I8qtj5hbUrGeNI9MykYpsUDTovJE2KyGLgkyVH9sEEfz3OHV5YkEdXv8TwUVSMIfFKWjee5w2u5MWgbgcXEmpOMKVKMhgvjOAc9PDnd78NaGAZRfNIjLJvJJAlGMR4CQRAKoryaEX0w+Uj4SAJkEckASYzYIcOSAsN+lKhvKcqKFUWGxwIlCEnKMR0d3dBqnAiMMSvvUbCb3EOU9SyM6ayxxw8IJ8i6gsjRJ2LQKLh/7wG//uu/yf/2v/8f/EOpx5cvLIMsj97xMCT0QlRVRRAi/IDttR36jQHNTo9CJo3j2JimydzsDBfOLhMEIZ4XRvFkrQ66ruD3PU4tzNDqtFF0BUVV6HZ7NNtN2u1ORNENQ3b3yiheCK7P7m6Zv371Kvc2dmn2B5xZKFLK53C9AK8fMpPPsTw/x9bWDldvrlMtt3nhe1e4sDKLH3icWV2k3/fJZtJcvnqHc6fn0CwDISucWV5gb79Cr9Ph8KDC6ql5VhcL1FttbNtE13UyaQcJhTCQ2D+ssVmucXpmnkatQb1ZY2VuBllW+atXr/PUqVkKszaKojIYBHTbHRQlZGtrG1WBXM4mldJothrMLSxw+co9SsU8/c6AlKnhBz4ffe4iIgwxTJXAd7n3YINMziSi+wUcHFZxHJtUysJyTDTDpO8F6IbG/GyeQbcNkkDXNbKZDJIs2Nrdw5RtNM3AcgxarRaGrlOrNVHlCDy2mh1evXKXS2dXWd8u88Krb/PU8jyaovJgbZtCoYDv9ej1XHZ2a5w7cwpJAtftk81mcT2PlKmjGRqyotBtVCJvY3/AzbsbnFosEgYu/W6Prd0dcmkbVShk0xm+8dplzi0vcrBboVZtYakShiKxv3tIPpcmDALKlRr5Yob1zUNsJ4VtmZQrURIPDyn6LhLFv1i2Sb3ZwNRkPE+i1x1g2xaqpnL9+jqFUho/FGQzDmHoocgGUqDTqNTQNRVVVbhy8wFnVxfpdFqsLM9xb2OHYiFLuVpDUyQGXsjLb93g4pkVqpU6i6dmsZ0UsqaiaRqqpiJC6La7aKkUqqIwV8qhyBKVwypOymRhcQ7TNklZGs1Wi9lChuXFEnY6Ra/fJmVq7G7v45gGmqZSPtil1ahSzGeQJJlrNzY5NVsin8uwsbXiQrWYAAAgAElEQVRLEATMFAr47oAHa/usLs5ze22PmYKFoSusLM/R6/bJ5bM4hk6353Jzc49LZ0+hqJFBZe+giu/7zBTS7O1X2dw5QBZwar7E7l6ZncMab97e4gufeo5atclOpcpMweD06imqjRZ/8d23KKRNMhkD3TIieloo4bs+AREdznUDcmaK/YMmczkHKZSibIGEoCTr5piEFwy3HVm9j6yYYgKwTTtcjH0SJTORR7Zh8C9eu8xTF55ibq40YqWMe2KmuMDGAdtR4BWtz+NrdSxXJ2SfSBbaGNgdN2iO5PfkLUX1WBNvSGxA5XgfQghGUmE0Y8nthw+bt7G+pXiM8RUQhLE3b/SJ5nY8yv1kXelRTYylqk6em8ykzJXjX6JMnskcReulHPv2RrOS6FRJUp8otEBI0Seah1GBcyGipGPDgvbSSB+RRFIOY6S3iCCMM8xEuRkIwsjoNDZFspjMqB36PiKMa+JOWmInWgKoJtg7QWRqHuaBSO7vJF1wmqE8eorRd/UxAFdy7yf1O3yfJzJnTn6SZ3RSdk0/9B/DI31EJ5ySyfVov4/q6wNw9z43/wTPnQAGgz6e7yErysR2YBjU+1AvXgIUGANFJxwqSdKwP6aBqfFuj4zzpPHzmFadiSyM75eF4zG8iImAi4CbOtzu+z6Kqg6Bnx/4KKqG77kAMe88iJV8F0mSH2qRTLx5o6EFw8+7uMEYnL4zb+moUO0RQTlmLR33bk5SJodv5Wjf2DAkaeSNm/Z4j45YxO/0ONg70VssonjERBhO47YLAZ1On1/4hX/ACy98g9/98Fm+uLKApqrReBPWRbweS36A2+tz794GlcM6hVyWbC7H3EwhnieJfndAq9XFNA1UTRleX9O16PcwEriaEVEffS/gT7/2CrqssDQ3Q7lc4/7GLmEQcvn2Gooic1BrcGo2z/OXTlPM2piGSihg96CCqilkMzaKIqMqGk+dXcXQNMrl/4+9N42V7Ezv+37v2bfa97v37YVNskmORzMeLU4MC7EsRbFjDaTYsgQksD4l/pIEQYA4QTCIsiCIAxgyHASwA8cREEhRJGs00mg0q2Y4HJLDYTeXJnvvvvt+b93aq86aD6fWe6t6oYYj2eHTOGTdU+e873uWet/n/yz/pw5BSL6QxPcDTMtEErC5c8DCXBHPc3nzndtcXJknCkM2D47p+T3ymSSaqpHPZyAiDrczZHZ3j/A9H9syuHJhse/Z0tBVmXQqQb3Z5jMvXUYWAbliDllWcbsBhyfH5PMOScfBtC2+/sYNnruwEBf99nzmyjnuPFjnxasryLJEwrEJ/IBE0qZZj0lBtvePSCRNNF2l0+2RSaVikC0Evueyd3BMqZIniiJ63Q5hEOB6Hs16G8PQCcOQr7x+nVv3d1ip5HESJls7B3TaXeyEjYgUfvDOPS5dWELyIZfL4qQMnl9d4PS0zsFRldNGh2+8cYtyzqFUKvCV126wVMphWhb7+yc4jsXO3gG2ZVCvNVB1FcvQ0HSDWr1Jz/NIJi0UWWFv7wRdj5kpDdOg0+5SymURQvCt73/Av/W5l9jeP+Tg5JS5UpEwhHqtCSImztE1PTYsRRHpTJIwDPGDWBHY3NwjnU4ShgGGaXB4fEr1sEky4VCrNrAdhw9vr7N8oRTXFPQ8hBRxb22L+fkShqESCYGuaSQsE1VRKBZS1BtN5uZigpqDwxOKuQxhIPFwa5/luQI916Veb5BM2rHCJiTuPdig2eowP18CInRDx/d9JCF48+YdEobB7uEh2bRFz+2iSrEH5/7aHrqqoMgyDzd28d2QdDrF/sEh5UIqLqNw2uHhxgH3tg8Ig4CFuSKaKlPIZ5BkiWq1zly5QK3WoNZss7Ich1U3Gm3SaQchBPcfbXLpwjwX5st89/oHqDKYuoGExOrKPJqmUCikKRbisFxJligUM5SLGT778mVOTmqk0ymOj+tYhkK93mFpaY5KJoFlxp54RVOHc4+ixGyenU6PSESosszqYonA9zg+PCFXyhH4wbD4+ADiTcxbg3V45nr4BHA37QxpHEAKfmG5wn/6m/8Pv/iLf3vMmzKF6n9MpP7a9TTeiPPfT/OSjNZCIR4f4nc2R2qg2wz2zIoWEVM+P0nNiNee86vO7BJn08Hds8i0MY0/jcGaOAucSjOYFYalgThDkjK872P37VyocPxcwmhUQmIIvideVzGmYk3TDUbtT4KUGcCMaEjAMjy0/3s41+aMNgbgcNzrOHxjIp4pT3Bau382XXXauzz7XgzDR4cPZaZG9Phex8b8Cbj7mCUIgi9IjJTfgQzCrsaBHYwe3XgQoSxJfWVyUoYxv4y8Y7MkjGKriyRJBGMx+IPzxvubNp5pMglhHnPcNMvEM8hTsWk+Dejpny8PatYNwgDH2CgBVEWNwxqDMCZ2GC6K0YSrf8CU2Wq1kCSBoowA4qwQEnFm4hj/PKhRM/1eRUOr1DSR5DjPTswsQjo+wY+dJ8Y/D0Jvpj+z4Xnnmh+3YI3aGnQ5sI6eO13EuVyDMUdjIaPD+zssvDvqa3B9g2P/7t/9D/n8/kN+8dISv7BUHvsutuBJgCIkoiAmYHl0fw1T15EiQS6b4eiohp2w+eDWQ/YPq8xXCsiyhGHodDo9ICTwAxrNNroeGwV2dw+p15u0W20yqSSPHuxw7dIyb91cY3k+w93NbZ67sEDStknYBivLc8yVc9iWQSrtoEjg+R6bu4cU8ynmKnnev/eIlaUyjzZ2SKQMLFsjkzJJZ2w0LSZ46bkuD9d3eO7iIpqmEnoeq8sVDvaPKZbzvHN3nf2TQzq9LmnH5uCwSsJx+Opr76HrUMpnKZSySELQ67ps7R/xp29/yKXFCrIkoRsanV6HVMpic+sAQ7MIPYkvvf428zmHVruHaegQRmzu7uPYFumMQ7VWY2W5gu95GJqGJAm2tvaxrZhARtNUFuZKeF4PSZZQVQXbttjfP0LXNU6qVbKZJLu7h2QyCXb3DpEE2JZNtVbHNHTarQ7NRg9dVbh0YQ5JEhiGRjqdQtM17j5aY2EuT61Zp1LJIKSIte1d8rkUnXYXTVG5tLpIKeVQLuUJg5BPX7scW/FlmUTCQUiCpGMShSFBFDNy1k/rCFkGSSKdTuC7Pgf7J6ysLOD7PqZt8HB9m1wug6pqdDs9XnlxlXani2VZrO8c8f7dLd6/t0XSMlhciIt1JxIxsYckS1iOjaZpaJqCIiskEhayKiP64cm245BOGqiGjGXr+IFHMqGjalocVhWGCDkuxO32PAwrZhJVFJlup8fpaQMhhzTbXVRFQVZkspkUkiRx794un33lCgdHJ5QKGQxDQ9N1ms0mR4dVTusdLqzM4/keIgo5PqqiqSpvfXCXv/a5T6Nqcb5ar+chQuh2PVrNLqZuYRgG6XQSRQheu3EHS1ZYvTjH3QfrLC5USNhpXnvrHv/uT/8YpqajaRqIOOcoiHxs0+bh2ja7x1V+6nPXePvmbZbmy0QiJiVyey6ygGa7QzrhsDxfiENb/YAoEtx5sEU2bXNSrbG5c4Dbi2vnrW3tsrl3wPHxKY1Wh1Ihy9FRjWsvrJJJp9jdOaRUzlFvNklnUriu28/rFSiKwtHhCZaj43se7956yIXFMt97+ya+G3D7wRoLhWwcxqzICBnCYARwBnPfYC4cgLFRDE0foIlp3onJvLNwLGdvYsXoexw+vzLHP/iNf4aVSrN6cXXSsBtFE3BhAOwG82ds8BsfI6PvZq7lk+OVJtaRpzdMxl48hsr+WXKWyZZGSrE87GsApsVEPVUxKB0yVdt5OnB3du/Zbdb3swFbXE5ocIWSEBPjGBS9mgkOJBhYHyMiAt+PDcH965so0zA2IFmSh/rM+bq6k/hiEthFE/tHW1wPVBq+txML90S5pnFvmRAxecyA0fusYWEiVmfKezeuqwwBnTh/TNz2+ev8oUkfUEZRhCzHTLuDVBnOXNOkTjvKtRwN7qOBOz/wY8+pIiPLyifg7uMU3/O+gBBTwdk0GTy68WMH3rbHnf+k13TY7pl2pvX3LO1+ND/SM8rT/CA/okdr2hUMC3hGI1rfuO9REfdxa6TUJx0Z1KY5u5hN94Kd73twCTPBnZgN7sJokPcXTX1mk7THo/3SmUlkoGhMvc2zVr5pE1F/gh/kKg+K646L1FdABpbic9bZaHTNk+MRNJotfu3X/mPe+8Mv849/8pXh4ib6C0rUz1lyvQBdkfFdl53tA2QhIwtBq9Mjl8siyUqsnCoS2XRsqbdsgyAIuPHhfUqFNJIUE3AYhsZv//F3ubRYIZlwsG0D2zIggm++cZOrFxb48c9eRZKgUkizs3dIPpeh0e4QRiGyJNHt9dBUhb3DYxRJYnVljp7r02p1WCgXkYTEnfUtbq9tcnmlgmnrbGzv83Bzj0I2yeFRlecuL/e9zbFHUZYkTFPnK69d5+d/+nO8sDJPOZ/DdT2SSYcHa9v85Gde4Kh6SrmQQ1Vj5f7ouMrCYgkFOD1t0W53MU2V00aDdDJBoZTFc30OD6ukTZ1qo8GLVy/Sc11SCYeFSgFdUwn82JuhyDK9bg9ZFrTabRK2xe7eIel0gt/7xve4vDQHIsKxbRRJwXM9Eo7F3v4R5UIG07Ko1ZrYhoEE9FwPQzexTQNZlgiDiIsrC1xYqBBGIaf1ej8fTaHXc8nnkiAiMpkEkiLRarfodj1MXUUGNEWm1+thmHFBdUkS7OzukUzGHqAwHBlmPNdDVRQiSaLb7uL5PqmUg6qqdNs98rkMQRgM683l89k4L67rEkZhTLAhCdrtHuV8lldeukgll2BpscLm1i6WqaPIEsm0g52wCUPwfZ/tzX00VUFV4hDygbcoikAQcnR8gud7mIbO/tExsqQAErfurpHPJTk4rlHM5+NQa1nm5PiUZMrBSVi0221AIpFK0mi00HUVz/WYn6uAFJBKxuUj7j/awdIMZFXimz+4SRBA2jYxTYXTagNN01BUhWazg2NZADgJB9sx6XVdUqkkmXQaw9RxHAvXdTFMnasXFsnns7RaTWRFpuf5OE6C2mmThbksrusShRHpVILTkxr1ZovNrUOW5ovsHZ1gqgoLlQLfe/sDLl9cpFZrcHBY5cKFBU5PG/3Q1IhGs02+kKXZ6PLmzXXmcg6OYyMLyBeyHB6d8tyVZfyeTzppk0rYGLpGqZjhjXc+ZK6Qw9BUao0GxUIWLwyoVeukM0mI4PadhywtVnj31n2CIGRt54jnVhcpZdOsLM+zPF9ka/uAza19CrkMnuv3y+WMobLBhDaYAkc+J0Ygb/C3mPh7AmgN902DFbH83EKRjRvf5x/97h/z8//ez04edXZtmmh7FFFxFtw9rXxUBXo8PHOIHsaamgJ5gbMlf+L7ONuT9MMBd48TMfOPWEZFrMTEs4zOPIfHgrvx3SHTUebUsY2ttZzXsWbjCzH5Dk98FT+BaeDucUZ+IcQ5T+F4f8/iHJhWx++sMf3jiiAbesiREBIxWcuZMfQHOX3/cOdH9NzBMFXqE8/dxyye534BmPpDmCYfG7iTJIiic+UFPgF358+TZCXOyRt4+B5z3lmP3p8XuJtlORz1+2RwNzn2KfIs4K5v9WUwyfeB59n6eAPLcL+DpwJ3b77+Fv/wv/4C/8lKnr93dbWvlPSVgfH7E0VEkaDXanH73iOyqRSqFpM7hGEcXiYkKQ4rVeLFzjANAt/H932WlyqEQdAnwRC0Wh10WaJSyNNp9/j9b7zFUilH9bTGixcXefuD+zimgapJBJFPNp3gnQ8f8ObdDf7yS5cxTB1di4lfTF2lVm+RcJy4qHQUU/ZXT2rcuLVFLmVzZ2Ob1bkKJydN7mzt8OkXLmNbZkyMYug06k1kVaHVbqNrGinLwklYuJ0evh9Sq7coFLLksnEtNYIQyzZpt9o83NimXMyhGwZz5QKqJKErCqe1BisrZSRUXK+Lqqvomobf9bm0vMhp/TQGxKpCvdGk13NRFZ1vvfEemiTR7nRRFZl0JokixfXiOp0u6YQ9LMreasRlAmQhaLfbaGqcTRIGcUkGWZHYPzjB0FSOj5ukUgmEiNA0lU67y721LeYqBar1OtlMighQFIWeF9cK7PZcVFnGskxSVuwR297eI5NKoKgKb314l0I6yfHxMcmUxc7+IemEhSTJbG8dkEolODg4xnEcJFlBiAjD0kEIdnYOsE0TRVaIREAQBHG4ZsfHNE2a9QaGoXFaq6NpMql0mkTCRlLBdiwUVaHX7WGasWfMNA2QpL6lF6IgQJUkfN+j2+1iGAYgODo4wTR0Mul0X2EQWIZJs91FkxXarbjoeuRD6AsUJbYWe56H63tEEWiKim4YSLKMIsdkM5qm8I1X3+XCUgkI6fU8DE1H10yEChcqFS4uzuE4JsfHcXkO143JWxzbRIh47IZj4HkudsLg5LRGGAQEfpwzG0YxY2qz2ca2rZhgRY6fmSQU5soFdF1g2yaGbnC4VyWTTRH5Iaf1FkIIrj2/iqbFIH51aQ5FjT2chVyGIAhJJRJIcjy3qJqC7/lA/Jt96eoKu7vH6LqGLCQkJJyEw5f+9G1euLhAwrHjQur7B1ycn2N//4ROp8thtUYum0KSZXzXR5XjEhKFXBZFkSlk0/hewMvPrbK3f8yHDzexTC0G9hGYmsatu+uUCzkUTYWhF2w0X428dqN5c/L/5+fVSb16hiHujCxn0nzz4SY/+/l/f7K1v+DgbhaQ+DcF3InBmtvPf/szg7vxNfQJ937Cozc+pieAOzG2hp/Vjx4L7sb+TYyjX0pgpp43zbM165r6wI6QibDM4TXNGMMPS0Ze0IHn+0cL7iR5dG2fgLuPWcIo+sKzTHCDYIEJIpNBGNpjtqBfTuAx45gKC8bB3SB8VPS9P2dbGw/dnApCB9/368YMPo9f/3hQxNPKU1lbngDu5Cmhf2evYBAyGYXBWI5cNNziH+5k7twAgIzywibvzCTgOxszP/kDP0vKMpAwjIbFcgcF0+Ma4E9xF+OKrshRnDAe59hFSP1tdA3SxFoQhlG/3/EJUo4ZQ8/kWoZ98DUMhwkHfw+uZbQ0SUIeTq7REAAK4uT1syxbg/veN96GIX/nl/8jfsU74VeuLLOQTBIvIBIoAkmRifwAggA5hL2tfTK2idfzaLU7tLseuVwa3xcEfkin00UQcvvBGiuLZfzQxfdDFEWLczKluICx1+2xs7NPJulQzKURQcj65gFBELK+eUQlm+Xbb97lL129QGEhz9tv38YUGp4b0XNDgl6HjGXQbLaIwpDd/WPK5RynJx0KhRzVkxq1ZpOkY3Fab/DZl65wYalI2tJiCv1ewOdeuUIQ+KiahNtzIZI4rTbRTYXvv3eHarXOpZUFFEWhVq3TaLdZudgPpSNCQVBr13FsC1mRabV65HIZ2p06igKJtEmj3WJxuYIkq2i2xubGHq7rkUpY5HIOkhTh9yJ0oaNbIapiYho2vaBHLpXg9LTN5dVlAhHQcbs06qcgiGu6BQGOpREA6UySRrOFppsoio6uOciqoNZooKoysiqRziYQssRr791muVRg/7CKbdk0mx2292qUizksQ0NC0Gv3iMII0zZRJAVN0VFVDd/zUTWFRr1JPp8l6lOeL8+VeOP6ba5eXEaSFRwngazohKFAEjGhS4TADwIM20Ax5Fix90IUScJMWIQyuH6AoqgkE0k0LSYMcRIO79x6gKHqJBNJFFUekjNFoc+jtQ1u3H7ApcV5qvUmEJd1+PDDB8yX8miKwm999VVyyQSlYiGuJxqEmJaJYsQ1A6NQoKo6vY6Hk7QwLINcPh2zqyZtzITBzvYBpmNydFojV0iBCLA0h4cPtsjn0kCIrISoBuSsIj4ddFNCllWu31hjvlJB1wUbm7vk82ka9SaaquF1QxIpi/v3t1BCBcuSQbhEAYShH5ef0OL7JxSBosoc7p1ycHTK4oUyPgHdRo3dvRMSloVl2mxu7dLrBMiSzB/86Zu8eHmJRr3NV77zAQ2vw4PNQ4QfcP3D+7zywgrtdgsJlSiU+dJ3X+PSUomNzQNe/d5d3G6PdNqk0Wqxu3eCpencfrDF6vIcuwcnLC4VSWeT1Gsttg+OqTWaLM+XOa01EAjKhSydTg9FVjB0lSgKsEwNwzSJBLhegKoquK6PJEIcxyQSEplsirlSlp29IzL5NJqhYxomc5UC9dMmW+vrFLMpgiAASSKQBJEsIwdRf16M58ORjObAJ+WqjZ9xHvSMptK/vlDkl//R/8abr7/Fz/zMT/d3R/36rDGwC6OxNV5wZh4fGeTgPOCbtg2NdxPjH88RG+tjrBTAQFsJ+54P+Uy+uTSxiZEuNCRCGbU9rsmMa0HBaEWEM5/PbjJhTMByZhuwTU88OWm873g8iAgZMTFmCUEoxctfvAzGzyASIEej6xODaxRnn0m/j6hPbBKN2pWm9DW57/w9HGwDkpRJlSr2OI8IaAb3e/Ssw77OJylKnAYkJEQ4ImAZj+GcIGXptzmIfIr1oBEreXjurR48wHCizdh5MXg5J8Hrk9gwn5418zFtMJ4yEu8REsNt/C0Zv29B4A/1ylGk2CxN//EyDlo/AXcfs8wiVHmSPKtdYUAEMYtw40l2gNEiMBswjH8zDdwNF5coGpFknMk5C8OQMAyeimXzmeQJ4O5sntZApgPHGd4xIaZ+JysqYRCcofY/bw0bgMPR8nleBvWBxkHo+Pw16CMGQU8B7vptSE84dJrycNZWOKghJ0mTVraBZ2087GgEiemDu0E/k4XJR/dpHAyHnCVn+dVf+TXsN/6U/+JTL2Bo2qC14f8EEYHrIYKIMIj4/a+9RhhEuB2XdMbhqFpjeXGeg8MqlmXR6XT5yvfe48pymVIxi+8FMbmIqiMQvPvBfZK20fdMqbx6/RamEpdJMEyd9b1dXrg0z9VLC5zUajQ6HZ5/bpmICF2Ka6H1eh6FQoYXLi1Sa7RizxVQKubo9Twebu1RKWb54rfe4uJCCU1TCfyAarVBMmERRiG2bZJOp9ENhXuPNnBsk57rUTttkUw4qJpMLunQbHZJJiw2tvexTZ18PkO90WRr5wBT13n/1gNWVyr95yeTsG2iCFRV4d6jbUzN4OHGHtlUkl7XpdFqUi7n6fVcdFXBDwL8wMfQTFRd49HmGpbu4LsBdsJA1zRymRQPHm5SLGVodzqokoRl28iyTLfrYpk6jzZ3SSUdul0P1/X54re+z3w2TaPVROl72+r1ZuzFs20uLczR6fUoFnIoqoKqqsxV8mi6gqap3Hu4QTqVxLJsFE1mbX0HVVFiT2X/tVJVhU47zjvTVA1N01ko51ENlSDw+yAwrgFomTpBEHLnwSayFBPDSAo8fLCFoWtxnmMYoajqMGclLp0R4roeru+zUClQmSsiJPC8AN/z+d0/eo2Xn7+AbRpcmC+h6SqaqpJIOUQRZDMpfN/n+vt3+auffYlcLoXoh7lKssKDR5ukEnHZgYP9YyzL5P1bD3nv0QMuLpYRfQbSTreDJGBtY5+DoyoXV5dwuz263R6aolMsZPn2G+9weHzK4lyRRrNNJpug3eqiaSaBH7FzeEg2bfa9uPNIQmCZJko/R9wPPGr1Ft+9fo+5YhJNV9jdPyGZtNna2ce2DEzTpOe6fPm7P+D55QVSSYdX37nJykKZxmmTuUpxCCQs0ySRtNF0lZSpk0ha/ObXvscv/fTnuHZlCb/n8uLVC8wXsqhanMd2Wm2xsbXPi5cWCcKQbDrDy9dWMXUN09LiMhaWzXt3NpkrpDB1FQTU601uPdjg7vouP/tXPs2NW4+QI8jnUiQTNts7+ywvVrj9YJObj7Z46coKu/tHmIZBu9VBVRVEJGKyHVmO5/4IgiDE63lksylUpW/AErC5uUepnEf4Ad9//w5LCxU0XSOkn+/Wn/8mSSPOr1FPI9OOOrvv88sVXr23xqPDKp/+sU/R14KH68uEp+UMeDvX9jMoKbMNqrOvG/p56NDXI56mn6l7px47TZ+ZJdKM9XoAyCfOn9GYNOWL2cEwT/DsTIzh6d+R2TKuu8xQp55gYB+u8TBk5XyaUY0bc6N+tM0gTF4IabY3dcogxZnIoGcJw3waEPik63h8X9P3nwXJfxYZP/8TcPcxy48K3IUzf5GxPBHcjYVtzvwtTTnvWcHdoA7ZDz3m+YngLgZL4gwwmR5i8GzgTiDwfS8O4+zLgBxlkBw8Ce7G2zs3UmAE8kaXNtgv9fd9vOAuDq+IJiy5Ul+ZDfxg4vhxcBdGjCVUj9qeBu4GeYKMXd/AexeGIV/+wz/hv/lvf50v//6X+Oc/9QqrmTQD06aQ+vbaKK5LKPUCuo0O9+5vsra5D4GMH0RcXKmg6hq2FYfS2Y6F50ck0glyjsnRcZ1MJoVARgkF62u73Lh5H11RUIQgn80QAaVsinKlyO9+/S2SpsFiMUkunWB7/4hyKcfO0SlXn1sm9CN0TWVn94BkxsG0DG7dXcfQdRJJB90w+KNXf8DVS0ssLxTouT0IQ04bLRzdRNcN1rb3KRUydDpdfD9AlmUC3yfwAxzLwrItiCIsx6R22kT06wI2222WF4vouoGqqBi6xqPNPb5z/Tb/9meu0Wy2abU6pFIJer0ekixQZIVcJo2mqVSKWcIowLJ1NF3G9zwsy6DTjcP3giAgRGb34ICLFxZoVj3uPdikUE4iyxK1kxq5XIJut0s6k6Z6UkOWZbwgwLIMwiAkk07QbnfpdlyOj+scVOu8eGmRVDJBr+tiWvE9UDWdMIA/+NbrWGoMHDvtLv/q66+T1BWOjo85PK5yeXUJRTMII8HhwQHFQg7TMlD7TKmtdgfP83ESSTRZ5eadDebLZQI8ms0GmVw6VtiFQFFkFFWm3emyMFckmXTwfZ9up0MmlUCSZarVBr/19deZTyZIJpP4ro+kxDb8ZNrGsEzWt3ZJpR1E/zd8cHTC6UmDuVIWt+ejmXHOWlyiQ8L3g2rF+tAAACAASURBVOHv1LYMkikHz/Nxex7NVgfbNrn/aJtyPkmn3SYSAtMxSCRtKikHy9SREKxv7JBNpiCEbsPl4spiXItN1RAhVGs1TFMnk0hyaXUFzw0JA0FAG1O3URQNz3PJZmw6bpu9kxrZVBJJyDx8uMXr12+RTSVJ55KkUglWFysxeA1DKnMFtncOWJqvIMkKYRhRrzV4/sISvZ7Hhw/WuXZ5CUWWsE2bCGi3uxyfnJLOJGKiHUnQbDVptFr89Z/4FPcebPDGjQ/5K5+5hue6fPBgHSFBOptge/sIx7T4zju3aLd7rFQWqVZPabZbOLaFospEYUQxn0TulyQo5tMoclzv8/nVJda39pAk0WeWjd+Xufk833/nNuVchqRl41gmp6ctWs0OhqoiIfjm6zd48cpynwgK6rU2v/3H3+flKwtYpkngeciShKIp2I6JrCkYuoEqxUaO0PVRhUA3NXzCvntmEAQ5ruRNN0jOnMNn7Du7/bX5IvbBJr3Vq6TTqZhlc4pi+RcB3A1Yvp+2r39dwF00FdSPtRuM9IdZzNyjMTz+HXk6EpFpz+fMsU8J7oBh/vLjosnOjmlQGmkUDtzPxZ91/c8A7p5G/tzA3Q8J2A3aGsgn4O5jFt/zvjB0RZ95eJP8T5My4fkY2z8tNJKxz8N82rMgZmwb73PYT9/KctYrc3ZMg9DN8aLjg3YH/UhCxOMMYxKJsB+mKYjLDsBkLZOngCijMYThMGxy3Psni8cXVR/e+yga3pvxEgWjLUJWVBRFodNp9z2isZIWBAEDcoN4Gz1TWY7DJQcgcuBJHQdjcVHXx9Psjue9xf0NrwAYLXKzgCZn9/Yf8DSr4bl7M2X/eEmO/otyxqMYxZ6zPrgbtDRg3hx6GoeNjhFE9J9ZHIrR9/BFEb7v8/d+5e/z73SO+AfXrvA3F0sDtQeIkBSlH6cPYRAgSxLfe/Mmep+Rca5coFIqkEnapFIOYRCiKjJh0H82SkymoWkqNz58yMp8ibfevcP62j62pYOATs9FlmWKhSz1RhOiCFVRaTZbXHt+FeFHCCFDJGE7CVaX5/nGd66zMlfg+PiERrtDPpeKSxwkEmiays7eEV9+7R1+5sdfxnFset0OmqbiWDoXluYJgpC3bt7jhYtLuF7s2buwPEe32+P++hbFbJpavRWHz8gS1dNTNFUlmUrgeT7ffPt9Mo7BnUc7zJXz1E4bWLpOxjFptbu4PY/5+TL7B0cEYYisSHQ6HSJCwsCn0+2gaTI7e3skEzHJiO/52LYVe20lwe9/7QdU2w0SusbN97ZZ3z/h2gsLyLJAUyWqpw0SSZsohMALUDSNruuRTifYOzim0+lhaBqaqpFIOFycL1Gt1ziu1qhUirz93m3ymTSKqtDt9EjqGoamDXMfr11eptFqUipmKRWzhFFE9aSBbugkUyaNRotOu4fneezuHVIuxyUIFEnGcizSjsPvf/UN8lmLbDbVL9NCv6h5AqK4gHCv5+F5PrIi47kehhEzU1q2yQtLczi2xfbmPm+9f4+luVzssTJ1FFkhk0mgKEr/Nx+D8nazSymfwXJMhCT6uRESap8FNfB9TMtAU2V8P6Dd7nJaa1CuFBAIbFMnnXaQFQXDNIbF0ROWReCFtNs9oiBu88HDXXKZBH/wrbdJ6Cq5XIq19R0WlkpAXMheIDit1vnyt6/z8nOX8MMeshYbVRw7hSJ05ucKxEyiAseyuL+xw8p8hXqrhuNYvHfzAe/f3+TqpXnazdho0GjEeXVhEGLqKq7r8ZU33uGly8sUcil63R4IgWEY+K6HZRrcf7RFJp1AUeO5MZNOEPghx8d1IhFQzmX55lvvcVRr8GMvXUJWZb74p9eZz2Rou10WClkCN+Lbb7/Pp69d5IN7jyjmshiWgWUaJBMWqXQCyzLxPJ+TWgPX9cimEqwuz1FrxOGx+UKWb755naVSEcsyWd865LnLy5iGzvbuEamETa3e5Kd+/GV836NarfH2zfuUi1leubrcNxJE+K6Hqmn4QVyNTQiB7wYkkg6mqdHtdDk5PkUOI1RDh6i/DvYX73h6nQ6mhtu0+XrKsYPwNCGkkZIsBFnL4p/99u/x2Z/72b6nceBBGN/E2Do3uS4M5upZa8h4qP/g2LMpC2fPi/rAdiZpWD/XdIL98sy/Wfnfs+RpdZBxcDcZuhqfLctKHF4ZTQLM4XULMcFMOkwBmRXBMwWcBMF4SanR/Trb36gPMdHX9Gc00t7CfljjCJCd1zAH78Ng/Z4UMVG/LhLRhN4hSZPXNAznDKOhniMmXm4xuBkz7hHn2npSTbyZug5j9e6eAWNNhHOOKe3TylA8u8vm2eUTcPcjlCAMvzBLmX9aYDPd5jX9VRmAvklP1PljZvXzpPMGxwx/LDPaGvfgIcTEZDgOAh43nqnthsHQU3HWUhQXvH6ypXN0jZM9D+rxDWhs41DLETumGJtMxiej0SQ6njM2Ds/7Y38KK9xkm9G5yevM3XhiWwN5HLh7ahmLjxiNJV5QB/dm+P3ADj3A1GPfjFg9xdBqPDjiV3/172O8/m3+y7/0PJVEcuyswX8FYb8ce+AH+F2f7c0DdFXHMi1004gXUllC0+OQKc3Q+uOERr2JZRv4rovXdVnb2uNCpUAxkyL0InRdJZW0yKQdVlbm+e73b3JxqcjxySmyLHF3bZebdze4sjpPt+fi+h57h0ekHIPLq3NEvqDZbpFMWmTzKVqtNqEXoBsaCdtEigJKuTRCwMlxna7rocoS9UYTXVe5sFQiDEIcx+b19+5QySTRtdgLpxkaX/veuyyV8iDC2IuRtmk226i6zpWlOTLJBHOlIu1mm9v3N8mnk6Qcm71qjU6rx0KlwK37axTzSZqtNqVSAT8I0DWN6x88IJtIoco6rWaTdtuN69UF8GBtl1KpQDmR5uqleZLJJF5XolJOkivaNJtNbMvA7bnYjsOjjV1KxRyqpmMaBn7gkS9kUBBs7x5xb20XQ+6XDpFCVpYrMeCJIgxdR+7nX6STDvVmi0qlwFdfu86VlUUSaRs7YeMHARJgWxZrjzbJZBNECEzDwDA1crk0Qqi0Gm3eu/MAx9RxA5f5Uoq5SmwwCIKQZq1Dvdriq6/eYHUpLlNwcHCMoig4iQSaLCFrKn4YEoQhCcum1+5i2zph4FEs5tjcOaBUzNGsNdnbOyJpWxCGw2K+C4uluEahJOP1XBQ59oArskSn00YSIUdHx7Q7bbptl3QmQTqTxPcCwjBEN3Rqpy3arR7dTg/bNqlX67i+h25oIAlevf4hth7fb8NW+cynrpBI2siKjCyBYWv9WpkgyRLHJ6e8cm0VWRasb+yxv39KqVCMFUsJRCSxv39EMp1EyBKXLi5gqCq6IXi0vs2LVy7Qa/dYXigTiQhFVkn0w3B9z6N2UqfV7lApZFlYKBH4Pqosoxgxq+jB0Sm5TJpey0VSJIIgQlUV2u0u33jzXdZ2q7xydRFFUSimU7x4cQlNUWjVm3RaLsVsileuXSCMAkqlPEuVDEKAKsnsH1cpl/PE1v+Qnd1D7q9tY2gq3Z7H9mGVDx5scmmpwvv31pkv5mi3uiQMC03ReP3deyQTJuVimlanxdLSHIlUgo3dPTJpBz/0CUOfq1eWSWaSyIqEIK5tJykSQpYIXD+e28IIoUi0Ox1sJw4/9fyQrd1Deo0u6aSDIsmEhENENppP+/PkU1j1z4K78W+GgLE/KQsh+IlKnv/sn/4ftP2Q51+8es4DNAAq5z16g9l4HFRNGc+M8x7nuXuc0XIEKh+zxj8DuHsWvWMc3EnSeA3iAeiJhg2OD01irCTQWHsDgDhrWZ58lgP9YlLfYMp7MU1XOJtHefb4GJRF/WLqTwtGpoBF+uRng9VaiMlyCoyPY/I9e6zMqik8Zd8scPckz9gs7/XTyMDjF0QBw3p1Yzrh40f8w5VPwN2PUKIg+MIs69D/X8CdoO+mj6Khx+5pxjNNFEUh6rc3/iLL/UlKeizDZSyzwJ3cZ8kUQsRexz7IG4G78fDKkWVmGribZkF7dnB33jI1KX+e4G5EwDKRczf4fha4i8RwIYyI8P0A3/f5l//n/81v/K//mH/+ky9zKZsetjLRPQOPYEij1uDGh/fADZkvF1B1nd/+2lu8sDrfrzUTxh5LWcb3XMIoIPB8vvK9G8zl0rx/+yGKJFjbPqTT6dKot1msVBBSHO4oK3HdwEuri7SbdVzX5/CkjqYqvHJlieN6jXI5yw9u3WF1sYTr93DdDo6dhCgkiEJ29484rTfRZYX37jzg3sYOV1fmufVog4OjKs+tLmPbFrfvryPLgv3jmKVPEjK2bXFlZQ5JCFRN5o9e/QG+5/G5a89xWm9SrmS59XCNUi6DnbDpuT6JhMP65g75Ug5ZkimmkwghkUg5FItZNjb22djd48deuoKdsHB7Lr4Lx8d1bNvhxs1HrMyV+cZrN5kvJ8lnY5KOTsdlfr5Mr+ciRwoHx4ds7x1z6fIytmOgqlFc3mHvgHwuTeBH5PJZojBia/ewX4zbx/c8ZCGxuXvEy5cv0um6LC2X0bUY3MqyTLfnksqkiCLY3N7jzQ9u86nnL7G2vsu1yysYhoGkSfR6Lt988zqLxQKBG5DLpjit1zk8qsZ13nQNSR4BhnIxi6LK6LpCNp+iH0CA7wfoqkYqmWR1oYRuqbSaHcpzRVRNxXVd3rpxi7lyfvDi0212+c0vv4oIPG482OKVqxco5NJous4b12/yYGsfXZKo1RpEfcIMFMHhQZU79zfIp5PcvveIzb0jirk0m1u7FAppNEUi4Vik0mmEEHG+p6bFgEGSUFUD0zI5PDgm4VhomoJqSECIqmssVfIUilmy+STNZit+L3ouqq4iS4Lj4yqyIhP6EZtbe8zNFdA0BUl1+fK3PuSVCxexEjYRLl23yVe/9Q5EUChl4ogLWeB3PeqtGknHQkQSlmFgWUbMytnzOKnW6bS7OAmbvd392Iu+UCbwA9xej8D30e24np0my/Q6HqqicVw9xfMDEraFrCg8f3EZS1Yoz6WRhUQuF5ckebi2xUKlRDGXI51J8Whrk2I+RRhG1GoNLNOg3elRLuW5+3AdQYRl6KTTCSqlHIauc3BU5dMvXeH5i4tARLfdY3E+9mpqqsadh9uszpdwbJ0PH66zulyh2ehxUj3l1Zt3KaYc0tkkuiqzvr2HaRr9oIYQwhBV1wn8AEPX6LV72JaFF/rxHBaFSIqMrusUSzneefcuQc8jX8zF1v4hFhhfA55uep4F7saX9CHI6+/7Gwsl3Ie3+If/8nf427/wN88o3eNEYOfXs3FP0rR17YcP7ka1Y2eG+/0IwN0gfDCOWulH5oTRSH8a606W4/zLQaTJeO8CZufcjX+eogsMjprmPRttk30Nx3eubTHmsRt/1h8N3EX9KI/zuuQMj+1fAHA3eJ4fJWVoAO7Gt/F+Hz/iH658Au5+hOIHwRfOw4hYnnZyeRZwN9z3uBDFGdvTnDc4ZtrP/yxVSBx2MOmxG/59pt0IzjFrTh3DoO8zP8LBvtizd76NsO/xm2TBHICU8Xy4EZlJ2G9rkCenKupwER+EV8YMT2E/dHNweyaBoNS/6GEC/TCYfsSyeVZmhZiOg1ppwG8VxeFYg00S0Tk2rDN3kfMLwHSZHMc4uBvkeYI0ltA3sBKOGN4EQsgQxsAs6I9fGuTMAf/kN/53Pnjjdf7JT7wUh/lGYX+ZkIbHRmGELMVXGHS6vP3uPT599TnSuTSyriKQuHZxHlkW3Huwwc72McVcFqEG9LoejWoLv+uztnFIPpOg43rkUkm2Dk/wo4if/MvXQIJuq4OpKDimSafdQVYk6s0OW3tVdg+qvHxlgXRaZ22tSrmQp5jJYJk2dx5usVApE4U+1VqTfC6DLKmkM2lCEbK6skAln6NZ71BIpWnWemQLFr4fkE5aOJZDpVxARBKGpRBFAV23h2XrSJIgbMDGzjEriwVyuRSddsC33rxPMW2TSiWQBHTaLbKZJJKkEIYhp7U66WwCTVeIgh6GrLBbO2Z1aR5Vs1BkCU2LYb+uadx/tMN8KU0iKShlM2wfnKCpOqapE/kep8cndPwOqiKTcgwSaQ1Zk3j4YI1ut42mKQih4EsSgQhiQ0sYYlsGnbZLwkngBSHpdALT0TCsmFUx9GUsx8CLQpyUgywJFFlCikKqpx2WFys4CQuhKmimRuDF5RRu3Fwn5zjoloFiqDiOjWUaMaBNOiAg9GIU12q1kGUJr+ejyHFYrqzEIYeypuCLAKFJ+G2fdtsFIVAVmTv3HvBoq4bkBxTzOSIvoNVscW9zh5curbJczJFM2DGrqRcguTKffvEKmUwSw9QIg7iwb9fvkrAdMokE7918RLvj8cLlJVQ1LlgeRiCrMZCTdZXq8SlS/z7IsoRQBL7b48b7t7m4PMf27j5OwkBCw9BN3LbHzu4hCUfDMGOyFgFUqw0c0+LNt29RyiWxdBMpUlAlCcNQaLVPUYVJIZ2gtFRE0USfFdVnqVTC1FUsU6d+2sA2NHRJg0DCsZMYpoliqQSESEImCEOSKYt0LkXP89Fkg6989z0uLlUIAd0y47IPUpzj2Gx02Ns/ZmGxSLqYIZm2iPDxvR4CQTabx/ObSJGKqsTlQnI5h6NqFd3QUDWBZWrYtoUsK9y4f4fFuSKJhIWQJExVJ5lIsLG5Cz6Yuk61ekzkRzhJE0SELAvqrSae6xJP4YIPHm3x/KUFHq7v4ugGqqTgByG6qnLt4iKe62NbFtVmi3wuQxSEfOfN9zk4OKVSyMWFzmUF34vwg9gbJyIJWZLp9boosoSQYpA9N5fitN5gbX2L+VIhDjWjHw4pIgbx6tNypkdQaQQsYiPblGOn7B/sKzlJfvv+Br/0S5/vK+gDr1L/cxRNhNQN1gRJlmIvljRG/z7VYzFNyR1sUn9dFggRr7/xodM0hZFBdWBQjOivn33qxWnhd/ExAwAzum5pbBMMGDBjtnBJTDJLjjNrCiHhhXGYfiSCuL1+WkE8hgEFZgzqor6LToxd92CtjiaLuw03KZJHx/Tv2SRgH/0diGF30zdGn2fVkhuB5bPr/SgMdHL/eQ+qYCzdJuKcLjmekjLOSTANTE6EcMLUbZrMAndPktkG9Cech4wk5POjCxm7+fEmKzKI6LHEh88iA1A58Qw+AXc/OvmohCrj8izg7uOUaTyPs8b2JDk79mmAbdZ5M4/te+Nmt3F+hJPHRv1mBt46hjl4fbfbcMKKST9Gk96IKOT84jIc8/CveIvEZJH0p5HBBAmj8g6jdgcfH/8konAEMJ9tMpucREYgftTf4JM0Xpumn3cZDkBvXwn4V7/3Rf77X/8f+R9W8vzccmmgUfStoRIKEYQBXreHJAQ723s8Wt/B1EwWy8W+8hHSabcRksTXXr/Og+1tfvLTL+L1PExTRzXiUgJ3H26jyhJ+6HHl4iKVYo5mq83zFxd5bnWRXs9jc2+HQj7F2t4+uqGycbiPriukkgkW54scHla5sFQGoN3rkk7ZWLbJ+voOuqYhkGi2Wnz9rfe5dnkZ3dBQZJlus0Or2cYwNLL5FNt7hzz33DLffPNdXrh8AU3VhxbyMAgJQh9FkrFtk72DmBmxF3R5+YUlbMfg/sYm5VKapCVTKRU4OjyJi3krMhtbe1SKOQ4ODtE1GcvSCHyXB2ubFLJ56p0286USvbZHq9XCSRmc1hrs7h/h+QHPXVqikM+gairJZALd1PF8H0kWmKZBMumgKgqpVIpGrYPrhmSTGSzDAEBRdBRNjQktgvh5KopKq9mmWq3h9gJMXefh2g6yJHASce030S8UL4RErVpHlmQUWeHShWX+xe9+gwuVAqqiIElKv3i4yqW5IoVinFsVRXGY7r0Hm8xVivR6Llvbe2iqhKrKKIqEosh4XlxQu3p0GrNkygqEEa1mB01VODqsUZ4rcP3mXfyei+v6fO4zV5mbLxAR0e50EUJmpRwzYtZO40Lqpmng+h6h7yEkgW4oaKqKaVkEfsC3f/ABcgjz8yUUOSKTtsmV8kOmRV3T2N0+xO34KIbK/t4xewfHlEt5vMDH7bkYhs6dB3HuZTaTRNNU6qdtfvDuXfb2q7x87Tk8zyPwQk7rcbFx27bQVJXI90kkMjEjaFJD1uLc01bLY31rl/m5MpquIQS0Gi0My8AwdGRF0Om6WKaJLGv87le+QxD45DJJWt0OqqZQPa6RSjtASBQF+EGAoqvYlsV8IYOiyaiaEis1RKiqShhEyJJCrd7GMgxarVb8G+orc52uhywUWg0fw1Bpt1s0W02q1RaVUhFJlWm1O0RBhCpruJ2Acj6Hrut4XoBlm0SRT0hIJp0iCCJkVaLaqJPPpjmttel1XZKpBJlUCtMwsG2To+Maadvk0dY+L11Z5sadR1xaqlCrN1CEQJFlDF2ncdrii99+h3fvbPDChXmWKgVK+ZgpEzHI65U5PjrBDwIsSyfw/bhqi6IAsdEqFJBNp0nYFm/fvE0ll0ZRtHgaHICcaIaXoq8YD7xxH1GvBSH4/Mocv/y//FPmymWWlhfPHTLNUzbNa/TsYW3jgPDpvW6j/qevYdPA5XgkyWwZRemMy1mdR5WVuJ7aE8Z8FtKOPvcB0llwNxjFFJferLHPrs33uJFNe36TEkYDrHn+OT+ujVm4Zba37jxc+yjhkfDRwd1Hl1kPZbquGQZxOsUzKcuP6/0xRpRPwN3HLP9GgbswPAcK/nUBd5Ic15uKGS1nhYXE+wd15cTAAut7yIpK1GeAEiL2uI339bTgbqKItyQTBNM9jbNkEBISBAHNRgNd15FkaXIueQK4k8a8lc8mTw/uonA81GFQ2kAQ+DEpzX/wd36V/zwBn7+wAEIMFzv6lmOEwO92kGWJP3n1+xTTSTKZFOViDkVRgbiGlqLGeVuyJHP14iIXl8oQRXEolOejKAqBHyJFkEk7vHD1AkKKc4JczyOVTkIU8dXXrlPOpfnqGzeR+8/yw41dXr66SrfdRdN1itk01z+4SyGXYv+kynw5z/FRlbn5Mvcf7VDIpjFMjeVyvs9yaMW5f5JMo9kahhSbZuyhyVgmyYRDu92l0WjzaH2Xtz54yFwxSaJfNiGdTqIoCqmEg6ZrIASGpmFZVj+/SeJL33krDinUVGq1Jqau4jgmrXaLRqOJZegUCllUxSSVMNF0nbX1Pb7x1vusLuQwDZ1yMYcmZBzbotvtEQnouS6yEue+tdtdhCxxclLDti1Oqw1s28E0Tb70J99naaFI9bROqVgk6Ft6/68vfovVSgnTNIckSOl0BtM0SSVtbMeMyZZkmZ29I0zThDCmlLdMk/XNXTKZNJYi8Z3rt+m0u5Tzafwgfq43bt7DMfRhMfpmo8kb792nkkmTTCeQJEEyHRPDSLJEt9vDMHSiCKrHdR5t7bE4V8JzY/D0wd11Lq8uIgQsLZYRwMriHEKNyQGEELSabZLJJEKSODw4YX6+SK/b5Xe+/hqfunoRP/AwLZ2Dg2MCP76Wk9M6tx/t8VM/9jxCxHX/9o9OcBwbELx/6yGVUo6vfPsGL6wuoZoKiiRTLuSQ5JhNU9VUatUml5bnAYFh6ni+hyKpNJttvF5APpPiT169zoWFMqapI8nx/PJbf/htfvxTVzEsi//3j9/AsiGXj4uhO3YCTZXQdR2A2mkNw9Rj45Xv0+31UFWVre1DwiDCNGSOm000WSafy6BoKpZl0Go2UWSJL736BgvFPJ7r0Wn3kBUpZiBtd5BkgWEarD/a4dtvfcDFxTnSyQQ72wcUS9n49xEGSEKgazr7eycc7DdoddtkMg6OY/AH33ybjGGQKaQRRGiqRqfdpdf1ebS1RyaZxElYRFHISbVGRIiq6QRh1A/77SArCo5t4zg2b1y/xfJ8mbv3N2g22yyvzJNKOOSzSb79/Zv83F/9DB/eXyeTtGh3e/Q6Lpl0kpu31nBsg7/xk59C0xR0XcM0dYgiNF1ne2sPXdP4wc273N/a48qFOTzfR+3PXbHdKkS3TCQhYVoGtqayvXvI+3fWSVsmhhGD7fMr7dAMOZiAPzqwY7hs8vnlCnfffI3/+Xf+kL/1t35+4phPwN1IwjBEURRc30OeGjL4bwq4m/TGTmvlhwHuBl66KJp+7LPIX2Rwh4j5AmBc3/kz9v4JuPvzk/Gcu/Ht7KOXOJ9HNmxjbDvLTvk4mcWsOe2YAUtmyCQAGX9Jx5kTh0r8jLHNutbBMRAXXmcCJDz5qh53bAyYRoXIJ46JoqGXbNwFP153TpKVfoilGO4bhBgSnQ/XnJysRucPPHoDb0wUDMofxAQiiEH9no8Q3x0N8vYEmqLGITHhmYNmLpLnn0gwyBVATLwkUTRZ+H4QYjmIohi2IOK7dPYdCKcMIQojfv2/+584+cof8l+9cgVZVia+VxWZKPBpnNRQgMP/j703C7IkO+/7fufknnn3pfaqrt57epbGAARAgKSkoCSGwpZsGqYoMmyH+OCQQ+En07ZkS+GwIhx+sRSO0IOsBzlCls3wQoqgCC4ACGKGM8DMALP09EzPTO/d1V37em/VXXM9fjj3Vt2qrpqeHg4gUcKpyO5bdTNPnsyb95zv/33/7/9tbtPt9Dg9PUkunyOOh5LxUt9HIO7HxFGKYZl6zGmCUhCFWo58c32HKIx55eotqkWXUjlPEmd8/TtvkPdcfMfhreu3+NyF03RbPRZWd5mr1bh5b5N2GPNTz51je6dJLvDo90Na7R6zUxPUKwXe/fA2Z+amufrBLV545jSg8PM+nucQBB7ffPVNTk3UMAd1+YQp8Hydb+QFLp5jI6Tk4eIqk5M17jxcwbFMzp4ax3EdTMskiRN6vT4ZBmmq+Pq33uLZM/MIIXjp9WuMlfOMlTVAtSyTeq1MGsPmdoNSKYc0JI7nIaWOwPl5jyiKuXN/lRcvncIwNOW1Pajh5bo2iyvrNPd6hP2IsBeS8xyCH9pTSQAAIABJREFUQo5+P6RaKZGkis2dXSQK04Db9zcwpOLU7Dgry1t0en0cx2S2UuWdGwv4toUpBY3mLmEvYWtb10QzTRPLsvnO964yOzVGzveJ+wlRlLC316HT65PLe5TLBQLb4MzMBHEU87uvvsX52UnGqyXtsLF0mYal5Q2+8uKzBPmANM3Y3GogMoXn+yRRgu3YbG018X2XnZ1dXeet1aFQzNHu9Dg7qOlm2Ra9fp/Xr36EmQgq9SJZqhXRgpxPlqasrm7geS73Hy0ThiFf/cKzSEOwvLpBpVwgn8+ztd2gPlamWA549swsjmOSZAm2bVIs5jGUpoYWcwHra9t8/vkLPHi0ythEVbPMBj+Z0Aq//U6fb7z8FuXA08As56EU9Ht9zs7PAPDG9btcv/uI05NVmo09KrUyF+cmyVRGvxfzwqU5kiTGc136PR15c31fU6rkgNZnSHphSJLEBLkctuPS64a0u30uXTpFvVIgCFy63R6+72hw2Y9xbIui65ILfKRhUigF7DR3KRYDTFPomn0o6hN1rSq7pamndx+u8Nb1e8xN1pCmQRhHSCFZWt7g+SsXqdWLJElKvx/xxRcuEsYxubyLyjKkafKNl9/k4uk53v3oATnX5v1b9ygEHkHgYZoGP3z3Ni+9dZNq4FCp5snnAjY2GwSBx+z0OP2wj+falIt54iQhy1LCKOLZ86eIophTcxOkaUo+5zM2VuXN927y4vPnqVWK7DSa+3mVnXaPwPeI45ggCJBSMjc1zrlTk2xsb1Aq5jHkgL4rDXqd3r7DJ0piPM+lXCxScn3uP1rh1v0FTs9NaAfZ0Hk4dGoqRRzHgyjgvjbfyFw9OvEe53g9MNxHt/lSgX9/vMw/eukH/OzPfeVg9Rh0oNe2j1uzPsmadnQtOoCqj9srxwFIne+dqcfrqA3pfkKgKZS6Lo9em44CtmNRyPEA9ZDvVAxUIaVEiOPytI4f/QGXZcRuGJTBOIrc5JH8dnWMRsBxYzsWAaohcFIYJzh2h1G6g1GLfQorMEIlPHoPH9/2ny0pDxkCitF9Rod88Nx+OqfzyHj2P3P2bYQfSemtQRMDSvLREgrH2c8HdOKnA3fa/BxQo/nk9+hfF7gTnwXn9M9Ci6Po2As9ao9LNNh5UnHvpyHxjfY1jDqdtE+aZdowlzov6knnO663T7Lv6D6f5Ho/bcvSBCGe3Pdo3TlpmGRpgjRM4igkiiIdTRhpQsh9Vc6jLYoibNtGSmMEAEpUcrC/NMRgfEpP7E97XZnCMAYHDkorZEeRlHh8fCfJVqvBjJvBIS/kENzBYKofgKpjI42jkbv9Z2eknl2m+Dv/7d9jcWmR/+vPfZ7j3BsqU0RRyObqJpYhyZJY1xFLM4rlEjuNPapjVeIoYZhbmaYpr77xAc+dOYVf0LWtLFOy8HCFZrPLXquH59o8c36Oqx/e4+f/3BWiKESlktZeG8/3tKJmmpIkGZvrq5TLNWzXZa/VxnVNNnca5IOAXKCLOO9s7+K5DlLC+uYO3//oDs/OT3Ll4hldhFwYGIMoEpmmhwnTptvpEuQ8kjghTbSBv72zp/O1jAPp/fuPVnnxhbNsbTWo18tkacZeq0OpViLsx1x97y4//eJlwrDH8toGp+emieNYe/mlYG19izQSNFotLl2aIVMK23ZBmSRxnygLMaSFY7j0u20sRwPsTlfn0sVJiu+6/N533+UrV87S3Nvj9OwEbt4niuJ9hbgsy1hb26QYuLhBBde3WHq0SJbqKPnc6QmidsQ/+51X+MW/8AXGxku0m02k4WCZJts7DVzX4eHSOmfnZpGugWOa3Lq1gGvbjE/WdISaBNvSFMd+L8T3XOIsY211i6mJOqZhsNVoUq4W2VzbJo4yJibqSENgWTpylSYpxiByl8/nSVNduy4MI/7w9at87S99Fdd3ae22ifoRtmdjmAb9TkgpXyIzM6wBgNxrtvAcC9OyyJTgD/7kh/zCV6/oouamSdjrI5D7pQoMUzuFom5KmsWkKsNxXaQ0uX3zPoaUjNUrFMoFdnfb7LY6zM6Nk0Up167f5sUrF1laXuelazf41b/0swghsB2bftjHtg0dAcoUaQwPH61SLATU6mUWl1cpl4uUygVUltDc2cU0LHKFgDRV7Gw3yOVc/LxDlAhUkiEyRT8O8XOezp1NExzbIUkVYRhrp0TOIk0ysiwj7IcEOZ8//v7bfPmZi3ieQxxFmI7OpTQcLS6QJjHN3RaVYl4bWoamJWZJysryJlmWMTs7zdLSKhPTNYTUuTtJL6YT9zGEhTlQVrVMPXesbWySC1yEtAhyAeurDcrlAobUqnWeZ5OmGQuPlqmVqrz02gf8xZ95DoyYG3cX+eKVy3xw8z6TtQrVWomwH2GaJp1uj3wuIMsUYahz/9Y3dzh37hTbWzu4jkOapjpfU1qYpsH66ia5XIAUOgr75a88i0CSDX1RAvbaDfKFPCI1SOKUnUaTWr2CIYTOWTR17jRKYQqD996/ge0Y1GoFxqfHUYalnYT7+dzsz/vawByZjsWR+fUQuNt31z22Fhx0AK1Ol7/91g1+87d+42BBEEOhsY9fuJ5keJ60Fo2uqwcCLaPiFAMn64CKqsHd4XVkuBTKAbjTzs9Mvz5yX463QY+/tuNX/OF5DltDamRhN0ZsEHHM+VJ5vF1mZCPjEMOcxoNRjNpN6ah39zint9LMA5TCOAFUDOvTDo4YXsn++3KQWvFJwgpSisGzqQ6HFU849JOIzH3Slg3A3VDU5dOKpHzSpu1BDe6Oe55G7W4xmJuGKSuf+BxyyCYTh+7nkzCU6/o/7jAm8O9Q5G5UUGV0O9p0hOjJn8VJe4hB7blD7x92pxzfhjTLkd9H9z7qTRvWiDsuQnfiKY4Zf8anD70fe44RyujT5JINF0I1cp+GgimWZe2DGTGYYOM43j9OCLGfjyeE2C9iPszTG4q3HJUDztIMnQwrtMpnphBKv36Sy+Mw3VORqVTTWUa30f0RpNnhhPij/YnBoj06yaapBlGGHFHFzLKBx1JH+aRkv6C5YAiU9c6mkkgkr77yff7O3/17XFER//OXXyCTEmEqFCkqUZAZCCWxTIlKMqQSOLbNzk6T0lgdy3VQQuE6NlEv0h5ZpcfWafc4NzvJ9Tv3eee9R1yYnwRSSqWAXM7G9QxOT4+RpgkzUxWazT0s0+T2nUXmZifwfY/Wbovfe+VtTk/WWFrZZqWxQ7O1y2S9RNyPWFvf4cHGNrOTddp7LWqVHCur64xVStTKRV64NI8tJUKmSDJcvwgiw7JNHM9B+2sHapIrW6hM4boO3X6PfKGAgaSxs4swBIVynlqtSNwNUSrDcW2yTOHYPiqNMQ2DUzPj9Ps9hKGoVosIkbGysUmpUqTb6Wm6Yz5PtVpgdWWDSrFIt9PXFMF4D8/1dEHyJKTXayNNm9X1bR4sbbK1tcfsZB2pQi5dmCVMYprtFoHvIRBYpolhmIRhH0OCbZoIw8CxLZIkxrZsfu977/Cl5y8S9mK2tnd57vIkxWoey3RZWtrg5bc/YKyUp16v6pw018ZxTYL8gMJqaYqb6zm4jqtzCS2JsARhHGLbFqZpE+Q9DClp7DT5+stXefHsaYqlgNff+4izsxPcvfOIwPXIRIppmvR7WkhlfX2LXCFgZXGd8ck652YmsFyDTreD41uYQufPLa1sUCjmkI6k1WiShDHdTo+7j1aYnprQuXIqpVr0KRRymLZNiuLh3TUkOr9PpSlxqIWcms0OzWaberWCFk4U9PohC+tbPHtpHkSGY5sEvo9hSuIkZXp6AsN0CDsxH95Z5ytfvIgYJO+nSYppmWSmZLfVxnQkU1M1JNDr9KjU83ieQZKGxHHE2naDWq2MEIL3b9xlfm4S07bZ2mzwzZffo9Pu4NoWpWIR0zQwDC0AsrqyiQE4jhZOiXohlmFBhhYI6STM1OtYtgRDYnoWhiFJwogkTmg299jb7VDIBYCuBfp/f+MVZuslXMeiVCpx884SY1NlLFvi2AZht8dOYw9lSnZ29rCkFoiRUhJGPVzPIV8o47o+ludiWiaOb5NzAlZXNsjlLW7eX6CUDwZ0ZIOL56e1uqjpEHdjBBB43kBB1Wa31eba7TucnpxCKHiwsMTszASNZhOhFPeXVgg8h0K+wMLCGlJJ/JzH+9fvMj8zzh+/9h5vfvSQv/xzX2Bvt4nnuWRpQpzEuJ52BmxvNrEdC2kI3rh2k+mxCkpmGMIm6iYkcYJhSVJLUauXsE2LXjtCRSmOaYGZIi0LJQSZEsgM5CH7eTTac3jNOTrfD5klR+Nkw5eObfG1+Ul+9R/+E375l38RYQwYO1l6bJ54plKdQy4OAlF6DMdZPwfnG83NHjpDhTgQBxvlHw3XueG1HbBjRsTLBtuBoBeD74xeC0fclYeOf+wGHGlDkZUDmRO9ZeJxcGYwFGcZMHgYgNCj6/QxwmdCDWvDjRjxg1FnEpTQtdzEUMFFCFSqINNr9eH+dARLipHfT7DYDpsFYv9/pdQBSD4mcjdqV2QjH3yKdtyLg9t9RJRn9NwDh/fg2pQQh1hnT+MD36dljj7SJ9iCn6y4+xPPePCcH7LBjo9GPi2wY9j14LM8qR39HgghfkLL/FG3zyLnbrSdCO4G4OOzgEujX/+jwOxoqPmTtOPA3Wcdtx2Oa0idfLqmDvo40vZr3g3y8EzTGkTPNB0mSZLjvUNqpM/RbUAXEIPXagCs9m/rUwxd7C96Jx+ksgNP77Hvq6HqmPYyji60jy/i+omQUgt/SDlKMxguQsPJ1eCXfuU/4W+qPX7l7Bw/NTWuaRIp+8XHszgbKH0Krl27QWFAZUrjlG/88DrnpnUemUID7zTJsEyLfr9Hp9MjTTJuP1im4Pu8cGmeP3nzAybHirTaXd67/ZDzc9O88+Edzs5PkaYpxWIex3UYq5W0dHsUs93YpVbKMTVZwxKS5y6fwTIMCoUcjm1TCHxOzYwTBB7tdpdczh/kiSW0ex1MyyIXBDi2y607y9imjeNYPFpcoVTIozLF/YVlUArP9cjlfIQAyzIQhknYjyiXixiGwJBaB31rkI/14Z0FfNuhUMrT6/YA2NxskM8HmJZJo7GLZUqKhTzS0BHDsNcnIcVxLRxLYjsmSZJg2RaWodUTHcchDEPyOQ+ltFBKzvOplYvstVqYhqDTDykX82SZolYt0+32sWyLrc0dgsBDDWqvJVGKYZqgII4TPn/5HKal1ShL5RJeYIMSpJGiXi2RdyxmZ6dYXl7H8x2u33pAliSUSgW2txqUy0Usy+L9D+/yytsfcm52HNd3UCojFwT02iGGaSKUdjY4jsWlmUls20JJxfz0BGSK2wsrZGlKpVpkcXGV3//eNWZqRSamxzAMiedYbG7u4LoOiysbBL6H63qQKh4trjI9PY7t2BjSwDINLNvCcXRuYqOxx9Z2k2Ipj2dbtFodQOE4Dq7t8u3Xr3Fmdpz/91uvM1svkssHPHi0xuLGFmdmtTiH47mQKi5fOE2mMrI044NbCxSCAMOS2LYNCnYbe0gp+fKV8wipUFmGaegC791ul1zB1zUQTQspdETVz/kIJK7nkqYKzwsIHA8/8OiFIVNjNUzbIupH5PM5iq7DmflpPNfB9RzW1jbJ5wOkhG6nR76Qo9cN6XT77DT2GBurEoYhN24/oFzO4wceH915wF6rg+c6xGHCbrPN9s4uM9MTtPc6lMpF4khH/2brFYqlPB/evo9KFXPTE5iOgec6tPbaOI6jc9gCn3zg49g2rVZXl7eQila7w8tvfEC1kCNfCuh2ehiGwaMHq9xZXOH82RlMKen1I2zL5NHyOqYhefBolSROeLSxxbnT01SruuTKR7cfUCrkyLsuhUKefhiRzweazSIEd5ZWePP+EruNFg+X1lnebOBYBqZpgMq4+3CZLzx7jrMzY3Q6Paq1AttbTX7npXc4PVXDsi2EgE6nR6GQ59a9R9xYWOPMVI1c3seQJp1Oj9996S3Oz41j2BIpDXzPxZKGzhfPUhxHR4v3DUdt9R2EB0dn6hPm+6NL1MeulQK+Nj/Jf/m//z/8tb/6V/QB8nhK2VCJcUiJ/Ph2kMDx5LX60xngBzRGXXdNHTOw47s7+RzH0enUMSkQh6DipzDIxDGfpz7XyOuRn+EtejwC9knzDB8bwehZ4WPA3SEW0Mjf9hXDjwFxwLHgbjRf7hBQeYqR/2nUMj/b9ln394SzHTP+f13g7kfDxft3uKkBrfKzaELK/e3PStuXM/mM6b5D2qb2OkniONJ5SiN/NwZy5YePG4I7eShXEQa5i0MN5kHu3cdx6v+0LfuYezIUaAGIk3h/Oy7EPFx09j11mRoIyzzefvlX/lP+1xfPUgiCAd9Dd2aikGlKFiasLK1jKLh29SZ512W32cLzfQzL5s9fvoBhaMNGKGg2W7ieSxTGRP0Yx7LxPZexSpGN5h7dXo/lXouc7zM7PcWf/8IVDGkzN17Dti26vZCl5XVa7Q5xkhDHMYYhWN7a5vzZGU3B9W0eLa5x79EKlm3T74XcXlhia2uHfq9HFMf8yz9+jcX1HVqdJvWxPFJK4iQjDAUXz52nUAhAaYP17v0lpJRcODfPh3cfcf3WAp12n52dPXb3OqSpotHY0+tAlvFocYWN9U0q5TyWbfPh3TVK5RLIVEeyPI/N7V3evHaLzc0G1UqZ9c1tsgHNcGNzm26vDzJlc2uDvXaLMOzh+hbdXhuEHmuWZjiOzYNHq0RhhADyeR8klIp5Nrab+1S8eq2MUoq1zR2SOGF8skar3SZNM7IUsgy6vR79MMLzNQDOkozWbpteLyRNdQ5Ma7dNmmVMT47T7/c5c3YOlOLLLz7D6dMzpGlCfbxKlmnxnfOnZxAIDNNgY30bKU3iKCMOM1ZXN2g2d7Edc5+iaNgmSIHtOWBI7q1tMTFZQwhBrVamVvCpj1U1rcyUOK4GEK+98xEbW7uUi2UkBr1+iGVbLC+vs762hVKKza0GWaYGRrrEdR3mT0+j0gyBoFIu4roOaRzjBg6uZ+EGLjPjRcYm6qRKcfnyGf7CVz7HbqtFNwwRUkfUt7eaKCWwLJv5qQmSKGVns0ESRWRJzCtvXue7P7iGZUr6vS6GKdht7CIF2IbJ6uI6vVYXlWUkcQJkZCoh7CeEvQSJyYN7y9iWw2/8/nd1NN6UpHGCH/j0exEbO7t02l0cz2F9bYt8XtMS0yShXi/T7fT4Vy+9jeu4SCHZ22thmJKL52bxcw6t9i6Xzp3i8qUzuLbLD67e5OU3bzA3O03UTxFS0uvqqGvY6+s8XyF45vxpypUift7fB7HFYpE4SnBsl9ZuB9uysGyTV65+QJqluK5LrxcSxgmvXP2INEqxbZssySgWAlr9PlJowSvfd+j1Qmam61SqRS5fmmdiosrCxhZxHLGxsYnrOnzuuQuM1avkAn3dH919yFZjF8ux8XyPL3/uMnnh0O5EuI5FrRwQpjEPllapVQt88cWLxEnEB/ceUiznEMJAATP10n6JnOH8n6YpZ09N87Wf/xJ+4NPr98iyBM93+Pd+9nMIYZClirAXkqQpXuDSjyJ+8N4NyHRkR2WDUjHykxmzT5fL9Di/aKfR2M+/Nk7oY99AR68pw+3Tjme/jtynbgcuar2+fva2wSdpo/XTPuOOn8zK+nGO5zNuYuTnJ+3PVvtJ5O6ENqQXnjTxCdinYI5SJfcNbqX2xVE+bcsGFAS9iBwJ4n+Kfn8ckTttFGYHZQuOtCGd9GhkbwjSjoqjDCkiSRKjPVdyn66pz6cjXpqmKR7zmglxoKhJdnhC3Z+T1XDfg5pw2WA/07IP87XF4dow2on6yeinJxWZ1f0e/C+l3N+GH3o2cA4zeLZGKRXDROLRhOj/5r/++zz8+m/xD750Gd9xMKTENAzUQAVx4fYj7txfot/pUykWUUpRzHn8/uvX8G2LSrnAb37rB1w6NUWpnNf5UlJiCMlrb37AdL3Gq2+/z8XTM6hES8hP1iq8f+shv/DF5/W9QfHgwRo7jRan5yf0Z6QUxVKeXM5jZ7vJXquNAE5NT2CYkm63x9LGOsvbTX7mi1dQGVi2ycxkHZWm7O62KRZzrGw3+Mrnn6XfSeh1UyzXxfFdlEgwHXj/gzvEvYjvv3ODy6d1HbMwijh/epallU1qlQKValHn30UZnmdjmILNzW0m62VKgU+r38dxPJ49dxYkJFkfw3TIUoVpmLz6/i1++spFLNuk3e4ghaDfDykXchiWFinxvYC8n6fTDvH9nI7sGSauZbO20WB3r02xWEAKiWVbtDsdcgWfMIxwHYdKrUySpiD0XGObFq7nkabgug6O57CyukW5UmJxeZ1qTdP5skyRqYzffumHzNQq5PMur/3wA9557xHPXtA5gFmasr62iTQ0JW5lZYMg5zKM/1q2hW1bnJkZo9PuMDU9TtiLEEgMZeB7lo4QJQm9fkiSKFzPxbB0BFEakhcvn8VxNRhrtzo8f+kMSZoSJzFpGnPvwRKTk2PMT01QzuVZWlynWCjg+jbFUp5CIcfWdoOxegXUoBjxQJXWsnU5BrKMvWYbx7IxDROVZfTCkGcuzOG4FvMzuvC7NCSGZWBItIBKKU+qMv7w5bfJeTa9dp83rt6inA8olQu88s77FByHfN5nolpgrJynUPRJ0hDXcbh2/S6FwCNfyBGGPRqNPQwMmrst8oWAJNOlKxYWl8nShEqlQJolXJybpdPu0Q810MpSxeLDDWxXMj01xqPFVYqFnM4JFJL1zU0cyyKOFC8+dw6EQSHnYtkWoKnbtmPRanewLB2hTeKMUs7n4ulpEJIPb94niVMmJ+qDec0izVIs2wYEaZaSpjGKDNfVz3imdP3QwHMRhqTb6fL8xVM0m7t4vku/3+enrlzm4ukZ+t0elmmyuLjKzOw4Bdeh34+oVst8+/V32NhpMDNeZWFxlXIxz+LKGqen6uRyOofUNEwMafD9Nz8g6ifkcj7Xbi/w059/liEXoR+GnJ2eYLpeplTwcS2LUiHg2ctniMKQR8urzM2Ms7mzy/R4FQDP85mdGsMPPPr9CMiwLU3P3NpqUCzmcV0bw9BRDtMwMU2LP3z5bSZreTzPG4gtrTE+XmOqXuXa+3d01NUYCIoMOXdKPWYEH0MieezvMJzbh/8cXal1tOs/mpvgb/3jf8bXf/cP+MVf/GvHrjlyn9AzpPJ/HHgbidAceT0EYaPr0sHYT+4vG5z7YN8RVWqGVM1RyDAINT7W00EJpEMpECdR+54YuRulIn681XP4nh30Mlz3D3nvR9hAcmR8j6ddPE4/HG6pOihcPsyTSw+lZ5w09pPuixaaGTJ/YFD37phn4TiAf5Kj4rC69+P38FDNvKfI33s6p8fTtqGz43GxlR9FO06c7ye0zB9xe1pw96SHTcChL9v+7wNQqJ9vcXhGf8r2WfRxtL9h+1GBuyFaEicA2wM66XGT9uO0yn0O/6BIqziSMKtBkDGI3JmPTYAnUROeeBn6aB5LFD/GCyr3F+UnTU6ffgLTSm2PH2sYA+74yGT6a7/2X/CPnzvFlfHqwMEAKkmJ+iFX372BJTTQm5+bYmJyTGciKMgEfO7iaarVItKUnJ+b4Htv3mR6vKIl36MIgWB2ckwvSlHMrQdLnJoaZ2t7l3K5yPbOHt9/7zYF30agqNfLTE+PkWUx3V5IsZQnjrVoglIwVq8i0KIolXKJZrPFmVPjTI+PgZKsrGygBvmW6xs7FHIBwhCcn5vWEQTLI18soITAsk2EzDBNwUS9huM4LK9vk2UZQeDh+bqOXbVU4M7CEg9X1ijmXJqNDt9790POn5oin/PY220jpaAXx5TLJZTSuXumZaJSTQF2XZcXL50eODIMms098oFPLhewu9ehVC6DFCRRyu1bS/iux95uh1w+hzQNuu0eAiiXCghpIAEvcHW5D0vTD23TQlomzWYLP/CwLFuDGssiS2Hh0Qr5nE+xkCNTinq9pCPUhqGpjIbk88+eIyjkQKTMT01w8+4yF85MYpiS3d0WQeDv57TW6hUMU+famJb+LukyFgarq1sEgUeapSwtraHSjFw+4O79R5SKOWzb5re+9UMun5nZ/65macZeszWgqWva6e/80esYZIyNVciylHyQw/UcFhdXB3XxQvq9Hn4h4NHDFf7w++9w5eIZHi4s8+rVm1w+f4o4iun2+tiuSRTGJFFCq93jrfduMzlexbAMbGugmJvqCMvebpuXf/g+k7Uivu+SRAmNxh7ddo8vf+EShZyP4zqcOTWJFIJ2r8OLz14gl8+x29yjWitTrpZIkgzIiOOUM6dmMC2Dza0dxsYrjE+OYVkOm5sN/ugHV3nhwjzbOw1mpycolYusrW4QBC5hPyOJEhQZfuBiGJKNzQZzc+OYhoFpGOTyOdI4xTAM9vZafPv1a5war2HbNn7Bx7IkQqLp6JkijlO+/ca7XD47TxzGdNodKrUSpiXxPIder8v5c3Ps7rYwhC65kGTpgNYuWFvfxPddJBrwqcEcLhAsLq5QLOZBQJrEVGsl0ijFc10MyyKJE7756tuUXIexeoV+v0eWZVSrZbJUcfnsHNPjNWzLZHy8pnOdM8X4eI3mTovvvPk+L1w6gxQSQ8HDtU2qxQIX52d4tLhKmiTkAg/LsPiTt65z48EKz8xPU8j5PFrdopT32drZxTINFpbW+fwLl3i4uIZjair/9RsPKOY88sVAz2FSR31t09yfH5M0BaWVBS3bolYItFMr1RHPQj5AGgZSCOrVMrfuPEAAucDTdF54LEfrY1eCUbAEI7S9xyl9+6uRFPzVuXH+g6kqv/qP/im//Mtfe6xfXfNtQC1/8ihGXo3S+tTIWIYskU9CyxRHMwePgNgTjvsYcPfx5ztoTwJ32Yhj90n9fVzunxDiZL6bGr1fHz/eo+fQvw7A0eC0B6qih5D1wXZCfwrxGMj4VPlyR8c6m3bjAAAgAElEQVQ8QrE9focR8PdvTKDvyY6Bz/yMPwF3P972tOBuyEY/CQ+cBO5GZet/Au6eAtwNInL7akQj++v7rJXhkiR5LAftYMJWjKpuDo//NOBOSB0lTNPDEcbjymQYh0RSTjiJ+tOpUWWZzovTgxuZyNUBxePNH77Dr//63+Wff/X5wa0XWIaEVLG6uM7Gxg5zE3VyjoMT+Cgh6PYj4jTjwdIaQc5ncXmDSq2A5UjCfsizZ6YxLQuEwLYMer2IpcUNTMPk4fIapyZq2KbFtdtaav+HHz7kL37xMpYjCAKXnd1dlNKRnd29NuVyAcu2WVvfolws8+HNBTzH5o337nD53DzXPrjLxESRVrtPLp/DsR263Q6+59Bq93nl6g3Oz01o6XjHYjdq4xc9pDRIwoyVhU1u3VomX3axLIuZyTFq1TJe4BKFPYQAz3cp5FxsS1Kt5pFxRqvXJfBc8oWczlXa61Abq9LtdchISJIEgc2t+/eo10o6n80QIBVZlmA7DrlCoMsZdENc3yfN+igUO41dUIrZuQlSIuIEhBIUC3lsWysa2qZWlLQci8ZuSwMkYSJMiee6mg7rOti2Ra8X0tzq8P1rdygEFnEaUyjmiKIEy7aJwgjTskiShDRNkbZBv9vGsW3OzEzowtnSIJfzWVpZZ6exh+dqUQ8/5/LRrQdUy0WEEOzttnBdlySM8X0HRcL09BimIdlYbTBWq/L/fft1zk5P8JUvPMvmRoPN9S1kxqDYOfi+q1UsDYOVtQ0+//wFXM+m3++SKxTJBjl7UioWV9eoV/Nk0iCf86nlAhzLYmZ6nLmpMRzPYXd3T9dWtE083yNNFblcntmJcbrdPrlijrDbIwlj1la3kMAfvvouf/2v/Byu52AguHHjHuP1CvlcQJrpfN1CIae/81mCaUmtJikEuUKOTMHi0irFSpEsg0dLG1SqJcIoIl/wULZBFKdkmeS1H97k/Nw4jmkyNjYBmcHC3RVu3Fvlwpk5wo7ij169zjOXJonjGMexqVZLuJ7DO+/fJO95PFxco1IpotA1Fq9cPIsQkk63i2kbNBtNvvHym6g45eaDFU7PzjA/No7l2hhSsr65hWlArGKkoSgUPJRS2LbNgwerfPv773H54iyW7WAYBkplBHmXbrdNGGkqou3ogt/1SgnNHUlZW9/C9122t3eR0iCOU6Io4vREnTjSiqpBwcW2LQxpcvvuI8qlPFEUaaErNRDEirSDxHV8SoMcWIXizsIi8zN1Jmo1eu0eb71/l8CxSGM9gkLe5aeeO8fVD+4xPzPJ8vI2G40ml8/Ps/BojcB1efBwg5zv0e/1GK+VKeZ8gpxLp93BsEw8z+HW7QXK5eLg+weGsAZ524O8axSeo9VaDdMAU+r9EGAaVEt5rn10m1Lg4fk+pGog+f704O5wPtZx4O7IQULws2Wfv/1P/0/+41/6xcc6FmqouvhkZ+PBq9E1Ra+XcgAijq5rTwPuDr97AsT4MYC7p4kOnQjuhrbICYaEwac7h7YbdQR4KIQjTxjDk8RQ4EcH7tRIZO74qPEBuPs3h2z6E3D3b30b1rnLRuiW6oihfrR2XZplOpzN40BPO1rUof1Hfx++f7QNQc8nEbM9qY9P2w6N7Zi/Pc2Z5GD/o+qYMArgjmmj+4y0LE32/370PU1nNAYGgo4oDIVVDNMiTZL9wuhSGnqhVYM1Qw3q2ugVfCBZJUadbChShNSFLTOhtBx2OnIs7KtpSqmQ4vCGEvsOLdMwyZSueacdWENFreGk+NitGHwOBkoJ7T1G5wHBUEIYDCn3J910MH458PalScrf/LW/xc81FvnPnzk7yEVUJHFMZ7PB4qMVLMdkbKyK7flc+2iBsbESpmEjESw+XGNts8FUrUytUsKUkrgf4zkWSqUkWcoHN++zttIgChPe+Og+9xZX+fmf/hyOY1MoFZCZwvd8zs9NsNXYY25mjM2tXX747gIPHm3zpc89o5X+Bh7yew/WqNTzTE1WIcsoOCYra6u8eOU0lheQhglZrMfQi0KK1SJCJXz+ufOalphlJGlGtVSm1+4hEbS7HWoTVaam6+TdgG67S6O5R7mcAwmdThtFhikNLMtmt9nhozvLCFtyamqCYrGAUoI4UezstqmW80BGkiV4QYAQNqZMcO0AmQqae9uQJLimx8rDHdp7umC6KRUbm1tUS1VUllIsBRSKBaIoxXIMDEs/eLp+XoxlCqxBKY0oyXB9H8/1WH6wQr5YRCK4efshtVKRlUfr5FyHt67f4xd+9gq9bo+J8bp+kKUijmItB51pWs4b73xAvZTnt7/1Ns+ePQ0y289VVYDnurQ7PcbGKuQKHpkK+b3v3OKF8/Psdbb4g1euUXfK9KMetmWTCwLSJMN2HGzfRJqSRw92WFjcolbxMU1BmobcfrRIznWojJXJhCJLQtIsYX56XKs4xgrfzSFVxjtXb1HwA/xijnKtiGGbGFhYloXrODiuTRTG5CseaRJhu5p6qbIM0zTo9Xpa7AVFphS//c3XKedcCgUdFdxrt3nuwjS2Y4KpUFJSH6/S78fYjo05KEPR3NlFCkGQDzBMi7WFdRzbJMsyHtxdpt+OCQyXsBfyxru3GCtpYSDTtjASi7ffukGl7HH29Dhj41UczyMK+9y4cw9pKi6fnwUg7LSZqAV4ns3r79+kUgjw8jYKiUgzbMtkYqzG1et3GR+vsbfdoNPqks/nCAKPVqOFH1i8c/0Rvulw6dQ0xbJHruQRp4owDpmYrBGFKaVcidZuD1NaWLaDQLC6sc2pqSqvv3uPuYkqZCkrK2uUfBdSk2KuwIOFVer1CkIohGWiVMp3vvcOl+fn2VjfwbJt8sUc/+Jfvsa5mTHev7XAxQuncH2X5cUNiqUiAKVCjn4YAhDFKWEYaUeRo5+dB4uLTE9VSbMU3/e4+tFdLp85hbQNlJEwO1NmYqJGGCa89IMbnJ8bp1DIMzVW5cbtRyxuNnjx+Vk836VaKXJvcY0Xnz1PFMUIqbi7sEo+8NnZ2eX2wgqT4xVQgrif0uuGeIGDUrp2329++zVIUkwhqI9ViJMMy7H0d9QQmFKiEjCUwjQMsijl3uIavmWS9z29pkuFkMO1UBxaXw+tvx+z+D/+/siRQv8fuC7/4WydX/mH/9uhCJ5ADpguR6vdyn2Hny5NNPxfR9Uzle0Lg0g5PI1WxhRCMapPefwVicH1Cr2P0mNVA2qvXgMzjlOqPHSl++BAp1IMI1rDTQgNgtQgJ3g/zWK41o/YaycBukwMlmwBSg5UL48ApX2H8cg4h/fiqLLmcDugsT5uv4xe23EgYwjoUg5q1QppgBiodw/oriel+B0Cd5nat3n2t0MO6oM+jsM7Ush9FVIxatMOxqHVyI+z70Y+J45/QoY2zFPn8g1Pd8LuKj04/fD51t+XjANl1+Hz9slB3qhm/SHq8shn+STHwU/A3Y+4DUshDD8EYyAPe1w0a9iGyk7HBaI/rQ9gCHye7hH78bSnAXf737XPMLJ4lK9+9ItjmtZIAfSBxysbUvY2yOdyeoI9aTgnRs4GkT1jkA8oOIiSwWBNHSp9Hdf5yMSp3b4M8Nyg9+HEf9h/Jg9NCgfeLq1+yWCRHjk3MMxVFGj5bYngb/yN/4z/4ysvUHNdRKavf2etSXOnhW1aNFtd5mYnkdJka7PJxFgdx9O1ubqdHtVqgbFKAcvWuVp7uy2CnEccxkRxQrEUIFFcv7PEVLXMhblJfuqFC+zt7fHuzfuMVQpIUxDkHL7x8lUyUsYqBd64fpuvXrnAsxdPsbC4zHffus6ZqTFcz8EyJLZlEPZCdltdXn//LpfPzxOUcvQ6ffxBXcM7C0vkcz6WIQeRoAEFsqRpYmQZe3sd7i+uUMrnsC1LL/gkpFlKtVqk1+1hAKZhEfg+SgnCfkS/H/Hmhw+4fHqa+liF3/i9l7lycR7DANOU9MK+Lh5teQghSJPuoASASRxFuI7NH79xjbmxMbabLRAZQWAjDIHn2ggkURQOPmsLQ1oafElthKWDIspZpmi0dERGiAzPMoj6MS/94A7n5utEUUQ5nyPI+fTDiFanxwvPn8GyTS0C4TkgBFEY4bgO7VYXz3PZXN/izNwUhiW5ND/J6voGpXJeUy+VZPHRGr7n8903PuDS2VlMw8Cw4UvPXwSpWN1c57kz89TqVV555zoPVzd4uLTG3GSdvb02Qc7Vz2WW8cUXL+AHDoVyDkMI5mcmKeQDer1Q57oJiWmapHFGGMV02l3efv8WlXKe2dkJ7i4sUS0VdI2/fsTa2jaFQkCn1dlXBO3t9bEtXZphe7NBMZ+DTOH6Hlma4bq2ps0VAur1ErZtY9sWxWKeLMlwPZ3DlsUpWZIS9yOSMEZJhWXqGn5f/87rPHNmFmlIut0upWoew5KMjVcpFQM2d3ao1MsUcy7v3Vng9PQ4piFRZORyLtVaiSzNePhwnRu3FpmZqqGyjFNzkxiGgWGaZGnM5HSdXhhxZnYKz3WJwpTbtxY5NTtJLu+zuLzKuXOzCAnNbovJU+OkUpGoFMvXDqSxYo7T81MEeZ/1zU3COMI2jH2xqSDvIy1d66/XD0njlGazxVilxA/fu41pCS6emWFnp8HYWBXDtBCmpB/F1OsV2nttTGGwubaNnytwenoSaZqUygVszwYBl+bHKJULvP7+LZ47dwohDUrVPBlgWjo/cnllk/q4FtEplooYhuT+w2WSOOHsmXlWVjcHyq6SZ87PEcURnXYX05Lk8j7ddojv+Vy+cArX04qXvV7E9MwY5+amSKJoAF8kE7UK3XafsXoV2zXwbJvfefUqX/ncZd69fh9lJEyMVfB9j2BAiQ37IVIILp+doZjzube4Sr1SxDBMsjRFZRlRnCDQdbsWFhfpdPpMTtapV0q8+9F9PMsmXwxGFtEh2DmhPTW4O+Y4Ifja/BS/8r/8k32AN8Q5Q2P88IGPO1b1mnZ0rX3KAR+7+2h6hD730wROhmM8Wqx9PyqkDkexjjOuTzK2D6ldDsoXyCPn+LjjnzjmE0DTQFVgv6j38WMTQ+Nmvz8NHPfP8rHnhuPNsUNBDCn3qfPHWX1qZHvcJmZgg306m28I7vQaPayV+DQPxkkdj+wy2t8T7LUntUOlq046xxPaT8Ddj7glcfwPUEoXK00TEOIxit2x4G5k+7h9P2n7twbcDe7d0GP1p20HE/TBxDGajJ0kMYZpkaWaatbvh1iWiW07ICSFvC7Mm2XD+jTHtCeAO2kMCoQqOEQheQpwt/+XQQ26UWD3mIjMoTwAuX//R6mWDCJ3OvKX6cl14Gl86Y//hP/h7/+P/POvXqHb7hL1+6ytbLHbbOPaDnu7bQLfo5DP63yxgUc1TTLanRa2Ze7nWxmGIAxDTMum0dwj8D2u33qAa1koMvK5gH43Ymlth7PzU9y+v0ilFDBWLfLujfvMTlVxPJu5sSq1cp57i2v83BefJwh8PN+l3Wqx1mjw3Pl5Op3ugPKa4jouhXyOUuBz7c4CF8+dIuqHA4MqZqxWJlNaHKDb6Q0iuAm+74LSQi62bRG4LoVinm63h21btHtt0iyl0+kSuC7WIMcvSVJ0GUAd3VxY3uBzl0+TJilz41Ucx8LzHQwp6PT6+G5Aliq6nQ6ub2BIm431bTKVYUjBeKnC9s4elUqRIOdimDrHyTBNGo0Wnm8DktXVBr/78js8e36aOIxwbFubfkpgGBZeIdBlGERGr9Nla3uPM3NzfHDnDtPjNRzP5V/8q5dottqcnh7Dz3mALuq9tdPE9x0sx0ZKSb8XYlkW+XwegVaRlYakVM6TpQmWZbDbaPPtNz7g0ukZFle2ODc3ST+MQGRkic6xyeccCsUCKMGZuXFmxipMVksYhoHjObrItWlSLOSwbE1TTbMUz3Vo7Oziec7AaNeAI41THMchyzLy+RwzU3VMRxegrlaK+vuQprT2OvzRW9e5MDdJu93F97SC67dffY+P7jzk/Y/u8aXPPYNhCPq9PungG2hIyc3bD3Bti5evXufi/DTtdhdDGrRaXUzDQAjBbrNFFMd88/vvoJKU2VMTbG81yQUe52cnNQ1PgCJjaX2daqVElqUoIJcPSLKUYjHH2dlJllZ0blemUja3d1he26JeqyCRvHbtPlO1HA9W1jl7amr/e//g0RKTk3Usy+LOgyUK+Ry+77G50aRcztPr97EdC8e2cD0HlBYzsgwThCIcKIkWi5pWKAyB59n4gcdecw/fdxGG0NHtTN8daUhc10UCu40WX3j+IpfPz5KkKSpTOI6NMExM28I0JZapI6dSCP7o++/y2tUHXHlmHqUGYg+mpNft4/sumcp47vwpsizj26++Tc61KJbyZFmGNCTVWoUszbBMk+Xlde4/XCFMYuZnJ8gyoRV3A484iQmjEMPQzIwg5wEC13UxTIs/eOlNPF35Bt/3uH3vEUIpPMfi9v0lTCnIBwEPF9cwhWBjZwdDGnzlyjMIBFvbDZ575pSmODta/bPZ3CXIeQgh6fciCoUc333zA164MI9hGGRZxsLDVUqFHKZpEkUR1WpBi7KYFqZlMjs5wYe3HlIt53QpkP1IyY8Y3A3a/c0mq/2Y556/fOAERBxD7TsM7pQ6EOoarXP3pzWIh3tnSg3SKMRArfRpuUEHonL7/R4CdyNiLZ8S3A0DPKM2w6cFd6DplcPauUdbNgCRHxetGhXlG7bPGtxlI1HP465RZcfbvMO+PwtwJ4+5zk/Ufszg7nDs/YRzPKH9BNz9iFuSJP9AyAMD2hh6SEaaOrKJ/ZC42j/m8Y/5KduAkskJ/YhjJqyPi44NFTvlU9A9TxzaU+08BB7qsTHrvx8AGSElahBhG93XNIxB8GUkpj4yilEFzWyoGCoEOzs7VKpVnWcVR6RJyujCdVLkTp14Yw7q1KjBvDUK7qQ8yKXUmO3wz7F3XMG+r27w9rETwuBwwSi4U/t9K/S1CSFwbAfbtul2O/z6f/Xf471/lf/uykU217bpdUNa7Q5JnLLb6lCrljGExHIsgpyvlRYHynzfeuUaG+0dTk1OYBgGSZzgDmpr3X2wpCmgKqOUDygV8tiuNvLW1pv0wohL52bJBS4qS8kXAibqFfKFgLWNLTa393SuV6J458N7PHdxniiMaO7tceXiGUzTBKWIk4RKqUC/FyKkwebOLs9fOo3KMlzbwvM9pGFw98ESM1PjtFsdDGnwyjsfcOH0jBY18R3iMKbf16USpsZrLC2vUyzkUELhuQ7NZgvHtojCGNf36Hb7hHGM69q4rsP0QF0y7IeUyoX9SFun0yWXDxBKoNKMNE0Iox7ddozjWJQrOcggDBNKxTzrWw08z8ZxbdrtrgZvygClNIXRcrh5f4X5mRrlUolet4/naeNVKf0pp0lMp9XGEGAYFqVqhR+89xFXnjnLxsY2m81d/vJXX8QwzUERY03tbLU65PM+CsFHtx8wOzWhablRTNgPCcOYKI5Ik4R2R0f1DMPCkQJLSG4trPHuzQecna1TKAXs7rYRKJJEF/+2HBM1UN9MlcIPXCzbZG+vRZDzWV3d1IXGDU3bae7ssbq5Q7lYoN/X4jl37z/CtXXOIEoRhiGtvQ5BPiBLEw2ekgSV6ef/+UunSeKEXjdkfXOHibEqRpZRLeX4youX2d5u0OuF3Li/yPypabIsI0tSysU8pXIeU8H4eI3G9p4WA0GAkDieg++79Lp9rlw6Q8536ScRxWKeNE5Is4xmc49ipYDrOVTLBUzTIApjnSfmO2RK0Wzu4bkOaZJSKAZYtk0SJcyfnmJnZ5dSscRz52f41vfe5YvPnsUZ7GtZJtVqkc3NHcIw0gW8BxHpcjGPZRt4gUev3wcFy8sblHMB/U6f197+gJLrsbi0SqVcxvN9sizFdiyEocs4xGGI4zpsbjV0PTpDYEoToQSt3RbdTo8fXL/Nqakx/JzL0vIa3V6I57k0G3u6cHucgtLlIXzP5eL8NK402NxuEEYRpVJe15ZDl2nYbe4R+D79fohjGoxNVDT1NkqIowQpJO99eIe862LbOro6NV7V408zbMdECEXY77PT2KWx16LT6VMpF8nSjNt3FonCGFtKJsfLbGw3cV2XVrvL967d4eKpCRq7bS5dOE2WZjxYWuXU7ARXb9+n24swMsHK+hZz03Uq1QKOYyOlVra1LVNT6VNFZbxMHMaUAwfHsrBdB1B4rsvi4jqB7+ocSd/Gsh0d+RCalBe4Do1mk1KpoCn+x1H01H5QZp8Sd6AIffDe48vJx4O7n5mu8z998yV+6a9/TRfQFsN8uSO9HAUN4kC98vCOx0dzjo5JA62BQuiR18NFbwhmhvbUcYby8U3fv+Py1Id2gLZ9NE3zST2O2ieHomOD9w6zaD7eeP84URYhTs51PPj7UO16WLdXHO5g0DKVDSj2BxFQXedO9zF6H/VnIQb7HvNpHYrcGXqcpgX/P3vvFSNZlp/5/c653oXPzEhvynVVVxvOcAyx5O5qKe2u9LAguRSXoCg9EAL2RfsgA6wAvYygpQSsuMI+yECCoDXQzoDUSOQ4DmfYM93T0z1tprqrust0eZPem/BxrR5ORGZkVmZ1dU/3aAj1KQQqMuLec881cc7/+5vvO8JR0N/25PTRAyfBx2mD9Xx9YqUnRTIPDsyxz/Mgo/r+/UVdU8FJY/3ZwyqKcEqdw4eFpD8Dd59++4rIMhWZQf3QnvSI9rN2UwYe9k9gELLnPRZHwFof9JzYTgJ3vQe8T7zys0QEPzK4GxjD498NTIDZEeDWA4aarivvcs+7d7RputGLVqX79yBJUoIgII4i0iTunf/hMZyYlvkEcAeQkiIydY9Ij3yb9UDdR/EEfQQGl0Fwd7ipgSj6cp2vf/3P+K+/8of8b198hnBhDZIU17YoFnPkPJ9SqcDwUAnD1LFcC900iWNFcd6fCEdKAbNjI6RRRn23yXdevYynaVy/M8+Fc9MU8zk8z2Vnu0aWwndefZfRUpE786t87sIs27s7lEoBSRLRbHUJvICd7Tq5XA7H1pgYH6ZcKPDBvUVKOQvXs7BMnXKxwPzCKr7n4AcON2/NMzJSQdM1orBLPnBZXlxCCkm92SZOYuI0xbMt4jDGNE0mRirYjkmcxOzu1Yg6EbouGR2pkCYJvu9SqzUQKWxv1dnda2I7Frl8oCJLSUIYh2xu71Cp5Kk16giRgMi4ef8R1UoZXddZWd1idLhMo16j1qhhuxam6ZJ0NfJFn+XVJTxXATwvZ/Lnr17ll58/i6ZrWKZNsxXy8qvXePvGfc7PjqNrBqaE4WqOxlbE939yBc/UyRd82u0OtY1dXMdhY6tGuVrBcW2IIs6fmiJDUCzlOTU5itWTGrAMnRRBkihpiaWFNQzLYGSohMjg//nB67z4zGmuXLvD1VtL/NLF0yRxTKvZJhfkyUioVIoIKTk7U+XXvnyR+aVlKoUy3bBDq9Xh6vUFNAGmqeH6LlJKNra2MU1TpdbqJlLqBL5LmmbcvPmQoXIJTRfYphIetx2LW7cfcfb0DK6r0jibjRb3F5YZH62QRtBsNvFzHp0wJIoTTMfCcW00TSMIPKojZbIsI192qFZLaKZGaaiIpul4jo2ua9T3GggJSRwjhaBUyrG7XcOxbUDw7nt3GamU2Gs2sSyzJyTewXJMltbWGR4qkSYJmlBjjuJERcqSjG9+/3XOTE+oKHecYZiaIokxdVJSbM8m7qR0Ol0yUhAQ5D2SNGF6eIgoiSkU+lFlHd2wWN/YpVwp8p1XL7FXr1P0XTrtDpZnkpLgOi6v/OR9anttTs1NcPPOAl948QKa1MjnfUzdhCyjWW9y++4jhooFNDSEIQGNNEyV8yDJyMKMm7cfIAQUijmev3gay7NJkhTTMllYXmekXMTQNDSh8d1XLnHt9iN+5Zcvsrq2iRf45D0bxzUplnJkaUrSTbB0k24Y893Xr3BhbhLIsCydwHOQgKEbtJtd1ld3ePfGI87NjmEaOvl8wDd/9BYz1SEajT18z4JM1RpKYLhUpDJcVPIVUqeQz5ELPEaqJeX4sQxs2yKX83ANDc9zGBsdZnunRqPZIhUZ27U6F0/NUs7n+cYbl9FFxvMXZom6Kdvbe7z+3geMFPLYpo0mdWr1Ri+lm54MhaXIiHoRrTcv32Z6fJhiOUeGJElTJbGjSYQUGKZGFsYsLq4zVCmByFSa/zHsytm+0SmeUsP2yeBOAL81M8Z/+M/+F/7+b//mIef0k3v9KOvW0W3FvqG/D+gG3/fQq7Jreh8xUE/2CRhTaZbt22kfui0DFsgxBz8x2+eYJntyK6qrj3cig9HTk8DdPn3/EVvruChe367VDKM3NnHodXicClSeRHr3abZBcLdfi/gxieYGwd3xkTXBcRJbnwS4k6KvQc2HGs6fgbtPuXW7na9k9IgpemDoieCuB7ayXkrYJ8VamWWq6D9N00Menr6u2okMV3+FwZ3Wi5hKTSMbiNJ1ux0s2yaOomPB3eGUjn7X6to5jrP/w/2kwJ2uGWSid28GInd9j6TU5LGerp8HuGs2m/ze7/0Bf/GXL/Fflgu4hsHkWBXLNIiimDiKqddaLC6v02y2cH0bISFLVBQ1jmPiJCFJFHFBtxNCqqju55e2mJmocOHMDCubWzi2ycLCKiPDZW4/WGS30WZhdQspBNNjQ4xPVNjbq+E4Fp7j0u0k6JqB49qEUYdvvPw2F+amFJ143lcpXyJjc3OXYiGHH3i02i1yjsf6xjbffvVdfv1XX+T+g3kMKTBMC9d3VLqUFBArohBN13raTbC4us7oaAXbMNjc3kXTNNq9CIRlmSwtbvD2B3dZ3NxlYrhMPhfQ6XRotTsYukalXEAzlKEcdrtITUOXGlkG3U6XoXKRP/7WS8xODGO7JqZtIYXF1//0bSbHc9iOJOqqepyltTU+f/ECN24/oJDzlc6Z5zI3McHcWIVCKc+9+wtEcUKl4jN/bz0iA3AAACAASURBVIs4jTl7ahw0MC2D5k6Db736U770+WdJUZEtjQQhlWZcFMU0W4o4pFFv8Jc/eYdnTk1TrzWRCExTx3IMut0I0zQ4MzWGlBrjo8PMTY7z1uXrjFUr5IJARfizhEa9ga4b+DmPR4+WSLOEUrHE1vY24xNVXMNGSoEfuPs/93KliGUpZkFNaEqGoN5kb69Gzg8gE3g5B01I0iTF8z0Eqobx2s17vP7eBzx3dpZSPoemafzwR1fYbdap5H38vEof1g2DKAzpkwIJIXnr8g3GxgoYlkkcxxiGDkLiei62bXHvwQK+a9NstrBsk9sPFlS0T9NIkoyZqVEMwyRX9umGIY16E9sxcX2HcjkPaYau60rqRAhu3Z/HlBoizjg3O7nPFNePai4tr+PnHCzHUsRbmYYfuBimgWX16j7TlCvv3ePNG/e4MDdGvdkkyPl02pEi3tE1RgoBc9NjOI6FbZs0Wi1cz2Vne4/nzp3m1PQ4qQYTU2PESYJhm1iuxdryJmQZnu9SLuS5dOUm49UKnSjkGz94k4mKqitbWFghDWPygaei9GmCbumkvchcEHhUh8q8ful9JkfKhN2Y3Vqd7VqLC6cnWd3YolQpoGWZchb1NAzXlzfRkJi2xUS5iGnp2I4SpCdNyVLQNB1NkyrtVNMolHx0TWlCCmB8dIjNrQ06nQ75nE8URtimieU6oIGUOvMLqz32x5Sv/fmPuTA7TpKkJHFCFMVUh8tYlkWr3aFQyuH5DoHnKg1BaeK5Luurm8yOV4iTiMDL88a7Nzg3Pcro6BA723VMw+TOowXK+ZxaS6VkaXldRXPTFDLBmbkJ7B65ClLrMYz2jVP1ckyTKIxZWd+iUikcRLL2J/lBJ3EfDD3d6nDc26Mf/cbUKP/4a9/kb//dfxv4cLbMTxPc9e2QvtSE2uMwOcfP2lKVA/lUfWW9bffTb460jwLukjjZd9J/3PZJg7v+rllPH+9J6arpfnTvkwlYfJT28wZ3Qh73fHwCkbsemE6OYW8/2j4Dd59yS7PsK/187f287Sc00U87hP385P6E9TQej0FPUX8f2aOhkkI8JnDefzwVFXeK6IFA0X94eymX/UVlP/0yy/b/7/fzNOM6brsPuyaHmDEPfZEdfnH4B5WmSQ/YpYcmHN0wSNO0x77EwETU7+PgsyxLMXSDbrejiBl67JpHjwVqssgE+6mUg57MPsvmYJNINKGpqB2K/AFS+uxYfcqpLEsh03pC6oOesUNHp0/EI3rMTMlAwXY/pWJwrVFjU++SXo2MEIphLElSbl/7gP/kH/3n/HrY4kIzxhQ6lVyOvb06QmhEUYrremRZxr2lVfZaLWYmxhCZJBMpmjRYWtwgCFzIUhq7HbZWdtCclLvLK3z5ufOESYdC0aDdVoZzpVwgzTJGhkqMDuWZHh3CsjTCKKbTiahUSkhhEEYh27Ud/MDCsnTuP1yl5PmYhuT9uw+5v7TGs2dmidIUKTI8x2BzawffczEdDaHBc6cn2N7eo1IpYQUuxXKBrY1Ncp4Dccz9xRVGqmVMQ7JXb+D5HjnPI0slhq0TxzFB4KNpgihKaLY6lMoB52bHOD1Vxfcc2u0OuaKvIjmZxrvX7zI2PESr2cFyXQxTY2i4QLfdpFzK0Wm3mBkbwzA0ms0mnWaXqNmhWLEp5ANc28c0TNqdNoVCHt0A17YxLRPfd5Aio5u2KFbybKxusbNX59HaGsP5PDNnRzl7ZpJavYltm2RJjF8scmZ6VD3LSYqh6RiWiiBphjIkbNuCXtrgxTNzgMC2DJW+IyVWYKlUM03n7r1HtDtdFUFKIvKBS65HppKR0WmHeL5PliW0Wm1KpYBc4HH12n1On5nqsReaXLl+l5u3FzgzN0kUhiAT6rU6cRxjajqtZptGs8X4+DBx3MXzTJI4ZG1zk51aDde1MC2dJBWMjw7zwc15wlaXUjEHUnJ6ZhJdQNiNSeMQKcA0JOsrG7z89nucn50GYGV1m5npUUglpmkTd2PiJKTPdOuYOsVSAcu2EVJnrFrlL197l7tLy5w7NYGQknqjgSYkIhO4rgNCoOkaj+aXKRaKZJEgirqYlkEpXySKO7zyzg3mJsao7TVwXAtDl1iOgWXpWLYJaUbU7pIkGTduPWRkqIKmSdqtFpajMz5W5flnpjBMnajbJQkj5peXcEzJ9vYupWKO5ZVNyuUicZYhUKB4d7dOvuCTiBRDakTdiHarixQZSdQmyOV47dJ1Ts1OsLNb4+y5KaI05v7tBX71l57jzr0lhsoFBahME8dzsF0LxzHpdjpYuuTq+/cYLua4efchn//ceTJNIlOIwohf++JFbt2e59TMBEmU8t6du0yOjZClGWGnSxD4RElCtxOSJEqzz9B17t1d5EeXbzA9Osx7N+6RDzwcz8Z2TW7fWaCQ99na2mV0uITj2gT5Aq7joxkWSI16o60IZuKE27cfUi0XuPLBA6qVEl947hmStMvqxhb1eovN7Rrfeu0aL56Z3F8nf/DGu5yeGaPd6VCvNREavHDxDKViHsd2CcMEx9EZqhRYXtqiXM6xvLbCqblp3rx0g82NXSrFHGmWYRhS1R1KBZSazSaGZexnQRiGdrCgIkCXBL5NGna4evMuo5UhpK6Ilfrze39h669tB2vC4AoCfWtDbTKwUggG1vs+TMz2QcG/Fej83v/wv/K7v/vb+8YzA+vL4EsccWAeGoNgv8+DUR1tGQcXIO3t03fs9tZNFFuh7DkWZG8N/jBcdMhZu7+PoM/6KYS2DxKT5CC1sb/fcUQs/Vef81O9xJOB3eA6Lw6uTX+Po5q6/ZZmA+DjGHtx8N4fPAuix3RJj9Ky57jvZ3sJcShF83B/6rOnkVsazETr20ifBNh+mjYI7oR8MrkMSdojN5f7rJ1HZRr2x32I1RQOZYodHQM9gfgsO7RfH+4mWYLWCygkSXysM6L/99G6z8Hv9+3cz8Ddp9yy7Cv9HPOnIQDZ//Ee8/mTauD6TQ7mvu/nBR8X4Tr6Ua+2q7d/P7e8/11/n48ToUuhRyGeHAat/dq5D/uBf+zI5fETXJYm+2mX6nV4HP0i7H7kyTStA72kJ51nb2IfZIXqT3qPecoGzis9dC1O6r0von6S11PsT+rQK6Ae2LR/f49SavXf9j3HfZD4u//gP2D6xhX+4ewUz46NMlYsUCkF5AsBQeBhOxaOYyE1gWHpjA6XmBobVhpsQqJrkt2tGt/7yTVMkTJcKbC8uE2p4LO2s8PseBVd1/E81UexmKPTDiERGIbOTm0X27DxfY9CzieKIoaG8iRJwjd/8BZnpkfZ2t2jXMxz7eZ9cr7LqbkJul2VUnjp+n1u3VvkzMw4P7p0FUNILNNE0zQMS8MyDFrtNmRKWPjPXnmb89NVgsBT7I+WxejYCGFXSSgsrm6yW2uQZRmFUg7Ry6+XUqPd7tBotqlWh0iyhJQMz7MxLANIMU2LVrON4zoMFXOQ9R0PAts22d3ZwzItpJC0Gl2EDp7n4fs54iilVCliWaYS/jZ1oigiy+DR4gaeZ6EbGq7nEXa7KtKra8Rxghd4lIt5zkyPE0Zh70YrYo9iIUfY7RKHEa7nsLa6SaGUZ2V1A8d1sCyD1ZUNpcGma6SJov93PFVvZZgmIDBNgziJ9x0V+VyOcqWIQNButymW8sSREmTe2trD6mnmxUnC4so6E+MjxHFMKSiQZimWYxF2Q07PTjAzPkQnDNF1ycrKBpVyidv3FpFINRbHRkiB57k0m22SNKVULGAYBkJIdN3g2z+8hIgTLp6Z5uq9RwyX86SkBJ7Pg/kVAt8hn8shhNJCy+UDnjs7R6PeYne3hmVo2I6JYZq0mx1My6ReryOlRJcaCytrBK5DGEWKGClJmB4b4uL5WfXbTmB7aw8pwfNdsiwliWNIMyzbYGtjl72dBm9e/4CzcxN0wwTXtZkdHaHRaPHaFSVyn/QyDxrNdk9Y3kDXNLrtDqVCoMajSbIsURHOMEGQ8nB+kZHhCps7NYbLBfzAx3GURpptmjSbHb7zyjucn5vENC1cxwbgxs37rK1usraxw8RklTRO2NndY35hg889fwapCaSmniXLNum02rz05ntcmJtENzRarQ6FYo77DxcxdY2X3rjM+VNTPFpY5fzZWVbWN9E1iW2atJptPMdhdKTMyuoGu/VmT9zd5PLNB8xNVmnUm3ieS6fbwfVsLNvEcgzyBZ/FpTWSJOXF86fwcx7NRpO4V5MoMrAMgyDncenGXU5Pj6PpGlmq5nlD18jSjE63y8bmNsVKoaexaNINI6ojKlV5ZW2dMIyYmxlna6vG1m4Lx1QgrN3u0Gh1SMOYSqlAs9mmkAuo1Rqq1k/X+D++8wrPzo5SazQol4osLq8xNVml0exwemacu/PLTFQr/OkPf8r5U6MHGTxAlqXYrgWZQNc19XvqGdU93IFA4Ls2IlFzue05vbm4Zzr2Mc8T1to+ZDt2EzEYbRED/6v1RGo6f39mlH/wT//HwxIJx0b8To44HAV3ytl42PkKPQP9ONvmsf4OMqaeBkcc7e9ohObAeO6v6Yf3O5rN86S+P2Qkj70VQu47Z08iBjkATAfO+ePG0B/nPrgb2O8QeN+3/Z409o9OULIPFf8/AHcf1qSmatYHiQ8/yv5PauqecORy9utDe5wH4oB08UnXJxv4Jwaez377DNx9yi2J46/0fyBPA1H2/VsD0SrtwAI/cb9+7VzSS7tM0vTEsO0hxD/QZ3/COBiM+k4ObLs/rfe3fQrg1Z84+qmpx43nSe2k8T52nCylVquh9Rja0j770hP6UwWxkj6rJKjc9jiOkFJimBZht4NhGIf6OABy2v7+hxYfcVC43Ad2UmokSXowMfc2VyK7/f0Gxjnw7/ho3eC5Z/v3R9H8cuicBvuVUtWA6T0QoNZnZZx/9at/zH/zh/8t//z0BMOWTRAEpEmGqSlWwiBwlZepV3eoGOZSTFNHSkEUK1KEsBXSaYZsbe6SyYSFlTV8y2bq1ChbmzXGR4fwA8XuuLFeQ5cZi4tb/Oit2zxzegzH1XAsj3q9iZSSYiHg0dIKnW6X8zOTSojYNLFtk3qjyfT0CDu7u1z54CET1SHGynl2W03OzU2hp2BZJr7n4DgWUdQFMlzPxXIU22O33mZsOE8UJbTaIUiNJE64dusBjuVwb2mNR+ubfOmXzpNlGY16A8e2Va2bZeHYFvOLq7z05k0unJ4lSyWmZSHQSOOIeqOpanukQMqMtY0NyqUC3XYH27bQNZ1uN0Y3LDQzo9kISRMThIZuG7QbbTqdLlIXasymw3dfv8KpyWE8z+lN8JJWq4um6TTbHQxDR9c1hBTce7jC5MQIAJ12F8e10XVFTqJrknanQ5DzyBdyJFlGGiUEOZ80SVld3cQwdO4/WqFYUCmMYahISD64+ZD1zQ1GymXCMEE3VK1ls9nC9SzevnyDsNulWFAgz7JMxUKqaRQLPkmcoOs6hq5YMDORYeiSVqOJaRoYpkmn28V1HASSb772PiM5jx9fvsWLF8/w6NEKQc5nZ6dGLpen0+7y1e/9hBfOzOE4DvPza4wNFTEMybNnZwhyHmFXMXc6psndRyu89d4dRJSytbFHkPcQQrHkBoFLdaSEbupkmRJgF1JFMi3bJI4ThipFVTOna1y/8wDfNlnf3EKTogccwHEcNE0oRs5GE9vuOYsMBYY912VuYhgpJabpkKUpaxubOLbJhdOTCFAAqhsRxwlBLiCOYqJ2iOcp8o29nRo7O3tkSYJl6CwsrlKvNyiXCiAlhVIOx7HZ3NghyPkIqbG0vEEUxZyfnaJeb/DqpatMVsvommR8fIjqcJlXL1/jzNQYQgiWlze5tbBKOedQquQUQ6vrUK81ME2dF87PUSjl2avVKRTzpGmMrgk83+XM9ASapuF7LnGaIqRguFLCtm1c26LRaKCbSrJjfWePnO/gODZjFZXi6gce62sbhGGE56rfnXJIgWnolIoFHNchjVOGh9U5KCdKpur7Fle5cGaGD+4+RGQZOd9jZ2sP5QBUa0G+GCClIJ/PYdomhZzH0uoatq0TuB6B7yF1g0qlwMWzkwR5j3wxwDRMZqfGuPT+XRzdYGqqiu+5dLsRSZJSrzV4tLDObrPG5y+e5dbtRe4vbTBUynHt1jyPllb4pWdmEVLy4jNzaIaqt5NSp9sNsR2bJE0QmZIxCbuhirRI0KTK0Mikiq4EvsPa2gaGrmEYGlmP8EHLBCKFVB44Afsg5fDaeMICsx+pEAchpAEg1t/t36sW+aMfvMHf+Ju/+hggO1jXBoTCDyAlg3Xl+6lzJ6x5T8qBkoN2RpapqJMQ+2LXx0GVg0yd48HQcQDmOEr/oxG8wVc/86kPzk4+Fpy05Pcvfx9YH3WOC9EjYcuOv0b7UUR5NOIzOIZeWuYJrc+yresG+yDyhNa3fx4Dvb17IZ+meOwTaB8FnIlj6uWOS+vsb3PgGB88YH8DDm179DMAKXoZZJl6LtJMacV+GB/GYfvwyDH4DNx96i1Nkq/033+UR1gT4iAC9xTtwCOT7UcJn2rfIw/qE4HWcakATwnuoDcdfQxwd9IYDvXRY1q0LAvdMJGaRpokT9/vwNgUC2ZPBkHTjk3nGLzevb1P+H5w2AdAb3CXQ2KjJz4lH2Fy2l8ATkgPyAaO2Ysy/v7v/wFf/dqf8F+NePydUg4tS0lTkJpBGMU0m238vM93X32HSs7nzv0l2q0Oge9x6f2b7O7WCDshrm3z3rV7rG5s02h0GK+WODM7hmvplHM5DM8gCzPuPlqiVHTY3NxjdX2P4XKe9249olopUCz6dMIQ1/Wo1etcu/+IVqtFznOZmRmn1erg2BZaT9YgF7hAysraNutbTYYKASPVEuW8S7fVZXi4jOvaWJaOYUikgHqjzfrWNsVSkW6ni2Ma3JtfYmFti9HhCmSKfn5jY5t2N+Rzz5/lwuwk62tbOLZF2jPUa7UGzWYHz3NY39xhfnmPC6fGlaGZJuiaRqNex3cdpJBcvXmHoUqBUtEn6sQgMprNFrajojGtZhvHNoijBMfx+OEb7zE3Ncr/+d3X+dJzZ2l2WrTaHUzb4rlzs+RzPmkm0HSd+l6ThaV1hislvv/6u4yXC3ieQ7vZwdIMTNckTTK8wOPaB/eojpSwXZs4ScnlfJqtNqah95wEygFgmAbddpd8IUch54MA3TDodpTzY219h+FKQC5w2dyqoRs6di8Fz/M8TKkxNqqic2SqvqzdatMNwx7lPEhN0m522a3VsGyT5eU18oHPH3/nRzx//jTtdgfPc1lYXOPv/Oov4zomaRxTCBzK5aKq9wAVYUwzPn/hNLquceXqLb78hYt4rk273cK2VQTug5sLBL7Nyz99n1/7wnNMVcuMDBcJw5DvvXmZ55+ZJY5jbt2bp1gI9o0xhFRzQ5b2ZDwMuu0OtXoDTZNUR8roUsfzHBzHpNlsY1t2j3E3Qzd1Go0W7XYHyzIwHYt2vc1LP77Cxu42WRKTz+WIuzGWpaQBbMeEDLWPY+N6Dmmqar9IYW1jE9KUerNDdbhCmqXomk5luMzWVo1KuYRh6AghMHRJksTEcYJpq0hwLueTpvD9n1xmrJLn1Nz4vtEadhOmR4cwDJ3l5XWGy0WemZ0iV3CJEkWWBALHtrFME6lJ4jgmimNcz1Ysz+KgdrlfB2U7Fq9eusqpqXFFuJJBkPOI45hcISDwHFxHpRobpg5pyt5OjVpPVsJ1bP6vv3idZ89M9e5FSpJkJEnKo4VlvvWjS3z+4hlMy2R7e5e/eP0yv/z8OdqdDj9+/xaff/YMuhRsbO7geTbbOzVsxyJNUhp7dUzTZGN9m1zgUQg8trd38TwX23VYWFqjUMwBGZZlsLdb4/b9BSqlPDcfLFIdKrK6tkkYhohMcPvhEufOzqIlEV984QzbOzXanYi872E7BlkMLz47x16tTj7wyTLBxuY2vu/zxqXrTI6OsNgjgxKZ7EUdM1rtNqal6p5VpEGtD45jY+pK469eb1Eo5ZFSQ5GDDRqpx0eynmopPmaj/ieGbvAv373Gb/32b/ZXm2O2fRw4qJq5wchc33l8UhTs5OEdtTE0XUeQkWQHnAfHgbsnt5O+P3mNPWpPpfSFFo53VH/cyN7jqXu9Yxy311Mc4zj5pANQP9jvU9h+A5scPvZgpOkXC9xlxwDSk/bvf3/idX2Kw/ajeftOALJDf3+U9hm4+zm2jwvusoHX0823/z8HdwM/MtuyuHH9OqVS6en7BZJE6blZpkmWpRiG+l/KY7QJD3noTh7PwXAPwvyPgbue90s+caJ7+mvUpy0+Kc1TcACG33rjEv/pf/aP+Vd/7QV+Y2qEbjvkJ5evMzVcxLAs7j5aYWSkQq4QQALD+QDbcZhf2kAKyfziBkNBjnIuYKRS4js/vIStmwwN5ZmZGqfRVDVAauGWhERoqcGla/dwPRirjqBlBtdvzZPPuzzzzCTffu1dTk9MoWkJtXqDFy+eZW1tm0qpgG3ZRGHE9laNOE5ISbFMgzTLqA4PMVouUW80KVZ8hJbi2R6rm1s4jsVubQ+yBF0YCClwHYc4TQjjCNcymJuZJuf5fPX7bzBXrZDzLKJOh1zeJx+4pHGM5zh02x2EJokSRa4wMTFCba/JyHCZatml2aqTz1ts72yh6xkSiWmaRFHE5PgIK2vr6LrA0hW5hS41Nnf2CAIPBLT2mgS+w+LKGpapMzo8wqNb65yZG0czwcu5aLqO1DWIJGGY8LVvv8qzp6d5ML/K6z+9yW/8rS+hS8EHtx7iWha37i4zeWoU3TDY260zNTWK0CWZkEhdxzB1mvWG8vYnMZpmqPTPNCPIe2xt7pFlGaZtIoRESg1N0ymXCmxvrRFFMWNTY0RxhG3rrK6tYwgV4TJNZaTHcUgcKhkL27ZotztEUUSr2ca2TYK8g2FoBJ5Hlgp2tuvMzU5y/eZ9piZHcCyTNE3xHIsH88u8dvkm56artFttBOAEDggQElqtDjMzY72klQTXNqjVm+iGxfZGE03PeObUpJIAcE0QKZlI+dwzp2g0mliuzWh1CGnoNGp1TMMiS1PFPGkZPFpcJhcEtNtt7s4voGsS33cRvdrYJIlwXZsw7LKzs4thmNT2GkrLzdDY2a3RjSJM3eD86RkqeZ9iMYeQBkJK1tbXyUhxHYvV1U3anS6Ly5sMD5WgR7fdarbxAxfLsigWC7Q7IY6jyFZqe23yQY5795fwfQfD0IniDkYvjbYbhpiWgdQllm5wZrrK9NQIl6/dwNAl2zs77O42qVYrbGxsM1Qp4XsBGSm6IYjikIyUNIEMwc2bjxgdGybJYjzfISNFk5KNzW0sw0DTDTY3djANk26ni47AsU3uLaxw5swUuqH3bMeB+VGApitCKctWMgHf/tEVXF1nvFImF/gIKdnY2MV3PSzHYnunRpwm5BwLw9D5yeUPKAYeE6NDRHHExTNTuJ5Ls7FHsRhg2RZBzsc0bb77yjvcnX/EuZlpTMOg02qzt1fDt026UcrObp3yUAl1xinr65ts7ezxzLkZNENy9vQktmOhpTA6OoTjuty+v8TYSJnXr1zDsSTj1SpRmDA5Mca9R8sYUnJvYYlaq4ltmPzgjWucPzWJbTtMjY+SxCnfe+19zkxXMXRFrNJut3Ecixt3HzBUykGkGJ5TKUjSGCESdjf28G2boFQgyVR0sl+T/aRoy88K7gD+3lSV3/uj/5l//3d+i48L7vpJNydG7k4YZ5opBsfBEogDbVwJ4nib6ucC7rKsR8wl+sbQRxzD8eM5FGE6VIrz8WytNHucFGcwDXTQYf1h/f1VBHeD5HU/D3B3kNmlnF+fgbu/Ii1Okq/0QdrR9qSAdJ9q92lv7f5DNpCeJ4QgS9N9Qc44jtF6el+D+z3pITpERtIvsB0MQZ8AtvrEK/385f6E+mHgrl+bl6bJIbbK48Z7KOUhPfhBJmmqiDMMk5MKiw+Gf0BBoxsGjV49jabp+/V40Kf87YOmg+jbIe9OdsDIqemq/kYIlVYrMtCEppa1fbcQICWGru8LfConTvbYojbIonpwLfrplygv+n6Rbt/Jpp4glad/kIKa9k75+tWb/NF//8/4V3/tRWQGMslYml+hvtdkdLiKaVrEYcju7h6ua6FJCyElhiFI4pDXbt+nttvm137lPFKTOI7LcD7H5m4NJ7VZW99kaMRic3eTJEkYKQ1R321SrBQ5NTNG4PtYpsaDlYc8f+40o9USe40GdxdW+PzZWTBUXU+z3uDN6ze5v7zBaLnIxuYOCSkjIyVVN+V52DZEUZf7D1YYH60gDANpmMw/WMYwdHK+p9L/DItms0Gz2aWYL9Bs1TB0waPFLRxD1ZW9cG4GRIZha9QaDSrlEkJoSN0gSTNM10bqkrev3mZ7p81wQaVXtlot8oFNzvchkxjSQtNNWp0QTZeYtiqaLuZzGNKlXm9gGIowoVTO00cmju8jdJOELoWirVLMZMb6xg7VoTKtRhPbdom7AqllZMQ0Wk0q+RxjI0Ns1WucOz2FJqFcyuP4DmPTI2ioZ7KvH5j0SIXiMCTuxuhSAyEVwUamqPzbrY4SafZt2o0WrmeTRCFSpNQbe1iWJJ/Pk6UC23CQmVRRKimxbFelHPeMGalpbG3XsR31XKVJyubGLoXiEK6r06y36LY6oEkwNIaHi5iahgbcubdAzvewHJNu2Ga0WuL5Z2awHJtuN8H1fDSZEkchmiaUmLllgpAsLq8SRyFSKkKTUqVAvV7j0eI6i8sbhN0OtmlQLAbEKfzpy28Sd7tUK0XCdhspDVqNDrZtY5oGW5vb6ELguq6SZUgl1eFhWvUOOzvb5AKHrc0a7VaIH+QwDZMkSmk0O3znx+/xuedPE+QdbNfGdHWarQY5r0irFpJkDWSs82cvvcOXnn+GRqNLqVSkWC6Rd110XadZa+L2dPP2duuKrKcHuLudzr7NwgAAIABJREFUriIaSWIsx6SQd3FzLvMLq+TzObqdCMuwydIMU9dJwpCwGxMmEbVGk2IuwNQMSvk8QS5HkiRkkURqGtKOyGKlbafrGvMLa8RtVb/40htXODs7jm7qaJrWW9sEtmti2L20cy0DLcGz8+QLHvMrK5ybm6JVa7G9U8N1bAxTo9VqsbC4zoP7a4xXK0przjDQpIZnSq49XMRzTYp5D9MySZOYXNFDk0rY3jcNxsZG2NurM1opcv7MDJpUTpR6vU4UdtAw8DyfJE7Z3tjGNDSmRyu8c2+eC9MzSCHJlUyCnEeUJCxv7DA5McJXv/0KL5ydo9OOKFcK5As+y6ubFAt5WvUuSZRx79EDDCS7O3XuLawxPVrmxv115lf3yKKYU6cmWVxaZXl9h+2wTrVUYGJkmI31PWZGK4RRF8+ziZMQBJyeGcHzXMKwS7PW4U9fuszFU9OksSJgsD0bAUSdLqZugDRw8gZ3789T0Bwsz0baOmmUqHWkt7Yc+B0P6rMOx2XUmnGApMTBSxzYJkfNcwH85vQof/A//Qt+8zf/3uH9EEpbUmTI3rqlnJ5H0wt7hxWAZD/yuP95NmAhiT7RGIgB4JqhiDPE4MD2+z4wyvt1eXBgtxxth4494Ho/yXY67jNtwG4aFH1XttrTSFMctEE7IBmw9z4MDJz0/SARi0qVfDxFtc8LcBKw3O+rl5Lat5mElL1zH7Bd9nv59IEdsC+QLsXBsU8EfNnBCI8Dd0dt5qPgej9FU3y4fa0264G6LFNzd6bIbD5O+wzc/RxbMhC5O9o+mThNb/tjImn9CTtDTSyy9yN7GmKX/TbgCYqiSD3yPcB29HjHjf9gEjsM7gZFxY89j942H2Wcg31oUtuPYB6XAjGw4/67OI5xHAchIAy7B9qEPbA3OJkPRuYOxnzITaXOVQpEJvY9MYdPlv2Fs68R0687OAruskw8dgqDZDDH5nYfGlVPMBU1+f7u7/4+f33jIf/wubOQZbQaLd67fpefXLuHLgWnpsYxTYNmq0WlUsQwDXTNYHFxFbKUOwsr/PqLz/L82WnCOMS2Vfrf2voWz56dplAMsGwd2zPZ2NnjzMwUruuxsbWDQBAnCZoUbG7tMDZcZmu7jpBgWibnZ8bZ3alTLOfotDvomsaFU1PMjVWRmsbNBwtMjw7jug4/ePMqvm3iOibbOw1cy8b3XQxbgfNKMY9AiZcLkaFpCkzblkW70yUlRtckxSBPGEfohk2nG+L7Hqur64yNlKk3OgQ5n83NbUXJrm4mkyNDmFIZsoahEQQuV288QgDdbkShHAApjuPS7XTZqythc8Mw2drc4//+4U9xDcnYqDJgd/caZGTomq6EctNI1Wd1MsrlAroQRFFIvughpI6QSuKjtlvDMQ1KxTxJnDA7NUYURrx7/RZTEyNqoZACUkWT32l2sGyVhhZFCXE3JupGLK1sEPguumXwL/74FSaHFcvl11/6Cc+dneHBwgrFQo6llQ2yNCUX+AB0u10Mw0ATioRFN9Q11k0DTZM9YWVBvdakUCggBDiOSZakRImSs9AMges7KpLX6mJZFlkK9d061dEh2s02hqnjuQ6mrRPFCY1GW6XLObZycKRJL70uoVgqsrmxi+M6+K5DELiYhsHm5i6W7VAp5xkbGaJSCNjerTExMcLC0hpSSKaGy5w/O7P/7EVhzOWb91ha3mB+eQ1dF0xPjbK9XWN1fRMpBK1Gm5cvXePCmUk1bwhBvpBjZ1dFmF/+6fucnZ7A1iW2pWOaJlma0W62sW2b9eUdMjJqzTqFXJ7hgkc+72O7Frqp02406bTbfPPlt/jcc2fY3VO1xWTQDSPCTsS3Xnmb8UoB33eVdEWjRS7v02y0KBQVCZDtWGRJRhTF1GpNrt15xM62YiEtlQrkcz6GoaNJjTjN0A3J9mZNpSLKhLibIKRiJRQI3r81z+17S/zNL1yk3mjieKqOtl6r4zguQmSE3ZBmo4NlGriexcbKDkKDkWoFQ9MIuyHX7ywwMzWK6NX75AOPq3fnOTM7TqvRphOG5As5XNvi2bPTlPIBoMR8b95bYLhU5Obth4yODO2LtkshaLU7WJZy8l2/9YCpyRFFxmJbCAFJkuDnPJWCLgS/dOE0ItP52rd/zHDJxXUsOu2IsdERVlc2sHSDyYkR1lY3qTUaeK6SQEjTjHYjpF5vMjs1QhSnFAoFZidHaLZaGFLypedPM1at8M2X3qJaKXB7fo0Lc6MEjsPIcJl2q0OSZlSrZTIyNKEYGv/l936MGWcYmiDwfc7NVHFcmx9duka706GUDzBMQ7Fd97JMbFdHxvDO1XtMTo6gmzok6QEDyOAyNLhOHvq8t2xm+8vUwcLVB3fHhMH6f/7tis///s4NvvilXz68Hgm1vvWB1yDYeryJvuFwbORnf6AHvR/a5unAzqAldrBGPl0K49Nbasdv278GH9XiO2j9WsKPP4bebexF0fqbDAp0H+pDHpDcHNdb3ybqA8EnRRJ/bq1/LgMfnQzuHs9Q+0g1e0eA4FPscejdx4nYHXe8z8Ddp9x+UcDd7u4uvu/39Js+Qu8D4E72ZRWOfH/seHrRsr4n7Ci408QBTchgD1IN/PA5PeU4+y1NYgxDie1+FHAnBJimRdrTnlKATo0jSZJjGapOAnd9dkpNavuOvpPAXZ9mWOnZHQ/ujmuHGcOOSZkdGJXMBP/6X/4b/vC/+6ds/MWf80++/AIVz4MsIUtS/vL1d3l2bhpPN5mqDpMvBvzrb7zMl144i2Wqa0ma0W62uPlgiWfnJmi2O6RpyubOHsVCwPziCq1uSKvdIT9kY3sWjpmntt3hWz++RrNbY2ZihFarg22a/NkPfsr5uUl831d6UXmfeqOFrmvs7DUoVfLYlonXI/9otzsqBez+ClMjQ3iuz5mpMTrtLsWhIsWSEkQ2DR3TkGxtbuPYNp1uh0arhWFo2LZFKiVxkmE5DkncRdcFupC0QnBdl2/88G2ePzuDJjIezC8xMqy0qlRKnURK0KVFHEY0mi2qo2XiOMKwDba365yaHccLbJI4YW+3jm0pBsLAc4milD9/9afkHY+zE2NovSiIF7h4gUe708W2bUgllmsRdmLeeOsup05XKRbzQIzQMqShor2dWgvHNvBcC9PU0DRFsKBJwa2HS8xOjqqaGzKSbszWxg5kKLISTUPTFXHM9167TKsVMTE6QhKnrK2uMTFSpFjKcXpyFMN0CHwfXdfJBQGu67KxtoPIBEHBJwpjXr90nZzn8pdvvseFU1MIXQEu3dBJopS3rtxkfW2bvO8qZ4ZQ9VhSCjRHQ0owdJ3FxXU0BMVCgSRN2N7Zw/Uc9Rz3fi8CgReoOq1mq41pGkgp6bZDhJBIobG328CxLdbXNxFk7OzVqY4O9wiMEjqdLrbr9LTBoFgIsE29xzSs6twMw+Sbr77FC6dmOHd6ms2tHXRdkgscbt9fZmJsiMD3KJby+KZJZaSEZqg04TCOaLRaDI+UOD83QRiGxL26OoGqVxwql0jTjJdfu879Rxv8ypfPoxsGb139gOmJYbIsIYkjGu0WhUKOZ2bGkZpgdW2TUikgzTKCfIAUkjSKmZsbJ05iGo0GSZpgWgZ7e3XIMuYXlzF1Dcs2SZKMQr6AkRnYpslr799hb6/GzEQVMsF3X3mb9+485PlnZtndVTWFrXYL33eI4pBGo03gB1TLFaZHq3iBrfQhe3OYYRiksWKUNS0Tx3IwTZMkUUQ1e7UGjmuTJAntTgdSsAwd07KwbIt7Dxf5lc+fhwwc3+FHb7/H1OgQ9UYL13PQdJ033r3B3PQY1aEKK8tbvP3BHSqBS7vTJY5iPN/l/Zv3Ga+WWVvf5tKN+zxaWufOwxXOzI2jWwaGZRDFMavrm7iBg0gzdjcbmFKQyZRCPs/a2i6B56PrBiNDBTY3t6mOliGVkPWkQjIgE3Q7EYkUbO3WKZV8HNcil3Mp5wIMQ2d3Z48wCpmslpkZreDoJuVSgd3dOtXRCoZtYBsG77x/m8CxqdebuEJjslohDNsMDxWBlCiNOX9O6TZmveWtXmvg+x5pmqIjaDa7zExV2d2r4TsuWm8eOLTg9RYxIR6vRTsEk44Bd0dy7h5bnzRd55//6K1D7Jmg/Exq7ZIDwPEXA9z1iUT62U79dhIxyC8CuNM07alh09OAu+P3GziePJ7BdL+vX0BwdwCAB2y0X0Rw9zMAu6PH+wzcfcotS5KvHAdiGPj7ICe8l/73tPVyA21Q3PJoqqIAbNtWxtFHiYbxFA/nE2rg+jnm/TTR3hcHIfsewBvsIRvY/yO1Qz9IuZ/m+KQxqq/6aafquiRJcuyxD9Iws0N1dupc1MSPUOcpheylVqrtRXbgWZOa1htO76nopXgOAsTjgF3/Ch5eYz98skzTjN/5nf+I4M1XGNle5x9dPMvzlSKQKer2KOG1t65yZnKMSqVIqZAjVwj44M4DPnd+Fts2SZOE1dVNXMdkc3uX6bERbNsinw/QpMRzTFbWNskHHjPTo+hS0orb7O41WF3e4Z3ri0wM5VjY2WJquMTQUJmwG+KahiKm0DVMQ8O2TSzLYHFlk/HRYW7ceUC5mIMs4+33PmBmchzTMpkcKnH5xgMmx4b5/o/f5bnzsxiuikR1W20gY31jW2l5rW5iGgalUg5dVzICfcIdy7JIkg62bUIqaXQi5hdWWdve49TEEOtbO1x98IizM9MYukYUK4CXZdCstQkCn9euXOXU5Bgr65uUywUKgUWSRty6P085X2RhYYtXrlzh/MwEtXqDXC5gZXWLF549i2mavPb+NZ49PU0KdEPllNCkDgg67Raa1BguVfjeW29zemIUw9Rod1oYpkmawNe/+xovPDuHaZpsbe+RRDGWaWKYBmPDZSzbUk6WJMGxbJqNFsVSgXfeu0l1uMz9BwuUinnWN3b4619+kYcPlhgbqyidvsBVj5mUaLqBQGLqGh/cekClnCeKYhzHBqFIiAq+R6lc4PmzswghaDbqOK5Du9lGSo3RoTLVSlnJGLgOuqEYD13HQZqSsNNFkxLXcviT77/B82en0TTJ1196k4unp/bp/xuNJn7O56vffpnhfEClUuTHPeNf0ySbmzvk8wGe6xJ2u6xubjM8XCKfCxSzq2GgGRqGabK0sMrq+hbFYo6HD5eo1xsEvksUJYRhjGEYnJ4cY2ioxMbGNiNDJaamqzi+QzEI9plulU6ejmEb+x5iz3MxNK2nVdYiCDxMQ0c3THTdoJjPce/BPIHvcnp6gvnldU7NVkmSlMCyMA0NIWFvr04hH3D56l06nQ6Xbtzh2bMzxHFC3NOmC7sxr165ycUzk9yfX8b3HQrFPFtbu3iug2VYNJpKeN5xbMXyK3X2dlu8c/0uf+tLz3H+7CxZkqBpGq6u8/nnzhFFIWSQz+dwXFPJYBgmlmURxymu47K0uEa5ElBrNDFMg0ZDEZ9kcUqWJXS7XSzTRgqVEdGf89M0w7IsDE3vjTfHn3z3Ve4/WuZzz54hThIs26Tb7fLcM6cQAlzPIQojlhbX+MIXLxKHMbqmWEfPTY+Szwfs7tUZrQ7x7Zff5G988QWSNMFzXZ6ZneTM9Bg516ZQCIjjuEeekOF5DkIIdCl5+fVrzEwMMTNTJU0h8H2u3rjP7Mw4CIHnOSwsrrC5WaPWaJEPHLrdiOXlDaanR3n5p1c5f2oK17WU404KNCSWZaFJQSnnKzKoNCUKY3567S7nTk3S6YbEcUwSRSyubXFqaoyl1S1s02BqahTHMlhe3aAbxeTzAWkGX/v2G5ybHsH33d79UeQ9Wxt75PIBQcHn1t15wnaomI61XlpmP2QGhyz3Q/BJHLz6a1V2aPOBNelIH/3Xb02P8F989Rv83X/33znUr1rUlPGvfJtZbw1We/aX7MF1Fk4Qjz4EwtJe2YQ8Dm+e0A4c2H2bQe7bKY+zXg5+dpxpkfb2PynFs38+h8HGh0cKkyR9zO54zJF7TMnN48eWRxWRDvV73GvwrgoBaZaqEhr6t/FAte+oHdqznJ54bj9LO5GR81Drp9IOfHLIST+QYpsevoZHtx1sBxlc2f7fHx2cfXwwNziOo8f9DNx9yu2pCFX6Dxbsg5+PdbuPKdDdv+mHCm0/wXYScOoDuqN52wNjG/z7UxvHsZsOSr0/PtEevkYne6YeO7QYqHU8lF8+AKhFth9NHZz2+q8nsWU+duc+BNz9/u//x6x+59v8ky89x2yhyHgu1zs/pfFU26lx9coDVjZr7Ow1mJ2s8nBxicpQnnz+/2XvPYMsydLzvOec9Jk3r617b/mqrvYzPXa9JYFdEIAIAgS44CoCBCPACCkYJIJBo4BC0j/ph0yEKBf8ITJIEFxJBASIWJjFYhY7uzs7s2N6XJuZdtO2vL3epE/9yFvV1dXVPT3LnV0gsF90xu26efKck+bmOe/5vu998yiK5LW3L7G+2WCyWkGVKb4XsLLe5N3rSyzMjnPpxm1s06Tg2txe36BScNlptikVipSKRRZX15ibKjI9Web03AzFUgmv77G0vMH0ZAXD0sgXc1imRhLF3Lqzysnjc+i2SbVSIPAD1ta3ePz4ERRNI02g1+/x3tI6x+emuHTjDmdOztJud7EMHUNX0DQVy7IykXXTolwps73dwrZMGq0uJDGtZpcwCHEKFlEcE0UCw9ColgucmBvHdkzMnEXecXjp9SscPzJFSpYH2u8OcSydZrPJ4yfmEBLybpEUiYwlmq4yNVlFMzRyjsn8RInhcDjSeNOZmawRxRFCSuYnqiBSNN1iOIjRdJNgmIU5/uGLL3JsdhJDN5goF9F1g5XVdYQisO0ccSI4Njs+WiiBre025XIFTVNQFIlqGBmDYRzRa3eRmopbzCGkoF4rIxRJuWCiqJKFI9PEMXz1hTeYrxXZanQojxXY2mxSKuV56+0rvHP1FseOTFEs5hCkBEGIYehohoama+h6xqy6tLTBpSuLHD82xfZWC9s2Rx5KiaHqCClpNNvoViZ+3u/2RjlRkp2tJnbOYqZexs7nEELwxPE5oiTOwKCApaUNSoU8x2bGKRbzRHGUEWZ4HkIRKOrdcK//92sv8cXPfZQwjhEjYKirCgNvgKpqmKaJEFkunqapFJzMc2eYFq9duMrMxDi+72GYJt1On1q9ki0QKJkUsRSSNEl4651rvHH5Bifnpzn/znvMTU9kQEnAysoGEg1DVxn4HsVyHgT8wXMvU8xbjI3lQQhOHJvBC4dIdMqVIr1uD8exkKQ4tkm1PIZj2UzXqnQ6ffJ5F83QsCyTMIx54sQczXaHeq1MoVgkjlIswyKNsgWnnGFlOYPNFvmCy53bK/zxS+/y+WeOUirnQaSsr28SRyFhFOHm8+iWShwl2cKJ7480BjXSFBYX18jnLXKuhaoqKJpCKgSqkolsKwrsNBpEcUgaJyASBl6fftcjl8uhKBqRn/DezSWkFmNbBifnpzm1cIRzF29we3mDO2vrlN0cQRgSj5KFvaHHnY0NGs0d4igcyVvEPP/KW0zXxxBk+osLk+P0hwNUqRMnKS+efZejC5OZ13boo8kMcIV+gETSbnQY+j1OH5unMlbED30WVzawHYe8a2UkQH2PJE4wdIvpqSrVsSJxGmHoKpaZyeXM12sYuopu6kRhjO9HNHY69AYeL7x5icdOHMk8Q4qCkJJ6pUgUxSytbTI/O8HqxjamrlGplCiVXCqVEmEcsb7WZHKqzuUbi0zWKsRhwsmZOqouM/HpOCL0PBo7TbbWu9SnxohlwtRYhe3NFpqqYrn2nq7qYWkP4oF/MCLy2d1xABA+ACAiBFPRgP9w6SYf//hHOFCU3RFvd/Td3aQ4WI69Ug8DdxkY/Y8jotj/3WHhqrvj/+4i9cEyexEG3H8J36+9h9n+dvb37UHH3Qey9h/LYdf3vhoeWO+BmSaPoGH+odnB83tUO5hHd3fHBwd3B/vywewHA+4O2o/B3YdsHxTcHXhtPXo7oxe2PPDA7l+R+mGCu4QsXCCK43v6tFt6N/dv12v5YfXj8KLJPX//UMEdsJ8N6WAbD7wU9yS2323vMDt/7h1+/df/Kf/2s0/x7PjYaEy897l44+13ydkWU+MTdDs9Pv3Rx7IkdwUs2yBNBd1OD0UI7qxu8+SpBbrdDvm8Q7VUomBbDLwhp47PY1sWpqkTBQE5J8tBMXULzwvoDDpM1svUamVURaXR6HLt5hJT9TJOzqTT72MaGp12H02TjNcqIAR+GBFHEd958wIn56aRQvLO1VvYpsEL5y6wMF6nOlbksROzJGlEkqS0210GgyGaquAFEU4ux8b6Dqoq+aMXzrIwWWOsWsY0s9wtyzJQNPA8H03LhLuXl9cJ/IBczkZ3LEzLYLJYQVEFhqWhCIUoShBpQkLCYDhECMFbF29gKhqxL7l5Z4Vi3iYmyPKTSCkUXfp9H01TiZOYIAy5dO02E7USnudj2Q66YZDGgqvv3WSiPsaJI5O02q0RS6HANC1KxRwpKbphoKo6QoJlmyiKQrlSIYoSXn7zPGOFPHGahUYFno9CwtAP0Q0dqUqGAw+AgdcjTtIR0YLkmVPzWKZGoViCNMWyTLyhh6GqzNbHcAoWjWabXn9AIe8gpWDYHyBGq+2aqvLV59/C82NOLIyj6xokKaqmACnnz1/HMnTyhRyqpow8v5mH4/btFerVCrptYDl2lj8UxfzRt1/jydMLI0IcFceyIE3ZaXbI5WwazXYmWC0yRlptlOvX6w04PT9Dvz8gEVm60Z3ldUquQywSMq0mhVt3VpkYH8MwdExLGz2nHeanJ8gX85kOYN+jVCoSRRG6rrKz00RVVNI0xTRNxop5zhyf487iOm9evY2jKsg0e7bGSgUWV7b55pvn+NgTJ9hptNE1jYJpUinlsB2DNJUZEYkKvhfz//zhCzxxco5ep4tlGrz9zlXOvbPI46cWEAIuXbvD3MwE2zsNNrYa1GsVhJSUynmSOCZNYGV5E9d1OHfhOi+8fpn3bq3w1GNHCePsOWh3+jx+ZJow9CmWXaIkouDaNFsdNhtNKuUSSZoBk42tJuPjY+iGTuCHpCmUKwXiOGKn0YI0odHK3g9BkGmxWbYOaUK5UsjEvgdDLEfHcRxSMm/wt156iydPHcUt6JmWaCqQQqVcyDM/O8HsVJWrNxc5ujBDGIQMhz6mZVIuODi2OfLI6/zW771AkAYsTNbodPu4rs2N2yuYhk7ox+zstFiYmeDbr7/N008cR1NUkjjhW6+8xVjBpd3uUatVkDJGoJKkKZqpUioVURWNxk4DQ9eI4wRN0Xjx7Lt43oAby6ssrq8zO1nDsrPwa5FIpEyRqkKj0cHzQs5fuQNpyuXVLTY3Gjz5+HHCMMKwDL712jucPjaDTBMuXLnFmdMLOLaFaRu89OY79AcDpqbqbKy3KRQcKkWXP/zWWebqVRzHJiHC93wUKRBpiqZI6pUqgzBAMRRklBL5MTdW1ikWM6baTCfwkGHmQX+IrG72vH4Hij0I3AFVx+HG0hJP/dRPcaAo+8HdPZs8ZLz7AODug9r3C+4ylsMD+/nzBe7uvbL7QnB/AOBOqhppEhNFcZYD/COwe3MDP8A88BBwl8TJgcf+x+Dug9pfSnB370/sru3mnwF7Ipffz+OxCywO3S+yMM2HkZSkyV2B7f0smbv7xIEfw36GSuCePDsJe2DzXj/ZqGy6G8J47yrQfpbQw36m+8Xd92/3ELQcQtqy+32aJntu/OzlfEg46z7PXsZ+pOz9f69cmiBHyceSEQtTqmRALhWjpOORuPk9J5KO/mVhKPfpySB3o//vfu4Pa733gu8RrQgh+b/+3e/w3/53/z2/Fjb55aOz2aXJio3IF2LiIGTxzgrz03Vs20TKmMmJMogMjJv67kq/IPJClFRwZ61BEkXMzk0Sp5me2FitgpNzIBXcurVC3i2ytLxFvmCx0+yxvd3k7MVrfOyJU1kOmKKwsb1DpZLH9z1yrkO+mEekEtd1CZOEbtfn3at38Po+rmnR7XjcWd7hqcePIhUF28hY4Wyh88TpoyMGxJTFpQ1azS7PvXWZTz35GIqm02p3sE0VDcmLb17gF7/wSda2NrFtHU2zSIVENbMV/TSBQbdLznbJ5y3cokOv18PUNPrtHiQBlm0QJxAEAd1uj3wxhyIVFAFDr8/J4wusrm4jdJ+5mXG2dzrk7RyXr90mZ+romoHjuDRaTXJ5CykNpqerRGGKqukM+n1MQyEOB9SqRaQq6bSGGLqFbmfeBU3PcmYGAx/btDOClDQlTTNW1q31Hb750nmOjI/x/Gvv8MmnTxGO8o8SBKZqIFVIE8EfPfcmjx2fzoCQVJCKwnAwIAojFEVB0zKg3+l0sXM2Vs4kV8wRxymWY2DqNlIxuPbeEldurTI7NY6mZzIL3U6fz3/sNF4wxDAMej0P07YwbJPxiSKClN/6o28zUcrj5G2uXrzJWxdvcerELH3fhyRBQbB0a4VqtcT2zg6zEzUUKbP8uTjFtDQarR6hn/DtVy5wam4Cw8kYUXVNIwgCNFNHVRW+/sqbFCydYsFhvD5Gp9dDExq97oCcq5MkPkQJluEQJBGKkclAGIbO0p1V2s0eOdcehbQnNDsdCsU8UgpMU+Ols29nzJpeQKcd8PEnj2HlJNVqBVJJTMrU1BgLE1XiOCGXs0nThJybY3ltE0VK1jY3cXMGMlXQDZPHFyYJ/IBOb0ilXqVcLlF2s/zRq7eWmJmsYFoKqqpSdF2++tyrnDoyTRR79AddXKdAqVDkd/7gZfKOyU985gxPP3OMVEIulycMIuoTYyhqTL6YR1NGk3chyLku09OTbG81yOfz5FyHarVAr99jOMi0+3Z22qSp4IU3L3Lm5BGkKikUXDqtHoWCjeOa+F5AFCXIVOWbL71N0cqhKxbffPU81UIe17WZmRhD0xWuXL9DtVwmDGKkotDtdEEm2JbM5JZhAAAgAElEQVRJGse4bg5FVfa2NBU4josQGr3ukGfOHOHkdJ0oTdBNFcM2Mm9WmlCqlimWCyiKQqXgMhz62LbO0uoaH3nmJHbOwnIsUiRpKpFSJQiz8NN2q4PjGJy7eJOFuUk0Q2N9c5vxapk/e+sykR/z05/7KHGUkCYaX/m973H6ZB0zZzPwspDvV85d5jNPn6HZ6vKJM0d4+oljbG80ePviTcZLLisb27i6RrVaoZzP0W71uX57DVVIjs1NQZJiGRpJGOJYJotL65QLDvV6EaFA4AcMBkM2t3coFlysXA7NynQSdakhVAUrZ7LRaLC10WCiVkGqI2K1h0w27p1K3A0f3C1/F2OlD5mwZHObxws5/v6/+r/5+Z//T+5foxwBsmSEOHYlCw6raw/c7TFDp6PvDpf9OWgPIpPbBUsHvxPifnKV95u8iwOfDy37EK9TJnS+/+97wyQPgsrD6r7fRtfrHj/pXS/uvWGdh9d7t8juHFDszRt/FJaM5q1JmpIKceh26JW4Z4F+38L+/o0sh/3etYTDgfn3ff4HnuUkickilNOHbrvr/UJAOpplZ13O9quK/iMBdz8aiP9je6C9H/B71Drgz8/NzWQVkvtAqKJIFEWi68YHqi9J9oG73TYeEpa6t+230a9R7A1UB6/W7jGjnD0yjaKHtXH71iL/+B/9F5z7xnN85fPPohjGXrOqlKRRlNUbp2xu7jA9PYFumFkLAs5evIxUssFCSFhf36LfHbC2scON5XU+9eQxJuplkjjBti2cnE0cR0gBzWYLN2fzwsvnuXR7jZ1Wh6nJGhPjFbwgpNHq4Lo2791cYmK8iq5rzEzVKBZzDIceO80WQoKhWjz30rvM1upsbHYZ9EKCMODzHzmd0QOToCiCnGsxXi/SG/S4s7LOoO9j6gaFgoktUgI/YvHOOmNjBXRDwS3YfO7Zx5Gqwtz0JGkCWxvbdFotguGQOIoxTBPdtAjCgITMC46UdPsDUlIKxSwsTFUlpqmTz1sgE1RN4oUBtm3g+0Mee/wIaxttNENFUSEVMZqiUCqPsbLaIAoTDM0g8mNkKui2+ty4vYKUCrZjM+h7aLqBomogJLZj4vk+aRpn5CFxTJym5IsFEgRCKEihkCbQanaQimAY+0zUq/zKz/9VwjDKBK9Hq5GrSxuQRMSJx5f+xmfwvRAhlEzPMQEn59AfDIiiiK3NnUzKI4Vuu4uuKpAmJFH2e4rCiCSKKRddfvJTH0VTdNrNHrZl89SpI+RLRYQUuIUc3337XaQUxGFMu9VjZXWLjx89wpVbK0RBzJG5KTabfX7nz14l79pYlkGSxLiuRRD4fOLp0yRJTKfbxXXtzKunKMzO1lFUQalsYzoGURhw7b1bdNodwjDE9zzCMCJnGczNTGBZFlubDQp5lygK2dxq0Gp2sSyT3sAniGJ67R7hMCBfyCEUwfzRGTqDAbeXVtnc3qLT7WLoGWNqMPRpNzt88pnHQUChnEeoCX7okc87bG7tkCsXAOh1++QLLlKRrK5tEkYxkLAwN0Uhn8fWbVRFQ6oxge8hVcnXvvcG4+OZ9IWh69h2VubMySNUqyVUQ0WRWRhwpeBgWToAxWKBwA9pt7vomqBccrJFqFQQBzGNzSZrq1tsrTdoN/sYpk6aguXY+F6IbmikScLE5Bi//SffIfIDNFWl0Wzj5jK20nI5j2lqfOLxE6iKiu/7xFFMPu+iCJXlO5toukqn18f3PRamquRcC8PU8KOQje0Gvhewub1DkiScOjpHmkIUxwSez7lrN3nt/FXiJGFsrEwYBCjqSEMwSQj8gDRJUFXJ7zz3EpqmoumSXM4kX3BI0yTLk9zJ9Bl9z+O3v/4ShYJLsZjPQoyPzdFqdQjCEMPMtBg1TeNPXjiLm3eQAr7z+juEfshjx2e4cXuROApRVYXaeJlnZqf5hS9+mlt3VpGqgh94BDLIIjNESqvVodXq8PEnjqPqKo+dnGdpdYsXXj7H9cU1rm/tECYhX/zs0ziuQ6c7wLCyXFTT1KiNl/EDn5cvXiUIAhrtDkLCiZPznD5xhJffvILvRXzj1QvU6mPMTE1g53KEUUwyGmtarQ5RGCGE4NkzJ6mV8myubxMHUTbFf8iENB2BrQcOcfvHtEewqNd96H4pso0RoEqSBzT8IdhuLv2fF8v6kxDH8aH7k/1g5Adg98xtPowIr7+gtjv/+mFdl4fO9/6C2F9Kz91+u8eLdcj33+/tfejD94A4e8iIRBRF2XP13+fyT+9fvToIbHYTiA/qyh32yjzsnB/2/f5zOMwOi5ne74G726d0z43v+15GiHB/IwfqzjRaMkFziVRUSHeTifdfl0c4q1365/vK73Y9vZtMPhIaF1I59LzTNOVLv/wrPP/N5/kXzx7nJ6dqWV8UBbEbDBpHJFHExQuXUYWkVh8jjBKiKM4S/FVJtVTYCzEJRpTjS0vrvHNjmU8/c4pGq4PnBzz3yjlcLSOIMC0DRZH4fsbuOFUf48nT85iGgiIky6ubnJifpFTIoxsamprRqzdbLVzXRlEVPM+jNlZCSEGr0WVjp8nTZ45hGxoXr91harJMuVIgTWOWVtZxc/ZoAqZw9sJVpserfPPVizx5cgGpxNiGjqlZjE/UiSKPja0tcrZFnGahenGckqQptqmzu8rVaHUwDJ0LV25RdFy+9/YlJsfGuHZrmZnJcQzDYKfRJmc7gKTfH2IZOq1mB03V0TQdKSXffO1tTs7NMlkbZ7uxQy6XMeh1OkPyhRy27aCM2DbTJNOU0zSN589exO8PqZaLNJtdPD8kDCPSOOXC1RscXZgBAXGUafAJKUmTFG8Y8m9+99ucnq+Tcx0UqdBotvnURx6DGN69covnX7vAM0+cQDM0pCJxdZNEeKi6QhikxHGCYWR5QaqWhTyapkGz1WG8VmZnu4lpGvSHQ9IkYTjw+Hd/8j2eOTFLkmaSDY5r09xqYJg6URygWxqFcgGpCPI5k35vyOPH54jTLOyyXCpgqBrVcontVpfZmXHWFteZn6rzkccWiOIQTcsWXxQtY1pU1cyTkwLNVodisYSQcOX6LaYnx1mYrbO6vo5jOkRBhGXo2KPQP1VRaLd7BH6IbRlYlplJNJBSKZczEh/LwDAtXn39CoIIU9fQTX00SZeM14qM1yt0un0q5QKqrpGmKYEXksQZyNcNE6FKVCnIFx02txpMToyTxpmM+p2VVaIgxM27aJqGlAq6Lul2B1y9tsJbVxY5uTCBaqQo6KRpwsJUDcsy0fXdXK9MymDoeaQkBMEQRepsbWVhfr4fjIBaCmlGcPDEY0cZDgYsrW2iayr/8uwF1t9bYmymyltrG/zzl9/k95p9/vXFK3xMSiJFsLTd5MbqOtvtDj/x1El0wwCRUi7labXaaIqKqqpsbmxTLBZ44+2rSBWKhTxREHLr9hrnrtzm+MIEpqGTJpm3Mk5inJzFyYVZkijGMHSCIMtfNCwDKRU0XSMIQt6+eptjU3XKhVwW8qWqLC+v4+ZzGIaOHFH+X33vNhOVIqqQbDa2qVZL+EGIk7N57Y1LHJ2dRNU0Ws02T5yYBUDVVOpjxSzM0/MxDR1FUYjDGFVVMaUk79r4XsCJ+UkURSWOYwaeT7VaQtPVLKQ4zhZ73ILNaxcuc2x+iqdPze+F5RmGjuu6e57x7e0mbs5irOhybGGGhfEyrX4Xx7YolFw0TWdxeZ1X3rnKze0G9bzNn71+kc8+dYpiwWXgeZDCoJ+RVb15ZZkzx2d59/oKIomZnKzugbHAD9BUDVVTMzmSJEFRVd565zK2oVMq5bOIFCEenOctdkeoA6GJ++YEHOYV2T9W7dv/c7PjfPl/+hd8+cu/dPCIUdG7Hqk0TQ6JRNrnufsBW5LeDae8tz/3p2H8IO1B9WZzMTHSA7y/TDIKkX1YKOKDPXeHf5u1I3dDwB7W6w/Q3odvuwQ6KTzYC33YcY/Q3yS9G832wwB3u+09ir1faO+PynMnPpDW2l9g84PggSf6MG/Zo9zebKKX7IVBQgawdk05UHeaJEhFyVbkDxHF/n7soFds15IDZXb7cnjp76+9/ddu//eqquJ5Q1RVe3A9aZKBNDLphDhO3jdm/J6QhfTuitoeMUp6cCC6/7/ZG+iuqPt9bYzqS0fgI01G3j2R9TlNszCEL3/5V/nXn3wMwzBHADMLGQNBIlIUFEQCS7eW8DyPUsHmlXev8TOf/xStzpA0TrANdUSpn+m/xXFCHGXslZEXsLi0wfLGDp/92BlUXcXzPLyhT384pFDIUS7l2Wm08QYx33ntGv3E4yc+epTpyXE2N7a5sbrOp556nDhJ6XUH6LqOkAlL61scm59iOPCxHRM/CDHNjLhhbWMHRc36MlmroaqSKA4JwpBCIc/q6haVcp433rnG1FhGMHH24nU+9sQsY5USd5a3uby4wlNHZ5ieriNEws5OC9MwMC2LJMlYQuM4IgwCTDPLL+wNQrzukG+fvcSx6TpXFtf5Wz/zCQwjmyBdvbbI6VMLiDQhCAZ02gP6vQDbzlEo2fzun36bn/nksxi2g+1oSAXWVjcYr1fpDrvomomUEi/oZ/mJfoLAJEkiNF3N9OaibCBfX9/i6LFZongkI5CA1xuSpAmOaxKGEf3ukCTJ9AnHJ6oIKYjS7P7JRCEIQ55/9Txf/MzTWLaFVASDnTax5uPkHNJExzR0hgOfldVNSsU8bt5heXmD6ak6UmThwr3uAN3QSYUgCiN+/+tv8Ne/8ARxnKJrBqurW+SKGlNTNfr9PoOBR61ep9XsUMy73Lq9zPR0HV232N5qUa0X+P++9l2G/ZBf+rnPIxVJb6NFeaJKq7GDbRl0h/1sEm9mmmy7YrhRGGZsgpGgVMsTe0PSREHVNc5fusLp+aNEUUi326fvBUxMjQMhz33vdU7PzDAxUeVrL5zlb/yVT+AFQ9xckTiKQIlBqKSRIPAH2I6BVAW+F2CYJqrMdAuHvk8+75KSMdd5A58kjel0+9SqZXRNJ00ENxcXOTI/hdcPMykAU0WQ0O0MyBdcwjAhSVOcos251y+TxALXtpiYrHBnbZHTC8fZajSwLINed4hlmCyvbPHG1Vv89KeeZnVrh9MnZmi2W5SL5b13UxonBHHE6voWW3HE77d9lgZDJvIG/9lfe4xnjkzynQvvcbTqMjk1ThyntFs9yhUXf+Az6A0RqkTTFQrFPEEY8qv/y5+xm6IcpxmpSsGxyHXa/MbjJ9AUnXK5CFpKHEWoUhKFCddvrlAo5aiUC1iWQRiG6JpKFEYZ02uSEAYhpmVy9b3bTE+OYxoGfuCjqipCSHrdIRChqmpGRmQY+EEAaZqx1wYRaQqmaeANfUSasLy+ydz8FCBobbeo1SoMBv4IrCe8ePYiIoFPfuwMQeCjGwqGoTPoDuj2huRtF9PW6PeHkIJuGKytbTE7N44QMgvjThPCOOTqpRV2Ol3awwE/+1c+Qn8woFTOEweCjbVN6uNjSKFw8+Yqr165wi//tc8ihcLGxjaFggMCLNsiSWKWljao18cwdA3P91CkRFEVVFVjaWmNSqnI1naDP3vrCp8/c5zqWJHnX30HRZH87GefJYxD7FwmTu8PAxzX2gNWcRxni1tRjCJille2CPyQE6cWSES6Px17Lx1CHBy3HsUOBX33VvK/v3mZ//K3/uX7VnVPmNz7N5xpaT4A+B1kkIzTFJL0nrDGXafdh+k02Z2hKGIU6negvf19z0hWxT1pGw8LKT3MdstHYYRUlD3QfNhx7yeiLqRCEmfeXikzzdzd9/LdBsnu+76TejBB3MNtvxd1/wL8/v7vlrnnPj7gWshDrl3yoDna+5gYnfvDns27ZHk/XJyzv0+G7vxI0PaPwR3/8eBuF9TtgjzgoaGVP0xwt78fURT9UMEdkDHcjfTFDq1nBO6SONoLgTjMixfHd+vd/xL5IOAu3X/W77MK+H7g7u/8yt/jZ/I6X3rs+H0HjvyVhGHAoDOk3x1SrRRRFcn5K9c4c+o4cQJf++6b/PSnnybo98gVyyiqpNcbokgxojhOUYXI7lkCSyvrnL16i1/8wifodfsgwDA0pCIy1kBhIoWCVATdfgvHcei229RqY4RhTJKkXLu+RLfnceaxuYze3AtGq8lKpgUoEtY3dpieqtPpZnpN/jDg/OUbfOLZU7TaHSqVMnEUE0Yhtm3jDTxUTWfY99BUQUKC1AWeF+CYLhKJUEI6nT6VaokwjOn1B5i2DWmCJCEKQro9j3dvrPKFTz9Fq9klimLSNMXOZR4UpERTM6kFRaY0mtu0WkOq5TF+//lz/Kc/90l0LUWgcPnGEpPVMd67vcwTJzOyF6mqBEGM49ggE4RISSKFbruHokn6/QHlsTKGYdHrDDDN7NqmgDcMEKh89bmX8aKQX/2Fz9Hr99A0DUM3sEyDdqeP4zqkCOIk4evfOMtPfvpphp5HsVIgJUVRJYN2h3wlI7zQFINmY4c4hlK5QOiH+H4ISLyBR7HkMBx6ODkHIcQekUVjvUOupOHkbJJIEEUxqHEGUIOAIAjRVYMkStjabjA9UydOEjTdJPRj/KCPrmh4Ax90Dd3USHs+ncCnlM+xurbOzMwESEGUJCRB5mFeW9tkYrJO4PmQpliOzq0bd7iztoOhWzx2YgbbMLh2c5EzZ47T6fSxcg5JGBJFmayBk7PpdQb89jde5pe++FFyVgHNUImjIVGY8B++8Rp/+69/hv6gT7VWwht4eAOfMMoAhh+EuK6DOvK8BVGIlKMV7zglTQRpqqBoIKRg2PPxAo+xWoFBt0ej2cV1c1imBUIShT6maeENfRSpoJs6g0EPU9fxQp84SbAMi2vXFjl1dJ5UFQR+5pVaWlqlWivgDUO+9fp5voJKPSf5H//eF2j1A2ZrBYQY5UzaFmkKO5ubzMxOsbq+Ts7NYTs5ghBE7JHGgt//g+9y5vE5hAInTy4w9ANsyyaOR+cosneRFwYsbTb52qtX+b2XruA4OcrFPB9zHf7+qZkMmEiFCIkiJaqm4HtZLuXy6gamYTAxUWVpeZ2J+hgAzWaPP33tPJ9/6gQz0+OApN/1sCyVJE3QdH0EqmOEkGiqYGuzQbVaQQjBuQvXGCsUKZVcTNdCCGhuNykW8iwurWMYGpVKgU67R6lcIpWCOInIoo0Tut0BpUKeVmOA4xrIEQGlFBnAarfbpMCtxXXOPH6UmAiRqGh65kUMwwBVk4RhSOTHKAoEXkChVGQwCPC9DNj32kNu3F5hZqYKaQJJFsFgmQZ2LpNjkKqk0+lRKBaIw2yc+f3nXuUzTx7nj1+5yPGpCvVKgXLZpd3tM1Oroeoql67f4InTx3nl7Ds8deYoxVJ+tEChE8cJYRBgmCpJGHPz5gp512ZydoIoTfZ56T4AuDsYLfMI4A7g116+wG//9m8+tOofJLg72M8fg7v7j3s/cLdb3+5c5FBwl01S2E/09kGlt+4eeHcuJvZHgf0AwV24ry5FHhbBdbg9Crj7YM/vD87+PIC7vzRhmQ/Tudu9EYeRiDzKXdl9CUspidN0Lx9B7IZW7iMf2e9S/kE8cHt1P7DA3Zyzw9gyv6+2DhCn3EOucsBUVX1I15K9z92X2oNc7rqmoes6/X4fTbtbZ5qQ5TxJdSRCfuDYUbhEFMejl2L2At0LuRSSvSTw/Umy+z9HIaVxHHL2tTf5p//kN/jNzz7FY7VK9h5llLuXZmyEYRpnAsrDiPPvXGd6ooZhGARhRH26PlpVk5yYmcDreTR2ujgFh9s3V/naC+dZX9+m1+1xdHacfhDgBwG6pqHpKrWSi2br2K5NFEaYuk7iwfdevcyF95Y5MjXGjVtLjFcr9No9SgUXP+jT7fXY2uhRKVZ5/fo1ThwZz7yNMZCkJFFEFIVstZpMT9VYX9uhWqmQxFno5/RkjSQBQ9Npt3romkav38J2LKSiMRxEBH6EaYts4SKS5Jw8iqbSHwwIggTbMQnCgJu3l5mZrKMJjSRMicOUYdBF1SQvvn6DhSM1bNfBcjJ5AEWVJElMtzsk8gMcQ2fQ91BVg2q9QqPV4Zkzx8i5DjvbDYRIePviEnPTVTzfp1jMYzs2SSzZ2GxAAqZusbneplQqITWdzY0WtVqdteVtXnj1XS5fX+bkwhR+GCBViVQkuqpy8vgkH3v6BGkqME0HL/ARiqDd6lAo5AmDhCQKsRyd2ckJ2u0uX3/hAmeOzdDY2EElxciZyFglDbLnzrAMLF1n0Mu8qpqhohiSXMkiijIdyiCKMAwDqShsbu6giYxRzMk7hHEEiiAZhshUsLHZIF9wEaqBYpjkchaKkKwtb0ACX3/hDR4/fQRFU1F1FSlg2B+i6iq3lxYZKzt7k22RgKUbtHsdTFNH0SSKAoqWhRyHUYjQdVynwMmTs+iGgjR17JzBneU1qpUKOzsNcjmXNIWV1TU67R6qKvn4U6dobXcoFCwUmYWL5t0cliqp1PKYlkHkB2xvNUnSBDQF23IwVIPQi9EMHUXTEKOob0PPwgu9wEdVMp2xOIz5+ouv8/blRY5NjEMiSdIEN++g6BoIgZRZuOzGxiZSxmi6gtBUVF1HUTUsy0ZRVVzXodPvoygJURhgGBqWqfOb56/yvy1t89mfOc0/+rkn+cJTM+RsE0uVXL56DZKYerVCHKZIRcXIuQRRQs7NEwUxIhWINEIoKf1uyLEjc8zMTqGoAidnI2LQ1IQoHgKCJDYQIiTy+8zUKowbCl/+9HF+/Rc+wi998hQXVu7wv55f5N++e50/Xmty69JNPnX0CGmaoGoqpmVhGya2LYmDkJxj0+t52I6F6Zg8+/gxCnmXXqfPtet3mKiVUVSFwWBAs9nJJCEci36vh6lrqKpKFMdsbTU5fmIO2zLxPB9VEaRxjK5rGKaKZVsMBh5SSLyhj6UbBFGAoesQq0QhrK/vMFYvo2oahq0Rk/DWheuU8kW67SGtbhc3b7PV2maiUiQcBlimQ6fZI/QC+r0hoRfx1vn3uLmywnRtDNOykTLzVuoj/UNF1SjmHTRDYjkmaShJ05hGp0MUhuzstLlxc4mpiRI3F+8wVqwRDFN0dcCR6RkmKjZShYnxCq5lY2s6JCk3b6/w5BPHGHpDZufqKIqSTUBVSW8wwMpZDH0PkUqkImh1OuiGhltw93kXxN0tvevD+6DThf056YfZMR3600eojJXv86rt2l3tshGR2Wg8Tbl/nN4FQrvpF4cxXO4vqwg5Go/35VLx8EjEJEn3tXP4/lSI+/bv12CT+65Lmqb3RQrtnttIGnHvmhwG6vb3/TDPZLqvXUW9nzQu2/azTN57jdJDrsfefFXKveshRqsAGXBM960KZNt+6oF0VIeUKgcZy++zezgL9m/7i4jRgvy9KTCKENlX++aHu1XdA2hlJmUjhXzgc/gge19SnQ8rhDPdjxbu38Q+NPFjtswP2R5FCmH/I/BBwJ0c5ZFFcTx6oO+G++1njYRHe2Dfzx4Gph65ju/roAecx/fdj4P1PXiVJSW7zgeZqXbZPg9F7dwF3ikZgctuOOUuA1f2+Wj9/+W//Xf5xcEmf/fUwv3XQpDpaakqSZyys9VASSTVSpF//6cvMzNWII4TTCfzPEVhTOCHvHj2XS7fWefY3DjXbqzw2WdOYOoq680mBcekVCkw7GdeEkWR9PpDxiplnn/5beYnarx3a4XFlW2Oz03ihyHFnM1YpcCFazewLZ0oThASbMem3RygqiqLmxs8c+Y4S4vrOLbFleuLlAo5cjmbYjFHtzug0erynTff4dj0OI1GE9PUaLU62YTWNkmSmNWNHUrFAr4fknMtVtfXyOXMjCTHMGk224RRhK6pmKaeeUDTlJxlEgbZBIw4Iec6GGY2KH3ksZMkIs7uNdDt9rBMDcPUsS2TZCS2HkYRXhDi5LJrJIRk0BtSKuWQQMF1cRyTwcDDNg1arS6mofO1l96iP/CouDlM0+Cdyzf57luXeer0Ak7Ows3b1Msug+GQI/MTSDXruxQSEkFKwo2bS/zp9y7wxMkjWKaBlAJNqsRxypsXrmXyC1HITqNJrVZitl7CzpnYjkFCjK7rJHHK4uIa1VoJqWS5fEjJK2+9y0R1jOFgSJrEKLtsko4zem7h3KXreF7I+HgFTVeJwhjTMBj2B6i6hm5koEXXdEhTkiTKVsgFhHHMRLVELm/TaXfY3m5mIWieTz6fo1Kp4PkBpm1imBar6zuYloFh6SBSDD3Lvet1+1imwZ2VVYrFInk3TxLFtNtd0iQl51o4to1AwbJ0vvbC6zzx2DFcy+D28jrzc1PZBA+ZhfxGISAolwqUShn5SRLHdDo9qmMV3LyDlbMRqaTd7GCaBpquIlTJ0uIalmlkEwwBYRjt5VcJIZgoFxFpgqGpVKtldCPL5bs78UnYWNukVCpgaDqmadJodLBNk+HAI44iBv0Bqqpgmjqddg/D1Pn1Vy7yvX6b/+o//0m+/PnTLEyMoesqqpp5FJuNNsePzxMnMdev36Zaq7K5scOFS9dYWJiBNEXXdOIkYmtrh6Hn0+v0qVbLGLqOYepcunSd964vEsURCMmFi9dQhcKg32PoDei0e1y6vIhtqbzy+lscP3aMTzw2y6fnbb74WJ1/8POfQrFSfuPFK3x1eZ2k12ZaNzAsA13LyIC6nQFjtQrr61s4OTsjwRn6qIqKa5t4wyyc0jRNCsXc6N6kXLx6k0ajw9RUDSEl+ZLL0PMwFA1FlfheQKPVYWysyObmDt994x0MRaFer7Cx2aDbGzBWKxH4Ib/11e/gDQY8/dQJBv0BV67cIZ+zuHTtJo+fWEARCi+dfZdjc+O8cuEyHztzIlsUseyMhVgFRRG0uh16vT6nT86Rt03cvIuua4RhMMptS/GGPpubDdY3d1jd2GFmqo5IBE7OJJ93uL28zrGFGarlAu1uj5mZCZJE5cL5a5w8OYHnheiGSbGQZ2V1C9cxiaMg0+GefoUAACAASURBVPQMAoZ+BpS//ep5jkyOZ+8ycXfiraoKjEBGMZ/jxbffZX6yjlR3vRb3h6k98rQhG9T2eewebLVcjn/4b/79fbl3+8ffdBdtpXf37XoCD47TQgiiOEZTR3myDwF3uwCDD5i7tzvsZh6r9F7Qsjdpux/cpQ+4Loe3PQJrez394LZ3fHqXXfNhZQ+zfaezZ/vzzuI4JmHX8yju9vt9uixklgf8vsDuEW0XWB4Ed3evweGgeNceVd7gz5e9P6jctR+Duw/ZPkxwt/vwKqPJxB6DEh8OuEtG4PEQP9Uj2180cKcqymgCeK/tlXxAF9LkbmhKFjJyNxb9UcHdpXev8A//wT/hK59/Ftey9rU8mhwKkTn8koRhp8/izVWqhSJBGKKoCk+dmMcYERqcv3ydiWoFRUo21ncIwoiTs+O8fuk9zhybpdUZ8J3L72ErKtVyAce2sR2D5dUNavUs9GnQGXL1+irHj0wwNlZi4egsl99bpFqySdMIN28xM1PDKdiYlglCoioaxZJLFAYcnaxhOSaWoSEEjNcrwF3KZ8syKRVdxkt5kjShXHFRDQUnZxHHGaMdpExUxzLAahvEcYBtGWi6Mspbi3jh3EVOzE8iVYGIEyALO5JSxQ8iGjtdul2PtY0dpqYrSCno9YcoEpqNNmmc0O32cUydXrePoggs2yIII9yRztzG1lZ2H5WM1ZJROKtTyuEHIVOTdd65dIOp+hi6ZXDl5hI/9elnMU2D58+eY3ysSCFvMTtTJ00Tvvrtl3jm8QXKBZuck2N9bQvbsYj8iJs3l7BNi8nJcbZWG4gkQaSCzc0GkR+hGQZTk1WiOCBfcDBUSX8wwLFtgjACAbplkCYJzUYLY0RK0xv0UczMS7SytsPMeJ3LV+9QKxV57+oKF64tcmdpnRML0wgSjs5NYpkGjmvhDft02n0s3SRVZHavVQWShCQKUCQEvo9UJWEcUSjmybk2YehjmDrFYg4pBPm8w7A/xLBy6LqB70cjEhVJs92hWMqYH0M/IPSzXMMoCpmayMSqZSrpd33+6Duv8/TxOeIgJI4SNM0gFSmTtQppHHPnzhonj8+TpqBqmYTA8uo6xWI+YyRN0ozdsdFHlRrL69sUCjn8MELEKQKJ7dj0B0MsK/tN7Xr1fc9nfWObnOPw8htXyRkGCOj0+5w6OYvtaCwubzIcDtH1DLDHcUwSR5RGFP1hkNBpDygXy9y+tUitWiKJIvqDPpapsbS8yn+z1OA7zTb/8699imdnCjiOw/b6JoNeD8exuXVziVqtjmHa+F6fbrfH7Mwk/f6QGzeXsS0dTVFYXdvAdR3CMKKQz+PYecbG8mxurbG0vEa9PkEhX0TTJZVSFTdXoFRwKJYEObdMvpCj1e4xPVFjbm6KI/NTSJkBq7ybxzAMSAWzs1W+9Ml5fvrJcZ7+2ALnoiFfuXKT371wm8+XCvSGPqVynk63h2PZeEOfXC7TTozimLFahTCMRjqUmdfcdixqlRLVapkkhYR4JHuhEfkRW9tNNENDUxVsx0IIiZ5Kjh6ZRlEk45M17LyNpmmZoL0iOH18Bl3XGPSHvHT2OtWCw8mjc+iaSr/X49bKGiXX5pPPPI4fRjSbXaycg+/3UFTB9naTUjFPpVJGU1X6/UHG2An0ewOEAKlBFIWUSwXKpQKWbmSSJN9+FZFEjJXzFPO5bCzXVAzTJIwSrt9a5O1bi1impD5e4fatTb7+3UssbraoFTR0Hba22oxVinztu+eYrpRwNIPqWCkDIlGMJKWx1cDW9cxbIwVxkFBxXa7fXGFiopqNKQcGtb3h8FHmDvs9Iu9fml+an+Dv/PP/ky996W/uq+LukXIElO6RHxrVftg4vRdyOJr3fKjg7pBhO8MZ94O73fO4D/QhRikX90C+PWCy3/N2WD+TB+y/F9w9XJ7gg4C79J51/SxKTNkjens0cKeMSE8e5ln9ICaEHPly7/n2x+BuZD8Gdx+yPQq4O8zp/LBbKFX1nhy7vVDM/ccdeLA/yAN7j8t/f0gk+6DFAQahwzbSlINR2R8Ejh0W+nnwRba/rQeZIiVB4COlQFWULNTqQI92wxQO6s6FUcQug+X+7f0iyXeB9u6L/X43fUZ5G0bhvXHpaRZ8sr3d4J/9s/+ar/zVZ/eB9QONiMxz2220ub24ytz0ZBaCIbOVwjCKMCwdRUosXcPUMwbHMIh48/JtFjeb/OxnnwagXMxzYrLG0blJ8vlMU8rQdVqtNo5t4/sB33jxAifnxykWnUywVwiWVrcoOgazsxPcuLPM+GiikArY2mrhOjZJErO8vkG366GqEjefG1H8J1nu2MgztiuEevXmEvOzk6Rplq/X62XeizRNGQ6H9PsdgigTBPeHEarUUTRQFRUQLExPoGgKvu+ztrqVea72chcluqJgmQavXbrFifkqvUEfVVHJuw65XI4LV24wPzvJTrNDZaxEvzvIvD2aRiqylcd8PkcUxmiGhiCTIgi8AMu1UBUVb+gzWa/x3TcucnR+hp1Gi4W5SVRd5fjcJCKFhaPTe1p1w36fcsEdhXHCYOCRyzkkccKLb72biU+HETNTdf7kO+e4ubzB5z7+JLaTMY++8No5XNtEVQT+MIZEYFkOhmkSxxm7pqop5GyTRqNNznWwbIswiAjDkPmZCeIwYXqyxtbmDoEf0Rt6fPFzz4KA9Y0t4jAiDGM0PRtUe90BcRSTKjLTAYyy/CDT0GB0b6WUWb6aH2BZJp1uL8u/SjPtwziKGHo+oRcQDD26nR5xFGJoCoaaCcYPRyF1mqpm3r7QZzAY4Lo5/GHIYOhTyttsbDSolPNsbbdQpIphZWQ4aZJijIAYCKSm0Nhq4boWURztsawZhkm72eHtKzeZn65TKOaz33GcksTZhCSKIqIwJAwCQCFOYuI4oVwqYNoGx+ZmsCyTKI4olvKsrK2Tpin18TGazS5ff/UcJ2YmEGmKqkhUTSMMI1RNQ9U0fu9Pvkur32W2Pka3P2AwHGKokn98dZnZnM//8es/x3s3FpmdmUJRVRzbxA8CgjDEskwUqSKlgpRQLhWJwpAgCJmZnWK8VsYwdKrVCoaeiYanKWiajqIkqIpkrFKh3e4y9ELeOP8u7VaP2ekJTFNDUWKGfgaCB/1hFlosBddv3qJYLNDr9lEVhZ2dFoZpZoLwmsr29g6mYTAzUeVzZ+bxoi7/wxt3+Fa7z2dLNpVinm67RxzFrKxuUi4XRky8AbdurxDHCe12JuYuhUTT/3/23jtKruu+8/zc+/J79Sp17gbQaGSAJECBpEhKoiTKVqBkyeMkB3ls7/isx2fss+Mw6zlje854PGe89u54vT7r8TqOk0bJCqZFWYGixJwJggAIkMixgc6Vq17eP25Vd3WzGyRkyV7v6PLUYePVe/fdF+re3/cXvl+VztpstVhYrGLb1vLvSAiB73s8cehltowPo+kaYSdQjJ2+R7PdRiJIk5TLV2cZGigQRjHFos+zR17hjr07KJV8ZmcXyOUcGo0203ML3LJ7CqlpRFHMQ88cYcvoIGfPTxO0IxzLYWmhjsgkc7MVimWfer2JALycS61aR0hBzveQmsoC0aUiiRkteoyNDqCbWrc+TjklBIJOK2RkqMToQI6hgTKu79Cqt7lwaYG8YXL7rVPUmi1qjYDhwRKTo4N4rksSJwitm8mTqvRUx+kyjGZg6gaPPHeETSPDkGUUivnldSNLe/V32Wrrvht9yjKW15dVS9H1QATrO4T/+uwVfuiHvu+6KWw9kXB1+n6woq4lzTKkkF3Ala2sld2z9erE4iRRc/iyg1XV9Ko9Ja9nmfSDu15kLUvSZTtIyj6t4lWRvWz5s8p2YbX9suJkXrmGLGNV6mavX4RUurrr3Lc0zbrR2pVUQ7Gu/fHalnYd0r3HuzoddMVKFUJpyqVJsmy7ZMspY2vvW6rWzTRRz5BvJnjq3Su5khW1avs6Nmn/0RvYkkmaKGf8DY7zde3hNftCVzT9hgo9NwCkctmvsdz+scDd/zCEKlEfocqNBKOvBx7WEqgkafq6YKOffGSV9+J1nsMbIUzptaRv343GcyP3YL1zb0QYs9E4+4lTkiTBth2iKFx3XzVJrNaV2Uj75vXKb9NsxaO00f2Wki7N98o1XbpwhZ/7hV/ir+55E6I3sffqDvomnN6iJYTggS8/yn1vuwOVYSdIYsUKd3DfdprtDoPlYhdoZ3RaHaTU+MoTh9mxaZSb9m7hkaeO8dY7biEMIp479irbNg2Tpik7t2/iy088wzvuuBXH9YjbEUkWIzUJUtBuR5imycK1WXI5F7+QY3Z+kUIxx6mLl7hl965ujZpKdROpwdmLF9l/8w46QUiSpliWRRBENJtNBMowi6OUxcUKraDF5BYVeSgUfTrtDrqu0WpWsB0H07aRmUWnGbFQnSeKE3KeR6mYR+gQxRFpEFGpNxgeKrO41OLzj77Id962l7GRYWauLVAatEFLsXRHpd4KjSeeP8adB/aBlimmV5RDJUqybiqWRKaCMI4wLZMwCKgs1hgs55G2ThpKvvLYId5++346QQfTNMhSRWM/O7fA6MgghqmTZEqSQuuCdBXBidENTZGjJGlXay5FM3Tm5ys89tyraEJyx83bKJUL5HyPMApJSKgsVTANHUu3mZ9b4uHnTvG9772Tzz30LB961204nkW72cT3PebnFykPlJivLDE8NEir0eHIsbMMlvLUGi327NiqZDFKPg89+QJvPbgPw9BZXKgwPFLCtDWWFhssLTbxix4AeT+nItVpwPz8EuNjI6BpSuA5yahWauRLKr2uUqkr7becR7Xa4OrcIjfvnGJxqUZGyuTkCJDRCdPejwgplDSClIrVMsvgkWeOs29qK8NjZRpLdWzPwLJswk6C49s0mk1azTaHjp7hwK4p8gUPr+CRhClxEmKYOo2GAve241BfrHP20jSbxoexHROpCcJWSCeIeOHUWe572x0EQRvXsWm1Ez714OO89eZdlEu+ku1IJbomSVIFmg2rKy8jDTrNDjMzC0xOjqNJwdJSBcPQcT2lTba4sMT46BBBqFhpTcvkxx47xIfvmeIDt+0g5/uEUUSWQbVSo1gscub0OSBj+47NmKZFFKXKySESoiCk2WjQSuArL57jc89exDQMleoLIKBabzC5aYJ6vUq7E2IaJq0gwHc92mEHSzf4tX+2j907tiBEyOkzs2zZMsyLL73Kwf37abbqpFnIQHmIZrNFkqYEQUihUACUPl6z1qDRbFMeHkEaBmGrjuN4hGHETKXOL/7FU/zMQI7JXJ6RkQEy6ILCJYYGy2iapNVsY9kmaZoRhRGXp68yPjaEpilZCttzqFWquK6DruuEgUq3bTQVUUoUxwihdPRs1yYOYgB0U9LpBFiWRRJnxJ0YISEIQjqdDrquE0URwyODJHHKFx5+lve87U3Um00KuTxnz11manITtWqD+79+mI986B6arRoPPHaIH3r/23AcGwQqvZVMkYtpGrpuEQYxz7x4lH3bN+N5DoZhYOgWzaiBISxEpvG3X3+Md911C0E7I9MSil6BJFR1xq+ev0AqUso5n0qjxU27p4jDGM/36AQd/HyONIlIoghNExx95TQDxRKvnJ/m7MwSb9uzHcswKAz5DI0MkmWJ0vQCFCnGGnCHiigtZ6D0rXfXsyI2Anc/9cRL/NUn/+I6R67X0+oz9urgXkuoos7aW297ZfFa31qcZNkb1uRNU5W1pK0xxNM1xCy9beu19UTHr2eL9Visl6+hp0UnJRuxUPbGI9ZEPTc6x8o4NKArBp6m1903Rd1HIbXVdlfvNGujFD1g/C1iqxHdTIgb7X8j8pUkTZDixkXZX2//bwrmydZ/Y3tTen/cwrbdf5QQ5LfB3eu06006SZqid6N33wi424hxcr3v30h/G41xLZMn/MOCOyUdkCn9JEMZAVmadhfa17YeuHsjYqZvhFupF/Hrn3RWFe7KbJUEw5/96UcZOfYs927buno17Paj5o7eogVplHLhwjQjQ0UFFhCEUUxlpsKTR07yPe9+C4apE3RCTE3y4tFTbN8yhmlZnDh1kT07tyBlyvFXL5GmMDE6wGeePcx337GfkcEiT710jP27t6IbBp/52vO8/+5bKBR9Wq0W5XKR46+c59TFa7z77lsV45+m8cShE9x1yy6cvMA2c2ToJHTIyGjXBY88+zy37dvGxKYhGs02UtNpNjoMlD2EkHRaMX/z0DO86/ZbGBopKLpy0+TSlRm2TW0mDEJqi1WkDq5v0Q4CGvU2tuHxxJFXeO9bbidJU2xPGeZBo06SpLQ6IZadIwpTbCulWmmTz/nUO3VKJQ/bdImTmFqtTacTUhooYlgmURRSmV1gdGwUdJ0kVUx4ItJUfYeekmUxGtCsN7kyc42B4hB+vkgmJUEUUJmtML5JgZVms4WmCSXIbAg0oWPoBlki6LRD5mcWSGXMxMQYQmo8+tQh7rhlB65vEYUp93/lWb7/vrdz+Mir7Nm1FaGhojY5G4kkCWOW6jWKRZ+5mUVGhsq0222CoI1llYCYLE1wPRfdNInCBlmWKUa/MCWMIoZGyui6TrPRxLZsNF0JpWu6RtzooJkZIRGW5RDHQBarovQEpK4htQwpYXGmSr5UZH6+imOZ+DkXoUvmZxe60QSbLz7yLAd3b8f0LEZGhvnYZx/h5u3j7N49SRzH2AJeOXuBrVPjpGRIXcPUTOI4wLZ0zp27yo4924mSCFMzef7wUQ7s3YVIdMKoQyYTsgReOnyWYt5lamqCMAsI2inFooeQUKs1GBgo0WoqKYAsSTENnXPnrjA8UIQUdNui2WpTLPmkYUCaJLQCyBd8JUeTJZiWSRwpgqCZuSXGRwfJSHE8lyRLqS81u9T4l9i7ZyvtZpOFSoPJreMsVqrYpo7nmKBrfPylV3kJ+I0ffydkgkuXptm8ZRjTVLV3juug6wZC1xEiI01Cnjt+jt/9wqvYpsZ8pUnOtdk9tZkf/eHvY3LbDoq+w6Vz5wiijOLAAAtLdT712b/l4uVz/Ov/+afIYoPpuaucv3yWMxfPcveBAxQKOq4/wJVrS7RakiPHXuLI8aO8ebPLrVNj3HvbLjpBEzKJJnW+/vgh7ji4Dy/nYtgGYbtDzjCJ45iXTpxh/637CDttpKbx7PPHeNOte0izhNMnzvPI2UUeO1Vhi2XyX972JsI4ghiSJCaOU+Ik4dL0LFObRrGMjEazg2FYhJ2EYqmI5ionUr3WUhkBlo2ua3RCJbAupUSXGgKYm19CSBgcKpCmKYZhcubMFbZOjaFJnT/59IN85L63o2kaf/PVp/jAO+4gaIdIBLmCjWVKlpbafP25I9z39ttZWqpx6NUzvOdtt3Pp/Cyvnp/mXffcytXpWSBjYssYkKHpGbVanaAd47oOUoBhaGiapN2OqNda2L6gXgkZKgxRayxSbTZ59tkZ3veemzh3+QJ7t21mfrGGoeX424eP8l3vuomxiWGSOCJNEubmFhmeGMbQddIopNVsYhoqWikxkLpBpxMRBTGubRFqKaVSQdXIClgh9Opba9cBd6vxxUoZwmsSTNi4lONHHznEZz7z0ddfTJd76i2JvQybbgTkOuAuSTP01xBvqJZ0Hafa6xjm/eAuSTMV3RQ9+gpJPyP2P01wp4hYtDeyLxJELxrZ/470DlzZpFKsU0Vc8g0SZ75e+6cI7vp1pG8IC30b3P1/p11PCuGNtjcqi9CTG+hp363VuVuv9eQR+p9H0tWlWw8wpd1jXq/vjfT24jh+zbb+fdMkVhGpvvP3CnB7unQbXcfa1uujB/KUqKtBEAQrx/X9GtbNBU/Wpias/CUQysOZ9bb1ySOsSljvA9a9pI60u78QhEHAr/7Kr/PjvmTnQIlV7q7u3zJRaQRJqhbeRrXGybMXuHn3djRTpUimYUQaxwjbhFiSpYLpK9e4OD1LECdcml1iarwEAu558wE+9fkncGyNg3smQWRMjA/TaNQRAnJ+njOnL7N1ywRfe+Iw9VbI8LDO/l3bSKWkVC5y/Ph5Hjt+ln/+rrcgTUlKxuzCIpvHh5GWQRwmNKttikWfNImJ4w7HTlzk5psmMUyDRr1Dp9NCaiml/CDCkIRhxPSVOXwzR2nAw7B0giRQk2CkFhbTU3pYhmFQr9fxPIfzZy5w8sI0d96yhzgNKOQ9pNBpNEIKpQJRmigx+BQWZ2s89NwxNo8VuPPADsVyaGi4nk8YJNQrDa7MLLB/33ZmZ+eJw4TFpSYHbttBu90mjhI0oSQcdEPDckwuT89Q8D2yxMDNWcpJkEj+6tOPouVCfuS+d6CEp2PSJOMLjxzi+97zVqSekaYJzWaHsxeusXvbFg69eIa73nwTL796mi2bhsnlHAxDcOHiVYYHB8kXfBYWFvA8GyEMEBmWYxJ1YqrVBg89c5T77rldbYtC4jjBzTlUlhokcczAYIksijAtgzjRqVXrpGlMsewTBAFpmlCZb2K7Jno35VJIZRzOzVRpt0Oq9Ra33rqTjBjilEarBYYk5+cQnZjTpy+x6+atzMzM4To2lumgSZNrM3M02x1275okCAPSJGNxocbE+CiHXzzJ5OYxMhKEnmHbJqYUPH/0JHcdPEAYxUhNJ4lbLFUrjE+MErSVuHsYhzg5l/PnLzA5NcqFc1eZGB9HpimNRgvb8QBBdalKIZ+jUWngDxfI4pSF6QUMxyQ/kKexVEHTDfKlArVKDdfSwbIhy4jjCIFKdYujGK9QJAyjLlmFTtAJcF2LMAxVpGqwSJZlSi4iyei0OziOg9AkmqbRqtUwdAPHdZm+PMvAoM9CdY6fP36NP/tf3otrqd91JhJa7RY510PXdSqVKn4+TxRGvPjyaf7z549x19138JEf/gjXzp7nrrsOYOSG+NTHvsgf/uXv47katWoV0zTZm/e5b8d27t6+W6VKZTFxJ8T284RRSBSpefKBrzzCnx89hDs+ROLnaLZblIsFFis1HvrbT1NvtICMJ596mi899DCXLl+h3mzyt7/8Ia5Oz5DzHKqdkFKpgKHr6IaJZRkEQcS1mVnGR8Y5cewku3ZOInXB/KwiVak3mgyPDfGDv/VF9IV5/uDd34lpCkzHQAqVHttpBWQy6ephgmXavPrKRQaKHoVyAd0VtGo1LNNFM2yiVswDDz/Dd917BxkZtmMSdQRpFqOZXXkU00aTNhkxKTGtdodC3qdebfLYoRNMlIoc3L+XTEqiMEToApIYEGiawVKlhp1TZDRxO6bVdQTEYUyaQaPZolDyuyRGMZZlEgQhYStC0xUzcKcT8/EHnuDD77+DYr5Ipx0RBC1c1+Llly/y5LGLfN+7D+L7rmIy1iw+8XdP0kpibKlz7207ieKIZqfNLbdsh0zl1ynZmQzXdSBLicOMJM5IiDFtjVPHz3LTTTtILF2lZ2YZWpqSbkSPv57J+EYM4RUP5XI3j1+4xJ3/4deVfuQ3mSNg5bQbFbysbO8Bp6y7pAPLwOo1YK3HDJn12zGvBWbrRfrWtrTbx/VIRlR9XqpsByHQpXxDgGC9PqXs14zbGOitPX7VvlKB2rQLphWxnyDrZj1lQkmIpFmKLg2yLFX3sIvw1zr8Xw+UqfvfBeHryFXdSEu7wDxL1Zy9Hijsz93q3Yv1pBRgY4B4Qy1TZQ6rWDvFBplofYNblY33bXD3D9/+KYK766VirhVNfyNtvd7kBt9/q8CdruldgdzVwub9E1i/7t1yH6u67XuUy57Mvhq9DX6QG4I7kTJzbY6f/dmf56P33IrQNHqldYLehNoH9IQgiRKSOKGyWKFUKqhvpKbqLDKoLdUolH1IJYePnGLn1Cb+5mvP8QPvuZPDx08zPlyiXM5TrTW4fGWRXTsmaDRbeI7NpWtz7N+zjSvTswwOF5mZWcQyTUZHB0niRKXdChXBIYNOK0AKeOXsJTaNDDMwOMDs7DytoMXWrWPUak1qlSaeayGAxWqVzaPjmJ6O1BR5hZ+3gJiwowhSrs7OMVgq8uDjh/jgd7wVpCCIVSrp1ctzPPTMMX7wg+/Acexu+ojSKJQoncK5uUUK+RztLkmG5/nKEBOQxQlCCEzLptVsEQQBkhTHdUDTlE5ZAo8/d4wzV+a4bfdmDty8g5Nnz7B9yyS6o34njVqLVlPJRBSKedJUMVBOjA3z0Qce4ye+716SOOLy9CybxpUEhWHoSE1RNwedkDRR2liWY3SZJ2OyRL1Hp09fZtvUJoSET335UX7kg+8kS2N1z9sqFVQ3FGtZhoZh6sxem8cyDVzP4wuPPcN3vfMudE0jy1DvhpQkcYimad13RqoaQdPlCw89xUi5wM5t4ximiiJIqdHphJCBZVlkZFy9Ns/4+AC1SovPPfQCH/ng26jWqgyWS6RZSpQl2LbN9PmrhJ2I4nAeTRf4eY96rcnQ0CCNShPT1qnXGyRJgus6fObBp/ie77iDTidicKAIIiOKI6IownFytJodDF3n8vQMupA8ceQU73nLfkoDeaQwaLRapGmEJQzCMMHPeVy8fIXJyTEqjTqWaWJ7HnEUMze3xEAhR6cVcHlpkb07p5AJTF+dpTxSQqaSVrtDnKYKlBo66BpJGKGbOnGkAJ6qN1FpgqfOXGBooITnOVimTr3WwM25KpqeKmF5wzAIwpC5uSXGJ0ZIs4yXj59k/76dLM5XsSyTetDmF46f4s/+1Xdy+fIc27dv5cLFK2zbvoUsy7hy5SqdTHLi/FU++ewMW7Zs5j/9u3/PtYVL/P6f/AXnL1xCZBlhFPErt72Jmzft4PnnX+Smm7aSy+VIAqVjGYQRURRjWjqWrmG6BpWlJrpuoGkZjqNRr1ep1xIKpTyObXL12gyjI6NkKRw5eYLznQZfW1zk4lKFVqvJtskpfuc3f42zp87y6BNP8+Ajj1FtNvnhe/bwodu2Mjo2zLlzl8j7OQ4fP8E77roTXTe4/wuPct/7ucnLHgAAIABJREFU3oJME2q1OoPDg7TbLSqVOvVag5/5fx5g6+Qefu/N+7oOBsH589NMTo6SZimWpeoGoyDhE59/lP/pI/dx5sx5RgZ82q0Yv1jm5KnTTE6McOr8FW7avZ1mo0W+aBOFCY6dIwxCPv/1Z9g3NcbI8BCObWA6JvVaE0PTOfrKOW7Zux3TMDh16gIzixXyvs3+/buIw5h6tYWf89B0pX8lNR1ERpIkRGGEZdlcuDzNjh1bEEgatYZKHQ0jsiyhUMyxuFAhl8tx6vQltu8YhUwnjTJ0PVUZCK2UdhDzxSdf4Afe+1Ysy0QIjZMnz3Pi7BW2jAyye9cWkBmIDNtW9yXuRizTNCPohNi2RbsZcvbcNAMDPmObhmgvVTly9gL3vO12kixFZKBcdRvYht9EcAcr0bt/CHDXD9RW6aN1t6dJgtA0pd/aPfZ64K53EXof6IiTZBkgvpFoUr/0wXX36+74Rm2v9cBd1gfYN+rnmwnuNKEtgzMpVa2espn6xvFG7lFfH3/flqHIdzSpfRvcfQva/zCEKkkfoco32t7IE8ro02DJstX/vu6B2WtSHaVUBcia1mNDWtmOEKtEJTcccx/hSj9j1LKEwJqxrwwnXT5u5dwr6QjXu47XjGG5j0yF2qUqnF5LbNJrcRyrovN+bZoN774CDGmaLt9nVTDc1Z5bu+9rxgu//mv/mb/4y4/y0XccXKmvWx6TWHXsMj5MMy6cn2agVFCRKCFU2pius7RY7aagKBKLctFnfm4JXcD46ACSTBXva5JavYllGAwNFzEMjWLRZ7BUIOxEnDx3hamtY/g5l1fOX6Rc8BX9u9AwLZM0FczMLDBYKjA3t8CWLcPYlkOWSb70yGG2jJfJuSaOZVEu58l5Lk8efplb92wn5/vMzS9w5NVzPHf0HJ6lUSr6yuhpNCkWPAQZBc/Fc10uXb5KoaSiFAU/x617tyEQtFttDEMtqK1mhwwUGHBtTMvBtm2qtSa2a3elYQSGrtFuNAniGE2T6t+tjgJ3KID8d4+8wJXZKrZpMFzOMTxQZGioTBAmytsdJ0qrbqHC6OgQURjz8QceJQgiNo8Oc+fB3WiawDANcjm7y8yo2PuCIFQpuCn8+We/zu6pUVzXIehEhEHElelZwiBk85ZxTEt5PPduV9T1hqErNtAoAQRnL1wmCiN0qQBcmibYjoNlqWiX73skSYrZ1Xv81BceZd+OTURxzMzMgiJ30HXCZodSzuXZl09z885JPv/ws8wvVpjaMsb01XkKhTz3P/gMphAU/ByaocTt775tH5qh02l1sC1F1OO4DlkKly/PoEmN8U0jy2mEvu/SarWQGbTbbVzXwrFMpq/N8fbbD3Dl6jXKRZ8ojMjSjKCttMMMW9UsWZaBFOC5Fq+cvcZQKUcURZimxfnL0wwNFrqpPzpC6AwMFmi1mgip5q2oW7heLOaoVCqUikWGx4dI4oR2rUlpsIDhWAgkhmlSq9axHYuUjOqSAl9zswtcuDLDcFefq1ppEEURjxw6zvmrM+zcNIaua1y4NMPgQJEgCBWJSwbNVour1xaYmBjBMA3a7Q5D5TyGofTafvXoKYYPDPArH7mHoBMxuWUzrXabYqlAlqX84Ree4U8fucCXDl/kl/7j/8H73/duHn70cT76yU9y+WsP8x/f+U7eN76V94xt4iO33kLZzQOwdesmgiDoeqkzWq0W+UKeMAhYmJ8niiPaQZtjL5+lVCjg5x3m5mcIwzaDg6PESYxh6hTyBXTdIIlTSvk8o06OD+3ZzYf37OHHDh6keeJV7v/M5/jzhx7mxMlTOI7DB9/9HjbvuIVf/eP7+djDxzl65jLPPneEH/7gPUruod1m1+6pbvQCfD9Hs9nCcmyEEBTyPh9575v4wXfdxH996hn++4lZ3jM+zMBgEdOyEQIefPI5hotFHNfGEYK8n8P3PWzLxHU8kgxyrkaUxIyNDGBZNqZpkBB0GUslQmjsmprgwvRVRocG+dxDTzPs+/i5HH/+wCPc9/bb0XTJ1ek5cq7D9q3jZElMebisWHVdjyAIuXjxKqWCTyYUg2a90SSf94miiCeOHmeiXGJpocbgYJlGXTGnHjt1hvHRoa5umMqeyESGFBqtZofTly4xNFBkcaFBo9li99QEURjRbnX41JceZ9+2CTrtkFLeo1jKk5HRCUJM06DZbCOl0oWs15r4fo44jFlarPHk0XNq/vEcLEPnxVfOsGVsRGm5itexOb5RcLdmv95fT11b4PzVOe5488G+3b41dmlP1mitQb9sU2sqbTfNVmrpXmNa9Kcudknf0lQ5GdMuSQtCvG7UrtsZSZKA3NjSUKmWcpmQZC1J3cZtHTstW/lsdI9Xtm9g5/Wl366QhfTZa0KlSipZipX0WBU0E12ClfXF1Nc/nVwmC/n7vhdCLQhk3fTV9bK1VsV5e7bdBv1txLh5g6NadS71jw3u/ar4Qt9vaZ1H9m1ClW9xeyORu/UgS7rm+6RbX9erY3sjdXb9rQe20iRZjmj1R+yuV2fXiwL2RwR7+68d53rjX69ttG/Wd51p37b+pkl53f6vR67Sq8Hr39ZrPW9SP6nKKiCbrQ8KV3beYFSiR+iivEVPPvEUv/O7/ze/sX8bW0ol+mJ1rFAeqXOlmSpypusNvHjhKoWCj+OoOh5NqJSNOEr42BeeZGwwz8E9k+RyNoauMzuzxNefPcH4UJHbD+zk2OlzHNy3Ayk0ZmYWefDwMX7sA+9ASsnlS9fYsnmcl46d4sCtO6ksqdqtOIlptzuEQUi5XCJJVNH10vwChYKLV/Rp1hUhShwlfOZrT/Ph974Vx7FpNZsYhsH01XmazZDR4SKFAY96rYOh2ViWRNOUg6FerZHzHDpByFKt2QWwEjvnEYcRr548R5okDJTzDJQKLFXqlEsF5uaXmJttky+ZDA7madUSBocLCD0miSAlRTd1oiCkVW9RGijTarWwuiQlUZwwMjqMbhjMzy5x6PgZDu6dIp93SJKYJw+dIWe6vOWtt1BZXMTSTf7u6Re49+DNfP35I1RrLT787rsBkJamauhA1UJlKZbhApkiaNB00jTjxIkL7LtpklazQ8730bokHIeOvMKebVswDIMLl64yNTmBaZvMzcxz6MQZvuPu27vvaIymS2Znl2i12mzbNsnHPv81fuS77yVOUtqtNkuLVVzLXAayXiG3nBaTdi2EpKPqbObnl+h0lKzExOYx6o0Kju2RxLA4X+GzTzzLT373vQgh6LQDpJScOH2RW/ZuJ0vh8LFTvOnmnZimSb1aB8DyTOZml/ByLvmCR6fTxjIs6vUGUoBlm4oV1MspYWFNEAYhhmFCJgjDCCdvK6p7QyPoBLRbLWrVDiMjJQzLoFZt4fkOuimJE4GUGmmcKFIakVKbr+DnfYSmKQ20dgdJRtBK0DyT8+enGfJ9bNfCzrsIJEkUI4VauDMEMk0wXVuREQlBtd6gVC5y+uQ5Nk+MdX+yGaZtQaJSh85fuMLExAhI0Y3cKS+xpmkITSOKEwxDUGu1+VfPvcIn/u0HehMSIhOEYYDt2Xz3r9+PbZn88R/9Aa6m8bn7P89n7r+fn961jbfs2oOm25ApPcE0Fnzx4cd49713s7RQJQjbjIwMoQuTpcUFCsMDZEmMocHiwiJCQL6Yp9XoEIYCx3EIOm2KRY+g08KwlaMlzVIM3WLu2jwf/+LjfOgdt7Fl6wRnzp5lYmwcx3UJg5BOEKBJgWWbhEHI3710iD85eQbTsij4Pru3T/GTP/HP+Ymf+ddMDJb56XdtYyhn8bmHDvGzP/4Bgk6AaRiIDEVYUipg6glxlCE1gwzJ73z6YR49XeW/v/lmdMskDENMy6LdDCgVPa7NLVEqFxFJTJxkoBmILCbLwLRMBIJXT51ncMijXCwShXTXxRTd1IjjmDRRaVuNRgvdlORyLrqusbhQxdBNTENXTpk05MKFqzx/7Dzf8eabyfkOmib52tMv8R1vfRMZGVmiDP+ZuXm2bp6gXuuQpRnX5ud44uir3LZnkgM37Wb22gJuzsKyDOI0xjBszpy+zMuXLvCeOw8QtgWaIdA1g047UHNyp0OhkMPzXBbmKjiug2nqSF2iG7JbYw4zMwuUywUMw6CyWCWXcwmiiFzeI4oidKDRaGFYNrm8h9QEKenGAKL/i2XWv2TZ+duPhtar91rPQP/RRw7x6U//1brHvV77ZtqS/VG6nmpwD8j0onlJ0hfR6v5f6zmFWZv4mXUd4jdGKNJ//Un3+m40ZpV2wzz9zmYptZVopFSC3/11/9B/P7N1tm0AKuiuK1m6QtgEZOlam0ksO9DXthuumUvUve33+feYPLM03aDGUS4zmff26bGkL/e7zru3UeQuYQXgfqPv4XrROCGzPgZQ0QXKqyNz6wU7+p+NZTnfjtx9K9sbidyt9wSyNd8vF2DC8ot0I0+u/wXsRbRWvRzXeTGXo4D9EcHehNMTSl0zqfdvX++l3xAm9V1n1retv63QEW804HXOtwFb6Jq44drRKMAnBMv5ktdrG3hbejTqmqbxb/7NL7P5lUP8/P49FF2n73z9kbqVe6Z1azwOHTrO7Mw827ZMqNTSLh1yGARUK1Usw2D31ARTm0fxXIswCFXtVKXO2+/Yj6ZJiqU85y5eY2x4gDCKyefz5E2DfM5j+uos26Y2kSQxUma4nodpmURxhG1bmKaBJEGTkiBKaNRbzC4tMVDOg6ZjmJIwbNFstdi7dQuObQOKdc7NeTi2zf2Pv0TB1SiX8uR8j6X5Gl956gV82yRfVDUXnXaA43nkiwWCVptWJ+Drzxxhz/ZJBks+gwNFPNek0WxiWyZLSwoQPvL4We55yx4azQYPP3WCN928jUyEpFFK0K0vCzoh+UKea9cWFX12qsKzQ0NlDEuJnVumyeaxQSWfkQRkWcJgucSu3VMIGaPpGZCwa+skQRCxa+sYd966G6/o0azV8PKe8pZnAqmpdEtNGsSxSjvzPJd2O1RaV57FwnyVvJ/j/q8+gWfobJscxzQVTfrDzx1h745JEBCFEaMDJQzD4Oy5ywyPDNBstCgU8+TzPqA0+nZs20yWCV586SSTm0YIowizK4Kt2RZCSjrtgE67TRLFOK6r5B3SlLHxYWQ36itkiiZ1pSfomNy0fRTbMRBCxzBVVDGfczAtg/m5Ja4uLLJlfJgrV2Z48OnDbBoewLB18r6P53kIAYZlcPrUZcYnRtANHalp1OstNE3HsHWSJMSwdK5em6feaBKEEY16A9exCYIQy7ExbZt8zuXKtRlc1yKX8yFTkiVxO0ETkMSK+CJoh/iuRxyntNoqtXNpsYrn2rRbMYZjoWsavu1g2JZKNxeChbkFarU6OU8xL87PLnLp0lVFtGIZuDmXZr2JbVvkfJdOEBCEEV7O6aZ9C7xc976SoZsGrUYTy1aRQE1XuqS/+cIJZv2Af/+jb1esjHEMmZonPv3w8/ynvz7Mxz76R5SLg/zhH/0pH/3Yx/nVPXv44PZtbB4YhCxFaJKXj59goFRk5uosBw/eTBSH1CoNLly7xObxMUBHCJCGSknXBZClCtDoBrrUcDwHwzSYm1mgUCyhaxaaoROFoXLkLFXwCz7bR0d54qWXmF+aZ/vkFgzDplFtEkYqTVnTNKShUa3WOLB9B//irju5283zrpExbndy/Ie//hSW7WDZNrtuewf/5VOPcKEJP3DPboJOqEB1Jvj8l55g796tyCzlwYefIw4TisUC99y6g+9/yw5eDut8+YWz3DY+zMy1earVNp4r8Qs+QmjoEuIkJRUgM0maZMzNLnD+8lX27NqK5ygCJ83IuDYzh2UbnDx1kXzBxfWUnIDr2opNtdnEMnTq9RalUkmtBVKSRjGlQp6CYzM8Noibc0hJ2DQ0hNQET7/4MpvGhonCiPmFJS5dmeWl4xe4OrPApvEi+ZzJ+PAgpmlRrTRwXMUEq1sGum5SKhXRkoTBwSKGbpMJ5RwMwxjHsXnk0FFIUoYGi+oc89XldxayrrSMSv88cuIcm8dHsSwdw9RIEuUc0jQNQ9exLZt2K8CyLbXcaddZ79YBdz3n8fK27meVjbLetm47PLvEu7/3Q327/qPYpatMB20ZrKp/r0Ty+oCOXMlOEquMlr4+sl6q4jcG7rpxsRtvPRHzVdGefumCFfvsGwWeq8CdUCCk/7/+JFLR1cVbKTfZuN830jJ6dmz/eFY07tbrb/n7vn3Emge3XjRuo5H17Mq/l3bfOtG4rOfUXxut3CByt962b+vcfYvb/9/B3eoX7/oeu1XjWdN/fx/fCnCnJpWU1zA8beCd6jWt6/cSG3S7qm0A7mRXW+/55w7x7Fe/yk/dvLOburDq4JXhLG/PaDbbzM0u4kkDTUh0TcPLeXz6y0+xY7NiRGvVm2oKFRr1RhNT16k3Gri2SRjEFPI+ru+xsLDEKxevMTZUpFprcvjlc0RRzNBAAce1mF+oYJsalmWA0EjTlKvXZtUEAzTqVfJ5nzQVOK5NseiperE4JSMCEUEGpuFgWBZSl7TabZUiWW0SNEN8T0M3JJ1OiGlYHDl1njtu3oFmaMzOLTBYLpHEKSkS05BYlsnWiVFq1QaeaxOFIaalkSYptm2p5ykF+/fswnZ0IKa61MZzNYKohWs5WI4CNaZtE8cJFy/N8tDzR3nrHbd09XdULZKmabTbAZZlMjO/wOBAHikFhmmpdFQR0mk3aDabeLkSmi7J5VS0I2y38XIWmmUihYaQGgJJFEa0mh1831uesL/yxCFu2rWNTqdFuVwmiVOuXptnYmwQL6fE6tMsI2x3GBsZQJMaUaCAqa4bZEmGFBlezkVqgiRKiaOUseEyQkAUZbx88iKHTpzhTXu3YZpKsNvL5xFC0G53yLKMer2J4znoutYFbNBstHnsuaNs3TKMQBIGkWI8S0OkBiQai4tVCiUfyzZpNpTe3I6pCa5OzyEymBwfplzKY1iayifOMuq1BoauUyj46mWSgnq9wUC5hKbrZCImI8WwtOX02kLBx3MdpFTpwEJIwjghiQI0CUmSITKJ1HVqtQbtSoelSpX5hQVKfg5TmCqKoekK1HYCXM/GNHQeefIoo6MDSjQ7FRi2RScI0UTGpSvXGBsuq3siVNR8cLCkAJChY1gGmq5jWkrHzzANRaSRJMoLLJR+5ecffoYdW8YRmsDUdeJE1f62Wx2evnyF7/rw7dx58xRSkwSBYoUVUuNH/vcHKG+9id/+7V/jh3/kX3JXFPCT+/bx/Xtvot1qq9+nhDAMyYRkYtMISRDi2h4xKUEUMDoyytat4+q3m2nouoZm2YAgDgJsy8J1PeIkpVlvYDoWmi7QpIFpOsRxhtRUFoNlW8RRRLVaJ+8X2LtzK5MTYyxVqmQx+IUCuZxDmqoIuRCqTlNqktnZeYaGB/H9HIZp8P6pbXzPnr3c7ln89he/zLX5Of63X/1lfvF3P870/CJFW2dqYoQd2yewHIezp89x4JZ9bNo8QZJmREmEEJC0Gzx9+TJ/cGKGvWHM+NAQ+ZJFEMYqsyUMmVtYIkpSrlyeZ3hogM9//TnecnCPqm1JFcBuNKvkCy6apjE6PIphCjqdEMuysEwdzZBdIpeYcrlIksLiQoUwTij4LlEYo0lVpxplCbqufvcCGB0qIaXE9RxMTaOY97ll7w6isMP4pgEmxgbQpIFt2Xg5l5NnLlCt1cn5LprQCdohpimxHRtDN7Ftk3YrZHGhQpZllH2Xqa1jSF3j2SMn2To+yrkL00SdkELZxzB0lpaq5HIew+UijVoDoal1UOqSVquN1CRpnJJmGY8/f5yBgo+TcxUddH8dfndZeo1B2TNG0xV7oLdebmgQr7Pt3okh9Dvv7uv2Hx/cSaGpmEmmInMZQtUk0r/PGn07Vl+flHI54ecbBXc9heEbvSPrPYN/CHCnWPfoApO+2rouztwovfLG2SmV82z1eG4E3KW9gp/V9ugNgLv+9//G9Or6T7h6fKCirprUSbN0JYInxerI3bfB3T9u+0bB3doJsjeJpPSlN9ALhfdpqm0gLr7cb8/TtvxSvlYofN3xdcGgyLJV51suTut93wORG4ify14frBcn6xvXmm39n/VG23++laGtnGXleKkKf3v7ipXRCZkp52LfmOMuu5Ly1iq6YJV6sM5TE/3nVudMkhSBxm/95v+J/uRD/Mz+PcvnUyC5z9uJ6JKWSBAapmVw7IXD2FmM5ZqMjg2RoCE1nT3bNqk6rDjBy+fRTYtGo86F6Wu0myH5XI4nDp/kysISe3ZsxrR0GvUGdx7cg22Z5FwHQaqiVLrAMHXyBY8enO10FAvgQLmAJgStRhPPdXAch2uzi3g5F13TqFcbuJbJ/OySYvOTklq9hpQSyzbotFoYmqRaqbFv52b8fIGvPXuIN9+0i/mFBe4+sJsoStBMi6GBIrJbe5JEKUlmYjoWS7VFRkaGaLXazC9VyDLQTZVSUq/ESrYgp9MOQzRpsHXrMJYlSOMExyuxsFQhy9Ju3aAg7DTZPTmBSAWu5/HZh57ECA1yBRNdSoSQPP3Sq+zYMkmWSHS9l7YhiYKUMEhxbIMsiRFSqLowTSOVGlEjIiEhJSHLUpIoxbIVEYfbBVKTo4MkcYzjmwRhSBRFvHz2MovVGhMjg6RJhCYFxUJ+OXJsew5JmnDq1XM0W200XcOwDM6dvconH3mG7SNlbNcCIOi0GRsucPCmbeTyPmkmOHriMq1mjdHBErZjkSQJ5UFF8y+l5MKFaQoFH00IlhYX2TQ2Sq1SJ0liFhYqDA4OkEbK67q4UCXn2LSbbWzbgEwQdgIlMu6YTM/NMzo6SBhHhGGAlGDbBufOX6ZYzBPHEc16E1NX9NhBu4XhOKRBShYL6rU2jmNx8sxFXNuh1e5gmQZRGJBGEWE7QqDhezk0TXL8ldM8/uJxCgWPoaEimzaNEEQRWBrtZp1O2CaOI1VLnKYEYczY4ACuZUKaEsWBoqMXCjDVak3GRoc5ffoSBdfDcA10y1REQkKoSDzQarbISFUxewaa1GhUKrSbTbxCjt3bN2MYhqq90TWyLCUl5ZdeOMH7P3gLgzlHpZhHMY5rcWm+wk//3oN88hOf4FN//Tke/eTn+K/f9QFKhoWbc5URpksV8azV8fN5xUaXKkFm3dbRpIHMNNqtJkIzyYROJlHalGmCFEr6oRMlWI5DmmV4hTxBJ6DTatNqVMmSDrqecujIcR5/9gWmxibwPJ+rV+epViu4jsvMtXnGxscJ4g62a5BmmWIhTjN0qSJlkBJ0AnzP5fSZc4wODxEGIabr0K42eOfgEO+Z2MwfPvRVjp87x8/94r/j6HSdv/jay/zlQ0d43/4xykUfy7YgS5mfm6e6WOO5506wb99O3v3mA/yzO7fzTLvOb790nrsMEz+XY/baLIZuYLkOCBgZHCDNUoYKLtVqA8e2ibOAhYUFtAzmZioMFMt89DOPs3fnOKZusLhQ4dKlGQxpYBou0tQIw5R6taEcbI5J0o0YNzsNXM8kDVOatTZZJlmcr1JvtPi7Jw+xffMonp3nk196ggP7NjEyOkgcZURhAkLpZv7Ng0/ytjcfYKBcQNd1VT+qSaXZGMbohlQsvVLiuooteNP4MPVak7ATkYYJRT9HFEbYjomTy5EmKZZpEIYhjqMjRIqT85BaN8VU03FMC5lZoKU0W1WiRsxQqURsxci0L+qyZn1+zdInVr5f65he+Vu8Zlt/+7efeID33fedqwDBjZKsLJMyXmfXXg3beq3fzki7wA4pFHjt2gVp127oOXz7zY7XgqmeL2uj+yaWx7TR9WXZa4/vP27Fklr9Ufdxje3UtYnUuHpyBuo+r4itL59l+bO6j74MrR5BV6b2V+LfcvmTZQlIFfVUhCvryGz0INZG17+BK39doXEpyZIYqRurbMEej0Lveaxy1mfZqueYdh3GPUmE3p1Yf2zdsfw9NPyEXPkgMhBdcpWe3SrF8gCEWPksP2fZ/Vusfv66bn4b3H0r2xsBd2maLv+wXs+7s3biXBvF2+gHkmx0jhvJE+5LxVzvuLR/gtigiygKu9GWb7LoybrXsdHC0P8LESv7itcctuxl6gG1Xl/rjn5N5K73bC5dnOamw49z69go/dNEtnz65adHJnTSJCVstvnsl76Km7bZMjxAeXwCIXV0SzFPZmmGrhlEQYwQAsPSMSQMDxQYKJd54OHnufPmHRzYu41GvYkQkmazheM61KoNzly4ynMnzpN3bSYmhjG7wCdJUqSu8cqpi2zaNAxdr56u6wRBR1Fq5zyiUNUlCSExTZ1CIUe1UsfP+Zy/NMPo2BDVWo1iwSdLMy5NzzJYLGLaJvNLi5R9D89z0A0TKTVVf9VoMb+wxJNHXmEg7xMHAtM2cB2LKEyU4LOj6MavTM/QagX4OY9O2EFKHU1qWKZFu8uu6NouqQDbUfT0pmmSZoJ8zsOxXEzTQWqC42cvMFYsMTioIlu1WoOCa5NlcPb8NI5j4PkeSZxw+cosutTx8zl0XafVagMozTEhkEKiGxpCqn6Keb+bimcQRjFpklKtNXBcG6mrlN1Kpc7hVy9xy45NGFIjX/RJ4pTLl2dVtCBMSNME3dAZKBfI53OUhopkUkCc8JYDu5UwcxyT8x2SKKU8UCSKYuI4xrRMNo+PUC56aKZOHCWYtkWWZiwuLGJ0hZrzeZ/Ll69S8Bz8Qg4k2JZBseSTxBGarhEESgdP0zUqlRpCgmlYJGmKYejoukYxn1NpqVJjcalGqVQgikJKxTztIGRhsULed3Fdp2tYpCA1pJCcPnORyS1jCCkZGiji5z0s26Jea5AkKX5Bka7kci66YXDqzEWmNo9xy+5tlEo+aaJ+F5qhE0Yhvu8pkhnLwjANTEvJOpw5e5lyKY+ma8wvLJEv+Aq8AaWieg+Ghspoht4lpVAmRhzHSE39S0oNy7Lo1UVouoGmSRzPJex1nRSCAAAgAElEQVTuRyZU5D7N0KTGjz76In/6C+/DswwsW0W5NF3jX/xfX6Kw4yC/+L/+FD/6kX/JH9z7Lt45tUOBpEy9X2TKeVev1fB8D0RKEqlITBpHy9qnWjd6pOu6SguLU8JOgNRVvY1tWViWRacdoukGzWarS8Zjkc8XME0LTTMYH92EiDMOH3uV4fIAg0PDPPnCYY68cob9e3dx6sw5tu/YihCg6xq2Y5MlKUma0mo1MQ2Tmdk5BgfKGLqk02kjyNB0E8cyyPs5cn6OD+7dx30Tm5l9+Qgff+5Foiji937nt/iZ3/hvfPbpc3zojkmOHjtFuVxmcGiQnTsmaTYa6IbG3Mw8t+2Z5AO3T/FzXznCvb5D3s9hmCZZJrFsm06njevaLCxWcCyLQiGPYWrk8x6GoeN5Lq1WQM42idMQ389hmiaDQwMKgGUoCYMkwXNdZucW8DwHTVfPz/dzy+mPQqCyGso+ft5j1+QYhqnS0TYN5+l0ImzTVmnsUQvTsMhSuHn3NtIkIYqiVYBgaX6Jy9dmmZ1foJDzabcDGt2U5agT4Xkutm2h65JKvc5TL5+j3QzZvGmINE3UO28a1BtNCqW8cgJoOq7jYGgGWarerYyUTWODVBbrVCo1imNFZLp6Fb8uuFqxOFdv7vtbRbU27uO/vfQKP/iD37vmqDd4/r5z9Iaz4T7ZjTA0sso06O98FVP2Bu31vl8GdeI61G2iK9IuVm+DPv/0Gz7369t7K8e9HqTpRia7m9Y/rguE1UTft311uqa4zvVvOM71jujLTFuzWR3THxHd4FZkKLCmbOXXAXc3GG38+7YkS5ZTXpfHtsEYvg3uvsUtS5JfW/YUbLDP2qjU2tD+RlEuFeJeAVxrI2aromr0RQLXupuu01JWGCF7LE2yT2elP3K46hwbjF9K7ZsP7GDda+m/r5pU9QVpmpLEGnGUKiAjJZrGsmeOTJGY9H5AvX7WFgC/HrhTk5XgS1/6Kg/+3u/znVObup6mlUBgksQYhqGisilkSULlyhWOvfwqlWqVUi7Hzh3byZXLZJpF2hOK1iSalPzxJx9k/65JnnnxBFs3j3Li5BmKvkcUpYwNFigWfUzLYPraHGTKaAWYnVtiass4+/dMMX1tgfNXrmJqkkLXqE2TjHIpRxyFRKESvI7jFITAcR3iKObU2YsMD5eR+v/L3ptHW5aWZZ6/b9jzmc+dh7gxZkbOjAILBASEKnupaEODXSWUrWi1WGVJ2Utdrlpit21ViUOpSy2rHLBFsQQRBZkKZErIgcgkx8gx5rg37nzPPfOe+49vnxv3RtzIzKBJ7e7FxzrEzXP22XufPX3v877P+zyGRnfm/DKNep2N9Q5xlGPZRiJZYJTfGtUKTzx9gcfPneWlt96A6xt1zUE/QkqJbSlAEJQCWtsdJppVPnHn1zgwVaFUcojjGGnltHstSARpYvy4KjWPIPBotzu0O21KJQfb1YRhBEIglSAKY7SykMoqAmWbMEz560/czdFDkzRLPgcOzrHd6uK6NtqSlMsBfilgZmoCx7dIY6PiWA4CPn/vSW69eYE4TZBS4rquue+yHKU14XAIOfi+SxQnfPYrD3L4wIyhV6YpiBw/8IjDEJBUKhWOzIwxNTWG69nGJBdBs1EjT1MWLy4XfZQhwlJISxPFCXGUkGWmNwiyQukux7I90jRFa4mQlykjp89cwLYsHNvQCYWS+J6DtjSlkhF9cSyNpaWh6SlzJys98ntKWVnZolIOjFG87+J4Hmmcc/8jT3JgdhzIiIcxvu+zsbbN1OQYX3vgMebnJmm1tqnWqvieR6vVplz22dgwSpRSmH6wsbG6AZJKcur0BdIsxfOcwrTb+BJ5gcvKygZaKzzXwXZc7rn/Meanx9lu9bAdQ1e1bUUcpeQIkihBW5osTonDmFIQGFP2OCJKjKiMbWu0ZfoktWXok7q4LkfHUBaVln6vh+cF5rgUdEwhjNCTkBKtTDXTdmyiMOZLZy7wC4+c5k9+4rW4julhjaKYd/325/jgF5/kD//w9ykFNX7qX/8cv/2al+GXXeJogLYUylLk5LRbbVzXIYrMepMkxdIKBGilCyntzDwfLEjjIeGwhyDh7NnTNMcnyFJzPHJMYuHrDzzK/NwMUmqi0HymLKOIm8QR09PjzE6PUa6VQMHU+BjHjx4yc4IU1OoVOtttVlfW6PUGfOzv7+Spc+e58chBtNRUKxVaWy1KZQOkkiwFjGBWb9CnXC6TpKnp+azUed3kJDcGDj/3/j/jxXfcyi//H+/lw3ee4vc/cS9fePQCr791liRJCHyHp54+w8z0JN1OD8+xuXVC8f6nF/n06TXeMDvJ333+PibrVWp1j431LaanmgRBQBTGxHGI0or+MMQv+QyHEVNTY9x18lGOLcyRJCnhIOGe+x7j5JMXmBov4XsmGbF4aY2J8Sb9fh+tNHGUkqYZfuBhac3axgZRFKK1SVpprUjTmG6vx/TUpBH0kilxOkApBykVJ77+GFMTDTa3tqlWAh5/6iwTY3U8z6NZrzAxViOL4VNfvY+bjx5ACfN8PXXmEuXALap1Dk+cX2J2rMlYo0S328dxLHRBuc6yvPAGzCCHNIZP/P19nF26xIG5SdI4otfr0en3mJiaQnJ1NUmMEqLiitc1hrjG3/uNOZ1x4PVvRIhdFbhn+Q5QKI2y0/c22p3R+yPxEFOEkzsqibtVsUevNC3m/dwIqAghyJJkR81SFn6fo3gjL1pV8ixD25YBa1cdLzPy4jkyShgbSf58B9js7G8Rl+w5js8I4HZVqDDPKVH0a109nnsy/9rANN/751XASVz+p4ip8jxHKrXznCQHpRRKabI0vap6lueiaKMR1/zteXY5+b7z+/c5pyMwf+XvuVb4O1Iu3y0M8/8WcCeF3HntG2zvGt8Cd8/zyHZV7q6jRnZVxutZl3+OYO16h8nKmGrfqGKXpOku+f9n7//75u/Vfht5lq0U+5mlCb1ewo//+Lv53u/9HqRRxi0Ue4sH9hX1UfMb965uP3CX79LwTNOUt771B/m3VcXLp8co5gv2HI0MkijGUorTT5/l1NkLaJFzbGGW6elJJsabWL5PnEm0lPS6fbRSpEnGcBhy04EpwjBidbNFs15maqxGqVyi1xuYADxNubSyxtREEyGM/cFffeEebj44awRSpKTd7vGiO45h25p+b8DGxjblckC300VISakcsLqywZNnFrnviac5PDtFv9cDAZVKmXanRxD4VCtlzl9YoVYtMzU9jus5lMol4ihCCkGr1eHA/BSH5ibQtm36GJTFF+59mH53SJbG3P3IExw7OE/Zd2nUKxxbmEQqSOKYPBcgc4KSSxrn1KpV4jAiKBm/qlK1Qqnkk+YJUWS84BzPYWurxfZ2j2q1SpJmRGGEVoqVlQ2aVZ+JqTpRHOHYLpVyCWSOZWvyPCMaJgXYN/uQxglLy+scPTCNG5iKjW1ZSCkI+6GhvglJOAy56+sPc/jAHGEY89S5JY4dmOXpM+dJoohmo0YcR4hcsrKySZZmPH12kbGiT+bC+RXufuhxFqYnCgBls7i4jG1ZeIFHr9tndXmDj33+fr7thTfsBAa2axsfuww21rdwXbNvShvfpnPnVlhYmDV9NoVsdzZSzRWm0mbZFp7rFJliwcrqBt3ugLzwR7vrwSc4dmDGAAilyNIcy3aZGmvQ6/cIhyFKKj7++Xt55NQiUzVDnXRci0azhkCTRDFZltPrDmg2awgEFy+sUq1XyLKMbq+P51hoKRiEEY5t1EezzFQ2LFtTLgdcvLhGvW4sB05fWKHX67EwP4OyJFvb5joWQpKmJhHQ6xkF0afPLbJwYIbzFy4xMTVGuRSgLblDK08zA5AsWxMnMVopBoMhqvjNmxtbVKsV8tzQOLWlisSaCWCiKCQc9EccH373kVN8arPLL735GGkYUmtUiJKYt7/vk9x26+380R/8Lv/nL72PC5/6NL/wmtchZcRwODTPGaXZ3GjheT62bTEyTJdS7VQUkzhhRO/O8uLZLDKUEly6tEycxCwcOkCvY9QopTZVUq01kxNN+oOhEUDKzf0hhKDXG5DnxgsvCocMwyFeycX1DDXb81yCwEcp6PdN72ilXOXQ3Bzz05PUGlUkMAxDI/gjBEJppFAoJdjc3KJWq6EtY9Vx8eISAigFAQenpvm+G27gFeUqb//3v8r8zDQvuvVG3vD6N/LTv/VBkrDN7UdmEQI2N9uFv+Ym8/NTvOHFR7n9YJl/+fH7+OlvfxF+ySfNYnzfJY5jlpfX8T2H9a0WQeAzAip5nkOacdOxgwUrQUAODzxxljTPuf3GeaQUXFxcwdKKcjlgfaNFuVwiDGM+eef9TDeraG2qdJVqCcuyjMo1EpGb3rs0MT6uyjL9uL4XoJRirF5B2xrPdeh2e8xMT3L27BKnz19iOAypVksMhwk3HJxCa2Gqlmst1rbajNUrlCo+llIcnBxjerLBYDBAK2kq8JhAOgO0lrTbXVzXJUtSJpsVbrnpIFmeo7VkrFGi3+/THJ/YM59dnkbFc0NcO7Pncx9zlQo/8L7f5W1v+37jYZpfm6q4e4zm5itZT7vn7BFtzgj27ONdt2eHzbJpkpBLw8bI03REgivAk7hMxTPogTQxpva70cjefbpcURo9L0Z/C7hsoC7EdfXn7YkphCjWkV+jSvrNBXf7tfwU/2VU2XerkatRZhvIxTOeh5HxuRDP0Mt2HdW4/X7LNUPG/VQ2r7HoPzS4u57xLXD3PI9/MHB3Heu+nrEb3I3uht3+d/+fAXd5bgL0NEXkFm9+8/ewvr5BqeQbcHcZfX3D4C4rsnibmy3e+c538YHXvrhIHYk9wG7HfiLKOHv6AisrqwzDPrfduIA3PoVw3WILgjxOSaMEkSVopUiSnEF/SBqnfPaer5OlKa1un4XpCR569BS9Tp+g5ON4NmEYkeUZy+ubCIxv1A1zk5RLAXZBzarXykgp6PX6ZFnG2FiDKEwYhgPq9SppkuH5PrVKmUeevsgT5y6yMNVkbmaCMEko18pIqVhb3WRyYoy//fI93Hxklqif0esMaHe7xHHExGSdTqdLlqa4vsd2p4/retz/yCnWtnq8/I4jxq+pXsVxbNI0obW5je86/LdP3s2R6TlcJ0Dkkl6vhxIWge+xvrlBuVznoa9fwNYOru+jLBshbcIww3UFlXKVlUsbhIMIy7GxfSPZPD09gbIEjmOhlE3Yj9C2pNvtopRkY6PDn3/mLu44dsgsIwXVaokoSSlVTA+UUopwYPrNwkEIWvKZr5zgJTceY9AfUGvUODgxhm1bVEoe9VqZNI4ZDPqUSiUGhdhKmiRUqyWSJMazbKabddZaLUpVH9uzqHgeruewvd1FIjn15BJEOTfftECOkZeOo9gEkkguLi4zMdUAIUiThDTLqPg1Hn/iLOMTdbQj6fd7xbEyIiBJAU6GgxBL2eSA73ooqfB9D9dxuWF2mjiKkUKwudkm8AL+8599jtuOz+O4knLJJx4mHJ2b4UW3Heb0+SUc26JarZDlcO7pS/T7IWRQrZQRQrK12eHM+RUWDkzR6nSpVgOkEHiOTblaA8DxLLZa21iW4OyFFZqNGoHvsbqyQblcpt8d8IJbjoPKGCZGdERkCqHVzvNKIAgCj7nJMdI8Z2KiQZblpHlaxGQCMnP/K61Js8RYKmQJaWaMyAXgeT7bW53CgF7R2t7GdW2iKDRWB3mGowUPXjjPTz98lt/8qTfyigM+D953L5MTVfr9Dj/xxyd41zvfxD95wwv5sXf/DD/cKPGaG48xHPbxPBvH9rAtjySRuI7PhbOXKFeNgJBju2RJzrAXonRGFMbkmcnqWlrS63bJYkOXLXklvFKVKBG4jk2WZVhakeYJ/X4Xv+QQuC5SGr8tz3PNsQ9cyI0YjVVQp5VlkeapqXgmCbZj0e91qVQDLpxZxrYcLNulVC4b9UzXIkwSLMdha7NNUCob+llm+v1WV9YYDEK0UjQbNSqVMlIaz85Op4vWih+45VY+8tnPcOLMOaJhl9/+j+/Fq03xi//XZ/nLrzzNO77zBXzy03fT74ccODBFlmaUyz7fedsEP/O5+wk7bRYcj27X+Mr1Bz3q9RKVoGR6e8Eot0rJo0+col6pgRDYjs12u8MdNx1kslmm2TDJpImpZhEoKoSAOE7xvYATD59mqlmi2azi+R5xnCKkIhzEKKX55Cfv56GnzvCiFxwygWuqsCxThSUzth/kOZZtkWY5aZoTBAFLK5scP34YoSSDbp9KzUdZgsFggEAyNzVGqeJz8cIqMhP4rsXF5UUmxydwHXNvp4X9UVb0WlmWQkrBcDikXPZBGWVfRYYg4aEnn6JemsTx1T49ZPt7g11rXG9c8pFzl3jb276/qMA9t29fD7gbJcKuVRUcAaI8y8hHbKrMqNLuKILuWrERIzHJMqUUjGyYimT73grc5e/mwlQAd9hFxeeyKMRdn7jI5f2RQhiV3l2Uwmst+2zjGwV3aZ4jESgl99hK5ezu6xsBv2sIn0iDAkf+fs+0G98Cd/uPb4G753lkafreES3xeka+6/VchtznwXM9QxRVuSsNMo3p5+V1jzzyRr9pP1NyuIKKya6EzTe0d89h/4v9Gz0wpFI7Dbxg3ldKk2UZ5y6cxnEUpYqH0iPvmtFDZm9D8CjZZHpaM6QwSoW7j9LoNwkETz95ml/72Z/nd155Bzu6YSIhl6aqY9sWeZRy4sQjfObuh+kNQ245dpipyUmQNlmSFuxOYSqkWqFsDbniwvkVHEvziS+d4ND0GL5lc3B2EvKMXq/P/Ow45ZLH3Y8+Rm97yPTkBJ/7yiNM1evMH5wkGsY4lovneaRpRqoS1lfXCQKPNMkoVSukWcYwjGg2a8RRysZmmyAISJKU44emOX5oHqTCcY2PnlbKgJh6mSiKOL4wh1SaPNc88MjTHD40vaMoGEYxOrCQ0kILha0VgS1ZmK4TVDzqjQAhUzY3Ntja3GJiqk6WC44vHEJphbRyBuEA16rw8MnTfPG+k7z0juNAThQOsG1BnuakcYwUOd3ONkLmO/1K1VqJaDgkzzLKJZ80jZG5oNfu49gabBPkIASWZVOpljg83cDxLNI0oT+I0NoyEulS0+8ODaASgiiKCMo+SmpmGnWElNQbddPzpDWWpTh9+jzVUoDtuQhtMQhDgoqP4zskaYTUAm1r7jnxFDfffIh6s8Lq8gaBFyBtiSqON3nOwUPTHD9+AEROnguk1KQJXLi4zNhYDd+zESJjOBhi2w5a2diuwg9stJakSYZEYmtJliT0ux2SaIhraSPQoXK0zhkMeriOxtIeTz55kSiJGZ8cIxyE5FlMFA4IbM1Eo4JlG9qktBRO4NDdHlBvVjlzaQVLKKqBzyfvfJCzy2tsdTocOzyD5Vq0220WNzY5PDeFY2nWVrcoVyogJAVjBykUnudguxaOYxHGCdEwIfA8Hnz0SW47vkCa5mhL0Wl3qdXKbG5sYQufLMrpbLWJQnOOrJJLMhiytblJOXANhbLw0kuiGAAtBXkak6YhlixhOzZhGGNZFkmU4NgOcTpESAvbLZEXvZYqiVhcXOY/P7nIx9oRH3jPG7EcG/KUW++4lWqzyf/y+/fwK+/7WaSe5i9/7Q/5D69/E+P1caS2sbyALHMQUpuqj4A0iRkbqyOVUelM0rS4Ri1DFxMSlLl24jQ1lNnAMcU8qU3/I4IkNYIs4aCDEuA5LnmmSGVEp7VBlkVYtiDNYvrDLsNwYABaGOP5AdEwQmKUatM0I4kTLNtCWRZxGPPfv/JVbr5hAfKUqN/Htl3DBlhdx7Ut4nCIozVLl1ao18oMhgPGxhtcvLhMvdGg1xsQRQl2oU6bZjmZErz2yDFe4gV8x8Qkb3/fb7K81uLnf/rfMOx1eff7/piXveAQx+dqNMcmEEKwvLxGs9HkDbct8OKXHeeHPnIXxwPNdDlgfHwMckUmTY+k57rEYWxESdIc39fYliYOYy4trtPrDGk2m2hHoSzXCKHEqRFQSYtEJxl33HwIx7YLIRRz3rStOXv+IvV6mRuOTnPj4ZmCqZbT2txGScXG5ha2pXAcG6U1Fy8s4yqNbQlsSzI/M0N7s8PpM2cZtAfU6zXy3CT5Li5tsDA/g3YEOSn1RhXX9ykFZZQDSWYqSe12F9vWuI5Na6OF69okcUJQCkjiFFFUnqWUoCVnl5dp+gF+pbQLIOwO4gs63N4JeP95edff+T7vXTk+cXGV73/Lm/fM63tETvYRHhH7VLpGFSGBEf0gy3daS0b7keY2GQm5iJC5aR+IhSIXklwq0hySLCMTErtI3JLnpCIfsQ2LmCPHtvROv7rc3WazixqYpamxJxgdjFEVNB9pIVz+PfuN3b99N/3wql5/CpAq2VU5e+ZocvcxvjzyfV8mNrosUHeVWEvx3SxLEeIyFVPs+t/ORcQuGm0OSskdRUgxAqly73cvr6NYJksLCueV0ete0Hfla/cY0TZHQHsnXi0SnnGWIqUiyRKENEyXK4HdjqL98wj4Rm05UqriOIlrvr6llvk8jyxN3/sPUbl6NiGT57ACYJ8H7xV3ww6IKj5+9tzO9Vchv+GRX36A7aYDwO5ev5xSqYRb+LCNMmvXVAG7JljeNdmNHjbk/Ni//Ff8zitfsLPOPB8ZnJr9U0Lw5a/eTy3wWN7o8Lpvu91UD5KMfn+I0grbMhl2rTTDYWgmlDjjwqVVLK3o9gcszIyjpKJcLjHWrKKkpNGoIpTk3KUVXv6CW8iznHsfP838eI1Go0JSCHo8deoCQuRUG2UqgU+em+y1EIKnTp1naqLJ1noLqUyztB94SCG4uLRMo1am2+tTKvkMhyGdTs8Y5ypZZOsU6+ub5IlRksvyBN93ybLMCJXUyojCy2vQH1Crlsy+JRBFCZVKFdd20ELhuB7b7R5BqTDAdi0+c8/9HJ6dQQnBUxcvMTdeMzLkcUqr02NivIHjuQiRoy0jspImGY7tGPEPW4Mwpr3lcok8x1glYB7WeZ5jaQ2YPi3bspFKGY+yNEUVGVyjggpWcdwsW7Ox3mLQHyCEkS83PV0pcZqQJSnkxixWW5rBIEQqI1E/7A/xPBctzXYrnoflaJA5WiocbSOVZNAd4LpOcW2Z9aQY+srp0xdZXFrlCw8/ye1H53E8iyRNUFoVrCFjS2FZpq9MKUkSJ8Rhhm07bKy38BwXy3Lp92Js30LmOe3tHqVSiTQVrK1vs9Laolr28QLX9JZZmvGGsQ3QlmRjo4XnubTbPTzbQVmKA3PTjDWqgOCmo/PMj9WYnWgUamQ5lUqJw/MzhGGEZVumjyw39/Bjj59hZnqCJE3YbrXRWrK+sU2jZoQ/tKWoVUz/3JfufYSF2QlOnjrD9ESTLM1YWlmlXPY4fXaR+bkpo5SnLOKhORa2Y9Pt9vA8F6Uk0tKmty9JQAi0lmQW5DIlzoZIKweZsr65TqVifpPJ3BslynDYJ8ty/rbT44/+9etJk5RBr4/r+mjL5m2/8iluPHYDb/qnb+I9//bn+fff8Xp6nS6OYxs6ltbmWsxNtWXQHRAEgVHoNO1/pGliQLSU5EUflaHImuvTtk3VXuRq5+mkbb2T8MpS0z8aRTEUPUiu4xbUeyPS5PlBIaRkm+dRaiqXObm5hrUqaKKwtb5Fo15nvFohSRLSJCFOErRloaTEsjTVStlQBS1NOSgRxSGe7zEYhFxYWibPUuq1KkuXVgjDEM9z6XR6KCVZW13n4SdPcWh+lrfdfDNPPvog5wqBpcXzF1jsaxY3e7zhxUfpdLv83We/wsLsBOEwZHVlnR/9nm/jPR/9Cm8aryOFEYeK09RQJBFoS/Phz3yFV774NlzXIhzGbG21Ob20yvR4A99zaXe7RMOIra1tttsdhBQEQUCaZnzurgc5emCaaBjt3N8XL67S7fSYnZ1CCkUaG8XLLDNG9p5nekizLKFUMusxithi5/evrG3gOB6WZTEc9lmYn0FqBVIShhGTY3WT/Cl7RR9hWlwPJolpWzZCCDzXnNtut0+lUiJN0+K5Jc2UKU0XpJkzU84vLnP7TcfJ9gSqu8tg+2C55wDunum90bitZDP+2tftv65rVA3367PaPaQwwGFP5WxHldpkj6TSBojkCZIMSYYWOVJkaJmTZoJRWz7icgAtR/uFgB2Bld2xwd4dGeGwLM9NlS8zlM6RQfozjd39ZXt+4+5e/91bFCDy5xgRXkcG/tpUzKu/KPatHnIFuCvqlrJgSIlRsYHnVsHdW6IdfemZv3PV7uy/fJ4XVdzi2F9LZXX3ep5PcDfqV0Tkz3qevgXunufxDwXuVGEa/o1W7kY5j1EFb/f7OxU4OapypZdvyGus7x8b3BmxlL0PobzIvji2Y6pyyvR7PJM0Mvv0HRRrvLzZ4t+3vPWf8YFXv2jX56OJxEwwg3aXM0+fZaZZZXa8wbFDB7nzxElsKRlr1pFCMhiEpEmGpTTtVoc7T5zkxMNnuP34AtVSQKUU0O30sZSmXK3wpa89wlPnl5mZbFCulpFKUw888lywsrKJ7ygOzk+iRz12213m5yZxPYcwjhFCo7SmtdUmSWK0gFLg4hSeWNpSSCUMtXK8YeiFlYAkNnL9SgvSKEIrwerqBlLkTIzXGYYJn77nIaqBxcxk03iclUvEYWzUfsmBtBAeEJx44DRHDx9ACMnGeptmo8nqpQ7lahXtpPgVByEUh2dmUDonTiJe84rbsZRROKyN12mO1dhuGxW9LDdZUsfyWN9o4bg2ypJsbG3heT6WbTEYhORQCJPkaMvB9AJANIyJo4QoSpDIgkJjtqstSZ4KvvbQ46RxjO+5hWy5RRD4bLXaOI5NHCWEw5j11U1KpcBUTDOThLEci5OPn6NRrfLZLz/Igw9fYOniBnOTk/gVB8e3d64DLRWt9VYhjwxSKyzfJhVZcf3llMs+E2NVXnjDQdK7/KwAACAASURBVLRtjomQknarSxhGlCsl0tT0IkppVB/jJCHwjTLn1x85jcwE9XqDv//S/fgWdDo9KqUSUmmiKGdjs0OY9jgwO4ntO8RJilPyWbywTLnskxQeZHFiPAiVlPzV577KTYfmWFleR0rB4sVLTM+MUS57rKyuMTFuBFSyTPDl+x6m6nsFVdpkhH3PNYFPMcknSYJIQEsjjpQDftlHOxYHJscYhiGNShnX8wjDkLGppjk+gc9d958kGoS4WrLZMj15yjZG3UpJ2q02nu+SJimjCFbbNklq09/uo1HYQhN2ImxpTOFzBGkSI8iJen38aplfv3ieX/nh78CyLLRSeL5HKgQ/8L5P86pXfTs/87M/zTvf+b/ywe/7PgR5IYhjEnQmB5SQpanxw/vaw5w8eZpGuUpQcUmiCKAQglLkWdG3IgRaWySF+IPCob3VYXOtRZImxs4D6G538D0XIcAP/OIxJoiGMa7rGbBnWeRFoibPM0PpS80MkWZG7AYgHEYIJEmSkaUJ9WYd13dxfQetNUKZvrJSpYSQgtW1dTzP4+z5iyil8V0PKS1mZ6YpB8aWodmoUSmXuHjxEhPjDdIUKtUKhw/MEScJYRTy0qNHWDt5kv/ypTv5T7/6q/zzt7+V2blD/Pj73s/3vvwgh+YnaNSrVMtlBr0eTuDyttfewo9+9ASvLtksLa/QbDYhh2E/JI4SPK2olktcPLfKhcV1Dh6YxrFMpr5c8bC1VfSZSiYmmmhl/B6zNOPmYwvYro1lm2SBEgrXcfnYF+7nlqML/MXHv8StN8ybXtdCzEQqyWAwNMJSWc7Dj50ijWMcx8ZzXdzAISj5bKy3ubi4yqnlJY4cmUdKSTiMeOTxs0w3x+h1+qR5zuZGm0a9xr1ff4LJsQb9boxlmb7gwWCAtjW2rcmznH5/gOe5xFHCysoGnu+gpKET53nKsD9ApRK3HFye53cqNewfOH+TwF3d8/iNL36NV77yZcBe4DYSQrkK3O0TVOyJOfIRmCuA0U4/X8IIQaS5IkWgMoHx5jTXdZqaakmqNaPsikIii/8fxQc7CuBX0DJ37+tIsyAXGCfEQtRqVM19NlBwveBuZ5+eQ9CVj0qR+RUAcZ/xfIE7KSVpZiqDUl32GLwecCel2lM1fa7jmuAOk2SMUiOapAtF5Wdaz/MO7oA8fXal1m+Bu+d5JM/BCuHKoQovuOsBQjsWB9cJ7nbTFPJiPfvdrlqpnYfiyHPvquTdLmonmGRQVjxUn5kU8I2PkRxxnl22KbicYdm9xcu/MtvlfzeyN9j9cB3RH0YqoaPs917PnZG/i1n2LW/5Af701S/eoSRoS5tAKzdS0+vL63z5/oeZrFaYm5kwD3jLZX6qSbNphAVycj7z5fs5MDlGnmY8eXaRqu/RC0NKWhfm5D0OH5zlc3c9wI1HFwgHIc1aicBzsG2NZWuGwyGf+PL93HxkntnJMeIs4YGTp/Ftm5X1LWrVEmmWMQgjfM9j5dIa5y6tcOjANI5tGW8upVleWefhU2c5NDeN6zssLa2glSSJI5RSaFvz1KnzzEyPMRgM8XynUNGT9Dohyxsb3HR4lkolYHurbYRObIdBf2D2MwoplQOiODbKcCWXOI3xPJtHHjvFuTMbzM400U7B308NxdLQPcC2LQb9IZBj+66R49eacBhiadMvYpQxI4KSR6/XQwqB6zpFJdfQfNbXW5TKJYQsjH2F6WFbWV5ncnKMNM3YWN8EAY+fOU/gOXiux+zUBOWSb4zOLU0cGwEKP/A4f2GZ6elJhoOQcBCyurrJnQ8+xpG5SVzfZWN9k8MHD5DGCQ88doZX3nEDk2NVLKX5xF33cMvRg2RZzokHH6fiu2RpTrc/QCmJ69mMGBlJYYUhimsRwHYt+r0BrudiWxZay8J43SdLMlpb21SrZcJhhOtZBtRLCjsDyUSjxGAwoNmoghDYrks4jDl9domXvfAGbMcmTlK0YxNHEb5jF8b3ZjIOggBZVPVuOTLPdqtjepWKO8lxrAIMa9IkLqwqUgLbwvdcQzfE0KniyFAhF5dWSZOEwXDI0+cucWBuCqkEp89exLI0WZIRR5ExoF/bpNmso5VC5DaLF1Ypl0scOTSDbYO2UiqVCpbjkAF2oRCaJglS60JMpri/hSCLUgJXEvV7yCwhGoY8feYC41MTphIjJdHQ2G+84ysP8zs/8SbyLKXfGxQCG/DP/9NneM2rv503vum1vOc9P8N//c7vQCmb4jSSJin9/gCtbXIysjTF8zwOTM9w9Mgh7rvvUaZnxwiHQwNAY6PQGUcJrusSDkO2tztG5KSoVucZrG1sMDs3RZyECCl2RGG0NmI4WZEFTuIIpQW5yHeqS+SGdthpt/F8o5grpVHz09pUrPu9Aa7r4npGkMUkS2KUpbFtG8sx1+LypRXGxxt0ez1mpqZwHZel5TWajYbxE0tTWtttojAEYfoxNzY2CPzAqPbGMUHJx/hVWoy5Zf7n22/no//lD/i1j32cGw/N8M53/TC/91df4a+++ABvvGOWs+eWmJocJxc5aZLwmhub/NBHv8YPHlvg/OIakxNN8jzn4uIK0xPmPl9dbeE6FpVyQKnk4TgWX/36SQ7OTRufzY0tej0Dji5eWqVc8ilXSwhhehaVVnTbfbqdHhutNodmpzgyN43SRgRLCMXG5jZZmpJmKaVyiTTN8CyLqckx1tc3sSyN0pKMDK2M9+aLbjtKnKWo4pwnYUwSpcRpRqvb49Jai4W5SSbH6zx15iJ3nziNFBl+YFEqG4P5NMsgyyiVfJaWVhkOIvIcfN88D8kz1tc3sG3Fg4+f49jRhaL3qfB7u2IGv1JA44qi0dXxwT7vXV7vZVXE3/rKfYUlwm5QWczNRSAx+tcwiS6ve/SSUhjVYWH239DY8qK6rQqhmwzPDdhcb5nqe5pQKjfYbHVASGw3IBcaZTlkcUi/16ff7eLaNpZWWFoRJ1EBzkySzWxNFAlwidS7Kkm7qKKjI6mkeFZAMAK4owR0lu+lEV4rUswNMnpObK49dMf9Pi+2I+QzLXMtjG9O1n502suVTrEXvBbVstFyo7Eb7I/e3uOrd7Xd8Z6xh34pxA6YvNbhvxxLih2mxDN5JH5DY1StvMZxzfci+au2tSeBoKSZh9MMy/pWz93zOp6Lz93ukRfZ6OdQHd8zjI/h9cOn/b6x+xIb2R48p36+fO/D67lmpP4fjWfYt70Tw/77Pir7723KzXcyP0YNPi8A31Wb5jd+/beJ/+Yv+Fe33whcbtROE1PdtF2be+9+lLnpcW4+dMDI5isLtE2WJkUvWkiWJlxaXieMhqRpwvRkg/FmlW63hxAZT5xd4ZYbDvDok2fpdfvUygGVkk/g2XR6feZnxg2wTlK2uz1eePNRsiwnKHs4rubQ3BxjYzX63R5JmlIqeZw6e4mKZ1MuB0yNN001wLJIM+h226y3tpmo16jVK4RhgiDdsVMgNwHoWKNCu9OjUjNVQ1Fk3/Isp+Ta2JbEdx063T6Dfki1XqE7HKCUAQ3adhFYSJGzub2NF5iqTaUccPcTT+Bpia0dHNdHakGv30VmGtuyAcH2dhtLS5IULK2RSCypyJKUYW9AkmW4gQmYz51fYXJiYof2oZQ2lciq8TvL8ow0KZQ2HYtqtUSWJihL0ul0qVbLjFWreK5LlhnlOctSuJ6xanBdh5yUjY1t5uemiMKEcBBy4uFT3HRsgTROmZxsgsjpdjp4rgfk3Hhomk/ffR+LG+tMNUu85KYjrK+1cAOfqckmbtnQ1yamxgydSho6UJYk3P3Vx5mbGcf3XHIpsFwHKTI2NrdxLNPzZC70DEsZYYtKpcKgH+J6Pr1+h5XVDRYOzFCtlMmynGqtZMQYlOmVdFyb9ZVVbr/5IEkuSJOMpcUVGpWAaDCk1+/T6/eNiXqRzEBIhBIMB0Ncx2ZxaZVSJWBzs82F5VUmJprYheBDjumpGwyGTEw22drcxvcNHS3PM546dZ6xRo1qrcJWq02S5YyN1bi4tMzRIwcgztla28YLbGzbouQFSCWJohhXQ6nsoSxrh0YqlcBxXTIpyaVE5BlJOCQc9BlGphdJagsQZEJguwnLly5QqVoMwi6JBLfkUglKKCkLRU3Ju772GL/1zpdhKUN5Q0BGxlvf9wmOHD7M//Zv3sNPvefn+I0XvcT0SObGky5NUkON9D2QwihKyqL6KiRbGy3OLy5z7MgBlNKE/RAQDPsRd594kHarzeTkOEGpZALfLAeRIZVgcnLMUK6l2AHcIiuAc5KQk5GkeaEiq8kyEEqhLRuRC9rtbfySqUyL3ARQuuhdzgHL0djOZa+8OIkLldottGXAq+3YNMeaKFV4R0nFhz7+OQ7PzRJUyiglaW1u4nsO1UqFs+cv0KzXCjXebdbXNxkbaxgqaZzR6w6pVku4voeMM37sFS/n333kbzj9xBmqls1P/uS7efd//ACuA4enG/Tb24SDmKnJSd7+6lv4xTsf4i1HjxKHMeEgolIpGYp2kjI+XmdivMEH/vZLHJkZp9FsMNWoo7SiWisRhiHNRo1eZ8jYeJV6vcL66iblirHFUFry+JNnGB9vcNPRBWzH4kOfvpNjCxMIIcmS3PTmSQOqcqERQKkcsLm+RbNeRSrN8to69UYFbTmmwprFCK1IhylfPXGSbidkbn6aj975EL1+DyUFs5MNHj91ngfOnGeqXuHGo7PUmj5JEqGVodDqos+v0ahSDgIEgqDik2c5i4vLlAObRrVMPEipNWuFKMYVQftOUH2NCs4uUHEtBs9Vb+4CIe3WNi/93u/eb2lGvX6jZa/sshqNdFd/mih4IqMYQWtV0Fd9iBVlx6d14Swf+28f4PTDD/DZv/kwX/7vn+BX//d/R3dlkSfuv5dXvfZ1/MJP/ST/45u/G+0pBsMeSR6ZKn+hSzBKBgtpqM4jYLxTxdu1pyNv492J72spZI5Cm7SwMRFyLwx4pjKAENcGd1nxzQJaX3Mdo/XsmGpfC4SIy3Hfrm/uWcc11v6M2853vfbuk/l3t3XV9VQds13n5NliVKHkjv7EN3sIaQ5cml82Tb/msvtI+V0ZuxpmgECrb1Xuntdx/eDO9FpcN7jb5Td3Xdvb570rwd3InPzZ1r2b2jla/h8T3GVZerkX8Vq0kSsyg+Z72Q4tzKw63/G5urxZU9nTf/dhXjQzjck87lLXEsa64Ny5JY4emEOIHNuxEFpjuw5RkmFZiixNTHZfmIrGeLXMzOQYWZ7x2NPnGG9UueHwPE+dWaLX7TNRr9Dq9rjl2AKWpTl1fonbbz7CxkaLciXg4tIKCwszbBXVGcc1Ihd5ahQiXVtTb1Q5c26J48ePMOh22Gy1qZQDBmHE+YsrlMoBjiWYmmxSLhvj3E67R71mKn7b2x3Ts5UkdLp9KrUKYMyaAba3e9QqRmFOK3OcatUyZLC+1abRrJDmKWGUIaWitdU11LQd+yBFEmW8+PbDNBs12i3jJxXFpu/O1n4xOYLrGoAmtMbSmvZWB9vSOI5Ft9Ol3KxiWYZe1qjXIJcIeZkOkqVmgkuTFKGMCMKTT53lk3fdx8HJMaSUbG1tMz7RQElDYY2ihI9/8V5uOjRfqP1Jnjh1jvGxOlmeEvgeeZrTbnUJSgF3P/AUYxWfex+/wENPn2Ws7HHwwBRhZOhyYRRyw8I0d9x4iHLJpbXRZmJyjFwq/uyTX+T24wdJooS//cLdHJhsYtsW7XaHOI55/IlL1Eou2lKk5CaoyTN83yMOE1zXodcboLVAZIrl5XXWN7cplwLufeAxDs1Pk2fguT6f/PsTHDkwg9ImOMkAbSuSOIY0IeoP0ZbL+cVlFuYn0VIRDof4gUe1XkYqRbvbw7aNQXqapwx7Ib7rIoQwlDPPY25uqjC/zVm6tIofeNx930myLMd3HZaW1xkfbxDHCRsbW3iOw9h4E8ip18pMTI6BgFrVgJm1lS1m56YYRgPIjdCIEIJOp0u3t4nnOSQpfPbLX2ducgLbdhgOB9ieBwLaW1s4lsL3HGzXJc8w6oqOg5CKOBR4todj+9h2CWVXKNfGkWlMnme88+5HedV3HuWH3ngHnu0wGAxJUiOi9ON/cBd/9P5f501v+C7e+rZ38CP+JK1Wh8nxcbyyqfoaL0hznyRJZkx9zRVKlmR87kv3sLbZpha4tLa3aY6NoZTm9OnzPPjEWVY2trjn4ZPMNRv4ganSSF2o8RWKdVmaIpQ0Gd3C2mFrs4XtWWjLx3NcpFBEYYq2bLKCSh5HEULmKKWJQ+NHF0UxrucSDodsb28TBD5aafI8p9frm/M8MvkuMuVxGNNpd3ZA+/raFqvrLQ4fPGAAZhjS7nRxHIexZoM8z3nq1GnGmnU2WtuMNZvGiN5xTMXZMcBxfHyMp0+f5Ydf/CJuGOT87Ic/yOrqJr/0iz/LRz7/IJ+66yFef+ssgR8wHMZo2+ZVN8/yro/ew5smG9haY1kWTz19niDwubi4AnnOWNUn8D1sxybL4RNf/BpHF6aJ44gLl9aYnZ4EkZNlGeVqQJoYqfzV5XUOHZzB9Vw67R4nnzzDd377S3Bd89yoNw2lU9sFqNfWzpyx3WqTZRl+yadU9gmjiEEv5p4TJ5HaPEP77T61UkAUpzQaNR47tcT3v/GlHJqbYjgYoLXE9yxuOXaQ/rCP45kETZ4WPndK0h+Ye7bfCymVAlCCp54+z7Ej84SDAWEU0WkPqdQqO1YVzwbu2AFS7H1vD9vl6jlYFMvt/uQTF1Z53fd9z77z9QjcjZ5P+T4CK2Dm8FGPvSwo3EIKojhmOBzysY99jE99+vN85EN/za//yq/yZ3/8e5x6/GGeeuBuLp56jN7GMmF7i0FrhcXTT/B7v/G7pGnChz78lyjXojHe4PyF8/hemccee4zJiQnjxSp3C4wUJcYRuNsFDHaAwq6w5dnA3SguvNIH7xsFd/mznJsr1/Ns4K4oX15d0X3WbTxbfLh/imC0OsMoo9j2s/fEjUaWZSjLMjH3s/z+3c053+x4dhSfamk947mE5wDuCiaboe3rfxRwJ/J9gvH/P44wir6pP3T3qc2K/06zzKjyce0OsevpKNsj3rtLHXO/dez+/JsxRvTK3et+Lqbnu783ElMZye2OssVZcROP/FWUknsecLtpE5d3QuxZb56ZieUX3vvLnHzkEf7klS8opORzcoVRpotSLpy7xKWNTQ4dmKLeGIM8I45TbMcyvlTFloQQRGGEVIJ7HniMyWaFhbkZ8kxw6tRFjh6e4f5Hn+Sltx/n5JNPszA1w3AYoxxF4Ln0egPOLa7y4hfeiLYshoMhTuASDobkBeU0TVL+4tP3YCnJP3vzayHPef9ff45/8vLb8H2NH/imQrDVwXNdA9jKPp5nc/78EvPz04bG2RsQBMYgmtys13YNNS+KY0oln3MXlmjUy9g6II5DfE8yHEZYlkMubD78kXv5H77rOKVSiT/58Jd56z99GZW6RxzGDKOIwKuwuLjCzEIdhaa31Wdtuc39p86R6Yjvf+0r6A6HlCsllpbWWFrZ5CUvvJksz7jznod4ya03oS0LIU3lIqeY6DFCCiZ7PWB9fZux8XHSRLC6tsX4RJN+t08QuIRRSLfbpzleIwxDvnriCW47dhDHtkyGPsvodvq4noOURXAhJOfOXmJivIrxxDYgYxgOKVfLUCQZwjDibz5/D+948xtIckE06BEEDq3NbUrlMpeW1hmfbLJ4cZlBP2JivE5jssGwMyAMI1JSavUKOUa+P+wldDvGd9Av+yilcFxTdYqGQ6PCpxThMGRrq0sQOEYcJgcpNGkk+NDnP8vb3/gaTj50keO3TWIJnySPeOLxJWqVgMmZOitrq0xNjBGnOcNhzF98+i5efGSGl9x2FOFaxf2RMxyGpoKZ54goIZMKXRhvO7ZNMhjSGw5xPQdt28RhTGt9m4mpcdZXNrFti6898hSvfsUdLC2vsbAww+rKCo5jMTYxTtiJ6fWHKCVwfYvt7TalUtmIe2Bkt5M05+FHTpFmGS+84xhaK1ZXlqlVyzieR5RINEkRIGUMoz5auUjhIFWEEIpBLywC+4QsB6sArKOMu1KaJEn5F199gD/6ideQZZJSqUKcGEVdsiHv+M3P8sEP/hFhnPEv3vFj/Ml3fbcBtSIlyxJDG7aKCmFmeqYfe/QJhtGQO26/mWgY4XgOSZyQJqnpkx1GKKsQh5IQdXPz7JfG6sUvu0RhyOZaixMPPY4UkuWtFvNTTb7jVS/HciCKU2Nmncdo6RFGPRyrhJSQZn2yNGU4iLAsj3a7w9hEcydQFhLCfkwYRnieixCGXiikhVICgTFTT/MIkVvmuicrZOQNPbLT6lOplciyjOVLa8zNznD3iRMcnp+nVC7hB15xHhOWl9aI45iDhw4YZluakaTJTrUkCWPCYcSFxSVuODxLt9ujUq/zY5//PH/+p3/IpZVV/qcf+EHumPX4Dz/6Pdiuy6CgbX/87kd54u5z/Mhtx7G1w+Z6B6FyJiabhW2KxrYs4jg23+t2eeSJUxxZmDXKwrEBpEHgopVFuzXgz79wD+9+y+uNh2mS8cFPfol3vvl1xOQ75tdaa/IkRVuaS4sbJGnK9Mw4WZbQ6/UpVaoM+n1818F1bba3uyAV99z/KK95xQvJM6P8/Kd//fd4js2rX3ScaqVCt92nVHZZ39hgbLxubBWSHESOtASIHJHLnWfiSFRJCIESApRFrhRZGrN96QJbWwk3f9stZOQQDsmFKujK6VXAbTSf7XAU95k/rycktt/9k3toiMaj1qiQSmlErbI8M71HUhaiZTm5MK0h4TACKU2LASlZJvGcEvffcy9/9cf/lfvvvZt+Zw3bc6k36ozVXGplh9WVcxw7eiNnF9fZaPXo9SIurbc4fGySw2WHpaU10mCGbnsTncfEyuPAoUP80I//BMduuRXb98iK6pqSFkmSIqUByGbaNMdmlCdOCgGcURwySurLXX10+wX8OwlrIfaIZe5e9irwdsWy2S7ROakKALxrG9cEcbutArKr91MKc26EFHsCzJE5uFm33NNKs+8Qokh67f79eZH8ygvArvbEftnu/rsdSq7c108vz00SPhu1NI02K3fvp/le9lwA3bOWqb8JI7+8b2l+2WZC7WPf4Dql57Gqcu3xrcrdNzj2luMvUx9HF+e1kOQ1szfPsuyoKnZ1uf3qz78pY/fEcEW26zl/j8uVmct/76KXUjTvXtmUOsqQ7VnTFaSAHH7xvb/MW0WHH7npiPlcQC5yZKrRQnLvAw8y3iwzPz2BpUzmVwiB0qZfYsSfV5YgS9MiEycYb9QZa1YJwxiRC776wOMcPzTLxtY29VqZuZkxBr3QKH3mGSurm1QrJWZmxllZ22Q4DFFKEg5CWltt4jhhMBhw38knecGxgzy2uMwLjh5AWYpbj82z2WozOT3OoB9iWbron7FpbXdo1CsM+gOqZZ9BaJTtnIJeqZTCDTzOnFvCcWwT0Ns2YWELkKU5pbLHcDBAisyolWU5vV7ILTfOkWQxWZ6xtLLN4YUZpFTEUURQcuh2eoyNN9lY2yaXpkckjhNuv/UIt92wQHurjRN4BT1M0qxX0NpMnl848Si3Hj2A7xvBiBzj9bO6soFtW7Ra25QrAYgMxzWZa9ty+NQX7+Po/AxKg+3aZHlOtVrmzJmLVCsVNIp6rWKUKvOcznaXoFQ251EVzd9CUAp8vMDn3q8/xqH5GSxH43oOShtbizRNKZVKHJoep9cd8sBDT1MpuWxsbVFvVNjY2mZisglAt9szPWWLl5ibGcfzPbSWxEnCoDfYAeTDwdBQJ22bcqWEVoo4SVHSUPuEgH6vTxiG1Bp13v93X+DgRBNLWVw4e4kv3vUIb3rlbSglsSybcs1jZXWDcjng64+c4cylVean64yP11CqoGiubVJxLL7thceJ45hef0Acmf0qlwLjo5akhrpqW2it0UqyvraBaxuRkTiOUVKipaQU+LS2eqysbTI3O0kcR2it0JbCkoJqrYxtKQa9IRtrLT70pXu5+eAM2pKURnQ4ZQCO8ZkDLSQ33nAYkYe029to/X+z997Rkp3lme/v+3ZOVXVyPn06d6sltRKIbIIxYQhmbDDGYEw2vtf2gMN1vPaaO/ZcJ5zwOI4xDGCCDQgQoARIQlKj0FJLLanVOffJlcPO88dXVX1OByR5Lr73rsXudVafU1W7ateu2nu/z/s87/Mop9ROFCmb/TRFI6O6uoTUVKFt2hZhuwk5dMJIFSNSyRAFyqZbahKRCc6dXeKVX7yFT/z8qykUinieT63S4qtfv5udOzbw0392K3/xkd/F9Yq846ffzydf/4buOSem2WhiuzaGrs5JaZ6rMHhDZ6AYMD4+prYljBAITNPsFtNK4phlCtBFUcKhx4/ypW99hycPHuXaq3eomcEsJyh6RGHEUCng6u2bOH7mLJu3zBJGKtS+1WijSwchVZYfuaZObiInjjMcxwcpsSxLNe+SpG/mQg6u66pGWc+9TctZWVaxKmQJrWaNdjvGstW+7nTD7XXdwLa7Rh+ttsq0zHJGBgdxPFcFyEvBqZOncWyLoeFBok5ElmXc/p37WF2tMDU+RhwlVFbKOI7NF2+5g+dft5ssS3FdlT/5HzbM8RP/5fc5cPAwn/nHv+L5L345f/m3H+PF12zh8OFjjAwPsWN2jGuumeWDX93Lix21TYODJRVEH0dYlkEcRyAgiVOiKKLoewSB142jyLEtk8MnTjI0VMCyDK7aOIXjWiRximma7No8q5qNEprd86thqMiDLMspFko0Gy0811EOnL4ylqmVawwMFgnbEa7jcvToWU7PrzA7PgwZlFcqFDyT51y1FdfzWFxYZd8TxxkZLDAyNki93lCZhZokzTIFsAXUqk3SNFVNH0NXEkVNo2dPr7LaUurlZQ6eWGDTlo2AUgOolO3uLPsFxW5/PKI4YgAAIABJREFUBurCIvjfCO4+/Mkv8drXvlLNzXGBwqYLIAX0owXSVGlHM9ndmDTDNU1MBHErodNs8+sf/jCf+Pv/xvKJpxj0bSbHdY6eq2AbGTMzm2g2Y4rDw+x97ADL5RZnlyr87M9/mE/efAflahM7T5iYnMawbQwtYmzQplGrszB/lvu+czc3f+mLbJyeYWRyFlNX36csz0GTJGmi4pR6DGePdeoCYoHom77k2XozuEstPfne91QldVlEyfnacB1gu3De7wKDk+85A3YJqWnv9VTV1VNUrd2g87WUEPKi17v4DVzaGEXFKvTe+3oDQE1TqhMpz693eXOV7vjNhduwZnCvPwP4DMBdmqd9eejTySv/7cv57ZBC9n8ujMOAH+Tcfd+XH4C7Z7msOQp7Tm3Pdr2nA3eKtTvP5F2w2vr3eUE3Jksz/uZv/o537dikOqDkylwrzzGQ3HPfPqYnizRbLcbHR0giutIoNQjcbndIk4SwExInEWEYYXUNPrIsx3GUOcI373uU5125BdsxmZ4cwXJs0iTmqYOnIcsZHRvkicMnmRwfodPu8MD+w2yYHMU0DU6dmMc0dErFgCxPKfoupm5w7dYNBAWPdthWsQCWoYJ0O6qAieMY8ozRkRJZmqs8sU4I5Li+QxgmuF2pUhTF1BtNioUAU1OMWLOpzEgGhwZIUfMnhmWogFzDJIwzwnaD4ZESUmpsnFbypSQFyxCUq2Vc1+G2ux9m19athFEL2zIxDAPbs4AMxzLQLYc4ijhw5CQDpQLlcpVC4DMa+PiBR61aI8szLMsiSfL+hdLxbAU0BZALLMum1QzZPjfD8mKZ4nBAmsTEcaLmvVI1H3P7nsfYuXmWNEmJopgDh09iaRZfuv0Brr1qM0kcE0UxN317D/seP86PvPh6LMdUweJxRLPVwnFsoijBMHTazRApNWamJ7BtHa0refF9FyF1slzJ32zLZPPcpHJ0DEMMUxXutmOpmSghu3ETShqWp1m3QNCUHX0cY5gqoDmMQgzT4eSZea7cOsfSYpm79j7FzESRuZlxLNvCdi1yMtzAI0sStm+Z44qtMywtK7BXrzYxTA3bMRkZKnHi5Bk0oQxq8iyn0Wji+x5JGBNHMU7gA4LH9h+iGLjkWYrr2GrWLoc4jBTjlmXsefgpXNtiaKBIaSDACxSYPXL0NINFnyRREtNGvcWOuQls20TTVHPENA2SLCUjo15roBk6TjcyQooU09Dxuq6fhmGSZim6qdMoV3BtSRi3FevdiRBdww7H9wAwLKvffc7znDROyBG84nNf5tdedS3VapXNm2botENuu+N+oiRi75kyr3/L2ykEPu/74C/xyTe8sX8u0nStL8eqlstqPpFe4ydWrIyuE3UilpdW0A0DqWkYXQOTRqNJHMf9hoZtQUaLV738uSqmQcvRTEkSpxQLPiMjw3iugyHBKdqkkca/3PwNdu/cxuHHTzE4YoMmAV3V7BKidoyUBlkOd973AO1mi/GxEZr1BlmSqrlhemZZEqkb3fxPSDoJEkGlXKY0NKgYW9vqx7v0M1O7OEE3TNrNNo7nEnYiWq02cRx3ZdRF0jQjKPhIIXjgsSdYrdaYGBrC9zx83+fEiVO02h22bZxTcRm1OlkOpmnyYzt38nf37WHnlq1kWcrv//1neOcrd3cjUBSQcSwTV4v48t5jvHTTJE8eOEm1WmNqYpQjx09SCFySWDlPZmmC66mM0DPzy4yNjNBuhtzz+JNcuWUjUaRMX+I4odFQpivk6vyj6TqWaaLrOuWVKp5jE0cxS0tV5lcqTE2OkqUpuq53TZMs5s8ukUYqDL1eb9NpdahV64yPDWIYGsXAxbINFuZX+daDB9k8NYIfuNiOhWWZSCmVVFDTWFmp4Psevu+dZ8TSXIE/0WW+0t4XPaNeWaXVjhmbHANA62W7Xgbc9aHD9yiCn42c7eP7D/ETP/Ef++ZmWjfUWnSvwz2SsAcksjRTJnQ9Vqcd8ie///s0KhUOPPEYH3j3T3Poib2IuMmW2QK1yjLbtg5jGBLL9rli140YdgFsi11X38DY1Ga27dzNzIatPPLdvUhT40uf+RS//nt/wbmVZfIk4oU3bEETEk2kmFJia4JTR46wYcsuJsZGSdKsL5fP8hwtpz8v198VUvSlpXn/dnGpHO31+1I+PTjqCyiluAisrNmNfeh3YU7bM7FiWQfu1vx1SXC3pk/+TLb/3wLuemM4irXsAelnCe7WvdYzB3drmdJ/D3C3/uYfgLt/92UtuOvrYelS71wejAFkqZLvGV0HN7qP7w3u9o4Vseb3y8WVrP1KXCpg/DLHYN+BM7/w9u5Fuk+tP817eabL2g7dMwZ2sO4AP695X0v7r2XtRB/krR8Kl329cl8mIc+f/hCCt7zl7XziJddBt0OT5Rm60Eg7MU8+dpi5mVGCoo8fBOSZpFpp4wbK6jyKIkzD4Gt3P0jJcxgaKGFalgoul1IVpkKwd/9hLE1j5/YNlCsVPM8iy1KOnz7N5tlpHNuhVm8wMTLEnQ/s58qdm5ibGuWh/YeZmRjh8UPH2bxhEoTEtCyOnZpn89w0URQRRhFJmqJLZd1vGpbK8kpTPM/FcRRj0O5E6JrEcW1c1yFJMnRDcu7sEn7gkqUpK6sVRoZLtFotKrU6pWJAHKecPL2AN6TcCKVmkaHTCVMeffIkjx09wLbZORaXKxQHHKJOzOe+vIeNU0XOLS9S8HyKrocmwHRNdCFxPZdcqMK4slLDdBzSJGdmZpw0SSgUAwSSQsFDN6UyOjFVlICQAsNU0qpms0VQ8BFSFdSddojr2Wi6wPNchNE1nZAacagiDhbml7jhmp1omuD+fU+wtFpmx+YZbvrWw7zsuTsoFL3u/ITGoOexeWYc09KpNxpYtgJglmkQRwlSatSrDR58/BCWrqnQYUvHdkxyKcmFhtQN0jjEdW0sU7lKCk0gNUmr1cF0LBqNFpZlsby0yuj4EGGrg9llUDVdMVi1ekOBRSHJkgzX88gzwY6N02R5SuC7XL1zI76v4ToBhm7Q7FTJYgOpqWMmjmJMSyeOQyzLZmW5TuCZVGt14jjlzr0HOHJqiWt2biQKI+599ABbZydJumx0mmVUlqvc9dABrtgyi+M5HD91loGBInmqQoPTJOfs4jKzU8rpL+sCLxVinTExPkKO4ODh0wyWiqoZ4hiUBgt02koamGaJKqANE03XMDRNBc8nEQvnyjiOR5ZJBJJWvYljaaRRDcu0qbdC3MCj004wdBPTskEIwjBG0w3IJXlXhRYnMWma8jP37ue//thz2H31Bnbt2kyaRpiWzpVXbmTn1g18+ckOb337W/nFD/0mn3jNa4nDWDEiUtBqNtG7c16uY7Fv/5MEno9hGJw7ew7HNtF0UzUYTFMxtl1poK7rnDp1Fomk1Wzjey6+X0JPTIJCEdP0iNuwcHKVoOjgeS5HDh2jOFAkiRMC28XSNA4cfpIrNs8xNjbI6ZOnKQyU0KVOnqckcYzIJWEn5uF9j/Oi591As95kaHgIqelYtg0iZ3llWbFusZK3ilw5KtuGR55LHMtBmjqGadLpdFSGVaak0lmujGaklMRhwr9841ts37gB17XJ8xzXc1QOZrtDHHcwDIN6vcGGiQmuv3IXWZpRqdTI85xCIcDpBttrmoHruviFQMk344S3XrGLX/r4x7lrz4N85XOf4F2//ddoSYO5sSKLi0s0Gy12bpzkdKfJN+57nNft3sHk1AiaLvFc1fDQNY1Pf/kudmyc4tCxU0xPj5HECQ/cd4hNG6cZtn3ajZBiUKRebmI4KtDatC3llijV7KRh6JSXFcjKUjUz/IV7HmalWueKTZOYlk5OV/YrJYIc13exbBPbsRguOIyPDdBstQnDECkEZxeWyJKcQ+cW2Dw1iu85uJ7LHXfvZbgUIHV1HQyCAFCOkAJBHKsMTE3TqNXb+L5LFkVd5lQyVHQJDBNp2Wr2lK6rirzgSt+T+/WvlWtuX3N/7zGXuOKry/cFt37h+Dne/OY3nWeC8vVraLKbO5epSX+pacoAKpNErTaf+aePcedtt/DAvXdzz903Mz3mU7BSPvC+t5EKKAwPsGnTTrbsej7TG3dx5PQqDz78OMfPrfLWn3oPV1x5A1+86VYWFiuYdoFf+PCH+Mm3vI29ex/m3vv2cN2VW0jDNnfff5DX/PANNMqL+JZg6ewx7vvO3VSXzjA1MYbnuGQoOauhqTBu2dt2UBJdetJqgSYkKppOzfhnlwBlsL6WX1fDrHPRpM9y9usZbY17p+gau3RXl1JevKPXfc70Wcbv5aypVhW9AnLN57+mtkNeAGhZU3edf97zgEl0ZZRizfsRXIza1kNWtZ7anxe+qfMs6vr3sXZusteUX4u2+4CvL6VV+2Ydk/Z9Wy7e52tJjLXLD8Dd93lZx9z1OiOcB2mX6xj0gGCWpUrzbxhqKL775e6BuwuXC5m9Z3r75YDZWnC3bvt6RiWXed5/9+WSrZlLb1Gv43ORgqT7brL+vs/7euwv/OtNHPzbv+RXr9ulHrNG75y0Io4fO0Wp6OB6NrrtIDWLKExVQdlsqfyjrkOdZxoMlopomkGeqfkAXdc5cOQkUxMjpFHCpukJqrU6eZ5imzoHj51i55YZ6tU2ummiGQZLSysYmsbx0/NsnJtkYnSQleUKJxYW2TA5RqEQkCQZBd9ntayMD5rNFoMDJebnlykGfvcElWPoBivlCqZlopsGZpdRSGI139KJYjSUdKxeb+B5DnrXkdB1bYaHBxVTp+s4lkWWJ2hAfbUGacYjjx/mis0buGbXHJ1myuBQgZyIymqD7RumKJZsLFPHMh0GBgp0ohaO50He/VQ0SRZnuN1gc9tRIdqyK5VLYiWlaLaa/Yy5ZqOFaStJna7rBIHPgw8/ialpXWYnp9Vq0mqrGb6+e5YQnD59Dscy0KTADVyiKGS1XOWKLRsYHCqxdW4cRI7jmSRpiqbpeI6jZJiGxPNVsLBAAT+BAmfNVpudW2e5+TsPs3PTNI2mAoE5yvHzbz53G1dtGieLM8IwUoV9mqBrOtVqg0IhULI2qdi+qOuGaZgGWjcKQ0jRtzdfWlgliZWxyelTC4yMlqjX6liuiWVbVOsVAn+QRrNNknUoL7T5+j0PcO2uTRiGyeLSMsWShyZ0PM+n2WrgBx6NepvpkSF2zs3y+JEjzM1OsGv7RtWt1jUMQ6cThjiWzeapMXIhsDwb33cQKNZk/uwyrudQGi5hW0paGoaR6nLrGjkCoWl0OpEKMk9SbrrzAXZvn1OyQt3gzj37mJ0c7krCtO58YQfTlMyfW2Byeow4SbAdm1azgePqVFYXEUmI6RRwSyU03cTQ1I/oGuaYlqWYgEwVIogcIXLedd9+PvXh1/LY/iNU600GigGOp2YdNSn5qT/+On/yh/+F//Qrv8mfv+BGBIp1QwqkzDGt8xLLPE4pBgV834dcEPiectvTDWrVupLZ6np/plpIjSRJCXyfQjHg1Mkz6JrDZ7/+LYqeyfDIILouKa/UME0lJx0YGEBqEj/wkJh85itf482vfxWWa4OW4nvDaIaADOIwxDRVFlt1tUacJgwNDjA2PkK7HdJoNPECjySNCQqe2s+GTp5mtFt1DFMnihSISfIEITWkUMZLmq5kn5VKGd8LunJ2dY7dvWMrhia55/6HmJud7ktkLdchCUOkVGB2eHion7fnFwtEcYRtmwwMlNB1jVqtie/7HDt6goGBIkIIKuUKb7vuOl41Oc0rfvXX+OUP/gylyS383J98mve++lp03cT1XDYO+1x74xb+8q4nuNa1cXyHdrNNq9lBSsGV2zb1I4AqlTojI0M4mqTVbHJmcYkNM6M8eeA4nm0RDLhYjtNnfOM4QRNChcYDlmkQdiKOnDjDq190Hc+5eitSCsIoJIoi1RSTEsuxaDYanFtYIghcDEPgBy6GYSjJpVTn28XFCv/hpc9BzXWrWc7xoQEla7YUE0hXPitk3jVbOM9+6JaBzDPq1TphlCB1jbPn5lldWSUVBgPDA5Cp7MdcCsRlZuou9/v3NOHoXaUvkAYNEbPpR1512bX6bExXD9pjg7UYPv/pz/KZT36co0ePEnaa+LbFUGmIV77yVRw7No8eTDM2s4s7brub61/wCp7zgpfz9Vtu56N/9VFe8rJX8C9f+BKeW+C973kvx4+d4vrrrue3fvtX+cB73sPM3FYe2X+A22+9leuvupJNGwewHJuhgQJzc1OIPCRLU/bcex8P7t1Lq9XhqmueSxKlpLnK1VvLFKVdub7KpFsLXLr7uKd3vaC+6ZubSLm+BuuampD3fr+EbHPN7T3Hzt4+7Y3CXLjOOinms2BgL7deTo+QOK86628PF7+2EL084nWI8xlvh5DaRSzfZR+7djt7D78EuOtvMxcb7n3/lh+Au//PLGvBXR/xX/D3pZZe50BK1YleC+jOM3WXhneXYvHWsnXrH826bYLzHTjRzb463/O4eHvXsnnrljUvvm6wt9epyy7WNfduVzKMC8xO1tzPmhNG/zl6AaH5ecCcrxkYXvsaUvaYPPrrdHk4cjIQXeW0zImBW79+O+WvfpEf3bqlq3DIQWroSEQMJ0+eQ0jJ8NgoQtORuYRc0Kw1+Ozt93LtFZu7A9YKrD955CRZmnD7dx5nvODz1NHTlAKXyalRHtn3FLMToxw4coZNc9PopkU7TBgfHuWm2x7kyu0beeDRAzz05GGu2DrD3IYJAtfm63ftJbBM2p2I0RGfYuB1pSw5/3rrvSzWl9gyPc7ggJrj0IRGmqaQS1qNOkKkpGmC5weQa0gyas0mdmBz9MQpCq4FpoFuGd0cMoFlmti2SafRpN6o04lDhKbh+j5ObqDLnDBq4dgeg36RbzxwL9umduANxGi5wfziAsUhD1231VyW7pIbMa2wSeCNkuUpSZKSxTHVShW3aIElsDUPcmUrnpGSp4IwVfM9rmWTpjlS13AKASKPabda6IaGbhhMjA2xsrJKsegjhUTXDPzAJ4wiZKqaGXmaKhbCtWl3IizHwTBMJsZGEJqg3W6hYeA5NmknIgpDvnjbPYyXChQGAnRNI4kSLNOhvFSj0wnxfAdBTmmwyLmzSzxv9y4MR+VZdTohpiERaQJJi+2bNnaPFA3DMNGETkaqZihbLQxd5+ypBQaKAbVqG6lJTF1HFwb1chvd1sjJ6bQ7lAaKLC+VGR0eRvdysjhGy8GyLBCCVqtFoWjTbjUpBCWWyqtMDg9g2wG6lys3vVSHJKTTWcUORug0E9rtBqOjBWzHpug4aJqBZpjEcYphqBlKpxhgmBqGqdhH07bR8lTNnDmWmmezTPJcuXJmZNQaDfI0wdQ14nZIu9XizoceYeuGCSrlMjdeu40kTvACF13X+1JkqekIkdOqNXBtiywTeEGRKAnRNIjqK5A0idpVTCMjFgZJrs6vSZbTiUKkATkammaS5wl5npLFEKcRJyoV/vzkGT76sz9Mlufs2buf5XKZG67dhq6pc/Obfu/LfOrjH+Un3/kB/v6lL1VyVZmQpCFCOqTEpGlO3JHkCKRlYFgG5Bm6zNE0QZxnyNzgzrv3sHXDDO1WE9llrdMswQs8kIIkS+hEIXE75UXPv4bBYQ9ETC5yTFvlLgokC2cXVbyIZZDlbTbNTGE6HmmWqYbBUpk0V8yn1CQCHRBohsbY+DggSRIlSwoGAmpLyziuB0LDtEzCsI1hami6alQZhq5mH3WDzEzV+TQRdOohQUlHlyGdVgPHcmk3Opi2gWaC0HVmZ6bohCES1PanGWEUYbtu33jm+MkzeL5LYaBA1AlVILdl0Wg0CXyTdthidHJcGVVIgWloRN1Zsbdfcx1/8tWvIdyA9/zkz/Chj/wPfvwF28myjNu+vYfNM2Pcd3SZ6TDCNQzmF8uMj4+SZxqVygq+bxMEHq5tIRCsrtQYnRxkauMAC6tLTI4NUyoViBU1ycnT53AdA6EpNiCOYgzdoFZvYhg6G2bGydOcTtRBtwxEJjhzaolmo0mn1cL3bDRdY3CgRNTOsX2LhYUlBGoG0LJdLMdjcHAIoWtImRHGHdIspBG2CAIT23EBA82USEMZS+W5QAity/KAzDKiMMbyHSxbNX3iKGPAM5C5hqmZ5ELlmipL44suy72L7EX/ry/oL7HKml/6v+c5Xzw6z4vf+DpleibUc63DlFJFiAuhjLJSqWqc/Xc+xIP37uOeR25nbNpGcySIEd7xnp/j7FKb+x85yM998EP82Uc+Smq6PPrYUcZGZvnCF77Ia179Kn7zd36Zt771x5jbuIF6rYrUJX/9t3+Lawv+t//9F3hs/xP86Ot+lB9900/xp3/1aU4tr5BLn8/cvIeHHjvOy1/xCopOShbV0ZOIc8eP8T/+6dO87cd/nHacYfsOURajyRiZJ+S5VOQWqnmkSYHssrcC0IRAKFtQVbugGCJNKgMmCXQDEshY32w/z5Kt3blqX8qu2Unv/jiKVN2l92pN2f1Yzq+/7vm+x9Jr3PRBW+/fWlDUhXei+6ZUJIuaWROyW9etqyx7UVTnbz//fBdSDOtn7qBLIMJFNaXsRfGsYTwzIci7P2tZzguXtczfswZ2uaqz++yfUBE4/e27bFcjv/iHHIGm+gBrCu8fhJh/n5f/J2bung07tl4D/fTrXRLcCUEYRxfRy89Eg/10r9h/jgtklBf+flk31cvc3us6XXjwrxsY7j94zXPkF4PktY9+YM9e9n38Y7xr904FVNUVRTmHZjmHDh5naKiI5zvYjrOmC6UKlGu2bkBqkkatiWkaaJpkdKjE8GCJZrWFa5v9vDQ/cBkIfGUhnuUUSwFnzi0wNjZIHCWMDxYIw5AtG6fZODlCcSAgimKCgo+lSzzHplJrMjc9QpKmtFsdLNtipODznKu3E3ZiDhw6ydjIEK1Wh0pVDe03mg0KBY+FpVUGBgfIM0jjmDTLsCyTsdFBkjhGCk0FUAuBpgkMQyNJVBEcRjGlgSJCqAyho4dPk+YqXsDzC8Rxys6tM5w4uMLolEsaqxOmbppUVlsUih661BG6ckDLUw2QaELNAtm2A1IjbMeEzYTyao2g4NFo1iiXG2SZmrGrlmuQ51iuS5pkGN1MIyk1yisV8hwGikH3xKoMUWq1Bq5jc+rUORzX7ofc6rrB4lKZUjGgXm3y8GOHmBofUUVLLrj9vr1snB5D0zS2zExjWRZxEiOFUI6UmWKxPnfrvcyODjAwpORxq5UaBd8DTV3ETEN9L8IoZm5mQpkDIDh+6qwKWhbQCUM0TcUJkMPgYAkhBJ+/5T5WqlWGij6WZbK0sEpxwKdea2DoKstP13Usy8Z2dXU9EIITZxYoFn0C3yVN0+5Mm92NsChRWa2RZnE33FhimTph2MHxC2hCMr+4gNe1u0+iGNu1qNeaiiXIc8rlqpLPxkkvdZdquYbj6LTaIeVyjThJFXjMBXmW0m62MXWDVqtDluX4BY8sz9k+N4Pl27QaHWzbwg08Wo02pmUjpSCKoq4JgUQ3Teg2LtIsQWYhrXqD02fnaXU6DAyUyKRGEAxh2R4IHV3qyjQlFwihQ9aLQAFdWvzD/gOsjBr8px97QZ/1v3rXFnZfsRnTMlhcWuZXP3E/b3rjG5lfWOLDU+MI3UQgSLME07EQmUTIlDzN+adP3cyRE0fZtXNz36GuUW9gdBn5xXPLNJoNxoYHcVyHs2fm8TwP0TW+0DSNRqPF4NAg+x55kuHhEoUBj3a7g2GYRGFMFEXoQuL7PqdPnaVUClTsimGSJLli2TodHt1/kE1bZs4zbJrWnQGSfPOuPdz74H6GCh6Fgk+epcg8o9XuqGNXV/OcUghEN/suSxJyUMxrqhhKXTOwTEudU9IMw7RJ0wzLsbvxOYIojJW0VmrYjk2WpOi61pcOLi4t8+iTB9m5ZTNRFKnvGWoGujhQxDAMTp85x9jYGKdOnqNQCBB5zslTZygV1e+ubTHV7vDFB77LldfcwPvf9W7e8Vt/RsmMeNWLr0MIcDp1jjqCzzx2hjfumMU0TFqtNr7nEMUJuqZx9uwyrmvz5W89zIBnEcUJM9NTJB11DC3MlzF0ky/cfj9bpsfw3C6zq3VdTrMMy7ZoNltkaUaz3cH3VZzC2Ogwjmf2Jd1xmFCtNAgKLkka47ku9VqT0kABw7R58OEncE2TPMsoV6qMjgwSFHwKfqD2p6aTZ4I0U0A7ic5/xnm3sSmlVJ+XUDLAPE0wNMni4gJLq01AoJs6tudAnl6e/LhEs/qZVAy9BvTaZXfJw3nhi9Vx2NMwivM/eZb3M+WSJCFJU1aWl3n4rvv4/Oc/z2pzhaEBm2/eegcbNlzJ0PAoW7Zu5/rrrufxxw/w4pe+lDe/5c0kSU6r2eTd73oXv/d//x5/+Ed/wODAEE89eZgvfPFLBH6RUmmID/7s+9j/6GN87Wvf4PnPu5Fz8+fYvHGOVqfJ7muvY2LIp1lb4djRExw+cpINc9PkGSRJzMLCIgvnTvO8H/ohcoEy2MoBJEKTCmRLQZ7m5EKphdbVLj1qU/Tm9S5gtrrH0MWcV2//rmlsd4mCCyMkoq7sO+8BuwtnhtYAnWdUBV4CBH6v2br+u+i+iWc073dJcKf+vnDOrscDXBhVcamZu0vO130fSLm12wAX1KHP8vXU92T9Sj8Ad9/n5f+P4C7Psm6A8IWg59nS8d0nXtex+d7grndOyS8nWX0G4K43O7ce3J1fL2N96OXlwN073vYeGnsf4hev36UCOqVQx48UiHbCubOLVBtNJqZG0Qw1syI1Fb9g2SYrK2X8wGFpqcKBo6eZnRqjUq5iGiZpmpHlML9c4crtGxBAq9mkXG1xx/2Pc80Vm9iz93Gu372FZr1OmsKjh46zc8sGWl2DjkPHTjFQUm6R4xOj5GlKqeAzv7RKGCUMDw3Q7nQYG1cB5ZVqnYnxEVzX4cDh4+y+bgeQSf2sAAAgAElEQVT1ah2/az3u2Ta1RgvD0gnbIYWCB+TU602azQ55nJDFCZomqVbrOJ5Dpx1SqzcJPI/FxRUGSkXiJCWJU4ZHBtR+keD4Fkmact93DzExXiDPc6IQkjCn0Wjh+zZSF8RxSr2mIhcOHjhJu9nmxOlFXNtGColpWliWhq5rSB10Q/Iv397Djsnpbnh0ropkqRG2Q7IUnnjiOL7rExQ8oihGSKhW63ieQ56D7Vi0Wh0Ghwvd2VbVUxTCwPd80jSm0WixvFxjbsM0aQyGKQk7HYbHhtB0kzMnl9n7yDG2bZsiTWPiJCJNYyzHZKzgq3w+S6fdblMqqpBtKZUZSRRG9EyRshxyoS76A4MFWu02Wa6kblGYYFs25dUqlqWTJAk7Ns5w/Mw840NFPMfm4NHTjA0W0aTk+OlzDA2W0HSdNM8pLytprpCSUtEjSRPK5TqB72HZNvVqE9NWs3yHj59ibnoKTdOpVhqYjk2WS9r1psotHHBxCw6tdptSUKDdDrlz7342z05gWwZSQnmpyT0PPYmt6wwNF7uByDm2beMHPkJIJEJ156OUOIyxLAvbd/EKHlGSkCc5S8tVbNPC810QgiRJu3EOOVITaLpimpI4QWgGmaZhaDk6Ea2lc5TLy7TjnI1zmzDcAtIKILdA6GTK9FB1xDOgm9XY0zp8cM/jvP1Nu3n5tVuVq62mALNtW8RJhGmYvPev7yJMcn7j1z/Ef//jP+elm7aSd9kiTdeVFXqWE4cxSZJw9a45tm2e6XeEhdSQUkdKg7Ad4xdd2s0Ggpyg4OP7QVfaq7LwwnaERLC6tMqVu7chdYijGNd1IZc4nkccKnOOL3/tDiZGB7B1Dc00yFJBZblCvVbDdWzGR0eIE2V6Qg5kkkqlTtiOyLOYKO5w5c7NGJpgZXkFIVOarTb1WgPX9ckTkFInQ3X9dVMjE4o51xJduSzKqOvgbSJ1B5lJMhLaYRPLNslSpS2RQqJpgiRJVIErJd99aB8TY2MEgc/01DiWY2GaJouLS5QrVcbHR1lZXMa2HYqFAbIUDE2nUWtguzauo2JW8jQnjVNmN87ygsFhOk8+wa/986fZd/93ePmb3kkQL6GRs3nrRlwZ86YfuZp3fvYeXj3ksbK6QqsdslyuqbzOPMdxba7aMYXr2oTNjJtueZDrrtlEmkZ89mt72LFhghdcuxPLNGnWGpiOSavVwbZNdENn/twSnudguRamYWEYBmmSsrpSIRjyyHOBxMDUbRzLRIoOmdDRhMR1bJJERaEYusC3bRrNFq7r0gkT4iTH0E2eOnSCwVJRuQJbJnlXfk+3qJRCucLmmgRNKpPALCONQlrNOlmSMTM7RaPZYWhskCSKlKLm0hfgS1+XL3nr2vt7he36xxqmyS0LVbZu29y/PvfZKiGQOX2jkk4nxELj27fdwSf+5k+p1dW4wod+8TcZHdvC/EqN4dExbv3mnfztP3yMSr3Fl77yVeqVFV7zmlfz6X/+JC992Ut45StfyR/90UcYHRrjpptu5nd++3cor1T5gz/6A0zD4SUvfglf/cpNLC2f5TnX72bztjm2XvFcbr39HpAe1VbK9quuYXRyFDcY5IGH9rN9bhBXq3Hu5BPcd+99vPRFNyKyjEzzSISJnp/PaJNSdmct5XnZ5WXA3doA8h6Qeibgrm+acoGcc3l5Gd/3FfgTXZOXtaBQPP2c3foXffbgTnbptctlF1682jMHd736b40RZp+N/H8b3PUMjvJ8zT5/tkRgfrGJyw/A3fd5ydP0d9c0nPo/a7938hL3936ynj0uF0stLy1zWPMlXfNz2e271P3i0syZQA3Fa+LS834XPke/23OJ7bscq9aXgF7m4O6ZzPQ6UKx9fBfc9bLtFAPSPaj73TBJnqX9N96Xv3ZPML39+u53foC/vm4zL56Z7FPomqbmUaSQ7PnuIzTaHXZsmyPNUgzL7J41VEc7iVN0TRJ2Ij5/+0Nkacb06CC+59JotPjUnXsY9TxMQ2NsZABN0+hEIVmWMz02RKcTMjk2SJpEOLYqeOemxqnV6pQGChw/cZYtm6dZWi5jm8puPI5iqrUGpWKhW9Qr6VSSJIRhTKlUZGFRxQLsO3gMz9TpdFQIt65pOJ5LnKQ4jsWhw6dwHZVP5rkOQdEniWLiJMF1bAWgpYZlmbTbbdrtDsXAo91WMzKFgodhGWi6cn/M8gwhDCaHS6RZguNZ6NLh01+9lys2jeMXHKQm6LRifD9AyJzAsykNBOQiZWRsEMMyqNfUbE8vrDTOYm64YitJmLG8WqZY8tANnVq1zrfv38cV2zbSrDX55nefYNe22W43WxnFpGnGwcMnGBkeRGoaeZ6i6wZpkrBwbplHnjjCprkp4jjC811mZye49dsPcvuDjzPsmmzcMIU0NNIkw7UcZidHsDydSqXWjVyAKIwoFopITUNKwepqhThWDh22bZKlGasrlW42n5qFue+hJwlcG8ex+uyFrim3xE/ddCdXbJ6lE3ao1mqMjo5SdC2Gh4tEUcTEyDCaIZVcsuBDtxsfdRJc2yKMQkzLoNENm84zME2Dpw6doNXq4Lo25Wqd7XMTIHQWl1a54/5H2bFphnqthWNqmJaF6SkAp2k6eZzSanXYvnmWVruNrgkOHT+Fhk6eZezcuYksS0miiKMnzzEyMgioYs2wTLI4Y2lhBQDHtTEsgzRNCTsRnXaE6zo4rnK/zHIVfC+kpN0KlZRQ0s28UhlIpi4h7XD29CmidotScYANmzcjNBOkAbqOSukGRI6m5SRxRBi1MWx1vBim5Ce/9RB///OvYKTkgRDdOSW1P9M0RUrBV/Y8yZHlmD/+g/+Ld7//F/jzV7+KPM9pNTtoXefDLElB09F0EyE10izFdOzu7JIgTVLqlYYK0z54lNGxIYaHBrrnijZJmmI5NnEc9xtVtmMrQIaas1J5WpJKuUqWpJiWiu3YtmkDi0uLFAs+duBz8vgZCkHAyuoqhYJPu93BK/ikSca5swv4fkCeZRw6epzx4RI3Puda2u02tm1hGCa2rWM7rmL4ETSqDTSpkWQJUajiDnrFmZ5LkqxDtVHBdmyUPhFIAZkTRSG6biJQsRdRGGIYBq1WG9M0EUIwOjComMAu65WTc/rUWSYmxygUCoCgXK5Qq9RptZTJSM+MqBOG6LpOsxPjBQEIqUytbIuRwUF2WjoHdJP3v/sd/MIffJy3vfxKoihkfHwEU9P53F2PcYXM2DAxQhAE+K6D5Vjda4VgqbyI5ZgUCwV2bJoklwlR0mHL1DiFksfNd+1hcqREO2zjFTx0XSfqxlsEvjpPSU1JwzutiCxNKQ0WiNOEPINWPeSuex6l1qhRCAyVJSg12q2Qk6fmEZrA911OnpqnVPRpNNrkWU613qRUKBJ2OjTbLW655zGu2jFLkiQIQTf6ApKu02zevXQKzoOndqvB1NQE9z/2FJPjI0ra25ORie99De9ecJ9ZgX6J/3vr/e5XbuPH3/yjfSaZfE1hnqtma5pllEpFslbIb/zK/8FjTx3EtnLiWOft73gflu3y1a9/jYWFRV72sh/GMHVuuOEG7rrrLo4efopHH32UG2+8gVtuu5WZ6SnSOGNifIKZ6Rkefvhh/uLP/4zf+8//mSTJuPfeuzh+/Bhbt24mTWO2b9tOmlscP36KcqXG8RMn2fvIg3z7kUOsLszzupc/h1LBYXw0IGpXWC03aNZrLC0uMTI5i+X4kMdKZp0kaJqSzGZZhibVZ9TLZxNC9qWDa/fTWsmlWFPnnJf3dSWD/T8v/ZkEfnAeSObdWm9NIbq+rsy7rp+X/3wFouvS+bRfge5LiD5De6GE87LrXQrcddmri0b3em9G5OcLaNbHJfSWtZnNa5m+tYzfxdvAZW+/1NLLqLtItdbftme3XCrc/Afg7vu8ZJdh7tYx3t9j/QtzTJ6OjXt20slntwiF+i5r5vKMn+N/YekVdsB6Fi8/D+r6r3UhsOwfnOfNULrjcerY7646P7/IGxaPYlr2egVnrvKzFs8sUqnW2L55Bi/wWF6u4LpONywzU1p2lCwzDmPiMOblz99N2AlxHBvLNLlieoKl1QqeY2HpGqapc2p+mZmpUUoFnzRJVdc37FAseuSZRDM0bNskTRIc2+TswjKB6+L5NvPzy9i2haZJTp9ZpljysWyLNFOArN0KsSwT3/eUBLDTYXJ8iJGRwf6szMLCCs1OB8e1+cbd+3ju1VshT6l3iwbbUoWAadmIromJrhu4nqXyy6SGrikjDClzNYMPRInKLYs6At81ME2TXKa4tscDjxxl02yJYtGnXm+gSxvDMMmIMTVVjBUHA3KRUS1XKRQ8apWGMizIwfYswnaMbZiqE+6ZaLqgvFJhdnwEv+Dhex5bNkzQarX6EQU5OYsLK2zaOKMuoAKatbqKLOhENJttnjp5lsmBQp+xSZOYB588wkjB47qdW9SAtykxDJ0HHniSomvjBBaWraPMVjySUM1VqO9iRqHgoxs6URhj21bfpTQMVYaYruucPLXIoZPn2LJhQkUntNpYjo0mNebPrbB5dpLVSpnJyREatQ5ZntFoNhkYKIAQlCu1LkvWc7IVVMsNPM/E6uZ5JUmMZRiQKZlfqRBwZn6J6clRAs8lDNs4to+QktnJQSzLwHU9Wq0Guq5zbmEJz7WIOzF5BoVSQKvVdR8VOcMDRRrNNtu3zSm3RAFxFDE1PYHUJM1GWznEZTnllQrj4yNUaw3FypkmuqZx4NBx5jZMEicxhqFjOqbaF7albNx1HU0KkjRWjqJIRJ6RtFssnDuNpcPQ8Cim65FkOkhD5bKhQoJzMoQGkCE0gaHrdDoR5IL/+tATvPS6EbZPjeJ4LqoQyOgZ7qiGW8bvfvYhPv6Pf4duGDx2++28YstmNE1imVY3Hy8nDFWcCKlyINVNocKkE+Xo6HZle5DzyP4nmJwYw9A1lpdW6HQ6DI4MEUehAjgoyaNAZTrp3ZxFJZXWcb2eFX8Toyv3zvJMzailGUuLq+hC4+v3PcCOjTMEhYAszWm3OmiaRhD4pFnG9OQ4pVKBWrWK67sgwDQtzpw9i0BDCo0szXnq4FHu3PMIsxMjBIFHu9lCCImuG3RaTTISLMciz0DXDZIsprpaxfXUHGuaZKRJiqahmg15juOorDddN1RURHcGWkqholkE2LZNliq2t1atMz09RVAqkKYJZ86cxXVs7nlwH3MbppGawT/881exNUngu90oHBgqFGiuLrEodf7P3/gwb/7wH/OGG2YIOyr3860/dAUfumU/rUqZa6cnsRyTKEqI4xTHcxBSfR8MXUOIvOsEmuE4FkjBlpkJdEPD8x0l8zaMLrjSlQSPHKlBpx6iS51avYnjWYCkVm1w6swih08vsnF6mGLBo9EK8R0HkQsKgY/tWhimztBgkRyoVOuQw90PH+TQwbNsmB6kNODx8KETXLdjI0JTOXe2o9yXo+4MYJalrCxViDqqQWiaJivlVQyhZkNN08QN3PNX7t519WkK2GcD7i61/Ouxc7z5LW/qN2G1NXNROpJMg1zk1Gt17r7tm9xxyy2Ml3I+8P538vo3/hSVaockiykVAqSUfOwf/zt7H3yQN73xP0Kes2XzJl74ohv56H/7S04eP0EYxrSaDaanpvjIR/6Y+YVz1Ktlbnzec6nWapTLq0SdNm/+8R9jdnaOffv2YbsBtuVy9Ohx3vu+9/LOd72NZj3DNGwcLSbwLGwrQ9MFZDkL5+YZHBhgaHwax/WQuobIBaZpkGXq/fTDtVUc+noGr4+tRddrJV8HRi7a733m75l9HuqZ1eOktgbQsAYU9Zril/n0FPuXKzfyZ1DvXWq7/q3gTmrivMx1Te3Wuz1fi1gv83rPpra93HY+3favU9g9w8/labbkolt+AO6+z8sPwN0lnuN/ccmzjPyCjLoesFsbb9D7v3fbpcDdWnozJ2d1tcJv/eIv87q5ye79PdmmQMsFZw6fprxYZfv2GUzbJM1zNdyuGyCkKnqStNuJgmazw+zMBJ/6yne4/srNCCF4/KljzC9XuHrnDNVqg4WVKiPDgwwMDkASYhganu9RqzcZHR+iWlfukEePnMK2DE6eWWCwVCAouNQaTQLfw3VsxcLpGqZp852HnqBcqTE46CNEjuf5VCt1hFDRAEMDRQxTdUNN3SCJVVGimRqQcfDIPBvGB2m32wyPDGJaFhEZQlOFXRSmPPLoER574hhzc6MYmk69WifPISj6LC3PY+o6hm5hGKr4fOjeo5yrnMLSbUqjLnFTQitiy9ZhkjTDLzg8uu8EK0s1CgMmItMwTAupK9maKQ1ErnNmYRHf9lhcWiUIPD578z045OQiwy1arK6WGSh6+L7D4uoKrusyf26J2/bs56ptGxASZUXv2eiG3tO20Kw1cCyTqBPiuSY7Nk7iOCYIxT4KmXP9VVvYODNKZb5KnMQ4gU2z0WDj9Bhx2MEO1OdgmRbLCxW+88CTjA0M8vCjh5jdMK6MK4Smcr8S5WwnpIpuyLMcwzLxNZOV1RobZ8bIs4w4ijAtZXIgE6g3mszNjRFGHb58x15uuFrlIQrUDJJX8hCaQGWbqtfb8+CT+K7OwEiJ1dUKYSch8ANsxyHsqNw9DQgCH03XqLeqmIaP7dloesbqchlT6vjFgByNB/YfYKRQwBBKxmN0YxvSLIM8o95o4rkGbsGlXKnhujaGlFTrKsYhy3L07hxSlmUYjoXtWASBT2W1ShanzE5NgqaAl9Cg2WjgeDZ5fh7k5HmOZiiwSiaRUZvTxw4j0jYjwwOIwgSYLsKwQWqQZSSdBoboyjqFRpJCmqmsN5GZvOUb9/Bb73kZ12+e4YE9TzEw5HbnknQUu6/mCh89cppdL3w9o6OTvOs97+cvX/sayivLuI5NvVLvzjZlhO0OreoCRIJjR45giBRLaJRXq5BCEsW0Wi2qlTK7t29C6jZxGCq3TFNDMwRxEiOAKA4R9IoVSJIMiYrwCMMIw9TQdUkSJcRRB8dXc226bVKrNJkYn8AyTMJmg6HBAqXBARbOLDM4PKgy0DRIs4Q4joiiBL9YIIxDdNPkzOl5JkZHyRFEUco/33Q7P/yS57J713Ycx+DwwaNMjI1haAZxJ8HssnW6tNGETafZRspcSbRjAamOYWhouiCOQtqtNrqhq6iELCeKEwxdI027oc5CYJgaXuApdkNTzaQ4TigEAVEeMz9/jiyNCTshV1+5C90wKS8us7S4yLnFJWZGBojDNsXBIktLK7xw504W9z3Cp+9/hA998N380p/+M8+Z8hgeGiLOct5440bGtk3wKzc/zLUSAt9F6iqT1DQCHNshbDVZXa0S+INomgp3l9LAsm2yTBJ2EtJcRXzIrqw4jmNarQ5JlmCbDssLFUol1cSqL7ewTIPxsRLX7d6Ea9t4fgnHMyETnDq5gOc66JaG0FAuuYZO4LkkSUwSR+SZ4Kpdc5iuzu5tsyBB0yGNlXGPECrnTgiBJsA2bf7p6/dS1GyGRwZxHAtBzuTkWD/svHuhpWfbse5K/m8t0L/HfV84vh7crc0wk1lOJHLSXCkA6vPL3Pz5L3HVVdMIvY3rz3DdDc8nKDnINIIs4Ypt23jD61/Hnnvu5obrdvOP//RxvvXt23nDG15Lq9WhXm1w+NABHtu/j1OnjtFuVThbXqJRXeIbt3yNUyeP8d73vY+RoTGyOOeP/vBPecUrXsiBJ57gwfsf4qGH9vDCF13LxOyNfOx/svfeUZalZ3nv7/t23vvkULmqq+N0T0/3JGZGWSMkMxISIJAlkMAyIJKAq+tlr2WW78JcksHGZuFrkm0uIlwJjEEoDUij0SRNzj2dpnOsrhxOPjvv+8d3qrq6p3uCFnhpLeurtVdVnbP3Pvvs+L7v87zP82d/wVvu2E+5WmJm9iy5Ugkz7GJLwczpU3zlq/fTaaxi5KsMDw8P4hTFNFJMzXQgGKP2khBCCaABcvBGksSDf15lv68zmq6HsA7GtYriGZuR0k1tNrx6cpdlqepfHvh5vtb4h0zurqZdXv36FdS363ze/5Lkbj02zdJ/IOuEbyd3/8tHmiS/vFmp8lo0yCve2+Ryr3jXwKaDv3leselHia2/8aRrXX3yygTy2j/ABkf5eh5964nXeo/Itdax+XO/melKhG6dipkNKAzZ5VlJBhWn9X6mhDSLIdO48gpXypzdVpf/82f+D/7gzfvXRYhApAhNkiSCbqfHpblZtm8dRtoenU6Aphl4ORehw5lTp8k5BtLQVdAaJbz43MuMjg0xPVzB8zwOHT1B2+8xNVKmWq0S9CO2bpng9NkZqmWPlIEIhmngeTYrS+uooKCUyyOJSJKQ1UaLLMkYrldIkpS5hWVqtTKmbeF3Q546fhZTSOql/AAFNPDyDmfOz+C5Sp2SVNJca6KbGqatE8YBpq6jSclQxcawBMVSATJBmsDM6VkquQKB3wUtYnioyvbpKRJCxODeH8cZf3PfE9y6fw/GQAkxSzLmL60yPlpkcnoMN+8hUwPD1skXbRyvwPz8Il97/CC337iDF4+d4fZ9u0k19VCKeiG6pqHbBiuNBrZmoBuCQtFFSoNtoyOECMq1Inqa4RguUaYhLAuZhVimzfJSgz3bxnEdC91RtL8UQRKnIAVB0CfzJU7OIclShdakGp/7+ycxNXAsU5mCazpxmPCVR45y6y07SWLlXYg0QNOxPVuhYUJRzSbH6+TyDnEUMDRUQwqlmqcbOkEUYtj64HpQSIVIBbplUC8XsG2LOE0xHJM4DOh2u9iWQ6GQx7QMllcajNVKZFlCLueSkRGGEaahTLCTKFG03Cjl5ROXmBqvYRsmFy8uMDxURpCRygxN05ShvdRorjSxDR1dd8hEQppGhGFMvpgn01RLmkbGluEhdQ1KQSKV6XRjrUXOsYmChOXlNk7ew7ZtXNeltdbF9nLYjsXK8iq5nIduGqRZhmWr4ySFQmZs10SagigNQEh0zSSLNQxNoQyakaigP1TFlCTzSdMYW4eL585hZDG2kyfRXEzHQSn8xUiRASlSN0BKhf4hVOVc18mShL2/99/5nR95OzfumsKyTJ579gR7926l017DNDJIVb/bT//+17nhre/nzjtv489+4V/zy2+/GykE3bYSyXAHViGN1SaObZMv1UgJ8VwLzbBwCwWSyMcwddycUoPMecqXMAlSeoFCkV86cgrP9RTiTEYYhCo5jmOCnk/QW1OWDZlBr+tjGoaq5osEx3MJgxiR6fQ7gSr0kBEnEdNbxzFtnbXlJqVakW888QyT4yM0ltZYWlhhbHgYZEYcRTz17Ev02j0mxkYwBlRiSDg3c5FtYxPEYYzjqWPz1KGDzMwtMFIfwjRVD1GaKZRUMxVlM00lTs6jHwSYhkG32cVxNXy/h20pm49ep4vjOkg9AzHokU4zdM0gjTParRV8v49pmJiGiRgUTCzLZnikju3YqmChaViuw86tW9i+ZQvtbp+xLRMD0SOHJEqZqg9zq2vwid/9Pf6///Z7/KdP/yXvuX2K1ZU1KuUyRdfhnlvHePLAeXYP1cmSFE3TCfptNB3aXZ9SsUhvrcuFUzOMjFcQJFyauUSlmidJY1zboLHawDR10jRRVg+2hWGqIoPlWBiGhSF1vvLMU2ybHkUYOqeOXEBLQbcEQrfotjvYps784ooSTREG7aU11laaPPPSSbZPj7Nt6zhTY2U0XSpURyhhHxC4OQtERhzEGIaNbmpEcQJIpitVTFNXolKmhm6bhH6EbVkqBpGCVIpNScdVQ2x6wr9KcLsZO3m1eEUldz9wOdlYF1bJQMtiksyGTMc1HQqaz7NP3c9Ne2/j4KFlTpw/y5vfcSdhP+V3/p8/ZnJyO/ff/3Vu3ruPr//919i5dQdPH3wGQ3M4f26Oft9H1wW7d27j7IXT9CKb937gn7Fj6z7OnDvM/r27OXnuEk8+9yKnTh9j+/Zxvu8D72J0tIaTt8CQnDx5moPPneFjP/RRbrv5Vp549iVOX5ijUjF56fARpiaGsR2dldVZKvk8508co5CzIOpj5odIhUmKRGgRPSGQSUaWqD2UiPUeu1RFNZnSDkjXk8HssjXVut6BioM2xXaDeZI0IU1Ua8DGclckN4OfNL2cUKcZm7UJNozCXx2ZuPLfa50nb3BkqGeO+p7r25duTIjLZ9UVp+AmKiZiEH9u0pDfvA4BiCxT02CxdDDPelEpHaiyXxFJptllAUshlKDcpm+aZpeRWLV94hWJ3WXvvM1r3jRdw6z88he8cnw7uftHHmmS/PIbS7iuMffryOzXD+0bTe6uy5l/jZGh+t9eYTS+LmryWgbk1xFGef2f/srqyOVVrtNGNn/GYBk54GFy5bzdbpef/clP8kdvvXnzGkjXe0h8nxMnzjA1MYaVz5Nlis525NhZ8jmb1dUmjWaLQi6HbptkAvq+T6mUw3HMDbXDx146ys27phgdqZKmyrC33wt46Nmj7JgYJpd36fV8Ls7MY1nKvLbfD7Adj7//+nNMTw5h2TalYom11Ta2bSOlTrfTx7Yswiih2W7x7jfvp9VqUy0XKBWLPHPgGCO1Kg88fYh9u6ZZGfSneZ5DGEX0ez5RGINAqUcaefL5PJoOKRFJqoyadUNTPTpZhiYc4lij1Wyg6xqBH9IPQlY7LW7YOoVu6nS6PVqdHuVaEcuzMQwDkYKQgtmZBdXzkWWUSwXKjosUOtqgGmvYBhJJOPABjKIE13OxLR3dkJy/OEeWKpn4UimPoWd0O21My0KzLFIypMjQDRPHsckXVJ+LSCWttQ6XLixSLVeQKCuBlbUGhXKefuBj2ia6prN7+ySrq122TE/y5Qefo9fyGR8f5cZdkzzy5AF2bBtDCMGx4+dZXFpD12Fufpmc62A79sZD0nFMsixF6spfUdlQqD6ulZU1dE1nbaWJl/MwLIGuCZqNFt1uD98PKZaUWbpt23hgRZAAACAASURBVHQ7XXRTI19w0YSi3gmhxBE0KQdUq5ROr4vr2rTbbW7et512q4vj2MozM01Za7axPYdWs4Ommxw6epparUycxhw7eZHRkSpS0/D9ACl0HNel2+ph6BbtZhfXU8lblqUIqVMqFnnupRNUi0UefvYIt9y4k8ZaC8hwPZter4uuqz5NbeDpND+/TKHgEUcpiwtrFIoFNF1H1w2k1NF11RcoJUgd4jigtZxgWRaaGeH7bYjA1CxmTh3HD0LaUcbw5BZypbIqOCSXzW+TNFUG6wOqJwoQ4v4zZ/nFg6f58v/9UcIgolLPo+uwY+ckpjXoA0wzMiRrnYjPP3WOj//Qx/ihj/84Hx2eYml5BS0TjI7WlRhVmjFzcY5qtUKWpRiGiRSQy3kKoTVNXFehvI1Gk163TxSG9Hs93JyHm7Podn22TE5haJI0jjAM1Q8oQPVH5jxa3T79MGZltcUXvv44e7apHtGc6xFHMZZtEiUx5VoJv+sjhEa71UVKofzS7BxB1+fg0VNMjgxjOTa+H6JbJidPn6FeqzE9NUmpWMA0TeI0UfTsNOWWvTcMaNgZmi5wnTzPPX8CieDg8RPcsG0Ls5fUfUxKOehb1iFKCMNwgFoLTNsCqWHbLq1WD8u0MHVD0VbjdIPSKcU6FQ10Tcd1PDRtUEgjRYiMfr+P41p02l1czyWMQkzLIIpCoihibHJYJZqaxsLcwkB5tItru3z/9CS5u+7CyeX5zT+9jw+/Yy/nzs0wO7uoTNpH8vzR1w/ylvE6ge8jMrAcm0wIgjCi2e1SGy7T7nSQUlIsFcgESF2n3+mTy+XQtPV+YdX/naYRCEVZTtOYMAoYr1Vwcw6mbSOjFMc26cchumlw8dICtXqZcrmAaZvMzCxQrVb4q689zUi5wNhwlTROCFJFhyXJyJIUv6eKElJoaJpUarqGidAuS9Kbtok5EH6yHFXky1KVPEhdU0GxuE48/wZiiNc75wZytz42xQyRlGQiRWTKPuZPf/ffc/jFZ9mx+xYOHj7Bu+55D8dePsY77/5O3v62W3juhcf5gQ99gN/67d/g/OxpHnvmET76g/fw8qGn8PtLfPA9+zlw4EU+8t03sXNLmYNHX+bMyWfYNSZpLp3FyVr0/R4f/uAHOPbyWR586HHmFju8+OIz7Nt/G9PbtvPhj3yI93/3d/H4o5/h6NEn+ejHfozPf/4+jh9rMHMp4/TMCgePLZMkJjdsn4CkzzNPPMbh559jdaXF/j17MDSJLhWtX4X3QlE1xboAygCFY50qqeIQKQf2BtesuG+axCCp2BCOusbxud6xFK98743Ejhv2BFmmWmE2NumNxZ/iVZJDIZQ3r9Re6dUHSrhZbGz3tWPQVyCf63MKsZGQrSfEm6PcK0LaAZX16qT59cbb1+qhU298O7n7lhnf6sndOkr9RpdbV656xXLfosldnCTq1QzYdOFIKQiCkB//5z/Bn7ztFq5aA9IwkBkcO3QMz7Eo1yqkQslZC6lRrxQxLQvPcxipl/H9EMN2FNXMNLAcg6WlVSqVIlmWMjVcJefZSjXNNJm5tMDM7DLlgsvoUI0kTVhaWWN0pE4Ux5RLRQ4cPcnYcJ1qPs/pC7O4rk2pVKRYyJEmCll88OlDuJZBuVigWHTo9fq0Wl06nT5zC6vMrjTYvW2K3VsnkVLiuhZ9v8fZc7PkPZdjpy/SaHUwDZ2R4QqOq3rzNE0pODYabby8jWFZRHGCZugIYfLYNw4xOlJkda3F6GgdCezeNkmcJKq/x9AplHIqKJASXWqkSUq/61Ms5rEdC9M08PsBf/P1ZxkpF3Bsk2I5h+0o0ZMHHjvAnh1bYPBQSuMI3/dxXQshJI5toWsCkSX4vo9pWGRSyTmbumRluYXruYrylaZEQUAu59Dv9XnihSNs3zKCpgls18SwFL2wsdbC8zwMw6BUziEk3LBtgrGxOkkSY9smo0Nl2p0uURhRq5YZG61jmjozs0voQuB5jlIlkyiRCMug2+1hDUzIQRBHEY6r5jt1doax0TrtdhPTNMh5No5tUywX6fe6SiQjhZ7v43pKNbNaK6t+ycVVyuUilmMxP7dMqVJQCSWqVykKIoqFAp1Ol2IxRxhGG71DfhDhOjb3P3mIG7aOk8u7OKZNruCSZslA0EDnL7/0KDfvmURqAtdzQIMkiTAsE03TiKKEerlIv+ezbWJ4QwRECiXF7nr2wJZi4KEkBc1Wm1zOI+irnrLV1Rb5Qp4sVedLr9PDsk0gw+91CQKfOE0xLR0SOHzsDBOjJZZXFlmcmaFUqTI2MYmRK5CkGYZhbASpctCzZhgGUhP0en2iKGKl2+WQG/Lvfuxd2JbDyMgQQdjD9zvYjksYJiQDNkIUJXzkP3yZowcO4Qch9/RiZuaX6Pp97rx1H2urK6wsr+H3A3RNZ2FxkWI+x9mzFwj8PoauI3WdpaVlleRqkoPHTzJWr6PrOtVahZ7vEwQ+Umrc+5VHMQ1JmsTYtsOluXmq1TLdThfLssmV88RxRm24TsExqVdLA2RFo9VqYzk2uqWr3sJMCeA89uQLTI4Pk2UZRw6fol4psbK6xs7t08RJQm24RgboQmBZFk88/Tzjo8MszC/h5TxVgZYQ+D5kkMQJUpfc98ATfOCfvItdO7eyZXyY02eUWqOX9wiCACE00iSh1+7i5bwNSwfdUIqi6716mtTQDJ211TVyuZwq4AwQwDiJSZMEKXSE0GisNYkGCVy326dQzOP7ARkZSZwor0GhzOP7fXUuaZryUfVyHrZjc3Fmlnq9hut5fM8v/zo/9WM/yk/+xCf48L/4LX7svbdRLheJwoixepkdOyp848gCYmWZWqWsekcNHdM0KFbU9bchfCFQVQkhsE1zYPGR0u342I6tTM1TQRKlPPr8Yc7NLrBjakLdd3VluuxaFucvzFIbKhHFCaMjNYQUhFEECBzbotPqc+PWCcaGqvT7fUxLx3TVdgT9UPU1Rikzs0s4tj0QQtLUvh4Um9YfeqZlkpKi6ZJLMwvkXIeXT55jeLj6qsndGwnyX++cp5fWeMcHv+fyC5tihliq/0UWsbpwiRce+SrNlTnWOoI3v/09aLbJO+9+J8eOHOPChQv81f/4a/7kT/+cSrVOpV7i7LmznD9zkE/9zI/wxOMv8qMffiv3vGMneatPc2WRD33vu9m1pcDK4nHetH8PSwsXeOsdtxD0OzzzwssMDW3huQOH+OD7v4u//cKX+KM//jS333Yr5aLL8089yj/9gY+wtNJjZnaJM2cvMTK2heVGwMc+9qMsL69x4fxxpiZqlByPfqfNiweO0FhrogtBbXgIhKYIBwN2BBuIzyuTO7E5U7rGuMLDLc02rWvT2LTsP1Zyty60JAd09W9mHevzX3cJIZWlA9euN6TraJy4HvfsOsldqsRVrlC2/HZyd83xv01yF79OK4R1FUrk4OTadAzloGqzmcqgSXkFbLyxnk1/v5oK52W4+Ro00YENwdWn/xWm6Nl1LNSFeNXEboOO+QaGMiO/DJ9v/qxXfPamafMWyoEpugqqL29fmsI/+9jH+bN33LqxjsvytAKZpHSbbeIwZnJylK4fDKh3KNqbbW0YAEspiZMMkQqCIIIsxcu7eJ6SujYMA03TOHl2hmI+R78X4ToWkxNDdHtdhuplbNukXCoQxzGu65CRMTpUJUsTZi4tsf/WXYrakyQIKVhcWqVYLjA5WieX8zAsnSRR1eCx0SE0KXnspRO85ebtFArKuPuhJw+wa/sk3V6XkeEqlmkzVC0zVK0QhD5Sg1arwdpaizjMsAybUrmKH/YxTYtWs6cMvrt9CjmbJ196mTtv3Y3QlNpj2A9odXuUijkl2BDFhH6EoWuDYEaZhKdpQpampEmCYZpMDZUZnxim0WxSrRXQTI04CtkxOYqQGX3fR+oSXUosx8ZxHPqd/kCFLiKKIxZXm9RqdXRNR5eQxurGbA0QwjiK0cyUpdU1HNfk5n07aLWbPHf0CKPVuqJySQ3HsQn8PpBgOILQ9zl74RKVcl4lFpl6aBZKSvxGyIGwggbjw1VarQ5SkwNkNFZeVwMhDKXMCf1ehBBgmkpptVoqKAGVbp/AD/A8h4uX5jF0hSKSCYIwxDItHnn6IBoapaKDYRiDIBiSZNA7qSurhGazg21aWJZDGCgvIyGUX55pGJiWgWNbLMwtcefNNxBGId1uj1KpgB906fk9CqU8ItPQEzDsFMeziLNY9Ym1Wximha4bAwRPiUoEQUCumOPM+UuUijlcz+HMuRnKxQJnzs1Qq5URAizTRJOKimw5JoVSTvUsOhZZpiwn4iiETHnxZWlKadglCAK02GRipE6/N8fSynlGh7eRr1SRtoth2UShsu1Qst7r9wdlx5AmCZZtEwYRv3rqAv/mh96OYZgDqpFEM5QgUpbpaFKj0+5hWzZfeOQA3/uDP02aJjzwta/wqx/6ENNjQ9x2026iIGSlscrI8BAPPfY8x89c5I5b9qJJia2bHDp5iqFqVaHmOZeF5VX6vT5TI8OEQYDnuZiWTa/bhiwl9GNOnZ3j0vIiN92wlfmFFcZGhhEixfM8FhdWcD0Lx7aJ45h8zsXQNTQp8aOYtbUW5XJJ0dkS6HY72I7D1MQYaZowv7CIbTjYrkmWJrQ6bc7NXKJSLOLlXI4ePUm5VERkSnDp4qU5Cvk8hmFi6Lraf35IqVwkzjKmJ0aJ41AlW4ZBqVgkimK8nE0cxURhjOPl0DSNM6fPUCkX0XVN2QCk6UYFf/2+bZgmpCFpEhMnkXo1ExiWycryGqdPX0BkgnsfepJ9e7axutqgVCySxMqrK0lTnn/pEKPDdfx+n0JJ9ZOmWUa328P2HAI/opDPkyQpmq7xsZv28FN/+N+56/bbCcKQ2ycsoiggyzJc16WUc/lX//NRPrFvF07Ow7RMTKl66RrNFrZroWWCJIwxDIN+16fX7eM4JlIIdNMgjiIQQqGeoaDT9NEyyVilzn3fOEytaOLlXMIoZm2xwdTkKNLR6ax2MC2DNFMegKbQCPohhmVg6Borqw1q9TJ+EJKieqlX5xskYcrDzx9jYbXN9i0jmJbE7/tYlkMcJwip7hu6qSM1wcrqGl7Ow3NtBIpqXK4UYKA0fMXzW4jXj9pdreR49di8nixj1NKo3f0uQFyRDKhzw4KwRxb08HT4F//yF9m5fYrv/5FPsmPXPh589GF+9Vd/hSiM6XQEzzzzEr/2S7/BFz/3OS7NnOT2fVPs3+pSciTvfusN+K2L3LpvC373IjIV9Pod7rpjkrlLh+kuxrz1jim2jue4dOEIUujkC3kW5ubZc+N2nnr6OUwzx+c+97foMuXpR09w4NApysN1hJHy0R/+Pj74A/cgzSqnzs3SCSTHT59kxw272TaeZ211keZKi3MnjrAyfwGRJkxP76LT72O5ioGybu+EAIlUHp5SRyCuSN7UfmSDkSDE5ZgmHXgaXptSu3k5sRELbZ7WX3vFMVunaF7zkIpX/r1OPZRy0Eq0TkV8PUnPddDJwdgoHF6du64nY0IOhFVSMjEQfLkK8bxmD6C2KWYcxKAZGZpQ6qZZdmUSnQzEZLIsRSrVriv3xabvuk7fXO9j3FCHveYO+HZy9y0zXrfP3UCoZOPgXXGyXcXLRfmOXCtJuqJ48Ho+9jrbsl4dud76vmnc7ZtC7F5HhWXTSAdc8at3wGWZYLXOj3z4h7np5Wf5xJ7tV2yaEHKDe535AQsLK+RyeXTLQtclWZKQptBYayla2oB6h1Q9XLOzyzz0zBHSKGK4ViLLMjrtHgePnkFkSijAsy267QDTNJB6xshwTVX7dZ0ojBEIOu0us3NLlEsFuu0Ww0M10izBMCSNhkJ3XM/h3IVLmIaOZRtITVNJBgLLNplbWOYdd+6jXHZpNlvk8zmGyiWMAaK2uLhKp9Unn8+RZhmeZ9Jotmi1Qx49cJy7bt5DnCR0O23VlC8MLMtCyozA7yMk3LRrG4srqziOASm0B8GAEAJSRQsSKZw+O0OlVOLUmYvc98QBbt+3gyzJ0E2dMI4olQtEkVLWtBxVVdakxtLiClmmjJc1XfkxtRodbNshjmJs0+SzX34MzzHYuW0LZ0/P4loG9z3+NNvHJ1QAA+iaouRemJ1nbGQE23bodnxK5RLD1QphL6bf89ENA7IUQUIUBmSZQNcMyoUSi/Mr9Do9Hnr2IFMjdWW2nfdoNJq02h2iMEICzx09xfbJUUzb5OTpi9SqZeI44cixs4wMV1mcX0HXDNyczcL8klLRNA2SKGV5qcH52QVIEobrVaSms16Q0DSNft/n+aPn2TpSoxt0qQ/XSSKlvBiGKmHUBhYKtmkjpM5ffflRsjgmTROKxRxZltLr+SwvLZPPufR7PoauUamXsUwNwzDRDLBsA8iIQxgZreM6JnGSYZoOlmXRbvbw8i5ZluL3fTRd0u50qdVKtNptxseGFBUWQSGXI01TapUSZ89dIp/zyJJkkGxaJGlMq9UiV8xtiCBJbRCIOxZxpJRFs9QY9D10iIImxBGe7eEWhzFdT1GO0kwd70GJSsgr1UOzNCNNUn7y2Zf5rz/3bqSQG4JEWSbVfVhI0lRHZinfePQ5tk5P8In//EX+9ac+xR/+yaf5eGGMW266gdW1VVYba5imRi7nKc850+GGrVOYtkG31+HgkROkwOTEKOVSgSSOyeXzeK6D7/sYg6rw/Y8/TTXvYVsWvW7AwdMXyXkWWyaGuf/RF9g5Pa6UTm0Ly7TJkgi/1wOhklEBBGGEk/cUAprBgw8/RdHxWGutUi6VB/dB1Ws5NjaGYWsMDVUpFgvUyiXm5uc5e/Y8ujQZHxumWFRqjKcvXOTZF06yfWqMRqOJ67rEUczS0gq5Qg7D0rFtjdXVNdZWG3Q7Pp1ul0LJw3Js4jgjjVPQBDnXpttpc/bsRYbqVcWXQiFzSZqi6xpJlhL225iWCVKJ9oRRjGGqYsejzx7krttvZseWcWzXxnM9Ll2co9vp87mvfIM7br1RJbKZ8qUDhTJGgSp+6YbOsZdP4di2UtgT0Ot3+ehN+/jkf/0j/u3/9a/42C/8Dm/ZO8pItYQgY3WtwU9893fw8595kHeN1tF1jX67R9AP6HR6LCyucOLkDLauYVsmyysNxsdGCYM+vh/g5hRiFyexsooRAtPUlVWFa7N9yzAHXj6BY5qUKgV0ITlzbgav4JCFGe1ul1KpoPo7mz3azQ5RGqEbGo7nKLNx1yaJYuZnl5ApHDszy91vu5XJ0RquZ2GZGlJCY61Ht9snn3cH1xsgBLmcN1AUlfjdPtVqSak6imt4qX0TqAubp1cZZdfhsW7ClunJDTru+gj9AOKQi2fOcM8/+S5uvfEGdu/Zz023vomTp2d42zvfwp133M72rTu56Zb9zF6aIfFbNFcv8N67d/Km23cyXi1z+sRxXNvCcQR9vwuZj6ZX+IvPPc74hEmp4vL4IzPcdfsE5bLNUL3EW+++h6WlVWZmZygU8vSChFNnZygWChx7+Qi33/EdLK0u8O73vZs77/gOlueX+I1f/U327NnOwYNHuPs738uTTz9JguCWG0e4cOECt928nzjwabdb/P19X+PerzzCj//UJ0iEGIhuDAr/mdgocK/HhemGIf217Sc2krrXiZm+GrJ0zeTuVZZ7rXVtfvcfQmzvuknRxrYMoOdM+TwqbawrVT2vuc1XIXAbLw+AAHV+Xp5n4GCxYaWw3qN3+f3LXsvrnykGieI6sHDtL/Ht5O5bZlyd3ElU8nEt1Gm9fqFOQLkxXX3YBECWbWoHvTYqf71LZfNyQqheBVWYyJQKpVSVhvX1SVRQiRAbCNi1TrHrGZBfIZ7yGkNIqXz0Ns27zg/PBh5X17uJrY9kEDAyqMys76/L1SfJRz78I3z27tuouO7lz06VGmFm66o3oh+wuriMEJJzs6vUR4YQmeAL9z3JhYsrPHvsAvt3TCIzVU1j4P0S+RFlx6Hgupw4PUNztUcpn2e0XsO1HE6ensPvxWzdPqr6yjSNKIwgihFWimlrxElEoZijXC6yvLyGH/UoV4q0G4reZ7smyIQgDPniA4d586030g/aWBYEYQJJyvET59i5bYJOr4dpWqpnzXHotDpYlkHkB7ieS7GcR9clSRIjAc/1KHoFRJrR7yQcOnqeHTvGSaN1ry/Vt9TqBpRrJUI/4fP3vcC2ySHcgoaQOr2uj2WYCE1nbm6VpdUWLx6bYWjIY2Kyzr4907QbPQzLQQodwxAgNNJU4Ho2qe8P/KQgVyoiNA0NCUnKwswKFy8tsrbWpFTJYXkWeibZuWMLKQmlcp44gLkLTUqFPLajY9iShcVlPM+jmCuQpYI0Exi2EkqxdGXt8NkHnmTXllEMy8RvdlldblLIF0iiGN/3WVvrsLzU5uT5Fq12h4mxMogUz7ORqTJKLldLVPI5pGEQZxnVqo0QggtnF+n2A0r5HJ1mSKHskqYRXk7ZHMRhikgEJy/Ocuz8Ivt2TZPzXEK/i+0q8QcpNUwL9t0whWUaDI2UabdaSmhESlqtDoV8jixOSeOBsWmWMTVcYXpAuUzTBKEJHNei1w/RpIFl2lieRr/X5cypeb76zAvsmRxHZgJd6OiWEmLwO23SOCYOIyUCUsiRpQlZnJF3PcJ+SM8PyefzmLogiJVqotA04ijCcJSReyHnkcQJjWYHp+ABEVJKHNsmjVNWlxuYukYY9XFLeehGZEkDoZdBl/jdDnSWEUlAajs4lSoChwxlDeB3fSXHH0RIlDWGbRhIAXEQYnsWH3ngOf7059/DyWPnqdUqBL6P4RhAiqHrg36jiIceeI4z55f5l599hH0TE+zcWmHfygo3b9nO6TPnmZ4cp1QsKoqwo451uZwjjANIwXU8TM1gy8Qwa801+kGIaSjLj3ani23bBHFMEIUcPXmWaqkIImN4qMzEUJEdU2PoQqfjtyl5Hp7jYpuKXkeq4eYKpANLhH6zh6NbpLqGoWl0Ox22TIyQK+bU+SMUywDAtG0QKWlfIaJxEnFxdoEnXjzG4kqHvbumKVfLfP7vHiAJQqaGhxkbGyJfymPZKlm6/4FHuXXvbkUDFDpxmFIoFKgNVbAcm+GRGv1eD4HEMZW1jO7oyiPTdWi3uhQKeWX0Tkaz0aRQGMjuZwKnUCHr9ZBBH93SyTBIdZML587ypjtvJgta6CIGXaex2qNSLVIuuty+fzdBGKEP+gN1A7I0oLk0R6Weg0ynudZkdLjOidOnKbiqf1VKm7974BF6ic/J+Xl+9hM/yW9/5n7evFPRXSUZrmuzf2eNzz9+nP31Mt1B/+O9j73AW2/bR6vdZevWSXq+T6GsPDsRAxsSmdFpd9Ezi/On5xGmIIxibNdCapJev8e2iRFs08TUlehUsZzHNAw0U1LIF7l0YYl+L8R0TLySQ7vXp1QtoEvQSDE1QZpFPP7SEZ4/ucBaO2DbRIV8wUUX2gDtkUC8YW8TBqFiEAz6iaRUiLlp2WSZYG52kXzeG7QjDALoVwvcYePZu8EuWn/+XvXaKxK+TdN/uP8xPvD+9wLK+mMdKUoSiz//L/+RX/k3v0AUJrz97nfwnu/5forlEUpFl2efeYa3vunNHDjwIjun7+Izn/k8U1tKPH/oCX7g3RN0Fy+w0LvIvhu24+owUsyTxQHLjR6jo0VG6j3KeQ9HFtgxPUm5GpOIGM0QdBqrxL0VKlbI48+e5P13b2H/TSWOn73Arl1v5huPH2JktM7s3MvcsH0Xf/Hn/5N/9xu/RrO9zM/9zI9g6D7f//0f4w8+/Xl+8sd/jqcOzHLvg0+z1A4YH69Qslq0VzJuunEnU1NjBH5Atx8qJFtkSKkNTMVB2+iju4zSbezbjWOxCZl6HfnThoDNq6Bx6xTLq5E9YKBrcP1kc/NnrH+O1F6fsuZrb/tA/ISBOfwVkfHg7+zyzhBoZNmgjw5V+JfX2GaRKZSONMPQdFU8lDrp+q4V4oo4XK5bWVwH8VxPthX6p125HwVsju5VTpqBuBIhvZI+mr1i0nXz28ndP+a4OrlTRYPXZ/C5eZlrjde6Fl7PcmJQCUiV/u7gwX9V4qlm3LSC61Ay19d99fd7A2hdlibqlN5U6Vg3Lt+gW77m/hskoVym+mwef/1Xn+cjsntFYrexZCaISYjTiDNHTzO/0mBkqMrQ6DBxGNNutjl8aoad03WCKGD/jdsU2mSooCmJYo4ev8hzpy+yf+ckO7dNks97REGkqE7HzzJcK7J1eoyTZ2cYHR0iTRMM3aDRaGE5JpZtsbTUUNRCTecLDz3D7ukhLMtA6gqRW1trkKQZru0xWs7T7fYYGqqQkeF5HoEfkiYpubyHpmt0ur0Nu4RiIQco5A2pblgry2togwdDEISYpka9XiKXz/Ps0ZOUcyaFgkcQhKRxjGmbOJ5DmkG32eP2fTsRArr9HuVihcXFZRWQ6EqJcXS0zq6tY4RhQKGQAwSu60EKi/OrGIZKug3TQABRFAweZpBlguZai1Ipz4Xzc9RqFYbqFUqlPFESoxs69WqFVrNDq92mUikq5FLXqA+XEZrkyRcOs2vblPLPMpTpsmZIZYhOQhz5dFu+SqgKOdX3IwSOZdFotllebVCrVjB1nb4fstrucNf+7eimVF5ljoOUGvlijl63T27gVbi62sTLm+hS+cSNDFXQdEmtXsZyDRYXVigWCszPL5PzbEzbwHMs9m6fQmgSqa8HNKpf4quPPMPESAXLNBTVMgzIUoHjOuiawfz8Cvmcy8mzFxmbHCGJ1LXj+6qnrdFo0h8Y1wuhaJGGbvDf/u5B7tyzTXmlWTk0EvKuja5r+H6I0HSyDCxLo9XuYtkWcRyj67qiDaGuy8WlVarVojLmjSJszyNNUnRNqVHGUcTcwgrVcpH5+RUmJkfo9vs4thJOEUIgNI0kTnA9hyTJSFLI4gDb0vGjFCl7mHpC0O+hGzaaBIpAQQAAIABJREFUXYTMJNl0m1mXbtcH9FTXVabeUioJ8a+eOs/+bTYPPn6IfTdMUR+qbiQ9uqZodkkck8Qxnmvzi198gU/+8Me57dab+I3f/3/51B13YWgWB4+fZGp8hMWlFU6cO49tmXQ6PeIkUZTQRHDuoqKj6qakUMwRBhGmZXNpdg5DUwIXYRgRhTHnZ+a5YdsWdF1jpdFA03Rsy6HX71PM54niGDkw4xZCUebiJMbyLKSUtNaatFtt8tU8mgZLi4vUhypEgRIlWlxcoVIpYVqmul8lqh3Ackzm55d48MkDfN973oEhBfm8i5ASS5NYlkl9qE51qIRhabiezeLCArfu202apaw1WwPak+DY8VPUamVAoWGWbTE/t0AhXxj0EKlrXZNS9cU5NqCq2/lCnpSMMIjQNJ0wDjF1wcraGmkUoZkGWRorpeEgwtAlF+cWqI2O4nkOWRqhG6oC3mq38PIOKgLLSJKUnOexNL9Cu+1TrVZpNVuUCkX6/b7qA9QNtm2Z4Lv23cR/fvBhfv6TP0UaRfzKn9zLD75tF3EU0el0ybsu/+XJ02yxJJOlEpomuWX3dvo9n7HRGmmaYrsWpmEouwq5XqRNIc1wbJdisYBXcHAcGykEaytNvvTwi5yZucTeHVs2zNJVX3ikekWlpN3uEkWxokpmGbbtcO7cLIWcS6+r/Ap7/YBuN6TbjqnkHG7ev4MsTTAtAyGVZYplW0o1GYU0mIP7bbpBMVNBapKlHDtzgemp0UFBePBMfY3k7vW+d615BRCHAR/89V8boKpi0HumshmdlMe+9kVOvHyMoYLFyJbtPH/wMKdOnedNb3ozX/nqV7lp714q1QqavcZnPvuHEHepuAlbh7ZR9bYTRC5j9SGKOYt+PItX0NC1ohImIVKIWKpx8sQZxscmSDPB0lKDSq1GnMZUayUOH1vkfffcQbPRpV6pUh+aYGhsnMee+BoHjhznzMkTzMyc4f3vv5uXXjrG8WPHuHH3Ddy492ZOnTzDn3z6d9iydQtpEmCbCaPDBcZqJnGs8+DDD1MpVahNbKFSq6t2i8HekVzWH9+sDyc3vZNdb8e+xnit2FQMqJ2XAYmrxmba5etI9NRmXW2a/s2Nzdv02kig2JhfyE2FiFdJSNcVSNOBtsT1roH1xO21ktvNfXjX297XkyBfa3w7uftHHt+KyZ0ciKEoQZR1LvvmRtvLS2qDizMdSMOuI4bXGuuIpHb1Rf+GqJjr++byPtq8v15PcpemSrJWyFde4F/423vZeegpdtXrV2yeEKgQNVPqVEkY0FhaY7he4dzsEvVaFcM0MQ2NKAhwbEnRsynlXfwoJE1Tkjjl0qVFpsaH2TFaY25xlUolT4bgCw89h2MItm8d5wuPvcDUUJmnDp5lx8QQL588z/GzMxhSMDo2RJaKgWCNMgreOjJMvmiryg2K/lYsFgn7KY7j4Hk2pqka8IN+TBSGXJiZZ3pKKTlKKXE9FUAZmkaSKB8rREa3F5DPe1iGUpQTUuC5NmHk0w96uK7H8EBQxHNdTEtncXGVKIpxXOX/lcWJ6uEydQxd54FHDnB+eZGbdm3FMA3WGi3yRU8JcbjKoHhtpYmuaYRRzL0PP8/0WIWl5TXyudzgfFNCHlGk+vF0Q/noPfziYYYLJe595AXqRY9CMaeCcZQHVrWSp93s8PePPMv5S8vs3jVGEqfMza0RRzHlcp4w9PGDAMe1EAI6rRaWqWMZDmmacfrMzEZl7csPPcubbtujzKKlxLJtet0+d92xh3zBo90cGJ+HsaJzSqGEW5IMyzRpNdqYllDLtX2kJjBMHTJJq93AsVw0zeDUuQsUCzatdpNeP8RxLMI4wnYsdNNUlEdNZ2K4Rs/36XS69Lo+q402M7PLPPHiMUZLZR58+ghCJlSKeYK+MmNutTsUCrmBNUVKsVhgYXEV2zLRDYN+L2DnUB3bsZi5tEjRK1Ov5bEt1bvX932azQ75vMfMxVmqlRK2YykbglSJ6/R6faIgpljKY+ds5bvm+0ipksIoVMin69hUykX8vk+r3SOX95CaRJOKhuy4DkE/UEbvYURjqUu+UCAMG3Q7IU7exG/N0+12iFJJqTaCwCONNISW0e/7aINjlaYpcRxz+uwMzVabfN5V51wQ8NnVBj/7obt503fsRdNgbW1NXSOpOp/73S6dTgfPdRT6Wd7JBz/wPv763r/j1/bupdFuUcwXuTg/x46pKU6dv0CaZuyYnuLSwiK6pmGZFs8depk4TijmXaSmDO99P+LYqXOsNZpUS4UB0wBsy2K0VqPVaSvENlJ9W6Zh4LkunutSyOeYX1rG0HWCIMC2LLr9LmuNBp7nknNdjp06w/BIGV0TuLZBEiesNZqUymWqtQp+PyBJEnrdPm7Oo91UiqaLyyuQZEyMjjK1ZQLTMtAMDds0qdYqzM7Nk8sbGKYyKTYtdW1//v6vs2NqC47jcP7cRbZMjSuj7gyazRaGrhFHMS8dPoZn27iuQ3dQIHA9B2lIskwFjOvUWSXYJEmTAM3QcHMemYDl5SU8x2R1raP6mDVBpVKhH2foIlU9wyLh3LkZprdN0u22MTRbKbBqOhmSQqVKLufh931M0ySX8yiWiwR9H8dxuffrDzExXOcD09P88H/8T3zq53+Gf/qh7+Xkcw9RL+cVc0UIPvyWnXzx+Fm2h6pHNwpD8gVvEKRmBH5IHCc8+uwhhmtlVtca5HI28wsrGJqhTM2zhMAPOHz0DCP1GokfUirZ1EtFhITZuSWKpTyGoSOlpNf1KRRylMoFpBR0u31My6LT7qEhSJKU5ZUm1WoFWzMp51z27p7GspXScYbqi0Vk+EGEaVqq2BVFRHEy6JtW3pOD1FIVDVodyqX8hkH04GF83Wfw5TTs2u+92v/rD2WpaRw184yMDW+gRQBZmrF46mWeffg+ws4yIyND7LvrnfzYT3ySXTtu4NSp0wwNDTE+NsGv/fqv86Uv/yXvfNvb6XeWef97387y+fOcPzfD8vIyjcY5prfW0S2bY6cXKOeKCAGFokOSpIyOjNBqdzGwqVRr/I+/fpybb95GSornWdx1+w14lsEXv/QYl2aW+chHvpenDx9lYWmGT/3sT3PghcPkPMFHfvB9/Ntf+h1W+hH3PfQYf/OlL3NpeZ6crPDk8SOsdENis8xi3+TQxT6LnT4lehw7doZGL+Gmm/er3Z2Jy5KP66S+KwrplxGfdeLfFTHQN5s1bT5em9GoV4vtNr3/eqie2Tq76w3Gx1ev65tJ7jZakV6D1rn+dTeKHP8AyV1GBun6+q4/7+t9fX18O7n7Rx5XJ3dXVL5e57je3OIa0/V65Nahcjnwc9qgSV7d45ddKeCyWThFbPp9TeRu44R95esbkPNrJHpS0wbc4+Q6F9q1LxgptU1/y415N5YaJKj9v/g0ewemoZe3b2NBUpkhgpALpy4hdI2RsRFGR+sEQcyBgyco5lymp0apl0rMXFrlgWeOcevuHViOC3FMIe8hpcbs/AqFgquoMIbF9ok6s0srTE2NsGtqGARcuLTErukxbNNgtF5hbGIEKXXiICFLBVJqhJFC/NIIHMel2/GZm2tSzJe5/9HnmR4fIgxVb0vOzak+tDgkl3eRunpQAwR+gGnpg2Z5W3ktGQaWYRP4AUIIvJxLHIdIXSCEoRgMieTvHjzAzbu3YzqSoO9TLuXxPAekMhjORB/TgUzEZIlkfKTCji1j6IbB7PwiXk5RyJJUKd0ZhonrOOimga4L9uwYBwGVcpEkSpi5NE+pUiTLIEmVSXMSKZRo785pTNNipFbAsg16XdX3p3oVA1ZWGqRpyu6t44wOFSmUPfx+xEi9xvBIFcPQAAPTUMnJxXPzHDh6jlqhghSCR58/wo07pnAcG8OwePrAWbZPVvC8HHGs/IEKJQ/DkuiG5OFnDrF1fBTHdciEINnUXN1Ya1CtlLA8kzQGXTPIiIGUKIrQdfC8AkmUMTpSRjdB01OeP3KWHdOj5AoemZQIoRFH6hhpUlMWG8UC9z78ImdmVnjT/t3snBrn+UOneN/dd5LLmZSKBZVwOwpJsiyTTqeLbVv0ez2cQZAtgDCM6XZ87nvqRSZqVb741QOMj3gsrjQoFHIkSYphakrhdSBJv24wncYJ2sCA3bYswjhGMzRWVxUlNokSvvC1J5msV+l0euRcF78XEMYJtXpZeWqtIziWpajBmhLNybKUQqGMTFI0M8TUc5han/ZSG12zsYpD6G6eIIjQpPKxdByVWJ6/MMehE2fZMTVFtVykVi2BUGjijz5zlN/+5+8iTWJ0XSKlOvel0Dhy8AQPPfIiI0N5NAS9Tpu/feIoH/v4T2DbJr/9+3/IPeOTFIsF4iRi6+S4QlEKBbZMjNPv+jx14AhSE9TKZaZGR8m5Dl2/i/IhjDE0lRSlScpovUY+n6PX69NstjENg2Ixh2XZGz2Uh0+ewrMd4igijRMK+RxhEOLYNlma4AcBlXIRw9BotFpUSgUs3aLT7CIyiZAG3U6AZZhcmpmj0+tSLBeRmurfcXMOjz/zItV8kYWlNaqlgro3uIY616pFNEOjOlRBxCmmZaP8lHUMaXL02Az7b9yB6zn4fh/LNAmDCNt1OHz0OMVcjlKphOdYjIwparsAVlfXFGonQNNUEqoNFG11QycKE5IgQeg2KTq66ZC3bXqtLuWCg0hjvvHwAxBFlIpFdU0j6HZ9hodGN/oudVPSbreYm1/E8XI0Gy0My1KWKbo2QKCVnQLAjTfsUGqShs4P7b+Jj/773+L7vue9/NLv/TXfd+cWDNPCchyajSZ37Z7kZ7/yEvdU8ziujRCg6RLfV/2nruvwwpHTVPIOxy9cYsv4KLmch2lbA0VjdR5sm55geWmVSilPuehRLKnrt1jK02y0yIAoSrAsA8PUabc7MEBodE2jVMhx8swM4yNDeJ6L78fMLawxPFxG1yWWpSv/WV1uJGhS04lTRdXVdV0lm+phSQY0Gy1sWxW8Op0etVpZodEZlxO8yw/YazxQrz2uePd6yw0C5z946iDf+Z53kiXrIhaKXfTnv/ubXDx1GF1mLK00+OMvPMib3vJOzp85S6/bY99N+/i5n/t5RkfGOHP4Iu2VNjMXz/K+d41z454a01tr1Icipv5/9t472rL0LO/8fTvnk8/NdSunrk4KLSR1Sy2BjAiWBJIYksG2xMBYY8skA+MFXh7bLM8ajGcZWZgBZJBghCwQkgAFpG7lTurcXV1dXfFW3ZxOPmfnPX9851borupSC8Sw1uhd66y6dc7e++x0vv097/u8zzNnUK4YrKya/M7vP4SpLnPzzUeliJOQrQqmoTIxJft/9++bZWGhz59/8mFeduur8JxVLE2lv9nmta+6iW73NLXmMVYunmfpwgYnF1bpdVOO37/Mz/34L6G2R9yx/3be+Z0/xOtuupP2Spd/8eM/RykJ+Om3/zRTWom7D9/BzY2bue/ceR4/f4YvfvV+hr0e3/HKV5KnGSIvKMa2AoWsFlwC4lf1g4nr9NntVN2uLDxdeRmuEAa5Zg9fll5Ksj9fPfIbjWstqyoqilC+YVPva+3fTkGN4jJwuh7I2plf7lQhr/jkipcMmSy81Mx0zer1lX10z6esPv+1I3CjjtuMdnrzrneczz/mb+RcfxvcfYvjGxZUeZF4KVDwhbflOK7IoFzFpb6BgMv1tvdN06NvAO4uAcQ8v2I/vpFvu2xkfvkYr+Yn//AP/SN+5tiBqwa8K3dHZjVha2mTzc0OM7umMExzLIMrmJlqoI1lrykU6tUyN+2dlfLRWcHKyiqWKeXrHz9xhkrggIA0SrFti6lmlW6ny+r6FpPNGrce2cOgPyCOElbWt6nXK3TbPVzPJssydFN6DY2TdGPvJhff9dENndMXFjgwP02W51RKAWmesby8esliAEUwGI0oskJSOds9gsDBskzanT6ObdNqD/nYFx/k8O4ZSUcZq7Wur7XxfJsig6lamThJcHyDVqtDrzfA89xLUvOKkpHliewlUSx0XUPTNdrtLrV6WQqwqOpYVVEKoiiqymg4AgGGLquOeZqh6yqNeoUky9AMHRCcPXuRWrWEoqqomoZu6fi+i2UbOK6JYeqsrW7heS62I/3shsMRQeCS5TmO44xpRgrdTo/nTi3iOjatrTaVwOerj57iFTcf5Ctff5o33nk7tmuRJTGqonLzwV2YlkaaZgCsrG0CBbZtQCHQCiF7URRI0oRwEOJ6DlmSEgQeURzL/pU4p8hlxrzb7+M6LnmRkacZWZaSpgnDgfQqnKrKKhrkZGnG6vIG1XpAvyeVQctVn7XVLRQU3nTnbdi2iWkadLtdmo0ymq7QH0hAl2UZo1GE5zpjQRqVPC+wLBOA0SjiqWfO06xVeNlNewkCl5sP7sW2FHrDEVPTk+OKk0KWpmiaQb83GCtcyolimsG9X3uMimuTpTm2Y0pgmhfoqkE6jJjfNYXrOrQ2OoRhjKKquL5DmmUoBZdUDFvtLkHJJY4iVE36Nw16LQpFep2dee4UWWExOT2DYtkkaUav3SVNIhxPUh6FUHj8xBkOzc8SDWIee/o0tq6Tpin/x7Pn+Z2ffzMP3PcUs7NNNE3lox+/h6ePn2NjfYs9uya59ZYDGJrK+fOLGIbOr3/iSeYn6vy7/+t3eGthUQp8At8nHIVUq5Wxn2WJdrfDcBgyDEfsmZ1C11UURWEURszNTDIahTz0xFMcO3KIURiyf/cuttotAt9nfWuTMIq5sLJGtRzQ2u6ODbo1yoGPqin4jsf65rYE13FCkqZkWYZjW8RJgq6qLC6v4tg2QVBB13SyrEA3TVzP45lnnmMYhkxMNDBNSZnutDpomk4e53zt0eO89bvvxnVtBoM+fsmTbI2dCaQiEMWYpouC47koKBycn2MUjrBtC8e16fcHdHt9KGB+1ywXF5cRFNTqFeI4IhzF0j5A1xkNRyRxyrA/GntlhrJiOH4O6Lo5HqfHBsEINN2k12tJ64zNDUquB4omGQ+qwHQsKMS4GtyjUHIsW47LFEhQp6iXmSaqYHV1XQK8TIpjaZrOxQsX8XwXN48Q0zP80Nu/hw9++KPccXQ3aZYz6PUplQJ+8DX7eM+H7uU1Felp2u0OEALSLKUADu2eo9YoM92sjf3+JNVaN3RcVwoT9ceWH+VqMPYDK1hd26RSCbAsc6y0rJFlmUxiWPIYtrc7UEiKZaNW5quPPM3pC8sc2DNDrVbCtg0sx0BQsLoux8g0SdF1DWPcVyrYMaSW51xW7go0TdolFHmO7zvje0Du+4tOLl8KuNupflxnnQ88foJ3vPNtlx7UaZKSpjG/9/7/TL3kYRgGlu3x3l/8N/y3//u/87bv/4fMz8/zq7/6aywvLaHpOhPNbX7wB1/HHcdK7J5t0N0wef9vfZLvet1dzExPogoFL1A4dKTCy28/RJGn1OtNhsMh/cGIuZlZkmSVOBUEfp1zCxv4jsmxY8do1gVpnFAuBTSaZTa31/jspx/l9PI6qWHzz970T5j1Z2mWKtQbEywvnqFSrbO4tMQzx5/m2LHbqdeaRGGM75fYtWsP586exK+5vOrw7dw6uYfXHH4lrzz0Ov7Zv/0VPvJnn+Du174avxyww18U4/nNCyTwrncdrgQzhTRDvxYIvN41VhT1MqjLiyuE6P5m4O4qOfZvZMp3Ix+vK+6tl3J815pxX1m1u+rzGwCvFzsnBcVVnnnfbIXuevFtcPctjr9zcDfOADy/SrZTrH9B9exG4O462/v7Bu52gN1OZe9KcPfAfV/n9G/9Ju+97fD4XF7547viRQ4KnD2xQMX18SZq0jRYVTBNnTzLWF7eoFIrkxUpilKgaGBZCo8fP8H+XXNcXFzn/MU17rjtMKMw5EtPPMOh2VlOnrrA/NwkFxdX2Ds/jaIINrc36A2G2KbFfU+e5uaj+3ns+LNM1itohlSd8wIJTJbWFqlWyliWxcbmJpqRc3jfBHmR0docYlsOipoQJn0c00UxNbJcSv+7nsNzpy7SqFewHZs4jDA0nTBM8Eplbj20V9KgFEGnN6BUDXAdi9GoixA5ftmhOlmSFV8KJqYarK1uEsUplm0TDhIs20JBJx6qfOjjX2HPbIlyJaDIIQpTDMMEVKJogK5LYCQUMC2DosgYDSMMXeczX36IRjlAM6R3WpamVANf+mSpKlkOhq0RxyFxHKMbClme4fkBumnAmJpk2gaqrmJoDlE8JEpGaKrGJz73MN/9ppdzfuEiu2YbhOGQ247M45V8du+ZJc9TFAXSRJosO46FqqmsrG7RaNapVHw0XSUOE7729aepBSXqzSppHrPdbvOpex/j6B4J+MMkwnQMFs6tcurMCucvrBPGIZ5r4TrSrF7VCwxTodvpU6vW6XUitrd7lHyXJBqxub6NWigYjoZpSIpmnmWkSc7B/XsQak6v32d5bZ2JZhnPMyVrR1Gkp5emjqmwOUkUE0UReSFBeZ7D6uoWmqoxGIRU6x4bm1tUqxWyJGJyeoIoThCKoNvtIPKcvJAUNNuWMulpnBKOEg7MzxKP6aSaLnvCOp0+Kgr+2Pdxu91mY71DKfClh56yQ13tkOdSMMGyLSjyS71AQgvp9zYpBVMsrS9ihDrTRw6SKSrhaISpaIhcxTJcFF2FQla8pxsNdN3A1h1OnLzIQycW+PTWJlnd5Y237WXvnjkKMhAFs5NNbr/lKPv2zmM5KgsXljANnePPnedLpzb5tV/+JZY3e9x33wO8sTlLo1qhUW+gCcHC4jKua9Lv99F1lXKpgmdb1Otlev0+WZ5SLvmMhhFJkrHV6TI7NYGqAopCuVyiN5CUV9M0mWw0yfOUeq1OGMaUyyWePXOWiUaN4TAkjEIqY4sBgcB1HAb9IYpQpKKvruEHgfzt5ClLaysEVY9cZDTKdShyGs2a7F9SwPVtFKFjmzbzkxP4gcvKyjKqKhAZGIZOFEXohi57A/OEZ06dZnNL9k2GgwH9TgfLc4GCQa9Pnue4jovtO+RZgWPZXFhcxvNMRtEIVJ1Pfv6LHNw9j6HpJKOIB594ioP75hGiuORjaagamaagimRsiRARIxC2iWqZCMOi6vsIoRFlUC7bCDVjs7WN7ZhoSgYiQTNcVGFQpIJBe8hf33sf+/bNo2qSXqooCkFJUh+TJMHzfE6dPMPUdJOLi4u85ugR/tUffIh3v+vH+fPPPczdRxrkCBxdR1FUhoMBH31siR87tAtFVTAMB6GAYanEccxwOCJLJcVWKKpkmYzPf5EKVE2VKpeujqJBkRYStI8VPhGS4hWNEnRDRdNVtlsd4ijB9zwsWyVJY1RNY2ayxoHds6AWqIZgMOgjhLTtUQBTs1lZXsdzLLa2tvEckywriCKZcAlHEaquUSAuJeJA9v2pmoqua7JF428L3N0g/uzcsjQyLwqSJJFsA6Fw9NhR/ux/fIT9+w5yx6tfx6133M2bvvv7yNOU//q+/4pumLz73T/FRz/6p+yb2sP2SoubDvjUygkZPV5z18voDL9EGg4o4oK//qsvc/uxm2j1FtANQbnc4OLFFRShI4RKFhtUSrOcv3iR+QNlSvUExdykSCwgYn3rHHv3ztEeGnzp6Ta/9Jaf4ftf90Yc12RqZi+KbrC1ucjcrr2sLp1FM1woNGbnJli4cJoDhw7T6XXo9Losr5wnVSukaQ/dAN9x6Wxt8rKDr+aum+6kvxzzb3/z1/nwRz/GbbfdTK1a+abA3aUesry4SkTkElPrBmAjyyTFV1HEjX2Nr7ONq+KKqts3opwpaZzXX1YRO92HLxU0fRvc/U3i2+DuBnFlEuPKuErp8lorXsFbvurtSx8XV613qaAvFFnGf35J/DrbeykJlhdsj+uDRsmtzy/9ffnfF37TjveLEIKcTPLNxZiJPj7IH/3hf8yBiyd5/e758XsCMTby3PH+lCdVZlLzUPrJuZ6FbQjOn71AOAzxK1UyBNWKSxZHqJr0OlMVhXAYM92o8+ypcxzcPy89oGyLzz/4JL6vcXDvLianaqR5TrVeodcfYbsuhqmhaRpBqcS+uUlGvREPP3WGPWN/Oss26Q8HaIZK4PoMByFFAWmUUfIrRKMcVTUJPIeV1TVcz8X3S3S2t9CFIEsSaSAcx1T8gOFwyHDQJ4ojHMeitdXDDhxUkSPyFIoCz/XGVaaMPMtZ2VynVq0w6A2xNIc0zlBUged5uIZH1E+wPVNmynUNw9LYPV2jXq3C+LooGhiGCnmKabjEcYymKcThiKLI0VQVXbMQCpw4uUrdL2EaGrqq8MSTz+FYDlGcc/zEArVKCbJ4bCgqKISQipwXl6hVS8RRysKFFdI0x/U9ijhke6uHplkUec6uZgnd1KmOK4FRkuKVAuI4RQhpuB1HCaNRSpYUaJpOnCdU6mWyoiBNc+JRTBKlPH5qgVuP7UM3NDShYqkGh/fNcfzkeTY320w26hS5YOHcOvefWSBLEl5x036CwEfXVTTLZtAd0mn18XyPQlFQdQ3PsUjTnFGY8ZkHnqLse5QrDfr9kOeeO0c98IiiEEg5cWYJQUG15FOuBAhFpRCSqjXqDaWKa4EUWhAqtuXzBx/7Mi87ultOYkoumhBMTzV5/PEzbLS6zE4FCMui3+0iigzL0KRwiW6RZwndXgfLVlnf2MZ1PXRV8OX7n2Rps8Whg7OkUcqwE1GdbErD6XGfYRylTM9OoWoqo1GE79sIpUDRcgzToBA5eZYQhSHRaIRrWfTbPUp+hVG/y5lzC8zN10lSganpGLoDikquJKg2FFlBp91GVwSPPPkcnU6fmbkau3c3OKvE/NR73sT3vHIfkKBoAsOw0DSFVnsdbeyHN+r3aFRlhSmol/jAl8/wIz/6Dv71v/8N/uhN30U58CiXPLrdDoUKgefSarXk7yVJiOOUTreLoevkSGEXRVPR8oLAd5mdaKAbOmmWYZc9HN/Fr5RwfB8/KGFINxJlAAAgAElEQVS5LpqiY7m2fAgoCoZu4noBhi6oVD3OLS1QrZYxDRuKFNsxL/W79nt9NKHQ7fUwdYPzF5ZoVGqoiko0SClXPRQtZ2u9zdZaC79iIJDrp2lKmiSYhhQR0jSTLJcT/zwrGA0ihu0Rjz75HMsr20xVa3hBgO17OLZBkqR88jP3kUQJ+/bt4eFHH2OyWcdwTVzfwbFMyAsG/RiynHq1gmqo5AIeevRZBr0+rmXjBwGO63L2/AJByadQVFA1chRJBU5S1EwjHLQQRQJZgqvGCCdgFMVUylU0xZBCPb5NXkgWg6qrJFlGvVqhVHLIskR6lCoKWZbR6/WxvRKtVpvp2Ulsx6JcCigQvHlunv/p13+DX/mF96Bun8XUVYSQCQjTMnn7q/fxnk88zB2GimpJsFakQKYw7EV8+YGnOLxnDmEIhuEIXdNREFKwKBohFat1wmGKSBXOnFni9IUVmrUyiqqRxAVfe/BpqoGNpkIpcLFNh0/+9YNMVCqoqsYwCvF8F1QFkalsrbUY9EfYpsF2p0+9WUNoUnCr3erTaMpnkqrppGmGpmnouoaqqhRZJg3LhZwzGJrGE0+dYnpqYtynfw0gcY0KnLjG63r9+JerSTtN8AUfW1jhne94C7mi4pcqDPt9AlXhff/+X7G6ssZrX/9GJmbneebUcxw9vJ9zZ57gzte8nPbGgN99//speTFafRf3P/Ygv/zuu1m7eBG9bDHU2pixj+uV0W2DUt1GaCnlySls20akMeFoRJYrOOVpht0hqmnT7Q/JE8HTj55gpjbHZz/3JRQd9h06wG/9j0Ue+Uqfn3/nP8YwBarQ6LdamFqBWvQpKPPciZNU6w6q5nFmYYl2p0uWZwSew9nTx/Fcn5WLm8zN7abbW6JSmyQeJXS3tjCDErbtYOoGr7359bzhtjfwv//Wr/PxT3yaH/zB73/hhPDFMMEOlXM8VcrFFRTG56XAr3f9dvr5JbDkmgDlpQAewYuDsestf93Pb5Rk+FsGd1eGylg9Pi+unkPv9BQWY5vyIr/UinStfZM2GDcGzsVYjUZcgRy+bYXwLY5vFtxd77a7Xk/djeJ66z2/n+6lxjcN7q68mZ8/wBeXK3Dy42tLuBSF9LMrdnoHryKRwz/6sXfx3197C3srlcuDlgBRiMsjFaCMKT95ErO9ts3UZJ1BGBFUPGwKOr0+juOgaxpZmpPEKQhBfzBEFQqWZfDMyXMoQuf4qYtMTzQYjoYEjo5naUxNNtA1leMnzuBZsvJi6BqK0Gi3+/jBDtBTsBSFRqNCnmeMRqH0fDMN8jzD8Ww6rR4brTaB76BYsp9ubW0T2zEpVIFhGQg0bM8lzyEcRliGgSJU4jjB96XRsSIU1tc71CcqKBSEYSgn4pqKogniJCJLcjzTRiFHU3JavW10Q0VRDHrdIUkaopo5um4yCiMMUwqK2I6NokBru43jS0VSBUEURozCiG6njyIULMuWjcRoZGOVO980aTSr+GWHKEmYmqxTFDmjUYihK0xP1xlF0tdJVWXPl66oqKqchGxutHluYYWDe+fQNY0wivnU1x7j2KHdOK6D5ztsb3WwDEmFCnxPDrAKY0qvIj2jbJkhLij4zBe+zv65aak2p0tndMdxqHgWrufICbwQpEnKVx54hmNH9lCvldAMBUWBer1Ke6vNTXtn+NxDT3Jk9yyjwQhVEcThCFEUVCoBgPT0I0VRBH7J5/ziKq+67agU4hgMaTZKdHoDJqcnUQ2dyUYF21RxbJPllTXiKMZyHbrtHgoC13XY3mxRrgRcXF6nVPZxNMHUbIMsl5TNz9z/GEf2zzMzO8FkowJKgaYaLC+vYZomaZah6zqtVptS2UdRJTXO0E2SpOBPP/NFvu8N38HsdJO1jQ2qlRK9zhDLs8nSlM54AuOXXDRDRdMVbMeg2+uha1J8RtF0wk6bdNinVPLRLYtufySFfoYj7nvgQaYnJyk1pxCqFN7QNGOcuVWklH4Gvu9xcXGVA/tmmZ1tAoJBf8j7lrb4kdcfJYljFFWwsdZC03TWVtZoNgOGwxGWaaCqGdutDqUg4Md+89P83Lt/grWNFj87tYsLy2uYhkFeFBimQRpFZFmKbdmkSU61ViUtFL748OPs3zOP7/sourQ6GUYxluchDAMr8LE9SbXc6YmlGMtiayqOZZKTYzsWlm1RKvmouoai5iQJKLnBfY8ep1rxeeiJ4zQrFR49/hyOaZGlUnn32VMLPPXMKQ7u2cNwOMRxbC4urvPxe77KbTcdwDQMao0K66srGLrB9tY2lWqZ1nabcqVMNApxAxvXtzAslSSN6Pa6lEslbjq8j5uP7KfVavHHn72Hl990CFXR6HUH9HpdpqfqBIHL1GQD0zbJcmnBMuqH2JaL47k0amXCMMS0LIRQuPXWw0xNNnEDD/KC1uY2cRTjeyXICmncHKUUaYGpG+Qiw3RsVGHx0BPHcVwN3RS4loummCwuX6BSr6JgI0QmWRlIBdNyOWA0HGHZFqNhiGlb5HmOYUkbC13T6HV75KkcdwSSHvoDBw/xz3/vg3zsvlPcta9EqRTQ7fa598sPYhsaH7j3SX7q1sOkSY5tmCwvbbC91cG2LOamGjx+4gzzu6ZQxokERahkaUESxaxvtgh8B1VVSZIM1zUpyJmeatDe7tBrD1hrtdkz12QYhmy3ugwHEbcf249hatieieNaZGl6qYrjeha+Y2KauqRVjvvkNjdaDIchlYpUX1VVFUUVqEJF2aHNj30FR8Pw0j1aDlx0XRszgK7/iL9qIn/9xXYWvoI697z3gdNehbtefyeFkII7ap7w+b/8JE/e/yVUzeX+hx7nXT/zXirNPfzUz7yX7/3ut5AWGo889gwnn32KZtPiJ+5q8o5/cIg8j8gyFUeMmPINnJKPZdtomg4YTE7uwrQNWq0WvW4bTRdUaz6FEuM4MYO4x5Fjh1GUkIMHd9EfrnHw0CEmJ6b548+2mEuO8n1v+i50TcdxPZIkZWtjjeGgQ705TZ73aFR9yqUJVCNn/4E9tFt9NFWybDTd5OTJZzl2y+30+m36/Q4CjWg0wHZN2huL5Kmkb25sb1IqlXndbXdz1y138cyXLvCv/9Ov8tijT/HG77zrqnN43VM/Fo+TlTzlGiDsRhfvm4sXA3d/F99zo8/z4ooCyk6+4fJaz9/ItTd+HUX5y98x9nHVdF5syZ3q3o3iUs/eFZv6/wrcvbQa7rfj/9chy9bXqCq+SPzTn/xp3uDql/6/A+yuSjYC4lLtMkdkOYurGxRIw2YUaQhe8sZZ5yIfK8AN5OQcaX8wGAzxPZu17R6rW306vR4XVzaYmayza7KJoGBzfYvdcxOsrG/hey66pgGCeq3KM8+eJUtTVE0Qpxmt7S5+4OO6rjTYHX9PlmZkRc6Rw7uxHAPd0DFMncmpBoqqSHn6LEPVDbIcFFWjXPbJs4wkTvjEl77O6to27faATmdAo1YiyzPSNEVRFFzPBXIGgwGmLQUHer2QLMkZDodYY8W2TmtI4FdodfpomuwDsW3riixVTprE1JtSDl3XdKIoxnFtTMvgyVPnaW13ScIUTTWIwwQx7lkzLQNFEcRRhGbIjLLlWDSbVRr1EtF4UiaEQhTG454RsBwbBHzh0eNMVstjCWYQqsrb33yn7OnKcqIkpTlRBwSmYRCFMctL6yRpslP4hUKQxAmbG9sUec5rbj7E5to25DnRcIimCQbDARPNGqom3R2zLCPPC15+8wFKZR/Xc1A1QZLGaIbKP3j9y7Esg3e86dXousrFpTXIcx555jTDUUxru0MWJ2xstmg0KiyurbO8tErZc2RVodXFD1wsx6JSDVjf2JJ9Q1nKYDCk02ozN9OgWvYQSDqd6zmcfO4cF1Y3+N0//xy7dk+RU3D48B7SLEXRVCzbplEJ2NjYJs8zNFNHHZu4W5aJZVtk46ddpVIiL3JK5TJpmjPoj8iygn6e0+8PMEwd0zTQNO2SCqZMvuSoKsRJjBDF2L6zkEBRUdA1A4TAMjWyJGZ7q8XGegtFM1BUlVNnz+EYGtPNBpolzZ5VXTaip2lOOIr5+Kfvk9nLAmqVEpZjycpxkfHhsxd537vvJE1TbNsmTTI+e+/DKChUq1XCMEJRBEkSkY09AM8tLBENhhzYexuf/NQ9rK5t4PsehZDV4vWtFqaq4TsuYRgzGEUYpkMOTDbr+KWAKM3wfA/TsqnVyygqGKakGgtV/i52+p+VschFUeRjCXPZ/zsYDikEJEmMoiuUKmVqtSbdbsyTp8+gqTq26zEYhmy22qiqimNbkAtanRGe46COKbrVRoVXHDtIUQiiMCQOR7iWg2aoRHFInqWX9mdju02eF4yG0aWE865dc8RJzPb2NoPBgJm5ad5y16sQQopvuK7Nm77ztczPz5ClCVmes7G+gaoq5FlOrzskTjKeO3UWx3Wk+I2qsri0QqfTpd3uoOsa21stHNvGUHXCwQAFSdUsihxVkRL5ii7N5oVikGYauukQjXpEoyHDfp/pmfr4dynH+CLPiOMIXRMoSoHtSkDnuDZJHKOpGjt2Hpoux+alpVUcx0FVNbY2tlFVjW6/z6vvuAPHtRFCGpA3q2VGYcRf/Zt38kfHT2HoOitL6zRqFXbPzxBFCZ7n8vKbD5MlGfEwkhn2omB9dUOO4RN1snEPoOmYKLrKwQPzrK1ukiSyt/KWg7uI4pRqtczs7CSlsicp4klMp9Nh2B+MRSnkcfR6A1rtHt1en6KQ9gdFIa105uYmiaKYLJNVuJ2e4izNKIqcNMtI00z2T2sauq4TRYn0Y71WPL9yV3DDFozLz+Drg8DtVvvS3/1ehyJLaW+ts7Gyzs23vowEnV4/5aN/+nF+9l/+Ar//+x/kscePs721hWGoDPo9HLFFxRdsDTNKUwc4dXYFXbXYbm3Q6XXIKVBUnfWNbYqsQEWlMTFJtV5nGPcZDDYwLZtKZYKllXVU3cPxSkxOzpFlIz762VMk5x1uufWIfM6QE8URRZExu2sv83sOkucJ5cBlcqqJrmpUqyUGg01G/Q6TE5OsLC+xe/cB9u07SL3RoN/vsu/ArXR7IUmSYXsBgR+QxgN67TVUMoaD7qVT3Jgq8b/96L/mudNnGI2iG553eYmuZkh9O2TIOaF87UQ+Vij9humn12C7XRk7gC1Pr/N7eqlRCK7tffF3H9+u3HHZ9PtafaQvVjB+scHwenG99W70fdejge68//x93zmm68YNKndXC7/Ib7lSCXPHyBwui6cIIS61DgK8+5/8L9xMyrtuP3LNXdj55kIUEmRlGZ3tNl+4/xFecewwmmkgNJUCMCkYRTGbrS5PPHuW3XPTeL5HHEbk4wlwtzOg0ajimhZ755qUSh5zMw38wGU0GBKnCSsb26hj+luRFxJoRAmmZVEpeZcU1paWt3EckzCMiOOY1fUtNjdbFBTj6qHcr63tNq5vMxyOoCgIyr6ssBgGH/6LrxKYGr7vUBQ5K6sbmLbJzQfmsUxp5+C6NoqiYDgWSZSgFFI1MYwivMAmjlKGw4iJZg3DNUiTiHZnSMkPsMyAopCUM0PXicKYv/rig8yN5fSHgwGWrROOQopCCpnoms6g28cwTfbOT+PYNoNBSDQKWd/YxgssqUxm2pIia0nxlH5/gG2ZYxEb2NxqU6qU5f1WFCg5nDx1gbNLK0xPTtBt99lo9di/e0pSjHTtkp1HMRYEKHIpKCCEpCO7rsNXHn2c6Uad4TCUSoGWgePaFEXB8vIGvdEIx9bxfJulpWWazQbdXg+hSGP3XrtPnmWYts3S0gq6oaGogJAZek3XSKOYUtkjiRMmJur0un1826FWk2BU0zUqgU+v32dqokGlWpbqgKOQz9//BEqe4wcOQhU4rkuaZJimSjgcoWsKw+EIz3dJUTANk36nT71eZmFpjbtffhOGZaIogk6nK60gbAtFqMxM1Hn0mVNM1MoMhkNMU4JqQ9ewbIs0ybAcgziMxqq7oAhVCtUgmKt5VMpl4jTF82zOn1vG0AxyClRF9s86jkWr08Nx7Es2HEJAnKQYukW324EsJksTdMPCLwWous7y4hLnz59jptkgKFdJFANdgyTOoIBwFHHmzCL1wGdisjpONJgSJI3HkQ8srvHOO49Kf7gkxjB0Zidr/PFHvsjcTJly2SFJUnrdAY5jowqF9/zBg4w2tvjRH/lJPvjRP+GYrtMfjpho1kmSlDSVNGbXcchRMAyTar2O6VjMTk2i6ZqsNGiS5hb1e+PfsE0UhmMfPkWOrbnc1ygMZWUkKxCqII1ibNcmiWXyJS8yikLlmeOnCTybg3t3cezIYYaDIZutFgfmd5FnOcurayytbnF47xzdXp9S2WMUjijXqmiKRq/TpVIr0W63MbSxufbYO69WryMUhZW1db729ad52a03URSCIi1YW9mkyHPq9RqaofNX93yRl91yE9vbbWzTvDQWh2FIu93BtGzKlTJbG9v0Oz0+ec8DFEnKkSP7CEcjuZ5lEQQBbsmVar1JioKg1+nhOi4pMZ5nMxz0MU2NVmtbqlJqmpxwFRr798xjWiqayCAXnF9cwnEMdN2iyISkX6oKoshlVn6sGi2fBeKSv2KWShVbXdMwLQvXsdF1g9Z2m263zyNPHudX3vxdvOInfoh3/9p/47tuamDZNrVqQLPZwNAN/sNnHuGNfoCqKhI8pQX3PX6SsufylUefYc9MA8uyUFWZsHM9F02XyrACQb8/Io5iWTnTVWzTIAg8fNelVA8knVvXyFN5LELIpFgcJxiGThInxGHC6fNLlHyXarWEKhT6wxGOa5MmKaWSL/sAswzTMsdqmdLWJEnSsZCKFDja8efL8xxz7LOnaNcg7F2LEvi8alzxwrWuz0Qazw8+fmGNt7zte8kpSOOQcuDxqY/+Ca21NRpz+/mP/+d/4cd/8t387M/+AidPPMNP/9S7+I3//J/wHJcL547z1je/kt1Ngel7nFoL+dX/+DHe+dZXk6ZDcgFCaOS5gqE7DAZDRBGRpinrm5t0B9IiJPBcojCnP1TodiL+5MN/gaoqTDWniZI+f/mFgh/73nfQam1ICrauoWgKjuOBgJwM13MwNJ1Bv8dzx58mTNtMNmeIo5gL50/heGU2Nje4cGGBwwcOsd1psWfvfgo0NlcvYNsGgS99DaOwj2lL0bDm1CxZmsj5lIC7b309f/T+D/HbH/4D3v4Db+EFfXhXne+xmub1enzyYkx8LMZzu7GSpbhMybxWXCnYd6Wa5ospQl5rG5JgdePlr6dIeeMQY/XX57UcCTmLLRCXchVXUoZ3BI9AXN1edOU2Crn9K0O5SoX0ilap8XtZnl0CfcUV8+Bv6FiuAey+Tcv8FseLgbudn93fJk3ypcaNgOJLoXPuHMvfCNxd49uvXHaniidpm1fvW0HBe//XX2Q2GvAvX3GEFzuyHcEVVVMQCvRbXSxTxXMdVMOQAg+ooOlkhWB2bpqZZp2t9da4CpjjOPaYEmlRUDDojPj606c4tH9mTG1McRzZ89Zs1AhKAapm8Dsfv5ewF/L0mfMcPbALVVMRAvq9IdudEV89fpbvuOUAilBwLJOZ6Sb6WF681emhaRqlkk+ep4wGI6JhRBanUpVSEfimhmlpVGsl4jii1qwSxyEFOa12h1LJYzQaYVkaaaZQxAUf++xDJFGMbeuyoiJ0mcHNEzY229QmmjiaJntUTEDL6fdGuK5He7vFgV0zY//EAs1QyPIUCli4uIFr21KJs8hRNYMkSSQlTStIs5jmRAVVVdENHQWNJMkZDgaS8mqaRGHCn/zlV9g3N43r+ZAl5HlGPIqwHQ8KhXCUMtFsYiA4cmCOoogvGaEPuz2KPMWyDOnvqKZEUUQcJ4SDhL+45yHuvP0ow2GIH/gkiaw6jIYjnjl9jluO7ac5UUHRBYqAwWCIApTKPvlY/CMchPzVlx7GtlVq1QDPt8aCMBmWqrG8tEqjWaYQAtXQEJqCUihUalXCOKXd7vPn9z7Eq245zMrKNnkGpmmOQaJgqlpl955ZVFNWaNWiQGQ5pxcW8Rwbz3fkg0qAqhkUeY6KwiNPP8f81ATVWpnhYIDryEpFpeSzvryFmgvIC+YmGjiejefYLC2toVBgOTaaYUgzdSR1ORxGhEPZs3lhYZE0jTEtje12j6AcoOkqlXKJzfU2QaVCZ6uDruu4ni2BSy4wTYOt7Ra2I6t8RQ6WkpEUYAYBhu0QhRGqgN72GkIDt1SmUqtJyxGhoqo6RV7QafeYmWwwMVGnEJmUbzcNdtJOP/G1x/jAe980pl4JRqMQCoiiPk+euMjSxU0cC3zP5zN//SDPPrfGvj0z3PPsJrffcpDtXpefrU/y8PGTrLZa7J6doT8YUi2XySjwy2VOnD3Pcxcusnd+TlbkxtfMsgwE8MyJZzl9fpV7v/4ktx45hGrooECeyZ7doihQx+A+jmM0VQchvd6GgxDLssnyQk4cDY2J6TrTs01c36cocqIoolYuEScRlZJHtVJiftcUWZ7QrFcZhSFBEGCaKlmc8szJs9RqAX7gouseyShGSB4Cqq4x6A+YnGywd9cMpqnz2JNPMTM1gee5fOrer9HpdHFtm8B2ObuwyO5ds5imPOZwFGKaFl+87xGeOL7A/t2ztLe38T2XV77sGHPzc+imCnlOpVomTTNMS6rTCkDXND7/5Qd4+MQpllbXuP3Wo2MQo6CoGrbtIIRCEmUYpiYngIqCpmmomcIg6mEYBfX6DFFvRH+wgeVUQFFQVBVFVUFIr8PV5TVc1x37IcreFkWTk9YkSbmwsEQapfzFvfexe26CV77yVuI8YtEz2dza4u5DNXRDQ1d1oGBtdZN3fe8d/M9/+QhvblYoVQJQFHzHplqtsnduklF/gOc6dLs9DENH1QVJInv/0ijDMGw+8pdf5szFZeYna5i2yer61jgxYmJaJnGcjhULBVvbLWq1Krom92Nro4OhmagoKIpKr9uXHniqhhAqmqGTZRkXFlfQdR3TMmWn1TjxpYypm8UYOQrk5HI4GJHECYqioOrqCx+ofwvVn2uCu4vrvPUH/iEFoJNj5Cl/9qEP4JUbfOXR41QnZ3jPP/8XnD/5OLccmOPUqUfY2FzkiUce5O3fcyfPPvk1vuf73sAwDCmbOspgldtv249mZSSxieNV6PUHrG+u0+13mWqU0Q2T2vQe4qQgcEtk4RArMLCDJqpm8fhjT/OGu7+DlbWL/LsPrfPzP/BPKUSB7biIQuXcmRMEQY1+v0+/28f3fAb9LmFY8PRTJzh40zGmJuYwFEHgWUxONFm4eA4/KDM9OcWZU09yx6vewJcf+AJplhENhwRBGdeyMAyDaNjFdzzSJCaOcyzPG58yec4OHjjCXcfu5OO//0l+8w/fL/vxrhVX5tSvcf2U8bXfwQ3iiv8Xl7z2LkeW5Zfunxdc228YcF210jcM7r6ZEEKMCwTX/vxqOuSVdNXL4O56xTJxjSnt8/fzcgvfZXuEl6bqedVSL3jn2+DuWxx/78HdJa7utQHW329wJ9/P8wJFwDve8WO875Z57pqb4sXOoGw+ldtO45jPffF+9sxMYegqju9JSqNQZHlSU+h0+3RaXTY2ZIZaNwwGgwFhGLG4tsXMdB3d1Glv9nj5LQdY29rm/OIqk80ag94Qv+zR7cq+vX5vxMsO7SWNU24+NIeh6SyvrNPvDaiUS0w0q9y8b5Z7vvY4e3dN4nuO7AOxTARSscyxHempkqdSMc11MXSdJElIk4xSxaNWr7C6ukFQ8hiOQmxb0vR63QFQ4HsO5y5cxHECLiysctvhvezdPUOp4oxpdDpnLyxSa5TIC9B0k2TYR2jQ7rcZRRGNRoM0zRgNRtRqFZmx1MW4cmcgFJVSqSyzwlnGcDAgjFI+e98j+IZOUHLQNIUoibEcWSUb9CLp65dLdbd+d8Dn73uCLIcj++fRDZ1Br0sUxaiaSlEIHNfjzMIK0xM1gpKLIkDVpOG7qpkYOzL+qkp/MCJJhkRRguO4qIrJ3EQVRRHc8/WnODQ/zefuf4ynTp/npv3zzE7J3rQ/+tQXmKmW8XyHaq1Et9vHMHQpsBLF+J6HIQSTk1Vc1yYMI6kgqihsrmxQGlP6Vte3sGyTJM9RcgGqhuXYuI7N7Uf3EYURw17Ixnaber2CEOB6NrbtI1SBqgv63R6LF1dp1MoElYA83/F3EwwHIYqmkcQJpmFw6vwinm3iujYfu+c+9k43GA5DTF3HdR0URWMURmRZjmUa9Pt9fNeV3oSqRhQnFLlU2lxcWqVZr9Ht9LEsnSxLqZY9MgrKpQDdMFFVQZ4VfP2xU+yanSTPM8plf6xsqlNk0sMyzzNMU5PCRAjifpcwB9N1ydIMz7UJBwMWF8/TD4ccPLAfx/MAhWys4JelKUHgcuLkOe579AQH9k3jeQ55UZAkOQudLm9961FMTWE0jBBCkT1zeUaex7z82BEmGgETE1Xa7R6HDuymWq7wll/7Xf7wd36LqelJ/svvf5C37dpLUPa5/egRao0qk80GmqpRadQogKnJJnt2zclqnIq0DEDScqLRiHIQsGt2NzcfPojQdYSqSCGYOCOJ43FPU0ESxximCfnl8ckyzHG1GXIKkjRBKDmmbaMKDQUwTINqtSSvUxxLijFgWyatbpeLa2vYpoltGziOz8b6Fjkp1UpAURhjFVwpZLW2vkmlWsYwDc6eP0+9XqZS9uj1e/QHA0zV4OHnzhIOhhw9vJ/JZh1dM1i4sMBwOMR1HUzT4sDePZw7v8yRw3tpNqpsb7co1SpjReOMaBTy0GNPEoYhtWqNoshYWFhEURRmJye47egh5udmsB2Xs2cWKJfKCOR5+PyXH2Df/DyIsSF3LieeKirDsIPlaMQ9KZvvlw3QfIQix/R+fyiBoKZQKgUoQgUE/W4f0zQJ41BWeKOIwPPxSz43H9xLuRqQ5zkbG5v84g1vCtoAACAASURBVIf+H44c3sWrdgWkSYph6CxeXMayTEzD4JknLrBXCEpln83NNhOTDUbDGFVVOHt+iYrv0O4NpDVIu43tWChCoBs24SDi4GyTm/bNYTkWuqnjey7lqvQlvHhhFVVVsG1L9rH6LiDodrosLW1Qr1axTIuP3fMwLzu2j/Z2h4XVTdZbPeZmJmRlUlepVQKGoxDDNOl0upcqeMCl3yRiXEHJZVXRMg021rfwyxJMvICK+SLP+0vLX++95z+xx+9/cmmDt43BnUrGr/3KL9JbW8P0SxhBlbe+7e18+rOf4aMf/D1WLpyhWnPxSz6LC4u85c2vo2z2MIwcpYip6PDKm48xijbwPZ1cuNiOi+M4TE1PMTHRRMlC8kIhVw08P0AUglGvQz9ZpdtL8P0yt912CNcV/MYfX+DnvvdnyPIUiQMEFCq1+qykwOYFC6dPMTm9iyxNUPUARTGo1Ms8/MADTE1OkqcRURwS1GbY3t6mUq4ShwPSQmdyaoJDh48yWZ+k320zHGyxvrJIqVQmHA2xLA/dctnqtnFdl8u+bVL8Y9fu3dw693J+/j/8Mu9851tfeGkucbKeNwvd0TrYEbYb3ws74C6nIOeFQh+Keu1K3jcF7Mb78S0FdyhkeT4GV5ff3wFuV1f1rg3uLjvbXa0g+82Cu2tu69vg7u9nvBi4K674t+BqUHSdnx0gMYcyppr9jeMG3OArKRRXUjSvtZ87y7/YXr2YopI0x7w8QCiqKukqL7i5i/GuXwZ/73j7j/LbrzwivYx2lhIFKOPhQVxeVVVBJDnPHj/D+bOLiBxqvkepXgcUFKVgNBxJDzehSFES0+b0wgq7d08jFEE4DCnynP17ZlDGohBnl1aolD1UVWF2skGeyeqPbVlsbrVJkwQvsDEslUZDGgV3Oj00VWNqqsHi0ipZFmOZOutrHQxNZWVjg6mpGt2x1Ho0jCiynOXFdaqVMrZtIyXdYWFxjZPnFtk7VxtTIHU006IQgkFnwGgQ4jq2nHTGCf0wIeyPmN89hRNYtDotHFNj0O6iajqOJY28HddFCIFmeyB0DNXBVAxQFHr9HqVSmTTLEArEUcywH+E6LnEYk8Sh9F3rDfCDAF3oLK+tc+zQbgzdQhUmp08uMzFRJo1z0iQlyRI0XUHVFNIs4/DevTQCn1LFBSXDNFRM22Rrq01QdtE0OHN+mYP75sjzhN5ggK4aCKRJepxk6IbJMIwJSgGa4WCYtlQitFTOX1jGMR3CYUyzUWHv7ARH9s2R56DpBqNRzN7JJhPNBtEoIUtAqBq6KQUYpOiAYGq6znAQ4gX+mLaqEw5H3PfECeamJjAcBxWBrmpsrGwQVDzOn13Es20+8ukvcXD3NBk5nmuRxAnVepk8S1FUGPX7JEmEyHIsw8B1XQpFirgkSU6/F6LpOnGSYuk2lmEwGgw4uHcWTVMRisqR+RnWN9o0G1VQJC3MsC1MR0dRc3TNYnujg+Pp6KZDEmX8xWcf4KlnF3AMnX375sgVyEVOnMS4nlT1HPZDXE/2PMZhTDgIObR/VlLlDI1o3C9lWTq//bHPsbtRoVarkCYZqqox6PfpRSGNSplBb4iqKuhazlNPPEYcxrzilltRDZs4LRBIOm2aSFEdTdP43H1P45oW++anx8Ij0p9rbU5HzzOWV7ZYWd5iollFKKDrKufPX6ReK7PdavH5ex5n0JeT+qGpMn30Ls6eeJb3/eFH+GGjxtxsk3K5hGNbRFHEKIqkzD8CoSpjsCZQtCvGq0IBFEzHYhRG2K6NohRomsyI52nOoDekvd2hXCmT57msrgBoQopfCEjT+P9l782jNDvv+s7P8zx3f/ettq6u3lvq1i5jeUO2WWwgGBvGCQYywxkySQ7JIQwYclgGMiSHDLOcIYlNAAPGGIzB2NgWtrzJ2izZUkuy9qWl3tTd1bVXvfty12f+eG51l1otW3HiJHOOr06dLlW9733ft+69z/39ft8NSHE9h+eeO8n83CxSSLIkgwykJY2jmlIUyiU8PyDVsLHZNrrUKKZZqRKFIdEkwbEUnu8w3ZoCLFzfyY9nTLFcNMi2ECipqNbrpHGClZsfBYUKs7unuOnoIQ7sN4MWQz1OabVaOK7DaDwylGcpmWpU8TyHFKOblfkQ0XIUEkEtKFKtVLAciyRKqVVrbG22KRR9HFeZnMpwwtZmx7gcALZns2f3nNHeJSmWNJqzNEvJSgEFv0QyGJLKhP444tyLqzSnmohMM+wOyDJwPQ9LWqSJaWqjMOH2O+/jyKEDpJMxynHJkHz+nq8wUy1jWwLLsVBSIHXGQUvwD3/pn/Mf/ugveO3V80RhiO1Y+IGLtCSPLPX5kb0LZHFKEBjWgh84pElKs1lnOAqNsZVt4eeoy2hg2ADJJELaOl+7rRxpFKytbeB5HvV6FcdxGfRHWI4y1GcUtvKYalWwPUmYxtx8eA+dThfPdZmECQf37KJcLiEs0wyTwWhi1q1yMcCxrIu29lmaYNnSGB3l916pJGkuQ8iixGS7bt+/LzMyu+zm/s0bwJ1N387HCsFt59d497t/FBuFHU344/f/LgtzBf75v/xtjj+zxFve9N0IGfH9f+9dlKev4ld/6dcpOmXuOfYIP/C9C9xxz6NU3REzM9OUmj7Cj4nSmExbdHtLpNR43+//LX6hhueVGGU2wwgcJRn1OyTRCKSmXpyFcIIjE0a9DZIw5GsPZdy4/2qEkOg03Ta3hSzCsSWBq6i3mnTDiK889CRHD85SKls4tmCq2cBSEiR4fsDW5hrjcZdCpcYkyahUmyydPUnBL2B5Hp7nMRl0mJ7bjbIUjmMRhgPKpRLDzgob613WV1dpNhpmuJSZIZPjKN5yw1u466+/yr/5g/+Ld77zHaZ+tA0jKUOghSQVNooMQWqMVrTEEtvO6hqZV3Y52f0inVNr4+ho/v/lld9OKqahduYI1c6B/cVv8mgA8ppw+/T4FqGOb94U6XyZ3VnFXqq4t9Fscz7qHc8iP09BakNulRhp0PbXdq1sXsB8Xf4qO8/17eZO7jC2uRRXcem1RQro3N1+x39Xqrm/09x9m7dvR86dhos3yv+a26t5tW+K3H2j/b8k2277hL+8uXv53v/mrz7Bj8sRM5XyS38h87+R5tJilGUINE8+dZIzS2s8t7zFW19zHc2pJkmmL2oftqMOwrFxC/vUnQ+h0Wxudtm9a4rnXngR37PJUqPT2Gx3mW3W8H0/X3wdlpfXaDbqZFoTRQmtVo3Tp89Rq5SIoxilLFbXN6lXS7TbPYqBT71ZodcdsGf3HLNzLVqtCsPhCMd1WVneoFIuEUcJa5td7nviaQ4tzJKR4XoOvuuwf2GO4SCkXK2gpIUUEksqvIIJuh4MTAD5s6fOcfSwcc1bWze0qSzLsJQkwyxqtqUIwyjXdSRIaRFOQgSmQGq3O5TKRf7yk/fR7/eZbdWIExPePR6EZtrre9iWTXuzR6lUwnIVaRhTq1WRSiItSbNZQSgT0l4qFonDiNWVDUrlIhcurDEaTAgCj6DkIaW5YayublIqFbCUcc1s1etYliKKjJi8WCoYHnoGWar5ysNPsXd+BmlZpHHIxvomlUpAEsZ5DtmErz11iqlqQL1WRlnmbzcajgiKHnYe6GvlP1eOfTHf5/zSCkoKSuUCWZri+R5xkoI2YeHNcpFKrWLMC5RkfX2LXfNT9LoDnj2zyGyrzvxUnWq9QpqmFAM/Ry8zhBKEYUhQKNLe6nL/Y89y9YG9dDt9gkIAQqKUKQIfe+YkT58+z8FdswgNK2sb+J6xgbc8h85ml5npJuEkxvVdtBZ0232GwyHFYoDQks2tHq5nIYQxWjhycDc3Ht2PpYRBZpXIzVp8lLIIxzHlUpFu1yAfjuvw+FMnmZtuoSV89HP3snuqSVDwAclrjhwkCEzzmqUpZBmua+PXfCxlGyRFpHS31tHZmHq5jhf4uEEJy/FAKATkVGaD3h3eO8fRq/aQpokxlFCSn7rnEX7q1sNUKjXCccg9X32OMy8usm/PNJPxkJmpGZaWl5ibbdDp9WjVGzz02Bk+9MgFfurHfoCbbrqBL9xzP+/ct49SMWB6eoo00xRLZtJvqGxc1DpIKcky48hjmrtcR5GaxkZoeclghgyJoRJWaxWElERhzIXFC1SqFXO/N7WDsaVHk2UZU1OtHCEwlCgpjQektHbQ5PKfNxoNXNdlNBiRpAm9bp9mo8ZWx1yz5y5c4OziBaLxhEq1gBBg5Tq2Z46/wL0PPca1V12FTjXtdgfbdrAdh3FvgESghGRrY4ugFOTojsZ1DW3Qzq31//Yz9zBdL7OtNdRas7ayhuuY68j1XC4srVBv1C4Wdfc99HWOXnWQc+cuEHg+yytrtJotnj/5Ig8/eZxrjxyk1x0gpCbwPaObdk0GXyoMChlNBmRC05qaY7o1RyagvdWmXC1jey6Z1iitiaOY0dAYNF11cC9pprERaC3wfJ9Hn3iOqw/s4anjL9CqVnno0SdZ2DXLvrl5fuZ9H+DEyoB33LybMAwpBAFxFDEeT5i2E2578BSHfI84SkkTzaNPPs/Dz5xk93STex95hmuu3oOwzPmhcl2S5zhGC1twc+pjXthlmEGjNIZe588t88Tzp9m/e85QLM+tEI5CNjtt+oMRnuMyGYcUCj6WpQgCg9wLCWmaIMibtcysVY7jmHPXzEJZX9vAUgKpbPNzDMNn2B/ieA5RrgXNtpk15mb96m/0Oxu+K6F5+WNOrK/zs7/3frIsJZ2MGXfW+JuPfZQ3v/lWDt/wet7w+rdy39e+yvTcFJ3OmMcee5ZnH3+YH/mh7+V7vktR8QXjfpubrt+PbSnieEi7s0Wj0aLX7TPV2kelusCwP6RWn2bXzBwrm8vG4VYnuI5FMQhoNWtstTcICkWiKMIPCtz7WI8fvuk9jMMxSiqM+b05npZn7g1JFOO5AUmWcPjgXpTOyPKW2HOLJEmEQOK5AZ1um4OHridNYpZWz7Br1yHiaIyUyuhEs5iNpRM0WjMkSZg3hoJEa4RQ7Jrdi2s7XFg6RzgcUC9XiZPkYu04NTvFW298K//rv/4lfvTH3o7rOsRpSqg1qdbYmUTqDKE1KYJMmMYzE8ZACrOkIfWVKJyvnHv4skE+4mXI1OWPvxzQ+PY1d6/4zEvfbkcXXMYeu9LPX7LJ/zS08iItc0ezd8XHmc73lVHAHdt3mrtv86bT9Le2ka9XJB9m2Tc8WS6fKQh42WJ4JTTvG5mhmAVeXZwK7HysvsK+2PHaO78u/0zfSmO3/fkvD0+Po4ggMDSr7fey3eylqfn3p37ip3ny6af5J0cPvMLO8/eZpOg0IYti+oMxM1NNFmamed11RxC2TZSR6z4klmXT2eoZ4X6+tLhScPTAPJWiTxD4zE7XcByLYjng+JnzzE43+dw9j3HV3jm6vQFpmjI7NwVSkmWaIHC564HH2Tc3babhUtLu9ZluNfB8j6efP83iygbzsy1s287pZSlCGHrA2bPLNBtVskzzyS8/xJtvuY6r989hO1aO7ki0Bs/3WNvawrYVjmeTxBP6vR5eUCRLUzKdEYYR+/bMk2aK9fU2nz/2FDPlAo1GJXdQ9Fhf3SLwPRzPI5yEuK6HTs0x6PWHKEuhhMRSinoQ0O0PSaKQcinAcW26myPueuAprjm0lwuLa8zMtLjtS8c4uH+KVtPkv8VJzGg0JNUJtu0ghCAKI/r9IXsW5ul0ejx94hw3XHsQz3fY3NoiS1Ms5TAehYRhQq1eNU6HUUq/N8APPBzHNN1o0Inm0188xhuuP4LtOyhbYomMUtEnCicIodna6vDlRx7j3d//JqZm6rTbXVzPxrItlFQIS7Cx1cZzbPr9IbZlNHMIQZLG1Cql3GnUKL263QGObXH23BKBa1Oulcg0prFMM0rFIr3ugGNPnOCtr7uBODYh8JaliOMYx1a5Y+N5tNaUy2WyJKNcLrEw2yLLtInHSDO22h1czwStz89OM+5N2DM3xV999m5e/13XoaXAK/goS6JjzW13HeOZM4tUA2OxX/B9ut0+pVLA8vIGz51eZO+eFsqRjMcTJpMQ27JI0pQ0S/A916wbmXGqLBQLLJ5bpVgoIPPpv51TJt2Cw5GDC8a5EkiTxFiuK4WyJJ5riqDJeIIVFBlsDCj4BSAli8Yk4QQhFOVanczyUZYx1VFSkOX6DkP5jch0hBQWG+tbfPT4KX71f7kV11X8yYe/xHS9zGAwIo4TWvUCU1N1+p0R7c4GQcFm354FLGXTqlV4ZKnHT/7YO/jMF7/Mbx4+yvTsNJVaFcdxSJI41ztJyDTKdkAYh0GkyNFamQMQKi9eL63rehsyyTA6RiWRUpKkCWmW8tTxEyzMz5HEobGnlwKkJI4SLNtGKpGbMWlj6CIMggyQxDHSUkS5A6Ll2tiOQ6/Xp1wsUQj8i3W0lJJGrcrc7DTVWoUknJAkxkgkimLm5+doVsoUiwGIlGI5IIzGbK6vE41jPn/X1/j6089z6xu/i/F4xJPHj1NwjCFKHMesrqzx6S/fi8ws3viGm8iyBM/zyDJtXETHIUjBVrvLzOwUa6trjCdjwkmI7zo06w2KhaI59pUK/e6AqVaLaw4fQFmSIPCxLMnW1hauZ8xgMq2RUQJpSrFos7W+gqc8yCTCUQZVkxpl26Sp0atmaWryBIUw8Ra+y9Zam7sfeIRDexc4cmgvjuMgMih4gWF4NBtEUcKfPvgA/+bXfolf/Hcf492vP0Acxayvt8lSzfRUg9/9ygu8c7ZBuVQiTVO++PDTfN/NR6mUikzVS3zxocc4vHcXSpjhk+u6aA1pmoKCSRgipODEyfM0ahUEAsuR2MqiUAjYu2vGMAakxLUdGs06liOpVktIoVC2oaB7vke5WiRNEpZX1qhUyozGY148v8zsbNPE+6Ta/P2EIEsSiqUAoTXDcZzH2uRDrtyEy1Iqb5K3aXu8tLnLETgBuYPyS4vVnfXDpR/mBeuOx73Y6TL/9h8hC0d88D/+vzx01+c4/uzz3Pr2d+OWChSKLT7y0Y/wkb/4MCvL6/ztxz/NMGxz89VFWs4mvpzw997+Rnr9NoFvIUQMQuDYDo4T4Lk2i8unOXB4jnJFYamI1swUrmvjWJK1lVXKxRLtjU2KzTmEshBS8au//zw3uG+nWHWxbYelC2cplpssnj9FwS+SqQypLECSpQlKpkhiMm2a9CiKCSchge+D0sRJRKFQ4cSzT7C2ts449PALAQXPJUkzavUWZAnD/hrVSg2dxUglKJUq2J6HIGY8bCOJ8FRCv7POM4/cx9bqBc49/wQby2dZPPUMnZUL7HHrfPzP/471tbO8/sghlk+cpmq7lP2ASWeTzeUlEwXkuaRkJEliTOe0RipFmho330ynqDyfbRtteiVN0ZUal5egUTtRury524lL7YwKuDhsUPKKxeZ/mqHKlTdxBfRMSKOfN6folU1ULtvJy95Pmpo128o1upfvQwhx6XqRxmBl+y+T5XWvki/PxIPvNHf/TbZsB3L3io3PZSf65ZuS8iJd5htp4y7//c5Hiit9v+Pxl+/11SKD/0Wwwx2vs20wYKghDpNJnrNz2XvRWrO2us5nPnM7H7n1JqO9eNmiAmzD5YDtu3z9sadxbJdiwWgV2ls9gkKBTGcoqWm3+xQKAZpc6I7JjisVAnzPxXNdlFLc+dXHmZ+u0+0NWdg1hZKKp54/S6PoMz3dYGl1w9CKsgzPMY55BdvCcWyWVreoVUt4gWfE7lIael2Ssmuuxekzi9TrJR554jkUxrJfoAkKBhXc1apSLBeIwhAl88JGGi3e08+eYv/BXWxtdVlZXUcKCAIPtCKcTEhz8b5t2URRyl/e+QCeFNz62muIJhM8zzh1urYDwhSqSWImxtEkwvO8PJTawXUcRoMxru+xb2Gaza0O01M1pKNQwuHqQ7uJkgjLtnA9B9cS1GsVsizDto27Y6lYBCEYDUb4nofj2nieS6fdZzgac/TQHmNNLozRgePYCG3cIMvlAqAZDUckieZjdz7ItQd2EUURF5bWqdfNa21sdJmba1GsBKRJhNLQaRudCQiCQsCpxRWmShUKBY8ku0SnclyHTqdLuVREZ5k5fsvrVGoltDZuq0lsgs11ahwPS5USGozbnjLo54WlNWrVChcWV/Ech1KhwHS9Rn845NjTx6kUAyrVEkoq0jhGCINMNFp1wnFEHMesrW1QKhXp9/oEgYdlKzzfxbaNZktrza7ZaU6fOctV++cplgs54ipQUuK7Dgd3z3DTNQep1Y1Wz7Lsi660Tx5/kcN75ijXClhSMh5HVCsllGUxGo2MAYpyWFpao1gMSDOjKxl0h3ieg1/0WFlax/Ns6vUqqTbotJACWymUEAidkaYJUggzWZYS1/NA2DhSo7OEJI7QWYLSGi0sXL9IKt18HcjQOkVg8rrQGssyVv9pLPiPt9/NB144wXt//K0oJXnyyZMc3D/DsycXedtbbqBSKRpHTsu4Q1arZSaThEzDB+94iHf+yI8SxzHv+9BH+Ue3vM4MZzCf03EchBRYuSYpE0ZxIZVZn4U02o04THIDl0vghJSKJI6YTCbYTm7sIw2lUkiJpSyqxRLDwYhSbsaDMMVMBrnuLjNOmlJdLKyS/Pi+8PxJatWKOSc8x0Q2ZJpSuUihYOIfzi9ewPc8lLLwfZ/NTRNCb0mZU2RtkBLLUhRLRaQyjnUIjee7rK2uMw5jzq2uUy0VOLB3Adu1KRcCk9mWZjlV1ubZE6eJo4w9cy2EMEXt2bMXaNTrLC1eoFqvsXhhCctSlAoFSlVzPXmei6VslpfWOHdumXK1yGQU8ukv3Ucah8zONLGUGTyUKxWyNGM0HFMslRBpbBqkJGY06DEeh0zCBL/gY0vBcDjEcRy0FowGAwrlAkk+JHQcM1yylWL/wjyu67Dtatdo1Oh0emSYa7LX7/PTN17Po3HCE08/xz/47qtxXKO3q9WrWJbNkTmf+PQmtWoZLTUHZoxL5nA44qkTZ+mMR1y1MGfOX2WhNQyHYyxbYTsOtmWjLIt6tUwUmvMmjmMEkpUVc28Jw5B2t49ONZmGoOQyGAz5xJceIJrEFAs+w+H4ItU5jhN83+j4Wi2j543CKJcumFGtVIrRaIIXBMbsKC80LWXMfnq9PuVygSRJTYHNy5lF2yd+Xt6y7eR48Vevsiw4vrHFwvf9MK5IqXrwsQ/9IXO79jCIC9x57x3cctMbeeapJ3n9LTfwP/7Ej/M3H/0rAi/iXT94E7NlTaNeo9PdJNMJtmOyNcPJhGrNOFa3t9aoT5VJ9RhIiCdjLEvhu0aOUa/XybRgbaNNb6RxHZMfeucjW7z7e99urk8N5UqLycQgesXAw3I8hFC5cZiF1hlRHCKVIk4S0lTjOQXiaIzyXNI0JQxTBoMRpcosgxFstlcZD9vU6k36gwFZElMtFRiN+kSTAZ7rkqQJxXKNJJkgspThoMNw0CZNNUmSotDo1BgVkaXE4YggKDNdrvK+D/0Rf/iB3+P0U0/w53/yAf78rz7Kow9+lSgccd2RIwy6HZr1FlmcEI1DbMc0JOQos8yzD1/qnfDyA7yzgXk16N4l5O4bN06XMSWvuK9vdbviPnLGsOZVNo5X+MzbTeGVpUaXXgfIY3F2ZD3nzaB8hRS57zR3/w22V9Pcqbxxk+LK3Fn5kgvo1Td38hWaQpGjcpnWFy+h/16au+2MHq01aWJCZ8UOFFEIgVSKX/7FX+H2j3+CD956U15Bbb+flzoOifxNKqF5+OEnObh7DtsPsISZci8uruZW9IIkiVm8sGYKebRpYmyLJEp47sRZY9E9GJHECeubPfbtmuH0+SV816VYLnLd/nna7T6Lqxsc3L8bjQmrzKKQJE5M9IHrEYUxt93/OEf376LXH1CtlKjXKuxdmDM3WwGFYsDsdBPXsRiNxviBS783ZBKGIDEaD89Da6MhUpbF0uIalZJBkAq+T6NeZ3V1i9ZUk85mH8+1UQqSOKRULnLy5CJr631+/G23QJpSCFy2tjoUigV6naFpelPNiTMXmJlu4eRUOK2MEPncmSUTvi0zdJowO93IxdYgMPS4j3zxXmbrJWqNCsVyAR2DUprBsE+lXCRNNK7tkcaJoValGWmaoSybYtEly1LW1rcol4u4rke3PWBxcQ0pNJVq+WLDI6XFTVftwfUMmuLYNiYfUBgr63FIoeQxHg1JohTLthiNJ0yiGN/3OTC/i1K5dPGYtztdU2wphR8EBmGJE7IsI04iSuWA4WCIa9tkieajn7kPT0oCTzEJY0OH1Bo3pzGVigVDKcwE3U6fbqfPPQ89x3SjxIGFWerNCloba38pNN1ePzfC8chS2NxsM9WqGbdSJTn14nmmmjW63S5Kge0osiTLdUQZzVaNODPFmm1bbK1tsr7eRlmSTqdLvVFlZXkdkUBQdOn2+hzavwfHcfCLLmgz4R4MTGGYYUxbPvHZr3LTNQfN5NaSKEsx6A6pNozhg+NaOLZFkscdGBoiROMwT4dNGA5M3IKyLJIsQyhlaIzJkDDsEycTkjAyGqQUqo0W2s6t9knRaUqWZfzp5+/jDUcP0esPcF2bNBH88tfu59//zA9xcP88WZYy3SpSDDzeeMu1WEpxfnGZqak6nU6bRr1OmgikstjoD/n1D32Bn/3p/xlb2Tz8xJO8oVTDKxSQyqw5QppBUZbmN12hzQAovx62ra4NsslFeiXCmMxYuY39tlBfSEmaprnbo23MMyplsjS6qLXSgFIWUZxgS8VwMCKN09zlMENJyaDX57P3fY3D83O4joWlJDqTqNzGvtftm9fQilqtyma7SxzGNJoN+r0+UkuOv3CKRq3GJAwZjQ1q1O30cH0fnUE0ifEdj6m5GfbtnmPXzLSh8gqzZj/6xHFajRrKUkhLce2hA9x87VUoy7iA2o7Dpz53H19//Hne+sabSXXGQcM1SQAAIABJREFU1EwLdIatFFES4bkuxWKB5aU1njp+mhuvuRrbVUgpWVxe4c1veA3PnzhJvVZFYzStaaZxHJvJJETrEMsLkMKmVPDRQhOUyywvr6GzhEqlwOrqRo4yK4O2Zib/TQA6zS4yRrTOOPbo48xMtUz2pm1z19ceJo1j7njwUW665ij/6tO38Su/+AtMiw1GwzF+UCAMYzSC82fO838+ucI7djVQjkJKi0kYUSoVOXxwNzOVYn6vy3Ad1yBKrmPuO9I0Vf3+ANsyA0HLlniuYZI4tnEcDgKHcsnniefO8OizL3Ldkb0MhiNkpnnq1CrnVze57tAeyuUinW6fgu9x+uwSge+SkWEpZep1pXBcOz+nJY7vm7zUPFt2OBwSFHyyzGjulDCshZc0d9tTjO1aZbu5y6+BKw6Xr1QH7GgGHlpaY/ebv4+pZpkvffpvuHD6OdY3Olz/uh/k8KF9XDi7wtfuv5uf/ac/zdxMk+lWkzvuvYu3ffcCTjYmSQXKc4niIUkyoVavoqRgc7NDrVKn3xugbKg2Kgx6A+q1KdrrS5DFSOWwudVBWg6RlvzGv7mdd/7Qm/jHv/JxfvMnftGYF8URCEl/MOC5555jYWEPSmasrG2wub5CuVY39YsQOI6H1ma9WLrwImdOvMjuhT2cXzpPuVjn0UceZXZ+H2dfPM1ab8KPvutdNOp1+v0eCwv7ef74k7RXT9OamkFnKY7joCwLIW3iaITITE5nEoW4XpWt9U0KtTqN6d0Iy+HEmUX2HjiEUDZbm6u8+eY3U2WGQfIiW5sbCEdx6uQLPPv4o3z587fzwH330dka8siDD3PVgYMUyiWiJCXlUh2mya7chH0bmzuRD8W0vvJ59O1q7i5lLcOrGk9c4TMb6rk2GulXymz+TnP3/58tSdPf2qY67tx25sNdyahk57bd7GwXSgJe0vDAdhOjL3/ipa8d27Y75k66prjs69Xq+bYHKDr7BtOIb7btpJJmKduQ9fZ0Wuc/AxMW/ZE/+0uOPfQQf3LrjS95HyJH6XROA1GWIpxEADz3wll275qjWK4YvZHQ9IYjdu2eMs5PFiRxxtLaFnMzLUb9scnqShPiOObEuSUO7JkFIWhO1en1ejz+whlufd0NhtqSZCjPTPlXt7rMTTVxXBeRGWoVQjIJIxzXplItcvr8Mjdds59iMWBxaZUg8FlbbRNnEcWiyTCTQjIJE7LUTOBPn11i/75dKImhYjowGI6wlE2nPSCNBReW2nzuwSe54fBewklIo15CSMOrV5ZkOJ5QrhQZ9kdMt2rs213H8RSjyDhWOp6PVDa+H7CxsUWh6DLVqBikJc14+LHj7JqaYeX8Ovc9doKFmSa+72BZDmGUYLkWUTzBtjRpGnLDwT2QaXzXZdQf4boOaxe63HvsOY4cmmc4GONYLkKa0NA0TrAdC8tzQWpc1yco+YTJGKkkxx49ztMnljm4Z5phOKZaD3IzEJswDJFC8sDDz/L1p19kba3DVQf2UCi5+IHFiRfOozKPQsM3hWEicC2PKEoYTkYQY4oXqSgWfIKCy4WlZeqVGmQQhzGO41Lw8oJfKrI0pdvr8YbXXI3nWiAkUWriAWzfY6szwBEuSapZX9+gWg3wfZcwjkkmGbZtMTXVRCkBIjXUK9vFdVyyBCxp0d7sUqjYOLaHpRy2OrkmJpOUKxXS/HFxFJPEMY1mlTRN2dxoE3gOSRSRJinVummwC4UCYRjR6w0oN4vEccx4FGILiedYnHtxmXKxhO0o4jTCCxykspHK5tqr9+cmspJwNMaxFH4poNsfGK2p6xiaodA4ysnNPgSOJRBkaM8hiSMcCVpaWK6NVClMEsJ4A4lmtJ5BmtIbttFOnXK1QSZTkmSCkg7ojExr2lsdDu/fg2W5COlw8x//BU9++DeoVQzKDoIsglq1yqDf5cKFZQ7s28Vw0KfX7bJNx/vS3Y/we/ct8dE//iAPPnIfW4MJ/6jUYGpmmmg8MaHrOpfNC4FyJKgMiYXIbKRWOLYky8ZESZK7xhm6UpalaJ0iMc3h9tqmdV7ESFMwZFmWT4YziBKyBCQW4+EE27KxlUWqM2zlIi1AGlRTkJHGGd917RHcwMrp9BLl2kRxBErgeB5O4OMHPu1uD7Tm5Nlz7J6ZxpaC02cWOXr9UTIFju9g2wrPs5Fakoax0dG5Fo4tsVxFNEzx3YDVpXVcF/zAZro1je+7dNpdwmiCVOY83tpoI5H4ns9UpcjB3bO4ZdOYjkcjas067XafoFjA9VzSJKVSLrFrpkWhUsYuGCTx4L7dPPX0cW68+QYyBOvLK1QqBVId4gcuWaZR0iXJJiAlF872iEd9qoUM3w0YRwK3WMF2bcJ+bDLx0pQ0jNjcWKfouVhCg22RpJoPffJ2+sMhr7n+iHHutSWzzTqNWoWbrrsareBTL7zAR/7iT/mZH3wdaZrh2C6fvO1e5qZrXHP0EB/9ynHec3A3/W4fx6uQJSmff/ABjuzdheMXuO+h42x0ttizMEuSJUCG0BlkGZYUCK2RaBYvrNBq1gjTxBgUhRNjGpTTBLdWe7zljTcyGEzwHZeZepVrDuzj0MIM1WbRNM6+x+LKBlcfXkBoWFvZot8d4TgulqtJ4hiRSZIoQUlJHIUIidGCFwtEScxwOMK2JUIKMlKko7bvuqae0Plg9ZWKeL5JWSzyqkiAloKvnl/lpnf9FE7U47N/+Ye0uwOWeym//W9/l6l6i9/+P36T7//B7+Xw0eu47bNf4T/8/gf51+/9Ifa3XKpTHlujDoGvCLWmWK6TZQ7d3oT9Bw6ysrZEpeES9sdM1eYQdhGtFClFUhSOr5AqQYuU4XDEO75vD64Tc8cTQ95yzetQlk2WaVKdUSkW2TU7RRxPSKXFZNCmWqtTqVUMA0lAPBkbCYVMqNSazC8cZDTqUy0USdIxtWaTjfVNjl73eqQTMdeapTfoARmKiJlmE2HZdJfPMFWrgedRqDVIwwFhf4jjuqxvruAWm5w5u04qKlzY6NGcWWC1vUlMxjCK2L17LzO7D/Dk8aepTU1z8kSb677nzfz6b/xLrjpwM5/7wh3c+qbrefjY12H9ISYbJ3n20fuYn5vj/JkX0amNUiHKKTCeJDjKwkoTVBqjhWVAAQEKiZLCMA30K54SOw69fEkt+vISUV80EeEVGjt4aTN1OfUTQAt9keW1vZ6bhlJcbLgur2NfKc/vld9tDtiwTUs2XxcjJYS4aELzSuaCQK7rzi4ifhdfToJQhvWhhc4/0/bfWLPt6mJZzneau2/n9kqGKjsP6RXROi4thpf/3gyDXx2ydsVtGwX71p798t3l+/wv0dzt/LSX9nfpZ2fPnOP9v/f7/MVbbnrJLrZpJXrHc1U+Mex3B2gNMzNN0AahE9IEx7qea6ZrgJKKUuCTxDG9Xh/XdRiPxgSBz9x0AzQ88sxJCq5Ds1Zh764pVlY3KZeLnD2/jFKSarXM/HQLreHPbrub/TMtFpdXEcBnvvYY1+yfp1gqUHJtyuUiUgpW1rdo1qsoZVMsejkd0CUKY9Y32nzl689yaGGGwHdNiLnWnD63xGQc0mrWkULiBz6Wsmg2KhzdP0e/N6BY8hmNhiwtr1Gv14ijmGIpYDIO6XSHTMYxjmvjOi6e7wGSTqeH7/tIIRiNRliWwvM8jh9/kU6/z9Gr9mA7knqrwuG905QqBdI0xs41PjKfQEuZG3BIRZyk+L5/cTK9srxJtVygVisSRgm33/UIzYrP0vIGtWqJOEmxXZssTdHaIANpFmMpm/0L81y9Z456q4rtKgb9PlmaEYUpQWBQ0ZLvYUmYn2lQqRS4/e4Hue7qg8SThM/d/yQ3Xb/P6PEy+OvP3sfeuSatmQafu/thDu2do9vtcWFpjWqlSLHoE0UhQmkczyYfbpOmxnZ+Mg6p1soMcmvz1eU2u3fPIpWFEBLHchh0Rzz01PPcfONh0iw1VLRykT0Lc1SrBSaTCZZtiv3RcIKSin5/SK/bx/c8Pn7XMV57w0EkFhJBsWT0j5YyYd1bWx2CwCMMI7z8nPULAf3+ECklnW7PIJ++KYKlkliOxaA/xPddE4icZCgpWNtsMzc3zXg0oTfoU2tUWFnZoFAsmIYky4jDkCSOzWfJHTqDXOuYxLGhNuXavCS3mk7TFNu2QFooYZrD4ThCWjZpmCIyzaC/QTKJOXN2k0E0YWamyfTcPAiJFpokilDCMgiC77JvbhaB0Qn9/GNP86l/9ZPYto3t2Lzwwml8z+Gv//YriCxmc6tNuRTQqFdAaOq1Co7rMh6H/LM/vZuo2+Xw4cMcPrSfYx//JD9ww41kOuNDf3s71x7aix8ERjMoJVE4IYrMGrK1sWXCodOYQX+AtBSO7ZClmiiKTNOuQUgLyPKlbjs/bAcbIW/wlBTGJMiySLOUv7rtC1x79QFUjpIopXKHSo0xcchwLJtMZwa9TbXRlOVFlpBm32iBZQsKQYBSivWNTQqej9YwnoSMwwmFQsB4PMaxbfqdPoNen+Z0iww4f/Y85VIBIRW9Th/btphMJgip+fL9D3Bo774ccVcUy0WTJ4imVivRH/RxPQfHsWi0aiwtrVGulAx7JM2QUrK12TZUUARZlnH6xXM0pxpAytryOtVKhd27dyGUpN8bcvvd93PkwN5clyxpb/bMOeYqlGVjS4dPffkerju8iwRFsVRFSAvLMghYKkDZDtKyKZUrKMdhMJpgew5KKG65/hquObgPz3c5eeIUjUadcU7/9FwXaSmy7hb73/QWPvr5r/D2m/cRRRFXXbXAeDKhWCpgJwP+5JGz/ODCLGGUEE5CkjBmptkg05qi7/Dgc6fY3awSFAJ0ppmMQ5Lt9S+/P1XKRZIkQVgWSR53YyvF0tI6nXafou+boU3ZODUP+kM+9oWHufHoXmxLGuQ900xPNxFAHCdUyiXG4xDPc7AcYejZ+ZRZYAyLsizD9wOUZaGExPddk9MpTUC77br5vXfH/fob1ADfvDoQL/nnM+fXeOu7fhQVdTj59DFm53YRa5dSpcUX77iLX/iFn2dmZprlpSWmGlM8/NAx7r3nXt56y1W022s0GjO0GjMk8ZharW4cJ0cD0iQCnSF0SpqBZbn0hj1c30PJgHZnCyWhUq0xGYc0G9PYNjz2XI9dkxs5dPgAWms2NlcpFSumyNYa28lp/l6AHwSE0QSjI58gpWXo4I6HEhZKeZw8/gTFUtnozS2fF0+d4uy5RVozsxQKRQqFImmacfL4Y8YYx5M0G01Ggy1SZZOkGiYTEIo0E2y1N9i15ygonww4cOgQQaHInj372b/vMErZVMtlPL/AqRdP4Tg+t9z8erItzfs+9Zd8/YFjVMolpqYq7Jqd5+C+WZbWt7D8Er/1O+/n2LEHufPOezi4d55KpUazNWXouQKQwkTUSLhoo5oP2fWOde4Vj/yrqB3/cx6zszm6iCTuOCP1xce8vI69POT8sj1/w9d7yVN3Np5X0Nxd/vxtF8xv9XN/p7n7Nm/fcnMnd0wVrmRs8p/R3G0bqlyO/n2r23+t5i5NM/7Fz/4cH76ssQNT6+R1Ux64rNHjiPZG2yzQtRpxlBJGcU5bgsD3SJMEgTBh056x6/Z9lzRJePrkGVa32hRdlzTVFEsB+xfmmIwnfO6+x9gz2yDwPe544AkW19q85rpDpGlGGMV0u302O11qxYCDBxdI05Red8ChPbvY2uoQRfEl10EhWF3fYmamxfETZ7j9q49xZM8cUirKxYBrDi8YTVPgGURPKkbDMfOzsyjLwrIV584vU60GeIGxJ3c9i612h3qjQqNRNRPrcWhCO7XFE8+d5fD+fblTGihhdESOZxvzjSzB9Wx8zyecxBSDgMk4otmqkIkJnU6bYlAijTXKxQivbYsnnzhFtVTh7+75KgfmTUxEHKeEYWwmeg5UazVqtTJJlnL+wgbLy33SLGbv/AxxmlCultCk6CTBsW021jcNMhJn3PbFY2y1exx7+jjXHsr/Ll5Alqb0+0NK5SLKkszONAgKLtJJma01CccphVKBa6/alZ//ZjJ+dP88cZKQZZrrr97LeDzBdW0Cz6Hd7VMul0nTiNFohFJG46S1QdyUUjmV1BjVWErSnJqi1+0jAaUz+p0ulXqNg/t2oUlwPYtTZ85RLvloYUxKgoI5riBxbAcNBIFP4HssLq7y1tfdQJZpBv1RXqBMGA5DyqUCSpEHwBvUxvEcpJK02z0cx+i+mq0GZ84uMeyPKJeLnDh1lnqtYkLShaFub212aE01sBwLr+Rj2Tarq5sEvke5XEZnmiiMUMKg56VqCS0Ekyim4NmmgcDQ27Y223iuhc4Ra2UZvcbm5hYScG3BJOxTqpfJMnC0yzjqko0HdLe6BOU6XrlC0GiS5s2Kkmb4ksWadNtVVwqiyZj3Pneaf3hjnc/c+XVec90B1lbXuev+x7n26D5uvOYQ9z/wNNccXaBWLeZUqozRKCTNNJZts5Q1+fl/8c+4/obruever/KP9+3P37PgwO45ypUScWKa1ozM0Axty0zvdYy0MhzHxXUKaHFp0mrZ5poS+cRZA3EeQG1YEzr32INoEiIwzU4mL93U989PkcYhrqvQKKIwRioTO4KWxHFoBgnK0MNc1ydLYWNt02jtJqER4WuIU0O3dFyX0XBsGtU4JU1jlBAMB0OqxRJrqxtsbXWoVas4nhkIhBODiitp4RcdpMzwAgfPKbAwu5vz5y9QqZTNYCcvTJRtFmbTdCbYjs25c+d58JEXKAWeockpyWAwRGdQLBYYjcaMxkPmF2ZApuhUUK2UicLQ0KBz86BjTz1PyXcoF4vc/8CjTFebFAIfx7E5d+4CtVqVVs2j2qwb9kWisW2PaBIDKRnGEdlyXCzbIUwybNfL9a6CzY02QpiMt0Lgs7G2SbNeZ+XCCkHgo6Tkml3z/M4XvkgmHX7ye65G2Zr19TUq1RKu43DVnlk+eO9z/PBUA9vVuK5FZ3NCpzPk7sefYK5V4i033WAaA9vhwuIak0lMuVZiEkZYtqGbCmUQcZ2CY1kMukOKhQLxOGa6VadaK/P08VOUywECgW1ZtCqBMQZxTa5iOIkMY2AYMRyM8XyXar2M7SjG4/zYWpZp6lLjg6m1IIs1w8EE23XRmTmX11fXKZYKJmIFcbGg+Gb3/29aHeyYZgsyPnhikXe87bU8dexu7v/Sbdxx36O87w/+GK9Q4PA1r8UPCriuB5lmYXaKP/uTP+Btbz7CtYdm+OKX7+DAgT2ITGBpjS0EZDHolDBMsJ0Ay3UZ9gdMwhGWV2Acp9h2kUKxhON6CCyKpSora2vIDH7nw8d5z/e/g0k0IYxCKtUGSkmSLEUqZe4BtoPUCZayiJOMVAtsxwMhkVrkFGBBmsSUylUSrej1Bzz/wglueO33cs11N9GoN8GCcy8uMtOa49zpJymWfDwiJuGIcmOGQrFCNBzAcMCzp07TH8YMhorZXVdRbDaothpMN1qsri2TphrfDRgOx7Rmp8kQzM8fZP/+w9QbLWbm53nztd/Nv//YB/jffu1/ZxCNeMv3/wj/z/v/kNe+6QdwCk1WVlYg04TDHmefeJQ7Pv85vvsNr0d4PrFQxMJGZumlYZIUBrnLD/rl8QcvO/T/nTZ3mTZDt1cKZ/92NXfbaOHl9NSLsROv8Ho7t+80d9/m7dU0d1JK04xwCbHLdlAxd6J4F5/3KtwyRW62cflhf6V9fCubyA1QVM6xfyW08RtuOzV3atvW+9JFZvQukr//P7yHD7/l5iu+7e2gTY02obxac+rEOQLX2EC7vpfvSxrdkjCOm+ZGIi42y9vDRz9wkTpjz9wMvRzh8HyP1dVNlFJstrscObCbYqlAt9Pnlryxi+I4txTPOLQwZ3Q4CO5/9Fm+7w03cm5xhVIx4J5Hn+XI/gXiOM4bUlO8Tk83uP7gXtIsu4hQ6EybomcwQirJQ088x1S9mtM3E6RS1OoVhoMhllIICePxhNZUnV67x3g8MTQBafQa0SSBVONYFrYjeeLpU9zxwFPsmapTLAckSWws3H2DhJ1fXCEKY3bNztDrGNv8QqFIb2tsNHO+cU/UGdSrFYbDCUf27zaGEalmPAmxbRtlWwwGfQqFstGDKkGpUOLQvl3snm3wqbuP8czZRQ7OTxMUPENlyDUxfuAisKh6Pnv2zHJozyygWVvbopgHX5crJYQwIby2rRgOxgiZIaXD3935CFftn80NC1zQxuUwyzJuu/dhrr96P1maEhT8XM9jGffAMMbzPEPbkArf89GpoNvtGfqa75IkxqigNxhi2RLft4GMjc0NhMwoVmpoNHEcGoptITAIhTCvkyQpnu/TbfeRUhIUPYaDMbfdfYw33nwNk3GI47l4eePW7w5xbQedUx6jKGIyCQmKAYPByOjmfM/YzbsOUkoqpQKVconhaMLsbAuA9fUtqpUSk3FIpWLOJddz8wUIbNvKw3GNY5kSgtFwRKFUIIpig8xaClsq2ls9HMdhm5WVJCm246CUlR/DxJjVxGNGwz5aJ0RJiut6iCTBdjJ67Q7rGx327N1PoVbBKRZwpIVODbN5MhrjeQWUrS4aZ/z8kyf4wM+9jV1zUxQsQbNZp9VqMDtVMWil47J7vkmSJDSbNYaDEXGc4nkOxVKRf/pH9/Nr7/05HNdhfmGe//vfvZ9/cPQaMmAyiahUTTyFZckdi5tGKZVHH2RGc5dkRGGC6ztAnsNnWXljt02rMSje5voWlqVM7EhmkOkspx0pKVGuQzia4Dg2nusYHZuUaGEcapEJyxeWKZUqZmCiFEIY7W2agG05FIuBYSQo47CWZRnCGGsSRwnTUy2qtSogmJqqs7a+we65WWzLMshMFGI7Dp+7+3727d5FsVjM6ecJoOl2e3iex4XFVaRUVColcw30etiOjeM5xFGKlBZK2rieRxplOJbDgb0Lxoo9iZESBv0B09NTaG0+i1fwEBJ0lqIsh/XVdTa32tRqFSaTkGF/xOtvvJY9+3bT7/Sol8t89q4HsSyYnZ2mVq8hpKBWr7C51WYyHFJv1InjhMkkwvNsFCZg3ty3NGkcG41irlO3HRslJZPJmP5gwMLeBfqdHq1Wk5WVVVzfZTyacMtMg3f83D+he/5pKgXPIMfK6EmlVLzru/bxic8/zHzBIwgCqqUym5tdBuGIm64+wOnTy1xY22Rjq8ORq/fR6/Sp1MrGkdKyeeHkORq1CmmSMRiM8B2Pzc0u49GYQiHg7LkV4jThwKHdAGxudAgnITOzTSzbmKCEkxDf81hd3eDz9z/ObKNCrV5mbWWDQsEnyyCMYuz8PEvS7awz+MQXvsahhTnjmJgzYc4uLlIqBvlakY8tvgkV85WG2S+pGfL9IzRSSj754jLvePvr+PLffYJnHn2M19xyK+96z//EV7/2IKiAX37veykGBXzP5/Of/Tuuu/YaHnv0Tm65aYarrq4xisaQRfi2Ybx0+h2aU7OcfnGNQqFBf7hJuVQ2TZpTYrM9Yjic4DoeaEmhUGY8CfE8lzvuP897XvczF10LhYA0S41mMb++0jxKiCwlyzRRktFpb1IolgyyLiXD8RDPdUl1irRsHLcMwmFxaYVStUmSJbi2y2DYZ311lampKdaXX6BSLuEgUY5HoVRjOOgwGXdJk5DueEKpOk+nM0LaLlO7Zjh3/jTNWoPBcMB4MqbdbpsYiKkWnU6b8WhCkqScPX+GZrOFlJK///+x995BlmV3nefnnHP9vc+nd5XlXTu1hGiEhIRAdmG1WI3QAGJWikGAZtklgtndmFiY3WEmdjYG2GB2EAwKBhBeavlGHrXUrVZ7X95kVlZmpc/nzXVn/zgvs6urq9SSIvQPoRPxIqqeue/me+ed+/ue39e88Wf5+d/8Jd73S7+IVD6f+czn+Ol3vpuf/Wc/x6HDh/nhN76RpcuXsbOE7Xqd5eWrHDx2kksLC0xPTyN1jjV0hN6tBne5VC8BHzfo7EwZeLON/RcomfqGqvLlIhKud6rcy0QersG7XcUbT+eF+8QQYOkXgJ0wrpm7kV17wE+YWub6uvR6neEL1M8XxvX5fzc755v9DYbhcfPX3Wx8D9x9l8e3Au5upoG7cQF8uaF5qQnK7qT+Dvtp39K41Xt8p+BO3YTa0et0eefPvJu/fP3dt7yIyFwMc4MFUmvqmzu0OjET0+Mo22YQD8xZ6RTbsmk1OygpcVx7T1CfJhnnL16h0WgSBR7dfo9kkLHVaDNSMWJs23H4+D8+ytRIiUohwrIUczPjxHHCvV96lEF/wIG5KRNQG3jYtiSKCgS2heNYjNQq5HnOvvFRHMfh7MUrRKFHpVLiuTOXGB+tkQ1t3qUAZUlarTZR6NHvD9jabrK0tsWJQ/N4gU0cx9iOqdqkUPR6fdrtHtVqmU6zS5ZpKpUyG5vbFKOI1dUtisUiSgqK1RA3kMztm+bkgVnCQmiCbNAMejFKKNI4pVYrUSz6uIHNF7/+OKNBleZ2l6889hS3HZ1la8OYr/R6PYKCh+0qLGWzsbFDt2tMS+I4oVgq8Mkvf4P+dp9i6COFptPq4iiF7QhuO7wPC8H4SBXSnFyAspw9x8WPf/ExIttn34FJ4l4fz7OHi7UkS2HQNwY5UejTbLQBcF0PyxaUizZRGHDqzAJLVzcoFSKSOMZ1bW47so9+L0WQUW80CcPA6Mdsx0xNAa7rsra2SRgGxrrcs8yuujC6R9/39hbdbneA5wd4roO0FJkGpYzjHBkoYfP4E+c5cHCeLMlNITCIKRajYUGWkKUZh2YmaTTa3Pe1JzgwMwYyQyrNfV95kkrkc3ZpgfnpcdDGSTVD4wfBXjfRUhatVtdsMChFt9vDHmaZdbs9RkYrbO3UTSagGNJfk4xet48TuniuKXJ2NutYQ+dQLwrMc6UgiWPyNB2GuUu6gwGO6xiQ2emRpwMsYcBCp90kSwb4vqLfGeAqn6hoaNJkuWCoAAAgAElEQVS91jrd5iaOW2Fm3wEyJQkCD51miEwhtEDZGqEEWtlIDTutFr/x/EU+9OtvJY4HWJaiVqtgDYPEPc8lzzKSbMBzZ85yZXmNcrHA40+f59Tpqxw5PEOhWOKplQE//c53UKyUCKKAv/nbj/HjBw8YirFSZuc5NxEGQkGSxOSpMd5AGgqgzo2GDqENmNVg2SaQXOcCk3mnQRsHy7/59Bc4PD+D7Xgm+BzB/Q89Sq1Uxg18RJ5h2y55bnqh0rIM5UlIhM5RKice9ImCAgyjF3bXYstyyDLTNdNCk+UZ0pImo2rYQRwMYtzAIyNH2RZxNqBaLrO+vsnClasEgY/remztbHP78aMEYWTc8jRsbWyxtrqDrTw8L6JUKxAWPRavLFEuFxBC4wQuUmnyxLj4xgPzmeVZTrPRZHx6BNuRKAmdTgeJJO738YMAhGB9fYsgCGjVW1jKxXGMBtC2LWzbxJF85vNfY//UGGHRdJm//1V3EpZCbM8jzzKEzE1guRPSrG+hHA0ipVioMBgkxP0OSRyzubmN1hrHNa6FypKgBfd94X4OzM0QRgHlUoFMG+3b9s4207NTWJ7ZNBmvVvlXf/Jn3Pf4Iv/s9bdDbpx8L19eolotMRgM+L2HF7h9kOLZDikx0zMjnDxwkGwApXLA3NwE4+MVpIBarYRONWlsuj++bdNudGg22kSlCGUpgijA9z0eevI0W802t53cj2Ur1DCDMghDev0uUkqa9c5QY9unWIw4tt/E52itCcMAISRSWeYaKKHT7ZHEqYmQUDlrGzscPjCDsoZdDQky14bO6TrsWarcosh4udrjRaBPGjhgdm5yPrtW5y2vPsZnPvK3HNt/iAefWOCpUwu4QcDy5fO847/7CY4eOc69H/sky2vX+PRnP8ePv+kO9k0EKLvLyOgkxaiC41qMTIywtLrBwso2X/nqApkYY2Qkx7bN72VtHfq9iFLVwfcLxKngG994gvkDh+j12/zh353lB47cbTZTLAupJGkS4/u+oaruuuOaCzGDJEMpz2yCCXBsiwRhup/SIkUjpMPS8hoXLyxw4s43MDE9zeraMr7l0W606XTWcB1wVIpnSWzXo58m2K6P7rWwhEXHrnD8jteRC0WjVafbbVMIQpo7O1QrNbI8xbIUrdYOBw8ewnFdVlaWOf3Mk5w8cTuVWpVra8v0u12UsBnRRb7wyIO85gfu4cGvP84v//IH6PVSvv6Nh5mYmuFvPvIRDh4+xIG5WZ558jH+7sMfRsYJb3rTm2j3e0Zj9q1MgJuAuxc/LL7p/82hXx7cfbP7vjlIuglrbg8o5ntgbTej/CXSqZscW7/M4y9/Tt/e+B64+y6P74G7b2Fcd84mEDfbE5J+/h8+z7/5N7/Fh99wtymobnUeegjuhPnBnT+/yIED+xHSOPqBcSDsdLp02n0T6ioEZ88vmM5PltFpd3nouXO86rZDDOIBI1VDXXvq3CX2TY7ihx4rKxvsnxqh2e6yf3YCZdvsbDeoN9u0u32a7R4njsxyeXGFasUE+CaDhCRNKUQRX3n4KQ7tmx5ejC1mZsYQEvr9PiOVMleWVvnE/Y9z8uCMKVQxbnDtdodiMaJSKVErRERRwCDpo5Tk8pVrFKMIgcB1XTzP0K50bsKD40FCIfLo9wZ4rrFC//SDj3Dx2jJzYxV6nQGe76OUIkljtNYEQYjW4DgOTzx3mmopotNu0un1sLXpJs7vq+H5kgvn1/n8Q89wdP8kkHFp8SqdRp+Z2Slc3zW7+oEBP0cmJ5iZmkQpiWUbfU0YRkiZMUhT48rp2CSDGOXYZKmxOncDl821Op7tsbmzxcREFSWNhXmr2aNYCFlYWGFudgIlFbZlERUMELNcgeOYomtqYoKRWgXPdwhCj+dOX+Arj54ijTNmZ0bwXAetNXma0+l0TXc0HZDmyQsZdMMuaJZm2I5F4Ps0mi2iKKRR7xL4EZZlI5QijlNs36bf6+N7LvXtJq7j8eTTlzl2zNB1jQV2gTiOjahba2zbwvM8CoWQg9Pj+KGP60m67Q7TtRrVSpHJsTJSm+657dgmh0gb/dygH4MQeK4DQhjap9ZsbTeojVZwHJuFhWWqI2WuXL1GqRBx7vwVxsdqoDVJniJQJHFKlma0Wm0gxw18o7MgZ9Dv49oWeW6ucLZj06g38XwPZVsMuh1cxyVNMwOKsoR2u0PkhYSFMnluqMLxoIUtE+LUpVCpkmP0dVLDpQvX0FmO40mkY4Fls15v8Z9Xlvj9X/5RdJ6bGBMljXhfsJe11my2KRZ9otDn8IE5kiRjtFbh6vIWc3Mj/PkXHuet7/gpxqemsGybXr/H7UvLTNRGEELSaXf5L3/zcb7/jhNYjqLVaBJGAVJZQ3MrA9iUNN1y17XQmYlQsW1lKNDsKt13ycCSO44fGuqXpGEqSMHc1CSO65j1Cm3MGrIMIQ0Yl9IwGnSeI2WG49goYZMPQSNDSpHW0tDpMJmCgzje6yLp1IBPx3OGYn2NlCAtSXOnyaA/YH5uljhJKVfLXFtdo1wus7PTMHrJXPPZrz7I5UubzE5OUKkWsRyJtAXlQsHQVV2bJElot1p4nsf29jaea/R2zzx/CstWRFFAv98jHgyQ0jh4djt9ms0mUipc3yeNEwLP5ZHHn2V2ZpyNjU18zyNJcjzP447jh435lsR02Wwb5dpobTb3kniAbdmQS8pFj2trywRRgMTDdhzjQOnYRMUSju8b4KyMLipNMo4dPoBlqaE7rSDLc2q1KrVhB9DEY2SkScrfnDqFFJJ3//BJpLLReU6hGCGkYG11nQ99/nHeVhmhWilQHiuQJjFrV7a5urTBA8+e4uTRuSFokORZRtxNWF5eR2jNqfOLTE+MUq2U6Q0GuL6LFBLHdSlFAUcOzKKlZre5kOd6j7lw/uISpdBQRP3IdPKfO3ORUiHEdRxWljeIohDLsbEcC8uW2JZNEic0dtoUKxHVQmRyBW1j/KMFDLpdokKIGronv9Byu8l1+WUu/S8Cd+KFOkIh+OjiMg9+7l5snTM9PsXE/F2871d+nUOHDjBWKTE1NcunPnEf73rXu/jIvR+l3WnR3rjCq27fR6nsMkgUvl1iq77Mdn0Lyw0JohqLV3q02jl33VHDkopBP6XTc/ndP/hrXvdDJ9jYrLO0tMrK1SVe+7ofZGt7jdL6XbihIAwjhBAmWF3nZGmCssz8S+IBQudoJbEshwtnT5EmCcVCAZ3FaCyef/pp5mb3k2nNc88+SVAYYWxiP2fPXuL8pVPcffcrcZVNrxvTbF5jbGwU35E40kJ5NoVShSTukzbrpEnO2ZUmM7PztFtNjhw9Rm1khFKhxKULZ5ndN4/ruYRByPj4OPVmHdsxGnuhoVHfpjJSJUljRio1XNvjttvv4O4jd1LbX+Xzn/8yx4+f4IEHH+SNb/xhGs0Whw4f4s47b6dcDDlx7CiPPfwIly5c4k8/+EFe9fofwrJsPM974fu9FZ3xnwy4M8fIX9IJ/B64+yc/vhVwl+sXGs7DjvEt3TRf9Lrd5wxpnQzttffawHk+zEt6Meh7uXH9MV72ddcBu5dz/XzRy/IctduqvombpxDG8OQ3f/N/58NveOV1b3fzowuMU2WWpSxdXqbo+zieR5ZlQ7GzCaX2Qx9HGlqeUhaVYpGFxRUKhYhzZ5dYXG9yaHKSiwvrTE2PkyWara0mhdBnMIgpV3xK5YCSFxn3qzzj/KWrzIyNMlopcdeJw7iWRRgopAXLy9tkeUalVjI8/cij3W7juYpGvUOpVKDZaHFtdYvJiRqWkpy5sMrJ+VlsV3Fp4SrFMOLq6jpSCKLAw3EUg14P6dsIS1AseHQ6HeI4pt3u4Ng2QRBy/sJVPNc1tunKwg19HNcmjvt02l3uOXKcQiUEFFIqhJJkeYLjOmxv7pictDynWiriODZOsUSlWKY2UuXjX3yU24/vQ9kWK8tb3HFkhtpoBZ1L8kTw8KnTTNcKeL5xsUySlCgqIByJsqHdaaGUYpAkWLZAOIJBnKIsRTLoofUAx/fotNpkaU7gB4yUSyip2Tc/TpJ1yGWK4/h4nkev32Wn1eL84jLnr6wwOzmBsky+3vLVdUZGR8lyE/+hbOM0JaVgdKRC5NnM75sADL1SaEOr296sUwx8pMrZ2WlSLhZY39ihVCqQp0ZDWSwWsH2P+mYD17IRWc7mzjbFsk+apfR6fSyR02l1kLlkc73Ow8+cZXaiQqHg4bkO3W6P0PcZ9A2FygltsBVaGYqUq0z8wfpKnUJUQqgcx3Nw7ADLtVHKNiDStsmSHMtVNBstbG3Ra/V54ukLlKMC/V6bqBANzWQMfblUrlApl4njmO7ARGTkKHa2WhQKIUJCVAzodDv0+gN8xzOdKyFZXl6nUiohrV1DkBjHsZEY6mhxtILOYtZXV1m6usTc1DjNdp1KtQbKA6WwHcjyHdAemdAoS2G7PkLZYFmkccwjZy5wcN88StqkScyvPHqa//KBtxrqns7JkxydQ5InxiG31yP0PKYmRvn0fd9gaqyGzmKU1Dz17BkmJ8eY2zfG7953ll95//tYXa8T+CU+/rF/4DVhiBBDcxNlsX+kShgVEBIc1yPNMhzbM3TK3ITtnj93iSzOKEQFktjQYskF5Cb2o9s1HagszxgM+sZaX0oT1Cs0QuQIkWHZ5j6dQy5zpG2KSFtaKAR5mpnFTtkkGQhbIVJD+x50e0ihkNK8Z5rEWEKhUFhSkvT7iF2nw1Qjhmo/KSSWdFBSEKcxuRZYlktUKlKuhDSbDYqFEMexsS0LX7hs7Gxz8sQB3MAZLspmR63X6xtqKYp7P/0V5ibHqFUrLK0soZRgbmYWpSws18W1HAa9Ae1Wl8pIDdcx9NOo4GPZgqWlZcrVKk8+dYbDh+aJ42yYR6oJixGDTodCpUKeCUP7dpXJUExilG2hTXuZXORI0SHu14m7kGIyEbWUJEmOwADya1dXCXwf37H51Bf+kZmJMSzXRiNIc0gHCVJKBv2+yY0UgqTbYzAY8PnlZSxL8Y57DoDQ2BacPXOesVqVOE554HyDqXaLg3NTSG3Ra6WUqiVGJyqcWVji8PzU8Bpo1iahFKVyib/41IMstRrcfXQ/wgFbOUPzL82g10eKnCyNDf091yhlGwOr/oCd9RaPPHmJ586sUgodgsgBCwJpNtk8z8XzLdORyzHasUSjtdEihgWffqtltLM629tASbOEne0GhUKIsp1hwctLUJzYrQ1uWpRfR8W87n6pNVoYna7IcxaiAlH/KsXqKJ/68sP85M+/n2889HVWFi/x3JnH2Npc48jheX75X76Xqal9vO1t7+BHXjNFddyFfp/Icel1NkBnBJ5Dt9egWgrYt2+Eu+6YIZUpwpbEAup9h4uLK7z2B9/CvZ/4PG9880/TG4TUmwOeu7TKielXopRAixwtFbkWBGEZnSfkaYoFCG02XXJtnHS3d1pMz80jVILl2MRpgq0ybNehO9Bs1VMWrzW461WvZGp6hMuXzjA+Oo0f2LQ7O1jCIwx8lBwgtMaNDBhVeUqOYunaEu12n+rkPKPj43iej+v5LCwscunSAlPT07iuQ04+1CYKLpw6zfTEFNc2F5ndt4+NjS1mpufJ0pRUp9Tr21iOw2//4X/gza97M3G/z7kLp+n1W/z933+Un3vXe7n3k//IF778VX7kLW9D5i1Koeb5s0t8+XOfYnaixtjUBFGpQoJHniZYykJqYVxgNVhaoMULMeW7EcW7sV1mXbxunuy6WN4wydRw7l1/u1XtuVcT74Yea17kQj9cyF50281/NRIhuVuA7rkem+OaM9uNvLiRVpnnes+wftdB80YXzRfV29/p0NcjBnP7XhTCd3l8p4Yqt3r8xvvN5H8BhL1oggwnzu6/v9Vx4zG+1fHtduvkLcDd7vjzP/0w/0vFwrHtlz1cbglEkrJ1bRu05rFzCxyam8H1XIyAOQVtNE71zR1W1zZRGFrQ2KihxIxUStx+aJbTF5aI0wTPsRgMEuamxkkGCc+cW2T/3CSWZWPZtsm482wmJ0eJCiFnLi0yMVpBKs3Wzg6dbpepyXH80GSe7ew0mZmeMMJ41+PM5StMjFXxQ4+oEBDHMXmec9fxebTI2d7ZJgh8CoWQUxevIBFsbu/g2DZRwSdNLBzlksY5vuvjuyFPPXsZ15YUCiESKBRC0ixFaUXcT1BSsbnRYH5miq8/fZbxapkwDKnXW1iWZVz60nx4AY+Qcrh7LSQ2FmQpjfo2xw6O4bgB9372EbqDDicOzyGl4PLSCnNzExyYGkNrTRwPDK3RcRDC6BPazRaua9PvDTh98Qqj1eowANk256gsgsBja6NJ4PsEvs8u9z3LU/zA0DEt5THoZgip8QOPUiHiyIFZIt+lWIoQaHa2mnR7fTqtLgtLa0yMjeA4FkIYrZrrOlQqRaQUBJFxrNPahMBGUcCZi1dRWjIxMYZQyhShttGBgRHIb2/WKRVDrqysUSxFjE7UMNsN0lhCK3MhK5SKSKGplkOq1QDXD9ACHNeY2Ch7N/DbaLiAIZWtg+dLbFviBR7IDGXLve/KuDIq0wXKcwZxRjrIh5o5n6Vra2hSHMuhXCkjEPzVZ+7n0PQEvu/SrDcIQ59C4OG6jsl8qpUROjcmFo6F51pEgUeORijT7SkVQ7TQ2I4DaNqtDoVCBAg83zNrVZLiWBZhGOBFPsoKcX0fRI6SPTrNTbJej7A6gW17OK5Ht903xbQQBIHP46cvcHTfFH/2/Dmu1jS/9c/fMASoQ/dJLfnTD9/H9PgIrm1TKhWxFLRaTeI4ZmKsRrPZolwucmFhhWKxwP/698/wx3/wH7Fsl8sLS2ysb/Pxv/or3nroEIO+6XY5jkOpXAJe2GjWmcnfNNd64wL69OlzPPzcKe6+7TjSNrotjTCZaWmO43qAxrIUjmvBEJQa6yfTbTSukWYjTmij51HSQmpFY6fF5uo2hVIw1FkaQyijWzXfhzMMGRZCGQ2IVKAlQgsG/RjHNfEvSZwaCtkelXO4mSgFURjy2fsf4tjhQ9iOTZomuK5rHDYtxeXLV5g/PE+5FFIZKZu8xYuXqZRKw9+uoTmD4Pjh/ejc6A0dx8F1DKgIwgAQpmsnBEmSUihEZGlGo97EshSbm1vMzs4glcVkrYrj2lRqFZRSNJtt4+xqCa4uLRMWAnr9PpZl0Wy0cD1v+LmoIeCxIPZYXTG/UdcPiOM2tuMZEyIE0hIM+n2igk99p8GdJ4+hbNMpdRwbKQVxP2ZtbWOY62n0OI1mh3KlwvrqNY6++g7SxjUmKhFxHDM6WiVNU6JCxNvunGHnWpP9ozWkFCxfWyUIXMLI58j+fZw/f4VGo02pGJAmGYNBD1sJDk3XuOfEYcIgAMB2LfI0JU2Mi7DtGJOTDGMG1uv2sW3TVV7f3qabDrjr6ByjI2UcW+A6Nm5g47oWaZbiev7wuIqnnzvH2FjVAFdrWGxKhTVc76RS5MIYv3RabaJCiLCsF2qFm4E7vt1OhNHuCQSLm5ssWrB49hFK1Rqvf9PbOfmK72e7vs2bfvR1lMcmmZiY52Of/AxPPf0MvqtZW73Ma24vInSd8bEKaZ4T5xnFwihXl6+xb/9B+v0ufuCjZAZ5TrUYkcUpvZ5kbu4Qx46f5MSJ41y8vMJ//N0P8so7X8GfffJRfviO15JmKWmWQp7juS69bntPjyWGLrp5ppEasjxFORnFUkDWlywvrOC6IUFYwXY81nY20VKxurrDlSsXOH7sdkZGppDSItUZq5tXGSv7WHQhHyAsB237lCtVuv0+qbAZmT7C0Ve8lmIhxFISyzKblouLlzhx8jYWly4yNTVDs9Eg8H06nTZ+sYzrh9QqUzz7zHPMzc5x330fZW11jWNHT6CU4v6vfplf/PH38Odf+AvS/ga/+oH3ce9H7+XXfu3XGKmNo7OccrXI8RNHuef1r6EyNYnlZVw5u8D993+Vb3z1i7zj7W8h7/fANi7BSZoilCCX5nZ9sbjb3dP5brPixjlz8zkkbzK3vhm4A9NIYch2edE5vMw83QN3QJZlMASiu+f2giHLDedzi/d4Ucl7S7OWb2e89BjfA3ff5fE9cHerJ39zcNfv9fj3/+H/5l2H576lw1lKkQ8Skm6fLIc7bztqNAc7TRPWimaXDt7tdPnak2e4eHWNsXKBMPBMQHicoPOcuZlxyHMeO32JZJBgScHk5DjPnF7g9hPz5HlOvz9ganoM13exbItGvcXBA1NYlsXOdgPXsxgbqzLop+R5RqPeYnSkSrPRYTBICAKfUjHADzxynbOxuUOlVmJjY4t2u0cY+pTLIe1Oj2KhyNzUONVyifHxCq5jo7Wm1ezhOBaOaw01PpL52UkcT7KyssnoaM0UgwKkFlxZWuPiwjIH5mfwQp+vPHaGomczOlrFsi0sy9r7KsLQZ3FxBc8zu/NZmpEOUrqdDsWig+vaSOnhIji3co2JcoFSMaJWNZl4G5s7VKslPN/D811jHBLn6KGldp5mdDt9Dh+cR+dQ3zFAznYcLCnZ3NihUDR29RptaHfk+IEDQhMPMv7yUw9w+6H9JkYgz/dC0F3X4YsPPMHUWJVzF5aZ3zdJqVTgwsIyX3/8HJXIJQp98jQjyzKyNGV5eY1qrUyn1XmR1fdgkFCMIhzHJUkM8EzSlGSQ4vkBzVaHarWEkJJatWyMMZQiTVMsqbi2skEYBTiey85OAykFnUGPIHCwhsG21tDIIMlSY66RZAghUI49jJawETKl3erhODZxMjB2+zmsXdukVClSrzdxXYd6o4Vlefiex9PPnqPZajE9XmN2bhydgx/6DPoDRgoRk1Oj5FlKs9kh8Fx0nuM6Nr2uybiK+zFxHBMEHiur61hSUqgWabfbKCX3jD567R6WpYad7NwUONLoNZP+gCdOneXg/AxYCj+soHVOlvbpdbYQeYYlJE5hlDwzWk+BAXVKKS5fWeHStQ0+1+rxqtftZ9KFarViHG+1AXd5mvPYkxfI04ypiREGgz7tdpN+v0+1at5vpFZhp95kenKcP7n/LP/6X/8GtZExQDA/f5B/++/+Pb967AiRY4wv9DDCIUkSgD03PDEMkQejYbMsm5Fyie9/5Z1mWRMaIU04tAFNFv/1Lz/BHUf3D4tmA0oBhDBGKLnWQyMCM8/jft/Me63JU42tLD523/2sba9xYN8s0jIdOGOXndFoNMmyHNu2QYuhu5sJhtcakjjhqw89yv75WSzbIs809Z0GSikczzgDW9IEVp86e4mTx46AEMRJbNxjPdfodpptKhM1qrXynuGTyDWu73Lh/GUmJs3nueucu3J1g49+9qscP7iPze0dypUyyrboNDumE+jaFApF0iyn2WxSrpSwbUVYiNB5zof++hOMlgqsrq8zPjZCpnO0Frieh+Na+L43pJD7ZGlKs9WiUimRJOkwjDxFCkmnNeDLX3uMyfEiUVih3W4hLYWlFGliTJWCyGd9bYPxyXGklJw+e8HEJnjO0BTL6ECFlKZDnqZ4YYhSknv2H+CcZfOhTz3IT37/fqRSNJutYbREn26vx29/9QI/OTtOv9dncmKEK1dXQeecPnWVM4urXLi6weF945QqRRxLgs6JCuGeWcPjT59lasrosQeDmHbbuJ3W6y2qtSJ5nuPY5lw1UCyHjJSLRGHAVx59hqP7p2k22li2yY/d3mliWzZSSFrtFrPT48PunNqjHCtl7bGKbMt0epMkYWNji5HRKgypwuImQWbfKbjbNR76la8/yw/dfZiF80+w/+BRfvyn3sn7/6f/jV96z3uYmRrDckP8sEIUmTlTDBL6nQ1+4i2vYGPjElHg0RskDPKcSrGK63okyYA4iRn020il6bQGoFO2treYmT1Gp6tJM5unnnka14940w//iDEW2yozMzuDUALXcbAtxaDfJfR9Y/SRZ8RJjJI2tuMi0CghzWeJRqLwwwjb9Q17BEkv0SxcucobXv9W7rrzFTz5zOPsm52nUCigbAN+Bo1VPGtIu/cM1T9PE5rNOu3egI3tHUbHZ7Gs3XiKwZBqLRkdG2NmcoYkjun2uzz44JfodNqsb22yvLzM2efPsbRxjZNHjyJlzt2vuIed+g6LVxb4gVf/IItXLjNi+Xzxucd41V13cMdtt7O+vsl/+k+/x1NPPslttx3n9lfcie07ZEIxtW+exWefJfQs1je2+Nx9n8ZRFodPnsRSZsMLgXECFgp0bqjh6D1nSJ3vOkgaI5OXzqYXj+8E3Glt1nV5I8D8NsCdsiwEJjvYUtL09vLrjFeuP5/vgbt/ukNn2W/fjIJwfQP4ZuP6r0oOHbxeoqnbO9gLrV2d5y9q93LDc/Lhj9/ohuQej3jXVVNI+aJjwM2dOK+nYO4+diu6xc0/mGE7/EZK5vDc3vkz7+Yvh3RMvetqsfdXm5vhP5t7lYD1lQ18z6M0UiETApHlCCTdXo/l5Q0qhQKW5SCVZnq0iu9YVEsFAj/kI19+lAsraxRDh3IpIAx9pitVDh+eYX1jm3arwx0n9vPks+foDfVTYehS32miM1OsbW/tUKtVeO70Ir0kxvccfNcniVNKpSJpmvF3X3iI56+s8H13HN77FB3XxhrmYRULASMjFQQ5WZ5QKpSR2NTrTeI4wfMder0+aZpSGylxdWWFftzF8y1arSaOr2jUWxSjkO2dBmHo0ev3UEJxbuEq99x9G45nhN53ndzP2EgFy1ZojKB+fX2bUqlEnufUKkWUlMOOnk2r2TI6tl0reiGxbcVrXnWcdqs3LIo1aZwQJxrHNe/tOA5kJsqiP8hYXFxibKxCFIboXPClrz7FiSMzSEtxdfkarucy6CcEYUCe5Vi2IkkSY8yQ6yGlVjIShpRLZbrdLrYjyXROmiS4nsO+mXFj8b/dYGZ2AttWzEyNEjoWU5NjRqO2lwGmqVYL5Bpc2wRSO46FHGpRsjjl6089z4e17NwAACAASURBVL7pCRBmjnZbMX4YsHJtg0q5SJqm7NSbBJ6PsiRpmrF6bZO5uSlyYPHKKqMjNaRSFKKAIPTY2W7hOQ7kxmxidWWDaqXIysqGyaZKM0QuuHxpGURGpVRibW0Hz3OxLRcp7L0MO8e2EUJQLEYgFB+57wFGiiHHj84TRT5ZlpJkGqWMEcrY5Ai51vQ6pvgMQ59Ot4ftOqxv7HB24So7jTYTY1UEUK2WSZIELcDzvWFHV+2Zh3S7PaQyv0vbcem2e0Yzhib0fCq1Cr1+bKzCSem3dxi0WyQpKK+KE0Skg5gw8MiznAyQlk3gu3xxkPJjbz/BD5yYJ48zytUiGogHA/7ozz/DzFiNUuhTjAIG/T7jYyNIaTLdbMdiY2uHa8vrzO+bo5fmLMsZ3vqWHyXPNL4X0mx3+Yu//lvef89rhsXaCzSdOI6xXXtI4xHDLDcD8DTGDc4eOpIiQGENX5/vbUV/310nsCzLbBwM7ebTJDWAzLJJ0wy0GO5Y5ygNg35i8q8wx3rlXUeZ3zeNZVvDpVkzVPThuT6WZWNIooaflO/ShqQgS1JGaxW8wDh5oo1O7ZOf/0cOzM2gLJOrp7Vg0B1gW0Y7l+c5hUJkNIVKDgE3DHoDbNsiHcQmekRJxidG6Pf6GBc5Q38ulQsUAoc8zfj6489z7MgBk6WW5viRT6NhqNlKKHZ2dnBsa2+9F1JxZH6OifERqpWS2fXPjWDBtmyyPMcNPJIkRUnF9qahj9qOcShNkxRnqDd1PMErTh6h3+sTlUoUC2XqjR3CMGBzY4d4YPR5ge8hLRshJNVqCUsJ7KExjlI2WmPiQJTCds3f1dhp0O8N+D8/9Sne9qM/wj3zERubW+gsRynY2t5mYmqMUxeX+aHqKN2uyRGslCI832FsYpSxSsidx/YRhsPcwa7pRPZ7fTqdLq22mTdra1tMTozS7fQoV0soW1EoF8izFCFA2ca1UWuz2WlZiiSOOTg3Sa8XY1k2ru+wtdWkVi3T68boTBNG5nPc2KgTBD5JlhnNMGYTwZKKNEmQaFzH4tmzF9k/O43ec/x7Kbgzk+/mqqgby/a9/oeAYVubj126yojdJYm7vPYNb2Zy7iivecOP4XshTz/9NAcPHuRrX3uMD3zgAyycf443vWaU175qikajztRkmSgMifsZURhhuRZb9W0s5eI6PkqkuLbAdk0ebaU6SkaR2f1HWbnWx/U9TtxxlHKlzP/8O3/Er/zMe4Z6yJQsTYzOTikGcZ8sTXFcF4QkyzSdThdlg6UcLIwTaawH5DIlxWaz3qTR6nNlaZ0omGBqZoIsTzm8/wAb66sUQx/HzXjygS/ju7kxTcLBdQMsAa1WC6kcHK/M8tUreJaH53u02x3CMKLb7VEoFkAKdjY36HY7NBsNFhYv0203iDzBzsY1Th4/RmtjCVtBng44f/Ey5UqVleUFZmdnqZYr9Ad93vmjP8vv/cUH+Zf/4n/EUoqpmXHe9773Mjc/x9LSCmGhRhiM8Ed//GF+6n/4KTa3dzh6+CA723UaG9t84t6PcnT/PmzbJioUSHJIsxxHqj1a5u5aNVyauDE24Va15LcD7l6YkuY9b3ziy4O76xse5mTldfXnbi36wk3fULe++BgvctG8acfvulr7FoHnN5zhS477PXD3XR75dZ27b6ezdf3XeH0swq2+3r0v/gZDlb0x/MForVF7OyX53rHVEKDdLDpB81KzlhdvPLz4sRsfv+m4RUdQ5xm/+v5/xQfvPnzDBWP33y/9+4SAa5dWCSIf23PIh5g2Twxl7XMPPsVWvcPsxAj17QZhwaPd6XFts87U2Chf/vqz/NSbf4BXnDhArVLgzIVFZifHyVKNF9k8/vx5zi+tc8fReb7x7FnGKkUqxRA0XFleZWp8lMuLK0SBi9SKh5+7xPnVdV55/ACbq3WCIDA5ZZ0up6+s8As/9npzcej1hrvCxna+1WwRhiF5bjqXQhr92p9+9KucW1rBkYLRkRJSgWPb1LebjFTLCIHpnNjOkE4YorUeGhf0KRRCfM8hzzXVapmLF6+YzK48xXEctDZBpFtbOxSLBdAMC05DGZPKOPrZgekQ6sy48sVJTBC5SKHIU43v+3z6Sw9TK4aMjI5iWRYPP3mK6bERkkFKnmqk7VCIHK6trlMuFel2BkgEtgVe4BIWQjzPw3UcLFsNi2izIZEmKZZl4fkeWZ5RiALifmp0OJFLr9cnCHzyPKfT6qKkYGpqnHRoEiOVpFQ0OV6Bb0K/HddGKUm/3yeIQprb2yhpct9sz0VZFp5rUwo8XN9lc7NuTAiUw9mzCzx+boGTh/chlWR1Y4usnxBEJnevXDUgudvtcd/Xn2Tf6AhB6NPr9gmKEXmc0m51abY6dNpdxkerWEqxsd1kbLSK0PDRzz3AyQPzlCshX3joKSYrNSrVEteWt7i6tMnBw9N7ZhsXLl6hVCqgLBtPwZGDM6RJiu04xHFCVCliKUGr1SbwfXq9PlEUEkYhjmub8OnuAM91OXRwH7VygTAKSdIEz3PotI2xjRRqL0bEGjrH7c7hbqdnNlQ6PQqViPW1TaYnRun1BgRRCCKn3ayTxwNsaeEGBdzyqNkQylKyOMF2XXIhyDT852cv8sY3HuTVx+ZI44QvfOlxKhV/GBPgcuzADJsbDaanJ/BcxdhYjY31DcLAUOyuXF1mYrRGtVLmtz/4UX7n3kf51ff9ArWRER599AkazRZvfevbKVSqvOu22/cKC6XMBVJZZgPM0D/N7myaJsNdWrP+KClfsEjXcshIyMizdOjcKMgyM4eVpYbdWmtofqGobzexbWsIHI0xjOU4dFodY1giNVtbmxSKhb2u1G6HQ2catCCNU8QwsxCth6JtuVc0KyXJdDbszJjzPnJw/17EQ57m/NVH7+N197yKsBiZQ0gx7OZrOq0Otq2QAh58+HEC26FSK5MOQ8izLIZck2tJt9tD56As02XNU83axjbPnb3AU8+f5Y4jBzl19hzTM5MsXVlhZ6uOVILRsRrnLl5icnKcXGts2+by5UVW1taZnZ8dXp/MzjnKXMsa9SahH/KJf/gao7WIPMsJo3CvAyWExFICnSaQQy/vIJXEDwLifkyxUCQMo73n9/rJECAKLCVZunKVMPR5/rnzrCyv8Q8PPMLtRw+Ya2makWUpvu/z2NIiv/U7/44P//WHuee2/QSBx+bmFrZj43sex6dHefQzj2INo4P6/ZjLV69RrRYpVwv4oaFIJnGC4/pYlkIpxekLCxw6NEepXKJSKJCkGUHgI21jfiWUYNDr44c+/W4fraE/6EOq2djYIQwCzl5aYm5mkjTXeK6D5zpkac5Dj59menKUMxcWGButEoYBtm0jhOk8Sykg10ipIc9I4pi1tS0sIRkbH0Hv6YRuAe7glvXKrR7fLYfvvXSVw5M+J48fJc4UuQyoThzk2rUNri1fReiE7Z02p555htGqx3//xkOUvD7/x//zZX787bfT3tmm4Bcg0ySiO4wicAztPo0ZGRmlk7gEUUiaweJKnc2tHseO38P8/Bx/8Ie/T6VcZO35HrcfO0aW9GE4J3fNNJSU2MqiP+gON8klV69cJogi40wrNcKSrFxb4/KFy+y0u3Q7CaPj+xifmML3PYrlIvXGFoHnsb21wcbaEoI+I+UahVJIb9AlCEokWUw/1ywsXmJm33EK5XHKlQnSJKXVMXFHjXqDQqGERpOkCWdOPcWlC6fZWFsl8F3CMKQWBYSuIIwCJibGaexs4toeV1avcW15kX6vzfjEFNeuXWUwiCkWK7zu5Gv55X/7G/TqO7zt7T+CFxZot9osLi6RDTTlQpU/+eCHuLS4yOUrS7RaTR565iIiiVm8eJHlpSs0210OHTqE44fYlo3OzHqlh1mSUqgXTYbvFri75Tz8dsDdy85qEFKZDfBb1ePXjZuBu+vHbmcz1yZ24Rbv+JL3+B64+y6PNMt++5t16G41ru/sXS+VvH7shpDnvDDRbybq3L0fXvyDMMWIAXO7oG4vf2N43L33Hf7f5Hq8ONPuZkDtW9lBMd27/EXn+u53/SL/3ysO7l0sbjy0yCTInFzlZtd/IOg32mw0N6nUSijbRqAg01iWKXb2TYyyvtHg4L5JNra2GfQzJidG6bQ6LK2uUyx4jI2W2doyuTdbmy1qlRJCJgz6HcqRxytvP0wQ+mxstrj95BG0FChHMjJaAiEZGxslSzQIODg3zh2H58hyKFYjTp+9wsRkCSzNK287hBQWaMXW5jrFKEAIxdrqNloYE5ZB3CcbUqKUI1lprvKWV9/N9PQoaZ4OrZgtHCcAaTpitnQRpLQ7DZS2h6HEXeJBYnbafYdCFJGmmtNnlygGHp6viLMMz3VI4wTXsRkkKVJJ/uLerzBWiggDB3TOoN/DETYSAcLQdCwlkQKyYVaXBo4dnsX1HZ5+9jLtbpvvu/sQ2/VtitUCwnGwlAGNgWfCupWjCCIHP/TotXp85L6HeOr5BU4e20+30+XTX36M244fJM80jVaTIHLJEmEoQ3kGIsf3XdJE49iO0YNJheN4WMq45QkB9XoDx7VQlsTxXYQyYc6tVtuYDiHY2WxSrpVQjo1yLJNDlqUk/YQg9HFdi8BzsAVokVIqRpy7uMz0eIH+oMf0xChhwQchuLq8xr1ffIRXnTyMbdtYecbszCjKEiwsrbC+Wmdmdpw8Fzzw+Bkmx0r0ky7lsSK+65luWLtH5Dl0ul0qox6zE6MUSxXSLGd9vc7kxDhJ0kDrjH6/x/jECJnOaLe2qVQK2JZNP+nRH/SIgjJxu0mvn1AslZAIXEvRintYrgXSmHf4voNlC9JMoTPNpYtLCA31VotSrcigZRxDsyzBdW2yOEHlGTqFJNO4oYcgMxmK+dBEx3bIpUbnCfRWSbtNFJBaRQoj40htcuzifgvLtsgSQOf8yXPnec3r53n1iVmEZYEQbGxtcfjQflzXgEzHsdF5TG2kTBj4fPZLD9HpdoEM33cZG6lh2Tanzy3w3x67xsHJcd7zL96HF/jUJmyCUDExeoTbem1un5lDiZxuq8MDjzzBzNQkeZbz5NNPMzk2Dgg++Jcf586DB7GFvUfPFOT0Om08z5gpGCdKTPdjeGG2lCJLcj79D/dz+MA8aZqabkBujJ1sVyIlJAPN5uqaCWj2AzQCpWyyxOidLNuGDFYWlqkVCyR5jlQwGCRIbULWkTmWssjTmGQYTyGkNNRtIUAb+3uzcSMRIiNLcqSGiYlx/ttff4qTh/dju5DnKY16A00+1Hsq5mZmCKKIODZOgfEgRVoWUpgu1+fuf4DDB/cReJKtjQ3KlSKT4yOcurDAW153D9KBUiGCPGN0dJRnz5xHScXk5ASVcpEkGYAwv/FarUq1WmSXU+86DnE/xhaSpB/juw69TofD89OMjBRoNBr4rovWOfGgi7IgywTSsRG2wncD4iRFp5okTnA9z7iaWsaExbIkg+6AbqdLEEQUS2Va9S4KmJ+f5tiBGRzH4c//9rMUCw7VSgnLkvzV+fO8550/xuXH/5HpWoFBPKBWqxDHKZ7r0+93+b+euMLPHd9HqVogzwWzM5NkaU6n3QctsDyF5QryzKzBypaMj49gzBIUWpmwbGkZbW086ODYkHYtnnlqgcmpKkhD8+52TPSB47qUiyG262A7NqdOXSTyfLqdmOmJEbzAZaxWRlnKGP7EA5QCLTUrK9colwvGDNNyQFqUyhWyfkqxVHrBpFXsVgrf/ngpuDMg6e8vLlK/eo6//9wpXvfGd/DAQ09yz6u/j2Z9i2MnThJEZWYOjfHH//VDzE4d5c7DFaqljB978xHq25uMT4+R5F2cQJFLSeBZVCIHITQd7VMYnUO3lulmfXA9tJqhVDpA5jb4/f/3w1xZyPjGEw/z3p94L44y+mV0Tp4nZOkANaRjpllmonosSNI+3U6bSnnSdLaTDlrnNNoZm1tNRkcm6fd66FwwMj6OHzn4jsPWzjbCchgdqyJFTNpax1MpwpL4UYQmIx30SVSVyemD5CiEUjz46P0cPXkHxahMlic889QjPPv001xduUwUhiydeYbIkxw8ME8hsNGDOtMT45TCgChwcW3FucsL7DQb7J8cZXa8iEcXx3FZ3dhgYXGV586e4tLieS6fu8D7f/29BNLnvf/8F3nXL/w861vrPPvs4xw5OMNdJw9z9K57eOiRJ3nnu3+R0889jxOVOVjro7IGV5cucdedt4E/gnJDpMjIU4GtPITOyXVq6JKYms2soi+tI6+vPfWQ13ArFtzNauGXq49vOU9vBcyGG+A3zuRdk5jr61ctJXrYqdNCkGNqt5sdW8Ge+QoI1NCAhiEdPs9yLHn9ZyFfcp7fA3ff5XErzd23M2457XZ1dny73PabH2P3/zeLZth9jhTCdHJeRov3LYFZsx2+d+4PPfgN3tK4Stn3b/kSgTDMDQFSW1y5cIV+v8vk5AiWbQ9rANN2H/R7CCFJ4oT9MxMmwNpWrG3UqRRDQt9jeqJGpVQALfj/2XvzaMvOs7zz93173mc+5851761bdWsuDbYGz7ONIQwCmxlsbIa0oQl00iRNOkAW8WpomtAkgQAhCaQJhg4Y27ItGWTZkjXZmmeVSirVXHceznzOHr+v//jOvVUSki2TZsVrwV7rLKnuvWefaZ+9v/d9n+f3LK1uMD05xvh4nV63TxiaTKWZqXFa7T433/EAb73+KorlArZtQBmgRzl5kiSJKJULJElCEAZIS9LvR9QrZRzPYnV9A4HE8wyt03WMxG15ZQPHdbjlnkfYO9XAsc1kpFQIsGyHhelJCmEB33dxbEkUxbi2S56Z4tixbdZWt3n+/AUmx6q4XmjkPVHM2Fgdz3cRowLm1AsXuf66o4TFADdwkLZjPHlCMhjR7rzAQ6Y547XKSP6WEgQeQkg6nR6+79FstkayO2HkjL5HvzfE9RyGw4iFfXuYmKyh0hTHcRj0I/zQJ0szVJaTpqkx5e9MP4TF6toWb3v9NRzYO4UfBuRZwnjVyMIsKdE6x/N9LNsxC1MpOXNuiXqtipAW/d4AIYwUrdvp7fpG7nvkSY4f2bc7NdmRJGutGPYjE77c7NEYq5HnOZ1O11A1pY1t2bTbPYplkzGVJhkbG03Coo8lnVGQfUixGKByTZKmaKUpFQvcePUh/vjTd3BscZ5C4FKqFIiimOmpCWrVEkqBzgVHFxf4xBfuZ36iQaVcQuXm4uCP/FD7F2bJdYolHfLUxGZMTo4hhCAsOqPj3UxZhsOI+niNQS9GICkUjUxUK8G9jz5Jo1wxC2dbsLKyTq1RNT4dpcmyjOEwHkmzBUlspgtHj+xDWtLIgkdStzxTZqFpWSytmjgR2w3QWpNniixRKJXjBQFpbjIEXUfS2lrDlsZflkkfzw9HR4AmSSJzPOWSn3j4Wf7VR97I3snGrvwzV5r52elR93x0QlCaQqnIcydfoFIuU62ELMxNjQAhIatrm6AFP/hvb+FX/8X/xk/9o582Er8cHnzwbmzLZd/eoyzd9gWOLRpfnO3YlAuhmQJrTTyIqDdMkXjVwf0ms9CxUEIhBEaa5ZuCQkojm8yzbFT8iZ2zFlqbwO7x8bopSkVOno+mAdKcw6NByn0PPsT8nlnjj1NqNBgx8BYpBa1mh/sefozJSgWvEBBFsZn4Z9qAHGyBJZ1d+aUAhDWSXmNonDCitmlFmiYmbFxISpUSRxfn8XyHTrdDEPj4vpGWB2EwincYfWIC+t0BpXLRLMU0LF1a4vjhA7i+Byqn0+3j2C6FQoED83tYXl1namqCXsdIMtfWNrjq+BEmJ8eIogiukLlmWU5ru41tS4ZDIxlutzp0Ol2ePnGSPTNTnHz+FJOTE3Q7fYLQpd6ok2UK1zcNHNu2EVISDyNzTYgTXMcly3MKZXPeN0bIHWmgOc5RCtfzUEoRhD5pklIbN3J5hOTo4j6C0MNxHNrNNvtDl7HrruE3/vBTvPvqaQqFkFarPfJ8CtI44a8ev8S3TRtptu95CK1I44xP3H4/k5UijmN8Uyo1Kg/fc0fNU0zESNEjGsTYloWQwtB4BzHxUJPEKdV6iOUYubA7an4prYmjhCQ2kSaD4YByKSQshGxsNWk0Kjz5zClsIajUSkhpLBqu6+DZ9ugY3JmYWqRxQtQfUKlVDFxpp8D7/6O40yCEkZYuVxtYUYvphWO8973fzKEjh/nsLbdw6oXT7N+/SJIq/sUv/DyOdNlYvsTx/Q77FypkeW5IoL5Hs7VNpVI1TUQBg36PMCzhhSU2trZwZUJQmuT8xRZXX/MO/vnP/0smZ2eZnz/Mxz72hyy1OnzHG9+LHDW0lcqRQo48raPcUmXgRWkW4/khnlsiz+NRY1milMVGq0+pOsXRo1dx+uwpbrjxLVy4dJ6JiUlUnjNWb7C2tsTJp+8n9F1KvmOuT4DONVkGSaapT+5lGEfYjsPjTz7Ka699PVpper0uT514jENHrqG51SQZtqiWi5A02TO3l3K5TKMxRq0+PoolcegP2tiOQ60xzsTEBJ2tVWZn5wjCkLW1JS6tbFIshegspVEf5zXHruPX/+h3+MD3fzff/V3fw7/7nX/PO9/1Tq57zTUkwyG/+C9/iW/5jvfxvd/zfv7j7/8+//h/+VkefeQRXNXB8wrM7l3gN//d79Lq9nnjG14PKFzLSNiVVuidBsHLTDEuczXFS3739Rdkf9MIgq9+P+Phezl/3St563ZD1V/Jb3cFZXNXvjnaoZAjouiV+/sGKu5eObDs77dXvY2u0V81/+3Vbjv7UF/lbxQYI32e/3c/3ks3rTS/8Rv/hoV6/av/3Y4KJJXoRNPstKiWPAAjfbpibO3YlpmUXFoxpLE84zN3P8R2p4+Ugkq1ZC7+wizWsjwnSVKEFAb6oUApQZZpwsDnxqP78TybaDgwk8zcjMl3Tvhh6JNnmVnIKcXypXVCP6DeqOC6Lgtzeww8QxiEb5zk5sKpFJaA6XqJbn+I7/nUa1W0Fji2yaXReUqaxKA15aIhYaI0X3nkBGfPLZGlOStbbQbDFGnZbGy10AhypbFsh7MXlhC25NDhBYQtkbYcTWsF/Z6R85RKJYrlEiiYmRijUqvy8dsewHFcLMthGEW0Oj3SNGOz2TZB0VqzsbGNyhWlSpE0zWi1u7Tbm2RJhM4FUT8lDEKEyPADk7cEgizN2N5qgRBGzz81QZbnnLuwTLfTplj2md7TwHXNpCgMQ5I4JUszomFEnufs3zdrQrn7EWEY7vptgtAlCA0I4s03XE2n00UrNcrWEnTbXaSQrG000Upw691P0On0iYYJju3i2q6hNqaK8ckx8lwZM7xSjI/X8UOXTqfN+prx13TaA4QwNE3P93BcmzRJ+eBN76LX61Gpluj3+1iWoN3psN1sGwKpY3xQ1aDI1MQkOpPGK5NmJhbBc+j1+ySxgbh87LN3ERZ8tFDYjunoC2kTFgroXBN6PsNezNpaE9u22dpq4XkuQsLbbnwt1XqZaBjhug7Fcmimk2lqsNJS4voetusyGPY4ff4StmWoYr7nU65U6EcDHNfF8wskicljKxRssEzml1BGJlYoBrjFAlpqhNQMu22G3RYaSZLlCCGpjkiUO9/dneLlxx9+hpuun8R1PfJcmQuhMNCAwPMNGXT0PbdHcItKtcjmxhblUpFGo874eAPLspkcn+AH/s1fkm1vcuz4McLQxQttXCfkHe98NzMzs/zsP/9nHJ2bpdttkWUpGk2hGCIkWI6kH8UIyyJTCsdzkLYgVZmRVEvzvkkkOjfZhwKMD2enqFOaNE2xHYsbrr9mRLY0UzPHMbAnI7uH2+74MqvNHkppPvNXd/LQg48TDSM+ccsXzTGV5ZTKRQpBQJTE5ErtgmykZQrTNEvZWN8GLXa74AiFhfHfWRKkGC3MEWRxBlrTGKsihSbTKXESUS6V2YGylEql0cRPmniZUfuuUi0Tx7FZVAjN/N5ZMyW0JJbj4/kFwGQgZmnGZKOOwKLRGGPQj5iYGAOMXzlPM2zXxUBhzP4b43W2tpp4rodtWVSqZe68/2FmJifodbvMzkzj+S61WgXLdRkOY9JckWY5jusZtYnWyJFvuFJvIIVNUCySKwNFkDtNHylNcHjgG98SO4TenPp4fVTE+7iuuwuJ8gMzZX/d4iHu+NJ9WG5AuVxibX2TYqFAs9kykR0IMi1wXZMRKkb+4GKpwA9+61v4/ANP4joOpULRwJJS04TKs9xMe7QiSzKyNEWpHK00tuVg2y7Lq5s8d34FyzYNLiklQkK70yPPMj55x0Pme1os0KiVKJYKrK9vMYgikjRl39w0pVLBUGItC380zSyUCvR6feOLtKTJm/QchnFsVBO7F+Wv+3L/stsOtCJNYq676ggvvHCaUy+c5uf+6c+xsrzCW9/2di5cuMA9996LY3l8+AM/yoH9e7np29+FEEMeeOg+bFvieUZ+Wa3U2N7eZnN9jSzNsGyPUy+cotNpU/A9hC1I0oCVlYj1tT7vfs+7OfHsWW644bW89z3HmZiYMrmmSqPynGg4MMVIniOlRZKYLFF3lOWpRzZbaWmSLCZJNK3OgM3tFucvXOTkmVO85vo30+p2qVbruLZDIQxQeYYjFLZKqBVLeLZDpgShGyJyDdrh3PmL+GEBy3ZotdsIJGdPn6IcFikEITfc8BaanQ7LzS0kmoItOHzsOBMTY0iR0u1soLIhlmthuTZ+GKBUglBDfEdz5NhVWBYUikXGxiapFW32TDZ4x9vewb65BeJhxk9/00/xx3/237jzrru46Tu+lXq1TLO5zbmLF/ipn/yf2dra4IUXXuAjH/kIa+sbdLp9zq9FFCrTnDzxPFLBrX/xJ/zmR/93PCFQWUaeZ7vrEHGF/eglBwZXdBG+sbbRdXMHLvRqN6V3oFqv9JpeaR5pvifG3/6Nuf2dn9xdKbV8uXPjK0kxr9yufBwjrgAAIABJREFUnLbtQlS+yhfgpcCVK0EsuVK7sswsM96mHVLWzs2Scle2+XI5eF9vzt3OcwL4nvf/AB97x3WXf/+inVwWgQpHk6cKIrh05jy2zAh8F9f1Rx3p0dRRGVy5yhVTk2OoXNFstTk4P8X6Vo/5PeOcPb+EVgrbtnE9F99xeOzEC0xP1IjimEuX1qiUyzRbPTzXUCVbzTa9/oCTpy+yZ2ocnSsc10xPBj0jK+v3Ii4srbG4b85MZ3RKr9uj0+kzNlYz07AkGcERDHFpq9mmXi5yYHGvweBrxdpGk5u/9CBXHdiLbUvSNCGKYgZ9k2n1+NMvMDdZ59zqJrMTk6xutDh2cAFpu9x+/+McP7iPjc0mpXKRar1sQtEFaBRK5ySxycJKkhzLcWm3u3zxvkc5vG8O3zNQk2efX2ZhqsHmZos4SZieHjeeFc8bQUksiqWi8d1kinarzdTUOFoN8HyPQTej14/wXIeNzVXazYharWQ+j+0O9UaNHSi8tEzROT5RIyy6tJpNBJphFOH7Lrfe8RCPPn2G44f27uK6u50eAjh7fgVHSvxRtqGQYDtmamtZGBhMITCZhsUADWRpxnijQXOrzZnzG7R7XfbOTuB7LqfPLlGv1sgyhUZhOYZsmKUZlmWhdIJWUCqWyLKUaJgilDWiApYNft43/oxTZy7QqJUNbdO2cBwHz3XRIkNKTRT1OXZolsFggG3L3W6dF7gj6ZiZvmSJ4rpjB7BtMVo8BkhhYVsm7H1rq0W/P0BaFtNTk7xw+gLn19coF3wKxSJ5rtjc2KI77ON7DoViSL/dw7Etuu0eQkozLcw1QcFlvF5mrFYenR+0mSbXQuI4Mwv9UcCzGwQI5eFIQ/XMdJ8o6WK5RVAZWdyn19nGlbDW7lIrV00hXKyhpYUURiMgLc2P3Ps0f/bzN3FsYQqtFZblkCllpIVa0213eO75s1TKJZO7lWVkWY7rOCRJgh/4oAXf++u38P7X7eeDv/1F3nP9DfyDb/sHZCplbu8ccTJg2IPv/p6b+M7v/G7+8q/u4Kfe8SZczzQGhBTYrmMayUIw3mgYMppro9F4vo0ceb7kSOaY57mhD1oWUo4mbqNzlxAmSiTPjUcLYaTD3W4bz/MQWjDsG0/bVUcOMTduPIgHFuZ48IkTLM7PcuzwIq5v0+322dpscuzoQQqh8ee6roGf5JmZltquhc4s/uyzt3Fkca+B82hz3szSbPe8HcfJKKJAYrs2Sud0ux3K1SKua6O1oc+qfEfNYc4dGtMMtCwjocqyzFDjjLTDBKxbFq12HyElTzxzkrFajVaziee7fPyzd3L9tUewLElYDLnzy/dz/xPPMD81Qb8/pFA0ESztZptep8fYRMP4bPOcpYur3PCaq0yTq1rh2edPMTMzRXO7je+7Bu+vBZbtoIUmjtORt9FMMv/0L27l2KGDOP7I++jY5GkGMCLyCrI85ekTzzE5OTZabCrazQ55nuN6LhcvXDIREaUCnVaX+lid4WDIv7r5Fv7R//RhZt0uQRAipSn+hoMhQVjg3PlzvHlsls31Jusbm1xYWqHoF0nShOuO7R9d9wS99sBInrMM25Y89dwLLMzNEEfJSLZoClbX9wGbsXqZxflp3MDG8WxTkI/kXv1+xKG5aVzHMVEcjllZCARjY1XiOKEQhnieR6vdNdPqLCfNMjTguO7upBalybOM1fVNpmcmdrgSO+OFl19zvMztlXxIerTA/9A9j9O+eIKHnjjJ7/2HP+Dhhx/mAx/4IOfPX+CGG2/kTW98E3fecS+/+Wu/zsUXHufxpx/mA+87zpFD+0iylFKpPArSlgRBkUqxaHzh0qVSH8MPPCwU3SSjPnE9UzPX84lP3sbc/AzHjx3Glk2itM9ENMehvXsN0deyyNIErfJR0ykfSWcF7dY2rueitcK2HXpRFyk9zpxfYW2thbJCXv+mt1OrN7AdF9f3iAcDzp87Ta0ccOrkI4yXfMbrNWyhyZII6TvkaWIahwlsDjOq9XFc18NxXaYnZ/C9gM9//nOsr1xgbHKcEyceohIIJgLYMzmO40jIU3zXxZEWgefT7rTNNbtQxpIWgePh2RZ5PsDzA9LMgJwmxscp+A7bm8ucPfUsG9sDtptNfv/T/5kP/eCPMDM9xtrqRR595EFu+/ztvOs97+VX/o9fZWp6gqnJKR576kk+9OEf5fY7vswb3vIu8kGH664+RCNUFIh58unT3HjjjfTjCCfwERiS9s5mvYrsN6W1iSV5Banlyx6Pr0KiOYrtNOTj0bH/YtKlRlr2aNLAaL1p+BVGFXQZbCTl5ce40lt3JWroRXCVETDuSuOTFDvfjtHf7t7PDBVMqs43zuTu73xx98p1udn+pnX51yzuXtIVuTw+vnzw7Bg45RWevFeUfr4SZIXLJ/OXfY1X3O+HfuBH+KO3XvtVXtUVz1cKUILW2ib9qMdYo8LaVptub0i9XgMhyLKcXqeHbZvJSBwlxMOEcqXIVrPN2maXrWabQ/v2YDk2fuChEVy8tMr++aldlPfM1ARe4FIIg9FI3CykBv2Iwwf3ovKcS0vrZqGeK9Y3tqlXK3i+T61c4vnTFxlrVMiymFa7b/wLyryPliWRGFLmTvTBWK06Cjq1aLc7NOoVOv0+C3PTtJo9CqEJUi+WikjLYmqsSr1RxpM2xUKBR06epVzwqNerTNcqOK6NZUn6/SGeb2Ary5fWKIQ+AK5j0+308HwX23XwfY+JShHbkQhp4dg2Fy+ucfzoPiSaLz7yNHOTDSMPdW0sxyFJUpI4RVoWt9/zCGeW1zi4d4bhcIjruPhhgVarw2fve5j+sMexgwfIkhQ/8CmVi6bzhaDTbhIUQhAGTqHzlEIYYtu2eX81zE2Oo5KM6ekxQGM7Fp7n4Xse9VoZzzdTs9XVDcLAM8dCkhJH0QicYlOvVkgSE0XheS6tbQNIObxvmgOLe0yOkdbUahVTODk2rm+jVU4URURRjCMl7V4HpQSO7dHpmc/G8wMefOokJc/DsiSu67C8vM7EWINCIcQe4cS7bUM20+RYUmLZgiiOCALzvkppwruTKKZYCtDaQFkG/Zj7Hn2WwwdnUXmOY9usLK9TKoWkScby+iZ7F2aI4hjP86hWyszPTuJ6DmibTCWUywUadTMxU9pMlaRlkcQJvueRpjm2JWm1W4YgGAY88OgzTE00yLIc37NptTo4rmXknlqTZ2BZLlpl5CoiTmPKpQpSeKTDPttbW5QCM6F0Ah/bsvFcD+GGCNsBZSbYf3D6Ar/8Y2/EsTyEbaIvhDR5fmpEpI0HERtbLebm9xiYy2jqm+cZvd6AwPf47U/fyzfvVzy/1OeXP/hO/u+b7+OpU6fZMz3NwQP7CYICgV/i4KEF9szu5dOf/hzfdfAAuUpxXN+sVUfRAAgzhZKWIVwKRp17Yc5whoxp4geeOvEcExPjDPoDbNvicvAtowDsIY5nj6blA7a2tigVS0hp4/mOIRIKiyRV5v5as7BnimK5aKYR5DiOw6duv5tDC3NYUiCETb8/AAWfuOUOFuamkRYMBynrm5sc2r9ArozCYHVlnU98/i6uPXbQSGeznP/3U7cROBbVWhmtwQ8DI/XqDnAcG9t2+MTnbufA/By5UsRJtBtBsDPtMgHYqZlOesZ3mGeZmX4Ce6Yn8Tzjq63UKhxcmEXpHCmg1e6wZ2qS6646ShiGhMUC1mgqEpYCXMclHprvL4BjO5w9exHfd3EdmyRNKRaLeK6HJU3RmitTdAs58gaPIBhCSq46vGiiabY3CHzTPLF2m15iV5Xiey5hELCyvMb9jz7J3vkZKtUKSZzSGG+MIiVyLNtiZWmFYqnIJ55/ng9/4Pt46K7b2Ds9YajCUprmn1K89tA8+YUuYRhSLgTsmZkgijO+9MiTHF6cxQt8ojjhY7ffy/F9M0Z54FhMNGoIaeM5/i5u3XGdXTAOSrG2tmVyEM0/UakmDENc1yEsBLieS5ombG42Ubna9Xp6nkccxcRRQp4rhsOh+Qws4+uKBpH5fw1CGOWCyjKKpXB3QfnX/BtXXq9f9oeXJzHiJT/XWcbNF1Y4/dT93Hj1Im5pmve9//3kueLipSXGxyfY2NpiYd88Tzz0KIf2T/LT//CbmahlTDQmaLe30FrTbLVwPVPotzZXqdbGEI6xFsRRl153m4VD1zGIQ06eukSz1eP48SPMTXtcPPcYn7/5It/+9neh85xcZ+Spyb70PM/EHliG4CylxHU9hnE0AldltLp9mq0OS0urXHP9m1k8eAjPd8nzHM/1GHQ7XLxwhmqtzmS9ZKbcKsaSCq1ybM9HoYiTmEK5TlidwvWL+J6R6adpim07BEHI8eNX0+12OH/2MaRKePONb2W8XsOyTNMljmPieAAY+rJpchiQk8oV1m6DXjGMU4TlcPr5Z6jV6oRhyNLF07R6KQcPH2V9c5Uje47xa7//rzl/6gSBb3P06DHe/U3v5cSzz/P6193IzPQMn//CF/nsZ27l+htu5Md+4ie58647+fAPv5/nnn2Cetmn2dpgMHR4/vRp3vyOt5PBrtzwRcfCzqH1Sn63nd9d2Tn4GpOFV2VfEpd39XLFHfDXcvLMzy6vpV/u8V4JnPLSwnH0FF7Fcx413aTcvcc3QnH3d16WqZXavX2jbTsSTSHli25f7z5ezf02Nzb54FTx69izUWBvdjbxwxy/WODQkaMc2DfP+to2KjeLU993CfyQleVNkijn/MUNbNulXqkyUS/zhuuOEcUp5y+u4Pse0hIcO7rIYBjjjeR8w2HMM8+fMSZzabT1y0tbjDfGkFLyubse4rHnzrG6ukm73WN6fIKV5U363T7rG9sszE9ycXmFTrfPeKNKGIRkWcbWxjbRcEi/02XQ7VEulzhzYY0Lq5sMBgOQmompGpqcG68+iO1Y3HzH4/zhZ+7CL4TYno3jO/T7PSAnVQb//yPvezeHD++jubHN+HgNx7JQWU6lVKDX6qGSnH0LexBaI5UmHSYUQhfLsdBCkeYZpXJIUPTROqPdbrPRHZClGb3hkO969xtMsLlt8dyp85w4eRrXc80iTsB733o9N73njSCgWKhiOR6xjplemOCHb3oXR/ccYNCPGEYmrH1zY5vmdgchJEHogFB0u30TLKwlw25GMsjJkgzP9+l1+qxstXFGk4EszUmTlM2tJnE2oNProJSi14vo9WJ0DkHg4TgWrmMxHAwAk4ultWbQH1AqBSBS+sMuCIXjWaS5IeZ99kv38yefuYs8jkjjGM+1GW9UsC2IoozA80eL2gw/cImGA6arNSqVEp++8wHW17eMN0OaaW48THFsj3K5QpYqbEKinoLcxrF8fD9E56Yz7xcC7JFkL01SGjMNZmfHec9brkMrA4/p9yIalYBet4PjSvbtn6U3jMhVBsJIyqSUpvDSEjew2Gpuo/IUtKDXjbiwsolCUK4Z753UiksXLhH4IZ7vEUUx1xxbxPUsCiWPPNEUCy5x3CJNekT9PsKGXCR0eptsb29TcqfRcYFBs0Xg2uRpikLgFUrUG2O4XkCU5IiRlw6gNxgwvq+K6xjFQJ7lxmwuzSIkjg12vFwpcu01R8kzI1EDs0i9dGmV7e0WH/it2xE645rFaX7nzhd44qmn+Z0P38Dvfvj1zPVP8GM/9U9QyiUoCF73+usIAxOqbUkL1/UQwgIh0VqgMf+N+l10npoiD8n2Wot0kJIlykxJRtLIIwcXdumo25stdkcbo4WsF3gGXJFnBIHPeH0cW7roXKNURpJGJMmA7U6bT33+DlzPJs0Szl+4QKfTNlEgWvOh77+JQrlIUCww6Md8+nP3srXZolGscM/9j2JZDo3xKt/yrrcAYFsGMjUxNcWHvu87ka6LG/jYrseh+Xnm5+fQStPp9Bj2YizhUipWTVC70Nz03ncQFAJcz6FcLdPr9RECBoOBmUSaV4nru0RRxNKlZTPlyxJMFrhCkWMHHqnO6fSbOJ5gEPWo16sUSgXiODZgIw1CWqwsraFyjed5RHE8kuxK4iRl//55GmMNXM9lYd8cUgjW1zeI+gOi/oB4MGRteYXOdot4MCTPFHmWE0cRuUqxXCg4gqjTQqUx7WZz5KnSREkfy4bGWA2lNDOze2g1hyO6qdolzyqVjwo3l+mZaVzX5WeuPkq1Vuf/+uwJtNZkmSaJE3rdHs3NTYq+w88+fIKNjSZ/cecDLK9tUygXeOuNx9EWZErhhyE/8f53Um4UcAKbJMtwfI9ub8BnbnmQj9/6ZSzLMu+HLRgMh3iBy+z8JFmejb7zgpXlLT79V/ejcsXKygbDuI/jCXzX5/kXlvn47Q/hOB6rK1u4jvFJN8ZrVKuVXR+R1hq/EFyBthhNSSyQ9qtYSb/C9qIp3hWbFgpNRqfXJQwk//AjH6ZWq3L+3DmSJGVzY4NavYYEfvpnfpynn3yMfnudopeytrpCt5PS63fxfBffCyiXyiilGQ6GqFyztLpGlGWkyZByMeDs+R5O6JLoJuW6zy/+0i+xfv5uuq1LfOjb3ocnXRzbxQ5c0yi2LdI0Nk0laYireQZZDJ1mhzyB7Y0t2h2HpbU+V93wVrSliZIOcdxma3WFZNCn221y6NBhsjTm6SfuRaghlpVjWSAcSWbbiEyjZYF2LPDCKmmcUC+VefThuykWQqQlaHa2ufULn0YIzRuvvZ7XHzuKl7bRIkM5Ett1cT2HXGcIW6NERtLfwpaKJB2SqZhMJWApBDarq6vkOMSpolgosr21zsL+w7zmtcfwA43n5kyW6sR5xsbmKm943fVMjDdwPY93fdM30dre4rd/67c4cvgw//53f5f9Bw+x3u7gl8t89Nd+FTtwsQKL5y+ssnzmNLfdeguWMI0x9ZKhw07z6GuxHcA0KHdu/yM3OSo0X/pa/rY2pTRI62Wpof8jt78zk7ssTX8ZrbF2DJGj7cWjWCOhuDK68dV8XC+iZV6Rc/e1pncvSxG6QqK5+4V66Rfuygy9nfu+wuTuyi/nlVM8tbMPYHV5lSf/9Ud528KLg8pfrPIY/UMAwhzMWS9i7eIys3v3YBdK5Imi1e2wstYijXOCIMR2XfJEkqkYJ4AvPHiCsuOBnVHwC3ie8ZCFxQDXs9nebvLEU+c4fmwfw2iA57usrTU5eGCO7e02ru/i+S6DaGggFdIisC1uOG7ycBzXIagElKtFzp9fIfQ8lta2OXJskV57wNjEGGmaIqTGciSuZ+N5IQqN6ztMjteolIt02l0ajSrtzRZh6ON6AUmaU3ThzdceQuX5qMMPjuPhOD5PnzhPKfC4cGmZchiQxH28IOS+h59hYX4SRE6xVDZI9iwliocICV7gc/7iGtVSkWQYE3oueZqTDhIs18VxPRZma5QqBWr1Gh//7N3MjtdwXJdCGPKlB57mqv1z3PyFB5mqVSGHk6fOUCn4OK7N+tomrnTY3mhRLhWp1MucOHmOv3r4aa49sBcBnLuwRL0S4vkFNBCEPltbTYIgwLYltitptrs4jk+5UeXA4hSrS6sUQ99g3LXG81w2VzvUqxWwNNVqkSAoobVNu9+kVK4jpY3jmxgAM5E2hEHbduj1B7i+xC0UUZnm5tvvZ6ZSQ+eaG47up1gr0mp2CQoGVCMch3KxiBSCoDCKVHBdNJrGWAXLFhw7uJcwKFAslogHOV9+/ClmJuuQO9z/lWeZm69i+TZa5ghHECcJtuOR5bCytMbKygaTkw3SJGM4jLBtj1wqkDlZZsLcm+1N3KCIZTs4ro9Eo/IU33OIh0MCPyBLMpYurFKtBqSJw/2PPsaBhT1k0sILXGpVHwtwpCAZxviFgKBcwHEDcmUyBl3XJur38R2bZqeFZzmEfhFh2QjHxrElnWaPUlij10kpVly221uEjQrx1iYnnzvJ3L59WEGIlaU0W13swMPxPdMhzTU/8+jT/LP3XY9tjTLjtCGnaaHJsxjPcVAZbG8M2WpvUiyXsKQ7Aq3ElMoBv/AXT/LbH1zk+r0l4jhhb92i4JfZN7+HpaU1jh/Zx/e+5RAf+IV/y7d967ejhYtluZy49VbedugIeW4WGsP+0MhAR+c8x7PRSjAYRDiuQ1j0d+WJhjZpJMm25UCaYQuoNkooclMgIlDKQItUknPpwhKFQkipUkaTk6QxKteEQYjWmnq1xtXHFlEip1wtU6vVRqHm5jxvW4YAm+sMz3M5dmQv0tIcPrKXqcY48TCj2zHk11wpdG5CseNhwgMPPc6+vbPkI1rn1HQdx7dIkphypYTjePQ7A6SwEJY5j9vuZeBLnmYIJFqZOBZpGx8elmUUCUhqlSpaCeJhxvZmh0LBTJB6nQ5CKyqlKqdPnyMMAkI/YHujSbVW4fz5S0byrMzrFpYgj1OEpQmLHkkSUyyb88TS+UtUa1XOnr1AvdGgVDFZeN3+kGKxzAtnLlEqlnA9nyyKTfi044Blo5EI6aClTVAsgJBGxqkkIle4jjfKLZQoNMeP7sexLHO+kUbSroF4GJnrti1J4oT/85FHmV+c46Ev38/1E5JarWJgUsMhduBj+y5/9pXTfODoXubqdcYaNdI448L5VcZqdSzLgI7ivIcrfZKeZmN9g0olwHELHDo0w7XH99PrDNhabxP1IlZXtqg2ytiuBQqiQYxj2QR+yGSjguc5jDWq9LsDnjhxmrnZKebnpzi2uIc//8svc+7SFq+9er9RkkhhMhiVie/IktRMBYRAjmi1WZ4TDzMKxcIuIOJFKxshXrF4e6Vtd82jU5TlcvO5Fa6fiBBOQDj9Gv7jH/4/vP1tb2dqZpK9C7OUGiUKXoHvfHPIu994gD//07/gDW+4kcCLqFar9HttsqxHr79FsWBTn6iQ5QOyXp9KELK63aY6Ns3c3FV8+e6LnHj8LHa2yUzV5qrXjvNrf/A8r1u8mkzH9PtNik6JVEgsaSMFpOmQKI5IkwzXlmQ6xfaLnLu0wtkLA2zf4nWve+vIj2+zsrpCtdxgfHqaYRIxVh8j6XdQcReRDymVKygBjBpM+XDIxvY6XmGe6vgk5y6uMDWxh1xqFhaOkMbGQrO2ssTqhVXazQ0qVQ/bFihyPMdDK0W322N1bY1cePhBCZ3nWGEJaTtYUuLZRtWkMkUicy6dapPGCZN7CjiWg4XEsSWBZ1MtlxhrTHD61DIb3RWuu+F1FItlgopDWCkzMT1HGikW9h3k2PHjTE9O8Ssf/ShveN01uI7Lgw+d4Et3PcZUfYLW5jZ7FxqMVX1uv+XTlIsNZqb3gg1CGyWP1gqhzbrvlYoXOYp6edFNfG0558ttL1oL7/738s/MeekKK5G+3PDYPY715X3tyDHVFWAUfcVTetE6nMsTP+OXFeQooyYwL+qyyk9cpm0iTc7qlbO+He+z0hrHdv9elvm3uWVZ9stwGRW/s700KHxHS/v1FHcvR8uUlrWrAf56DvBXdb+XGze/QnH3ortdcbvy7z/0Iz/OP772yMve5/JTeMlzUbC2tEalGFCuVVha3qQQBqAcLA3FYgE/dFE6x/Mc4mHCV548SRYLjh+YJwg8KpXAXMSyHMdyyDNNpVzmjoef4epD83iezfpGk0qxhJBQKhaQUu6G+qZpZqAIShtDsFL0+yY/SQpBp9NjfLyBPZLmhYGL2DHAamFy6DLodvuUKyWGw5gsydhYb9HstqkWCniBx+pGcySNskiHKY161ZAvNUTDGM93jefJlhRKPp5n43o2QRiCtNgzPWnIpgJsaXJktICVZZNt49g+vm8bw7wUbG1vExZcpKE+M+gNqdZCpKXJkphy6DI2XkVYAse22Tc1STRMmZ2uUykXsR2Lou+b9yhLRwskQaVSMkthrRlv1HjTa4+itWJldYMjR/YBkOWm8zYcDKmUS2g00TAhz40E6L6HnmHf/DR5nvG5ux9mumaKqDTJ6PWGPH76FIcX54m6OasrW9TGiri+MJ3LxEzIkygxkj8h6fUHnDh9gdnpCfzAgGGkEHi2TclzKFcK7D84S6ESolNz0l1a2sC1HWzHptftkY/Cp4vFkO3tNp//ymMs7pk2zz2KTMGnNJ7vsHd2jCw3ct9bH3mCyUqAb7lEw4jA9xgOYjrNLo5lMTZWo1ErIyS4nmuClIVlptK2hRTm8SuVIp4XGHjHCMghLYnrubiuRxKndLt94iQhzTLqk1XGPIdCqYDWFmlkpEZCSKI4ZbPZJggDhG1BboiBcRwjhck5lK6DVsrksUlD0ZOWhSRlOBjg2oK1rTVqNY9y2YEo5pGnnuHY4WPYvo/UOXnUNnJCHBynxB88fpLwujF+9F3HAXZhHbnKiKII23ZHHgaT1/flrzzGkSP7cF1396wiJXzkd+/gV943g8wzoiih3qhy/MAsP/OnJ/i+tx9ju9mhUCgghGBpY50b3v5u44EXmktf+hJXz8+b0HjLMjI6bTyGzg78RFgmzJud86w0OYxSoPKdc7jkzLmL1MbqYEnSNNtdgCAVWZqgVM75S8vMTBtSHlrvhnJLSxINDQ1PWpI4ShBCksYplmOiCyxLkqbpCOogkRYj+bUgimNK5SJZljI+WSeKhygN/+VPPkc87LO4uJe9czOcO3ueSq1sTqe5odQZmZ9GZdrkyElBFI2K3FFvDQGu4/PQw0/wxfse4fiRRSxboIUGPcrPE0Z+pLQiSSLufeRRDh1YYGV5Fdt2KZVKaC2Jo4jp2RnyPCNJE2zHotPtUamUzXQsTbAswfbmNsVCYUTDLDDoxbiub6THoUeeKZaWVigXitiuRTyMaW63mZ83Emvbsnjkqadp1GsGZz+6yOaxotcdjhZT1mjxppHWji3BSI7RhkRpjbzoWqlRpITEEpI8y41UL0q56cAB9rz7PfzX//ZxPvieaymVKqysrDIzM4kjbWxh8ed3P8f3758bxQ6k2K4gSRMEhsqpdhaNWhAPEyojSJVWmixPUSrD91xq9RKFYkCjXkZISZokowiEIVHe2f+YAAAgAElEQVQUc/MdD1Et+jTGqibrtFxgolHlk7c9yKMnzlItuFx3fD+vu+4gSplj6OEnTvLAM89xZP+8gRaNguPN9UHS7XTRec7EzMQIcvSSK/RLZZZf5yaFg04Uf/To49Rtj29734c4eOw6isWQw4cPcc89d9FqtfiD//Sf+Q+/90ccGMtp1EIOHT5Ef7BOtSRJ0pQw8Mmy1BArpSCKIk4+e5LZmb2sb26xd/EYnX5MnDp86pO38JGf/GGUPs+N1y+gVYe/vGeNtxy8EccyMLMsj8nzxPSWhYXtFMhyh1PPnmRiehrbDnn4kUewnAJhqUgUDTl69CqkFKyuLlGvNUjTlEJYROSQZyknn7oL9JDxsXFsS2JLgeM4RMMBQjoo6aN0gY3WBjPT8xQLJbBMs9zxbL58/21cuHiW0Cmwd7ZOrVYg8D0QEKUpCo3KBcsry/h+SBwPqJRrZGmKwDR5EWJE6jVAOeEmjE+O4zshQmo8NxwVNIJca5I0Zv7ALIvTh/ijT36MznaX8elJvvCFe1CZw+veeIRS2eHxJx7imWcf5cM/9kO0WwMW9x/ghhtu4I47Psc733YNz50+xdVHDvHCqedxXZvx6TmOHDuOdkbB5mLkM5N/fQhx5aZHkIcrf63E5bXm13Msfq21shzlU/71v/3qUssXzUde4ve7vIe//vOd9+HVRzZcWdyZx/374u5veXul4s4SRuIgR5Oyv0lxt5MuI63LpJ48z81+v04Z5au639+0uHtJIQvwwR/+MP/lzde84kOZ3V9WPe8M7mzbYnV5nZmpMSzbISwYnP7aUpO7H3qeq47sZTgc8KUHnuSxx8/R6nRplEtM1ausrG5x4swSk2NFXNum0xmwsr7NnQ+eZP/MBItz4/i+y+raJs9dWGFuegLPc+l0esaf1TJo8G7HgFPOX1jhhUsrnF9Z45rjxsuhNaysbVEqhNQaFS5cWGEYDem0uxTCAGNyN0CUM+eXKBVDsjTFcR3K5RLrG5u4jgnWLldKuJ7xKkWDGNd1GA5jTp25yMR4DWEJ0jQFoanWKoRFnziKsVwX1/fZXN+iUC6MFvCC5naLIPAphAUsaZMlik/ecR/HF+ewHYkfuKxvblEsBgz7KcViAWkp8jzFssyFoFQtkaUptmMTD1JOPH+Be559jkvLaxya30OaZgwGEeub28xMTxhjtDRB5EorI28VkOcZdz78JIcXZknTjOXlTUqlIugRoS5PCQsFIzEE5qenjORBZbzmyCKl0euSQlIoFigFDjqH1tYAW9r4BRshFMkIGoEQJFHMQ0+cQuUZYRBwaHEeIQW9Xp8w9NEqZ219i7FGBddzkI7FIBoilOS/3nIXSuUcXtw7mtRkuJ5jGgSuQ6lYYLJaNtMP1yYshmil6Xb7nHzhLNNTDYaDiCD0ue7wXorFgCxWrKxtglKksYkZ+PQdD3L0wBztTg/Xc9jeaqEAx/MQ0gBdbMfF81yyNGFtrYnveQwGQ7rdPoHvo/OcaBjzwtlL7J2fodGoYNsW/W4P14J4GIPl8IefuZPFqXH8EQEwCIPR4whsCb1uH8d1UVoRxSlJZKSJnu8jhLXb6ddZyuZ6i7GxulEo6BR0Tmt9k+WNLRrjk9iuiyM0w8E2Wa4pBCXuX92mcHycN101jUpNdEcQBKMAccxnIExRk2UZlmWkp1oLouEQz3UBxU0f/ST/6ccWyaOYdrtPrVoiV3D3V57m9z73IP/k+99NpVziti8+wMraFkvdlIWjx6lUy/zTn/tF/tc3vtFMwpQy/iJpsrakNbqgK8gyZaarto2QZsKXxJGJj+hH+L7PVx54lMdOneGqoweNT1TpEaRDg1RYlkDnOfVqDcuy+OObP8fRxX2jDDqLR594htnZGXM+VwbggmYkQ5a7ETTm+2zM+s2tJlobdL3rubiOw/Z2k0LR5C1qLTi6uI99e2dxXHP/YqlANvLuBEFguuNSsrWxzac+/yWOH9hvIhRMb8bIAJWRR+tcs2dmmpmxOuVqySDMtTZyVi1g5DOUlsCxLfbPz+1SJX0/GMkVFbd+6R6qYbDrRZW2RaNRY2tzm9vv/QpXHz2I7dqUCkW63T6lUok0Trn3/seYn92D5QqCIMCxLL5w74Mc3DvP5++5h2uPHUEKi/X1DdY2N5mbm2HP9CQAruuOfJCaj3/yCxzaP4+wDBl52BvgeB5ohSUtIw3OFYxiFFRmSMrSkrvFn2PbI8/q6DgRgs+8cIbrr3stxxoYj2rgk6YxJ0+cJolibr7/Wa7NoV6vgtaEpYBoGFGrltkJXQdTRJgsR0NANd17E71h2Ra9fp92u4sfGB+W47hsbzYpFEKKxSIHFqZZXt9iZmYc2zNwGdDsqdcoeDa1cpFiyce2LaJhhFKaux5/lrdee4SwECCkOValtHbVPJ7nGNnnzlpmd3LHf3dhB4YgeG5zgy+efJQ0SUi0zbXXvwHXsalUyxQrZTbW1qiXK2ysdTk0o3jskS8zvzDPoYPTZEkT1w1obm9TCH2SKELpHMdxmZqcpNnq4LpFlFMEPDZbQ2zhUioIxmpD0qRJGDgUN25kY/UM9cYkkOOMvocSQ05N85w4SfCLFRzbptMfcPrcCn6hzOz8Xg4ePMbW1ia+HxAEIRcunmV+foETzzzBzOQ0Z144wfTUGLVaBVRmpMKWJMsz00AQDikWrU7KgUMHENh02h1D9E4zc8tSpNBEnSGHD85jWzlaZbiOIcRatolkGRufol5rYNuWyd5LTINgbGycaNgHIVC5IsuMdDMMi+jMxDU5jk0cD5HCIUlyli+eoVwdx5I+X3jqy/zQ+7+PiekJatUJatUphv0mly6tMTk5xbd887fSbLb50Ad/nA984IO4js3Cvj089+yDvPY1h1FxytTkBCdOnGSz2eVbv+MmctveLWqQlzPvXunA2qEVX7m9qJb6Oo7Ib7ji7mXUdV/9eX7jFHd/5zx3+Uu8deqK28vFEHw1z5qQckQYHO0rz3f9e5aUaKXI8txIcr6Kp+/KA8UaPc5LNc65Uru3lz6nXKlXFcfwUu+ekJLBYPhVnteVz8MskIwZ2ObsyTMMoiHKMpTH1eUNev0+Dz5+hne+4agBPUhBezDkrTce4Px6m7MXm3R6Axb3T7Hdjnf3XQx9ZsYbCC0ol8um25ymzMxMsbbdoTMiMZbLRc5dWKZQCNFKEScpuVJMTdS5/ugir7/6IFqr3SnbvoUZLMdIp/ZMjTGIYqanJ1C5Ym1tG881+UhHDy0QxzG+b06kjmNx7OAC1WrJSN6kybtL05SvPPUcaWY6/c3+gEvL6ziuu1vYtzttup0+UlpYtk08jEYFixncp0lKOAKp2KPnqZWiOrqQZ2mG6zjM7plEAGHBZ9AboHJz3yiOKJaLDIdD8jxDq5yg4DMxVuXNhxe58cgiliPxfOOHe+DEafLMyJds16a53Ta5gFrTbnXQWvOuG68BKbBch3Mr6zi2TRga838cJ4AwHeRRZzGJYnOMjyiJ21smay+OYsYaVZbWNrn1vidJ84w0illeWjMEQylI45hOp0/oejx95hL9QTSabPWI4xTH9f4/9t48yLLrvu/7nHvu/t59W+/bzPTsCwYDYidFcRElMRSp0BQXkaJsKy4pWqI4jlVx4tCyaVmSE8lJVC4rqrikkCFlSqRImmRIcQMJggCIdQDMAsy+T3dP76/fdvd78se53QOAGBKU7LJT4ql6BUz363ffct+5v9/vu2E7DqPDTZIkZXWtTaE0crOx0eX9P/E6Du/aTpFr/Q4opGHorD4hWFlex3XtcpJobBk1eL6LX7Ho93Ue2OLSMoXKyTOF67icuTJPkmiNnFIF73/7jwKC1lATEFRrFQwhCAcRhhCkW85+Esu2qQUVbd7iWNTrAb3OgKWlNu12j327t4MoShdOiWXrzD7X89DYmUHF9zEMSbvd1cYlSu8ZvW5P52wJbSLk+x5f/PbTxHGKUgJZ0vGKLCPuJdimgyoEq+s9Ll5egNRgbW2N6YkJRsdG8PwK/X5IkYMpTZIk448uL/G2ew+UBg8Fvu9vXZhQEEcxhmGQxOnWkEOU09w4SsjSlPf/3pf4+K/sI0lS8gIajYAkSdnodDlycBv/4GfuIS8KLl++zsragGvz69y9f4bpmRkAoljHgOS5/v4qpYjC6CX7YBhGrK+2+bPPfY2L5y9hmRLHdXA8D9O2CGoVsixl764dvOW+O7DLaIKtxygdeaWhIy4EUOSKn7z/HgxDltEXOYcP7i8bB021KXK1FdUiSm2KNAwG3f4WVac13MCrOBpBFTr7rDnU1I0J2lDEdW1MW2pNltQonWWbVHy9nwn0Y7eGmvz8u96+la+32ehq4wJDO9SW+/zo2Ij+fDaNZXIdsbC5XytV6Jw5W4KhkX6dkWpiSMl73vGTDI8Ok6SpLkQRbGx0eOLE80wMD2s6U654/tRZGs0mqoCjzz3PpbklpBQ4js389Xks0+Kn3/IGHNtk98wMq6vrnDl3ge07Zti/e5ZBr480JUIaW9dgoQR3H97HwsJSed0z8KoVjfJsXZf0e6+KgjhO+PZjR3WWo5SsLq+RxgmnXzjLsZOnSCKtyRYI/uKzn+U973svxy8v0e30iMKIleU1tk1PUKn6fPBHdnHq6hwbnR5xkvL1R48yOTlCt6sHiHleIJTBoB9SFJl278zAtjSibNu2NmoBojjBLFG1PE0pFERRwmNHT+K6Lncc3quRxyguDWYEzWaNesVjo9ujUvFIkgTLslAKPvhTb2R0bEi/egWDfkiWpSRJSpZl5FnG/PySzp18+TX7Rf+/Jcm45RX+Rfe9+UcoQ/Gh585y5MAES/0e73j3O+h32nzpi59nZXWZ6Zkpjh8/zkf/5COkSci+fdu5/7VHSJI2g/5GOTgUDPo9TGliOxaWaeI6Dv1+n5GRcbbvnOXy1WVqrUn27TvEm97wWjwnI09X8d2crz2ySLWu8CpV/f4rHdFiSqtsdEHaAmWkNFoBTz19lCQDr1JnYmoHY6NjDMIe/bCHaUrd2M3McubMC3iexxOPP0B/YxHXNkFlpWGYg2XZ+nqvBK7fYHhsBoVAmibSlHpIEKcUqeLUyRc49fxxwo5GqA2hUX9hGCUdz8KUup5wHIllQcV3sG2J67g4ttZSO6424EnyFM+u4DouRZFz6dxpVAFpEeP5Pq7jsL68QtiJWV5YptddIxz0eObZ5/jUX3yWj33832GZFp/73APsmj3IyNA2+j3F7/3Lf8POnbupBTVGx8Z59NHHueuu16KExdr6Gu31Fd7+1jdiknD54jntzKtyslwj5EVRlBmLN28vrke3TJ1u0QhtDpRfcp6+TJa0JY36Phq/omS0fT/3zk3DIx1xtal7v0nTfKXjbRErb/HYt3p9r3QfpZQ27ftrj1r+6utvDHKXF8WH/0oc4C2i7iucbErd8qPbPNYWIsh3nzSb/87LcM7v9zxu8plf9uVR6maX/io3c4C11TXetzH/ir976aRD/8cwJEWa0V7dYP7qHDtnp3GCKuQGFc/F8ixsoRgarqJEhm3Z7JwYIy4iLl9fJeznvPl1B2mNBBzeM4vnasdLQ2qzhiLLaNY8rZMptIbr9r07cSx7K1i34nsMQh1xYJkm9VZAteLpCbpQdLtd8kzb9lfrFb3ZIlhdWefRZ89jKjh9+ToXFm6wf+cMWZZgmuB5FlEY6qwby2R1rV0G7Gq6zerKGvV6wOlL1zl8YBdOxWX79ATVwCdPdeBvpeppSp4wkaaNlIKw28exTW2HrLQBh5QSpQqUynUz6prsmB7j8pV5iqzAsW3yJMcQWpfyzUeOE1Q8aq06SglMyysNI/o4joWQknqrRs31GQwi+oM+Qa2C5dnsGh9FYGA5muJWqXo6miLNefLkaWZnJrV1sKHRx6vXljl/aYHHnjvNod0z2J6gyLUjY1HkfOepk4w2a2xsbOhGPNe0Js9zsR2bPBOMjQ6zb/swIyM1sjSnWasD2t4ecqqBQ9V1GG22mJgcYTAYUAk8LMuis9HHtLXDYaXi47kOlmkjCkGn0+ELjz7Nfbfv1VRB28TztWPgM8fPMD46xNz8IkG1AoVBXsZwJElCnmYYEhp1bf8fBB7CUAw6KWtrHRQFw60aw8MNqrUqGII0zVlda+u8PEvngzmuqzOm+hGmYTLoD0oKmUle6ODejXafubkVHnjmBV57+34ME9bW1kFoK35puZgYtDcGFIbkntt340qLJIr1cMG1KPIMkRWYni4ALNNEGgZRP2TH2BD1Vk1Pmi09RIoHA1bW1mg0A2SpS236FVZW2+RktOpNHM9FmNrKXpoWC/2IXz95jY/+/bdg23Z5vqXlNNqgUJCmBZZpkyR9bNvWtF00S8GSFtWgws/9qy/x0V/ejWVaSEMSRjqOIM9yEAWmFGxvWHzoU6fZWVUIodjoR7zpdQdxtr0Gx/b5809+hnft2QulcqjIi5LyeXO/832PvMi568h+mq06hcpQosBAT/TN0pBoMOjhWODbptaOKEEcx1i2TRTlJIOYK1euMzI8hFf1EVJiuzZ5GTVglZEGSRJjmpZ+DEPzOdI02cr2czxNv8rSlCLX71ORgRBmSa1XyK0CXOhBDimUSNyWPntTO61EGQGhUUbD0FTSNCsbrxdtylkWQzmgk9KkKASmaZFFXc0awKC9voHvu2RpjlFq8ZQoCxwDhDQwTI36mqa15faWxDlHT5zj7W95A4vzS1QqPgvzywwPtQijiKnJce679wCOZ3L0meOYwqDRaJDmGb2wR+BVqAcBppTUgiprays0WjWQcssdUAi9H1YrLiNjTUzHJAwH2okwVxR5VkbUsNX0266DrXR+WpqmnD53ibGRESYnR8jiiGpQIRwMMKXguYU5JmYm+NTnv8y0D61mnSCoUmkGuL7L7Xt3MFl41KsVLGly9twS26dHqQY+167NU6v6XL28TKNRoRf2sawKVy4uEAR62JdlGr0ThoFlSGzbZmlxGd9zWV3r8OTz57ht13a6Gz1On7/CSLPG8vI61arHjRvL1Ko+9VqFoaE6FCANyZ9/+RHGGgFDI83S4VMQRTGupc2FzPIzzNKUOIqplIYem0jEJnJ387r9st99j6VrC402CNPiE8dOsq0S86F/9ceMTu+kt7TEdx5/FKRgeGycp588StOp8OSJ77B9aJH779nFxNQYtlRkcZc0yxgdHSWJB0xNTJCnOd1ul2q1yur6Kp1BxvTOu7l8bZ3WyARGGkK0TtS7imvb/NtPLvGmI6+j3mwipS68pbAppCBLcz38UnogEvUHSDfg/KVz7Dl0F7brMtRoYZomk5OTnDlzitHRcYZbw/hehbkrp9mze5Zmw8cUGe21ZRy/imU7xHFEmipMp8aN9RC/0STPDIKay/GTz3L12lX27prm4W9/lXptFNI+rWaF4YYOq7cdqwxXN8mTBAOdR2xJSRx2kcIgCvtlhJCmvedKG1ZZlgMqJU1y8jxndW2JWq22WZExCHvaQKZaxXHrrC5eZGMp5ty1szx75iSOMPmFv/sL7Nq1nU6nywc/+EHm5uZ485vfTKtZpVKpMTe/ys6de0mSlH/y+3/M7lGL6fEh1heucWNljbkbS7zxbT+tB9iUe9Qmincr5O5FKNdW/fhK59gtELNbnpOvcJ/vh5htHvtWYebAq3LL/Ksu8Qp42Q+jEP4jL5XnH95sjl5t8wMv1am9BAQ2dF6S+bKL7tbvN7v8UiP2ik1ZOYWQpc7ue63vNTVQSpUNg/qe4ecvXx/8wN/hZ3ZMfP87locsMm1ykCYpRprRGmsRJjnPH7/A5PgwaZHRatZZXF7BcSxN17FsChWzY3SU/TtmqNRs1tttBr0Ex5EsLq3x+PGznDh3jbsP7qQa+Ky121QrPuurG9iWBUKQZklJ59EhynGUMD42VOrubPI0RQhIs4xqpYJhSAzLZNAPNdWyUmHPtmkuXF1g3+wUdx/eu7UZW5bk+twNhoa0Q1meFVSrHmvtLo7n0e30aDXrpEnMSLOB7/ukeQqUWiehL7phGOG4DlKaqFyxcOMGQcXn1NlLSEPgV3ySWOdribLAAr0RSSkZGW4SBBVNM0LoMFZDsH/vrKbq2aXmytCIn+foXMAsLzAti6gT0+v1md05hSEFeZ7T3Rgwv7iCbZskcaI1EJZF2BswOzNZok22RmQMwa6ZKaZGh7nz0G4cz2bQ7yKlQxQO8HyXnVNTOI6F7+tCWZoS17FYXlmn1x2wttKjXq9gmugCTZq0V7v04xjPdRCGIssSHcbdaCClwVp7A9PUweOWaWH6NgZaQ7W23EYKA8uyiJOIew/v0w2QbWLbFstLa0RxwnCjRq8XMj42zMLiCp/+xtMc3jONZZqaOpnlmKZgY73PF795lO1TTWzHRCgbx3MIfIfhsSaDMKTXG1Cp+joI1xA4ro00NS1LoINLizynyBVRFOP5euJbFEqb0Dgu01MT3DY7g+1YXL0+z+TkCI7r6AZJCWzD4Nr8MhMzE6RZwtK1ZS5cmWfH7CSIzUGOIlOqtHsvdNRAktFoBGQqZxCGOuetyImjhCQZUG8EFELX6Y4tefCJZziwexZRCCzLRjoaLWz3+/zb1XX+6NffgpC6uE/ijCwPUQpt8y0tHMfV3zHLQEijfP0mBYowyvng73+Rj/zSLEmcYNsuDz58nO8cvc6eHSPEaYo0QBiKsdER/s8vn+JX334Ptx3azT137sOveJxaMRkeGuZzn/8C9/kBlWoFKU29r/HSYdZm7MSmDqnb3UCaBhKr3KOVpjWhaAQ+YX/A8nIbz/OJS8q11kxmfO3hJ5idmsDzHJQQZWSCjkaJ4xjb0cMZVQBC25l3Ol1dZJrWFqtB77363Oh3B1i2q7Vkuc7p002yjgsRQuhhktROpBvrHVzPK+mUGgWPohApJUmSMuiHuK7DIApxHJskTpBmaf0tcoQysBybznqHp44eL/WDoQ4aNzVlWCm9N0AZFyEEK8treiAhjbJo04hhGmWcv3iZ6/OLNHyfqYnxLffK85evMjrU0giCa9PpbmBaBsO1Bq7rohBUa1WqdZ+4H29pdrvdLo1WnWgQEoYJwhA4ThkgLgTSMsjLgZoQgiuXrzM8MoJlGvpzkRZZntPvDQiCKs88e5K9e3fieg7DrRau51LkKZWKq2Mbqj6geMuuXXzl8mW+9dRJfvb1ewFFt9fHrTikmY6LeOj4ImJpFUtKDh3cg2WaCKGoB/r6Ua81EFIhbQOUzXPHLjAxrs1hDGGUDpAR1+eXaNZrVDybGzdW2bFjmt3bp7aiYbZNjpEkMVIaeK6NJQ2SJMXzHb75+DM4UjMlRusBE5MjINSW9EBKQa/To1rVGaaq0Mi2gcDxdDTQJiXu5c3d9yet3VxFobV7eZYThhn/5lsP0ihCnrs84M8/+Xmi9hJ33Xs3r3/jG5C2w4/c91r+l3/+2+zaN8kHfvoQjZpEmjZZFuPZBt1+HyioVAK6vS5xFJKmGZVKhV4/Ii1MRicP8Yk/+wxff+AbHN6zm8e/8wAjLZNeZ8Dt4+9FGlozqvNgFbbpISxDD+oMAwpBnsLJZ55nZGaWXMGBw6+h1Wyx0V7n4qWzKAW1Wp16rVEiUgrblNgWqDxECoXv1clUriWWhSKME5pDk1Rqo3TDPrVKg0xFTI5P69fTvUEUhSzMLdBoVJndsQ3HSqlUmvrtF0IzKPKMJAnxvJo2ThLaPEUVZQSCKrBdV+tdk5Qsz5FGTqXSIMtzWiPD+JWqbhgUWKaJ5VhUajVOnDjG5OQMreoOLqyewbF1NM7U5Ay337GHD/zce/nkJz/BW9/2Fv6PP/h9siTnjW98M5/4s7/g7W97O7/x3/06H/qN/557jmwj7KxjGWD6dRZXO5y+tsjd99yD57ll7frD5u7Vrh82d/8JVpbnH94yE/kB1ibFQJSNk0A3dqpE2zYbKvWym9iEeotia0ILL2vSNk+m8n4o9QOd9Ft/o39IXhoDbD7Oi10/X75+5p3vfUlY+YvXzS+F2jwgSkmSfsTq0goiTxGOxPErRJHigSdOcGjPFEJI/v2XnuHuwzt0ZlehJ9EqtRgeq7LanWNpoU3Tq3NjbYFms4FlWdxxeA+H9mwjTlL8WhXfcyiKnNXVdZrNOsKwydIYy9Kcc9u0+eyDz2BkBWmS0qgHoIQuUi2b5fUNgnpAf6NP1I+oVz06nXUsx2J6cpgr128wMzNGFGm6y40bqwyPDCGEyaAfUav49MM+X3roKLdtnyVLEwSaLpmrHMsShL0Q27aRwqDXWWZ9rUtjZJg0i7GEwBQm1YrBtYVl9h3YRaUWaAqea25RN/JcsbbepVKtorIUlZlsrHdxPZt+P8LA1IHbtqHdHEvbpkKzEVlb2uD8+TnGxoZ0lpQjGJsYIY60xb7t2CgSJidGsKRFUShOn7vO9PgIWZ5qdMDS1DzD1Hb4/Y0+wlT0yywwx/NJM22XH3YHSMskyQuUkLTX2ziOxblL19g2NYYhBSIzeO75c+zaNUl/EGJIg1qzhudZzF9f5fPfOoptGkxOjHPshTPUA59arYoUGq17+vgpGm6dJIkwpMKvaPrKwvwyrVbA/MIywyNDpFlOluVUbJcsTrear2vXVnjs2GVsRzFUqejPLCtwXBfXclB5gedI6kFAmhTYji72DWngeg62rQs327ZZuL5Ie71Hs9lECKM07UlZXVqj2WjoKARHD1WSJMWyTIKqNrTpDTp66JDnDA+3yFJFrxOyuLyGUgluxafZakChqdxBs8rMjnEGPY1c9vp9XN9lfa2tqYSWiSqHAEIaRIOQaq2GFJKo3+fq1as0WzUqlaAseiI6y8vIJMOxBK5fJc4KHM8jyVJ+69IC/9t//TZEboFUSMfEQJJnA1zXQ5ompuUyN7fImXNXGJ8YBySgh1Uf+L2/5Py16/zez++ibPnY2BjgWhbtTpdazWFmZoOCzTsAACAASURBVJQi10YXaa6YbJk4SlCvVcrAb8EyTRr1Fn/wh3/Izthg++QEhoAkiXFsB9DImOOaxLE2nkHobECv6m4hY0IIVCEwDBvLdikycLyAB759lJnJCZ45cZyZsWEwtLvb7h3bqfi+plmqhCLX1C+hDE3BBIRhEvU7SDJu3Fgmywq+/shRDuyd1cZMQhf3jzzxLNNTk9iuQ1GkKJVr85tcICwDKQV5pnVTRS7I0xxpWDi2jZQFiJwHv/UUExPDHDtxlitXFtg+M8OFC1cYGmlqxDLPKXI9yEIZUBRsrLeJB31qgUvgmWTxgFp9GCEcClGghCIrNilKaoveJhBUqwFpkmj5QK5ppqYtWV9u89zzF5hfaXN4/yyu52A6Brt2bQNDIQwFhtaeJnEKhYlf8YnCECkEeZIhbRM/qGDattaqFjlBrYptS0xpArpZVijCuI9X8dhYb+O6BkJl5GGK9PVnG0eJxnILRRKG7Nq3E1UU3Li+SL1VLwOUTXKlB6kry6u0WiOoTPGps+cIw5CdlZzHjr7A/fcewgAkgnQQ8c/+78/z9157J7ZnUijtPtrvDbBcm7yQPPzsM0yOjmJbPmdPXeLolSv8yJ37SdMEKS2WF9c5feE69apPteohLYtvPv4CTx+/xO0HdpAXKVgGmcpZvLHKxPgoS4vLSAMsxyYMY1qVKkOtIRCSeqNCnmfkWY7nOVy4eA0DQWOkiczL/DEDRK5Yur5EY7RZ1hqUNHRB6aXz0uv+LesKQ2s1DTCQiCIlT0Munz3Fw90BVWPAh//XP6AW+NRHJnjLT76NG4trWIbgzMljvPmN9zJ37nEuXzqN61SpWhUsGZFkA1yvxSCKQZhsdDrkBbR27mTlxhrDjUnMWp35pZTb9tzFu979Y/TXnmKklhH4LZQhiHv7yMthhCkt8jzTUUF5hgSkIeglCYXh0Y1S5m4sIKTF7tl9nDz+HNPj01TqNVpDwwy6A65dvUqWRJw7/zw1J6fiSEwKVK6QlokjbQoKNgYDgsYESB9hmXh2FWmbeH5AUWQ06hU64YBTLzzP9ulZJkZdbLPAxKMg0bWCUpimJCsyTNsBFLnK9ZC6yFCGQAiJlCbhYIBQ4DkOQhWYlkcca4flPE0JBz2k65DnqQ6fUtpPYPHGIrPbZ/jH/+5f0AxMVlZTDh86zOTYEDt37+bI7Ue4cPE81UrAsWdPMTd3g5/48R/n+LEn2X9gJ+9+33swHYf/4X/+Z7zmyEG8oMKFC+fpdTvMbt/Nj9x3H91ckQAYBpZga581Xl7LAoiXVpubPhYvvgnxIi+LFzdbtwA2XtqQ6eHDS5unm6yHzRpblMyEzb9X6hUeq7jJxpNlnWzAKwIjP3DDp777/j9s7v4jr1uFmH+/pS/4Op7gJfTKF52QRtkAvvj2iqYn6IbsxRzlFx3ou+57q/VKJiqbWpAX//tWKOWZU2d598Y8TulA932PV9KDLl24qtEuSzIyNkShBNK0uGPPDO12h0arwY5tY1hyczIliKMYkQkwIiwrJe4aDLVG8OuQJppqBZqG9akHHueOfTugnIoHVZ/Pf+MJpoeHEEZBOIj56qPHOLh3B2Za0KxV2bZtjKIocH0demwYBkFQ5dLlOcZHh/E9FyklcRyTFdqyfGpqhCRJcFw9DferFv1BRJYW1IMaYT9hbukGh2ZnsS2rdEfbRGkFjutq9LDMu/I8hyIHaZkgFCrTk+Zur4tX8XBsS1PhSp1MkqRbdKyK75PECQLB00+foV6rsLS8ylCrwZkzV6k3fKQlGfRCLl6exzNtLly8RpHlXLi6wOEDO5Glu1WWJhpNtiQnXrhAs17B9bUDpday2YwON8hVjus5WwjJ5tQ8y3JdeJqaNrpZFGaFwPd9LNsiihKiOEUYEoqcauBTD6pkWY7j2HzpkaO85fV30Au7Oh8qyciLnLn5JWqVgPvu2E+rWeWbjz3HrulJgiAotVzaJXB8ZAjHsXE9qzStKN+zOMF2bOq1gDCMaK936fdD0iihWvVxPK13mto2zu4dE9y2a5p6PeAvH36K2w/swjAM0iyn3x9QFIqJ8dGysFXYnoNpmeR5wbMnzrBtaoz1tTanL80xOzOJKDVPBQVZnGJbOq9Om7hoJKnTGWCX6J1Sqjxvcrqdkjor9HtpCEGzUaco4OLF6wwN1UnThLxISJIYy9XowUang+vbOKaN7WoExrZshFKE/ZBC6Ew4ioLzl67Q2WgTNHzqjQZLS2u4jkk0CLl0ZY71Xo+R0Qlq9YB/9PRZXvNju3jPGw4iBRgUbHQ7OJ6LFNppMUvBlDZFLgiqAV/88pPcfvsupDT5tT/8Kn/64Ck+9iv7uX9fDSkNOu0NikJrYlqtGjtmRhlq1pCmybcfP8nkWJNqUKHlKB443ea+23ayuKhjFML6DkaHx/j4n32SD7/zHdp51hDYrlnuY3oKmyTxlqPopnsiW9qMcu8TYuu8NTA5f/YKVxYWue3QboaHqkgTlNIo5ae+8AAHdm/nW48+xY5tMzo+AaOc+qIbyLzAkgamKWkMtYjChNfcflAba5T7r2WZBJ5PJaiAgHAQakT5xirVoIriphalKBQnTpzmyZPH2L1tuzZiaWsn3t07Z3E8h/HRYRq1GkE59PArXnmsQmtgo3QLZfQqPq7rIqRBEARlk5VgmzZK5XovKkOyQb+PppRYpl06P+YaybAtreVKc+r1Oof37+bIwT2I8vlVqm5pWKL1ZmmaaQ2SlJArvvDVb7Jz+zSWZWoKdF5gmRad9Q6PPXOc2w/tY+76ArV6lcGgzCcrv1PSsVEYeJ5dorBgGTaUGWYCfS3odnp86VuPcHDPboqi4OKVaww1tWPwysIynueh8ozmUEvrKYXgT558giTL+G/edR9333mAhcVFhhoNOhtdikLxJlHH9R02un0sKdFHV3S6XUxpcez8JWYnxrUzapJwaMc41ZqHEBIQtNsd9uycptEIyLOc9nqHIwd3cceh3cRRhOs7JHFCnmWMDLUY9Pt4rk2708N23C2N97W5JR547AQz403dFGQ5n/7qY8xOjFILAmzXRGUFaZKAAXmSEQ1iqs0ApW7WA5voylYFUZrLfE+0oyyaDQyEyllbW2d9eYPPXjjD3//Fd/MXX36EK5du8P6ffT/nz19k376DHH/2OGkU8Q9/4x/yzp84zOvu3UmadvFci6BRoR/3cR2fLE8IwwFjo2MMj45z5eoNhoMWCpuNVPCZL3yT/fsPkoQLpIM5WvWAPFF85C8XmW3uZ2H+Ml6lgpAGprRI0xiV51imQ14U9OMc065z7uw59t92J1meMzo2weTEJNevX8O0tL623d7ANnWMQBKHNAOHotDOqEWhB15Rv0ev28b1hpB2jVptCCzJ+bNnqAX1UqtrEEUxzz39KNOT03hOQasRYBoCYWiEy7ZspGnpa67UTsZZluJY9s1yTUCaZnQ6bXw/QBhasmBIqan7hs7xcxwPwzDIybBNG0MYOLZLkidMzswiSDizepkfu28v16+s8+u//N/ysY/8KbffdTvDI8PcddedHD92ggP7DpKmKa+58w4+/dnP8KY3voHPff5zbJ+dxZGCbz74dUaaLgf27WVxYZnjpy5xx2vuoDU1jWla+nuY5S9xzfwu1c7LzrFbnXOv1Nzdar0E6dts3r4Lj765v77i8V6pubsVovd9nsOrW//5NHd/YwxV/jovtKDUxZX/frk5youD0F8pwuDVBKV/v6Dxlz+GEOIl7pybjyFf9DivdLQ8y/jH/9OHqFX8Vz6Ogpv4o15FlkOe4ToSx7UImnUywLBMLFNimoJWM9CFlSjYaHd4+MnjOiep5mG6PV44c4WGO83QmMdaOM83HrpEpVJhvd0lCmME8Lff/nouXLyqp8iWRS+McVyLokiJo0QXB3FGkec8dfaaFs5KwWAQcvnyHMdPXkDl+rPePTvFphi/0+nTaDYwpIHlSJI05sbiCmmS4TgeKrWoelUqvsPK6jJeRbFrxw5Gx4bphyH1ZkBQC1DIsuiFzz/4BFbplpjnFkPDQ0ihIAeEQVKkDI+PILhZVC0tr5ImKbalDQJ6nT4onVOVFRH33LuXetOlMeRgugX7Dkywur6OZZoEQY09O7axtLTOmavzTEwOc/99t2F5NllScPLEeeIk0U6OWcLhgzuxLBuEdveLU10YFKLArWh9kZSS9toGpmFw+tQFuusbrK5t4LgujWYN27a4enWezuoqG0tLkEQErsmly1fwbYPmUF1rYRyLq3OLdHsD3vf2N2PaNpWKdgKtBnVM6TI5NrI1IFleWWPX1CgvnL9GNIj54kNPkSZZWagrDKkIB4MtS/o0TTg3dw098S/wfI+HnnuB4+euUKtXSLOcrz38DHleEEYRjm+SpLohf/sb7iYcDCiKnExpDZvruSig1wvpdPqcPHWeMAyxXYu9O6fJMj0EuP+e2/jMg0/S2eiiyou1bbukmWJ9rcMnvvgop05fIRwkWKZJHGrL/DwrWFpaI45j6s0qSimWlla0JiiMMKRJv9tnz64ZDEMQ1AMs08b3fEzDgdxifHSSqK8LcJQqDU0i0jhFoIciqihYvLFIEkUsrbYJKh6Dbpfrc/NkcUKnF5FkBuOj2whqVb6+1OF//IX7mR5pYqictZV5NtrzVCsVVC7I8ohc5TiexY2lBUwzR8qMnTtrSFPygd//f7l90uJjv7yX9dXVcigAzWZNUxltbZ4AOoJiYWGJbVPDrK51kRaMjrcYHW4QxTGf/vJj/NK//jK+L1FkTI2NYpomWZYx6A80+mVopNrA0OdyKeYXwiip0AZJnBEOIoCSipxpIwAjYXbvJO/+Wz+GIQ0cq4rEx7JM2msbjLXqFIXi0N6dCGWyfGOdfm+Aoij1sAV5mlEISPKCNM1pDmkbf8MwkIYehgjDYHR8rGxCDaqVKkUuqNVr5HlOnuk8xCzNQEE9CLhj3x4sxyLLC+qNOuvrHZ0jmOc4vkW96aOMgkrNK4X+BVKa5DllY6QLQIEBhokSkijNyYXE9iQ5MWvtRZKkhylzKBQqL8iSnDiM9XNPM1zPxbYtkiTZovU7rkO308WydJzLyFgLJXJtGlUOgLRBgb7ObHQ7vOMn34Tt2BRK4Xgun/7igwwGEStra7zl9fdSZAVjo2NYtqvphSXtFCgp5hYgyTNFvx9xY3EVKSApQ9OLQjE0Nsz7/su38cjjT5OnObcd3EuWJSAKnnnuFA996zGtjyyvXLlQ/OLsDpRSeJ6NZUmGmnXW19rYlk2z2eR3n3oey3VoDjWwbZPz569j2Q5BUAFR8IbX3IZpmxQqx6tYBHWPxcWl0uAlZ2ioRpIl9PsDQDA82sL1HC5fvYphavdDxzaxS2OcKEzohTG5AlWAZdmYUuqs1yShVqvieA62ZTM93OTBp05jSbMc2FkMwghZmghVfVcb1BgvLlpfVp5uMnxuVVO8aMCslCJNM+r1gN8+eZbZ8RrCFvzSr/4K/+Sf/haLi/OMjY/TXu/ym7/5L/jIRz/O/XffwZ5tPraxwcG907SaFTIKqq0hev0uSRzhVxzSvODcmYs0miYbg+ukhk2cjPHjb/rbpD2T9o2zuLYizROOPneMExe72I7NxNT2re89Sus0bdsmLhISBc+eOMX80gK5zLl0+Sy7dx9AGAa9wYBavU4zqCERjAwNMTd/AYOI7so5XEdiGNqky7RsPYzzPKr1MaLMpcChECaGYWFLycMPf5Xnjh0ljGK++pXPEd4YMFhbYKhVwcQgjQrSLNHDZSnJMn1uJ2miB3BKEUahdqOV2uHZcV2CWqOkglvYro8qdDSCKhSeVwFgfv4SrmkhS2p4L9QGW9JIkYbNrukxvOwq/+DXfpL/52P/FMtf5mMf/xjbts1w/vx5tm/fxiOPPcZ73vczNIbq/PPf+jBeEOAFdVy/xp997mFaUwdpTO1l/vo8s5MTFGEHFfXIwj5kGWQFOjlTG5qoW5SxhVLlyXbrhujVGqdsnpM3b0X5M8oG2NgyR/lex9s0UYFNc5XvLVzSTI5b3+fVhLn/57L+xiB3RUnL/OusV9vDbxax3/d+P8hU4KXjhu/6+ZYwn+9NPX3Pu372lnTMlz07QH9hszjnxIkzTI8OEQQVHN+nEIpCaX6UylLSNMN0bLobfSRw/uoiBoJWs0qYdBhrjGMYLo4HvbBDvGExNdOiWq1owwjbZGVlneFWHcvWk2XLNjm4ezuD/oBqUMWUJof3zFAoxb1HdhOGIdXA09b9BdiWWdqLR4SDCGlILl6+zshIk063S6PRKCfrNkHVB/QX33P0dHy93aYf9alXHTq9hD/90sPcdWg3WZYSpyme621tEMfPXOa23TsAME0bJXIUBWmU4zguYRjpybp907nRdRyEECRRou37k3zLmQ0y7WBoSSpVl7zI6HVDxsdGtfV5obBsk6DqcWDXDEopojjh6LHTPHr0NLumxhgarnPs+bOMjw5RFNDrDRAoDEPy/AsXqVV1IHmWJoSDhE6ndGqLE8ZHh/A9l28/c4rFpTXGhxuAwrYMfMem2+uTRBGD/oDxkRZCCOJE53zFYczIsDYBMKVVTp9TbTjSi1lf3eAvv3OUE6fn2LNtlHavw46ZSfbt3UWe5+zfMU0URgS1gLXVttbTWVrHZ5kmtm0z1mqyttahWq2wtLjKXbftY+e2SeI4xqv42FKSZRlBUEEIsKRko93FcR0qFZ881/lV5y5cZdfsNFEUsbLaplL1abaqBLWqRnF9r0TKdFF5ZP8sFd9DqaI0ebBLO2ub1bV1RloaZQlqFU0RLBQf/9KD/Oi9h7Ver0QUKS98QeBz5co8rWadOEq2ECid36jNeI4dO8/Y2AiXr8xRrXpbbqxCGFv6rqLIicOIWsXBIKcoEmpBjfOXFziydzfPvnAa3/Ho9EMQBvV6lWdcxZFtdSzLxpKQhD2Nsls+0nKRRk6WxIThACkN3bwZgq8cu8SfP3yBP/x7+7h3X4ssS6nXAx3iqnTjEMfJFp0zqPq6AZKSdmfAju0TRKWhyYc/c54PvPkQ9991gI8/+Dz33n2EkeFxPvPvv8B7DxxAmia2q82NslR/J6Rp6v3AtV9ixkF5fMuyUOX3MhyEeL5LFPexHD1F11N3C1NKDFNgSoOdszNYlonn2kjT5vNf+xZX5ufZt2tbaWahdZ4IbaUvhB6cafq7nrJv6TpKvn6eZSilNbsXLlxiaKipw8UNdAYigkajTq1RhVIDKQwDv+IS9mJtsZ5lmJZGhopclVRObYiySfEvVK6zIkuEQAgwTK3zzYsUEHhVW7MmDE1EtEytU9QshoRoEOL67tZrNQxNRw37IdqZMNPZj2VsTGe9x9z8IkNDrZtBwkLrgJaWlqlWq1y6fI2hoRZ333EbBgLfc3B9rfE8f+EyrVZzi12hUMRRrIcBJeqb5zmO6/LAt49ysMxQlFISRtqxVwEvnDlPzdexNUPDTZCwa2aGkeEmoowoUEox6A144vFjPNZe5uffuF/nNhYK07Lo9noIQ/DRp67ygb3bybIMCrAMB9MwwdBGOH752oWg1JA72KbWLw4GAypV7Sjs+xV9rih9/HojwDIluVLcWFiiXq+C0kh7teoxGEQE1Qq9bg/b1vTcOw/tLk18UkzTZNvUKOPNgEarhhIFUmk9qGFJ0jBmY71LpRmUjqgvrQ1eqaq4hcpoS/eNEpgSLMfkf//OE/zcm3fxzvd9kBeudfEdl7HRJmvtDqsr6zz5xJN0OitcuHiKn3rTHvbsHociw/eq3FhawLUlFa9KkoYE1YDuRpc0FQxySZLErG5IcjHKN772TV5//yGy8AqWlTLUavHYC/Deuz9IrvItE6E0TQijAaZpoTCI05Sr1y5jWQETkzvYuWsvo2PTBLU6tm2TJDFrqyvkacKZs89j2w5jY+MsXH2BbTOzZMkAx7a0jt9ySZMEYVgoYZPhMDQyytLqEmE/1AH3Rc6+vQcwpcHc9Qv4lqA51GB0dFTXP0phOnaJiCeloyPlOVto/b+h4xs2czGFIcqf68/PcdybQ/lMZ/bGcUyjMUxRZESDkH6/S61Wp6DQDIsMJmZ63LZ7hMbINNt27uW5k6dwvWF+9PWvJ45DLly8zDt+6qfphh1WVlcY9Ac06g2+/vVvcMeR11CtD/HQg98kqASkg3V82yJMFN/+9iO85+f/LplSCHSWJKI00xLGS06oTeROoUpTHvFyIG9rqc1e7ActxsVmY6j1h5uI9SZz49XU0je/Jq+s/dui979o6PGD6f5e+tib64fI3Q/Xq16vBgm81TpS9V7tUSiBFC5fmmNxZYMiV3R7IXlBmQllYghYWW1Tq1cxDFE6HLq89UfuZnb7lHZqEz5X5pZZmFvh2eevMDYyienCtblFAIJalSIvWNvo4nkOzzx3hjhOqdaqRHHCyEiLcxeu6cLOQOeKLS3hVzUN7rkTZzlz6brOYzEkSRxrETY5kxNDGIaOAXjgoWeJo4w0Tllf3yAOI7I0I00jLNsgSTN2bdtG2E9xXYd7982ysrpOkqVEYcwmjUUpxfvf9kYUgq88eJTNK6QqtC7OMCSd3gCQCENiCIOzZ68w6EWYhkGn08cQBu2NLgD93gBTOvS7MUs31kmiHAOLoBpw5dI8vV7I3NwiR599gW6vW3482k10cmyIKM4ZGW5hWhbTY6NsZnC5jsuJ0xdRecEdh/YQVH3iQYRtW9TqNRqNGhsbPYJalZXlNbI05e0/9lqO7N+pnSs7PQBs16MaVBkeGaZaC3B9X+elWRaO6+BXffI811b0SUR7bY0sjTGkIolDhIT/4v47uX3XFEGtys4dkwzCkI12G7hpNvG5rz3K0JC2AC8KRRJnGEKytt7B9RyqFa2RqteCLZqbV68gHW1IUAuqqCxHlQXy0IhGWk6fu0RWXiCnx4dYXl7Bdi0mZ0ZojNSoVvwt1CJJEjbaGwghcBwLyzQwZenIVtL1vvjQ4yDgJ95wN1NTo7rZyjKkZbC8ssq9B2fp97WzWZZmJFHM/OIKrq/dFYOqRxxFzN9YJk1yBAYFejiQ5xmXFlbI0pR6UMHz/S3mQKEUShkoBL1uF9sUGEIRVCvMTE1Q9apcur6EIUzCKNHxGVnO8vI6v/j0Gf6rn9iPaQjyLEEVOVHYJ8+1gYeBwWDQ1SYetkOjXkeaFn/x0AmevRbx2++fxbQEeaFNAFKlEEiktFAFuLZLkmTEUcKlS9dJkwTfd9k2PUq3OyDLFFmp7cqLHEOCVBkTk+Osri7pc7qkrqpCUQmqOI6rC7oCbNspM+Z0vAVAnhVYlkauNy/6nueRZzkSmyzRBisIRV4kFCqjUDnSKhsd09gyNnrdXQd53zvfqpETV8c9QOna6To60LykCWp3Sk3DyrOcXq9fFh8GcZhQ5AXfee4FbTxl6GIhikIoUUEhNKpz7uxlkjhDKQNpmVy/Oq/pw0laTqZ1s5dm2da+olBav4ei1+2RJUlJtFBlVImPIR0oNGpumR6WaWgNqwFZlmLbFvVGoPW8Uupaq7Q8B6jVA7I0w69UMYSku96jUq0yNTmBUpqe2e8PWFtex3Zthodb5FnO9m3TujEsCqIkwg88VpaXiOKIRj1gdXmNJE548uljDPohXsUjCUNUrptn07aQpsW73vFWwkFIEidEYcQDjzxWxkZYvPbOIwRBhZHRITqdDnmegQHLqyusb7RJsxRDQK1W4QM//VZa9QZxHDM/d4P5+UUc39vS6+psxLAMuDdQBTz4yDFOnbmihymyNE8qClZX2uSpYmND51i6njZm0edrweKNFbJ8E9UUJEmKKgomxof1NSZJub6whDAMgkDHngzCmMWl1dLxt+DytXk+9ZVHEUJfUiZnRrQjrCpjAKyb5m2DKC4/t/8wSIIhtUHMwtwiXsVn0B9w7NgZ1tY3uHL9AhevnGd6eoyTz5+gvbHOHUeO8KYfvQfXr7K8vMLi0jKDwYDA91hbXibPC4J6QLvbRpomUZTwB//6QcYn7mV62z5aQ6Pcc9cka6uPk0Ux1UqFKE746lNLWgeIKN1yFY7jEVTrJV3RAGzAYdBLOHvmJBXPZ3JyCmlITp15gTTLtTuuZTI1OY2iwLYk1WoFaSitZ8vzrSF8mqZ0ByGFMMGQzC/PE0Z9DAwcz2V6ekZnfpKzbXoHU7MTTM3M6DgelSFtiZBSn4sILNNCqQLT1BpTaWizJKOkXErTRFoWwlD6HDKERjqzBIAk06wTKSWO4+KYWkLRao2QZLF29IwSbNdmqJZhiISrV+b50G/9ESfPr9FoNLm+MIdl29xx++38zu/8Dp5nszB/ndfc9Rp6g5Bf/dVfw6tU+OhH/gTHqfP00fOstxMW15ZQWYLvODzzzFHItd71P9RShfprnbNbrvL//wHQ/pOtvzHN3Q/eBullvOj2vbLkNjPvQLu6Fd/jfq/0fLQhwHc/y82MvJfn0738MdSLaKMvX5u/+5l3vpd/dM/BV5w86AFIgTIESugNyEBi5AYLi0vcc+gAOA7XllaIwwijEBRRQZYXTO6YYBCGpIOYsN8nSlMM2yCNYr716EniMGfPnmlC+tx5+CBnTs8zOlzliecukiaaZnnp2jz7923HsAxOX1wki1N6nR6mNFjb6LJv9yznL15n0A2RhsHo2BieH6AomBhtcfjATr7x9AmSOCQvJJ5fZXV9A8uzyRGY0uF19+1HGXriX69WsS1LIzydmI9/7iEmRsdYWe5gGC629Dmwd5bh4QDXtvB9hzzXAeZpEpOkIa4nee2de1haWIAC+t0IL7ARJszObiOPCozygrF75zZsx2ZxcYWRsRY5BaOTI8xdXeLk01d55JHTOLbL8MgIhuFw4dI8whBMbZvA8yocP3WdO44cxAl81jfaGJZBnqWMj7b4O+9+E5W6S7/bJ01S7fpWKDzHYX6pjSp0+PTqyjqe70EhMPKcKAxptqrE49O/6AAAIABJREFUaUJrpIG0LVSRYlsGaRzRatWo1DWyWq3VKKSFkjZLSxsIYbJ0Y5GF60t01gYI5fDHn/g2iytt6o2AQSci6yvqjYDGsIvXcDl8cJqwu8b60hJPPHccieTxZ54nDSN836YW2BiuQBTa2GJurs3Tz14kTyCJFRXfZG11BdMUZWCwwcKVBYokxfck1aqtjS/ijCwVYGQoI2Pb9CSGMDBsi1q9TjWoEscpRQGDfoTIEjbW2ww6PShSLly4RNLrkCcpQimWl1fwq1prs7qwxN96430sLy0hVIYqA+FN36MwBCPjQzimTdUPEIaF4/o4jsW+3dv091voptN3a8zNr9OL1lEiw1Qerl/BkII3/eh+cmIa9QqFsFCZItzokw1CBoMuGAWObeFWqwi3ApaD6bjkIuee23fRjjrs2bWTVLgMTJ/fXLjK775zP0WUUXElvmMTrl3GkwWmoREEVaS47giO66KQtHsp7/vdL7F/qMf/9Yt7cSxd/FrSwlAmlvDI04I8zbFcC8MSZHnO2nqHTi+l2xvQ7W6QxH1MqbBtsEyBLQWWYSKUZKRVJxwkDI202AyG3oqHSRRg8NBjj/Ppv/wK/x97bxok2XWeZz7n3D1v7pm1V3d19YpGYyMIghughbQpcURqIWlKokamJvRDCoUtT2hGEwpbo9B4JmRZmvBEOOyRZGulbYmkKIIUF1AkABIgQIDE0mg0gEbv3dXdtVflvtztnPlxbhW6wQZFyrZCE+JFVKCrsjIrq/LmPef7vvd9Xq0Vw/4YlSks2zLGOCEY9Ib8/p9+llF+m2vb2NKm3x9BpnCShKzXQ1oZuNrIPKWZjGkEw7EpIObmZtFa0213Ufn5p0VKFI93A4dNtp9GaJBaIoWNLR0+8skvsHx1FTQoFWM78PP/+EcpljwkAsdysIWDSmF7o0USZbi+y1Mvv4BSKVmqsGxBY6JoHj+XbvV7bYTMKNiSZDRAKyPJtR0P3zMSRyO9FnlBIFCpIksTHDcgyyTSckixsfwiiZIoIREiobW9huu6XF26ZgoGaQoK13PZ3tziT//qIeLRgK2VNXzpcOHCZTSKfr9PHI2xhKRcLmNJG9txCEKPU6fP4tkuwoJKrUKaZpQrZTzfod6oUCyXkJbNS2eWuLh0BaE1luWigTiJzHtROjzy1ScJfJ9Bv4eUmne89Y2gTVROvVGlOTWBsB3OX1xGZzZfevgJJupNmrUJgqCI0oJeb4gTONiOTVgqMzs3x8zMLFlqMzExg18I8RyLLNG4OAgtCQIbx4dTl66isgSFAktguTblagk78LA9h1IlRFoujlNAZRZaQG84IIrMxnt7qw2Ya0uUxmx3OigUBw7sYTSI8b0SSgqm5qaYmZ8mUzGamJnJCd73/W8nywwYZRyPQNoIrcC1EJYNCaSpZnK6eYOs7a/zDt3sEJYCZaZASmi6W6uMW6s4lmS1C+2hz7g7xHNdDhy8jfXNLm+6916G3avcd88e7N4Jev0huCWm9u2lr/q4hRKTU4dRFqi0TLFQwQ1t6nMBP//T7+LK8ibFybu5ttzm6EKVg/MlSqUIqWyyKEMpZVQWgc9oNDCydJEhbUmiBCdPHufk8+fYWNf0R4JqYw9fffJrjMdDsjRlujlD0S/iuD7DkSH4ZlGPaLBNPOphS4tsHOHZAbb0yIRG2A5eaRZlh9SbE2xurtNqbeIHPpdPr5MkCUma8vCDX8AVPo1GGUFCFA2R0iLLMhxho7WJ3un221iWQ5wqtDQTXGFVGKYC5VhoKYiJ0UriWBJhWyhlg8qQwsX1doBWLq12i6EakWGiJEQGrm0Tj4b8mz/+ffbOueANmZqcxFMw45b4xV/4CWbqDS6e2aQYNlleP0XaTZitzyJTi098/BP8h9//Q1SqSKOYZKhot8e0ukPe9Na3UrD7DDtX2D8zi6UUtiVxC696nXc5FFq/miOq9XVB5zeegdfLKwWv9c299pwUBvAjzZRu50NiI7Qh1JtvvF5iqV9XcrmTc6d2C0oBltz9UELsfliA1BpHSAOvUabZKjBT19e+z3afs3jVi/h36fh7I8v8mwJVrn+5dP75a4EqcKMscud7XwtW4br77t7+2vu/1q93PcTlxhu+KZ7h+uf52u/94z/4CL82V/oWvykIYTY/QpvnpqKEl148y62HF7m2vElY9pmZbhg5UKZpbXcolkPG4xGbm208x2FlZQvfc/F8j1a7S5Im7JmbBEynvVDw8T0X13U4vDiL49hYlmRqqm661EnCqDdm38KMwbxr8DwfSwqmpuoIrfn8Y8/wyAuvcO/Rg9iWwPc9BILbDu/LQ38lKlM0mlUDB1GaLFWEJQMvabe6JkhcgOM5uK7DZKVIlqXYtgkW3trs5CHI5jkZSZy9q/f2C4HxeI0i1jbbNOplM5nRsLq6RakcIrSg2+3huAZo8MzxV5idauIXPKMh14JiWOD8+WX6acRWu0O1FPDci2e47eh+MqVobXeoVoos7p3E8WySOCbwC2yut6hUS1y7tka1VkIDw8GQer28K1nLlObowb27UiU/8MnSjExl9Dt9vMBsrNI0Ix4nOTrdAFY2N7eNVDFO8VwPaUm6vT697oAHnniOuw7to1BwqFSMFOZ3H3iID737rcavYpjSeL5Pt98nCH2k5eDZLo4tafe7HD2wH9vz2b8wgxcYX8X+hVmyNEOlKUmcUiz4XF3b4uD+WUZjs3kfjMbUGzU2N1t4tkO5XDCkStsmjhPK5SJ6Z+pn6xwd7tHv9REYaauRTyq2t1pMzk5y4ewShaBAsVzG8zxC36NcrXBteZPV9S327p01srvMgFLixMg/Lcdm6eoKgeciJfTaPVzXoVo2oAOz1ijW1zYJiwWWllao1ipkacqLJy5y562LZCQ4jsugNwKteer4y+ydm86x6Q5a2Pk6ZALSLcei3xtQrhRBmIaSZUmEVpQrNaIoo1qpsrXdp2/bfFEP+Hc//27arQETk1V6w22iZMT2+jK265DlXsQgDBCWw2jU55f+42OIeJV/8YHDVIuBkX4h0UrT7w5I0pR4FDEcDQhCnzQxsjlbumaCWiwwGAyp1coEvm+iRSpFskwzW9bMTs4YMMHZq7z/p/5HWq02f/mZL/LBo0dfvQbm17tDh/dz68EDROPIRFLsSAIxkzKlNBXPYXKygevauf8J/vTTX8K1NLbUlCpFoiQDLCxL7lzs0BpefOk0Dz76De649QBCClzP2ZWUarJcLiVIYhN0bORHZgLoBB5JHHHfm99g5IvoPPwchoOBeRzbzq/1+XQkywhLBdIk5c6jh7FyH45t2whLIIVlKJGRwfrHcWLkkWEAwoJ8SUniJIdCeWbjlEMadn4OeqdDLnPfJuZn5X5B4x10CIuFPKBd5iASiV/wedNtt3D12jKFwKfaaFCr1wxAJo9U2dpsUS4VATj54ikmJxp0Oz2KhQJnzl6kGBbwPJdOp0un3WFissl4HON5LnffdYzpyQZZPp0Q+fMRwmRLLuyZNxtdy/iFzQQnL8pzoI4lBZNTTVzHYdAd8OTxF9Eqpd/t02xU6Xa6nL94iU5hyGLVoVGvMR6NePHkORr1MpcuXaZZsqi3MxzbQqmMVrtH0fPwHJupZg3byTP5ELlsWuN5nqFkK3Z9P6PBiOZEDd/3sG0b13HNGhF4WLYk8D1sy+SfnTx1gc987Ti3zE8jBCRxyngcEUcJn3nsWZ4/dYVb9s1guxLPd816nKuQldJYuTzYsgTWLqjpOqfG62wwb75PEEbsKkywfDbqI7OUv1zdIlBd+onkH33oZ6hUy2xutqjV6vzmb/0b5mamqJc8Zpsum+tXOHzLAuNRB88zDYw4ipC2gX8gTGEkRJEMlz0Lh/jN3/4TfuBd7+bUic/SbFigBcNhD8dxmVHvIgiNZNKS5v2aqgwpbcZRRnP6AH5YJoqHTMxMcdux29mzZ4FWa4vV1WXGozHlcoXLl8/R6baMJFtkuLbEcyVapTi2TaaUeY8LowoYxIJyuQZYrG+ucvvtb6Df7TMe99loL1Ot1bh0+kVa2yvMzk2ZyS65fy4nYmrAsiyCoGim82mKbVkkScaFs2eIkjG1Wp00jkwxlEmk0AyHA5I4IvAd1lbX8ANjA3BcF9d2yVTKeBRRr5iYDJWldNYVd72lw3jUZmM94vOff57v/f77ee+PvYvuSPOxjz9ArdHkka88xNkr6zz61NcZnh7y4tfOIAeCRf8oZ49f5t1veS9NewpPOzx84Xleudrlh+47hh+UOHnuGmG5Rr3RQJkW+S5kbderCTkJU9xwkn07kQU3vXU31uNGL92rj/d65Nebyyh3gSrX0TRf7ymI136mzfXzVUnoze94Y/H63SiEv/Xj73tx93/+y9/g/Yuz3+I33fle8/yyKGbc7bG9vU1tYoJry1tMT1dZW9/EtSyUsvB8E9zsuQGubWNJQbPZpNvu87Xjr2BLwbEje4kjxcunL7O22WFqosrmtglz7fYHFIuBWURzE+vWVpuNXo9DB+exLQkKeq0+re42vmuKjv1zU0yXytQqZRxfsr3V4RMPPcVdRxYBzeraBhMTddqdNmmS4HsuSWw8bKViSLFYIFNmgzYcjYhGQyamani+zziKcAu+6VDH0S4hU2WwsrJJHMeExQKua7wXxWJIrVqh0+7i+y5bW22aE3XGo4h2u0OpVMgjKizmpqfwAg+dGYrd8vI6rVaXAwdmcBy449gijmuzb34aASRJRqUUgI4Yjtt4rpkUrC+3OfHKEgf2zVGplEBo+t0+5WqIkIKzF68wOdkANNHIbLyXrqyQxinFcphvpDSZ0hSKIY7lcPnyCipRFIomg6pSrrJ0aYVyqYy2FO1Ol3KxQJrGvPWuoyitiGJDC1Uq4+yFy9x9dJHRKMMPfWzXQUgbP/DZbnVwfUNjRFpI28L1AyzPJs1M8by+usmgP6JYCEjShExnVGslZqfruL5rcv48H98PzAbKtrl2bQ3bsXA9jyvX1pmcbKK14uTp8wgl8HxJ4AcInDz4OCYajUArrl5bZd/CHN3tNo2JBq5nMhSRgixTaCkphCETzYahhOXPWzouSItoHBFHEfNzk0SjEZ60icexkT1qtZtxtraywdREg9FwzNmlZfbOT6MywddfeIXbbt1vCp9yCemkOK7DzOQkUnhcubqMH2gcx0dnGdF4bDxKrksUJQTFkESZzLUdGIblhFjSxXJcfuHEOX7uw/fxfXcdYGKyycTEJAhFf9jCd22a9WnjjcwiPN/Gsh3SzOPn//2X+H9+epH5qp9TU03OnlbmSjMajdBKUa2VsR0M1c3x82mYZGuzQ6vVo1QsMBzFZKkmyxTDUYQlJHsn6/zff/Jl7CQis13uvv+dBH6BT/zFp3nfLUfYyVTSuZdFJRlJnJjGhDIyxzRNc9iKJktT5vdMsb6+RrEc5u9XeOOxY9SrZZQc47gWjlMEbZOmxtuGgE6rR7VSYapepNGs4bruLlDFeGHYlaYby6QmjmPSzGRuapXl120ThmNkojbb29sUS2UjpVUpSqV5gWzgQ9E4xnENeMZ2zHkjLUESpViWaxQTuWTMtm38oEC/P8TOfXsIgbBs4/PCvP+ElCAFti1RyuDSH3/yOeZnZjBwT7Vj+zT+PQRp7u8SQuTwF4XlODkoRlCpVSgUQ6Io5mOf/AJHDy4w6PXRmWbpyjJPPnOSo7fsp9moIxCEgY/nefT7AyqVMrbjUfADtALbcfACB8cxDSohBLZlE8djLMtQlT3PI01THM9BKHB9dzcGJI4SRA6C+erXvsH87CQqS4mTiEq1ym3HDjE3O0W5HKLSGIlmcWEvv/fsS/zk9xxBoEmiGEtp+v0eBw/u4Xc//xzvP3IQv+BhOZJy2WTJ7d83R38wwnVtdKZYWlqhXimTjBNG/ZHxFmmTt5omGX7oMh6OMN4f8z4QQhBFMVEU4fs+g8GI0WDEwsIsxxbm8PKm4wMPPck9d96KY3vcsm+Gu47u58tPneDgvmkD0pE2OvdNK6WQAnSW0truUKgUdz2BOx6kb2/jmn9NSiO5y8w0Wo16tLa3+MvVTQ7Ml3nlwgo/+J4PkkQxL586w8WlFT7zuS9w9cJ5VDLATjvc/cYFVNqnVAwJXI94PCYslIjHCYIYy0nZbkX82ce+yhPPvcRP/dT/ROAd4smvfom77wzY3rpE4FWpNar8yz84x1uP3UumFRoMaEcYr2KaabqdMU+fOENnuE1zaor5PXvodDsUC0WaM1MM+j0WFhYZjfpMz8wYCrNj099eohz6WDrGsSXSNQTtNEsYDHoIYbO0vIqULnGqqNUb9Htd2u0utZkye+b2s3ThAof276NRC/DcgCRJubZ0llq9ied7DIc9hG08rLbtkKVJ7gOPUEriuD6+7xP4AXYeWO7ZPgkK6RRwnJAo6iGt3NPtGjqoFBLXCtjeXMMLC2ih0Aj+/aMf4cff3aRSLBIGU3zkY0+wuDjH5tZV/pff+D0uXboMfThSP8JPvvNDHGnuZ3Z2jrn5ORzXxSva1BplCkWbfQfnSZMe77rjHn7s/vfy/FNrfOzpJ3DdAj/94+/DcT1SjOcOaYBhO02y/78Ud9Z1xd3rTbZvVtwJyzR4pJSv+9SluK5w/DvkuftucfeaY4cIhDYZGELK3TNkhyG5W3BJE1BrJtH6hpd152vfdGiTi2e/hnQJN3YHbsiw48aTNstD0eV1z+2GH/Ga3+drjz/Jm9YvMVcp3/Rnvvpv0x0UCJJxxMunLnB43xzKdnns6dMc2T/FeBxRq1bJErAcgeUK4lGWh90aRPaVqxvUikWOn10iS2Na2wPuvusIltCcX1pmce8MpXKI73nYjsV4PCaKY4MVL4V4jr0bWHz85FnqpSLNyRq+5xIWAsbjmPk9MwjbYunKVer1KnfnkQBxElOtlE0XXUAYFkiSBK0FxTC4zrRu4QeBoVvl3hOEyDf5ksC1acw0iccpQeCbQFkhqDXqOK5Nq9XGdT3SxOR4SSlQeUGi8s1MGPpkSoGGNFH84QNfZm19g5XVDQ4s7gWlKFdCgqLHRKNGmqUM+sN8gbBxXZs0Tuj1uziuZDxKkMKh1TLyy7OXrjDoD3ju1FkW5iaReb7xzNQkre0Onuftdp1d16FaKyOlYGNjGz9wcf0ApSCJEhr1Cr7vgiUYj2P+9DOPcv+9tzMaR/lEUjMejfF9F43IpTMenu+h0pSy76KUolQu4Xim6L94cZlyOaRcDkmSBJWaDXKn2yNLTcc4GkVE44jpyabJoMoX9B3cOwI8z8tN6gLHcXjl9EXiOKZeK1MsF7AdC8dyDP3UdykVAxqNOuPxENux6XVGXF5aYWambozhQKVSIklibMdmGEUonZKpJI9e0EhHYgkHhDaxD9pMql3PJ44Ter0e5XIp36jCpaVVs8EJC6Rpxqmzl5iebBAEPpcvr+TTgDpeYGirjXJAIXDxAwPpabU2cV0PtIW0bILAIYoGeH7BTGMELK9uUCkXsaSF7To5OttcUxzbNpsiofnwE8/z8V95Dw989iEO7p8jTvqsrW8ShgUj5/TLxKMEpcG2bFzP59f+0zc4f2WZX33/HGhBUCjs4r+VVkjLJk1SKuVinlGXmcxH2wSDp6nxmDi2pFQMcBybjc0OtWrJTENLAVmmWW2NeM87vo+9e2b41w8c5/3vew9pmvLApz7HB44eNflneVEDgk6ni+eZSUi71c5BL4aKGEcx0pImK0oKgsAHBHEU55OSFEWM5dhYwjeTTv1q1IfregRBQL1eNsjxLDN+uiwjTiITKZBfzeM4Mu8jz8F1TOxKmiiElnlDLDMbHmEaPlLK3YkcGsajsTmvbIltm0mUkKYwtOwclmPbSGR+m5kKmSiFfPMgxa4v1LINwANM3ipS5MHO5n0SRwnRcMyJk6fZMz9hGhbXrxn61QmfKTIdrixdo1wu7RLmPN9lbXXdSM+imNnpCeI0pVQqUimVuev2W0wBZlmkScZ4PGY4MhAKrTUrV1ZxXZegGLC2ukalWmZjc4sg8Mw1Gej1egZ0Iw3VOI6MZ04A0jaewzRNd/8GSZSwd37G+Jkck0foel6ecwUb6xs5VMtMGj526mV+/L5DxOOYOEk4e36Jo0f2sdVqQTriiFfjwoWrSKFxHXM+rC5v4LgOrmth2RaubZD243GE63l02j2ktPjaMy/R7faYaFRwcghOGqcMBxHj0ZinXniFqXqFLM0ICwXcwCg70iylEPokcUqn22eyXkNKwYVLV3n5zBLFgke1UiAs+qSJNgJisfP6alSa0usPqNQrO1uKV9fx76C4y7TxU416Q+IoRsV91tdWWK3Z3Hr0KG+5/3/g8194jGeeeYYPf/jDBF7As08/SyW0uO3wHPXCkDvuXMD3XVReKNnSwfM82u0WpTCkN+phOyVcb5pjdx1EUOdTDzzMz3z4vVTCbVQaMR4nKJ3wiUc2ecvBu3AsIzU2NhXTwk5SxdXLV8isMqPxgLm5BQqFIkmc0Gg02dpaZWZ6hvF4jOd7uI5DtVKmvb1GoxxiCYVt5fsrywGtSbMUxw1wvSL15l5AYjs+4/GQUqVMtVzHciVRP+HEM08zO1Ul9F0jmbRsytUGjm2TJDG+5yOkiQdJ4shINPNrs7At05R0LKQ0AKTMMq9nKiWnzp7m/OlzzO1dwM6vYyrLyHIJukpTwmKJTCW4QYHf+vR/4Hd/5RgXz/Ww/R7t7jIze9/MXzx2Cn+pybve/oP89Hv/Md977/cxOz3Hl774RRxXcvSWY6RZxkRzkmee/Tq33no7cTLi+ee/wR133kOpWGRz9TIL+/Zwz8Kt3LbvXn75X/8rDh1cZHp+D5ZlVAVGnaARIo8zsaxvKqp298WIV69f36Kw2jl2Bxz6xvupncbU6xSN12dJ3/h4+flvNuSAviHE/AYYkdLXNfTMeZehXvexb358t7j7Wz++3eLOvB/NCy7zjuaOFO/6E+FmBd23e+wust/qebxm6ndDEbbz9ZsVj9xY3AngF3/xl/indxz+lieoEOTGWUNpO33mMlfWWyzOz2J7Hm84tp80jak3q2Ra8tBDz/PY6Zc5ujBDPIRLl1Z4eekCYeAwMznB1NQEZdfl0IEFnj51mkMLZlKwZ3YK18u70zZYtpEDXbyywvREwxSPlRKubUKbJ5s1wnKRNAVh2Qgp8XwfbGGIWsJ0zO1c3tnt9qiUS2xsbFOphKytbdKoV1laWqFSKSAEuK6hbglpIbDxCl5OpdNIJOfOLvHEidNMFkt85svPMlEpUqmGuK5Bj5MX/UamKdGZkRBlKkUKSZxLuIQyXR/bkni+x637Zzi0OM3+hTnWlzd55KkXue2W/WxstygWCrS2OzQnagjLxAH0+n36/RG1WpVuZ4zrBEjboVIpoHXK4QNzTE3VqZdCfN8zJm0sLOkYmZiU2MIyHUzXYTyOGI9iJiYbaARaWagUNjY2KZV9dBYzGiUEvsddty6SJBFYGtv1jddJawPIsVy8QhGZGvpXkqbUajW2tnpcubJKoxrS6nWZnmpiac2g38N1bPP8pcBxBA888nXu2L+f0WBEo1bLN68Wtu8hpQl639jYBkw4tZHax0gJ1UqJSq1sQqN1SpJkHD95gT2z0yC1kTMpI5/LUo3nFnjs6y+zb88EhWLI5labja029UadjY0WE5MT2FIiMnJiX0AcpWyubREWAtCmmRIWfCQC17FI0hTX94iTFKUF9Yk6YalIkips22WiXufkK2cIXJfJRoOXT19ierKOGxgPpl/AFBrSQ5h4RBACL/To941sWCiB7doMBwPSOMX3XAqFAp1un0LooTHAEFtKOlttLM/mZx5/gY//8g+DgiP793L54hVQKTPTeyiEJbSEfn9MWJJ02h3Onr3EP/3Iy/z2T8zz1juniEZjXC8w3efMeA7iKMKy3Ryk0UPpDK1SXC9EYIG2WF/bJE2HWI5ZHTvdAb7jGOS90BSKHrZtUQo8Tq+MmWqU+OSTZ/nA+97D5UtLPPyVx3n/LUd3JZHROCEex3z0Mw8xU68YadjGFhPNCTNlSDX93pBrV1fY2GwzMzWB53tmw+Y4ZFmEZQuCYhkhHNJUYUkTcq60QikDLXAch06nQxB4u148A5dIUJmJMDFTBGt33RYSlFbE48hMmYRgPBySpTsbgdwbLWSeG2njuK6ZgGaGnqe1MmCUvMln4Cb2riQ1SaKc06TI095AKbI4RgKjcYwrNVKlZHEEmOBkrSTROMIv+NSqFfYtzGO5Fpbj5l3oDEdKVJoxGo9wPdfAPzKTubm93qJcKjEejtFaUalUDahpfhbbNU0FxzUk2zAskGRGsv6pBx9mz8wUpVIRrWO0VhSLZXr9AZYrKVZCpAA/cHEcE38wHkXYlsXZs5eQ2Jw4eYZ+b8D8/KwpKPOJpMjpgsKyECI1sAlpmTgMJEk0xPdsVlbXiOKYOEkpV6toJSkkI47eMWMaedJmfmGG/mhEuVLm7tsPsXpyhX1zc0RJYh5PSsrVkLDk5755gRt4pFlGWAqRtoWKFcWwwJPHT9OohkxNVlFZyrWVTYphkc88/AxvuP0gi/NTFEshtmOopkkcc+rsRaanG6i8gTFVr+DaklfOXGRxYYZHnz/NO950O55vk6YJjmuajcYyJEClSEtw6co1Zuamv1nx8x0Ud0oqhM4YdQdkSYJKerTbG3zu8hV+/Cd+jigt8O73/Bh33HaMn/3JD1HwfV58/jn2TApaay/woz94EKwUS0KWJMxOzzEe9rEtQRj6jAYZ5WqTdr/P1NwMM/vuo9O2uf++Y2xsfg2Z9lhfTilWbL5yfMSP3PmToG0G/RFpluK5gWmACAOG6rSHxFmLt731nUxNzKIQ9Ed9iuUSF8+fZbI5jWM7DAYDrq1cxRUROh1RDX2kNjwBywuwkMTjCKEh0TbjzGI4jllausj83gO8eOoEBxYP8aUvfoHBzHmcAAAgAElEQVRbDh/loc89yGSzQqMZUCwWUDoFTDNLo0wkB5BEJhLHyLt9tBAkWUIYFomSIa5jm+ailOjYRJREWcTFS1dIEsWe+Qae6xqyq4ZiMSRNE4RKEZbE8UPOv7DNm98WMOgfZ3pyL1ky5Nf+YIW5ZD/fd/ubKTccRoMBhw4cYTxMePyJR3nHP3wXe+b28NWvPszehUWeefbrLO4/RLPRRAqBY7uceukEB/cfZDQa4rum+B0Ph7z7bT9EIa3zS//qV3nHO+7Hce1dJZnIqZk3y23eIU/+dZO6m+9Fxa6C4/rHM7e9/n1udrxa3F33WK8nXb7ZLOavkWTe5FG+6SvfpWX+HT0cx8kJbzeaNUX+tddmzf3XHtfn2L3e8a1y7G527C94f+1j6Zy2JgRsbbYYjmNcy0ULyaDbZzwckWYZSZoxHEZsdUaE+UWgVC2ChtlGnTD0cFybrz55goefOcPmeot/8NY7jG8lSYxHbXWLBx95BqWM5KpaK3Hs8CJamw3beGyyjjY3W7ieS5plfOSTjzPsR5w6fYlLS8uMowhhCwajEX5gPH5gKGKj0YhGvYJWikLgsbXZZml9kygyG5Y0Sei0+3m3Oco7UDZJajDFlpAcmZ/h6som73vX24zcD8UoGhvPSRwTBH7eVYfhcES7nU/KhMkgM9p0geM6SEvy8unz+AWP5dUNtFYsLa9xy94ZpBA0mjXjCSwW8umUzWg0Iiz6hoomLaJIIS0jBUVq5vdM4noOnu8yMdHAtp18gmjxx3/xMMP+GK3g2ROv8NWnT6I1+IHPcy+fAw29zhCtYTgY8cgzJ0miiHEUobQJoE+iGD/0GMdjhLBwHRfXcRgOx3z2kadJkpSz55ZQSmNbNmmq+NLTrzAaRyCg2ajQ6XSxbeNL0Erx/IlXSKIEx3F4z9vvIYkSzl1YJklSkiRla6tDnKRoBVppCoWAoBDw5w8+yfETZ1heWUdrhc4JR1rCuUtXubq8ztGDCwCM8gnJoD9k6do6oyjCtmx+8P676XT6ZJmiUquwb98eMqVY3tjmoUeeQ6cm+NrCobXexbV9iqHPpUtX2NpqodIs7xpq0txzZ9s2xXKJQtn430ZRRK8/II0zBr0ht91ygFrVBH1fuLpBHCXEUUyaGVCH65tNH2g8x8V1XVSaUij5RFGEJU0GUyEITEaSMNS1sOCbxpLIG1BpSn805kOPPMOf/fIPsb7WIhqlvPLSRfbvW2Rrc0iaCoajGKUVfsFFiJif+6Nn+Z0vn+MT/+wIrivpDzZxPY/xODKUSQzMyc4jAcC8Jm5eqAghSeKULDVh9pnKsG2BzHknSCiXC6AV29stLFuidMrpK6s5WQ4QgoMHDzIaR7uLkRAyl2EqPvQj76Ix0UAD8/NzfOLTX+Da1VW0hnPnL/ONF07j5E2WaDwmS1Ja2y1cz2I4GiGwsaTBoythcPhCsOutRSjK5SJJmuU+NVO02Y6Nm8eUaKVZX9vE84y/Lc0ihFB4BQfLBmlrI7kKTCi1Ujum/zxAPN+YC8xEX2vT3HNy2jAYac8OWVOj8qB0TbvdIcqLIIGhpGZpQiE0vpxBv8+1a9dI44TxaIRA4AcBWZIiLXBc26wTeXPSsg0dM41MAQjaZNQpxaNPPs3Vqyt89JMPEo0jLGkRxzFJnJCmqYk+UYoky5idm6bXH5jfSmtmJ5rUalUcx8JxDTnwytVrqCyj1+9j25I4Tgw9No5JkphCGOB5Pgf3L/LgI9/gvrfcw8HFfXzmC1/md//0AdI0ZX1tA2nLPHZDYdmSYinM1yvJcDCmUAwYj0ZMTDSY3zPLxNQk0Tjm//3op/me/UfYbnWI4gTbdVBownIRYUnOnLnIJ89dZTQYUS6XcT0PnZk4jSxLEZaZNGhlPKk7k/FSuQgIfuI938Oxw4tGjaMVjzz3Mp9+6CkO7ZliZXmD4XDEqZxWTO55vvXwPrI0o9XuEsUxXuAy6A9xpCAsFviBNx4zwBYpsPJMxR1gxe57RmvqlfLuufk3PSwpGY5G+J5DpRKSZSmzzQaN0Gd6eg9TU3MsX1vlD//oD/nLBz7Fntkp2lvrTE2U+eAHfogs6eL5LmmcUCpVuXD+PNKyaLe2WV9bIU0ytLI4cPAglpMhRciJE6dotVY5c+Z5uu02M1P7cWyLB758NadhmjiRSxfOoTWMRkMDSnJcRoMui/sPEhZ8Tp85SeD77Nkzz+Ur57nl8DHGUcTG5gZb21t0uy36vW0KgUeajNEqQyHMGpdlhg6rNcVSldW1Fba31gmLZZavXeXN97ydNMu4//53Mh6PjAInG+J6FloopC3JdIpGmQao1qRJjO96ZGmKAIbDAUqD4wZ0Oh1z+VQwHA5RaYYaxfQ2NhEq4413vZE3v/FOHJnsEnKlFPR6ndzbZ16r7a0tfvXPf43+5oBDB2/haqvLVz6/j1//wC9TDCwyPeaW2+7gLfe+lc72Fo9+5RGmp+bwApfRaMS9976dKIp4w11vYnZmjgc+/TG0UkxNzSCEpN1u4bkecRIZKWYSsXLtEktXL/Fjb/gRjv/FRX7/P/7nXFL+6iGFeN2JWn7CXvfx3eNv6/h7ObkzQ2VuHjjOq5W6wEgXbpZZt9OpULn3bedjV0Yprx8p6105jJDypm+EXRmmlGilzM/NH2/na7szY70jFrr5Ia77+NEf+Uf8u/vu2u3w3eQXMfcRAmUJdE9x5uWLBKGkWS/SrDVxQwdpmw4PWuLYFrce3MNUqYhjSRxpYQmoVyuI2GS1zc3VOTDXZDgYY7sBSZyhMk2pZAqYTnfA3MwkJ09fZKJZw/VdHn/qBNP1KqtbHRYXZymXQzbWthgORpSLoNKEfjeiGBRoNkqoNCH0QizLZtDrY0koFwPa3SF+4KM0+GGIF/jMTTfwgxCVgeO6pOmYLI0RIiMZJ2iVsraxRSHwOX3+qoGYLEwTq4iwHIC0cf2QtZU1At/nwYefZWFmCj/w2N5oMTU9iUKjNFxdusagPyCshgzyoPJOq0+5WKDZnAAEC3unqDXK2I7N44+dZH6yyenzS9TrVYS0KQQhSZTRaNTQWlAoFBAaTr58nmqxzEsvXaJSCrFtCUIRRcYLtbS0zDvefmfe5M1wlMsga1N2iwhlEQbQ2e5SrZcJQg90xhtuPYSQNsNhQlhwkbaDEwQGka9SVKLQWcYoStju9GkPB+yfm6BWL5kNk2Vkn2XX5rY79poTT0nCQgGdb6S10jz42Cnuvu0AqxsrTE5OYDmuiaqwJVEyplQp0m11aXe2qBRL2JZNMkqJxkOmGxXmpmewpM3Xn32Z6XqNUX/E7OwEjmPt/h081yNLFd3tIZ3ugL2z0/QHXfyCS7VYQiiNbVmsrq5TrRaZmW0yP90EC1KdMU4i49FyLdY3Wkw0G9TqJqz96soKrhsgLcmFCxeZbFQNNEUJVBRz/PnT7JmZRFpQKPn0BgNGUYQSmjfdc5RMK1zP4/gz54mTDJQgDAOSJDaT6Axs6WCTgU6JIkWr1aZaKiItQb8/JMkUhXKRYaeHROJ6Lv/b489x2R3wWz/7D3Bth8e/dpzFxVkc36JaN3TQ//yJL3L7rfvod8dEqcVP/PaX+cT/+kbeefcEbmA2qyLuo0WAlfu5tFa0um3C0Edqh9HQyNKiOCaOR0jXzSMFBL7rkMRmM5dlBkDSqFdRWhGWDfpdWgLHFXz88avcd9sc569ssHjkGKWwwCc//Tl+aO/e3Qyo0Sjmzz77Vxw7tJ9CocCff+qLHDm8wK1HDlEslUAImo0KlaLP/gOLIATHXzzFnj0zeK6dT+YlaIXtyLyoEUZmuyMRyn2E42iYN2vE7vVNSMhyyaQWmrAYMhwOEUKSZmq3e621QCVmqqSFzNU8YhfEYeIXNAjY2tw2cBChctS5fZ34QuUyJPPvnZVKyjxOxbLQwshlLcdBKG3+noFHqVbD9jwjHybPmBKGEKe1wrIMsEgKjWM5pCn83p99ln1z0/h+Ie/AC+Znppmen2Rlc51jtx7GdmxWl9eoVEpsb29RrZaJxiYLklwinaWG9jnZbBCEPkqkSMsHbfG5Lz9F6Hsc3L/PRGZgMPFXLl2jVjPnxrWrV6mUStx+9ABbG1t848RJjh7cS70cUq9VaE40URmoTKOV4OWTZ7l8YYVKqcKFi5dpNkucP7uE54dI20baNlkcYwm4986jDEcDHnjpGcqWJvBcHn/8OSphARQEvs+vfeYpfnRuiouXViiFBR589BlOnL3IHYcXzbxUmQiCLDHNnUF/wPmzK6xsbDIajxjHY8rlMlpLji7Mcev+vczONigWA/yCzcREw8QpYJolgjxPcDiiWi0ipMB2XRP7kyQUQg9LavzAQ2DiGLLxmGvXNglc09RRmSIsBNiee+O6fxPPnXjN/29Y+lNN0jeRKdrSDDrrtDodvtHv8KZ3/zTnr22yd7LC29/2NtrDKzz+5Nc5c+4cb37TIqWSZm5yDrIRcTwiCH3CYoBCYbs2zYVD2Ei21q+wtj0kqB5gcu6NxFGP7volVi6tcMfdR1lrn2ei1uRzT6xy39F7cB2JFhmz0wtIC8Bh6eoKly+vM1JFLl+7xtFjb8D1feI0JvADymGVdmebQjHg0qUr1Iplil6KKwU6y3BtCyVMe8V1XOIkYjweoLSmO0yYmF5kbuEWTrz0PJPNGYIgMBJTR+NY0OlsYImdtVghMpODmMYRjuMgpYVtOUZJZNlmIu44mOZYhs6BMGlmbCvSsgjKFewgQCURjlQINFo7OXtAGalzHOO7Buj06x//t/jlNg25zP33H+Bf/M5Zvn/hfUxNNZA2TE7Pce6Vc8zPzPLiiyc5d36NoGZTa5RoliZRpAwGfb70pS9w6cI5JiYmuPP2uxiNR2xsrpuoFNvhyvISVqYolatoYUBMUZxw5NbbqdTKfPzzH2NmZpbZPTOm0Yrxa5pr6zefd6BfM2771hMw0yzaOZ9fnT3lggZu3N1edy5rvStPVtfLK3dvv27rfN0nQrP7cf2xE5CueHW9uOF2LRE3+U8LxQ0PKjS27X5Xlvnf87i+uMtFLnn3+/VPtr9Jn2H3YvoaXe8OXOV1f95rpJYCcgO1+CaJ5ndytL74ee6cbn5b36tR9Nd7rGxuEBQc9u6ZQWqBktp40jAF4nAwwnd81je3sSxBEpvnOYrGhMUinV6PQjEABRMTNS5fWeXJk2dod3v4jk2r0+f2246gs5Tp6QZxYrxmM406lUqRIDDQjPE4plarUCgUKHgWne6AmckmT504y/6FKSxLsraxRTE00A6tTMer0qibi46ENI2JxmNcx0IIh+HAQCmGwzHlcslIhFA4joNSJidrfnqCNEkM2dN3SdOM8XCMLYWRJWjB154/w6WrqxxemOXq1TWq1ZIZV2hNGAQUgiC34igc26beqOwovkmTmHFkvFo7hefq8hobvS4Le6eRUjDoDSiEJjssjk3unut71Kol40HB5EkVwwJZqrhydZ3J6QbVcimXdZjbC4UCxaJFqVim2xlQKvsEQWiaEplmY3ObVrtDrVaiUPSJxrHpoEYGXtHt9pCWxdZ2h3anR5Rk3HZ4H57v4Ti55zQPQa6Wi1y5toJlWfQ6psDWuVfFlpKZeoVCwWN5Y4N6tcKzL7zEoD9kslGj2x6wtrZFo1GkWCqaAsM23ot9e2cM5TPNCMKA9c0tXNuiMVFFWhLHdfF9z9D6SgaKUKtXCAMP1zM49OFgBEge+8YLzM9NUi6XiOMEy7HNNVgI0zVWZgojhSQIPAqFAmlsJj7VagXHdcmylFLo51hmSafTY3NjmwOL80bypzXdXp9Go57TCY0Z0nYdslQx0ahTqxfwAwOv8QsOKkuQCKSA0bCf+zUkrmdj2ZJet0+9Udvt5vcHA5RKePCll8hmyvz8e+/GlgVeeeUCd7/hGL5v4BY6nzSePrfE4YPz/F8fe5KPPnGBj/7PtxMlY3y/wGgQE3ge/c4qjl/KpzUplm2ZCZftoIUwE400oxD4xgNk2WZBywuZaBwzHscUCyE6UyRxSpQkuL6LyjfJKlP80WNr/OhbDrKy1eXN7/ox0kzz6c88yAePHTMeDmm8TgtTk4SFApYl2Tc/jRcaoIjKMhzXxnEkYcHD9XySNGF6qonA0OR2mmu24yKFxWgQIXPapMg7zQIzQQsKvgmQR7zqSROaLNO7TTGtcrkv4LnO7oIvc7iOmbSRX7tfbaQpteOpg3KlnGf06dynIhkNRwhhAqp31gYpBOPRGMd1cprkdQKbfPESWuZrmAlN11l+jX7NBms8GuP6nplIRuZnCyG5ZXEvjWbVrDHSIokTPN8nS1MO799HlhgsfZoqnn/xZabqE0aZkHtukiTBkmbHpTUmW9CyuHjpIuVSmSzNWFvf4JYD++h1Ovi+a8KPtaZcKrK93TYyRy0ICgGdbo96s87ivnlqzRqzk9M4ns3mxhZhqYC0LM6ePc8th/czNTWB1pp6vYIbuFRLVba2tpmYaprXBIHjusRxyrXeFv/wB27LPXQupXIBz/ewHZsLF6/wO596hHv8kL3TUzzx7Cv0hxH7Zmss7JkyWXhJys7UVSuN6zrUqxXiZMzBQ3spl4pGQpoogsBlMBiZxprKcspqhuu6ZKmi3xuZ5pMyheYONAgFTz1/iiMHF/Jtq2I8inNSpIlBura8yepGi7npBq1W2zThXHf3dYbvvLizLItuu4dn23i+Rb+9ybV2j8fWNvnZf/YreJ7Pb//G/8Gb3nwvSPjd3/sDWq0WL7z0Ih947/ewuboBqg0IXMfJlTgjM72yfUPWVRl+uYn0mkSxz+ULp2lWJQcWpyiXzGTfEyW++OgKbzx0O0J6CMfCwvhj40yxvrZKoTTJzNw+9uxbxLYsKpUqaWIyQkejMVevnKdUKtGoT3Lm9Enq9RBJRqezge/7Zj8lDJhGIrAcB8tyCEoTOG6IEhKJ8cZVqzVs28J1HRy3wPK1ZbrdTZrNKrYUubTaPL8ojhGWi9YuUhif3Pr6EsVSNVfvgGu7u6AVzzfrxjAakmURBa9giJueh1IZrmegLFEOqhpHI9CCk8sn+Scf3Mu1QZP/8sUL/Or7f4EsiY3cWhgPfKNZR2tYurCMVgEze+cpV8qkScqzzz3B/sUj1GoN3vzmt+N5Huub62y1tmg2JgHJ/Nwerl45j2+5uTQ9o1KdJkoy5ub3gYC33X4fv/l7v817fvgHsXJftLzZubdTjX3Tfvfbl2leX9z99fc3X/9vNRvcuRa/XnH3enEO+ibazu8Wd/+dj++0uNsBq3yn2RX/tcWd4tVp3Q4F71Vz6rd3ZHn2yP/+z3+df3Jg5tu/o9asLi3juxbzcxNESWawy3l46vaW8Vlsb3XwXJ/zl6/iOhahX+Cxp1/iDbcdwPJcWp0Oge+zubmNRFAqFmiUAu64ZZFef0izWaNYLSJUysamQfrbtoXvu6xtbBIWQuI4ZtAbMuiPaG/38AoWpWKBTz18nB9+5715V0RQCBzSLKXZrBovUuCh87Dj1nabbm9ApWT8HlGS8dmvPMMTx0/zljtvQaNpt3uMB3063QGrmx0eP/4yzWKRSqWI77nm4o0BDKytb1Jv1EjThKP757ntyD5sx+GhJ57n2JF9O2wCRoMxnutiuRae47C10aJUDrEci27XUDUdx8Z2bL7+7Is0a1XC0OfAgXnS1AQ0j8eR6Tp6gZHmkOu/JdhS8rmvPsNdR/fj2A5/8sBXePsbj2HZYDk2aZoZGIZlMNNBKLGkx6f+6mnuPLaA6wb8+YOPM1krMT3dpFQKiBPjZ9OZJE0Vr5y5yMxUgzRL6fWG9Icjvnj8NN979zHKVQNmSRMTwNrt9olHEf3BwEzSbJssVeZvkNPxXMfBDzwc16JaKqGVZqpZZqpZZ2Vli8efOcPpKysszFRNtpOQROOYXndAWCpQrhTzqYemUgwohD5pluZh0pAmGcVSSL83yomKZjN+5txlJifq+L6HtBz2zE6CMBEYjuuSxAm2bTbWruvg2k7ucxGMBybge3uzixDSwEMkbG+1UShKpSJpqvA9Dyvf8AaBT1gKGAxG+H6A6zisrG6Y6A1tNuC2Y2PZBvijFWRpAipjOBwRuC7j8ZBCGGDZrilALAu/4COlJIpjBv0h//yxZ/nYZo9f+pk38fZje3C8EMcJcGwb3zfgII3mr770NfbtneaFUxf4t49e5Dd/fJHDYR8/EBSLRZQSoEyW1mCwjrBcfM83OG4kaWo2HDpLDNZfC/7oo49yz10H0VqZ0GYhSbMUtDCRFOOYXn9Ep9PHdm28wDdSUkwh8sAz23zwfgNPmbvz+9HC4lOf+kvef/So8b1JkxXquu6un0NKgXCML9axjVxQpRG+56IwBE3blsYjmBjgiOOYaWI0itnabLO12aZcKRpFxM75a9pA7BA6kzjBsiRxNMZ2DchFK50Xb3nxhWRra5tiqchwMMD3CzfsOYz80QBobMchTVIc12Z9dQP/Osm2FNIQWC1z51F/hOu7JEmG7dr5uiGJohjXcQ01UeysLTKXmJrp3g7dE8xaswM68HwPpTHPwbbIcomgZZnr+s7G5ZnjJ5mabO5+blmWCax3bPbOzWH/f+y9eZBl2V3f+bn33PXtW77cszKztq7qVerW0kYrCAkQQggBllgMBmzCMZgYGOwIIjwmhvAwYGLG44EgDBiGxTYQkgAhtdYW2lrqVi/VSy1dXXvWlvvb37v7OfPHuZlV3eqWhEPjYMa6ERnV1fXyvpf5zjvnt3x/n6/t0Ov0CcIQx3EQluD8xcs0anWEKfiTv/w4hxZnaLdbbG/uYBoGZd/Hc12KpQLrN9dpTjWRqWQ4HFFv1Mhkpq1cajWUaWhLFEPPon764UdZXV6gWqsglSTNC1xZllAs+BhCz/tYtkm/M2Zqqqkpu5nuNhimieU4NMsVTg1vcGB6CtO0KNeKeL6H7TiUyyX+w4cf4SePH+fJU1e4/44V7jq8xMrSDDLLELaGFgkhSNIsNyvfpVD0aE839t9rQ5mcfWGNUtlFCJMkTTAMgyCIuHpti5NnL7OyOEcYRgz6Y26sb+PbNlEUg1IEk5CDB+YxhJZgXrh0jempBqYlWF/fxfd1YiylpFTQnb0wCCmUSy+Jp/+OnTupiMOUar1MHIzo725zerfHgz/4LqzqHHGa8v73vgvbtvjbL3yeNJE0amV++Hvv48K5Z3n4E1/mgVcvUiwW8QqenheTkm6vT7Fcw3MKdPp9ZhePUG4c4EtfeoY7jq5AukWxkFEqC+IoZNiLOdJ+O0oZPPrlp2i125o0mWVIZVIsT7O5tU2jNcP09DSmabG1vUWt0iAKI8aTgOXFRS5dOU+v12dhfgHLjinYNoVCEWECprHvCZlmCZawUAj6o5BafRplCKZabRQwGg64fv0KnufzpS9/ifWbW1gCFuZnsEWeHOYdfYQuQj/22FMsHZhFZin1eluDqLIMhSJLbwHblNKJvzQ1zIo8UUxSDfdSGPvyfJFDnn7zY3/A7/zyPfyL3zrHjY0xv/A9P6El3FLfX1g2Biaep6XakzBkHEyYxCHdzib33nU/CwvLTCZjmo0mUkpOP3+SZmOKq9evsrSwzImnHuPw4aNUqk3CyYAs08WF4bCP4xao1Ov7AK833/cW/sf/5V/ygz/8bh0bvcza21e//TdK7vZjJPm1Gzbf+HN/K7n7/8x1e3J3azjza3ftdBXwxY3gva/b38LbH3PrBrdav/uUn6+R3O3LN2/7/n2D0m/g59vjSt0uK/3t3/od3rs6//JyzJe8VFCoTHBl7SKuJ5hqT+H6Bf3zCYs0SyhXishMIjPFydMXuNnrsjLXJg4SZtsVlJExGgXYpkmlVCAYRzSaNTBNLGFiORaFgovrOmRpRq/b0bhjyIOQFNvRyUW5UsRxHc6cW2NuZopgMsE0TI4emKdY9BkFQ4ollyxL9ZBz3lGIwgTXd7h5Y4OFhRniMKZWr3JlbZ1yucDxQ0s8cHwV27ZASd11MBRRIlmcn6PkOLTbdQrFEi+cX6NSKufgjoxqvYxMIUlTvIKDsEziOGZ1vq0H5G3BBz75CNev77AyP00YBTi2g++7qBx5KPL3XymDfmfE8uI8ptCedKnUlT/LsrAME8eySWWG7Qh0xV1qzyOpKLkWpaKP49ncf7cOtE1LEId6pk2mmoAXT2KCaIBpONx/7xESGWtogOfQalZxPJs0jZFSMg4CxuOIC5evgQHtZhXhCAq+Q7Ne575Dq3ieR5IljEYjxqOAP/vko7TLFQoFl0qloE3pJezs9nnuhcsszbbzBKlHpebxkc9/GVvaeI5Dmsb0ByN8z+Hw8hyvueewJucJsT/fpJTEsgzW1zepVIuAxC+4Of1PzwuFQZhDNHSilyQphoCtzQ7Lywt0dnv4BY+d7U4+M2br4Xfbotvp4bn+fgfj9NmLVEo+SaL95wzDpFAscGXtBlNTdcbDkZZFlYuYQmACw+GIUqmAX/DY3emysb1Dq1nDNHWAjpFiWvnMkGljKEV/0MP3fZIoBSUJo4CiX9D2Cbu7xGlGoVhBZRnCcVDKJEoyTMPkZx4/w/TcFL/3P7ydUqmCYXiYhku/3+GJp04zO9tkPB6BMmlUKgyCCf/3iW1+/58cxXVsZqeb+wAX0zSwLDeXfmtUeJJkgNLehJ6LUpBmGZaw6XYHPHDvQUQ+H2ZiMBpOsIRNEKZgCm5c3+TS2hazMw3WN/oUC17uZ2khpcmBqRazjSr//Hc/w9UrN3jVPffy4Y98hPfecVSb4+ZdaTBIQj3fagqNpdZNrPzgzTL92ZQKK58DcWwb3/NzSbvuAhqmyVPPnsGyTKamGliWxspbtpZIIW8N8BuGJIw0cU9YFmEQICxBMA72u4FJnFIul0lliuO4yEzC7QGAgcZnWyaG1H5lSaotVGSm9ExamqETPP2lUDiOptuKfL5uz8fPcW7NZmaZJMLuxZ0AACAASURBVE1STGtPgpkndaZOWE3TyCmigixT+/u7YZjYwtbBWC6l1RIm3eW3TUG9Vs0/ByYi794LIbh0aQ1bOHzg45/ltfcdw/VcRsMhzXoNy3KYjMdM1cpUKmUcxyVL9T3/5nNf4a7VZUAxmgSUikUuXbrCdHuKYX9At9tjeeVA7geoE1KZSRzH49DyAn/4wb/hniOrej7RsfE8D8vWSadhGbie7riePH2ORqOK6wjtj2fbZGlGf7dDqVTkNz7xGd509wH+ywce5s6jy+xh1oUpeOJ6ws8/eC9HVmcpFnUH8XNPnaJZ0QoSQ2ebgIFl2VRrZUbDEePxGC+XRcpM0WzW6I/6lKtFLFvg5oTlcBIRhNqgvLPTZ2FhhlqliGkK6vWKLqpZJhcuX8cSNq7jMDvdJEslcZxSq9dwHC17930XxxZs7nRYXJxBmnoey3jJ2svf8BfFDi+NIRRApomljqm4vnaeQXeXf9dJ+afvez8DfCZxxLi7xclTZ/j8Zx/lIx/9G1zZ4/3vOUa1mHLnkTuwxIRypUQnP8tNQ6/X3d0BCsGlG9sUqvN0+hYnnzvP6vIsJXcHZJ+NjRv4Xol/+6fnuP/g/SAtBp0ew36HeqOKcBxOPHOCIILdnT6TaMQkmlAqlil4Jbq9DuPJmMtXXsA0TVZWDtKoNnAtA0ONyOJIF0NUnlQZBnGSYEil/UNtn+dOniDDJs4kldyz1XNcpmdmMFCcPf0kBb9CozWFa2V4ti7+heEYkXsaCiHY2dpgdnZKsxiyVEuuUYh8ZlID9DQB1DQtRE5g1XJNSYZDKoVWHxmGlnAKk//tw7/Lr/38XfzcbzzLqyp38OPf+e68SyopFLS/rZQZa1fOUylXMVD4ZY+Vg6uMxjGm4REGIXGW0Kg36Pa7nDr1JEcO30m1UmVqaoYkSSkWSzz99Fc4d/Y0UTSiPTMNRkp3Z5PJuItbLNPd2qZQKuN6Dm+6+838/L/6RX7kve9BavW7ht9IvdayfB/htvV5Oy3TMAxUHjS/Yi/utuTuVgyr9otzL1rPWg+vLWe+Ce27vfD9Rf54t7+2byV3f3+ub4bP3e2X+gYec/tjXy652+uw7XX2bvfJ+7teZj7Lt3cfJRV3nnmcuu/r1/BS6fPLvc4MZDKh1axh+wUkuqpsmBrkYJiA0rr1qVaFlcUpapUyBgaTcILna3PzZq3CzRtbnL2yzsriLM9fvMrS0iyOY7G9tYvjWFiOlty0ppoI0yIMIzKV4BVcLKFR+r3egOev3ODMuZvcdWiJOM7Y2OoiVUZzqkx/0KdYKDIajtjtDCj4Pp7rYFn6QE6ilHKpyMNfOkG1WKJa9ZmMJmxu7rK5tUO16GPbWo/fmmqBMnFtmzAMGA5DSoUipUoJUwiG45H2QzK1V5Ml9O9EmBa+5+AXPIIg5I6VBU6+cIUjB+ao1EtsbewQRXpwXuYSuc5uH8/z+eAnvoJKEhYXp3nimbMszE0TTEIe+uIT1Dxt9i4sLWXa3NymUHCIoggDk/ZUg93dLoYBUqVsb+8iMzh/6Toz7RbjUcCgP8aUBoWyRRRKlDIxbT0X2GrViKOIR585zYH5aVzPpVjwsW2bmakGhswQlomwBVmWsdvpU6lUSaIEw5T4RQ/LFFxc22C6XmW63WBnp6MDHgWtZoPFmTaGAZZjUfQ8tne3SNOM69cHrC5rE1+lpLaPIGM4mlAslDAMyaA35NqNTWanm2xsbjM722QSTMgyicyk9lIrl5AoPR8mteeZEPr9wYRyWc+SFYsFbtzYYG6uzcVLV2k2KvpTq3QXw3Y0jCeOY6amaliWoFDSNhHD/ojLazc4cf4yBxemcB2H4WiyT/ETuQzM93263T6Xb2xw792Hc8NokScKAtu1WVu7SbPZ5KkTZ5ifb+E6DlGQEkURw9GEcrGEwqRU8jh35TpzswvEkwnDUYhb8Hlk7Rq/fuEmv/PP3sp33jNPb9DHL+u5HRODIBxz7Ogyvu+yu9vl8188xa8/fJ6i6PBzb5vFK2jZXb/bp9+dUCx6GKYkzju9jiXI0hAQSAXjcag7VobKJXXaWkRYJpYtMAy9z+wlwc+eusT83BS2BQuzTUrFAlvbA778xGXuPDaHYQh2t/s8d23C4488y7Pnn+dV97+R73jbW/jAhz7EDxw5TKfT2TeDVhL+4wc+wuHFOTIZ4zg2hjL2N1/HcwjDGGHb+9AJYQjSOCFNtZxNofA8l0atTLNZ090ey9r3LdLqDN3BiqMYUMRRbg4O+z5wewbgSIkl7Dz51yRaK++AAft05T10/dnnL/LZxx7n0IEFDecSulATJ6n+vZkmoIs2e1K8vTNjL+HM0jSf1Tb3O3I6iDDYszrZ8+czctmlyvTPrz2a9hI5fc5EUaAVIVIDVsbDMaVSiT0/NTBI4pjtrR3+7KHP8B1veB1PP3eaa4MOlsyYbrfodXu60+z5uJ62qLm5vonrutRqVS5fvs53vOF1mMIkThKmWk3Onb/E4vwsSazBPpMgpFqpsLO9g+truxVhCpJYkoQBD9x9B71+n2JRA7uiMMZ2NUlXSU3uzVLJwsIcQhiMRn2EaTIeh8RJSqOmbR3+w5OneN+bjml1RSr55Ke+zPLiDN1un798/BLvXZrVsB1D21jcsbqUk2IljmNjWRbD4Ri/4Gu4iudRrhTy+UrtR+q6NsWyTxgGmsyZby+VUpEzF65yx8ElsiTl3KU1apWitq4QOrL1Cp6mQysTyzKxLMHOTpcXLl2j1xsy1Syyu9On3qhhGAaVko/t2CjjVvC8f92SDu3/9ZWOfSFgEiRkWURvZ4OiY/NQJ+DE57/AP/yZn+PG+k1WZqfpdIekkcSIhnz3d7yW5fkxphxSLzdJ0pH2eq3XSZKYwaCHbdvcXN/h+PH7qLSm2dgZs74Rcua5C3z7Wx6k4PYoFy2Kfon/9NHrzEXHtbxVCObmZ5lqT5MkAUmaUm0usb6+ycLSUcq1CocOHgFMhDBZu3qJ+fl5VlZWKRRKPHf6aYQ02Vq/SqUoMJRCySw/FywcT1twGFKRJBleoUyQSFZWjlKpN5hMJpw8+TRTrXbeuRWYMqPf76Bkgm0mOJaF57n0+h2KhTJBMMYWgna7hbBM9EylvW/NsWe1pJTC94t6fzBNPKfIZDLW+4pl8+VHn2ASRDRqJZ3wGPC/fuh3+OUfX+I3/+Qmv/R9P8PKwhyGzOdmpdLE5lzdoA3YIU5jbLvAY489Sa83IZjE1GolKrU65VKZxx//LPPzKzz91GOsLB9lGEx4+DOf4sDSCr3uLm9/+7vo97cpl6tUi2XGwyG2W8QUDtPNGdZuXKXRnMIwTN58/A383K/8T3zXO74dM1dL7cGj9F7y1Z23FyV3L1myL71eNHO3Z0eQf+hevkmSJ5DfRG7LHjDxpTTQbyV3f4+ulyZ3wjT1h/8VHr/Xjbv9ur079rLdule6120VjNvBKLd3Avk7JHYvN7TJbYOiCnjfD/8oP3XHiv5QfI176QBC/1CGNAj6Y2zLQTgeUpoI00JmCaPhmGKxqAfLTRPbERiZxbPPXWJ9sMPBxXlcu8K19RsgDKZmmiRJim871KtFgkmI6/u4BR/bdUiTiHQCtutq+Y/n0t8ZkUVguyaWEMRRxh2rBxgMxpRKFu2ZGvWWjyLDsR39OhWYCBQZtmvR3Q2wHZ8wTHBcE7fgsjQzzc7miGq9gCUcatUa7akWCMEkiCg6tvYw822urm9Qr5f5wCee5MqNLSajMdPNGp7nsn5jm3Kjqq0ObAeV6fd0fXsH19UVv2A85oH7lgiiAbZXpFjxKZZ9TCVIQ6mR6MJCSsmptSu86TXHcD2HcS+m1apiWSanzl/h2kaXoytLeeJh4rkOfrHIZDzBtjStsFwuYTv6dRSLRbZ3+pw4t8bxgwugJFkSc3O7S6vVIsmi3N5H4bguliHZ3ulw9OABhLDp90YIYZMpie3bFCs+whQ8f2qNWnOKUqVMGAw5e/ES0TjEViaWV+CuI6vYwmRjc5uF+WkN1ohi1jd2KZcLpJmm9p2/eo2lpQWKvs/ddy+zvrVNqVLBKxYQtoPrevsVySzRRLpKuYRpmxQqJQyhrS6EZWMYFp7ro6SB5Zlsbu5SKpYRhqDf63H56nWmGto3z1DQ3d5FphnFQoV6tUaco+NTqQ9caSZIJfWIQO5blsYSYQg+/cgJDi3OcufqASbjiM+feIy771hlPIn1+jMFm5u7ZGmM51ksr8yR5l1UlUkt6YokruNTKZWJkpQnH3+BowcXmYwDCmWPmxvbzC8dwHQsxpMBBd9le6NP2E0oNlwcy+SnHjvFe991F4tiwl3HDpFmKcVSEZXp2clMSm5cXWdmZppLa9fIpOQnf/vD/MefOsbr7ppjZ6dHFiekcUqlXGQ42kQI7SsobBfLNDAUDLrXqDcPIU0ftyQQwkamOqmSUh+4liWQKkXJVB/ili50PPzZM7QqLq1WkTRL8m6/w+JciXKpwfPPr/HFx8/x0UfP8pqj87zz7d/G9F3H+P3f+2M2t3b54TvvplAoggKVZljC5P7jRzhz7jzTzSmCOMgBI3rGM5MS09KkVjNXWewZiwtHEIxDHMvDUNp+w7Y1opx8zzMNbXOQxRlJHNPv9/FyWxRh2oRRgO3YGAYkcUwwCfALvibK5jPIe8mQzFLSSDLsThC5v12WSKam6hxdPZB3NiMtbc2UhgzlFfo0zRCYmkoqNIABKfQcnqXIyRK6A5Fm+k8UhqEQpkGWJQjT1MCbnLJpW3Y+C4meCcsyLNvEtNBdZCTCcDThNJ/jNEyRz3grhoMhzWaD+44fwRSCZqPEt736bmamW/R7PWr1KtV6BWFZGKb2uavXKpgkCNuj3W6SyYwkTTCxiKKE6ZkpTEvgF3yiKGS6PYUhFNV6hWF3yHgw4dmTZwnHARevX6NWqdJsNZFSF3DMnPRpGoIs1UWezfUtfKFl3F6pjDItbEtQ8Fy2NrbxXYcPXzzP+95wGMvUgfSRwwcBg0q1wBeePssdhSIVq8BfPfwo9xxdAUPguB62baJMMF3BJAxzvz+FVVR5g0z/KROJZZgoy8B1XIJ+wHgYcnNzG8+xmG5VubJ2A8+1eOrMJUglxZLN9fV16tUSuztdwjDh448+y12HlugNB9RbVeZmW1SqLo5b1LLuXJabpJmW4+aB51cld9+ILE0p0lRx8fI1bDlk1N/G9Cp8eGvMe97/j1k9uMKFc+e48MIF3vDa1/PH//mPWL94iXe86Q2YzoCZhWlmvAqZEGAIbt5cx7Qs6o06UsHB1SP0R0MM5xh/+Cef5Xvf849YnI4oFcckwTXG/Qm2Jfj3f36W97z1HVw8e5ZSqY7vCUxL4piagB1mirWra+zs9qg3y6yvX2NxcZGt7XUOLB1gNOpTKpU4eeoExw6/mqJvE4y2caUE29R+la6L5/kkcYwwTAxLw4+CKGVx+Tim42Jkio2NG9x1/D5ti6S0nDKIe4zHE2bnZ5hqTqEICWKDwaBHqVTFEVqKbprWvi/lZDzEsW3iOMR1tCpCSoVh7fmmCXY3N/FsF5UlyDQhGHcRVkq72UZg8PmTX+Gnf7DF//mn1/kXP/BPtX+4EGRKkWQJSkkwDdJMK1AUgjiVGMInI8OQY8ZByPKhwzx77ipF20SpjON3vopGbYp6axqv5OFYDpVSnXptComkWC5Rq1eZjEOCQZ8kGmBYEsf32dne4thdr8ayHCQaOvLme9/EL/ybX+Yfvu8HbkkzDR1fv1LE+aKl+tJ/fZGcU9362ottcwWDys/r2/Rq+bJW+750L070bkX6maFHXFSefO8Zye5J3l+p03j7JdHKob0MQqFyUuNXa/2+5XP3//L10uRur5P2Ssndy2rUv86/v9L1ooXxzSgrvEx14PZKwo+9/x/xy4dnaRQK30C7jv3kbjwM6PU72LbAKXiaACczskTLJLNM5lVqUFlKMElAKp68eIVjy4uY6CCgVC7hei6VYhHHtrGE4GNffIqbG7sszEwRhxFRGFLwfCRqXzL3ucfP8Kq7DmtykykYDscUSgXmp5tUKkXSNMV2bCxL4HseSkK/O6BU0t0EIQR/+ZnHOXJglmLJJ80SslQShTFzc7MMxwM81yPLJH/xiS9weGmO9c0d0jimOdXAFDa1HLKyOttms9Ol3Swz1aoRRVpiqivkiixJsW2Lzk6XyShEGALX05CHJEkplcpkmUGvN8i7EHoDeu70BabbTbI04/47DzGZhDiOjTAtvvDEs6wuzbIw1eD+uw5jYDAcjjh55gILc20GvQG+7xKFCTvbXYqlnGgpTDBMms06jYIHEoRp4Bc8Ws0GH/vcV7jj4MJ+1T9NtFeUTtI1MKZU0pLKvQMK9GxROA5ptZuQewrWKyWa9Sqd7pBOb8AjT+n3rNmskiYJSRxh2Ro44Xqu9qMSgmajug9isG2Ler2KZdv4xQKGUqRRws31bW0dYNmMRuP9uZqTz19gtt1k0B9iWRZpnNHtDPA9j0kwodVqgNyTyxWYnWlhuy7BJOT8hTXarRqNeoUgSHnh3GXmFlpajuRqiA6o3HdKV+k1vCXl6tpNluenmZpu4HkOru8wXa2TpYpavcEzz5ynUavQmmqQpUmOlgcMLU/p7HQ0hdEgn6tIcV0bW0oarSp+yQcU9WqZMErwfTf3MpNUy2VubnT5ZyeexTxQ5t/8xFtoVsu0W3VdmDJNZKa0XNDQ0h/X1vTMnXHI//GRZ/jgv3wj01NNTNvk+fPXOLQ6T5pmeJ5HrxNQLldw3CLCgiQeI5MBlplhihJxmmIKTfcz0Oa7e845WZaXuQylUd2G/uwtz9Wp1cr7s12VcpmNrQ4z7SY7OwPWN7u867seYGRUKQvFtz94D8sPfidvfdPb+YsPfoj3HDyCYRpkWUoQjtnt7OIVPObnZ3BcF8fVQZTujOUHOHpL1Z8x7RsXTkKUgfYE7A159rkzLCxMax9KK4e7WBZZpn0pldRwCc93mUwm+yAZYeufDYWWYDlO3gnb666pfGZTEEcRu9td/ubTX+bY4SUcR1spKKnR+pZzi0CqMqk7hmZO8FRacZFJRSYTPYtn2Oz5GGr9Evtnx55B+rA/wnHt/T3ecfRc3l4X08w/e2ma5oAELXXdw+ebhoVhghAm585dotls5EVGTcLc2Njixo0NploNHNfOZ3kFftHPKYEmwSjkxDOnsS2LNI017dHSsmnbEYxHE+I44a8++QgH5jWoSptMOwyHA/yCTxxG+IUCruuyMD9HrVahWa9SLpfIpOShz3yBY4cP5oqUnCqdr/mPfuZLzDarutBhKIJJgJMngdV6hTRN+eC5F7h3rsCwP6ZULjLsD/EL2nfRtRR/e3KD17Wb9AdDlhbamKbg0qVrdLo9mnUNxnBcG5lkhOMQQ+miZ783QphC+50ZSu9XElSmCMKImdk2Zv5eLCzOkaUpR1cWmJ1vUy4X9Xys7+HaLsE44sLVbYq2RbvVxHEc4kjPbIL2XzUAKRWdTo9qrXyrO/dynbuvig++Opi2LIuC62DJiDAYcf76TT6xPaJdqdKebnPHsTvY3t6hUq4wu9CgUbLYuHqGSF2mVBYkgxGN6RnCKCDLEsqlIt3eru5aC5tJGJGoFg9+29toz8ywvODR6VyHpIPvekzCER//8i7f/cBbqdbalMtlMhnjewWyJCFOU/qjkFJpigMHDrG0NM/s7AFOPP0E8/MHsC0H1/GQUtFuz3Du3DksM6Xg2iSTgd5f81DJzrv7w1EPwxAI4TAchxTLDUaTAN/3KRZKhFHMqTPP4jkuF86f5vrVK2ysD1iaO8AzTz7OHYePEoQB/e4m1WodkPv0c6mk7q4ber7PFELTZCXapsQApMJz/Dw5N3MVhI3jF2k0ZxGGYuv6gMfXv8Sq+zbe+qrXkySx7r6jVVNppgtYjuOTppoJkMS6SPSVx06wurxAsz5Fu73AM889jcJiPOhx9133MgkmVKt1njv1DPVanQvnzrOysoop4LmTT+H7Po7lEEcRvmNjGIpafYp+t0cYhbTai3iFwos4EG+67y38/P/8S/zQD7371np7xbjza8ejX29eTtjiti7hbXFwTvx9kTye2x6S/9uLzo6XPPZlY/5voFCyF3vrzuJXP/5bPnffur5p13gScKjV/IYfr3Lytl/0aDSqlOtVTFtXxIMgJEthMo7Z3NzWni2GggyC0YhWq8x0qYIwBTc2Nhn0AgbdMfEkRaXQ7Qy5dPEmDhYbO30sA7qdPiWvwM2dLT712FMgJbaw+M5/cB9ZprCFPuwa9TKdzg6lsgaDbO9okMtkGBNHGaPRJPfDUghhk0rJ+9/5Jj3YbumKmvbiyvj9P/+UrjILwWA45r6DywjL4tjxQzi2x9Vr2+S8PFQKrm+jhOLeew8SxmNc32YwHKKCgGgwIhyPGfYHNBpVlmbmIVFE0YQ4jchSByk9utsDqsUK/d0RJ89eQjgGr77viA6KLYMXzq/lkiqDWqNEq1bGME1qtSqf+uKTZFInXfOzTSzHpFD0sCyLs5euMtWuE4URCqkN1LOU62vrPPrMeZ59/jJX1jaxbN1JvHt1EUMaGCnsrHexMFBCe7SNRnqWaDwOdUfCMLGFBqIIS3Dw8CKD7U0smeiKeNEnlYq5+TYnzp7Hc0zWr2+QxCnDUQAmbO7sUqlV2d7uEceplieOUwa9CQWvhGlaJHFGb6fL5XNXeOzxk2RJxtLcDN3dAVKBwtCzOxKOHTyAZQnq9Sp7yOXTF6/S6fUoeAXCccwzJ1/gU488iZSK3d0BwSjiLz72CIcOLoEJveEA05IcPjzPcKgx2N3dPplMSEKJbdogwVB6BjOOI+YXWpTKLlKmpFmCYUiSCISpKZfnbmwwicYMhgPWbm4BOvjKkgyVzwTuIailSvE8HdzPzNU1NCQHeBgGeAWLNE6IJ2CJAk89c4FfuHyOj/36j/Oe1x/V95IZYRyi8cpCB9jCxHEcbMvGL3q87zcfYr7c4zd+dAXXs4jTENO2eM39x5AYXL6+hXAsPv65NWy3xmAQkMURtgWd7g47Ox3isEPBlWh6u8IgYTgaYArF5x95Ftt2UMrCyHHQKIOLl65TLPqMx2NG45gkhY2tPuVCGdvy2O72eWFtm/MXrjKKEr7nHd9Glikmo4zBaMRTTz7BBz76CW1yb1lYjk2zPYVwXBSCVBoopQ9wQ6GDfEP7i9m2yWDQJy+9Yrk2hik4f+EyxZLPA6+5B6kUcZySpVpGKZUkjiIwNFzEFDpBLZcruV8kIA1QJkpp2wQDDXQx8llF0zBwXYcwCLBti6npFm9+/T088sRTZDInLZpKJ6WGPmwtw0SIXEqZQZZI0lgnDeQ2HQba/HzYH+o1mUt/DcPAECbj8QQpM8qVkg4m8308DEOyTOo1ZWp/O6n078g0TZ0YSwNhOJg4JKn2TRuPJhxcPaALJ2kKeTFiMZeSZlLmRD9Hy1R1/wwlDWSSsr69w9R0k3qrjmHbbG1us7u9SxInOdXU4v67VklTTSDW8KGY1lQLhSYXZkoibIMoCfDLDp7vaviQsHj3O76dJNMFF6TBoD9iNBqjFHzXmx5kYWUR0xYIU2GZWoq3ubFFGEXYBRfDtFheWGD10EHOn7/EJBzS7e2SxBl/9Lk1/snxJdyCw4P3H8MreigkCwvTzE9NMe6NMFKJkBnImFrTZzwaEOf+Z5YlwDIxHT1Lq5TUfq5hiMoydnf79PojoiiiVK9gFhxSEx1wjxLCQHJlbZudzpgfe/cbmJqqYBoGv/8XD7O50cXILJI41fNMeaR6Y2v3RfXdvdGOrzVbf1sPZP8KhgFpnDEaT2hU6yRWgSSRvPnBVzPTqjM/N8Pd976ahdU7+I3f+DWidId3fPd9HJhfZGdrTKnZIElDwnBEo9HEEBblUh1humRKYlg2zXabarWAoYZsblwhDPqAZPPmdTzH4Cdf9UOEoyHCSImTIRIII0mSpphYbK+v0+lscfHiKTq7OwjTolyuoxQMRyO2trdJ0gzLtDl48AD9/lUcFwrFSl5AuaXBStOUUrFKEMRsbG1x4/oaKMFUs02YJDgFH7/os7K8ipKSw8t38JrXvYWlhRrFgsNrHzyOVBG+K1hZPYLr6v03yfYotHqGFcMgikPCYJL75lpUy3V818NQkmA8QDgmmDKfU8uoVCq4joVlWfz5mQ/yjsV3U6kVcvK1tk6JoglRGGBbuqBgWzYFt4AwBCiFlJLXP3g/yExLlC2LgyurvO6BB3jdg28miCIuXDjH41/5CoY08WyPI0eOkmQBppXy5je9Bd8r8NRTpzlz+jynTj9DGA0gS3BSA9/1GfS7BJOJXlO3JT6m+fWToG/GtSeX1gXGW9feSNIr+e3d/u+vDHv5/9f1321yl0n5VSbg5m1fkq9tEi6/gcfsXUrK/a/br725HeMVW9gv/3x7C1ipl3/215T9F/8Pw/jq5zCMvNuda4kVIBXFQhGUIMtMskTx0GdO0O32WN/YZnq6SblU0PhuTIaTgN1Ojzfcd4zt7V08T1CtVUmTjDhIGA7H1OoVwijmXW97Pd/+wHEsW9CeqmMYBnOzLd75xgdI4pjdbp+vPHsOYZvamNzzcF0H33Xodjps73aYnWmRpZK1G5uMxxM8zyXNspxuqKtgGPqQG4/HaNR4iO+7vPWBw3iepg826lUOH1piPByzdukaxUqJUlH7743HEyxbUCyV+J43vYatrR38HAjh+y47nQHVapkszSiXC2AokjilUPQBXbGbjEOCUcpff/ZJBj2NsD+yuqiTsDQjy1I2NndZ29zh2Rcua9sBy2BlaYYkTnjqmee52R3gejbDwZCFhfY+uTWOEu46uoIQAqkkjz99hsl4guc7tKcbvPMt93PnkSWubu0yHgdcW99iaWmGJM7Y3NylUikxHIxAKaIoplwpYhoGvu8wGo70esgPRGFpw/bhaKwJpQNSFgAAIABJREFUX4BhCUQ+g/LONzzAa+88RCk3VC6WfBzHxXVdurs9vnDieXa7fT2bZgoqlTIyk5x94bKumtsW87NTCKDfHxEnqabjSXjoC0/heboTVixpjz8Nk9DG94cPzPK5J0+xcXMbx7Y5fmSZNz5wHAVUcuPwn/iBt2mCZdHXnxuhK/BKgue6VCoVAPq9oYaGxCkb67tYloXv+wjLolwts765jbC0yXSlXsQQiiSe8D1vvodas0Sh4nDk4AEwtBwvnESYhkl7uolpmrienukLwwjDNChVCgjLIsskUZRy4dJ1siQlDmPiOKE3GPFvh0O+/O9/WndAbN1NxNBdFiF0t6nb7dHt6mTYMAX/+Lf+lt/76YP7cwmTcYAwTZ1g57Ncx+9YZtgf8ZM/9jqiZEip4qKUAdKi3VqkWi5j25ClETJVeq7TVBQLPsEk4PK1HmEYE4WRJrpqAymWD8zR6fYoFHzSVHHu/DrCFJTKRfqDMYcPzvJD3/tqlpbaDCcBSumAwBYejmXzoz/yY3zf29+CzLI86bBBCrJYMR5G+/Q5Y28gJT+XtfG3pFwuYuazwTJfKwcOLCIcQZomBJMghzbp2cw4jPS+KpUezs+7QXtyS8NAz8MYxj5kREntUyjVXsCV5mtK0yOVUqRpwoH5WT2Pa2lwiu3qjpqBxDD091nCZNgbsLW+zccf/iJ/8dCnAIM00R5XwP76j8OI7m4v77hLvJLeawxTyzoxwDANPM8jCAIc30PmHlRATjnV/z2ZBPleouW1AL7vISyBzDL6/SFZ3hnI0ozZmTbFslaAmLkcNgpj+t0B49GEIAh5y+vvxzB1RXzQG9Gcau5LtOI4Zjgect+9x2m3mwRBgGULhsMRSZpiGAZhGO1DaYbDEUEQaviOkvuP0XNT2vctmIQ8f/Y8YRhq0mOiCyQbNzcoFQtMRhNarSZxnJBEMUmqf2/93pCNzR7T0y2azTrbW7v0r57mud0dOjsdkiRhMtJ7oGULxpOQze0uWaYTbVuY9Lo9qnWLjADLBYTKk39NJEUp3IJLq1nDMCCMIvrDEZnMcrWEQb8/IAr03OPFi9f50rPnaTerKBLq9QKGkLz3ba+mO+zzxx/5DFmWadia0CAgz7FfrkHwta/bAG9auWng+Q62LYiSiN6gzws7XYqlKp1uhw998INcuHCRjz70ECefO4ltlVk5sMpMu03Zb9GorWB7TYJghG0JMJSWvEcZKINCocxff/hjJKmJTCW7W+s8/PCnKfgu5UKVmel5dvs2s0sV3ZFUaU58zYiCCVvb64wmAcPhhIWFVf7Bg2/m2tXLSDKWlhYRlsmltXNMz7QRtskL557HcxwW5haRMmE47OmZUlO7GqdpRiYzMpmSZhnNqXnqrXk0lTkkiCLiJCHLUmzbxrYsgmDCznrA+vUxZ06coeRUsTIP1xKUCj5SZriup7vIUtLr7eC6nqZg5lcUR1i2IEpCwihAooiTSBddULmZusyJmga/+qHfJs4k00tFwijcL3BYwsoLPCBMC2EK+v1d4iQmjkOiKGD9+iVQklhKBuMx5y6c5frNmzzx9FNEccTJU09z5533kskM19Vn0rPPPYHrOIzGw/3n+rY3voHlQwe594HXIFyHOI1I4hEqS6hWqriOg4mRv3b9c/7k63+WC+cu5QXSW3L1l15Sya+5dl+pUKEMpYF0psgbcC+RSUq1//X1Pwov/xy33+Pr3etFCWLeEv964ML/1td/t7LMl7tuXy7qtj9fWvH6Wt/3d7nkbYvs691DvczfLHHr0L5dlnn/1Re+/pPnCZ1l6UNUSsmTT5ymVSvh+T5ZZhAHCekkpFTyeOL5ixxdnUMqsB0XlQlcV2Dbgnq9hi0MTCFxXJ9PfuFpVhfbPPyV56iXfTq7Iw4cmMV1bYQjCMOYmzd2cFwLz/O4dm2D1dUlhsMR09NNCr5DmqZEQUCp7DMaD5hqt3PD3IxGrQKmYjwJsHNMtWVZRHFIsVwkSzM81yXNCZrCEky16wwGQ7JUYVsWKMWffeoRWpUijVqVSq2yL7NyHUGSaBpftVbSXm+mwLYdZH5ImEKjd+MoRimDTq9LpVpEKTh9do1HTpzldXcuUa2U2dzYodlu6Iq40NLIqak6zUqJY4dXuH5tk1LZo1wuYZgmM+0mD9x9iFNnLjI3N4VpGXkgKdje6tFo1fJA0yGNE+q1CsPBkCjQWGjPdzl18RqmkvgFh0ajytZ2l9OXr3FwcZbtTodKrYxl6kRhc2MLUymGw3EuPc0LCUqbaM9NN7Ech8w0UPlKKxQ8DAzOXrjO3GxrPzgUlsC1HPqDCXcdPYDr2mAoLl26yXg05nNPneT8+gbL0016/SHd3gBMg8WFGQbDCaYp+IO//hzv/543aklbENDZ7XLh8jWmp5pk+Rxba6rOkeV5KpUSlmViWlrOpw8tbfQrLH2w266N5eikzrIEBoLJOMSybYQwc/AKDHoDHMvC9zy6nR5hpBOASqnIeBLg+9pP0XEsFBqi4PouSZrgWK6eF5TaAmI8ChgMBtiWlc9kmJhCH8pKZZiWhZQgU8mgP+LUxTWqfoF/fvoCXaPLL33//ZSrBYTlcObMOeq1Club21QqJfxCgc3NXcqlEg998jGudwf8ygdO8H/9yCzlcnG/qhlMYgq+TxTHeJ7H+fPXqFcreu14BuPJGM+xsYVFFKb4fplgsksYh5jCRlGgVNZyNwOTOEq4984VTYDL5cmObZNm2jLFEoLJeMLDj5zFdS1Wlmc48cwF2u06WZbQaNY4c3WXprBZmJ/GcVzGpVWUgj/84z/ifXffxXg01hVWZbF+Y5MnnjzJ06fOc+zIQQxzb6g972LkMxd7lgyTSYBlWdiOhSmsHGagA/tiySeJs1ySo+EktmOTn8ooJfOABN0hMhSTcYgpTE2nNDVUZTjQUkiF0l3NHFoiM21g3KjVyNKEar1CEiU4nkuapKRxktOB9RyQnnOzSeKEg8uLrMy18b0ChiF56OEvcPH8NVaXFzFNWF/f4pNffox7jh3Zt6UReVCRJtqDEaWVSa7v7tMx92ZGbq9m73nu6ZkVDZyxHO0/aBgmruvk768OXHQ3T88B7hkFW5bNBz/6MAfmZ5hqN7m5sUmtViFLMrY2tqlVq5y/fIWFxVmSOKHRqOVSVpn7Bbp4BZ800QULy9LEQGEK/EIB3y9w8eJlatUKQgjGk0BLvU0DmUoqtTLNeg3Xd7AdK09uodvZpVIqkmWKLNV79GQ84fM3rnHXUoV6qUjRLTCajIijkEqlye5Ol4+d3+IdC7PUmzrRMIS+oee61GqlXAGisF0Ht+AjbEUcZ3mRU1tadDt9UHpPFsLEFkJ3mFXK0tIMgCbG5kUKz7UpFlxazSrHV+cpljx2urtkaZaDMmwqpQJLU3VqjSoyy/bvkUQx9Ybep7+q+fBK3YjbZWl7UYRUmEiKHoyGPf73zQgvNfiVf/2vOHj0KKuHDiEw+U9/+iecPfM8Tz/zFN/3HXeys73N7/7Bx3jVqw6BGhFGAZVyjbUrVzANk1KpRn845vg9r2On7zMJUv7sP/8R73z7g2TpBDOLiYOEX/vj8zywcrcet7A1+VqYWqXjFEoEYcqFizfp9rssLR8kjmJqzRaTQMNt2lPT2I7Dzs62npENhlhmzGjQoVysgCn3i6J7cZJSijiVpNKgXG0zmgS4roa4Pf3MEywtHcgLDgHj4ZBHn3iMekGwtDyPMCO9DwiIIm25Mwkmei5eKTy/mHtD5hTSHNQ1Go/0bDeaQGyYNhgauCXQBSXbsfnVD/4Wx5frhAODb7vzAQzDxHFdVJaRJDGe52sGQt4dtCybKAwQpqVJu5aFbbsYQnDh4kUMx2ccJqTKQiC58657AFiYW+Ta9TXW169RrdWpVmuoTM+Fb21uUCwVuXzlAq1mgzRLKPhFOlsbmJZNdzRmbn6JJFN5QUfvQ+VGgX/9736VH/6h78cwjP0986UgP71mXwlH8tIl+2K58a05uD2Y1O2X+bLft5dvvej/vdJzvFxy9nfuSP79kWV+K7m77XrZ5O52AMorbJz/tcnd7YTLrzeL9+IFeWujuvUa9KuIohj55KO3vu+V7psnd9r3CF3FHG5iC0Wh6GLagjQKqJVsLNdhFExYmpvGRHcNxsOM9Z1t5uabXL54E5OM3d4O7ZlZZutlDKWoV31m55ssLMyRKYkyFYYwSLOMVqNOqVpmMphQLhWwLcH8YgvhCHrdHts7XZr1KsP+AFRKBgyGI1zPwy94FMsew+GQarWKMLWBaqHsEoURjuWyudHRcwmm9rXBSHFMgevY9Lp9fM/hVUcPQJZRqVWJ4ghMsG2TMAhIE5PNzR0sB6rVsp5PQeCWStqM1HdI4pg4iihUNb1MmC67Wz2O37GAbcW06lU6nQGPPXeZZ85cwUahVIbvOfnQrybwObZDkga4rseVSzfodYfU62VazSqm0BIPA92daTTqbNzc2q+2F3xvX6Ln2mI/GX31PXoOrlovYbkOtVqVpblpbNfC9yw838FQimtXbyKzjCgI8RzBYDDRVgS+h20LLEvLx1LAK5XJlEKmCZPRBEyLlQPz9HsDXFsgs4TxKMPztelwoejjFmySLCYeJzRaFY4fWuS+Y8tUaiWq1TLlcpHp6SamJbBdPah94vQah+ZblKsl3Nwnb25mCsvSEjGZZXi+BwasXb6mu4YVbdFgOxaZkty8sU6lUkDYAqUMslRx4eJVZCJ59tQVfMfViH1LsH5zXXvymSae4/ORT3+F7Z0hd925qqWHhkmn06dULlEqV3AdF9d2sS0HKQWm6SFlxvZOh2LRJwpiHn36eS5c3+COlSVMQ+RgIz0bmaYRpukiM3j++Ss8dOI0nyxWeGi7w8++tsGP/cCbKVUKOK6PyjThsFIt4/seWZbS6XRoNZq6CyVsJt0r/OzbVjl77qom3boun/rsMxxamiOOEzzP06bSm10coZO0YqGKMCyurq0zGo9pT9fJjJQ0ChCuwnI8LLuOaQukkUImADNPnAwsR8un9QEPcZIwHo6RUlKvFalVfTY2Ozx7dh1UwsrKNEpJRpHElA6f+uwJ7jm+yqR0BFMYPPb4V/jelWWdfOeWIX/76GNkRsz3f9cbMM0s9/3LdzrDwDAVYRCAVLhuHuiTo7ANke+x5B1zLTMWhgV5cocEAzPnlejOlMyTAmVkuQ2EzBMIhVR78BGdYPZ6A919dPQcspSKJM2oN6pkaYLtuBhGXvQQBqWSR5qGCEegUNiWR6FUxHVsbNvA9YukSYzKJIcPLFNv1siyjFq1wrHVZSzX3t+7RZ7kYoCwbjM0z73v9k8Ew8xtL0AhSZKIKA5wfUuTBZD53KCeZSSvWO+BCbqdPq7nYhjqVmc0k0zVqrqTIKDVbu6bYT954gytZp2DB5fpdrskqV5/16/fJIv1XGq328d1XbyCVj7ozr5FMIl45pmztBotPcMr5T6Y4b/8zce559gRTFMX1KI4JJOpTrQN7Qfm2yZZktDp9CmXy4yHE2q1MiIYcLa3zZ2LLS6d6/DFJ07z1je/GmE6XHjhEn/w2Uf5xTc+mN9Lq3qyJCXVzvYoKbFdmyhMEK7L+ec6qEzQbE5hCYFSIaiYYqFMr9fPIVeSjfVtpJnhOBaX1m6QhBGmlGRxQhyNCcIA1zIZByO6/S6OWaRRb1L0S/h+EUOZVMplbamhdHd2Mg7Y3N5leqqBeonE7OV87m7FB189c2eqjP6gTxoPMFTKwyPBL/z8LzI1N0eKwfUbN/j8w5/mo3/1of+HvTcPtjS96/s+z7tvZz933/p2357eZpU0kgZQRICwiBgkISmYJIaQ2NiOQ1wJBpcdyhUDdpFKYSfBhY2CnWIRaEGgHa0z0ow0i2brnq27p/fuu29nP+/6PPnjee+dHjEDMrZcVKGn61R13fue95573+23fH+fL//d33wv7/rhE9T9VSzD4ujxZSoNRT10ybIcQ2jrjNm5Rba3t/H8Fg8+/Cx/8vkX+J7v/l5a9YDpSR+Dgt/7d7/D8SMr+Dv3UmtFmI6DbkALlMoxBVhBnbPPPo0TLiBsi6nZGaYnZ0kzRZYWvPjiC8zOLlJkkv5gSKNSoxrWuHnleRq1GrZtUEjdYXdsnWQZZTGjNxiyeOQEhuURRVWKPOXqlSvcdfpuDNso5299hqMxC0szDPZvcmxlichzMK0Mmep59VwWBGFFx0R5gbA0GdMoC12O62kZuHDZ3FgnKQRKuFy4eAGUot2cxhQGeZbxyx/9dSYaPtfWuvwvP/LTej5WQZomhwR0XTzMD4+1VJLA88myFMt28P0Ax/NwhaDZaOL7dTZWb3H65Bnmlo5QrVZIs4Tz51/krtN3URQZCwtLbG/ucO6Z5/C8ANux6A8HzEwt8uJzF2lPzvHsuWdYXD6Oa9uEtSbnXjjL4tIKoLA977Dw8PZ73s5nvvYZ7rvvbgzD4MEvP8jKysqrYtBvJ3f/6da3k7vb1msld9+MPlc/Iksq5kGF6LWIlkK9+pS8TSrxzXy2w5vzawBVtDsU/P7v/QGn496fvz+pNdOmbaFyhacEnhoQ1usow9LkJWER1avs7O9w5uQystDt9uefv4RNhu9pvL/n24RBQC2qs7W+CqZFc7KtK6/C5MLF69RrEaZhYpat9VwWhK7L40+e5+FnL3Py2AK5TEAU+KGvMby9hDjJaE63DymTge+RjGOEVAx6I6rNGoXUtDiZCxwvJEtG1OoRw/4A0xCkcYpt2hi2yWCQ8Zkvn8MAarUqnu9hGQ6O76KEpMgyVCH5wCeeYLfX565Tx5BSkWZjDFNSJAJhSFbX1qg3qnzq4ac4tXCMJEnwql7pG5fQrIeYlu4G3nvnMieWpvEcm5nZJlmegdAPGcs0ePnl67QaDbrdHhMTdXrDPoHv4bo6gXUcE6EMLNNBUhAGrjZE7/bxPQ0OCXwfDC0Nqzeq5FlOvzfEFAWObZLFCTvbe4S+z/r6Po5jYyiJbRgoAdNz03iVCMPR5ueDTg9V6ABUWBadTh+yDFki0sPAQyAZjfpUKi5pPsS0FFGtQV6kOB6kWYxlmAy6Y4LA5ve++CgnF6exbJudzQ7xUMuFt3d3UCrFFAIbn4VWhMwz9vb2CXyHqFmlMKDIJY6tg2XDMsmlJAojwigkiwv6nSG+59Ld7TA52Wa3s4dtmiBsTFPQ6faYmZ2kWavQ6faIIi01nJ6ZBAW7ux0UsLw4xfRknTD02drapdqIyHN9XkopsRyDtIgRligH3SFJhzQaVT1jYToszc5QcQWVyAPL0l0HVVDkY4QSCKGlOz/08U/Rn5vhQ//4nbzvPzvBkaV5lDC0lE5K0ryU5lgWvd6QLCm0n5Eh+Pv/+rPEG+d51/fch8wLooaN7Zh4rsPsRA3HtnBsC9exOPfcy9SqPtPl/OZL569QrwYM44wsV/i+TTIe0NkfIqSJicD1jHLeywKRYhqi9BfKSVLdJROG9o6yLFsTXOsV2o0IlNRgocDh1PGFcl8Ge72YhdklvuuBezGEonr6u/ADH9d2WOx1EaaDIQRZnnFsaZ4TK8cwTbv0DEx0p6pAQ3jypOyoBEj1ChnNMEyyNCXP9HzdASQHwyDLCzxLEQ86dHr71JoVslyT53RuU2ZC0iDL4xKpZqCUnjFTZfy8t92lVqlhW3aZY+kOkutp38U8UZriK3MsR9sQyFxQZAVBENHd6yEMDcIUpsD2PS3/LImDhSwwHZNnz71Is17Ddm2UzBEosjhDplkpUTKQiENYS5GXXeEDtZCCnIQDqrhQYBsWu5t7RDXdsZbyleecYVoMBiP6/RGD4Yj9/S71Rg3b0ImwaZqkSYrlmLRnWocd0E6nhxf6LCzMYNsWuzt7BEFAGFXo9fqYhkmlXtMkQqno7O4jpGI4HOO7nvblNE0uX7vOyrH50ipCd+0MQ3Dt+horiwvkaYLrOdiug+f7JFmhKZgY2K5LkhQ0my26nT61Skgap8wFPr9x9irvessSuRzzwJtPYTkBGIJTxxf40oUO75lva7KhMpHSxLJc8jjGO0jcDegPxriOx25nj/XOFqbItfdramifyb0ef/jlr3Pn8ixe5JIWCYFjIJTgi49dYHN3yOnTK9iBjygy4iRns9NnZm4OYVhcv7lNe6KBYQlymWHZJqZtgUxQlgUSHKG99szQeSUMuE0adhhXfBPzREWmJYp5PGSw2+P/eOQp3nT/99GccfGikFqrxdLCUYRhMjOnePjTn+DE3FEi28IyJYvTbTZ31vFdjzyL8SyDIhnQ62wiginOX1ulYIVPf/Kz/MSP/yBOfoNk2OH0XQucu9ZluvEGLc8XNnkheOjBx5man8Yp1QbXrq6Sp4J6KyDNRrRqMyhLcfnyRe5YOcH5F58GWTDVbrGxdhNXxIShjTAMbKEQRQ7C0EUhKYnjIQpBWG0RY+FX6po26drUmlMYlkGR5Tx39ixTEzOcff5rDPsjets7LCweQTHGxCZ3LQohsRyLdDzQICclKJSENMG3bWzDpNMfogybIssYxCPyNCUK6qzeWmNra5eJmTkKNeD9n/4Af/fHZvjSU3v8gx/7GVzDwSgkRZHiOJ6WSZumtkCB0txddySzIkGYgizJKGRGEg/IjZwCl68/8wyVqMni3Ay11iQb6+ucPfskd9/zRvqjAa32FKZh4fku3d4OS8tHkbJgffUKzz/3FDkFtXqDerVGMthDiYzBcMSJO+7BDSoIyyLL01cpA7788Ff4nne8DYFgYWG+nMkGSqXAwTn6eund68XbxkFCqEpP0nLu9+B1YPdyYPnyjWH17aG2ti8q4Zbytm+UShAtDz74ua+OvQ9eCvM1vvrav9O3k7tv8fqLJnffzBLl9q/qwL1GAqa3/Yv2+W7fyWvtW+/3V/7pr/DOpZk/dxcKofcjC/a2d3jh/MvMLy3ghXUs10cInfQJBNWoQpFrY97xMGaiXUcYUG9VWdvcodmss7PXIc0ymo0qQRSRFwVXrt5iPB6zsDCJEpKNrW0ajSqyUFimzWg4xEDwlvtOYgjwQt3RypMCxzVBFFSqIXt7fWzT0Tj2IidJUjAU7ckW43FC4Lt6BmQU89DXz7E43WYcJwSBrymCrst+p0dtoolKFctzk8zMtClkzmNnXyTyPGzbZm+7QxRVsAybk0eniTyLPM9wPZuwEmkrjKIgjsdMTrZQhcGp5SNIqbh09QYzU00dhO8PuXptk4nJlgZ2ZCmVqrYFeOyJi5w9f4OVpXltkqtgot3QBMlWjeFwSKvVIPQDCinxXJ80Ttnb7WlZhqVlYgI9pxYEHkEY0uv2tTS0GjIcjjSGPgpwPY/xKMYwDJrtGkVeMDnXBgnbOx0ajRphpcKgN8L3Ayzh0NnrM9FqonIt7TONgmpVe/RkWUGz1SDNC5woJKhUKDAYDjOCqEaR51ilx5ttuQx6CZWoiu273HfHEq7r4Ngm1UrIB//kqzx7/hpvu/9uTGGhAMtRgEmrXdedVwRbWx1CP0KYWpbkuS5K6i6149ulB5mWkK2ubTMzM40wLRxPS2mLpMAyBY1GDSX1PoIgwLL0nOZorOc3KxU95xBWAj2blBfU6lXiOKFarwCKokTtD4ejQ7pmnuVYpg1oiV6apvihSy0KKAoNtDBNLYdDKUzD4nPX1/lXly/yT977AO984yKttvZZNC0bVc5EFYWuEAd+QJYXOLZNEPikScqP/vJH+K2/fRdvvfcoru9hmODaNsP+uCTCQpLleL7P9eurLC3NsLvfI4lj/MBjouli2yaTE02iapVBf0S92SBX2uBalvMUo3Gq51KSFNvRps3CLB++pq2TKin48MceZW6yybgfIwSMxymu43DuxXXOvrTKqeMT2JZNN5EsLiwjZU6axfzJ2Q3e9a53st/pUClSjrQmdDfKfEU2eUC6U4BQWhppWQfHXb+ULLQ0ES0ZNU1LSxDRf3MlREk2tMniBNvRZsSm5XAgbJdSYpkaGFLkBZajASpIBXmGKRSmkvT6Qy5fvc5Eq1lumyNMgwM0tut5pHHKRz/9JU6dWgHTxrQdDEtguQ4yEziOh2nZFAdByG3PDtMwcDztidduNrAdE8uxGPT6RJVq+btbKEOAqbuNlqGQRa6TgQMc+EFghVnSFg1cz0PJgqgSvZIAlHO2QgiQBaYheOrcc/T7A67cWuXMyjHssqvvuq728TJNxoMxO9u72pLFtslL6IrjOgyHI8IoRCrJ7u4+vu9rK44sxw88tvf2MG2TRquKUR7rIi9YWpxBiNJqwgCB9uK788SKVih4uruWxRkGBpZhokrPOIWWipm2w7/948/wxEuXeOBN9xDU6nzo/Hne/bZTNOshe/sder0BH/roV9jf6/C5F27xM/efIs4Sur0ejiPY39+l1mhSSEWaZfQHAyphgGUYtNoNpica1GoRKEV3f4DjeAShx5vOHNdFTNPG84IS3mNyYnGBUytLbK1vUS+T6iQtmGy3UZnCtRyarWp5belucSEPIDKSTneAUPAnDz3B8uIMbuDcXoF+jXDgz48zBIosTbh5/RKGEKzOHicILO5ZuoOHPvs5zhxd4JEvfJDr578K8gxXXrrId91/CuHu0c8HbGyu4bkOTz39NPMzsygBtVoTy7apTR5jq5MSRtN83/fcT2/3AjtrLzE91WY02uWjDw04NXWCLEuRIkcJycqxY9iuRKgCaQT0B30Wj93J3MIirfaEvjxUzsLsAo5j02y0NVGz16VRC+jtr+LY+p4uVK7DGyH0vVkWmJZNbzhmav4Uhl0lL0xuXrlGJajxpYc+w9LiEQzDorvfp1FrMtHSVh0zs5MYIsWxdCetv59x9fx5atU2rq0l2kIoCltgOT7jrAA75KtPPM36zj6Li1PYgU+tGuHYglqrgePZ1BtV/s8//g3+wU8u8qu/d5VffM/fwVAGRZGhVE5epLpwZJg4pZeoaZg4rkuwhpwrAAAgAElEQVSeZzo5yRWmYWMIQxMuvRCZFajCQJoZnucSZ2N2dno0mm2OHzuBY9t4nku/32U8HmPbLkeX70AWisCPSJOU73jgu7m5eouVlTsYDDo4JtRrdcbDIeM4ZnZ2AVkUWIbxqlh5rrrI/N2TWoJsWreBgErC7eG59/rJ3Wt//eB/r21C9pqEzNc7719vW/HK91+r43f7Urd1Cg1T+4/eDj26fX07ufsWr78qyd2J5x6nFQTfxD70gz8bj7lxc437zhwHy0VikhfQ6wz4+Bef4MzKApblkGeSJ5++wESrRhB4FEoeosFXN7Y5vrJEVNolHCDhN3f2WJidoECRZxlTU22GwzGWYWIZNq7n8OHPPUHFtZiaaYOSPP/iJSYn2vT7fVCScRzjmC5f+OpZFqfbuJ6NaQn2Oz18z8HxPPIkww888jznzpPHsByNmI7jBMdx2NntUK1WoFB87AuPUXFdGo0qeZGzvrPL4sxUaZg9CeUwsFCSwNdEuTAKMGyLolAIJfE8FykhiTPtLeVYeI7D7u4+UejhWB61qEpWZEQVbZTuenqOcGluhsAxqTeqZFmCMCEZjwFDW1A4WnplmiZ5WvCBP36YOBlxbGEe13VRSrG3pztvDz55jul6HcvU3lFh6JUJAcRxShB47O32qFS10XW309N+aGsbVKMKSkpczyWN85KKp/jwp77MG+86RjIe43oO4zjGMKQ2fjZN1ta3abYbmKaFUlKTBktj+5deunJoAp7GOTtb+5x98RorR+fBNMqKmMIUkIwT5mdavOmu42Rxget5DAcDvMBEKAvXc7h69Rb1Ro2Pff4pNjf2WJhpsr21i2PbvHz5Bq7tEFS8Q40/QtAqjX6d0GF/v8N4NCb0A+LRiDhN2N7eY31jly888TyGzBFC0Z5ogFKMRiPssttl2yZJoo2qs7zAdR2KotCeQuW84wFgIi/yUnopdGBh6JkmE8FwOCasamPaNE4YJCn/w6Mv8I//7vfyjrecpN2oEoU+/d6IcZwwGAzodXpEYVjOTWnptCrhAP/r+79Iy9riZ757FpTi7AuXmJqsY9omG2s7TE9PoYCr19Y0TdGy2NrcIfAcXZBA+xyGganR9rZNmmrJ4mA4pNpsUI08zr1wkenJNn4YYpYm3Y5tU5RWAEmSYlgOWZphCJOpRoWvPXaRu+86Rp6lVKKIwPdpNQLuu3OJ0XhItVZhp59QrzSxbe3j9msffBDXtfkbf+O/5bknn+SB5aMAZaBuaNN6pfT8htRzcB/9zJc5dfyIBv+oMtk0tK8ghp5DMy2jlErKVwW6RS5ZX1+n0WzoLtLBvRABUm9/APcolCSNEzzXpchSijyls79PrV5nerJNnhfEcYLv+3rgX+jiz97uHoYQeJbBzPQE67c2CQIPVSR09/cwsen3hmUXVBMwD6RXB+bqqgS8WLaeawZwPY9Br4/rexTywKRdzwarIqPX6eAFIULAoDdAUJqwK1BSB/Npouf98qJAGFqi6/mehnMpoDRhn5+e5MjiPCeOHtHHQwgMYXLj+i3W1jdpNOp8+sGv8Nb772U4HDEejsiyTM8IyQLHdXAc7VvpuS5/9PmHODY7y9rGJrOzU0SVkKgSkSYxaZIiiwPZ4YivPP4kS/Oz7O/towDX1fh3x9FUTaXQ0IbyeStRCAFZlpf3goKTiwu89Z7T5HnOwxdfxPD7fOddR0mSMe2JFmEYkSVjHnjrfXzy6Zu858gMlqEJ0ZVKRBj4DAYpRZ7jhz7j0QhDwM1bG1SrNZQqcD0HwzAJvIh+b8SFK9cJAw/LsslzyaA/wvFcLFvLiaXUMmKZ5fhRiGGYDPpjUPDlr51jZWW2VAaYGAJ29zoYQuBYDm7oUmQ5l6+tcerEEqZj/QcndwYgZE53b5tOr8On1tZ474//VxxbnGNmfgHXDTmyOI/vBvzO73yE5fmQe85M4lQKqo0ZPLOJZY6Ym5svCbqC/mCE4/r0EpfpuZPMzC1jqi4y2yQZbiIoUCrmA59b57tPvxnP88qikdL3FlOSpSn9WHDj+jUKZdNotWg066AUG+u3kEpy7rmnuHHrKjMzC0ipcIwMzzbo9TYJwgpCFQhhYrseCsVo0MWwfKJai7G0MGyfp556knqlglSS7d0NFuaP4Dgejz/6KIuLR3j27KNsb11nY3WN+bkZZJZg2x4CPdcbhRGGqX0mddfdJBkn9Hr7gMlwNOT0mftxbQnCIHBdUBLDNKnUavzfH38/v/o/HuEf/cbL/MKP/PekWYwpLUxLoITCMB0tCTuI1fIU27JwLJvhsF/K7SWu45LlCa7rIKXCcz1297aJGhNcunKdmZkjLMyt8MxTj7N89BhJmuA6LrZlkmUFURjR6/ZQCHZ3dtjZWqU9Mc3zLzzHyZOnuXjhLK5jMuxsIKXC9yM6/SG1eqPsxr1yrnm+y9OXn+KOO47pj30IJfmPk9wZhvmKPFO99vv+Uyd3sigOgYmvtf23k7tv8fpmkjt12+vfZx2evmV1Wc8/yMOd3X7ApdSSCQFlcKJeZY5++ytNUw66BWY57A+A0HM4t39OA8Ef/N4HeUAlf8YFIsrPqR+OlmVy9pkXOXPiKMJ1kMrWMiSp/YJGoxHHluYoioK8KLh6Y4NHnruEoySTUw0cx2Znc5/I9wgibe5rlybBN26uUa+E5RyTg2Wa5HmKkkpDCRyHi5du8B1vOEGjWWXQ6xOEPkVWUKtWKXLwgxDHdtnb2+PY7Az1RgUlCoajMY1Gk92dPi9fuYlA4ZfBtxe4gGAwGBBGIaCDg7X1bVqtBkau2Njpcn1jneNH57FQVGsV6rUKvf0+5y/doNWu4/kWru8eSoCk0vMfBoqd7X1sy8Z2XT7+pScIXJNWo8VEq8Jo1CFLJY7l84kvPcbCdBM/8Oj0+lSqFZTMaE/UMB1DB4SqIMsyPD8ky3SlrtcbIITBcDjmDXeucHRpGtN06XYGhFFAGGl4x+ljuhPW6w7Y3tpDFpou5/s+cZwwHidElQjTNBmPEgaDMY7j0mw2GY36RNUIy3X5+Bcf447lBVCKO08u0ul0qNS0GapXdTExWV3fphqF2ldLKhzHot/pYAEqz8iTlIlGhTjPUFIHglEU8fhzF1mYbOB6pYxIKt25tW26/T71evUwoHZdhzhOsCyXja1tFo7MMR7HVC2LE8tzRNWQPMmwLZtzF68x02rqcybND/d9+fJNfMcGw8QPbFzHxRI2whQYlkEYBsTjlIlaxF13rhBFAY5tceXqLcIwZL/T035/wqBajVBKP7AOgBOWdUBP1DNocaz9i5JEzy1Zjk0yjun3B4R+xO5uBzd0uLq1xc89f50H3rbE3/qh+8iLvJwJ0bcK3/d1IOfY1OtVklR7QSol2NzY4kOPvMAvffgp/sVPLDE3UcP1bNIs58jiDCAYj2IajQpXrq0iZcHkZAuU4tq1NRYXprmxuqWTO6U0RElmGKZFIQWXrtxierKOaymE61MkA2yRE4YhwrQZjBI81yPLMtLSx9C2XGSu+MojZ7nw8i3uOr3MyZMLAFiW7qTESUKRaWy1zCVhGPLj//JxfvoH31gmF1A7/p38w3/08ywtLvDrH/ww7zp5Qt+ryk6YYZaof0MgMOjsd7mxtcGxpTl9Hrk2KN3pO4CbaJBOaXZdFIf0SaUkpoAgDA6JsJqWqSU2RVGQJRm9zgDb1rYpruNSSEkyjtna3WNisoWhjNJeQENWxqMU27GReUEWDxEqJ/QsJloV8vEQmSoMWdDtrhHaJoXUhuq/+4nPcPnqVe45dUILjUyhZ3bKucODWmGWZVpOZBhYjkWcDDWRr5zX1v6VorTGsEBJnBLeITAwDT17qMpnTpKkhxKpA7+/g+eUBj4Z2rMNDo8BhqYCf+hzD9GuVFiYmyYejWg3G6yurjE9M4Xn6mTf8S3ieIzrecTjmCzNaVYi2q0mExOamHnupQsszE6TpDG+54MSOI6LaVicfeEiS3Oz1Jt1/MArfTxfmR8XyuALX3yUxflZzr/8MrYwCAMf0xB09ns0mk2EMBl09xCqIChSfufiKm87GoFhMhiOSJKE5SNz9Adj/vCJy7xvfoEsk1imgyksskzi+rq7rf9O2nKk3WpiWhaWJdje2sN1XOJxzs3rm5w+vUye6+KmWfrBgsbY51lGZ79DpRJgmRaFRHu1FgU3Vrc4ujiD42rAU1HkKCAMA92lxQJLYBqChu8T1UKEZZazlH+xxO4gEOhsbzPa2+O5RPH3fu3/IUkyfvYf/h3e8+M/zZPPXuJ/+8V/zpcefIypiTX+5k8+gKU2UMLjD//oCzz/+AXuvneOSrVGkmSAwfTcMuO0YJS1+c33f5xTp5ZwjR2WpjyOLE4yHOxiiILPP9HjbSffpGXDORQyx3dDkiKn1495+eI1pmePcfLUnYxGQ0zDxHNNqrWmVl3YNo7lsLG5ykR7ioqn6Hc2qdfr5HmOyrUFD0KQpjGWabHbG9EdxvhhHdNxWF5aRGZDbMfi1MoZ0iwll7C9tcnqreucOrHCrUtr3H33SSwh6Ozu4Dg+lbqD65lYtoamaMiQi1GSbuu1OrZl0KxHCDkowUsmgRtQFJIbN6/y4vkrvPtHbb76bJ8fPv4evNABAxxsRnlCdzgmGaOvDSRpmujnjiiLiaYJFijl6LlekWvJuV8hzkdsbKwRRG3Wb62zud2lWq1QrdWp1+paRpvnSKno9XpIqW1wDMOg0WywsX6NW6s3EKaLRDE5Ocuo36VZr4OSyCLj1N33IwxLJznilWRNCMH/9du/znvf987DePhAMqnvJwenniqNw1//XH1VEnYgQlAcQghl+YWDZOy1Jpx0jC0PC8vw+tuCHq068AMtL5FXvYQQ5fjLq6+j1/rMB+vbPnd/RdaBJcE3Y6HgOg6O4x5Sl25f8jXOzK89+vifub9XWsYKlUuuvHSVhclJCglJpj+RaQoMoRjHY97+1rvZ3dtDUmBaWj7513/gAVzbIUtzknFC6LvIXJLGKQIolCTPMubnJnFdm3qzxuUrq9i2TRiGKCVJs4xxPOKRc5cRhkG308O0TJAwNdEkT3OyRFHkJllSaCAKirzUd2uTaZiYnOSxi1e5tbFTUqwERZZr/L3v66Q011X4+YUZBr0h516+SX8Y8x33nWE0HDI3O1l2rxLC0GOqXcXxLLa29uj2BvpzKaU9jAptkhxFIZ955En+4NMP8YYTS1zf2MZxbLI0ZTQe4HoWGIL7jh/BtV2EElSrFbI0Y9AfE49TLl64gWU4CGwCr0I8jimkIs9yGs0ag/6Qa7fWURQMhyOuXL5Os12j1x2SJilxnGhvud4Ax7GZnmpTq1cYjRJA0GzWKQpJHMeMRjGu5zExMUEYRvQ6I6qVgH5/SJJlnF6eK7sDivMv3eTC5XW63RFJklMUgm5/xNzcNIPhCFlIRsMRSkoarQaZlGRS4YYefiVgf7+P6zp09vUxfed/cT+2qwlxlqVNzL/69AukWc78/Ezp81dw+fpNhsMRSIvxOGZqZoK8yDAtwfLRaa7dWiNJMsIgwPNc3v7Gu2hPtsnHGek4wzIstjb3WF6cxhBgCh0MKyWJkxTTcUrwjMX0dJu77lo5DBr393rMTk9SrVUZj9KSvJqxs7N/eO1YZffqgL4Wj1Mt3bNM9ju6O4qAeBRjWTaNeh0hDJ6+eJUvXrvBL1/e5F/85JtZnpnk+rVbmKbB1vaOlg17DkHosbq6hu/rJGrQ7/Py5WtkWc7Pf/Asnz67yft/6hhff/ZlpJL0+yOCMEApDVmIwgqGbTA13dDUUEebei/MthFCe8d1Oto02rQsrt7YIZO643Xm5BGuXL1BEg8Q6AQoCnSXOM8LXMfFEAaDwRDf98s7iCAdj3nrvcfZ2OqDkPp4uSaySBkMBoDEdU3CyMMQFmlcsLG2hiw0cRHgqWeeYTgc4DgWP3fvGV30uq2CWv4HgKIoaE40+LF3fC9RJcQupYuGIcrkW3e8i1w/nA/efkAlztNcG5mbhpYvGuJQBXFg/G07Nv3BgPPnL4PUFE7Lsqk2G0xNT6EMS1MYB31s18b3fVzP49a1W/ieRzweIVRBZ3+b8aDLXrfPYDDm6efO4wUebuCTZWNGwz73nzrKd73hboos1eb1eYHl2IcBjxBCm4wbJqZhUUiJYQkc10BISZ5mpU+iIJfabCGJU03m3OvwCiVQI+AP5r5t28awzNIrUO+/yAsUMBrHZIU2WEcIHUCVSZ/jOwgD2q06SRIzO9nGsizG44ThYAhoOwbL0hRewxDcWtvA9TzuOLGCF/q4vksQhrz5nrsosoIwChGG4Nzz51m7tY5t27zzB74X07RRCmShUFIfOyEMTKGN3+84egQ38Dh+x1FajRqbqxvkSUa71SQexuzv7FNtNKg1m+TYDOOMSq1GrVan0Wjgu05ZuDM5e/Zprt+4iW0JBv0eGIr9TpettU0sQ0tVbUfDnCihMoVURJEO1lUhqUYha7e28DyXwWCAlDm2c7us38cPHX3uxDEyl8SjmLX1bdb29mlMaBsB07RK+Z1FlujfWZY0VID9snP7TYzp/7lLonAsbc/zv3/9eX75V36N7c0uv/Czv0jdqxHZFjeuPMOdp1qkI0Ux7jI3OQ1S8iP/5fdx6nSVA9CcadkUCK5cv06S5Ujlsrh4kqWFOTbWb7K3vcHW5hqO4xAEAT+8+HYOyLUCgSwysjxFCoPzl64S92OuXzpPPB7hmA7xcMSN65eRSlBISRAEVKtVzpy8E1Xk7O1u0d3bwhCGlrKi9y0LiQA8x6PdnqFen9Q+pFnOztYmlmlRrVbp9bpsbm0SVSKOHb+DmblZvJLm3d3fxLEtRv0ujm2RjEZYwiaJU+I4Ripdns+QYJrak7Eo9M+1HVCa3h0nMaPRkKXlk3x14xkWp9p87vE1wppFUYKKCpnhBhHC9Hn8689TSN0ZGvT3y/laRSE1qTiXUBQG3d5QJ1rCYm9vnwILz2+SJDntyWkKkXL+/NOcP/80o9GQCxdeYjQc89nPfIrZmXk83+Py5QsMhl3OXzjH8TtO8cY3vYV77nkD43HM1594vIwRU9JkTJKMKLLs8Hr4xvVTb/5b/+En51/CdeDl942WZn9Z17c7d9+y9drZvIEo50vlIYDl9e7TqnzvnzqZhEZ3f6MVwm/+m/+Xdx+Z+TPhLwcPhWSYsLWxy8L8FJZtIy0LIaVOYAxo1KscoM6l0gQ523agUDz2zEUW51oMh2MMCY16hRurm1iWiRcGvHj+MpXQx7JMkjim1ahz89Ym1UrIYDRkol3niecv8KZTKyhZMDHZxHXsw5938eUbfOmrF3n63DX2u/sszdfwvYCiyBmOR9QbdX73Y48w7o04szzN8eV5LNPAdm16vUH58FMYwmB3d68MSBWWabG5uccbzqwQVfxyZgcQZqlDd6jWIyzHIggDTcA0TQb9Pr1uD9fR0IgiV5xYXuD0sUWiyGc4HPP8CzeohCaeD51uzPUrOxxdni1nwnSl37IdjEKP8k5MtLFsh81bO9imyx899Cj3nFzG9fQshe/7TE22EIai0+0x0WrzgT96mHMXb3L3qTlGo5gwCvjasy9y4ugSe3sdPMfFsbXpre1oMIXnuaxv7BB4PrZt0+sM+f3PPs7KYp1Wu0mWF7RbDezSN+/hr13iHd//FmzHwfF8jNIa4MDry3McfN9l0B9gBboD4gbabDXJcqqVEBQacpKkuL6NYYEpDLIkIy8kS/MzFIXCMDU4w3EsqqFPEATYlofj2hRltdIwBNk4ZWF2AoUgHsfs7O7TaNZZX9uiVq2wtrZFq1knDDxMQ7C71yGMfOJYz8VduryK7zkMBkMsy0JJdOUTuHFjjUoUkud6Lq7RqBGUCWRYyotF2R1JEu1Tl6a6k2Lb2ubB8x1UocjSVBsYjxIcxyYZjPiljV2+/60T/L13fweB76MkRFGIaRlElYi93X2uX1+nVou4cXOdakX/7KiUAv/sv3uMf/a+I/zU2+fo7Pe558xRHMdhOB6zubWPgWBnp8vO9j71dohpGrx48TrNekS/N+TSlVXarRozM5P8/h9/lWNLE7iuTbVWxfMClBAk4zETrYjt7Q3qrUlMmZCOh2QFeGGEYTnkWU4Y+mWV1mA8SjCB/U6Pe+5cxHYdTNsEQ1CkCUopfN8jjlNW13cQhckjj13ksy9t8j+95+3aq08p/uWHvsz73vtu4iThox/6Q96yvMyBUb0ul3IolynyQs/iuTZFUTAcjLAduyzsmDqQM3TnyTL0+WyUP0fPqth6nssykeoVvy9VApHTJEWDdfaZnZ0uKZka+jNOEpI0xbJtVJrqarRpMh4nPPrEWc5duESRxkSBQ60WkqcxUegTVltYdsCjz7zIiRMzjEcp7VYNWWQsLy8TeB6UPmndfg8ptbm67Via8GlqaEqv06coMt3RMyUyk5i2ibB019EQlIUojWrf3t4hiiq6k0fG7u6utuWwHfTj5JXkV0OAtKefYZr671NCCXQXUc8xIhVvPHOy9IoXtNoNbMdhcqKF62qfzO2dXQaDful3mtNqNcvEWScT45Geydzd3sFzXXb2dgnDkMn2JL4f8MLzF4iikEcff5bJdgPP98iy9PDzqUKDvrJUwx38yMUoYG9/n0arzqA7xDRtzj1/gfkjc2SFZHJ6go9fucJ73376kFDt2Lrji2lycXWfN3s+aZYwMzdBmmcUqmCi2eT6jVX9+5oGa+s7Ohkt51KFobulprAZ9Edsd7osLM4cSrOFAQaSXrfP5tYuk5NNdne72JaFazs4tk29FtIbjGi1GwSep2FAh1YZukNgYKBMhWkIdrb3tIzcEq/fufsmVzwcsnrzJulgwCO5wXve/V/zjh98B//fr7+fjZvbNKoR557+DD/2zrfwwH0TqDim4tj0k5jFIzMszRsUysF2PPY6Hb7wxYeYnJzjyNGj3FyVvPDiOtNTIfffe4S99SuEkYdjm/zULz3L+/7zH0JJRZom2K6LVDkIk3Ge4gVVensJx0/dhe3YtJoTJfVS4EZ1ur19XcgRBnt7O9QqdWTaw7EPpPEOtqHPWwxtLJ7nGVu7HSr1SSwclNIqjsj36PR6CGmQpDG5gmqlyqVLz2GbBaN+ynC0S7vVoN5sgyjwrIAsz3Ftt7TxyFFIhG0fqq5yKXFMGyEErmtRKBgMeoDDr33mt/iBEwYfeWSPX3jn36You4wKLetOlOLKlUtUowa+b+P7DkFYKRUXsrwWDFIpufbyNar1NoYlMITN8+eeozk5zY1LV8kFjEYDTt99N0iDpaUV2s029XqL7a1t7jxzLxLF6upNpqdmmJufZ2pqCs+2SbMMP6gQhtHhqML22lXmF5bJi4Lra2ukhaDenADkq2SWtXbEz/6Tn+O97/nRw+fnYfx52/mnqZnfXOfuUDLJq/clvnG719qHUrcVuv7s6+XP2k6rdUp/PHFbUvuXtHP3VzK5M+CwAv+tWqZpocoWsFFWpw5b17x6Pu9gZu8bl0FJ4BRCV5/L7ZRUCGFqKU35TwIf/IMP82PLs68a6hTCLM9TVT4IFHkhef75CxxdnsH0DshqJiYSJQyk0PvT8VXBb37iy7z55BHWb2zz3AvXWVluEwYe7Yk6fi1AmoLZ6UnGwxgpU2YnJ/nAJ77GTKPKxFQbQUGzVQUBjuWwvd3h2MICUcVByhTHNhiNtb+VEBCGPouzVY4tN5iZatDt5YzGQzzPIar6OK7NPSeXEUiOLM/i+A6GZZQSN+1xZpnaTNpzbGzbZHNrk3qtwvGVBfJcV7cppEYN2DYYgqzIQECWanjE3m6HZJRy/uINAsemFgUo0yJOYgyh2N/tUq1UMaWupj9/bZU7lo6VEggXN/T53MNPcWRhWhsGlx0E0xTYjjY+7Xb7fOqhZ3nfD78FpRRpnGLZep7tIGi1HRPTEZw8NsPJo3OYpkOlFmKYJvMTU1iOiR+4jEcZW9tdNrY6tBoVLl2+RrtZRyjo9wZUQp9rV1e5b2Weybm2Juuh7SmKEvN+8vgscTzm1tomjVpEOooRSrGztYfrOrihx2ic4AQejq3nefIkQyg9K2GaLllRMBgPiCoB+1t7FGnBzv4elUgn/JZpgVRcuHSNdqOGaVpYtl16LhZk43HZ6bMRGKSxrpSbjkbxB5GH7dnsd7u4rkm1rimfwjJQtkVQDTEtG8f2yVPJSy/f4ObqNsePzSIU9PZ7XLu+SrtRpTXRwnQdXNdCFhnxeFz6XOlBacO2kKUUBCERGGWQrIfFsyTDshxu3dzk8WcusjwzzWcffZp/trHL0fsm+IkHFrlj5UgJ69BBs0TDH1QhCUOfiYkGUmVMtJs4rs94lPLrn3yC3rjHz/+1WXzT5cGvnMUwCq7dWGOyUSfLCqYnm6RJTKtVZXK6BaYJymB+coLxKMEwDVaOLzHoxTi2wb13LuD7LkWmMA00hMQQCMsizSTN5jSG4yCzEYN+F0FOPBpiG5K8KPBc5zDnsmwL29Y+kK4fYFj6nJVFhiEUpm1hloQ/VUja7Rqzs1UeX7d5z1tXkEWBbbt85JEL/PD3fw8C+Fcf/iPec+oUUimyJD20GOh3+7iei+PorpyhDPqdIR/7/Fc4vbKM5egil07kdIJHoR+0UqUIQ6HQxEuUrn4bhtAwGMqusmlgOSaOaxEGPpWogmU59Psdtja32Nns8NEHH2Gx1aBSb2B5HqNhn3jcY6Jm8sa77mCiXdfgFMPBdn1GoxwMny986VHadZfl5WkqjTaF8PCjJs8/dxkv0Am2bftYpsGwNyKKAvZ2t3BtW/snovACLQ9XORh4qJLo1u8O8DwXhDZAz+KM3/7wZ3ng/jcipSROYxzHZHtrh2oUafsCS5QdO8GhAqmUHKVJwmg41J23Epxz4KWVpgW2pWdNlVA4rsU4yZAKbWo/jpmeaeO5AZdevkHgBiRxpi1j0pRrV25gG91gWKMAACAASURBVCZB4BGGAcPxCMez8HwfJXO6nX2urt1kqlEjkzmzc9PaINsw6XZ6pTdejmmbjIZDbq2tMd1qk6iY5kSTUW+E5zqsba6xuDBJFARsb2wR+T4ffvFF3vvWZZCSPC94+KvPMjszjZKSMHB4Q6VBrdEEU3dOR/0Bju3gOA5ZVrC30+PhZ86z1G4Sx2O80EdKRZImGCb4gcP8YhuFJEkSLENThykKHMclrFYwbBfX8TBtG8gwLIM4zbGEwbUba9SbAYYpsC23fMaDEHqOdNjrkqfa/LpWq0DOoXT2dZd6ZQTkMB44+DoCp4DVjUs0qhN84MJ1fvK/eQe/9s9/leU7jvOmty3xwY98BBlP8ief+zynj/j4UYXrm3s89vWvc/ToMaQRIkUfmVVI4zGnzhzFrx3h1qrg5kafv/bu7+focpO1mxeZqDuMe5fJi4TPPTnmLSv3EpRSdISWVPf6PfIsYHe/D7bgrnveiF/RccPm9haTE9O8dOECU802F1++SKEkU60anpExGmwRRBU9Z4rU8kHDIC8STR92KiTSJ04ydjrbjOMh1WqdvUGfRrON62mQydTEJIYqWJxfoLO3Q5wlHD+6iGsayDzRwCVTYJjar9IQGvLmWhr+JKQuvIeez3A80HN0pqvnhi2P3/rqB/nXv/IuHn3yC+ysTfHGk3chVUEuM7RlD5gK5qanmZioEFV8LLRdgm1rOrkhDC25MxS762tMtCcx7RxkzuzMLLIoqLdbDAd9ikyydmOXvZ0tAs/HNAXVSsjFKy9Tb7WpRroDemv1GgiTc2efZZRktJqTpPGYJ594GNu2qVWbdPZWcW0bmWd0dreoVuo4hoHj+xzOLevoloeefZD3ve+dGJQUUcpkriyq6Zj4UOv4mqfvn7IpUGg5+au+r8q3v04sf5CoHXSJb+divN7mt+1LmKWNkWGUMbi47Xd95XMcvApVaMuN2yzUbNv5dnL3rVy3J3c6QHl937r/GOtgQB6lXqUrPmipf+PrtT6LlFpS8KckmOX2t79DAdNPPcJctfKqTQ8ugIOhXMOwiAcxoWtTqegEQQc+Wo55SPxRIPOM4WDEA/fcwc7OLq1mjVrVxfFMJpotOp0+lmWzs7OPIQRh5INQxHHC6aPzNJs1bZRqaW88lOLytVVmZya5eOUGE80aru+AITSUAOj3R/ieS1QJCEOfMNLyygtXVzm+rE19d3e7SCmZmZ8iz/PSx6pACPBcjzRN9XyKZbO9vU+W5tTqVUbDmDTNsR2XT37pCeJRQj0MMUNX/y2lAgmD7gBl6BvQsD/i+MoirXadnZ19LNskTRPSLCWKAl66dJXjx45Qr0UYhSQqpUe2Y5NmMUfmJyjyjMD3iccJtmWRllIq0zCJRzFZmvHUS1c4tbKoK9VpCofHQhwew2vX1nnoiZc4sTxHp9ctTbs9Ovtd8iItseQOke/xh1/4Kt/5hlNgG9QaVV3VHgyZnmlrambpZzUexSTjhCDwkIWk2+ljWSatVp2DckJ/1Gdmto3j2qSJhiYIBLvbe/iurl7udXvUGxUMYWi5k63lRWHg0+8PCSNfQ0FKpLMwBJMTDSxbUyTztDg0eHdsi95gQFgJSimlybUbq9RqVfzQPzz/w8AniXNsS4M+sizX8zGmyWgw5NKVm9SqIbVKyNHFGYxybmZ7c5/5uWk65QzjYDTE9x2kLCEJB/Qryu5O+XfIswzfDzBNkyzLUYUkSQ+AOj6PDEb8m0s3+MF33cf//K63sDzTxvc9ur2enl8Tugtz0DkYDkZ0O10a9RrDOMH1PHY6A8785D/lt//+d3Nqzmdrex3P9iiKlIX5BnMzDTq9Po1Gk4uXrjM1WScvCvqDIeNxzOrqJu2GlkJHkY9jmziO9lTs9cbaVsE2eOzrLzE3o7vvnudqgIkSFMrCsQRhFLK3u4/n+niej+tpgqhSumMlysKVMCwtTxon2LZG/9umwerqNo16na2tDq7tsbvbZWKyxe8+fI2//rYzZfELfv/LL/Hj73kvhjD52Cc/ybtOnMA0BAfPfYWeQxRCoAqFLMC2HWzLpha41OpVTFMXwIpcyygNw6BIc6Qs6HW7ustq2chClmjrspKLvtcJU3e/BCDzAtd1SzCRwPU1WTWKIu6/6wStiRqGMElTXZQKfBfP0x57o+GYer1NnuuCiR/6xLFiolGnVo1oTtRBWFhK0Nvr86kHH2N2ok5UCUnGOXv7O5x94RILs1PUGhXAIM+1FBMhDq8fJcs5FsPAcZ1XyVdt0+TowhyOY+P4WnpomlCpRFiGLlQYZecyjROkVNqk2xAlYMckjTOKXJb3ZD0ja1qWnhUr8rLTpxUlRaGJyr3ugG6vh++5IBT1WoV+f8Anv/QI9955As/3aNSqBGHAeBxrBH9e0JiosL21TRj4SFkwM9Gm1qgT+iGWpYmneZZRqUUkcYxpWvoYC8HszBQCQVCLNLhB6s/pBz5eGEKhFRBplvJvn/r/2XvzIMuyvL7vc8+5+7tvz32tfemuXmaFBjPDoMHjiRHLDKsEDiGDsBXIAdgOOQJZmLAtIWSPkGxsCCCMZGSDGATDDMw+PUvP9Fbd1WtVV3d1rZlZWbm+/b27nuM/zs3sZXo2h0BWwOl4URWZrzJfZ553zm/5/j7f83z7ETMDLqVgbnqKNE3N+x1FfQjSMQAtKY18WykL13MJKyGVqMLpI4soranVI+PNJ1/xEzRzt+nhuS5tY3ViafPxLC9wbNNxcR0HKSyjXrAEX7zwPEcXZ6m362bu0bJMoUxY9Ps9NILAN+bo1VoVx/VMp+erQNteFwB8ZXJX/s0qCi5dfYEndgb83D/+Z1y6/iI//VM/y+rRZXZ219hY2+TGlcu8+zvP8u53rGDLgqXFad7+9vsQFGTJ2FiSxBaVSo0XLl9lYfl+KpU51rf6JAn8+q/9KiePzeDYI1Q2QQHBzgPMzLcp8tzcpUWClA5JUvD8M88zSVOiaos4SfGDCnlR0KjV2dvfYWnxKM89e55C55w8eYzu/gaj/jb1qGpmFVXBwSxpmqZIW1IozdbWFpNE4YcVlo8cxxKSShixt7tn3vOhwA+qpGmGdBWPnv8sW7e2GI9GtFp1HFsiLUkYVUnSSfk7dsjz1BB408yQjlFI2yZOxvhugOt4FMpY9/zjD/8Gf/PdEReeepmnn5vmp97/YxRFjOva5KmBpVhYxmIhT3D8kN39fXxZenOW3nrmDFDEyYip6UWUNmA21/YpcqMkUdpiff0OK0fu5daN25w6e4rt7VsMRj1cN+TMmXvwfZ8rVy/jeR6tZptmrcHe7g6VsI6Qkm63Q3tqio2NG9TqDWzbnI1CCoJKnV5vn7n5FdxKpawPWYd76+0nHqC27OOU3pyv+DC+FsBysEffeOt+5cdfndwdVKWs1yVbb7j0K8nW133uq7/Dq2SnhS44ICILS77h83WZfL86gfz3ldz9pZy5U7z2l/bvch34ZxSllNISAlV+z4Pv+0aPN1oH//aNPs6rvqbCyDxPllLK1y7zFTQGMEBScOPqOr7vYUmbQhtQQTaKGY8mhjQnBFIIbq3dIfA9pOXQakwzGBgZVLPe5OEnL5JnBXmmaDebaK3wPBNAhRUfxxNcvbEGaEbDmP5gxBcff46F+Slub21zdHUOx/expI3jesaw1nFwPBfbcxjHE4QNWuVIG97zjrdiYUh4jUaNIHRZX1sHC8bDCaqALM3Z3+9SqZoks9vpc+P2DrZwCL0KnudRqUaHaOE7+wP+5PNPmqAlV6As8jinEgTlvKNNe7qFxqJQMDU7hY3Hiy9sUouauF7A2RPHTCcwy1mcn2V3p8f+XhdQBFGE7/qko5Tf+t1P4loBdzZ3GY9jbNsAZuYWp0lUSj0M8VwfC4EQJgFCw53NXVRuYB5HVhYYxzkf+vjDhJ5HpeIjBUSVkGpUpVqPaLWqTE83eO+3vQnbccASDIYjRqMRXsUDG25vbbG720VKM9dRDUN2N3fZur1tJGVFbhDVyiC5662ISTwhThKUVty4sU4ap9TCCr3OgGSS4jg2wjYG13mWIxGkk5gky2lPt03AXBY2sixDqRzbNUlSURTESWyS1CxDW+AHPpPJBEtY7Hb2OX16Fc93ub1+B4BOOVNkY+MIB0faCEtgW4JBf4C0LU6cWCKoeMzNtdAUOK7LxsYWK0cWcT2XVrthPAKj8DCYN52KBCkNvOOgo2GMqE2y/6/++FNoZehuvh9waX2TDzz4CHrB4++8c5lzxxbLqn5BrjAdASy+8KXzaKXxXJv9vX3C0Kez3+eLDz3JH335Mj/2wU/ScDt8+h/+da5f26CzM2C6OYPjhCzMzuE6AYUStNvTaK1ZWZphfWPbFEOikHpUIfAc1tfvUK8FVKsBjuewtbuBtGFnt09YCRFCszBnkpBGLSIeDXBt48On1Zit7V2UgqzIiZMBSg1IE5N8mq6DhaUVheWiMTNofmAjLXCExLEd8rwgz3Pq9Rq9/hghJM88c5XtrS3++CMPcfPmBlmaMR1YXL74Mmmqys67mQNTpcF4nhYoVc7cZfDpBx/mQx/+FNev3WR5ZQHbkSaxTzNjUl6SJyeTMUWe02w2CX0zJ4g23lGGbKZJ4tgkekJjSUrJowk+ZGmCPJmMTeDk2QQVIxFMkwmO1AhLlabFHqPRiKhWRWmBthws6ZFmGs/3mFmaZWZhliyXoG2uX7tBkSb88HvfSa0a4jiCP/vMF9np7PHudzyA5xk5tON7IAVZmhtLBgw51XZsitI4GK3Jstz8/0uJlhbVegXP96AkuG1ubAIWWtiMJjEaKLIMvzznNLpUsgBa8Acff5BBf1QmbiVUJi9Ik4yXXrzOH370M2ze3gIsxoMJf/apL5IkCU++cIXReEK33yUuqZQ/+N7vMkRExwCqhqMRUbVaeusJtjd2Cd0QS9v4fhXHCdE4PPTY03zuocdI0wzbNUmltAUvvnQNpRQPP/EUaZKyu7uHzsHSAulKBqMhtufz8rVbbO1ssL65xmQUUwlrfPYLV6nXaviuh+953LyxweUXXuaDH3ke4Riy57A/Ih4nWMLYTaRZjtKa/nCAZQsqjQpK5Qz7Y9NlEQ57u11T+FAaaQkmo5gsTksJqUtRWEhLogszt33j2i0QkiRNGU/GfM9fe4CV0gJCiFegNpN4Qmu6gR/4pbzWWHkorY0NxsFd/yoF0GsDBevw7j/43AEUwsBzFNP1Fv96d8zZ++/hfd//fpLUxw0cPvuZR7jrzFne+W3zvOvbVwj9Ea0WCN0lHm6j0z62LggDF8vpYPsxZ+++n407fT770OcZ9IdcePxhzj9xk2bVReuYnCqPXRKcOreKEBZxmiHswFAesbny0hWwa8zOHeUtb36A7e1NfN/nyw8/iO97+L6PtjIqYYW33f+t7G3t0dnaoR62yEuSpFHGGBsJAQhtobBZWD7JqdPniKIqWllMT82gFTTrTZ595km0stna3McWAZM44dTJexn3A9rTdVxPYrsCx5OM4j6eF2A7LpPY2AhgWXh+QJbnpax6woHJeJZnOI7HL//xb/Ar//VZPvDDP8q//Pg6f/cDP2kOOSGI4wxHugSuj5BmLlYIyUsvvMTFC1fIlSHYZrnCtl3z6xaawKvhuJKoXkNoh+5+n/EoJUsnCK3QOuHa9fMcPROhVEqWJAyHYxAOaRqjVM7M7DxPPPUIly4/y+ad25w+eZZBr0OzWmfz9hpKKc6cvZfp6Vk6vR6W7TEZjxj2dkhGPYaDDmmSHCacWikE4LiCXr+PwMSSrzQ4TKHUKqXdlihVLNZXJnPaMo2BvMh5xbz8Nc/4Jho0r+4svrKEsA4fB6/t1Y9X/yesA1DXV88dZJn0fb3Y/i9i/aXs3H0zS/DGksmvtl69hf9Cl9bw2JcOZ4leeT3G4wkshIaXLl+l4rs0WzWEY2wPuns9HCFKw1+HItcUeYHnmEqS6/lcev46l67fwrUFjVqdE0cWcH2PZy9e5akXrnFsZZrxZEytVkcVxgusyBXVWkSWZTiuw7GVBYqiYGq6iZSmfd/t9ugPhgSBj+u4ZeXdVL11UZBlObVqRF4Gb47rGLx8VCEoB8uHgxFe6cFVq1fpdnpM4oTxJOXqxhb3nztBvzfAcT00Br5w7vQRTh2d555Tqzx64RIz7cahfnt3t8NoMiEKQsbjhMefeoEjy3MUhabfHfLpJ17g7KpJEMBAD7I048q121QrAVPTdQpVkGYaSylsYXF61Zj7PvLcZU6uLuAHHlmWI6VgulHjxNFFLGlxe2OLWq1CHMdIKfADn+FgRL1RQxewMtPm3IkVwsgjTsYEYYWLl64y1WrQ6/cZDcbEkwnSllTrEf3+CMdxcB0HC/M6Q9/H91x63T6g2ev0qDeq2OV8j+d5Ro6U5hS5QmMSmQMD0Uatxp07uzx4/jlOri7ihz793gDfM8l5v9fHc0y3JS8KLEeSjifUGtUSl+6Q5Tmj4djs0XJOynQiHPqdIV7o4Qc+uSqoVgKyNCPLCupNU8AIwwAhLG7evM3UVIP9To84TolqIa5rbCfAoO/zrKDbHRjJXVRhZ2uf8WiCH3hI12DhBaC1YjgYgWXheh5B4JNnhkxWlPNctm1zz+mjZGnO+voW7//0l/h7f/e9/PR73sL9x+ZA5aRZQhAGuL5PVnZDLl56ibvOHKfIcrQwBFfbtgkqFX7i1z7B+09a/NwHzpEmKe12nWcuXuO++06SpzlXr2zRaNQQ0mJvv0+r1QZywsBnPJ7g2AZDboJ0mMQpU606fuiT5hkV3+bxp16k1agQhh6WsAjDKoHvUeQpQmiUKrCEMScOwwBhS0JfsnF7E8cW2E4VLIm0zWyVtEzXzhIaKUqZY5GXwaPpXOWF6QZWgoDxeMLMdJ3f/+yznF1oc9/dx6hUK/zsr/4uX/rC5/nRv/EjfPRjH+f7jh+nKBSu46C1xdbtncPfteM4rCzOM9NqcOTYcmk6nJnqsC6vbmH8AX3PZzgal353dnnRlmbihS59GCWWpUHlpaGtosgVaZKS5YaY6gUORa7KnzFkRYrvuuzv7zEZDc3Xtmw8z0cjQJgzUynY3tzl8ssvMzvdLDvZhlBcr0V4vo/re2gMaGh+eor5+Wksy0FIC2UpNJZ5/VKYbmZ5jpvkw5xVdmlJYpcSViHNTKh8VffZlpCmObbnG4LleILj2iWZ0cwlmp+JCUTecs8ZKlF4OEagVFFWzC22t3fZ6XR56/13s7Z2m9DzuXDpClJYfMcDbyGqVVCZKUYlk4yd3T0qUYhSiqI82zfvGCsFIST1WtV0tEUp4QWuXbvJ/fee5aEnn+Ut954xRU5DdmFhfo5Bb8DVm+tUg4CFhTnWb21goQkC04F2fZ88K3BsY4swMz3L7z79DGfqHlKmLC3Nk2UFK6srxke12+GeoIouNJ29LlElJMtyPvLgI7x4Y51TRxepVAK8wEUIozKIqlVGwwl3NndZWJguJemSLM2JahFZmhso1s07NBo1bq3foV6PSMYTBBau7+N6LkFoOiFobSivWpNn5uftlgWxotDoQrO/1yWqRYd7WevS5uMbCHAPw9ryqVpp1q5dxbHh47sxs+0Wn/jsJ/ncJ55gnO7xB7//YYbdDu/7a6doRCkq7xsD+9QoN4TtkGUpkzRhkvZAeLjBAlawzPEzZzlz4gTn7lrkPe+YwZcxyahLp6f53/7wBm8/eheBH9IfDBHCxgJ6gyG9fo+oOc+Ro8dZ27jJW978LYwmE7qdfRYWllB5geM5uNJhNBwiBVh5QuS5+IFDmhmSrxACIW2E0iAE/dEEhUuhBdu7W2xtb1GrNnjh8nNEUZ3VI8cZj0bUay0ee/wRpBC8dPlphoMR5+65i872dapRhOd6h4UQpZWxqPB8tFLl+WlAOBoLW5j7VgjJP/7wr/Pr/909aFHlp3/hU/zS3/xvUWnMYNjFdgwnwLFtcpWiUkkcJ2ht0Wi0sV1Nq1FHWyDt8q4SAlA4jumsT8YjLCRbm7doT82aZFkrpmZmmZubo1ar4do1gkqNTnfAJE549pnHaTRatBptjh45QbPeplatMxqPuXn9Clvbm5y7501sbW1iWYIgrLC8fIJLzzxGo97ED0LyLMN2fBrtOTPLXo4Jacw59Av/9Bf54R96f5kavcKQgNcmckYJ+ZXzd/pVf1oCLG29rnP3+h3+za83eh1f8XjNazpQzX3jSdtfzdz9Oa//z8mdEFj6oLL5jR2i8Bef3BV5jj7/MLxu81vKQlsCbVlYqmB9Y5OZRpXCsshzZQI0rfnMF55gb39AvVrlxo1NAs/jxStrfO78C9x9ZpHNzX22BtsszTdp1KusrW+ys9fh2JElLt9Y4+yJOfa6HXwnIsty+v0BtVqNyy/eYhzHxp/FM8QxQ93ziUcZaE2tUgYSGsaDGOnYpEmK6zo4tmN81HxBt99nMBjTbDaIJylBGKK1Qa0bc13BeDxG2oLA96hGFVbm2iaAEwrbCbhy9SZfevYFzhxfYGtrC0sq5lsz/D9/+kXedNcxcqWo1atUQ5/uXp/p6TbZOOWlq+u0alVaUwH3nFqkUg3B0kinNDFGsLa+S5pmtNsR+70eQRSi8wlZOiaqSibZkIWpOXzf587WDs12jTubOzSbdYQDRZERhi5CSnzfWEr88ace5m33n6Gz1yXPFFEUcf36BrVagONY3Li5yV2njpPnObZj4zqSIjNzMGEUkk4KevsDfNdDYIEynU50hlIFlSggCAP6gxGtmTYqN7jlJMlMpVRrpONiSxetNK7rIiywpeDuM0cZDsel1MjGlubn7zoOKlfsbHdwAg/H9xDayIxtW7K7u0+9WUMIgVOaLqdpXuLcbXQhGQ7HRLXoEIxjACbuoRxZOibQmJ6qmq5JFBBVQ8DI1zTgSIftrT2ypKBeq5KoFN93CX2P9lSDQuUkeYYfVpCWQJaJrS0ddNm5ko7xeEwzY1S9u7tLFPn8yIPnWX7zAn//ex8w1WGd8aVHnuDkiSVq9apJ/IXNl758gaNHF/FcF9/3kUJyfe0mU1MtfvyffYqG3OEXf+R+XAFXXl5jbWOL5eUpbFtTqJztrW0WF+aIaj6TeEhrKmI4GuJ5FmkcEwYVPD9kMIjJipw8V0xPt/CCgAJtgDiuR7vpE0aSIKiQ5xbrG7uEoVvS8lLSLMP1fSxtsbbeIQjqxKOM5567ztnjRymQuH5AocHzPBwB2lKk6QTb1ownI4JKBdtxwYLeYEAY+qSTmDSeEEYhu50uNyYRv/jTf53haEi1FvHQ1QH/1+/8Hziezcc+/il+6O5zSEsYD7lxwkc/8TCnT6wgbQshzTlcrVaYjCcURW72D+JQ2m6UP6b7LaSNcJxDWIGhMBgJpsSch5YuuLO2Tui4dPc6dDtDHr3wPCvLiwhLGs8pBSo31V0LsIWFQIHOqdXq2E6IwsMSNt3BPl7okAxyPv5njxE0YWG2ZarDSOLJCO1IcqXJshTXk2RZjCMl0hZI6RmDcqsM3IWAojhUZFx7+QaOdAzER+tDdPcBXKsoFI7rGDk8Zn54MhlRrdXQlg1C4JZk3CIvsISRVHquY4JT2yLLjKRV2II8z0xHyna48ORz3HPPWY4szIIFzUYdYcHy3DQnTx4hrAZs72xTqzRZX7tjZGyBUVGEoV/aWVi0Wk2yNOfTX3yUmVZEvVHlhZdepN6sUOiMmYU2vu9z310nDxUMliWwhOTm9VssLs1zdHmJyXiC6xhKcb0aURRJCZKJqNfrjLoZ55++TOhLPnb7Jh/8+feyudUlS3PaU9PEcUZeFGSFYnZc4EhBs7SO0RqmqyG2ZbEw00ZTkMQTLMzcrZAOl164weMXb0CRsLI0Cxp83yNLMrTW2FKSjAwFMYoCY7siBRu3t6nWaziOTa4ysiTBkgIry0DDcBDjByHakmA7FFkGyuLffvpxpmsV/MAvJaGvm6n7GvNLh/HAwZ+WRTHY52efepH//u/9DGGzypFjS/zw9/4YzZk2v/+7H2amVUNPnkXF28wtraJxqDVnyAtFbzig3myS5m2c0CHXU8wu/Efc3ArpTizU4Bqj3vM0wtssTFeRmUPCDP/mE0/x7nseAC3IMkWn08FzfPyoRiEkR4+fpTXVMuAkxyWKaszNLqAKxfr6LXb29vBsm8Gwx3hyh+l2iMp7OI5nupEHFicorLyg0BoZ1OgPJ9hOyNzcPLWwhu977O3tMLe4hOO65JOExx7/DPfd92aePn+eZDjige+4j/WXr3L82HHyJAZlgnpdysYdx2E07JegDQtFRpZo4nEKyiLNYy489Rw//zMLSBnh+IvMqHtxPRcPjeu5aMvn0YfPE1R9/GoIGOBQkaeEfki72SJTCUIIbMdFSoc8N/uk0AVFYWShWJrmVBvpKfJUocmxLaBQ9Hf2WVu/zf7uNv2RYm+/x8rKCrMzc9y4doOoUsO2HT7xyY+zsHSEc3edwfd9PvXgJ/mWt307165fo1KpMRjGrCyvmlGczesI25wjdlCjGtVQuoyRy1bx45ce5b77ztFo1Q/3n/gmkjvKpPCgK2gJ8QbPef3O/ubWq1/Hq2fnDr30/gNO7v5SyjJfs3Txxo9yFUp9UzLOA5nkQSUYzAyQAFSR/zt9bZTfQyvFeDzBepXB4+Hrscv5jEKRThKmGnVsz8YLAigsbEtQiSLe/a638sC3niWNU65cvYPKNfecPcJ7vu0uHGFz9swSbz11hpnmLMKSZOOEbJIiLYuTs7M4RYAeSSwUw8GQ8STGsQXDeIxteyhtcXtjG6kLKoHHOMn4woWnUUVBUKkQxymFymhOV7BKn71Bv0ecDLm+cc3MC1mSdiNCUCA9IzHq7O5hCxiNhxRaoyyJH1bIcmWIj66HRhJUG0hHsDDf5tTyLGDRnp6i3moRVl1moipSFHieNgPtQpCUJuorq3Ns7O2RJDHJOKe3P6TfHZAn+ZiU8gAAIABJREFUOUWqgQxpC67c3CWqeEhXMBrHXHjsMrt7faJmmzgNcd02ucrwAoeFpTniNKc108bybKxCkcWJ+T3qgiIt2Nrc4/TiHPE4YTiaENU8sCY8fecKlg2VWpuV5WWSIke6jpGP+BK34lBrhqg8Y3Otw8e+cJFhv4fAQFrqrRZOVEVZLjt7I9ASz/VJ45TdTg/hGojLhz75efa3e0hzk/Ds8y8zngyJswmjOEYAc/NTBIGDMgOd5LEimaRID+70thGFYrjdL6mGRmJWCSvsbnUQQtLp9Cm0JqpVjIdXnDAajfFcicpSdJ6jFWzd7pAnMYVOEb6kUIogCMmVxgk8ENLYXmiLmzduowpjgl2rVylQKKHZ3Nwr5Vsu4yRB2DbSEthWhi5y0iwnVQU5OdgKYdlYWuHYGk/A9cu32BpP+PGHnuF//el38dbFaS5cuMSHP/JpworPu97x7VSiJrfWNkFLXnruKudOniCNM9qtFsKCLB3jWA5/41c+zi9+7wzf/eZFsmzM4soSb3rz3bz97ecoVEGtVqFardCsBNy8eY1Lly5hCxCWbVDshcbzG6zd6vL8c1dRKkZYinY7IslSLjx7hSxOsbKCOM9AenhejTiO6fX3OXqkTa+/h5YFQS1Eac3u5h4CRcV1kcrCdyWeB+ubt7FFgkrGuJbx18ooyNKRKRjkIYHTRmCTpbGZZ/ECNtd2EBKELwlCmJur4ng+tnT44kMXsQqbt680EE4TtzZNUYJrDBFO4Po2UV3yZw9+AVu6FJmxvCgKzYc/+QVsx0O6LnmhsKSNxswPG/++HMeTSGGR5xkWBqSTjxSW0hRFjiU1w9GA2tQUshJSbbWZXZzj5u4Ok9EAWwjyTJPEKdLWSAtUqtCWxfZeD9uvs9cdEycJ0lHsd3ZQeUGRZHihw/f9wHfw7d/yLbhuSBwnWI6FX62is5yglHm6foh0IvxGDaVSLEwnVOsUcoVUAl1kWDpDFQlHTyxTna6V3TajkJC2JM0yNBZCa4RWCFECgaSk2Z4iTwusvEAqhS5y431Xzr82mjVD3hSYjrelys6gCUClbaBUhSiQDuX94YEtuX5zg5npKTzHY3ttm6mojeVYtKbqfP78ebq9fay8QMUZtrQNxCVN8DybI0uzDCcpSkuOrZ4g8Gp4ToUi0azdvEans0eWmwTM0iCBldUlI5UUGr/i8eLLV5lZbiEqDlt7Ayq1JoO9HUj7tGeq5HKCQtHrdCkyOHPqDDvbfXSR8clPfYE/+siDzNR9bFlhe3vIKFUUGhxXMjs7x7lTJ1CFBdrG0g5FLikKTZ4lLC82eevZRdr1Ommiub25y53NXbBge3+PSTrmc09cIc2MZU2v22OUZiysLFDoEdIxCbsbBCAg0xqkoFA5g16P/e099CQzXVYr4x1vWmVhoYnnOybpf3VgCoeFrzd6AGVBQoMloVBErqSXaU7df5brL14kiW30tEenf4dhvMX73vdtvOOd93H//Sewm0NsMUIOehCPScYxg3VBlk948cU9fvWf/z6313c4cXSRX/8Xv8rGrceZrlWJ3Dad3X3ifJvAe47/8Uf/Po4XUOiMdqvK/Ewb25U88fCz3Lrew6tFZEhybOKsYBKP6PX3yIqY6dkpVpZWqFTrhKFHPbBxANvymCQjtAWFLknIhULZFsqyiBPF1PQinudx7epLxJki13D2rnsZDnoUeYxddThx8gw7Gzfx3Zzjp4/iWSmLR5cRnkXUqqOlxnZtbAuCwDNSUM8zyg6tcIUPfsTFl2+wPUqwpcWXNp/Bt8Z0O11+5n/4GGGliWV5rHW7FFISj/vEacFk0MPBwhYuvhfi+xFxkpAkCY70yPKcTGU89cRTbG720J4wRu3a2JggwXY98lzQGaSAf2iJIxyFpQdMT/vUqzntRkR/mCHdCsvHVhCuptPf4V3f+d1cfv5plLBpTs3yvv/k/ezu7hBVIlaW5rGlIk4TlLDwohrSFgz724gigzxlv9PhAI4D8BPv/C94+OHHS39g0yR5o2VhyK+vHyk6/HhR0jiVUZgcPEChKEwh7A0kla9tsZi/H9gZHMbHJXtAKU0BX/F4/euxpf01Esz/f62/6tx9tR7b19DVfiPL4hVoS5algIUt5TfZ0fsGXlv5hli7tU71yiXz6Vcf+sLMrhRpwTPPvcjywjSOI7E9n9/704c4vbp4KIvb3+vQbDVxLM3Fl26xvNQminyeeOYlZqYaPHHxKs+8eJO7ji2BVgazv7PP2u4eq4tTjCcT6vUajmsTRQF5XtCqVxmOEubn2jhSMJmM8QMPNwxYbLXwfJd4klBvVNne3sf3PWwXgsBhbWObWhQxOzWD43ts7+wfShbTPMd1bSqVwEAFMHK0Wi06xPYLLJLESEJVOe7rODatevXQZ2syjrFtm4WpFmmelhemjdKKz59/nrPHV1BFwblTR/F8jzxLCUOfJE0Bgx/XqgAtOH1sgUJnRFHIVLtNM6rSaFUwOOSgNLGts7vdYW+vR61axTL8utIPyaXfH5HlhrBWb9SIQp9qo0qtUWHQGyCl4OTigtH3ZxqtVCkXskgmCXleMByOSVMjaS0yTbc/4MjyFPvdHsKyGI1jgopL4PuEvs+nHnqCdq1ibAAqoYFFeA5njy6jFUjXUBhn2k38ipGmBH7A+sYW8cRYMhjMvOkMBqFHoXLazQaeH+C6DnlhvKJ6vRGVqEJUDXEchyIv2N7eN3YEWU48SfjXn32UN59apd8f4pZIcFtKgsBnMolxS9uMzfUt/MDDcz16nT5osG1Js9UwgIiiIKyEhKGPEIKpqQZZuW8OAiHbluRpiuf75pK0wHENat2WRuoWj8dIIfnJCxf5yf/snfzYO0/TjCr0ukPuvvs4b3nLabAEUjpsrG+yurrASy9dJ57k3FzbZGV1jp2dHQLfZW2ny4998KN89BceIBmNTEXWtlGFxaBvcPe2FFy+ssbi/Cyu6yBtyezsDLZrsONpmiGE4PbGNkdW55maqpNmGVHVN/sRM/fYbEY8ev4iqyvzuK5rujq2w7OXrjE73aJWj5hMJuai1BaBF3Dt5iaLC7PkeUK/12FjfZOFuWncIEBIF205pqsjlDFtt12yDAMQKml+FgLPcWk26oY62x0QVQLiOOX3H93iPfcuY1mKLz38LGdOLvJb//ZB3vGd38Gf/ulH+YFTp8vqrjnX7jp9nJMry2g0WWo8BC1h4QqLWr1qOvdZzof+7FPcffJYCWLR2CU0RKvSDkEpHMdhc2OLpy5e4viRJZI4RilNGEUUucK2HcajMW+95y4zu2fLQ3DJeDhmf6/L/n4XpRVzszNIKQl8H89zSbMczzVSXiltpLDxfQ/hCIaDIZWoghDWoTTJmKebLoMQVknDk6BKWRYG2COFfTiDIywD4cCyEJik82BuRdoSrRVpnBhLhIM7CGOgLIQ0ljd5QV5KyIpCHww3Hi4pJXlWGCUIxn7CcV2yNGVpfhYhJXZpsq6UJo+NbYMtJWEU8Nyly8zPmc7efWdPEVUjgsBnOBySpBm3b98hTmIc26HVajA93S5hPA5CCiajMX/4yU/zzm99G7bj4nheGfRpZBk0agGu6xCGIXPTbUajEa7jEUVVsjSnFkWMBmMKBXedOM5wOGIni3nLqSmCsMKTT71Ino45c2qVZrPC8sI0ty9u4GiLJ59/ifmpBldvrDM11UArRb8/YDyJWdvYYnqqaRrAwvidNhtVWq0GeV4wNV2nWquS5wWVwMdxHNKJ8QOrBGZsIKwEuJ6H7/moAvLUdPjG4wleWQDzPB9p23iuawBIrsTSmvFoTKvdRGmD2j/sgnyD0YR10FKxLFSe89Tjj/LZUcr27TX++W/+S375l/8J//fvf4jnnn6cWy+9jFX0OH3MphF5aDuivzWkiBUysGjPtan4gqDaoNFq8R3f8S7ywuN//43/k//0b/0Ix5cEnb07VDzIshTf9/njh2KOtO8xvooqN92nQvPytcsIp0Wa5SQqpsgMzOeAEOk5LlgWYVAx94Dvo1XG5q1LTLWmcKSNEhgonDjwzitjJ8tGyxAsh0mSsLSwjF+pMJmM8TyPMAwJgpCdbQOA8j3H3G9BxIvPPMdk0qU9NW32nqKMLQxQKc8OwGi2IX1ryNIC13GYatX54Md+m9/6b+6l2qzy5Yuad67+MN3+DlG1TjwamSL3qMPU9DRT09MU6cgUqVRp3eK65HmGLN/fSiuKAqbaMwiZIjGAMynMPaUKhcoV588/y+LiDOjCsBD8Cq3GLK3mNGmS4No2vf4O2soZ9AekaYyFIPDMvH2r3SYIArrdLnt7O5w4cYpnn3uSJMnY3Vnn+rUrLC8vm9jDCxhNMqJag1qjSSnAAqBS9fnND/02P/QD329qEeKVkaGvZo/wddeBPL28vw/O06/X0TOx+Gs4J2/w1K/8Gq9X6x12Jr+JBO+vZJl/zuvfZ3JnlxezJcQbAE++1vrGk7uf+qn/nB84smA+/eoNKYzh7f7OPpNJgue6pLnCli4nlue5cfOOqTbnBfWGkUc+9cI17j6xRLMRkaQJR1aWSlmRpjMccnx5HrRDtV6nWq0w125w/fYmU9NNPM9UjEajMU9cvMKJ5QUatQqOI8wMRJ7jOjau49DrD/E8m6hWIcsy0Eaz3unuMeiPqIUhtrTp9wa4FR+li3JmCPI0wZWQJBqtoNMZ0G7XiccxaZYcvgm1tkgzI6/rdvaJokppPGvh2K6Z93AsXM/BDzwcz3SBbCk4sTLPYGAu9mdfuMbK4iyZSrGkRVSv4PoOe3v7qMxiMorxQoEbCBw7RGUCIQVxOqbT7TPsTRACwmqNQX/Enzz8NKeXZqmEHsl4jFcx833tqaaZxRO2sXRwBdoy82DSlmRpSp4r6rWaoXmOJiXUwSoPeUNjE5ZNEufMLU5z4sgMKs8IAo8g9IykVCnGwwmB53FqdZ5K6JGnKULK0n/R7L6g4rF5e4dnLl4j9D1c12Z3u0sljGg0olIKWSrILAthS6QjUUqVNMqIbqdPVI/Q2jKwnRIvPhpMDhOOh5+8xHSzTuD5vPXMUTRmrs6AZ3Jc1yEextRqhpq3s73H/OIMju2wt9c1RtvCJPOeZyNtwd72PtVqSDwxRDJhKWNMXRQ4jjSzY+WsX1FoLEuUczMpvucCggev3+KXLt3CX/X4R3/73Xh2aC4YoN5q8sWHH2f1yCzxOMV1fVSRo8hZWJilGgRsbG6xsjrPB/7Jn/DRJ9Z47zmbn/v++9DaIqpUQBkp3tadXXJVlLN1hhgaBhVwBI7r4Ho+Klf0uwOEJfC9Cq6tGY56DIcxRS6I0yEvXr3F/PwMtVqI60qW5tvs7AxwHQ8LgVIw02oZU+ZcYzsetu1hS5fJOKHeqCOdHFVMuHb1FtsbXUIvYmpxBi+skhZGPbC/s43rV9jd61GvN8vOUVk1Vxad/R55phiNYhqNGp29IfVqjT96qsM7T7Y4emSRe+89zkyrzj/9nT/hd377N2m1p/iBM2fLed1yT9umo2Q7EsdxsCxDwmu1G2bmQ0p83+X40gK2FBSZkScf+Njpcm8WuZEM1WsVTp5YJU1TbMfDdX2G/bFJqJTpIKuiwPVcskJjO5JkEuMHAaqw+Njnz5NOxsxNTTPsD4kqIWtrtwiCikGVF0U5E2XACEZObOPYZh5L2jYKu9xzOSrPTALR6ZVdPBvPlViqQBcFtgBtexz0ZLRSBIF3KMGL48RIU0tJmrSF8cezJaqcgclLWaMq7wMhDT1VSmPILW15GNdY2th12I5jZv1K6ZWxaDG+nwcXXJ5mtNt1lCrY2tnBdR2WVxYQ0qW71yWsBEZ6mKf4oQ+WoFqNCIIA23FI4uRQRjfsj8iLnMcuPMPq/Cy+9FEIpCzhQ77LcDAwkBltjJ1Rml6vTyX06Ox3qdUbeJ5Pfzgm1xadvT3yPGd+cY7bu9tMdI/VpXmmp6qEoct+t8Pc/BT1Zo2nHrvC6flpjq/Ok6Up8zNTXL1+kzg2MjnP8/jMY8/zprtOUhQ5ve6I7l4fKV1s26Gz16NQKZYGVVgIS/KZLz/NlbUO7/rWc/R7I4QliKoViqLg8vM38B2HKDLyfluYn3WWGZT6K8AJk38rpXj42Rc4sbqEcEwwfyix/AYiCauMFbQlUConGQ/54xdeJJtdpFpr8RM/9uMcPXacu8/dy521q9y8/ATTjYy7ThhbEMdpE3k+0sop/AA/qpHEt7HtkO1Ol/FEsLR0nCDQTDc1ZHd49unznDi6Yrz7CosP/t5N/uM3vROlChzHJSsUhbII20fIcgvH87j77N3UKhFKQ61a5dbNmySlPUeRFqxtXIciR4oCVxboslBh5NgSzwtI0gS0kc9qbHqjnKmpeUYjA0BZv7PG3Nw8k8mYJE7p9wdUKlUuPPklFhaWub29xXOXL9OsTxOFNvVaDSnM2WlJyXDYJwqrZha0NCxXSpFbBRU7oBbZ/MpHf4P3vX0GZmr8zoeucSL8LiqNiEajjeu4kGtUNqFa9XBciV/K55U2BZZCF6/YkeQACqVz6vU6jm1RJDGpsnj8kWc4deoE6ALbkqhcsXJkEc930Sg8P8QWNq7r0O/v0mg0ufzCFU6ePkOj2WI8jjm2egw/CHFsl2q9iu+HXHjqPMvLK1y8+Az7+7tkSUISJ9xz79vo9/sMeztIIcuCqkuzPY3jG0uEw/wHeOLS43zgB78HrS3zO/lqssxvcIlXdacP/u03ktwdAKOsVw+efsVT/yq5+w9y6aL4pYNN8drN9MZbS1jia87ZHYBW9OueI3iVDKLciIdN428qsfvqr+3VyZ20DM77D/7NH/IDRxd4xYTx4KkW8WjC+voWK0uz1BpVwMJ2HEM4xOLRp1/i7rNHcGxDHFxZmObWxha+a4aDN+/s0mzV8BzJ2WMrSCn58iMvGcJX2SX48jNXefbF29iYapFtS84eXyWJjW3A+u0t1ja3mZtuYdv2oT3BcDgywY/rMOqPcVyPwPfxHR8smMQj4nxMtVbD9106nT5ag+/a9PtDavUmSuvDeavt7X1a0012dvap+MGh9O+L5y9y7swqqtCkaca/+pMvMFurUK9X0RRkWWLokZmZNUFjzGgthR+4PHnxKmeOreAFDmsbWzhlElSpBDjSZne/T7NVxXYEw35KPM559MIljh6ZMTS7xPiE2b4kqvrcf2YF1xXE8chUC4VjCKYYLX9nr4cUgm6vZ2hpwkjMpJRG1rjToVqN+NMvPMbq3BRB6Jt5jeEIpTXVatXMve3t0WrXybMUW9pkeWHw0HmOLY1fW2e/S+B7bO90ym6MZDSasL2zR7Va4fNPPMfN213uP3sEz3eMxBKJlEauPBnHuJ5DkmRYFkzGEzzPpdcblYbdkt3tfcLAM2ASU/lAaMF4NKbXH/H8tXWm61UadTND12jVydIcz/dKvy2NyjS97oBKFFCtVUyAbjvkWUFUrZiZw9J4emd7n2oJcnAcm/E4xnFtY/2hSzIjBzNKHnlhZg0PSHVXbq3zs89co+tofuO/fA+nl2dAK/JcA2bOM89y5mab2I5AWI6hpFqaesOYovf2u/zc7z3GvYsZf+e7lnj/W6Zo16v0e0N2d7qMhuNDrPv65g6tVmRmn4BKpUJ3r89kMqBerWBphe/adPY76CJnNEzJioS8SKnXqtiuj5QFC3NTaEuilcZxbG6tbdJuT7O/3+Xq9duEvkcYBiRxzHgSUxQm0Lq9scP21j6LS7PkeYznOVTDgJPHV3nhxVusHJ0nL5SBKViQp2OCSp2wEpjAJsvwPNdUzRXkWY5t22xtd5hqNw7fdx95Zp/vf9tRwtA3XXoh2FBt/sUH/xc+8enP8P0nT5UY85g8y3Fcl353YCw0bFnSLA/8IqU5ay2LLMuw7dJmA3MGHiR2FsaXSpZFmyzLsF3HAIKkTW+/f4i812iT9BQFwnbI0wRd5NiOQxhVWJ6fZbbVoNVuMx6NqdQqBIGLXQKdpHRKW4Gc8WiE5welTYuFdCRJnBqZeqHQujgExbiOh+MGJeAGuntd/MClyDMcz8hmpTDAjaK0/BBS4vlu+T/5qjuhTMAOZhCFsMvZPPP9dJnsoVXZNTb0UNPhNHcGqEPrgSI3n7NLvL/GJK22bZNMJozGY4S06HS7uI6DLRw+/rkvU/Ecms2GMZJGG9843yNJM1zXxXXNDHavOyDLDFl1bsoYordabdMldB2EBfFkQqvdACFRRcHu1h61WhXbscmzcs5XFSRJTLVZBQumGg0mkzG26/IPvvQI/+BvvYebN9dZXJwjDH0jNdWKJ1++w9tkrYR1jXnm0jVWl+Zotmo0GlWiyHSM7jq2hOu6YCkc6XBj7Q5Xb2yyfmeLM6dX8XxDi75+8zbT0y1W5qa4/9xR/vATD3Pl1janV+cIowBLWPiOheOZxDcrUsKKRzLJSsS+OLRSMom4xWSSMF2vE9UqZtTu9cHlN2rtJMx7Ydjt8I8uvsz3PnCCH/7bP0+tWufSpYv8zx/8IHedPsq547O89b4lZloZtnTpjTfJ0w5x0qefVumPBNsba8wvrOBGU3zuoQuMRha7exucPjnH/tZ13v7mN7G3s0G1XifLcj75eJdvO/Um8jw193Kvh9KSRy5cYNDtcOzEadI0plarG4kf0Kw3iKIqaIt2q0WtWkXnGWs3LjI/O41WpuNeaPUamylV5AhhMxyOuHrjGnf29qnVWvh+wNTMFEopLl56hl5/QDWqUqlG1KIGTz7+JJ3OEMcRnDq9ylSrhWXlpjOmVVl8Md3kPDdFWNu2jQrFgTzNeeLJp/nA+zL+p197BFmNyG+1eNN992M7PqPxmDzP8RwHVIYmxQ8rWFqXlEnvsFCjVEGWZ3iuj+s4xFlCWbHGkTa257GysogQFuNxj7zIAU2hCrQuTLHNEiRxgnY0fhigsZhfXObylRvcWL9NPNxjamYeY9FjG2CMhoWFRQQWrfYUqytHyPOCeqNRjkNE9Dpb1OoNBp0det190rxgam7psHN34L/86ac+ww/+4PdzYFfwRjv01VHu15M8Kg4OdeuV98HBefaatO+Vryhs+1C2/PoMwITK5sx/o2j7IJ5WWh0Cp/haCeIbrL9K7v6cV14Uv/R6Fa5ZX0UHbL0ypP9GSx8+73WZ/dd47je/vn5yd9Ah/JMPf5TvW575iqcqFOloQjyOmZ5uY9kO0nGhDCyC0OfY6ixCaOKR8TC6c3vXzBWkConEC1x29/dpNA3gIk0Kcp2yfmeTyWTEzHSDu0+vUAtsNne7rO/tcffJVfI0JU1SwmoFz3VZWpxjOE6o1qrs7/dI0gxLalzXRivFE09d5crVTU6dWaLfH/N7n36Ut507hdYaR1ukSYrnB4RRhV5vSL1W5SOfO8/LN28z06iDUkRhgKIgDAN0Afu7ff7sS88Sx4r7zh413klCcu7kCvVGZJKSeIwfWFjKAiUQdoHKLaRtHQJT7j11Aq0gyTJq9SqObZezODZZMWFmqkV3z9ArvcAlyzM+e+El7j42Sxj49LojZmaaJJMxYeDjyBKE4JiLSVgSR1qMBgOyOCabJAx6A2YW5kjTkmRoO6hcM+yPULnpvL3t3tMIQSl39U3AlcRIS7C9vYd0LJMsu4YsOpkkpuKfZni+8R9zXBfbsZkkKbYt2N/v4/seYcVHOhanji7w1ntOkKYpYdUnTTJUofF8IwvxSmpov2+86RzXxRKSWq2KUgov9AhcB1ta2FKweXuLeq1ifq+2oFGPaFZDlhdnGA6GRPXwUIppWRaKgiSN2Vjfpl4N2d3pkCc51XqdojA+XXfubBNVjAlwUWTUqmEpmVU4jvHKspxyVqVEFKd5YWZPLRPUSin53PWb/MPnrvHe7znLT77nzXz3W04YUqiwUFZOPBzhuib4yjPFpx58hLOnV9BKcPH5lwlCl7Bi86t/+GU+8/wG/9U7Ktx/dpWwEpKkGUmSceniBheeX+OpFzd44G3H+H/Ze+8gy7L7vu9zzrn53hc7d0/emdnZhA3YBQECJEECIAGaAkGZJGxLNElREsWSZKlE0jZlSrJdLqlEyXbZKrFomiqHQokgKVAQliCRwwI7G4BNsxN2J/dMT+fXL9938/Ef5/XsLjALAzJZli2cqlfT0+919wv33vML39/n67iSLE9YXp5FyAqtK9bXt4gnGYvzs4xG8RRyUaEsQbNVo14PqcqCVqtBkuVkRUIURNi2y4tnrtGo16AC13ZZ39gl9F2effEa951c5vrNTcJQEUYG6a215vrqOvedOoSyYDzOsZ0QZTt4oct6dwcHI8OugEoXKF2CdLCVRVkaK4ydzV18z6Xf71OUBgN+8ODCNEkQdPsj7jm4zIH5FuNRjB8EnLlynd/9wov01m+x1unyw4vLjEYx9XoNqSyEFvzBJz/HfSeOIx0bqMjz7HbSVuS5sVNxndubvpaGiCv3fcim+7mQgBZkuSHvFpXxxfv4419me2eXo4dNoIQw3ZIi13i2RFRTM3fHRkqoNWtcuXydvd6QVruFcoyvle1YjEcJZWagJmmamnPLMjhwDaZjNUwZ9Pq4nm2gCloglctwd0ilU/K84MmnztFs1KlkhcIUmiphPOrkfnAhxGs7xHQf+uaiskSU5piSskKgqYoSiaDSxrvRnCd6GpiZ99dxbCO5zUrSSYHjmcRuX/K+H4TZtkUQhYRhSLPRQEiF57ucPHaQeqNBlmZcurLK7MwsZVHcTkSLPEcKcD0X33dZ39ih0aiTZTmNZg1lC5h2bj3XIR7FOLZFJST97gAJRLUAYUmSNMdxXBQKtGY0jvF9HyXBD3x0BZ+4cpUPvfUYH3v8KeqhTaMWUG/UCUIjl22OIUlzwihkZWmeNMlJJ6azqEsTOViWotvdw48cpLRYWJhjphkxnIxYXmyTJCm+71OrBfT6fUM/pOBtD51kvh7ieQ5h3UcocH1zbklbGnlmKag8gZYwAAAgAElEQVSKatoN0UY+PvUIKzL4yCef4Pve/qA5hoUh435jIPwtkzuDMjTJndBsrq/x+NoWp44s8Vv/8tN86Mf/Qw4tznP1ymVOP/E5vvKlL/G+dy0x7K0ihEsUNol8hbAEVzdD/s6v/yv++s+/j1FuoeqHwFnm4rUO996zQhhpHjx1ktGgRxjajCcjkiLh2ec1jxy/FzUNyG2vzYXz5xhnNguLszQbLYqioj0zRzLJsG2bIk+5dOUCc7OzDIZ79PY6hK5NlgxxbTHt5iugQikj4WdaMBNSIi0HpzbPvfc8jFRG6rq5vTFVnrTRlSYvcsaTmMkkxpaaLDeSybrn4tsKKPFcn2pKc60qw06QSlCUxdRGRyIyyce/+MesqzXe9eAxGuEmT7wIf/WDf5E8L/HDOmmaEoYR43gPSykUgrwy5X9RaZI0o9Il7M8OaoGyLXONz0o8PzCnelUCmiLPyIoUy7VRlk2FgUVZtlF7ZGmCY1loLbCVRGpNEsdsbG3QnGlx4q67mZudmxI6FcPRAKUsvvzlz3L40BFTDMtyZtpz2I6k2Z5nOBrT3b3FWx54hEkyohbVmV04QFhvviabnK5Trbdw12PLrz9KX3+5eu2adfveb500SWXkr98YGn8riqbWdzIU+4bfK988uTPP8TUrhP3f++2u7yZ3f8aryPP/et/E8I0XwX/L5G7asVPfILX8fyu5+8ynPscHFprmp97wY5q9nS6R7+GHARpDAJrE46kET007GpI0LujsdvE9j5l2E4mg0Wxw5cYax4+tIJUkz0qUsnB8OLjcZmG+QZqlaAGzc03OX17nvqPLzLTq2JZie2ePdrtlZv+kxPd9+v0h9XqNoihozxgZWpbmbG/1efe7HkZ6Juh6+MQJXM+nXq8zGQ0Mec2yKCuN55pZvfvvOcHKbJtut89XXjzLXKNOvV1DlxXDfkyr3eSulQUeefAkQldUFSST1Jj7WnIq+VN0OjtkSUUURJQ6p8jNBSFJYz791Nc4sriMEpLRJLlt+G0MoS2SZIjnB3heyKe+8DUW5xqEoc/Dp44T1k1Fv0hLHEchhaIqyqlvlcK2HSaxmeP7xOe/womDyxRpTmevz5EDi5RTQMTpZ8+yemODRhgauWya8dy5y+iypNkICSKfPCsYDkeEoW+w1XnB5bUNGn5Arzvks6dfYqHVoD3TwAt9JvEU2e/YJvAIfXzfNZ5Cvg8CbE8xGcVsbOyyvDTPzbV12jMtpFQkaUoQ+qRJCkCtEd2WP0hpqHs7u3sEvsfmrW181yGOJzQbNba2OwxHMXNzLcbjhFYjnJqHwyRNcWzHHBM7e0Q1j3g8YXl5ge2tDp7j0pxpgpBUpdkYw1pAWZXs7nQIAp8sNd6Dru/S7fTwfQ/pOMbH0TKzr47nmuerJVc3t/hbL17iV/7yu/jp7ztJzXMw403781ECy5LsbGzz4stnOXRgGcfxOHX3UbTQxMOEI0cPcWuvxy/99hP8D//pSX7k/jbNRoiWkuy2r5iL73ocPtDmoXtXsG2Dmq+FPhUmCE8mCbNzM8zMtEA5uJ5HBTz74kWOHFmh0BqpS5557lXmZhr4gYfr2UgsKi1YXJw32P68NOj9ZkQYeizMRkS1kPnZFkHocHZqoQGCxfkWZZ5hOZK1W12isI5U0B/2aDV91q7fotGsE9ZrKCnY2drB96PbXVgBNJsN+t2+eVzg4Qcen/iTp2k3A4rCSJduDBUNS2LbNrbtsLLY5uRjH+C3f+u3UEHEzz/2GEEUGEmiZRGPYh687x6UUqazpCsspSjKEmtKxTRSM0019XyzLItpk+t292p/JoWpMXVVlSjLECLvO3GcZhQY4qujbhuhP/e1c6xv3KIReYRhgLSmMkUhCMOI2bm52xKq4bCH63q4tpmXksJQNh3PEF7zLANpZIbrNzb58rMvcN/dR81cIIJBL+bTf/JV3vLgXbi2y9EjR7EthRYFaZLghwF5PqVmCr5hb3otoBIC04WTr2lIqqIgmSSk6cTMcE6hONKS0y7dFL4iDczDUua8yrPcBM5aYtliipif7ov7E1za2KuMRzG7Ox2urN7AAnzfI8tNMWNpaRGB5KWXXzZycmVk22Fg7Cpcx6XRMPTc33v8M9Sn5vTr65vUaiHpJMV1jIl6rjUKwWQc0+32KKqKRrOFrqDMSkbDGNfzpwbTqZGQDWM+t7nO++9f4Xvf8RYWF+fp9XpUZYVQktlWk72Lm/ieb6xfphlykRoqYRxP2Ov2qNcDLFuCAtt2kWI6F5UbQEyWFYxG8fT6C3u9PjOzLYSU2NKiNdOkpKDSFbZtbFYqrZHKIUtK8xqnvo2WZWHZFrs7e0RBiCthbq6NsdHSBk5xJ8nYt1r7xY8q5yNX17hnMeNv/uo/oFtEvOeHfpD//jf+IWfPnuWuI8t86H2nmG9CGBRkqWSvU6CkUSs0Fx7m7d9zH6Fzi0LX6WU2m9sTHnvbD9DfW0Uy5vmnniT0XbK0jx8GlLqgXbyXqOaihCTNUorKYXNjA8ttsLAwT7vdRmvJbmeXQX9Au9nGti2iKGS3s0Wr3SLPMzZvXmFhbh6BITqnmdkvqrKa2gUU6Krixuo1ZuaWyLWNH9bMvLbrUK83qSrNrfU1FhcWabdaBFGTKPDo925RbzYZdndZaB7C841ZfZ6lSGnjeB66Mp+hFPtURSML1WPNs7tP8nf/4kmSccn//oUBv/7BX6ASFuPJhCwrcR1D6QwiF4npSFuOkVlXZYFQiiLPTBJZmlgryRL29nZ59cIVWjNNA6lCo9RUWm85SMuAfpRysKfxYZpnCASOZVMkBWWWooSZF51dOsjW5jV2tjZI85w4nlAUgiAIcF2Xw4ePoqSgs2cI4LWwjuNaDMcTWq0Zblw/T71Rp8hi4tEQLSStuSUzeoS8fWhGDZ9OscPMXAvNfgFJv8737jtL7pRSaKG/qbjxpsmdEN+krrvT+v9jcvfvDS3zTU0FhbrzDW4PcN9pGQIQt00b92/7tMzXr9ff/5096Td/bvtrn+R5790nTcdemD8kpthuW9qcO3eeZt2nsmzKCshybGmTjjNeOXuVzkaHKivwAptbGx2eev5VLl66AXaF8CpcR1HkBWmSkpc5tmcx22rjOAGDQY5SHjtbXW5eX2ewlRMGFpeuXkMoj/nlRZLJhN3dnqEe6Yrt7Q6ObeO3fS6cv046ynADn3d8793s7NxisNMjm4zxgwohJgz6HaPntiSjQZ90EmNZNrVGk/7uHnmSceKuI/zQ2x5mdmkWSlN5j2ohrmfheqBUgtamAm05yjRwqpLuboc80/hOk0ajztfPnqMowHMtqqIgcCMW6/MM4wmlrKhHPv1Ob+ptU1GVGi9sUmiBchQfeN/3oNGM4zHKLVHaYm97iBf69McpW50eJQLbd6l0wWg0Iqr55EXO99x30kinlOLA4QPEFVSUKAXf+/ApDsw2mWnXWLu1zuxSm3c8dh/HThwGFKP+BNtRNJs1E4RJhee4nDp4GKkkjVaDD/3w97O4skwpSgSKQX+A5ymk0hS6QtuKsoJJklBkKb7rUqRgK4u52QajOOHxJ8+SZQVaagbdIVoInDBAuTZ5Vkw3mYIyy+h3uzRqxjR2fnkB5fls7w1BWczNz7GwtMJ4UuJPu622p/BqEe3WLKCQSjE700JXkiiqUVSahaV5+vGEShv5SVmVKNsiHiaUmUbnimIC3e4E2/UpCigqgXJcVAXpOMFCGlmthiSecOQf/U803nGAj/6d96GrHKgYxTGiyKhKIw3cXNvm5sUNxpOKJLW4cvkGVZERj2OkdhBS88H/7vepWT1+7ftCpLBIUCg/QEmBZ1ugSzZ3dsizEVWZmGRK2oyGCdJ2sS0PKoFrO0zi2CR7VYLQmu3NPQ4vzrG9vk0RxyA93vG2h9nY7PPKK2usXtvk4qvb7GwNefyTX0XpnKeefYXV1R22t3exHYuFhTaOI6nIEIVi9UaPPKlwHM/MdaoSWdmcOLbM5uYaukxpRiFFUrKyUqMe2mgMVCV0NXk+AVmhHActrakliUNZ5VS6oior4rTADwOSLOfI0RU2OwPC0CcIfYM7FxYf+6NP8ZGPPW4KapWmSnNQUGqN5bpkaQoKitx0UiotTMdRKdI8h7KkSAt+9w8/zRNPfY3O9hZlUZj5NyRlMSVwWhJtGyAHQt6WQlleScmEPB+RjIZUWYrQmrc9dg+PPvoQQXOWJCsp8oK436e7vUmRjqCcoKuMKsuZaS6isNne2CSfjKlEZTwUi4pKYySeuQEiLC7N8dM//sNcvnYNITSIiqjmcuLeQ5S4VNKm0CnKkXhOiEKycXOLZJxiIRBVQry9xnD7FiqfUIz6KF1iCW2SNqMhg/29ybJwfQ/X99FI0x2YtjOzNEdKZeaTKkBLylyTJgX/6x/8EcoS2B7TTh+UFSaRyhN0OmE86JtEo4RWs8VD999LFNSIxylZWrDT2cW2SqRMadVaBH7Exx7/Aq5ns9fdw7MlFDlZHLN+8xY/8xM/ysHDh3Fdj4MrBygzQFgI5ZBVsH1rl3icceHqKrVanb2dPXY3t0Cb9ztqRviBhaVKLNtFa8Hi0hxHbIntCfIyZXNrgzQx5tJSKYoy51p/gKBkr7vL7u4ez798kRdevURFSVgPWFpZII4zZKVIBgXjwZCinAAZR44cBG3zmdMv8cVnzpMV4LgBR48e4saVdUShycuSbq+PFAoKgdaG9lekGUWa8q8/81V2djtIS9Lp9KZS45J6ow4qNWRIXUwTaokqXwengDvOC70xlhCmCFNqslHCH5w5z6sduHRjk7Nfe5JrVy7TnJ9jnCU8cfoi/c4aRZGQ27PMLKwQj0f0RxVhYxExeYqTi1sUicvVC88QFg3WL69x7fxTPHi8zYLncO/DJ9Fyj9B2yEYl/8cfxcwvR+b4xMK2jCrE8W2KZJt2Y5bAq9Fqz3DowCEOLC3huxYvv/wslmURBBG2HRI6EWUV47gS27KYxLHp5FgWtushESghQQmWDxqrnps3r6Op2NreQGhpZHpKcPDwYbQu2VhfY/XGVTPjXLps3do0+7vumXNJaSqhcWzXfO5ZiUSZuVWpjB1HXvCPPv+/8Isf8BgNNvgnf/AKv/rn/hqFVCAlzeYMZakZxxPyvGQ4HvLy+TM8//xZA0LLU5K0IMtyPMdDorFtmzRPsFyX0ThmFJcoO0AIRZVVFLllkkCdIxG4yiaLx8R5QiU1ruWZgkhVYtc87CCiQCA9SUVJZy9lOILLF9d45ewVvvbMszz+x5/k2rXLeI5LVcFMew4N5FXO6a9+harMeOXV88wtnuTCxQv4jTks20YUBdevXzYqpOqNadI//o3/kW+iuJemwF19i1ElkzS/8aYrc/yb9/+1708Hn9gXhd6+va4IZjp45v79hsx+cl5VGirxTTdzmgqkVuZrLQ20fkqp308cv/H1/buw/r3p3H2nPnf7H9ObHXpv9jHqb/P+P+3VrDeIXj2DtKzXnkOl2dnssjjt1JgukNFgO7ZNVWrarQZ73T62rXBch353wNGVeQ4eXOCli9doRj6Lc7NkeU5nb8Bsu02a5nz6iec4vDzPtdUN2q06zWYdNMy2Q5aWZnnl8jqHV5aJJzGe6xAEHqNhTBgFBhohJdquaPkBtusgLEFRZNRCH9f3SdOMojBggyRNkUrR6Rmz7fEoRlSwu9tjdt4YBBel2YSVEmRpyqA/otcfAQLHthkOYz76x89wz9GDSKXY63QpipzNnQ5nLt7g1PHDFHnB4YPL9LrGkFsIgVSKQweWsC0L23ZIk4SN7Q6t6WsopxcpNGRpRq/Xp1bzCCIfXQhu3jTV5+FgTFSLmJ1tTP1azMUrCDzAXKCF1lO/PpuiqOjuDWk2a1RFiRAYA3DbkDwNVljQ7w9oNGpmlqYqSZOUWxs7jIcTFhZmcWyJsgyQwvUchsMhjqvRlZllEYCy5e0Dtio1nudg2xa93gDfD4zMNQxRyuLUoSXcwEOjiXx3Wvk3/nfpZHL70rqxsUPoe4zGE5qtOnE8AQ2fOv0iN9a2WWy1jF+TZWZ/HNeiKk09rsxLJnE8xU0X2JbxEer1+lhC0ogiQzvVsL29a2Snnpnn++xTZ7jv1FH8wMwZKSUIawFZaiS0lq0oyooyy/jZ0y+zbqf83t//eeqhz3AwpNcb0Wi28LyAVy+8wszsDHlREtWN6TcCHnzwFHOzbTa3dmk0G/y1//lxrm9s8Bt/4V5C12Z+rolURus/Go7o9QZEoT+V2kg8z6U/HIEQXLqyzmy7Qbc7YjyKCQOfixdvMDc3w9bmHn5ozM6LPGd2tjUtOAmuXt9idqbFi2evcu/dh1iYn6EWtejuDXAsQZ4VPPzQPTRbTZp1jzxLqcqSoiioKjMzdfHyOvfcfdh0o3TFYNBnPDDyXtez8D0HKTTPPHcOxITZuVkq4WMrm2w8Ji3MbKDW+5sjfPKzz3L86NLtTfPIgRmiyMd1LMqi4JMv7vHw4TZVVU6r7hN+59Mv8P4ffg9//KlP81N33w1CU1Yay7LYvLVJWVZ4noOyLAMLUa91pSzbQmj46Cc+wzsfvp9Xr9/gvhPH8MNgWuAynTulJGVRUgljl8A+4KqCPEtptZuEUWSojZaFZdvosjJzX7Zl5JpVRbfXRyhJo9lETb3lKl1Nz9mCRqth/J+UseuoinI6B1RhWaa8J4zaipn2DBrBJE4o8ozDRw4bUIjQ5l+0URggiCcxaTbB9z2MabqP7TkUpSmoxKPUWHcoOb2evFYdvz17N+262bZ9+/qzXwREaPI8x7bNDJFAMO4POXrkgJE6F8Xt96SqKiSC0SimqIzHqG07aF3R6/VRSK6urnHw4DK+55rZ4W7fwHqkJPAcojAwhNyiZHt7lyDwTbevKPAjn3PnL9BsNimn539Fhes4hFGE6zqsLCwgkLz48kXuPnkErWH91hb1Wo1+v49lWext79GoRWRJyuW1G3z/958iLyTr6zt89emzrCy18EMPy7b46rOXOTXfNmblnseBw8u0XTOLG0ahQd1PfVqjVoSyXfK04twr16iFHpM05ujCIhs7PQLHptGoURYlaZyhlMVXn7vAM2eucfLgIkpK4snYzHlGIVSCI0vz1BshujIgqaIqsCwFAooyJYknNFp1qn1JrJ4WKXgt1vj2QkvBsD/gU5s7PHDiOI32Ir/wV/4mSZpz96lTOJbF2ZdWiTcucteRQxw7eYg8G9Cq1VmcnyWedGnNzJGVGjdoM7fc4qN/+BI/+N4/z/rmNssLObad0+9vgk6YjCYIafP7X9zk7ccfIUsz0jQnL0sq4VJvLjI3O8dwYCBdQsDFSxeIogbbu1vMzy/QbrXY63TwXI9Bf5sk7uA6NmAk+VIakuS+9VRe5CghsR2fMGwwKRTzi8u4XsgLLz5v5owtmzCIDOxOKppL82RpQlVKtrb3yMsSRYZnmRlfoQW9fpfd7TXm51awlEU8iUmyGCkFv/HJf8E/++VTtJuz/PJvXudvv/8vIZSNkhaOF1FVoCwXy7JoNlsEnk2zNsPcbAvXVfi2S54YL1UhTAdSS4nt+aiyJAqbHDl8GCELpNAk8YTPPfECBw4sEAQRZTmldyuBY5kuZpKk7G53qDUNVbiqTPHHqKg0Rw4foF738Dw4fvIEjdk6b330IZq1NhcvX5jOUXs4lik22o5DvWkKNFsbN5mdaVGrRUz6XSbxmLkDx3CmYBb9uoPxc899np/6qQ+94SiUQoE0hag369zdKVn69hKoOz3GxCmvn7t77etv9XN3+PvfkJDqaTfyTlJp+G7n7rvr/+H6u3/v76McM3ciAKYV1r3uHn4UgbKnkp0Kx3fRCLzAI81ynnzxEkJKens9Thw/xPX1bZRt8dDdxwyGWGtu3trh4uoG3b0BruvwzgfvxbZdXrpyk7VbWwz7MR//0gscObpAvzvBkz55nuO6Nr3BCD8wG/f29h4IweUrNyjTirW1XYSWVIWRkZv5g5Ig9HEDl9W1DTzPR01tDyylmGk3iccTnnrxgsGvUyKkZm93j5s3NlBK0W7V8Vwb33NY39ylVq/zMx/8Ib769Fn+5Se+SnumSa0eMT/T4tDcLFqDY9ncuL7BJ7/yIpNJSlVpRqMJ8SimyEvyNKcoKp58+RKTODFBWVHiWDYCge1YtNt1tDQ6/krD6TMXSdOc+YU5Xj5/la88e8bIgYSgLEszm5TnxOMRVVUBgkmSUeQlge9R5gVXr63xR198mmYjIp7EOI5tiHaWot2sm0Q4L0w3sx5xeGWRKPJI04TRMGZ3p8fFK6tsrG+Rxil5WiK0JowCrKktAABVxSSeUBQlq6sbuK6LshS265HnhqgaBJ6RIgvBxua2qZqWmrIoiMcxva4xdfU8h1o9otUyYBTLVtiuQzsMaHgB11Y32d7cpshyNjZ3yHPjDqlLE5RubXeQQmMpSWeny6A3pBGFJEnKzvYely/dIEsKbm3tUuQZUgn8wOWnP/hubtxcn6LwjbVBnmfYjqJC82qnw689/wp/6dkL/O6v/hj/+Yd/ECFhd9fIOZeWl0gmOWjF0aMHeP3W4/geBw8uMxqOyMuSv/Kbf8J/9E8/yU/fD//Zj53AskwiYCAwkrIo6PaG1KOISZxRlqUxMw99jhw7yOLSAo88dA/t9gxFXhGPM85fuMH8bJthP6bfnzAZx6TJhKeff5VOp8tkkhMEEUcOL/P7H3+Sdzx2DxcvrbG+vm0q4a7k0rVtBqMYRIWy4NatLQOLEZK9Tp9JnGJbFt//9nsQAm7cWDPAEmUzN99GSnAdh0k8IU1zHn7gbuYXVkjTEkkBOieexLTaLUBSVkbWIqTk5F3LIKezL1KYz6GqkEKzvd3hyfM3DFhISbI0NcG7kszMtnEdh3yKF7csiyzNWF5ZIqoZKI+Uxp6gqjRlXk7HiARlVfGf/MT7WVxa4Ee//52EQYDWmnQypeYK42eUFyVVsX+hqaAqUVKbxATTKSkBsW9ZM937S20eMxiOiJOU9syM6fxhZn7kFBiibItKaCohqCoDMnGmgJxkMplWeTWlKEEZiwLbcomikCA08zHKMpJDe1qMGQwGlGXJ8so8jWbIJImxLI/cipBhDcIA7Xv4zRY4LgBFUU7DF02aZtOmjUZXmrIwAbDWRuaxz56ryhLXN7LlcjoL/O53fc9teaaUgmQSk+cZrmPme4IwojnTNEkfms2tHdrtBjdvrXNoZRmpLHw/4OyFS8zOzuL7HhubmyzOz5JOUspK4AU+tXqN0WhMkkwLEFnG8WNHGfQHOI5DhSHcVmik1IyGA4LIR0rB1m6P0TAmTwtz3QkDoihCCMmFS5fN63JdTiwuUFFhWw55UlIUJilVU4no9iiDEkQlcSybZBhTFZqZVnOa2FrYroUfeYwnCaNhwpPPXODMqxs4tsLzLBqNBklSmHdUKpJJTrPRMKMFns+Hf/SdCA3nL1xDSNM9mIxjpDSEYyUt9gPP4WBMURRIaaS9+dSmBbk/V/lv3yWotGax6VFrLfD1517kq6dPMzs/T7/b5+Uz5zlx9xzvec/3kWcl/e6A4aCPLkbcunWZWhjQ7fWo12eohGRte52HHvle6q0V/tyHPmyscmSKLic4tmRmbo5CwyjOyDOT6G5u3iKOM1564RkG45jFpRUOHT7GtZvX8MMIL4ywXQfLtukP+gwHQ65ePc+zz3yewLdJJmMsayoRRtwusihlQExKGVKs47gUVUW90WSSpvhByNGjJ1iYW6QW1dGlKUa4nocuShxlQanJ0pSFxWWaM21cz8NWNpayaLdnCaM6vcEeRVngeh6+FxpLkKJEWR7/4F9c5aBaoNfbo5jGALoSZLlxTcuyBMuSFGmGYyn8wMVWAtd28T2fKAwRysjr40lGPCnQRYmkwnUktm1kop4fsbLgY7seWZFPjdSnBR0NlnQBwdbaOkVlIHdSCWzbocwqdJ5jU9EIHZq1gO7ODa5dO8dedxvP92i1ZjiwchDf87Edx8yqY5IbSykefPAR0mTMzWsXkMrCtl3SLEVZ1jclP3daWmgk35hc/X90Vfq1279D67uduzdZd4KvvBmPp7rD4/Wb3F7/O15/u9Nhoaup6ej/zewfWnPu7Hm+L7LRQtwm1Ukt2Li1RmtukTQtEaXBbpfa2DOAQYS/+MoqhxdbjOMxaZZz8uSh295Fve6ATq/P0cPLzLUa1Oohl6/f5NCBFfq9AY/cf4T5+RZaw3w9ojUb8nuPf513vu1e6i2XbJJQVqYjFUXBbT+xufkZep0hnz99nmNL87iBbxDBFdOgw0hfbWXhugFVlTMaTUwHoCxJJjmn7jpECfQHQzzXIQx8PMelsz3AsWxs16LbG/Dll85z8vAKru8zP9vkLfccnvqnCWzLIggCbMui2+3R6Q74wXc+guPZSGkMQnUF6STj9NfPcenmOj/46P3U6zUDS5huCDtbu4SBhxCaPDc6+LUb67zr7Q9gOea9fvniNe4+tITvu8RxQjJJsG2DSLeEIKrXDcQhCOjvDQl8j/OvXOeek3fx7MuXObjQxg1colrEJEmpRQHJZML6ZgfHcbi2uonvudNhapf/7fEv8Y4HHuDK9XXuOXEE3w9oNBoo26bf6VHpEtdz2N3p4dkOSlimEu/YzLSb9LpDXM8jyTMsJXGl5IUzF2g361hKEfommMzTnDzPqTUMvU4AgevwyuVV5udnKSvj/ZMXBccPrdBqRhw6tMjnTj/Phas3eOsDJxmPJgRhgEQwHse02jUmaXLbA+7m2i7NVoRAEoUBr1y7xcXVDd5yzxFDvLQtQFNVOTOzDfZhE1IIpBLc2t3ll752kXOTCf/8b/0IP/7YYaTUZn6irPA9l0uXr+E6DteurZlOkZKm2mq7FGWBkJClKX9y+gz/8N+c4xffu8Tf/sARVhZbKFtxfXWdmdkWCE0ySVCWJAp9LGkziU34UogAACAASURBVFOu39ik2QqxLMVkPCFNMzzP5wtffoHF+SZfOv0qK4sN0jTn4KEl5uZmp+ep5sRdyziORac7ZHZuhmura2R5xoGlFpYlmJ2pMRwPGE9GPPbwUVYOzFKSkucxeZYT1QLSNCMvSuNFqRRFkRNEAdISpjuFxLJter0eo1HMcJwQ1Wr4YY1GfYYizUnzmLxMyIsRftAGIW6TLHWVszDf5HZBVBi8uRCCqihxHJvffWqdn33vQwilsCybzl6XPzmzwX/84Q/z5JOned/KCkoqkiTji195lhPHDpMkCY6jpp02UyE1XnJT6qulKKsSP/SnPnOmGq/BECmVQdMrpbC0ZjIc4kjQecZo0MO2jXxpMkmwPQfQ5GmC5dhTgm5x23eqUa8jlM3mxg5RLSSfFhaooKwqUOa4U0KRxxmj/ohaPcSZgmuyNENJ89zNdd8kW0JIA1iQkmSSUOYFWZrRbDWZJJmxBEkzwiAinZS4ZUwZ9ymHA0Y724x2tqjbAu0Gt+dHpJgm19OqvRRGyrTfst8nio5HI+I4wbHNfGCapFOPRzNjaNnKAJQcizzJqMoSadtoaQooQkhc16HZqCEEbO90OHbsEKura4RRyKEDS1RFCVLQqNdJk2TqrWpamGVZUa/XWF/f4MDBJaQlsB0H27Z55dXLtJp1AxeRGiFLLFeRpQlalyzONmk0agS1kCxJydIMe6pEsJWF5zhsbG/zTy68wgceXMZxQ1rtGivLdRqNiOEo5tpGj3eWIWvXNsnjnHyS0Z5p4XkeeVmQlyXW9PqSpSmWsnFdm8BVvOWeI9iOheeZOezQUyytzJoCiWtjOTYaOHxkmUk8ptEIOLAyD9JYURj7FTn1VTR+jHIKpSnLgqIoKcuKYTem2WqgLXPcCK3f0Lm7U3Sg7/h9wSeu3WRUrtNcupfL11f56b/wYSxbMOz1+Af/7X/D0WMFP/G+w0ThkFqjgSdtuoMtAygSGmX5KGXT2esws3iI1VtqaqC9h0gv09u9QSsK8FyHbk+zurbH+lqTtxy6yxRknBq15gFubu/hBiFzSweppIPrR9hugGW7eIGLFwQErm/et3qL7vYqC3NNWo26KahOjdy1NEmLIWca65yyKLi1sU6/PwIrYqY9i9DwyvmXaTYjXNthZ2eHRr3J9vY2jnLY29pi3N8hjDyiyCN0JXlV4LqR6ajJEsdxqLcapHliFDRYrN9cw0me4NipQ4jVB3jPu78XL4hQyiRY2D5lJZDSQinFaNTDopoWSYxCYZJMEBJKWRl7ByFZv7nO2ZdeZXGxibQU40l/qkQQ2I5NbaaO6yp6vW0C18dSZk5dT0dwszwnqjdwXDMDnOcJju1SlZIbV67Qai7gKMXGzWt4Xp3O7oTxqGJj8zp5nrGwsMzu7i4vv/wihw8dI80S+sM+gR/y0nOnOXn8BI4l6W6vmy5pa456s4nQ4rZdkEDw5Ze+zE/+5I/DNP6VQk27XNPZ3TfJ7+40R/fmnbvXR9N3+v4bZ5Rf37Wrpj6axmLEWE/dDsilUaDIfbbGfuI6LehJqe4oy3z9974LVPkzXt9pcnen9achtfxOfocSwgSn39C6fuMPmnvufeA+bn75c7TDECWMBOnW9XUsXeDXWqxe32CmbkAbtudRFQW6Mqjc4wfmGE9i5mcaNGeaZFnOjZsb7O318WyLxcUZ4jghTTOiWkCzGaKkRWevS70RsLG1Sz2qcf3mJs9dushPvv8HcH2LNB0xHiaGZIepQG5ubPPJJ14gHsWcuGsJlRcsLLaoZEVRpji24usvXGR+psH6xjYzzQZlruns7VGvhShlvN2a7eY0+DIeTWEUkE4ynn/5Mr5yWb21zdJCGz9wecupY+R5gRSCSpf4UQC6oshyXjp/ifnZNkpJHEuxtDyPBrI8m8rhSr7wzEscnJ/FlpKZZsTiwixCSIaDEZ85/Tw+krm5FrZjoZFYlgNasrOza8y6HQsE3H3sAJ5rQBK3NrZ5+vwlTh5ewXYdlBZ0OgMsy0Epiyj0ieMYS1hMJinn1jZ4+4MncXyX8WiC57qUWYYUgiAM8Xyfzzx5hpl6RK0e0e0OuLS6xVzgc9eJFYbxiFotZDSK8QIH1zIYcNuxsKTNp7/4HOtru2RlZmietsX65o4hYUq4cWOdmuegi5I0y2m0jOl8kRsJie975kIIJJOEwWDEoUNLUwy74tb6FmFoSF+GLiY4vDjLfSeOEETGxiDPCl488yqHjqxg2caywHEdJuOCm7d2OXZsmXMXrnL40DJVkSOV4MiRA+gpHMJxLPIsQUlTKbWUoiwyfu6pc/zI+0/yC+9/Kz90/5IxYdYVtiXpdTvkBdy8cYsjh5fxA58w8qk3IoSyuXrlJu12k+2tbV5e2+W/+sgz/NIPL/Dh7z/EgZkQXRbGt8mxiMcJjWadchoMVkWGbTk88+wrNOshO50eyyszXL18E9uyaDbrKMuiFrloAY8+cpzFxTaNRkg8jrEci25nyOb2LqBpNCJa7cZUWie568gSjmMTRVMPSD+iXgs5c/Y6y4tzPPH0WRbn29QbAWVR4nkutXqN1ZtbKKFJs5zeYGieh5RoLagEdDpdDh5cIooipOVQIaBKKHPj9+aHNaS0sWzPBFhSkGY5ljQkubwosafYfKQkz0tj8SAk12716dzc4NTdR8jzEsqKz13Y5j3vfi8f+b2P8sHDRw2oyrY4fuwwSNMRV7bp7u93LMrCSEz3seeWYxsYRmWoef3BEG8qo83SFCktI2WDqTzXRloKx3VJxgmj0ZioHplrtNDYytSZ0szYJuiqQklDjrMcZ9qddkmTlDRNcCyPNMuwXJsiy8knBaPBmD/+wmlO3XXkdvfMdV2yYUqRF0ilDRxBSarKePQVRcnp515iZWFhalXigFIUWYmjbPb2ejiOTZ7HZFlBVKvjuB7xJKY+16YSzvRtfx3oS+//X3D50nVqtdCYZnvGy852bFzX2K1IJU11v6puU+a0nna8sowg9E2x0bIMcbQo2N3ZoxYEgEZguv9BGNBsNUmTlKqq2Ovs4Xo+k3HMoG/mLpVtEueyKJmMJ2ZvshS9QR/H8ZBCsryyxHg8nnYVDZZfCoUlzfEUhSHSNlL8KIowUlZ7imwPsV2H0PP4vQuv8K67mnQ6fVrtOmHo4LkOrusTRSFyY8zcvLGUeeXqDeYXWxRT4Io9NbbW2gwdysoANpQlCEJDzuzsDqjXffzQzN8ijY3BXqdrpOdSk2cZji04/+ploiC6bfOyb3lQ6YokTY3lhDaBo5HQSra39pida4M1Neh+Xeb2rXofd0ru/vH5axyd0Xz+qfP85m/9Jre21mjPtPn1//LX8G2b8+ev8UOPLlKvaSxPkMYTGjMN3CDADyLSrKTf62JbgsbMMR557P1EdZ8bqy8j0zWaYYDnKDp7e0TRMn/9Vx7nruN3c2rlCAiN67c5d/4clXJ58OFHzXiC59Pd28O1LW6uXqHebpMkCZcvvcKxo8cZ9DosLCxjU1BV+bQjL6Yed+ZYz7IEISRlbuwDShziOKGSLmmaMh4MEGWJFzg0Gk1urt3AcwMWFxZBSQNpy2KyouDatYvkcYLtu1w4d46oXsdSpkCS5TlVWZm/UZb8sy/8Lv/FX30fv/LPz/BT7/sR08krcyotEFIhbZ96vcFkMkFJSZqmuI4pQGiMbYztWpRVwfr6DVrNGQSadmuWejMkqIVYtoNtO9jKNfYGeWoKslLhOp45NyzbyFOFQMsK3wlwPIVEUhUaZSnSIjWUXK1ptmeYpF1m5pfQlmacDFCOxYMPfg9RVMd1XKKwxvLyQWzLYjDoMzM7x2AwIAoCbl49g22bkQnfr+E12gRR3agBXpfc3bpyg/f8+A/cPh6FkNPkziRBf3rJ3be73vjY21N6yrwWvX9+gUne5DQBfIN+VNwBsnLn5/nd5O7PeH2nyd1+h+2NeuA7rzslXq/v0H07Hb3b97+uW7ffffhWyeN+daDmefzT3/kI716Zm1JdKm6ubrJy1xGKvOTjT7zAYw+eMjMZVYWSU5XwtFNTxDlPP3+Zw8vzSCGYnW0R1UP80ENLm9Fwgmu7dDo9fNdlt7vL4sI8Vy5u8tz5axw/OofjSB6+5wTJZIJtSdK0pNaIqEU+8SRGAs1WxFK7xpGDC+x0+hw6tkiuC/I8o6oEWguWDs6hBdSCkC88c4Znz17moROHcBybYTIhDAPyJCcZJ9iewJGSna0OYVDj809f4J7jSywtz5gkC4VA8bFPPc2pI0sk2QTPU+gKNtZ2+dLzV3jr/ceYZBMq9vHTEp1VfPSPnuCeE4c4edcBdJXhepKl5XkDZLFM5Xlro4uWsLw0B5VCCcXa+i3C0GJ2YRZRabqdLs1mZDZ9KsqyYGFuhiOLs9gKiiLBDhyCsIZju/T2BigbvNBBSYkQmkdPHWV7t4ftWDQdj1FvSFFWWK6DG7mg4OTSAhevrVEmGY6teOejp2jONUEIQ4WkIohc8jxlHEPY8NFCYzkORw4dwLFtaoFDFAUm2V+awfFsAs9lNBghLcX80ixh6LO5scPCcgvXd7AcC4QZMC+zHHdqrSCEpKjMvGAtDKb2ASX/+vPPcu+xw/h1M1tSVSVZluAHHkuLs2TjIdubu0S+8RD0fQdLaizHwvMshIJBHPPA/SfRaY6QFXbkUlYQD2J8xwLH5W88+RKPvucYP/PuU7RaLZQA21YobKRw+NIXv87SYkinM2Z1bYsDK4u4vsNg0MPzbBSKWs3HtW3+xu98lZ975zzHnD4zjRpKKCSCjc0O83NzDPojZudnyIvcnLeloEgytIbNvQ5Ly22OHltBF5p2s4Xt2Fy6fINWMwBd4kchrucwjg3yHaEZjwbUG3We/vqr+I5NIwpQFmR5Sj2qc/36GlmWGHS85SAsQ+VcXpnDCz0OLBmaoygrkiQnnmSUhUYXgiCs8dkvneX+U4cIAocsy1GWhWOB0CXbWx38IKDCAEwcq8te9xq+f5S8KgijWagqkiQ2thWWD7IiK2Iz+4UAIUninO3NLuQpSip+53SfX3jfg0ggi2OU0vzh11b5D97/Xj712c/xE3efQiizoSoFe51dwihg/cYWnhtw5sx5VpYXcWyb3/o/P86DJ49jezZCG5rjfkE2SzMjkXXNzFelq6khtL4dVGV5jrJtJDZfe/5lVubnsZTxfSsrgVL6trl9WVQIDbvbHZ7+2sv4rkXo11i/tUteaj57+knuP3kcz3EQlSZNEyqd89ZH7sN2DGqrKk3g9eq5Vf7NF59icaaGrjSOZZNNDCEvzwSff/Il7r/bXJOCug+IaUdRsLvT5cnTZ/n6xRs8+raHqJQFjkfUnCXNBUpPny/GdsGyFFrsJ2qaVruJlBLX8yjKEqGMPYLWEk1FMh7hOCZBtZQiz7PprKAhfZbTDqUAdFkipU1UCynyhNXVVSwlaM20CaKA7a0dZmbbhmzquEipiZOY9nwbP/CodGXus236wyHt2Ta27dJoNNFSGw+7ssC2bdiX35XQmXp82o5Np9Ol140p8ornz7xEzfdI0oQkzSnLivFownic8tmNDe7y4dGHHuD55y7wlaef58H7j5NmMb4t2b28hW85CKVYmG9TFCbR7u91UWWJ5QZU2hjaO4FHRYnjOWghENJm0B+xtbtHvVnHmVrDlFWFZ9tYlkVnp2f8KG2LKAzo9s3Mt+e5aCRFUSEsgeu4FKngM194niMHFrAdyd5Wl7XOHkePHpwm7Bqjh98PoN8kNnhDQFJSqYrTq1vc/Z63ku8+R2cIf/ivPsZ73/3nOffiWX7xZ3+M9RsvgAg5sFIzAJDdDjNzEUJ5lGVGnowJfBfLcegOJXZtjkbjIJQJ2XiDhjvC1gWjURchEnY2BEQHeaD1CPW5AOVEvPDyFbqjFMu2OHr4LmxVkZYV0nKMSiaesHl1g/mZNguLs+iyYnP9Jt3OJTzXo+46JilyAnItcL0IWVWURTadz5YMkpSbqzdZPnSS7d1duv0+CysHWDp4AMcNKbWk2Zrl2a+d5uChIwhLE4+HLC2s8MILz9Buz9AKLBYX5pibaYMukCri3LkzjPtdZmfnKYucnfUBP/dhh7/32y/wyz/xlyETVHmJbdto28fy6lTCptIGyJSnKVtb16g161y5eBGJh7RMlKiEQxSEt+dtBSW+5+CUBgCWlzmV0JS6RGqT/JRlgev5FKWRj+sK0mGPyK9RVga0IjAem1Vlim4CPfWcNb55hbDo9BJWtzqcuvteGo02Tz/zFcpC8H+x96bBll3ned6z1trzPvOdp759uxs9oBsDQVKCREokJYolS5YoawrlomNVWU4iW1bKlZRKRVc5rjglqVJxKpFtueREJckcJFGcJICQKIIgCZAgCYCYh270PN353jOfPe+VH2v3JUCCYxilEnN3nQIKfXDOvfuss/f3re99n/fcuZdYXlpBKXjhpafZ2tjFEhb7G+e4+87X4UjNjevXwVbUWjM06i2Usl/VsB1ZPsnSmWmzDIWhC9+KObp1Lf7Kmv3Kn9eulL/Wk1fqV6uUv0K+fO3KuRCVT656gDZSfK0rJYWm5FaunfkBb01MDx6I12zshBkmGzLz9yZ3fzvHdwOo8u00d+Kb/P3Xfd/vkLwjypL/8P4/42cPLyCVZHdzj+lWE+nYuK7L604eJk+zAwnIoD/EshTxJCWNU0bDCKkEU50me/tdavUQITQXL9+g02rQ6w2ZnTWTMNd32dzdoR7WePzJi8zN1Dm0PINAopQizwoTLN4MERgyUpEVZqJhqYMg3UbT7LTatgkB9X0frcF2lAGGlJq1lQUOL85Rr5tQczcIcGwbigLXsyi02VG3bYuLl9eZbTdYnJ+m3x+xvrlHtzegUQ+5567jWEri+A5SStIkoxaG3Hl0Bcd38HwX2zH0K6EF+7s97jhxGMd3DRShKKjXA/r9MQgqmQ5MN+pcWd/i6Ooy0SQxKHVdmClSnlPkpTHXFyUaTXevT5YVvHDuMjXPw3FstNA47q1MqRQESAXD4Zhmo2Hy42oB9UaIVIp4FFNr1BhNIhPc7NjkWU53t4ejJCsrc3SmW5SFMfxPd1r4vkO/PySJTXyB65sdeF1qJkPj43M9hzB0SRKTc7W1uWuAL9rkRdXqIckkwXEdA44Q5mKdZzmu65ClGWjNufNXjC9yMqEoy4Mcw/X1bRrNGvecvg0hBWfPXWJqqoW+levkOJQl2EoR1gKktLh6bYMg9Gl1mpRomq06W1u7rK4uAZrefp8g9EAZyl+RZPzE/Z/iuTzl9379HTQCF0tVIc5ZCQKi0YTHn3iOY0eWabZqBEGbZ567yB2nbyOKElqtNghJmsY8dv4Gv/HHj/Lef3qaF1+8wOlTawB84fEXOH7iEGHoHTQOaZailKLXHfKBD3+RjY0dzl9a54d+4IyReOU5k1HEcDRGIpidabO+sWvWnFDEkZHGnXv5GquHlnj2uYuMJzHff89JGo2Abm8IQiMldLtjPNemVsVeZFlm6JKW8Xl1983EQEpBnuakVdD7+z/yBe4+s8rGxi5v/oHbcX2HJI0pywLH9cjSFNsyOWRm3WZ4rk2/u0lZpEjVrmRxJVKCslRV7BsQgGULysLIpPK8wLYc2p0WSpQIKfjAo+v8w7ffVcWJFOzv93jguQ3+2T/5J3zoY3/Bz99+ErTxk2pK/MBHCEmr0yZPUx554mnqnku73eTwwix+6KOUKRKSKEZIo1oQ0mQ9FXlu0PK2VcUoOIyHY6SS5JWPSUnF2pFDgCbPEmxbIYWurtsKrY3PZG9nn5ubW6wszvP5Z5/m1LFjpqFPMxZnpqjVTQ5oXhjf2t5el3qzgVKSaDQxjaQladYbnFhbwvNtmq0GIJDC5k8+9knuPHWM150x16p6M6ziBxRldU5saXHm9ts4tDiL41hVdIEpaPPcTLoNPUWQJUnl8zPFRlmW2LbNaDjG85xqV9o0sGbCXik2pSlc+t2h8WpWxZLG5NwNBkOTI1hFIwg0SRTTabfY3t7FcV3Wb24xPzdLWRhvpKUkrueitcm2E5h1qSwLy1L4vsugP6DZbpAlMSWa7a1dfN83gJfqnpglCfV67aD5On/xCo8/8zInj63SadSZm5vBDwID2AoCkihhcXGRj50/x6/+9PfjhR5zcx3iaML84ixKmVDvs09dZbnTqTYFjIzecV3C0MW2TdyGsiyULtnbHRyoEG6VoUHg0WiGVSNqAD5lWWIpiyRNqIUhe3s9xpMIrTVz8zNGupvlpEnOSy9fZrqKBZJCsbfbZXlpxsA1JCwtzla071vVxTdv7l5dIJhC9j1PXuKf/8qP8fAn/4J/9Tt/xM/8vV/kL+97kDe+8ftIoy5hGFBmAh1fo+ZKFmfmsBwHPwgRGHVLmiUUWtCamkd6LT7xiS/RabdI0yEq3SYMXKQA27VIEpff/fMvc/fSMrMzizz9xBMU1LAdlyPHjtGs1/B8Hykss+GQpoxGfebnFoiSEbt7m2xtbXDyxGn6/S3mZ+aR2nhCLb+G55r7U5HFBxsYpYY4LSi0TaE19dYMJ0+epl6v0e/vI4Ti4sULWJbN2tpRHMcmHo0IbIfdnS1WDq0xHOywurxkrm95iu8HZHnG/NIh5mamKav3+veffR8/fFrT6L2ZzlwTpSWO4xCnEXEGrdYMUtnkeYYlLeJoxPLyKpCzfv0StuUQhD610MTFaG38nbrU5Hlm6imRgrZIU9Ok5XlSgWAkhS6r6BPjHRXSxCv5QUCapchKTVOU5YFc3ShnDOVzEkXs7O5y5eJNOjOzXL50nkOHjnL0yAkuXjzP6dN3UwsD+oMeM9NzDAZjThw/yf7+Olk2IazViCZjSik4dvIulLIRUr2quXNci+evPcvakVVT2/CVCBb42ubuGy7jr6qLhRCveq1b/+0b1dyvNSn86inhV6Zy32YdXj1dl/p7ssy/reP/K83d15v4fbOj1CUf/LMP83Orxt9w48YmnVYD5RiQgmVVWSy6IMsSAj8wIZ9KEk0iKDWzCx1qjRDXddjb3WfQHxG6LkFoDMuu75JmufEGkBMGAY2aj+tahEFIrd7gxs112p2W2TUdRziuTZZmXL2xSatp5F/nL12n3arj+j62bRHHMcPRxBCUtKZMIxS6KkI8as0GaTnh/s89zmg7Zq7Tpj/YoywTssLkSZUlPPTEi2zuDTi2ssz9n32Wu06ucnNrn9VD8yhLsH5ti6Dm4/qe8ThIjetZYDmGGqc1u9v7OJZCuU5FyAPHcUyAs9b4fg3Xd8nzlOFwRGeqSbtuGg+hJFmR02jWEVJi2Raj4ZgiLVDKSEjPX7zJoZUlFmancWzb5JElOY7nUmQlSZriug6bm7s06zUmUUx/aAzkAiORchoBWgnCeojtOUgklBB4NrW6z2A4QmAofjMz01i2xWQcUasFOI7NZDxBUBANUwI3MFPWeMQkHuL4HrZroaRkqtMkjRKyUhtSYWl+R6HMzadIS0b9sYEuJCmyyhmrhz6lLo1HRN8imgkcR1Fv1cmzjLLImZrqYDv2wQ5XWYIuNGlSoGwHoSSNdt1EAigq5HRGq13H7OSbRtxyLAbdPr/61AX+7s/ewTvvWeLn33bXASWwqGimRSY4d/Zl4nTAPa87wxe+9DxLCyskScztp9ZQ0hTRnh8gheKd//rD/Fdv7fDOe5pQalRVcPuBw/LiFLrMSZKINI2JohjPdRBC4rkBnZrPymKHu84cNeeu0NjK4dy56ywttlBKYtlGghsEIQ9+6hm+8MQVyHLOnFpj2BuwtdvnzruOVkUktFtNtDRSpDyDej1gNBoTBD5xmh5434osJU1THNuQSLc2h3SmWggFR1ensG2JEAW2LRgNh+z1eqYJtxWjwYRa6NNohYwH+3T3dgg8cJ2Q3t4Q1/fJcpNBJ+0ATYGtNFIbSZ5EU5QKpSzKUmNbiixPkcJAhj7yxB7vevNxqu1Q+r2ILz79PA986gssLi/ylqkOujRwDPPdSKsgadM4njx6mFa7SVmW1Buh8dRZRtrmej5loUmilDiJcV0DhXE9pwo+FxQZ9LsDgiCo/HkWpchAmCnWsL9PmcWMB11s23g8syTlbz79KIdXllhZXiYIFLcfXyX0fePXDF1qjQalNjvAtm1juw71ZtNIRi2F67kUeYHt2Fi2hec72JWsfDyOcBwXJpql1Rn29rYI6oZAKVDkufENlkXB9t4OUmk67UYVZWJw/xoJUlWTSUEax/iuQ5EZ/1wcRfieaagdx4KyQAiLODI5c4Y9JChyA70QSBzb5f0f+QS+bTE93T6QVAlM8eLYjvHcAZaySJOCdquD63v4nlf9Xg43rq+TJSmO7eC5HlmSMeyPiScx3W7fFEJKmHVpwe7uDmFYp96omXD1ahqpyxJRZEaC5jogJHMLczzy5WeZqoVorekPRua6Yhn5puu4PP7lZ3i5v09QDCjEkOnZKVrNNq4fEsVjLFvwwjPrHG61KPKCLM3Npth8y2xYWIo0LyjynDwa4/ot/vBDD7E2PwVlwXjQpxY4aGEK7jROD2KUlDRRHNE4oVYLDDnWc9A5xHFKnhsp5vzcNJZjpqdozfxciyxP6A8GrG9v0Gk3UbY6KELN4O5bb+601HQHE/765j7zrS4Nz+Gf/8s/4L/8B/+Y//j7f8CH/vxDvPTSy8SJYLmdkI9f4vvuPGLWlrDIC8X2xha1WkiSRrSmpojTnEw3aTQO89CnP8t0x8dlhyydoFHEUUqajVjJf4yVo8vYyiOotej2eihbsrq0ysMPfZzNjV22t7eZbne4dPEsRZaQl5mRTl47z/FjJ7h+5SUavkecjs30SVkIyxBaRVlQZom55xWaXn+I4zZpziyDtNnZ32JqepZ4MqQehtiOT7PRxLIsNjauU683GA56jEd9XC/gkc9/iqVDx0iiAZPJBKkMSVzJkprvklch5v/z/X/A//pri7zn/bzfGgAAIABJREFU/9zmp3/4R5DaKA6SPEEqG8tuIYRDVuSkWUSRRHT3ttBlhhQ5czOLtFotLEsyngyr+1tiNsR1geuGlAgK5XL+wsu88PxFFhbmcB1D0NWIKu/SrAUpJXmW0huNQUqErP5O6wOZZJ5mCKkoC0NNLrQgSUqKvIblOEzPztNuTNNudVhcWGI4HgCa8WTE0sIC9WaHv/rEAxw/eQLLdhiNBmbjyfaZW1pDWsZj+tWL8j/8ye/zM3/vJ02NK76SgwffeXNXVHmbX5M1/b3mDvgeLfPgBNzC6N46Xiuv7hu9xlc/Xus5t7LxvtHzi7L8lt/31W8gWXANHn5r3WDolWOhlNmFz1IDWbGUAQv88UceYjyagAbbsqjVTYB1kRd4vsPs3DTTnSbXNrZxXJdWu4EQgvOXrxPHCY1ajbLUzMy2ObQyj+VYbG3ssrq6aAz3QhKGvsEO2zZHVpcqOmTBqeNrJtusMJhw27Fp1Gvs7/VMTEFvSKk1kyghjmOgxPE8Tq4sc/vJw4xHYxzXeGbCwCeohURJxi/8+JtZmW+z1+2jtQnVfuM9J1GWpMxzLlzf4KVzV4jGMVqb5rEoDKIzzzJs16XRqFFqjeM55jx99DP094dEkxipFE8/e5YkMr6IoigZDEZ8/OEncVwXZUvCmk+aZUgpSeKMFy9cMxMXjFzgrjtOojV87MFHDyQJtXqdXneI7dj0+yOCwCfwfRzHxXUdjhxZJk5S/MCl0TATVVXFP+hSk6UZGxvbpjEuysozZyOFQFlGZub7Lnv7fTY2dglrIaBpNOtMRhFXr27QH4yNr8d12Nvr8dnHnyFNMlzXxXVdZNWsKssyRM2yQEqLesPg45M4wXYq/HtZUqsF9Lp9PM8lzTKy3AS4RsMJYKZc8SRh1B+zv9dDKYXjWOxs7xPUArY2d9Bg1muFZ88zQ+0ry4IkSUiShH/50KO8+5GneHFO8q/feZp2LaDeqLO/t1vdCKoJjRYIDYvzs6wdPgTAD73p9SCgPVXH822kBc+8fImf/Fd/ytUrj/M//vgMk0GMYwVI5ZJnZgp9+fJN9rtmrdq2RZIkNOoBtm02QfIsx/ecg9DpvJpyaDSvv+cU43GEbdsURcH21j7Xr23SrAW8++fexHA4YTyasLXb4433nKQsS7TWnD1/jdFobCYFUlGv1XjvBz9H6PtmKlmUOI5DkRs64Mz8DDu7+0wmEdOdBkKY77nvOSa2RJRcu7GJshS1MGR2ZhopBZaSbGzu8MST57h8fcNI9LIcpXzyTOE4mjAMKlmPIQNS5uS5kXymmZlWlKWJLCh1gdYZQikcx+VHT7VJkoS8KCo5jaThurzlLW/j7T/yNiMHtE2ci5QSx/UOfBndbpckSY2HTJjXjmNDs70FV1GWot6sU68byWNQRSK4nmuC1IuSj3zqEUNm1MYfCprJZGIgOBU9UQjJ/Z/8LP1eD9uyeMdbf5CwFiIthSbj2vXrJEmMlJpBv4/WGssx8Sml1hR5gbLUQYj5cDBEWoosKyh1SZZnxlcK1Jt1hIS73nCCPM+YX5ozvkNlPG3GLGhiWZaWF03Ie5nTbjWwLfOeRWF8n+Z7khvAh9YGxtEf4Xk+aZKidUmWpmYCpDVJnCClqCRIGiHlQYi71vBf/NSPcmhl6cArW+qS7l6P+x58hO5+30hK45TJOOLCpaskqQkud33zfm7gs7O3Ty0MKuCFxaA3oN8fUG/UWVxcoNlq4Ngm6DmeRLTbTQDyijC4v9ulLApePn+J9Y1No16YmMxD27X51Xe9kzvuPMXq2iEWlxfZ3d1nNBzS7w24dv0mtm2x5NicuG2FxYU5lJSE9ZA8y0yUB5K9OEcXZnMtqAW8/u5T1XkwygRLWdya5bq+xb2n15iaapGleRVnYzax0IbwOxyMjPcqNWqVerOObdtcvbZJkZf0ukNurO8QBAGdTgu3WidJkoIwzW5YD5mebrM0P2v8ebcmFN8CjfC1jveevQHAsaOHGAyHvO3tf4c///BH+J3f+S1+93//33jqmRd43wc+Sr+/xdt+5I2ETUWtISn1CIHkxs0Nevs9HMdlNBzT6/UYDiNefOEsjUaTtbU1LMchy2L29rpIFTJMJMfOLOM5LpmOURYsr61x+vSdRJOI06fv5fbb72Zrcx3P86r4GsXakaPsdfc5tHIbZZEx6G3guR5BUEMqBdVEWWjI06qxK8sqYiWk1HDhwkvYjsOhlSPmepsbGnV/MMDzPbZ3Njh+4hRpltCencathURZTqkCnn3xLFEi8Lwazzz1ImWhcSyHOJqA1uxtTfjvf7HFHzww4T0/89+YaZiQaCGRykJaPt1+DyHAcWwatTq+7zE3O0e72STwfNAlQhhZtBSCojDrDMBxPfIipyg1Tz/2AofWTvODb/0+fN8lGscgzfNBmw0dNLosiOMJ/f0t892wjF+z1JokjoyUsKr/ZOXnLXXO+vpNsrTPoL/FwvwCjz3+RYrCeLSVkliWRb3e5DMPP4htK37wTW/m2rULrN+4aK65UhFH41tOotfsh6I4BkzjVVIaT29Zfs0EQ7/izzc7rEqGX5aViqB6lLesTeYdX+PxlUNU9JmyNNe2Ww9Z+QK/3UNXlHqk8eSV+juq5r8rx3/2zd3/Xw4tYCM1WWlKKXMzRVMWlTY7K7h0/hob6zsILXjrPaeo1WtGpmkrnnv5ChJBnmckcWIKN0vSadfp7g9BC7Ik48ihJRzLIkkyNjf3AEGSpezu7lMUBXtVoR5F8cGFWimJkpJuf0hRlEyiCCFgf79vmqtKcjQ/P4OUkqlOB8f1WFicQVqSLE3RJZw8dhgpSmxHIoRFGDYP7IlhLcCyLdI85/CxFf7+z/2Qwe87Ro6Vpgk/8PpTHFldxLZMlECr02I0Mqj5LMkYDyfYrovteyZfzbG568gik3GEEJLzF68zPdUky1IQgsD3qNVr/PTb3ogU4LoWUCIF7O32uH59mxcubzE/P4tlK+I4rjDjFp5nI5Vgv9dnZ2efMAxJkozVtWWSJKEsSv7iwS+yubWHLjVLh+YBiMYT0zCkCUkUkSRGRuZ7Ro4VhN6BlC2O0oO4hudevEizXmNhYQYpBb4fUJQZtVbI2tohQr/G3MwcaZQitWQ0TrBsm9EoorffY1xNA4XWBIFHXgVNl9pciFvt5kFUQq1WM5/zJKaoGpt+d3ggGZNKEgQBQWgeW7tdlDTwmsXlBbI0MQUOBmJgKVNgAURRhBCCPIn5R48+y81Gkw/8xk9ipzG10OQjtjstpjstEFAUJXlemPNWlEx12uSZJk0NCKbUGXE85tnnXuDC+g6/++Blfutnpmn6DrefPEa71T4A5CipUJbFXnfA3JzJfjQFR8ClyxvoEjPNKApWVmbp9oesb2wjpa58S2YdSmmRpjlJnKAsSaELDq8awt4P3HuKcTRh9fA8SI1tmwiH244uU28a2dagP2I4nBhPVJ5zc32bWi2sIhwM9COdxAS+T70WcO7iNYoyM+fStrm5vsXMdJOlxRkcx0Eg6fWGFKWm2xswNdUmLzSz0/O4Xo00E2xv7LOyuEpexGaTJjfTCYFma2sLSwrSvGA0SqtbYjVhwJBMSy2I4oyTs5ooiilLTb3R5PDaMu/6sTfwrl/6+7z9bW+lNxmYkNpX7NCWpQZd4Houvu8jhZEgpklGvVHD8zzTuJWlgU/pspIv5WYDRWuiSWwk4Upy57FVQ9QrcnP+84IszfCrDZWw3sT1ArIip8gyQ860JMISxteYJMzNtLFtA2+o13wTaJvnB+VDlqZQlia7UZspV7/XR1nKkCIt66BAzdIUZIlQRq9h/B2SNDXr4xbVUmtRmTokURIziSL29rroQqOEkeaLSuZeAlIpPN/HDYxvT9xCxHuOKZDR1OoBo8GQW54WKRRlUbK9tYvr2fiBh+NWsshqEyGohUgkl6/eIEsyPvGZzzMcjnnsuXP0+wOT0QXYjkMaJdxx8jiu61IUBUkc0x8McGwLzzfFY5pmdPcHtFst0ALX8djb3SdPM8qi4Pzlq+hSc/jQMn4QEkcpf/qxB5kMIybDEWWlRskLI8dtNOuMRiPa022Wlhe4445TPBEnrK4tYyufJE4p8oSyzCjzkkeeucLPnzwGAnM+hmOD1scEFkfjBF0V6WbXv2RleYa8MCHjGztdtJScP3+lmiAIwjDAkhJlW+zv9dnZ3ENr8F0Xz3NxXIsja4uMRiPG44nZOFPqoMFxXbsqUCWjYUxRaHT57U0RXnkIIXh8GPOOH3k7N25c4vr1G3z8rz7Bj//ET3Dp4jluXL/MP/v1/46w3qE/MXmQg/GQNJtgu0b6dscdpwnrJr/PRNc4ROOE2dl5kiTn7Nlz7O/vIIDN3S4PPfQojzw9AEwcTZrmFMDu7jpBrUanM8PC3BLXbl7lh3/47RRFQRCEzM4vMoom2I5Lr98lTSLm5pcIfQ8wGyNfKdJLyjIjTmIspYzMMQjo9XbJ4oRnnv4iGugPh3hBHYSNYxtrxtLiEsNhH9/3idKURqvDk888RqPeQQjF+vVL6Dzj9jPHzXdVqGpTCX7/0f/E0lyNl670K6+vQFlO5dhykJbPyuoRoixGSkGSRhR5gpKasshIo5g8TyolVYrnBeR5SlmWOG5F2RRVvmVk0e/tUegIqaAeNo1UuyjMRpcUpiZBEwQBR46cxCRtm/NuSL8G/qIqsNStNWHksWu0Og1uP3M3V6+9zJEjJ7jvvo8xHA1p1BuGuFsUTCYTyrJkaqqDzmNqQQ0pYDTsItStc/Odr9H/O0dZ6oPHt/f/mebLxJB8945Xewf/3zn+s5dlHsgfv0HcwCuf+50cBzQeo4v8us/hFT/HtyvLzCn5zIOf5e9M1ent9/EDD9d3kcJi1JvgeT5//fAznDm+SpGXNGohWpj8pTzL8RyLj336ce44uoKyFIPhCL/m055usr3dNwh9pTj/8lXWt3aYm52l3W6b3SZHmKK+XmN3d588K2i1m8hqChAGRn7ZbjdBG39ZrzugM9U2/o4qDFwJRVGUOEFIiaFIJUlCrR5QpDAajNA6ZjAeYjsBtlsDrRkMJtQahjy4NNMmyWMcz8Kyze7WLXLceDKk1mwYaZFBICEARwmKvOALz5xjYXYacYDV18x12ty4sc369h4nT6zh2ALHdyiK0uymY7Gxvk0SRYShY6YLUcJUp0mrOcXFCxucOb5KksR4gUOaFDiezaHFaRAlrVYDIcXB9Espyd5+n/s++xTv/NHvZ2ambbKzyoIiz4gmEb7jsLu9j+tYhIFLoQviJKEW1FDS4uzZK0ghcRyXQpvcq0eeepGNnV2OHVqEsiTNNVmRgtIkccnjj1/gpRc3OHViBcd2WFtaQEiJ47k4tiSJYmwliccRtqVwbEUhNcIy3qZhf0QUp9TrIWlmGon2VAshhMGTSwMZUEqRRMa3V5TVd6rU1Boh+3s99nd7fOKxL/Gm159me3uXWs0E+0otTOipkvzhsy/j3TPHT997lH/8469nMOizsrRofn/L+FKyJCbNcizbyFalkDz11PM0GzXK0ubBT36ZLEtYWq3z11+4yL/91DXecdLhrYdt5mdmWF/v8tkvPE0QgFQ5fmARBA5aW8xOt0yDFmdoNFGUMjs9TZ4X5HnBoD8kjiKOHVlkerqNFhrbsdjd3cN1LBzHp8gL/CCgXvNpNn2mpzsgNJs7OywuTSNtQVam9IdDamFIvzfEcWwKDb7vc9/Hn+It9x5nt9vF92xqtYCysHjiyy9zaGUeg6c3GWzzs00GwxG1ekAa54RhiBAlk0nCaJTw3Is3OXrEUEdn2wE7e0OOHl3D9WrYto/tBIx6E/b3Rni1FPArmr4iT0ZMRn1azSZYIbbvo4SsgFBQFClClBS5gxSS/+PTm/zonWu4ro+yXTY21nnfQ09ys5uws73HC1/6Iqu1FlSZTGWVoSgtQ3W0lMONqxtEk5h6o5KWC7uatlVm9rIgy3Icx9AgNYYUd+vyuzA3bUKxPZNBZytFvdEgHico2yNNYThOOb62wuxMm929XeqVN04LyOI+QeiQxBlCSCbjEcqyUZUsSgmBbRu4kLINKVdW33FlGckjQn4F9KI0QpXkeYRte+hCoKSF5SgKnZviLSkQ0kJr02SlWYIQimgS86EHPsUb7jiFkmanK5nEWK5DqbUJM1f2V5AEGpIkRTk2SRwDBZZjmTD3PDGfi7IqGXqBsgVaZEjlEI0iU1SWmmOHVlhaXECXmtXlRZrNBp4SrKwuce3qOu22uV/EkxgpBM8+/xKddpPReMT83MzBtGsSRSAgSzMcy6HfHfLIY09x5+kTpFmO0MLAmGT1+dsuQVhnbXGBvZ1daqGH61nmPFoKy7FI44hWq05WCvKyJAh9PnT2LG8/M0vgNHngrx5lba1JENqsX98lKyzmYkFR5YGFobnmJKOMjWubNMKA7b0+fj2AsmAwHFTXbePFa3VaFECn2SSOEvZ29wnDgA888GnWZmfo9UeVMqXP9HSTUkNWRKR5hrIkvu9j27aBqiAOPFG7Oz1qYcjOdpfpmRkO9NkCxLcAVHlVfSHgo5c3+Te//dt84v5/w/rVbf7oo19CiwJZRLx8/iwf/8RnWLvtFPff/yjRcJ0TJ44jC0mZKfb629iqRMmSer3Ny+evs7xykis3Bxy77Q3cfvsJxqNtphsJNd+h2VlkPNL85WND3nziHixhc/VKj52tAdvdEYdWj5KkMc+/8DSn7nwdnueyt79LuzOFH9SQSjLdnuHCuecZDzdZWlygTMdgKWxloaVC2S5FliDLHLRGSUFeFkRxzH6/y7EjdzM7uwSWjWU5SMvFsjxsZeAiSZ4yGg+xbZeHP/kZtm7cYGVugal2jcHedX7gdadxXYFU4HguVFK937vv/bz1jU2+fHbCu3/wlw2AqShIs5y0FGzudJmfv41caUqrpExNPEcy6SMFFHmCb3smb1MYK4Ko7tdlbqSURVlQaI3juLRnPdPYphpLaNzAZpKNcYSNUAJZSROL0ky6o1EXu4qKkVIisEmyGNuyieKJoYYXJZcunAXLJQwbxElKFMeMhgm1sIOShlSbZilfeuxzLMwvMxgNWVpc4ctPfI4jS8vIMkGVOWlZcvzUG/BqrQow9LXr77PPfJZf+IV3vqrGvlUTf11a5mus7K+OG/jmx9c+55XvJ0VFLdXlVzSVr3ht8R3Ov74XhfC3eHy95u5gePstLJTXZvaAFqURwb/iYeYO5rkHy+OrGrtb+Xgm78c0GrcWmMZIRdU30Q/fOhw54eL569xT5Ny8uoHvWlg1H0pNUA/QuuDMqVVsz5j6o3iE5zhILP7kgS9x122HqSmP9Z0u7VaT1lSTQbePI22SOMX3PeI0I4pjjh85ZEJ4heCF568wNzMDOgedEzZa/MV9z9Kq2/gNTVFq/NCh2x0YCIkwsicvdBE6IR3rqtmYkCQFgVdH6MR4QipfjtAaKQqiKEFKl8EgxXYcgsBDl8asLwUkkxFpmlJrtCtPSYYSmvs+/TmOzC/j+QHD/ojr1zeoBV61Uy4YDiYo6fDoEy9zam0BoRN0LhgPx8RZyo2dXe66/Si6LImTFIHAc93qhpwRhgGNZh2pLMpCE9R8NBpXWZw+vszW9jb1usvebpd+t4csS7JJSj2ss35jiySJicYRZaHZ2+njewFz7TpZntNoGhmGKI3B3wAMPGqNJqUwOWLReEgtdBHCGKRnZ6eot4wBvB7UyZIMUZQcXZ4nDAO2d/apN+r4fkCZl0BBnI05c3qpMu1rSl2YTC6Uobh5LoPBkPXtXRQYaaptwtt73QHNVh0hBTvdHmEjqLDlCo1E2bYxgVsWeWZQ6bt7+3R3+ri2Qxh6CASPPX2Oy1f3ePM9p7FthyAMqwkDCCWYRDG/8tiL/NZ/+2MsTrdohQGWnWNZAiE14yjiM488zeqhVaSwUAqK0vycrufjuQ7D4YR6u83sfAstCn7nI0/z9LUev/sPD9NuezSaAf1el6LI2NmP2d4f4ToW7VYbLwh48MFnOXxonjwaMBr3Cds1bN9FaEWR5fT2+1xb32J1bQ7XlozHI+LJhMlowtbWLlPtOnkmubG+xdR0E6ELLl+6Qa0ZAiXdbp/pTp0szXA9lzBoUGQlQRAYhLZv5FuupZiabvLC2eucOnEYoRT33f8Ch1enmJ11ESJjZ3+I79fAljhugMCi393lpXNnqdc7BGHI1k6XkyeW8ap8N0sJkBLLdbmFrJZSMhzv4ocFFEYu6YXT6HSItFwa7Sl2tvdwLQlaYbsmW81SFpaSJnJFSh763FPM1kpOnzjBxsYmkgJLObQDnx/92f+ac+df5GfmF1CW4GMPfIZjq0soS1TyRWGiAtKCfm+AZVn4oQuU3PfAQ6RRzPzMFM++8CJ5klCv+1jKNEJaa0zouESXGUgzhZHCQggFlS/KcT1uyXjr9Tqe4yGtnNF4SD00svR+v0ez2cb164CF5XhYQYO8nKAsF6UcUAUlEmV51WSupCgEWlSTOSFJogRlKyPHykvGw8h8VkJTYnKuylJQ5AK0wLYthDQwHYRGYaNFyngyZDAasLawCLpAKwstFKUoK66KqqiXOUVm1AgmWF0gLQUa0shc0yzbrTYVtfEgS1FlQJlzaLvGm+y6Lp7v8uGPP8gkGnJkbZkkjRAKAs+nzHMsUzOZJk4I0jyj2WjiByGj4YSw5rG1vYFrh3z6c1/i9pNHcXyHWqPG0aNrxOOE8Thid6/L0soCURwjpMlpL3VJkRc8e/Y8R9aW2VzfZm+nS+Da+K6NclyE7dDd2SLwHAZ7Az568SLt4ZDjp5c4cXyZK+evozNNe6aNthXhZsbG+g7nL68zN99BC81kXHBzY4/eaMLa6jy3IiDyRCOEpigyKAsj5U01WpqpaS0MKXLYWe/Tadd45MmX2drYZ6pZww8dbM/Ccm1838NxXTMZKW/5owRSmDBzx1ZGtqdLgpqHpmrueMWE95vUK7eO3/z8c7z3T95Lz/K5+uhHCGyXzckMSwuL7O1vcvrMafLJhI0rl3CLbX75l08yO+VQjgOSZBdh1Wi2ps1Gmx3y5DMvcvTU61k+cZrtvRo761vMhxntVp/17hYzrQ4zszP85cPXefPJ16PRZKpgZmmRUSRYWjpCzfdYPbRCnCRsbV5ndXmZvChJigLf8UnjCbZOifpbdFpTSNtsxKRamOuZLijTmCLPqizHgiwraLbmEG6TsN4kKwtm55aRlkWvv4MfOJRFXskgU9AljuWxunyIy1deYmPrBv3uHvUgpDM7YyBsto3Q2kz7y4K/eekxfuKNbT74mU3edue9JlfOMvRcLBdlO7iBy97OPp7lE7gO0aiHLUosabyjBaVRB+SZyQjFqGCkrLLTtEAXBbYSyAKU1DiuhRbG815ojStsiiKh0AZo5boumhzXMZ5xrQUlAmEBGAmnZZvps5J1rp67zLVuyo31fXb3xrRac9x22ynmFxZoNOuMJyNc10UIxVR7Fsd1uXr5HK+7827icY8sjSiLjFhLbjt1B9v7e7gVFO9AQlwdr2zulLilzKie84qnCimMz1a89ur+enX6twMgNHeCW02xQFU/E1qaLEJpVV7fbx9s+Fo/z/eau/+Hj+9Gzt0rj1d95OJr2y9ZLc1v5eL7ykyiV72S1t844+6VTy0zjh47ySN/9mfMuS6ua+OEPmVaEkfRAXEMrcnzgm63b6AIwmLcH7GyNMPNrW3ecM8pNJqzL18mjXP6vSGzcx1AE9Z8fNdCSMFgYKRhtx09xPXrGzz4+DPcfvQQEpupuoNjSzZ2djm8vIgsTQBwvzsmDDziKMLzbMqCKrOuTpLG1EIP21JMxhNG4wlpaiZARV6Si5KwHqKkohb4fORvvsiJQwu4gYXr2iRRwqA/5kvPnefwYsegdrVDmmhuv+0ItmcylTzP4fzVm6wuz1OWmuFwxP2ffpKFTpPbj65Qb4bkeYbrBriey9987ss06wGrhxZJEwPziKL4ABKSJBlFrskzE3Z+32ceZzKOmOl0uHJtnaIsmJmZIi/Bsh2mplsoW5GkOd3+kOVVQzettxp4nkezVcd1LUajIa5j/C9BEIAWXL22iec65EyQqkBrs8O/fnWXqeYUSZ4YiEQUG9OyvFWU2czMNGlPNVG2uaA5rsP6xhZBYGIOGrXAECkLTZwkFEVBGAZ09w3dUyJxLZ9omPLg589y5rYjeIEpEotbOWYaoklMs1EjmSS4toNl2ejS+CqllGRZRqMZIrQJ+VWWJMlS1je2qYU+h5dnmJ5uU+qywoRrpCX4pU8/wZ0/uMI//anXVz40s/kx6A9QyqEooNGos7xkIjnKsuT9H/44d5w6CsLAOVxRcOXyFTrtOi+dfZn/4WMvcM98wnt+7hRRHJsIB6lotVo4lsXx21ZYnGuxMN/hi19+iU6zzqGlFpKc51+6wNHDS2SF0di7jsX+fo+ZmQ4z0222tnqErSYohys39phfnKfeqGN7AdF4wsLCtJEPKkW95rO9O2R9fY9Wo47rOKbxrr7bRZ4b+Z02vrobN7foNOsEvsvKYgetNZ7vsLzcYWauQXd/D8/zGPRjbOVBkSOEkQHWaiGtRh3LdtClZqrKzev3hpVv0uLytS2mphsIUQAZk2hEFE1oNXygwHUdpBOYz1YohFIEvoNUpqguywwlJWmakqUl0SjBshwe/sJ53vqGY5y7OeH42rLJ4yTn0OIsH/r8Wd73x+9j7/mXeeOZ05w+fgzPdygpmYwjXNeFipJXr9cNbbM0Uswzp04YKXq9zsrKMh964DN06gGNhpm2JUla+UwkYMikSinTbAlNmRcHu6yAaaSEiQ8pixSkNHADDY5jvvdlnh8EpSMEjiVNo1hNLEXlWRPCyKPSJOcPP/hxzty2Zhok34Vb3jwlCQKfIssYDoZ4roOyTKC5bSk0BVIZqAyVj9RWEiFzbCUzFu1YAAAgAElEQVRZXVhAiILJZGiohlqSF5mZ7pSaOEpJKsiHmRwaGINSJs7DUhZCKrLUgFuEMKAGdCV3KvSBn0VrTZqZnLFDi3P8zcNPcc/pE6AFoV/DshxsZZNlOePRBM/3QWjSNKXRrJkgectkWCZxRmumQ+DZNNt1AHa2tqn5IcqWBKGP57lMxhEff+jzDPsjFuenq0B6i7XVZVzfbNwsriwy6A4QSpJrGI3GDLoGOLO5s8Ond7b4yXuWWFhawLIcfK+abAqJ73tY2zF7+z3O3H7U3M5LAxCbmW4wO9vCcgTD4ch4KLXgyRfPM9WqoWyLfm/Mxx9+gjPHVox8VwmyIuP48UOkaco9tx/hyKEFur0BM3MdpFLo0hSTZVFS5Aa6EyVRdZ00769sCaJkd7dLs9U8CJ+/VT18U/jEKx7vvXiDd/38L5IJxbOffD9a29z7Y+8m8B2EhvPnXuY33/Mv2N7a4j2/9tMszE6IRn3a7XkyMmbn5xkO98iyMfVGndmFJbxag6mZeVToMT1TMhpfJNcOYec03Y2LKDvgTOcnDJJf2Dz+6IsMhgOOnTpOQYwQgueee4r5xRXWN2/QbnZ48unHWFlahSzj2tVzWIyYn5tDSW3y2nSJEArH88iztPKtmbrJcT2yHOI058qNq4Rhg15vF9+vocsSz3G5dPFlbMvl3LmXWFxYplarkcQZm1ubTM3M0WrWmelMkUZdE+E07hMEYdVsaP7kr+/jH71zjV/77b/if3r3b2JbCiVtigLiNMNyfMJ6i9F4Qp7ltFttkqhHnk2Q2qgQbn1sSRpXQJRqQ7+SlZelJstSer1tms0OSmLyjqU08uMsxRKKrMwoBCjLQUqXSZxQFFAUicnHFJAXGYUusJWLwEJjmWxSW9Cc7XDjxk1mZ2Y4vHaUa9cukBU5WzvbzM8vUJYljXqTRr3J2bMv4noNjh87xubWulEJCFPTzC0cJs9LtrZ3mJ+bR1aS0lce3es7vOWn3mR+X76qGXvFv+pSV9+P8jUbq+9Gc/fKN3wVoKXU6Oqa+e28blHkaG3iZmQFUvpec/e3ePytN3evSK7/ZlLM70Zzh85xnJDf+I//iR9vN5iabiFchyI2mPqyyBEIkjjl+o0tlhemUdLiypUNbMvi4SfP8rZ7z2BX/or+YIgjLRYXZyl1Xpn4jek0z81ruo7R3MdJimUJBsMJdT8gDD2UEiRpiq1sLly8wbkLN7m+scvSbIcsT9ne3Wc8SWk1aybTypLESYyQGsd18X0XyzINWavdQFqSfn/Izk6fS1c3uPeO2+j3h7Sn6/S6fSylaDYaLE53iCYj4ijh8qVtPvWFlzh+ZBFllcZPUpYsV0HlWZ7T7Q1ZW5hDKUWz3SCKIrzAJUtLnn/xAm970z3Mz5hAVT/wSFMTbh7HKZZSjEYT/uKhJzg8P02zVWemXuPI6jLRJGZ2vkO9XiOqACye74EwwJEgCIw3TkmzfpRia3OPWiOkzAvqNY/ReMz0zDRXr6wb2ZPrUBQFrXat2tnXJFFS5TJlDMZjfM/F880kzODPNb3egFrNRwOD4ZBa3Uhyfc9BALVGDdcx5LE8L+j1RjzwxSeZrtWYmm6jJMRxjOe7zM5OcffpNYRU9Htd0jjBc2yKvDC+mU4TXZR09/tG9ioVDzz0GKtLs2Rphuc75GlGkqR4vo1lmVDXVrvBzEybqZkOduU/+fz16/yL5y7yjr97O//gbadYmGrQ6/XxggDHcUBr3OqfUprpxGA4xPNdpNbcefoYtuNWvj/F5sYGhRvw63/4RX7lHfP80psXuOdoh4e/+CJHDi/iOi5gIBu3zl0QeFiWxfLiTBXpkNLvD8w0WQpKLZDKQskKmKQkrufjex5FYVDWrSqUfDgc02k3K2iIIk9zBoMRrVaDUgum2k2uXd/mhbPXOHx4gbzIGY3GNOp1ijxnMBhTb9RotepYyjI5ec0QxzVQDcdzTO5ds8ZgOCFLNMPhhGYj5AMf+TxFmjI/N8XFSzexLcX9Dz7FYDBkca5DEAa8dPYacZJyeHWuosmWCKFxXEW70TC/+6BvJqqWh5QWo4omZ2TMAmnZJHGEbVvkeUmZw0fu/zLzsw3uff0JPMfmvQ9f4vuPL5vmL08o8pL/5YMP8fv/9t/x/GOP8Ma1o2ZCLUALTVgLyDLjj5PVFOkPP3gfb7j7dvK8IEkNGEMpi2F/xJnjt9Gs14zcuzQy8FveCoGRKpXaKCyEgCIrULaFAG5eX6deDyuPmUKTo4Si2x0R1kK0NJj7oigYdPsEYVApOV5BdcQUbGVe0N3fZzQYE4Y17jhxpJrUSMrSNJRJHGPZtoFLFQWeZ7xWu9t7Roab5UhbocsCpDL3HS2QQpBlJgrFc12khCD0GI9ipLRwPJuiyLlw4TKNeosPP/Bpbr/tCMoyOHQqb5jAyN9Ho4gHHvocJ287TJEXSCno94a4nstkNDGZbtWaV5aJ7ag1Qk6sLJnvmzLF52Q8QZeap599iUMrixU0aJtarYalLIqyZDgYkiQZjWYD4Vi02k1Am80OIfEc90DuPegNaDWbnDp2hLXVFSxbGl1VJS91XYez5y5R5gXTM222Nneo1Ws4jkM6iWm1mrTaDT564QLv/pHTaGFR5Dm2rbhybZ2llUUsKRhe2mV6qk2aGHz8oDvEDV2kJRgM+oShz82NHdqdFqIUrK7M4boOcZQQhgG3rSxw9eoNfN8h1wV+YFQWrmv8XcPemNm5KSNVLktUJand2NhharpFWRSGoqmN3L/6oEmSBEtI/NDnVi7YrerhmzV3r6wbPnZlk3f9ws+TCsWVJ+7n2tUt3vyT7yZLM55+8svcfeddvO+P/hjbVrzj3nlCf0RZlDTbs2BZ2JZkb3eL6elOlQ8mKaVHFPlkKK5fP0sz0Pzev/8znn5uh7fce4R/96fnOblwCtcLAcnckQUWD60yM7XKhfP/F3tvGmRJdp7nPXlyz7x516q6tVdX78v0rMBwBiQIElwhEQhQ4CpTDFimfsmmTTos/bDNsEMRjjAdjtAPaiVlriYpkZQAglgGwHCAAWbtnunpmel9X2qvunX33PP4x8mqaQwAAaCFcFiBjKiIXqrqdtc9med83/e+z3uXaqXG0oFlLNPEcVw0IZiZWSCKIoa7OwS+i6EnaEJRKmQh0AyBJkoPKJI0jdWhuoyD2e0P8KsTjOOMWq1OpRKgGyZC18nTlPmZOUCwvrlBqzmBrhusrq5z5fIF7t+/xkSjSntyCsexaQQenueTZonKYtyNefLpK/xvf3yb3/jYP6LZqjAOh6XE3GIcR/hBA4QgCmMmJ6cUpVeGyCKlSBJEeSYsZI7rKi9sFI72IzRAwZw0oWEZNlKTSJkp5kGqfMFaud8J01QT0Szn0ttvsrKyzsLSMhSZ+nlkaWn5UHvknTvXKaTBaDwizQt2dzvYVoVed5t6s82Jk4+QFQWHDx1FSslXX3iWhfkDCEPn/PnXWVvdIk2HWIZGZ/Me9foEhqnii/r9Pm6liu/5ynP7YO2macxPLbPwyJTCmiO+aXGHpiGLAtNSTeF3X9/N4k4TCkC4V1x+u99XN9S+L3TxNX7Gvet7tMz/DC+5RwT6FleW5/t0zgcJmpoQ3zY5M4kLkiSlQLLd76kMuzDh1bOXSaK4fBCmyAKmJyZwHI9wnDDZqjMch/zCh9/PtVv3kYVENwS1qs/S8jSOo7wAspAkYcxoMMb3fWzTIksS8iJjYanN0uw0D508ysZWB4wUv2rxzOvX0A2T+dlJVna6aELj/OWb2LbDK5eu8dKbNxmG6nBoChct14ijMWmSMhyM9wmKcRQTjkIa9TpzM20eOXWY9twks3MThOMxQeChG4I0S3EDl6ofUK1WOXZymQ//+OMqeytV+UWWbSE1SqiJzcLiNAtLs3zp9QtESYQfKH9HnuVcvLlGEiXkeV7q4DPV9QKc8rCzs9vl7/30B2hNKtDK7EJbySwkfPa5M+Rpzl8++wqXr9yiyHKKAra3eqRZrortMEbXDQSCZqtOnhUYlolhm5i2iZSSubkp+v0BQdWn2aqRhhpabjIahviBzTDs0B1uUK8HJGlKlivPUa87pKDAq7j0BkP6g6FCW0uhgDGGkqYl45QkzChyge3azM61+dgPfz9ZmmMYAs8zyYuUwbDH9s4mb1y6xBuXL1Cp+lRqAaZtsdPpElR9HM9G0wWTk02q9SpCF/zwUw8jCxVZcPPmPUajMUIItnd3EaZOo9XA8z0MyyKXGXEU8vPPvcoTP3WKP/kfPoQhU9I0QUpJtRogNGMfsJKlCs6zub7DH/7x5/nkZ1/AMk3CKOLe3TU2N7bxPCVL/m//5DxpscO//UdPYFdcMG1y4XLiyAKvnLnCiy++xcbaNq++fgXTtkjSGMPQFa48isiLlItX7mAYBoeOHkKYDnkhMU2TCxdvk6Mopq+evYAuNO7cuoeWxRhFjihSpuoV4mGfOytrvHLmIqZpcPv+JnGmPKpnzl3h5IlFfvB9DyEpVIPF0InGY2zLZH52CttSxNs0CTlxbIGg4pEmiSoWSEHmDIYxnhcwMVFjfraJJkx++Rc+yOnTBxCa5PSpw+hC5+c+/AO85+GjgGD1/iaubVNv1jBNC11ohKMI03LIM5DSZGNrgK4p1P94OCJPE3zPJc9S8izFsgyyLMN1XfI8o5Apnm/xEz90EsfWsW0Dz3e4uqMkbZZt4nt+GQlS0GgEnJVqYzet0kelqcaC0DXGoxGFzOj1e/zST/84eZbzic99iUF3gC50JJJqrYLnOfzZp59l5f4GpmFCQenF1NBkjpAqskEAWZxg2urwI4GZuTabm1vEaUSeZ5imjdAtvEpAWkJbokjJwoWuk0QRvU4XIdWBIM8TtEIrUfU5ExMtJicn2drYwjKUx+/ytav7BZ5lW0TjUIERDBM0HWEYNFpqep2UhNgkScjStPSGSNJC0h+FJJkkySTDcYxuqFgE07YpJPR6pXfStfi7H/sJXE81LyTK7JpmqZL+Gzq9XpeThw8ob/JwRCEl9UadLMl5/fwlQL0PSaogJ17FIUljKg0XKVKkllLImN6gg+2aPPnkwximTpqkTE9PUw2qpHGGkLCxvU21HhAnKaLQKFLJsDdC10wq1SqdTo9ep4cAPNdFQ5KlCf1ulzxV9FgpC3Z2ttGExtXb9/jKmddYubdCNfCwdA1DU1lyw+EQNI2VjXW8is+b5y7z6itvgabx0OmjROMRu50OURnWbu+BqQKPgoyiyDBN9cw/duwwum4xGAwZD1Venesq6a3juSwtzSlSqKUaBUWeIckpZEYhc+7fXyNJ1NQzz1NMU3Dw4Nx+Y0DBxZQMt8gVSbDIC/rDkfr1g7j3b8Nptze1y9OYJ9/7OJpMyeOxIkffvM1gsMunPv0pHLtCtdrix3/yR/n1X/9VJidMTC1gotpke+MWujAZDyNczyPPJb1unyhK2dra5srFbeamjxG4E1S8Bh/8wA+h53Dm7FtcvN1BaIIkTkhzjec//zbhwEATKadOH6LaDAiThMtXLlKp1EhSFc7d62yzdu863c4Glmlh2w4IUZJqBaZhUGQZaRojdKUcyNOCbm+IU5kkqLc5cuxRxmECwiTN1XT82vWLpGmK4zo89vB7VDyRppGlCQ+ffoRHTz9GHnfJoi6eY5AVKXlRYBoWsij4Z1/6Xeo1n4POFPUJQVZE2K5NmIxJs5RKbQqEoipPtWfQdUmaDiFPETLHMgx0obEHXcvSFHJJv9spbTkKaKTk1BqmZZLEMZphgGaAVF5/YWjIrCgjBQSGbjA1u8BDjzxCGA0V3ERX2ZRFAWmiIlrmF48gdBvXn+LMKxe4caXL8VPvZXbpBLV6i7X1DaanZ0mzhOe+/Fl++AMfQhcGSZzwoQ/9FE8/9R4skZKOO1SDCnmeMhj02dpcRWoai0sHMCzza9YpKKBVpe7yB7/3pyAEUpPkUp143107CVTGZl6ScvfXsq6VNpoH/uwBX9veV7+7HlTPiv/4eGTv35vLvFQqFJQhvl/7vcqz/LvP9HuEzAfBmHuv+61e+7t5fW9y9ze8vtXkrpDlw1WIbw1R+Sbf9ztZFmkcY1oOv/d7f8h/eewArmsjdZNbN9aYmqoyGAxwbZu11W2+cuYKB+cnuXNvg7nZNs+8+jbhYMgjJw/z5qUbtNsthAaD/hBd1/D8Cmdev8hEs4auG0RRytk3L/H29Xs8eurwPpVNFhDUfAxL0h+MODm7qDLh8oQnHj4Kec7Gbp/lhWmOLs6x0J7CsjUGvTGGsEmTmCgOCao1LNskGkfoZaaa6zhsbnTK6YhOlmcIS8fUVSd+0B/hVxX98/atdZqtBrqjY7vKe2VpglxTYllZEh7VdEDJIB5/+AimpSN0ja2tDq++fo2TB+doterYroVp6Ur+Ztu8eeEa7ckmlm3RaFQZDIZ4vtrkkyTl8pXbTE42OHv+JqePLjE3UWd+boosUwc1z3UxDYMsUQG/uiHY2drluVffxhG6mmp5DrqhQ56TpaqotB0L3TLo7nawbB3bsRj2h6ysbHBgYY5CE4xGKs9KCB3PUwHXjutgOw6WaeG6TkmVKrh85Q5TUy1Mw6Kz0yONM7yKQ5FLbNumGvgqJFkzuH5jhTTNCYIKFd9j+cA8mq7knUmqfIeOayv9f7l2DFMnKyRuxUOjREIHLpat4BqNVkCW5WjoaEIniyP+8dlLtB+e4B/+7ceo+D6UMBJdKMqgpunKR6CBlBlROOD1Ny5w4thxXjl7lUdPLTE51cJ1TDzPxTBNLl25xa/+7sv805+fYrrpkWfpfkbYyr11ms0689MTVH0X33NZXJxW8AZDkKU5hZS89uY1ZmfqbKz3OLA0hzBNNL18T3SdVr3O6to2lYpHe6rOndurzM5MopsWlm1xb2WLickWt+9tcuDADMgC29CZmZtUXeUi59DyLLKQjEZDHMcqpxQSUzfIspwLl24yNdkAYDQcIDSN4XCkiLSmotKORhGVSlXJuzTJ+vomtUYTKBiPRghN8sb5K9iWy+rqFp//8gUOLkxQrfm8fekux08uKkdPXnD95n1azQZIHdCJwzGBbzEaxVTrTQa9AY7rYBg6m5tb9HuKcKcbenlQKZAoRLxXccmLDNM0+P3nbvH+wzUoChzbQUr4i1duEg46XL99lw8vH8AwTAoUWVbogqJUJCrAj2rMZFmBJdQzoNGok6YpSMmVK9foD8cszk3j+a4KuS03akOoQ3SR5xSZwn3v4bO18rnglhRHEKX0S+Pzf/0yy8tzpGmC73sMen18z8M0VW4dUhAnIZZjlJ4pyPIYmalJ026nxye+8DwnDs3Tnp5QkkVbQYY0TZQSyPLAIhTpUug6pq2gMoap4DhokMQRpu1ie2YJGnEwdYsCja3tDv3+CL/qK6VAGaGg9iLladlTTRmGTrezi+c5NJoNptqTqui2TOW9RZAXBZ5lo5s6ruuUkiq1UVmWiZAqC0rXdUAjqARoQqqGoqbC37u7PbI05y+f+Sr1isvBg4tkeUp/MOTm9Xs88+VXOHH4AI7rMOiPlCqg18Mu/Whqf5VkeYbjeqSxkprValWGgyGLszOcPLxc7lkDZJFjGgbd3S6u57Iz7vGFK2/y8x98L6P+iONHl1hZXSXLEmrVCv/rH7/Ihxfm2d7sYOhCeYmVNpJwHKELwfZmF0PoJHHOX798jvmpBn7Vp7ur/p2j4Qiv4qm1LyWjYYTMCyzbpMgKbMsmS3Oak/UyA0tFV6yubOLYllLoCCXtVT9etS+ZpsF4OFakXCHeZVP69qYV/+e5a/zG//E/q0zFJOXiV/6Mzu6AQ0/8CE8/9TRvnH0DXdP5l//8n/LW2+d536MT1IMAwxAMhruEo4TGxBS27RJUKmRSw/fq5NKlPXecVApmJj12199mftrmqacepUginn1tgx966PsoJJiWRyVYZDDos7ZxG6Hr2LZHkuXUgyqvvPpVarUm6+urBJUKgV9hPOphWwa6rj40Xa01BQTJ92VwQjeIwoTt7U382iyFZjAMQyZabdY31hGmge/7zLRnyfKc0XjE/fv3VJFdZFQqAS9/+RmOHD1Gd+s2QVAlqASkhcqBRYPhMOZDPzzgN/94jb//kz+PYSg1FFJDN2yiJMOrtLBtj91+j2oQEEd9ut0tbF0gi5w8zcr3TDVXdKGjaQaWaat9zjTLnErISiKo71eQQiMMY+7fvsVEe5IoGSM0o1SHqXNiNajj2DZoOaDtWxdA59qlN7EdFdFk2g6GbZFj0N0dsrqzwoHlY2xtdzh08DBpqqI9bNvH0E3OnHmJ8WiE63tcuniWZs1HJ8XUdfq9LppmIHWd5UNHEaatHjLi69dlHGV84KPvfWBCyb4882umfN9kTe8HlT/wyQ9Ox/by/opS7fbO171rSrj/yuXXwT5hU+4Viw9O9r5GMyr3lXjfyaTwe5O7713/r65ao6kO5Zap6JKFkpU9/Z5T2LbF5FSL7Z0u99Z3GEVpObmyuH1nlV/+2+/n0ZOHyDPJkQNzjEdjXM/h0u07uJ7N+toWzWqAY9tUg4A0zQjjlONLM4RjlV8iNMGNmyoDL8kSXrxwETQl4alUPTQBlYrLB9/3GFGiKIau6+A4Fo7rkGcF12+vEScp4SiiyFQHf2OroyRBueq0D4djzl+6jmmbjMchaZIxHkW0JptkecZ4NGKnM0LTBGkWkWYxaRKxs9VREq7SL6JpanqVZTnhOKTX7dPr9QjDkPb0BO1WjbOXbpPnZS6UppEmKWmW8dad+xRFwfbmDlmaUa36pEkKmpItVQMPoWm4lsVoOKbZrOMELlmakGfqoXvr5n0++exLXLtxlySMoZB8+INPUfE8vvzaZYRuKOS4rmFYOq5rE0cRg24f3chIi4g0S8gLyXx7liJVcIZq4BOOQ27fXmFjfVtNF+KULFWQBik1dN1gZ6vL0cNLZQcart1Y4dXz18jSjCtXb5FEqZLC6Rp3bqyzNDPHwuwsve6IVquFJtTBM05ile8lNIajscKtI7Fdi0JTUQThOCSOEqIwwjANijxnNAoBsCwbTdNY7w/4+MsX+cWfOMYjh2ZV0LlUhW2apKSpknJKKZUev9zAXM/i8UdPkecFP/qDD/PI6RNEofIMRlGMYVn8k09d4bf/q4NMT9QIBwMsQxL4FkUa0e/2qTYCer0B3e6QKE5Ik4xut894HO5vDu999ChIyaMPH+WtS7fpdPqYto0mNJI0Jc8KDizNEUUxnu8xOVlVIbuawZdeuMDM3AyFZlBv1hFCUK14ZHmOLvSSjyDp9/uEYUivr1DstmVy994mQtcZj0NOHFui2+2TJAm1WhVQJv9CFiRxou5b12G31ydJ1b3w2efOcevWCt1eD01ouI5Jq+4TBJ7C+Rs6fsXl3Js3+aEfeBhNqKIiTVLmZqbY2tgFTR3cZw7MY+gGQaVCOIpwS9pkFEY0qj5ffultkjgmz9TBKy9UZIJpqf9jHEdkacLTR6dpNqq0pyfo94b0ekMONQW/+As/h2nqmKaaakFJjctVw0DXBVEYInRBFCvi6rFjh7h45SbhaIxp6CALDi4v8mPvf4q5+bn9Ca+G8i52d3eJwzGGEBi6Xnqe1EQuSZSMaTAYsrm5tS/N3d7usL7dYzwKMW2L8SgsGzkJWaa8ZVLKMndKvZqmaQwHQ7a2dpBSMhyNWZyZwPM9kjihEviMRiFZpuTyQhMMhiNViAkVWaCgWpKigDwtFI58OELTJGEUqTwt3QQERSHo7Y5oTbSYnp3eh3nphqG8PCUgRYEOVBFbFDnVeqC8hVISReqeNExVnGpCQxc6zYmm8uqVkkwJ5UQ7I44y0iQniTIEBkKoqWvQ8BkMB3iBRzUIkBI+9qEP0qjXuXHzDkIXmKbOoaUlHN2kyJVvWQj1/79zf400zRiPQ6JQwVRqtUDlmHkO/f4Ax7G5v7q2n7dYrXg061VkUXDt+g2iJFLrPpcsHziI47qcPHmEJEl44dW3CKMQDRCkIAtq9QoA/f4QTWhEoZKiG6ZBq9kgilJA+SBNy6LIVcyHLCR/8vmX+MyXzmA7Drpu4Do2ruOU/kslWR2NI/IsL5+VI4QG84tTKos2U88CpZbVoPRMp3FCteKXy+o7kZ69c50fhaAVoOWkmYIN/YN/8CscOXwQ09TZ2NxibX2NoFojSWLGYYjn1+nsdpUVIEn43d/7I3Y7u+ValKxvbtPt9jjz+gsMh7tcu/oWGxt3yJP7IO9yf+U+T9ZOItAIwzGb2xvkxg5+TefwgUe4fXWNwSDE9Tws06Reb1GvN1hYWKLf7VCpVBgOeujCpCjKzGFdwzBMRTiUUq1JTRDFIRW/yvLBU4zDENO0GfQH5LlkYWGZoFpjt9clTuIyBsjl7r2buI7L+TfPsLGxTsX3GfQ6HD/xGEJoZb6kRhRHpGnCP3/292nVJP1RjKFbynIgNUzDBqlx7/YNLMtB6CZC0xkNhxRFrjJ2c3XvWqalMkDLKa2UylsnylzQNE2UQqXIFQVYaIxHQ/JCYpgOXrVFnhfouqHonHFMXsavZFlCFKuGqlpHEkM3EcLg6IknqAVNoijklTOvs7ZxE8vRmZxt8fh73s/U1Cz1epO3L75NkiR0e11u3rpCxfN58snvZ6ezzdWrF3EciyQa0Gy0MAwDz6tw7MhJXK+iim+hoFHfSE5pOwaf+8yzf6P1++1comwA6OJdJc3eg/CbXeXE9Nvsk/z/6vre5O5veD1IznzQuqxmQw/U+/+RseyDf6Npyt8ihNp6eQB1DKVMs/z4Rt8xkaBnMXrY4589/yofOjSPgYoWUIZ2he1eXprhwGwT07B48/ItDi61WVnbwnc8usMuE5MNbMumtzvg+LGDFLk6gNerVSzL4tybV5icrHP4wEKJ6VeShyLXSMOM7c4GUxMT1OyAPCtwXAVTuXHzPkuLsxSyYHNzm1otwJpCx9gAACAASURBVLAl/e4IyzDp9LosLU0zNTVFkRfYjoMmdGrVCppuUAgwbIUKvre6RbtZw3Md0ASGZRHHKQKTs69d4b1PHyVJY2Qi0aXOeBRRqQUIoROOQizTZDQc4zoOpmGiGyp41nN9bMsizwpsS3D80Kya/gidNEmwLIP+sMtTj5xE5ko6E1Qr9Ed9bNcmL5RPx7IMhCk4ujSFV3GVjEJqWK7L/bU16o0641HM2ev3ef8jJ/ArNv3BmGq1gmVbPH7qEOPhSAEUhEAIkyhM6e32SeKYJMmIRimeG+A5PsNxzDhJCDwXQxd0Ol3mZicwdIFplyRWTT3wiyInTlTwcxSF2K6JFDA7O8Ghg7PkWUG9ViHNEoJahSzNqTUrRElIteYSpzGGbaGVhNc8zSmSgnCsqJRSFspLINX0znMUct3xLPJCkqUFruftBy4D/L2vnuOnf/ZxPv7BUyy2m0qippcdWpmj62BausqNEoIsTXF8jzSOKXILxw0oKEAUUCQgEwzb4Z/8wRe5fm+NXzgt8F2HG7c2mJub5eaNDZI4x/crNJs11ta3mWpP8JnnznP04AyvnL1Kxbapt6oUecaFqzdZmG9jmjZfefFtLl/f5LFHlxXKPskY9caE4zEIievbZEWOaZlcuXKHeuCxs9NjcW4KQcHbF6/Sak2w2xli2xaua5EkMbLIuXVnjel2i/XNLkHFxbJM6rUWo8EQoQsc18av+GRZAbkky2O2O0Pa020k4DpVikzyzHNnOXF4ESFMDixMMtVu0u8PqNfq5AVUqgGbW7s0J2pMTnj4nsP5izeZn64qUEku+ORnzvLexw/h+zppMgBLQxc2hiYYjVbwKhNotpImm7pOkhZcvdnh5bN3eeq9y6ytbVKrKIJsXkgMYSl5k4Q/fWmdn/3AKfqDAVvbQ15+9TL/4fw9Gn6Vt69d56ePHEeYysOgaOEauqYrxVqxN9EwKfICoQuOHFlGGGL/IambBoZjUchcwVGAPM3I0xzT1TFLKqaUigY56HfVIV4XCHQswyYaJXzyM1/m9PEjOLZFs24z1aqjo4pETeYkcYQfVDDcCkIvMC2bJM7RTZVd53k+QaWKlBBUA5bmZ7B9B0M3yQuwbYs0STBNHQ31zANJOFSFahpFCjokhJL2FRLHcxHCQuYpWaqaHJquUeQxpqFRZJI33rjE3MwUe6IRsd9AyBn0e2oakOWMxkNcr6qkTKJQwcaWCWhKWZAmGGUkh2M7SsKp6wihlb48HWHoxFGM6ytCcF5kXHrrBr3OkIlWS3XFBSR5gumoKf/WTpfA87Etm6AacOzIEkWesrG+jqlL4vEAy7RpNht4nstnnv0KE7Ua4SjCqwVqzZkmWZoxPT2F5zrohkGCZBjF1GoNNCmYX5pVsvei4F+8/DIfeniBSsPHtByalYClpQUG44g3bu1wSui4jodhWORJppoJmobj2Pz7L76Ab5i0Wg3Ic44uT9HrjXBcD9O0OXf+Krah8+M/8ARFVpCG6b6MEF39/HOJ8o7rqmBP0kR5OgsNw7LRdUP5yigoKFD1S0GRFpgVd98O8M7E4F0StXefJx749XO9iJ/42N8ilAa+VuWZz/3fdIaQpFWm2zMMRhGLiwf4/F99mpnJWd7zUJutncssLR8gyupIr8pjj5xGSo0kTslFn/445MrljCu3Orzv8WOQ7eC6CbrM2F3vUNgeR2Z/hCiB8+ffYmurR701zbEjJ3n93FkeOv0Iu7sdlVOoCRqBz4WL55iaXmJ7e4co6bO8fIg8HyCLFF0TGMIhLXJkkSNRwA2JQGgGYSrZ7fdptGaUB84wyfOo/DwDy3BwLBtD19F1i6n2HJpm4LlVijxH5AnzS1Mk4RDHdim0DMcOyntL4437b2Hogp889jMI2yHPMyzbRqJRaAazyycZxSmaLtANDcjJ4j6eZRCFYwxLwcHy0miT5DFFLujt9qnUKtiOQxxl2I7DxtoGjuMjhfo/KvJljufZFLLAttwyIsUsz4Q642FYSugzhLBI84JBOMB1PFbu3CPNIiqVFtu7I9ZWRxw/cZqlpSVGgx4Vz6Xf32ViahLbtjAth253l9Gwz+7uOrPtJvWKRiPw0IUgjEJ2B2MwfaRhU29O4foB4zRTkL5vMjL6V//ud/g7H/tI+b6h/HV7ssry45vWWOVhe29a+Y1OwnlR7P+Zpr1zWlbwzXfO6KBonEJoJfRqbw4u2KN0CqGVERVfPyn8Tgma3wOqfJev/9TF3Te7vpO3/WuLu3cW5YPK+r1Ljdnl19CVHrx0XUcUOV/41Cd57eY9fuHwgto4TFGG9yo5out7pVQkp92qYdsms7NTWJZFteaxuraF69hcu3mPZi1ACEFnq0sYRkTjiFaryptXb0GeEwQetm1y684qtUqVShBQ8QwQ4Pke1VpV5bu5VpkvpqYpExN1DFOnyBIsS03wXNdhPFYa9p3tDsPhiEqgYAU7O+rwpSExDIOF2UlECTbYm8KZpjLgjoZjWi3lG+rs9Hj94nXOX7vDgZkp1XErf3S2bSF0QRxFmJaFLFQxomk6r7x+kfZkg6IAy7L4t59+nuW5yTJoVqPfHZXBoCZZniLLg1k4UgQw21FSM6HBaDxmOFSB03Ecl2HJDtUg4KmHjpLmKbvdHvMLbVbvb1CtVQijCM9X3Uff9zAM5bOqVn08xyaMYyYmmpimzerqFhPtlpLhkZNnGdudLnmW02jUFMHLVJAGw9DJigxN06jVamR5Tq0WIHMVvq2jK59B+ZDe8yeovCm1Bnu9IbVGbf8BGI1i7t1fZ35uupxyAQWMhkMsyyoPgyovz7GdMpRZbXC//MIb3Mh3+d8//oPUfU9Nm8ZjTNMkCkMsy8Iw9VJKqyZEf/oXz/DQicPEYxVmfuvmCq+du8z83AyNZh3bstje3uU3//xV/psfm6Fz/zZPPXGMeqtOq1GnkJLWRIN6o8b2dpebt9c4fHSZ27dWuXFnmydOH2B7e5fpdoPNnS6+57AwP7VvhF+YneLg0iSOY7G+vs3ubp8izxmOI6bbE6ytb1OrVdnY2GZmoo5lmVy9tcaRg/Nkec7c/BRZmvPMc28q342h0Sjzv6qBSxgmLC7MYegGaZaTJGlJPlQH7s5uj6AW8Pq5qywdmMZxXCzbBSS60InjiBNHZhgOxmUQclau70IBOopiP4+t2aoTRxGaBkcOtnFsBR4QmmBuqqbw67IgjEKEYVBkEj3P2dq+h2lW0Q2HLFOgItNyeOj4QR49fZBCJviu8qRpmthvMJV7J89f7PAjjxzAdVwqFZ/FuUlcR7B07AlePvc6P3/qIdDYJ4/tAUCSNMW0VLde0zQ17TDUxDrNUtI4xTAMiqKUXJdP0EJKdd95LsJQuOs02TuICFzPUf/OrJxghRGe73Pk0CIIJfn57JefxzEEE806wtRBqgOmREPoJnmWMhyOlIzWMktfVaHM9qVnzrRUHl+eSy5fvk6r2SjzLdXf7eUDmpZV0v9sRXCTaqpo2coPhtQwdDWBl4DMlVy82+nxic9/haXpGeqNKhKJYZV0PCRprIpFLc8RGlieQxbnqttd7j9JrH6OWVbe8+WeY9u2yriTBYZhsLmxhWMr6JWKT9HKwPaC2ZlpHMfms899laMHl1hZXafdnuTGtTtUfI+Dh5Z468JlZmfa3L19D9/z0DSoVivYtoNhCjQMxuOQcBxy6vhRNjY2mZ2boUDlmcmiYHV1HV0XrKysMjnVIs9zavUao/K5ub3ZodFo4FkmX9zc4qeeWFQTy0yyurLJVLuB49qcubrCD07OsHJvgz9/5hUeO7mMYSh/dpEXHFtaZHq+zdb6Di+8fqm8N5Q3WzcMmtUKMi+YbDcp8oLzF67Tnmqi6YIijdna2OH1t65z6+46jUqlBK2Y7OWtFhQIXWPQH+E4NqPxWGHt8wKZS2zP3qecfrvnjr3f3+p0aH/wxzh47CBSM9ELk3R4nUcf+z5aE/NAztKBA2RZwh/+0e+zubnBR370OAcOtNje2eT6jfv41QoTrYLRaIiGSb05jdBdZheO8/Cj34+pF2RpF00OaFRdPKfGP/6tt/jA8feQZVL5EJ1JtnbX6XZ7LC0dQcoCx3WYmZnhwtULBJ7H8tJhbty5Ra/X4cjyIuG4j6WrQl6RDHUMoZNlcTk5zZGaxubmKmDS2d1hcmoR2/XZ7fVoTTbV+jQMijxTMvzVFSpBlbX1NV4/d4bZ6RleP/tVPLug1WowHkXIQuVUFoVkPE549ktf5uO/OMFv/fkNPvjQDxBGMZZpK/9tkmA5PlGsUa3VMA1BEkcICmSmaJiWqe6TPMtKKWeBaTloGHR3t6nXW8RxrFQTwNtvXGTxwJKSJCOQOeiarqi2Wln0kwFmGa8iME1lC8llQZTkSEyuXrnEYBQqdY5wybARls+p049hmxZ5mtNqT3Ln7h2u3bjCiWOn6fX62I5Le2oKmY+YnmhS5KHKAi5yXLeKbvg4QYvF5cP4tRpJlmOU0VBybxL2Ddbqc+ee42d/5qNfWyTtAQflHpDqW5+g35FOfi3V8sFXfaeYU5/1dd9X26MCP/BHQodCtVcoVOSK+GaV6ndwfa+4+y5f383i7sGp2ndyPdhLEOIB/W/ZpdB1o/SBfCPz6DuXMsUbyCxle3WFi9dv8+d31vjphRkKmRCFMY6j8krCMGIwGJImKZ6nuklRGBNFMTs7u8zOTiHQWJib3jd1/9kXXuXE8qyaXI1GLM5OMTnVZDgYKonQOKYaBBRZwdrGBo2JgN5giO/7WLYKBDdMXR10NAijiDxT4AwpBTdvr1DxPIJ6lX5/yGSrhuPYbO908XwX27bRNeUDUoGiJuNxxHisSHPD4RjfdUHTaLVqIAykhErFZ2G2zcPHD5Y5VjaWpYiTuq6xubWNX/GIh0qO5VdcpJTMTEzwl8+f4bFTR9A0jalqhVq9QhzFaLquiptSNqEbuurAp6mS2AFJGPNvPvEcDx2cYW1zh4X5aUTpmaPIMXUV35CmKa7noOsqG8zz3H1JSBipkFvHsYnCENMQdDo9TFNBBzShfFaVwENKuHd3nWajgm4Y2JaJ49gkSQaagSEEpgFxNMayTeXlw8Sv+OohWcCnv/gy7UYNx7dwPLs8+Bokscr2cX2XTqfH/Nw04SjaJ49KWdCoBly9fpv2dIsb1+8y0WqgaRqOazMOQ1zfpcgLur0+aPDxF8/zfT+0xN//idN8/6nF8j0p0HWBYRjIIsfzXHVYLAApyDLlz6oHPs1mg+5uH8/1aLUmmG5P0OsO+MwzL/NHL17n/t1L/NL7lwhHMRP1gO6gT6sZAALTshQYQ0p2On2Go5hWq0q14nH8UBvTFORpwuxMi0rF4879DZr1qrrPZIHQTQUvkVCrBuRZSr1ZpzlRB8BzVKFgOza+YzIejjl6eInRKMSwTJUhZwgOLU0yN9OiUvHJZYFtG2qd6zp3bq+D1Lh5e53ZuQksQ9/3hn3uufOcOLJEq6Um6Xmm88ILF2jUfUzdpNfd5e7KGmmS02xUSZIYIfayzhQMAynZ2u7iu5YCL8UxlcBDGDqmIej1hqys7tBoVEnTFNOy0cpO8a1r95iZdrEtnzAeKbqjJpFaThSHdDpb1KqBKq6EQKKRJQWj8VhNQmyXc7cGPLIwwerqFo1GA93QOTbT4u2tnKs3b/CRpQUM22Z3t4dpqAnN9laHeqNGf3dAnucYhl7m3/GOZ07TScoiTkmflBxRCEE4HpMkSSlL1ktP3YMbvEYUxgqLX/opNUNje3ubSuBz4uABZtptdnY6uL7P9tY2rmsT1KtkEjSppjxoGlmaqmlNniN0QJOEYYgf+OR5TpZJ/vKLL7HQbuF4Loahs7a2oWSumiom0VS2315hG8cRpm2hC1UQhKMxhqVkV0II8iSnyAuuXl8l8DzaM01GwyF5kpXyYUmWxIyHQ7Y2Ntnd6VCp1pGFhtAFeZ6oSagwuXL5Ol/86hmqrkOz2cSwLaAgL+WdRV4oAJKhIg+ELuh2uri+u084FkJw+uRRpCyoV6vIQvLJL7zE6tYmrarP0uI8AF/86is8/shJiiJnFIZYtqmAUoZFs9XAdh1sx6bRaHDl2k3yLKVSrWDoupqEaRrjMKReq6JJGOz2sB1b7RGDiCRS9Ms/fPsCv/K3nijvNZuzr1/iwNIUQhe8cW2Vud2c9vQUj51cLv1PBkmcKtKiEGRJhl/xqPku41HI8+cvcuTAHIUssAyDRr1KXii/4sxUC1CThGQ0IklSAtfj/NX7nDq8RNkxQC+9kOgSoUOWZOiGjuu5ZJn6Ge52eniB922fLd59DnltbYOf+tX/mkzLMYSNLnVuXfoi//Jf/w4z04dJooikkGR5wgsvPo9bsfnJpw9Qm/SwXJfZ6UUqrk7COrpmYAiPVnOWK9dvYNg+GHX+4Pf/NY88fJAk6eCbJtsbu6T3DzHdbmE6NsKyMByD9vRhJienyWTGzu4WE1OTIMDxfIa9XXw/wPMD+r0tZNLBFOBaqmDQTQvHr5LGIbqAoshJshzLcqnVJ+kPImr1KWwvoFKtYVgWRaGRZZI7t27TnpwhilJc18dxbKpBjcnmJF969pPMz0xy9PBBvIrN3Zs3MYRDUA0Yj3q88fqb/Ps3P8nZGzn/08/8Q5I449zZc7QmWmRFQSEsnEqTorDJ8jH97iZkIaZWkMehimTSNOIoxPc8wvEI01RUVE1XBaGUmbIrFBlZUbCwPE8hc3Vv6zqWqSvAU5ExGI4AAyE8LENDaIrkkSZJ6XOGF8+co9OJWN9OMewaQX2G3VFKc2qW6flZms06eZHguDadfo+r1y/y3ifez82bNxmPxtiGw+bGfWS8S56MyOIQ2/LBMLC8JrXmLEFjEmGZ5AIsx8M0LMbjocq2fXc+XDkde/7N5/nZn/uoWqfvmogpe8I3b1+8c/bd+wz5rr/f+3j3Gfnrz8xqSKJ+LcTeMEUi5d4ET1NNwAfol9/ppbLRS/KnaX2vuPtuXt/N4u4/hVx3zxj74GLa29i/5fqSkrDIMfKc1178KuNU0un1+NjiHGE4wjJtNHSGA5UfZ1s2F6/cZbrdIokTbMdhNIowDEG1WqHfH6oDx/omQeDTqrj0+iPqtQpXbq8QRQlTE3U2NzvU6wGtZp2N1Q7hOKJZ9zFtnWu371N1fZDFfhc9S9RDbHu7S70W4Lg2RQGGbvKFV95gtqUmHX/x7Issz0zjuQ5FXpClKZvrHWzLYmNrBwE4jksQ+CRpjmNahGGMrgs6uz3ViRcaRZEp1H4UI6XyroXjcXnDKRCCYSgzdpameBWbJE6Jo5THHzla+nRyPN/h3v1VqlUf1/cASJOUzm6PSuChSUEapQD7h8bjC9OYpqDZqKLpanrR7w0Yjcb4vqu6fmHMi6+9zfLiHFEYlpTBAtMyqNQCup0u1WpAOBpj2wZbO11sy2YwGAMaURQRhRGWaUEOhqHCsR3bwvVcbt5aodFoUOQ5ne0t0kz52HTTprPZY21tE8dRh5fbKxsYQqPZCvanGCsrm+hCx6t65EVOoxZw9coddGFQCXxSmWHqSvY2OzdFkiZl9Ia9PwmwHRs0MAyLz926zW/dvs/v/dqHqPquAoag4Cii1MtrmiAKx0r2palpQL835BN/9RWOHV3EKgElpmVx6fJNmo0aQghefuMK/+OfvcSvf2CCj37wMfrDERPNGq5r06xXFP0yTrh+4y6B73Hpym2Wl+aYnZnENBRmWgiNSq2KYUClWkVKjYqvirWt7R1cxybNcs6cu8rKyjYLc1PYtsV4PGY4GNPp9Ll1Z535uSm2t3fZ7XSp1Wt0u0OaEw0lGRQqguP6jXt0uwMmJ+qsb+zQqAeE44SV1W2u3Nzg9EOHGQ6HhFFENfAYDkekacajDx8lzXKkzNXDojBo1n3ur26wutpBGJLlpSmyTLK906XZDDBNmziO6Xb7xElKxXdxbYudTh/fU00R27HRhGDQ66GhMzc3Q5qlCF0rQUAgdJfAsYjiXQb9hDCJsEwDiYZuGMRxhGXrxFGG5SgyY1HA2uo2/cGYyYkWo9GYYQxxKqlYgp2dLp7r8NlnXuaZC3cYxTF5HPLIwiJC07h7V63hvSLN9RXARdf35DkQhzEXL14jGkdUKh6GoZfRCfp+N1jTlNdGF/p+A0XoqlNL2ZQxS5AIWpkrpUlq9SpICEchX375Nda2dpieaDEz3waZk+UFwjAxjJLgqrHvw1JQEtVhNk11UCuyHGEYzE3UabTqmKYi23mei9AFo/EIz/fUZLKkoBq6hllGfshCIjWhpr62hUTlRglZYNkWJ48eZma+TV4or2OlEijPUvlcsSwTSzexbZdPPvs80/UmfuATx2MlDdQEnuOyPDfN3MKsohDnuXr/heqYZ1leAlRQhbauCpK9HEshdHrdAZ7nsnJvlU89+zxT9RqWqXNoaRbLVF/rOC6njizT3d1lHIZUawFZlpVeKlV0Sg3+8vN/zaGlBVoTjdKHrDPoD6hUVGSFik4RDHpDqkEFqUGW5Xi+z3MvvMrxwwf5i2tX+TtPHUFSYBgWX3r+TU6fOoBX8Xntyj0+MLOIrsPG5ha+76r9Yg/+oCnVwnA4xnEsmrUaU82aoo8KJYuTEkxbyf51XZTNhQzHVX7xL525xEd++ElGoxHbnS4TU+q5LFSIGZomsAw12d0nIUgY9kYEZQbgt+O5e/dnfO7mKk9/9COg5UqKlmhce/NT/PIvfRxhzuJV6qxubDI93ebKhfNcu3KRn/rAMXJtSJSk6AjSeECShXhOjTgs6A26NCda6GaVyZkjWEbBxQtnObTcxtKg10uw5XsI6j5xmrG6dpf27DKacGlPtwmCivrZaspDZ9sOjq7Co69ev8T26g2OHl5GoOwSqvciQDcpshBkoZ5JuqUyWIWJ5TawbY9KUGN7ZxvLttGFyd27dzhy8DBFnnH58iXm5hdZ31jl/v37akouUuq1AFOXoGW0JxfKxmZBnsacuX6F3/jv3sP5c0MeP3oCWUgm21N4foUky3H9Jtdv3qTRmmY86hC4DkUaEY762IZR7mGZYoxoCv5SSDWVL4qMNE0oKKMNNNRZTVdAFUO3yfIU07RKXyyYls/lC+fp7faVjFsIDMPh2qU31cTXCRhFGf1eSGtqmkpV3f9TM22mp2fod7usbazSqFVBkzSbk/T7A2rVOkVeMB4NKGRMoxYw7m3RrDeRBZi2h9RNWpOzKkjdMFRMAxJdE8g8wzYMQPv6aVe5KGthhYd/5NTXr9m9Kdo3WL/7VzlB+abAlW96b3yjP1ev9ODrvvMi6spz5cP+m07u9qSjSkL+/01x9z2gyn8mV7fb47d/+99Qa9T5X37jvwfUhh4EFXRhEIUpl6/cwzZVV+rg/DQU2r7P4MaNNVzXYXNjhyzJKPKceq3K9maHhYUZaoHH9VsrPPnoCdoTdXQhWFycUUCFKGJyso7r2pBLyHMeO3EYrZC89sZl4ihlY60Dmk5RaMzOtikKCJOUr5y7iGUZvOf4Qa7dvsvW5jYfet/TBLUGne0+lm6SjEJsYVGkBbvdAYPBmJ2tHqDjV3ySNCMOY0AyMdVQhZ0siOOQghzLNhQ1TytwPBvLtvjKK+cZ9kJ+98+eYzQcUW8FZf7eFpWah9DBsAS2a1CQMz3TJGhUQGr74IVmSwVAC01nZ0vBA6Qs0LScerNSkhQFMs9B5liWQbNRIwxDNCUQ4vufPE1ekvLGw5CNtR2SKCMchExMtBj1h3iuhSxyJlt1glrAeBDxic+/jO841KsB437IzmYXECzNz6Eh6Gz1WJydJcsltmPTnmpgGhpBRU0HLU1ncb4NUjKORvzg06c4dHweUUor0yQlTVIqFZ9Op0tRhiFXfJfPPH+O3/6Tz2NbtuqqGgY3b96lKHIkYBqqI72xsUMuC7I859dePM9Hf/kH+J1f+xCilOftdroKhiAEuzsdkiQlz9X75XuuIn76Pi++9BZHD8yDVAe5vQnUqVPHuXbtBv/Xp7/Kv3pphRd+8yM88dhRxuOQ9lSTXn9AtzsgjFLyHMLRkKlWQJbGHD4wg2kIhr0+m+sbGEJtqIP+AGFapIVE1wWmZbK93aE9NaFCzi2T97/vER47fYjebo+XXrtIo1Wn3qozN9fmkYcOs76mplcTU1OkuWQUxWRJSpbE9Lu7KjJjusWpk4fQhE6jXmU0TLEsh/nZWT7wvofY3dnhwNIUrWYVwxBYpqFIY1Lj6tW7CE3S7/bZ2erguy4L001OP3yExaU5wjSj1W4xOzfNbn9MGI7Z3u5i2xYz05Nkacr9ex2WFhcUECMtygmQScW3SbNM5aqhYZgWumHRG4wYhwmWG9DpjkDTqHoNDOGSZSZpouM6VYJKC9d1CMOx8shJjXZ7klpQJ881/uoLr/PwgsmfPv82tq3z6mtXuXNnhfc9eZzdwYBf+S/+Lp9aXSdNUv7kU8/w7KtvlJJSG9Mw9j0SmqaRpZmackmN2/c2qFR8TNtkOOqrQ/IeuKBQ4e8gEcJQMshSqpz9P+y9abCk13nf9zvn3Zfe++5zZ+69sw8GOwFw0cJNi0XGEmlTS0zLllKSZcllW1mcfEiUVKUcR66kkshOVSJbMSWZlkiJ4gYRpEBAJEASwBD7DDAbZubO3ffeu9/95MPpGYAkKMq0mIqreL6gq2fm9kX36fc9z/P8/79/rvHXSoFCaBw9gizPkVLB+M9cv4QpXd52/4M4tsvmyva4EZSQ5zr7M4ljLMskT3N63Z6WdmWCLNXqiCLPx1ASycyhaVxf56iZtok0BIWh8MsBucpo7e+SpxGOqeWdQkpNYjQkqigocnXLOkKepwyiHsNRl6xIMC2J7Zg4rk2R5eRpjikN8gyE4eBX6jhhhaXZGaIowRjL2g1Dd6yFhFI5QBU5cRQhpSJJ4tvWAGuca9lpdRkORlqW3BuMFREG0rao1ivkWU6cJHz4Z0lUMQAAIABJREFUg+9HCsHZ08c4fHiaiZkGjYkqipwsS6k3xvmWtk2aZXS6fbzQYb+1jyLnh996L8JQmJbANHWB7Pkew/5Qx1XYJtEoIk0SWgctsjQlyRKSJGJ6ss77P/aH/M7f/xE++oePkSQ5RS745V/4KS5dWmY4GPHRJ67wyJNfpT/o4AfWbXiW0JBYCpVj2gZh2cWwYDSMx8W7PjhGoxFJFGvYi2uTpSkf+8KTbG3vE+UFUaF46K7jGixmwPGjs0CB42mbgGmYqFxPmm9JheUY5JRmryPhv5sm8mqqJfCWSjDzCJEOeOnrT/Kf/4O/j3AnUGYVz69hSItXX3ye2VqZKIl46twznLnzLgxDoLIY155l2AfHtanUATlgamqO8xdeQqmc06dOkaQpURRz/qakPhdQINnbHbK63Oba1U0s26A36NHpdYiSCNOw6HX7pFGKLW2uXrpIPOhy5533Q5Fq2m6RowqFY3tkhSJJRyAUuzvrZGmOUpJub0B9YpadgzYH7RZbW2u4toFSMesbl8izAcs3LzI3P400cpI4Y2tzk+fOPUWRDTGNgtAvaSm1TDFdSU5CtVLl8vAKT7+yx6/+5N9C5RlFEWG7FgpoNufw/CZ3nHkLtmfhOg6WAZKcwLWJooEu4FVBniUo0EA3yyYeJghl4LoBjukjcokqBCo3yHMFWNy8fp2iMIhGkuEQ8txiGCUcP/sWFk7fxSvXezx/aYMnnr3IZrfO1VXJC6/ss7B0mh9697uZX5rl7N13cPd99zE51eTzn/8UE9VZrl+8iVIGL154jiSKOXJogSJNmJ2cxBQ59bqFKrpMTU5RKIUbhuS2xDADOsM+vagLIkMUOaQZ5CmvXXqZaNBHClDfpqx45NoXvosdrJcq1JuCWr5X6xah9T/m9f3J3TctVRQY31DNv/n6bqWYb1y37J8KLesRiNs6/Fu+kjdO7iSM5UffZKYWAtP1OXlkkZ21VSbn5tjeafHShYvcPdXQfjuhmJmu4/o2AoXn+WOcL6ysbPLU5ZucOTJDqVzCcR3+4OEnmSgHTE42MV2JUujJRZ4TBD6jZITrOWRKAAZZnuOXXCzfBGny2vV1pqYb1GoVbFcfSBxHk66yNMNyTKS0ubm2ycLsJI16hZnpGcqVKqaZsbK6yePPvoqLxEIyMTeD7Xs0J5oE5fLYHG1SqAzD0vls0pDs7RxQcn2yKCGJY+07NMZobzX2/wCLR+bwQh9HwKs31jg8NUGaFDQbTaJhisqgSAsG/QGWZeK4PioXZCpFInFMi1Gvz+rqGqFrEIY2eZyMYSpaG29IDTvo9Yc4vouQkmSQkCQZcaRDfPMsx7RNbE9TwbK0wJDGGO4gMGwbw3KxXZ9Ou4dlCsJKif5gQKNWwfFdDFtSa5ZYWd0gDH2CUoBta5S8FALTtsgQJEkBhoXKdWaf71t0Ox38QE86Lce5LVmQpkG1FqKMjHI5BHS8xWPnLvC+H3gLD955AiUShIAsz0iilDAIefnCTRbmZ4mjEWkS87XNNX79mQv83n/zU5imruqyLEcaJq+ev06nPaBeq3H56g2mphtIS5KMFNIUWKZgbXWVe86eYHlljcFgxOWLK1TCMlcu3WR7a4ffe2aZzW7Gh88UzE03cD0Py7GR0uLS5ZvceddxHedg6ugIy3aIhvq9tz0bwzJJRzFe6OKHWlbWbvWwTJMkyUlj/V5FcUw0AqEibFNgWBZ+KWRyoglYbG6ssnxzk7nZaWzLoMhTXnhxmaXFQyyvrlGp+Diui2l5WI6F67rj8G/Y3NxFUpBlCZ5nsru7Q7c3JPRCTMtEZYrXrq1TrYQYlmRypkY0irl6Y5PFpSkwCkzHpMi1d6vXH2IYEs912d3pUA4Dlpf3AZNryxscWZihUq1hmCCMFN/1kdImUymXL65gKA/H8YjiDlLqsOTVa3vMTNVY29hjanqeOO6AyLBsiTSFht6YBkplKCGxbRuhhP4cbYnvmggKTh6f5V98YYv33XeUG5fW2G8nvO2tpzEsybmbfS5fuUo5SXnP4hKnlhY4tXgY27XGe0fpQGHTIM0SLNMGJIalWFqcw/M8/d10tWLgYPeAUikEqembSZoxGPUxTIk9jmDQ5AoNsxoOe9oTWhSY0kQYDkkxxDRNNpb3efrlS5xamsH1XC1nT1PCcolkGGFZLvvb+2yv79KsN/DLIcI0ESrHtC0M0xrLjyRyzMvSCG59r5GWBCVRuW6WeEFAnGQIQ3sMbzkIhZDae+zoYuyWHItC4XguSaSz64ajSN/LLP39ZzzNskyTAjT1Mh7oXE7LpFAShI4dyIscr+SPvU4F8Shh0O7jux6mkESDEY5l0e90aTR1NIccy2SlFBRZTFFoL7JlWTi+i+06BGWPUT+i2x4S+CFinEsVxymu7TLsDSiXy3i+S5wXWtKmwHc8hp0BRaJYW9ug2aizvraOaVjYtsfu9oaeZNo2XqmEG4QUhSAvYuZmp/n0tWu87+4ZTh49RFAJ9MQkT5iZ057VP3ziMg9aBiJVTDebjKKIoOKh0ERl0zIoEokUFkk6wLVLFCJBIjFxef7Fy8zNV7W32jIxHYuTC3PUKiWEhNZBl/m5abI8xQ0dCgOktDCkCZnAkCZFITDG08oCTZkVgKEETuDeutG/6TnijfYObp0nxo//zWtr/MzPfBBTKQoliWyDp3/3t/jlX/xVKicfwHQkJdvm8isXuPHaS7z3R95F1d7nwQdP0G1vYhm+lhRWA9J8iBQKlTv4XoPdg23CcJK418V3wBYpxDH/8o+v8rZjd6OKjFbrgONnTnBk6TDV6gQUglarjefYXF++ims51BpNMpHz2rVLVFxJveRimwrbtMmF1NE3crzvUWRpTKXWxHLKtFoDNta3WNtYI89y1jbWWTx6EstxIE4phzWiOGFqapatnQ1c18E3TWaaE3iGYHqyTqUckqcxruWg8hhTghQGESl/40fW+a0/WucH73yIPFfYtosSFpgOplcmygsGgy754IDAVCgVoYocOf7OJukIZSgczyePwTJyTJWT54y9ozlpkmBYgkKl+t+6NqOk4MJLV0mUoj65wMrGJpZb5ty5Zzg4OKDfHzExMUk8yrGMgGMnTtBq7/MDP/xDmLbL3sEB05NzSCXZ3FijFtZYXDyGkjlHlg7TH/RZWjzJIIkIgxISyfbGaxw+NE0xbJNGQ4RlE5SrmI7HaBTjWDZFljHq98hHAw521ukebHOwtUmzOUW5PkWuFIYBFOJ2ph0CpIJ+f8APvOctem+OJZgCxtEF6hv28S2v9DfEJNxWQnzrUrcl9t/s29OPb8FTYKzkuE0OfsPk8NvELLzp642bh9/WJ6he/znf99x9j9dfWpY5zsn4TsXdX4UU89vRrW4/903FnYC/AKhisre1ydG5GTZ2tvmJn3w//8u//SPeN1XXhwMh2FjboVwKee3aCpWyT5plfPLPnmZt+4D/9P1v57NfOsfVG+tUfYezx+eJ4xTLNLFtQ0cshD62ZWBZBrnSGVEazpDxiUefoua7lPyA3d0Wh+fn2N9tUSoFYEBQCkjz7HZu1db2HoHvUA98/UUpFKZl0j7oIJWkyBWvLm9yx9F5CqFwHJOHv/Q0p45pPbqguE1liqIYaUhMyyQIfdZWdvjSs6/QrJWo1ssIqQMqTcPi3372iwS2QaWkTfC+63Dq6GEtp7K1z6LV6uK5Ls+9dGnsbbJua7SjQUS/O8R1PSzbplwOEdJkv9XT/ptcaWiFaTHqj0iSjKLQwBvP9RAKgtDjU196hrlGXU/iBkNauy3CIODm6gZJklCuhhi2iTR1odA+6BCGLkkSs7fboVktYRgCioJ+f0Dg62IXBZ95/CnqfoDvBwyHIwxTZzbZroMqIBrG+J5DHMVsbO3TqDexTIc8g+XraxgC8iyFQmIolygecvHyDeamJ9nZaXHy6GE63S5CgjsO8VWFYhTFLC3Osr29i21LfvX8Nf7BL76TX/pr99/WtZvm2MtimDTrdRrNGt1uh0OHZpCGBn04rq1jAkyLaq1BFGdcu77BAw+eZTQacvm1Ve677zT/+F8/Qr1W4b/68Umev7DMPWcXSNNYF0QqZnq6prvuhjlGzFusrGzR7Uf86aMvcPxIkzyLyPMcP/To9QZIKbUMzjQYjUZa8mUW+L7F/n6PTnfA7l6XWq1MURQYJqytblCrlVk4MoU0Cp597jICg/n5JrZtMtEsY7vO6xAQQ43fs5woiqjXy7iug22bWn6ZFUxO1LBtl26vqxsjtoPneqS5hnh4ts3MVANV6KlQGqe4rosQ4HmO7hgLiSFgdXuLu84epVYrUSv5FFnOQavHcDSg2+3Sag8pV8ooMuLhiFcvb2NIxdRUHdN0+e3fe5JCZRw50mRtfY/piSqd9jYUBaWSR15I8lwhTZv+YKSN/7e8DuNJ297eHkFJ5w56ZsQjz63x4R9/iGNL02RZTBInfPypK/yjX/p7/O7Dn+WX3/F2TMvEdiwt84Ux7XaI49pasl6Mr4lob7BlWvqgoOArX3mORlUf7BzXvi3fs2wHlM6e0xEL+iLS7fbwPA/bscb7U2IISZFlqEJRLofcf+cxDFNhOTa2axOWQtI4w7ZdDNskyTK++LVzHJmdwDC1rFMInRUnhPZfpFGCYctxbIIgiePb1FiU9ubpOAAd1nwLKDQaRVqFO5YK3fJ0RMMYx3HHIdMheZazv9/Cczwsy+HK5WVqNZ2tJoXQvjmhoUayANf3x7I3XXEW4+uw9t9p36RlmQTjBk9a5FiugxIQlEL63QGGYZKlOTtbe5TLZSQGO1v7lMtlfF/7xUzbJh7GuJ4/hhPBaDTE93329/bxPJeDgzZ+4OumVDGG0QhBu9MjzQr+3ece5z0/8BCGIQlCX9+rpaAU+FRqNT31MvR76/suWZySJRmfX1vh7/7o3WxubTMxMYltWvT7PTxXy/A/99xN/skP3U/guXS6PerNiqYBF2AIhRAKUYhxLqL2Qlq2xDIt4ijlwtUVhCqYPzRLtz3AMiyWVza0b14ZhF7A5toeTzx9iaW5QxjSpj/YxzIVhlmgRIppF6B0NMetojjPckxpYjjmrQPBm54j3vTsMP7vnyxv6uJOqnEz2WT/5cfIDZfEmuPP/+wxFg8vcOrUaV566QKPPPolmqWQEycPs7W5h1WYTDQn6I66hEEZKSStVps0V8RpwZWrewwG6xw7OoVhpNh2xPr5OseXFsnyAiEDKo0GSV7w3AvPUynX2dvboVQuY1sOM1MzDAZ9bCnJkgHD9k0mJxpa8aI0DVZLGHVTVqgCYZjESYrj12h1e2SF5MTpO1leucbb3/pODCmxLU2kLZSiVpsgSQuq1SZ7e21MSzIctRhFewx6G0xPz5DLHCX0ZFpikGeKqxduMjWbcOMVh5Ko0h/uE5TKmE6Z/ijB9Us6NiaNsExFEvdIkow0KegPYiqVCkrqGJM0yVEGrG9sIqSHa+tGSqYEB+0u2zt7eKUmSa7Y3hpw8cIFvFqZrDDY2mmztrpBp9MjyyVzh0+wdPQMM0dmWVhYZHp2hko5JCy5VMtl3ZitVnFch82tdY4cWcT2PIRhsLKyzMzUHK7t63ipIsc2FagR8WiPaNTBsn1sx8c2LaLhgEG3A2mCyCIGvX2KNCYatMiiHkm/RRqPGA261BtNrl+7SpFqSbRSxbiprvdjSfgcfeDwt+zlb1dIqfF5Ny/y25Psv8CVN/45b17cfQuk8E34FW8s7r4j4OUNJJbvVAh+P+fu++s/aOVKMTM9zY3lZaamp+j1+0ghcG+b8AWtbp88zzlz6ijXl9fI0pT7Ts8jJbiew13HDjHTrGBaBpVqicnJOhvbewwHIzY3twE9ydrd2cN1fW2cF4Jet4fvWWRFzkG7xdR0HWkopAW2o42ySao9aUhotdtMTTVJ4oRyOcCQkt39FsPBiEo15LXr60gElcBleqbBkcVDSCn4wI+9Q0vyCi3FUaqgKLRB3rJMilxR5Ip6s8aPv/MBpmYnMIyx/0bqXKbDE3WWFg7pQ2FR0O10eeHly3R7A5395zk0m3X2dg/Ybfe0V3CcJVYUikqtShKnbG/tkSuFkCb/6jN/TrVeRSkJYgyRyHIM0yQMQ8rlEqY0WVvZpBCK9Y1dPvSjP4jvu6RJyvUb6wx6I0xTctfZ4ywdm8dybKJII/Jd36VSDSmUIggDZmeaTE7WMaTOirItEynF7enUX3/X22hONBj0RjzxwgWiKNKB9EL7D6NhAqrAtGzmpqc42O+glOBgt83c9JQOZu/2+fjnnuQzDz+DY1ucObGIyhU//NDdJGlCvVnBsvVBeGN9h1KlhO95ZHnKs70Wv/Lia/ybX3snFc8DTKSANM013MfzQBW4noMqCq4vr2NZpiZsmhZ5kWPbDqNRTBzrHKDTp3Qm08nTR3n72+/hH/32IxR+k4dq+9TrZX72A29nMNA5P71uh1anzSgasn/QQhraE5PnBbNzMzzylSukuWJtfQdLQqOp6Z9BGOhDvQQpC0plD6VyhFS4rsXi0izlcolnXrjJxsYug8GALI05cmSKUqlEt9tj0O/xjh+4m0OHpgl8D8PQF/8izxFCsL19QJokFEVGUeRIoRj0+2R5hu3Y1GpVGvUqQkjOPfcqzaYmKoaBTxRFmjgqTUzL4mCvzWgY0drv8tVzl7AdkzRJNQAiyzCEIAx9lpZmSbKY4bDPS69cI01SJifr7O13mJ+fZXZmQnunpMDzHd777vuYm2ty/pXrKCVolgNmp+t0OgNKoQtKUQpDJDlJFOO49m0Sp2lZmtJoafy+lkUqCqUDzUFxcq7C5b2c4WjE15+/QDSKmZmZwjJNSpUqM1PT40BysCwNK7olgQvL4e1rnrrFnipeb4RpumjOWx+6n0984at87PNfGmc86ht/EmV02z067e7Y8K4L7VIY4tg2f/6VZ25P5pI4IY0yRoMYKRV7ezsMBwOSJGF/94D1lS2EMG577bZ3d/mZn/xRwnKAIWDQ6ZDnmfanCQFCYru2/tzH0Q22Y/PG8Bw/8F8HbQBpoqWnrqvz1hzHvu1tK8Zy7izNcRyPQXdI66DN5Ws3+Pyff4VOq8tjL5zXB1ZD+2ijgfbpZmlOEIYgDQxDN5EMQ2hoi2EihYbUaLS6lrlLy8R2HbIsQwkohCIsl+l0enz0U48wMdlEKUW3M+DzX/46w0HE9tYue7sH5FlGvzug0+pg2xaup6/Zw9EI07KIokjLoC0DwzS4ubwK4xDvar1KFCcYGOzt7LG3dwBC4AUe3W6HvIC93RZFobv/lmXSbrVwbA8F7O7vs7yyxuLSPNFwxP7uHkWWEY1GqDxDUfClr72AEFCtlkDpe4NQhZbP5xq/n0SxzixTGZ1OnywrMAzBHUfnOHlskd2tA/b3O+S5YnF+jko51AAwx8BxTdIiZWdnj6uXVygHIaKAdqtDEkXs7uyRJCnS1HThPM3G5NS/GmnYrVDrnIKXXnqRmzdXef7cs/zM3/gQmxsbfP3Z5zh1+h7uuOtByo0G/eGA2dlJiiKiP+yQ5wLLtEmTlEZzEtu2mJyc4K4772Z19SrlasDU9AxRlnDn0t1jCJzk2muvoJCUwjLTk3M0G03m5xdotfbxPI+9/X0MITh//nl67W0OLyxi2XoyrxQa0JPoaZg19jL2e10Mw6Hd6RKEVSr1Jlu7W5w4eScHrT3yLCMZxWztbuL6Lmmecv6VF3Ecl8e+/Chf++rj7OysMzU9w9z8IlmaIoSJkNrrWaiCLE/5o6uPMIot3vdDP8bK1es6s9OxEaZDtdrAcT1syyCJBwjy8XdboZBcffU8nV6fURxjWx5CGBQUvHpxlZWVmzCOxzAMB8sO6fRjuv2Ey5df5drVTWx3knvuezvdfh/X84iyhPsfeCv3PfhWDMtgZX2FQgnWNtd54cWvs7e/x4WXn2d7e0tfK4W2GUxNTrO7u02rfUC7c0B/0Ofcuae4dv0K3XaLfmebzbUrRIMDVJFSCSsEpRKmZRInIy0nzRNMqcjSERQFvfYuRRojKRBFSjLskkY9nnvmz5mZaBK6nm4Og/Y0j4um5tTUv/e+FVLqpvV/8P4fTxDfJGD9Tf++UBTi/zsZ6PdifX9y903rGw2W3yi//Gb5w3ezboUiCyEQSv3FP2/cHXjj33mzqWKRZ6RIPvPHf0wj9JlfWqAzGPKud/wIv/q7v8+P1SsYUtJtD9jY2mOiUaNWDUEpQt8njmMatZBKKWBxfgbXdRgNI9I0Y2amyScffZq7Ty1ybXmVcsmnXq9gOg7RMMIU4DoWcxMNZg9N4zoCREF/MCAMHfJcyxilhCRJcB1rfEDROPEiV/QHGswgDF2gHLR6zEw3uePkgs78MSQSDaJAKBzXJk8z4jjWQb5SksQppm1y48YaU9MTWhZp3CLXjTHnuY5KaNYrt3NMOp0eJ44vsL+vpSJCCjbWd6hWKxw/MsvF68vUa2Ut+RKgsgI/8CgKhe1YICT3nz4KQjCKIv3ejfT0aGdrH3sc2m3ZlpZampIw9MeYdI1x39454PDcpMaWC8H+/gG3MMFJnGCacqw3F+RZwc3lDTzX4dyFS8xN6i5nfzDSHjjA8zT1U0rJHSePYEiJ4+jpxf5umyeev8SR6TpCCIJSiSAM+cgnHmOiFDAzO0G306XXH3DvyWOcObVEmo3Y3WtjWw6O65GkMY5n39bAh2FAnmpvyP/w0hVeTnN+5x+8G4HUmWJCkmd6Ctzr6YiEbqdLtzMgzzO+8sx5Fg9P4vseoLO08kKRJBkf+8Rj3HPXSfzAQwptcv47/8cX+a1fOMMhY4+/9u77iSLtddrY3CNNU0qlED/Q4bL7Bz3Ov3KD6WaNOE7Z2T7gnW87y71njxD6NoNBhyTTEmnTsG97SB3H4vryBo1GjSyLECgMaWPbLtFwiGFJpqcaSInOuFNgWZLhaMTFizeJo5R6o8TNlQ0GwyG+rymMruvxtWfPc2zxEPsHbdqtHtVKWWezGQY7uwc88vhLnFiao9moYNsGo2E8znQzkKbJ6to2ZAlCSl44f52Tx+ZxHQOhFE8+8wrTkxV2dtuEgUee5QSlUFNdbZuS74LSRUWSxEgDLl3ZYHq6iTQKXMceY7UFs7NNOq0egetw/MQctVpIpRQyGAzwXINup6UnM6ZNfxDhesF48mnqqdi4myoNSRholH6a5/TaPT5/oYff26XXH/DA/WfY2tpFqYSFMw/w+JNP8IHjJ/REa3wNlOhMuluiM6V0ofapzz3OqeMLt6l0Gh+uKHI4uTTH6cV5gsCj0+liWha2ZfPYV85x5vQxDfIZh8EJob20h2dnxr67sXwHg2dfuMDUZBXT1gRM1/XxPA/X9Xj+xVdo1GsIqZiaapJnqVYnILSPzbTGoCyl/XFpRpTE4+gDQ3vIVMFoMLgNmUAp8qzAsAzUOEhdg5oAIYiGIyxHB3/btiZWJnECQnBjZRUptQTqyNws9548jhf6FLm+jn784S+yu7fP8aXD48mc0BMdpUORldJ+L4SGSRly7A4eRyLcgotk48nwqB9hmSazE3VqtbI+PCnBnaeOYhiGbuCgoxzKYYmnnn2Jku8SlgIMaWBYOqsLpXR0B9AfDhBKNwYsW09gypUylgDblEzNTKJbBYr2QQs/COh2egSBx9r6Jo1GhW63h+/4BGHAwzdu8PPvOcvq+ia1ap2trV0+/ejTPHDvSdrtLn/6wjr/8IGzCENie3oqeRtmpnSMx+rNbb507hUMchoTNe1Vt0yEAbWazjL89GNPM9Oo8sTXX6VZDrQHXerpvBCKXGRkmWJrv83RI9Oa7Oo42K6DYztIW8OnJDpLUQrdLJTm6z34W9Pw1/fnm5wx3vD41uROqpxCCvZbPXqvPkluOPzcL/23+IFPpVLmN//5bxIEIf/yd3+He46F3HvPFMPeFrbl0R/1MSx37PXUvsr+YIi0HCan7uTQvM3Fiy9DoU2KSXQEQcHK6nWmD92N5Tn4YQnHDkiSlIPWAYcPH0YVsLO9TaPZYNjrMdGoE/qSLNGZbbcOOoZh6nzWaIhl2Qhps7p2g0r9ELX6JKbtYpom5ZKGH3V7Hd20caUGqxgGjWYT27Ioiox+a580ajM1MYE93q/dno43ytIIy7T52tPP8V//esh/8b+/wltPnGTUG3Ho2BJbOzcJwhlsxyPNMkwJKk9wTIjjIa4TIJRBr9um1pzA8RyyKMb3AwzHohSWMSwP17VYXbuOF9a5fv06vX5Cc3IeYfnsbHQZJTFHTx3lxIm76A06PPDAQ/i+T7lSol5vMD0zQ5YrDGFCIZibOUS9PkWlVCXJUzzP49r116jX6prCPIaylIMSh+fnWV+5oj3BaYsgcEiSAYETYBoWGTlpGulzZZZgGrpRl6UpthvgeSU95VKKRmMaJ6jQ77WwLZtet0On06ExNQVje9GYhIJpSB5+8hHuvu9OPXAYX9PlGydfuiswfv711GjB6yqQN1u3fsa3n6Jpe0FeqHGfzfhWFZww3nA2H8Nbvl1Mg2DcsPvGaeItnd0bn/u+LPN7vL5bWuZfhfzyjevWTVKNC7vvZn1zcadUQYbg2Nw8zz71JIcWF0hyhWuG/NGnPgEXb3JkssGzF67xzrfdQ5ZkPP/yFQLHYW+3S7NWpl6vjtH+ko3NHT3JMnVRsLy6z8lj80RJjOM4jKJEe9AKRbfdJstSgnJIkqSMBpreaNsWhebYk44yXMfGtkyG/QHtVg9TmUjPRClJuVSmQOg8H9tkZm4S0xKgcuI4GsdDSKQ0bmc9ZUlG+6BHvdlgNIzY3Ttge+uAudlJlm+uEni29qHYDukw45mnL2KYklMnFyiKfCw9zKjXymAYCBSdXp9Bb0SnO2B6ssHN1U2efe0G95xcBKGlotKR7O3tU62VQSk++skvceepBSgUl64uYwC1WgmB7sLbjollGfQ7XRzbJCsUhqX2/HLnAAAgAElEQVRlV4aQpEnK7NQEduAiJAyHA0qlgFE/pn3Qo1Ita6mOEggkL718jTjPOHRommoQEJYCHM9FKZ0n5HkuvW6PJIvI8gQU7O21MKRgfX2HWrWCkQsOH5qgUAJpGHS6HRZmakxOVkiyjHKlSr1exw0soryNa7m4tsvHHznH8SPTeGUHaUKn1Wd5dYtup48pDX7puVdZPBTwP/38O1FFjmmaYz9PgW1JkiQnDEqgCobDEc1mXXfrhcJ1LELP4dq1ZU0udX2++PgzvOsH7+PVS5eo1wNcQ7Df7nNmMqLqCo4fm8cydaMgGsXMzk6zu9OiWi1TFAbDYUqz2cB3LHb32pRck2azTo5EGJK93X3CwCYs1+h2Yz79uefotLtM1EqkSUylUtbB2+jsQM/TwI6ZmTq1SohlWQz6I3zXx3YFeSYJ/CpJlDI3V8ewJKXQo14vA1JL3gybhbkJkjjDdVxMaWCaFoYl6A9GeK7P0SPT3Li5RXOiTLfXI/QD0jTjypUNnvr6a1y9vsfxYxOE5YClpTkc1yEsB1DkHFuaYxhFHJqbwpSSjfVtoqHEtR3W1raYmq4xiCJs02JisgZCMTE5qTvW2Qjb9UFIur0WUiaa/Ai8fPEazZqHaZjYtovp2pRLFlkOWS6QQkNfRv3+uKAX9HsDbEdLJcfKa4Q0cF2Xh59vcc+kR2sUMTtRo1KpcPfiFGk4jWWAt7XHRL1+20cxHAyxbYc8z8nzAi8IePzLT/GWO09TLusIkEIV2sNhGNiOgWEKXN9ByDEpU+jQ7cWFuXGxVOiJFIJCael0USg8z6Xf6zBKRuSJyReeeoH77lyi1e5RKdd58cIlep0hzXqdR7/6LA/ddwajKHSzzjAxLIs8BSlN8kJPq01HNw4M08B2PQTaxxyNhrRbLcoVH2FYpEmq5aOOrWFDQiCFoN/ra5O/0CHuhmUhYTzVs7HHSobD8zPYUnH0yAyuZ+KFDmCMgS4F1cBnZqKB63gYtmA8WtbXmFxh2vZtOY8mZEpGwxGOow/buuCTFHmBKQ0M29TSZ1OSZSlqTPG0HUtLSoXQB3IEKi9YmJ/BDzxGg2jc2BswHPRxHRd7nD1quzaeG+CM4z8sy+Tm8grHTyyiioS9gwP8sEQyivEsB9M1sB0Ly7IYDUd02j3q1SqGhIODAz6/tsbPvvMOKuUKwtC/5wP3n+apcxeoV+r8xv/9caYPIo4dmcZ09GfW6/QxTRsldKB4OSxz7PAcw0FErV5CKpt+b4C0cjrdDllWcN/ZIwSBx83VPe696zgf+9wTulnqudiOyUSzimFa3HX3SUBpn7gpyHPtJhPGuNGgFHmas7m9T6Vauh1gDowPlLcefucTxKdWtvnpn/4AplTkgDJM+peeZOrQInLyPv72L/xdPvzhD7AwP8X/+j//j/zz3/gNjs1bhPaAva0dGpP3sdWxKfkZpmkz0WwSJwmO4xJUKvzT//4jdEdXuPeeB/j9j3wBr3IGEddxTYtub8hBWwM5DNPBNCxu3LjOzPQc7fYBvh+wt7ePkgVRb8T22mWmZxqAGE/A9AE/jgbaK1rkIE22t7cBm5nDJ9nvdvHCMhXPp8gzbq7dYH5+gSAss7p2k2Zjiu2tTULX54knPk93f4f7zp5iqlnHNsC2TNIkYdTvU6tUMS2LPBf8P898kne8/ThL6buoNgOmZ2fwgjKu32B55SZhWMKxLDr7WzgGWCKHLCdJB1iOSbVex7INhATLNkjSISYWfuCxvbVCYdZ59eoNytVp+sOU/iBhd3+TU6feSmF2OXXqGGGgLTXViga32Y7D5cuvkiSxbjYXglIpxHZ0dItfCjEsk+3tLfb2djk8v0CSppr8KgzyLMOWitcuPc+dZ47i2QWm1BNqU0oMaTIaDcmjCFMaDIYxhbBJC4NerGhMHWIQw2vLq+y1e0gnRDoh15avMXv4GBIN4mrtbHLk2Am0klb7hBH6zPuv/+QjfOhDP4W4JYEUb7KPhW4ovdn+/nZ7/i+bj6dufYWEzv5847/7BhCM+uZT9je+hpRviCb7BsL9tz73/eLue7z+/1LcSSnHmG3xphvoL7PerLjDsKkEPhdfep6JmRmq9SbJSPGpz36aX7/vDK7vceroIYqi4KXzr7F4aIparUIY+Kxv7uHaFp1elzAMWN/a5fTJRfIsp9sdcnxhHtsxdfER6QDtOMkRKIaDPvVame3dFuVamUqpxIsvXSX0PQ2QMDQQYn+/RRzHlEs+hjDwvYCoSBh0I3zfx3Ec8nEelB/4bG5u0zpoUS6FSFNiCIsXz19hYqLKaBhhmRaWqYlGo1HEEy+8wnarw6nFeQwDwsDDkJKLr97AUJKJao3mTB2Bvnl22l0kgu3dA9Y39jh0eBp3fABbXDhEnhWEgcvRuQk83yfLckbDEbZn4Xm2fm1pcMexw+RFjgBNsywH446vYv+gw95+i+FwRK1WYjQa4ZUC7QETgiIr2NnZ54tPv8SxxVmGoxFCaClKMkqZbDZod3q3w3SlMJiZnOTJF19lcXaSsBLymcefZmEcQi+F7sS32h1qjRJ5keG5ns68S1PCQL/PjXoVQ4wR8AI838WxTW6srjN7aJosUdo/Uw8YJh3ySPDV51/lx3/wLVimibD0RcwyLKYnmzQaVX7h3AX+s3cf5xd/4q3kuTaJKxRKiHGIdkaW6mL/9z/2ed720J0UCkajiPlDM/ielp35nkOjXkMVcHTxMLZjMTPdoFAZtmny07/5MB+8q0KW5pQrJZI0Y3l5g0azxmgY06hXkVLyyc88wz13HkVKSRB4bO3us7mxSxi4BOUSSZzg+w6CjEKZZLni7rPHmGyWCEOXy1duMj01ie24GAY4tkUaFwhT8MLLV3TWHbp5IKVBIVI21luUSxWi0Qhp5Gxs7rC6scPERJU01YejLCvo93qsrO7Q7w/50y++TJGlTE1XyLIC23KwHY/RaESaJlxf2WTx8BzDYcSh+RnmZuqsrh9w19lD9AdD/MC9XdR02z32DzpMTTWQhmQ0jPQFonCxbvm8hCLLMr70xAXmDzX04cPy0NOwmCRVCCRf+PLXOb44Sbs1oFIOOXxokvWNTQI/wPUC1jY38R1BpzegVKkwGsX4rsv+fouwpBsfK2tb1Krl291NLY1VmKbFJ8/t8IvvvZv77z1Bs9FAoNH/f++f/l/8zZ94N5947EnOVhuacisFlm2hCk1qNAyJYUgWjxwex4fkt7uw2a0IBJFjWnqCaFnW+P8PsiLDMOR4UhdjjydgRaFIE40mtxwL2zE1VMRweOCu0whZYJkWQVDixfNXOHl0gV6vz4P33oFhSzbXN6hUymCaqHG8i44LKDDHoeZCCC11LNCQl1wDTqqNyngfaq/QrYI2z/Tv3u8NKFV0ppsAEDrAvFDa1D8cDLBdG8MQmIak02kzNVEDCaM4wvPLmLYufsIwpFarYpoG0hLjSaG+LxmGRArj9ftKoedjjqshTEkU3y62bktHhSSKYkxDsLu7R7VWwrBMoigijhIO9loEQcDezh6uY+GFHttb2+wdtJloThKWfbJUF7GbW9uUK7qhkcbaZ2M5FlmaMjk5QRqnRKMBc4cPURQQ+AGOZbGxrcPM4yhmamoS13EYDROUykBI/vDl53nXmWn8ICAvCsJyiOu6+K7NR798kV+/6z7etnSIsBJQALZta+iX7SKk0hR+YRENE77y/GVOHpshHin80EGahc4VdVwO2gdYhsmxw4dQCnYPWhw7cpg0yRESkjjDcfU12DALkjRiFI1wXEd/nvpmjjn2JG7vtpiemdAT01tL3K7s/lJnk0e2W3zwg/8JlqkDrjMkn/oXv8FHP/V1/vrf+Yf87Z//W2xtXuOprzxJe3eXR/70szDaZW4q5NDMAmkxzX/53/2fHF0waTZqUOS02vsEYYnVzW1+8B0/xx13Ndne3ufmjTav3dzh1PxbsCRguGxs9zlz9k42NtcZDUdMTc6wvHydUrlEnud4bsDFq+c5On+cWq2MkCNQAtvSMQCgNBjIMBiNBpiOi+2ElCoTOEGV588/R5Erll+7xNzcYar1BoNohGk5NGtTSGHQ7/YZDYeUgir1+iSBnVAKfAQ6I84wjTFNt6Ao4J985J8RbW+QC5c7l+7DNm1GyYBqbQbfr1CtN9nYWGM0HFAthUiVk4x6ZGmG7VoUKoeiGMeqKFSekeUJojBRIqfXbbO61QGRc2j+KJ5X4S33P8jU9ByBX6FcsWnU62SpICfHNm09UcsyPMdncmKKNElZvnmNeqOG7dls7Wzi+h7dfpfpiVndMDQMTNNkb3+Xc+eeYnVlmWjQZmlhiXh0QBT1cC0PQ+oswVE0wPFcLGXS7/fodHtMzSzh+hU2tvdBCpAue/tdWq0e0jDwgjJ+WGU07BN6Lp2DHYb9HpdvXGJqehHH9VBCcEtv9uWXn+BDH/opLX0WOkbhWzbyfwTF3es4mG98XfEmz32/uPser7/q4k6M5Tz6Pv364++4xd4w5v33+j3e+Hq8vq3U+M/yNEYoxZ/8wcd56L4HKXklrq2s8OPvfTe/9tGP8bPHFviDzz7J6RPzTDTLmKb2lQRlh439HUolmzxNqVYrbO4cMDs3jWEahOUAz7fodXo06zUC3yPLUookwzINTNskzRS1apUsylBWjjQE1WqFNE2IoxjLsQnCAM8PENKi0x0iDQNLSCxbImRBmiUM+xqPLIAw8PE9n143whQ2jusy6g/wfJsw9EnzHMtxSOII33eYn6xzZnFeH6xslzQpONjv0WjU+OIz57nvgVMImen8IVVgGBZ+pUS1VqVZDzEtsByJNATSMEnzEW7gcv36JtVSCdez8QOPrD+CQtHrj4gTLb9EgmkZdHt9HNtGCoOLl25QCyrMzU7iBw6j0QgAx7RoHbRxXYdOv8fEVJ2zpxfJkghRSD0pKgRKgrQFlVqV1l6bx556mWZZd+maFZcw8Oi2+9x96hhZmmrZneewsbaFa+qICGmYSMMiGsXYhsnBfpdSpQLCoBD5WMoG7YMuaVIw0WhimCYf+ZNHObM4h++7FCkMujHHj84TVn0MW2IKSb+tZSytgw7/+Knn+d9+7b3ctTiFUrC/d8BoTI5zPIeCAkNJsizBcS1OHD2MKiSWpej3dR5WgUQJSZwqCmGQFYrrN27S7fT4s8fPcffZU/yrz53jV95RY32zzalT8wxHXVzf49KVm8hc8tL5G8zOVrFci2vX1zh7eoHnnr/ERKPKo196hf3+kIceOE2WRrRaLRrNGrYb0Gl1NfJdaF9KHGcMBhnNyRoKSOIc03KwPQ3WKbKCV19dYziMqDVdMhVjmz6IHNczCMKQ5eU9nn1hmWMLGjcfxQmVSsDK2hqOZdCsV/F9l7mZMrOzNXw/1CCUIqUgp1qrkWYWyyvrzM9PE6UpfuBhmyBUjOdKqmUtg9za3KNU8vny157j/ntOcunyOq5js7O9yygecf6VFY4cbmAYCkMa2JbLHXccuS0ry/MIVIJpuOxu7FAuedxxegEhXba2WtTrFR7+s+d4y71nsD0bYUIQBtimTZLGZFlCpVwnzSEjxXNC8qzQKO1Mv2aWZ1iGgSEFUsAfP7PFh3/kDI5pMBpF2JbFpx/+Gn/2/DLve//P8aFaTU/px7mA0tRxAaoQY8ywIEtjxLh4uuVrM0xjfBPW0l7T1OTaXrfLxx5+hONHDt+GAEnTQimBIUwuXrrCI19+mrvOHKNINeykyAykkZPnKY4doIqCtfVVHrz3DMLIqTdLRKMhg3ZElCbYjkNrv0Xoe6giI01jhCFpt1okUawPW4b2n6IUxlgKihKowkDlCUgN7FCFIotTKBSeayKkIBnHNBjSJFc5cnwcydMc07JRhsn21jZhuUw0Guk4kyhGCYVtaaopFBiWzlYrcvV6wcgttV8xhvGMJ4TSIBomCCS//fHPcrjZxPM90izGsAzSUcr1GzfZ2tnnzOkT40m9IhpG2IZJGAQIU2pPn4Q0TqlUawSBz82Vm5RcjyiKqTWbBEGoG59FgVvyxsHOBfLWZyoVjuuTpTmWqaX+cRJz4aVrHF9awjb0FMZxXT1J9jz6gz7Pdw6YNWByoo4qJI8++hRLS1MYUnHu6gaL0uLIZJMi03E1ucqxHQMpM8gl8aBAmjmWqzixsKCVEuRjqI2JwCAvCirlCu1Wh6JIsS2Tm5s7NGs1yrUSbuBgORZC6Oy2PM9xHBfbtLVXG4lRCP25FDkiV7TbPaqTtdsSr2+hZH+HM8OvfPVlfu/f/Q4AeZpgFy5Rorjw5O/xcx/6IEv3voeN1Zu8/NIl3v++D/LxTzzM8Tvu5fwLL3LP/XWqDZM83uEDP3YXFd+hEgZEUY9ypUKaZJS9EH9ygjzqc+6rj/Ped91Fe5AyGZ4FJHEqwTEwLZN6tcHU7Cy9fp9mvUmv16dRrxPHfU4snaXbukk83Cd0XZ0BOxxhSEP7HqXEtB3WNtbZ3W+DVaIxOc/m9jYl3+f40hKuX2Iw7FOuVDBNG0wT8oQ8z3j63JOsrFylWS8TDfcJAw8ldZSFaRqooiBTBZbjUCh4ZfsK9y5FfPRzr/E33/YekiLBMj1Mt04K7OzvMNGcYaI5iWmkJNmAdBSTiwxDOFplYwiKPNXTcMvCkPo+KE0Ly/bJRI23v/3dhKUy0pJ68mw7REmfem2SK69dY/7wPE8/8wQzUw0unH+B0K/x3MtfZX5hgXanR7VeJ88VRS74f9l781hJs/O87/d959u/2qvurbp779tMz75yKA5FiqJkWlbIRGIQURECSIrhWIhtJAqC/BMoQQA5QWJBDmwDhi1FsiWR0lDmMtxmOJyNnK1npmeml+m9777XXvWt5+SPU91sSaRkU1LsJDxAoburb1dX3fvVqfO+7/P8nvPvnWe+tcCli5fIM32Oy7OINOqzv3kNkXY4dfwwU1UH8oHOrw1KpHlMrjJQkiiSbG7sMcwsrKBGoTFPUKxiuzpPuLvfISxUmF9YIleK++5/hGqlzssvPsv29hYKxdTULIKMaJyztXqd7a0Vdnc3mF1YIslyXnz3JT79n3xqIrScWJTMyWlWgWFOcm8NA6m+W0DdAqp8v6UdIhOJ5B1flmvVLcowuPVwt3Ip9R8E6vZOesd76/ZU7t8enPL91g+BKj9cf6nl+wF5ntNut1ldXcEwDKrVKq2Zhj745DHFwEVJRRxnXLqyzOe++gr93pDjBxcYjWL2u31yKTl1/BBpHOvO615HB7iORmRZRpakyFyx3+6xt9dB5lKb/YWpqWLKpFapYKBBJGmesba+jbAEu3sdZK6o1sr4oc9eu83O7i7j0YjhYEC1VmRnZw/TsFA52JZL6Ad87suvcOXyDebmm7iuA2jTvGGA67tgKgplH8OU5Hmi/961WV7fJgx9FppVhDA0Bc80OfPOJdY2tunsd0kmwI4kTsniBNOAYa+HZdlkScbBA7N4gcd4FDMexdxc3mZ7p0sQ+trHhia2xVFCtVrGdnRHvTVdwy/4fO3F1yYkQxc/8Mgy/f2KxhG+o2E3g16f0WCkv4cYjKMYYVnkUrF8bRXf9xiNk0ln0yRJdFB4nklW17bwQw9Q7G63Qeow5sFgwP5+B4DV9W0kUK9XuHZtmd/+/HOYwgBDP3fXtQmLPlEcc+nydT7ziQ9NiJMKz/cplQu4nkuSpPS6PZI4uS3z+rvnrvLrf+fHsfOU0XBEHKVUq2VKFZ8gdDRxTuqudC4l2zt7hKFPr9thbWWdYiHk7bfP4bkOL7/8hoYQGCavv/EuR48c4vjxozz5+P3kmeL5d27QatV5+MGTkywgiyzLcGyLWr3AqRMLSCk5f+EaTzxygsFgQLWiISmP3n+AH//Q3RNYi8PsbBOlJNF4TKVWZH17jzhJcVyXLIcXXrtJlua8+85V3nr7Mu29NsNBD0tYLB2Y5cc/8gCL8w3K5RLFYpHrN9col4sTH4yiUS/xsz/9BHmas7K2S7VcIk0y5loNKpUyUiraHe0t9T0d46HlbQLLFESjIaWyzwcfvps0Sen3R8g8m2RKLVCvVzFNQb83oDldxzBN/saPPU6vP9TeVdtidnYK27YoVULeOX+d8Tjl7LvX+cLTr5PlOUmakmeS/I4srWazgWVZDPsjTMPg7IVl0iTlAw8dJQz1lEVJ3fGMYgk4yNwgzzJymVEul5BKIiyLLNeFapSOkVL/fRRFxHE08YHadLt9okjDhD750x/iwImjRNGIf/7t57GF9qTqqbTx3Ww3U6CUQTxOkVJ/4EZRjFQKmeeTSR66WpGKeBxjmgaf+vhH8DyHbqerDwFSas+ZzDl5/Aif+PBjmJO9w7IshGkyHo9RSpGlKXmWMzvb4urNa3iBjSEkg1GP6+s3eeHNswghaM22MC0tzRxHMYYwCEsFdnb3EJZgMBwC+qAQx3pyqO9gMpVRt+NaXFe/7sFwSJqmOI7+nt5S5uVZThynCNsiy3PyNKU5PU3gBZRKFcqVKoZh4dq2vnbynE67zaCr86i0P5HbkyFhCZIowTQEMle6iMwlnu9hGCanlxa5en2FOEoQwiJPJWEx4K5Tx3ngXh1OLJX2NpfKJYQQbG1t0+v2KIQBnh9g24724nkOR48fxrRs9vY6pHFMliZgKLzQnUCBctI0I44S4jiZeG60fzqJ9f1nz10kVTlb2zso0wTTJhqn7O12J74eOHfhPO1en163QxxF3HPXIQzQQBmlD0GWsNjf72h8/XCMbZg6O9VQOI5ga3OPPJWTmBPF9uYeWaY9wJvbO2DAxsYuxVKJUrnMMIr56BMPYiLJ0xSZ5QjD1L5rgZ6WSMVoGOlmqcp14Wfra8R2dKi17mT8YKufZrd/b6CQaNJumkCWp3zib32ME6cOUa0W+T//yW+yvrrO5uY2v/Y//BL25PtQDEKEa1BvlOgPdnE8gVQJ43Ff/3zXb+AIyZNPPkGh4PClb2+SZWNyqXjlO6+CoahNVRG2Tb/bxbFtFJLp6SmiaMR+e4/NrRUsYd5WQVjCwlQWtrAxTbAskyge05heoDV7jFGU4LgBzeYM8wsHGCcJ5XKFVmtWT3fjiOFwwDee+yI3Vm9wcOkw83MLbK5doNmsUywVAYXrehOSrcBxXdIs4Y+ffZpf+8Umv/BzH+Wuu+8CYSAsB4QGRmnFRwHHtuj3O/R6baLxCMd1cYMQZRgIIbTEO5dYhkUcp3Q6A96/cpm9zhAnrFKvV1FILlw6Rxj45DLXe3WxxKuvvcxdp+7m5vINHnnoCYTrMLO4xLlLZzl990OkSYZtuwwHA9IkRRiC6VqTN155jeOHjnP+jed56dnP8+JzXyAd71Iruxw8chBTpJP3hKm949EYyEmTlCSF7iDDL82xvLbKzNwBarUpXM9nHMVMTzU5fvwUcRzR63WoVCpsbK6x395j6eAhnvjQx3n4kY+x0+6wcOQurRxLxvTb24z7HTq7e1jA3/mx/3rilgUmwBKZa+DWX0YmZxg62sAQ37ukEYa4ffv/y/phcfcDLjVB85p/6ve3ljHBSP8JvfxfYuVS3t7m5Z23XG/gtz6gH3v8cX7+5/9zHnjgQeyJ1OAf/x+/zi++dYGf/PCD2LbD8vI2F29sUQwcXjpzHttyqJZLTFVrE9lQRpanpHFCt9NHZilTjao+PElFrzNgY2efSrnEc6++R3u/R7vdwfEs8ijFNi0MpX0upWKBhYUW41FEuRSiUHz1hde5dnWZnc0eBbdI4BYI3SLrN3eZrk4RjfuYQpLnMZal+NlPPMr8XGtirFbEcYJSBkqCyk3yxCCNFDs7Xc5dWsb1bDzf5rGHTyGEwf33HCHNU03tyyRPPHSamWl9qLaEyeeefok/+sYrCNMiGcegMkxD49wVijRJeOrrr9DrDJmbm+GdS8sopeh2ewhLt4MGg9GEhSDpdtqEBZcoGuNNZHZxlNPrjbXvCBPf9/F9j2FvqH00ucR1HYbDkZ7+ATvb+7RmGli2yac/8SPs7Xf47X/zLHOz00gpqVSKPP/meXZ32pimQSEMaDRquL6P63oEvoeSilMnD2MJPT05eHCWz/z0E3pyMCEaup5DLnMqtRKebbGytkGxFBBFMd1en+FgxLA/xDAMVte36XUHCEvwC6+d5ff/m7+BkSeEYYEoSgkLAUEYMIpGJPEIGUWYWQrkuJ5Lo1FHSsmNlTVmZpqYmNx7+iRJnPD4I/cw6Pd45+wFHn/0fgxT8K3nX0NYNp/5R1/nH/5nJxgMdTh2kuQUSxVMQ/DQAyeJ4jGtZoVypcSRQws0Ww2iJGZhoUkuc06eOkQYuGRJQpYmRKPRbchFJhMeeOA4/dFIy1Jsi9lmgc8+9W2OH13k1LF5atUSg96Abreng3VVRqtZQykTA4v5WR0OrvIMpTJq9SJycnJ85IGT3Ly5yQsvv8PTX38Dw9SI++mpCpYtSFIt28kyHeg+6PXxPAdkiuP77O93mJupo2SKMhRxmpDm0G4PcGxXFyq5ltkORjHHTyzqkGDHIZMmb13Y4t57jlIohjz8wEkOzDewhEDmOTeWN3Twdp4TxTGZQkuulUmaZPzNH3uINE2olArkWcYrb5wjz1MG/R7dQcLNlR79bqInz0hMw8GyBZZlImWGZYHrClzXnRRSkt1+Si3UuY7T09PYlmA46oORMYpGHD9+iGf32igpSWJdVCk5IedNQrmf+uI3ME2B6+mYBA0sEhMy6iSUXBnEccrnvvwMQRDg2FoBUC6XSJJE5zApRbu9j2kZzMw3cTyHWzZ+YZk4nk273SYex3z+q88z6I84cvAIKjXo7vaolaucOHaUn/vkJxCOrWmKuSRJU41ClxLPdTly5BBCWAQFnzRLieNIE0bzHIVCCIGSiiROMdDwqVuqDNf3SZOULEoY9YeMozGGMnSDwzSxHBvTUCAz4nFCmuakqWI0SvD9kDTVTZmV5TUN1SmEILU8F0NpMJWp9yUnBRQAACAASURBVC534lFUk71emAKpMgxT8fhj9/OBxx7ED3wc19My2DwnjvSEMs1SxsMRYtKFj9KE5uw0w8GIOIoZDWPiJGUwHDAcjxn0B1iOi2U7vHLmTdY3N5AyY3NnB6WY0Jh1ZqJt20ipsG0bU5gs31wly3IeuOc0jz56P40ZHdPy9ede4d33LvHuhSvs77SxhMVco4TvWWxsbROEDtOtOkkiyTPJK+9eYfXmBkmaMjVVp9vp0W73WF3eZDzKOHv+EpKUuZkZ+u2Ebq9HmmS0ewPefOd9TCFoNacwDJPp1jSW4zIcxrz01gVGSUSh5LG3t4slBN12T/9sxzrw3DAMgmIwIcvqSJskSTBNg263z5HDCzoLU6nvyjHvPIPwZy0a328JE5SZYAcBDz7wYbJ0xB/94b/iX//e/8XC4iyFMOSpp55iY22Djf195meXULEiGo2wHYM4GdPtttnb22Z/f5cg9NnZ2eCZL3ydaOiwt6PwvRkcS+AIQS4zqg2P9bUdvvKlZ4nG6QTE0keqnMGwR5ZnzM4u4LuCTmdPNzWFQ5bl+EUPaUpyDHIl2Nzao1haQhoeR47fSzKJXlleXeW557+OYcA4iuj2+9imRWd7i0ce+ihrN9dYu3oRMxnz0P0PUQodIMPzXNI01hELhm6Y5gk8/oERVpaTdje5b+4wyjSIUwPHL2NN5LOdvT2UTPEdhSNMXMvRDSxDw4hknpNEEa5bQho+62tt3n7zMlu7PssbMeXaYfbaW+Qy5cjho0RxRJrq/f/ixQtUaw12d7cpFIqcO/8Oezs9VG5w/NhJhBK8/vJ38IXAE4KCJ1hbPsfO2qscP1pmPLrKo4+c4oF7jvPEQ/fhmjm+AEeY2IBj2ToHMxmihCQambzz9nlWt3psd8dMzS/x4Y99klSZLK+tsb27x/PPP8NoMEAaMNNqMTvT4ubNy8zMzGJYFoEf4NgBqxu7xLnH9c0t3CDUpNtyDTkecPnd1xFpwvR0wG/+xj9BCYk0TD3lNL8LRNHRB/Lf2bF0Sw2hpFY3SAW5nIBQlDEpKG+Xld99D0l5+/ZXuW493g867furWD8s7v5fvm7lNKWpnlg1Gg1On76HU3fdxXg0wnML1Ot12v0+ru8AiumpCh997BT3n1jigROHJmQ7kyAMMMWE4DbBSleKBdIkxTIFSoLrebi2w063j7AE1UKBNM1Y3tgkirRPaHNzhyiKef/yMuNRepvWGIQBSZKyvt/l9QtXOXtlBcPQRMVOt099qsH7V5axbMFoNEII3d3u9nrs73X4/S++gGFoGl+WZbzwyllUpr0Zg96QhaV57j11FGGZxHGsD9fGBCM+IVMOBkOSOGVzc5dr19eQUnHPoQUMZSKVgeW6mI4uIldWNvn2m+dQKO49vEDoBziexSc+9iiD/oBquailslJRqZY0UGYc4fsucZIQFHyOH1wgyxR5rljZ2CaOYq4vr2vEv2lQLIUMByNeu3iF33/6eSqVMvE41gVflmoZaS7J85xnXjuL71ooJHEcMRyOODLbpFatMOiPWVnfwHIsTFOQZZoYKKViPIpYXl0nCDxsR8c9SKnIklxLnGyb3Z02+7sdZlsNZlsNDAMcz6VaryCVuu19KoUBfuDxy29d4I/++5+i2+vgei7b2zu8duYczzzzbaKxDnXu9cfsbG+ytbFCPB5iTjZamSvuu+8url1b4+y7l1GYjKOI77z2Dn6gQ4Zdx2bY79PtD/EKBX7tk3N89um36HQGgKRUDkmzlI31bdIs5c13r9Jut9nf72gAx3iE69oTma1Bv9ejUAzZ2W0DuqBN44Q0TjCUPvwcPDALKsO2DRbnKxxcrBKNh9xY3qTX6zM1VeP68iZCCK5cW2EwHOnJV640MMixaLe7eL5DPB6T5RmGMOn1Bhw6NMfD9x3hycfvIk1y+v0Bg+GIdrtLvz/Sck8J3c6A7Z2eDgA3wLYFF66u4jgaWLKz02F5bRfTMOkPtdRXKaV9fqY9Ma8bVOtVslxRr1c4vFjGskxG44g0S/FDB2UYWLaNaUCSahBPoRBSqJTodvoMRxEyyxj0h6SZJv4pJRGmlrTIXLLX6XD82BKuoyl0OpvKIE8zZC51EHw8Js/0tN9ETz3eX21zel5LSrvdHn7gUSgGuK6D69g8/ZWnkVKyv9+eUAPFxLOns+qee+EVfurjT+K4FnE0AsAyxe0MOFPowtI09fTrkx//CMNhRJJkDPoD0jTDdmwmjn+mputoE4gmzMrJyeLWlLc500QqRXusM/wUJtdvrFIICvh+QKFYJJ80jgwhJtNkHWViWxYyk5ADucScvAYhxO0u860ML5nL2wAbXczoQ4ewbIKwgDAF5ZLOV7SEjgywbBtTWDrGYAJq+uI3vsX5S1d06LLvExYKBEHIwsI8ju3e5rlh6HgQ17VvH3myLAFD+5AsS+jmVpogLO21M0yQeY6c+BzTWEdhmIaB6zoIS5ClKVma4oc+hmniex43b6wSFDRhstPtYls2b5w9z3A4JpeSm2tb+K5PniuqNR2pEIahfrwk0xmHowglFdtbO7z1/qWJikPheA5ZluJ6Lv3RiONHlzh8YIZ6o0Ih9FmamebHfvRxTh4/wjga4/seBooszUlyk5WtPfr9HlLlKAPm52dozUxTLJU4sjSP6QiyHCzb43e+/jIyT4mShPeXt8iTnBe+8y6/98UXGI/GyEySphkfffxeCoWA5fUNwoJPmmb4QQhoIqdpmSRpgsr11Ny2HZRCZ1OagnK1TBInOmbjr2RJneOGSRhWSNOIJIbf+9efw7E8nnzyw2R5zq/+6q8SqymGcY7t69zM9fUtZGZTKk5Tq7QIw4AoGuN6Nk/+6I/Q7o6Yah6gN4QTS3U828c0DI6fPM09dz/Ih574qPaGjiIa9Sksy2I0HBL4IRcvvkejVme6uYCwffrDMVIZjOIxw9GAXAnizEAZLqMoYTQece3apclnmAZ0fegDP65BIHlO4Ovn5tg2165cpVQsIhhTLgV6H8oylJIoqWFtyjB0I0wI/tHT/5wP3jfP0tIx/uD5nE88/BEM08L1yjheEaVA2Ba25SDzlCQe6agApaWXBgqZpTqWSNhsbG/T7g5xAo/USnj4iYc4dc9JYjnm5HE96S5Uyly7fhnfC+l0OqRZxuL8IoVCAdu26Pd7lMMKrm3R7+7SqBYp+oJrl9/k8nsvsnLtHTwr4/Q992EQYZkplqMD0Y0JEMl1AmzTxXMDslxL3D2/gGl5CLfC0rEHKNdb3HvfgwjLZDQc8P775wiCgMD3+eAHP8x4PCSKY2zHIs8SPvCBDxGnCVmeUqtNc+nKBQzT4NL1qxw6dArbKzB/4CRxFGnlQzxmZ2sDA3jx5e/osxlSD+/uvP1VLGNiD/z3V1f9B7F+6Ln7C9YPen38iYr9BwSn3LnuBLHcabAWE5OoUgrbFATCYqrR4DOf+Qx+qUKaSGxH8NWvfo1HhT7shIHPN14+y9XVHR5/8CTvX17Gtkx2dno0Z2v0B0MsYaJytMcuTzFME6kkV6+usLy2y4ceO81oGE9oYC5Lh+dASrIk0YhrYfH8G+eZrVcIC/7t7C3Ltrn/xCFC2+LE4VnKtSIKSblWIssyarUSlmniWDYbG7s8/eJbmNLk9XM3+cgjp5AqJywEKKUoeC4GkkK1gGlIMA1yJTEtE5VrqpspTIbDMYaA19++yHxrCgPo9gcYGFy6tsKFG1v8zCc+RK70dNTxXfp7I7788ts8ctdhpmemaFSrnH//BtPNEsI2GY9GlErah4MhJoABLTssFgOC0MNxPBzH4befeo57Txzk4JEFdrfbjMcx9gTvbExod7Zp89h9d7G6usGLb53j6MI0wtDThyDwEJbg8HyTw/Mt4mSMZQkKYYGlhVmUgovv3+TokTktcUpzXnj9XeanG9ieQzyOKZcK5DIHBTdWNqlXy7xz/gpxlFAMC5TLJZZXNplp1bRPSWhqnFSScT/SHXNbUCgG/NILZ/hX/91PYVkGge/h+S6DwZDjR5eo1UsTX5qiUirxztuv49g529v77O32qJRKnL9wjZmZJt1On2JRh943phvMzjYxhMlsq4Ht2Ozt7XHP6eP8F//4GX7ypM/q2h6PPXwc2xUTqll2+0B89GALpSS27eC4LpY10ekDZ89dZm5uWtPCLIskTRGGhnRkWUaSxlpm0+uxs7NHoeAxP9fAdUwuXFnl1IkDlEpFpMypN2ooqSgXPQaDEUEYahLkRDJZKhXodno6ONuyaDSquJ5LFMWARtqvre0xM1vHcQSObdOYbujAXwyuXFnj0IF5Lr6/TLvdo1wr0GoUCXyXzc0dKtXqBLKhZZPROMK2TILA57U3L7K01NITMiWxLAvf9ciShMFwwNR0BcOEublpDGB3d5/mVFWHxmeSJMkwDIvr19fpdYdM1UuEpQKe53D+4k1mWw2aUyVNOHVs6o0SWZqRRRGYKZ3emLBQJh6Odb6baaJkRn/Qw/NKk8aRw298bYtHDk9xZL6lD33jAQpdyPQ6+2yNBBs72zxZbdBoNHREADrWZNgfcebc+5w+dQTINIkuzsA0iCJ9nWaZjjIwhYGhDDzf4wtf/hbzMy3K9eJEAalhIhrCkkziVBIdwzEJ8DZNAylTlARbOJw+coBiqUCWpQS+i8pTPN8jR2FZjoa3TELQh8MhjueSJzFKGnT3uxQKIWkSg6l9JjqiJb+dhRfHEbbjYkz2emPy2WHYlpZLovdQ23PJU52jyWQaapoa4hRHKa++d4FOr0uzVqNQCEDoQl4Zpp4EGSbmJD/MEkJ3ubNM72WmIhpHGhIkJaYBhpjIp6Sc0O30Tea5jvCYkEpzqb1qeSzp9Qd4gQ+GVhSUCgXUxJschAHCsvjOG+dYnG3RbE7hCoO52RlMUyBshyzRnzmmKeh2e4SFAM91MUxNOLz37hOcfe88tiXwAk3alGnKQ/fdRZKMUTK//bM611tn2rXY2d2nXNOTzDjJcByXr5/f5r999F6q1cLt2A6FgWEKpDKI0xgvcEDa9LpjLq+sc9/JRWaaU9x1ZJEkzliYaTJVCAlDn2+//h7zrSmCwAMjp1gs6NckNLjHtHTzJU1iTGHcpsCiwLVdEFomnI4TPe12bH0A/nMAKt/v/jO5xcd/4qMAWColNxSJUeD8M39MmrU5+fh/yk/+5E8hTJtCsUQSR/yzf/ZP+eznn2FhJqXoZ7i2g+0UOfvWBYIgpFypYQqDKJ6A0IIKL77yKkuHliiVS1S8IWo8y3A4YPnaVUYplKsVbly/TLM5x8bm+uQ9P6I51aLT6VIpl4iimOGgz87mdYqlGlmWEccprldGSkF3MKTWmmN6appiuczq+grFUIObrly5RLu7S3N6FtMUrK7cxLVtNtZX2N66zgc/+EEcG4JQRwTJPJ3Epmh4kWXbKJnx/MXX+fGHCnR6bX7rq+v8yN2PonLIlU+aG6Qq1TmiCgLPJo77mDLX5x3XBjkhnWYZtusximFtbZ1Suczd9z5KsVZFWCZprOMFbMum3+vqWA3LplQsM1Vvsre/Q5LG+F5Ac3qO7c01oriP75kMunuUiyGzzSqt5jRh6CIMiSVMsjTBn0hNHdfTXAPbQSotH9ayZ4NcKS5duowpCoTlKZqz87iBT384oNfpMhr2qFWruJ62e6AUlXIFx3NZX7uJY9tamuq6uK6PMEzOvPkajmNz7PAR3nzjVY6duIu9nU1AaSVTEGiAlV/ktStn+NTP/C0duyINMPR+fQtworgFP7kDYPIXTMD+BBhlAtcyDFODWfhTgeXqez/W9/w/flDP3e3nYPwQqPLXvf4fp2XeAU65BVq5M+Mun5jWf5DHu7NUvN1xnThHPdfj5uoq1dkmInCYKof0RwmPPPI4/+JrX6W836FS9GlNlbn72Dyu61ApFdnb67HfHuqIgFziey6dXo9SuUAW5fQHY4KwRLVSZWZ6ilfefo/DS7NsrG7he66WiJomjjCI05SNrT2eePhufN8hjlLtEUvziaRNUqsViYYxYbGIMnS3PI1HeJ4BwqA3GNHtRSzNNGlUK1zb2uDJx+/R/oRMSyyfe/UszarH/u4u9VoZKWEwGOG7ng73TTJdyPV6GGQcO3AAx7eJk5hao0pjuk61UiSwTepVfWg10QV0luW0SiG+Y3Px/WtMT1VoNst6SpHlhIGHVIr9/S7F0MEyDFQmcG1XS5mkwrBM8izjnhOLmKYgT3LWlrc4dnSWaquEMC0My8F0TMqNCvEool4vMxyMmJ6qs98dUqoFjMdjhDBot7vUa2WcwKPdHTCOYhxPe3YsIUjGMcvr2yzOTjOOxizOt1i9sUFruo7j64BV2/UI/YKephoGM40aV68tU62UqFYrbK/t0R+McH2Hjc0diqUinuOwurZBwfd4d3Wdex9qMj9dJ5OS7c09kiinMTWFQhGNU+qNOpYr9ASz36ff6dBslJiaWsDxSmzv7OK7iunWLK7n0mpNk6YxSuWYJtiONtW7vkeeSwbdDRpOxkeePM3q2hblQoE4jnBdh+3NNptb+xSLBfr9iHq9ymg40gdVZeDYDo1GCVRKrxNRLpcnEsSES1dWaLXqOH6JNFN4fqgPkWGBbm+AQF8Xf/zltzm0OM25C+t02x2qpZAoTonTjKs315mdaSCV5PW3LjMeJ8y0pjGUiSH0xDVRCtOxsH0Hx7PY3dlnaqpKmqacfe8Ko9GIRr0MhqLZrDIeax9Os1nH83yElYMp2W/vUy4UcYVNWHEpFDWddTgeoJSi1WzR7w4IfBvf90AafP5L3+aRR04zGsdUqlWyPNPy7jyjVC5gmhbKMMlSyfVr6xRKAa1WnampEmsbWxOPXMz5C1scPrhAfxDhex6mShFWiDIFQdHFMk0UFo7nY9sutuvpTrfl4rm6MB70BvR7A/7Xz7/NP/ipR9GZjh0s4WKaDjKTnFqY5je/8DIP33svp4ycINSeydFwhC1sLEdx/PACrudhCJ0LZxpakvl7n/sar711jvtOHUFMMotypT/eDy/NE48jbFtLcUf9vgZTSYlrC+TEP2XZFsKAUbeN4xVQKJJ0rAtF08QwBK6rPcGbW3tkeYpwDGw8vW/IIcrIeff8VRbn55Hogu8L33qe44cPYpgaYpRNPFhpnOhDiFSYYhKinEuEMBmPI03aRDescplr2IBp6JgT0JPUSdyC7dgYhuDw3ByLzWmazTqDYQ+pwPM9siTTMSyGRMqUJMqxbQfbsrGExXCgozBsR+9tppjAupKctZVlapWSLkqNCQDEckhSPdEdDyMN6xH632KAMPQkQwiLzY0disWQ6zdWcF0PlUvmGlXSZIzn6OgKZUBYmmTyoW7nHEZRjO9peqIQFu4kSH1mpqn9TYbB2vIaU9MN0ixhZ2efUrWCNCTPXrrAk4/MMd1qMDM3S+AGfOeVdzlz5n3uOnmIP3z5MvekKY2Zmo7ZyLSSIVcK2xNYtsA0BIocxzU43GpQDGywLKRp4AU+Zi6pVUpIQ7G2vU3Rdwl8F0OBTIWewuYp27t7VMslxsMILwg0zMcSt+Xxo5GmJQeeg0KSKqk9Un+BteM2WO2O+67s7nH/Z36e6WYDgNS0kfg4MsX2TP7gD/6Qk499jFq9wVe/8i3+9i/9XY4fPcnq6gZxus+jD3+ANPdYWmxiCZOGbyOMDM8TbO10ce0psmyG3cF1yo276bR3sbMNmtUB/9O/fIEP3/8YhjAYDsYcOHic2lSL51/4EgsLB0nilAOLhxjHMUmW0ml3CYtFrty4TKpswvIcK8urGFaJOLdIcpOlgydI03wSTWOyurpGt7+P61gsLs7TnDqgw71XLxE6dS5eeIk4ilmYb9GqF3BMA5Vn5Ln2DOspqf58UDKnvZvws59UuAWXX/+dVT59/GcohB5GUGecZ1TrVdZWbxB6Do2iz3jQxkAizFvB5bGGzDkWOYocwbX1XVLl0BvnNFvzdNsdQq/AYDSmFBQRlsWFi+c4eOAwyajP+uo1wnKJ8Tgl9IqEnsm1y29gJvusXbvIXGsKV+QErkGeR5j5dw06uTJw3YAsV3i2q5tDeU40GhINhgjHIUdhOAUSaRMpl7mlQ0RjSSEoT/zMkkZ9mmIxROYZMpEU3BJxlHFt9RL1ap3BeERjuqVJvoag1+7yzHPPcOzYSY4cPUGlWmN1fY3ALrG9v8XSoZOsr6xQLHiQj9nZ2eHS/jL/8ac+hYkGbElD/pnBnZrcYxo6kkWXen/6Kr/jPWB870LQRNtrbGGhcoUhwRDfzbOTyMm+/n3eY9+nuNOKiu/v37sTAPPD4u6vef37jEK4dUneeXHorugP9ujfew5o4No2V86/j+sGxHFKfXqGeDhCOB5BEPKbv/u7/IMP3Ifvu3ieq2l0yqDT1ubzC9e2GMRDpmpFfN/Ftm02NncmUAMX27EZjcZcvrzCkYNNfM9lbXOX5nSNXCnG4xhkhu/72jCsFJ1un3K5xOWrN3np7fNMlYuYpkkQuDi2PcnMc7Q80zInngPdDa6Ui3zpxTM8eu8JDrTq7Ozs02o1dCfddji6OI9r24RhAakMpDKxLIuV5U1q1QpZmvPlb73OXUeXMAyD8TBmb7/D1FQVrcvWXZ1yscB4HHH5+gqrm9sUfI8gCKhWS5pgmOcEwXeRvu9fvkmn06dcKiIMQY6Badts7+xRqhaxXZs018Svvf0O5UqJPFN88+U3WZxp0B8OUXlGFGVYwqbX62E7Dp39Lp7ncWBhhnEUE4YenucTRymmErTbA0LfR3i6++37Ho5jI0wLz3Mol0Ia1TJpljE/M00cx1SqFc6/f51atYRCgwNUrkhTnafV7vSYmZmi2xuQZTkvvXGB0ycPImxBqTKRohhQrZXZ3W7zW719PnZ6gTAMGIyGfOlrr3Jgocn+3j7FcpFioQCGgVQ5w/6Ana0tHNel0+2TKxthO0xNVxmOhrz9ziU81yIMfWzbpr3fIwx8vv7NVzh29CAoxZdfu8DPPN5ibn6aNE1xbXsSdm6SJClh4NNs1fnas28yGsdcv7nB/EwD04Is11ETvqchPGEY8tY7l7Ask1qtzEyrgSl0Phjojt/KyiZB4OK5DuPxmHMXl0mTjGLB48CBGabqRYbjMaMoplYtksucUrmAZZg4wqRWLXHp6gppmmIZ6OtGGWyt71IIAshyapUSpjAZjbRk5fCheeSEChZHCd/69jlOHFmgVCppkqSjJzlaXuwQJ6mW46HlkNF4TKkUsrvbpVLRcJcw8BCmxeLcFI5rsb6xQ6tVxxYWeZbhOTbjcYQQJrt7HTzXoV4tY5oGJpDlOY5tUa9X8TyXK9c2mG6UcD2H/f19CgWHOMnY2tknz2LyLMEQekKhkf+5zpLT4ycMQ0uz19sj/v7PfJynvvgigWdx5NABbi6vaoVAmrLeHfPWypDheMxHp2dxXBfP89jb3cd1XGzX1CHhpqX3UaWz6rI04/Rdh7nvriNkeaZJe5OTgYHBys01Xnv7PMeOLGgwhuMic/DDgCTLMSyBYVmApqpZls4fVOTYlk2eaYmm69psrGwyHsU88/IZVje3OXns8OT5SA3E6I9YmJu7HRsg85zTJ47R6/QplnWhawrNPLZsa0LT00RJAFOYtw8HOk7BIEtz7edTCmEJbNvS/kKpyLIJuXEyjbBtQRhqT5GSElM45LkijTM9ZZOS4XBIqaR/3pZtkiYJfujfcajSJcMtr27oa59dEqdgGre9YMIWIOHsuYu097uUi0WdV2eaWLamSAphUSgVtQenWkZKHSvhWBaFQqj3JVu/ppWVdaamGuzvtbEdG893cRybJElux17IPNfFp6njGEzTZL/dwXX1obZar+B5HkmccH5zkx958pTOQZSSbz3/Oj/ywYe4+9QhDNPgK2/c4G8/fDe50lj2JEoYjCL8wNeUX9NEocPnDWBnp00xdFETzHyWZXT3u/R7fcJiQL1UoFbTMmhrIqMOQw/LFnS7OrfUNAUYkzDliW9RA24cNta38T2Hnd22/nyZyHT/vGX8qV8BfuW1i/zKr/zyd88MBoCJqaDsKt569UVahx6ku9/luW8+z3/5i7/IaNThwx9+govnz/CFLz7NgabNzLSH4whMmaHI8QOXJJd89g+/yNtnL7C4OENYOsZ7Z99jaaaBbaT80UtrPHb4XsKgzM5uj8bUPK4XcPzYcQpBgUJY1P64XodqpcZo0KdQKDDVaFIIyzTq07Tbexw7fjeu59PpdVhdWyYsVnjvvTNsbm9x7NgpapUqg36P9fUVDMPhhZe+wd13nebF557nvvtP47gh5BEF38axbZIJ0VZNru8sS29PeX7jmX/JTzwWko0HfO65XX7isScxnQDbK1Es1wCTWrmCLUyy8ZAki1HkGi5lGmBIzFvWDttnd79NlLrI3OLhhx+eKCW2qVSqFIsl4jjmytXLHDlyXOfzXb+sY1icgEIQsLe3gSFjyoWAwPVYOnCQJI5wHWcyTMtRpn07V9MUAsvR8upo3CeXKXkucRwP2/ERTsg4SsikQRhWqVSmGY1GVGs1cinJpcQLXDBMXnvtJWZn5ul09jn75htIwyBKx1y9+BYHDhzBtR1u3LjKaDCg2WiwsHSId86+xcmTdzGOxhw7dpyvPP1V4nRIvdbAdjyq5Qqd/U0M4fDQgR/h+AeP6MYcBsr4/tOx29TKP3O182e+7nuvW0WbMVFZGX/Cv3orcuH7zsW/3+TOYGIV+D6n8Tu+9ofF3V/z+v98cSdjHMelWKhy9dIKi3NLBJZHGAYkueZkHVya471XXuZUs6GlIpaFzBTrG7s0mzWOH55ntlXXXoG1Taan6oxHMZWylkw+9cyrbO7uUwo99gZdaqUCjm3jeC7PvnSWV89e5cBcFcd2SSdeOKm0eXl1Y5vNdod7jh7QB0jTRCqTvf02gedhmga9zlDn22Q5nufQbnd54sGTmoZZCCmEXmPCzAAAIABJREFUPuffv85+u0+1pAs007JxPB/zlgfFsVjd2KI5XSNNM04cnMMUJq6nN8BiMaTfH+D5PpvrOzz/+ntMVYpUa2UcIZhu1CiVQwxhTw5SUKoUsCf49CSOmZqq8YVvnuG991d48PQJpKFNwZka4IUCpKEPL66F73sTIITi+JFFisUCfuiSpAmlYglLWLieA5j4rke/29MHa08QFAOG/YhSscCNG+u8e+UmJ48uIWx9sDWAvZ22pt4piVQ5nu9pspxpTGIaLBYPzmrSHAb9Xp9CwcX2XGzXwvd9lGnguA7CMmlVy1pS6lq02z1cx75NcfuFV9/hf/70wzQaDcJCAc+zuO/0MYajEfMLegqnckmeZ9iug2kJ6lNNWnOLuHaRyytrHDg0w+WrNzl88CBLSy3C0NcHzlyRxBlXrqxw+u4TfOPZV5ifm+Z/+aO3+Zv3l8iyGMvyGQ1iXNfj+o01pqYa2h+qFIP+kIcfPMHK6g5HDi+AkeA4WoLsOB627dDt7HPsxAECz+Pd89eQUuL7Adeu3CD0XGxh4doCxxZcu7aCMGFxroFrmxw8OIPrOwwGQy5fW+f1d25w/z2HabYa+jicSjxPR34USwHdwRDbhJvLG9QrZSwhcCwbS+iicWtrn3q9SqVSYmV1i2KhhDAFeaZYnJ1mNE545lvvcGi+MSksbIRl60gASzDsxHiOy3deO8vcjKbTlqshnudQKReREr7xzbMcPTSPVCOi0Rjfsdjf7yIw2Njcvh38LIRgPIyJxzGraxuUSwVcx0HYLmAyGI45erDJy2+cZ7pWoF4vsbWzR6kYYlkC37coFjy6vb4muhrmZPI0noS6qtv7wf/2pTV++kOnmZ+pUS4VwZB86+W3sUzF3FwLR0l+51vv8U//93/IU3/wBzx48AhgEBR8LW2TCZZjg9Q96zRJsB19rVnCwhQmwrIwFCRJiikEeZZTLpc4cmAeQ5h4no9pWoyGY+IoAXtSRE0+903zFp47IerFCEP7aYSQ5CpGSvjK8y/zH33sR7n37lPI3GB1/eYkJ87FEg6WbSJshaE0NS+KYsKCz2gwQCkNh8lznd+lCaBa9h5HMbZt0W13dfMNINdSUccSCMucUF5j0lQX0JYQmrbn2BiY5FnEyuoNpht1slihDAuUSVgoYKhbr1WHvPe6Xe1HNjUd0rR0waSUJulKJbFtgW155FIRpym+56ImeYnCdDRUZLpBpVjUhyXLRmFo6qchwDQ1ECzThbjt2Oxs7uB5Lsqy8AIPyxIYhkkpDOnudqhP1zEMg4sXLxMGIaYxmVJOpp4b61sUCgGGYZKlKdE4olIpYdlCfz4qOHPmPKvJiMVZn63tXer1KgcPzZNLSZzqSeeLZ27w0fkp3b1XBobSnjfX88jTZBLariV0pmFSLhVJ8xQv8FBK4tgWSRRTqRaxXAvXsQFJkibs7e5zY2WXJI4JAkdHy0ipf+6WmJBFpS7iTYHM4CsvneHkgXnSRE8QhWX/hYeQ71XcPXVjg09/+lPfPTPcUdwNd5b5wlO/x6HjH6AUFqiXS1TLPpcvvYnMBhjjHn/vl38Cle0w07KplAP6/X38gg5dL1fLHD1ykI/92JMszk3z7TM7FItTLM21WF19l5feG/Lhux4lyVKuX73C4oFjuJ7P9u42YRiyubnJhYvvsbR4EMsSbG1vsrhwgDfOvMKpk/fQ63XZ63WpVqfY2NlhYeEgs3NLhIUiM61Zms0ZXNdF5YpCWKRUrFIIAxzL5fKFC5hqQK2uJdH7O2vMzLSwJjmCWZ4iDHNCV9S/jkc5px8YcHDO5e33Un7i5M8xzBXe1AG2NjYohBX29vaxDYWpMuJ4oK9XAcI2yPOULAXH9UmkwfLqGmfPX+HosYdZPHAEx8qxTINiISRPtUcvikZcvPQujUZLB8IHAc3pFsNeh9Fgk8CVuERk0VCD6mSqaeBpPNlnDEzTmuytCWky1lArJZGYjKOE3ihllECsPJxgGr9Yx3JCLOHh2DbVaoVuf0CWKdrdNq7v88JL36JZm+HVV77J4tIsvf4m/d4+G2urzE5PcfbtM6RJynA0YmX5OsVyhSRJKVXK1Co13r94jtde/TbzCwfxiz7VaoMDB47Q7XVJZE40HFCqV7mye5UTx45MIk7uuJb/moq7W0WYKcSfmRD+IMWdOZn05Xmmo9D+nOfzw+Lur3mpPP8fDSa+gUnG0J/XEbuVJXfnujNr7t+lLLtl0jfu0OH+2/x7Hfn83eLwtrzzT92klBjkJHHKtcurfO1r3yAaDTl6YJ5USRzPmyiPM37tdz/LicBmOgjJkow8yWk0KhiGJrblKscS5gR7rmUqSkFYDFhs1ekNhtx3z1EOzDcBk0qtzKA35NjBeQ40axiGpFItYwoT2xHYjs14qCWCFd+jVquQTShof/jst3nw5BEc174N9jBMgUIiTAPfc9jb72AKwbCvfWb1WpmNrV1mWlOcP3cVyzHY3tmlXCkgyTBMiWcLXF/HFLiejWEqpMzodIZ4gadzmpKMP372NQajhIXpKuVKgbCgyWV5JgHB3u4epqG9LI7nkWYSYegN4tBsi1NHFllZ3iDwbQyV4XkGWxubWMrEtQRrGztUaxp7n2UZv/VvnuPuw4uMoxFJljIcxAi0TEtYJkkUk+WSYinU3gyNYgUUhdCl1SjjuToiQSk1ofrp3CQpJVtb+5NiTMNQbnlk8iy/daHQ6/aJophxFOP5Ht12jzPnrrA018TzdIffC3R303MdhCl4b2WVv//2ZX7rv/oo09MNHNcllxLL0kS7UqmofV55ztWrN6nUyuQTnX+aZli2Q787YHFpllxK5mZbtNtdTNMgiRM8z+fK5RusrW9z7PghwOC+e4/x5K/+Cz779+4HFLZjYdvuxAtlEvju7fwrKRXj8ZjGVA3LZJK/qPPLdHC43oCHwwGubaNQVMpFisUCQgimGhXAQJgml6+sMD1VY6pRw3UFhdDnzDvX2N/vMR6PGQxGeJ7NBx4+jmVZjKMxe3sdbGHS7w8pFENG4zFTjRphUcs8Xc/VzQdbkMqctdVtFudb5Llka3OXVrOh0fJ5zt5el1KpSKEQMjNd5uq1VUpF7RXxfZ84SchljonF8vIOrWYR39OyujTPsCxBnoFt2QyGI1rTVc6+e4HDB2exhKBYLPzf7L13kGXned75+04+556bb9/OaaYnYJAJEAQYzCSJoiSSolWWZNXaCrZle23Vquhy7daWXavdLXvXCqX1Wn9oZUlbkiUXJTGIJCCKAEgQgcjAYDAzmJmemY7Tufv2zffkb//4bg8GEChSLm0q6qvqGqDj7T7pe9/3eX4PlmXhOBae5w2JvgIyuLK4wbG5OoNBiGMr6IpEYpkmOzt71CtFcp6jrtc0YXNzj/poVU2r2m1M01Dy61Tdk47Cw1WQuOo4Xz+wuG+hjmkY2J6LZeqcPD5NpVLgsNEECa+uNvAclz95+SzfPzaFl/OwbJPtjR2KFX8ImdBuwlOSKGN7Y4dCIU8Upqwu30DXVISC0JWPStfVVF83dFrNNkmS8OXHn2J+ehJBgqGBJiWkCd1mW8ExSMn7RZQEUeHYoyjEtE1Ozk2pCbImMCyTUslTEzhhoBvqWChYqq4mzratioGhJ09NH/Wb3r8jSqJpqc28ZVsIIWjsH7K1uUO1VlYere5AXZ9ZhuO6CAS9Xn8IPNLIEolmqEB4z/Vot/v84Z89wfk3rjM3PoZtDWmmuo5mCGzbJgzCo9uM8i4OAizbQqYZvU4PmUl0w3ozTP7oeSikosUKlRfWPGxSKPhEccbu9h4HBw1KldIQeNVlZ3v35v+7jsPy8ioAuzt7VCpF4lBFBqRJxu7+PqVKiXKpiBDqdR42DtFNHV3XKBYLbG3s4PuqwaCaRCaLV68zUlMSS9sweHJ5iR/4W6dYWdtkZKQ6JJAqHyACnn3+Gu8frxEOQsJ+yObmLl977nXOLMwMARypojy2e6ppJgTrmztUK8UhiExBeJI4AYGKiJEZUkquLN9gpFxiZmZcXSPdHo7jYNsWiVQNv6NGHaiQ86laGc+z1bTUdxGa/tbNxpCceevzn1v+PTo2j2wd8GM/9qk3v+yW4i7rHfD0N/6cjUZGFIZ88G99kFKxyMryImduP0231Wdn4w3Gx3MUcxIpM5qtQ8Ynptg/2KNYLpOlKQcHO/S6Gzz5/CaNxiHFvGB8POFHPjzL1VdyFMqukuEfKK+w43iEYUgQhDQaB8zPz7O5vUmpVCYcBCRpSrFYUp7DFKq1EeUrRZAvFFhfX6Xo5zFtm/WNdVzbRWaSnZ1t9vY36XdbbK+vMTk5wthYmXyuyNTUFJrIiKJIQU8EJHGsvNmWRRTF/Mmrn+UH3meTRCmbrz7A6MwYdq4Mto9naeiGTq/fY9BrYBqCOAlvTm3DKMBxXJAaiIwwSkikRqfXYnL2JL6f4xtPPKzAS76vfHCWhW3bzM0cJ00zGo0GZDHXly4xUqmwvPiSUrMYw+m4ZRAnyg+cZAmmYZGmMQw9scrbrMLOdaGxvLJCpTZDik27EzAze4ooy7ixdYNarcr15auMj48iSUgSncUri9iWzfLyZVqHDRxTp909ZGK0yvLKGiKLOXPHPZRKZVZvbHBs4TSXF6/R6YccP34Kx7IpFoqEYcC1a5d597sfZHNrk3fddz+lkmrC31hfwfPzyDSmP+jypWe/zk///Z8Yxr4oqbf2tj35Ow4/vp18kqOC6q3TtLfILY94FW8r0o5243JYG9z6dquV6p2WdsvHb327df1Nzt3/j9et0QTfzZLDk+Y7Le3WN12/+e87LcfNYVk2J247xs//k5/h+vVzLF15hm5/l1QGDIIetpEn5/r8u8tbhGFEHCesrm4DgmfPXkRlv5icvbCIrmn4vvqefiE3JELmefC+27Bcg3CQcenKGv0gQLd0bEujXsvz7IVFsjRT+VJBOCTWGcRhyOTECJZp4Ng2aZwQRhmdTp9eu8filRWahz0OGz3SNCIK+1y4tIhjmhzsd3j8+ddpt3sMBj1uv20GKSLuuf84o6MVatUCpClpECMSSalcot3sYho2mjAh0xn0EvyCD0iCICCJYj5w10mmqiVqtQpra9vEcUK33WNnd5///PknefqlSxiawLFNon4IieSg0WYwCDGG4euzx8aVrMhysIwCtdI4+40GB4f7TEzWCYIQXVehxB+9/zYsxyaXz+F6DiO1ClLCk8+/BjLBda0haS4FqdPvxqysbpElynfi51yyVBEuNQRJkmDbFmEYYJgaxWIOXdfZPTgkDEMQYFsCXajjEcUJ5VqFYq3Ewe4Brf0W+UKB6VqVxUvLrF5fpzxSUrTJfh9d00iimE9+9kv89j/9KH4hT5wmZMQcNLZJkgQpJfuNAyQSw9AZHx/lYP8AzzZxLJ00TTFMA7/o0Gl2ybsFDKFRLvvYtk+xWOZrX3uWarXMvfeeIRj0yYh56aXXmBodU6H2wiCNFWo9S2OiKOBbL57HNDUG/QGvvnaFkyfm6Hd7VKslbmzuEQYpaQavvb5Iv98lkwkjtVFA57XXr2FZSkbXbjcJwpi9vSZC0xkbrbK0ssXi1XVM06LZ7HHvmWMU8zniOGOsXub4/BRBGCn5n24wMlLFcCyiLEFq4Pu5oW/IIucWEGlGv9Om12mh63BiYZat7QMGg4H63EzS63bQBIryqEt0Q1CuFShVfPxCAdfzSRMwNJPmfhvDMpiZH0NocNjq8Y1vvYGmGaSJgvA89sSrTE2WuHhlkTvPnMa0PdAM4iRGNwSbm/skaUaSZMhMmc+PzY2x3+gSJxIpBY29A7Qspd9uMz01QbVcpN8LWVvbpVCocHxmkpWlbdJUw7I8Crk83VYfw7DRNZMsFYRBQhjExEnCr31pkX/2I3cipQqmRkAYBrg5m0bjkLyfozZS42c/uMA999zL7v4+utBpNlq0W20sy1JyYstU3dJhmJ1jGyytr5JGISJVkQFffvQZ1tc2hkj9mDAIiMKAjIxCOU+70+ZHP/5hiuU8fqGMZedIk4xeu0+706dQKOG5ZTJNIo0UqUks20NIF02YClQgJIZlkEnoNAdEgxjdzjBsNbHbWNkjTiJsV01zTNNCYNzcfBw15pT3R6H+1ftVw6Lb6fHYcy9QGykiUX5UN+cg0Bj0g5s7+WKpAEAURkgdMqlTrY5jOj65gs8/+olP8nd+6EN89YlnOdgf5rMNfXJZipo0GjYaBjIVWKaDzASaMMjni1imTSrSm13ubqcHGQh0NCMjkzHIjGq1TJKkyDThhbPneebFCxgINJlSKuewLFMVQcPfvzcIuLG6TbVYwRzCLYSh4RVz6rmaKrltkqTESUy5Usay1Oe1Wx3GJkaJQgW5EAj29w44Nj+r4iQE5AsOPUtw9doSOc+m3Woj0wyZpHzhTx8ljWIKSYypKcqrrhloQufTH3mQOEp4/pWLCN4ksZYrRTRN4+TCAstLm5iGARIM02IQJmSpIAhiDGGyvr5HHGV4ro1lm/R7PQrFHDCMoBjClZTGTm1u3ZxNZaRImiXYtoHpmOjWf8EWTUo+9v0f/bYf3tvd5fj8PLonGJkc4auPP06qGTzxzCu8fHaR8ysx//a3HkUaBSzDYmt9jdGJefYO2gjN5erlaxiahqnFmDLixMIdPPJnzxAlebq9Pknc4nde/kN0XSMMuhTzeb711FfZ29/j2tJVvJzPe97zPg6bTeq1OpVqmVzeZ3x8EknGuQsv4LmuollmKaVCnsUrF6kUizz+9S+zs7tFnEQ4tsvmjU1Wl9dxHI3Fa5c5fWqBublJRJyShm2ajQ0koBvmTVBHPl8gSWMGgwG/8vBv85m/O0LZdPnMry9ROTGB9MoEUsMkRifhlZeeZmxkhInJaaSQwwgFjbXlG5CZaJqhGk3DKJPDw0Puuvt91KpFDDPjwYc+gpPLq8JE1+kNBqyurPLEE48TBBEj1RF29tY5vrCArg1YOHGGcr5KEGdork+3G5EkOgiHNDWQmAjNJUMjwaAXSyKR56VzF9jvG3Qih+X1fW5sNThz5wPESEqFEicXTrG6uszCsdMcNlu0Wh2+9fTXqddKXH79KYLGMgsTPmOjHmcWJtDSgA+8+z7e++53U8qlOFqfh951B5dffxZHz3jPve8iDvqkWUKn0ybneVQqVZaXr/H+972XGxurOI49bGLuIoSBaTnIJKZxeMjFc2dvAgKP4mv+OtatRdZRM/h7cX1v/tZ/zevWIuw7LSGU9ve7Ie/cmpWXpekw1y59x88NuiocV9MElWqRB997P8GgyZe/8gX6/S6moXPh4iU+9UOfULhlXaPd6vDyxTV6vT73336CS4sr6LrO8elxOp0umzd2SJOUrz93lpfPXSGJ1GSAoRF5fKSKpmm0O1329g5YWdvgfXfepuhERxeVEGzt7BPHMd12l73dA6IwwrRM5sdqmKbBzm6DVxdXuHh5lX5voDTxmuDOU8fJeS5jY3U+/X3vpTZSplqvIJEMgj5xHBKFCY7lkKWQxjDoxqQxlIplHv7ai1y7ssagG5P3iyRpAkLgOM7RvpAP3H8H3W6PsdEqzWabcrVEpVzk+ERN5UUlCYNenyiIeO21RUqlgoIFGBqFko9hakjDIBM6jUaAaftMTk3gF3wE3JRkttodxkdrnL94lcEgwM/7w464zoN33UacRmi6oFTMKzml0JBozIxPYOgmru2hayaW5aJpQgEUDAOZDaEdQYRlW2zt7jM9PY5uKk/IoNe7eb5ZtnUzeHd6fJRKRcn5co7DeL3C9OQo/V5f0UaHf6D/9NoF/vXf+zimqb42SRKSJKRSLapNqW1Qr4+g65qaQOoGo6MjZGnKoNenVMwrTL+eEYYxq0s3aOwfYmhwY22T5587R6mYx8/niKKQfNHHskwmJ0cJogjLNvn6N18jTTMG/T66IdB1jQ+//276/R5IGASRklh6LkmSMDM9hmU5wwJLYDk2e/v79HoDuu0B9WoRXVcY/nK5gGlZtLsDJIKcn8NzXeaPTSEzhXdvd/qUijnmZsbZP2izubVHpVJWNLvhQ0QKmJoeVzQ1ITANg6Cbsnp1g/XlTV49u8igM8AYnhP7jTZvXLlBoZjHskwK+Ry9bg/HMVm/sUUUBSqMN1DysTSTbO/ss725p8ALOghdUCj41EaqvP89d7K7e8izL76hfGqWSaVS4K47jtFq9YijlEyq/LRef0C3F0CmjnGWZVy9foNnXrjC+FidOElBCOWhlZJWu0uWKY/T1vahov7pJnt7h1TKeZIkoz8I6XZ7aMOQ6SRRgJCV1W1yOTUhfW0juWleT9MUQzcoDONESqUiQRCyeHWZ8VKO5559Ftt2eOGVC/zpY89gmiblapkoim+Grh+VQkkccM+ZBeIkIIoHzM6N8+mPf4harYppmriuy9bWLq1WGyFUh3Z8akxNfzVBJnTCOEM3HZrtPv1+hByCG9qtDmEYoOkqXsSyHQzdRmgm+7uHpImk2+7ztSefVyHgcchg0AcJX33iFeI4YndnbzidU6/ddhySOCEbbmpU3pySggqhvMCGoTL8fuITP4jjWpiWCirXdI0wCPF8F0AFEA+/rzY8DyWCne0Gve4A3TRo7DeIoohBFGM59pAgB7btcDQDCvoBcZwAAtO00IT25jQPJatM05R0eJ2BQKYw6PewHYswioZHQyCkpNnuUS54yDQjCkKCwYA0zRS4RirP76uXrnHm1AmSKCEYhERRpKTwpoHv+yTxEVZeSSWDICBNUgzTJF9QE2jDMOh2e4qem6V02l1My8AwTBCSZiZZOD5DfaSqmn6tNrqmMTc1puii7SbNwxa2Y2PaFi9cuI5lqViCGzsNFq+vc7B/iOe5RGGM46prvlousry0QZa8WZzpmk65XCJJMhaOzfDQu+7Az3v0+wNc1x1OZRWsS1FZlY9SH0YPNQ9bGIaitK5v7bC7s8+gP/gudhVvXZf29vjo93342378xJkzdHs9fuG/+QVOnjnNb/3O77C8coP//Td+k1On7+SHPvXjuK5OqVJH1w0mRieJohjHzZEkGVOTc/Q6bYJ+H5lqBH2QWY56bY5iYYIsgf/jv3uAzz7yJdqNPfZ3tkijlFdefYZysQJIlpauoWsa7U6HZrMBSPx8nv6gz5kz9zI+prL3RuujhEFAwfcBeM9DH6FYKDE7PYcmNMrlGgc7+wgyqhULTWTs791AQ8MwdErFioLW6EOPbpbR7bZvQos0TcMyTdIwYMGZxsmXiKXAMC3CQYdmo8GpE3eqrNdeH8O0sWyHfn/A9sYWpuGo6y9NiMIQx8lxuLfLlSsX6XY7ZGlCuVKhUChi2vZNgmUSp3z4Qx/DstSUNstSOt02g6CrohYyiePkSIXG2vIShubS7Q6wLZ/V1RWyTJCgkekmYSpY39njxF0fYmzmFCdP38PUzHEFJJMJm9trN+/LQihAkKHZJHFGt9fg8HCH4ydOsXB8ntmpKWzbxHEdXMvBsWxkGuG6FqaMMWTMnadvo1rIcbi/ydKVcwCUS2VeO/cK5VIZ1/WGqpwBcRSxs71FFIYU8yX63RZporI8y6Ui/f4AiZp0Z9/1eOQ7rTfn2lmW3Yya+V5b3zOyzDiOf0lKqUbYUt4cAcssU5libyu4bpVDvvnONzuu324djXHf0oaQt0BdbxnbvmWMe/S9jyScw6/LpFQF3fBr3okXpAmB1HV1aQiwPYcXn32Ru04/wOHuEqdO3kWW6tRHR7j9zpM0Dvb59Wdf4aMln3tvn8M2DS5eWuGuO48x6CRcW9pgdmaUbm9Ap90niSWuZaMjuLS4ymi5QJrGOI7F5x99nnvPLPD02QvMTY0SZQlhEpIrOCAkMsloNwOF9M85CA2kkHh+nsl66aYf5q5T8+Rck+mZOmkcYbk5BilYnk0qBiRpDBpkKRwctPDzLoeHTbx8HsM20TSBZTgMuiGf/crz3HZ8gttum8BydZqdDp3mgDRIGAwGWJaJ5dp4vofUBPmih6YbPPqt16jmPQrlPJOTNe48M49hWui6xYUrS8xN17l0eYVnXr3CnaeOkUpJikQjQ5MSU1P5OQmgmQ79VgfP9Vhe3uSFN65y392nMKTA0A2ee/UNKqUc4SAgyySPP32ehflxXN8hlZJ+N+azX3yemA7jYxWCOES3TNIMLMfAsk3IBI39FuWCj64JdNOiXCyTJRnLq9cxpYZXLCE1Je8wLYMoDNEQmDmbTCgKXxCFVEYq6EOwzaAfYNsOB3stfmu7yf/wcx9Uck+pCjLdtECYpEmGYzscNpoYpqGgFKYySBumpjYwmQQNrl9cw/McDFsn5+f45lNnWTg5Q61WZnx8BNt1uLK4wtjYKJZnU8jnee6lV/jwmVEuXFwlS2KuLW5TLbkgY7rtHo7psnewz+2nZ9ANwY2NTdycRS7vEAUptm0RBwHlfB4DnWanzWGrxdTkGLph4vsF1td22draJU1TKmXlbRwbrWAaGleWblCplRCaoFKt8KWvvEh9pEinP2Bk1McwdS5dWKHb7FOvlxn0AoTQeenVS0xN1jBtk6XVLdycyelTM0PTuouuO/g5m9nZMZAqPsMv+JimiWkaQ4mZTpYmjFTripYpIJ8vEGcxcRZRLpfodFrYjkWv26fZbDExPk4x74CZMT1Xx9BM9vdaWI7Bsy9dYnZ6DMd11FSwWGV/v4Wh6Wga7O422T/scecd8xgW6AZU61U0w2LvoE29XiNNJeNjNc5fWqFW8ymXCzz21DmCQcLk9DiFss9he59s0EPLMg4P9zDNHjnX45//3jK/95mPI4QgjiP2d/cploqkSYLQwLQMhNA49/pVTszPklTnubx4Hb/Z4cz8JDPHpjAsgSkMdE0nCiM0U0cYOoamQD2ra5uMTowRRBGOa+PmXCVLTlNKZYXy1vWMJM7QNYNEKjS9oesw9EJ9/qtPcf/dZ8i5NmJrCnZwAAAgAElEQVQo5dSEgUyVVPzpF15kYqSq5FK6QRLFFAt56qUSEpVJpmeqaGwGu8yMTeM4NuaQiBhHMTJTktEsU1J0JDeJmQJFrUsSFeVCBhIVa3GE9I7iGNN2kUJJxjShoekw6HWBI7mnhtAMTMvGEBLf9zgxN06+mBuSAlWGnUQ1BG3b4qnnXqBUyON4DnGs7rfoAqGDJXQMTVeSUl0HXSK1DMOwkJmGyATXri3RHbSw3BwPPXSPip3RNQzNQCbg530FWtEE3V6HMydncXIWgzjg2Rdf5+LVVepl5UPVNcn29g6VSomtzR3yfg5dKOBQ0O0iZYbQBVgWezd2cCyXzz/8JA/edxcH+/usb2xQG6ny2cuLfOrdJxVF2XH5k0ee4b57biPnmPz6Hz/OL951H9dXNqnVixzsHXLHyVlMU0cmMbVKlZWtfaI4ouQVsR2XmJjD3QPSJGFqcpRkqEzodvtYpkaaJliOQRgG6KZGs9HHMq1hvl+XnO+hGRq6UAWhkAz9nYpoyvAY93oDJifHhtEVt4Ic3vzvd9qHCOC331jjUz/zU299vwRNQipMTJmx/vpLfPmLX+GBex7gx/7u32NmYZTt9etcPHeeP/z93+CnPnYXa5deolzTMAs54ihl0G8xOlIgDjsYtkGq55HCYOHkMXq9be578A402cQQGZbu8IdPX+Fvf+iHKZUK5FwX07VVJpxRYGRsFN2Q5H2Pne1tSsUqWQqW6XD9+jXGxkcgNQkJ0Q2DQU9imhK3lCNNUg72dgkHLVqNdWxnwGStzOzEBDlPo+gXlD/3yIMe9RC6UJFOOjiGQyI1fvlzv8sv/8sH2d7Y4zO/c4Nf+Ml/jmeW6HfayDTicH8bt1ynNxiweO0CtXIFW9eJww62YdNp7lOr15EkGIaNqRlgaBQrI6SpJAkNfK9InAQcZWgeNhsMel36YZdyuczG5jrFvI9nWexvb1AqlzjsNAniCIRFs3FIs5dwfekaK+sbBImkOnaM1Y1NdhptqvV5CsU6+wcN6iOjhGFIpVRhc3MNy9Kp1kZwPB/bEjz34lNkaJTKVb711De4fOE873vPA+xtXKRaK1Mq50nSEFPzOH/uPNOzs6BJ4iwhSzKSFHKFAsIwuPjGIiPjI4xM1AkHAzZWVzFMHT9fYGb6BPv7W4zVJoiCiLyfx8vluLJ4iVOnbiNLIl68/Dw/+SMfw3J8NMdWfmcp3nJSa+gcFWkKwKu99Vp4+7kvjoq6N/fechh7oN9CyPy2A0Kh7sMZ2ZuS+e9ivT2G4e3v+xvP3f/NK82yX7p5YG8p7m7N1Xin9VdFntz8Pt9uxnyrnvfWn3nLSSGHxZ0yeSuN8JEH8Nu+nmHVJwQEvT6j9VGuXrrM8VMTSN1Faga5fJnLF6/wkQ99mIf/7BH+/pkFTN2g3e4yOz1ORoJl2kxNjnL56jKuZbO+0eCOO2apVgrkfIdK0VOb9aUtfM9FZhnNVhfHNBBSMD0xju+5JEmKphtkQgVfr65vEUYRlmXg5XKkacaffO1pXrmywhvX1zhzfJJ8ySaMAsgyZIrKahEaWZSRJkoutLWxT32khhAafi6PEEeZUJLDRoN8waVWdcgXc5imi4aB69gMoj6lQoFGu42UEtuyaLc6PPbCa5yYnMAyTMYrKurgK088x+0n5kjTTG0ihWCkUsTP59jeOeD999+uNumGmkCITEcIFbK7tdugVi+RZRnhICRJMkZGqhybGGPQDxCaTrGUZ7xWwvMcHM8mSyX1Sp5CKYdmGIRhTGOvyfr2PnOTBSZGqwjETWqfYZj0ewF7u4dcuL7GXqtJuZzHdR2SJFXyI6A+UkNq6jUe+UIMwyCKYh5+/CUWpieGkA/BF594hlMzk1xbXKNeryA1wf94cYnf/MXvV8Q9Ieh1e1y9vs6pk/NYlqE08ZIhjEUnDCMEAl0IkjCm0+pgmbYKdI66jE6MkCvkMC2LibERRY+Ukueef4256QmWltZZWJhWEo5UYkc7jFeKzM2OUq6UaLRaXF3bYhCG7Ox3sEyTVmtAt6syl5rNHpVyGU3oIBUJ7bDVIV9SD6QXXrnCg+++kytXV6nWimi6AKGIeJMTisbZ7Q0olQqEUUTJz2EYBpaj/EaGljE/O87E5MhNSaal61SrJRCqOLAdm7F6WcVXWAamCWNjFdJM4uV8pNARQ5KelBJNgm2aJGlGEAQIIbjwxhLjY1Us0yLNIElDld2WKZhGoeChCQvP9bh+7Qbj43V0TSNLVfCzpglkKtGkhqmZhHHMUy8scfeZKWzbwDAE29v71EdLw2w1k6mJURbmp5FkuI6KEnn8m2eZmahTqVTY2dnAtgRh1KNcdilVPTrtLnecmadUzOM4NlEQYJsKjuR6Obr9AflyiZ//3XV+9xc/RjLEkBuGQaFYIElidM1UkpxM5UOVS3kubB7y0Md+nM9/8ct85n0fYHJiHF03CIMAL+eRZZIMedOPk2UZWZry+LMvcvr4PKZpYljG0Mem1A5HXrZOq4vteqrA0Y8e4Cm9bg+E4J7bT+C4FkkSqlw4TaPX62NZFoP+gLFaFSGkoqCiJrRplvGlP3+ChbkpSpWigt7oGrViEcu1VOPFMCATfOlrT/KNV1/jXbedQNchjtXE6yiKwHYsDEOn2+mpyAAktm3T6/VVQaMJdFMpORhOU7NhPI5pORhCVxLsYIBlaiBVFh8CgjDC87xhzMFwUjh8oiRxwtbOHtfXNpidGlf+xKFsUKYZwaCPOSxSpMxUWShQE12h8ui+/swLnF6YI+97kKmpefOwhZf3kUJwsNdAZqqIMYfHzjIcXMdlemKUqbERTEsnDPo4nofrqfyvfKFAKiWO596EkYjhpLPTbPHE82fZbzT48Pvuw8vnGIQDxidGMS2bpzeW+JH3nOCP//QbdDtNfvQTHyRLY8JgwNm1Qx6q1KlUSyRBiO/nlIfGEFg5m5yb4/SpGTzbwMt5Cq5igWvbdPsDdvYatDo9SqUCbk6d92EcqUbXsChLkgTfd9F1VUAr/3eGyFShb1gmWaYKbMkwID5J2N47oFYtv6UZ/Bf2Gu/wvs3mIX+4vvcWmIraH6h7HZqk29ri2sXn2dq+xtjEOIsr23zl4Ud44N3vpXHQ55kXn6G7V+Xee95DHL9OKTfJ6Ogx2oddgv4AIRIMyyZKU1xXEiWCYwvHWVtb4o7bTtBud+n1N/nRj0zxB390lVNzx8hkTNI3WLp4HifvqbgYNLrtAWMT44RhiOM4/NnX/pR73/UACJfnX/s6515Z5OTCbVhuwo3lG7zw7EsUXI/lK+foNpbZ3d7mjttPYWgSyMjISNKU3qBLu3mI6/qqmaK5bG5swHA/8MU/fxiZa/HR987xb//TMj9x+88yNTtLdzDgsNUgSVNqlUnSOKVcLDM3O08UNBkMDtFRDSPTtnFdlSenJNYpSyvLDEIYnzgFhsbKxjUMQxG9NU3guR7FYpFyqYoQGts721QrVTqdJsGgT5KajE8cBxwWr1xlpD7P+Mwx5o6fIYhj7n3XQzhuDsNyGBudVbJ6NCrlOrpukqaS3qDL2Pg41dooCI1ef4BMNKan5onDPns7q+hZi7vuuhPPTRkdG8fQNUQqcUyXTA6YnBxVxGGhs3ztMkJ4+J5JKlLSLKVcnWBvd5fmYZvFa0vYbpHdvR36gy6j9XGuL12mVKqyubXJysoSjuewsbHO6EidTnOPc6uv8cDdt1EZqWN6vroPvU36dgQtOdoXI8RfuiF/s7j7i1fJrdLMv0z9qXaS8i0/+zutd7o+/6a4+39ySflLQsqbI9qj4u5oknf079vXX3dxdyskRfsOxd2RrFG83dj5Dt9bCsHRh7JMUswX+Df/0//M7Xcepzo+Q5xKdrYOmJudIwpiNE3yy994mvdZJqVSkRvr22Qk2KbDt158nfvvPY3rehwedKjW8riODUgSmRLFCdPjY7Q7XaqVEr3+gONzE1imwcOPv8zC7JjCPQ+R2TpQqxYo5HPk/ByarrOytsmDd93GialR3nPvaZqtNqalkaQxvuehGQZCanzzubOUvRyfe/Ql7r3tOLZlqqlGJul2B7iugxCSTqdDLuewu9fAchUuf3NtjyTOyOU9CkUHx89RKvpoQhHjBoOAsUqRLElZWt1karKOpmtUcx6up2AFg/4A27aU7BBwLYtmq8vO7gHFgq+Q6ZrKcXripYvMTdQplHIgJLZhYZoGzcMOtmOraYLjEAYhYRgRRCFxlODlFMjl4uIyaaQCkl88d41Pft+DtNoNdvcO8RzV9ex1B1iWTbfTZ6ReZaxeZXqqjmmbwy6wRqvVYWysRhxnSE3l9h02mqoAajTxfY9TczO0m50hRCXl1OwUm9u7TI2PoemK3NesZNx1bAKBRq/TI5/3mZoaxbasm6S3TGa8/Op5Rkdr6LqONmxD7G7vqcmDUMHLtZEiQaQ2PpbpkCTxcEJoMVqvYBg68/PTHOw1KJcKvH7xGu8+M04QxmzvtajWyozUfMZHSywcn6FWKeC5HiO1PIW8RxgFjNRKSCGRWUqWxkigOlIBoWOYFvPTYyAExWIOy1ZodCkTyqUySap8SHlfHfssy3j6uQucOD6J7do0Gy1838XQBK7nIHR1828cNIcgEQuJHIbZSzRdI5UqD1GI4eZeqJy0OFUyUplJokBJ6jKgUCgo+WkQUCwof87+QQvDZOjXOooBgMEgZWtzj9mZCbJU4nk5drYbrN3YZny0ShInCDQ2NnZZWd/lYx+6mziO8DyLLBtGBQhJoZDnYO8QXTd47ex1aiM+WaJM7tvbh0xOjCClJIoD4ijBMlUxZjs2YRBhWxZJlvHa+etMjo/wyOMvM14vki8VcFybL72wzT/70Q+oSZgYBoNL1eE0DYsoSjjYP8BxlcwwSWPCTgt99C5+5Vd+lfb6Lrs39jh5bBo/7xHHyU2JFUJTOWDD2+d4tcITz7/EmZPHhxLhYaSANgyGjmI8zyNNVZ7dESVNM9S9s9PpDcOnASSGaZGlKblcjjRVjREVH6PkrRsb23R7fQzD4PaT86RpgtCGGaaajuO5GEOJswJ5ady2cJx333FKyZaiUEnGhtJ75U9RYA7XVbl5QtPQDPU7mpYqrPq9Hq5nq9y6If1N6AYI0KTANHS+8exzTI1WMYf5fEEQ4Pt5hKap+ILh30wTgjiKQcLs1CTHj83cPMYqHF2oaZSlilhdU0VLmqU34xBkBq3DNneeOUk+77O/s4/j2uiGgefnELpOGMYEPSVPdD2XOEno9wfKz5dmmKaBaRmUygVAopsWjucNpaKQpeoZaJrGsKiXyCzD1DVOLRxnbmaaG5tbSJkp6b6UaOh8fekCH7nnGKcWJjl9ap5G4wBd1zg4aPDwa1t832gdwzJwTQtNU1miftFXUC9hQJZiDafKSZLS63WwXId8IU/O9ygU8jenn5quYdqW+hsbCnzlOSYg0Qxj6GUeYNnmcEqhvuZIiisz1aHVNcHqxjZzcxN/6aThnfYmf/TGCl2/yCc+8YNv3yAgyFSNpyWYWZ/WwTJRlNAOHD716U+jCxvPK/HBH7iff/8bf4RIAk6fjshZBX7xX/4+Z07WmJubIYo6mKZJP4wwtJA4NRgEAXecuZ0vfP4LzM+fwDJDpDT4g28u8tCJezAtg0pxBM2E/b0lLMfhueeeZXpigY2tVdU4MAz8XBHfy4GhMzU9y/H5UwSDPmuri+Qch8b+Kvvby9x33wNUKyVmpscwNaGyCTMl2TUsG9crkHM8MlQ2Xn8QcPXyVRZOnkLKmG+tPcN/+Bd38R+/tMnaTsCnPvxJwigBXSofrp+jsd/E9SxarUM0IbBNgaEL5RnWdQrFEiCJokA11YMBtfosly6/wbWr69xz333Ux0a4eOEcx4+fJAiDmz5bdW1plMsVhADPcVTz286rholusrR0nfHJeUzbQjdMZqbnlb+32yGIItqtJjnfx/fzbO1sUK5UePLJR7n73neRZBlZBu1OB8uyePzPH8V1XZavvUStUmJ8tI7vWghSkjgEmeFYNoNBD01IkiRCaEoKPjY2o55dmQItpVnG1vYm/W6f5mEXy/FoHnYxHZN77rkP38uRLxbx3JzaQzYbrK8v8+CDHxhG9/S4tvYClp7x7Asv8d4Pf9/NZs2t6y0F1vBe/TfF3Xe/vmeKuzhJfuloQnfrDfOooPu2eRV/1R90NJm7ZWm6Tno0jbvl7Z2oPKAeuG8PZXwLyefW13dU9MkMOTwxdV2n3x9wzz13M7dwitWNHVw/z8F+g8XLV/kHP/1z/Nqv/Ds++7nPsbmyzPtPHicYhOQ8hzcurbMwP4Guw/krS5w+MYuha1y6usJhW2W7VSpl1tY38H2PIAop5nN4nk0h72JIjVq9pKiCro2uabQOW/i+R7PZRdfUhMe0NJxh3t4gCCmV8mi6GJqwU5I0RQJrGzv4ls3dtx3ni489h2lIakNSWRIrSW0chnzt+Vc4Nj5KqZRXyG8hWFy6wRsraxybrtNsdjhsNhGSIWVOYho6lXIeIQyurW+QcyzyBZ9CPo9hGQgBl6+t0Gx1KJfyLC3fYHS8TrFUJAwiGgdN/JyLRspgMOCB++7A8RyyLCEOI9JUDtHsQ/+h1Ib+M404jsgX/KEkysawTUZHqvh51T2em6yTJBEj1QK27WCY1pCSmZHLKzjB0y+8zslj06gGu6TT7uGXXOXHMz0sxyYM1A3ZskzSNFU0x15Amkg832UwCDAtg8Nmh7GxOv1uH9Ox+LkXLvCvf/K96EJjY3WH189fZXyiqjZG+3sYuk4YhpimxeTkGL1ef9jFNImjmI2NLQxDZ/3GDi+fXaTZbDIzPYU2DG6+trjC3oHyWrx+8Sp538V1bTa3tnnp5Uv8L49eZVockvdtGq0O5YrLoD8YYuQtkljyO3/0DDMTDo6j47gmaBLDFCRJhGUqL4SQGnu7DSzToNU8xDR1dvf2ERqsrG5SLucxTBMpwTTV5j0MI559+Q3OHJ/g+sompZKKBrAti1azxebGHlEco2salmViWjqGbmIaOkkSoWna0E9pousG7WaLIFAeSc1QIJfDQ5XphxBIIUiTbOgn0qmPVJUsTmiUSgU6vTaObQMGYRChGxqd9gDbUk0M27bY2d5lfGp8mFkJtm2zur7DzNwk87M1TFNHIJSPSWhoQv2uURiSZimL1zbQdJ1yyUHXDR559GUmRksUCy6SFF1Y6JpJMEiojYyQpKgpkdDJ+R7FvJqyn5ifBFL6/TaZ0Pnyi03y6YDJyTq6oV6/aRiIYTMtlQk530cTKrLAdV3yvse/+s3Pcfedd/HYy8/y4/e+iyyKOGw2yRfypFlGFCeYuqG8JMOJlm1ZTI3Wb5ImNaECwbVhoLlu6KAZCE0iyRBieD8VAIoQHPQG2LbakDMEJcSROtbKJ5WQpooSWR8b5fXzi0xNjBNFAyqVKmEQEaeKCGjqlirgdANDN29m/+m6KjhVlp5BmqpNfRoraIqUGQybdEcTlziKVf6d0DBNi0HQxxrK+NIkRQyhTUmi8th2d3dJwpBSIU8v6CvSIxqWZZHKZCgJVdTbV89d5OyFS5w8NnezyWnoOoahAtJ1XScc9NF11RDRdF01N4QC8ahnlsaTT7/I3PQUrufxe597hCyOmRivk8YxpqVAWjt7u+TzOfZ29ikUfHq9gG+9+Crzc5PDabiGZTlEQXhTLru328D3PUWuNFSz6Cj/Tfl3lJy5PlrFMLShl1SgaYJrwQ73HhvH932uLC5RrlbQdYN8Psdnv7XM356bJE0zzp69guNYVGsltjZ28dwcYSckDBX9UgiDK1dWmByropkaMhVoQkfXDCzTIOj1QWg3VQ5kkjRNaTVbICVbG/v4uRy2bdLv9xU9dUg97nX72I59swkRhSrfzPWOAuHfKsX8yxQ8v3ZlnZ//Rz/D7Nz02/YlAk1kZEJDCoODvT3c6AqW5fHeD/0YsYTFa9exHYeRssvHPvZxfvXf/zL33XsH0aDHz/30x9H0BCkD4rhHJjMMO4eWZDiOg6lDlsYsXtvmnvs+SNDrY1keH3yXzb/63a/y0MLdGGZMPu8wOT5GGndp7GzRbbdo7a3Sa+9T8n1cS+e5bz7M+o03mKwd49HH/ohywWH14iW8XMwdtx9nZKSIIMQQEtu0VINDymEBru6/WRqjaRlow2a+pjE1O02chvzBi/+Zf/jpGf7x/3qOT9z2M3zywz+M0KAfdCmU8vS6bUxLx3VcUhHSaXdZWblGlkhcy0GT6bBpE5OlUtkTXJt8Lk8/CIniFDSd6sgYnucyMzUPUikWgiAcHjtBBqyur1IqV3jt9VeYnjrG7v4eru/j+R4z88cI44A3Lp0n5/lcvHQey3YolyvUaiOUSkVs16HZOmBmbpaMlNm5eUzDwdBNzp8/x9LSFUwB7b2r1Ko+sxN1aqU8ghghU5DqnAXISDAsA13aMKR4a4ZGkgbk8jZIjUE/VAoBHbK4w7FjCwRBk8GgT6lWo9Nr4Vgebk6pI/b2dtANk163w/yxBc699ipBO8IvbbO1eYN//I//Cbn6FDLLVFyFzG4ZYgw9yJkcXgJSNQaHRdyt14AcypmlzIb3pOHniL9Iu/x2xZ12FJHxVyjs3r7+v0TL/J4p7v5fzbmTR94G7S8UZzd/znfS9367SeDQlC+GJ30mIIxCDENXsjjDIxMCwzIYHakTBX1qlQpTk9Poms43lpf5O7OT2LZNMAhZWdunVHCpjhQZrRWJIpVT99y5y7zv/tvZ2j5QZvcopFwp4OdzeHmX1mGLMAyZnJnAtHQ838E0VHCrbaqAzTCMabV7OI6lCrlhtpGKimBYLJiqmLFMwjBifnqcYjGPaVucnB/j7LVrnJyfAiHY3d0nCRNM0+DMsRnlX9E0skyQZhlTU1Um62U818GxXfIlD9t2SOOEz/7Zk0zXK/QHAflikSgImJmdQErJ1WtrfOEbL3DXyXlGqiX6/YBKpUi5mEc3ddbXtiiXCvh5jyzNiOI+Qgjs4fTBNHUF1bBsJW3SoNcdAAIv5w6x/gaDwQDbsojjlAw1yUmHciukxHFVnIFhmNiui67rQ1mayj2rFQsYus7u9h5ppGhyUiYYuo6u20iZYjmWgjbECRevLFEu+gSDgCTL8PM5DFNnd7dBpVrBtEx6vT6dJOSHPnkHySDkxtoma+u7fPQjDyrPXhxTKRfpdro4rjf01SnQQ4aCaCRJTM5VGYszczMcm59Ckxr5vM9QOc+g1+f2u07j531KRR8/n+OJp17gjjtO0m52eXmjx23FkLMX1vjAQyfIF3L8+ddf5e7bj2EYFo9+/SxBkPDgfSfxXJ/Li2uMjdbJUkhiqSQqiUQIyZWr67iWQbnik2UJvUFAuVygUi6iaQbNwzae5/DIYy8yMzVCLudRrxaxTZ16vcz6jR3GRqpEgZL51WplSuUSmm6gG2BZJpcureA6Br1+H9/PgdCRmWBv5wCkpFzOKxBOEKILjUKxoBpKmoZpWfR7AaZhcnjYwvMcVta2kGmG7ZjYjjLhx5ECl1iOSfOww9h4jW8+fZZer0etWkBqOvV6FUMTHDbbTM9OEKcpWdJne/uANMvwXI8bG7v4uRwbN3bI53PEScy1lS0qJZ/xiQoCjRPz4/T6fUpFj/2DBqOjIxiGRqfbxXFNNB12t1rkCz6pTJWfCob3nSZnV/f5Nw83+d9+/oc5fnyGbIh+V1ENykOsCQ2hS1X4JBlSCpUnZZj88beucN999/DI00/y3/7AD1LwPGojNQxbXeM5P0ev08O0bOTQiG9appqgZm8+4G/t5h5NSyBFCEmWJsPMt+F0bwi6yLKMMAzRNIOgH6iJmPamfFFoOvt7B2joFPJ5fv/hxyi6OqO1OrZjMwj6lCtlECoKRnnpVFEXhgG6rqY4Qlev7QjHfRRLIaUkiuJh/mOGZkgM0yCJMxWWLgW6bZCloGnKc6cLoSbWQqLpOnOT4xQLeb7w1a8xNz1JtVZFw1AeOFMDIcky9TtVSyWOz86gIl/UZLLdag8LQGP4t9XUtR2nwwgKnSSObxZ3hqYzPjqCzAToglPH5piaHEcT0Ot2MQ2Nw2absfE6gqOJumBne5dauUCh5A+nGpLGflNJ3ofZiEmkJNbdTg9LF2i6gRTDAHhD54Xnz2EZOs7Qi6wJjSRKiNOIlXiXpTeuUy54vPTqZW47cwrTsrl44QqPX97jx2YmEAgmJkZxXVVU1mpVWo0Ou1sNDFMnl/eQUrB47QYvvXGZMydmkang/OvXeOyp1zk5U1fNtU6PnOfSaXXZ3NolCmMKBRdDN1le2cWzbXJ5VZAfTewYKnVMy7p5TYRBAHBTgizeVtz9ZesLK1t85l/8ws3z9dYlkOqcdPKIJGbl7Je4cGGZ1Jri3ve8hzcWr9BsNfmHP/VP+fX/8z/wsz/9swwO4Py5l7n9dJW5uUlurA39cEIjTjT0TE0o4yimWKpgOnUee/wpTs6dZGX1Kr4v+a9+5CT//X/8Ku87dT9Bv4/v5jB0jfroBOVKidGREfyco2TfQZck7nHq+GnCsI1r6ri2xfjkGL5n41omhq7j2A6m46gm8FGzftjQMQxjeC8yhjE4SgUURAG/+shv88nvv48vfKHBP/j4f83Y9AjddhchMg4bDfxcEceyaDWbBP0BhVKFdnvAwcEB7cMtRv8v9t48yLLsrvP7nHvO3d/+Xr7cK7P27qrqfdGGxAixCmHAmgHBQMwAHtke2xOO8MRM2AweRxA2MRDEOBw2E4YBDwMSyCCE0C51t6SWet+rumvfK/fl7dvd/ce5mV0tqkEQ1ngJnYqMjMjM9zLrvXPP/S3f3+c7M0s0HqJMrcAwUDiWy3DUJYtTojRlc/MWtltkdXWDuZlFEIJXT79CrVLDcXRH/vLVy0w1mihLK2fKxSq1ahXX8YiTEMdxmARjioUCi4uHqNca2JZNrdgizYQAACAASURBVFpjNB7R7XSwLYevPfkVTp18QIPOEl3cWbu1hmEoiqUyF869RrNWp15ztN8qMWkSkqX6Xp1kMZZl49jadiPN9DyyIQ1s29ZFpiTWRRRpsru9y1Rjlsmky+zsIiQRtuMzHvVoD4bcffc9FP0SQgniKKFSrfH8c89w/wMP4fsFbt64yTcuPskDd1fY3d2lWp9h7thJTUAWxj6Rd09VoRO2N+Pjvff5LzvT7Z313zLutHf2fxvJXXbbv2/PrOwvrzvF8d9N7r7Da8/n7q3jlt/G42770DKubB/I8letPTDKHup6v1OXf2/P0mC/k5h35m7fHEn+2Cyvlu7pLm+XaO5JSvd4QAYCWyoMqajUqmRRojsGqcHm1jaVeo3lo4fxPZ93vPMBPv3Zz/Dh5TmUsvn84y/w/e+9F8e16bZ69AcjkiTmqdfO8oF33oMwMpQUkKUUS2W2NttkacaNG2vML8wyGgZcv7qGZQr6/QG2ZWBKg9Qy6bbbpNGEuZkG4yDQUhdD0mntYpka169MW5uHJxFZGmNLjyiALEtQtkGaJhw+MJ+bcxuYtkmx5KFMxa2VbYIwolIrganfsTjKtJcXgls31yhXfZJIV/LvPjKPX3YwbYGhbOrVKkYqMMioll0ePHEUaUgMQ1CtlfVrnGb8wZ8+ScG1WF6aJo5CHNtiEiUoy+L8xStMT1VJM0GaCYxkQncw0GbRliKJQnqjMcqUbG9ts7m1gxQan+0Uiggh6LT7OI7LaDhGmSaGKTGUxJDaL2swGGEketbNsW2EyBiNR5QrBfrDIa3OgGK1opHxUpKlEomBaShmpuqYUvHnjz/NI/ffw6DbZzKcMD2tvc2CIMHxTf6rly/yDz9wko3NTQ4uL3Dw8KIOBrOUKAqwXQukDiyFAePxBNdxNV0vyXKAgKRQLROOI0xl4dsWG+s7PPf8GywdmqfcqDBoj/B9D9s2UUow3agQDkNurG7yyuaYDz1Y5HvfexJD2iAsjhycwpAGGBntXpcf/9FHeeWVqyzMT1Ov1UiilO2tDtVKlSRNuXp9jUajRr1exvN9sjTl3IVbHFycod8bYtk2hrJQOJimwfbuNgeXpxkM+iRZgkh1db7ZbHLz5hoii3n90ha+71CuFMmShNFwgMyDNNu2KVcqkBl02h3SLCJJMvyyj2lLkizGcUps3NrF80GqhCSMEcLCdi1s18QvuiRpTLvdY3F+BjItt5XS4MzrlxgPUp54/CIPP7hIlqYszjeYmqowmQSkYUyWxnzhyVd44P5jjAcjJJBaknqpQholeiZSGXieiW3rgkunM+bB+4/TaPhEQQwi49rNVRbmGlqKaCps16TX61CpapuHYS+gMVNi0O9hZpLOTgdpaknaJB7wR9/c4ld/+gEcu0gmUpRI9uc00zTZT2YMIJiM2djY4JOf/Sqz0xWqtRJ//NQV/vOP/qdcvXyFHz98mCzL6A0iTCWJwohOq8OzL7zGoeVFRKZhJ2QJabJXVdcY7CTT/x+RCoSUROMQEkjiFNOy2NnexfN0lTkKQyxHEw0tR8tpLdvaT2Z0KdugtbXDE8+/zIljhzEMg2alRNUvIKQkiQOMJMayLYbBBCm0xFlIQAqUZbG5tkKx5JPGSd6dypgMR2S516gQ2qwckZGRIAxTzzDnEk9D7SWrEgOpbXWMBESCaVgYAoQBaZZw4q7jWo4pDNY2NvB9DwxDdzOTNA+GJVE0wfUswjhBmlpWqCyFISVpmpCFAiFNpLIAA+IEkgykvoelCQSTgD/688e45+QhfN/dp1uWSgXSJMFzfRzHgcxg0B8yHo0pF2xKRR/XcbRUGIEyTRzPx1AmcZohhGRjYxvf9ykWS4RRSJbGZClEARxYXsTxbAxCOu0WpAIpDH7rq4/xX/7893HwwBy+51LwLLxikZvXbrEwN83mpR3evdhkd3MH25ZkqfYhHI4m/J+PPcPCVJGZmTqGaYI0mKqVWFnZ5q5jS1pK59ls7rZIAv1/K1WKJEmMV3KoVIoMh0PKjTJJltId9pmbqzEejPW9L5dpZykIkYJIEJkiibRpupagmqDE2wYsd4pA/uz6Oh/5yIfvEMgIUkORZgYyjSgWS5x75goXr5zm2KEqn/6jr/CjH/5ZKvMmP/juH6G9ucVP/kc/zW/+6/+Zn/vFX8JJn2d15SL1ajGfkzvIOFZUKpLW7i5RnLK5vk61aLEw4yOrU0jb4cCBeXZ2Nvk7D1j8yr/7Kj/40PsJkwhDKkxLYBgJtgJDJCTxGFMJavUKlmNiiJhgNOLyuYvMzddRTkY2ycCURCIlmASoVKIyiVMoMg7GGBLCKMQQBuFkTNEvM4lSdlsR/+vXP06cSR6Z/WHe/fD7qDZq7O7uoJSk1evj+UXd2Y4SHMvnxee+yaHDp1BKcGBpgXpjCtf39eyzEYMhEKkkSseYwsJwXZJJwtz0IqvXz5Eqk/MXL1Hwihw8cgjlKpIoJo0Sup1tkjhjMhzjWCbVcpk4zoiTgJ2NDcajAdWKhglVKlNs7+zS7fUp+CVc18e0HYQRUCnNsLJ6DZG4pHFMt7/O1nqP1199ic0bZ1iYm8b1LSqOwnNthGlh2j5pGqFMHVdMgjFSKbIs1nGllPklrmnhUioQkp3OmDfOXmJufhbPc5AYWKZNGAw4uLxMphyuXrvJ4eUjkAmUNHEcl9nZec6ePUu306XVWuNc5xLOYIVCsU5z+hCH7rkf3/E08QdDixWkgSHQZ7cB2nslL4DdYe/vwVfeSqfYK+aBNDRASnv/vlUVB+TxN/sfb/36HRgZf836rizzP+BKb+vc/U2Su7es27pnf11yR96tu5Nh+R3n5u5A2dlPIvOEbq99/pZKXr7xbn+2/QQ204CFKIyYBCG+7wOa1FbwiqRpyDefeopPXLrO+wtFHCmYn2/yxNOv0qiV8H2HSrnI4lwTU2kU9U67R61cZm1th51On+1Wh8MH51FK4nkOllJUaiUcW5uEbm21KdbKWIbBqD8gCBPiLMPzbEzbodvtUypoM+VWZ6iNRYMAQwqyVEuVkiwiiiI982GqfSiIaSo9E+fY+K6e47AtE2VpmQaZliohBLVaGUgZD8J8fklgWWbus6KTuMlwwuWrN9nabeM6Hrs7bY1qB0ajMaaluHhllfmZKpWyT683pFgoYHk2lqlwLZNC0SdJM5I0Ix5PsB0H1/cY9IcUyyWU1DKSQX9IwXWYmqrj+T6mqYPWx559haWZKUrlIhcv3aAxVUUqSRzFOYQA3HwuaDIOCKOYbq+PkALP9xBCV9zCSYhlKkhTLl68RrHo0u32GY/GLE7X6ffHPP78q9RLPuWSz5986SlIEg7M1Vm6r8lsrYCpTFbXNnVHMJ9xcVxtAO9Yjq6UGga2ow2alVL7Xl2TyUgHFIm+Sexs7+C6LouLM7q6boAyFJMwxLQU3W6XdrtHpVSh3e3y1PUOv/CBJW08m+99JXVVNktT5mcbJHHCzHQdKSVhGNLt9njmxYusrG1z6OAs5bKGi0glUcrIE/SYF1+7xJGDc0wmAf3hGJFmjMYDDi3NkiQxrufhuC7nzl1jbm4aqSQZKY5tMhqHuUef9i4bDAdafiwVnueSJilra5v0eiNK5aJGYCsDSAjDkDiSOI5+vtFwjCEtlNQywDRNiBNtuN6cqnHhwnUajSrj8RBhZLQ7fZYW5xAioVJ1tKQv1a+757kaYJSmHFqeAfQNzbJshDJYX9nk7IVbTDcr2K6eIc0QTIK9+b+Yja1dqtUyjuMw6A+J05RyqYAhtczUsiykVLx+7jrBJKZWL/LamauUfZcz526yuDhFRsZH/49r/NrPP0ytWkdgkZIipWBjY4ssE9h54gRaRiOllnaaCpYW55FK8rkXb/CRD/8En/38F/lAc4ZrN1d45Y2rPHfmLCeOHkApyeFDS/zexz/Dg/ccQ5mK0VDL23Z3W7ieDwL63V5OITRo73a4dOkqcRRRq2sku4aNGPn9XuwHEFmW7stzbj9v0zTFMi1OHT/CcDDCcWwuXb3OdK2KaZkUywX6vS6WY6McB5HpcyaO41wiZBCMJliWxWQc7FempZIYSrG9uYtl6espTfVsYJrpZC0KY5QpSeKUIBijlKml+FlGlmoSsDJMgiBAqjdl/p12n92dFtMz0/raHIdaooogiiJ9vuTQGaXM3PbCIJwEeRFSYEjIDKETVUPkCUnu1yr0ORtFEccOLuIVnH15VLvVQQqpQSimYjTMDdLTDKUMkiim0+3T7/dpt7uUK2XOX7xMtVzCNE12t3YRwKcee5qFZp3V1XWqtTLkHco4TrEtE7KUKByjDAPb9Wi1OpzutThxuMRua5dur0ep4uEXtc/m6soG7c0hJ2oVRAY3VzZpNuu5O0jG8aVZCo7F+tYunf6ASqVMFISYmaDWqGiYkmlx/NAiU40aURCSktLrDcjSBMdztIdlLqts1CrYlrUvyRNK5jh+CWT0en09yyvQslNp6PsY3ypAe+t9/lvXn11f/8swFcjlvYIMgTRSkjjCS8asrFwmEzA9ezdH7n0Up2Dy55/4HP/oo7/I17/xJK8+9zSXLr3Ej77/UaQoUHBrFEslgijA8U06Oxs0Z+YwpML3SyjTYmdnm+m5Q4zHA/qdHVzPx5Am/UGKPZymUHRIcrgSmR4pAYHjeLoDFcX63ozA84rMzE3hug5KGtr/LsrY3WkhkHoGU0K310ZJA8d2IAXTdDCEZBLFSNPlN7/w2/yjd36Uj3zwJymWKhTLerTDVCaWaWJIXcSJIh0fTMYjFhcPM5h0EJnBoD8ijidIUxeAw2SC63mMhwGOaxPFEXEaIdIEQcr0zCyWXaSzvYEhJY2pafRFBKPBkKmZJoaU1Os1UmLSVPu3ur6H7xX13K6S+EWt+AiCEY16jSee+CwzzVl2d7ewlE2tPMWFS2eol6cZ9Hs06hWeefabFN2Mer3IzOw8jmVR9EyiOND+omkGIiVOJrqrKQSu45Dk8eVoPCRNtS9nlmW57DXVUKeoR70xTZYljEcjbc2kTJJMcHVllXZ3yPL8IkGklQeajiq5desmhw8f5avPfZ3/6Vd+gfNnXmAUxLR7E973Iz+KUirf0HquTsOevnXDv5ms/eVr4W2klHujTjmw6FtNzN+OkXGnr383uft/6fq/I7mTedv/r03s0F03Ie685dI7df/+muRO+4C8OYwr9n52b2bwtue/Pbkj0RS/0XiMyAS//hu/ycMPPICpTKJ4wvu/93v4zOe/xCmRceroQS5cus78dJ1arcKFq7eYn23S748wLUmr3aPZqOG6bi4RKLK128ZzLK7fWme6WSOKYlqtNgCr6zssLy8SRglKGIg0pVApYrs2SRSQpQqVAz+UaeJ5PiLTVLEojNjZ6mp4ChH9HJ5i5ma/pqnNbJWhb5KTIMQ2FZZts7uzS7FYwEDSafX3h4B73S5xEHPx8gobmztUCz7BONQV90QPODcaFabqFSzHzX+f3JdIZVnGiaMHaDQqCClwPRdDSe0tlWUoqSv829ttiqUio25fE/eEoT1n0pRonBKHMU++/DqP3ncXo/EEw9Do7a2tXd754EksU5EkKVNTtXxQe4Lj2NocnowojrBsC9t1kEpSqRaxbFN3WSwdOLmew41rK5QKLoYUlMoF/IKH6zvYroPrOizNNnBshePanL9+i/uOL/OfvHSef/zB+3ViYJpUyiWiOKbT6WKZFnGoZ3WyTAfm2VsqWnoXJnGCEGCZFq1WB9/3WFndoDFVw7IsXnz5DJZp4HouypKkORHQ933WVjY5ceoof/LUBf7uu2bI0oxOp69fkzhGScXm5g5n3rjO9FQVZUrSLGZldZP5+SYn715ieam5T0k0BDz70hvUKz7nLtxgaXGGesXDL/hsbrUYTWJmp6t6lrDVoVgqkySZJphOVbA9h3EwyT3obGbnmpim4tKV6xR9B8e1sG2TLNOJ5+tvXOal09d5x0PHERlsbbYolwqceeMipYIOOJRMSVJQ0qHbHeK4JmmSYFkWQO6DZeBaJlEU4hds0iSmWHSwTJu5uTqtVodiwcd2HCaTSf5Yg8tXVhkOJ9y4uUmjVtFfFyk3rm8gENTrRdyCz/bWDmEYUalUEGSsb+5y7dYmB5fmCCYB5bIGILXbPQq+j8BgPB4zHgXEScYTT13mvlMLOJZJmmXEie7MfejXn+aLv/r3+LPPPs5UtUTBL2vQgZQ4rovj5HNEaIjJcDDCyC0H5maaWJaFZdn8+8de4+c+/ON8/JN/zk+fOMlwOOLirXV+6oPfi+e79Pt9PN9jfqpKpVbetxUYjUaUyiXSHBZiO1ZucyPxfZdGo4bne9iuxd59XpAnXbksPI7iHLgl9ou5WkKXQ0gMQ0OQlGR1ZY2nXz/PQyeOah8rw8D3HQajESovIr1ZatYUU99xdNCUywpN28xjGsnq6gbN5hSGkc/m5TI9eZvSQ0qJMiUCI5d0ZiRpzGQS4Fj6TCDTUIBBf0CxWMxfVw3lMZT2gZNSKz4MKXPIimAyDjFNDRDJACUlcaT9LaWSuuim70QkWYySFhno31MqMB6PNYzKMCCDL37taWbqdUzTIkljXaATBuPJOLf98InCmGpdnw2dbpdDhw7Qb7exTBPXdbh67Rbvfcd9lMslXnztde49dVxLzeOEzY0dTEMg0oTt7S2mphoIw9R76MI5/u733k1jqkalUsCQ4PolPMdhaqrKzpUtjjXqdHZ7XF/dxiCjUPBZWdukWisxGAyo18vMzjWJ44xee8D8zBSTMCbIX6ckSfnsY89y9dYGBcdk/sAMG5vbFH2PLEUnw/k8pYb3aBhYlJOLdfBs4LqOPmNtkxu31mg2a3q/3CnIve0+f/v6wzMX+Vd/+Lt3/uHbkjtTaDXM17/4F7z7vQ+zsb5Olvp41Xlc32P1xhovvPwM7/ue93DqrkP8F//Zz/KVz3yJixducejQMSbjXaJ0hGFlWEoxmYTs7G5Tr9exXRchMjynyssvvsDBg0u0Oz2efe4lPvzDS3zsyRdZLtyNbev96zoecRQQx3oW2FQmYRhim9Y+8MrzPd3FySBMRpC6XLt0hcl4QLVeB0OfnY7rkCSCSRAzGgYIZeK4RYbjgA+950P4FZ8kEST53gnDECkk7VabarXGeDwGNLU3TbUiJjMjstigWmrguBaGkRLHEciMIAho77SxbVt3InOVQ5JMMJWBgcFkOGBu4QCnz7xMs7nA888/TRSHVKcb2LZDEIwplQtMgjG+73NrdYXTr77GwYNHcX2HTMArLz/L/NwCtm2zsLCMUgaWMvnq1x5nfnYZ08x45blnCCYjbl45Q8FXvOMd76FYsCl4DlKAqTLCKCAT+npXpoGpJHuNrCSJCcNAQwalwjQtyFLCMCAKQ4QQ+H6BcrkOpJimvuddv36RzLDw/AqjIMU0bRq1OmfPnaEx1dRxS6pVEpcun+P8+ArHF6c49/pzdLtD7j51Hyce/R5dIN6zOvgOJHfaXkwXo98SK383ufv//oqT5H/Yu1H/TdbthuO3SzRvf5uT/Aq5/WuG+KsP5T2ZZponcEY+yL4n0UyzTG/XfHMZUjKZjLFtm9FoqOfU0mSfAnRbI3pfoimEIIy18eyzTz/LwQPLPPrgQ1SrVcaTMa12G9uy+fs/8zP8N3/4R7y/WMB1bSrVMhubOxw6uIA0dcIgDEG1UsK2LbqdHlKZbG+3OHZ4kSyDhYVpxuOJRlcXfRzLoVqp8Ht/8gThZMJUpUyr1WM0iTGUpFT1+cyXXqDoudSn6mQpt/k8GUgpKBYLKCnZ7baYm53BzglsnXYXy9bV7SRKyDI0QtxUtFtdqkUfQxhcvHCTr710jnuOH2Rnu0U0jrBNC5FmbLf6zE83tMGymXd1khhDGoyGAZ//+oucOLJIFMZcuXaLbq9PrVohiAIdjJom/cEQ13VIUu1JlSUJcRRTm6oTRTGf+NxTLEzXKJZ8HexgEI1jBv0RS7NN4izBLxSIopibN1eoVgpIYYAhuHVrUxvG5/OUcRgThhH93hCv5BGnKYbUOPE3LlylWi0z6k10tV/qqrvvu7R3WpRLHv3hiDhOcrKeDg6zJMZxtEHyoflp/skbV/g3v/RefM/XRYQsw7JsDCWZjAMKhSI72y3auz2KpRJRFEA+4xCFIQhNCmx3OpjK5rXXzlOrljAtk0qliGnarNxcw3UsfN/DtJUmbBoSqUxMqTh95gLLB2b5xDfO89Pv1rOglm1g2gYi0VdhHCUsH5jGsi1MW+bBkQZWgJZxGOigaTIes7Q4w2g0YuHALI5rs76+Q7lcoFwpUSgWIJswHk9Y3+ww1ahhmjb5k5AkMePRiGqton0GY90x3trSzxEEoZbMhlrSUin7lDyLYsGl1+3hOQ5PPHmaB+45RJYmBEGMZQsMw2XQD/ncY69x8q452js7OLl3oQbGJDiOhWULdnZbjCYT6vUKyhT0Bz2KhZKWqOoLnc3NHTxfd2GfeeECRw7NUCz6jMcjLCV57Mkz/MD3PUiSacKp7/qMxwG7rQ61WpFquUijVuLCxVvMzjb0bKBSXL66Sr1W4smnz3D44CLCUNiWyT0nFlDSoFD08AoeU80aH/29K3z2X/49pGlz9+FlhsMRhowpVar0B2OUaRHnKPu9E9SyrRwlLnKCsEEUx5y7cpN6o87u7oD31hsYCB69/y4q1bJOPitlhBQUSj5pDl8Shr4uQSAMPR8npdr3T0rTBGEIDFO+WRTLCzNZqm0shNDnUJpmGvySn71amqP3g2lraNCgP6RUKnBkboY0iXALBQxTYiqlZemODkqFyIjCUM9ZZSCluc9x0XClCCENRv2AL379eYw0YWauCUC71aFU9iGFcBKzsbZFcY/4a+iKepTvScexERjaWJs9imiiJfdf+QZPv/QG99x1BCWVTi5M881gSUd9+voRe+MCBuEk0nTKxMhpjgYGgkxoOA2pLka4rokwMoJwgucViEJtwXDs4BKu4+B42tbBVIqVlTVOn7/I0uIcayubzM7P0mp3KJZ9rq+uUq0UCUcjoihiPBpTr1fxPU/PadXKWrKlJGmSYDs2dn6ejUZjPacmDG6trPPF9XV+4MQ8hrQYDiecef0qzekaSRQRhxGjmx0aro/vuNTKJa7eXOfA4gzFovZHLBa1EkIqRRqnnDl7hUPL89iew3Aw4tOPPcuNlQ3uO3aAB04eoT8YUSkX8lleQ8/RSpPr19dwbBvbtXM7HAMz9/ZKk3jfYNpydReq3epTr1c1PfCviSNuX//q3I07d+323t88uRNZgiUNXj79KoeOHsIVAc898yTv/b4fYX19h6mpBsfvXuD48cP4luRjv/87HLyrzrWVi8weqDA7W8BUikE/oN/vIAyB67q02i2kMvF8m6995XEevPckQZTQH8Ycv/t+PLHIu+85wK/8wSd4/73vwdBqP6JIW0IkaYphSqRpIoSZy411fBVFCUq5BJkgTlPmlw5iuh7StFGWR2rZjKIMqzDF+u6Al147x9TMHF6xhpAOGBbCMImihMGgT7uzg++6KKkLGY7lIHNiLaTYrovn+6QTbR0TRkM2NjbpdkaUixVc16HXG3DhtbPMLCxjCMnmdkS318ErlgiTgIyEhflFglGbs2cvcf3qNR568B2Uih47Oz2Krvb5VVLhmB7hOMXxirhWmXqlztb2Gr7rM7dwlGeee47X3zhLszlHEqe8+urLKNlna/Umwhhw9PABahWfZrPB0uIsghDbFggSTDKksnC9AnEiWVtdwbWdfYigkc8nx7FWB6VxnMvnUyqlCnEUEgUBtmVgmxbjcV/PKGfQae0wHI1ZX7nK6laLw0dOUnQsjt51AtuySJKUGzevUqlU+eRn/pROd403Tr+EqVKSDI7ddYoTj75HF8mzLC8e6TN5r0mxX1wDuA12sjcZJ4Smcu8nf7d/5EuT5/ced9tlsSe7/JalRwd4K6X+7a7DvRnB235mDw4lDAMp1XeTu+/k+tsCVd5Oa/uWr+QdOvFXAFPe9ul5U+J5e7XgWxNIIbUOX+aY5b2q3526iLf/BZ7rEExCnn76GT71yU9x9vU3uHnjBgsHFnBsJ69EK65cucqZa9d497yW7hRLvqazSYPRaEwcR1y6dpNz125xcFHj8Xu9AY7r4Po2k/FED3EbiqeeO40tBZPxhLuPLrC8PI9SBuPBmEqjhmnZxJMxrrLZ7nZp1MpadmhJRsMx7XYfITRoYTSaYFoGYRDnHm8K13N1UzKOicIEyzZxXJs4TvjEl57m/rsOkqZQq1Y5vjyPZZlIJRgPA+qNKqVKkYPLsxhKEEwmpFnGZ7/+DMeWF5BSsrvTwzU1XbJULlKrlqmUCijL3J8b+nd/9jhvXLnFqSMHNDQly3IPKEgSvWceeeBuikU3hyhoeIwUGmluKAOv6OVD3wnNZo12u0+5WqLb7VOtlnF9lyxJcRwbqQz++PNPcnllg7sOzetKfqoDz2q5QK87IIkTdnbbkGaUK0XiKGZnt0uWQZymlIoFtndaeJ6jJZaOTRLpivzjl6+ykkz4mR96RJ+LBmyub+K6Nt3+gCe+/jKOJZmdm0GgO4OOYzMYDFFKcv7iZaYaNV1QCEJcx6VcKVGulJHS4OKFa0RhxMXLt3j4kXtQpibN3bixRrlS4qmnX2J5aY4D81Ncv7aKp3rctVBh0O9jWQZZmgCSKE5wPT3PE8ea7pVleh5QKg2qEVJqyufaJpZpaiLreIJpa9y5qQySNMW27Ty5zNhYb1GvV3FdN08SNb1yOBhS9H3SLNWeQkmC43vUK1o2lsQpk3HI6to2Tm4oPj/XpN3pYVlQKPjMz9ZxPJvxZEK1UgMBprLzG0jCwsIUBc8CBK+evkKz2SAIAlzXyTt3HrVqlTCMGA6G+AUXy/YJghDHcen1BriOQy//3tFDsxiA7Vo4noMQBgcPNDBzqbRhGGysbTMJWE2NkgAAIABJREFUIw4fmicMQzIyPK/A/FwTJZUm2pom1UpRQz6iiIxMk/EshbK1x98k98n7rcfW+fV/8Hd0RZeMJImRRkoQDjCExJA2k0m4f+2S93/27DtAk373rAQOThfZDD1+6Ps/wGc+9SlOzMyxvbOjMelCcPr18wRBQBiElCoFpFLa31AIkkRLBqXS1wjCyEmVklTs0TH179s7MaXUMAHQhrdJrFH/wSS4jca3F2jrIETmMivX83Fsve9SoTuSxaJPimBncxvH1dAEy7L3pXj7nnVK5cUQiyiKObK8yOzsdP73xLi+QxQGgODPPv9VDi3M4XsO3U4v77BpWFJrt4XjOIRBQhzG+zAJKQWtVo/7Th3n5LFD+0FOFMVcOn8Vv+CSZTk4JYUkjW7raOqk+OOf+gJHFufy5JF9CI1USs845smvEJoeq5TJxUtXKRULOK4F6C6HyjuC5XKJ2WZD+xrWqqRpsm8vMtWoI5VkOBhRn6rj+R6D3oBLV67hWIpSpYTt2uxs7VIoaxVIlgnOX7pCEmv7D2EYTE03+MPXThOsrPDw/XdjWw5nz17l6F0HGA1GRHFC77UVysUCaaKlY81GGQDHszWdFA07AsHnHnsO21LMzTWIo4hut8e7Hrqb2XqF/mCIlAZffv51ThxaII5jwiCiXC4RTkKyJOXi9VWeeO51Hjp1lG53gOc7+ZkGk1GgISBSkCWwsrbN7ExDF3r/Bsnd20oy4VuSuxhBxmZrh0cefojrZ59BmQlfefJ5zl24yP333Eet7vP0U09z97ETVGoVLDeh0WxQr/oUPYPObos0MUmSCDCoN6ZJUwjCiN1Wi3tPnWQw7uEXi5TKBSqVEv/6N/+AqeYcP/y+ef7Z//5xfvCh95GkCVkqkKaFtEyiJENKi6vXLuG4JVy/SBRnDEdjHLdElCq8QgHHc7EcF8v2iBKBtH0cv4yULq5TpNaYYWl5icFolBcrM+I4QghBo16ntb0BacJ4NEBJmYuccjBYmhKEIUJICnaZbn+bi5dfZW72INsb2wTjAXGyV+R18DwbKSRvvHGGMBgyM7eAofLOWJZgmxYHFpeYmp7n7OvPs7N1i0Z9lie+/Bm63R2aU9M8+bUneOWFV7i5eplrly7Sbq0yPzfLV7/8F2xst9jc2sD3Xba3bnHj6lmydIKlEuaml6lUC5TLBSxT4eS+mlGSU5ENgySJyDAIw4gkgbUbV5ieWchzn4wgDLAtO0+qNBQrCMZ5116PCewVe9IUTMsiikNsy8GyPer1GWzbozcas7vbolwoYdperjjToLyNjQ1e6Z5j0u3xyMP3MlXzuHLtJlEU8q4P/DC+X9CxsHyzs3Z7bHun5I795G6/XfK2622BKrd35m5nWeSS828HrHKn/CDLtBE62Xc7d9/x9Z1M7m7P8N/OUuFtnx7ehKbseXHcIbnb+/7tn7+d5G4SRSipaNRqmCj63R6/9uu/xsHlZQbDEf/0n/5zarUKH/mpD/Mv/+3v8hNzs3zjxTdYmm/mga/BYDDC8xzmpqdYmJliZ1tLEUqlIjdX1hn0R/T6Q9I0wy0UmGtUEVmGX3ZxClpqNuj1efz50zxz+iaH55psb+6wdGCOxQMzxEl+qMYRX3/xZe47dRxEynMvX+Do4SWUErmprtxPHrRvmOBPvvAUltRQhkq5xL1Hl4milCjWcpiLl67TqJUZ9vu8dmGVQwdnwUhJjZh2t0OlUcKUJocWZgjCiMk4oFqr8fzp85w8towQkMYJru8wGo6ZjAaIzGCq4POeB0/i2DZbOxrpb1smW5u7ZBm4BY9UZQiRYJoG4SjAth2icEi336PaKOUAhhQDgyBJKVfLeaVWd2IqJR8yGPR1AjVV9FmYqlOvlZGGJI0zJsMAaUgKBY8oiCj6Lt1uD8+xEUpSq9YAg0LBp98bIjKd8GdoSwLXddnZ7vAbt3b4nf/6Q4xGQ9ZW1yiXiwyHA0xT0e8HrK7v8I5HTmI7FnESohSkse68JEnC/HwTYcDubovpZpMk1jj+OImQysBVuop36do6x+9aQtqKbz7xMq1Wn6OHl2jUKqRxyNbWGo1Gg0988yozakitWiAjIiPGUDZhGGLaJq7vMZ5McDwvl6rpwDEMdXB66+YGpWKBOIesXL25xeLSNMKQSAGDgSac3ri5RcGzKJcr9HpDhuMRhYKtB/ODGEtKwskYKZXuLpom/W6fySTCsmwsyyHLBNPNCr7nYojcL821mcRdbNtiEmQUSwVMy6LTGWGbDsoUXL56g3vvOYIhLIJhB2Uo6vUqnc6IcrnIa2cusLra4tZKm83NNuvrbeZmGxq0IxXSkIRxhMigXC2jLEEchRjAleurOK7C823iJGESaiuGWzc36Lb7LC7OUSr5KGWwsraBbds4tqev1cGIT3/xJY4dmkEp7T9Vq2jKm+d7JGmMZRtkScozL55j4cAMw7jIiaVp1m6tE2UxBd/HEBFB0MH1CiizgOM4BHG0n1YZ0tAgkyjOz0+d9IyGY3zX5nNndvmed72T//Fjf8xP3XWcZqPOzk6Hp547Ta8/Yrfb4/77T+ogRbyJ5U+SlO2tDUxlopQOzoWBTh73irrGmzRNZWhK2z6VLf+cZWiZc6bnyfa8qQbdDo5jE8cZju9z9eotvvLk1zlx93FSYSCyjGF/QJJmVCpF4ijS/maWqSFNpkEU6vMgmARaPWBoi4xa3lmSUtethcgIJhNcx+PksaN4nos0tWS61+uTZRmuZ+N5Hisr6wgh+ZPPfpWSY1Gtlml12hQLxTwQ1TNKSZYxGg753BPP8dCpIyilZ+YMoUERvV6PcrlIFMVkwKljh5EqZHNzlSwJECQYptIdl9xz0BD6PMoS/V74rosgJSNmNBlQrhVI4ozxcJzPwSpc3yFJQlbW1nXSn5LP+QjGoZ59zdIMKeDA/KyWvKUJUqmcSAvBZILp+UxNT1MqaiiVX/AZT8Z8+sp5/vnPPoKUktbuDnfftUQqwbUtNntjDsoSX/jqC3zj5QucOjKDW3CJ45goSmjt9pCGSRwmPP6NV5iuFTl51xLSzPBLDmEUYlkmlm1Rq1VIk5QTRxYoFFw9MoDQlhmJJp/2+iMqBQ9lGNSnannMoBU7pmkyHgWEQYpSFttbbWZnpsAQZMbbh61/2+QuS2PSOOLG9hZHjhzhyqtf5sCCy/t/+IPcWlnng9/3o/R6G1y/scJ/+8u/xs/83D/k8c+v8tv/5lPYqkrJneDYCt9VJJGkVpvWBVlDIQwTJRU7nZv4Be2j5jkG42GXd//A+wjFmFJliv/4Bx/in/1vf8DJ2ZOs3lqlMb1AMImJEgPTLFKbmcewPFyvjhAullsmFYK17Ta2VSUIJMp0QSkyKUjGMQW3yKjXJQpGhKMOyvVIs4yt7Q3q9TrBeMho2MezHMbDbj4HKUnTmPMXXmf54GE63Q5hFBKEIYVChe3WZYqFMgvzR4iiiMXlRQqWh+MaCBlR9B2klSHSjKlpj/mZOYwsRSQRlgBFRpQkZCJlZeUq40GX5tQ0zZrFkcMLVKs+ne46UhmcOHWKRq3E+voNHn34BMqIcS2Toqs4MFtjuupTcTMevf8eFpoVZudmee6plzh25AgZ2iInEylKmgxGE9LMBAxMS5BkMa7nEicZGAbKFNiuudcWAzKU0jAmw9gjVWprCaX0CEyaZgSTgCSJsZUkDANsZSEybauQSgfHLVEtVXE8nyhOiKKYixfO89kLX+a3fuN/4eMf+xg72+s0mwVKBY9yqczBex7JLUry+d18y/6HTu6Mb+nSfbuWCHfMD4w3gYffTe6+w+vbSe4M8jbwbVLM29+42zk8t5uRC/TGCIKJruZ+y0r3Hpd39lLetEXYS9REntjtQ1Pu9AfubcT9dvqdN/Ttm1eiINN4+JnZOR54+GH+wS/8Ivc/+ABJmvCRj3yYVneXTCScefUsy5sdVjZ7jPpDlg80CMMJwSggjfXAfZZlFEoFdre08XGtVqZSLuLZEt+2eP7V8zRrJYqVgvbWyrQsybZtFqanuGtpikLB5sbWOr5nYSqJ49hkKSSpwdGDh9jZ3qVYLnFgeYZr12/iSAvbMun2+hSLPpZt8ca5y9QqRU4dWWZ2dopBX5MXlS2xbBtlSm6urrKwOKMr+MLkxsYGzVpZG6ZKm8koYjKMCcIJUpqcfeMGtUoJ25FcurnCdL2cGwsnpGlGkia4JQ8E+J5GsEtT4trarDNNM1zHxTQllqmIJglpHixsbbUo+i7Xbqww06wjDYOb19eplYtkWUYYxJiGYGtti0F/yPziNOMgIMvA813a3R7VWpFKrYip9FxQSkJKjF+0c1PwoZZn+S6W6/H7n/4axw5MYTt6psfznf0gqtvt4xd0YrTd6vIjP3aSnY0tZqan8TybyWTC1FQTJW1cx+DY0QMoy2F7exdLKq5cvsGoH1EpF/K5xCFKQhILTGWSpjEvv/I6c7PTJEnGzm4Ly7F45OET2I7FC8+d5oEHThJFE0pFG4OEbqfP1astDh9f5t8+cZEfOlXgxsoOs80ZHEebGw/6E+Igw7FdlKG4dP4apjCIJhFJmJCECUZmYFs2ju/R7vQ5sDTH7HSNzbUdbKUYT2JNEMwEre0WzZkawSTiz7/wMr6rqJZ9SLWUJY4TbNeh3e7hOhZRCJubbWanp2jttsmIcDyLOAwRpomQFpNJiO97JJGJYVgabpGbP0slsF2LXq+P7zmkSYxlGli2IE5C0iTClNAf9FhammFmeh4ptCTw5ImDpEmszw2lNAwlSfE8jc9W0qW928W1BfOzNUrVOmliEKcxvlvAkIrRaKi7D1mEXy4yHAwZjyI81yOJY4JghGmZHFpuEMcply6vMDfdZBwMsB2LSRAQTEIMJEEYU68W+ce/f51/8qH7GQchUZbQKNYQQpFkNmEcUPbLBAHEcZS/FlrilwQJtmtpE3PHQimDwWBApVLijdPn+d0vvsDxA/M898qr/NjSQda3d/ELHstL85w4cYQjh5YY9YdIJEpKkizJ58QMyuVKTnkDhC7QpVlGNB6jlEKQEQUBWZaiJYw5mIQ3JTxxHOYdO7RnoaEBF1LZZImBZQnSNKZQLNNsVDSoKUkxgG57h4JrMpkkkEC3O2RldYPpqTqDUR/Xc0kyMHKPxTROEEJgaOQsG+ubOLat/zIpc6/UmP5gQJolOL5PGAb4ZV8nrVJRKBTJYnjg1DFKZZdxMEQpKNQqGEoSRikYBjLVs1LHDy/uqw2EIRgMB9i2j21akCb02i0sU3Lj5hq1RhPXLyCUwvJ00ckwJLkSWpNzMbhx/RbFUkHPwhKBYWApn2gCnd02cRIjDOh3+1y8dAPHsZlu1okmIzrdNtI0wJSIeEQapOxudUizBGVLbNckTsnpyKuUSj5SCga9AcoASwk63Q5e0WM8nODPG9x/7BCeb9Pv9RkMB/iWz/WrK/z3f3qan5id4dDCFPcen8ct5ub2UiINwXOvnuPQ8gxb2zvcd+oQ8/NNnZxLRRLEOF6BLNW2O6u3Nphq1EjQs1/bm22efuEcCzNT+EWb4XDI0vIMU40SpbKLZUsMNLEUBGkMn/zis5w8togSBnEUUW6UyBQY8VsBELevOyZ3P/OTpEmGZfraOzMJtbohzbNEI8XN53QzUqpuhTNPP4HIBnz+819ke7XFpWsbfOILX+BdH/h+dlodZusLvOsHH+WHfuyH+K3f/h2G3T7LS8s0q4rUaDOaDChWTKK0TaE4hes0qBZ9oknM1tY2rm0RJ2PGkyFzUx5J/zpW1uH737PIv/+LV7j32P3cuHERyylQLlXwXJfOIEAISRBPsF2L7qBHpVrDThz64zVeevIVDh5tIIg4+/JZqlWPKBxhOxKpMjIjRaUBIh7jmZJRr4VtCjzHZNjfxJApcRQzGI4RImVmagrSEEg4/fI3uHz5KpVCg2rVJzMstnY7lOtNBqMBrjIZT0KUYZElIXEUoywThbY/0soByJKIjITU0JHldLPB7NwM1XIRy7QhS1ESfMem5DoQD/F9j6OHF0jShHKxhGkZVEsunmvT7+9SqTeJ0wQhUkRqMD1TwXOtXH5t6IJKHBOHMYNuh1KhAFlAluUEYdJ83EVBprt6plCYyibO1RmW6xInSe5pqYumSRQTC11IMgREUYIhNLU8lYrOYMzm9hbbG9us3ugxM1fl/NnXWDqwzPPPPc/f/+jP8d/9i3/B7/zWr/OOh45w6czTABTLTU499A5mm1M6oczy6yLV5EtB7jsn9FjL7Zv+9nRN8NbkbU9tsR8Lizfnp99yDd1BUqmf+w4J29v87B1XDvITQvw/ltz97d36/n+49mfVjL/Zy7L385Zl3/H7e8+2l7h96+NSvnMry1KdZBki99ka68Ff2+Te++6lOTvDBz7wAZrNGX71l3+FX95a5YF7D/DOR04QhRmjYUSx4FOuFGm3u7x+/hpkGdPzUyhLYpgSYQqK1RIXb65ydGmWQkkTOrW0yYBE0doZMB6ENOpTuE6BR+65F8d2dICQ6Yspyv2MCgUdPJBkLMxPs93qcPPmFr5TIByn7Kx3OLZ8EBI9GBwEY+YWpojTkDAMmEzGKNPg6LEDWLbEchS2Y3Lq8CLj8QQ9QJzw5adfZWNrB9dx2N1pc/fxJYolD9Oy+OD3voNiwSOOYr7y7CuMRjp5jCYpIlUowyEYZaze2CEl4sKly0hlMBgMMYRiMopIk5iVW5sIDExTMRyNkYZiOAqQymRxYQYMGI0nOLZFmqSkZGQiIxyHeI5LFMUkSUKtWiaOEtIkpb3b58rVVYJJjON4rK/tQiYoVyvYnovv+4gs5ec/+N6cZAlpktLa7ekKcRhRqZa4eWudIAj5pRdPc2C2ydGjB4EMU2n5Xhwn9Po92p0+166vkKUJz7/4Oqal6A1GNJoVpFKEQYQ0HOJIUSoXSdKYKI65/7676bQ72LZFEEQEkwmf+osnmIwD7r3nOJkBywcP8Mef+hqW4zE13eTRd9ynvYmEYHlpjruPLjAYDAmCkDRO6bR7mErw1SefZ319lbmFKqvb29ieNjsfjCKuXNvIYRTQnKkTRxHj8YRyLjWeTEJ+52NfYzAaavPnDArFAg/dc4ByyeczX3oJZVrcvLWirxfTpNGo0W71+OQXvkZzusCFi1e4tboBGFy9ukqr3aPf7dPabVGrVxjlFNet7Tbd3lBLlvN9vrPT2g+Abcvi9bNXmAQRwlC0OgNc1+Gbz1/gldcv47gGqxvb1Os+iIQ4CTEkBOMR/xd77x1k6XWe+f3OOV+++d7OPT09PT05IhAEgxjEJAZR0lKBtKhdbam0wcVSbbAt7Uq21yV5tZa8tZJqVxatlS1LopgzRRAgcp4ZAIPBDCbn0NPT8fbN937p+I/zdWMAgSJoe3flKp6qWwC67719G/2F877v8/yewLNxHZtet4VOYuKoS7kSkJIyiGJ67R7NtSaWhCgakCQpaSJQyuXixQVINa6bo1AMcFwLqcDz89iuS76Yx8s5RGlIwgDHcWg02wigWMhhW4oEyZ88scKHJ1MuX7iMpzRDpRyd/hr9qIOwBlSrPkuLV5EqJMhZaBLiOOIb9z0GAs6du0y+UEQIi25nQKFQJEk0+/fvIhcE3FpYACHp9QeUSyVUdu0yEj9BFMUsLS0bwqNYh12ZW/N6dI25Dprv265Dp9lFa4nERqQWSZxsTO2kUCTruXTSKBcMoj+7lguBpRRf+daD9Do9tDa+51KpjOd72I4NUlAbHqI3CCmUcvh5n7HxYcZGh9BCE/g5okFCHKXEYULYjzYk56228VMPj9RwXOMftB0nk7kqypWSyfJLNPlCAaElSlgmlgBQtkYpQbPe49FHT5D0XeJ2i87qCsQhcWigCqnW+BlYSUqJ47gUiobMZ1nGB2s5DkE+z8zMZqSUWJbCzyblRnEgkFYMKqI/aKHFgOpwATAZdI7rkiamgbm0vMx9jx3hxOmL2JZDoZBjz+5ZM6lLBZblUasOIzGxPb5XwfEdRqeGKZSL3Lq1ShRbWMrI2IeHaly/dhPHMfEjStroFGrVGt3OgGK5xEQlx+rSEv1+xNDoKM++cBaE4MWXLxLHMUkaI5VgZaWJFtJ4+Rwjr33HvQewLJtNk2PYtssLL55l/ubyBtl0YX4BKTUrq8ucvzFHnIQ4rkWSxLQ6bbRKWVhaJE2yzbRtY1s27XaPbqdvLELSSAURCT//sXcZKbESXF9Y4v8J9m18bIywn+L5JdqtPmEESnroWGYSOdOSTuMQheDpRx7EKRb48N//76jt/FHsOGYy1+fauYf4rX/xq+zevJP/+Td/l/JIjbxb4+tf+S5//+/+Uy7ftPnn/+qr3P90SqN7kG7nTfyzf3I//cYeov4KiwtPkcSAkFQrRYqFPK7jItIOa2sL9KMBUZpQLgf8k38wzqcf/j+ZndlBMW/T767Qbi/hxms4YR0nXKO/ch0vbrA2dw7H6eLaMVrWGfRWiAZ1DuyfReoelhjQay7Tay5TcCRp3EUnPWwrJvAFcdQkChu4rkXg2SRRl15zGakTokGXeNBFpiH799/BW+4+SDEvsElJei2OPvcYca+BZwluLM6j3IBBrEi0h+sZ64EWNonQCEciHJsEi1Q7KEP3wlYSS0Cv2+TY0UPEiVExoFP8wDSF3bSLrftYaYdOcxmbzOqjE4ZqwyzMX8R3LeOrD9uU8gFSpAS+hxIChWAQhQSFgKDgEetB5gcHA0IxECdDt5Z0Oy1SkdAL20gFtmXTbDZMniYamcnkhRA0GoL5m3Xi2MJ1fKQliNM+q6ttXj5xnjCSFIeLVDYJ/CDHvfe+g//wzT/kF3/jF1haWCCfC0hjh2tXFikUhrBtD51qJjZNkKRJBtr627vWY9B+UHXef6n1w8ndbWt9YqcyuMlr16tkkrf9e7re5fgenjuZdRHWJ3i3++zWX3+7JPP/7XoVDQiBTk3XvFFfI/B9coUc5y+co9Mxnjkpzecrl/K8fPI0nz1/gY/PbEYIyZVrtxgdqSKlwnEcmq02k5NjhOEAIUG5toEvKMHIcCUz0rsbo3IrgxKcPHeZ1WaTyfEajcYai0srFIo55m4uEkcx+UKQ0e56xhOmDRBBJybjz5Y2n3noWZbmV9kyNcZXHzjCzq0TCKXpdXt4vrvx2w8GkbkoZZ6G9W6L+RmW8bxJyZ7tm8kFPoPBgEqlhO3YrK6sYSnL0OO0MPEB/QGe61CuFM3fKQMuuJ5DvhTQ7pgpjJKWkZ71QwQCpQSVapFmw4TbeoFPMZ/Dth3arS69fojve3i+iyUVQhm9u23bxHFKGie0Wh0c2/hngrxvqGCeT7lcNCTARFMsGc9RnGps22x++t0+YX+A63voJOXhQ8c4efE6ecchCmOKJQPPCXI+5dkC2yeHaDSauJ7L3Nw8hWKB5lqTIBeQy+UZHhkCDRNjQ3gZbn5iYoz6Wh1pSTPZUDZhOMhgIAY04/s+SiqGalWEFBzcv4Moijl+4gwvn77M1plJ9u/bRhSGrK6ukS8WEaT82UMv8d7tPo89c4rZ6XE6nS5Ca1zH4vTZq+zYOspQNY+XdymX8/T6IZVKmUeePEmtWmBpeZVT566S821DypMCN/MYXr62QLvb5879s1TKefq9ASsrDbZsnmBtrcm9d+80AcnKNESUVJkkJWT3jjGCwKNaLppJXpzS64cUiwH5fN7cwBIjX7Esxdfuf5EDezahLGvjOFTKQClkJsuK4wjPNVOBUiGPRrF92wQjw+a8Gx+r4noWiwvLhFGE7zk8efhllBA0G23KpTxSGM8IOkVJxcpqiyAIsJSF7cBavU3O95FCcvX6PN1uRDGfQ6eawHf44jeeYtuWYcBGWIJ6o0U+57FpcpgkA5bkgiDzGSb8yX0v8aeHuvzmz7+dfbtmaDQa1CoFrl69wdDocAZismmsLuNYkn4YI4RGSAulLPbv3YHWUCwWefrZo9y4fostM5uIs5yv5aUlvnLoIv/yv/mn/MUXvsSHNm1Gp5pKtUKSJHS7fVzP5fALLzG9aQLXc0lJM5BFzzSVsmJvfdOwLrm0HRsSTZxo/o/PfouDe2fNBIv1a7wgGkSARmXUSH1boZhqze5tWwmjPl7gQxZQHoYDwn6fJE1IEhPsbrIpOwRBgOs6pGlCp2UyLG3bRacprUaLU6fPMb150kBXpAnqXl1dIwgCmq02vu8TJ7GhRCYxKvPTxPEr3o4kjrGVCf+2LYsTZ8+zZdMI9dVFQysNAiMzNb8iaZpsZNmFgwGWstCp2bxEcUQQBCSpptPpUSjkieIYnZowets2HsH1MO6wF24g7Pu9ECXlhswpTU0h6QlFtVykUi5x/tIVatVyFsxuJIy2bSS0Bqyl0DpBKOh1+3zlO09x6KXTjJQChoeqrDUajE8Yf3gcpigpOXnyDL7nkcvnkFLR85rE/T7lcglLWWybnca2LKYmR/jDbz7NJ3dsRSlJoZgnybxGQphMSQBbOYT9iMNHT3Jgzyz5LEpoabnO8FCVOI7xPZex4RJrzRZCgG1bVGtltkyOUi4X6ba6hGHM/PwSpVIe3/dwbBNsbwK2TRyFZSlsxwKtyXkuQTEwg4qUNzS5++RjR/mzP/sjbMvj1MmzfPeBRwj8HOPjY0gpSHWMFmZ24SrFi889x7vf9SNEUUpP2Ajbxe4sQr/Jvrv38VffforvPvg0QWGI4bEhLp07y0d/4iO4gcfHPvYz3HHnm3jkiSN89gvf5J63bqXducY99+wl50narSZK5skX8sRxjzA28v9ED3AsC9vyKZYqXLx0jnIpz8feM8k3Dz3OZx56mA/e/W7a7SZONqxJkwjHUQg0tqVYXlkil/PYNrsDoWLjW9aCOOrgOjZSaCwBaRwhhYFtJUlMqg24Ror1HZgm8APQApn9zQUpSRJhWZJc4JMmIXFkPLelQp5SqUwYDSgWKqw1GnheHs/1WGus4vuBjU6zAAAgAElEQVQ2Ckmvbxp5Ok2QKQgtTO5mmhq1QpLg2i5jm6aM5SM1ESnGv6vxHItEp/QHAyzb5/iLRylXTLYdaCqlKuiUQdjHzejKQkCcNcaVVAhlY1nKRA4JgUKZDE1LkcRxBuNLCcM+rutn51+E47p0Ox08L08UhXiOZ6ZgUpImKc88f4zts9uwbZso7G/A0C5duUyaWCingBf4vO2t70Zoi9/8/G/zh7/3e3z9G9/gTXe9iYcefogvf+4LzM9dYnXxBimCbi/k3R/6qCGlZ1J5xCvB5UZGL145B77H0Oy1tEz5mj38D0K6/F7rB8q8W/do/3By97djrU/SktsmbPK2x+3r9q+rDHSi0zSDRL96pUmy8Zr1f5qT3TyUNICHJP3eMzwh5cbjVe992+d+vWVw9QnFYoFcPkAqQ0EaHx81nSTLJopifL/A8tIKv/U//PdUSyW0SGk2OtTKJc6dv5oR5WC4UiIKQ+bnF5FKEkex+Z2UQlkWpXKBbqeHshQvnDgHGLnZ9q1j7Nu1CYioDecZHS1j2zbjY8OUSibXBbHeKUpZXW2gpCFnVWtlakMVfukj7yZKUsJByE+9/x78XICSkiDwzYkkBSurDYQQ5nNlN2y0gQ6EYYTrmokUaJNNlCScOnvVUOvCkEarjeeZKAbHNT/73jv3MDk5mklHQ5aWl7AdgZAJyJRCIUez3aXZbIEwF/ATpy5mge+CC5fn+Nbjz6FTTbPR4YUT5/A8l0IhRxQlpCmsLq9y7fo8uUKO6pDxcLiuy+joEL7vkSbpxjRCYBoQf/LlBwFNp92l0zKSzJdPXcB2DFik3euZUHvP5S37dvJj997J5qlxxsdHWO/K/fSDh3jfwRmuXb1BqVzcAK2kcUqr3TU3w4zmptME33dBaPbt25lhnAvkcgEvvXSG69fmkFJy5eqcgZtkuXyadeCJIoxiHn/yOaQQfOD9byWKQzzXgCYefOwFEGYT/cEDY9RqZX78A2/m6SOnqVRKpDrlzPkbvOnOHQBmQyUlrmv8YLm8zzvftpuJiWEO7N9GP4yoVosGcBCGrCzXCcOIHdumGB8robIN1dLyGtVqhShOssI6MaAM36NQyJtwY1tRKuUolYskScraWstMUTybzZtHqdWqWEqxulI3gc1BgLIt3nHvLL5nOpRPPXuCbz9wJIv3SHEcI/k12TuKpeUG/X5EGEakicYLsg09KYNBSL6QY6hWQdk2b3vTbgr5gInJEU6fvYLWmqtXb5HEGmnZrNTbNNZaJgg5NT7L+soafuCzY/sM5bKBEqSpkQT/7EffThwnXL0+j5SSYjFnNuZJSqvVYW2tTRTHnL9wFdd1+NzhJT79j95NLueTy/nYSvHyybMU8wGO4xJFMXGkqVUniEOBkhrXtcxxLLPoESVxHIfRkRoLy+Z8XyeA1moVXMfhxo3rHNy7h0qlDECz2WRltY7j2Jw7d5Hz1+dN9mIUZY0xTX21ThInoDWrK3XiyMCYwDS7xEYJJ3jXPftAQL/XR8BGY0YqxdLCMlEUZxM6I7VSmT/P9R2CvJ9NQ8CSEiUUxYqJfvCCAKEsk3dWMERcQ/hlY4OfxOZzvXD8JEv1euYX1SZIHigUCtmEzaXb7gKGLJjECSK79iopGfT6gMaxLfo9k7ulCXnvuw7gFwSebaPTlF63hxBZRITr4nrOBpXutVELjuuClObvBIRhiGPbKMtCWRZRGGEp28gyU4XrBvh+joceP8IX/+oR4sRcp4wyI0VZkl27tzMzM83aWpNapUyr1aZSLYMwcK4wjGmsGUvAQ48Y2VZ9dW1jY/dz738XU5snSbWmUikThZEp3LXJ0tyxfdbkPWab15xnsXnzJGtrTZqNNstLqyhl4fs+W6am8AOXZrNNHCd0232jcEhTmo0WUWgKadu1qRTzJEmKmzUQR0aGzbQ3SdA6McCjoRLlSolUa+qrDVOoCbhy/RZxnHD07BWT7Wc7xHGK5Zis1sEgu/7pFKlMoffq2/lr5WKvPF5vxUnMzNYZPvbTH+PipcsG199oQFbYITQ6jvjS5z5HLihguQ7CLVCuzTI0NoP0PJ55/CF+5M0H2T27mVq5QLGYZ9PUEK32IpWqR3moyNjmSWqT0/zET/0U1ck+P/ULB4ntOTx3GMUE9XqDen0Fx7WwbYUUJo9dCGi0ety8tUw+yNPr1IkHMR98k8/f+/B2rpy8Sc4N0EqSCsCSDKIQLQWx1pSKJeJBSBz2UEhsFEKn2T4mxFISdIqtTBSBa7mgNQpFEiU40jHWmAymEkd9LAkim2pJCWlsijrLMhJvnYSMDg2RhD1cZQq/tfoySlloaZMv1khSQRKG2FIR9fsMul0sIbCVysjTKWkaG/hQpqQwPjfDEoiiEE1KP0qxnQLKKRAmUO8kJGlCFIckcWjsP+EA23IMqGrdBiTMXi+KItIkMe+XHc9SmeJRJ+ZaFYaDDSuREAJLWSYPVUg8PyAIzPFuhhAmIiaKQ9587wFsVyCVZnHxBlGUYFuGAhvkPRqNNcZGpoj6in/zlf+Vf/Vrv87i4hKlUonHn3icd779HXR6LT70oQ+zvNKiXKpQKBSpr61lcm2Z1XYG5CflG5RAmgvXK4/bv/w6e+bb1+378O/7fSleeXyfJTM+xH/J9cPJ3fdZP+ifZ71X8P/567KOwWsnextTwNu+/urJ3SsevjgKGfR6XL9+ndpwhYuXLlEqVrAsh1arQ6c1YHzTGHcc3M+n/vxzfLBW4cFnTnFjeZVdM5NIIYjihDCMqdfrlHLBbYbwHmmasLi4wtBwhZvzSxw+eZGp4aoxmVsS21YkqYGW6FQjtOTk+StGg+46xEmM7VjoFJ576Sxj1YqZajo2vU4bP7A5d/0Gd+zbxmp9jWIlT6/To77aIo4SXMch8H2UtDfkVNkwg6/d/yxbJmvYjkW73cHzzQ21Pxhw5MRlds5M4Hg2vu/w5JETLK2sUSnlkUJy/uK1DCbhQ5LQbnXNpiqKcT2XMIyplktms+rauL7N6EiZXqdDu9Uj7MdMj49g2zZzc8tUC3lyuZzJQlQCBNhSYruKW4vLKKUo5ApY0iIchPT7fdO1XF4zxUVqLvgT1QKFQoBtKyzHZAaOjVTN31sp8oU8/a4JDU4Tza3FVb75+FHu3DWDcgz2fNHp8NY901QqptiRUuDYLr1+SLlUYP7WPIMBGcjGZA2m2fs7joXr2sRpjOfaFEtFFhYWmZoaJ0lSPNdFSLMJTVONpUxQ++apcSqVEvm8mfA+9vhhJseG2DI1QqfT4vDzJ/mDB07grM4zOVJgYqzK1Su30CphemoUaZkJ79jYKM8cOc3myTF8P+DM6ctsnpqg3WoiRcrObZuQStFudzaaKFprcsU8W2cm0Nr4KEfHRlhdbnDp8i2ePHKBsxfm2Lt7CqGlmRiSUF+rU67kOHP2Jl+77yW2bR7hqUMnmd06nmWjJSwtLlMqBihl0+72ULbKyIeSxcVV9u+Zxbcl5VrJENrSlCSJOX7qMjk/oFat4HkeX/32IfbungaB8Txkp7/JUbPQqTC+UdvZaM7kCgGDlqbTibg+t8LMzCRxGHHi5QusrrS4dGWRwHNxPYtUR4yODZvGlJIsLa5SLJZ49rmz3Ll/C45rEw1ChFY89NiLbJveRGXYFFe1coGP/dujfPM3fgqdpPR6PcIwQipFkMszMjZCfWUJIVKUZRMN4My58wzVKri2j+3lSVOR7VBTkjhmZKTG1GTNyAGVCRB3bIu5+VuMbd3N5k1TvPTUE+yb3mJobrZFsVhgZGSIrZPjeJ7LuQsXKZUK2I5DvljIChSHNEmyTZs0UrzQRHwoS6IsqNYMxMhxHQb9AeEg5gvfeJDZqUm+/OBjvGn/bixlZJmtRhOExvU8E91Ckm1GLHSSYjvGa2piWYyPuNfr4XmBydMUiqXFVQTm3IiSGGVJdsxuJudaFMsVg5qRAqEMdGTdN+j5PuEgzJoGiiQKEVIy6A+yUPAIMnlWmhiMt2kqpHT7IbWhYfx8gShOskwxgZaafrdvskOTFMs2k3fLMbmgnW4Px3HwXQctTPiyIeZpOs2eOactQ7DtdfucOnWebdNTnLx0nbv27uT4idOMDNWQSmDZis9++T5ePHGOTqvLraUVikFAkDe5fLlCnq98+2GiwYBKLmDv/m0ILem2+tRX6vzo2+6i2W7Q7/VNsRwOSHSK0GaS2u/2sCxBkhiCbrPTYHRnFa1NQPPS4gr3P3SU/XtnsV2bZ45c4n1To/iBT5po7n/wGINBh4nRGo5jcfj502zeNEKSJJTL+axYM8fNk0+e5PmTF9k9O0UcRURZPMZXvv0Mk7UK+XyOcGCaDeV8kVuLq+zbPo2V5eIJKUkTuHF9AVKBkxXZiY4QqabbG5ArBuY4WJf7fJ/9wTpMxUyvNa7rsG12ms99/i/Yv28X0pbGe6o1R595loLnMbPvrWiVoHRKYJeojIyRn5wgL22efvoJJifLbJnexj/4pU9x6coNHnn0MZOV6jvkcjkeffhJfvkX/yG5gqKx7BK2J3ni2ccpjkh2ze7FsgRR0iKMBoCk01ilUBhhZU3wO//uq3zg3XdgCZOPWS6X2DFT5nNPP8bXDj/N/uH92K45vpQyagEjlTZNGWmJDcUUpKA8+oPwVTujOE2I4kEWvYKRpFsu/YGZSne7bQI/h5SgpSRJE2zLASGyc8QAfga9FkqJLOdR0ms0GB0epttrM0hTqtUag16Kciwi7dJo9en2Y4JigVSZY9Lzc2ghULaZlEuts3uSZZpNmbc3UZqnHn2GWm2YUtlnqFZGWhbStjIVlKDX6TGIpSHVWiZnNEWTpGkGkNIoZSN0BuATmWRbKgNNyuwB7VaTXD6P0BYSyyilSDn2/GEKhbJpjAPKsvBcD8cSpFGILS38oMStxes4fh7fLeF6PuOTE/zW536bF06f4FOf+hS/+mv/gne9+z001pocPvQslUqZn/yJH+HqxZMUfYfl1Tozs9sJaiPMzGw1+zXNBhjrVcf695vcie8xuXsDE7ZX3uN1nns7cEXdBlz5PgK7H+bc/Wdc/38v7l4LcLn9dX9TcYfQoE23OhfkaTYazN28ySDssm/vHlwvoNvp0mi0qJaHaDTrbN++ldOnzvD7R57nN959DypNGBmuoCyF6znGY0V24bUsbMd0ofu9wYZUpVwusm/bNN1uH98z3dQ4ignyAa7jIVGs1ltsndlEEifcuLlIqVzg5s0Fnj12lnsz2ZbnuSY7yjY48+mJESOlKZnJgkSSywd4noO0VHbjNCGlva4J/7Zsm/27ZpCWyX5qNlq4rrmI3/fk8/jKZXZ6DCE0jutQyecZHa7geQ4CGBsbwvNNQLFOoNcZ0GkPkFKRLxbodXsmI8a26XZ6eJ4pVC0hiSLNt589zp6ZScrVImMjQxTLRb7xyGHOXZljZtOo+YyAdBS2Y2PbFq7tcuvmEqmOWVhcpVAI6Pb66CShvtaiWMpRLBfodrso28iJ5m8usFZvZRIY03VTStJpdwlyPqMjQ9y9Z5avffdZpsYrfOvSVf7Ohw7i2Baua8JGL1++RhTGnDp9iTROOHTsZbZt3YrtWPiebbppSm54m8MoNMZw20hB8jmffq+P7xu/4PPPn2By0xgAzxx6kenpTQghcByHVBs4yOyWTVy6eI1NU+MgUmY2TzFVC/jw26fJBQFKKZ594QL3vGkbtmURhQn5QoG1tSbbZzezvLRGv9+nXMojBMzdXKTXHZCSYrsWjmW8U/3egEKxQJKyMcGWUtBtdZFSEsUJQ5WAMDb+wMnxERNUPX+L6dlJLl28wvDQOGv1Jnce2IHIpuJ+4LKysoZtSW7OL+M6NldvLDE6VkOnmnarjRCCJ545wa2lJtu3TRoPmJJYymJ8pEIQBBvFsNAJtVqJRKdYyiGKEwaDCMd2UEpx8vRlqkMlEyqfpLheFm9wo8lgELNl6wS5fI6c73D4hbO85533MDJUMrldUqOFgYhEUYSQcHN+hVIxz45tm+m0W0RxzLnz1xmuVdi6ecJ4iZXg0qXr/MpnrvNnv/Jeup0uQgpyuQCpFKVyiX4YYbsuSdhGE3Py9AXGRkZxbE0UJpRKFZJUsZ5ILITekO+laYLrmY2JaSLF7N8ywvDut4NO+Pf3PciPDo3Q7w947MhRJkeGiZMUx7Fptzo88+IJDu7fRRxFWJYN6I3YAdu2N/x5X/7mw9hSmGmja9HrdnE80923HAfPcdm3cxte4DFeLlAul4xfUpCFJJsNVRInBkbg2EQDEweQ6hQtUm4tLJHL543nj9TIwZTF2mqTxw4d5cCeWcIwRFoKZUmkgGIxR6qNJHOQnT/rTREjpVL0Oj0c10YIiMI+9dUGhWI+2+Bm+Y4SVpZXGXQNRKe+2mJ+ZQmJwM/nsGzbSIZtc050uz08z8ivsrrSZGU6Dsq2EAKsdRiQMtfPJEn54rceJe/YVIdLhobruQwNVTh28jS2UIwPD3H8zHn27dnBrfl5Ot0uw+Uy9WabD7/vnYzWqrieg+PZBkAhJbtnZ0iikPGxYRxX0qi3yfk57n/iEHu2TwMJI6OjRk5q2yzcWiBOEvxcDt9zOH7yFNVykTCKObd0i7GtFQD6nT61aoV9u7bw4ktneOzJFxHNAfduHkMnMH9ziTv37UKKhEqlQLfdZcfsFqI4Is6iHtrtTqYKgcmJSS5emmPbljEC3wMpCKOY/du30m33GPRDLEsZinSzy9BQhTRNCfIBlm3UDGmc8tzx82zZNGoajbGBxsRhhOe6WK79AxV3X7+2wM/93N9B6yQDtSmCQp4kGTA6UkNkk1mp4fK5s7jKZnzHQZQKkWlMOrBRvo1b8jj2+BNsnh4jSvrYbo2PfvTjvHTiCp/4xCf5zn3fYf+ePfzlX3yW9777/XzzS9/ihUMn+fyfH+bmFcmb3l6jOLxKvOZya+Eqlm0UCr3eAN9xeOC7j7J56x2MVANE2qKYz6Gc2DR9Bx2mhnp84sNbKdWu8cf3P8vFl68xVpzAcbOZu8r2QFJn0yeFkJqTp19mbm6esdExM322LFJtKJVSSaSQCBSPP/IEXuBkexkviyQxllXbcQkHAxzb3dicx0mCkga2FCUpV69fpujmuHDhZQZxSLEyRLfbwxIW7UGHQmmEBx55GIRmZGICZSt0bKSXRpll8uQkwhxblk2aJChLZdCnAZOj0ziWBbKPqwTYLr7n0+93EVpSKFY5cuQIE+MTr0QAOQ5CKkPkjkKiMMK2HAOaSkMGgwGO7dBo1HFsF8/zUFKRpEYJ9cLh5xgbn0AITbk6hm3bWBuRCub3T8IYkQqUUNiuh7RtOt0O//j3f4PvPP8IlSnF3/2ZH+Mf/uI/49TF83zkwx9h9+6dnDh+gkcffohf+IVfYGoqT6dRZ2XxFkvLq6ysrvHOH/sQo2NjqKxQ/dta3AlxO1Lxb14/LO7+M643WtzpNEUJs/HjNgOl8W4kBpmNztCZ2nR9MrmDobJlj+9xAEhlbpSvncB9v0NmY4yu9avyOMTrTPM2VOVpmr2nuSlHg4heb8DY6Bi5vEHVJnGMZVuUSwV6gzZ+oHj80Yf5yZ/4CI8++gTi9FXe+46DXLu+wNzcCl87/AJ379yCbdv4gcu1m3OUch46Figs+lEXIWz6vYROp8/QSAWlYG5+kd4gIpcvEKcQJpp8yWN+bhGlFJNjQ2gBjmuzfdMkfi5Ao03Wm05INSjbJtXgeEZCgACJot1uGzR5ZGRNywt18jnjcVGWkTGcvXCJ4VoZKQVB4KNTzaAXcmDnLLt3TqEBx/MAge3YJltNs1HELSyu4PkuS8tLDI3UiJOU0dEaaRKzuLDCyHANJQWNtZYBPijLIIQlHLt4haXVOnu3bWat0ebs+Su845697N02hZICaUkGfY3j2NiWot1qY1tGvlEoFaiNVPnSg4eI45TNm8ZxtM3CwipapPgFnzQS2JZLoVAgl89lkRHQWGsAEMYRSRzT7XXxApe9O6a4fvUWn15s8OGDmzYC5B3HSCzKlRLVWpFSKUclyDE6OozrWghl6Fg6u3DpxGTkxUmCbdmcOXWBQtE1kw5hblaTE8MkaYyfyzG9ZRJEgutAt9NAJsKglVPN+OZJUgFB3idJBbu2TPB7n/8uuzcV8TyHndtG6YcxtmvxpW8/yR37ZnA8h6jfRdlQLpuwdCkVzWaHeBBz+eoi05tGsRwbpKRYDlCWJAojwn6IQNPttPDyBaTCkNHSiIN7p/FdheO7JKTURmqEgxSFx2AQcvddO7l46QpDQ0X6g4ih4SGUiJFCsVLvMj4+Qj5wsZQxwruBz7kLNzh+bpGf/uC9xFHIrYVVSuW8mSLZtjm/LcXc9VsUCgELi3XypQLhIOJb9z3Hji3jCMD2HApFH8+2iJKU48cvUy7kOHf2Kjt2TVEdKjAI+8zfWkTpkHyguLG4xth4FWVJbt5cpFouc/PmPNWagfRcv7FAu9uhUgmMdzMOGRku4XgOCRplW3RbHf75F+b5nY/fwVBtiG8/cIg7795LFMXM3VzE81zcbDMBipPHr3DHvn3YOYEfOLTX6kaWuX6R0yClTZr0icIYz/NIU1OQaa2xLZubc/P86Xde4MDePXznocf46MwMDz1zFJFKtk1vpt1scvHKNfzA413veDM60Rud3/Xuaqo1J0+dpVatgIai77F9xwz9/sAAUGwLoVW2GUhYXlkiKBiZd7FYBIXZEcvMw7funVRGcii0JOz1Wa036LQ7+DmfcrlEt9XFsixsy0ZjvFi2UuyZ3UIcaVZW6+RyLko6aK1IBVhKIZWFtJ2NrMU4GeB7PmEUblBXlxfXyBfz+IGHsiXtVgs3y99cqzdMViNZp1nBoeeOUSmVCYIcjuth2TZCKbQ2nmi0xpLK5OLZLhpz/4v6A5SQtJsd+v0IP+9huTbLSyu89a79lAp5pJ11sSUIKcj7Pnt3b+fhpw7x8Z/+kJE0uw7VapVKpcTObVtMc0hAo9Gk0+wa75OATqfD1NQEN+du4ReLJElEqhP279nOIIwpVKobMlJbKXJBgGMpHNuh1WwzPT3B6mqdYr7Arzz4KB8+MIrnSWzXp77a5tEnX2TTSJU/+Ppj/Pa73s7y0iqNeptyuczy0irFcs4oPixTqEvLIk3hC99+kl53wN6dM7TbHZAJI9UCfuBnWYoa33e4tbDE0FCVfj8iyAUceeksZ27c4sS5G1y7usqZc3NMT1WxbEmvM+DpE+e49+AOA7FxbBApcd/ET1ie87rF3Wvv8+trbmSSt7/9XqSwMqmept1q4nsBrhsQpYBjk0QR3YUlXjpznDvvuct4vaRNQkiiBcous+2O93Dgrjvot+os37qG7WjOXZpjenqMX/rlv0dQLnD1xhw/+bGfY2r3NO/5wFsRVoO3v2cXv/Y//u+cP5/nwO4ipDYq9fHsEtpyUE7Mjp2zjNYCCn5EPkiw7Zg4UURdD7SkXHbwnRxR3Oc9b66yb2+MW53jj+9/lu8eP8QTp5/nrdvvRkqjOoijkDROuHGtRdKVTG6rQixxPAmRkRymmQdWa3A8iWPZeL6FxEiHtVDoNCYOB6RpQpxEGfE5wVV2xnZLEFpTKpRIhSbIF7hw5hTDtQKd9iL5fI5+q0m93mDvnoNMTe9AakEUaQQ6m+QnOLaF1ikySVBKYtm2ycZUHr1+hBQWygEtYpS0SRITBaJJ0IlESI9e2GTz5GZggOMGSGkRhYa0jE4Q0ufhh59lYmoCoSCJQ5S0kEJiuy6un2MQRyjHIUkilOVQHR4yjXEhOHXsRcY2bUKznn3Zx9EOqQShBEuLbX7nvj/i4ePPYhcaXL88RzfU1Bd6fOpT/y3lUsLnPv9F7tm/jxuXLnHvm9/M2973PopDQ/xf/+E3uXD6CHnXo9cLqQyV+NEf/2kKpRJSWSSkxhsqQetXCJcia7C9dmkMTVPf9k2hVOYrfv0TJ9GJeU2akgqNNu6Z140+eCOEzPX8dHNtEhuvW18/LO7+E683PLnTr1DX1jsWkGXR8derfNNteWWutvH173FFXg/Dfa3h840skRWF6W1F5/c65HT2u5iPYz6NpSxarTa2ZRPkcllHWRlzfBzi2Dn6/R5xnOK7LjqGr165wM9umaSQy3FzYYW7t09jW5Jet0+hWMBzDP1RYhl/j+gTBDluzi8xOTHB4s0VShUfz3Xp9vogJXGUmg1d4LBabzBUK5uQ0SQhjmMWFlbJ+T7zt5a5cn2ezZvH0Imm1+1jKwsQdFsdmo02168vMDo6TL/fzzwLIbnAdOWbrTa5XI44jBgfG9nojkVxYmhwto3KvIJpnNDvmUBmIcC2LFrNDo7ncujoKaY2jeC4Nrmcz6Afkc8F9Po9pJTUqiXiOKbfH5DL5+h0ewwGIa7j0Ov1efsdu9k9M2WKRtcmiSPSOObsxetsmhwjTlMcx6I/6G8Q96ysmy6FIo41BdvBtSyUFjzy/Esc2LmFfLEIGrSOsCx44dhZbGU08p7nmrBrz8FzbRM+bdtYyjZXMp1ywx7wgTfvotloUKlUSJKYs2cuMblpbKNQKuQLOI7DmTMXGBquZMe3BmGIo5ZtEWVZa4V8gOv7OK7Heq6SZVksL62iU4evfesRtkyPEuQtBt0WSBuhJIVikYVbi5SKRZ595lhGtszzhw9f4327Amq1Ml//zmEO7NuGEII79m9jMAgNSMGyqK+1SBONJuXw86fZunmUyYlhA1zxXUBk/Y8US1ncuLHI8mqD8XEDh5HKMhtraZoll67M4zgWhWIJrVMzKbAs2s0uvm+mufm8azazOQMlsSzJ+UtzbN+6mfpqg2q1TBwN6Hb7WQB6wr13bEVgohCiOKJQLNDpdM3mPY4JBwPyhQAlYWSkSqNe59EnT/HRD9xDt9vl1sIKw8MlNClnz12nXCpSLuVxHEmlbDx+Skm+9M1DrNbbbBqrIBBsnhqn3/jt0V4AACAASURBVOtx5uwVpiaGOHXmMuNjNY6/fImR4Qqdbp/ZmU1IobEzj8q1G7fI5z0Ggz7hYMAvfvoUX/zVj1KtGqjA3r3beODhZxkfHzKNozCi1zdZepqUmekphFRoKYjCmJXFZYIgh58rvuI/S43f8MGHD3H+wg12bp/JGlPaZN8J+I/3Pc/kyBDPPP8iH908gy0l22c2MTxSo1IrMz46TK6QJ44THnzsacaHh7Op/CvXW1KN73m4rkOxVNyQV0lB5tMwPro0TfEzuqzK8tsyf3/mmzaFzEZGHppup4vWKZ4X8I0Hn+Tgnu1IqVhba5LP56nX18jnc6ytNfBcF4Sg24x46vmjTIxXcT3XNA5T+KsHHmV6atIAPXSa/VyDI18PU5dS4nkevX4HgSEgeq4Jk46TmCDI43o+tu3gei5+4FHJB4wM16iM1oiiGGVLdJKQJOlGJluv2zcyrA2IQXYX0eB5Po8+eYSZ6UnSNKVYyiNS4210PBdlmRBoy1Lk8jlIBNOT4xth7ZZtsVZfw3MNbOjalTlyOZ/A9ygW82g0vcGAQtHIyHWi8XIejm3RWGuQy+X43LceYs/2GRzHyJSFlCilaDY6WK5Nmqa0Wm2Gh4YBxdcvnOcT79xBt9czcS5+ni1bxnAdmwcuNPnk7hl832OoVkWnmq8+/BwHd01v0AHNfUDSbnU4uGsrlUKOUqVEELhZvqVtwF+pZrVeJ5cPKJeKRGFCEPhAyvTkMGXfZdeWCYqBy4+8dT9Hjp1kyyYj0b9rz6yJjFiH9YiU5eU1RsZHSNfluW+wuLvnH/8jc/+9fZMrFbZl0Wi2aLbaeLkA33Y58vjTHLjjTmpj4xnIzWycLWUkt7YOOHb8BPe8+71MTQ0zd+0C189e4Mzx59i2ZYLF+WWefuIw+cIotqfRicP0ln0MIocfff/7uXLzOk89/F3e8uaD/P6//zqzM1OkcYHVlVW67ZBUd0h1CBoaax2kY5HgERQK9NMuwnZpri3j+S6u6zI9Ncld2y3ee1eFj7xznMQ5z4WlMzx15nkeP3WUR08d5fjNC7xl9m6qwwFprFFKkcZxRtA3BYDjePh+jnypAMJ4+x3HR1jCEMSzwHrHdgnDgQG7uJ5pwCkLMEoLyxaEYZ+ZLVsRCnKBb2BGwiQ7+n4Ox7aNhNv1iJIIxw3wPJ9ev4ft2kThwOTcJholbTrtPoeeOszwWAWl5IYH1rJsUlsSJymXLl3i6Itn2LR5knwxh0CTxIJjLxyhVK7hu15WrNnUaiWUhQlSj2JzDxRGaaN1BkQKX8mptGyF5/lE4YBGY5VipcqVSxdx3RzLt1os3ajz6Wf/kksr5/jJD/XZOVXG6tf55n0v8omf/Rn+9f/0Wxy4481MTW3m2o05PvSR97J46xZBkOMTn/yvqNcb/OVnP8snP/YePCtmcX6ZYnmYD//EjxMMT1AbGkIomQ1K1qWPtx3L37O4Wi+83shzzZJCmmJdygyyI99wpt3rrqwCvf09fljc/Wdcb7S4E+KVboHmlcrdlGG3FWPZE0yBJl55rPuW/6aD5Tac6u2Zd69df02Kqf/apzAFwGtevxHpsL4Rz4o7x7X4q6//FWNjoySxJMgX6Pd6tJtNlKXodSOuXL7OA/c/yFvf8jYOHtjD//Yn/5FtOY/pconx8SFKpTxCCkrFEhcuXiOfy1EsFbl+4xadXg9bu6AlxVIBy4YrczeoVArMLy7jOQ7FYoGvPvgME7Uy5VKOfC5AOTZCSrrtDrlMYqMs46sZG64RRRGtegvHNr6YQa+P6zq0Wx2Ghqp4gYuSEssyJtwwDnEciyAXEMcJiwurPH7kBHt2bSUcRLzw0lnGhmu4jsuh514mHoQMjVRZqzfpd/v4QQAYiWaSJsxsHsPOaIZSSsLQbE6VbWRVK4t1syGwDazFsR1y+TxxFBEERsqlbLPREbZEZpvXrdMTRGHMar2BFAnzCyvcmF9iaKi24S3SScjlazfYunUTIyNl8gWf4WoBZSnOnb3Otx49yq6tw3T6bWrlKpVq0VDfpOnct5otA4sQkmgQ4XoejbUWnSTk/R85YOAdaUqr1aJeb7B712wm8zIEO4TgM5+9n2tzy+zbM5PlFkKaGhmYTlOaa03y+RydTg9LGTlXnCRmg6glQlrkC7Bv3wyWkjSXWwht4xRypJgisb68xpHnT3Bzrs5b3nwAy1I8/fIlCr5mvOywc9skju3Q63RxbIdOu8f8fJ3hkSEKxSJrqw1KpSLVosG7P3fsFDMz42jg6985zM6tk+gUOp0ewyNVZAbvkcpCpymrq3XCQYjrGHlZqVgEBHEGkkjCmOs3l5ncNLIh6RQI0lRwc26ZXN5hYnwYITVBLscgjA2y2lK0u31GRmo4WU5kohMq1TI6NVlLq6tr2Mps2m1L0e50gASRJuzfs5NOp02qU6Y2j/PoE0eZnhxhdHyMZqPDF79xmHwgGR4umZuVFEwOF9i9fQrH9SgUioRhj1wuoFbN4/kO42M1HM/DdSzz+9ZKKKWIk4ibc0vk8wHFQh7ft7AU/Nd/fpXf/th+LCWxHCMBSknZsX3GhJ/7pnCyLJkhvW2OHDrOyy9fZsvsFI7tcOXiZaqVMq5vzklD8EuxLYdiLs/+fbtIEuPBe/jRI2zZPIllK778zAV2z27j2KkzfHznXnzfIY5jytUSKEi1gc0IASfOnmd6ctxkOWZNNK01hUKewWBgwt+FQOt0A/bTbLTw/cA0wmDDE4MWWV6uua6KzK+SpKZYBAzBNudjORZrK03u2r+bQT+k2WgzPGy8r7nAJY4H+K4NpHQ6XZIBLK4uMT5eIgh80tjAWmY2TWA5xv8GGiWEkWcBN+fmqQ3XaNQbhphrB8xdu0USaRzHw7I8ep0QYdmmqMZ0u6M4xrcl+WKOME5f1aC0LAMPSpOE02cuUCkVTfhulsulLJUVmnDj2i3ygYfjOFhKIkjwfBNavd50XFtrEuR84ijhW999nPGhKl7gQSZ3T2Lzv/PxZ19g57ZpbNdmfv4WUskNMMqJU2e5cm2ema2buDW/wOjoEMsrdcZrFUbGhkkTI3+P4gQtJIVqiXa7jbIUxWIZrQWdVo/ffeA+fvmDd9PpdnHsgGtXb1AoBiRJxBeeOc8Ha6UsRD3FcS0O7jKfRyrF0mKdQjGPxngdO60upVKB7z5xhNkt48Qx+MG6/C2kUMjR7w3o9UIDs3LNfcF2LHJBQLlUoNlqUSz4VMsBfibllBIMJNEAZ5DQbnZwLCtTG/C6sszXqnx++amX+PjP/+xtzzDr1//lr3PvvfdSqZQ5fvQEW2a20mv36Dc6+IUytbHhjSaxkoI4Ns2WJFkmPznNxVtNauUp9EAyMrSCo5pcOX+ENx2c5f5vf55f+uVPcO7MCzx35GUO3PFWBonNsZPHWFpd4nd+899x+MXn2bM3YPeBPZy/fJl//buP8MEPfJBUDugNYiqlnays2oh0Bd+uIVJJs3GTNI4o16osLi2TaBiEMUJYuF6OYinAtQX7d4yyb1ryk++e4j13BXz03jGmZ5s88NJhvvDUMzx15nlm3Fn8ooXreRt0SLk+pZE2J148SrOxRqFYIRz0jB8yk4RLZeG5AYlIsGxFHIcoWzEIO4gkwZEWOtFYSpgYozBBiMiQUHUIOjITcgGWHVBf66JUgLI8hOUS+Dm6/ZCb89fIFUogY7bMbkJlgeFKWURRaCTLoUYnMd12g3xgMTYxiogEqUwQWDTbdYZHx4EU27VZW1mkWAiwMtiSshxSdOYZ06aZnQHnTIacJk1NxqlAUqkOkSTw21/9NCvNs1yNbvLed9xAyBynrzW5/9kFvv7waU5d7zPQFk+/cIzOtYQjLx3jj/7yT1EyoFLUTE5tASSHDh3mD/7t/8Jn/vSP2TtT4sLZE6zV+8zuPsjs3v3M7NpLLp8z5FN5e5adzBRrry7cXv145bmvbIpf4VO8bsB4NpAxe5nvL7H8fuv7TfZ+WNz9J163F3e3K2d/sNnZG3/231jcveYdX+uZe72fJr7H183+469DVl79X6a4i8OUG9dvMDY2jtaKz3zmL8kFHq7vIYQmn8/j2R733nMv3U4PnSbUCnk+c/Q47ysXeProSbZMjtLrm9yrQs6n1e7Q6w0olwsMjVQIXDO5SnSCG9jUqkUajQ6B73Ps7GW2b53i/2bvTaP0PO8yz9/97Nu7b7UvkkqSJXlTHCexHTsxJATIypYQQhoGzuTQh6GHmW56evqchpmhYWAOZ4AGZqCH9Gk6kDAhcU42J/Eax5ssRdZiy9q3Uu3buy/Pds+H+62yYjtAn+4wM6fz+NQHV5VKparnvZ//cl2/69DcNIHvsry0Ri6fozv0rOXyWYQUmKbOX331m2ys1xmrlphfWObkhasUM56ioekaQmj0ByG5fEZBUlptLl65wWitghe4tFsd1tYUKa9YyrFnZoJwMODM2UucuDjP7XtnWFleY3ZqjCMnz+Nu469Nk1azg20r8zZIDNMg7EecOXOZWqVIfatFEHiqkQwVxdB2LDXtRU3hTdNk0O+9WmSmKc1mG6QCHRiGjm2ZLC6vUSrl6A36VMtlRmoV/ubhp5gdqypITRxSraqJ+8LCMs1GG9Mx8XyPWrnA4YO7MCwd3/dVqCiKFGeYBq1WB9u2sG0HISGOU7a2Gvi+yy+fPMeP3jlJkPFZWlphZKRKPq9IfxJJnKTEYYxtO8xM1rjt4C5c1+GzX3iUO27bOwxSj5BDeENjs0mlWmFleY3A80BIPM+j1x2wvrZBkBGcOXMBx7bxvRzHj5+nMlrG0HRF4RNw4MAc+/dPc+TIKdrtDj/7w3fzrz57hp++X2Gj11c3uHx9kZFKkeePneX02WUCRyhQiK0gOpquYVomExM1hNBY39jk7sO3cPqlC1SqJZBw6fI8lbIKuRaoB57jOCpHME3xfF8V8agHS6/bAykolQs89NVnmBotkMn6XLm6hGO7PPz4S8xO5ckMA+mfee4lBv2IZrOB6yjAh0RimCb1rSZB1gcgTdS9kQkUIOL6/BLnL98gn/OHr3dFLbQdC8/30A2dqfERLMvmoS8+j21olIseL748z/RkEc9TwcXLSxvUqkXanQGmY/HIE8fZu3scoanMtHTokXzhxfNMjJYxhtJB2zbxXBspBaZpsLmxyU/94Sk++2vvoVAo4Xm+yolEcPbsZfqDAdlMQKfTRR8CfBYXl5FpSrlY4MDBvUhNqvskapNKiWU7mMP8Nm0ord5urqSUDAYDTr9yidsOzhEOQv766fO8790/xNNPP8ubLZtsPkcYh2SyPmkiMS1L+ccMnbmZKYKM/2oszfYJKKWKAJAqV2z74zJJcVwXTdfZ2qjvZCNqw8BcOQS+aJo2PEE1mvWWIsZK1QgmaUqaqGxOJSP3dgoVzRCkUUwUDoAU07KVp9bQKWRdipU8pm4hU0hlpPw+joVp6jepLiBJIrLZgG6zzaA/4MlnjtJtdnnmxTNcX1hm365Zut0e2bzyaWpCQzP0HV9n2OuQJCkbm3U8zx+S3DSU4ETFurx89iInXj7Pvt2zDH8tKjrH8xgMImZnpvACH8u2iOKYNFVSb8v11BmnCUXpTFPVfBoalZGKkn2marNrmYYqsvt9qrUyaaJCv0vlIrphIKVkdnqC/Xt3E6UxuWyAYSiQRLFYwDBNOu22eq0mCcuLK8Pfn6Kufuahr+EbJlfn5zkVd3G7a+yZnSAT5Llw4RrffP4Edx/ex2efvcDPHtjN9etLFApZ+v3+8HzZRKBx7OULTI9VYRg3sba6CalktFzAdS3a7b5SWvR6dHo9fM8nTVJczyEMB+iGhkwV9VQ12BGOY9Ib9MnmlS9Y03R6vT5ISRiGxImKkUiihFwhq5YW36W5e+3115cX+fCHf+x1n/G+932AZrOBaZoEvo9uGSRRxOr8Anfc/SbiNAZNw9DV0GJHsWQMkMIklykgUo1crszM7TPsnZtjYmycp5/4OnfeuR/N6JNzBK12nUotz+TUCHv37uYH3/kO2u2Eu+95M71+nWyxhheUeO9730Kjt0KpZhOLkJW1dSzfZBBaHHn+Mp5fpFYtoGPR7g7I5qpYlovnZuj2u/QGfUxTJ00EmxubyDRhbX0Zx7ZxPJ16fYl77hjhvgMBt80M+NOnXuSpM99mtzOLn7GxTIs0iRGawWAwoFisEcUxmSCDrhvYtrqvNF1Tz/woVIOHOEHTVYyA6zqQpNi28sQKDSWJTIfK7eEzqN/vKmlnomi7hmHQbDbI5vIqR1PTiBNJvlAexhQIDNtAxmJIbA5xHU89oxI1BBgZGSeXLyBETNJLkZoE3aBQqAwzFiPlZzcs1XCgs7q6TL5UwbEdkiQeDrxSkiTlzOmTlIZyTNM0iAYhf/Dlf8eTr7wA7iU2WgbtSKPd65EszvHAHe/hnrnD3L3rNsbtEu+++728/94f4796/y+wd3Yf+8b38a47f4CiVqC3rPHP/vdf5/Nf+Sp/9Ht/wCMPf4kXjz1Pzh1gaDGNZkhQqPGW++9ndGoaISWJfK38UjV3NzdO372JeuN6+29t7vjbm7K/7/V3fY3vN3ff4+s7mrubPGv/cdLI/w82d2+w9ftuzZ2QKGgDgsWlDX75v/llfvzHP8TeuT3EcUSv1yEIcti2w0c+/FE+8L73c+PGAk89/xzf2Gjwidv2KiKTrlNvNCkUc3R7fSq1IkkS0+326Hd7WJ5JvpTjhRdfYaRcVhsJy2TX1BhXrszj+y5RFKrJia5hOZYKvI3ToecmJWs7TNYq2LZNEHgcffkiUyPlncLY8z2CrM8gHCClpNvp4do22WyWfq+LpumUSgUMXT2gDVOn3+mRpil37p1hY2OLRrNNr9Nj/55pGq02gedhWSZfeeo4B3ZVabfb9Hp9LEPHNh0ef+4ldk1U+cyjz3Pn3Ay6JlhZXicIXNrtLv2eItc1tlrqYJcxlq3M2/3+QGWt2So0uNPukiQJvu9guio2oN+LkHHKqbPXuHXPBAI4evocutTIZbL0eyHFQg4/F2AaBkkcEkchrushU41uZ8D8/DKrG1uUCrkhlCEZThPBz3hD6YlEH9PIm4JSqUA+l+X6/CKqkdUIowjDtPibhx7n4Nwsn/z013jrXQfp9fpMT9YwTEMR+YTgyuXrBK5Dp9Wl1+szOjqqCF264PqV65w+fZHrC2uUsh7ZXI58rkAYxcOsxATHcSFNiSL182l3e0yOjjA1NcFTJ85zdqnBuw9lVdFrCAo5X3kTdY3T55cIbIPJicpO6Lppm2zVWwgpMU1TBbvqgmolh+16pElKu9OmXCrQarZxHI+LF6+QCVQGYiafp9vucX1+iWwm4OLFeabGR7h8bZHaSIVDt0yBUBmMQeDSaQ84d2mVu+6YVlvwdodM4CHQGAx6jNRKpEKo4GkJvq/iB7ankZZhEg4i1lfWGamVmJocwbRUQx72IlxPwUxURrWg0xoQRyndfo9yMUO5kGFxeZM9s6N02gMF9LEMHv3mCSzLYGS0wp6ZKi+eusDYWEV5GYAkSsj4jqIvDnHdi4sr5AsBMlXB0+/5X77JP/+R/UyPVkhRhXm/10emkBkWi0EQ7AABADLZDFEYQaqKFAxwLIO1lWsq3sD3SVPVPLZb3SF8KCWOY2xbNTb7907TaXfp9/s8/vISH//oT/OX/+HTFPIeu/MFMtkAy7YwLJskBYH6fiXq92KYBmn6qmxdbeLU5xi6hjHE829DDrYjBf7yy1/njgP7dqRqQlPyY/VvUzIuJMgkYvt4F2LooRYp3U4PyzRpNVvohvKnDHo9ZBrjZ3yajSYIjSjqUihliKOUNFVSuEGkPHqqYNSGfqKIXrdHFPbo93qsrG4QxwmvnJ/HNHXe+4P3cfCWPWi6wHJtdF15AnVdV2oBQ0FzAk9lbxZKJaJkG1jwaiBEmqSM1aqcu3KNQ7fsGXoKNWzbUhE1wwZD6DpxohpjfajdlKgMLISKU0ilaua3GkqarM54XYWepymWbTIyVqXb6+FmPRavLeJ7PpqhqSZLwqDXQ7dM0jim21E/F8NU4JU0TQjDENd3yJfyxKnyzyRxwmSthue5PPnt44gRi4+9+81Uq2Xq9S7lUp79eycQAj5/5DIfmqipwUS3q7ZXqSSXz6LrBnlfEYiFptKzer0+pHBxfpGxahHHz6iMMMfG9x1ajQ6mYZLIGNPS6fUGmKZJu9Wn2WrhB54ayHk2aCqmR9MFlm0OrQwSZ+ixe+X8FUYqJdiGVv09mruvrzX40Ife97rPaDVb+EGgiNYaaLZBY3MTwphirYoc+iQFKutt2+QhhIVIQCcFLcFwTdq9hH5kUt9sYyQtrl87jxBdPNGlOlpgbeM67e4mhnSQUYJbqbK2vsGtB99MOPBoNHWuL14hV6jhB1VGavuIEp/f/t2/YKAX+dNPPYNMbRYWr7LV7lHMF1leXFWvBcPEsix0XeXexbFkdGScfqeDaWj4GZ9Gp65Cuwcmg7CLY2v8zAcPMVbx+Tdf/jrFQZ7xiRogSZJIybJ1ncALsC0DoRlYtspmFUIQx0oNIFONi+fPUC6NIhnCaoR6bSZJMpR9agjU7yuMBtiWDanakss0wdQEhiEwHYtOt0MuXyRJJUEmN5QNm6RSRSLNXzlPLl/aUYXpukmaRji+Q7fXx/MyDKI+pBqGbpMOPdFJmgybV9WIgqTXCel2e+iOqYYsKEaEZdvEg4ix0Qk2NprEUcqff/0zPHb+CGgq1iXbrTHlj/MLP/Jh7tl7iJmJSVqdlqofhEamMIpp+SwvLYFmkM3lCYIMjuPQaTZBT/jAfR9E2xR88uFP8dH3/zDnz56m4MXkAhfLKTK1az9vets9mJ5PIuWOLPz7zd1/nuu/nOYuDn9jW+Sost/UG/8xWluhvfHbzV68YTbHd/Pcve5Lgppai5RtKMvr4Cxi+D0P/7v5e5ZSfoc087VpHTt9nwApUhZXF2m061y7cpmPfOQnqVYrQ5qfTiJtwrjHmVdO8Qd/9of8d7/8q5imx7vuf4CnjzzHe8sVMlk1eUxDjaXFdQqlDFE4QNMFpqWjWx5XriyT9X1mxsdo1Ttsbm2SzfpsbtUZG6uiaxrhQE1tTV2BADbWNrEtgyiOMUyFWvY8l8997Vn2z0xw5517lGcllpCC1DXQNdZXN3AdmyCjAma73R5hOEACumaiayapVAWMZkYIFCjBMCzGRiqUSkU0TfLFJ4+zvtHg1ltmuePANJptI4RB3I8xdBPd1rll3wSkcPetexB6ysLSMnEakwkCRbh0bXqdHn/92HNsbm4yPl5T0jPLJByEGLrBVquO41hYhsE3nz2Fic4jT59m39QovV4XRModB2YwLYt2t0cln6dYKmDaFp955BkuLSyye7SqNpfdEMO0WFxYQ9d0HBOKRZ+RWp5er6/Qx4ahpo9C3TuaqfHs4gL33jvH2NgIUqowbcvSyWR8hDRwbYc4HHDmlYvMTFY4dHAXKQm5QoDtWAhhKmCKHmIamvp5mha266IBi0sruH6GlbVNbr9tjqvXr+LbgrGRUeIo4caNVXzfw/UcZBqDpsAXlmWjC4vPPPRl7rh1N0mvxcOnV/jxt1RIwgjHMhCYaAZ841vf5ifeczdT41WEELSaXQzNpFHvEHgZdFNNx6XU0XQL07QJwz69XpeR2gjRMDojTvrkyyVM3eHalSXOvHSJ2ZkKnqsjdJdisczKyiara3VE0sHzbZCCNNFIE0GpnGH3TJ7N9ZaiMwoNx7GpjVaplEsIzURDbW577Q62ZaCbQpnoDZ00iXA9k1TXcAIf3bCwLIurVxcZGS9w6bLahG2t18llAx768rPoxBw6sIu/+cox7n3rPnzPJJt10YwQNDVQOLB/mlIpB6nEcARjYyUee/o4Od8mE3jEUjViqUyU/0SmauOsO1i2wc/88Us88r9+jGq5gGE5yFjyypkLVGtFBnFIvhDg2CaGrnP6xGXajR6VaomtzQ0sw+TqjXmEpnxz9XoLHRvN1JBE2HZAmhi4gc1goM7J+lYDyzGRDLdxhkTXbCpWQm3uMO99zw/zuw99nn9022HSSLK1XqffC1UMhO8Qx8mwGYkZ9HoYlkEcx98h3UmThH47RmopMoV+J6bVaGFqKhfyTYf2I7R0WMDphN0etuOqzZrYhp2YCBHRajXJZDzlO9UMtUXUVaiw5+p06hvQC+kmKtS81e5SKJQRqfLP9PsRrq82tFIOvT9CIOMuUbdB2O3SbXfRhUazsUUY97lwvs6BAwe54817mBkZQ9PAtAwMU/1bty0CQhMKkoyGrhlEsSSKoFHv4tou2xbxfqc/fDYITMvgwL5dCvm+nYslBOi68nJqidomCTFsDjWEMDANHc3QSJE7MDKpC4rFPLqhAqSvXr6G59jDjRYIdGzHRsp06NO16XcH2JZFkkoSEgzDRiYqW9PPeCwsLBNkfXzXRwhj56xPkhDP8RBCY211lVqtxB375lgVmxyYqnDl2iKVSoGFpUXyGR/bcfji0St8YLyGbXk4tku/18V1HTRdoBtih0i6ubVFkLHJZB2QBlMTY2hmytWLS5w4c5np8RpC04jSCMezlXRXV1JWKaHb7lEZqSAFqvEWgk6jR+AFdLp93KFcUBO6eqaFIavrW4yOjShcvRSIbR38d6sdgJOay4M/cP/2E3/nbTtfTgiFs7dDycb1RVa31nDzWTzfG95/8jXzYfU7HrZ9pIk6Q5bX64zsuYXy7kNYuREGfRVBkbc3yZmb5Ow2mfwkL5+9yJkXTnLo1v1s9dpcuLzEn/6ff8l7PvQJTr+8yW373smxby+QKe/h53/pVzl814P0EsE/+Re/zqNPHOHM2evc+8A06x2dv/j8AtdWcmw2XSwTzNRCihaLy4v4fg1h2PTCLjJ1yeVHwATd0elEXVxNI2uGvO8dNczqIv/604/zwKG3o2sq4kD9XFShr2sGhToAOAAAIABJREFUSTwgifsqZ1AIohhMAyzbQddB1yRaqhHLZEeynMoUOaT2JmmEbdkqlkM3OXnsBSbGJyHuIeMQQ6QkURfL0lldrWOYNo36JpZmICyHgdRJ+hqe73Nt/gql8iQXL5+lVKvR7vYxTY9nn3makZEJDEdnIDWe/PpzTE1N4NoGQpM888wzjExNKruPVPl1Gd9CE5I0iRBScPLYK3zyyGd56uxRjl07wZGrxxkw4Jfu/znedcdbefuht7J3dhfTE+PDAZlBt98kkwlotCTrW31WN9tcvHCFYmkUy7Pw/QDQiOKUMEyolmssr24wu3s3B2v7+bMv/TkHJyJ8x6U/SAlKE+D4vOX+BzFdD23oadSEhpAC0iGd9zX3/vbQTg6HddvKqJubu5uBg9/t0sTrv/b36vp+c/c9vpIk/o03/MB/ipFy53oD0Mrfs7l79Q/+HVvB71jjvf573t7+ve6r3ByRIFMKhSKmZTI5Ok2pWKBYLGEahvKIpQLHMigVC/zTf/LfEg8SLl64xO7d03zyrz7F8XqTezMZXE9N/K/MLxH4DkHgqYNSNzAsm1qtgGHo/NUXniRwTMqV3BC9PZQntjrkczk0HUIVogZS0mp2sSwLy7FoNlp4nseBPZO4noPQFcDgpVcu8+LZy+zdNUmKJJ/PIFNJq9kmiVP8wMdyTHw/YGu9yeLCqtrqeTZxEpHEcOb8dUarFYQmuHr1Bp7vcPv+GbKuChZfXdvAcZWUMRyERHGMF7hommBjbYtMLsAwdbLZgFwug0zZAbFomsZdB+fYPTWG0IVCpMfRMERZkslmaDc7GJrB7ukxkjhmcrRMGKlA3nw+owhaqaTZ7FApq9/XIIy4c98sB2YncX2XaKAAC0dPnYUUarUypm1Qr7cIsgGmo0Ai9XoDz3fpd/vohk4UxvzGmXl++oH9CKkxGISApNfr4/s+K8vrIASe73HLvtmh5NTGceyhrAP1wE8lqYxptTpYpo1umrTbbWzToN3u0hsMGB8fob61xa0H9jI6WiaOUyWPLJfJ5bLEqdqYmEPk+vZlINjcbLJ79y4ePDTO/NICF8/PU6vleeboK0xOlJkaLeG5Hq+cu8pIrcjXHj/OwVtmaDY7GIZBv9/FtiyEJuj3Brx85iqGIclkMgihs7K8riI8kgTbdTh98gKzU6MYuiTI+BimzmAQcvb8VR575hXuefMMxbyLbqpIjE5nwPUbK2QCB13TyOfzpElMFCfDba2hwCXjVepbdVxPTYVVPppqRmUqUDNfoSJGwhDTVPRC29IxTI1yqcSJU5eYnKhg6Aa2KZjbM0Wj0eatb95Lu93G82xM08QydVzXw7RUk1HfarG4vE4uF2CaFnOzE2QzAUmc0Gx18H2PtdUtPN9leXmdcilPfbPBx//0DJ/7H9/PiRdfZnS0ikDwuS88yYF9s2RyAaapAD3nzl0km83w0FeOMDVeolzN47oOa6vrzMyMq4JZ0wiCgF67Q6VaoN1tk8nkQWq0Ow00YdJsNHnoq8+yd9fYji9R0wTtZp/JWpFnLtUpZks88tST/Mj4FN1Ol7WNLb5x5EXuf9vhYWDvdiaWihPZ3iRtyzO38xYffeJ5quU8rudw/PjLnDh7nt1TE4BkdXWNbC5ASkhjqXDrQuXuaZqSM6kwZh3XdQnjAZ1OB9cxkUnCt547RrfTRdfVMC6bzeFkMqQJ5PN5hDTpdQacOPMK1VIJgWAw2M5rk8N4BXXeIAWZIAdSbdKffPEEza2U2ckJhBGhC0Od9ZqKLtiOhUiH0iaVZaWeR8YwUPfk6bM8/OQLvOm2/YCk3+vz+a8/wdz0hIrT0DWV7zX0vch0CDdAoCMRmq5oudsUZgFxHJEMgSC6oavCTKiGwdB1hFRDFiVLa2HoBnGcsLCwjO+76IbaZL105jy5bIatrS1sx8QaNl3RcENSrpYRQrB0Y1nRgHVNxdPoQmUXJgm+52KYBr//yNf4xx+7nzhJqFbKJKmk2WjR6/ZZbHT5RGUUTdfpdwYqB80U9HqquQSUAsMyyeWyhJEiJ7aafRzPpj/oUMgVeOLoGV65fJ2sY1Ktll591ApVlKapxPNdNjdbQ/p2gmHouI6j4oJ8e2djKIBGo7XjeyvXysrTK9Qz7+9q7qo//KOMjFb/1vIBCe1mi4X5GwS5LNN7Zr+zodvuAoV4Q4GSGWco5kZJ+iaeHtCrR7zp1ruZ2T9Ja2udCxcv4dkBL1+4yq7ZcaqFIn/9f/8VxdoY5eII+/ffCobBs888w/ve/z6+9tWHEY5FNl9kfW2DB9/1HlrtLm97yx2844G3s3f3LPMLXb722CkuXLjKiRdPcuHMywgtYGWtTuDXQEB1JEuctjCEJAwHdDsDirkKrpthbXGBUnGUNBVkPI0H757mF3/zT/iRu96xA8pS4eJq2qHeJ4ljyaAfc+ncOcYmJvDdoZpBGMSp8usmaaLgKpqhFABDj/mO1F/TGBlVzZHnOgzCwbD5N2i1WpTLRTRTEPZ7+K5DGCWsbqyzMn+ZmT178P0s0WBALpdH01S0hWmaTExMDRVnCTExxVwZw5bI4YZ9bLzG6nyf//nf/w7fXnqZF6+c5KmzR3nqlaM8+fIRxpJRDh2e4759d3HvvsM8sP8t3H/gbt62964dQJA2tKgIobGxvoJtKzCbJgyuX5+n1x+wuLSIblosLi5RqZW5cuUS5VINgCefeIxUxpTKFdrtJleuvML9+w/z6WeepaC3yOXKlMdmuOW2w9x2+DDRzr1+84ZuKNF87W0sXr1PtSFT4nXN3T9Q0/b3vb7f3H2Pr+83d9v/mxJGERkvR6fbIU0l3V6PG/M38F0fyzIwTTWVWlpeo95qsbK0xrvvf4CvH3mWFnB3pUyn0yKbcahUi6SJHOJ4E2zX3PEd3HFollIly2AwIJP1FegDQdgLVcimkdIPQ6JIHZRxBPlCnjAOcR17uLWE5eVVXMcljlOqlQL790yRpCp/pt1uIVNVkB998TylQk4V064Kp42iiHNXF9izexwSjSRSxdnKxibFfEC1VsRyLXr9HqVyHpB4noNpqNw2x7FxPVdl0whBvd4iX8iQJgn1enMYt6BgKQBJnOzIC8JeHx3J6so62cBVxY6mtP9Xry4w6PcYG68yiHocfekKd96xl25fyUyFYWDZNvNXF3n4qRcZKWbJZgMcx6bVaJLLZQCYmRqlWMiiGTqtTp9MPkun3UfG6oFlmxqakFimxfrKFrlcls9fXeJDb9tNt9NDCI3A90liiPoRhXKJjfVNrGE+ILquNP5JBJqSvUXhANPSEcLCtt0hgAH8jE/YjzBMgyDw2NzYZGREZZOFcUSvF5HNZnnl7GXOvHKJXbtHEULBXCzL5MjRF5mdmSATZHFdByE0HNPkV/79SX7x3XMYpsXU5CimIYkGfbY260xOldFNQT5j4/kOvu/huDadThfbdoYZZzA5WUNKWFreoNPqK+8EEAQ+QgoK+SymaVIs5RCapNVqkyQxI5Ush2+dwjIFmpYiURTRNE3JZlx8z0dK2Niok8lmuHR5Ac+1sEwd31V5Sbquo+liJ4PI1FVkQH2zTjbjI9MUw1KB1AArK2v4voPrWYRRwuzMGL1eF9/3aLfbagteb5EJXAxD5+LlRYqFLJ3OgEyQVTJDXcd2DM5fnmdtpUUhm0HXlQQ0iRNMyyZNJNlsRgFKslkGccKHfutRvvqbP0Oz2aTeaJMLsgqQ5NksLq0zOTmmCG4pVGsFer0+m5ubzM6M0GjUyWQVPdTxHBqNBn7gY5ommmbuZEa1Ww1sx8ByXJI4pdFoMj6SJwh8MoE/BDsInnrqBCdeusAfffFxbt97iD/+d3/CL9x+mEKxRBzH3PPm29jc2CSTzbx6BiJ2PGBiePwJIQgH6r6c2zXDl598nFv27OKp50/x4Q+9m+eOvIhjW4yMVkiHTYw+VAbEUYimgy4TRBqjy4Q42g4g1uh2u6RpQrtVJxu4TE9P4gYepuVg2B5SaiqEOVUNRLvV4bEXTnHrnt20mk1czyOJY6I4JBqopq7dGVAsVAiHMRWX5ld52x13sHf3FJalq3vRtImSBMO0trs4lXUlBa1GC8s0EJoCAhmGQSolJ18+T5Km3H5wz3BLpTNeLuJn1NksJcSDSOUaDjeAoHLt4l6IpqtQdSlT0iREqb9UMLNkGBcUx4CGjBP6vQGO66qmcwjLCbKqeS5XikO6Y8rG+hbTU5PDc8PHciziMKbX65PN5+i0uxi6jmGYOI6i1CrpqaJ9drfaWKahgujDkP9w4TzvuH2MXDZQkAw0ojBhdHSUb56+yCE7y9raJq5rY9gQRj0yQV5FNCCG20lBGmuE/QGarkBBMk2pN+pkczkO7B5npJjBsW2y+YBGXZEVFcFUwWFkKrlxfZWvPXOKOw/sQkipfJgyIYwiRecdqn/+5uHn2DtVQUpwA2U9+Ps0d71+j+D+d+L77nevHVCFumka7LplP0EmUJ7Mmz6ua9rrCOHfUTfobdAGmF5Ks73CyHSFgQhZbpk4zgiTU4doNHoQXSMNr7O5dpms57C8FPPpz3wOxw/I5fK8/e1vp93pUxwZIV8epVQZIxEmjhvQ7fWxHYdenBBHE7R6Lvc8+CDv+uEf4ZYDb0JoE/zZpx7i8nzIV756hiQOOPbtE8zdsh8inbBvsLHa4vix41SKPkGgK6VTqhEOOjiGwy988G38809+nvv23YVumCAlumaAUOHyUmoYhs3S8grzy1tMjtRIRcTS0jIri01qE+Mgwx2abirlMLZEoGlKum4YBt1uC8MySdKYQdjdIeBKmWLaFvGgxcb6KrYdIGRCs9VmbGyWsclZJEpaaWgacdjHtHTSJCZNYlrNOqZhDCNnYhxHI01DVR9FMf1uDy9w2eVX+dF738l9B+7kwUP3cu/ewzxw4C6yRSXDl6goiTCSHHvuON1Ok0KhjKELLMsmDEOarRaZbI4kjUHodAcpm40uW/U6b7nvQUbHJrjzjjvJZvNMTExz6vRxzp07w/jkJFEy4NKFcywvzVOtlFi7cZF33/kAnzl2jNGcyf0/9GMcvPNN6K6783p7NUZgWEe/wX1/M8kevt/c/W3XfzHNXSqT33jDdPl/gObuuwWQf8dXUCN9DN3YOVx17dVMvO/M2xA7EpjtW3ybWPbaY/nmP6drCkRimSbXLl3f8cuYlkUQ+KwvrTOza5Jmo66mN1LnT//tv2VjdZ00idg1PspTFy9yr2Xx8uWrTI1W2ao3yedy9Psha6ubtNptTNPAcSw67Q5CE2QyHqurmyAlnW6Pbzx/irnxcQxHYFu2OqwMk0wmUIHN/R6mabIdMNpsdvBdHymlCjrWVAGcywb0BwNc10VKqJULbG02+dbJsxip5MKVRfbPTbN7ZoytrTqmbnL05HmSOOXWg7vRDI2NdQVdyQS+8hMaBhcvzTPoDpTPqlZiq64gJIZhkM0FbG026HZ7lKslGg3VmGiaRrfdHcoEVFbS1SsLZANXQU0ci1SCYTtICdevLzM2UsSyDBzP5sDcLuI4wnEddFPJjqIoptPuct/dh8jkVEMpkNi2xdrqJp7vEg5CdNNUP49cFkM3+Pw3nmWirELnB/0e3W6fbncw9PEkOBMGh/ZM8tJLF8j4AdevLfCNJ45x5txVqqUM3W6PfCGnvEtS0mxsDaWbNpqmE0bhkH6npvNISRRHrK2v43s+cRTzyBPPMzs1SqFYUF6oOOH8hevMTE9SLReZmR7FstR2zHVcrl9f4E133kq73SKTDWi1VV7gN589RnN9kXffM8vLZ68yUq1gmFJNM6XAci00Tac/CHFsm0E/ZHllg4tXl5gYq6hC9CZqluvYfPWx05g6jE9U2VjfVIZ4KTl6/ByFrNomGLqOaTmsLG8p6IvlYBgW84vrOJYxzHl0efixo+yfmyGTzbC5voXn2qxvNRkbq3D2/DyVSp52u6M2lIbaXnfabUxT4+r8AoW8y8rqGq7rsb6+hUwlhVyO54+fYbxWRAzPA3u4jcpmA5AK8nPl6hLVSonAd/jsl45ycO84mqGzsrKB61rousYTz55laaXLbQcm6Xa6PP6tUxzYO80gVL6TI8fOsGt2nGuLa3zij57lkd/7JYQG3XaH3btmCcMYz/Mpl/JcuXaD8bHajpTr1EtnKJdUQPPE5CiVcolWq0Mul0MberaiKGZ9bYNCoUin06Pfb2MaQnk7DAXD8FyHTOCTy2UUSVMIDN2k2+6yvLrOuWbCr/3Kr3L05El+6sChnUJW6Or+6ff7GIaBZmhD+Ak71KztEzJO4iFeXHD7wTna7S533XkITRNMjI5w9foCxWIe01bbG6FpJKTDkHXVJK2urLK11UC3NSXlc3wc28OxPZADda8LUxE3NQNSwfrmGo5jYVhqABTkAiZyBV586SwvnDnHXbftRyLJ5AJs3UAKDdt2QNMxLZsr124wUqkyMlYjjiKCwFNQGFQeZxzHxHFCHMZKRicFfuABCgakG8p/J4DZqQkO3bJHFYvDDUSQ9dGEypvcBseor6u8R9vwGceyhiHM26Ah6Hd6GEM/rxAaaZKwvrKB6zrYts3CwjK5XFYpGnQN07bQdYN6vUkcxWysbeAFnpLbo+KB4jiiUW9g6Lra/Bo6L5+9yMTYKBcvXqZcLiIldLq9IXgixjYNrl2/ga6rjeqfvXiCj7x9P7qmcfXqAv1+SK8zoFAs8qlHXuC+fBHPtZVUX4NWp4XnqQGBPoR1RVFEtzXAckyEUCh8XddxPBOZMCRhuuQKwc5zeztfNIkT+t0BzWaby/Or2IaOZxpksoHa+BjGDnRlZWUd1/E4NDdNFPaJk5R8Ma9qAMHrmjtx0xvAzz19mp//+Z/5jmd+mr4xJVDTNNIoRhja6+wbN3/6zb2dBGSaYnseiRTEqUTqBhE6mpVBaB7fPnKM0ZERLNtgcjxLNuuwudmgNjJOoTDKqZMvcvXaJRzL4ZN//n8hTJNDt93GT/zER/jEJ34JYWi88Pzz5DI58qUcN5YWKeRHyJUK3Fi9zi23zDE2Osajjz/Fv/rN/4EfePAHWVqsc/nCMideusz46Cwnvn2Jx588zrPHzvP+978TJ4hptFcpFCsqzoAQ05QkacQP3lXktz79MAert2IY6r7TNGNnI50iyeYLlKtlLE1DktJpdxU1tZjDEK9C0raHSZqm8l63wVCm5ShvWxSiazqGrhMnMY7rYhgmRHD1ymXanR6ZjMqsvHr1Il6QwTAE/W4XXYJhKLCbaSkiuKkb9LodEGDrNlJIXMen1dpCNzQ11DF0ypUyvU6XwMsjhTpTw3CArhskyZBWnKZIoeN6HpbtUa4WiZOQTreDoZmYpgMCoiQijXWuzV+j1RoQS41ipUouyHHhwnnyhRKmaVKrjTE5MY3ruGzWt9g3t59iPk+lXMKzDXRNMGlMcGr5JT74Ux+hWBsjFcp//SoZQp0t20OW117iZhyi2PYPb79v+17+f6+5eyM56Pebu+/xlaQ3be7+gZu77wZG+c6vIId//ibIynAKKF93WIuhL+Q1N/Qbbe5e+10OC13H8ukNzeTfeOQRatUqH/nJj/KzH/8ojUYD3VBZaw+880GmR6f5g9//PY4fe45adZQnVzcoN9ocPjTH48+fZPfUKJsbdUZHy9hD3DgIBnGE47jU6/VtcyFRmHDXoX10O30cT6GoO+0evf4AwzKGFkZBt9tHCIFlWWSzASLVOHf+KrliFqELMp5Ds9Hk0edeYqpWJggCEJJiKcNUpcJIrcLU5Chrw2JDGdh15nZNUMwH9PuKeNZqtjl17jqGgI2tBtkgoFQokPFdxseqDOIIP/BIwpiLF68RRRFRnFAs5hBCMOiHqkBotckVsqyubmBbJltbDW4sbHL22g12T43RD2MM0+QLjz7H2YvXuf8tt/LQo8+xf2YCBFhDuubq6hqObSITBZcpF3yiOFLgGFKlnY8TgsBnEIbESYrpmPhZH9kb0Kw3ub64xp237qXfHygfkpQ4rsq8+tnnTvFrP3E3aQKFQo6rV+eZmq5wy/4xbtk/wRe/9ByDQZ89uyfQdHWA6prKuhJSVyHylolMUxZuLNDY3GJ9dYM4jBkfHyORgkw2g6kljI5UaXe6mLZDGqZk/YBjx88gtZRCOc/K4gq5TI7Ll2+QDbIEmQyWaRBGCX4QIDSdcjHP7rEK/+wz5/nYfWNcu75MvuDSbrdpdQb4QQEhDHRN4cc73S6PPXOad739TXS7vaFcTNDv93Eck0e+eRzHNhit5shmHCxbZ9CLcH2PqckqfsYjDAdsbtYJsllcx8T1ldwr0QRZz2MQxqxvbGCaGobQMTSdza06haKKUPjS148xOZZhenoC0zSxbYter4ema6ysrJOkOqurW8zNTqAZJrbjYGgW4SAGqZPN5gj7A5aXNyhX88NNlDqnmo0mpmXi2A7NZptcNuCJb50iFzhcuLbA7ukauXyG9fUmnuuza6LC+uYWM5MVfM9lz+wICwvLnD5zgz27J5gcr3Hk7Dy//akj/MW//DiPPn6Uud1TWJYJSFzPYWtzk28+fZR3PvBmrly5jus7DMKQqYlxwkGE77sEfsD89SWqtRpnzpylVi3R7nR4/tgpbj20n1RINtY3GasVSWUfwxAYZoEo7OK66oxQeYEqqy+KY8rlIqOjPg+fWMBMI37x5z/OVz73N+yrjnLp2jwLyyvs27eb+laDp4+eYM+Mgt3omiLbbZ+ZcRQRDqIhKEagm+C6Dmks0XSF/i+VCpiWooYKTXlpNKEjdF0VFEIjk82RyWTRTRM/kyOVijoZpwmGadLrJpiOqzZeEpIoxXccdF1neWlZbdulJJMNmJubYmq0TBB4Kkw3ThCkRKnEclzSFLrdLmNjNYSeomuCfDlDFIVowlYRA6kk6ocq+zNJefq5Y/i2iivYJopvg2M0TUlWDUMniiN63Q72cLO87WPZWN3g0198nAO7prFse0jOVY1Zu7GloFdSEg7/TlXE2sP5oySOYwLfwzZsZCrVZs0yd+ScSRwjZUq/36dRbzA+NsYg7OMHPpvrW/iBz5HjJ5meGB3mJSoPT61awdA18pkscRIhNE3RgYeB4wiJaZn0egMc2+Zff+Fz/OwDd+AEGcrFIromqFQrtNodfveh5/m5g3OkKZw4fYWp8VFF6zVMkjTlxo0VbNsiTaGx1eKhbx1hpBhgW/bQw60jdPVsNiydNE5pNhVowjANkiRFN5Sn0DJNpkaL+I6J7wWsr9WHGzRFVU6G57hu6khSXMfEtu0dz9B3a+5ufp5//urSTaTM4fvlGxe4qRi+vUEdcvPn39zcWbatpOu9HkacsHrpElnLwdZd2t2UgutTGw3oJW3qrSbZ/ByatYtMuYqgT9q5QHfrEvcenuOO2+/DECnPHD3CPffci4wlY5VRmq06myuLHNy7mwsXzmPaDpVqlShMKfg1jr9wCt/P4AY2t9/yJjSjxdhUkT1zt/NPf+1f0hqYPP/yNXpJGd3Ic3m+zdNHTvPmu+9idV1imCXa3R5CB90wceyAt99W5DNPPoy2VaZQypKQqG1cmtBp1/EcGxn3sXwbIU0c2yWbc/AcC0m643E1DH3n9aNydJUkM0lUcLplOSRxpOq1m37erXYdzfQ49dJ59s5NQtRFxhGu7ZIMeliGQavRJJXpEJSS0u12cGwToYGh64SDAYkOp06cpF7foDoyPhyyhMP7CCxHbeEEKl4hiaPhJl8xHBJpEIUpuXyeKGmhCxWsHg5ijh45Tm2shq6bnHvpIktbLXoDk5HxGSbGp8hnC5x75QKrGytUKyP0ByGmaXL58kXqjRYzE5OcPPYU05NTJFGHxtYiuWqJ04vrfOJX/jGm57Pt4ZVDOrB2szz4DYvlVz2lummps1NuN3mvv5f/oa83+ru/39x9j6//vzR3214HRR5Ldz76n6W5S9XX03QdUzNoNJq88spZ7rzzTnRdZ++uvQgNsvmMmhQZDv/mj/+Ey2cv84H3voeNzVU++tGP8ZmvfoV3jVQYzeU5fNu+If7aoNPtsb5epzic5jeabUUJTGJKpRyOa+N7ngoBDwL6/YHKRPrWUeYmRwHJiTMXEbFUpEtTTUPr9Sau4xEELsLQ0Ayh8uhsm1v2zGLZFqsr6xSKWVX8SINPf/lpRBQxPlblK0++wMG9k6ysreF7SrYnNI2tzTr5QhZT6FSrRQqFLEiBlErKaJgmnV5XNTNJSi4T4AUe+XyGNFFFkxj6KTLZgE67S7lSxDAMPM9ltFRicqyMYRr0+gO+9txx3npwjoNz0yAld926F8tzSOKEKAwRGgS+p0AQw8mVTCJ0XWez3kTTwA9czp2/RhRG5As5JFIVcJpG1OsTDmIKgc/a+hbPv3ye/bumFO45l+HSlXme6vT56QdvQRcqPLlaLeE4OrouCKM+uybG2Ld3RgVtRyqYSjdUqKpM1VQ7jqLhlD9lpFphdXWDifFR0kTylUeeIx70GK2VeOKpoziORT6XpbFRJ4lT5uZmqY5VVPGcwpWrC0xNjtNud9V0MQoZDCRpIjh58iwTkxM4jssXXrjCT987Rj6fJSUikQnZTAZddwkHMSurGyqE2jW59cAUaaxx5tx1ds2MI1AByxLJ1HiZPbMTlMt5FS5rGTS3OtxYWmdsvMLFS9cYHamwVW/geDbnLlwll3WRmoLRGJhcvDzP3J5JWq0OU5OTmKaFFBJ76Mfbu6uC61msrzdoNjv0+j1sy6Q/CPF9BykdyqUChmWRSsGVa6tcu7aEkOB5DmfPXWer3uGuw/sYRCGarrD262sbSCnxfQ9N18nnAnq9AVMTVXzX5raDk9iOTa/b56GHj3Pnod1sbDR4290HMAydRrOB59poAnbvnubUqYv8o995iNv3H+S/fu+9BIFHIafk2p7vKWR2KsnlMuzbM00UxWia2gydP3+Vy1dusHvPjMp5SuGP0sLaAAAgAElEQVTSpXlK5QK1ipJrZnIBE+MjGIaJZgjm55fIBzbrG8tks1kQARARRRGe59Fud3e28KmU+L6L6xqcv77Cr/73/4J6q8kffulhDpsue+d2MT0zpeAgCE6fu0S1kCWXy6pzTlfnoa7rGKZJu9VRp2yipveqCDPUNHvom9F1g62NOkHWxxz615AqsqLXHWDZNgiNNFUwESkkYTzAcHQM3cS0HISmMxgMIFGRBFE/IuwPKJdKJFGCoZtIEgxTnRGLC0sUS3kMw6DXaaGZNouLq3zukaeYGqmQzanczyhKELryr5mWo7xxaHz18aeYm57CNk0eO3Kc6RFFjDRM5bNLtsPXh88k5adJhlJZsbOBsGybVrNF1nGp1SqquR/WV5ou8FyLMIzQdCUJ0zVddQpCKsWDqSILDE2RMQeDAbl8DgQ7m/M0jgkHIUhBpawy+2IZU99qks1m0HWNYj6L67u0my1M21F5b+mQ8iwEhqXkmOcvXCEOIzLZgDDq4/ouuWwWmUgeW1njg3fN8vCjL7B3zySf+8IT7JubYmO9zu//9cN8/MB+4iih1ewPlRAGhmUhUff2ttLCcz32TteoVPLIRLC0sMagH5LJKZDOtkpDNdMqTkCmCc1GW23+TQNDg1xehZs//+J5Rip5tamQUqk0dH1IF9Zg6Nm1Pe9v3dy9+kCXPLbV5QMf/FFe8+43LDLlTSu/17pAvltzF4chzWaThz/961w48ySL179NY+sSx459g+k9FVytxFNPf41yJUO2mCPrTyH0HLans7lxjYmy4C2HbyfudrkyH/HH/8cf81M/8zGqtVFGq+NsrGxQb2+xb/csR488j+tZ3Hb4MM8/921uXF+iWpihVBjhscee5D0/+oOsz/foxwvsu2WW3Xt28Tv/22/xwDvu430/+eMcftM9jI3sQxMe3/zW89QqHv/Tb3+DD3/wh5AyZWV5AU1z0FHP7Afu3sWfPf4Cb549jOEYqqyKInxbSfU920eaICMVBi5FCGmqwEqaRhSHO68v01TES6FpCE01kWrgkaCpWQCapojCcZJi2Dqm5VIbqZINLIhDZCpIUkm9vk65WKXf62FZ9vD1pjaIIInikMGgq7a/ho5GnjiOyeZyWIatLBmJCUZIzAAS1czpuo7Q/h/23jzK0rO+7/w8z7u/793vrapbe3f1ql4kpJYEYrMBgwMEOAwYcDgTn9gGzxx7EjvJeOycOIFk7Imxk0nsjH28hdiTYyNsg5ENCCNAO5JoqVvd6n2p3mpf7/7uz/zx3G5JGGI8hiEzw3vOPV3VferW7ar3vu9v+X4/X0kUhcMwdpM4kZw4fozR5hiGkWKbDkkaoXLBaLOJ63kkWUZrMyKRMDW1hytXrxLHAyqlOp5ToDmpM2gffvjLTE1Os7S8yOrKOlOT42ytLdBojCBUTJpEDOKEd77xPfyTj32Ud7/7XTorWEpt+Rz+fG76fL9RsXyz5hJCDGMttCJNfUuB59/547+l5u7b0dn8v+LIM1BKDgt3Q58Mwvj2PLkwbj1ufo8cbj1e9jq+yd+/9OsRBmmmbj0XmLc+1p8Pp8svea40Tb/hS1N5futxc/qfZymJkWH5HvsPHGZ8fBIp4Aff9Qbqox5ry/Mszp/l6vETvPH2I6x1Fpk7eISLVyI+8cnP8cojR/itThfLFsRRhEIRJTGlcoFKtYbKYW1li3SQk8eC5bUWSQJZJhHCYGNzG8MEJ9D+vn4vZWOlhWtamEoxOV5HkqHISLIIr+iQ5AP++KEneODzz0AiKVeLXFtZptVuoVCMjY9w/doKQthaHhjAoUOzmI7gbW+8C2FKRkfrhHFMlKaYtkV1SDN0HE1uS5OY69cXUEmMkgaZEniOjxQGpmMjHRPLsNlYa/P4106RJBlJmnP5yuKtgOMkyXTzQ45p6km17bqUikXe/uojGCSQ9SkEEqVCNleW6G63NP1TCoQh8AsFAq/A2dPXiDKFMgwmxseoVKukqZYTugWHJEsIByGGQAerBiUGacrOuQkmp+vcvnua9qBLsVJic73N1Pgo+0cdLOGhRDa8QQiuX1vGcwJM4YKlcHwD0xTYlkUaKYSwyXODOI1J8xTLdUnTHNvyuX5tgSSNMT0HwzEYKRfZs2eO5ZU1TT8Nc9rbfRpjDZ549iSp0sWuKS2K5YC5XeMoETLS9NlsaXnimdMXWV5c5O4jBxF5zMKNq1TshDCFlZUtBt0Y1/YIo4xnj72A60omJ6qsrm7y8CPnMfICXsFi144Rkjim3xlgYBGlIYbjkGcZxAPC7XX6/Ta9OGTP3nFSFTM7O0YUDtAUcJdGucGp0zdwTZ/ORggYTIyNsbrcQQqPKEoYDEK+dvQchgGXL1/FcR0cz6NS9RkZKzHeHEEKg0JQxHdLlMqQ0QMZQ55x/foap05fo1x08BzJ3j1N7rxzjkGSkKdgGZI8VVTKI4AgUyGDOEFIG5W5HH1mnlq5wvr2BpDz5a+cYt+0Nrf3+iHLi0t0Oi1czyaTgkK9jDRS7j/VZ/ftr+LVt81gGQaWYWMJm/nLq5imh2E6WEMg0PLKKoqcSq2MMCRXF1d45b0HuHThMlGYsrCwgOcb+J5DkuYYlg2YnDl1hX4nQqU5Fg6m6VKrV+j2tpDoabfvB4BBrV4FqYhS7QXN8ow4hXe+ei+LW1cp+yP0B33qtSLrG+usr6wi8oxKvcTb3/QaxsZHyXOlc6SUgUTLD6MopFwr4BccvKKPEBZZBkpkOJ5Dr7cFIkXlGWfPXCSLEqJejzjsAhmmKSkEPiqHbmdAriAnB5ViWwZ5mNHvRyByUBG2JVECBtGAM2fn6fT7JCpDGBapykHlJGlIkieMTTRJ0pwo6pFJB1vCoLdNxZdUqmVyaZJGiqeeOcmglWIKhzjSG2klFG970+uwPZvMgEa9qIcfKh9KIQWLi0vDglO/JgXkmUBgonIJSmhMepYx0qhy+NAeLNcgyVLUMGVbKEmaCba323RabSAny1NMR3LjxqL2GCulwS5K5295gae3oEJiSIFEYbsuluPQ7naJ0xxpWgSlKvWGhqVsrW8gVU5rZY2g7LG5tY5ta/9jGIYkSYrlelreNdmgWLIJ+22iQYhQgjRTSMfB9T1aUY/b9oywubrJ3MQUSQTj4yOoPKNWq1GqlDhweAeNsRJCKLI4I+qGGEqQp4osgeXV6/i+SZYpeoMBZ65e4/qNJX0fU4rN9Y0hXVHS70dsb27iuhblWhElJVGq6PRj4jTHtE2WWl0ajToqk0RJQpqkpGlKFMfESUJ7O0QKHY79Yhf2zcuOLEl485vf8PIyQnxjyiCAVPoh/krxMXw+pV7M9xQKKXJMqUj7bZp7XsFr3vwu7nnt93P7/jkqRoKztoDMO4wWGvTXM9y8guWbKNWivbUBKmBlU9DNXOo7djM71+Kf/9w7aYg18vWrfPErj/GZLz/Kx37p/+CXf/XX2bl7D7/yy79Msr3N3MxBvvC5zzN/6cs8/sh/4QPveSMqdnn82KepNmbp9GyuLK7wIx/6CaZ27eHi5VV++z//Grfd0+Cu1x1go2OyjQmqwLErx/i5f/OH/OK/eZrY7RGqjAGCR44e4zV7N/nFz/wmaRyTp2BYBTLTIrUEAxWSx4o0j8AAQ9ogDKI0RimJ51TwHF9HNCSp9qzGCXmcEnV7WEpg5jkiz8hUBEqSxyCimDzOkXlE0YM00XJc2zJJ4o6uRfKUYqWI6UikIUgzHZCexBG2NCh5BQxT4OQm1TLs3DWO45rkElIihNnHUTYMJBiKKDeZvzYPearrBekwiBTSUtz3uldSKNpY0tab6TzDthSGkZDEOouxPObi2gUuXjjJ1OQYd9x+F2Ea4ZU94rBFv9fiyF130elsUwhcxhrjxPGARIVst1ZotbZA2gSlBnGW8eOv+x/5Bz/2PyDVsD5Vw1pVaT9znmfk+U0129cPHvR1yzBsVK6H8bfUFubfrKURUi9Wvl0N4U2S538Lx/9vNndpmn7kxa0avIhQ/e4dXy+x+Fsdw03efxWocsv8C1EYc/LkKerVEQb9gb5AxRl+UKRSH6VQrVMZHacTR/zA972Dv/vOt5HE2/zw3/shPv57/4lipcjezoDxsVEsyyKMEi5evsHE+Ajbmy2qlRIPPv48EyMVJqdGh6TGhCiKh4GvDkvXV1lZ3mLfTBPTlJRrZcabDdrtFoVyoOVEwhhCAxS375vl4N7ZoTk/pzmmQ3LPXbxKuRRo+VSeUy6W2Ds7MzQ9S1zXI0+Hvg/LYXlhQ8NNgHa7y+PHzuCaBvVaGd9zabV7/PkTT7O1scWO6SZhP8SybEBw4fwVxkbq7No5OQz/tLh2/QauNKnWy8SDENuWqDwjivRN2/MdLEvSbrWpViooIQlDbcruDhIsy6bX71Mo+Gxtd8iSlBdOX8axLCandZi5YZo6wNw08f0AQ5r4BR/HsRBCxxkIKQl8h06nR687oF6rYpkGG6stSn5AFIXc9wN7OX96HsPQ08YsS4egjh5xkpKkOdVqhU63y+rKKiMjDdRwum9aJgJYW13HD3ySJKTdamkQRqVGEmeoPGNktE6tUsS2TWZmp7Edm8Ubi+yem+LY82eJ4phKuYiBzdpqi3Kpypkz15gYmyCOFLVakeb4KEkck+UZpVKBCSflxuYWX3v6HMVA4bsWhYJPvVYf+mEk42MNZqZq2I7J2voWSimq1QrPPHuawDeplBqoPMeyYyR9pEwplRuUS3Usx9XI+1SRJbmmG1pQKLpMTTXYWNvAEBLPd5ESVlY3ECLHD1xQOQXPolqv0G73qNVLpGmC47lsbrSGmVmK8xeuUCzYCMPSzUuWE0UpE80Gtx9ukqqUoODT74c8f2qeWqlAEPggMhYWVomjlE987lnuuWMHjm0gZMJ2e439+8exPYP19S0a1TI7Z5qcPHuVftTj0O27ECofblEEx09cYHqqyfnlbd75mnuoZNtMTzaRQvLgl57k8O27ePbkGfbunmJzaw3XNegPejRqo2RZxo3rS0RhxOEDe3Bci689d5ZnnjnHbfummZwYG267cqRhkKYpvV6PJEkwHY3/d2yfk6fPUSoWKRXLpEqRZgrDNIcZagaGaTHox2RZjmPZFF2Lj3/uef79x/49hXqZjV6PuycmKQQFfU5KgyzNsB0LaYihtEfpnDCh3xfkIIWhqYWWeSvrFJTeyClNnTSlQaVWIVcZhmUB2kNlGJqQh4KPf+IB7j60TyuHpHGLBtnv9rGdmx40PVF+5OnneOHKJWbGRrR0HL3R2261cFyXOEwxpKnzsCyFJMO1Tfbv3o3jeaRxCiqnVi5RrlWQhiBXCsdxiCMtH/Z9Dykl+/fswrQsSvUSWZqhUFQq5WGRpHTEgSFJ0gTLMlAa/4Ec5hwKMYyocRwtX5UKshhTZOQIfR3NMpwhBCFXOcVyiTTJbvkJhBQYVkartYVpmEip4TZSQtiPWLixxNTkBFIIHvzKE4yUi/S7PTzfQ1omfqFImik8z2Zzq43vaxLz9uY25XKJjbU1hALLsvD9gDwDx3WQQpKnOWsra7zxTU0mRus0R8dot7c5efYSB2/bAdLgDanLaLWCEuB6DkkcaZ9ooUC/1xtCI4fEyzjGsR3SJCMoBOzaMan9k6bFtWuLeK5NoagR8GEY49pawqhjbo7x+DNn2LtjUsswpWJhdYV9Oye4cv06zfERHTCfxLiuPdxepDiehenYt1Q74uuM+i+tGX7/5AV+5J/97MvqmG/N3/9X/y4ffi8B5FJLYhX6PVIsV5ienmEQ5sSpYmW9g11ocmW5zyBN2LVvFxO7d7K5scLxY0dJVEzFz5m/dIagWCDMJXglqqUBlpniyi6uWMNMznLPAZNq2eHG1RMcPDBHodZkbHIXwlpjduc41dokr/2+HwDH5B//wk/y93/4R3Esh/s/eT93H7mL0eYIvV6LJ554nA9/+Kcgtfnt3/4dfu/jv86OXbdz+MAPYhdMKsUJnvvaOufnLzMx83r+428+yaOPbPHa197LO99U5Nf/8Enu3X8YRaqJuNJEJZJUJbe2q4Y0kEJgSQelMnKZEseS7a0eytISYWmaIJWGqagEYUp9Xgzlg1IKpCmGMCKFJU0kAsuxUVLhOx6u55NnKYaEQa9DnmdkWUIchUi08kqhyFKlPbKWSZ7lpFFG1Is5e/ECxeoIru+QC4WwDEgV4aBDoz6GMGy2uwNOvHCSyUYN2zQgzxDCoNPtglXRzashIFfEUcq5CzdY3Wqxd+9t7NmzH98L6PV7PPPMkxw8dAdSmkhp8ehjj3Dw4O1EcQ9DRKS9DYqlso4ewCDKFDvn9lJqlHn42MP80Hvf9bIz9aWMCPWSz1/6Drj5+c1/1+e0QhgSlf3N6vqh4O072gt8T5b5HT6+19xpIpaQmlgZFAqMjY0TDzQKv9/vsXBtgcbIGEiTXAkyKXACl3/6P/1zbizN868++vPs3bOHieYkU40G99+4zut9FwGUK2VqlTJSShzL5PlTF3ntvYc4d/EGjbo2q9uODUO5VZ5nSCXp9AZMT40xNj5CLhS5UriuwWCg5WjSMMhShTS0sT9PFdevL/Hgk8eo+i7lSpF6tYJpGiwsrnLu8o1bMtBL89fpdnt85uGnOXJoNyvLa6hc8OUnX2B5dZMT5+fZM9vktt3TNOqVYUFmIlC84rY5ZiZHdUNoWpw5M49EUC4GbG23MS2DXrePbZtMNmoYhi7WEQqhFHEUYrsetmPT7/dRgOu5pLGGtjiept15jktQKJCkKVJK1lY3sUwL33XwfRcvcDBNk063R5bnFAKfXjdkY2ObTrtLEPisrm/oJgPB4sIqtUqJbnfASKOGbRm4tsf9n38My1Dc9v0HMKXJaLOBZZmsrq4zOjaC47o6/mEoMzItSblSotfva2om2jSO0ITJfq+P6xiUywVqtTpnzl6j0agghaC1vY1pGtRqVR578hjjzRFMU1KrV5iaGqfeqGKYJsuLKxiGIAh0AVer13j66efZtXeGrzzyNHM7pzj+/Bl2797J5MQY7/7on/Ceu5vsmq1RLHhkmcK0PQaDvs6Ca7VptzpUygF+oAEdCzcW2b9vljCKsKWHQmE5EVG/g1IZTz83z/TMBAK9ubUsydr6Jv1+n0LR58rVBSpFT0M7DBMMcF39O202G6ytbXDizDwH9u7k0cefZ7RRwrJN2p0uxVIRw9AyPSkF/XBAs1kDod8H2oYqCAcxflGTWU3TwPcCpiZGMQyDjfVtymWfSqXEX37lBG9/wyEcx8A2XMJwgCK7JRdsVCuoHLI8Y27nOBNTDeIkphj4XL22QLVWxpSCn/j4ZT701vvYWNvg0ME9FAoFbNdh99w0aZJx2745UArXcen1+hQKASqDp555numpJr7v47gOi4tLVEtF7r3ndvzAwTAMnn/+LDtmJ0mzlK3tbWZnZzENyY2l69imS6VUYXFplZFGlTxPsL3iLeT+zQBhXQhIPM/l4oUrmKbJbz7wFP/4J/8h733n2/jdv/gs7923jyzLWF/f5E8/9wivOLgPKV/cOtycxt4MqhUIojAZZlrJoZRHEQ1CwjDEcT2EgnK1QpZlQ/+dLpENY+jhGxrZWuubTI2P3oKNqJvYlqGvzDANUJDGKbt3THHvKw7QarWpVMoIQ0dfuJ6DYZqYhoYxWSZk6YB+r4eQEs8roHIwLUsPFAypv1ZKxBCGAJp2KqTQP0MUeZbfGsSkqW5kb+b+AS8JcNZAD6RgbXkdPwh0Y57p/6/GwidYhuTalasUqzUthS94moo5JASawwb4prQwSzMMiSbDhjqY2ZAGVy5f17Ev01NsbWxRKheZGKlRqZSoNarEccr2VotCqYhh24TdLkmSUamU6fcGfPZLj7Nrepx2t0upXOLJrx1ntF6n1+nh+jpewDRNomTA2J4Spmlw/coSQubcfWQf3V6fT3/xKNH8Gnt3TKOALM9xHBPXshj0QyqVEr2+9mJ3212SOKXbC7EtC8d3STK96bVMk0atrO+5UhLHOmNxaWFNk3rbXUYrZQ7OTRHGCYYhsSyD/btnkKbQRELHuZUneFNWf/7SRZpjddL8RQ+R+LpC4aU1w6+evcb73vful282cnWru/tm9c03Xizos1hKQaqMW5YnY3jNz9MY1/XodrrsnNuJ4xfZte8w8dZliLcJNxcoWCljdQ8Rd0mjFo4lkKaB4xfoh6mG5wQl8ixjq7VJr98jUzYFS/B9r9yDzHqUilW+8tAXWVy5wNt/8G185CP/kenpfYxPT/PEM4+wZ2Y/UhocPXqUO++6nTxLOH/hAjt2zCBziyw1OXL3EbrhGiOjs4xP7GJ0osDGRp+f+/lf5vyVE7zuDe+jP5DkhsPWxiLrq+v89++8j3/3hw/yqgO3D3+GN4dE4tZGKcu0OsoQWlqd5jEqd3nu6HPM7N6pN6LDaAXbcYZePC1RVkrhup5uCtGNtGWaxHGMFJI4jclUjG3aw2JQg1oKQUAcR5hDwNLN4UMcRyRJhmWbCAMs0yJLMnrdDu1Oi0ZjBPIEiSBPMwxpUC5XUAo2tta5dPkih1/xKkwVIwVDyIpBnsOxUyeoVmuIPERKg+12h62uYGx0jJ079xDH2tN3Y+E6+/cf5MTJYwhhsL62wZ69+4YKsYxy4FIsFon6bfJMEScJdlCiOTGDkpLSoMgdbzzwsrNaX2OHP3f+uuZOaQBhnpPLodc6z27F33wrx/eau/8PHFmef+Tmxy/t+L+bh3rJ4297iG/U2MHLruQa0aw/T5MMckGW5qRJgmHCeHMMy3KJw4RHHn6YyckGtbLH3p1zfPAD72Xh2nVeOHGSB/7sU2xsrDBQOX0pecPOKbqdLrZtYdo6x2VqfIStrTZffWGe22+bIQ5jLs3foFIqsLG1jWkICoUiI6Nl1jY3sW3Jb/3ZQ9Rdh/pIlZW1TU5duEqzUSMaRPR6fVzPxXJM/ILH4b2zVGsVVK7o90PSJGVyapyJsQblqouSUKsWiJKI1x45wJlzl3AdC0va3HX7Xuplj7vu2MVWexupdD6NZdq0212CYoDjWCwsrA4vwgYLy2s0qiU816ZS0mHenq+z7144dZlisUAvinRBZehGNs31dsyQOvfIcvSkvt/XKP5L89e1fy+HE+cusnNmkkIQYNsWpUpAt9fBdR2SJKVcKRH4Hq1WhyzRRcVos4GUOjtp0Ne5d9VyiSRKefTZk8xNjXL24nVq1QoH5qY5urXO3jumMA2b6zcWAIUf+LTbXWzHuZWvp8hRQwLVH3ziLzl0cNew4NPnTq6UDvrNFe2hN6Y20uCLDz3B3n07CIKAfndAq9Vh7745Hn3yKDtnJ3T5IHWBmmUZjqNYW19na3uL8fERcpVSLOkA+9mZCU6dOs+Ru+/gya8+x3hzlLfft5/FzXUm6g6VapFWu8f1hRWazTpra5tEUcr4eB1QWKahQRpJiuu6uK7DM0+dZnltg4mpGlGUsLrW5s477kAZOTduLGJIxcbmBkFg0xgtE0U6eiNL9UYtjBIuzi8yOqJzHB1HbxcOH5hjbWUL0zKpVoukufammZalkdamyeraFqViAdMwWV3dJIojavUKhhQ8/rUXmGg2ME2bXEn6g3CIuhaUy1WQKXEYsXN2jE5nAMClS6uMjjT53BdOMNVs8OgTp5iZmSRXOjstzRIE4DgOeZ6SZTmfP3qV/+3BdX7zR1/NufPz7N27C8vUpvQkTrBNi+dPXGRqcpzF6+tsbXQYGx/HtFyk1A1TszmKGObJCXL+5C++yisO7WF9bY0wDJFIOp02lUoJx3W4Mn+NYqFAsaRDkzc3t7BtiwsXr1EruXhBGSEUUmozvVC6UUmzjE9+6iEEioceO8m6KDJRH2FlZYnnXzjJW2d30Gp1mL+xyMz4CLVqCcs0GYQhlmVq/5NiSMjU11jLNofZd7pylUITBD0/0BRDyyQcNuLtdhfbtjEMQw8yPJdBf4DtWOyYnuBm2LqGX2lQQRTF2I7F1sYmxYLOxrIckyxLKRZLqEyj66NuG8cxSOKhNw9YWrqBY0j6gxiEieMXdF6hlNpLLTTA4yZwSkpBEifaOyfksGk1kKbOgLvZMNyEDejQXu37kUM7glAZQoHnOWRZzvbWNg88+Ai7d0wQRiGeqzd4cRRhuwHWMIZAgaYLCkji5FYsAUr7c1UiEUpiGTbtLR0X49g2pXKRlcVVxsbGuHzxEnESsbmxQZakhIOQPFe4js2ZcxdxTZNqtYoQgvnLVzm9sMBso8bk9CRhGLJ71w68gk9Q8MhzLS1dW1vl3MYKzZkAUxosL68DOl+0XC7x2a+d5r17bmNpZZ1C4OvvmemNr2EYKKlPikEYYXsOQVDUPy8pkIahQTnSQKU5SZySJTpmQQ0NbI7t4gcug8GAcrnEsVOX2LVzAkNKMpXjOjZZOqRiW0Mq6xAioYBuq0u9VtUbM/niIPqbNXefub7C+9737r9SB/x1Ac63PEs3SwMxHPzeGn4rUBmGyHEsyaDX5dEvPUDYWea2fVOcf/aLEK7SXrlEfPXLbF19jrX5p9iYf4bN+Wcw+ldZXtnkf/nYQ3zmL09w9as9/uiLj/PAg+eIzk0hkldgsA+X2/jjzzzHhbNt/vLYPF8+epnHnn6eS9cWOXlmgX31Nm/5gXexZ+8+VhfXmahPc+bcCV7//a9jemqan/7pf8IH3vdBRhoTlEvaK1koF0EokkzR68Y8+sSD1OpFnnz6GKMTdV75mvv4R//oX9LNVviHP/tBPnn/g2ytNzh+IiIcXOe5y9c4cts9SMMmlTFJlKDyDM8PdKMLiDxHkZOrDNvyCAoF2t0t1pcXqNfGiONQN2m5wDRs0iTGtV0ylZFmGQpJp5ehpECQ4NguwtQeXpHndHtdEII4iYb5eZqOnKU6C3d9Y4VisYrjFgnTAWmWkcQpQbGAkilTzTEKvk0SxtjSIk9SrSLZXME0NXVHnV4AACAASURBVDyoWCyhWUQJSZ7q7b0SQ3+0pFGrE2eKOIf1Vova2AzLizfo9XtMTc5w/sI5lpZuMDIyxs4dc0RRzMXz59m5c46vfe0p4qRPo1qk21pDqJwoU2DYjM/uIQiKCCFpTo7zk7/wM7z//e958by+OfQUL0axvPQwDIs8z4bDDz0UvEnAv7WwuVnnfisLHMXL+BjfzkMachjbYn6vuftOHlmWfeS7/Rq+K8c30f+GYcTKyioHDx3kwz/+YSBnZXkRx/HodTpMT4yTDtqUix5pPsBzAu498iqSOMay4Z57j/CW17+Ov3juOG8p+ygpdMGPRKCwbZM8V+zbOYkf6A1WvVbG9R08z9GTVttmaXmZUsnH910O75hifGwEYRoEQcD0xCi50sS+KEpwbFt/f8vQ02cJWZrjeS5KwMWL16jVKyj0Bi6JUi5cWsBzXCabTUxLsLS4wdHjF9ize4JOt00Y9WmOjCKE5Nnj56nVykRxTDSIqdUqBIHHoD+gUg4ICj5Xry4ipSAMI/JM68LHmyMERR8/8EmTVEvDTMn29oBoEOH7HkLoAFNTmmysb1EIPGrVIq1WF9exEUCxUAAl2NpskaQRnmvT7YUUSwFJnAC6sSqWC6g8Y/7qIgXfJ8ty8lQRhiGe69Hv9umHfarlgEqtwtXrK3TTiN/bbPGWO8YxTRvHNnEdR0NtspzA95GmQbfXxXbsYZi0YM/OKQ2guXkBRRckWZYTDwZIYSBNC4TBjulR7v/UQxw+sIurVxeY3TFFr9+nXi3iex4PP/41ZqebtNsd/MDHkArPdSmXKzrbLFecvThPpVwiSRLmry4yOT5Ku93F9zyq1SIf/dR5/t5rmwhDkOeCkdESre02jXqDUkHfgKWEJBkgDYNiwSfNBXmmaDYC5vbMaEM8BtVSmQsXlyiWy1SKZSzT1ltTP+D0uWsUPR/b0huPsB9SrlSo1cqA4PL8IsVCQL1e5dEnT7BvzyyNeoUz564xMV7HMKUu/pWCHDzPw3V9jh2/xNrWNjtm9Daz2+1y+NBuTCsgjhKeOnqOou+ytdWhWi3yxJOnmZgoYVomvV5IY6RGu9VmenYc27Yoei6NeoWxEQ/TK/J7/+UR7jo8jSElvh9w+fINTFPyU//pBeY7Pvf/z3+Xfm9ArVYBpeh3+6yvbfLkUyeoV4o0J0exDIOL5+fZf3AXSRaTZtofFEYhhWJRy18A25Ts3TGJ47h0ux2q1TJr69vU62UUOVmeMz7e5LHHjzI7Pa2behVTLPgcO36Ouw7vxbQdQLG8tExpmO/VbrdxPZfDB+YoFQK+/zV38hsPPMnn/+wBXNdirdPhPXv2YhoWzZEGE5NjOEMpoZTG0H+V43paIaCbEcjzIUFzeC9P03QoceIWjMo0TZQC13WHweW6icuVvqYpBb1BHy9wtbcPQRym/MGn/4K7Du7D9Rwc26bX1TmL0tBoett2EMLAdkxEGgI5vX4PlGJzYwPPMbBMGy8o4noFhGlrv5uURIMBlmvRbrU04CBOsExNiA0HEYalgTBJkug4CEMML/uaoCEAOcxTk9IYKlcgDUMG/QF5lmtwg2lQcC0d+2KZWK6NyqFQKIJpQM4t37a65c3SkQhe4OriiqH0M45RKicoerTam6R5TKFQolAosLq8xtMnXkCasHfnLIHvs7G1RbVSglxx+do1aqUiQaCJuZVykXtu26uzT02Drc1N/MCl1+1oeIVh6dzJUoFPP/csB/ePkEQJnu9SrZQJAp+V1Q3+9PlNPrBnlnqtgmGZwwGNRa/bw3Yd8pu/f8D1PQxLZ5hKKVhf3yQIfNqtnm4ILYs0yfSwwDRQQpHFOdIA13fAMJiZGkcIsB2LJElACQRyuGl/ccAsBKRZxuryOs3REXLx19MyV9otpt/6Dnbvmfu/XRokSTqMPLpJ59bH1sYKJgrblFw8e4ZqucjcdMB4o8DRxz/P+tXnuHHpBKvXTtPZXMS2BfOrJrmCf/kH13j+OcFc5T5ev+9u7tt5mNnxce7ecYB7dhxmemaCUjUgiSMMqTi8dz93HriDV992D6/df4RX776d1+2/k7snb+fccy1+8Y9+l//9N36dSmCycnWJN7319SwtaiDTzPQuyA3SVFCrFTjxwnGqjRLFchnbqTJ/bpHNzSXuuedudu86yOjYCJ/5zGfptvv86q/+CtPTc8xMT3Hg0B4ee/oUqdHjDW/ax6VnF8lyk3KthGtq2qvKM9TQL6sYwknQG3CkYntjnZHGmPaq2xZJEpFnGnqUpJH+3ZuaApxkiseefI7meBPLypFC32MUQJ7juMGQuKlVAEnUx7EckiTGdbwhlAmeeeYoszt30e10cJ2AOB6AzDGFJEkzXK9IDiQq1XJ0U8dLSSFwbAvPtsgA1/XJ8nyYYakouB5xGHHp8iXOzt+g1enT7bV59X1vYnZmB47jUKs1OHjgMEePPsVoY5Qr8xc5dPAO0iQhCHwuXZnHsxRS6W2ntD0OHj5CUKxgmTel6yC3Ffe8+c4X5fM3G7JvQsuUUqsKbkrqb264v9mC5Lu1xMkyDcXTRNXvbe6+o8e30ty9JEHj1ski+eYnzq1DZbx8D/dfeXxb6Jx/zcvJ8xcnF/JFutBLGz0pTQpBwE/+5E+x3WnjeD6W4eH5Nn7JxXQNtrYjbixusnN2FsjpdbdZX19l/579jI7PsXffQXbv2MXPPvBZ3l6vab/SEMObZTmLy2vYlsR3fLJh0LmQUk+9TcHqyjpjzQau5yMNk3iQkkYpnXZLB1UOQQCWbeO6lpaJGAYg6XZ7twqmPEtxLUOb9i0bIzf5+Ce/xIG5Sc7OLzA5WuNPH3qCydEy9XoRzzMolQqUS2WqlRqtdgchYGqqQaHoIoXStCuhyXrSYFgAWZQbJQZRSLFSZDCI8fwCX33sNJ7j4Dhg24LWdo/FxQ0KBZd6o0oUaRRxnuaoPMH3bQZhqL2Hns32dos0yjQF0ZR4nk2/3yPwXFy3QBqlqEzDGwwpUNLE9V3KZY+NjU2uXl1mfGwU0zHJVI7lWdSrZfxCQDLI2dxo8W9XN/mF999Lo1QkSgYEgU+mDGzbo1wqcPz4CbK4T2OsjpA5Vy5fwZQC3/FI4wGm1M10HIUgIIpCkCatVh+BpuQJJPce2YthmBw/fomN9Rb1RpEbNxbpRW1mpyc5cfIiu3fMEPYHbG53GBkZJU5TBv0I1/OZmJjAsMG1PUYbdSzL5eSJc+zftwPTkNyxs87py1fZWloijvpUKxOkicIwFf1wQJKmuJ5PikAKxerqGqahdFC67+v3oBKYlkuGQaVSxMBicXGNoFDAcVzyHK5eXaXScPB9T+dGGQZ5phBCU79OX1hgZmoUw5DMTOs/L80vcfHyOrVSEdv2OHXqEiP1MmmS4jgO4SBitNHg4Sef454j+/V2NM/Ioog8S1nbWOHA/kl8v8iTT52n4Bns2zeDIR22NjoEgQ6A9n2fOEz54leeZau9Rb3qUSiVMISiVjKo1UvkuWJ9aYON1Rb/7HMtXrl7jF/5sbewtdkmTTIcV1ApFTBMKBYDXMfED1zOX7xIs9ng+uISszNTCDWcPud9fM9me72DxMS2hPa65RnLS0t4nkO9VuXZ46e4/fb9XLu2xMjICKnKmJ5p4jgCYUgM0yNOUw4e2kGiegTFMmsr6zSb48SpAGHy6JPHmRgbQynBJz71Fe44NMeVhSU++rFf401vfitf+NJDvHv3PtI0ptvvUiz5mI5Bb9DHMI0h3dUiGcYh3JR6KgSofBjYrf0vIBC50PRbII1DTBtWlhbwCgUtvTQMJBoGpXJw3CHYwLERQrC0uMK5hevcsX/PEHplgJIcffYFxscqpElKliR6Hy4EyjLJkEhp6dckwPUKOIU6GBaWZZPGIeGgiylyDMfDMHT8hcr1Vlr75TKkKRASLS31HLY2NrEtU0uoh3EqwhBcuniZSrWkZeNSy7owFP0wpFwroYQmaVaqRZQA2zIxTJ23qdASVsMw6LQ6GIZG/atMEYd9fS1Jc5DGMLA9xLA1Fl4p8PwivlckiiIsW4eN753bwWi9gWk6CMPAD2yEIXA9j6nmJObQPxnGEY7j8siTz/KVp0/yioN7GPQHBIUAx/UxDIdkEBL1BrieyS898ggf/IHbiaKIIPCJ45hrN1ao12r854de4J5cy8oFCmlINrfbJFmOa2vfYpJkWI4mg3a2WrRbHTzPww/0gG1lZZ2xyRHyLOX4mXOUAg9p2yBN2pvb9Lp9BoOYQS+kUPQxMYgGEUJJVlc3+eKTx9g7M4Fh6SGEUgosgQW0eyG1kaqWFN8sE25Ki7kZ8qwf/+HEJT78sz/9LdcEuUADdYTOcUNKpJ2TiRQDHedg+j79LGP56guYYQ+zs8n25ce4cuJzXHj4T7n63MP0F85TLmqadO66fPVEwu9+YZNz5xNeueMDvOHAq9k7uYsMSZrkZHGMZ9u6yJfgmJJ+a5007JDFoSaEJjGkCs/2cIOAGPA9xdh4lTccvIu3vuLV1EWB33jg97lv/x383u/8n+w/cBd7D+zj0w/cz/ETX2XnoR1UgnG++sgz7Jia5YXn57lzz17mZvbS7Se4nsWffer3+ZG//x7e+c4PcnV+ma2NkO4g5E8+86e89x2vYntrjbX1DkefnWdifJbnT1ylXvBxfV0FitSGXJEbIAxNoEySENs0KJfKeOUA23FQCNJMKwEylWngkBSkSYplWPpeGW5TLdewTW8oEc5ehN9lGaY0KAQB5DmuG5AN1SB5lpDEMbZ08DwT2/FZWLpOp9elUmuAEBhC+50N2wFpEiU5SsUIQ5KiAW95luA6NkrYZFlGFIU4lkWahliWJFMKq9BkaWmRamWE9tYmc3sOY9oWDz/yRZbXFkjTlEMHD9PudBmfmsVxHFqdLWwL1hcvUw5cQOl8v9IIhXIDy/NRNxs3AbM7dvBPf/Hnede736GHcIZ8SWP30opcPzKVDytpPYzLhhmDL61tX1bz/k1q5W9jI/hSaej3mrvv8PGtNHffyAP30kbvmx9/A2Hl/wPN3ctO9JeesC/b4umpcxQnJFGEZds4lk2/3+H48WNUy2WCoMS//tf/K6+65whJmlEqligWC+ycm+PqlUV+/EMf5kM//mN84csPMeh3uW0oiTBNC0OaZGnKxOQYWZqRZqmeBKtc67tRrG+0UcNdn2lZrK9sUi6XsV0Ty7YJBxGrq5uUykVMU3vcXF9P+nWxIYmjFIGitd2iXCmzvrbN1maLV965H7/osXvnJJZlsn9ukiBwQAnq9Qqrq1tkaUp7u0OlVh7mVIVsbmzjei5SmniuQ6/XIwxjPNfl2vVl+oOQ0dEaKB3A/kcPPMKhXdPcWFqjO+jg2BalYpE0zoiSjMDziaKE7e0OpVIBy9JSr6eOn2Zju834aJ1KpYjvuOS5vgF0OwNMaTIYRKyttyiXfL0JciySJMMwLSzTJE9T3Xyk2nzvBz7SkOR5zuZmS0/3MRhvNrj/2hI/8dY7WFpeoVQq4LkuSkk+9Zmv4Fgwt2OSRqNKnGTEUUyzqWE1ly5do1Yr4Tg2URyztLxGqVzEdV0Mw6RYLLJwY4nxiREUOWvLS7iO3gIcOLgHaUCjUaFSKTIyOgZpyvLKOkHgDjH1eusQDCMg/vzzj3H40BzdzoCjz55mdnqc509dZP/eWTKV88xTx/iDZzv8yPfvwHEdkkQRBDos1rQkhaIOCkYKDCnwPWco1zBwPR/bsQBBnCQkccKVq0uUyy7dfg/PM4miAXmeUa8XkFIXsfPzS9rzYFm0WtsUC0V2zk5gmhaDQX84/RYsLW9wbn6DybESTx09z7137cZ1XY4+fxbbFPiBx9lz13jH37mHKE4xTJMsTvB9j1ZrwMr6FuPjDVRusrHe4uS5q0w16ziOzsITAvq9PkHBZxCG7N45zqDfZ7RR0xluhoHnOliWSbfb49iVLb66aPEz776Ht993kGeeOU61on93W9vb2LaF5wcoBYVCAc/3mJoap9frs3PHFFEYEQ4GeJ5LFIckSUIWa4nb6sYKlukQRzG2bVGpVtjc2NLNtWOjFJRKRb1tch0gZ2lplU6nT7M5SpYmpElIFqUEhSIISTpssGqVANOycD2HudkRFheX2bdjnOah1zB/eZ5yUOJf/cav8daDhxhrjiAwWF/dpFSpgBKkSUar1R56GM0hrlxvJ5TQV5wojjFfIjXOMr2FSZMU27Lo9wYExZIeymR6Yn8TXKRUpn11w8lxsVTiyOF9mKapvXq5vsZ9/uFnmBmvUqlWhnIok35vgGm8KJf0PB/TspGGycKNVS0tHQzwA1d7bUzdMDFE498kyN2UlhrG8H6iJCoHv+C9WNwMm1fDENQbNfIsJ8/0tdO2bYS46QNi6E2U5HlKEsd4vqsx7lION/a6pDJN89Z9UqFQuT6PhZAMBiGWadHv9XAchyTJWFhY1p5NYHN9E9MwtAzSNJmfv4Zj21i2SS4yPNcl7EdIpIakSIFl622CLSX7dk5TqZRwfRfLtm7dybrtDq7nsrGxwZc3N3n/627Ddlw838UwDQLfIwgK/M6Dz/KWaoWltU2mp5okaUoQeBqitdUmT3Mcx6Lb66HynHK5SLfbp1gqABpcsb3dplj0iaME17AYbY6Q5xCFCX/05SdZX2+xe2acar0yJOflQ19PTqHgcduuGVzfIRvKIKShh50iV4RRTKlc/CseoG9Ucv7WhRu8//3v/gb/8k1KgpdKO4fPnSgDkRuYSnD+hdMIEiyhWLx0DNVbY+3GWTaXL7Jw/QIq38By9fAwUQWeOnaFX7n/Oj/65p9h0irwjjf8d5hewJXrVyjXmpw4dYJ2e5uxqd2kCIRhYdo+SZKSD4ewQigNCZeCNBmQ5QnR0M9lCBOFhgdlKKRp8voDryTcyvnK80e5/3Of5plHHiJwHX7kh3+Y6sgMIvX4d//2Y/ydt72Z5vQUjz/xOXYfmOPzD30BJRS7ds4ReAHdnqJYLNJoNHji8Uf50Id+jP/wsV/nX/yLj/CpT/8xe+/ez+9//pO8ct8riDqK1bV5yrVxcpEgbS051uWUwjYt/XtEkmYxeZYhhplt+TCwXvfSQz+u1I1XrTGqh0S5Zh7oiBLdYDi2yyDsMwj7OvB86PsTw8bNth2U0r7WjBzX9fH9Ipaln0MqdKzAsMExbsaXGDZ5rt/PhtDXIC0rNzANk2ToKcxzQaYEzzynvXR33fVqpmd2cHn+CotLN7j33tcwOTFNrVbn2vVrBEGRdrvNxUvnydKYWqVMv7NBszlBrnLCsMfUzgOUK1WU+Ksk14ee/RI/9P53D6XyL/fXvfzjl1uPTGvotxtuI7/+/P5Wjm9Fxvy3Pb7X3H2Hj+81d3xdc6cLBM/z6PUHSCEwMLFMMfRIOEjD4qd/9qf50D/4Mc6dPYdpmqRJxgsnT/Lnf/4QH/3oR3nq6a9yfv4ii1nGO6fHdL6PadPe7nL8zGXGR6qAotfV1Dw/8Bj0QhzX4eKVG+yem2EQxly9vsz1xXXGRxta5rDdxvMcarUyaZppD5HQRLssTXEcmzRLee7EBQwU9UaVXneA67lcX1pndFRnbSEUjudguzZxFJNmGbZt47seJ89dpuh5OK4DgOu7GnQw/D/keY5lmTiOw8Z6i0qlhO+5SCExTZNwEHFo1yzlcoEXLs3j+xa1coksA9dxKQaa+Pn5x5/lzoN7yDOlIRBrW/QHEYHrUi4GpGlGnil6/ZDTF65x9PQVjhzei+/7PH7sFFNjdVrtNipXtDs9XMvRZD/TJM9ziqWizjcbDDQFVDD8U+A4Ln/84GNcLfm87c4pyqUSUkqiKKIfxpw4dZlX3XNQy9LyHMv2dMZinhOFEaMjdRACaZq0Oh3qjTq2bRFFMVmiL6qWY2KaksGgS7e9ReB7zF9doFop4RVcDFOyvrY5lCTZHD95nmgQEqcR1WoZe5i5FUUxxcBBZTlZmvHsiYvctm+W5lgVx9fNjcpTZkYCemGbPbMTmJbF8vIqpg2OY2mDumToVdJyszTRlEPX91C54oVTl2iO1hBCUPBdsiymPxiQq4yC72C7FoYh8byAznaX5mhjSCdMtGw3jMhzQZKkCEM31VmW47sOqIzHn53nHW+5E8PUmvvVtXV2zDYZDAZMTY4QhnpL2e8O8H1/6PvxqJYLhFEEGDRHa9TKFqPN0SG4x6Lf7996D7uujWkIPMciCAIMU0tA2+0OhiFohzG/9uVtfumDr6VS0cAaxzEplYrcWFigXCsNIwi0v8y5uQXP06GHKmNhYUnnXpYCpCGxLZPnnjuLQGHZglOn5plojlCtVtnebuEHPtPTE8MJtCLwtaTZcx0Ggy5SSDzXJ0szOu029jCw3AsK5EpPXCVD4BIKyzQJCj6jo3VqJZ9PPHJqmPkWc3plhQ8cOqhBOhttSqUy0jTZWt/mTz77MPe98v9i702jbDvr887ffve75zOfU/N4q+48cCWBEJKxmQSYwSO2wXGcOG0b291O2t1tO4nb3fFykg/ptN1t43Qat5N2ArYBAwYBEshCSAgNIF3de3Xnueremsczn7Pn/vDuKl0JCew0pLN68WrVqqWqo6rSGfb5D8/ze46iy4xyp0vV1CTQ6XQU0TJR6H4zA4JoWgbYMC3SBBzbfXH6miRIKTJYQqQm4GEIaNltFFkyjkPSFFZXVul1e8wtL/K644d3pZ+aUHmRhmko8q1hkqYaaaqxtdngi489yx1H92E7NmgJpm0Rx5HKl8saNXa8UmkKJJmvUKKlOrqQoGUZqYkqlDL1UibBU81sp91V93UmydM05e9UzYaWRcOQgVNe/B07ShAFEQmz5jhmYWGRUlkBqeI4xvO8rJFMQINet6eUCklKo9GkUi0TRyqn8tatRcrlIlJqdDo9Ws02KnNQgUaiQF33vZy329DatkWz2cyAJJKtrU2arRZxEnPNX+ftr91Pp9ODNKbX69PudBUw59RNXjM9xr5902rrkpGb4yDCNI1duX2xlMe2TYJ+RC6fw5CKxqppGqVigY31bTWQcx3iLNLh33/qMX71J+5nariGl3eJIiWjNy2DKIpoNNu4no00pfK46zo6ilaapDFpFNPzI3J5j50if/c9/BXe4lV4+X9ac6eyXCGObdIoJS9g7vI5Sk7C4vXzrN04jR4uc+rZB4l6m2hphOlCIgSVgTF66Qgf+uwN/ujX/i0b9QZWcZBU2AyMTlIZGKfjB/TDlPE9R6kMjLC2Xac4MIIpHRyvwMLSPLo06HTrWI6r4DzazvM5JQ4CokjDMGx000BISZREaFLDNgT3Hnkdr50+wsefeIhfeN/byVk6zZbOudOXeOvb38RTzz3N2Ox+jt+1h27QxSmU0HSJ3wnI54o88bWvMzs7g64LvvrVr3D3PXfz7re/B8txGByt8a4ffDPnLlzG7nmYeY1+EFNvbtPrtYgiHVNXDVgSJwqykoLUjQxApCSWQtMQusyIyF3QNBzH3ZnREKcRCA2pC/X/niZqy6fpRHEEaYplOQgps2FQghDK6qLAbSqEXNPAc/NYpq18kgIM0yZJ1TBGeXP76jFPVLavhkTP/Gwp6jqYZOAXKW3avYAw0bi5uJpFckGxUGJze4vl5QV0XTJQGyQMQ4qFEvM3b1Cp1Hjh9An2TE3Tbm1h6Tr9TgNNE8QIZg8eB914xSbqwuVzvOd9P5iBr24/tzdsIuNKpC/5WpqqgaD2vebum873mrvbzisBTv5mbdttt9LSTDv8Kje9rbnbncZk5Lbv1HnVJ+xLZJkAWlbQm9S3tzCFhWHqINRkK41TfvmD/w26EOTyBWq1QYQumd4zQ68b8Gd/8eeEkc/7fviHeezrT/Hg6iY/WC3j9xWRbXSwgtAF0tZVMLChk8YJGhq6bpC3LBLURqNUyKOnYJkSy7WRhmR5ZZ2gH9Dv9XE8m263h22rIlvTFKxEkFIuFwjCCFKNv3zoaQYrBYaHaiyvruG6NifOXKRaLiJ1QbfTp77dpNvps2dyjDOX5ynlPQypkOZxnNBudUhjBQvwAx/PdTEMyerqJp7j8tSJ8xAkuwWim7cYqipaqGlamJYKJt/aatLv+dxxaC9o6rZCE5imwcLKOkcPTGPaFqZpoIkQ2zEZHaviWBpR4GPbkpmpMaIo5JmzFzmwZ5J8scBnvvQkUS+gVMizsLhGuVpEEzA3t4TrWESR2r7puk7oR2hpzNCxEoen1LRa101EFrZ8/Nhert+YJ01Ter0+nlegsd3CdV2koZMQkaChS4khDUWky+5/y7IJw1ABPKIejiMJez71epPp6Qk2trZJ0TJZrYdtmRiGZHJskOHhQZIkRhcSw5S75uONjU0mR8eoNxq8/nWH0aUgX1TI+8D3GRioEjRb/KsvLiH8BgfGi2xuN6hV8wjBri/TtAziIKbT7imvk2OjC0mn01UeylIhg55ITr5wjcMH9+K6edJUcvbsTZJYw+/7CKFz9vwc5YLLhUvzOJaJYdhcvrrIpWuLjI1WsDIZl2UZjIyUccyU0ZEqnU6Xer3B2GgZXddwXIu+30foBidPXkPqOvV6i2qtTJoR6gzT4PqNZaqVEral4zguz5++zOhwjVzOY2Nrm3anSz7vKRlhFDN/c40wjPE8h/WNOv/DJ5f5wFvu5u+8+YiiGWoJc/M3GRoeoNVsMjY2TC5fYGu7riiptkOaNXn9nqJjfvXJ5xgZqpDzHBW3ISS9TpdbC2vcdddRen6bvdMzSiZoSrq9HghFx7t04Sqjw4OYhoXrOZw9d4mR4RrLyxuMjY3x9DOnKeZzNLc75HIm3X6AaTvoIqXd3MY2BdKwVNGbJsonIuBf/oeH+IkffS933nGcTz/wed5aG8TLeUipIQyBm3NJ0ohjB2Z26ZBqG5WytrJOr+dTLOUUdj4jRu5M2NG0bPNk0Wp20DSdKAgwpERoCioiDUmjXt8lXSYxWURCsNrBpQAAIABJREFUROD3WVlZxfMcypUilmVw/PA+Uk0h0lM0Qt9HlzparMAxmpbFOCQan/3SkwxX8kxPjmJaFp1uD8txSFLY3tgkn8/R7flsbdTRpYku1BYviRP8XsAjjz7DzPQEmlAS8iTK/GAZVEXXFcY9zCTCpqkaS+WRk1nBrxpqgG67h5Nl+6WZ9GmHAroDp9kpDMuVMhoahpScO3+JUqFEo97EkAaWbWGYBo5tk8t5lCslkiRhfW2TbrdHEChv8/raBlEQ0+70qNdbdFpdSuUirWYT0oQo27LFcYI0lIqh3e6i6zqFgpsN7Fxu9JeYrhV57vkLzOwZw3ZsdX/6EXfpJbxifpdM3Gl1iYIogxcpEqZtmfR7AfWtJoauyIVz84s4rnrficMUzzVpt3vYWQTFFx55hiSJGasWCMKQerOJY1uYlqn8j6gB4w7JzzAlaVakK5BLQhpGmI6dNZni1cuH7PPtzV2c0WaTjJj9SuclzV1maYqiHknYYP7MV3jg4x/i4HjCxZMPMpq32F47h6m3SVID06ryjTMRC6smjWiQLz7W4g0zr8Nwi8xM7adQqGG5ReJEDQM0IZDCYaA2zNLqGkGUMDQ0SSp0wkSw3eixZ+YYc3MrFIvj+L5GGIFp5QgjH9OwSOIeWhqTxhHEMQXHIwlDtDRBS0IsmfLeu3+A/obkX3703zJdXubRh/6SVmOLQwcO8/G/eJzHHnmS++55B8Mj0zQbHf78o/+OY0cOMrVnhi8+/BAHDswwPj5BGMYsbTxPoWYzNDBKpTLM99/zfXz+mce5/7XvIQ1yrC8vsWf/LKZhksQ9XNdD0zV8v4uQStUhhUEQ+i+BesRRiOvmCIMgq8nYhTepPLdUZcshSBKU/SHzvhmmSRj6hKG6LiVxTBhHGKaFbiq+gS4gDgMCv4chld9VE0qBopQIAYaQoAsQguXFeV44c53pmVFS1NBTKQcMghCWlpfZagScv3gZoVnkCxX2HzhKtTrA1PQMxWKFjfV1BmpDmIbJwsIiQ0PDSKGzublEtVxma/UGIg7QdINWp82hY/cgnRxhkiBfRrLUgMuXL/D2H33rNw0xlKZL/bOjHFCbRqEGVVn9vOPX+243abef2+Wc4tv87u81d9/l890Fqtze3LELn3jFc1tzp2tqzRxH4a5R/bt6Xi7LzP5MI5Mu2YZLSoRpStZX17FMFyklutRZXl7l6aefoVqpkiYJExPjHDq4n4MHDzA0NMi77n87H/nEx3H8LsdGh4njhOvzS4yO1EhQsqetjW0cS0FCdKnTbnXI5VwSEkzLwLEMOp0u0jKwbJOc52KZJsWiksiZhpFdjFROWJTJEi3bROg6YT/k2L4pKpUSH//817jvtYcxTEm1WMB1LYQQmIZBoZjH8zz6PZ9Ou8fXXrjI4T0TmJai5a2vb7O4soFpKDN9FIVsbbcYGxvC9VxmpsaRUvLsmcvsnR7F9WwuXpmnVinhODaaUJuqTq/HyEiN6/MLXLhxk73TY7SbbWzHwpQCTahm9trcgvK4GAaWY2OZJp5jsrC0Si7nYVkms+PDOJ5LEEbsnxpHaCo6wHMdwlBNt0WS4jg2vV6fSrXEn33+cQqWxbJMefd77uTUCxfwXBfHzqHrGpatiryR4QFCP0BLNa5dX2ByapxGo4njupmHydjVpCexuqD1+76SY8HuY9BoNEhjwalzV5mdnSYIFV7ZtCxMaSnggwDDMHngwce5847DGIZJEATU6w2SJGFqaoIgiPj4Z7/C3a89hB/0VYaZYdDr9NGFYHl5jfv2lPjwwxd444EyedfCsiW9nvIx9n3lk/R7IZZls7XdJJf30ITG6soGk5OjGXxDXZSHBitq62vZxBGMjQ3y7/7ySVZWNjl+ZBrXlsSxmsQvrdQZqJYpFPMUPBvTVL6z+fkVCnkHw5BUq3nq9SalYoF6o4nrmuQLOVWMZr7TgUqJxcUNllY3SdOIvFcginziJKBUKJHEKY88/jzjY1WWVjYZG60ipMC1bVzX5uz5G5hS4Ng2IyMDQMoDX3qWDz+f8Knf/nHSVPk2lhaXKZZL1KoVNBTYRUp1X12+coPRkWGuXLrO8PCgku4IuHrtJlPjw0xMjGFmXsFnnz/DxNgQpVyerz11iqPH9qKhY9om167dAMCxlbR7eLDGpcs3GBoeJIwjhocH8Ht9BoYGOHnyPHv2jFGtlomCED/oMjA8TJwkpGnM2soKBc8G3VKEQpRkcH1tg8+fXOC//sWfp9lo8+nPfZ6fPHAQDY0oCsgVPJqNFpZlUq/Xs+2P8oyRppw9f4Xx0WEs+8XpsaYug4oKkqK29LbFxuoGhmGQK7hK2phdp3VdV37HIKDX9TGkyQ6JUkqdcrmsKHdBQBzHipYqDUWIlSoTs9PuIA2DOE74q4ce5cDsNEmSMDZY5vjRA0hTIm/zu0VhTD7vkaYacQJnzl0m7zo8/exJCp5LoVQg8AOeO3OZQ/umlXxUaJkcVTUxaZpmmKuMnJlFKSgpJrtNQRSF6Jk3KE1Srl69oUK3U4jCiP/4yS9w/PB+wjDA7/eRhk6/66sGN4wJw5BapYKQOrZjEYUR3U4P23FI05SbNxdYWl5loFIlSZW8l6xAU/ehSSGf4yvPnOB1xw/jeTaWZbC5uU2lUkZoQkXIhGqzIaWKyllYWKJWq7K91aS0r0jZNTl76TqeJRFCo9fzeez0NfS5OpVKkc8+/BQHZ8YxTQPXc9CkTq/X5fK1W1QrZfr9AM/zWFrcoNlsMTxSw3YtdKHzsQee4si+YXSpZPP9vs/U2AB3Hp4h8H3yRY+BoSpr65tZ5E+CyDa8ijis3oaTJMEQQkkOdQWlsXOe2k7s0CZe4WjAzzz2PJ/61EfZLTJSdsESr1bbpq/w9TjqoRNy4qtfwjEiVhcu4joGSQylUgVplAi1Kh/55FO876f/e+57yw/xO//mz/n1v/ubzMweZP7WVfxWi1JlgHqjjmFKbs5dxpSSYkFlxuq6RBeC559/huHhUS5dvsDe2UPowmBgYALDzHH92iVm9h7h4qWLu+83QodOt6XgIXFCHIZITWDYDmkco5GiiRRppLxh3zFa81Uenb/Ie79vjE9/4s+ZGN7H//xb/x1hv02xXOTBz32W0eFBZvbsYXRygvGxYaIo4LHHnuDQwSPcXDpHpTqA5wygazbbW20O7pnh13//t/iRN76Lbq9Fv9uivt0giToYlstOHqJuKBVRrxdgmgqWk6QpMotQ0aWxWxfuPL6WZWdbPPW4CV0nCAJeBOio20rDIA4i9XMMSaNVJwWi3aD7BMs00VINP1B1VZIomJWGIg+HoWomwzAgXygzOzuhfLtpujug1qXB0soyueIQA0PTgEaqwWvvupdGo07f9znzwklm9uyjXK5w7vwZPC/HE088Rj6fo1wqEUchhg6mVH+/NB2Gx2fJFcuYjqO8hy+rizXgNUfuYOhA5RWe6+Jlt3xZPMKrKdT+M5zbFyjf7nd/r7n7Lp//Epu7nZvo32JS9x09tzd3WpJN72LQwLJt/E5It9chCHxK5SLdnk8UxvSzqdPoyCjlUgnLslldncOwNIaHRnjk0cf41//qD9BDwbwnef/sJL1ej4mJQdI0Jow1HMfGNpVHybJN/DDEkoKtRhPbVjlqui7wchaabtDv+Ri6zpmLV+l1e6yu1amUy0quE2eTZF2i66kKP9Z1SDTOnL1GpZDnrqOzzN1Y4BOPf4PXH5qh3ewghMb8rVUK+RxRGBH4EYYpufvwDEEQ0Ol0kEJjeKjC4FCNUimHlAJdimwjpkhXN24sEUWxohxaUiGxE+h2fQrFHHEcIk2dai2PZRtYpmRiaAAQOJ5Jr9shl3coFD26vS6FvIsjS2iaSegnpIkKPi3m8ui2BA2V02ZZCCnRDEEQRjx/+gp5xyEOQpqNFkPDNQLfxzANbMvi2L4phgYG+Menz/F33nqYwWoZz/WQ0uT6tTmSNELXNUxDYhoG0jAYnxih2Whz+cotRkaH1BtJmrw4nUJjbW2DcqlEGEZ0On1Mw2R9dZ1KpUquUGNkZIRcIU+SaNy4sUi1XKXb6XHlynVyOYcnnjzBm974WgzTJYkTNta3qJRLrK1tEScxGxtN3nH/PSRJhBSC506cIWfbnHjuPCPDVeIk5KnnzvM7v/xj/Mq/P8VdgwkDAyWeP32FvbN7MA2DhBjLsOl3AwYGB1Q8AYJCIUcQBMo7tONJkBGGqSF02NrexjIlh2Zr3Pu6g5imZHFphYFakYFqgXKpwrMnLvPVZ65y7PAEutSwbYuBgQoLi8tUKjnSNKFYLBCFAYWCy/W5ZQaqZRYXtijkSxiOThrFXL66gJQag4NFbMtka3sLXYJl5dlYa3Dp6gq1istdxw8ShqFCt6cJhi7J53KYhsHm1jamoeO4Fr/31S5//uvvJYiCzB+mnrsyo5OF2Xb7i1/6Go4l2b9/D0kcU62UOHXqLNPT40BCFEYMDw8RhSnnz16nUqkyMlqm3++xvdVhdHiAKI4wPZMoDun3+4wM18i5NmkSEyUphWKOLz7yDGubG0xMjmKYDjfnl9izdxopdWzb5vyFK4wMFpCWg24YiDTGECmuJUl0Fy1V9EuARr3Jg6cW+MBP/BTrq9v8wR/8AfeOjlKyc7RbfRYX1xgdG4NEp1As7kogd5QRE5MjGNk2T3V16g05jmI0sTP91fD7fXIFD2nooGtEUYym66SpBgjCSPnVDGmxud6g1+0TxzFz80sK3Z+FsCeZj5gsBy9NlOzZti2F19c1ZJpQKeYxhJLX6oYaFMRJgt+P0YREEyqvTtN0Tp06z/pGg4N7Z3jNsQO7Qea5gsvBvVPKlyt3Nj/pbg6fpgmSWFFDSdXkWxMKxLIDJhBC26WHqe2Y5DMPP8FotYqXU77M/dMTSolh6OiGmpyblpK1P/fsCywtrzE1Po6mp5k8WuezDz/O8UMHAUG5nKdUyCNNg6vX5pT3Mo5wXAfLVLlgfj/g9XceZWtri16/SxTFVCtVNARC0wljFcCugtxNFm4tYZsOUZTwwplLjOwvMDhUolxyyHkuuq7yI//0y+d4395Z0jBlfX2b6YlhJa9NYuIkxrYtKpnqRJfqcSsWiliWiWlKBayxLA5Mj6OLACfvoUsdaehYhqTdalOtVej3eoRhhOPYCriDQEhJs9HCMMwM5gNSFwjUJjXRErrNDm4+t9ukfavmTm3tfpydCmLntf6tSsxXau4KTpWwEzB39hIXz1yh2/R54dR1pg9Pc/Zsi49/+gT3vf3nGdl7lP/jE59j1j3Om+94E6XyIHnXo1YYJEp9CpUqumXTarcZqNRUEW9omK5NEATkC0U8r8izTz/KG+97C6mW8NwLzzA4Pkwv6mK6Gk6uRqE4RqefUK6NYLglNLNIu9MjTjV0wySM+nQjH9IUQ5fZ68NACJNy0eD79x7n9//qAX797+/B05dYW/0si/OPEkd9bs3N8/73fRCReLT9TYLIx/d7HDp4hP/t9z/E0SPv4tL5Nf7oQx/mbW/7flrtZfbss/mlv/fb/NM/+m0OTRyl1bLY7nfIWyZhlOAHMbqhskAtM8fc4jxBFFAqVUiTGC1r7NNMrgyqqdc0CAIfTSOLFklJ0xjLNpVnTxO7WP8kibGlGrIjwLAsdGFy7tRphGWTz+cgSUjRiJMImcGY1HPCJE11ms0upq7yjS1bkiQBBgZpmKgtIRAlCVGqc/PmdS6cP0+jvsXU5B4GaoM899xTHDhwlPn5m+hCp1QqU6lUaLWajIyOMDuzj7m5a0iR0qyvYJs629vrpLqNl69QrQ0qRUEUKS/gy57PaBqb0ToDg7WXfe/FWvnFYPP0v7jm7tud7zV33+XznW7udiiaaZJk5lWRNW7Kg6FyhdRHuvO9V/HbqWlEgqalL/l4ZbX9/4vzks2dgkCo4lYiNAiCkG63o+R3usQxJaHfQRg2J09e4vr8NqXqCL04wg008m6ep559gtHJEX7uV36Ft7/3h3nkyw9xuK/R2fZZ39iklMujS0ORoiwdXapia31lk8pQGVM69DoRhrTRJKyub7C12qC53WJ9tcHyWp3X3XEQx82RkNJqttRES9dpbLcUkEXXSaKYbrfP7OwY8zdXMQydoZEKY+WcCm82Bc12i5HhAYSuQkMLZRfbM1REgZTYlqOaRgER8YtUOQ2k0An8AMezKRRsLFvHtg0Wb65i5Wxsz6ZSK7K1vUWShEqO4RXpd3u0Wx1W17cAcPN5ur0Ax/UIg4g0gb9+6nn27x0l6PewLOV7jJOQOA5Z26yTc128XE75VzptNHRyrku1nMe2DTzXxXNc4jQlSVLcXI4g7NPze8R9n2P3DDFYLWGaFjfnl0gDDbdgUSqVCPrKO9RotjAMg16vTa/fo9cLGB0dRhcauqY8cGGQYFkWhqXjh31yrsvm2jq6gEKuCEKyNHeTSxevUy6XeOJrJ9F1JVG8cO4y01OjFEoFJqZHMT0HM05p1rfJ5SzCKGD+5jLjo5M89Y3nyLs2rpvj2rVbHHvNUa5cvUmqxeydnWTu5iLvuv/7SJKUXtRiYtihYLoMDZSVlE+TSJHQaDaxXeWvWl7eQOhqC7Oyuo7n2eqlSkK71Qckga9w5YahpJ2WZ9PzfSq1spK6hDHdXovx8UGOHhqj1a5TLHo8//w1hgfK5PMeupBZlphkZW0FyzIp5nJYjoNhaARxh7ydZ2HlFkcOTzM5PsXVq0vYdsLgYBVSHcMw+erTZ/ihd74e3YhIhfJvfP6RE8yODiB1HWk6fPqBE7z+7ln+4Uev8OTFJh/+R28nSfvUt9dZWVxloFJB1zV0U2f++i0cw+LTn3mC97z7TeRLJnGaoguT+etL7NkzAWkIIsVyXKJIZStJAZ5rIXSNOIwZHRsGLabX7WDaHmmSUiwVM0+ZzvUbC6yvbFDM5el0unQ6fYp5B0e6bK5toRPTajbQ0pCBWp7zF25RLNjYlqDd7eLky6TSJfB7Wb4YpCTYjkHgd5k4fDeNxjann/06j6wu8TPHDnLj1irnrt5kdmocXWhITWVE6VK5mra2trAziRyITH4d7xbFClGvZc2k2PWjCQS6VA2fagwTJa8SqujK510sS9Js1lneWmNooIoQUhXmWnaJDWOSKCaOVDB6kqZKmp5AtVJFNy1STWdldRs352DqGoKU0y+cQ89AN7quZEcD1TLDQxXyRQ809XPSREPTdgZdAnQ1rNPljls8IQo1/F5Er+3juM7uYA9NI45eGvqrZJ0Rlm1w59H9OI5Jv9/Fck1MK0O2Z1lUSZIidUEcRgwNVhkbGco8ZiHNRpNiIcfB2elM9qlC1/t+D6krf6xhGEjXJQgiTp08yzMnznDXsUOkQsOwJYZl4eU8giBkfX2DXMFT3iMpSRONi5euMTk2iusZeJ7Nre01BqZtcp7N0PAAlpfH81xSNP708asc9iNW1tY5fnSKOPWxTJN2q0O306W+1aDoFXnuucuMDAzyqQe+zkJznv2Tk6SJ5Nr1WziuJFewCH3VeHe7fWzbwu/10UixHBsSjUaji23ZbGzUyXsecRhx49YSAwMlNKmgPnGq5JRJVius1RtUK+UM2PPSt37tto8Hr1zjTMvn/e//8Wzg8GLO18sJAbcXoCJNQYvRiFW2YgTN7QX++T/7Jzzy1w9w+sIV3vq211KoFnjo4eucubrCP/jgf8vHP/U5Hj1xkV9+888zd+0as1P7kSJhbv4qrlvg7OUTTE5O0+21ME0dTB3dsWlttcl5lUxWHWHqAqGblCsVEpEwNjpBZ7uDnuiYIsG1Cly5cpkDBw8oUrUwsZ0CrZbP4soyi4tzFCrD5AxJEHTQdBAJSDQIIiIpSYTGW47dx8NfWufx6yu8+d4CpbxFe22OguPzpx/5E44cm+Dc8zeoDYxTHBzn5JXz3P/etzDtDPLJj3+Ef/K7v0m926U6OM32uos3qEMMbr1CN1hnanyaq1c3WFrboN5qUN/yWVlaQ1gwWhtQzVycYpgWsYhJBCQJREmMzIaZQqSZZ/5FKBCpgASiOCFNVLxHHMdKghipTbXayGn0uj3anTbd5iblyiCW4xCHPqapMvWkUP7RRquBJmy++swpCq5GsVRRsQwoymREijRypJqPEDGmWabVa9L3A8YmZ2m3u2zX67zhDW8kJWRwYIzTp09w8MAhTp19jgMHDmJaKpv1zAsnGB2s0dhcVX+z5eAVB7GdPLbrqcxOUKTM7LlJ9qFpGg88/jl+4E33vaRcTbJN3c62jts+fxMJ/tuVvrdJOF/9fDOd89W3NK90229+/QldfC/n7rt9vuPNnRBo30I+8Ur+vW91kkj5mNIkzShbL2Z4fMfOK/r6djyCSjscRjHNxjau6xIGEcVSmTCGzz3wAL/3+/+CBz/9Cf76oU9z9K47mdwzyeEjh1lb2WBjZZNf/eVf4fiBUf7FI4+xryd521uP0ex2MIRgdXWdRkP5i8IwpjY4QJporG1sUKnmlSQtTPE8D8e1qA1WGB4dYHJskOXVdfI5F9c1cT0FktCFhu2YODmPK1dUaOrUxAjtZgfPc3cDhUulIkEQkKJkQEkCSZxy9cYCgwMVpDS4fGNOFZa2jWkbRGGCJqDV6pAm2QQpBce16fcDZeq3bLqdPvm8x1888CRh12d6bAQigWO45Nw8Pb+3O6UdnxhV/h00TF3SbLSRho7jOezdM44mJGmq0fcjtutNCsUcYRSRL7kq4y5VF6iVtS3ynkeSJNi2ohL2+33anQ5ewVUFZJLg+yFRlPC/XrzJB37wLlZX15CGTrlSwnFMZEahk1Kn1W4jdUlCgpfzKBQKVKtlRXJLUyXX0mUm41JSrjRR0RCbW9vcmFug3/O5cvUmhYLNxOQwpmVz4MAM9c0mG+vbvOauIzg5j1arg2O5tBvtDHUegNDodHvs2TNJt+NzcN8E/V6fQqmAbZucPnOJe+45rqb+hmRoeJB2t08UJdx9cJLf+cR5puwVCjkNqVsI1Ja13fKplCs889x59s9OsLKyyUC1Qj7n8ugTJxmuFTGkju3YGIaC06yt1bm1sMb4+DBpkiKFII1TNta2OH32BkcOTWGZDo89+QJjoyXiOGXP1BjrGxv0+z1MS4EgdF1tCS9fUUH17XYX27bI5z1OvnCZkdEKtuOSJAaf+tJJ7rtrlihM8IMQ27E5tH+COOqzuLLN4GCNOE44vG+CW7cWqZQ8dNvmwP5RDv3CH/Po//ILpBur7J2ZRpdKdue5XiYFU69yXajN1MLSKrOz45imhUDnySdPcvz4QRYXl+j0WoqoliYsraxRKuSob9dZWlqlXKuh6xZxrNHvRXieh2mbNBstFaDr5kgSqFTKxFHIV544yVvedDeDA2VuLSwjpU6lWqLRalOtVckXiti2y9TkMHM3b1KtlTFNT02bo52wbYXS34F+7Bstc2k9Ye/sDPe84V6+/uwJ3jU9i2tZnLp6g2N7pzEtk79+7En275tGl8oX5nqZvDJNCYJo93q3E3C+OykX6r7TtJ3fqRGGQQZWUpRVPYOSSClpZAHdGjA1MYbUJVGo6L2kKaZlEPgJhmmgodHv+fj9AGkZ9Po+tqsor3EU8flHH+fQ3ilMS5KkMYVCASfLm9vxmwhdJ5dTSP40VZvBMAyRhr4LFUgSRe4TmmTu6iKFQgUt8ZG6xrOnXmByfBhNaiAUvEA35It+bw2SKN6NqxFZzt5OzuWLxYqSvGpCEIURURSxtLiM3+9z/tI1SsU8pUqJOIx59uQZRoYGAU3BaADbsel0esRRjESn2+owMlhjZLDCRn2bfCmPLgReziMOEy5eusrevTPEsdrWoWnEcULecwl9n9WNLcqVMs+vLnH3vftotlu0Wm0c22Lx1iJLCyt85rkb3KkJDs2obXuUxFhWRvwtejiuoNFqUa54xGlIsSS5+/gB9XjH8OUTpxiu5Gm1utiW8lVLoWcNro6Ukm63RxjFlMoqK/ULXzvB4b2jCAEDAxWk1FUcTgppJLJ8xMd53cFp1lc38XIuaRbVcfu5vcL4nTNzHNi/j7fd/+YXv/+SEuTVYWoJOjESoRtIwyTnX+GxBz6BbeY5dvQ17D1yHw9/5QQf+Nlf5R/92m8yPD7Nhz/2aX7rp36DXDnH1J4ZpKWDnuDlc6yvb3Fw5jVIzeTJx58g6kWMVUdYuD5PkqrQ99XNRQr5AnEEFy+eYWb2AFGiCI0aOrZl0+60qbfajE6OE0Z9Qj9kfm6OmzfnmZnex9Z2k9fe/WbmFxbo+xKvMIAfJbS6TaRlEaURMgjxe10QgvHxce49eB//+i+e4ANvuwPPdjD1hKEhCy1eZW3pea5e+jqvObCHf/wP/xnRNsxtn+fvf/DnSDSXuRsL/I+/9U/47AN/yk/+xAeIw4APffLD/N33/Cy5XAEnrzM+OUapXKJSq7G4Mk9tcJBSLodhG6qGiAK0RJDGQnmChc7c3A06vQApXaRgd8ik3mfVlt20rF3CpNB1FXavgx/7mLaltu1pRG1giEplkGZrC13TMCxFhZaGSaqlSgkhBEkSMjszQSFfJEki5RXUdLrtLmEQ0GivYwiHfl+j1ely7dI6B48cJ/BDDuw7guvm6Pt9GvUG7U6TY6+5g7mbN9g3e1BBZRIVmxL0OyRBG13qBGGPfGmImb2HyBeLGKZJnMQvUai9HIDysS9+jPe//8dfMpBI0V75ufwtvvaqJ03/Bs3dK33v27lfX/32u8qg7zV3393znW7u0mySkibxK/rl/rb5GVIKJenMirAdjPV39Hyb5k7XBVKX2K4yroehkghgSKrVGgen9vDTP/Wj9Nt17nnTm/AKOQxpUsgV+OiffpQ//L3f49bcRbqxxp0jOXLEVKslgq5PIe+Ry7v0ukqu85VnTjFarWE7kk6vQ6GQQ2gSoelYjqEKh0gRstycg9Cg1+0S+ArJ3mp1SOOYC5fnmd15rxpjAAAgAElEQVQzwchQlTRJ6Xa6NBptqtUSQtOYu7nE2OgQGtDv+XQ7Pq1mh1q1rDaWQqNY9CiVC1iGapYWltapVPLoQscyLebmlne9ftIwCIIQXShQg2XZTI9UqBRz9Dt9up0uaZTS7wUYto4hJY5rEycxi0vrPPr0aeZuLXP8yD7iDJluWCZ+L+Tq9UXmF9Y4uH+a7a06YRxRbzTJ51ykYdDt9fFcB10IDNNgZWUD17FZWllnbGyYbre3C1EwTRVA/G8uXuPvve01CmhjWiSJgq3ESUw+n6fZUj6lfuBTKBSIk1jBQRwb3/cR2WR+7sYtcjkXyzL5whcf59C+GeI44fzFq+RzHgcP7mdycoxC3uHCpetZgaIxPjZCuVRGM1SzvLy8zub6Fhcu3GByejgjlNqqSJImpmmytr7O0NAg3U6Xft/nwKG9+IEi221sbGI5DmfOXOaRx15gYrjIz9x/B7/2kRe4/5DAMnIkicHnH36Ou+48QBQnTIwNsLi0xtjoEJDSbDQpFVzynoMGLC9vsLHRoFTM47k2V24sUcq7Kj8xy2zc2mwSxwl9v48pDY4cnqFQ9JC6ylQzDQVMiaJQIe+7PeXDKhWUfCuTgTabHb5x8gZ33DGDyk3TObp3BFIVFbK8vEm5nAcSFhaW2btvD1GYoAud+ZtLDA0UMEzJb3/yJjOjk+yxI+48tp80TsnlC+hCwzB0/L6Sr83fvIVC7ju4rsOB/VMEYcDSrRU2N+rs27cHjZRKrYjrmGxttShXy9RqZUxp0mwoOI60TUzLJIoizl24yvSecaQu8P2A1eVNVlbWGR4aoNPpMjg0yPTEEGfPXWbP9DiVSgnHdThz/jIH9s/QafcIwpAkga3tTeI4JJ/3MAyLKEj5oz/5LNNjNQVLyWImUjQ8S7IQVTClzubmFtXaEF994nHefPAw08OD5As5Hv7K17j/TfcqiIgQu96yNElA07JsTOUrE1LsXhaFptFoNFWUAUCmnBC6IAgCkiQlCEIMw0QTKVoKlqWiFnRDJ+gHCE2jvt3I4gnUFv0zDz7GULmMaRr835/6Aq97zSGE1NXEO4kRGvi+z+zEMF7OA039nZZtoaHw+2oDya7MUoGlbAAMQ1e/b2eyvWNrSTXy+RxfePhxDu0dZ3Njk7GRQVzPUY1dNkjUhJKe7mT/ScNA6IIoiomjCJE1Gkq+rxFHCVtbdfX3Zc2eEIJyuUwun6NSLKj/tzjB9wPGx0YwLTMDVbXodRXRuNvpYVkmFy9c5RvPn6VWLeJ4LiOjQzRbbcwMKqGhce7ydfZMTqi8STXH52Of/SKvPXaIOAgZGBlkeWGF3z3xPJOyz759e3BchyjwqVXLvPN/+ih//KZ7uOvgLEE/JCFB6GpD3+sGmLaBEMqPmiZqiFetlDKhjbrdwekRKpUC3VafXEF5wIMg5JNfeIrN7S32zowjpcHC4irtVgfXtTi8dwLHtTJwj9qSJnGyS1JMk4iDU4P0Oi0W19aY2jOZDZlenZb56bll/s8P/+FLGrq/cXOnSRLUhleKlAc+9GvkPZtDx9/IRz72GZo9yf3v+BE++ekv8B/+40d54MuP809/8jfU89xSPlG/7xNEPtv1bbY3G9xavo6mQ22giukYxHGA59nEscajj32Jffv2EicxJ557mnte//2srC6jaTqGtNA1jSee+DJ79+3H9nKYlqTX72KZCr6zur7E2OgkpXKFlfU1qrUhRoan2KxvMzwyztXLLzA8MsP65ga2Y9DuNREiBWLSJOD4+CG+/uUef/TwY/zoW8cxjBSR9Mm5KdPjA3z9qcf4oR98FzkbFhobVCoDxL5Fq97hve96F2fOPct99/4A//x3f5d7776TP3v4kyRbPfbt30+rWWdmz77Mq2uxvb1O5AeEsb8bfK8LnZ0yLgVa7R5xlNDpdvG79Sw8PMKQiiHw4t5HwzCs3Qc+ThJ0wyRJU5I4VsMEod5fu90mTkYc1TTlu5OmRa/bVZl6usRxTOUZzqivcRxj6Cb1+halyhCaMNiub7O+tU2uWMNxc6yurJAvlDAMg2KxxOXLFxgdGyeMIuIoxnXz+H7IjevX0dKYXrfB0s1LFIolpO2QLw5QGxgijBNM12Vh4Rb5XO7F69TLmrvHTz+WSY1f3ILdXq1+r7n725/vNXff5rx8+bojxdQzPbTI0LcvP39bxGrm6SdN0hdXfq+yuXulsPWXf3/n79x1cL8KjfN27XKsKTR4GEX0+z6GtJQcLegyOFBmZmaC0bERDh89wsjkGAAXz1/D7wasriwRxz7VoSof+LGf5X//64f42UNTGNLEMA3anR6nz80xPjzIyso6s1PDyn9nmniuB4lGs9FAiJTt7SZe3qXf7+H3fYX5zeY4pq1y4jzPI0lhsFYlSVKiICKNU7rdPkPDNRr1JmgaD37tNKOlPFGooC2GlDz85ClmJoZwPEvhwoVGFIToUuPilRuMjw4qVHACoZ/yV4+eZHW7wf7pMTRNNZsq+0pjc72OaYMmEkrVPFEc4uRsTEfl/MVJSqvdw7YsNje3mRkbYmyoytrGFmmsNh1+1ydJ4OmTl7jr0AzNZpvB4TKtZosHnzrDnQdnAUWCFEIQ+xFREKFnRaI09Gyb6LG+uoHr2szNLVGplLjur3L/3Yfo9n1W1zZoNtu4OQfHtel0VR6VNCWFfI5+vwcIlT0ndgJFFbGKNKVYVH4yz3FYX9vCtgympscpV4qEQcjy4hpuzmF0dJhWt0OhmKO13eHpp19gau8otm1z6fJ19s5MMFgr4+QUAVXqEpHqnDp5geGBGt1uj7X1TcqVIp7nIaUgjhXVrtPp4Lkuge8zPTHI2MQIjXqTD/zAfn7vsxe5Z28Fvx9z8sItpkZLKq8rDilXSliWSUrKjfklpiaH0YRGnMTUSmWiKKRQyKNLyeT4EOcu3cCxLVrtNroQVCpF4jiiWlURAkLoBJknCATdTk/ldSUJtmPTavXI5XIK+iAEGxvbfPlrZ7nj2CEqeYdiUUEmtFQgZULmuadaK+L7AVEY4jomiVCbGKlLtCTB82z+qz+5xod+8W2MD5U5cmgCPwipVqucO3edkZEaaCn17TbVgUFc2yJNNHRDIqVJHMVcuXyD0I+Zmh7D931K5QIryyu4uRyVck3BYzSAhDhUxYeQSpL4ib/6Evv2jJLP2/i9Drqm8aVHTrK61mRwMM+16zcVmdaQDI/UOHXqvCJjtppsbTUYGxtiZWlVRYoIRZIcGh5UAdeGpUKgO208x6FSLZCiCLNCkyRJzG/84cd59zvfyteefIoHH3iYs40G9w8Ms7q5QaVU4PDh/fR8H8u0lM/JzAqnTLqWahD4gWpmsgIi6IckSYJlmbtAAl1K0lh50RT1UGDoyrsosh+Uphq35hepDtSIA4Xdt10b27VRBZrBkQN7cTwHTYNjB2ZUo6axq5RQgxgj244JUiGQpgoWtmz1GU0jiqJdvPn21jZPPXOWnGvR7XWxHeXjQ9MIwi5pqiTlugH790+hpdDr9ymWi1men0kSk20BUtXoZvmYCGi3OxiGgW4oqIsqUPRdj5BlWqpANIzsbUpdH+r1BoVSQfkdDQPTNLNriPL2WdnASWYy/b7vI1ON0eEaYxPDKsPRc8k5DkkcsL62Ti7nMj6iBldCCD7yqQe58+hBRmpVVbBle81CscADV6/y8+88juOoLFTDtFhaWuXxKy1+enyEv3joSfZODNPqdBiZGKLd6BKDykS0cghh0msHPPLUaQ7NTiIkxGECCPq9HnGcUCxUSPWIyI+Iw5hq3ubwwWmEoeN3+ggt85e7Jl7OgTQlDCPiMEBooIsUjQQVRhaRz5tIE1Y31pmYnHzxPfn29+js8zcWFnnrB3+FsbGR7HH5ZuGQ+pp6zKJYDQPiNEUKE6RDFEFO77J27VmWrzzJdrPLpUWfH3n/z/H4E8/ypu//AUrVKhvdLr90/wdpteoUcnm0BGxpc2t+Hs8y2FxfYXX+JourmwghOfvCWRYXlrh06SqeV2L51guUS2WuXTuL1HWCfptKpcrS4g2kdPB7fQwJkxPjpHGfZqNFIVdUsn9d4kc9xsfGSYmpN7YxbYM4idEMDSEN4lRQHZyh14dCaYyV7QTDHiDnVtA1FxHqBCKiOlrh4MhBfv2PP8877irSadQZrHkYWpvZyRxSv4WXX6ffNlm8cpqSCdcvnOLYob2YRh5bWvzQD70XPwz5pV/8B/xff/VnvO2Ot5FzK7RbPuVymbXNDRrbCQkOFy5eolwZUht0kZBqKZapqNLFfBm/32Nyeoac66mcPMMgISUMQnShE0Zq+J3EUaYkUBtO07BIY9BStbUWQkdIRayWupKCS0NttU2hiM7qWqWRRqGqnlIgVUMGNJ1CocTi/CpISETK6mpAbbzMs8+e5J3veDdRHFEqlYiThOHhcUrFIjdvzVOrDZEkKZcuXaTb7VIt50jDLo4lCcKQ0sA0wyMTINV2P4mVEiHNatod9c/tz9/HTj3OT/3Uj73k+Sx0Q9W4AnZCEoQUxGmiCMTx33yB8jerw7/5NinJbd/VvuVtd/6Ll/xbmv5/5rn7z4Bo/P/nSUC9qL5TP+9vEYWQ3PbxHT0iRdM1FeItDdD0XcS6YRnURocJ0BicnKGYzyHSlLGREcYmJsgVc5RrVd72zndj2BZXr1/jwvIaWgJBoPC940M16ttNgjAk59lIEx596gytep84hGLRw7A0FW3Q72Oaknzeo91so0sTy3EQO0ZqTdBodrAsE6FpSKGKj1zOJY5jCsU8ubzHT7/rjTiu2loYhqTRaNHq9XFsk6CvNlNhX+HB2602s1MjJHFEEidsbzVp1Ds4wmSyVuHi1XmazQ5pRqoSQlcZZxHkcwXm5lfIFfIKNNLts7XdwDQNDGmwvLLOvtlJhkYHKNeK5PMenuewsbLJQ19+jjROece9d1Aq56mU8mxubOH3fabLA5DuSNQUPltKuSvRiqJY3QdCsLVRxzRMOp0u42ND+N0uv/yjb6DdaSGETrFYpFarkS8U6PX6uJ7L6uoamgZ9v4/judi2oimmabpbmOlCKolUrLJwkjhhenqc9fVNpCFxPZftepNiMU8cgSZ0xsZH0DSNCxevUasW0DUgjbnn9ccwLYNiJU8Sx5w9d0Xdnyncefwwm+tbdNo9ypUSfj8gTiKuz80ramngMzRUw3UstrYbDA/X6Ps9Ot0+llXk0nrK3OIGaAk/94Hvx8vb3FxYyja0gnanTRRHWJaB0DV0Kai32nTaHZrNnsotShKE0Ljj+H7GxocoV4rkS3mkZTA4WFHkQlJeeOEyutRV3tz/w96bB0t23fd9n3P3e3vf377NvgCDnSQoQlxEmbJKSyiJkiKpLMVRSRU7llN2orjixIoSl1OlJHa02ZIs0VooSqQokeIucAFAgABmgAGI2feZt++9d9/95I/T72FAAlxiMeVUeFBdmOn3uqff69vn/Jbv7/M1De4sb7G72+Xy9RWiKKVWq+x7fXV7XWrVEu9860m67T7lQkEZz6cSQ08xtIQ0jRCa+rejKOb5F68hU4FmgD8cEPo+/jDg5373Kn/wj74HyzBoN1touoabdTEsk1q1QBD6yFSys9sh8mPOnbtO6MdYps3ObpPBYMitxQ2OHlvgzIvnuHLtJmEYMD45jm07XL54fdT9Fdy5s0wYRViWSRQkDHsBu82QarnM5toOQqQEwZAf+L43KzBMo4rtGvvXTZqkHDwwgyZ0ctkstmVgmQa7zTaOY+J5Fhkvh0wZGfOqueNH33SS+lh1VGBQM0pSgh/G/NI/+EXyhQKf+sTHuXDuFXShZIIHZ2eIoog4iXFcByklH3v8KZ585sxIdqgiCZmozhiath9ICKFsT+I42U90kiQhjmPCIFL0SKmSGBV4KW+lMAh5/NmzDIdDNN3ki18+i+t5AOiWSSKVr2WaxkghMUyFJpdRikxUZ0+OZq900yIOYzShq06aqfzRhGB/Xs+2LcIoolAs8OC9x5mYGleWHnudwiRBEybnLlxTigupup7oJuV6TXlm2ZY6OOSIUKkrJDswmmEZlQ6F+jsjeVQqk32pqmkaOI6zXzzc86TLZD3VXdQV8CSV6ejx6ikHgyGdbo/mTotMJkMul6XWqOJ5LghBFMdsbWwRDn3crEMul6Hf76surKn2d8eyiKKYYqmA7dgEQcDmxiah7+NqPq5j4w8HyDShPxwyNt7Askyy+RwL41UKhRzTU2P4Qx/btVUymfUY+L6ag7J1Hnv4mJrpEgZRkBL6ER98/Fk8z+OpJ19G6NDt9RBCUqsWcVw16xSGsbJkyCiZd5ImyFSws93CslXCmcqYS9dvkEQpw0FIpzvEDxI6w+QbHs8fXtrlwYfu2x/b+EbL0DXiJEYfFQfiKME0DILmBo9/9IOstwaMLxxmaWubN3/XW/nf/tW/IAxa1MZqfP/sDwIpjVoDKSX9botBr0U4aBEM2/iddXbb22RNH1sPcbQ+87MNZqdrbG/eYm5+nnq1jh5Dp7lN1vMIhh2a28ucO/tlLl54kdPPPU6ahPi9HZpbm7S2WywvrzAIfKIgZWV1nThKRjRIqFeq6AhyXgbLsOgNB3SGfaI0YXZmgfHJOYapQaC5BFaRXlcy9E2yuQb/7L3/mE4ImZzLMIxYX99iY20VTbOwrSwn510mi12i/ovk3SVuXnuKOO6h64JatcL0+CSLy0v88R/+Lh/6/EdQNF6TRCZMTE4xPT3HPQ88iJMp0WoHvPTiV2i1+vjDmG63q4rxMmFyYoIo6mPoBpZlYRgmpm6iCY0kSRX4aLQvCFT3Tx+dfUkaYTmK+h3LGJnGygxe0zAtR33OdA1/2CeOfVIZE6URSYq6DnRVjDFNC00ThKHPcLiFlJJOu49pu2xvdfAcF4mkWq8yHFkq2LZFfzCgVKziOS6u63L8+EmWlpdYX1skDn10TcHuOu0+QjNAaEgBUnuVcvmtrL19Sft/wxv6DZaiaouRz+j/t9Z3OnffYH31W6okL6paYBjK2PVvg3QphMJRv2bTfiMAyzeQfO539L5F7zw1TC/R0HBsB38YYhgmQosVkl7qdAdDMtkSm8u3kankoe96lL/77u/n5VfO8n3f/3cIkwTbzvPT7/tJ/v5v/SY/2Gjgjw69OEoYG6+Tzzj0e10yBYfzF9eIBhEikZTrHsurq+jCxHOdkSm3oTYwwyRNlHHnzdvLVCplbMsmCiLCIOQzT7/IoZkJTNPAchyiMMS0LLpdVYXu9QaEkY/rOmqWwtTw/SE37ixDDJahEwY+tmXS7w/ZabbpDwJarSHf+84HGRurks955HMZdF3DNHVeuXCdS9eWOHpoHk3o5At5ZKqxurZFqVykUsoSJ8rjKON5IFMu3biNoenkC1kcyyaNUw7NTJDJuqSJSqT9oY9MYyrlAisrbWZmxtB16PUGLC6vQ5zuv8ZCIaeCH0MnHKTk8hmu3lykUs7zcy9c4NEpE89zsVwPy3ZBqI3ecWx2d5oAWKNhZ1V9747837RR5dcgHAYkSYxpGjRbbcbHxpCp6jYvLq9SqZZwLEdhqxEsr6yTybk0d5tMjo8xOTnGTlN5dbU7XZ5/4Ry3F1c4fGCO6alxNASf+exzHDk4S6/bZ3yqQaVcYnNrm2KxgExTsrks3ZaC6fjDIbMzU/R7fdyci+tkkKnGjz56hP/pr67z7vtquDbs7LSYmhpTRERdw3GUHYPrqm6lRJLLZdndVDYMURyx2+xw49YqtWoRPwiwHYc0Tmi3O8RxgmXqmJZNo17h+bPnKRey7Ox0OHRwjt1mmyOHZ1hb2yaTUcbfaZJw9txVpibqeF6GOJZ8+ZkLuB7INCHwA+LYZzD0MQydazeXmZwcY352Qh1qZornZtGEzkP/6IP8wqOzzM+MEQcRV67dpjFeUtVQ3aKYz6sZOyGJgoRcLs+LL13m2JEFdFN5qmU8l3q5wJUrN3n0LfczNTnGiy9fwHNdVlY3OHRogTAKSGTK0tIqrmUThhGgMxxErNzZ5tatdTKujWRIrV4njiTzc5M4rkWjUaHd6rG4uESplMexba5evUUcRRw4MMuTT53myKEZDMPg6WdfYHZ2HknCzs4OhXwWt5BDSAUUkDIhTkI0odNp9/AyGf7pv/4A3/WWh3n3u76Htz70Vs5eOMdPnriHZrNJNuupBEXX6Hf6XLu9xDsffRjTNPdn0hAKwGTo+j7B0rZtAD7x+Sc5emAe3VAzKbbt0B8M6Ha7eJnMvhw79H2iKMF2XU4dP0ScJCqRvnKTQwenlIWDUH5VGnt7tCRNEwaDIXEQ8Sd//VmOzM2QJhLbsZGaRuSHWK4NI7plEqcEQ19ZjoySJNtWVg6m7oCWEkWhkpKmjGYsTRq1GtpI3yEQpAjEKGGXEnRNR6YQhAGapjr1jKSpCIFpmfsVdpVwq68FQbhvm9NudnA8G6EJmjstLEt1PQ1Np9sd7JNKRwO6CCGwTYtCoYDjevtegyvLq0xMjmFYJpZpkPE8eu0u/b4yOxcCBSoBbNfm2IEFDMtE1zSSOOGp06eZnRhZE2SHPHR4GssyFS5fN0nilL945ho/OjfF1HgDwzBUgcexEKiuumEZWI7FRx9/mhOHZ3Ecg36vSxDGZLJZZAqztSIAp1+8w4l7JgiGgVKQZF1imaCZGv22T6VaUp1KqaSfMhEjgnKsPpdRiAA04eBYFl7WQxM63ZbPxGT99c/l0f//8MYK73vfq8blry9Ve/XPUkqSOGFtbY319S28TB7LNHHiba689AQzC7MkeoYfeN/PUx2bZGasxl/8+R/x15/7Mu965DHW11e4dOEl1laXCPwWg36XbmebUjFHtVxlYWaW2flxNBExPzcLMkCIkLm5OZLY59ql81QaM1QrNcrlMoau0eu2mZs/iWmYxGEPP+hTymdot33OfeU884cOEYRDirkqhXwRATSbu5x7+TQH5g+TRAoygiZwPYdMLsP27ibXrp6lMVYnUypgeC6+hIJZZTiMyebz+MGQ3ZsN3v+l5zi5kJLPZgiGEZBHihzVXIo/WMN1hsRJn+5wgOmOsbnVo95oUK3VQROsb2zw+x/8D7z54NtwPZu+32boD8hkSuSqWRZmDuO5BTrtPrap0WpuU66UsC0TU9NI0xhIMTSdXr+rCkb63uymqTpwhrFvm4GE4bA3mgUevbkjxYm6jtQ+o2wQ1D6Rhj7C0MFQBZw0SjAsSykSNEPNo/c7OI5LoVJB0z0Wb68SpBrRUOctb3kTtmPTau+OxglUkejGjWtMTkyxur6qlARpQhyFiHSALlKCQZeJmcPMzh5DGkr5o43osBrskVFet+P87Pkv8yM/9kOvuaZTCULX9gvbKkYd+TlqmlK5fZ3Pwre+Xj+WflUn9/W/V62vjbm/Q8v8Nq+/reROfaBGg/Vp+sbdM5nwWqzKHhngjaoQSuazT9X8OtWK15N83i3VTO/6vrsTPDkilmmjg/drcLJ71DgBSRqyvHoLqUfITgfLckgxiAOfnGeysngHy7L48Z/4GWbmZ3jbW9/C2soKmVyZJ7/wWW7fuMTM1Ay/8eJLvO/ABNYomH7upQtMTtSxPYf1tTZjtSKHj0zj5S1M2ySME7KORxQmuJk8mqZz/fodLEuoOa5UUK1UiGLl7Wa5NqZlcOzQHKlM2d5p0e8PePYrl5gaK5PNudiOgWkJTMfFzdikqfJ/Wl/b4dDCPJlCls2tJtV6lRu31xgfr1HIF6jVK1SqeaRMaLfbtFptgiDAdSyiKGR8os787ATXr93i9soqjmVgmIJqrYDlmjR3Orx4/ipTYzUAfD9kvDyGY9p0Wl3CYIDlGkiRIlwLY+SZZloGi8sbJHHKiVMHVEIWCT72mTNsbnQ4dGCSaqNCsZxDgjJWjSSvXL7O0B9Qq+TJ5TMcf2Scg3Nj5Ap5ZKooeGur6xQLOYQmcEyLnc0mlXKFVIJumAyGIY5t0drdxXEc0lRDGxUytptNxifGSCOfMBiQzXs0mx3ly5ZKLl26xvRUjfMXrzA3M42lm2xvbXHj5i02NpvUymXu3F7jgfuOcfTwHP2BDygwxIGDU5y7eIW5A1NYrkpAC8U8u82mmnER4GUydHsDXDergj7HorfTZnt7h2zRJZYx7zk1zX/1789y/dIlvvv+g/S7fRzHZmV5g6znsbm+S8Zx0ITBzRurFLIZnEyWMEzUrFmlzFi9wtrqFo5hEgUhcRxz7cYK1UqB089dRReS7WaLAwvTuF4GP/ARImaPvpgreKQkDPtDXNehVMgCEIUBpiNY29zm4PwsN29tMz7RwHQyaJg8ffoKD95/jHjkT3b6hUuMjVeJIvh7v32R/+E9p3j3Ox4il82wsdVme7vJ7MQ4fj9ECI211SWyGY9rl28zNlZDMw3mFiYRBvQHPVZWV6jVqghdY3y8QSrhgx9+nJPHDtAYa+DaLpqWYJoWoNMYr5PLZ1hZX2d2VnnELSyMc/joDFPTDTRhquR/hPUmTfnKy5cZb1S4dXuNYi6vgnZbZ2Z2ht9+/8f5ge97DNfLMhyErK+1GBsvo0vB2soWpqVjmQaDYR/PcxEjQ94wjHEdG5kEfPS5G/zUT/wQiUw4cOQo/d6AF84+x3cfP8FgGO77inmex/0njiI0XYEsSNB0EFJJIeN4RKLTdJI0Ik0lRxbmEELtjYZl0G62qY3Xif0Yx3EwDYMojjFtC8dzSBIljTYNHS/nceTQLI5rEgU+JDEyjjFs5YGlGypIcTNZdN3m1NEjDIM+uYIHmiSJFcRJFfmUBF3KFMdzEKmOTASpDImTENf2MGzBoD8cgZVcQHUJA3+I41hsbW7heY5K6EbcOWU1EGCYKsg0TBU0DfoD1ck2VcK7d6yksQKgRGE0snjQRx5sKPsaqbr0jmPR63axHQukwLBNNQeYSpI4pr3TprnTIpfP4QcBg8EA0zZJU0mpXFHeplDvelYAACAASURBVLoqtrU7HbxCnkE/wHE8GPkVappGEkej51YyzzhMOHLoCI7nYjsuH3n2Cd5y/5GR55qlErkw5vc/8BnekvfIeTq6k+A6DokvuHVrkVzWIQljNtY2Ob4wRRIqyxTLUnAtoWmc+colrt/Z5MLlFVwbZmcaeG4GXTfodYe4tkk4DFTXPQiJg4BkpKjQdQ2ZpoShKhTFEWQyuf3EWDd0SCUDf0ilUmS/NPs6M3fKAuFHvubsF3f9l2gKva+6PiaDXp+/+PBHeNNjJ8gXbOTQ5PSTv8uZL/0Fs/e+j5cvLHHy3gf4t7/529y8dJnf+pO/5IdPvpsoSOi0b7OzsYOIIg4emiaXsUnjPuViAdex0HVlpXPn6kUmJmbJ51xyWZfI71EtVxgbr1PMm1TLWUw9xjUSpscbmCLB0GOKpSK2bbJ0+yobq2vc88ADfOnpx7nnyBGEZtBq7bC2uki5VObIsXuJUonj5hkmXTRhEAQB21ub1CsTTIwf4M7iEp7pEPQHWAjQBYVKiW4wwPUyZDI6jWSOp65eIOos06hW8ZwUGe3SizI0Zg5jlWYJE42JSo5s7xqVYkyctJBiyJeePMOxA8e5574D/Maf/x73zd9L1itQLtfQTMHG2ia5QpZM1sXyHFbWNllc3sKzbVw3i5RqX4+jGN20laefrtHtdekOEu4sL1MulUbKAeWPF43sA3RDFdk0TafdbpJx80CC3HvnR/Ajme6ZamuYpkMQhNiZDFEQo5k2nVYHU9ex3AzbrQCBZHnpFqtbuxw9fg8PPHiKjc11TNPm9u3b1GtjaEJjGPjkc3marTaNxjit5hbb64uQDpDRAE23qE0dZGxyDs219306kXfF0HuJ3d483UgJIKXAG2a49133IISOmkwSo5hVvqoGIIV09Pj0tUmUpqvGyH9cl+/1EjbxBjcVS3/tbVRU03T2aPmGrn8nuft2rr+t5G7//lFi9Ma9sTf4yrepxXz363zNv3xX8qbp+j78JU3iUVX29X9CKVMqlSrN5i5+z0ei4XguQiYYhqCQy5IvFrDcLLqhs72xgWtb/MRP/RzHjxwi67m8/9//HsVqlStrOzxQKLCx2eTKrS3mJ+t0uj1c12JsrM7Ojqq6g6oSO6ZLt6vMb9NEYuomXlZhg8+8fJmJWoU9g89hf8ilq7fJZVwcz1XzDrbFwuzYSF6YjiRWCY6jABqBr7xyBqMZCdt2sEyDKAiplovcXlylWi2TSqWFN22TJE6oVkuUywVlxq0rZHq326dRK1CrFnEdiyRN6XX7tJpdcrkcE2M1Ou0eL1+6zoGFaVYXNzn7yjUOHpgik3XQhIJtWLbJ7vYuhqbR7fQZa1TJ5jKEUYxhmuiGwbHD02RtnfqYMqRWszEGoHHhwk1urW7y8KnDeK7NP33xMj/62GFczyWJJXdur2BbFoauk8t6yovP0KlVywz9IbZjE8YRlqETRwmum1U6f1J67T5+EFAq5xn0++i6YG19A103eOncdTQBxWKBC5dvMTXZYKxRw3FcXnjhPEePLNDcbfPAgyfQdY3FpVUWFqZZ31jn80+cpV4t8PknzrC70+SB+09gmCbnL1xA13XlFWXpZDyLMBpiWq4KHg2dbqfL7vYuqUyp1Svouk4URaRxwnvfcoBf//wK/aVrNJttxht52p0u/YHP9Mw4AP3BkGIph+8HeBl3NIukoemCpeU1JHDp6hIL85NYpsFYo0oQhsxMVCmWCvQGA3I5T0mkkhTXden3h9iOxWAQYNvKjF4BJ1SH4FNfeJFD8+PMTk6wsr7JzHSV85duUa2U+MjHvsz998wggXMXbzEc+txz4gC7g4D/5SNL/NpPP8o99xwmiUM67Ta2m2Fqsr4/UxPHCeurm9iGyaAX0Ov2WdvcoTFeR6axKkaMN0adFMHq8gbr65u89dH7KBRzSCRB6BMGAV85dwXXtcl4Dr4/pNGoEUYDNkczUJalg5C4jqfos6nk4595hgcfOMHszCQvv3KRhx+6Fz8IyOayCF2ws9Ei9H2mp8b4whPPc/zYAfr9Hqahcf7CNQ7MT3Hu4lUmJ+u4js3OThvPU+jw9bVNspkMmhHylWs3MbNFjh6dY2enycb6Kp98+TyPlcqkaUqaJgShj+O4mCOaJAIFPQlCdMN8tSOFIPADJCmmZWGaxn6XTQhwPY/2botcITcCsqCCdQndjvrs7fk/yhQ6zTZxFOO5ruo8CkESxyqIHz1OHfwapq2TprEi4KHmajRD7AdFMgXlq5fwuc8/SzlfIJfPKAsHqb/agTQN1YFEvTbD0NE1DcNQ9i7Kqke956Aq/Wkq96m6MpU4nkMUxiRxikwUoj0d0fvSRNEbxchQXhsRIqIgGiXNSsKpC23/tav3QdJudzENg06nx2efOU3BcZTiwrbYWNtE13WSVPKXn3qCuckage8zOTVBFEdYhsn6xiaFQoEojojjGH1EF1QwUnV2xVHMyuIKuWyO+9++QC7j4mYcNF0nGPgIYOP0Df7uI/cRxhGdXkfta6lGoZCluduh3x1QqeaxLRvDNPji8y8TBSHFTIYkSpiZHGducpxqLsObHzmBZqs5bSlQ5uaGjmWb2I5Lr9sjX8rj5lwSKQn6kTKn1sA0Tbq9Hq6rHhNF0f51tbm1S71RefUk/+rkTkouuXne+a7vfp2z/9Xv3fOz2ysOyDTlgQcewHQLJKGNa5l8+IP/gpNHH+T3/vRJfubv/SKazPDvfvO3+avHP8s//8F/DnqXXnOVhQMHqVcrHDhwANuUpEnI2Pg4UuzB5AzW124xPXMQREqSKG9a07RH0B6prqVUGdy7AobDARKd27ev0A18Wp0W993zEGEcUCmXGasVuPDKc2xu9XnlpTOUKxXOnT9NpTaOHwWYhkYaQ6/fxdA8/MDH9nR6XZ/p6RmiWBVqbMul0+0QRjHbzS1q1YZS82QMZgunOHjCJQpaOKaat8fSCcIIYY5Rqc5haB66ZbPVW8GUQ/SozzNPvsTirU3cXIZKIccffPLPqZklxsYnWFtfplqt47k2w8GQUrFEqVhlrDGFbug8++yzTE9OkqaJUspINUuMTLFMh94gIE00SqUsaZoo3+EgwLEcOt02lmljmhZSJop0rAnCKMIwVKFZzegJZKo+H3GSEkURlqWAYELovPD881RqdWQSEgawtHgVYRo42SL3nnoIXTfo9zp0+wOyXpY7i7eYnZkbyTjVOeb7QwbDPvmcS5QEbKzfIpcp4HhZ5hYOY9ou6MZrotCvtjG4+3rdu0/XMsw/NKEmaDWBhsbd0fWed6d4g4hcjFQJ/3EdvG/lsV8ftHL36/hOcvdtXjJJfmUv5/5mxIp70kft7jbx6PFC00jS9DXPo8Fo9kDdq+tib1fm7otGG1GR9l7HHpzlG722b+SqcXft4O71GrTsV8k5v94HYS8gLZXKvHD6Fb7wxSd44N57KJdK9Lo9shmHJJGkaEgpKORy5DIe3/Pu9/DIQ/ejCcE73v7dHD54mL969mneOzfO2FiFUyfmyOQczl66wvFDB3j2hVeYnW7gOBbN3Q6e63FraYl6owgiwXINTMdUfmu6yWSjzpXrd8h4DrquY1om9VpZ+StFifr9ixQpU27eWcG1LZXUCYFEGxGjVAXt2a9c5uUrd8iYGqahY9smw4GPpZt0e30EYNkW/sBXBsSeQyoTkijhxu0Vbi6uUa+WsC0PXTPZ2mhhmza5bIFgEFKoZBn2B8RJzOED08g0JZEhhw6O0x10cT2LVqvF+s4mBc/FdRTgxcsq+aRmGghdJeOGqZHKlFwxu+8BZlsOMhVcvXaH2ekxKjmPKIopV4v80Y0l/vO3n0CikSSSjY1dNCEolQrEUcjuzg6FYoE4SUYAFSUFsx2DD/3VFxmv1XBcB12XaMJk0O+zurJCr9vF930qlQoDP+DUySMMh0OyuRxzs1PcvHl7X5I21qgi05Trt5ap1cpsb+9w+PCcMi52XI4fP0g+n2N5ZZ1H33w/l6/cYKxR42OfOI1IBdVyBct06XZ69Hq+8oozdF544RWK+Rwb6zvMH5zBsS2auy167T6lUpEwDPnxtx7nd79wiWOHxjk5X6NaK1IqF9RMlaYpqaqlKCaaJhj0+ziuja4JNF1QKeeQUtJo1Fhe3sDQBZ7nItMUSUq5UgAB/mBINuOhGWq20nFcmjsdMqM5osCPMHSD6zeWedujp/jKKzeoVCpYFjiuzsrqLhNjY1y+dpNHHzmBl83iWiaGZfEP//gWP/3OR3jPAwu4js3LL1+gUs6Tz+fJFfIITXDz5iL1Rp3d3TbtZpeFuRmeee4cQRjx4MMnSaVkeXGFWr1CGETK2kOon79aq6AbmiL+Ckmz1SSfzVKvV8lmcwA4tq3oqokgn8ujazo72y1uXF9mdW2TiYkxNF1nOBwwMa4G7SvVEtdv3KZQzLK9taMIlVJjaqpBEPh0uz2yWYcgCvCHPgsLM2RyeSYnaqSJ6gZ4XkHtualkcWmdfCaLaRu8/d55/sm/+Ut+6id+El3L8rM/+4tsbm/ys/e/CYBCvshTz7zI6fMXOHXiMIZpKEKhoaniFoxG7rSRWbc+StDUhrrnaZfEKrkxLROQJKP5DyV1Ux6AezuuFBJNQibrjYIQFWwIXUG3VIArSaKEOIqUX5yQGJa5v5MLBKmWqs7gyNBbM0zSFOamJtndbuK4tqoNC5NUKmpeHCUYlqEIniNCX3OnRTafHSV2KqlU17ezDzNQVW5jv+KtiJxi3zuq3xtgWuar8jDkKKlSXcY0Tllf3VLX4UhxYhoG/V4P07YRAjIZTyHQheDND9yLpauZS6FpBMNA7XU5j4XpcTRNSWWHvo/pmLR2W9RrVZXEaqqwGIUhr9b9VYKRxgmtnTbv+cD7+aX3vhXd0BkGAa1WBxmF/NT/9Tj/5dw04xN1LNvBH/RwbY9bi+vkCxkiPyDreeimxsbmLoVilka5SC7jcnNpkV6vR86zkCQ4nsmd1XXyuQymadDv97Fsk8EwAKGp2VHXRmpKdxZHiSLp2ha6IUhlyjAIyeWyyFR1Wi3bAimxDQMn67F/gd59hgO/c/Yi//2v/59fI2eDr0ru5N77NKK5ajphGJJxCshBQji4yu0bZ/jIh1/i53/pl6mWqjz/+b/BjHZ454H3cPTkBMV8iXqjgiGgXPQQBFjCwrZMfL9PnKSsLN9hc32X+bk5hJaMzt+QbCaPbmhEcYB1VwFBJgmp5bHTbpHNFqjXxqkXioxX60hd4nkWIvXJuR71Wh0v52IbIb3WJt2+TyaT58yZ06zduMjMwgRGmkNYIZVaAcfM42VN2t0m+XwOx3Po+T3au23uLN3mvvseJEkkcSLwMmU2t1f44ueW+aNnr/ADj5VVwcSUGKaHl53DtEs4uSpuo0E+P8nO0nW0YJdTxydoNq+yvWHyIz/4XuYmZyjIafL5DIVsgTiJMAyDixfPsbu7y1h9HM0wuHbrJr2Bz9zcYc698jy66eC6zighiZVCAUEuX8DQIRklaJqmmA57sCnLNPY/D1Km2E6GOI5HsnKJLnSiMCCKYmzbxbJsBgMlLxeGihPmFqYwDIFhZMmUity4vcrKyhqLSyscXjjB7vYOYxNTZLNZqrUGZ186Q5wmhGGIblmsry6SzbgYekocDonjIbrhMjF9gHylRqrpoxRsT46+J8O8K+kRvCb+VB1sjfETNfQ9gJvaWVVsIlT3++79Sdm+jLxKDU3NsI/2p7vj2r2Y95tJ+lS37WsVba+/3gBQOHqOu9d3krtv80rv6tx9M8ndflJ01317aZr4qtm4vV6cfE0nT45ax1+1Ud/VuRPqjpGRrvy6r+2NLs1vaaruW5zB21sry+u89U0Ps3z7NqVylc89/gQvnT1DrdEAzVJGxiPp3FZrl6xtcPnieXZ22txz7ym++MyT3GNplDMZBoOBqmIK0NCZmxmn1WxhGKpTk8aSciWHTBOklHS7fa7eWqJWKamZOwlxFJEveAq4IDSlw44Trt24Q6mYw3Es/vTTT/L2h09x49Yq7XaPizeWmGxUieMYw9TRNZ2Ds5McmZ1Eokiam5tNZSSNqshqmsYHPvkU9x9b2Md7SynRdYPx8Qa1UgEv4xH0FdbdzTjYto3tGEonToTr2VimkoYJIfEy1ih4jAn8gGIpR6mUw9AtVlc2ERoko9c46A9o7nYxdU3JqqTcByxcvHaHyfExnn/hwsho2GdmdpJMziONQ9rukIVqnjvLK9SqZWq1ysinL1BSTkNXwa6ugtxwlPQYuo5IU6amJ0jSGGSKrpvkclnq1SLPPH+WUqHEuYs3KRczlIsFlpdXuXrtDgsLM7RaLSqVEuZohgap7Au2tjocObrAYDDg808+z3ijqt47ITiwMMNLL1/kyKF5TMvkzAtXeOzRUxSLecIwZtAbUKtVSWWCpgnqVTWLk/Fc3KxHkkosw+TKtTuqwqhrLC6u8V/80GNoRoaf/53TfP/JPP4wRNM1bt1axXNVAJ0kCXEY4XoujmPDKLC1HdUBFprA0IQivgWqAj8MQkzboN3qUizkCYOQtfVtPM9me3uX8bEavh/g+yHpiHaYy2a4cXOZkycPEicRn/rCWY4dmmF6coy/+vhz5PM6B+YnSZKUP/jki7z/TMR7D2i89MpNDh+YJgwjrly/Q6mYx7AMTNvk1s1F6mM1lTwkKdOz42i6RqvV4tixeWzXRiJZX92kXC7S6/bw/ZCXX7rC+ESd4XCITCV/9pefo5jzEGiUSwWSVOL7PtYI6tFptXHdnJqd0HRs26FRr9FolBkOB2Q8l+mpcdI0odlskc/nqJQLbG1uU6tWME0T27L48nMvcejQHKtrGxw6OKfmgFyb+lidXr9Pv9dD0yQZz2HoxyDAMA0q5QK5bAYpFUI+a6UcuP8xhsOYudl56tksn7t1hQfzZaIo5sDMDLoBjXr1VaXEHo5YyP0qsK4pWMjedSiRI8Nt9XPui4ME9HsKgiCl5Pf/7BPM1Ctk82quci94SNOUOElwHJskCRn0+9i2ImcOekM+/cTTHFqYxTDV3Iu+L4+/a4tOQbA3f606L62dFsViAcNWiej7P/hJDs5OYtkm+sjOYTAYYBoGQoJpK5VDPDJqF7ryqkuSlNAPADGCwmgITaIUE4I03vv5lZ/cHpJfCIHQYGVplXwhDxI++bmnOHXymCJqCqGofKkCEkVRRBhE+51EyzSV/BAYDpVdTLlaVsbGmkq0oyDCsixcz8H2bMJhiO06DAdDwtFeGQQR2UyGK1evU6uVlWQrSbEdh2e7Hd73tsN0Oqrjm/U8kjjhT564wC/cf5y19S28jIutC0AnDBMKpRxZz8bNKBBMpVJkd7tFvpjDNEwa9bKizSIJopBMzqXaKEMsabe6eK6NlKjuSZCwtbFNNpcBbZQw7wNqpDqrNA3HHlFRpTqPdU2VbXVdQ7fuMrW+awngX19d5id+/L1v8PW7gtm77o/iGFKJ7TiYQmfl5g2uXXic6fo8P/xDf59P/s1HaG0uc/qJv6RrFHj3I99NHAWcf+UrTExMEgYRtmOga4LQD0eBtY7juOi6heNmKJSySi4nBUM/RIIqgKYRmtCI4mjkESnpDH2Wlm4yNTEDaYRGiowDpKZhmarb3Ol01B7j2mSzWer1cSqlMi+ePcvEeINKvoCXM3j2iafoh02Wlm9Szk3R7W5RKhZptdtYlupm5XMltre3mJycUgTxFLa3t2iM10EG/OS738d/++/+mvc8No1MNZqtHl62yMAfYtgG7V6fcn6SjOdgOjZbO4sUCxYLs/fyoQ/9MQ88fIrf+Oh/4L7pU6wtL5OkMecvvkKlVKVcrsAIWDQ5PcPRYyeJ45ibt66SJpLV5duUKmMITX3mTNNCE3K0AYjR/Kyab9UNXc28GxZRHO7LL+MwUtYZchQXJQmaZpDJZEnimCiJcWyXOI6Io5CJySl6vTae49L3A166eA6NLA898jZKpRr93nBEvC2wvHSHre1NHnjgEWzLJuNluH77BuVSid2tNdI0JI4CJibn8HIVxiemSYVSFIh9ftVeQnfXtfo6SZYE/uWf/q+8733vfW1ipoFA2werfPXjxV2P3yMif83z783qfRPJnUxVU+DrKdpe+6q/dr2eN/V3krtv8/pWk7u9Ttnd6w2Tu1Fydvf8nRxVFcReUDFar0nuRkboqhLzn25yV6tVuHjhHJ3tFpVigzMvXODXfu1XOXnvKVwvj+M6nP/KKwgpMVyJqYPnejz9pRf4b/67f8av/x//hv/6Dz/AzbNXmHayVMoVMl4G27aIwgDHtVlZ3aS506WQzyFTjTSSWJaNY3uUS1Vl/6QZtJtdytUChgVhFOAPYkB50NXrZWQq6bT62EIjjVLmZ6eplivMjI2hmQLTMtje2sUeIdINQydTzCB0QXEEJ0HTWFxap1opcWJhim5vQHZEguv3hvzpXz/N0dlJNE2R7T70+Jfo9jscnG+gG5JXLl8glzGIIh9NpEBCt9thd3eXYADtZp9PP3mO+44dod8NlNwC8DyHXD6LZeoMen3CMKBSqrC73cTQVKXK8Rws3RxVwW0qxQL1eoFc3kGMUO4/9dRL/MqPPUoSxmRzFv5wwO5Om9NnL7KytsWRYwuEPZ/eYIhuGJi2wtILKZCpQa7gYdgK3tDZ7SFFgqELBr02hUyGscYk16+vc3C+zs7WFmkUkiQpnuPQmKjiZlw19KwrWdr0ZAPTcHnxpfPUqiUOH5jHcVw++oknWZifIN1LJpOUMAy5795Jhv5QefL5A1KZcuHSNXrtHvVaRdkiWJaaRXBdZaicCmzDYOiHjE9OUKvmefLpMzxy6ihO1OVffXqV7z3ikvE88hmXTqePY1n4wwDH81he2aJSLilQzU6HQT+gUi0xHAzJ5bJcvHiLWqWAEFLNVFjKJNbQDDY3d3CyDpmMi+uqCmuaJjx35hpBGFMtFzAMk0qlxBeeeImFQxVOHjlEp+VjmjZz00UOzjcwTYt3/PJHCLMHeP8//B4mGkWWV1ocP34ATdeZmhpDCI1svkCrtcvE1IQKtAydpaVVcvUcmqEzOVnHdkx8f4hjm9QqNQxdp9PpkiaSifEGQpeUSkV0Xafb7lErlykUSpw/d4FiIc9nv/A8BxcmWVle42OffZZ7TiyQphHN1g5+MCTjuTR3d9na3CGX9fjiE89RKmS5cOk6jUqZdrNNvVYmimOCQcj1mzd55OF7WF/b5MiRBTSh4zoOUxN1mq0ulVqF8xevUCwqqmaKomBK1LxnGiekSIQmaVQ8nri4yvF7Z9CNiKMLGT70+DP8+InDCo5hW9i2SigvX7lJqVRQEr442YdWCQH+wMeyTZD6iFyZjgp6ijQZxSGmqSOR+4m/EBItlszNT+/72Wm6INXFaP7VJEki/GGXTNZGovyobNtheqyB46miwl7gn6Zq1k6SIiOJOQrkDF2QxBHr6+tUa9WRSkHNGc3U69i2NapqK3CBO0rk9+WXmpJJitGf1aycgjUIjZElg0CSEEeB6gA4zr60KUnT/QNPTZik5At5kihBJpLnX7zEg/ceV8mlVEFVkqjii26YWLb6fAgEvd5AAVcshUrXdB3HcwjjmFZ7G9dz0KT6fbhehl63j4xjvIwHUvkL5gtZHMcmDtVsq+OY+6oaN5/hw5cv8T0nylimquIbmoZmWHzmK6v8+MFpyuUC/sDH1k3SVCOTz4Eu2VzfJOgP8MMQz1OUy+ZuF8PQMdwscaTzxWfOU85nsW0X03K5dWkRxzL59NMvMlUpk/WybK7u4pgqgRW6ho66iRHtNQojkiTFtpVMXhu9B1JKOp0uuXwG+Tp+uQBJFNCaP8Kb3vzQ6379jZI7x7b5zKc/zYH5eQwz5NMf/i20aJFG5l186rNf4O1vrXL13Of4ge89zMNTP0o08nNstnxq4w1eeeElamO1kbWF6kQrAmhCNuthWDGJkMRxjOcUuHzuPNliCc0SGOgj1L8CeRi6jpGETNTqhOGQVAj8VGJnC1hSQ8qQNE5wvSJSF4RBQBgMKeXzuI7BgbkJqtUcpZyLbZkUKi5j9cMs315mbW2RbmeXsdo0MtE48/xzLMwfZGt3F13XyLoOg34PXdPpdloUy3WuX7tNITvGmw49zP/4h5/kR9/xAM1mE8PqE8U7aESEgYGkR+jmid0SMgArSlla/huOnShhOn1m5yb51d/5tzx29BH6g5DjR08oRUcwVNe5Y2M5FgkJumURJRauU2NlucfS0iqTU5OqKBQGuLaDFBLH8ZCppNfrIASkaYRt2aSo81ETOrphoacpYeSrz51pqbEFoTHot9Xv3lJzwULTsLEZ+l221nfIF+oM0xDTHCOMuhw4eATbtckXily+coGDBw+zubXJzMw8uqaxvr7KTnOHYrmM3++SxiGuZRH4AZ6bozE5j9QNGBHLNRI19/nNJncSXrjwPO/9sR9+zf2qwKY6mdr+c92lghvtuWmS3FUo+3+e3CkSu7bv+/z113/6yd3/b6wQvp59wNf7JXz141KUqaQ2epw2+vve1/fu0zVlyC2kBkLfv939fHsViTR5FYN89/MKke7f5F23u59j73u/mbV34d59e6MlpZpfAcjkHYqlIobh8MKLZ3nkTQ9gahmOHTzB5NQYmi5hdLMth84APvn4l3no0TfxP//KL3NoepbAH/CMpzG3UCeMh1y4fAt/EJFEGqGvfHimpsZUkOHpODkT3dbQTIlpxKQiRhJRG8timCntnR4i1tE0hXyWMuXG9UXSRLK4tsZ99x5ianpiNNsQkhKRRn00mZLPuMo0XkuQWoSegomGZRosLq4ik4SFw5Pols6gF/OpL7zCoDtgY32Tm7dW+JkffhvDoIft6GhI3nbyECcW1LyU0HVOHjlJLlcnV6hje0V0M0uhUCebKWG4MdWxHD/ynkcYDgMKpRxoMVESYTku3d6QKE3xBTaPjwAAIABJREFUsiX6HcH5yzcplUtITVX3SCRREFHIewgjIFs0kEJD113SYUDih7x52sZwbbB0Mpks+UKJ+vg4O02fqfEaMvTphT6NyQaaaaADYX/I5so6SRrSb/vIWKPT7nP6hWt4hRKJLgiiDvm8SRw3mZjUKBTrVGpTHDx8gsNHD2M4Frow0aSGbeoYmlC+Wb5PvmTztscepFQpsdtsMggGWIaOkALTMEnChKeffonnnzvHcJiy2+xx+epttndatFodHnrwXg4fOkQUpPT7PqZp4eVcNJGSJhFCE9TH64w3yvTbTQZ+wOTYBKnU+d43n+Kf/PA9/MKf3SFIlY+QZRhsbW5z/uo1TENnblbNdFhZm0ItzyANCAZDBt0hURCx0+5xZ3mDbL5EmmokcczS0gZhJFla6bCyvqMohLHk9q117tze5tEHDnLz5gq2JRDEmJbOO97+EN2tNmk0xPU0VldX+Mhfn8awPT76/B0WN1r80T9+D6alkyu4vPfH3kHi+wzbbRxLJ5f3EGlCPptDBzbW1kiTiPn5SaxEEnS69NpdTMPkyuVF/EGIZsakIiFfypMp5nEKGfJ5hzgZkKQ+j775JNs7W9y8dZODx+bQLZNauYiXyeDYLg/de4gohn43oFKsUCtXiIlIRYiXtbFth2Ihx+rSNhcvbqHrFh/79LMsLa+iCQW+yToZrly6RWNskisX77C1uUvOy7Cx08J2HeI05tiRBeIwIYlUsabf65MEQ4SMFZFwZGietTx+7w/+nM52wHh1hgOH34VtZclkFYDJcmyGfoDl2CxvbKAJMDSJrikina7pxEGE45mE4RCMkFQERFEw6sJJ0CKSwCdNIzSRjPDzgjCUHDo8hWmLUSdZydJ1KdS8bLeDFALTziCFTafVRqYxaTqavRp1y+IkhDRAJ4EkVhYLYm9MX5BIaLW6jE2MYdkGuilA6li6y6e/eIZOx0dKieNYyCQijlMFP9JVRz5JVaIqNUGSChAmUqpkQ2gGAhNNxsgYJBaOkyGJQoSQKshP0n2rBnQNQ1M4etMysByT/+z7HiOKQpIkRtNVAUsTGrubbYa9AUkUI9OIZnMH2zaVKXqS4nnuSE4aY1kmlmZw6/odBgN/ZCCf4GR0nIyNpgtu3FnEshSwBAl//vHPMRgE6LqNHyTopomMYgyhUS1XyWTyCvaCmg1Popio16e328IzHc5dv0Wn11XdeKnTGB/DK+UoFfLKs1LXMGwD3TCRwQDDhr/znjfhmQJHSjbXh5RrZVwvz2AA6Eo299Tpq3i5DJZpY0kNLU3Y2d4kRiJGBTQp1QyjNgLnSHXIQyJh1Nl8vfXx63e4554Tr3NGq+w7lapjihAkQiBkgiZhGGscnKsjOzdZOv1hxifgE587w+XVi1y68gy9ZsA73/79/Oof3GI4DNT7nSbce+IQqd/j4NFpVUQwTEg0hNSwTWc0kykJgwQbB9d0CKMu84dnMPUEkUgM3cE0nJEPqEQKheCXhiDRHc69cl4lgHEfQUQiTFJNEPkdtCTlpTMv49lFojBAiBTd0EbFFJBxQqVYxqRPJW8gB1scOniES1cvsL62iOeYmE4GXZccPHQI3XawszlCmTI5N0+U6Nz/8GOcu3aVoYTd7pDWIGFyYgbN3yGvJ0TdPq47iRxW8OQ4ebeBOzNO5t4H0ew8rmXgb98gO1zkA//7P+CTz/2NAgZFITfu3GZico5aqY6e6ASDEDPRefKzn+X44WPMH15gYn4czRZ0h0M0w8LxLOLUx9AsojgmFZDLF5AyxTSUP6SOxe72DkmSkqQBkQ6aaSOFjoZGEocIEgzLxnY84jgljiEJJVJLMQyHfG2cXgJXr68Cglp9lihKyHo5rl27yqPf9Q7iSNDa7ShS5cj4XIQanfVlXEPQ3Fxkq7XD+OwhjGwBYSqZuSBBIJF7vqKjy1tB+sTrJj6gikeO5irrlLuv7zQdjS29frwqR3CV/5u9Nw+SJD/P856878q6u6rvY3ru2QPAYrFYLAACPAASoAgDCJoKUgpbpEVb1uWgSNuSaCooUcGwSDvCJh0UTUM0SRMgAUpeYAFwsVgssOfs7M703NNz90zfV1V33Xn6j1927ywwCwI2QUWYyIiKmT6yOrs6K/P7ft/7Pq+SKSruFxFy//2S/cd38vn7b29U6pKs7j/u3T+Jo+/wub4321+byd23A6rcz+uWJMm36He/eZ+9LX2Lz9/v62/1HPf/hvvvuadKfqtj+K62t1ihkBWBtU7TFMO0qFaq3Lx2k1dfO8XDDz/Mh3/oR6gOVYhJcVyHSrmMoRtYjkkUpjzyjkcYHamztbnOv/5Xv84v/sN/xKtzp/mhoQJKCpvbu9i6hp/P8Y1XzmFqKtdvL9No7hIEfSzDyFaCZRrbO7g5lziKae22MU0TXdWRkGnutkSBk6ZUKiLYdqhaII4TkGQaW00+98wrnDg0QZpGJDECNICUrYLJvHzqEiQppq6zurHNULUoLjRpiqYZjFR8vJyN61pUSgUkWWZtcxvSFMd2ME0DVVXodHvousbamrgAS5k859r1BcpFH9KUfN4jihI0zUBVFBRVYmurgW3bxCEYpiY8YO0+pmXhuSZuzkHVFJE3FoTISPR6fWRV5CNqikGaSiwtrfCbV+/wyz/3w6SpyNVSZZErpmkGw0N5kQGYs4kjISHTdY0kjum2u3iei6opWJYtiKISzB6YIk5AllLSKMDQLSzLxXFcJFkg5k+fuUitVkbTdeIkZjAY8NLJOcrFPHfvrLLTbFEqFjlz5hLVSpEoibAtkxPHD3DuwjyVspDTKbLExMQwhqExPFyjWimJzKiMTnju7GVq9QqarvL8i68xMjxEu9VC1wQKvrHV4BsvzXH0yDRpGmNbNmfnLjM6NkS94PADR0v8vU9d5mNvr3Dt5iIz06MYpso3Xr7E+GiVvQwvgWQ3efbr5zh2ZEJ49CyNSimPbhisr23S3NlluFbCNG02tho8cGJa0BSDiFsL61RKPtuNHbqDgPGxSuZ9EsVY0O9xcf4uo8NVnn7uLD/4xBH+9u9e5fZmzLP/43+BLKekCLCFrKo885UXRc6YlGI5NrIk0WzuoKqayDqMEzbWN+l2O/h5HzOLArFtE89zSZIEXTeE/MfQxcQ56NHp9rAtizCMqdeH8D0Xw9SQkBkdqYl8MNehUimiGSrdThdFlrgyf4PqUBnPczANh51mm7HxOrqmMTs9SpzEPPzQDJZlomoapmVRyOdEhIhhcPPWIvm8x6A/wLIN4iQReYmWIYK2gwBZ01Az4qIkKZw9dwXPc9B1QWK8cmuRD/zIR0iShLOn57g4f5XDpoal6LRabUbHRpAkmZnJ8cxTl2bAgT3Ph7jxxxmwSEJCz0K2ReBvKrLcgMEgzELNhfxX0wViP0nSLPcuJhgEACLWIJPj7xGVdUPPplJi+r8nN5VlmSAIUXWNOEnRVI0gk1qlaYppGaiqShgEIttSEp7hnUaDQ4cOYBjia7Is7+PByWiWwSBAVgRcRZYQFD0JJEVc72VJIQr6SEqGXU/ibEon0W51SJKU3/nTz/PYQ8eFVClOiaIwAwRJb7xmpka/NxAS3jDilVNzbGw3yDk2SjYt9lyPJEnF/Sz73XVDJwgCNjc3mJmZ4sKlazx38jRl38sUDB69Tpf6UJU0RdAvdZVD05M4jpDka6rK9naTtY1VXm1u8KGHx2m3WniuLfL0tnd48ckX+cGDUzR223Q6fZI0pVTMo6kajeYOURQgSbC0tC6ufbaNoqp85fnXKfk2qSRhWhZBu0MYReiuy3MvnWZypMZoNYfnWySxxOEDY1y5dosXz1zhwFiNNE1pNnfJ5T0h508SNE2l1+6KDLw0ziatKRtrDYrVwrcUpnvbr11a4Bd/6R9/y+elbKwq3+MVigE5FZLbME2p5C2e/OynuX7pZZq7uzzxxIeIQp0DMxW++IUn+eM/eZpOpPLI1HF6/a6IlUljbNvBNG1xfifivRAEgVAopSlhFGAYJlEUkCIyFnVDvF8M3aTTabOzu41uGCLsPvP6y4pCKqm0dnbxPAdDF82Dolt0Ox00WUFWVIrlIYKwC8TYtk2n20HRNVRJptfvAjLXr12gPjLF8OgEa2urNJttuq0+MzOzKLaCazmsri6jZHFKURKTxDFhHKBpGmMjo+T9PB984AM8d/4UB6dLLN6Zx8+X2Wq0KFWnkLQusqHR2NkU0LdY46FDb0M3CyzdXSVNIzq9Fp/64tf56Ls+ysbmBieOP0i32yGKA9rdXTTd5Py5M+RyeWq1OvNXL3P00DHOnJ9jemKC9fW7lItl5MwfGQR94jiEVMSWKIpGq72Lrht43hu5lpKkiKgqZLq9jvhbZPvESUwcxYRhgKpohNGAOEk5e/48na7wsDt2jiSFYrHE3cUFDh06Kq4bskKpLNQCuqYxN3cKzxW1yPbWCoViFb9QRTdtqtU6Kdm1R5LeULx9U92c3scPd+92/eoVPvgTH9iP5kylN0+k/3KiDu45mPs+7/+7n/Gm57hnUrinBFFV9fuyzO/l9t02d4okCQnPt9lnb/srb+7uY/z8y27u9nKVwmCAbhhCcnDsEIap0u40aGxtYzoWlucSBCFJECMhMwgDDNPAtFQG/R6/9Vu/xaVLV/j4Jz7Bxz76Uf7O7/4eI40WCysNRqp5kjimXs0zVC1R9B3a3R61oSK37qwwMjyEhAgO3lrfwcvlkFKZQT8kHAhkexAFWLYlbhyZUT8Mhc4/iWMuXrvFYw8dQtd1NjcaxFGKl/NpNlqcOncVQ9GYHhvns8+c4qFDE1QrRXaaLa7cuEM5n0eRFW7fWaJWL5EkCXEGH/B9D9sRYZ+aprK11SAMY0zDFMHlmrpPj3MtU0hTVJU4lEijlDvLKyiaKLhcV2S5RUFKu9Wh1epQKPnsNttomsLGZiNrREE3NFZXt+gPBsK/IcsksbhxFvMe/+vV2/zU+46ys9siCMTfwrItdE3Hsg2Gh6t0Oh1kWSEMQowsn+rK1Zu4rk2aNbVh0ENTZbbWtoXZPQ3Y3t5iZbWBny+zvL5Fs9HE0FUmJ0dZXd0il/dBjUklGB8eRULFNRw8J8fSyir1WoXd3Ra1epkgGNDrthkbr+1DJwA8z2VlcZW7iysMDw9xef4mBw5N0263mZocQZJSVEXHcwSKvNcWvrczc5cZDAKOHJ4mSlPWlhbptDpMT43QarUJwoDaUJmPPzbDB//5k3ziiWmiIKSx2+XdjxwDSeK5F84yNVwlGkRE/ZDDhybQDSGZDcMA2xFAnT2qosj2kvF9E9PQkCSFS5dvc/DAGKVKAS+f4+bCKkePjNNqtdjdbaErMpphUi7mWV3dZHqizK9+aZs//icf4+OPH0GSI2Q1ZmNjm+tXVvE8AymOGB0folAtohkGxAk3ri9SqZZJklTQ/zJipmmKlfVWq4uua3zpqy9Tr1ayYHKZNImI44AwjPnaC69z8MAUm5vb5Pwc3W6XxaW1bNFBZu7cZTrttvA3EbKysspQrYqiSGxvNjEtl7Nnr9HrBtTqImKhMlRCtzRkRWZlfZ0wEllh7U4bx3OQNZVCwWOoXsGydLa2tthpttAUhXarjZQmXLh8jWolL45DNpAVnRs3Vnj6+dd524lZ5q/e5MOPHuZv/9Pf4uM/8WPkXJcPvP8J/sHvfIofn5xBUxQ2txq4rsOZs5fo9/rki34mHYxEoyGuLKiKjvCgQRyJgolUAlkiQVQaiqyhILwkg24fSdII+gFrK+vk8zkURUKWsyy6BPHcGWBDNHHCi5JkkAFF00lTcfOXVUHVRFKR0iSjvoowdUM3s0t0gpLFFsiyRKHgoRk6iiKRxDH9bh9NN5AzSp2EyKrbk6BubW7gOBakYoKYxBFyKpEqComUBbPDPnDGNA00XefB2Rnh38voiCAiSlRVQVXU/cwpVRXUPwmYGBtlfGwE0pTX5i5y7PAh4ljkremGICfqmsbFi/MMVUoUiz6SLFPw8xw/dEDQJnM+21tb7O60sG0bSZLZ3mpg6ALuY5oGpmnS3G7S6/b47KlXmT5U5G2zoyzcWcLPeUhI7DTaPGpW8F2LSr1CDPiux6AXYlgGSZLwyoVLjA9XOTk3z+zU2H6A9NHZKf7sG9/g7Pwdjk+MEycSbt5BUgccnBwjGETstlp0el38nIOmaziWxuzECJcuCwXJ8HAdSYqIAoGclwFNlVhZXSfne/vyr7WVTYrl/FsWsJ+7vcJP3s9vt28PETLaJE1JZWm/uUMxkOMOf/ipf8tYRUHX6yBX2Fi9ykg1YmzEZ7lt8vMf+DkMXcXzfDRdQ5JTgeJXFLFISuYDV9XM35SiqCpxLBbpwkgsMIgzXyZOIuI4JMrAWWTwC0M3GYQBaSqh6YawOqQhqWLy0isnqdcnSYIusiphuDq6rmLZDgBBGGSLHhGqagiKta6jGTKSFNDcXBfB3WGfXr/D3ZU1qvkSxXwBTRExTJqqs7m5QbFYwLEcFFlmZ7fF5cvnoJlj+IFxFBm2thpYhs7y7fNMHJtgcXEDP++ipCF528N0j9AZyFRHxqmUTRRazFQD5l7ZYHpigl63i64ZBGmE6/soSPi5PIWCoDqXimVkRWVm6iC9QZ+FWzeIU4UgVDB0CUPTgARVMUhSiThKsW2HMAkIk774O8QKQT8SU6skyV5rR3jOUUiy+I0UhfMXz+IV8yCbLC7uMFSfwbYdVlYWefs73s3169eo10ST1um2aDS3Ga6PEIcpg34fP+dA3ESOBmi6TmVohNrIFJ5XENevNMkATVlN+s1AIGnPmvTWzd3TZ57mJz7x43APGfBN/rrvN3ff9fb95o77N0bSPf/e7xEnyX7BRJp+yyTtm59r73Hvz7rXq7e3773pGdJbNHdkZuy9fVPESFnKVk7+Mnx4eydsksQkqYKsyOzsbjMzPcXCrVvUqzWOHTtKLEm0223OvH6O/+uPP8173vs4hq7Rbu/Q2NrmIx/5CNPTswTBgMGgy6unTzPa7fLYkRkmJoaxbJPV1Q38nIuuadTrZcIwYnRY5HCFgVg193Ieqqow6IU8+dVXOTo7Lsz0lgi01XSdKBA3JAEDSNjc3GaoUsCxLXRDZ3enxcpqg2LBZ319i9nJMXzfY3uzyePvOALA5laDcinP6PAQva4IPR8aKhEnCXcXVzF0DV3XhUlcgps3F1laWcd1bIaGxLHHUYJpG0RZ4GoURhiGRhKndDo9FE1hqFZia7tJFMW0Wz1cz6K53aZSLWHZOqurm1TKRVRVw897mIYIZCdJyfkuOd+DNGVrq0mpmKex1eTvzs3zR7/wo5iGjixLuI5LkiZoqpj4NbYaqJqK67nCw6OKKcjCwiIzByaxbAvD0AVVkYhGo8kLL11kdMRH0wBiRkZGWFnd5MCBCVzbRFbE9MHP50lT0E2JKEqQEoWlxVU8z+XKles8+OARFEWmVCoQRbEwbnsO3W4PTdO4eOk6tm0x6A8YHqkxVKugKqrwEqUiaL3X6YAkcXruErOzU6IhTGJURcV1XF47fYUHHzzE5sYmpYKH67q4rothmbiuS7/fJYkTfuYDD7LZ1fhnn73KJ58YpdfqcHruGu979wPs7rbRVZWtrR083yGNY5aW1tE0FdMUMiPHtZm/epehoSLdbhvbMllZ2xAT7EoRWZFJM3/EYNCnXi8iSRCEIV7OJUnB0HV+4U+XeN/bj/Off+gB2q2Iz3z2K+haQqnsYxkWtaE6Ozvb+J7DIAjJ+R5RGEMClWqZNE146ksvcPjQFP1+D9u2M3lVzFNPv8yRQ5McO3IASZK5c2eRYjHPqdfPMT05AkiMDw+xsrLOyTOXOXp4Bt0w8DwHx3WyCabC2Pgo3YwK6PsCNGFZJu1WGyfnUSmXiMKQfMFDkmS2NnboB10kCYoFH1VRMQyDM3MXGBurs7a+Qc5zxURJBkUiC75uUy4XefW1c9TrVVxbLFz0BmFmqo947J3HMC0L33NQNZX3Hqly5m6fOOxTKpb5wp8/g9bZwY5lzl27wdHZWbrtDrIskS/4RNmiz/7i2N5VVxITvLmzl7hzZ4mR0ZrQ/AhBkZie9QNarTamZREnCX/y5Fc4MFHfJ2QmqaAl73ncZEmi3WpjZIsD4sfIkEkvkzhGyWRKaXYMe4Q5cV8ARVEJ+iEgPCVRGNNp97AdSzRWcYQkyeiGIaSYsfByAcJfKAtYjGmJiWSSxCwvLWMYppB6KVnUuYyQPgYhcRhkr48IipYUKZOqiuNTFJlOp4um6+LVyUgVcRSjaGIKKCsKmqqysbmNpen4hZyIKcnuUdtbDUZH6+zstETuV5zQ64jYAtu20DUVVVMwDANZFrTOxaUVLs5fZ3pqnNZOi8W7S2w2Gpy5fI1nlZR/8Tffw+m5Szxw/CBBELC0vMa/ffY6H5ucwsyZ9HsDrt1c5uTcVY4cGEPTZDRDZXKkRhTGjJSKOK5NGEVsrDeIgohmu80Pv/MhTF1H0w22mzvoWkIQxFiWje97mJYuGsVYyHlN00DXNJZXtygUXFqtXdFMGmKyadomuZxNFAsaK0lCs9GiXCl8S1G8t/3Z7WWRb3efCmOfSEgmSdNUVCmFRKLTD/AdhR984jHajSU+/afPcfjEo1QrCprcopCL+Mwzt3j/sbcJmbAiYCjBoE8cJ1iWLWI7NI3mzlbmMQ8xDJM4AwJFcSY1lkQtI6RxCevri4yOTe8DVZIkhiRla2sdXbdobK2Q831s2yFFRlYNCrkCuiImvEGQNTGpLOIODFMQR5MEy3SIohhNUzBMHcsyKRbr5Ap5bMckDkLmL64jyx1Rw6QprfYuuZyPbds8+9WvMT01w53FO5w//wrveuw9lOt1/t6/+hf87N/8KLdv3sQ2FEwt5tbSDlOTx9nc3MKyQvrdHe6srBFLA3RLw7VzaKrL+so2LyxcY7owhWGYrKyuEEYSiqJz8eIcnudz6tTLtFotSsUyX/zS52nuNGjtNpmYOszq2grra6sUij6yJLGxvozr5UmQuHntIoZpYRgmqqaKiVwQc/b0aWojIyJrU9OIkzjLshQRT46bIwwjXL9Gb9Dl9q0bSEqBxaUlHn3nu/DcHJXyEKZloukaWnatTuKUOwsLXDh/jsGgjSLFKHJIMOjTD2PKlTq2lyeVRayKlMmL762ZU95MydzL37tfkSxJ8PSZZ/hPf/ITYgqoiExNSRYDhj3v3f22lFTEtnwXEWP3y4l+48jfetvLid57CKaGvF97KxkpOc3sTHvP//3m7nu8fbc5d3/xVE1Cykzq3w2o5E3NXbbvHqjlm7/+Vs3d/QzUeyfUW90g3vqA7v8z9p5PUzUSeUAiJWzv7FKpVFhb2iANeyiGRmfQJ4xSXn7+FdqtLo89/iiOo6HqEiQphXyJam2EWr2KoikcnhznT+av8DOzM9xaWKRQyNFo7mIaOlESocgyz75yHkMRuPbFxbVsJVlha7OBIqmsrW8zNValNxBABFVTWV3ewPVs4jhheXktu/GqOI6Npqt02wNcx6BaKfEfnn6ZQ9Oj+AWPJI0xLZkLV29SKeaREWCRU2cuc2d5g5mpEQaDACSJfN4XMrI4zoqOlJxvUy7m6XR62LZDrzvg7JUbfP30RVxNo5j3BTBmaR3bMllaXyXnOMRRSjhI8DwbL6/T3GmgKSZpnKBrGot313nh1BXynokiSxiWgePYmJaBpAjvRhTGeJ4gi5qWhjJqcGxiiCiKROhnVpTJisTmupCVuJ7DTquFrqp84/nXqVWKDA0PIakyyCBJKt1unzSNMQyN+flFbMuk2+tjmA6DXkLQj1lf3cAv5EliUdi5OYcwDgn6fXKux9ZGk/pwFaSA0YkqYRSgqAp37i5TLJawbVd4iFSTtbVtpibHuX7jNjcXlsgVHDGNleDUqfPUq2XWV9Y5c+4aURhx+NAUzWYTw9LRDZPVlU0M3WBsuIJj63iuiWq4BFFMEIZiwpoktHZ3uHt3leGRISwp4WOPTHBnI+BX/uAF3nu4THWoRKfXx85ZbO/sYOpa1liqFEp5dnZbSKQYplg5tkwDTZeI4gGlfD5jK4piRFVkwkGPUtFFViT6gz7NVhc3l+OZl17j1768y//+X32Ana0GXi6HrksM13wRLh4r6LoBcoKd81EkhVhKMSwLKZJZvrVCvpKj0Wxw5PAkkpxiWSZPPvUSx48dBEnm8MFJFFUAOzrdDvXhIZIkYbhWpbm9i6rpqLpOoZDnyMEp4iThuW+8SjiIMC0N09IxLV3g2jWdXi/kwsXrOI6Foevoqoqmixt4EiXouoIqKQKKVDBZWV5DQiKXy9HYbjA5XmdpcZXheo0b129jmRqvvjqH65gEg5CRep3d3RZT02PkfA85Fe85VdeRFch5JrbrkSQx29sN/JxHzrb473/7szx0/DCW6dHa6fG5s2fx1lu4tsnoUJV8IY/j2EDWfKWisZMlmSgOkVWZYBASRTH1oSqGrmI7pgj4jgNIBJE3ThLWNjYpDZUI+n0qRQ/DNPAch8ZWE8s1abdbIncyA6Tohk4UxmiagDeJmJxsgqMo7DaamLq+T5eDlCiMaDZ3EXmOGbRHVYjCRMjLdCFxk4StDE1R2FjbRlEzcIUqE0cJiiITRVGWcbXnC1HIl3w03SIMs0YwiZGSWEg/NQ1tP6g8azIzKaUsKYLkG0dCerp3zGmWfZcm9Lq9bLojJIejwzU0XaPTaaMoEppq8JVnX+LwgRm2NhoUCnlWV7fZbbbI5dxM8aAgS0LS+sWvPs/y6hrddoejhw9Sq5TRTQFrSZOUoUqFF+YusWSqfPI9h7AMHYAoChkervHkawt8sFYhikNWVjc5P7/EO45NECeRWBRUVEhU+t0oi4ExMW2b+Wt3ePq1S7zn6DHSKMa1VUJF4rlXL7FwfYmjRyZJEkEsVDWJs5fmqQ2VULPXzrRMJqaEhzdnu/R6AUurW3jhtNF0AAAgAElEQVSeJ6ajkpItAImJpu84aJbO/aqOn37udT772T9882LEt2x7hTSkioySJpBIKIaFFLU5+Y1nsfQhbi6H/MjHPkZ9JOXqhfOkgyWm049SGSqgyAr9QJCULcNBkhX6fdFwJ2mCZ7uQ+ZvCKERWVMIwyOS9EXEUA9mCjariub64D8niJFFVDVmRUDUDKU3J+XniOBE+0HCA47lIUkwS9dEMC8M0SKKU27dvEwQhhm4iSxFxLGWKJjEBliWZQbeHrOlsbK4zVCjjWAZ+QSbn5SkWCoRRQK1Wozfoo6gyQ5UaiiyxtLLIYDBgamqWMI746Lt/nNpsCU0zhRwy2aHog2cNUakM0+rDtetrHD86QavVxXTL+PWHwBihWD/GiRn41X/3ad4+cQjbUsh7Pq1mg5GRcTTDYHRsktGRMb78pS/y+BPv5+jxEyiagV8oIqsml2/eoh9JbG2tMDZ2ACkVESypJGEYVkZmFYvGiqpSKlVJkpAwm6hFYUSapFiGRRIHDPoB/SDm7NwlNncGbG4HHDp6jEI5TzFfptMSVNAwHBCFISBz69Zt8rkCuqFjOwprK/MU/DxbK3cwC8McffBd2LkCiTDTsUfa3Rtc7J2hewRiEHE2e+f7W03gLi1d5CMf/bCIfkrS/ezOJI7f0qu3X6vy/zW8fG/79rXzm5vCN0jC+80ce3OXN9M2v9/cfY+3v+zmbv/r3yWB8nvV3O3BT8R+30WD9208d2kiPG8RAWma4tg5VEmhUhoiCfvcun2LyQMHGfQCThx7gHe+/RHsnIWqpASDHrZh0WjuYjs5er0Oc3NneODEcV597TQnen2KpTytVpvh4Sq9fp8rt+5SKuTIuzb1WhVVU8nnc0iSyM2xbBNFUjh4YIx+r4efd1F1lV53gOc5SJLE0vIGhbxHt9fD8cRKrCyJYrm1u4ttWYxUigRRgJ/3shcswXUsOu0enuexvbWD55gcPTTF8vIam40mtmWyvLLB83PnKTli8pCmIgA4DiJyfg5dU9ltdrh2d4V+EFDxfQr5HP3+gFLJ58lnX+HITB3HdZBlFc/1UHWFxu4WrmPiWj5IEo3tJvValTRMqFTz6KZOr9tDVoSHcLfVERRWBMQhiSN+5oU5fuVv/QC7u23xuztiwtBsNgmDiCSK8DyHVquNZujsNHeplvOUikXiNCEhQZYV4ijBMu19BHa5kOflk9cpl3J4bo6FW+v4nk+apOSLOZ5/8TSmoQqZkQTBoE+320c3BFFSUmOaO9tsrG9TKOY5c3aeeq2CquoMuiFLiyusrm0xOTlCqeAzGPSZnJkkDEK2txqMj9Q5ffoSx47MMjExSpom5HxXBLsrMpKk4Xpi6nvlynXicIBpqKSKgaZrDAYB58/PY9sG5VIBw9CFZ1NT6LbbaGGPv/OJD/HP//01fu/ZW3zs8RFcx8TLOSwurlMuF7Ask2AQoOs63W6PNEmojQxlnjGNdrvNCycvMlyvEicCBiLL0Ot0OTU3z9REnShJ8HM5fu73ruOZOv/txx/DtR1cx0HVNdJUENEkWeHzT71IbajApSvzVGtDkKYiD0uWkcKUQTvAzBskcUyciLwzWZE4MDNJkiTIWWEuy2LqJCsCU9/v9XnplbPMzoxjuQ57uUFhGBJFIUcOH8DP+VimThwLrPn2VpNnnnuFsfowwyNDYmU8igj7A9Y3VymXhNf29NwFon5IuVRG1VJ2dzvk/RxxlNDtdrEMDd/P8efPvsKDxw+iaRozU2P0+j0qhRI3b9yhNxhQq1eJkpiw38IwLbq9AYqqoCgSYSiyjkxTyBU7nS6vz9/l0JGj5PNlJkameOHky/ziB3+AnOuI6YNpCuR+5m+SZW3/hqyomWdJERlvO7stSqUCSCJseWHhDjknR5pCu92lWCkyGAxQFXBdB8sWcmvDMEESTX+SCv+RLEl0ux1s282yNzPPiSz+Fmkck8RRhoknMwGKa/GlK9e5tbDE2EgNWVFFZirsT/RkWUFSUna2dwmDiDAIeenUHFNT43RbLbGYkQrKqCCOiv0kWSZKYtE4aprI9FNlep2uWHlWVQbBQEwBoiSrVoSkLomTrBkRtMpet4+u6QL7j2gUu52eyLrrdDBMgzhK2Gnu8NWTLzM7OYGuWZT8HHPnLjNarwlpnWbwf3/lJR579ESWZQWGLqSqBybHmRofw7EtTMuk0Wji+yKSY3OrQSGf5/DEGDeCNd5zZAzXczKaY0IURXzu5AIfGR1CkqFYLDA9VKVczWGYGu1OD13TaGy2+cqLF7hw8zaHp0bRdI1KuciR0Rr5Yp7tjW0q1Rz9NGFqbJg8GqqjYJk2qqogK1AqeKiKSjAQ90nd1InTGE1XUFDI+Tm+/OIZDk6OIGeS1r3reZokODlXnB/3uQ//2e2VfUT8WzV3e4RTWZZJZOmN5k43keIOv/e//S8osseRh99No9Pkqc//Lmu3F/mf/+Qmf+O9HyQKIqIowTQt4jjJCJcpzcYGtuMRhn3RkMqKWBCRZPr9DpblkEQxdxeu4bh5TMMU12RZyERlWUbXDfr9vvi7pOL9qyoqQTig0+2Q8/IkQQ9Z11FkkNIURdUIgwGyrIOks7aywMTEDJKckMQShqHtF/QyChIKiSQzd+YcY/VxdF1Cz0lcOHOOtbUFnFwRw7RQdSHF1TXx84frw4yNTJHGErIqsbRyl//m1/8ljz98iO3NJVwjJE2X6PYdPL+KrJeYPfgO5s/OMT52gOX1FgMsLC9PuV7BTG0++aOT/He//fs8cfTt7O7s4FgOzXaHfKGAhMwrL7/A7IFDFCsl1tfX8f28WMhUFEqFEtdu3CUatEiiPo5l0em0qFTqbG+uYVoOcRTTbu3uw6UMS0dRFLq9rohOiCLCKMS2RDO4s9tmbaONLLsMBjEnHjrBUH0IOZHodQLcnE273aLdbuPYLq6b4/zZs+TzeQZhC9uykEmRE4nS8BSW5yNlVMk0TbLmPasZeaMBQnrjhJay6xa8dW263Fvhve97PHtPiGlcmnVL0rfZD/4Km7t7Mvb2ycqZ5BhgTzbx/ebur3iLwvBX9qSM31HmBW9eiYA3Syb3viYsFkm2wvnG4y0vxPf8X8pklco96NU3Szjf+EjOJEIS0puOY2+TZWX/5NuTZu6Ni+97HHuB5vfZFFnel9CkaYqcqigoKJK4kSdShKP4rK5ssLBwnfHJYSw/h2wouLbG8vIqfr5MlEhIqkJ3d4n11dskYRviHmPDQ/zrF0/yUzNj2JbJzZuLGLrO5EiNl16/xMUbK/iWThwFmIaKTCQIerLCnZUl/LyNbhh0OwNkGZZXNigWfNJEhPhubDao1ytsbTfI5RzhMVEEtn5jfRtZkRgMQsJByPrqNl7OwXFdXNfh7uIqT506z5WlNaYqJc5fu0O1mMd3XeFxC1M8y86mIimb69t0uwI0sbXVoFQpUCsVePvxwxBGhIMBlqnRGww4cWwGNRWr+Gvr6+RLNmkqYSoeYSi8KzEZUc5Q8fMOpm2hmwaaJjDolmXi+Y5AS6sqYRTzB1du8c9+9n0oisDL65ogtQa9ENdzMQwDz/eQVRGKapkGli1eQ0mW2N7aJOj1IYoYDLoEQZdgECHJKuVKBdNSGR2pYOqgWxp+MYfn2rx++jyPvOMBnvn6GR48fogb126hKyq5nMcrZ84zOTnKS1+fY7w+xoULN5k4MM7E5BimrJLEIZuNLfyiR22khKSArMqsrG4xVCqiSDLFQgFFVajVK+imzvz8dSYnRwGJq1dvMlStEAURg6APacLwSBW/kGdldQM3p9NutfFzLuVikVKlRGu7jW4aRMTImkIqpTi2TSRLfOjhSf7WDz7E6zd2+eVPX+Z9B12UNMZ1LTqtXQa9HpahkS+XWFxcxrE04iRE0xRuLyzzyNvezqf//fPMnb/Oockqpm4QJQlHj8wQRQn/2e9c4/Ov3OZT//BDPHp0ljiK0A2dlZVVoijEcx2CIOLzX3qRT3z8BzBNk5uXthgddVBUsTIvI3Hy9XPMHpum1eiiayq2bXHx0g2G68OsraxRLuU5e/oMlqWi6TrPPneSifExVFVG01UmxmrCbB/HWRMiFplMy4I0YX11A9s2CIOA1ZUNCr7P0UMHUDWFJImIw4hGY5ckUfDzBcj8LGPjw8REqIbIEZyZncJ0bGRZwjAMFM3Aclx2d3YYHxum1+uj6TpB0KXT7bO22eDo0UMs3V2m2+kRhn3yxRzdXoJl5QCIkhRFEQCTKAywTJP3nxjl7/+bz/DTn/gkK8t3uX7rNh8cqrG0ssrU+KiI+5BlPvfUVxitlDFdE1kGWVUywrFEGCScmbvIuWvXOTI7LTIqY5kvPvMaDx49yCuvnaVWLeI4Fot3lyBMcB0HzTBQNJVUTum1uhi6Shr2aDebOI6LqZuimdq7UmdBvKQCdqBZBnEKkqowGISoqkyaSJTyBXGepwnIItcyTgQtdC9cPE3ANE0UVXh7a5UyuqZhOeYbUqiULDw94qmvPsfkaB1VEVELrVYLN+ciIdHt9nA8V1z7NYUkkVFkEZmQJjGLN1fJl/NIsizCxjUNwzJEY5dBGwZBgOf7yIqGqomJNylYts2BkXFaO12cvEMcJVy8cgtdVmi3W+SLDpPDVUzTQFIS2u0WpDrLqyv4vo+qKcydv4Jr2fgFX2R+hSmf+cJzHDswjm7ILMYrHJms0OrsYpgG29st2p0+1+dXOaHqPPfKOYZyQhpqGAaapnPz5jKVkvBRP3R8huGyi23bDPoBuq6KCAwpRdEkVEPD1BRBqS0XOfXaPKqcoOkSQThAN0zCMBQBxoospKkI/2WciOvT244fQNNVFE1FlkVRKCcSi4trlCqFbMJ6j8coe/zZ7VV+8ic/ft/79F49cM9KM2FqocYRcpoSJrA6/yK3Xn+ad/7wTzF74kH+5I/+kIdHclQrBX74yM9gWBqSqqCoGu1uB103kCQJx3HRdBNd00WjpqgkisRmc4sXXjiLKut4OQUUhVZb4fS5y1TqQ6hyDEGcTXMFfEUzdJAkFEkhTQW4R5HlzLucCtk16V55RhJGpFkto+sytdow/UEXXTdBTkli8b1RFIn3BxGSLDE+NoyuKXR6PUzNIwlTJAYUyzlMW+HipavEscT29halYhlkifWtNRRdI40jTN2iLJW4vrvJ+NgYqi5hJS5BepdB1KIw9Bi6X6UwOo1q+SyvrJEMBgwNj9BPbUzfZHm9w6HpYYywhpKGyIRsri3g2jbLa+scPfYAnu+z29jGc2xUTePmzevsbDWYnZolX3C4vbhKrjjCxcsXUVWdXK7GyddOkxJTKA0xCEKSRCWK+piGI0ipis6NG7e4cWOR+sgQkqJx8tXXWF5rEBk6x44d49F3PYqMwt07dymWivjFHOtra3S6HcbHp+j1Ovi+T6e7i6bGqEGbsNciimLGD72NKE0oFoqi2cukwFIKZJ7iNDtx98/Je71IewyL9D7iMkkizUUcf+DYvtdORDO90dS9NdhQyhq7PZSLeCiZnPv+SyZv/t43Ht9c4adIspLJjTPq5Tf3EGm6H6EgPo73J3t7D1XV/qM0d39tohC+E/z//bZvji74ZlTqf0zU6fdiS/ewyvfZ9vTFAJ1ej0qlwuzsAdJEgFckRWG32cL1csRZppSqqnz9+ZNMHzhCuz3g0sXrfOELf46mKGx3Oty8vYhpGuRyrgAdpNCI++y2e/T7Ibs7bVotsbKcxAnFnIeUClCB4wma13C9moV+KmLltVIgjlNMw6DXGRDHKUkUs7HZYLvVxvVdhupl/GKOsclhcV4AnVaXsbE6J8ZqVF2bhISjM6Nsbu+SJCm2bVIfKlGtF4nCiK+8cIYoiEljsB1HGPklCV1XkJWUKI25sbzK3OUb2JZF3I/QDSErsm2L6zcW2djYFjI5RUbRVVRFpt3pEEUhnW6HMApFEa4qLK9skmQUtkG2Stxud/jqjsjha+12uHXrrsBUBwFBGOxTrMIgIgqje8KTQVEl4YlQdfKFAikK7XYXz8th2RYLtxfp93scmB1HlqHT6VAq5nnhhdMYho6mGYRxwthohSiJOXl2HllWabd7vPfxd5LECQ8/fIzz569TynvCEyTJ3L59ByRxDhmmjm3bAgaQwonjB5EVWZBBs/y8JCNwzsxOCqS2qjE+WieJYwZ9UbwHg4BmY4fNjU0qlRKO4wp/o6qimzqtZosz5+ZRVZ1ut48sKdiOh2k5JGmKaYscsyEj5Zd+/Cj/9e9f5x//6RpPnbqNaZqsbjZZXd+i3+5x4NAMiRRg2ir9IOHYsQdYWl5lEMTMTlVZWtkgiWMcx+b8rXV++rcu8Qe/8KP8zt//MUDizsIytuOQpmCZJn7OpzfoYzkWH/qhx0hIGQQDbiysCVmoJoiEElAs5Oj3e+TzngAeJDEPPnhYxAakAY3mNjkvT3t3AMQ89uhRLMMk6A9Is0Lr0vxNmo0dLMtic3MLVVO5u7BIr9dnfbPB6toGXi6X0S5V4iRmeWUFyzIZDAJu3Fzi1s0lrszfRJUVdE3nlZNnKJWKOK4jIBlAFIRsbzc5d36e69du8dk/+3MOzEwQxQmGYdDtdlFVlUIhz6FD09xZuMvJ01fo9QY4tksYCGCDLEEqJUipTBonxHGM63kgCdDC26dLfPYLX6AXRvzyP/klSFPOX71NmqYiRgRo9UM8zyMcBERR9Eb8TCaHfNvbjvOf/OgH6fV6KKqMbqiM1YsEYUi5kMcvFOh1Au4sbVAsl4iihHAQZdl5Mp7vQpoKCd7aFkkMYSCauL2cub14gjhKMC0TSZKz6TP7kr4kTTBtAepBEpJHOZNhp3GC7doZXj4rghQZw9QxDV1IQrNt7+eurayjG4bw3EVC7qQqKl987gXCQUSSgOd5IrInlTKvX3a8cQhywvTsuFhICqMMfCS9UbvIMppuYFkiNHzQH0Dmrxn0A5rNHSzbolQuEgYBmq7y4JEZisUc9eEa7VaX516eo7XbIgxCkjRBUSTGx0aEz/nOMotrGySJ8B1urG3SbrcZqxQwTRPTNDl+YALbcqiUK3S7PcqVEqfPXWd7bQvbtekNIr7++iU832NxaZ1eb0C54PO5L78oPHK6Sq1WwbQM+r0BvW5f5PUpCq7rQCqx2+wQxymDgQB7jI7VMC1TvE5RxNZmk82NhigR4zdI24ZlEIUR7XaXJElEplkUY5q6uAbve3buc8NNIh5+6IHv6v4tpymgkKIQB30MGSzL5NmvvUA4iPnwh3+Mmzeu8ftPXUJWQxHnIamEQYxlOximwSCM6PR6xIm4jwgUvyigHTdPsWSimxqqZqJpGuOTEzz8tgcwTE1ERckyqZSKaR0pcSxUISJjUXgyJUVcN9IkQTV0ev0BcSyRpDLIciZBFOezpMhZpFG4V6UQRyL0fk9iTRohywI8pGk6t28tMDY9wszRw6imwvbGDqVCnZyXZ2NjTcDN4ojBYICSTZl0TRf06kaLuQu3+I3f/gwL232ifsDuyk0uvv5losEmqWoRqyaPPP4+Dj/wEFGYoEoJcaLj+nVyfoGvfuPrmHYeWbOYmZ4liXrYOoSDTkaLNcRCYxyz09zmyKHDSGnM1asXefej72F9fQ3b84kVnTuLS5iaSq8fstvpY+dKnDk3h6SaLC8v0+sHxDHUxw5Rqo7SDWCnHVCuTWHZeSzDoFAokKYJhq6ztHQXWZJZXV1BNwwq5WG6nT7ra+s89cXPsbl2nTDoMAgGuH4Fw8kTJTAyMpZ1ZnugQekeb923OSmzayyQKY6+6TRPUh5/4t3f1Xn+F21vVcMC7AWV7zds/z/d/tpM7tI4/pV7FxK+4/32Jlz73fs9M7NM3iPf54T9jiZ32cd78sy/6Hvv9/n7bfu/47ebUt7n50myTJLE2Y3pW5tgRXojvD1f9vmj//OPODA9ieu4GLZLEIYYmoB5GLpBP+iTpgkPPfgwv/FvfoOHH3qYRx55lMfe9R4+9hOf5L/8P/4dT1gm7W6fOArZauwyPlzh8QePUauV96WWlmXRbndptdsMDZVZWV7HsISEjexmuby8Qa/bp98fkC94tNsdHMfm6o07lAr5/cJ2bLwu5IKKCNeN4pA0SZm/tsBWc5fheoXhWpmjB8ZwHBvPc7h1Z4WX5q5ydHoUxzO5dXuRcrnE9GiNQqGA7dgkcYymq4RhSK/fJ44jTMdiemKEidEaIPGZL32DsWoJ0zJYXd8i5zpUK2XCMObOyiqlQk5IKm0TSQbHsVBUjT1tgp9z0XQNy9IxMo+Gbug88f5xfM/ly0+fZHxsiFxOFJqe5xFFEa3dFqZp0O10uXtnmdW1TXzfQwI2NraoVCvESYJhmuR8lygStD7d0DFNgzSNicIeUpLw2pkruI7D8tIqR48fRjcNhoeHQEo5cngSx7LRdSMDDmmQSNxZXMWyNMpDRZDg2pVbVKolcgUPTdeEIVpWGAQBFy5c47kXznDsyDQSsLS4DClsbG5TKBdQFZWFhUVKpSKqotDpdtneapLLeRRLBZYWV6lUKyRJQhhFGIbBqdfOUx0qUcjlBFzFc4miiCiI2N1p45d8kkQQAWu1CgXP5pPvmeVHH6hhOwV+9Y9e4vPzYEpdHj4wTr/TotvfIYojDCNHEKTcvL3ED773BIWSz++/2OA3v3iTZ86u8nd//AP85HsPo6sqnU4PwzBQZZWdnV3OX7jG7Oy0eK8poiiTZIU0Tbg6f5Mf+pHHuHzpMr7vY1qmIK2VCmi6xvrqJrYtvGFR5qvy8yadTo/xiQlKlSI7Ow16/RabKy1qw1VWVtZQNYXx8TE81+Xa9dtcuHSTmekJbMsUod6a8Kmqqsr5i1cZHa0zCALyvken2+W101d41zsfotls41g6lmmSJDHj4yNoqkq/PyDnCZnaXkG+vr7F7OwkJ44dRNeEjNUwDF597RxhEHDx8m3GR2tUqmWGayWqQyVc1yZOIlLkjPzWRUp1/uAzX2ZjfZPJiTpxEhJGIR94xxH+xj/4H/j5n/15Wjst/tEf/j4//853cPvuMs+fPMvRgzMs3lnm4PQEiqFmCwdimi9JiGONI3GN0JQMFBEzMTaMruuZ5FhGUVSuX1+gmHNZXd/gqy+9xuEDk4gsKrHAEIciDy+NxDRU1uRsRVval3KrmgAcqaoISN/zrfW6XRRFRtVUFFXJPHQKSKAbBv1eP1s80u651otVbiHtTUR8RLpHM4x5+fU5rly5xY/98PsxdB1ZESvRxw7NAiCnewqPbPFTkej3QxEvQkS33coAByKaQgQuR3Q7PVRVYPLF/1VRjGdQjY317ayZFtEO3U6PKAqwLCsDOskC4qCqXL+1yMMPHOb23QU8z8EyLCGnl8VrdvTgDKqm0u32qA0PsdPcZaxey2A2oFYlpCQSv18WnH740BRL17Z552idA+PDzM3f4sjUKKVygTsLy1QqRUYqBf7D114lbxnYtk5jaxc/7/HcybMcnB5leWmTP3/xLK9fvEGv12N2epynvnaKw5N1cnmXJI7F9TFO8FwbwzAwLSHNfWMROd1feFRUFTWbdEuQyVLF4pMokt88ufvN0/P80//p17/Nff5+dccetRJMNeFPf+83efLJr3HpxjaPPfFBRodr/Mav/UsGep73n3iEOI7pdnrcmL9AsVxF0xVMM8f5s68wOjoNCJnx0tIiuZyPREqpVMXP5UjjAFWRSKIE2zIgjcXHcYyiaiTEaLoBaYoqq5k0M83qpgRNN/bld7Jscvni66SShO04Ip6D/VufgIKFIXuthZQ1GHEoAC+SJJMkEVEYIqsaly5fZmikQq/XYXNll9WFiH4YUq0VGR+bRNd1BoM+SytL1OvDNLa3/x/23jxIkuu+7/y8vLMys+6q7ur7mBsDYHDygChCJGWRlrnURWllh7Rae+39wxuO3Q2HFZYth/YPSV6F5d3YVVhaH7IiLJEURYoUxRM0KRwEQYA4ZwDM1TM93T19X9V15p37x8tuDMABBdKkrV3zTfTE9ERVZlbmq/d+x/dgb3+PNBM8eekbhGnGb/zz3yJJA9RwG1sN8WNYWF6lOXOODEGKmtueSLEhVKniOjt3nH/xB/+W9937HqI4xe+3yaIQXZVoh3avR8EuECcJlmVTrlSxDYMoCjlx4gyO6zE9NYuqmVy+fBHbKlGsNtncWsd2HJ559lmEInAKHouL12m2pnjpwnN0Ox36vZgbS9dZ21hH01ySRPDAg2/nxtIizeYIYRgxNzvP9s4m5XKFjc1NKpU6N5dWMC2dyYlxNCUhTSJplVQoYTklxibnEIrcI5Xc4kkoikQ5ZNmtIfEbuskcFToOoeFvHEuX1nngx29TxHhTVcvbfxtuHXEcS7Xy2yRwb25W/q0xsSqUvyRzfeO1fesx/kt17v6rSe7iJPm1N0IZbzcUOIIkAt8ywW5V2TlUyLmdZcGbJXey3fwaz0684RxvfK2St7PJK79vRTDl8Gjf7gtx62e59TMpisTW3/aajpLQjE4nYnxijPUbN2jW6gSJhJgOu74MnONIemYpKVGY8e6Hf4RKucLHPvbHnD5zFzfXt/noJz/GjzSrnDt9DM91cB2bTrefw0BUyV2IpLddtVmlWHLJogSnYCN0jaE/REXhuQtXmJ0ak4p4cUwYhlIARLdo1mr0ez4gMC2TQX+IqkqekWUZdLo9yuUSoyN1WiN19vcPcL0CigrLK2vYlkUcRbQ7Q47PTkhlSM/h41/8Gq1qicAPEKqCH0jjX13X6Bx0ydKUUr1MOPTp93rs73eJophjsxMctLuMjY3gOg43lzf5/Nde4IE7j6MoCv7Ql3AVBTRDI8sFYpxCgQQpd93tdKVkdZbxi19/ib/zgXvIsowTx2ZwvUMuiJrDFQSFQgFD1yGDRr3CSLOOqhqSv1YskiLtHdIsRaAShhFBGOL7AZVyGaEJ/MGQ51+8xDve8QCNplSJHCsNlMIAACAASURBVGmN0Osc4Lg2KLC316Zz0AdFoeAUuHLpGsVigcnJUUZH6kRCqlrNTIzz0Y9/iXN3zyNERpbAs998hbLncvz4LHefPcZwOMQwDWr1Gt1ej9HRJqqiSIPlNKVz0MHzXExDR5BxeeEGo6NNqrUqn/rMo0xMNEkSmeAdPzYDQlCqFHPuk/zera1tUG/USZKIvZ19dE1jY30Dz7EJ/SEFx6VR8XjvfSf5mYdOcN/Zs/QTk/WO4MJaxG9+Zo1PPbPDHz+1xtM3E0yzwJ3HTnPPdI2/9fBp/tv33UOcSIuQzc1tGvUGW5u7OE4B07SYmmpJBdggZLe9Tckroas6Chmua6MbJoauomkqqnIY8MuuzaA/YOgPcYoOeh6072xtMzY2xr/83U9x/z2nKBQMTN1gY6NNuVqkVC7SPehK1c9I8r3GWw0Wri3hODZ/8unHuOfcCexCAU0zqNdK6IYhzb0B13GZn5shjmOaI1XC4RB/KEWN4iQmCAOGfpB3BS3pKRXFTE62jnhye3v7FJwCcRxTsEy2tvY4c/IYw0HA9cUVxsebmJaJUGFra4OiKzlWmRBceOkKD//wfagCarUqqiZtQVzXRVM03vbw+zl58gQf+fjHeV9zjMdffIVmucT0VIvZiVG63S62I73mZHcqX9NSmZComkwMkjRFV6Uxr+ysSdRA4AdcXLjB5aVl3n7fOc7ddRpISZIQVREEYQTC4MtPPsudp+YxDFXyJPPlM01ksisUgci5SWmaymBVIO0LVCFtGNIUBanCqeTBsFCUvLOlogqVne09HLcgE8RbaC6HsKY4jjk+N8O1xRUmWs3882VHKnRZBv5ggKZLW4MwDNE0yT/MMlDUjH6/T8EuyOJH3nlXhMA0DZmgRBF/8oWvcmZuVu5XmsL5Fy/zzPlLTLeabO/sUqtWMAyNre1thsMhcRxRquR+XVnGnWdOsLa+weTkKJqq4g9ikiRmc3OHNE3wig5JEuMVHYYDn3KliKoJOp0D/vtHvsSHzk2gKPL3MAzodXt85LELfNCtUSiYGJbOXaem6fa6siMcROztH+AUbMYbZVzHxvHsI5/BZrmIZZkUHIczx6e5Y36Suekx0iTl2FyLYrlI4EcySQ9i+r0eaZwQhgmWbaIoMsG5eHmRWtmTBVxVyblDSm5JIjmwlVo53+zz4PewwyEEv3Nl5fYWCIfbcT6zxC1/VAZEihS1ufT0l7j89Ge48+wE83d/gE9+6rNUyx5b1x7nfSd+Fte1MU0bRVGxnRKqLgPvwA+YnDpGCoRxxjCMmZycIwwjLMMmCPrSMxEdkWmoAqkKm8aYqoTkJpm0RZLQb4Uwikjybvmhf22cxJKjmqZEcYIfDKnVRtA0CR1OkkQWIyD36jRyhdicLpLHRkmSsLBwjVptFEXLSNOYmdlZdGERDHy8ooXlhHhFh4UrrzA5Oc/C9Ss888yjPPSOhyEDy3ExTYuxVou7xu7js998hB966EeZOXUaIkiziPb+FcJBj1QdpVqR1iqZosnCT5ZKj0FFJ8lUfu5nfoI/+tef4MyZc8RJjB8OUbOI3d11tFxYxjZNUCQHU9Ul3DmIJF/u6ae/hucU6fZ6GJYDispuuyc5zEOfu+9+Gy9ffBVFKeB4FW6urWEXquzt97nj7H30hiHzx85y6uQZ9vY2sKwC9VqDmzdX6Ha7jIyMcOXKqyxcvcLpkyfZ319jf+saqkgI+vv4/oBibZLW5DytyWmiNDpaV25t1R0WroRySxz5hrDzKA49CqllcUO+T+HfPfJ7/OSHP3SbcPPNVC1v/224dRx5ft4u4j9c/L4lxr1Ng+Xwtd/uzLdc32E38NZr/0Fy930eb1VQRXBLpQG+7YM9VAn6TpK7Q2+6N/L5bjfSI2nh7Fuv6/s9bve58+5llmUU3AKe6/Hq888zPTVNpqmEcUo4DOn3e1i2SUbE5tYGjuOhqdDrdqhVq1y+coXxqWmarsv/9fQzfLDZQAghvamcAqZr43kF4ijm8sIStVqZIArkYk5G6Ieolg6KiqHpzEzKbtzNm+vUa2V0Q8VzXDY39qQUuGmiKBAEMZqioGkal64sUq0U8ZwCSZyxu71Pmqa4nk2ck5KrlRKKoqBrGnOTo3Q7fb781IuMVkvMthpEccT45ChCFTiOTZal7O228RybYtFD5JLgqqLgFB2Oz09JlcmSR38wRFM1Aj9kulWn0awRRzG2ZdE+6GIYeq6Sl1CtllFzb7UkzbBtgzRJ8fsD7CmTExNNafDe7eG6DkKAPwzpHPRYXl6VCnupDCA31jdZ39hia3OfsfEWURxLuXMFhAIik9LqpmlIboSmEidQsG3W17aZmp7k2o0ljh2bJANefOki5aJDFEYUXJdiqUjnoIOiCixDx3YLCFVw7fJ10BWKRQ8lhbFWFbIYVah87evP89Db7ydLoXPQIYxCPE/yrNI0RcvvoyJk52BjU/p2lSplep0uANcXbzIxPoqm6ZiGguPYeJ6HkVf8bdsmE2lO6pd7k6JIuI+uqbiuSzD0sUyDK1cXsUwdVZUKrRKySg6vC/FsgzMzE3z4oVP8zDvn+evnxvixO1s8eGaOOIoolVzSVEJp9/fbuK4rFRmjmKXldRQFms06hinVKNfWNjAsKdLQaQ+Io1Bep6Jyc2mN1tgIYSSfp2nKpNwpuFRrJZI0zjddlY3VTVzP5fSpCSxbPvM0zXCLZSzbZHnpJo1GnWtXl6g3aui6lL6+cWOVibEWp09OU3BtyKQqnlAE3U6Xja1tGrU66+tbOI4LZHR7B1RKZV69dI2JiVFM08z9LU0KdoGD9gGPPv4cqgq2LX0okySh3e5i2yaLiyscPzbLxYuLZEnGaKtJpeIxGAzY2dnBK0rT3CTKQGigKEyOt+h1u4yNt3JPN4ULLy9w4cJl3n5mkn/z59/g3nvvolGr8ttffoQPTcywvLXD5GideqNMEA6xC1I587BLlaWS86Oot6i7JYfIhSy3TlAwbZO9vT1OHZ9hemwUTVOJwhAhUWQM+gPsgoOi6pyYm8ayNDRNEKe5vcFhYCRPfpTYCGB9dR3XkQqFAFEQ5pw3CZXsdXvYuU2IaRn5NUpz58NOyGHF/Nb9Rc0D49OnjpGR5sFy3tnJIZ+kCTm5Rc5vWV7P50DO61MNwjDOOVTp0b4lxQRSTs3NYBoGaSJheI1anf3dPUbqNWzLZG1tnWq1jGnolMql3C5B3rg0lkqLpVIx9+aDLNP46jeeYX56gmazTqfToeDYJElMr9/HtA384ZD9dpvPLi/x/rNjmKaOZWkoOVT33zx6g1+6+yQo0B/0JSLCtdha2+fR515leXOX+8+dpFhyUBWBpmsM+1J1cOHGKuNjDaI4QUHw8c99jTPz4+zut1F1iUoRCD76Z4/xzMUF5kZqqJqCV5Rm7Vkm14papZR3Y1W63QGdTk+KgmkapAnb2/uUcjGVw2D58N52hz7nhcn7P/Cjb7pF3y7GUBkQKzqChMUXH6didGi1Rvj451/ib/zET7N04xqfffwZfv6v/TQrN66g6waO4+DYDpquo2ka166cp1SpM/R94lSws7PLMEnwynWe+NpXuOOuB0lRuXDheVpTZ1jbXCFBYFouQRjKgoaQ3WVNlfYJNxYuMz45RRCG6LrcWwxDikLZpg2KwPPKKAoYmuQmqrllyeGI4whyWHGudkCapgwHPbb3dqg3Wyh5jCS76SqmbqCqUPAMgmHI0sIiF69cpDnSwnWLNOpNNF3noN+nWPTQFYGmw8UbFzBMg+mpKXZ399AtQZZsYmsFTGeWZlN61qVCl91zpKiQEFlOedD4l//+d3nPve/FtgsMfR9FJNimBXFIzw8l/9OwiZOEDAjjiELB5fLFV1hevMb99z3A1NQspWqFsbFxTp44heN4LC8tMzE+RYJCGCTMzh1jemaWUrnByVN3UC6X2Npep98fMjY2QanokGQwGA6oVmoEYUC9Vmdza5PuQZutrRscmz+GqQlIYhTNoDV5DMMpUak1iJMEzVCOuHPfQpzLeOtx6a3zPE9+ruxc4cfe/7639v43P/Cb/P/t4vfvxWtvecXr7kX6Lf/3g+Tu+zzeanJ3WPk8+v2IEP+tidWRQtUhk5TXhE+Ao07b6/zsbhFO+cuGuOUnveW6FOTGHccRal4ZvvXnO4Gd3jpuhaC+6TUJadA7TIeIROGP/90fogqfsckG7f021zd2+dVf/qfcc8ddNOpNKtU6WZrQ63XY7+xRqheZnp2mVq/QCzo898IFskGPOa/Ezm6b0ZEqe7ttHFtyIarlEp/58rOcmp+g1x1wbWmV8fEmSpJAFOGHMhBO04Q/+erTFDQVkYLjFCg4JkIB3VAIQp9isYSqSejkSLMCSA6Fpoq8wquxcG0ZTVFwCmXWVrexHQvD1LmxvEGlXOKOEzOUKyUMS6dS9chERmevh2kZbG3soSs6/X7I0vIOWRRgmxZKDr2J0wRb1RGKwsFBF91QKdc83JKNIMl5KgGe50IGr1y6Rr1SIYoTgiDCH/iINCWKImzb4nc2bvCL77snN3dNKXll/MBne3MHr+Si6lKAoVotYRoWGSr9rs/IyBh2QWV/r41lmSiqQhQGdHtdvIIl/33QxXVcVDQUVZLgW+OjPP7kN1EUwfjEOIomGBsb4fKVJa4trDM/PY0qhgwHPppqEich/UEP27Lp9TuMjDQQimA4HGDoBpZZ4NnnX2VqYpR6o4wfDEmzGK9SIoojut0ulm3S3m/jeg7LN9colcoYmkk4DBj2B7T72xi2xukzJ9E1A5GmLFxdZGurzdRki1dfuYqqqvzpZx7j+MwYpm5w5fICuqZSKZdIIikXv7mxhWkaKJpCsezR7w+pN0ZxXJe11VUqlRJxFKAqKgftDqVikTiOyTLB4uJN5uYnWV5ah1SRsuqGgaro6JpOd9ClUiuh6RqjzTqeVyZMukSxD5lK4AcUHJtwGHFjcZV63cPzCpCpXFu8iWkoqJrghZcuMj42ReBDPNymvbeLVyyyu7eL49rUyhUWry9TKZbQFY3rV29SKlXRdIUwDKmUixiqzgvnLwJQrVfo9bvMzk1Is22hksUxw/4ATVX408/8Bc+dX+Dd77yfVGRS5VVkaKrC2s0NklihXCrJYo6ps7+3g2ubKELCeeM4ptmosrGxg23ZXL+2wuhInedfuMiD99/NQfuAUsmi5HkYpskLL17k2PwUIsswDJNef0g02KNgaqB5RHEkoY6KelTsGmvVefWVmyzc2ODJG1u87+GHUIXCZx55hF+65y5qRRfL0FF0g2K1jKEbBL6PJoT06tIP1TNlV1lRtbyDHqCqAn/o54q7GY5XQFUVtjbb1Oo1wsCXKqa5cp2m62SaRhzFfPTPvsi5M6dygZIk7xIqErJJCmnO+RACw9Bklz4FVVHRNKkGKK3D0hwaLTtuiiJ5h+EgJop8CgUDREoqFFIUsiSWlgWxFJ1RNSWXpFf5w098gbvPnECoGUkSoqsaiqbhDwIM08ir1CpJLIO5jJRut8vA72EYBaJAdqcOg3MJc8kwDT1XZ1UJBhJ5MDE+iuEU8KpFms0qWZowjHysgkUUhiwv3UQXCv4glIqRrs2wP8S0bBQhOHl6DrdYJEpSDNNic2MXt1jG1C1EBoomaDYafOLiFf7O++9B0zQMw2LQ82nUG3zsict8oGnT7x/g2QVM3WRna49iyWNxeQs/TLjz5ES+ByRESYpuSrj+yEhd3n81v/8qVMueLOAJ0DUTIVRKpkG94FAtF/G8IrplkiSx5Byi4PcCgjgi9CP+5JHnefvdpzBsQSZidNVkfXObarMs/QTlBDmKCz51+Tr/82//FrqmvWmwcPhqKTGv3MKD0tHjGDHs8MoLT/OxT36Fd777Azz8rncw3mqgLwmmZqfx3CIFxyNII1KREQ4HaKhUmg1QEmzbQtc9nn7um8xNzyFQWV9dpTU+j+2WKVcmcYplnGIDy6miW0UuLVxnrzvk4pVrNEdnMA25Bha9EoNhF9fxpGx/lhLHqYQ3CikSp+oGpmqQphFCN2TSk6UShpymxH6IUfCI0zhP7eTnNq0CI80RCrYUgzmEb6ZZTCZSDM0mClIMzaBaLbG1t0ejMcX83ClUJYEswdJsnnrqCSZn5ojTlAfPvI1Hnv4i5ZLg0Ucf49SZM1QKBv5Bn6vXXiAO23ilIopRIUlTDI2jLv0h3/Bnf/Yn+Ce/9s9427kfwnRLpOj0hz5xGJKEHZI44otf/iqnTp0lUxI0PUWJFYrFImPjkxiGRZSkOJZFGIUsLy/heR733fcAN5YXufeee/IidANQqdfrxHGI67pMjE8xMjpCRopmmCiZhqZZRGnG8tINZudm2V5f4fTxceL+Hr29LUI/JIojMrtBqdpkcnIKQZoXXPIZJ7OyI1Ggt95ZOwogj+JIkMd1xkzO3HH6rR/jtuNWERTZhFDE4SL1xgj59UNaxsR5QVM9gqm/tSid12Lm7DU8npp7hUo4v/qD5O77Ob5TK4Rbx+0m8CF2OHtDIvQ69G32WtX2rXbr3mzcepY0l4zm0DTxjef9Ls/xl7Wfbx1hHECqcvbYSS68/Bwj4+NU6iNMTM/xow+/h6nJCVQNwjgkiWLsQgEhMi5fuki9XqffDSiWXBqlJp968Txby0tYQcKZkzOoqsJgMOSg3cUwDMZrZVbWt2jUK8zNTuTiBLLCLISCaUrD43tOzFGrlInjGLtg0+l0sfIOlGFKI9/nX7rI5PgITz3/MhOjTSxLSgn7gRSs8JwCg6FPmkDBseh2uxQsi3q9imVZDIdDhkMfTVN4/sIVOp0+rUadzc1doihmbGIUf+hjmRqliodlmwRBSLfTP4J2ATm0SGFzcwfLMiU/SdFQFJWDdo8sSxlrNXI4biZ5CIqCZRpkWcbPP/Y8v/2334MQAt3QWFpa5fNf/gbLK+vcc04ulGmWUimXMAyDbm/AoD+g3qjz7//DFzhxfITR0RF0PZft1nVpNpvIRK7XG+C6Uk0vyWLCUEpgjzbrjI40UITC+voGURgxNTlO6AesrW5Sa3ooQqNcKWPoWt7xUjF0lb29AwoFm5dfviJhLYrC0vIqd915igxppHxw0KVYKrK8dJM4ivFclyRJ0DUN13NQVY2rVxbp9QZ85YkXefvb70BRdEClvX+AoWs06hXGJlqoikK9XiGJE6bGGxRLLkma0mzWCcIoN+Q1ycikimCWUshFGizTQCiSN7a/15aqlK9cQVMV6vUaQRjR7/exbBvHLTAYDPBcjz/98yc4c2qa9n6bNMnwAx/LttnfO5CiOnGCouisrC5TqVYQmUapWsLQVQoFB03RpGecbqAoBuWiQ6nkomsa01PjGIbBJz/1GNWyhVcso6g6fhCjqTqqIvA8lzCM+MSffZWRZpULLy8wOdHEc10uX75GpVLkoN1henYSuYQIMpGxvbmN57lsb21zfXGVSsXDHw7Z2u3w9gfuJE1TdrZ22N3dZ9Af0B8MGW2NUKmV8bwCqi67RDdW1iiXy/hDn7X1LaanxhkdbVAomKiqwCt6uAULRZUFjq8+8TyWaRAFEraVJJInaZoGhqkR+X0KBYelmzss3lhlbGyEJJWKZEHgY9kWZ0/Pc/aOWb524RqGWeSO06f5ymOP8Qvn7qFWKVMsehi2we7OPo8/+RwvXbpEEkWy2HDILc5pI/t7bT7y51/i7tO5sI9loul67skl195iqYQichGUfL01dAnPyoTsfs22RqS/3SHcThx2oaVheppkOS8xRdcPfePEawJdCiRxDEKQJrIDKxVLZUL4mS89xqlj0wiRMRwM5bkyaSqu5nuTpt+SGGQZ9955hiiMSFIJyY2jmDRNcVyHNM0IwwhVkzBg3/dRNRXLsRAoqJpcH0zbBGSHAnGYRMbSdFjIBFdTFcIgQCiCKIwY9PtyjR1GFCyb9dUtRkdGKJUk7FfXdfbbbeI4Rtd0ri7coFYvE/oSrSGQ5uY7W9t85kuPc9eZeelDmMLT20s0lQGqIsVpLNsCUj799HU+PDtBEiVYpksSZ5RKHmEYce7sSfxen6InocK2LTugUZjw53/xNMenWqiKFPCIo+jIw84PAkzbYHVlg/29AzzX4dVrK0yM1lBVIW0OFIVOp8fy0jovvLrI2dPTIBTumB1H0zWyLEEAoR9Rq1dek1eXd/Xocf3zi0v8/M9/+LYwt8Nxa+fuiCpCQio0NBJefOov0NMDKmWLP/7cNyiW6/zab/8O87Vxip5DqSx5X19/4hnGWtOYpkIY9xgMUkzDJPB9nvz6k7zzHe8iScKcE3aWIPK5cuVlms1x2h2JtCgWi/i+T73RZGJ8ijQRtNvblIoOGRAnMb1e72hN1XQDBYGu62ianF+KUElTpB+epuey+AlJLP3bVEWVwlO2RZrJQnSWQ6rD0CfJYc8ccvIyCSOO4giE3A91U+f64hrbW3tkqOzsblIp1dja2abZGEXVdLZ3tli8vsDjr3yDv/c//C3e9Y53Yugpi5e/jmuaKJrK7m6bTBjoThOvWJJwUUUhJXuNdiMEm7vbjBcmUTUNXdOplsvomkYQDRj6A0aaYxJ2jUCgMRyGHBwcEISSSxiGIRdefom5mXnWNlZxHZcLF17i2PwJtrbXuePMXezt71GwC1iWyZf/42eZGJ+R90ERrNxcIQhDbMPi2uICSzcW8DwHzzbRVUHkd6XYFgLVLOCV60zPnZJ0jUyqRb6GUHstObptQvdmIhGvm7Svf397u8MHfvE/tWv3rafIjrqJ3z7iFodCfJp2FK+/0crgu72Iw71B+0Fy9/0d321y97rqxC3Jj3r48NJvlTA+HN+v5C5Lk8NJI4PxHH9+u9d+Zyd56+80DA2RqXgFh/XNNaI4Y2JsnsWlFT7yR3/I2TtPk5FgGiqKotPv9VBVheZIEzIVwyzwxS9+ifPnz/NzH/45Pn3+Au9xHUSaYhcsCgWLMIxyIZUhI01perq5vUexVCRTVYSmS8IrCoO+z3AQkMSSo3F1YUlCIVQF25KS/2kSMt6qoygKtqKztblPvVZlf78tgxNkBXF774Bq2cZxDAq2zZPPXqBoWBLCpaRs7exRsCxG63XUTMXxCnglF9e16XY7FFyTYqmA7phScKA3xDIMsjy5UxTBoD9g/6DD6EhdQvNWdxkOQj7/6AtMt+pYlsH2zj6mZfKN519lerzJwrUVfD/gH15c5Fd+6k4mRhuoilS4VFWV++85w7G5KfqDgVQ61DTSXGxjb3efarUMpBh6xrETE8SJnJHDgc/21g6WKb3hhKLgeZ4MLLOEOE7QDYMgiHAcR3YWMih6JXZ327iuw+hYnSgOuHLtOoZu8PIrC0xNtzj/0mVGGg28ootuaBi6Tmu0Safbw7ZMGvUKe3t7bG7tYOg6lUqZKAqlSbXroAjY3d6lWimxu7uPZZl4RRtNU7n33Ak0zcI0CyiahlN02NrcolQpEsfJET+xVPbIyDBtKfet5KqqX3/mJSbHW0fcDlXJzcMzjgK5Qb9PJRfkWVnZ5OTJWW6urFOtVtnZ3qNaq5BlGVcuX2dyvMXczCj9wYB6vQZAEEQUXI9nn32V//joc9x71wl0QyeKfQq2w95uB8916A26KELHMCwuXLiM57p87vPP8ML5i5w8MYnIOWKaojM10aA3DGlNjJMkh+bWJnvtfdyiNEo+fnySYtnj2PGpI85ce7+N4zhcWlhiaqLFzZU1kjimc9BhtNVE1QSGZiJIGRkdoVYvUy0WCH3JDYrCCM9zqVbLCAXCJEQoKXGSkKQpu7sdavUaG+tb0sfu2AxPf/M89XqFV159mUajwrA/pFwpc3DQ4fkXr1IqFTl79gTjky1GRuq0DzpUG1XiJOaZZ89TciXcs9wYJRyERFGAV3QRioKuK2RZQiYyup0DPviO0/zqv/40D95zDwedHl948Xnudst87Atf4cyxWfzhkJMn5rnw6gLvfZdUJZVFOinZrigKtm1y54n5I1/BvBYMyK6eVPlTSZOUKIwwDJMgiCTEMQ/UNU2VEL0kRaSSbxWGAUkUYOgCESfoWs5TyUQurqIfJYCKIlBEht8fomtSiOMQ0nnIvRtvNbFtg831TeIwJvJDiuWi9E9TVAmtTGVnw/cHqJqUK9dUBVWThS5VU6WSoSoN1k3TIgiHQIamy8JZGmcoqp4XxaXX3dEOk2W8evEqjlPAsgySNJZ85lBa1KzeXOfmTenXl4c5CAT1ep0sy7hw4SKaptLt9chISZOUYqlIt9vjS48/wbkzp8nSlN3tHXRVoeg5nJifQjc09nb3aO+1MVqCs/MjGIaGW3TQTYnM2H3uGidLJbr9IQXbRRUamq7x8pUFOvtdnrx0nR9+4AxkgpsrW2SpVBI8PTMuEw5FJQgHdPt9HEdaHTiuVAQtVz3K5SKWqTM/PUqx4tLrD9B1KZpkmxZ/9rUXeOddx9nZbVOrlvn4F79B0TaoVEsgFDY3d/G8ghRTOeQg3ZKu/enSa/5231Fyl2WkaChZyDOPfR5LHBAnIb/yW79Pa+IYX/jyo7z33HvY2lyjWiqjawYz8+Mk6RBDtdGEzbPPP4vruVimjaGkVMslVA1UVWCZJlcXzjM1dYzuQZdiqco3nn6CsXGZxN5cu4nrlWiNtHC9Em6pgmG6bOzu0xiZx7BK0iw9TQnCgezIhRGKppFlAt1ySJKMLImIo/AoQNdyMRpV1xkOe6hCFpNs25bfGTX3bgwDGVhnGbqmyo66Ycoio27hB4FUdD5os7a+yczsPGkmGAwGNJsjKJpKoeBi6BYvLj7Pe9/1bh796tcpFmyC7gLloo7W2yMJfNJEUJ28A8NyydRcvCOF9Bbe5H33n+M3f+O3uOfs/bIrpKiYBRer4LG/t4PFgH57jUqlhaYadHpDLKvA5cuXmJicJM0SJsaniJOEawtXKJfKjLbGcRyHUrEMQpqxu16Rg84BrcCBFQAAIABJREFUs3MnWF1dZmxigoHvUy5XKJerpITMH5vF0FIGnQ1EMiD2Oxy0O9humTCFE3c+SLU1QcG2yXHeRzzeQ8GfvHF3++TnkIv37RKjNyR3j154lB9639vf/PXfxfhOkjs1h5anecHwe5bc3dLN+4HP3fd5fLfJ3a1N3UOM8OEkF3BUWXwdfPLwvYdfhrcAxTys4L1ZgpXd5rWHyaO4pUqQveGakySW73mTyfpWoJi3G7qmYpom//B//ccYhkK91uTawk2mpqcoV0uMjo3iFgyuLyxQcDyKxSLtdpvr16/zj3/ln/LBD/4EJ4+f4L777mN6aopPfPrT3EwS3js2SpomRFHE6sYOoyN1Go0apiHVtpqjDaIoJk2kcuni9Zu4jk0YRhSLLrYtlSZHmjV0VXrRGbkq23Aopdd3dw4QQmF8osWN6zfpDYeUyyW6vT6WZdFsVonjUMpA6wZbm/tkWcbISBXLMSjYpkyeVI0wiNlvH2AaOpeu3uCV68tUPYfd/Q6WKdXbTMtAUzW2Nnfww5BOr8/YeBPPdQAYDHxao6MIBDXPplorYxdMCRU1TSqeg6Gp1KolBmR8vdPjZ99xHEVRc4NnFds0uX59BcsypKefJgUhyBdl13OlmI8QNEfqKAq02108z0URCtVahUMew+FUEHkXwjB04jih1+tj25Y0s41jzr90mUa9imma9HpdqrUynlug1WrRqFURImOsNUKvO5QeT6pGEsU8/uRznD17nCSJcV2HpZU1NFVld69NqehxbXGZZqNGmBuZb27toikKlm3nnBUVRRE4rsvC5SVaY02iOGJ7e4dGrcaly9dptw/4wpe/wUi9RL1eZXFxhXK1SJZl2JZNmqScPDHH9s4uKyvrDAZDWmMjXLx4lVZrBF3T2NraolwpYRomqqowMd4iCkNq9SobG1u0WqNsbGxTcAuMt0bY2d7F930UIYjThEJBGrlrusFYq4FlCOq1EgsLy0xOtgiCCNt2WVlZoVqvEfhSaj7NYsqVEpOTY4w1XRRNxbQtyRFUVJI4YnSiCSKj2+3iuBZJGlMqlXJD8hghQNc1yW1KE7745a/zwH13omgaVxaWMXTBseMz2LaNV3QZDn3CMGB/54BWaxRVU+l0Oqxv7mAaOrYlvao0XcMPAuxCgc5Bh4NOl6Lnopsmn/izx7j33Eksy6RcLiEUQbVSklL4FZcoSrixtEZ774BqtcLURIvR0Qbb27uy86WCrqsUCgWEojA50UJXUnTTIFUNSiUPxy0AGVluqp3la5dlW/h+wMN3jDJ+97t550MP87sf/SgPWi53HJvBLpg0RuoIoTA/OcYnPvsV7rnrNFESIzIJzYmiMFc1VIkj6Z2lCCmmkqaHK7sgDkN6nT7XF5chzShXywhVBglZKrvMaZxy7foN/uKpZ5mfnsBxC4RBQK/bpdc/QDekCqbQcu4fkGW5QBcZpNIugSyBPJA9EpJQFLo9WRyxbQvXdSnYdq4UqOWv40j8wDz0GVOUnBqA/CyK5AaleRIYhRG6oeTdD/lZQz+ScCVys/d8Y0liyd8zcpi7XbBYXl7Fy5UwkySlVq1Qr1TkfVQVokgqkrbbbSzLoNGoUHAcokgKuTiu5HMKoTA/NUHBshj0B7iukwsPBRRyTnGWZfztR77Ir/78D+N60uQ8jmN6vT5/9/ee4J/cc4pOr4euCxzHYb/dRoiUyclR3EKBe0/OkaYJSZRSLpd57uXLzEy2co/FmC898Rzzk03J3dJ1NFVn9eYmtmnQHw4wNJ0wiFi+uUG706XZrLGxsY1jSWXnh+6/A8exKeaKz/OTI9TrZYSqyH3DD3Fc50ga/rW/BU+s73JxGPETP/lBuZ+/yd79es6dXLTTNCFTNNKgz9rCBQzaxGnIC5d7/PL/9r/z8OS78ByXfq9Na6RGJhIUNUNTRD4PBBNzs2iqVI51bE96Yao6CgqPPPJl7r77PqIwwLY8rl67zJ1nz9Ef9MgyKZc/9H22drawbYehH6DpJsVSBVUxyRDcXL1OvTGCZVoSBi0U4jQhRWAaNnEckiYhilCk+rZQpMBKmpAJyQfe3dnAtgv5XiTFPpIklpDhfAPzgyGqqpFmCv4wot/zGfR9avU6umkzNT2PHw5ptcawTIsglJ6F0q4k4esXn+Kn/pv3c3z2NPu7W9xcfIKio7G9tIRbrhNmFiNz98rkTppCHiU+t8ZbV5evM1s9dvSUUwQi1VFVAxEPcVyXKE25eOkFGvUx4jBkYmIKoQhW11Y4OOiweOMab3vwIeIk5tq1q4yOjB6JzRyqYoNgb28PVVWoVqokSUSv12E46HH92nmyJGF74wZpOMTvd/NOZpHW+Azl+ih2qYxQJB/0MG7IjhK218ev3zEU85ak79Y495N/8XF++ud+8q0f69ueRvowk0l7DMkP/vbWZ+ktPqSH1/WfktjdanR+JKjyX6hz91+Nz91/rvFX7YYeSlx/r68rI2F3t82v/+av8zd/4RdYX99hbnaONIk5dkIumkEUEEYhV65c56B9QKVaQ9N07rrzLjyviFVw2dnZZm11Gdsy+eqlixSLHkPfR9NUmrUytm3yyqvX6PUGbO+0SaIYyzLY3dnla8+8xMmT0ximIWXh80AjjhLCIMIrujSaVeyChRDSUBehUGtUaIw06HR6PP3KIjOzEwhFUCwVCYIghzrqkkPiR9x5el6ex5KQoyyLJZ6flK2dXUolF9MyOT43Sb1YZHJinNnpSbyii6HpKEKRCWergWVZjI81AaSaYxhBzqMrOBatsaa0ORDS66zT7h1BTFQh+AfPXebXf+4+vvr48/R7A1588SJCSDn8yckWQhHoupFX+gVraxuyak9KJiSPR1FB1fQcPhcQxSG9bgeyhCAIieJYquNliYS/kOZm1FI+ejCQsNGZqTH299qEgU+pXMIwLKq1ypG5LGQ8+vg3uXp5mSCHda7e3MihtyqaqnL5yjV8P2B2bpo0zbh6bUlynvyQF166RKVWpdmoYdk2qqLw/PMX6PW6uEWHJE3wXJs0Snjp/CtUKkXSNKNRqzI2NsKHf/JHmJwaY3+/zdzcFKapM+gNCHNl0yyDWqXK3XefYWZmiiROME0D3w+I4ph6vY4/9JG8HJ+l5WVMyyQMQ6rVCkmaSNsJIAxCut0ecZxQbVSp1Spoqgw44igiikJs26R9sEep6NLt9rl+/SaDvuy0JKmEwHS7fSqVEmmW4JVsQj/A0HXpzYbIJftjhEg5aO/jFR0J7TO0I48xXVXRdU16tgmZuDx472m5QSsKP/bXHuLYsUnCYEgUhfS7A6IwIksyvvnCJZJUGlPHccx999xBa2wE3w9kwpNvWEEYMDHeYmpiXF5/FPMzH/xhSDMcp0CG9PuSMD7B2voOBbsAmWBmdgrDMDBMA0PTmZ4a45lnz0ve3n6bCxdeZW11kzhOcVyPOE5RNIVDk1khDtXZFBShMhgOAIFtWozVy6TJgL/xwZ/kmWef4uLOOhPjLQRCPvc0JQxjXNvmxuKKhP6pAss2MQxDenGJ3F9OyM3/UOlw6foSaSy94XZ2d5maGKNY9gjCIPdjlB0YfzAkJWN0dJQPfeC9mJbs4Fu2xdAPqY/WUXSNNEtJkjgvsL0mEJGlGXEcEQwl3BKkKmWSpkcKm9VqFVWVSQdCJRGApuR8RHE0v8kgiWWQI7lZWX7vbtkj8gQjzTKEUAn8MPc0BbtgH9kLpHnnTlHFUYLnei5+Dp+cnh6XfEJVECUxKytrKKrKH3/2EVIEQRAe+XxatsHi0hJZmtJo1qg3apimThiEeJ6LrkoouYSnSWisbugy8M9SdMPA8zwUVRBFCd1un06nR5pCHKcYpklrtEap5BKGIZ5bQNdVkiQhCEM0Q3YtEYLnX7zEsakxllfWKLgFENCqlwn8kH5vKAWpAKdQYPXmDkYO4dpvd3JOmYY/DGjWK2i6SrVelR1hFUzbQDc1SmUHzVCkEmSa5vwwuUbeuqtCxpXBkJ/98E+9CUPoL9uYBZqq0R/0WV27CVnI2PgI73n3j2BZBRQUZmbm0XWL/c4GaRYjIoUsVkgJSRUfocSoagYk6Lldh2nokGUcmx9HEaksLFg6tWqJjY1lTEMniUMG/T5xFNNojGDYNrpmEScZAjXnT9rMH78Tw3QJoowoEgz9GMt2MUwbRVVIMinFn6bxUdFF03RUTZqgCyGo1kYQCOI4wrbtfE1QjzwlARyvTJymgPxepFFCuVhDVWB0pEUcBZw4cZJMpFIIqmCj576e9XqNilmkUi+xs3OAECb33ftOAj8iUzXCKKZWb2BYliz6f5sn9ff+x19i6dVVXiPQCFRNp1isIwyXKBP0e3tUiw4H+2tUyi4ba0skcczU5DSGrjM60oIsY3Nzk73dXS5eusj+/j5r62sYhoHjuLiOS63WxA98nn7mSfZ3t9nZXCUadmk1R4nDAXEwJE0TYqFiOBWaY9MUihWK1VpOc8ln3Rs7cEddsO9qVr7pMD37e3as72Yc8uJuZ/31//Xx/79P9Fdg/FWyRjxM7L5T8/a/bGhCxbZNFFMlURUefvi9fPPpF4gDH8d1MB0Lw7aYGB/Dcz3W1jYI/ZDZ6Vn+/t//n1AVjSzNmJubpVav8Ed/8G8pVapsbmzztRcu4noOtVqFnZ19nry8SCYEs3OTRGFAHASUHYsT43WCKETVoOCYRHHIzs4OWZby8sUF+r0BSZSQpimrq5vEMWh2ge3tA/wowim5/PX33E9/MERVVQxTxyu6dDt9kkxBMy1U3UDVdYIkIkxDbtxYxTA0hsMe3V6bk6cmKVU8PvfVbxD6MfMT4+xtd3nu2Su0N9qkcUK/20eoGrptMD45imZo7O132N2RMEPbNEHAJ7/0BELJgJROr0OcRiiawtMXLrGxvs1/99R5/s+/+zDFYokPffA9uJ7HzPQ4oR+hG+ZRkGZZkheTkdFo1GWihpR1P1ybgyBDCI3h0EdVBRCj69JjyDCknHecyOSu3+8Sxz6mLSW27YJJp7uPVyyQJDGPfOUZokhC8wb9IUEYsr21TZalNMol7n/gLIZpsXh9hdXVbRrNOkEYEoQBx45N87YH76bf7fHci9e4+64zzMzOUPCKPPDgPezuHmA7HoZVQFVUTp2cRVUV/ECacmsiQVUS5qZGSAKfOIgpuiU0TcUyTclTtC2G/pBhr49paOiaxtXL1znYa7OztcvG2iZkSDNq1yUKZYHAHwaEYUyWJcRJxNDvkyQpYSA7DUs3VlA1jb2dPTRFJY4iWq0mqiJIkpTe4ICt7U2EkuEVXaamRqlUXRqjDUrFIsfmZxgOfIIgRBEadsHk0595kmHQx7RVMhERRTG6YWAYZm6anBCFIX7Xp+gUyWKFy68uE/qCz3/hCXRVQ1MUrl25gefY7O3s0u32GG01ODjokKYZ589fJkmH7O5vo6oZuzv7uE4Rz5E8C1VI/yLpV5ihKgo7W3s4hQL+0OfKwg0ZQKUKzzx9Ace2WV1ZY9Dv8fLLl8jy6rWiSu7W5uYWO1s9Aj/j5Ilj+AOfRx9/ljRNMHSNJ558hrvumOGlF84zNzPOuTtP0mzWuXlzAz+ICMOAOA6JkoEUA0kTyZFLFUDDKbg5vFAQpyH/4B/9Kn/4kY/yH/6fj/Cvrl+j1x+QxDH9bo9+r8+NGzd5+7mzbO/u555rMoBVNWmREkUxGRAFPgopWRyRJQkra+uQpqRJxle+fp7hcCj5QrpA1TRMyyQKJGdGCIVipYgwNFJFIc4kLLHVGiMTBYTmoGgOCJNDSXkgP3eGgkw4O+02QogcmikxUlEY5WALAYpGpmr4aUqI9CRL8mKRPwwkJylRCIbRkfJykkRkIpMosizHeghp2p2lAsuSSbhQZPAMuTCYgMAf4g+lr51uGNgFm+mZSTIhExNFEaCpBFHM6MgoW1t7/M2f/hBxCp/53FN886mXifyMP/ijzzEzOQtCWpIMBgMJwdzbkx2joifVdyslhKbR7fVRdXkPAl/yWA96fVRFxfcjNjf3cAquVHMVgmE/IAoEvYOIlRu7bKwd8MWvvsjC4goIcl6zDLZ9PwZNMDU3jmKqWK7FuXMnqRQ9io5Lv+dLCfp+wKWra1y5voKqqIyONhkfb9FqjSIU9TV4be4DpumyqBYnIQO/RyYS0kx2CmQykhvHH+7V+c+aXeaDH/zAazZI38GQ6qkKjUaD1bVV9vZ2WL5xjV/+X/4RG6s3+fH3/zjXr19l2Dtg8ZUVRFIgToYoSkwWq2SxSTKI0dFRM0UKU2gQBF0UNWF2Zga7oKAoAUnWY7RZZmJ8hDQeYOgKw36f3e0tUFUyBLpmYBsW7d09KdDT76JpJgM/IYh1hFpkEEIQQ78/wB/2sQwNQ5dol/39XRCyWBDlvDaAQsFBN0x63Q69XhchFHRVFgdkUUOQZCZRZnBt8RVMS6NSNSkUIvz+kLWVFa68cpHBIGAwDBBKxjDoE0Q+Yeizt7/D25oP8Zu/+c9YWlriN379X7Cz0yMKMkKlwLW1XQrVJv2BD0IhS+M3fSZWweFPL34MJctQshQlS4lFAJZKdeIUmjNGb7+DiYqWHLB09UVMHV588Zt8/kufpVqtYxomvX6fZmME07S44/SdDAZD4jSW3/c4ZnllhTSDO+64i163Q2dvk4pj099dJRt28fd3qJTquMUmx+98iJlT91Nstsgsi0w3ZOKcJkcT8RAsLBFr3/vUbmejy+///u9+j4723Y1Dv7vvdXz8V2H8AJb5hpGl6RGfDm7V4Hn9eB0gQqQS6yJeMzrPhPKdfQluA4281TL9dpo/4pbreh189NbDHv68Cezydn533w4eejji5BASKj3S7JJFbbzE7/0f/4ofeeAerlx9BbPkMuwM+a1//n9z+tRZTMOm3+9RKnmk/y977x2s2Xnf933OeZ7T315uv3f3bt8FdhdLFAIkSIkqVGR1UopoRdbEiTOjJPJE4kQex44TZ8ZjO3ZmoklzHCWRKFuyRYqSWEQKFAmA6G0bti+2397eXk978sfz3ru7AEgAsjnJOHx2Frj7lnPPvee85/x+v29jSBgrlNHHcgT/42/9Fn/lE5/i7z71dX7zseP0en3W17fIZzM8fvQA+UJAs9biwpVbFHMZwjCm3R1SyAfEYYpSenYWJxG+n6VSymOaECcpUli88PIVXnntBkcPzuBlHNqtFv12h7A3ZHF5g0IhiyH1b9ASkmGvR2OrSTbIotA87DhOqNfaNJs9CvkiuVwOy9EOabumq2RyPl7g4OdcbFsHGfujzDxhKlaXV3BdG8d18ANXnzMmGJaA1GLvTBlhpjSaDfLlAm6QQQrJrskyv3bxFr//X/44pUJAFA6xbUFKQn8wwDAUSmndWKPRYmVlnXKpQDgYIIXOgVPEpKnWMJgIDDMhTkNczyZNIAlThOmwtrGGYaTaIMAwcWwfYVsIaZOEiXbdNEYhyXGE5VjM75okChO+/dwp5qolVpZW8bM+QgocRxBkLBzPYxCGBIGH7bq4roPlGAhL0usPcT2P48f2g5lgC4vX3zjL7MwkftbHDzwMadDvD2g22xRLBVZW1shkPHL5IucuXGXP/Dz93oCXT55mz+5JLl+5w9TMGGEc4bguwpJsrG0yPjHOpcvXOXhwL2EUY5qSt66/xeTEOPVak5XlTQLfRQiTfq9LPp9jfW0T23YQptSB9ami1+9TyGfxXBeVJrz26kUcRzI2XiCJQlAGvX6M5wRIYROGkR60CMHK0irFYpEk0QhwuVLkxZfOsGt2klzW5LVTFxGGQbVSxbJNXMel0+yyubbF0tIaU9MT2I7PqZOXOH/hOg88sI+lpWXm5/fR6fZxHEEu53Ht+h1m52bJBC79do8kTMhlslw4d5M9e+cYDhKCIIfve0hLMAgHHDmyjzAOiZKEIONj2RaDcEilUuT1U2+Sy/ns26NRzsVbaxw4ME+cphRKebysz9hEGWkJhDS4dOEKkxPjWNJmfn6G3qDPN595lWIhQ6mYQ0jBVnOL48f2YxoJ0bDN1voygWuAyJDPZzEMxTDsIegirQJCGag40WiXNPS1F0ObJpBgmgb//Gsn+ZVPfYZ2s8Vrp17nU3sO0Gl1GfZDpG0wPl4mX8ozNT2BoQzC4YBeuzfKGJT8wReeYiJfJCg4mMLGMLRZyq65afoDbbz02IceYG19k6986yVOHD440mlAEiXk8jlIU9qNJo4r9YU81ZNwQwjiWGEqMNOEsD/QESSWAJXojEtDYEhBokDY7siQRREOB5hCu2maI7QgTRVSCqRhQKIwlEk0jPjCl79Fq9HCkxaZvK/NVZSBaUiuX71FEiVkcj6k2hCltrWF52nkREidw2bAqFEBTdMyNVoo7RENLhnl8umYBWlJVKKLJNfXn/M4TXA8C2mZ7N89TT8cMD0zzpFDu2i1GihlkC9q1L8/GFIqldnaqiMsk6g/xBGS9ZV1PNfFFAJlmNo9USn+7MYNPnGwyOtvXKHb7rNnfoYkifn8i1f5pYNz9Lp9XN/BzTrky1katTbHj+8nTU26rT62JfE8SbWUoVIu0+/1tGOuYSAMwVZ9A98P8DN5/ujPX+Dhh/YxO1lkbLyCdG1Np1UJRpISD4YMooRM1idOIuI4BBTxMKXT7pHN5gmHEdIRJGlE1tUmLubIlGfnXm4Y/Njf+a/uA0p25Bfvo6JI6YA0GPaaXD3zKnkHmq0er9xU/NNf/e85d/UsBw4eoFKepN3bYn1tiWyhAMKgHyacPXWa8ngZ1/aIo0Rf55XCciySJBnp/RWmkDz//Iu0GosUC5MEXg7DELT7bQrFPJcvnqdaGuPihdNUK2OAoh8O8P2ANDURpr4nDJOYyti0Hq6ZEmkoVJqSpCmJUmRyecJoxKaRQjsiK0W/20GZIGwL07J0EyokW+ttlhcXqMyME4cpy0vXmZvdO/IlAJRiabPF+QuLoGz2HZ3DtGBpYZ3JiVnu3L5DuVihVq+xa+8cP/PXf57BsMnt27fxpMDyFdVMFdvzqFSr5CceJMUBL0Um217pI3rgaAngZ3/2r/Cf/de/zg889IP6mAoLfSeGwA9AWtQ6LQSxNlhLBhhRyHi+xGptia3NVZJYsXd+L2+cPMX+A3u5cvEK9cYquWyedqtJrbGCtFI2NhaYmqiSDNukaUyv3yNMQDgB+coUEzPzeJmcHuhInVtpKG3pwvbQYbuhu0d29J26O3XPF/q8Ne7/+27LMPinX/xH/OJf/YW3bevu7+29zneFGmX5wnYFbNxTCRuY7yl3us8v4wPUv995pzTDyuBuXvb3DVW+x+t9a+5G5iTpSIv2nfi39z16b87d6EttOqHu0+B90PV+JiXqntd+t+c/8PoAJ/f2zcd1XVzbo7a2zolHPsRGuwVhyt/5b/4e01PTzMxOMjs7heu7hHHE2voGlXIBKU0+8fFPMDk+w8uvvsyeeMDsWFm7LSrF4sIa6ah5KeYzrG3USJKU6alx6s0W/d6QXC6DKUztXNgZIC1JvdHAcSzSJKZSyfDhDx2k2+/huBa2Iwl8T1NAhSCf10YUKOj3Blo7NdKoDPtDvEBrnjzHptZoMVYts7a6oYsBYWE72nnt8199jgf3zyNMQRD4DIdDhCVQKiWfz6ESXSxtrNXI5XLUtloYGHgZCKM+tmeRyQbEsYmJhWkofvXUJX7vNz5JEsejGAw5Mk0wsG0by7ap1+pcuniTF165zGOPHsFxHL78Z88xXi2QzWWJw4h6Xefnae1bxPbZFacpru9x+fJ1pqdm6PeGpEq78BmgLd7TlGajqY0HXBeFge8GnD57ianJKtlshudeOsOHHjpMvlQgV8yhDIPBYMi5C9eZmqziuDblahHb0cXZxsYWruuxubE10g1EDAYDoihm19wMSZqydGeZjO9z7cp1Jqaq5PM5DMMkn89jmoLNjTpzczOsrW1g2TbVUhHbcRivljBNg4U7iyilBza1WotcNsvUtq4z1BNbTINyucQwDJmZncTxtInHmbNXqZa1pjAcxkgp8XxNAYqiGMfWFE3btfnSN95AkVDIBwSZLI1Gm3zWQUhoNFoabXBsbNsmm8vp64ph0O108VyPQ4f3kCQxxUKWuekxyuUSqVI06g2E0J+DyalxisWcptolKfV6ncceeQBMRaVaws94SAHWyHwlly8yGETcub3I6kadmV3TJCrl0JF5Tp0+x/4DexgMhrz8ypvUGw1mZsbpNDt86Wsv8MRjx7h4/ioqTVFJiu95rK9vMTs9rYcdqeL24hJ+4CBtSRD4JIlCGJI0Vgy7fcarZer1BsViQcdjSMnRBw+wWavxxpmreK5FNuPjeT5BkKXdHVIsVcnmSyRKjQLcNR0wTVL8TJ5et4fjuiMDBh2ALKUYOVHqxxrNJg8/+RGEnfCtZ59jZfkWTx46QLGYwzAFtmOPnCcTkjRGSnB9faxqtU2e+PAD5Io+KdrSemR9Byhsx2Y4HOI4DvlClmNHDuwga0opTKEz7C5dvorvObieT5qkmKY5QtxGJlumSW2zRhTHtBotHfEwOieEaZIkCXGkmydhbiOLEpQiDvVQIE1Sjbwp/TnWcQQghWRjY5M9u2Z0nqGtrz/DgY6NcR2HXq+L6zlYtk0Sx2SymR0TgiiM9M+xba+vlL7ewI7uD6VGej1Nk9P3y1FRlaaoBEy0M6glBYNeX0eBjFcBaNQaO064rutoR1zLot/vE2QCpCXYWN9EWIJ8KY/l2ERxzMbaBs1mi2w2y8uLF/n0Dz3MzMwYU1MVXNeh0WgRX1hg2nGRQuhBWiYgHIRMVMv0+x181+ONs1fZs2cSDJPhMKXX6/P8qQvMjJV56/odXaAbCdlsntpWm8P7ZjVS6QQ89e3XmKwUcVxbn5tKaUfCwKPT6RJkPFzfJY6046HrOUSR/vmUSgjDCFKwXWeEkNwtLE8tLzP7w598R038fps7EwtwCWx5nFmgAAAgAElEQVSBOayhhnfI5V2ePrXJmCgyPj5HPhfgOpJUDZjdNY9j61oljhStzQ2mZuZAxQhp7DRySTjEMrX2UimdjTgxNkW1UiWJI55/7ll275rDc2wygasNpzbXKJarpEBMSrVcIYoiFpcWKBSKRNGQMBxiS0mn3WRtdRHP0TmZ0XCg6eZCn7u2ZY0+O5r+adnWaNggAUMzJ2J9LS6VKyggiYaUiqWdfNQkBQyT1TvXGB+zOXbiKG+dWcZKc6RmyJk3T3Lk0IMIYfL6Gy9x5PCD3KndRJHy8Y9+nKe//kccfWCayazD9RtXWdvcwHQmyWZLSCvdQd/1Abv3S/2Pn/jJH6N2o60//yMTne0Biu9nKFbGQQVEStAfhvrz6UnMuE82cHFEyvW3TrN/3xxRWEeFXfbumWX1zhVWbl3GTPqMVSpYcUgy6DIcDOi0mwyjmOk9DzAxvZsEg1y+MNITm+9aOH5Qzdndhuie5u49qtf6RpdzS2f41KfvDy+/N2Lh/RSvd/f1O9Tp28+/j+buvvWXbe64q5HdvtZ/v7n7Hq8P2txt//1Oh/i9mrskSe8G1/4lT5R7xZnvZbTy/2ZzlySpjiMwDPqdPqdefYOx8QncfA7fC/iP//rf4PEnHqNSLaGMlHqtxjAMGatWadRqNJstkiTlzq0FPvPpX+TXPvc7/PLB3fS6PaJIxxp0uj3qrQ5Pv36BJx9+kMpYma2tBgurG0yOl9nc0PqjQX/A6vIWxVIOz7ORUtDqdBDSoNvuo0gJfI92q0Ov30ehqJRLMGpEGvUm+VIO25LYtkWt1uLFs5fZv2tKZ4GZJuPjFVCKTC6g3epg2/YOhc8TQrs62o4uOklptTo0m20yQUCn3SeOElzPRUqLlZVNxsYqnD33FlMTY4TDmGarp/WBKuWXnz/J7/36J5EjN8flpTWKxSJ3FhbJZTOsra5TyGvTiq8/dQrbFly6covjxw9w/sINZqcq3Lq9xPh4FVMIlpbWdLHV7WGPpuFaX6col4ucPX2F2dkpbMcmjmOyuQzanV0x7A/I5XJsbNVwXBdSmJub4hvfeoXdcxPsmq1y8dJNVlY2qFTzSCHwPI/pqXFefe0su+YmieNQTwoNA98LtJh+NPW3LYulpVXOnrvO/K4pBr0+SRTT63QZHyuTGmrHUCKOEhYWVsjlcly/dhvLkpw8fZl8IcPy0hr9Xp9sxsc0DcplHYfg+T61WpMg8JCj+ItM1idfyAOMnELhzfNXKJcKONLSv/PldaIoolwuarOINKHT7rK5WWd5ZY2piXFyns30VJlypcTthSWmpiZJoj6+7yGkpFDI4roeL79yimIpj+s4JIm2oY+imCgOgRQhTNbW1snmskjLwhtp1izbZtvJS0qTM2cvMTc3NWpsEmzXJooi2u0WnuNgmiZLyxsUiwVKxRxxmlIqlzCFDgMeH9eGNZaUvHXtNo9/+JjOhJQWDxyaJ00SJibGuHVzkempCU6fucDEWJlsLqsdRTGZnqkipaDfH2AaJmdOX2ZycozV5XWeff4UpZzPzVuLTE+PMxjGXL9xh0I+S7lS4sD+XdiWYDiMteuk65LN5vAzWfrDCCFNLEvQ6bQIwxDPdeh0BxiGOWqYdCi6aYKJbq6Ggz5RGPPEA7v537/0Kg8ePsSRvfv4P/78G3zYz7OwvEouk6HX6yOFSUqKZQuSWDeGURQTZIKdptE0BFGkNXfbbpW6djF3sut6vR6eq40iUqWQpslwOKRSKpDL61BrrV9LteW2ZRGFujhVacrXnn2B40cOkclmtBHOCClL41RP1c1trZxBmiR6qOA4DKMBve6QpcUV2q2Oji0xDOIoIk1Tds/NEEXRyM1Vo3CWbWNJi82NTWZ36UiZbQ2fZelIGD3YHPmDjmjeYRghxPZ+jCbSo8y9NNFRId4of1CpFJUo4jCi3Whz+84SQeDh+x6GaRAOI37nD7/K4x86Sr+vc+/W1zdxHBchTVzXJY5iHM8mjmL80fEYDPRwIJMJcF2XTqvL5JEcYzkfpRIcx+H69dtYtsWBtkm5WsYUgv5AW+ebhkAp+LPnXuTInnl2zU5RbzZwPRdTWLx58TqPP3SITMajUi7gei5BxiWKU3qdAX/+8hmO7JvlX3z+BR45PEsun2E7QN6SEsu2AE0Z7vcGCGHuNPFRqDXMYoSKNpttsrmsPtbcRe0M4DdPvsUv/MLPvaPofL/NXRIpDOnRba7ztT/+HGPZiKmZcebMn2BqbheBn+fchdepVCq8dfkUcZxw+fJVJicncWybMNLuorYtwdToSJqCqbQWVBiC/rCrfz5MbEubZM3OTI8a0hRhAIa+X5WKVUxT4rg+nXYDYZqMV8bZqm0yHPapVKr0+10G/T6VcpVetzUyx1rCc32t+VMpSRxjGII40frvJA53ZAgoHSEipRgxqAyEKbGEPjbJaDixsHiNcnmSUrVKvlgFw8DPF5jdNY3teezZvY/BcECqFPO79/G/fuF/IV/wePwjj3PmzFk2lq9QLphEjVUWlxeYnN3N9PyjGMLD8QUKqU2euB8U2H7Mti3+4T/4Rzz84KMjpGxkgqMUCIG0HVw3IF8oMDYxheM61OqbeJbO+bNsG1TC1OQUwlT4XkC/W8M0oFSaJJ/LU99axkCwtb4Kts+u/cc49ODDBMUSjuvher4eYqeacaXepUL8wIYiOw3U3ebO2EH+3v0t/+QL/5Df/1e/u3Nd3dnUByR/fr+5+87r+83dPcvknc5U70aB3H787j/ugZJHJ/YOXPxdTpL3at7uO/He9rxhavvqd4tavJfO+ZddHwSiNk1zx062PDnJ2ZdPs3fvQex8jiiOCAKb5ZVFnMBhc3OTYrmE7bjYtkRIQSaTxRIWwkxptbf44p9+mZ/fPYUX+ASBT6PRJk4SKuUCvm2RywV0Oj1eOHOZjzz8ALZtMRyGZDKBJkWY28WJthF3bBtpmQS5AMdyuHN7Gc91SVRKvpDFQHDm3FXygUcun8G0JSidjSeFwXgxhy1thCkwR7qcF0+eZ2aiqp04bZs3L7zFzPQYnuuwsLLBeLXIyvI62WxAvz9kbKyiHfburDI9PU5tq0GSplQr2kr/9KsLHDq0G5RAGQb1Rp3/5OQF/tnf+Mgoi00bHGg0po8lLBzHxfM8lIJ2q82xw3uZmsjz8IcOoFA8+OB+8rkMxWIRMFm8s0q5XGRpeU3n/ySJLqqE1Bd7U9AfdMnls4CB6zr0+11Wl7dwLAdpbiMXmp4ZRgMM02BqooItLQwM5vfNIy2DbODw+utnQUG5VObs2Wsc2DeD49iIkctoo9YlCHy6nT6+76KUIpfLMVYpMxwMyRfyrK2tUx0rYQqThYUVfM/jjZPnyWczlIp5zp6/wvh4Gce1OXb0IEHG5/XTF7n61gr7902TJAmOqw0+pDDJZH1sxyKOQsIo1OHHlo9pGNTrdaQl2bN7DgODQj7H0uIKz71yjn17pggCn/6wTzgMqYyVyWZ9Cvksg+GQ6akxyuUCBlCtlGm32mxu1Kg1mpTLBTa36qAUpVKRfCFPGEYkaUIYRdRqdY3qKthY32RmehrH8fgXf/ANDh+a3UFKV1fXKVUKDMOQazcWObB3F5Yt6Q8GWLZFEg/JZbMYaAproVLCdi1UouMYklRhSgNpauvv2laNC5du8ORHH8EUJq1WE8/zWVvbwDD0+b+8ss7k5Bgzs+M0Wy2+/eIZ7txeYjgMKVcLXLtxm+mpSdrtFpVygSBwcVyXwwfneeP0RR579DiNRktrZKTEdmwGfW1SsbC4zFhVo7GpUpw5e5lCMT86pxMgYTDo4FjWjkGS5XgkqSJVI1dJbSc4umaZO26uv/X5F3jk+GP8vb/7D9h/8BD/+tWX2ZdkKZV9xsaq2mHW92jV29i2j2GY2q1UWKSxQRJpxKK2VSObC3aupoZpYo1MMQzgzQuXmZoaR1ja0W+7ORKmbhZNOWroRk6cSZJooXuqMC2LA3v0MUyikP4wxLZstm8d29qt7Qm7LmAlSaKdNA1M0lhnkmVzAaZpMOhrR9s0TcnkMjqA2NDo9Da1KpfP7WSCbYf1KjUyc1G6CdUZdfHOMEVKXcRj6v2Iomi0fwa+52FZ9o4RjBQ6K6/b6/Pt189w9PB+MCCKEj73ha9zcG6KtfUN5nfNIC2J53n4I8fj4WDI+ro2LfE8jYAlaYLnuNt1O0tLq/wXr77MZ3/ucUxDgqldXCcmqvzKbz3Fj48VcG0Jhok0TZJYO16GYUzOccjlcnTaHQrFDGmisG2bUjHP57/+AgfnJrWBjhTUN9o4tovvuhw/PEsShRzZtxvHlWTzGfqjYWC308fEJE4i0iSlUMjv5LKFsc4S/P2vPs9MJU8un6HT6pAt5uDe1m5E5frjWyt85jOffse9+F3v0ff8AV1MStMiMQSenXDhjWfp1N7it7+6zmMHHmV1ZYlet0e5UiWTyWGkU2Syk9y+tcCdW8tYFkxOz2ALkxEpF9MU2jTG0gY0KZpK3+k08R2XVCW4no1pGghTodIIaUI4HNJq1inkS3pLSuF5js5FTGIuXT7H/O69dDotbUqCSZxAuTLOVr3B+IS+BsbRUFM2pU13ENFqtXBtmygaYkkLU5kjregIOd6WxyQAKWEYYgBJmlAslFFpSqereOHpiyzcanO7doX5/YeIBqG+RlkWtmWTJDFPnf0mHoIPP/kEk9MzXDn9Cg8f24UabuJnAlZrDWb2f5TJmb2EKhrRtzWl9z564U5NaLDW2OQP//TzPHH0o/qYjaiP2/d3ZemoE2UIbDuL4+VxnIAoFcSpSawMlpcW6fVDmu0msUrp9Lo4Xh5MSXV8BqcwgVuaZO+Dj+BkCxj2tgZff362hzTaUVdfy0whge/MVNvewA6J4f4T9O55+j4bw8vLF/mpn/6J9/Xa+3dB7RjUbTMNRjvxHd7wTrnTuz7/NpaeSu9qY99t3Vu7i202w84m1U6DC9/Pufuer/fT3L3Xafl+mru7z7/3SZ6OBO53c27e+bw54kDvhNtub390Qr3b+/5Nmrp3Xe9ziqGUQpkmqhNx/dpNnGKW8bEKppFgCAMhTPL5gqYPSUkch9qGPNIGCbYrefmllzh86EH+52df4AnfJY4ThJCMT1TI5jO8efkG1UKeLz93CtMwOHpoHsOAbC7QGgvHRTOpDJJIu8QNBkPt2meANCxajQ6ObY/y0LQma3KsjOu52I6983uP4gjH1dlE/e6AfneAYWrXu2oxjzMyLsFUjFVLpEmCMA12zU0AsL5aZ2yiom3QB0P+9OlXObJ3hmw2QI6swQ3TwHEdDh+aJEpCYpXgZzz+9rkb/M5v/DjZbHZEfzKQls6n+sKffJPAt3XemGEQxzGrK+s8/fRpMGLyeQ8v8DW1KE1JkhQDg7Pn3iKfyzA/P4MXeAhpEUURC7eWcGyXbrtLZSw3sn1nJ06hUCijUoVlmTTqDRzXQykDaemLuWPbrCxt0O308QIXP/CIBj3mpsdpNNoUCjmMFFZWV3FdbQ6ysrTGX3zzTfbtm+Gpb72itTBJSrPZwfd84ijCsiRB1seQJo7nkA2yvPrGOT7+5KN0RtlYti2ZnBonl80QJzFRFDG/e4pz529z4qGD+IGPKS0MU/DM8y+yb+8cnVYbYVk4to1l2TTrHTpdHXjvug4Ld5ZYWVlHqZTp2QmOPbAXS0rCKMQ0Nf04HGjHTcdxcGybhYUFAt9jbW2dXC5LGsf0BhF79+yi2W5RrhRxfE9TXNEFZZqmd10jHYc4jBj0+gRBln5vyLOvXuLxRw9SrzfJZXPESQym/hzNzkxz8eJbBL6nYy6EiS0t6lt1+n3dGKeG1oGt3FkkXyxo/UwSYwnB+voGM9NT7No9w4svnSQbuOTzWYaDENM0NeqEYtAfkMtniJMh4XBI4LucOH6EbDZgfXOTvXt2A4okSclmfdZW13EDH8Mw8ByLIJPh3PlrzM1Nc+vWAlKa2I5Fr99jbm6K27eXcV2HKArJZlw8RyMgaard+rJZT1MtGzo+wLZ90tQgGWmjv/S1Zzh0YB4D7Vg66A9IFewe99l74qN84gd/gEeOn+Crzz3LZz/xA+TyuoAz0M2L5wfa6CLVej1z5Li3Xai4nkbgB/2BrsHRBeR28O14tQwGI3oiDAfabMeSNkkYI2xJo9ZAWBIhJf1unz/8ytc5emg/o5hJojDSbr+2jSIliVOtLxuhPfryq8BgZKwiiMMY0xR4vq/NTRzNKtiOIbAde2T8I3cKze2iQ6OS+r7SbnXY3NgCjBGKZYABg/5Qx0IIwbA/QNraMMiy5Sj4d9tlTjcBg0HI2uo6fuBSbzTxMprVsGduCtdzEJYgiWBlZY1Hjx4hn8+QzQXEScKpNy8wOVZBCKnRLdOk3Wxh2RbSkkT9kF5Xxw8sL2v306/cuMHPf/Qgm1t1/vgrz3Hs6D42Njb4k1dv8lf3TRHHMetbTbIZn60tbUpjuw7ZbICQ1kgjaLC1UcdzfLqDIcf2zXH12m3GxorESYLnBgx7IX/xzBvMzxZHET2QyWkUstcf6CGBZePYNn7WxXXsbfGcvjVIkzCMmK0UGRsro9KEdls3d/dhcfc0d7/4i596X/fbd60xVIIhJSQ9XvrWV5gsSZ4712HGygOCYmUMZRh4XkCxkiekxzDtkRqKfM7FdiXOyFhnq7ZFLpMjCrUudBhFmMJCGeDYDqSKFN2MJKl2uPQ8nyiOkLY2tArDIWkaEcdDUgWdTodr1y7z4IMn6Pd7ejjqeSQJFAslzl86x/4Dh4iiCFA4lkEUx/h+httLi/Q7TbKZzA6iJ6Wl6c4oHMuj3++MUE4T2/FIU6UZGYBhKFQaMwwjxibHKZayZHMl5qb3UKtt7UT+SCG4dfsm55cu8Ou/+p/S7Hd55tlnKWUg7q0Q9bZoDwbsPXyc6X0fw7RzCFuO3Gbfqbkz7ml+Tpw4SkpKTlU18jg6hNslpGGAoba3Aa7v4vkZCuUqhXKF6tgU03N7CHIlJibnCXJFpmb3USpNkCtVyBWL5AoVgmwOQwqEaQAJpibTj/Zl9H8DGo2GHgaN8nC/axVs3B0Qvf3xD7L+u9/9+/zev/y/PtB77v92et/fV3P3Qbe7/fW2ycr70erxTk+Le5//fhTC99e/EytOYh597ASGIcjlcwyiIb1+n/HxsVEIuKYvxXGE7zk7Wo52q4ljSz782If42Z/6KWLbpjpWAuCrz58mimMWbi8TOA5CmpRyPp5r0W52SJKEmzcXkULTNjDA811NqTIFcaQwDYEx0r3Mzk6TxDpPyQv8kdU3qESL31OlaDbbqFQRxTo3bHFpHdMw8HyPKIwIAo9up8f6+pa+IUiTpZU1ao2m1v9YkmREJ+l1+wCEYUqxmGdtbZMgF5Av6mDvfq/HVmMZJYd4Ocna+hr1MEaaNlGSACYry6u0210wDH7h536YvXvmdrQwnueRy2V54rFDPPHEQ4xPjOniS+ibzK2bi9iOxdEH9jM9PUEcJ9ijYPcoijl55hp/8uXn+POnXmNzawthCWpbdZJE5w0OByG2bREOh6Qq5Y+//BwLt5cZhkM8z2VzU4d5r280aLZa3L65gGNL0jSlUMhR32qQJnDo0H5y2QxpmtJuDfjkjz6KlJKf+vGPcfLUOQzDIBMEPPWNl3A9jzjVyIe0xU4+1IcfPkan06ZYzJPPZ5mZnWQ4GHDz9m1M08D3XTLZgB//kccwhaDd7WlxfpJw/MH9tFstPN/DlhZpqjMGX3rpTdZWN8lmMrSbLXbvmuHA/r30+j2WlpZZXl7BcW1c1+bkqQtIKel2u6yvb+6gK0olmAbkshnCwZD+oM/mRpN2t48C6vUmt27eRlqSW7cWdIaibd+l6kUxYRhRrlQYDIZYlsWPPHFUbzvVQdN+4OPYFteu3UJIyQNHDuJ7vtaUJIokTckX8ljSIklimo0GcRIS+A5SmLroTKFRbzI2VqHZaqGSlI8/+QilYpF2u0MKSNvCHOUn7juwl3qjRbfToVQqsLHVoD/oU6838UcBwmEY4vsucRRy686CRkaTmMpYiThJeOTRY7z80ml2z89Sq7eQ0sJxHJrNFrt2zWDbkkIuS7VSJI5C4uEAy5LYjsP62jrtTpt8XrtahlE0orvpiXOr3dXulKOm1/M8pJA8sn+M3/7c73L0+D5m5so4jk2U9lhb38CyLFZW1hBCMuyHCKmI4wGpirl05QpxEiKEqfPNLIlSKY7r6HgUQzuhqlRHFbueq5EuYdDptLEsSaqg3+khhCQKQ1zfZdDvk8Qx0rb5xZ/4JN1OF2lbeL6P6zlscy2EEIRDHTofRbEezIwKhWiEbOnGxNL7oZTWrMUxvU4HIQWWpXMoHdfR2WBK7QwSDeMu02LQH7K2ts7l67dG7o46diGOEjptfV3t93rYrqPRL9siTbYpcho53R4wNrbqfOnZlxBC4AceQggq4xUmpifAMHY0fMcP7iNXyFEuF3eazUP79rC6uk44HGA7NkE2wBa6aEdBGIa4tsP1azfJBAHNZhvD0CHs1bEK45UCg14ISnEo62masiMYqxZZXFrT+aeBi7QEbuATxxr5TJOEUiHPW1duksll+Nq3T3JreYNT565qZCOB69cXmRkv0Wg2qTearK6vkyiFMgx63QG9nqZeW1LquJA0IVVqRw+Zpil+oPMut/NZi4UcGO8sTP/2y+f54hf/5b/R/VeRIISJaRqMj09gYrLPm6FUmUJaNlIIwiik1WoTxjHjE9MU8jP0WzYrC5tsrNZJkwjH8blx7QbdXg+l9LXFNE1OnnxNn4txPEJQxM5gw7J1VI6BIox6mCIljnuEYYco7OzoY/fMH8B3Pa5evaD1qFJiCEm3P2R2dg9hlKAwGIYxYRQTJ7FmR8zsYW7XgR2Kum05RFGkBzOjIacU1ojqpycnCh0joinGKbYlyWctcvmQQiVh2KuThEMqlQqu42LbFpevXCTIZEiVIpvJ4gcejz/+OMePHSMMQ4Jsht3zu7lx8wbLy6sYpiT5AM3Fp37+J/nKi19nG6LXp4HSbpqpgaFMwEQZunlOhCAyDLBtDMsCaZHNl3C8LNliFc/PYXsZ/FyR7lAPAHdokSRIFevGTqUwYhxs9yK5fA64J1/zu0IDesD0foCL77b+XXSm/P/i+v8NcqeS5O8b3HWwebel4fv07oTi7dt422vvfn33j2mOqC7fBe1K0TdY4x5R7fZj975PoekM+h/3TIJGSN42qWN7m9sfTWGaO5pBQ+kZkvouP/d7rvdA7rYdQg3DIDYs3MBgeeUtXvnWUxzctRsrU2LQj7Asi3I+x+baKoWMx1Z9k9tv3eBTP/1z/M7/+TkMmeHxj/4Qa+sLvHHyDObWBjNBlkF3wHgpz5lLtzh2aA/CNDl+eC8zYxVNo3BsskGGZ146y9xUlThOdEHmWUjbpFav4Xk2SZJguxZRGpIt6vDcGzcWCWyH3mCAE7jUaw02ljfpdwcEnse587cYr5apTuRxfIskTgiHIcaIRvEHf/EqeUtgYjA5XUUphedp1Cyb85Gmyc2bi3iexUceO0Jjs8PqWp1iLjuiQGkTBM+3MHH4pafPcCEc8M/+5o/SG3bIutp0IE0T2q0mvu8QDWMdXi4BQxdbUkqEbZDE+rnLl64zXimzurSKH7iESUQ271Nv1JGjDKtOu8dzz52F1OShB/fSH8Y88qEjNGoNqmNlhCW0WYw5pNmokSSQpopwEHHixAM753k2ExBGIRMTFfycTxB4rC3XmZiYxPUtHF+SzUlUnFLf2sLxYHK6SpDxWVlZolotMDZeHhXokkMH5zl3/hKTEzoP0BI6NsNQBjdvLTA+OYYpJecvvsVYuUAmkyWNDYRp0x+EGAhazTrdfpdypQCkmIbCMhXhMCRRmobW6fbwHJvd8xOAgeO5OI7HYDikVqtjSZvp6Sl6vT71rQYXLr/Fx558nDiKsWyLcqUEqUmSKmxLEo90Ebbn4gUBvX6XVqvN+NgYlrTodQfkshmSWBH4gS7GTZPBYIDAoNVsY5qSs+euMDs3SbGiUQbHdUGlvPraWabGx1i4s8rUdJUR95gkVSgFQurgVmFpnYnv+VjSwZIuQkoMU+epmYaJ4/kIaekmIU6QQmqNiyNwLJsoSkbXjO2MK4vVlQ3md02zuLTG3NwsGCHZXIY4BSFs0sSglC9gOZL+YAgYJGmMKU3SKObOnUUOHJhGqYRmo83meod8KU9tq6YbBiGpt9rkSmVWlpZHNEsPx7JIowGmETMcJkjT5ot/+gwTY3meeOwhNtcbbKzVKJdLoBS1Wg0/m+OVm33ePP0aKk1YXtvi9atXOJKvYklJu9slkwvoDwc02y1ymSLd+pC1rTUmJyoMhgrDTFleXCGTDTSa1Gphu5YumkY0xyiKte4v1Yi0ECZpDNdu3KRUzQMG0jTxAp3nZFkS4UiNijM6HqZJqoydiAchJPEwJIli3Vx5HipRWJZNvzvA9xwUKZY1sqo3Fa1Wi0IxxyDU1wJTmKQqIY4jLFPS7XQxt3PwlGLQG+B4DqVykX17dmHbFmmSgGlimAae65JGCcIU2NLi6tXblIrFHXQtiUK6nQ5CWAghCHyPYwf20Ov0+NYzr3Fgfo7U0FT9xVtLpMOEfClHv98jm8uwtLJKpVohSlOCwKeYy+3c/3q9Pn42QFoWtusgHZv+MKRYKeK4Lu1Wm0vtG/zIIwe4efMWj554ENNUCFNR2egx7mcZDlNMIPBdtFV9yqA/oNXs8tQLJ7m5uMKhfbtp1FtMz45x8fx1nnz0AQ4f3M1EtYQlLRzPoFLJc2dxgwMH95DN57l9c5O3bt1mZrzK62ev0ukNqBQCkiRic6uptV62zeWrNylkPNI4xUg1amgKE0uYCMPAFCN9lnEXvfnd64vvG7W7d+1UH4aBMsVIMwpTs7v4tb//e/zKD/40jmfT3Fqk02owt1oKEuMAACAASURBVPsIuXwJ25LcunWD3bO72DU/TS9MqXdCrl64yuTsLsanphkO+uTzJVRkYBoW49VxSGMsW5KKWNPZUpPhCMW0LKl/5kQhDAvMFFuCqRKiqE8SdimWijQadSamZ8nl8vTaXWzLIAr7ZNws7XYNKQSFQpkoBkvaDPtdkv4WlgCUpgVvm/CApl3qxlYgDEGaxpi2Ng5Lo0SjdoZJlEAUpvT6KdfeusXyco+FpQX8IKDTadHptSkUCpTKFb599jnOXXyTT3/q3+f0G69xcJfkzOvPMD87wwuvXOLhJ36a3Uc/jhISaYiRc+827fEe93Fljlg07KBjX37qK5yYf0g/PjIiUsbdGk6R7qCApqHQgLraQasUapRgop0tt/MnLcse1bjmjn+kMsSogzTBNEeDhe3nRjXczn+4r7jV3+seyuX2+Wrc1Yt+EORufanJ3/onf/MvXYsaCP1d1f3OmP9W1j0UzR2qpmmiRqZR9+3HfZpK7j/eb3vt92mZ3+OVjmiZ2yLHd1vbzmBSiHdtaMx7mqb3hGu/S0OkZSL3b+PdHtu+2aVvp1+OXnNvM6jue/p+uuf2z/W9au5MIXZgbCkl0aDH/O5ddFsdTp08xcEHj+lGVkG73QIMbMsiKJbIBHk+85n/gP/tn/82v/07v4uTCXCMhD/613/IuVDxccdhZrKK69sEjsXt5XUsadBstpHSJJPPIAyTi1ducPyBfQD4GY8k1u6aaZKwVW+Ry2WwXYdoZCLRbffo9wfMTE1gSQvDNKnXmlSrJXLZDM1mm6mpcZ594wIH56eRltbaObbH6uom3W6fcqXI8X2zlIpFuh1NMQmCgCROR1P1VAdj2xblaok4jhGmRaWcZ9AfsFVrUG+0yOcyqMTg559+ld/+z3+Qn/voYdI4wXd9lDLYWNvk0pXrPHT8iM7VkgZJooOxDcNkOAzxXA/Pt7VeKVVYUuuULAGlYh7Hc3RwuJQ4rkc0jJBSsHt2goMHZqiOFTl8ZJ5Gs0GQDXbQEUNpkwDX9fADn3yxQCbj8Yd/8k2GgwGzs5NEUciZM5dZWlpnaqqKgcnFi9fJBA4bW5v4votpKm7cWGCsWsQQKcI0iWNzxylPSm08YI7Oo7GxCmE41EVqqkaaTkV1rMLzL77OzOwEs3NTLN5ZYn19k4nJCZRSZLI+CsXTT7/GiROHNVKBqd35Cllcz0Na7uiGCpaUxHFKNpflzbOX8T0Xx3HodnpIqQ0RCoU8QSZg19y0pqgJg1u3FwBFvz/km8++zpHDu2m32gDYtk271WFqchxSRSaXxZJSU+iExPUd1tfXtUbUMBn0h9iOTSaTwXIdJifHR5b3gjRONSrQ6zMzM0m/12dubop6o0E2myGKdb7SjWu3NfJhWVorlWiTkKtXbnD23FUcW+A4jp5whxGLS6vkchme+osX2T03BQYjZEkHqidxghD6c9rp6ia0UtUxB+VyQQ8TTEWr3WHQj3jm26+zb++szimTFq+fvMC5izc4fvQApqkR2SSJKJXy2u0wkyWfzyNti9u3l1hZ2+TmrSWOHz/CoD/EsSUbmzXCKKFUriKkS6tRI5crESeKYw8ewAtcEpWQz2Y5f+Eaf/HcSSrFgOpYhTSF3/yf/gCZJPzyL/015ud288XnX6S7tMzK7TVtmCQk/+qbz/Lo0QNY0sa2LXzX1mZHloUpoVjKE0WRnthnPJI4Jk30dT6JtSat1+tjSYfnX36d2dlJ+p0hX/r2y5w4tA/TkCgFg/4A29KUvVazgzAFSaJ2ULRtumc8TAgHEeEwwrZtXNcbhY5rOqXr6UD0drODEBIpNZXMltbOYFEpxfrqBrmRs2yaJriepxE0UzDsDXEsZ5R9KXZ0dQAq1cKaJElpNds06k38wGez1qBUyiNMg3azrRkH/QHeyMil3WxpFNM0uHlzhUMH9hDFEevrGyMtbYabtxaoVirafCQdAclJCGlCfavO5uaWdg21BKYhWFlZH+l/0WHlcYxt2ViWxb6HJyhnfYKMjyClVttiqxuyL3QR0gKEZhuMck79QMc8KGVweN8s3XaPG3eWKReymKbBrYUNXr9wDVeY5HMZhsOQNy9fhkSxa3YCx5fESUwapxw/thdTCHbPTOBaklwQ0Gx2mJqaoN8faFfgco40TQgH+rwxhcAwDBqNFpl8Fl2t3z9E/iCUzHuXcX81TpKCMFIuX3yTs69e4gcfehIVRyRxzOTULI1Oj0sXzzM7uwcpdANmCsHuub1kMwVsV1Iq5Wm16rTqGxQKRWJCEIo4DXFsFxKFJzJEKsIwTGzHHelBR4WwKbhx/QphlOD7WaQUGIZGj1SKpvIvL5LP5rAdj7turoqtrTVs6WMakqtXLrKydJvx8WmkqfX0ju3RbbexHRdDaIRLmysJwnA4ojJrVkuv38OSOsPRQFKvNzBTSafTZWN9jaAwzuGjR4nCIZVyVbswC4EtbS4snec/+pW/xqlTpznx0BG+8ZX/G9/q8dbFN0E4ZCtT5Cf24WUy6CTZd1Ix7z0+24W/UopP/tgP89n/9jd58tjHdpC7e4/ovdu4t2zTOrnt5+7+1ciksQNe3G263tb8vH2/7m1Itqmh9zlWqp3/v1sT90Gbu//hj/8xn3lb/MEHW/+WGrn3+90MbWL23Zq791rfb+6+x2u7ubs35uDdGp63a9nuRcSMe7v6e99zj7hSbW/73u/N6CM2asb0Z/n+1yh4p4Zu9Jp733tftMLbm0PeiQhuv/+7OX++53ovzd19045kNFERCAye/dY3+ejHnqTf72JLwZmzbzIxMYnt+qzWmxTyRYZhzKc+/Wmk59IbDoi7HarVKgtLy3z+zgI/MzHGysYWa/UGh/bOMjU9rgNPw5Bzl27w6tkr/MDjx3AdLexuNjrU65rKBZqqJ0xBFIWsrm6RyfgkcUo2mwVDW6132z2u3lgg63ukKqWYz2LZFjNjJX2jGLmcBW6AMAWGqYPTU5UQDyGJE9a3auRyAaYpaDU0dajT7lIs5BmGEQDDwRDXc9jYrDE9PU6ppLVQ/+FL5/ncZ38UMxnSaNapbbRZXd4ikwl47sVT/MDHPsTK8ipRHOJ4FmEUkiS6YVZKF2mrq6saker0yGYLDPohpENs20KZOlQ6SdVoPyIsabK1tUmShIThACkV0tIN4ub6JnGcaNt1w+T6zQXt8GaA41gcOTzH9OQkUpijJiThyOH9WLbNs99+nY88cYJMNoNtSV557Sz79x+CWBCFCfV6E5VIpNTufFrbI3WYdtZnq1bHdnSjbBomzWaL8xfeYm7XDFEUMjc7uXNO20KglIGb8RGW0PoQFIVMQC6X4/LVG0yNj7G0uEqxUmJxaY18oUiapARBwPrqOrl8njRN+cLXX+LY4d14vk+j2caRBp7vsrS0Sq6gzxWJYn19k3w+g5SSbL7Agf27saTWHtqWTRwnWLZNu92hVCzQ7/WpN1pkMxlefe0shUKGTDajKcqJwnFcMLWBBwqkJahv1XjhpVMc2DuHSrVV+5Ur15mdm9amRKXSqAGzWFleIwh8At8hM8pGlKbgpZdP8/CJB9i7bzfCFHiOR61Wx/M9xsarJEnKrtlJpBQsLizjex7Xbtxk0BtSKmmXxSSN8TwXy9buqQYGjWYLP3Bp1BoEQYYgE3Bg/25UnHDp8jUC3+fQwT0c2r+bfq+n3e2ShHwhx2AYslVvUijkddNvmJQrJbrdHh9+7IRGs034s6+/wMMPHcXP5AgjMEwbS+gpt+d7mMKg3e3iOA6WtNi9e4ZKMcMzL73J2fPXOXrkIE+fvsZP/ns/zWd/47P8yZ9+iZ/9mU/x0soif+tHf4jpyXHW1zc5sX+fzhyMdAaZFwR0O30sS2AoSRKBUqY2WYgUSaxYXl4dmYhoCphlWajUoFouaMc+DD704EEsW9Bt9Xjq6Rep1RpMT0xQ/3/Ye+9oy7K7zu+zT043h5dT5dxBLdEIoUAQIDEgBGg8LNssY82YGYMNE5ZZGmYGmBlAwvbAsheeAY+XwS0JZSFA3epWq3N3da6ururK4dV79XK4+Z58/Me+7/Xr6qoOEvIa29pVd9Wtc0+6d+9zzv79vt/f97vewM15/MfP/DU5y6BcKsrsvKoQRxFJmPD8idM89NRJ3nXnEfx+gG5q2/fZMJD+aZqiQyYR+NAPuXTpGtfmFxkbHWH+2gLFYgFN17cngRmQZqAqKu3NNl+792H27p3cri/cCh6TKCFNUvxen0KpSC7vkYFE1oW85rqdHpZp43qeFFgZTH4kkqIxNTlOlkEY9CkW8ximRr5coFSQCa5Hn3yOsZE69z9ynNG6vD5yuZwMqk1NepMqGseffwmSlGqtPJBuh3ajy3J7kz1HawgE3W6PLPaxLIM//NxDtE4vEPQjxseHWVldQzd0DFNHUQSdAVX24qU5bNPg6IFdBIGs+54Yr3PkwDSlUp5Go82Va4tcXJ7jrsMHsWyLIPTJxKAuSVG31bDTKGV9rUEUJeRLefq9PpapoesqURRxZW6RcjEnvflExukLs4yMDiNuUNgOA5/w8G3ccedt8pn9NiaPO4M7RZdUYFUI4jAgt1HD8myaawtU61WpggkszF9mz+4jvPDiU4xMTNIPfB595GFmZnZTqRUJIp+19RXqtQmiOOb5J1+h2eySK1TICBCaICFCYIAySGQmMgEnVEGcZCwvXidfqGKaOqoiUESMSGOaG6tEfhdFJHiOSZRlaIrJiyeeoVIpUywWsW1XIq5CYXh4TCadsghBIinNuonresSJ9A+VVgiSointEUBRNSzDQmSS1i4yjQunX2ZkakjWEac+y6vLHDl6J0mUYtsOFy9dgAz+4Mv/Mx/58AcZG6lz1ztuxzIF+NfYPVkgDUMq9RF6scr+d3wA3XQIA5mI3O6TWwR3W/9mwBe//Jf84NH3vrYvt+iUg3VvnHptBXHwqhrlq4fKtrd/XQw0UEIR2+czSPuLLWuT157Dmw86sY3m3QytulnbXOvyi7/+n+F57pvv/9YHfvXdW1CTv5nPnfREvDmA87p2K1DkJigfmfS4k7Y86nZJhaZp3wvuvpst3Smo8hYG5NYnt6JivqbdIuh73XZvMJjeDFzeGqDZLdbbWv5GA/27Fty9pm2HspRch2ajQQoUCwVMy5IWCY5DhkK/34ckQRUKxUIeNAXHsTFUmNmzm5/88Z/gL//qb3DW1zgwNsLU+Aitdg9FQC7n4fcD9syM0W53mF9coeA4hGGE67mcuXiNfq+P69osLa5RKhdQFEG5XAQEzUaLfl8GPmma4vd8dk+P43kuhi3pVetrm2RZhm4YKJrAcWzajR5PvfgKI7Uyrudw5twVapUK33j8RfZM1rFdi2azheNKBThVKJi6ztceepqxWplOr0cu56Fp8uL3+wE/9Y1H+c0PHWRytEoYRcRxysTEBJV6GT8I2L17XNZA6dK3SdM1kjhDVTUsW9Z7REmMZZjb/muO4wwKyTMM0yIefI84ThCZYGVplWK5gGnqoMjA5MrsdWzDZn1tg6GRITRVJQgl9a5YzBNHIf1+H8c2abc7WJYrs+FJSqfdwTItHn/yearlIrmCJ6X+bRPb1Ol2Q0zLpVQq8vQLJ9m7ZxdCCMIwZG11A9ex0XWVMPBZXpFm3aWSpLW5nseX/+ZJ7rp9D1EQEkchrUaLIAjYWGswOTWOqqtousJLJ05Rr5ZwLJcwjqjXK4NspqzdKZdLUtpbCO69/zFuP7afhIwkiTm0Z5xqtUwYhhSKOYrFPEma4jg2kBGGIadOXaDb67N3366B6IUU8ogCf9vbMggjlpdWyeWkeXQcRSyvrGGaGqOj9W2xG0VVpZiGa5Omso5JAAtzizzy+AkKeYtyIcf6xib1egXPdWSdZBwRhCGWaaJpGsVSgdWVdSDFdiyuXVvA7/e57bbDXLt2HVWTNhPzcwt0e302NhoUS3nIMhYXVnBsm1q1wsmTZ9m3f5dUPhzQAx9/8gUmxkdI4oTGZhPPy7GwsIRtGViGwXPPn0ZVFS5cuIplaHS7PXbNTHPp4lVKxfwALVYwTZM4jqUhPYJur49pGaytreN4DuVKEVUTBH6f2dk5lExFVRUuXZ5jfHx4QEHM2JJFB5mIEEIhCEMUVWDZNnfetp/9eydRFI2/8659rClVPv5f/xK/8t/9Kt12k5fPnuWnpmbotDvs2b+LJ55+kemxMRCS1hTH8ODDTzNSL+Lkcnztb77FS69c4MjBvQikJUWxVCDwA4xB7Y9Aig8FgU+SxFiOg25orK+tsbK0TrmY59jh/RiGxvFnTzA9OYmSxuzZPT0QKJFJudiPWFxY5dChfdx+dC9bKguqLmlVaSKphqZpcM8X7+Xg3mk0TaXT7fHMyVd4z7vuJElSytUS+sBLMiPbVlaWNXwJa6urfP9dt2G6FmEQblPb0iQlCkOJGg/qDVVNBUWiZpJKmmEPkE3IBuJTUnSludnE9VySNEPXVTRVQdc1dNMkCELCfsji8gpHDu6T/qBkjI2N4HgyYea4Dv2+j6rL/U2ODVMqFWS9YCoTWPd8+QH+dGWen/+BfTSbLQxDRxGgqjq/95UTfPzgXoZqReI4wrAM6UWXSFTIti1OnbvK6asLXF/dZPfYEJVKAVXTiON4ex3HdRgbHWKqXkEVsma71e1g2wau67F0fZ2wH5AlKYoCG83Wtv9hrVYi8H26vT5uzqNeq9Dv+Ri6JhGRDMqVAmm2UyAt4xPPneMT//Zfbi/5doO7TAiJMEYRZ145T9rKcL08hiKVVsMkwtRtHLdAu9NhYmKKTGh02l2OHTmKQkoYqKhCxzDyqIrH8eNPUyoXqdaGWFqaJV8osrq2hKIYGJpFP2zjOC5kGlcun8Hz8oRhQK0+Ts5zMXSVJAoxdOlHqQwSTaZpEEc+mVDxuxHDw2OESYCqG2iaQqO5Sd/vU6vXWF1bwrSk8XeSyhpYVYEoCjANkzRNB3VjYusvaZYRBgGaotLtthGKSrU+IoVTogTbzLO+1ObUy2fw4x7TU7u4evUqcVela7X4ez//UUxD4OXyPPbow9y2b4jmyhz9TovVjR66XeHPv3A/t93xLnI5702Ru9d2muBnf/an+W//+a/x/tvfv42y7ez2mw2Bt8e+2oHciW0O1+uQ3gHL8tVA8VbHeH00KdvW3PdNzu1Tn/9dfunjv/g2zv+mJ7HjdG6ANG+29k2ZdNkbiqV8Z6f3Kjq7dfzvIXff5bYzuNsJVt+qe99OcPcadO9m+7oZ6naTdd4wA/H/kuBOISbNVFIU1CwlZxmcv3iJarWCY9l0ez6KqpNmAr/f5o/+4FN88Iffz8b6CoWiQ6fbAFUjAYSqce8DD7DRaLJ0fh5HqBRzLr2uz8ZGi81ml1LRQ6Qph/bPEMcxa2ubxHHC3j2T1AY1GrZlABAEEbpp0NhsYpkWhVJeTl7IiIKYM+dnGRmuEKcpnUabTrdPLuehqlKtsbHZxLZMdk2PDh4uKuVyEcPU2Ts9QqHsoSqy9mljYxNd13Esi3PnrnBw14QMXA2Vvh9QKsvM+i88/gJf+o2PsGu6Bqi4XhHdsAizGN02QGTYrkUKGJYlfWrQUISKaUrVyiiWNDZDc9AHtCUEzF2bxzAdVtcaFEoFwiBCEYKNlXVGp0ZptdoyODQMLMehWq3QbXQ5ffYKU1Oj6IaOnXMgTaQQiWUhhMKVS3MkUYpXyG8rleVzHmEYsboiA+KNzTbDozW+9JVvUvBsFEfDc20MW8WyU6r1Mmmc0e50EZng/IVZJsZHePyp57jzzqNUKkXWVyVyeenCVX7igz/A+uoapUKOr9/3KK5l0m13IBVohkY/kMbrjqlhWyZxIgiiEM3Qt0VPNpbW0RWFCxevUquWOLBvijD0sRyb5ZUVhoZrxEkkM/2qMhANELRaLZIoRBMZhcowI2MjJGnC2toGAklzXLi+yNLiCsPDNbJMesr5fg9VU4gjGSy2Wm2KhTyNZk/62KkSAQ7DgF6vi+fYBH2fpYUV3vP9x9g9NcLGeoNqtUwcxTz7wikMQ6VWq0hfM0Vhfu46WZYxNFQnX5B1nBlQqpR4+dQ5zl26xuFD+0jjhHvvO86RwzOMjskaQ13TKQz6UFEE5VIBy3b40lceoV4pkqYZe/dM0233OH36IjNTU5w+eYFTp2c5fHAG0zRwbYuhkSHGx4YxdBVVCL718ItMjtco5HMsLy+jqoJLV+YYHR2i3eywvt4gSVK63S6aKs2cMzLC0McwFEK/z5Ur64yN1SiWXdZWVzDUBMPz6HY65Is52q0WmmrwhS89wNhoBdtxJJImFKJIUsParRYf/G/+KR/90Af54pc/xw/96A/xUz/+Pj79mc8ybrvYlsneXVP4vZT569fJFR0UYTE1NoZpSHrwgQMzHD44Q5KG6IaKqgKZGCjJbhOoiMIIy9HRDA2BkIFq2MexXOYXF5mZngBgfKSO6VjU61U0QxqeCwFRFGJqJl9/+Emmx0bQDAXD1hFaNhBYGDAzVJUkjjm8fw9ZmmFaBr7vs3tqDMuRapeKKqXCk0SKqUjRiwzNUNF1BSWLsSyNTJH+bOkWtT/NeOa5lzh36QozE2MyyAq2VDPl01IMqF/Hj7/IxPiYzPynGa7rYlk289cW8IouQkDgS9uQOM4wbRtD13AcC8PUMS2p9quYFlGYcurUWarlMr12Fy/nopvaQBBG2hioiobfj3jnbYf4mysX+Zm79xKGEV7O49HHTzA9PUXjSpMf3j1Or9chSyNUU5OqwEKFVLC4sMb01Ch3Ht3HnrEh4iji4pV54jCmUi3yxfufwlYVHnrqFHunx/jGY89TdnOsr7UZHqny5Qef5ODMLnQsIt8n9ANMW2d0qk6+Iumduq6ytLhGPpcjyxRU00A3dRrrG7i2xbX5JerV8natkxw+gj+7NMfHPvbRHYu+veAuTGI818MxLX77d36fIxNHqdSG6PU2CaOIXK5A6PtAgmVoqIrK/PwahUKVJGrTaC7LcWSBk3NRLZ3q2DBTY8M0Ow2iJOPcK+fwE4hSgYgSdFtec6QqrWaDUrmKpevSHF2EJFGAmkGGrPn0/R6qqoKQ1keba6u8cuIE/TDC9BxyxQph0COXz1MuDkl0VVHJeR6go+mgaOD32uhCI+z727VkW7+dUFRSYkk/jqSIiKorCDUDEoSSoOtQruapDeXQjBKKopLLFfm9r32Sw1MSwaxUHJaX1vj1X/vv0YIOid9jbfk6ulVkeHw/H/3PfxUnV0JFJxPxTfvvVauK1/Y5wMc+9jOcfewabs68CYtsC8l76+jYjeNi51z3ZuPl1Xo6ZWsCeev97UTKbrL8jdpv/5+/xZe+8hdv6/xvcRavvvtPMbjbgd4JMeCwfS+4++62ncHdW/GBu9nn6Q6xlZ1UyxtpkDe2WwVmN6NzbmVZxQ2fb/kqSVPbhC0/l62XwquDeGcwme147Sw/fVvD+m1cBBkqkCJIiQXo+TwXn32adqPN6NgUmZWTU4Qspt9r8QPvfy+KrpEvF1lZXaVSLuNpHo31TUSa8b53v5v/4757CfM2Pzpe5/HnzmIZOk+enuW97z6GbZmYpsmzJ85RL5eo1Cq8MnsZsnRAN1umWq+QZQp+fx1FVXDzHqurm0R+SM618cOYIA6Ynh5BKArHn36Fkxevcfc7jxAEPrmCQxD0ESIjTRROnb9EuSQln13Hot/xMU2DDBlEzF5dIOe4GLaGpuuUqyU63Q6laoF0UN/14tIiXw/X+eQv/TAqAtUc1AcYUrDA1AyCXoBlmKwtr5HECZ7jEIcxq6uLBEFvgPhE8vcUKkmaDPyrFHRVJQxC8sUi+VKBOIkkhVKFbqOJYrjc943jPHH8NN9/1yH8fh8EFIp5bMPgpZMXGR8fIlPTQc2Kg1BVNEOnOlSj0+ty9fIqteEqSRrRaraZvbzAhQtL3PWOA+zaN0acROyZnsDz8ly/usrIcAlNk0bLCgpZplMsFFhb2+Twkf0gVMbHx1C0jDRW8Zw8m+stRkcqfOvhJ1AUQa1WZ2JsHIRKz4/Yc2APhmGia1Kwxe+H2I6L49m02y0c04Qs4/r8IiNTVYQmmJiYpNlsoajqQN5bwXNdsizlpZelgbmm6WysrqOoGo7j4Xo5hKqx0djEc21UUop5aVL92FMnuOuuo1SrVTKREkZ9wiDiC197nFohx9pyg1qlgqYb6LaNoSkDQ+eAKIohg3PnLjNUr5ECpWoZoemkisb66iZeLoeq6ezeNQEiwzB1NMWQSJKu8viTLzIzPYIQKpubDXQhEVPLtjh6dD9ZltHtdTl6bBfr6w1yrkcUhRiGQZzE9Ho9HMdBMwzCXpdWo8ne3ROEfg9FZFy+fIXb7jjM1atzTEwOE0Rdzp6/wOTkDAuLq/i9PrYlKcrFUp69e6YpFD02Gw3KpQKKolCp5UiTBMOwKBQKlMpFXM/CLeRRRULod8h5eeJEwQ8ykiBhba3B1dlFRoeqlEplWuvrFHImS4srlEtVUgyeeOYsgojpqRF8v4uiKHzmcw9y9twVLly6jqhNc+nCdT796c/zwff/BCNjVf7Hz3+VX3rnO+l2euiGQegHfOvJ5zkwM8X65ir5kgeqgcikcbesozIH91EBQiICqq4hBGQCVEX6qm15CSKkZUoWJ0xNj6HqAlQF3TZJByIoApkIQkCv22fh2irHDu/DdR1JQ4sjIj/cRnz0Qc2eUFQM3UBRU5IsxHFNVFXHsizSLJJCOJlEvzY3GqgKGLqOUGQtmq7r0h5kELCRJYRBxFPHX+Kddxzj/JVr7Bqg4YpQUIUiv2SWoSiCNE0YqlVQVWXgdwdZktDcbFLMF1BVi3s+fy/1coFiqYjjeDz/7Ek8z6VUlqhnlsrfNuz0iMOQvQd2cebcBSq1MqiCKE6JgwDbMuh1uuiDhEsSx7TFdQ5N1nFdm6DfZ3SkTOD3ufrIS8yUy+iaSRaDm8+xajZF/wAAIABJREFUML9MFqWsrjZ45uXLnLxymZnhKrmcR5pm1CtlNF0nTTT6zR533HaA4ZpLqeqxZ3KaTjvAyzmkSUzYC5gYKYOq8aVvPsnth6awTA3ShKDXR1UVyFSUge1PFkOYxQghsEwTIRTqQ/WBQvSrc4YXFhb4kX/4qwwPBKRubDcGCju97YRQXruyqpAkEWkUUdkcI4xC0lRg6jqJ3ydst1DJ0HSLq1dPYds2rm2hkvDiybOMTx7g+PH7aa76KJlGKe/R3mzS8lM63T6ul2NqZg+Wk2dheZ3l5TZD1SqG0BBJRLFYRAhIk4SMFNUwQKgomsnclbPkciUs02Zx/iqOnUdXDHTdxCkbVCtloq5G1AnI5y06zQamLlhbXSJOE4x8maXlJptLczi6gRAZmaqRaTqCCJEpxGEsywREhIpClsYITRloAqjouglJipppZImg1e8RRFAb2YuiKJSrJV688jy7pyf56M/8PdZbs5w7eYZf/uV/zPiBY1y8eo5SDox8lWPf917yw3tQNJ1UpqO3X9siKhnSHmoHjfHGAOqTf/op7trzrtcAY69d5Q0Cp2ybcblzEVt2Aa99yR1vqeamWzV22xsPVtw537sVWvc2WuDHHHvvQXbtnmHLp+7bbzcEdG/AmHvNOjv38AYAyHfahKK8+vsj++J7yN13ue0M7r4TBGuLhiN2LHuzdsvg7iaZh501f69R5NmxTIZtNxzjxoxGlr3ue+489ncruNu59ywDw9AZr5R55LHHOXz77SimlKrWNYEQmRRmUFXiKKbT7WJZNudOneUTn/gEpmVz8NAhHnn0ETrAf3lwN3nTYHp6jN2TNU6eucRQqcC5i9e4644DfP2R5/F0jenpUVzbJklSKuUirUYbw9DpdJrYjoOiqOiajmHoGIbBpcvXpPecpqEIhWqpyOF9kyDA0DWazTaQYZomQT9menIYN2cPmAiCS5fn6fd8cnmHNM0IegGqokpqYiwnTmcuXWN0qIJhGCRxzD85cYHf+68+QGOzSRIl0vMGaYCsDEyZu90eQgi6vR6apqJpOt1enzgKpWx/p0McJ9iWTZok6LqxLf5gmhbNhhRDEGRyApamtFodaeWQL3D82bPomoIQ0WCy7QEZrWaH02euUa/msGwTXVMhlQI9vU4PdWBwHPqJpB4aKo5p8dBjLzE6XELVFOrDVeI44tnnzkhqqGFQKMiMfrfbxfNymJY0Lp69dp1yuTAQiBFkWYKuScpbksQoGoyOVCiVirKeQkha6e4905Clg+dOhqopPPXMS8xMjUrVyIFnma7rOI6FaRosL69TyBcwTYuF64vU6xXWVzfI5/MIwNBUcjmPMAy5dGmWfM7DcRwYKJsGYYxp6nRabRQhMG2bnGuhqZIyu7a6TpolFApFqkWPiYkx5uYWqdUrbG42cT2HVrOF42wJPICqqowMDXHlyjVMw0AbIBz9vo+py5ohTVfpdLqomoamavR7Aaom5eWnpkZQlQF1L02wTINWu0OcSfoyKNz/rSc5cngPnueysd7Ask2Wl1cplYp86WsPcWDvFBkZge9jWSaFQp5er0+hkGez2aRardBpd0nTlF3TE2iqVDYdHR2i2Wjy+DMnmJkexTBMhKKwvLTC8HCdIAzQNI2eL+udBCoZkiLrujYZgvW1dUqFAnGSIVBxXJdqqUjgB4RRyMTEMF9/4AmmJ+s4rkGn0yWfL5AKlUMHpqiUcttZblXVqRQcNjYbdPo+zy50+OTv/A7zc3M0mw3GJ0d54KHH+cjuPSwtr6CpCo8ff5F6rUDec4jThEKpIP3uBjQpyzIGKN0WTidl+AXKoH6bbTpOEg/sCxSBqqjohkGz2UJVBUIotBttzIEXWpaBUFXSgSn5o0+8yMLSMqYhRWuiKMZ2bQI/wLQsOp0uuqaxsrSK67kykRDKa6bfC6SSpSYnuEJIY+9CMSfVk1WVbEt6nUxS2ISg35P9Mnt1npHhISzT5OD+3QORIxVVkYJG0tMOEFJp03Fd0iTlK/d+iz2TE5iWwfz8Ap1OjzhM2NhsMDU5guM6LF1fplatYFrSoL3RaGHoBlEU0mq0t0VlbMsaJKyygTiXysryCo7j0A9CSUlXNYb35ygXPCnu0u5QKOTZaPfYF9lomoplG1i2gdA1gr6PrmrUamU0AXsnRyiXioRhSLvTxTJNFEVItsfucYLAZ31T0pb7nYggDPjKt57DsxSOHdxFv++jGRY5Q6CpCqalY1gGSZaRxLJWMCPl6twiWZIxt7hOrVrC0DUaG028vDdIEr/6tPzXL1/h7//Dj98S/Xgjit+N22whgn/91a8zZA/RD3xs00TVBb1uk6DfQihgmiaFUhVVUQmCmDOvvMB73vcTIATjE+OYpsPQ0BDNzgaVWg3bchkdGaNSqpCR0e506PV9Dh06wqWzxymVS5i6LsdfGqGrxrb9BpmU2ndtlySTaLJlOwNPWoU4lbZJaRyxsbFGqVqh0WpSLlVYWVkmzVKqtWEURdLgh+sVNtcXabVWcdw8hmGhZAJFU9ANdfBDbEn7K2Rptn1NxnEEmRRgiZMYods8f+I065tt1tZXcCiw751jXLh4kXfd9X18+Stf5od+8IMsrXTwwz6r1y+T9hdAsWj3FaYOvIMkU1Bu6DoxuHdkspNe36c73n/4J3+MX/nNAT3z5iPgFst5lT1w4/FvHBcDoSS22JODk1MHgmXby1+3/28/qNtq//ae3+E3PvHPBqcrEFtd82217/x8vpvtZtfw94K773L7Ww/u3gLVcqv9bQd3Qrwqtbv1Xf5TDO4URWZ2F67O8sr5c+zbvw/HdciyFIQmayU0gySWfk2elyMDcq7DB97/Xo7ddpQ0jXnnO+7kxRMvc8+5K3ywkuf4qTMc3jdJqeDS6/iMjw0RRTF+z2d6cgSRKQT9CMs0UDWFbreDZet02wHFYpEsFSiKRhIlXL46z/TUqMy0phmmYzM3t0CtXmFpYQVVU8nnPYRQ0A2dhYVVKRygatKfLExwbINKrUiv59NudXEsl+WlDXJFBxBcnV3k8P5d6IZO0PP5xadf4rP/9MMkWSo94NKUYrFMEARoqqxzUVWBZRskaSxRFcXkns9+k9gPePHUeY4e2Yfn5tB1gzCM0HWTa7Pz0svJdmg2mnJCl8WyRq7VRlU1vFwer1BANw1uO7ybPbtGGRmpS1sAxyYTAk1TOLh/il63i6Hr9Lp9mo02SRTjOi6ba5uUikXajTaaLjAMDVXXOHhwmqF6EVUV6IY+EE9pMT4+TL1WIR5IV7uuy2ajiePaJFnC8EgFVRU8/+IpxkbrkMTc98AT7Ns7ydXZa9RHKmiGhqnbXLp0laHhGoiE2WvzrK2tUx+qEkUhuq5RLDgYlkSkTMsaTPoVVEVKZC9eX6VSKhL0fYqFHM888xIHD+wn9EPIBJ5nE8cRIksYHhoiSRJOn75AqZTH9316nR6OY5Om8OQzJ5mZGmdhYYkoSnnwWy9y9923YegammawsbqBrmt8/eEXaDebzEyPQQa+7+O6DmfPXKRSkf1uGLYUZcjnSRJpGzBUL2NaOq1WC8e2mJtbpFquoGsG9z/4FLt3TQyuJeh0uhiGRuBLs+B8oYjrOLJODcHeXeMD5F/lwsVZJifH6HW75HIeRw7tkcbKOY84TVhcXmN4pE6pWiROEyrVEq1Wm3K5RC7nDbzTUhQyHMvAzXkM1crYbp44yVBERhhFqKpCY6NJpVZB10yuX19CVRQuXp4lTWJcxyEKU1bXNgBBLlcgjhP6PZ/1tTWuL60yNlajXC4yd32J/fvGiaMUTVdIswhVMzAMC12XEuwyaaPhuS6794zzzjsPMF0xCZw6P/5jP4phqOya2cOZc+dZmrvKew4cQAiYGh9mamIUXdeoDlUk1TaOuHzxKsVSHk2TbAqJuGwl1wRpkkhhDVVBUWR9m6pJRVqBRLuCOMT1HBQh6LW6FAsF0kwGfigKftfHNC0ECntmxhkdruK4NmEUYVnmIMu9pdAs2SOGqfOZr97LnskxLMuisdmSyqOaRqfZJ0slImgYOnESSoNiRU5As1SaNCepFBVQVamwWS6XMQwd2zYJfB/Hc4AMvxegKvqgVkoQhjGGaZClGXGc4OgyERBGIWcvXebO24+gKRrTU6NSeday0DUVN+cRBj69Xo9vPvU0IoJqrYxbzOEVPC5dukqpkEdBgSTFsAwWri9hWxa2Kym3QkCWZOQm9IFNh0KcpFimxdefPsM+YWFakh4XJxGmbWObBv4AIR8ZraFrFqEf8ulvPMF73nEYRQXT1hGatI3utDpcnl+mViqytLxKqezxjqO7KJdzqLqKk3NIsoxCwUXVFGzPIUVBM0yCvo+iqDieiWPrXJxbYHJoFFXI3352bpFKpTBATF9tn710nb/7d3/2lk/TtxXcDaCcf/6bv80H7vgAS9dnGRkZJlF1UBSiOEIhRlFSDEVhY22BOA6xbZvTZ15kemY31xfmqVdH0XWdYrlAz++T84r4fkA/8MkUhRdefIb3ve/HUEgZGR1FURT6fR8UgW6ZhKGPaViksZy3yOsnGzCPUlRNJYwD0jTm+AsvsWtsGIOEYqmE7ljYbpnNRpMrVy5yYP8xrly9jGWYuJ5HHEk/Qd0wWVtfxHHzkCQkWUYYx1JZOZY1mnEco2mv1ocGQQ9Dk0Glamp0ggQ/BNcrcve7vp9/+bl/xaf+zW8xOjLKmVfOcvDYbRzadwAvX0Y3FPZODbG5fI52L+HYnT+AVZpEN62B198NCOsNwd222N5NRDp+7ud+mn/x27/F3cfuvtkIuOXYuNXHNxMK3KZUbv8r/Qql+MctjvIdBncr15t87B99ZKB1IM9DMtO+3f1+L7h7q+3/N8FdnCS/9WZUzDdrqtgxJHcoWe5sW3516SC4ymDbq24rKHydsuaO4EmIgT/dDm7zlqedqqqD99k29Lu1paKorwabW5TMG7ztdlI036zd7Nxu1ba8QJIkec3eVU16JyVRwMTkJOcvnKderxMEIa6XI01j1AGyoiiKFF9QdXRNpVgq0Wq2yBdyOK7Dh37sJ/nLr32VD4/X2D0xQqfd5dr8EpVSCaEomJZBvVLkwSdP0G33GR6qIESGooDr2rQ6HfJuntXVDVzXJo5iVF2lVq/Q6XQABcdzEUhqYpbE5PKe9NOJU0xL0i5znoOuaTz5/CvUSkVMy0SQMXd9mVqtguM6OLaJ5zgYtgYItIH/j9/v8hsXrvIn/+iH0Q2ddrtDqVikXCwghKRLGYY2eFD2tuXJwyAijuDM2WsU8jZ3v/MArucyd+36wERZo7HZIF/wsB3pCyYUhTAM8Tzpr5UMjHuFkLVkSZJy9fIshUJuW6I+ikI6nQ6WbdPrdEiThFw+j2kaFPJ5NENHGzzEgyDE8zzCKMQ0ZfY6DAIWl1YQAk6euoimKBw5ckDW7tkWiiI4e+4KcRThui6pAtrAcDdLUoxBIK1pGiPDVaI4Zni4TpwmxEnC88+dZs+eKQxdJSNjeKjO6NiQpMLOzssaHiGDzSAI5KQWQWOjga7rNBttul0fL+fw4MPPUC7mOHRoH3GUsbayxtz8Aqap81ffeJQ9MxMoikKn06VelzQuocixkSQprudSLuZlMK3rzF5bZnW9ze6ZEVRVyCBEVdENjenxGmOjNVRNxXFsrs0tUKtXcR0bTdM4/cpFNjYbzOya5PKlq9TqFZIkwbIshCpIYymG0Gl30XWdM6cvcvsdB9jc2ETTVVzXxbYtLl+epVIpEQ0m4P1eDyEkTSRJY5I4wrIs2q0W1bqUpFeQ/mphGKIoCoapkcQJ+UKBKJZKdHES0Wq0yOdy9Ho+p09fZGpihMXlFemBpyjk8jkuXbqG7ToYhrJt7q3pEmlM0gxd03j2hdPcdedhSqUicRRz8uR5JiZHcF2XMIxIkphvPHCc22/bR7mcZ2ioyvLKKne94whCySCVaEkQdCHTEBhkSBNjEANJdBmAqYrCcCnPF5+8yP333cdHf/ajmIZOzjH59GNP8dG9+4hiyRhQNZV+35fBayJNmYdqNRRVDMQvxDYsIoNkWdumqdLkXHpWqjIAG6yvCGUghiLnSJZpyUnNIM0/NzuP3/cH7AUpuW1s0w+TbcEWSbVWpUWPQIrqBCEz0xMIIbBtWxpkpyknTpxhZKQumQAio91q4bgeft+HLMXQdSnaFMWyBCCVlFIBiME5qJoKWUq328dxHNqtDqoq7yeWLUV8+l2fR598jqOHD2A70gJhtF4nSWK+/uATXLk2z8zkOA89dpwoDKjXq8RJjJtz8AyTqYkJcnlZNxr0fcrlEgJ48eRpivkchqnR7/lU61WSRKLmURCSphnuhEmj2SIIQkrFAl/86oPc8+wCv7B/hrWBCJZhGvh+tG3OrGoaqq5z36PPc8fRfdy+f4p2q836+iaBH2I6Jt12F93Q2bd7CqEIypWB954AyzbpdvtomnxWRUFIGEZS0EXTQQg0oWBZNtcXFvHDkKLnUi5XpKiMKljbaDA0WpVIyY7n8pevLvCxj330NRPwW9VZvSaJe4uJriIEn//8l3nn3rvYWLlOznGIEilapikaapaQxQlpHGFbDo7jDurKXRRFYNseipD3hktXzmMZDo7jYRg61xfmMUyL22+7izOvnOLypQsMDQ8zO3uZc+cuMDI6QavdkYimbkAmvQ6zTCLcykDVcqt+EwHVoWEMMnRFIUoVTp16iVPnTjIxsZuh+hjLK0tMT8zQbG4QRCGqIg3LPdfBNGx0TScKekRRxplTpxgaHsc0pQiQZVikgzpkTddRFA1VkR6DQlGIUsHpV84T+BGfe+7L/Lvf+1dYts309DSPPfoY77j7dtQs4o/+1z/ipdMv8Cd//PvsHS0yO7fCoWN3URk/QAqoarZNxXxdHw368HV9KkBVxDYD6K/uvZdLp89x7NAd3DqIefPg5q2GP5KeqTA/P08+n5cb3ojgvYXg7kYQYitQXF/u8L9989/xy7/88RvO7zsJ0G6Bbr8F5cy/zbbzeG9WE/m94O673JKdapnfZnsrQzKDbfNwcZNt3qwI9DXZn633WyjcoJ5ui5b5GuRuYCi9M3h7uwW4r/0ib+MCyQbVKDcebpChclyHVqdFp9NgpF7F83J0/ZhOq43jetKnSTdpttvouk6v06TVaNDpdbAdi3Pnz1OtVLn77u/j1z7zeX60UKBerRK2Q4QqpfLDIOLsxWtUCjmuLq2xe6IuPeZMg/X1TQqeR5opOJaBaWoIJUPRFYIowtA1NtZbmAN/MlWVfbix3mB9vUkUxtiWxcrKBpom62pcw+L8pevkBoqYYRixPEBqjr9wWhatCzB0k6AfMLu+zv++scw//tBhet0+Xl7S/TrtNn7fRzeldLaiiIH6XIiqykmDqhgE/ZhOu8Vddx7AzRtARqGY4/r1Rbycw/LKGtVqefvGGQWhtEvIMmzbprHZ4OzZKwwPVUlIIE3Jezaba+vkPItWq8n6+jrFQglNEeimhpf3yFSFfs8HZZBcAHTTxHJsTEtnY7OB49roikK306FQzpHP5xmu1Xn40ZfYv38SwzY4e/Y8lUoVx5EehF7OJcsgjGKiOEagUKmUWV1epx9KI3bXdaREv2GjKTrT0xNcuHiZYikHWYZhGfS7AV+/7wnuvP2Q9JDyJA0xRaqG9vs+s7OLjIwMo2omf33/cY4d3c3k+JD0m8qk0bbt2QyPDCEUhX17ZsgyqfRnWtLzznHkJCEKAhzHptPt02p3SIKQXq/Hvv272bt7HE0X9PptLl++xp7dM/i9gEKlQK6QgwwC3+f+h05w29G9JEnKxYuzHD16gGq9gKop0qcvTTn7ymWK+QKaYQyuJXBsC8+1uDI7h+c60ndO05ibX8D1HKqVIpqqY3kucZqxsb6BZUl6VByFeJ6Lqmq4jsP6+qZEhHUpG64bBkmcEIUh1UoFIRQuXrjC/PwCI8N1HMdGVTX+4z33cvvhXdiuQ6VWxrRsmY1NM6IwpF6tkAqZxe71+vK3c118P+bChVkmxqq4nkMcRQihIquPMlRDY2lxiVKpwNREDd00MC2TIAwYHhkijmIUVUXBRFUFftDCsvL02xmqLlE1TaqdoKiCfj/CMGWd3B99/lH+4Pc/RT5fpNNZwPNcHnzkKX7AK6OrBpkiA2nbdrl44SqVUomg3ydJUjqdzsD3VPolKopKJuSkqLnZAhgIjkjFSXnPTen2umi6CkmGKhQ67TamY20LP6Rpgus6KIogl3dBEYSBj6JJf8N4YCyfpfJa1jWNMAwlHVTA+OgooEh1XMsmHST9zp6X13g+n+Oll18hiROKxQICgWVo9Lpd0gyp2CoEqqLTbUu6b0aGocua3zRLsSyLP7zni6hBgq6pfOv4sxzYM0MSS9+8malxVE2gKNLMXVWkP91IvcrZS7Ps3z3DidPn8TyLkeEai4vLGIZGvV5DU006nQ6RH6ApsjbZMA00IagO1/C7HRzPQ9G07YSnIuA3n/om7zs0hmEaqIpCt+cz3/apdzLuGh0mCmJURWNzU9LHVVUGx17eJSNj18QQ+iA5pGs6IpMJF1VTyRL5zNZ0hb4fEPiSuul6DmEQo+kGKBpr19c5ceoiQ+XiYH2NRqPFgw+/zGi9imlpVKtFwiDGNAWKSOn1utiWjjnwG9x+NscRF3JV3v+BH3xLz+s3mxiLgWphpTFFpZpnY2UOz7FRVam0CjI5kGTS9D2OQyBCU8HUVBorV1lduUwSBnRa61QqZTQh6HelPcji0gKjI6OoiqCQ85jctQ/TdvEjQaU2xdVrs6yur5AlKs8//xKWnWFaHhcvnZf3M03DMKRyrm7oxHGMrQv6/T5BHJGIBLKUWqlGpVik2+8zVBviyuwlJscnSTPByVMv0e31GaoPST/Pgf9wPwiZu77C2NgYJFLdNckSWeqgqiRxghAKKRlpktJsbpBz80yMjyOMHC/Nn+KnP/QjGIbOqVOnee/73s/Z81eZHB/jC1/5Gne/+/tYW7hGXvHJFYdQzDIzh94BQiUT8hl28065RZ+JgUXVYKr1d37qQ/zJX/wZ7znygwPGyS02etNBogw2foM53GDn/V6Pfr9HzpNWPzfSS986cidnuzviVv6nr36KL3zhnu9sHnrT49xk6ZvMq/+229v5Tt8L7r7L7f/x4G5nNH8DMvfqym89uJNThsEEO0u2P381Y7AjuNuh1POdUFDf+qqvBps3fhdFUUmzRKofLi9z/tx59uzdjx9BzpNS+rqqEcURpmFJPr6uIjQFx3bwvBz1apUoTvF9nwce/BbPNztMrHexdIMojWVNGLBrZpwoDFlrttg7Nca5K3N4ttxn3w/47H3PcHTfGHNzC5QrBfwgwHRMTp66yOhQDVWRIiSOZyOElG/P5z05KdZU8vkcmqFiWRae5zE6UsUwdQzTxLYtiuUCqqIwNVaXNDXHIQxj/uzJZ1mc9vgffuFHyHsOpXJRImhJhOs4OLbDxuYm+XyOVruDrhv0+wGWZdPr9zANm9AP2bN7AsPUWFxaIooivJxLLucR+AGVaonNjQa2bcsJh6ZhmRa25xIEAY5lMTM9Ib2ssoxOq0Wv3cGxTTYam1IkYajC2bNXSZOIldV1qrUKqm5g6Bq6YZBK92a0gXS4YRqSyplJGR2Rpei2QRzFZBGUCi5rm5tSxTFNePrpU0xNjvHwYy+wZ88Ep145z8ZGk+HhOrqqkaYZG+ubVIeHWFxYolQq0m51ME2T9ZUNzpy7zMEDMyiKpCE++vjzHNi7h+nJEQxLqo1puibrPIQkQdu2TTGXZ3OjgWYYHH/uLIcOjOHmXHRdJx7Q6uJBDYaq6dLCQtUJgz4nTpzB8xxsW1o1LC0tY9s2mmlSLJbY2FhneKjGRrNNtVomTRM0XVCv1zl76iJLq2sMjdTp9/usrW1gmya3H92Hpsv6Tl3VECJjdm6OYjEvs6mZwDJM7nvgaQ4emoEMTr50hqvXFnBMDdPQGR4dlrTgOCKf99g2WhWC9fUmxWIOU9cktU/TMU2dKIpYXFjCME1My5JUOyG45/P3cfvRvVIBMksxdBOQ6pn1WoX19Q0c1yYIAnZNDDM8MkQUBnS6PSxLIse6puO5rvTY0mVWM44ibNshTVL+/NMP8OMfvJvZ+Xkmxke2vahKxaJUmFQUVtfWyXs2Oc8hBc6fv8TY2DBxlPD5rz7IwQPTEGv0/Q6up7O01OTs6es0OpuMjw+TpRI9S9IEITQuX5rls195hPHhPHZ5krNnzzEzUyFL4Wc/8lP8gz/+D7zTKcgaLctCQeHkKxfYPTNBGAasrq4zNFIbJFg0QBlYXUizZVVTMUwZFCMESZwSRxFZluJ4Fu1mC8eUgZdhm1LAYHCLjMKQlZVVDEPHGiBfhqHh93wMw0DVJM20udnk//rr+7njsBwzSZLQarWxLXlfO3vukkSMHJM0SZkaH0XTVJrNNsP1KpVaWWaZyVAV0HWd1bVNdNMcOC0IHnz4OJoiZA2yrhHFMfEA3b/zwD7GRkdwXJsj+3fLIFtTZeAJ9Ps9Fq4v4tg2G+ubtFs9iuU8Rw7spd/tc9cdRxgdqZPEMcVygWxwDwn9CNu1sU2Lp589wdTkGBsbm1L8CtAVgW7bkkoYhPS7Pbycw/GFKwyZCaVykbW1TQqlIr/7mUf4+N4Z8pa02djc7DBUq1Aouui6RrfXk/YeQmAaGhvrm3Q7Pp1Oj3KlJNkXQmCasp7T94PBmDCxLAtd05mdXSSX9/jcXz/O6XPX+fD77+TK7CKObaKbOo7nMDMyiqZp6KZkI7ieA0KijooC+UIOzTAHdHn5zPzNZ87wu//LH9z0+Xmz9qbBncj45Cf/kGO7jxGFPnqWkkYhQklod1okWUoch6iqQBOZFDnSNEzDIAoDhmpjFKtVXCdHo7GC47gsXL+KZee4OnuZNE0ZHh6l3W6hZBmG69Lutin9WTaGAAAgAElEQVSVKpCpnDv3MpXaEAuXr7J7zwz1oRHiOOPi5Tkmx4fRVI0wDlEHFFEhBKYi0DSbTAXLs3FsF9fO0+m2aLba5PJFLl0+S61WR1F0xidmGBubRGQxuiqIo1AyEETGxPQkG+tL2LpDkgWAGFjWZNv+o8kARfQcSUNfW1vkicfO8Ed/+q956JFvUa1WOXjwIC+deJnb3/Furpy/woc//BGmJmc4MDOFS5NuEDOx6yCju48MAP0YgXqrTrlVZ74muAP4+Z/7CL/+2/+M7z/wbinQc7ONbjEutv5k29TPNxwoAJiWNJ+3BvMk8briwbcWxMh5qDyTLMv4D9/49/zZn//pTSmo31n7XnD3Vtt3Ilvz/5mWpSlpEr9mmRDp614729b/hPLan1C9QS42S9OBUpPyunV3Lr/Z5/I85M0JZGelcYwiNBShASpZKgavdHudrf1sUTO3Xsrg87fS6W90Tq8/R2XHS37vNH31Akt0HcXy2HvoDv7qa/fT7wV4BmhCQ6QRSdwmCVa554//DQ/8xb8HoWHoecChH8BGr8OJ507xS//F3+ef/INf5UqjwdLmJqarUx8ukC+4zK+soigJpbLFB77vGJ1unzuP7qfvB+RyHsVCjo///AfQDIPJ6UmiRBoBp0HKkb270FSFz9/3OOVKkagfE4XSSwyRyaBmUIx98cKcVC41BEKTPm1h3COMQwxNJ0sy/CCgF/YxLZ2fe+gJfvVf/Dy/8jPvod9tsrGyzMLsFUTSpb25Qhr7dLp9atUyvV6PxkaDJIpobDbotJqsL2/w4ENPYDgqfuKTajA5NYXr5uh1AwI/opAvEAUxSpbR77WJEh/dVOj6XeI4Qtc1wjhgdu4aKBlhFGJZJppp4JWKjI5NMTw6SYbN7NwmhVKNAwcPksQZSRiysb5Jv9Ol1+nKx1eSoAlpkqsqYBoa/X7Atfk1whAUVcfwdEan69Rq/zd7bx4l2XXXeX7ufXvsW0buWXuVVCpJpdXGxnbbMhgvGIMBGbrhmOOhYZjDaQZ64TDQGGNm3EzPAXoahqUBgxvbYCMDtuVVljetLkklqUq1qvbcMyJjj3jrnT/uy6ysUpUl4e6BaXx14tRRZOR7ERlv+f1+362IUhGmsLh5705UHPMD77wHSwqSvuLgjTciwoROt02r22Zy2wy9dpttczMEfkh9fIwLl+bJl3PccvAGLNtldaXFhQtLTE+M0eu3eO74cf76bx6g1++jJBi2iT8IOHn8eYJRkDrtCe7/7NfIZ2wunl9m0B2xNL9C6Pu4psI2BF//2iFQCb12GyFjnnriJNVSmemZKWKVMBwFyDgh8ofESUiU+IzVKxw5dpJKuchoNEQlCkt6rC032LFnjptu3sN6o4GKYnZsn6ZcKeBmXe2oKBWZnE0m4zJeqyJicA2HJFYkRLzjHa9GKIGKwbYdDt66Hy+fpzY+hhKJjm1wbaRlIm0bTAmGoDZWIgoDlCGJhNYpffBDn8W2M9THxjXSJBWuo3MP3/iaO/nPf/R3LC0sE2MSEtPsNGm2Gpw4eYbHDj1HEgtNEzWh1Wnh5fLUxiqYlkEQRiQKvv7YIRIZkUQR/tBHKINOp8/XHnqCn/7JNxMrn9sOHmA4CgnjhGarzSgJsV0HFDz59POAQZxIAn/E9u3T9Hs9pCH43je9mihS4CbY2QwJGcp5kwMHMmzbNpX68yr8wNehxVKxY+cMu6bG+NHXHuQjH/trglFIu2tRqu1gOExIBJxbuIRQiuFgyOraGt91z6tJSPDyWRzTI44lcSKJSMBIkKbCH4QMe0MsKZGpzk6mNHvt3OqgIkmhUCaWECYJiRJ6sp/oibrreczMzFAqldPCM0IpyOazxElCHOosP2lJZscqCGkgpYVp2BTzZR1fICX79u0iV9TOj5/7ysOgoNlYx3MdTEfHHHzxiw8TBQlxYqDQLpy9dguFIk4ivvsNr8LzPPL5vHbENS0c28E2LYb9AaYJpmUQhpF27kQQxSGJCvnjv7mfOFb0eiNOnbvIxHSdfneAaUrcjMVw0KW73uPBLx/CdV0ymTyGtPByLseeO0lMzKu+8w5G/pBKtQgqQSrF8nKLyPcRKqbRbNBqd4hieOOdu9mzdxdJnOjPKCUjkSEnDAzXxMxazGwfB0Mx8mO6PZ9CocT8/CqXzi2RJAat1pDjZy/xpSePsLKyjEoC4ihE2galeplKqhE1XJOYmP5gQMZxCAY+RhLzrrffhZuxqFbym01uksQYnsJwFZiSGEmEIJY2ynDorA8RSoefb7phA+dGAYnSzoUqNSBR36Q4VVv+2/ocKYvnc5/5PJ0TLUhACYNESqTjMGy3WF84TXv+BK35ExhRQBTEWLaL7WTx/QTTtkiMEMIRhG12z05ji5DJ8QrhcBlLdamXCzzwhU+Ry+To9DsMe+t4poVrWhw9eoi3vPWdHDz4HZQmtlOu72RpZZ1zZ08zMzNNnCgSoVBxjGNot99ExWB6xDLBdT1UCEkcEcdd/FGLsbExRkGfWw7ewamzZ0DFjEY9Hnnsa4Sxy6OHDzMUDsNwhG0JLGWyOr9A7EiGYYK0PIRho9C1jCEN4jDUqK1hkAhJtzfi/ov387O/8Iu01sHz8nSHbZAGvdVVxuYydEcLnDx6nH/1b/49C80Fjp8+x+z2G4gSHyFDpHLTWkh/JzKVGwgBBiDTAejGQ6Dnjxt1kmJDlyj48If/mN/6xP+1tcLa8mBDyHeFWWSsFBuCna2o34aPylUF22YDlMQxrucSR/GVqJ0QL6n2u+LYTBlc7//Q+/i93/+/AYlIh2IvvfLcuuQ1HtfZ95Y6d+u6Vo0tpNwcrryc9XJq4n8M69vIHVymFW750oS4Bqq2ZWogNwxV0gv1FdvaSrv4FiYXKkmuebF/sSnF1meMTUqLuO5rXvyNvPRXS0Nr//SFTZ9E0jQxU11HvVJjYXGRmblZhiOf7nCIYZlcOH+JH7j3Xvbs2UtkekRxzIXz50kCH8cyyOdK3HPP6wnCkPOnnudz7QY/edtNtFotVJKw3u5Rq5bIFXIIDB1Ye+x5Zqbr2I6lCzCp3bQ67Q75QhbL1qG8AkGUxOyaqad6HfCDkNW1dTIZj+FglOrVBGNjFaRppPx07fZpOzZnzy3g2jZnzy9QLuXJF3J832ce4rfedRfj43WUiukPevQ7Parlgp6QhzGO5bI0v4qX8zANk0KhgAJyuRymqcNWl1eaTEyUcWz9OeIwBCHIFVJ6omPpCahtY5hauzca+mRzWYQ0Uv1kQhRGaTixzbA/oFQqEfghjqPNWOIoIpNxmJmdYDgcMhgM6HV6lCslpJTp+4lYWVoj47mYtt52t9PF8zIsLKxQKucxDBPTtDBNk3a7Q7FQ5Mknj7F3z06tIUPnx/kjrVs5/fwFZmYnU7OOBMfSdNQwCHBdF5SiVNa5gFEUsri0wo7tM9TrNTzPZWp6grFqkYnJcZ586lmyGYdyscR4vU4UJ6yvt1labjAzVeMNr7ubsXqZQ4eepVTIkcl6RLE2XDhw0z4uXVhASInt2PQ7PaQhUydVAyElxWwWw7QIU4MJ05AkcUSxVMT3A/r9Pq5jMxr5ZHMZzl+YZ3Z2CtfVQc4qUUQqodPqpPoWL9UtOgA0m+sIISgWi3iew7FjmoZar9c0TdSxsRxbI7CJStHOFh/66APcdutu4ijGkAZCarOMJE6QQnL02GluuWlPen6Cl9HoXBRHuK7Dd9x1E27GwfE8pNAut7lcjlq1zJ5d2zBNbWjRancI/IhKpUyz0aCQLxL6Ia1Wm+1zU2QyWR2dkcly4eICGdflxv27icKIEyfPMjk5QRiGGvmSWq9mGgat9TZ3HNxPGOiIhqXFZXJZj2w+p50nLQPLdBACbXCSxJhGQi7rYbk6YyyOY1zHIQx08zgYjHj80EnuunM/g8w23v6O72V9vcE3Hn+M3bt38+cf+Si/+r3fy1PHnmN6YgLLtPA8jzhJGI2GWh+chnpLIYhCPQDUzpQCx3XQpbVIWQpyc/K9cY1eXVmjUMwRRxolRYhUx5fCeCI1nopC4jDSTAZLU2kNKfEyHnv2bNcmKHFEHGnKMun+wjBMnTsFN+zZiRDwtceeZGqirmmfhsHOuRksx0aa2gQmm8/iODZJehcwbYtSKU+iYq0XTOtIIcUmdfTcuYvUJ8YwTRMzzYAUQnDbDXuYnJ7AdRy2zU5p58kwwvNc4jhK9dAOxXyWZqNBLp9lOBiyvLhCFMeUSgWEEIxGIxprTVzPxfd9Ll1cJJ/PEkcxlVqZfCFHFCeEXpdSMc+pU+eYmppgYWGRLx1b5c31MmuNde0MKrQ51rGT5zANQa6Qo1QqkMtmtZauUmB6osYdB/bQ7/URAvr9IV4mZXkMRtpNMQp0hIRh8NQzz7N9boqb9s7SanfpdfpUq2VOnr3I9FQdaUhItOGNZZubQyXNjkuYX1imWikiTI3aCeChCxd5w0/+FDMzU9dkvbzYeoGJGvBLv/w+fvytP4XlWMRhoKMEVhYxiUiSiIyXxbFdojCksbySug8n2JaNQBLHsb4+S0msYkbDHq5rk3Mz9HttDEOytjKPmUaanDp9hFp1nOFoyP4bDpAkApVIcoUilXIFlKRUmWJ9vUVz7Ryl8hiomM3DXwqCMMGyHILARymlUVYV4zgZjh17iompOQzD0N9LpMgVckxPz9Lr9di2bRemaRFHQ0xLYhqSfKGE5ZgQpwN2EsIowrKy9AYjMp6Oben2WrhuhkK+zKmlU/z7X34fb7jnuyiUsvT76xQLRS5dWGalMc/Syiq7t+3hJ979L6hlO5QrMzjZMSrTcyQiQSoTxGW0bGuItbpGDXi9ikqmGrwf/MHv42d+6ef4Zwdfx5VolbguhUxc40fqGs9v+DVsXrOEIIrjTQfdjY29nLp147Wf+/yn+Y9//IFNZsYL18upPL91xO96n2GT6fLfYFsvtr6N3P0Psl7+POB/vLU1e0cpRRSGkE5KXv261+D7I4LhEMNQ2mZeOuzad4BWe0DXV4QqJiHWRhaFHAQJlqPpSw9++QHe//73ce7c86wuLBEEEZ7nsG/XLEIYhEHCoD8kCHQBubi4unkR6w/6BEFAu9en0+7qkN8k2bwoe56L7dia/pZxmZ6uawfGcp7Q90kSbT3eaXc2A4KlASSCXTtmsSwL17YYDQPe87Wn+J0fexU7d20jIdEZOpUy1XoRy7U4P79AoVRCSUmpok0wjLQhUgn89d8+yOe+8AjFUoE3vuGV5LMZfH+EaRicPHkWwzAIg4DV1TX6/YF2CEOxstLQuivPY221QRxrM45Bf6jtqm0Hx7HJF4okiY4o8Ec+M7PTCCmZnKgxGAyQQlDI5ckXCghDT6vWVtaIwpBiIYdhGHTaXaJIO5w1G+scOLCHbDYD6IJ1NBjy4FcPs7K8SrPV5enDx1hZXE2pw4q5bdOUykXufsVBoijR31miLasbaw2azRZhpE0LFuYXU8t0RbmUZ3lpDdvSmWFCCKq1KipR3HLgBhzbZjgKGPkhSaJ1j7feup+du3cgTYljafe/iak6tmNr7UccEwQ+U9MTVKoVVAI7d23jK48cpdPppN9Lwspak4WlFUypEY75+UUmJsboD4YIKTAti+HQJ5fPghBMTtUJw4gg0OYkSO1i2Gy1sSyLtUaDM2fO60mvaTAxOU6+kNfFWaTYd8MupJQsLCxhWRamqYt8y9aaNMu0KRUKfP+bX4kUkuHARylB6IcEowApDBqNBu9462uJ45jFhSUMw2Q48lleXkmHGQrT0o1JEkdEacPQ6fRSMxZtGBLFEcVigWIxz8gPePCrT9Fpdzl16iwPPPgElmnRWG2SJIper0+pVGC91UYlCff97ZeoVXS8gWVauI7L4aePs7K0SuD7FIsF2ustev2Bvv0nOg9p4zwLwpBBb4AUWjtjGFIPZ6RCypgkDjGkYDgcYTkOSinyuRyT40VMU/I7f/R7KBWyvLLM69/weh566GtMT0zyyBNP0er06HS6RGFEHOlrwmAwoNvuEviaOmYYOghcCkGhlNMB21G02UhcvuBdvu4BVNJzWxoyrct05yTTaAE9RE+wbVvr+VIEx7K0Bi7wfaIgoNlooOM4BHEUEkV6Tm+aBkkSp6G5+g1IKdIIDH2eiTSbLgxC3TQaelChsw5N/bMo1H9rfQHfpDaPAu1M+PlHnmQ0HKW28nG63wTL1jTsMAhZWljWERf5LAla56QAw7KojlWZmBwHJbBtm/HJOnv27GC92SIMQ011tsw0NsJgYqyKbVosLq4wGgWEUcLpxQtUizlUonA9h+FwyPi4HuBUqiW2b5/Ccx09QIkTMq6D49q0mi2CUUAUxjz97AnWVpvYjkWz0cQPQyzLwJCCRqMJKAI/wHNtbMchSRJCP+DAvu18/HNfR6HjRQrFHI5jceOeOY2AxjHz88sopQiDSDd4fqCRSCFo9fsghT6+0kPlD8+tcfcr7vgm+qqXv+IoJutZEPoQ+Jw//RxLF44TRfp+2FpfQyE58uxRhLSR0iQMfcJYDwwlEtvWcRSB7+PYNrYpUfGIcjFPOGpxy823szJ/kmA0oFYZp9tp8fhjD9If9BBC0Fxf5cy5k8Qo8qUaQQR+KMjkxtBzSYcgiOkPRsSJ5OTxZ/EDnzhOsGwHleghQxQFTE/vYHn+HMN+l3qlju+HtFpNFhbOM/KHWKZDNlPA8YpEiQChtNY1inEtRw+XDQNhSI48e4i1taZubqRBNltEJHD8ieP80Pe/nXf/2D9ndXWNtUYDy7YwBPzdJ/+Obdt2cNddr+TrDz3EwuI85XKZZ488w+TkZHquvLDwT5RGaJNEvehs3DAkhnzhAP5tb3kTH7nvv17x3MYrviXmYfq7+j1rvbTt2N/CBi+/p8eWnsCyrG95W99e3/r6J4PcqTh+r4DN5PjN55PLerENN0yB1r1vFKGkJ69CbBqWbHXA3LqklJq2Jy4Hj1+Bn6vLMQZb1/Weu1ag+bWcLDWPX23ue/PzXefxUvR4cuPvle77Cu3gddyJLv//5WmVoTT8j6Gzi0b9IX63TxiuUixVCUIQ0iFG6MDPKMSyJNmsTXO9SaFYxo8iJqYm+Omf+ilK1RJ3HbyD3zl0iPfcso/F5QaFYo7TZ+axLZtLSyucn1/h7jv3UyhkuXhxMTUikJw5v8DOHdO4jqNplwgaqy1K5aJ2VJMGo4FPvphJUQKDKNZ5U5qzb2I7Fr7v43g2p09dAKWRjvVWizCO+NenL/J7//L1DPp9qmNlEhWzttbAtl3sXAbDcckVi8RCoqSk0+uRyeqp8WAwRAH79swxOVXFMgRCJXQ7Ha1vMi0mJ+taX5m6wlmmSa8/YHWtQX1sDClNVpfXGBurodABydVqBdM0U6qpyaXzizp4XUGQumQ6tg1CkKTFcxgF9DpdXMtKzxOB5VhYjq2PoziGlG7mei5xolGjKApZXWpQLBV56JHjFLIutx28gamJOv3BEMOW9Ht9jh0/y8pqg+npCYQSWKZFHAU0m+tMTk7gejbtdpd8IYfr2EjTwDAkrmtTLpeRwqDVbWGaWq83Go4wDIkpJR//xFfw/SFTU3W8jEsUh0hTEkUhSRSzbWYSaUiEKUGaZL0MvXaXRx47TK1W0jd3UxIGA6IopFTMo5KEbCHLWL2GIQyCUUBrvU0hn8O0tf4tk8lo3Y1tIy2p8wdTYxdDmrRbPSzHpFYtMxqNKJUKVMpFEnQDEcchCEkQRICBaQi+8KWHuenGXZiWnvoncYJpSFSc0O/1sB0Ly9RGGBcvzlOrlhECnnn2GFOT4ziubqbCMOSTn3mE3TtnOH9ugbGxGtI0CEMf07ZSpC/cnOJLw0Sl0/WNEbAhdcH+3NHnyWYcpmfqlCs5bju4F9O2GfQHOK6jXRa7fR5+/Fl2bBvnlpt2UykXaTbXCYMAL+Px2KEj7Jwd55OfeYgb927jo/d9hYO37GP+0iICSalUZmVlDc/LgBAcfeYUtVqJke8zGgUkUUySQLvVIJNxCSKFZdpEkcJxbGzLZvfOOUDxZ194kre96Q1s2z6HbZvMTE1z6037+e37P8X//KpXk/E8bNtOC3OLIAiwLYdev0cml0EI7YwZjEJMx9A63/R6q0SaT2kIoiDSrpmkJiNm+r2GUaqXVmjJj86e3BhoGIa1mcepr+daa2a7NlLIVEsrGA1HPPyNp/j8g09x1237SFSkc0PThtY0LOrVCl42o695qdtnkiQcfvY5JsbH9JBBiLSxSyMeUgQRgaYoSpluTyP2u2anMYTEtEyEkEQpcmeaFoPeEMMwuDS/yOzcFAiB7wdYtslwOOJjn3yAuclxbFtr00wzzeMLQ53Xl2p9BHDs1FnmZiY1omtZ5PN5kljRWGvyu088wd036qDvrKcz7aIwonNsiTnDwEzv0EpJHNelXM4hhKamHT91gTiIKBZy1MdrRFFMt9MnCjXa649C7dgpJEkYsbzU0OdamJDNZnBch307ppCWwZNPnGJqokySRHrQ4tiAIBwFhEGU1g96wJLxUqROCQrlIkiRsoIEHz972SVzaw3wzRCCq0PMN57T/8LHP3Yfb7j1tfRbKzSXz1PNOxRzWdxCjVp9DmkX8XJVLC9LbWoHWDbDYISUNkol+NEQS9gY0kFhaqfJdHDgODauYxEFfRzHJAgGqDCh312nXq9Tq5ZZXllASgWGJAh9LNchk82xtLzA9p2302j3yWSLHH7yCWJl42YqlCs1TMtJjYRCpNAGRbbt4lo2o0GPjJfBsXP4cczC4hlmJueoleu67pGSrJcn8CNsQ2IISRQmmoGQouBCSNbXG0xMbUOomCCIWFtdQ8Ue+7+zxft/83eRScyP/sTPYDp6yLB7117yXhHTMRDKYveOncwvnGL1whM88eQxXvma78atVBESjdxxVR20UUeJywjexlIpnGZIcUUDmKgUOBdw8LZbuPueO/m59/7bF2TgXX2IiHQfV/xgCzq35UWXj5wt6OIG4+zqjW80gFd/piuYaen23/vB93LfJz66eVRe3k3CRuX5coYYG4jnVpTteojbdd0yt9Tcm09tqZFfzGXzenX3dRHB9DVCiE2pl2ma30bu/iGWIeXmI06SzUei9JR2o6B8uStOktSG+aWtJI51A/T3XBu/+1L3mfD/3ZdvCKmjDtJsp207t3P/pz7NwrmTdJoNXNNINSa6WPAHI3qdNmfOPk99ss7C6ipIxWA04FOf/jtuvvlm3vF9b+df/sR7+LFHnubJxhpxrNiza46M63Lo2AXWuj0QEEaxjijIeIBgolYljvRU2ZAmUhhUyiWkMJi/uMzhp08wMze1WaDFiY5B6HX6KeUoBKULoeFgxO7ds+TzGaQEzzN578Iqv/8/vZokidi1dzu+P8Qfjcjl8oBJZ33AaBCRRBITC6kk4/UajmPjeBa2ayFNcDMuvj/izLkLxHFIGISaPhomhGHI2bMX8Uc+YRAxSnWF27bNIqTEsm2y2SzD/gDQWql+v8/CwiLLS6tEUUR9rMqfffiLfOozDxHHMbZtoVA4lkOr1dVmGK6DNIFY0e/2cR0Ly7KwXAclII5j+r0BYRjpHCrDwEwLxvGJOl/+yje485adNBodWustPvPZhymWCmQymup14MAebrv9JkajgDhOePrwc7pRU4og0M+dO3cJUDz73El9MAmlLehNgy888Ii23E+pqCdOncUyDYIg4LvvuUsXWEGISh0USYvwxYUllpdWCIOAKI5AmERhhGNbzM3UcdLQ8DAKueP2Azr+wjIJfJ+VtVWOHjvBaDQiDEKOn7yI62UIwlBbipsaAZOmLuQd19WmDr0B5y8s8NH7vorvj+h2eylqOmLDkjpJEpSCKA5RieLRR56h2VznlXffrKmMSQJCEIQhnVaLOAr58kOHMC0DJ+OAStg2O0UUhRim5LaD+9nIxNQ5TLBv1xQfu+/LJInAcTOYhontpBTNSBdyfhAw6A+JosuNCuh7/mA4JJvNcOvBGzlw826QgsFwQBD5xHFEZaxMu9UhimIK+Txvf8trU2pznyD0cV0LKaHdavH2t7yGXDbDD37fP0NKgzffcyeOY1OtVjUKHykefvQYpmFiCYsb9u1gvdHmySePU8iXyOWKRJGkVinQbrU0+pVSgv+fP/0bfN9PGxSDL/zGv+DI0WPMX7rEsD/gxInjzM5O040TbMuk3W7TbK5jmAbtdofhYESSxNrgQyl8P9ARCVIigDDSKFgYhEihj8c4SlKnSaVRLcskiRWD3gDD2tBmpZqrlOZppRmRcRTruA2R3oviCNOxUi2MdnIc9oe6WI200y1pQed4NuuNZtp0xXz6iw/x4fvuJ45jAt+n0+4iTYNbb96PNA2CICTwA5QSCJFmXClBHMYI2GxGJUJrt+KYSrWszWPimDiJWW+20uMqwbIsPvbJL5BxXQb9IUmisNIm1fVcXn37TSwuryCF5P7Pfpmvff0xUFpn+Mihp7Ru2ddRHHffcQtBEDEKfS5cnKfZWKfT6vLE2VNkCxrF7Xa79PoDPvPFR/mOn/0d3j49gR+EGsGME4ZDnzDU8R65fJanj59h9/YZMp5HpzOk2+4zHPicOLtAPpfl0vwqJ85eIklpztlcjm1z05AobNtCoBExL5thfn6Zs5fWOXdxiSiO8VOKsRCCXm8A6CbIMAy8jKY4r640mJ6ZuOKe+PuHjv53ude+YuqVRAiyuRy5QonBaICXyWE5efxIkCnUcLwSx0+dxMnXWGi0wShQqkxz8cLzJAmEwYgoiXEyGXKFItIwiNAZcrZt49gGE2N1xqoVhv0l6mNlsp7FiWNP8cwTDzFRm2CiNkkuW0QKkwe//FluvukgXq5AIg1MJ8OBO17LervN82dOEyeKM88fpbnexJTGphYvjkO9r4lxclmX1bVL5Ao57rz91SwsLBCGMYvLi7TaTZ479gy27aIQREilaFUAACAASURBVCrB8VzCyCdOQlzbQyrBDTfeQsY1kFJg2TaD4YBf/ugHEEbI+/63n+W2gzdw+OlneMc7fhDPzfKbv/4fGavXOPP8WX7jN/53/vCP/gu33HITJ4+fYGZmhnKpfN3vQYjUWO9lUgs3aN1xygbI53OUS0Wee+K5l30sJIlCJeoFOrS/71Ipl/Zajc17//RX+etPfOSavycNc/PxcpYQqcZN/ONrU5I42nxsXRu9xD+G9U8GudvIubsW93kTjdsyOZMIUCIVOqdUGjblCNdfW8TSm6JVLmv02NjPlv8n/fm1uNkbzptX7+PqJQ2DeMu+Nx7fDJ17MeTu6r/X1r+Pzo65jB4aSmmkDz1d2aoVDAwtpEaCTNLMojhCNRfohFCoj2O4BoQtTNVDGVkUkkp1nCCIKRTyeMIiYzn0ez1On3qekydP8pY3fw9//KEP8Viry6sdV+sykhhTJdyydxumNLBtjWzNX1yiWMqSy2dSTaDW7kgJyjbwfZ9iMc9YtcjK4gof/vRj3HFgF0kSc+nCEpVKmWAUY7u6ISRS9Nb7mMKiPezgZh1++skTfPwX38Hy0hqFfJZEJbQabSrlMhJJr9fjSw8+yfR4jYvnFlheWqGQy2qnsigiHEU0VpuQgCkEpWKBfC5HEGmxu+06af4djE9oipN2v2tQKRe1vbdlkCQhURISxQl22ojJ1NFQAa5jc+Tp07zx9TeTyQikTCilIch/8ZcPUip4TE7VkVJrFzudHs1WGy/jYRoGF85f1PlmSmcHbWiAhKFNftqdDp5rUMi7OIbD/hv2YFmKmTlNOfSHAV/80iH237iDXndAp9Pj5IlzHLxjP0IkOI6nXUszHhPjYxox8UMyjg7lFujmr9lqMrdtmjiKWby0zMzUJJYpOXf+AmNjFcbrZaQhsCytmZLo8OYgiTBtW+tPsHj++ElqY2M017tMTk3oaWoUcen8IoVinmqtwrNHTjD0fXbMbtdZjK6Lm3GpVbK4joW0tH4sjiIMQ3Ly5PNIdLC6klYaLN9hZaXB7XccoLHc4Mzpi4xP1AnCCNNwEEKRqBgpbP7wTz7F93zPbWS8PI5t43kZfD8AwHUcbNfFD0P27d2hNWFSC/gtx9H6idTaPlEKpXTIvRAm4+NVDh7cSaKGrK6tUqkUIUn1W5GPYTrEoeKjH3uA7VMV8lkPqQmAGIZFEoU6dN0xcByN9HrZAgpjc/ixttbBsTJk8w7ITqrdHGDZNs31NpVahW6vT76QJ4wgly+AEGSzHsIAx7EoFrI8+fhxMhmLSjmLRGG7DvlSlnq9wGDQxTAsDNOi025rJ8hMVofymoIbdk2lSMAIacBwOOR9f3o/O3eOMTO9jYxX4PATz3BxYZE6MWUnR6lUZjjqkctlGPVizl6Yp1jUWWe+P0QaIC0BkWQ08rEcGz/QFFnTkAglGI1SYyUVY1oSpSICf0TGzfDQA08zNVNHEW8ySDZCyjd0hUop1MbzCp1DZxjovt4gCkO2b5/hwE07Lov7FeTyOR586FGCYMR3vuoODtywSyMKUmLYgMaGU1MJiWlZ9DudTY0YgjTfTpLECoGkudpgtbFKuZYlSvTwIfADhJQUCnlUrLAs6Pc63HpgL0HgM7+wRDDyKZWLKcU1RhqCuW3TRHFCuZinkMvqjEfDpJDN0u/1qI5VQegCMoxDBt1ROuhJaHW7/OQn7+MXvv9VDHpdLNPCEAbVYoH7n1ng3Tfu1o6xEqQpOXn2AqaEsXqdY0fOcOCGWQxDae2sNHnqudN02j1u2b+LcxcX6Q1G5LIe9WqVKIhYXVtDmopspYCQOtfTENpRN5PPsmu8zIlzi0xPjVOslDFMQeD7VKolnIyjHXuJtV5TwcmzC8xum051lnr99slLfPcb7+HOu25/kbvw9dfVjcNgOCTXy2BmPZRlEo/6dNYWcdwCzX5MpTpFgkkUJzSbTSanZ6lVxwlCsJwMbqEEtkvsm6B8knBIxstj2156XllESYIwJEooDBFTLpY4d/II1XINw7DoD0fk8mUKpToqETiOiW27ZLwCriMYq4whsHnq8NO0ug0yhSKFooFjjXH21Akmt9cxkAhh6MiEJNL3NdMk45gIFbOytsbstt2MooBuv8PE+BSRn5DJFhmEXUhdQA1LX7mSJAYSDKmD6hN9oGG7Hnv2DblxZw3fbfFHH3yAvbu+gzvv3Medd+5lx8RNxEZAqx3zzne9kYK3gzgUfPrjHyciy40H7yBTGUdKC4GPumJcrs1UpCFJNhhfQmw+NmssdVU9uUGZ5HLt9bbvfSuTN4/zb37j33Hz5B14WfvayFFayIrUN0D7Hmxyv7e8NbGltnuxx+XPs8HI2rqt//SR/0R5b4Ff+/Vfuep43FJZq2Tz8WLI9JXrhWiaNIwr6tBromrXyKC78u/0QmTvejzXTYPAOLoSjU2p7Vebq2x86subT7As6x8Eufsn09y93CiEq78keJGm7kW2JdMTbPNguOpgUkmy6Yr54hu8Nnz8AnMXXryB+/uuDbeujf1tHOL6wnXlXhOpNk/8JNLT4aWlJRZOn2B8x17qUzMMhgG2IbAskzgxGfk+mWxWc9FNA0MpFJpqMT5eJ5tx+dMP/innT54iUyzxjTDih3bPIQWUC1oTY1oGqyvNNKcoYDjSGhOtA9RZXMdOnKVcKmAaBqOhr6lWccwrb78hvTjrHCqBpix1ez09yY0TBsMRz544wyOjIQ/66/zM63dTLBZIYo2mFYp5JIJ+t0+33+fM2Usc2L+LfD5HsZhncmo8Ldzi1PBFo2zPHjnBoD/Ac10s28b3ffr9AaVyAddzU3qoxYnjz9Nqddi1a45EKQbDIUtLK3iei+t65LI5XWCkJgNSSjKZDHEcMzU1SSar0Z5cLkculydJ4NZb91KraVrf6mpD2+Y7DtVaBcu2WF1dY3ZuBtM0MEwr1R6FlyltjoXn2SRJxMpKg2AYax2MiHjkG0epV0vkclnmF5bYu3f7ZtRBoiKKxRyGoSd1h544wvTUOGEU0Wp3mJlOaZTpMWVbNnMzU5t0lGw2yyc++RVKBZdt2+foD1LnStvCSAtof5PKl1Ao5omjhGZjnWq1CEKQKxRQKtGBz4IUcRpi2RYT42Pa/AGI44j+cEhjrUG9XtOoqiHpdrpkcxniKKFWreC6DqD/TlEUUy4VuWX/DgDyuRyFvKZ72a5NEmtbeW0WIsh7JlMzYzq43LZTO3WJaeiw7QSdX6g//+XBkBAi1USZxLH+fJZtIISZ6t1MEALXtalWylqjl2j6sb4RC2zLZu/uGYQQdDrd1OgmZjTo47gutmNpnYZl0uv1aLU7eJ6DbVmoOCKfLxD4mlq9srJIPl9gNNTGPYVSgTjWKNW5cxeZnJwgCkO+9vUn2LdvB0uLK+Tz+jhYmF9leqaKUjFBGGI5NoNBX5t8CIHjOFqv5ZoIFIbtgR7LpeZJJhuaEi/jMlc22fOKN1Etj3HiuRO888d/lPfc+8P8+eOHePeddxFHMcVKjuFgRBgkPPbsc/ijEatrDcbHx3A8l0FvmJoL6UbM9dyUuq+HWevNFhcuLehYiyRJg5MlQpj0u30QMbmi1qzqZuoyDUugm+w4TlK6pEBKQUKSBozHGlU20AMfS2fAtdfb2I7N9MQ4BhIvRbM3OFCKRKOfpp1q6XSelSHBcRxGowBppqNLpa/VSmkN8kawumk6xFFMa72FaRhkPJc4Tlhfb1EsFrlwYZ7xeo3p6UkdAaBU6v6nUfXQD1lvtqiOaT2rlJJ2q42VUsUzWQ+lIIwiHffQ7hJGEU8dO0khl+ULy4u87dZZDMNApqhIo9nhqZWQt0/WCaOQkT/CNA2mxsdwHJsoCCmXS5w5fwHLNLAth253QNZz2L5tUl8nHYu56XGqlQLnLyxQrpTI5zOYlqEHNnGCbWq3XSkl0pSEo5CbD+xmfmEV19E603K5qMPQXRuUYm2tRamcRyhop+YrG9/HoflF1muT/Ltf/F+/pXvw1c3du37k3XzXXW/UzSkRF08/i+s6nDt3Eic3DkLnJ/a6HW666Wb8MCROEob9PuVikUuX5pmsz3Lx4iniZEg+X2R1dZEwGmGbFqZhbg6p4zhGComRGpjYtoNhGjiZnKaPC4Nup8Ojjz3Itm07OHX6GGNj4yQKLNthbtt2du+5gfr4JOVciaVLbS5cXGXXzlk6rQGuZ21KTEzTJAx18PnZsyeZmd3N6loD19W5nbZj02wu0+ot4VlFHvvqV5jdNqmH2yntWA/PN9Agfc/9D3/7+7zn+3Zx6NBTFEuzPPvEGR74ynHe/4FfpbG+yH/+rd9jGA6ZnN4BxoDF813237ibh794HyuNdV7x6tdRGJ/UQxoVAeZl0uzGV5MOa77593id58Xl6iqb9fjhH/4BBk6HX/3t972Aprl1bZaHW/qrK97CFhrwFaXaizVdmxcqfU1935/9Gn/yF3/ALbce+Oa/t3UTGwjJSypMr0G/vN57vFoa9M3WyxEsXoMa+pL2sbkf9e3m7r/3etnN3Rbu7Mb6b9HcbfCft/J+4SUeLJsb/P9Zc5fOtIRSm5D13NwsKhF87euPcsftd2AqwWgUI6UOHrZtm0G/Ty6X01SmeMR6q0F30OUP/8sf8JrXvoo9+/Zw+twKH/g/fpNPffZ+vjC/zOsLGTbyqFaWGwgBJ05f0BTCfkg+m+VTXzrE/r3bWVtdZ3pyAse28IcBXsZFGAI362E7Ok9QSkmv32cwGOJ5Ntl8XjvaeRZuxub/vLTMPa/dxVvv3EOtVsUwJNlcFtdzUEJw4fw8YRTR7Q3YsXMGgZ6At1pt8vkcQagn4SdOnKFSKSINycz0OOVyiUIhTxwnGuEIAobDEdlcbpPKVygWKBRyaV6QwrbczaDqbqdPrzugUCwQjHwMwySJ9ecJfB834zAKRniZDAiLc2cXeewbx8nnLBzXQiC1oUCc0GyuY6boULFY2GyohKkbXmkYtBpt+t0+jmelTpjD1LhBYNnaCGR2ZgI34+lMtIzN5x94nHIhR61WplavEAYB0hCYhkmz0UKguHBhgfF6jdEowLFNFhYWcVyHMEwYDkIOHz7M7PQkjuuxZ88s1bEavYFPxs3whQceY/vcDEEQkUSKk8fP8MyR0+zaqYtEx3PIFLIkSaRzvwztGiYNQafXo1jIMxyO6PcGZPM5/bn8PoPUyCGby11GXgyp6UuhLnqOHj3B1OQMwShiOBhgGlo/Z1oGcayLW9dztb080G73WV5dYaxeQQqLickaoDh/dp56vUIYhRiGQRQGOuzZNFO9o0gbg/RcS3W+esKJzuczTW2A0+3ieV6aMRVrlMl2tFlMeiM6f+Yc5VKJI0dOIgxJfXIMaZq0O026fY1q6cbOYtTvYhmS5eU16mMV2s0G3W6XSqWKIRUqiRgORqyuNBmfnsaydeHrpP+GoyGZnMf8pQV6/SHj9arWWCmIo4CZ2Um6/TZREqSOs3LTaMRxndRtNUKKkH63TRgnuJ6n7c6jKA0ujjQ1CcUgiCjO3U2r2SWbybFzZpI77zzIZx/8Oj+wew+D3gClItyMw+OHjtIbdYjimJznMjE2TuRHfPi+LxJFQ2anxpGGTIOR08JfSvL5HPV6bdMK3ZAWKAGJYmyySrGU26QZJRt6b3m5yFKp4YlhGHQ7PYIgxHItVKIwpSCJQvq9Ll42r89BxKbTqmWaeJ6zqbXZOCYsU+L7odaJ+iECbbKkB0tJGmCv8x5B062FIA1Qj2msdmg0G5TyObKex+rqGmEQ0lxrkM8XMQ2LXC5DY61BNp9FoQ1XTNPCHwXMX1zi0196hNe96naCICBfyGFYFplCHsc2yaQmTCpJ6HX7xGGUDik0LXgwHPLx5w7z2n1T2KbJKAiwbEm9XqRzbJEdjkMm62Gl2ZFBoKmsvd4Q0zApljK4rsOlS6s8ePg57jywm3a7Q6GY1TRhQ6CEpFwuYjsWQRAyHAUkYYxt6yZRSDSqbihMwyaKFdVamTiISfwYS5oYtjbdieOIfD5LFMcQJ5RLBaw0Rwzgvc+c4Xd//7e/tRswL2zu/uqv7uN1t74BE8XzT36ZWqnM/NoKpcldTE/vIuNl+fznP80tN9+ayk5MbNPEdk26vQ5j1SkW59fYe/PNKExst4CIE7JZjygcEvoDBArX0Z8lVloPrhLtsGlIhZdxsC3BcDCk3+5y8/47N4dNSJOTp47R7nbodDuUKxWQgkuXzhMmCb1ug9pkheGwTzaTSf/ekigIUjZQQr02wcLiAvl8mVgZZLJZpDQYDLrkvQqOa1Idq2BJB9ASGynNNKdSexgM/SGdZsip9RO86y03adfjeMjhw8d541vvZcfuXcQIfuTHfozx8Qq12hQxPX7pX3+Ae3/o+/nzP/gP1CenmNq+m+ldexFCgYqR0tzofbZoxHjRpunFmjuZXi+UUtTrY3z/O97Gz/7Kz7N//Dayefea29twK7+MXF2J3G1s/8re7kXeZ7qts0cv8dFv/Fc+9Bd/or/Xl7E0o+uFx+519njN93CdDb/4a67x2hdbSRIjpfECpt23m7t/RCsKw/eiFMZVB/TWZUiJUOoKiubW9VIOxw3p6FWA9uUDY+uJtdUY5RqPF1BIk2STvrm57RSCVhvmLVet64HtG1uQ13juJa2NAl9IojBICzdSi2z0CZEiChqOB9SG9a4+yUvFMh//2F/xHXe/giAYYblZLDfDyO+z3mwipZ5Cx1GC4xiEUUyr1eK7vvuNlMplMpkM97zhzRiWxZvf9Gb+5tOf5J5KnrW1FpVykb/58iEWV9fJZ1zKhRzHzi4yM1Hjpt1zCKDb7ROFIcPRCNe1tVZKyE26aaIUcaKLUdPSgcUqpSZJFfHjDz/Lb/8vr2fv9ARS6EYmTmIMQyAN/dlrtSrlcon6+BimZWLbNkmcUCjkWWs0KRTyWtszVkv1OjGXLi3Q7/k0G23yBW04YJraatkyTc6dv0ihUMCxHRprTT734KPcfNNuhLR0ELchsSwL27L52sNPQJKQz2VoNpp8+jMP4zkm+YK3qc9TsaBYKtHv9pjbVsfzPEa+jxS6KCxXS1p7lR5gmvIhU0cz3cxIBN1OF9MydGFnmDiOwxcffCJtPA2KpRKD/pCnDx9n0B8yv9TmFXfuxw8CHNfa1CisrqwxPT1BsVSkVqtgpSYO0pBkc5lNmuZf/OWXeOubXnkFanX48HFmZ6eIwpBet8fOnXMcPXqS8YkxslmPrzx6lKeOPM/26RrZbJYwjhAqwTC1+QMCHNvRUQ/S0H8fNBXyuedOM14vkyQxtqMNLqIo0iiIbaaOmgrbsrFMA8/LEgTafTKT0RbvURTzt5/8Kjcf2E2URDiOtgDPZPOUSnpwEAYRUhqEkU+tViVObapFqjdMkgRDGgShbtqjONI38rQ418dekp6DbE4eV1ZWqVYrBEEISnHp0jILCysolVDI5wgjn8nxMTqdHo5t6WPWNInCEMe1yOeyCCnptDtkvAy9ThvbcShVyqgkwfMcDj/9HJOT4ywtLWEYAs/xKBTyuBmPOI7xfZ/A9xmNfHLZLLbrkslmmJudTC+NOjeu3+sihInjmriORZxsmDvpsO040p/PNCx8v4dlKCzHwbB0TmAQhFipFlOhw7sr+Qzv+ZXf5UfufRePPvo4P/qj92LbJg898jgLZ07jr3XwPIsoipidnOaOW/bx+OEj7JqdYTjQWrITZy7y+lfdxumz55mYGOPcuYtkMzpWJYnVJvIWxyFhGGIaFhu0y9GwrxG1jRNJ6MJNpD/3hz6GIVNnVW1slMtnAQMj1d3pz2xiXOVIt1kIpnEMGwYO2mE2RiVKN/OOjW1bjIZDLEsjsGEQYlimDqO3TNZWG5SrJQI/0O64xSLlSlE7R4YRpVIByzQZjUY0mx3GJ8cIggBDGtp50jJTl04DKSShH7F/707OnT9PpVzm0qUFTj1/nkIup/MeU41tohS9bg+lFEPfZ63VIk4SBr7PMDvijt1TLK20GKsWyWU9HMdhekU7Jh4/e5EdsxP0+wN63RFPHDnNWquDY+jmRQH5bI79u+aQhqRaK+H7Pr3+ENexUUpw6swFTAFOikIffe4MGcdOUVDNOomjmOEwwPVcep0+p89c4tiZS+ycqbPWam2ewyKNBGo2tFkXUm7eX//yzDz33vvOl3O33XLbfaGhygbds/F4g7F6HSKfqL/OyB+RG5tjdttupLS0aZbjkMnohigMFf3BgPnFs1SqZUzLJJfPsLq6jh+GXLxwUWdW+kMsR+I4bmqwkjZrhmTQ72FIIzXSSq9bQUBjtcHSpQtUx2ZZX2+wtDTPzl17GRuboFatUS5XSEgY+SMq5QpOJsPC0jxTM1P0ul1cWyOtGxrWjYgAwzBZazbIFascOfoM22Z3cOHCOc6fP02xVEMpn0zWwbF07IchzdSoKt68TxiGwW997o94/8/sIQgjsrkcM7MGd9x9K1ZhB51+wOzsHs6dW2RsLI80XRIG/PMffjdKJWRlmyBWvOb1b6RQn0QBhlSgXsi8EkJ/PxtaOhXHm8OXLaXUtb/rTZjr8jkuhMQ0Te69951Udmf5+V//t9y+7RW4nr4eaCBh4ze2io6ufFObmcTqcv13vSb08ntV/NoH38vPvPc93PsjP6jrpOTa5iLXok3GSYzkyqbzWiaCmw/5Qgrm1Utn28XXBUo2/oLJNUwIX8oSQl77975Jnb7xvjYo8MY/UBTCP5nmLk6S9149qbh6baBr13vNS501fLPXXU/Ddk007hpcYXFVc3etA+/FHIDg8ul+ndP/Ja80mpelhUXNSzYkhmFgWbZ2Jky0RmqjcBdC6EG2UGBbeGaEjHpMTdTAzjKMwbEkuVyOQj6P74cALC6uMDExhetliWKwrQx+GBN0u/zCz/8c93/2s3zkLz7Mz33wg+zqjch6DosrTd72+ruYnaxTLOdZXG5gSKhWixp9mRzDy7jYWRfTtjANg8bKOqPeiGKloG+gShL6MQ88+hT7ds6h4oCPnzjDny+v8if/6q14tsPqUhOBIpM61CVKm1IoBZEfsLi4nOqTJI8+cpiHHnuOWw7sSvVxiiNHTlAsFnFck8Gwz1itQujHBH5ELp/FdbUTnmWZxCqhVMjjug5ra+uMjVW5cd/2TdqekIrRcJjqsATbt81odC8IicKIyfEKMzOTmJbk6LMnqFbK9Hs9zp+/wOREhXKtQLPZ4oEvPUmtUmLQG1Es5XTzDpsFYxTHJFHMoDeg02pz6vmLjE+MUS2VkcLkxImz1GpjBL62uN42N45SmgY2PTPBRL2KihPWW20mJmq0Wy2++vBT7N29A5U21L3eACklx46dYTQc8eBXn2LPrjnCMCSXy3Lwll0gtVMoaDMQ2zTTnDwYH68iDcH4RE3nhEm4+44beNUdNyEU/NV9D3DH7TfS73RJ4oRz5+apVookcYyKYvqDPtKQPPPMSaanp6iNVel1OhSLRZLU+UtIhRRKT23Ts9+2NIVJKclf/fUXOXDDHB//xAPkPef/Ze+9gzRL7/rez3NyeM+b387Tk2cnbtJqg4QEkkwQWAGEViJcXRDYGKiLwWDf6zI3FEnULZfBYFxXxgIslIxWq4hQWEm7rKSNs5rZHc3s7OSe7un85nDyuX88p3t7Zmc22FKZKuvpemum3z7vOec96fmFb6DZ7HFk/y4s15aTnbIhpa+gagLJjdKkb1sa4498CRHL7SjSJCHLUsIgotfto+uSV5plGaura9KKYsttryob3K2Eaq1EEqd0Wl0c2+Wzf/cor3vtbVI2X2QIkXHm/GUmJsYplYtcOH+RUtFhdXUFRRjomoGuG5vV2oLrECcyqYpjKcozMz1BnKWouuTkum4F09QZ9GQnttcb0usOcFyXMEpJ4o1ulUKaxQg1QygpYSCPqapnuAUX2/Zy3iAMBkMURdDr9XELLqQ+gd8nE1JAybRcQOSJlIRQK4qc4N92z16++NRlPv3JTzMxNk0cpfzUu97C73/442yvetx1017SJMa2CqytLrN7dgYhMibGGzRbTV776iMM+gOq5RKqIrs9SZzmhR+Jf/KHIwxL36yMKyL3mlRiFKFtfXjmUDGZiBl5IUGV8nropgzYRJz726kqCRmKIbu2injeb27zuZ6L7vgjHzNX0Bx0+xi6waVLC9iWhSLA90fSeiGV810cJ/Q6PQSS+zh38RKVqodu6Ph+QJIh4ZuqgqrpLC+vEoQRO3ZtJ44S0iTj45/9KjNjYxS8AgIp+x8EIV7JJUkiJqenWF1d5xvfeprXvvpWjp84yfhEAwRoqkYUxSjA8to6aZYy9H1pURL4HL61gWXqTI3XcGwLVdH4/BNnuFmvYtvSlqJeq+A4No5boGjbHNy/k4efPMnUZBnLMhkMAoJRxFcffYaZ8RoLV1Y4M3eFilfAdmxq9RKWY9JpD3Bdl7PnLzNeq5Bm4BRcvv3ti9iKhefpqLqKYWp4nsXMZA236GDapkQ2ZxlxLOetS5evMDnRkDyv/DTdf3Hxvyu5e8F7irQMiVcNOs15Witz+MGI1CwxObMPx3ZZWl3FKxTo97pMTEyRAral4fsjapVxHLvA0B+h6RoL5+cYhQOmt+9k4KeMT+9mFISgGPS6XQxNFlc03SDNkw0lR2kIRcKN43CEIlIs12Zx+SJ79x5mYX6emakZsjSh12lz5rlT6KqO49TRdIuLF1aYu3iFLClg6kMKroRwy+QsxbIcYjJMy8M0LLI4wzZ01pcX2HfwZsK4T8Gsc+HsRRRdojc2NRQUWTjNMlmg8OpN9szqUmSn16bXsplfHHHfp48yOXEIXRT4N//6V+gN2uw/cAtr65f557/yu9xz95386R/+KxoTU3zfG9+EUazm93iKtCfPz8mW05TBZnKX3/AvK7nb0C24kaCIYZnce+9P8Fu/91t8/ZmHOTRxG07BfOk4Vch56gUgqxdJElyxHQAAIABJREFU7vq9gPd99Hf5xCc/huM6+bMtyyGfL6PDJp731HuxrtdVf3s5Qip5d+xGyd1mbPsKk7pXMq7Pf8w20RPfS+6+y+NGVghbx3ckubuObcBVf79BcnetUfm1y8ov8cLk7nqdwpciicKW5O5lyLu+2NioId5777v443//7/mVX/2VvELv59LfoIrnH2hCFST5fqmahhYPePCBL3HXnXeS6C4JGv6wi65vYO4lxMy1C2SpxOtrmoTOCBTi4YDzFy/zs//Le+j1h3z+y1/m4cGQHyoXWVxvU3JMiiWPCxfnubzSYte2cdyCzdp6K1dF1MiUvMIdSX7YBkxNwroyVpfXZReuWuTklQU+uNThT37xDSiKhDk99OBTXJpbYu++WbIsQajywanp+mZ1TFFVNF3jC196EjLYvXOCUrlIFIU0GlWp9CViqVAoFD712W/ymrtvRdVV0iwjCAKEEOiarK6naUahUCCKIrrdjuQB6RIW0utLDz+3UCAKIpIso1gsYBgm9VpVnpc0pugV0DUNyzRJk5iCJ83jgyAgGIU8+sQZFuab3HTTNL3+AMs2pZlzEkuxg0ia3Xa7fR56/CR7dkxKeJKqSllqw2Db7BSFgott6ai6ThjFhEGEZRl87gtPcOerD/DFrzzKrbfsZfu2Cc48d4mp6XGePPoMisgDxDBkfLzGzYf34498zp6/SLVaxnEskkzeO7ZrMhoOOXd2nrFGlfVWi2KxID24ooj5+SuUa2WyLOPC2UsoQhCGITt2zGAbmgzkclP0SxcvMzU7TbvZxLQsyuVSztFUURU52UZxjKpppEnEaDgAodFstnAcZzPAHgx8KkWL9bUme3ZOUW/UOX9hkZXVdXbv3Y4QUrb7ySefZmp6Ul47gtwsPkPXyLksmuS45Bys0WjI2kqLyclxgiBEVRTa7Y7kOsEmvE76pqUkcUq/1wMyVFXaIghV5dD+HVi2LYOtXo/RaMDE5AS+H6AKBc9zMHSFwPep1sdI4kQm9WkKpCRJyurqOgWvQJKkjEYjuR9FF0XN6PeGWJYnDYXTKIeLaniFAotLa7Ljl8D9n3mQA/u3oygZvW4XRIapu5iWie2YBL6Uavd9H02TPJ/hcEi5VJYdIxHTa69jOQ6qbqFpMoEhk2pxmial/1VVRaQJv/3+T/GB9/8nfu5//Xne+3M/z19/+D/TbA85urLKe26/OYcqWtimFDCZ3TZNr9tDN3QMQ0M3TFzXyoWKVKI4ptvpbfJZZZdbqjqatkkSSX86VVcQyC7QBlQ/jhPEluBEVqxl900m/YIsCeRzIRc+yURGEiZ55++ayrci556NhF+uEzRNkx1lXUM3NOy88yQUeTx9P8DKBZOEEAyHAzQ1v7csC92yUFRV2rEoCpZlUalVEEJw/JlTPH3yLIEfMxwMGW9UUFSNJIn5+uNHcU2deqPGVx5+jEa1wr6d23Eci4l6FavgEPoha2vrWIaB7weEQUiapYzyTve/fPxhfvS2Hbi2hW2bdHtDPNfl337hWX52325A3huuKxWRsxSyJCPJEo4c2E2axrnlhMC2bDSgVPRo1Kvs2TkjoZdJIk3ikxSvVGR9tc23Tp7DtXSmZsaJwgRDUem2+/jRUHIt8+DYcnI/NaGQZCnKRnKua4z6I6r1ipxvheD06gpi/xHuuvvVr3iu3Zhvrx1plnH+3CXoQhIMWF+8RBAG1Kf3ECeCxctzzC3MsX3bDk6efJoUQafb4blzx9mxYzeryy0KhSK25SDQaJRLmK5OsVTEtAr5PVvi+FOPUPTKKFlKEAaYpo3pWoSBTxyH0t9MQBQFFGyXen2CzqCLV6xw/sIZglGM47h0Oi1KpTKe61Gt1FB0nUREnH7uFMWiRZqkHNw7y+r6soS+KxKtEMcRQRKTJFLZNwhCBr0upqFjFUpUixP0e23GxurMnbuAV3RIkji/31KSHOGgaQar/mnuODJJs9XEdVwWL1XwQ4+/+thXWVoaUq1U+bVfexe1sQZecYw47TPqGExPjjFRSegPffbsP7zZuftuJHcbydCNltiI4d55709w9uwFPvXw/Tx+8hHuvOk1L67w/gqSu4984r9w/2Of5Ikzj/DxT3xky6KvLLkTQuRen9mmCNT1d+07nNxtxLffxfG95O5/8LiRWubWkV0nsXtZCplXr+TFO2k3GNe2n6+FbW4kjBuKmJubI4eT5n9PX2JfpSHxNcHES+zbxrj6WDwPDTFNk7e9/a089thjbJueoFYpY5mGJC5n5CIy0icwiTMpcJEJHN1k2O3xwQ9+mP0Hj2CaLrrIUFRLSoCrG/d3RH8QSo+gHOZp6yqmrqIVDfbdtBviCDVI+WfveS+f/uLfcmLk895bbkIRQirZIbj9yD68oku72UFVFRxLcsqSKOcBKYCQSl2qodHv9HnoG8cxdIX9eyf59ePPUdtX41fffDNZlqIbKlEcMjM1xq5dUvAjS7Pcs0wqusmqW4qmqpiGyY7ZGrfdugfXtRkMBpiWiRACw1AJ/YT2+gBdt5mbX2Lv3m0YhoY/8lGEwsrKOrZtk8USppkg4YSaojLoj6Rwgm4wHPrUqvVc1VD676yurkuxjyyi11+Xk7am5edHRTelh95oNMSxHWq1Mrcc2sVtt+1j+cqi5EsKhcuXFnBtG0OXncgUcF2Hy3OLHD64h36rQ4bgk3/7GEcO70KkIxSkjHwUJ6ysrFGtlhn2+ywvLXJp7go/9Ka7abX62LZLo1rk2RPnOXtxnjf8wB1omsAybAquRyYiojCgXPTo9voMhwGOZdJutum0ehw9dpp77rkV0zKwbQsymJubz33xSlx47hIXz89z8NAeDFNnx44phEgJ44havcJas4mqaYxPjueFBJ1Op0+pWGZ+fglFqLhFiziXf4eMwcDHK5XJYoFpSiGZM+cuUPA8okGMpqqsNluMT4zRbHYYq9fZvWd6UxY6jEOmt02QEecTn5obI2UEYUJKiqJqm/dSloFhOVTLRTKRoRsm3W4PXddwHY/WehvTMPM5LyUMw1w0o4+hWZAZ0q5CSOhgHEV02x2KpSKW4zLqD/E8V0KMk5QMQaFUIkshTXIecgYrS8u4bgXHcRGkBL5PqVRkba1FyavkFgoC13GI4hBFUTFMC1U1+K/3fY1LF1fpNLs89q1T9Ic+h/Zu48r8EuVimWKhRJLFoEj+F7lepyIS2q0erWaXarVGmsSoKih2EcupEIdN0mhIEkQYliM9szRBp9Oj6BZREoX+cMQuK6ZlTvHpz32SN735jdx2aC/1moOqGfzRF7/EOw4cJBqNiMiwbIeFK8t0e0MJv9QMOv02mqZi6gary+uUvCKmoRIEIYZtyY5ulmFo2vNBDQqZkCqDhpAcQLnzCgIFkUodv+cf3mLz5ftDhJISRUnuRRdhuTbEgmF3hCo0hCZIRYqSycSQPDHL4hRSGQx/5DNf4I5bDuawXdBQSZOYpeUVxibHUHWdbrONoghq1SqKbmCYNkmWMep1ERkMepIPlSUZJ555jka9wvh4nROnnuPNb7ibx575Nkf27827phkTjRqdfhdd1+i2+kxPjeM6DiC4NDdP0XPRdR3XdWi3Opy7PE+5WKA7GBHHCXGc8PmLZ/mRW3biODaWZTI9NY5l65w8ucxhQ1AsFHBtC8eWaBFhCBISDN1AVTU+/IWHmFte46btO/jklx9hZqIilXSF7KrOzy2RJbC+2qZeq+EPhtiWyYED26iPVcgyyVH0RyPGZ2p0ugOKxQKaomCZJqOhz7FnzjI1Pk6r3cayDbI0wdQ0NMtA2zCIFvDrT5zmj/7oD19yrt06UjZUqDMyVc67aR7QJkpEkuh8+v7PMu3UWT5/ikq5gmEXKFelgqWu68xu38nqyhLbd+5BFRrhyCcdZaiZgeb6xAOdMJ5n0FtkmI6oV6bwByFPP32URn2cZ0+cIU4E+w4cJhURqiII+21U08E0i4RRjNAEJCmuXiCII+bnzzE2McPa2hK2XeHm215Fs7VGFIxYWZun0pgkExrHjx+lWqmh6wpL8+cwDUGtLKHcmZqyEQikpAx7XYKRyrGjR9Fsh917DtAf+hiWDbogyTOWiqejGZr0N1WABHRFhSwhigJU9yyW1cb1SggsImOZ9fVVzs4N+IM//X22HRijoRexSlOsty8x1phh58w0v/nrv8jNe0qkmY5TmKAfj2g0yuiZSyISNjjQV4WAGzoLSbIJ12WLv7K4alE1hy1eP/LcCsvduonXvu5u7r33Hfz4vW/HnjD4rd/9V6xcWmT79D4MU8KSs+z54s8LgsQt8d+xR5/i/Q+8n+kD4/zCr7+Xn33PT/POe99x1TNpA7Ml9/PlJU+SoqPkx2brum7w+Y2d3hKvXktl2lBmj+MYTdclRHOLguX14upXkuy9HBTc9SCam/sLaN9L7r6745UKqmyMV97Lus46/hs6YsBVF9PGxXVtl26jAryx/Au6eFtGCi87kbvu7mx5bR2Dfo9yucIP/8gPM39+jZv27cMwLIZ+gK5dXX1R84quoigEUUat3uCOu17DA199iG3bd6GbJkoeFAkBnU4b3w/ximWZOCUx7VYLhOQ2BWGCZdgYuk6rtc6f/+f38773vY//8sn7+em9O7Adi9XVVu5/FnHm7GUmJ+s5Byrk8adPMzMxxtLSKoWCQxxGdDsDKU0uVLaNN/i/z83xqZU2H/ytN7NnqoZlWfS6EhJmmgamYUorgyiSfm9CHufRIOSjH/8itxzZh6aqLMwvUm/UME0TRVUxDYNur78piKDp0kjasi327ZUV5UF/mCtmjpC6CxnDwQjd1Llw8TKVaokNzkomJHTT8wosL6+QphmmJSv4BdfNuwLygXrm7CWqlTKD/gDbdWTlNwOv6OQ+UXHOXxkQJzFezg2s1qsAWLZJt9fD0KWB9r49swR+QKlSYmVtHdPS2LVrRsKDSHGdApZlUyoV6XW7fPvZc9x+2350XaVQcDn17DkCf0Sn3ca0Y+5+9a0EQYph2GiGYHF5EcuwcBwbVVVQNQ3XdfnaQ08wu22ScqXE7p0zUl0wTQmjCNOypHodUPA8bNti9+5ZHnviOJOTY2RkJEmeqAmBV5AqhoZh0Ol0yLKEUqlIkqZ87ouPkKYhtWoZXdPRNYM0yThx4gyVUonHn3iaer2CoZuUSxW6nQFhMKTeqNBst6jVykxMNkjShHLZJkMmLrqmIzKByARkApHKxKDTblMo2IhMEAYhw34fU9dJkxRd1UjShJXlNSzLII5iXNclDAPK5SIjf0gYBliWgW7oJAlYlk4SxYSB9FZTVIXlxRVKRQ/HdRgOh9iODWzABKVZ+kbxKIqj3HxaVudL1aIUeEmiPIBSGfR9zpyZZ3y8ysrKCp7nEYcCRdG5dPESQkjz+lfdfhMHDmxj565JqiWHWw7uRDd0njz2LDtmp+SzSkg+muS9ygm91WwTBCHjYw3W19dZuCItShQh71Xb0Bn0BihKSiY0GQArKq7r0ev1abc6GJZOo17jN/7gT/j0px+gWhnnySeOceDA7RQLJY6dOEknCJmKVCr1GivLq9TqVUgTSsUCkOEPIyrVGv7Qxyt6kicXRcRJQhTFGIZOFEU015soioZu6M9Dq4Rg0B1gGhZxmmxa3SiKIEvldZBlYtM/TxUKWZJgORaK0FEVnSSJif0Yvz9iZXmVfrdLseywvraGbUnPRfJOUnO1hVeUYkCTdfkMtSyLdruDppm02x2p6iukIMv6+hqVaoX+oI9u6CxfWcYpuNi2hMTqhiZhmmnKwvISE2MNdFNnslHDK3rsnp1mOJKwWZDdq1qtwflzc4zVq2iqiu3aRFGIY1t0Ol3cgkvgByAErm0TRjFBGBLG0kOqMqtzy55pip6DY5sMh9Jj8uYBVF2HVIWFpVWarTajoU+1XCYKY7qtAaSwsLzCaBSya3Kcy8trvOb2g2SkrK42cV2XNEkpVYpUKkWEyHjs2ElmJhtouk4cpaSRtIYwNI04SnAcg4wMwzQJwxgyqJSLGLpKGIXYtokqFE4/N8fE9Hje3YDBaMQzisWP/MgPvuJ5d2NIs3fZNZEUhxRFmPzBH7yPu/e/mmjYpd/vkmaCWmOKOBUMBwMcx2VhYYGpiSmOHXucw0duZny8jls0MbUip848RrU8gUDh3Nk5Ot02tmNx6dIFzp87z8zsNgajIV6xiucWWV1bRdEVksTHUiWiQ6TSiiIhQ2QJ9do4vUGbQsHDcwt88/FHWFpc5NZb78KwbBaXl6hU61TLFYpFD03XqFYbXLpwhtBfZWxiBl0xiENpAq/qgkpRit7Uxyu4rkm3s47IOXkpGbpm49ouKytLWKZBEse4boE0g3ZnHcdx0AyHv33iKHfs246tFVGEwnijgpYo/IcPf41RkLJj7yGqpRKXzl1gx45Zlq80cewqd951J89+6wGsQpU3v/UnaWyfIYpDLN0h5QY+xVvis01hjo0O/QsWffFu1dZU8OrrQqITSDMcx+bed72DN77tB9h28zh//Bd/wv1f+yRPnXySk6dOcPbMab7w1Bf58rce4MFjD5Kuh/z1wx/iwWMPYo5p/ML/8XO8693v5OChAxg5HePlX6EvNa4Xe740Vk5sOYab721J4gzd2EwTv5OCKlet62V87nrb/l5y910e30vuJCRVzbHP14OBvuTu3ADCqek6ZBnD4ZBvPvgkY+MT9Ic+TsFiaWURr+BdtR7fD2QFWtUZjUZYtk273eXgwYOyC5lDCjRVwTKlH1KaStVFgUzqXMuShsqFMv1eH8d1SZOIu+6+k/Nzl/m+O+/mN+/7FD9UKzI5OcbZ8/OMj9UobQqUKPT6A/bv2U6vN0QI8s5LRqnk4fshw96Q/+3kGX70rt38Pz/zOoRQGI1GsjPkSNVBkfuLAXjFAmEYMhpJ43LLsjh8UHrl+X6A49gSbpob1mu6jmlaXL68gFd0MTTJMxsNhnz+S9/k5sN76PeGqKqCZRl4pQK6pmwaT49NNHLYq4pt22i5qEeSJBQKBXnOE5nwdbq9TaEFRdEYHxuTio2WVNuq1auYlolpGKiKSqvVxTB0vLKEL6WpVO08e/YCxVKBKIp57rnzlEsemi6rw6ZlgADLMtm+fZosSzFNGdgmeaIAGefOz3HbrYd46vgpdu2Utgr1WomxsSqlkocQI1ynzPpah8tzSwg9Y3yixtKVdWkamkNmNV2jUa/gFT1cxwIhGA43jIRlR8sPfAqFwqZR+4N//wS3HLlJWiSoKrquSVGYXG0WpPWGaRqcP3eJWrUCCLbPNNA0lSePPkujVkbNO2lXrqxSLnns2bODKIrzTnBCu9llaqYBIuORx5/m9tsObnrRZVlEhoKiqUj11Aw15ygNen2pEJdEBP6I0cCn3epQrZRzcZN4U+HQdRxW19apVcsIRWxK42t6DsdMYmlxICR8VAjBYBCAkmLoOp5XkHw3RSp9pklKvz+k4Lq02h1sW5q3a6pGu9PBMGSnW9UUkiwjDAIgo9PpUCwWiaKUHTtmGY36mKbGcOjzwQ8/xE17pmmMVVBzg3lZ1OhimjquU6Dd7lIueRzYvwtFVeh2eqiaRhRGGLlwSJpm2JZJvVYjjEKKRY9ms83kxJi0+xCyA6ZpgsGgi+V46JqGUDWyDAb9IdVqGRSBrum8aqbCz/72v+VNr38T/+yXf57f+M3fYGbbFIf37+fP7vsEY90h02PjPHv+AkkcU/QckizF90doikkcJXz08w9w68F9LC0v4RUKEtaoa/I6SlNK5WJetRebUD0y8gQOhCqf2WmSQJbhD0M27BDIyJVVJeSw0+5g6JY0Pjc1mqtNkiilWirhj3x0U6qhpgmYhi5hWVmGbdmsLK9i2zbtZmvzmu/3B5I/qUuOlKYpDPt9qtUK7VabJE7QDUN6h8ZRzvWElZU1llbX6HZ7HDm0H0VRGA1HVGoVTp56jjiKmJho0Gq2yTIJzfU8j4JbIAoC6o0aKyurlEoepmngFFyazTb9/oDTFy5ScBwuLCxItcosY33Q4Y47Zyh5Lqqq4tg2Tz39HMfn13jjhIR3Ck2l0aiiAmEQkUSyMNHvjjhzYRHPNflH99yCoZu02l1qFU8+Tz0XTZPXl+QrQxzFxFFMqeQyHARkGXz+a0fZt3OaD33mIW7eN4thGxiGQa83wLYt/FGA49oIVWDbJopQWF5ap2DbuKVCXiyBX3z0BB/4i/94XWjli867W/5/veROUy3u+5v7uGf/qxn12iRRwMrKEo2pXeiGjWWY+GGEV/AYDPrs2bOP4WjA0vICnd4qf//AIxy6eQ/f+Oo3mJndzupil3K1QKlcYtv0boRQidOQAweOcP7iRSzTZjgaUix5aCRSVCMDXdMJ4xBV10iiECEUFCEwDANVUShVpnFsjyhOqFRrlKs1giBieWmBMI6o1uoszF9mZnoH1WoVRVXpdTqEQcjT33qSiclxVEUniqXlhKEbeIUypODlKtZCMRgNffr9Dp6TwzJJ0TSdJI7QNJUwSfjsY1/nra/fQxpHJCLAMXT6nQGl4k4+/pmv4JbH2TE7wXipzmc+92n277+Z82fnqFY8vvy5v2J2537ml9vsu+UwiAwFHZQ0P1/Z1ef4OsndRmK3IRTz/KL/bcmdqmiITG5742cjRvtHP/gGfupn3snbfuIt/ON3/RhveNsbePs73sK9976Dd737ndz95rt417vv5V3vfid3vPpVr+jafOGevNT4ziV3qhCbxzZNE9JMIqRecm/+J0nu/mFYqf8DGVneKld4/sCkW14bpoVCkXA0kDDHlxrXQi2vfW1s+3rvX2+kW7arbPnsxu833I98v2+0zxvf+9ptb7y39ftfO+I4xnUd3vtP3s0v/fI/pdlaI0sTZme2IYTspkiIlUwyV1ZXSaOINBMIVefNP/aP+Y9//P/iiIB+v0un25YV4iRF0y2EEKiKgm1Z9Ad9Tnz7BJVKhX6/Q6lcpNvrUh0fxyx4zG6fRegKtmXynm8+yd8/doxDh3Zj2RamoTM3v0S706fRqNJqdVhaXufoyXMoisBxbD71d9/g0J+9n189fpT/75e+n5/+/gOST5FkFAru5kNZKIo89gJ0S6rs6bqGa9sUHIcwlJYFcZSxeGVVJhSaTMBMy+LY8W+Tpgm1WpU4jlhaWsL3RziuxeGD2wmCgGLJwbA0kjQjSwUZKv3hkLX1dfr9AWEkRQ6Gvo+qKgR+gKKo+H4gO52plAUvFBw0TaXb6SHQWJi/gu/7ZGlKHMWcee48/f6AS+cvs7y0xuT0OGMTDeycW2RYBouLS9y0fw+2bWGYBoeP7JMw0Ux6v6VJzHqziWHqLMzNI9IEMoGyYfptmRz91jPESUImBN/3urso1yuUKx7lkkOWRiiqwI9k58aPAmqNElfmV9AUnemZKcqVCvNXlhgOh3kXwScDRkFAq93B9Vz8IJBeasUC9UaNkS994ZIs5eDBXaSArhsIReOZE2cIg5gsE5x45rnciDsmDEN27dhBv+/jDwNc16VaLfPG7381xWKRj9//VR5/7Dh7dm1jfa2FHwQcfeokTx07xcPfeJI4HrHeaqIogp/88R8mSWQHSjc1+v1hDlIGQYquK/ihj6JAt9dFyo2beF6RgudiOxaKKgjCkG63BwLiKOXypQVKxYKcyrOUJPfwW11Zl9wS3WA4HJFmGe1Oh26vR6NRpVQu0mm2CUY+SRLTbLfo9XqINKVSKSMUhUpJ2iEsXlkGoVCtlHnssWMEQbAZ9JqGhapqNHKl12LJQ9MUvKKL69o06lXufftrue+TD9Jp9SATrK62iOKYxtgYum7QXF9n27ZJhqMRx58+TZJCsVwiDCOKnkccp5x45rn83GgsLS0BieyqFgtEUcKli4skWUImDAyrim4WCUZ9FCUjiVMJAS84ZApkmVSznZiq89adDr/0L36JP/zT3+fs/Lf5yoOfx3MFM1PjfChsoesKtx85yJ5dO3DdAqViCdt26A66BIGPq5ukScLYWJ00TVGEyA3AIQxC/FHA+mqLfn+wCYdPkpTBQF67sR8gkgRVKKSZwrkzl7j/cw/Q73TptFoEIx9IGQ6GaIoKaSZ5ckBjrI5p6rTaLRRVwTZdtk3NUip66EJhbXGFJIw5e+YcY2N1RqMhpaLHYDCk2+7yzSeeJvADFhYWWV9rEscJpm2Txhme61Eslli+skIwCiEVrK60iOOUxtgYs9u2sXfvLnRD4xNfeABFVVleXmX3rh3s2beLSxcXeOSpk5TLFdbW27z/g58kS1PK1RJZlmHmnU1FlZ3cUtFD01TGKlXiOKZg2yiKwmA44r75i9IvUkgOYq83YKJR4e9OdUnihNNnLrK6ssbKyioF1yZOUx55+jSmZZEJwcxEjVsP7UbVNT7y+YfZs30SPwyJkhhFU1lcWmFlrQk5/9EPAvqjoUQ8JBlLV1Z5091HpBm7AnEcghAkaUqh4JJlYLvOJv0gChNJHSDLOUYbMcAmEo8bsfo3ZOKvDYA3l86PQZpdPT9nacobZ1+Ppmm02iu4XgndcHnk0W8QxxkPfPXLtDtNKpUyyytLjEYjnnnmOM+cOE6GhuOEkChYts3S8grbt++m014m9H06rQ47t+9gdnaW5ZVF9uzei6I5XFlp43iT2O44MSlR4hMnEULRCNMYoWr5fJ8SDLuILCAarbJtqsb6+jILC5e5dPE8pq5SKpUAiKKIvTcdJExizs+tcur0GRYuP4ep69x112sgE4SxVMDM4oTAHxLlxTvfHyJIOXniSchiTp06hqJomJZU+I3iENN2SVNZNAkjnzBcBl2AVebc3DqaITj59De57eBhDu+5mWLBIMhSXvf6N7BweYlhe4WP/NUfceSWI9iFAre+6nYZF+oq8ea544bJ+6aPsRBkOXc5SV9GwrDl56r1iQ11ZFXOvxvXRa76vXWksfxbEsWbsVwqsi0QUCRaI002xYBZsQ6FAAAgAElEQVSya66z68V/W5eRyfXV/yrqNYbiW9ax8dqaiL7ksbhODC4UBUXVUFSNl47Gr/89bjReTjz+D3V8r3O3ZWzYJKS5IMK1aOIN9aKNrpeUJH8ZF8g1n9sYG1Wc6/nTXTu2du7ylb6ATP+S+/FS29iyv9cSfq99b+tIkzjnlqikQcjbf+ItTEyOSUPaNJXdpVyOOIqkauO2bdvI4giEQNek0MG3jz7CZL3CxdUmMzNTZKibQbiswLFpYmzqkle1tr5CEAaUyxXWm20yVFRdRVU1fvmf/hPSOOX+C+e429Tptnp0+wMqJQ/D0GUiVnAoewV2zIzT6/X57b/9Cu+/eI6TH/o/eetd+ygXXXr9nsT/pzAcDfIO4tUHLs7Nd1VFRdeknLhhWWiKxiOPHmd8rEKpUpTnPH9Q1ColWq025UqZS3OXsS0L23FwHBsjV2MTQoqppGmGomoEowCvWJBeZ/l3SBPZKVhbX8cyZfctA1RNZTjwSRIJF02TBNO0WJhbJs0SJqfGSVLZBatUSlLcIZWJa5ql2I4thR2SPHlIEgzT2JykRqMB/f4wP0cCVRMYhknoB7i2FDfo9QckcYJhGZCmNOoVxhp1ms02hmWiICfbQbfD0uIqiqrQmJiS8ENDQkzr1Qrddl8GbFnGxHiNfs5XtB1XikCoioQ4KpLjZJgmzWYL23GIogjHcfLJMaNQ8Bj5PiB46OvH2b9vB4Zh0Gp3qFSLKLkcvaFbBH7I4uIKY+MNLl1a4LnnLrBzxzSGLtixfZrVtXV27JghSVO+/uhJfuQH72b3zkkMQ6FarTIYjFBU/fkbSYClabRa3fz7pEACZIx8n2q1jKprBEGIpssAyXZtFFWh0+1RLheJkwRV1WUypUsJ8izLUISOn3shqopClgnZuVNUvILsgCdxSrfTYm21BWQYpoRumqZMVDRDGoMLBBPjdRzHJgxCOs0Wjx09zS2H9mKaZm7ALQjDiF6/x3A4ornexDA0An+EpguePX2WPXt2MzNRpljyePKpExw+tI92q7PJKXFsE6FKNcn+YMjYuOxGp0mKqqqcOXOBI0f2U6tW8IcjBsPBpqy5ZdnYts3SUhPb1dF0gzhOydKMOBmQJCmGJSFZam4PYRqyO69pGtsmy7z7dTfxf73/c/zGr/8GujAwVYvlKwtMTE3zJw89yLsPHyIMpQG3pmgM+iOK5QIZcHDfbtbWm0RRgO04LC+tYloSNmgZOpZpYLvuJg9HUaU1wGg4RFFhfW2NYqlIlkKcQBbHLK6uMTlWozFWZb3ZJIljLl6aRxEZbiGH0I76KEKh3erQqNf51olnIUF6VmYxzfUWtmli2TZFzyNNJGS8WC6RxAkrK00m6zWiKGR8ok6p7GEXCghF4fxzF5ibX8TQdOr1OidPneGZU+fYMTuD6zrous7qyhpOwSGOUw7tk/xV3dRRNckX0hSdJIx54OEn2Lt9hnLRplotE/g+rudsGrivra5j5pxZMvIusyCIIkZ+QMlz+dTCZd75mn2kaYZlmVxZXuPQgd387dHL3BzHeAWHcqmASGVCPT5Wp2Db9Icj6rUqz51foFR1sGyDg7tnubK0xvbZyU3ovCyiuPz1p77K7pkGlWqJWqXE4vIq5VKJguuwvtaiUikxXfdwXIMgjtF1gyR93oKl1exIuH0euF9eXGZ2+2T+rJTz+2cXVvnJd/74S87C186z2bW/ZVJERVUUMpGSpTrd0z6GC7au0mk3mZndz/mLczhuiSSO2L9/P3ES8+1vP83unXuolOucPn2GqckZKnWXU8dOcujWW3HcAhfOnUHRIzrtDp22T6Fok2Up5VIZ07LQNY2pyWks0+Lo0UepVDxUVRb4dNsmzVKkOY5CliXYtkMUxzi2w4mnH0E3S7gFD0M3GI1G1Gs1TMtmOBphWRaNxhhry30Wr1zgtltvxjJ1QFqfxCQYmiEVbV2HkT9icekyleo4C4tzTEzOkiYxjm1iGDqaroBIJdIj92pN44Rd2m4+9/QJbj4ww19+6AtMTTWYnBxjcuoQf/bBzzA9vpuJcZUnjz3H3pv28IEP/AVPfuNrvO3HXk8U9dDNEodufjWqZyMUEGjXsOC2ntLn+WKbtJiNROeac329zt2NksV0o0xwLW0ty72FX0LjYUMQZWtsuqEsKosT2gvRY5vb2Hg/22xMSsrH8/eEFIS6Bkt2ne93rUH41m9+3W1/J8d3WGzlH1Ln7n/K5E7NYYnXGolvnGZ5caZsyINf77Xh3ZaRSaI8V1/GGyqWGWxCvl5w2jduqHz5DXWkl1p2A1f8YhDM6w3B834f11U4yvdjK/QyTWJJ+r92wskhnlfdGllGTIqh6vz+7/wOr33t9yEEeMUiuq7zzFOnKRdrlEolAn9EIsTmscyAqZ27+cuP/g0/fM9dxGFIbzBC0zSiyIcsxjBUNA18f8ig35ZS1MUxLNMhDKTKZByGUpijMcagN+TI4cOUvQq/9pGP8daxcUQmK1WVagWB9Oe5dH6B/nDAL584zV/93s/yz+99I3EUEgQBqi4fWoZmkCUJqqqhKsbmQyrNFQ4VIUhTePgbTzE7uw3TclEMFUVTmJmqM+oPGfYG9LojLMdhOBgRBBGarjPoD5mcHseyHBzbzmEdKcPRiCTJMC0Ly5JCDUkagyonqzQGBRXDkDLPtiVFUdrtLrbtkCYpmllAUQ1JNs5UmcjVijRXmxQKNutrqzSb65RKHrZl4JYLOAUHP/DRVKkWqJsGURxhO6a0b8hi2u0mju3Q7fYZjWTXSVVVUiKGwxAhVHRd8ouKTpk4iUAoxEmKbuiSl6KAQKXf9un22oxNVNBNE0uzuLK0ilsoomk6TzzxDMvLTfzQp1avcvHCAgWnwOLCKqWKw8kT57ENCUMVKqi6iWGqnDo2R71SRdWQptejgELBI45i5i8vcvz4Gd78Q9/HufNnIUuYmZ5AZIJzZy6hCRXT1vmrD30JS9c5dfIC7Vafe153Kw99/Sh3vvoWTMPg/IWLbJ+dQLcFu3aOSeW9KEQoAd1Ol689/BhjtVpeWVSJkxRF13A8Oxf80NA0i26nh+cVUBRpj5FloKkqp5+9SBxF2LYtu8ZCeinqloZQMjQtvxYzBbKITqePZVqoKnQ7XTyvTBalBKMRqyvr0tsvhOpECa/koRm65A9ZFmEsPf+GoyEZUlBGN3SZSJs601N1vJJHt9NGIeXK0hLVWlkaoeu69GzMUrq9AV6xTBRGmHngj0iZmhxDVSwUYdBt9wmCIZbjoqiCS3ML7No5jaIkpGlIGIWYhsX4+Bi9Xh9VzXALRamIKASeV2TQH7GwsMJTx09z8Kad0qxdUWi3R4xVawy7XVRVgOmgCB0tyRjEMWQ6SSz45jef5tCh3bz7Nfv4wH/6c/7FH/wHPnPfp3jLW9/KL7z3Z/ib+z/LfadP855X3UrRc+n1u4xP1hCZLjmOkU+lUpCqrVFCEscYmvQDbHf6aIaJSCRUSNek2MdoOKRWK0n+oq6DUDh9+hz1YhHXs9k9O0Wz1UIVKt1On0a9TsGxqVTLubm4QhRCc2WVWrWG7wc8e+YiWZJiqzpX1lbYsWMGVZPQUd3UiDIJa9UMA0VRmJhq4BRtPMeV8EvTlFL6cYJXsJicGseybM48e4kLl5bIUtg2M4HrWLSaTaIwpFDwSDMBiiDLEkxNcObMeSqVKpfn5ykXi0zUK9THyoyP17AdB0WHOM7yYl2KZqikcYrt2pu8ylEQEIYRQRjTDQa8/o4aJc8lSWJqtTKz28b4y797lN85cIBKpUipVMTQFZIkJgxCojCmXKvgOhbLV5pommD77Dhnzs3RqBapjcnjuLzUxNJN1pdb2IZFo+xSr5ch52nqikHop7RbXTr9AX44ktYqQnYdszSVnK4k4aOf/xo3bZ/CdXXIEtZabXbv3U6mqpucys8sNrnzLW9h777dN56fc575teMqWGae/Mn1KpAKTE3hyrOr2K5LMhoSBiF9f8jU7C5cr8iO2Vlp4i0ErltEoPDw179AoaFy/sQC09M1ZndvQ2PIwslL7Nk7weyOGVbW5lleWZE+rGMTmJa9Wfg+evxxFFNncmYvZbdCMBqgG1LV0tBcojQmjkM0IfnRQkCUZXjFEn6/R8Et4RXqNJsd/GhIoVik02ni2g4Pfu0L3Hr4dhpjNWwDgmBEkiZohoah66QiQdV0ojDGsizcgkUUyaJJoz6JHwTMbNtJHPhoqkIwapLGARku3V6EKqAy5vLJxx7irsNl/uKvH+ENd0xjqhZZENNfuYxjZiysudx86BCFYsQdt9/OfR+9n3rdxpq+he9/89uoTjRQUCWiRslQcrjstYXwjd+lHVQes4kNv0uxeY3cSA8h4WoE2caLTNofKULJ68VyfWqeZGXIwu21YiBpbghPtiHgInJ0VXaV+fkLEp8sQUrRpmwgIl+4v+L5wHfj9xdczde+torHbH1t/dgL6UCvZNxQFf4VJndZfuy2JuHXE0zcuj1N076X3H03x9bkbsOo/MUuFiFe4qRfDYR//r/X+bMipHLZi12WW7lzL2fZa7f3csfWCs21Y7MAdM0yN5J6VTaSu6seHBm6qvLsqWe557X3oGga4Sjga199iC8/8BXuufs16IZKlklo3kZVU/IpLA4dOsyjX/86WQaFYhHLtkkzMEwdyzLxRyMgI/BHsqIlDBkUjIaUymW8YpEolgEVmayOr62ucfHCWRorLZbXO4xXSximgT/0SdOMx89d5I87fe7739+CpiksL61SqZYwDE1WIRUFRWisrzU3eXVZliJU+RDa8KIZDkc8feI8N+3dIVXbFAmDMA0Dy5IdkThJWVtdZ3J6HN3QUFXJJTR0HamtnRcfSDF0DcuWpt1xIrlWBc8lThPSOEWgEIUhSSoDyw0VPMdx8uskkwqczTYKcOr0WSbHa6RphOd5shuXJniFguSeCGmcnKaSkyWVtUCoCpomq+1pkhLl8FNFqFSr1dz8WEfJTTtNw8I0DYIg4PL8MgIF27WkN5RhyKJIJicfVdVwXZNeV3bNgiBGU3UuzS1RKhWxHZvLc1eolAocO3mBXTsmuXBhAdPQOH7iHCvra9x680HpqxgOMWxBHAakScyJ4xc4e+Yy337uLPv3bUfZOI5JSrlUZH5+CX/k43kWpBlLS6vU6jWWl9d46tgZDh7cye237GN6eozdu2eY3dbAMHS2TU9w6tRZxho1Ka4gMkBjMBjguR6W6bC8IruoRw7txzAsDNMkS1PZIUtTRA7R01VNir9sCPEgRW+SOAGhUK6UNvmCui6FHFRF2VTO3OjaaZpKHPt4BQ+hqCRpzMlT55icmCSOQtqdLgXXQREqH/vEV5mYKFAqFhECet1BLpMvg1XHsaWXXQYZcp9VVVAsSvEB0zJJ4wjLclBUhSTNCEb+pmF4mqQ4tpV3awICP0QzdEzT5tFvHMP3feqNMrouMHN1yXLJwzJNmuttmegWi8zNXcG2HD72ia+wb+8UUZigagpm7r0WRQmqqnBg/3bCMMQtuCRJysLCMnEywrFVNFPIJCqVcuVxEjMahuiaxvbZcRzHot/vs3uizMGqydfne/zwD7yRNEv4qZ/6aT7zuc/xkWee4c3TMwyGI3RNZzjwGfQHnJ+bww8CHNsiy2QBz7JthoMhruuQZRlrq+ub9hjLS6tkaSJ98Axp56KqKsVCgaefOcX01ASXLs8zPtZA0yXnUNe0vBvrIhSkIqdhsLS8TJpIy4MD+3Zj6BqjkU+x6OIUHKIwxTB0MlJUTeVjn/0S2+o1HMeW11kGbqnI6uoa5Upps9Bp2xbnzl3ENEwcx+bU+YuM10sUiwXZmdE1ms02jfEGH//slzm4bxeO5zDq9RmOAryCR7VawTQtHNtC01X5PDHMHKIF85cXaIzVCf1QFoaQ/oRxHBHlRuG6qvHhp5/iR994hDiOmdk2SRzH2I7FH3/hDG+bahAGEaZpyGQL6buo6zqDYUihWMDQNCan6iRxTMlzabZ62I7NcOhTLnk01yX0v1orUWtUEErG+lobRVE4fuIcE2M1iiWXsfEqpbIru+mazqWFRUrFQi4wpLJrapxiySOOIvyhz4WFJWamx2V3Jp8Xf+fos/yb3/6Xr3C2zqfaa+bozffz+XM0HNFfGKAoCsNukzgKsQtFdNOm4JZYW1uVnMc4pFyu4NgOjcYEc/MXmBnfTZJ0KZbqaGpKGPh4XoE4S0lTnSwxabXW2L59mjjy0VWdMAiZHJvEcwugaCT+gDgaIoSErwlUUKT4ma6qRJGE+QlVJn+Vyjj94YC5K1fYf+AgqqoSxRGtdptapUaxUEYoGfPzZygXbRRFYOgmYeQjUo00S/LCmE6S5qgFzcG2HBRVk4VMUuYvn6dWq0MSoGs6GQpfe+jrTE9WJWdyqcuhIwaOLrjt1p24rkvfz9i2ez92sUFtajdR4HPi5FOUihW+7657+NhHP8BNt93J4UMHEXknMCPLkV5bEqKrmlVKHudsPXtbu1Jb3r1OrHXjSPT6VlobwmtA3oXjqhhNyfdbuQZ1pqqy+HvjhOcGXbwXee/ljZf/ue+YfsV13n+ZK8rXcbUi54tt73vJ3Xd5bE3uNrzuXtB52jL+e5M7mRCIV5Sw/UNK7oSiSP7ejW6mGyR3hmWRBCF33nEHmm1JDplt8+/+3R/xtre9nZmZmRyilD6PmSZv4WdApiDiBEXVqI/V0XWN5bVVGbwnCXEU0m13qNeqOK6Lqph0u10+9OEP8/G/+Tjf//rXY5kWiIxLFy7iuS6GYbBzdgf/+hP/lZ/cvp19+7Yz6A953xPf4veOPcNdN0+wuwCNmkez1UEgcAoy6Nt4IJ8/d5mJsTFG/ohPffbvueWWmzZJvIpQiBLZObvpph38+f/P3nsGWXae952/k/PNt3Oc7umJyIGgKEKkREiURFC7JiVxparVWpa13pXsLcly7Qd/UZUtS17LK3u9tuxVsGRRZgbBKJIACRIEQMQBZjCYHDvHm8PJZz+8txs94AxAakl7XeI71TXVt889555wz3mf55/+4xcxlIw4CjFNA8sySdIUfRBGfvrcFdqtNsWCR61WJ593hWZkUHBtb+0gy8KYBCSiSEwCFVlhZ6eOaZuia2kYwsRkwHuPwwhJkul2uzTqDbY2d7h2ZY0vPnWCTqPBcCVHIe8gXOplkBE0S1lFkYXByObGpjB9iWL6PZ/1tU1hBKPr7FEuEPrHCxeuY1s2166uIMJhI/x+l8//1TPMzYyTJDHPvnQO2zQYHq+gDMJ2kyRBVRU63S6WYdFpdJGkiFq9LqzXkxRDN1hcWuP6tVVMXcXxbKrlPPWdJhPjQ1SqRUZGioyPVbEdh1dPniFfMFDlgCTq0/dDjhw8xOTkCBNjZVqNNrYt9IHtVodc3qNUyhP4AbOzE3T7fUxDx/M8PNfh2NF5Wq02qqry2pkLLK+sMXdwktXlDa5eWeLQoQN8/NNf4647F1A0hdWrm4yPDwuznFTGth2MAZIahQlrK+u4rsPy0jI5LwcS9Ht9NE2lUW8MDHAkUayR7QVwm4bJ1tY2lUoZv9+n3emgaxpZBkEQcOHCFYoF4VwpySmKog0KzyLDQ8N02312qTO5fI4oiiFNObgwKbbrOGxv1bAsi631bSzbQFZUNtY38XIeSZKSJgmaqhLF8cCAQrAedlFYsoxOp4uhD8KkK2WCMBg0XURh8tqZy+Q8l69+4xQPved+Op0WuZxFMuiC6qpAc3K5PCsrmxRLeTzPA0nmrtsPIskCfcpISQfZffmCaNKYlolumSiqTN/3GRkdxi1Y1Oo76HJEEPYEWt7rYpomrUaTz37hGZ5/6Tx33jGHpkrk8zlmpsb4mXvm+OA/+l1+/MEfw/XyvP2+e/j8l7/M45cu8qE776ZWa5DEKeevXmN+ZopyqSD23bKFM2kco8iyoKFHEcVSka3Nbba3dlAVBV0VAdimaWDZNlmSQpqhSQJ9r1SEyYRhGJw8c55vvnCKowdnSeIE3/fRdA1ZljAUDV3XaDSbFIp5XNchiiNkVdB0tzaFxkpWJEI/4vT5S4yWihTyedIkEec+56GqQgOqayqkwlK8VBD79MSzL/JDdx/j6NE5bM/BsUVcwcb2DroqqHJ5z6PbbBNFIaVSEVXTCXyfVqPDX339W5RytmhKuR6nTp1hqFoin3fxe30uX1lEVYUZVOD74trKBFPC0HQ+vLLEBx6YJ58TZiqObWMYOp965hI/Pz8lTJ80nXqtRbPV5ezlRUbKZZZWt8i5HlevL6NqQn8sKyrFQkEwECyTNE1wHIskS1BVGU032NmpU2u2ePqV84xXi7x89jInzl5ifnKIXr9PoeCRZRljY0OiwZEI1oY0mCgbhsbVxVUW5qYG9/rXn88vo/PjP/Fj3+XTevCofcMzev+QJZkPfeiXePdd7wag09ih12sTxTGVyihBnFIuFLl45RxhFLK0tIhj5VhaukrOK3Ht4hUMO+HK5SUmpkYxDA1Fgp1anXqtQa+X0mk3mTswReD7BH2fVqOF3+sLMzTH4/SrLwjXaFPQJVVZFL2KJA8MYDJB788SVFk8K6M4ohMEDI+M0+10cBwXw7RQZZVXT79CqVwQ5loI19jdZqmpevQDkTMYpymSrCLJKmkqzoPr5skkgVKXy2WiMCQMeoN4mIzx8WGMAbvi6PwC//rTj/Orv/AgftDg4pXLNH2NP/mLT3Pm8iI/+4t/G0M1eMcP30fOy/PZRz7JgdkRHnjXQ1SqVaHLhL3ijizbm8fsl+JIgyimG8f3trjbzUCV96F2cPPi7lYFUpIkA1TuVlKjHxR332lxpwzm/rIk/SDn7vs9JPjt3Q7H/gyK/WM/OLwLW+9OaOU3FoL7fhFOba/TGjMY5LG9/rN7+pMBreGmX/U3LPsm+3Iz4PqGEQ/iBvaPt4pC2E9LfcMu3mThAU971/lpr4OUIA/e+Ou/9uu89yd/iiQJed/D78NzHRGanCVIJII2IMuoikYQxliGxWce/SLj45OsLC9SylnkCzlSScIyPVR1EBVgGJiagaJpIgrBMpmZnuHkyVd48Ed+ZI8imMu5SLKE7/eZn5vlztvu4k9PvcQ7bYNfe+0Sv/N3H+RHF4a54/YFjh87QJrEjIwMCfRDkTAMg8CP+cSnniSJExYWZun3uji2QaVSZNeVSlUE8hZFEVmWsbW1xZHDs+RdmyQRjQTdMMgkiIKQw4dm0TUF2xnsXypcCm3LQtNUFFnBtsWkXlYUDMMYUGTFMTMMk9APUFWZfr+HrgrNVJKKTr7v94nChNGxMcZGKvSaTd7x9uMMD5XQNGjU69iuJ2ibusby4hovv3yBF1+6wOraBkcOze51A6vVsghfliWCfoCqaciyQhTFeI7LX3z0q6ys1fmht9+OaRl4jsXM1CiLy+tMTY/h5SzGxkaxbZMoinjtzEWGh0q02108zyEMQ5574SQH58eAjGKxCpJE4IdMjI9SLHi8+MoF7r/vGKVigepQkVze5crVRaamJ0QAd6vL5PQIppnRqq0iJQFhAjmvxPnzV5mcHMG2HDq9Hv1en1zeEwYYssgXjOKULMmojggH0edeOMVXn3yJIwuT4n4hw9Fj8yRpyMmTF9B1leHhKocPTWO7NpcuX+OFl15jZNikUHRJMglZ10gimT//iy9x912HyBccdF3Dtiz8foimKqiqQpokpIlANjY3t7AH6MPHHvkKCwcmkZAoFAp7xj22baKqKlcuLTE0VMWydCQyFFXoWxRJUJeSROT+6JqOYalYlkOaQbvdY2y0SqvVRFM1VFWj0+5DJvHJzzzF4cOTLC+uCe0bGe2WaHBcvbpIsVTk8uVFLMPAtgQ90jAMTpw4jWnqlEtFdF2jNnBl1AdavizNqFTKaJrGoYVRVE3G8yxa7SZubkCnRSZN4I/+9Av8yDvvJc0S6vUmzUabJI6JwoidnTqlUh5VUanV65imcI/MpAxdU5AkBohYQJTIlEoVOvVtPFMnSWUSVGo725RKRY4emeKuO+fRdR1VF+6fsqTQbnZ5/70H+eBv/RM+/Kd/xs998OeYGB7lP33yP/O17Tq/fN/bkCWYmhgTNOQsZWVtg/GJMRqNFo1Gk43tbdJBHEEcJ+QLeRzbotfpkcQRnueiacKAaXN9iziMGR0dRtNF1IWbc+m2u6ysbaBrKq5higJbV7EdC6QEx83xiS8+zm1HDpKmgiq0vL6OZZisbW2ycHAOWVGpb9cwLYPllTVytoOmqKKYURU0RwckYZO/tMrW1jau42HbFi+dOs3SzhYTw2WKxRxxktJtdgjDEN+PKJWLTEyO8vgT3+K2IwvYjo2iqmSyoNp/9itP0g9i3vnAnSiywoc/9RX8ns8dxxfY2dlha6vG3PQMSZYMomAkWq02lmUKDS0SX1xe5Gd/6CCSJPTDuq6RZRJnnnyNd0yMY5kmSZyysVkjy0BXVTRVZXJ6HEVTGRrOY5oGhqGjqhqhH/PMi68xPTbMtcUVCnkXN28Ld+ZUuAqXS3kOTo1hGTqX1le47cAklUoB27JJUpHnqKgKSRwPYlRUVpbX8TyHfr/P8sYWM9MTwjF18Jxvdrv8rX/y3c7vXp+ryG+SJZaR8alPfJp33f4ufN8nzQZIvqJQbzaRFYPLly+xML+A47q88MK3KBWqqIpMnPY4dHieYjHHhdMb+NE2q8vXqQ4XsUyXKOhTHqpy+1338FdfepxavUuj1WdyZp5Gp8n4zARSqrCyvsT07AKqYpKEfbJMOPMqikoQBmSI5zGpkBFIKCiqzvDINJcunsfQdFTdQNcMdN2gXm9SyBW5dPk862srbG1sUqlOocqQIXT6SZqSIhEGEl97/OvMTI8BEtv1GrbtkpLR7XSAjF6rhqYZmJYJZCQZqIqKLCs8d/okP/Pjk3SbEt2+yR999CVevtjggR96H+9510O4rsr6WqJ2ZkgAACAASURBVJOLF87x2c/8OTsb6/zowx9gfGwMSZKIdgv8wRxwt0O+60y9ayb3beYde94n0o0o33dR3L1xfvf6lSPWkyK08t+2xv1z033bUxSFNxZ2aZrs+1w3L5BuNqe8lRv7TYvCfdTQG4ow+Q1mLNJNsp9vMnZZCPu/Nbeivd7w+r5tCy38zbaRIcvK3jJ7Jjn7tr17XHdJpz/Q3H2fRxiGv53xut7uZmM/C3jvspBevwBuVdzt/0LsXUy3+By7vOvv50gGIctJktwgqv1uexRvNm7JEZdASkWB+vD7H0ZRB0GiDG72QYiqKUAsjA5kYcvd6/Rp1btMTkxRHhqm32nw9Se+zIG5GRTTRtMskjhBkUBGJkmEXs33Q3qdHpZrc+/d96AbBrIsUW/UsHSDOA5pNhrMzsxQb7T52Gce5Z4fPcRv/vcPYBg6ubxLu92lXCmSZQkXL1wjn3MJo5hTpy5QzBeZmRyi2+uiyhntTpe5uWmyLMP3+xim0LYIbWCMoiocOjg7CJU2RUyArhHHCWmakSYpj331OU6+do2ZSaHR6nS75As5el0ffWBo4ft9yuUiiqrS7wmheZom9PqCGqOowoSi3WoDMrK8a+kPhmXg5fL0uz5IGdNTw3g5B5GR16NYzBMlDEwxRAbc+MQwURSQZQmeY+HmhZX8ruOV2DfxQMwy2Fjfhizj/nuPoCtgmCqu69DtdfA8j0qlwnZtB9dxsW1HdFNVVeTEaSqapgqNkqYxXCmiKCnIIMsGSZqysb5NzvPo93xOn7/OkcPTtFtNJInB8fIwTZPlpRUuX1lhZLiCokIa+kRhSoyColpUh8r4QZ+d7RpnL1zl+PFDPPq5JxgbLWM7Foahc/LUBZZWNpkYHyYjY2pylDgOcG2TxesrlMoF3JwHZByYmWRsdBhZUXjiiRdYODjN0tIqb7t3QXSUTRNVFcixKilUCja2I7ratVod13NRVRlVUwQalWRYlo3vBzSabTzXAQkOzU8RRUJ71Gw0sB2LMAgGsSAZge+TG5wjTdfJBsY4UZhgmhaKAqqmokgKURKzs13n1MkL4jhpCrl8DkVVURRhWqNqCg/cfxxd1ykW8iCBNoi40HV9EFEh4bkO6xtb2JZwsL1y5TrDQ2WGh6t79wNVFed3Y2tbUC3rDXTDQNNVdE0ligKCMMDQDRRVJU0g8AM0VWd0uEC/52NZOkmS8eXHX+K2Y/NkwDeeOsnRIzNIsoRpipzKbrdPEsWYpsHy8jJRFOGYJsrgLqvrCkGvR7sTYNnCkEQY0ih7ES6pJIxh0jTjyuUVFg7OcOeQw123zXDy2g5DlQrzc/Osb23xyQvneVexJKi9hTyyLOM6DhcuX2FsdAjLMEmiCMd1cBwb3TCo1+o0Wx0sy0A3BR2zO6Bu9n0fWZJpN9qYlsHG5jbuIHttuFKmlM+R90T+YqPZIo4jdEMFFGr1GjnHHuhqZB7/1oscOXCA8YkRklggCEEQ0Gq3ueO2o1TKwjnW9WxW1jcEtVDRSOKUUqmIoopGG5LE2MgQs6PDjI0OEwQRUZLgOS6WbTE8VEUzNQxD58UTZzl26AD9Xp/aTgPbc2g1Whw5eIChgodu6EiyzNvuup1KwSWToN/zqVTKOK6LqgmUU1EU9EHOZxLHgMTwrMyhqZFBtIuDYRpcXW/yvtwwL75yDk1RUBWVJ18+w/pOk/c8eC/ffOlVSp6zZ3rl+z66rrM1yPu7en2Nr750hrcdOwiSQFRUVWNzY4dCyRNOvmmGZVsszIwyOjqEpqqcfu0K1UqRJE5EMZiBZmjEUUwu76FoKqvLa9x+22Exb9+THEj8nWdO8/M//7e+2ycse5NLSdpDYvYPRVFQJImPf/wR3rbwNhzXoba9SafdoLa5wujEDMOjk5RLZdbX11B1jcOHjlPMFTh77hSVaoXtrXVKRZe1lTUqVYfbjtyJbinoqo6kyIRxwKunX8APVIqlMs1Wm0wSWnPNULE0k1yhQKvdptlso8kJcRIKd1FFERP3ge1/lon7Q5LB9uYaSaayU1sn75W5tnSVUqmMJCu4roemaHzzW0+RxTEjIzNcOHOC2QMzoGUE/ZQsE5EviqSRxSnj46MoqopuOOzUajiuuDdGoY+mgq5ptDod1jfXkFAIQh9Jgo1ajUMLMqZk8unPfpXnTtd54IGH+OVf/nv883/226ysXeO+e9/BocPznD71JJVimYd+5mdFASWzVxy9Uc5y4/xoN1/2xvN7q2LjjePW7LJbF3fifdleoXfL8YYi7VbbEeZ/6Vsu+1bjpu97Awr2ZgDEd4JA7hZ+N5aj38F4A3V1L5PwxoX2bTf79qL9Jsy4HxR33//x27to2i0ZxTd0BQYvfq+LO0XZg/C/b2OA8rwxJPN7ucUbUM4btv16cdfpdtEti9DvDSIAdNHNlFIyUjIZkiTl+pUlJBSe/uazjI1PsNNoMTlSZbjisLq+SqoqOE5JHOcsRUIiDENWV1bQDBt1kHk2OjZKvVZDUiVyrksUifwr3dA5d/YsC0eP8Cv/09/mt37v3/OTd44TxRFJktDp9Pj0F57ivrsP0+322NluUq93GB8bRVU08nmXkZECkpQyOTlJFCXIioxh6GRpiiyrhGHE+fNXBnolgSLIqnBuzNKMOEp59LNP0mp0uPvOwyzMCVTGMC0+/qmvc+TQFJquU99pkMQxmiZ48bsC+mzQMTIMHVBQFBnf7+E6NlubNbY3awyPVlleXoUsYXOjhmlYPPvyCWZmJ4QmTpK5cmUJx/GQZB15QI3UdQ1ZhkLBZeHQLKZtgszAQjpml+axvVXHMEzIwHFs4tin3+8xOztJs9XEsg10SydDIgxikjQin8vjdwMkdZeinA0odilIkKUZjmOyurZEqVgkiVUkVSLoBdS2G+zsNDk4P8r45BiaIpCQ6vAQmmbi+wFhv8vCwjym4xLFCZZhY5l5dNtE0WxeeOk0Y5MV8nmPoWqFKIpYODiFbmicevUchYLH5MQkExPDKKrCyVNnqFSLTEyMYBk633jmFPfddwftVhdV00lIREabbtJstqmWC1TLJXRTolSq4vdlZDR2tndQgTSNKJQ8/CgQjqGSIsJupVRQdQ0bSVYBKJdK1Gp1EbSrqUiyTKPWxPVswkjQcHVDR5IkQSkNQtZXBX1ydXmTLM24fn1doDK6RK0uYimyLEPXLa4vrg+0cx5hlKIbBr4fDkxoFDJikigl8ANqtSau6wAQhhFXrlynUi6haprQ7skiU7BULLCxuU1uYLMfhiGbm9u4OXeAKKp4noekQLvdQlUVDEPo1lzHJY4zobmJYk6dOsfCwgGWlldxXBvXdZmdGqLdapPL55meHGK7VqNSKXHp8jVKxSJ+30fKwDJ0HNug02qL45S2uXj1KtWJYVrNHfKuhaYryFaeDNEA03UNRZYJoxRNM0gSoRc2DA1NhTsWJvCyOn/w8cf4P37vn/ILH/o5Hvvq13i2vsGDlWEMw6DZaOF5HknkDwotGdsRlNwUiW6njWEY2I6NV/Lww0AgaJpGo9lidHSY64vLFHM5gjhkaHiIne0auqnjeiJrbH19jUarRSGXw3EcXM9BkjOGKyV832d8cgJN01ESBpNccd9ot7p4ORc77yArKhmwurYh9GFxiCbLNOttoijBdC2QM3otn52dHfKFHK7ncurVczimi2Fr9Ls+a6sbdDtdMklY8s9NThD0RWRNoVwkVTJcW7j+SsgYpk67KXJId5o7XL66wtyBeRRVIc4ioRlOUnzf39P2SpLMn73wLL/4/ntRNRXd0Dl77jLVcpFf/Bef42fGRqiWRFC5aVmUcxZ3HTlA4PeZnRpB0VVxDDKZOBZGHK5rs7Nd4+j8DEenx5BllUa9zQsvXyYKIiYnqwRBwPXlNXKeKCR3m8CNWgdNVnn+5fNMTw6ztbODqgpqbTpwPg6CgHa7TWWo/LrcIBPP4keurX1firtd+t/HPvop3vvAe2k1WyiqgkyG5zh4uSLPv/giGxsbzM8tcO7COQzDpNfrMlSt8vXHv0UlN44frHD0+GE8F2xVI0VGzhQUVULVTZaurfKuH3075ZKLY2t4psv68jKz4wfQZIkgCalWRjF0l3p9FTfnokkZmSShqBppLLR8immQDFg7pm2iqQp5z6FYGmF0fJwoFYZBSZrwwnPPMjc3j+vl2dpe5fgdd6HrCbGkcubkOdaXrzE2PUKW+VSHiqRxRpykXL5yCVU3KRaH8LsdSCPABxnCWOP0q2fo97uMjI1jOSZT5Ul8eZnZYRXVtPjiN8+z0+rwK3/nF3nwvgMcv/MekHJ89GP/iWI+JOhGzN12D9VKWdBBpX1zyn3uqTfEF0jfXojI0n4TjjcvWP5rFneSJO1JdLL/AsXdLeeVu+O/UHG3h2x++0I/KO7+/zaiOP7t11G5m4/9XQN5kP+xh7Iiv07VfMNK9rtl7q3rFtvIMhF9IL+hK5AN3Dn3//x1MT6J1xHC/a6dbzVuBmfvH/u/eLderwSyTJwJF7Y4jtAGFL+IhEQRnTsSCVe1OHfqClcuXsPULRbmD7K9uc3lxauY5Qqj05PkbBWtdpX6ziIjlQl2fIXMSpAyKDojJATCZMHQ6fW6IGUokowfhCIbDmHyEkYRTs5BVjSOzB/hN//gz/mlh+5AUSS67QbT42UAiqUi5UqZq1dXsS2dQjlHFEfUag3KVSHODwOfKIhYX90gn88TR30kCR79/AvEQcDsgUmRcURKnCQD2oFMueCShBGyBIqCyJAj5Z57j9BvxViGhqJAGAbEUYaum8iqCCnv90MkCcLARzcUkDLqtSa262A7NoVyjn6nw8bmNqMjQ+TzOVRdZWp2giRJ2VrbodXoMjd/gDBO6LbbmIaKLIGmKyRpShiG4oaYim0rikB2kjgRznBxyOnT5/jM509QcjyhmUoSNE3Gy+WQJY008um02pw/f4Wp8XHCMKDdbmG6FkHXp9NoYzsWGSmabiErwv1xbaNGoVih2+2RkeG4FqVKnsnpUS5fWmJibBgUGdtzCf0I3w84+coZWu2QTrfPyEiFwO8TxT5+5KPoNrqmMlQtYmg2L7zwKkNDBV546TQHZqdZWlpnba3G9OQ4uqVz/dp1NFmmWqmgqjrdVkBCn8OHJrFslRMnTzI6XEGWVWzbptPpCtdDTUXVVAhjLl1a5uyFRSYmhvnyY8+i6BLDo0PoukkSiaDyXqeLpgnkNQwCYf++q82QxffWMEx2thu0mh221jdwcja5oguSRNwPaWzVMV0HSYJ80SOKI4rFHCkqr5w6L3RB42O4bo5uz6fTCojjiLkD47TbLXI5m6DT4dFHn+Slly5z152zQIoim2SB0Mp1Ol0M06TT7pLL56gMFej5PaQspdVso8o6Xi5Hp+dTrVZEVx4JTdVxcg5SJqFrOqqqk5IiZaK50+v1URSVVquHaeUI4wjdEOY9mqKwurzGiy9d5m0PHCYjxvMKWLaDbkoYloGpaSjIFHIefugzOjmMqimsb2xg2yaarpJlCQka+WKeJJbJ54fpNrfxO5toZkmEvJOiyAKxE00UYQDxiUefYGaySqVSwXZcqqUi75jx+Gf/+t/zr/74L/nH/9s/4GtPP8eXVhZ578QEhqkThjGKLNHrh4RBQrPZIV/MD6jMfaEdTFLazTblcplWo0Uu57G+uUk+X6BUqVJv9Hj5lXPIAyp0p9tBUeDRx7/M3MQBVre2OXBgUrjn6jbdbgdN1cjn86wur7G1ucPcgRlarQ4XL16jVMqzvLqGZZvYtkkQ+ERRyNrGFsPDQ+TyOQxTY3N7m1Ixz8aa+Cy2a+E4Iq5gdWWdnOvy+W88zfToEN1unyeeO8XxhTkee+p57jx2mJ1andHJUaI4YXlplWq5QrvdJo5j/MDnqedPcPuxw/T6PYq5PEPVEmEUcPb8BWanJ+m2epClbGxsUi4VUHQVWVe5rq9weLqKadvousvXnzxNvdHjV8fHcAydrc0a4xNDJGmMrikkcYqumtRrHYJegKFqwskzSdnaqAPQ6nTJeR6KplHbaYgczKLL5NQIsgSrq5scmBmn1/NRVZV+P0KWhcbx2uoqii4zOT5E3rNRTQ0/DMhkCU3V2N7coVDMCw2qLJFJkMkSm80mFwzvO9LbJfueqRmQ7TWUs73n+s0kGZ/4xCM8ePuDqLqOYjhsLF0m7jfR81VGx2ZJel28XA5T0+n32hTyNmHUY6e/jKGXWFu8ytj4CEqcgZySIrO5vc3K8iL54hCNrTUmxgqYms2pV85yafU6737oIc6fvYysxJimgyQrmIbO2uIapl5E0yPkNCaVRBNXliTkTMXUTLIBOhoEPlHoU++2uHjuMtXiiCgoNZWoF7K+donR0REaWxvkvTKep5N0QuKkweEjxyDNUGQNVRFOoLqqk89XyHl5wjggi0J2djbwXJckiok6TUquTaffZnhsjDQN0RSJR556ltlxePbEdc4vW5heiaeffoYPPPwhGlLKs9/6On/0H/4dy8tN7n77O/nxn/5p/GjAQMpgT7YzOCm752z3H5KgGcv7aYby686o++ed33YNvHF2NTA5E6wsMSl7o9dkmomQBEkeNAYkkGWN/Zl2Ay7pjet+k2JpTz8oyUiyIgqywY+Yxt54dUrSjfsF7OXr3WT1N9BEb7bfu8DLzZwp9/99dxluso6b7tq+991siCzjZG97SZLs0WF3qZy7f9v1qHjjZ/tBcfd9Ht9Jzt3+kQ5CZ3eHfKvuGdzQedh76U3WnQ3Wd8MFdRMDl+8FgfO76Vy8ldbuVjecmy6bCmFulmXCnVSWyCQJQxOUqfrmNjsbPh/4wM/yY+95D3NzsximzJe//EXe/1PvQVMUgjDGMEwWry+ysrqJlytjFwtIJBiqRhjEqKoomGVZYWtzi3y+MAjx9vH7fSxLxAhUqlX80Kfb7pFzPX7pF3+BpRe/gt8X9MdKtYJpWeiGQRzHnDh5jnLJY2S0ShiFlMqFPctiTdMJ/FBw+CVhWd9qdpibHeGOO47gBz4SggKcJqnIF0sSTNOkWCnh5l0s28Y0DMhg8eoym1s1isU8QRAI+lvOIwgjsiyh0WghSRK2Y2NaJrIkEfjBwH3SEPb5SUptp87M7CRZBlevrVAsFlDkFFWW6DRbfP2bL3P+wlUOL0wjSSprq+tUh6tkmZiUy4NoCEUVuYLbOzukSUSaSoLCRkYhn+Pkmav8xEP3k6UJrmejqhqyrCLJEq1Gg+pQFcd20Q2TIEoolkuoiriebccWiB0ZsqqSJsJhrVoto6k6YRiim8K1MfRDFEXhuRdOMz83SUJCGgsKrKzIbG3tcP/9t5EvuGSIxksSx5DJxLGEJCmsrW7iuS6lYgFZkpkYG6HV6nDp0iJ33H6YbsdnZ6fGxPgojUYDy7J4+plXUBSJYrGModtcurDE/OwcimwK1A1QVRXTNOj3+siyzOLKWQ4enmNktEqr7uOaNk88f5Jjh6bw+z79AT2s3/PRTR1NU4miaJBXJSz8kzjFNE1AIk5ivJzLyHCZTGLgSKqyvVHDcW00U6Neb6LrBoqk0Gx2kGWFo0fnKBY8JNijZQuNa8b5C1cZGR4iy8ByLYaqBcbHyhSKLoqqsLNRQzVUMhkq1TI7Wzv4fR/LNAjDGE3VUWSFs+eu8uzz53j+5dcYqRYoFvN87ovfYLhaxLQsFFkY7rTbHXFMHRspi5Fl0DXR9Mh5Ll/8yjc4MDOJIgvH2EajycTUOEkaUqqWSJIUEpnADyATTRzXcQjCiGajJaiemoHfF66sIyNDhGGMaVqkkozjucRJRpqCIguTmm6nJsyDZB0k4YabpuJ89ro9jhycxrZtFFnm83/1TS5dXuT40XneeWySn7x9jH/8/3ya3/hffpXnTrzC46uL3JvLkQQJrU6barXC6vompy9epeS5rG1uMjJcYWtzm5dPn8XUdGFqE0aiKaAKxF+SJD7yma9x7+1zjIxUkSQGuW4WWQyjo8PkHBvbMWl3OvR7PVrtNq7rIUkK9XqT6ZlJ/uITX2SsWmJ1c4v5+Vkeeewb3H/nMdrtDp7rYug6iiTjeQ6yJLG+ssHE+DhBEFIaaIgb9QaO4yCrMrZtk6QJR+dm8cOQdruPLMPC/Azz02MYuobjuuxqYT7z2FM06w0OH5ojCiK++vQLPPTg2/noo49xz+1H0QyNxcUlllbXue+eOwYumjqvnj3P4YU5skygL188/Qo/91N3YNmuuK9IGYHf4Z8/foH/YWaa0E/wch5ZmqFpCidOXySJYs5eXmFhfopWu02lWiSTUgxDp15vkMvblKtF4iii1+1RKOawHRPdUOn1+oSBMHqyLBN1oO9TFGHhb9om1XKBoUoBTVdJkPD9QNBuVZV2vUGt0WRyekIYhzCYN0vw9545w5/8yb/9jp6/t0Ro3uJ9n/j4I7z7zncN1pEJmryqoOkWaaJQLpa5dPUiU5OzXLp0kY3NVcZGJ7DkCidOvMDBw1Uc18M0CoRJgJQqLF89z+Gjd6KbKSNjw2iajKpZdNoBleoUcRwxMT6O7eqgyUiqhB/0kBWJxeVLGLKKoWiomoEkq8iSiqRkJEkICNnI8vJVypVR8qUhivkRmu02Pb+HbbuMjns4Thkpsak3lihVPKRUxrZ1LMvBMHShZUMiDHyarQZplhClCZuba+iqg6JFeHmPZqM2QNJDiuUCpeExem2f+kYLVVH50smneMcdeZqtjCeeuUZlqMq/+b/+AEPVeOXlV7n/jjt4+omv8dPve4ipqVHaQcj4xAR+EAhX4X1ncK/w3i2epNejBfbP+d/K9+BWQ8oG5dMuK0v69nDz181U9mvZdtd+6y28NRq3P8PuLYqifavanUfLyhvbEntLv/VneBMjwP1/f9Nl3uJ9NxvCeyDd+3/XsOaNmkO4Ndr4X6u4e+sE7r+hQxnYuv9NGrt7m6XpTf+epenez193tNstVEWh4Lj8hz/8YyzL4cihQ/zhH/47Vpavc/z2I/idFkQJSZhR2+ngFEc5uHCcVqtOEnSIfZ8sBcsVmjZJkuj3+0K0jaAPOI6YmGiaLrpVkoRjC6pXv98nCEI+8uQpdF3DsgS1MUkSgjBkZWWd8dEiy6sb+H5fiOdjEUXQ6fap79SJohhJEhqVJEkpFgskSTyo8zM2N7f2ujxhFEEmzB4UVdhBdzt9wiAmjhKGqmVGRsqkWcqFi9f52KNPESUJhqGjGwbtbhfbMUnTmDiK6Ha7qJqKpopw7CRNWFvboFKtICuiOJucHAOEa5Mqy6Rpwnvfcy+T42VSRAj0yJjQ5gR+xCc/+TWWF9fptHsE/YDtjS1kiYHpR8r5s5ewBsXs8YOjnDt3ke3tbXrdPiBoSVma4nkumxvbKIpCGMdoukY4oL/uRoL0ej1Bv4ljZEl0anc7ip7noMgyz7/wKpquE4YRtx2dETbw/QBFVYjimDRJuPfe20iSEMsykGUZ3dDo9UMMw8SybExT5KRpmsrzL76KqumcP3+VMAi57fgCmxvbFEslXj1zhdqeYyXEccLR43OkiTA/Gh2tYtkicDxLMxRZYX1tUxgshAGSDMNDo0RhhCxLmJbG6ESZdz1wlHzeo9PpUCzk0XUdWREao42BK6lwORLbVDWNKI4JBy6rkiR0c6ZpCROHJKU6XMHL50iSWASeyyogdG66pvL1rz+Hrgvd1Llzl8T70hjd0Dh65CCu59Ht9JFVBS/vUSwLDWQchYRBiGZo9Pp9oWvM51AVhTNnLiIh8/QzL5MhcWB2gp/9wI/x/vf+EJOToyiywkPvvp9Tr13CtETkxerqBpZl4biOCEdXJWRSmo0WUibRbrV49w/fzSsnzrC6vA5pSrlcQFZk7rn3djRNw7QsXn31PBIi+kTTFHZqO+jGID7CsOi2u1y9ssTIUIUoStjerKOqOmGUEIYxtmWhahqGZVNrdsi7GpHfQ8ogTQS1yTB0/L6PYRgUS6KJI8sy73n328i5NrZjYzsWY+PD/OVvPMTv/99/yL/5F79LqxfyW88+T6lSZHJygjCKODA7TbPTAwkc00RWFAqFArVWm+pQBVVTsB3hOpnL5UThCvx3P/4AxVIOZFB1jVwuR5qkHJia4ur16+TyHt1en0IhR3W4TMHLC2F/Bk+9dIpup4dt6vT8Pm+//06yLOMnHribwA+Io3jQRMkYGioTxxEMDGS2t2rYjr1nMCRJElEcEUcJSSI0sYZpMDYxzuzsJO98+z1IEjz38imhk9R1ojAiDEKOHZjkytIGvY7PlatLfPDhnyBNMyxTaEK3N7aolEocOzQPWUaSpiiqzG1HD6Fq6l523KdWN1EUjThOCSOB7N5z9xEMXThj6obBJ7/03GAqnXHX0XmSNMMemKe0uz3SNEFRVYLAp1TK7U0wgzBkcW2DKAoHhlUS+aLQYg6PVMgQFOXdLDBFU1i6vkqWZSiKuEcpmorj2EhZRuQHtDtdDh6YII5jBiw8geikGZp6o+HC92P85s/874MiAgxNw3Zd1tYWsQyTb3zjcU68coLpqQNCy7yxwcLB42i6RangMTVewXEKvHriRbbrNRRTQ1ElZg4cQpYSkqiPTEKSJvS7bSCi22px+tTLXFu8LFApSSGOYqEXTzPuvvedlCqjxGlGksZ71NIo7JMkwv0ySWKmphdQFFmEjjs2juNw7fplkki4Pi8tX+HMmdPouscrr7wKUorv9zAskzAOhVO1ImOaNp4nsnQ1QydXKJJ3c5i6S9BLOHvqDJfPX0bXPaJYzHPazR2uXL5IkiYcsaap1etMzUwhZzG2oTBcLXHx4kW0RKK+scVQtcr5c69RGapw3/33o8gSOc+78UTsL+hkee/nZmjO/9fxnaxtPzV0v3vn92Ls5r3tp2rectk0FSDfLV04/9sZ/y3tw9945O5WFMTdHseupal47a2Ru12I/M2GuPmLdaW7v98Euct4HaLepULu4okDiwAAIABJREFU0jn33neT8d1QMW/c3uDz3eJG9JZi19317BV/u9zndEAPkDB1izSM+fwjn2Fjs82v/N1f5nd/73d4/8PvY+bAFKMjw8hpiqLofOzjj3D48GEKpRy6rNFsN5E1KORLJAmQJfs2mgkNURBiWSa///v/kjRJmJycIE2TPcpp4Id87rNf4OyZ1xieOcq/ffQb/NTdMwKJs01qOw0sx2JivMrB+Rk67TauK8J+F6+vkMYprutSrzUxLeHApaoKURiRL+YAkBUZyzLRNWEOEgYhH/nUV5kcK2FaJp/5/Dc5cfIKy4vrHD92AMNQcDyBnpiGzkhVTKoVVRlo4fID+3tBWwijQLgQZuyheIViHlXTBpRfgcT1ewGynNBpdTANA0VWmT0wiW7opJmErqnUa3Ua9RaVYgFNUdE1hZXVdcYnR5BkCccV2hlRQEkosoJjG7iuzcjoMHEUEUXCzVBWZITuOqPV7uI6Dqouiq5uW2iPkCR2tmu4nrBu1zRRnKSJ6AQGQYCmCz1MsZDfo32alk6KMPkgywjCgCRJOHv+EqVSAV3XaTbbmJpOmmVkmTSYWBqEUYxMSq/nMzs7yeWr15mfnxmYhMh4ronrWMKMw3OYmhrlypUlRsdKIKX850e+xLHDM0gSJFmKosjk8h7Xri0yOjqE7/tYlkeGQpaC45kYukyplCdNU/p9f8/p1DRNAt/Hti38fh/dMAYo2yBwNstI04Q4EkWeYRrEicj+gl0zITGpIZPotPsYpginNk2DoWqJIAxwLEHHa7VaRFHIyMgIsqQMKLcqqZxh2w6maSFJKa1WC0O3cPKOuFZUBUWWcRybjc1tpqYnmJ2ZpFGvUyjmBbJkGaiqSpImvPjSa2iqSmWQISmaHaJBEYQh7VYL3dBxHIft7bpASDSVyYlxvJzD9evLFEpFFFnkuymqQhgGuJbNpUuLlMoOmiF0joZh4LgOoS9Qr+dfPEulnOevvvI8b3/gDuIkQTcMVF3ENyRRiqJISDLE/RZ+KOG4OTJJQZZF/ISuG7TbbQzD5LXTF/j4F57mgXuOMjRURJYlwtAnigLq9SYf+pGj/M//9I85unCQZrvNJ86d5Yc9j3yhSBzFGKrCxMQIjmshD+I/jh06iKIoA2MVkyiOkSWZXCHPiy+fZGZ6nHwxh6qqSJKE3/fpdPs4tsPEpHACrNVq5PN5FEWi0+lj2TZnzl7gHfffzfZWjcPzs0iyoJbLikK32yOX8/acOZtNwQDQBsH1ju0QRaIBo2nagIKUYRoGURSiqArtToder4dlW+IYSuI7OFqt4PsB7XaHzz/2JFOjI+Rch4PT4ziOTRiEIupDVRkfqpAreGiaiuVYmKZBu90hTRNOvXaekeEK/V5f6DQliW9tXOP+mTJOzqPT6WJZBoHfo7BcR2n7OJbJWLWI59ksL6/y5EtnefBtd5AmCSsrm9xxx0GWl9cxbYM0FfKGTreH4znoqkq1UiTNUjzPGcQpqPT74cCoJsPv+4NmkdDdua49sPJPURSFIAwxNA1FlshiUQQ7tgWqeH82eD7+j0++wkc+8meDbv93/hTexWJupj262ZqWTq5jmiIeJc5i6jvb9Bo75L0iR47fTak6JEyXsoz5uQWC0AcyGo1VoshHljWatT5B0qEwlEcbPOtVVUZCxKuIJl9Gt9slyWTcXI6Fg4dIYqg36pRKgppdLlaQJIVGfR1Tk/DDHoqmDYo4oYEnE8hdlkn4gY+iGQR+gqIZjI6Nc/nKxUHTNGZu7iBJBGOjYxRKBqSpoF0PisRdVKzb66BbNt1+H8/J0+/2SLOIOAop5MtMTs1i6CJUXijIEkbHRzENnSMHD5N5bRavXefspRYf+djH+PSjj1DMFznz6qv8q//zX7Awf4AP/sIHuev+e1A0W+h2k+RG1OwWlMHd+eN3Mn966zmbmA1K+37N3vDvhmtlz0Pi5p9NsKv2F2hvlv28yzvN9gxHbm46cuOe7CKHtzQy3NXIyfIt3TDf6rjtjx7YjTq7tcfsDRt/y79L+87f3me5WXA5++ij+17/AS3z+zxuVdy91YWw/3L6Toq777Y/s1u43ay4uwGu5kY6Z8att/W96c389cZuYbcH3w/435ksHlWarNDarvMHv/f7vPfhhzl+9DDv/tF3s3DoEGkESSyhWzqtZp+Ds4f4R//wHzK/cIBnnnwBL68TRQ0UySUIUxL6mLqDqih7DnitZpN+r8/73/8w5UoFSZL3JjemZdBr9/n7f/8f8Ou/9r9y3713Mzs7Q7J9jamJYSRFxBPYjoUuq4RByM5WE0VWOPHSOdqtPgfmppAlmSefPsXM9IigPiDTaDTxwx6OI1wEVUUhjoVAXFFU7jg+JyZHaczxI7McOzLD+sYW4xMVUESO3cryOpblUCoX6bQ7XLx8nbGxYVRVaIREHqCgNyiKMphYp/S6fRFOrCiACMeOw4RXXj5HpZoniCLy+QKqrpNKgKKgaQqb21uoqoLreMjIPPb4y0xN5ylXCji2zcWL1yjm8/T8NrZjoqoazUaLoaFhkjSj226RZRKf/cIzHDs2x87ODsVSDlmWsEwVVU7YWLuOJgX0+rEIk5bg3NmrFHIepqMLCm3fR9N0wkjoEXt+n2K+MOjwpti2hmVrZChiEirB1avXUWQYHxtFlhXiOEVVFTY3NymXC9QaTb78xDMYqoSsgueavHLqEqtr66haRqWc49EvfJ1D8wfw/ZArVxb55rde5bZjB2h32gwPD5FlKY1Gg7npURzH5vr1ZVrtHuVyEUjJ5VziJELXFTJJ20MxJUkWDoitBrmcS68r4hdkWUVSZBFab+joujqwVZYAcRzIMhGPQIJlm8KZD6HrkSXhWiqrguYUBgl/+hdfZmV1lcnxEpZhsbK6RrFUoN8TlORGo8Hk1ARry9v4gXBa1A2xLTkTxZ6sgaZr2F4OkpidWg3TNFANoZdTNBlTNYjiADdnkZHR7XVZXlyjUinR7wfkcg5DlSK2Y9H3+6yvrpPzPJ5+9mVmpifQdR1dtwCNyxeXmZgYJ0kzNEMHKaNUKrC1tsXS9VVazQ6Fkkur1aRUrBAEIRPToyxfW6NULiEpMrqp8+xzJ8i7FgsHpymVC8zPj7O0tMaTz57i0NwkWZZAIvS5SRKjGyp+X8LJOfT8LqZtEcUphq6DLGEaJv/xw5/n4Z96kHtvX8DvR5w5e4lCwSGXd4jCEFkF07L54DsO8+HHXuSuO+/l/OVLvNCp89FzF3jfzAEmJ0ZpNxs06g28vEcUx9TrDSRJQjcNADY3dzhx+hxTY6OMjw7j+x3W13fIF/Koqkqz0cK2TZIsQdM0/ujDn+H2QwvoukaaJvR7EVsbO5y7fJ1nTpzhwMQIwyND5AsuQRCwub7F2sY2Odel1WwLPaQmnFEh5eq161QrZS5cukIhn6fd6mJYJnEUoGoKfd+n3epgmSaO46CkKVubm3g5l26/j27ZpJLM8tIydxxZYGhkiL/83GPcdeQgtVqd6dlJTFPHtA10XcWwBNVaSLKFjiVOUoaGqqLYTFOkDD53+hV+45feQa7gCTTOtpCR+J0PP857jBwH50aRNIVXzy2ikDFUzHP04Az9fkipVKDX7ZIruJiWjqJq+F0f0zRFU0iWScKY5145x9hQZYCKm+i6ThAJLXPf98nlC+xsNrBdC0kSCOMuJcv3+yiKhIJE0O1z+doyY+MjyLoq0qMlMfH2/T6fXdrkQx/64Hf+7Bz8/2ZyjJsXdxuYlrb3u6KoNLdWCXotdDfH4uYapVKJNEvZ3N7EMETGoq7JpLFOp7vJsTtvo93oEYUZjm0gSyopQvsvJqwKaZaQK3jk8nk8L8/6xibPPvMMc3PzZElMv9djfWMdN5entrOCQozlmCApaJoBUSwimiRJZMSS0uk2CaLw/2XvzYMsu+77vs855+737b3vPdOzYDBYiI0gANKQSJEMKVEkJUqULVopKXIpKpdCK4qjqrhSZcepJJZlJ4oTW1EiyRIlS6QkGqZIkCBIgtg3YgbLYPalZ3pmenp7/fb37p4/zu1Gz2AGBCRTlks8U696e+/eN+8u53x/v++CU6gglMJxHEp+kXJ5CK9QxC84GKbglcNPUy3XMJUiSbSbqgbfKVma4Do+WWbS6yd6fZR0MFWMECGlikO/VyeOQ4QUSAmu4+C4NmQZzUaP6T1r9PuChx55hbMnj7GwMM+99z/IzGSBF196jvmFef72z/8cmeOgeKMbK8WWvoxtUP+mY3YNOHg758CNhhJ6js+yG4Owa/eb/3DDPV4LUt5Wl3FnnMINtvt2h6EM3VXcoW172+9jx962GxrvxFDlL9jJfCf00e+Du+/xuBG42woy3wJ5147vg7t3NrYu0K3ICV2tybZFCKY06bU6XFm6xAMPvo8zZ89RKhY5d3YR07KxLRfDVnz5y49w68238r733o8yUn75s/+Qn/25n0TKhGplinJtGGWlpLGu1CghMfLIAdex6fX6ubNkRrfbwzC08YUhbT7z05+hWPBZPHeWU6dO8L/94df4sXfveYMbLgTtZoeLl1bwXG0sUiwUKBZ8bedum+xdmCEMI2xHZ9AlSYJfcFiv17dpKGEQgxBIpd9jGEZIMoIwxDAs9izMYtqKIBqQZYJqbZi1lXUuLa3w1IvHWd9sc/P+OXSwaIZSusulDJkDZ30TKRYLerFumEghWFtbx7Zsjh49x8hYmUq5rDs2tkWv30eZBlLoXLRisYBtOUipaDVbzMzWGB7SC/ZKpYQQCtPSlNIkgZXldXq5lbkQGWSS8dEKlWqJYrnAYNDTVW9Dsrq6wlDVw1BQqoyC1ALs2dkp0jjGdi1NGcsgChMs06DX71IsFXEdj6ULl/nmE4e4410aGCO0BiaOE5QSuK6L5xZIkoT+YMC5xYvMzYzphbRU3P2uA1i2hWkqSuUie3bPMz09il/Qeo39e+e4fGmVb3z7Faplh+FakemZCWzHob7ZwHNdup0elUoFz/Wp1YYo5t0FKcE0DZqNRp4xGBEEoaaxWR5RJCDTOjvDMFhbrVOpaqfGS0vLlPJw5yzLSFOdlRjHMVmaMggDPM/LLxlBfWOTgufTaDQxLG2lr6SBEIqbb5plZmoIr2hjmQ7FYoE0TXFdTSP1PY84TvC9Io9+4wVeOXKSW2/ZhWmYKMPEUIpev4vru8RJhspSojgmCmNS0m0r+8b6JodfPc7QUFl3YDyHoVqN5eUV7Ro6MsTy5RWGhqsoJSkUi4RhSBRHlEoFbNtldWWdfj/CdT2+8MXH2btnAmnogoxpmsRhgm2avP76ORb2TNLtdgmDjKefPcq+/VMoYVAoFpFKEgYhJc+lVCpgOY7W3SpFs9Xi9ZOXsEVKraIjBKSQpGmEaRsYwgOVYrkmGRIlDfr9gV5wZhl75iexLa2FffqZw9x154G8a51hmAZpkrC+0aJUKvHRu3Zz97TN5x57lc/8nZ/m/OJ5nlk5S6++ye2z81imgTC0xX8cRpiOjWka2JZNfbPJnbffwoULFxkeqSFESm1oWN9/8nunEIIkTvijhx5lYXKMou9TqhSJwoBHv/0iQRDw7jtv5Zb9u7W22HXoB32CQUiz1WZPbrBy8vQipaJPtVomjiIMU1GtlBBIhmpVDFMXbQ4dfp1Ov8PoyBCdVpfh0SHtVmmZiCQhjEJePXaC+dkZ+v2IJ545xB237MdzXZ574TAffO+9XLmyxtyuaT1HiYxgoF1iNW3e4MzZRUolX2uOHUvfEzIQmXbM/LXXXuOT79lDFEcYhpnrexJ+/T8c5m/vmsYtatBW8ots1Ft4loFb9Dl6/BxpErNWbzEyXMo1ifr/aBhGXvjrsLKywYG9c3m0TEq302N9fZNSWUdKWLYFqWDQj0gSfT3GeZ6dkOS0asiiRF873T610dp2hiwIRJbxs0+/ytTkJB/56Ife/tyZf/3LgLsgjPA9H08pGvVVImkwObsL0oxms0Wv38Oxdac/DVNePXyUg3fspR83WTq1zPmza+zZO0MUxYRhgGlpmr/EAJHR7bdJUsGJE0eIIsmdd93DZmNNM1Usk+HhUdIso9dp4poSKUVeljRQZCRxjGHobpEyTCzLwfEKbDY6jI5P0R/0MZVJd9BmqDZCq9lEGjEjY0NcOX8lzwu1sG2bNNHza5ZpN+r6ZoNLS+cZG5vEMjIUFrbpIEB3krshIjVRZkKSpISDCGUYmI7itYtHmBqr8QN/65N85/DL3HLbrRSLQ3zpz/+QM2fO8rFPfIL5m24iUQbGjqNwFaj4KwB3Sb6+2orjeKvxdsDdll+BVGq7g/e23mf2Bj/s+s9/+6vQJNFFcKnUX1g7d60G8Pvg7m8ouNvpCrltW3ztwcq0b9FV7W5xtUvQ9iPb4XEk0dWurY7Vjt9dzwFTbH8VO+S4+eOa7QqRkZGyFXO+k64prtnm9Sgd38uhtXiJDgcV2hAiSRKCIEAK3aGxHYdmq8Nrrxxn8dQqN9+6j5mJEc6fPcMv/4PP0u7H3HXvfYTtOr//e7/Hhz7yIbqDDiPjo/zcL/wCvlfjytJ5Wo0LjI6NYKoCURxjGIpBFGPYFtI0cGyF41jUN5oUCxXOnrnAxPgspBHnz59kc3MV0/R49dWTvPueB/lvfvHv8Y2v/DFjZZd+r4dlKtbXGwSBpn1tNlr0+gHjk8MEgx62bWG7FmkS87nPP8rEWImRkSrdXo9KuYJjFxCZwpAGi4vnKBVdTENTFg3L01Q4Q2KaiowMU1lYtksSRwyPVhkZLbNn9xg375/BsvXnaZqOLkIkCXGcbettGo0GhqFjEwwBcaxNaGzbZGZ6GCMJaLfamK6vtQphgokWW2+FcQoBSRqyZ/8Mnu8ziCKUqRdEi6fPUxseRWBCjJ7EHQtlCCzbBJlRrhUxDEm308VxfW0g0tmkWikySAxsvwYYIFKUROszbBfN1hW0Gi1MS+cyKmUgMokUgmLZ547b9xPGqc6OQ1fRpdDATiqDLE62J+9nn3+dPXvm+ZOHnuHeew7S6w44fWqJsfFRhDRZWdHupgITy/J4/InD3PPu27hp3zijoyPMz8+yurLOYNBnbGyYJEu3KYhJmhAnCYaSeac41d1CZaAMk3474fLyqqadeRaQYNounc6AIIoZHR1CCknQ7+GXXKQ0yDKRu0dK+r0enVYX3ysSBVoHaTkmaRySxTqU+IXvHOHkySVmpydI0oCNjVWqNa01sS2PNIU4TTAMiOKQcBDS3GzheD7NzQa337YHy4RKtZRrUbXZysb6Jr5bIBoEdHsDnS/YH+C7HlmSYUrdeTm/dIW5mVmyTGzfXDJSLDPFUBm1kRpRGNHcbFMqlXALLqVikRNHdYZVmmV025sMVQvcf/+ttNptPMvE9RwQgmLJQ8gUzzcxTYfRUZ07mCYDhoZq+nlk9Lt9lJD4vs/J0+cZGxmCLKPf1yYXtx7YxfLFDQplG9M2CPrQ7WySRA2UV8a1TNaXl7FNieO4WK42JVpavIxu8KRIZbP/wIzW9UiDbq+PVCaO59Nt9kizEN/zUMrgZz5wkGGjy79/9gQf+MH387uPP87hxnm+uXiRB8dn6XdCms0ujz93mIP7FuiHIUNDw6wsrzA1PUq700YqnygMMITF2soq5WqRLM6wTIf9e6eYmBimNlxGKkm708O1TV47d5Z777wFZeqF3qOPP8tIqUyv16NcKSKloDZcZWS4pgsLMsO0TLqdPpbl0Bu0CANNp/aLHr1Bl4W5OZ56/hCVYgHPdUlTPcskpBQrReIoplIpoxBMjQ1TrPqkaUK1UqJQ8hgdG0YZil63y59/4wmKri4CrFxZpzJU1R1hywSpCYhbi/OV5TV+5fln+YNf+SjCUMicqi2E4DP/4qv8xv450izD9n2SCCylGB0psba5jus5zMyOcei1M4wPlQkGEVIYdFo9CpUCmcpQUrC6vIZf8Oj1B7oDSoZf0HpKoSRpAlIY+RwgUUpTpNfWG5RKZci0U6BhWiRBxOsnzuC5NoVqEWWZ22YXCMGfLV7h//xXv54XGN/eyJfW15tdt6ma1xtLr67iOBrcKdPYph1eWrmAYxgErSaF0jCVUhnX9lCGIE5CPN9lbmGabqeNSk1GRmpMTFRYWjqP7XosLh5janIekQl6gx5BlOIXhjl8+EX2H7iTqYlR1lcvsXTxFHO79tPthziOSxLH+I5NmKQIEoRISdMIlKbxpUmcAxSlQ7LjhGK5xpUry1TLYyxduMCx44eZnJhjY7PBqTOniGNYXrnAzMQIhqlIUm02lqQpRu6MapgGk5MzNJpruJ5Pf6C1r4vnT1As13B9B8s1CPoDDNMijEKUaTMYBHzxmedZmPb43B9/jYO3v5cgdBmfGuY7Tz7Kr/9f/4Z73vsgQZxhCqUZAfkQW9FWQnCVb2WOM3aGm+9cY17PFfPtrNW2c5IzEEIhtqmpbzy2trRzf6l4Yz0qdpirbD1fm4ZsUQ2zN/5LZNtfM1Jdn936v28/53pnpnjLx5aDuMizJoE3Aa13Au52Ul6/mzHgW71O5fejt/O6t9reToyhvg/uvrfjqs7d22rbXucvNxRTXqfasOPlV7Wab3CLTrme/u9GVYyrK0dvJfH8K+vi5R26NEtJs5Qk0VSWhx/+GrffcpAkDvnt3/5t3nf/A9SvrDE3Mc3I1AjtZp09e3bzd//uf8nQyDhpCrNTI1xYusTI6Bh+wWPp0gXsco9zp9e5+473srxykotLp5md2Iuytc6MTOeGSSUwpaQ/GBCFMf/7//Eb/L+/9f/x0R/+YQq+je3aTIzr/Rw7dpzP/cHnGBmt8q+/8Ag/uH+EWq1CGMVUKhVKpQKlUomvPvoS55dWufXgbsJgQLlSQghBEITcflBXzV3XZW1Na2KiKKHd6vDEMy9wx+37MExFp9PG912yNH+/CHrdHqZlEkUxoG+s26HzIsPzPUzDoNvts5WXk2VZrmFQBIMBV66s4Tm5bitNCaMY07IwlUEUhoThgHK5jDRtnnjqJZTQ+wWIolDnY0mpKUXAxQuXc+pWBmlGq93RuWtKZ+sdOXKSQtGj2WrjF1ydgaN0FIhlbWkzojw41qYfJDiOT5qliJyS1e/pjtZWecKyrTzg2iKOE5IkyOdH/W+rsgi602UYmvKqpOSll44wNjaMaVkcvHk3vu/zrlsXMG0D01BsNhpMTIyiLIPFc0tUyyVMw+TypWWGqkVK5RKmYfH5P/0We3ZP4Pk25UoRQ2mNaLZNyZIYpu6MRnGss+TyEPAs05+V45iUSgWiKNIhykoRRVoDKlAMgpAoSnA9Gyl0zHahWCCOY5I4d+ozbdZXNzj08jFGR8p0O13K5TKmZVEuF7jppl04rpNPrALXcVHKJAwiLl9eQUqhXRGlwsxNKQzTIE21Y2alWsZx3avm0Uq1QhiGKCVxTJMryytYponj2SRJTK/XI8tg3955kiTlSw8/wf59s2SZxDJNTENqM4U4BSGJoxTDkHS6HWzb0kYpUpGlCeVyAdd1CMMQwzBJYu1iKZUiDkPW1+sYSlGuVkkSfc7UqhXSOCEj5eLSMpVKmYe+/AQHclfGUqnAk88cYmVlnd27ZkjSBN9xqFYLGIZBvd5iaKjEIOhS8G0GXYVfLNEPNogGA4RpQybo9wZUKkVsRx+fKNYd9iRNaXc6ZFmmO/S+TxTp0HVlmCRpjGuZvP/mMf7ZH36dr/37P+T+D3yEP/rSw5xoneMr5y/xI3v2sX/3LKfPLTI+PsqVy6tMToyzublJq93j0oU1Lq8sMzYyguu6Wh8YJziuC6R4vkcQDFCGDmCuVcoMlXw812F5eYVvP3uYj33wQQolnUHYaDYYGh4iy8A0LKIoZOuKch1tjBRFAaZpYTkW7U6bUrlAoVBgemKMcqWktapKR3ZsbjYoFgs64NtxSeKUQrGQN+MlypAksdaGLp69yGAQMDc1ztBQFWlIlldXaTfbjI4O6c5NmiDRCzspJC9fXOREe42PvnsvcRwT9QOkUhiG4itPn+RH5ycwLQPX94jDhDiMQOjYmGKpiGVazE9PQgaDIGBsYhgpYaO+iePaNOpNhmtlStUSGdocpdFoaf1jpI/zoBeyeO4SlXIBx9GB80qZ+K5LHCbb066SkjSOcSyT8YkRUAppGJDqi+qnv32IP/nTP8B5B8AO3nquvt66YSsrbfHwMu4WLVNqw64o6OO5LqtXzhMMBlRGZ2m1O5iGotfrUPAc0izDUAaHXnySi+fPMjpco1atcvbYeeZ2TTI0XNN0w0SBMpDK5PLKZTrdDjMzezh79jjt+ip33P3eXLepCPohLx/6DpmSTE/N4boujcZGbh6VksQRSRxtz2WGMoiTiEGQ0ukGgImUGTfd/i7qrRYFv0YSCRYXzxGFHWanxmi26riOi2HqnFnLsgmjADJdBI3jCMeykEKQJDFj49MINBUUQBgmgyDAcT1Mw8IwLb760lP80AO3cfu7P8InP/lpGo06vXadx771CB/+kY9TrNZIsrz8rtBRBnILrLxxlHZ+l0G+0H8z9fEvui67am/fZT26c39SagaD1jxetTjd8e0WKEp3zL1iW8e/xRR6M5h7p3y1a9azN3TcfOfb/csOAX8pcLc9dmCM74O77/HYCe7eHrL/i4G765ZgdpRmsrySs9WB2N70dfd6fXC3VevYuoG81eOvamyJTLe+T1Mtmp6fn8N3HcIghDDh//mNf8302Cgra5eY37sbz7ap1zf41mOP8fO/+Pf59Kd/Cs8ULOzeg2ladHsdhkdrFNxZ+oMG3378CU4da/Kug9M898LnmZy5Hc/1AA3slBDEcUI/r87edutBfurTn8IruFimwLY8QHP79+zbxYc+9H4mpyY5dfos+8sJ1VoFy7QIg4gzZ5aAFNdR/K333U6lWiJN9QJmLY8uWFq6TKGo6ZqeVyCOU+Io5vGnDrG+2uWuOw5y5JUzjI8YXufbAAAgAElEQVRPIDBIMwgGgXbRDKNtK2VDmXkHTQMJ0zJJ4oQ4TjENA9vRP6eJoNVpY5oGlmlSrZQRQgdNO6525wv6IReXLjM8OoTruiSAMkymJkYp+B6e59JsNhkaqtFudbBtm0a9Qa8/wFCKQsFHGRq0VMslvIJPs9nAtg1mZiY4dXqRmdmpHMRY2thFah3glvYxCgaAoFCskSLp97tYpgVoIJChz38dEaApiVGkLeKjsIdlm9qhlGzb2EBfA1pTaCitv5ucHAMBly5dxjR0xpltWShTQKonJb+kXTBNqbSBiRAoJakNVRBCg8dbDu4iI6HdaVHwXdbWN4jC3M0z1zZqB11BGASkmaaCSmFgKIvN+hqVqjaAaTZbuqMuwHYdrV/JtCV/wffZqK9rMBTGxFGsj7eTW3sLWF1d5f7778D3XUzL0Y6ESYzn591LEqQw2Kw3KJfLhIF2lzt9+hy+Z1OpVli5sqGLA5aF7dqYhqaSWpZFkurg8CAIqNfrZIkGD/3+gJMnzjA2NkyxVCAT+nmGqbAMDfqK5QIHb15AKk3tXV6+Qr3ewjC0y6bne7z88klmZiYwTUWzWcf3HVZX1qhUShimQaPdZhCE2JbJb//eI9xz9806+iIMCYOI6clJokRTuoP+gDiJsUxj27zIti2KnqNpqIUSg7DLsROLvP/Be3K6UMpmvUFtqIpp21i2iW2btNp9gvY65aEpME2C/hpGGoE0cWwb07BI0pgg6GMaVl6Q0KCvWq3kjm+CrzzyJI5tUCkPkaYZm4067WaL8bEhPnr7JP/q3/wWv/nHj/BLn/1v+co3HifK4GKywr989hC/8J57SQFDGvzbLzzMfXfeghCK73znNPffdwunT59nYnKMKAp4+JtP8dqrp1nYNYkylHYGltqav9vqMDkxipKCF187QjiIGatWyLKY+maT2RlNG/d9lyRKEFKgDMHKyiqlckk7oyqHLBH8wZ98nTtvO0gSZ5i2iWHqR5ZpKmqcpJSKRYIgwrFcFs8tbdO8BYKjx05hmyalSgllSsqlKlEQUR0qUygVSOKIWqWMpUwsy2CzXse1HSRw6tQ5xsZG+K8feYTf/uxHEUAQDOg0W7i+y7/71iF+aXJcF4Bsg14rIOgHtNpdlBQsLq9pt86+Nuu4fHmNx18+we3755Eyw3ZMbNvCL3j0BwGdbndbr+wXPJrNti42KZu1lQ0KnoPna4fVOEmJo4TGZhvXdTl2YpGpyWFEknLk+GlGh6vYvgNSkaZvzOFfXFzmp95BaPlWftjO+fqaPsf1X0fGP/of/gl3771z+3epSBFILNPW8SIba7iOR7PTo9frUiyW6He7LF04x+WVK4RhwtzMPlynwMbaBSzHZW5hN0nSR2YpUTQgIcaWBlkcUnBsJkdG6TRXKBUK2I5Dkiha7SblUhHLsJmemMP0C6yvN7m8dJF+v0upUESkke7IkhGGAbZpo6QGYO12lzQWmK7PxNQkMjWJg5hDLzxL2O8howYHD85iKQvTNLEsiziJcWyHONEROZal9axKKt2BERlxEuVB83qfnuvx7cefQwiDYnGYJAmwTJPHjr6AK1M++VO/TKoiXn3laQ499RQP/NAH+PAnf4JWt4NUApFH4WwtsK5al+VdnyRJtKNzmpIkCXHeqVRKkqTZFuq76lhvdWd3ju8Go94K3OkChqEzRqXMmWG6+L5zP1edc/n2ts45kXcgr/365vEOOmy5EYmSmp0jrnHw/G45dt9rwLcFyL/b43rGL2+Kh8j/b4ZhfB/cfS/HO825+wuDu+82cnCXZdlV4O76W7o+uLvRxfnXYmy5gOYLVcMwiOMEr1Ti9LEzNDeatFotPvLxj/LII1/n0tJ5Zmdn6PV6/Nzf+0VSBDIO+LVf/3Xec999VGtVHNdGxQYTE6O88J1n+Hef+3M++EPvwyukDAIf19Uau618ti2TCkNJjh0/TrlSwbIUZAlxlGkaBymQUCr7dHoD3nPfvfyDf/47/MQDN7G+Xsf1PHzfxbItWq028/NTXLp0mcZmi6HhGsEgwPNcVlc3mJ2bIAwikjjB8z2iOGL3rilu3j9PksAXv/Ic/XYXQwg2NjcYGRni8Sdf5OXXT7NvYRojpzH1B33d0RK6u2UYZg4EdZVwMAjptvscP3GW2alxlKG1OUiB49paa9NoE4YRtVoZ13U0KFGm1rbluj/bsSkUfI4ePcX09ARhEFAo+tiWSaFQQEhJEEWcX1yi3x/oQPg4hixho15nZnYa07QYDAb86UOPcWDvHEmcYpqafptlKVkcYdo2KTKftlIsS2e4RWG0bStOpsNWpdCAVggNoIRQWtCPzD8T/fQ0ecOyfRAEGDl91PNcnTtISprENJpNTMPE87Zy9cB3fT1xSaE/myTGNA167QCpoN/XVvNJkkIKbsHXANY0t4NLs0xTNJXSdt6GcrRe0NKTo5U7ORqmkXerNKXyC3/2dQ69fIKiazIyNsSgH6KUse0aKaXMHfkyRkeGaLfb2uxEKY6fOK1NKRxHR0yE+lwrlYrb8R/nzixxZW2VvXvmSJO8o6+03lPHUGT0+z0cx6XZ7KCUwDRNCsUiQgiiKMJxbKq1MqatXTCzrUVIBitX1iiXizqkWQg2603anRajo8PEUcTIyDCO72JaJpMTY9Q3NiBLWK9vUqmUKBUKbGUbgsBxbKIoYv/uSbyCS5rphbTnepw9u8QXHnqKfbsmkErg+54OHs8yPM9js96gVC7xpYefZGK8gl9wOXDTLjbWNwiCgELBw7Ztut0epm1hGFI7mjouvmODUgiRItKUJOyxsdnCd3yUNDBsC8u2yDJJmmtBUjQdut/rUSgWWJifwnVdDKWNJ8pVP8+ES7EMk/tvXeDefeN88fHX+bV/8o/46Ac/jHRHeO3113no7BneWx4mGIQsLi2zb/c0cRzx/JFTTI4W2DU3izIlYThgYW6W2w7ux7AMer0BtmXSbvVQUlHwCxiWzs+Mo5j3vuceypUyg0Gf6ZlpDh8+yuTkBF/8yjcouS79Xp9arUoYxriOh5SKlcurVMplli5cZrhaolAskKUpURCxtrJOvzfgpVePMjs5ziuvHWNudpb11Tqe59Fo6o54FMWINOPLjz3NLfsW6HZ1APhrx04wMT7C6bOLpLGOJVhb3aBcKencuVIRIRXhICQiYW6/y/55fbw31jZ5/vDr7Jqf5p//+RE+PFyh3eniOTbLl+qEYYRlmkgl2TU3ScHz8AoeLx0+QbHgct8d+wFotdoksc4XzVLt8imFzBkG+t7q2DaFUoHN1QaOY3Hs3AWGqyWEFKxv1BkaruJ6Hp1Ol+dfP8n+uUmyJEYKGB6r5dw0uU2bfPL8EvHcAg8++N53NG0KId4E7t7OOHb0BPOVXTtelyEy/X6CMEAJQbfbYbPV4Oabb+PYiWMopTh96hgPPPCDdNsdOu0m5xdPsWvvQY689hL9qMP0xCxKSkzTQCmBIQxMw4A0pt9rMTw0gmWYJBKWLlyhUh0nA1559SXKpWFKlQqXlpYY9DvsWdhDGPZJoy6maSOV3C7YJHGCVALXLdPr9zhx5iTz83tZW66jZEaS9Jkan2R6ZhrDCDGVhWlaeQSSliHs/LQGYUi/10EgUIbCsqzt9ZIyTAbBgPpagzQKqNZ0d1cIwWNHnmHtwik+81/9Ck8+821qQy63LNzCvT/4Pkzb0esSBYj0GgBydecuy1LSNMuXQTlMEm8A+K25KxM7X7X19c3g7k3nyc7vb7Ae1a6RuS6frQ7SFoS8GkTqHEl51baSLH6jc/e2rP/fGX0SQOQgKIWrOnfvRMv2n3Rc7z3foOP3nwrc/ecT2vA3fLyTXJG/LmOrktYOQv7nf/rPmJyc5cMf+mF+9OM/xtrGOvO7d/GJT36CMIw4cuQIBd/DdR3qm5v86j/879nY2KTX7xOGAX/8+3/K448+y4c++DFGp4pcWm6yf+9/oV0IhaBQ8EkTnd+kTRT0e7jltoM4rontWCRZyqlTp3Lwl7G+tsIg6OAXfB7+ysOEcUKaaYv4b37reX7nC49S39hkYWGGLMsYGxtmeWWDYBAwNFLDNE0WFuYQZEglOPzyUTbW69iOmWsaLBApN+0aY2SkRJLFjI0NEcchP/Dg3fzkJz+A7ViEYUCp7FOplLAsi421Oq7j0Wp2dSBzlpEmKaZl0usNOH78EkE/oLHZQEhtJJNJQaHoYxgKNwcBgA6QVRoAWaZJseCjpKY7jY0Na8qFofV3yjAY9AdEYYjnOpiGwdjYCOMTo4yNj+K4mhrYbrWJ44jDLx/nvrsOkCUpruOwvrrO6ZMXNIgTOsB9EAzI0EA/TRLSRFc2dVyBnpy3Jsq11XXiKEIpEyEVrqPDpLO86qpF+AaddhcyTY+K4piMXGguYbO+iWkalMsVkiSjsdnUDqPSIMn32el02dzcJI4j4iQhjAKEzFheWSHLMgq+rztmpkGprLOMrhJIGwohdedCSsmZ0xfwCj6mbWkdEQqk2o4eGPT71Jtd7r59N6NjFRzHplIpY9s2YRixvrZBkqYIKXLKaUSlUtbujAqGhso6f03qeAfbdli5skaWZYRBiJSKWq3K++5/l+7UpEmeSagn6DTVC6ggDEjTVJsASZnTmTN6/f52dzIRgkxKgijOu7ea/tXp9HLzIDCkouD7SKVjLmpDVZJUW8IniTZMiOMIyzSYntQRDPXNDZQSRPl2temOojvokGUJaaoLI1IqatUq99y2Kzez0TS6TEAUx8RxTKHos76+zic+9gC14ZI2FxAwNFxjbGyYYDBAkNHvBURhREZKq93Fdnwsu8zGxiKd9hpBJyNNBQYJX/rSn2PkzqSZECRphlSSbreH6+hzQSpFEscIKfELHnGc8rk/fISvPPI4W3rpLNMGAWNFl/riK/ydn//7/ObvfI7f+r3fo9HukGXwKy89x6tHT3Pv7fsp+B6DMOBTH3kfw8M1lGmQxFHecTK364mNRhOEwjRMRKbodHoMBiEIyZ49u0EKkjShNlTj+Rde5sXXzhAOQsqez7OHjuF5PmEQUSqV2Kw3CQYhIyNljh0/ju8bNJtNbMskiWLOnD1PoeBjWzYHds2zub7J8XNLxFHMQ48+zWuvn8TzXL7wpa+xudnAL3oc2D2LaTsMejr38YH7dMbe5NgYk1MT9Dp95nfNobNBDUCyfHmFsYlRnruywgfvPUAmMl0Y2zvPj3/igwgl8QDPsXENE5nBxNgIV9YbOK5NkqQkiaaOKyWxbZP5+Sk2NhqcPHOBsbFhXcjLco2PVChpaOv/RofV1U0QiqCvi2G1oRL75yaIkxjTMhifHCGIIpI0wi+4jA+VUEqwcmUDcoo52wt8fX/4zXNr/KP/8Ve/p/PqzlGrVq76WZIh86KY5xUp14ZZWV9h0N4gS2MmJ6cYHhln164DqFyH3Av62IUCcWrQC2xOL63RD2OCMEQiiQYx65sb9IIBpm1jOzaZSMkUuL5LvxvzxLefpl5vsbBwM8dPHqXf7TI+Pk6pWqUXBChDG9gEwSDXexukSUqaasZGHA/odta57z0/QJZJkjSlXC2xa+8C41NTHD95nKWL5+n3u7ljstCdqdwQJIqCvGAuUUoSx6EufGZoh06pmQa27bH/wH7m9uwhSQMtXQhC5ieqfOj9H6Lfj7nvffeTyoReEDMxNY00TZSpzbwUsC02u7a7lM8v29b+WwAw/92Wad/3GqAkWUL6NteJaZpsP7aGodT243s5UvhLZSZ/f7z1+BvfudshgUXwhlPZd+vcbenjdEDjm41WpJCkGW/+Gzu42FvbABApCK0de6Pn/8ZrsxSEUEjkdXPsbuTk+VbOW3+pscPsJctS/b6zFMEAZZqalpkosl7CiVcXmRyZQknJE88+RpwFjI6NMD2xjyvrLWJpsnf/Ac69/joeGVPzM3SjPk889wRSZLSubLDeWMP1bF566Tv8+I99gpvfdQtX1uscff4RSgWXUrkASrv/CWljWxaNRpNyuYJleoQB2JbLxPQE/aDD5ZVlpmbmyDJtdLJr9yxDQzV6519mcmKIWtlnpOKyb/+uvPprkSQps3NjWKa+8Q2Cvl5kpDHHj5/mXbfcpMXkfoEsk2SZQZbFjI4VmZmbYHh4GMMUCCV0oLmSOWiziKOIjY0N4ihkZKTG6ZOLZLkVuGFo2qKUCr/gMjNV5dSZ88zOzNFqadG4UpLFMxcol8sUy0W9zTAiTQQgUUJq6pCAjIhMxliqhKEMrlxexZCaXri+uqGz5WxFpVYGJVi+tEx9s4nnaZc707axTJPpuVGqtaLW5QxSFs9eoN7cxLUMSpUqwjB0cDcCQ7n5hJtgWWZO5ZQYhkmaQhSlKKUdTU1lEuWU1cEggEx3MkUqCYMIJ8/cS7IE0zAIwyDP2JM4rkt/ENDrBZw8vcj8/AxxFCKzjCwRBEGA67pYtoNSet9ZmmG5NqMTo5AJpFQYyqDd7miTIFPp6xyFVJnOIsskQS/g1LFFygWfUrWkrzUh2NioY5umrpwrbXbznrsPMjxUxXFc6isdLNdhZWUV1zewrEy7X2YahIIgCEPqzQamFFSqZTr5AlZIvfAp+AVNQ0W7sm5utBgeqZFmulv+2usnmJoeJY4D7XSXQa830FlflqLbauC5tqYImhZnTy/imga2bSEyk2a9h2WaWKbJseMnWFiYxbItgiDQBj4KsjjDtiwy9L0rzQRxkiIRFCtFpGkgTQukor6ygWVabKxv4LsOhqm4dOkK49PTucttrN0sTYEyBRPjo0RRiG3bukiUCTr9HoZh4foetuMilKDT7eLYHlIZCCmIkgTXczl34TxTM2PYju4Wu75BkoV0Ow2KlXEMq0B9cwXXs7GyTWamhggHXRyvSpYqUJIkjTEMizSBZ59+Bde08T0fJChpMBh0mZ4sMTs1RrvTxLGdvIiQcOnSCh+++2YeXKiwyx3QaNZ5ZXGFf/zudzMrEx68Yz/hIKW92eeZF4+ysGcI39WB8hmZpjALSNKYfruL7xdpNhtUq2W+/NBTTE0NUy6XSROdo9nvDPA8j4iEoeEKu6ZHKBZ9JsdGMA0YGqpgGCbHjp9mdGSIfq+HWyji+g4b7Qa33XYTG/VNCgWXcsnXVGHDpNfrMzk9ycH9u2m2Gtx6YJ6Z2XFK5RKHjxxn39wMhUKR6clxNtfrDI8MIYQkDmNM28J1XVIJSin6nQECqaNXDKWp5sD/ffgZPnLPPiQC07SIkoA4kfzTP3qa/2nvAlmS5cUTh7AfMzU5xspKnZHRGsiMQsEhCCImJsZI04xi2cZyJK5TxHYc2q0W/V6fJI4xLYe1lQ3KBYdnDr3O1MgQcRSThCn1VpPRyRGUYUAq6Ld7uK6FlJCKjNnpcSQWp06fY9/NC2AapFIgU5BpRibhi4uX+alP//j2NLnTOAPI2Qjiqjk8y9cCKgcgMr9XX0vO3HpIKVHKJMsSGptNnMDfLmYicq0wqbbmNywSYULUpOgXeeXQC0xP3YRbKmAoydGjr3HvPQ9QKta0CZJXIKm7LF16GadogWUS9Qekodb3BoMeypRIoYjjDGVLuk3J1OQ4yg6YHJvh8rkGMwvTdHptarVhSqUyg3CAiAKkoRCGSZJkJGmAYSmsVBGIiNLIKOubHYaGx/ALJRrNTYRpgemwUt/Etx1EvkbKkggpZf5QxGmmc16TGNd1kEqANEhSEJkkCkPt5E2GUIpBv4fn+vkcZPDt1w+xd7rE7XfdxdLSMpXaFHc/+G4SkZu+5IYj2bWdLJHLY7a6/LkDsgZxW/OtPtIa1Io3dWmvR8ncOeQNjFOyHWuwLaMVgV4n6r/vpFJukS236L9bXcXrGJGkWyB1qzt4/fNw67HlnHk1aL3qDH/jkbG14fx01ayebbws9VWj/7xje9+lc5fuMDDc+U8IoQ185PX7WFtGgNf+/bvRQK/9zNIk1sdBqRzQv3GEv0/L/B6PG4G7N3GahXhb4E5sPeMGJ8AW9fLtVmnEVhTCVdyMHSfcO8nuuOp9fK+qRNd/F4NeP79wFZZUrF9Z53d/93M88tWH+fjHP8b6+hrvfs89WI7NkVdO8KlPf4rnnnuaH/vEjzI3Pcmjjz7Kne++hyAIWNizwOjwMC8fOsTj336ST33qJ0jShDvvupNOp82Ro0fwnAxDCC4vXaBYGcJyCwwGIfXNOpBhO46u3mcZaaa1JytXrlAql8my3OpdSDbW69x0035+9V/+Pp96YB+O41KtFJFSYeWmJ3Gsg1PDIOT5F17FsW2KpSL9fp+piTGkUFy5soY0DPr9Pq8cPsHs7DhBMMBxdKBup9tldWWdcqVMFMY5VUMf50LBw3EdMjLKFU03c10HKckpmLmjFYJSqUgUJRx6+RjT0yM5zVEQhiG+7xFHEUJK+v0BnU6HjbVNhMwwTd21RAjOnrqMZTpcXL5EqejTqDeQhmRsfFh7suY5c3EUUywW9OcQ6klV2/dbREHEhcVlyuUq0zPjjI7mjnhbtES09iGJNZ1Fd730xJOmCVIqkiThzx56jHa7xfjEsAZqSuoFv2WRJgmvvnqCkaEaCN0lFUKf25ubTU1XFPl7yp1DPc9hbGQop2FZDIKAVquLVJIXv3OEJI4plYsYpsnRo6cYmxjOqaeCTrOrgY1r5TRQbaYSBhFpqo1cms0mUiouXFhhfGyEQsml3W5jGFrvsWUh3+/3KfgeWZo7fUqBVLqy6voOjuPSqLcpV8psBa/3egMc28LzHGxHu7kNglA7JTa7GIbCMi36vT6GUqRZRrPR4vMPPcZQ1cP3PcbGcuOKLOPK8jqFgo5EcBybNMt06LJQXLq8QpbC5NSYpmCZBmEQ89WvP0e17OB4JuPjIzrmwTIZ9LVedLPRoNloYtsGQdDHsk2UYeRh9FqD2Wq1IdMxD7VKeTv41rQspFL4RR+Zh5YnSYKpFGEQasCYgl/wdLh4q02aploLZRikqQ6atm2tpzItI6f36lM7iiKqpbJe5GRKL4QRJEmKbSpStONh0XdIkwhDSYQ0GAQhQRjj+y4puvsvc4r06uoGu3ZP4bg2YRjgug5BEJBmKbVqBcd2SBIY9EMKBU+7rCYpxbKLX3B4/90H+Ohtkzy7usR/OLfJtGVyYHaOYrHA2FCFQtnDsl3W1taRUuRdyoTV1TVc29XGD5ZBGAQsL6+xsGeWJE0wDF0gCcOIixcvMzRcw7A0hS4KI46eOMOuuRk8z8M0DXzXIYpivvbEc5w+d4GDB/awa26aLNOA0jLUdnESoNlosXx5lZHRYQxD8adf/Sa3H7iJ06cXee89d9FptzVdL0N3spVCkNFqtbmwdJGJyXFIMwzLQmSCV147xsz0JBvr6xiWwc9+7Wv82//uR7d1N3EUYRiK1xfXuXupjeu7tFtdCgWPYBDQbne3O6iVaolOp4PtmGRAt6X1u6atzT2SkHyCz9hstKhUighhsry8xvBwibnJUeIsoTpUwVQGCSm2a+vuT85uEEIQp5r6ahomQWdAOBjklExAiC0jbH7/teMceP8HuOPO2687S96Ifsd1fq9Bi8iNLLIdv88X4DvWKMFK/EYTaed6QwiUkNRqw/i2zZmzx+j1eoyP76Yf9DGVwb59+2m1WkRxxFNPfovNzTq33rWLmYndHHv5GL1ui6mpSWxPIWSir7VUkiaS08dP4Lg+lgNu0abVbHDo0Evc8573kJFxafkizcYmUkCpXOTEy09SLFXzKB6BkevtDAyCJMYvDDE8PEe/HxGGA5rNDXyvgBAmJ46eoL2yyK6FeRxrKxInQgrtVunYTl5f1p0gy7Z1pwwwTW1sI6QgiiMsx8sBEmxsrOA4Hk+fPMwDdx1A2lVGJ6eYmJrC9x2ieIcz5o0W+lv5hkJeday2z4GckmkoI6d0vnn19JbxF+/EyC/f2pu3Ia76/nodxDd+fhs0yWte9+bn3WiV+gaou95zt3T1b6K8fhdwd8Pmhrje/na+UF9HbwJ/75AGuh0jsbWd74O7v7rxfXD3H3tc/11YRgEhNQ1w0G3z2De/jps5rK9eYfHcOX74Yz/MiVOnqI0O0281+KXP/iLffOyb/OjHf4SXD73EHXfcjlMo8IU/+QJ33v4ulJBMTEyyZ2GfNl2IAoQUlCslRkZGWbx0kapn0tu4zNzcLLGySaOIkeFRgn6IaZiYhgIGGHZGHKdUK1Vs29YaJ7TWp1Ipc/nyZR559Ft86oG92nhDCqTSAOfiRR3YfPniKu12n5mpKXq9kF430DTMSFvKj42NEkYRXsHj4W+8yM37pyiXS7k7oCJLoVQuoZCcOHGWkZFhtJOXprStrKwSBAG2ZeeL1YRB0EMIWF5ewbZt4lTh+T6ddps9u6cRuYmIadl4vgdAmmVcWV6hUivgeg5nz16g0WgyPj5MliVkCDzP508eeoyVzWVuvXmeQtGjUPIZDAZcOH+JSqWCoSyKRQ/Hdmi3uriOq6mUZMhU7+fJZ1/FEAK/ojVXUZzoYOIMkLrKqKQijPRn0G61+YPPf50737U/B3gGC7smmd81pSuuSm7Ta5MoptvucfLkBS5e1pbfQ8PV7UBkx3Lp9wbEUYJj61y6KIxZvXIFAdi2xXp9E9fzeebZw8xMj/PUC0cwDMHE+DDSkIyM1XRFVwjCXsigF/LlLz/DTTfP0um2cWwbBJimw6Dfo93uUiprc5Cp6QkQ2uTE81yt4/F0kP0g1JqetbV1SqUCSRqztraGbYPl2jkYNbBNi05H05U21posX17TpigrayjTwPVcDGkQDALSKKZRb+p9ILBdByW0yc577tpPpVyk1xsQx5qmapoW5VIxNxXQXT2BpB8mgKRcreI4jnaeI6fMpgn79s7g+w5K6W6n7xdoNtv4vk8GeJ7HUK2qM/A2WyRxRpoIBt2IKys6d0sJgWs6JFHM0qVl/FKRMIqxHIckd5AjgUFfB66fOnkW19ZOn4Zp8nI8ZpYAACAASURBVOJLrzI6UsO0TZShcC2DTt5NbdQbFHyHLEvo93tEUYjv+Qghqa/V6XS6+L6vtYNkSKFBnlImCA1GgiAkCBOswgQJCpEOEHGdJO6RSQfbdMnSFNMwmZ4ZxfUdwmiA7TgcOvQa33rqMPfefRu25RBFGaQGn/v8Nzl+6jS7ZkcolUs6fsA2kEpQqVW4fe8s750ZJrB7fParT/KTBw9g2zZBN6bb71Cpltly4jVNE8d16Db7fOnrz1CregyNVhiuloiFNlaJ4ghlmdqoQYDvONtzhFCK6flpSFJ9P7iyQm24hud7LMxOMT02RrvVwvNd6nXthtlotgA4duI0Y6OjlKtlhoaqvHL4OFIIFi+ssHtqkomJScJBhO2atNttoijCsi0syyTMKXGlYpHjJ87w8LeeZ2pkGM+1mZufzrPiJN1Bl4/9yB7MnGInlUIZkjRN+OxvPcHP3LIPy7KoVHRm4iAI6Q369Pp9ikUfyzHwfJdMZiipOPzKKSbHRxn0AjqdgH5vwMrqBrVamXK5qOl6ScrR0xfo9XpUq2VsxyKOIwRat5xmuhCVppBJoe9fUuI4FjJLOXfuAtMz41iulQO7N9RMv3biAv/L//qPr5rz3wm4yzKxo2Oy8/dvfL9VCEzTDCF053zjdHMb9F27N62Bhl6vR7u1ydz8bk6dep09u/ezsrqK43oceukFxkbH2bVrgT179nFl9RIlr8hGo856Y5P52XniOMYyXEi1EVMmMgpVn6LvYruCNIKVi10WDh7gzOUXsVUFRMb46BSlYhklBZWivgcmSYilLJJYayfjNCZOoNns4zg1NjfrSCk4d+Z1Zmd3YVs2Z88cY6godI6mAFNpdkWapEikBuBxrPNslUUYhpDEJImOM5JKkQJxboyF0K7TxWKV3qDPI4ee4tabD3DfBz5EZWgIaSrCMGCnculGazm1FSGw3cW69rjq81MaSpuukL0p8PyvFtzt1AxebxvvENzlGsSrNWd/PcCdodRbr5e/D+7+8x83AndvahxvHZRrhLPXnmxbh+7GJ9vVf5PcOChdbyfbdlt645dvvrG8E2AH/3HB3dVuQDeigSoyUt3hyGBudo4Xn32Jz/zMZ+h2u4yNj3LopUNa+7G6SpSm/MRP/DjSUIyPjWMYuuszMzVNOBjoCd80ef6Z57n54EEW9u4mTiIs18FxbHYtzDMxXGN0uMJXv/4NxianKBarHHv9KKSCbqeLkClpNmDp4jmGhsYATVsIBj3tjGfaOoNOGczPz2F2LlL2XQT/P3tvHmzJdd/3fc45vffd79uXmTcrBoONAEGA4CKytDARJSoiJZEqWTSVKIksubJWYpcSp6JUJeWSbZFyRFJS7Fi0bMmSuIjmBi4gARALsZJYZ8fsy9vfu+8ufXs9+eP0e/PeYAYEKdKOXTyoWzW4r7tv3+6+3b/f+W6CvCg4e/YCk5Nj2K7DxnqPRrPJYKPP5PQEUkoGgwELCytUKyHz80u0RlsMBgOOnjjHaKtSBl+DsoxmxnVcM+PfqmMoGZDlOXE8xPdMELXrmuK/KPLSACRgdXUdJRS243H82Cu02jUajRpRFHHhwhUTUj6IWFleoVqtUKmECGW0SpXANzERtm3ClaVECotDN81w1x37cB0XXRi60NraOjPTk+hCMxjECFEw6Eckcc4TT7zAzPRomf+0wrPPv8j4aIM0zxgZqRqnMkuZQO6ySlGlsYhtm5BS27G549YD2E4pqJeypDOYm7FUhgYppSRLM3obXW695QCWUszumqHQuWmUtabb6fNvPvkgb7zzJnrdHrVaje5Gl1rNFPaDKKJWryGlYP/e3ViW5Oab5ti9a5JoGOE6NlqbkOJhFOE6Bim77bYDOL6DYxvHMRAM+lGp7TSNpeM4BqWyjM1/mhrHUq01q6vrJeoqCUOfaNA3xXfoYakAMAWu1inRsIvvVSkKzbmzl3ngsZc5tG+K8YkRpK1Am3gDxzYmECur64yNj7K8tEIlDCjQtJo1NLCwsGwcWDXUmw2EEFy6cIl2u1W6CS7QajXpdHr4QcBgMEBJgWUZumeSDPEcz4SKZykLi8uMjLaJBhH1Wo00zTh69BQTE2MUhdk3x3FxXZ9jR87w1a8/z0/91N1E0ZA4MQX2MDLRFm6JdIPeMoY5feo8q2vrtNsNJsZHDILk2iRJxszMBE7pFFoUOWmS4Pt+qYNzUZa5TmzHzMwPBhFJHNNoNoiGfYLQIy9SlCWMS5wU5LmZkFCWMo5tSiHdCo4l0XmMIzMc12O9a6zSpbQodIHjGEqq6zloYGK8za2H9/HMMy+xNL/G2HibaBDzwpEz/Pjbb6HVriOFZH21ZxpKDXmZoxYPUqamWvzi2/fwh48+xj95/AX+6Etf4L94x9twPYc0TXHLxk4pRW9jwMG9c4yMNbEsie/5eIG/pTl1HJu8zFwUGA3apq5SF2BbFnma8vizz9OqVo3TrmtQacexWVtdo9lsoME0MVIxPT2BLgryIuczX3qAMxeWObBnmsMH9/AX9z/Irfvn8Hwf33eoVComTsC26fV6Ww2IlIqJiXFuPrCHeBiDKJi/skCtVkFKwa9/9Wv82k/eTmd9w9A384w8y3ji2Fn+TnMSy7JYW+2Uxh52qSPWtNvGZKuztsErZy5SrwckccbuqQm+9s1nGWs3qDaq+J6H55vg+GgYbd1nHn7mKLcf3EUYBji2xcWLC9Rr4RZKs7ba4dz5eSYnR8mzDGUpiiwzQfRSENSMm/B2atmvPvxt/viP/4Ag8LcYD+UfX/WEvPHYia4Yit81SwjT2Jl7R8Fv/cZ/x3033/eqrWyV6eUG8iylVq1z+eJppiZ3ce7ceVqtMVzHoVarUa/XGQx6rHdWOfLiGRpNj6nZafbt30eexXQ6K8bRGUGv18EPArqDLkkU4zo+SkhsR7DWGXDx3ALdwQaHD92KkiaGoz/oEQ82OH3qRUbGJrAtC4EgGpbOyEWB6wWcPnueKInobPTZu2c/SRqTFzkzM5PUKgrHMTEww2FUau6MUYqQkpXVBcKgSn/Qx7Js1teWcB3fuFZqTZzEhJUqK8vzhGGVOIkBQXejy8m1BT7yj/8hyg9L6mWZLXgd98ZNxuCmKZ7e5pq4uY4uNrMJSxqtZaKEECWAcKPzfr3X99jcbW/eXhuhM02JlKoENTbplTu/s9Y3rlvLBXjVhfp9NndbFFLNq+rf19oHoXYeQxPOLm/kcbJj3zcb0x3b3+Z4+d1eRWnit1m3bK6rSk3uj0LMf8jje3fLvN4F/f01Snoz9uC1Lk6ht6GGm2/+zf1ufqDI3euYmREqo6AgjmPyoebRhx7j20de5N63vhk/CHj0oW8SrfcYrHQZH5/gX/zpv+Sn3/1zJElOnkq+/o2HGRlrcuHseU6eOGlCc8dHuOPwHXz0ox/jjXffRRRFHD12hMD3ybMBtbEpIulz/vRp9GCN5fUB93/xflrNCRzXxrYgzdYZn2ojcEEr+n0T9Nto1VhZXsPzXISQzM7O8Bv/2x/w3vv2I4ShJU1MjmNZil6vT7PRIE1S4jjB9czsbRRFTE6MceXyEs1mnf5gQKvd5K479uH5Po7jkmUpg0GPMPC2bqJSCuI4otPpYNsBaZpRrVYpNKwur+O6PrZtgYAkzmg22/S6EZ7j4NqKWj0wTplBhWarjWNbDOOYVssgW8JwF81pKyTJMOWLX36S22/dbyyztTLuomCai1yx0e1SrVVQUtBZ71AJA06ePM3nvvwUrrQ4fHg/yjLOc1ku2L93junpKWYmJ/Fch43VLsPBcMtgJfR9Bv2oRJLKcE8odSMGGU2TDKsUrGudI7Rx1Hz4kac5sH8Oy7YNQiUVYSVgOIwoCmOuEvoeb7zrIEk8ZHl5lVazjuPYuH6IRuB7LsNhnyJLiKKYIPBwXEOXrDVq5EWOJIU8pd/rEdZCwloFy7Mpyn021LwIzw+g0CRJQl6U6KQ0OholMct4Lp1Oh9GRFkKY6AcA1/W24i+iQYTluGgN/V5E4FdIsxwlBa7rcM9dhyiK3Dig9ozuzGQiOriBS1AJStOY+tYxs2xptElhwGc/9zh3332LMTAYJvi+w+LCMtEgot1uA8K4zaFZX14hT2Jc10YLjD2+vlqAhGGFItP89Rce4uCBXcZCPvBxbJOrlSRDlCoodEy7FTA7XSOs1Aw91VKEtQqVepVBt8fS4jK1amhcSi1zvkfGx6jVQ5SlQGhsxyGKIizHoaAgiWO63S6NZoM0z+ls9MiygtZIm0IXDOMEVVKbPcfBdR024zCkkhTaIMO6kPR7MboQIHIKbRxPpe1gKROf4noVhnFOloNiSCGsLQdXXZpyDKIYq0Se8jxnYnyM2V1TJFmE73nMTNWY2TVOlqa4rscjjzzPcy8epxraVIIAieJrDz7GLbfswfGrvPW2g7z7tl387Jvn+L8eeYbV5SXu2X/QIBDlBEZeFKwsr1Oth9iuTXe9h+d69Hs9LKVwHYfV5XVarRYZBUma4LkucRTz6c8/wC037UdrTeCY4PpKtUJnbR2pDPKlrE0zpdjQD12nnOw0pjJZkvDun3objqtQtuTw/l101tcJQ5+NjQ5hNUBJRa/Xo1armskyoUhS44r78tHjfOfYce69+3bQBZqCD33pS/zpf/suLNvkb9mWmUywbcXf+8S3+MCBPSCg3xtQFAWWpVhZWWN8fIQsLThx4jyVMGBqfAxp27i2x9LlJS7ML3P45j1kumDxyjLNppnYsSxFmmV4lubw3imypCAepCzPr+MKC+Vq+lFMWKlgWzb3P/oCh3aPoIucfm+AH3hcmV+mWvFwaqXrrth8ugo+ffYKv/ZrvwKYSdwtJO11zvyXC1/911Yt8OrCXJe0Zy00T37rGW6bvW37Aldf21oEx3chEyTDmG5ngYmJGZaW15iemTaatSwxhb4S3Hzb7aRRzuVLizz3/NPMzs7hOBJLKXJSgrCC1oq11T6+X6FRqVDoiErNIfBbLF7sMj49Qrs1yuLCCt1un16vS6PRZmp2H3kWGURRCqJkSJEZOmxR5CgV0GiMMbNrL3EaU682OXXqDJa00PEGgzjG9/wyT9fo5ygzUC3LNk6wQiKReGGNQoPrBqRxjOu65EmMZXvYtkOhYXllDcsJefHyK3zgA3+LWBTokkUlbnD+lNw8xjvPztVmqtQClvICpa5KLzbHa7c+17z3Opo7Zaut7L0tfOIGCN12OOPq314Lrft+Igi+z+Zux6LfQ/277StuMReE+O71742cOr9rV3h1SGWhS1Oa7edKls/QHzV3P+Tx77e5M+jEtT+xHVv+j6S5UzLHsl1OnznD5z7zBVYX13jXe/5TpqYmaTaatKt1ZqdnefzhR8h0xvve/wGiYcwwyXn7O97J/KV5fuWD72fQ7TPeHjXRAVPjLF9Z5lOf/hTv+dmf4S8/+Une/TPvJqwELMyfJ2iMgfLYMzvG6Ze+zYXlHn/nN36Tv//3/1fecPtt7N4zxalTL1Bv1UmGgsCroSyLNBuSpkOCoEava/LeLKX48lce4L337UdTEIQhxixCE8cx66sd2q0mSwsrnHrlAlPTY6ytdlhaXGVmegJlKRrNOo5r0+/3qFbr2I4xevEDk1Om0ayureF5Dv3BgGazwTAq+MoDT7J/3wwry6u0Wi00oixOJfEwIR6mLMyv8OWvPsWBfRPkRYbrOhRINjo9bFttac5s2+ahbz7Nrl2TxMOEIAgJAp/bb93PyvIqlVqALgRKmuyrc2fnKTKIk6g0JnGolBTPZqPKvXcdJgyreJ7L5ctXqNYDPv/FZ2k1Khw/cpZhL6HVqtPtbJCmCZVKaGhLCDY6RlOW5alB5kzyMcOob5xLhcC2HLrdrtFQKRslFXO7p8myFNf3iJPUPOC1QRusUnexcGWRMAyQUrKyumpCbT0bWc4YCwHVikE5/CAgjhODdrgORWEQQPKY5aUVRsfaRMOUTBcUQmMJxWbgsRACx3bIs9wU944yzUNR6mC0plIN0brAsiz6/QFSGf3ORqeDVIphFFHkOZWaofE6jkeWCj7xp1/ljlvnEEKQxgmu55LnKWHVBDYrpVhYWDQOlL6L7droQpsgd6WQEpaXl6nXG2itufXwPmzLUBkF4DoK13UJwxDPNdQzx3Uwu12gJISVkDTLiKMMMK6jQWDcK7O84A23H0ADtmWQzuEwxrLBthX9/jpJEuE4kla7xstHzjI5NWZQLmGynduNKr7n4vkuWZLS7fbwXJdOt8/8/BJxPCQMA8ykhzQNszIIexD6Js5BWoRhxQQiC+MOeenyPLay8DwPpSRKwcbGBq4bYqSlBqFOYs36So9mu47tSKAoJ4gFOk/K7ds4rk8Y+qCHWG6FMiKLXAtefPE4G50eY2NNiiKn1+3SqDd45oljTE43sG0HP3ABQ4ktCrjp4By7Z0eYnByh0+nw/AvHufXQburNGllukLVHH/0O+/eP8fNvP4zjDflv/u1jnLp8kXumZ8nSnM997SFuv/lQacRkYSnFmVfOGwTLc7l04QpHT5xmrNXECTwq1ZB+p0u93mBu0mTEZWnK6NgIfuDT7/UZDCJWVzrUG1VjYlTGcdiOzXAwxLKUyX9zHSbGR0Bj8g5dC9sxTW8Q+FumUJuIXRD4JLH5fVm2hQbGxtvsm5sFrXE9l48/9Ti//ct3UgkrHD9hUOC11Q4I+Ny3XuK39+0jjgxVcn5x2QSFo+l2+wR+wOrKOt3ukNF2g856l0KAY9tcurDA1GiDkYk2SE2v0zfXv+fwjW99mwN7pllcWGR5pcPszAz97oBoI2ak1QC7wPN8nnz2KLtnJ7nz8B5EkZaGPsYF99yleWZnxhC2sY/fnO3/8xdPMHX3vdz75jcCYFl2eT2JV9HvXnt8b82d0PDyS0fZ09y7fYHrb1lJHGnhWQ6XL59Co3DcGpbjlvfrCsNhxIkTLzM7e5Dnv/MEd975Jur1UV7+9tOsz89TFDA1Mc0rr7xAe3TM6BNdo5krUoUSHpcWTzM512Z29hAb/S7NxijDKOb8+dOsr6+SZDGeYzRxWZEjLYUtjKt0f9BnaaVLELaxApcg8Dh39iKTE3M88+SzEK+xvHqJ9qhB9G3bNg1eiTrZtkOWZgyigTFYskpXTWnR73cNBTRNcNyAKI7MsZUOoyNTuGMB97z5TRRSI6ShOAt9/eOp5KbJyLVnT5STgZvUwqurb06YbY4fdHNXFMXWa3N5466uXyUP2qnhVFcphduQ6Gs/50fN3Wt8tDBorZRqx3o/au7+HY3vvbm7jkvQNnciE2hreO8gXpN2KaS8Zm7kekOgteBaZ83XO8QN/vtBDF0UqPJOtX12Cs2WWHjzGOVSYOUZx575Nt0rFxlr+DiqjefbOKGgEDZ//dnPs3t3jbf+/HuxHU0ldOh1Fnnpmcf4Lz/0AV5+4QyDwZC9+3extr7MC995invufQsf+9jHaDQb3HPPm8iSnNCvYElo1pusriwzOjbBrgO3UFU9Hn/0UaRqMD61Gz+oUm/Xca0JECYjx2TB2IBDnJuCepgM6XZ7vOc97+bRB77I7rEmmqKk5lhIJQmCCoPhkDzPabdruI6iOdJgbKKNE9hIS2I5ijgeEnghy4smMw9lsm0cBf3eBrWqj9YZvV6P0A/xQoe9e8YpdIGyJEHF6J2KPENrsD0fS1noPCfqdzh8aI6z5y8yPjFCFA85cuwkrjIi8vkrho5iCYvHn36OvbunsGzJ/Pw81bpp8hA2Aslm9o5lCWZ2jdLfGNBq1kli8xBcXjaz8ZZlkWYRg6hHWKkgpcXJ0xe5957DjIzW0GKI60mq9Sau76JlgRvYoCRBxUdaJuT86m+hIAxCon6Mzg11U0lDJ8wp0IUw2k3LpigyVpaXSxdQUziJ8vfiuWFpXZ8yOtbmxKlzTEyMI8gNxc9xyDJtgoaTGF3krK6skcYJWZIgATuo43kOgyjC80OEdJDSYbCxSjTo47kOUkjSJAUpsBzHnIuipE/lBTpNTTC07YKwEMrGcy3iYYRtW9iOwvFslKMgVwgshoOUQX/A6bMXue3WfaY4DkMcxyLPMgb9CMsXaIkJoy8KPM9DCkGe5SjpMhx0cV3bXGPb7gZpEpNkfTxfIi0fVdJLtTKOklKarsW2HCzbQ0gbjSKNDQWxKAqU0iil6XRWcAPf6EbKZun++7/F/oNzKCkIHAVFgV9tkWSSSuCDztF5ga0UOsvpRwOTcSfMTKcf+AyHMedPX+HxJ49x1+2HSjdXiwLBsSOvUA1D4tjYsVvKQmO0mwJBt9OhUavx2c8+xs2H5pBKbYUFu56LtE2o+vLiOo1ane88+zJKaFojFeJhjGNZpElCZ22VsFql3+uRpzFCCwpcCqtJlnTwXcHy8hVqtRpjYyPU6w1cR7Ewv04lNHTk8ZmqcQ8sctASy/IYDoYmj803mqJoGFOvtVhcXGNmZgbLkthKU2QpT3/nCHfeuQ+pLZS0+OV33EK1rvifP/8IL1y6yH/1Y2/DL40+LMuiEOC6Fo5vU4gcZSvmds/gh8Y8SpbIbJEXZSC5oV0tLSzhuDZB6BGGPsePnmVyso0feBSF4M/+4qu88c59rK6s4bseC1eWaLVaRP3ImFEkGa5vaIeOa5NmGXlGqZeTWLZFnAw5c+5iCWxI5q8s8tgTL3D4wD6EJVnuddh/d8u4eDo2loQ0yWg06igh+D/+6lk+sHeaqG9obb7nUWRZOYlhDEbmLy9zfn6FfXOTxHlEveEhlMSvBgjHoDnRwPwePdchTmLatQqVaojvhwb1HPZpjdUIWi7C0yyudPDtGsuLHVojHr1+D6daRVgKBDiW4OiZM+zfN4suymdzidz97rFz/N6H/yEFopyQA4QJJZByu7vhZjF9XfLdzuf5NbS6zVdR6C3HRYTgwrmLjNhjW2jd5lY2dXubL2PopImLjCzJWV04j1Wp4Lku3e4A2/E4evx5brn1dsO00AVXFi7R7SwT1GpIKdl18ySFsrh8OqPeUugoIbRtBAVx1ifOB1jSo1kZIbcljh3ghw7LKxe59dCtzM5OI3SBpVMsKbAtizhOETrHVjbxMMMN2oS1Gjk5S0uL1GotqtWQUyePs7o+JPAljYZLnkRY2kUqQSETlAgggzSPWVrq8+LZ44yPjCIQZOnQBNc7LsM0xbZd8qJAa4HlVrAcl7948LO895feY/LXCpCGP4lEbdVSuqQMFqU2UpbmZro839fLLd5+LnfUVPrGLpSbDqBg6qyi0NfdxnbnTEOtNP8uyEvH1dzUOVvX4NVtbEf0zGft2Lut1/XomdsRqhtTNq//3Qw6fM3nXeM0/3rr31eFhpffa4ckahtl9nrrbafdbnfc3G6Ss3UMtn/ODcLWt/9WN5f+UXP3Qx7fe3N3vXEj6Fps8Xy/9xmO/wDGJrf8Ou9fO6sjhcTC5uGHHmVy9x7akzMcOHCI3qDDYNCl19HsmzvExz/+h3zo1/4WR148Srs1TpFLfuY97+PwbXcxNjrKLbcexrIUe/fuwQ8CHDfkgx/6INPT04RhyMMPPcwTTzzBO9/xToZxgWX5/ME//Rg37T9Er5tRaHjsia/wq3/7vbRGa9Rq48TpgHq9wvr6KmHokeUJSmHiKrTGdTxjCmDb/PY/+uf8wlsPlrd1M0sry1DX9dU1Aj+k3x3gOC5/+m8e5OKFBe54w0GKrDAB1BqUBZVqSF5kCFGglGDQXca2pBF6Ww61eoMcaytM1fNdPM81RawwtDLT8Bnqiec63HRoDznQajXM8ZY2o+0WYcXDdi0aTWMekKYpx06e4/ChPXieZ4oyxyYZJli2Io4T5q8sMj4xwsrKKo5j44UBQgozA9qPWF9ZN42ZpUBKwkoFy3JRtssth+cYDAZYlqQ92jKz1cpBCmPw4Qf+1QayfBAKIcky80DIM/jUXz/Iiy+d4cC+aUPRsjZ/W5IkjXEcm4X5BWNCIxVFnmNZmwG2OV7g8vRTLzA5NVrmvTXKY0VJnTPN+QMPPkElMAHj1VqVSqW6FXTthVWyLDO5c1HKJ//66xzcM4Pj2FcfjEiktEjiIVapqTh16gyV0COOhtiuMZLZNCyRGpZXFvEDH2XJkv8vSOMcWSJPGo3j2OzeNcra2hpKCVZWl7FthR962I5FvxshteDc2Uu4jmkY8yxFa5eon3Dk6Ala7RrKMhTbPEvp96JyPwRRFCO1aUA3zQfIC6Rt0d3omtw2jXngCli4vMgDDz3FzTfNkWcpaZIS+L4xXNGarNTPHNg/hXK88kGmjU19BspyUSiTnVeiq7Ztm2tGKqOREYq80KyvbxD4HvfecxivzHv0Awd0Qb1WIQh8XMcx4eCuQRguX7pCrV7h+InT1Kohb7hjP7bjbIXKGyfXgisXF2g06tSqVaSStEbqjE2MorVxFhTSmMtIpbDK6I0wrJThyObBbQmjx7GkheNYKCkoigQtXNzAxnElaRrjWD4aYwoyP7/Miy+c5CsPf4cDcxOGlu0ayrdlK2q1kMD3uXz5Cq7rAhZT46Ml0luYiRAF482QX7hvD+1azm9+5pv8xOgIAoWyDXrd70V4ngMYLWg8TMiznH4/IvA9LNsiSVK6nS4nT52mUavhuMZowrFtNjZ6pKlB2+M04bkXj9CLBsxOjFCr10nTjPWOOT9CCdZWOnihTzpMeeX0OdrtFv3eACUlly9doV6voQvNRqfH3J45fM9nY6NLo1Hn4sIV9uye5ne/+Q0eWzzFe992C+tr69i2ot6smIZfKn71w1/hn999C8qyiIZDgtBFU/C5h55gbnIE13PwPNOMxHFKu1klCFz6nYTL51doN9voVFMJKnzqM09x1xvmcByHSjXEthRJnNLt9Lh4eZmpiQlWlzawlItr+1xZXGTYTxjGMVMzLSrVEKEUeZYjMBmdEmg2a+yIB9aaz5yd5/3vf1+pnobtjdp2eY4xNdrCFV7zbyatsAAAIABJREFUkXtDLb/e2SxMTU2xcb53db0d29j2P2WMiuO6jI6O0Y+GWDqhVW8YdollMTW7BxNkAuNj40xOTOE4LqdfOU5R9AmrTc6/Mk+/02F0tka/A51Ccen8aRqNMVwnYGVQ8MhT38HSLo88/Bgzu3YxMTFFmmc88/QzxMmQZsOwYbQUJqcOQZINsB0Lx29Qb4xgCxsKsBwLaQtmdk+CPUTHmqkpI5NIkmSrkLeEyR7NCqOj66wtM9IeQUmFZzsoaXSXynKIBj0sy2F1fQWtXJoj43zz5cf4pV9679U2REh0XpRN+jYkaNtB3eGDsO3f1wJ+1zuX+jXO/7Wfc+05v9E6V7dt8v6EFOUObU7AX13i1evqcgKiuO533NrrElG+ur2r9d+OhueGyNd1zEu+37GD5XaDxnrrzzdA5bb/QK9zznYAJDdC+b7L+FFz90MeP2ru/gbje2juLKEo0owXXjzCfe94J9XRMRypQBT4vsegJ3jf+9/P73/kw6ysXOaP/vD/5U/+5F+TpJpvPPwob7rnXmxL0u93abWbLC4sMrd7N8sra5w9fZZ2e4Rqrcqb73szvuvRbrcR0uLxx5+kyDQbnS533PEm1tZXqdahP1hndtcu8izAdjSdzjpB4HH+3FnaI20KnZMmeZmTZvLr8iLni1+4nxFfMzvSYNM2WUpJd2MD23YY9IbGqt11WVlaZ6Mbc3D/DGma4di20cpJs06apDiOZVzZiiGbdDCpHDSKJM1JhkMc12UYxQYJ0pBmKZv0fomgyHOi4RAv8M21Jg3lZHW5g21Z2J4xVFCW4fr7vsdou0oYBibE3DE0FjC5MKagNTStkZEmjuMYDYMQ5GnOoNdncnIM5Rgtnh/4DPpD/tm/+gqH9s4Sx0YMb8KfIU0Snn76CDOzk8YdMjfFjNbazBxnOXmem3BUDWmcoSh4y3134Lg2WmsGUb90NNTEw5hXXjlLWAmoVkIjunfdsrjtk+UZju2SZymtVpN4GG89dJQ0Wr48N9TLvXMzxmBGyNKIQ5cB6qBFSU0pzANq/54Z0jgrP88hiRMsZZFnBb1uFxBsdDYYHW3huQ6O7VAIjVM2BkVRYCllnBVdpwz1NmhjUcAgMpoTJRXKVlSqFapVowX0Pc/QGcvvGPoVLGXTqNdKLY/GdiwefPB5FIJjp85x150Hy8baNNCWZWIYhJDEccowGmJbNp/8zIPs3W2MKgoybNvGdRySJCVOEqOFsx32751mfn6RkXaL5144zolT55mdncR2HDrra0RRhOfZSOWUDrAm6zPXkuEwRSGIoj6VakiaJoY+Ki2zTJazvt6lUqmY/DqpiaIIP/ABE3EghMBzXJI0RZSU2E0zk0HfIKntkSagKfK8RKgUtmPMSJIkRRbGPEgqSZqlLC4tU2tUydOM1dVVwkqAKIPm48SYpyhhQssd1wVAaBNYH8cxw2GEEAVa5wxi8DwLqQoEEiUds59IXMcl8D3W1tbZt2fGuDlqSiTcZFsKJH5oKNpPP3WEeq3Kt545wq6ZEdY7PXw/IElMozraqPGL9x0k3B3ywT+7n6+cP8uPj49TqxkH3jhOqVQCXM9DSkUQBOR5jjbwEckwZWp6jDRJTE5hFBtkNjfIbaUaYNmK0XaLwzftK+8Nuoy00FRqFdZWV4iihLDcNlpTrVXJ0ow0Sbk0v4Al1VZEyslTZ4iHRt/q+g5zs1N8+PGH+Xu//lbesKuFYykqYYgQRrMpJPzGR7/OhyaaOFFKGAb4oVdmUBXsmmhTKSmgyTBlGKfUKwHNZo2NXo90mFKrVPni15/BcwSea9OouCaDU4itSZ4zZy/j2DYH9+8mTXJWVjY4dvwir5y6zJ65USanJvEcG7/ioHPjvycxcQILC8tMTLRRjs1mc7e8scF//cTLfOpT/9o8Dq/T3F1bM2SZ+d1dzzJ/+3i9zZ3jOJx49Bx+6Lzqk69tMDSl26bWNJtt+p1ldJHjuj4nTh2jNTIJQlLxfTY6HZaWFqlX64yMTjA+OY3W8OyzJ2iN1GiPVzn+nVMQ+sg0plGrk2cJheWjpcWhfQdI4gF+WOGVM6doNkYYG5theWmB8RGzrFNmgTrKQqiCNM+wnRqWG9DtrGPbNotLyywtLzE1Mc1LL38bT9hU6x62ZULpzT3aJ41jkmSI7fp4bkB7ZBrLMs9MKQRxEpNj4lAc16fb28APG0jbpzU2zrFjR/jp977LNHZSbjvWOx3Stx/Y6zV3Nzr2rzqP/w6aOymkocUXxTXo3PWbu01zlRvXua/d3BV5tvWbfS0q6f+fmrtN/4OSw79tc//hN3c/oKP8H++Q216bglXxKtthE9n4A7toX2NflJQ79ul6Y/MHdu3r9Swry/e2DyFNcPq160FJDdi6GRYUOsNyHU6dPEmRaQb9CGUbmpcoCgQZtxw+TGWyxuzcLn7iJ9/FyvI6hw4c5gO/+POcOPY8G50VPv6HH8X3Au6//yvEcY4fBCwsLnDi+HE+/HsfYWVpmSRJQWQMBj2iwYAf//GfYNeuPRw/t8D+m+5gamQWD59hp4+0CvJc093oMYwz0kyzutbBUsadU5fOlHluNEef+Bd/xB9/7SRFIUniHCUVg16farVKtVql2+1TFDnRYMDMTJNffN/by/8fsr62wbmzV8yMGcJQCbOcIs3oRwXREFyvjuOGSGXjBQ5hWDH5Skrhup6hYiDJco0wrh1YyuhdkjRDWjbRMKbT7RGEAWfPXt4KspVSINAsL68wNj6CZVvkRV66CSakqcn9q9XqeJ7PMEpx3YAkNg1InhWElZCRsTYbvXU2Ohv4novQBZ5r8Xd//T1U6wHNlqEzCrW53z61ahVdaKJoiBTGehwtsGyFUqLM5TIoi1AFt91xE3meceXSAnlWkGeQxCm9bo84jtizZ5qxkRZKGoOJNE0p8oJKpYrneiRJwtyeXaRJDmxm+JmbsLIUUTTEsizjbqfMq8hhdW3doId5jipissSgb8M4xg88LFtSq9dwPY96vcpwOCCNhxSiAAnt0SZhxac36JvIAWlT5EbfcOqVM2RFRr3WLClAxv5bWZK1lXUqQY3A9+l0DHqxOVOc5zl+4NHrGv1SpVpBiwLbsVCW4tnnjuJ6Ho7jcsft+3j56DmmJ5uGuqgkC5eXiQZDuhsbSCkYRkMuX1ygP+jz3HPHaVarLC2tcenS5S1q8mb2nmWZ8PSg4iCkQdWSOOX2W25i/kqX1eUO8TDh/IUFJibG8TwfJUwumbRsQ3HCwhYKLXKkJcsgetcYmpQUbtd1abUaJtfOtqnVa2VjB0dePsX85WWTOVY6VCqpcFzHRIDEGZMTE6yurIEWOJ6H7ToEoU8cx4CJN/A8H8c3VD2NOSejoy3QBvWdnBpHoClyE9/gWCaDbRAlOJ7RZUa9LqlWJIngmedOIoViOBiQpxFVHxQJvU4PJQWaHCE0WZbw8kvHKYqMd77tDTRaddI0ZVMnJVCsr3cotGYwiHA9j7e+/Y2MT43yvp9/J0Xu8pWvvszGeopthQx6GiECvvS1J1HK4hO/+RP8P3/3J/kfvvUIf/uLX4A0pVqpkCY5n/rcA5w7e5Fut2cKWmVQ+lqjZqh8SlEUms989VGWl9Y4fuIMSkr+6gsPkCcFG50NLNto5rodoz+enJlEKUmtXmXPgd0EoZmAqDdrgDHfqFRD7rzjFtqjDZQlaLRq5BRUqj61hqFz//63HuV//PW3kWcp9UYdx/WwHJvORpdBlGBbLjdZLm+ZncXzTexIkWfkRc7FS4sEns/GxoDOeh8hBLt2TZLmqaEOC0WSJzie5H0/ew8zs03CukNQtZhfWEJjHGiTOGPv3AyDKObT9z/KI0++wMREm7vuPACWxvM8Ll24QrNdYzOWyLVt8iRjs8xzPR8hrS1057//9qlrnoqvpldeS0szerzrP4s3aaebZixCiDL4Wm0Vk5v6383xl3/+SVrj1a1P2lpPbPv0Tfod5QStshGWQ7U+wuraClFvlSxaQSc9Th57gW63y6nTJzh56jgFglRrlBfiV0ZpNSa49Y57EbJJ4tYo0iFXFlZQTkCBoOpKbt2/m7OXjnHXPbczMTrK2uJaGV1SYWJihoXFSxRZhs4KlJYM0xghLHy3xnqnR5rmzC9exvM8fLdCZ7lLdy1i+VKEZSUEfpNBVCClhef6KGFh2TbK9en1C5I8wdLGKExoQzs0RbpFmguOHDvOuQuXSAuL9sgEQkt+45d+iw//k49eReAKQ7Jlk2KnTXyBcZmmPL66RJ3N8VZSbL120Gl5tUTm2nO9/f1N2cvm+pZlbaNdXt3u9utiO0VTCdPI6bL+UMraeUVuW3azCdukdl7792vXM/to5BVCSuS2bUupjHOpEFvxNEWR79iGvGZfXu94rRr22rHj2Ev5qrp88z0h5TXHYhulstQqfrf9eb379O9j/Ai5+y5jx09P3Ohk//DROlXOuBV655zP9fZICVFqynYatFx3tmHb35WUxEmCbVnfRR+4cz1dGGdGqRRaJIis4MhLL3Ho4GGEBtcJeOnl50FnPPXkd/jgr30Qv23jOh43H7qdVmuUz37m07zlvttp1j1mdu1mdGSUXq/P1NQ0H/nI7/O2t/8YBw8cIKwEjLRHmNk1w8joCE898U1GRkeZnJrioW88xKWLF/mf/pd/QLvZ5NjzL7Fnbj9ogV1xsKRDpVLFsT1arRFsZaGkQYksyzb0G23QpsB1qIV1Okef5dy5K8ztmcJxLYpc0OsN2Oh0jROno2i1awShx+LCEtMzE0hl0Wq3yPIYKS2kMHTCfrdPtdHEtj2D2pm8Z/IsRgpz05NSsr7ewXEMImRcDQWnT57FDz2UbXJ8pBQoKcmzjEq1ZqhHpclHnhdoBI1mkzxLcR1D3+r3+1QqIWEYkucm++ulF07wraeOQ55y7twVxkebXLxwmXqjDhIsR1KtGMe5V06fLfVn5vw7rsMwGiKlxLFtOhsbVGs1sizjy19/nP17Zw29VCmEztnMjzScfVOoFOVBOHnqAg8/+iJvvOswqgwhtyyTDZQlWRkAK0otmCpRS0OZyfMCCsED33iS3XMT2Jbask0fDiJj8pAkbHT7eJ5HoU0osVKKwPdYXV4kqIRYtkVRCBOKroyZSr/XxbKMKYpjK+qtlhGql/WabdsG9UqMmN22bSxH4fkuQlv0ul2kEriOTZZl+EGIpSz+5E8/z4G9UziuU6KISWnprXAchzw331Mp47ApVGlPjyYaDAkrIYcOzTHarpIXGZ7v4zkBy8trjIw0yPMUz/Vot+uE1ZCHH3mJ/+Qn34znOVi2Iqj4RjNbGrNYloXjGce6wPcQaGzbxXFcXjpylqnJFq1Wk0oYlGYwLp31dVzXYTgcGqS3PzQB5GT4gYdj2wz6Q7obAy5dnqdWr5Q0V+PEKgQM4wShBbqAdqtOq9UkS3Lm5xep16sYjYdx3x30jf25lFZZ5MqtYmthcZlqtVqaIpn4Atd1iQYRSRIj0ORZhhSKwaCHlCClxcLCchmHAZ7vk6QZtqW4eOES1UaTqB+xe2aSRqtOPIzQaPIsZmlhmTCsG9dXp0S784zRkTbtkRZOOZnR2ejg+x7LS2t4rovneXS7A1bX1vB9B4Hg8uV5ak0f1/GI44i5PTP0ez0uX1lgamqMwzfvZXV1jUazhgQONXL+83e9CT0GH33wAf7wuZP87//Ze6hVqxQ6x3FtBv2BCXsfxiwuLtJqt+isbrC8ssZzR0/zjje/kSiKuPeNb0ADjUaNk6fOUA0roMF2DEqaJAmVWgAI0jTdCrzudDo0m3XQgsuXrph9k4IsM2ZK9WYNjeZ9n/4k/+evv41qEBjHW0ttmSg5rovruvzyP7qf333T7ShboaQgzRIc2wUErVYDXQg21rsM+kPjbry0ytT0GIuLq9RqFR7/9nEuX15jOBjy3Kmz7J4cp1qtUa9VWFvboFqtsLCwwhPfOcGxC1d470/eS5omTE2PYns2YyM10jglzzXVasDK2qq5T+QFSiqWl1YZG2sjLUlRsigAPnP2Cn/1yX+1DcH5m03u3ki/U2w+X69BVQDGJyboXxyY5a+uuGN7GhDlc42SgaakwveN7vXiuWPMzOymKHJGR0bo94e0mi3aI2NUwgr1eoN+FOO6DgcPHOSbDz/EmXPHWe32adZqbGxEnLt0jrNX5tk1u5uTR55jtRczPj5NPMjYO7efVrvJ0SPHOHXqeQ7u242iQGiBUjYFRqu60emxtNrFD2p01jeI45Tp6VnGxkbJ0ojJqRHGxxv0egNeevE5du2eI8tSg6orQRRnPProU0xPT6CEJstSlGWRxDEIhbAcnnr6SZJc4Qd1Lpx/hVtvudNkbkrJX331k/zCL/zcDlqhkGoHK+v1omc73r9efbjdVXFbYP328755rq9Fz3Z+3uYyN6Zdbu7FD3LcCAkzjZGhdhqdrLrxet/L0K8+Fjvq3Bvt53f73t8F/bshnfNGy1xn/IiW+UMeWZr+DlqjXuNC2D425a7bQFswCqLSFcdA60qq63b420WbSoitubvX78Gz09Kl0FdjGjXb9+nVY/vfd8xGbBeSip03kk3ahvpuoY/l2DRY2SFW1Zok13jS4uRLL7N3bg+VVos8B6V80tzmH/zO71Cr13nzG99Kd7iIVeRsrCzhSov7v/gQv/QLv8LlhXn+6e9/nJ/7ufdR5Jqbb76Jv/yXH+cdb3sTr5w5hbLhxeNHmJyd5gtf/BrjE2PsnptiZtc0u/fM8ZZ73sD+A7PccuceHnr0AdqjLWbGJhGOz4kTp3A8B891QEBeZFs5bJkGjUWuJUIr2u02v/Oxf8ZvfeDH6PcHFLm5iSopsB3FmbMXCSsezXaFJE4JvADblpx65TyeFxCn63Q6faqVmnF6q/g4jm+cvIwDD91OB6vMhqO8ntAwHAywbWVcCZWiWg0pshxHKYQSCIrSAdJH6xzLEriuS68XYTvGiUwXOVrC+loHIRTDYVrmdJnspvX1DhcuLvKz7/kxHM9iYmoEjTaFPwWuV1KQpAABjWYNx3MMEmabh7HjOCRJxtceeJZmvUGzXiNLMyZGQxxL0O10SQbxFoJhKZssz+lu9AgCE4xtOzatdp0sHzI9NYZUJjuuAPI8Z229Q6UWgjYzhcPBAKUUqyuGXqekoc3u3jVeIlCaIjNhxKtr68TDIdVaaFwXswylJEGZIbawsESS51QaDQohsWzXGLwok11nOyZvsFKtIZTN/OV5PN8l8Dw2Nnp4jkscJwSVCnGS4jgOnuuhC8CCrMhxXB8oDVikYHmxy9MvnOZNd96MpVSpO8lMWHquyVNt3i8yY9KBYtAbkmcFrlM2LqGhIOaZIItzXMciGeYmuNuzTC7csEsYOPSGGaJImZ5qk2uN7TplMLvAsi0uX5nHdSxcx0aqnH6/T6NhTBTiOGGkVeGJp04wNlIlDD0cx6LQGa7rs7i4SpbmfP3hZ0izvim+uhGBH5AkZn/6vQHdjQjPNUYewzjCthWDfoTnGgROI/C8AJ0XxEnC2OQoWkOcGGqylMZpcX5+nmotNIVbGXIf9WOKPMVzPJbmV3BsG8+3t2ZVHcfBdQ3iiQWW4zCIYmzLolLx0YXg0qUr2JbDi8+foNGo02y1cFwLxw1QtsswyUgLEJaL1CmV0CXPY9IkMs5//RglLNIiQzpmogttIVSO7ZjYkl6/TxCGfPrPn+bM/GXufdNe8lTQbDQRIiOKUianmviBjSU1I806otDGAdZWpGlMkqRYwqVS91leWuOem/fxKz92Cx/6k8/we1/9MjONgJumZ9hY6eJ7Po7tsLKxbhx5+xm+43LHrXtpjTYIKz5ZlmLZ5t5TZDmObRlKJDnnL11kZLTBMIqQGh751jPs372bRqNBpeKTDCMsOyDwfZYXl6nXaziO0TFqLXjrxz7KJ37zXUxNj1DojCuXFwiDACEESZzgujaWpXhLJ8V3LNAFQoLve2R5Vk625CALLFdx+tIVxpsjPPPSScbbNeqtGkmaEPcz3nDrAZQSXFnqcNvNe4n6A779wklmp8ZQUvLot4/yzntu4dC+SbI8Z2SkgS50adajsB2LNE+oNSqgJbbtID2HQmsqzQq25xjWDoA298Phodt4491v2IbQ6BLV0VuvG9HvpNyOEmw9Pq/KfzYbsx0UslfT6cJKwMsPvoJfcV+juYBCb6eclfWBkDRaIxRacOXKOVyRooqIMxfO4QUBw2RIo9pk0O2jlMMwSvHDgPb4GEVhsX/PPqamp+h1UwJ/jNXliIndM9iVKmPNUWzbo9kc5+lnnqE32GBqfIbxsRE8OydNE7AkWpn4Ewro9jbYPXeYcxcuMjo2Ta3eMtrRNKHT6/DS0WeZnWzj5RmT4+MUZdSA1gW9fsrJoy9SIBgbGy9/Qzb9YYztBqTDiLzICWtVLlxcxfVCNvoR41PTCEth2w5z7kHm7pnZ0rsL45q3dayvQ9jaMYqyhrr2VWhp9JuFqRn1NZXl1RZcI6W17Tx+t4rvasOz2VTJUvJwLWK843q4gTbuemHkm42aKMGFq9fQTgrj1nrbmuAtxFip12yMr1eXXvv+1Q/b+e236twb/He9cHNVItjXom7bl7zu/m7WvNcgqzfa/83xo+buhzx0UfwOr7Oxg6vX0LXLb9EcymZrc+bgWqRsJyy/bT++h33+fte74fg+OcPXG1uN6rUPHEtRDAY88uCD3HTzYZTjkSTpljD/x9/5Tt50z914nssg7RH3YhQW46PjaK3Zt/8AjVaVN7/5PrIsp16rcurUcX76p9/FRz7yf7O0usZ9972N2dnd2JbNrYdvZdeuGZI05sUXX0JJiwP7DuK6FivLC9x9990MehGt2gjathkfH6PIM5YWF6lWqqVzU4GUtqHWCmNhbuZINWcvLHDfHhP8m2YZge+TZhm9bp+5PTOEldCEkyJNPlsWMzLaKotJQSWskWdX0abN3DQhjEjf9zyD1JQUCiEEly7OU6uH2JZFWAmJBkNWVlbJ8wLPd01zWAq908RkSWmgKEyxXuQFtmWy/DzXxfM9pJB4nnHTxNQmKGmza/c0aHBsZSzmtcbzvS2am1ImHwoMsqukRaE1589folap4AU+eZZTqwZ87ktPctvhOYbDiNGxBlE0pNsd0Gq3CCom787zPQqtCQKDBliWCSe2bZvdu2bIsqwMbpcGuVMK21JYtmXy8JTEC7wtLQ3ldZhluclRq1fIixzPNiHXjmPj+55xSHRMAeS6LlE0ZGNjgyDwqVZrCGWC3ZW0zAxqoUFqgw5qXT7wNa22yRDc1M5IKYkGQ2y3zFijDIGVm4YpTkl1TbFtx7hK+gFvuuugQT89hzSOyfKUldV1HMel1xtsIYu260AhOHvmEk88fYSbDszguBZZrsnSHNd1WVpaotVumDJBaLTQRgeptdHt1Rq0G3Vs26bfN+ilMXkxVV6r2SgNOBKKXOP7AVqXNGDbJvA9Wo2AotD0+wMefeJ5GrUQXQjqjTqryxvMTI5z9PgFbrl5P77vceLUGZQUrK93qdWqzMxO8el/+xD7903hlIHUJo5BI5WNlBZxHPOJP7uf6fEG9UYFjaZIjaW8soQJm65XQQuiaIiyjG3/Zz7/TW6/dQ+25SKl4rnnj1KpmjD5OE6ohCHnz12kVquhhUYJieM4RMOYleVVtM5pNOo4jsOu3TPYjoWmAF2YoOQ8Nxpabc6n7zlsbPSo1UyOVpoXuJY5J888e/T/Y+/NgyQ97zrPz/PeV95ZmZV1932p1ZKsw7LkCxtzGBswYO8OZoNjYididoKY2J3dgY1YGGJjYoeJAWJgWIIdYDELGIxsg20kY0u2WvfRuqVu9X1VV9edVXm99/vuH09WqbrdrW557BmY8dNRHVVZme/71ns+v9/3ojlaQ1PU4XkZo2vymrEtqb+rlIrcf/9+gmDAgw89z9NPH+fWQ+Mo6NieTZomHH/zDJ7r8uBXn6I1Wuf8hVk0TSWJY4kOq4J6Y4QskzEEP37PTn7q3t0cuHOSs9Eq/+rh54kX5rll23ZKRZevP/o0u3dso9Gs47k2AuisdzA0g8HAp9Pp4vsB5UqJHKkRHBmpoSoK3U6PYqlEo1rBcmySOOHs+QuMNOqkqdSublxjf/viEV5amOP3Xz/CF3/tZ6jVq8SJ1HNWKhXi4XmdpRm6rvGbf/gEH5wcRwwzIDcaXO32Ov1uH9u20FRJq9OE4MLFBe44uJsoSTh56iL9fkCrUSdJE0YaVfbumiRLM468dpxGuUSayExFU1MZa41gOabMp8xyoihhYWGFcqWIaZuIXLIJNqI34ihCVeXkTRu6Zm6MTx9+kf/r3/zaNdG2reN6xd3Vmqq3+/31xsZ7Hvjjv2TXzt3f8ns56WWTWnj1hFXAkFmjE/o+WeITJzF+nFKtj/Lm8dfYuesAAz9k7vJF0jRGN028gsdIbYR+r0OlXCEOUw4cOChjQISMlPAHAxzXw7RcRltjkEO302NqapxuZ4G19hKWZaEbJv1eD3KwTIeVTg/TcrEdGUKvazq+H1AqllhaXqRa9hBpLAsGXZUOlVlKGEW0xrcxMTGJEDkK8v6YZDmPPfksrWaDIEoQqo5bqDE2Nsm+fbdQrlaHCJNCue7xv/3rX+LHP/HxrTv5Wt9ec1w/9kKicleyqK5XKN0IgbvOGjaYUzdBE7wuGnV1ITXchmsWgjdggYnrnHPXHNdb7rUvjGsu4oYI3ZaxSU++evlbFnGjbX4nWrzvae6+y2NTF/afiSN7I13cf61DEQqm6zE63uLy/GWyJEKIjCgJKJVcVlYXWFycI058BDpRlJJlOZfn57jznjsJE59z5y+wvt7h4x/7UbI855lnnyfOVf67T/8cH//YJzh96jyvHHmFLMhkSLUfkEQJnuNSKpWYn1+gXh9lz+5bGKmP49pFen0fVShkSUrBK0gzFfKhQQBkWYIqGBa9kjEUAAAgAElEQVQaUt+lqyq/+Iv/jJ/793+HpmkEgU8YhqiqSmtslDCQzoS9bg+/7zN3aZ5jb54CkQEJqmrQ6/aRRYzGA3/zTZKhqUie5bJgTBOiKEKQkwy/dxwLf+Cjqgpnz1yg0+kyNjaKoiqEUUySpoRhRL/Xp722TrfbkxbbG7rJYZBppVJGUdWhLbIMeTV0Hb8fEIUR5BlxFCKEzGYLg2DogCcpO/nQwETf1GeB7wcyE9DQMUyDfm/A0tIKl+YW+MB9+6RbZ61MmueUKiUmpydQdTmZcz2XPMsxdCn+T9N8swOmD18zdAPTMmVRGcWkSSJzpvKcKArIspQoCmmvrYEARVUI/ABA6rKGFMM4iWUw9dDW33GlmUqn06O9uoZpmRQKMlpB0SXlU9cNFDKUPEMRKYoiz4s4iclFRhTJPLzVlTX6w+MjFEkdU1VJkc3zDEE2bPC9dc9Rhgi/oqiE0QBdV9B0hdkLl0iHxWy302OD7z9kUBGGMVmWE4UxP/Fj30cQ+iRxiKZpOK6DYWhMTLZYWlohySIUTUFVFDRNRzdMNN0kSRJWVtrkAoqlgtTwqZIXkOWSTpqmGVEUc/zN8wR+hD8IyDKpO+j2enzt8EsEQUCW57z3PXdQr49g2xaBH/LMc8dpjjb5sR/5MPNzq/R6fWamJihXSigCLFsegzBKsCybJMl4+pmXieOEHMFae22T6vuB9xyg0ayTJjFJFGE7FoPBgBwYGanzjcMvs7K8hmHaXLp4GdMy2Lm9IXWSmopX9JiabHF5fhnTNCmVimR5TrlcJg4j6Z6aZgR+iGkY1EfqeAV3GOatMDs7K9EsVdlE9n3fR9U0mfsnFIRqUa236PsJim4iFIXeYB0/HPDc6xfIU0EYDhAiwbYchFARSDSAHEYnyiRpjOuW0RWDSsmh3++hGyr9fo80Sdm7Zxdf/PIT3HXHPnq9PvNLa9RHaow061RqJWxT0mKPHj1JoVSgVC1hOCaWYVFSM37rF+4n22nxMw9+if/+y19i2YW11Tb9bpfBoI8/GOC5LrppUCwUOH1uFmVY9EZBxDeffF5SxXOFwI9JsxzLdXjy2RfJFUGz2SDNpLlPp7OOUBT+9ycO8x+OHedU1uF3/qePog1RFU2TOYtJnKAIQb/XY2FhkT/9u2f5hckWq8trREGEqmikUUqa5MxeWmJhaZUklNb9CoJqucTuXZOomoKu6rx+eo61dR8/CgiikCSJicOIfr/PzqkWY60RvvrU63S6fWamWqiaRpKkZElKHMUEQSjvv2FE6Ae4BYkqSvqvSh5HpFGMaUijKjmJE5sTzOw70nH9Tx+vLr12Tb3/xpzzehPVDYfcLAMUjSjNyBWdVqOByCIKns3TzzzOG0dfwzJ1hJJRKRfI84y19TaNxijLS2vMXZ4lFxkz22aolkeIogzPq6CbJmmeEoQh4xMTRGnCkZeeY+APGG1OYpoWSRxhWzaKgDSTZjrFUgHPdcjzjCTNMHSTF198gc76gJNvHsUpFNBNaQ4WhyGWbuLYNoaukiUBqgBdMdB0Ez8IaTZr6FaJMMkpV1scOng7OTJWxtDlc2yjWR8Mm5r/0IYYejFcrXF7J0Pm4n1n5sdbdW3fG/9lxn8zyF2cJP8K3r4iz4c5daqibNIgr04jkW/cIGlyJZfiOtTJDRD+6hy8rcu+1nPiRvTLrcu4mefMtTopN4KUrzc21nd1h0ZTdSK/z759u/m93/1ddu/YzsTMlAw7HnSZnBrj1VdfRjc0bMOFLOfNN49z9tw5duzdiVctsrq4TKPRZH5+gSCQFK5XXj/J4uIKum5jmxbNkSae7fCnn/0zZqYnKZeLjNQafOVLf8vps+fYs2s37ZV1FKGjKRrt9gqVxghCUUjSlMWFBeI0wXM9LF1mXsmOdUh7bRXXcUBIF77PPfAFPvnevdi2teleGUUxjusSxwmmodHrDqiUS0xMNrl46RKWaWCaLrpuyAIjz9i9fRzTkjqTNE3JyQl8nyAIMG2bXqePYRi4rottm8RxjGlYFIsFkiyVOUVRjG1ZCAGqokn0IMtQFIU0SZmfW8D1HMhzzpw+T6VckgiSLhGpPM0RqFzaREFk533DDRPEJjIlhAw1VhWBadtEfkKSZNi2iW0b5Ll0f7Msk8mpFoWih2aqqJq8flRVA6GQ5hl5Kn8eDHwUTTpF9rp9LNvi0uzlt4wChGwQkMt9bBiy0BsMfBgacgD0e30c10FVpT40GIT8yecf4dCBGSxLIhPqUDuqKdI58gt/8wiHbtmDpmt85auPsX37BLbjkgtVUjuHInohsmEEBXR7PWzToNvpoes6cRxTLBYQQpp3JLFELZIk4eTJs9SqZTRNJ0tTWbQhHdtOnz5PqVRg9sIciHRI7ZVulYuLyxRLRZknqGu4nsPc3ALVWm1YdCd87qEn2D09SrHkECURtiXPPYBev4+ma6imNtRuqKSpNByI05zOWg+34GDZErETIufUyfOUNh1Nc9bXOxi6xhNPnmBqvMFLLx9n+/Zx4jiiWCqwf88khq7TaNSHQn0F3UwRSka336FeK2JZGo5nkaYp650OmqpKU41hBt2hgztJopQ/++wj3LJvBsexcFwPTVWJowjTMKhUy+iGSRT00VSdIIhwPAdN1xC5wqlTs2iqxuTkOJ5n4bgW1WoBTYc4gdCPefm1E9x++17pFpcLoiiWCKbnkcQJa+2OpGimEvlWlJw4iliYX+Lshcvs2jm92SBZWloi9H0KniPzPlWVJFVAMdBNi06nT6HgEcV9isUy99x6AENXWVtfxbFNclR5l87lhCfLUlRDNnbyVGPHjkn27Z/BtLWhc6GJqumkGRw8sJNiuYDrWezaNcPZcxfxPIe+3+PlF95kYnIM27Y5euwMjmdSLBdJQxkwL0TOvbft5sfv3c4n37OT/XtH+IUHvsFDs+d4ZW6Wbr9Dq+gRB7HUUOo609um8Ps+z77wGrPzbYqWSaPRwHFcNNNACMHk1JhsPOQQRymDqMs/fewxXlm7xG/9sx/kvdurNK2M6alxdEOVSKmiymxKRcU0dDRdXut/9NAJ3lsqsbDYplIu8fATL7JnxzRfP/wCl5dXGa2U8BwbRVU49uY5io6N41ksLbVRFZ292yYZbdToDrostddojlSGwfeCQsEjSzJ2jNe5eHmJNEkplTwGfZl5ZtkWui75GV7BZWFxBdexuXx5iWqtwsrSKuWyw+HnXmLHZEvqhuUDj08/+gIPPPCnwwbO2yM710Putk4brjU2nEdvRuP1Z5/9Cz5w6P1XbES+sfZroS5szBnk7ETXdAqFMkIzyVBIOoukYQ9Lzdkxs53mSI2Tx1+j2RiFXKAoGkmcEvQjqrU6UzNTnLt4hpdffZ6pqV24dpFLc3N4xQJZDpcvX+LYm6+zf/9+qrUSJAM0TTrZ5mSEAx9FAdO0MG0PFJXjJ0/RaDQhFzzx+OPceusdnDx+imZzFLegYdo2aSbzNXVFSMZQFgMZqlDo9X0MyyFB5+TZRU6cOsv+W96FH6UEQYAf+IyOjsIwjiEfehm8/7YP8Mdf/Az3vfc933JAv13kTlE2TEuupCtuLldVNn+8FvOLIRtkIx/uWsvY+Oz1XCq3UjGvSXdEFvtb37dBx7ymhGfrMjbmj9fJfrvRUIcNTaEoVyx3q5Pl5jKvXvbQh0K5QS7eFZTma/w9Upb0Dpht2c3/3d+jZX6Xx80YqlyL5/5OyYvXuldvpTBeTYt4u8/dzLgeffSmx3eQqgmyC6goGe3VFeIw4Nmnn+aW2+/k2eeeJ0kSqtUqrVaLUrmMbui88NzzmLrB+977Xn7o4z/Gj//kT9Kq1/nn//x/5ld/5Vf4/Be/wP333cv73/t+fvmXfplypcS+/XvRTZVLly+xfdsOXnvtVXbt2kF7ZY3pqWneOPYGd99zN1998KtUKxXSJCIIuxheAU1TMXRjaMVukCQJvfU1wjiSnTzDwHXsoQuezLb7yIc+xNce+mt2jtVI4lgWLEmKqmp01/uEsU/BKyJyiKKQarUq9UPA/OWFTVQhyzNUVSEII/I8Y9Dv49g2tm3LiIJchtRGkQzfJYcvPfg4u3dNEw+pT6ZlsbSwzOzsPLV6VVrHKwrPH3mNyfEWeZYOUaKMSqWEEDKrS9VkyKrMfctRhcrrb5zk/MU5qUNTVBzbobPeJQxDyuUSumGQxDHLy8uoQuHk8Qu4to3j2dKCPhPYtnQ6XLi8gFd0ZahsLuMO4jiVNNBcRiv0uj063R7lckmeb4rsNBYKLp2upO/FcUy328WyJGK4vLSCbuokccLXv/G87MALRVq/CzFEQWWhe8ctO4f37aF5hqrS6fQQQsH3AxzLoFIpoWkaO7ZPMBj4suOpCGmlHUasrK7SbrcpV8qSmYk8Jmma4boOhq6TZjLWY2V5FWX4YA6DmIuzC4RBRLVSZn5eOvUpQqK2pmGgKQq2ZaBrBo7jDN1eoVIpSeRSCJIkJgcKhQJCyODzLM3YOzOOpmucP3+BVqtB4Md01jrSbt40UFWZ+7S4uMLKwirlUpEgCFhaWkZa79sygF2TrpylcglFkSi1IgSuY7G6usbUxCj1WoVCwUFRJZJ9/M3TVMplsizj5KlzjI+Pouka3d46uqEzOdHi6LGTjI7W8IM+tu1KzZ4q963v+wCcOnmOM6fmmFtYZ6xZxjC0IWVYFvWZTIUnyzKyNOb4iXOYhsXRY6ep1SucO3uBV16/wP33HsIwdBAJmi4RUd1QURUDy7aYnmpJxoSApaUVTpw8T61aQTd0DNPkwoU5VlfWqNWq/O1DT1Gp2CiKypceeoaFpR633rKdKIpYmF8hzzIazTr9XmcYu5CiaAaKprK+vi6bMFGEV5Bus1mcEYR9GVliudLYR0j9R5alJGmMpsumh8jF8HpJIJfGMFku9RyKpiIU6KyvM/D7eJ4nmxz9AdVaGde0WW13WV/vs/+W3Zw/N8vJk+fprPWZ3jZOt9tlfX2NQsElTXKWV9b40Ttn+PhdM3zwXdOsD5bYd+80P/0nD/Kl82d5ZOEyn3/zGH91/BifOfIUv/SR72fbtmlOnzpLJxjwxvwsv374UWY8i8+/+jK/8/obvNS+yIc/tI2fum8XP3DnLjRNo1AqcO7sLGOtERD5BgGKNEmlayoZWZbwj37za/zhfXdwaW6RkXoFIWDbZIvVlTZjzRo7JkcBKJWLrK93mRhroOoa3W4X13H5668eIYlCNE3QbFYpF6VRUbvd4S8efoaxUpFeb8DRM7PcfWgv1WqJbqePqqlcmF2g0aiQphnFokeWS5MiTVNlvh1Sp7mwsIxr2zSa9c3naxCFfGl2mU9+8icAceMJ/7dpZLFB47uZ4o6jKiOtkY0Xr/j92619o/EsHRVViWzmOWkYEIUDhBDEYUAaR7RaE5imwenTb1AsVBBCYGgaYRLy4ovPsGf3fnbu2EuWZURxhKaqeJ5H4AeMjbZojtTpdFd4/LGvMjnaQFPVYTanRGVVRUaW5IrBsRNHOXToHjRNJ89gfHwcTVMpFoukUYf6SJFBEHDuzDksy0YROZkQ0jgplxIFVZfPrrn5OeYWejh2gTvvvJOV9hpr7WVuPXgbb4VVDzVbijyen33oL/jI938Iy7auVK59m8XdtQuuLbo2sVF8KZt6yw0N3cb7rlWkXznrewsKuNY5c0O649XvudG4xjK+3fmjJG3k16R+fkvRdI11SHnUO0AItxakW4GOd1LcXVErvv17v1fcfZfHzRR3CmwKLTe7Fe9wPf+tF3dJkqHpCrqucPvdd/PSU0+xY88hxscm8dwChmFBLigWKqh6yPL8InfdeTe5ovGTn/oZDj/2DAd2b6fZbFEqVXjf++7n4Ue+zr2H7uD+99xLpVakNd7CqtkU6kU83ePLX/kyu3Zu5/d+7/f50Pd9H7fcto8LF87huUVuPXQARc2oVEwuXV6lPjLC7MULlMqVzRuKraskSSJ1FUPNR5ZlEr3KcxzP4d/9xwf4gUNjmKZBEidEcYpl2cRRTJKE9LsDTh6/yFirQRCknHjzAs1WjUq1gFByclJyMqI4JYnjoRubzK0Tihjq6AR/8JkHefm1U9xx6050XaXVqEvdk+eQpClxElMuFGWAuaJI+mSes337NPOX53nxlePMzy/h2AblckkWNY50Pxz0fZaX2sxeXKTgFjF0ldtvO0Acx5SKJRYur/D1R1/mrnftk1lwOZsOeWfOzPLYMyeZGquz3lkjyzOSOKff6+G6DqVKUSJDArIkhQzOn7uErmvousagO0AzdGr1qpzA55nMIcoS/IGP7cjA4jgOKXhFsiwly6VFuaLI4uzRp49yaP8OFEVB03WyDIQqSLN8Ux+2sroyLCxkl9OybdbaHaq1KnmaUa2V8cMQBJImCuRpTLe9TqVSRqiCSr1GSk7Ql7b6+RCFTJIMXVdJkngztkLXpQ13vxuyc+cMxUIRIRQc20MzFHRdhsYbuixQXdcjTkAoUmc48PvkWUav65PnMr7CcW2eO/IaY60WQk3JMrBtR6I6qqBYKBIGIf3+gFK5QDKk3OqajAsouS7nzl4kjEKKJQ9dMTBtQwYCCxj0eywsrFIsFTAMg+XlFSzTxHFser0ehqVLJ1hd0oqfeeEYTzxzgoP7t9EcraKqCkkaoeQmhu4g0JgcbxGEIaZp0ev2MYfB4lEcoqmCIAioj9T426+9xIfuO0i9UaM5WiOK5XmwcHke13Po931p+KLovPraaZ574Qz33HmASrVMoWCxb/c0ti0z4hAxugErK118f0CeC9bXO2iGzJILw5DX3zjNe959B6qq0W6v4w9CGo065WKRxfklpqdatMab2JbDzGST22/dg2nZKIrCc08f45aDO4CMbldSR72CQ5ymoICh6QR+gKkqZIoGmSDLBqy252mMjBGFAtPRNydpURyiGwIUA3KFnAihJoRhyKMPv069KhEkr1gkzRIUJcfxLEDa/rtucZjzCH/1hScB2LV7O4ZhcvHcZc6cWeL2O/biFTwc28RzHRRyNMOW7qWmQaFYpNvzufXgHhYW5/j5H7idn/7gfj56+wSfePc2fvqDt/DRe/ezbvsUZlweefUIrV0F9t82xr4dZWpjGh+8fxc/fvcO7t/bwrYslGFhECUxcRIzMzkhI1KUDEROFCaYhkmn00XVVH76N7/KL0838FSDkZEKXsHh4SePIPKM5ugItmPilbwhDT2iWq8SxjEvvH6CyVYT07TJwpi5lTYTrTKWbXH89EVajRHmF1ZxFYPnj15gz7ZRZsabrK130XWN9U6PYrFArVpifb1Hr9sny1NpkOQ4mLa5+QzI8xy3VKA+UkcZuqkKAT/7xCt8/vN/ftMIxX+O4u5Xf+fX+MBtH9h48crfvx1TSUjPgFwooMicSMctEOtF0ExSFAxDI81TdDXA1HM8z0YzVMKgQ2d9idpog8mJ7eS5guO4XLx0Fs9zsA2LJ594nPbiGpMT46x3Fkj9NbZPTkIa4doeYZoQpTEkCYoCcRRiuVVKpVH6g4Bur0uOoNNZp1wu8sRTj3Bg1wyqlpGj89JLxxj0l6k3R0AxSJKcNBXopkk/6mEqGo5XZnRiN+OtCUzbZLW9yurKEjv27IY02zQL27qf3nfw/fyLf/0v+alPfkKa4d3ssf42iztyGSOgqG+htW8Vd1cVOdcp7q7U833r+v5BFnfXMn75jhR3WxDBLbTR7xV3/0DHzRR3W6mGG3THzc9nsqu8lSq5lXa5Ma5Fs7zWcpUt1M+N36uKghjSA96OanmFi+bbvO9mxk2LXm92qDmkINDQcp04gcHaCtPbJonSlEyTLoUijRn0+0xP7eHkqfMyV6lVZLTh8sijT/Lue+/hYx/7KIcPH+YHP/KDHDvxMjM7thEmOpbtEoQBcRzTXl7nRz72MWzXY2y8wcR0Cx+Nh79xmPHRMTzHxe/3eOPV1/hf/un/wA/9yMcYn5qRZg8Ll6gXTLphzFq7S7lcI0lisiyAXEVRodtbQVUVfuSHP8Gn/9d/x33by5SKRfxunwvnLzI9M84LL77JM0dOsGf3OLV6RRZlY3XII3w/YGWljWEZ0rVPl9b385cXqNVrEk3QTTRNOlO2GiXuumMvmqURhOGm0xRZztPPvMLJUxfYNj0+jK0YIJQcISDNUi7PrnLm7BK7d0zQao0wP79ItV4izTLSFDTdIE1gpFHFrRhUGxWC0KdQdNEMhSgJadYqmKaJaemSQqYphH5Ec2SEbRMNTp+dY/fubZuZdJpu0OsM+ObhF9i3ZxthKIOwpW5FZmQpQuAUCnQ6HQplb6jlAl2VWiTTtOis9eh1fUzdwrJNZi/OUShItEJGCNjs3dnCKzgoqqDX6+F5DgBhGGCYGnme4BW8Ye7QxnmdDWlguSwg82wYkwACBQVVUoQ0WaQNe7goQiGNZci5rmnoms785QV03RqibLlEISs1vvHIEW45uJMkyVBUhbVuG0SEpmtS75gLen2fXr+H7Vm8/vIpRkerpGmMqmuYls3shcs0RxuQS+e2qckxGTqfJgS+Lx0DdWVoLqKRZDFpllDwCsMHX04wWKNc9lheavPY08foBwkHDu7HsgVxIF17syyivdqlNVaVZhFJzGC9L2MMHAfHdbEtjfPnz+HaNk8+9Qa1SoUf/qF7cIsWuqGxML/I6nyHQdwhDPqoOggVVpdXcV2Hbm9dxmjoMgZk0A+x7CKBn3DPXXuoNYrYji5dMzUFcoVXXj3FxNgojmtDluIHETt2ThEEPfbt3TE0c+nhFRy6PVnMFYpFFKGjCB1Dt/AcBz/wsS2TMICVpTX27JkhSWOiKGRldY1Gs4JQwbA0bNfAMFV02yIXOaZtYZrSS63X7bBzz07CIJLZZoqO7XpD8xedOI5Yb/f56y89y2irRLlcIkdw4sRFJiemsG2FJO2RZ+D3e2iqNC1Sh9bqggxFKAR+hGGYbNtRx3PLFArScTeLEwxNXlu9ts/XHnmB5kiZQtEDkbFv707GxmvYjkqahExPT7J33zRuCdbW2iRJzpvHzlOu1Ah8mX3nus5m4HvgB5K6mOVEYcgX//Yw26bHaXfWGG9WmRitQhLz+rHz3Hvv7ZiuQa1cxPEK9AchfhCjmSZplqEbOgwNaHRdQdckFXvDNXPDSEo3NH7pjx5jJlNIzy1iKQqlegFN0xlv1BlplsmyiGNvXuDIsVPs2zaJZRmkSYpQBZOTTUSeEGcJjdERyo5FtVSmvdTHVA0K5QJLS2sc2LeNOw7sZPbSAq5jDZ1fZaD7iYsXKZc8Cp6HV/RwHJMsT1EMlSyXES1ZkuD3+hiWjq6r5Kls9q71+jw0t8JPfPIn2XA9vOJL5N8yN9g6O7iWQ+b1n8s3njRmWY6iCD73lw9cs7iT69woGK61DrF578g3JCVC4Dg2xVKZUrkGaARhQp4qUjeaJgT9NuQZvb5PwSoQhl1syySOU2bn53ALHnkm2Lv3II4nuDj7OrqSYagplmVJtF1kpElAniVoqMRpim4XUMwyF2bnyRXBSKOJoqi8+eYbvPziEQqmxUSrjFBUIGV0tEZzdBzHKqCRYhgaURLghwF+P+bY0aOUqqNU6iMoukKpJCUK5XIRx3aksc41igYBPHviGX7iJ36ULL+5YwGQD10WlKvy06753o0sHcSQtilktY0sdCStfqO4UTY+9C3H762vt1/fDXnAvLPi7GpK49WfvRm5z8Z7No/B21AcN9dz9T8hbqqwu2JbuapY3thO3ppXq0Ihz4aeAMN/kooJGxT7t5s3bwWKNE37XnH33RzvNOdu45BtFE9v20G7xmvXLcyGlrJpml6xTAW+5cK73jK+E4jfd2/kwzjAnCyJGW2O8mef+Qy9To9Go4lh20RpTJRFpEHE8vIK4xNjhMEAwzIIw4CdO3eTpRkf/vBH+Me/8PPMXbrEPe97D9VmE1UoWKbF2GiDR7/+CO31NlNTk6RJyupqB9cpU3Yd9u3czeFHH+OP/7/P8AM//BEqjTJNO6babFFrNPGTBLfo8eIrr6CqUndhWSYZCV7RIklkbpVtu8OwUI1PfepTtM8coWAPUY5On36/T6VYYtf2cfI8w/NsVturZFmCZcnIg0qljKYapKnMndJ0Ddd1UDUZLKwqgjhKCP2IYrGAZRlAiqogw6YViXBNTbWYmR5DUeS2WbYpqRyZgqYbeJ7LoN/l4IFdoAhKpSJCaKyurFEsyUwuyzKGuiuGjnER66vrUrOXpjSGDnyGqZMmydBoRMF2LEzT4vSZWVzXIooS6vUSbsGhXCmwZ8+0NGdRBbMXZxkbb6IbGoapIYQMeLUdHUXkQCaNUeIUVVVYXW1Tq1VxXYmY9Pp9XM+RsQbD7dQ0icylWYaqqTICIpN3WkUIFFUhCiO0oTOhUCRlUxGKNFkZ6gkQDJ0vxSY6mGfZpqV2mkjDFk3XMQ0p2tc1lTAMidOYc+fmaDZrmzTS5aU1nj5ygu0zdRzPGdLPBAWvuGlug1Agf4sCNjnZIE5jdEM6dAqUzZww3VDRhhQlw9DIMin8V1WVMIgwLWkwEvgxi4trVMplxFADIxSFHEF7dZ1T5y7z0R98NyvLSywvrqJrFpZlIlSB43jEaYKq6jJUVijYjgNCIYoikjiiWqlg2Q6TE00mJ1sgMgSgaQrlSoVCweWRR1+mXCzgOB6aInMr/58/eYi779iHacgwbCGGAfaaQNNkDlqeZ5iWLJI3zF8e+voR3nX7bvzBANMyCcOUleU2Bw7sJM0SkiQkTzXiOMUf+Liug65r9Hv9ocupAiJnZXmVIAgl7VSDykiZwA+xLJeXXjrB1x57GUsVNEbq2JZNGEQYlqRnh0GArulD854YIeCLX/kmhw7uZPbSJTRVauYOP/YC05NNPLfAoYO7KFVcFFWiO42ROqqqEcUJtuuSpBAnKY7j0Ot2SZOYKExQFUm9zNJUFi9D+/Vc5KJmXywAACAASURBVFKbrUgKtW4Y5KnCbYf24rguSZqS5xnhIMTQFS5enKNYLpArOYomCIOIYqHIX/3NN6iUXMZadTRdYWlxheXlNl/+6lOcOX0ZATQaNS7NzuM4Lq1GlUq5gm076JrM4IyiiEO37pD0uSiCXBAGAX7f5+jR00xPtIizUNLKh9dongva7TVc1yMIQplLKBTafZ9f/N1v8hu37eee0RpTzTpTU2NAQhZn9Dp9HMsgjVJa9SbTEyOsra7z4OEXqHoOnudKbXEuyDLIU5hfWEXJciojLl7RQjHALRgYusrS8jLVchlFEYSRNCBaWlkjFznVUpHzFy5Tq5VIM6lbRaiQCdIkJU0yibKXXDa0OEII/vFTr/HAA39+/WfuNXNwr0LSNp6SNyzubqKYyGXB+Hdf/Tr37r1344PfsuYbLUkM/9sA+lRFJvkJRcG0Hdxihd6gj1Mos7reGzaqfEaaLQQJURTwzFMPY+g2S7OXcU2buflTzF48A7lPsz5Cf30Vr1gmiEJ0TUXkOWSp1FuJnEGQcvbsOWyvydGjr7Nz557NSfvY2BiTk5M0miNkcYAYIo6GLu85SZIy8COCOGYwCAnDhHK5xZ6Dd+IVK6SJoFqusjg/z/PPPMU9975H0jEZom1X72sheOSFR/jJn/rE5i69eZT25hrl1y6M3ip0tr7+HWu838Q2fcfGdRhhWTo0HbsqWuG7sg3X3babeMuW47Dlxc1vb7SdW9l63yvuvsvj2y7uht2Ft8vHeyfF3YZwd2MSujE2kLybKdz+Phd3+ZbiLklSDMukVa9x5sxZbjl4EM2y6PW6CAMsVcN2bALfx7JMlpeXhoJ4gzAI+OM/+iPeeOMNJicmsCuyOHnumWeplEuE/T7FQon9B/eRZzkDP+DFF14DVPxeB1M3aDSb3H/ffVTqZTRTpTd3glve9W5SoZLk0v54pFHHdYe5ZIqCZep885sP0xydRNdNBKBrBieOH6cxUuOf/Mpvc0tVpdfpUiwV+PLXnqVaKKCqCqalYVo6pqFh2QZhFGDbjnQjQyWJMxYXF7Eta0j1k0YeICcrf/4XX+fWA9vp9boYpioLMCE1SJY5DC7XFGnZramsrrbRNR1NMyAXdNY7lEoe7fYa8/OL1EYq6Jo+tOyXOrw4kZPWOE4wTYNLs5eZnp5gZbmN69i4rkee5xjDrqZhGASBj2VLt7sdOyZxXJfVlTUMU8EyTZI0QVUFvV6X+fklJibHiJMYkA9G+RxPCEOftfYakEu0TZdZaxtunHNz85w6c4HJyRZCCBYXllmYX2Z8oiV1WFmGYehDGkc2tFVXhtoulTTLNq+vge/jOJLKKvV/MYoQJGmK7/sYuizcsjRjfb2D50qKpqLKTqquaWRA4AeomqRQGoZOa7QxpGMaw4mr4F137CHNpGbT9wMEAk3XSdMETdVlX1/I7bRMiwzpxKlpGmmak2fwwkuv0mo1hsYTAss2iWIZwrvhthlFkQyMN0103URVFJI0I4nTTWOUS5cWmJwa547bd+M6Np21db5++BUOHdhNHMcSxWQLAyGXDqWqpkvNG9LNNM8ySZ3VJfXQcSw0XSNJEtJEGnDMTI1hGAbfOPwCrWYV27a4cG6Oomvz4Nee447b92HbMri7P5Bh7rpuoAip/+z1+vLvDBPW22tsm5ah7mEQIITKF778BJPjUo9lWQZ5pnH06EmOn76IYxmUSgWWl1ZwbFvqY4REbF3PIU1lXt8XvvRNxkdrGLrJ4SfeoDVSZHKiQalYJAwjFEUiNpZpsL7ewbFtVE0njiI0TWHnTAvLMikVPalXzDJmpiZkIyDOh3pMie7NXpijXJFIuRCCJM3QDEOuIwPHNknjGLdQ3Iwv0TSNQX9AZ70n9at5hm5o8hzU9eEEXmVtrcelS5epj1TJ8xRT1fjmE8+zY/sklm2RIqMFDN2CHG47KONgikUPVZXNmYcefp67btuDY1ncdc9BokDGHZiWRXt1XRqLzK9gOw45+XAfaCi6gpILZmfnGG2OYNlyf4RBRK1Rke6imo6qqJw+dZ56vYoQAl2TjZ1nj53nN/7qZX7n7ls48vIxGrUyhYJLnudkWczXHn+Bc7PLaGTkWU4wiDFdE0PTaVWK+MOGWJ7nWJbJyvIaSZTQaFR54OvPs7q2wtRYA93QWVlZo7vex3MddMNEURU0XWpvx8eblAoehqHTGK0RBiFhFKHrOrpuSjnGUBtpGAaaqQFSd/rpR1/g9373t3E95+9dcVcqFHEib+ODV6z57RrTm6wjIa7SlkmdsVAEqi4NfkrlEt3egHq9xfjYNKblkOUp62ur5HlCtTqC53iUK0VsW8FxHLprS5SKBSxDwzItLNvBNAzCYCDPc00DBIqmk+Q6ttdgYWmVyantRFHAkRefpdUaxzRNgqDP7OxZiGPW2ouYpoy1Weu06ay3OX/uDLnQGPgBQZhQ8KrkuoGmmQhUojDimaeeoDYywujYGCCRT67j5nj+xGm+/8c+JPfNd724kziPvB5kI2FrYP1/TcXdFQ6af4+LuyxL2XDyfutz/7CKu+/5lF5nZMMvdaMrPPwerow5uN4OfLvfZ0CSple8J71GRMOmtf11ti27wTZsXcbGcpThazcaG8t8x9ERwyeGEAqqIUN9d+/fwxtvvkGSprSXV3AcizTLSOKMwB9guwaKJnPfnnjiSdbX1pmbu8zP/uzPcde77mLf/n288tIrrK62ed8H7uezf/FZLlyY5Q/+4x+yurLGM88eIQhiHNvl4IED7Nu7l6effpY0zZi9dBGAwWDAzp27GPQHmIYtLbGznDSRFMFCoYihGfh+yJ133rlJlRCKThQlTE1PkKQhI/URpqfHaI01efnVEwRRgmnqlCtF8iyn3x1w6vQ5wiDAMiWydvLkWTqdLutr6ywsrsiJj6EP6Tn5MG8sxSuYKJoM1e2sd+j1etLWP4yk/m+4Taqq88orb1KtViVak+dDlNHEdS1q9TLbt08ShxFRGKMq6hDtk6HSaZrKLK8sZ6zVHGaBOaiKRKjm5xfI84yLFy/h+wGmaZEmGYalg8hI04TRsSaFUgGhIDPAFIHl2ExOjkskYnjzi+JE6hl1jTAIsW2TQX+ArumkqUTupG5N5ZkXjjI1MYo/8AmDkHK5SGuswdyl+WHEgdy+nHyoU5Bd9TzPSeIYRVFkdIOh4zjOZqGnDimXiip1WF5BImhCSDewN4+fI4pCGBZ7hmEQJ3K7dUMHIWSI/fBYCSHP1TzLCYKAPE9lfl+aSOpbJi8C07AAOd/KsgQBxGFMmkjEMEmkyUwcx1ycW5bFZxxDnpPECVma4Q98xNDAx3GkoUvgB8OJQMYbr53iscdfpNeVERbj46MoQ7fSJEmo1cp84mP3oQ2zAhVF8PyR15ibXZCFv6YjVIUslxEdpikNTnw/lAHvYYhp6/S6Xfz+YDPSwQ8HPPbYS9iWxYc/eBe1mgwc/sHvv4f6SJVPfuL7UIR0qpTFoY2mqkN0UicMIi7PLcpIDuAD77+Lk6fO4fs+p89cwPUc/tGnPky5WsLxXBRNwXFlJMZ9776V+kiNfn8wdNfUgZw4inn+xaOSMpxmFEtFfvSH30sYRGiqRppm3HPnfp49coIkTnBcl4uzl6WTb69PseCiGwZplqLpBkePnsDxHHzfZ2VllcHAp1Iuo6kqpimz+v78cw+j6RqaomKaxjAmxEDRNIQiG0iKqknqr1BJ0gxFCOI4JokjsjTBMHQe+NIzfOWhx0EM3WpTGcGByNF0ldpIhZ27ZlAUwcryKk8/+zKTYw06nR5pKlHVJE0k5RmkaU6pyMLiEnGUYlkOH7jvEPv37+HALbvodAYSHcyzYah3lfW1DuVqGYA4irAsY9NRMk4iRpt1sjwnDEKEENTqUre8oVFO04yZmUlM00RTdfp9n7WOz299+Q1+555byTO441aJyPiDAQvziwAkac6hXVNESUJOjuvaJFHC4WdfY/byMuNjkrERDALSNKdcKlKuFDBNnR/94O3cd9st6JoOmaDVbFKv1jE0k9nZBUzLYGmpLWmHw7lZlsnrXFEFnufK7U8SskRGmIRBhFt233IhTuUzcKRZv84Db6u44vojy/LNr61DOtyKb3nvjSaQGzmfH/zwBze3ZOOP3CzaNpaxgVBtnWhv+fkKOmmWbQZ2p1kmm2CoOMUKmuXQC2J0u0CS5kzP7KFQLFOt1shFhKr4WGaKKjLCQZtyqSSdow1p+pRl0m4/yVLSVCLknW6XHI3aSIt9+26lVCxTrVR59933Yxgmmqax2l7l/LnTnD1/BlWzsCwPhIrnVTl+8hyG1+D4qbM4Xp3J6T0UilUs2yOKY06eOCnPWVXhwIGDku44RM6vd9zu3/ehzX2T5ZBeJ/fi25W1SPOUK3VysqCTY2skQZalfDsRBRvRBld/dmtMwbcbWbB1Xrnxdb11XGsovDWfvpltuHo9Nzvn3XxtSP/Mb9RV2di+LcdiY/xDi3f4HnJ3g7H1kt2YjL/T3sI7QeCueC2XIcobneC3W8Z117Hl5rOpEbyZzhJvPSzesdB2SB/P8hyhKgRKxN333stv/MZv8n33vR9dEZiagqFZuJ6JZsB6Z40kyWk2Rjlx4jS2bbNz+zYefOhBPve5z3H37fcw2hhhfX2Zu+65k+V2l//z3/46777rfSwttSm4RR74wgOMjY9hlC0ao6MsLiwy6PdpVCt0VpeIgpByayeq7uHaLsuXLmGpKpnQUTERQtI8hKJJrRsaeSqL+yjpYjka73n3B/iF/+O3+fC+Jrt3zbB31ySlksfs7CU0TcFxLOq1Ko7t0F7rkWU5jcYIpmnhujYjI1WSRAb5KqpKe7Utiy1bZc+eaRRVwbAsTNvCMCxUVWcw8Ll0cQHHsVGEyoWzCxx58TTbZhq4nkMY+EP3wBzbtumud5idW6DZHEHRIE2HaItp0m6vY+gSpTAtA01VWZhbwHUdlhZXKJQ8isUCURjRaDYIgoDHHn+V6elxsjzh1TeOMT7exLQNBAooMkNPGU40DF1mzdm2TRwniByEUAnDZBhboFCu1mXguib1R3GSECcJu7dPUKlWUDWV8xcuMTrWkIVNmuC4zuakUlN1GRKeS0pmlmb4QYDrunQ6HUzTQgyz/RBCOmcKSTs1dF1OrjZu9LmgWiniOg4ZOd1OV2qEQDoWDq+dbreLV/DIhzSuNMkJIxnO3F5bo+C5LC+t4rke0kTCJ44SLl9eoFIpoiqCKI7pdvrYnjcsThU8p8Cxo6e4957byNKcwSDAsR2yHOYuzaPpOqqioBsGx46dpFwusb7WIU0SSuUipaLL1FSLar1Ce2kJyzJQdBWhSu1HLqRt9XPPv8Gu3dOkqbTJr5SKpElCFIUoqkBVBBqQZBndTp9Sscjc/AKFkkuWp6wsrdLt9SkUCzJEWxPUa2U0QyWKfWzHIIl9VB2KxQJZlsj7QA6XLy9y6dIS1WqNOEpIE0k7bI01SdOUKIp55ZVj3HbbAXRdxTYNNFNF0+SDVDpOKmRZQnO0im2baKpKr+dTKpWQei85QdqzZwfnL8xhGQ5/9peP8K7bd3PkpWPs2DHJ7Yd2kGUZO3eMSRZelmHoKmkaQc4QZc84ffo8q+0OY82aXC6CaqWC5xZYXFxmaWmZYsGl2+lzz123MPC7fOUrj2FoCtPTo0RxhCI0FKERBD0s0yKOMh5/8iW2bZ8m8KUucLW9gqZpaKrBHQf30RqrYjsWOaDqKmEYSX2nmpPmKeQZWZ7geTaTUxNUKlVsy+bw4y8yM9WS5hjkBH6ArmmbzsD/7588TK3kcPrMJcbHG5Iiq8vrL88z8izBMHVMa6g5FbJhE0URa2sdXNfDcgwMy0SoCqZlDGNI1E30N0kS4jiSBhyJdBne8alfZWdkcdv6gB1TEpXNkoxnX3yD6ckWuq7S60WouUprdITxiTqKBmvrHVzHxRASMVRVhfX1LnGSUip7aJrgqRdfZefMOH4YEEU+1WqRXBmaOGkqSRjRHG+Q5bLw9YoeCPjyw88zOVpF1SULorvWx9B1hADD1GRxbhuyETLMgvz04Rf55X/5Lxgbb13jWbsF87oBcnfdZ+1GgXXVx68u+K73uf/w7/9vZsrb3n5N13qGX4XybXxd+drQ8TSVCL9maKiGhu166JqF7hRYbq+iqAaK0FGFysryIoZh0BqbwjBV4tjHNE2UJCUOBxINVlQsp0iWq6ws90hVi1qjxcAPcR2X06eOMj09gx/ECFQOP3oYVbHYvudWomjA0uIlFNUiSgSt8e28dvQUimoz8EPaax3GJ6dQDJ3XXn2VE8feZHlpiVSNOHjbbZv0fIbMmGvNb6IwZ/td4zexC7egse8IuVO2GOa8VVpvoIQbaN7W9bzzAvLahed3BB27hvHJO9q2zcXc3Pzy6r/lbUu0rRfSNZb9Trb0291Xm/N5Ib5nqPLdHv9QiztJ3Uqu2y24UXF3hfnKkGKqqeoNOxj/qcUdQCaQ1A5FIVcEH/vox/gnP/8/MjM5Rb1Zwx9ECDXjqScfZ2ZmGk2zqFbqjI2Nc/7ceTRV5Z577qFUKvOHv/8HTE1Ocsddt/GFL3yBxdU1tm/bhWcWmZ6apjk6yv59e3jo7x7itrtvozk6isggGvT5t7/+b/jTz/whjZEm2/YeQtNt1ttrlAseS/NzVKpNFFUnjmXHpttdxzAk6kaukKQJmp4TxQGkBh//oY/yyIOf55adUxx98xSWqZFlKaOjIwwGPr1On9W1der1mqShyYRmkiRlZXkVr+BtFheapkkUT01lUalobx3VXGbwvPrKcV5+7Qzvun0/QlVwbJd61WOkUSXPUgaDAYgMy7I3NTye56LqGrquoGoaIoeTJ85Sq1axTJO+3ydLUkzTwNB1XM+lUHARqgAhrcDzNCWMYvbv3wU56IbKSL1CFIbYrkOSZNLCehh5kCQpa6tdqVPTNcghjqVJgaoZGKY5pBlCp9NDVcXQUEZmaG1QbRCCcrmIpmqbyJ40QZFUMWOYGyj3YUYYhZSKJcJQBlNLobTY1N2lqSwmsjTBME1835eduaFY3vM8Zi9dxrIMbMfGMAxgQ9ytSBQvlugjebaJcAmhMDc3z8zMBHGcUqlUWe90ybKM+flFms2mpI0qcrKbpRmmaW9OArJMantMQ8d2XHRd5/z5S4yOSr1RuVLGtAxyZAH8zcdeYt/uaTzPxTB1VpZXqNWqQ61fgq7AxYuXqTdHEIpgcXEFz/UIwwHbt8/I9aUhqqYRhzGe69DpdLFdB5Hn0ulUqBKl1XVGm3UZiq6plIsFSqUSKRCGPp1O5/9n7z2DLbvO88xnrbXzPumem2PnjEYgSJBDEiQkKliSJVkkzTAmJY9HZY2VZmyXXfrh+TEujcvjGUvWjFQuWR7LoobiSGBOIsEEMIEEAQJohEajAzrdHM49+ey45sfa9/btxm00IAKyXMPVdaq7T9h77bXD+r71vt/74lg2tm2ZAFpqPN8mTVO0ho9++iscPbwXoQXDw3VqtRr3f/xrJPGAmelxbMui1WrheR7xIGFkpE6e5/zFJ76C5ypGx4ZodzoEQWjoqUohZc7p0+fwPAfH8+h2evieh7IMmhUEgalpVQqtFW98w3GEgNHhCmAQ3GgQUatXCyRhqy5VYzs2zWYLzw/wPI/hkTqB52Epi9WVdcLQiPcEQYjjWPiBS2OjZeq/dMrc1ASXri5QqwZEUWTM2rMM11XkmQnmpqbH8T1j3Kwshe8bam+WaiS2MXvXWVH/aSiboNFCIxA0NhrF/SAQ0uH0s+f58oNP8Po7D1OtltC5oXRuPfGVtMhzzfEj+wmDgF6vb1Q0KyFCwGZjkyDwcVybVrNtFluUIksNG6Hd6jA+PgZSmto0YRBBrc3fQgkEBlV2PRcp4btnLvPP/9O3+dTDZ/mfp2d5x21HOLRvBqkU3XaXaBCxf890QdfOsVyX0eE6ypZ0ex3K1QDf81GWw+Z6E99zubK4hu+5zMxMooWxo5ibHOXS1UWCUoijcqJ4UIhllGg2W9TrZaLE1NAiNGmS4ToOJw7twbIkfuCQ5ZpypVQsNphFsF5vQKVaIs1SpLRYb7f44uIG/9M//vVrU9zO+XWnSMqus/Brn9zddfedzD+1Yp5PO5re5bs3bOD6f9+A7G2nK7lGbD1PdUYucq5cvkQ5rOEELq7rUKvUCb0yIlM4VkCpHGBZNlHcM7WqWQZpRhQbmjsI1jY2cByP9ZVNamMTBKWSsRkRkiQxz/QkzfFcl0q5woEDR/j29x6mFCiGasOEYZXvfe9hNhsNljtdbj9xJ9XqEEeOHmMwGOD5HiP1UQ4dOEyr1eCtb78Py7O33eeF3BLWevHYDPoJe++euulw7Tauf9Xk7noErxBHkfI6xO2vlNztpjbJTa6FV9p2bE8VtN5XUiL0SpO7nUKEuqiTv+nv/iYkd0X/JKB+mNy9tu3lJHdbapU7L9Lr6ArFRbPNVX+Z7brJgB3J1o5t77Y/IUQhDnGNFprfIMSy9d2bGaLv3J4SpiYFvfs0dJ0xZbGPWykdRYM+vV7P0I9uWAmUCIQGrW2kFkgF737fu3nfe9/DP/jAL6NCh4XFVe68+03k2HR7A4JyiUz3abbXkJQZqo4yOVvmHT/+t8ml4Jknn+JTH/sUGwstTh66jXf89FuY3TNFf9Biem6Kt7/9XlrLTS6cO48KIKhW+YV3v5fJsSNceP6b3PuOHyPWGbajUSKhWnLo5RohM5TSKCVxHI+llcv4oUOWJ6YYf6lF4I+gdR/fs/lXf3Q/vW6D43NjDNeHabe7NDfbbGw08VyHdqvLcLVKlGYI2wgNkMOVy8t8/HPf4s1vOkmjscnHP/MQr7v9BJ1Wgs5yXMem02nh+y5SGMW/ifFR7nnDie2aEETK2ESdZrONsixs11AHB+2IixfnmZyc4MLFqwSBT5ZDY6OJHxhRAsuyWFtdxfdK9Ac9/MDFdi3ixMiYe76pgRQFPcwIlyTYjkJoVagFKqMCmSYmkHVd0BhfIqkJSwFpkrK+3qBS8Wg1N3GDgCRJsbbMy10H23UKymFKGptxTrWhaiqpime0EY85e+4CI/Xhov5NEkV9pBJoLfB84xmnlEWeC7LUUN/MZWxq+tbXNzj7/GVG6kO4jstHPvol3nD3cYQW9Ps9PMchyzKDqCFYWlyhUg3JkhipMzpdY7xbqpT5848+wPGjB5ACBv2Iam2Iq1eWqI8M0en0uHhxnuXlTWZmxgjDgCefPMPI6AhZbqiSWZKRpxmXLy0wNFzFcRykBE1ObaiMUIa2t7bYoFTxt6lxtx3fi7SNN1qmFZ/+9HeJBg3CABwrxQkr1IZrrC6tsbG2ydhovaj79LFt82R44okzDA/VCGtlHM8jKJUhh8WFVWr1Ot1Wx9TBRgNQJnEHSat43xzzgHK5gu04XLp4mYnJcVqtNu12D8d2kcpi/54pLCWRtkGopbQ4feYF7nndcaLYUDHd0EMKC4SmXC4hNXznu8/S60acOLEP13HQ2iwgDAYDut2ImenJQmhH4wcOuU7ItRE+igbGe9L1bIQEx1MoV+IFLlE/QSA4d+4iY6PDnHv+BQaDGN9zQUk2N1sM14cgz/nEZx5kcmzE1Plpje8bQZtc51ydX8SyzHH5YYkg9HFd8Epl9u6fw3E9wnKFHG1qCosFCyEgSxOyLMXxfBBGGCTPNZbjIGThcZhrHNum3+thW4bGmscJ6IRSqYqQNlrC0tV5ZmemefLUBaTQzO6bxPEcyFKyXOOFJfNM6PVxfB8vdJicGiMnpd/vk+uMcqlKp9PFdT00mmdOn2WkPkQQBsbXsagvy7MUVQiOWMomTTN0ngGCbzz9Ar/1oYf52Lee5+uPXuLdTon3HdrHz0yNMjczXCi8FuUMdkaep7ieS56DUhZJHBP1IzZWNwm9kA9/8pvsmzCqxaOTw/glj5mpcYYqVXSc4VY9KGpamxsdhsplbMfF9QOklMzPrzJSH+HZ564wMVrjytUlKuUSQeghJKysLFApe6SZptvpb1MiLddhY20TMCifsCSbnS6/+f3n+ej9H75+7hNi26rgehFCscvr1m03EcObJXY76WJbc7OUko/90V+wb/+Bm+5DmB/cvBM3fGbiD1MXqoVAS2H82IRA5FCvDxv6d5JiK9skJEqifIdMKZTSZMkAkSdkSWLqdx0HhBFl6g96lMojZFoQ5RZnzpxn/4HDIDUrK0sIyyIIytjKYjDoc/7caUaGa6T9DsOjk5w7/zwvvPACx297Pb3egBNH7yD0Q7q9LjrTSKlIspx2qwlktDoNpqansWybLU+77XHZZSj+j4//a9773nfuGkvtPL9iR+RlErKXlxBkhQLrja/rF931dvKzlfDdsliTa0ndzczKX43kbjdG2M62m8n51ksJcZ1Q4XUWBMV9dSOocGMM/lLHcN2Ybv25YZy3FoZfVA944/d+gPHZ6vcPkbvXuL0sK4QCldtaHXip9kpO+1bis5VYbe/vFWxD56bWaQtReKn+3Gy7eSE4cbPVkq3kT4qbi8dc60+GVArXdQnCcNcVoq2WZRrP9YiiiH6nzc/8zM/w7l/4u/y9v/+LSCGJBgMGgwg/8FiYnycIPJaXl/ilD/5D7n7dG9i3f4z66AS2Y1MfGWJsfJJuL6I+XOfg0T0sLC4wt2eWOBowiPpYWlOrlRkZH0FIyfr6GocPHkIOFtl/+AjdXp/VtXU81zMJTFgjTzVJEjGIerieEdPIs5zlpRXq9RFczyQ9X3zgcxw6dBhXWnzn9AI/cXKCxsYmq2tNxkaHSIoas7nZKdIkpdPrkaP54pe/w749U0glePMbbzP79T1uP36ALMv52Ccf4ujhGSxLGoolbCMGQeAhhJEsz/OMQTQgDAIG/QhLWWYFXAhWVjaYmhrH812Gh2uEJVND5IdGWXLLODbPc7rtPnmeGVSsoB8qq7AFMwAAIABJREFUpeh2Ip5//hJ5llGrVci1EWpYWlxmfX2TMPAR6vpJSKktCpmNsiRKCtDgODaua5NmKbbr4RSiCHmeE5ZKLC4tUiqFtFqdwuMnI0mzYhFDc+75iwzVKkDOyPCQETqwbeIkRSKxLKM2maWZoWfqnIsvXMH3XRzHyNXbtk0URTz51PMcPDBHEif0BwMajSb7984Qp4mp07NtbMdmbW0d27ap14fQOqff69FpdwjCkLAU0mm2cW1r2zjc9wNazRb1eo3vP/4M4xMjTE6MUR8q4Qc20SBifHzMCDRYNqsrG+b5gqkDrQ8NoZTFYDDAdY3ATK/bI01zhofrREnPoDECcszY2baDzo2NwcGDkziOoNlsEpaqoOHSxQXGxkewC1VWaSmSOEFJydzMFEmSoSx72xIiiWNarTZ5ltHpdFhdWefshcuMjw3juI7xWfR9ksSI5GxsbBYqlxajYyNonWE7NkM1IzVub1FJbSPK0+31sG2Ho4dnWV1eNaisbaEsQ4fr93smttSawwenOHZkL7ZrE8cJdnHNJHFixGqkwHVcQ6NzDMXWdV2SJEdIheu5IIo+KEW310VKRRqlrK2ss//gXpIkYWNjk6zwPVS2wvd8GptNpIATxw5QqpQBTVx4UipL0Wp3GB4ewrJMfV2eSR740neYmxlBWs51i2ZSGFS61WwSBAFCqG0EXwpTs5lmCUJIlDABomVZhbFzbpBFS9Hr9JDC+Pd5jkFD8jxldHycNM45efIgBw7MkGVGRbTb6ZHl2lgUWJJnnj3Do489x/6902R5hu95WJbx1BJa0B8MCHyfNEmZnZ0yFPQ4wrEtsjQlzzIjJJPGaDTnzl/g/3nwKf6vL5zBubDC28MR3jk3wS/MTfAT06PGhy8XbGw0qA0ZereUytSHaeNbqYuaVGUrbEvh+g5hGCCA5y/Oc+rCFZSGjUaTyYkRlKVMsuuYBZ8szciznFLZxw+9IjHOAOPD5vo+oyM1lhZXGapVCEomsWu22oyODCOkhbK3qJcCq7BbWV5ZZ25u0ijyKskvf/tpDh88yDuKmrbtue+6QPxVQEF2aUpZ7JS333ptoTk7BTcA/vc/+l3uu/P6fl4XpO5Y1N21x7tQ924WA209N7TWdBob2JbN+fNn8VwPjaDf77OxesVQp1sbeL6p507SeHuuybXAD6pcvnwBN6gZ5sOwYQq0222UUJTCMsvLy+RZRqOxzsjYGGurKxw/fpJuv8f07H5mZ/fiuB4bmxtMTk0xOT6F6/nkWV7UtWacP/8cb7v3RxCWEaPK83x7FF4EVhbvPfTkQ7znPe/cNQHbEtoQ4gbMb8eC4q3als2BLObvm523LXrmS8VXN7bt/d/ku389oiU37+dLxpeFkI9JZF/+7rZUOLeVOF9W/27wnX6NxuWHyd1r3HYmdzdDueD61YGXatchbLt8vhOVE9cv7123jZdq1/VTa/r9HmFYuk5lc7f+XPf+Tr+RW3hz3Gwbu7WtG2grWN9qasdEsn0c0iLPjaKisgR+EHDfj/04cS9nbGyEi+dfwHMdSoGH4xhD3DRJ+LVf+cekSUq1agI1z3X45Cc/w6mnT/MP/9Evc+DIfoSIieKIf/Nv/jV3v+4uHMcmjfrYBXWq2VhFx22mRn2aa4t0BxF79uwjKFWx/IB2P0JoqxBnqKIsQa/bZhDnlMIK5UoFpSxjV5BGHL/tGI3NJocPH+G+e+/lN/+3P+KtB4aZ2zNFtVZBCLgyv0Sp5BuzayUpl0tcubLEkUN7iKIBtVqNpBA6aTSahKHP4UOzqAKhUYX/W6/bJ45j40s1GOC4JnnSGDWtLz7wMHtmJxh0u/i+qdPLC4EEZRfqkUA0iEzdT5rw3e8+yf59c5TLZfzAo9Pp4xY0RCkl/W5MuRQwOTVuKLVKGGNtP6BcLhtp9qI2QOcZeaaNl99ao1CDtMnSDMs21gVRHJkatxxsWxXS/saw3LZtHNtQzxzLNvRRCVmcsLCwUtQYCp559iyzMxN0+92C5mojtEQp2xhDWxZxnNJqdvjoX36bE4fncFyHNE34k498gcP7pzh8aB+2Y1BO13M4uH/OKIKiSRJjSxBFEZVqZbsmQyrBYGC2P4gifD/Acz2Gh2vGOiDXfOpzX+f4sQPoPGd6dgLfN+f98qV5yhWfLDfUV7QJlqrVyva1XKmUDV00zxFKkaaZEXfINBvrDcKyj5CGBmfbdiFIYpGlRvFzz55pknRAGAbGx1A5oGFkZBjPc4trIENiZPWjQUySZCwtrnDp8gqjY8M4joWyMAmL41KpVXj2zAVef/dJLGWB1mxubIIQXLhwldHhOuVSCSWVqRW1re1guNVuEYQBSZxiKcsgwIWoyJbJfBi6ZFnKlcuLuK6PrWAwiEjiBD/wCEshrVYby3J4+pnnmZocY21tAz/wKIVlOu0OlVqVPMsLtFaSpcbEHiFIUhPQ2Y5JCMLCBzDwPUqhj+XYRFHM/OIqx44ZmX+NNMdv21y6fNVYaEiJRuP5XvFM1ASBZwJ7NK1WizCosGdmytQGCqMwuL66ThRFCAxi7Lo2WZZz7uxFbEuxvLJKEPhGDl5SiKukJFHMpSvz1IeHjDhKmqFzcBzXLGjECQ899DgL88sc2D/OIO6Rkxjap05xHPP3009dYO++GaQ0vbaU5NDBOXPtF8+XrcTumWfO8eC3n+TA3gmiKNq26dlqV6/MU62WUFKQpTG/9R+/xAPPbPAvbzvOO/dPc2h02DBdtLEnuf8L3+Dg7BStZodvnzrN/plx7CIBl1Jx+eICpTAk1xrHtUmThCtXFwlDD4Gheh6YmSDrJ5y+vMQbTx7G9Rw2NzfZ2Gxx/so8V6+scvnKCpXQZW1jkyxL8P0QneVcmV/cfhYtLK8yPTGG6zpk2qjThiUfpVzDotieCzVZmtBp9RECKrUyQko+8OBjfPT+P9tO7F6EVGwjddcMx3eLBG7mbbfz/d0+38aIxJaZtS7OnVXMu9dT9v7izz/KfXfcd8MkvaM/O4RWthCTm7YdrJ2dSczOWCTPctI0JfQ8nnnmSSzL5rnnn+bwkRPEgwiSLsqSZiEjz819IyFLU3y/TJzk9BNBrm3cIGRkZKpQz8wpBRWUsPjG1x9kfHycQdTnueee5cDBI4yMjNIfRMzO7qcUlnEclyzXTE9PYymLh7/7bSYnpjh39izxoMPTTz3BT//tn0NLYYSjsnxrAHY9bCkEaZzxjae/wbve9fMoJXckgFtjKHfgsjtGRrz8BCHPtVFU3laV3krktk/Y9rZulay9qO2I93ZDqG6GqL2ayc3uSfG1++clflj08Xq6rMRcRy8HsbvVMW0JrQghCgsdcdOxeDl+fTv7uNux/TC5e43bzuTu5aBcr6Ttdsr1LT5/Ofu+cVXI93yjmvhKbsJXm2t9i7adMO98EGnjQSVEsQKlLCrVYf78w39Bp9Xh9W+4m8cee4zZPVNcfOEFJiYn0eTUK8PkmeQrX/sce6enifp9KpU6B/YdQFmSIHDQWrCyusbszJwp+LZsSpUKcZoShh6KhK984bNcPfck99z7Y6S5wq9UyIUizTT9QUwp8KjWqsRJhBKSOE4ohxVToxNFSATNTsvUaoQ+ju3w5KmnsZTi059/gP/+p+9mbXUd3/dotzvcfvIoUgp6vT61WpVBf8D46BCe5+EFXrHC3uXS5QVmZiZBar7+zceYnR4jSZJt2pJt2deCZdsE9YuLq4wMD9Hr9hFas7K2ztzeKZaXV6lUjWy44zo0Gps4noMUynjKRTGN9QZDtQrlSpmF+UUsy+FzX3iYjcYGWRLjeS5hKUST4weeqTtRxhZAKcnFiwt84UvfJYn67N0zQxRFtNsdyuUy5UoJS1nGjwxNnhkPvSRNKZVCI+MvBJZtkWTGk81SFoNBzPrqBlaB/nm+t6106Psenu9Rq5p6NNdzyDPN5UuLlMolOp22sSVwjGS873ucOnWeQ/snsSyJbTvcdcdhpJRFnYcukEqLTrdrbB76fUzto6EPpoViX6/Xw3MdhID1tQ0mpyaMh2meMxhEtNtdlpZWkAImJ8cM2uEa2lEap0xOjZvFDKXQuaH7mr8VGo1URnJdSKN6l2MmmuXFVXQG8wsrzO6ZRBU1mIbadq1OQynJ1ctLbG42qVbKbKy1aWxs4vs+jzz6FHv3zZJmxoQ9TYyNRJxkdNsdBoOIxx6/xInje8iyFCkx9EEkSJibnULrnDiOcV2H1mabpEBxHNfj6vwi8wsrVMrGA/Lh7zzB+NgIqysbDNVq28q/osgVlFJcubjI17/5fY4f3UuWplSqJbQQNNYbVKsVvvDl77Bv77RB5lwHUFhK4Ac+vm/qGx3HRUrJpz77NQ4dmEVIQbfTpd3u8hef+Bq3Hd+H53mgNY5jkj1Tv6bptTvGv9AxHpUz0xNkmbF6aDbb+L6PlILQc/CDAC/wmL+6iO86uI5L1B/wwgtXGKpV6Xbb1Os1kkQXNXMRqyvrOI5dCJlYRHFsauAKYZSx0ZECacwpl0pGrKZsqJNSGCr48MgQgyguqJJugdLlJEnMt77zBAsLHX7+Z99OnPYMqtfrs7y0QqfbZdDrI4VkcnISpQSuY9Hr9QnDkCAMCqqTMRZP4hghJaHvc2j/NL5v7nXP94ijhPs/9VWmxuuUq2Xj+wf80u99hd9/wx385ETd+I8JSRon2zWttm1x8tA+hBA4jsXhfdOoAuEXQqKzHN91UUptP8viOGZ0dJT5q8tYylBvlZRMjNY5eXCOKI4pVUo0Nlp85pGnuO+u40yM1pmZGiEsBTz02NPUyyGhF/LUs+fpRhH75qYYHxul1ewwNm58/MrVAKS5h6K+WXCzigVE37HotrpIJGNTRg30g19/nMMHD12H2N1IEbtuznsJFO+63+nd39/t8x2VEbt8L38R++Y6I/Nd+ilu8u9btl2TIFHYz5gbfHRsglKpRK6hXqvR63bxHUG33SzUcd3tBNGwMzRRlNLppYSlKn6pRCWsMOgPuLpwiaGhYb76pS+zd+8+hupDeJ5Pr99lYmKaOI7oDwYoy2ZtfY0LFy8wt2cv7VYT23GpVqr0+33GxsdZmD+HFgkHDh9DKHn9sdwkuRMIzjz5HEMHq7z5LW+64WtbVMybjOYrGNgtyuB1/xfXww0/aLx2Dem7eWJyqwX//5LtuvGBmzLOgFeGUu4EHraSzZtRV19B/LwbWAQ/TO5e8/Zfe3InC9VM+wZ/vFu2vwHJnRCmlhGhkZYi0xqE4i1veT1kCtuSDA2VWbh62RhZ2y7lcok8tfi3//b3eP/7fo6//MQn+A///g9JI8FP/sSPY1maX/kffhmNy+z0HkZGxgjDCmmqCYaHWdvYZKReYunyOabqNudPPcjEnT9DZ5CwuLzKUH0YZdsEQYjrwurKMmmisS0Xzy2DVCSJocFaloXr2nQ6HZRt02w2GRsdY2RkjLff+xY+9OE/4213HaY/GNDvD/jsF75F4NlMTIzSarVprG8yOTmO47kFhc3h/k99g7e95XU4ro3WGXvnpnE8uzACBimMEt3mRgeljOqdksqgPYAUkqAUMD03ieVZuIGLazuUqmWyNKVUCY14iTZCEl/68sM8ffoSt992EEspPN/HdT2U0NxxxxEmJ8exbEWaR7ieYwJBaQzAo2iA1jAzO8WJYwcYHasTJwmbjU0qlfJ20O3YNkpSIIEGd/YDz6hpCkGr1d6mgSKg044I/YBokJKmOeVyBYTAcS2yXBvRlgKFzMlptzqceuocx44eLuwTjMn7ZqNFEATkWvP6u45RrVZwHIflZRNAm9otjAiL0IWZu1v4uFm4rke73SVJYlzPxXFcbEtBQQccGxshy3OS1Kzi9fp9Lly8yoH9e5iaHDfnqbFprCbKIYP+gM3GJmlqlCDDUkiapWbxwDL1VwiNZW1RbjTKckjilH434pvffIr73n43woLmRg+tBcqykEIVwbQRYSmVyqysrFMpVblyaYPLC/Mc2DdrvPgshbIlWZ6RxSlJklGr1YiiiM8+8Cg/+9NvNQmWzonjPpcuXaU+PEJWBI4IQ0s+deoMX/3WU7TbXY4c3EO5UiJPDaV4Y71Nt9NjcXmD48cOGpPtJCNJY7I8QwlZBPM2vlumXi0hRIbrKOIkNiiuE/D446e57233IKXk6WfOoaSkWq0WFD7jVzcYDNhYa3Lx0jzLKw1O3nYIgCDw+c8f/iq2pbj95AGUVGxuNnE9VVCWIepH+J7DZmOTUsX4ZeZ5zoNf/x575qbotLv8vx/7Cs+dOc/hA7PEaYIX+PiOi2VbLM4vIYU0FGnfZxC1Maw4xfe+9yRp2mduzxwb6w1cz8NxHBYWlimXArTOCUshURRz/sIl8jyjOjREWC6hKdAaaSwSlDIWAUJI2s0O5UqJKEpQjsWxYwdZWVwzhvIyRmc+rhtQLde4cG6RNIZ6bRTPt9Da1GU7tkuuIY6jbVEinefbCqSOZeN5ngnACyqtshxOnjiEHwS4nkumNR/83Qf403tfx4MPP8Gh/XOkSYbINTrPcFyDyMZRgizsJlzXNtePzow3p5Cm3tZWKFuhlEUaZ/R6EXkKURRTrfq0u12EEsRRzNLKOmcvLzE6VKVeH+buIweJ+infevxJjh/aQ2OjzckjBxgaGqLfifn8d5+i2exxaGYCy7bpNLsEocVQvVKg3jZZnmNZokCTNOQ5vWaXbqtHEAa4oQ8SPnZpgT/6w/8Tbgi+t9pfR3IHejvBu/671/zQdtbl/eXnvsibj7/5+n3veN3QqZvTM7khdnmJmEHnGm3bKMsmThJW11YoeR7RoMugt2mQO2mCcg1GIEtaXHzhAuXKOGsbXepD42y0N4j7KZ5ts9FYZWJihmRgfEnrI8NYlsX6xjq12gh+4GNZDhrJlatXaLWblEplkiQlDEI8z2VoqMZ3H/kmebLOHXfeQ1irgpIILXce2IuOZyu5+4MH/oD/5V/+C+zCOmbnWJjxeGXJ3Raqv3Mst3xnX7ztv97kbksM5WaJyX/J9sPk7gdr/3UYNrzKbadP3K3azbzmbuUDt9PD7kZ/jLx471ZeeTv7ubUanmbZLfv8Uvt+rZrE8J6zXTxPNClaaLQWZIlGaokkoxf1ccoBq5sd3HCY7586TX1kDPISWRoSZzG/+uv/ANur8fPv+xVuv+defvY9P0aiWpSrI4yPHqTfSvilD/599u6ZQ5LRbDR49KGv8vUHvsTSlQ6l6m2cma9w5G3/hJl9+zl5ZA8zQw520sXR2gTUcUJ1uI7jgGUl2KIH9EiTLp1mn6inOfvsRQKnjNIWo8MjuC50+02qQzUefqGFVDnN1ga2DScO7WF8eIz1zQbNTpfpuUmkEpw7d45cWgzilLe95QTYmljHKEeBytE52MKG1NBXhaVZWFzCsiRJGpFj1PD6vZzzZxf4xjefQCc5aT/FlUb9LR4k5Dm0W13SKCVLIoTOuOfu40ipsG0LoXKU0ERJhwNHpojiAY31TXQqUdJYQmihyDJjSB+UKtiuS5JlpJkRw9BZztjEKJZl0W61yPKMKB2gpU2GINMpKysrRokOhe27KJHhyZyo0yXpJ4SBS5Il1EerVIfLOIGhh5rk1lBolDLqmnmucb2AZ59/gSzrEMc9lHJ55pmzVCplEMbo2nYkWiekacro6DBa58xfvYoSGls5pHFOEqUF5RBsyyKLk6Jmz9CNdJajhCTPNe12l35/gJIWbqG0qaTgjtuPFPLwEscVDA3XqNaq6BQEFlJ4bDbNuAx6fUAw6CfoTIAwflr9Xp9+b0CeCwQ5lq0ZmxrinjcdxHZtRK749Ge/w3cefRxI0MQGBcklcT9G56kxeBcSv+KxsNIhzTTKsmg328hMoXLLeGpKQZxEVOpVZmbr+IHAtkQhImVx8OCBIvCVfPzTDzKIUoRyePypeW4/sp83vuEkynHQ5AyNVhkerzEzO8mFi4u89S13kaQJygJlC9JEs7nRQWtpREPSjIWFeaQtCcpVlBdiez6WY0QY3MADS5JruHBhia997RSDXrcQH3FxbI+sL8jTnIcfOcfJY/uQQmIpkzS8751vY2SogtCSKBowMl5D58ZiYLOxiWVbxInAditARLfbIEsH/Mh9ryfLE0ZHR+l0MzY3M3Lh8KUvP0Hcz1hZadDtJ9QnxvErIZWhEnHSIwyGuHxhnUE34vKVVeZm58iynMmpCcqVEkkyYN/+afzQSMfrHJR08J2AyclJ8hiUtthca5FGGekgod9pE8cRQkJY8hgarZDpBKkylLTJUs19P3oXbigJghq2JxBKo2XG8ZP72XNwCuVDkkCeSnSuyLUmy1OzUIGg38tZWthE5zlxPCBK+ki7oHlbiiTLUBYgcqSCdquFpRQ/N+SR5ikz4yPEcYrtOnT7Pdrd7rbqbL83II4i0mRAmqUFtdxG54pms2uo7QWFtj+ISZOEZqPB+voGoe/h2B6BHzBUq9Hq9hgeGuLuEyZZf+aJ8+RpSqO1zo+/7Q088cw5HNvCUpIL5y7S6zf54N96I+/80Xu4fGWFxlqD0dEhut3I0C+l8X1UqkBUhamzy+OUJE9oRR28mo/WOf/k26eYmZgCcc0G5VZB3Zav5fZcWIi0SHl9UL/z/V3n0B2fSym3v2d8THO2FBbzLSaAvubd9f73vefFgWXBJ7yJRdv25zt4h9tJ33YKc5NykjzNDG0/M4l+4AbsmzuAUhlKJUitETmITBM4HjrNGPQNk2N27z780KNaH+Lxpx5n6eIynW6Hq4sL7N13lHa7TS4zJmam+P7jj7IwP8/qyiqd1iZSwEi9RiX0uPuuu3jTG/4bbGUxPjHFqadOcf7cWR595CGqXoLnBgwGA/JMQq6QaNqbjULgSWxT7bbomFvq1CAol8oGlddyx0uQ6UJcZvvF9utmbcsncef1ZLzrzLkztceyoE9eq6/8Qds1+uH129oZE76SWPhmbcs7+Waedzf7zXZ/bvJnZ9uKmXe2nfu7mXffbn58N8bEW557u8XKN9vWbu0HGcPXov3/Erl7Ra14sN1YBCrlFhq1m5DuLtvY8ZDUbD1Mrm3x1Vw1eSW1c69GM0ldVvi3Wbf+QdGEkPhBSLfV4U8+9CHe8SNvYxANKFfqALTbDeJowKVLFxmqjfGjP/42KtWAZrNFq9nn7NkLjI6N86v/6FfodDp861vf5Pnnz/Hpz3yS3/yN30AIi42NDX733/0OH/zA+1GhhSNSPvLhjyAth9rwGI8/+RRzc3OsrqwSeMaAurG+ieP6eK5P1E+pDQ1RG6rgOBarqysgjbhFHCWUyxXe9Xd+jg/+1r/jg++4Dcd2yJKc+YVVelGPQwf3IYWi2Wyyf+8czUaHwPMohQGOpRDaeLW12218z+epp54jTiKCko8QMDo6iu1smQmbObjT7jM+NcJQNaRcKXH58lVjUu3YBo0qitYtWyEEPPvsWWanp7nt+H7cohbNsY2XX7PZolKpsLFhvNrMirsuCvrFdm3I5uYmg34f27bxfR+lzKqmFALfM7V+tmVWxw03XhYm4KZgPM1SKqWAODKUGj8MSZIU27K4eOEylqWIoxjf98jzzKxs5rC2uk6v3zNIbg5vuOsoaI1lm9VbSY7nGVpZHCckiVFFTFMj8mFqNivkmTEOT5IEz3MLm4TcoBAYXzHXddFoQ82NImzXplIOr000QuC6xmNPSlN3EUUxUkp8P9iuP/UDD4TkE5//Bm983QmkUiih8D2vCDTz7YL/SqVCluUMBn0j0qE1VoEaW5ZibLjC0WN70drUKGYZtFsd2q0W9eEhNOAHPrWhGieP7SGOYy5dvsrIcBWtNZ1OG8d1iOOY733/GfbumWHf3hlKYVBQUHPSLNkWnhFCcujALI5lktnbT+5jdm6Sp58+g21JwpLPYDDALxDO6elRQ+v0PfIsYzAYcOrUWZ47e4WjR/YWJt6CMAxZX1/HD1w6nQ5pmhAEIfOXlpjbO21q97KMo0f3Mjs9wv2ffJA3vvEEURwzf3WJLEl5+swL/Mhbb2d6ehJpSTrtDpZt4fs+ldCjNlTBdhTtVotOu8/y8gqOY+HYNl978FEG/Yha1cN2HMIwJEmMwqplWRw5OMPs1BCnnnoeZUsOHzKWE6CRQhrFWFuRJSme71OrVXFdl3JgG2sG12VpcYXA9+j1B7RbHYLAoOOddh/j3KFRjqGXRoMBlmUxP7/IE6fO8PTpFzhxbH9BM3aKxbKcRx49xfjICHEU8+zpswzXayRxQq719jW4JYYkhMSSik999kEOHpg2SJw0ojLlSoU0zvjKg49y2237gWtWH7ne8lPNMGbKJuD1g4C/9S8+wr+69x5AU6/VsCxFnmv8wMd1HXSui0REYStlqNixse5JE1NCYDs2SZQg0Hi+y6WL81TKIaHvMTI6wqA3wHYsVlcboMFSiuHRGm5omyQmzdAiY2yiyjOnL3LXHUe5eHGeWq1CfaiKFxhWw5Ury+zbM01Q8rFti3a7Q6lAzdM0pT+ITN2k1ljKJo5iNpstPM+hOlTjSmODzyyu88d//B9ect66JePmBrTuVpYGL6eZ7WwldC+u2Tt46ACPffExqrXazo5s//a6/LT4z02perfoixEDgTgytiNCSM6ffZ52p4VjGVVYnaVIIYijHlmebe/XdT2jaCksHn30cfYfOEwQlAohJKiUS3zvkYeZ27MPpSwOHz4KQjAzPUujsUGea6IownYcOp0OvmfusY1Gg9nZOS698DR52kNpzejUXg4ePIqwXfPczTPjVUqRkG/FbkJsn9RWo88//e1f3R7X3c71K0XUdibqO7exc+FgC8X7a2FXvcr72EbVXgHF81VBCl8OqrYLoncjCv+yY+W/Igvuh7TM17i92sndViGmeBkUyevEVfhrSO5eQRHoq9UsZV0n0/xymhAKnWdYjuLIkYOMjNTx/QChIMsH1CoBcdrHtuGpJ08TBD5/llspAAAgAElEQVRa5Hzms5/nj//zh/iN//E3OHbkCH/6Z3/KxYsXuOuOu/nt3/5XOL7NL7zzXUhl8/7/9r38pz/5v9l3aBblKpSU7Nm7h2azw/DoGJ7nkWc5tXINzwuJ4wzLDpDSpdcd0Gn36XRauD5ESYdypU6aZyRxSqvZMt5fQrK6us4bZn0WF9cIwgDbsZidnqDfS4gHCQuLa2xsbJLEKXEUc/nSVUaHh7Ckot1qU60ZoY3aUJlqrYyQGsjIhQl6u60eaZJw9swFJqbHcBzbKMwJQbfdp9+LKFcCpJIM+pFRc5SK5aUVxsdGUUqhpAm0ZOFllaY5flAiTVJGhoexLMXyygrlcmmbaiQQNDabtFtd6vWhQtBE0uv3itV5toO7LMuNH1mRFLquU1AxbWzbGLbnGl64tMjo6DBRL8Z1HALfw7Es0GayVUry4IOPcPjQHsJSWCj2GcW9bq+HF/hkxapnqVziY5/6KkcOzRHHMbZloWHb2w8BlpJEg4jeoEu5UjIKm0mG1gK0RJOTU6yOF8fTarWRQrBRiIk4tk1m2IrYlk2r1aHb7eE6Rk0yTZNCxjkr6mI1d99+HCktmpster0BWSEmYwryBb1+RJZpbGVz6fIVXM+Yc1uWxeVLC5RKAaVyaTvQThJTA9lpd/B9Gy8wnn5KmnteFWqMY2PDxHFEmsfUaiUkkiAoMTM9SRIn9HrdgqqnCkNhk7xXKiXW15tUSqEJ3EnI8gTHlUxPjmErCTorPN80uR7g+rZJ/htNkjij2+mzb+8ebj95GMtSpFliFhNc26hkWlv+gmal3HM9Hv7uk+zbN4OUguefO4/nWOzbO85XHnqEo4f2MDJs6lWPHNnLYGAUM5ubTaSQuK5LnMb4gYPtGL9JqSRhWKZcCnFchyzLWVvbLNRSY0rlsqGUaYOeRv3BNuo7Nlbj2NG9dDsd8ixhfa2BbUnW1zYohwHtTpckMdTVr3/rMY4d2U+SpChlk8Qpvu+TZxrfD2i3e0hh0VjbxPM8/JKL7Sgsywi/fO3rj3D3XSeYGBvm8SdeYHqiShgYGxFLWUghsaVk4fICnmMxOlrHdT0s1zPepzlQ+MypAokWQnPowCxKWXS7fZIkJyx5DAYRTzxxmqtLG5w8sY9c5yRRjOd6LC+tkmaZsTBJMyzLqPUqpbizp6koC2UX1ErLPI+EMAslsliDtywLaSlj/+AEiBxazbbxjNTgeg5SCZaXVpmeHqPfH9DudPE9l06ny2ajzcT4CJ7vEoTGY9R2Fd1Ol9rQEEkak2QJjnRYXl7j4acvcHz/DGurDTr9Hs1mm2qlglSSXq/P6XOXmJuaMiq+rm0o746isdYy1g8659zFKxw+stck8VLw6987zd97//s5duzIS85bf3OSu+ul2++//1Mc2XNoZ0e2f/tqJndbgnOWZRkF38z4RA56XfK4R6fdwFLS2GXonCRL8VwfaQniOKZaGSaOY4ZHp6nXRqgM11BKMTo8wsULFzh25ASraytMTEzQbrepVqrML1xlenIarSVpkvH882e4dPEFnjz1JHfeeRdnnn2GWtWj312GdIBt+ew9fBLb9cj0jnhLa3LENli5FYtpzFz3+5/8Hd75nr+z/Yx6NZK73X6389yZ+WInNfO1ba9VcvdKKJ5/Y5K7VxIr/zC5+5vZdiZ3Os9RN7lxb2zb3nBcT1fY8uLYajnm4ZvrF8sNa6556G1t50Uc3x/wdV3iKV6JpcFfLRG80UPlOiNOaR7st96eUdBybZvA92httmg1W1SqFfI8RwlI4ohyKeSBLz/EP/tn/5QPfOADnDhxgje+8U10Oh1KpYCjRw/S7mxy771v5Rc/+Iu8+73v5sknTnHmzBl+7dd/jX0H9xaBam7U1byQbj8iTTP8MKQSlkwxv+0USnsuaZrQ6XR59999L489+j2UI9i7ZwbPK9HudCmFJSrVCpZStDs9bj95kg/889/hx46PMzZaZ3FplWqlzPLyOnGU4jqWQdQci1I5ZO/+OXJykEYSfNCP0BSCI2lKv9fB9VyEtBFI+t0+n/78N3n9XUexLIvTz51leHiIJE6p1WvGF08ZFU1lqW3KR+gHhWWAmcCkFGRpxtrqGkma4/s+81cWsS1JkiQkaYrt2Fi2sy3EUiqVKFVKOLbxHct1vq2WePXqIo5tEcUG6cqznI996qvUa8Y6wPNdHMfBti3SNKVUKjE+PkpjY5NqpUKWpjRbbZaWVul1e9SGqkbR0raLJNUlCFx6/T6WbRuFy+K600Cn0yNNIqanxgoRCmvrymJ9vYFtKSylsB0L13NMDV9RG2RZNs3NNjpPQQiCwEcAeWa8xkyNpKbVbFEul0nSjGgwIIpjhofrht6jjM1AkiVYls2VqwuMjRlJ7zwXfPTjX+Wee04WCwFl8sLSxHYcBoOILMsIwhDXtwkC4ysWDSJqtSqObZMkCfOLi/ieSxwnOK6DH3hE0cAYRyvJ/MISWWJQszRNkcrcd1EcI4Sg349YW20YY+00xfMdAs94t5nrxKCtSimCMDQLDs02nXYbpEGA5y8vUKmWWV3bMDThJKFUDgtZe8naWoNypcInPvMtjh3di5RG/XB9Y4N+r09YCo3tSYF0hmGI1poHH3qMO+44tI2SjQwP0ev3qQ8PMVqvEgZ+ocrpsLS4zCPfP02r1eHA/jnqI0OcfvYc4xPDxgw9jopkVZIMjDR+lmUEvs/ExBjVSokojgCwHZf+YECcpHz1oUe5/bZDLC2vMD42TLPVolwc29BQjeWlNTY3W0xMjgIUx1riyKF9SCn43BceZt/eCer1Gp1Ol499+usM10LGJ8YAWFpe43Nf/C6vu+sQruswf3WBwWDAnbcfI0lSfN9j/55xqtUy93/iK9x1+1EG/QGWpcy9IyVj42NG7Q9NmmU4lkm2tNZ86CNf4OSxA3iet23eDALPNZYgpkxIMDU1xsnjJrHzXa8QFrEJyyUsVSRpyqD+aZKw0uow3TZKokYQSxaqq6Yu1yD38hoCWCR9OpOcO3+FkeEhzpy9yNhIjX6vj+VY9Do9kiTBkpLl1QYjI0MoqSiXSzSbHeOb6dt0WgmfevBhbju4j4UraywuNZgYGyFJUqZnJqgHHkpI1tabNHpd5qbHabd6fO17z7JveoSxsTqff/D7HDswS5Im5hiALM747EOPsLG5yT2vO46QECUJ/923n+Lf/8Hvcffr77w2O91k/rrlnLqDqPNyErtrVL1rvnk79711b+6kd17rid5OEP7gP/4+b7/j7Ts3vPtx3Or9W/V3x3d08Q+7UC7utNbQecpQtUq7uYHvm2dqmucIJUhjUzZgOQ5aSx595BEuXLyA1jmnTz/DoYOHWV5e4vKVywwKZPDMmWfZt/cgtm3z4Fe/SpLEzM3tJSyXOHjwEI5lc+bZJ5EyJY6aDPpdDh+7h0rd2GgoZWq8zTjLbbVQsX281/79pce/wnvf865rn+2ianrTcSk+26LimvO5k5ZrRL2uxUrm/G2h7n+VpEsXIkncEH/d2Oeb9f/ViP9kkSnvRMFu6rtcxN6vCoWxYBxwQ78lGKVyqXbEp/k27XXnDfqK0MYdY7iljHmjmfpuqp4/TO5e43YdcldckC8nuXu5l/v2CtDOBG7nNl4GwveDtJ1bv3HfL7Wa8nLrCl68w5sfj0F9Xlq21jQFpAiRIETOxnoTx/FIM7AdBzJDwXj8+4/z8+98J2+9961U68NIqfBLAYNogOvETM/WmZkd5/yFcwShSy9KmJ6ZJclSKkNlarUStoepfVEOmZaMDI/w7LPPsTg/z9HDc0ipeeyJJ5iYmSJKU5SImV+4yp7ZvVRrdd71C++i1xnghcZjzLZ90Bmt9iYr81cYHxnlm9/4Fj9yaBjPlTi2oN8fEA0SKuWA2blJGo0GM7OzDPoDvvDAtzl6ZI+RqU8TU5fmGDofAvI05eILV6hWquhM8/VvPs5qo8uB/WMsLTWYmhpn0B/wJx99gHtedwghjbiIxoiX5HnOyvIqpbBUmPsuEAQug0GEQJGmEa4bIoTiM3/5XW4/eYByOcT1jedbkqUIDCKbZcZYXCpFHEV0Oz38wCfLUrIkJQxDvCBA2SZpOnp4D9VqpZDAN0FVmkS4roe0LBCSZrNFWAppd7sEoU+tXqU+UjeTYpKSxCnnL1xlcnIUKQT9Xs8ErUKgtzjxxQwxUq+BENtJjW0bo3XHNaiSbRsfuSwTtFsdfN8vJl0olYwHoKEFmRXdXGtEQU3Nc2MsHycptuMaNMWxCzqcRApJmiQEgREnKVfKxFFiEEhpEfW7TEzUERLyPMXzbbLC48xzHYLAM+Ij1pZstRnzPDfIiEZTrVQKLz6HLVl01/WKuhEjvmMEP1xsx2Zzo0W1WuPUk+eZnZ5h0O/xhS89ztz0GOiMLEtwvZAoSoxNSWEr4PshaZ5CmvHcs+d4/MkLnLztCFlurq0sz6kP17FtF2XbRIPYoJ+5ICyVWF1e595776bbbVGulNC5Ecnx/YCP3P9lDh/cw9UrC9SHawih2dzc5NKlVU7efrjwX0zI84xyySDQ1WoJS0o2Nhp4oY9Ac+L4IeZmJ9EafucPP8ZP3vcmlGUEUizbIKqu49PtdhHCqIAmaYJt2TzyyClazS6+528nTnmecfXKMkrCzPQkzzx7lj1z00YEyHVYX2lQq9UYn5zA8TyU7RhKtW2xtLREEAYcP3IAqXIj75+mhL7F2OgwXmAQswsvXOanfuLNWJbNoJ/Q7nSZmp6isdGgsblJuRICGbbrMT1lAlLH8zh7/iKXLi8QlEL8UoDlWAWyDVmqyRKzUDE5WkXnpk51Y71ZIG85WZ4YVdbiWT0Y9HFcm5XlNTNfSUjSlPkri1SqJeIkNtLymVmYa/ciSo2EKI5RSiAwgZTneeR5SrfTM8hcbkSn8ixjdXUdz/J5+PHnOXpwlo2NTUZHanieg1I2nuPy8GPPMFQqMVSrIaVGScX3vv88X33yDPe98ST9QZdqtcZIzUcqyRNPX2Rho8nsRJ1qpcz6aoOLV1fwXZt6rcrBI7M0mx1Gx0bYOzVKUPYZ9CNOHt2H65lFmizT6BwsZWMB+2bHCcs+f3nuIv/rmavcecft/NRP/cSL5rFdp75bzGovZxu7fedm6M2LkLddfp/nORcePMfhQ0d3fnDT39yYQF63vVv0d+v40yQFJRAos2AlFUnURWpNmgzw/YBOu4HrBYbJ4Xn/H3vvGWxZdp7nPWvtvPfZJ98cum/fTtM9PQlE4hAEKLNISnDRJkVSrpIsVVkWfzjKVZZpF5UsqfRDDpRoiZRYRdqiGAwQABE4GIQZcCIGM8DM9Awmdc59czxxx+Ufa5/bp+/cO93TAExaxqra1afP3WfvteNa3/e+3/uysrRMGDbJsj4r60tMTszQabcQQBCUmJ49iFcKqJYrHJqb12wM2+LGjau0Ox1Qim63w9Fjx2iONAjDgMe/+gXGGy5Jv41p+Rw9+WGcahPH9Xf6KtDv9cG8b1Brp/9264hfOvsiP//z/9Ge5/Bug7vBudVlDcPBgxrazq3vh60u3n+Ad8vyYHc/7u7n3/vv9ppL70d33A8Nvae2zzxeoAOs4eBuwEQafB7uzz3tep/fqz2++2Fw9wNuf5bBnTSMAjEwfmBB3r7BnRx+ibx73+/l+ffeO/w+BHdKgkgYWCR4tkeW5Gxud3jrzbcJg4BKRb/kt7a3aTRHMKVFu9Nhc3OdmYMzLN48TykMisyyoBRWkIaL67rYjkO73WJicow47iCEgRJSo1OWTa1S5ty5s/R7W0xOTxGGlZ16s1LJZn19gwdOPUy1WuPwkcM4jkuc9imHVbJMe12VqyXWlpYISyVGynX+1j/9Tf7yhw7heRbSMLl+YxmUotPtAIpL529iScHGeotDsxOsraxz7doCSZzhBT6WY2ukLc8ZGW2Qp/oqHTo0w/yBUWzPYnZ2FtM0cT2HDzxwRFsE5CkCjRxnaYZlaoRQCo1klSs+lqUphEIYhKGPYWhU8PLla5y6f56o1wc0FTEo+di2zcriMn/w2T8l7nVpNKpYponn+zpjpjSZxTINbt5cKLzzHFSuNE1RSFZXVvA8TytxZtpo+rf+7RcIXJPxiXFttWBpqmgxuyGJY65eXaBaCalUQtrttq65Q+kAB1UocFIEcRrBam23db0bAkNqtEEKyeVLV6nXKjiup+vqlCrqEQVJEmNIqYM7BFmeYUqjuIchTXXt2/r6ZqEwqifwUT9CKcXmxhZGoWCrZfhlUTOo0YyZmXGkKTFNges6dLvtQqHzlplumiSFVYPen2VqhFJKjZB12l2WltYISwGquM/TJKXb7UOutFm9aZKpDNu26LR7RP2E+flDZBk8+cwLHJjSyFCtXsbzbQQGn/rMk6g0YWJybMdcut1tYSCxDYtHHjmpGQmGiW2bmKZViBFoJddOq83vfurrvPX2ZR48dZQkSbl86ToH5ia5fv0mtmVz/eoChmFy4vghPN+j3tB1W0rlOK7NoYMHiJOEnJx+r8fm5iaNRpUcuHD+Eo5jE5QCvU6eEwS+DuRMiw+cOqJ9CAsLAtCiOYY0eea5l5k7OIVtm3RaHS5eusH99x+jVqvwqT9+iiPzk3S7HWr1Gr5rMdKsYxgGL738FkfmZ3SQ7dj4bkDUT7RfWq7tIfIkxbJ0bVyn3cNxPGzXoNVqYZomjUZNWzRstymFAdVyCSlACINuL2J0rMH62gbVWgWjqG9TKsd2PPzAL4RQMhqNGmNjI4TVijZR39ws1GYlcT/FkJIvPvYMSZziFojuN55+lVMnj/CHn/0KB2bGCAJPC3CYEiEFcT+iWqtp4+4s4eKl68zPH8Q0DVzHKfz1chBabMdc7oMCRb5j66HHEYXj2eRpxsLiKm+eucToSI1Krcz2epcTRw8gDYkhYHFljU678GjNMiquw+hYE9f3eOY7r2IoyczkOA8fPUCucqShME0Xw0i5dO0Go7UKk6NVKtWA5156i7FGhWa9wtZWh3cu3WBublzTtqV+bvQ2pKYgd/rYjr2Djrz55nkeevAYfskmTmP+yds3sCyTX/8X/+ue49iew9Z7j2p3tY291tkv0XqnyegguPsX/9e/ut0OYb99i6Fas73+fMceUyShJBk5ptQ15TdvXKVa8pEo1lYXMAyJbdn6HWtatLpbGNItUFwDzw9JU8XNq9eZnJ5laXmRE6cexLQspJBcuXYFy7ZJ0xTHcahVa3TabaSULK8u0et3uHTpnE5WyQiJpFQe4cChYwjHvYXMKLVDtx+elO8O7uIo5Zd++ecK2vm7z+FuJO7dp3WP4K7QIBieEw3q0fOd+vThbbxfIZU/p8HdPojg3fjVvZ8+3HVwt+P5p247x/cc3BXHYBRU6eHvd7MCfxjc/YDbbVYI+wR2wzfk4ALtt+y+JQbonNjjb2oAXe+mYu6Cz+8l8BvkfG7bH/rmRojbDNT3QvH2y7AMbtrdN+9O34f6bQhBVhStDwLYu3poRE6hVYQhLTAlrW6bq+eu8OxTzzExPonKcy5eOIPpChrNGr1ugiEM2q1tpqcmscyQ1laPXj+h18vx/Qr9XptWa4tms0KS9GjW63heqFEJlReG5AnCkFy7eZMTM3Nsb27illzarRalUoUsl1TKVXKRMzreJEr6GLbEsz1yFRHH2zTrFbJEMTM5y4XzF2m1+vzzf/m/8w9+7d/wyUfvxwtKtFp9ZmZmWFxYx/c8okL1stmo4LguI2MjbG62OHjkAEkUkae6TsGyJEIoev2czY1tVJrx6S88zfL6GocPzaDIsB3rluyUkEhhIBAkiabvaTqPqU26pU17u41pWmQi03QqoVU5jx2bJs1iTFvSbaf4vkuv19UiC1nOIw/fx9hYE9uyeOzxZzkyN0uW5mR5huvamJaN53mgII4SbbZtGOQFkiWA5eUFHMtja63N4dkJjh49RLutxQy0ZLZgUMdj2yb1Zg3XdbAdE2nmRHEHw3CRhkDkOWZR32ZKAykg7qdEvQjD0Cih5RqoXGeVhTAAfT6lIZBC117muaZ2SkMHZHmes1l4xemETKwFLhyPUinkxrUFwmoJEHzu88/w0stn+ZFHjmAaeuCWQhDHPaJ+D9cxaXe2kEJ75vW7kQ6+s8LSxLZRoMVJPBdh6GDSNAuPN1Oy3WrhOiGf+tyf0ul1ODw/g2lYLN5YwXFNpBBYtkm/HxW+U3oCEkcpQeijhQxTjh8/zMGDkyiVEqcxpbBEFie89sYZojhiamqElZVVwmoIaU5eKGIqI0eRaQXMSItjnDt7kWo1xBCCxcU1zly8iWUKHj51mE67jylNBBnNRg0hoVwJkBJMW5BlEYYhgZw8z7RVRFQYmDsO3W6PRqNKq9VGAY1mgzRV9Pq6Jg4EpqWDLCEU/X4P0zTwfA+lBOsbK8RpD2kIZiZm8TyHJOvj+Q6NRhWFAqk4cfwgru/huC7CkKwsrtEYaWC7NkePaP88aUjSSJtv/9bvPcbcTAMhFFmWYJsu2y0dvNm2heNZtDZ1LShSkGY5YVDm0sWbNJva8L7X65OTkecxjmfT7XTZXNP0TtsaqGpmkGfE/b4WCLl6A1TO6uoab755HlNYlCuVwnZEm6CfvG+ONIkZHRnFdX3uPzXHwsICDz1wFFNKPM8jSft0Ol1cy6ffT+h1upiGYHsjpt3qMD01yubmBnEUIw2nSCDkGBi88+IFPKkTF0mUIJTcQYo317bwSiUs06LX6UGu8ByXoOJi2ILltTUaIzW+/ux3+eCpY2RZisoUL50+h+/ZmKZBsxCr0p55OU88fxozl3S6bbY2ezx7+iLHZ6d48+x10n7G1EiNcrXE1vY2MzNjjNYrSCPH8x102aF+tixH1/JubW9TaYTEUUxrs83ckSmkqbWk/8Zzr3Pi+HF+8zd+/TbUbLBoYm9RjSVFUXJx53FtL4Py9zuJvJtA7xYSoQVOvv7VJ/nI8Y+8n53sud/9EsV7/VQLX+U4tk2j1qDVikhyk+3tVWzbodvawLIcup02gV8iy2LCIGRtZYlzF85qhk0esbKywsTELKdPv0xYCmi12rz11hucOH4/ly9dYmbmAJtb60yM1xBEZPEWMu2Q9dbxZYphukzOneDgsQdQhsQcgjuFEOjsSnFAO+dVoAaLgl/7o/+Fv/43/1P9nigSjcNUWaW056QQ2sMWdF3q7mszqI/Un/dC5dSOaJGU76ZQvp+217xxr23cVkZzj7TEQUAjuXUOh++XAVVx999v28Y+/buXtu88ngEFllvnRg2UUeX7Pua9gtRb1/rd5353n34Y3P2A290Iqog9bth91/1+dGr3w3YPbT/UbScbuN+u79g1pWVf76IPeZ4jDW0Ofa/HkReKWqVSyNTMDHNzB/Adm6f+9Am6nQ3Gp2cwTQdywS/+4l/hP/9bfxPbMlBKaPqRNKjVqti2Q9yLqFVrRP0e25tb3LhxA9s0cX2PgcyuaenarZFmk7XFRW4s3GBqZobr126wurZV1KoIXvjm84yPj5GkCVma6kw7Csuy6HUjgqBEnOSsrm5w7L4T/P6//T2efeW7fPxojVRJ6o06l6/c4OXTlzh8eIZep4vIi4FD5UgJjUYVIQ2Wl1YLhTmQUtHtdAj8EIUiThMuXF6ktRXxyENHNI2tyARKKYYyk4rlpWXCUqjpVbmAXBFFfb754mtMT2u/vSxNkVJvI00SrMJg2fdKGKY2kEYpnCJ4sx0bKSRTkyNFYJTvoKVWQQfVg0UxiBZ+aXFxPGEpQErt42dZBrZn7VBu0lRf+42NLYLALx4HRdyPcGyL1tYWcRTjBwECxeryKmtr6xhCam+tNCNJExzPRSmNmq2vbVCpVOn3+9oMGkUSR7iOpxU1haDV0pNzyFEKDFPS6fQISn7xTGnvMZQOOh3HxvFcojjm9Jvn+Wu/9JOUSh5xkhDHKbZjY5pW4bmHpn8Ctu0SJxn9KMbzAr77+lnCUrATmCRpWqCIKQCrS6u89to7HJiZQEiTc+ev4HsWx48dQimB77sIofA8D6swujYtC1BEUcKnPvcsD56cx/NcbdacZ4XohqaUxkmM47qcOHmII4dnUSh63T5hOUQpjY5q+W6BKc0d8RHtFyaJ4xjP92k2qhw+MMrDDx4pEliSsBwgDFUgsmYhtiNBaaU8IbSSab8X0el0CYOQJMk4f+4qKs+KGktfew0aNouLK3zlG9/hAw8fKyiDKWms+//it1/j8PxBsjxhc3NLG7ILQSkItfBHqrAsg06nS78XFegNCGnsKLxqpVML05IolWEYxXUQBtLQNbDH56f5gz9+mrfPXOFDj9yHZdoAPP3sa9x3fJ4kyfF97ZVoORYqV2yubbOyukGlUmJ7q82TT73C5HiVRrNORobnupRK2gS+14+wHAeVaYriYBJSr1fwPJcgDJidmSAMg6IGSNFubWMY4Dguvu+ysrROuVwmTvR1dAs0O88ybFezAUzTwnUdyrUyWZLypcdf4NT9cwQlH9dz+YNPf43FpXXm56cBxe99/WV+rDyK48idxIPKdNIwS1Nc30GglTp9zwEUnW6Pzc1tbMukUgsBuHLtJscOTWNYBkma4tsWS6ubjI/WWVpeoxyWsC2LK9cXCH2X2akxpCkZHWniCsn4WJM4SgCBbUpOn7nIiaMHAQhKPtcWFkiitGAI6LrfLMuI4oRarUzajbh+fYmZA5N6ko/grz/7KhvbW/z2b/8mcRLv1OoOtyFMg1vMl7tH4nZ/fj/tTujQ4PMw5W/u4EHyNfQ7+O52svfXQwviDp54uSpEtPSk2bAtTMdhdXlRo/O2Ra/bwrZspGVqWymhjc1LYRnLNCmHVVzHpbW1Rr/fwfd9Ou0eKss4cvgwB6anWFi4Shq3yaMNSr7L5to1XNcjz1KEYTJ96BSTMwfJhQQFhnFrDifYfQB7TOyFYDVf4dEf++h7nGP9Dhx8b5rWPhP+O5tCKiIAACAASURBVNdaDmwtBnV4u7fxvbQ9t7HPvOz9onVCiP1LfLgFKvy/3fatHdwHmLj7DX/v1+aHwd0PuN1NcDdMUczvILry/bh9h1U0dbZBvu/gaJCF2A0Nm4ZBnmU7YjC72532Msi+7Ifc3b4xbWibF1La99KyLNVG3YZBLjLCsESzVsMQirjfQto+o6NjhGGNeqPJwYNTXL12BUNqEYj/6X/8VT7xE38BQxqoJCPqx7z1xnc5evQoM9NThKUSyhQ7GTnHcbBdH8+1eembL2A7NpubWxw5cpxMGFhSsrW1ydyhOVSWYxaT1bAUkCQZeZaxtr7Bm2++yeTUAeqNBqVyyNTMJA+eOsmv/sZn+fmPzOF5LlLmvHX2KjdurjBWLxOWAtI0w/cdDEtTWqRhksQJFy/dZGZ6HCELb8Nc4QQubqnEuTNX8G2b+++fJ4ljbEvbGiilVf+05H1CWCoBEoHkyoWrhdl4iePHDpEkMdI0MAwBSK1kaGtUBBS/839+jVMnDiKkYnNri0qlooOvPNfWBZYO4C3LpNvrkeUZVjFom6ahUY+C+prnCse2MKRJnKSg9DF5vkOv18F1XE17LLKftmOhB94is4kiiSJKnovnuliOxdrKKpZp0GzUsUwTq7APGAg6GKZW2BtpjrC8tEpYDpGmgeM6WJYWEJGGJEtzPN8DYHNzQyux5opyOdwxr5dSsLq2jmPrifLA4iDPcx5+8ChBydf1SFLiByXyTEFh3L22uo4wBKZhaUq2NPA8j8WFJaqVKnmWk+cK13X08yMKMQugvd1mbKSh7QHyjKNHpjk4O0me5WxttSiFJWzLRKFIkpTNjS0cx0EW1LMDUyOUSiWQasARIokTpEKrqJoGUZLoWkrTwLYsrcqJRiqyNMd2XFSW095uc+HC1QIVzLXZs+No+qhl4DgWb7x1nrHRBkmqA9wzZy9QKQdF4K9VdDsdLfYipGRpcZUXv/Mm5y/eZHFhjeXldQ5MTzA2MVZI6xvamqEfk+eKh04dYWlpRdcmFhlZ27Y4c+4yM1Oj2LZJKShhOyalUsDq6hbddsLKygpvnz3PzMykFgkyLbrdHoEf8NRTL9JsaLqj4+iaTMOUtFptOp0e25strt9cJAxLOI7DxQtX+Us/+UEc28YwIIoj7jt+iD/+0tMcO3qwCAwNVpZXCAKfNMnwPV3jur3V5syFRX70w/djGBLHtWi322RJkWDJIc1yXNdma7OFZdkIAZsbW0jTRApYWV6lHIYIqcUCHEeyvrFJq90mCALOnb+uBYQsTf/ttNv0+xHraxuUwhJplrG2ukHg+yT9mIWFFT7y4VOYlmR5aZlyucyRuWm6vYixsTrdbgfflDz96edoVD0txhNnrCyv8+mvvsDxuQmtqFqAHLZjo5QiLPlUqkERYGhE+8jMOMvLa0RRQhpnO7W4YRhgGAZf/eYr1HyXc1cXGWtWmZgcIc8zLl9d4L7j87zx1iW0mItOAnmOzfhojSiKsV2LWi3E9z199xaJoa3NFqVqiaQXceHcVU48eEzTtKXgH734BqtJwjee+Ap5nhVCUe8e4/78B3fDIhyK0bER/s7//Hd49NTH7nYn+39fLO9pHI2m5OVZpt89UmLaFrbrMj02w7XrV8iTHq4XaEuQ9jaGYWIZJoaUJHGE7wcsL9+gWm1S8gM8zyMMSly5fAGVR2Rpn+s3zuOY0Gst4xqKqNsmDGv0en36UZ/ZgyeYnDuKtGyUKBAxwfsK7i69eZVf/rt/gzPvnKE50rztfA8WbZ1i6PvXNN8VwL2f4E7exnD69yO4U6DZB+93u9+HpvdbIKTDfng/DO7+/W93E9zdRru8A3q312XezX0etLxY/13c6F3LPdEyCx7xcGA6/FLej0qaF5mO3XzoneC2+G542/v2bgjyvtcmpZ545wVaaEhJr9djamaKy9cu8OrpdzANXZQ/MT6G5UC9UeWN19+gWqnziY//BEmc0Ou16fV0kGm5DusbG2R5hlLgllztWaVysjwnTWLyLOPoiRM89qUvMj06SXNkjERaNCoBhkALeTgWrmPT63TY2Nyk2RghilJ8z2dktMnW5hZ5lmBaCTeuX+To0Xl+9j/8i/yzX/sNPnQooNNe40MPH2VudpSS72NZOtPt+bouII5innz6NY4fOcji4iqNWhXfd4h6fZQqqI+GYHa6STV0qdZqZGnOpz/7BPcdPciVyzeYmBgnThMcx4HBdZS6fm1yZhzTschUxsLCInFR8yCEwLZdlEL7U6UpRw5N4bhaVj7wS3Q6PXJyojhGCoFhaBn/N98+RzksFxPRYrAcTEilxJCStdU1SmFAludIaSINTR/q9bvaxmHgFRfHmvaVJDt3ospyut0uaZrgej5b222yLNY1T0oSxwmmZSMM9J0pJK6nFSCDUmmHmqjQ9UtS6Do1UXg0GdIgTmIsy8RxbKTUqAJQeDXqZ6gSljU1K1eF0qUObA1DIAW88K1XqVXL2LaekOd5ThqndNo9wnKgkw25wjAN2q0WjWaNIPBwXYeN9Q1cz9X0pe0OWZJgmyblcoAsjKctW6NeK8sb3LyxAih+77Pf4IETB9nc2AIEGxtb9PsRtVqddruL5/oYpkGWJmRZimlpAZilxeViop/juY4mRBeB9eD5FmRcu7aI63hcu7bIxOQoX/76izz0wDFe+s4bTIw36Xa6VKoV4riHUtDa6vKFL3+Lhx6Yxw88FhdWaDSqxTmUGIaJ67paMRhBWCoxMaZpjh/+0CnGRptUqlWEkFy5coM8y3A9G9OyKJUCvvnCq5y6/0jxnYFhaoR6/tCMvr5JRrcbgcrY2Ngk6sdMTI5Rq1d47Y13OHHiMFLqIN42dc3k3MFpwjDQCSkEjq0l+YPAx/c9bNtmYWGZifExVJ7z0ANHsF0L17NR9LEsST/qcfbiJWwTGo0mhmHQ2W7hOPrZLpVLBIFHrVbh4QcPY9m6zi3Lcl5//SwvvPgWjWqwExgJTB57/Hma9TJSCMJyiTzPaLc6fOZPXkCqlEatAkozJVDgFAyDmdkpRkfrVCohN28sMDExRhrHfPPF1xgdqRMEAaaprVCUEri2C0JTkuv1GmmSYVo205Mj2Ba0Oy2mRkd58s1FPnF0FqEM0iTnT555hdnxGhMjNTzf4fU3LtBsVIv3AggEcdQniVO6nZiNjW0cS1tM9KKYUingzIXrZLmi3+vz7Om3+LEHjzE1Pcbc7Dj1Wpl+HEOeUy4F2JZJ3I84Mj/Dm+euIAU8eP8RhGEgTIGwxI4iYrfd02JHSlEOA/I85sKla9x//1EQkIucv/bUK6ymGZ/5zB+QpSkKyNLs9sl4MQiqnf8MhmZRjFV70y4Hw/e9TAJvWcmYxTg6MC5/N3p0qw3T/fTOf/8PP7VTd7cz5g8CtaHDY/D9zkex90R4eN1iuX3ecivwHSiF6/vKxi/XsPyQpdUV1jc36Pf6lMpNsixGIPD9Ep3WFs3mGOvL11F5jCFyDJEyPjFGyTfJsm2ajRrt7WUMqfD9Kqtrq/SSHOwqB488zOjEAZRt36LMip2c1t7XieHj1sv/8fg/5xd+8ecYHRvd9xpptI3iPa+G/h1S3iyYNGqPoOA2EZWB9x/qtu/vte1FNdytaL73MYl3ze+G54G3zU8H6xZ1jIM55MACQQ31473UMu+2bOf9KnnuHP8etNN7DdLulS473H4Y3P2A2z373A01Q8odi4F9MwL7ZADFe/z9btogMyZ2IWk7D96u/e3Vbg/uMlzX1ejQHn9Xt62bv3cG7x6Pad+WC8AgimLK9QqTU5M8+MAHOX/uAlkK4xNjGKai1+8yPjrJ3/t7/5BPfvJnCcslarUySAvH9yhXQsqVCiBQEoLQvw3lFEKjTKZrc+rESR774p9w8tQDOGGFtNsiy1OSKEJKSRRFjI+P0mq3SRIt6CAkJFkCSYrtGGys36RcDlBZTp4pfuv3v8B/8uPz5CrDD0I2NjvYlkW32+X6zSWu31zmwOwkaZoxMz1GvV5jYmKE1tYWUoLvuVo+vNPGRCCFojZSwzIsVlfWcW0T39e0LNe1EbrICpXnuqZQCsJKSEpOP+4jpaRWrdDebOGXfaQwSFONOEhD0u30qNUqIPSLO88UQphYtkZ3jMIcfXt7m6e/+RovfecSqytrHDwwhW1bZGmG67kI9CTS932k0LS8NE2RUpCT6wBUCHrdHqLwyNuZHEqJIS2EyLEsbR+RA7brIcipVqvYjqtpiMLAMCFTWmFS8+k1WmBZDrnKaLW28VyX1lYbx7GJ+n0cRysCZmmGaZg7qLnKQUot125ZNgLJhfNXKJfLGIbJwsIitWqdJEnIshiV50xPjON7Pu32NqWwxLe//RrNeg3TNGm3WvT7fS1GYhi0Ox1EQXXNlSIsh3S7EYY0+dwfP8nNm8uMNMo4voNl2ximXZwH/f+zZ6+wud3mL/7kB9ne3KLXi6g3qgRBgOe5dLo9vvbES7z08lk++Mh95EqrHiZpjG1ZVMpl1tY3dWCMlk+PC+Nyw9Bm83GvxfjYJKsr67z48tscP36QB04dwpQG8/OzGIaBY9tE/QjPdbSZvTA5dWKeUqlEa7tFKfB3RHJee+0dGrU6WZ6ihH7vLCwsIQQcPnxQrx+GPPfcd/jiEy/xiUcfotGsI6TaqVsZH6+zvLKC4zrYlkVcZNCzLNfodZLhuC79XodqLaRRrwOwvb3N/Nw0aZLQ63VAKAIvoN3u4XseKyurlEo+eQppmnP50jU8z2ZpaQ3DMJiYmMAwTFZX1+lHPUxL0mptY9seWZbjuT5H5w8yNjrClSsLPPHktzl0YIwwLLGytqbPR2ubVqsFKExL8vgTzzI3ewDXtfnoB0/hea5+VkKPhRvLRFHM1NQYYTng5sKSRmhzSRZFvP7mdWanGsRRTBiWC6EQk2vXbhJHsVbMNQtUJIrJ8oy5A5OE5bJ+5wnI05y11U2eff40N28uUw49jSybBnmWI1XG6uoK9VoZIS3+5fPn+cuHpjCk9t17+P7DzE2PIw0dWPieRxD6dNtd4jjGdiwtKmBYuJ5HvVrhjTPnMJTCMG22t9ocOXyAarlEtVrGFopaNaQfxVy6tsBIs0ar08WWOhmjckXge7S32xyamSAMtGKu5Vhcu7FIo1lBFlRW29FKtFIIrlxZYGl5iZnpMQzPQUnBLz//Gmmu+KNP/76e1O8EburdwR3vMY7ux4b5HoI7UTAC5A7qcEu8407bGw7uPv3pz94mqrIT3A2vf+uHt3X+XcHf7TvZb+c7v9FcEb1EWUIpLFOuVmmOTJJlkk6npdfNMxAFzdu06fV71BujlCtVkqRPKQgRQtO4w1IZQ0rW15ex7RKtbod+lnPfqQ9x6OgJ/LCCsCxNw1T5bcc26Nlu5G53cAcQe30+/NEPYVq2Dir2aMNm5DrIu6WGKYv35611B/YGg0q03ffFnyFatyMukusSC24XOdmvN4PxeTCHGsyjBuwwtWvdnW4MfR7YdN3VjPH9BGR3Qia/DwjcvbYfBnc/4Pb9CO6GxUn2bPt8P3gBAIUao1bPHKZM7plh2K/wc2id3dROxf6ZlxxNf8zyjJWVVTzfv32zQ8te+3svqshtWZN7aMMvHD1BT3ED7XGV5yCNPjcXF3CMCqawaW2sUymHmKbNJ37iY2QqYauzSYIi6kYsLt4kKHksr9xkfGoUREoYNpDSxLZtkjTGNLVXW5JFPP3cM3iOS7kUEK2vYYcjgMEXv/xlPvYTPwGWz2Y7wXN9HM/DsiXLq8ta3KBSoxPF1JsTJJnEL5XJkfzsT3+YV174FscPz4O0CStlbNthdW2T0Wad9bVtIEfYBhPVEfK8TxS3KVd9bD8gVQJp20jTQUgTpFYqtC0wbIvR8RHyLMIwFcKSyNwmzzJylWGblg5UutvYhQR5rmIsS1CpNZCmSZaIIiOfoFSK71la+bGgP+kAJ8cwIc1SBELLiZsWhw5Mcu36Ap/8mUdxXZc0z7SLg2LHZ48iuyelgSRH5aqQadeiE47lo3JI4gzHtlheWcMwJa5r60maoSl9SG054PoBudKJDqUkQpqYhramGFgbCHTmNI0VKLh86QblahmlsoJGlvOtb73O2GiTLE+xHJDooE9KgWkYWuLdssnSlMZIvfBthFdePMPc4SmyJCdNMz7/xad44OQxvvXN08wdnWFtbQ3HtbT/oWVy/eYNpme0kbJhmgSlECiMiLOczdUNarUKhik5dnQOQwqmZ6dot7tIJJZpsb6yxfraBqYpmZ0dI0liJifH8Eoefsnh0qUrzExPYRgW1y4vMHdgkkc/egpDGnTabV45/TYjI02kIej2evhBgGGaLK2s8PY7FzGESSkM6XW6GAaYpkueJ3glixP3HdQ+dkqiVIKUWj5/c3uLSqVE1O2jcuj1E9548zylwMCywHYDskwHpXPzM9y8sYBle6RximmZ2gpgehKEQZL0QSlsWzI70eTlV89w8MAkUqii/i1CCsHnv/AtDs9P095uUwoCsjRBZQmGAYbp8OnPfZ1HHj6hM+kyJ07ywhNRYJgmnutjWQ4ba23OnL3K40++wo988BjtThvbsDCl5I03LjA+2mB8dATXkSgShDT43c88yfzsOOUwIAx8okRptC1P6bY6mMLG9Vz6vT5zhw4Wap4CQyhsx6JWrxJFCd1ehx/5wEkUBu+cuYjjWJTCMlEvYXutR2OkRLvVYXZ2in6/Rzn08DwbuxRy8MA0J4+NEZZ9glKDpN/hzNkL+J5DrV4lzRRhWEah6dGD+k/P91i6uUS5HCCkTpRIpRiplylXyjo5UPJI0wwpLZAK07aJkxTTEHz9lcv8TGOE3MgxLRuUJEtybMPmxrUlKuWgUK7VqreWbdNuddjcbFMOQ37n009yav4AYxPjPP7Md8j6iunJcTbW15FGRr1apdPpUip5TE+OAYrWVovVtW3SJOPVdy5z7NAsa2tbALiuR7+f8Ng3XuaRk/P0ux183yHPMzKlNDU8i7l6/Tpjo03qzQZIE7KMz15d5Pf/4HeLOtuhoGQXhU7t+vfdw6HamdwPt2GT8eHlVsD27maYVjFmDgJM/TnL8h2EcDiZO0CMBkyZ4YBCCMGZt8/Su9JhYmZqp38DJtK75hK7Pt9iYNxadlhMw3MAMVSHN7z+0BkbnAsUSMOi1hhldmoewypx7dp1Op0IA5vFGzfoxW3SPCdOUs2aMAxaG+vkSrGysszKyjLl+jStbo/15Q1OPvIxqiPj2hNEyp0aw1tsq8FxDSFlt2NQt52CJ5/4Kv/dP/lviwTfezuwDYQ6Btdm0JS6lQAfXJeBr9rgGg2fw9sR33uzQriTMMi79jPwHt51LXc+D343tI13zS+HENpb5/bdz8p+wd2e88v9ju8OqNltXnP7ePvd7bb2a/fqAzjcfhjc/YDb9yW4u9ffDd9kAxrlXgHbrsDobpCyvR6U/fqZF7V4hjRwPRezkDS/Y7tDcLdf395Pu/XSUTuDiUCQJlqx0HUtJiamQFlcu3adkZEKaRrTbndJkpQgDPF8nyzP8d0Az/cQQqMkjz32GKYhqdWbSKmRDCl1rYBlWxiGxZH5owS+z8L1mxw9epTtTkKv32NichTbtjCkwerKMs1GnThJcIoscb1eJ+pHhEHA2soyjmPhWKae2Bkm/9u/+xofO1wBqbN8eZpTr1fJ0pSZ6TFq9Robm1tsrbVZXV8jCH297Rw67Q6OY2NKuUPv63d7bG9t4gUlTMOGPKVUDlBItjfavPjyd5mZHkMU9EkhFHlWBFUyZ3VlFcfxieIEcsnKyjpfeOxZTp2c03RYw9TKeq7L9paeUJm2Nuoe1BugwPFcjhyaJkmyYjJpkeeZFvgohF7yTA9qhqkDSMMwMQxZDBI6EERow/Bc5fi+t+OXZVoWUgo2NjcpBdpQWkhB1O+jEHTa3Z0+ZYXNSJqmqEIkA6XNt23bKhaN0OWFAEC5UkIaUiMjStLpdHTdp22RK/jy489hW5LGSI0kTUDBaLOONEyiKGJjfZ3Dc9M7tGXTlvi+T+D7O89JWPb0gGIYoLRQh2GYxHGf7Y0WClV4cGVYtk29UUMIyAp6aJJkfO7zz/Hww0d54cXXefn0WX7sRx/Ask0sS4tjNBs1Lpy/ShqnjE2O0G51+KPPP8PDDx3hS48/S61cYvaAnugZpkZCTdOkUgqo1SrUalWyTE9ELNtACFMjQIZR0GklhpDcXFiiXquiFKysrFEKSziWrvFMM8XMzDiNRhnLNLBdj83NLa5fX6AUBKRZhmPb2jTbNqjVKsRxRBQnlEouhmlSr1UphyFvvnORB04dxTAkUaTRZikkUxN1avUq21tblMIAAbTa2/iexzeefomPP/owtuOgVM6NGwsMJnJmgTbnWYZlWVTCEJWlTIxVGRmpYdsWgevT7XaZmRnHdmwcx2J1bRXTMPBLIafuO0S5XMJ1bFAKy9UG2uTgOlrUwbQdkki/V+IoYnF5mcB3sRwXlYPjODv2G1E/xXdttrZajDTrrK9t8o2nTjMzU6dWrYBShGGA7VgkSczNGysEvo/rWSwtrWDb2mfPsU1ylQFayTHwPXrdHq7n0Npu0e/1ieOESqXMyuoGrXabcqipwlLC419/mbmDoxiG5HNffIr5g1MgNO0YISBXvPzid/jR5jRIxY3rKzz1wuscOTBJHEW8duYizXoVz3V468wlRpo1HdwAge9p5PvKApYhmJhocuLwDM26DuakIak1KjvvE9dzMAr2gGVbXL25wtH5WUqOw/OvvE2e5UxPjtLrR9QaFY4eHKfd6dAcrRXJP4M00ZPXGzcWOXftBh/84ClUDi/dXORXXj3Hr/zKf8/BAzOkWXZXk7X3Hsn2nigO0zMH7b3qr3Q5wrsDiv1Qu0FQOUDrdv/945/4GP/4N/4pn3jwE0M9ZW/k7S7G891r7BcE7PW7QbgnB/2VEj8sMXNgjvrIOMKyCGoNvKBCu90hTjL8Uo2l5QXWNtZpjs1SaUwwf/QBGqMTTB88QqM5QW1kpKCty50+DeiS7AridMLvPfop4N89+3v80l/5hTueC73+LSRud7tlUj6Egolbfbx17nan44e3/z6CuzusO8w0E4OAbLdC+17bHfp8r5ys78c27mYfCr6nwOuO7Yc1d3/+25+b4E7ogXi3eMogQyL2+d1t7R6Du0FAmRfbMG278Nq6Q/uzCu5EIVevNJUvyTIq5Qrt9jaO51Br1EmTVMuJ2w5CSqI4wjIla6srVKsVLMvi5MmThGGV7Xa78MnKsC2LKI4KXydJlima4+P0OxHnzl7kJ//Sf8yPPvoo9903z+uvvkLJsfEcG78UEkUR260tTMvk5s2b1CslpMgJPQfXkFy5cA7HNEhSl5/+qb/Af/b3f5NfePQQ/V6Xbqen682ATrerzb5R9KOcqwtLzM6MY0iDm9cXmRwbJe4lXL5wlV63jyG0QMflK9eo12ssLizzjadf5sD0NFkq+dNnvsPRQ1P4gV9QjSSOZxNHqc4gC0HgB4AoUJOMUingO6+8w4njB/ADX5t1W1rJshSWCoEUPZAOMtCWYWop+zjdKS5P4pg8z1BKYRW+b0IKer0eoA3dLcciTXR9iyG1Wbs2XM925Odvu8+UVpzMcqXpjY6mZLW222xttfj2y+9w/NjBgi6j624Q8M475/F9B2loJU/bsUAI8kwRlHyCwNMonWkUdS0GcRzRbrW1EImCw4emtdG4a+PYNlmmbT5MyyTqR3zusWf58R97BIWgWq/gFed1IIahjbULyqs0dWArTZ5/7jRf+9NXGWuGHDwwg6brGfT72iag2+3oJECece7sZaYmmswemODgwUnuPzmHH3ikWUK73WNhYRnP9fB9vVy+epnp6VEeODmHYRo0q2WOHjlEa7tbCN5IpADTMmi3O0gp6Pe1NUdYLpGlGWffuUIpLO30J021EbZleEjDotPp4nsenuuyvLTCdqvDC995k/vvP4xlGbRabUzbZGV1ncmJMbIMvvrVb5NlParVAMixbZNc5VimQZ5pv7Y0y0jTmBMn5pACtra22NpqAQIhDWr1GgqwTJOVlVUq1TIohTQMXMtkZLRJnmUaqTNMPE97GmbFNbhy+RqVSki/36JSLVMuh7ieDwguX7lGpV7Bsm2++eJpxiaaOJ6D4zgIIQvEWhWshxxETqcdsXRzk2vXF6jWbaShLT3anS6+7zHSrGE7Nl/52ou0trdZXl5jcmIMEJx++U0sU2JaBqVyifMXr/Cxjz9S3DcGjmuT5RlJkvDWOxd46tm3+NDDJ1hfX2NhYYWJ8XH6Uczq2hqGIWk2qkihCm9EnexYX12nVqsQBAFJrCiFIeWwhCEF3W6LKI74wEP3YZsGpmWQRH2mp0bxyiFJmhUlACZWUIILWvXTNAxOHj2A47tsbW1zYHqMqJsSR4kW1Ikzrt1YZGVtg+mpMTrtHieOzHJzaZVup4NlCm4sLPPtty5weGZCq46KW/RDaUrOXrjGgQMTzExOkGU5URTz2vkrfPiBI1iOhR/YWJ4JQuEHDpnKME2HXi/ClBbddkS/H/HRjzyMENDp9fm7r19CAP/N3/4v6LY7t6jY3+fgLs/VLcRqqP2ggru91BaVUqwsrXKgOlf0kv2DuLsZz8XtFLrdwd1+VLwBmncbemhqCqCwbQzPo1RrUKqP0mxM0BybZXLmMEG5zuTMEeaOPUB1ZAKvXMXySyjTIZcmTuCBNBCGeTsOp3QPbgMSB914j8P7R7/7D/nMZ//wzudh57D2D+4G3w9fk+F6ukFAvpd8/l6f79yX9173NhuswuNvN6vrTvPHHwZ3/98N7u5dAeP/h21Q8ybeg2YxaIPXtSig/sEyqHHLCigZdNZRO+/cvo/h3w0vw+sMfje8vFefBv0yDZO8QAju9riH+3CndQdLr9e9q30MtjnIdGkVOR0ISCnpx1rKXAlFfaSG49pEeD3qrAAAIABJREFUsaZWanU9c0eQw/Uc5g8f4szZsygFtuXg+yVdi5ImSCRpps2iTUOjYkZxLb705S8zc+gA//pf/TqTo03ifo96vU6mFFmWkaZa6KNWq1EqlRgbG92haOR5ThRHNJsNtlvb9PoJcZLxyZ/+Ka4sbiClwHFs+v0eaZ5Sb1R458xZLl2+xsraOmcuLbG8vI5CcHh+js3NTfJcUa9Vabe62LaN57l8953LmpooFI9+6CS2bfPlx1+g348ZGx9BSoP1tU2UykkK2fgvfuk51lY3iaIYKQ1Mw8TzXa5evcZ/8LFTuK42MEYJpDTwAx/L1tS+qJ/guA5C6UBPSIFpmni+h2Nb2AUiJBB02h2yPMeQup6vH0U7kviDV36WZiRxTJJEmsopxc4ESHto6W3lCvLi3fqlrzxf2EToyfbU1Dg/9ZMfIc9zksLgWv9eYpkmtqOFJkzLoN+LSJMMhKDfi3YCX8Mw6Pdj8jzH9RwazToqz3nrrfNIw2BiYkw/J3nC9vY2/biLYWihi0c/eJxut4s0dWCSZVrEJ01THbQWdUAIbaa8ublFnivuPzmPISXXbqyS50oLQEjBs8+/wvbW1s51uXZtgZnZCY6fnCdTOYqcNEnZ2t7Spt2WRafdByHp92OiKOLQoVntd2cItja38HyHldU1Xvr2m1y8eFVTpAoUSwEbG5v4gYdlWVqp9eJ1Tn/3EnmmsG2XKEowpEZTpBA88cQLVCqVAhU3qNZqVGtVPvqhE1B4FPZ6EZZl4dg6QRDHCT//c5/AdS0a9RpZmpIWwjEoRdSPUWjBGdtxtME5OeVKSJwkhGHId984Q5YlCAGWY9No1EiSlKvXFul2IyzHJooiMqW4cOEKpVJhhZBnxFFMp92hOaITQcsrqyiliOKY69duojJFWNY1gkIKfvSjj+A4Lo7j0u32tVl8u8Pa6hqff+wZojhlbXVd13G2OkyMjxAnaZGggG63x3PfOo3jOqytbTAzNcLaZouHHznB1va2tqbIctqdPtMzE6g846GH7sMwJY7j8pVvvECaJfSK2tCZqXEOTNR4681zVGtV6vUqS4tLvPLqW0xNj1OplImimDRJIVf0ez0MQ7K2sU2/H6OU4vGvf1PflwUbolKpUKtr5kMUx6wu67rZJEmI47iguUm67T4/cmSWX33yKTrtHtdvLNGL+iRxhDR0jdvGdouF5TU83+Vrz7/Kk6+eYf7AFO1WF9CiKQ+dPMLUxCjdXsShg5N88hM/Qrfbo9eNuHZ1gTAMSNOU69cWOXH0IGurG0RxzBPPv4JSih9/+Di1ehnXs7E9m82NLdKihjMrfBmtQljGsgxmDkySpRlZpvj7py8A8Nu/828AdB2wFO8d2N1BhGKQ5Ho3LXMQcInblv3UpvNckWfpbfVLe7Xh4MA0TQzTKqxKBt1VO4sQgv/6b/+XLF5aKxLJQ4nTwTIc/ew+5j36IcSt2rIdaiG3ktG3BVm7tzf0X7IciYAsR+SKvMhoZ+RIyyAXCmGZKEOCylFZqk2v0wTyDKFyKGqrNV18aOJd+Mbt1Y181yENB4ByF7I2HFAPfx7QMQcJzEHyOctyrQIs5M73+ZBi5ICeeWtR+roPLcPXT79HinHkfbQ7zc0G88581zL8+8H8MSvmqdnQd7vnlXn23v0b3sfdzE3vpu3eZzZ0vHczN72X9n7m/H/e2g+Ru/fRbnuJ3mld2FNEZfhlOPjbsEhKfhf7uG1QeR9I2V5ZtveVVXmfWQyjUCb8XlQ0d16wO741Cs93Of3qawRBiUo5JE5ier0+ru+RxDGd9jaLiwtMTU3iez5ZrthY26BcLVMpa8GQW0d+K6MWRxGP/vij5CrjyMwMjXoZxzUolQLK1TpxpgfPclgmVxlJqg1NW602260Wnh/w8iuvMD4+TqVWIxc2pZLPieOH+a/+yW/xM6cm8AMf0zLIlLZTSOKE0PcYmxznyuWbzE6OEIYh16/eZGu7w5UrC4yMNAhD7T9nWTb3HZ0lzRS1RgVUhud5zB+Z5dTJOaQ0WF5c5fW3znP0yEGNHkmL11+7xLlL17nv+CyD4n2lcmq1MmHo63q0LEMhePutczSbmjpq2SYKiVAaQel1e6RJgmmbnH/nIt1ujyTNilo5B7sIEqUUWKaphT7aHYIw3DnlaZIWBukpna5GOlDo0vfivlpcWEYpcF0XpRS+Y1KtVkEoLedvWLzyyps88/xr3H9yXk+4igC70agxKK6XAizbJlc5SZxh25au45IUiLC7E/RoCp+kUg41DVaCaUiSKMJxbIIgYHVpC9d1CUouXuDrbL1hat9AQ5JnOaZp0u10tQ9TWojvoD3mpKGtCtIkxnVsgsClH/VpNmqcv3CVyakRDFNSrZTxPH2vpJkOgIQs/BlzaG/1CIKA//uPnuLhBw7jeg62bRbIq0lQCjBMg+2tTR48dR8jozVQOhBeW9nA8RzKlbCwiDCJooQnnjrNqftmqTeqvPCt15mcaO4c9/r6BkkSMzraYGNtk/WNLZ574TSjzSrNsSZxEiPR1FNzgJy5Hr/9+18li3vcd3yO1ZU1qrVK4TFZTBqFxDRt1lbXiaOYLM8L5VFBuVwmy3NmZqZAarsATSu1SNKEUuAV9hJreL6H77lUKyFZlmPaWgDEtEwMQ9NzVQ6B79LrJuQZVKpV3nn7AgvLK8xMTwAa3ZVCaOQsTXEdD8ex6Xb7fODhEwghtek8FDWZVcIwQCFwfZdGo87Kyhorq2vMH5ql2Wxw+NAMihzP00q2U1MTVMolbFdbMDiOTafdIY4Son6XmenxHQqv53l4tsW3X7nA4aOTjI43yRLFkWMHiRONrm5vb+N5HpsbW4SVClmaUauV8V2Xfr/PfSfnIde+pZYhWVheJizu8ZWVDcJKhX6/R71Rp9Pt6BraOOEzf/w0L796jmc2I/7qoTmq1RJe4CKkDrJBYQrJ9PQoKMHRuSmOz4yTZSmua2MIkyiKEYbQ4ifVCn/4xPM0Ao+l1U1WV7doNit0OlpZNk0SllfXqdXKbG91ubm8zoP3H6bX7aNQmAVyrhkPIXmWI5SEgY90ppFPw9LKvH/16VfoZjmf+aM/wHGdu2bGDNCW/cbGAQ3wTnL3d2q7t3F7Ddd+YiqqoJ7fov0NLwPmy6/8s/+BTzz4cf063T1HuNPYvV+UxLuRwLs+AwKkGlbaFEhFoQWgdhKkgyFAqFvb14u2G1dCIhRIdO0hApQUe/ZjN4q3u73+0qv843/9D4p1373S7YjauxHZgXn8LQSVfa7Z7W1w3fdadxAQ7q7p26vtNw8cRkvvtsbN+H/Ye/Mgy7K7vvNz7rn7vW/Pl3tWVtZe1VXVi7pbUiMsQIBhwMa2wmNmwg6wgwjPeJbwzNjhMLMBjhnGgZHB2GYAzwiBJLQgCSR1C0nd6pZ6pau7q/eufa/KfXv7u+v8ce57+TIrs6q6tDAEOhUv6uV7951z7nrO93x/v+93sK5BoDvY3sCLdwF2vlMsntJjuLXNAdw9w/bdKt8Py/wul++FWuZg2RHcbU2C3QLutDto4y8LuEsyUYxvJ1Sz90p6T3vUBH337hkazRbNzIvNME00qUKyEAm+7xMGMZrQWFlZI00FuWIOKTV6pt8iS8ZORQwiIU4jYmJ0U3Lyicf5/f/ntylVKgyPTVAPdTQrRxq20KTyiQu6gTK29go4rk+r1aE6MobjeSSphuM6BEFXSUDbDv/Xxx/nZz94MEtGVt5QpAmerQyA9+4eZ2l5HSkko+PjXLh4HYRg165xwijk7dMXyOU9kihReUyugW1qKpxRqBVRXTdwfZex0QpKaVGiS4Op8VHGRgqUy0W1CisFgoQkidA0VC5cqkQVypUiKSkrKysIAV969AX2750iDAJ0Q2d5aUmtICN4/c3zhGHI+PgI5y9cpFqt9HO44kR5WlmmCUKFIeu6YkmjKCJJIzxP5TuZhqlWWFOUEqHr4PkerUYrA3hKnbDH0MVxzPj4CLpIGR8fVWppGSOlCY04Dvv5Wu1WB00Igo4Cq6YhBxL+1aQoSWNECutr6nqSuk4YB2hCGeIiIEpjlufXuXbtBtMzk7Q7bdAkv/sHX+b+YzNIqSF1nSiMuX5tnjQWSKlEJlRuYISmpRQKRUzDYHVlFT/vYtomhmEyOTFCHEe0Wi2SOFFeb0EDOxM+kroOqdwQBeqGFHM2tmMqawZNp9vp0Gi20KSg01X/r67WKBR9NE1kYMVGMyS6LllbW8OyLT79uW/wd/7Gj1Ae8lhZWicMYgr5HKap/PMSAvbtmyZJwfV9TMNk375dOK5DgsoZDLohtm2RIhEoX7JH3nsP1WoJy7CUNUcW9qsJidIRUEqdPfN3UjVZimIFbq5cuqEEQ6KAN948y/jECEG3CynZqjc8+8zbHDu2H9PUqDeUKqrUNOIkhhTa7Ta6ocK4gk7M5YtznDs/i2lIDh3ZS6ng0W11+MrXnqeUc3n11dPsnp5A6BrdVrsvBBQlCc/9+es88/wb3Ht0D2HSIV/IEwYCZEyr1UZqktHRKuNjVQzLoFFvEMVdbMfse0qmmoZmCNI0RpeS5cUVCr6H4+coFFxMy8jUK1Pm55fI5TyOHjuIyNQ6bdvGcnSSJML1HJI4QWoGcZji5l2CTsCZs5eolItKITbosLy6gmvbLMwtMTSictcazRZj4+MEQUylOkQYhViWel6nMbz55kX+9k8/gh3VOeYNc31unko5j6arEC/TsojiDpZt8ORzrzI9PsJLJ8+yf98EcZTw2JMvMz1exbaVlcy3XniHD//Y+yiVfCbGqoyOVDAzgR0/p2wPbNuk3e7guB4zkyNomhJYKlXyxFk+rVIJ1QiCCMOwabTrtFttfM9Rz3dT47/45kuAxmc++0l0UAOe1BDJ7cewdMv/241Lf3HgbgNM9NijQUGOXj2f/vRnlWqm2MaE/C7AXX8pdCsYuXVNGXOYgTipkWrqj1SkpCIFkSKRqLcCEvV/InVSIUmFtvFCIFPQEqXMmUIW7iT6YHBr37ZlFYFWM+CjT/+//N3//MPb7tfWz3YCd5pUKrO9RezB8Mudijrv24uh9MJ0e2DxVuW24O4OxEB628jMdw92Pm6Dc1dN7MxI39TPwfbu6Bfbl++Du3dX/sqAuzSOf0mwWfJ1a9lJZbJ/od8idGFr6bdwi/jqPqW8A2jaGiqw7cP+XQCnwX3pDQfvptwuEXdrSZOYweTid1sGB60kSZWBcSpIowSNlLffehPHckFILMOi1UmIY0m33UVqGrm8S5ImLC4s49pl/JIycE5S5aUnpA5CZodQQ9OUrHscJ4ztPsh9Dz/Cc08/w+EDB3n95EkmR4c49c45VlcXMW09k35vK2W9JKbTbuE6NvV6A9dx1Uq5YXDq1BlM12J4aJjFy+8w5FtILSXstHFdm9W1OtcuX8Y2bIbKJZrNFvmizbMvn6CUL1Mo+Dz5zMvML61yz8FpvJyDZZukceZ3BWgiReiSeqOBaeoYulSsmO8yP7+AYQrKlUKWg6RYB6FJdMPKckBV6E2j2VBeXmmqRBxshyMHx1WoSRIQdGtITUPXJI6XZ8+eSer1OoWCz9joCKDsI9JEYOiKqUp68Tf0wldTpK5jmhZpqtQ3lTxyghKAAd2AMOxiOTrdTsDpM5ewTINP/vETTE8Mkcvl0ITG0HBB2VGkCSkpmjDUwJl5qqVCefPFSaIsCHrqnRnYREBCrNhIXQGxKAoRQKvdQRo6luMSRQm6bqELiS7B8y0cx6LZbPDA0X1YltUXdVleVv5+uVweBARxTLPVYn5uiZzjgQZ+zqVULvST3EHJgyuxmA5Xr80xPl5h7lqNKxevk4QxzXoDTYMoDlmvLVEs+YyODZEv5kjR0DTwPI/6Wgvb8Qi6XVzHQcQppqWDltAN2iBTZq8sY5gWjmWhSRgfKWDbBro0qAzlgQjPc1hbreE6LvWGYqbPnrnI0FCJJImQusAwdfRsAUfPVFIX5hcVk2gZhGGIQOPipWsMVYcysKgjhCQMI77+xIvYpsDPOyRpzFcef444ipgcHyeOUcJJcUQUJTz22AkmRnLYtont2oBEaDpHD4+jiYSFxRWCKMFxVU5rFMe02zHtRhddE8RhgOV5DI8NMT5ZwbAkrVYL21E5gOPjQxSLRfbumwIRk0YJCQGGpYFQAUbjo8Pce3yfUm0VCpRqmmBlcYlioYCm66QCpKYWtxbn1xmuDtOoNZW34doapmmioZEkGlEUkyvkuDF/Ddf3MHQDEkGz1kYkqPOnRXiexuNfe5GrF5dxDJ1cwcN1PM6cvkipUOSxrz7P6HAJ2zKxbAc/5+O4Hqkmqa+tMVStoGmQL+VJogSp6Vy5sIjjSQoFj27QJqVNt61Y92azweREhUIxz/1H9vNfP3aCw1HM+GhViQJ1uogUXEcpwA6XC+iGhmPrNBsNCnmPg3t24eU8hCHQLZ0jh3aTRAGGVCB8pVaj0WwxXK3QWG9w8fINJidGCOOYeq1GGARIKbBsWy0GIIgzX7E4ThGa8jy0bAvP99SCldT4+0+9gobgc5/7BIIYIRUAEunOnmIbFsi3Zzt6Q+5O9kA97zOg/7y7HXjYWgYVtnuhfBtsnQIPO+VwATz/zAs8sOcBtb360S1prJvUurcco60L0v16b96pzWBykBBKU5UHxuCXGRDqsXDZ/1rvLKQppMmGF5tQTkmJ6BlqKwXnLV1T77MmxGBrGRv1f/7Rv+I3/91HyBdy2b5tVVvUNr1XdffOg9YHX2ky6JG4cfVsrW8QsG09BTfP8e6MFds8l7zZxPtO5ms9a4IdgdIAoNvkm5du1h/dOq/e6pksyFKRtl2s2JjnDf7beoH1xvTB/b/t/PgvqKRJgszuhe+Du+9ySTLm7lZ+bd+Ly+J2rNtO4G7HVZi7ZMW+nRWUd1O+vZst3fSuJ0Jj6Dqa1Dlx4gQj5XEM0yaKY0zbwLQkIk1ZWl7CtmxsRwEUITT8ovpfMSgDcdRZQntvcqobOoZhUqiUGClW+PgffpL3vfeHWF6sMzk9hZfLo0uJYdgkcUqtsa6Mix1H5W/ZDs12C5OE1eVlJsZGsAwdz9Z57PlL/PYXn+dvPbSPKIy4MasUOKUhiVNBo9Vmrd6kOlLk3uOHGK4WmZ2b5/3vvZdK0SeJUyzbIooianVlmNyoN5TKY5SQ83y+/vhzLC+tMDE2rIy5U5Xf0OufbqiVUmkYJHGMlFoGnhXzJLN8x2azhS4lq8tLSKGhS8Glq1fJ+z5xlBJFKV989GkOHpiiUW8CKaZh8fprZ5icnCCMIoSAlBhQxuZhGFLP+q1JNbntmYkD1LN9IYVms41hmEjdoFIu4jg29x7dy/z8EsPDFRAQdgOkpnHt+iylYh5NkzSbbXRdEsVKol1KJbayvl5Xx8qy+mGcpCmpUIIZmpTZREyj2Wzh+R5A1j9lM2Galso5y2S4dd3CMCykhmKldJ1czsd1HV587jksHQxdUMh5FAo+hq6BJhSYNCRCqPCiMIgIgwjLMDEMg/GxYeIkIUk0JiaqeL6tRF30LOTRtPvhoGHQRTcU81pbq+H5Ho9+5Rnuu/cIjXqTfL7AyuoajWZmcC4NojDB81xMyyYIQzzX58uPPku1kiMIAqrVMq7r9QVUhFR5mpWhMppQUy+pawRBgK4rtVHDMLh8+Rrjk2MIoFZrMHtjkTiOGRkd5pOfeZyzFy5z/Mi+jJkTTO8aJ1fwSNOUZqPJkUP7qFbLPPHUC1Srysw7DCNM3eS+4/sIwoD1tRpR5tOpCcG1K9colgrkiwXFhqMhkkBdu2s1wjDCz7m4nksSqzV/KTQ+8dmv8tD9B+l0Ir7w6DPcc3APrU4LP+fQajVwXU/lhApBbb1JIa/UHdsdpeioaRr1eh3TNHEdhzBUwkVqAUEQRxGlUonZuXlarTa6IfFcl0uXryI0gWs7GIZJHMUU8iWW5pb5ky99i2LepVItY7sWmq4RBgG1Wp0jhw5w8tXzHDgwQaOxztLiMtPTU3zys49Tb6vjadqSXN7j6pWrCtikMVEInuMzOztHsVDi2pV5oijlyadeQ5cJC7PLjFRHIdFYr9UplYpKZbOYp9vpEoYhz5++wc8dPUQKShE1Uw5FCGVPkfdo1FoUijkK5TxhlIXXAp//ytOMlwtKjRU4d/EqhVyeUqlMPpejvt6gXC5RyPskifI/Mw0zy/s1SEVKFIdoEpI47avjggqJtx2zP07+k+dfpxsnfO6PP9lbkUVKnSiMMsGmW7N177ZsN74pz8gNQHZLj9gdSi9nV4iep9hGTt/WtrdObIUQ/ORP/QSf/PcfZ8+efb2N72w/ejl5vTIA9gY23hko9vrQ+3On1w6T8Z0m6Nsev/7+7tw1sQXcIQS/9LFf4nOf/xT5fK4PwnYqW20KVN0DQjFbrCi2e99b4N6J0dvpd7crOx27d1XH7Ta4A0Ij2a4vg1Vkf+90H/SesT1GvP/5dtt+T2bp34GSpn0/v++Du+9y+csI7tLMPDxN001+I9pt6riT8r0Ad/0HzV32cWdwZ9DtKNXJf/eR3+H69Rvc98B9aDJBSsH1q9eZmJzkySefwrFdOp02I6OjaAb9MFEhxE3gLgiDTIo/od0J1Er77AKdVpdf/dWP8Ou/8Zscv/9eRoaH0XWd6tgQUSfG9Wy0LAxMEyqs1jBMmrU1rl+9huc6jI2N8fabbzJa3c3H/uBjxI06Y2WfsbEq67U6uZzP7NwS0zOT6IZkeGyY2nqNbqfD8PCQUsBbXuNrT77Cgf2TWLaSO88XctiujSY0rl66hue7fOObr/K+Bw/jug6OZ2OYJrOzi0pmXZAJXSjAEqeJMmpeXFa2AKDCvHQd0zSIwoi1lRWSRIkj+J6NYztcuTzPyNgwJ145xfBQnqldY8zNLmJIg5dePcOB/dO88eYZJncNQ4oSsYkiNE1y48YClXJJTcxsCyGUobZhmurvFCWbn+XAkaaYltVXOS1XigqQZtdVmoJp6Vi2TRQnvPnGGRWyqclMSEJNuE3TRNOECv/rXVVCKVPqGag9d+Yi5VIR13FAU6HYK8urOI5DmiacOXOZSrWkwizDCFAeeEJTK6bNZlMZrAMV36TVatFqtfFcm6DbZa1Wx/O8LGUhpdNp0+l08P0cQsi+km4cK3GbP/zUE7z5zhkOH5igVCqiSQlChT328gSDMCQKQ1zXRghBu9XhwsUbzExPsLpao9nq4Oc8llfW+qGPJ068zYGDu5UKqW6g6RLH1PnKEyd48D0HsWybbjfgi48+S6XkcerMZcbHhgmCEIRS2dQE6hqJ1GJJt9ulWCogEMRxwh9/8ZtcvrpIFIWMVCs8+MAhDh+cJgxDDEPnxo05FpdWKJUL6LqOSFNMwyQMQw4cmFZCPFKptJ6/cJkwDBgdG8FxHRzHJs0WJFzXQtcNxepk4bat2jq6ruN6OcXqaNBqNXn15dM8+8LrXL8xxw88fATHMfH9IkcO7KZWrzNcrQAphqHx5lvnKJfyaEIBW9O0spBBZSMjdR3bthECGrU6ubyvWGGpI9KETqeLYzucv3AFw1QWFHEcMz4xguu5xHHCm6+fZmW1xtLiGuOjw6RJyN49u9AMqe4BQ0cKDcOUXL+2yOnzsxy7Zzcj1SJz88sYus6B/bt48IHDTO4ax3FNdF0n51lcuHyFnOdQKpdZXFzAdiyESMkX8ti2ydiwz4GD03z9yRO0G23GxoZwPUcJV6Up7Vabq9dm6bQ7fOC+/ay8fpn11XVq6w0a9SZzC8sUCjniKCZJEtqtNu+cvUKh4OE4Dq+9cQbPsdm/awzbNNEMjdXVdYIgolQoommSj33+G+wZH0YKwepKja88/SqXbswzP7/C2EhFPQMkGKbBwqJasDOyxR9NCFzPUUyP0Hj8wkVOrLX47d/+LTzP7YO7VqtDp9PGMM0dWZHvJLhT4kqiL7xyN+BuML9f/a3AXS8UeTCkc5AlGgzn/LXf+7cbhubvAtxtjIsDxuY7LDrvlM8nBv/e7rXDnKDf3k792/wpkPaPc++TAT5wW3B3efUSP/4TP5rtYs+fbofrYosx+db+bM133L6/6cBn3x1wd7fM1e22Hpx37rRtMsBSbVfv7cAd2sZ1sVMU20a93wd3d1r+yoC7KI5/Sd3smy+OrfTx1tCMO72UhKYmm4KeyfIOw0WqTCC3UuEJmfHnAEPXq0doWiZOovxKkiy84d0Cp00AkY0H4OCxSFGg8m4Zt23ruAtwl/QMN3slu/G17DtdGriux+6p3Zi2hePa5AsFoijGsWxSBFOTMwg0hkeG8PMWCRseND3QoPqm+tfLYwDwfJ96rcFwuUDOd2jW1/mn//0/IV/JE4aBUvfTdS5ePkupVCKOlTJfp9NGSkkQBHi5PLlSiTBO0S2b8alp9szs5id//Cf4H371I4w5JkcPTjM+MZJN4AzmF5YwdIlr2ayv1bkxu0SxoMQP3njzHA8/cIi19QalUlGFf3oucbYq7TkmKfD+h4/h5fwMcKqruFKpkCQqHFNKDce2iLPV5TRO+jmEutQJggDTMkmSlKXFZU6fvcyFywuYps7wcBldWnQ6IWEc8vB7DuM6Fp1OgADKQznGRot4nkehqEJegkCBjzffPMvkxCi+5yA0jfm5RfycDwiklPTCV+I4IY6h2WgrNsuxePb5l9k9Nd5XEuutYqeJyFQndcIgRAjB5OQoJBB0uwpkN1sIlNJnL/8tiiIFZLMwzTRW7ZZKatL59ltnqA5XMnCoDGANw6A6XOnn98VRzJl3LiLRsF2DkyffZHi4gmlaIJRyn2Xb1OttLly4juPYDI+NIlJBGMZZGqLIgErPA61DEAR8+c+e5dD+3TzwwAF2T5XxfIskCUmFQafT5T997Cs8/J4j/eNgOzZBN6LT6aKbksOHphEIJZ0/OQZCUCgoUZtOu8vumXGSJELPJPmTOGFlZZ0P/chDGIZ4aztVAAAgAElEQVTO4sISnu+ye9cYTz79Gkmc4LuWstYIunz6T77B8SN7iOOYVrvdzyczTYMoTkjjmCMHZ6iWfY4dO9S3pKjVavg5lySN6HY7tDsdyqUSItV49bXT5HIeubzP6uo6QmhYpk0Sx1SrJby8RxCErK/V6HZDcr5LFIcYlq0UWnWdKFIWApapmFupmywuLNDpNDEMmJwa58jh3UxPj1KulJC6QYqy5eh0WtiOSRzHmIZNPudiWzaaNAjDiEa9ySuvvs2+vbsIw4h2u43Ulel9HCd8/NNf5+g9+2g1Wpw7f5lut0u+mGN4pILveyRpkrHJSsFVCI0Tr5zirVM3EInGiy+/w1//sfdjWQZJErG6uobU4MLFq/g5hyBMKOZd9u6bYmFumVa7S7msvPqkoWPqkkazrvz4BLhOJvqTxpTKOZqtOn7OJU0Ve2+YgpSA++87xFPPvMaBfWPUa03yuTyXLl1lfHyEYiHHyOgQabfLv3zqbT68e4Lh4Qq5nEvOc5WQkmtTX2/w2NOv8sGHjhNHKbZtU63k0aRgeXmVfDHHlUtzjI0OU8jnOHX2CoWcTyVvU60UyRV8Hn3yBI/ct5+51XWOH9iFYepAim4ZdLsBnu9ltixKOCWlFyIn+GcvvMEzq00++9lPKIEmQIgNtsW0bTWH3EGz7zsJ7rZjVHqlF9Z3q7p6AG5zuNmgj5rafvtwwI3PPvjXfpDW9c6O+XJb275pztJrmy3HpxeWmc0/ts6rxJY6tv6u/9UWO6jt+7UNiOn3bTN7qZpI+/3u92Xg7xsXlvhvfvkXBo6rAmZbGboNE3L1u0HLio3jdKtA3u0+3zhum1+3MSMfzM/bFHeaWYgMtHIro4ZNvcsA2XalF0YpNE3NM9mYH2/7iwzEDM6lN7UFN10jW/syGJW2PaPbu5TubF6aZp7O283D73aeeyc5jL1joA1cf/L7Vgh/MWU7WVjILoDvsKzqd6L8/69H3/uSpGlmmC35o898gunpCZ78xhPEsSAKUZLenYBWqw2A5TgEYftdtZGmkM/7dIMWH/3Y77Jv/wRhuE5lqEChmGN8bJillQV2TY/TbDS4fPky+Xw+C5eTKmzTcrEcH79YJko1TMfDL5jc+8BhfuY/+yl+55kz2LbN0tIySZKiS43hSomlpVUEMD+7RN7z6bSUat99xw4wNTVOsZAjTVPGxkbUQzoT8dB0JRATpzFRHBGTUK/VlaFxq83K0gqnzlzMhDqUTLqu6wip4Xk+juvQarcxTZMoimi3WgxVK1y5vsrKapv9+/fQagcEYawmmqUCKYoJ8HyX4ZEqcdyhWPZBqPw5oWnKM02T7J2ZYm11TZl2S9mPoV9bXVd+a6kComoMS1lfr/OVr/05YRDyvoeOqzDFNMYwFDhL4hhNk3z2C9+Ansl5t0u32wFAajrtdpsoiFhZXiFNU6Iw4jd/53MZM7axoBKESmb54oUrrK+us2/fDNevzdKoNzNfPHVOkzgkDgP1m26XZqPN3A2l7Hn/fffguA5xHKkcBNPByZW4fG2ZXbumKJWHlHdXJ0DTNKIowcryDhW7mOLnlJ9YueARhQlSalSHy8RRiMxEUCzL5h/9/b9Os9kgDCOWllYIuhGWaeP7Ht1uB13XMG2Dt89eZnV1jRQFgKWusb5eR4hEMdWmJEljpCGZ2TOV+Q4mLC6tEIUx+UIOTRNMTgwBKYYpcV2LQ3tH6AZdLNskn/MpFAtoUi0mBN0Ax3WxbJNduybRNI133jrH8tIquZyfgQud4ZEhDh6YAQFSSvbt2YXnexng1mm3AtJUKWoKofz5LMtiZGRE+QdKgaFLEBrLy+v9CbFhGHSCEMfzQYBlmVTKOQwJQocE1X4YxUTxhqiQJpVViQrdBsu2aLZaKvRUGnS7Iaahq+OnCfyc8ga0bZVv6ToqD9b1XK7PLjE7t0yaJP2QwFw+p6wLOhGryzWuX5/lp3/yB3nP8RnOXJ2nHcSsrKxRb7RoN9tqcE5TpibH0Q2DYrHAG29f4erV67x48jTj46NZ6G5MfX2VMOhgSEmr2ULTJLbrqjziVOeVl09hmS5JLBDotJshluWhGw6zc8sc2jeN6+VYX2+wsrrG6KgK6U4SZfOhCY2HD03x2jsXVP5MGCu2NI5p1JvUGy1MQ8f1XXKuRxxELC2uYBiSkbEqSQqvnr7KydfPYVo2M9PjPHPiDdYaDSzH4tVXT/G+e/cBCR986B7GJ6oUSzmcTDBGNwyE0DIbg+w5FylZ+o++doq5IGR6165tn+VSSuS3KX7yvSgbomq3BmG9729noTA6NsI3nvjqt9sp1e7AqwfYBm0R7mYB927mV0mS3mRtsLkMMJD9hjbCCn/36X+/fV8GmNIeiNsRbN3lwvfmOgYZv2+/9Gr5Tkj292rYen7kd6Du7YrQRP/1nSg79f/bLX/ZbBH+yjB3O6ll7oTGkyR5VxdzPyQCNqlfbtsm3MTcbfdZrx4hRH+VQUqpJo5w80rObcp2tPnWz1K45crE7cq2ddzNg39LHwbDNaRuZAyUzo988INUhoYoFku02wFS6pw8+RJTU7tIYpjePUYcJQgZqZldr55twiYGSyOANI6xLYGIukRRF8810SyHfL5AGIWYpqTZXCdNNQqFApZlkZLSaNRpNBogLVw/R5xAGKdKmdCMOH36DP/wH/48P/9f/gP+wf/8m/zU/ROYukGaJKwsr2FZBkE3pFjI89pbl1leXmdivEqtVsMyTV55/TTD1TK6LlleWsnCG22EiJG6QZJJlEldYhnKE+38+asMVcuMjlZBQL1Ww7QsJVIjIAwCgm6XfF6JgHTanf6K4eRoRU2wNI1UxLiux1B1GE2mXLx4jWIxT229jhCCVmcdgDgGqcn+qqQmBC+ceAPfcyhXSnS7AZXqkDoXmmBpcYVcziUKVQ7gxQvXGZ8Yo+A7lCoFpNQIg8znTlOA0LIsup2Al145w33H92DbNp1uF01K/uNHv8jxwzNYpsrtq5QVC/d7H3uMn//ZH0PX1bUQBSGWY9FutxGpkt//oz9+kgcfOITnOXieRxIr9JWmEEchURQRB0qN0zEsfN/FcCS6YTA/N08+n1fHohsRxSkvvvgOmhBMTo0RRDGddiezSrCz0EqdxYVVXvjz19m3bxdoKGn+VKBbBknSReoqdFWTFqBhWyaLC4sYhkG5pMJEu+2AublFiuUcYRBmqqRd9h3Yh2nqfX+vQiGv2LokotvpsLSorATiUA2GpmlQLOZYXlolTeDeo/sZyUL2SBMuX7nKsaMHME2bRq2OZVskccLFS1cpFfO4rkMURXzz6ZcYHR5CIHjqmTc4fmwfaRpjmjpxHFGr1dCkhhAqfypX8BFCEMURmjD42Cef4Ojh3UipgVD+ga2mAu6O4yJESrvZRLdcHMcBEgxpbKz8CqWeK6VgdWWJXM4liGNczyNJUuJE3flxGBKEXVzPodVsYVkWYTcGYuJIWVsI1KR7cnKUKIpoNlusr9WQuo5lm+hScvjAbl574wzDwxUO7J+mUsorD1Opsb5ew3HsLMTT5PyFq7zwyin2751gdLTKwT2T7JkZJpfPEUUhui6p1Wq88dZZcr6PZeskScr99x2iVM4xOT7G1WuzVCqlvtXD+toacRSTz+dZWFrG9TwQGrq0KJfKBN0I1/U5+fJpzp2/wfjECHGS4nt5pqbGCKOUEy+/xYH9u/phje12m2arRacVUBRt3phrcbRURBqSpcUVHM/hY489xQcfPA5BSM73IILVlVVKlRzSkARRhKZLtCBhcaXO+EiZdqvFkUO7KRd91lbXqVYK6IaOZRkKxNs67U4XIQS6biA1fYMpyrzBpKZyaX/9zBWkpvG7v/sfNhFFvfdJSsbcf29y7m5VBsMpt5ae8MrW8MqNtrQ+m6QbRgZud65PCI1f+73f6Idm3o65G/hjo7+97wZeg+N6L11C9X3bindsMxkMAb3DIoSK4ttqFr/B4N28T72tvvyVL/AfPv5bO9S7AbY2Rff02baN95rUN3nZ3U3R5EZO5e3Zy1uwnxmTqTzf4lse702lFz22Q996qUCDWwzmqW+qqteXnZq6XV8GwjJ32nijq7ffP3U9JjfNIQdruJt57iAzudM+bVfb95m7v6Cicm1uNgTvAbs7NSyPB1YJkjhWN0b2263sYI8VHFwJ6LWnZYzGYEhmr6RJQhJFm1Ym3s1KwuD+bcdWJgN1vpsyaCTZM60cLAqkvrtVFC0DBqCAnhQaMnv4JnGEkBpRGhPLGIyIXTPDnDvzNiKMeeSRv0an3WVs1xBBEoIREw+EXG5dLUtTxfKA1g+JMbUQREwYS37gQ3+Dw8fez8XLa1x48w1KuczPLdZZW4wxjByWnadWb5Oioxs25aFh4rhD1KpTNCWyXWNl7gqpsNmz/wCtbge/5PHQgw8ghE43jAnCNoWCg2UYNFo1MDr4niQlYn5xkWKljDRNZibHcEybtZU6a6tNFhbWefqZV2m3BMQGi7PrkEQQReiZwfj4RIW1tRV0QzEz+WIBwzBJE7UKr2nquut0W0iZ0mrWSKOQM29eYnh4iEceOY7rG0ihs7Zc5/LFK2jCYG2twfLyCmmcsLS4zPJ8gG0WsEyJZWloScr89SWWl+o88vD9auIcBSwtLyuGMQnxfJuZmQnSJOH65VniKGbP3glyOYux8bJ69qcqvyyNE9IInnr6NZ586gSGkfKhv3YEQ1p0mgG+62GZOiXfgjRG01I8zyEMlZm67xo89tXn0FBhqFKTXD5/DdtwsG2VV/df/cLfJEmVZP8TT72QGQZrxFGKYTmYloPhuJiew9BUhcJojk6nSxxG2JZN0A0JuxFJO2T+yix/98M/QrmSI0ljHNvA0AyWl1cVs6lLwijh6Wdew5AatbV1kkiFFZq2QGopuu4Qxwam4ZPGEUnSBQImJkdYWVmj2WrRajZJ0BgZG8U0bGzbRZM6u3dNcvrUKZqNenYzCmLi7B7XyecrlMsjSGmSK3lIQ7C6tqZYVJHi5RyQKfXGKkkSsTC/xNnz11lfWSdNlPx/EkteO3mWmd27MU2bhAQ0DUM3SBJ1Dn70R49jWhLDMJifW+aPPvM1XNumvtbFsWxMXRBFoeqbLnn9tVP8zE++B8vS6AYdpGZQX20TdEI0NMIooF7v4PpFRBKRJiFxGLO6skbQCRFSEiUxjcY6YRjSakK9ruGYHu16hzhImL02x9L8Erpl0GmFxF3B+soaURjSaLY5d/6Skt3PjOo/96VvEiUJujD50y+/yMpqnStXZvn8558gDLvEccj99x6i3WgSRyGmpRNFIWkSYVsGhq6sKjrdgNGRIf7mjz1M2Glg24LhySGq1RKuY/Dpzz9FHJsMjYzxyA8+RLmUxzQckjRlYXGONAmRRsreA2O0Og2SRIksaUbKuQs3WFutE3YiFmeXcQyLRnMVoYU0GjWCsMM9R2e45+gu5udnWVtbZr22yJkzpzF1jVYzQpemYkEB1/Uo5su0uyGaLjgVLvDfPf8y66vrVIfK1FfafGDfQV588RQXry/TaNRphTVyZQ/dsDl/9gaXL91ApnDg8G4eOL6Hs+evMLewikg1rl5ZwBAGV64sEHZVWLWXc4hjDUNXIdTLS0vUa6u0mzWlvioFUtdotVr8wnMnue/4vXzykx9Di2Jc38fQdaIEdM3AcXPILEc1TQUKst/82gjNv5PJ44ZB+WDpgbNBg+qtYWaDoiiKhduY5Eu5MS71RK4G2bnBVIU0Uaz+4G96ZXB8UwuOty99oLQ1HE59edO2g/vQM25P2TAMT7epa2vZTqVR1bfRn51wT8/EfXCR+6bWBnIGSVNapW72dsNUHOgDtX6/BuYeG30aMI3vKS73Fy/vjIEb3DaJo/5r0zbbsEODBt07sUdqzqhv+s3W+WzvNTi/3W4euBMxkcTxHbNhO0XEbVfSJO2/Nu0TAolQF1UqUOkRyW1BS3ybeXGtXs/0LHbu3Xa/vN0+aVu2udP9/26Vv/LMXe8Bs1N+3Z2srGznTTfIxO3kXXfLGOSt3+3Qh7tlx3bc+m5Yu4H8v36M/kA9SRx9G3532wGygWMIfXGNmem9XL8xi67r1Ot1bNdSDAUpKQm6pox3e0nUvVcURX0Ftn6/BwYMqUlKQ1WuXbnClatn8S2XseFJojjFLZeIwhDLMjMBkBTDUExEnEbEYYBEyfvn8iWW11bI+Tkc26bTavGBH3g/v/BLv83feu9ePFd5fZmmyfzSMsWCz+jwKMPVEsMj1X7IiC51ms0WQ0MVPNdhfHKUtZV1pibHWJhfVfkoIsRxbdqtDlEUkc/7FAoFojgmzkCfyv2U2USFTLwiy31LYqIoYni4wvkLF9V+6TqFYoF6o83LJ88xMzPMa2+c5/r1FXZNjqCJFKkZ5HI5Zmdnyfk5GvUOn3r0GZrrTU68cppj9+zh5GvvMFwt4Xs+QkC9Vs+YEY319QaFot83jjZNs3+uW802dmYgvX/vFDPTk0hdqNwpqaPpWU4KKcePHkBKndnZBUzbUqyAbXLo4BSHDkwjJMojLI354mPP0e22mN41htCUIIJSQbS4cPEau3dNoEmJZZtEUZxNqhQjI+jZOiixDD/nc/7CZYqlHGkCa2s1ypUSlYpiWrvdgJdOvM199x9GCGg0Gui6zqEDu9k1PUYUR+iGsglYWV7B890++xnHMUmaZgbwCQiNSrmE1CXtTptuO8QyVb5WmqakKPGYcrmE4zi0Wx3W1+tITeOtt07zzunLlAs+xWIekQpeeOHljEFWz6xcIUcSxwiRUltrkPNztFpdzl+aZWJiiCiOKZfLrK/VeOudSxQLLt2OYsCEEMzsnqTb6eI4NpZrkqLYFssy2b9nEj+Xw3ZsSGPWa+uZVYXKKb548Rr33n+EbhBgO2qCGnQU4A7CiEa9xRcefYYH7j1IvV5DoPH6G6f55nOvMzFawrKtzAwdXEcxwt965lUMqfLdrl+fp9XuMLVrHNsx8VyPoBviOEpIyHF9EDG5fE75bsUJRw7uJgxUDuYHPnCcXM5jeHiIwwdn0A2dIAixLJs4C3c2TJXv6Tg2lmUDKdeuzLK6WEfIhLGJYcJI4Lk+JHXSRPDG66eYGZ/g5ZfOc/DwLrpd5QGpZeHNQ0MlojDAtlza7RYvnzzF9K5JNCkQWsrU1BRJEvPY48/zztkr3HNoGtNUgjO+71GvN5idm6dUymPbkkKhRLsVoGmSXN5hYryahakKFhYX1f3ZaGLqBocP7+VD7znIaMlgdbbGeL6A5VgU8j7PvnqGn/7Qg+RyLrZjkyQJ167N8cTL7/CBBw4Tpyoc+fyl6/iew9TEMPNzS7x29jKXZxc4fmAa21Xn2XYsoqj3HFW2IZZtInW9LyIkdcm/ePkU9SjiI7/xEWqrNZ58/Ft8/dGvsvfgQV566WUcx6bVVKbsN48c25WbFfu23WqncTvdDPxuBxQ3QN/mMa7HEm3HPGzk3e2cL9SrUwjB3/nwz/DLv/zLPHj04btimfoWCdt9pxob6Jt6Hg5GHL37BjfOgdaPA7253TRremsfbuofCjw8+uYX+d9/5X/ZdLzVT3ss6U6QYXDbWytr3vbqGjxWUuXwxXGyKQezZx+10/kd/KwnYrKdvdfWfLpkYL6zXczS4GebcilvuUeb6+ixZXd97rcUwc1zyR7jeLdMO8C5c2cZn5jANFV+9Xall0P4btrZyWbt+4Iq3+WyY1jmwOpO70YZpKuT7PtbXui9mO50Q9VSl3KDydoUWnF7VaOdburtXoP9FHBTkvJOIjHKy2t7KeKdSo+W3noRDyY19xQ+YeNB1RcvuYuyER6xUXpATEnXC7XvAnTD4MKFi4TdiJzvUR0dJopDZfAstU0rQ4PH7/qNG5RKpc0rOb3+ZotGcRIzs38f6Aln3zrNxXfOMT4xhlNw0XWTWr1BGAbqcdSPMEgx9JQ4DPid//s/8Yu/+L/xc//o59ANk4W5ReZnF9Cl5JGHHua//bU/5IOHykTdgCBQKoyu59Ltppw6fYkkjrh+fZ5yqcDS4jK2rSTsozhGaILxsWE0TcPzPFZXVmm267iOjWk56IZBFEcIIdBlZuAtIApjJcDRMyU2DRBKqEDXJYbUaHda+L6F7zl0gxjfU6qe+/ZO0O60efPt6xw5MI1jm7SDDnEEN+YW2bN3NwCtVhtbwsz0KM1Wi+mpUXbvniQMQ3KeRxyGLC4sUSzmASgWi0hdo9loqxVhXWb2Bk1yeR9SZeatVsbV+YqCCBDEYZyFLkoQKWEY89Qzr7FnZlwp7KGEPhzHRmjQqDfQpYZj6Rw+vCcDH2oFXRPKS2v/vmmkrrO0sMTZM5cZHa+iZbl9CDWBi6KYKAqxLIsoDBkdHVYgxjYoFn0VHSCVaIfUJTeuLWDoklzOhzRGiBgln5nSCQIMw8C2HeYXliiVi2rFEvriMI7jEkdpps6q7kfHtnFdl1aziRCwsrrKjWuLrK/VOXP2Kk9961WOH92XGcILpqZG2LN7gtkbC7i2yhOsVop85esv8fBDR7FsC6GldLsdDNPgrTcusDi/immaLC6vc/z4QSzTxDRNlpeXefjhY2ryrWloupYpBmbhTZpAiJSgo3L0NKnhuC6ddoSQkKYxtm3SaXdYXFwin88xNj5Ct9vJ+puiGTqGbvKpzzzBaLWAJnU6rQ7FQo6Tr71DzneoVssc3DdJpVpWYD9bVCNVoX2jwxWq1WH+5MvPceXaMgf2jlGpFEmiiCRJqa3XsT1DAaXUwPYcWs02a+s1NKHhex6GLqk1ani+g0gTdKmBppMisB2Xbz7zIpMTI1y5eoNGo0WaRH3BJRV6miOf86iOlECCbZncuHYN1+wQpV1812ZsbJhyyccwUxxXsry0zukzl9izZ4put4NjWczNr5DP++ydmUYIiaalJEmIaVgYhs7BvZPcd2wvhqFz5cosrWabz/7pU7znvoPYlqGsYyyBhs3FC3MUiz5Xrl1lbLxKGIXYlonjerzx+hn27JkkTUE3lI3MaCXHP/3Sq/xoziXVEsIw4r5DM1y4dI2R0YqyHghCrs8tst5q0W612TM9ycryGrVGk8XVOiffucgD9+xjerzK5GgFJ+dgWsroPolT9MwCQSBot7qZ0q3yKG21OvyLE2+zGEV85lN/QL6YZ3lulX/5z/9XvvTlr5AKsEyD+99zX19cpf9YH3ivaYM+ZBt/p2mKlJvD/ga3HWTk1IR2YzwZFN7ojTNbx5xN6QYDE9etgh2D4+rNQFCNiz3/tI39UIBBzc/Vth/95B/wQ/f90PZj+3aT+NtMzAf70+//FuZvI4ruDib5vcXUW4Hmga82wTOx5RgP/EZo6rz+qz/8FX7rP/7b3jdba98Ehm8Webn9Yvzm71N6JvOD77ebZ6Vpki0obzahv1V7m+Z8vZSibbbdOufrC31s2b9t8XOvzl472fs4Ix22bt8HiNl1IDVtR1C0nZf0ziGO4iYhFvEugV3fpD27V4UQDA0NIdKUN998g6Fq9aZteyTFrdrZLkRzp+vj++Duu1x2Anc3lS2xyDuxbjuV/gkfuEG+E6sYt223D0a2j4fetC0gNEmaxO8qBHPjwXmLlZktzOR3Z9/TPmCMEwFCPUTjMGJ0dJSzZ85z6cplTp58iSP3HFGqhCJRJP82fRodGVXMf7J5UO4zeEJTfJCA8fEx7nvwYV56+c954c+fY2pshNLQOLZl0m63Ve5LbR3P8YjiFJFEhN0W5fIQ73ngQSrVKkII8oUCOc9D1w3y+Tw//eM/w0/843/GP/6ph9GlgZQ6hmUiNYux0SprazVOn7vGgX1TXL22yMpKDdc1+eoTJ/AcA9MysW2DNIF8MY+uKyXJIIxwXRchBN2OCk2M4x77pBjAr3/jBY4c3kOPHQJI44Rmq0UYhly7NotpmNi2SycIqVQKlCoqx/DokRlKxRyFYp4b1+eZnpmkVMpz7uwFhqplLMugVPbJ53JMjg/RaLYol0vqfkpS5uYWGRmuUKvVsG0LTZPUag06nY6yRrAsarU683NLlEoFQLC2to6macpjb/8UzUaLP/ijJ7jv2H50Q4kn6IZEINi/d1fGAKgBtBd+KoSKy1ey8UpZNIljDNMkiROuX5+lWFK+ZlJK3njzNENDRYqlQnaZqwUFLQNsUkrSJM3UGiM0IWi3WxiGgZTKHN4wDZIk4fq1BSYmRhFAGHRotRr4uXwGFtV5SdKESrmIELI/KMVx3Be7aTSarK2to+satu3Q7YTESYzrOtQbDYaGKrSaHa7PLnH44Azr6zVmpsf51tMvs7S0gu9ZWLayTnA9lzRNmV9Y5L0PHyOKVC6eaVkksbrXJ8ZG8HIevu8xPlbJFB0TEOC4DvV6nSiKyecLzM7eIJf3+OMvPc7aao29M1PU1xs0Gi1sR3kMNlttBALdlGpRLElIEqgMVYiimE986qucOXuF4/fsJ+x2SZOUOIwpFhyGqhUc22T//t2kacKemUl0XefRrz6LLgX5nIdpWiRJwuVLV7Ftm3ajw9BwGcvVObRvioceOoxh6HzrmVfI+SbFYkkpt2ox7VYbDYM4VteH4zh869mXqA4p5luxeQlf+rMnKRfy6IalRFzabaKoi6bBK6+d4+y5WY4dnclEc1S+9I3rs9i+odg0AZ3WKkK0KXglEk3DdSyWllc4ff46u2fGMUwdQ7cYHa0iNA3LMonCkKXFVfIFj4WFJTzXI00jOkGTbidkZWUN3/d4/bUzjI+NUm80KFeKHD+yhxOvvM3M7slsIaADSP7s8Zc5ds9uds9M9G01VtdqNGtthoZK6JkKqe2YNJsNBHB8qsj5S0scGhvG0A3CMMF1bJr1FlGckMv5lIoeU8NlRCKwLItiIcdQMc9zr53m6MwEQ5UCZy9fY6iSx3IsoiSmtt7EdZUKp9SUX1wYqjD8brtLu9vlf3zrPIFm8vHf/yjNVod2s+LnVP4AACAASURBVIWpm/z4D/8Ey0sr/L2f/du89/0PYhjGTZPRwfFwM8jaeOb3wgx3YuA2b7sZ+N3JBH1ruTPQsF1JB9rcAAeD/RNC8KEf+WHOvzCLn7d3qOfdgTsydqaXZ9fv3+DvbgHWbt6L25dNVbPB3A1+dvNvBL/ysV/mc1/49B210j+Hg6C+J/x1B8qeqtx8/ncE1b2Fbwbb02/Z3qa67iAKrFdkL8c8inbMtdup9MB/Pw90m+8H+3QrZq3H7g324Vbg7tst/fuAjf5LIYiThLHx8f4Cca/vg7+7Vdl8x926fB/cfZfL3YK7QVbuTkovjGETk/Y9KL2H0tYk2J3AXXoXfXvX4K4X0nGXrN0t+yKEUnJDoozGEpWTp2mMVMcYGx3lwYceQGgpZKtkmjYgtjBwZKIoJAyCTeERvfy+3giiQjvBtHzqUZdDx/dRX57j5Se+TnX3IVzPxfNc5hcWGB6uEkUhpD6+q3PylROMjFQ5eu9xHDeHaVrEYYxhmMxen6VYLDI7u44jV/jXn3qW+aUlDoyVGR6usrS4Diim6PrsMtdvzHPsnv20Wm3GJ0axTI3x8VGCbhchI0zTZH1tXXlx6ZaaDEZKvVGTGt1OB6EJwjDAshw0TWN61yiGoStmUwIokJL3faIoZKhYIgpjEIr1Mx2dtdoq3VZCqeyzvLJAEsc898JpxkYLLC2vkPNdFH4LWVtfw7JdDMPA912iMKLTCUiimLnZeUZGqxiWwdVrs0RRzKf/5Js88t5jWFbmK+Y4+Dm/f90ahsHa6hp7do/h+2qC+9ADh/nEZ77Bg/cfQAiN1ZU5HNvhnbfOMVQpkMQhrVYXXer0Aj6k1NF1g1dPnmZoqKxC6aSh9r2Qp95Yp91u4bg2pInqp2H0vddWV1dxXZtOp4uhmwghMUyLuesLBGGEpkXohs7y8gr5Qh6RGarn/Tyk8Myzr3DPPTP4nkUQJVk+jqDbDeh2u2hSEEWJ8hHLGNokSbl48SoT48Pk8x5S6spQPkj59Be+xgP3HsQwFSDRDYOpiTGkluJ7Nt1uh+FqkVdeP8fk5BDFcpEXXnydiYkRDMukXCmQJMoM+/c/9VX27BrF83wEGtKUylcx59NsNFhZXsHP+Uhdw7Qkum4o8RpN4nk2QhMcObibmd2K9ZHCwPd9UpGoQTFNSIVAN01EKui0Oxi6gYZECJ3j98xwaN8U6yvrRGGE53nohk4+7/Hqq2+jS8HLJ99mz8wUlmnyzqlz3Jhf5gPvu5c4jtFN5Z+Yy/t0u11cxyOKUuKkg2VbrK2u4rou46ND5H2HKFL3hzTUc6653uXll95mYWGJarXC/v27MB0bwzbQREq9tsY9B/fg53KkSLQkptmoU8h7uI7FaLXMsSN7SUVMs9HGsmyiKMK2DeyCThJbXD11jiC4zFBVZ2XFx3YqhGGHfDHP629cgVjD84p85gtf5fjRA+imni00puTzeTrdJvm8Cm3uBHUsWyPoxnzz2VfQhcHxY/fQaYaYtvK2dByHibER4jDlT774LaYnJ8nnXOYWZikVPWq1Bn7ex3Fc0kTwuT99gXdOX+P40Rl0Q6LrGmGozOEdCX96+hL32zmSBN45dYVnXznHzESVTqvLeq2uoiZ0jedfP8eZC7OMlDyCMOTK7CLvv+8QaZzQDbqMTwwTJkq51DQMZCYkJIQgTlIlRIPGYqPJL56+RJxIPvJvfoMgiIljwdraNXSh8a//j19nYnyMD/+9n8Z2JUm6wXz1h6ctY0j/823A3U65R5vB0waL1mNjto5TdzKW3c33PVZoa5u9/vUYI8/z+Oe/+j/xQ/f98M5tbG7w1v3JgEc/NPL/Y++9gyTLrvPO37332fSV5bu6q6u9n+6xAAEOCUeQC5ICQM/dZQREI0oUN1a7Ckmx3CCXJoKUuJQoihuiEQERAAEMBgOAAAYEhhjMYDwwGO9N90xPm+quqq6q9Oa5u3/cl1lZ1VltBgMSIeB0ZGRX5nv3mXzv3XPOd873DQnuNqKPlxxvIBDdLBgaFtz1Ym5zvBeP+zt//dt86tOfSNl3r3w/1vkrV+n/bUT6LqWftykJzSW293qDO1JU6moDO3hjgzvVA0o2W3/A3ojgbpBCqU9OCNiWRRB01/vAVxPcXYEsQs++F9x9my2Ogt++GKzWsOHm6/34g684jlCpAG0vEzioa7dxfeg9eGWf5VInSdrjtAbBJzpBY17DHwLxxfu76WvggTu4Pxtems1rgy9nvS31jmfYxT30AT0k4BsW9GmdmJK69PNBRioh5Ybm47R5PeoSRyG5XIF2p02iYxxf4WUdU9aTMjEJofqZsp5OWm9sKRUqbUZeQ+wGGqqlceZJEpIobWqXgq0zs/zFn/8Vf/af/ph3v/NtkHEJtUZJj3YjxHFAB03GCjnCoE2luor2AhJahHEN17NM2VBsMTKqOXjgOqbLY3zunseYKTvsnC4jbdME3WkFlHIZpibLvPjKaZ5+8TQXlpe47ugBPnbLXdxw7AD5kbwpndIhiU5wPAeZmJ7EVruJ77soSxC02nh+Hi1My68WEZZjgdTo2DycbcchjBI8P0u7bZy+ZrOFVJJGtY0lXSanR6isVvBcn2wmS9RtU2lUefa507z62gUOHthGgsbPZIk7BplxHIeXT7zC3NwU9VqT0kjB0JxLRS6Xw/U9KqvLbN+6BcdVQJySvgharQ7Hj59kdKxEcSRvkEotqVbqdNptcjmX6elxpLJxsz46SvDTXq9MLouXCqEry9wJ3W4XtGTbtmmUJZCWINEJ0rKwHBvbcgwVu07I5nJYjodlSY6/9Bqfu/3rvPmmIzRadZRKUK4PKalAqVTkvgce49DBPQgpyWSztNqdtJTYAh3zwosvc+DAHEIIqpUmjushTWTNZz5/N3EQsmVqCtu3Uy0vSb3WwHNcyqURlC2IEtN3Z9s2yhIcPbIr1eWT1Gp1PM9lfv4c9XqTmS3TBGHESLmA70tmpifRieaRR18g7HSZHB9hZXkFVwkqqzXedN0BvIxvSpuEhkjj+1mazZoRuhZ5cnkHNFjKIQhiVpcrffTLBLIWiU7LxyQ0Wy0y2axB7GwLWymkTskChMBxfdMTGidICY7n8PDjz3Dg4B6kI1k8f4qgo9m5YwelkSJbt45j25IwirBti4N7d+K5GUSiOL94GseWxFHMZ2+/l+uOHSCKI3RiU6ks02i0KI2MoonJ5vIsLS3huA4XlioUikVs32bLtlFmZqZYWanwyGPPsW1msl92jZTYro9UFjq9lpyUvCKXz9PuhLzyylnGR8dQwuaDH7mDG47twnVtWi3Dsul7RR5//CxT41sRXosoVmRzOYRU7N8/S6Ho4ziS6bFxvKyHUOkzMVF0oy75XJEwjOkGIa6bQ+CRyxfYu2eOTrdFLu+jXInvZbBth4WFCxSKBaSl2DE3hU5CXn31FHt3z+K6NqOj5T4iU6vVGSn5TI4XmJ6exPdcKtUaQTek0w3wMh437tvC/37Hs9zsecxsGWdqNMtnHnycOOhSzuewpI0lbYSOuf7wTmxlg9bcdGw/5xaXAE2+mGdltYLn2jjKwnNdIxbf6aAUxHGIEPCBB57gvkoNaTv8+Z//OZ1uQM73ePGxb5K185x46Ti5kSy/9C9/kQCIsZCiF2CslYkJOTyAWPPhdX9u2cyGfbeRZGTtNbx/buMyawyN6/fP6OKtLTNoG0W11wK69fuaJDFfu+tebtxz40Vlbmw8F1cRjIrBsTas1/M32Dj2sNegHyDW5mUx8FGvNHPws54vxsDnvZF+9yO/zac/e0t6Ttb/DgBrpZJr14gZ4PJB3GA/3GBJZa+Pbr2W4Wb+2hp5z2AZ52X9soFgc50vNWDDNIwvNWrCxe1Ig9b7VA74vj0AY+PZ6vnPmzFLDjsTYpN/F4++3oymobmnBxfdTLt68DwNY2rt+aSDZaWDfu7lzv1mPXr/WMHddz1b5tXYIPvlxs961mM1+jZsfO31LQ/1+sYYZF/6h9D8WP8AHW7ZXJ5CscRdX70Tz8+Qy+U3zQD2MqvDGMYuZUkcXfSbRmHC6OgUCTY/+/O/wEh5nIyXJZfJEoUdMjmPZruL7XgURsZwvRxxIrD1JLacJA7ySOHR6QYkMuLUqVPYts322Tm2jJT4g9septPtmt4X3yMIArbPbWFyosxIKUcQh7TSHiXXtegGAaSTYKFgRM9B0Gg2icII10uFnpUyDyChqdfqKKnwXN/IJ2ijEQgQRTGWsvrMmt3QoH+Gwt9hZWWFxfNL1Kp16rUGJ189TbFo0LWJ8SIH984gkLiOQxJroihkcXEJIaGQy9KstyiWCog0aDlz9lxfyPzmt1wLCIJuhO2Y/qClxSWefuZlHn/qZJ/237EdpBDs3jPH1JZx3vzmo8YRiCOiMEIpRTZjEMMojIyotVJEkUkaeJ5LojUvv3SyP9lfuLBMFIemdDUtZRH02MYEq8tVtsxMkc+5LC+vpMiomQB0okniiDiO+IGbr6cbBIasJ4qNpEKSEARdpFTccMNRlLLIZvKmFDEwKF8URWybGePIkb0kOlljyBOC+fkFwsiIZ4dRhGUZ7b0wDInCCEtZxFFMEHTwfQ9IKJUL5PMZms0mZ88uEEcJe/fupFavE0Uh33fDAQ4c2AVCGJFo5dBqd1leqaQTviTshlQrVaIwAGl6F5577jj1eguERGu47/5HiJOYoNtBKYsw1Q00vYtxH33TCX09w0Rrk/Agpl6vUq2uEkVdHFf2+yoP7d9JHEeEQcgTT72C41hozDmW6QTruA75fJZcPosQsLCwxMT4OCBxXY+ffu87uXBhhfPnFlldrtJud1LESxjCoTAkX8gDUC6X0Inun1ulJJalePvb3tyf/KWUeJ5HFJlAVCeJEW+PQnJ5g05lfJ+RUh4v4xMlMW/7/oMo26IbhuSyOaIgIJtzOXaNOT7H9sjn8yaZGMWsrlbwPJdqpcZD33yWJI6Joxjbsmk0m0YSRxsyBt/3mT9zHtuxqVSqxFFMuVzi5eMn6Xa7RLFhEZ2ZmUKm+nCO65DLZ5mdm0FIYZBlKTl9+hxCSqamJllerfLo069y8uQZTp+ep5DPU6s1ueULD2BJCykU/9tbZ/ifvvj3vHLyLMVSgbcd2o0GJsbL3P2NZ/nsXd9k57ZpbMvilVPzBFFEtxswUipgOxYrK1W2TE/S6XZN8K0TEBrbttGYPuqHz57DdS3aQcSH/vIvcGyHQrFAq9lg2+wsd999F41mk/e+/724jtN36IeVTQ0yWV7OLoUkXaldTjNtcJn1n60PAIZZksQXMT0OG1sIwZ/95XAJgL4NJKU3Gaj/2oxZc93irDnUV3UOh6BWm665oTesZ816h3e+/RIopVgTKf9WbZ2EQuojXAlK+O2018PS2PPlLrVez9eLomgdG+f37DvTvnuQuzj67aFfXEGw1Gt8FWmmQidJf9JQG/RWepkCWGPL7DkFg6UEsH7iGY7cbZbzGGbDkbt1S6So2MZsypXaBpzwsg2xaytuAndfNJHodbXmvcxav/xkCOKogW6nw/T0FA8+8ADT01MXZUh7JpWVooMWw5veh++nIYfofWbQEiU8lhar/Mkf/zlvf+ePMDk1g+1YFItF6o0KlkywnDxRAtL2uLBSRVo2Y4UC1eULFItZTp09zejYBLafpZTLs3yhRrPZ5V3vfBdWEvKbH7qdn3rLLgBarSZn5s/jOBb5XIabrtvHzh1bcByL647to96oUyjm6WX/zCkUOLaDBlzfBXpN2GA5Fp12B8/30LGGWBPHGp3EWLYRuzbZuYQYie24FAsFVlcqFHIZfNfBUhaO7WBZNiPlIsXRAjMTZWqVBlumJvEzDosLy1hCcWb+LNlchiQ2vTlxrFm8sGwEu8dKhEGXoNvBdW2WLywzMjJGq9nEthWdVoev3fcU+3fPcubsMrt3zJDNZIljaLXrWLai3W7jurbJ7qbVtAJwPDctwbQBTavdWZflrlYbHD9+mvJoHiHAz5hetB7jpBCGMMWy7BTxluTyPjvmprBsiZ/1sZSd3gfm7lBK4tgWYRga1tG0l6+XnVXKptls8cSTLyCFIAxj/Kyfosohs7PT/TK4HgmQkspIOeSyKNsEolGQim9LQbVSw3Zc4iQhlzdC5q6nECIx510nTEyOsbh4gZGREcIwwLYdcvkcrZbpFbUdC2l7OI45Bz2ym9FyydDPK4XtGCRgtDxCLp/ngx/+O645tAPXVRSKGRzXIoxCXMcxxA6YZ5vtOnz6c3cyOT6SSiRo0IKnnnmOXTu2o7WmVCpSbxgioCDth8zlsggN3WaHcn6CkXKWTtgkk7UJgoRzZxbxcy7LF5YJwwjf93BcRTabRUqVsltCsVTC9z2WFpfZvXcbtm2zeG6ZL3/1m+zZPUO1UjPabpgeSnq5Yy3I5XKcO2uCJ9u2iCODQmf8DEkUUavV+dwX7+XggTlDVCWgWqkzs3WGOG6ADiiXc1gOJHEXEpM0SOI6y8vzdDotvMwoYZTgui6NRh2l7D7SfeTIbixbgoYoSvj4rXdx4w0HUjIko/9WqzXwfR+pBGFgglUTwErCboSfyXDu3AL5tNQ6m/GJtGFmzeR8pHTodkPyuRx+xmO1UmXvnh0c3DfL2NgIL75wkuWVKnPbt/GmYwdo1FtcWKoyvWWMTrvFzdtmURqmpyfYs3MrURSzbWqMm47tY/HCMsVSnkq1kfanSjzfJZvLUCoXCcMwDdRBKLBsgZQWAsEHH3+ezy43mJjcwh/+wR8gFTQbLVzL4eSrr/LaqRNoS/Jz/+v/TJhEKFsZhuQ46pd1rS/LHP6M3zgVfSsB3fpxe+Qrm3Pv9dDSwaBgkLSlN+bGwKsn2zO43iAa1SvZ7D13/uD3fp9rD10//NguU0Z5EQp0mYCtj9y9Xtswh2vdCxbX79NGdPDzt9/Ge37t3dz8g28d4gesPy9rn1/t772GsA0iOPpb0L7rXR9Xs+6mv1WKNq07/k3GGPQJ+++bWXqNmMSS7ifXxBCfcnCc1+NrXqmtVYG9QdveWFZ6JeWxA9v9TkLuviuDu/WlGVdQhtCj9k2X7sPTpA/vgRtcDjyEB4O7RGsTEK2rUhhgnUq4CPrt1YpHUbyuH2zQetD4oFj0xgsygX6JaM9ezw23Gdy9cZleADz44BycqHQquDkMWRvc98EH8GbUwGbyMkLQc3M71mkNbYbeofX6c5+WVvTO4eBn5vPeMUjMDyWIIo3v+fzcz/8cCEmxNILnukbrRCfYjoNleebaQTA+PkbY7fLAPR9k9+4yjz9+L1u2bqeQL1OpJUgd4Xl5vvSlO1hZqTAxMcGPvOMH+Xd/9mn2jloc3reLRqOJ57k88dRxivkMy8urnDu3RD6XM8LFi0spw6BrRLoTExQkaVNCz9mJwwhpOViWRdjtYluG9EMAtusYcovY9CBpndI2Y8aKUkcsjmMzdqypVOt0Ox2UJahXa3iuy8pKnW7YMTTqjksQdCkUciSJZnmlQrGQxbZtiqUC7VaLTNZneWWVkVKBYrmAxGJh4QK2owiCkC1To7iux/69s6YMzzElgUKaa6RHXNIjOgGD4DiOg7JsqpUamYyh6tdJQrPZwlIWK8sVTp46z8GDOwgCw8qXaMOApxNzz3a7AY5tI4Tm/LlFPM8FkeD5HnFoUMLBa73nrLqOA0LgOHafwS5JNPV6g3w+x9aZaR597Dnue+g5rju2lySJadQbiFRsPNEJtm0RBiGgyeay6UVsHNx8IYtGI4XEcR06nYBatUY2l8FxHeLI7IdURudLWRYjIyXiJMZxbTzf6xO4eClt/Je+/BD79+1AKRNYSWlKKOs1Qylv2+b++ORt99LttHj3O2/EdS1GRoooJWi0mnipcLxA8OFb/o7D+3fR6XY4es0+5s8umOAyMKQwX73nGa45tDvVVjNOfRQlnF9YoDRSIuh2UVLx4kuv0Kh2uPvBRzhycCdCCr7wpfuZm53Bz7r4foaoG2G7NvlchjNnz1MsFlg4t0R5bAQhBK1Wk5dePs3M1lGajRaFQgmSiK0zEymZj8SyrX6CSSph9PXqTT752XvZs2sKP+PTrLd4+ukXaTZMz1s2m+HIoV0IIfB9j8XFC0xOTdLpdKlXFyhkPTqNOq4tqFYrBJEwv2vYYbRcwrUdhMoShjELC4uMjY3iui533Pkg+UyGlZUVgxa6Bqk+emRPGtTLvnj83NxWgiDEy7iEQWDkZ1L2UoHirnu+yTWH91KpVsnmMib7jgZtGI3jOOGzt9/HE08f57qj+4jjmFq1RqGY5+WXX+Wp506xY3aCYjGPsmxqlYaR5VCCvdNlfuHWe/n5nbN0Oh3CMCTR0O0EfP6uRzi0ZxuOYzM+XsayJH7WM4RH6fzruA5SClzPlLVqnRB0In7jm8/xVCvg2mPX8m/+zb+mVCxw/vwCzzz1DLMzW7n3nnt4+ZWX+OV//ispymdmKK2T/j20roTQPM37f23eTmW+28x5Hpw7egGWCbJ6fXdrAd2aXpvufzes1+qi0roBCYLNSj6VUvRm4LXtDQYtg4Qr8Lk7bmfhxFn27d4/lLBjWLC0dkaG/H+zZrfeGBsTsQOJ7qtZb/DjFPQf2g5z/OlXOfzeg+zZtxtYK71c74esyU1snO+FGMaWObj/a37CwIcDF9GG8zlQbnnx8Wws6+tdJ5dHevvjDwST69pk0mtn0F/bzOIeYJEuF6dJtfhSgd5AMLgucT/w2sw/fL0mpDB6dxcF7GYjg/15l4NBLrmdNLDrB8gDvv16f/3itqTNtve94O7bbOuCOzH0UXVZu9TFPvhDDwvu+sHhJoPEcYpQDSygLFN60wtGh266f0zDG0N7y2wM+r5V5G4z608l+hJZqCvoa1jb4lXsX88pT2cApayLAstLbWf9Muu3vTYJgNCaKO4SxC28vM3eA3s4dfoUUTvghWdepDw2BdLFjTpYtkur1aK2vMh4KUsufIX5V15G6ZA41jiWSyZbJIlBWh5T41PsO3CQe+65l/GxMW6+9ga++VqN7Zk2+Xye8ugYE6USURBTb7Q4cGAP2UwOIS3iOOLc+SV8z8O2DTqilEJJRavTplefbkr5jPNj2zb16ir1WgUhYpotU9K3srKako+ARKCEKdUUQhJGGj+X49z583Q6Iblsnozv4jiKdrdFHEO+kGfLzCRj42WWV2o89ugLTE+NYSkLyxLoOOLU/BLtdptcLoPrKMIgwLYFyrZoNyMKxQJRFJLJ+niuSzbjYtsK21Lc/8CjTI6PcG5hiXw+h+f7NOpNfM+8CzTFUhGhFHEYE3YjhIBmy2zPUOUrbNvl8OHtSAm2bQGKJBYIFDoO0VrwiVu/ytLCIltnxiiPjaFJsG1JtVojm81TqdTJeI5hmHSUYcUkoVFvpEGC1cMQEFLguBZSmUzv3r072L51jEQndLtdRkZKRHGIn/WIogAS8DyPOI5NsC2g02lTX2kQRaHpKdSaOEoIul2KpVL6HDHHkcSiH5zrJMGyJd2g3dfp01pw732PkM04xEnE9cf2YVkCqYwjLB0LpMSzfJIY4iSk2WxxaN9u9uzblkoZJFRWK0a3zvPolajGUcTXH32Rowd3IJVxmsrlUf7iQ7dTXa0yPTXBof2zJmh0bOI4pNVu4bo2Ok6o1xoEYYCfNQyZthMzMzWO4/igLQ4f3E2tUcFzMlRW6oxPjNHpdKnVa/i+i+c5ZLIeUpr9DqOAyclJLFtjOw4Cm9HREpYtabc6xFFsSl7DCNdziaOIbtdIXBzaP2fQTdvi+Eunee7FM7zl+45CollaukAulwWdoJTAcRwqq7W+/ubKSpVHHnuWnbt2YTtZsvkMtuuzstIi4xfI5EooP8fy4jI7dsyCFMyfOce2mSmefPo4R48dxPc8lASEJtZxWgJsxHpLxQJSWmkSITL9f7aFTOVidAzbtk7hODanzpxltFxEKYUlFVJppIhxHIuDe7ezc/tWQxa0UqE82pOHSZiZLjMyUiAMQzIZDxBMT0+SyXqUR0v8zFv28CtfeISbMx4PPPUiT7/0GjceO8DRgzvxfBtlWbx04jWyWZ9CMY/G9ENLS1Cp1FDKAa0wvdHwzx5+ho5UfPAv/5obb7iRV185ju1Y7Ny7G1+5fPqWTzE6WubX/92/IowDYpH2DIleMs7cb9/KjHKp4G7t/1w0vwyrBBk2l1xqXto43maJyo1B36WO8Md+/D186NaP8H0H37JurMFqn82CO5McHPh+kyDsUialEWYXlypbvMyYm8eEgsroEu/64XcMfHY1RYMDyeDNSlOH+gkXf79+v4Yjtlfia1zehu9zb91B3bnN+uk2om0yDXCH8Ulcjb3haJ3mktfNG0G+sn57l/6te8QwV6K5973g7tts387gbjBLsRlyd/ngrkfVvvZAkpa6ZKMr/AMHd1fAEPSPGdz5fsaUmzkuvY4LqdTrfGhvFtyZ39H1LMIkMCWGiWJqapLGco3l5VXKY5MgFJWF07iZDLZl8ZH//lfsnJ1hwvNJYkWxMMbY1CzHX32V8akpWq2Q1145TRybXrhrjhzkm48+wiNf/wb/5D3v4V/96SfYV7aZGh/l3OkFkiSh2TK9Q5lclspqnXqjTqmUw/ONaLGlLFqNJplshgSdar1BGEboxJS5njx5mpmZcZSEXDaDchyUUilK00PDTOCgNWRzObI5o7OWL3gpff0YgoR6tUom71EoFDhzdskEMVISdCPmtk6gtREoHhsrcu8D3+TCaotyMUe5XCQMA6SAbNan1miS8YtUq1U8zyGOI5IElpdXKI0UULZFEpm+uJltUzQaLZO1TjSO6/LZ27/G/t3bSAQpWY6NLRXtbsdoy6HxfB/bsrEti+WVRTJZnzCMUJYDCBbOLxGFAVEUU8y6vHBinr27txAnCa5jEyeGxEMIZVgeRYJIWTTDKKJaqZLNZFPtt/UECaYSxhAqZK8dUQAAIABJREFUCSS2pbCUzde/8RTdbofJqTHAoCJCC4IgwPFclhYv4LoOq5Uqd975BFtnyuTzGaQwOVrLsgmjiJXlKqdem2dyYgKQIHqETSZoi+MQpexU5zBg565tZLMZ07OmIxrNppFc0IbuqdXqYEuH++57lKmpsrk7tCJOujiOxfMvHGf79m20mi0cx0UnEVpDp9Pl8L7tpgfUSvtSNJybP8/33XSEEydOs3vPVqQlUFKwsrpMoZhDiATbcul2u5RHy2gMW61rawrFMrbtEnRjkAm2rXDdDJ/69L2UCxnarRbFUo7VlQqlUpEoRS97Za75fJ5Op4Xv+0SR5mO3fIUjh+YMAqoMeuRnPIIwIo5McH9ufpGx0RGyuQzdboCSihuuP4CUgoXFJZ55/hXm5rYggGazheuaEtwoSlCOjbIcjh09TLMdoVyfbqeJ7WfIeHlIH6kLyyvYSmE7RlajUCjgOg475rYipCQKA9rNJo7rmLLcVFpBIKhWa2QyfhqsJ2QyPkoqVlYrBn0WNn/zya+wc/sEk1Pjpm9RazrNjiHIyXisrqym/aiSZ559iYlxI3chpMBzXUqlAt987Fnu/8ZzJFHA9NQEy8srKEtgKQulLPYWY9rnmrz5yF4ee+Ekc+NlwiAkiCIcx2Z6egLHtQlTzU2ZVgt4vkfUNdeoUhYfePAJoiThd37r9/joRz/OsaPXMD45ik4iFheW+NQnb2PX9p385M++D+FahHGAkjKV5kiDEA3/MMHdWuBlkCLZJ9YYVka5tpxYN6dcehuDKM96J/5qgjuA973/n/Brv/HrvP3at68hDgOAyKbIXX+Bywemm5l59l1G4PxywV36vhH8+90P/w6/+f/8XxuG+u4O7gYDkM1HGNguaZkmfAcGd72WneFf/0MHd1eDDn4vuPs2W5zo314jJBkEkK/cBpdeJw6eliCakrzeRWFYMBEaw4apzYyjJWhx0cuyjbYZYk1GQSdGxBVt2B6FMFpag9eb7r+vMW+SbsvoIos1CH3DsfRe62BosR7OF6yJZW7GzjRs3GSDhl6f6fIyN8162yzzORwq7zlyPRIKIWS/98KUMKzdkmsTW9Ifr/e3CQqt/j4MipD2Sje0ltiWh04kIokQaMrjZSampvnkxz/JU48+zp5rrkHZFgi46aabaIcxHQtiy8fPZjl78iTj4+PEykEkBVaXV3nXj76TcqHEnp17qNeaHDl6lNVakx95xw9xx5On+aNPfZUPvOsalisVbnjTNXS7HeJY89BDT3Lk8G5GRsqceuWM6dGyrBTBi+m0WkCCQqbshgnddpcvfulhjh3Zy7mFFQqlEkgHrTGoJ4IwCFCWi5ASy5YIoel2Q7rdDnnfp9lo0O22kcrCy+Xw/Dyrq1XKpSyNepNiscjioimvLJdLZHMZLlyokMlk2DY1yvJyjcnJSSIdkclniQJFpx1jWYYl9O/vfJiVCxX27N5OHCd4uQzStoiikEI+ByguLC0zMpJjeXkF389ClFAql3jmmRcZHysjBdiuAiVQSkDKPpnohC9/5X4OHdxDFIOybGR6zQTdgDvueJSbbjiMlIJC3mNiYryvo6e1QUBJEQiRoiRCWqAVluXSaDaI4wSlzLg6SdA6Qmob2zLSAo5rpwQkmgceeo4j+7fz4osvMzU5jrRsEm1KjkHjZ3xEYtGotHn2xTMcPrAd3/cMSiQlYaL5yMfuJOs57Ngxi+fZtJsNFpdXyXguUpLqJ/ooBJZURqYhn6fZbBKFMbZr4Xm+IZ2JNa7lYCuL1dUKu/ZuNcip4+C4Cs8zZaeTU+MgwHZtEpH0yxstxyGXyxGGmnang207aJ2wa+cMiJipqREcx0nlShLarS6u46G1RAlT4hjFEVaqIbiwtITv+ziew4kTJ3nw60+zZ9cczzzzAj/87jdz2+fuQxOxZ88cI+VRtBZ0Om2UpZDCQceSTreNUCrtlU7Ys2uaMAxwXBekolpvoqTEUhAHkMtlKJZMOWCSSJ577gTTU+O4rkJZkpGRErNbZ7AsmyjWZLM5wijC81183+kn+2zHwfUcVpaXcR2PqBtyYeECSZJguzalYhbfs0mSiCAKaDZafOORZ5id3ULYbfP4Ey+wc9dOhFREcYxINInupKWVBu2WSrNyoYZlOTz33AlyGR/bNSQ91x3bQzZjyiEtZe5rYSv8TI44Fth2xuj1WTbTWyZwPZdarYGSiscff55iociW6Ul0GLF713ZeffUMd93/NDdef4AgDE1S5fNf508feYS/q2p+6203kcn5OK4iSWLabfP8sWyV9oqaZIzRL0y47UsPsmNmnF98+Ek0CX/yH/6EX/6VX6U4UuLYdUcpFousVmrcfuvHGRnJc91brqM4XqITtFGJNK3QSMTAzDWMa3rQlJJ9HbtBBK43VcpN5rt1qNe6NoK0fHKTOa6XuO0lcgfLLc33at3y/WRiWm7ZK9nrVWQkF/V4Xd7V1Fpz+xf+jrcefOvAftIP2i4KrjYNdC67obUx0797yMtFc3+63URf7JEN+7s/F6ef/c5f/zaf+dtbgR67qERZhpnV+AKS9W0WQ4L+TchVNvo8m627sW1kLYBda/fYGJgP/n/tlSYHkrj/vpmv1Etcbxyjvw8Dr81813XHyto1PGyLG8XMjTbp8JahwbHXtfMkCWoD2rUZK+Y67kwhLtrhde1VA98N44PQQ7bLwHeDJa7S/Oeqkxeb2feCu2+zXbHO3SVs01xLr8Z+4HMhNr9gh1n/phpAh9atN4gcDQnuhm5LpMHjJSxOA9NelkezHs7X2lDDXgn8bI7PmCknXbvpN+uZu7QN32IvK9qb+IYtv/58XZw9G5wQh2XRevs7KM2wmSmV9kUKhevZ7JjbRWmkSCQSWs0mOkk4feYUpWKRibFJown3wD3s2LUNP1vEzc3w/PMvMTu7hZ/+iZ+iWquwd+9uts/OMj01RbPdxrIsTr16kn/2gV/kl//gz7hhS45SKUu73TWB0uwUzzz3Er7vorUhj2nUWngZl3Pz55mcGmfh/BKWbYEWtNshH771K/zKL7wHIeCeBx5nx9yMKZ8Dg3wKsJUyzoRlCA9616hlWSBM6aPr2KDBUhbtVpdWs220sDIeyrKY2jLFufnzjI+PmmCikDOsnEmEpWw8z2NhaYmg00GHinqjxthomZOvnabT7fLyySWuObwLz3dJdIKybEOZbhv0aXSsjJKSYjGP1prJqTHCsMu2bVtAg9bm90kio9+nlKTVaqGkYMeOGdNnJQx6FIZRSkKjWTi3xJ5d27j1c3fzgzdfm/ZjmYnEsiyUVIalVGuzHUziQabX5EsvnmBqcpxPf/Zu9u+ZBSGwLUm3G1KpVhkZKRKFCZ1OgE4SbrzhAMVSDksZYXLLshHKIHdSGqIMZdk4ns3zz73G3NwEp8+cw7YUZ88sMDZewpIRz754luuO7UVaEuVY5PNFJBAGQVq+GRLFhl21WCwYwhfLJgwMwgKmv1II6HY73Pq3d7J/z3akANdL9fyUAyICrQnCAMuyTFIqDY5JJ9wvfuk+ZrdOUW80+z18URzhui4Z30sTWppOu0OlUiOXy6Xi4SZAtG2XarWO4zi4rkOnHTA/v8i2bTOUSzmymQxjo0ZD8Lpr91AqZVGq17MY42dcgvQ3lVKiMeLBVhqw5rI5Hnv8ObZt20IUmf2yLcXyhWUsaRFGAcqSBoWzFFNTE4TdgC9++UH27N6a9p5KLNvmzju/Qca3yeezqbZkzPy86R1sNlsGkSsaRK7ZaOG6PoVSniSO+/eVshRhN0CAIZ9RCsdxmNu+lZ6gd5LE+J7H6uoqSlp0uhGeb0iAXM/o+0khKI0UsG1l+hFTGR8pFUEYI6RFvdagUCzQ7QY9zy5lxczxmc/dxYH9O8nns4yPl5EqwfMctkyP4bg2llIcO7Kbeq3Bxz51N4f3z3Ls6C5+/ofexM//wCH+l0/dy0/vnEGnCLTnu7TbXWzHxvUcpFAoy+oHeJOjef6PF14FNB//6w8ibJ/3vu/HufG6Y5DEnDl5kv/vT/+UP/yPf8jRo9cwOTNDN+iaRM1mc+oln9qsm+PWO+aX/n5TZztF7ga33Pus57Sj1xOnDNrgur2+vMH+vB7q13OmB8eNomhdD95mJqXi/T/xXv7tb/1b3nLNWwc3PnyfBnr/rsZEfx8H1r3MOBvRuKHjDoxz/9fu5sP3fZTbPvMJ1oKo3ljJpvP/8ABteI++TuKhwduGtS8adz2qKtctt9k+rF83SZPIm2/3an6XzXHC4csMs16Q2Etg9BnTN1l26Lb1pXXw1u/Ppfdo3fEPDDjovw4mFzbd7kAl2UY//o2w70khfJdbrz/iqtd7g7IL/6NaLxtqsqWXtigy6OLVlXNAnGiEksRJjFCCTM7nxpuvZd++3RSKWXzfZXJ8gpmZGcKuTRzb7Nq3n9VmHRwPKXPsO7iTVqdBGAe87/3vpVQqoSzFAw89xMyWLRQKBd7xzndyfuE8szNbCbJ55ucX8X2P5194Gd+z2bt3jmazxfjEGLbt0OmEtNsdXNeUuNm2KdXsEXCUfB+toVpr8L4ffwdSWqANo6shClifWV47P8I4/5ZBEdrdLu1WiyDosnj+Ap7rYNs2nmuCuzCKaLXa1Go1xsZGqawa+vNms4VjS1zHwnMdgm5EJpNldblGu9Uk4zu86cZD3HTtLrQQtFstms0WSZygpCKOIlZWVk3ppWURxYnR69MxxVIBx7ZwXceQqqSlY81mGylk2l/VMcG3NuVCvZ5EhJkg3v3uN9Ppdti6ZYQwjPoSCkIaVFEpo48YBCHdIEQiiKMI0vLqQwf3IJC87a1H6XYCSBKEhnwxz8hIKc0OKjwvQ7vTJE4COt0uru8TxQlRmKB1nJZ/CmzHIk4ClIKfeN/NlEdHmJubpVAsMVIu0WrWOXJoFz/6wzfi+qaH7smnnuev/vvtRFFM0I2oV1u8euIMlWoVy1JoHdNqNllZWaVYymM6LCXdIEgz7ZooiigUsri+k07s5ppPkpiEuJ8hB5MFbbXbfQfgxGvLxHFCeXSEOIlJkoR6vdFHSGIdoRON6/ps2zZDrV43Yt3KZIbDIKJWrRPHMdlMnkKhyIsvvYZUgtGxMnd85aFU3D0iCDoUizkQYFmS1dUK3U6IQBKEAWFkxOFdx6E3fZ86dZbjr54nSWUGVNoXtG3rFvKFPJ7vG9bOfBbXcXBdl1KpyFvfdBi06dNcWFigXmtz8/ffwIlXzqIT0nNrniU60bzw0qsmB5AkNBoNkiSh3W4TRzEL55fScwloQb3W5M67v0HUDXBshbIUsU6oVKu4jkOr2SYMDDOoZduMlEopMmySgnEcMT4xhpAC27LRwuzPQw8/yfz8IgiDLLuuT7vZSQN5TaxNcCiV5Gd+4l1oHROGISdPnsLPuNRqNYQSxHFEEATkczlGRst4js3jTzyPbVkIobEdi//6q2/jAw8+juNYNJpNhNDkCznsVF5Ep5qhlqVwXId//dIpEp3w13/1l4RRhF/MUyhkufuuvyfvO9x991f54H/7C4Jum1jotUjg9SJLGOSu9/qHsiufW9aOy7A1y34PdM/pvxrrO7tp0NUlvKr1v9Psc7d/imvef5TbPn0LsB5B7VmPKfSNkDy4WpNpT/cbhf58J5qlVFpV8j37TrTvSuSuVyIohLgkXLvRNi3vEGs5hh4czCbI3ToGJ63XMVn2MyJDN77maGvWGDj7CNXgoqlmmdYanQq4ajaUmQz0BfbRtt4xrCsTGK4XdLlzJHrsnJfp0evZcHHzzcoyB0sQLv5V1pepmFdPyHRjdq6XJQPd11lbN8YVOA9aCHosbHFiyDaSOOb4Ky8wu20bGd+j0wn4L3/yX7j+hpsIkoTRyRk6sU15bDtxbBPpLghJvlCk0Wjx5JMvUG+0ubAwz9FjR7nzzjs5ceIEL7zwAm++8RqKWw/xmx/6PL/w9iMIIlZWVpicnEIKSbvdxXdd/uazd/H886d465uvIY5jXMfFtm3DTmcr9u3ZilKCRx5/hrm5mZR4w7C/icFjF4YdM44j8zDvOa3CXJOu6+BnPFqtFghBsZijmcoYnFtYIuN7kMSMlEssLV1gpFxidWUV17ZptUPGJ8bJFzJICdlMnpWVOsdPvkYm61Aq5ZmenmDlwgrdoEMcJnzq0/dwzaEd+L5Lq93CcWxWV2p4ns/i4iKOYxMEkSlhS5kr6/U6J46fpLJaY3y8jG1b1Kp1pqYm6ARdLKX67LSJTtLgDaQS7Ny5Ddu1sW07dWBN4Uc3CPpO9eNPvEA+nwFE6nOaayqOYkbKI7iei7IUzVbTJHJ6Olxac+b0We646yFcWzGzdQtaG224ysoKmZyPpSyCVLfv+IlXGS0XsV0bZSmqqzU8z8XPuBSKOSzLSoXCMYFbq4USMLfN9IT9za1f44ff9RZyed9sXwhc3zEkGaIP4KCEJAwjbMvm0IFdaA1LSxcoFYvESQyJxnE8wiDG8TyEkHTarTS4Ju09TLjxun088sgz7Ni5FVMirsnlsjQbaVBtpeXmmGAvk82m5eSQaIHnOmSzGaRKECikhF27ZogTU269e/c2wjA0KLFKyxORBEEXz/VR0qKyWiOb9Q1LqO2AgFbTXKuZTAaSkNNnzlMqGEKY1ZVVHn74SbbOTBlUPolTwhcjiTM/f5aZrVv4xCfvRCmYmZkim81QqawyPT2Gn/E5c/oco6Nl/IyP4zrYyiRUkILTp84yPT3FwvklxsfHyeUySCFQlqTTDiiOjLB313aCMMTP+OiUwS+b9bEtC4liYWGRfCFLkmii2AQAvYx1txNQqzZJ4oQzp8+TzWVRUrFt6zRo3U8W6Fhw5sw8xWKeMIxoNpvkcjk6nQ5CCrLZDFFkkIvKSoWxsVHz/HAc/IxPFIW4nsOxo3upVqsUC3lcz2d1uYJjKco5wUe/8Qo/uncOy7YIgxgpLdrNDlJaaA3Hj7/GLz36DGMjJf70P/974jhmdaVOIhWtlfM8+ciDtNtNPvBLv0izG2J5CoRBf9f6iV4fcjc4JQ2yXvZMDpR9DbIvb6oFx5psjhlf9P/WOtXCTEWuTWw6vPSrl/gYLA8FCCNTztqbT3vPmB5j9Bp6Nbw/b62lIOGnfvon+LXf+HXeduxtlz4xl7PBXq9BWYANvYBXEuQM+jH9ElExWGhr7I8+9v/yL/7vf8G11x9dQ7k2HO/gmLCG4mwWXA+2Zmxcv9dDOfT79Hz2WDGHobybCdRvar0xLuM3XU3guNFL0kliyt0Hf7/0fZ3w9+D20vc+kYjW6xjYL1XuObDTV+xLXhFyp3XaqrT+nA/18y4xziBCfUWxwFX4tt8ry/w222Bw1/she0r0AlINq9eXZRm61mZlmRuITzQXk51cfoMD6/WGGvx+HSY+WBo5UGYyZNg3EopON3jliw4tf3hj9+hqyiqubuC1N9HLKqMZKRfxfR8A1/F4y1vewpnTr/D3X7mTY9feCCpHrCVCaRzX4fRrZ5ia3AKx5MTLJ2k2OuzasZVz8/NUqhXmts9x7NprabRWGS2PsnVsit/96Jf4kSOTzG3fwunTCywuLCO05tWTZxgt+LQ6Abt2bumLNgdBZBwrEePYFnEUMTs7BTIVxU3LF6SAVrONTmJsy0FIges6hGGISsXNQROGIY1GA891UEqQK+bRQhMGHVzPaOG1mm2mpiZ47bUzjJQMU1+z2WJpaZVON2J8YhwtYoTQ+Jks997/LBcqFW668RCVSsX01mlNqVSgslrjyMFdeL6DJjFljLZxeIU0iJzrOSjlcO7cQipHYEhq5nZsZWKibPqcHCdlFXQRaZ9YrVbHcdy13pgkRFlWigrGaTLIICM60bTb7TRZA1MT4ygp+erXHubg/jmEFCjLwrJso6uYOmGOa6ORCGkcvjAKKRTzXHNgF+Pjo2ghkMri7Nlz7NyxlU6nQxBEeJ6PQFIuF4ijCOWYslAj9SDpBl1c10ULCdqUal1YWmJmywQ75maJo5DK6irHT5xn7+4ZLCcVGtcay7bS3glt+pbSifDjn/wKTz/7Ktce28/99z/Kvn07mZ8/h9YxQRixeG4F1/M59dpZEyBEoenztAxK+tW7v87OuVl2755lfv482YyXlo4ZrSTXsdFSGNKPNLiOk8jIckgbEui2uwRBByEitFYsXlik1WoZ/TspWFxYYmxsjKAbUKvVeP75V5icHMd1PSzb4cTLpxgfH2dhYZFazSCGp8/OMzZWRgpJLpdjasJII4yPj2LbFrat2LljK41GiyiOUFIShCECU47sOpLXXjvLjdcfNsysUnLu/DxjE2XqtTqu6xrR9nyORqNJpVJjfHwM27HRGgr5HEEQMD09xZnTZzl1Zh7LVmRzHs1WB8dxUY4N0pTVJnGMshSddpuXXniF+x94mhtuOISyBCBJYkE2lyEIA5aXVvnmY88zMz3Jvfc/yY65GfL5HEGna9DZQh4hNCJN4nzhjgc5dmQPD3z9cfbt3YUAMpmMYcxLg8VMNkO72UkDXI3ruERxxN/f9XUmxoooJWm32kxMjhN0Az56y128eOIM733nDVxo1/j3dz/FrnaHyYkxemXLSaJ5dmGBf/nw49z2Nx9lZtsopZEio2NjZDJ5sn6eD/3XP+Gf//I/5fC11xBJifQyCBGn5c9DHsBDn+qXeGwPzp8DC/d68daNdYlgbHA8Q39vnh9SriWMBrfXz5kNcUB71usFHFxXp/PKsFLRtf0cUpLGWvDS6y0C+Nmf/Ske+fyzFMdyGw9k02O8pPUi0sH6ymGfXcKGBdBpsQBhGPN7f/O7fOyTH2ZsYrS//KUIWgaDvisNMoeNsWlwNyS43CyB/EajeK93PEnqC24cL33frKTycnYl5Z69ZZSUCK37JEjD17vCskz9Lfhur9cGg+LvBXf/uDas524NCbv4B+o1ZSYDEXoPoduYIxrMivS1btikFMCk6/sXxzqEZIMlOjZkdyodLyVKEVquI1rRibkRNMZRElKxRh4z3HpHG6dsnAlXl424EuuRmGz64E2zkBuZxXqaYIMWx0kffdvsMaI33HAXL7v2S/WIVNY+p//ZpbRuev2HDGaH1gXLwiB5QiCUTZxo87fUYAlGx6Y5ev0NnD07T7VSwXNdnn3uOYqFEUqFEkEnoNNp8+EPf5gXX3qeTC7P+NQ0hUKRTNbn2mNH+cqXPk9pxOXm77+Jd7717fzaH32UsYwgKyLa7S7TU5Ns276F0kiOw4d3cW5+iaAT8/A3nmXvnjnarToCbdgk+z1WEltKVi/USeIY1zNBieNkCMIWnufSaTdNaVBi0BGE6RFyHRsQVKoNXN/Hsm2EgHq9ie/6VCs1RsoFo4tlKSqrNaIgZmbbOJ5vU2tUEdoIRp86fQbCgHe94xg6CQmiLlpaZHNZtE7I5/MsLS2bHrQowrIytNshnmtz5vQZ0BEZz0HaHh+55Svs3DpBHEWMjI7QqbWxpU0YBriew5fvepBt20wgEMcYMhaROlZKIizTLxNHCZaSWNL0H8ZRhLIFn739Lk6cOM2+PXOmx1TE7No+bdgMLcvIW0iJ1rGRMpA2aIswaJoy4cQQnEghcXw3ZT80zqHpR3NwbJdExwiR4DjmvCtpo0mIkgjXsVCWwnN9ojA0pTK2otVqkcn4RFGCk3VotTvkSwVuuH43rmdKSlutFo5jghWhE5r1GrZr0e626AYdrrt2H4cPzRHpiJmZMo6tKI6U8N0MtuWTT3sciyNZenJOju0ihUG5du2YRciEJIkA07OVJDEqzRgniaZWXTElis0mn7j1Lo7s340SNkkSYCnFE088j5IG0VaOzbkzi4yNlInDBNt1yOSz6NgEOV7GY/v2LSwtLVFrVMnls3iuz19++EvMn17mrd93DM+1mJgYQ0rFmfnzFEp5atVVgrBLLpPh7OlzFPNZOp0WUsX42QJnzizxidvuZf+OSXzXQjiWKft1XUrlAksXLtANQyYnTYCCNKLpH/v4Vzi8bxe5bIZTp86Q8V2EhiQNkM6fWyCKIl48fobdc1sB8OwMcSh49ukXmJwsI5KYRqOB6xjELJfLsn/fTpqNOo6VpdXo8sCDTzI+kSeT9Tl7aoHHnnqNt9x4DVu3jNNpd3nymefZMj3B8y+cRKD56n0Pc/DADjqNBmOjOVzH4tDhfVQqVfyMuU9JEjptI5nh+Bk+9dl7iKMAkSREYUSn3SYOA8qjY3iexeh4wVznQnLT9XvZt3sG13M4vGMLP/m2Q/yfdz7L+7ZOmNJkNM9eWOSPTy7wkb/4T7hZnzOrbUbHJonbHbzmCr/3x/+R3/393yczNk4gDGGREIYQaj2WI9ByDeVJi1bSufhi0q2eWLre4BAOPu4Hkbe19daTagwieYMByfox1wK9jWjWWsyzJgYNppwv2UCi0VtX6+EkLz3CkI3705v/tNbEcdIP1gfn1g/97X9j/9QhlDXgK1wBsjTUxNrv0LO+NNmlxhxy8tf9wgLOvXqB//zFP+LTn7mlT8wynJBm/b71kFLLdvp/r/+N1lHjMdRfuZQ/NPBd75yvBfFJn/Rk43akWqsquRozFVFx3+8Y5q8Nq0bbqHnXq9ga5h1tpmc8+BIY31GbMg+0SM9/Ws2jBu7SYYie6PneOkWbh/wb5o8Ofm8GvHTAPoys5VJB4xVX8l0muJOsAUb/WMGduFSJwf9I1g2Cb/lAB2/Dzaq4++GC2IR9SV/5zXwlY/TLH9N90sl6IpPNrLdEnJgStG9nVfogdD9ovX3viegO2sY+CKkskji6ZJZuWHC3Wb39msAo/WUsZaUPrMHA7+J9vtLjW7+9dJnExlJm/+uNJo5l02y3cGyXTqtDFBqChvpqnSAIyeWzpkwqibjllk8wt32Ovbummd0+yVNPP0shO00um+fp5x7jiYe+zD/9gcN0g5h2p0ur3WZ2dgu241AoFAiDEC/jkOiQC0vhnQvRAAAgAElEQVTLTEyNG/p0BHGYEEUxt972VX7mJ99ugjupiMIEhBHRVpYRRE4iiVAWyB6DW4KOjZMSJYaAhySCBNrNLp12h/mFRXbvmQOgtlqj2+liuzYrqzW63ZBczmf77AwA7XqbTtgk1iHj42NI5XHq1DyTk2Uqq3WmJqdYXl5BiwTb8kyw5tp0ux1GRop0Oh1q9Q73Pfg0u7dPsm12ktHxMotnjB5ZEAXUmg3y+Sxjk6NGriGIaTfbFEuFFFXTRDpGGCzLCJMLgaUc0xfnGomD06+dY3RslNVKha0zU3TabbQQplRRi3SCN0QtnuOycH6ZUtnILpw9u8Dcju2mfzAO+6LxQghDKqJskigi1pGhkA9Cgq6RGcgVM8RRTLVSxbYdbMvG81w0mm6ny6nT8+yY24ZlW8Q6MZqKtoPQCZ1OG5GyybmuQ9jtYFmSRqNBtpBHIFPWubRfNYqBhPPnFkzZaALNRpdmo83YxCjNVpViKU8cx3z94Sc5f77GT77/h4jCgJWVFfyMSzabQWtNs9nmC19+gCP7d7B/326kjA1baBDz2smzZDM5prZMUKksMTo2TtA1kheWLVG2Q6NSZ+XCCoVinmwhh+t7xEFCGHRxPZskLUWVSuB7GeJIcP7cEvlchnwhRxwHaMyxtTsdHNfFcxRJrJHCotPtmmeBBe1OE8fNo5RDq9nEsaBRq5Erlzh7xpC6GA8pSZMCkoUFI9IucYhjzZlTp6lUq1x77QGq1SojIyN8/vZ7+NEfuRnXdVlZWcV1bRzXY7WyjOfk+Mgn7uJXf+nHECJmeWXZkDUpGB8fR2uNpRxWl1e546uP0ulE/Nh73szoeNH8fn6Wykqdj992D++6+TC798zRDTrYts199z3K29/+ZrQOCYIujWqd4kiJBx9+gh/8gZtIEHQ6AY5lnrWddhs/4///7L13tGTXXef72fvkU7nq5tDhdlJLrVaWnMfGD3sYYBhjG9vwWB7CS8PjzZuZ9YAxZsZgDzM8Ex7BwGAzgDEYI2wLR0mW5KTUkqxkqSV3S+p4++ZQt/JJ+/2xq+6te7vqdrfUklnL/mnV0u2qc/be59Spvff3F75fDNvjs5++C9+3+cE33wJKabHyVsCdX3uCH/yB68jlU0SxwnJ8RHue1iUHnY2Y4t2//UUKScKHXnU1/9e3nuEv//zPaNbrmK6FNCRBEHDm+HFuv+0f+eUP/aYmSzEM4q7VyeixMVNdUbYk6d7s94u0qPbzfWnndduGs3EzmNvuvH57rQ0woNpjSdYj3N3ndqQEzj9fngcIex2z0Vayqb93vP09fOC9H+g+uG877RP7ddLjLb1J7+VAv2B7bfvivbfzrRMPces//O3246L/PTZMa32v0etebB7z5anB1HO/rklbZwt/iX0I2WYA33L+JvK6Hnu6fr312rlc7D436f4Hm4MesuvE7fqIL3K/+mLtRYG7y7Aflmxcm2Pbr3BYUdv3dORuO+t4DbqjdZs+73cenUhgn4n8EgLdwtCL4nk5xd1tKLURAev8+2LSH9ZP32AR6kUh+1Js3fPSbwwd71O7Jq7z0sBr8zV0Fq9e3rl+bffLw984ZnPkLrkIhsye97bPsZu9ddqMLg/vN7/5DYRIqKytkUr5+KkU1bU1glaLr331a4xPjON4Hp7n8txzzxOGIRM7JoiDmCAKGRvbQaOZ8I+f/xzv+cl3slhL84e33cOb9g/TbDQZHMiT8lPMzS4yMFjAciydOuc62JbD7OmThNUy2WyWKBFguAzlHXzfQRomYRAhDUm7zI5qtY5j20hTIkhIhLFOR2wYZjsaJemwlp2bnuOzX3iQTNplbHSM+fklBoYGcGyLSrVGsViiWMhx7LkzHDywB5TW4Mvks20GS4lru6ytVPji7Q9zy02HcByHxcUVpJBMn51navcokOCnNCOgNG08P0U6laKY9RgeKtFsBli2qc9dWkaaEs/zyGQzgK51atSa2LaFaZrESUQYhphyYytptgvk41hhmSaKhDiKyOXz1OsNSoWc/t1LSbMZ02zErC2vYEgIgia2pWv4atUK6WwWKQ1KpYKufTBNpKnTO6WULC0sE4URlUoV13UxTYPy6poWl19cpVAokIQtnnj8KPv37sFzXWIVk8Tak3r27Az790+xtLyM57okMayVa7iOByrBtEwWF1Z1agyy/XvTzJRCWGgyaB2x1IQxEbVqnYHBEtKQtFoBp06f4XN3foubrt+/zqQKkmqlzszcMlce2Ik0IJXytbwBIdPTM4wMDXNgz05GhofbANbGNCxq1QYCQTafwXVs/JTdjjTQrsvTlPlBEPD3X7yXoWKWoaFBpBCcOXWWbC5DksSYhtlmNTUwLE3w4fs29WYVP+VgGjb1egPHsbEsDdANyyaKEppBgGFoCYdmK8D3UvoYQ2CaYEitg7eyXEUlCs93MU3NyplECtdxKa+ukUlnqVbrfPnO+7nm8C6m9k7QbDXIZLMoYNfkiK75XFsjl89y4sQZZmbmyea19uJA0ef+B7/N5MQInqOfU9dxiJMQIQQz52bI5/MU8ylmFxe56YYrCcMA0zRI4oTps+eAmLOzC+zfN9GOrtukfI9qtYpt2yQqxnFshBD4nqPrVWfnSaf0Mbr+LsUjjz6FikNe99obKORTnDo5TaVao16vM7+wTMZ32Tk5yjPPPMdAsaDJWaQmXalV621pGp169Y7X7uefv3ov/+tnjvCRj/wRSImfGyZtWwTz3+HWT3yUhIif+Q+/RsrT4/A8XSvZsZ7cfH0jcP1B2vaRO/1+dx3e+WmavdkV+/XX6/2t5xumRRzFmyJ5m/vcHrBuPae7zmyzFIDcFEn8iXe9g3/zvl/cqL97sVk7PcesNvZPF9Fu52sQwNzZVf7kjj/ETEv+7GN/3KO7zZJI3fWMG5mgG7WGnb3G5vu0PSB/abZBYLMVRArRLgu6xOBKvxTPTf9W5zND9ruiXr1vf3e0Ge09koB1QvbOPlUgNlUlbdfHds76y70f3eh7+yjyxbB5Xmhsgo1r+35a5sts3eCuk6zXHfbdCuQ6EgD9wtKwfQi3G9zJ7ol8G2mCjo5Ixzqpnef9kNGT1brQZFeKpxRiUyrppjz+zjHtczvetO4JNeGl1R8aUpOJbAC3/rahPbfZ4yZlZ8PZRT6zcVbf9jZSaDYYsvpp4nWO36xz152yuY2XUSnqtSqZdIZmo6EZ4Hpcb69+BaId4YqYmpqiWCgAirVKlVazyfz8HGEY8TM/87O8421v56lnnmVweIChoUEOHNiPbVk8c/Q7VGsVzp6b5v77vsVAqcSuqUluvfXLvPen/jXv/x+f4jVTJUgUlqmjY0MjJVqtpmbOs0ws00bGTeKwxT3ffIiDB/djmAaZlNsGaooXXjhDsVjAtPQ9jcNYC8SLttaN1GyLss0emSgFSmLbBmEU4qd9RgayjI2N4Hke5fIamWyKKApYXV2jNJBjeWWZUjFNvpChXFkjSSKkaVKr1rnnG9/igYePcvjKvfiOwcBggSiKmJvTYNWQEtczuf/IE0ztnqTVCkilUzSbLZI4pryyRrOpRcGlKajXGzzwyFGuunIP+XwOKSTVSg3HNlleKjN9do5cLo1pGu1JW6DihEqlju/7JEpRXi5Tr9dJpbVodLPe4m//4R6uvmo3rudqkXPH5ZGHn+KeB57ghmv24XkOtVoN27JwPY9WoJnqoijCdhziKNL7nvbz4/spTMvkxImz2JZOu8xk0gStEN/3qVZrmCYMDQ5SXqvomsO2hl3SxUzpuh5zc/N4rgcKvvjle8mkHU2egiAKIur1mq4jcxwQEEdJOyoh20LcEVIK0ukUnZofKSW5bIZrrtrblkbQ0hBCSAr5LAf379TkIM06tmXTbLYIAh3py+WyrK6uMTMzx9DgAOW1Ne74ygNcc80VnDhxiomJUf1TImZ5aRXPcwE9J5mmhWGZ7Ns1gpSiHbW0OPrs8+yYHAMUzz9/ioWFZYZHh9sRdR1lSvke9VoD2/GwLINEKebn5sll04RhgpAbeoKGoXWyNCNryIkTJ2k1dA2plAb5XIE7736Iaw7vR6kE09I6a1p7MUsYRaysrHDzzYcQ7TQlz/PabMhCk6IYkqeeOoYQij17dlEqFXBcLZEQxzFBK2DnjnE831sfE0LPKdlcFsOw8dMuVx2cWk/vEkqwvLTC5OQEVxzYzYF9k0gpaLVa3P3VI5SKObK5DEePHmd8fIR6o8FapUqppOsPfd9jbnYew5BYlkUYRpQKecbHR5iZmSOXy5BOewwPD5DLZQiCgP37dvPwt75Nea3GQDGP47kopbAsCykl587Nks/ntN4mCtu2aWT2cM21hzXIbIVUV+b5rd/4ZQrFAj/53p8jcfJUV5epVmtao7A7WqXUxlzbnk8TdT4ZStdU3QXWkk1zf7+5umP6NyDOA1RCyDYA618i0LFOhHDrJr5nRE91iL/O70//fwPIbXZydqcG9tLm2zrGDZDTee3etYvvHHmGoaGRC4OwDkDmwqBh0+f9Mm46x3Xtv379r36d/+ndb+AXfvF/5wff8uaNY8/bU2zelXV/Z/plaFKb9vWe77jd0LS9GLCux9BfM69779CdOrnV0dwNri/J+oAhIcRGKmCbS2LT511/90qT7AaaW/e5/cax/id6LywMuenj7drYCIJssx/uJWlwGawb3HX2xHEcrXNxXMy3cqF71H1t35dC+CdgSddLXMZUxUSp9Vc/i7aE7V+KreuPyPND9wkblPYvh3XSQi8mVbGf6fqA/veqmxjmpdhLoUi2bZs4SUin0xssoxeTDtuu+TANnUqDUAwMlNi5c5JarYJtWbzwwnN84uMfx/VsxsZGMaRJlCQkKEYnxlDK5MYbb8FxfX7u53+OQqnIo48+xt133cFX7rqd/+Un38uv3vYYc/UA23XI51Oa2c6xqFVrOl0wicnkc3jpNK5rsrI0T31tZX39bTZbfPkbj1Ov1YnCmGa9SSqVJUl0dM0wJSQJppQkUcTpk6cgSYjjkFazRaulAVY6l8ZyLfy0w87d4wgpyOSyTE6O8sLJk/i+g+vazM3PYxiCfD5DvVZltbxGsZBh3+4Rmq0G03MLCAG2bTK1e5wTL5ymWq2BEExODFNeW2tvipusrqyyvLzC6OggIyODVCoVWs0W0jC46YYrMExNdLC0uMJjT3yHMAwpFHIopVhdLeuonWlCrHj44ad4/IlniZNYb+yLeUoDRVqtQDOQOva6IHmz2dTkJCrmxpuu5LqrdjC3sECj2UQaBuVKFZD4vo9S4HuefgZFZ9MitOZY2/bt3clnPn8/tmWRJJp0Jwgj6vUmtmXheDaFUpFWGNJoNtqLVKyjUdLAti0ymQxRGPC1bzzCW998M0MjA7ieSzrtk0r7DA8P4XkuCtZlHbTHWSAkWLaBkLC8skL3BsoybdIZfyMdTEAYhERRQhSFSLmxOIdBhGnYTIyPUa83yGRS7N49yamTJ0mnUwwP5YiigCuv2kuttkaiIsrlMrZjsbJabhOsCCprZf2MFLOMTQy32SJDbrn5MFIKbNsmldLSBWEQoGuNYk6ePosQJouLqyi0YyKKYlJpH4BWELRFoaN1p1wchdC+BynfwU+5mKZNsxWxurrCm15/HUErAARJAnEcolRCs9lkfnaOoaECKolwPQ+EJE70WKRhEIYhrVaTm266mh2T46yWV4njCMd2cV2bqT07ePObX0WjqeVFEAphaJBmWiZxpCNhpmlgW6ZmYEXrIP7d5+/lhRdOE4YhcaIjnZlshnTa1b9baTI0VMKybFLpFINDg0yfmyMIQmzboVQsMDuzQMrzIRHML6xQbrONJirGsk0Q0Gw0sUwDaUquu/Ygt9x0mESxntYexTHNZpO7732CJEmYnZ1DAu/4L7fxznf8S4gD0q5FsHqar3zx07zprT/EL/y7X8LNFRFxSMr1EO3v9J+adYi/Lmb96GZpfin9AZtAQ/9yg4sfW7fdfMuNfP7JL7KyVHvR43yxpuePjfvzgb/6AO973y9xw43XvcR2O0yWlw8YdNrtvLotSeL23iXuc+aLsySJ11+X22T7dVn2hN0h08tg/fax/xRMC58nL2mf+3Lb92Tkbt2H0s/V147iXTCCtU0I91LTMmUXc+fGwf3bWE/F6Pl575CxaB9vbKHA7T6vc19e7GKk6BSTbl8DsHH0+aajb1sXxM1er+28bN1pKv3HoHocs7mP7SxJdHre/Nwcruuue84uBDgFijiO2i5l/bfjOoRRRCGfZ3JynEK+iG2a3HbbbdzwqlfjeC5nTp9ieHiYWq3KjrE9PPzIwxw+fDV/+4lbOf7CcZ46+gR/8Wcf5YMffD+79kzwb//Pf88TZwMqq2c4ODVGrpAhaLV48sljtGotUikLy3epNJoMD2TxXcHK/DSmk8bzPBIlufm6KzANiec6KGXQasaYhkUca0ZDVIIUStcAoPBcmyjRAtS2o8Wp0xnNakgSYjqGTn1FR7CLuRJxpJDSwjJdCoUSzUaIZerf366dYxw8MMW5uTmuOLCDVqtFGLZotRqMjQ0xPjFKPQh01MNxQCU4lsnK0jKWZZFJp1ldWSVfyCKEIJVNk0qn2gLWZU6dmiHtpRgeLhCGMb7n8sU7j3DVwV1IIYjCmDiKGCjlyeVzRGGEZZgIQ2AYOmoQRwl7p8bI53MYlklCTBQFuLbFyNggqZSHMCSO69FshEhpEQQBjutSrVRYmF9oU+Eb6xt/2f59mpbFwf07qKxVsG0L13MJWiH/+KUHuPrqHciORIJlgKEw0MyeAkkY6eigaRhUVsscPrQfy7a0IHccYpsmiwsLOhplCubmF/BSPo6tJRuEVIRhC0NKWq0mmYyuVQRBHCpWlqs4rolp6ii0rrnUDJyVcpkgaFDIZwjDhHq1SXm1hmFYnD1zDs9zWFpcYGSkBBgMDRXb4CHEsg2CsIHr+TiOg+u6NJsNpNQSG/ML89iuiWUb+J7T9k7KNiU5eJ6n6y5bjbbOm0khn2dpvkypNIRp62ikbVusLC0RBC18P4UhYXVlBdc10VKHgkjFkAQYUuF7aUzLpV4PcS3BY09+h/HxUe31F4IwqOG6mk3Wdiz8tI1hKpbmG9z7wBPs2jlKGIZYlkV5eRXT0Pp1rVYL0zTb0iEuUkoajTpC6mioFjPW87Zt24StmJWVCo7rUK1VEBJ830MgCFshjUqdqw9dwfPPnSLla4AkJYyODtKotyiWCrTaUgdraxU8z2VwoETQCpk9N8/ZUzM8/tQZgiDk3vuf5Y1vuJF6tYab8jCkZGVFOz9mZucJw5DiYJFEJci2np5hm5hS6qVLCK49vA9p6BrO3797mj/+vd/k8Ucf4YlHv8XO8VH8xnH+/lN/zf/2q79JbOeJYwOrFRAJHS3WGQKia/7smpvbkbsLbSW7a9ouZV3rd+zW2u7uv3tFBDv6tf3Ou5j+OumV3SmIvVM3L34N22pvf8fb+MpDd/Dt+x5l394rLuqcC/VwMZE70ON+7skTfOTOP+QfPv1JxsbHL/h9bYqyGuZ5+7mOhEEnyrmRPbU5crcdgVrPfnvKNnVA34a2bo+r7Dn2C/bXB0xuPkZsSgU87/Oeo9hwwBk9on3bjqm7vU7WSVc463JE2l6JtMzOX4m6tNq/jawzdcHzvp+W+TLbJp27PrVg3T/apF1Yud1DtR7CVd1ftAZ2nfzjreBvq87dpvbQE1LcTpnszSEkUEJ7h7q9dBqTasDSTyJh/ben1KYxd15qPf2jDwDlwj+2TYW2F7BeIK2TM9/R7dlIf+it30P7errTVDYv5luLp9V5x/Xuo2ucPSZzx3V1hKetGdVu8IKLhAKQsp1j0yYMSNqREkMSqwTLtRgYHeDgNQeRcUzUDEj5OZYXKhw7dpon7v0qa0vLhI2Ab37jq3zwA7/OlfsPMTt/hpGRYVq1JtdfdYivfvlLVEyf3/3013nHLXtRSrFz1xj5QgrLMggCRSqdQUUh5ZVlUq5JHEv8TJrEMJCGQBITBBF/+Td3cPbUAmOjgziu1sOrN2tYtoNSEtdLg9TRhFgpDMNGCnPjfps6omUaOqobRzHCjKjW1mg2qrRaWtB8cXmVbDaPEgIv7VNeW0MKwdLSKqmMDyqhvLpGqZCjWq9itWuspGkgDElltUo6lSJTzLO4XOYzXzrCtYf3cG5mllq5Si6XQZhac+yr9z7OG99wPaZpEIYBqYzP1K4xhDAR0sJxbPL5NF7awrI04AnCECE1251s3yPLNjg3fYpCLkcQJNi2o8leDEllrUbK8zGkJgn62098g0LOYWCggCEkvu9i2SYqURjSJA4Syqs1Pv7Ju3j1TVdguiaIGAk0GnVS2RzXXLMfgUl5pYpju5iGheN6xIlob3hjkkRx/72PMjE6jJfPEMQBoDBNC5VIwmbM3MySTmNttcgX8yQqolVrEQZNKmtlTENiSINWM6QR1HW6qLSxLYs4ajI9M029ViPt+bSaTcqr+pxCsYBKJEoZWJbNzNw8u3ZOsLy0xPDIEK7vaoZP32FlZYGBgUGqlYAklghpEIYxSRgjhUEUJW1ZA4swTjh14hyGMvCcFIk0MGwX29C/faM9t97+lfs4dGAvCoGQ+vf1wJEneP6F04xPDnLP149wxb4pHMuh2Whh2QYK8HwP07KJwohavQ6RIo4FjWZMNpdBiRjTTAhjGB8dwTFtoijES3tIDAzDwjBMPM9jebmC66bwsz6TE2NYhkMS1hEqpt6skSvkEIZNGCtsR6deuqagWq1oEB8pEAaW5REluh5LKMHywiphPSSb8wiDFpBg2xZJDEIa7D84hWkZNGoVzHaNp5vOEydw62e/yb7dI3z59gfZu2sMt10zuLA4z8rqKo7jsH//DjIpg8GBDDdcvxcpExaXl7FMB8/zUIlieanMjskxyuUaK0vzeK6F6zlMn5uhkM9i2TZBELSBro1tW/z073+FP/mDD1NXBsXRnUztmOTciWN86rO38VM/94t4pZ1EiakZdUWI6k6Vo2vdaa+n6//fdrbtzPudafni0u7W5/1eqZN01nDJRi3b+cd3ygNop/lvHemlgLtOmUGHOGWrA3Fr+cIGALx0MHH9jdfxmn/xGu78+FcYaesithsA2ORQPs953OPviwF3QSviQ5/4DX7ld/49P/U/v+e8SCX0ZtDe/P1skMR0gLAmHtmyx1Bq83refm+7VMvzbJsI1Xbnbn5WXno0aut1bJfm2C+NcP1ZudS+t7S9qfTkMgC7Trtbx9yLIEWPp4+jv8d/vfroB9C6S7i65bqkYV50VPH74O5ltk2EKn024JseyossrGwffH4bqs8PR7F96Lo9KRvbeZOE6rGqdY39oha+Hp9eYMLp5/3ZekzPqOgFbGNh6qQubq5n2L6GgE3Hnw8AL24b0HdS6jGZB60WQuhUtu5F4nKYZZrEcYTveaR8l8GREp7nII2EWAX8ycf+lBPTp3nrW97C7j17WJqb5/h3nuXg1TeRSeUxDZsnn3yCm2+5ial9V7Bncif3PLPIH3726/zE6/fTDOo0Gi0sxyVJFNXKGrlsmiRRzC+sauHldlpU0l70brjuAFddtQcpFaYtMQyB4/rEoSbdUKoj3tuuCWlPo0Kg08rEBhWCUPD00ecYGhwhnysSBYmuAZQ2rpNibnae0kARy7JZWlxlaKBEpVzDkIKgFbG6WidRuv+TL5zCcxxMy0YKgyBI+NRt95LLWhQLOWxTkEm7jAwPtVNhNT01ieLkqbOMDRdZXV0jk/U5c+YcC4tlRkeHeeKxo7i2iePa2LYWXBZC1xbGsaaDj6N4fSMRBZG+HwlEYcxauUIm42OZFkIY6wLws+cWOXT1Hm77wtcYGsytOybiSBFHCYlSFEtZbDNiYDCLEBLbtIiiCNO02s4PhZSJrg1UCZ/69O1MjgxgWyYSBVJgWxZDgyUc19cRrLYTwnFc4jDmvgceYWi4QCabZm5uiUwmgyEthFJ4KRfHsWkFAadOTbNj1yQCiIKIW2+7hysO7ARDUMgXSBK44+4jHDywh1wuh2kaBEFIvU2jbxgm+VwGIeDs2VkGBkqsLK/ip31M08DzXOq1FtNnZvj87Q+wd2qUVMrDsW2ElJTXKriuw8L8EtlMhoEBLQyOAsPSUThUjGkazM7Os1Ze4/prr8Q0TGZmZslmMyQo9u6a5NCVe0mA3TvHMaTg8SeO8tQzJzhwYCerq2V838UQui7ONh0sR2uyNeoNHMclDCJdOxYrpDB49tnnqdbqZHMpZqZn11PwWm3GzdnZBfLZLJZpUavW8dIepu2Scn2SWBHGMSdPniGTdpFCgTAxHZug2cKxbR468iQPPvQ0ti0YGioRtlpUKjWOHT/Djt0jmhBHSCprFYQ02jqHSVsHMI1CYpoOSaw48uAT/Mg/fw2JSrj2mn0EUUi5XKVYLOA4Liih9QKjFuVKDc91yRXztAJd5xkEIeXyGoVCnkwmRWWtSjqdIpfJUq9rIpqh4UFAEAYxpmnxxS/fx46JEX769+7grz7255w9cwqEgeu6qLBBZXWJI488wrt++mcIMQGBJEGqGCV6Rz82StZfZGZJ11R+oU1or6jcxtqy/ZrSzxHZq+3t3muPer2tbsIQvfZsJkvZzjogsDua1e+4K99wBb/4/n/LGw7/M7amTW4FcYLtvw29LJx/xOL0Ih/+zP/LFbfs4X3v/6X1FNztyGE2tdvnfnWD255goyc4U5iGSRiF20TeXrpdTgB0uUDUi+q76+/LGVV7sXYpRIWX1u7GfvZSAKxmdtdA0LKs74O7l9P+qYA7xQbw6vV4dOrytmVSuhC465q8tlswzm/3uwjuujwgW1ks9XsvBdz1aqPHGPp5vXp49Yx2ypRSCaZhtqOml0eotEOKoyO/mt3Qsi38tMvEjjHe+e538a9+/G187vOf468//teMDY9w/fXXgYGmP9oAACAASURBVPBZWl5lZXWVUyef5+CVBzg1PY9hOpw4cZI9u3bxtQfu56YDY6Qzun4OpfA8m0qliue5CGEwv7BMsVREoFDCQCXRuk/CdiyCoNXWXtO6b5ZlodoU+60gwLLsje9QoIvZpWynjeio3fjYiI5OG5JarYYUAtdz+ctP3snJk/NMTpRwXQff96jXtMD03MwcDzz8DAf2TbG4VGZhqcz+qQlOnJzGMi3CIMJ2XZ58+gTjI1lGR4cZHx/BNE2CIGB5eVVfl5TEUcT+vZOQJOTzOYIgJJ/LcGZ6ngeOHGV6doVjL5zlusN724ygmj2y2Wjge1578wCmadGoN0mn01SqdZqNFn/5d3fxulsOkSQhSQJBS9c7CgE7JsZYq6yxd2qCdCalU9zOzVEqlkBBs9mk0aiTTrv4KQcSSdBqEYZaH25paQXTNDBMrWk5OzPHcCnLfUe+zVVX7iWKIqqVCgoNpgqlAgkRAqhWa8yemyeXz7N75xiNZoNGvcHicpkoiPBTKVZXVvE8Ta5iOxbZbJZWq0V1dQ0hJNccPoDlWAgJhjCxLIsdE8O4ros0DJ5/7hSZjE8mm2l7WQUnTpxmcLBENptGCEkul0VIoXX2LAspTE6dmeHG6w8yM6OBPe0Ige+nNhw/qr1HVLC4tKjFtlHEkZZLcF2XXC6LYRiErZBMJoOQgiBosby0QhSH+KkUoIiCENexObBvJ57vIITCshyiMKZSqWnAIyOtciAEn/n817nqit1IKWk2Wxx95jkOHbqCQjFLrVajWMxjGCZGW87CNAxWVlbJpFKsrlS5977HGB7OYTsep0+cJZPNMjc3x9TuCVSSkEQRhumiUKwsr2JbNpmUz/z8Eq9+9fUopettPv/l+4iihAP7xzWBTqKoVuqkfJ9KuYqf8bAtG5WAaTn89SfvZqjgMTE+QkKC6+m02yiOePSx44wMl0hixWc/fx+Hr9oLQpHLZnFcm3q9SSaTRpomju1gmgaWZRKHMYuLS5w4NU3K84miiHMzC6ysrjE0OIBSEAQBI4MFPnbHo/zBn34CKQQp38W0HcJWE88S/NcP/Tr/6YMfwrBdwsRACqFBLqrvWvRSwV3/NeV82wzuNqdE9rIO8DofCG7f9oXGo5TCaDt4OgLr3ZktFxuh6zinQGxbNiGEwDAM3vXud/L/fOiX+fZTT3DjoZs3Pt988Mar59g7Dj79+dzpFY4dfYo/u/uj/Mrv/Afe9e53snff1Pr4Otf7coK73lE6RZxoWZaXyy53ZOv74G7DXhFw10Njsu95XfWC34/cvcwWheEHhNB1UWxB4D1T8S4pVN0b3KF6TUq9PWDd7ylYZ7PsCQR7gLsOkx2odeHMzvWKrnZ7jXmj3c0L6lY20Av7Kzc+605hvKiUhzY4koa5iUVzc8sbvW+uQ+hPN9ztheu9oG4IvXb3099ruzHeTv/d4rQXsnVGpm0W13VhTyFA6kUnURGIhERFVGpNlFC88QfexI/+2I8wv7zA+K4Jfuf3/oBXv+Zm5udnMEzJg0ce5Cd/+j2YluTPPvY/uOLgVew9dDP/9+99gjhucdPB3RhtYe5UOoOfyZEv5AlaLSypyUukIanXmxiGiW13aspCHNdDtGudwjACoYkp0ikPpRRfuesBJieHMUydhimFQRwGuqao2cQwTQzH0HVWluTc9DTZrEuc1Cnlc0xNTeg0xJRPGAQErRaG1J7qWj0gm0lz/8PPcPjqKQwtTEfK9zgzPc3rX3uItGfRbLQ4+vTzlIoFHn/yGFO7tY6eZZvMnJsj7btUy1UarRbNZotMNs3ExBgH9u3kmsP7eObZ5zh8aE8bmEpiBYahGTSlNPjTv/g8h/bv0imjaR/X87Bsi+PHT3H4qj0oFeLYDs1GSLPZREotXn3nVx/k6qv3YZmmBiJBiOen+MSn7uB1r74GyzbbYCWFUGBaNrbjYBgmmZSLUAlmm41QGIKRkSFSnk06k+PY8RMUSzlcz6FQyBKFAdKQhGGI53ukU2meOXqcXC6H5/nYroNpGPgpn0w6hWmbRIkWQ69Uazi2hWlaOI4mXbFtRzOaGpDEEqMtHaFQRHHIPfc9wo6xIWxXa+8hoFgs0GzWWJhf1DIOiWbcNE2TZqOJlLruzvN9BgZKOoIZ6/EmSoGAer3BV+68n2zWx0/7WqLDMKiuVfFTPt85doJsJsPC/DLpTIZqpYFhmkhTj9G2NMGMZdqcOnmGfCGL57mYloFlu6hE0Gg0cRwHIQS1Rh3XdYja+o9npmd58LFnuOqKXSiVkC/k8NO+put3bKShtfIMqZkmaTtoisUClmnx5NHjHDgwgWM7PPjAkxw8OIWfdjl58gz5fBbbdPScn2imUj+Vxk+lueLAbprNBivLy6RSPuNjA+zdM4GfcvmbT93BWrnK1K6d+vfXapL2PZrNJuXVNYQQ3HLjQVKZFH7Kx7Z0pLTValIur/H40yeImgGe63BmeoGUa2KZemP/F397B1fs3UEUxpRX1zSZT7OFaVnYtkU2k8aUUCiWeOChp5lbXObmG64CYjzXo9ls4Kc8/u6Rea6/5koMAQkmhgQVBZgi4q677+BHfuK9KOlgGro2UAeejfPW5g1Haa/V7FI2dhuxpgt639ej5Jujdd3j2bq+CCG6GDI3r0f9IkK99x+bN5I6HXMzhuqka3a3uzVFUx+j1kFpp8aq029v27jWH3/72/ihH38rv/C+X+T4s89ww6EbOwPsdSHngT0pYHGuwkdu+z3uefxuvrP4NB/4yK/xrne/c9P1w+b1eyMVVaw33bnO3oBNrZ+n1/NuR2v/9byT5tpJtT3vTnTE4S+iLq8jML55r3LhNM+O2Hm/9rv3T9IweoqYX5xD/+LtQmLeF7MX3M46+9Kkqx/1EljaLwXcdfq5MNftlv3sljZ63e9ebX5fxPxltrAtYv6ycNuoDRYj0S7+Vl1sj6KrIFx1CZC/WGFJJRJUssVjJ3t7nPoKUqoezEtbUmFeqqBjh0loq8Bm3+Pb4G6r4GfvYzsL1sY92CpKDtBJW+lbaNxHAPZyCZme11/7XvQSIu17jtAb3CRJSFSCgSZuiKOQdDpNrVbDcz0+/F9+m+PHjvHDP/TDFHJZjj79NK9646sZKA2QxDa1mtb3yuVTWGmbf/3en+Xvf/lHqdeaGjjGCam0j1ARx5/5Dn46xeDwCMJySeIYw5RtMhXNNtlsNLAthzhWPP3UMa4+fABUSBwnzMwusWfPLlAxQRhgGA5h1MIwBIZpAYJECb0HiCNEEtNoNFleLpPN5jk7M8vY2CCZTJq42WJ+fpEoSogTgW27WJZk5twsTz13ije95lpOnz7Ha151PWESoUTC6ZNnSSLJ2Pgod9z1MKvlJj/17jeyvLyKl3LJZtKcPTNNs9ZkzxX72pskLWYupQHCYO7cNJM7xgjCULOjxiBFRBhFqESn633qM9/kHT/2BgYGc6yurZGohFajSSGXoxVWQFnYlqdJQlwT2/YI4wTf84iiiDCMOgmsnDkzzfjECNVahUw6g2k6LM3Pkcnn22AhxrUlC/OLpNIZHN8liCNMqdNMpem2yW1CDEPSqNXJZjK0YoXjWkRhRBjExFHCmdOzrJarjI4MkM6keOH50wwNFSiUcjiuRWeJMtr0/bal9eFsywKVEIRNhOGsRycMU1JZW8NP+RAJ1ipV1taqTO4YAwWVygogcR0f07IQUmKYgrCpGSAbjZYmgxGS++9/DESE59rcdNO1RHFCHMc8+chRrrx6nz6+2SSbTrc3XjqKGscJtm2jEsXH//rLuL7FD//wa/B9j6XFBQYHitSqIV+6817e+PrrGBgssrpaxpAOt372q/zgG6/RoM/Xch9aAxBQgvJamcWlJQqFLPlcHstxiONEM3nGMYkQhEFEHMfEcUQrCEmSGAOLxcUVxiYGcH2TMFCceWGaiR2jJCQsL6+S8n0s6VCprpHNpUhnM9x+54Ncf81B8oUiYVAlk8tooh7Pp9UIqFRXsU2XoBWRyWaI4xCEImg22+AqYHp6lvJajYXyGrfceAjbNHn08aNcdWCKIAwoDZQ4c2aOb9z3FG/70deTL2RQcUir1dJaklLiuC6JUjzz7EnGRkqAopDP0mw0yRdyICzOTc8wOj6AZUrCKCAIE1K+z//x5w/wW7/+fhKlGBwYpNqEtG/zyEP38dQTD/LzP/+zJOlRDImO2CkNqITsv1nrrFr9BMgvxS7Eothpt5dweMe615fu83QEV20CXp11prPmbLRx/ji2RuN6Ca9Laay306/d7vVtOzmGC1nnOh+8/yE+/Nu/C8B/fu8HzovirS7WyA+keOT+I3zh2JfIZbJ87C/++3rKcj/rXqM796173N3yRv3GB5vv8eWocVuXSroIBvDu52Br1PdC52mndn8G1I519kfbkqtcBnbJyyXm3c+6RcxBj/li+BouteauZxttRvdL4Yfo1cZ631vu99Z2v1si5t8z4C4Im+sX2g28ZBeguZwPcvePw5BSU0S33+vVn+zxXk8AxuYxxz0mhH59vNJ2ocmwM2F2JtDt7EKL4aZ2twC67sl5OwDZvRC+XODuYq51q3WufcObqSe5RCXtGiFtUdTt+ex4fDdrJ83OzXHkyEO84aY3YzkG//FX38f0uTP80b/5AQYyHqZjEAcJy3MrkETEcYPBiR3oNGOTOIpRaO2zRGnHxXPHT9Bstrj60AHCOMI0DY4dO86eqZ3YpksYxSQqaZPQBBjSan83JtD5nhIQilarSZxITCVBhVimIIoMpOFy9sxJvvrNJ3jT666mVMoxOzvPU9+ZxnMdbrn+IEkSsbi6zNSeSc6emGZ8fJzVco2nnj7NG/7ZzRx58CH2TE1SHBrAtExazSaWAUtLFUqlEtIwWFxYQJHw9Qce5a0/8Fpcz6ZZbzA3s8TyUo0rDk5gOzYR2gs+OzPPQKlIJp/rxAO0JprjIKXi6/c+yq7xMXbsmsQ0JYkK1zXV4kQLj+u0T5OgFWDZmo1UO78FQkUIXMrlVUxL4nkp6tUWiQiAmFS6iEIipOKx+59jcDjP8HgaaUpUYmgwRoJoSxOEYYhtW6ytrvKFO+7jwJ5Jrrn6Sj5565381Lv/BUkksRxYXdURMCEkjXpAeaXK+OQwYdRECEhimF9eYmRkmOraGvl8nigMcGybMFSESagBnDSoVWoszC0wMKBZSTu6Z81mA8uxAINWM2jX32n6/0q1ysTEuJ5DpCKMmlQrVVzXp1pp6CijZWgyHWwUiieefIpnnzvD2370TURBzN1ffYiJ4QJ79kzipDz8lE8c61RLwzD49pNPU2vUuP6GQzzw4FM88eQc73n7mygO+ERqmST0iZXAT6VQUQJJQqvZRLW/v3K5zJmzMxy6aj+mlyKoN0j5NkEcEjZDVuaWyQ2Osji/QLGUwfdMlhYXGRgZJgxClhZXGB7RenxRlGA7CVEsUInkyP1Pc/Mt12AYguXyPJ7v4NoZps/MMrFjAGma63qEWgPQpF6vYxoJ5XKdTDqLSmIazSZhlFAq5Xn2qWOMjQ7hprIYloVINOHE6VNn2bFznFqtxvJKhbHxERzHobxSJpNO0Ww0aTZrnJ2ZYXR0kGKpSBQJzk3P87m7HubKXcO89rXXoFRCOpsiUQnv+fDtfPSP/zthlGCZkJBguxa+ADMO+Y3/+iF+48O/Rays3nPeZtRwSfPlxdqFwF33OnMxqY+XksHRqz1pmMRRqAnf9CfrYxRCIA0t8dGxDujsBwSBda23DkCI47jtsNkACt3j3gqKthv7mdPTPHf8Oaanz7F79y5KpRLv/7X/zE+88+286z3vXD+20+56WumW9bd7PewFTjf33RuwJW2pmn5j77XmdgO2SwFxFzuezncGl+bM3c6670/fSPAFwF3nO5fSeNlkBi4Ewrp7FVI/G1vH0q+NizEhdYbNy7WPu5B1P0Ou635XwN33TFpmnEQfWP9H1zOziU3xcnbYVbMn2imWnfd69Sd6vNdvRJsZIM8/pl8fr7hdKI1hPXXzwqkEm+mAL6LdrmPUpvB5d/rl+eddWELhpdqLS5voHvtG5q9Cdj0Lhmm1SSyMrkVrIw0lCAIKxRKmYRA2AmzbZO/uKW688Xp+5f/7Gz5z/3O8+ZoJHNMim8kQRVpvTEiJ62hiBh0p6ehZKYJWwMBAicGBot5IGBZJlJAv5LFNhzhUgCRR0Xo9ko6KAMiNB18kCMCQQhO0xAlRGNBo1Dh9eo6BQon5hQX2750glfI5cWqaAwemaLYCKpU6e6cmcF0H29GMe8ODRWYXlqjX6wyPlEhnUhRzaYbHhlEIojjCkIIkCQlChee6RFGMlDpt86HHjvGaW66l1WzhezqdcW52iWIxjW3bOJ6LbdsU8nls29Jpk1KLG586eRbHsWg0G5q8w7DwPIcoChFCYdo2jUajHeWJ11PxTMvS9xcBQhIEEUIkGNLG932koaNJzz7zApM7RgmjCMOwKa+s4jo2ruvSaNT42r2Psn/vDhzbaqeg6O+tXq9hWTaQkPJTpD2bibERpDQ4dOVearU6t376G1x77R5dU2cYJLF2Gtx+1xGuPjSFNKFZb2AYkmy+ACrBcRySuA1UBYRRDJ3UpwQMafD1ex/j6qv2cfrMOUZHhgjCFrZtoRTU602+ee+jOG0Cm8WFJXbtntBPSHvDZhiCVCpFoxGQy+Wo1ZvESUylUiWOFJYpGRkdYGSoiOd6OK7L1M5R0r5HtVqlGQRksxmdQqyE/t2ohKndO0iUYsfEGHt3j3DrbV/numv3EIYtpJC4nosiIY5CFubnqDeqLC2t6XuDYtfOCV3DliheOH6CfC6DYVlIJCoBy3H4wu3343sGxUKWRMXtFCxwXJvTp6Y5c3aWkZFByuVV0qk0YRDy/AvTzM4sMDExgpe2sSyTc2fnGRossba2iuN6tJpNglaAaWhWWse2kVKSSqXXpTV83ydOFJZhEAYBqbRPo9GiWqvRqDWYnZ2nUMgigHMz8wyNDGAYkoceeoJ8Pk21UiVOYrK5NFGkSZ6CMCRoRRQKOYJKjZ2TQ5SKOZ4/cZpSKY8CvvToWX7sX/4r4ijCcbUWZCtoYaL41N99EmFIbnzVLQjZG9ypVwDcXXjN6V/T9VLa7Xf8hgNy/ZOutMTu9MTzhdW3ttVpY+Pfav39DcdfG4B0pW5uXTu3s1wuy569ezh8zSEmd0wwODTAu971Dg5dfdV5YxLtNGUpRVu2pDfL6Fagev697A2yN5ix++2Zzr9fxqZoZj+phAvZduPZ+O4uVz3+5vvTG7hcbD8v7z6nT5/t33J3r51n43KOpfM9vtLXt25d35Npmt+VtMzvg7tXANx1Hlxja95u19+dXPjND+OFwZ0uQt/86tfHK26XEdxtafjC7W45pvPedpHqf4rgruNRlIZmBuxEdHRLm8Fd0gYK3V6jjl6gNMz1RT2bzTA6OoztOKQyPmNj47zmllfzlre8lX/33z7KjpLHQNonlfJJZXRd0QsvnKaQz2FapvaoCR29WFpa0cBPKRKlkMIiUQLXtlkrV/ncl+7jin27aTYrJHGC57k06g1M09RpmeiJXraZLIXQ6XVSCRr1GvVGg0I+T3m1Sq6Qw7QsyqtrFIt5oihmcKgISYRUOhVqcXGVXDZLtb7GWqXG5OQYnu+TqIT6WoNWK6DRaOJ6NtIQJHHE2lqd275wHzsmhkhUTCrlc93hfYDk45+8g4mREn7KxxAGlqVlLCxHM7uFQYRKFJalxZ2VUriuQxInVGpVstkMtmNhtIljXN9BoqUXnHYKoe04qER71RWglECXWUjiuMX87DKptM/q6gop32doaBikwLI1iPB9HyESPN/FdUyuu+YgKIFpKhSRTgtXCoUe2/z8IpW1KqOjw6TTaUBw6213c/NNV7N/7wSmrUF4FMbMzSygYsVNNx0kDFuYpkQa+lvTdSqQxAl33HUfYyMlfN/nxAtnGRwo6XrOOMYyLUq5DLVKjT17dqBIWFleWU9Xty2HL97zLTKexb59O0mlfJSICQOtCyfa3oA4bstFxIpWo4Wf8rn9riM8+NAxXnXLlZTLZcJWwOkzMwStJq7n4nkuXsojn8/SClrauYDkwQcfZ2r3JEol2K5+flNpjx2TBXzfwzRtDMskateTuo6J65rkC2ks28NxbNJpfz0Ci1KYAv1spVzAaAOhFp4jGB0ZwE/7+Om2Jl0U4zgupVKB0ZFBEIJavUbK9xFCMDU1ztLyCsViBsOUrJVXyWdzWo5AhaTTGRbnl7BME9exOX7sBLlsGoQkiRWNRos77nqAKw/uYWWpjOM4OLalI+0vnGZoqEjQCigWcwgpSaV9BgeLOJ7D/PwCK+U1RoYHePLp4xy6aj/Vao1Gs4mUujaxUCgQhCGtRoN0yqNYypFNewgJP/8Hd/DBD/4Gzxw9RqWi5UdM0yBs1kn5Dh/5g9/ndz/yR1TrDUzL6T3vfQ+CO10Tt5Fp0QFeG3XhF94Ad4O7TmQvSTbWHLklOtLp51LAXbcUhLbtI5YbNW6sX2e3dbJseqWNdtfFbd0fbT3vYsFd7/YuL7jr/s621g++FLtYzbvt29hwJrzS9n1w98rZ9wy4Uyr+QPdEtv6+kC+pMLSfCbFRjLqxGd/82nr8tl6qrgm/O7+4mwS5+5UkyUaI5yKtX5HopVi3Lkgv6xQmq7ZopI4E9S5W7k/E0q/wuPfisHnS3e66Nk/23X13iqU7ZDXbLQAdFs2eqSD9FsDu+7JlvEl787ix6OtJUgq56TvrnjI3rl3f4ySO1tM4pDRQIkIaAtfzMCyHTDaLl0rxlje+mc9+49v88T9+kyt3FRgeKCBVpAWFY0WiYgxDEkUhhpC4rsvqahnX9RDSQAiFkIpEBcRJwO4dQ3i+jVKazTCOYwRCE6RYerOJUFTWKjiODQha9SoCEykNarUaa+Uazzxzilw+w+BQkUzWY61SRQqDRClGR4f05to0+dq9TzI2MoQQNtVaQCattefWylUy2Qzfeuwod97/ONce3MXC/ALZfI58rsDq6ir79u0mDAKarSZC6MV/IJ9iZHSEKE5IZ9LEYaip3IXAsmySKGZubol02l+/+9IwSaV9LeAuIIwCHMfGdi1QUG80kW3Abls2KC2iWq3U8DyXhx76NkePnuQb9z7N5GSW0dFxoiim1WriOC5r5Rp//PEvcNN1+3Ftm1q1imkIDFNHHpsNnfJUq1U0CY7SRB+GodNwfN8nk85oEhCla5wOXbmHJIk1qyea2bRcrpHL5wmDCD9t4voOKok0wC6vYUmL5cUVMpkUU7vGsR2HOEko5PN8895v8fVvPsn9R57m8FW7adYCHNeh3qxhWyaWZZJKpRFSEIYRt1x/kNHRYZIkodFo4DhaWzCMdApR2EqYOTdHvlDEkCZ/8/f3UMi6vO61N3L9tXt0RExKsrkcg6UiuYJu2zBMDNPg2LPHmBgbRhj6uRofH+Ef/vGr7N45huv62LaFNMDzHUgEzboWZTcNG4lJvVYnivVvzLIdHYVOYlZWNJlOFEaIdq2VaVvECTz3nZMMDmcYHRvGdT2CINSalmhpCtAbzWqtCiSk/TSgQf5zz51kz9QYa5WK1o6MQmrVJnGUUK2VUYnA87TI+8kTZ9i1Y4IHH3qSkeGhdYBw7wNHmdo1wvSZOWbnFhkdHcL1XMbHBqnXaszNLzMwWNJ1g0Iwv7BIKu3hpTzGRgYIw5DhoQJBq4XjOszMLDI8OEirGeA4Fg8/8m0GS3nGxoc14Bfw1ceP8cDzZX7y3e/kff/xP3HDDTcxOTlOtVZlIJfi7q/ciZvyuOnVr0aaTl8GuksBd7Jdc6nn60txnG28LmZDfDFOv61yAx0gY5hW35TBzjmwMcd3omntka6n0V3sTkWvG3rt6jBAbo3ibQU2nb8vpu3Ndn5a58Z9OJ9CfiuA7LSnaxXNLX1stN0NkrTu3dZ1Xa3337329frOuqNqwMa6rm/Qpj3JdoQn3U7jrev9+v1I4p4i6+vH9RFFv5B1rvM8ZvWL2MN9t0CP0d69btq3vhwgTKGzR14mx9CF+/8+uHvFLIqjD6yDqk35kN+dnNyLsz5eoa4Htu9U8CJ+MBe7gG3bRmdM/Say9QlMbfYc9Ty+O7Vyw0t3IQ/hi7V+QukbToFkm7GeP+5LyvduA7vONW72SG6+ps04d3Oaxvn3YKNIfWs6rybl0SDbdkxs2yKXy/Ka17+Od77rHYjBvfzn3/5TfviWfViWRRxF2LZFvVZFJSGOrXXyPM8jCON1AGzZJhBjGDp9yLJNTNMGIYijmH/43D1csX83lm2vb8dcTxM3SCS2Y6GURBiS0kABoeDEiTlilRC0Gvgph2KxgCEN6rWAWq2OFArLNkn7HqVSEct2GBoYwLZtzp45x9BQiWaryfBQkcW5BYYH85pB0HFptQJ8V4tzu55Ns9kkm83SaNR1SmY6gwL+5u/vZHZ2jmIhjZfSOoBRGBIEAem0T6sVYDtaRkCgNyv1RgPf9wCIoliLUaMZQ03DXPekG6ZBHMdYlsXgQJGp3eMcPDBJsZRmbmaJXD6LUjFRFKESwXPHz3Ld4T3IDquqSECAadsIBIZptNM8DRA6Jdds662FQYLt2iRJ0q6DMajWaiRxRBTGbfmAiDvvPsJTR5/nxuuvBBLNkJkkoCSGYXH65DRKJTiuTRxFOppompiWxdjwECKJufn6/eSLWfxUilTKw087JEmC7/mcO7tAEDYxDZs7vvIAe6cmCMKQpcUlMtkMUkoM06BaqZHOpElnfJJEYZoGh67cTT6fARSGKVhaWiaXyxCFMYZhUauvaWdCohn7Bgd0TSCmgRQ6Sjy1c3R90xyFWrbiE5+6k2sPHaDVivjoJ77M1Qd286d/+Xl2jQ8wM7vIwIBOa9asrw3S6RTNho5AnXj+DIV8Gsdzefbo88StiKGxIkKaqEQQRRFBK2RlxZs+fQAAIABJREFUeZlsNkulWgEUYRjg+y7SMGm1Ah3VjmM8zyOVSmFaDp7n/v/svXewJMl93/nJzHJd7fv5mTczb7zbxTosjAgQR4JHkSeSIkADgiJ5cX8oQqQg/nEXd7rQBXmgLohQnBQh6UK8E0geEAdIBEhYAiABcLGLdViY9btYO94/b9p3ubw/svu1ed3vzRvswhD7m+jdmeqqrKqs6sz8/sz3y9pqhZm90yYaiyKMYhqNBjN7pnA8F8+1yGbyCClwHJu77jiCUpLJiSJnz19hYrKEZVlEYUgYBHz5gWe5566jaK1xXAelpKmJEoJmvUm1WmNyYpwwjMhmc9SqNYqlIq7jEMUhad8ll82xtLRCsVQgiEI++Kln+Xf/9o9J+2l+8Rd/GSUlY+MlUikPOwn5vQ/8Lv/5T/8fIiRatx2rmwCrZ9TaBbjrTWPcjfVGyHZj20f0+sfbzqJ+O+kBY1sdk4Nz3ajIVL+oev+8ZQDe7u5jZ9vqpu4FS71zzehMmGHO3E5kcTiI6u2TrX0zeP7tnuuQdVUv0qd3nWL2354tc/v5XuuknR4/4vsecezdPJNBsD7q+x8u271g+vd2tjfA3d97G5WW+Qa469po2YSbt9cL3PWngoxOVx0EZruxXgmJwZqA7rabSSPdPbjrALsO/XYvkB302I4Ed3002GZ7h3Rh67U45t0XAkREQoAWEY1E46Vs4qRBNuvzc7/wj/nt//X/4lOPnuF97zzO9WvXsUSEjiO0sNvplZoPf+zLnDy2j6uXl5kYL9FshNjKQWuJUi4JGqlsojjh9MkjhqZeQhxHhhRCa4QWIAwjp7RctFRoNGEzIg5jPM9ierJAq9VA6gQpJPfd9zxvvuc0tgWra+uUSgVqtTqV6jqNRhWdtJAqRhBQb7YoFrOcOraflO/jeT6JVkhMlObs2cvMLyyRSrlYtkSKiPMXrlIsFJmfX+Sd77yDjG8zs3eK8xcvMz5eJIoi6rUamXSaVrNlyFbiCKEUlnJxvTbzohAoZaMThZRQKVewbRvVFv22LPP3JElwUw5eyqUV1BFoCvmSAb4SLGXjeh7XLl/j6KG9IBSNZotKrYaXMpGfRljFdhS1asJDDz3HwYPT2I5HFCX8yUf/hrtvP4aUsLCwRDrtoyyF65rzx5HAshy01rzp9qPcc/cJwrCF7dgmethooSybRj3gK/d9h7PnrzNeylAsFVBKsb6xgdBQrzTQMczsmURaglqtSqIj4jgk5aW4eOEqTz1xnjfddQTLtjl0cJaHH3mC+RtLHDiwx9SrObaJ+KZcU1tmm3rSuJ2++9DDj3P06H5sx8h0SGnSSf/Dn3+Wd7z1BEIqLNtFKkmzVsWyJDGGedN2bHTcXpxqcF0fJSz2Te3hmWdexvMFP/GO48zfuMGh2XEgYXbfNLajiOMEjSadTiFEO6UYiwcffobDczMIJcln0hSyaZTvohNFoxFy/swlLl26xrFjB9Fa43oulUqZbDZNFBvQXq3UkMpicX6NBx56jldfvcqhI/vRAp597iyHDu8j1iEIRS6fY2FhiVQ6BQK+dN9jpCyLYimHkAlJEpu6xrjF/gN78Pw0tWqDhRuLTE1OcPedx7EshZvyTGSwVkdJhdawsLjCxPgY167O43keCEEmkyUMYlPbaklyuTSOn8bPZIiSmE88/Dx/9O//E0sLizz+xFMcnDtKJpNFWYonn3icj//5h3nPr7yH299yL0EYg7D6MlL6xsNdgLtOxK4bwbs5kyOihsOsVzx8dL1bJ2okNwGO7qHa32leGgQrNwvuBoHW1jaGL/RvdfE/PEPGXNv3Cu7MtW69z9cb3A3O7a8luOtsH3U9sp1RcTNyC33tjsj26Z73hxDcJd9bZthu7ccZ3P3YsGW22lIIW2wHRsqb4k26CVmBUSYx5BQdoNOhUe0QIQy1nraHUdaOlD/4Pljv9e/GBul+gT5GrV7WrVF0xx0bOcj2sojehNzCTu3txjrXOaqtJInbLGmD4FT0sV3u9npGyUI4jsvC4gLZTMbocvXsM+hljiQIDX/8Bx/if3r3NNWNChcuXOHY4X2GcEIKmkGEZTnYtt1NR9IJcYdIJdHtSJUibqe3oROkMo0ncQxCo0lQ2kgRhFFsuiKOWFpcJpPNEoRNNjbWKBZyBK0IP52lvFEmk8lSqdRwbJfSWJHFpQXCJCSJTdSh1Qyp1SOmpsdpNWuUikZEulhIE2kX37Eob5RZWl5n7uB+Gs2AJArx00akeW19A4RgcmYSpUS71ijN80+fZe+eGfJTGVZXV8kXstjKBiSCFkhFohVoSaPW4olvvchb33k7ni35+Ce+xC/9/E+SyeeRMmmvYbWRXrBdBApNaPpSaNBxm/Ie1uabCBwcX5HJeQZktN+TOBLYtk0UBUghaIUBQkjsduTOti2kZSJ6y8vLTE6a1Dwjt6HQOqLVbGIpm1YzIJPJbr4PQRAihWBjfQPLM2Cr2WySz+VQSlJvNLCETaITUhmfJIoIWi2CIGJtrczevTMEQYCUinK5Qi6bplKukMtnWV1Z46HHnuW9v/RTxHGE7/u8euYihWKWiakijRpIFdJqGsdDEkqTOunaNJtNOjVLxiEiiJOQIKiSzWW4dm2e6akplq6Xmdozie04xElMq9FE46KUwBJw8fwF9u3fi3JcwjBC2QIhNQJJFJrIapzEVCsV4igkX8gbJ4nW7UivTxxJmo0IIRO0UMRRiyeffo53vu1NKCEIE0m1VkNKQWlszEhMuD71eoVHH3uad73TiJbbts1z332F206eIolinn76Rd72D+5CKA2JASevvnKWQj5HabxIvVqjVg/56gNP8Ru/+m5SKZdXXj7H4UMHSZKEc2cvotEcOrQPz3Op1mqk0z5CwNraqqnJdB0WFlaIwphsOseX73+c9/7iO3jl5bNMThSZmBqnXm9QrtQYGy/x8ivnuPfeO4jCiN/5j/fxZ3/6Z1SW5nH9FCLlGJKdIGbh+jwXLp/h19//GzTCgMSSIMFJVNuRZVKTLWXAM6p3UbZ1gSalGCmBYL7rnRd2XuANA2ydd944yLYCCeifl3rH2s4xoxaxnXWXsuxdzUVbCUd2Zrc0+/ZLBXS2DZMJ6t0+TA5iO3mhzjHbyUcMa6NX6qEfoPXf3+D2znGWZRnpkXZ/Dh5nKWvkumSQjXqnPuzbJuUtMWH2snv2Z9TcmnzDsON6JRZG1dd11p/QXR+NkkHYib1y89lI0cdI32ft7X3yWLfojN+sJU8Gwv69+wz57e9GTmG3a+le9tVO3/+g2DJ/mMNWb9gtWpwkm58fRUviaFcT3qB1Uhy2fJLu51bbey33vcmz37KO03YmhKBer48+a2/0EIHQ8If/+l/xd4tFfv9j3+Ytb72LtbU1lpYXCVoNUq5NEgWYIdAIuWpACROtSpKYIGyZCAUxiBhlJwRhDa0jNAlRHCOFIowCGq06liVoNGsEYZOHv/UEZ89exHEc9u/bi+t6NBpNHMfC91M0Gw3yhSxf+PI3uHjhErl8lkw6zezsLJMTE3zhq9/hvkeeNALKSmI7DtKy8bMFspkUzVYTx3OYnC5Rb9bIF9Kkcx6OZyGUYGZmismJcXQYITW4rosGJmeKNOMGaM342BhWm15aa00USr7+wBMksaZSLuM4kkLRpVZdRyp436+8m4XlRaRMNr2wYRS1MV47ipvYCFx0bKG1ixApbCuHn0lhORaf+Mz9m88rQRBrAULRCmMSFJEGz3WxLAVCk86ksWwbjWZ9fZ2xUhGBolppELY6aUkCz/NQSpJO+yRJQhyHhGGLi5cucfXqVdJZn3Q6TRInFAoFhJS0ApN2uLFRNhIHWlOv17Edm0w2w/79e2g2mgCEYcjly9eRSlMaK3Dp0jVmZmb4yX9wF1Iamv9Ew5Ejc4yPj9FqBnz0Y19mbW2DbDaLkIooifjMF75Gq9UiCE3004i9K4S2kaRwrQLltYhvfvM8QqdIiEl0TBgHJHGEbSssG/7iU39LtVpmz+wUjmcTBk2WFucRaOIwJkk0sYY4MaCiVCwShRFra+uAII40vu+j0TRbTe576FHCqA5xi7XlZd7xtruIYk29FZNKeczsncZ2BBsby6ysLRJFVdaXK1y/WuHsy1fRoUNlNeBNJ95EHCcsLS5z8eqiEaWXCnTC+XMXOXn6BKWJCaJEkMoVKRTzHDs0hdCaWrXG/v17qFQ2ECLh+ZfPcfDQXuIkIE5CatUqGxsbrK6uYTsOjuMQBhGze/dw+MhBcvkMaPBSLm9+6x0cOHQA1/OwLJupyXGCRot7772DleVVbMfhI3/2Z5TLZcbGx8kX8riOSVHOF3I8+s1Hee+v/QrlWsUsAGHLaklKk6a5k0QBmLpEbnLfW7XO+LfdOfojPzdvm8d9D3P0zQI76M5L/cC043AcfX/DmDlv5ribuZ7t2hjVrzv1t046pQ393yeb3+127t8h5XLE+XYyA4K2ZtTcDGHK8PZu7bgEulHD74MNMqX+sFvS8/lRszfA3d9DU1Jufn4UTSprM3p3KzZYt9b93BrwGqyBe632vdlz33qS7Gir1arsm923hT2tY0miNz+iB1y+7zffxwf/8A/48Be/QSuKiKKYMAxp1Oo4VptJE40mRtBOZUoESWyikpu6TUAQNGm1TMRFtjXRTE6+xnEcgig0KXlhi3vuPM7R43OsrW2wuLRGtVonnUnTagYsLq3hep7x4gmThuT7KbLZLGho1Jv89q/9DD/7E7ehlJlYK+UqY6Ui1WqDJIm5en0eTcLy6hqZjI8mwXJshALHdTh//pLpjzb74/LSKnGckClksBzVI0YuSSJTQxEFCT/x9jdjWzbPPv8K585f5I47j5Mv5AijkATNgQN7EVITRRHVWq0NxLqkAiZ6b1IJyxsVA+LimOWVdRKdcPrEXkBjWXZ7sQdJG6BJJXFdh2YQAIJr1+bRmHRHx7U5c/ZS+x0Dx/GQm7T0hvm006aSks988WtEcUSplGfvvhls29SdpfwUcWTo2+M4JuWn8f2UYcrU2kSGEMh2algmmyadTlMo5HjupcumhhDNxESRVhCgE02rEXDt6rzpzbYGkuum+Mm3H2+DqpgoNORGftrUDn7uiw8hhKBRMw6Lx775FAs35rFsm699/QlOnzhAGIZMT48hlUBKiKLQeHx1xK+/578hm8+wuLTC4sISOomp1WokkXEyhWHM+toGjUaD+Wvz1Kt1KuUanuuxtLiMZdmEQUh5YwPbVvzcu99KoZTFc238lEucxNiOh5/JcvHcVWobdUiM1ARa4DguKc/i2OEJ0r6D59lcv7bAIw8/wfz8IuOTJd79rjvaZEYx9XqdXC5Ds9Gk0WgQBCa9eWlxias3lknaZC9PPvm8GfNIOHp4Bo2piU10TKGYJ5PxsW0LSylsyyZfyLOwsETQCrhw8SqWJWi2GrTCiGYr4JVXznNjfgnPc8nnMqwsr1AsFjh/fZn5G/M88MADfOhDH+L8+fNUKmXGSkWSRJtIsG2TSWeI43izBKDXzNhwcylbHa2218Px1bHN8W+b6+lNP7wV+34vdIfJKO3EvDgsOrfTcTvZTm2M6ted+rsTvd+yPenM/bt7Tub5jwY/o863kwlhRLQH2+0Ard2CrVs9TicJkjeAwCi71YDAD4P92NTcRWH4QbRGtb2GXerVEYNEm0Xz5mzInjc58GkG0jw6hwtDkmA8+gPH6PZ/2gNVR8dNCbGl1FliFkhJvFNBdz/T5a165XaquRt5nOjWXnQKjHsJQrr1dL2m+/bpsHQNttfbBnSZx7YeN7pOsPezq3sZ8JhupX02T6pXCmNQy6ZTG7J515t1HcmmB1CPLNgfTOMRm22C3qzH673ewWtIhKHRJzHEABOT49z70/+I3/3XH+a3f+Y2avU6llKcP3+FQrG46e0NghC0pFqp46ZswwwpBI16HaRh8PR9nzAI25OSpF5r4HkuSNGuodJYliCbSZFOZ1laWkFJZdL6KlXyuRy2pdDAjfkl3nLPCZPC2C6ZeOLJFwmCgFq9TiGfYX2tjONYtFotMtks9VqderXKxPgYrpcinfEpV6qk2iQo9XqTOIxpNgMspTh77hJJHLNRrjI2ViTRMX7Gp9VomXRDoYwEitY89OBT7N8/gxCaKGjx9W88y8kje/E8m1YrIJ3JIIUhO7EtezNqobVJOXn6qReoN8qGrl4kxEmEbVvEScTY+ARKKg7MTRtheKXQAlrNoN2X5peo0ag2oM7msnQiwTpJmJwcR1kWq8trvPDiWfbunTGpse3xRLdFz+M44eTxORzHblP1mzEnihKq1TqWZd6fcrmC7/vYtvltra9vkPI8kwomBc1GkygKzVVpTSmfIpNJI4TkI5/8O1wJR9tEO7lcxoBUYRj0oihmZmqSjY11/LSRIAijiKOHDwCC5aUV9s1Oc+nSNUpjBaNH6NlIKTh6eC/j4wXKlTKplAfCjIlKWYRBSL3eIOV7hEGIsixy2SwL84vMze0l0aCkRblc5aFHnmHvzDhhEJIv5Eh5DrbtkMuZtNWrV68zNT0BbUIbTYzSgnTGsHFatsvZs5dYWazywNef4Y47jpLN5LCkhWN7NJoVcjkf17NJ+Sk+85VHkcTMzk4StFqMT5RMrSCCyvoGhUKeZivgE5/5OstLqxw6OEsm5fDdF89x/Oh+Mtk0Kc/h2o1FJsZLRpojk2F1dQ2pJJl0hpdePkuSmOhrs9lCKcXjT73IfQ8+w+lj+5ieKgIJmUyORqPB+HjJsNomhr202jCah//jx77Fr773vfzu7/0e+2f3cPvttxNpTalQ5NN/9Sl+95/9LhEm9VwoU+srwNTZ0s6q6hl+tehUf49Kaxw9/prvRo3T3e07Ear01tcJ0WWfNGmHvSl15mI6aYW9bW8HJgYp8vvnu/bvV3fbNufspC/KzfF6uza31vt1GSW7LJ1s/lsqtSVrRln2pgzP4HmG6dKZMaybPtk753b+3umbOO7Mh4N9rjfvVQ2phe99ZkpZm5kPW2v/uqUc3evcGi3rBZu9z2DT+dlzn905Mumbn3sdx4Pz9TC2zc44O7Cxb2130zbkuN66we0ipIPu48623drmObY5WGDWK68FvwOJ3hHM7qbmbui+g/3Z+1WSoDvv1UDfS9Vdh1pK/UBq7n58wF1kCFVkz6C3HbjbHdHKrYO77a09SG9pfkRh7pAfpcGB2iz+d/gh9AHLW7RbBXfDrmS7AWmUR3F7kfNuu8OA4s1fW/+nv63BwaD/XkZdewfIQFvqoGdyGdYPvZNYLygbdc+913Az2/sm7XZKeyIABHH77ynP508++RXe/9/ezeVL1wDB7OxedCKxHIHr2YRBRBiGeG4KjcnFV0qhpMS2PKJIA2rz/qUUKMsBbYb/MAix2hGoMEoM21+UGCp5DWPjY2itWd8oUyrl8H0PIQ1rZC5XIOtnKI0VicKQXC7D9fllctk0ju0gtCZsBjzw9SfZf2AvH/nE/bzlzaexLMvUCeKiE4Hvp/Bch6WlZab3jqMci0Ihj6UUSRyghMaxXdZXy1jKwnZsWkGTx7/zKpbU5AppPNflnW+/kyiM6Ii903ZE6DhBWqZP6vX6piTE+JiJMlmWYVHMZDIoZaJpYaxRts2FC+cZK+XQicB1baQQ/OWn7+Oll89z9NAelBKbz06YF80wZFrW5kIsk00zOzuFsoyWnJSwtrqO76fQGsrrZVIpn1YjaGsZWliWZRZNcUyiMVE+wHYdbMumWq1SLlcpFvJUymUq1Sqe56IsA6gc1yWfz/GVv/sWhw/u5613nWDfgWmkMrVyTzz+IjMz41i2RZwkrK+Weejhxzl54rB5NkIglSCMAqIw4cD+vTiOzfi40W/LZFOkUub5eakUSRxRqdbIpFMgFEmsUdLhqSdf5NqNG0xNTrCyss76Wo37v/4Up47NUWnWSflpkhhq5TL33nWCerWCEEbDbn29TBgEnD13hcmpEnEc4Hkprl1exLG9dn8ZQffV1XVe+O5ZivksL585z7veeYooCjCSGwmf/euHuPueU/hpHz/tI5TgnjuOMDc3zcyeGbJZHzBjeBxDoZil3mjg2Da3Hd/HyaP70WFAEAbsmS6RJDGFQo4LF69w6tQJhBDkc1niODEpk65LGAVGiDwIWFxYIZPJsHB9gRPHDpNPuxw+PEexmKXRbLB4Y50zZy8zVsqbcdYS5Es5CvkclSDhZ9//L0DDb/zmb3L37afJFwqk8xniOOHlF17k7jvvIrF1e0UnzOLOeDaHjFkdcPd62PDauaHXoPvH7S4ogd6xtztmbp8mOjj2d4lXtjr+Bucx03aHmINNJ+awyNbORCx6c87odTTqtkNny3XSBTkdgDuK9KT/XjvrjdH7DVsm9KbCat15RQYhyMA9t4lreu+/e56tcgzDznmzztvunD987t/azk6ELK+/9V5PEkddp/P3OburA6CGr0RuoT05bH289Xw31dYuwF0nkrfdGrVjb4C719l+XMHdZkvtAt7trDOwbwePdrLvC7gboQuzE7jbZJ8c0JzZHhxtbWPL9fQ9653A3XC5BamsduqiAXidT5fpcusk/v0Cd53NWpgBUAtAwt4Dc/zyr/8KH/ijP2N2zGXfWJ6P/8XD7J8tkcmm0DrB81KsLK/RaoS4rrtJ029SHAUISaPewHGMBlytXjdAUAtinWBZCh2HqLZsgO+nyWSyeK5HpVLBUgplWXieTRiG1Bum/q3VChBIms2Az3/xUW47dZBKtUat1kAnCV9/5GmKuRRSwG2njtJsRVy5uszURM5EugR87L88QD7j4nkOrucwOTlOrdXAdV3SqTS2bbG2ukLQCvDTGdLpDI16C8exeOzbT/Pun3wLDz7yLKdPH9zUEluYXyKXSyMtiyQxv9mg2cJyDPOoksYTHMcJYO5XKQdbOayurPPoo89y6OAc6+V1Lpy/wrFjB9rkJxZSQBxF3H76KLedPIRjW0YjrfOcEYRRRBInNOqN9raOqG+CSRKQaB2TyZiFuW3ZpP00QRDw+S89zOmTh2k0Gt33VwhuXF/A8xxW1zZQUlKpVCgU8mSzaUCT8lPoJCGdThPHCY7tbL5fGS9lSGgcm0ajThQFrK6scuTIIVzXpdky50ql0uzbM0G93iCMIlzXaacY2qyulHn6mZfYt2/GvF/KpBnWqnVeefkSY6UxdKJJZzI4jgGl5mYF46UiuYxLPp/HcT1KY2NkUw7ZTBon6xGHMTeuL+J7LteuXmdmZoJPf/4bvOn0IXQSUygWWF1dJ532yGR96vUG42OTfPazDzEzXcSyJL7vYduGzMb3PE6f2ovvu2SyKRId47kOJ08cZHF+gyhOcF3P1IS2x4ooillZXsZ1LGzb4cmnX2RsPIelLFqNJvlclvXlVYJWk1YUMzExhuu6XL12nZnpCbRW1GsNHn/qBfbNTlEpV6nXm2SyPiBQSnFjfpl6vcGRo4fQGsbGCibCJwXpjEfQSHj2hYugI2b3T6EFSEsRtkI++d2Yd//0T/Htxx9nZmYPM5PjOCmXZhjwwIMP8d//1j/BUhaRamuvijawM4PPkDHrhxvcdaJ3lm2355GbA3f92SL9QKT7/VZx8G7bXUdfJxJ0K+Cum7nSrdOSyuouvHvmqA7bchSFaN0lVtkJ3Bkduv45sLNP77FbA1fJ5ljZfQbDzzF4f52I5qio4Xbg7ccJ3N1qCudrch1/b8CdyZTaojE4ZN83wN3rbHGSfLA3BN3r1RluWyM0owHbsDZ6jzMDHToZ3YaOh5zPwsyEsv8z7GWS26eRbgF2Q87X8ZBpdJslX2Nqfm7+B6JhM7/9ViOA/akmW6Njvbow/de/FawPar91CEIGbVD8dLCd4fTPWz2Bvds699GbrtPdrvsnId2lrJZSDhSyD5tEe0CjHpxk+vft3teoIbXbf73Ac8s9tsGIBKQGR0qEhn/0Cz+Pt+cEwfJZ6uVlSvk0tuPRqAekfY8kjnjllfPs3TeJsgStwEgGCEy/fObzD3LsyCzKUnieTRTGJHELS1noSBoBYGF+f0KYd11ZCuU40GZKc1MppFJU1qpYykIIePXVS+zZO8WLr17i4MEpijkjNt1qRbxycYG3v/UOMrkMru8QBxGVSoVr1xaYKGWxlOTEoWnOnL1ILpvG81JEQvKRj93HWDZNqZQnQZPOpklnjGC2kKBsaDQbHDs2RxA0Wa+sM7d/L2ur6ziuzdhUCYEkaCV859vfZXZ2GtF+1ptec0y0bmVlGT/robVACYnrOBw5NEmrWSYJLe6//zlmJsb4r596mLfce5Jm0AQpzYQnJWEcE8YJQkPQClFKkcQJ62sbXLu6QTaf58yrF5gYL/HMM6/gezkcy9TPabTRXQtCLNtCaM3xYwdoNltkMhm0jvBsl0atzsREkTgOmZjIt8FMistXrjJeKhIGAUEQ4KZS1OstUqk0iTZpyJYteeyx57As8Fwb27FRlkW+kGd1dR0v5SKRLCwYQHz1ynXyxQxLS0vk8hnCZoSSNplsirm5GYwWn/ktJQk0my32759hcXGBXC6NUoKFhSUTARWKJIpNJDGyaAUtUr7Dxto60zOTYAXcf/+znDlzgXvuOoafzeF6GdY2GrzzHbexurYGSuKlfD7x+W+yfybP2NgE33j0WRq1Gu94xynyeZ9UxqdabdBqhdi2IlfMIISNn8mSAJ6fIUGCtPjK3z7J3j15CqU0QmpWllfJZDK4rhnDXnn5Entm9jBWKCClIAwSwiBB2Q6tJCSTz+G5aZTlUGusM7NnnFfPXGRqcpIHH36ccqXG3pkxcvksqZQLEoJGgK0sSmN5bMcijkLW11bQOsL1LJI4olkPCMOQe+89ST6fYWPNRHItafE//N8P8Du/9U+QSnH61CkSHRMJQRxrLA2f+8yneNc/fDci5RBHMZuOK2mir7E2QoRagBGY6MzPAN0UvyEj29D/gvIQAAAgAElEQVTxrtf667o6DrNRTq3+MbMT1R4c2zv/V+30xV5Sk97vB4/p6s31gsFBJ+bouawD7jrnGqwdN9erTA2r7oAV+sbz/mvSxLFJk02SxETgk06aZW+dOj0szh1g2J0fe4FpP5Ay54rjGCE6aZz9zsjO8Z1IaCc62AvohkUDt85pun0N/fP8pjN3kwVz61qi05eDUb5Nk2bNmOjEjKuiB6AMvj/SpBzSdmB0PqJTIzBwzlHC6Ddro+4p6chvKKvb30lCJ3Vw2Hvf+/0ulnuAub+b/bN5vp6PQiDbn920Rnstl0TRroDqYCpx730M9kdvIKGvD9up5do0svkZVj70Brh7nS2O4w8O/2YXP65dgbve4zqL8F22MRIIbu8puDnb6b57f3679PDo4YPozdowPbtRwGTUD3W747Yv4h6uGzPo6dzNIsFMXIreCWRwnw5Fda+HcRhY3f7+httwr+Twd2hzYthyv1ud7L0g1E/7XG2k+fzXvsHPvvkQcRQRRyFPPfEcUavJoSP7yRfyNOpNHM+m2ap1WJFZX1/j4Nw+VHsRZlkmrVEKxV9/8VHm9k9j2R2x7nb0MEmwbAslBNJSLC0tk81mWJxfYWW1zL5909RqDSxLcfSISdlLZz00mpTnctvxA7Sadeq1GgvzK3huipTrcuL4QTzPw7YsqtUqUgpmZ2c4e+4SUzMT3HPbYSYmSgipUZZJB6pWKyhpdOI6BCQm2uRy5PB+quU6xVJpcwK6cW0BL5Xiy/c/zZ23zRmxd6VoNZu4jmsYRXVCKmXq1dDmGQTNFlIZwXMvneG203OkfI99MzlyWd8sQmJTx9JsNgmaIbRTsuMootUMCIMI13X56tee46WXLvDOn7iDJAlZWFjGshTKSkDYnD17hfGxkjmfMtEj27bbRBZG0FwoSRyFRvYg5dEpP0i06eMoinDaKaZK2TSbLb7wpYfZNzuBn07RaNQ4dGA/nufQCgL8dMqArTCkXm/hug6u66E1rKysMDUzhZSClJ+iUq6ysWEITax2hFIIs2DdfLO1JkkiMtkMlm0RRSHZbKZNgKAJQ8OWeeblK0zNjAGaa9cWKBZzxEmLA/sPcPTw3nYqcIzrpfjCl77B3L4pstkszz//Kleu3ODtbzmBY0s832Pf7DTjE0XW1tbwUh5RFHL9xhJREHP/g89w8fINbjt5EJ3ERFGIlJLLF69RLBQ4cmQP+YKPVJhrs4y2oOPa+L6PY9sEQUCzaZg+pVRY7fRkL+WilOSZZ19mZWWd0liuvQiWeK7LgX0znDx+EIHAcV2EkNQbTerVBtlshhdeOMdGuU4xnzWC8xmfJE7YKFcpl2sUCnniRNNqtSgWCyRa88f/9T7+z//4Yb7xjW9yzz13c+HCRQqFHGEY4fspnn7iCe558z2MT08ilEDo4WlxHfDVP+51wdWwz82siXeKxGw3bsNg9Glrux0A0dEmHQbuel7FkVG90fPWVnA3bNzuAqtki2Nwu3mks5+UBqxK2akf65/nhjscB6+3F/B1/26O6aaQ9vZd7711rrVbmjC8TzpgEdjs9940zmFAdji47Zx7mBREz7l7wOLm8x3aA6O/GL75e4/mjdLH6z6/njPvsE7qu45drtt2Ex0bZh2nwuBz2NE6adLbSD3sZKPAXac/RvXhqD4a1hdvgLvX2X6g4A7R3aWXrarPmzKkVc0mSUqvqY6nYKcf7LZ2E9e86Xq6NXBnNIv6NWB2Et7suwIxajHQO9FvBVyD0br+47beS68Xrdc7OOr8213b8PvoZSjr0fPrm5TVtueJ49ikAZlW+r4fZh2v3qC3c1hEbvA+tuu7zr0oyx64F8nE5AT/3Xvey+/8y3/Pr73jmFngKsH5cxeYX2xy7fICszNTxJ2aLymwLYvJiRKObaQFOunDlm10xeYO7DERMUtsLj7iKCLWCUoaUJTohHJ5AyEgly2Qy+cM2NAxY+NFWkGLbManFTWRUnDh4nUymRTNZouJiSKJFiwvbzAzM8Xy8ioPP/Yc46UsQRjytcee5613n6A0VuCRx57g4IG95hoVbQZAC89LmWghZsKN44g4imk0q0ghWFpaI5fLEceG9TIOExI0b3/rKZZXVoiCiHQ6hWXbVGs1HMfBdV3KGxVD7KKhWa9TqVVJ+z4aSSts4KYckiRCJ7ER0k4EzWYLtHm3FpeWTY1ZEiOE5OHHnmJ2eoLnv3uG44dnOX1yfxtIBExOltBJiO26nL9wnUIuTy6XAR2zuLBANpuh2WyysVEmnfYJwxa1et1EYNvkJJVqjStXbjAxOWZ09mITGQOIg4Ratc6xwwcoFHIIDFHO0sIyjWaD0nhxMzKRJJp8NovWmnq9wcb6BpPTEyhHce7cZb724DPccdtxFudXKeTzNIMGraCFbRsPvWXZxJGJRChLUa/VsB2rHbWXxHFEkiS0mk2kEkxNTbZJbhrMTE2B1tSqG3iuz9r6OulMGqUsms0W99x1gqeefIkrV+Y5dHAPY6Uce2YnyRVybU0jh+++8BIH5w4glRFX9zwXP+XzptuPMrdvBseGS5euMDkxSRTG+H4K2xIoS3Dj+g3S6RQL88uMj4+1Fwuay5evIaXEdV1s28JNeXz8k1/jjtNH2u+j+c1OTY3z2Ddf5MTx/ehEc+3aEtVKjSiOSKd9Xj17ifXVMkpaFApFHMtGKoFruzz86ItIGZPP50gSje065PM5stkc8zeWsCxFvmC+q1RqvFAr8aY33cbxE8cBSKU8hFCk0imCRpMvfvELvO997wNLEms94CJse+m3GT+7EajeqESHfGPU/LXTeNyd1wbP3Unrg63adr3fdSJByjJpmVL2EG/0fG/G7QTLduAmWDEHSb6gPxrYS0TSSxzWG0UbPvftvMYZBDy9EaHtn1Gn1EH1Hd+97mFrh96IWud5ik0Au938ZJxLvfcretpKiOOkTcDSX3vX7xjovb9eMhXTfx3yFdGz9upf5I9Yu+wC3ImB9dsw61yn7CGUGbnm693eIXjpXV/K4WuiYdcTJ2326jaBT8fiOEYKsZXh83sEd3390Ike3gzQ29xPjgRbo1Imh65xBlK2t1t3jrIfJnD3BgPqG/a62Y8eeewPr3XS9r4X6uxNcfge5rDX0qQUBGGTv/jk/8c//c8PcvDgAfx0mrm5fYwVsrzrJ+9kfXWRbNanUW0QhzFRFKM1LMwvAAnKkgRhC41uRyxS+H6KVqtBkmiiyAAZITSJjhHKpCHumZkkm82YNA/bZmV1nfGJEmDEpYMgYGOjSj6XNwAtTti7d4YwivjOUy+xd+8k585d4vGnXyVOYlzHJlfI4rbFtqXQvOnUYdbXNlhbWSNohUY+AMnK0iory2sErQgdG100KSW2chDCMNBZloWQ4Lo2SgmyeRNNmpmeYW2tQqvZQgqJ4ziA0YHz0ymCVkgchaTSHmNjRWKt2wtGiyAIiKKQpZU1lGVjWTaXLl6nUW8iEOQyaZSU1Op1QHP37UeRUnJobg+2I/BSDlKIdnQN0r6Pbae4/fbjTO0ZRycRcRgzMTaJTjRBGHPp0g2azSZK2e06NZe19XXiOCKd8ZnZM9EWqZfYtt1OsRK4nsPXH3kS13NYX98gCCKSBGb2TLFv/17WVtdYXl7BRPnMvWmg1QoYGy8RBRFKCg4dOsCv/fJPEcUJZy5cx8/4KOWgtUBrgaVsojBk4cYSblvzzvU8I74uTVq7ZTnM31jkwqWrCCFZW11neWmZz3zxa0bTL0pI+xmkhMnpCaRShGFoagh1wtHjs5w8foCJiTEajSbohGa9xblzl9DaXJdSNuX1Gs1mg3q11pYcUFiWWVzOzExy7vxFGs0mGk2UxFhKMTExQa3a5MlnXmk7x2JarRbj40U21itUq3VsxyEMQtIpIwPx2b9+mLXVdcIwZGO9QnmjiZKGQfb48YPsm51hYnKcer3J9MQYTz93gVTK41vfeoZmq0G9ViOOY/bvLXLk8BxKWaytb9BoNHnhpbO8+OI5sm0SItuy+MSn7ud3/tNX+f1//gFKpRKplEe9VsdxPPP7DQK0hre/7e2vyzjz/bDBCNWwiNXN0KP3plvvZDcj1dMlP/nhml1/FKni37Dh1nlXB4FRV37kjWf9o2BvRO6+L5G74W0oIUwNkxDtaoMtOw8lSdn01WltCBiG7LOzvRb3ParpTt5+x/vYE7nb9BDdetrmNifunmMXdjNetNfOttY+mL/vQOnb9igO8yZtd57BiNywZ7LTccP2GRQj7bTnOArLsvnLv/wsv/oTx1hfW+fIkcNYymJt/RpJUqHVbFAsjREnglTKRCke/fbznDoxR6NRN+lYJO1UIYtWUMdPu8ShxrKMRzGKjb6eZTtEkRG931ivcPnSAl++7yl0EuB5CmVLHNtiY71KFAZcvHiNmekptAbHcfB8j+mJAhcv3+DA/j2cPnWQu+86TjqT4tq1RW4/NcfEeMkAvE6E4xvPcOTQfs68ep7JyXE21ipMTI5TLpfxXJfFxaVNr/Hyyjqze2f47ouvMj09DsIwfSZt4gCQPPDgU0yMZ1gvl8lmMsRR1AZGGikElm1SFR3HoV5rkiSatZXVdupjwupaGddxUFJRqdT49hMvcfTQrEl/bbZItImGJlrjplxcxyaVchFtiQulDKj8q0/fhy09iuNppEpMxLDW4qmnXmZ23xSu7bBv3x4sy0YpSaLbXmI0tm2hLIFtW0jRYeKUIKBea6AEHDwwjWXZVCs10mmftbV1bMeiXm+QyWbJ5rIEQWiYUYMIS5moV7lcIV/MU95YI53OAJJ0xufosf3U6jX+yyfv5633nkZgFh5BEJPN5rAdp92HctObj5boRJPLZfF9z7wDrkO1VmZmqkg2nQMtabUaJpIoTJqwVJKXXzyDn3LwfAelFE8/+SL5XBo/7SKlTT6XZXl5hTtuO0azGRI0I9Y3TN1cGIZslDeo16qks4aFdGx8HD/tU6/V8VIur758nkIuh+/7HD28nzAMaDQa+GkfJRXZrCG58VyXJNEcPbiXRGsOH9pDsVTgmWdewlIWxVyGTMbFdS3iOMa2LM6fv8zERIlcvsDJE3MkseY7T77M9GTORLVbhnU0l8+wtrbGysoGjmtzYP9+rl9f4uq1BU6dOsK1azf43//mOT7+4T9HJwnlapl6vY7XlrxI+xkajSZ/+Id/yO//i38OQCJ1O7m/d0y5+TG6P6pk/j8qwrObYXxwjOukTg5LD+vP+thex7Q3aiSlGjpu38z1DLNO5FIMSRfd2sbNd0Y/U2e3jY5UQSdrZDDjpjf7pPeeh88j/dfTjUJuTfncNsK0mfLZT0DTiQJ2WUW7ZRbdGsKtKZj9kTvRd9zQdL9RUaVdpWXubJ20y8Fz9177ttt3mdnVWY92o2D9z0vK3u+69ppG7nrbvZnIXXfnmz7dyHfre72PEW28kZb5OluShB/cJAjpJeIQii2EJSM+Iylkb/J4Q4bSJTLp/SNFf43TZrqA2Mpe2UkskUIQt/OVlRCb2n2d/XWSIOgnHbmV+96N9VLEDk2DHJbL/JrZ1rZ7Uy5fiyLm79W2pod0J6yublLXknZK3dZUly5ldm8ayeB5+qwn7XSn6xs0y7I2PXa9AF0qw/CYJHF7IWDaf/9v/Bq/+oE/5rf+4Z0I2yxwzr36Cs1ajWYUUBwr4Gfy1JtN0pkUUxN5PM8jm8nRajXQGFKRSqVMJptBCIWQhohDKolEYNtOW1rBQiobN5Xim49/l/f9+ruJgohiscD8/DJKaSwbdGJz5OhhWkFApVojnTH1V357sb24tMpXH3yCUycPEMcR+XyRJNYsLK7w9Uef47aTR/B8F0GMZSsmJku4rsulqze4eGaBaq3O5GQRyzJSAWHT/K7X1zfYd2APcbtO8DuPvcjkVA7LUkQBzB2YwvNtSqUSSipefuki9XqTbC7L5XMLZHMuUdxEkxBFLp/8i0eYmyuSzWawLMX4eBHbViBMKvTTT1/h5PG5dp0ieJ4CLXFdU0cVhhFSWoShiYJKKUkQHD8xx/hEiTgOjR4cirW1KrP79uE4SZvEI6Rer4FOkEpDEkNitOCktmnUAiwhUEqQJEYby3ZswpamUi2Tzthkshmkskj5DiSK5587y56ZPYYdUmvCVsjnvvggp04eRNoCyxLEQQtl20Rh0I6AGbZRkcC+6QIZ3ycOQ65du8H4WB7LsRAiQUhNEARY0gZhgY6N6HwUsra2SiaTJkkgn8+Ty+cRbX3GF164zMxeA2iDRpPlxWWee/E8p08fQcchSayZnJogl8ugLM36eplMxkcI815evz7PuYtXmBwvUigUqNXrTExN4GczxJEEYfPIw88yO7sHy1YIK8FWaZpBg2q1gpQCL+URtgLC0MZSNklsSFmuXL3Gy2fPkkm75ItZWkGLlZV1VlYrfOfxS9xzz1HGp0oo26IVNFHKYWJijFqthm1bfObz91PIetx77ynyhRxXr8/juR6tZotiMUs+l2Fyoki+nZa7b984YZTwtefP8ehimn/3bz5ENl3C8XLYjsKy7baOn8LxbFrr6xw7doQDRw/STEJiAVoKrKR/7hpeQWZslAZdb33WqPGrm7a5c9r/dv/uAKkOA2NXcy7ZFmD115Ptbq7pBRfDrNVq8fDDjzA3d6AvFbTn7H0OvOHpjZ3oX1d7ritx0AW3UlltdnHd55DtJQLrncO6fTEcVHTnuX62yd75rHffTqZJL9HZqDmzu0/3+MEMlUHg2Wm7n2xOb34vxCZ1R9+ndx0lldokeJNCbtn3e1nlDH3HR6QwDj2unY45rLRnmHXuqveue/90GhGD20U7ktxzubsBShq92Vm64/SXphQl0UmXzGbQOkBUCEj08GUuQ57HawHues4nhOzps632Brh7nS1OjBQCMICUdgdebibvdnsb5aUYVgvWHvwGjuo7c+d6hu0/opbPHPc6ZeT+AIHTKHAn6AFSP2BK4l4bNuEOvgejvI29+wshsQby419r67xPg1u1TswY155cbctEnMIw5Dd/6/184I/+lL/91ovcNuVzeP8MZ86eozQ2weT0NFFs0s5q1TrFUnFzYRa0mnieSxga8o9Em3TMzZqAONmMRNF+36WUJLHm4IE9SKXwPYdyuczcwVmTCiklYZSQzWaM5l02y/XrN0infa5fv4FtKWZn93Dy2D5s2+LsuQvEQcTE5DgCOHhgmldeucDk1BjNZou/e/Apbjt5CCEEuWwaKQRTU0XK1YpJdXRcPM9DKkFpvEicGCdLs9Xk0MEDhFHT1BzaLs888xJzB2dMaqZSTE5OkM/nsCxBvpCj0ahjKYvl5Q1c1yPlSopjRopBKkUURlSrNSzHwnVslIBcPo1lgSYhCENcx+uODQIEir/83EOMFX2KRcO+6DgOtm3jpWxAE4YxuVwexzHAOurpd9/3TJSDBMdxOHPmAsWiYce0bQsEVCtVw4CpLIgglXKwHYWSNkmiabYaSCnYO7sHMCDssW89zdyBWcKgyZ49U3T4E5eXVsgX81jKRghBeaOCxDgdVldWKRbzVCpVbswvUSrmsGybSqWKbVnEUcIjjz7DF776HdZWlzmwfxrLUuTyOZaXlrEtUzcYhuEmKc7s7AxCJDSbDbyUi5fyGB/L46c8KpUNUp6PUhZaJ/hpD8dxSeKEZrNF0AqxbdOHMzOTVKs1fD8FwqQ2hWGE53nUKjWmZsYRaGr1CufPzrN37yT5QhbHcdhY3+Cjn7qfN99xCqQm0RF/89VHOTy3B8dyce0Uf/W5h7nrTceoluscOrSffMHi0OH9JFFMGETYtsuli1dIp32uXL5OsZjn1IlDVCpVGo0W8zcWmZwaI51O8/m//RauBXNzs1y7eoPl5VVKYwXq9Tp/9LnnueMdv8CvvOeXsG2XO+68h/e/7zdwfZdqpULQamC7LvV6nYcffJh3/8y7aQZNUwvaXlWpPkd7d5k8zEbNrzuBu/5hanfgblQ7gymZnQjf6+GgHJwPBk1KyanTpzf1Mofv0wEw3c+oCFqXNKX/GqC9YB+SYTMMxG13P/02PKOkD1B1ACSDEj/brZ36gWHXETrs74NgaDSYHv6Mu/tGUdRHGvNa2o7gbqfjRqwfX3MT7evqfaa7BXe9zbUBW6fGfrgTY0sjN2+vBbjbRVT0jZq7HwH7QeqDjDLJGw9xOzPe1+R1BT63ajf7Pm2X4x5FoUlLfK0vbsDiKBy+PU7M+due37inLrBeq/LRj/05f/KRj3KmHJApTeBmx3GdNKuL6+goQiHIZjI0agE6lrRaISDaEUHVps03wueOYwOiXU9kmBHDdm2W1hplKcO4qASZfAo35bRTGjXgMDlWYGl+gaDZZG1lBdexIImZGiuRTrmQhCwvLLB4Y57p8RL5nM8Lz79Eq1Gn1aixtr7O4vwy01OTZFMeruMyf33R1CK5IJUmlXIZGxuj0WzieIpybQNNjNaxEWN3HITUOK6FshRaw9kLi6ytreF6LlJCELQIwxYA0goRKBwrwxe++BSPfetxjp2cplQqtslW9Ka3M44jpCU5MDeJZQNtgWzHTm1KJEhl2DyjMOTnfvpODhyYNQQdjovt2FiWKZxXUuLaijCoU6mWAU0cRayvb7QXDZJqtdLOLtCMjxewbEE6a9grl5dXSKVSCBRJBF/5u8doNlqAmbgNM6cFhDQaVZ56+nkqZSNjYds2p08dM07pNvunn06hE0kUmehwJpMmlfaQlmZypkgjqJPyfe6+6w4uXV4AoFAoEEcapRymxsZxhcfKRgWBoFFv0moG+H4Gy7K4duU662uGlCdOQuIkBAyIjaIIpSSlUp5avUoun0faii98+SGkJRFC0WwGSGWRyWQoFPPkC1nSac+QkhTytIIANDTrTaK4RZwEHD2xjzBs0mzVcR2bSrlFqxVTLtcJwwjHc/lnv/MLCBHg+zaObXPiyH7yuSI6UYyNj/Grv/QubMcm0RFxHHDb6UMsLlynsrHO6vIKCti/fy9hGHL48AFefOEMjUaDKIoJWgHHjh8ikzYyE//459/KxNgYly/doFgap9GIWFut8N5/8yX++EP/lne8820kImF1ZYk/+N/+FSnfOAwmp6fIFQqkXJeN9TU+9blPs7S20iYSAZn0A7sfdetGFb//M6/npUiiaGTNndadlHnd99nJOgtUM473pjnqLffZ+/1rbR1nZe+8favnG2R7fj3MsrrRxTfstbXdvL9v2Fb7sYncRVH4wZ6Ie9d28cM3hM1s8YSM2j7MDLHPkFoBTOi8t5YgSRKTbjlwjk70qas+Y8hLBr2hQoj27XVod2/+vnfSRRl94NYe6GVq6otW3eKPdhTj5rCIarc/5chz9nooh6U4vm7Wl1ahe+oz5Gb6bz8rWvd6O9s3RVsHPKzDvK6jxd9HawBtHrs5wfam+RonWFf7iM1r77BtxXFknsH4Uf6Pf///8k/f85P4qZQhHVEG3CzML3Hp4g2mpsdxPBvajIlRHKOkgnbtqRCdom6BYVu0QZi60443rssMGuPYFlpDeaPSZlAMERhgUK3WjFC1Y1OrNkzdVdVQvtu2jZ9KUSnXSHkOtVqDaq2Bn3KZnBonnfZxbMH4eBHPc0BAFBvClmwmQ6VSI5/PEsYRmbQPQLVaRWAIP8IgRNmCKE6wLZfTJw+SzjhEcYJlWWjAUqZeTScROrFYXSmztlrmbfcexzjmJc1mC9t1WF/bIIoiUr4HdOjZY1zXYXV1Hdf1TURKtvvQsnngwSfIZnyiKDLkLpZhZFuaXzIC4YmpxZNKmX6kXaPomSjV1WvXSJIE308jhDApru0oeZLotsg4rC5v8Ddf/gaNesSpkwewHMXqygaW5eC6NnFsdLkefPR57rz9GMVCjmvX5lleXmVycgIpYG1tnWKpiJIWn/j0V5iZLOClXIJWC2UpwqhFyk+bOj3b5pvffp6JiTye5246lYulIkcO7eHokWnSaZ96rYGlLFzXQUmLcqWC7Vik0z5RFLIwv4zjWjTqTSqVGgIT2ZRtkLy+vsHdd55Et6PKUZTg2BZXr5jomBSCfD6LlBLLtlhZWaVRb5LP5QiCJq7nGKIdW4EA27bJ5orkC2mzDW3OpxSWJalWq1iWotVskc1kKY7lkAo0EY5rkc64JDpCapdGvUk645LNp6jWykjlEjSNVt309DjPPvcy+XyGQjGHbVvUG3VazZClpXUuXFrg8OF9RFFMkkR84OPf5JMf/QjrG2Wmpia4dOECY+NjnDpxOxoDhD3PxXFsnnzyCZZXlvlf/uX/TNpPtycr0Y6ud37D/WN03zy6qWk3PCqWJN29e7/vpE+a4IGJ/psay+6/e88xbJ4YlpHz/7P35lGSXfd93+fe+9Z6tfY6PT37ABhsBEAAJMVNIinyMCJFmyIlKrKVSIrPsZNYkhPbOYlzjhMvx6bto4VWpJMcR3EkRYu5iJJMQeIGkQR3gAKJhVgHs09P711de73t5o9bVf2qunq6exYQEvHDKUx39Xv33bfd3/3d3/f3/Y7L+gyPsVvZJiObsLVtv19Zf76TbdXR9TNm25Ea/Y95XwwU3ZzbsA9Ulo1O04H4uJTKwBuH/J7uXQs11L75eev4W2yWo9m27dm3bL+3fIAa+Xs6dr/h9vp+iEwfhvfLwkn7+8heFn3rXmTvQ7Kt7+P6vXW9+9nM3TkWsvdg90zwHvzsGF21oW2zUMts9mjcfn3dwKv26vrNwCpH3qdrzNzJIV++d5TcEEvsLnPQHYPFzHxs7PiTKcsaYjDdxV7N3L0CTLL3TNh+tt2PJWk6+GQtzXz6dW1/VW6eTtPBJ03iweeVYjd7dW8v1ndOo1m63SQjhJC9Ccvu/c/eh9E29noNrnU19NTJeX75//1dfvKXPo0T5Gh2O6ysLFCrrXH0yByvuec2EJokDQEzIbMsGyEklmVgfI1GgyiKDGlGFNPthkgpieKIPjmICcZ+KYgAACAASURBVG4SojBhaWkNZVlMTE3g5zyiRKOlQigLqSyqtSaW4yGwqTVaNDtdNqp18vkifq7I+kYNoRRxqml1Qo4ePUStVqW6sUa5HGBZgnanyaXLlwhyJcqFSa5cXuPhL32LarVKnCSmbkVa1KpNXNvn3OlLnD+3RBTGNOp1IMXxzEIOvYlUkiSsb1QRAlJt4XgWqe4wNx+QD3J4lsfa2jp+zqe6UaVYKiCEQEkbnRr2S9/3EEge/csXqNfaOI6H7dg4notlK374ba/Dc20qk2WiMBxMCvL5ApZ0ENri/NnLJtMUR2YtqJf5S0mZPzTHRHkaKWzSWNDtRHTbEToFaRnCG4HgxRcvYAmbD/7YO+h0QtbXqnzm4ceI44QojGjWQv7go4/wwN23oRH83ie+wOTkhMlGpZpmvYVru6RCsFFd40MfeCdTU5N02h2EsEhjgecHdDtd1tY2SHTMe9/7FvJBHrRASEGqY5qtKhNTAZ1OF0spSqUirWabp58+zeXLV5ibm+XAgVmq1Q2E0MRpRKPWQUqbYrGMpRxqtRbffPRp0BDkc73gqr9wJuh2Q+bmZul2Q5QliaKQbhiaALqQp1IuUa/VabVMBlMpSbvdptsJqdc6lCd9tEyQSrO0tEKz0WF9dZO090wsLS8xf3gWx1VESReExrItHvvWU9Q2O9h2jlSkFMpFbM/Dcnz8oEC3a/rxJ3/2VZRl8Zq7b6OQD/Bcl0ajwTPPnmHu4CwH5qa45zUn+PTnv4GyJf/rHz/F//eb/4Eri5c5dGiOWq3K5PSEyQZ7Ft1Oi1KpRBInNOt1vvHNb/JDP/RDpAJSQa9+B6ze51qtjwqwLOuqWmvXY0amxHzGWTaLkKZbn93sZmYfxvmGPqNy1idcD5PlbhPYYZ6ALJzz+izb1rAY/XhLe0HvTv5wpzb2OkG/EXYjMon9TOHo/PCvu/XWiL6nJnvzhn4t6Cvd/qrEBy+L7Qd2ebMgmkrKwSdrQwFSpg9/FSxL8fxKfEFeCVDbtKcHOIovHweLGTWTod1DcLcD1fZ+nuU0TQaf/ZhEm+ChUAAhqFSKCKHxPYcwCvE8F0iJoq6RDRACxzaZEp2aVeAgyLFZ3UQK857YtiF5UUr1ZpKaKI56GVA4cvQwQkiiMERKQblSJl8sEMUxndDURUVxzMOPPI7v+3iuw/TMFI1mm5dOn2NiskKcpMwdnOHw/CyOY2M7Cs+zqVQKpDohn/cp5H3arbBXXA+u4+A4NnEc02y2SOKEykSFTjckl8vx7e+c4dLlJaZnpkl1QhRH1Ot18wwAllKGe0lr0tisREoF991zG+1WlzhKCYIcUgga9SaqF6xIIZHKwraM2LhUkne89QFmD8z0Vq9NMHLx4gLNZotUa7rtLrlczpAxScnH/+iLLFxeorqxyZPfPYNlmyBLINBJShybdqIoIkk16+ubKGWxvLjK5mZtsJJu2DMVJ48fwnNsk8m1FLmcz9/60H+B25NfSFPJ0YPTHD48z9rKBiePTNPptDl5ywmef/Y0UWjIXcIoIp/P4XoO9Xodz/dxXZduaLKxQRBw5Ogh7J4IusnUpj3yi4RypUizWadcKpgsiZTYjkMcxcwfnsdxHDbWN3okNRYnThxhdbVKFMZsrFcJCjkc26XRMHDZdqs90DQEcF0Xy7KxbZsrV5Z6Ug5GA01I078wNFmuSqWMbTu0Wm3QJuuZDwIQCUIYmOvB+Tk836dYNmLkuSCH7xvY7sVLl9Ep2MphbXWTF15YobrRpNtOsFzB0soSWguiMCVNLPJBjkqlhGMrzp65gNaaZrPFC6fPIaXi2NE5pFIU8nk+98Vv861zC/ytX32If/cv/wWbmxvcfucpw46apkxOTiKENosAtkWn0wagG0YUCkXygZEj0eOTM9dk/YxeHMc3bTKulBx8xlk2oNtt2532u9E2zjcMEZz0MzfXEWztFoxkfceNhGtm2+pfuz3Py3bI+gqx3ce9nAu7N2LOGMdmvBmdH/71tz5u7XtnOy2Ov1Lt+waWmSRbhCqGeaefth6GWYyusmVLbYdKlDPbZqEX4wa2IUjljv+Zv6eZdlU/PQ0G2pJJu5tBz0xs06sOpmLQA9kbyEyW6OoD8H5S4sBAy6efFh9mdxyBYg6giJnjDcEKDKPoMPQmA5fMwESGYYJXhzyMPU9pWFD7UM/sCuTY89yhyPx6betaycHv2Z9HHXR2JbJ/TUaFSvsOXvdgKdnPAErSC56y92QrcNPbPqPPxXYo07B4bH+bVAuUgB/7sffxoV/4MG+7c4ZSZYpmo0Oj3sK2FY7rgeOTxBFSCpI4Ig67tJsNlExJU0Eu8EnSCKmEERHXIb10EaSaTrOKSLukyIGwrmXbhngk6SCEYHOjzaf+7FvcftsRNjerPHdmCaljDs8fQGgLkOTyBaQIsR3D2DlRCdhYXyIXBLiOw+pqFSUt0kQwMTVNvb6JTjQ60lxZWOP4sXmCvBHith2BVJpCqcCzz5/hwTfcxYHpGc6/dBGdRuQ8Bz9XIeympHGCJTWdThs/CEBJulHXZOOCHEmSEhTypKnJprm+i3JshGXuYxSGOK7D6dPnOTA3S6wTZJriOiGrSwvI1OOjf/hV3vrmezh/YYFjx+ZRlkTrhLDT5vWvu5s4iXj+9HleOLvKXXecQFo27WYby7aQljAZ1m44YDrVWpNoTbPZwfVcXLcHGbVtNHD8xEGUA1JJms0Onudg5sUJyrfwXI8/+tQ3+OF33M/JkwdZ21gjl/colvMUyuYadjtdNqt1HNvpyUgout02Fy5cZHp2Ci1gaekKnu/iuI6RTcgHpLEgihIcxyKMOuQC1xCnKAFaMHNgivNnLmIpm04nJI0NzNJSFjqKKFaK5PIe0rJIdcKpU8eI0hTb9tGxqUMMwza2pXAch2ajRS4XoCzZ8ws2QtikWrJweQVlO/g5o08XRyGg8X0frQVKJqwur+O7PpvVGrmcS3VjnfNnlyiVC3Q6IXEMn3/4Ke696whaaGxLcvToFOVyHi9no7D504e+wexkiYUrixQKpg7OsRRzs5McPX6EFE2hUmRmoszK8hpCSNI4plqr85EvX+Tf/Nrv8N4feQ+z81M0WnUq00Wq7YgUQZyAVC6NZgPHtykWfQi7fOuRr/Cj7343QaVElCTQKzPQ9BAnoud3hTA+ju0Mfmb4GYY2mvFID9zFuGF3GHYpB5m9rbFq9wyN1glGrMEsQPyrf/lr/ODb3jSAaO3WxrjvR8fc/rlsX8Abr6M32lYfatnbq7dvFmK55b9G/eS4fm33nVtQyOEsnN4msD4sgZBm2truy4avUX/OpAY/Z6Gc46Cf/WszypSZPdd+n/SI7xLC1G/3n8Y+u+boNcj2Y9w1G7K+JIAQpDox8HlA7hYk7jD32W2bYf8qBme30xzt5cxGApBqlDBzzK3Z7N5t6Dx6QbgaMz5ctY3sMcfAVbOm02T4Ovc+uo82yLyfo+32WcP1mPKdnfQsX2XLvMk2FNwNBofdVwP6KPCrbpN9QHZoY682VBa30/eZl0HuEFDu1Lbu9feGryNmccp6/0FWn054WDttOPAeP2iNwVfvJ7jrBzpXYdEcrTPb7zGux8YFduMmDb2OjnUM46Gdmes5ct7jdJ720s/sAsc4h9S3H33fe/k7//Q3+JtvOkW5mEcKsJUgjWOSJEYJi7WVDXK5AFvZnDl7kShMKJbKBoYZxdiWg5RGUy9JBamWWLaN63mGjMV2Ub2BXWNqcJI0MavoMZSLHq5jUSgGVEoBRw7Psr6xie0IWp0maRriOh6e7xOGMc1GGyUUSkiSJOXc+cscOXQAyxJ0O20uLywjVUKYtDhwoEwYxpTKRbO0Igy7o5KKA7PTIMyzni8EuDkfZTvE3YhmrY5tS5rNFkHg49g2aaRJkhjXdYiTBMd1qdUbuLaFskyWDm2ezG47xPUchBLMzFQQwjicyxcXCfI2UZQwMTHDPXefRAhNsRDwH//TZ7jjlkNGL1Ma5k3P9zh+9BB33nEE13dxHAelUqRldJfSKMV1PBzXplbdJEkSJiolQ50PpFrg2C4IQb1Wx3NNnxzXJZcLsJSpLQ3DDnkvj+db3HvfESPwLSWe52PZFkopo5GnLNMHYeqHlLKQQrK+VuXo0SOkOgWdDvTghDD1cUkSc/HCZcoTZaQA1/WQShInKd1uRBAEpHHCl776HY4dPcDk1ASWbVHIByxcWWT+8EGEMpm3qBOydHmZUrGIEClxGKKk4j994i944N7babZbPQ2/FsVywejL9VhDpRSEYZeZ2SkcV0FiAkFlmXNcWVnFti10GhPkAur1JsVSkfX1dWzb5tCRw0RhxOLiKnMHD3DHqWM0GpsoqYjimHw+MELt3RCh4ZYT8ywtr1EuFwhyPq7nsbnZIMj5rK+s4TkKW2o2qg2UZVGolPnlP/wan36hwa//2kdYX1+iWCrgez6eG3Dp4iKe7+M5JttKCu16nWKxxNK5C3z205/l0uICb3/3u2iE7R3Z7baGpr3U0AyPH7sFVv2PCQT7AcT+PK8QcqAr+ZnPfJ7f+PVf5fDhIxw5euyGrdaPC+Sy9XY7WX9cHdWC27ouY5egB5/x7Y/3d6PXfsv/ZINAs+zd18Ebd73HZ8RGFnUzC4D79Tvb5wfbWS+Hg7jt+40GpHuat4jhX4b96P7nPrvZyxqoXYP1feyNagt2n3Nv22+n4G4PY8bgGRmzT7ZdIYSZ6/efWSmH5Vx2eH5frbn7K2zZeriXw6613m8U1vlKslciXLNvrzTWpp2w+zvBLl/OPu3FJicn+exn/5R//anT/NZn/5Jao8H6+gaXLl9GxBE60UxMTJDEKVGUkM8FfPErTyGEQqDwXA+ERKfQjRK0UJAKoq4h56jWmsRxTKPRINWmOD9JDYELQpALPI6fOMz84YMEQcAttxxjbb0KmFqqYjFHLufQbHZ49LGn+dJXnmRichLP83FslzhKQKe8+OIZXjp9FsdRlEsFqrUqhaLL3Nwk3W6Xeq3O6RfPEYUJnXbIxfMLtJstfNcxmR0lEFIRJSnrq6tUq5t0OyFRGNKoN0mThDiK8V2XNNG0mi2kUni+x+XLiwgt2NjYRGuwhML1fGq1FrZlIXuMmNWNKqduvwWNoDIxQTeMUJaBfReLAf/tz/4oQhjBXNmDuoK5Xq7rImWPZEjA+toaSRiDEIRxTBx2mZmZgsRkfpMoIgq7LC6ssLiwRLfdZXZ2hnwhj+O6gzXdfl2TlIpOKyYK22gdEiVdlJJ4uRyWtEDD2uqGeb4Q2I5DdcPcJ8uyqdWahjwiTbBtmzg09ZjLSyu984955JtPGV/cY+DrdmPWVjeQwmQXP/bHD/Pud76BjfUqSZxgW4pavcbU1ARCYeCyOqW2Wedr33yGqBvSrDdYX6vSbDTxXZs0EeTzeRAwOTXB+uoGrVabRqOJUkYuwnYs4jhEKkGnE/H7f/A5Q1qSaKamJrEs1WOahU9//pu0mi0qlQqu6xB2ujTqLY4cPsjmhmEuLZdLaG2yfq1WGykEzVYLISVB4OM6NjOzU0glOX/+MsVinpxvvm82GqyurjJzYIZ/+HuP8RP/5o85dPsb+KV//WHyBZe5gzMIkdBotExwjUuSJCRxiiXNszUxMUFto8qlCxc4cuQIf+8Xfp4ITZhcDa5tMid7gTMOjy17D+72A5kc7tlW241Gl3/6T/8JH/3YR3nggft3ZAr+XpvIIHEMich2lszr9VtpmgwRq4y21a+B3G8d5CDj+Arx91uaevu7VqOLmq+kecLLZRJu2OLHIC99E6GPQ1DifUJl+7WO/cDue13OczUT3y8PYrfbHpyoGErzX//gkr296Q7f9R+EvRTCqh5Ubj+Ptx556PrEKzfy4cu+cNl2d3sR97Pt6H79AvE9EYaMCWqy+w2v3o3TFTQ1gddVgH6N57qb7RSw3Yh6gZ2uS1YMd7f9tibso6u+W6tZoxCcOIG/+3f+Lv/7T97HoXKOxSvLRN2YfKGI1hDkA/r1UVKZ+h7XtdE6Rhg2C8I4xrFtkjDh9z/+WX7iA28nX8ij08TU6PTqV7XWaAm1ap2cn8PzPOIwol5vkM/7CCEJ45hmvcbqyhpHjsxhWS6Pf/s5nntxgR9775u5dPESszMV8oWAb3/nOebnZ1hb3yTI+8xMT+L6inqjjk4E5UKZWBsYluv4rCyvUCqVECpl8coiswdnSVJNqVgi7IZsrq9TKObRCJqtDpMTFRYXFtjYbHH7HSd6EDyLODZ1b1KCbTs06k1qm3UQAi83waOPPsHb33Ev1Y11bMuiUWsyMzuH46WgBUuLNZbWVrnz9pMkcUw3DDl3boE777iF6kbNBCfra0xMTpigybEHmTGhjfaQQBClCe1GgyCfJwojtIbf/8Tn+G9++m/QCTs4tsmwJT34igYEZl8GAXfEpfOLeL7FzOwUcRJjWQ4aQa3aoFwu02m3sW2bVqtNoRQQxzG2ZdENQ2zLJk6Mxp+fc40ofJTg53J02x3CMCQoBCRxyoWzC7iex8RkqVfHqWk2m9RqTQ4enKZeb+DnPFzXxrIsU9fn2QhlobUg7iY88Z3nsKTF0voaP/C6u3FdhyBf4NKlKywuL3LPa+5ECsXS0jLdbocjR+dNDaiy2VjfpFgsICRY0md1ZYUkCZmYLON5LkmSsrK8zOzsAbQWLCwsMj8/S7fb5ezZBWxl8fXHXiBJEl7/wEnuec0trK1tkAt8PN+n3mjheS5nX7pAoWAyhxMTJTrdDq1mi/n5g7zw/FnKxTyeb7O8ssY/+aNnedubf5B3vfOdFHtZV60igiCPEIo0MdDSJAa/4BCHIY7jYAnFxuoaX/riFzl27BCvff2DSN9k9aSGdA+Zhr3AEPtjxm6WrWfLBnW77Wsgktlyii3opOljdlsDiezvk6Z9iNZWMNuHTiolB8cePUb291HL9jd7Tn0SDbPNtfmUYbbj4e/2+n22n/1xPB1A/uWu/je7bb/t0XuUhXQOk6mIoe/6TJxXux6jxx49xtWsX583IKjJBKFp5phZAjR1g2v3BjWTO8y7drNr3S9r4+a2L5ftB1+2L3bOneax41BgN6DOz3Wc70nq9fsYlgk9pPR1tz0OPpn9TvalC/YYSMtein8/YbfqQzTJQEmvAV53Vdsp3b3LeWUhl/uFahrMvNr1GL09tn0zDoKx/futv1+vyPm1nuseWh777Y05xk7XZXzNxrj9xq3emnoJNdhOWfYA4iqEqXX84I+/n688t8xH/+QzvPsH7gKtOH3mHN9+8kVO3XaUdrdLqjVKGaidua5g2RZxnJDECTpJCDsdbjsxj2Vbht691SKXyxk2Q8TAWTtOX18uRWBo6n3PobpZN7A9IbGVIuxESCWZnq4wNZFHoEnjhCDv0253OHb8MGEY8/RzFzl/cYWTx2cplSv4foBrO9RrdWzbAQTtZpdPfOqrHD5QIU4iyuUyE1OTLC2usHhlGUsICqU8QkjW1jdpNDsEQY5yuYjruSCMwLfq9ctzPS5cvEylXCRNjGzE+lqVOLR5/DtnuPPOQ5TLBVzHYaIySap1ry7MJsiXmJquIIXGcUwg89kvPMbdd5ykVC6RJAnfefI5Dh+eA6ERsgdp0iYw29zYNEQhtsJStrmvvczBXaeO4/ouQsRYlqkFjqLIQCVlDwKvjTaj+XtKeaKI7wc0Gx3iyMBPN9ZWkcIZwPsee+xJKuUiiBTbttncrOHnPFM3B7iei20bEh7L7mcxBLZjGc0+pSiWynz+L/6SW285zGOPPYVlKWZmZ3js8acpBIawpVIpsba2Tj4fcOXKEugESyls20YIxdTUBOtrVe6/705anTaVqTIpmmKpyPzBGSPNAXiuR76QI4oiHNdBIFleWmN5eY0DB2YgTbBshW0rPM/Fsi3OvHSR+flZ4jjlG998gqNHD+L5HlEY8tmHHyfsRLz7nW/g0NwE09MVPN9hfaPK1NQka+sbRjJEGDKeQqGA57q0Wy02a3WCwMe2bNJEUyhX+JF//p94qZnj3//yR7jvtfdRrpTx/Ry1WoOgmKfdbOF4Pq1GE0tZFEsFwm4H3/OIOhGPfPERzr50lnqtxvt//P0kEhACCTgpJHvI4uxl3BqVCNjJ+nV2+88ebWVetjy2RgqQQpP14v2Apr+PgVfKoeAkm70ZlE3IrYDR1GDufD6mrq2PytgaU/sBzbXA5bN965/f9u/29n22n/0sbH/7YWhoZu9M37Pb9gO94XPeArmNtpc9Rl8yyLS/FTDvfM6jaJfd/fso1LJfm691OoDl9Y8/uC43GD45XOYy8t1e7Fr3y1iaXv+z93LYvoKwfVyXGxHcvVpzd5MtG9xtQccFo3pvEvNAj7vpWWKU7PCgdYJmi4q9P3nNbEDvaAPK89HAK9v26PZXewD7+22VM2+1I4UAkSKERggN2dqxa1hlykIQ+kPkTtkpw2wGowPpTucyTgNm3OB2NZNKDVZixsF4Bs5hm+5P5u/9a3+N2ny7QYiu1fp9z66a7j3o3b3t0T4Pr3Ru6e5ln+vRWoZxNlTwP3jmzX02kyO47bbbePL5yzz11BO88b6TBJ7H44+/wKlb5g1BSM4mFUbVUSJIuiZ7k6QptnIJuzFxklAqF7AcaeqdXIduu4OjbFIShNSkaUQSx2gSut2OIQhRNglg2ZIkifjmo09TzOcplydYW69x+vRFjh+dw/cclpaXOXRoBt93WVpaRSrJoUMzHD92ENsRrK2vYklJ4JdYXlujUdtkenoCx3OZnchRq20SOJKp+Sk6nQ5+LkdlapJYC868cI5KJc/EVJGNjTrlcoUw7OA54AYem/UWjlOgXq3Rbm5SKlZoNdt841tPMVHKc2j+IEHeIQqbzE5PIYXCcRX15iaeb/Pcs+eZmJpA6yaWFETdlE67g+t5HD82i+farK+uUt9sMn9w1kgpCOh0u3Q7HdI06mXtbNqtLjnfM8QCUtKvkrCVIo1jpLQhNbWJdl/IWmsjf6I1Vi+zkSYpaWKYQRMdE0YJynJ5/DsvcOutx7Bso+/3F19+mlLJZXo2TxR1SZIQx7UQSrO8vETOy3H29Bl0EtGq1/Fcl/W1TQr5gLNnL1IoFAzsLk34xJ98nVO3HOT4iUOE3S5xHHH8aAnPNefRakcE+QL5Yh7bD3AslzQ2ZDCpSClPFVm4eJGZ6bIhs4oTuq2IWm0Bz7MByerKOqW8R21jg3ylQpQkTE1VODA9Qau2SRh2KJUCBIJ2u0MQBOQKOWxhtNkqpQITExPEYUJts8GDD97O8WNzvPTSOXKBz9TsDLWNVbphnXanQ5AvEUZwZXGFl166iE5iHNvBsjyee+4Shw7P8chfPssv/s4jPH6uyW/8yq+g44hjJ4/SjWssLl1gZmYa1/NZvrBGKajgOaYeMYoTSpUiYdIhqbf4P3/5I3ztkS/zng99gOP33EGpmEcIgeplo1IphsoGsh8hRS/71SNcyZQIjwZx4zTtTFCwPeDbXns1rDuX1cHrLxjsFBBsmRhk67JjY/bfbHYuG9BtnVMfptfvZ6b1zC/9urX++H61ifTouY6aFAohFHFsIOpSKKS0yAZNO/nG3b4fHe/796O/S5YUJXttRq9f339tZWe317SP9rf/3WigKKXC7mmDjuvrOG29cfV3o9p4/eA16/e3AnazAKxTo8MqhbiuwG4n3d7Bg5S1zAuza2CSvRY9zeSrzRbGzX3TJEYqq8fkLPZ87Oz8cGhboftrfNdmqSYzzc589PjPuG6aGw39xZj+3D0zN7ekQkk1lKUdamKHoK8/H8+e36vB3U22oeAua6OMTmw5iG2bZn4efjjHBQrjgyfVq23Ztuo3vtu7rphsX48bWW3JdiO70XVCCIayg1kHODinYYat3QKeGxIUjRsMt2+0p+zc1ZzrXoK8m2NjHPRN7MfwPTHHSZI+S9SWI9/rZ3AWYxzuG37gdfyH3/tTjk7YzE0WuePUUV588ZzJkp04gpKSNNF02l1c1zGU5LZicWGF3//kF3nj6+8kTmKja5YkWLZtCFWAeqM+gGq2O21c18V2TDZGI9FpjJTm3Zw7MIVUimKpgO1YzM/PsLy0wounL3Dn7SdoNltEccITT5+mVMzjeS6u5xJFHSYqRa5cWWFlpdYTRW9QqZSo1RpGiqFcoN1qkSsEWJaFZVvoVJPPBzRrddaqVUrlPK6T4wtf+kuOHZlFClivbjI9c4A4TikEPo1GDT+XJwpDjh2dI5/P06i3kEpgWVAo5Ll8eYEg7xFHEa1mm0OHD6Msha0E9VqTarVOvlCg1W5TLBZAg++5VKt1pmYmkFLQ6XTwPKOPZ1kKy3Z48qkXOXr0EEII4tRkttCa1ZU1HMdmZXkN23HMhE8IlpdWKBTztJtNbMeQv0RxZOQKbIs0Bc9zSbUmlzOwy2Ihj+8beGaapLzu/ttxbIt8PgAtyeeLCKFIY/D9gFazTT7wmZycIF8oECUpuSBPmqaUKqWeZAa4rsPZMwu8/sFTA3mFrz/2DOWiTSGfx7Id/FwAGlI0rWYTkWo2q1WSOMb1PVzXJee4SGVqAButFoViwYzrwmZttc6584scOTyH67hg2UghCaMY0pTNao2l5Q0c10H2yHkcx4jGr69XKZVKbG7WBu+W69hYjoUQMFEpMTk9CQLSOKRYDgijiFwuT7XaYHKyxGSlhOs4RFHM6toGX37sBX7tkTN84Gf/IX/3v/5Z3vLWt9Bo1nnnO9/Ft779He6483b8XEC7E5PGGo3k/R/8ABOVCvc/cB9KSk6/8CK27/GZP/kUru3wi//jP2D22DwzB6YhMfWYexm3U73lz7Ji4nsNNszv2yfx48atrN/sZ8xMcCfGHn+n8e9q/Rn927htdxsLzfbbr99OfRomjJGDAGvg+oRA92GlPc03MuP39dp2sqz++cqhv28FQuOvzUirez7+8HW8uvTCVkC5W61NTAAAIABJREFUfa6z/Z5tncduz0WWzfu65iuDBndDyIy3fW2v9QDZteMmY9rcgtHL4XnebofbqY/XeblUj/Roz0SC+7hGIkOOY+rMrzbv3mHM6P37anD3MtorJbjLSh3s1PZQy9cQ3A0PgJm/3KTgTgmxlXXMBB1SjQnudhqIxwaIN8OuL7gbrMz8NQ/utju4fgaux0A5COzGZzj3MgEbtR9933v4xX/267z7wRMUAx+lBGvrm5RKeXzPH9DrCyFIMccvFAqcPDIDBpWG67mD2tZ+hsj1XMLQCJ77vmfg0T1HJ4Ui6nZIEkM0EicpQT5vCFiEWRa8cOEKd9xxEp1qfM+j0WhTLuWZnpqg0+qwWa0xM1Oh0WqipM2nPvs4d952mEIxR5yYujXHsSkW87TabYJCHtmrDWq320gpmCiX6XTbKEsSBAWmJ8sUijk67S7KtgZC2R/7wz/ntffeQhim5HIem5t1gnwOMHIL7U6LSqVMFIckSUzOz5nAzc/RbnfodjusrWwyd/CACS57izNKCgSCIPBJdYplKYSSyN41bDabKGkxOzNFs9FEo3Edx1xLDasr60xOmcBjdXWdfN7oxeXz5vhpmrK8vIaf88y9UIYpUlk2YbfDZq1GkMvRbnVoNdu4no0Sko998kvcc/dJkiTF83ySSCOlRRSmdDoRUihygUeQzxPHCdXNOtKysaQJnuPIwGuVcvB8j1LeYu7gLAhNN4w5dGCaUsGjWm3g+zmef+E8Ugps26bZbBJH8UAoXikzWW61OqTA4vIyBw7MoAGlPDQWQZDn/LkrzM1NgRDEqYFZHjt2mLAbEkcxB+cPYikbz/PwPI8ojOh2OuRyeaRSOK5Nq90y91WZicbCwuKAgTNJBe1mjVzO6dUIS2zbIY5juu0uQgiiKOIPv/QdPvHMEv/in/xvHDlyhEcfe4ypqUkmJirEScLs3BydTockAaktLNtFuQ7vfOc7mZqaoFQsILXmLW9+I5WpGdIw5u//g58nXwxIVEIn6mBLA4fdyxRK9/4vd0JFXHX82T6xH114ym6X9ZvKsnuTsSwqZLgP48bz7LGHpQC2H29vwd34Pu90/uNsOHBSg7a2vjMLAVJZvblpP602trl92zgm5IF+nB5Glgzfw3GZuEGrez7+ULs7Zbz62/ZRPCP+fqd+AdvmLOP8a9b33QjLyhLtx5/f6OAOhqW/Bsfo+YidkGtjD9fL2G0DwV7ncygzDdzo4G6nLP3YZl8N7l45tpfgrv/TTi9BNgsMDFLdyDED+g43P9tuNnXdT+tnAQqi15f+CzWa7cv2aUfT6fiNrnNgyq7MjF4X07wZDJIeTr3b7eDYNlJs4e2zg7NpdC+Zt+uz7GDVX4EDvR3i2INdDPVrh8B8PzYOfrqPvTPnIXd0PtdqWecy2s+swx52iGMxEsBwTUa/zawj3mIo24I+/MSHPsjvff4JHnr4S7znLfcwNVXh4tlLSDTFUoE4TRDKQihFkpiJolQSy1ImsOuxIlrKQimzuGEgkD6i557W19cJcoGp3UhSHEvR7XbwPBdpKSNOnSZIBd1ul0OHDmLZDt1uTBynbNaafP6RJ7j1+DxBPsfmZh2pBK12h6nJSTZW6hw7epCpmTLnz1+i3WlSLudJ0pTK5DRJEiOFZHFxiUIx36PBFxRLeZQSpKnia19/gnLJx/fyFIom07e6tMq9rzmJ7Qg8Pw9C02q3zLkJQb1ZZXpqAstW5AsBtc0mfi6g1WwilYvnu8RxxJ995jFuPT5Pmmo8zzOZIK3pNNtYroXt2kZDUyo2NzbJ5wzBBpiJre3aJjgzSut4rkuxVOTFF84wOztDHMeUSkUT2Fo2aRKztLRCmkKhWMBxHTqdrslYCZN1iKKYsBOSy/mUSwWQGsuyOXp4lka9yfMvnGFyqoBUgiSNqdVM0C8kxCmgJVoLPN+n0WjhOx6//7HPcNddJ3ri8intdotSybThODaO7WJbNmGUMDk1TRQnzM5M4QceaEg6IeVKmUJvcaFRr+N7Hu12SKFQIJfPkWIE5hNtGEYtS3L02AFsV9CNO2ys1TkwO41SFr/523+OZ0sOHjyAkJJWs8Uf/ecvMDdTRkmJsi2iKCQX5HosrwLbtrAthe/Z5HI+X/zyY1jKZLFzeY+zZy8xPTltgm8FzUjzf33mSR56ZpOP/vmXue/O1/H0M0/ypre+hdvvuA3bsYmTCMdziZIYgY2ONQsLy3z729/hyC1HyRcDKpMT2GiibpsP/I2/wet/4I28+a1vQouUVGm0ihFWitL2GE/Xf9+Hx7jeqEFvbWWbZTNQuw2NOzETpj3G0Szksq8Lu9P+/b/16zP3c7zdxvBspg323kYfNpqFIBoB9Sy5ismoZNvTGpK0N25nWC493yOOo967sF1HdqdAaVQLLwvD3Oq72c9SyhBdYWD9W/0azUwN+4mrBepmv+26dKYvwyiSbT61f/zBHGO73x097l7mIqOQ0v7cYT++Pas/a66dNSBn6bepewzPOjNfUv2Fi6sQpAxKdbIlQFKOnSfKzHb9udz28+2da+ZzteP2562a7TDP3WYrQgrQW2OHkMJo30mTte/rY2oMzwS7zYF2uw87zNl3vX+ZbbPXkDHX8NXg7ibbXoK7nTNzO1hvNQQxZkDaQ3CXzX7JzAs0rj+wtSK5P9th+xvM7DT2EEAYhVsrIb3gVCpFHEXGkeprDXR2tr5j2dK+GdM3MVI/MHbV7OaIle+UzdrbvtIILPeCzxvZv+FgcXilc9hGnfVV2uttP26VNFsTkS2sf+399/K5Rx5nceE8r73tCMuLK7i2g+M5OI4LUgxqStLU1HbaPWib1hrLtkkSU2PXbNbxfZ8k1QaupE12L0mT3kpdL0DxTcYqSTRJnGDmDSlBEBinqhTdsEuxVKBQDLj1xCHiJKVSKXPp0jLFYo44jg3JSCqoNWrkckZLz/esHmW/oNkM6XbbPb00k41LEs3a8hqlUp44jdEoJkpFXjpzniROmZgsEIUhxUKRfl3v6mqVIO/jex70VvGDXI4oitE6QSkLy7axlMW5s+c4OH+QMAxxfYdjR+YMgcehOXMvhHHGjmVEx+MkIU5SOu0uzXqL9fVNypUyylJIAZ1Oh4/94V+gk4jp6Umeeuo5KpUSU9MTLCwscuDAjHHGGIfcaXeoTJTJ53P0Kef9nG8codCgBa7j4ji2EWKPQhaXVimVSj2IWcqxY3Pk8z5mIUZQrVYRwkA6pbS4dOEyIFBSUm80KBYKzEwWkZboSWfQk0dIkFLQ7WVyAX7r9z7H86fPcfLYQVzPwVJWTxA5pd5sEuQDLl28wsLCKp/682/w1jffRxTFg1ckTROkbej3dWqYTC9dXjCEPjF4noeUkjNnLnH7bYfxXNswn0YRjhLMzk4RdkOUrXBcByUl3XaX1ZV1FhdWDbw2TlldWadeb/PE0xd50xvuJQzbTFQqxFHKV58+xz/8ra/w9dNVfvqnfo57br+Lv/23f4a3veMdeDmHYrHIwfk5oiTGce3eBDEmjjVS2UBKFIecOHGcTquNJGXh8iUeeughzp87yw++4+0gUlKh0bJfXy6Qehzb9PhJ0raMwOiooq/+971YFnq5X9tJn+9qtpcxcLfxfmzWSfTJqLZ+N/7MTHy3xNBHg1vzLqe9Sb0RjAeDrkt7Png7LL5/8cdlELMBkJlP73BOPXbJq53X7ue/l2X17f3b3SddzZ/t5e872RYSaD++vT//6Pv04XldJnjLzI9Eb6F/NzRXNvgZQBivsq0QYgh9da3Lxdm7lJ3b7ud6mjnI1s+DxfhBG5mxJXOMqzS492PvI62Y3bZ/DXc6z1d17l61v3aWpIaAQ1k21WqVNE1oNpuAmYzfLJNSDT6vNNuvrsrovkpK4iQGXjkaQTvZbjURSZIMrVb2P1as+Vcf/uf8+D/6MD/57/6Uu++5g2anzeryKrX6JsruiVlbFsqSvcyTYTETPSFugblWtm3TDbukSYoUijhJTKAVxQghiOIIlEWiARSdRpe/+NyjeLaDY7uG2EFArGPypYB20kF5FuWpCihFsxnR6iQksaC60SJOUm47dRTbEVhSUd9sIJKEhcsLdFotbNvAEqvVGoV8Ec/LE3Y0lYky3TDCsixc16VYKnD3Xbcwd3CaMOzS7XTZWN8gjjVXrqyb4AJISQ0xjBR02wlS2LiORxRFyF4Ws1zO8/FPfhZliZ54eJdjRw+xdGWZVKe9oFeT9OVXtOQ3f/vPsZXLI195hj/988fRWvDr//cfUqvVkFLx0z/1Hu59zZ1cvnSFrz76vLmXWnOgl5VKezIsjUaDJE0QUphg07KwLJswjAjDyEzEpaRardNqtPjK1x4HbbQQn376RRzHIij4pISsLG0gcFDC5cDsQRw7RxILBCkH5w7w6U9/HSkkB2ankBLa7S6f/NMvEccR3W6X6uYmjz76NBcuLOC6DkkSkaQh//3f+zF+4v3v4tLlFeIkMWL3SYLrBQSFIqlQTM7OUKt3+ME33sPqyjKb6xtY0ubb33oOW7noBEg1cScmbifMzx6l2wLfd2g2aziOxQfe/4NMTlfYWFvhxeefp9ls8JrXnML1XRaWV7FUysriIp1Wh+WFdR79xovMzR5kcXEdz/Eo5As8cN/dVOtdnv3uecJQ866f/yX+y1/+DPMP/hT/z0d+hXe++a1MTEzwyT/+I37kQ+/hu9/9LnfcdRfHTx6n0WhgOMTMGLJRXUQT0WrVOHBwioPzkyydPU/Z91lbXObhLzzML/6j/4G/8wv/HVo3Sa2YRCZEWqNTCxL7po8h+7WtWrr9j683w19c62JeP1OzXctU98hmtmftzN/TQSCXao2SEksporBrtt+BAG0Q8I34pay/MlDPPoJje9+SOMoEjnvXPd3N/qrox12rb1cDkqHt7V2L9EVWz3g3/eWshNa1zktGj3szNepeiabT9Jp0p2+2ff/o3IXhvk503I3SYuuhzb50coxWXnbbrAk93HJfj05dpx7dy65BsgcNvf5LHsfRAO5iZfViev92O21kLzuS1cvp6+goy77qgHE1fbo+w6OQOzu2V2277aYJOM7SNOlBh+SAYWvn9odfRyOUux0+BfDjH/gpPvq//CgXTl+gUg5YWlzm1ttvJU5BWoput0scxVi2TafdJQhyOI6B/rVbLfLFPFprok4b1/Not1sE+WDwbxSBQKNJSdOQdrtNsVREp24PTmxhORZpHJMkKa7r0umEvdV1i0a9QaveobqxydzcJPVaFVtJStMV6rVN1lYWyefztJoRrhvwtW88w3vf91riRBAEc2gZ4VoG6rO2tk4YxpRLBaSSdNqb+PkSaSrptENkKnFsxaWFy7iexYG5acIoxbJ8Fi6f48SJY9Q2G9i2SxSlJmukJb/7sYf4yQ++DS/nsbmxie0HvQDG6dUnGj03m5RGs8u5c5c5cuwwSZqQy3noJGFjfYNmq8XxE4fodjpI6bG5WePS5QXuu+9OwqiD53t02m1DJiIlUhgx8lDHKGUhEo0lJa1Wk+r6KjPzB4kjuHB+ga9+/Tne+PpTTE1P4Oe2ZBYuX15kanKSXOBgKUkYhWitWV9bx3FtSsUK3TDGtV3a7Ta2Y6EsmzSNWVlaYm7+AIk2kB/dSVhZW6Feb3Po8FEcXxFHIXFs6hPDboxtSYQ04IaN9TqBn8NxXL761W+xsdngxPEpbr/rdsIowZKS9SsrhGnI0SOHCOOE8xcuc/KWwzTbDdrNlEKhSBzFpBr+5FNfwXNDHrz3NtIoplwpM3PgAFeWN1hdXufWk4doNRtUNxtMTU+DkGxWV3Fsh8WlNW49dZJ/+4lHePSlTX7owbfz0T/4GI998ws89NDvUyy63P3gu1HKor5Zo9lscWD2AEFR0ul0ULZHkqYk2sCdOtVN5g8fotWq0+q0sG3FNx7+Mmvr69z/uge45a5ToCy0AmuHqUu8ixbmqPWDr74u5ujfxlmWOXO3bcft29eJGzeB7tu44Ku/eGYo8HefPvTHvlF5hKz1gzPLsgbj3fgs5lYbozp+fb8IfRZiQZJqojBBSLNY05cGSXWKFBIhR8bbkfH5alqmfd+6m+7pjbBxx9hPgLNF9LW3Pl7LOV2Lbxy1rIZev52+YPxu+w360ZuDSRjST95tXrYf7brsMW7E7OlmacndCE2/m6Un+KrO3U22JEn+2X62H1dFlCUn2bW+bgxUE7Y/yAIy8MRrt5c7RBdCDJzDjquSGahHX18m1SlRHBPHkYF4SIllbdVtZCEWURT2mEV3uz47k6QM+vZ9sohx42z/MJUsU9poG1kbz142Xn9ICMGHfvKDfOgXPszPvOcBlDK1SlGUkPNzKMtCCkWz2cZxHJRlmPGUsnjxxbMsLa9x4MA0SgpsxwcE589fplKpYNsOUTcyGWbMu6ksB9fx0VqgdYznOURRgqUsup0E21K8dOY8pVLRHNM2zJBht8PkVAkpBfVGCyEVG+sNosjUvM7NzlIoFnA9l5wrsR0LW9kEQUAUthE4JFHClYUVpmcm8H2/hzsRrCxvEuTy+LmAJ779LOvrm0xNTZHP58n5PgsLy+R8HyUVWgv8XA60Jhf4rK2u4vk+t9xykHwhjxAYwhEhsJQi7HZZXV4jjiI81yaOOly8dIXb77gF27ZxXRtlSZ544hm+9uizvOkN9wKSzz38LU6ePMITTzzH/fffTZKk+J6PlArLViAM06WUiiRJsFRCmsZY0tQzKksNMrBaC3I5n7PnL/PUsxd54xvuwrJlb3/Bx//kER68/xT/8Xf+jDtvP45l2UihCIIcAkNZLaUEIfjK1x8nn3MolYtIJfB91xzfcYjjBA089czzPPjgfawtb/DxT36B195zfFCj4tgWlpK0m3Vsz8VzPZ757osEgc/xYweZm52gVMqbMUtJahubnDt3ifn5aRzXRWvJmZcuMz01SbPRxfccXMcmjWOUFNx5+xFuP3Ucz/MpFvN0uyHNHqtqEOQ4f/4iWsPERJkwjLBtmzBO+fQT5/mdh7/DNy7Bv/rwR3jLG1/H/a99gLe97YfQqWB2ZoZiaZJnnnqeuQOzWK5NeapCLBPSKKReq1Or1XE9H6HMc5JITafT4vQLp/Fth699+SssLi/z3Wef4cnvPs2Db3g9fpDDdlx0Mj4w0qI/PuwdgpctL8iyVu62z7VkwbJZvKsFaMMslNl6vWRPgZ1pf3vQOdquECJT17d3ePvoZyso1NiWS7vdoV6vYymJ4zo06g00YFu2qQkbmZqPZoWuBmfcqsPbW3+vz8YdYz++W/cWDnYuydj9eHvbZ//7bdlWCcRwRnK3Po/WCw56c5UFhW1tZH7e9cr2ffpetr1GuxHB3fWUuwxsH9dwP8d+tebuJtu+g7tMMepWUer4ba8ruJM3Jqv0vQhd4jgeMAyNtb4D7zFQbdVXCVMTpNRQwe1oUOB5vpmY9QrDd7adgzvVq/O78aLif93t2oO70f1HTfYmN9ud2rgVerPth37yg/zu55/ml3/vs/ztt9/FyuoGSina7S6+7+F6vZotMAyJwrAOFosBuVxucAydaj798Dc5desREyQoA+00mmw2aENckCaadqeJ65qarjBM+PznH+XY8TkmJsq911vzm7/zEA/ceyu+a+O4Ds2mocYvlIoEuQKXLi4yM12hWq2RppqVtSrzc9O4rkuj0cJ1XTY2qljKxbIdpBSUioUeoYkkTYTJvgnFxlqVY8fm+fLXnua5Fy6TxiHlcoEnnz5NmsQcPXwI1/NoNZsD7acw7CKUZVgw04RuFGJZFu1GE61TPMfFtizzt26bIO+jNTiOTa1W44UXz1Ao+MwfnOP44VlyQQ7bsfEsB6UkZ88vcPLkYRYuX6FYLPayDCk6Bduy2FivmneckGq1imXZZpopQCiFUgbQYinFqVNHef2Dd/Qyv4L19Q183+f+e28lDCPuvesW/vNDX+b8hQVOnjiMQGDbDtXNGo1ak28+9jRvfdN9BgLqWIMaEsu20Eg0gnarxeHDs6RJysXzi9z3muO4nhE777Q6CK354pcf4+DBKRzP4+KFBaanp0iiiHa3TaVSwvM9hFLYls3y8iqPP/UC9913imajjeP4lIoFnnn2LJcuLRH4NjnfPJubmzUK+YAU3ZN/SAlyAZ7nUd3YwPNzTE9NGsio1jx1fpFf+M0v8uHffogfePv7+eDf/CluPXachUsX6Ooud95xN1/4whf5lV/9VSzb5p77HuBjH/s4nudx4tQtvHj6BYJCHh0aPb/K5BQajWU5aG3kQuIwAp0Qdbu4lsW7fuTd/Oj73sePvPe92I7dy0apneF8WzzJe7Ltwd3u9OrXGtxtCYf3a3yvMiaNFULXg3b2csxxwd1ou0LIgU+6luCu/7vWJkuYpuYYC1cW8X2fXOAjpcD13B4aRhJGEUptn3fsNbhLknSovu+VHNxJZSHQKMve44Lu9z64k1INSFn28iz0bSet4e/H4G4/TJ472jUGd7sd+9Xg7ibbfoO7cQ5F7CFg6/Ml7bRtlu1HA2mSIK4jq9SXEMg6ruzDlv0MlexmGJIY+X5PjiztD/jmWg0NNKNMU/3geMRJDfrc+7dfc9WneE57NXvb2MVGmL22BkpjWyxaPb2Sm+yUdhI8HzrflzlzeK3B7Lji8CHikwwzWP/69u+Psuw9QWi2WMWMSamuCpnqQ5nuvf8+jszP8z9/5A/4wBtv4elnXqJebwOaYrFAkhgyiyRJDdTQUnie2wsgoFZroZSkGHiUyyUDvRMChDZkKD34lhSityDROy9pAZJmrcncwQnQRgctiVOef+E8d95+DM8zmZy+9IFlWXQ6EV/6yhO84cG7uHjpCkopZman6HQ72JbDyuoGswcmaTVbKMsl7IZmUqYk7XaHdqeLZXu0Gm3qtQZr6xsE+Tz33XuKc2cvY9uKw/OznDx5hNmZaeI4IQwj2q0Wly5dwbIkSijcwO8JWxtdvWarTZDz0akmjhIajSYHDsyQpCG2ZxPkCywtLlMul8kHhijGz/l4rouQFnGcksv5bG5WufuuWxBSki8E2LZFnMTEkakdTNOUTreDBlxXkA/ypCnYtoMQEtFjfVTSsOw99eSzzMxOIITJonmugyEgEz2yHMFLZy5z9NAM0zOTpGnK0uIyQRCwurpBIW+yYY6jjOi4TojCLsoymSqQuK6B2tqWjWt5rK6tc+TYQdLEXIdiscjMdAXfd9EI7B6lfJxEzM3NEvbaA0kUx2ysV7nnzhNIS6I1bFYbeJ6P7zqE3ZDjx+ZIkpSV5XVzPdodulEXy7bods29smyLzWrNEAGlKWmq+a/+j8/zwlrCz//cz1Jd7/BzP/MzdDptDh86iEJw9JZjdFohx44d59d/4zf497/268RxzD/+n/4xm7UaP/yutzF/aI40ifFdlziOcT0PLQSO46Esi6nJMq1Gk0sXLqCThEKpyMzcAbNA0quTFLI3Dmfex7SPyNiBgS9rO+nJ9YfD/Q5RO41pBiI9vAg4GiD0+9AP1kYJS7b6NuwvxkFAs8yVo0LdV++77gkjb/dJ/QWuUa244TYyQZnWpCkksSFQEkLie46Zj2johqFhXQUsy+qNj71MZuYYW2P21sxECDEIALNd2Ar0djfDip2tJxvDSj3mGm31aSuz1c/A7uhfRwMuvVf2yq25R7+mcDdfPeob+9dqXz5+lMCmd4679XnoOc1+t4/AJDv/zNo4Ae6h7OCYbfcbTIk+2VFmJ4VglFUThueS485paM4pxNhz2o/1r6Paw7g21E9612IMmz28Sqjy18Ze7sLKay1g3U/xrGT76tCNtk6nTRzHY+sr9mtbweP3b43d0CRgH6bT9KqBVtay22mtr1pjd63Wr82xLAtbSN70lrfysU9+nL//29/kO6sdnvzuJTrtiKefeh4pFbbjmOyS7QxqOKMoJopiSuU8tmNx9PghzLxOgzBBmuM4hFEXiElFhFQxaQpK2YRRTNjt8toH7zATOWkYyMIwpJD38TyPZrcLSuEHPgDnzl6gVPF55w/fS7PdZm5ulmKpSKcb8p8/9zUcr8TM7DyxNmLe5YqHHwj8wOLihUv4vk+3E/HC8+fxXJvPfeFRbrvtKEHgoEXM+97/Zv5/9t47XpKrvPP+nlOx481xctRoNBrlQQlEEDnYCxgWgwk2juu1eZNx+Jj1ixNrv7v22maxMXhBFlEIMEISQTkihLKEJkiaHG4OnSud/aO6+lb3rb6379WMJF7r0ac1M9VVJ1RXnfOE3/N7hoa78VyfwFNMT85yz/0PovDIZDPcds9TmEaKrq4eJHD88AnmJmc4cfQkKSvF7EyBgwdPcOLkFF3dvezd+xx22sb3FaVimYHBQVJ2ipSd4uTxCXxf8dO9BxAywLAlmqkYWdOPZoBSbkjWonyOHz+OaYVkSVJKpJC4joPrgecLTCsNKmStJFDo+gJEbceOTSAUCh+tXt4inUkhhEI3NDRNsG3LMFu2rUPKsDh9Lp8hk8lSq7p0d+fRdImVsiiVCgSBh2kalMuVkFJcBdRKZbKZDIZuoAR09eYYH59ECUl3Xy+FcpX5QplvfPcOlApZPR3HDY2yapmJyQkcx8dzPQwpWb9uBMPSSaezpFJpsrkMUiqk9Fm3rp8nn34Ozwu47d7H6O3tZmCoj2zKwHdrCCnI1/tMZbPc+OO9/Me/uZnHtN1c87nP8d/+4k9BuXz4fT9Hf1+G7qE8ngbFqoMW2CG5jRZw5z234esBVeVx908e5K///m9wq1VOHTrE8Wf2NWo3SqlhmWE5DIAjTx5gbmyCiVNjrNm6gQ1nb8PXINAFQUzBaVWrNE0itLCMyGplcZSsMxFCnnEiqecN71qlJLJYdiBCCHLZDJl0KiQvEgLf95memUZKga7rzM3NYZkmrblsSgWL9twGjLXuXI2PJ3KUdTKXRMP0DOsRYd633/Ee9lKTdmR0PctRAAAgAElEQVQ1y153GghRXmryszKnwPcIaM57fCnIy5G7FUgnkbtGJK1t+mnLwq0WyiCsRppjIIk9LHQV+3uSlyYaT+uiHEHEVMt5jf7iYftVRqgM06pDaDqDqUSQhkSPjrZAztHsGT1DkbtO2n2BI3edJGcniSZlWKuohZoZaPFQqiZvW1SXaTWSFJ2NJPIS+76PpgQ+UK45vPXtb+Ut7/0l/uyfvky36eOXK9xx76Ps2L4eO2URwitDqKVSAaVSGaFJVCyHRGghq6Oum1D3mPqBS82pomkSw0jheT66ZqACxV13PcSmzaOgFIZhYts2u3Zuxfd8jJTVyJE6cexEGAk0NRynRrlYJZ/P8uyzR/npgUNccsFZGDKDYeq4fpnu7j6qtSK1ao3r/u2H7Lnw3PpvJ7j9rsfJpjWuuvJ8ZmdmSecyIASe5zLQ30Ot6jA+Nkl3TxcPPfk0a0cGcGouV1x6Pg8/9DSPP/EsO87egG3qHD96kpE1I1i2zdP7nuORJw5y0fk7MU0TO2VgWLKOOtA4fuwUmXSa4nyR0TXDaIbOwGAfigBRjz5ognr5CI9SsYSma3R1dTWgfLWqg2UbZHMZdMNECA3fD/Bcn2qlQipl43k+boMl1MTzXEzTqLNtClzHRSmYnJxibGySHTu2hAaUEOiGHkJpkdxy+0Ps3r2VIPCwLIv5why2ZWIaJuVSGcO0cFyfWrGCZevUHJfp6QLDawbR9BCyWSyU6Mp3oes6O7ZvAAVjY5MEQcDQcH/IzEqAblgIBLVqDcd1yXdn8fywLl+Y/yfCWnSBx9DgEKZlcsF5O3A9l1tu/xEjgzmklBycKPKfPnsX19z+BMdrOX7tP/8er3zVqxleswa3VsWrVbFNgztvvYXnjhzk4ksvpVyucvaOnTg1n76BPhzPxfVdTp4aI9+TJxAS27ZwSwWy6RSmppPr6aFWq3LDd29i69YteH5AsVjkW//6ZX7uXT/P0MgQ2d4ujJSFCkKIe0SengS6LJcrYZF7QK0ARtZ6fLXrsed5CYZDM9xzqTHEI0HtImit0aBWCSGYzZG25WTZiErCuJLbWPhtlArLH6DCqJimhdFLIcNfsK+3Bz9QFEsFsplMM8KnDo9vHVYcnSFb8gOlpne0l0UInPi8dE0La3x21Earwbnc8xLBfBdK6iyK5i3TT2O/XNFeHYvanoY9Po4CSmqv3TxOBywxarmT61cHmk3uRCIS36Hl5hTXOU+bbqc6K/YeF03KuiMzef15GZZ5hmW1xl3zA5YEdhThIq9Cc05EYeTYf1JqBCp8iONXSinDRH6SDbKgfk6Y77fQRzysngTBbG0jqBdJTzqnFbbZDgqwyIBsgY2opOOxB12pUNH2fQ9QGIbRoMGvn9C4fjlRy0AtI7hgK5TjjElLbmYilGCZhT8I/ERYSGJx1pi02ww68fzFC7AuHAsjcL7vN/2W8aLpSxnOkYIVV1Kif4ekAhpNxmJcWYlBpeK/WXhcomToYDGNEH7keS7vfts7uObGezh31OTVl55LqVDCq7lYaasxrSAA07TQpQ4BlIpFBOBUqwihwqLoQiLQ0AWIwKcwN4cuJZrU8Pwwmrl92zqKpQJGPbdPSh3PDzh5cpxMyoLAR6Do6etiYKAXp1qit7cf3UwxPTPDuvUjjAwM09Nl43o1TMPgK1+/g9GBPG4tLNUw0tcXMiOemMCpuYxPTHPeeVuxUhb57hyBCkIod6CQ0kAzBb2DXSA0Hvjxfl5x0Tk89dRe1o72MzI6wOjafmxD5/DRE2zYvJ5U2g5LQfgBF55/Fr7vY9qh8SrQcaseU+Mz5HM5HNdDaTJU+mlm9NXrebSe5+E6PqZpoUmTsRMTZDI2umYwO1vA0A2qlSoTUxMIKXh670H6ensAsCwrLEQvwPM9pianyGWzBEFArVoJcwZrNaQuyeez9A70IDRw3DDypJsh3NDQJbvO2YzUBFLIsOSCYSCFjh8IDNOmWq6SsmwmJ+ewMxa6IejpzVEqVpidLnHN12/hqsvO4+jxo2RzaVKpNFIaTI5Pc/MPH+HCC7fjBwGGaaAJE13XmS8WyObSaJqkWvE5duwUqZSFrutIKdENk7niFIgAIRS2nWGgr5eP/+vdXHP3Ic678k187Ld+g81rRnnV5VegmVmmxqf45nXfZMe2nfR0D3L42AT/9b//Db/5m7/D2tE1pGyLmlPhljtuYd2GdYyNjXH/jx6gu7ePdevWMTd+gr6ebuZLZXzNINXdy3yljMJk19kX4Fd8bDz++dP/g7e9/92Y2RQDw4PhuhwE4R6lFu8T0YqrAN0wwvQCIRbBLsP3PL7GLHyWW4Obi5i3PzfJsKv31uRsiq8fcYnG3JpzFsG/w9NVyzULjrKgnpIQrYnR35MUu7ix0Q5J0c74TBKpaU05+kKApglCPqGQ+F7IcE21TKNuCIfrX+iTC+epawa+7zbNM4yKarG2F/aUqN/48aWg/9H+E9+HG3VnO4JMJhlmzec2t7E4938pVsvWFJD4sbgTs2Njq0ODd1kIZ1x/kHJRv+3udzuoZZK0S9uJ7mZHaT0r6K+p7+j9jv3XTu9s1XPbFURfCs65FKyzVQLfQ2ohOddKqggowne23TUvG3dnWFZr3HXioVB1XLts89I2FN6E46ioHGxCu4T5P42HUy0mkk26zg+CxsMWXddJdPC0x5bq96JYLNYVOY9qtYpp2fXaLqsNYy+92Kk4TfSLKCsx7qLNKfCbvdKNTbXN9SvpY7EkE9GEz07I4tquuHs7WTDOZNO5C4rWUsQpKye+8YKA1772Ksr2KO/7/f/GWSM5UhK6unNYlkngB40cMBD4no9pmZiWRSqVYnJyikw2i1Ot1fNSPAzNIJ1KUymVwuiSH6DpGtOTM0gRYJkmruNSqZTRhOS2u37Cjh2b0A0DUGEpAlNHKRfDsBFCo6+vm+mZGaTSsCwNO53h1NgU8/MldmzfQLVaQQLVmoMQGv/2gwfJZ20mJue45OKzqVQqIEVYsgA4eug4XfkennryAL7vkM+nuWD3WbiOw6aNa0IDyalhWQaBr9A1HduyOHToKH29PaQzGaSUVCoVlIpq5YWRu+58F5qm87mvfJ/jxyY4++xNKOWh61pYBFzT8L0wchsSIxmcOjXBTd9/gIsv2oWd0glUgGWZCCkwLQPLtshms6TsFPv2P8eaNUO4novvBjz0yJOMjg6SzWYQUnDs2El6e7vRNI1UOoUAXM+rQzx9LNvCdT18zwMhmDg1TjqTxnM9VKAwTZMvX/89xsen2LRpLQIwLRtQnBqb4tTEBP39PQghmZmexzItnn3mBDvP3kB3TxealBw9cgrfc3Fdjz2XnE06ZeF7LlKTOFWP4ydO8tCje9myaQ1Sk5h6iq9edyeeUyGbtshm0+i6xLItPCS3/ugJ/vArDzEphnjfBz/Ib/3aRxkeHKJSLjE5MUZXNoMwbNKpNCMjI2QyWb5+3XXsfXofjz72ONWaw0UXXsjevfvp6upm4+YNmIaJbhis37CRru5uKpUqjz3yCCnLoqe3B9s00YRAuQHKD6hVq0xOTTI42s+b/8M7yOWzGLqOH8ubbUdu0O6Nj7+rvu/THjeyvHGXTGqyvCTuAYpGHlonO9uCgp+cY9fqhArPbWZkTFLuOqnR1s5BmXiuXIBMtju3daxCCKQIjZhKtUqt5mAYOq33pdOIUbRHLZc/BwuG6uL5LL2HR/veUsQv8XOSx5wMcWyUR2o63mq6hOcFgY8gLPL9/MuGrSzKl2Q4ng4ndbsWouhTu7HFj0bGlgr8lZUNYCFXbiUiWNrp0dxJ5xHPuGhS4ji1uvPm9OmOL+fcvQQkWjBb64BEHxn7tMpSmNuoyOFS/SUVm4znusXPldDwoscxyfExePWCotF5UYHi04UNbpeH11DpY9/l8nmCwKdaraLrOqZhLMKCxItYLyfL4dKFkKt6OVeL8Y5f93xw4lGOQ+ux1eZULtlXfYNrPSvyFkbkIp323Rxpi6jHm3NIWolTFhwQzfdLKUVSHazo3AXCA4lKaegZi/P2XMBN37meN/6nT/GbX7iXffuew3M9TFMnlbYXip0T4Ho+fqB4/PG9ZDJZAs9HN3QmJiaYL5RxfPCCEPJXKsxD4FAuFvjiN+/E0E1AYNsm2XSKarXA2960p+HAUQjyXXkQIeGGEqoOv3Tp6+8hk09h2xn27j/I8Oggb3z9ZRw7MUE2m0bTJWvXDlOtVrBNyabNo7z6yl1MTU2Fv0MQ4Hs+pUKJjZvWc2DfYZ766TEG+3uplgroEgqF+ZCeXtOwbRPb0tF1i3y+iyAA20zh+WHpBs+phQQkhs7M9AxShBG52bn5xgbZ35tjZnoWwwhheEJo3HzzfYCO63goP8ylGx4e5dVX7sYwJVWnFipemkBqgkKxgK4bKCXIZNOcf/5OAhVgmiFT6cNPHaJUKCFFyKK7fv0aQCKFxqGDx/A9hVN1+e5NdzM7PRsacIZBrVrBMnRuvu0nuI6LZZm4novjOrzvXW/mDVdfiWXZoZIvFUoEbN2+ll3nhGUeZmfmGR4Zoq+/hw++/42A4tDBY2i6yeRkgW9+9x5SGYNCYRalAmZm5vDcMHq3Zs0Ir3/NHgqFEkrB9MQ07/35V7J98xpymRRzM1P8/XU/5P/67C382j/czpOlPv76z/+cD77/fVh2jvGpeSYmpjh18hTD/YM88uCDdHf3YFo2AwMDvPbqqymVylz7pWsZGhxGCh3LSqNpJppm0tPVjZCCgwcP4XsemqaRTqe44pVXks3nEL6HoSmKMxM4xSpaoLjn/tuZr05B2mSuUgmRyEIQx5lA9By3l8gAixtBUXSm1TAKcyd1pKyz0AZREe7mtaN1vU461vp9u/xsIUS93lzQWOcWvouvH4tZKKM6dYnFwVlYy6LIYDzHazlWzdb+WkVKrfFpJ4HvNTkAF9832fQnRHtBGANJp2xyuRyIhXlGc1UqaJs3He1Dfj1fM3F+CXuflBq6pi8ujh7bw+N7f+PTUhA7KdcyqWi2Uh3U363PN45EiNqOG+xxPeJ06EzxXMaOxlmfW1MhedrrXUvxPbT7PoB6gXptWV2jtQ1NSnRNbzre7hPNJ+qzdZ7QfuzxcbZel3RNki4mqderTKqFXG+nWqsyOzeH53mNYz/LhdlfLmIek+UKNrYafUmyWms5aq/T64WU+C0Pd0A4h1qtSldXN+VyKQaJCBYWsDZF01fy+ErCBa/1hYvuXfxl8DyP6elpKtUK27dt57777mXPJXtecgmorQVCV3NdOzlTi0O7Ma+2vIaQsq48tJ9TUrHxVsMuOq/5HNmA6YTf1yE/9QLmC9epRkHg5n5Vw0BsPNdaGEHC8wl8n4yVQvmKf/r7z3DN9d/k4++6mDdcei6O42AYBpVKBdO0MC2d48dOhayZIqQMn5+fJ5fLgpBIJIYMmJgYZ25ujvUbNuB5OoFy6gpsCN8qV4rkclmEsBsu0TCvRCKpIYVBzRVIGbLOSWXieQ5eEGAYOsePnsKyTAqFOYYG+zENg+npObK5DMoP0DRJsVSi6lQZHh5ECANN08L7Iw327z/AmjX9nBqbYPu2TUipcezEGIZukMul8T2XickC3T1dPPXUAUZHBvE9j40b16DpGtVKDd8PC8Cret7OvqefpSufY2R0KIwWWiZCeXh+gOv43HLrA1x15SWkMzr//MUbec/PvQ4U2Omw9lyAh+v6FOaL9UhYWLRa03VQdRNCQrVWxnMFhqGj6RqGrlGphkXjIYTHuJ4LCr5z053s3Lae/v5eunvyOLUw0mpaYU6dEJJSscTg8CCu61IphwXVn376Gc4+ewtGHaKmAq8OCQ/ZN1ECz/URMoxUVysVdMPgf37+Rn71l16PkFAql+ju6q5HLAMCL8BOWSjlh8ynhkZp3mF6ZoaR4X4+8D9+gGFouNUyX/rXa6hVHTw/4Miho1x08SVMz81CEFCYmaa7q4u5mWnGT43Tv2YdAkmlUuNNb30rf/Gnf853briBj//ex+nv72VkdJAvfOEaRkYGeNVrXokX5TbWXDwFdiqNhkIFHildUKtVOHn8KEeOFbjo4vPJ92dRMkAzLJQSSOXXER1x0FUdriiaY3hxeop2kS2/Xpew9Xj03seNseg8TTdQQYDneYve92amxfb9LeeVj0MiW9egJGlly0z6PqlgedKx1jHHx7TQ3ur2hk7m0jg3pik02E6b6vZ2pnmsNJe7k30oaf6rLQ4eL7q+3DkQc56fhsLkK5FOxtkYT9wIpb3eFclyuuuLIZFOeDrJUSI9tpO3RxJC/1sdyfF2onHGj62kOHw7ebmI+RmWjmCZEYSA5LBxJxDN1f6KC1trZ7IQKaAB61QASpHNZjl27CiWZRMEfr1oqlp4ONvANFdi5rcLk8fHEYllWSgV0N/Xh+d5bN68hUql0kSpvBy2/YWQ1UIcVwsVOB3SdszL5US0lJOIt7c8NLI97KH5usUGYOIzI2SjT9HwKLdTIiXNUJ+6oSnAtCwCAfPlIk/+6McM9/dy3d1Pct09+/iFV+5AiJCdUdaNDTtlhfAkPyxhkEpZ4X0JQ1QoKfnat7/PBeduwzQtnJqPlbJQSqEbIbW4ZZt4vo+QZv32q4by47llpAwNFT/wKZWK2IZNqVwkk8vg+R75fA5NSrp7ujEtk/GJKYqFIj968ElGh3oolspYltGAmOq6FRq4QLFUIZc3yWTT9Pb24XsVAhVQqbn09vWi/AC36nDwyAksU2frlg1IGRYMN0wd3wtwXYcgCMikU7ieG0bT6oQg2XwGhQqj/nUK9JMnxtm9+6z6jxFw+MgJSnMVnt5/mLVre7FTBkEATs1hYHgAocINMqpnJ0SYq6UIkBIsM4UQYe5e4PthUXpNC3MxVMjcee99j/DG119BNpsll82AgmPHTpDNpBqG7vjYJL19Pfi+V4crmuH1pSLZXBYVhNFZgUsQBLg1hxMnTpHLpKi5DpZlIDUQUnDPvQ9j6TqbNg1j2RZd+WyY56fA83z27XsO09TRjdApYBoGqUyKGx7cx/973U/41Cf+gF/8hbfz/ve+mxu++0PWr1tPqVQmn8vz7DPPsnH9CNlMirvvvodXXHE5Tz3xNN19/Tz73EHWrFnL7OwcoyNr+ehHP8w5O8/lkcceYv36tfi+y4UXncfgYD/jE+Nks7nQYEZg2BaB79Pb00OxOM/02Emu+/pXmRwb48rXvomuvi4yuZDFNPAFQmhoUoUIiqbXrL6Ctxh38Te5HYywlcI/viZE73RrG5FyG+1RSW0mSWt/S0krTPF0EKAkrU/t1qyk9pLWyfZlHNqNYTG7ZhNhSgPq3gIfbXwfKy3Q4f4bOoD0xL0jKY8uSjVYek5Lw+ja7VXt2lquLMECSQyN8+L7zwsjy48zkqZ7QXu9a6HlhDbatR3ni1h2JKuXSCdMhODWv++0DNdCo52TnwhC8q/E9SKmDwdB0IDgthKkrBYS+2LBMv/9RO5qlTa7ROdeqNW+9lLTCHy/Ae1cSgLqhbfrMErJQpQuaRyNo2rhqOe6uJ7L666+mttu/QGmWacmj8MaVIJHtM290GQIrak5TtMY2nmQXM+tsxAaHDx0kE0bNzU8sJGndhFcJtZOtBlITV82irRaWUmUbrlzV+vReSmH+uMe81aPczKhSrMnuvX76N++HzQ89BH0stXb3XpdFNlL8lS384D7SmGbFg/edz9OocQf/+Vf8Ve/+mp2bhhCKeqFu5tzUwvzBfL5bpyaQxAoDMvA9zzi+bKaHuaZBEoR+D6+H1Aqlcjn8piWgQp8PN9FKVWPQEmCIDRAfD+g5jj4Xpl0OhPC4vDQdYkuTTw/fJ8OPneUBx/ex84ta9i2fQt+4JDPd1MsVrn5ljt521su5eCh42zduANhzOJUc5SdKfY/8RRbtm3l6999hI9+6O3oCIpz85gpmxu+dwdvfeOlBEoxOTHD+vXrcF2XYrHMTd//Mbt2rCdl2+gWjAwNYKVS6JpBoVAkk0nheh6O45BK2ZQrFYJAkU/n8DyPRx97mqcPHOeD739TPTqnUMoHIZiYmqS/vw9NGkhN4LoOruui6/Uc0yA08oQUOLUAQ7NCiBAL7KVShjl+lmly9MhR1qwZxXFqSAwcx6VcLaLrBhOnpjhydIzXvfYyHLeGnbLxfK8emdQoVyqYpoHvBpSKJebnC3Tl0vho9PX1MD8/TyabredeuOh6CA0slyphdFfq7N9/iOGRQWamZ+gb6ePux5/hc7cd4IoLL+K97/w51q5fS6lSwfM9cvku7Gwv+/ftJW1bZOw81177VX73Y79NtVJjanKK8YkJ1oyOUqlU+D9+9y84+9yNXHbZBVz1hsu59bbbuOyyS0mZNj99cj+PP76Pt7/trdRqZXR3jlrgs2nrVnxgvlYh39VD1gl47uAh9h05yOWvvIK+gX5qlVLiO968A3TuXlwuJy4yoCIG3TBipxLro8Uj8Z3IctGqpEha6/dxNMtSbXec47PEGJrbX4hixv8djrX9nFoh6iEkVmsDS03OTxNJmkdLdxFqqRNETbTGn47cpAgtEp9nlBbQru8o6uV5XuN+dCrx6GMSUiWKNrbqKEkSRXc6OXel1y2nV6xE64jrlS+UiJge2yrR2JN0yEiSwOFxh06TzrDMutWKalrNOR21kTBm27RejtydSfF9708Sv1jBC7naX8ivR9h0TWu78EckKEKIRlKr73uJrJhxSWrN81ykEHzogx9E08JIxeLaQAlXtrkXvueGClv8VJI3vyAIF14pJIZpcvNNN7Nt21YMwwyPQ+gtbu16UTSnuUjo6ZaVROmWO3fV43uJO1aSvFytXvDm45Es7W2PlMMFWGZSH/F/L+SMJI9ncb+GaVKtVNi4cSPlYolzt2/jvmem+e9fvhWDGtvXDRLlCAkRtmNaFm7NAerPXuA3FB0hJZoeFrT2/ZCNS9d1fM+jWqsR+AHXf/t2du7YWC9CXsG2TTwvVFqmpmb41g13c+EF2wkCl7SdDotaV2uoQKEboSHleSHz5NBAN5u3rAMhyWZTlMoVTh4b58jJMTauH+C7tz7I2oFhAlWlMFujuydFJp3GNC16e/L09vUwPT7B/Pw807PzTM3MsfPszbiOw+iaUaSQFAtFurrzPL33ECNDvezYuQ3PrdHX3w8Crv/WbZi6wDQNstk0lVKZVCrFNV/7Prt3bsatuQgBW7ZuYHS4m1rN4dDhY4yPTTA42B+y9gmw7DDa6boup06Nk8tm0HWdw4eOkevKIUWdjEMJ5gslrv/2Hew4a334XEhRDyRJUIITJ0/R1Z1DCoHvKb70tR9y+eXnooKA/oE+Bvp7EAIee/xpnt53kC2b19Zz7iSmZaJrBlJo7N17kP7+bqQUZHM5DMPANM0FuKCmMTU1ja4bHD12gnw+j67r9A/0YlsWb/zjL/Lw0Sq/9f98go98+D+ya9tWhocHkbpBrVLFC0ISCyUMZqan2bd/L+vWrOHqq1/LiZPPUa7M43k1enu7KJQKpFMpLrzwFXT3prnyqldgpSyGR0aw7RRf++pX+dSn/pqHH3qEt7/j7QwM9WHqgrHJSXr7+nA9H8vOcPzIMR7/yUPce/+9vP3n3oHjufUcrsTXsd1bmnzyEu9nu++VqnvCNdm28HU8Et+JrCby1m5v6QRZcDr3nlaltNM9Llqf4utx2EbSNclOskTlt2lbCxY66zCadNqcripa2+PzbN92FA0M9xKJphsr2kub8+oW3/+F6OXyz9lyEN6lrluuruGy79lK+oMlyVLOhET3calI4mocKIl6yXJ3o5MI3DLnaHXdfKWlEnRNf1Eidy8bdy+AcadpWohzX+rFij2wMvZSRN60drCJpBZTaRvP8zBtsw53STIsOzfuHnv0UQYGB5q8Fe2Mu4ip0vNcPNdlz549jbE35qHUok2kdXFd2MReNu5eDGlWJlp/p86Mu1Zq8+dr3LWWUmjXL4TGgm3ZFIsl+vp66R8cYPvoOnZt387g5vP58H/5NDLw2LVpCBBhrRoR1r4DcP0wR69cDg2asJugPieFU6thmCZCgNQkB587wdHj0+QyJt09XRTmi+hGwOTkJJZtk0mnOP+8rdScKplsuv7TCybGpsnnuwmkIpPPoRkGumWQy2fQDclcsYSVamSy0t+TQRBw2WWXUC5WmZksMDzcR7lcIFAmXT197Nt/GFvXGBzoZnJikjXr17Jl0yi6rjM9NUcmm2FibJLZuQKFQonR4V6ePXyCbdvWk8nYBIGiVKrw5E8PYpsGW7asq0f6Ffv2PcsrL9uNoUvslIkXeBw9eow1a4ewUiZ9/d309vYwOTkFKsCy6vUrCUCEkHHfD/hf197E5XvOx7T0ejQDlBJkUilGhrvJZtMIuUD04XthfpmuCXK5DEqB61TZc8kuPOVhpSwC5Yd9SUlPd47R0UFMy0DWf9NABRBoTE0V2LBxPfc+8Ahn7dhMyrZjSrdienoW0zQplUpk0hlM3WR+vogP/PI/3EJ+yyX83x/7HX7xve/h1ltvZ+eOc5mdO4lmSH784MNk870Mj26mUvY557zz+N7N3+eyyy/lrLM2MzM9SSanMzU9QV/fEJ/5p89z6Z4r8V3Js4ce4y1vfy0/evA+evv60XULz1PsueRiNm7YwuOPP86HPvwBpOaTyuXp7h7AdQOULylMFZg4McnlV72Cy668DM00ODU2RndPV1um5BfCuAvva6I/r37umTXukupvvhSNu9Z1Lem6+L4Ykrck7dfP07jrdC5SniYGyWZ4aes8k84VQuC6bui41nR8z12RoXl6jbsOyhskSFSiYqm5vmzctW/3xTDuVOyzEnmxjLuXYZnLwDLjSaDxsGyUyNmadNmOvSfeXut3rTCIdoQnnUq8tXatBCuAZU5MjDM8NNw0znbhfdu2ASgWCw3DMh41bHfdaslMTockJYl3wj5SeD8AACAASURBVGTV6bmdXhfUC7wuB/1cSRJ2u/5WkuS+XPJ/u421HbQzydvZDi613Ka93LkC0EQIvdGrPnfdeReFcpF0LstZO8/mv/zpXzI2Ps4fvedidm0abtoiolIdmq5TKobQNss0QQjKpRKapqNUaHT8yxe/z7t//gp6eroJlIdhGrjOHEqFxdBBUqvWMCyDkCUOquUapmmHuW9+jXQmjR/dB6Ug8AiEQaU8gxSSbCrH9OQUvb155suK7954FxnD4sordzA7N8/w6Hr+5drv8cH3XY2ha1TLBVQQcODgGBdddDalUgkpQjY+O22DgpMnTjI4NICUoRJuGDq1Wo1SsYJphYXalVLMzkzR1dXFgQMH8Xyfs3dsZW5+nkAF9PT2oGkSz/fQdYOHH3qac87eimHpCEDXDZBhtNPzQmIV1/EwTQuhBZw8Mcbw8BBOzcUw9BDaIsLIqabrBL7CdQPGTo6zbv0I83Oz2CkbAhXW79JC1kJd13GqDqiwYPKTT+3ngot2hUQqBGFRe83ibz/9TX7jl99GuVokk0ujC4nv+dRq4W8wPjaBEAJdl3Tlu7nr8YN86M++yI7N27j4ggv5+Mf/TzzfZ2hokG9cfz1veP3refbZR9E0ncHB9aQz3cwXHOZmi3zkVz7K9PQYP/7x3ex7+glmZ+bYs+dSysUKR46Mc9b2nXz7WzfypWu/xsTc03zqr/6cc887Fy+Q9PUPI9EpF2dRSlKruQgRcPzEIc7eeS6GNJmbnaVSqjA9OcsFF56HnZNITRAAlWoF27LbKuBBggITh1HG1cdWA2k58pAkieDVS5GQxCHYkSxneMThfK0wzPD69pDvaM3xvAWWyKiN6LpW+GO8j6R1qxNCldVK870DWa9NhwrqRCnNsMwIBiqT9vY2xl20B60UatgoMRDbZ1zHidVClIv0pda+V9rf84GGrpR0LGlPbZUkXSJO5rNcSkPSHt0pYVsUCEgcV+zv7chXVqpxRr/jcrpqax9+i37b7m42mYVKITSJaseQi1iSYKVdGtFq9bh28lKCZb5s3K3AuGsVXdNCD9LzeCiSWC/9ZV7UxHGKNkaTaqN4r8C4KxULpFKpjow0wzCYn5+jp6eXarUaNtuBUfFiGndJ8kIbd/FFLynn4XTcn9NhNC1n3HXiAX4hjLu4Xz7ylnuuQzaX5/qvfI3Dzz7H5Klxzt6xg1e85mqG14zwsV//EH/3m28IrxRRK+H/x8cm6O7tRtbJUbx63bUwz05RrlTRdQ0hw4LCgVIot4JCYJlZpNRw3LBOmtTCGnhSgOd6BAEItBBeJKiXdQ04fvQo1ZJGukswMNCHCgS1So18d5bHHjjIxm05ZJBCs2vMTkp0U/DIo3vZsmUUy9IxbYPBoUFcx8e2DGZmZ7FMmxtvvp93vfM1+H5UnkRSqZQxLQtN03j0sb1s27yenp4ePN+nVCyHhpoIc2EEgvm5ebp7uxBC4Pk+uqER7buVYoVMLovvucxMTlOuVhkYHAgp8bWQbh4FjueSsmwcx8fzfIqFAl3dWYRQoVEHaFLDqbrccecj7DxrA8OjfWiawPc9hAqNAS9QBMpDqABNmniuQjM0gnr9PoVqgBK0wMNxfXxfYadT9eLdgunpWWZmZkNopRQ4jsuTh47z6R8c4pN/9Bf86P772L5jC6+49CKqZYf5+TmGRvt47rkDaIait3sIXdfQdAvXCyiWylSrTj0aaZLLZ5ifmeeuO+6hK9/Prt3n8Id/8Al+7/c+ztjYBMePnmB0XR/bd2xgaGQQNwio1jxc1yObSiGERrE4TyplEFCjy8qx78AzOJ6PZafYuuMsDMvC9UqAwqznLIXw4mTdIsm4aydnyrjr5JwkRbiVXTfp3OW+j6857RxRrdcv1caLZdwtdABxBsywz5Ubdy8cqcjzk9Uad3FjK5L4779aYzEIfFzXxTCMpjaS+msnPyvG3UquSzLu4tJJ/tpyQcfVGnenW15Kxt3LsMzlXriYlyWe9yZl6O0z6jXbFkEK4oswC+Hc1l95Aaq2ALtUhC9rJ4XHGyJVY3BNrFVtXr3EYHmbe1Gr1ggCH6NOzBI2kPymheQtCt/360x8fp3RbenrVgKTPN2iycVKyrIbcSdh/hVcF9oSAimTi7uv9P5Ez0D8uuWKvra0kNz3MsxmTR5gqbWFQC1uNxkutfy9XeJ+xv8hBYEmqdSqbN+6jVddcQUb129gemwcVzdIp1K8+xd/kZsfPson/vGbfP3ufexc28VgVxYhBFbKYm52DtOywnFC3SMtCVSYM6frekjRb2iNmnGa1AhUPf8qWIgECKHq3vagDgk1YnWyQixrJm1z440PMzScJp/LUq7UsFIpQJFLd1GqTODUAsyUoDAHmlRsWD9KuVRkeHSIVCaN5wcU5wukM2nK5TJzswV2n3sWM7Mz5HJZxscn8TyXubkC2WyK/fsPM18okbItTMvimWcOMzjYh24aGKbJM88cJpNJk83ncF2XcqmMEmDoRmiSBiF09eSJU1TKZYaHB8mkUhimBfW8GlXPw9I0ge8FKCX47P+6kS0bB+jpyYcwSiFQqLryqrHjrA2kUmlK5WJYD0/XcJywHMK3v3sHa4Z7qVQq3PSD+5gYm0E3JHbKRtc1kDEDv1YEBNlshlOnxsmkU9QqNUzTIJPJYJoGQjf42Bce4J0f/jXO3/UKRkfXsWv3bqQMOHXyOF35fh555FFG1g5w5OhB1qwdwtAyGIaF5weksmnstI3UIJvNMjIyVK+VJNi8cSvHjh9hw/o1vOktryebsTh8+Bm2n7WR0ZF1WCkLT3mE7K92HdIKkxOT2JZFV0+eY8cOcurwUfbt388ley5h/Yb1uASgSXSDeh6SXld4fNqpXyrx3Qp3qSiS2+49VGp5YpVWSSooLqWG7/uNnLzonDjZUTxfLznysTSUr3kM7dacxXCvMMLe/F1SH0utcUv1/Xwlgr1G+4Wo7x/x8SxATZcjVGlO2RBCJO6LS0mc1TLSP8L6aT4RCYrnuovyL1fPlB05CVemsEf7YBxWulztXEjeU5u/Vw20UlKB9Ai+qYV4zMQ5J+3zHT03kZOh3dexv7fbzVfydEaskrIDXaK1D6VUIw2iY7ZLKSBoj+8WoeLbtr2o39Z7Gdfpz5TW+XLO3RkWP1B/gpAs+rQRFSaBNFv6IswbQSgUAULWNxsWf+KvmYh9WiVQKvS6RH9XqkE6Ep3fCU2tUGLhg2x82s4vWnCiml0yeswXS8qyME2z+SVNMGiFECjfh/oL7/temOczPY1tWaEHUdOTF/IoOWuVht1KMe9xaSzwTRvjMv2tQKHo5Lpo5El04ov66GCeQog6XGd197j9/JKuXSjo29zG4g0uars1F2ahH1Uf6gJLZsNR0VYZbW0j+TSJQJcaUtOo+R75gV627DqbycNH+eqXrwUVcMVVV/KBD32A9//S+/jYJz/DV+54ClNzOWfjCEJAoVBEiLA2m5AS13UJVFgmIPADhAJdhLXGan6AFEY4LuEjdZiZLGNbkjBKLtENow751HC9kKBEyrCw9MxMmZ888Qx7Lj4LO2Wh6yIkBNFMPFVjYnyOXD7N0SNTPPjwPp49eoDduzbh+z5py8JxXTRNEig3hJYFkM1lKBbmyWRspianuOH7P+KSi3YxMDCAQuP40QkuvnAX05OzVMpVnj10gqHBXk6cPIGpa4yMDFKtVkLDzPHw3YCDzx5naHgA3RC4TgVds5BCo7unh0KxhJWykKK+1ihRh2mCU6th2ha+54FXY+fObVRrDkiBU60hkEhNImRYoyhlm/j1KOH09Czd3X0ESjAy1EcmnSeb7aa3q4tdu3fwjW/dxVlb1pDJ2uHGHQBKQ0gdKW18T2CaKXw/IHAVk+Mz/PN37+Uztz7HyM5Xccn5u+geGqG7t4tM1uZb13+Du+++n+NHT7F79zbOP383B/Y+R1e+i1Mnj7JlyzY+//nPcf75F+H7gnKxxu2338vG9UM4tSqWkeMjH/lt+ofzXPGKV/PlL1/PRXvOxnELbN+xhf7+IUxbkO3Kks1kkYaO1MM6f9/51rdZv3Y9ljRwS2VOHTtKTdP4+Xe/E6HrKAlSE2Feo5KEDK2KQIESMiw90fjQ+LSXxetPPH82NCAgXrQ7+jM6L3FvaIoOtX4XV9QjoyRO199saMUjZu3UsnhUJ5pDfImIrzlJRkxSlLCdRH3Fxxb1vVQkaKmoYtLxuLiOH5ZyaVqnmzODGvdWNH/Xujck7TcLpB+tzMfNxlvjN4wZmfE9vvE7BTFDXSyo1aLpoexc1V74/WPHpEQtx74aPcgrNCaX2+/bGYhN19V1vNa9ODR+WwvSL9xXrY3RIgnfkYb+QOSeaRlb7NN0fczIarzrKmSHFjJ0XCa1KWPzWU5Uy99FfS6KTn7lpgtp9x+xdpMkcp6rECbT1OzC/GKOcMJ6tSuN9CWN7cUqhfCzEX9/EaQR4TjDfchYX7LleCTPB/b5Qku0DYp6BMqyUwz2DwChd/9MyGqLwP7/Wc70s9uJhF724CX5+ximWX8eBVe88TW8973v4djRo2RNC3e+RGlqlmuu/TzXXf9lnpzN8p5PfYff/8JddHV1NfJKo4iDrumhYSfAtEwCBcVCmWKxGFL8uy6VSoWJ8Sm++W/3sXfvM2iarL8jKqzDBjz62F5mZ+fqETBFPp/l/e95TZ2p0UDXjbqHMsDzXIaGBrCsDH19Pey5ZAvr14wyM1vC98P8BNerEQQehw6dwNANjh47RbVaI5/PYqdTpDIpXnnpTmzLxHM9dCHYvftsHMenWKpiGDpHj83wyGP7WLdulFKxjOd5pFI2juPgOB73/ugxRkcGEEC1UqVQKKHrOk899QzzcwV0TQuhnDLcQqenpwmUjwoCDEMLoTJILrpoF7WaU4/oSdKZDAhBrVpDIJBCUi5W60FNRS6XxQ/CcgvZbCZU2gX09fcQ+D5XXbaLTC5HtVqrF7uWKHxqtQrlcpFHH/spjuOiSZ2nnn6WD3z6B9xyYI7P/N3f86pXv4axyTl6enowNQNNM9i+bSeWmaa/f4hSyeHIoWPc+L0b2Lx5A3Nzs9xzz/1cecVVzMzO43sBc3Ml/vAP/5i52Vk816NQKPFHf/An/Mkn/oI7br+Hf/yn/8mBA88iNZ3JyWlqNYeufBflQpHp6SlqtSpSSHRNY3x8jN6eXnRD53s/+D77n3mGiy66kEKhgGWemTX1TEsUlWvHGNhqNL5U15FW47V1jO0hmuH6HDq5tMU53x04D3Xj+ZchWE6SjZXlo1zJjSU71V+sfeKlkP4BdYM0cuqfBjmdO7+Mff49ScDKI8IvNfn3E7nrpIh5TCK/UnO0agVeng6C3FKG8CMRhYvrHpPoeBQ5jHs2WyXyoa0U8KFinr0Fz1xyKxFEppMoVVSIMjJITcPE9TykpoUKVmsk6XlKA6az4juwWE43bOaMSSf3TakzVCOwPax2KQjPokilWsxit/iaZq/884rctYjnuvi+h22nkAi6urvZvGkjX7v2y/Rkc8xNzdA71I0g4MqrruAX3vMuDhw8yd989Tauv+8Ag2nFSG8ujCwpcN2w/IhTqyE1QSabwU6ZCCHRNA3LstB1ne1bNtLXl0M3Qibb2ZlZLNPAsmwC3yOXS2PoGmHunQyvMyKorkBqEl9BKmVh6Da6NDh1apze/jybN22kWCyjayFk3LINypUKd9//JL7jIpTAMCTlSoWZ2Vl6e3sYGOgNjTbXZXZ6juu+fTe7dm7C0ASDw4NccN421q4Z4tixE/T2doMCTdOpVqpMT8+STtmsXT+MH/gcO34C27KwLJvh4QHuvOsh0imDdMpGERrCuVwWCA1j33eBED7ouz5f/eZtXHD+dkzTxHVcLMuiUq7UIYKKuZl5hAyh357n4TkhLN5xHMrlCjfcdDfz8/P09/eglEDXNa77zq3s3LEhzHWUkrBWtmRiYgYNjd/8/77EPreP3/iV3+CmG27gA7/0QaSms237Do4dPUwuk8etutx04/e57Ye38va3voMnnnyMdCbDVVddjmHr9HTn6O8bYXBoiOPHTuJ7PrphcO9997NmzQAbNm6gVvWpFBTXfOUa7r//HqQOn/zTPyZQinvvvZ90Ossdd95JOpOmp7eXdDZDpVLmiSee5Bfe+W6kpnHbrbeyZfsW3vq2N2Gn0vhBgGmHzMgLy1/SO7DSdS0BWRB7tRfYbhfeuYUI2cLxpd7HhQjfQgRmAT6oGm0tRMMWG4Fx+GHbmcTaWykT5kLkrn37ceh5UmTSrzt9Ftf9DPdJ3TAatP7NY5PLzk/XzUUEE61TikcSm453iHSJ9I+mKF8M4RKOPWjMZ8m2RDtkTBP+d/GxFUj0OywZYauP/0zV0F2pqMDH0A3ceumSxScsDTds3XtlPeLWyVsfocXin3i7rVHY1cjphDuuVs9rvEXRorNM2/Eo9POVl4uYn2GpOU5jou0SSuNJqdHxeOHHdqQlcZFCgJAov3kxjEhTkth6oiLntHx/uj1LAQtzbxCqCAVKhLTjKkxGXYpEJpJ29zBJ4vc1iSmrlWHr+RKGLMXeGBVRX23ictIYT3eU7KXiUYxLUq7L8te0J0lJ8nDHyRTikJuo0Gz8+k7H3I59tFkClK8QShHUHKanZvjor/wql+3ZwSf+9M+p1lzMVBo/AIXOsWPHGBoe5rOf+Wd+cOutfPJ9r2CkK0U2m0JKwezcHN1d3QTKpx5couZUSKVslG+h6wGuFyB1jcD30KTAcxW6oeMHflTaDdfxyebS3HLL/czMF3nHW1+DFFCt1TB0nfFTkwz291MszVN1ynT3DBD4AZVCkWq1Sr47y+GjJ5gYL5BOWZwcm+WVl59DoAIc16O/vxfXcUGB63qUimXu+8k+3vbmK5iYmGRgsA8V+ARBwC23P8Qbr96D74dRs0OHjnLjDx7hHW+6hIGh7pBp0k5x4MBBtmzdQqVSxTQNqpUKUoNUxg7ZKo2QbdT3XaQGriuQSuPhh57CD3xeedUl1Jwaph4qOdPTs7iui22ZBIEknbawUyau66FJA9dx8TyXVDrN9NQ0+XwXc3Pz9A/0AYrpmSny+TzUIw2a9BDoHDl8kg9++odc84+fp6c3zaOPPMaatevYv/8Z/uEfPs2n/vK/kkpZjI+dYuOG9dimjuvUeODHP+bKV76WWq1EoTjL4OAg5WKNXE+Yryd1GyF1qrUgNPSFh5A+kxNzDPat56mnnuabN3yVX//1X2PD+nVous783Dx79+7nrG2bKZVLdPV0YabToFRIUDU5wzeu/zaDw0O87R1vJqCGrVkoGeYlIkRsDY72nU7e09AtuMCQ2SwryalrBylc7vxmpXRBsW0lOInWhDiDpWGadRr8xY6jpBIIUR9xwpaozfj8kxg3w+ivaBpL6zrWjihqqfmHf196PWwnUdpF0NTHwvm1Wi1832jOW1yOMCTaz6I1d6k1NCKw6GTP0rSwLujCs6lwPS8saVDXm2jU22u+drlC92fKSIvv7Un340wS0XSiV0QlrpLuf/yI1oF+1arzRvpi9GerzhSdL1uujx9LOt5KbNJO/0rihTgdTvzk4gzLt70UGV6rxOdsmeaLEjX4dxm5iydrxxeMCNccBAuen6baIB1E7hpRtFhSQ1BPICVJOa5H5xKLYZ5mw1sQPnTh/OrHGpHBIGTtE6Itvjsu7e5hkkTtNTwn0XikbPqzIaucd5Qo3e76Rg5G65hXkricMMbTHvF7STpcVn6PotpNiz2pzR76SJq99s1EB61e8U7H3JGHWkqEUARCkMpkyfbkeeNb3kxx7BjXfvEaTp4c48ILLwYfNNMinc2SyaQ4/4Lzefe73kn/WXv49Dfu5m+vu4Pr73+GJw+e5FXnbkQIiRQ6miYakEDDCCN0op6rEhEgCRGSDkkN5ucLoCCTzVCpOKxZM8zIUB+2ZYJYiLJPTU6Ry6UwDI1UOoVlp/Acl9mZOQYH+ykWywSBYnigj7Rt053P4DgOQiiGBgaYmZ7l5MkJ0qkUQgrm54tcccX5VMtlypUKfb1dzMzOUSmXufD8c8K6f6UK6UwG09Apl8o88uRz7Ni+llqtimlY3HnPI4wO9+G6Htd84za2bx4im81g2RaBCuvn6boRGkIyhGjp0mBwoJfBoX4MU0erkzAUCkX6+/rwXI9UKoVlmmiGhhAhBDQkTDEaUcWZmXkMQ+P6G+7mgt1bcBwHgHQmjesqvvq1W1k72s0D+47zD7cd5ov//C+4TpmDB/ex+9xdOLUyutR4x9veTm93D7ffdg+7d+0knTIpFibZu+8xLrhgJ8VylZpbwbQMTCPFXXf+mFMTB1m3fi2GZTExMY5lp9ANDV1qpOy6Mq0sqrV53vr2N/GTh37CunUbQ2ICXWfthnWYuoZhmhw5coyh4aF6zkvAg/c9wLMHD/GRX/4IruegWxqakgse6MT1utN3JDJYEr5ZwbveyblhlEs2vefNx+LtyaZzW+vAhSiQ9hGaeFSxaQwxxuf4uKWUSCnaGrTxXOjounZRtXZjSpp/vfVFx6TUljVolAIh29evNQyjHhkM0DQ98T63bVgtrNtLraGNiFIHe5ZsOMpF+MyqkIBERcih+P1cpCYtrWecKdRNkxEeT9Wpz3dlJGWr7ztJIq6GtvpO/O+xyFy7VlXs3AaCrJ5zF0XyYg028vWi/ptQbm3GIUj4LVegf50O4261bbcrYr40nujlyN0Zl3jkriNJKBXQSiccUnVLAuUtOjc8P0xObWa97Kz0QmuovdVrEHlOIo9MJ56z1ihlRLvfjj62U0mKeAK4To1MJovjum3nkXT8dEp0r1Zas6ctPe8qonydSOQZ84OgcT9XChuJxuS3g3d02EZrv+28x/F6SO1kNUVKlx3j86CUXsmzIKTkmb17Obb/OR59+GEG871ceNklTE9NYdgmo6OjpHO5sKi2aVEoFOnp7ubfvv1dvnjtl1BKcdGGLB9648X059MgIPAVgS/RTZBS4bkeSoFp2uG4JCjl142XsHi65/lomobv+WiagVIKQ9MplYsIqXBdn1ymi7JTRZMarlPFtkxq1Qq+5yGx8LyA8bFJAjzWrB3ED1xsK0e1HOB6VdIZnTvveZhLL9nDt2+4i/e997VoWsDhw0dZt26EI88eZXTtKEeOT7B1+yaee+4QI0MDzM3NY1phvb9sNs3s7BxduW4mxqf5wR1P8IH3vQ7Pd7AME8sywxp6pTIDQ/2owOfgc8fYsGENExNT9Pf1YlomAhifmiaf68JzFa7rkk6baJrCcQIOPneMTVvWY9oanuc2WP08z0cIydzMHPneLk6dHGdkeIjAUwgl+Na/3cm1B+a47tovccsPf8jVr3sV5VIJTynyXT0EgaJWcfjbv/s7PvrLH+W3P/yf+eRffpJDR59hx7Y8TmkCjRq7r/ggR46coK9/CMercWLsIL1dw6QzKYR0qVYdbCuHQFAsz9DX10elUsbzQqp0M5WhWquSsm1M0wwhikGAKpTQ+nJMzE6RlxbH9z/LvkefYNurLuL83ec1vUfNu9PSEbh2EjdkFq5bYG5u6mGFxBPJx2NRkFhkLiqr0O7cpOhIUqQrXp8virIlSdK61To/KTX8Nuua1mZsiQ7amPh+gK7reN5ixsioz8igW4pQpTWqF6+fFkUso8hitJ7HyWWWQ7gkrZNL7dURQqLpWAf7eaOUgdBCPUlqschdq8M3rOMX1bNcaY26nxVZiV6xVHQMaCDCIj2xteRWa38Rqmq1mo3fRg9MkvhvJ3WtHlxogS77PrqmN/Si1utWeq9eiFIISfJiRe5eNu7ayUvYuItLJ4U14+ONt3e6jLulZG52lq7u7qZ+I3nZuGuW+ALkey6maTUV111OXmjjrl1R1ri8WMZd4nUrfBZCuKSHrZmU5+cRAUzPTnLttV/i4osvxjAMjhw5wp6LLmZ4/QhS05memUUFIVPkwUOH2bBxA+VShQ/9yq9gGgbvu3w984fG6Oo22HPxDgaHBsIcLd1CCIUfeLhOFcMwEVJDSqjVHCzLwvcDNKnj+z7XfeN2fv4dVyK1UCnSpInUQqXW88I8mLnZOXK5DEJJnnryObq6sqxZO4TrOxi6IvB0SkUPhUe5XOCmWx7i/e95M4Hy0aRESB8BTE5OUpgtceTEJFdceTG2bTI7M0MmnUXUox2FQgHLNsN8D0+RyWRD5UIFQFjHLixCPoqqGxCuGz6nnucxOzNLT28PgR+gUFi2jet4nDg2jud59Pbl6erKopTk2zfcyY5t6zhn91aUCnjyyf0MDfQxONQPCkqlEmbKxHe9el4S/OuXf8if3fgAt99yB2nLwNA10imTV+zZw733/YhCoUB3Tw9BILjj9rvw/YDZk7McOnWUt7z1jWxan8EpT3Lk4AE2n3M1pplGGhbzhVm6elPUKoJ0OkWgqnUl1UDXDOYKk3R3dxF4PoVSKWQ31HRAoOs6KlAIKfB9n6yl48kwX/mh+x7kntvv4hf+wzvZeMFZuDUnvLYui3enCEWxAoUnwbjTdZ0g8NvCGjuRpdaC1nMig6TVuFttnbu4cdNuDMvBHRtttTm+2pU/KpZumGbTfhc3tp6vcdfcn2i0CXRs3CWO/SVi3EGw6r3tZ0FOp3HX2m6ScReXVphlpxJd187Jv6wIlRx8DFQjePF8tcN/j8bdi59N+rKsWOKMlC8FiUaxaNEPgjDf5WVZVqJIrFJh5C5Sel/KEvcWv9TkdDCw+Y6PUop5t4LoyeDkTbSeHL//Z5/k8le/klQmw4P3P4Cp6zxy/x0c2vs4VIt4ThlUQMqycF0XBPzLZz/LF/7lc1z6rt9l5A0f5uaTFr/zxR9TLpWRmqRWrTI3N49Tc7BTqZCoRYS6jq7p+F5YOD1QPpomeM+7X4dSqs6iqYNQ+G4Vt1Yh8P83e+8dJ8lV3nt/K3funjyzeVerVY67ioAkGN89gAAAIABJREFUhEBIKCBZYJGEABkb876+LzZYr7k2tjHB9gVsc8Fgki9GRAmTo7JAWVrFlXYlrTbv7OzkmU4Vz/2junqqe6rDzM7srqT98Wm001V1zqnqqlPPc57n+f0cXFeQyuRwUZEMhWNPWk1nXw4UBSEUJqcnkDVIZgwGh4aIpxK85coLMRIKqiYxOjaCcKGQN8lP23T39XHmGSej6zJTE+PInsO99z6BhMKeXUMM7RtDU3RSiTQxw2B8dJShwX1YZhnHdpmenqK7Jwf42nWFfBFV0dm+fReSLNPV00U+X0CP6b52KALTLNPTm2Pjpi2+dqDskzJdeP7prDlqWSUS5pJOpNizZwSzbOI4NulsEsm1KRXyOLbJ/sk8n/zVI2xYfy5Ll/aRyaWxLJOHH36Ehx56BFVI3P7rW8F22b11O7/9xS/4zKf/kUv+4E0oMRVFV8l0r6JENz0rzyTbEUePe6haGUk1QfJIpRIoChRLeTRVRtUkTKtMMpnwo4qeT1uv6zqOaaIgMDQFGUFc15A8By+tYI6Ns33jM0yPTvOnH/4wy087CddxMAy98X1aqQVSlAM3eoM5J4gCBp+FQMAK2SgVs9G+rRCMT5KkmqhVo32jHSG55tNs0buefKK+jWbQdL2GhKRac75A9VqBI+ifp6hGROaCqvN3mNgXYcyc3+zljSOoRTt2ohf6zBeikm00F8ihT/X5rVtMqi5Wh6N8oc8RNMcrsuauPfg3nKLISJVVxfqcXLmyGhJm0Qzn41ZL28OhZo+aaJ4kSVVNPYSoUINTradwPc9n0wwxVAV5zkH/1QhhUNdX+W/ApClCYyE0pkAfJdimyDJSJQ++WmjehtaHVPnIlTYd20KvsAF6nucXIldehEEKVTWtonLerRAWSJ1PbVyYRaut/PhgXHWRp1YscPNFtZYj9Ds3+jQce3W8c5v6wn36k3RjkeCacRDoOc2QC8xiZQut0M861yYaVTOnNENeUO1blqvCuI1SoWrHGbo+EfvWX4vgPtMUXxMPxdcKQ5KJ6ToeLpqi0tPdzfjYuJ/6Iiwmp/L8+je3snzFanRNQ9ZixONxSoUi2WyWUrmMrussGVjCFZdfwd133cUPfv8sP3pgK2Njo+iaytLeDiQpuK5BHZ5c+ds3dL2KfICqq350pWKMqrLAtCyfiVPVGBudIJVK4VWYKo1YjHKxhK5puF4Zw4ijawbgYlkWXV09SLKH6zjYls1Pf/UAK5f30NnZwcMbn6WrK0MsplEqFhGOx8OPbWfNyj4sy68LnJyYIhbT2bt3EADbdcjlMn56dipR/Q0d12V8bBJd14gnjEq0SGAYBp7rkS8U8FwPVVPRNJXj1q2iVCqRSKQoFgskknE0TcU0LVRN4wf//TsuvGA9sbiB5/pOsITPyPni9r381fce44tf+BKXXvomhGuiqgrTU9NsfWEbK5av5IUXnqOrsxPHcRkbm2B4eITLL7ucY08+kbVrVvmGpCQxOjHNXb+7jw2nnsDOnTuQVZnOzg5UTce2/eiT61qoqoLjeAhBhRHUJ5PQdZ/ZMxYz8FyHRCJOIhHHLJcpFYoUrTJy2eXeu35HR28PRx13DI4EmjTbGQn/NcNe2aoSZPazFdSmhQ+NmpJD0+GsucHzBKqm++8cz6vsMxM5cl23MrZ6p2hm/pg9tkqKmOKnKgaslOF+g/bq00gVVcOxbaIec0VRCa5efR1w+ONVIqrBWMJ9hDXBZiJW0W/a8LzVeLFJVK/FzP5yde6b3V5t9DJ8TNC/EFRTP6Pvj2bps5XvQ3ZHGKqi1NXZzX6fR+nNzRY5r9wjzLxPQoOoHxSSJKMqMq7r4HmLF8FrJKoexRy64Ghgd0TuGvrIzNhhAar/DurjKrWBNRlhUBUUl0L1eLKi4Dapz6tB5Vop0oyFLNV9BFSZ1GvGBjP0FHWXVUKqyNuF7GeinrLWqG8ngFLJklJkec5ttotDVXOntt7llQ3TNJEVpe1VUe8AH3xN0/Bct6b2SlYbs1XJLFxKo21b6LpR7R9mF6C3gvC8ahse/kplqVgkFjNwPW9BQuNhhs2XY979SxGBAbaYWkVB28INjJq61OUFYC6boUCeOd7XlvPTNCUkJAEuAleCt77jWmLpNC8+8zQdnZ109a+gUMhTLOTpXeY7BrFEjGc3P0tfbx9dPd2UihalYslnZEzIlMp50sluYgmDB+6/j3/+zOcqpEcyG1am/Vo9IbjxD8/Dsm0MQ0d4CgLPN4Iq12AqXyCZSlavxT33Ps4Frz6NZNZnchSey+joGJqi0b8sh+vAyMgoHV05FEUCT8J2XJKpJOWSydv/8CJs06Zsmpx84lqSKZ/UpLu7m4nRcXK5GIVikdVHreTHP72d449ZSSymk0mn2T88gqLK6JrK2GgJTTcYH50g15nBMk0/hVMRCAc0Ta2kkgoUVWFycpqnnt7GhRdsQFFkNFVF03QK+SKmaRJPxCpGioQsKVx9+TnEYwY7d+ymp6cTSZLQ4zF0Q+ZvfvwsKSPGsWuP5vkXttLX008qmWBckVm//nRsy+aU009lbGSM8YlJTj7tFDIdOTo7unBsm507djA0uIsr3nINXX29LF+9ionJMbZs2cIbLr0YZIl8vkwynkZCkEzGKBZLpFIdeI5AIFeNeteFeDyOIkns27OHeCxGIV/Atm3SmTR33nEnR69cQ7Izx3mvOx9XmKgt0viDO/RQIZA0cZ3AiZ0h+BCVNDr/+zkuOAURGndu2QuyrGBbVjVCNjOOA4M/txwYJXx7ffhoNH+1ml/94zwWM+gW2AbN3r/Cm1sZRLuwK+yo6iJp5r5c4bgzkc5Gv0oNW+YrpFzLZ6tXD1nK5mLiiHPXApreOB2mEYJI2nzguC4yVFcSWtEMh4tNDxSO4+t+lUolwE/5UubYvgfY5RIgYeg642NjdHX5hpLwPCzLxIjFD8gpE0L4ulVE1Z4cwaFAsDK9mKiP/vmr226D7fPtI7xwIECAKgK+sGD1GWzPw0jG8QR4MnSvPgHhOpx29hI+/0+f5uijVrN01VpGRidIJpOsXr2amBHDdR2EcNB0A13T8SiRSif9uhPX5fjjj+Fb3/wyiqrx/OYXOWrtMSiKxM0338L3t3gkEkk6O3Mkkl3EYjE+/g8f9+vaJN/oUior4d/580sYG5vi2Wee54xzzkC4Ase2WNLfw9joBIpsIKsSHZ06riizfcceli1ZiWXZvki7BJqmEDM01BJMjk/TP9CFaZVQZBVVj3PumceRSCYoTE9xyklr6O7KMTExhaZoDPR343oOY2PjjI9PkkhkeObZnZx66lqG9g+xZs0yymYBTU9SKper2QKyqtI/0Mszm3Zjll0MQ8dxPGRJ5dbbHuSyy19FsVhE1VQymRSOI+jp7WBsdJydO4dIpdJ0d3WxdyzP2X/8T/zbP/4LN974ER574CE816W0JIMiK/T196FIOru27eTZbc9x/HHH8cDGR3l1PIGRTOBIgpHBYSb3D3H80Wso5ceYLJZQ40lk02PJ0hX40go6qWQahIWEIF8oYlkmqUSGsmUhPA9VVVBVjdGRYQaWLMW1TSQJRof3o+oaO3bs5Jh16zih91j2TI7zhj+8BkcxiQmBZJWwtUTTezYq8nWwUqWDermgtst1PRRFDqVrBxGa+pq61k5KVPpkKwjhk5aE645FRP38XOEK4bPlyTLCXZy3TjvzV6vrIclyxUpfxEW2sLRRo33alqGZGxaLFfPljnbclurCpqJU7dCXOwKZB0d4VWmRlwteOYQqZmluJyo1XzGdy21QuyIwMx26rhdK/ZBrtEhgtlMXZsesR31eclijpNmY5zv1qqqKVykONy1rpi/hoCg6eBKjowV0Q2fP3hc48cQTmZ6eQghRde7qtUKaObKO46AoMrKiVgk/Gq0cBqQgamVFphVakdIcjBWdVixQc31Jhovco1g350Jm4zhOZC1LlIEWkAbUkxoExl5A2ODvO5sooJ7IIeplHiYeOBxEaAF27t6LKknENA23WORXv/gFHXqRiy65jM2Dkxxz0ml+WqYmYxY9ZE2QTiYY2TNCKpYGPBRVxhUOQhEIPPLFKbqyffgSLD5TnOP45CoeKhKCQrFMMhH30xq1BPm8hax57Ny+la994xu8+OI2NFXj3z9wHpmEXnmOVGTZCKW0guc5OK5DYbJIR2cHrutSKJRIZ9KYJROBg+04pNNpzLIJgFksYJYtJEmlWCqRzSSZnJ4mk8uRSMSRZZnh4REymTT79gzS19NNPl/mx79+iKsvPxfd0NBUiaGhMdYevbqi2SawLAvbEtx6x4NcdfnrcD2XoX37McsOy1csxXZsbNskkYijqAqlYplCIU86m8BzPd7z+Tv42he/wWsvvJAPf/jP+eznPstb3nINr3n1uZywYQOq7ODaJpP78zz5+CaefuQe3nH99biKwsCqtdx1xz0MdPQxtH8HXd09LF2xgnvve4Bjjj2W/oEB7rnndi655GLKVhlVkSmViqTTGSTJT30ql0sYhoEQsGvvXgYG+jFUlec3b2bN6pW4iZhfp1IySRkxdr24g+ef3cKJr95Ab1/f7PdAKNU+QBShiizLi+bUhR22oB5PVSvzSyhqP1usu3ZBZi6EJvNF0MdcswnC80rQzsy22nNq1m69TufM9228i+rGEHVO9VBUbSZyWtFxrSeNCs+5jcbXdFxzfAc2ei9Hbq+5ZaUKCZPX8hqGWU+jzqWdDJ8oMhiItkfmQl43V7K4RuNoF800muvtxrno3MEMk/dcbJBG5+8eaPJjhWSl2UgCssDABj7UUbkjOneLDNd1/m5OB7SY+Ob0a9XkUc9uRJLliv0Wrf9R/RPqmDdDTVXyo8Ppy3VZ7C31OOaCYiGPJwSOY4MQKKpPh67pvrCwJzz27dtPOpOhszONrvvGpK7puK4zk7cfGlttHn/d+UkztQUzg4/e17ZMisUS6UymLVKScI1B0+2LiQaGRNT2dhCkD4VrDWdtb7vtRsbA7OP8GpzgxTzTh2+YeDUaklHnGVXTE9VHve7UoUY2myNmGKRTSVLJBKdvWM/NP/ghW17YwZq1x5Mfz/PwvQ9zzMqjmRgZpjOTxrVMFE1BNlSkWIyy46DEYpXIg8f0+DSpVApZ8utXymaZqalJNE0nFktUjG2vYtS7uMJB0wUTk+P09fdy/nmv4co3X85br34bbtda3vPRz3PJhjXEKkycvtMgISu+nposyei6z3g5NjpO2bR84WHPr39DCDRVxbJshodHcB0HPRajWCyz8YnniSc0Vq9aRnG6hGWaqLJCqVBCU1SmpqbRNA3b9g23nu4snnCJGTpCCBLJBAgYHRvDtm0M3WDT5u0s6etEVVVKpRJ9/Z2oqoSf4Scol8tIQCFforMjR950uO5ff8t3v/mflEp5rrr6Ss4+5xyWL1vBW6+5lg//5Ue54Owz2fzMM9x9193o8RSnbdjAxNgw2Y4O+pcuRddjKBK86x3vYmh4L6857zy+/4PvMzo2zgknnMDrX/8GPvShPyOVSqOrCq7nkM6kmZosIEsyZtlEUfx6QF3X0WMqqizjOg7pVArPkxCShlOywZUY3DvE/v1jHHvs8XT2d6PrGq7jtVzgiHpi62vnFhLB86YoarVWL6jpasbsWF/7Gq6Vi9p/oTBTs9a6rjc81vZEx6WG82r9PrVoo7Y8NLfN3ibPutZBDbL/Dq6kKoqZGr7wsZIk+7psBGOfg3M3198p4jq2+86RJKmqfdfONWyndrDJQCMN/yh7pL32mNknqnh1juNoG8H7kFDtXfCM4af1t9K5qx5bsR1E+Ps5piM36u+ApyfBLJ252fuI6j4SNHyeDhYOVc3d4bHs/TJHI0YiuTIxS/j/PZC1zEBI82CtUCiKyuC+QbZv317zwnEch+l8HkmSWbFiCaoqo+kGH/nIRxgdG8WDtiNqYcgVvRMIraA10iFSlGodzysVfk3SwqyOVwv9D+DeCqJ5wWr/yw2e6xGLGf7bRJFRE0n+/rOf553X34BZsBjdN0J/Zx+PP/QYv/3Vbxjeu5fCxASJhI7jWRTLRWLJBIODgxSLJRxH0NnVgyypPL3pGQQShhEjl+3AqKR3FgpFFFXBQ/gkIpJDoThNLpticmrSFzV3PMolm0QizU3f+ibltZdz7T//knd99hcV8iaB53ogfAIXTdMQwiPbkWHJ0gE0TSMWM9j09Auk0xlcz48QaaqOpmsgIBYzSKfjrFq5jB079xKPx9BUjanJKTRVZfu23Rx11CqyuQwDS/pxXZfnt+5k/9AohmFg2w5bn98BQDabJZlM4tgu5597CoViEcd1+OVtD/Pii9swzTJls0wiHkeWZPbtGyEWj/H1Xz7Av/52N1//4hcolIpoMZV0OsGuHTu48s2XUTZdxkYnmR4fJ5PM0Jnp4r3Xv5fxyXFed/HF5Dq70A2D++/9Pbqq8p3vfZtLLrmYZcuX8v/8vx9k7do1KKqCZZUxDAPTLIMsUSyUqnXGlmmjajqO46Jrhs90KksUinlkWUKPJUimM2hCRpUUdu7YjayoDCxdQld/P7qu+5GbWc9tY6fjYCGomXMcO3L7jLNWO0fIilr9+M6Fiut6C8rCudBoNbbgHA/1+AOHzbYs/5o2qU/05S1cPNepRjQPR3hCtFxYDxC83xplM7WyExYTC8HWPF8EdmCYLVMJfVodtxBop78jWFwcSctshEpa5kLfmpLcaGXQXxENOz1qRYSykWh5fRg9ur/a8LhbSWNQg5S9uv3DKZ0BIvm9KqHvyO2VU/QpukU1VaR+PPXtHa5YLIe5XUHOILWgrTYXqdYh3H4ztKPV1EjbynW9SI2qZmlQ7aw+z0fXqVVb9e1JKFBl2qvc90ocs1jmwXvuYdPTT7N3cITB4XF+d/dtfPpv/4re7hzJXIoV646mmLeZnJjguBNOYLpQRMgK+UIRxZMrKY6+zSNJHpZlI9cRCpRKRRKJNJblp1em00nKpRJ33HkXn/n05/nZz28hEdcYn5qks7ObickR/vSD/x+SJPO3157J2iWdKLKKLBOKBvoC6gjB935wOxe/bj2Tk9OkUwlu+fn9vPcdr8MwYoyPTaNpKp5ns39klBVLBxgbm6RQLJLLZojFDDRdY2pqmp7uXvbvG2J0fIIlA12ks1lcV/C73z/Gha87C9sykVUZx/aIGTFGR8cwYjEe2bgJCZczTjuByak8Pb3dKIqKqijcfPdGplIncvxxx3PyyccxOTVOoVDgl7/6NW98w2Xomk4sluKxRzdyzNp+BveN0t3TzxuvuJSOTJZbfvpjdEWhlC/w5CMbOfuccynaZaYmhsnmOsl1dhJPpclPF1A0FQkJTZXRYxqWZaJpCralUC4W+do3vsGbLr2U9RtOZ3o6D6KA47gY8STFko1hxFDMEj/7+S9Ye+w6Npx5BqgVo6pFbZgXZGdIUoSI+cydGHHXQkuRc//7KHHtWeOo05JrtjLeTIw8Kv0w6rhwKmIt0+7sdsMIC3dHtRV1Lu2MPTxPRWl9tkOGEtV2I93Q8DwaTn8Nf1efTnogKetBnb3nuTPRwHmiLf1dr8IeLsmE9ezaSW2dYWmOiL6F7KJqjWCb78UovbZwW57rICtqlbyn2bnO5Z28kLZGuKVGaZKNSn0C+7KdNlqh5hrOMXYnyRLC9aqM9fONgLSyZ6F9e2yuOKJz90pHJQVBZmF1PAINkuBh9el823iBEx1trLYr/Pac+tXCUCxfUWVfIgFethGbuSL4bec7OR4KhFchwxpPQZrQXBeIGtGfv5RRvTYIhOyTrJRMh+lCnvVnncb7PvA+Pvr3H+Vv/+njbHzqcYaG9rF961Yef/gh7r3zDqaHBlne3YUhPHRVRlUE8WQMy7SQZRmlovnlupW6J0XG8zycigaapumocpxy0cMs2BSmywC89oLz+MAH3k8ibqBoMt3dOSQ8Ors6+cEPvsV7r7+Oj3/vIW7437dVDTpJknDdQG/Rd9Kz6RhjY1OkUikefGQzpxy7zKfL9lw6OrNYlo0RM1i5cimDQyN0dOVYsXIpRjwGksTExBSW5VOYx+Jxjlm3hmw2Q7FYYnj/KOefdwamaeIJP5J4/wNPMDExSa4jh6LIbDj9eI5evYoXXthNJpMFAcJzue+pF/jOfTu5/PIr2f7idl7ctoNcZwdrVh/LV//jPxkZGWXpsqXYThnNUOhb1s/KVau54/Y7OevkDSzr7efJTU8j8FMad+3cydC+QTo7c/QvGWB6egojZmDEDIZHhpEVGcPQSKVSWJaNrvk6g11dOYxYjJtvvoX9wyNs37YDWZL56U9+hOs6xGMGmUwGSVVxrDKPbXyI4447Gsez/HpGoiNi9ZAkidlUiDXJWFFHAa0iTc2Ob4yDsThcn9o5Vyx0FCUsLTDjmM3IFywmwv0tFqoRn0XsIxxVC0pNDtWC5JzbC5jECd0Lh/Hi9EIhYDtfKAK/g4lW9uzLEUecu8MEwvNwKlG6hQyPR93U7bQddgqjEET+Ih3FyjvBcxwkWaoyeh4J0fv6MXPan0P/4ginVkWJC881PWlW7eTLAGEdL8BfrJElZEUCWYAiUGIyXQN9/O7++7jgggu44rLLeM9113H8unV4xQJ3/vbXbHr8MTRV8lk1JUEmm8VxPEpl069l9UQlBdCqpEOmEPjsvEODk7zrXe/D86RqjSMI3vmua0mk4qiqjOO4OK6N57kIT3DRGy7kO9+9ia997Rtc97lfccP/vpXbN272tfUCnSxFJp+36Mhl6O7u5JKLX8XZZ58KlRraINInK77I+PIVSyibJtt27CaVTmLZFplshv6BPkqlcuXySOzcsYtsNsvd9z3N2Og48UQCVdNQVI1kPEZHZw7HdvjeD+9AURRu+dWDPP7UTlzb46f3P8ObP/kjtrOKjJ6gv7+bbEcnX/vq17j91juwTJu777qH4449hn37Bvnud79NX383Ni69/X1MTE7xtS9/hamxMU446WQKpRJbt77IH91wAxs3bsQyTY5as4aj1h7l69ZZFscdfxy6pmIYBvfedx+u65PMeJ5g1449GLE4v/rlLznllFMYGR0jlU7wqnPPJZfL4jgOE5NTeK7g5h98l8/+r38knUmixxRcXBSt9dyoqqq/kl03H8iyVP1EYSZC3vg5bXZ8MxyM1MSwuPh80Eh0vBWqqYx10b6qTIM306asqAcl3THc36L1ESEHs9Co3pGVNEy/PG1h76UgTXWhr1U1uirLIUbWw9ttWAjH7KWcatnKnn054pWTlmlZ0Sc6R5pkSZYOSOogQH0bkggMqRka2rATJkkSXoWCWUheTTsAwmuQ3iKLaj8i9CJWFK2apjmzbyXNspJyMK/zwncki4U8iWTK70uWyeencV2PVDpd3fel8qAd7LTMqO9bsYk2QpCaUp+6Mt8Ui1YvsXBKUKM0pHrmtlljrhwf7BeVwhnV31wwF028dpk561Oqgn/btl0TuQ7O2/MEmq6jKgq2OcXUSJ6evgF+ffN/sXTlUo4+5Xwcz2VqchLbsn3xa8dFliQKjkkmlWZiYprOzi7y0wVwFGQZHK8MkkM8IaFpGig++Yoiy5TLJvGYDkj+goui4rkusizhOC6Tw/txHAlHSPz6t7/m2ee2kB8dZEXC4qwTj2X1kjTdmQQxI42hqwzvH6Z/aQ+lUglZ1vwURF2tRNY88tN5LNPCNgWO5yDJAkn2HZWdO/bhOhJbtu3mbW99Hbqhs3nLi6xcuQyrbJNOp7BNiyef3EImneCejVu4bbfHyMQkH7j+fUxPj3PttW8F4aFoGlbJ4a//5mNcesmlnPOq03l845N4QkdXNT7wwffzoQ/9Ga+98DWUii6qEiMej/HvX/oCf/GhP6VcKjMxPsX99z/EN77xTdafup4P/c2HkBQ/zbYj14Ms6di2hxFX0BTFj9IGt68J5XKJeEpneGQILa6Q68hRKvvSFNlMhqnJSXZu285Jp5+IrMjEYjEceyZi1+pNFH4GXHfx5865OnvBc9ooHTsq7TBKWLt+7ghjLuQI9SniQUS6URpm1PELabQ3S1GFWtbReimIqGtb23b7c2CQJhiu0Vto5sy5MERG1gqKygLgrN9pAX6P0H3tVd6NSogdfaFLR+br9C+E3RHFdBku85mVA9CCsT28X1ULOeLY+tTPMOrltRqlakqhTIIwG2hUu3NJ95TqMhQC+2ixFkwOVVrmkVy5wwyBA1f/kAWi4L7oYuj7KiNS9P0TbJclqYaGNnhYoqYccQArdrKiIAlBKpmqPnyqqpLP57Edt8a5O4L2Efz2c2U5O9gIjJP6epooCu/5ImzYHoz0zhlDtPG1D/SlfFKxSqF/haJc142a8w9rgHmug+nYOAg6+3v5/e13Mzi0j63bX+SFHQX++q//J7fefit22eTO2+/kkssuJRY3mNxXwI0J4vEktuUgyyp/8NZr+MQn/oGj160kEY8jJAfbdlDxUBUFx/HTAx3HQVIUFEVl//B+uju7KJdNPE/w8MMbuf+Bx/jhD/+bBx55gPGJEWzHojfbiefpaEmXrS9s5ZOf+iwIge04IIGmqngCvvPhS3FdF8u00FSVYrFEX28PxaLN5i1bOfnko5menmbP3v2cfvqJeJ7H+jOOpVQuIysKa49ag+cJHKdUZfL865vvJZ7t5f3vfh9/t3ItTz75JH/5V/8/v7/rNkZHhwGPdCqDJKvceONfMDY6Tn7a5DXnvw6zaPPJT/8TpuWwfPlKUskUjz78ACeeeAo//slP+JM//hP27B2ju7ubXFecN19zDXo8wRe++O/09PTjehae56DIBggFTZEYGdpLd18viiwhKuQbcT2GqslsevYpjjl+HT19XQyPDKMbOnguLzz3DA/cew/vfvd16PEYsixjWVZD9uOXMsKGbNiJCf4drp+tN3qj5o4wXNdFCOEvWrQ7nooDIcSMgxTo8TVEFxwmAAAgAElEQVRDs3EcwcIhbFQHjp4k+b+1ssjlHIqqIDwZDlNynwNBwMXgel6NUxT8HcXVcCAZVrZtVf+tLmJk+Qjaw5HIXQMR5AANC74bGJVyZQXNDRtznqimJ0oNrncQeWu2+iFDpc5ldn1GEPmb1a7UYOVFNCBDaRPhsanqDDNloC8y1+LUqBWiYIXHcZw51ewFBc8iTA/doI/64+rH1M6Kznz1XxaivZZtVVZ/w7pU7aJRxCpoM2o1staYm61xFdax82oiya2vS7CaHXbuGh3XTpQtgOt6OI6Noihzu8/aIE6I2jdKB9CULFRPxyzYJLUSm558gmUDp/LIQ/fzwratnLr+NH70k5/y3j/+IwxdR6/Q7SeTaTZt2oxtO9z0rW9y5VVXMdDfQzxpsGxZP4qqkIynsWwbWZJQFAXLttBjhk/YIsuk0ikc26+HG9mzny3Pbeev/udfc+vtv6FkFonFdZKajCwnyZdHUHQFq2Tw+EMPcvTR60BR6OnrZduObWx89FF279zOHb+7h57OTsqmr4n3jlevIakr5BIGz2/bzXjRxJQ0brhkPaP5Es/tHuYXD25jx5jN1m0v0tndRW9nJ2efcRbrjlrL+a85j317R/g//3UTv/31r+jo6uC73/s6xeIUpXKZJ594kje84WKEkHnwgQd58onn+dZN3+Y/vvQ1Bvft4ZOf+hte//rXccWbL+OhBx7n2HUnsHLVSrZseZbTTjsdIQRdvT3ImsyTTz1J35J+JMejsyeHJATpVI59+0b493//Cm9/x5X09vWiqD6hi2XZbHnyaW769ne48a8+Qq6zA1s4JBNJ9Fgc7CI/uuW77B/aw5//5V9iefHwnTFzHx44UfiioX4RJRwFC/6e2daa7CTYp9n2cJRvPlG0duQWmoml15OatMpIONAoX0DQoapqW9clapztLPzV2xj1i1b1fS8kQVeYqCSK4CR4dzcUlK77KevJSqIIV+ojVyJKachtnJ1Rr61Xs22e16UdDb52bYVmum/1mnXQmFzkYCwZS7Kvg1tzD4aDDmGiIGmGBCecwRQgPHav5plsviDTKBDSSpuxHUT9HocqcnfEuVtg5w5mp1zWb4scRoO0ypn+QqswEeG2g+3c1fcWPIBR6YMH4tA0cyQattXCoGjnuEYCqQcqMH6wnTuY3zWEuTl3Ude8lXMXxlzSpJrpaoX3bYZ6J9SyLFRVa8vJnG8ftcfWGoqe7CEJHTyZRNwB12bHlgmEV+bDH7mRK668gj/7yIf48S0/4uhj1qJrKps3b2HpkmXYtoum6ViWxWNPPMGZZ21A01Rk2SOdySALGcsyaxeeNAXbsjBiMcbGx8lls9iWhewIJiaLFApluvu70XSFRDLG/j27WDKwmoI9xjObnmag/zj+44ufQ5ZULnjtGzh9w3riaZ3nn9uCJmDpsqVQYXUslIr09vVTmp7iv2+6iVNOOYUVa9Zy5wOPsOG0E+nszOC6FtlEB/sGh3nve27gqzf9H1KJFI5pcv9993PWGWey8ZGn+YdPfJL89DTHn7COd737ak448ThSySyeK0BS6Ozs4ktf+g9Gh6f57W9v5frrr2f9+tPQDBdDV3jhhW309i7nXe96D1/4/Of5wAc/wJe/+Hk6u7pQNZX+FUspWxaO5zG0Zw+rVi4lkUqgKAaDu/fzpx/8M/7H//gjTj/9dJKpFJ7w2L9vPzFVxjRN9FiMXGeOeDKFLMHExDhbntpIuTjBpVe/GcsVeJ4xc1+EDBtvHoQmBwsvReeuVR/1/czednCdu7kiynmdS1bHgSz8tYIiyziuEzmewJapOnJ179dD4dzhRTtbfs2lYM/ePaxcsXIWg+hilpa8HJ27+j6heVrmoXLu5psSezg5d68gEXP376K3NHduWwpkEkwofppVVTkxvK8sgxCIBoat30glmjHTUm0zlYlcURRExKPc6Ib11dEjvq7sP1/XXoQ+XuWhUKRQm20Y4LUNzh5JLRNZ+89HIC5bFW0NCGpaLGSEWdlmRDtrP5EP/RwWSOZ7LeaL+rrNuaCxUPhsTatWLG4zqY0z/547C56o9tnquNZthqKGquYLcus6c3kiGi/8yAQixwFkWSFMClE1JCr76B4IV0ZRZEYmh1ANg+6eboSssmbNGiQB733XdcRlDVGymLbGWbpsAMsq09PVgRAOkqywZOkAiUQcn1JcAk/w3JYtfpqm8CUTpian8BAUCgVUVcXQDfbt20c8niBmSKiaTkdXDkkRIDmUrQKSC6qi4XgmXd2dxOI5zj7rZF71qrMZHhlj5eoVWNYUfUt7+M3Pf8Np69czOj6GpCmMjo8hNBNVE/Rl0/T391Eyyxxz6qkk4hlsq4yuq3h2GV2XOOmk4+gcWObPK54gnfYjj7fc8lMmJ6f41Kc+yfJlSzj7VaezdevzCNfgwQcfwSw7FPImK5evIpGM8YEPvJ/urk42bnyQ4084ChSb22/7PYV8mWPWHc+W555j+4vb0MQEF114HqXSNN29/WQzHTy75QW++MXPcdbZp+Php6IetXYN1/zB1SiqQiqdRpIkRodH6e3vZcuzmzjjjA2Mjo8RT6T8umlZ46avfondW5/nurdfi6MaFD0NNWyMh/53OC+z1t/r9WLbtQ5GeN/GNWKtt884L+G/20cwbzdGs3ajzrl+/3bOtV3MLJg1bqfWyYxy7lrPpYG9Iiu+rIdf2hZqozJ/BR8xj/TURrWRQdpt+O8a564ybza2Z2a1WPduj1pEk2rfqRFNB1rDMrMX4hRFoaOjEyoM0TXnNc93ddUmrNgqkfu0aSs0E/WWK+feSCyllYjKQiOI2DYarySH7S9miZA3Grto+ExG9NHoTEO/pSJJzGfGifo9DpWI+SvGubMt8++qD2/NltqbYmYClwEJSVbwBabkis6Uv91zZ2jhFUlFQkZCrtSr+X8F//Nv0sqEXLkN6z/BDSeFPkLyfOcs9BF4SCLcutT4ZqVS0yBA1LQstXztyeFxRGz3XD9VUpZ8Zr+g+Lm6f4VNqtmDJjzPf6CaFolLIUO54mC1enjDE3DQfhuTsL8KqNTsL0lSjYMYjLn+hRr5Eqlru3olK+2LMLFI6FqEX64H7Oi1kZrUaLy1Blj4EzaKZn4TzxO06qaRIVIfjZvRL6rdJ0i1jdKDCn739qKAtcaLoigEzmO9ky+EV2N0BUZYmBjGT7X0mcRc1wkZLWGWvvBTN0OjDuBJEsgCgYuuxZHQsF0bSZUYWN7P6nVryPV2snXPNjZufoqVHVlcy2ZiYopcRwc9ff2M5MeRNQPPjSEpcXbu2kkykyGe8lkoHdfDUDVGh0cQksvyZUswdA1ZktB1lXjMwLQcjFgSCYVyQfDi83tJGt2kMnEkVcYqWeh6HNcts2/fDpYsW0pPby+qKjEyshfDUDj+2JORZBVJ0jD0FJe/8c2847q305HOUcwXSGWyqLEktquS0lWEAE01mC6VKNs2q446Ctcex1BlVFknl80wMTHOirWr+N7NN/OHb3s7BdNm2YrVZHLdaFKMyelxBoe2MzE5yhsvuYjHH3+KRDzGLf/9Q+6++x7OOes8erqWMbh7F7/73R3093fw5suvIpvuxqTMay+6GCOWRldj/O6uu1nW28trX38euY4u4rEEqVSKRDKGbZeJJ5J4tktpqoDtOMTSSVYtOYqxyTxGOsXk1BS66+EWSti6ylnnnU+iZwBP1nyjQZZwXBckue6pWhzIcvhebn/fZosvgXOnVMTJfaN9tmZcME8Ez0x9e1Vjvq4PMWsl3h+46wZZA/XRKjFrPqjf7rc740CFGTSD4/w5TKpcC38/1/XHF621OfMLRjlnUfNJ2EmcnYXQ7mKzCLU1M1cG1zMcjax/f1bH2ejdEH5nzoHApjUC1lMFVVHxXA9Z8herw+9d35YAQUW+ouJ8SsrsBdr6d2T9/VY9n5qDZo9MquxX79jJilKzgLFg7+oG1z7cXo191OC3kEKOhPA8lDrHQojZcTGp7t9S3XfhAEOjT6s7olEbUby9StV6lmrM3WpfklS1Rz0ZhFT51KVwVp+HFnaxpqgghG+31i1+V6993Rih1l5t5pCLun1VVT0kzt3hy8xwmKPZi++VAFlRcT0P27YIohCLeTMdKB324Yhq2tBLhDW0FepTGhsbNfPDzMKKU/07jIXUsmrUXiAHEdSYVr+XfQNqoX9J34j1aeoz2SwXXHABb7nmGvaPTfHAw48xuHeQF194kaG9g2TjCdKxGGaxwNDeQZYuXUomnaosTPkLFI4H113/Xjo6uygWi0xMTGI7fg3vyMgoQoBlmZRKBbIdSW6749comp8WMzU+wS23/JDxsXEyqRQrV65herqIY7t4rkd3dx94Moqm+YtYwkNVZAqFPJ7r8eyzm+kb6McRosKq6Yv/fu/73+epp59mcmKCbDaL8DwS8QSlsllxogUrVyxnaV8fN7z7ejRZ4S8+9CGe27yFuBHj+z/4Pk88/jhnn3kWF110EZuefpZTTzmFb/7Xtzjn7HM477zzWL5iOUNDQ7zx4st4/w1/zJvedBmu5/LGS17PH1zzVhzPI55K4iI47oQT2Pzc8ySTKeRKhKRQKLB/aBjH9SO8ZqlEV3cHvX29mJaFoqoYMQPX8+joyKHpOg899CCvveB8li5bTjw2U2fnO0GLS5kfhlchfVkM2YJWz9xC67LNV7KhZbuV51pRZoxEz3NnOZKLgVeqHeF6Lora3nMgRPs09pIkL8rz9Uqj0q+HHPq8lOFUyAlf7qQvL/Xf6ZDBJ0iRmtbevZwh4092qqJWHbvFkgyg0vZC6v8dDggLub4cUF9sHnbIF8I5D46fWZGubct1F46RE2YihTV9OHZF32j2CiosvKPuRwx84891bIQQZLNZLnrzmzn3govRjCTPP/cCzz27iVv/+2cMv7idD/7R9fzLP3+C/MQ4pUIRXYsh0LA9CRuZ7//oR+zdswfHEYyNjeM6AsNIkMvlUBQVxzVJpHTGJ/fwJx98J5I6DUKQzWV53w3vI5vLMTo+gaal0NQkeAauo+PYCpqWAmQ810XXVSYmRnj+hU3EVI3VK1fjSRqDQ8Mk00ms0jiegHe84+2sWLGcbC6H53l+ymjRJpnO8tgTT4EiMzgyRC6ZJGEY9GQzZAwD2XGYHh3h6quu5Ic//BGamuShBx5jxYo19PT2cNaZZ3LsMet461uuYdfOXXR1d4KcQNETLFuxgn3D24mlPCQ9hgWY2MgxmVx/N6effTaJeBJJkvGExJKBpcTicQw9gcBlZHQ/mzY9jWmVScRjjE+Pc889d6EIj6RhMDw6zLLVK3xxeUWNSPU6mPPY4sUHW+nHNXpW54vFcoQ816k6c8E8EzjEi+14vdwWLduB7dioioJZIVxqBSHErAW1RpAWSYttoRcPX2p4udhgwb3xUhRjnwuOEKo00rmTIlZ+5rJvCOFHQZJnhhGlc1fTXQMyFFmaMaIbGZNBbnP9d80gQoWrNf012D8gTgkKSAMHr76ANwy3EiXQdaPpw1VfaP1yRJgxq+b7ObB6Lgb5StO+2yAQiKoFaURY0Eq3KUpCQZIa61W1SxzTPNogarT1ojT6Go0x+K5ZH1F6X3OHjhCgSwLPsXBti9t/cStT01N87O//nrPPPZerr7mWdeuOobOvm0QiCYqMbdtMT0/jmQWfEMQTxOM+wYfnuMi6QqlQwHFtjJiO6zjs3bObo9eegoeHa5vsGdxLOpshFU8xOT5FPJ5FkiCR0pFlQMgI4VbmN4Ft22iqhOeBhyBWkWNAuChSAk/yqUQ8YWPoGvlCgc7OTkZHJtC1BLIiUbbyjO4aRpZ0xsYmMU2Ts89dz9TUJIWiyeDgEA8/8iiXXPwGNj29iQsvei179+zlU5/+NJ/9zP8iX/BrDTtyS7jh/e/kxz/5PlPT49i2zSOPb6avv5eBJd309HQzNppnbDjPs89u5JJL31i531y8SuohskARAs92SWZSCF1DlzWG9g0R01Qc2+Kb3/xPPvzhv0DICsi+W+UhIaiNBDWKpkVFi8L7Bve+bsQoFYst7pVwH+3fbwcSsQqnC858V/scRckghPcNpxbWi0XXvxvCenbNxlA7xvk/h2ENvfrzWwhCr2b9Qq1MQzsEU43aCFJNa1LcFjDqFSZNcR3PlzYQAtd10Q2dUrGEqsk1+n7+OXmR1zgYfyOWybakguTZ76UwNUEz5yWKAKbaVhPWS891/FTUJvs16vtA2DQDBMzjwREes6UQpAinp57AJGzj1SP8TViXLmwnBu03G3t43/q229HEq2krYv9mZUwHguBc63FE5+4I2sZipQY4jo2qam1NGsEIohyT4GGOakdTNUrlEoYRa9i28A5vLbdDjcM5NcR1XeQWtZbhff1at2jn71DAX0UHv9699XUOal3C428t9D47VS3KaGs6ToogSXiqjqeoqIkYb7z2KmzL5Iprr2DTk09x750PI5kOx4u17CuVMOIxtHiM3oE+Yno3xVIRy7KwLBfHdojHYwzu3YFtOaRznaiOhmPLrF59EuVyGd1QcT2XbDbj64Xh0DvQzf7Bcbq6uxjev5d0JsnkZJlMNoMiC/bt20NnVycpPY0FoBqUHBtDVcAuAgkQFUNASExNTZFMpZicKlIo2WiGTMkykRWZdFcGTUtgCY+lueWMTo1RKhcpThcZGxtnyzNbSSceJNeRZWjfIE8+9TRPP/00U1N5bNuiWMwjKcP0LunBFS6/+s1vuOKKK/jcP/4LX//Gl9GEBJaF4rrEZINPfOJTnHnmWXhCkMvlABkJGBsfYklfL0XbwjRLmOUCY+OTrFm1ivzwKL+/606uf+91CJUF0VyOgiwrlEpFyuUymqa3vFsON8zU2jVgea57RtqNmNQ/UwczZTRcgzsftLdwFjV3NK5dbr/vxb9HdEPHNE1UVaNUKqGoKrqu+TwCFZ3QA0XYITzcbIjDPVJ0ONsVRzB3HHHuXoJYLPpaTTdmUc82Qnhlpn5sVQmBiNF50JJ2uZ7e+Ahq0Wg1/HCAqmp4ntuWSLCqatVUm4MhRt4OojToGkGSfM0eTderEWmIjlyGEUQKAnFlmFlZbRfCs5AUDcu18YSEJstYtoWqSkhC5sxzzuSMU89F2C5bt27m8Y2PUrbLnHXuOYyO7qdUFpy+fj2yoqArKiXPo1gosmz5EjxXRlNj7B+aYGCgj3LZYWxqhEQiRjKdoKOjg/GJMYRw2b1rB+USJFJxli4bYGJqkv7ePopmCcd2WLV6NaVSAc8RWLYNioFXia5OTEyQyqZRVBXTLGHENGzHr+N1XY3PfOZzZHM5rnrz5fT05Ugmk0jodPX3oigy8biKbumMD0+QSWcolco89PCj/OkH3k9v3wAXvraLU04+EcsymZqa5te/+Q3ved8NHHXUKspmmSuuvIKJsSm+++1vky9M0N3Zy8jwPkxT4qH7n+DjH/8HduzaRTadJpVMIlVqsrq6OhgZGWXvzt0sW7UCI50gnc0ghGB6cpKpySn6+/ux8RbNubMsk1QyhQfYltV033YihQcbM0Z49PbwMyI8r23HKayBqaqtImXzl1mIQn10ca6oiQK5jZw7P6tA0/VQ7XGYFCK8b/vjOBjvEc8TKBUiqkQygeM4xAwDx7X9qEcTzbe59eNVFw0PJxyuTmeAI9bWywtH0jIbpFoKITXVD2mnjQDhurywzl0jLbzqcQ2061o5d25EqH0hEA7jh8cwPLyfgf4BbNuu9hkOUddozFRWawMHztB1XNetHhscP5+0zEYpO4t13EJiMVMt59NHO6lFjcS6o1Kk/G1SW05fM+0pCAgpZpjiwi/NdjX4FhpRK+aN0orqjwszb4aPD9poljoWjyeqhB+NYZNKJLCKJZ576hkcyyGWEDz6yGPYHrz+kitR9DhGPIVjm3gCNE1jcmyEifExVq9aRcH2QHgokoykSJSKeRShAjKnrz+XO269jWxHnI6uLFNTeZKJJKZZRFEVZFng2BBPxHFsC9fzEPjnazsCXdeqZBa2bRMzYtgm7N27k2w2hevC7bfew9Llyznu2KOZmBhn6fIl2HbJvyauzKOP30d3biX/9q9f5sYb/4KOzk6G9u3hV7/8Ode/+53kp8YBDzWVYd++Ibq6OjFiMYTnsfmZFzjq6KNIJuJMTY/T2dWB7di4LhTzRbK5LJIs4doukiyhan6qqYpMKpni0Uce5uSTz6BYzPOTn/+Mq6+5ilxXzv9tWxBGzCUtM/z7uw2M/9aYX4pmK9SyVzZf1Jhhd5RrUgOb7VuPRqnSQf9hDb6wtmazZ7HZ89rOOOab0t6uHl+zsQVoZ3GqmfZclE5cu5jL+6XVvs3mw7nAcXxW78AmabRwPV+t2gWvsV6ktMwDQbNUzGAcboVspmr7hYYmQnNckBJZn+7ZsOOgjWC+C98Lss9QKjxRc19Etd1KD3AxcUTEfJFxuDh3c8F8nbtG+x4oGuUUq6qKWS6hqFpNjnWVMKRuUggmCk3TmJycIJPJ1hRLvxKdu4MRjZtLH3N17sJOSlQdh39se85d2LCLqrkLO3dBv+FFg6h+FxvRmn/tO3e139Ve12ZGruu63Hb77Vx5xZWUy6XIPjzJQZUUhOsiTAdFlshPj3PXXXfR1dVNV1cviqKxas0abE/Bcmws28bzwIgnsCwbx3VRJAlN9tBVhX17dqEncoyPTXLrrXdy6aWXkk7F0HWFVCaJaZaRZRnHKaPpOlQIt/cPDbNkyVKEEJhlm1hSx3EcJFmiXCqRSqcpmxaFiTIduTQTU+NoqsGOHXsZHx/nvvvu47bbfsuPfvRDhPANt8nxcRTdJqZ0kS9YZNIpVEOhUMiTjCd48L77WbN6JUuWLMFWYNuL21m9ZhXFQpFsNs30VBFN1ykUptF1FVmWSCQTgEwxX6RcLuIJ6O3pRZZlhseH6O7qwi6ZbNm8mRXLlmNaHl//z2/wsb//GJ5wcfFQVZmw7+ZLB9T+1vOtuZsvFjqKFzzL4Wcu3G74WQ/fy/7fXs3zG0arRY1mdst8nbtGYwmPJ+r72e3Mbe48UOcujEa1yO2MeT713/VtNOujZgzzXGicy7uxRmdUUSOdu6joZyu8kpy7sAh6o94C567G9lPD1+jAnbsZFalQWw2cu6g6wleic3d4xodfxhCeqH5eTjCMWNsTXbASJMsymqYdSb98GSCoofE8URHnPvD7u63az1B/gSOoqNoB932w4Xlu9TMXCCF40yWX4oQi3/WQFRVPkpBUFTUZR44ZdA4s46q3XMu6445naHAvEyP7+K+vfJnpqQlk4ZGOxUBWcIQMWhzDMFA1FU2WMEt5sukkXZ1ddHV2cPVVV5DLJNB0jXgyyfj4GEZMxbTLbHxso+/keDZ4Dj09Pbi2ixASQsi+I+T5BlYsHmN0dBRJ+FFCI2bQ1d1Jd3cXq1at5NWvOoevfOVLbN++zTcmZA3Pk/jq177Czh3bGR0fIZtKUSzlKZQmkRSP4eEh8oUC27btZXraZP/QEM9s2oRjOyxfvoR8oUi5XMKxLbq7u8nmOvA8weTkNOWSSbYjR3dPH7phUCoXcYXHE088xeT4JMViieOPP4F9g/twPJs3XfYmLNuvD1RUCdudze53IA6VosjVzxEsLAJ2zEZzTrD4uHCsnwsn7eO6XvWz0HipsyMuxkKp5zrVzxHMYFHvk3oxviNoiVdk5K5mhUFqcP4VBsy2VhgOUuQuYDiKqs2pf6xasVYeKBpdl6jIXSPUO3VhhiSnSeSufiXvQKltoyJ39at+jca8GAinyNSzhzVLjwij3VXmKLRN6tEgWhX8O2xsNIpEBN83iva1HkPjFLBW+0at1Nezxi1GSmd9CueBsWa2RvgMgr412Wd1VCQJRXhMjo3zwH33YWS7GN79IpJrc+Ell1NyBbmuAbziBKqqMTwyzJIlSxgZHcW1VWIJHdMu+Xp6noqsaJTNacqmiarIZLIpTLPM4OAQAwMD2JaDYRh4nr+Kqxk6+WKRsdFRli1biu34Dq4uK1h2mcHBPSxbvgKz5Pm1e66HEU+gqSq6HseyLEr5MXbufp6B3rUoSpxHH32E8y8+B7Ns4ZguLz6/neVLV3D1VX/AD3/2PbIdHSiyjGmWMYwYnrDRVA1N05maKvCRD/8ln/vcvyDwSWbuuONOXv/617Njx3ZyuRwTExP09fayedNmTjnlJL7x1a9zyVVvYu3atTjCxsPDqzAdy154oUEgy3Kdg9c4TdLXdJtJ2a1ny6z+vnNwGBsdd6CRwnZqZtthz43aHvV9/djC0ar6VOdGz/F8yUcaoVnkrx5Rc3GjVMSg7YDBtz6KGMyzzSJ24SyIcNr4TPvRUdT690/w76j2ozIOmp1vFOrfI+H/touo90ijNP0Ddf6i3tXN9q2OYQHsiHbsq/lEqxq12qqdsO2HVLF7JSkyctcO6pkuJanyf5VoXThFU0GKZCKtLxE6FDiSlrnICDt3NbnBLeQNokK8s3CQnbswAodmIZy7cNutHKWFdu6CVEzHcdi9ezfrjjm2IVFA/STpOA6OYxMLCQXPBS8F565dpy7A4eDc1Y5n9jyzmM5dVE1OI+cunBJcXzu0UGQLzca2+GmjgdHrSxH4HQs0VfVrdCSZj974UT72sb9hZGyMPZsfZ3pihHyxzMCKo4insnhmEVnTWXvM8aBqlG2X0lQRVZWZnN5PKplmZHiKdDrHwNI+9g0Okkwm0DS5IvCuYJllUukklmWh6SqWWWZ8wiKTzbBj+w7WrFmDYRjk83nSKR1POExOTRDTYyB09g7uYu3adX7KqAMPPfgokxMTrD/9BPSYQJVy5HI5pqdLyAmPrS9sZaCvH03VkVzYvOU5TttwEp4QbN++nTVr1mBbNqomuP/+B9mwfgOSpBGLxSkWy8iqQDg2eiyOVTZ57vnnWLVmNbqqo6oq27e+yLObNvG2t70NYfhEDkL2kKwlLOcAACAASURBVBSp4txJSE44DXO2c9fMSXs5OHee5yHLctNFlABzce6aOT/tOndzqZdrBwfq3NW2NbsGsZFzF/zdLOX9UDt385GoCdoIUk3blWgIziV879WMdQGdrCPOXe1xh4Nz10hG4VDhiHO3yLArzl07TJAAwgvSMEK/Sws9u9oGQqtwbTh3Iqq+rs5plGTJZ5tyw3nHc2PZa9R2PcJjjhxbCK0cOlF5pC3LQlE1PNcllYxTLper+2iahmWZuK6LeoBpdY1W5uZS8A4zxdjz7SNKD6fRYkE96UyjMQXjUhS5hm2x0b5zHWcUGhXb16OZcVFfk1O/XzO9u8CwaWRARtXctWMQhrcHzHxh1svwGOaC4HdpdE5hR9bzxKx7LFy3WP/bhB3gZoak4zjoRoxyqYimabOueXhs09N5Egl/YUSWVPBcXNdEERY3feu/SKdTTA+OcdLJJ5FJZ0il0iAJEsuPZio/TTaTZufObXR05IjHE0hlhxs/ciPvfNt1bDj7TIQi4QjwHIdyqYRhaLiWzcjoMOlkB2edfRa3/uZWVq5ageO6TE9O8chjT3DeBWfjCYt0OkNh2gG5gK5rlEplpqaLxPUOLjj/dVx04UV85Wv/xpYt23jbO9/Ozbf8gIQRJ5VKMj4+UTlhD1VVKdtTpFNZQMW2YHx0klxHhnK5QKk8jawIMtkcuhbj6Yce4cT1G9DjcfKFCQrTEwz09WAXY4yODnPb3bfx9ne9jXjcwDsI5HwLzSgb5dy1G1VshoMxzrDB3ijiFY5oRaFV1L+Zsxkmg6kfR6OI1XxrnoN5zbIsdH227EU7EUghRDVdPSqdMJwVMhcCm2AOqn8XBahlL23vXeq3X3t9JKTK+7K9rJXwO6OeobLeRvFc56Av4C405psSGbVI32jhfi4ac7McM1nCcz3kiPu+YXZcaEPgIDa61xdauy64B9rzFWZGHZVFFovFjjh3i4m5OneRzs8hdO4aOVtzpVCPajsKc3HuWsF2fO0zz/WIJ+Js2bKZpUuXYmiLUxs1X+euERbLaWqEVm3Us0MejHE2Izfwt7d2oGbG375z1wrh1fr5jq3VOObq3LU6l7Bz1yg6GEWgUE8Y08y5C6/mB1BVtbp/NNmNiyJrqDIIYaPrCoXJcRzHojxmUioX+dnPfs6ZZ57Jrl27mDYdVq1axUknn4xt2XR1dWHbDuMlB7tsETdiCKXCnOa66LpOsZBHkaSqoVecKrB//zCpZIJMNgfCY3RsjH/5/Bf43Gf/EdsrE9NjmKYHss10fgpN05AlFbus0NnVxeannmVgST+WZ/H4k09wzrlnYxZ9Lc3AuHNsB0mWUTUHUDCMJLYpWHfcsXz3pu9xwvFrUXQJ2ykhywqaEicTj1F2PSamptFkD8cq4domDz/0LKlUiiveehn5yWn0mO7LHiwyDrZztxDRwYVA1JjmEuVrhLnMF/VzZ5RzN5f3y1ycu1akSs0WxsL91WdG1G+vZvtEvF+aHdeI8bT+uLlcKyFqf5v5OHfBWOuv9RHnbn44HJy7RjhcnLuoRfwjzt0iY67OnVSpmai5qebp3CGFJ8ZGkY3mzp2iyHiVcHR44lNV9ZA7dzVprhHbFVXFdQUgsC0LTTf8yddbnILk+Tp3UauzjdIt5uo0tUr9nIvj1Q4b24H2Ud9GOC0oCq1YMOfr3NUzY87e/n/be9dYWZbrPOyr6u6Z2fu87j3nnnMvRV1eknpQEkWRlEQy5BUpWvS1pFAybcJwbMtKAhj+EcAOZAQw8rLgBEacGMgPA+GPIA8LCKLYhixTsmNYEERdiQ+JuqRJKeLL5H2R574f57HPfsx0d1V+9FT36pqqrqqe7pnZe9cHDM4+M93V1dXVVbVqfetboqa60V1aEwWsi8LZRQntQ5u0KX0CbeNOLXjosUma1XRjulDWqasuChhjVVxZklQKkJXXvHrn6L1maYZ86bFMwCEhIMoCpchxYf8CFosTJJjh9u07uP7GhzC/d4TDg3t48qt/iKeeegbHRwWuXL6KSxev4qd+5qfx7IuvIWUSF/dTTGcJDucnyBcJZrN9vPLaq+A8wd7+BYBxXJxkuHd4iFuvvYbrN67jzp272L9wAZcuXcHnPvcZvPd9P4bj4xNcvnwZDCkODw+QZQnyXOCJP/pTvP7q6/iJR38cpShw5YH7cTI/wmQ6weO//Th+8sMfQlmU4EkCUZbgCQdQQAoGxhM88/S38aY3PYJnnrmJN77xIdy6/Sq+++EbuHPnANPJBfBMYFFIfP7zT+Bjj30E84O7ePLffwMvHR/g5/78x8A4w/HxPUjGIOT4rrvNe+76YRP1tCFEWXOdzSCTcdecb6afhsSgmTx3aZKiMHjHfJVKVV0VDZ3+To07mj7ApSbpooNS2Lx/Jvqm3g/7GHdqLtBDGqJx18BlmLTYRTtg3LXWpT3pnj7oa9yZEI27kWFNhWDDgJ47L5jKdsQDAmY3sBcMZds8jOt67iaTCQ4Pj8GTBJ/4xCfw8Y//BVy//iCmkyZReZZlyPMc2WRSTz59B1k9Xs7FidcnUtNkYKOr6MnWQwwv3/rrdJcxFMC66mC7doix3C6Drfzus+OuS5zbQI2YrvK66qbO0ymU1IDU4y18Fzr6brZuBOqevT4IEaSg7ZmAo5qaJSSqOkgGcEyqOgm1aGLIsns4OVlAFAkuXriMz372CTAwzA/u4g8/+zie/Pdfwfs/8F78yDveicsPfg+msxme+fZzePbmc/joz/08jo5PMOGsZcRKUaV3OLx3hCtX7sNsb4qDgzvY25/g6J5E5fCrNpO+9tWn8A//4T/C3/hP/iP81GMfQSEL7F3Yw4WL+yhOSvzKP/kV/MJf/+soy6p9iyKHkBXt+/j4BJN0ivliDs5mePrpb+HNb3kYV69dQlGUECLForyH6d5FcJbgm3/8JXz5ic/jbW99Cxb7Gd77nvcg25sBnAGMQ4oh3kkJgK30b/WshoiXc5UxxHm2Y5WH3UaxtomkUO+zKfWCCyFsAlO5plQlttQEvjG6eloIk5ee5gs15Qc0jaO2eps2moYYW/QNJ984ZTq2laWok7JT467KCcwAYihIuDcl9Q0w+j014hRcxp06z7Qe6Yqj01M6hcbc2VJJ9QGtS4ghSI8sLcYdasOLHM2xdES057AEDCWJi9OdLV7XM2Bo407BFrfoastd8NyZSdARpwanYZfp8OgEs70ZAIkf/uG349LFS5hOp4BU8u8Cr772Kh568KE6X95ZAw3uXxdDqn2tc+1No5r4PaiVA70T1SK0/V2zoBKAWG2PtiBLSLzneON/ux6qH1q8mGrPlTEIcKCKXweYhBBAFShf/VuwKWTKIZjEvTzHu9/3HmSTCV5/+kncuDYFFx/G//6//m/4sx/+CH7t1/85PvDoB7E3meKD7/tx3H3tZexdug/T6RQXswzz+QLzxQnyvBJRunLlPhwdnWA+z3Hh4gXM5/fA2QyvvvIysmmC6zeuY39/hmefeQp5kYMxIF8swOfA3YPbSOQEv/gf/yJeffVVXLp0GVJK7O3tVYYeY2CYYzrL8OST38TDD38/Pv/5J/Ctb30DP/MfPoa92Qy3b72OGzfuw2u370CUEtO9Gd75o+/C1cuX8f0//s4qfYJkYJJh7IxCQ3vCNom+da+N/TO0+RxyL0VRIJtMjDHACs17bR5b2vPEcH0opCzbGKjYCVJWm3V6jHKVloKBc16PWWOi90byiOuvXVjb+dTAaOA4vN+q3BUvakDddhm7kD5k+zWIWAsCu/9CTCeVsZZwjp949FFcvXYNBwcHACpjJ00zPHj9Bk5OjpGdQcMOqO5zCMMOqBYJ6rNpbPPaQnR7soSovALDGaCrZTWKcRJF0SxI1I5620sm6o8L1bnD5L3SYaqH8r6ttufyfsBQSo5CcpQsAUMBhgKcleCsBGMCk3wP2WIfe2IPl7ILuJBmOHrtNeDGd+OBH3gHHvnRD+B//j/+Bb7rB96Hv/Kxn8EzX/8y5ndexad/59/iG//fl3Dnlecxzxc4WcwxX8yRphkkgOlsCgaGX/57fx/37h7hzq27ODi4DSlLXLy0B8YE7t55DW9/+/fiY3/xZ/HRn/8okjTFjQev49lnnsHVq1dx8dJFPPGFL+L+q1chRIkkSXBw9wCLeYEiLzGbzXD3zh1ce+B+pGmGNM3wyX/5Sdx6/RaOj07AWYIvf+7z2OMpnr/5HK5cv4Z/95Wv4MpDN5AvCpyc5GAyhcQEEtPBnxmF+TmdDtj7mfs8YBiaqA+UR1CMuKAOaYs0rcSdOqmhyxx0dOygHzpW0+95kho9WP734T9WdeXvFKJEWZZQ8b70WWdZVm3YdBi3QyJkrB7ivJCytwkpRP2xgWPVkKjm6g422LJM/Tyf650GcJjbZZM4V7RMFSzc5RniaLuKKeec5sRjnBndzj5gnCFfLIyqkDxNIIWoxA0SQinoG/tnq4MhptAl/KLXQacz2M9rXtQsyyClRKm9wIri1lsghl6vh1hI17EmmegxxFJs9I+iyFt9gcIW6G+Suw6t35BwjTM6LcpEk1JpCyi9C1ile5lk0l3wpXzq53TRzGz0ShPNrF3uqgCATgs2yZaH0Fx9VEhtdE79uXSVoZAfH+PevXs4eOV1PH/zJv7VJ38TP/1nH8PlB2/gXT/2Y3j11h0cFQL3Xb2G4+NjTFDipZdexEMPPQRA4oUXX8R8fhtve9sPgrEEAANnSUUPnexjMT9GUQrcO7iH69ev4dZLN/HkM8/gzd/3A8iyfbz49Av4n/7Hf4SP/+WP4ic++CFk2QRpOgFjCX7jX/0/+NF3vxsPveGNKAuJsmRYLAqcvPA0fv03/iXe9kM/iEe+73vwnve/HycnRygTf2POplAqlBu0+mUZO9o9rpvpmpKUQ2mSovW9Gd1qmD7vgsn4olTNECqpDxqapqxl7hWt16cf6mWZKISulAYuj7xNtdcHNIzAdb2uVAYhIlLV+W3qJx0busrUwx7q+0bVl+lcniYcRVmCgbXeC5qOSh9zTGrC7ntZ1pXz2nCk8ydNbazWG1S/pdVmUkJIufQgypXzQ6DTNL3vA7CuWWlfMYWU0GsrbQSqkaCvtWxxpLQcn8hHrxRirjIMtEwhRPUsmbYe7YnW+oK+T46Yu5C4xNlkGmPuxoSKuXPlX9ONO9WRRVkYJw5l5PlCGVBciyXQf9djxIYw7uhdyzWNO86Smjsd8qJnS4XMo6ND7O3tV966ybShaFi47SEYmra4CeNOF9hQSDhf0s7sYiC0jLNs3Knv9QWjLVYmBJs07nyky5vfeS1wEGLc6fV0HeN7Hm3valFdcTRdi3jJBNIkw/zwCHdv38Ybv/th/Oav/Qt85xtfwzve/R68+Xu/H9mla3j5tdsA57h+3xSXLl+GEAJ5vsDe3j7StMTJfIHZbIY8F8vNNSBNMxwdHWGR55gsN4/md+/h0n2Xcef4EGma4eJkht//1O9hgQJv+7634eq1B7BYFDg6OsaF+y9gPp/jwmwf91+8jJdffBXf/Ma38Fv/9p/ib//SL+FNb30z7p0cg3GORb7AZLLv3YZd+d9ou+mxZT5lrW/cdaOvcafO1eNJQ+IEuzYc9KTdZSnqRekmjLuh0bABhNG48zmPfkfnksprZhbC0gVOuoy7osgBzSgzXa85d/U5hBh3NgM5RNm5lAJJklZidHSdI1ePX+Hfq2OBrRl3qm5SyrWNO6D9jG3Gnav+3vWOxl2NbRl3546WGdrRlIcp1TxUUi454YE7c2VZosztKpFSyKVowfCPpqZxDMAH7lvOYjGvXygpBO7cvVtJOCwHsW2444dqk3WgJlN9UhfYHDVp11HnaVIB3CtiBo3HgH52DS56FqVTKcOOJlr3Ab1/E43K1oYhmEymFo+yJJ8K86LEvZMjzC5ewPU3PIS7hwf4uY//Bfy5xz6CYj7Hr/yT/xNf+KMv4ua3v4NLexfx4ksvYT4/ASCxv78PJVaTJhmKvIQoBaSo6KNPPvkkwKrgwCxLkaQpHrh+o1pgymr3PssSvPNdP4zHHnsMD9x4AC+9+CIgJT78oZ/EKy+/ju88+zx+91O/h9dfvY2v/Mmf4A8++xn88v/wD3Dl+jXMyxLpdAqWJZju+xt2qp27+iHnSe1d2DSqhfuqgMu6UIvpIphSt9pvbNBj8iaTcamxFC5qeuPh8ptTXPPPOtdL0gyz2cx4XhdlUkeaZkgSvrIBQQ3B1vEJR+qhoGlDQzdlzvu3lrFsD9emyeoGoqg/24RqgyGQLL3c+jrWdJwN6pfTTpk8Lzh3nru1YElvABkwObLGcHPm7rDIvg5By/RJhSBKUS1COauMDkl38slumsMwojQAniS1EVc4EnAPjTouStvdslFrfH5foaM4dhl9vIpdVJ+u80KgKz1SqN1eBZ1apifx1T2F+v9NO+Nd6Ep/YEuJsC5cHsAQypdNjt1GG+0uy7wzbvPMUipPV8oJWxuHqBvaoHulAEAw84JgT0qIEvjMZ/4Af/e/+C/BWIpP/sZv4MqD11AWOfJFjulsiqIskCRVfjwhqjHl+GiBPM8BLrG/N0OeLz2ckLiYzXBweACZValibr3wEkQu8fBb34RSCNy5fRf5osTdg3tIIfHAtWu4e/c2nnzqW3j99dfxC7/wV3GEBX0S3vfvaisfZUnT9yHH+tTNnLDcXHefa5jULW3oo3pJ+6Ge39JkYPRJm2BDlzdPHwspldCVqsSmklnVPzGOzxSmY/tQQhVrQc8LZxrjdQqnuTws62XuN2m69FBCIlmGothULvtCLKm7Qoh2Gxu6nG0JRw08vlzn9PXcdcHEWvIJF3F560xwqXbScoeCzojzgS31gvO8AGaMzXPXF9FzdwYwpgDCaUDCef0JQZ43FEMV2L1OcPe2IETpnHiHvh6wGSMYsO/qm/KybQpjGXanBX0VV8tS1B8F2+I6SXj96Q+2YsQyIasP2ubDIRKUaYr3Pfp+/Hf//X+LNz38IH7r33wS8/kxXnvtNQhZYpHnYBJYLBaYzxcoixL3Dg4xXyxweHgEQCJJUjDGIKSEKAWOj+8izSrVwXyR47VXD/C1r34TX/vaV3FyfILLly7hgevXcWFvD88/+RS+/sdfwpe/8AR4JvEL/+lfQZEuAMaruC6WgINVn5CNvFOEKn5tc3OZ3h/XLQto9931+u/pRd8xQrVX1zMJeWamtYFtzaB0DXiS1sJjIV5FAEHHnha41pdq3aSnSnJBlEX9GfLYiN3C+RwBI2owzupPCEoh6k/Y9arEyuuKpuwChjQ0QiezsaEm2XV2UFW82JAG6TZoliqWZyi1UxdcG0ehO6qmBW+TX2v49jR5JzlbUtgVHXT5/YJxlDzBSZHjZz/6s/jZn/4p/PG/+yN85tOfwbVr1/DMM8+CAXjqqWfw9a99vaJkSolvfutJ7M32cXD3AKKoEtmDMeTzBQ4PD7EojnF0dIiizLG/fwH7+xfxvd/7/fjd330c9w4PwTjHs888g3/9//4bPHjtKr70xS/iXT/yDvyZD38QJXIcnByAsyrVAQPA5fIzeGtFROwWTHNR9T77UWar46uP6TubM4VjN0IkdgV9Ns+HQNrTaIzYLZwbWubJyUl9o32SOJZCgFn88ZwlEGiLtdQqTEsjRnl5eLKkWLJ2XF0QRdOUVNwj4bkzyNWjjPpQR0JLoJokJpNpy5BTCpu+STz1gGH9+yEpihSUmiA86KOUUqLAebISRB1Ky7RRd/S6m6iPpgS7psS7FKqU6v6XwdfkvkyUB13Rkibf1Y+lx3fFnNHkvSHn0etRipOqW3OsW4jElGAcaOhhNsNIp7FSCplOlTQ9E9N9+FBbqSiMSTGU3g+lspmMvuo+/TcabDRBdR1dcY+ep9pyOpkAAJ5+9hncevpVfOrx38Mv/d2/g5N5ib/1S38Hf/TpL+L3P/vbOCkOkWUcl6/ch2e/8x3M0in2L1zArddv4emnn8YHPvABHJ8c4OLFi7j72gE+/Zk/xCPf/Vb8xb/0cfzaP/tnePCh63jphRfw+OOfwnM3v4Nf/Bt/DY8++gHcOzzEJEmBZfvlljHOJQZio7O66JUhcJWh3l+dZhmiXhkixNNVViP8Auh0XZsokY0WHgJTnXVqNB1raJ1cqDauKpERBSV6RNUZafhC+5786gusjluUiqdok5SSaYIaF+h7aErOrtNbTR5+vT5K8MNEKTTR6rvmbFP9bdd2oZSrlEqgot+ZDBdjyAbpCg1FU78nXm1c0Ugdeu2lseSz5jGpdtIE3bYy9OtVauxmRpS+vvBNlm66J3oeXVMKLe1O/ffyXlrXChFB8miLVp3Zah183vWaHmwQWaHl6mWYkqlPJ5Ot0D3OjXGXk5i7EJ/REMYdlZ8FzJ6Ms2jcZVmG27dv4+KlS83PAcYdncjmJ8fYm+3h7sEB9vf3kCYpikDlqS7og7rNaPJJl6CXS407F99dlUWv17X4p8lgV+5Jm+xDjLvq+GUS2ZLu4K7GIur3TVW5TPfkgy6DJlQ5VMFm3LliWvR7Mxl3tgUoXSyZjK6zYtx1GQJCSGSTyUpcDT23qkuj8MjnHP/LJz6B9/8Hj+IHf+jtuH37Lm5+5wVcuTrDu37sh3HzuZvYv3gJxydzzJIZfud3fgfve+/78NJLL6IoS7zh4Rs4OjwCKxJc3LuIo7vHSHiCbz71Ldy8+W08/e1nsH9pD7/89/8r3L1zB3uzPYAziKKARKXCWaDqQ7qQhMu4U8fY4xkl0jQLFsnRy7ddWz8uNMZPIcS4sx1L+5wpztNm3K0j9NNV56GNO11QiL7PVZnk3SILv1I0z169fz5zmT62qvGpXm9Yxlk95tcUq2vazKT3ZS6327izKXLa4Ip/D8FYxp2JlcA4hyy711djGnf6uqIrpYFeN9+NcptTRH1LaxaNuwbRuBsZNkEVKvbh7CoBxo9+jTplAJX9tQmmuGC6Xs+69S2DGnetl4XqvvQd4KRAnueYTKbGScIWSBwaWNwFPS/M0OjyxplSGvCkSmqr4JLqNnkKvepl+E5/in2kwk0DKjVabDu8tp1c0+/rGJNSSmRptiLyY5okTQYKhS5AoMqnv+v1pIs1vV+YRFKo8IAuXa6L21DYxF50sRZqJPIk9aLomPqFzSA3LaopBFK8/urr+M1//ut414+8G9/31u/Ba7dew+HRbbznQ+/Hqy++gFIkyKZTfOXLX8F73vvjODme497hIS7s7+Pw5AAXL1xCscghC4nbr7yOP/3TryKZciRZig/9mQ+BTTnAAG57lmR8pmqWakHv67kNgVmQRAlDrBqQoSIiPjAK4nR4Zml9K8Gb7rxlJs+1vgFCPU16OgUqpGIbA6jhTOurv5vKy6YLF1X17Tfut595c6/7+3u4efM5XL9+A3k+R5Jw67tlG8vUfdP5IEkziLIwbi6aygiV4tfPEaKsx0qT8UY3b9X4GTKP6mOujWVBjzGlGaAL8KptluIqrbmomxljMxBNcK19gLYhZdwENby+TDZzTpZmtRFvYvC48tSFwvYOuHQSbJv/JuMnRDjFZtxZ29tQts+YbDKsXeXajt+WcXf6lCwizjwY43U+vLIUWwuOl1KAxSibQRCyE18ZKUCYj329xRhjzBoHavP+2UCpUq7yhvBQuGBbKLlQp5YIjL0YZMNQCly9/wr+5n/2N/GlJ76E/+tXfxXvfue78NnPP45sOsH9167i+o034oXnX8Tbf+jtWJwsUOQFRJ7j1uu38MB9V3Dv9gGee/45/Mmf/CkeeeRN+OBHHsVkbwowhnSWQGLpUbIpRJK/TSkfbMbPEPffLntzsaaqr+iGt81orBbNjUEWvJlUC4CYPYw273HjeTPT6XXvnA2m5zpmfru//bf+c/zqr/7fdb1s75atDvSd1N/PrrGkr/fLdB7nyZLJxLVjad2q35QxEprfzV6fza6TNyky5IO8yKsYcI39pNpXtfdQOK+CgWcB0XMXPXe9yhjTc5fnFV98MplisZgjyyatndguCeAhFSyH3gXTyz5PnjvTTrTNc0c9BzZPk2nXPpRaRc9Tu996nft47rriBYHNe+585KBNnjsVQ+Qrq67KMXlNQj13CUtxcnKMNK1ydGWTDP/4H/xjvPHhN2C2P8WNBx9CXnC88srrgDxEwhMsFnO8/PLLmE5n+ME3vgkvv/oKfvszj+O//nv/Da48dA085ZjszVAs5rh04RKOD+6AMYnCssfp8lzRe7KpCIZ60lTbr8ZtNpRVWvY4nrvV2EBbX1b9UYknuc7TPXfUQ6xTim2xeOp6pr7ZFd9Z1S1ZGVfVwlg/p68hYfPcHR+dgHGGJEmQZdR7aR7jTL+bPIw+dEefcICu83QviS28wuT9DJ2Puzx3XSJTY3juqPfeSU3egOdOp7+ulD+wgveQCciB6LnbJM6NcXeymBtvlD4MZeDR2LmuDqSMNklyOCkjjXsYVepateHnC4OBaIzD008zDMRDpCEwDTZUkpm2G21jOrjRYxbzE2TZJLwehlwxpkHfhq44u6Fz8Ohw5axZZzfZFjyvYIuja373X9iHCsa4YFvEddVd1Uc3AFfjYVQZfjE2XXFv6y4E9TgkBbrgdV3PZvS64sV8YLs/Vb/Q80zP00QjVWUwxiEXDPOFwDe+9nVMZhN84Ykv4OLFS9ibTJGkKa7efwV5XmJ/f4Y3vOU6rl27VieBN6FvTjiaa635vUSWZSubMOq4rhyKzXGrdEi9HXTBC5+6r17HL2+hD83XVk8TTP23LMuacmrKyWi6V5NxZ3o/9YW7boD3jfGjRmro+kmdp7+T1Oi0jTX6MX03H03jqT5OmubS+lgyp/Y1GlU9eJK24rO6aNxSCiTL9UpRFC2vqyv3XGtu523DWhCDi7MqnYpCQo3MnrnkXOd3hZkoI3ooz6cPXGuRUDjzIHsYSnRNHoIQ4840BiStONl+fbvHJQAAIABJREFUcYLbynMXaZkE6tHRTnRWZXkZ56GsN28IUaIoCmRZ1tl+3DJwZtlktFi3PmgmveWuero7dRsLwwga+Md52I00cxC7CWoSVAtGveyiKJBNJiiL3Ks8el6SrBokfemOY4FS1Wh7cr7+Bp5NwMX0t8+Ct1rk6gs4YX0uUgowniLNON757reDcYZ3vvMHcPv2PVy6sIeyrPLbpSlHXkiIdAEhhNWwGxrPPf883vrW7/GisIa21ZCo+myTmHpstN970zuyjOsMnGZDxgUKm1Grxw3Sa4TC5/kO4WEdEj7ePxM2PQ82xvxw7ccZw0JIcCEgOds4FbNm2ZzxNcVpxGl+ImfTcukJ9XLRRuHkc5bAgbXU2jrL5gnS1J2cPCE5bardxOqTppWU766g2U3klWDAOcj/wlh3rjUfVLut0msBS5+/Xoaqjwvquawo2C37WZqmtWHnc3/qPOUpWN1NNtd5W2iouLJVN7UYWmdBpM4XQtYfirBnLQGsHlst3JRXRtb/r8vnOQQ7QToFBOY4zo9x5eo+TopjSJ4DaQ6kAjwrlp4Nu7E4NK4/cL3K0+XRT0Paamgo8ZJN5dNs98PVd67yDK6+W+5y/ccFCtu7QHNBrvtOe40tA7yTfcGTdOW6fUVkNj0GKsXKofK/CSEAxpAwBp5UeeU2/WzoGijCDLalnH9yqXh/Gg3vSMu0cGpdoN1MMrHizvehSSZK4Sjw2sxAA/WJrePASrCtj2fSJHXrxXc25D+hMY6uwF8bNcRGBemiknTBRMHtqy7WdQ1FsQCaAGhXTJTp2npuI1Od9TJ0T6hL1ENXQes61ge2mDtVvp5/yRZPo9fBRtu0tZuN9tR1ng2uPsI4r/MNFUVhjCcCYIxBWq2X+RnpO+60LWjMUl8aGYWuaGhSONWpb6FiSDS2UMX8NRcgtD4sBXCYBBeAkG1anzAFrxjvaTWWTcHlXbHRI328Mqa4MJ/UBLTfmOihpvNpPFu7/t1KgKa0AXofcFE1KaUzZPHaXEtCp6pSQ8QVY0frYIpl1I/R62D7ndIk9WP6qvaq+tFxTh9X+nrYaIoDUzx2SHnrUDFN0GPjqvpYqMmo3nXOtbFMtOeUprzVGDTT0MA5gxQSpRBt1ocH3RPobgcXRbMrNUEfBpNJ4dQWUlT2XD/RkJ4+faDVhyy0zHQp3EPXTRR0k93mSGiVLSWEZ/x4XU+Jer0KNCFFkZYZ0QnqKdzlfYGQum1ih2MT1xiL397O9SVqZUiXYTI0ggY4z5i7rmNdixwfmpWrHq52U6IpPiIjoTDen0DtCVCLU0orStNqcairEpoWkvrCtPq/vT5qMa9L068PCc5T5PnCqDQI9KecqQUz4xwo8pV6S7KlxjkDlsZOuTTs6BKB5iS1LdLNghvbo8uFXFtKASEYbIapH9wGoE89uoRxqrLb6Q6AxuhXqQhMKQGUV49u3JiuQ8eOkM2LIcYAUxmhm2FqQ0TdL9At2DQU+s4zp9GL4UK90cZ5gLwH6hQUajOqD4xxjWusAVznqjWI0PhojO1WuIm0GOwKUcmzG9G42yIElpTPJIEoN0OT6QOTB8567MAer21dY+jdybqsZd0buX8JIdCKPxrr2hQhu8s+xzZeKH8xBf13p+KbQwHU1W75YlHllgpU+vSBedFJPaw0aXh1nwmvDD/q7VIUUAXl8dM9YGmagnG+It5By5FSoijyQWNIhBA4Pj7qXMj0XTTX+brK5h1plZvSGEcGKUugNpIF6GXbxl0ztrrEZbYZDxdybcYauX+bUqcL9P51r5EvGs+Zef6SUoInHKIojF7cNM2qhaYx1xtbEZMwXactquI/j/b1sLnKCI3FbeX9W8bCh9xHX/SdZzYx/24aYumxY0sPni+UMb7OEGsSAtK9aiFweRPV5rKJEbVJ4RYXTBoYFGdVD2MonBta5nx+bOFsdNMZXeHgQJsmWX9noWVaX9flYE7TIzBZveDULazKMFElx8Y69AAbVUB3rSecI88XpIyGCkTFMJT09pCCCUOpRJmoIOpeu2hY6+z+DQWqlkkpjDZ1QwW1W22ijpnKMSk6qqS+9Bmb6haqfKrXs4viqOCSnNZhWsSZ6k8pkyZam8nwpG2vU3lt1F59XNdpmTYvh07FM92T8trRY23PtYu+5mqvqj7uRa5JHITWyUYfddFhXXQ/U5nrqJHaDE9TagIdisLoMuRd1M+u82x0XB2mvqgrdFIZ/5DNlraXO1kZU+o6kI0P3Wi2jUfNMatjIKVV28WfGjVlqsrrooKb+ukQTA7bGLguusqlVNmhoAwd07zsa5DoStjqedANwz5zv02Fk1KeE5948aVn29THuq6t0Fch3FTe0AqZrhAeKQVYwr2Map/UBLWBTmK2bce2qOkwb7Cvi5jEPCIIZYA3bVugMVXG+AFCacgmE4iyQL5wJy2vJsPweJ6IflC7k10LlJCAfFM56lmq5LxDSjHvGmh7bgpKfl0tsG0pFvzKSrzk+DeNodVL1bi1KWXJbYIaW+ucD4S1vZ53LuQ65k2NZc5HsvHXty/QMU1tjHTRofsaNI3AU/NdSJ31zaH6++UCv08c+rqgqZD6QBl0ldFTQgiB2WwPxUD3ofcd1UahRhFtY9GznzHOweR63r8hoMdknlbIUlROEg9F+NZm2A7OaevgXHruWjtkvLFvTQnN+3rupKzK6Vqg0m9tZZhQFnnLm9UFdU/ruPlDUEnRC8xmM+T5YmViybJsSRcrkOcLZNkE8/lJlTZB82R07bgq0EBa1+DkCka3GcrUu9hXcCNN0rr99fgTAMZdbb1u61ImfHbTVP5B5bnqWmR0iaTQ77zqZvCu2Tx3tvNc0IVbmu8rUQ2anJr2Wx8akqluKhG47XdVXtfilnoY2t+vHt9FOfT1LNmEWFy0Pf08CpNxZMprptqc7qibvJomL3JVB3ffU22gytLbxMezRYVwzEIlspW7rKlft2iHDXqdury0VDzEVP8Qz52Pty4sdjeMCm7yAqn5tCjymtKpCwvpY6XJq6sLEKnvTbF/TZ3bIki2fqjPVWmSotDKND2zvmO7zbjriyHCAtbxHulJ5YfOKzsWrXQlaTqr4oJdRoOtPiF5DMcK5fDx/rpyQptyIlK0vG4MkEJaPXm2vNRgjdCO7XjT9VoQ1C4wePw8RAQV1HpbCoHZbBY9dxF+YIwhSVhQAvJN7txVylPm6xVliTRJkHCO2aXLVd08qU/bAm3nkHZsGZ6D1qgfxuwDp3u3j60smjf1vqh4vNOAPu9oyL25NhNoTNO6nrmmrFVJ/OaYfmNSE+9Y7Fw+M4q+FM1toqG2mw0iKcVag+0Y7/0ujP2bhhT9mQmney4ZDtWmymYZHhHDYBcYR+feuOvrlQmBEkwpl/Kz60LV08cbl3AOAdSc9bGhDBpbvURZIBcC9+7dQ5JwZFmGl15+GW946KGmjACK35A553ykddcpe1cHab0NfRfkJq+ELabQRaG10cGGSMPgoprpcQ6VEuH61900hjBMbFBevFAjIEQCv6bUCYk05cvr+tP9fJ4Zpdf1p6Vu5z2mdafQhVF0iNZYbPNGKmO3uTe9rdZFyDtlo8Sq85KEGz0bSoW4yiO4+t6rjQH9XPr9uu9742Gu2lTFEOvHNHVebyE4tGdrm1BMI1vanrN0r2cNdG27fdNmu1Dr7W3k5lM4P7TMxaKhZXbkM1M0CkEmhpq2wS0LfnKsEkThZDAXljY2up01QRWKoiyQZZO16ZWUdtqukGUR7BCdObx3gEsXL4FxjqOjQ1y+fAVHR4dBA/HY6pSA3Xh3UUhCaBy2IH0FkxiGvmjO0qym8agyQgLH+xqSusCNCyZDzrYI5DyplRupIdglcV7XyyCA4YKJ3qKLN+hiJupaXWWF9oXmb7ewgu0+9D5F70cXXrBROHXKpC3vnY1e6XpO1fNVSeRXjUxaz7IsYfSWGo7tEqXpgqLCKYGeddFWOzWJAuzGPKpvqChjz+whNrWhrFNc2FQ4Vb+hbaHojFLKRvWUCIXouemCPLra+QrUQNdFu3yMNH2c9qX8dhkbPuOJXl5TH/PY0nfM6ZrPthGHFwLb2OnKkeuzjhBEeKgecyyv71iiNK36OMIQ9L5gikd30QhtGFP5lNZVQf1lq1nfMCIb1XJIWialgYY4SqKgyo6CcdZrG8Jm0PWFQDWBbiJuLhSXLl7CvcN7uHnzObzlLW9BKQSm0xnyfP1F1SbgopCMOagDq3E0BVkY7RpscV00Xs0EFSOzDWEKRW/ZFDZ5rU3BZbwoCqIPZZJ6h4YwilQZ7TjWpVhTh1c65NqNEuLuvZM2mO/PbfD0eSY0zUgT+3x62ioEtvsai2K9q4yPTaHZWBIQRYlFWSLLurUGThNCBMTqjYiB1oGb7luuWiujaRfXucqwk1KAYfffyd2v4ZbBGQPjrOVR21pdsBtcXh2f+4PP4eKFi3jHO95R7eRKifn8ZNvV8oaU3TsxjPP6MyTUYrRRS2tynKng/l1DkvD6Q1HdQ/s+6CdJGs/OplHt6m/Os9J3gbzLEEKiSyGzoslJ79QFasGmyl1HfVOdXxmX1Ud5kHTo71nINarztz8P+MLUprSNTFAeudDnQYWDGg/s2Vxe2PqQXEqv9+1j1uuNNP+cFjSe1cqDe5YMOwAtj6Tz2NrjOJBxt+G+JZciIzZwctyuQRl2p2VuPze0zKIoJNDsCNgelNp5TlK1Q0J+t9ATTUqXFLLl7nXsnAoJxhk4Y5DCEh8B1NQExek11SDUfdyXlmktbtnW2WRSUTcvXcbJyXH9uy5UQpVKt/1y2+gKQ+aCCbm2iVLYJyePD2VTp6CYKDI2mqSi+xTLpMU2quBK3ay74at0Rls+qHZ53Uqeq9cx11Gnc9J2d9Go9OuZnpdpkrZROHWKpvpO0XrSJEW+jO/pO67bRDZstExbbruQ65kUIClVjn6nK5760CRNZQ/lQdZzpul0VpPiZFdf70KXeqWeJ88H7Xqa3i3eeb0uZWP6vnSpHvpQEW0wKbj2Nb673l/fODy9HrqKp43O6Ts+qflSpwn6Uuv057BObre6zIHnQZoPlvOkUR3UqOm2OlsVGWkoDnmU9Z/aqzckDTPk+a6jTlqXtQWF065ru9ag1jChALiolmmaoiiKqt94UDjVfYTk62vVh6xns0jL3A5WJn6P3BhjQhl/QkprwkYXVLfblcxMR4f3sDfbw3w+74wDgACECkLlfGueHmC7u867vOOtJlfObXGk1URskuKvjwlY/FNKjqksvzJCYvXMMWBnhWrpSonQ5dEZA6aYqep6JqNX1M+iL02SsWpcySaTtWPxKmMLUAIefeoTAlX2GM9CUWVF4MLQZFzT96Vt9A5T1+oa1RhU9Zv1Z7qx3m/aR8by+vqMb8265nSMYyoVTy0Ed4rqrqPvfO5jFNbHbnEzXNGw682HQMNYxUYPYeTpoJvxdRyfxxh9Frzkp/8O1oROo+DY7oNtOuMaNCVUXr1tGkcU+xcuAgBeeeVlKw2AJymkFMvYjWTrnOttUmF2mYajdk274k6q41ZzcfWhK1JKTqsOAbSnkLY0la1onbtsdA+Fhl67mrttjMTldCeewtZXGm9KP5qklFXuwSFEVoCqTWj+szFpm5TKOjSEEHW+x+bjhqLAUtD3pWmbYevcNQb1Qd/xyQW6eTE0XVPBZ75Qv5yWMUy9nwlv1mSnpe46+s7lIf1RqbNuYxNS1VM9szQwnEQdP0bNORrPYMgzUOedZpwbWiZVy6SURmuHMuwGJklmNJhMopA2tUxdAbP+3kD3kxa6J01uru4ldPCQrvvvCbU7Ipa7MaIsMJvt4fj4CHmeYzqd1de17TZtgvpout7QGKL+LnW5ISY8/f6bXFKrsCmgmqhM1f9XKUlqsadU+TrrpqnU+Sqw0klO9cPQtrJRJpu6DfNMlGLqEBL7XVRF9bsO6s2zGQ5UMCdEGt8nybOvOqd+jikhfdd19fIUbHTHvt7mrnq42s6kYqrXw0T91OH6XT/GfCyl6NLNjtWNm7YaakWXVEql6n1P02wlSXUXKIXQRP+kx6nfTO0WKk5lojv6qN2GKGBuC110Rt+QCB/qo/H3AVQ/9UThCtyyGWFSbFyX+jiECmVfSmwIhu5769IvgQ76ZH2ArJORhyhd6sf2XRePgaiWuUEoKz70lVIdetUoWi1paLVMiu13VztqrjLjtYF3fHwEzhNMpzFHTSiqQXlcI1cfqNe5pppQqIGhq8hxXv1ui7EZXJJ5jYS6OsbyzFTGRXew/BCxRT712CRUX+PcfE8+9+mTTmNbWI3pDm9fV6zeePBp+9WxoqaPavn1FPVe5aJbFSTpueheGnU2w1lR/IbIYdeFEBrdacOmF8ld6YQU6Ab6wI7htXEW+0CEG7tkVJ5P426ZL04FWPpCUQUZ5+DUw2Y4NkREJRRjBjSvC1UbxZOXQmA626uk0rGbEre7jLodR6Rb6GXzJO1tT6qg8CQBdM+MQmX0MWtS46GT1g6Z1ylU9MG/XPcYMWTi49B6jGU40XgalyiNy2MyROzV0NC9Zqbcgr5lJMlmjTsfQ9Q0PtE42STNwFviZWK58cOa85eQgYIwCsqos7Vtvlh4p+lYB40RPtoltgaaUmQTKs6qj3R6tlrG3W5Zd7u8RosYD05G4AZxLmmZfpTEdhJpoE2HpEiIuITLY6fTMtmSxmgq2UTL1FU0TfdAyxqikyVLcRMfQzhNEnDOIaREvlggyyo5cillfZ+K+lHnNCnySh69p1rTkEpTY6Gvshc91pVM1WYs1eVaFO+MdfBMhtt1jE0pzlx32YpPcV3PVbdNJJ9VdbIpAYaWE3b86jV9yqB9oDEaVttHGeYmSq1NQXG1jCaBtatv2suwe3epGiO9t65FPE183eTHq2LNdFoqNQhc1E+feVSVbRIb6jrfZXDT+uvXMl2vD6jQCl/Gu7k8zbSetmdi89C4+gt9jnp5XefpNO8uqqXt/lzjU9eY1OQA3P7OPgWlZZrm6FDkiwXSNLUm6O4LEy2Tc16rItqMKhMNcoi5gV6vzvWorUX6JhgPubbpej7XcNXNx0gN6iNs2a8S7tSVMNEyxZIFxBiriAVSVgrzrLstNg1qY0Ra5o4h5KUfk4K5KxCirNMudEHlt1MD+mJRKWRmWVbTNCPGgcuzo/8+Nuffdm2FMROaq02CoTx2xmssFy5DeBfXqYNCmNHEBlUvHAu2+6OeoHWh4skYY0bvmI3uR1MP7Fpyc2qwD7GBS2PuqAIkAKtxtN71xvdSK4PTRtd0GX+hULHMQkik6Sl4+dZAmqat9cKm5hkb1DzQZ/M4IsIXu7R5cy49dzb4PA7TjpbuKUt6DGQmL13CM4iybO3EqJ01U71M8PHicSw9iKVFQc6Q507PS1dfoyzw/Asv4M2PvBl5XpXn46ESosR0OsPdu3cwnU6rei13/Lt2/nzyjbgw5O6Oa9fLJF5iUgvsOm/MSbKv99QFVxwZFepwGUuU6qmSJ5uOUe26SwOuC33igmxeDBNUeydp1sonVRRFZxnUg0ffR1N9fWID9XxbuifS5klpp0Hwo9nR8/T8Y1315Una8kDox/gYdzavk4KiEqoYVV+xGt2Tpl/PZ15XHkMhRKsME1Rb67n0VC5LVw63lfLUYluUyNIM82U713UjnncXuuKz9P7pJSu/vKa6V+qNcXnxukSfaD+vN4YG3nyi7UY3Uk0bq0N5OGi76GOuTcyqryhL61jDBqWXqIfhGl3rDMZ5I6MPdM6Pak3kCj8ZYj53MWe6rmFiO5k8fhthNXmKpHiXZ+j/fb2OtnVuF+iajiPmuYs4I0iTFI+86RHM5ydBHg3OE+R5lYBZLVySNAMbmVa3TVQ7m2lr4ohw02WoCEdEP69RuUx2vnmRDjt2LZegFGIp9b9b9RoKtaGfJE5jULWBSgbcLkMEe6+pIq/A7nk+gXHrVBvhA4/7HFWuWBXvHhEOk1EU5+cIX+zKejUadwT0BfahIO4SaH3pfZQb3oURAES+wHQ6qz13PlAL+ul0Wr8cHIDcIHVw01ApI6TYzZx220Ilpd4duxKS1LZOrnoG+9Am1FQpKJXNtqAPodRRausuGlHUq6kjlPpIPUEhMCUWd3naNgVF0Vxnj0CUxVrUZton9e/XAfUsDw3lTQ5J7+KDwsIE6StW0xe7Fn5BBWFM84p6BqaNVnruLoG2Mb2jaIhuD2pzRc3KpRDItlSXSMsMgG06VcYHpUxS1Ryf8xIu69g9zhiElNaceKpMniQQ5Wrcks+rbaR2ampzrN61bhbHtgBck+vaRSkUokSSZnV9aFsp+qsrJ54LXdQEZRBvcyisKbFCGOkENmxCLMR43QFSFug56AC0kkor0Q7Tgr+LxuQKMNcn6THj8RT6CAr45NGyiTeYxD9M3jlFl+rKAcaTFBzVgrEpv112k/i6ESDxEfZxCVmY7i9NU+T5oiXQQetPKYNUzIFS6nQKZiNKIr09NS6xolVl2PZ9dR2rcsS16Y/qGJpOZDUnoE99bOeF5ApUfUenaE4nE+RLcSwXXGqouvCJXieX0I6tX3ed14eSTstQz84GVbeyFFY6OS2Xjk+U6tgcY35m9N5Nwks2+p2vgAoVXDGV26qjhzgH/V43wugz6drkdYnZFEWO6WSK+WK+kl9VnwekFJWAHOMr72/XfVDUazuL8d6Xlmo7T+WTzCYTJ0XVRbv0eb5DUjfVOrNKj0TGJ1Oeux0QSwlFFFQ5xVAdjnY1xvlKyoShUBtABsPuNEEZdmWRIxcCaZrhvHHtBFBJhYvuyWlXMHT96tgMMgFyDhRFASGK1cXxGkbtWGkMTiNqZbcOj5koC8hOeiwDVlQazWOSObl02DM4OanEmmxGmDX+khh2q/FXZiXMdWD36K2mBaH3UpYlqnxteonrrQ2GFlep5zvNUDyZnywpnsNuAJmN1/Hf36Fzb6rNBroA77y+IGIvAh0Gqz1OFhCDM19K8j4NLSa1slk1UL0vXLiIk5NjAGwlFsuoTs34WrRcZZBmabYRT5pNDGrtcjcRcycFpLT344h+iMbdAFAeJzqIciw76wiUQpOn8DRCBXlznmAymYIxhuPjY2STSRWUvO0KbgBSCBRaMPouY0hhl7YQA905rRagaZq2F1jLXdxqkYPgRcsQObXOClTbdi2SK0OjWHkOCtUCqO0lsHnAqEGTpqteNx9UHq1yeQ2DyJNlMd7OtUgNKz8xkVDYvWZYqUP7d163n8kA1HPm9anPEGi8JG1Dufq00zr0Xa/RMkw0Xx/RnnUxxH1Q1KI0Ht7Nhrap+mc7P6B+bFNnzbMhMPhcWrFpxgmV0OeXoYz4RZ4vPc1yxfuje2ullLVQUN/rK29gMYI4me16wDgxnApjzZjKY8c4c6ZHiPBHpGUGIOQV9XFhu15Ek4ImAKh8ey+/9CJuPPhQVa7lWBu1U8HrhTUkB5Yk4Qy9pxJHYJhACob54hgXL8wgSvuOuq8xM3RemHbhhqnPoBBK6+GTqNKltNSXYuCr/LQp2Wc9d1D9vSMfX9eOs01B0TReqUWTjzpWCEz0Jf3+FLXYdL3QXIGmY3WVR/08k1ofpWZRKhj14PjkCXNBKW7qCo996X6mNtLpabdv3QIAXLnviuHYVcrlqkFkNqZcoHVWdET9vLIsyT3IZfn0+bL6N5C8eqa8gUo9k94XvScb/c8n92DXsbQ+PnDlsOxSjjSV5YLJuKvOXaX5dlESASoqZF7Eq3dGV4Z1MQB8GAKmnGu6iiq9DwWToTvEGK/na0vTtK6fPtcNQY1rjZeGtYQQDU1/DOXmLmXmEI+tL/VRn4ttFOCQnHh91wxjbSD3UZbUQSmhQ9fTpUw+BEzKn7PJNNIyI/ygUi3cf//9aJYSm4XtBeFsCogMhZD42M//Jfz+730K83JhLSNEwngXEFLPeqIaoKxQSDF+PF49CdJ52mO327VwNHkGqv9XQz9dBGWTSb0YGSMu0wWTYVeX13OGG5py1njYhs1HRhUPKUISfuu560xlUVrlffffj6JYjfcC2sZWky6h3YfoozLl+rOlGDBdr32eRJIkBmOyu68rQ6p6Nuv7V5ThZzPyhs7NJ5dJhTcNnwTylTHcHge3KY7RtcFTlqXVg7zp9lWe+pSnAOf4zs2b+K7v+q7RrmdKQD323EWN9q76RGwWanQ6LevBXUY07k4hlMri3t5+PbFtOobI5q5nMoWQlXv9t37rt3H33jGmE/Pu7WJ+gjRNkSbpVkVNQhAy5Lh2ocakPJjy2AwN5SnjaBS6fGIw1OTZlfvOlANK0YxoAuB8sUA2mdS78Po1fOBSUutCwjmKQIEXF8agnFW0Fz4oHdVm8JgohWUrkKy5J0ozs3mSGGtolUUxr7wKHiIiJg8UfQ1NMXe2Bbbu9TShEpPRRHta8Yhmo7feTe7wgPnClStv8Pi7EeKufND2jpnbrcln2HxHvftUxGkToCkkWjn9GEc2Sa2Gp90oVB7dASuJ5Zi27OOLxRxvefObMV+YN2iHgOn5jZ3XVYlFmeLhNpVTNmIVaq0U00Otj0jL1KBeeJuSooqtozANAKUQtTehv/ucLFakNKpo1t4h2UwMnO5qiu6RX8XtlV31tNAWqfGi2isXwJ07R3j8dz+Nn/zJD+Khh+5DnrcnBuUepwlmXQqRY9IypVBJrklbWWiZY8JEgQk9/zRA7aabEgLrcXS25Mgm6McqpTITDbTLiDs5OcZstmdU2RxqV1ennYZSOClVzwUTTcyHAqYbab4xX22DxtQnzaqPFOpa9Heb+IupLboMZKq2aQI1jmjS83Vhuied7qkMUp36qccGUuptiKeUnmtCV9L5rmPoeB7yjtCk2z7nmajS+nvvq3pZFEVNP6TvuCnxNr2GEAJJkhhpoNXvsjbeqEGn9+XmvG5vlS2he6h64y6hXc92v87zHEliVzP2TcA9NGyYH7RWAAAXM0lEQVRt2Cf8IUQts+vYdWmQLujrYQXT9fRaqrXl6ViVNOhas7vW84qWWYdFcIZpGtUydx5SiCqHxVLMRMH0qNehiYVA7W5smhkjygIwDL4SBe677xIe+3M/BVF274wmadZKfdCFuJt2+hASu6CSIesdIcRz1TLeOAeTzeSn18cm11+WJZIkWUnWPBbMxoo9TqeB3cipjjXTHV00yrYBJyGlRJZNUBSF9wJcq/XKNz50QLMoS2M8uNQUw/qNO0ZqCOgxdDrUPVfGZ2NcVv/3a3f1/MZQzhsDoTQ8s7KhH81bv06doF4rsqEbWwn19e+uzXFXygof0DYyjhcbmA+HjtmyGfWiLJEmHHKLJkFcazQQWMYH4nSL9/lAGbBnRcgvGncBSJbpDRhjYGRQt+22bGJgqD2Mm6ZlJmkV+wctaXpZYLa/D8b2ADnBwdEBZtnUWEbCOfJ8gbIUyCaT7uuRv8/Ky3fWEaI2p5IhA+3JPsgLoAens8qwKwzvhs2zkaYZ0jTFyclJcLLpPnB5ndrHrnox2wYrzZlmLs/kfdMNugYMScJRFPlS4t7fe9fUs9vwcnmQdDEJlfjZ5IXtUsvsgisv31DwETvRBVNULJ6eP9CGTfTZIaEW977zpcnL5bdxpI4F+duekqMZj1bRNsITco6BXtiTKk6h2ojSJfXf172GC5RGOgRdjqOax5XysQLjq1TaTSOuNRrIJQOtKIozn6aqKIrai++Ta3jXcS5pmT6xTqZubFOv1GmS1YAuUBoG+xZlkjFwMJSiBGfpivubTnY8SWpxgda1DbRMW91srvRStD0ctmNbsAX/O+iMKr9WqpJXC4HDw0McHR1WAjGc1/nvWpcbUy3TAFe8HEUInbLeHXLcj5Mq60DXhsMYyc9d1KIQj4jaoQ6NGRxqx1WvK1VWCzEgbMm6qwW8gI2e6GNAmTwCeiqCPtL5ej2okmOXsqR+LZMyp17f6u/VxN5VPcLpqj4GnW4s6oaifqx65no9OU9QFIVVvERRK0M8Ny4FSLtndv05PKRu9Fj1jobQp4HGEOIshRBiea+kPon5XVbjgkonQNVkTe0HrMZIqmdmUkCt6r/6zGz91JSw3kbnNFExdajrdFE0gSZe0DfesUu9W6fOJZzXrAVbrLhrbvJJpG1TRAZQx+Hb4uL0sgV5R5RKbXuccSj4al/ZwnLovXXdn+1403mmNR19Jvr6gqo+KnG9skedqMI0Da1ZJyxknbASHaY1mJBqrNBSroTkApXmvkBfuT5Cf/SZ0bOymMQ8QgdPxo/7Kgd+IV2YzWbI80UrN+CVK1dw9epVHB7e21At3FCT1ybbJmI3oO/alRa1176gyb9NHiof7wv1VjULQQHOGw+QrxfHpQQJqEWkfR/bR3DEBGVcjSnKoYzpJEl6X0ctOqkHzSVesg6oJ9sFl/doCNgMExr306s8i11qi3MtSwEp23R/1VZCyMbLRfqjT990Cc3Y+2l3e4f0t0ZYx/uUUaA8GGmSoCj79SeXoVAJZqwyOs6Cx2RMKK+SbhBSp0BI96lnjh30ym1zDbauobsLiJ478rfLc+WTS04ZZIxJlFJACtHy1rXLWyYqlRKcdQ9qasGme5LqPDk989xR2DqycRfD4rnjLGmJrKgdJdsLWhY5hBDIJlPcvnULV++/v4kjDPTEuIKqh/TA+SDIE6rVQ2GI/He7AJPYyRCUJQp9gqMiBOssGkw7q7rAwRC5rxTKUtQ0KNextjx3IWXYPIx6nQB7vJxNeMQmvtFcu9sz5xd/2I2Qa+hCTwom762Sr8/SDLmH8qKPd0ypxA4t2a/qr3tjTc+NKngqLwH1siihIh8GgBpP1by1yhywne/qs42CKqUM9mEImL5X99iqkRbzSSnVtnOGhmo7n2u16ZzrUc1C5zLTmkGtB/S+oIwVn/5En5di/xRlGGXQFMMqy7Kuh0vsxGdONm1OjCFqozbITXN/n9VAopVlWx+ve52+aOWRkxIs4ZBCtjx3zr7q4blbF8oI54ieuzODWjELAkyjfugQkGCA1fjzQW3QjBhzN6bSVpJmSFANKpcuXWz9NoZK4SYRSpU4y9hErqZNm7Zj5UlqYnr63xFV6xsiDsslBhKCTadtGQIq9xdtzzTNIKXwMux8oN4RH8Oub7oMGi/mvIZQlMeuenTTsVubLAKdx4ZApbHQh9WQTRSbWua2cvf5QBndzOMdUm2h0xo3kVvWVLa+acs4Bwv0+Zr6DmN843l+Xdi19Qrd+KT9wWUI7dZdnB5k2QTlki67GmS0GUTjbmBQT5prN5xJWcfd9V0z1ZPQiKNbQ/oavtx86bnDZIokzdo583ZsgAzFeTfoKDbxLIdWdHOhK45FR1DsIKFq9lbYW+6CD0UZdHnuQjBGHr9NoKL7kf/zYfMGUo+Qq11s4jnua7jjJ3V0GUmuXGs0tkodM4TYWENfXPWq19d2PBullmkyMHZ17qkNI8+0EaYUCrVBPuLS3bRm0KX7+6wrWnF2IJ6rHdswOi2Km625KjA2MMKOTWyguHB+aJnzY+ONciIA0jYsVjuyNARPL/9HjlmlSbY9c/60DRMdjHEOURSd0rRqUO96FU0Dq+8ujh5MrdfDRMs0xWXQayjlTJ+E5i7apQ8t08RZPy2eNpshEZL3x0VVG0J8hSrh0dyGJrEMVY/QhZ9vTiu9PkMgLDF5s2h30ZDWoSJ2CYRUZZvVOU1530Lyp3WJRdD8bV2bXSb4CPSs24aU4hfi5bTlCrTBlpvQp030WLEQI1s9m654PFdSeP1Y+i7r5dK+MJaI06bFoXyup9ojZEzqWzdav77hC1SYY9NQBt5Qefl875s+F73dfHPG+RwzFvrGuFK4qJb6vZmon0OGmeh03c6yQGmUDJCyomU63jUOfxEgWz19No9NoT3TSMs8XRB093kDu0abSNI5NAT8d2mVOte6sQF9oAaXXTbohsZYO9N9d1Btee7OIkJzew2JsTxlXeqUitLYddw2YaP4uTCGkMoY1/OLZTIbni5sIs4sooFxc+IUrQm2hZOTY0yn02AF5r7YNIskBCG1UcfqbRYag9kFk8bCLqKvaM22sNuteUogyGcs1FStUzSQSyG8O5iKZ5lMZ6PWyQRlhHKg/px1KC/w0AOqlLL+hKBSupM7ufgfGrVnYAuTGWN8JI+C+bmrhX+j7rl7TJEqfQ0PNmyUJPemqKV9r9dQau1GmBCyV+qMiuYpWp+I8WAat2Pbu7G3f2Fjhh2w288kZO6vvbxrlOGCeia7vu7axDp/SJx7WqY1L5stj5s6jebCMShSClmCcQbOmObla1M9Oq9BFDKBJtedfozoKVe8UmfyN6VNjLUIfeWVl3Hflfswm82MuWxC6ZU0AWUILUanmIZ68Wy7WPT7dXenunYCbfLIXfBRBBub9mSt20geLdNzHkod1SeXkSlfGo2vs9FV6/IClORMZdpUGLtomYqqqOd38/Uiue4J6KZe9lHF9H0XdIpbTWd3UFtVnXT1xL7Qc9nRZ0F/843JK0tR00SHStWg8jKqstR9N7+XK9+NgXXjWbugt23ovbjEZUIQmjewD3TGyphzvQ7b+iJfLDCdTNbKtabQl3Y5NDYRf+UquRWfOJKB67N+dM2TTpBDaZiUK8+dz/Pv6jv6XBRS50jLPCdY5wWXUq4kOh8LqpuPOSBdv34DgDuh96YwZquO1Y5SLA2GHWnD0wLlrd1Gq9GYOwXlAdl1KPq0KdbKBHcsWQnOJZI0W0lWrS+SnXGirFmkbgKNYR52vRDhlFBUxiEjxvgw5SeGjcXqervfZ33QGGa7IfCzK/XYNMaiOts8UENil6mYQ6Ov0MouhxedtWd2tu7mFGAdKo8UYvD8R13XAjCqISnKIoi6OTbmiyq5Os2bNBTGontKufQ+jZS8+KxClMVKTp9NXluIsiWSwZO0F51100jTFJyz2shzwXVP2WRaeap08SiDN8xF+U2WNKFNGRwqNjj0mSVLGmgfGqQLQlQGo6JZDmUk2Girp6HP+qA2hnckibaiT++qaudYGMtLaYsdGxK7TMUcGkrmP3RjfpfDXs5aWM75oWWSJOYt2OiXJrpmB1UzSbiVfknBk2qHvkpcTpTnBANPkhbFUt9JUAqYQ3Q+n1dSV/4ZMojWdd0u+Lj5QyiF6+7YbKpdFPR7polgFUKUQ01lD03LDKFiUlXLISfjLjqvomnajnfBp8+aZMlDMAY9VvceudIU+MwXlGqq0KWm2Zyn0Y2XGxaKpmhLtk7pp/Rc07GmNqRJuek1gLbCXh9vm96eNLl89Xv//tCV0oAajl2J5ykUnVOVC6D+v95HdAqmq43XwbplU3VIVQbtH3SsXOdaQ9IyTWN6KGzjlzCIlnV5nXQqm0kRUC/DpJTddSe2Ml11Mx3TVNzS7x0Uvr4hKX3DIkKVOmkZJlV0U43Z8nkMvaFpm6N9rqDq2XWsHiZDw6FEWVqTmKvnp5wTQ4ZgAM0zM71LOiIt8xRDdTgpZKvzhZXBOxdO5dLDlWoG4CbR98XYlvFz3nY9h0Rsw/OJITw9ytjiCQ9iGgxpIPSnTDbn7YqiLE9SlEXu9WxUjGTf/SpK57R5Fvu2bV+ctjForM2pddGH9SOFgPDsTGeF1raJkBSdgg4B73buez2OMAM0FCElqzsN1TeQHgmd6fPblZCfbeBsvI1bBjfsVIeCMdb54qkdiDzPe19jXchlLpLQAaKvC78vtqlGeFYQ2/B8Ygg6mIrHyxeLoLL6Kq0a69CTMtn3vBCE3mflOfQzupOEoyxFb/q/Muh8BGWGfF5dGEvZdyzsIhuq8krKlXyJzvOk/3x/Vmhtm1BvbCvMyqB27oNSiIoZNtoVwtaHeZGjKIse+Qxl/emqB1CtmdXnPCLSMgegZZq8dTZaJuPtaggpkfAEUvqnOjC59E0Jz3WX/boeNJqImiZjdr2gyk3u48Km6DvYqfrpSaNtGIuWuQmPpYt22ZeWOTTNalsKma1rDJ32waFgGpKA29befZ8DpTTqUHSS5hqrNLuuayu1TEq/VPRA9d41561ufNlooLSMPgqUXe2t6qhy7tHrJmnWel4m+qWqD1WibF+jfX+6UqlNkZRCT/ZO62+7V1usrRACnPOV52GD/iyBxnsnpUCSJCvH0jqr77tosGNSN22gKqSqjkPUYV3aZJ24OVDhtS8oLZwnqZFqqR+rh2QMWTsOu2dFnzf7tosky7LWc3fQMoOuEVA3/T02eXf1tZ0vlXDT5gt9dqZrD92Ta0+f5rljnEGWbZZFyLpLp332gYs2HGmZEb2wDeqHUrbj8KcScFQT2CZq2iyOzq9LnsaX9AE1wneJWhThB7WYSQwLKJ2epYwO3VCgCyKTsUgXzEnCas9AiOJd2/hsNo1onNu6UOUlSbteIeINasMom0x6i1q5UizoxypsQjlReXQopZPzpP77NAo2tam153sMU5uwDNtJB+ALGi8FnF3miDLmQ1I2+UKN9+fVY7Vp7Gpy83PpuWsFzDL/+0+SzClqQh+uKXhV5aqrB9vlxE3j6NROgmn3TBddUdAHQbVjK6R5IaI8i6ZgXN+dIteOR8jOk35eH1Dxg77nm6AHWJsWzNtC166fDlv7hHidrPUw5FFz7drTjYmQXX0lgOG7seET+MyBiiZiktjvEGJp1UszqPvG3ozpNTUZTDQ1A/Xi0QW9iuVqKXzSXJ8BoiwU6v6UN1A917LI6/NtO9yiLFCWJZIk8TYEqQdOFzbxFUvR20bVk3rebGInKk9gkvBOYRjTvVDBk01DCNkybE15GhWo0UxzB5qM6a6+LqVAmqSt+XBo0NyTtnp0oa/wVJc31vS76hum64XK0ptYHS4jilLdQmOrxvaM6Mc0F/cXVLHFchmPDeyHrnXJEAasyVvlU6rLA6cf2yXgYmMtdUHvG85nTb6i1MyEPCdbPV3Q13nrgIrkZNFzdz5QT4pqsvKctOoXyENMpVXu+UyXMyg2EWB9VmDz+Jkmtr7qkUN7MvLFHGma2Wl9O2LIjwVq2Lng45Xr+3xUrJ5YGj91/ZaCAxTKyEjTLKgPUQ9c3+dKjTOFamwoiNeRrXgKVfsqI8nmyfO5Hx81zCHBOUO+WCyNCoYkSVqbObZnrha1WZoZN8R81Yy7DMTzBJPQ1VkfnyLOD3Z5jXXa8hjufg3PGJrBuYmx8/EChSThVLsPccgfBpsIsD7rMIkiNMHkYZ6IoZNVc4dYw1nKX7SuCqSPUEdfURZlOFTer/b5NlpgbzXMNfuO3mdrDzRZfOsf/Vi9DdX/fUQvKi8n24hhBxCab5IAYDX7pPnd/Mzr2EBbuZ5iKRVt+HywjHywOo6ejfEp4nyDk8+u4bS9Z+eSltlCh0iKlKIVlZumE4iydOblWC3LvsumDLHEYLz5dHBTXeh5ki0NE8aMefh8uqle56Hzhfjkt/GBS0TEdGxZ5FbRCRPWjeDoS2/pTU3xwBC0TFqWKIsWxayuXwf1rS+lSdG2FC0UaFOLFS0IaLe5j9CMT+66rmNpLi1XOSvjQsC5pjqETEB2KqYAwLzol606OTx3uvGi6Jj02ur/SuykizKp6q3TAX1EUtRv+nfqeyogpd+DLV8dpWdS2EQ9fPMNUlGWrrYPjXvsAxobqYvMhL7LinarxzIytkqBDxnjQ0DfN5Nn1gemdy4k16PP9VR7jRka0De3W+h5KsRB/b/P3ege3dZ4GEK1tEnskw2FkPtTY48t9IDCFi5gozv60Fz1kCDbPGEK89FzwnGszlGlYc1qooaa6tWn3ybLEKbcEu+cgLXW0uvSK00xn/r8miYp8iJHkmadZUVBlV2EbD+TPM9radWhBlYOuygJvcY2g2PHmlCHRlBck/LGbZjmE+KBPY3oomlVO/vh3pYu1IlyiTevRHONUsqlkQJgOQiveBBH6teb6FtD17393Bh0BUyfzUDTMbRcc9Lt9gJDefHyxWIp8mFXmlTHtn4Xymht+sLQdN6+XsOhj9001LPIF4u1vYc2L7z6Xp9nNzEHDWkYD/0cbe1y2lBvriphNoQvxl2U312DzkRwbd4NeUe0fegVC2LY0U3RIZFoc22f66hQo10BY5UNsMs08d1prR2DlGIlxYHaqR2MDpYkddClCbuSp2NX3eRDYNPcadWWu24o90XjnWi3a1FUMUZDUxr0fHxSChRF5U0oiqKVF7IoikZ6HOP368SDbrYuhqaKUHqdSZZfCFl/bKDHmI6l1M5aUEo7pjLMeDPmdtyfOpbmXVM0PurlGlqVLjTPWwhVdYh8g2NBPYs0TSGEnwiNDfS99fl+E7Qo5ZUcpqxhn6OtXU4bVGsoj12f+OtajKmneu2mQSnIytvTpULrmzPOB7a1JF/+li5z4PVVAu6Cug/1rPvMiaqP7AoY50sbYffGZ4VzQ8uMiIiIiIiIiIiIiIg4y9hdszMiIiIiIiIiIiIiIiLCG9G4i4iIiIiIiIiIiIiIOAOIxl1ERERERERERERERMQZQDTuIiIiIiIiIiIiIiIizgCicRcREREREREREREREXEGEI27iIiIiIiIiIiIiIiIM4Bo3EVERERERERERERERJwBROMuIiIiIiIiIiIiIiLiDCAadxEREREREREREREREWcA0biLiIiIiIiIiIiIiIg4A4jGXURERERERERERERExBlANO4iIiIiIiIiIiIiIiLOAKJxFxERERERERERERERcQYQjbuIiIiIiIiIiIiIiIgzgGjcRUREREREREREREREnAFE4y4iIiIiIiIiIiIiIuIMIBp3ERERERERERERERERZwDRuIuIiIiIiIiIiIiIiDgDiMZdRERERERERERERETEGUA07iIiIiIiIiIiIiIiIs4AonEXERERERERERERERFxBhCNu4iIiIiIiIiIiIiIiDOAaNxFREREREREREREREScAfz/0X3q0awqiX0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image = skimage.io.imread(image_list[0])\n", - "fig = plt.figure(figsize=(15,15))\n", - "plt.axis('off')\n", - "plt.imshow(image)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAKcCAYAAABLx0PjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3XmwJMd9H/hvZlb19V6/e957cw8GmMEAIA6COHiKpCjLJEiFZJqyVjJjbWsjNri7li1pVyvFRljWRjhkyzIlS7LstURSpC6LNClRWq3ui5IoECBuDICZwQzmvt999VGVmftHVVZVVx+v3xzAoPH9KETgdVdXZVVXNepXv8xfCmstiIiIiIiI6M1NvtENICIiIiIiouvH4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHA4I6IiIiIiGgAMLgjIiIiIiIaAAzuiIiIiIiIBgCDOyIiIiIiogHgvdENGHTNRt2+0W24dVhYawAYAOLGr922HmohRM/3t7ZuE/0TgBSy7fW25eN/umWznwfSvc+3KNvibq0VAIy1bfvXzbXut7EW0m3D9t6WzX2fIm69gYWEaHt/c9kjZVv+TcT7Y4yFpyTMJvtn430w1kAKBSlal7cm+lsKgdBYyLipQra32eSOg1tXbpVJm1wbw3gbQsp4XywMLETm+VqoQ6hkTwEZb98YCykFTLfdtNH1pJO/owWVkIiuNWez7yDegDu/3XHtdJ7lj3lynsT7KUS0PzLdP2MA96fOfVyJ7DLZ/c5vOD0fTHxAQhj4yut+fHJtdtty+6lz+6Jy+6LRShgDKRUAA6GibyzU0XFWyUJuHe63zqLX8TfGwvNkug/W9v6MEBCbXpPZlovkXDPJdxQdb+X2wYYtn1a5bbvNuTZ6SqFQKMBaA6MthJDJd0dERDdWoVjq+weWmTuim8ha0zUAHAS2S+DW7fXr21YrpVQSNL3RrLGwxsJYtAQZUookeIyXBOLALnrd/T/gKwVAtN0gb3rDLFp/xqUSkGorx17EDwrc/2+d1QZWp+d5FNipHp+IP2dt14cPnfbbdPi+lZAdX+9j4+1Baq/XO7TLGANjDJQSUNlj7tYh+vtPbBiGHV83xnYOrm8gtw9bFWqNer2GZtAE0Md5SkRErwsGdzSw3I1jrxvIfgkhoyfTmUxcr6Ct022ysbbt9ewttTYGQsiWnFWn2yWL9qxkJ9e73zKzjXyw5v4W8b85yd8i+n8B2RbkGasBWIQ6m1lIg5zcXrS94m7krTXo537SbUeKOC9m2zNtQJSZUErAmCgL4QK2TsFZ8v9WQGsLK6LP57OIxti2zBCQZgvdjbUxOv7+BYRMAzxho2WEjIIHgTSQkgLR/ue3qS2M7pX5sckxVEJAiCh+cNtM1iviwNQiykC5gKXD/ggp4kxnlKVS0stsPzqmNvO326iQAsYY6Di4kFK0BDPG2JassZTRF2WMhdU6WqeQ8XfROyjrGrfGn0v2u6vs+l17o8BSQECHJtmv9BTJ5+rRMVgrFPx4X03mlBeQEtDZ6yRZf7TfxkZZw47Z6/g45UkRHXObxI35ay+TsYdFqVhE0GxG+2qz2VQLKaPrpBmEqNUbaDQaSXvdtmV7+pWIiG4i/uoSvQ76Cci8t9RNkIDnyeyffSeNlFI97+HzPKXidXcLICM6tNBh3AWyz0yGMZsEmEJ0vJnvl5ACEBI6TNutPAnlyUwQd2NYm3bR6+SasmMxKSVkxy9YQCnV0n2zb0pCIAp0jLHXkLFs5bKuxtgu+yrazlHXHTPUOg26XNTU8r1n1pk9ebucH9k2qE2eYGw1Y2aFQDMI+l5+bX0N0lMIQ93ywKcbF+iFOoy6kF9DVpCIiK6duN6MBvXGMXcxq2Gs6TvjBHQPhrq9fzPOZZedE126V23W5dI9UXc3RR2e43deb+bfNxuf1+n1zcahXTfr9qfzWLv2Lpm92yOAljFo1mVyRDpmznGZLAEJYzVUnBnqdpPr7qnd2/n1tbWlU2ZKyGi7uXFH2U1aG71gYaG1gadU27ryMYPNHReZdGWMslw2c2PsMi75YEDBjRuLjqI7M9yYteif7vxNx6wBUebOdjkuUdYuXda0ZNc2GZeXfK7fMz4lhNjkWm59zxrAwETngwnjrGE6ZjI/Zi4KvtpW00/DAAAq88EomxU3AvGxFtlxoC7LbJPA2f1uhVonryXfYWasnvvqW87rXueutVBCdMwU5xaMxjYqr+X80jY6Um5cqPtpEyIK+rVpO5JdH2zkM+Oe7yf7Gp1HEkqKLX8FRERvVVsZc8eCKkQ3Ub9FT97qbBzIuJhhK8mIXoHdjZIN7IDu7TPGxF3X0i6KW9N9eWN0zzFcUSCX7cLYKQN5c4oZdbf1bV37Q5qoO6hQucDzRkkC2fSlMDSwsG3ZtWxRGMD9DtgoYJKIuqRmltc2XzRHQMo4YHcZwZY23Ljv0D14MiK/D63FoNzzgWtJxDWCJhBEWXQlFbzryLASEVFvDO7odWFctchc1i35W4rkvnazgOj1DJi6ZeyueX3xOt3x6LYn2deNtVFxilzFTfdep+OhrYEXZ4FuREYznwl0GbZ8pq4tYydax0yl2Z/8cXXZpc3bKjOFOqSU6Pb8P58lM7n74u5tiZeTIq4CmBk9lruJT8bO2egmWQrZpa+76JhN7bxtAWM1jAEK2UxMki0DskGajrv26dAk7RZCQGudHhmLTDolXZ/OVkRN3o3GGYqWD0f/mwQx2SxTy4dz+9g1o9dJtzGCrbRxwZSIuy8ayHicog5CKOn3XkE8vnDTLq35qplWQ9jo2Kbfm2lpcRTUZTJ7onWcmo1HqsLatu++fRxo7yxdvp3SZcK67VZmf6RES9Yuaqsbo+e+77TXgjEWnq/i8XTx+SFl1FVTyaStXZ+x2PRhgzEGYaghpISnvPh1y0weEdENwuCObg38r3rf3P2Tm6ogf+iiW+TNurYNAGFhtElL12/145tk+4yOxnHZHmPNknXcwLFvW+YekMQZK6MNpMwGD/HN+A18JtJ5moLXR/csGYAeYwYdo136bBP5Bxo2HXMXhrpl27rL+DhjTe+HFv1eo7lAs5P+x0S6QCzfVvRMNluTjvF0571UCkZrSNflMv5s27cg3AOQ7PoMAhtE3Uk9v8uYTCIi2iqOubvJ3tpj7qKnwFFlyc0PQ1s2b5Mxd90+93rod3qD/Iij/nITm4uyeVFFQtcW0yUres1sWiHTto9caiHab+fcSlr+ymbLkizGlrWONkzmvctuyqZdNbuNc3MZQJEcv/Sz0fvR57NBoJvnzoXU3QImFxAKm5tHLd/1LXPPng0kowRK2o6O9+0t4+GiYCvNaiHNmHYY/mitjROBMpn3zbWzfdxW11RQ1/3Knw1dx4H1kdlrDSSz0UfredCxXXBj7tIrL22by8h1blrapB7Bvdu2RZzRyx9skbzfoWnZrWQ+IjN/tnejjca/GWjXXTI+hsJ2+u6yTREdj2/SAishZJpBtGj9jXND7pKxjLoJz3NZUvchd82ZTNfk7tIu1RbuXJSeByVkPPYvvh4Y+BHRWxzH3BHdIvKTmN9I2oQtT9/zRVsGlbFuaoPc/G7JZOX9HQG3nvxkzbfUOEnXVa5Hm6KgIvp3lTkkJrn5z2WpRBxcx+/rTR6mXIt8gHHNDxys67ra6/rpFuTdfK57clSls0dWrdt30f0T6Tay2Xljk6kGvJYCJTefyGSCgdbu0WnzttYWY0IAXtptVQBah7BCIAwsPKng+5t0syUiohYM7ujm2mSutU43lFutgnkjMnbWmo7j6/JB2VbH4LV9PvseNnuu3WWdyNwsY/NbWxfsqKRAQn/Hy81jl113PoBKAso+VpmtDOluSNMsWrfj2n7T3O0GOZs0yU8m7hqphEAyXbR1y7oxaK3BsUCcWUCHsXaua5uNJi7PNyk7vZkUXTJvGUKgvfunuw7aslv5bVmEYQDPKyB7RkTbNbk9Sj+THNs4o+POi9DY3P4KtJ2tmbKhadfDXFtb5knssMNRQ/LvtO6oyG47tx/pSdlHXJftD9j+Uqe25cekieTcN0nGOTvnW/QPkclapa/n/zYmnbMvu81okdadiX5DcllYIRBqDU+ptPCJifLr0XhL055F3OQizQ0XjCt/uq6oNnN9xcen5aQXyf8amKTSZtdCRzYbCKbnljHxNZpk4zVqDQ3lFaIxrZwonYhoUwzuiN4gUsibktFL1x/fcN0SmaiowEc/82RlGav7znaEmXnEWrIdm7WsS8ZTWMBTsu9MYKd13pxskjtn0m2k3eN6fMrkA43ONhuL2C+jTVxs40bKBAKuwJDGlubJM7nujO2b6PydbTUrtbW29Nd+a2xaDTQWxpk8JdKHN56n3pD55YQUEEZGBVv6Wl71HpMYM0ZHZ72OMoZSCBZgISLqgsEd3VTRjXH3HFU2i3Qzg5Ds3Fmduoh1y8ht9nqnzJ6xJrlZc//eKYjr9Fq39fbS7QYnn6DIVunspH1OPp0cK5kbj+YlX1U8bim3LhkP3EmqTcZP3aVQLS3udgOafT25AZatn+0qF9gJmWYFQtiuBVhsZh9d5UFrbZSh6HLDr+OJrd3byX4bE0+2bjt3q+xSbbJXhk8KF6Dlsz3ZLJhwaUAgrt6ZHrMuK7dubFSH95MMG1rGbCWBm8gFJpnjJGXcjr7y03H6s+P8ePlzJM32GuOyaN1/Y1T+SpCiZzl/qw08TybfRRpKu+yUhTU67qaY26ZAVHglk13MZvJ0pinaZguwtD1aaNvnZHxayzEV8DwVdV81NukOa2wUBPYK8PLVOfNj7CAVXCGUju9neHBdRF3Vy7DjtxFVNu1w3mSyyHE9zmibQsFanamIG1VHNRAIdXT8lPLi1xHPCf8GVfohIrpFMLijgaeNjqYSeJ22FQWSr/9T826SzJPVPQPorXbbvDb2mgupmLj9W/3sjchgGFdApd9txw8ThJCQ0mzaLfOG6jugcvKZwM3JTYpzJITssz3tQctmtOvaa0JYqLZKlddKSQltTM/vWkjV8X03LcNm3AMLdV2BiEiydtJ9HULEE6K7jJ7Y0pyR3ZjMHJSd2Lizs0EIa1TXYyCV6u+8iYVaR/M3dhlna4yBNk1YWPiqcG393ImIBgyDO7qJOv9HvPv4tu6ZtetxIwK7foO1TsFTNEYnXk9+eURPmt36e21ns8xb2tYeYxyjFXVdXhvTV9fJbLDSaWtJtchMhs/dmGVvit14oW5zzrnsDJDe2EU3miIpZpGOd+qvO6Yb19NW/zPO2EXzkKXDoSBs8lq/ZDxOySbZ0HjbyfC+KPgzNp6fzEZFORRax95lj3Na6j7KUrmzur06omhZztHawPdVW8n8/HiwlvVk1q0QTXRtXdZRoPeNuk3bYIxpvbHPDkrs0NbWMXnZ8zH9YgRchjX6z1haVXOzLrGuAI37MtByjtnc59wE5G69KkpFd9rZlukn3LpbrieXdLWi5TKMNp996BG1Ihsk9ao+aWxcBdRa6DhLbq2bW1G0tM1YE10DbRngVhLR74GSEla0n8PprltoG8LzCtDNOOtpunT/zZwTmRfSv931kp3Wo+PYvtx3BIHQBDCBgZIelPLYbZOI3rLYf4FuGlfVjW5N2pgk+/FmZKxOnugDrV1vr32dUbDUEjBZd4Pf6SbYdTtuJYTs2T1MCEB5MgomhYQQgN7iXHlt7ey+NQAiDuy2tIm0sXGJfRsH0J7qnbkzxrRUuIkCu04bN+hdCbPDJ6xJirhYExXwMDBduw1qY5N56LqRQsYTjvfXFteGrbLGdpw3UUo3riz9v2ueR9BamPjBgafS57duAnFYxIVY+itQYuzmYxolKvjpn/4FCFGCQOkaG54KtY6ydtHTqExboms++rZtklEHXNY06oRbq9exUW8g1G/e3zciomvFee5usrfqPHfWhvG93623+/nMoMuW9VMtc6vc3rsbxzSTI9qWs/Gk5P2sM5fL6Eig/2kBAEDmshEmMyjH2lx3KIQtGTgPLivQ3/bc/a2Mx/Sk4+LaM3j5eey6ZRCi7midx7L1xbZm9Nx2NpvnTsTJJGsAIaMb6yTpJ2Qy8XOS8Yr/6UnRlgByAV4yvs4VxYGLpQw69o/brOokgOwcZFn57oXJ6pNKjpnsSluVSxtnV12Q677HfBbNjZ27/n5z3bvZxhkqkW936/vdrhiX0bSIxnK5Bx9pYJOeoxYWSqq27K9y+9lWNbPztrWxLUfExJVKs6/JTHUSk5m/sX/R9yJElC1055UVNhqrJ/MZ8ai7pxLRfHrJOGC47GbcjkwVWBPW8aM/8m8QNID/8v/8W4Qm7NSQrseh63mRjP/NZZsRF1QxNhr3mhHoAJ5ScVY8ek0JCaV8COGys0REby5bmeeOwd1NxuDu1tv9bpOld7oWblRwB/Sujil6vNdpnTczuHNP/bO9WTcL7mDcjXV/23qzB3dJlkhbeEp2De4kPFhhYLTdUnAnEHXTdPGJNrZrcCcFEIS6R3YlPn5dslf5G2eV3Oy7rob5AAVJURodv6q1bvnObmZwlwY6uUm241m23fxrXScU71lYJtNtMd6f9HDf/ODOdRl1x94YDSm9zOeuYToAV2DHdWkUUVBk4/pE2UJKQgrI+NGFNVF231o3L2IUsEkp24I7T1ro0IfVFsrXbfuZ3b9Ox2GrwZ0wSAca5q4Hi3SMq5RRYJc9ygICKjOFBBHRmwGDu1vIWzW4MyZ4o5vQZitj+fLZvHzg5W5ukuXdNtq2efMmMe/3xHJt2izQy2dwtE3H3wkRde+y8Q20izrcOj1IhMZ2De5s0rWxc6Bme03SnQvunK5jgLrp43tvGYuXyZK4AM9atNwo2mSMYnoz7pa31kJJv/c4Srfe3Dg7F9w5WtuWbBkgorbmI/0O+xkFzGkbLSwk2seWuYxVNjEmZXbfNp9GId0xkQTu2TYZY5OiI1LIDvf0fdz027QCpSt8kmYP3T6HHYK81sBCGwMJCSFFphCKSNafjlVr3XxStRLxueIqAguJrqN7LeJrRmSynGnb+g28k0nTWwJn167cuMa2x0C5dcdvSakg4jJHxujkVJHSQ61Wh+dF174Qbk5D1frdIqpIak2UHWzPmLYeh9agt5P2qRHaHrggeZqSPHBxhGh9QBTtWfu4PcdTKhpX2KNFRERvtK0EdyyoQnQNoqfWm3ejvBWqZl7LPG3t64iDlmv8vEiOV/S3525qb+mHSxbGiLab+yylBLRO9ys/r5uNs0A3Y/LlfrOUUsi46mB/bXBZSZEbkt35OHR4rBFnGEPdfjx6FQXpl7ZRkY9ognkJIYEwDJJgzlobT1OwxfUaC5UJmroVmomCUtEaRLuqoF3GWRo3XjHuxpqmbLd2/rvvxsRzyd0IodbJgwwlJXT8m9UMAsjsJOnQkJlzIhvgRYGdieOyWysjJiEAV7Q1w30DQRAgECKaO095nCidiN70mLm7yd5amTsLXGOhgY5r6zEW7lpcTxXObFs6Vb+83tuBXuvp9t7WRhS1dkPttypm+tnW70BJl4mJShq44M3Jj9/L69bFsuM+dAlikqyfzYxnQx/dM10728aP5WTmeMvf8LlT0o2nS4Z5ZTJxLtPlipC4lUXZvyjA1Yi+Bxuny4SVrW2Pb7pdNcReBVSSOcQymbZkB7K778YLIh1LlY1LJCRMJsBrDyLyGSObLBPtc/syrdKMUjrv2RZ+M5JzsX0/o7GtLkOZjplL29VZ5/fTrFprBtO2ZNzceNrOQUF6DrUvk64z+5q7phr1BkqlYvxx951lA89uvwj9Z1eztI26GDuh1igVimgGTRibqa7ZcZvZferwftJN1XX5dddJNF+iSL7/3t0zs9dDkjF1n+v2G9E2vlnklrFpt+moqfA9P5rGRLkxs5bdOInoDcXMHQ2E7JP4QdfPFZufZPyNlC9qoa2BytxYXyvbb+CV+0w/UyBcM9GeYXQ3ulGBivapPdL57WyS5QU2H5Ooszev+fdcf80urPufJJ5wAVrnD/WalNp9LhvUJDfQLccif6vc0hp0vNnPTFYupYzmoVTXfk7n9zMp/HGdxaDTczwfDLR3G9z6uqNMWLdxkkpKFOPAbvP2xe263oyTtXF1SddtVaPeqEN5CjJ9OfkXJSR0lykhNmuzNfnP5aaQ6JvEZtVWXUVNucmvrBtH2rSuirCOxhDKAnzFbptE9ObB4I5umustTX+jg7obsT6bydpd0+fR+ry+n3Uly2zWBbTfNvRZlTMb0KSjltKb8qisenxzL6IAT2SWBNJsUL78u0Brti3J4OWPSMen8VF2I1k2Ps/czW0S5NhNsgH58yEfUGYCTZl7q2XaAiHbtyGigFPG46uy991uijjXVc/I1v0USVYiklTNzKwjmy1zlMsgJRU23fGwyYnXKdATEC29CS1cYNchiMnOTxeX3I/+ipZt78qYO9PjwC4IgqQLnICI5jPLZI2sRWaspY3GkiEO5Du0PzkumV4D2S13ziZmMnGZgC2a200lf7fMiQcAwmaKzcie3W6T70m0P5RRUkWZSyEz49TSLGH0v2nGzhgLSLRM1t6eCcy1Nft6/lrKZPKz16JbXonomLtzPR1PGL2vM+ne5Po12WWicYtRdtbtf7Qfbpsi7g7Z/UGDbevq2np9ZJ9m5F6Lt9c6d2CH8z++PLSxyY6EOky+L20CaB2NJyz4fvL73SnvSkR0K2BwRzeFENHg/BvVpZLavZE3F9GcWb0KqLR2I9sqNyYv7JDC6j87mM8GbLHbWgdtmcVcmzp3XetOSAHbMhfXjb9eJCRCo+Ous7ptHFyeMQae17U0SLKMlCLJjiXFXTJbjZds/aCNCqqoeJ61bqy10DqEVF7UXpfx2cJ4ujRgSEv9A9i0e10UdPU+x+R1/q5lK2L2t3yUoco+bpFS5LrEuv27vu6afRcqyhwDty9JFdWWLF8m+I674Vors5HgDZLuZ1SwJ25LS0s6B3jRx6KHOCLuMZJkRkV0nK3VaAYBlFRQSsJTHjxP9Ziag4jojcExdzfZW2XMnbAC2mogmZS4/fm6tbd+sNdrnJ/pkLXrdtskkiyKm/8tP7dYf+u5Fkkos8m1nWQS4rbl9y7bEanTjV52LFlSFbTLHWFyPOMMhTVonQ9OWphskCN6BBc2V4C+27Kb/bZ1yWTkXgRg26tado2s4/L5yXGJXk3HGLqCGFGGRkgVjfdpKx/aqXtq53xBGiREt65pZie+KU2Wd0VxMhk9AJ7vY2N9A4VCqSUrlEwtIASQnxtMxud03C0vij2iqRskJLS/Ft1GW4Ug1NDWR1kWAA3YgoKoa9gCIKyBaBo0w3WMjIxDhwL1WgOyqKAkYMImysUCVlc24KkShoY8QHpYWbkKLS38QhWeKsH3FMKggfXVZVivAGssisUiPM9DPQwhlYLnKYShho6/JQFAWQulASsEjIwmxVbWi46NtNFxtxoWRRhloEWAgmmZI6T1u0iOR2sWrPOYu8z7Hb7T7KTqW+lyudm4R2vS8zlLA/CUTCf+zp2D7VdZlFVrrRbb+ZpLqorG3XrzvXB1y3GIMt5CivZrtK0JFtYdczemOv6NSXdRdKtzE7XZxg894oWEtS3ZxXxG341VdfMg+kUPvud37J5NRHSjcMwd0S3iRhWXuRmSJ/03IqLcRBo0i9zr7obpFnYN3YuT4gxJ3JXbb0Q34SLumummPUjvjTuE+5mxah23CYNshUuXJXGJhfRBQ3qTKgVgQ41iodAWq6YZviijEWaCGokQLisnhYDRHpTrXmgMdGMSBQmIQKMMC+OtIKyv4YXDR7Fz9x5cOH0Mrx7fwK987r/i4O1j+L7v/T5s37ETo8Mj0EbH+NYZAAAgAElEQVTj0pUzKA2NoTg0Bigfv/EzP41H3vU+WGkxOroTZy89jfnFc/jOj/1PWF1v4Hd/+8uYnZ1G0Kyjum0PyiUP40M+psfKuBxIjE9MolodxuTEBEqiBC0kAgE0hURBhdF3bDwAAoHXhA0NlPUgrYRObtgVlAW0SB8uJJnaZEzltY4du3Gi7737wxEho/F0+fkMIUQa2PVFQOswOuukm6JBtEx34ZYDonNchybOvPY+PkKKmzuOtod0qorev0o27i7dDEKEYQjlKfiq8Lq0kYioF2bubrK3SuYOcMFCt8xdq243+W+0GzlpeT/yz+07HbX8e93+3kz+GOdLBLjMXTJ3neh/Drls5k5YtE3OnZdOfhxvE2m2IBr6IluWa6XTIiUW156565cw7eU9u2krA59rgxtblXyJuSxQp0xFy1iidvnJxtuzJ/F0Di5D64YW5ZZPA5O4SEWSAREQUkLXmhgaquC3v/pVjEiFlw4fxvj4GM6dOw9RHsY//t5/hOeefxpf+eJv4p0P70ex6GF6YgJTY2Ooh1O45+0PIpAVNDYCXDx/EkPVHTh16gTuv+c2NEs+fv4Xfg4//MM/iHp9A3umJlFvANb6gPBQW7uARqBQ0xp/8t//ErfdNoM779yDolfC1M4pLC4sQBqN9bVlDE9O4re/8iV89Nvfi9eOH8GlC3NYrEucPnMa3/2xb8P5uat48tnn8al/8S+xbfsuGFWArwQuXjyPmW1TKAgJCB9NLVApDWFtbQW+Z+ELHzoAVhtrqFQqKJdKqIfNKNsVmmSsojvmuS86yaKqTvP75bJDaXat+zlsjOtCmz/nBDqPA9wsu+amaXDnYetchZ2vslw2ueUBhKsYK6Nsmkh7Yqrc/rZPBp/fpS4ZbSSndZq5g0ancYbdLt18Bdq2ruTJ74z7UyTNUFIgRFRtRgqRVBWWAvB9H57nwRrzBob6RDQoOIn5LYTBXWeDEtzlJyl/PYO7a+WO9c0I7nRo4KnNq2ZmJ7eOxmvFXQCVuzm8kcHddXZ6zQZ3Tn5gUjobe25buW27ku/54M5GXTNFp/FwcTexbkPFthrcucI3bWPvkra3BnfLy8uobdTwV3/w/+Kjjz0GpRRCX6FSqcBaizAMYRc38K0f+gD+4k9/HzqsIyxNYWh4DOvrdfh+GWdfehI7Dx7C2cur+JEf/FF85pd+GQ994AE899ST8E0FX/2d38WHP/xtmJgcwStHXsEf/vXXsTC3gGOvvgphBRqNDdSbAYarI/B8gY2NBmAsKhUfUvpx9zyLWr2OSrGCWqOBRrOBb5nZho/ftg23T0ygVqujMlTG4tUFjFSr+MvT53H48iK+0Wzi8uULGB2pwvd9rNXqGJ+YxIMPPogf+D/+JaoiwH/79c/hwN4DWF1uwBZ8HHv1GB5++GEcP38GH3nsIxgfG7+u4M51y027S7proNfvkYiDwPbXryW4swLJtCLRuXENwR3ymTvRMbiTbn/jczAfYF1PcKeNTrulZqq7duvaullwZ7TOTTESTZEg4gdRRqTBndZp04SIKsEWfR++73fcNhFRvxjc3ULeKsGdtWH8z1t3dzuNp8tW9LTWtAVryWcRZTY2C+K6BWDZOeZ6fa7ltXh7/R5RV+rbxoGSzd31tc1zly/eEd/MJ2X7e2yrLVzK3HQZ3d4tLBrTkrkhszI3niUO7mTrDZkVokPZ9HxjdMtnNi1Kkp9TLZ9ty49zEzYzEZ8brZUJHLPnfLdJrJMb6taqkFq3Vj90R9R1b3NtNXrzeQlNbr99E4UGWkSlRZTV0Q18fONbUBJBI4SUHhq1BkaGh3D58jnMzS3ghWdfQi2o48EH7sTM2Diq5TE0SyWE1ocJmjj84hE89NDb0GjWYEIP2gZQQmJxaRk7d+3C+sY6Tp88idHhERSlwk9++mfwhc/+Fxx+8TBUcRijQyP4Nz/1U3j6xeegpMLaxjr2jY7hozsm8PG7DuD4iXM4dHAfNtZquHx5HkFo0Qyb2LNzChuNBhSKmFtewMjQMC5dXcDbDu3G2uoaPK+MIGhidbWO0xfmMFwtouh7OHBwD4SSsKGB53uobWzg6tVlXLi4iIfv34erC1ewc3Y/gsI6GisGCgIF38Ply/MolUs41azhZ09dgbUWt+/bj3/9f/0Yjp94FSN+BZMzVfzxX/0pPvE//I+wnojG17l5C6WKMj2wkDAQInc1t5178bmZnG+9Ctts/ivk5lrMLh8FfjIONk3SPTNfvEikUQqAbsFd77a5bblMpBAiznZZaJ126xXWtmX94hnRu+xiLtiLXwuDMM5kirZqzWGo00JBbVN6dNarEmrvNkZBb5KRtAYQAqVCadMKq0REnTC4u4W8VYI7Y4Ko8t8WKsC9XvKBWj/BXf6zr3dwl93ejQ7ujI0zCPnbtS0Ed20V9bYY3EWTGNs0GHJFUjLTDgDRjWmouz+1Tz57A4O71izKTQrujDvWMg7kOhXOEElbs1MDdJXrC2viMUvW2uQtaQHfRoVPwtoq/sOnfxZjE1P4lve9H2WlsVFfwR13HETQBILyMDwpENTqsAYoDlcQNJoYLSqcu7oIwKJYKkIpH9auwvcrmL+yjJ/8yU9jaWMFQNT97p/sHMeY56GuDR6enYGVCkvzy3jqpVexb3YKxhjcsW83Dh99Dfv3zGJhaQW37d8NayxWltZw7tIVeNJDwVfYvXMKKxsbuHhhBRdXF/DoPYfw6plTqK0ZlP0ixqdKWF6ooVTwMTIyFBflAP76uaP4yHvfgUuXruL223dCWwO/6KPZ1Ji/egGNIMTenfuh0YAODP708efw9x59EFpbrKyuY3bHFKQHBEEAzyvg68+/jC/7w/jR//3/xMT4EBrri7hw7jSOHDsOKSXK5TI+8d2fwIYnIaGjglPwoNqCu1ymr2tw1yn7/OYJ7jIrBayBhkgmTA+1hoLMjdPLZy5z13yH4C4aR+ihdQqG/G99vO6WYlLd75duVHDnMqBKRkV9pJQoFgoM8IiobwzubiGDHtwJxPMDIWx93Y1/2OT86ne569Wp0mXahjRb12+VzLxOwZzcQkGAfrpcunXmuzy6Y5gP7jZtdT4YyBTIiNaXbsdCwGZuvtpi+Lbvr7VbpcwFVMYFbEl3xnwFzLhLmLFJoOi6rOkwF5zluzq64K7bROhtwV2+K112ZRKIC2gYY4F8NcR8N97c+dNayTLqsqxcF1ZrkrZmK1haYyCkijJ6mfUn/5YU72g9hp710Gw2oZSKMkUFD2EQIKg3EQZNHD/yCu4+dAhf+q0volAo4EMf/CDKwyMwUsFKYH51HsPDRZRLFayvNaGsQrFQBQAcPfoK9u7ZAWMETG0d2heo1TQmJ6bw5a98EeNjVfy3L/8ePiBD/OMH7kdBCSwsrWBkZBgnzpzHbbt3ob6+jrMXr2J6cgIvHj+N9z/0Njz78qvwhMDI8DB2zE5Ca42rC4sYGx1BwSvixaOv4fY909Dw8VdPv4xHDu3D9NQQSsUqjp85Dd/zMVws4uUTFzC7bRx7d0/ipZfP4OEH78Q3XzyCY+eu4Ls++BCWV+ooF4qYn5vHzp3TOHbyAvbumgakgUKIp4+exrvuuw+LC6vQJsD2HdOwxmJ1bQOjI1UYGATa4PKVOUyMjqBSKWN9o4Z/fvg4fukXfgFP/t3f4bO//PP4+Z/6cVy+Modf+q3fx4tHjmJq2wzKJsRwqYwrgUGpVIAxFsViAY88/DB+4F98quO5mTzH6PSgQggoZLsTdgr8sq/HQZIVLRU7s915jWmdaCHaTOv68hUu2wK3lm12E1/DueVU8pDHXRM34b8H2d+DDpm79q7P1xN4RcGd+2kx+a8K0UT1gdYo+D485SUZfM2sHhF1wODuFsLgjsFdP2714E4IFY1lyd+spI3LvdA7uEvnHkszWi1ccGctkpxBvKjy4v1Msl+65f224C7fxlsguDPWQpt00ncXwOaDu5bpCPI3fJkvQVsDNA2efvoZfO2v/gqf+tSnMLFtCkdeegUbK6uYmZzCC098Ddt37cBtB+4AlITvD6OmNVZqdVQnxjBsPYS6jjAw0AGgUcdjH/4EvvI7v4PnX3wK73nkHfiBH/3XWN/YwAFfYvrKVXzve9+J6lgZCKPARyqJcqmASxfmcW5+Ae9/9H5IT+Hll08iCELcsWc7hkerCIMQvqdw8eJVTE+NAZ7C8vIahodLEErCkwIbKyHW1tewbbqKjfUGzl28gkO370HTaDRqFvAMfL+A08euYMfeSdTDGkqygGagMToxBG00Ll9ZwvT0MDxZxNGjZ6EQolSpYO+OHVhcXMDC8iLGR4ZwZbGO5Y113LZtFnPLy9ixYwqBCbDRqGNidAT1eohKZQhB0+Drzx7G+x+6N6pwKkOcXNnAvzt+AVMFH9+/bxKHpqagfA9CCAgTINyoo1QoQIsCVpsbGB0biU9HN3k6cHphET955CzWguh39Etf/Hx6/uVtEtwJIaC1zgQInYM7V8rfTdjeNXMXa5u+IJnsPcvG79lcd+NkrfH5mtuW+52QIs4qtv8etG6mS0Yvu2zbQ53NgzsgG1jduOAu3YZrSnv3f2uBUrEA3/c5dx4RtWFwdwsZ9OAOMPFk5a3nXL4b4s08z3rNTddruWupjOm6SwK9pzmIbnxk235vdpw6t/vGBMjJWDvhsm+tGSBX6S0JSYVtaZe1FiYOMF3g5+4HrRE9p6RKgpQk85cv5pGvlxd3V+ywS0mRBxu1T0gLE5roXkyItqC1zWbjmtraEm00O+7NHYf2dctoeE1SEd/NIej2KqKtie4xk4DazURtoX0BYQBfA42465oFUPIUgkYDpUIBy4uLGB+fwvPPPoVnnvgG3n7P2zGxfRZT06No1GtYX23il3/x03jo4XdidvsujI1PY2TbLF49dhp79+3C0HARZ0+fwW2378Xq2jJWVpcxNjaNT37y+/H5z38OpbJCQRZx6vRp/M7v/gG2nzmG2ZU1PHDnfly9uorhahWXrlzFnh1TKA+Vceb8Gdy2dw+WFtdw5NRZTI4O47VTc/jw+++DKpSweGUJpUoBa/UGqiMjOH3mHHxI7Nu7HSEsFq4solD0YIzFyHAVhYqC73vYWG8ARgDG4PL8PGamt0GFGi+fPIepqTF87ZmX8d2PvQemKTB/dRnbZkfw6tHTuLC4gvvu3It6vYai52PbjmnUGwFss4mCL3Hq3GXMTlbRrK9hYdWiUipjfKyKv/jms7h77x4sLtdgYXHPnbvx/CsnsH/ndhx57TzGhoewc+cU/ujrL+CRu2/Hcq2O+++5HcYYLC+tQEkJ5QmMjA1DeDKaOD60UMqDNgF0YKGUhLEaSknUahsoFItQUmJ9rYbqWBXNRgPlchHHL87hx4+dQ7FUwhe+8Jko6LEC0ur4UYGCgMEXfuVX8fg3nsDictQVdmZ6Gj//n/49gDiASZ4cuYci0YMclaSpBLTRSZYwmRfRvd/ldyWa101E64KIivS4+T3z0yy09AKImpRm/WxrFrBnxVi0LrPZf1cyQVxUuCkqWmSMaSsUk3bBTB/srK2tYXi44lbWcRPZXwsF1z20WydW11W2raFJGwALqRSKvg+hVIdAnYjeihjc3UIY3DG4y9pKcNfvMbsVgjshJLS2XcuN38jgTsRtaS0Xb6E8BR26Kap72GJwZ+Lqgf0Ed9qKdL43ANqEUEplVwYACHUIKVVbERThxiFaG98uN6P1hCGWL67gpZdewHNPP45qtYCPPPZxjE6NYWM9wNDIDlhhEOoaCkUPYROo+iuYm1vERkNjdGwKn/nsb+CuO+/Fo+98BMWyRL2+gaGhIQAW9UYdc1dXYLXE53/j13H01aP4D4duxzefPQKtQ7zn/kMYnxpBoxFABwahMRiqlLG8sIyNjQ3s3rsDSytrGB2rwgQhFldXUBAFLK4uYvfunZi/sIjj5y/g0QfvRhhqLCwtY2ZmEq+eOIOhcgnPvHwMj33wUaxvNPHCkbN44OBelEtFXLh8Fb4vERqgOlzCV772ND7yjnsxOTUKv1TAM8+9ip2zVQSBxbZtkyhUPJw6cQEWAk8eOYkPPXgXpLHwywWMjFaxsbKOysgwzp29hJX1VeyaGcP49DReeeUUZqbGMVQtYnWphnq9gcmJMVy6MocgDLF7xwx834PnKZy9cBEj1SrOXpjDXYf249d+7y+xe9sYHrxrP8qVCowxUJ6A8j0oJRCGJuoqay1eOXYK+3ZNY31tFUVfYWx8DHPzSygVimg0AyjlQSDAq6+dQaNp8MB9B1EdG4H1FE4vLuFfPX8yOkUhAAv82KFduHd2BlbYtjGZ/+qJl3Gy3sD3/KN/iI9/4ju6BnfuZ6y1UmdmYvHMerPXpNE6De60BZSEEqoluEtO+0wmyiZ7IOOeCAZSSGhr4mx1JjPuehGI1vUkbU6q63bRIbjTsHGEGa00vTrbM3kW2YJH7de7EAJhZvv9j0vMt9kFd5ljZwGromxfpVSMl2NwR/RWxeDuFjLowV0UILUHObfSedVvEOeeKGcZlx3KvS7iJ9TJ30iDpej9zkFct/fzy2ULvfQbEF7rMU8ntW69NRFtXSlT+eBOovP0B+mD+/yYOpV2j8q+n3TH7HET020MnYmDT+n1fvq/WbVM1601P7atl7apENy63NxyUYBoLWCNSYJDzzahtYaQEtYYFDwf9cUV/Opv/gbe9o4H8cIzL+Hd73w39t+xHyvNEMVCAWGzgeZGAyMjVRw+/DzuvOsefPSx78Fv/vqvoDpeghICUhSgvA0UimU0A8BYARsa/NEf/gXe+553ojpaxtr6PKrVcfzzH/wxLC6t4Kf37YISClMzE1haXsLSwhLGxkbhF4ooVcrQzSaWl1cxOVVFbXkDqlBAZWQYYdjExdNzEAVA+AI7tm1DYEIsXl3F0voSDuzfh6ABrKytQJsAxUIB1aEKTHxdLS+uwvMlJqdGcPXqEqrVKqwN4KkyVlbWUG/WMFQswAqLsbExrK018GdPPIWHDuyH1hITM1WUS2X8/l88iXtv24vbbpvC6kYD5VIZzVoDleEhHD95Gnt2zuBPH38eH/vAo/jzv3kCd+7dgbGxYXh+GU+/cBwP33cQ5y9fxszUFAqlKIvYqIW4fHUepZKPUIfYvXMa/99fPoGPfvDdqG00MFStYHV1HecvXsHRM+dxYNdOjA4PYfuOafzJ3zyLb3vvfXHQHaBSHsLxV89h+8wUhqplGBNCeR6kjObJk1LCBOvQQR2lyjC0LCGor2FpaR2VchFhoFEq+rhydQFDlRJmZqdgRdT9WiiZTPrtHn60/T6EIT759RdRLpXwhS/8Uv7iyPy7Gxfn3nLXetqNOFlSpgFS54xU6zq7dzzv957FpmnxXPfKfCawpetl5se9fU49AVeEJdtGV81TqTTDCcQBWGY6i3zmLlq0d2YxX+wl37XWcev2lCs440FJCU+pmzEqkYhuYQzubiGDGtwJRFmgqLR39yBAIHoy+3qNreslG+RJqWCM7hjQtXymy+v5zyQxzBYDMvfXZvPCAZmiA+4zudZtdmyle3Lvbkq6BL0tVS27dT/MvA/Eo3p0Op5HxN2StHY3Vx26Ol4va6PukibTxvi1LBecW6Rdr6y1UeQpMpUq3U1cHJG646NcVkFISBtPLyABLYBy4EN7DYQiRBB6KBfLcYYzgJQSJRMAVsGERTQaAcq+RqgNnn3mGRx+8Xmszp/Codv24KlnnkfgVfCRj3wXjp96FXfunsS97/4w6lqjUWtidXkDvm+xvLyMmdlZLC4solKaxLlzZ/HEE4/j7337hzA+PgZYi6WlNTRqChOTwNryJVy6fBV3vf2DgGrgycefwdvvuxdnz57Ev/vZn8NPve02jBeK+No3X8T7H7gPf/f0YQyXC5ioDuPAwb1YXlzHpbk5vHblAqZHJvD2ew8isAGWLixCKIn1RhP79u/Fc88eh+cJ7N01jXLJhzV1CL+AhcVVTI4O4cr8OkbHRlAq+tDGoNnYQLlUxuLcCoaHhrCwvITZ7RO4cH4eYxMlDA2NImgabNRrGB0bxqnT57F9dgq61oT1BAqqAlUE1tc2MDI2jLX5VQyVK2iEIUrFMhZXr2JsdBwnTpzD9u3T2NjYwOTkKOYXF1BQPk6ePY8798/CaomhsUnUauuo1wMo4aFU8XHq5DkUvCI26hoTIxUoX+LKwhIKRQ8j5WFcWV7Avl2zKBUrOHvuPI6cOYdH33YI1aEhfO3JF1GtlHH3gX0oj5UhlYCnPAQNg6BZh+cp+AU/CSlgLcLQ4G+fehEP3bUH2gDVkRFI5cNTFvUwgAk0isqDLCqEOkSj1sTGeg1r6zUMlys4ef4SJqtlLCw2cfDgdoxOjUIYBSsNhBLRFardL0Z0NXzyr5+FEdFfH/nWD+L7/+d/Gp3+roukRZxNc10sTdplE9FzCzeBen6uxf5t3tUxy7prFSLalo0CTGvjufVU/NAIFp7yYaxJf1tdkJp0Ac3/XuYDrM7ZtWS8YIffxXxwFxWF6rSuzv/lMcbC82R7FeK8eP2+X4Dve9A6hFIFGB0y6CMaUAzubiEM7t5awV33bXfvfpl9v5c3U3DnungmLbqJwV36d4fXgHiHbRK8WWsz018g7c6WqxbTkrmLizyouEcXRBTcCasAhBBWQ8BHSUnoMICFweXLF/Fv/91P4c6Dd+N97/0QJidnYPU6PCUwOjYGWIG5jSYOP/c03vHwI7CqgKKtQxUFLp94EdO3vwNL84tYXFhCsVDBH/7BH+E7PvYxnD51Gnv27sHw8CieeOJxPPf8s/i+7/0ejI5OQAgDawUe+8g/xOc++58wO1PFz/3Cf8QP/ciP4/O/9hv44u98FX/ysW+FVAJryzUAAhsbG5jaNg4BgZXlVVy4dBXGWuzbsx1BM0RlqIRQN+GpEi5fncfuPTOwRiAMmygUfSwvraHgeTh64ix2zEzh7MU57N41g/HJCfzen38DH//2d+GZ517CjqkJTE9P4MqVBYyMjcBXCsvLK2g2Ayyvr+PQHXtw7twcdu2ZgNEKnufDGA1jNTzPw8uvnkRJetizaxpHj13AnYd2wlgLv1iCEhKXLlyFX/AxMjSMy4uXMDk6gfmFZczumMSJU+dxx77dWFvbwFBlGMFGDUY2MTdXw5692xGGTTQaAYqFIpQncfLEGVSHq1hYWseuHeMYHhnC/PwyrLB45uXX8O4HDmF9rYHl1TUc2L8T8/OLuDS3iKmxMZy/soCp8VFMb5uAgYQQGr6vsLS0Bs/3MDo6HN3E+wpBGHVFdF2MT585g5mpSfzxN57HR973MEwYolgpolFvouB5gJS4fPkqFpbWsW/nLI6fPod779oP6QkE9Q2srxq8dPoU3vvI/bh8/iq8gsL4xAg8vwBImUko2XjgW3wNxD8FYdDEDz99DIvNAMNDQ/js5/4zkqDGaBid/sYIIV734M79orhMYbRNxF2Z28f6dezabW2X2GqLwV3ycrqi9sxdp/W417Z6rNq3aRFVExYS8FXh2tdHRLc8Bne3kEEN7gA3oB7oFdzldeue2Ok8zE9Ce702655p0T6eTuTe71evTkhb3Sd3jESu/ZvX8My3KZdNRGsQk9dPd8SumTsro5ugfLfLa5F/Ur5ZZJ07+O7Jfp4UUZEUZMfUZMcGue64ItODNL65VUpCaw0ro+6OG0uraNZr+Op//xK+5X3vwcLSIh559CFshApCCiwvrmJ4uApjApw4chg79+xDTUucOnIM9739PijPYrhSwnIjhPQAL1jChpxACQL1egPvetf78PjffgNSCJw48RoOHDyAYqEAzxO4OncFqyvLkKKEL37p1/FP/tk/hQ09WBNCehqf+qEfwc/efwdmx8bx9Sdewrc8ci8uXLyM2loTu3bO4Mt/+jhmx0fwyP37UamUEYYaV+eXsHvPDtRrNXi+glISTz9/HA/eeydWVpbxzaMn8fff9w4IGJw6eQF7dk3i8NFTuPvgHXjt1EWcPHcFw+UCzs/N49vf/XaMjFSie2oNrK/X8AdffxHf8a3vwPBwEUEYQEJgbX0Dv/sXz+KT3/keLC/XUB0aQm19HdITKBSKgCfx+3/2JB69ez+2TU4CvsYf/82zmBodQ6VUwIH9u1EseDAhEJgN1DZCeMrD6GQFK8vrmJtbwY7ZGXglATQb0DJEoTyGC6cvwRqL6W2TuHjpCqYmRrCwtI6RkSo8T2FxYR5Hz17Aw287hGKxgIWFZVTKJZw6cxW7d0whDBoItUYz1Ng+PYn5hRUIKbG6toFto+P4w8efxnd96GF4vg+tLZ575QR2zUzBWovts9sQhCGCZoBLV+axd9c2WCngFwpYXd3AyGgFElGFXOUpfP2Jl/Dw2w8haGjMzy1i+45tqDU2orGdEhC2hHLFh5ASwhgYbXDu/CXccXBPFDDZ6LpXUkUT2mevkZbKrhYCwHMXL2L/6Cj+128eRaVcwmc++4vpZRZ3TXTVNntehH3LdQnNS8bPZQugiLZpDDylIKRCEATxVA/uc7mJxaOdT7J90esCOu6C2mlqhPa2pYGaQjq2r3W38t00O3fDzG6rdd4/t2zrb6GQInpQaTVgJZSUEEJCScEpFYgGDIO7WwiDu1a3enCXvyW51uCudzvePMHdZuPO3gzBXTwgsvNUApnuWflpJpJCg/E9lUWc5bNAyS8grDdw7sxr+Mwv/yruf/tDeP8H34Xh6jhCE2B1eQlrayvYuXM/1tfXcfXqZezctQOnz13C9hGFE2cvYmbfXXjqz7+Gex9+CNUhieef+ls8+r7HEKKJ88eex75734ugtobaRg1+oYxSoYCV5WWMjo4gDDVOnTyD7dtn4Bc8QBh4agQL8xdQqhTw/f/LD+ET08P4Bwf3w1gBpQG/XMSzz72K6clRbNs2igsX53DuyhzuO3gbmkGI+fl5hBbwfR/r9Qbu2LcbIyMlWFfV7IUAACAASURBVACNeoCTZy7irjv24sy585gYH8Mzr7yKd95/NzZWGzh85iTu2rMHQ5UyfM9HaAATNuF5QGgNCn4BFy/Po1oeRrlcwTcOH8ahvTsAazAxVoVfKUUT1jclhAxx+dIidsxug9UBXnn1BEZHxzA2MQbfK2Lh8gKWVzew97Yp1NZDDJWL+L2/+Qbe/457MFT04ReHIf0QVkvU600sLixCKYVqpQJAolwt4szJ05icGUVldAbB2hq+8cxRvOvBu7BeW4cnJMrVKk6cOo/9e3dAWR11M7YS2kTZrXqjHp3rwkfQbGB8bBhWStggwLHXzmLb5BiqI1W8dvI8ZqfHcGV+CQXl4+lXTuOxDzyEleVVHDt9AY/cdycef+4V7J2dwtzSKu67+zas1+qYnBqD5/sIwgYQWCjfg1GADSzWNzbgez6UkgjCqJJisVSEMSHmL69hevsYQh2gUCwAGmg2G1haWkRtow6lFC7Oz+PBe+5EoVqF0DbOQluIzJQgLrjLXgvGGHzlyHH8jfbxi7/4aVgrIJXYYnDXO+hzz1bSpnS+2KPMnU3m6OsUhHlKot4I4HmqNZOWNCHzu5IJ7ly1227rzf+SGa2j7qAAfCkQhGHXaplpRrF1nW06JvYywZ17Rank2/KUh1DrZMocAFDKY4BHNCAY3N1CBjW4szbcfKGen7/5h2Wr1TA7tWirz5+jOKK161LUFtvx7/xySVuyFepyQcdmXSWz3FgxoHXeumg9+caLZP3R8khugETuZiV/bF0FUjfGzs1rZ/Ib6Tcwi0kh2tYRdbXKvNapN1W2e2bufZFUDYyzs1Km0ysAsEIBIgQgEAYKYxOjWF1eh2dr0KtXUCwM4/SJ1/C1v/4z3Pfu92NmejeGKiM4fuIo9u/cDXgCC8tLqE6M4/TRI7jj9gPwC2UsLSyhMiTQNKPRHGl6FVIVUFLRDePluRVUh6cxXAmhzSWUxTa88OLTaELhbfvvhmmGePKlF7HrttsxXqniy1/+Cr7jo4/hc5//LN79rkfxn3/tt/CJqQqm1+oIagZ7Z2fwxOETuP/OXRgdHcLK6gZCDTxz/BQevXc/ZidGceHCAqZnxjE2NhRlq4XE4vwyrBUwYQirogNTLZdhCsDlq0u4ff9uLM+twHohRkaGMH9pDUoAjWaAP3vyMN57/0FcnF/Co2+/G6rgQ2sNr1hEUK/jwvkLUBAYGq5gZKyKs+cvQkqJXbOzAAL4pQpqTYtgfR3lqoBu+JCexuqaxdcffwW7Z0dw8MBOPPPiMezfuR1/9NRhfPzvP4xyoQhhJTwlEBiLUtlHo1bHN589jkcePYS15XUIK2BDi4mJYSxt1DFcrWBtYQUlv4TFlWVMzUxEN/QCccVHC1iL+obG5auLmJ2ewm/+4d/in/2DD8DAYO78IpTn4fLyHHbumER1eAT1tRCNegPaaJQrJfzeX34T3/mhR3DstbPwoTAzM4rDr53FfbffhhNnL+KuA7swMjQCY0PMLc1BmiLKBR9GWJSrZei6wfNHTuCdD9+NUGsYa2GFgA5ClMtlPPPCETx4350IghDCE/jqn/0dPvzOBzBUKWNxeRVjwz4aGzUUKyNoBE345QqMNrh45hz279uNK1cW8dLp03jPQ29DsVSCtgLwJIJAo+graBjAAtJE14uVAhDAJ7/2LIQFfuu3vgApRXtV2LaCSJtlqtCSqcpe8+0Tpef1/nW2bvxbXJREueJPbXPl5bNl3f6LINBegKXLfqkoI5pmDrPr2YqobdY9i4oLT/lSQkgFazQ0RFRrxuRDc8TdNn0ANsqg236OKxHdSrYS3Kmf+ImfuIlNIa3Dn3ij23BzvBkmWb3+APJaRpBkt9pWQKVLUNZznrsOf/davnXZNBDcLK5Kx3EgXV4IQIgO24ufcruxa0a0jP0Xwr2f30Zfzc6sR7Stw1UFbF84bZno9LQ6Sfy1dpGyxsAYCxHf7AgLKFtHwYY4cfhFHD/8DI48/XUsnTuGF189jUKpim3bd2Lv7bdjdGIbYDz4vo/R8REIAdSbTQxVhwFYhKGElR4sClhYWsVLzz6PP//a3+KBB+7C0uIFlCvjmLtyCZ/+9H/Ew4++C5/9zH/FPXcfwGvHn8faUg2H7rwfQ9VxXDh3Gb/2q1/CcHUcBw7egQsXLqBcKuP//pmfxZUzZ/C/jRbwsBDYX61iamwEK2s1HLprD/Zsn8CVhSXU6g0cPLAXz77yGnxf4tEHD0EKgcmJUWys16B8hXqjiXK5iGagoSRQqzfQCAIsLK9i5/Zp1Gt1TE9NAFZgeLSEcqGMKxeXMb+8jOmZCRSLBRzYsx3TM1MImgEuzy1g+/YpNBrR3HLWWExOjqMyXAGsgVIS07NTKPg+Go0QxaKH1dVVKGmxsLCCUsmHgILnK9SDBl46fRIzk0OYnZ3CtvEqNup1PHzfgagAhQYWF5ZRLhcxf3URS8urKBQKUEqhUvDhKYWhoTJKQyXU1tcglIKExPLCKoZHq9A6wPLyKsZGh7GwtIyCX4CAglI+FpeWMbNtEi8fO4l33XcQUIDnexgaHkLB93BpfgE7d2xDqC2eePYVzG4bQ6PZwNTUKJ595STuvXMfdm7fhtXlNUxPj2PfzlkUi0WEQYgnnj+Gxfk1nLt4FZVyAU8ePoHdM5M4euocpiZGcf7CFdx9516sbaxjfn4RI5UhSKEAbTG/sIT9+3YiDDU83wMCg3tu34tCoQBjDSojZeigAeUXUGta6FDjqRdexXCxBGGihxoQCocO3AZjLY4fPfX/s/fmQZJc933n5708K+uu6rune+4ZDGZwETwAkgBJmZAoXjK5lLQKWbIkByV7I3Y3VrGWvbK8trSyNkKWzNVhcbWSYrkryqQkHgZXJEWKJAASIAHiIO4BZqZnpmf6Puquyjvf/pFVfU0PZkCANkj1N6KnprIyX77Mqvy9932/3+/7Q0MR+iFZx+bsmYtUKyVIVFrZQ2zWsvzggXE+OD2OeuwRfup3P8qnP3UvlUqFQ4cOXONBfwk7t0Xhc7steYWep/7xaWF1iZRp6GTKt7a0ra5iNzYb2iBWVxK63Y9TbF9E22z+ZV5Tv28bTfW/i7RcSt+OkW6TQtse9SIUKEEYhSBkmmopByR1D3vYw/cLNF3/9evdd89z9z3Gnudu53HbPVg7t7+8tnavb6dUsiGYshXXqm+3Ww8GIS67rTsn6kq58athp0fvewmxMZnZfp0712mviFLcOdhv847tvM4dIaLXqlt3lXjXjdDHQZ921LdSanMN+gov4E5ci71uhJhuqv+l3FUSRRFSSuIoolurEYVNPvqHf8CHf/4XyY4f4KH77ufON91MrlLhuedmuOHGm6m3GixeuMzo6AT5QgElPISUdNsdCoUCcRxh2EVarTaXZhf49Gc+y7/8736JduChRECnuYo0SpSyNl4QYeWKzF08x9jwEI36ObrNhBfPr9BqNHjv+9/HysIa3W6Hf/2R32a4UuGfHxzjUK5ArGIMQ8eyTMIgol5vEYURTt7iwtwyrzt1A3GYEMchFy8tc/DgBHOLS0gl2D89jtvzOX9pgZM3HKTRatPruUyMjdB1PRr1NoW8gwIc20RqGrppECUBhubw1HfOMrmvTCaXIZdzWFhYpjpUJuj6qWBIGGEYEsPU0wUAITEtjfXVGkPDFXwvQNN05hfXsExBueCQhBGRNMhkTJIkwetFrK812b9/HKUUYezhuiG2bZPEIVLTUErw1OnzvPG24zz2+PPccuNRdNskAbQ4Ynm1hmVb5As5lIqJE8WDjz7PW285xWqjwVAlj2VorK41GBoqsb7e5okXL3LiwBSWJSgX87RaPc5dXuTON51CJQlxnMroNxtNkIJMJoNKYizLZPbyAolKmBgZJVYJjz97BhHDHW84QbfjokudfCHHo4+/QKvj8pY33Ei31+Ps7CLHD+9jfa3B9OQo5+fm2D81jq7rdLouC3OrnDp1jMX5lbRQuhA89+IFXnfLDawurmNaOrqlY2YMIEEKMC0Lz1dIUlVOTWpIKbj3voc5NjHO4YOTSB0Sz0trRSYxQRBiWjZOIcuZMxexdYMDR/altd/6vED0icLWh00IwX//rWepBSFvuP11/PNf+R+3PYKbZR82DUIUJWnoZL+ZWCWbuXWaZDMnbvM8qUKuBClSpcgtXqgkAUWyERq503QNBJTiRPVrUm7t35WRAmEQIjW53TN5nVCib/c3up8g+jU8d8duuXabGFjVDTM5yPXTBIN6nQPqqfrjn7rC+PbbkAa6tilAsxe+uYc9vLaxF5b5GsIeudt53Pee3O38fIC/L+RugJ3n+34id1t7vjmve4XkbkdYJqT5MgPoekpG/u5Tn+Sud9xF240xrCL1doup8TFE0sXt1SmUx+j6ikAlSN/kvq/eh9TgdW84Qa5USgUV/JDGeo0whqHqCG7PByH52uc/i8iY/N7v/QG/8Wu/zvnFRaZHh5g+eJCWG/Gb/+uv8vn//EVOP/8gzbUuR29/A16zxS//xr/l50eyvOPgQb7x7We5/aYTmIZOohKyeYckiVlfr1Eulpi7tMToSIkgFhi6zspqjdHRCioK6XQ8hCYolB3cVkgiIlSieP7MPLfedBjT0PADn2zOIYwSVJik9fl0gaFpuK6Hk8vSbXWxbZ25hRWKuQIIRT6fZX29QaVS4m/uS3PgKpU8Z89dZPrQPkSiY+iSwO9imFY/hFfS7bpcuLjEyVOHkEphCEEgFd2WR6FiEXQk337yWcaGC0xNjmM7FlEMTz5zlpNHJgijmGazy/jEKEgQKqFR7/K5rz/Bu998M6WyQxTGZDI2Z85e4sChaZIowDQMQNJutdBNHT+I+PI3n+auW45i2RZS1yhVSkSex/mLCxyYGqdWa6FrGtVKgYWVGhOjVeYWVtg3Oc5nv/It3nP37di2idQEnuvh9gKkIXEyGeYvL+HkM1TLRXo9D9f1qZbLfOOxpxgq5phfr3PLkUNpuOqlRRxNZ+rwJOfOX6brBpyeXeSDP/QmLs4t8eTZWe6+9QRBGGEaOvVmm2IxT7PVZaXW4NYTh1hYXOPgoQmkrmGYaU7ewA4plZYSaKy38T2fsbEKfhyRyZgopXDdHqZpIzRBt90jm8mkQiy6lhJApZCatiu52+1R/dhTL/CVpgvAv/nXv8rJUzdsOW5LK4nql7HbYjBeitz1d9suqDIgSH17fwW52+xzGoncJ0gDIZSd4idCbA+Nfxl2PB6UaNiIClAvHQ75EhGe/U6mu/UJ6FZyt9E9Mch/3klGt/dbqTQiQyUJmp4SPdlXBd7DHvbw2sMeuXsN4QeN3F2taPnWibMSanemtGt73/3tebnk7rravMr2a4Y0Xq29a1zfzhy8l1U4+2Xiipy7q8wiBn3QhNyioHfFXum/L9ebtgO7kbs0fGoLAbuuvL3+evUuuXZSKFBa/1oEMQJNl0RxjCYNRBTgu20WZy9imzpx0GNk6gB+onF25iKlbJHzF89w06mjZHJDJHGEbZp85/HHOXz0zfzFx/6YD33g3ZiFIrX5FyiWR7j/69/muRcv8NPv+wAPPfwNWr06P/OP/xGf/PO/ZGJqjNnZJZ566iy//6d/yCMPPsT9X/kyRw4e5O4f+SH+4I/+jDfeeoxP3fs57rZ0Pvym29FNyey5BQzDIopipITlVoOjByaxbJNuz8VAI5fPEcUxp2cu4bout9x4BIkgjGMWFmuMjZbRZEKz1c81a7QZGx2m3uiAiNE0jZHRIRKgXWvQbHUplHMUh0q49R6ZXJbFS8v03A6lSoHycCkl5LHBxz/3NX76vXcThD521kLFEikEvtdDN2BuYZWJkRHWak0m908S9iJ8r8PCQo1ypcyTZ1/E0jXedOoEAT6WnWd1eY2MJSgWi0SRwvd8VCi5tLjCkaNT6LaJSOI0zBBAU3hBhKEbJHGE1BV+z0t/QwqSKMYpZFEJ2FmHII4IOx0yhTxJpFhaWGVsrIJEZ2FxhVzOws46mJZF1Lcn933rcd5w/BheEGLaBnEYE0cxlq7T7vgYpsboWJVPfeFbvO+db2Z9dQ0/8KmUsmQsBztnEwQBsR8Sx4KZy3OcOLaf+bklnpyZ47133Y7rBnS9CKnF6JpGo9FOv3ckBw+NM3NxnumJcWzHZmlplaFqmSiIeOLZGY4dmKBQNFBCMnN+kaFCiXqrw/B4nmKhDHpCHGmpGIomCfyARr3FcLVAnCgsy0QpCCI/JfaJwnM9HvzWi7z9zbcgRES9XmNy/yQ9z8dwHPQ4raeXCBBxapPVFkImZN+bJFIyJWJFx3P5pUdOUy6V+eM//v3dHup+DqQgFlu2q625a7uUYeiTwc2Q7k2Stv0UyQ5bs0ny6Pd10PYm6ZQITZKomG0caIuK59a2riUjtUm/BNvHVbGr6uaAqA5M4qCvu/oUdxLB/nUO8qJ1KYgStekF7P9HCg1d0xhUNVQbwjJ7OXp72MN/TeyRu9cQ/r6RO5Vcvzcrbe+V3J7dw002294jd1vx/UDuEFde+7XInVKboVYIubk0339JBm0mCglIoeP3umRMDa/b4l/92r/hwKHD/NzP/wKmafPlL3yGe971HoxMjsvzC7ztze/ksce/xcrKEqPTE3g9F1PTMTQdr2cQeR3yOZu//PRn+MwnP8l/+MjvUm+2+IVf/DBvef3dnL84wx/9yX9E03UcoXFpfpa//KvP4CFZXluitrjEe7IO9xw7wvT4EIZtE3pNGutLWNlRavU2j52Z4f13v5H1epuV9SaHpkdxsjZOLkvge4RhiErSibplm2iGThSEqZIm9FfkYWVljcnJEWYvzjM+PoxlW4RhRKJgYXGJqckxLpxfYGy0ipSQsS1iAStrNcoFh0zOYWVxHUsY5Mt5Oq6L42QIQ58kVjhZp98HncCPSKIYIdOQr7X1JkND5VRNM1J88b7Hefc9txOFsLSwxNhElW7XpVgoomk6zYbLt554jre/6SSNdoNCLouQEl23Nrj8fY88yTvvej1J5OH1XO792lPccdMU1XKZZqfH0HCJrOMQhiGtVocoiEmEImtbaLqG6WRo1+oUymWkkARBwPp6nZGhIVrNDropyeeyNOpN1potpiZH0TSNyEu479vP8s67bsGybZYWVojCmOpQkVq9QbVaQpMGpqGBgLW1Ot2eS85xyJfyqETwlfuf4Oj+ESYmh1MRljCm2XbZPzXG/NwKT5+dZ/9kheFKHkOXDA2XicOEerNJZajMwvwKpm4QxTHzK+uMDQ0xVCmxvr6G4+iUKmXiUHH23DwXF1e57cR+VCKpdxtEEYwNl6kMlQjDCF3X02dPCnRDRyUKRepxSuKYTqdHxnLo9npYpoaKQ7otj6ytk0hJJ4gZ2zec1tKLQYlBKZn0Yd1whgmgT+7SZzd9dT2fD3/7NB/64Af4iZ/8AFcld0ohNYHYZhO2jwNxokjLGIg0N23bpzsMB7u1s2VLP2ojLUaeABIlFVc4tzZs5vY2Xm1yF+8IfdB2ehm3tt2vQbiT3A2GRSnYldwlsUoFRKVAE7JfR09e/6C3hz3s4XuCPXL3GsLfG3L3qrT96tyqnR69nSRvtxDLrdu/F3gl1/ZqFYAfkLvNclY7SNSO9reSu0SlK72b+7w65G4DAy/bLmp5m22JTX3ygazh4PCdJHELYgk6iqjX4Xd/+98zNbWfyeF9HD44yUMP/h0//lM/R5hArdUjk8tjiIh6s0k+V+RvvvBF7nnHuzEMnWajTijbjI9OYkiLZ596DhHHnDk7w9zcIve884dIlMWv/i+/wj/9Zx9G12NOnHgd9WaDTC7Hr/7Gb9DrdvjoyaN0XI/h4RKaUGRzOdbWmziOQ9626AU+phbSrC2Sq06zMF/D9XyOHt7H/OIaHdfnxNH9zFy4zMhQiXwhR63W4AsPPs2P/8ideK5HdbhEp90lCEI0TVIoFnj62TOcvOEwva6Hk82ASoiSGNMy0hwqJWg3Okghuf/hZ3jHm0+xut6gWMiRL+fQpYFQgiiOmTkzS67gkC/mIFY4RSMlBEn61ei6RhxHqCQhDEKsjI1KFJZtUK+1yWdznDs/z9EbJkkSSRL6/PVXH+In3/U2dMsk9uKUMEYxQRiRyzkICZo0iZKYXrdHPp9DxQkKQRB0kQJWV1xyjsKybKxMNlV31NPwwaDnksQJmqlhSC31S+gCGQuSRKCbOj2vh0QQhBGNepupqQma63WUSsjlHCzbpOf7mMJk5uICjmNQKheRQiOMYkxLovo5kM1Gj6FyjvOzC0xPTyB1A5VEKCGJQsXpZy9w8uQBNFOn13E5N3OZGw7vZ+biAsePHmBubpHJ6XFmZi4SJzEnjx8iThSzlxfJ5R1GqmV8z6fV6nB5aZVbbr2Jcy/OMFTMcHFxhazloJBMT40R9DwM0+DR75ylXLUo5woMj1UI/BDLMrAzFlI3WFxYplDKYlkGKInUJKEfUqs3OXdpkTfcdgNCKB585CnuetOthN0OQhOs1VzG941gWCbNtQZOIYOQAl03EUAcxeimTpIk6WLLFY/35tP7m48+z0wY8/GP/9nmM7xjby2lXGySQLVhFgbbpJQbNm6n4vCmzdlOqF4Sg1xmNThXP1JASPS+EqfYcYrrJ3fXh03P3cCDuaXPO+z59aTQJYnaIIEb50j6KQcbIfIKgUSTGtqWUNwfqInNHvbwfYA9tczXEH7w1DJ3rna+FrE9/+OKRHIh+5+91q8jRZoj8/I8orvhiruxM+9xx/5SiI2Nqv9e7dj7mnzzZXZ5569rawqKgg1Fy93avWLTwAuaCMJWm8/+xX/ihgPTvP8972K95jE0OcWhG08QK53Ll+fYv2+Cxx/5JsOT0/2C4wknT57AMFJvoGWbTA2XuXTuAvPn5zj//AwnT+xHt7IcPnaC+770txw5eZLJyUnuv/9+Xn/rG8llBR/7i09gPvIAb+p5fGB8hKl9ExRLWTI5C8uyAIVl6nQ7PSzHQjMMoihAlwI7l8NxMuQcG7/nMzRcJWNZNBtNOj2fh54+w42Hp9B1jenRYUqlPEEQsLZao1wtkMlY6HpahHy4XGZlZZ18MYvUBBfOzbO0uk654KR3NwZd09F0naOH96EbkpyTwbZMPN9HCsm9X3mI40emSaKI6nAJ2zYIXB8hJZZtb4jT6FYGzUhzogzTThUeIRVZiSJcz2dsbBSIIVJotsWhsTFs0wBiolhh6Io4iTAtCyEkhqkRR4IkCtIwSNsEQ+K6XTKWw6XZNfZND6GZBkide+/7NqeOHSRKEv7yCw9w89EDWLqGMHUatSZxFBGFEbpu8bHP3sfJI1PoGYNus40QCcPVEvX1JoVyASdrp05hqThz7jK6hPF9FSzLYHl1jdHxoVRqP06wLAvfC7BNCy8IKBYLrK02KGSztBotDF0njkJEEtHu9YiTJFVxVIKLi/McO3aAWr0BSUwmr1MpFajX25i6wcpajfHREbJ5h9mLc5RKeVAKQ9OIw4Sco5EkCUNDo3gdj0NHpvj8Nx6n2+kyNlFhamKM0eESDz12huFqkepwhRfOzmIZFl954DFOHT9Au9Wm0+rQ6wbEYUySJHz+64/ztjfegpkxIYFqtoyVy2CYJrqdoWAbrK/XkSRopCIkKk64MDNHc72d3r++8u7uwX2bT+/dk8P8w6lRug8+wM/8H/8XP/7jH7jSNm05ZlOARGyWrION86HUS1j6l/bcbUWSJGkOthRpaClsiJUkKknJrNSusF8vhZcd6Lg94nx7lMMVyszXaKq/+HmFQqhimyLzYOxJEkUcp78H+V2Iy+xhD3t4ZXg5apl75O57jB8UcqeISFc5Xy3v2k4C9sqR5lhsS4Rgt/7uJH1Jf/C/nr58t70V/XICg7+rYiMsc3PisJm5wnX3czfEavMb3EqaNk59RV+Svsy2Qgg1yMAA0rpNVxC7rWIEYpcTbMWgI1vTXbbu33+/KfctiIMQQ9cQkUCp1CMTJAqVCHRpYGkmBAlhEOBYJrqK+N/+1b/g8Pg0l84v8NH/849489vupBuEjI4f46d+9ue48647qFbGKZWqRAEEvmJsZJiZF89TLFbxg5jTTzxN4LlYmiCJTGqr59AwqYyPMrO0TjdSTE1N4tg6iwvnyZRK/L+f+TRf+8b9/LOMZGq5ya37qwxXilSrZQxT5zNf+iY37J+mvtpIVR8VlCpF6ut1fM9Ds3SioMv6mkcYx2QcHb8X0nG7DI2UkVJjZKzKUC5LLpeBRJHEEblCFqlJJBIVCdZXGjRqLQqlApCKnvQ6Lr2Oy+hYhdGRCu1uj0QpZs5dJmNaKASNRgepx9h5h1qtiWPZGKYkb1o4jkkha9DruiSJotZoYmUsNCEJgiglrDKduJqGTrfZw/c6GLpFq+WRLznYpoFOTBiENDs9AtfFtjXiOIZE4HVaqedFSoTUkUqiSYOzFy4wUnbSfEldQyqFncmwuLDG9L4RfLdL4PlEUciRqTF0U6dZb/L6m48hdQ0vCNGFQSbnkHEMDCx6vsutJ6YxLI04CtFQ/e9EpF7iOKLWaGE5NkpKkjCiOlQGTKIgZKhaIY4UURTSbDXJ5XMoIWi3WuTyGQxTw8lnCMIIO5NDSInrBZSHy9SWm1SKBaShka/kGClXWJhf4eGnX+TkkQN0Wx103aRYzOMUMly4uMDkRJk4STh3cYlqtYjpWLSaXYarZdrdOl5b8aXHnuTGQ/vodF0WV2scGK3QXHPJWBpeEHF2dg3LELQbqbJqPmvT6rgUHZtcLs/fPvQ85YzNVx95jqmhMlPDVXLFLFJKzl+cZ2JyGE2mNkVKDc3KMHtpEcfQWFleZqXWZahapjpURmDi+y7nzl5mbKhMIgRSJmkEgRAIpVAyfcZJVD8xT2HoGh/cP0by2MP89O98lK98+av82I+9CykUcT8OQZGGZKdELg0dFHK7jY0H+w1MU7LVhu583c0iDkJLr761nQAAIABJREFU03aTvqkbfGpom8IuGzZxC5F9qb9B3wZ/1yJ7AzMpEVuIXWpIpeyT28HWqy4Ipq2ofh8V6d/G/RFbha0UUmgkKiXtglQghjgmVBGQkt3B2CC42uiyhz3s4ZVirxTCawg/KGGZKbnjVXN27UbuXulvMV1dvFYgzCsLy3y1/H1XvdYt5G6QE3eF6uV3Se6upZ65M9hWqJ2lcLfsu1vY5E5y91IYxBftjGPaBQN1SykgjhOU1pdgVwJdCCLfpVav47Y6/Lt/95u87R/cw1vecicSQTGfYW2txb6paR7+1jd4y11vIgRW5zvknBxh2EHP2hhSQ5OCKIhp9trkMnme+86zdJtdPvH5e1lYXkbTJHkE7y5pvGNsPxeWV3ndyUN4fsDzZ+coF3P0ej43HD3A48+dxTF0jh0/wNe/8Txvv+sYbi8gXyyiEoXvBykJSmLmFlaoVAokKKrFIiurNaysiRZ1iZSJnc2hS8n85UWqw2WEptGstYmIKRXzmLqOpkmUgk7PJV/IEvkhQRjx5W9+h/e97Q3ojolUgtXVGkPVMt989DluOr6fTrfHxOQInufzmb99mJ/40beysryOUop80aFQKRK4Pl+8/1He/sabmLk4x9S+YaqlAtIwkLpBt90hCiNy+SwAvuuRxALdlChihNSxLQ2vG/Hi+cucvPEAYRBhWwZCk3S7HpqQeIFHqVSg03QxbQPd1NA0Hc8N8Ho+xVIOz/MJXY8gVmTzDlIqTMPE90ParR6zi0vcevIoUgq6XRdN1+l1euiahp2xcD2fbD6LYRh0Ww1MZRPKGF0fCIxodLtdTMNEk7IvpJGG9BmWSbvdIWvZ+KHP3OIaU2PDeG6AbprkSlniMGJpOb3HukyVCIPQx3YyNBodqtUSnhfQabuEYcS5C5eYnhhlZKSMYVkkcYTn+TQabYarZVzPx9BNMhmTIPSZnVsjY2uMjwxz+fISy40Wb7ztBHEQsb7aYmTcQcWSKNFpt9oUinl6XReJQpM6M7Pz7Jscplgus7a6xsPPvMjRyVGCKEIlgtOzc9xx6hjZbJbhoSKzlxbTWn5rdebWm3hewJrv8a5bbySTMXj2wmXe8ebXYRg6jVqDKAyplPPESkPTwXN9bCtDRIKGIA4ClFToGbtfc65PBzTZJ3Yb1KNvUrYTFN/3+IWHT/PzP/ez/PCPvhPYDG2UclCcfGeeGhv2Y9PkXI/HbveRYqO9vgFNlTv7BHCwIBf3UwPkJjEcXM9ubQ3w3fnDVFqWYiNkM31Nf3/qCrXQjS7sUO2UO2yxUpD0QzITFTMIyEwShSYEkegrfw6+MymRQtsTX9nDHr5H2Mu5ew3hB4bcqWjb3P2VYkDCtso1v9Lf4m65dVLIawqrbAuj2TGZuBoBFLy8Ughb2x8gUeoKorZV9OQKcteX0b5aSYVBW9ctyrKjne0+T4W25ePvPrdukCf3En3ZvcrvRhcH1bR0XSMMQtAEUkHsevzZn/wp5868wP/8L36FZqPJoUOHkIZFu92h2+ng5PKEUYJhCE6/8DzT01OsrK1xeP9xCEOeffopDpw4xOLcEpcuXeYLX76P9UaDOEq42e3xT285hZmzuDS3SNaxmZycoFFfxTGz2FmHF144zdjoKFbGQZOS2nqjn+emMT42zMLaCo8+Mct777mFxYUa+WIOzw3o9DxGhyo4uTTMrd3pUCoVUAg+/rkH+Mn33o3fXidIQAqTTttjqJrj7OwiXc/nztedIAhDLMtkbS0V8BB9AYal5TVGqmV0U1Kvd1BKUankIJHEUczaWoOhoQqtVptCMYemCzrtLo5TYH1tjUI+g+d6XJhf4/ixaSzDoNPqIIWOZWho9mDlX6JbFiqO0YTA9wPCICSXz9Br+VgZA2kIlJT4bRfbsamvN8gXsuimiet5qQCL52PoBogEXddZW2mSLeQIfBfTsOh1fCxbx/NcMnaGIEwwLBMrY7I4v8DYyDDPvDjDyRsOg9TQt0gpKqUIex6GoeO6Xlr+wEhFZkQS8uzTF7nl1iN0umk+XjbrkIg03/SpZ17k5hOHccOQKIwoV4q4PRcVKTJ5i17PR0Ux9UaHffvG8AIPhEYcRmSzGaIgotf1sByDMArJFwo01muUKkV8N0Y3DFr1GrquUywXWVpepVTOE4YRIgHLMokSQRhEWIZESIUwbBbnFhkfHyIKQoIgptHqMjxUJAlDNFOj1enSbUS0A5fjR6YxTZ31tQblUpFmo8W5SwvsnxxheKSK63pIIAxDzs8uYlsWtm2yb3IM3/dwex6aLsnlsjz0yPPcdcfN1NYbKKWYX15jZKiM42TIZCzqrRYjI9V+Hbx+OGQUoZIY3XaI44goCPj8Aw9zx80nKeYdCkWHRMhUYXlLkXRxjbRuJQT3XZjlz2bX+au/+vMN05HaqYG97OfI7TA92oZnaadN2xm4vvv73ZcPt+fADV7j9Ee4pX6e2MzX2+zipvpl6nq8jnj3TUgpdjWhgzzpaKAmOri3g7zmraxPpPY+TlLBmn63++Qu9cyJhHQBbND3rbmNW6BJiRD6Xt28PezhVcYeuXsNYY/c7Y4ojpBC/L0jd3GSoPcJ2ssld4amE8ZXry84GGwHq8c/aOROAFEYYMWKr3z1qzz87Yf5H375l4m9mEQIYhRKEyjPRdNNnEKRdtejvVqnUs30GzTRJHihz6/9+v/O6toab6rkuKdS4FC5jECwsrLO4kqd/WMj6LpGabgACoIwAHSiqIvXjXGyWbJ5i3a7h5Qay0trVKplso7J2uo6Q8PDRJELsUnPbZExMwhLw3MDvvD1J6iWctz1xhtZXlpnbKQKSUIsIZfLEcQxIugSxQrbyRGFMT3XJZPJQaJo1NdxvfSZLJYKzC+tcerkgVRAREASRKysrDIyOkqv42KbgliBncmwMLdCkih0XVIo5pASDNPgU198iJ94z9uI4oBWq0u5UECaGiqOqdUalEtlYj+i4/YoljKEscKwLNxuF9uyEEjOzczTbvvccMM+nKxFGPgYmgGahkDRbrWxDB0zkyFBEoUhliEJIkUUh+i6TuhHzJyf5eSJI3TaPvd963ne8w9uIwhd6usupeEMlmWjaQadRotCpUIQeFiWQa/tYmQsQj+k1+tRKuY2arq1Wh1K5SIvPn+Bo8cPECmftaUWdkbg2DaOkyUMIz71pQd539vv4O+++RQ/8ubbcUo2gReytLhCtVyk6/bIZm0s26G2VkMgKZYKrNZqDI9V0IClhVWqQ2Xu/8ZzvPHWIxQreaSukQQR9XqDfCEtWWGZFmur9VQJM04IwoCMZaJJjXPnL7N/aoKZmXkWag1uP3UYO2NBApqh02s10HSb//y1b3PnTYcoFGNy9j5mZueolnJkCnnWV9cpFRxy+TyaBgvzaxTzWVYbNab3TRKFIbquMTe/TKfjcvjQfhSK0PPI5lKhnlzOYWmlhlIwNTXOF+7/Nm9//U3EYUi35/Pgk2c4sK/K/okRhqpFdEOj00u9n4ZhEMQ+GcOk1mxTHarQrndRCLTY58LcHOP7JsjnshiWiTQ2i5mnD/3udmOrHf7EM2f4/HqHv/7rP99mpwb12tTOunJJsq3UyubmTfK12fqV2I3c6Vq/tMqOYzbrxglSC5uKwAzGjaTvLRuob2obV3f948orJXdpH2OkGHg1+4XNSXYnd32v5IAbXlm3TxDHKaE1dP2l6/rtYQ97uG7skbvXEL5/yd0gZT1BqQT1chUydy56XgOvVE3yesIxr3puXio/oX+OLfsO3m8ldzvDTHcWP98410tcZ6LURjDLS4Vlbvb7SjIXq2Tz/Za20na2vw+3lDzY2Q+lkm0TlVdNFXPzJNs6s+mcTP8TaRqaitHihK6S2FJRtHX+p1/6BX76F3+ZkaFJLMshCFx0wyP2dZxcEddtIiyJbVo01+r80e//IR/+8Ic5d/4in/j051hZX+OXJ6qcGBvGypj0el1sy+FLX/0OhydGCKKAUzcd5N77HuWGqTGOHZzk/LlFJqeq6JbO2mKPs/Oz3HHrYQw7h0Cj22mjaQmG1PCiBEMzuTy/TKmYJZ/X8XsJvhdRKmeQToZEKXpdn57rM1zM0+26JEpRqhRRcZKKfJgGoIiDHl6UkM04xFGCbkh83+f8hWUOH51AKI1PffFhfvJ9b0HIiE7LJfASFpcaTOyrUixk0fQ+4YtCpKbjdgPmLq+SL1pEKmRybALNELTqHSqVMgkRntdD120+86WH+cA9d5AQUVttIxKDtfYyR6f3EYQhhUqBREEYBnheQNbJEseKOIkJ/RDbNBCGhqFrdHsdcvksoZ/geT6u26GUz9GodRkaG6bRaFEpFvjS157h7W++ATNn0+34uB2P6nAeREzYA2Gk007NMEj8GMM28LwehiHRNYMzpy+z/9AoVtbE7/jouk2z1aJYzgIJ93/jKW47dZRiKU8cxWn+k1Rous7Fi4tUhkrkLIf5+VVG9o0QBx2klFxaWGX6wARSaaws13ByBqWMyfnZZUaHhsgWMwRejGmbRGFEEEQYtkTT9VQAxrJQKuHi7BzFfAbT0Jk5u0DL87n95hMoBHES4lgmCggThanpzM4u4Echh/ZPEvo+lmOnWVJCo9PuYhg6lm1Rr69QKQ/R66TqpEHi0W0G9Joeo2MlrLxN4AV8+aHv8CNvuR2hJ7TqHSzbws7aBJ0oTRXrh5OGcUyiFKZp8JVvPMGxqUnK1RwXLy+zb3iYTqfLvslhFlfWaLkdDkyOoesGUpM89dxlFuvrfOBdd4Iu6K51yOYddNvED0MMw6Ber2HbOprQiMOQJAENjUajw/iBiZTXCfoZYamokRL9lLyrqOn+zAPfIZ/L8yd/+odbPtjhiVOpAMpABfJK7iGIk7SmYEIqdrM1zHCzHEFq40XCS9i/zZFjIMQCqXro1ly+javZUhvwau1sVQndeu1XWz8TUpDEaoNopql2kkSk+XRqMHaqnWtrEiUS4lihaWLjdUNBWYBKNouyD5Zpo2RTaXNAsKUm0YRE01K/qUoGxHLPu7eHPVwv9tQyX0P4/hVUGXhLBmEuL5N8/Re02amQyivn0C9F7tQO0ZVBUM/OY7Z5/V5uyCZb0vsFVwiqXLXf2yYJavP91r4rNlbBNxPn5a7evWQQbrPlS3y1VTF3rszLgWxKP89PJjFSgSYN/uUv/RNmnjlNtTjCPff8GIaT48nvPMPH/+IvuPttdyISPa1/ZghMQ0fD5qd+5p9w6f77+fBIntL8RfYtL/EOx+YOIXnmzHlOHTuI1/VxMlmWF5bZN17BSwJuPHmQJIq5vLDKervNvqESj589x/FDU8zPr3NpYZVbTx7EsHV8N+TJ515ASsXI2BBIE0OXrK7VGBsZIpezsTMWQpPkqnmEpTF/foGCbSOVolTIogwIgoBcxqJVaxKpkFwhQxD4NFttclkHy7KJlSKJ04l2GEXkcjYZx8C0dI5MD6PrEpTO4tI609NjxImPaQucrInb87AMgz+79wFuOzaN1AS5vIOTsXCyFoZhESepJH4UxfTaLkkMhqkzNVomm7NpNtpUqjmyRZ2R6hCREnzt0aeZGhmi2WhimCYzs/MUnAwZx8QNXKRUNJttiuUcSZSq7AVeWprB0MCyLZTQaXc9wsilPFSg1axz+Pgk0khVN01dokIf3UnDMk3boNtuYVkGmiZp1ZokCgxDxzRNuq0uhmGSLzj4ro9EQzcllmWyuLBGsVBket8EmaxN4Hqsr6zT7vmYloVhWZiGhZMxQUK+6BCFAbaT5/TpWabGh7EMA900cGwTw9CRUsfJOGRzDnGkuO+xJzkwMbpRMiboxiwvrJF1LHQNFDrdlstIdYyvfv1Z7nj9cYarJTJZmzBMw1NjlRaT73RcTEMnn8+QzdgpeS7kCCNFp+uTyaR9aHd7OI6NbWVTIRxNkC1kEFGIbVsoocgULFSiCMKQnGXyzJkLDJeqeD0PP/Txw4h8PsPlpSXiMCJXcLAtHalrrK3UKTlZpvePsbZWJwhDmt0u4+NVvv3CGY4f3Mf40BCOk96DR558kSPT46zXm4xXSxi6gdLUBlESSYLbi8hlMxi6BrHAsjNpaK4StNs9bEuytLRKJmunJF5TIOnbiC0hlTvUIj94YJz3jFdIHn2Yz3/iP/FvP/aXfOhD//AKI7V1YWynCUyLdqd5loLUK5ZyENU/cruNFy/paBuMnamSqlIqJUdCIqXsR69eGRIj5aAIvNyl8V1OJq68jq19VCpdtNM0gURsnFPsCAHd3kbqyhOIjbzCJE42FzD7X8OGFzJR6ZqdUsQquWLxM0nSbXESg0rD7Pewhz1cP/YEVV5D+H733KVT/QSuVRB8sCiasLHimm64vrN9N7/D1KMImtRe0nO3M4Piap8P+rHV47ZbZsZgv63YSeSupgZ6revcGpYZqe31mXbm1F21jb4HT7vabltl0ba0d0UtqHjLd3695G2ne3AnlOjPngRxHKdeQykRg1AfpdCkxhfu/TR/9B//mP/w+x9l4sAo3Z6HrtvYmTwrs3OoRLK6tsL+QyP8zr//KHNLC/i+y387kud9x4+mkt0o4ijGNA1IQMXQaXb7eTAJ84trTI4PpYIcoZdO+P2IXNai0/VxMmbqQRUCRYJUGjPn59m3b4goiclmHJIkRmhpCYGzM/McOTjJuZnLVMslum6PUimPZVuYpk6n3QGpU6wUCKOQRCXoSpJECYEXYNvWRqjUi2dmOXHiEH7Q5YsPfIf33XMnghi3F7C60qDn+9x0cj+9rovreuTzeYTQCYK0Hc/zCKMAgcA0DXRNR0mNyO3SCyLOXVzh9Tcfxo88ctkSYezRrndI4vSrLlXyJErRbrcpV4oksSCJI9qtDoVSCaUUnXYXicT1PL72xDN86IffipSCXq9HJldgeX6Vv/3mM/zcf3MPQobEkULTJIgE1/XIONm01EApR+TGGHYGYp/ZpTVkLHnosfPcedsBDh+eoBP2yDk2URAihUQaGgkCFcTEKD5//6P82DvuAJGQKEF9vYZEkCsUMEw9FULJZfFcj0IxBwKatRYaEtOx0DSIY0XoR2hSIAyJQNFqdChWyixeXmZy3whLq+uMjVZR/YLW9UaTUinPwvwKGStDNm9h2eZGiF9jvU11qIjQwPc8TMdidaVGzs5g2xZxDJZjEng+tXoTx86SyZkkseLTX/wm77rrVs5enOPWk8c28t9sx+G5589zYP8IURhhmSaWbeF5ERnHRKmEmZk5qqUs5XKROFY88fwZDoyP0um5DFVKmIaJEBJdUwhNEISKTqdNznFYW2tQb/WoFHJUhkqgwOv1MEyLp09fRNclEyMlivk8lm2wsLjC2FCVsxfnEQjyeYe5hRrVgkOcxBy/4RBmxiDwQxApcWnU2pSreeI4ZHmxxsTUGE8++yJHpicwDQ3N0FlfbzBULSKkwMhYqRESGhv1LlEbuX3b7NoOu6cU/KOvP8Gf/z9/kpbPGJiqQbjiVWxV3M/fEzuMn9phP7Vt535549jGYuHA9m7NyU5Sb5+UKTlLx46XYJI7CeKgm2pQm29g7/tjyY5mBiP+Riqe2h6Vkka3bJr4nQUmhBJoIg1b3em52zhH38sXx+l9lyIVMdJ1nSiK0aRI8/72PHp72MMV2AvLfA1hj9xd39m+W3InhNYf6//LkrudbV0t/PK/BrlTqJQ0JVf5zjaS/beHdSq2Ty62iRq8WuQu6U/IBMRxjKA/wCMIgoCnnnyKbDbL9FCJSOloVgFDaoCiuVbDNk3e+qPvZt+hgxzNZfmtN91ApxFiOxqKlMiFgUer5VIsFhHSIOh1CcKIQrHAcy/MkNMdDEtDNyRBGPB3j5xl32iWt91+itMvXGZ0LM/QcJVLlxeZGquCaWBZqeqioRmgC4QmUYFipd7AsnRyGXsjpcbQDeJIYVgaiZQkYYjf7tFsdXjk2VmO7B/h1I2HUUIRdEOEFGSydjq50RNqtSbZbAbd0BFC4/lnL/D05Xne/46bcew8SZQKy0gZg0gwLZM4hFhFWFY6aU8SEDH4gY/tmHQ7XYQuMWXqPfr4//dt3v3W49iOQSFfIlIBcS9mZa3OxEQV09JJEoEQCSurDQq5PCqG+UtrTByoYmppsFyt1uH5mXlOHJ6gVM4BSfq9mhoZ0yL0InTTYn19nUq5TBhGIBJ020Kic+nCJfbtGwYl+dbjL/C6UwfQHZvuepdvPT3DSrfJz/7YXYDRn8vHrK02qI5VicKYJIgxLZ1WvYtlmei6QJo6Mk5wuy6RSgXcnazF3PwCU9Oj+J0edj6HlAahG5EkHlHfyxVHim4nxClmMHQJcUJCzOVLyzg5h+HxYbx2l26vR9bK0vZ7jI1VaNSaPPncBe6+82Y6nR4ZxyKJE0zbotPuks3lSOIYKQxQik67RS6fpdcLeer5s0wMlzlwYIJmrU1hqIDv+vSaHpolKJYKnD03y4HpCULfJVYalmGQiAQrYxFFEYZuEEQxbi9VBm3XegxPlPF6HoEfUlttMTE9RBTFJInCMk3qrSZjo0WazR75QoVuu8XKSoOsncG2MziOjeHoNOt1XNelmC+ysFBjamoM29E5f2aO8bEqq7U67W6PfePDrDfa2KZJ1nI4PTPLaKWAppt0Oi5PzVzmvfe8EaSgWW/iOAblco5mo0O+XEIlMVEUpiOPNNGIIQ7pdDoksWRofIRYk/3yFHFqkq6T3A02fuSJF1nI5vm93//ta5K7QXjmTnI3sJsDe6wJ+V2TuwEGRG4gxJKWW9j06Am2jh1XIXivMrnbCL8c3N7+Ka5K7uh/F0Jck9wpJTauGaXSXHRdT+tsyivTGfawhz3skbvXFL5/yV2KQXjR9679V+H2qLQGm0JL87D8djrB7RPS3Z4GsUVoZVDMNbkWgb0OCK5NvrZCXmUYS9TmXb9uj93gP/39dqrEbYUm5OaK7BbZbpXAIAVPbc1rEVskv9UVyRnbO75r57bvr/UH/TCM8H0P5QZ87rN/zY+8+/34wiCXsVhaXIXEZGx8jI/8wUd49vRz/MJEicN6hqXVJq+7+TidVhOn4OD1YkwrwbKc/sQhwu95LFxeI5aKdsvl8vI6t95wACEEhXye2fllbjy+H9f1WFpd4/D+CSzLIghjZufnmZwcwTQsVlfWGRsfBqCx3gINnJwDUX+CI2N0Q8fvKT71pQcoWnl+9IdvS6/PCzCdtLi3VIJGs0m5XKC+XqfTdZmcnqTZalAs5On1QgxdYVsOcRRTbzbJ57NINE6/OMuxo2MIITEtk1arS8drM1odR4kYTRp84m/u40fvvI2EhDiOGB0b5mtff5K3v/k2othldbXByFAJ3wsxMxm67QaaaeHks+hC4HcjpATdEMRRhNB02i2PZrNNrdXi8OEJHLvIvX/7AB96/90kiWJ5cY2x0WFiBKHbwsznkEjiOMDteWQdm27HRWk6Dz76DHecOk6+mOPszCwHD4yxdKnD5KEsUtmgBEIqlIxJQkkUxdTrbSbGR3DdDpl8jsBzMQ2bKIkwDJ3VxTq5so1tZZi7vMLExDDLyyuMjQ0hpcT3AwzHIQkCeu0ehmli2xatVnuj4LvUDOLIQ6EwbItuvUsQRUhNI1twkEqn3eiSzdk0mg0qI2Wk0Oh23LS+YJLgZDP0ej0cJ0Oj3iKbzeC6PrVGi+nJMU6fvciJo4eIIxfdsjHMtISEadiYtk6iYGWljoZgeHyIz33lG9xz5y20Gj3KlTJSSkI/IAwCjFwGt+tSqhZxOz0MXUOXkhhF6IWopE/0bYMwiHE9n0q5hK4pms3Ug9npuEhNI2NJzl2Y4/ixI1yeXSSMI8bHqkhdw+14ZHM2vhdhGhZzi0tkdINisUAiBQvzyyyu13nrG29mdXWFUqFMHCma3QaVYpXZSwtMjFVptjoUCjnuve9R3ve21xMnCb2ez+h4BbQEqRupPU7idDEsSUBq/Xp0CXEcEgUBl2YXOXHqGLEu0GKNWPVzu2QMsdysc7ozzFKJ/gLgZkjh88vL/NYLC3zykx/rK1lCmkOX5vbBlZ69JFHbCE2aryeJt44bOwjWpjLn1ZYJr4W+uqaCJE52JaLJTk/XFkK4tUtq50Ijalvo/RVQVxlzVFoKId7yXkpBmCTomraN0A3y/KSWPs+6pu16KwbHJCoVp5FSS/MZN8JN90RZ9rCHvZy71xC+f3PuBhiEgryG0f+5m5rBQw88yPi+caTQNorO7tb/rdsH1PDVwNWEVK7R9SvbYWtamtjY9nLa2lnfaAOD2kfxdk9depC6etTPIA9ll1XfbR3f9eDtByQiQSJoraxz9pnnMW2LW297PS+eO0+pXOGJJ57it37nIxx57jEe/uP/m398wwQfOjDBRDZHqZxndKRCvdYkV3BSD00QY2cMfC+g1/HwXA/D1PnO8xcYGSpyYHqEI9MT1Jptnjwzy6F94zx95iLHj05hmRqaBlbGwg9jej2X0bGhdFqmC2zDQClFFEXYloWUGmtrdRrNJk7BJIklUuhILeTEkXFm5lY5NDXKQ4+fppzLY1s29XojrWHmB+SLWaIwYmiohO+6mJpJGMTU11vphDwMMSwD1/UQCBrNNt985gw3HZ9O76MucbIZLMNAEwYQc/nyErfecJBc3sG0dExTRyjJw0+f5fDkCEEUUR2qYugafuBh2gZOtoAmNUScELgeUmpcvrxINmOjYoXpWMSxwrJMpiZH0U2BrulMjVZIZCqkIBJFt90jjGMkMdJMJ+pRkIpVeJ6PbRlIy+LgxBiGYXH+wgKGMMjnHYZHKtSbNfK5AlGYismoWOCHAa7rYxqpQEeSJGmxbJEuWuimyepqHanpaEIhEkEu66SFzYUGCpr1Dq4bYFgmcRhh6jquFxIEAYZhYJg6SaJYX22Rd1LCk81m6Xa62Jm+583QiaOA586dR5eSkdFhwiCg13FxHBvd0HFdn8APaTY7VIZKWI4G0pzyAAAgAElEQVSFaVlohkapkGNhaZVjRw7g+wFPvXiB/fsnuTw7z3ClyEOPPEcpl0EKgS7TCbDn+tTr/z97bxYjWZrd9/2+5a5xb+yRe2VW1t7bTHOGHJIakpIFUIQsmhwOyaHGpgnzQZBhCYIf9GxADwYMmBIgwyJlSLYkwHwRxSFnhhwOZ+9Zeq3et+qq6tqX3DNjj7t+frgRkUtVdfcMSbFbrlPIqoqI7373uzczv3PPOf/z/3dpVcqUqxXiOBrvZxIpwHJsBv0hgeuQJgm9/gBla6TR9HsD9vY6zMzNsLOzVzzAC9CWIokyhFJsbu3SbFbZ3emy1+6wurLI629c5tSpZaqVElpCe2ePcqXC2sYmEkGe5jSaVTY3d7AsjV/y2Gt3aFbL3Lq7QTpMiUcpf/L9V3ji3HG0kGzvFJBVJQVffOoFXFvx+NnjXLpyE09b3Ly9Tuh59DoDHM8mT1PIDVmWjhNNgm5ngLYdlLKphSFXr95AGcP6nQ1cS2E7BZR5sieZg1tTwRwyrXr1+0McxwYErSDgs8fnyc8/x+d/5/f43Oc+u0+qNal4IQ+9nmyVctwhLCX30ZEb79zTXuJipjz/4ZmVJ9OZMVnKYV+2D+e8Z9ojVcTpee9z/qNVyfuc/r521MdNYKVSysMB8KQffnwbszwvAuij55msddximGcZmcnITUErdpBV+6E9tP+/2g/Tc/cwuPsrto9qcCcOpdf+8oK7v8xK8SRTawRoWcDmNm+vsXR8mVEyGrOcPeh8f7kBa+GwDjj1cWD5wwZk+x+IQ3ff3GdOKcSUqnryeqpXMR530HmrSbVSTF4fWd8Ed3P09RRnK6bOdz8bfe+6x2wwk0UennPcdG8LicxzOnt7BEGA7we88c5V/vf/419x6u2X+alkwGePzdHwfJ589FRBGCJAa11oZ6WGdqeH67ns7uxhSY1Shr3dHkppwtBHSkHZ9zh/8TKr8w2MMbSadWwtKQclTp9Y4rlX3qDkuDSaNaRSbG3uEYTONDCxLD0mzpBIIRkORrTbfV6/dINHzxzDch0sy+bGtduUfAdkztp6l9lWnXdv3+WxMyvsbO3QH44wApqzdSSi6D2TApMJoCBWcD3Nzk6PZqtCmiZEUUJQ8vF9l0dWF9G6qBTkWU6a5thG8uL5i9y8e5fHTq9y484GJjOsbezQbNSJo4Qnzhxn0B/yh996gU88fpLRcIDre2htYXJBEo1I44Qky0nSjDAsKOn7/SGjKObFNy7x3BuXOLk0QxC6RFGK63mkSYxtaRzPIUlTypUKaTREOTY7m7soqQrY9Pjbbtseg94A17UIQhfHctnZaVOpBbiuR3d3QLvTBQSe5+O4NqWShxBg2xaXr9wqYIKWotPr4joujlXAZU2ec/fOFgKJ7zn0ugMc18HzHfqDIcNhRJ4bXMfGdmzckkcUxSitEFKQjGJu3dhAy6KqoJRNPMoISiE3rq1hScGJ1UXiMQPmoDek2x9g8hzPs/F9D9u2qVQqGJPR7w0Qovge53lW9FJmGY5tEzgerlf0YN66uYVrW8zNN0HCcDgiSxNKYYmTKwv0uwMsR5CbGCENaVowFz/17GsszTXZ3ikCrUqt0Edcu7NNs1GmXPbY3ekQjRJqtQoArutw4d2buI7DwuIMnU4Xx7ap1quMBiPmmnWyPB8HOEXFUwhBrV7Gtm2kVNxZ32Bnr4ttaW6ubVAu+QSBVxDCuB4Xrt7m0588i+d79LsDZlp1Lly+jpSCcyvzzNWrvHH5GqdXFrh49S4LMzVy4Bs/eItHTy6xu71H4BessAhJPMq4fXeTer1Kt9NDWxY3725iMihXHeIk5vULF1manSfLEoQwCKnuA42U05+jycZWbEnFuF9dXeDzv/O7/OEf/jG//uu/UlToTJH0y9mXqzk6bYH+uM82eICkZAqNfFBgZwrEyL0fF6yUYrKXj6tl06Bqus9OqoyFxI65T1nMMKZFM+YQK/SUeEtOfMXkdomi2jmZxxRI2KkrQCCUmLoHMyZoEVKM78nh4E6IfYZNgxjLAOWHJBKm44obf/j+5DlZlo8JYdT+9+d9GK4f2kP7L81+mODuYa37oX3kLZs4UmMQWeFw3lfj7S/ZCge9/+v011HvNHl+uM3uSIN+lv0IchF5XnwdmWv6/o9o/+53/y9ef+V1mnNzfOP7z/Cb//Cf8NgL3+U/fPpJPjk/WxCi5AVpx3AwLNafpgz6Q668e4OrV28ijYAsJ4mTgtJeCBrVMj948S16vQGO53Dl9jr/9c9+kiD02Ot20ZaF79m89NZlBIYnzhznG89d5LU3r5BnhsBzsZVk1BvxpW++gB7DxTY3dxhFI5IkpdlsEKcZSgFo4ihi5fgcr752nTjN+fmf+wnCcsgv/NwnkVaOkDmzzSq+504z/Z1eH2MMTz3/JtdvrmN7GqNSlpbmiqcsKahWy7z5zhVGUVSQXoxiLKmQRpAnGbGGj/3EOX78px4ndYqSVrPVZG2rQxrnfOX75xFC0GjV+K1f/NsIZYjimDhKycb9dJIcy7WoNGuUG2W80OML33qGarOGZWl+7JFTfO4XfoZyJSTPDI7rgJG8feEKJs3Z2+sQNEIQMBiNQAhas01KoY3SBse1AEEa5eRJThIPMSR4nk2jUcOYnCwWfOmbL1OrlanUQi69ex2AOE64e3dzTBsP29tt8syQpzGDThcJKGHQStMbRFSrFUxmqNbLmDwjSRPm5pu0ZhooKel1B1iWjRSSUlBiwhZYq4fESYpUEtvWlMo25ZrH1s4mXqmQshh0h7RaNUolF4Hg1KkV6vUyucnp9fpkWc7tm2us3dmkEgZFn1OcYVkWpZKHUkV/57A/wKQptuOiLYfFY3MFrE8JwkaI79vs7OwAOWHoIrEolUIGvYQ337xJu9Pnb/3kk5R8j8XlOYJyiX5viMihUinR7rbpD/tUamWSKOfGtXVA0d7tcu6R45RrJXqdPr5bwnUcXnr9Ilpr+t0+Js+J4gQsG2E7OK41Jo4xuJ5Np9fjxz9+ltnZBsePzbGw0KJSCdFa8dUXXmFlucXsXIPtzR2Ckkccx5w7tcw7N+6QJClaSc4cWyCOE86cWGRxZZ7dbo+TSzO0d/s8/8oV/u8/+jZ72z0uvH2da9fvsrq6hLQkfslCOhq/FPDsa7coV2eoVJqcWlzm9vXb3Lh2i/U7a2Dea497QEIK+P2/+Qn+37/5CT73G79VEPZMs1iHd3F1UJc1L8K/D2ZHPYK5px/tqMlxAmiS1MveIzFawEPHFTIhimTUVDj9vS3LskMwD5NDfuA+FoHd+z8q5keO+1GsWPf9z1X8fMZEcVxI9TzUz3toD+2B9rBy91dsH9XKnSHF5PsZxfvpuD3o9UFm56Pj9qGSH9wmFbr7HSeEQAmFwaAdi7mV+Sk85B6Y4uSYI+9LcRhK8qPae80xue6j1390LTlimt2cPF4oUWSAs3uTmkwEZmFMmn1gQjOGFKmJ5IEp2kkKCu5J5lXcP/t88CRANtaFkhTzZGPmHDF+ZpnQg4tJ5nVcsZuuOcuRqcIV8Lu/879ybb3HH3zpK/zinauc7e7y+VPHGPQGeI5LlhniOCGLDIKMoOyyu9MutMVsG88PmFtoMYgGbO20adQrBJWixymKImYbNRrNKp1uj1MnjgGCu3f2eP3dm6yuzOLaNp6j2W33aDVr3Li1Thi41GoBdskijnIsV/Cxc6uYXKEcje3YWLaFkGBZFiePzZNTaNoZE2FpG9sSVCtVomGPeFgEb4PBgHIlxHN93rpwnUrgkiYJJd9nNEo4c+IYlYqHEoL2Xp9S2Wc4HBY/k1mOo23K5ZBo0MMpueS54Onzb7OyNI/Mcr787Wc4c2wRlUOl7iMUnDi+SBTFnFgstMj8kktOismK3imlFP1uF60V+Rj2paSALEMqxbnjS2SjGC/0cDxFnCZYlk2cpJBBt91lZraJ5ToFEUySQiooVRxEVvw8ZSbFtlzQBcuM0haDwZAgDJAonnn5dU4eXwAhUFrw5OOr5DJDKInMwA9clJKE5QCpBK3ZCmE1oN8bUW1Vkblic22X4Sji0uW7nD69RJrH9Ds90jGENkvzgjbfwFe/+zInFuYZDgo5had+8ArHlloYkUEGM3N13r58g6WFOYwElMJxXCpBmcykDKMIz/cYDmOkkaQIbMdGCUmepnS7Pe6sb+M7DqVKALbilTcu0agHrK/tsL7RZn5+hrAasrNXEOa4ns2oXwSG/e4Qz3EwRuO4NkpJbK9gzRRaYwwsH2syGsbsdLaoVmqgC7IYbWmiUYQQFFVE10cIQRA4VBoBjqPRSjIcjnj25Qsszc4UfX6Abzt4ns+Xv3eec6dXKJV8kmjEsNvD8QOSUYaSkjRP0UJx8dodquUS/W6Pjc09NrZ2aNXqxKMRZd9HCsX3XnyLaslhOBwRhD7tdo/Tp5ep1kJu3F5nplal1qzQ6/S5vb5FydEsrs5yenWBhufw3BuX+MSjx5lfnOFr33+R43OtgjDHtjF5Tq3mMztbIzcZBkkYepTLPtFwhK81N67dxLY0cZTiuvZ0fywqTwYjx7HMpBI1ZaE0fHZljjvf+HP+yb/9fT7zmV+kkEoo9rY8zSgkDPZ7we6ppN1n+7zv13j8PtxyvIMfmEeMP58Ws8ZIDUTRm2bYz84fgmyO9/RcmOmxSinID4g4GMaTmENEKOMJinuWF+iOCbnLpPpXkKAUSdWpPxqDNSafTXzM9HTm4PdgH65pKCrF+bRqXPisifceC+QcuqNai6mkQhFci6JqO4XQvpdDe2gP7aNrD2GZHyL7qAZ3BXf8vXCSD/r6qJ/7i8AnJo7gQXOYCcRDgFT6wLrvH2zdg6IR+wHSX5U9aO33BqDFO1LuQ3smh75fjvhoHnPKejb+I6Y4z7FTPwg3ep/gTo4hQftvm2mAWMxxZM6xS5Z5jjSGtN/jM7/x3/PpN17hk1rzX9UD/pv5ZjFSSjJgNIwRUpBmGS+/dYmFVqOo3qxtM9tq4Lk21+6s4TpuAbGzbRr1KmmaIoWkPxgRJxmea4M0iHFf2N5Oh6Dk8djZ1ULzzXUIw4By4JNmOfXA4cTqAgXpnSEaJkWPl5Bsb+3iefb4+wGGjO2tPa5cu4swUPI9RtGQN9++gZaScjkkyzNsz0EIQSkIGI4iEDnziw0cx8F2NO1OnzAMMQK2NncLpsa8YJF0XAchJFJq9jodfN9hbX2baiUgSVKSOEULjedblD2PWqNMkoyK/jbXod8tAjrbUgShj1QCIwxpYrh7ZxutNEFQQtsarS0srQoSjsSQjOUOSiWHJCu+n1pbCCn5wTOvcmJlkZ3dDoYcx7ZJswyTG1544R1sLfn6D14f99YJ2jvDQoIhFyTJkCwrIIt5Zjhxco40K/SuOp0BWZqSJhndTp9GvYIQglEU8eLrF2jVqkihyLKcUskFDEpput0+C4szvPrONc6cWUJbklJYBDZ5avj606/yyKllLC2Yb1QIqiW8ssvedoeZegXPd5FSkaQRSmtsJfnzp1+k5vp4vksSR+RZAY+tN6sIBG9duMpMq4JfKnHzyh38iovjubiey8L8DNvbbUqehxSSVq0yZoSVNOs1Xn/7XWaaFRzXZtAf4bk+pbKHESB1UXkRuRwXmHJGUYRWGgS8+tYl6uWAr37vPI+fWi7YgRODtvS00ovJ0LpgFZVKkiUGrTW5SQt2yjBgdXkBaSmSJOXKu7dZWZonGgzxLYuZVoXRaIRSNl/83nmeOLkCJuelNy/S6ww4dqxFlmWUyz5SSVqNBr1hj1Lg0KrVUUoxGo74scdP4XkWGzs7lAMf17XxQ5/trV0Cz6Pb6TOKE4LAZ2+3i+/a2EoXn/seykC722Vnp00URazMz+AFxX2q1EKq9RBhctq7XXy/TGYKOn3HEWxsrVH3QpI4QSDpdwd4JX+62RojiwTXgT1ScjjhFrguv7TU4rf/5b9hdfUE8wuzxR6oJEodhh1Otsij+9/72WQ8h6CSYroPK3Ggv/nB2/L+deTFPirHEEutxsdLUQTnWYYeB1z7AdnhgHQaxE78aX7//vEH9YBLVQRi9/PVD2zHEBN464EksCiSkA/yyMU1iunxJs/IckOaJYgxdPOhPbT/Eu2hzt2HyD6qbJnGpON/HxAgPaCCd+8896/wPWjOv8jPo/kLsF0erOq9l1PlwLiDx73f+0fHTOUNjozMD0RZk88myJr3uzoxYb+c9DeoafkUADWe+x6ozuSUR2UM9tV7x/8v+grz3OwLZUyyr0wcfiHDYKTg87/x2yRxws/39/hbZ09zfHWRNM7IE4NVsph0ehjG2kYG+p0+fsmj3e5M2dWyPCGKUsrlANspHoyV1Nxe22R5qYXAoCwLy7ZJkgSFod3rUm9UkFKTjgrJgE6nz9ZOhzNnjyOEYHtzj9vrWzx+7ji7ux1q9TI3b69x4dJdKmWXjz9yYgyJlFQqZb799Cv87U8/yaAfYYzh/Ovv8BOPn8MraeIR7La7NBsVLFeRkxH14zHzqMFxbZI0RUkLqQWYAhI4GgzQyikeDGVGLiVSws0ba5RLAWG1hAL6g6gg++j30UphaZs4ihGWQmm4desOJ48fJ45itGWRxgntXheMoVwNsWxNEqX0OkNs22Z3b4+FlXn6nR6e4xZVQt8pxIeTDFsrtnY7pKmhVgsxwuAoq6gq54ar164TBiXq9Tpfeep5fvqJczSaIaN+zs7eDmHdwtUhSks21ndptsooJafAOGNJTJqjlU0cJSgl+Op3XuDv/MyPoVyFpKjGGwNpmkGeI21Nd7eL0hK/VCLPcrQCIWyidITU0N/tUyqH9DsRvufRbu/RnK2SJEVlwPFskmHMv/nyt/iHn/l5+v0I2wPX9clz6OwVwvFGGAb9PhKD1A5S5MU9H6XYniCJBe3tDtXZAK0sRsME29H0ByMsWVTzLFdjuw6vvfEu8zMNms0qxqTYbiFd8a2nXuFnfvosjucRRSlCSkgN7b0O9WaVKIq5cu02rVaVVqtOe7tNrVqh3+vhhy5JVJDyx3FCfzBkfrFFr1t8f4v+0GFBVGJS8jTFL5URAtrtNiU/4LmX3uanfvwxbl6/Tb1exis5pEmO5/v0u+OfM9dm4+4m9UpIKnLiKMKyLPa6A2YaDW7cucVcq0F7d8j1OxucObGI5zk889Ib/MyPP8FXvneen/uxx5FS4PseaZKyvb3HIIoJA5+5mSa3bt4lKJdot3tcvHmXn/r4ORzbhjzj9QtXWT22gLIVnueiLIXUiouX3+X0yWX2toaEDYXEYtRPMJnBdTXKsgs2xzznwoVLCAuWF+ewtMf6xhYnT68UUHol72H43XdBApPG/M8X7vB//qt/Pt6T93fsCSowQ4zhqz98ElMc8Xdy3Nymxnu3ObK2KTRTFDDI+4YxE18rTEEuxAG/MEa1FNe575sngeBBO3ru6RrFkbXcc/5JD/q+3QNBFSDFvfq0chyIqoPHH4YCFYGvnFDVjK9tWukr+i4FAssqYMUfyQewh/bQ7mMP2TI/RPaRrty9h71fBe/9xv+oY97b/uLb+KTe90GDuw/6/v3Ocb/xB4Az9wSK73d1U8IVcyRIm3w+CcCOTjTG7uRjmM3UyRc3YryY/Wb+g4Sa+9chiKKI3/zNf8AXvvBF/t7dK/ykhF9fXuAnzp6iXCmTjTOsz790maVjTSQFtDPJcrq7fSyt8GyLna1dktzQmqnx8huXOXNiDr/kIpB0O0NsR+NYDt949k2efHSVLM+xLYsr1+9SrVUgN9iOZq/dpVQK2N7aJSx7RKOY2ZkWg9GoeKAZZ6YnotYGsCybc6vLtPe6zM3VyUxKtRpgjKA0ZqdUSmC7FiuLM4yGMWkWo5TNV556ias3bnP65CJGUvQEmhRLa5I4RxqBciyMyemNCSIsS0GuOP/qBZYWGmAKYG4aJdTrFVCCUX+I6/kkI1hb32Sn06ZeK/P8S5fQSlEKfUq+w/rtXS5fvYMEHMtBWwURe5bmOI7DcDAoesACj1qjghHg2A4CQRqn7HU7uJ7L2p0tzr96kZOri3zt+69wdnUJbSniLEVrxbuXb1LyLFrNBoPekBPLC7Q7HYLQ5fwrF7m1s8XKUg1LFz2G1XoFISCOIvIsZhQNQTjs7nQZDkbYuiCsafkBlqsRymByhTFw4+YdSp6L62ru3NmkXqly+84GjUaVOE3Z3trBd3yu37xNo1rGtSw2dnZp1usoqRkM+ni1gHa7j+/7DHsDtJJ84uxxNjZ2CMMKli3JM8NTz7zK8WMLmDzFcjSuY/PV777A44+eYjSKUIDjOCCLKjN5xl6nSzkIIYdup0d9rg5ZRhh4pFmM7biUSyUq5YAsT9ndbWPbFjubHRqVCmHFI0uyQuogztCW4OqNNb793Jt87OxJFhaalAIfAbiOTY7ka99/hVOn5vnm869x7sQyg/6QZrVChsGyNZbWrK9vU2+WUVqhLU2/3efLX3uBcycWyZKUPDW4vovWitZsHaUFwrKIhhGWlGgh+MLXnuHk8lxR2coN7d4QYQye63Lt1iYYWF6eZ2urQ61SxnUsqrWQ0WjIUmuGbmdAyXaZaTbYuLtFnuV4vofl2TTrNS5evcXOzh7Li/Pc3drm2LF5XFtTa1SIo4xbN9c4d+Y4X/z2SzjCMBqOuHFrDUtKVo7PI0VBFBP1ExQWX/jG83zsYydwLEU0GtFtt7FMzMrCHJWSy+5eG5NDJQxQShFFCdq19hEN95hASMnfnamSfOxJtNYULJmHK31mAmvkRwjupnOY6YZaVL/Y14w9uFUfONCYo2iNI4Fglo9hlONR+bhdYYL+lIUe3SRMemAfw9E1i/f8eNoWcWiqe9hoDlfs9ucetyQcCOYm1UiY9OSJA8HcgQnHfxeyGoYoTsiyDK31A1b60B7aR8sewjI/RPZRC+4KwfL03gBgbPf0jL1PD504GnD8ldrEwU7w/h/snEcrddN+tANj0jybasO9H0yU8bEHPzUHHRYH7gvFw8Hka8J3VlT3mLavjfWxC0Y/sz/m4Fc+vmIji4PU2PlP+hbMmGXs/gsWU2dfaHcdCfQmc5t9GGsuiib/f/w//VNOvvgszQuv82urc/yMY5EMR9SrIXmakOUJT7/8DgszDba32nSHfZZmG4WeOZIrl2+SZxm+55BLQ7lZYWdrD991mZ9toLTixq0NSiWPKB1R8hwQ8PFzy3S6HbStiUYJG5u7VEouXuDz9oUblBwP2xYE1YJcAiHodNtU6xVuXl8ny3KW5ptIrciTGEzOYDBCa4dmqwyAFBZ77UEhMKyLzLfjWEWPiBRoy+Pp8xdYnm/wyKklVpZnESaju7uHH/hoZWOkAA3xMMa2bdI0o1TyGQ2HRVCd58w26ly6eAe/VMLR1hhqJ0mHMY7rIqSiP+wReC7SCMJKSLNWptWoMGgXrKG2rzm2OI9CYZUsXN/BcYpKlRt4SKGwbaugGU8L5qH2bhvb1vQHQ6q1kF5vQK1aphqWkEry+LkVpCoIGkbDAUpJqtUKcZKQZBlhtczt62tUaj79/ohWs8KTj53F0jaZybBsCzBkBs6/dInRICHJDbWwQr/dJww0aZKT5SlhJWRvr0tY9olGI9bubLHXGdJoNsjilDxO8aohjWYZDFhaE48SlJ3Q28sIKj7SsSn7DrmEURxRLvtkw4QvfesZ7q5tstios7G9SxD4ICSub/Hc+beZrdYwaQImoVIvE0eF+PfZE8dJoqhgTVSKvb0e0hRQyEo9xFIaM64Uj5KYsu/S6fWRliKNY6IoZ6/TwfM9bMdhd7tNPMowJqfb61Nv1DC5wLYtTJ5hOTbVSoknHz0BZEilyZIRGMNgkDCMRjxx7gSD9ohzq8dI05QkTggqPqNY0Ov0kDInCD0sR7N+Z4deb0i9UePRR04htcSyixp+GHhYzngPTCRf+c5zPHZylVGSgKN5ZPUYRhr8SoDyXEolG8d1ieKUuZk6QeCztbXDSxeucPb0MkIUPdqOdthpd5mZr1NvlLlxa535xTmee+sdFmZrdNp9Lly5hm97HJufJ2XE4vwco1FEp9OnXquwtr7JhetrrCzOUAktFhfqeI5HJQzp9Pp865k3ODY7g7IUSlnkGM6tLuJaNkJBPMr45gtvMNtqokou0nEpB1W+/J3znF5eRCCJoiHvvnudmZkZwJAXBfWiT3O83zEuGv3Wv/y3/NqvfWYaeB3qbR77goM+Z6KJd0iG4INA86Us9typA9lnuhRFk98hOL3cT0dy1OtMoPSKAuZYXN+0A/GAPyhYkM2Bc+Z5Pu6vPlw1O6inJyYwzwPVRMRh0pniXhzUAWSa3ZwcJ+W+bNFBLcLJ+OLqDp5XkJNTcJlOkCPT7sMDzxqFR5z052UmnT4SiEmz+MP+vIf2EbKHwd2HyD5qwd3+hnd/+3BTDx/Nnn7AgFKIMXX7/vijV6nEPhznIDnMA6c88O8HrQYePe/++fZdkLxPtvPo+IkdbLZ/3wB72ozOuLdszNZ2n/V9/c++yf/yz/43bn3rm3zq6kV+oVZi/dpttra2GXb71MsBtlsiTTLeunSdhdkZXNvGtS0816FS8rAtRZ5mbKzvsLXXYXVllj/+9nPM1Wq4bkFVX2tW2djYJQxc8sxgaU29UUEpCyiys37gcu3aJo1anYW5Jldv3iqeZITh5voWIhdjIgb4wjef5ac/8Sjkgr29HsZkCAU7W7uY3OB4HpbrMurHjIYRO9vdAgrqFrT+jq0ZjXJ+8PJbnDi2gARu37pLydNoSxBUA7JRIREQhiU21nfIDVjaIo7G2nW9PqNhhMgl/e6I/nBQVM4yw3deusDp5QXu3tkkKAU4ns/eThvHcTAyZ9Ab8Z0X3+Bj504gpcT2HcDg+g5GgePaRFFEHKVcvX6XWqMCQuL4HkmaoRUkSYLj2rQ7HTzPx7IKso4iI64KXbkxNMqyCs092+V5DdkAACAASURBVFWFULrSZGlKnudUqxWU1iipCHyf1y6+y7nTq/i+x40bd1HK4DkOo1FEu93FdjXLi7M0ajXCMGAwHFJrVJG2RCp7rMWm+ebzL3N8YYbBYEhYDpmdafCV757nxOIsN+9sMNuqk+cZeWYYDSPiOKFULdNo1hn2Rnzn6VdoNcpFgge4duMurmNz9vgS880ae50+pJLnXr9EtewRhD6h7xNWfCq1gDRLce1C588veWhto22FPe5P9Hyfu3c2CIOAJErpD7r4nscff+t5GqWQeqOM4zhIJNqSWLbDd154nX6vz1yrQbkS4AUuflCiUg3Y3d2jFHiAKYJorckzQ5bkDLojHN+i1+3jeR6dbp9uu8+NW2t0el0ajSob69vMzDaKZEsOX/v+i7S7PeZmGkgp0dqiVquxvr6FUhKli9+bLM0Qto0xhu2NPeJRzMcfPcm163cIAh+lFJYtkApMLoj6Me1eD6/koWyNEZCMEiqVkGalQq/bZ2N3l1azTLvToTXTZDAcoqTkT773Mo+vLnFieR5ta8KKz+qxJULf56nzr3FieZZ3r96hWg6o18pcvXabaiXgzPFFbLfQ9NNWITnRbndo1ip4lsXVW2vM1isoS6G1RlpjQXFRQPHmaw2qtQqu65Knhiw1nFleBEthOxrPtQk8i+5eD9d1pnz/Yhqr7AdSn12Z56n/9B9pfupv4PnuWK/tQBB4API+3WYFh4O7+5gaa4ce3IcPJRqnHxUhzEGpgEJv/WBwd3+bSCFIpcgmJGmiOPekcmfMOKE3hmVMCFiOrv1w4DUJMg1SKrLxtR8WVOeQ7xkjQzk8zYQ67ME+ahrcjRObB7UF1b4+z6GrnsyV5YU/KK4xJzMZIA5UFz/MzzQP7aHt28Pg7kNkH7ngzphx79p7b3jv12N3nyMeyHj5l2cHAYz3ruPBK3vvXsDJmALycbhqNw3expW5oxW7/QmOAkgmbz+YPfNgsndMQvae6zzaXTDRF5roGz3QJpni/MCDwzSiLBbw9pvv8I/+8T/ll+9eZrWzzWeXZ/jJVg2M4NrVO7z4zjV+4okzVGtlBoME23ERQuA7DmmaUq2VEUA0HLG2vk2tXCKKYvbaPVYWZnFcm5NLcwgh2drcpdWsEscJr1+8ylyjwrVb64SlEoPhiE67x6Wrt1lcnEEIuHzjFiePL5LEMdWqTxCEZFnKiZV56tUKaVL0M51YnmGv28F3Cx27crVMluV4rsPd9S1azTpf+e55nnhsCc+zSbMYITP+6Ksvs9iq4dgFw+HVW3c5vjSL1IpqLSAoOQSlgsij2+7h+g5CFQLZO3s9KuWAaBTjeC4YQ1gOUZbilbcvszA/QxCUSJOEJx9dxXEttATb0Ugl2dvtUAo8bMvGtVxurW1ycnWBJI5RlmZzbQvXKSp9eVYQMWRpRhSn1CsBcqwPmCcZmcmxbYs4SSiVfIaDiO889yqrC3P84MU3WFqYI01TbNvCcW3W13YQQuB5Lmmakafw2oV3mWvWGQ4S4iTB9R0uX7rOyuI8ltYoSzIYDHEcXTwEJwVRiuN5pEnCzuYu6xs7zM9XGY2GKDvHsm3W1rYIwxKnji/gei5KCmzPQSnNfK0gIfnGs6+xutDEVprRMEJaaqxdpomTAa7tM9coE1QD0jjBUpJWq4FSims31lBCcfHmXc6eXOLcqWOYPKdU8um1+1y9dYt6vUxYDhgNU9ZubTDsjxhGMdFY73BjfZe93Q6vX7nG8nyL5165wOmTi9iuw6mlOVqtGmlusLWNyEGMK57H51vMzzQAQ687AgSWpdnbbdNs1ApSlNyMhbslt26tEYY+SoF2NLa26fdHBGGJwLOZaVZZXJhFCInWCqkEe50uYVhirlzhxMoS2ikghHGUEg0jtrbbzMxUGPRH7Gx1cDwHx1IMegO0VFhjSGa1UcZxHUyWk5sck+W8e/k2oV8Q86RJim1puu0ur751lUY14A+/+Ryf/uSjNBuVIvhPi34w17XZ2WnT7Q+Zqfl4nou2LYwwXL9yh+fevMDP/vhj2I7FaBgTBD5SKjrdPhiQWmBpRa83ot8f0R8MqJRDbt/dolYLaVQCbtxc4+lX3ub4XLOAjypBnuVIaaGUQmlFniTEUYzt2khL4TiajY1tyuUCrlsOS+zudvBcB2vMTLpfhduviK1Uq1ivv8zn//nv8Ruf+yx5bsaabUUVa7qfT/vB7oNqERPZnP3AqBgpUWOdusJ7FRW2fc7ncfA4PmaCopAAD5QpGK9/QlIixiiVcTnMjNkzs3y8BqnGSRExhoeOa2KiOI9SkuyAGHs+9iuTIElKcTiwo7hWg5kSnol9l7K/SnOvj5ogR6aB6fT+je+PMPuIFJhW7gyFFuRBgjSlJkQyZlolNMaQ5TlJlgJquu4fWWz+oT20/wz2MLj7ENlHLrjDAD96cPceRwB/1RvnDwf9vF8g9iBZhKMVtYPB3dH3Psh5f5TP3u/q9pO8ByqYh7LCDzjBexU6heBzn/sf+Af0+dXj80wbNpKIZ198g2alSiksc/bkcRzXQ2rNF77xPI+cXERQ6GNpLQuB8K1dvvSDl2kFJcoll8D3pyQ4axs7lMsBf/r985xamSdPE0q+S7MSUAp8bt3dYmV5ASGgXAl549J1tBE0mxUWFmp0uz2CwBszPZaxbYXSptDX0qroRbIVpdBjNBhgOw7PvnSRudkWWWZYWmihpeTksbkiK5xrXLtgZjxzco6wWgh3W1ow26jQGQzwAo80T3FtG0tp4kFCKXQZZhmjJMUveVSrVd69dINmo0qSZ0SjFMe1GUZDFheaOEEZgUHkKWk8QnuFGPsojvEDH8eW2I7D1at3sdCcO7NCTk5nr4ejNY5tEQ1GYw1DC8ex8TybICyxdnuNciUgNznJKMJyHATFA1ya5ri+y0KjgevaLM3NcPnqLW6tbzI3Uy9kC3yfoBywfnen6Cszklo5QEnNhUvXWVqcQQiJMoZytWBaxOTUGpWiv09r2ntd6vUKQhYBQ7Ue0GhWkSkMuhFKKaSxCQIPqSVJHNPtDNjZ3aVcDZFCsrG2TbVWphUGtJplOp0eQTkgSzO+8fyrvPnmTR5/dJE4ygmqHkIqrHFgJZQmT3PqtQpBWGJ1eZ7BsEdmchzXRUnF1t2dQotwpk4SFf1otTCgVPKRlqZaDzHG8NWnX+THHz/HqeNzaEuxsjTLYBBhuw7a0RhpcH2fbJSSJRnKlmMtLkGWZUgEWtoIU1RQfd8tWErTnChKsCyLL37lOWxL0myExGkEApIo4+K7t0iSBEhxbJtue4B2NFev3ybPc2q1kDwptL9efOUSjWaZfrfPH33zeRypCkkQk+G6Lhsbu1RqJe7eusVsq4nJBTfvbFIpl1COJkszbt9aQ6IJwwDfcXAsi/X1bbQUDPpDur0+506t4vkOrVLAcDQkrASkUcYbb9+gVg2I4ph6o8bJYws4juHyldtoaeH6HuVSidPHC4ba0WBEyS9h2xa//6dP8XOfegJLa7q9HuVyCJkgiWJaM1VefvsK506f5NLV66wszGJJQaNUYm+3S7UajvdgRZYavvitZxmOIeBpnhWJDgmWUjiWRRRnlMsV4jgGY7hy7SZ5HFMqhwc2w3s3zM+uzPPPfvf/4dm3LvEzP/vTBSmL2Q9ShBT3D+woIIoH+9HUVMcODtFrjf9zVK+1qNDm0zHyPeCe0/UfQJrkRxKTk0A2y8ZAR2OKih4F/NFkY+CjEORmXNEbL+4okuV+Nq3mKYF8j8rcPasWBQPqPvHY0QFmHCxOrmVCEpNPZVn3i6aTCqvhoF5fmo218sbQ+DRNp4HgQ3toH0Z7GNx9iOyjEtyJcfD1w/bGfRAWzKNj/6JWBAT3BopH+x5+pLknjus9euom70txICM47UuYrE1OM4tH/0xIMyZfRdXvwYHdgYLa4ffZr1EamPbYSSH38S+HF87BsxwozO2/wT6xyt///G/zy+vX+ezKHEIWcK4kTtha2+Z7L1zkE4+ewbItlJB8/dsvcOr4HIKcx04sIaQq1DQy+LOnXiQfxjjaIullfPLHVrEti7cu3kIqQ2s2pFYtk6c5i40qSsHWbo+wXMEJLUyaFxn1PEOTk2FYnqljWZocw976gDSLCcIyCMEgHnHtxholL8BxLdY3dpHC4PkOeS7w/RLD4YiF2SpSZJRDn063i+vbaKtgBLUcSZbk9Ed9TGbwfJ+NjQ6lMMS2LKLhiCzNsB0bKTRJlpMLyLIhGpv/+KfP8ujqEoKMeqNKnMZoPaYoT0HKolfL1oreuCdL2xYml0itUFqTxjm2W/QXOtpmu71NtV5GaU3Jdxn0+gTlAGEr3FKJZ194g6X5BmlWsE9ubHYIgwBLF5pmRoCSQJZx5d07VGshll1k73c2O6ycWMQygnJYPGhrW2HygnLesWza3S7lSsFSWa362NoiT3O+9J3n+NgjJxACXN9mMOjje2HRU9asYKQiGUYUpDsp33zmZRbnG3iux95eF79sE42igrDHwHOvX2Bzu8fqwjwCgeNauCUXv2QzGMUIAUpaRFHKicVZnjh7gizKeeOdd1mca5GbmCjOkZZDNOhjuxbSkggNJsvRUpJFOVmcoLUBJamFFRzPw1jF7/4oHuIGLkIXkFyhJOdOLGOM4K0L1wg9D+0o/JJPHEWQG3rtEZocbRd9RO29No6lkbaFdhyi0YgsjrFdjbJVAXtWhQzCKIrQlmamEnD+javMVgM8x8Z2XDY3dnEsi+NjJkqjBMNhxLUbd3jpnRt86omzZHmKMJrBqEetHCJyAbnh1NIcSVLIMXT6fSSSmVYD7di4tqbbGTAcRgwHEa35OlFvxEuvX+bY4iKdTvHz8/SLb1GrlDEmozXXIiz7uLbC8SwMitzk1GZCeu0+juPS6Q2YX2zh+g5ra5vcWdvEdj1qlSr97pAsSfF9l+EwJhklDAYRw9EIR1s8+cgqcRzx/Zfe4tSxRVzPodPt0u0NcC2LkuuQJBFVzyOoBnT6PdIsJUpS4iil1apx+d3r1MKQ5WadO2tbzM400NpGCoVSEEUJCMjShI21HbZ3e9iyCMDnZhpsr+/huk4BYZ30Zskir5ULEMbwc4st/oYr+O/+xb/ml37x76KVQo21VQtdUe75MuOIQwgOQCDFgT3cFJqm7B+TUWzjZjxOsR8QSiHIGM/HfrVvv/onDu3xE592VCNv4tMmc+6TThcBVlGBHqNADvibQsuuSF4U1UjJQeZk2K/mTdb2QV3zpHoouTewy/OcSd1uf/3Fvj2pDkohUOPr2Q9uD8IwJ7DMg3MU15GZlDRLi3nkpH558MofBn8P7a/HHgZ3HyL7aAZ3Hzw4+uvJch2oTL3H539ROwqXPHq2QxnB6XsS8UCYzP3Xd0+Q9Z6jH/z+dIoH9NcVLG/7Md+EJnp6neP3f+Pv/zaf2bzBr6wWItMCgcwzMIab1+/g2BaPnDmFZSmkEKRpxqmV+aI/x+T0B0PyPEUi+cb3XuHJk6ssLtVptWrcXF/n2GKNKIbdvT6Neg3LslGYoqcp8HE8F0tZ/Pl3X+GxM8sIJbBsjVfykEqjLAutNcloRJamlEIfx1NobRHFQ4JSQKMZYEyKSRxsV+N7LrdubRAEATvbO2gtKVeCcQADWhWC0KNh8ZA9GkaMhilh2UMrh2gUYzs2w9EIz7NwXRulNYP2AM9zyOKUP/v2CxxfqiOV4sT8DJ7vFUQFBgb9IaWST5oW9zxOYhzXIY2GBSxPKfqjEeRg2YVWo2XZE0YcpFBEcYLvFQyUJjdo25CbnMEgorvbZ7bWQlqG4WiASS3KZRelFE+ff5PQLZEMI4JKAFJRb1TZWt/BGHB9n93dLkHJJc8T3MAhEznd3SFKaL7+zKucPj7H+uYOYeCjrYLxU2mF5WjKnkO1GiJVIUasdUFyobUkThIsbWEyUJbmwuWr/MQT53BsTa/bQescpQ137+5Rr1f5wz97mr/z05/i2EILbSnyPGc0jFAIdrb3WF/fploJC4KXUURYKREnQ968cIPFmSZBuegZtG2LNEnI4hjLsREC9va6lMYyB37o4/gOaZ7j+y5bW7uElVJB1pCl9PoDXM8hSxL63SGYnCiK0Frz9uXrnDq2QJpmdDo9PN9lb7dDGAZFb6Mj+e5zb3Dm5DG0XTBurizMkEQJlXqNP/j605w7sczt25vUqhWG/RGu45LGGZeu3OanPnGWWr0g9NG+Q7/dpxwG7GzukmcC27UZjYYszs9w9vgCUokxPNWi0+tiWQ6OZxOGPn7gEpQchMgpl0O0ttjbbaOkQPs2ruexvr7N6VMrSCXRSrIw18JxbGqtkDzPkCYjLHlUWxW01nR7/QJinBVBaVjzi4B4ENHrDlhenkPowpfUajVee/MaJ1fmcVwH27EY9Pusre0SlFwsq5ANac7VaXf6/Mn3XuT08gKPnF4Zw2EVjm1RDT122x3m5mcYRjFKQKc/QGSCuWaLkuPy+sVrNMs+lUqFXn/A1vYey7MtlNZ869lXCG2LoOSTphmWpbAdm9fevorv2TSbVUqlgH/3lae5cn2TU4sthv0+77zzLgvzs4d63w5u1Z9dmUe+/CL/7b/41/zyL/09tKUofmkP7795bjB5IYIuRAHjPCo9APcQHO/PMtmjx5WwQ3qigsOB0z1Jz/vPeW817DCEwxgz1qIU4z1SHpLREVIgx73q+1Wxw8Hd9JxHMpTyKBnLkfcf5PSmQfGYWGaSwyy0+cZVRTOBxB69rg+OrEmzojcxyRKUUGM/eHDEQ3to//ntYXD3IbKPSnAHB/XPPtzB3T5ByOEK3uT1xKZXM2Ez4wAC8SB5yn2u4YNc14SpiwPz3s+x3Tv3Yed/v1NNfOFkVJ7lByQKJhng/f4M2H+keJA+kTlYzBOFcxZFIwa/9Vv/I5++/BrWqy/x2ePzxRAjUDlkw5i7dzaQQlCtVrEdDz2uaBhy/v2Xn+Lx1WMoXVQCfvDCRVYWZhAI5htV3rl6k++/eonV+Rarx+bZ7ewQjwx5ZmjUqnz5ay/ilxx8z0eKnMGwT6nk8NiZZaSC7bUuWkjiOEK5BTnJF77xNGdWjuFVQ8iL/ok8Bm0Z4sEIS1soNH/4nad4++ptPnZmmeFohBCgpU0cp5jc8NY715mZqWGM4A+++gxnjy+RpDGOY/On336RsycWuXbzLt1un5lmgBe6jIaFlpgxcOXqXebm6+QmY3mu6INyXRev5BQwMAydzoDtnQ6jQcSwH+GXbCy7CCaVZWFbPibNECbFcR22d/awlMWgH2P7VgHFSg27e11srcjTlDSDne02nu3hOR7xMKHctLC0g8kkhhTPsxiOhqwuz5Obgu3V8n3+wx9/k7MLM1RaZVzHZtQfUi57CKXZ3tnG91yksfBKFhLFQqNKnqcszDW4dXudNMmo1msoLej0OrRm62RpilKK4XCEpW2EEuOesKK68+pLF6jWAhYWZ8lHKRkGx7aIE4PrlSmXyhhSzp1aYG19m3K5hAF63R65MYUUQ5IwO9PE91wQAs/3iOIBjhVQLts05wP6vYgoylCOhVSSbmeA49gYKQmCEjeu3iZ0bbrdLpZtAxpMRpoleL5DlkM8SPjCt1/kiZMrKASbm3uAIQx9kijh9MlFev0Bju/iOBaWrbEdTRKn2I6PtgULMw26nSFf+s55fu7JRxgNhoSVCrnJma+U8R2HP/r683zs3BKOYyGF4dqN25x7dAWvpDCy6I80cU4YBtgll0TkfOU7L/LIySWUVOxt9/jyD87zicdOIqXm+uVbvHb1XR47tcpg2OP7z19keXGW0WhEueyzcXsHJHz1mZf52OlVFIpoGNOardHt9dGW5vW3L1GvhliuRW93QJqmzMw1UI4iGSVE/QF5kjMa5UigVCnISrSt0VLR6/Wp1EOyzCCNJo1yBBmebSFtRW/Yp+RoKtWiopxlBt8LiEcJ1UqZ+XqZSqXEjRt3C8hxFHHh6k3yvKiGRsMRrWoFN3DxXE2p7DNMY4JyyLG5Gd68VFTtnnvzAp984hRRlPDya1d54tQxgpJLd6/PxtYu9VpIFCUcOzZHpRoi8oz2XpdPPX6aT3z8JLZrY4DZmYKp9e6dzaKi7TiYo4yOCH71+AK89Dzv/Nmf8o9+79/z67/+K0f2fDH1FNMEm7nXz0yDuzH8fZ+JstDSE+OKU56PuZUPxkEHIZoHcInmyJccDxP3O+7ga/H/sfemMZJl2X3f79777ltjzch9q62renqbno2bRYwokiOBgEfkkAJH8CISEGDRX2wIhhcBBgwDggED/mBIkAUIFmTYFiGKkkibJjUczkzP0j1L9/Q2vVR3175lVlYusUe8/frDjciMzKpehhSpGrIOkJ0dGRHv3fcyK8495/wXcUy5c7o/OETITCbthvLQ106cyIBlWR7LtYfF28x9KWbu55H65SGm8jDXTV8vhTycZB5ey8y9Kidw1cOm6QMFV2bDTKZ0yqJqJoW3lAolFSUW51kaQ14WCNR9cNlH8Sj+LOKRiflDFD8yJuaipCyKD3/dn0F8VKjnSdNy+2EvD38+W9zNHveHiZPvFSfOKcRx2eepiXf5Ef9dGXP8nk99w0/WZ7Mw0bKwynr2/63Ev5RWSGA2Zknix9YsjxLhxbfe5X/4H/8n/u/PftKeR9qiTWEQacF7b1xh6ewyoR+SplZYosigPxoSVUJcpblza5dGI8IPPYqiIElTtu/ucu1qmzOnWrQWApqNRdIspd0+YGWxRplL0B7jZEwQadJhguO6fOXrb/LTP/E4WVpSrQR4vmYwHLO1tcOpzWUKBFJ6SJWzvbXD1Wv3+LnPfpp7+7tEfg3HASMhLzOKPMfBRWoLKfUDF4DuvS6DdMzS8hI3b+6xstjECxT799rcvLXHM8+eJi9yBoOY+VYLpRXlpADIU8tbytIcqRSlyYjHCZEf8vt/9DK/8Fc/hZDQ7/apV2vc3dlncdHCRV0nJMNMfPEUUjiYIqcA9u/u0awGSM/HcVyrZqgMyoEsTclSwStvvcdf+rFnyJIUELzxzjU+fuEcly7d5My5dRIzZKFRpbPXRXkRjnYmghvWx60oU3SgiPsFhhIviviXv/8VvvCz/wFpVhB6HkVukEraKawFmfH/fuXbfO7Hn+Hm3W0eO7OJ4zogHPb3rZeaMSXtvTat+SbxaIyjNUIHiDJFCkG/k4EsqVYjBsMhYegjhGJ/e5+F5Rbd4ZCXX7jGs5/cZJQO2dhYwjgOpijI0gLtBaTjAUIYpFE40gWVW16fClGupD/oU29UEAiMNBS5QDkOpSkwaclg1EMI0MrHVYZxnlCpzHP5ym12d9v82KcvkBcFfhjQ3+/R7fZYXltinGc4Bbz0xnv8zE99ApOnxBkIz1qNgN1IFoXdTOfpGFEIEApV1YjSIUvGmKLE931e//4lzp9fw6v5FIXBcSaqhUJSFAbhFCRJgas1RZqB40zERqqURUmRpxzs9ZFOSas1TxynOI6EIiMmxRMO6SjHb1YZDQbUa3XKEvIi5flvXOQv/dTTaM+aR3cGPRqVCmleEFQDTFbiaEme5ORpSTweUW1UMVKQpAnfeOF1/tpnP83N21tsbqwwGMcoHMLIg9KQ5TnKdVBaQWbodHu89PYlfuYzz7K7u09rzk7+0jRBe5osSclzOOgMmJ+3cGylHP6/r73EL/z0J3jupVf5iSefoBJVyYscI0v+zZe/w9/43GdJ0oRqPWR/74BGo8lgwrl9/Z1LPHlmExC4jsf23T1eeucyn/+5nwRgb69NJaoR1TyyNAEclCMZDseEoW85cY7D3t09mvUarnbIHcuG29/bY2dvj2ef+RhCeCANJRnS0ZRGWnTD5DP6P3v+dYZFyb/8rf/T+mlKbAMqL1COnkj+W9sA6wt3MjN8tFx1LHvMFIIA6liT9qiheNQYPXGOmengdAlSivty0bQAtfxBhZBQFAalBGVhbPEqZ/LTTJTGTgBtsVi+/4TOGBylDvmFU55ifng8+7ydLFohKZgIShkD6qjMnBrFK+VQFDnmEFkzLbdPevp+MPJm1jBda30E1JzCNI5Zy3+wX/CjeBQ/TDwyMX+I4kdmcid+eL7dn1Z89CLs/vU+iHMnZzp/f9I1iRPHPgnBFPe94sPi/uOdNHe1eXK223n0ziMy/oModuKBPwcoioK/+2t/h7+Z9/iV0ysz90fYZFiW7OzssX5m5ZA/qJxJd1Yqfucr3+OJ0+u8+sZ7nN5cRivJaDRiMBgy16xicsHaep31tSUOdocEkabTHbC8PM94GJPkGaYE3/dJhjFpaqXFz5/dRHsWhqmUwx987UWW5+ssLc6xt9/BD3ziUY4faCqRh6skwoDra4SQjOOYsBJSFgWeq5FIpLYm2b1O30q8+x6epxGlQBjJ733rO5xdn8d1XfzAp96w8DxHWahnPJ4ULEhcbQVJdu7tU69XGA7GVKoRo9GQsxtLOJ4DFBYCi6RaqZDnGVlWsHN3n3qjgpKCIrecjq2tber1KrV6FakUeZlzcNAhjDzr1zUR2tCOZqFRt1MeqYjjhNOnVtje2mFxsUmap1b4oywnxb8DKAb9EUIYjDDEo5TRMCH0rYmzMSVlnLK00ES7Lrs7BwwHMWHgk6YJruuS5hnn1paJ4zGnT28gDCRphlIaz/XAGIqioFqtEI9iSgN5XuAFPkUConTwKw5ZnuI4Dq7rMx4mdoMHpHlOtRpxc3uHc+fWEELhugHIEiWE9ZeTEllm9HsZbuigHMVomFoelYbReEwY2QlSPMpJ0gTKyZRACsrM4PsujuPgKI83Ll2xVgFoRJFzamMJ7TmYsiRNU9557zZPfuwspclQqkApl2+9+g5Pnd2wghNa4DgON65tUa1GxHEKAlxXIx2JFJIksdNfgSBNY/zACsp4rkAHDt3eAFe7DId9wkpopzIS8rxEa48yN2RxSpHbyV33oDfhDxl+97mXRlv0qgAAIABJREFU+MlPXeDu9h5hJSDLMowxVKo1ZCnJswI3dPFcF+lYTzshYXmphh85xMkQ5RiisIKWkt2dfUxpiOMxUkkOdrvs7/VY2phj++49Qt+lzAvObi4glEE7EiENnlZozwMlUVqRJKktXoRif9cK4pxeXyZNUjzPp33Qp9ao0m73uX17j5vb+1SjkFarYQ3CBbie5olzpxj0+6wttYiigK+/+DqPn9tESji10po0fLr2XErx6sVLXDi3QRwntGo14jgnz0vavT6VasiT5zbY22tzd3cfY0q63R67e/so4PL129SrVQB6nQHadW0zJS+QWjFOU1xfYwTU6xHVSoSSmjQu+Np3XuP8uQ0ojC1mZqZhn99c5ldOr/D3/7d/RvP0GZZXFifKkg5lmQNmoqp5v+H39HP4o8QDc83ks/xkZpqNB6pCTt93aJEwsWl4H5jn1JpBwKFFg5ggQg4N1NWRb58Q06nl5Nz3p+pj1yXlUR48VNScec1UgdNwpCo6ndghZ4q76TGNRYtM1UynE8n7M/aH3ftJ4WpK8rw45B0eNWBn7/zDsad6FH8+4oeZ3H0YOehR/AWJKdRkCtVL8/TfE5/ujx82yXx4p2yajD7UIoAZCMrhY3Xs608S5QPXWt4/zSvNfVwMOEpB5cR0/GQYIezPZ/Co//Af/BN+9Vd/neIf/0P+l598+ui10+6mKSEreOvtK8y1mozLgjjJDqeDxUSK7G/+wmcxheHCqQ16vR7bO7vs7O4zGsfc29nH8z3qjYC3373KD96+DbJkYbFJnpYYo/B8F+Uq0iRFK9dyhgQoLTlod3nhlbe4fecuf/nHnqZer6G1w+JiC89zqVY8TFHQbvdYXZvHdT3iOGU4GLPf7pLEseWrGYFQtkPe7fap1Svs7h2gPAfP98mLnG63w+d+4uP4gUtYC9ja2yPPC8bjmNE4ptvp4/naCiIUhjTPyIuMlZUFAHw/tJ5wroMfOmAESjkM+mPKsmT33gHGCCrViIXFBqbIGQ3GCAPalaytLhAPhpRlSakcMCXVekBepMjJNKfIrdrcrNqb4yjyNGPj9DJRLSDPcwbdEXGcY6SDUgrHlQyHI778rdfAGN6+dIvL1+4yGqTs3N1HKYcLZ9Zt97ko8T2PLM1J0xzX9TAYXNfFCzTNuQbvvXeDLCssb7AsOdjtMOonuFojpEZpD8/zqVSrDAdDtHZ5/oU3MKXtcMdxQq8z5MbNHaSCqBZSbVQwecFnPnUO7SmKoiTPQBrIkoTxYEg6HrK7d8DtW/tWyVTCb//hd+l2R6CMNSQvDY7WjEcpnta0D9qMhwPyNGN7ZxchHC5f3SaOEz7+5AW7+d/vUK0GDId9yx3NcpQSFKbk9tYOYLhzewvpSP7jX/xZdvc7jIcxnU6XUW/IfKuJQOF5HmEYkOUZW1v3EI4CKfnOS28gKMjS1HLXHMX8Sh1jCuI4JQhcmnN1sjjHGCiKHMdxAPjuq2/ZIjFOSZOERrOKMQVpmvG5n3iSkpJGPcSYwoodIZBG0e+PcTxtrRWEoMgyTFlw6d3rBFFEZ7+P74YINKP+iK3b95hr1vF9a3g/Ho548a33WFhoMByNWVxukmcZg96I775ymXs7Azy3hjAhjpKMRjGlMWR5QRwnKCEZ9oZUqiF7+22kkniey9Vrd3n3xtbkb8rntYvXeWxzg/mlBco84+CggykFZQnXrt8iKyws1Y98/spPfQJjSu7cucc4SRjFAxbmqwgMFy9f5+z6IqUp6HWtX91gOOa5V95irlXj7sEez730A4LA4/TGKqNxQmlyFubq3L67x9PnN5EIfvD2FUajmF67x4uvv4WU4IUeXuTbSbaUxElOULHQ3x+8fYXP/tjHSUcFd27eRRrDcVKAjb/3mSd54ttf4Vd/9dcmjb9yYtWgKItihiv3UXjaJxuBk+poIsh1El55lBfEZAI2e4z7E8pUxKU09quAY8ebPn9iEZSlsc0iJu/LLYVgqkRpOXuWJyylPO6fegKlcqiOKQTHzM/vC2GneGZGMVSIwzWb0jwgv04RL5P7YATHDPPue7U49vRUAu3wfkj7d2HKgqxISfOENMss31waplO7H61d1KP48xKPJnd/yvEjM7mbgQ8UZWG73v+ePpb+JJO7Bx7vAY9n3/nDFLH/Lu/JByl73tdLFO8/EXzf+tSYYxf/xS/+Ov/tUsB/dH5z5vwz55ACk6a88841nrhwFqEkorAbfIGd9imlEEjyIubWrXt4jjeRdQ/Z6/Z5/PxpHO1QqXrcvdNhfXWB8xcWkcKxnLx+HyWgLArb1VUOv//1l3lsc4EwCsgTw9tXrnPrTo8ff/YCYagxSMq8IEkSXM9FOXatUVTBGOi1h7x6+RJPf+wxyiKj1mzQ2e/iapdev0sYVYiigNFgRBh4SGVhWK7vUq2H1BotqzYILMw1McbgKEkcp7x3fYv1pTmyLKE37BFGIXmak2WZhb2WAsdREy6Mw+69LkoowiBgPEh568oNFueaaK1QjmCc5kTVmuXNUFKWClOU3LqxTbNhX6e1pMhLKzQjFdtbe9QbEZ7nk2UZ33rpddZXFimSnN/+ygtsLi1Qq0T4vov2PBxHI4QgK0bUanX2d3tsbqywsjhHq1EnTQrSfEwURsTjMUHg0z7okSQZS0sL/NHzr7C60EQ5EqEspNUUOUVZUq2GpEWK72kGfVsIPHZmmSyBfs+Kywgp0NqjKBI6wy5L8/OUJXi+jx94uI71GovTBCFgPIyt8bcs8XwH1xV0O32KPKNaDRFKoGTAwkIdVyuSUcJjmy2ELHCENf0eDoc4WlGphZi0wPe1nb4Kh8ZCHSGtLUEYBShZTCCRAdJT9LodqlHEYDgminxWF+s4nktpoFaNkFohlaLXGTA/36TTH1OvVvAqHlIobtzcQjsKrRU+CsezE7PIc8nGKdVKRK83ZHeny2g8otFoEgY+nW6XMAxxpMdoOMaYEse1tiHNakQU+bi+j+NpDtptwoqP5/lUa6H128YqFLqex/5el6s3b7C+vkBvMKAShnaipgRSGrSROFqzu3tAFEX84M0rbGwuW5i1saqsO1v7zLfq1EKPnb097mwdsLbSQjoa349YX5nnztYur1+8we5um9W1BbrtIcP+iFoUcbDfxfVcdvc7eFpTb9aIxzHffOkNPvXMk5w9s4x0wHEcLmy0GMQJQSUkjxOqzRqu9ijygkajwvXrO9Tr1oKifdDHcRRhEJFnJY1GjcEgJksFc406RV4iESzMN/ne62+yudrimfMbOI7E5IaK5zHXrLO/32FjfZl6IySKKpw6tc6rF9/DcxT7vT5ZlhEEmrWFOW5t77E018QUBjUZDw0GI4osp1IJ0Y7EdR2EkFTrFW7euE2zXsdSmGfsBizpi18+vczf+0f/lJ//pc9boY5sMt2XckbR8VhWep8P9eM/P6IecP+EbYZScHwAN3184ljmRC55n4ldWZhj55PyuDCKlFPLBSuwNFXhFJOCbdpUlUJZht3M2gwfnI+nZ5ly7Y6u6MHdzynX/kEXIiYCY5IJlPTwHDMcPTF7x09OOo++HZbMQlJSUOR2Oquk+oi7lEfxKD48HgmqPETx8Bd31rT8pMDIwzq1K83JDuT7x3RgNdurnJK3Z78+TFxl+l57/inle0r8nopQA5PN1rH1chxKcnLlR+qaR2TwKVF8dl0PKuDKiXLaB92A1155g//iv/xv+MWdG/zKmWV8rRETFn4pJ8R0YcnkZZxw8/oO62tr4LrIouTgoI2SJZQFQVSxkwEJ7d0B2nFIitRy77Sk2xkR+T5B6DIYx1y/vYuWEtdVtkgwgnqtztaNHZoLTdJxhudqmvUALR1GvRF+FPDS6zd46swCyystsrzEESWjdExQDRAIRsMRBtCOS2kEQVUzX6/juA5BNWDU7xJVfRDgBxHpOEFM1uC5LmU+pFqJGI9SpNJkowHKdZGOtp1gJXGVg9aa1bUFHO0htKYSBRgcDALtepQG2u0OtXrEaJDS2R8zv9RCUiJVydtXb/Dsk6dQwiHNEoRxcbUkSxJMWZIMY3Z39mk2qmzf2+PFN97gwpmzHNzrMBqM0cLCNIWEoBKwv7uPdhRri/OEvo/j+5zfWOPewT0Wl5YYZzkmL+kedKjUAwbtAUHgURY5tUaIki53t/Z4+eJlnn3qPNrR7NxuU2/WKUTJ3HyNosy5tnWXj509ddjg0drl0uXbnDqzBKJE4SKF5VedPbuOlIp8kPHVl7/LUr2J5/lMNAhYXp5HKsHu9h7VegVTGjzHIcHguz7SVcR5QlQJQdhuuigdXr74Lmc2TyGkg5SQpjnIEs9xcAKFo13u3NmnOVfDCzzrpSgERjp2cqYU0lHW30xKSpPjBw5CCMaDFCk12neQWuL5ijgeUa/XuXxpi0Yz4ve/+jLPPvEYJSVpEuMgkRJKkVCvVLh24xZzc01G7TFLS3UcB/q9mP54ROg5uFoSRBFuGPHcC69yZmOJsK5RxuCGHsZIxv0E1/NI8xHPv/4GF86cmjRPIE3sc/EoQSlJEPiWl1ca68UlJZ1uD60leZYRBRGrSy3efPs6aysr5CbHcz2rGIvB8UOUgW5vQKNZo9Gooh3FWxdv0GzUCEIP31fESUqSZSwvLdBoalw35Dd/75uszNW4euMWC80aT57fYG15DqkElUqIUoKbt+9yamONIi3Y3e+ysrGMEBItHc6sLfObX3qOUwvzZEmBcqAwgss3tlhbnkd7Hjev3+bi1ZvMNUJ8VzK30MQYh1FvQA4052qk8ZjSlES1Kv3egGot5K3LN1hfXsR1FZev3eDpJ88RVqqMxgme79HudNl8bJ1XL17m7KlVdu7dw/U1IHn74jVKA/PzDc6sr+IIgec6VOo12gc9bt/eZW/ngPpcHYqC3/3aizzz+DkEsH/Qod6okiQJylOYvETkOaMkxQ0CEBKJocBMhnKGn11f5OqXvsS/evsaP/GTnwGMtdOZqVTyvETOeMkdVRC2ULKWJuIQoqiEQEt5fMo1wz8TwloCIAylpWdPxGmOlCePFX0zcM2CabE18/z0+EIcZjYhFWaG1iEmoimHa7KntwxeJW3xN0EhTM8vpDgUZXlgnTZ5v7VGsOucIjTsRPQEFWNGuMVaOBzRF6b7AiFAGjnJ4GL2meNJdGYnMVUHRRiEYcKdnNgeickkz0zulTGUlBRFcbi+Qz2Aw/v+cO6zHsXDGY+Ku4coHv7iDj5qsfQwxKztwB8nPkzl6gO7hg+opGa7ejZhHC/u3h8EM/uuo1eaY48+OD6osLt86Sq/8Z//XX5DxTOcOgsrKaXASIE0kx5lUdBvdxkMxsy36niRCxR09nuEgY/rapK44OatHeYaDZI45db2DkrZqVWzWaXTGbC1d0B/OGJpoUlJycrCHEVRUq1VGPSH7O13caTkxTcv8fiFTVyl7DSoXkEKyd5+G1PCDy7f4qc/+ThSK7TjIIFxnOF5PlJYqKExkKYZ3e4AYXKqlYhswnNKxjFBEJDGOS+++h5z9Qph5DMexwwGI7SjQUgcrRjHMWVR4LiO5WflBY4zmQaNx/hhYAn7EzzS/u4BnusijKC7P8BxBFprXE/zwmtvcnpjCSFKup0+oRfQatWQUiNkiZKabrdHnluDc6UUtUYNqR3m5xucP7tJFscIZZhrNZCupsgKKhXL6+oPx9SbNdIkRzoOL778FvPNOq2FOmVu+KPvvMwT507heQ6jUYwf+fT7IxaXFzAYpLQGy+dOraK1AmmI44RKLbCcOGUtJlwhCCN3wp0puHL1JutriziOSxYb3rl8laIoaDQakwIQihxWFxtEUciwN8ALQl5+7R1WluYZDsZQWLn+JIlxXQfpSPqdHhhbpOd5juNoirSgKEqWF+ZQyiHPM0pjvfYacw22tncpyoLAD1hcaNlpsqNQQpAlCQKDkg5KyYkPoWb7zj2i0P7+lVQoV1slyrwkT3OMEQihKIoCIcB3A+arNYQ0+IHlO371+de5emebx89uksQZC60GaZbT7wz5zhtvc3pjhfE4Z26uwXA4xpGKJE6I05QLZ9bJ84IgjAg9n8FwjOv6VCoR43iMdh0eO7WOEIJ+f4jj2MaCmDRd8jwnTlJcV1MUFiKNgXRo7O9MabqdIf14yLlzm/Q6feqNKnmW0u8PcD2Xf/bb3+DjT24yN9/AFAVKCvZ3+3zt5Xc5v76A6ymEEHieS6USIaXCdS3376Dd5eNPPUY98mk0reXF3Z09isxYeHNesLq+QDqOAcPSSovxcMjXvvMKyShmZXWRhUrEcDimWo2s8EZpWJxv0O8P0a5LWRY89fR5HO3iOJrxOMb1PPrdLvPLC7z11iUqoYcQAtfzUMp6sC3NN4kqAe1Oj8D3cD0POWkAua7D/kGHauiTDVPGgxRf+0QVD0c5bGysQFGAkXTafbI8ZZzGaNel0aiyub6ElIJarUKapMxXK9SqkZ3aaYcgDNCupsgLAl9b0ZR4bMWoJo2zIyqzLYgafsCnSPmvf/N3+Wu/8DmmZudxHJNlOVKKw8+a2cwxHA6pVCpWQOQEVNLAoWfe4bk4AnrKSSE2fYmwI63Jko6OVZTlxKT8eA46KoqOZ7EjdwNzjMM3K4g2ZQUwnQpOvhsxyZWTNdiiUh4T+5qNEzNEhGCidvvgmL0upYS1M5BHjWshhC0YZ3l99xV296/Cgm/FsZpv9r7ct/ZJAWjvl1XclGLqsXf/lT2KR/FB8ai4e4jiR6G4+yg8tYclTk7dZr9OlkQfViAdfpQfO8bkvR9RXEYKNZm+iUkn0vY7Z4u8Y4n3xPGnk7/3MyqfhvXzMYfQmQ9a3he/+Ov8WrzH3zi7fuKck0mlMCgpKJOMS+9dxxGCahSiXQ+kJM9TijTjd557kU89dZ40zen3x7z27jVeffMqO/s9nn5ik4XFJsqxPlSB53P61AqLrRpplrN/0MH1HOZaDUwJ3c6A5YUWeZFzam0JpKE/GAEC7WuUlNTqNe5s3+Ozn34C7TqM49h66SFwPZ/LV2/TqFW4c2ePpcU5XF/zu8+9yKmlOVztcm/ngNBzGY7HE2U0wcbqMpW6nfgppYhqEY5jZc4dRyGE4eateywvNa26pnbJixxXO6TpxNtuUhD2+0Oq1cBC7O62GY9SlpabYAzdbo8nHtvA9V2UFOzutFleXqA36KEdl3E8xhSCqBrYTf04QSpFVli/uCzLUI6CssCPfPKiQCo7ETAGKx6irADNwX6PerOOAySjjEYzot8bcmFjFYSdPGqtMRKciTKf1pp4PEQHHkpL2nttKjVv4qlncJTAGEmWpRZeGHiMBzEIWFqYQzmKg70eN27usLmxQHOuae0JYisWIrVDEClcrRkMhkSViP5gwPLyAnla8NqbVzl3ZgXlGNK8QAnY2blHLarQ78d4vovATiC06/Db//bbXDi1dKhw2u8MyPOSuVaDMPLBCPb2Orzy9iU2V1rs7h5Y3pjr8PXvvc7akuVnjoZDWq0m/f6ANE7xfR+pNUIY0jjhD776Mk9eOIXr+SglcRzB91+9xPnzGwhh6A8GeNoji3M+88zjKCVxPdfCr4yk1ghZX54HIXFdF0cpvv3qRd66cpPzG6uMxyOSNKVSq2ByQAh63YFtQiQ5vqetR14tIoltQZOm6eG/9aIoGA0tdPbezgFR5KKUmvx9F2RFgusLgoqmXq9ZOJgp6Lf7uFqR5rYYuLC2gnIVnusyHIzAlLzxzk0+/3M/jhc4lGVGp93H8z2UtvYbaVzgBS4r8012dvZZWGpSFCWdbp/VtUXGw5SLl26wurjAaDwkHidUqhE3b91FAk+c22R1zTYWAj9ASUkUhSRJQqUSEo8TtOuitMNoPCYKfPZ22nieT5KkuL5LkcZo30cZYeG5ykGUEtfXONphPIp569I1qlHAwsKcnZhJgeNIHEcR+R777V1q1RDfc2k0K5QFZFnG1eu3WF2en6jfZsy36ozjmCiKCEMfsBzj7bu7dHpDlhbmcF3FvZ19vvXKW2wszR8KI0kpQIIqCtIkIUlS/DCwm3hjpzzCTPMX3L59hxtxyRNPPo4QVqBHKrtmJpnhaONvcLVLlmdIZY3Cp8XiVEhEiAkqZUac5aQm5LTBd1RPHJ9WWSuAGbTIzHeLJpkUjZNB46Go5okicba4O6o3xQNz4OGETUwsPSdCKIc/E2pGgEVMikjLI1RKHWoFPIjGcHhtE7TNlGgi5RQOalFL5UyBNvtfgNIUx3K5NWs/rNgfDAc9WsXkvsvJOadFXkmSpfZzfVJMl5PC+mERtXsUD2c8Ku4eovjRKO7+vHyg/Nlfx/2TwCnPQR4++qBp4PG53fvHA58/kTB/7dd+g2/+m/+Hf/zTz06gPfctFmksfCgfjbh09Sab66vkpQQx6Zb7HsJIblzd5qc++RS3b+4Qej7ffP0dPvOxMzx1bp1X3rvBk49tkBclr128wqA3QimHIHSRjqTbHfLyO+/x9IXTJGkGKP7w+Vd46rENDAa/GuJ6LmVRElaCiSmxnSr6rsYRFs6itKLIC6QyJEnOlVt32VxfoEyh1gjp93s8c/4sUTViNExYaM3R7w1pzTcZDcdUayHCMVBCe79LEPqUkiNIUAmjfsLK2iJ5GlvIkHIo8oJ+b0ilWrEbSiFp73bRnoPr+xgDSZZRq0dEoUsSZ0isKXJhYDyIqVYitCcJI488M0S1gN2dzqFRtlUfVTgTmE+aZHiui/I8ijK3EuKlQUi7AfpXX36BTz15FkyJqxVf+saLPPOxMxSJYfvuPQLfZTwcE1YDlKsPmx2OcqAU5HHG3n6XSr2CoKQaefR6Q4KKnZqWWYkbaAA72TTWiNzV2m4ipSSKNK2lKl4QkBc5jhJgMsajMUoKxuMeoIiiCkIZfM8qWwoBG+tLjMdDdnfbtBYWbIEiStzAozAG3w+4ctkW78PRgM888yTD0RClJYPBiGazwW996bucXWri+i7Xb24zHMR85pNPkg17VGo1lO8zjjPOn16nyHNGw5H93h8z16qjlYISeu0B0gE38NFCMteqsLW1S5KkhBWP0HMx5BRlTiUMKUvDV773BhdOr6AcQZ7nSCF57js/YH25xngwmviOQZ6OeezMOk88fhYwhL6PkBJHO1a0pcipRC4oKDCMB0O27h6QJQm+55CkOdrVuJ5tQChHTEzZPd65dJNGLcSUhvZBhygKybKUIPRxHE37XgfXVQzjsYUrKw838EAI2gdtbl/fpxZF7O230b5LFDlIJQgrAY6rqFYqDEdjkjTDD3xcV1GWGWCspUJhAEk8zriztUtrrsbifJ04tRDIeJTiapdvfP8ttFK05mpkaUJZZijl0m73qNYq7O7uEwYBWZrh+T43bm6xsbpMv93hoN1Bu5PJpTJ02h0qtRp3t/ZY21jiYL9L6PnowMEYuH5zm7zIObO5Sq8zoDSC3mBkP1+MLYoq1QamlPR6A4oy5d5OjyxLCEKXajWiP+hze2ufd67cRitFoC3H+Pade/ieptsfcHPnAMqCfq9PLYpYaFTZvrdPLQpxtEPnYMB3X7nE6qlllFJ4WrKztYMfBEhmvN0m3z+5vMD//OWv84Vf+cUJhNE8cGI3+9hMJ4Izz0tOvEW8z3MfJU4WXyeenh6vKMyRUBf357cHWRm9XxFUTERfDpdtxLFLN6a0Re+0sJOWA2y/z0JRT17KjPXD4fWIwynnbC/YTIo7MR2DHpZ45v7JHOZYcfeR40QDXUlJaUqyrDzkJT6sVJhH8fDEo+LuIYqHu7gzFEV22AmbjakXzknT0fuOcMJI/E8zzDG+3f1f0wna+5VK09x30rvuo3DupiFPoPMPGXcz8BjbAbU/l2LSiZzp8k27jWomAU1XMO2KTrkN09/MtDt67MqE9an7+//Vf8fPb1/jr68v8LmNxaNrUpKj36xBKsP4oMuVa9dptiqIQuLpAMfVGFEQBB47d3epVEKKEra3dnnj6h3Ori+w1Kgw32yyd9CjPezR6Y04d2qN0+tLjIZDqjUL36SEKPJYnV/kYH9AvVEBVbK5vEBUq3Dz1jatuTrjXh9XO4eqako6fPmFl7lwbhPpagRw+co2G6dWEUKhpObUxhzxMKU+X7XedQaUsPwZ3/cxxuD6HsYRpFlhjd8Lw/MvvsNj59YoigKtHJRkMuEw1tg8K5CuQSgfoaAoSjzts7dzD8ekuFGVIPSAHEcGIAsrYBJobt84sB1gaUUpwPrpxekYpey/oW57iNYeUd0lHo/QoWs7x2lBr9cjiAJcbSiyHoVRaHfif5elIO1G87G1RXTgWTitozi92kJrjV/1uX7nLvNzVSqVCmlmyW6Dbp/I82j3dlCORLs+XuCSJxmuq+l0+0gcRFmQ5TlO5JNPLATa7QGuZ738sjTD9TR5llmlOSWRwgGhEGVOMk4Iag3IJY7jMh4NiYcjwtBOPF1Ho5SiyBPSpGBuIUKUiu5Bm+b8HKYEkxUoz8ORmm5vwFyrjhDloVWGcIBM8amnTxFWHUqgOhG1CHxFEmeUhaHfHVKrRXTujTDGUGtU0L7Lu+/av7k0yzGlQHsCUwpu37hHlhTUqxpHy8m0x+HalS1WVpdQroP2FSY3nD+9iBt4OMqjpEAoxblTazhaE1ZD8jKzvEFH4EiPPBuTjmOk49Pp9O2/aylQ2nJ8hsMxlAVh6JJnhtX1ZXToUGYwiod4nkueFmglMbmd7jZrEV4Q4ocBaTqgzGMqlTpGSDIDUTWw6wlDHN8hTq2B+6A3YnF1EVcZSpOxtNzC9V0qUYjruiRxipJWrbbbGRBGAY4rKbOCnZ0DatUKjlaMxjFKKa5eu4PrONQrVbyKRDua/f02C4tzdHoDkjThEx8/x+5Ol2a9gSGn142Zm2uwdecuzXqNvb0eb1y+yWNn1gg8FyENoySl1qgShj6v/uBdFhoVPFVBK0G9GeAFCs9VJEWK7wcYk+McKsCEAAAgAElEQVQ5ktOn1kAKPN/H9VwcaRBKURjDoN3l3m6br3//DRbmGoR+hBc6VKLAfgaUBVIH+J5mab5Oo1HlX3/jFULpsL7eol5t4Gk4vbbCu9e2eeap83ie5rkX3+Ts6hKvv3ODdJTw/Ovv8eknz1GZqGsq3yWqVSkGA27e3GKu1URMPh+nKeuXNpb52//gn/CFX/48Qk0Nv+UDuFjTKZbNIRIx4Z4dZbU0TSYQdokEyrx4H4uFoygmuWta9MwOu6b5bJqTZl93dNrpZGryOimtmjJH3PbSgPiAZUz7k2J6wrK01zVR7Z5O85nh+CGFFeOaoFDKCa3RLmmSZ42B0qCAzFh10ul1lZSH+RVxlJmFmE7OphnTTCaj08fl4ZpAMJO+D58/+p1Mj2CpD8VUSGYG1SOEsMJIwubroiwmNhnTpd2/L3sUf7HjUXH3EMXDXdzZgulBxN6p0MhJDtnJOBIE+bOID55vHYmcvM/zJ3xyHlTIlWZKMn/wUe6f093/OikkRrz/McxEurqcga2YmedOKp/NHmV2/V/84q/zt82Av7q+eB+kdApLEeVklQa2b+wR6IDW/CKl0CgM2vPY2+2gtcP+vTZFkbO332FzdZkbd7b5yz/5LL3Jhns0TnC05qnzp1mbb/G9195mfWWBqOLj+z7t/T7VahWMQWpDs1knzyZkciMY9ofU6xUwBi/yyIsCU0CZFSRJztpiiyD0SeKEZByzvDRPnmdILTAl5Fk8kdFWpEkGRvDVF15jc22efr9vxR20ZNAfUYkisiSj3x+xvrqA9qxYSp6XtA8sVFJPfPDubO3TWmhQ5oZhf4Dvetzb3mN+oUmSpxhgPE7wfMvbyrKY27f3rQJfp8P6xqK1icjhzu1dojBAComjHExp2D/o4wcBQkDg+aRJPhGT8XA9l69+6zXObq4xGiSEYYM0LpA4OFJz8dI1As8Wg3qi2piME3zPpdNuE4QBS4vz+J6HouTWnR3qjRoGgzJiwgkMMaXitbfeY2WxBQZ81yeMQvb3u9QbNbI0t0W2kLx+8SpZmtq/HWH/VosZ/7zLF28QRj69bs+qRHo+o9GITrdHa74FRoJnuVO9dh/fd638f5IRVl3AwXEcirIgy1KgpDAJ9XpAmo4ZDPoIBC+9cYmN1WUECkSOVJLRYEyRCX7rS9/m6XObONohyXKiapVvfP8NTm0s47olRlrFOs8LadYitKfY2r7H/HyDJC7odUbc3W2ztjyPG2jCKML1PJIsZ2G+jhv4YAqUAek4eJ6FAaZJhqMVnXaPIPDI8wJTWuhWMTEBpxQMhgNc14WyxHOth1sQuLapIxXbd3epViLSOCMIAlxP4XqaIsuJKiFSKorc/k6KsqQsDa7n8rVvvsFCvQ4CqnM1pHApyxwlYTSIEQX0+yNcV+N6Dv3eiEajznA4RDkaoWwRmyUxt27fw5H2vNaMueSff+kFPvnkWUxZEscpvu9RlCVaO/ihT5okrK7M47oKRyvubrVpNKsEvoUxBoGPrzX9zohvvHyRUytzGFnQaDXpdHoMRglf+u4PWFts8Imnz3Pzxhbz83Uc7SKFxHM94jhjcb6O6zn86z/8Hk9d2KDfTnGUy72dDmUmuHP7LvOtOnlZol1tpe9LY6fugzFeGHDxvRuc3lylVgl59snHEEIwjhMCz+Xi1Zuc3VyzXNb+mLt7bZ5//R2evXCK5UaNM5sr7Lf32d3tsLw2z3iYsNSsMR6OKTGsL84xGqc8fnaDnb0D1hfnWFleQGvLI1aOQqBQWhJFFb77ykXWFlsWVjktniT89Y0l/tP/9X/nC1/4vIVUGvHAfHwyA6VpMsm99vO9LK1YyeHU7kMKu+O5ZDKpEg9+/rDZeP947Nj7bDFnDpuQR98/dClHsMjJvsMc5mF5tA+Z6dsWE1sFhL3uKeR1OgE75P8pcfTaw+syR0Ug08PaRlxpysN9xLQzOn2dPFznzHUf25KYY88DmOmE8/Bm8j77pZm1CNtgBLsXkPL4MR/FX9x4VNw9RPEwF3dlOcWPP7hD9CdRzfx3MdE7Oan7qJO5k4+n07rSGJSUH3hdH3bNH1bcyUmyvU9YxUy1x2Z5CNzPtZt0E6fmsIIjVczpgHF7awf///qn/PJEKOX9YDEWDgRllvP6G++xstjAcR2G8RjH95BGoF0rolHmJb32gJXlOfI8h6KgVgnpdvt8/62rGFKiIOD3vvUKa60GrnJo1av0R0NGccxco8GgP+J7r75DLQow5Fy6cpvlhRZMCpMgDMCUeL7LOBkTRaE1tJaSb796kc3VRctbcjW+p3F9jVSK/qCL7wY4WjIcjHC9kJu37qKV5pmPnUV7FkoppSDNMqvGmKQMBmPSNGNuoQGUCCT/4g+eZ3evx9riHPE4wQ884lFGpRIijCAIHIocGs0a0lG4gUcexyRJBji4vsJRknrV3ssocnEcRZbm/N7Xvs9Bb8i5zRWmOzipJFs7e/gTLzQQZEnOwUGPqBKyvbXLUqPJb3/5RT751AWQBY4ruHz1Ko1KwPLSAnmeUWtY7zjlOFaAwhgcrXC1gylKpHJIxmPSLD+0HEhGMX7kkWeS8Sjh1PoyruuwfWeXwA3YvnuPlbUFEIKyMGhXc/3qFo1qxOraArdu32N9Y5nxOCYMfZSrydOSO7d3WVufJ4oCpLJiJGiIqhXiUcY///3nefapx/juy29z4ew6aZaCKanWqpSmxJEBQkiSLCGMAuI4phJWiPtDHBwa9RaOq2jVq9y8uYM0Cj9g8nfk4nk+H9tYJ81yxqOEarNqhTmEYH6+hpIaYSTPfftNujtjGnOasiyYa9UpKBkPEhaWWiwtzFGthRSUOK4HUuBoTZIkSCns1FEK9vY7xEnMeBSjhMDzPOI4xvU0aqIC6zqaPM9IkwQlXdIkIYwijCmQQnH9xhb1eohBWn6llIRRiHIUYRRgTMl4OKIsDHGc4boueV7gaCulniYpg8GIp588g6EgqDiMRilFoXAUKImdSjqabqdPtV5DaUmW5ni+Z/mkriLPCtIkRcqS+dbCIf9OSoFSgmfObh56ogW+h9bORKnT+gBKKSiKHGNK8qLgrXfusLbSBCN48fWLrK8uElZ88rhkc7lFs1WjmHjxBZWQWq3Chc01WnN1iiKnNVcjiROksoVzp92z3MlAI5XgsY1VXNfBcRXtboeV1Xmq1ZBGrYp0LPdwPE4spNzVeL5nuW7CcnV9T2OModMd8L033+XHP/0USgjqUYSrNVq7RJWQ9bUFqq4V4qnXIpSSdAdd1pcWyU3JeJwShj7NRoWLV24y36qhpKQxV6cauBz0B9SrEUHgA4brN7do1GoYKUFI1hcXuH1zi/mJCNDU3FsAX9hcQn7mxy0n7BCa+QHFnRC2oJn53FeH3nFH2STLipmfH39ukqWOnWeaaWfz0xG3TsygSsSxim36vnIy9RISjJlO+aZCLvb103w3fXs5abhO6Q1TndAjRMwRykYcTjAViMl+YHIN9jaLoyTJEerlZKFrC8bJZHGyB8qL496yzLzvCJZ5YodhZs/CETbnxCbEeu7ZCWY5aZgdooY44gJOYbfiEMY78UUsCzDm0Fh+uid4BOP8ixePiruHKB7m4u4Ijvj+4/8//gfIcejjn+QY96/lh+PWzSaPWSDnH2dtH1bcTR+VM93H43LT96/tw841/TX1en3+1t/6O/wn8f6Dj3WCOymNoN/pIwysLM2jXIdSgFKKLEnY3+sxGA55/uW3uXV7DyTMNSs0GhWkVkShSxT4rC8vsjwfcXd3n5/5sWdwtcO/+Mp3+PiF0/zBC9/nExfOYCg56PQ4d2qFcTKm1Zxj0ItREnzfJS8KBFbEZHe3TbUaURQl2tMIrVis1YlqEcZY6egiz+z0aWLs3d4f4nsaP/Bsp3xtxYpSpCNMKQnCgDwr8HyPXucA11HU6xFBGFjFQF+TZwXnVld48vwplJb4oYtUgl63T60W8frbV5hbqKGUQ6/Xn5jwqoliosNXv/Uqy/NWJfHiO7dYXKrhapckTvA8l26nz09/5mmGgyFRJSDLEvzQw5GCat1yncJKwP69A7RW1JpViryg1arx+NlldKjBFBQmpxr5DPojdnc7hJUAN3BRgHK0LewcZf8/z0ni2G50HZeoWsHTmrjfo1KLGI/HfP/1S6wuL5DlCUFgN/9/9M038V3J6sbSpLDv0+8PePudO3z8449ZrmIuiKJgImpibOHiahYX6kgpSdMU7XlkaWY3XUaipOLC5gJaSrJRzM0726wuz3PQ7qGlh5SS3bt9siKmUq8wHIypRpWJemvOvb0uYbVOnqd4gaY0JbV6lTKz5up+4DMcdGh3+4zHKV996SLPfGwdVzu0mjW6nTZeUGEwHPLU46fwPEF/0Kc1N4dUGiMgqnjWFL40VqGzyBgOhnieR1mWtHe6XLt1j1arQafboznXwA88u5ErDQhF4Lt0ez2066K1S787wvM0nuuQpyUIw7Vbd7m7u0erOcf8fIsks9BUz3cpihLf91BKA9anb9AfMddqTiwMLNZsNBpZVUbt4gd2iiaFwNGKOE4gF8SJFaSRQKfdQ2uF6zv0B0Oq1SrD/phaLSRLM3ztE0ZVsjznd/7td2lUfN67eYczG8sUeYbWmrKwXM08z+2m1xi2t3a5t9elWa8B4LounfaQjz2+wVtv36TZqDE/V2c8GuN6DqIUxGlCrVG1EN84p73boRKF/NEL38d1JPVahbvbu8zN1+n3BmhX0etblECaJXT7fWq1+kQAShJVPMbjmP39LlElJEtTtrf2iSq+nXYKyZtvX0FL0I5D6LoIx6BdlyzPuXB6g7ywpuOt+SZplpOkBe1OBykEc40qo3GMIzWXr97BUJAlJa1Wnes3t1leafHmlSusLc3TqFfZO+gy6A/R2mFzc4U4SVEIDjpdmo0qSiquXNtiYa6FFILBoE//YEC1ElLm5czkDf77f/R/8PO/9B/OFE0fXNx98GtsKKVOpPaTxdz75fwTeeXEzz+UHz4DbTz0tztEzRyf9imlJqIz9vEU6Xh0TnF4zGl+y3NbtM5CIMvC8P+z9+ZBll7ned/vnG9f7tr7TM+O2QiAAEhQFCiJ1MJYliVZlkSJkiuWrLKspKSkVEmlKo6dpFKVcpw/XLErZVcldlKyVarYkixaSkSKIilwB7ESg22Awcxg9pmeXm7f/dvPyR/n3u6enh4SICEbUs2L6unGt5zv3O/e+53znOd9n0ernaBxcm0N+q7BV2ynR06YuZ3ehNv3YRu03SvEjn+3/tpxuJwA0qmm2pZi6R2ZOcYaQk6gIjszprYE2sxid1FN51Xf7dzqfvxFjPvg7j0U721wN12t+u4fEruZuu+G9dvLf25yFd4OsLvrrB1qW3upeu2M3TV1u38URvhj+nNXDZ6egsnth7m5lvk93X/HK9lDTXNLHWzSwCc/+bf5ZH+Fnzm8tHWM2vmA1yCEmfihTYrgc88+y+L8DNJzUdJCac2nn3yeUwf301nvEsd12u0G9cDhxNFFOptjZttNXjt/BUtZfO6Zlzkwv8ig16XWqOHHkVlZzFMWZto0mzHvP3kEpTQXrlxnaWGGejMmDANUBc1miKo0585f5zNPvcwHHjyGsC1c36e30acW18nyBMtS2MJhsDni9so66+sdZtsN89odG9t2COsBQloIaRNOxCk0YHsOQsNv/+GXOLo0B6KiWW+RpDmOa2NZAj/wuXjpOo1ahB8aZcAvP/8Sxw4uIWyNLR3KPGVp3xLFKKNUirJUBHFspKtRlHnGgQMLRFGE67rMzdVxPYuqgKLQ2LZLq+biBQFKgev5uIFNmiZEcWiYmsDHki5xPSCMQ772zMu8fuUWJ44fMKv5lWGQdAUCSRTX8EPLpHgKFyXAdgyg05VJQVMK/DDm2qVbIDTXr99mfrZJWRXoKkVIi8OH9hlgFPlUVQmV5oHlRfYfnDMVOlqjtCKOYvrDHq04xJMem/0eUc1DUYLUVHlJVVTYroXlCNLRCMe2KKuSKoGyyHF88/5WRYbjOvRHKbPNFivXBnzq6ed55Pg+fF/iezZMDLgRUFUlb5y/yeGDyziuWVGvlDGMFsA4TanV6yitcAKPOI5ptmssL9TxfKNKKG2J43kA+L6HBsI4JG41qMqCMk8ZDsbmq1YJNjt9hJZkeUWzEdHd3CD0aiBT9s03UGVh6pc0yErjBR5W4GAJ23x3pcbyArSWPPnVMxw/uI+0TMlzA/bnZ9vEocS2zNfbtl2kdJC2wPVcsqTkc089y9JMi3qzQRiEVKogzUagLVxHsnq7b4zj85TuZo9aGPOFp15g/9wso80U17OI4oDheIzr+yihqTUiRqMxjXpIkVekSY7juzieg6ZgOOjxzCvn+YFHH2RmtsGhfYuoyiIrE6QFSlXY0kyehYZ+d8Brb13loeNHsTwLYWsGA/P9VZQ8e/Y8hxf3cfbNKxw6sh/bdXBcTa1VRwGd1XXOXbzO4sICw35C6AgOHzpAvzugFoVcu7nKzHwToQW1Zt3UddoS3/NQVUVno4vvuvS7CVVh0r3RgmQ4ZG6+TVZkFGmBLSS1eojnWghpGBopHLQyYG9jfRPf90kKU+/YbMbYoUMQeYRRiBTQ7/cJQ5+Z2Qaz7VmefOE12rHPvsVZlEo5sLjIYJzw5qXrnDx+iMgP2NjYRCG5dXud1bU1bClxpMtnv/QiD508QpokWELw3GvnqUrBrdsdZttNrly+SWuuhrRsfnBpFvmhxxDT2jCt70YKe47TO0ef6XgiqLQiTTKEnHiYqp0M2oTtmgCKaf3ezqXeneza7u3Tsc2cL7dMyrd+YOtHTFIVTYrm9oC4l20CGMbOsHNiC5zZQsAk48bUtAvQbNWwSUtObA7kFt2oJ56zesLOTRm0CdaaMIFT7Csm/nR66zdbxwimdXN6mnnDdKFYbTGHe79Hk2trtphWS4otUKm0MizkFucnDAOPRgo9YRdthLCMV9/kjdCTz4bSCq2ryVxhOg/5dgqe9+MvctwHd++heG+Du3fTAuHdYOomLe0yVf9uQ4pvvTJ3x7Zv17d7MHXb+6dtb/8xHUh27r/7wntf+Tf/y/+W3/pXv8PvfOyxu/si7lxV1BNgJ6Xk1Vfe5P0PnkBIAw6yJMVxJIcW22jgwpWbLC8tkCQJrWZMZ7PPwQOL+L6DZzn4fsj+uSYvvP4W7zt1mGQ4ZDTOGA4T6rU6Qko8z+Wl184z065zYHmRLMtxbAspBUJKhkOjOPnUmXP8yIfeR70ZUqmSPE2JawFaaYqi3JLv/oM/e5qHThxmYbGNtI1ypUTS7/ZwLImasH9aCpOu2RviT2TbL167yemjy0RxyNpGhzAOkJaFdCSq0lhY1Op1Vm5s0Go2OXrgwCT9xebihRvMtmPcwEdXFVma0WrXsWyL0WCIYCKy4nkUiabINa+8eonF+TnKfGRqPRwLz3fpdbtYEtbXNqiKiig2NgxFUdHvj/ADl1IbNmR5cZ7Di7NYtmDYH2JLSV6WeJ7L733+q5w+soznu3ieR1WU9HsD/MA3IkdSolWJbUvyLAcBoRfRakck6Yibtzqsdvo06nWSYcpbV26ytDiLqioU4Ic+GoXjGjVLP/TIswEL80280EU7UOQVcRyiKkWVlwShb1IQPRchTN2ZLS0cxwPNllegEJLeZpf2bJP5hRkcR5KkGY+eOACALR2ExEj+q4oyy1hf67O63mN539xkYi4YjYwgSFlU/O7nn+Lq9TWeO3uB9x8/SJGVZElOFHpYjs2gP8B1XUajMb7nGUA4TijyYstewfVcfM9lalviez6qUmR5jm0JothHacnG6pDWzCyW7YCwTB2dlhS5AiXJstyIKShwbRsBnHn9LY4f3k8U+5RFie04FHlBGMWGnZMOX/zGS+xfaBug59isr3U4eWSZIPD57FeepRb41OIAy5I8/8IFXrtwlRNHjfJnGAaEoY+uFHONOlLaDMZ9wiBAWpIojlBaEwY+tm1R5gVlVXHhressLswZmw0tyZKMKIq4dGWVQ4dmCSMXaQvKMsd1A2zL9FtIU9fU7Q6Yn2/TrtcoMiO+kyQZtTBCA45js9RqMk4SZmZqvHruEvsX5pCWYDxOcW2HKPLReUl/MCIIfOI4ZJyOaDVraAXNVpONtQ7Xrt3m6vVVFmfb5FlKnuYko4T52TZpmpNmGeMsodEMkBJWNzZpNuts9vpGnAkI44g8zVGl8U/8069+Exu9pfpq25K19S7tZou3rtyiFodkSY6o4NbNVZq1mE7P1N1qKZhv1ulsDgh9nzRLENrmys1VTh07zO9/9usc3b9AURYEgc/8bJNnXn2L1c0BzdBneb5JlmXMzTZ55swb2JbDIw8eo1WPCGsBMzMN1m5tELgeCMkv/m//kk/8zF83i5GW2AIe7ziEMQR3XBfXMQJESldYcg8F5TuYvF3jyx7bJs3vOFO8jbXhCXu1R9tT77e7xuYdjUohKJTa8zg1qVeoJqnERmiFCWTdAdKmpQ5iG/wYlcodKZuT84TcmR673Z8d0itbr+JucLezb9vzq50Km0pXk7r7vd4PfUeW0TaDt6NoDwMsTV2gNkI807O3ajbvx1/GuA/u3kPxXgR3ZhVPv6vU/nfD1N0dese/05WqHZnvYrtuzqxyfetavGn/7liR25MZ3H5M764N2O7Z2wN3uwdGIcxkyRR9b++TYrtv0/dl+t783M/9Mv/HB4/fwdbdca1pO9oMMqrUrN/eYDwcc2B5Hi3MhGc0HOH7HhIj+KA1CCW4emOFZiNE2nKr7sd2bMbjjHa7Sa0WsLw0ixM4jPpDpJS0Z9p0OiOefeVN9s23qccRjVYD0LiuY4ROgE9/+TkeffAY/+bTX+ajjz3I7HwTIRRVUZCMEvwgMCIoUUhVaizL4pHTh00ao+sYJksIyqLAc+3Jaq6k1x1Q6AqhIfB9rl2/RbNV58ShfQSRN1nFVBPwAgjJoDug0WxQ5hUvn73M4oIxUu73B7iBw3iY4joSJ/DRRcU4TbClmSQYhTqJH4bkWY7jCsqq4NCBBZJ0RJXnnHnjEvMzbYQU1CIftKLVqlNkJWC8p2zLIctygsjHtiSD/gjHdpEYQQjHtgmDgLPnLzE70+DBYwexLZskSXFsh7IscT1Tg6gqRb83BJUjpdiqQzNpSRXDccLi3AJvXr7Jy+ev8PCpY7QbdaRlgG4Q+EjX+KQprUwd6kRMRZWSLNdUlaJeN15kcsKwbXS6xidOStIkB6Wp1WIuvHWTucUWUkj6vSHJKMG2JOMko1aPGA+HNGabuJ6N7/m4nk+ajInrMRagyoKLV9f55ls3OL5vjs898zzHDyzjeI5RuUNyaG6GR04f5/DCLHHkceXKLeIwmKiYKjY6PeIowHcNc2dM0S2TalmVDEcJlpTGV2rCCmg0X3j6BU4eO4CqKvI8xbFtbNchK1JsTxrVUyGRtsfvffprzNUiolqA5zlYloNQRrjl6IFFHN9jOBgSR6HxaXMdLGlq+RSaw8v78XyjyGm+4wrXcahUxekHDpv6SVUZg+/WLEeWF/BDH9t2uXjhGs1GzGg0Js0KGq0GlcqRtiSuRUy9lZXWqKpiPLGniKIIz/VQWtPdGJBnxkPv4NISURRRZApVwc2b61SlolaLSJMxL559k2bUIIpDsjyfGJd3mFto43seUkgs20JVGs93qTVDJLBvfgZVKpLMsJdVnjMeZbQaofEojAP8wCOMXaqiIh2nICx81yX2PQLXoVYPyRNTYxiFIZWq6G4O8QOfZiMkSRL6wxH79y+SZzlxo47r2GR5jmW7XLhwnbnZNusbXY4sLzK/2MB1XIIgwAscIj9gNExZXJgnCDxc1+HL33iFU0cPce7SdeZn20RxyI2bqyzOz/DcKxc5efQAihLfC/FsG9B84P0n6Wz2qNUDLCGoSsWrF27x2IlDzM826Hb79IYj2o06aM3Dpx9ASAhrAUWWAxD7AX/yxec4uLTAL5w6wD/4vc/w8b/yQ0YgZPL8MnVh9xpxdo9Ge4AfzLPTqHHeCTR2hmUZj8Dtc7aIMJOFsmMsM78NgJK7jcfvSgWdMHLTk/eYJ2zZFEx+5I6+Tfky2AYuU6C3Xbs2GUeVvgOC3QHFJudsVerdkRoJU/3RsppYE2ztk3e0JrZmAVNucpK1NAFuYvqeTQCivANUC3aK0AnuzPzZAsFbr+1OcCdgUlt45ys04qDbjB6Y+r37tXl/ueI+uHsPxXsR3G2nCr577Ni7G9sDkrjjITv5LXY++O9Kcvy28U58575TcHf3Nc19N2kZ22alW+qY7FicA5797/8ev/7Q8Xv2EybPd8xAKATcvr7CTLuB5/toaZm1Sw1e4KMmw2WSJlhaQAnNZkQQejiew9r6Jq1mk/X1Df70uTMc2zePkIp0NEagabTaKKX4xpnX2eiMOLI0y1qnx/xcm+5mD993WVldRwijmLd/pk2lFI+cPMbq7Q4Xr95ifraBY9nYUmI7HkJoHNdGKUU2ShmNxyZ1xbLRmcJ2bWzfCC1YjoPlOPhBwHgw5t99/hs8euoo7bkmZVFSVqbuyxIWWZaSjnM8x6EqFEFkRA6KIueBY/uwbEmelRSl4k+//gIffuQEji04d/4GX3v+DT70gZN4YWDeayFxbJtvPH+WQ8sL5FmG67j84eef5vThA/hhiCtd6o06g14fy/aodIXj2dieEWwwQgCCMi9hAvJXbnbw3RA/dNDSAKHbtzscWJ5HaD2pRTFsrJSS9Y1NGo06eZ4jpSQIPKosJfADNJI8ryjLIaEfY+GRZglHDyxw8sgywrJQAhzfKHAKYPXWKo1GHUtYiEn9nJAWvc2E5197kwcOLdBd71KrxUjXodKa0JuwQkWG6/mgNYP+EMuyiJshAlPjU6+b1NU4jsmygtFgRFiLKYupGl2FGwQkSY7tWGRpxv59izx89BBJmvOhRyBK9ooAACAASURBVB4kS1PW1zdBg+d61FsRWZpRa4QUVWEMyscZYeyjdEHoe6hKsb7WZTAYUhQlQeBNvAsFYRwjpWTU74MQdLsm3fHg0rxRIB1l1JshRaXwHJt+f0SWFjRqdaSUFIXiweMHqNd9XN+nrAp6nTFag+NaWJapH9Klpt8f4bmOEUAQkvF4gLS0AQC6NEJHUiIs83l1bIfhYITnu4yGKZYt8HwPxzdKmd94+izHDu8njHxWbm4wO9c2dhlo4jhCCBgOBggpKbOcIi8MSMsyAs+I15Rlies6BIFLvz/g2s015uaaXL92G4A0T5mdM750rutwcGmBSgkjplMzgiquY1NrRICm3xsipODs65eZn2+SJTl+4OM4FlmSkhYV9VrI+tomjUaDJM2xXIvBYEA2TrFdh82NPvPzM2z2+0Sxj+dZDNMhlivY7IwIo4D6TMN4oZUVruNy6fIKC3NzNOsNPvvlF9i/0Mb1AoTQxuRbOqTjMV949gxPPP4gtiuN4q60uPjWDaLQ1JzGtRpn37xEMhpQq8cc3L/Ep77wDD/4fY/i+y7Xb9zmyMH99PsDTj1wCNuxEVLR741Y3dhgdq7JcDRiZr6F57tQlly7uUaRl/i2RVVVZFWJwOK51y7w8InDPPPiWVzHIgp9LEsaZrnIOXJgkeFgiO/ZfCSyedWO2L9/sqC3pRa5NyB7J2G83O7dRqXVligK7DX2ccd2MTm2qvYAEPc4dxo7VS3vsvjBpHzuRIm7rz0Fc9vtiy0TcFPjp7aAklJ6srDKDsB0J7DbOa7btj2ZV9xpbX73S9sJ8Sb91NvCb9OUzjvF1e5sS++60vTXtGZ/eszWojN6e+DfI5QuJ6qfJVVVYknrPrj7SxT3wd17KN574E6bPG25/TjdXYf2HQmNCLGlQPUd92yrbk/eBdp2tqp3/Ld737fr470Yu+22J2tpkxXGSk/rACbbpwqjWw9edvX0Xu2yNYjdcf1Jyuh00yc/+bf5G2tXWKzX725j16qnUBqtBdk444UXX2NxoYHl2AhpUemCqigYj8c4tkU+LsjGKaNBTpIUdAdjoijAsgVpUvDlp89y4uhBNJoPP3IK27XRGGXAtfVNwprPaJCyPDeHFCUHD+7D9xzieogWmtfP3+Dg/jnKIjUqgK6D5ztUZUWz2WCmERGHJnUsK3MQFkKYNLHRKKE528B1bRwheenlcywutpFSkqU5nuuTJRllniOExvd8ltoN6o2Qssgp8jFC22TjAj92cDwPzzc1eoVOWV/tEtciQ27YpoDf9XxG/SGHlmaJohBh2czONDj5wDJXrqySp+b+CFuC0izMNFHKAOVRmvHoQ8fRCippFDbH4xGWZ+M6AjcI0Jh02ErldDp9bEsyHA3QyuLqtdvsW2zj2Bo7MIIkjpS4rk0Qx4Dg0tWbNBoxjm0bH7M0x3VsHNsxkzQhceMQrSFLc+zAxgs98rwEBWEcTNTZFFopkvEkxbGcqrYaNsBxXQSaQd8I79RbAUcPL6G0RAqNcG2kkAw6I65cvs3CYou0KKDUxsh6tkGt5mNJH8utsIXL73/m65w4tkSZaTQ5cSNE6wLP8eh2DNCp8srUVGmw/YBBv4sSmno9JBn08SMfyxLUopDBZh/LtkjzBNfx0FWGHwXEE6EVx3aRtkVZlNRqdWr1kLhm0hWLXJlrSJs8LUx6puNiORZKV7iTmkHHd9FaUhaKGzfWaDRrOLbLpUsrbG4OEAKi2AfLoshykiTDcSRh7MPEBgGlqSpIk5xGs06Wl1hC4wUBvc0Ro1E68VmUjIdjhBbkhaKsSurNOkJLki2m1AYt6G32OXX6CIhqYieRUYsD5ETZs9vtEfg+yTDF9V3StCSu11FaUxaaMA755svnWN63YGwVCmM6f/zEQVZXN6nVAxqtmJmZBtev3iYMXSxpU2SCGytrLC62oRL8wZ88zeOPnaQsc8N+IsiyjMOHFsiTnHPnbiIFSIlh8up1VJnjugJVKSQ2/c0haEmz3SLLxniBR5LmxGENbM1mr8/i/AKDzYzFfTMUZYFtWVRlRb0Z4/oOWZpx8fItapHPiaOLBKFPb7OPbVmMhwm6KmjONGkFIRtrm7RaTags0lFCtz8kDmt86kvPsVgLqQUezUaM67is3Nzg2IF5PM9FCoVru4zGCY1WjWSc4YQ2FpIbN9Y4efoo6xsdZhoNOp017Epjux5JljIb1Th4eJYsK5mbbTI3V+PE4WXOvHaRR04e5uWzN6jFHp5n43k+FQo/CAhCn3Q8JAhj/sEffJqf+Os/hrQshNh7cm6s3+418k2yWKY1aFOGZ0oN3SMmOo076uXYYrjE1vadKpWT1MY71Cj1LlQ4HSd3AaTdWHAytE3Zw2rCMCrMQpeZF+xsddtmQWltPGMnGSx7pc8IYRg0rdWEFTWMo2EkdwGuHQB3615O/jQetnoigLITGE6ZRYkQatLuNPXStKf2mB9NecTtReUpVBQ7PPZ2soY7lp/3fD+30zctKSe1y2prrrSdmno//iLGfXD3Hor3HribfsH33vfdiKB8K3+4t9mz7bbueuR+i7MmSlx/HitU2yuG0yXDvV+j1hpL3r0C+bausUM05Xd+8APbNN+uEMIUcGsBSIFVCdZurXHr9m2OLM8TBg0EFlopHMcCKQlcl9fPXuLCpetkWcXqRp8kK3jg6EFurawR10MkAhtBFHsURYHrerzxxlVm2y2KouLi5Vs045i4FrO+vslMu0W/N0IKgWvbbGx0t7yp/MCns9EjrtVJxynPvXKWwwfmydMEaVsoCV4YUuUFGxtd6vWamZiNU1zHxrItFudnsW2XoshxXAtdaZI0I65HDIcJfhQQ1YKJvLQ0QNIz6XlFlpp6p8JMQoV2kArQAtsS2LZJuc3TAsexqdcjhOUwHieossT3HKLQSJqPkxRVTe7lJO1XCo20LDqdTcLAQVgWjmWAmesZyXlhWQwHY5596XUOHlwijmNsaZOmJbVajaosqDdChsMBtmdTFQWO45LnBesbm9TigFa7jpQWo14frTWe7WB7NmWl+PLTZ/ClQ1wLyPOCNMsJAh9VwFeeeZmD+xb44tdf4uiBZRzbprPZpTVTR1SCXneIH3j4kU+Rm8lzURRb6Z0gKMsSz3XAtnBtlyqt+NxXXuDDj59CiQLLsSjTFClNXVy9ViMbpfR7I4LI5/SJA1hScOHSDaLIxfcdSm38DoPQx3EcLGmR5wUgWF/dYGFxnvFoTBgZVsxxfWzPRUoIIpMCWWQ5fuAhpaC7aVIMHcdhPBzhOJLV1Q7Pn32TKJR4jo8qBIOkjyPNREfaNtoSCC2wXCPU01nrEtUNs4uWPPfyG3T6A04dO0gyzLCF8ZuL6wG2Z+F5NmVZEcWRmSTZim5vQBAEdDsD/NAjCH2GwxHSEoyGY4qy4l+/+iY3q5KL/QGfeu0iz3aH+KLirW4XlKIubXrdAc1WHWFp0iQzNZ5phe0YX0CltGFqNTiuRzLKiOOYz331eQ7vX8IPPGzbQZVGKCuMTIrq/GyTTqeHlEYMR0hJkVf4cYjv2+RJYkSDqmnNkiBJc67eXicOPFxb8ujpQyRpClpz/cYqrUYTyzXgw48C5udalGVBp9ufpBNnCMB3Qi69tUJeZiwszQLwzJmzHNq/QFVWBL7Pq69fZHlpEd91OX/xqknfDT2i0Eepkm63T+B72LZFvR5zYHmBfr+P4zpUlaKqNJ7vIRDkRY7nmLTRZrOO73sMu2Mc12JuroHtCk4dXAShsWxJe6bJ5evXud3psdEbcuTgPtZWN3j2lfOcPLqf/nDAqJ/w1RdfY3lxjlazxjjLUKpkc7NPq+EzTFOu3djg8MElmq0ao2RIUSpqtZD122tcv7lKdzTi9MlDnLt0lQcOLPLmxWvMtes4nvkeZmmG5weM+wN+4eQh/tN/8i/4xM9/AlWViDvqqCapgN9yrJ2Cux1s0J6H3lnHdc/td1xn1wLjnn3YuW2aurjriHt0vZrU1tmWYc+05g6Rk7t6OMFy8m2M/Vqbz7dWExGWrbbe5rxBYFg4fefS826opKgm85cpJDYnT/317mqUPRi8rT33mqgZS4i9RedMyOnNEWy1rtFUVWHumdy7L/fjvRvvBNyJd1O44n7cHXmWvsdusJ4wZJMijd17/yN+Hr6dwMvb7dmOta1d7b/z17Zdf7AN7t7NmLb285/4pT1FU3bG1JdHAtKSvPjiOZZmmszONkiynGeeuczjHziOJeHMKxd4/PHjFGnJhbeuMtOqcXO1x1y7QVFUzM+3uXD5Go8/forNjT7Pn3mTwwcXWFqawbGN11tVVjiew+3VDbqbA06dPIS0Tb3A+TevcPTQPsqqZDRO0JWk1gwpypx6HKCERZ4WSAFe4LJyY5WoFhLEEdevrrJ/3yxSCjY3N2m1aqTjiqxIieshSoGUNq4rSUYZQgpjsjwpMhTWZIVWSKqywrIEg/7ApAfWQvK0xAtshsMRL525zr4lw8J88/wF/pPvfxQpbdZXe9TiAN93GKeGaemsdajVYzbWe4RhyDfPnucjj70P25MUhakBtIRkMDSCMMmoixfVGfWH1OKIP3zyGX78o49hOS7jkTFLlp6FbRtW8elnz/L9H3kILQRCa/qbXWptYzAd+i6WZZGkGSAnZtk2ZVaAtKjXAobjae2kjVKCqkoJ4ohKVQgFyShB2CVxPaRINbeud2m2YnqDPguLLRzL4cmnzvB9H3wI17MpqwrHcelu9mg0Y8oKiqxACDMB8KMIMZHe7g9GCAG2KwiCeAIgNEmS4k/80MbDAicAy7YnRlU2aT4kikK0stG6JElSAj+iqFK00vieR1UqhCUQumIwHBHVIqRtoyozHVFlxrMvnufx959GUyAth2Q0nvjsOeRK43iSNM0QSDxL0tnoU6tFKFXg+S7DQUJci8jLjCIrUUIQhyG61Ejb+BFurHVptRpUZUZR5uZziIUXBOR5jhu4DAZDxqOUVjPmyWu3+HRnTK8oSbMCrRSf/MTP8rGPPkGzXTdAvxgjbIvhsGB2fokgtPmlX/51/q//85/iuA7nz19kfm6R9myLzuYqoRfQ663TqM/w+//uM3zxy19jbWPdsO9Vxfeogr9xYD/tdhOtNM12HenYqKqiqgqytGRjvctat8tDp47yxvkrvP/B46Rphm1pHNcwjWWWgW1qEIe9AaqqaLZbKA1VUfHmhaucPHUI27Kp8gytSvLCWJfkaYEQFlmeUW/EW15hKyvrLC3OkqQJfi3AQrK6soHvewSez9rGJnOzLSzbojcxt3ddFyEF66ubtNtN+v0htUaEdF36nS55npvawUmq72iYEgYevcGAZjMmTwss1+OlV8+zf36GOPIJfI8kzag1G5x79S3KUhNENkeOLpEXBbdXNjh4cD83rt9mfraNEiWWcNnY7NGebbK+0iEMfILIpdIlutB89hsv8VM//AS9zR7Ndh2lCqRw6PY3iLwQVQoGY7Pg1ZoNSUam7re70cGSFo7tst7rEvoBcRjxzVfP88GHH8ALQ9Y3OszOtckzhSUq1jtdlg/vQ/zab2LZ32YAuYPO2h6blNI7Ju+Ce433e49GW41/62vuloLea2yc7KvuCUImqY33uJSaHDbdP/3/6bWmr1FXE3GUidedsCzjDweISU3gtO5QIpDWpF+lQgsznk6rVPQWWSdAbAufqKm6+DQtUuhdt2wK1LY986aGDfquWckutpAd4it38HPvDHBpqi0BuZ3X3+OSZr8AISyjTmo56B3iLPfjvReu57/tD8R9cPfnHPfB3duPdwvc7RRO2Wv7vWKvlM0/b3D3d37lNzioCv7e46ffxtEWuqq4efU6QlfMLC4gNKSjFDeIyMqUzmaXxbkWxbji1q01XMdjbqGBEiV5oljv9jl6eJksL+h3BzRaEVJIPv3k8/y1H/owQWRTVAW2NBRXXlVkeUlgO0gbkjzDdX1UUdLrDQhDD9AEXo0KheNZDDa7hK0QCpsXXj7HI6eP4ngBWTYmDEP+388+zfuOLjM/XyOMHJJ0zFeevsCP/cgHwTJKZZawGI8HpH3FF146w49++APUa3VefvU8p48fwHVdBr0Rf/Tkc/zkxz5IrRkzHqf4UcTGrQ6WX9FohFCEaCfFkgF5kWO5YGFRZiVaa1zX4tr1FZb3L4El6feHtJsNygounL/C4myD+kyM1sZDLHQCEBZuYJNnffy4Tne9y5tvXePxDzxEv9vlT54+w89+/AdwLIkWGk1FlUK/O6a5ECCEjdAWo/6QqNlgNBwQxS5JMiaMY7TWVIX5nP3OH3wdbcMv/fT3MR6NcB0XgcW1q6uEkcPSgXkqpRj1Rjh4SLfE8QRULusbXeLYR2lFrR5SVhXJMKXICmxbEtZjiqw0TF3ocu3aOsv7lijzFEWB5wWUeUHUjBkkI0IrRFgKVdn8f3/2ND/58Q+DUEhbMh4P2bydsbQco0vNYJjjOyGWZ5RvLe0gnII0HeL7MdJ1KbOStdsdFuZmEY5m4/YGc/OzFFrg+FDmAqFAVxn/6o++wq/+zI9S6AStbRwJVy7f4OtnL/GLf/UjVKowr8Pz+Ne/9xy/8NPfQ1lmNBpt8irFEjZVkZOmY5SW1Fp1yrzEwuLNc9c4eeoQSpfkWcZTT73JD370YUZjo4Qa13zOd7r8o/MrPPzgw1iWZrPb4+Kly2jg1953nBOtFnNRHeH4xth9YlBdFiPzfakkUjooXW6lklVlheXAy9du0E3GfO3qVX7lsUf44uvn+JP1LkqZGhtdlTiex+Mf/CD/1W/+Gq7rMR4n/PKv/OekWY4Qkn/4yBGONJt0O0Nm5tpsrG/QbDTMs8uSSMvi2ls3ELbF4v55LFFR5jmO67Gy0qHVaqB0iW052I5NkRfkU0uGwEVaUCXaMLeWpCyVEftxLJrNBqurXRzHwQ9cFBmIEFtIHEtS6ZL1tU2i0CduxFRKUWUlwKSG1Cx2nH3zBieOHcT1HbAdXEvQWdugXo9QFty8scq11Q2+5+HTSMuw+Z7jImzjw6iVEQfSZUaBxnE9Pv/FF/iRJx4jzVOUrmi2mlRFxWg4JkkLNjb6LC22iaIYhcJyoEgqHNtG2ppS5TiOz9nXr3D6gSO88so5XNcijDzqtTajfMhSaxY/cLl5a4WZ2RrnLl3k1LGTpsbak6Sjgn5nyPXba7z/oQdYudVhpt3m3FuXCG2PRjtmdr7Nb/3+V/iFn3wC33MAxd959lX+7e/99rceEu4B7qQUKLUTSHw34O4eTN53Ae5sa1u8BL5zcLfVJWXAmxEiAbUDeKmJBYJtWWYhYpLyORVhq5icu+P+SCnRqpoSX+YaE2EUpSbzlLcB7rb5t90m87vTM812tcX4TY/e+8ZsW8TvBonfCtzdOb+Sk7RNEOY7iLP19/14b8Z9cPceivcSuNO6/K5TJ/cCTu/WZ2g3uBNC3rHtnTJ36jvol9x1FbX74bqrzalB673uqKrUHSkgO8/TSvPf/K2/yz/88Pv2PFcLhdDWRAVRozNFd3Md33exvYBklOIGNlQOr52/yGOPnCAbZnTWN2nM1Mlyhe8IxqMxlm1z5o1rPHrqKH7kUFY5vmuU8HzfZTyeCCcARZbh2Da//cdf42/9xA+hUXg2rKxu8sIbl/ihJx7Bc90tRUuN5taVDWYW2zz90lk+9qH3k2QjLCRZnhM3Y5JhzlMvvsqPfORxxuME13KxfcizkpWbHWbbNZI8RwOLcy20ZVFVOVcu3WZhfhbHdZC2RTpOcD0Hy5ZopRj3U7x6xGeefJrvOX2MpQPzfPoLT/PjP/y9qKpks9uj0aqDwkjTxyH9bo96K6JILYRd4joeWWqYmiefOsP3vv8I9Zk6Vy50KFXKA0f3gTDpsJY0Spe+7+OFDteu3GJ2dg6NxLUVlIrPPfUqH//Yh7B0iuW4JKOEp19+gw+cPm4kym2zHJ+kGbV2gz9+8ik+8MARalFIc66BokRKI4KRDnMkNtKCwHc4/9ZVlhZn8cNga8IyHo4Iw5CLF65x5NhBFIp0kNDpdZmfbW3V3Qlb4Lk+wq4oUwfL0ZSF4svPvMJjJ4/hBhbtmTrrN3tIF+qNGA0UZUlRlqzcWGX//gVu31rn4oUNTp2cx48s/CDCC0NeO3uBh08foypLqtLiS899k49//2OMRylhZNizZqvFlbdusH//AkpUpkYUybjfJ66Z66mqYjQcMhwmLO2bR1WKa9fXOXj4IHnep8xLsqxEaU29XmfYH/Ol517lww8+gB85uK6D5xmF0TCIkAjWVje5urLG+953GFmVrG30+fQ3XuFXfuqH+d1XX+OP+wVVVeF5jjFrtz0siWHMSmNd8RsPneT7jh5HC0mWjrCEzXBcEPourusgbBtRFhRUYEkc25iiqyqH0kZb4DkOWZlgC4+iHBrwZPtoSnqDDs3W/ESgAiytyJXCsh2EVuiyRLoeVaXod9f43198iTeGY8M+aPjn/+R/5r/7H/4XRuOEj9QC/rMHj3L96jqLC3NoWTIYJszNtU2alppK0MOgN8RxLLrdIfsPLlHmJfk4wYt90jQnrkUM+0OE0EhpkeUFnuvi+zYaC1UWjPopaZ5Ta8Y4FvT7Y2ZmW1y+coOlxVlAIiXcWlmjFkT4tQhbQLfXoz0/i04zer0xcVzj3//Z13Ftmx//wQ9RKYVlS1RZMRiOmZ1rgxD0ul20hka9zurqKq32DJ2NPo2J4I0QgitXb3LkyH42VjdpNGqcvXCZY4eX6W32WFpa5OqlW+xfnqdQCl9W5JVGegGf+/Iz/OgPPM7zL53j/e87SpmVjMcpQRCQFwVh5KN0yepalwP7FilVgW1rklFGvR6QJiVhFKGl5s3zVzhyaD9CS27cXCUbZywfXKTX7bO+0UMDhw8sYtkOeV7SaNUoVYXrWORJRvfnf5FDJ49SVCWuFuSqMvVlZhBB7JDT11vj005IAt8e3O09TpalIk0TwjCc1NVN6vjuFVtjoxEwsSyLtdU1FhbmKNTua2z//xR07Yztw78dm2j2W7u2V9wJGHfWBaop+JqIn0znGNsKltZd52lVIaSp091i+HZ3SW9Dst19vQuMTRoR6DvmKTuvbY5XE3NzMQGT72zuJsTdC+Z31/3d2WtgIsRiMxWFMbH7vX83rbTux9uJ++DuPRR/2cGdUtWkUPm7f5nvFrj7bvryTsHdXePorrgXuCuynMv/+H/lYL12z3NLWyMrcJTFrasrJFXC0kIbtMRyfJSCNBvz4pnLPHjyAKIqjcKkY4MtUIXCtQV5ntMbJMRRDWlJPM8BqRj0U1RVUavHoDVu4DIcjHBdk+aVJBVpltBsxhR5Rllp6o0aWmgsYWPbFkmSGhatOyaqhayubbBv3xz9wYBmrcZgOMJ2HfrdPq1WE8uWDIdDAi8wRttKsrrSZXF/A6U0ruOBFly/fpNmu0Zcj5GuRT42YhRaaUZpQi2OqApFtzOk1giQQlBVCqUUw3HB3HyLjU6Hmfk6G7f6+L5HFIfmPdElSIHA49wblzlxYpF0nOF67kSh1aT1lAVYtmRzbYPZhRYgqKqKPDN1MMPhkJdeuskPfOx9aFmCkvw/f/Qlfv7HPgpSUJUpYa0GSiNKuHrlFoeO76O72ceyJGEc4riSLCl4/sXzPPH4w2ApkIpklGJZNmtrHb7wzKu4tsvHv/dBms3GpNZD4fomLXXQHeG5Lq7r4foOWmvOnbvM8aNLWLYRxjGTLVPT4rrWJM3UJhlnlIXCnxiPD8cjslyx7/AsKtNYlqSoShzXIR2mBEFsQImy6fW71OshjuMzynLq9ZjNjS71Zp0yNem0RsTEpawK0iQnDEM+/aXneGDfPCdPHUBaxrOwygqKosTzPbqbPdptk76XJRnj8RhVKT7/7Kv81Y88TH1mhiI3AjNVXuJ4PskoYzRM8AMbx7OxLCPKlKcllYI3zl/m2MFFlAufuniLz6xusqxX+R9/9aeZX5rnS2fe4l98/hxaaIqy5MeX9/ErTzyBEBqlLWPYLARZmmG7rknndAvQIWLyjCqriuvXrrF8aD9CSIokwQljpFWickGpNKICGZQIHaKrykzbZEmv06XZaFMUGbbnGx/DyrBrlu9TaWU+l0oiLMl4MMQLPBzbCMWUZYkTeqTpkL/7p08C8Lv/9l/yG//F32d9fYOfath84uGHSMZjktGYmWZMXsLt1U2WDyzx7//sG/zE938A27OwbYfbN9eZW2xvCWakSWJqJW2BFkagx3cjsrSgqkpq9QjpOFSVIB8npGmCH5h03apSOJ5HliRGbTWrSMuSZquOrkoGwyGuZdKur6+sEfg27WYLpTT9wYBWq44qKyzb1Gn6QYAqtEmtExi7C6UYDkfYDjiuw2iUUosjhLQMELcmab7CwnFs1m5v8uUXXuWnf/QJ8kJx49oNmvWYRqvJOBmhteCbr17iY9/7KN3NDllekuUFlVLsW5zHcY0y7FeffpXHHjqG7WiyPMV3fapK8dSZ1/kr3/84SLVlQJ3nJb7rmJrH0qTPRq7LmTcvsdZPODg/x6njB/BDnyxJWb29wT+6coP/+/d/G9f3AaNoKaUw6GdL+XESW7Xa7w64U4qJfcrkmm8b3InJvGDba67adW3bklufrXKySHjHtfX2cTtjyvTtDCnvIqXuAHdT8GSEgO4N7na0aP7dweZNQd5e4E7uZvSmLNyWSfl22uWUwZu2V6rcWNBsWR38hwd398p0Elhotu/b/Zq8//hxH9y9h+IvG7i7u8137+XdKy1T3ePh8076sDNV4VseN31ki+nDd1cqwz3Ou2utTusdg+2d8dwzL3LoS5+hEUXfsi9lqnFcyWtnX+fowSUsx2PQGxEGAZbrgJZUVUZvIyHNRhRFwfKBRYbjhGY9JkkybEtw7dYaRw8fQNqStdub+L6L41lIYRllvLLAdR0DGiZiLKpSIAQbnU1azRrDUUKtFgMGOluPzAAAIABJREFUHNm2x+ZmjzgOcByXLC/wXYfRcEyFotaoobKKsipxQw+UoioESTLGcQVVYWpC0jQnjiKkI9GqQEjb2AlkKUJabHQ2md03C0VBmWdUGPUxz/FIk5SiKIjjiLwokLZlJvuuZySj0eRZxspKhyOHl3n6m6/ywYdP4vumzgsbirHF7ds3OHxkP1maotAURUUURmir4rc+9VV+9RM/jFY5w35Ko1Xj2uUVJBZB6FNWsLG5wfxcHdcLuHZ1hVOnDxtFWiGoqNBKs7bSoVGv4YXBxG9Km5q6PENgcfGtWzz72mV+4SefwLJNraHvh7z8+nned/QgvdGIpX2zvH72Mmcv3+Kj33OKKHQRUlKVJVEcoJRNlhhwvtkdUYt9RsOEIAzwfA+oUFqTDArCusNomPL5b5zhr/3Ah3Eclz9+8qv89I99lEFvTFSTVKVNVZX0uj3arTrS8kEIhoMeQRAahcqyxEZjeQ5aaQaDEWEc0e/0QEO9HpNmKZZjIaWF63pcubxCsxHg+cZYem21y779c1hSMhqOzSQ+NYyN69nYjkU6HiNtlzQZYzkWcS2mzAtsy2Yw7uF7IaoChMKxPSpVYts2ySjnlW6Xf3ZphTRP+We/9CGWDx0y4NC2+Zv/+NNUWvD5L36BtX/6zwFFkoywXQ/Xs+mub9BozZjPUpphO0bYxPNc0nSE7fsT78YRUb1ufPu0ZNAf0mhEjMcZllXguSHSMoqchU5xpAsio0yhyFJWb61y8cplHn3kEVqzc4wGQ4aDAXPzMwjPQwFVUWALgXBcqqJAiImHpeviODZaGfDpBYFhmqXiyvoKf/9rz/J9H3mCX/ybP8uv//p/zSHX5n969AHQEiHNAk0QhWysdpifb5AmBWlW0Z6tUVUlWVbQ7fZZnJ8FqUEoU8+kbMrCWGgURU6t0aQqFRfOX+HA8hx+4E1Ec8B2PCxboKqKq5dXOHbyMONxQpnnqDyl3moyGqYEUUCapeRJQVyLkFJw+eoNDu1fZJSk1Bs10iTjypXbNGoR7dk6QliMB2Nu3V7jwKF5oigkTVPz2eiPQWh838N1bKQQDIZGkfTGrTVOnjxImlZIrSaf9QFe6JGlBa1mk8tXbjI7W6fRrHHj5hr1esRMq0Wn00EKi69/83UeO32MVrOGokAVkOUpWZaTZyWt2Zgg8FlZ2WCm3WRjs0fkGfbV9R3OX7zBw6eOUSlNluU4vkNUi6mKiqqokI7mK4dP8FM/9zOUYpvl2Vo01LuUKu8KuWP73imB0xiPDUu3G6TckaY3ERQxf98rHXOraI29wN0U2H0nsbtMwpiYg7VLoXNnYuQU624ByJ1K4XvgJbkLYG0du7sv0/uzV3nLLj5sqpQ5BXdTyThNZVKJp++rZhvMfYvYLVGjhZkHTfuit37vBZz1Hdvu9vubLqzrrb+ZvFIwYHrn/9+P/3DxTsDdfbXMP+d4b6llTtMP3qsrMPcAX9+hPcM03kl65s6UzqkK5177d4eulFkJnBZ4wySd8u5jZz/1b/A979v25eIbr9PpbHDk8EGwYq5cuYVQkstXbzO/0EYKQWdjE50rHAuWDiyAJRgMRsSOi+0aj7Vms0FWKIoiw3M9XM/l3IUrLMzNcP6tayzMzzAeJTiuAxrKPCdLczNRdowUvheEZONsS0pfA1mWTwCfRjiSUW9kRERso0zY6/SxbRvHd6HSqEryzDdfo1ELSEY5tXqE5zsIS4Fw6PV6BKGPFsIoMuYVji2RwphFW7ZE+B75uGDUT2g0axRlSp5XBLUQYVncurHBWmed+ZkmEokuBc2ZmDRNWN43j7QlVVLxp199nhPH5qkKSZUXXLx0g7nZFrZl4fg+G7c3yasxH3jwNJatqUqjXliWFV994SwHFucJfJ+wbUOpaDfbuL5Nq91AiJJK5QyGI3T2/7P35sGWZWd1528PZ77jm3Measiaq6QSEkKAJLDVoAIajJCxmkHIDqADux2EiQ662x32Hw6HCUN0R9smomk72gFYpgUCjCUhqSRUkmqQVKNqHrIGVeX48k13PtPeu//Y97738mVmVUkIq2xqR9zM986473nnnL3X961vLcAKJkVNq9vGYTFVTRAFVFVNrAMQktWNDb77tms9IKxrGo0GVWH49N1PcPPxFUQoyEcjGnHGI0+/RLcVsby4hNaKONYYW+GcxtYldVVRlAbrBEprGo0UU9WoQFNMCj792SfYt9wka6SkQYhA0tsc8NZbr8ECWijK8YAwaSCEI9CeSnrnfQ9z7MgK0gYopalqOH1qlTQN2FrbQEnIGikCCFWAMY4XXj5Dux0TRL6WqywqGo0EIaZegCoiDhPA4Jw3WBdC0Nsa02hmBKHy2V+tcUrSajdJ0gBT1d7QHUEcxmAVUgYIp0A4vnb2LL/20LO8/47r6B5s8HfvuI0PfM9VdDpzfOIrj/NP/+BB/vCek/wvb7mNX3zb2/lH73s/AsF4OCbLGiA97VcJiZiqWgRhgESgtOLMmVcQJiDJmigkURijVISZ9JBSE8UZxtZEgabI+9iy9j5cSiFRSFOxdv5ZoqiBmcCF1VWyyLG07zBFUaIFvPjSi6wc2odUgacGDkacP79Ks9nwtG5jiOIIHSisqRmsnWU07lPZCqEESgV00gY/deP13B6nnP/qfXz+5dP824/9Huqd7+bD//rfcX6rx7sOLREG3l+yKnIqYwjC0E+RHd6MXUniOGI0nNDbGtLIGiAE+XhMkmWkUcjWVp80jWhlMcPxhCjyCpd1bdBByGSSo5Sk1Wwy077XgSRSkJuSNM28UEtegXNkWYxzljSJsdYrlJZ1jbOWpaUuzXbG+toWrW4TZw0vnz7P0uIiVVmRNTKKoiBpRJjS+4vGcUC/1yNKI+IoItIhX7z/Ub748NO8/ZZrGQ1HpHGAEAHz820m4zHz8y3iJGSrN2BpaY4g0Gyub2IxdLtNXjx1lvlOk0eeeJGjB1f41Bce4vqrD9IfDFjotDh9fo2FbofTZ9bQUtFoZsRhRF3WfOnrT3F4aZlWM+PZky8RSNBhMKXNwmNPPE+rFfM7Dz3FD7/vbxBmKcb4WkW3Pda81rh4ufWX3ycINMba2ei1Xfl10dh7pZ+vePxL1TIvMT3/JtpeqyallAcr2xk2gXMCNc34+Tp636Xt/XZ/hb3dZXd93MVtpmg5+1xsYrDTZjYJF9Ey5W5r9d3/7gFaiO26u1drl66d1spdyhW9ZO50sXXFznVx04C0sZbtW0vMjuQDC9uqm2436Huz/Zdqb1ohvIHadxbczaJ2bocW8G0Cdntfzt+qP96Ot91OtM9OXzKzl83rGcJerQ+v1i+7S9Z4NhDs/mZXAncOUGKHdT4bsC5Snxa+mHvnRSj4Z7/wy7zr4NJ2v5zYCSQ6LXwk0cHJp05y6OBRLqyPmJ/vIpVjrtMmShRZFhFFCZPBkLPnNti3Mk/WbWKF5D997iscW14izGImoyFhpJFKceH8JufXBiwut8A5njl5hiyKOHxwEaVARwFffegJGmnC6TNrLC4uEASSoqqI0wQpYTAaYayl0WwwHg1otxcoqxH5aAhGMMkNaTdBCsXWhXW6i3MoKeitb2DrirIuufaao0RhSKvTQEqvUuiAU8+fY2XfCptbfdJGTDWp+dpDj7NvpUMYJEitWV3dIAlCTG1J0wBra5AKLWJ6G1uEShFGCVkSE8UhFkMU+2zaXKdBEIbo0IuEvLx6nmOHDqBjQRiH7Nu3iI4DinKCq+GLDz3KVfv2sbm+QafZAqFwAoyxnDh+iCQNkYHDlfCJzz3KVUfnUYGjv+mBiDVQ5SUf/9yDRCg2tvpU5YR2I8TWjqqsCUJNWZcIrVmc7xIGChVIglhtexMdXm5x14NP8szzZ7nlhhOEseOaQ0vMzbVROmAyHlLmBa+cWqfdiQnCCC1DzpxZ5S8eeorbb7qKoszRgea+rz3O8vw8+/andNtddKhot5s8/PizdJtNGt0mQlhPxazAVCVBlPgMD3Bo35Kn6AiDjASugiSSxGlKo+P7I3BsbWxx5vwWC0tdlhY73r4iSRiPxoRRiJOSQEpwin6/T2lysmYL8HTZsnRc2Nyk225hrCUINRKHhm2PRGMcWmvK0ttIWGvZ2triHz/0FB995QwffP/1zJkBt950Aq0FQjn+9r/8DB+/7yRyveb//JEf48dPXMtSx6taBqHGOosONS+++AKb6xvMdzqMxhPKfEicpnh/LxiPh3S6XbQOMJWXsVdh4N8DQYAQGmcNdV2gdYIKNGHYwCJxZkw+HuAwZI15LCEq0swvLNDsLHDuzGnmOk2quiAIQqIkhspSTnIuXDjPSy+/wv59BxBCUBtH6Awf//ifcvjQEYZ5zfK+AwRS8/jDj7Gy/wDgkDhsbZlrdPjA9SfgiSf44D/5Z/zSL32En/37v8LDKuHX/uiTfPCaQ4RxTDh93qXwaraNZoOiNvTX+6RZRD4pKSYVzVaGQBMEitLVxGHE2VMXaHbbSBeBMgz7Y4RUBLFm1O+TZZ5i2lsdMB4XxEkCOEbDic/kT3LiKMQZS7835szZNVZW5v1zIgT5OEcLhdK+DrXRSBkOhjTilDNnV0kTTbvVBBx1VSOc5umnXmb/oXmQ3sOvzA1VVRElEccOHeL264/xF3c/zHUnjqNCTRCF5JMRYRwQJBGPPPocc60WRe5pxUEUkTVaVNawstSi026xb6mDDgKySDK30KU93yEINXPzbR9ga2a05po8/OjTrCzOY5zj6L4VGmlMEHrqapykKCF45KnnObCyxEsvn+Po4YN8/olnuOb6EyxmCSIMcVO7CmnUnqyTuMxn11hn9xpqXzrKefn8PdBi24phLwraO67uHGfmpinEFOyImafcdDvhQYax9qLx17qd/YDp75cCFDEDVtahpcSCD/ZMzcuF8FR0B1M/O8/cUcrXsOME1vrastnvs4+bBnZ3Sk+mx9wF5uQUhNXGIqXyipyza8jOJEDg67S3EebOFwDhzz/t8DQIveMhePH39cBKCofwRn3bn9kV3J5/CDyFW1yepbXbPH73ejmda+2AzannnlDTn6c0csH0fOya87xGfcqb7dvS3gR3b6D2nQV3l9Ij/srO9C2Dxt2Uy+1XP0II/+J9TYLCX64Pu6/KZf3r9p5jttz4GgZndzJ2l6O8zjCwc44PfvDn+a133nzx+XaxU/w7W/Lk1x/jyLHDSKHI0sRHaKeDnNYSU9aMexPOn9ui3fLmvgiHxXB0ZYFOu4UTXiEvihPOnl3npbOrLHc7NBsJVV3RaSZ0uimD0ZggCDGVJdCKpaV5up2WB15SEGiNmtbNKClodVo4Z1FiGmO0hlALgjDihRfPsbQ4RzEpuOtrT3J0/5KvfwoUgQ6I02w6rvuajHxSMBxOwApk4EiygDCOUEIz2Opz7dVHEDrAGstoNKLVbCCEojITvAmtRIURzjhanRSl/ABvTEG/P6SRpSAc7U5KXdWEccTa6iZCOG48ccwHD5ygKiqkVNR1hQ4UQRCwMtcmTkKe+8ZpGmlGnARIBQ888jRHDh2gKAqsMQgJ1x07hA4lZVHSaDaZjHMGgxHtTpNrj+wjyxL2Ly/xpfuf5roThwmCCB0EWOvY3PQG64PBgDgKfK2KgN5mjziMENJx4vhBrjq0RJzESOFrJaMoRIeaKFRoFdDttKgrgzPwx5+7l+97x81ce2gZKRwq0DgkR/bvYzTIabYTzp3dRClFlIQcPbxMlGgvpBMqqqIiTiM2NwYkccK9DzzOwZVlrPB1X1VZIrXGlA6pHToIqIucfJJTlBXNTtuDdyVwwmGtJY4i6rIiDL3lg1IB937tCY4d8QAkTmJvtj4pCJOIlZV5hBBTq4UQhKaqDTrUmMJia+utIyY5v/Hoc7yYjnn3HTdz+/GMn33f22i3W9x0w3GeObXGP/x/7+Vjd5/kP/zIHdxx8CDfdfA4X/3aQxxcWUQKQW0MOgxQU4P7hW6L5tIyYJDVGB3FKK0YDUcEcehpWxKq0vDCc6f4sy/cx+PPPsetN57YeeaFvxdxga/vFNrX0emIMM6wIkToGClDirxmY7NP2miRxU2ILSoKaTbnvPegEIRR4E3ug5BWu0EgHNYY6qqm05ljbnmJdrfjs4xC8srZcxw+dAjnLForqGsGgxFJkmKN4wPXXc/h/oD/41//Nnc/c5J/9a/+OeuHruWX/+3v87Z2wnyjgRPQ6bTAWqIwpNFsYJzBWZjkJVoJkiSm1+sTBgmD/ojl5QXue+AJWmmMUo44StDagxFrHUp5z760mTEcDhHCkqYxQjqSNAE8I6DIaxqNlHY3I88nZEmLMq+w1jDJC85fWKPZTH1NbL9H2szYt7xAGIXoIMLUhiIvCYKI8XBMGGk21/p055roWKMjL9B05z0PcvXRFQ7tW8Zax9qFTeI0ot8f0Wg2GfSHNOOU7nyHJI3o9wdIFDpQYEEpzekz52m3Gtx5z4MMeyVZFFCXBVGgcAhGo9xDbCOwlaHTbbO+tsWTz7/C6QsbLM93OX1+nS8+8ixzacQN1x1n0BuyvtFjfqHFDx0/yK/+4Z/xzJOP8Za33oxQAVJqX//1urInO/Q6IcQ22LlS8mw26Z8FcD1AugxV8VUyd27XJrPxHPC+6lL4WjTh69qklB7E7aK6bDM+d/Xp4jPsynZNg6SzbKYQAmN2US93HWu3Z55UEmMuNRbffVz/v7wklzcLOcuZyApye3Igdjbyma5ZwHgXQJZSIabWDLN5g3NXzti56Xh3uXmcwwPI1+P1t/t7XbL8Cku2wfdFc7Vd693uz24P5TfB3re7velz9wZq39maO8nUcMpn7v4K/tbfTqXMbRj6OusCv933rqd37Gl7avW21+9a5imYDqF8hE7Atgz1rF7hp37q5y/rYyccOOkH/fFwzPraGvsW5yCMGQ0LGo0EZx35ZEKSevrO0YP7cDU8+fSLbE5GvPd7b6OY5KhQMhqM6XbbTOqa3saQuW4HrcDYCiUCX+St/bdQwnLuQg/hYGVpHqcEdVWzvt5jcXGe3sYW3YUOkzxHa4XWygMzZ6lyQ5gJpJOU+RAdBqyt5iztXwBn+c+fv5/3v/t2n5aU0itnFvX2RDOvatIspS4MCElRjmi0Y8qixtWCsqgo6pp2q8kffuIe7njvW4hTjTE+C2HqmjAMOL/R4+ihffQ2N2m2UxB6Cjp9ZHYymdCea7K51qM71yUvK6o8J0kTamNI0oTJYAxOUJuKKNHIKPQS0tOsa1UaBJbBcIgOApoN7+3lhEEIx6hXs7q2RhgEdOfaJEnEeDzGWUNelWRpQqPRwFQOoQU4hzOO3taAucU2FuEBM5Y8L9GhQkuNtRIhDCC8F5yWaC2ox6BTjbUGU9XUZUXayhj1x3z23kd4123XM7fY9h51wjEcDWk0m5gKTp8+z74DcwgbYF2F0pIg1DjnKMY5CC/YISRoGXDh/BpZmuJQNNqJjyA7S1HWPPf0adbHG3zv229huDVgfnGOurbU1gcChBRUxte+UTuKyYThOGdhaREhBFVhkBqkdFgExSgnTmLyqiQKFQJNWZS8fPocrbTB/HKXYjgNRtQlP/uVx/jYr/8wSgZYa73xuq158JFnyOa6/JOPfZ04UPy7O96PFwUXjMdDAh1z/vQZnnrxBX7wPd/LoN8jCAPSNKOqPO1PRDFaOEwxQYepz4InEVJpLzQhwDlFlZdIJVFaIrUXn/A6FwJXQ1UZjJgQhQkOi7S7JmFCYCQ4O/Xocg5XCZyocEIgZUBVlVhTk09yuu0OhhpnDBjD+dV1kiyl0WqRJjH5uOCLX3mAH/j+7yYfDWlkGU4p8rLk5NMnuf7m6xHTLKwQlv/06c/x3u95F0kaMRxt8Mufv4ff/93/hzwv+Lu/+Cv885sPc3h+gSqvSOIQ49jxDnMKsL5mtyqwRrKxvk6rFZNkDc6eWmVuscHm+oiV/XNY6+lyxjny0RgUNNKEwWBIu9vxE3uHtyKZ7zLo90jiFCFhY2OTue4C//5PPst733odc90mSZrS6/VYXF7wiqQOdBCQD0dgJUhHkReEQYxG8uQLz3PN0atYW19laf8cdWlR2gdIbF0SR6lXzHWGra0+m/0RVx87zFceeIy5RpOFhRatdsZWb8DZ8xscO7zMcJSzMNdFaYGUmuFgzGRUoLWjqAo2+2MOrCxigXa3RT4q+Pjn7uGdN1xNEoUIAUkSs7k14Mz6FpOy4h03nfCWJaOcp06+zDvfcZMfP/7wT/jzu7/Ev/+/f5Nf+bV/yqQ2hBFYM5vw7x4vt3mIl4xVu8ckX/Z25do3Zz0Qs7P787JDsgMhsWYmoOKDtLOat4vL9Xabeu9h/kw3NvVF1XJTYRV3CXDZ1gmZlUEIx+4yvsup+Vs/FCGFF1tyU5rOXpriJftZu11u4fu69+C7+TyzooUpCJr9aaYp1m2AJKXPMn6LAil71cpfzfbpEjunS44ptve5uBZPX6SDcOnue6/b3vmYDwi8aa3w7Wtv1ty9gdpfl8zdX75dSvP8TvRA7C0WF2Kb2AqXL56e7Sy26R+7Fjv44Ac/fEWDcuE8rWLQH2KqmuX5BBt6A+DhJGc8nkypShH5qOYz9z1GO4u59+vP87YbD3L1VQcw08xIEIYIC1IJRvmQ3taYOi9ptRLqKucbp87SSFOUDlGBRqG4+6GnuPGaY0gctTMopYjjCKUUH/v0PbzlxqtQSlFXXvXQGC/TL2SElSU4Ba6mLCc0Gm2s8NSRq4/uZ2NtnSyJkSqkPxjyqS8/yI1XHcbWNUEU4pzgnq8+zpnT69z/1IvcdK3PNARhhA5jPn7XV7nt6iMstTp0ui1UAGCY9B2f/OJDtJKQq689ymCrR5oGaCUx1qGlYm21RxTEnDp9jkbWJIkSKmMQCpI4nEZNHcZYrx4qJIPREOccURJuhyvPnblA2kioippBb0SUeEVNrRVFUVBVOY2sRRqHNLOMP/zCfVx9cJlWu+EzLVGLOI6594EnOLhvBVtXmLrEVjXNNKMyjjAKt1k2KgwxxlIbL+xSFQVS6anqpUE4h3ABn777axzeN++90oTE4kjCmGuOHCRrplMbDT8hU0ow7g+J0tjXHqWaIIyQUzN4ayzW+PqyU69cIJ+UZFkCWIaDIQuLc3zi7vtZarRYu7BFs5mBgAP7VnwfnCFrNqiqmvFoQlVVBEJy4cImrYYHTIHWjEdjGo0MKRXjyQQdKEajEbWpUUqzsbZFEGqCQINw1KVBIIijkDiICELFy984xS888Bjv/sGj/Ohbl4kiSRw1EVJhrAAZ8Ku/9zU+//hZPvrjP8b7Dhwk0BJTWayFII744t13c9t117K8tIBKE2w+JgoD/yyaiiDNUMb4yY2OUVKihPDATiicdZRlyfkzF8ga3pZDKn8/SSEx1ovoPP/syzz75Dc4duwQwkkkCiel/wjhs+tCIqxACY0zjrrKUcKDSKkcKIHSkjTJAI0VBqk1Ok5oNRLCOMZaSznsc+H8BW698QSmKjl9+hTnXnmFuYV5gjih225jp8bNVZ5z7swpbrruBFKHBFqRRhE/cd31iKee4Wd/47f4gfe8m3d++Cf48G//f3zg6kNg/SRR6VkNladUDwYToiRGK0WaBeT5BCElURQSRQGBDOkN+0Q6JM8rvvb1Z0i0Ym65y9bmFlVVsrk1pMgroihmPCqIkxihKoq8RMoArRRKS26+5ghzcy1MZdjcHNHpNLC1Y2u9P53YO6JAUhQVVV1SW0OaJUyGEzrtBvc+8DTXXbWfMJBsrA+o8poo1DgneOSx5zCmotVOCIKATrvt/5Z5ycED+8iLHGsti4sd5roNolgThf49McmLqd1HwjMvn+Laaw+BtZw8dYFrjx0GBTrSaAVXH1yZeoNanDN02g2qqmLfQpcbrjnCZFzSH47o90ccXJijNddEacWN8x0Gh4/x/h/8bj7z+fs4fs01CFEzm0BfqmIpLhrDtj+7KI7OzUa9yzc7S8cwHY+l2HOs2almrBVvd7G7tEFNKaQzAHJ5YDT7uEsCtlfK3M2CR9vbi4sxrFLyssfyX8MHbK1luzbv1ZqxU83s6Zhw6dxkD7Cackt31/jtUDNnG7ltRo7fxr0u1XEhdv09Llp+5fnSla7h5fa9CDROO7+dp7tk970Lduo1p3lSf5zLXrM327fS3szcvYHad14tc1Zvt+uN+2rP2Wv09ls1CH+t5pxlJkv8Wkd6rXMZ6+kqr5emcInginPbAbXd/jkzBerZNr75QclOM3fCuYvUqPZm7KyY0S89LUZa6K2uESYhOgmxZkYFEYyHEx574hRnBmu89y3Xc2FtwMmXz/P2m69ho7fJwlybVreFUpJ+v0+gQlqtlMFgRNzIKCYFcRKh9VTCPdBT7r6ktg6FYDwY0+xm1M6AFfQ2N+h25zBGMsnHpEnsVVaVItIhdVUzznMajYQi9zQ7S4WrJsggQQQSW1pEXVGj+dJXH+cH3/kWHx8WgqIoUAEEOmRjfZM0joiTCGsVQeRNaG3t+KNPf5mffN87+cqDTzIeGd71jhuIGyHC+sxjMa7QWiG196+LkhhbWy5c2GBubhEhKm95oCKKUYFwjpMvnCYII06c8FTAV15apdWNiYMQKWqiJKGqQEUasJjCooTGSkdVVrhK8sd3foUfee9tNLspxjiiQFFVNWEU09vo89gzr/CO77qeqi6I44h8PCEK/f9f+Nqj/PB730ld5Dzx7IvccvN1gKGuDCqQ9Ht9Op0Ofv4sKWuDVBqMoyqGCBV74OPklHLmsydBFPDMM68wN5dMhT0kQRwxGUywOKIgQAjh6xBNTVnVyEBja8PGhQ06nQ6vnFnjyLEOzkhOvdRjZbmL0I4/+JSXyBcSFpZSyrHjpTPnWFnpEEcRcZxgjPHG1lUN+Jq94WDiJ+lCMikKmg2vDOsTVNZbjAif2K3yAiEDtrZ6JHFAI0uopWIeUDtkAAAgAElEQVQyGJKmCQaJMCUf/upT/Md/9DcZDsaAoNVughKY2lOBfu137uRMv+aj//2PgBOURUEQx0wmOWkUYaQiH24S6QjdSNk4fZpOdw6H5IknX+SWt9yAFTWmrJFT8A8QJIF/cKdzXeHMNHsnsEKAsP65MvDYkycBxy03X4dzvu4rCINdAfoZPW1a61u7basUZ63PYloPuI2tCYPYU4frAqV3KGsKX+NnhPNZispb0pS2z/rqFvv2HeSZJx7h+NU3Y7VgsLpKmKbUTtCZ62DGQ3ScYJlmEKSnTEpnKYoKi6A3HvDLn7mTP/2D3+Gnf+4f8r9et8zxVhelPCBSoa8XclWJjkNsaZBCUk192pyowESMhxOksrvUfjVFXtCeb1MUJba2xFFAvz8ChAfToQ/UJHGMVJpBv0cch9SV46OfuIdf+FvvYZp2wTkvqV9Ns/mbaz1vs+B85v6eBx/j1quPEgQKoTTGKvr9IceO7uPcmfMs71sBUdPrDbyCcOwDX5vrWzSyiM7CPKYscK5mMvZqrsZBMYIwUQx6Oc+fOss7brsB6+ptg/eFxS5nTl9geXnOjyVaUNeW8WhCo5HQ2+hxanWdYwdXwPmAwZmzfcraEgSS+XbKKC8x1tBuNdn3v/1jSuev8Wc+8xk++MGfIpfGT6EdPphz8UB2GdC3e/XerJ3P0gm8qIbWcnv59o23q5lptpVtwHTZkwB+/d4MmS+5kMwkK60z2/MPMUNiu7Z9tXYRaNwToBVXyBztVezc27/Zeut2MoFCen/aS/fbHUgXU8rs7mWzLslpOcYsg6e8Wfo2DnTTc+45h9iZF/ivePl52N62N4MnhdgGt1fyu9vbdqi/YqoCvefvOJ2zSSG3f9+7vzH+GVXbtgpvirF8K+2bydy9eYX/OrdZgOW/saan6nZXaq8p/nKZdbY225O9i5ZPKUEILnnpnzl97pKMnZhdc2sQpmb13DniLCTKEozbqXVw1hI1Um6+6Th5kTMZjbnq6H6uOriIdYbjxw7xpYefRElFVRpsDXEaMBgMwUFdOaIowNaG/taQqrYUk4r1tR51XflIoRJYakaDEcJJ8nxMFPs6LyG9x5l11vtbScVzz7+EwBLFIVu9HlKBw1JMDJIAKJHGMhqMcAiEkvzAu95CVVc8/fw3sA6UVigdUOQV8wvzJGk6FRiZMOj1KcYTJqMRw6LECcfbbj3Bu7//NpJmQl3VnH75HP2BlytHKIyVCCH51Bfu48LaOovLHQajTRxm+z544ukXMdZy/XXH2NjsUxYFZVFw5PhBWp0mcSMlyFKcVKgwwDqBNWCM4fGnnvVgKdSsb27wEz/03URpjLCSYpjTHwxQWnLnl+9na2vIfCOlHOeYvGawMUQFfvLS2xrxnrfdhq2959eRAyuMhkM+9YX7CcOYfFzR6XQYDHsMh0OM8XUcSkG/P8C5YBr88BPWKAm88qep2Vrrsa/bodNqk2UJUeIpX1+49zEGmyN6W336gx5PPfECdVlx51cfRoURUocsLy9Q5jkHV7qU44RHH3uZMHSEaU6axfzCB95LGAsazYjJpCCIQq696jDttldJHQ1zHnv0RdbXt9Ba4YRgqzfcnikorWi1mxgnsIAVAic9RVIIhbOSupD+GmtFo9UEKdm64GsCP3T31xnf2iF+9xH+4H/+YSyOzlyHznyH2lqME9z31At86Df/nNO9mv/wYz9OZQxOeHAkhCNOWxgHQgnCSHNhfR1rLAvLyyBC1jf69IcjyqIEKwjCkGqaXQ7C0E+ap4/2eDjm45/8C4RSlKaaii/4B9vhuP7E1Zy4+jjFxK8LlARjEMbg6hphHcJa8uEYZWe1utP5qBDgZmBVEoahf08JLwQxHubk45KqqiirgtL4+jfrwClFrSw6bDA/t5/e1joHDy8zmfSIAmg2Uk6/8jLKGZy16LSBkIGnoDrnaW7WW5MEoWI87LHUXeD33/9+3B/fCcJx99wR/s1E8XN3P8Kv3vcoG70NcA6tQh54+Szf83t/4mnf0lHVkBc1Vlh0IgmjCKUlc0strKtpdts4IQmjGFc5qsIQaEVdluAcgdTUecmoP6YYeMsEU9XEoebDP/5unDRM8vH0XS49bdkJ6tLQbGY451hdXSfLEn7gnbejtKLdatBopkyGJStLCxjrLUEGwy1MpRj1S6wwRGiqSU2SpqSdNqYeg7SoKGAwKVEiQauINE1IGwmfvO9hbrjqMJNJDlKSNlO6i11q62g1mkzGJcP+BGsEL37jFHESMBwOaXYyjKnRSpJkPmOYxCGL8w3iyD9L+5bnefHcBRqNhA995JdwYcxwNObYwSOQG5RlmlVlu056llmzdifzBsyKorDmYurj9mrrpqHg3cDuL9dmY6KUnkUgp3X0Hii8jsmH2/MdXv+Zt3+y1n7L1gu7m3XukjH+m25uSqOUyn8Ah3jNudjeOcvu3/+qEjQeiF56Hzh35TrFKzUpJQ5BVVVUVcXFGb7/Biehb4D2Zubur7i9oTJ3r77Zt3b0b/L+uZKX3avu820692u1HanfnaZ2OA3TgufpttOX/MyI1bNgdgass6fP0/3Y76LCcOfY1r8UJfDkEydZnmvTbLcY595gvKr8hHRjo8fKygIoyennzzEqB8y32hjjaLUypFZoHTIc9hhNqmkW0BInIfNzbTbWe3QX5nGiph75+p24lUDtMyxVbaiNoSoLsixiNMqRMiIMplkrK/xkT0mqskAJxbisSJOAqiyJkgycYzwekWUpQmpsWTPKV5kMBXML8ygJeWW9fLzz9Mdnn3uFsqq46Ybj1MYSJzHFZEJdG+IkQKBYW9tgcXGO2jqCQE7FV8BJXw8pjK9nMcYbnle195PS2vvOGet9ufJJQZrERI0UVzoMBmElTzz+AjfdfJDhZEIj7SAjx8Z5L6e+trbF8vwcSMgnFYGSGOd9886dW2W+2+bOex/j2MoSnVbK4SPLVHXlKTcIhoMJd97zCHe8522UVcndDz7F3/y+70IpyWOPP8dtN59gMBiy2euzuNRBScsktzQbDUbDIVGqUVqgEIxGBSoIcc6gRMDZMxc4fOwAxSTn3ocf5/vffiveb6xmOBjz53c/xN+4/W0kDY0MBAJFlVsarYzJeEyaxdjSkhcjVBDzubuf4O23HGd1bY3D+xdodVqcOX+eLGrQiFugvGjKeDwkmpq7y0BSjMHaEhWAUJoojPnSPY/w9rf6TJXSkjAO6a33iKbgaG1tk/5wwlVXHaI2PuPa2xjSmmthihppYTwZkzYSelsDOnMtfu7LD/Mff/1Hp8+bpapLAh0jlEA4Qz3Nav70b/w5ZV3xRx/4SUxtkUpRm4pACc6fW2VxeZHNzXUUlrQ9jzQSoacqtXWNjDLy8QSllZ/Qitmz7sUyyqLCGUsYeYn6qqxwdY0xhigKqWpfjyklTEYFW1s9up05HnvqWa4+fhBsTRDoKSVYkoYNvnz/g9x24wkEsLi86KP2U4U+pSLKsubBR77O7W+9CSW96IIQis2NPq1WizCUCCcpTU4URFRVTe2sz3xgScMGTpSUoxFBlNIfriJswb33PspbbrmNfYcP46SinOREiabMC+I4xiLp9fpkaewz+EsrKGA0GKLjAOEkr2xd4H+/7wG6nQ5vveU6PnvXfXzfUpdfvOaI95m0hsFmn1a7gwwtrvbg1FpHrz9gbr5DMcxRgUZoP0GVxgejgghGwzFBEFFMcsqyIksS76cImNqSNVLvYahg48IGWavJeJADoLU3r0+yiNVz68wvdPyfUwWYukRg0EFAr7/FZFJjreDAvn30h5ukSROtFOvr68RxiNYRSElZlSRhtA3C67Km1+/RmWuBDZCBoZz4d4DSmrKqcA7W17dIk4SXXz4PEq45fpCyLMiymDzPidPI31OVYWtrQBCGBFEIVrB6/gL79i9y1/2PcutVxxmOxyAE+/cvUf69/5Gf+dsf4qbrb+TooUP8yv/0S4hQY9Usc7eLMnnF8XHvcg8EZ4kruxuQ7W1ih/94eYi4i+Hipsbp4vIBVzvNQs4yeJdk7rb7KnHSXXYisJ2V2zut8FxA309n0Uptq17OjiOlmmYNLznqrswb27V5s33trr5praY1iWrnwLtyYLPqQ7l9LLn3C07XKwRu+gxf2qxzF/nhXdLjbwLovRYw27t2d1Zu75ZXyuT58+wst9PUpMOihPJsINg2eZfy1QPybzbf3jQxfwO1N8Hd3u3/KwF3Uy7GFcHdtgwmCCW3gZsAfus3/w2/JIcE4Y6XnXOOzY0eWZYy6g8pxmNWFueYWIkQjigIOfnMKxw+vrytOmWtob8+QkhDq9Xl/NlVlpY7hEnEqdPrtFuaVrvNcFSQxTFC+si3c4bCWNJGzNa5HqUxrBxZ5oWTL7HY7XBhvU8UJRw5tkA+GhLHKdZpinxMmCasndugnSUQCkxV0etNWFheYDIe0GqlVBVoGeJETVkVYEGrDBFtYSYxOk7QwlAaNxVKsAhjEGiEkNz94Nf5rrfeMDUTr1FKehP0KENI752lQo0OJNSOclzgJMhAEyiFcs5PqgU4VyG1F52RUvHF+75OoDXXHDlAFGqyhYz105vMrXSxpeXTn3uA2289wMLSPEJEeC9phwg033jpFAvtFmkW0+tPiNKYKAuQ1lEUOWmSUI0tZWWJ0hCnDePNMUkWU9Wl9xGMMsqqII4idBBOBzGDMQVnzp4jcG1GVcGRQwuYqiAvHc7C/EIHJz2QK8cTVKCRgRcUEU5Nr0tOo5VRVSUIhyYG6SirGqVDJv0RrfkY4ypMLSimqpdSKMqiIlAaZyZIEXPXXU/w7vfcSF0W9EdjWt02o40RWTPhs1+5nzvedyvfeKbHvv1dgtAD70k+wpqQQX+L+cU2YRTQ7w0JAk2SetqlMbX3ObR4m4IwnNasOPJJ4YValCQIUw+4nSUfTs2TneVn7nmUj/36HSAsqAimJulWGorSTX0K+/z2nz3I/a8U/It3vYuDc0sgfT2KMdNrMRwhcN6fcbNP1g6ptGDQH9BqLVPbkkBYahmhhQC8MXcxydFR4uutasPzz7/E4twC3fk2va0tiqKgnUWsXtikkaRUlSEIBFmacP78Os1mTBY3GY4npIliY2PMK2fPc/TwQaIopKgKAq1ptTP6/YGvV0xT0ixhPJrw3IvnuPaaq5BKEEbSCy9YA06iZICTJc4atIgoijHCwvnza3QXF0iTDKdLsArnJFJYbC3R2jLc6pGlIePRhLTVwiBRgcCago21daIgYjDOWTlwAIylv7FBZ3kJUcP6xjrdhQ4OtavkSmDGOR/61Kf4ve+7FVsZZBgglILSUhYlqxurHNx3EKUUFSUIyXhYcP/9z/Ldtx8nbWc46UWc1s706CzESCmJopQ6L6hrS1XWSCFoNSJGwwJrKzYHfZTOwBrmF7toHYLwwOv0mVWkchzcvwRCMBqO0XGMEhYlIC8KAhUipMA4A8KSpU0mxYBBr6CZtHG6IB8b0iRhMByxNRpzaP8SdVEyGU2YW+xQlBWf/dJj/HfvuY1QB2xt9siyDFN6CxMdaC6sbrC4NMcf33k3t193nG6nwWSYM7/QQQeK0+dWiZSk224ymhREScyZs2vMtzOyLKG0jrNn1um0GljnWFqe48wP/SRBGLLv4AHCKOT5px7lmhuvo8ShmNEDfZPySmbhF4+bzoLFToNUF4M7KcWlgcxp+7aAu2kfpVB7wN2UUuosIEExDfRdfv5wSS3f5cCds9tiSLPv52mWe6+LB3ezU81EKr2VgtxR4nRTcOeuDO4s3pdQbVMWLy8oMxNtUfLyIO31gjsz7fTlTMpfL5Xzvwi4o979JwLn748d2uab7XLtTUGVN1D7TgqqOGpeN2qb1TS/3mN/i8DqUo+Vb/44r/fc1rmpzPKUCDJ9k1zpd4BA+Ash/YqdbaZF0jsUKnbUsHYBPefgGx/9XW7at+wXWYeTAikkWRLzygsvszTfIowjXBDhrCEIA1+jsdRBBSH5uGBrrYdygiQLqZ0jazQY5iM6ix2EUrTSBs+9dIrlhXmKokQFChV6yuNwMiCLvA1AEEo6822cg1gqkiRgYa5NloRsbm7SbLbIJzn5eEBtLLYqiWJNmEQIqSgrw9xil/76Fo0soaoNURIhAq9IqZW3ItjaHBGFGVGiMaakyCfoICYflrxw8gzLKwsYYdGB5tCBA4y2BjjjCOPQZ+6igGF/iELhjERLxbA3ImnGKBWitK8rjKIQ6xQoSVEWKBnS21qHKbg7fHiZhW6DJA0JQgnW0mo1KCY5dVVTVzWnzvY4enA/H/3Pd3FsfgknKqytPeDTIZWr0IGFukTWlmE+IYlSRqMxBkhbMY6aUGtUFOBwhIFGCoHWiiBQWFujNbgahCmRTtFuLuGMIQwV7W4HFSScfOYUcRCStUKEDfwAHwa+Lk4KTr54ivlOGxEotPT3Yz7x9VdO2amYh/CKfSHYyiAMBFox6RWYqiJJApQDJzVVWbK+ucYtt5xgMhp6GwCpCaQia8VUVcVSp00atWm3G4SBxFpYu9Cn2YyIwgCtBDoMMLWPbidJglMgrOILX36MIweXqYqa4XBEnEZopRmPBjhnyRpN8qJGS+hvjKnLmtqV/L0Hn+Un/85N/J13nwAUUmpMXYOEoizQOkYJbz3y8//XXZzuW373R3+M+WbGZDRgPBoRhKGPxqsARYmrxwRpipUCGUYIFRLH3phdInEobDWlWzuDRNLbHDLpFySJRkpBpCM219dwxhIHAaPelp8gAoPhhCdPPsvK/IKnzOJ9EJWSnDl3nizOqCWcXVtlZbFLqAVJGjCejKmK2r8bjKWqagb9EVESkYUJ3tmkIggVxbgmjP39j3QII0H6yZExFoioK0Grm0xf4corryqHqxxCCSyCINJYGRKmKWCx9YTzp09DnRPImmeefJb1jU2OHj3GZDIiDhVKx0g1pYcikEognMDWNUpC5QTvP3KUf3Dvg/xAOwEdUg6HCGdQcYwSmvHEeyxqqRAOeus9rr/+GGEcYZEooahGY4SwxEmTIAgRziC1pxZHcUyYRNRA1EzIiwotNAuL3enE0IvYTHJPVcY5GknCS6dWabaaJFGICsA5QV1ZWp0m1nhDeiUVo8HEH78wNJKUtbUtNjeHpHFMHEdsbfY5dXqDxbkGSRZjrGUyqmg0Y64+ukJdOMo8JwwC1lZ7PPfiWfbtn0OIGiUUa2t9bjlxnGYro9lMqeoSZx29/ohGltFdmmd9fYu5TpNP3vU1MJLVjR5xEKIEzHfajMcF9z/xHNQ1XxyNueWW65kUY4yrsJMeK/NzjJQkFGI7kDKraNsemGYZvYvoff6O8cPwbPnMIkF4645d4+klZthX+IjZz0IghRchc9IbY1sMXht353xCyKlQ1PS8iG2fPMdUlMX6sVQAWohLEnVKTH30dmUVt/VMpD9HWZTbVOft73LRVEJM50Bi++pdrBvjx/tZgMMxBYhCbFsazIRlrDNTdVA1nU3MJli7AeBuACanDBz/ERdtMxWicbPvcvFnJyvox4fXUv/cOae+6C8nxdRNb0893uWB3W4Qt6d2b/v6TsWXnENgfW2sAJjqK+y6Q/01dRhbT0G+8uBP7jgL7r4ef12pnG/63L2B2ndWLfMvzzP/q2/ukp92Hvip0tZ0zUyq9/U+1j7iJC6JWO0k4y7+ffazwFOyLurbpUyWHXC3q33sH/x9/tb112z31ymBsBaN5J57vs51Vx/ABAlSx4jaoiOvuKaUpwCtn1vH1DXNNKaylna3RRgEBHHA6VOrtBoZxSQHV7H/wEGEEkjpCKSgMgacn0BKQpCOQOvpy16ipCBKQsajHCEUWob0+j5bY21NGIZkjQZSKnSgqYqKRqsBxhGGGql9bRTGUyXFNFrphOGrDz/D1ccOUNWVBwuB4JXTqywtLfgsoHAUecl4nHtTaiW5+6GnOHZ4P0EUYIwjiCKUVlxY2+BL9z3ONccOILXYjgCGQYAzjlFvhNaSKEn4489+lRuuPUSSpQjtKXlJI5pSnxL6vTFaQRAERGHMZFhw043HwVmO7VviwceeJwo0S0tzXoAjUJiyxFlBFKfoMMYaS5LFSCmIg5jeRo8iLyjyMXZqpu3wAQClvfdamqZUteHc+VWqAlbX+tS2IE1CskYCzpJPcpYXu2SNDBmAs4KiyAl0QD4u+dx9j3DrtVdRlTU4x2Q8IYy8YmmUaASauq5RsyJ9fPbC4ej3hjTaMWGoESjyUYmQAh1okjSiGFeYumYy8aqCeVEQBTFFWdJspgSRpyyVRQHS0e62QPpBN59UxI0UHYY+uq8UVT5GAEf2L6IU2EqS5yWmtvz5XQ9x7dEDXhwGQZqlGFvxkS89yJ+ubvGRj3w/P/m9x1EiASGozQitImbRkjiOcBSUVcFP/8vPspwm/M4dP+IzwnWNijOCKKQqcrY21kmaAa4SBEGDoioIVQRW8PSTz7O4OA/OUZsJSioefuBpjl51CPDiJ2EQoqgwdcGw30c4R7fV8lHz2lBWNXGg6A1HOBSnzp1j3+KiV5Q1lrqu6Xa7OAd5UfL4M9+gkaZEUUCcRvS2hsRhjERQm5ow0JRVSaAU+WTCaJJT5BOCUDMajSnHOXGoqMucyWjgad5SIoQm0CE6EoSx4qknX6S31Wd+fg4hHBvrGyRZw1syME1XSA1imoHRAa1mShhp8smQQGrmWm0QkqzTQYUppq7Z3NgiThM/0a5rvCLiNEtQVURRwDuabZ545H4OHz5EFod8/clniKKQRjsjy2JUIJkMBoxGY7qLvn/eNs1hjCFQEXEzRkqNkFOeiYG11S0vCBV6Sqx1ECcxaTOjnvr3CQd5PaEqPYMgSVOkCDj50hkiKSmKkma7jVIB586uUhUFCLtdq5ckCc4KqrrEOksUB3Tnu6xvbtFopyRpyKH9y2jtwb5zjrSRMhoMCCRe8bO208wxHDq4AEayuT6iPR8zHpR88ksPc9sNxxiPc9rtlCAM2Njos7E5pNVIeeSp5+g2Ghw7uMJgPOTtb7mOoihoNlPiLOHZF06xf7HDgf0L/Iu7vsIv/Oz/QJwmFJOC5aVFxv0hMkv99Pci/LB70r1D17TGsx686ZzfYbei4WvWpL+eNkNAsxFVsg0efG/krFeXjSnPdveZnKmf7GwecJm+yb193w3KpO9HoDX2VerFtr1qp+BuBtyuFEyegbvZXEBMFTzBZ9A8KLrSddy7XLzq2u3l0xXGWv9ddtNwp029huqmFIJ6O9t48bF32zjszdj5a7Fz/S6yfLh8b6fbzeDyxffYxeDu4mPOAJwx1a6AhNv1+evZ3gR3b6D2hgB3bnchM5djD7zu52U3UPr2yNte+cSOi2vgdvtDvS4fPC7O8s1eLrMllkvBohb+qgkcxrgpLcqH66ScRTNn19EPIrMX+s986CP8+u03XNQHbQRPP/ksGsGhQwfJJyWBcDgfPqYqxoDkE59/gOuOHaWRRjhnKU3N3MIctZGsrQ2Ikpj5xbb3PzOWIIm56wuPEmrozrUxtSKIJTifrTr5zBk6Cw2qouQrDz3N/oUFhPKqmVkzY3V1k/+fvTcPsuw8z/t+33bWu/XtvXv2GWAwAAiAEKmFkFiyNpciy1bJlihZkk2l7FiJHZeTuCqxnOQPVWK5yik7TvRP4kqVLMeSLEoyKYliSFHiBgIEQSyDhYNlsMw+0z3dffvuZ/3yx3du39s9MwAkURTkwjd1Z6Zvn3vud84993zv+z7P+zxPPvcah1aXGI0StFIEkUc2tjz/4hssLc5hjCEdpexs73L23EUOry+ipKAsc4Q0/NrvfoEjywuEgc/a4gII11uHFfz+p5/h/tMn0cqys7OFHwSAdIIZomQ8GLDcbJEnOVo5BTKtYDQasLBQ5/jRRYxvyLMCKQU3rm7z6596guMrCzTadYSE8WjIXYdX+PVPfpWHzpxAioJslJIOC2cybwvqDZ8id6bpWZ7TatUxAeRFShgGnDy+Tl5krqo+doIave6Iy5e2mGu2uHDxCp7v4weK7m4PKS3Pvvgmx48ewQt9jBJVID4irsV0ez3qzRrWOm+6KAhpzDUJQkMt8kEJ8tySFQV+oPCMdtVWJbClRFYWABLF3ceOoLXrF/S0Iox9bAlSGPIUyrx0iWVZcvPmFuTukgyiAM8YECVGeWAlQVRRhJWiLDKKpOCzT7zAA/eeJK6HGF+TpRlZltPvj/GUhzTOx1BKhdSS0WiM1j5SS7JkTOAZzr92kXoYVN54gsFw5OigoYcfOPuG+08fdwqDZYkXGn7qi0/xIz/yED/5/Q/wkQ/fUxXMJVevXCEMffKsRBm1Z3gMJf/k//kS/snv4Ofa8/y1M2fcoWjNG29cZG6+jZICKUp8XyNTSSFABAYlDQLLY088y0MP3odQlnQ4Yrhb0O+MWFlpkwyH2Dxj2O9TJBllkUIpUSi6vT7SSAb9HihB3Gyx0+ty4u5jNBoNTt9zisZcAx34tBbmaLSb6MCj1qzTmGty/PgqR4+v02g1MYFPvd4gqEUE9ZC47hRXsyxnOEowynB9Y5Ol+TY7O120MggB3e6ArZu72EKibOHQLQFWWKdaaQyLSy2ajZoTtSnB8yOKosQWOclgWAnD5I52akx1c4rJM0BaoqhGbb6BHxiKLCUbD7m5scnCfIs8z6tAzGK0cYUMLEVeEIQhQRjwDx5/kp88c4pet8fq6jKNZgM56eUSEmM0fhxiKbCjLhs3Omxcu4HNEobjseuvLTLKzKnASimJaz47OzvEcUCR5Xz6c1/h5NE1x+CyrsdNaIUxPjubuwx6QxqNOv3RiMNrbVpzMV7o8cZrF0hGY9YOLSM9RZGW+L4PtmS7s0st8BknY4zv4fshnc4WSwttytzS3x0RRIoit+x0uoxGIwLPYHzPCaa0GwS+R63ueumiIODS1WvEtZBOZ8j8QoMzp9Z47gio3VkAACAASURBVKXXWVteoNcZobXzw1QK8rTkzMkjbNzcIa7V8LREKyeSNenD/v2vPM+DJ4+CELywucOHvud7+Yf/4B/xvd/zfQRxg9/+jd/gzEMPTNXx9hKr/cmFSzioimVVsDxB86RwyHi1rRLitknU7VfZt9huL4Hcr4I9YWxO5igrlenp6yaHsg86mzk+t800AatQPimYsCadUbhg8mdC6ZwgbJPH5L0miV1p9283O6dZu4I98bPqUZS26l2cRc9ul7RNnrO3/Gb/z1MkUUClqGn3XjlBPycqmBOm0u2URQ+ex3KClO5D6coKraywstsgdncSdbn9mCZ3k6RQzhQi9zO3XNI2TfadUpCokL7SlhS2qPo0v1Gx51+88V5y9y4a3/zkbtJjV+5L4vZ94W9XLrtTCe3gZt/wL9Y7r8JYe7vb1h9vzwefszhLgFmwXzClOLhtquom3F4ty8KPf+Sj/NsPP4TAVn5SAlFK8jzHKIOQHp3tLq9fucHi4hzSuAbq0WDMsD+kVQ95/tXzHF5bJkkFSZITBIayzHj+lfN89ZlXOLQ4j6cF3W4XzzOcOH2MMAqwFtJ0TDp2AUqWwee/+jz33nMUbTy0FdRqMcqTXL+2wXy7iRf6zLdqNOoBg8GIxlybNMtQOmNxsQ4oylKRZgmNVo215TYljnZWFjlZXvC+u4/z5ae+zsmjawS+k8L2Q5807XHi2BEGo0EV0LYwgSHp9wgDj9FwTBDFWGmpNUNeePk8C+05PBVg/ICt7R3iKERqQ3dnB78WEtViHj5zgufOnWdtZR4lXUU3CH0evO8Y/W4P3/e5udXnufNvkhcZyyuL7Nwc0ZyrI5V1KJfynHWCiblyaZP/+Pmv8G0PnEJ7To3T80H5Hn7gkM7ABEQ1nyxJCMOIwuYsLzYd+pUM8IwhzRLCyCMbZXhRgHQC8wjpMRo6lNHzNEK6PietPW5u7pJllt7ukFojQgpBt7dLaDTDdExJ4Ty4FPi+h9KK8bhgd7dPGAZ89svPcNepQ3S6PYrS0mw1ePaZ17E2J01G9Hsjopq7zvLM9SqNxxkoJ8CjpeHMmaNI7fq6tNYIrfFCQ9yMkVojmdQvFEoYtFF0Oj083yeIIooixyhB2IgZ9lLCwBCFhusbWzSbLZc01D2QBUZpfvrRs3zkxx/mkOyxvr6KUiBlSV4mCKDVmkNrh9Jo6fzklFL8xD//FLvDlP/22F34quTrL5xjaWmJLLcsLiwg8oztrU380MdajdAeyrhEGSsoipSjxw5RVuIJ0vi8efENosDQ7XS5cuEqvifxPUNZlIwHCRk5QS0iHRe0Fuept1rE9QZKK+ZaNfpdZy1C1QfjBb4LlJj6WVkBUjqV0zRNUEohpUNejechhCaMfWrNOs25Jto3rBxao1AlZSnwTIktLOQ5r752kYW5ReKax2i3R5nlaN9dl1opsJKyyNBG0tnuEPgBv/yx3+PBe+9GGVdEyLLU9QHbCmGwpROS8WIKq/DCBkVZokRBno1doaHM8LyAjavbNBYWKrsXF/gpoyoUUfBDRw8z2NpgbrHtEkw0RVmgTSUdLwWitGgpyYWhOdeiNT9HWIupNWLHljAxX3/pEs16jFCaJEtozjUoC8iKgtN3HXMJilRYYfcSkjx3/aTD4Yj5+QbGSHY6XSwCz/dZWFkkzVJ83+CbgCD0SdMUKWWl8KowvkOhkRajFIMkI4wCjLZILUjTjMZcSL/r1DwDz8cLA25c2yaKYye2YlMKC+25Fkoo+t0+40FOLQ7Z7Xa5fmObwCg+87WzrC3NoSwo7QoY125ssb66ROi79+oNR0gJ/+HTj/HX/9IHuHD1Btc2tkl6Pcqjx/nxn/kpMmHJBkMee/wxPvzII5S3xOJi5l8BdoLQHVi8Zmh9LgGsUCjBXuI0uZ4RB93MxN66LIWgKIv9ScEELSzd10JJR1MsykpllklyRLWdK6hOpl2U+62FJvubJGyTNHUvdawQ2f3rt616st21WpR2z3/PCZy5RNhW1MqDiN2kML6HdAn2kpTJdq4/Ud5qp2BzV4SpzpqQsiq2yynydks4YfeeF8IinHeSO86Zc32QljnLUipsua/vTk6S+Ml8ZxNk4YrZM1fEHamYMKFj2iqxnF4N+1A5O0nMbPWv+9wnhYVp0ize0UPMJH62qgzsJdlVAXA/svefZvL3XnL3Lhp/PsjdgQTkG3Cdv9Nm3D/Bnr/B+/vj73nWmHzvOA/u5y129tM//Xf4le96cO91Fqc2qahUM+eapEnGxcsb3HfPMbRRbk21Ak+73o+dTo+7jx4hzcc8+vRLPP/mRWKlaDRiluZanDqyTpqMSbOUxaU20hjSUcZvffpRjlT9J0We0e0NCDyP+04dZjRyyoTtdp00S5BSoaRwqnLaiZvs7vZZXJ4H6YJbJQR5avH8gC89/hyFTanFIX6oXcAvnIz9za0O9VrM4ZUFPF/T7XYJo4grlzZoNRukSU6r5YK2UX+EFzrlxF5vSJoWXLx8nZWlBba3OqyvLuIHAVcuXqO0Jc25GlmaoaQiDD1QgvFojKc17WaNXnfAZ594hvfdc4LdSmnONx6bGzvMz8/x6Nde5Pu+82GstfhRQFk4NU2p3Pw7O7sEYcDlq9c5urJALXaiI0I4ypIxBqkEWVGy0+kRhVO1vDAM8TyfK5c3MEajlcEYTVk6FO1Lj73IysKcW/gqg/SiKFwCpRR5niOFodvt02jUKIuCMAoYDkeEoU+3NyCqRfiBT1k6tVFbUr1eEoYBAMtzDTzfEPo+YeBTFAWrKw1ajQYSD20EvlEUWY5Uil6FLG5t9PCMQqocZQJHl6kq1kWWYrTExf0l3d2eM1x2MBF5nlGrhaTjIZ4fkKUpWkmU0QRxQK/fwws8mq1WpbzngqWf+cLzfNf3n+InHjmJ0obV1RX6/S5hGFAUZRXsFWjtkVdzyPOCwWDAv/yjG3S7Pf7PR74TqTx836PRalEKyY1rmzQbDaRMsIUkCOqgBRJHHy6yAqkUZenOv5SKfJwipKVZq3Ht2iY7nR7tdt0F/kFArz9GGMnS+jJ+GBDXa1PKlZjKze/uuh45zzd71XpnjFw63zoxYRpUQbKUFHnOk088x+rqMkoLsix1QZR020kl3bUcejRqDWyZO+ETIUmyjLlmg/6gj7UueNvtdJhrtUjTHKUNCBcIB5FDyR+45y42r29SbzYo8gLP0w75lcoFixVSY62t+hXdVIa9IUEQIoEiS7HZmPmWE7zZ7XTwPD25y7mA0VriMMArxwipyPICmyRVf40gy0vGgyFllqGVRFTfA6P1lP5mJULD0lKb11+9wuLyHLZ0yJZnfCeuBNy4fpN6PXLJoHCZxqg3RFjwPI0JPdI0xRhDFIVo7aioUegDgnPn3qDVqnHh4jXa7RY7nS4vvf4mywtttNKMBgmDwYhmo8ZgMMAPDDb3kEIjgCyx/P5jT7Iy1yKuhVy6ssHy0hxbG7vU6jWUkvR2hxR5wdJSG+1pRsmYcZZw8tghfN9w38kjhGHA5maHdqvJl595gZOH1yiKgp1un+XlBZJxSrMRc3J9GSEl7Wada1s7FLWY7/vZv0ea5Ph+xP/yC/8zf/dnf5bl9VWyMj+wMh1AjcTbrd8V4rSHSO3VKfbt7palsIq6tZS3JCu2smNwOiJVkXSmSLuXs+39PMVtrJ0G6XfyrBUH5jTt45tBmKrMaC9hkm7NF1RCJlWPHPv2MRvzVP1hB/e5t72siiW3BgmWcl9C6k7E9J57pzH5netRnCa3+49z9jwcOO8zr5kgZhNE8pb3us25fevrZJa6aWeOwiVWLtmdUj6tLas0fPYc/nHjvv3bT1o1rJ3YXMgDhYv3krv3krs/4/GuSO4mY6/4NYHG7VtuDvtpjbfd5Z8ayZvu/+3Awzu9150EUmarW7N0zOn7Tf5MpmJvmcPtvO1mJ3vp4hV+aniTiVKmlRJZQDZKePHceZYXFxiNEvqDEUmWsry0QFHkjIdjPKXJMycy4hsPa0u0kpw8tspdh5ZYXlyg2+3RaNQospxmK6LRrDFOcjdvC8dWF2g0awS+h2cUfhCgpKLX7XH2pQtQFIShYTAa0mw2yDInQayVRGjJS69cYHG+hRcaQLC71UNJjUUwHiacPLGGMRqlBNk4o0hLpDLU6j5SKjzP0O31qNVr2MKSjjIQkjDw6PX77jNAcPnyBrVGHT8IKMuSIiuIo9B5bmlXGc3SlNZcndKC1qbKKdwyXOQZykiM79HZ7nH6+CGMMQShz9nnX0UWliIvqTcjIi1ZXl5kNExAWHa2HdI5obFEYcjGxk1OnTpCPY7wfEOaZ3z1ua8Tez5ZmpEXObVmjVariRQlxvOcDxpgC3j6xde468QhtNKUJaTjlCRLOH7oML/52ce4/+5jfOJzj3HPscP0e0NHtcoLFwBYQb1ZYzQa8/RL51lZmGO3485hEEcooRzd0lYoRel8kQbdLmVREkQh2rgkvSwLtrc6BIFHSYISPjc3dmkv1Csk19Hoao06WIvvxxUinCCVDxY6Oz2yLCWOvEox0ik6lgUoz1WaszzHGNfTmGYZXuAjqcQOqv5UE/iO0iwlWZry0cef59u/+xh/9y9/C76vGPX7xHGEFZJ6PSBNU7AKo/0KaRMoCXme8D/9ypc48wN/g1/99U/wK3/lBwnCGKkkg+6AAksYeHzmC1/kyMoKo1EPoyOuXNkkbkSUufMInPQRFWWBMgYpFFoKtm9uopVCo0jGGY25GmWZ0xuMWV5fo96sY5UkLxwluMhz14OapSglsaUlqtfQxsmgT1AAKQRSO++qLM2Q2lG4iqJAVejo6soyRZ5TUmAmyZZywhWq6gnKkwylPKwSBGFMtzeg1ajT63cxXsAzL75Iq16nUY/odvrUa3WHZClVsfFc0jXqD/ndP3qM08eOYDyX5G5e33KJnJIM+8M9qrnLw1zAaUxAllqCVpu0tCRp6ozcswQlXJ/Z5sYGSrmE2JYlN2/cQORDxkmG5/u8+sqrxGHg7kdaU+Y5eeqKT3EUoyvbBJf4Cic85JUURUGr3kLIkiK35EnJ1mYHPzRYW9JoxNX9o+T61U0CrYnimFdevcDyygLSN3hK0+8NCMLAUUhz5+2nlKbdmkNpSb0euXtOlnP08DKe55GMUwI/qNAXSxgGWCH47GNf48ThFTq9Ds1WjQdOHSOKIqyF+XaTZDRic2MXIxS73R6tRoMbG9s0mzG9fp/2YoulxTaXLm/w1LnznDp6CJu7oDRNc27u9JyybxwSxwFnXzzPQqvJy69dYmO7Sy0MeObl1zm5tsznXn2dUb3NP//FX+T973uQn/no30RLyb/83/8VH/rwI7dZpGAfhQfhspvqubKcDYgttwsG9uiaE0BtCk7v26+p+s/2MRn3igjT5GQfPbN67JEYJ2v8TPGBmURlMiZ2frP7mUXNJonbVORkutLbcoaSOfOe0/hCVH6NyiV+pUv8Jq+ZoFqz+5/d52yMYivxEDcn4RgJdvra/dtO9q+wlDOiNLOJ5JSKeTucavL8RJ1zljq6FxdJeeB4J+dU3vKcO+6DqNh0xoL98eQs6jd9ndMwmBWuEzPX4FuNSUQ2uRKm7zVNXCdI4RQFniaXZbm/n/Qv+ngvuXsXjXdjcnenm/htX/I2ydudbgTv/Mv0p0fuDlaz7lTdutM7vWWN6m2m98l/+vPcu9ieqTgKst6Ip86e48F7TwKOEhWGPu25BlevbfDMy+epaY/dnR6LK/PkWYrUggtXrhP5AQjLcJjwxoUb3Nzd5fDaEt1en2Eyxg9CpFI8/eyLtFp1Gq2aC460JEtygihGaIXnawKlWF1Z4MbmNstLC4yGQ8LYVZdtniOFJVCGWi0gTRN2O31HuZISL9D83hfP0og0iwtzLoHQPn/02FnWVtukyRilHaHVDwxvvnmdOPAJQw8/9pDaw/cNCMXlK5toXCLgeQat4HNffZ4T6yvEtQCKEuN7RJFHvzckiCPGozFaSUpc31e318cPPEBy6dIGne6AK9c2WVtZwDOSdquJLQtG2ZCVtUXKwvL4k1+nFXhc297m8KFVytIyHI4QVhHFhjRNKIqSl89fYHm5zfrSAoHn02jXGCcJntIIKxgMB2hl8AMP4zsvq5NH18jyDCFKtm926PfGzM/PUZY5Z+46TK8/5OjiAjudLu32HFprtrd2SccZeV7y2DMvcvepw5w6eggE1Go1R9kpBMkg4VOf+wqnTx5BSNjd7QKWWj1gd7tPLY4ZJwOn9OcZPE8z6I+IoybaKLIyIYh8BuOUWj1mPBxjjKPJCQ1FVrCzOURIt+hq5RLoXm9IEDoKqFKmWqpd8g2Alkit8YMQZ14/ZjxO0NpDWw1W8K+feZlfu3KVv/rXH+ZvfOgURTLG8z3yPKVZD7l+9Rr1VgtsWTHCXPIllMQWJUWe8ptfPMvpD30PL/+H3+UXfuD7GfQGGN+nKFKyLCf0FEUyZq4WkBUp7cVDSC1ptesoJKPhgM0bW3R2urTaTSdXXli2t3ZIRyPKxFl4SCXY2t1hZ3dAq1FjaXUBPIWSGiGdsHyZpa7PUEgXoBTWUROFJLe5q4iXVa+KdO9tfKd6KvcCVItUCoSiN9ihVq9jlOt7E1oxUdoUVVJh8wKlfIRx4WhcFUW+evY5BsOEMydOOAGmPOPJ515iqdXGqBJQDPtDPK0Z9YfEjYj7Tp8kikKQBVcv3WBxaRGlNXlREIQuuVdVv2Se5gipGA3GBJFLfgIT4vs+w+GYca/H1StXGfR2ObSwQNSaoyhKJJZff+N1PrjYRGuNkbC0sog0rn/SUjjvujQjDAKkMVXg6uwysiRxRZ+8oscr1zxa5hZLQRAqPN+rCkUu4FXGOHTfKEzoo4Aw8KtkOieuxSityPMCJQTKaDZubHHt2jYLCw2H6GKJ4hDpdPZ548Jl5heaSCUYDYace+UiSwtLHF1xSFoUBQx2M+dFqTW7nS5+4NPrdmm3mzz/6nlOHVl3IiAW+sMBKyvzTlm100OieN+9J9i8vkXgeRRYXnzlEg+dOYkFWu06ly9e4dTRw/hRxM3tHisLLfKs4PSJQyRJyi9+7Sn+u3/83/DId3wr//f/9Ut86JFHCMOQ1998nYc+8PBbrmwTamQ58927laZ56+tshdCWE1pnxWKoQL7pA8Hta6FvL4I2Tcuq2OTAWn4wuTs459ni7t4xTJDK6lj3krsDi/qtsYrYh9Tdafu3syVw85oKkEzUMN2E9s9p/+srlKs6htuNWwrVB87X7ciJt0vobt3r9PFOUbYpPXP/XGZfV1inUEw1p/39dm+59+rvg8yxg8dwcF+yukb/0+rPey+5exeNP5fkzs7cIL/J1/U7RfJmqzrvdNzpZiql3HfzfyvqwgRhm31gXSO0EOKWSs+0MnTgTQX87Y/+HP/kwXtAVSIsJehUcuXqRY6sHEFFguvXe3zmq89w6vAScRQQBCFpN2VxvgkqR0qLVAVK1RjbEQvzdeJGjCcUK+vLrK3OMx4PqcURUb2BMR55krC21CaIY4o8rz5m93n3ewMC3yClJKoHIKHVihnnHYKggRWQZyk7OzukeYEFhoOEWlzD9yKMFxGEPlevX+ND77+HWuwhhSIvUlAZdx09SuRHFDbj8ae+zsn1ddK84Ouvv4FRHs35JloUgKEYl/x/X/waDz9wCqlKXnvzOsW4wItzTp84hlIKK0q8QJMVGcY3eJ7HzlYH32iCwMMWgpsbXVrNGnmeIQUsrjRZXVlmca6FECV+LWY8ThgMhiy268iggSxLjh9eJPcNh1eXuHTpKvVGSJKMefnlyxw6tEiWOY+9OIgI/JA8T9z5zTMoBL//+a9w+uhKhWwIpFSuF8o3Tu3POqVMz9Nc29ii3WqCZ5CiJAwNtSig3mhhLXz6808jS0khUtqtOs3YoxG3KIuM3/nsE7TjEN/TGN+wubXDww/ehTKQZyVBEKCUot/vMTffpihBGY8g8JBKkBcZzbkGOQKhqLzttLNjMK7SniYZOjDIQoAVFHlBrRGSpSm2KBn0hgRx6HrBKoqhMyHXWOuCHSUFSpZQ5lBIjK9QWtAbjnnk332c1ukGP/eRR/jPPnC8as2HWi1GK4uUBosgL0uiCrE1WpEkYzyjIO9hheKlCzf48E//ff7tv/pl/uF3fReWkrIAXyuEVagsxQsFne0OjeYcca3tDKSlYdhPENoZVc/Nz9Oeb5MVKdZa8tGYcpyQpQmer6k16vRHCUeOHmFtbZV6K2Q4HhHGEeQCIXP33ZcBVhRY6xAuqcBJdpdVddiZlE+obJ7vQ2mdP6Fw20shKxl3QRCElXCEQFTGxdWNxlWcAaEdLXhC4XJ1a8nxI8dYXZsnHY0IAwMoVhcXsbZkOBpSC2Pims/Nm5vUogZKOnuHqxevOSXJIOb1Ny6yvLzA5tUNpJDkaY6vNZLSiSwIV383noayoCgyxukYi8WPW7zx2sscXZlDSUW0uEBRStL+iF984nE+cmIdWzg0arfbJ4gC8ixHaR8tC/I0I647Bc88HzAYDNz1YfzqnuvUd/Myw9OS3EKnM6AW18HmpEnCxo1tIj9kMBiTjMc0WjFlXuD5BqsEUmgKW6AqNgDCkuYpFJJaw2dhvuFOt5XkSQFliWWMFIb5uTo2l1Ba/DBgcbHF8y+fZ3l+AVsWPPnsK6wtLDJIRpx/4wpHjq2DstTrNawoWVmapzvsU6tFPPP185y5+xh5VpKNSvK8pN4KyAdD4ijiybOvUhYFZ+45wkuvvkYrDvGaMbGvuLa5RSMO6fZ6HD+6SmuuTppmtOYa/PsL1/jL3/3dlHi8//2PsLl1nbWVBV4+f50Hv+VeZ08yWQT3BcLu+iqrnrgJyjVZ6ybr33T726yziD0mxuRfU90btVDkFFTaYxWC7/zNZtG3yTKqsPvsE6bvOUFq3JomrdjrF5vNRA+GGPLAuo5kysupwiGJQ+2c+NL0YW11bFWyasWt6B5MfO5m6YYV+mn3n+79oiMV86Sofi+so2MrUX231d6hT5glk/9PzvreUQkQk8ZHN2M4kPQcZCnNzqWcIJjVc8UEPazOX1ZdG/sjKbv3WoSjdzrKp0QINYMJTzogXeGrKIq9vkLERBvVVmwqsNaZXdi962L6uVezrc6Pre6R7jxMe/b2gwiuN3FaaJjMvywL9iwbKmQZOHC9/8UZ7yV376Lx54fc3bYk9y4atyZqf3oMb/9+Suy+P3fi7cN0kbtTcnq75O6vXH3N/U5U/R+F5ebV62ijCKI659+8yqHlee45sYYX+BSlpdfrszI/x82tDocOr3DxwiaXr20z32pz6eoGZ8+9wfH1FXxPs3Fzmyj20coJWmCdKmKeF5WgRbEnRT8ajfFDjzDwKuqCRGlFvzfA0wHGM6RJAUhG/ZS5ZpNef0C7PUcch2RZwfWNG/zBY89y+tgaXz77Iov1Jo1mnV5vSDJQtNpNEDDKehhPc+zQqmtClyVHV9fxfR+jFLu7HYynGfUH3Hv6GF95+hxH1pZYWWrSnl/AZm5hyNLM9cP5imScI6yrtvV6Q+JaxGiUgNB8/LNPsDLfwDOaIAgoi4Iszfn4Z7/MqcOLKAme1jSadTq7PTxVODNlpfB1jkUQxxEgCPyQRj2gKAtHrSoFRVFw5domzVaEkoY0GxOGAUeWFzC+QRtDWeYgSmzpFtSiyB19pnQ2C0tLbYoiQ1kYDUZ4xrC13SVqGIQuOXV8hVrNY3VtGRDEjRBQjJIR9546StyIHc2vKGnUa2RpSn8wdKbLxgW9XuAhkaRpVtE2C2dObryq10uRjhNsaelsdzn79ddZX1pAGY3n+3S2upjqWEocfVZqw+5un+vbHdbXl5CqkheQzgQ9HSfOS0/CoD/CaI9Bd0y/1+fnn36Zf3fhBn/rZ76D/+qvfQfHljx8L9jr23E0Z0uWZvR3d/F9n6gWV2gdjMcJYeSQ6H5vSFRrsv4D/zm/9F/+Y/6H7/1+yjzDSIORhudeOMd8QzAY3+TG9S6tdpug3kAaQ5Hn/M7vf55XX7/EsUPuuyas5Ny5V2jU6ygp6XZ2XY+gUWgTkGUlcwtttDJYStI0IYprUEqScUqSjtFVj6bYq/5WghFWucRMSCggSTLXi1f1+QnhKJZSiAotcVQrIQVOUbZwhQ1rqwC4UrmrKF95Xv0ewLoCjNaq6huVpOMxg8EIKopSnmc06jH9vhPhKEvLzk6XMIj5wy98hcPr67zx5mVqtYi1tRXA0mzXkUZjfK/yEkyrPlxH982SDCkUUho8E6JVgPEkWkhM4BM1KsaBMniBzydePc+PHl3ZCwC1cYUah34mFELiVf2iwloEmiCIKo9BgZVV32dRoJTZQ0LrzZrDUWxJvzdyVhVasdvtMzdX2wsgy1zy3PNvsNnZZGV5gXQ0RntOPInC4puAgsLR0qvAzvMdHdiWltEgxQ8VIOn1+jz+zPMs1Oq06zEvv36J9dUFfKNdkS3yWF501ilSQp45Q+Y8z8mTHM8LSIcZvjF89ew5jh1Z5WOfepwHTp/g+tYO5y9e577TxzBaMBiNaTfrLC+6vuc8z1laXCBNc+Iw5MaNbeq1GmVRorThd65u8bd+4iN88ctfYq7dQhtBvRGzs9PnxF1HEErOVjeni1X146TTa4o+sYdw7Fvc3tFwkbSYofxNdDgmrLvZZXM26ZC3llhvO6zdT7e8U3J3cOwL3u3kPdlTtt73HkwRvpls5ZaARCm1b6pTQY/987lt0iDcfJSUU8EYcAnRWx6LOPDfg+frIKI1++z+5yfHOU0g9/9cFk6W5mCcNIuKThE3y0Gvuul1JvaozXviLbfMxx547pZuzdueh4OvvzO6eOt27lqfJIHv5tj4zuO95O5dNL7ZyZ27qcGtoPw7HGLyBfizufjfCrG70+3+TojdQd75QbKpOPDnFqrCZL9CVGjFnReNvcSvCsI+8pGP0Zs1MwAAIABJREFU8qPHVpn0qQgEO5tbbO9usri0ilWKr3z1NU4dm3cCBBWtS2J5/c0rtBo1PvPYc3z7B+5haWGOJB+wtDSHygRLC3NkNieOI4ajEWXuAqCt7W3qtYhrGzvU6zXScYpfiWkURekoCEAyroJ/YQlDn3RY0us6oQ4pFUY5U+Eg8knTjMvXNghDH0HBtz18hrwoufvYUYKKBun7HqgCL1RgNUp6SGOr3rSCssh46aVLfP5rL3DmxDpRLUR7GiUtShsaUUwyzvAiQTayfPKzT7MwF7PT6bG0NI82EmOcn5yQ0GzWUUqTpo4SR5rSnqtTb0SOCmoVUgjuPXnYVeZHY7KsQGpNWIvI+mOMX+PCmxvIPCeoBdXiLcjSHO0LjPYoC3c1DAZDjFbUGgGUknEyxlUOJX4YMej3QUCWp1y9uk0YeoyGCbV6HbCMxwlCQLfXQ1pBGPqUFuK4xmg4QiuD1gYtjav+al0ZK0uEpLKJsBS2wFrLcDAmrsX4gUejEZOlGdpopHB2Ar5v2NrcwfgKz/gUuYuipFIIYZ1Iix9wdG2FsnAS3VJLQj9wi60RbHV2aDRrlKWzTpifb6BkJfhSLcxKKIxf0d+05KNffoGX0y7f+8Pvp3HPIt/z8Do/9p13YzxDUSaURUqauERFKRcsSSnIi5JQa774+NMcO7ZOloxQxkMpSZKlaO1M6//m//ZpPvaxj/Pff/BhvLgBaEo0VkpWl2J6W1sYr0lrYRnjh+SFpbTOuH19eYk8SzlyZJ1KEYbFhTYf/9QfstZuO5PjStzAhLHzFlSqqmY7v8k0KXC6CpaoHu3N3yWFukpWJUKVjEdDtK+gdHRS45nJTYXBYIjvue/OvkCiQk5U5fdXFiVSSoq8cEl1VXaeoANCgNTOfFlKp7gphCCqxzTqdXY7HXxtCAKfwWhAs9VkZ6dDa65Fs9Xk+tWbPHPuPN/+wQeYazWJ6wE7O12HzF+5QhRHjIYJxvdQRlWqm+7OmWcFST4kz1L3nZPQ7zrkOGjUUV4DpSyFBak0v/bci/zYiUNI5cQpjOd68YQtGA+HmJoTpsmSpBLPCff6ja1wtgpSCqdIaCVCuQp/lqR0u338wBBGsaN9epp6IyYIPbLMiSXlmWB5aYHlpSZgSdMc3/fQStHf7TMe5QjlBJY847F9s4PRirLMUNKAchRQJQzGlxxfX2Z3p8tCu8XS4hyltYzGCUKB7xl6/QH1euyQMKko8pwoiujuDvC0z1MvvE498PF9TTJO+NYHT/Pvf+dLfOiD72Nled4pl2rNK29e5a7jh+j2+gR+gNaara0uWrlEvswtvvEZDJyFxa8+8wo/9MM/yNLaAitrq3S2Nzl95hTry4d5/uXnWFxaqgR9pqtoWU4TpAlyMl3XqESNxG3WvrePAZw4ikO9kBWyY53fp5SSsij33sglDg6v2cOHZqAWJ26yP8kUwimiSuWEjGwlXnRwSOEsEPbQsxlBDz05FzOojZoxaD943M4iSVVFqBla5cRCQlRekXvqm+U+b7lbEFBRqYRaHKo804O33+B8IlAyGwVNcE87kxDPHrd7v4Ox0N4ZvG1iNf15lsk0YUBN4r/ZPHf6zgcoqvtP3d42JaVD3cT0VbNFhXdGEZ2dqzqw7Vsnd9ZOE9BpIWO2L28W+fuLk+i9l9y9i8Y3O7mbVCb+NMkd9tYbwTdufKPwuT/5nm5dw6YLzdsedXXz+5HNC9N5WEmRZFy5fIVjJw+BjFAq594TR7m5s4vneYgSdja7/PYfPMmhpSZHj69RD30azRqvnb9GvWEIwxqNuvOwEkYicL16o+EQKSXthTYWaNVjhoMhURzT6fQIw6ASBMgxxsPzFZaCLCsZjwdEcQSUjJMU4xmEKNje2SaK6xjPo1YL0UahrER7DqlCCEpRUOQlylMERtDv7uJJj4998kssztWcd5cxDHZ7HDu1ypHFJnmek+YlUnikyRhwZuaNeuS8z3wPz8958tzrfNtD93H+lUvkaYH2Kl8z4dAMW5RoLejvDvnC06/w4puXeOCuI9jSkmTw5qWrNNt1jO9hyxIptevtyjKysiAdjRgPh1zZ7LAw39oLbrSRrppvBds7XdIsYWFhDiUlJTme8fn8E2dZbDX5wlMvceLQYXzP9TMqqZ0JtoDRKOGTn/sax9bbjrqIxdMGGYSUAoRy36E0TRkOxnieR1mUZEmCMZpxMnAIh3TzEdbS2dkljkOSccbubo96o8Z4nGCModPp4YcRSgnSJGE8SolrPraQaO3z/IvnabcbpOMEzzN0dnqETWc+HYQ+6WgAlM5rLvBotOr0drbp9xLCyCfNxnjGeSwKIfjkK6/xC+fe5Id/5H7ik4uowy1+7JGTfPdDJ5HakmfOGmI0ShyiJExlFB9jbU6RZ1Wfn1NipBQcPXYEScbO9UvUW/OUtvI4LHJ+8l98kn/0X/w4f39hhe2bG2grGPX7DHs7DPvblOMejdU1fL9FXpQIJSlSF9gXWUmtHrG83AZROm9KmyOEpR3FRH7EaDhglAzxPJ/GYhtbUXayLMXzDKVwgidKOvl1z/OqYBOE1CRJUgVwgmSYEYShC/xk6dBVT5NnOXmeEkWhC9DsJHAVICx5kaOk5/qeCssnP/NFTp047BQdoVJVdYIstiyxhTONN9oljsY4unVZIfOhVly5doMoCIjjgKxwaHQQhPR6fZqtJmfuOoyVBUI6tLmz0+NLXz6LtZZDawv0dvsIRGXT4BJygeKXP/ZJHr7/THU/cGIIQRAglXEWDxhsFWRfvniVz21u8MPri3tRoBKuUFCCQ+yqvkSpFNrzKfIcqVyvTl4UGOWR2xyh9qJzsiQhzzLiRuyo0VZx+fJ1WgsNhqMhlE7oCKHJ85Qw9jj7zJt88dmzvP+eU2xvddBaEcYhUnp4gaFISy5fvk57ronFmST3ekOkdIjqJ//gWZbmIsIoIm7EJFmGFpru7ogwDIhqIf3eoLrP+pS4wF4IZ7RdFiW1esyjz5zjfXcfocxL1tbmCWs+o0GP4e6IWuSRpTmd3SEnjq7hBR4Xr1ynGBVsbu+wON/k8tUbeJ4m9D02t3fI84JXh13+6//jl9i4eYPBMOOzf/Qo77v3JF5s2N3qEbdrtOZaM8XQSSDNnsXB7YZLUt7RSnmH4VoZCmsr1ciK1lhOaYBKyT0TeEeym0nu3C4c6ni7+QlXeJ32UN0qxiHEgeLszAEd3FpJZ8VwpxDHIVWVaMpModsh7w7hmqDtMGtkLvdeV01i+o+1lV3DfnqqOx925nWzyd3+cbvnJ2qad4pc3olewuQzuVMiOPnfQeG6t7o+bhd9ziZ3bz8Ofr6Tz6Pchxa+XV/g7RLCPcqnsE4l1e63zng3j/eSu3fR+GYmd2XpAho3/uQXqhDilirUO+2le/txZxTu4N327RC7dzr218b2dn7rzN6Chz3pxZO25Md+4mf50RNrbg5KQVqyeeUmq8fWAI3Szlw4Lwu0cWqHeZrz2sUrbPR7fNcH7wNbEAaGfm/IwmKLixc6tBfrDLsDgtDnC49+naMnD/GlLz/LocU2noEik+xsbxP6Ndcf1IgIPEU+TtC+D+UIIS2dTh9RFPjGo8xBaeUEKdIE3/MQVlIW8Guf/DIPnDlMZ3OLIGggIydJPugNEDZnPBgTxgFCKIpCOgU/UXL/PYcwNkQAeVGg/ACRpRS5M09++sXXWZxrMB66fqeFpVZVSXc0qLlWnTOnVinzkt1ej7W1BTxPo5R29UmpyfICow1aKx689xAfuP8upPYQSuKbEk872qnSimFvgO8H/L8f/wKr7TnmF1to39CYq7O6ugBC0tkaVCqRKRKDkppas4YXB2RJRlmmZJlDcI6tO/GVu4+uoWXphCa0wY9iitwpSRqpWajH1FqRo/YVgvEo5WOfeYzTh9fIkhRBiR/X8AMPRYkSJcJ4aN9ZTkgy0gwEjhpXb4aUWYEfhUT1uAqGNXmSooxPkbn+gXQ8xiiBLVwin+ZjWo2IIHDWDONxShA56wmtJcmgTxgY8qr3oCwtFIKo3mA0SonqPp6O+Eu/+lvc8+0nOP6B45x+/zE+8p3HXY+d9rFphjQFaZajjOf82sqMcTLCCyLyPEEYj4ISWYDWJVIEYBVlNqK0IKUmzxOksnhGkg17lOmAbNjhQx/+Lj7zbz7B3c0mgbKUhUMSNrev0W77+HEDKSMQJaUVU4VKKaHIGY27aOU7FEFoKDP6nR0EcO36JvVGHc/3COMQ7Tl6oJIaXZlyS1vdG4RA+87awtGnHKqvhaUsLDs7fX71E3/A1158kW+9/z6HBHou6dLCoJSHkMqp7SlH80uyIUqYSlTFqe9JLTl2eJXRYIAxmklPp5AWZOnQWu25nwVI4VDG7s4uWzc61GsNcpGzudnBCIXSEnRAv9tjd7fHf/zDx/mWh04jlcJojRYSrXxqUZ2dmx02b3Y5fmSdxlxMXqR4nkdWZEw8wu4+epgwUChtyAonqpOMnAiPlJLhsIcXuF65TmeHP7y+wY+dXEdIGI/GKGFQ2nD+/CVa9RghjENxc6c4KoqSonR+f8U4QyuBEO487GxskSYpaW7xQw8pCqQtEUpRbzSQVjnTcxRF4ejc2oOykCyvtjl5bJkkyWg2GzgKdYEQkt/69GMcW18kzzKG/QSpcnzfmbCXpUMN773nMDaX+KEPQJZlpHlBXqagSjzj1tkiLdm62SEwml43ASuRWtDdGbC9vct3fuBeiiJnfm4O3/fodQccObTCRucmWhhqtTqPPvsi9917FGsFzXoDhKUe+xS2ZGlpgSDwyccp/dGI9cMr/NOvX+Dh+09y6bU3+Gf/7H/lWz74MPfd/0E6OwPaywtcePllllYXKWWJLM3MYueUlaeF34NjujoW5UQN8h2s9XsRvNtWMikOuIeS0563iRKkA75cKlKWlbDLxApEzvif7SF6Fism4kTuV1JQJXL7e+FF9bySrodwatVeVlN0yZW9LUo57Z2bJGruOddnt5/eOEla958nIfcfPwhKir257XnlWYfY7dG1Z5LVaZImpu81g/BZir3jAItEI6r+O2cCs5+tdLuP8WAsN9UV2E+VPJhKTiibEzTMHZND6GbnNEm+pND7ktbpv2//sLh7J7jv5R7SdmBO+xPN2cf0/dyx5TP7n7zWnS3X/zc1TBcz18qfGCT5MxrvJXfvovHNTO6mxpHfuPGNr2bcPi07WDn64+/hzuMd14pug1iKiaFpJQMmgUdee4HI91EILpx7A6kljcUmEkVRFHS7PQIvIEsLNm9s04hjup0evlZ864OnEVg6uz2CwCfwQ5SS/MHjz3HPXUvkhWvmP3niEONBn6NrS4xGY6JmnRs3NphfqNEdDKk3Hb2oLBylyxjNFx97icW5RX7zM0/xwN0nGCZDwlpUBZlu4ShLtyAmSca3Pnw3WZ4SaIEJQ7ACKUsG3RFh0EB5kIxTirTYk/sf9Id4xuCFHloLsjTh0194kiOr88S1CCsEh9YWSdOM0PcJogArII5DADY3OmAFaZoThRHd7pCl5UVKW5LlzgcrT1OCKHLCKoETSihK63p8ZEmeFZSlrTzfBFI6H7P33X0UrQVGOcrlo088R80PGfSHtFo1sAXXrt8kjHx2tnc5/8ZV0lHGeDhifr5JGIUIWaEAkc+g3yfLMsLYpyxzlAIjSkbDEdIo4noNrQ1KO0l8z1McXV0kigKn7FlRMIVwHnJp5tT9isJdS6NBwpefeQlZWhYWmq7/qrQV2mUcrU04WmCaZRXNTKK1IR0XDoXzDUoJjPEYj8YURQ5SEIYhZTkmS8b4kUdhS7T2UMZgtCbLc7I05e89/Qr9tuEDHz7J3/nBb2GpKQlCnzwpSMZDlBQgNUq4BdfzfPIsQ2kPISVBGCGEIssKAg2DnQ2COGQ06mN8nzRLKMsxOzdeocwHeAZ8Yxknlt4gx49a/OS/fpTHzl7gX/zVH2U4GLHb7eIpySDpsLQ4j5Yhnl8HnOeekGKPQpRnGf/m136PDz54P088/jyf/uJTzNcDxsMB9Thme7fL5596nnuOH2FhaQFppn6HiOmdZEIhk0o5mtqELlnRt9z3X+CHAe8/cxcfeN89pOMEE2iyNAVcoPobn/gUp08coSxyoGR7Y4dGM4JCOIuGCTJlXdHlmbPnWF1erBQIc0fZrIychZj0+Ii9e5AxhjAMkQq0pwlNQDIes3HzJoEf8OhTT3P/6VN84KF7HD22smYYDIb4oaa722N9dYn3PXDXHh10NHK9jzAR2rB4QaWWKgXClgy7u4RRfc9k2g8D8qRASUW9Xue3X3qFHz2yClY4hFFIsjxneXmOPE2dR6YSIMGWjm7pBQFFUTDsDfnqc+dYWWyTDBPyPKe9sIjRPk88eY6j66tILfeC/K2tm0RhzHCQuHvZOCMIPdJx7iTmswJhK3qnFAz7I3zPsNpu0e31efXyVR68926kgjTJ0doFssYYLr55jVLk7O72uHJtk3ocUa9HpElOFERkiUUqqNXrhL7HC6+8waHlZa7d2GBpuUWeJSwvz9Pt9tFK4/swGA5RSjIYjlmaW6DRirh45QoXr+5w3z2OjfD5r5zl9MlDNOohyThla6tDoxYjEWR5QZYV/ND/+PNEns/NjS3+9s9+lHsfuI+nn3qGo0ePAHDuhRe576H3UVJCOdNLVVEZb13fbkWCDvZIveXYC4Jvv31RTPub9jCTKtGTVlSqs0y/YwczNZiZd/W0dci6MWbPx+FgX9kE6Zs+fbBwfGeUy811iqTNInTT7RxCV9piL9FzbyMcEiQmZ0VUyc9U5GQ2wd2P2N325HIrkneQFnlgbnfazYHjPLjJBFWbzHOW6rmPWlmdn72kaQZFOzimqfTUluqdR28zfYlv8bq3p3VO5njr6w+iflMBHbnXi+quvTt9Rt/88V5y9y4a34zkzlXB7B5q940wHL9dNecbM+ze33K2YnWbStFb7+Gdj30Q/mSlELdXxrzjPqTYMyr1n38WAST9ETsb2ywst7FaYlPLeDQmCHysdXU0U1G6Nre2WV5ocbOzS7fX59ixdbCCAos2ijPH1wkihQl8xsMEWxaQp+z2+8zNtxBSERqfpMiJwia2cIGOtY79VRQ5jSim1qrxwL1HMMapOqKcKdELz73K8tICQkq2d3YJQh9rHR0yTxLeuHydVlwnSRJefOUinvCptQKMVmRJym53SHu+hUKyvbVLXmR4vsZozd2H1ygoMZ7Po089z3yzjmcc9ai72yeMnOH1zk6XOIx4/JmXeO3SDY6uLfOHTzxPICXzS3OMh2OEtfi+4fLlDRYW5yht4YRxSpxXnShR2gPhguM0TbGF4qlnz/P/s/fe4ZZdZ5nnb4WdTry57q1bUVUqlUqyLNmWcxDYxhkHwAYMNDANDAPdQ0M380ADDQPDkIPpHsYz9LQBuwkGB5wTtowclHOuUuV480k7r9V/rH3ODVUlyRj58fOMl56rW/ecnc7e++z1fd/7fu87t20bURDyyZtvZ+e2aWanJ2m1GhRZSq0eEscJ09OT5GXBWLvJ9MQ49VqddrtBGg+cyXXpkjRTloS10FXwpUAKS3dtDV8pur2qf9HXSOkBFmMKkjSmXqsjhHWUNFvZCFQ9KAhBvzdwFFLfx/N89uzYxthY0wkzFI5Wq7R2tDXrlNXCWoSwFmtcX1I8yKjXGzz0+BEmxprEg4QgCBBYgtDRz7AgSoHnh4DG4pLNc6ur/O49j3PzYJXXvfkG3v7yq7hqLsDzQrKiJM27aCXxvBppGhOFAUJrbJ6ivJCyKBxKZAviJMf3QyQlRZHTX7mAshlJUaLKAUXaR4sCm8eMje9AyDqWGnHh85t/cwt//sUTfOVYzF/81/+byYcfYrrWoD3WRiufWiSp1TRBUCeIJslMiVSWQTxwPVKCUQL2/GcfQijDtpkZtk+2ufnOOzm0dw/CWqdOm6UcPHglcZo4/0QpKYp8lJQL4frftKcrRUGDqoSKLIC1WCOR0tE2qarWXqCdmJJyoiZZknFg9y7KPHeItxWuz5ECW+AsH6TzY8yzAq0k2+dmcSbileKvFZRlMerHGz7brbWcOnGG1ljbFTyq4CoMQzyloXToxN4d80SNiCjyKXLnJ+kocYosc/Rg9yyzSKn51M1fwpeawA+IwpAsy7n7vgeZnZ5EaOcNubxwganxNgbt+rmwZHEKVDQ5NJ984jBv3j23jl4IQDqqqe85FT1b9SdbA57vUVRKdraEK/fthtIS1gLCKAJbYIqc3btnyMvMKdUKWF1epdlwbIK77nscZQXNWh1LibCup/XE8bO06g3e+/FbuP7QFSxcWKbRrFUqspJmFBGFEWmRuOeK9kiThDzNmRifQEpNPaxjMkGj3ibPY8rCoKWPwIlXhWFAnGTYEsbbTeo1H4RhaXmVMPDRnodAkpUx9XqViAIXLqwxPtlgtdPhxc+5FqVAWMHcZBvfl1hjyPKCei0iCH1nNaJ87lxeYtvzn0u7Ocm2qSkee+Iw87vn2TG/kyiKsBY+/cnP8dKbXkZu8k3o29b5bd3brlrGOrqbEENPtadg/2xA1UbLbQqU3XtiA6qHqBIlsd7nNTymUT+d3bjtzbsazdNiSLoZQe0XHdpoM3I9hhEbtjtU8Nw63Y8sCDYE81sTu43nZYTEbXhdiGFn3Jakebi8dPZBQ+uA0b62fJahx6bYsK9LRT5bk7tRqrbh10XrbKBjDv/euuXh+Rpeq0301OHfsKkncfMngPWj34iUXi5J2+y9PFx3+Om3vr8eP1ZbvciCawNCN/rMWxLjLctu9dBb3/bQv7A6louu7jdufC3J3TdPSvqt8f+r4RqvzabXTKW69Y0aQsnL8vy3DlO6forve+ePjapyZ08vsPfgXgb9hHS1j9SWer1OEqeUeUEySPnwP91Be6KJH2mMNMzOTLBn53bue/AwH//SHXihJE4GBIHPoBMT92KSQcrZMxew1jAx1UJo9wg3xnlTiUrh7ZP/eAe33PYQUvpYA5+7/R5MkTHo9SiKhCJxvVxZLyXpJlhhWVxaYmZ2jLDmqGQSjac99u7eTpJ0Udbnxuuu4eHTT/CpL9yG0oqgEbJtdoJHHnuCh48cZXJyDE/7CCvIigIZBYBTELx23xW02y3+6hNfYnm5w4NPnMSUlsWFDmPtNn7o8aqXPYc3fPuL0L7gu17/Ylb7PdLBwFHRggAjFNt3bKMsS6wt8bVGGIsxAiE88rLE932XAAFB3efqAztZWlqi2+1w0wuu49Z7HiIMPP7hs1+m1axhTYHva4RQ1GpN8iJjkPTQCoc6RRH9QUyeFSxeWMZaRxMzpSDt56SxIQwbGKGZnJ7iK3c+gMkzijJz/VEWh5aVOb1enzhJCKIQrVw0UhonLtOs1fEqc+s4iZFSUpQ5VhiCKKAwBhCYsqTIMwLfq6wYLGVekOc59WaI9ODqK3cRRj6NZp2Pf/42pw5Y5CTJAADla5I05UsnT/DOL95OecMkO193iF/9X27i13/oZSAchSaMKsl6Be3mDErXsaKk2WjS7axhTUG318WQV7YKCWtLp6kFYMsMk/UokwsOza2P43seym/h18axuoZXG6cTL/Mbf/1Zvu8PPsTJpuAnf+odvO//+vf8/L9+Bb/9f/wiz5kew6bLDNYW8HxJKSzGBmi/TYbEC2oIFLXQ+dZtrDRTBbJ33Hk/01NT3PS8Z5NnOdYKHnr8MC983g0YLFGjjtSOcqk9TVkOAyzhEr1yKCNfPYOsdd/7oqQo4InDx4kHfawZql26fo3SWLTyiQcZH7/5K3hhCFJhpXTfVQUqUPiRj9IO2Xr/Rz7DytJqlWQJnO2BexY5MQoXPgzRQ4D5XduRGkrhkGphIC9KPvqFWyhKg5ZO9ENKD1sIFs5foDTOuw4hUcLn7nsfwVPOKgMMr33Fy9m7Zze1hkvm15ZXec51z0KiobQUuWFyaoaylOR5ihCOFuyHGqkhTgfkec6rW4o8jxHCYgpHgRJV4ut8DCFNnSCMlIpBr+/6/JQiiVN63T5JPHB0ZinpD2IeeviwU7oMItIsR1jJWHuc/loKwnDj9VcxOztNEAR0VvsUWc6HP/NVelmC9ASvff41SGOY3TaN1hqBSy5OLSxSFCVpmhOEAX/zodsoDCR5jhdoao0AL5RMztY5t3SGBx59wtGopWVlZQU/CMmLgjTLmN++jbTIWFkb0Otm9HoFy0s90jgjqoXUowZlDp21mFa7zsxcg2RQsGt2B2vdFZI4Ix7EDnEXhtXOgNJCbiy5gYWVVfIi590nFzl1/Dh///4PYq3lwQfvo91uuMJZUbC4sMLc7E6SOK/ul8uHn1I6FVfXe2QuscTTLbNeejxZkXQ4x28sHltjKUu7yZ5gq3n3aNtb3Mu32hVcaii5AXmqEP9LbdtaU52Xf94wtnTI3ZZtboxzjDGjpHBjYui8Mi//OYbEy6c7tm7/0suITf1/G18fJk/yEqiV3bCMkhsTLPuk6z3ZMNZs8sp7qiGF/JqW//r26b4nxpQYU1JW7Jpv9vEt5O4ZHt8YWqapeMOXHv8SCN7XP0RFG11XL9paidm4z0uNrb12UggMFmVdZUjYqi9uiALaS1AGhmVAnuYUZh2VBCGwEv7qr/+ed1wxz6233cs1h66kKLTrA6v5bmIwgC3pdQfccsfDvPLGQ/R6fcZbLQI/4vCR00xMRtTCgD3b5rAYKAFfEhCgGpqoXqPZjIjqDVZXe4SB7x6aUjoEAYMMBD6a6599wFUotc+hfTvJs4JWq4GQitvvfRRlBBPTNeqNOr4viKIapjCUWY4pMxAlQtcobYnvezx65DjtZsju+UkOXrEbi0FpwaDfo1EPmJudxgt8tG/p9QdEYY08zqseGEOWZnzm5nt506tvoB7V2bdnBzry0daJrHzi83dx1f4d3Hvfo8zOTgGG6ckmSjqk4uTp87TH2xSZYoBRAAAgAElEQVR56oyLpUfnzBrxICaq+1ip8KV1CJMXoLwAYyzGpkRhiBdpdOQzNz0BwIErd6C1j9QSKsPp7soaQkhq9RpCC3wBeD5SajypUMpHSlGJnhQYKwnDGkeOnmR2dhJsyVSzTtyLaYy1WFpYot6ogdQUSYKnfO687wjbJtr0egO01mRZ7tAhX1fVW2cCPIhjgqCGks5k3MOweGGJRrNBYQxlkZPHBaUxztfQWpDOfNwLQ4Zy+Af2bKfAoqXru/ifvvoQf3/0BO/8gZcyd3CSd77iKrIsRguLVh4GjdI+vaVz1OotjB8iMqd82u+sUg99srLEi2pIqRE6cOhivIYsEoRJKYsEbEGWOeEchCYImxgb4tcjpFdDSJ90MOCH/ujz/Mp/+GFe88qXMzd/NUleQOGhdca73/cJvuuqfRRpRhhFKN8HPKS2KNlGhgaMq7h/+dY7mZ+bRSqHcEkkq0sdrCkJfYEwTtHywSPHeOjwCea3zTK9bdKhV9XzRkiJyZ3Xn/IccsJG/yjpkDUhBN3VLrVag/NnzjA7N0UQha431IJUAosaoVH1Ro2r9u2pzOEFGIH0XL9MXpROoc9IsmzAtQcOEUa+o3tagxMSsoACqUaUTKlVRReVlQjoOg0uz3O0J9m5bZosTvCjiKIsaNYj+t0u7/vUV3nhDc9ieWGRqBZhSwh9nyDyWTi/QL3ZYOnCMvVaRNx1ok1FJYBz+sw5wjDkY5/8J8ZbLcJGDa0kySDFDyMEGqWc2b2UgnywyrZKEdM15mlHGbeGNI5BuN4/IVwQHIQNTOUHWGs2kLIkrDcRUqI0JHHM/O45VpZ6RKFAag9hNEmc4kWuKCekZGW5wye+ciuH9u/h/IUlxtsNap6iPd6g0XKCP0Up0b4ECbV6jTJOaI81qDUaJPGAfXOT+JGmFjUoyoQidSrAcT8hG+ScOddjYqJNYQyteo2w4bO6tIYpHT3Q5AZrDHE/QXlQi2oOmVeKXj/lsWOnmN8xDQZqYZs47XPh/Crz83MYk6EUNFo1Vla6eGFAPEihMHSWO0xMTvDjdz/KT/2rd/Kyl76Ir97yBV70qpvYf+gabv3qHeR5ytTUJGHoU/Y6XDjxCNv2HUKOELT1Gc55flXeYcKOiiJDmf6vPaEbFlbcKCt8yekMD7e3Ptdu9rVbn2CHQimwrua5EXcRUmArvwFbUR2Hic7Qs84y7MMbfVqw1vXnVYG4Vk74yg7tB6ptCmFG4kkWM/JyG1EnLzovFf3SrtMsbaXAKYQcxR2uAOV66mxl+QFVTDXCpFwPndv3+r5k1bc7tBsY+bxt7a0T7lraSiTE5b7utSGB8qKrtgGBG127LYI7w+L70KfuUjHZcJ1NaJ1wqOR6Or1O4WT02voYJoN2w33C6LxtuH/EcFvrauub92E2/DZc+l6++J5010hu+Xx2y0/1qjUbkFy7wVph6/LPHK73tSB34l+edvetsXFkafINOMGuqnC58S+RnH3994lrXB1uZVjZGVa1Rnx0LqYNDMdWVM/JHxsUgjzPK8W3DVPH1mMenoev6bNUVI6qpLf0279JMUhotZqUVmALxSOPP8EVe2f58t0P8ZLrD1GrBcSDhCIrSfKUifEGa90B7WaT06cXaLZCxtotep2Y+lidNE4IGgGLZxbwdMD4WMv1LIVNzi8usH1+kiIv8MKIIiuxRcnS0nJF0VIoT5IOEvywgSlLPvyPX+Utr34J0gjAkGZdMIogDMgKg5aKc2cvMD01Rlj3KErtFPWsgBLXLyStE5uwFuUcu8nSnNIYvNBHYllcWGVycpx+N+HLdz3MS288hNaSsgCkJe6mPHTsOC964bWUSZ9BvySMfMK6TxaD1g61lFKQ9GNaYy1AIZTCihyMIOnnNOo1LiwsMj7dRiuPzlqPWlMhSklRGJTvEQaC3lpCWA8RSmOLkmSQIH2NFi5A6HVijh47T7Ol2T43TRiFJEmCwgWj1sIHP/MlXv/y59Maq5OllUDN0oAoigBLKRVR5OH7miIvsXmGFJAXBUiNp1wPkLGOExNUNhhSKdI0c/YSVjhp+V4PP9BIFEppSlOQ9GO8wGMQZ4xPjJMXGZ7ykEpWVJ2qYd1KxNC6QAiyQZ8fv+cIxpS859/ehOcHxP0OYTiG9h2dbXyizfLiMlJq2uPjWJOzcO4Uk7NzCL+OKAriQZfO2jJzs9MY3SAfFHgyp9s5i9A+lBnNRp0yT8iNxqqIqN4CU5JmBWFUB6GqQEXyPb/5If7sj38eP1+gFCG16YP4tQkGaYJvI9LBKj/7b36G373p212w7IcozycZLBHWfGxZo1Q5WnrkaUFZGoIoxJrCfTULSxZnrHVWnex64RCyosi59f4Hec1NL8GLqvNbGKRQFGXJu9/3EX78+78Tz3chkCsKVf21pXE9Xtb1pJUZFR3MoKTgQ/fcxftPnCbOMnzPr+pFrkFj6Lsmho+Z6j2tNAeuvJJaGHLnvXcjrOJ3n/9czp/pcHZxgTe85iaKMkcH3jp1fKSktzFAX++fcr15gqQ/YG1hBSUFeVm68yMsUaOBp5RD77MCrT36vT7NVhNjDP1+wvkLC8zPzVCrB6ysdomiiHqrQVm6vtY0TkmShPHJduX5BwhDWZZo5VfPb0F67ghe4LlA08h16lxFnyuLnDTJqdWjyv7BkucpCPB0QLe7Rqs9Rq/bx9iScxcW2b9/DyYFYxPuuu84h67aQavdoMhKJzSUG+6/7wiNtmb77DRhECKk5OZb7iAHXvXS5zHoDvACH6kgzxJq9Rp5llAaQVivISx0FlbwmpooaDLod/C8iIXlFea3z3L08ZPs2j1HKaxD74Sg240JPUmSZVxYWmXX3CwLSyvMz89QmpIkLfjo52/jtS+8jlprjMLkZHlC6GnuuesE2+YbTI61abRCstjwmS/fyUp3wLc/91rmdsywtLjEuQuLXHv1Pr73n+7l3b//B3zX297EBz/wV3z8Y5/ilW98A2fPLyINXHXNASd0ZQRFnPEf/tcf5l1/+wGktWi7hV5WoXSimv+MHao9fj3xwYZiQxWDSKlQm96/1NgY7Ds0zvXKbQ3y3bPSrgcOWANiKA5lRy870aaNyR1DlLLapnS0Vyv0puMWlBUNeogKSszTTO7cdjf05Es5Or8AVmyOH4bLr9t6b47b1mmWbh9SSPK8cD2Gm5Yb7nx4Lav9byicCy6OmYbvwXp8ZazdhMC57QyTu8uLzG2Mz5RUlKYc/d6KjIot8d7G1601o7tk/brrTcuvh27D9bcig1sRuCdDDi8+hqczXHLnFJM3H+3w2g//fuYIkX4QPu0v67eSu2d4fCOSO5fYlTxVxeDJkrxn+j7Y+qW+1Bg+SDZxwZ8GVVOA61VIU/wgoIqoXBDE5c+K2QKtX2qSMy7rREuJRnHil3+BeqOB9jzSvGBtscORk+e44dorSdPEVRGNYa3TYdvMOFYK0jyjUatRlpayFMT9uAryS9Z6MbMzE6zFXUKh8FttjMnxtKRMJaXJkZ57+JZIMIKsH+N7mvd/8na+6/UvRCtnnF0ba4G1JIMUqRR/+aGb+VdvuQlLgh9EJIMML/KdclppSOMMv6bAaFAlSb+g0YiwGOLBgKheY+HcCkVhGRurE4QBQkJhCvK44MSp8+yc30YUhWQpnDl7Fj9QDJKUXTvmuPOuR7li7zam58aRhaUsqyZ0WRJ4EWVZoD2NkILP3HwrN73gOWjP9YZJz5IMMh5+9AS9JOPG516FKQoOHznFNYcOYojRQtPv9MiKkqgm8KRL7PLSIDGkSUphnOjL+ESbPCn53D/dz00vO0gQ+CRxShSFSKn4s7/7HO983UvRvgJUJWkfkCSJUxjFYoWCwrC0skKcJsxumwYgjROyPGd8coLVlTW052wZgiAgiWOU1nz2K3fzkhuuwfc0R4+f5dDV+yjylAvnFxlrN0mSjMmpCc6fX2J8qglWoKSHldapv1mLsE76GoHzzMszfvzWh7lirsGvfP+LyfICLSFLU4JaHSgQxqckQQrtLBeERGtFlqV4KsIYZ/hurEV5AZQFmAxTxsighiwEneWTBH5CJuoEnhrRko3wCRpTgB4FG6aqQv/oH36aP/zD3yfrnsGUK/gS/Po4sr6LoD4Oqo/EqS0+8Ud/wt6Z7a7y7h4W9FYv0Gi2ESLA4GiIpjAo5dCfMncBWTyISQd9oiik0+nj6YBOv8fdDz/Km17zChBOgtwVKAS+51MYWLqwzAc/90V+9B1vwgskq0trRLUIz3d0YyktP/Gxj7CYpLzwOc/jP/7Sz/ELv/i/c/9DDzFRr/O7L38x7fpYpabngsYhW6AwhbNqMAJPuzDXFfirRv2yyw9+9HMYLH/27t/n+37oJ/nAW9+IjurAUJbbec5ZYUe0X6U3BH7GoKykxNG+0s6AuNslKwrqrSb18RaiTOl0Y6RQNOp1Tp8+x8yMu2eLouDhx44yOdZmemYcY3LqzZZDCyvapB8EWGvpdbuMTbQRVoK0FGWG52myxCHRWZLhDS6AsORFjq+d0mSRZ5w9t8j8zlmEMKRxQRjWSNMB0krWuh0ajYhBL6XZrrmeR+Oe+0makGcFab+kPR0Rd0oaYz5laVg836U9HhIGofNwU4p4kJBnzkx+0B3QHGu6JLd0CebxE6dJsoztM+M0m3WCRkSWlRx5/BRrvS433niQU8cWmNs2hgoibrvnIZ7zrIP4yuPEiRPsvmInK0urPPzYcQ7s3YstMzxPkmQFUS3k3PlFdmzfxrlzi8zOzWCMIQo0p0+7IsXk9BjpICZLJM0xl8An2QCMm+OOnz7P1Hib8WabNHX2JN/9hdv58F+/l/vveYCDB/bxrnf9Dj/4Iz9BJ8mYn9/J+//qb3jBi29k546dxANHx/3tX/23/M5/ew9aR5h0S8FXVH8Pp2KxNUjdODbOnEPk6Enm4arQSsVyuYgQOGLMbA3jL7e59T4tISSFLTfRDMWQQukyGJACLcUQHKusNuT64W/Ypd2QQLn/l5s+8db318eWYrMZJpBbRE22JHdCOpaAGPbQCUYo3sXJXfW8GCbioyTQoZUbU053bi4fVz2VZsLl4sHLfeonSxY3rjPsrVx/f2tv3OXxrfUkcOu6ZgMiCJsTKMG63sQwGdycHG4em/sdNx7T06OTXqrP8eK/v76iyaXH15LcfYuW+QyPbwQt044emv/85O6ZH0+eoG19IMCGCtNTbFlXSnemEkNw4giKJ5u6AJByJJQi5KWbZI1wQXWoPH76p3+OF2iN9p35txIG7Ql2bp/mwUeOsmP7FHEcc8cDh3nWVbuRymKFh+97aN8jHmSg4L2f+CrX79tFECqkVvi+hxcGlHGBjDzKvAAzbLR2iECS5HhKk6c5nu9hKLl2/y7KIifLM2qNGkncd+QNIVg4u8RLXnANSklKY3jP332BG67ej5WmQicA5e6d97z/izQ8zbnzq7SaoZMsTws8P2BluUMcp8xsa1OWeWWULVlaXGH3rlmMLSmLHF97nDxzjgNX7uSLdz7InvkpxhoNxsfHUL5H3O8R1SKUJyhtjkDR7fYJg4CyNFy5Z96Z9hpHr/jyrQ/SCEP27JlDFIYjx04yNztOox4Sej7InDw3RI2IMAhI0z6hH1KWjn6jNXhaEkZ1Ak+TJDHGlFy1fx4v9DBF6TzzkgwvDDi0ax5jSj53x91csXOeKIro9/oEvk8S94jjLkJLFs53aNZrTM9OojwPYwVlYTAWwnqdKIgIo6CSvdcM+gPCMGB+epKoFuJ5mvF2G6UlvV6PyZkpLIZWu0m/nzE2OYalRCsNRiJFibF5RbPSvPueR3nX4TO89vVXEe1p8vrn7uDVz72CLM/RSjHo9wh8J7ufpAme9llbWSSIIkcT1B5lkSMoEcp3/V3kLJx6gnq7jTAGih79/iK91Q5FvoznGaTyqE/sxaIRMsCvtVFBA4Ta9A393t/6GP36bv7Tb/4KpD0Cm9NoNvGnr6M1sROpDFLmaHxkRaFpHzldFe8FUhiSXgcpLEXhvLGEYUQNytIcUxasrXS5864HmBhrAgLteYS1iFIa5ue3cfDKPUitUVqjpUZq5aicNgck8WDA3GSbqakJiqwkCAP+4u8+xu7ZOWp1n5/96ld595/9Cf/0xa/w69ceonzwMV7cavI9Vx/kLVdfTeC7PlOUqHwWnaehEoIsT12SqJzYjq2oou5ZJEBJ3nbgEG87uI8P/9X76RnLJxdX+Mu77uW1O2dQ0neBh3Gej2LkQbeJd1axj1zi7wceS0vLzucMCRbKLCeqN/CjCIulHtUAUEqRxgl7r9xNo9lgbbVDq910tF7tBJa0ltz61fs5fOIY1xzc746/kqp3QbbzBex1nWCSHXRRnqzOhbsn1la7jLfrLC0sgoLVlT6eCvB9TWkM9aZT8lXKI4w8et0uWinytMQLNatLXXw/BFkSRR7CaigFUeixuLhKLYpYWFgm8EOKqs+v0arRbkSs9XqENR+MwQhLu91GImi2apw9vcLYRBspodWss21qitIY2o0x4n5Mlmfs3DmLkoLVpTUmJ9ssLq9Sj+osL66xe892wsDjg5/9Ks+59mCFYno0mnXa7RbK85BaksYDkDA+2XYJSlryoc/eysx4RHtsjCROeOjx4+yanyVLcrbPzdBdW2N5tcNP3neEn/2JH2HHrnnuu/d+fuSHf5A/+c9/xMTsTsJmg35nwE/9zz/Ff/rVXyJJMlbXOogCHrnzZvZdeYDxqZnRs3QjgjqaEUc0zMvNjpcOWC8/NlAAxcUyH5sTyacXh1iGSpmu2GFMOYoJpHTm5kCFsleo1YbdjP4pt9IKN0cGG7vOxCXev+zxXUa4bhPBTzAychdi2De3lQK4cd3N1gHrUYldTww3rL9ufXXxeKp476mSu4t97dZ77bZuZ9hvZze8tj4upmVuFNN7smPauN5mZc7N13N9teE12WrBsHFsvW4brv/TipGf6ruxjp7+S49v0TK/icYzidxZihEdAC6G2y83hjSCTRLCz9h9sJmO+WS1sMsew9M9tmo5W1GrqKpm60dy8fLGWJdUVMbIYti7OKx6CYVCknR7vPxVb+DTb34dp06fZ2y8SaMRcfrMWea3b8PklseOnGJ+qo3f8LGl5OgT5zh07S7OLTjqU1kAQnL27Dnm5qaRnsfCwhJT02OO/lW4HiKhA+64/SGuv26PQyqko4l0l/u0x+uub8UZh5EOBkgBvX7C2GQLaeDIE6fYfcUOtIVOp0uj2UQGAdIaLpxfdstpKDPn4dbvxUxNT1BkKV4Y0On3aY41WDq1xLFTC9z4vKs4euQke/fvoMRSZgXKKta6ayitaLXbGCMo8hhsiR/WWVvroLUk8iOU9CixoEBgSAcJp04vsW1qnDRJCSMfP/TRymKsIS1K4l7G+FiLNHW2BNYIpxznub6gej1yYhNCILQkj1MG/QH1doSSPspTznhayA12BCVlaeh2urTHxhBKYinorPZoNGsOjTIWhMSaEs8THD+yyO792zG2JI37BMpDeso1VJeGNLfU6j7akywvdNCeptFqYK2lMKVT4MwyR+kQgrwswAhqjYZDFazzPMvS1Pn2Kc8Fi55TvPx/7n6Qm3sJ7/rXL6ftwbnzy+zctQPtuwQ9LUsir6REYaWP7S0johauMU/TWzpLfWwMqTwoM4QxFKKJ1h3IPZZWF5kab7K2tEi9FvDYIw+yd+8uCmNQXgjGIj2fIJrBam/0zEiygl/9iy9ydDHmJ37sR3j1a15OjqM1qiKlawUyXaN/7himKGjMPYtWq+m+dgbOrSyxbXrKeYb99w+6b6eVZIMetkzwwyZCefzp+/6eH3zTawhrrifSClfBTnsJjz12lK/c/zg/9JZXEicJ4zOTFFhEUaI816NijEQo508ZD2KCWo0sGeBrTV5AXroigNaioiALvu8fPsqfv+G1eJ5L4GyZOeXMYaW3rEhbApQW2NIVlXr9Lo1WGyUMeZzihSGlLRwVNC9RymP5fJfWZA3tCVfAUWYk7HJhbYl//8WvcGD/fn7tWde6ZLYonBrm8N40ufNG1x7klsGggx96+F6EwZD3YjqrPc4urnD1wStYW+lijKHeCglrdW67/T6efe3VeL6iKBKUVCit6fdi6s06pijRWjlbDWMJQie8ZC1OSTbwR6bXZbXsoNdD91e45fa7ecWLrwdrHdKCoEgzJBAXObWwgbCC8xfOM7ltimOPnmNissb4VJu8cMUrJSVlYVhcWqVWq9Fs1LlwYYnJ6Rarq11a7QZIyZ13P8INh67k5tvu4eUvuI7b73qc6w9dyeGTx3jWVft4zwdvpl4LedtrbuTkqQXajYgjx89y/bUHOXz0BNsmJwkakka9gS1Liryg0+kxNT3BP95yDy+78VlkWUav22dm+xRxlqKVwuaGex86zIPHz/Ajb301SZwilKCz2mNsfIybv3Q3L33Bs5BasnB+CekLZiYnEELQ6XQYDHJmZycY9PtI6TmLFenm7s4gwxOKN37i8/zer/8az77hBk48cZgjRx7nOc+5gfZYm0I18LV2CqbTk8gAitwgtc9YvsZ/+u1f55d/63fANB21Hda5ivbSqMRFRdR/ViywubhcrkMvACM86nIJU55lzpB+uLUti21Gx5x6MTCylVHKxTTDAnG5AR0brVl5VTqEhlFsUBhH1x6iZQzRnsslP0KCdb1/1lhnknmpsbUYw3qyJkex2rDo41IXY8pNn3V4TMPlL2pN2ZpGCzuiWQ6RtksheFsTj40CJcN/b2VNKXlps29RnZMhvXKUGm9AxtaVUjejeJejRK4jcMP3h9YUQ0STLe9vXb/Y8srG5da3vRHZEyNkeOt130rj3Bpnqy3vD4+h2vOmQ/z6KJvfQu6+icYzi9yZTdnR060UiKpj+RuD5Dmiw8a/vhFj5E9XusZqrN2U6A2HtVWyO1xm/anhfpcCD8Pfvvd9HD15jrdfsZ1Wu0YYeqysrDK/c46lxRWyJOP0mUVmZ8aotxrEScaxU+eZHG8wMz3JubOLNBo1jhw5Qz30qddr9Ho9JIp6ve4Sj6JEmD4Cw87ts2RpRp4XrK12XZN+4B4MRVES9zM83yMMfawx1Gs1iqKopL19fN8jz3MGcUKjXlvvKUASVJOokBalBcIWZOkAYxVFmVNvREjhVDR3zE+T5TGT26bcfrsJtSDiyLGT7Ny5nSROyfOCIHACC1lmnJiAH+L7GlMaPvHF25ibaPHFLz3C3p1zSF1y7yPH2btrG+12g4cfPcbszJTz8fKDStlOoJV0waSS9HsDOp0+YeAEIYqiwNea1eUOvhfSWesTRj7aU04hUEAySAkinzIvKRLJIB4QNgSDXsbNtz/A7rltaO0ReM74uzQ5Sks+dvOt7N81D9LS7ca0WzVKawhqtSpRdQUE7XlQJpiyoNPt0x5vU+ZuEltb62KsGVHpstQZuke1CN8fJnAKU6TOd017oBW3HD/Gz97xCGP7IvbcsJ3nPXeed7ziEA3fmZ/XahG3fPkOdu+exwqL8n3nQWc1tiwRXgRKY5IuxquhbQJlCiale/4UpljDqzUZdCy+F3Pm1FG0TTj8+KPUI02r3SQIo6pXRCP9Bn6jjdAN4izjB37vk9x6LOaNP/bvePUb38Tbv+ctXLFvDwgwCNL+gKWzx8nPHqE9Oc9qWpIsn8HH3We5kZRC0QwVvg746D98in1ZNRELixBONU5KDyskN1x9gMD3QAqUlJiixBQl6SClHtXYv2c7pSlotJoIrZBKun5E4ShawyAwT3P8wHfVc6nJkoI//+DHeN41B0nSxPX1YJFK85b9+/A8f/RsEBWqKHAUyaWFNe66+yF27pjDmcoX/N1HP81zrjs0slfQngBpkaLqsRQKYyxHTx5j27YJZ/BrnaG57/tIqWiGNd528CCvmGzzzo98jLK3xnU7nYfZSEelsnIQFhDK9blVZukIQ1kUhIHPxGQbPwpRniZqOI9Jzw8wRYGuepNr9RrYqm9VSjzfr4zGC9I0pd5oMOj38H1NnqdEtXolyAGDfgxWorTkVz/3Gb5t5zTbZ8bdNSohK0v8IEBIhQ58lHCCU3mW0RyL0IGHrzzyMqFWq7G8uMZgkFCv14jjAWHNxwsUp8+cJwwD+t0BU9MT2Op67pibptvtsX1qiqzI2b1zlk9/+S5ecuM15GXJ9dfsY+/2aRSWZrtJFIZsm54gzwvGx2s0Gg1XACgF/cGAMApHHn9TjRZhLUAFilrLCckUhXHPJWuZmmhxaO8OhLTESQKFIqoFaC3ZtX2WEyfPMjnZxhhD6AWICim2tqDdbDGI+6RZTq0RkaU5SeKYDA8/foofuuUr/Mb/9jOcP3uGW77wea5/9nV0Vns8cN8jFElJq+lx/wMP0hgfpzE2hZIFtiwp05RTJ47w3Be/hNbkTJVEbE6wLpp9xea5+XLJzNc+NqA7Q3QN4Ekob56nN+EyFx/qpZEaNUwYqo8yEguRaj34HiFs7p8uEVxP7lwCJEeSJU5b6fLnYl18xoJ1Sc+llT4v3sYwuTMjJEpueG+IjG3s89uMMo3SCTm0TrloB6PkcHh1LxXnXQoh2yieNzJqh5Gn6DDZu4hhNdqevcjeavgZLrLjqCiWl4tBZSVOs3kvbDjGS6Om62MrHfNitPRijz5bHevW+/TJE+OtCZscWXAMl7/MIV50XE89vuVz9000vpHJ3dMdQ1PN4Xgm0dtLcZ43Tiliw8/WoxjRAtY39jTIp+vbg/VEFhhVMDdy4terMBVHulp8uIinPB6683Yi7fGVO+/njbMTTqVPuWBPSU0UBCSDBGst2+cnkZ5PvztgcrxBs9HElBJf+9xx/2NcdWAGY0o86dPrZDx64iS7d86RxjGepwgjF4AVRU4Q1vC1R73WIO7nvPcTn+fQ3nl6vQGtllOWW1pcJolTllc6RJ7PIMm59+Hj7JiZYDBIGWYB9rQAACAASURBVJtqEQ8STFbQ6/WRQpAkMVEtoExAofH9CGMEUT0iijzKwjDoJEStGtjSPZyURCEIAp8sz2i16sSDDC01K8trtFt17rrvcda6A2am24BX+Wp5XLlrO6bIuevwMVqhT70WsWtuhnorZG21w+PHz7F7xxRWqUpVzCF4vu9jMSwurtBuNTly/AzbZ6fwfI0SkjRJSeKURqtO1AjxQtcvpXzod1Kk0Cgt0EqxstLFGCcSU6t5bJ+cRFWWBEq5664rA+urdu1ESY+iyJiZnWZ1pUOzVceUhiLPEFqANECJtB5Yj7ifE/g+p8+cpd1qUBQl/V6MVJIoCvF9n26vRy0KsVSeZwJ++Y6H+S8PPkGnWfLC77iKvYe28/3fdg1X7phBa43Cx1hIkiWEFxH4mh1z0wihKAqD1JrO4nnCMAScCbdNVogHHXTYQGWrpIMlBp1lNDlxb5Uk7dAIQjoLx/BMwtmTx7li926CsEFWQJJkSCT19hReNA7K4x2/9TF+4Od+hbe/42285rWvdEj3hi+iEQCS1aUL1FSJ6R0lGawR1evUmxMMescoig5ra2cQpkN3ZZk0TfmN//MP+e6Dh3DZimHQ77veQlEgtEB5ClNmDnm0lrSbkOclg16fsXYLqSSNdqMCKp0ojqiq+HnilAiVEHhBAFLSWV3D9wMMgpoWRJ6kPTlBnjnpejM0kLfC9ctUDxNrLFKCKZ1owK6d89z/wENsm3FKnNddfQBTVibaAFKRJwlCaob+YULAxGS78q+TpGnqyGwChLCUpXGeX9rjrVce4M/vu4/3PPgwb95/JUIKPvGPN3Nw7x6KLMUYUKqSHZcO9VdKopXHIE6oNWuVYGDJwsIiaVygtSIMfdrjLbRWlIWhuzogDGsY41C4PMvxPE0UhgCuzxZJmQPKJdiIoXWEKxj9fw89wutm2oS1sHo+S7SWTnhAONqywHlxSglJnKJ8DQaUsvhBDU97BIHvFDaVwhpDWRZMTE2656dXeewJi/IUZVYS1SNqdddjLYTg0IFdgMWWzkdPB4qysgmwuOdbECjiNMPTHlIZlFKsrnbwA5/BICGMArzAZ5Ak9Po96s0aGMOnb7mHA3t2gnHXqd6ocfbsAsZYllbWkFjCwGd1rcfc3DiDfpexyTF8z+OLt93L/j3z5HlGEvdpNiPCWkSelZw7s8jM9CR+FPIzDx/mA+/7rxRFyfzcTvbu2UuaZpw4fpS3v/0tHLj6ClRUZ8/ePfzxu/6YF73w+QySASbPmds2zQc/9mFe9srvoBSODrz+9RTDKuZwIt0yW44mww2vb5hphwH18Ge07HCZS9DrpNh0BJdP69w2RlPyxn1sOMStAbcxTuDGjr6fowXd9kSVaNh1dUWs89RzrCXW2aoVYrOeitgKVbpUMdhUgFylVynkiBo5jFc20RO3/Dcir1YJpcDd00O/TSnVpuBIimGis+45tyl2q9YZijdtinu2/L4ogdskwmI3/Wzczsb47FLq6e6Y5Pq6Q2Gqjed+w7ndfG9eXrBl87h0Mrp1rO/zElnvhn1evMWN2750crfRvmPzMWw9tuGxrP8e/lx0nsV6Iv50zsK3krtvovFNmdx9QxC74bjEg3/ju1u42pdac+vRPt2jvyhpHaFzF9drRlSILRtP+jHv/X//lO9561v58w98lLfMTVKv18FalFKsLXbo92OazYjZ7VN0u12E0Nz3yFHmZycJ645qkWR9du+aJPQb1Gs+/bRDWJdMj48TBJqyMi0tjERai5KGOO1jRYnSgiDymAhqtNtNgrDq5RGKUyfP0m7WCcOAtbUO4+MTnD6zzPaZMYIoQAeawPMokwIjStIsY2pmnE6nwxOPn+TUuQvs2DlHad1kGccDVlY6jLfGQLtJx5MeWZYS9wYIYVGRo+elcU6WFLSaNbqdGF8F7D+wm153mcOPXWBsrI6goneUOc86tJP2WBuTSR587AkaNY9Gvcb+XTsxIifJcqwxBJ5C+x5F6Xosmo06aZIxt20K7SlHYVSKIsvxtMKIAqscvUahsJRIPP7+E7dyzZW7UErgBxKtfJKORfopQRTS6fSI6iErKys06jXAoT5Hj59mfKyNFzmBBz/0KbIcipIvfekRmqGr/PdXB0RjEV+64z727JhhdXWZyYkmeZYThg79bLRrThpbCHxPc9e5C/z83Ye5N+nyHW88xI1Xj/Ojr7mRF1y9k87qEkEQuSBfKrACY7ooFSCMB77GFgWD/gAvCNDSiYukvWV8T5IVJZKcx+/+JybndyCFZvXsYWSZoLSg3+9RD0KkSojXFnj86Cl27txJfXyGQeGTJCVHT5yH0hJpj9rUFG//rU/zvT/zi3zfW9+C3eAxZaskZvhdKqwTLSmSAWsXTpOZs+hshUagEeP76S6uomTIdHuSeHWNJOuQ5QUP33I3rzpwZfXdM9iyJPA9tI4A7dAhod0zoizIBzlHT55i2/SUu68wIAV+GFRovcRQIIVESU0SxwgsQmsQgsDTlAa0p9g2PU6e9PHCGkGoSZIM3/McNUroasa1oyCrLAo8TzkrCwHTU+N4vnSedxiU58yYkQprBEoosiKn2+ng+R6ysrBwwQ9oz4nbDAtgSguHwln37HrtVQf4zn0H+MGPfIRt2vLCqw7iWYPWCqU90jh2SVru+hDzrOD2ux5g186dKCXIBhm9bocgCBhrttG+hxdq8iyjLC1LF1a4/8EjfP7Ld3Poqj0orRgM+kRRRJblZHlOmuYIPL5w853s27+jivKcKqhSAqUUSdLl+omxKmAuKYqSLEkrmXoJBtIsIaqHpHGKpwNKU0IJnifpd5w3pABWVtcYG2tUyCQUheXLtz7KsdNn2bV9GukJOmtd4n5BFAUUZca5c8tMTLSQCtI0p0xK7nzwEeZmJ/FDH09qur0BtUaEEhYhNB/+7G0c2DuD0JJmo+7604QTZxFaoqR77iS9mDRLuHrfFZw9fYFeZ5Xx8XGSOOMTt9zNtfv34AfQbNY5f36J5X6X2ek2aRrTjxOWF1do12vc/sBjHLpyL1Kk5GWBQHH+fJcHjp3kF544wxv+48/zypfuJzY1du3Zx21fvYOzZxfoLC/z2td9G1/68qcZG9P0bZMg9Hn5i57PyoXTtKemOXX8GGP1kEPPfTZe2CQvBYJinbI3Ssg2UtzWJ7qhCuiTz9TrmYPzZBv+fenZeN2xQ4z2ePlxuQRz/e3SmHVBEgC7ucfOmC2F3+GyIzpghcCzLru/dZ920zvrccJw/SHeA5vphSMxj0t8sovNtYfryCqBVFVOWiWlG/QTpFSUtqjClqGR9sXRkEMuh72w6/19TzWkuHSCtHVsSvQ2JHtbPumGzyYueu1S23PLVurCT3kcTzvqu8y+L07uLrunJ0nuNi83OjNbXq/WusRunADOenJnbdWvWCV/T3UevtVz9000ntGeu4pX/HSu4VPxm5+uHOzF48m/yFuRuxGIxrB65HrcDOsyyCOtqi0VpmFj8lCFaKh2uVGVyFh70aFcavmhpPhFn8ZqrMhwegY+p+++E8IGrelZfvrHfoI/vvFalFMtQVjFseMnUaXP2bUlrto3z2A1oV+kSKOYnq7Rmmy54mFh0Z4mt7njtJclehjIYSnKHFO6/iZPCyQ5RWwoZZ8wHKMUirSbE0Qu6PzAx2/lLa95ARfOrbCy1ufAgV1Ym6JkHVThVDp7MbVGQJpmeEFIkRQsLa4xt2OcLCkosox6q8bS0ipTM+P0uzF+4OP5PrY0ZHmGryRnLyxTq4do6eP5ARaDrzXnzy8TeD6erzCFodaKEB6I3CK1z8K5ZaZm2qR5TOCFWCUosxJfeZw8dYbt26cRniQexNQjn0/943285lUvwIgUk1mEZ8kHOf2u4YM338o73/hSjC0IAkdDk8LJQ0vlkad9rCnwwhrDfqh+r0+9HpFmGVIo1pZ63PvIUV5w3X7OL6xx4vwSzz64l7HpFlkcV71FBi19+klMs113QUJp1x/UpWJhYYluv8/stnGQlnq9SRKnaFWiwgAhJL1OnyCI+P0HHuWBbsp3XDfNj73++cRpQhBEYCxDCf4iL/ADjzTtE4QR3c6AdrtNnmdoz/mE+X4NgSUrwQ98imQVdIPe8iJ5WeCrHlR+c0srHcbaY0zPXcmZEw9Q90vS3HJ2LWWqoYl87RJHFEL7FEZTWsm5Mwv4WpGJkl/+4Ek++JH/jufVnYOQLBGl3CA17gL7cosFiylKOr0eKkvonX2QsVaNsn0VjdYUad6teqo0i8c/j/ZT6p/r4rUVyvhQpFUfWA2UIUlygiiqQAdLGWesLncJwwhjDcdOnmTP7h00Gq6/KEtTwrCBFS5YMKV19Cvtems97eEa1tzreZqQpn1q9Tp5HKPDCOGF5IM+YRS5RavqvxXCFSpMiRUetgSpheuZEcbJliPJs5Qg9Bj0enhSgtBoHWCNobAJaRzTHpvAWEfNQniI0vXlGSvIbErgVRRba3nssdMcOLCPX/hv/5nDrVn+9rvfhBA+BkGRxWhPVcgd5P2ccxfOc8/hx3jTd9yESTN0GDrLjCRhZbnL6fML7Ng+x8Rkk+5qjzQtSNOY2flptFLOY7HVIIkT6vU6RWnIs4ywFhGEHmmSEoShO9e1gCIvEZ0zDAYDosoDcBj8l6VT8lRKkmYZWnn0ewOMLbn13sO8+mXPI+7F9HsDjp46z1gzZN8VO3ji5FluufUI3/udL6Lb7dFqNQmjiK985R72XzHN9Ow299yUliKFxfMrBDXN2HgdEJw6foFbHzrMm1/9IocQFiVLSytMz0ywsrRGvRWR9EtqDYe+lEbxwENHuf66fdx65hT/5egyjXqd3TvmefMbX8Nzb3wR3/v27+Y73/JWPvSJT1FkKVo6emy7VWN6cpIsLQg1XH/tQVLd4Etf/Dynzl0A4Sh0Y60mSysdBIY//YNfI2w0KUvByWPHMUXIv/npf8fv/eEvcfb8eV73ym/nL9/7fnbsuYbJps/Zc/+DvfeOtuy67/s+u5x666vzpjdgUAgQRGEBARDsVKUgkSKlyIol0pYUlUiWYslyHNmK6orlKJJj2XFoK1Sh2EmTFMACFpEEAQIYgBjUAQaYGWDq67efunf+2Pe+Nu8NAImwlSzute567566zzn37P0r39/3e45bX/9qmhMRpWrS6TgUQp5lFIOMbbv3YlSJ5w3V7TbaA6PApd1srl6byVmh0bxgXly7+6jMXwnj5iwlhod8ITbE0BEalbVtnIPXWsbCOWdKOD5LLQXFGo4BPWQRXi+BMOrrWudrQ83UyPZYkUgYndJ9HzEEjLhKrAA1zEZt1IPbqo1smY2ZOkf8skpCZShRQjpJJyEvkDRY+720BmEvZOfcrK3U9K25ro321EpWb3Rf1tTagZM3WGu/XcxdGu3vjm/YWM/2/G0D4+gWt3gjG+ZqM1tsdyFT58a2kTXz+Y59QXJgi1rWjU1KMC/wlqw+4vXvrB/ELzgz8x3n7iVu/19w7p6PMvf5juuOcfHC2JXvw78vxLnbCFr+r+PcCYwwWAyB0Nz+4b/iNa97M/ghD/7Ob/Hy8SYPP3mM66+6DFCceOYkvowYn6rSSwZIoxG+5OOfO8yPfd8rnfQAgrNnHfxGaEO73aNejWm1uniBRzWq0Gr1GJ9oYJVjyTt7epaZmTHyzJE/ZGWJpwMnEKt9zp9tEQaWRrNJvzvgg5/7Bj/81ldRqzQQuqDIXS1PYXKMhTwtnJ6eH+KFgFV4gU+v2yMKfNqtDmEc4vsBzxw/xfZtU8SVAKkknZYjHCkKSAYFf3n7Xbz3Ha/DGDh+4jT79+0gzzPCyAck7//4V3j7rddTb1Qdm2ZZEgUB/SR3sMTScPbcOcLQp9mson0PayVFmSCsQBhFKQ3K09jUZVm6nR5BqMmylGoUs7TcJYhCvNhHGJDSOciDfk4lDMjyAj8KsUi0hKXFNo1mnYcfeYrxep0jTz/Hm295BUiL9jVKGJJOD1MWSK+KF+gV9u/lhWUqcQTWaaxhBdYKiqzAigIhNVp7SGF5bnGRf/bYSXxP8Rvvupa9k3XCeATpTPECJ7Uw6A/wPO1EoJGOfEUIlBaYUiClJEl6eIFPlvWx2QBPaYK4TpkVPPLgvey45CC/+qeH6eaQmwFOmjzjlmv2csOhCbZd2aR7bsAH/uPHuPral/P0M8d43a030KhUmD03z9GzGV944AynZ5fx/IBea4mxeoX/+Z/8MG/9/vdgK3VKfBACK0uUWTVK8qJw8DtvA+m5tVgh6A8M547dz/REhK7vpFKdQghHQJBlOcvnn+Rn/sff4P3fdRtBs4ItDaLM6fXbaFVDalfT6F5ZJ1i+PLtIs9kkSzKUlkhPoXzt9BmlxZoSgXL1NjgIpfYUWZI6htlyKEIrzfAeK8oiQ8mCQXeAH8ZIL0BgaLc6RHEFz/MRpgQtAUOWJXg6dEapKN1o5Qp4sEZR2AEeEcZAmrXxY48yE9xz7xFed/P1mBLH9FoUBF4Fi0RgKIoC5emhPWspchd8kVLj+wHJIEEieM+dn+Mvf+A2wFIW5XCwtHRaPT7y11/kR77vLUSVaCXT2Vpq0Rhr0Gq1Cf2ILC+IazHCWPwwYGF+keZY3dV/muEYaV0gKhlkDHo9zs+d57JL9mOlY94NAleza4WlSAvs8ik8X1IaS1m4DK5QTpLF9129XBxX+fQXv8Fbb7mOMPLJkhSsJU8LFpdaNCfqeErRH6SMT4xx7KnnmJyoUR+rgYWz5+ZpVutUGyHGKBYX5xifHmPuVIux8RoWR6LT7QzodxI8X+P5muZ4jV6rC0BcjUn7ff75o8dZLqCXDQg8j+uuuY5f+eWf42Mf/yR3fP5Oev0BxsD84iLv/O1bqMQ+/X6XShyCUGBLZpf67JoaIy8SlNKcnZsjDhWmlBw/38FrW574zBk84dHr9YgjV/eotceVhy7hH7/nR4niCqoSM3euw1/8xV/xD378ndz9tb+h5sfceNMtLLY7zM3P8ld/9QmOPHSYu+/9Gu3uImEQkBUFp587RdpK2Lf/AGGzgvK99c7dGgN/xOjJypKVGW/ty7vJsjVrNzh3ErMi02LMKHP0fE2s+3NBeuN5nLtRK4z9Ozt3I+fNrCFRW/t3rYM2crxGpCIXayO9vrX1aQ6Gf6FzJ4R1EhLwwpw7xAvqw+q1iy2duY1PeyWLtma9XMkwXmjfbWXb2U3q8p6//f/fuRtlZF/4tmue2XC3F+PcfQeW+RK3lwqW6WiOV1Pwf1va279ru9i5zZqXaW0CWwCsCGS65RZx4dQyhELYoVjvaJBaxS+z7vtW491m24/6vrFJaymHbHCRNNx37z1cfvXVBGFE/oXP8+ixE7zy5YfotLsEfsCgP+DIE89Rqfps3zFFvzeg3qxyyY7t1BvRkAlPEMWO3CBLU+q1ChioxCF+FCCkx9fufZT9e2Yo8pxOq8uTJ86wY892PK+G0JLCCrTKnD6Z55HnGf1etqJL98qrLiGMPGbPLaKVRRFQliWer+n1Bk6QPIPlpQH1eo2PfPpuDu7dhhSSXm/AM6fOsnPbNgSSI4+cRKOpNyOEUJiyJB8Yzpw9z+RUk5cd2MkgGRBFEc1GlTRL0YHG9zStpQ6X7d3F5PQYaZqglOS+h55kvOkkAiyGJOkxPe2kAYwFIRRCWAaDAUEY0m73CaMAhKLMcu5+4FF2bZ9ESFe/JqTLVnz8zru4Yv92yqJE+Zo8L2k2m7TbbcLAd6L2wtLtOqr3sjSMjTWp1mIOHdyFUDhYHR4YgdY+2ouQWjpiiLxgMBR99pSk3+uhfOVYO7VCS/j1+x/jA6dnGT9UYf91+wh31viR11/BO2+6hFqosGXp5AaUpN/rIpViWLZEEMQst+ZAFni+JEkS/EDQ7bTwfAsyR9qAzCj+zQfv4mf+4AP8xZcf42yiSYoOn/naN7nx0lne/j3XccO1P8JHP/0J6mM7uPfRU3zib57grsNtThybo1OGnFxI2TtmaHqG1uxJaqZFJTnDW16xnZ1xhkVzfLZLPujyztveQK0+iV+fQCpvxc4S1gVYLAxJOTYB5wiBEuD5VaJI016exZclyq+AVQghkNrSTzO+ePudfO+B3SjfQVezJCGMA6QKEdIM60jciCGsxROaNE3Is3SYNbTOoDWli4wrZzS5yPbQkbOghaul1MrBKU1ZIKWDaSot6ba7VGo1EI50B6t57vRZJiaaKAXt9gJe4LuMMBJRppg8Ix10ac+fR4uSfr+DUhbPC+l1+tx3+AgHDuyhLEtsqdi7axdOzF4jtKZIUldfJ5whKpVyjrF1Z8mz3BGYmBKhLIEfIT347n27+O8/cztvnppGKh/Pc5myIAy57qpDFEVJEAR8/PYvcfWVh5DSnaPWqCOFQkjwAg9TmCFLcI61Fs/zkcLV7nXbXSSCIPAI44BqHKE9jfI0SjlYZ5ZlCAG/9eUv8/qd0yuEIw6RIMmyHN93zsSIyMaWOWPNGtbAqTPnaDRqWGtpNutOJiSMhkhYS6NRoVqLOXniDONj4yipeOrYc+zaOUFrqUOtHiOV5OyZBbQnqNZiyrIgDEPGGnVXO+cp/uLhJ/jD42dR113NlT/yTk6Oj/H9P/KDPPjgUQZJj7Aq4WrDsfxegj199r56jB03NNl74wSv+r5LaPX7VKOIfpoQeJq0yPnC5x8EJZiaqHH7Z+4mFTDRqDJeq1CUOfVmk+akxyW37OC6t+xg5oY6l96yncohn8veuJOd11U5ljzKf/i9D3H26RO87dZr2T5WJW13ufr6V/K52+/kN3/7t3nvz76HtF8yv7jAf/7T99HrLQPQ7fSo1+tUa3W2TYzz9a/cyeVXvgwjRzWiYp1jJ8Qo27NxFr4Q4ndR41MMnX/hflMCV38opBjCaNcauRtm863sj1FfR5+1jsgaJ1UKd3xjRrDIUVbKnWoVeboWQjnqyfpauBF1inVf1jiSLmMyqghbvQKxznFZe6y1n3V1biP44tDRW4V4rncERuQpa88BI9tJrNnO9eNiTtNae2YtX8Hz2YdyjVO3cSuLXenz+no2u/EJr/y/WdnL81uf67fY2N1VeKvc8FserS+H69e7rhdmpTc585rntuoMr3429mUzaOxmbTTPr9qe4iLrLujV8DOyed3vVXveb255IRvad5y7l7i9VM7d6g/wpXPc/q5tLYJ9EzNwZeJx3zZx7lY3XefcfbvaZvdNA/nwJc8WztJLU2Z27qbT7jJx/CkmhyQO2lNIofADj4nmOIM8odF0NNWlMZw8OcvUZH1Ice/IAIy1+Mqj0+4RRzEPHnmSbdsmWJzrEIceY+NVpLV4nqJRidDkzD27RF4MUBqU1fg6Yu70Ml+9+3H27dqBUBZjc8doV6RUKhFB4PGFzz/E3n1TzC8uMzE5hlKaQdqhWokQnuGqQ3sps5L7HznK3t3bmZmZxAtLsizh8sv3ceL0aaYnxrBCooTk0UdPUlIyNhbjBZog9FmYW+bkqXNsmxpDByGUlizJGJts8thjzzCzfRysINYBtVoNKQI+/KlvcO2VBzFYitzgBSHdbh9Pl2gZIT2NCFx0UyqFtSm7d+/C832WljvOeK04keSX7dtJPujjhSEoSZo6UpPSlPiBBxhsmSNUief7FKWlLC2etsMsmaTIMihz0ixFeJq8LLFFjsAye26OShg4Cnit6HW7/OyR43zm7AIHrxlj5uUzvPXVu3nHzQfYt30CpXz8UDrGRilhSCwhhCRNM+IocLp4xmVhi9ww6KfUanWwCikijhw7w6/++WE+c/9p5LZLufSGK+g0d/H9b7+Nu776daqNbZxb7GCyPj///bvZGdbYVW0y7p/gp9/2cr7v2iluPVjjF37oVdz2ynGu3xfz6kvH+aGbr0aXmuuuPsT+PfuI4nEoEybqMWWvxe444XWHpvix1+/n1/+f+/nBt74Kr74NYwVO1NfBDl0iTVww4a28qsZl7oTVSFJEvsTS7HMkVAj82MEPTYKOQ942t4CQFmODobEoEJ4iT0FKlw0bsd7OnZnjW488zvR4E09regMnVI1yEGcpVkkH8jKjyIuVKPmX/+Zu9u7eiZSO0KAsnIMqtcDYkiCoILQmL3O0L7njjrt51Q1Xoz1IBz2sTfHDEBg+V19hhMaPK/i6ho6qeFHFZTkz8GPF3n0zlLnlji99g0ZYpdsZUK1XQcPZZ2dpjo8hZEaWJEjPd47v0Lg0pUFpJ0GgpavnE1ZhdYbWIe+47BDv/uRn6Dz8DFdespcgcNvmWUoUR44a3wqmpiecUWwNUnv0u32C2KcocrK0xPMVQeTghS7V6WRCxsebLC0suVo+YxBKkZcuSyOEwPM9siwnTRPuPvMcN0+NrUBPPU+SFymeHt4vYRHKQVoDTxFVIigV41MNiqKkHErRpL0SpMLzFZ1WCz/yKXPDeHOc933gK1x12U5On51jx7Y6s/OLUCqCOKBeqxKGmjRLCcOQTqvH106f5tcePMr0m9/MbT/3k+ybGeMvP3IHn/j05ymun+Mbp77BoZtn2Ha9z65ra0xvG6dR9en2eyAkDz10ksnJGt2kz3izgkRx9KkT+IGmEkc8/sQ5Dh3awdxii5dddZDtU+NEnscgLShsjvYjGpGPQKK0+x3HUZVGdZzPfv5etu8c5/izZ7n0pm3Urwz48AN38LR3nj/6zCd5Vj7GoVtmuOytB/h3v/GX3HffYX7l534OxIClpWdpNHZirSPiKAp49OHDmEGPA4cup9xCNHn1XX2xdsJGB42VgIsL9rhn69ZtZDbcYIBfzLnborng0WpN0sj/M2udOcEaWOgaY37T63BNISiHkghKiCFT7tDgRq3YLS/W2hBrOlUOCVKck7XKfnmhmu5WZ9mcaORitt7adSOGy4vts+o+rDJjbtWXi92NFXfKWsotsnZ/V+duxcnB8QBcmCXeWGu40Ta+SP+fNzHyfNtf/L3b4W+zVQAAIABJREFUvPZu63Vb9AJ4cc7dd2CZL3F7SWCZ1mCHEKe/r20UKdmqh2KTSMrK5Wz4TY7or1eu92JQDtgw0QCYIVRidfNRNtCtlkPdG0k2KAkqEWRtfvef/Az/6F/+LvXKOKKUZP/XH1LkjmDAFJbTp04zPTNNHHq0l9vMLnaIopAdu8eRUlAWlk63TVlK6tUax595jkazwvTUBFlRcOr0LPv2bkNKjzNnZtl7cCdp15FfSKVIk8w5dVJRZIajx05z+eW7QULSL8GUBIFHmiUEkYenPBaXWtTGGnz803fxuuuvQHtQr1cAKDJLtzeg0agw6PVpTDQpy5KiKAijkKQ/IBlkGAOVSojyPM6dnWNibIyP3vkN3v1dryXPUrTyEGHIRz/5DRpRQNgQvPE115ObLmWmiGIfY+RQdNaQZSkYSWYsjVoNURoGZuAcOOthxQBjBGEUuxouCcUgR0rnQKdpgvY8pJB868gx9u+dZHyiQbc3oFKpONp+IbBluSLc6/sBZZ6TpB2kVcTVJgUGlEEUClMWji0TS5GkDAYpRe506WrNKqUpSQYZ1UqFf3j3t9g7HvFbP3GzY9mTTnMvDANMCUIY0nSAxEFdBU7XrDQZpiyoVGMGSYrnRa6fRUJeDpCyjqTN6fllfvF9d/PDP/A2aoHm9d/7Lkya8g/f+zO8Zr/if/iey1GmB35M4DXR3oCF+Xma1SbdfotqbYZBUmBthi1yut0+QRRTqzXQSnPs6RPsnJnE80Nm5+Yp8pQw9PAYkGYD7n3gGL3EY8d0hV5rjptuuYYPHr+Cn/+1X0IgKPIc5bk6s1GT0r1PbqKV9JKSetUj6Q/w4iqUOQhBt7NI6/wzVPwUYz2Cyk48v8aP/vh7+U9vvAmpQuL6NFZmFFlC4NUorHG6c0auSEb0Wz067S4SSVQN8EOf5cUWYSUi8mPa7Q5xNSaIHePi8lKbeq1KOkjx48hlsCjBFFg0y8sdwjggjH2KvE8Uj1HmJbbMHQOdEGRZijEFUaVOaZwDuRKFlsPIf7nKcjcyOo0thkOSot9aIogrKwLnxji4sFAaB+m0FElCaQxxFGOkxWCR0ifL+/gydManNZRlyQOHH+bql12FNYYb/vVv895b38Avv+mNFEWOFBqpIBkk+EFAZ3mRRmMMO9TwKvKMfmdAc6xJMugRRCH9fkYUhZgsp9VJqDUq+J4GLJ12l1a7xczMNEkyoFKtDYdWRyXfbrWps0yadJAipDccW3q9AZVaTJ4ZPK1BWNK0JM8TtJb4XsCJY7OcX1riVTdcTpoNWJrr0ep2ufyyvQz6CVE1Znmxxdh4k35/QFgJyRKDp6EoU5Tnk6c5cSUCct5/+DHuMh7/9//5rxmrWH7qZ/8lx+fmGZvwecsvvJx2b5EsTxivjyGVoTNICLyALC8xRYEVktnFhJ0zMb6uMzc/D0Iw1hwn9OHkmXOkg4RGvUKt5mQOWt0e/W7Czl07+OwX7uN1r72CsUaD42fmOLBzin6SIJTFFz4PPHycaiPisj07sBKkkkgrOLM44IH7H+VNb3g5UmjmF2ZROubwkWd43U1X44kS3w/5L795mA9+5P1Yk6MBz0q++Lk7efN3vxkjBHk5zLLI0Xwo0FKsIEekhJIRLNNgDO59kKvU9St6XRe1Cd06V9awGfsmbG3K2+Fvx66ZokcO0RBes6Ut7nbYeE4pXB3eau3eyLkzjGQG5Dr7QVCuaMdtXG8QUlKsgUmubRs15lZ6JtUImT1k4lwT1B5mgkY1dVtB+CxmCNDeCAGUrBX9k3KUyblQv27j9xGM9IW2jbd+lDcanWsrt3S0fARD3SxIv2Xgfs369VnN1f9dVnEVZum+X2jjbTxGaRyzsRBiaItsyJqu2KAbIaEbYZoXnsstH2UF/7Z8FS++hdF3YJl/b9pLkbkz1rwYl/+/Ubt4/zbj5toyhrVJHd36g10QWrngyGuhGmJl1HIfrTQf+fBHqFQrbBurkJmczJQst1tcdc2NmNLBpOzh+8iyjPOzS3z5mw8TB5pmo+IGASGZnh4nK1IqlZheZ8Cgn/L08fPs2TnD/PwiYeQzMV4nzXJHrpIX6CEEVPvaEXoUlrIsKEuL0oo8ERQp5EXG9PQU52dn8TxBpRI5Ij8JSrnBpcgGxJUYzwvYOTkO1jA+UccPA6wVGGOoj9XQviaIPPq9ZAjHchToSmmUVmilCMIIQUmjWUMqzSuu2M+Rx55e0QSKo4hL98xwcN82Ltm/k7LMyLOCSrXC8lKHp44/x/R0E2stgR+47CVOp2xhaYlas+bIKYqSfq/r5B4GCWmSE/gBtpC0lrt0On0eOnaCg/t2sjC3wN6d0yjPOXNxHIMVlLag1+3ha49jT50mDh28LEkz4roTWNee5wx7U5AlBYP+AKmEM4Q9nzAMWU4TfvGRZzhmEm560yGaV25H76vzwzft5abLG4S6itTO6Q7DEGsshoQstYR+TFEOMEMadiEFc3PzjE84bS2pFEJJzre7/OM//jInu5pjpzrYmZv5vT/7a4SxvLbZ5ZXTOfbUvdQ6j3HzHtjTgKmJKZYWO4RhjAAG/RRsiO9XnMC9cRBDKTyE0FSqVZZabXwt6fW6TE81OXd+nmq1iueNsoghZ+cG1CqGqckqgQ5oLcxy3TWXoQOfP/nss7z73T/oCASkGoXs17xi7n3KsxQECJuzcPpZsm6bpNOnSFoYBH5UJ25M0mudRShDNpilSM+SHH6SV+w8SNxoYn2wReHyglaRlxkged8H/gsvv+wSALTUONHgHM/z8bRPrVEDIcjTgo/c/iUO7NrutNskrkY0SwmjAOk5aLGUgjw39PqOLCRPkmE2lWFWoiBLBwSRqwH1ggjlh5RZ5uphypIyy7GiABxLnbVOvqAsc6eTKJWzxawzRJN2iyDwUUGIVArlB+42lgYlwQqHAtC+jxEKQUmWZng6GA5jrv5OaY0UkqnJSebOz1OrV/iFN7+Jmw4e4F0f+zjvOHQQpX3AOogngiCMQTqT8ezpszTHxtz9kBLP92gttwnCkE67R2tpmVa7y2fuvIuZ8TF8P+DPP/FZ3vDaV6GU5uiTx9m2bdo5iVlBv5dgrCEkRyufT335Hq6+7AAIS1jxhvBXy+Ji29W6DUq01CSDnPm5ZSamGhw8sIv588v4XsxTp57lqisuIRnkhHGEVgrP0wwGCXmWk/YyarUaJSA0SGOxGH7xvscorn0lb/+Z9/CJT3+Wp/wj3LN4N0uNAbf+4F62XxXR6rWpxVVHQmI6pFlOkmZ4WmBNjpQCrS1TzXFml+bpJymVyGO8WSVJE5IkZapZ49zcAmEYMNmscX5+nshT7JgeY5D0ufyKg8RxBAhqlZDClHha4fs+pRXs2TVNoxHSSxM8LYdZZENZGMLYo1mrsNzqEYYeY40Ge3ZNY7H42kMpy1Vv2sWR2W/yez//79GiZPeBQ1x6xdUkJJRCUMpR1lxjrcbaElFIB3lHIpFkymDEkMhJGKe9LUYyHeulCy6YmYdU9yPK+3XMfkKumVRhHZxsiORzUEW5KZR7ZZe1fzc0OayjXYVAro5DZm1f1rgoK9mydV6Lc4CUXiM5MLSnpHRBi7VZrw13YfOuD1N/RVEOJZLWrhs5m6OM1tb3eJ1Uwrr9V/cZEZ6sdbo2nmv0v8v6v3A7sTQbnZZVptG1+nUb29rbu64PF9l2Y1uBhl7wHIeZxdWHdQG0dXX5+mye6/9IlmGzTOjmLufW2T+2WP5fDzn3HVjm36P27XTuBI4IZARP2Ey75G/TkixFq41FpH/7XlprLhgGNmaIXR3c6mtrRwsZ0hpbVj6rtFUvtAtbDMx2w3GGNzJNUm587U0cvu9+zhx/hr/84Id44xvfwKc+9GFedt1rUNqSZQNOfOLTxFVJvVFhx1STKJTUKhHa93n4yRMsLC6zb992ytLS7w+YmKzTbNRJBn0ajRqN8YZz6HyN5/tUhtHpajVCKYXnBSAMfuiRZzkIiSUnqjka9ZMnz7FnzzbSNGVpoUOlEqCU05saDFJCBVr7FEYM9d0kQeiTJY4tstt1JCTddhclIQxjysJw7OlTxEGMH3ooT3LfQ0epBhWCQDE/v4QcRn6nJ8bxPI+4ElJmJV6o8WOfdqtFluV888Gn2bt7kjgOiaMIY3P6vQGnTy04spihQdacrGHzAs9XeDpAeRpH4iCJ4pBOu0+S9BmbqFKpB+zcNgnWUq1Gjqbe85ygen/gany0Rmunm1WvVwjigCAKhhOq50gxhKW11ML3fbTyqNYiTGnwfc1PfPUhHsp7/OA7r+Ndt1zGLVfuccAiaSlt4cgutEYpn9LkeJ5Ht9se1jsJPO0NabpBaafvp7UkjmJKC0Io3vV7n+L2wyd4xY038bWv38t37T7Dq8bn2V59gne8+hC3vWqaA7urGGNYbi2hZMH4VINGc2KodSRYXu4RxBna89CeRKqALE9QMiDwfb781cPc99Bxtk3WmRxrcOrMvJvklaJRq5DmKWEQ8M0HnmRirM7EZI28SIkCxSDt4nshU5N1VODx373+UsSe166DEQmlVt6hEbV4EIQgBWdPPg1Zh6qX0mmdQpJQFJnLKNkCX9QYH98DsoqUTa7vK8JKHaQHQlEkA2xp0Nonyfr4fsjl+/fhBx7dToezZ85TrVQoioLFxRbVWmUIrVSYouQVV11GXHP1pwyDQWVZIKQz1pRWCCkdpDjw+cuP/zVXX3YpQgj8ocMlBPheiDGuztDKkrzoO8p/X1KawhHtWLlS98nQIJFDWYDSjqLFkrzI8LUYZunc8Z2cgtO+K8oSU+RoJbEIitKg1TBYYxTJwLHXuuCNwViDMZZa1UGjEQaE4LZLLuHHP3MH37VnBt+L+cY9D7J9ehIpPaRwhBHNxhhZVqC1pMhzyqLE8zTa87ClYXyiiRKCV193NZU4Jk1SLj+wh7gSceb0WWqVCtVqFWsNd9/3Lfbu2e0gloMl0n7GoX27UVqhlJMPaS/20MrnzNl5MIYoCjl/doEv3v0I1199kLDi0+30aIzV+dCnv861V+6l0agShNrVPVkoh/WDnqdJ0xSsC5hMTNbpDxJ+8u5H+OP//Z/y23/wHznaP8wN79qNiEqmmg3GG1XqsabVG1CLA5I0oSgLJhoNlKw49EUJSmgCv4qUOVoqYl8QxxWsUBRlSeQ7wfiiKJmcqDM1VmOQFdQrMYVxdZyFKYmieGXakcMSAikhzTKHIrCQ57mrGRbSzQOeRxxpatWYex9+mj07J9Fa43s+WZFTDX2sLSnyPtbkLLc67HnNGC3Zpjzrsf/gPgQFNisp+hlL889hM3jq0aPUaz6lJ0jLlAInFRNpj3wwwNNqxMMD1lKuQwCtD+IM3/wL/m5ubogN2w4dgzXZo/X1R2u2H0qOjCItG4WgYVjnJ9ZP7yNHz4zqVUdQxOGxjS2xxsEvXWbHHdfBJuWwjy7lbq1dgYGvrZMb1a/JDfbWyMqRdij2rcQ6OYK1TUm5cj2jHq69CrECY93g3F2QoVpdPzrmWvtv7f9bOXZiw2fkxCm53jlaT8CyeqytndzV7UcO6Mb6x61dW7tC3rLG64ZhyGF0Lat92czhWv8Rw4DDRkKZtf3d3G4e7S8vsv6lde5GY+D67xbt+d9x7v6+tG+3c2dXSEi+fZk7Cy8qfX/xtn6Ael7Y75qXZ+TUrTuUwPHH2vXbvqBjGrv5OLBhuzAIybOUvXv3sGf7HqamtzPRqLL47DMcePm1lEWfXneBXefPoaQmjGpoNOfPLzA5Uee5M7NcedkBalFAaSDwQ+KKz8LSAmHgEwYuS1cYSxT5GGs5e26Oaq1KJfQRwqC05sypWRoTMdYWKKVJOornzpymVvUoE8XEZAMh4fAjR6mFNWoNp0dVFCVxHNFebPHVw48yUW+gA0sURPS6Pe5/+Cj7du9CmBLf9whDn/ZyG5AUhaVWrRLFEQhLt9/jkn17CIKIU6fOsn3bBGVSgII8L/nyPY9QCX1Mbnj42NPMbBsj66d4XsAle/biR4LC5JSFRGnXh2ZjjHanjS0MUgvSPMEHBsnAZZ2UQksLchiVNII8A0/7YCFLkhXKd+VppPScwLcSlEXG8ROzKCRR5BOGPlZ7COWMCpMaep0OSZJSrVWQ2ufup5/hf3roGO9697WIHRXeefMVXL93bMgIWmBKV4+ELPE9jRU+4I6ptCFLB8SV0A24JkTInGTQ5vHHT7B9+wzaU/T6XX78D7/EGbbx/s8+wHj2JP/q++vsq6S85coGu6YDarWYWO/gnm8eZcf2cXotVxvo+wHVWgNjNIVJOX3mNLVqTNINsHJAGNSwaLTvanqUCPjWkWNsmwg5dGAHRQmPPf4slx7czdhYncXFDouLHaa3T5BmOdPjdcbGGvhBRKiazM52GBur89ypWebmZtmxY4oorvPZRwZceujg6vs5JE9ArI9Ia6kQRY5Jl1mcfZL5uadQno+hpBJ52O4C3UGPucUlGjMH+If/+Jd419VXgTJYUYIxmDwbUvobdCAc+6hU+IGP9hS+8vGVR3upxyPPPM32qSm+es/9NKvVIZlGjtISFEjh2BylHBmWiizJHNGhhP5ym6sOXUpYqaD8AJPnLmptpatt8wu3YSGxuUAqnyw1iGFm1BYWoYeZhKEURJFblx3J06GWnUBJ5xRo32XUTJHja+XGRKWxUhFo6LbagMsuZ0mfNM05+vhxpqcnnTEoBQhDaQq0Dlbi+91uBz8I0J7HD19+Ob/wtbsQ3WXedN31Q5im4plnjjM1PUmn3SOMQgwl1jion5TOSfV9j6eefJptM+MsLy/zqTu/wmUH9tKcaJIOEsbHm8TVyMl9+JoDe/diSsOf33s3VzYCPF9z6swc1UqFQT9DSY9TJ+e54ytHuPmVLyOKPVrtDp3egGsu209UCVhaajE21mBudhHfExzcux1MSafTIoo0CIUxll63T6VWIS9SfE8TVwJ+8hsP8RN/9Efsnq7x0Uc+xKVvrbLjQI1Op8eDXzvCxO5JFIJB3kcFMR6a2cU5tk1UeezoAp4PaZ4QBQrfFyRpzCBZZn6hRS3WBH6FVj+jFoW02m7saPd67vcloETjaQVCcnZ+mW0TDvqaJH18P0DgHH2lJJ1uG4QTl/eEppsVRNoj0M7haw1aBH7E1OQEYSjxtDeEeVmyPKPX66JEiiehWakQRDUqdY/z+hl+5R/8Lp/76If5xAc+zNFvPcrnPvcRJsam+ee/+s+I/IIP/Lv/wFfvuIMnH3yAj73/z5hbXOaP/vAPef3NtxBpH4baj4iRs/a3NVZX0mgXzNEumyUdfHsdBNRtN3K6RgFcMyJPY72FM9KG3KqtxmvX5c0Y1btJISiHWniFMSi5GsxeWyIyIkNZ6yhufmzn7K3LxolhFm+Nc1dagx6yzDrnUA0z/sPrteXwXJtDXC/m3I2yiw4u/sLtwc3copEj5OQPNvZhs55d/Phb3bOL/bKcIzhy4tZvuQqR3Oo3+vy9e7EJkK23f+mdOyHWO3ej7y/GuftOzd1L3L6dNXeWYl2d3Ubdko3t+da/VG0tS+bo3HLDy2eGUcOVEdvaFamClbYyqoyOtyH7V1rEUDpACLEGmr5+u1Eaf4SZV0K4wl9WWbdGu5WmGNaCCSgNR4+fZufUJGWWID/0n6EcTkDYYS2Spt/qU61GFNYilaYsM4rCEEcVimKA9nyE0ORFwennzrL/wB7KPBvWQQxhIEquPNuiyHnqqdNceeVlJIMBQWwwuaTIhrVnyuP0cwvs2jOOsSlJNycKfSdErgK09ihEgjQKKzRlllOkqSMpEDDoDqiEEWjtmPEExHGI9N0k0W51qVdrdFtdBklKoxbixwH9bo6QHmGsSPoZRemyEJVKTLfbAmOpVCvcdfhRbrzuaoR09R7zcy2sLRkfa2Ct5TN/cy8/8JYbSZOUKI6xBj7/lfu4+drLMUIQNaoUSU4QaHqtNkJ6xPUYhODZZ06xfcc2bKH4yuF7ufmaK/HCKsq3mDKjyEF7giCoYmzG8mKPeq3OBx95lL86s8Dt/+uPIiiRWLJ0gNIeyAAlLVleoP0AQUm/1yIKq2A8rFe6ycZKst48SsdI5dMbdKk1m+SDPpgSFYT8249/g7uf7iAEvO8f7afIB3heFV8KJH2ePbtMOaw9rNWqpHmJViGe1iwvLmGVwdM+Rx45yTVXXUoYCqTW9Fp9kl4HPw6pNms8e/w5dh/cixQGjODMc4scO36aa6/aT5IktNs9JibGCEOPwjgdPVOCkIb2co8zZ5e56qqDzC8sYMqcZqPKgw88RLMRsG/PAbzY8p7/vMCHPvqfEEaiS0mxJrC7Fl5lhXPG+8tn6M0/gcrO0y1jxsZmQProSKOSnEEJ/tg+/uLXf4ufuuXmFciRMYY86yHJsYVA6wpoRZ5mLuMGzJ6dJw4jClNSaVQBuO+BI9xwzVX4tYAyKVz03NeYMscUdkVaQCAcfLV0jrskp9NJqNTqK1p2rqbEjRNCgBU5RVaghM/s3CJf+Pq9vPO730SlGpJlCVJpV5snBWVRuBqqYbjVWgFWOMIWYx1rrXYU+lmeo7TGlBalNQ7pkGFzyxOPPcPLrrmcMk/4yt3386prrqc+Hjk9QgRZmhCFwTCT4GZ7IQRZmuL5Pv/2i19gfmqa37zyMopySMjiCXqdDp72UGHA0sIy4xNNxzCrNGmS4AUeWDB5Mcw8SBYWFjl56izXv/oayixDK4GVgs5Sd2h1lPybw9/k5/fuZHy8SdLr4wcBf/rJL/Fj33MrFsvHPvcN/sHb34ARhl6nTxQFJMlgKFPgr1DGu9/QanZESUmepGRJTqVRY7ndJen2+fnHjvHu297EO3/gbbznF36Tt/7KQbLCEAaWbi+h3U3ZuX0n/UGXvDTkeUElDCiFQJYJgbRYFbLY6jBWq5DmBXlZUo0qaK0wRUKv2yauj6OkR5qVLLb7nJtd5qrLtpOXBXHgY6xjZfX8ELDkxQBETK/fYazaoDQDlAJw0NrSOjH2wPP58w98jXf80I0oD4QtkUJjKRHCkheCJGkTqQLPD7EqQAuPVnueZqPKcr8gkJbeIGHQ7WHznGN3Jdy477u47QdvJdAen/zYp3jHbT/Ek08+QnNqnOXWAtoc4Jd//e387E//C3ZM7OHnfuFH8cI6O2dqfPrzd/LFL3+dm9/wRnr9AVEcD+WEBIYCMC5DjEUYvTJ3uunSrLwvK9OuYzEC1HBONytMsOvn5o0G8XqZo9F6syIMptbtIlfNBgeLLsxK35QQFNIM3w+5xkFybodYWzwMmE2cthERylp5gq3aWofkxWjgjfq0Vhbc2Nwt3Uq2ivXZNSktpTEXBOetHTlqZss7vtr/jXnEi7cX6+yN9tkYt7dbLF977G+H27QqGH/xWrqNjJqr65+v5u7FO3lrzN7naes3CKPKCz7JdzJ3L3H79tbcmXXP+r+V/MHztc2iSFvGWUbQh83IYbZw1qwZDtxKOmp2a9yksMX1bozAjYp+BS6yvzI4C0iyPlr6PHbkSV53y1vYu/cSFhYW2H9wN/bwvUgpGPT6+Drg/JlFAl/jex5fuOtB9u+aQVgXtXXU4C4KprWmyFN838HjirJESCeiHMYxxjiyBKUUBsHy4jKBUjx9/BzbZyaBHCUlEkfl3m63qFZDvCB2UDE/Qmh3L/Ki5LGjx6nEEZ4UGFEitURoiVJQloYwiPjoHXexa9s4tXqM73l0uwMEil63T61aRUhHNV+r1ZGeRkpBFEdoregN+ghrKIuSaqXCiZOnaNRDqrUKRW7YPjFBrz/ADh32RrOKkhLP99Gex/7tM6SDNkpqisKAsOzcto0syzlzbo4d2yYd3K50AsiedjIHnucRBAFKufq9g7tnmJvvcPeDj3PJ3h0IqfGDkLK0tBf7GJvxO4+d5OHBWd77Y6/jnTdeQpql+GHkCtOlJM1zPK0dVb7vgXU1TtVqNMygWmyRDSPKEhXGKC90cEcNeZoSxiHt3oAf/6MvcXAi4HffPc33XSPIk4JnTixSjas88dR5Flop+/bvpd5o4gcx1ipOnDzDkceOc3D/TpRWzC8uMT4xxvaZCfIy5+QzZ8C6wHYQSp48fppt05MOQmOdI2gNnDo7x9R4jSeePk3gaXZsn6DbS6jVq/T6AyrViG7HGW+nz8xz1ZUHOXNuge0z0+R5QZ4bkqRFvaadFiEFX3ii4O23fbdzfJTBrjEsRu+UUh5gMZlhrDlGXsLYzF6s36Q+dYCEJl5zN7ZsI2xJOjDcbEKQq4QAUgqyfpsiL/HCKkZ4YF0BvJR2qJMYoYTACzyKsiRLUw4e2AvC1eMIsZolkMailUZgkMow6HSdHp+QCKUdPNMPUFK4ZywDpFLkRYqhGEILLbYwLoPo+Rw+8iTTzRp6KDDeXm4jSoPyfKxxAREnfO6cO2PdQ1PCkTXlWY5UHmmSIMQwQ2MsQoGwgl43YWm5SxhCliZcfukBgiigtTBHVIncuCI14N5xpRR5ljm4sNYI4JX79/G+b97Lx598mu8/sB+tV6Gdg16KHwVOI8tYBr0BQeTex3SQYoG8yMnLAu0rarUKO2amyAYD2svL+L6HEBLf94grMWEUcrXpMN4c40P/5Wvs2jlJpVrh0h1TtJZaBGFIkaR888jjTNRi6mNV/NB3kimBT5YO6PcTtPYQVqG1AuOyny7TU6CUwlGcl/zUA0/w4T/9A973px/n/J6nuOLWSQZpSlYUnJ/vEfqaybEavSSn308IPUXkKypRSKuT4ClNrVqlVB4ITRhGaM+nMA7aGwQVEB7VSh0jFdoLQGqE0lyyZzuWkkocUxQW5QUYLEqANcWw7lXysY/dw8uu3odQEiE1xkqy0uBrPawnsuzdP0MUQFkMECal210gSVtgBlCmJGmHshiw1G7TS/qIokORtlicO4kqlijTHqFf4Wt3Pkl9ehtjl03y0c99gTsKVk3oAAAgAElEQVQ/+mW279rO9Te8mudOzfO//Mbv88a3volHn3iSo0cXeO2tL+eKq27kox+5nd//336XXQev4NlHjvNX7/9zHj3yIJ/6yEf4xX/6r/iz9/0Zjz/2JMJI9h+4BCn00P0YyowIsUJgtVKlt3HaHQZKRnO62BQVtGGnISxzVIqhlAu8jo6hRtmuFfjhml2lI2kZzetSCIxYza6s1N453REEZgjjHBrXchWFAAwdgVFWbBX2uJUd7t7xVZjm89lda49jzTC4tOZeXpQRcxM9uLW6cmsD+RuzcFsCmGCYUbyw5m/jdpvXrrm2Ut/2Auy/rdyhrb7/XZy9UVbyhdbSrd9vs7Nulbl7Mb37213RdzJ3f4/atzVzZ4tNWX+2aht/vBd71heLZryQ862NemwW6Rpl7jYyYjpo0+i/4f5DCANSDIWHhzsOu2GH0Ty7MnmItYd0k5Fy0TDhgpAXbSsD47AmTCuPYlDieyHPPfssjakx8iLj2T/4ffbWGwgkZZZzx1fv57tvvZYHHz3OpXt30WjEfPPBJzi4azuLnTaXHNjhGOm6fdI0wdMeCEGlVqXVblGLQ8yQ8t8YQ+B7LC22AIMnNCrw0conL3rMzS6xY9culIQsT9BSI6yHlbkTZPYk58/OUq9X0Z7vyBtMQSktnvZ54vETXHloD0YJ8sJgC8vyYoepmQZJP0Wiefjoca6/9hBCWLrdAYPegKKAqW0TdNqLaKWpN+uugN2WmEKQpQVeKNG+osjyYW26dZnLaoXl5SXi2EcIx9Tm9MY0iIKnnz7H/r3byTLH7pcniRMJV0MNMiUp8wKM4PNfu58bX3E5jbEavWQZmSuENPhRnaNHT3DpwT0orSmxPHT2LD/7hXu443d+hMnmOFK77O78/DxTM1MgJCZ3NTh+GJKn+UoUvt/rUq3VsaYASsoix/NCl4GxQ8OuLLHGUJQlP/F/fJ5BmuFrxW9/b8CuXfvotudot5aZnNhNKSxnz85Tq1bxgoCJyckVw6Q0Jc88eZKDB3eC0CT9lCxLqDdqfPL2e7jx+kuZmR6n2xtQ5gahSorC4PkBzWbNaSK2+/STnMmpOrZ0k/2gP2Bpuc3MtmnSLAUJ9UaVPCsY9DK+fs+jXHPlboLAR3uaSjWi0+2R9eapxYbzsx1mtk/ygftTfu53/5TSCpTIweotCRGS3gBfCY4de4TAM0x6KUbVEOE2apPbaXUWyVqn+KVf+wP+/RvfivI9PN9bsdLK7gCrDIU1eFGIMAphDdYYyqJgebFD4PkUZcnY1BhF4Z6BsRaJAiUpy4LF2QW2755GIhES2p0W1WqFPHVZ2UEvxZicSrWKsQbtS2yhsMIFGbSSmNLJVUhrHV1/CbZwfVlcXmR6Yoy5uXmW2i127thJmqZMTk1iTUkprKtDxNXcSSEwhcELnU6eFG58M+XQ2JCr452LAGcooVxNVuAjMRgkRZ4ReJostyjP3Te5Brtjhtk0kPjvuo13/dh7+PPvfRu+72OFJEtKrHR1bFopkkGKFyhaSx2iMCaqRBx5+HGuefnlSCno9wZUqzG2NLRabSr1qhMk73ZQelirt3iCdJCztNSj3qzQaTv9ykFvgEUQeJr2cpuJmXEKW1AWJVmaU6lWhpBqA1aQpTlFmdNqddixc5sTcC8T0rSkGgf8o3sf41/+s/fyq7/xJ3zvP78SXwuW2stMT00xyEriIGZ+cZZGLaawMXd+8SGuvWEvU82YxVafSrVK4Gksrr5MSo2nlJM9sZaySAmjqqtttRYroCjLlWxIlrv+RWGIsGpYl2XpDQYuM2gsRZ6idDCUb3EBi7woHZtjkeNJQ5omlNbiq4KyyBBSsTTfot1eZmZmiiyzGCsI/IDH7z/KgZcfwmpLLQ458dTjXLJvkiMnPA5cepAjR49zaP84U7Upzix0+Mqd91A5WufNr7+VyeY42yZ3cvc9n+dLX7mT3/oX7+enfvEtzOw+yG3f806+522vJqg1+emf/BXe/xd/QlZ0kCLgg3/2WcbHa9z/wDe5//5v8sY3vYnf+/3f4VsPPsBg0OM1r7+VJE3Rnoa1tVGb2r4bDd7N8jNrF5l1m20cZ8yQkXDtUqnEOiTTKoOnpRRm1anbkO0Stlg5lQDKtY7i0F64mDDAyvlHgek1Wb7N2lZ2WGkNkvVcB5Zy+Hd9NnBFzHxjFkls5ahcJKDOqji521eymQ7cVtbiC3VHRsyWsOqAvtBjbnR97IY+fzvb89u3m2fuLlz/7UimbHblq+07mbu/R+3bnbm7WORkY3txmbutoxkv7DhrjYxN+rJuq/XLR5owozYaEEbadmJtDp81Tp1wNRC2HMpCrMDW3Qg9IlO4MJK0/npWCqdNibWuwFoqizED/vgP/zWved1NGKF56vbP8YU7D3PF3h2cn11g98w4aZKyb9cO4lqNLB1wYO8u/vrLD3DjdZchpIvMLy+1GWvU0VLjhx5JmlKrO4FiixMw9rSmKEv6nQ5jzTpK+6T5AAx4niT2Y6ynsMLVJJQl+MpjeWnZZW+EJY5Dwih0dM65dYycRY5CcfLp8zRqMYMsI4wDijInDCKUdvfr/gef4vpXXI6xBY89+TS7dk5z6vQ59u3ZhVSKKPLI88JRuks1zBQKEIo0Szh/rkVRWqKqEwHX/y977xluyXWX+f7WWhV3Tief0zmpFboly7IkJ9kWYDnnbAYMYwZMhmHuDA8M4QJmDBfuEAeDDYMxOACSbWQr2JIsWzl1Sy2pcz594j4778rrfqh9UgfZg32fxx+89GxJZ9eqVatqV636h/f/vkoRBjFJEuNmLbRODcpb732IreOjaGWxNN/h+KlzjA4VsewUjirNFA4lAKUUvb6PYbuIMEbqhEIpgzIVtkxhXdLMYskY27F4+z2P8ENvupzNl4/wU29+JYIEx8mhiel3PbLZzKBuSUGSkksgUrbUZa4y21SEUYIUqWBzEjOoTYHA6yGF5H0f+zKf+8YhPvuNQ3zix6f44E1T/NAuA6+5SGmsRuxBxiyDyuAHMaVchiTWVMtV4iQiCgParSamIbCURSZrE4Yht375SXQYUsy5VItZ5uaWGJuoESUxpWJx4BSkUEBpaEQiiEJNuVICGdP3/FSiwTZ58pmj7Ny+iThOBpni1FxpLHUZHykzMlohl7Hoex62a9Hr9cnZFkHYpr7YIZfN8LK9m5FTN6OFSUrVfeH6sFInK2PmZk7jGCFlV9JsL5ItDSPsComVJY4dTN3jlo6PNCSWm10Xfg/jLnGkccwsWqfQypRUIb3flVB02ykhkDGAW0ojjZgfOXSCmbl5KtUKjcUG5aECUaJBKEzTAmmgDAuRSM6cPEutVk4R4YaBljJ1EgfQpjAIIQVsMz87TwpH04Sez6nTp+l0W8SxptFoouMIoTVzc3OYUnLm9Fm6fY84iFEImvUGuVwWwzSI49RwlyI1SG+/+352bNmUZh2lTANUSiOVSRKBNExQEo2JkGDbkqDfwrSzA9jcQBNvmexhcB4CwY//wR/xlx//faL9+1I0QJKk4ulyFTpq2zambZDJZDBMk4ceeZJDJ86ye+c2lFIgBGEUYSgDN5MhFnDu5FnKQyWkUrzn1tt426ZxkIJWu02lmCPj2nR7HkIZ3PrVB7hqx2YsyxjIrfgkUYLrOPS7HmiB74cgEqI4IptzUpkE20RJkQrVGyY/+tAB4shHXd9l4/UVMrYimzHRccxi2x/UuGnCyCOJIUpsRibGsB0Dy5Q8tu8YmzePp9law8I2FKbhEMcJcay5/6FnuWzrxIBVVNP3u8TLmn4kBFGAbTsoKVHSGNDeLzMLWwP1R4ESfXpBSBiFCARRFBHrmCgIcJSAJMAgoL7k4ah0jfnG/YeobNhOuTrGQifm1FzApi1TBDhs3X05gbDJZkp0Iof9B2bZun0Tk5NjaG1x+OgMo+Usz52YASSlss2WV2zk7k/dx62f+Qd+5Zd+gaXFGW54ybX87d98jje/8SX8zE//OjKwkDqmXBrnwBNPcc2VO/m3f/kXXF1g77XXpayhtQIf+ciH+cJnPsMffPR32ff4wyzOTnN6YZG9e69aee7FhVrSKy1OBs7PBUya571/V+r0zkPn6PWfZe0EpcTALljOxK32V2rVidNilS1TrnHz0n+vwupSUfbVuQhS/oH1zI0XbxdDBF2sjxgc+ULLaplIZf23AIZUKYNkEq/b8wKnU6yfy0U2vcDcV22+JE0hpjNYQ4Zy0X1fYNzzj7FO63jNtfh2x1z7vbjIffLttPPhnxdkB7+lffvCGb5/X+ZufXshwfO17fuEKt9D7Ttz7pZXz9T4SNfBVYak72Y7f8xl1qL1OGX9Ap/Bfpc+QuqArRwjHS9ZRxCjB8dMF2mdaM5Nz/A7v/uH/NVf/x2f//xtdA8/QPf4U8wceIRC5wTxmWdg5lmax/dxz+1f5L//4d/T6QfsueoKTGmmzmMUYSgTKQSGMkmihCROQClQBlInmIZJjEAN4J1CKRIheMU1VyMwCX3Bx/7xc/zHvTupDpVwMwamKSiWi2jAMBSWY/PZf3mAF10xxfBIicD3MQwL27EwHAtpmCRJjOM69Ds9xKDuJoki2s3OoEYvwg8D7ExKBPDlbzzMtolJLMfi3PQMprQ4dvQspaJLvb5AZXSUdrOBICEOU0jh0lIT2zZQpiYKIoQQDA2XsXMu0+fmKebzqVadiAdRzYSR0QLzCw0KuTw6hLPTCwwNlXCzFlEYI2KN54fkizkMKVKWSFsRJSGOa7HvmWOMVMtIBKEfYzoKZSh6HQ/XzhBFCf/05W/ygde/mq/e/xTbpkZoNNrsvmwLpmOgpIHlZJDKRCpjAENNiLyQ2XN1Hnn2GOVChpxjooSNMAwwTULf49YjJ6jcMMF/et1ebKmxHRdIo/LKJHVIVUSiE2w3C0mMICbWEkNl6Pd7WGb6kg+SgWMaBWlmxzTottvYbpa+HzBz7jned8MQr7sixwdeMUmv1QFhYNp5KkNDzEwv4QdQHR5CyATbUdQbbTqdgFa7R22oSBwJjh2fxhQRD+87znClxNxcg80bhhgZyeG6Drl8nvGJEaQhePaZ45ybWWB0tIppywFU1eXs9BxSCUxL0O/1sQyTQjGP5wd4vZBarcD+Z45TK+c5fPQEE+PDOJbB/MIiSgmWGk0c1yEMEvK5PB2vz/3fPEgYx5QrBbp+CGN7cDMORpygB0ZVWlZjEAtSzagwptNusDR7mqwpqYxN0eq06XQNRiY2gxmilEaaNsn+5zGEwPNSQW5UhEAR+T6GbSCFQbfVIJNLazGjOEIqiPwofY4NG8s1UGLZwDRYmG8yNjZENutQLBcgFvh+C8dykUIT9jtIw0SaBpVKnuefO0ptbCStV+t2MQdrQxiEqZFoGiwtLlHM5UiiiMWlOl6/j9YhlgFBEFIt5UHIlLjDTzM4jm2nOpg6Igw8quUKXtfHC3uARafVwHAsdAw7Nm9IIb+DABZJGpmOQ5+5c4t0O33y2czKKz6KNIadJR7oaEkJIolot9ucPHmGWq2KFqkMws3jE/zAL/8a80OTvHJ4HIFCJwl+z19ZpXWiieL0mP1un5GhKpV8lmq1jJIDZlDDIAxCOu0uGcelWCogREIchJw6dYrrR2pIqXCVyWK9SbFcxLRMLMekudBgfKKCVmnwxLAMTNtAqJQoaWm+xaHjp9kwNcqX7n8ERwgMaaGTBGVK/tMDT/PJxx7FyhZ57f+1GWKPTCaDZWeYbnRRUlHKZVBK0uinARQvTCjk8+RdG9uUSKnYsmEDcZwgdIJSMQhIkhDDSBETG6dqJMSDd0+CYRiYykJJRTwwclNCFIdYQ0KMQLLYmCb0GmRMzVJrCUNIbKExlcYx4fT0WVwTwqCLH/SwTIMohkcfep5tO7dy9HSd7Ts3Ui44BJFmvDaMYSuWGj2CMCFrC0wjQmpFnECl5pJxy5yenkUZimzGoFLKUS7m2DFVI0w0Tz30FNe/8wrspVEefeSbvPSlNzA2up182eU9H/wQZ84eYdPWCWw3i2lZLCzUmZ6bYecVe/jdP/x/2LJ5J12vyfU3Xs3Xv/FVxqYu4yc/8p/Jl0fAcnnm/geIUWzevgXDhFhLxIrG3CDlNai5k8vvc7HGPlimilwWhTvPPlj3WWbPFMvsowN7hHQBSmT62yRCp1BooVONOJF+Z6JS3biENTZHOs90n8GspEizsXpQcztwJJdr9QQDDdw18MzzbSUxqBNdbsl5zpEGYj2wddaccZrJOt+uWr5U69k/l+Gh51+mtXP4dtsyB8EK3HTgyK4M+W3Yl2tJXC7dU68Zc6DreYnP+Tm9853AZSdYX6L/RWa4MopY81+xzs1bnecLJzHOt3VXx162z9P9IdU4vPQVOd+JW45trAQxLnLma//+Pizze6h9Z7DM5QUjHjh350e3Lo4R/m78pmkd2ypm+9LFpquZtjhZ7bO82K3MZRk+FCdIJVlWRF4L0/zAB36CIAz4zK+8HtBpzZVhEAQBhjJWYEh9P2Cp3uCbD+2nkM9w7PQCrmUSBCEbx2oUchnCxOOXPv0QP/HOt9DvN7jm+peTKdUYGZvEcR2efuZpHv/GnWTps+3K63nt69+CUx2i128MTiqt4fHaDZSd5eTJaf7oN36b39u7i7//4v28/aYXUyg6xFrT6/axLItWs4cWAeVimfpSk5GREl4/4L6HD/LmW26g3W1gGzYYRipPAJw6M8+OnVMEfoBl24DG9wNMw8T3UzHkKIzp9z2qtQKBHzI7U2dq4yhJ4KMyWbx2E60hk80OamscEkK6rT4nji2wY8c4ieyThAanzsyxdeMG7rjvCV5x/S7KlTztTpd8LkOEwFSSqB8QRyGGk+HUyXNMTo0hbBBJgtA6lSOQFkJAvd6gVMoxN9OkXCxguxb15iKlUhWdJHz6S1/jPa99JX7YR0mD0I/J57Mp+ESn0V8/8Mg4Lt1OBzdno3WC3wmxHQshJEEQcPfD+7n5xhejrDSDYdtZ/vOjB/njj7yKRrtNrVohDCKarRaFYhatNaZpDrIQCpKYWCfEiUYpBpkaA63T2rkkMpAqIYrbSKNAr9Mgl7Xod1u0PMnffOFe3vPiHMVyAdtxsEyH0E/o9QM+98XHeMX1l7Fl2wbiyMcyTYIwpNHo8vDjR3ndD1xLo7FILmPR7YXUW122bZ5i5twcQ8NDaJ3geT38IMBWDs1Wl3seeJ53v/VlCKWxbYvQ7xNrCPyUkOPQ4TMkEezatYFP//M3eNMP7mFopIrX81iYbzA0VAYV43kB+VwOrxfRDbrkHBfLtOj2+1hGQujFKWtjxiH0Ahr1edqtFmGUkM3aPOu+kre9570khotUayDMkBJ9JDFLZ49Snz9GsTrB8NQOvMhCWkCc3k+CgETYPP+xP2Db0Che3yNOehhmFtfNkyQBSRISJRpLOSB8EBZRmKCMlAgl9mOW6kvEWjI0WkNonUoEGCZJktaeRWEEWmNISBKBNBVCKpIwzcZJldZ1pWubJk7CFC5k2IR+iBKC5lKLxcVF4ijCDzwsQ6VZpsAnY0tyOYez52YxDQvTVLTbXUZGhvGCALSR3ksJaD2o/5EJGyc3EaMII8H09CyX79lGnKS1flESokWcwiUNCwGEfrhSp2S5Bu1GKivguC6JDla2pdm6GE2SamOGPlIaWI5LHIN4z9t5//t+hH9861vw+/2UtXM5U6FBKoNOs00+l6XVbJOvFYj8EGJN4AU4eZf6Yp2M6xDFMdmMy/z8IsPjo/gzJ7BM8DoxykpSYiLg9OlzTEwMD/TC0jtF65TsKg4jlGngOBa+F6CEkUq3hD5SwhPPPMdVu7byoUee4xd/9qf47L1/w+QrRxirDOPHIZZh0Ol2MVRCo+unDl4hn9bu6mTAXmix0PQwpE+9VWfL5DhJnDoIQRiipIVpwkKzQ9bJcPudD/H6196AbaR1lgIxyOaGQEgSh3zt3me4/rrtuDaYSnD09DnGayk8vdHxqOZsHCvGjyVPPtsmX8hSKuYo57NMLy5RLuQJQqgUcpxeXGSsUuT0uVmmRmuEcULWzlBv9fEDj4nhEj0vxA99ojgk7xa4/4kjXL17nONn6rx49ybmllpYpsnJc4t0u10q5Twbx4aIkwCdKObP9Hl18SbyTp6R8RHuvPtrvPaWN/CpT/0x/+GHPwS4nDu7xH/9xV/hZ37+pzh4+HlGxjfxqte8iD//s09y/XWv4vOfv41f/42fZ6nZJZ/P8uAD9/K5z97KocOHGa8VscpV3vuxG9EqZX+UiUQLTaTh3377SX7qJ36Mm171MhhA8cQKfHgZcnkJKNza4O/ASVKD2vr0nk+3x+h1/ddltLQGPXDKpFi1MZaduwH0cdkmEfo82OaaGryLCYuvJVpZB5lchpgPBMvXn5ZYYcxc7hut+ftS+13su4u11PlbhS1eLEu1mmF8YWKRFeTUece4FGDw23MrzzuvJHXEpVBpYC1KA0+mYa4j5Fud65r5oS8g6LtwLhdes9VcbnzBtrXtW4uY//thmssxgOT8XS5o689IynSf74uYfw+17yxzt/oYrUogvEDv72I2T695FJa/Ob/HcrRjtRB5TeQpWSO2yZoz0auRvi//21386q/+Np2D32RvrsFbb9jCO162fSXYpwFDKRbn61imxa1f+BrHj5/haw89zcHDZ0jChJtu2EvY6/GiPdsJAp/pxToZ22BiosLPvOWl3P7le3j7Bz/E7/7fv8MTDz/I3/31X/G/P/FXfOLTn+Htb3gt3cUz7LnySqqVMj//C7/ID7z2FtCgBmQoYRKiTJvaUI1P/OPneOfmCfbu3AaJYH5hgVKpSKPVwjINgiBmrl5ncb5DNmuTyVqYhsn2rSN4Xh/HzhD4Psq00miwYfD84bNsmBomjmOkVCQk+L0IQynarTaOaRJGAbmMSxinxuvZ2QXymQyBF6AcE0OmpBLdbo84glajRyZvQ6IZHSuhlCCJBKZp0+v7HDpxmst3TFEsZInikFw2y8FDp8i7DoZh8pX7HmXj5DjtVo+x8SEMW+P3eiwttnAMC2VaqbEUBGQyLlonOI7JoUNnuP/R5wmjkPHRKqZtsnmsim2bGKZFHEdEkY/tKHQSoHXK/nr61FxKnpBobMMk7AcYlo00FGGiUaZk19ZNqTi4EHz5yCl+57mz/Oa7r8a2DfID9sRU8y/tn0boU4FpTcqcp6RAGqm4coJESImO01oYy5W0mnUytkMiDKIwxJCSBw+cYku1x1SujzIzIHI0myFK2bQ7Pm4hS841ybk2x0+cZahWRgjN7Owic/MtNkxWyecyOLZJFMa0Oz02bBwFBCdPzTMyXODI0VMM1cq0Wn2CIMRxTa7esxlE6tgFoUe72UcqyORyKGkwOlKiWi3QaXcYrmWYmhoelKUKup0eQZiKQZuGYrHeIJPNYmiNa1scPn6Kaq2AQNNt9ej0fDI5l3p9iTjuMjc3T6/vo2PNX95xlA++920klgsD5jUNpCUwCr/bJerM4uRGiIwcbrGKqWJsFIZMgAShFe961/v58HUvGYQqIex3UaaJZTpEcZckHrAPakHfa2GYbloDG2varQ5+3ycOo5Q5NeemtXE6AZkaBoY0EKQ6azNzs2RzFeIkQJDWTJlmyhyHgDDy0FFIfXEJ23bQsUZqmJueo9/p4Xt9JJqsa+NYJoYhaSzNkXUNfL9DHPlkHQfXMRipFjANTaOxwGi1QqPVJE5icplcWlcmNUZi0movUsjn8YI+hWwqvt5s1Ql9MC0DpSRKWpCA73u4GQepjDRrLiX7nn6OkZEaUqVivVKmNX0JGp0keN0+2UIRIVMCDIXiwVaTX/7PP0+y7xlM01whkZBK0mg0sQb6kkqmARSh04xeu9fDzWXodVPG1U6vm2pbaqhUK3zgttt49/aJtMZTBhimTRCmjKyuY5HEKQvl088fZqhcxLQtpIYkTFiqN5Ek9PwQrx/xjUf3U6taKCG4f6HO/zy9wJ6dl9HafRBnLEcURLi25uzMLAKNF/RYareolIYo5HIgJEnsg5QkWkCiaXV95hbrbJ0aJYoEzU5ar6iUGBjVIa7toKTB9q3jgyxShCJAax/DkHQ6S1gDiZPNU6N0+m327z+Gkyux74nDbNi4DcetkMlW+NydhxmqWUTSZWJ8ilOzDTZNjmE7Nv1QUi3m0TIZwP0NwjBktJqn1W4hlJ3WJiU+kd8g1BLbtFIWYtcGBOVSgSD02Dw+ihf2yGVMEh2TcVyOPX+SrVvGuefLj7Lzskls0yJUEae+eY4v3vZvHD9xlNe/4XX80z/9M9OnzlIuDlOrjPDQQw8xNTbMyFiZx594hJ/4yQ/z1JNPMzo6yg03XkvfazIyOsT+fU9z19138Lo3vJbq0BTT9Xlu/rVrCQtL7Ng+RaBTRmSFJBEpN8nOV47Rzp3jT37rk7z5DW9mBT0pxIqUyiVdgkuRXizHiJdzNuL8/oM/SVMhEkESnw8vXHXaYA2k+QKSErFuvIsRhKxk0rgQ9QSs0/ZbbsuEKytm+7pSlNTeuqA+D83F4J4XtAFk8VKAweX/Xw3NrYdLpnNIBnbfCzts52/79qzOC89LDH4n0PhhgGs7K9vW9lxvQZ7/16WOcmGP1azdCyc/vjXxyqXc3vO3X2QOy7fzt51/WU7YpM6m+X1Y5vdO+86cu/RGTB27FwA8XiKN/u3CN9eyQy3DH+QFcMwLZ7Z8DNArWbuVB3OwQiQDJ08MYAYIeNc7/wOHHrqDH71xlHe+dDtXb59IjZR4IOUZCfrdgP37DvLIQ/t47tBRnj5wlGbTJw5AJ30sCUGceoB7r7yMbDbPxqlxDh87zNTYKKYhmZmZpmj2+LU//wyYBXZcfgW1osP2zZfxmX/6DFuuuIapK19Ke3aauaP38Z5f+q9IbQFiYFQpem2PcrHM0mKdL91+BzcXy9zz4D6GqnlmFpaYPS3m2pQAACAASURBVLfEhslhcjkHxzY5OTPP1VdtH+jJuUSRRmiwbAsUGI4NIRCHxPg8fugEu7dNpRAxz8dQJp12H7Tg4PEzTEyOYRgWhmXQXWyTybrMLC4yXCvxhXse56odmwGJ56X1Hs88f5qt20cR8cA1F5LjJ8+RcVwe2f8cey/bxYZNJUzDxnZVWoslBeVyboUsYOfWKVqtFpVKljgOkcpAoqkvdfjqowfYOjVGHPqYA+KWVreDCEyGR4vs3DHG+PgwSeijteDEyRlkAtlcDmVaOK6JEGFKr2/aeF5IdaRCNmtiZx3aLY+lhS4zi0vUamVsyyEMA1ASr+vxwa8/ya//zC288dot3H7XY+y5aid+v4HX76GkICbG6/SxHAutbQwVgbJTiKYU6DghESa2lCjRQWBjKIWOLUzHJRIxYdjh47fv42O3HeCXb5kkDHo4Tp4ohJOnmmzZPIrn9zBMA0sa5HN5ytUKYeCjk4BcvkAcQaWYIYpCqtU8s/N18qUCGcel3WqQcQ1MBVGgcQfsnUOjBZIE8vkMhjI5dOQ0lqFxslkcJ8PcuXn2P3OCyfEaMo44PT1LpVzGNk0MI31+250upUqBrz1wgCTwMBWUS3kMaRIGEmEZ1CoVvE5EECVYrkXXb1PIV3EcEyMOaTQazDa6xInFnQcWuGHvHsq1SZSx+lKSpNqESvsszE3TxaVULpNxrUHAJ1kx6A4fOsKPFUor60WiSfXeogTTdQl7HsJUSG2hRUIQCEwpue2O+7h85w7mzs3j2i6gOTs3x8jwKFokRFGAZZkomdZQyZQQk4zjEvg9fC/Eth2kpVLqfzO9v9GCTrtHEmscx6FTb7Awv8DS0hLZTIZ2v4vne2Rsi9m5c/SXmhSrWTJ5i3K5RDFToFDMIow8tiEQhsLN5vD7PlF3EUvl6IVNRodHCKKEvtej0WpTKeTRIsH3+8RRROiHFKqFFVZdKdNrZjoG/V5/5dk0TMnE+DBoaC40Uoi5kdbfmoaBkAplmChDpsi3AWTqa1/5CjtfejU//LH/l7ds24EyLJAglSKTyXHk+aPkC1mWmk0yA6i2lAZ33/swO7ZsRpoWpiGxTAPTNNNsIAYHjx/jxrEhkiSg0wmRhkEmY6cOupPqEpqmyeTEBFIYeH4fw5b4QcAdjzzB9slxTp08QyXnYlvQjHv8aU/y4V//FebOzXPAfpBiuUCtVOCr9+xn+87tSAMK+Ty2ZVEs5FloBRiGxFCAcojDCFMpkArXTBiq5IjiCETCp297ghfv2UQU92l2G2SdPGESIkVaR+rHCXlTs1CfxzYl/W6L+bpHLjeEVjkW2wGtPuy54gq+fM8z3Pzqa4iFzdl6k3LBZdvGCYJIUSqO4CcezxyaYdPUJFEU4hoCPw5xbQNDClxD0k8UTz51kC2bprjrzq+zZeskt972GNI0mBof494HDtD3u9TKQ9z1tce4ctckUjrc87UHOHV6gampIXKuy6HjZxkeK+LaNpObRsnYZY6dPosUAR965U/zspe9nHNzs/yvj/8NP/dzv8TNt9zC088/ywMPHuTgsWd43wc/xJbtl/PIo/v518/fyq7LdlMuV/jCF2/n5PHjbNm0kdnpUzx+4Dm+fMddPGvvY8/rp3CdDGcWfQ4+sp9KLUc+mwFlEocp3NEQqYuw6cVD7J97iN/+6b/gne96CwiRBjEHRBuranYa5MDHJlmBQSo1qIm7qO08gMYNZEeElggtBvV16XOzDHlLREqGpElS6DJpAERKhZTqwvGTGHQyINHUJKTi5MswTU2y4tyt/awVO18WQU/WBbjXuB7LGbyBMyUHjnEqsyEGWS3jQrjieceT0kQvZ8d1aoutzRIKWCH5WR1Drjhxq9acXmG7XL4gy3NfzY6+EGBwdaRVv3vteOs/QkiUUIPrJVd2uiBRsHLsgS28Mm/FWlinHIyVOsiKi/yoa46/fn4X/I7Lv4pIb8r1VZPivLH0mrmc3+/Ctgq/vGDLRfuvbUKI78Myv5fad4MtM3WwLsJmtAwrOD/a8y2+v9j4l0pFX4qd6HxY5gXO3fK2wfdSJ7z/ff+Rv/uFH8BQq5XYy1E4HYZYMq11eeChB+l4CVs2b2T71g2YZgY/8Lj19ru4fOcku3dezu13fJNcLsvMXJsdm0Y4fbZOoeDQ6ja4cudOntj3LDe/8mqUFJw+u8CfPNri93/7N/FaC9z5pX/mbe/6AI1+QiwM/vpjH+WyDRl+7Fc/SmKm7FXLL5hjh45RrlaxbYv3fvDH+fsbX0Sn1QESiqUcQRhRbyxRqxZpt/tp7Z1l4vU8coUsiU6wlKTd6ZEvltBas1RfoFAo0Gz00IGgUiukZCIKhCWQWqVEKNLi+YMn6PZ9rtmznU6rQ6laQCeaoO/R82LiJKFUypM62CGW6RInHmiDKO7jug71epNyuUS31aPV8hieKEBipCLGIjV0HXdAUCJTqGWlWsLvh7iuTSIkSRLSbvb4l7sf5fU3Xo2dkeRyObSGMA5wjAzNdot8MSXKaNbrFEtlAELPQ1kGhuHQ67RwbIVpmYShJh44vjpJQKWwuJzrYjo23W6bbDZPHIYkCP6hdY6rh1x2XrYBJQ1arS6VSgGlLISGe+57lJe/4sUYMiGIA/q9hHLVRifpy05IiU7AMCQigaXmIsXCKOCRxlUVcSz54T+6g0/+xFbiqEsUdLHsMRCKs2cXqNYcLFPS7/tkcwXOnp5lcmo8lRMIfI4cm2bv3l10uh3QEZZKr7OWgkajRda26Xp9hodrJFrw2BMHuGLXNp47fJIrL99Mp9VFSJESXhgWQgYkSEzTYf7cPKVykSCIWKrXGR0fRimD0A+QCsIoJbsJw7SuUwiLe7/xBNdfu53jx2cYGS5QHS6QxDHEoDGIk4Rev0POrSFVQLfbo9Nc4sTxY5hWhsnxIaJrPszGq14GURdjAL8TwkASsTh7mlZ9Drs8yfjE+AUwbITg/t/6Pa7fumN1TYgTvO5CKqVRHSLqdoi1wnYKaELAIAkDbr3jXt7wmpvoNtskcYzr2milcFwXISGOA6Q0UMZyNUVa0JDoVCpAD+ouhUzho71eDyEN0JJGvcHCwiK5jJvqx5kmrXYDJQT1pXkKOZe+36WYz5NIycETs7z2VTfT73fIFwya9T4nZmaZHC3SaSfc/fAzvPVVexFKcOzkDKWiDaGH65bo9PuEkcZ18khlsGFqnNn5eUbHhpEDp1UPYErKMEmSiDCKsU17IPUS0250MJSJ1+8zM7/Izt1bUaaxLkMQ+Ck8PAzjVA8TwXtvvZW//cT/5Ec/9HN86i1vGqz1ikcffpoXvehypAS/5+O4Lo16gzCKeOzAAV59w3WAwHEsEBALCbHm2QOH2JDXKFOkxEx+iiYQJvQ6ffL5PEms+eQXvsqPveUH6fX6ZPMuvXaTMIiJIk11qEx9YY5vzi7yTws9/vrPfg03P8w73/9TvPFXr+Tc/CKODWNDNWKdGlyGsogTSd/zybomYSyIk5T1UEqwDQFap3Vg0khZMJOYnu9hqhym0hgyFdJOtCbRAa1uH9d2icIuGVORJIJ+qMllLE7NtNg4Okyj08ELJa5joRQ4lkW72yafydHxArKOQYJPFMTU2z5xz2dqooJpKJ58+ghX7N7FfKuDbRtYSnL02Bl27dqJiPvEWmAYEs9PMITJM0dOsHfXJoIoQWuPOLGRBNiWyfMnl7h88xAPPPEcUeizccMohmFRK2VJEjh6coZ+GFEuFnnskSNc09vGtVddx0tuvJaHH3uUfl9z+5f+AatQo7HUpdPvcPDws0Shz8/+/Y8QeB6dboTr2jRaHYZrJZ58/Cjbd06wY+MoD+87yPBIDUNpxqolHn/mOEGri+53uO5lV5LNZtL6USERqIFLtN7+uP/jz1Mwh/gff/BbgzVCgFhrbIsVVsUkSaWOdHwR+0OAPj/btgxfW5MZWTZ/4hUmTr3s7aUoB7F+35U2KBlZhYCKgf7jYP0iuihU8nx45trvLtUudAEGxxFphl4PmD1X+q+FcSYJSqZZXLHGCRKD4y7PQwiV9lkZY9m5Pm8ul7ABLwXT/E6aRg6c/GVoa7Ti9F+src+lAefr/Qmxck4XZ/+8NA7yAljqeffWxXKwvGCPf8+V+vbchO+zZX4Pte8kc7e++PPCH/9bZebO3/ZCGb5L97n4Tbe6OOhV+OWyk7g2SoTgt/7773PX5z/Fn37kB9LsCRqBIknilBghjoi9iMcefYxmvcWeKy/n0LFZrr1mLxoTjUez2UImFlfvuZYw8BmulZk+N4fWEc1ml80bh2h32uzatpFjJ2dpdzyuvHwr3b7H0wdP0Q4DLr/qOlw3yyf/6o+4++57+OfPfo4//9M/ZWHpGG99480IOpTGtgIQxymv/MzZGXK5lMjgi1+6nTeNDvEPX/46L75iK16vj5s1yWTcVGPNsTFVqgXluBZSStqtDlEUEIUJEgtlSCxTEyWax/YfZ2IkSyZjoyxNEPdTUVut0TrGUAalYp58ziGTsXGzLslgbpZhMj2zQK/vUakUERJM2yDs+TSbS2TzecIAAj8hDgWdlocyNYVSBtN0iOIInUieO3icSrmA4zjU63WyWRfDVHieRxKllN6fuu3rXLlrM0LAi3ZvxVQGjU5nUNNmDOCOqS7d9PQc+axLLpuh7wV4fS8VeE9ilDIRDCBghkQZVhrJQqc1UoBlGwShTxwlOK4FWjDfbjO9Ocurr96B6zhknEwKMx2Q4wilaTSW2LplEstN2fksS2JbDomIaS41EUKkNY0CQq+HloJspggiJgo9Eu3z/j/8KrfsNnjLi+xBFjXD0WNLjI6VCOOQSq2IMhIsy6bTDQiDkGIh1QQ8euwsi/Um2YxLqZRFSo2TsWksNen1AgrFAvOLi0ggnyukpo9hMlLLY9kmIyNVhDRxXYMgCLFtm/n5Omen5zlzZo7JiWFsxyWJY06emsYwFI5rMzO7SK1Sot3uI0SM41r4foDnBSw1ughSuOrERA3HcvF9n6efPYlrual+nGOhY5+FuSboGKdYwbUt+u0WndYSlXIev3YlxfENWEoiVEo1LoXizPGD9JpLDI1PUSwPrYcPDcLmP/zeD/GRG25ct64kWmMASloIw0EHMXbGJQpjDFulUXhitm7aiADMQWYrCHyQAse18ftpfZlUEq/fxjRNSBgIihupMaME7VYL07TTiL5InWYpUw2uVqNBY2mRoUqJ46dP4FqKbq+OY0hK5RIjI8PkclkiUWBidGuqoWeldUX5fI2RsRH8TpYHnnmMW266Gscq8bVHDnBits7GoTEsqQdwbIue59HzQsIgIgxClJFKfRjSIIliTMsi8MO0LhAGOn2pJp3f6/OVe+9nYb7Ojm2bqVTKWI45iMinlzqOYgwzFXxf1r0DwRu2buIn/+Tj/Nmf/jH/7c/+nFdOTKSwc6HIFXMIoFlv0VhsMDRSo9frsWPrFF7gIYB2s4VpO8QJ+F6fX3niEV7qGJimNdDvDDBMSZIkOJYJiSZJJKaOGa6V+OJ9D7JtYpzQS9ks/+Ku+/hkO+Dzp8/x8x/9NV5z00385kf/nC/e+2+89peuQkmJ49i4dhmExXyzj23ZKYFPLDh0eoZKMT/IbEgOn5xhpJLD8/oEYeoIaWEBGiXBsQwMFeKHHXp+f8AWKpA6ouhaqbQEPv1+yAOPHGHj5s20vYDhUoVWp0ur3aZarnH7nY9x2Y5JpBTUW12SOKLRbOPaFq5tM1sPyFomKBtlSEI01eoQ7V5ArZQn46SO+tRImUQoOp029937JFu2bOKpgyc5PT2HaRjUKjkSrbn3/kcZGx9l/7NHiJKEQ4fnGBnOMTJUYePkEKenFzFNm2opj5SS2cUlrtgxgWW5PHt6iew8vOamV1EpF3AzDr/8G7/ONR/ZxfjVFt1Cn5e+/TJe8e6XMKNCrrhsIw8/eIit28bodHtsnhjmvnv2EWnFVZdv4tYvPgzAzm2T1BtLFPIu1XIe03U5cXSO6aNn8II+ftSnUiwSLbPCsr60Y+OLaozuzfCJP/l7PvGXn0uzeee3QWZDyvUgOnFB2mjFMxs4amLNe3uZfGNgvSwzQa7Uu6mUDVWKVBrjfJso9RAG72GQclmuYE3Zycq81ue/VgXQV3BXK3YQpFwEae5n4Ajq5cOtZ/RELGeW9AX22XJL552Sv6SFvmsc1jVr7YqG3pqZrr+UA326C1Baqxk9fcEY63utbd+O96FXWEpXtQkvlkhY/tkvPEZ6f60yoS6jzS4Ou9QveB7L2cTlazY4hlj3i5zX//xZXqxd7Pv/06u1/sb/Plvm91D7/9O5+5b7f1dq8C5x3DU3/urjtPyArO7zsz/+YT76gRfxmqs3r/RfHldpTade5/EHH+ehJ46xYbLKgedPcnZukWY3YP+BExw+fJqMDXOzi+zcNsXtd97LZTu3cPdXH2DLhhpjtRxjo8Ocm5sFYmZnWwipsW3Jju2bWFhc4qord1DG420f+W8ceOJJpsZGeP/7349rS9719jfypre+mWq5SrBwlqHte0FrlFJ02m0+/r/+ipte/SrCMODJJ5/mprzNtrEahiFwbBOSiCiImZ9Nac+FSkjiGM/zCcMQU2RwHAPbdjl2YoZczsC2M5imxYaNw9QX5vn648+xbdMmpGEgEpPQT0XNl5ZaWKYkl88SJxFex0cZCj8KSLTm6YMnueqyrRw+eopqpYgwBAYC00hIlMXTzx6hXMyjlMFcvcHwUAnTkpDY9PpdLNOkWily8swM52bmGaqU8fyAA4ePs2F8bMC4Kdm9dRM6jNBJRJiExDqhNlxBCslnbv86rlK4GZtMJouONLZtgAZhKJ589nnGhyuYhs2/3PUAuzZPonWENE2UMknimND3QQhMpVIdPMei2+wjpOSnHzvID948wVA5j+U42JbFuXPTLC4uYVoGxXKeffsPMlyrEsUJdsYe3F4haIk0BWDg2G76uwqJlBZIjY6h057mnR+7l3ddm+WNe7II3UWaeZ4/dJJKpUI2n+fwkRPUqmWWlppk3CzNZp9SqYTtmMycW6C+1OaBx49zw7XbqFUc4qDPwkKdbC5PGAS0Wz75fI56YwmdKGpDQ4OMS4hpZtDEK8E/w1BkXBclFaZpMDfXYmp0iDjR2BkHQwkyjkEun0Upg8D36Xa7SGFw6swsEollWoRBjGFEjA5VkULgOjZf+/o+tm4dZ3J8mCSC+fkWtiVZqs8yXC3iZEsokcKZNIp2s02/3+c3PvUE733Hm5DKIPC91JESin5znsjvITNFpGGhDLW65gjBu9/9I/zdm964fhlJByfodQmDCDubQ4chyDQLFYQ+oZ9gWClBgFISr9cjTmIc20YDtmujE7jzngfZvmUDyjLptn0sx0FZy+temsuzbQct1IBp0xzIrqQyISIOyRjQaS+RcVxiHVKqFKgNT/D4wcNYmQqjk1sol2o0O02UISkWikSxRMmI+x9+nM3btrJheDgl9jATtk2McuWOKR554mk2TI5hGgZe0Ke+uEA1X8NxbXpen17fI/QjRAK9vs/MzDyVWgVlpHpsaXlgqtUXJzFX7N5JPpMlSnxy+TzIlFIgdVYAIdPMv1gln0g0mKbJddUCheuu54qrruZnPv7XvH3nDvKFDEkQE0UR+VKeXLFAr9clk8kghMSQFrZrY9sWcRhjGiaWbfD2MZdcPotlWkhBqntmWZiWw9L8Eo1mky8cP80nlzr845GTnKtUeM7Os+VNP0jt5tdw47vfyEtfvI1Mpsrv/fHfcFgeZO9bJ9h8zRBCSIIkZax86vAMhbzLffc9wZW7N+JHEV4Yc+rsLGPDJRjA6sIEspkMhjLSYM4goi90gtARZ2fOkWBRzOZwHAclbeJY0++18LwebS/GtPPU2332XrkDLVItwhPTi3S9kG4v4Mx8g/pih7GJIR55+hhXbJ1iqdVky8Qwna7PTH2JsWqV48cOE4WLNDshtfIQj+07wNTYKMpQJInm6w8dYOtUjU6QcOrUWV7y4sv41zueZHg4x55dEyzUW4wOlXj8maNcdcVGlLR48IGjbNhYw8nYTA673HPfAcYnqpimRacXsP+54+zaMkGllOfcQofDR05ScCU/+vIP81/+yy9wzyOPMls7xkvetZtjp+rkMgYbN4yRdRWnZpaYnKwQRhFX7N5Iu9Nhw1gNy1Rs3z7Bzm2TzC41uPzyDWyYrBGFHoaEVscj62ZJdMSxM0u0vYTaSInezDwL9RbDY0NrfJSVEPDyAsD4FVV2vXKMp+ce5m//4n/zxAOHePnLbzjP6lgGJA6ghXKZ2XG9/YEYOIODv5WSq/p3K33WQ/wGZYIr9tWFmnbnQSHPq5/Ty1IKrIdjpoe4OI/jWtdtbTZvZeQVW23NXPSFjsr5pHnLWacVWOF5/c93QC/eLu4QrT3mCzl3F/T/FkdKx1yvo5FCXS+Urbq02zQAaiar8mAvLJWgv+V5rLKbinV/f3edu//TPuu3f9+5+x5q34lzp4lS7aIVqMFqLdxF+6+BY363yFW+9UMzgADoNIqik7TG7K7bv8o9n/4zfvX9r0gXtiRGC4MUw6xJNNx/3zeIvD6mJbnuJddQrRUp5Yv4XsxSvcvlO8ZJYp/xsTL7Dxxkw8QwSx2PE8ePsXFyjJGREYSy6XttrrpyB+NjVQquYGi4Qhx22bJpI1JYPLX/CNdedyWdCK59ycuxcxWuvfEl3PiaWzhxrsPmbVtwCyUeffQAO3fsot5roDIGlWyePXv3YNsOtunw6ptejXHgYaQWdJo9bNfED0OEULiuzczsHLZr4bpZLMfCD3zOnDnH88fPMjUxxkPPPM+WDaPoWPHII88xOTJClAiiMKRWLTC3sMjj+45w5MgM2zZNcveD+7ls20biJMJyLf71jgfYMFwln89jmCZT4xWkIRgZKRNEASJJiJKEvp9S8DvSolYrY1qScjmLIRXdXhfLkDQWumRzDqapKRVznDgzx1C5RL6YoZzPI7SJMgRBGGNbipgYqRSRH6XGvWEitWDPjs1UygVs18X30kymFgJpJpAkTNSGSWKJH3YYq5bRAnKFHEkQE0cRURhiW3b6UjbSonwhIJNz6bY93vGuq8gUHbx+SDaTAwSOZVKpZIijLvX5ebbt2oHjOpiWhRKKRBjoRCBUQr/dw7JNDOWSxAF+b25A3BHyPz73KHm9wE+/booo6HL61DRFJ4fh5qgMlREiIeMo8C06nQ6VcpVmYwkpBI8/dZANEzVOHVsAGbF3zwby+TL9/iK2nSERJk7WJutmyeQdDENTKed5+rmTTIwOMT8/Ryaj6HsRntch6PewjVSXMIoCjhydJokE23ZM8OSzxyhlLKRQ2JbB9Ll5HMth5tw02UyW+XqX+YUmxUKGDVPjJEnC8ZPnGKrm8QIfwzTp9Dy2bd8EsWZxbpEDzx9nZGSESq1IrlDCsAcyHL6H4zgIqagvzBOHMW958RD2xmvJFqoIZaKBKOzT7PTwPB9DhxhuEcd18cIYLQ3e/a4f5lNvftsgk58gErliyWitieJOCqdTJokMkKaNFBJTGli2pN/zMEwDJRX9rg9xgjBNDCGQlomyBDu3b+JLX7mfLRs2srjYoN3uUK4USeIILVOjLOiFGJYgDCLiCPY99TzDw6kTlc1lEUohTRM7U+TouSVOLrTZvf0yJscnmJwagyTBC3rUqlWUEtiOwcy5JnNzC1QLZYqlHL7vpbIgcYjl5kGY7Ny1FW0YfPX+g+y+bJJC1qLX79DpdTEHNPyOa9H3+mgtmBgbob64QCafS2HEUUSKIJUo00QIyOUzGJZNIkATILFS6Clp1F6jETpJURWGQqhUg80WJrMPP8zGH/oh3vGOt/G+3/0or9+yORWxN+w04i+h1+0RE2IYJpblEIUxppkS1ViGwbtvu5VbhsuYhgkI+mHCrz19mL89coYvnZ2n+Mqb2P7uNzP2kt284dVv4oPvfRvveOvNnDx9jL/85Gepbz3J6eQwh4MjJGNLXHXzJKVRiyTxsJ0MccKg7s9kslbAMmD71lHQCYYhcQzNhrFhtLSQSWrwF/IusfbRUiKEgSUFIunQ6nRx3AJuroBp2qnmqA4I/R71vo9SFok2ObvYx7QixoZHCSOPXjfCtV3K+Qz5rEMm4zB96hyvfulOwrDLxGiRVrtHuVTi2PQCQRAzMTTCPXd+nZfeeAWCHqPDo/iJyeRYjTAOOD09T96V7NxSIgYazSYAthlz9e4Jsk4GpVxMx2JuscXEaJVyPk/GVpSqWeYXFsnlbHq+YNf2Ldz5lYepjhXI5V3mTy8wMlrl+ZNzaBRev00cwT/+yT8zvnUc+0bNVXs3s9hoY1qKzZPjxFGEpWCm4bNz4xjFnMWR46fIZ2warR451+WOux4nIOHAvpNs3JDHMV0eePAgu3ds4d6vP8PmLaMcOjaN7Vps2DKKHwuePFTHdgw2jWYRhkOCWDW8V/5Zb66O765R3Cn40l23c/LJOa7acwUAsRjUV63B461FOAoxyEj9f+y9abRk11mm+ezhjDHHnafMm3MqU5PlGQMewFjGVLXL2BgoGxtYLhYUNENDsajViwa6qO6muvhRRVOsRS0aurAxBgwGl2d5lGTJUmrKTCnn6ebNO98bc5x5948Td8yUbAx0+4e31kndiNhxztn7RJz43v1+3/uaTeXETfYlF8zK7RwHTNRtxNxgQSQzWwwjDETU8jySXYRJXj+8vSF2gpKBwurge5erhG9W/sktILiz/67Hm8cQm15zg17ZwLZjcEaDKdiqo9sGSYNxY3bVAW4Jo7xkZpfa6rdZI3jntrkvucWASSm3480923bbBHC7bRPyzezZVF4YIfSO0e7c3+4aO7Hp+bxZW7k1K2ILrufnm+8lB+KbQFgN2MrNbS8jKgfznK8cbM6xMSmQp7W/2Ijztrcmb2fMvvs9Zs/k3f4NEbveWj8w4AAAIABJREFUpy3r2+DuW6X9wwRV8h/tF6PlX6z9Y6pmZiYb1H9tpzrsbWaHf4sx8O53v59ffcsMDxydzm8Ag9whAWRJRNBuce6ZZyEK6Xf7NDYa1Gp11tbWOXt+jrWNHpMTddabHfbPjPHEkze5/+QR2u0u05OjKCmYnByjUi3T7nQZGapTrVcplcpcuTTH/v37mJke58rVeQrFEvNLy0xNjfLG+47w67//17z//e9Fa8X/+PM/z3vf8x5+4zd+i+mpfXTWWxy96yDDE2NIbSPSjHAAZpIsBBmRPvEEtuOwurqBkVAqlmi1u5TKRbQSJClolXvDmcwwXC8zMzWKVJKK71IuV3KxgelhhMz3v29yPLd9UBZHD0wzNV7j2Rcu8qbX3U8Q5HV8SkoOzIzjeA5CCHqdHpZlobXGGPL0rlQwP7eCktZArj9PfW212gB0Or2B2IGNra3cj0iBMYKJsRGiKEAIg+s6KC3YWG/lAbDMP1NpmhHHuUeU6+T+fMtL6xTKRYzJSJMk92CzLfrtgM2bemZSTJahLZtiyaMf9HE8HwDHdRFKDwQyUjbdhdIk5RdPn+e7jw2jpYdte0BGZvo4jkun06Nar1OpDxMnoLXOV+tFXkgehn1sx8KyvTyQI8KYDNsqsNZs8+P/+Sv8ux+aYGJ0iM9/8WvsmxzHdQpYTonUCJTKC+jDfoxfKVGoOCQm4dTTlzh25ADFQm66PD5aoFAoI5WDlGluaWG5dLq5L1c6MIJe32jiOA4TozXiOMG2bNLEkGYSx7ZxPR+tra0fq2qlTLPRoVjIU4KG6jWiKMR2NJVyEQx4ns/NhVWOHdnPzRu3ODg7xdp6g1KpiGVJUIJarUYcxSwubjBczyXvh0eGGKpXSNOMq9fnkXKQ6mvljOvq+ga+61Iu2NxaWGF0bIh9r/lnZFnOzBkhsWybgusQdTYgaNPvpCT9Hlmvx798z0/y/7z1zbkHlhAIlV9TIyDLUkyS5pYbscG2fYxJkZaFyXKrhySJByvwA7XILGevsgyiMKJQLoDJfe60kNSHKlRruU2I53u5Z5WUpKlBK0kSGZI4Z+OHhmoIkdsASCFwHQe/VMNSLvsmJzl28AB//t8/x6tecQ+9TkCagWu7gMC2HdI0wyu42FIyPDJM0MuvpclEvvggcr88y7GxbZv9+8aAjBtzKzQ6HYaKDpBSKpRJkowwDjGZoNfrY1sWaZyxsdagVC1jRK7kJwbpYWmaAzmJJOrldTZK52nwUklEpjBGkSYMxAoyTJoiEMTdiJ/+vd/jHe/457z97W/jquvwS3/4R/zAwcP574UwrC5vMDRcRSqRp64SI5Sh2+2glOQHp4v81hNn+L+vLrIxc4yH1lvcWF5CCZi5x+XK/BU+8+UvcCW+xqef+jhPN04xZ64gJhTjD9hUSj7Xbi3j+Ra2UyJDY1kevSghjAwIk9fDCkOS5OOzLJ2nSRmfZreLVClaJiSZRgiDJMPCQgqFbcFaa5l2AKVSiTQzWNqg04hWu00/TEE4FNwS88sbjNaq1ColpJFIaSFlRhimKJUHZd0gpF4uMDxc4eEvn6IyVOHJU5coVatMjVRxLMn8whKlkodwNCvrHRzPx3HKnLu+yPmzl7nr6AFcx6EbhPSCgE4fvvKFs9x/72FuLa2jLYdSwce1NbZl6PQj6uUCi2sb2JZGSM3MRJ7eeXhmkqeev8joRIUj+6d4+PHzvPxlh2l0+lhasbDSxLENr7rvOJUTDq9520nGx+pkWYoQBt+2sC1JwXfJhGS46rPWbCOF4sb8OscPzXB1YY0wNXSjmCzLsGxFsWhx6umrOCWX8dEKwyM+rVaTpaUWr7zvKNdvrTF3bQ2v6HLixD5OP3mOkfEyjh6waANNxJdq1XEfMdXlt3/2v/Cud719C/S8KHvyIjsUg8yDzVjkTn13GofvZNrMILNjJzO38717/eu29zdgAHNEuauG605Km3caSh7kD9jHAXjaqUS+xYDuAWE75+cbKafZ3bZB2zfCtm323063/XrHePHzuf142ymTO/e9A3Ltef/ua7HNvt4+H1uwb0BS3B4fvxgTt9l/d7/brRH2tr37e4n+t302957bXubu2+DuW6b9g8DdDhVL+Pqg7esxdn8fZm/bNHTbs+5O+8rltTPI4JP//XP85m/8Oz74K98/+EJsp0ZkGZDEXLt8hYvnL2LZHivNlG6sMdoj6LZZWWvkkv69ECkFRw9O4noOL7v3IMWyy9TkECbr0ekGDA/VWFlZp9sLGRsd5m8+8UWOHjlIrVrFsh26vS71oTqW69DpdJiZGkMpiw8+fJH3veeHuXL1Gt/1na9lfLTC2lqbt3zfg/zO//EfGKnCxL5ZtOPT73aQwgKRkWYRloa5Lz1CzXMplwt4vpv7NWmdp34IycpSg/pQhY21BmcvXEdKQ7VSJksSyqUCStl88guPMTud+xK5rk8SpXz1qVw9zbJyQZN9U+N5WqRSaMsiSw39MMD1HNI4YX5+CRAUCh6tZhvHddB2RqHo4hcdgjig1wnwC7kfnWXZFIoelu1gjCCOE3r9ACkFnXYfZWkcR+UASwniKMqDK8cmjmK0Zee1dVKQpSmNxkYeJKQp2hmYQAdRDs6UQCsHQ4btaJIkxnF8tNZILbEcC4EiimK01vmqocpX0dIoYX21wa+cu8If/tybc/EMFbG2tk6xUAZjkWYJhWIRIS1S4InHn2VmegxIaLUaeI6HEBCGIZbjQWpApnzl9DXoLzBazXjzXS6e55OahJnxMW7MrTI8PEqcSUxqcGxBFMbEseHC+Tkmx0qkUcKhg/sRUgzGlXL12jUWl7s8+sRljh8dwrF9Ll+dZ3KgbiiUIM1SPMdFSk0YBCglEULhOB5nz13LjaOVIs0MWguCfoAUIgdxpPgFn+fPzzEzPUKSRLkIRhjj+kU6nT5Kgm0ZUpOz1leuzTM+NoTSmmazm68RJQbHgVI5f4+0cn+xctklihJq1QqbirzNZhulJIWCx/JKg6FakWVGWLi1xPDICFpbZEagpKC9sUHS7+P4AaQt3v+vf43/9uCbiMOA3KdKomwLyI2LhckIgy5pnJBmEs/zicIuZmAirCyFthT9dgdt2yht0e+FSCHwPRchJVmWYlsOSmmKRR+p8lq7UrmQr6IPUrLSLE+RfuJrZ3jq7AWOHzlAblSde95JNbDM0AJtKZQGQcrdR4+htc7TRm2HOIjy+6bM1dNsR4EAzy+gdK6GWaoV6Ad9pNI5YxjGWNrGiAjb8ek0De0g5K4D4yRpRKPZJOgHVEol2t0uvX5AwfdYW10nSVKGR4bymp80r3tF5CmYWkuyTHLt2k0KJRetNMqyQBhMFiGUQGlBEvbzz5lUNDbaNDcafGZhnrf9wFsoFArU68Pcc+IesqPH+Nd/8Pt8+MxZslu3uPfwIZSlyLIYpT0Ump/+zGf4ywsXeUporq032P+aGo81n+Xetwxzz5vGGHuZS3G/z4GXDTF6V5nTF69x36sPMzpS58rNZeZuzbG80mJifJRTT7zAoYMTJMbGmDyTQ0nJX3/0UU6e2E9mUuRA7G4zOFdK0epv8KUvPMM9dx1BZhY3VlcYKnuEYY84WsaQIpWL71Qp+AUsrVEyIYn6dHsdvvipJzly/AgpNlpKbMdGK02z20ULyUY3xNEAFlrn4NId9OkGEaVqkVsLTR542QluLqyzsrLE/sk6iYFiwaVWLmPZDo+eukaCYHV+hZMn9mPbPo89c57R4RIYwXo75WX3H+Li9VvcuLLEwkqLsfEa660Gnq1Y73Tp9kMOT43xqU9/jePHZvncV57j2NEZljeauJbg6OwUWZpx8vA0SZZRLxdyIKgkpaLFzcV1jsyOEcaGku8hhODJUy9wcGYCRMaXH3magwf2YUzMV770DPeePMz1hQ2KJY92L+Srj13mTa+/jziO+M4HTqC1wSgLI2FqpMaTj5/m6JFplte7uAWXfRPDrLc6aFtzZP8k5y4ssrGwgFe0Kbo2mdxMGdwKybcXg/c8Pvb6Cf7Tr/0p/+x/+P6tWIV87WFXk3LTEkEMTM7zv7eAHZsm4XsAWsY21LxDDJQrem8H8TuzlrbToHcAuC2wNYh1RA4eN1XCc3Agdx5g97H3gMGtdEMGQiZ7wMve+sCdaZpyS0jEbJ37JtO2cxx7/fW+Hki7U7rk16vBkwPWbLMObrPub3Pbi7u3q+c2x7uprj4Y31aN3iBDbA9I26VEujU3EraA+s5xbl4XseMxu+Zua1875m07bhZ7+n+jYHHvc7en8Io9r+9tfx9w9221zH/i9g9Ry9yrlPQPbXtVNF/q2r+YSubOVS7YBnc//K738+FffduunnmX/P9awMrCLVrNJuPjY3z681/jrQ9+H1EcI0zKqaeeZ2Ojyep6g9e98iSua7O6vs7M1DiuLfn0l55ganKcE0dncZ28diZJMp54+hzf/R0v4yN/9xA/9I4HsS2HbrtPsWjR7fVR2iFNMhZu3WJ6egJl27zndz/Fh/7ov/LcM49x//1HaLYlUZry3BPP8PmP/T7v+dlf5f7XvglMRBQkZKkhSTIajSa//m/+Lb82M4SSMDo2MjC8Tem0+iwtNen2e9x1dIZCqUhjtU15qITJMjZWN3BdG69YYm11g3q9jJQGIwRRN+HjXzjF8dkpjh6eJIpDPvvIc7z19a9ASNjYaDI2XieJU5qtDkNDtS1Bm263h+s6WLaFMRGddkChUCIzWc6AmTBfqcwU3X7O9lnaQmlFkqUkYYLruaBBA0mcpyH0+z2SxOD6Hq5rsbHWolwpIiQsLy5TrpewhCIOY7Sdm4HPXV9menKUMA2xbZs0Sen1A6q1EmEU4XkF4iQP3qJeiOPaZFmGbVsYI2lstEgdxcfDNd56zz68gk2tnpuh97oBjmtjSLBdH1CYNCEzMUpIgiDEcy2SJAXlAjFKAUbyHz/4WfaPWTz4wDiOKzHCgTQji3tkWYh2Rzh/5jKNVo8jR/bnn3ITEEYp45MTxGGKZSeEvQDtFFE6N6dOM0HQjri1ssq+6RG00vT7IY6r6fW6VMo1MmNQUnP+4hz7pifY2NhgaKjI8+eusW9qgnKtiBAWRmQgMpQxtDstir7P3NwynucShBkTYzVW1xpUqz7tdhdhJI1GD9dzWW+0efn9hwnjNGd3jGH+1gq2shgerhInCbalWVtfY2W9zd13HeahrzzD7OQQvm9R9H3SVFAoWvT6IVmWEoYJY6N1lubnuTZ3k7POa3nwe19PL5Ucu+flA1GY/LudZYYP/emf8MlPfIbff/3r8xQlkYFRaNvHLRbApGAkUb+LyULS1OCVq0gUvfYyfrGas04GlJZ019fwq1WiKEOhaK6vkyYRxWKJfhji2G4OdmxJkhgcz0IpQ5oa0iRGaIVlu2RhxnNnznHyxFGEkigp6Hba+KUSqTG5oFOSDgztc5b59LMvcPKuIzQ2mnz58Wc4fnCG4ycOkUHu8ShydcvUCIJOC79YII4TLMcm6PZzVrlSzdOXk5gwDbl8aQHf0VQrAs/T9JtNWo0OqdaEkWF1vUmtWsXzfECTpBnDQzW6/YiZA9OkJkVrnSv9ASZNkJYcSLQLjEwRqSHO8rrNLOiSAtp2ieMMR1vo970DiaDXCdGWy7nnz/PsM6cZHa/wvd/3XURBbl9ishTHs4kimx977wc4d/k8P/Hbb2Nkn0e318N3HNYafSrlAmmSgAm4MrfK8YNj9MOQxZWAeq3C5x46zX0PHGZ2ooC2LYIwZ4eVgjjJwOTCNo4tUErTC6Itpk6rbGD0Kwdy+AlRmlJ0FI2NFQqlCs1eSL1cQhBjhIXBQRqJlilrjVVc26CVIjUuUZqzc5YlSaMeUrukRpJEMZoejb5Aa8PCcsjdh4e5udzg4S+/wIMPvpJe2MeSkqFKhW6Ysry6zNSQTz/OKBer9KOAOEnpdgPq9SFW11aoFm3iVBBnihfOXeR7XncP3V7E3FqbI9PDpEmAMQJt2QRRgCUNvX6KcnJhoHMX5hFCcPzQBO1+im0rkiykWqzxyYee4hUPHESYiHKxjlaC9UaL6fExOv0NBBZB2CPOchbIczyuzq8QxHBsXxVbQ6MdUSkXmFtep+j63FxY4/C+EZ565hIn7j6UL+wpRT+M8d2MbiBYWFzhuadu8MY338/la4s0Vpp8x+vuZr3ZYWKkjm0Juv2I9UYXSwnaS4somVCdHGXf9PQW6/NS4C4PUOBjv/kUf/aRP94KONSeQFfKTfPwvEYSIcjSbEvhMn8lrzs1O8AasO1hvVVjtScOEi9mXj3oOwBku/7eAcQkiiTNBdEyE2/33THSXY+N2WYqd3JVO0DDnZQ483PczejtBjY5QNxrWr75+ovFeHvbprrm9nm9tJL6JqjLhW42j7M3PXWw763Hu9UvjUkG4HzrqFt9M8xtsEjcxo59/TrB7eub7RqPEHpPzzurY764yfnXU9PMzy/vaV6k553P/Nsm5t9C7Zti7gQY/vGA3V7Gbi+ouzOLt3elZneTO744737X+/jwr37/YGebvQfLbWlK2OywvLhEEgdIJZm7scDaRsjMvgkajXWqlQLT05OcfeE8R2dneOHiAotrK9x790G8gs/84jr33H2c6alJgn5CpVbOEwOU5sCBfQhLc989x/IbSpYiJWRZ7m1la4Ht2HglH6kMcdDmna+7i+/+sV/hl37uFzh99jxjk6MsLS5w7ORx7rr/OwmW5lhcu0xtdB/9KMW2fdaWGvzEj32Avha87+RhbDuvEQo6CZbWWFoxPFIlCzPqw2WCfoBX8ImTEIXFrVsrDA2XiNOMrzxxlkPTEznj5tgoW3L00CjVmosUijQKOTo7Tqsd4BUUnu+CNEhhceXqLWyt0UohRM6yWbadX6NMoi2Lfj+vm8pEnsrVaXXIsnjgl+agREazmQt+ZCbOmaBugLYVYdBDSFC2g1QWQhqCbpdS0SKIA5Tj4DkFhNGYwRJ7FgfYroXjWqRk2AISIyhWSghjSMMAx7PJ4h5pOmA0YpHXVNkWSZarrNq2w39ZuM7P/otX43k5K5rEueiI5SiMSHFsD0w8qEkQ5LLbObtpyA2asSwkhsbqOn/8iUf4qe8/yPGZWi7gYjQiTQl6TRxHEwUpluvjexqTJUxNDHHx0iV6YUy5VMC2NZiMG9fXGB4e5sN//Rgzk1Vc16bfCylWygzVqwiRiyaoDCzbJslysW4jBb1ej9GRGi+cu0yvFzMyUmFyYozlpQZRkFCpFOh3e1hKA4Y4iLEsi1K1hGN5lIoFpJa8cP4m+2anwBiWF1cZGR7CthTztxaZGC6h7Nz2QaB47MnLOI6EVHD18jKVqofra0qFMtrWzM4M4dk+SQKW7eIXizkrlGg67Zh2N8DzFGtrN6mWLD59po0I1zhx970Ux/aDSEEYMpPxvvf/FO8bHuK9L3sF2vEQOq/l0rabX2OVM3YgieOALOkhpYurfbqddYSOwDgIpTbzaYj6XbRto20rB1JxTBZDlkVYtkMYB6RE+AUPDCjbxghNHMQkoeHmjUUq1SoZhmKhSKHkY7IEaTKULUlMkteypdDd6PBnH/8E9xw/QpKkWIOV3WK1wvHjRykWc9Y5TRIkkEYhmUjpNTsUatXcwDnKUFJjeRLf83OWUgraq12KtRK10TJDw6N88CMPU6t7+EWHhZUOo9UCQb+NW9aUdZler0e726Mf5FsY9ih4BRrrLQpFdxAoCpQlSTODMQGKAcAzBqFyNkxqlXtUolBS8cN/+1F+4G3fj1IaISEIexR8n2N3HWRicgRtaSzt0Qta2K5HGMAHP/hh7vqRMq982yFqw5IgzpNCnz1/lQOTVRQZF67dpFgsMzFUIIzBsn1c36LqWgyNVygWLBxLYZQmUxYyadPrrGO71TwrQUrIJFm6KYpgUDpXExZCI6VFZhSdfgtXG7pBn3K5ilBFfNcnNQopbYxJSJIuQZiwsr6ItB2QeTptaly6YQYowijCsSCKDc1ugFK5QJWvXR7+2lXuP3kIy1KUfJtDh6fY6ARMj9bRUtHudDlz9iKdyFCtVUhSw8OfPcXI9DC+LVld77HabHNk/xTa1kiVsdZs8Mp7jxKnhijJGKv7pBEIsUGSCbr9DMe1SdAsrfaZv7nExEidc+eu8aoHjrGw1sD3LAqux9J6gO9YdKMI17FyESTHRkqFERohc0bb1prL15aoDw1z4foymUnZN15huDLGzcUFkqRHJhRBItg3XOPCxcucODZNNww5dvQglpUSRQLftSmXK3zms09yYGqUTq+LW/RJgfuO7weV4LuCWqnApevLxFGE59iEcUISJWBZTE3Vac5fxSnXKPqFPOV9EJ7vikF2PhaC42+Y5NG/eJ5XverlyFwxZZvMEANmK8u9Sxn8vTeW2VqA3mRXtpCP2bWJLUXJ7fqvvC5PoEVen7dttiJ2sW67oqMdYDF/2zbgy7KBuvgWmtlmpXYN/SUYuozblT23Ug93sVib57STtduO//Y+fjHmbouB27QYGMzpThZMbClU5v8qqXakjm6Cutv3fzsvtTm23P8wr2vbci3cesfmv5vMnhRiC2xuWTlsX+j8cZblrhubrOCOOdke6e3M3O1nu/u1F8+A291/ZwXeN7Zn7tAzz+BQ+ttpmd8y7ZsFdy/ly/HNthdLxfxGwN3etulR8q53/thuxm6wq0yAMIYzzz5Pv9ujXKlxbW6JpZUWF68sUy75eK7N+NgIYLh07iqQm72+6mWHqVd9CsUi5UqNleUNPM/hU59/jPvuOUyz2c690Qy4vre1OmUGN+Eoirh+/SYvXLhCvV4iClN8r0CWZti2TRIbvvPAED//u3/C+37k3Tx3+jTHjh8HDEYoOiur9LKEQwcOsd5Yx3VtXNfmwQffwq2FBV5j52kCtm1hO5LUxCAS1jYaeS2TSXO59jAa1FdZFAtenk7mOxycmgADtuMgZF4vZjKJMApla6QE23XwXBftSMg0aZLR7wfMzIzlxsUCshi0tmm3e1iOvVVEbtv53IT9CNfyMKkkiQR+ySWJEsIgxGBwLH8gQWywHQeTGZI4ZzHmbi6DgUIx9+HqtSNs12N1uUEURmRJRqFURCBIohiTaWzHxdKaXr9HsWBhZK7g1+33MamkWCnR64RADkyFFIPaGolWkl/+2mn+7Y++Gs91aW60qNYqNDZalMplEAMZaZmzkLk89eDHefB7K8hv5IKM//1Pv8BEpcfr7x7DthVxHKGUJAp6OHYuld5qdfKVXZOiVV5w7RWKjI5WGRsbZml5PQ/ikozlpQZLS+vcfWw/Ugo8z84Zum4PpfKCeqkknU6IVBrXy5UdhTEUCgV67S62Vhw8OE0YBvnnME0Jw2BQg6TRliQOE/xCLmahLZtet88XHz1LEHQ5tH80r79UivlbawRZwtS+USanh2l1u4DimecuMzU5wvhImbGxKtVKkWazyeT0MBcu32JsZJjHnjzHxFidIMgolXzSJMSxJcurG/SDiDAKGR2u0mwGlP06/QAWAhdHW4xPzzI+fQAzkOj+P3/nP/O/vfwByn7ub5h7kuUsmNJ6S9p/MzTKkgRjDJZbwIic7bJ1AWXZdNtdHNdBIGg1m5QqlXz1Vwo6nRblSok4DGlFIVca64T9CIxEJRFCWwiRixMpKajWK5hsULelBHEYoS09uC9ZaKWJ+wm9RoBfdjiyfzpf5k8M5XoFt+CSpQlrKyuUigWazQZSCJrNJuVaeZC25+YBjZL0ex2kBQiVf76Red2mlSB0Pi/ra0u88uX3Ui6XKBR8fM8nz/AULK6v4SkLoXK1y1q1yshwHa1sioUClXpeg2cY2FGYXG04yyKUtDFSkSbZoFYHgl7A586/wG8+forFWp3/5dd/kWIh99O0rNyr0HPzDIiCV0IJGyFyuwnP9ZBC84pXPMCZ1a/lVhSDalipJCO1MlmWst5qYTk2QoLnepy+eJOxkSHM4PekUPBACGxLIpIuUgiSsEelXCJMFZlJMMRkBKBi+nGIox1MpnGkIIk7RNE6a42baDyKnpuLFbHT3DlDm4R+2AcUtu1T9i201Ky3QxzLxbVtlhstXMvi2q0lhssuS2stBIprc4sc2T/Cmecv8MC9M0RZH60slMprNk+dvsJQvZBjCynYNznKaK3MlfklDk2OMDJZZ7hW5vT569SrFaRK8R2FrSSu7VAplnI21Egcy+ZrZ26AEVSLHk+dnuf4gVl6QUi33yeJE44emKQXRpw8NkuSZgxVi2itePbcDcIwY/9klX0TQxR9B0vnIHW10UYKwdmLl7BsxeLqGiP1Mo6r2Tc2RMF1MSbDslPG6gXOX16k0bdwHZeC46Nsl3LB44VL1xgaqiNEyuUbqwgheeoLX2X/oQp+pcb0RJ2xkSFqxSIV36VeKw4CXEkYpSyuNXn6axc5fmQEx3e5emOFYsHl4rM3kLah0e1Rr1b2OOBtB+2DYGQLNDmzEcl1l4npiTvHLWynMG6//Q7B9yYANOa2mjXgtpRPdjAxu9mjvO2sB9wLmHZ33JFWuHncnf3u8J7NmdgUUtkJ5raEX6TcOqc7HXfnM5sWBy9dhnPnWE/seW0z1XV737v98rZZus3z+vpJazvTR3enQO41Ihe7xrZzbsQg/TYb3O83U0I337d5DbfB3e3A6U4j/8dqt4/iG2m7e0opyLJv19x9S7VvBtyZTax/p0WEb6L9fdQzb/c62bMvNldvMt65F9jtep9BJCn9bp7GY3s+z56+QhDmptuLK+s0Wy0uXbnB+nqTctFlZmoc37fptNc4MLsfg+b6zUUOHT6AUpJ7Th6i1+8RRSnVapU4TlA6VzZK4mTgs7aIpTVDQ1UmxoZxHZcsM8zfvIWWmijK0760VHzPsRF+5nf+hBOHD3H0yGG0lmjb4ublG3zxkS8xXrHJlIXrOhgpsF2X++49gf/CGfq9gF43IOgmuK6MuXXCAAAgAElEQVSL1ha+42O5Eik1mRHYro3Wknazg+1YLK+sYzuKbjugUCjQbLTwix69Th9La7RUGCVQUrK4tE4QRGRZilYOz565xMzMKN1uH8fOFaU21joE/SgXSdGKOIqJ44Tnz19jdLiG60niNMb1HE6fv8JIrYRl2XnqooDHnzrP2HAF23bIiTABmSFNMsrlMpbO2TWtFBhNc6NDtVJCKkGpUOBP/+bz3H3kAL1ugLadQS2TxPVclFEsLTUoFCvEQUqxWGD+xhK27aAsC20LpLCwlEW/20dZgje89TClYpEkzvKaGMumVCoRRVEuODMAtSaTg5oLA2bTvFuSpQlSCn70P3yKf/+uSeplf6ACGaEkdFstsiRCWzZa2wRhQqFQRBCilMIrFEgNzM2t4ns+trYoFotIqVhb2+CuY7N5TaLMU4HiJMp9/pTk5vwSlUoJ2/V2rRI2G026nR6OZdHt5cy177kEQYDnenS7HeIkxis4rK6tUfJLtDsdPM8DIwiCiEOzEzi2zNUaLYuLl29x/PhBuo0OJc9FZOA5Hq7vMj5WxZAxN79Is92DLKVc9ojikNmZKbrdLkcOzdDc6FKpVXjk8dNMT9axtEBpi26vh+tZFHwHqRNsy2VsvMzIfffxt3/xSV71qgcIkohydQRjDF/64//G6w4e3HsX2QIZ200ihSFLEpSysDyPKOpgOz5JrBEqr63CGJI4/8wiJL/06c/wiYUFHvyffgJz1wGWynUWypqDb3g1+ugs4b5Z5gqapXqN4itfzmLJ4ZF2i9/93EN85Pnn+ej5c/zFC88TdRrcVa+Bsuj323TbDeJ+n5tztxgaq2Fbil6nT8EvkJosF34xGVpZJGlCuVxCaYHt5EqR2nbQUpHEgkcffYqhSgXP82i3u7iOy7WrNyiXi0RxgMgEQbtPvV4hjCJsx+Xy5TlGR4cJ+32a7RZK+9QrPkkSEYQRQkjWNzZodQO0FMRJQmYMjutuxYzS5PV1aSr4vx5+mP/0zHP8zaULlF9xgnt++J0c+97v4Yfe9S5e+9rX4AzM0qWUhFE4ULyMSZIMy3YxmUBKQ6fTwvMLORMdRzy5+BWU0hjy+kQhFFEc41qKII6plYv4vke7nzI9PsqNpQ0qJQ+pJIkBSwkkCXF3lTQTCFJ6oeHcjTblQhEpZZ6KmRVRQtLtNsH06fSWcLSg4JXwtIvjpLTaGwiZsNFtUXB90jTCUoJ+r4uSCqltkFauHCwUI+UKrV7KmfOX8D0X17Y4tn+ci1duMjJUp1YsUCq6XFvqUipo1tabzE6OYZAkaYJn2xyYGiWIepy7dJN9k6NYWiNFhuN6uZKwJdFaUatUKPoOcwuLzE6McOX6IoVCgUdOPc/M+DBZlrGw3mJ2Yoh2e4E4jZidniCMBWvNJqPVIrVyAaUtHj31AmhF0XeREuYWlxgdqnN9bpljB8foBRG2pWj3+gih2Gh3mRyuMjlSQQoYqVXwXBtMylqzi5YKrSQpHp/9wnOMjFaplDTrqytUKj6WBa5lmBgd4vpSg0rR5rln5wiThIoKibI+ldEJXMvi9IWb2JamH0YUPIv5lRYr620unrtJebjEgQOjpHFu11GuFDl7YYHXvO5+LBMQBQFjIzXMjsD964U4q9Y1vvpXZ3nFK1/2IsHIjr83ceEARCkpyNJc41LI3DNyM0rJuw2C/RcDd2a31uXm/Swj2wIk+aG3mbxsU9F8kK65E1DsSt97kZq77aFtKjxuz86mGqbZ8XhXVtaeqdl8fnvEmwqkt7N/Xw+MyVx5bc+zu/nXnYqYe/e1CeI2j7MTnKYDUPZiaZQ5n7rbWnw3YDU75ioHeZjNlFmBybIBg7kJ+vK52Ftzt+NsX3Qevpl2Z3C3+5O/t2RqJ4zNX88ffdsK4VuofXOCKnvXo/6/bC993M1bwC//1L/iD37uLXfsb4CV+SXCXp9er09tpEKv32d2ZpIoDOj2e7T7IRXf4sTRWc5fvMW99xzg4cfPcM89x3G8Ap/90ilO3HWEoeHcf0nbCqU1jutSKlaQKhdfQIJJxVaB9fkL11heamApQdiPeejzz7Bv/zCOpel0ciPdTrvNteuLuI7Nm0+M8JePXuS7XvsqVpYXKI8UEFGKU7TYNyywvElq1SEyI7dMpjl1Cq0VZAa/4NPtdkiTmCCMUFohsYjChDhKsG01YFsk1UoJbTvYls1jT5/myIFJlO2glUSSEScBAsFff/rLvPLuE7iem/t9AZOTQ3lApwaqlVFMksZUqsWc7RAKkxmCfszYyDAmFXQ7HXzfxwCTk6ME3T5hGKO0IogiDu2bIskSBIYoikmSBMexkFKyttbE912klYNGy7aIwpClpTXGxodpN5ucPLKfTRNyoTL6vV4uvuJ6dDtdKrUyghTPVUjbot/JBWFsz85rnFJFGickcciPP3aWd7zmII2NLs8+c4mZ/eO53DIGy85V4/IPV4pQhiDoDYLCDMuS9HtdUiN47+9+lv/6gVmSOMF1nfwTKzUiM9hK0lzfwHEd5m9tMDExAUpg2xZBLyQIIq5cWyKJJQ996SyzU8N5TY4Nw0MFpBQ0mhs0Gl3OX8zVKZM0/+H71EPPcdfRfbkvWRgRByFGZEidm247bs6sNlo9XFdtpRH1+xHj48P0+gHFYpFeN6RQ8kiSjOfPXmdqaoSFxTVGR2tYnku33WdipM6thWUmJkbIsowMQZbTljz8+BmmJ+sM1UuMj00ShRGdbpdavUav2+XcpStMjQ+ztLzB5SvzvPoVx3JGM8l/PAsFGykySuUiaZrQCXvYtmApm2ZypMTMzCjKzuhlHh/804/wcydOfJ37Sf4jlRpD0G2TpTHKcvKaz16Qp/Go7dV6YQw/8rGP8cWVNd7wCz/Dk8+c5bEnn+BzD32FT376S4yPLnP8sGBu7hR3Hcuo1zcoeovMzES49g1u3niWM88/zbXrPRrtNqefPsUP/eA7+IH3/UvSo/spPXCclVKfp1u3+NsbK/z5hct86PTT/NmZM3zs2lX+8sJ53lir43geynKxXA/HtfN7jZAonQuYGKEwJqPXa1H0HVzHQiuFUhlKQr1WRqkMG0jCFsaEaOmwvLTOtbnrDFVrzF1fpjpUwvN8Hn/uAlMTZQqOJooiGq02lVIFoSGNEzyvQGVoOE9RTVNanQ1+8tOf5zM3b/J355/j13/vd3nH29/OD7z1lRw9PIyyfeJMIKQBmZKaDCE3hWRUnsoqXZIkyUV8oi5aaWzHQkpFFCQo0ee3f/GPOP6GMUCSJFleP60Va40WRkhSI3EtB0srvvzVMwzVS1R9mzgxdPthzhSKlCwN0G4Bz7bJ0Dz/9HkOzo7g2opuv0+/u4ihg1QRvguuO5QrYmKTYRMmKUXXJgz6FG1FnOYLLFEU4bg+QZQipSYIQgyKJI7ZaLURUlIpOwyXS3z+oVMMjZQYrldZXGvyzPNXOXxgnNF6jVpRMFQt0OkF3FxcZ7ReZqXRph8llH2N53tYlmat1aOgDcvNPqO1EnESEoQxXzt9haVGkwfuOcmNW2ucfeYqft3n3iNTaJUzGkMln0eevcbx2RJFr8qz528xu38Mx8rrk56+OE+tXGB8bIiS77K41iROQsaH8hTQ4wdmSE3CzcUmtXI5TwPWFo1Ol0rRodMNCaM8c6Pdj9BS02r3CeOYsq9JjWF6cpSr8+scPTBBpejw1ScucPTwDFHcJ4ozxoaHsbXAKfg8/+Rl7nvdy5jeN0kcwfLqOgdnpnj+0jz7poZYb7Yp+kXm5tcwacyNqxscOzbDyNAQWZpS8DymJ0eo+A6WNKyvbnD+7CVmD02/SBh/5xZXOrxs+rUvvUD9ImSMMeRiXZspfTvA0dcFdyJnfaQSCCl2AEmxq8aOTT+6AWsk75Dal2XZIKXzDqf+EgzeiwOx28dyJ3B3J8D0UpYH+evqtnTL24Hd7W2vcMvuPW//J3b13cFq7tjPnjNmE8Btj2G3fcMmJZFlZte1ElvX43YQ+/8/uNvx/G2ponc+h2+Du2+h9o8C7sSe7Z+gvRRjt4uPM4affv9P8h9/+nsQIhdU2LqZmXz1Pcsy1m7No5VDvV7lypU5LGVx+fpNzl25RdCLuevIFN1+C9exuP/uIyhS5pfXOXRkGlu7HDo4Ra/fIU0NQmqUtPmrj32Je+85Qr/fRUvD9as3KJfKJFFGY73F/PwiCwsrdHoxnuuxtNJkeKiK51jcmFtGScljp84yN7+BEpKi73Hl6jIfPXWe2YkZjt91Nxvza/gTVU6efDV2GtNqbeBVJ1FeDZF2uH7+SWo35sEYOu0mjoLEGLxSCdf3SMOAKAp55oWLXJtfZKxaxNKSTBiwNMQp2lEUHZelxQalioPCJZEdBC4iiTl26ABhLySMYhxPI5AgDGma4Vg27UYPrR2q9TLpgGFAGUyq+MvPfpUkiqiV/Dx9LIhZXFhFaYVfKpIkGXEUUa0UQCrkYHMshUlBKItOu4dJY5SjUQJMmiGlwitaDNVHgIwoy3JPLsByXZIwxC/42I5Dt9vFKzlIJEYYwiQkS2J8v8ylSzcZG62Rpglry02klpRKFu9698txnAKWbVEf8vE8D5MpFhcWsX2FEhZJGiItDXFAZjKiKM4Lko3hf/3gI3znoYwffPUwmYlwnBJGOKQYVNyj1Wizstplamo/mdJUqmXiJCaO8uA2jlK6nZDJ0Tq3lle4/8Q+6vUyUZrQbnTyVEljGKpX8AuK/ftGUNoj7Pa5dvUWb3jdSRqtDWyvSNjtsTi/yPWbKyzcWmd2dpgss7Bt6PVTavUaBkiSiPW1Bp5n4RV8pKWxdC7jr6TGUQLbc3Fsi1a7hzaaQtHjytwc+/eNcXNulWarS72We625jsXEWJ7C6rpFus0uYRBRrVRRImNxrcmhAzOcfeE6+2fGODg7yUazgecX+ZuPP8vIsMXY6Fher2Uiwl6GzBxsy2HNPUzFCbh+5RaO8uj2U76vG+eMDnfMMAKzGVJlhN02IkuJwhDbsZHaZhuvC9Kkzy889AXe+Is/y99+7O/4n3/5NcxOtfjeN03yvh++n/f+6Gt41784wYnj42hp0+u2KJX9/DuXZViWRdDroWTEfXdP8fa3HeZf/fjr+J43HOS7XlOlVLyFbc/xxS99is889BDnrt7iuRcWSNIYBoyYa3lcv3yR+XoNfdd9/PqHP8QHzzzLx69epiYMn79wgZfvmyXKQCR9tIlodpa5enmBUsnwzAvnmJ+7SsHWaJnQ664Tdtt89dkzDNUm6TWarKwu02r12X9ghE99+Qwb6yvUSzAz7GFJmzCI8Lxc4fC3Hn+UP792g88tL/NXly5y2da87qfex6/9yV9y4p3v4AM/8wEefNMbWLt1hYlRTW14H74rWF5cwBiNdoawZIqWkBoPsgyT5SIyYdwDW2OEjdAZtm9Q0sWYXMk1NQnCKXH6ubOM3VMCYrqBQAsIooxnLq3QbbaZGq9ihM1GN+DIgX0UfIG0NAKHL3zuce49PpHX9dolfMcjjm3a7WUOHp7BZF2E6RPF8MylPpXqKEW/itQl4tQiNYJ2NyWMNZ5vExtJJiVGSFytabUDMmGjtUvBzy1izl1dxHUyohiCWDBaLeM6LgiDdGCkVuP5G2vMTo5yaN8YV+bmGaqUCMN1+nFAqVhkqFqlF4QE/S4lrwoqQ2vFI199HtezGa1XKPk+f/OpJ5nZP8H8wgaH9k0xXi/S7d9kYmSG0qjFRL2GpTVRnKCV5LmLVzkwNUKxUKYTxszOTLDRjCj6Lu1em9lRhzRTCKF59MnnufvoFAXPQmoHRyskCRfmWtQqRVq9iL/626dYX1vjxJExUpPhWg6ObWFpSavb4/kzV5gaL6OlwfEr9MMWKy3wnJi43yVOFFMzI1haceb8TUZHxxCkYDI8C46dnCXLEmytyLKERiskShLCOKbo+1QKLmEcc2T/GLWhMt1Oi5mZET776VMkApQSLC6t4hdclrqaWtkjaS3R6Xeoj4ySZAIjFELcIWVxR7NdxeNXv8p946/KAZIBM6jByzCDdOXBtvV37qWbW4QYyHaoNao9gfTOuErmzJwhQ4g8e0qYLGflsgwhd+g+msE2eJyLG0k2q8V2gjkxuEnu/U/tsTzYPqVt/msny7gztXTz+U0Gb7ctQr4wuvP57ZqvvczV4Jh7Mrw2vey2WcDd57qpormDf2J3tJj73OUpljkHmm4pdQ7Gk+Wxxeasbom13HZp5NasZFkGAwA6GAkCmfcYZB9t2lKwNV/yDmBucx7kjiPd6TO417fu7xeEf2Oh+20QPD9DMeA5B3Unlv7Gwd231TL/ids3o5ZpuF1daE+Hf1C70zV/KeWknb3f/a4f40P/5q35l2bH62LwRYqCiOWlFVxLkaWScqXMxz75BQqOZmm9zdTkMGmUcN/dxznzwgXKxQJZZiiVXE6ePEacRrRaAWHYZ3JyFCEUl67OceTQQc6fv8KRo7PEUUpjbZ0Ll65TLJY4fuQgN+bmOX/pOr1elzQVPHDfEZaWGpSKPiaLuTG/QhglFIs+7W7I/qkR6rUyz56+wj0nD/CRcxmveODlNFaW+a63vIonvvY0P/LPv4P15k2GZu6nm5SwRUzQbWL/2YeI44g0jEjiDKktELCx3qBWLeCXisRRkt98TDqwMhWgc3BnWYpGs4PvFpC2YXlxg8mJSTLZRUiHZBCAmUggVIwgF0FITUYWZXz0U4+QSck7v+872Mwlz2Xdc/PjbqdDwfdAStqNDpVKkSiOsTyLqJ+gpMRxLDJhuHp9gamxodyjL065tbTG2EidNI4pD9VJ4phuu0OlWiXJIuK+4KNfeJh3v+U76QUBxaJHFEdopWg1O9SH6myqiGEESZbgOJo0TchiydVrCxw9to9Go0mxWIYs5T2PPs0ffOC1DNWHOXf+Egdmp3E8lzQ2SCVAGtJIAjFSa8hioige1CxKfuR3PsEf/uQsruuSpilp1se2XPrdiCSJ6HRCxsdGyTLB4uIa/bDP9NToVt0bZLmXWpqrIF6+vsTMRJ35pRWmpoYpF8pkDARcMokhJSPDtlwajSa2ZeF5Pp/9yine+N0vp9do8vBXn+PNb3wFqZEYGeA4FYRIyGLD/K3cG6tU9EmTDMdzidPcI29jvcXQSIVuO6BcLKIsTRQlnH3hKvec2J8rhpqMIEhwHYfl5TUWlxrsnxnLa/9ESrVWZW21SXOjRaVSIUlSFldWOH7XAaQBISVrqw3KJYv5+SbjE3WeeO4M1UKNu08eodlsUhsqE7T7XLqyxGMrBU6+5v9l782jLEnP8s7f932x37hr3pv7UllLV1cv1d1qdatFS0jIIGSkASQQxgizGAYGm4FzBrCPwRx7fLBnfJjxjD14AMGMwRZiZBAgg0Ag0dp6LfVSvdReWVVZmVm5Z979xv7NH3EzK6u6W2rZgsMf+urUybwRcWPPiPd53+d9nrexfvE0T3z2NCfePM/WhTa/8N99e35fo18jLtvztcyIooA07CGlwrAdDNcDnZHGIWmc8YN/9uf82A/9XX7jP/1nPv7RD5IMuiQZuF4pT2okEULa+etOp6QxGEZ+X2ytbVGqVIijiDSJc7XQLK9uJ2nG+NQESZrklNA0obW7Q7VcpNXsEKcZI/URhMrIdEpzK+YPf/8v+dAPvQcpHdyCQ5L0+J2PneKP/vQGf/s97+Yd3/AIP//P/int1g5hv0ep4NFpB/QHLQzTIUtjKsUS/SjEtiwmTAsz0Zi9LqO1Klu7XRqNIv/hhbPMHZnBMiQKgalMPBnzpkMSLQwqlXF2t2P6QvEd3/EB/tVvfhwhc/Pcd7xllEfe9sO8+dG7sHVK1G3RG3TwR+9gbeUSExMjpNiE2+cI+l3KI5MYhTkGnRZCGUjLwrBtVKJIk1zAZBB0CcM+/V6Pubk5mq0mtlMgzTJ+98KvonXGxk6P8Wqe0PnMM2f5hgdOYpmaLNN86nNf4t2PPojnJARximladDstHCMlQxPEBmnWpuCU8l7SQYZj5mbNgzRP3jV7fRrVEkKIXMU0y1DKohfkdGslyK9jlvGFx5/n2PFpDs2ME0Up19c2qJR80lRgW4oba7scnZ3AMiFD8vyZCxyaHqXk+ZiGw6WlG5w4NMFWs4UQFpVCTKozpLTpBxElv0AcD9huZhQ8hWEYtLoBhpIIEopemW4Q4nsWO60uC9fWePRNdyAYkOkCm+0tsjSl7FewTJPddo9aqUCYpKRpwurmLhP1OnHSoVous7XbY+n6Nm86eZjNZhfbVCgJSaYpeDZJEiOyCNN26PZ7lP0S125s06iUSNIEz8n7P8MoBgT9IGDEdwmjiFRDkEoMEVP0RojSfp6As1yEElxeWmduskGn1+HipWUefcu9RHFKuxvy8pkruJ7F/XfP5zTkVLPT7rG102FjdQfLsThxfBbXNgnjmP4gwHXy55JfLLC4tMX4eJ0zz13Bcg0mJwrQ2sCuVXjwwXuJtOKWXq7XiUc10NqK+Iff+LP5Z3UT7LzekOR+pXqY1Nhfl9oDQXuVo+xAIHMQWOWBv7xtG3H2asETGNokkNMAIW/1S0W2D+L0kLZ563G99v7f7ncmxa3He0s1ajh9r7dsD9Ad7IHLl3315y83hBhSHG9bfk85U97Wc/fqcROoaZ3u76sY6iPsjRycpbft062KlHsQUrAHstX+55vryM/m3vnPuOmwKKU6UCm8Ndb9yr51b0T98r913A4898DdrQDddQpvGFl+vXL3Vzy+prTMV6cz3tja3gCAf3XJ+tYS+xNffAp14c/4wW++mwNWMEDexyF1wtlXLhD2Axq1Gq7nceXaKpVKmTPnF5Ei49vf+042NjZRQvLKuUWKvs+V65t88zc9wuzhWS5euETZ9ykUShTLfu5TZlqMNKqkSUa1Us5Bjxa4js3EWB3X8bh8+RqT4w3OX7iKqQT3nDjE1cVVJsdG2G11mBivkCYppZKP1vCOt9/Hy+cWSNKEB04eZeHaGs+ffRmsOl/83Of5ru/+Nu47eT8LVy6wdv0FahOH0LJAGicEA4F48dmcFpBmmKaBU/DY3Wnj2nZuvixz6lMQBJiOTZZqDNPktz/xWe6cGcO0TZSUfPHZV5geq3NjYx0r87AKmmSQQZQrXIaDCE0KmaLdzsUmdKY5OjPB0blxABYXV3nuzAK1YhHbVRimxLZMdJYSRBGVWhllGggY+qvB+to2ftGn3e4wPuwjicPc5Ht0vEEcJ7iuRavVZ9ANKBY9gkEEZBjSYrxWougXCPoBtm0Mleryc2EMxRryCsAw+5dBMAgwTIuRWjnnwCvF7/7p52iMV/kffvTtuf+boRipVTBNCyEESRIjpSAKE24sbRIEuVn83h+BZZq8srDMj76zghg+vKMoAZFnmyUpqzc2GWmMsbXd5vryJspQVEoFPM8hSWK63R62aSOGtLNiucygF2DaBrutNsurG/huAcMwePrZM4yNVDl77jrVSoFOp0W5VmJtbYtSqcjRo7MomZGlmlq5xNXFNQZhgmlm+H41F1IxFb1uj2q5RDAI9/39pJAYholjGijDxPNzzzbDMFhcvMHhQxOkOgGRq7k1mwNMU9Lu9BitV9jablMpl9jY3KVYyiuolpX7IPZ6AfPzEwgh2d1tYQxfjK5nUi3XkDJlbrqIEh6GIYZeThLDMri+vM7vvdjnR//+3yNodzh/5hpbi5v85CNvxy8V97Pt+Y+9AG2Y0NYCoTOyOEKnCYbtgDJRhkESh4SDHv/8zHl+4Ie+n1NP/D7/7t+8nzSOMC0jZwQog0Gvi2kZkOZZeJ1ppIIkCRECPN9HSIsw7GPZJrbt5BnrLFev/H9/8084dmwSQ0mCwQDbttEoNCa1Rp0g7CGVIolihLS49/7DSJX7oDGsKJw4Psb3ftcJpka2efyx/4+75wImRzIWr+2wttUlTjNKlTq9Xg+UQYrEFFC2FRfWt9nO4Fq3xa7jsBZFjNxZYrArOTpvI7oDLOUQhgHb3QHPX2lzbnnA6Ss7FGoZ73jXIQ4dSfi+D97HD/69t/K+bx3noYdm+Nlf+A+85eEHcB3FlYUFRkZniYWFZVjYlkMvjNhdfI52a4OVG+tUR6cJul2E1IRRSKYTNpdfode7Qb+7idYhpumQRBGGlLR2dnLlw0HA//kvP8z0fXV8R5CRoaRgpGxTtgOytEvQvsHoeAHPyugPdmh32hiGRRgGXLq4RLFSo+gUQObXqBeaZDoXHHn2xSvMzkyCjqgVCyiZU5YHgwGO5bDa7OC5NoZMsE1JksZ8/oun+cZvfCvlkp9XbZWkVPCJk5zZ8PLFVeamRgmiASvrG/iew/RYDc+1SNJcqqJUcDDU0DPRcrl8bZlapUyqFa5jkaWgZMZ2q0u1VEJnmrLv5irFEgzDpGCbLK9vMtWo0agXiZMYkSkMAzy7gKEEizd2KHouRc+l3Q9odgPKBZe19R2qxRJpYhJEKa4jKPqghYljK9AZBcfFUGbuf6kEQTAg1QrHsukNEhbXOtSrDnEKW80eliXwPZckzUhSMCTs9kNKfm7H41oOy+srJKmmVPS5urxOmmUcmhxDSoFnaWojFWzLohMm1MsFDs2Mc/qFBU7cOYchBVvNNhrY3m5RKHrUqkWCMKIfRFy9toZlm4zXioyNlHny8Ve4+54jaKGoliRvevBuKvUGi5dWKHmSTIFf9PIqzGsIneSPkmE/FeB4in/107/Od3/wO4eCI/mzRu756EmJ0Oz7XGpyICJydHFAcfMmkNxT0RSI4Xxxs4oociuJXAHygBXA8F2j0fu/CyFI0mE/Nnu0QfYDpbx94eZQcmgvoG/2ix38t99TNmywFULsA7jXE3G5pWZ223J7/19dxbo1BrzJ4BqmjW+hWe7VyfZO463z95faryweBMm37+nNCeLWb9/y+zAa5ebabgJaccve7C03BKXkFkR713tPfOfWvbjpA3jbmUNR6hIAACAASURBVLiNKvq1oG2+se/s3cv7Mbvglmv19crd36DxNa3c3Qrq33AF76u5xjczJTe/+5sf/m2+54TAd4eS+zrPKKA1IoM4iLhy4TxT05MMwoQoTpECnnjqLA+cPEYQRaRJRr1RxXcdFi5dJZUZnW7M0toW73z0PlZurPGWh08CBisr64xP1lEKpDBIScniDCUMnnr6WQ7Pz+J7LrZt0ekEbG5uc/qlS9x/z2HOX17gxInj9HoD0DA1Oc65SxeplCrMzExx+sWLfMMj9/KZx57BdWy2t9tkIuWeOw/zwV/+A6bLPv/oH/84Rw4/wC/+s1/kl372/YwefQSrdgQhYm5cXOdn/+d/ykfecQ+t7TauZSIMC8stsLm2Q3/QYXy8jmENzccRpGGEZdrESUYU9rAcE7QgjTW2a+cCIg6EfVCWRqQZUawxLROhMs6dvc7keINi1UNkmjROMFyLLM29oJo7HTY2mswfHs+/g857AkVOBxUZvPTiBe48Os9fnDrFt7z1zQiZi7DkvhEpnVYb0zZxCgV0mlcbk0RgmiaZjgiCGMMU9DsJpUoBKSVJkuzfM0JrTNsif68KskQjjWy/kpLEuUWFbdsM+iHKUGRZyo+cOsfv/tzfztGA1EhhcGNpHbdoUm9USOL8RaBjgTJTojTGNHO1yygIMNIbZMIkSeJcGlkpSII8aLMtotCg0+qyvdtmbm6CTqfL0vUtHrj/KGE4IE5iyASDIGJxZZNatcTs1BipyLh48TpZnNHuhZw4NoMmYWNjhxPHj7C726bVbTE3O0W308V1bQzHIiODVJElgq3NbUbqNba2rjPWmCYVKdbQskEpkyhKiKMAnWkWlzYYqRQp+S5WIacapklGNAi4uLDEvXcfIY4TkjShUHBZX2vxqcdf4UPvfytxGGCZAoSLZQlW1taZmZlEZzGt5oB+P6ZeL4EQ7Gy1qFaKdLsDNnd6jNQ8alWfOA6JIrAdRbvTp1QqM+gHmIbk3z5lcfKeI5yYc/nZf/H/8C/uPMGhI3dQHqmh90xqh8+kLB0+P4RAaIj6fchy+qZbLJKRU/s+8Hsf43d+899yZeEPOPmmudyYNk1JU4jCiELRJfc+ykjTGMswSdOcjiOlIE1jDMMk6Mf82q/9Cf/jT307rd0tTMPDckyaOy2EFhQ8jzAOsSxFGkckSYhX9rCtCkmakqRBfj9lMUoVQKVkWpAmOV3TMG1EFnD90kW2NrbodSNmD83QbO6gtYdlCkzHINMGnpNL7Rc8l34/wHU9WrtN0iSn9UXRgDgBdIjnCCzLZXc3wvRy5kNnp834zAyOa9Pth+hMEYYJ0zMNauMNUqFyCxoB62sdCrXvJY13uHD+ReaO3UMaa+Ymp3j68cfZ7u/yzm98N53dFSxb4o/MECcpjikQacDW+nUqtTo7O+sUi3UM4ZEYNpZl7r9kDGmxcnWBH/7Jn+RD/+JhMEyEcoCUdruJSYw2CtgqpNnexbNLCCnYDRSGYaLTjDjRLG30mJ8sYpoRRbfMlaVNxscaRFHMjbVt5mfH6fY6KCkpFwv5tdaaVjfhTz/1LN/0zruxbYtnnz/L2996F3/2x18gMOq871vvxzUFURzgu0WCMCXVCd1BynjFoxf2aPdCdJZQK7lYtkGUgKly1zSdwWazg2lZmCLDtvPEw/L6LlGsmR51MYSJYdqcPn+Fu49OIQSEiUCnYJuKftBnaaPJXYcncuZEJNAqoDewcAyBkPlzybFM1ndadLsJOztN7rtrnt1uxBOffoHv+p63kRATRQNQNo4hGAxinn32Mo8+ejdSmgyCAbaCTOYVk3Yv4QtPXeQ977oLQ5q8eG6Bw3N1PMdFIHnl8g3mp4oU/TK73QhHSTIlKdkhZy9uUa6UWb6xwUP3HmXxxiamazFZL9Pth1y6uoZlmmRpxPp6i0ffci+f/NSX+OZvuo/dTg8hFM88dYF7759jZmKEl89f49j8FI899grvetc9VHyLKIYnnjrDgw/dyXarQ32kjNIplpRoafPcp76AP1PhobfcQ6rVqypVt8Qk3Boav//wj2F7zv7MPW87hMgpe7cNpcVNcAek+7RCsU9fFHqv8nZrdSzVWf79A8FWLgiz5yF3Uxwm97bLgWo+H9KhpdXNStutQGIPvL7qmHW2v6ySkjTLgeDt+6iGn1/r7O2pWd7uS/d6larXq9S9Hqvr9vl7n9MsHZ5bY7ivuYJ1frwHaZYHx+t4yQ2P7tXQjOH8W4/81krezTXszTk47fUrmbcrjH4tKne33kNvdOjbLuxXU7n7Orj7Kx5fDbjb87YTOs8ivVGTyQMryH+8jo/dV2taroHPfPpzfFNlLX8T5ivLKZkZoDMunLuIZ1uMT0zT6jRZWl7j5bMrPHTvJJblsNvq4Douz76yQL1cotVscezoBHcdn2dzt0u9PkKr2aLoK/oDiVt0MY0Mxy2gszwrMwhDCp5HFETcWFqlUi1imgYXLlzj8sIKQhm4rk2SJtx/8g5u3FhnfGyERr2K69m5UXgQYFsWg0FAq9NjpFZl5cY601OTLF5ZYXFlk26vS+Pt72X9RofpqXnuf/AOLl5+DDM5zPi9J/HcFKkTPvQD/5CPvO0B4jAh6HV5/IXz/K23vpmltVUmx+rYtkGmMyzbRGtFJjXxIMxFPXwfQUowFJOwXYNsyBfvdzu4xTI6Swi7MaaviLsBO1ttXN+nWqmSZjFapMRxvK8EGgYhhpF70p27sMRko8HoeI0g6JFlQ38cQ9JvdynWSgS9ACUUtmPR3G3hF738sjIElEIQBAFS5P14Shr0+yGf+PwpvvObHsI2QJoWUhmQwW5rh3KpkmcihUYKyLSBZWmSGJIQEDGmY9Jr9wj6IUoJKtUqzTtsavUykJsbCy0QGETJACkzlLKJo4hev0WpVCdJEkyl6AVbPP7sS7zleINCwcp78MIAQwls1yeJU65d22BsbAxE7kWYJClhGGGbHs1mm62dJvfee4xms4UpwbIshMp7VtbWNri8sM7c5BjT82MIAc3dJq5vkQQJWSI4ffYKjzx8F1Llxu/D9y+GadFud+m2BoyNV2jt9mg2OxQKFgXfw/YcLNsmSzIWF1eYPzRJmsFvffTzfOi7H0aoAp9+7HlmJkqQxRTLNo5dZn1zi3tOzLO6uolhSDzHwzQNpKGwbJPri2uMjzdQVn7dttbWMWxF0fdJo4x+FODaFgXP48LFRSzbYv7QKGE49I4LY4RO6QcxrudBqtntdgmPf4jRxhRx5zwf/8X/i/fd/xC10SnsgkO2l6nORH79Zf68GXQ7pFFAmsRIZeCVaijLQmQx/Xc/zA/82D/hv3zsQ0ThgDQN8fxcLCSJB4RBl0KxgRABQkrSRKGUkWfjtQZSsixPBIAgSTP6nU5u26EzUk1+PIMQ0pReZ4eR0QbRUFE36DQpVqeI0x5prPFLJYIgV7RN4iy3xnB8JBHXzr/M9moLLRSVep1isUgYRoxPTYIQmJai2+1T8AvsbK5T8Cs4rsPW5jaOY9Nrt9FZ3ufa7/XxS0UksLW5Rb1eI44zHE9x/foak1OTZFpQq5dYX9tm8eo6d9x9B9NzdbIMklhgWDfFIR5/Yob3ftffYvHicxTrE2gtc7qdN/T+MzIEFkqYZFnC1uYKnmvRa29hWYJga43M8Zicv5dUFNHpgG63Q9FzMA1F0u+xsrRJplP+ov0xDGmgTIsw0aQapNas7+xQL1dJoiYlv8J6M8CybUBSsHOwu7TapNvvc3hmHEMJXCe3y7iyssnsxBhBrGnubmFZNpBS9m2UWWK33absGly8ssyRY0fxzJA0gyS16fXa/Nmfn+F7PvANFJyUK9evMFqbpx2llB24sLjKicMzJDoiTUApPfRANfniF17mW775IaQhybIkD7u0ptUb4FpWLoACrG23MJRBqWDjDHuJpU65utahUvL57F++xNT8KHMzdUarLoMopR9ETI7UQAj+y6dO8fDDJ5iql8jSlBfPL3LvnYeQMqYf9nGtIqYI2ekKlAkly0WLmJ3WgHqlSD/sk2mDS1ev86a7j6K1zHshUYRRgKU0AolQimY3oN2N2NzZ4k13HSbTgjANKBourc4qfmmUly+uMDcxmlcuix5SQ5T0OH32Bg/efYRMxESxwLEN4iTk9MsL3HV0kn6gqZUbXF+9zuRonTDJiOKMKE5JkpB6tUIQZwzCkHLB4y8/+wJveeQEm9ttuv2QctFnquHjWBbL2y1KvocEnnvyNNWKxb0P3IFdKIHWqP1K0OvHsFEGP3zyp4dxC7kq5u2xzbB6h9ake7G4Pmh+fnPsUyyFuAVo7QGvW+pHOkOKPAGyD4TEAXGVvZ3aG8N92AeRr3dc+qaRuRKSdA8wvQ498/ZxsN9ueKj7n78y7fD2XRnSGrVGSXXL9NczP3+j0w9SO/f2LdMZeritNxrz7pme3wRzOR0zV2n+8gbtrwdK//rGQaD35a0q9o5ib/bXaZl/g8ZXR8scZjcOlGS/FuON2SC8Vh+eZmrzyWF2SN+yZJJk6LBPa3uD2fkjBEGfz3z2GR44eYJjh6fZWN/h0tVlVte3aXbaHJ6ZYuXGFo88eJyVG8tUqjWKZR/XVdhmhmk7OLaHY9kIZQ1pWRIhMkxD0Gm2kUpSKBUJByG2bWEaitW1TQ7NjuO5Fm99y0kq1TLXl9e55+6j9NptTCUIgj5XFq4zNT7GpYuLzByaGj4EBM+9eI7JiVFGRqoYhuSVDYOZ2Qq2GzE2NovvjTNo7vDDP/FT/OiP/DjomD/6xJ/yHdOj9Lp9HM9lfmYCx7Hod/uYSpKSYRcchJGr0uksxbas/AFmSNqtLrbt8OQz55iZqqMFxHGC57okSYrOYNAPkSpXgrQtA6dgs7PVZnltjXLJIwyTfc+qT37xFCeOzCKQxFHMtRurTE2MEEURg0GIZRlYloFpmViOnScwE43pOdiOzXMvXmZ6ago1VAXbWN/BdV0c10FKyebmNpDx5pPHcRyb7e0dlG1jKMWVheuYUlEoWIghbSQOQ0wjz9rFcTIUCAEtJbZtYZsGhVKZl89dZv7RO0jTBD3MjmZpOsxODlX9yHJ1RVNgCBOtU7SA/+PjT/Khdx0d0hby7KRpWLSbfZJIowybYrFEr9tlbX2XkVoZZZpsbu7y7IsL1CoFZmfGWV/bpN3N6ZKuY7LbapEkCZVKkd1mm2Z7QKoHVKsllDQRUtHr9ul2e1RKBda2d6hWi8MMrk0c9pEmWI7JysoGru3mFRNHMtooYbt5H5nOEsJBD98voIVGKZP77zkMWZ7tn5seZaIxgWM7NEZHSOKE2dlxcrP3XLQoTSAIY9JMs7XVZHxshMtXVzCkYHlljbEph3JplH5P8LmnX+Ku49NIIdnZblIuFjAshVtwubG6BcDi0ja1cpHtnQ5+wSeOI4JBgH/4bSwsXKJWMTBfWuLG5ja16gjKNDBMI2ceDWmYaE2/2yEN+8gswVDkRtWGh6EkP3fqFL/1kY/zJ7/3gwT9gDRO8fwSaZLlBtta43geSZwQhgFCGChpkiRJ3ksxpClJIYmjiCRJUELjeg5SSNIkQWswDROlIAxCypUKrWYXxy1gmDZJBsvLa9QaZRy3RJrGKGMogSDMXOxFh9y4cgmRxjiuzyBKOXHvPbjFMtWxBpoMZSq6rQ083yPVUKyUMW2XJEkoFH1s18XzixRKRQrFIpWRGqVqDdcvoIWgUCwyNjXCtevrnHzwQSojY5RqFQzToFytMjk9ges5BEEfy7KGtNSUvZ7Wn/iZf8/zT32BJ59+kom5uVzt0rL2jZ2FyP3gsqTLoL9E0SsglIlTbWAUGvjlMUr1MZRwkCgkPdZvXEMnAWk0YPFal4WFJba3u3xp9xVGR0ooZRJECVGSEkQxo9U6YPLimQUirYgywUi5iBACy1Asrm2htebE4RnSLKcZe7aD1oorK1tkaBxb0unFjNZGqBQLZBq+cOoMh2dGsUyD089f5NixWVrdAY5lIciIk5BjxybZ7bZz0RFp4jgOL567Sq1aYH4qp613B30Kro1pyBywJil2sUCapbx0boHpsRrLm5vYpoVlWhjKoNvvIgSU/QKlgkOvH6IRFByb1e1dZsfHKXo+btnFdWxmJ0a4sdWm7Ps8d3qB+Zk6pgGer5gerSBISLKYiUaNXhDhmBZZJtntDOgFA8ZqI5gKkgReuXCNIzPj7LY7dHoB1ZLDeKMCWpAMsYREk+mUKEnYbHZxbQvHMqmXBLWhUBbCwlYu/WCAbTo8f36FzY0eftGjVnIJooAzC2tM1EsYpkNnkJ/bPPYQBFHCoelxoiTlyS+8QuaanH72GuPTeZLENhX9MKZW9njyqbOcO7fC3PwYtmXS6vc5PN2gXvaZaFS5eGWFarXCykaTrZ0OZ86uMDk9zounFxkdKWAZGs91sUw19Ej88vGKEiBWS4yNN4ZJydcJZ/aS2gdWd1Bh8uC0/d8PLr8nJrKH/YZBeZrtKTXufUnfCu4O7uvQ1Bv0q8Djq8ZwlhS3AsrX29fXmn77XMEbjf8OjmHl8gCw29vG6/XYvZ5K5u3T9xQz0/2+RMlNz7qvptD0GhXLIZXyK9k67FFcD9I8/7rGLfdNvnVy5str78M+BBzO/mpomV8Hd3/F46sCd7cYQPL6z7iv8Dfw1fjawa1Vu0xrlDLItObf/OOf5NF75vZWup85F1KQ9XY5c+Y8hw8foT8IGQy6XLm2xsRYA9NUOeVmdZvDh6dpdwNc22ZyrEqxaHNkfpLry2uMjjVAayzLYnNzB98vEoQxCwvXGR2rc2VhkXKpiETQbnVQ0kBk8PknTvPSy5cRIuVN9x3n8rUVHnzgBIZpsLm1zR1H54jCgIJns73bxHHc3A/OkFhWbqeQxCkLV5YQ5B55o6N1qtUCS4sXmDr2AEePHieNE771PR/gkQfL/MzP/yNSkeWS0Gub3Jv0kULjFmxs2yROUvxCCcsx8qoHErRACIjDmGAQ4BRc0iTFcRyUMhgdqeV9WLZBvzuAVNBstnEcl2deOsdUfQK0QRRlPPnsBe48OkOjUSEIYny/gGWbxHHE8UPTxHGM0JJiqUCtUmB7u0mxUoQMDFMiJAhDkaYZQS8gCeL8LSlTxuoVkjhFiDwucFwHU1loNEkY4xcc4jjCtM3cYsCyEVIx6Pep18soIYmziF4vJI0hyRJc0yJNMzKtyXRGq9khG1YwBIIgivnJVy7x/e+8G2MYvCOyIdd9KKSixRAI6X2KrhSS7/3lT/IL753CNDMsy6S926TXG3Dm3AKzU2MUPCdXi7uwxORohW43YGunzchIhVKlyKHpcbqdHvWRCjvbTWbmJnFtg4uXr1MuFymXfJrNJqNjNSYn6iAYGhtbfOm5ixw7MoVlgud5jI2NINDEUczy8jqubWLauUfb+GidMIqwHYssy9A6w7Bs0ixBColjWBi2lcvVIzj90mUmR6t0ul1MU7G1uUWGoFKtsLm1TalcIkkSLNvKDaLZq0ZApVwgSTLa7R6jjTLjY1W0hM994WUm6lWOHh3Hskx2d5qEUUQUJYyONjCVg2M6FAoFBr0+vV6f6alR+v0BSRzza598hbd/83dwaG6cD//Wf2aqGVKrVnC9IuVqKadfDuMxgUBqQRwNyDJNmuZMhCQF0/P5ic98mnIx5jd+5dsRKDId73uqCYYVFAlC5FlcqazcrF7v9XHIvA9T5YkDZRqYhqTTamJaRt7rahpIII5CpJTYnrNv+nvmlYvUGzUKRZ/aSBGlNFqbaDW0DBiq4z37+JeQSZPmzg71sVnGh2qA0pRIlRH2u6ATDCMHxxkKqWyiIMIwcwAmpBhem1yWXxkSqUAjeerJ5zlyxyH8kg8yw1AOjufljwydoElJkhhlWiglcBwXnaWARko9pKdK7jzq4/jHuOfekxiWvV8x0MPntRYSoTVBb5csbiJNm8XF64w0JskwiYJ1mu0N4iRCShj0E/xiGZ0JXM/H9GpMzY4jTYOr8RU81ySIEwylsAwDz8lB5rkrVzl2dJ5+lFL2XSwDpFA8e/Yq3W7A/FQN2zFAa5558RKWY7DVHlAtF7l0eZk75yd54pkLlGtFPvWZ55mZrXP/8VlMwyCMY8anGoRxQoZFmiY4Q/9FpSS1oo+QGtMsEqUBq6vbHJodoxdEBGFMpeAMe69SWp0u5aJPyffxHYdqqYDWGtuycW2LPWVXz3W5sdnCtizSNE9YKGXyqce+xP13zxMnKadeucbK8iYPn5xjs9WhXPBJs5Tp8TKlgstOp0XFt/FsmyxL0EJgGBa2AUvrTXqDGMvUjFTK/PljL1CrWnhegZfPXGVqeoR+GJNoie/a9IM8WbbV7FL0HT7/+We5dOE6d951lJJfoDsIMI3cUiKINYbKE59ZIvnzx57gjmNHsRyXI7OjlHyXheU1xqplJhqjbDZ3eenMde46Ns2zL1/h0HQdISQXFlZ55ulz3HvXEcanG/i+w5tOHsZQgu1WB8M0CMOYq9fXqI9V0VJg2wZnLy5xx5FpVlbXOXfxOmGWcv3yOo3JEa7f2CSNEx66f54ky0iUplz16bW6GFJTLhVINEMey5ev3334lz7OBz/4nXtBC/tNbgeqcHs/xV4fE68dOmmdP7v2jcNvh1RDoHizNw6EZD9BrMWwInegYpfpobfeQcbTa4x98uABADnsdntNIPiVwN3N9R48d/mRD+VGvmJs+OXix4NKmQe96Q76190ETXtKygfBav5/T/zl1YqbN6+RPGDHIF613N49slcNzSm2e/vy6v24WT19NZnzjZ2Xr8W4qcx5cNrrb/cguNMazK9bIfzNGf81lbv98deWULiVRqCkwQc+8H387z/+La+xaP5HcPXFU3iVBqX6GL3dXYolh9nJKfxCgbPnL2PbiqJf4NzFVabGx1jf2OSeE4dZXr7O9FSDqYlROr2QJBHYjg9phLRMPL9IbaSM1hmlYpGt7V0c1yfoh+xut5FAs93jxB2zXFtaJUlC7rrzKJZjoZSiUHDpt9r84R9/Ht93MAyLJ0+dJQhjbNsgSRPWV7cJByGOaVHwXDzH5JWzC5w4PoeMWvz4//oRavYkF6+8xA99/z/h13/l53jXuz+IX54mDPq8+c0P8JHf+Rj3j9YwlWYQBCjT4o/+9FnuPDFNGmc0t7oUPJ9Ux9hDf74ojjANB601lxaus7nTZLxRx7ANTNNEZArbNlDKZHqywR9/+hka1QLlWon52QmyNN3D2Jy7sEjJzytruaqcxDJtOp02pUoBx7YRhsI0DExT0e/1MGyLLNPoJMtN001FEHSRSufG6FrmvUymSZbmL0VlSuIgIo6DvGpk26RJitAS2zYw7VwARIsU1yvyice+xL0n5iGJCcMYy8nBjKkUju9iWxZxFGO5Bl/Y3mFS9KiVa1iejaEEUkJ/MMCyJGmqCYIA25AkSYCQNhmC998fYqkC6AGmaeB5PkpqykUbdEyn06RcqzI2MYapBe12H42gUvURUmCZFtVKmbNnF5gar6MsyaDfp9OLGKnVSJIQ17P31ThtO/edM6RBHCUUSzaCjKWVTeIgV7+7sbrGkflJ0hiEVEhlkGWAiBn0Q0ZqNSzTBJkCkjjMqZ3KlLkfnjKpVopsba3RaEyipMbzYpTl0Gl3Kfl5BdAwc4AWhRFRGBAlIaOj1bxfUVrEcUyaxJiGQAqXI3OjXF28ymijTpKl2JZJqVggjhMcO6HX7tBs7bCxscr4WAPPNjBNg14/wLEMfukT13jHIw+ycuMK//dv/QEP2R7VkRLlcg3btUEe6G3QkqDXJ8sibK+E7TjEaYbjFvlDy+T506f58L97D6ZlD2ndCVIJdKaJgnb+7DEVg6CLzsA07DzwkgplKKIwp/wJFGkS5/ThQX+/V0pDLl6kcmNpLXLFxSxN0DpjZm4KZRiQZSRhlyjoYpg+UvfoN9fIgl101OTKuac5drRGY2oM0y8jVQXDdFHCIItTLLeAMAtkwibLUsIwxVAWhpBIlaKURKfJfpUxB545CE4zzdzcZA72BKRp7tMmFaRJkAc9w35RKWSuMpsN5SN0OnzJ54bzE5MlHO8kQhhEZKjbHtX9MCCLU6rlMmGrSasfMDo2hmWaKK0xQo1jFQkCE9uukQqL9fVtKtVR2q0BxarHytoV/KLLL//Mb3DyW+YJogSlBMsbO3S7MdutgKnRMq7jsrK5w6mnznLfvTOgFVONOocmG5w5f5lYJHiOzexEnbLv4Lsup164yFvfdCdkgiCLGRupICyYm6iSpEmeyDAMHNvGNQ1+/aNP8db7DxGETUrFOlpnnL6wSLnoEMQWngOHJkZpDQaYyqDiF4jiiFTn8v62ZbDZ7FIsFLi6vMaFs1c5Mj+JxmBtp0nBlSRpSKeXMTEyQhTlAi2DQcBjX3yJ9777YVrdLiXfoVouc3x+jF7QpV4psNnsMd2o4lrQ6nYxDYGpchub7iCg1QvphxrHiLm4sMad8zNs7W5Rq9Q4OjeJa4E0XKamGziOIohTqsUSgzCjVHBp9wfUSj79qMeRmTGmZ6dZ2uqjyYVm0Bq/UAVtYipFGPXpBpKZ2SKO7VP2XISIQUDR99jd7dONMrROuPuOeZTSzE6ME8Yh3X5AoVDkrrvmEBq2Wh0qJZd2v8OnP/UM9548RtF1idKMgmeTpRnNVp9eP+TkiUM0211mJ+pkZJRLPrV6kU4QcuLIJO12e9/uxfNdDMvkxvImThKiLQPHc4dmAl8+2B6/q8bD84/uhy+aPSGU11hYvCrKefUiByp6+35sw+3vqS7uAYNhJutmu8uwkn5LmMQeSHpt8ZKbu3Y7KPvKwOvLTf9yXnP5+v/bKlX7IO3AsR8EdwcB2cHz+FoVtdcCcXuiMRxY597vrwXubkqr3Hp8e6JaB7f76nXcOv46wN1eFfeNbmv/ntQaKcXXK3d/k8YbAncCNEn+c1gZ4/X/Pr9m46C32m1/DAAAIABJREFU3X52g7wh9rvnQ/aoBDeXz1XCdtc3Wd3Y5vCRw2xvNylVyrSaPWzP5+y5K1y5ssHq9i5LNzp85/vexvRkjc2dHcYaJcrVEQqVBloKlDLZ3mnhOA7Xb2xRrxfRKUhTkGYphpGDNZGlZFlGuVLi8WdeQqYCZMjaRodqrczszChZlnDx0jUajTqLVxc5fGiSmekpms0OQmdMjBZxXQelTFaW12k0Kpy7vMjGdoep6Trz85MsrazhmUUenDV5+9/5++jY4l//8o/y3m/5Bxw+LnCKR5BWim0W+Oe/8R/5u/PTICziLMYybKbqPrZrc21hiXrdR5ka0zAYDPqgNFma/19YuI7vFpiaGCNOYzRZHuiKjEyAUJrNzV3uu3sKSzlkWULQD/j455/hyPgEpnLodweUKh7KUpimhZQWSZLSanXpdvoUCi5JGGKZNus3diiVcnVG05R547fjYA6VvsIg93tzCy5poun3BjiuRb/fY2lpnYXraxw+NIdO4dQLZ5mZmkCQ0u32UTLPNSZhjKEEdx6agkwiTQtlKcJBhGk6SDK6nQ6O46CRKCl5x7vv4OjROUzb4A/+6HMcOTyGMhSW5ZEkuaeQoQziJMI08+rF9/7rT/J3vmGSTKfEUcag3yUc9HG9ItIqYrkFXNdHCwslDNIsxbRNGrUyX3zqDEfmZ4jCHnGWMjpaQ5mC9fVNlLR4+cISc1MjuceeNEBmJGkfmZkIrYjTPpWiiZYQpZpGo46SAsf38DwXwzCxTcm1a6uMVEsEURfHdvA9j+vXlylWioRhglKKxcU1fNcmEymkCUqCYRgkSYLr2kNnHYs46NJvtVBOicvnF1lZ3eLo4Rkc02azucvM9OSQumjQbXVAaJZXtykWC7l3njJxbIfmbguEJAwj2t0+aaZxXR/HL+G4Dmma8dyL15mZGufa0g3GJ8pcubrN6W2Hhx95gDvuvgf90nnua9RxHQvbd3GdAnJYdcwAqSVB2ELqhDjO8EpFTNfn+aOH+OhHPsLHfuvbAZX/HWQRllNEYKCkQtlOXu1KJIbyMUw5rKRpOq0WtmkTBL18W1lAlnSJB03azSamIfeDqziKGfQGJEmYA6xMEPTaZGlIv9PKqc9pjziKcL0ycTggjlMs282N1VPN3OET9IIEy6tjWNU8KNASpEIoiVS5mqfIcouGi2eXKBUV0tBo5YAeZvWlSRwFKGmSJnmPjhI59RgpEEogpItSQ8U8ZaGFQEpj2NejESJDZxGSjM7uNlpYOAUPQYqSGd/3A/8b7/jGR/F9H6k1rmWRpjHojOWls0yMT7C0uEy5NkK5NoJlVUi1wyAM6HR3WVtvMTE5SXewQxpofvVXf4VabYRBP+FLz5zi0OwcJb/OJ//kU9z1rinCeIBjKYqei2ObOfBy8yr/SLnAzMwYn/nsKxw53CCMY168uMgDdx/niSfPc+zwJJZloLWiP+hxeHo89w2TMfVqiY9+7Is8+uYTbDTXKXkuWSbpBQGmEjz2xEt84D0PIaTGcQvsdtooaTI6UqXb7VPyJUop4kRTsG2koWiHYW4qrTRSKJIkr7ZrUtIs49iROZq9CJ31KDg+3X7K5nYXv2BxaXGDU8+8jFc2CWLNPcfHkcS4lomUBqbSdHtddpsdHMei24tZXF2nWq5ycXGVo3MzDIK8B9W1PaJYU/EsBoMe7W7IxFgDr+Bx6oWzWK5F0S+S6ghDB0ghOX1+nYJnYKiUIEkp+x5SZJjSJExj4iTBMw02dwdcvrbC9OQoiyubZDrBd0z6QYRjRqxvR5R9g61mK/eHHAyo+h6pFlR8hy+9eI356VEMqdlqt3Eti3LB4/kXzlMZKfLKhWtMjtY4deoCdxyZZXSqge/YXLiyjOMaTNZLFAs2vUFA0Xc589IV4iTm0Owoz3zxDBvrbayCw+HpGnGi+dwXLtEYdZibHCWOE2xD4XomphWyfqMJMsH3a2iR7tMd91mSDMN4IXA8xf/yUx/mu7/rO3LvN0keNw176qRUaMm+AuZrKU3uh1diGAUdbFTjJn0PLYZql8MqkRhWwoQeiofIfWCZbydXir6lfDR8PoksF0GROocnep9O+eUpm1K8djVN7mV72QsZ9S0A5pYK1s1Ijv/aStW+dx4HgB4HgdjNoPUm7DrgwbcPtPLEh7hl7/JnXx6L3u67fCsoy9Uz97anuSlycvPE71Xy9oEjuZH8HuDeVzzdB5c39/+vqg/vq2XVHax0Cr5uYv43arxRcLdftdN/PRmE/Y3t7cKBsvr/9N//GO9+cH5vBjBkPGhN2OuyeOUqx+86QbcfUvJ9RJqys9Pmzz/7PA8/eILV1Q1mphrMzYxRHynzmc89zqMP34frFVDSQClBrx/iuh5pkuK6HvV6BSnJLQQGEQWvwNrqBo5l0W33ERJazRYLV1fIyDg8PzZU18yzj8Win4sjeD7tTpfnTl/g+LFDXLu2QsExyOIBm5vb9PsRnutSLhU4NDtBs9nh/KUVjh87RK1aJYojjt85y/f//L/n93/7P/EPfv7H+dZ3vY+l5SeYGDtGL8krGs+eOs3U5jYjZZ9MJASDhGK5yPrSJuNjVaQpUbZJp9nFsg3MIe1HZBrXNmlMjKAtgTOsMPS7A7Isw3P9odKjxLJsDMNi+cYqT7x4gW9725s4e/EaqxtbzM408AsFBr0IgWRjfYe/ePoF7joyx5lL1xkbqZGmmnAQ4bgOaIFdyrOsOtH0Wj1iHWMoE9cpkkQ5CPUKhdx4NwzpBwNGGzVmpsbodju4rsP01CgIiKIIIQRJmCGlhTmUGRcaBr0ehueSRAkb67t8+vHTHJkbxfVswjDCcWyyTFM4WmdnZxfLNjkyP4Npm8RxMpQwHmb/dIap8vvkMy9c5Ke/tZ6LbEQRhpG/bC23QpQIlGERxjFKGXmGTOTB/sb6DnGScPzYBEnSz3uTbIfHn36Z8UYF3/dI4oxmq8NovcjGZodiyct77DIJaUSWJfS6LaRZwHY9BIKFi0usbzbxHIveIMSxTba21piYGOHSlWXGxmrEYYJOUiqlIp1eF4nEMBXFQg4mDNNESkW3O0AgKRYLaFKUUqAFSiVIBIWyj++7HD4yw9LyOuVqieZuB89xQQi2NpuUaxXOnb+OY9sYSHZ32yRxRMF3qVRL7OzskiaaRr1OEmX0u22EEFy+sooUkiOzEyipSOKEi5eXKPk+b33fjzA62sB2HE62Ipq7WwzCAWmWUSxWkOZNc1kSTb/fxrJtHLeElAbf94k/4umnn+ajv/FuLMvDsAqgFKaZW/12220GvR6mbZFGCYZhkGZxbtuByCmNSmFYBp5roYgJek2KlRKGdCjVxsk0WG6BJEqxHRfbK2DaDsqw0FLieAWs4XSNQZYJbLeIRmGYDqbtI6SJFhaG5aOsEl6pgVA+SazyayBAp32ECFE6r9ZrNNKAsB/g+xaW4+w/T7M0p08alkmaJihTopRke30H0LiOSzSIEIaFEilR2MW0DaSWKJURDlo0t7fRcRfTyM9TbbQBmCglQQp6u5s89rmX+bZ3v59BmOCg+ehH/iP1msv/z96bB0mWndd9v3vv29/LvSqz9u7qvadnAwbrYCUFQWRQoLiBDNIiKZsWFbQDDoVphxmhCIZNR/gPhmmGQ7Yp2bIpi6ZESaRlcwEIYpkZzD4DdM/09L53dVd17ZV7vv36j5dVXd2YwQxkkYYj8E3kTE3mq/deZmW+/M495zvnwvlvcqjV4sqlc8wfmCYTGTvDFMO0EHmOLRWn33yNkyefJM0VpuXg2DYHDsxx/MQJtrbavP+pRwkCj8NHjvEL/94vYC0OSdME2yqaLyklcZJgW4osz4mTlLLvcOhAE0O6jKKECxdvE2YJ/UHKtWt3ObzYJM0ydJ7i2oXs0lCSV968xQ9+8ggr61sszrSIU8m9rQ7zrQm++twZ/ton34/vWuQ6Q0lBt98p3udKEXg2m50unm0RRimvvXmJibpP4BgkaUKcZly/vUqzUQMhMKTCNg2UUsUsNCZxmvHN0xdpNSu0JmpokfOh9x1ju9tjqlHj2a+/xsxsg5JfzFemeSEhLwc+tm1y5fItlCWZrJWYa9UZhiGd4YCK7wOFumJlY4NGzaFeq2EYFnGa0qyXmJpocGVpnXrZZ2llBd+1UabD8soqrYk6YZyztLyO0oAC33HZ6Q1pd3scXpiiNVnFkMXnw7UtojTDdR0sEyYqNeIkwbFcbt7bptmo0o8Syr6HITIWZyd47Y0r5EhqFZ/LN5fJtMbzLHzX5sjCFF9/9g1qzVqxOKEUgetQClwc20KOB24b1TJXb67xxOOHSbOclY0e4TCmOVPj+JEDbLb7rKx36fdCPvnhk4VUcnwdaDZKpIbg1JHDLF+/TnW6iRqHVu92t/shwC7I2rje5kc++zeLa7283zQbyvi2dfEHre0f7n6KkvJB0LcbqSDH0nPNLhm/h/72gA4UUvK9GAV0kbG3CyzyMYjQBQjdk21+p/ZsX32nmSy5D9ztbf8OP7+XfX6n2mPieFD6+Z0YsW8/lh4Hkb+tTyj7QdZDePs71H0wJr7t37v3i28DbfcZWv3gln+Fc3jfTX0f3H0P1XsBd3p3leLdgN2DDPS71rutEjxIlRdv7uU79/iJE3J3OWZv2xxNnsaM+gNKfhnTtjGMItfs3soqL7xynpnpCU6fvUoYhXTaQx5/7CiuYxL4JltbXVbXOty9t061XMQCeL6LGK/OF1+ycO3aDc6cuUVrssH5t24wOTHJ2uoGr585y+07d/nMpz6M6zr0Rz3mZubY3u6Q54WEs98bcPnydVrNSVzbYntrh4X5aYTI2draZDgM2W6HHFyYYWNri7W1TR47eZhDhxbY2WkTjkIADAsON0v85M/+EmdvnOZjT32aLF+j3jgJ0kbrnMXFeY4POpDEWI6JMmzOn79BkmZUqg6mbSKFwjTMYhwgz8gzSNOUKzeWqVZKxcpfPCIMU4JSgOMUUQJSSgxTkmeQJSlCaU4cXMT3PaYmJwhcm0qtTBZnXL1xh1azzrlr1/jEBx4jKPscmJ3i6s07GMqg0azy+psXObQ4T5rG6Ezjui6u72AYBtvbHQxlsnx3neZ8MT8WDoe4noXneWxstNE57LQ7lMpBYSJj25i2iWEq/umfPYeVQ6NeIoliur0+E806QkmuXF5iolHh8UcO4gcBSRSTpRk60/z++ascOFxnstkACbZlEccJtmMX70t9X0t/8fwVSiWL0xfP8shcYb+/tblOnoTcWl5ndrrF9au32F7f5tbtVSYadZQQ9LrdYj7NNanW6nTaXfI0xXFsklRzYGGGPNeEoxG1SoVmI8C1FFoW7pM6zRn1Y7TIMS2DXIuCVRu7WzVqFba3e0zPTOI4Fo5j8+ZbS0zWJxkOUiabkyhlc/fuFuVyBaSJZUqQYFgGt5dWKAclhDT513/8Ck+eOghCMhz2sEwDieL27W2mpmYJwwQtQpTICTwLZWouXbzDwYUp4jTGdm1sw8BzTRq1EmsbbQ4fmaVcCeh0OkRRRKUSMAoj8rQwK7Fdk14/5PDhOQxZzFreWlqn0xty6uQige8SVR6lUq3zB//y/+SpUgXPMri9tESjWiYIqqixdb5GQ6aROiscR22Xf/76y/zo3/0P+ft/r4VUGo0B0kDnKWhROL56LkpoLMshHIakWYLOIgyrkGQqQ6EMg3gUockxTRvTdohGGSiHLNMo02A4GOAFAXmWjj9rxYxFv9vBclyEFGSpRiqzyOUUhTqguAbGIDSaIn8xSUJM20YIjSQujJ2Q5FlGHIUIkaAB01QkyYhatYqUEVLmWDKn295EGhLTAKHdsalCRm+ny4ULd1k8vMCg02f5zjbD4YBSYJMmGZ3tHpYj6XbWsSyF47pkOBhOGTuogSpk2L1uvwAmrs/f/OH30e7MkMQRlXqNer1BqVKlVmtg22WCcoXBaMTFC9eYaBzAc02ieMC169d48okPoKWFNCSDsMu9pVVaU5OkSUa5XMOyoD/o8Cu//Cs8/dGP8dryM0RJhtYa0xBobeDYBjoXSBS2aZLkGaapSFOBZWlmZqo4lstMq8Jjj8wDgturbQa9AdWSS5JlCCwqZZ9aUKVRbvDnX3yJbp5z6vAMaZYxNdUoviV1ipKCKM7o9oZUgxJJlqKBsmuztrVDux9ydHEOxxRINFJZBJ6Ha1tcvHaX+elJ4iRDoJBSEsURwtCYZsbkhE/Js4mSjIpvc3NlndnJBqYyWTgwie/abLV7uE5AnORYhk13GOI7JTzfZmF6CmloklTjmE7xflUWoyhhbXObmVYV13GxDJc/+L9eYnGxSc030RriNMWxTN46e5HFxVkqXkCrWbj+9kcRFd+l1+/j+S5KmgSuTa3iE2cZjmXz0pkLLM7UCeMY17GA4nX65oUl6lUPyzLIdcjWzg5zzSrbvQ1s06Hd73N4ocUzz53DDgyOLkyhlGKyVsZUhfNsUC0xP92kWSsXES1ZxqUbd2k1qigpeeviTeZnmmy0+8y1JnBdl+4o5rGTc5RLFteWVun2Q9A5px6ZJUlTfMfijQu3mBv/bduDmF6nS7NhsbrRp1GtFtcVocek136Op/ipMh/wwcWPF+yvFphjabbWDyqOGAOpcdNz/+6H+qFvn8kbwzax735RALxdJm+3j9r9/d1z28taG4MJKeUYKN7vvdgFkuPz3e+mucvU3Z+5+s5yzIfZOT1mL7+T/OvdAMyusmt/H7mf8drPDj5wDvuYsf2SyH17BqHY/zd9m6PvsY7vreUdC2fz+86bu+dSHF+Sj6cq9+faFef1IKP7bw/svssG/d+ivhtw91ftAfr9+h6v/+bX/wFvd0EQaEbDEWvrO/jVBvfurhCFEb3egNWNDtPNBp/82FOUA5d6xaUfpTz/0lk63S4rK/c4MD/N1vaAjz39ASrlgMlmDUixLAkU8zOmaXH06CE++9n3Y9o573//IQbDLS5fWQZdAAjHsZmZnebJJx/n9/7gL5icaNCcbLF0+x5KCnzPQCqDVmuStfUdXn/9LVY3tjh67DCTzRanThwhyzVKSgLP4e7de9y+s8yVG0vcWVnjW2eukyQZn3h8kd/4H36HH/rBT9Pe3gZMVjeHSHx0Ljly/CDDqM9oFDIYDJFScvLEIidOHca0FFmSIMZkbBTHKFVI7kzHRmcCnWgsYWDZBp7nFk1bf8BoVKyO5zl02j0A6o0yL5+5QBZndHd6iEJvgm2bNOsVNje2eerRw7glm1yn5CLj1COHmZioMhwO+OgHT5HnGTubbQxpEqcpWmm+/uJZpJKYjuTgkRZ5npLlCcPRgEG/D0gcy+H//trrTNTr6EyghEGS6L1Mub/zuU/x2KOLDPsDXNdmstlgFCWMul1OnlgkqHqYvkE4jHFcD8/1ubeyxb/Z6FGuVPaEHRpdBEznRVZanCaFO6DWHDs+zz/+82/yUx+fRymFUhatZo0sjTlycJ5hEnNgcZ5RDM2JKWzL5fkXztLZ6YKG02ev8Pq3LuO5ZUpBhY31LQzTII4TkjRjfatNFEV77+darQQknDl7mYuXltjaGeB4JdqdiEF3B/IIyzZIspSZqQa3lu5hmAbb210+9sFT3FvdYGFhgtGoTS5jFo+26I12MD3NYDAsFhEEzM+3eOGVc6zc2+SnPvc0g/4QEPiBRxInSCk5sDhFb9BF64goFJjSRycGWWzw2MkF2u12wfQ6Bv1OF8+12NrZ4fDRabQqJNblUsC/+eNX2dnpEPgWWkQ0Wx7tQURzZpJut4MgRVqKQ0fmOPXoEVCSn/9HF3jh+eeRCJ598TU0UK1XCTyfwLHHQ/H3G5tep7D9F9LkC1/8U/7OP/wtKs5p0JIMA1ThqJonI4QoDCakFChDMez3CcoVbMvCHudpFv1PMZNnWQ6m5REmklyUkE4NoWxMq5BKOp7DaNhHGQIhilw5tMbznCJmpNcv4jDiIu5B65g0HiBlis4k5AZSeOjcxrV8yEziYYqOE0CSa0muTTQecVrCcScwpI8pBYqcfnuD7tYy3c3buLZGEZPHPZ75i68QDjcIh2tINeTpT5wkjrfIdZfZuTKFEbHkzu0NLKuMVCUqtVmkapAmZYKgXDA2aUJ3Yx20wA988jwjEw5hAtdu3qU1OcmLr7yONnykqlKqLJI5E9iVKbq9lGb1IL/8t/8uw26fze0NFo4eZqcdI6XF+tY9HF9y7cYNlKnwfI9+v4dSglqtytbOFisryxiGQbcXkecCQ5nkuvjbJBl86+Idvvi1N0ArkkyjCUmzEMeS+I6NJmKz3ca2bKYbk1y/fI9nnjuLZ9k8+9o1ykHMKMl45psX+finDjE1WUOTIVSO55o4lokQmiiJubG8zk4nRecG7e5gvNgCg8GIQ7PF5z/NYKfTJ89hMBrxxoUbPHLkAFmmMVSxIJFmKUpJvv7qVbJMUSs1uLMWIZWkPxrSrJfIdcG6WIaBFILAtbl0e40by1u8fu4WUlmcvngR18kwzBglFFIUC3uuXYDXe1sd5qYmGAxHJJnFl1++yA9/9kNUPIeN9hZax/i2QknNJz/+PqI4IUoSBqMRF85doxbYbHXazE5XsSyT7f6Ir7/4FgiBZdmcvniTp588SpaE2CpH6JR2r4tnl7h1uw1CM4gGTNcaTDea5InEUTZCmpTLPv14xOd+5AOFK7YQKAFpmpHlGcMwZGayhu843F3fIs9zOr0BRw/OYpkGSZry/seOsNXpc3xxjr/42hku31zm4MwEz3/tNQJXUa3YPHZ8gSQKMQ04e/YK3f6I4c6QJEpIs4yS5bOyvsPOaAS9AVud3rhVFu/YL1cm7jPliMKBUet8L0bg23qYv2zLe13INLXO94xUHj4XKcX9XL7x72hRSDX3Q53sOzyP/ZXlOVm+a1xWAKIsz5FiHE3zHSrX+btuA2Ogui//7uGSQr5NEPj/u9rvZvneSu9lHKqx4VaxnwLSQQH/5EN7zbVG63d+bv9/ru8zd3/J9W7MnSbd02P/VdcDM3cIfuanf5F/8vd/aLwEtW/VSBeBlEsXL1CpNnBLHrbtIQ3F1555lXYn4sPvO8ybZ6+yvtFmcrLCX/v4E1y5ep2N7W0+9pEPMIpDylWTSrlEnhlIWayiD4cxluWSZQlaCJI0Q6FQ0qS908NxTdAZm1tdHn/kOM+98C2eeOwY9+6t8eEPnuTm9evYnqRarRCNEqamJrh66TJ3lpf58IcfYXq2QeCXGI0GHDywwPpWm/m5SV4/fRE/CAhKAVeuL5HlglLg8sGnTuC7Dv1Bl5aXc+jERwmac7hGSK1ZAaHY2lrDtW1+63f/kA/VSuhc4rgWsjCEYziKyLWk0x4QBBZpnGOahbOl0Dnz81Moy2AwHGBZDoN+RDyKCcoldBZjWA6dnT5+4BDFCYa0ObQwTa4THNdie6eNZSi0FPglD9ctWI4iQMDgS8++zqG5FllWzAP0uwOUIUnjnH/+ped54ugBDAn1kke17BCNwsI0JClmVFzPRwqbNA9ZX9/m1OIcnu/R6/bxPBehc5JCp4thKsjBtCz6/RGe79Ld6SHHhhGmYbC91sYLLJI0QUiDKNb85jNf4Qs//jGkgF6nT5KkDAY9DLPINBNmIYVJ0xDbcrl8/TKPHWySpxkry8sgwC83kEaAMTaTCQcRpcBkOOwxHGQMhhmTDYuFhTnanZB6zUfIFNNyEBSh2b/7r57nM594imvX72LZJkHJR8hCmz8/26BSUTQmamysb3Pp6jJHj8wBkl53wPZ2DyElpmVgWzZBEHDnzjqVaoBlW2hdzCPmucBzHW5du0XZKzMaxsXqojI4dGSeLI4L5i9w0UmRfyikIIxDlDJJogTP93Edm063i2ErNBmGpQjKJSzTZtANWVldozk1hZIG5y9eZbLuj01cLB5/7DimlFi2gevVkMrg3IUVDs03CAchK/d6uI7FV559k3rJ48bNDb5xM8LIIcsj/obWtCoTCJkyGnRw/TJ24BXB1lojdDEXaxg20tD89f/sC3z+p3+BX/q5o8g8Q5kBSkqiMESZ9p50adQfYjluERZc6LLRuWQ46GBZLv1OD9M0GfR3MEwHKSFNRmRpXDBrUoEuWG7TcslzUEqSJglxFGNahQtlwbzlJElMWtDjmKZLlmiEMgrZVR7T7+9g2hZJPCzYN9sh18Vqbq/bIyiVGPa72K5PmhUmGFoI3FIDx29hu3VQLrmWZBrqNY9KrQE4uMEkuQbT9DBMH9vzKFdKJFmO57lkeYznWHQ7PVzfRxhF4yeUZNAfUK7VigD3NMUwDcgFO5tb/MZv/hEzrSkePXEEW9l0ux0MOyPpRcSjiF//9f+SI8cP8ytf+AJJHNKo1+hstLEdA1PkDNq3Kakqxx45SjjqE44i0AZCJIQjwcT0DKWGz7fuvkSl5BD4xWvy58+e4cji3DgLzkOZCbWqhS0NBnFCnKR4jsMzL1/g1OFpakGFziDl0tIy9VaT9voqBxamqdQNPLNEv9dmsm5Rr01QK5e5emeNWtlHScFg2GMwinAth7LnMFn3ibMYIQWe45LqhHqtRaozJDlIjes66FQTxjkLM5M4tmIwiknyDMc06HR75Dqn1WpQ8V3OX72FzmLeeGuZQwemuXR9hZnJCZIsJksTojRFK0U9KLGytsHjx+dwTMnZN65x/eIyx04eod0bcPXWXVoTFdK0MNcZjBIcy8SxC5wSuCa9wRDXsvnGc+c4dLhOnGk2Oh18z8e2bKQUbLaHnDh2kOt3tzkwPYVSJm9cXmay4jLTquLZLqNwSKPmEkYJnc4GtjuBlgqdjvA8i9mZKr7tYiqTr3ztTa7fXONbZ2/yvidPgI7p9SPOXbiDUCbTEzW+/o2znDp+oHCatVxWt7vYZpH9+cxzb3Hy+AIT1QBNzihK6A9HGMqm7JWwzJS5+QZbWz0Wp8oII8G0DaaaU+S5Zm6qgW0XK+nRAAAgAElEQVQopISl9T6f+sgphATXNtFKMVmr4poekwuTRHHO+uptytX6GDjkY5BXgCA9Jkm2zqccPLSwz7Z/95pQyPILKcyDYGoXBL1r7RIx+iGAuXf/3i73JJtwnwEUMJYeij13yF2mSIqCXdPjx/eDrF22bz/Y2zN3GZ/7w0za7s978tN97NN+w5L9JfdYrf2/n/Nw5MFuNNd+RuuB2UWdPyTL1G+73we50V2Gctc8h72bpjiHB81ZigVtnRdMrh4vLArU3h9Ej1VP+ViRcZ/5e9DM5e2ex9uXeOj2/319X5b5PVTvLsv8LoPK/53W/Q/8yp17/OLj5gP8/t7KWZbSXrtHtVzGcn00kvbWGn/6xec5fmiOJE059fhJbi2tkOY5S6s7ZPGQJEt4+kNPANDpDmhNNrm7vIYyDAyj0D9HUUwYFllsUspxuDegc86fv07g+bxx7jKGqThx7BDHjx/i5VfPUimXqJTLtNs9zrxxlZLvMhz2WVq6RbVWYW5uiptLywSlEpVSGd/3WLm3zt3le2xutnEdhzyHjc02gpj3PXGchYUZzrx5ldm5SQa9LgsTZX70V3+bH/6hv8Gbr/wpjmnQ7lfYWN/EtBT/x599lZ88uMjv/ckLPHFsAYke52VpPNejvdPHsSVbOz08z0YqyaATFyG/Y1bCkBLHsXAdi0G3j+m4XLmyhG+5WLbGdSzSJCLLUgzLQEjwfQfTNPZkIWEY4jg2OgmJ45gji/MIy0BnOaZl4bgOOWCaBh947BhSFl8Srjs2kUiK2aA4jvdCy9M0wy3ZmLLIMrNcgzRLMKxiHq5gSATDXiHTlBIs2yQKIzQav1wqvuyEwnFslFE4IQoh6PWHvBQLfvaTJ4p5JEPguh5B4LOz00UKgWMVkjrP8/iZ3/wyv/FzjzAcDjBtQa3SQEqLS1fuEHgulqV44+xVquWA5lSDjY1tjh5ZoFELMG2T7Y0uBxdni4Bnx+b20hrdzpBarU5gmdiOYHa+gWmZ3FxaRWc5nf4Qv1TG8cqAJgpjJutlpBSEUUJ/MMJ1bbbbHWaaDd48e5WSbzLZnGDl3iaWZbC8sgm5phT4CAme5+IGLmtrO5R9jxdeeotjR2dR5OR5yjMvvMmxw3Ncu76M5zo4Y9BuWxZplhGHKXGcUCoHJHGEECZKmdy6eY8g8BmGAyqlgKs37mIqyY2lTRbmpkjiGMNUPPfiGY4dnUXnkigeMTc9SRyHWJbFKIxJ4pgnTx1ka7vNVKuEf/BT1Bslfvqnf4ranXWSOCNLYrqdDnkukcrG8Tyk1LQ31kGD4/n8xpXr/JP/9Xf5o9/7CXItMBwfw7D2suoG/QFe4COVLFwudTEcr5QqmhwBOpNYlotlW+R5iu2VAcGw2yuknEqRZznDwWAsyxoHFOcFWxlH8VgNoAp5lJT0O338ko8gQypzbJaQM+wOsR2riPlwbISQpEmGaVlsb27heB6CwvBm1/TGdiBLLf73f/wvOXXqAMoo2Gdl2CAUWWZimCVsz0MoC2k4SGGQJhGjYTFfG48ZfSEEXhCQpSnKMMYGNwl5lmAYJjrPsR17/DoZpGlMGo8ASakS8I3n3uIjT38azykiTSr1KllWLL44rsuHP/oRHn3sFCrtkusQbShsr4YwHbIkprd9h876JuVaA6ETNu6tMOh1qVSrWJaNzmLII37zV3+XE5+eJkmLLMrjR1oAtPsjfMdkeqJcZFoqg+WNDr7rAoJjh1psd2Oee+0KU636OMsz4YPvO4Rj+YXb7GaPZr2MkEXkSJJopALfMRiGI3zbR+sM15T0RiMGoWaz3WeiUmVnGOI5JllWWM9bcsz8S4MrN1eYnaoTxyFxEuM5Dlv9iDBKuHJ9mQOzLRwp2Gx3CEoerckapbKPa1s0qsV7zrQKl2XPcTAMk61On9ZkFduUGEpSb1Z46smTxFmCa1u06lWSLGMUxigl8V0H21L0hkN6wwjXsZhuVBBCc+LYQS7duMP05FQR7j1u/uMk5cUX36LVquNYCcMwYqeTcKAVUA4sLFsxSmJc00FITZKGOJbC96pkQmPbFp3eiDjOaHeH3FlZ5aMfOIrhChYOTBQulzrFskxq9TIzkw1GUcrB+Ro73R1yMu6u9zg4PclXv3GWciXgqScOEcdJ0S9stJmu19jqDnj5hXNMzdZ56fXLHF5oUvNz1ldXWd4M0U4JpTPeunIXDaytb9Prj6jXKuz0BvSGI1zLZKcX87Uvn2E4GtKaqlLzPTbW19HKxMgzpGEU1wUKrLWLpH7/v/sin//8j+1r0O+DGyXkgxl3+kHJoH7Pi+rvzB7u3+Thmb3d89gFFxoQY01ncXz2DFX2l9y3D/bvCx7c9zts8/DP7zQP97Bkcj84fLvfefiY+T5QtwvS3nn7Bx+TQu2BvnwM+nb/2YtHeGAWbgywxn8zKXaZzvuy1Pszj8U9uc7e0XnzvdX3BqDbX98Hd99D9a7g7j3Q4t9tvfeL1v3t/vAf/lc8cXhmTwoFOehipSQZDRjtrJPbPlkWY0hBr9uhHHicu3gXLeD4icO06mXiaIRhCmollx/41EdwHAvPdzl77ioL8zNcvnaLAwcKXb9pmti2hWXZKCUwpIGhDJZurfLaty4ghGZ5eQvTglazju97lCsVmpMVNre3qNXLWIZBp92j123jeya2aVKpTFCp1Oh2Y3yvRBA4rK5u47s2jZpLvz8q5u42Nwn8Iu/ItGyGoxjXtnnmhdd4/JHDpJmmZMPRxz/B5sp5jp96P92RwvMMXNdh5e4dPiglC1NlXLdwLMzzvAhFVpJyJSCOI5ZXN3EdBz9wMaSJaRvkWca/+OILPHniEFtbO+MZNhMhDBzLQBoKQ6nidTEM0IrtdhtTGSglMQwDQV6YTZgGylBIJZDSROeMbXMlYRiSxBFZmuK4LhvrO+TkJGkx3zbqj0AITMdi1E/4w6++yGNHD2BYilE4wnFdNjfbBCWPLMtwPAdlKIhDRJZjGwbdnR0s1yPPNTduLdNqNrBMg1dPn6cSeNi2RRSNZ5eEwPc9zuzcpWbEHDgwU8ikRMHUuZ5XOGTGOZblobXib73PIMt14UCIIApT3rpwi6OH5vACqwC3loXrOWPnOZfrN+8yMVlFYrC8skGtFkCuuXFjhWPHFqlUShiG5NbSMouLMwVTg2A0TJlsNqhWPZZXNvBdH43GcWwGgyFJWmTU1Wsl4jBidn6a8xdu8Ojxg5iOhUYQBC5xFDPdmmD1XhvPsxBKYCqLKBmhhMXSnQ0GwyHNiQo6jzENk3qlguualIISSimkgjTNOX/hJs3JGpcu3WW708M0NJVqiSQtZsSCwMGyCxOcSjVg5d4mUxMNojih0+lxZ2WTqVadeyvrTDVLSGVimJLz56+jTEWWZdiGwg+KAG7bkvz2l1f4uV/8BWzH5j/9B/81P3roEN1OIVldubdUsGbKIihVSNMI0hjTcvjFL32ZwHP4n//7TwIGluNjWCZpUgAVy7JxPa+Qy2TZ3tdnmqXEUVSACTSGaaC1IEkiomiEbTsM+h2SJMcvBUWchmNjmAaGIfeapZvX77C5sc303AzoHGnclzuFo7AwNspjbMcnTVLyPCEoVcjSlEG/j2VbCKnGn7ni90zbQojCjVHrgoVP04xeZ8Thw1P4lQCtNTtbbfK8MH9KkxFJEmI5/t6QjtYJOs9xXJc4jrAdB8MoQOou45CNM/IMQxSM1WCEbdukaQJjKbSUAttxkCInGg353OeexCw9yd/+/C/wcz//eZJshOO47HS7GJZJrVYhikNs22Bjc4NKuY6hPIbDHuQZSsV0d0JKjWlynTIKQ5bu3KU1M0uv06Xs27i24F/96z/j5KdnkFKy3e1iWyZaCzzHJsmiYpFg7AZbLxeh8t1ByPLaBtVyidmpGqffvMSJw00m6nWSPOXFMzeouALHdVhaXmNpeZtKrULJlVQ8mxt3lpltNhiGMbYJCE0Ua3zHo1oKkAIC1yHLEzr9GJEn9AZtAtdFyGImHFXI5C2lWO10mZlo4JiKhekJhIQsjbhyY5lDC9NIIan4Hl/6yhm6UczN26vMz00wCmMsy0QLhWuZe5JO0JiGREmLKC3y6OIkLa5zrs3N1S0Cz8I2FZ5t4dgWWuc4tkGUhFy4eoeji1OsbY/wHIFpmAyjmDjNOXlsgVxD2fewLYe7a9vYDjiWQkqFQPLsi+c5dHCa/nBAxa+SZgY379wlcG3Kfol+GDMzUWWyXmJpfZtaOaBR8VFSI2XREMdJype/8jqzc1NYZobONfVyjUrgjRUSDpNVn5vLa9iWxaUbywxHCc1GhVdeu8zhYzMcmK6xeGAapQyUTKk3GszOzpCjWFvd4vChOQDiJOXYwVlMy8S1TSq+y5kLN7l8YZkPP32MSq1QhkSDbWyreD2unj3HTpTTalRJs3zPFl4IqM4FPH3y03sLnTwEaqCIQxGF80gB+PbUSuxdN/bu2Ff35952KTnxAGP3dt2Ufuj/dyHZrgX+nn/jeMP8oWPu5tw9XPsBWL4PpOzmyO7KIh9mot6OcypeivsZfA+DOx4CdruA+EH2TT+w7/2GfA8zeLszb/uB2+7jQqgxANvHFI63289mivFMHULuk9cWr5bYO8qDc3oPZOnp/IHn8d4A3rfB24duf/X1fXD3PVTfDXP3dvT3X24Vxzv31iU+c2B34Hj3PxqtJSt375GEA0wS/OY0UifEowHrG1u8dfEuP/ljf50TJw6TZAnfeOYFOt0up04eIU1ipqebnH7jPI1GhRMnDnP79jKPPnoUSFhd28Q0i3wqISVROEJnhaX+6W/e4JETC5QCZ2yYEnPy+GG22j0yrSn5BhOTVQaDARvrW4yGQwxDs7Z2D9+rcOXmFYbRiGE4Yn5+im6vT7cb4toG1ZINErZ2dqiUfaTQWMpAC4M00zRqAe97/BhplhamCr02v/bf/jNk1uMzP/Iz2CUHv2zjuDYf+tDH4cwL+CWTKAp55tVzzDQaJFmMlAW7JYWkFARUa2W6nR6OYyKVwDBNHjtyCC0kjm+hDIMkzXn19fPMNGu4VQ/b9EBBkmb88Ve+xZ2NVabrdXq9Eb7vjR0ch8X3maFIU40yLF567TwH55psbm7SmKjQ3u7guxbCMDFNE9ctmkXbtsgzTRjFjOKIV1+/xud+8EPkpAiZY1omAlkYqFgmyjQZixzIDAOhHDJhMAxjglKAzqDVmkAgGXR7zE9P4nkOeZbhOB7D4WjcOJv4Rxp85PHDRQNmFHlhSRoDIKUiSUeYtsHnf/OL/PgHJ0CDkgZJXESF1KtlBoMRpZJNrgWO42A7LpnOsEyTer1EHCWMRil37q4zO1Pnzp01mo06uRZ4vsVw1GVurga5ZDQa4NoOjuUTpylRPKDk2liGyTffuEJrsoZtmfilgDt312g265w9f42ZhWkqnk84jMGQuK5LEifEcUK302duZhZlUhiyZAJJyvpajys3Vzl1cpY4zOh3e9y+s8FUq4VhSt46v8TMzARJGmLZHq2JKm+eu06zXuPgwWkcpwBnyjDJ85Tt7Taj0ZBGtUK312VmepLXT1/jYx89SankM9VqIIXJwfkJ+sNBERWhU5r1Kp7vgRa8+Op5jh05iO1YtDs9/unL2zz52DGe/vjT/LN/8Uf8+LGj5CkEJYtGzcP3HVw/QJk2aRyR5xkaxcd/+T/gx3+ocIGM4wzTssnSCNOyEUAcRyhDIcamJvcvRRrTMvcAfL+3CYBhWji2Qxz2sBwTxy+T7+W96SLUXAp67S6OF1Cr15mYqLO5voZfDjAMudcQ5FlWAEKRk2MU72VRxBZLQ+EGLtKQjPojHMejME0xx8xnMac1Gg4xTQO0jeNJHD8o3nO2jeuVGHRH+H6Z9mYHtMByrcKNXSdk8ZAsEwVjqYy9z1KuNdk4w1BIiaHEOLQ8wzCLiI08H4PKJERrzaA/wLYlWkMUxWwPp/mln//3WV+/Q6XugVSUypViblVAFIdk2iIoVTGkicwkb5x+mempKcJoQKO1yPlLt6lN1KjUagTlwtCiVq7Q724TDXfQ0kfM9hECzl9dolFrYCiJFJowDrEtC9MwSbOMNB9hGRYXrq9yaH4GrT3OXrvHKNYcnWvxFy9dZGV1kzQXVO2U2alJKr7LdLPOpesrTE2a6DylXq0QJSm+Y7O6vYFnuwROCaHgzPlrnD59mVPHD9DubnPh7A0mGy65LtyWh3GGaShSLbm7ssXsZA3PC8h0ymA3PzNP8Zxi9mwwjEiSjFEcYTgu/WHEZ55+nCzPsExJlKQIqSAvckEts1CbjKKIZ1+4wMnjcwgEhiExpGQYxbQmaggBW50uhjQKIKgUWZ5imUWkhGUIKkEFqRJyLdnuDlBSFo+ZBmvtnAs37/HkyRlc1yLPc8IwIbA9JptFfqbQAmX5vHz2FvmojylzbM/HtkyUoYpoAVzq5QDLEITRELRgc6dLpzNgaqrB9GQNdIJSFkurfcK4T8m1CMYZpLVygGtbdIch080GF64s8YEnjzMzUUbInFE0QhkupmUxyCTXrt5iplbihddvce36PSo1n7lWvQAJY6nkM8+9Ra1RQpFz4sg0hgGtmo9dqmN5AYZboVStsDg7zVe/9lphXmUZe4xXqW7z5NTT455lP6h5COCMDVXkfrA2rt3ogr1793Dig2zZuzJ4b4OiHpZTqod6u4fP5f4x74/L7L9/97FdNlCOHTcfjBp4+Ll9e8bc2zFZ78Rm7mdF3/Gp79vf7jGLkHe5Bxi13sfK7T2vXaD2MMmhH3A4FQ9EHewdtZC8SlXEy4yNVKSUDzyPbzd1ea8xEN9n7r5f36G+G3D3sFzgLxvk7a6Q/Be/+p/zuY8c3vde1qQ6J9oJWV1doV4v4Vab6Cxle7vLK6+dZ7bVZGm1w1SzwaDb5dWXX+Pw4jxJHJOnKQsL01y4dJ2DB+dwLIPRsE99okGew/raDjMzLVzfI4pi/uRPnuXE8SMIBEkaUql4fOPl04RRxHa7y7FDc9iuzcLBOSSaW0t3MITB+bNXsQyJzmM63W3m5mao1SeolgPqlYBGyWV5aYmNzR0MnWCaitWNNpVyHaE1lUoFZdiUyz5awuxMk43VDUqVBs89+zxZHBOlkhfudPnC3/sxjHID224AinAU0R9sI944TTw0MKRJxXVIkgjfdXGcomnutgeUagEIUAKUKRmFQwxpo0kREpIsRyLp73SYak7gl3wY54chNCt37/HI4RlWV4Y8cvwgpm1wc2mVRq2MbdtIwxg3FdDr9liYayKVwgt88kyipURaJooiJP38+SvMNCcKadgopFIOcF2XA/OTRZNmm0XzmQvaOx1sx0SjySLNsBcBGVKAYUiSKKRcDciSEC0hSTIkkiyJsEsBWhSGGUmaYpiqWCnPE+yDAbVyqfhikhlZHpFGCZZpIZWAfEiSxvzEkzaQIsfMiOsZ3Lq9Q71WwnUNtJBgCHSesLm+SeAH5FqilGZjc5NquUp/0EdomJ2bIs1TLMch1RGOZXL+zZs0Ww16gx6W7XL2/G1G0RDHdLh9Z4t6rUK1XOTYWZbJ6tIWozCiUvWZnZum1+lgWopyxcN1bOI0I08TPNcCFFLJQnZsmyBz8iyn0agiyHEtm1IpoFSu0ahX6Pc75JlmemGSfq/PubduMj83WcyiRiEHDs4iZWEecfvmGuWKh20ZSKEpeWUunL/O7MwUCINa1cXxbQDu3l2HXHPz1iaGYXLpyi1c06bd67O52aVcruDaHhAXWYuZ4Etv9fnwE09w68ZtXvnWG/ytxUOsrq1TLVdI0hRBQiJsPMtk2O2A0Pzam2/yiz8bIGUGErIkxjJNtDSJR0OUoRgTKWRpjpTQ77SxbYUQxSKG1gKhTGzLAZETRyFS2QilyFNJoSmWSAU6T0njrHhcphiGBWTkOsbzq2RZSBanICVCp1i2Iss1GnPvWtvd6eL5DlmakiY5IMnyCKEsEJDGAyzHJYmiIljdspECoqiD7TgMusMitDzPyfMYnWfcXVpBKklzZqowc+n3SdMcy3YxlINQqggx10UIu+PahGGMMmzSeEie50WMAxIpDUaDAdGoCHDPc41UBqZloYVEKotRP+JX/uP/kcVDU/xPv/M7fOzpH8BSNkIWCyKGBqmHJInm3r0lRmGP0SDEcSq8+OUvocy7TM8+BVi89PzLHDt0iHNvnGV9a4vuzjK1iRamP8fjjz3CayvfoDuIWJyd48+fOcNcq4RpmpjKZjgqMukcS+01cAutGoYQnLtymamJCjpPmW35LG9GnFj0uHa1S61h4HgWhmmhlMAPBIHr0w9jlJTcWl7DsSyyZMT6VhfLr+BYBtVKwIljByGPUIbP5ihhYapOnFt4roXOUhzL4+rtddZW1zl4cJI4jtBJSMV36Q4jri4VLLdGYFkWgyim7LlMNcqsbGwT+A62JRmNhji2Wch7RxF5LsnSlN5wQDkIyPKEZqOOEJr+YIBlSUxp0g/7lByX0TDG8y1Mw2Bjq03Fc8k0mIbDKIbNToe11XXSXDFZ9hhEYfFe14LAtjBNQcmzxrEGDoYyWWv3sE34ytfPcuLoPEppyh4cPziFcnw8K2NtZ4TnCnQa4zoeazsdNrt9KqUy6ATLCghKFSYqPt86e4VSUOLV1y+zeGCSwSgh1QIlFbYyGMYJX3v+HE89ehCIGMUxM606Sa7JcsVrr1/G9iRhokmjkEYloDOMOfXoAd5/YopqucRXX7xAs9ng+u11rly4zRNPzDPY3uKpDzxRyK9NwcZODy/wiu8Qw8LxbbK8+J5Yvn0XoQS+66FkMcv2+MSHyKVFrhM0AqVccp2QCwND53ts3i5rZo4l2bnO0VrsMT67Jcfum7v3SynJ0uzd+7G3IXq+3WWSB26FYcz92x7o4cHcu73theDhzLt3+nm3x3uYU3wYsu7xXu+o+LrPvj0MEvdv886B7cVjewza7jPcYw+LBTZ24y/Gc5UF8Nu93T/z/ayhELIwX9lj9PY/jwdf+3d6jd6ZoXuv9TCj9++S2XtwX993y/x+vee6fOk6/8t/8tl992jIBdEw5vql08w3q5hOQJKE9LttTCn4gU88TaIz4iTkuZfe4CvPnqFaNTl/6RLVWpXjJ45Rrvgs3ekxGMTkRNiuC1Kxvd1mdnYagSZNY0xT8Lkf+Rg6zxgOh7TbPfIMXMfFtmxMU2E4JjNzk5gGDAZDGrUKO9s7RHFIFA0QxJTLZWrVSTbWt9E5pClcur6M7VXY7vQYhAPW1tZZ3+wQxiGO5yJVIa9rd/pkScbOdpdL11d45fULLC4e4uDhw9i25D/6dIsskzjOBKNhTr8T87v/2+/TnFjg107fZNDtYzuK+kSZlfVtpFE0N2EUUZ2oEUUJaRhjScVwEOI4LnmmGfTCYjYoz8kTzWtnblKqe6AEUinSNCIKR8zOTVKqBHzso49guSbD/ohD81PkOiNNYtI4QWcZo+EIv1Q0xcNhn+FgwM52m3OXbuLYDkka0ul0OPXIYUZhiJAKz3eI05B2ZwelBFEYc/XyMreuraLThErZQ0nQebE6/+Kb57Gsws0wR2O7RWizQJKlxWzQaDhEGJI8iRl0e8RhiB7n/BhKYQjFfGuSNC9kZgiFY5fw3AAhFHkuyLSFabhorRkOBcNhxkRzAtN2mZoqYRiCN8/dBK2QeTGXFkURw36f9lYXcsX09DTDOEYIqNXK3Lq1zJeffZPVextsbXbIco3tOSRxyr17OzimzbFDczQbdaq1GrNTk8X8VZ6RZSmvvnaB1c02hxansSyTLE2pV2soYfLVZ8+ytdGj3+3T64e8+dYt+sMRvf6AsxduoaRECYmQilxnHDs+g+3nWA5sbG3S6w+xbYc0yzCVSaVa5f1PHifJQCjF7MIMURSyvd0hTlIWDkyTZxSZkH7AWxducOzYAd66cAsAy1TYVpFrONmosrS8ydx0jX53yFyrgW0aJJmm1Wow6PewLc1gGNHu9NE647Of+hTN2QWeeN/7SZIYy1DML8yiEaytb6OkxFSaOOxhGPDzX3qGwXBImnXJco1h+fjlBhoDnaZkOkMZilyLwmVR52yub+KXimB3ISSmYSKVRAK97jZ5XkiJNRlCKizXIYkTIGP3S88aR2fszlfkeUaeg5QmSiks1wYtEMJCa5M0yrh7a5VoGJGMRviBXYApZWBZVjHfNg5Ul1KQppAlYJg2WRYjREoYhtiOT2dnh6DiIYRGKUmeabxSQGt6ktmFWdK0cGGz7OIckzgGmYNOyfOcJEvwSqUi39JzMU2jYDiFKtxShSJNExzPo1Qps7lRgHOl1LiRESRhhGU7dPsjGtUD/PZv/SNGg4hROCDXCYZRmMu0d3pEnXX+/E//lMBvEGrJV7/8PBeur1Cb/QC5X6Y33OGlV15ie3vIVGuR/4e9Nw/SJL3rOz/Pkeeb7113VXdV39Nzz0ijY3QjQMIiwMZYBsGGwRAbYTtsx0YsGGN7d2HxxtqLd8EIx9pmzeFAQosAS0iWhNA1oxmNRnPPdE/39F3d1XVXvXfe+ewf+VZ39Ry6OIJ16Il4u7rezDePet838/d7vtfP/ew/I0ssPv1fv8DFCxfp7HaI0oyqbyNExne/8yRB4IPUpcYPVRpJDWKubQ5Lw6yk4MXlDaTlE2eGJC24utbjTXdN0aj5/MgPPECnZ6i4NfqjFCE0X/zsc1xc2aE/yshyybHFRRzPYWZimp2tATWn1AeD4dSFZU6fOY9WcOXKFo+dXmN5ZaXU8iqLqxu73HNsgbe96Q4wAtd2UBKiOMKzNXccmuF3PvIQYZwgZUGzZpf6SVHw1vuP8eyL50iSnCQFLSwwgoqrsVWOraDqWhhjmJ6a4MtPnKLT6VD1HITQbA9HNIIAA0w2a+X3IM9Lmq0RmKJgpzfAIFiYmqLZaHP+6g79MKcRVPFdl7MXrjEKR8w0Av70c08iUaWudIxqWD6nJxYAACAASURBVAqaDcPy6hrX1taYbExweX3AMOyycu0yYX+XKEq4tNLj4acuMllvEkcpxuSs7/QZxjECw2e/+Az33XGEeuDxxjecIIxjplsNvvCFpzHG8MVHnyXwbd711pOkWULF87j96AEMOXmeECUj3vTASaaadQLHolkLsB2X0y9ewqQhWkm6gwEnjs0SuBaO66Bdl7nJKe6//06CwCnjGoqMQW+Hq1cucnVlhTBKSNIUQc7U5ASN2VnQHldX1uh2+pw6fYH/8rsfIul1kEmMYwzd9VXs3GAZyKQkw5BhSIu8fOQZ29tbX7cu2u8OWRQFUo0bj/0N0J9jDf+NQsz/PMc3K9r5tre/zy30L3qUsQev1sa8Or316409s5v/VsZ3kLu/4PFayF1R7M0w3Irc7R9/8fRMQ/z0H1BxS7odgDTlBWz92hpKhlQbM2jbpsgyfMfiqadf4JGvnefBN93Nnbcf4fyFK1R8m4WZBgsHDnD8xHGWr62hVDnzsrAwQ56nOF4AQlGtBkSjEY7rEY8iClOQZAnxKKbT2S1nDp84w9LBada3tnjwjXcyPbtAlmaIAkyuuHzlEleurHBgborBYJepiQbaDnj+7DKj7jZaGXa7fZYOLbHVGfDA6++k399lOIxo1dtE0YhhGCMEXDh/kSNHlrh06TLbuz2aNZ+5hRnyPGF6ZpLZ2Rk8VfD7j13lLW//brR2GAz73H///QwHfX7njz7GDx+YRuoCbfvYUlOpVBC6RN3yJMN2bNIkY2Vlk1a7SZblXDq/iu87aFuShBG2bbEwOwWmpBdIIRAG8jzD0hZFbnCD0vDG8x3ipDSBMGM9T5qkaOFx4fwKrXqD7e0+pjC0203mZyZK3ZKlsR2HNM9xKv644RJkWYEfVIjCiGpQwbHsMgTXs8qMn8KgdDlrfeLwPEWeYzk2WZresGBmTBsrP7dguR6yKGf8itxgO5rOThfbdsiSnGLaIc8SbK0Jw4jRMGR3dxvHtSiKcvbuvp/+v/gHP3A7xjh8/uGnOHRgkp3tAX6lDBe3LQvPt1Gy1OwFgYdEMgxjhsOIXmdIr9OnUfPZ3u3R6Q25+/YlJqcncMeunLVmnesraxxemsYYePHMVQ4uTUJRUJgcy9YkSYhlO8zPT7GwMIXtatIsodcbYvKcJM6Ym2pRrVTJTUotqDI12aZSdQlqVWqBW95qjEEohZSaPE+xxgHg9XqVLEtpTdZZW9vFtWyUUqRZirY0RZoilSYKQ4rCUG82SPMES3usrW1SqXjMz05ikLQnGmUxQoGUgu3tLq7rEo1i5uZbWJZFs17Fsi2q1Qqe5wLluc5MTxEEZZOxYea493V3k0Qxf/2972H94a9Sq1aJhgO0MmRZQdBoMOh2+Tuf/Ry1apXf/OC7KHKDtDz6O1s4XqVsirJk3EQnGFQZd1Fk+H6lzDb0AqQq3Sy1VgwHfSpVh9KxUZfud3lOUeQ4tk2eZYyG4Tg0vNRShMM+tlshjWNAkSQGIcrMu95Ol8IYLMeh3+2hlcKyNI5vl9fYcbNZFAUYwXDYR+lSP+vYbjmJkqU4rosBiizDtl0c1yJNon16jpLeZY/XE0ISjgYUeY5fCdCWJs1iijynu9ujUi0nMwyGKBwhgDgqJ8K0Lq/JJQJWFvJKKYb9Pn4QAAZTSLIsxnE1f/ixs/zQD76PlevX+MR//ST33XsPfuDQ7w0RCCYmJlhdv86DD76TNBWlqcfMFN/1nu8q3VOLhGazwTvf8Vb8ioWSOW968E3MTE5x28nb+MRnPsm999zD1eRFoiRCiAzXcaAo0Y8syzDG3NAKVv0KcZJx7sp1bj80T2okO50+4SjErzhMNqrs9lLWdzrMT0/wtRcuszDTIPAcekmCEZJWo0bN9zBG8PkvPc7hpQNMTbaQMqcoDL7r0GpWmW436YYRd5w4wNLsJPPTDSxlIYTEdy2KsbNvZzDAthyUpUiyAt/1GIUR99x1iDCOcR1dNo3CZnW7Q7XiMjfVQinIMoNQMEpCfNtFKUOWZ0ihKQxUA4+Ds1Ns93rUKgFhnGJbgu4gZnWrS63iEscRWiu0LlFKyPnkJ5/m7PnrLC1NkCQDDi3MUg/c0tFVlEyLwLeIkoTjRw9gkGRZwac+/VWOHpmjHvjMzk7z4oXr3LY0S24MRhgm6wFKOrRb8xgjEVIzN+Gz2+8w0fTQsmCy0URrSWGg3qiipSkdSR1NxXN46NFTfM+7X0dvMOTYoTlyU2Cpcv9SWBSU35unnz/PRKvGZqeHUhrPgvWtHRq1KlMzk0zUfbIsQVuaRrVCmqVgJP3hCKEFUisEedk3GYNjKxxHcWBmlt1eiiVzLl++grAcploTeJ5LFKdMNhuYjuTH3vvT/NHv/Ec+8pv/nmcee5jf+83fZmaqzdLcFLs7u/huBS0llixDxLMsoxIE4zy8kqq5R83cq7n26I7jMunmEOWkjxS3Uv/K14hbej/ErYgbcCO8fP/Y06Pd8txrNBnfqCa8Qesc35f3U9/Fy37uH3t7fy1nzZtrvXLZrRq+VyKCe8dVumrewNNuWfcm3nWTlnoz8690wCxZsXtr3cQfi/1o4I093zzb/SY0X6+B25/rd/Oo9vay//eXH/VrjddG88wYbfxWx3domX+Fxms1d+ZVrhx/2c3dZz71p9zVyvZ2BpQXujiMkGmOX3fIdYNk2EdKi631dSbaTY4dWyKoNZHAgbk2RZ4ShzkXr6xy5PAi07PTxGFMIRJmZqfwnIAcgxGyzLnKc5S2+cpXnmZhfoYky3Asm93dXTbWOwxHIUePzNNs+FQCh0qjpIx9+cuPMDc/w3Aw4LbjR1lfW2Nysk5nu8v0zAEGw4Sqb5iebjEzO8Py9Q3uufcOev0+C/Ntdra7OE4FpQxpbphoN8nS0i1wfrbNxtYuU+0qveGotNQPR1iWTzga8G8//gQ/9qPvx3U9tBJIBdoS/MD3vwv/xVNoDWlu8cyp8xyYn2KPUZDHpTumUBrP8SlMjrYU7dYEjmsjlSRPIgwFytb83scfYrJaQWuDNGps7WsAyUc+9jAHWpO4flA23EWC1oosSUvygtJMTNQpTE697hH4dYwp7d/diiYapjieR56Xn600TccECAupLCxLMgojavUKQhoKxjRLpeh2+lRrPkqXNEPL0uPMuRKRojAkaY5lW2RpgpAOyXA4FuznFHlOtValu9vHsi3yKQvIy3yfQmC5Ds2mT5ZnhGFMxa/wpiVDKxCYQnPb0RlGwxEvvbRBQUq9VsP3PIQqGA7K/MDeYIBjuziuZtgfQV4w6g+ZnZ+kUvFYPDiH55VB0INeH21ZnD63zPHFaWxHcO3aBoeX5slJSdK4fJ+l4KVzy8zOTxGmZY5VlqXYliKoBNhWuc7K9S12d3pMTbe4fGmNiYkWUgs2N3ep1vyS0iVEadUuy+BnoTRalbpTRM72zhbNeguMIIkTlC71V0oUpGmG5zpYtkua5fT6PVyrwnA4BFNwfXWLKE7xPRdT5PT7fSqBh+e5dHb7bO8MmFtoMgqTcrIhj/nIHz5Mlidl7uT0JOEgYjAc8InHL3HyDe9h9doFfu3XPsiDb3s3P/OhD/FdE1N87uGHOHZwiqA+AdLixz/5SbS2+dBvvhspLCy7jlAKkfWxnNKi3bIt8jwlCiNc10dpGyHKm5u2HQogjiIcx0GN9RNFkZFnEm25gCANB0gt6Gzu4PruOCNPYYqMooBK1SVPDcpSpGnBZz71VWamK/gVH8+3QaqSDklGrdWgdFgoG+04HOK43o1rslaSLE/G8RohliOJwxDb8RAo8jwtjymJUEpgOw69TpdKtUqRl9+XvCgLBddzy+PEkKUpylakcUyj1SbHkKU5AlPGGyiNkIosTcnSDKkkWt+kkBpREARVsiRh1B+QxAVeYJOlQyabms5Ic8edt3H7yZM0Gm1yYjynwqULlzFFzvTSEnmm8F0PVxuqEx5bm6u0/BbZcBXt1XBcycq1c/QH6xw+cpygUkFpwRsefB2u5fEPP/CL3PauWXyv1L8qCuI0x7HHZjDCYFmSPDNc39hhfqqOZ5Va35mJKr5vcXh+itWdlC9+5TK7Kyvce/chzl5YZ362huco5qcnadR8bK3GOYiCpbkJLq/tUqm4JZJbVsxoS5MVii8++izHDk+SpyFauUBZEBqTkBeChx97Fte3aVRrDJIUzym/R5Zlo2TZKHb7IxzbZXeY8uwLlzm6NIcRMAxHtKpVlALHBqld4izFth2KQmBrxdWtHWqeh+f7bOwOygbXEdi2D1LiORZpHJIWBWevbNJu1knikLWdiO//3teDSOn1y+e3O7v4ns/1nSFplvLcmXPMz04yinO0VHzmc0/wrnfdC8JghOLyesSlK+tMt+pkJqLqK5LYop+OqAYBRkYEbkHgNnBtlyvXO8xNTBMmccm+sG3OX17DdTVV36U7DKl4Nm6lQqNWoTcc8bXHX2R+YQqD4dK1bbZ7CZu9PlONOvPTE+R5QatRJc8K6oGFp3OGcYGRVqkvlGCEYGW7S7tewbM105M1Wo0Krm2xvbvNqTPLHJyboxpU2On1CKp1ilyQRAOaniSo1IjzMhOuVgvY6Yc8+eErvPs938ftd72BN7/re6hNHOQDP/kPOPPUF/j1f/2/MdwdcN8DbyYLQ9733vfhWTYTM9N4XuVGHbRHwbzRgBV7jpE3Vig1gqL8v4GSpilvrc/M3rpCjPM+X0kF3N/ovXzZLc/9GZu7vX3Jb1Lms5eNt592+VotzWvv97WxMiXVTQOXr7NVQ8nCKLe53ySmdNh8+TEJRAmUsBdcfusa+8/p68cewP5G9Na98Bq//9nGt1Pff6e5+ys0Xr25KxE7IW6Frl/Oz/5WxzdyydzvdiSl5Gf/yT/nb731ODfEqqL8p9/tk+QhWaEJKi5aCra3dpmYniLOoNFsIIDLl6/x5ceepeI73Hb8ACdPHudjn/4Siwcm8SsOzVqVMIxRjjMOkIRhf8D6+iaOK5mfmyIMYygEjzz6NLv9iNX1De44Osv6xiqHjyzi+DVkUc6iz0wuYNuKS5cvMTs7ydVra9iWR1QUmDyjXfc5cuwIw+EQW0uUkqxtbJKMUobDjHa7Qbvpsb3bx1IW11cvMhpJBtGQuZl5rq6sYXRp/DEzNVnaNa9fR7seZ65t89a3vxVhQ5GD1Ioo6lJxfC59/vPU/YAiz5iYCHjqmZd4/uwljh8+gClypFX+fbudLr7nEYUJkDMaDlFaYwceEs0zT7/Eg/feieVoKjWbQS9kNEhYX++gpOHEkYM0JmogCoQSSDR/+NlHuePEUbTtYJRESUEURVhuheFwUDZKlQoYBXJsOmxKW3eFobPTp9vrYusCZfnYjoUxOZYl6XdCTGp45vRFjhyaRSpBURRkiSAOM7IsR9uSLM1QEmyrDIkuQ3wLpNQgBYNwiG1ZaK1La3gBcUvjVAKyTPDY46dYXJym34/xKhUcVyKEol0tytgMGZJlZfD3/PwUaZyByLi6ukKrUefq8iq9nT69bsjVa1sszM1TqcV4bpXUbFLkGr9WJU1Tkijm/IVLLC3O0O0OmWq2EQqULq3m0yLDljaYjDjJsKRHux2QJYarV7ZptiyEFKR56VSaphlZnuP7DmmWsdPps7g0zW5nl2q1gmWVN83zF65Sqzusr3dp1AOieIgQoJ1ST1LkObVaQBwOUSLD9RxOn7vG1MQkTzz9EjNTTeI0xbJszr60zNzUJFJKLA297oCZyfI7d31lk7PnVzlx4gBFpllfX2duYYLZ2Sn6vRFhWGaDCak5eWwJWysqnsWly8usbXVYXdngD54Z8Tc/8I/44K//B/67v/0jnDr1Iu//4R9jdvMi89NNbM/HdRv81Oc+QV4IPvyf/hpaChyngpAKY3K02wChx5bXGoEZ0xNLjYTJMxACJcrMJwVQpGxvbpEX4FXGZiCmQEpJHMdoy8Gr+Gys7eAHPpgCIRRCKKIwQWlFnmdIaXH48CQCieO4FJTXAikElu0QDYdsr61Rr9VQ2i7R7DRFaYs4Tkqn0vFssbIkgtJ1MctyVq9vUq95KC2wHZ9Br89okGHQSBJsNxib/8hxg5qMKZkpjuuTZ6X7ZhyHaGUhKClgWpcOuUpbaFuVmjojWVleIQpH+NUyOiKNIhzXRVmKOE1wXZcsLTh8dJa1jQqHlg5j2R5ZGpGmBte1abVboCS9zjomT8iSmN3dDZIko+JIOt1tMh1AmvG7v/1h7rv7TopsxCixaE62idKY4WDAKI750hce5u53z5OlKaMkZ21nQD2wiLMMz3YRwkIKydXNbSaaFXxXI5TCsW2KImayWaE/TLFUyt0nF/HbLbqd6zxwzwlsR9ELIzzXJk4iKq7LEy9colmr8uKFSxw+OItjKfpRRLVSZb3TQ2IQSI4szqKVwrEt1jfXcSzNS1c3mJ5sU2Q5BxammW62yu+qY5efHQP90QhtK7QoE7NW1raYadU4sTRNkoQwRu+zvMDWFlLYYJLSgVEoorTM+txc3+HFl67SrDf42pNnuXx1g8OHD2JJw5nzy0xNNJHaxrEtJpoVnjt7icXZafyKRivFw4+9yMnjR1ECPMcljCJagUPLt5ienMKzPS5fW+PpZ87x3u++Dy0FSVJec5/+2mm+7113EgQWWWZIUoEhoVr1MCZDK4vcKKTKWNve5uiBaWKTorW44Tw53a5T8S2ESdntx3zh0Us8cM8h0jTnhVOXObg0Q6vhoZWiUQ2Yn2gQZymIlEvLK3R6I1zPo1Xx6A62UXYD29b4tiTPUnJTOmW6joMUms1O+VnQqiDPoOZ7HDzQJjUJ61tDqp6FtipoS1BxbXa7A1y/QXcUlzEORU6W55z53Arf+4638nsf+QNOHj1EksY4FZ9DR49wz+vfwsKxu/jqY09x6vlT/P2f+rs4pASyzS//7/+MY4dOMjk1QZZnN2QDmHFDQMmglmPwSYxvnELIUhP+avWZKBE/ibjx86Yv5Mvqun06u1s38fXpma/Q7L3KcRTm1kZmz1XzFS6aexo1uIHwvVZswqshenuI3csNV/bHTex3G93vUrr378vxypv6vP1/CVOaaO2xGMo9c4PZIMQY1duPgu4/pptHcGuDdhPl3Pt9j+6+f71yInLv5ysf36jpE6J4xbrfLnDznebur9B4eXN34ytkbkpqXz6+2Tf+m488uLndvVmMH/qhH+MjP/f9N5dJAYWhSFLiKKbIHZqNZqnX6PaZnGjz1NOneOrpM6RxxFeePMVgMOTtb76HZj0gLQzXVzd4y5vuQYw1MlmaMhyFVKtV8rxAIBFSUKvVSKOYIsvZ3tph9doqM1MtVlZXOXRwgq1eh/vuu4c8hzTN+Opjz1MLHB559DnW11Zp+pLBoM/O7i6HDh9ionUQ2xUgIy5cXqcQqkTl4hjbkuzubCOkYH5umhdOneX1r7sdQcYoTBEypllvc311ncUD09RrNdY3trAsxcz0JH7gMEoK3nbbFM7i7WBq/NZv/Sb333cPW5s71CYa/OJvfZS31ap4roXraObnpmlWPWyt8D2fKC71IbVaBaEltmujLIXtWkgk0oCQkka9TqXmIZ0MLSooy2a326PZqtFsNzHkaEtiTE6RZ+RJxuG5aZSSJX1TaaLhCCWh2+1ha0UQeOXnzJS6oiRKybOcjfUtKr5LnA2Znp1C6wpGltS0cBSTxCmWdvEqNrOzTYaDEMuyAUk4CvmjL36Z+08eKWfLjCFOAKHQSmLy0ihmd7uPQFKvV3EdhyzLELq0t7cPNnCdMv9ucWkaJTWuZ1PkOVlu+Hu/+gnec/ckRZEhKQ0JsixHK4F2berVgHAYIYTNZLvO9k6H/iDinruOonRGEmuU8vDqBmHKPLX+IMSYnPn5BZAFjmfh+RZ5UmByw5cfO82dtx0pox6EoFKpMAxDbEsyGI44uDhd6rryonS/NAVaOeR5wfmLqxw/toiUoLWiXquSZzlxWjo0tts1LMuh2xtgaYXtlM1uOds7zkiiwPMD0iRhOIpYWprn0uUV7rrzCFIqrq+tUPFcFhZmWV5ewbJLVLfTG6ItQZ7nTE83WJhrcHVljVarhT0uZPM8w7ItfN9FjfOYoigkSRNq1Rrnz29x390nmJ1p8ztf2eLd77iPwHGxfYfXv+E+Tj3/VX73+dP8u0ce40f/yd/n45ee4NkXrvKJj3yAJOkj7TpGlK6vWRyN0UgQIgeRk2f5eFa7bNgsrW6gU3mWo7QgjkKCeoDlumRphtaaQX+AtnSJsCjFsD+gPdEiHPTp93qkSUIlqIyRLcbh5OVkkOvZxFGIYI8yPDYGMAWN9gSdThfbcxBGlRToOMJSEm3bIG6GDytlsb66QqNVJQjGQelakeUGvxJgOxrbtVCOhxKC5cvL1Bv18TW3jHRQliYOR6U2zeREYVyij0oy7PXwKj75mK4Gxdg906ZWrQDiRvZblqVorUniBNvRKFF+3qTWZPmhkh5uwfb2GrV6jVE4oNPZLo9b5kxOzPPk104TjQx+4CJzhywX1CeabKxtsLS4gOd6tJtzKK0IhwMqFaf8m1VrfPQP/5jj75hFaolnOzQCDyUt8lzzxPPnaTd9tBZ4joWlDJZWeyVbaQYjNI8/d56zl3qcfvEcr7t7lpnmLNvdDp6t6PUH2Erjjk12Jls1bEszPzU5dq3UuLbDV545w/HFuRLZlilSFHSHEUkG9WqDHKgGfqnxlTlaS5IsxXU0URKXXiVGoGVp9rTR6VMPKjQaVZRVTkAopfA8l3g4IEp7OI5LktgURTlZEGcptmXxxAtXuevoARYWJuj1O9x35yFik9FqVNEiY2qiiaUtrqztIESBbWkmm/XyGhP4nLu6zlvuv4MLyysEQZ3HT11kdrqNZWteeGmZ6YkmTz1/mhOLLU6eXEJJiRTg2qXW2KtqPMcmygrOLW+wMD3J+m6PdrV2A03K8hitFM1qqb2WSrHbi7i63uHaeofZdvtGWPxMu8qRpSlMnvPlrzzH2x68i1rVZ2Nrl0ceOUVhaRzPpVVTuJZDPaiTGUWrUiGMNjHG4onTV5luNTlzcYV2IyCMDBeXNwkCH8eyaDccpDT0RzFSSjIzwrZqJImks3OZ+dkFDLDVKe8hQpcmQ46WnDt/Hqkcrl3f4p0H3sm9t93O0rHjXDh3hqnpaSzH4bve8de46/57aDabTLfm+KP/8nFmDx9h4cTt/OOf+Xn+x5/9WereFL/3W7/B6970RvRYU1fsGafsl9aJvcDsfXXX/hpt3AuUmt+XUSGlHDcdL2vqbnFzlPs29XI00Lzq8zeXv7LJezVk8NXomTe3vi/Q/FX28Wpt2M3X3LqfW5DDPZojvMLBcq85k0JSUNwAGG66ae4doRivd7NxNDeau72ju9kI7lXUN6MhbjWBeS3Dl+KW5S//+32jOvsbNXevPO9X0jS/uXiG7zR3f4XGK5u7Ev0ox5+tufv2h+EtzW0Cz7nlyCgMK8sr2I5NmMTYWnD+wmU+9dBzvHhmmV4/otWslRfjJGXpwDSeo9nd7eLaklqtzuNPn2bhwBxFVvDIY89w9MghEBolJVmWIYUqQ8C1w85ulzTNubS8SrcfMUoTDsxPcO9993Pu/FXW1rc5fvQAvmPRqHvs7na54+QSURSyvb3D8eNHMCZjY3uDaBgSeB6VSlmoiSKl2+uyubVNs16hNxjR74+wtMVw2GNnd5skViwuTnD9+hqLC3MMRyEvnbtCnud0e31qtQAtJRvbQ3a2OzROPABU+cM/+n3e/s63MD21QGIyPvzRTzKzvs3i3CRal7bqQbWCKAydTh+/6pGmaXnjoKSlmrwgjsrQ8SxNkErjVj0wBRIF0jDshaysr2NbksD3sFybeBRT5AUmKxsxz3NJogQlBL//6a9yZGEKqRWVRoBt2+TGkBcFytJ0t7v4vovnu9RqAUkSUqs1EUoRJ9ENrZ+lNc44/sDkBaiyCBKi1Km5ns1dJ5YQUiNEGTz96OPPM92sE0YxmTFoW+EFVcJRjFSSLDfkaY5JDf/2/DXecMcBLp6/QqvdQGiBQFIUaZnxJS3ec3eplbFsCcojjCKKQrC+0Wdiqk2/06dVr6EdTXe3y8xMu3TIw3D92gZPP3uJibaDrRt0doekObTbNbQqC6IoDHFth3CY4Hil01+7VaM/GLKyukWj0eCF05eoVX0qfklvvLqyzmgYkaUpjmMhBSRJhpQwPVVj5foqo1GKa5dUuvWNbYRRFHmGJSWr17eZn5tie6eDbZf5ctp2SgqmFKVzalqUKI9jMRpFtCcaN4KNz51bZ7Ld5uqVVWxLENRdXM+j0ahzeXmFhbl5nj91ju3dDseOLnHh0hWiKKIW1Ojs9Ll4eYVOp8fK9U0W5qdR2sUUCXmac/DAPMakJGnGhx9Z4e/+7fezvHyJ17/5TQzDHY4strGE4KnnT7GwqHjv++7lJ378vXzqM5/h+PHDaNtGoMiyHKUtGGP1UTjCsu2yUVKaUrMi2QvyTdMy6DmKUlzPJ02LMshaKgBsx0Zb1rhQENi2BVKhbRuvUsFyHIosJRyGCCmxbIcsjdFa0dnpUK1V0LY31l2V0QHKsskNeL5NGvawbIc0TRBSIS2bYb+H6/lIpUjimFF/RJHHCGnQWmHZ7rjAKBs82waTjsosP9ul0aiP67cChMXW2lZpIGFpXMdGSkMchnieg2U5xHFcLleaPC/IsgQpFEpqhoNtbNfG5AYzblKFKuNjtNZsb2xQ5CmD/oDra1NMtJtIYajX2/T7IVo71OstlLLph0OKXBLFIUuHZpBoPv/ZL3PgwEEqNZ9GtYYfOKxeW6O/G9OarLGxvkq9XuX5Z5/l6pVl4thQOykpMHT7Q2xLoZSNlIJazaHqe0SxwXVskjwrUdesQCtNkuacvbxa6mZ9zbvfei9PnrpCno149sXrSEviuh5xBq6tGcUZvWHEpz79BJbvI4h87QAAIABJREFUMdUKyIpSm1WrlVEwllZs9SIqbqnN82wHEFjaYKsSLbK1xUanj6V1+f6rMjZGotntJzSrHo0g4EZkRpogEAzDhDBKEVpQ8epsd0ZcW19jdqLBytYmFc/F1hYrK6sUEqpBhYpfRmhcWl7h8NwEhVEoqcjynHYjwFKCQRgRJSnXN3dwJERhTOA7tJsV8iJjYbqFZ9tkWUGrVQOlOLQwy8VrG9SrAUqUJi5pnjIME5p1Hykk290OB6cnMRjaNY9BOMS1bQajiCwHW1lgckZRhKU9HFsz0ahiW5ooTUHkuJYiSgqkdDBIDi/NkKUxRR5Tr9c4cmjhRjh64Gs2d0ckaYalDGGSIIRFLhxsxyFOczzXYW1zF99zmJms8+RTZ1g6OMVoNORLn3uSqek2w2HEbLtOlmd8/JOPcPTYIo7rIgDXsskLQ7ezRSEcXMfF9XwMgtnJNm+eezubWx0mZ6ZRouBf/coHee5PnuOuuTu5beEedi522XixR9NM8eHP/S6T9Qbv/+sfYHNjk/e87wc4uDjJwsICf/KZP+GO224rqbbC3IqsmZe1NnsUzb3HeOFeZt4NFMyUKFqRl+yD1xq3ImrfGpJ3s6J7bSTvtepJ8Yp1Xr2Jea29v9Z294eb31z31Zq7/RXwTUTr1tfuLTW3LH81L8i9tyMr8hv3j1eiiq95Ntx06Hz5ef55Nnevte43F8/wnebur9B4eXNnTAYYkjzFcdxvCn3bL5Ld//u3O/7PX/41vvu21i3PFSaBzCYJY7q9Hdp1H8f1GYUZxxZnOHdpg7c/eBcnji/R2dliEMbcc9cJOt0eaZbhuTUKU7AwP0McZjTbVQ4fXkSNC5EsS1hevk6/N8TSmtEoRinFY197saRMacnr7z7JwYMLmKRPuz3N/MEZRsOQjY1tLCVJoi5RFNPvbXJgYYlOd8jkVA0tUvr9Do1WDaU162u7KEtQrfkcWlwkjGB7c5epqQYz0zV2OwNmZ2sICgbDEXXf58KVDXr9AUePzLG4NEelEnB9ZZfrVzeYngxYXVtGNWt4U4u893u/DxLJv/jnP89bvvtB3v9D30v1zCkcx2E46uJ6ATkFCRmOtJFS41gaJd0ylNj1ysJEutiVCkJAGo2wZUFeFBgKFIKzZ65xzx1HCKoe29s7VHwPIcF2yiwpREkPfeb0eXzfY2mqRaPVwPZcEKWFtaScgRbSIopDtKU5c+4y01MthOVAkRMPRzh2aamepAmuqynyjPXNXTzPJR0XrR/97MMcnZtEYMb0tpgLF6/RataYaNbwgwDXdRmNRvheQJZGPPbUi8SDFM93qdYrrK1u8BuX18hWl3njG29HqPHMntJlBppllxqIoosWOYWBqD+C3OA5NlrB6TOXOHhwmpcuLGMKQ6VWw+QZvmfhehW2dvs88MDtXLl6nWiwTavZRirFhSsrWI7EUppLy9ewVYARfTbWO7QmGmRpSqNeo9WuIZUgS3Py3KB1TqcbMbcwTWUcNKy0DdJgOR5aCrIkoTUxQb1dQ2mLJE6ZnGxhuQWOVmxs7GB7mizJqNUCXLdEMsFw7vwVJhptnn3qClMTNexxJlyeZezu7BD2E6I0ZunQHJZjU6l6VOsVpHFIkxjLVkxPTxEmhumJNoHrIbXB83Mmp+ZI0oRBb8ihxQV2d3fBSLa3BtRrFkmWYzsWcR7T6w2o1xy+cC4lHO5i6ZQjB5tMTM1Q6DadzpP85I+/kTvvvJdhOERIwwf/74d43/vuJk9kmcWmS3TewFh/JsFILGmX8QXGYIxic2OFoNFCCouwN8DxvLKxtyQ7W+t4vo8psvFs+B4CZsjSGKk1clxgpXFMkoSYQuBWAoSAaBBi2yUqhgCUO77Zp5gsxBjJsL+L5wcI6SNMwWhY0nijUUZQszCU7peu7SAsVebD2R5xlGJZLsZEZMmQIjUIqZGWjVAKRE4Uhli2hjGdR1sWXiWgNPzWDEcRgpQk6jIYxjRbk+RFhhA5Agtlu0CCICIvLJQqMyZNUWCQhMMBQhpMkaEtjR/UUcriX/zCf+IH/8bfZLfTQWpFo9kkSWOEhG6vgyd9PEczM9PAsjWd1VV2urvMzE9Ta1RZXj6D7TdZvb7FL/3SL/L402d48xvuoDXRZmrxKMeWjnHX8SXODJ4hjEbUApdhyjg+I6Tb7zEYxbhWhd1+n8l6g04/IvA9stSQ5SmWXWeYpBxdnOLy6g5HDtRAVXBczYmlSTzHYhgVdIcjTp1d5o6jc5w43qZZq0FROvIKKdBKYWsLS0nCQcZmt0e7GbDTHaGVRVpE5EWCFDZJIakFZWxInsVYSpNkGYXJgJyK55Y6SpMBGWmmESbE92wKFBXXQyAIfJdGtUKGoF7xMFmCLQtmZto061VEkSIVhFHE4QMzjKKYMElJ0hzPsctt5zkV1yPLwfd8GkGA7zsYcpR0cHSKVC6d/gjfEuSZpD/oUhR9ppoT5FhIDUIoEDaOo5F4RHFCmlo89/x5jh6eIc0FWgniJMe2bDzHojCSS6tbzE1OYEyCrRyGoxGebbO2NSCoBLiuAqN47JmLPPzQGU6eWGC716dVD8iF4OLKOsLA4kwLqV0sGRM4iiQzXLl0iWNLszzy2AsMwoTJpsPCRIC2HALPQUrB4cVJRtEIT8H07BStRoPN3oAiz3Btm4UDk0w0GwxGI1zbRQnFlx95hqm5g4SpYnO3h5A5252YJ379HP/9T/wYX/zCp/ml/+OXudt/gIP1ORbnDnLXvfejlYVluZw++zjHbz/G2+56O7/0H/41P/w3vo+gXuUt73w7l1Y3uf7SMgdnl/it/+c/8/p77qXVtBjlBqM8ZGaBKvV1ewicGdf/RV5+FpUZ4zHjDquQ5XoFpqSdS1nm273KXL4at257hv8GxlnpN2mSZfD6rWPv+awodZj76Z/fiLZ5Y+yrK1/eiN3iBbHv+VtRNXOTFnnL628yxPaom3umJzfxqv1N1H4s8ZY97lvj5hmWyJygdAUYszH2nfUtKOW+5u7rGZjsj5d4Oe3SmJejbbc+9tMuX+1hzN66r+7qCfvpoF9/fCcK4f8HQwm5D8H7yx2nn33qlU8KyIuMnc42zUYVoW2uXV9nZmaSwaDP6+88QLtVQynJkcOH6PcSTp2+yNlzV5menKQ/7NAfdsnSlDhOiMK0nCmnvHgUecriwVkWl2ZpTzQIggpxnHDsyBxCSoo05tEnniPNDafOXsByLHa3d9BaceDAJJeuXGBqqk2cpHh+QFakeJ7DmTPn6PUiKpUaGM2zz52lVq8QVDyee/4Fdjo7bGyss7Q0x9Vry3R6He64/QiWrnJo6ShTkzVyJPfcfYKZqSaDYcxLZy8yHAw4fmIRL/BJs4I3PnAf//Rf/mdEuo0lQywX/qf/+ee4fuECYbfLP3zhMtK20VQJhz2KJEQkhtxk7Ha69Id9ojikVqtQUKAsQZon9LZ36fcG+NUqqRH0OiOGvYheb8Rz56+RZQZTCJrNJi+evUyvM+TFM5exXQ/PcaCA++48zuRki8mZBlIbwuEQYQR5mmHygnAQ8eE/+CIVr4ZjVbj92DGKVHLt8gZ5anB9D6El1aaPZSm6nQEgaLfqPPHMGbIkRxQZP/zuB8sICW1x8cIyQggefuEl1je2ytnqS1dJs/RGUT0YhLztgbuoBS71uo8xOc1WDd+1+Tsf+B6CWoDr+jiWNw5pthHG8JEvPkthBLmRFIXg4qUNnnvxCqdeukyYhNxxfBGJYDCIaTeqXLu6zkvnrrG52WNzfZNDi1MIYbjttsMcPLzEKEzZ2elzx8ljBH6F7e0uxw4v4XoWjuXRbFTp9frjnDWDtiRpmhDFMUHVRUhNNXBIk5A8h8GwRDkF5Sy/MTlKSXqdDqIwmDyn4nnEYcRokNDvRVT8CkpYXL66Tp7lFKZg5fomjqU5fmQeVE7QsEvrfgVCS7zAJUdRa1apBBWyLOGpZ06htWTl2ia7uzvYjibPM4o8I02G9Ac9Li2vEoc5WWyQSIKqR7NdxXI0SwdnmZqqc+TIHFGUUhQG27WpVDwmJ6rEcUIcJ7zh9W/nLW98I56l+fhH/1++530/yG0nAmbnlsiKDr7vkOc5/+aX/x4/8P4PoW0QMqMgZ2drnTSJEVKOQ2UFhpzOzk5ZSEiYnJ7FFIa8SEiyECFzTFGQJjntiWnyLC9zxLr98XWyRLwdz2PYG5Knht3NDkmcEwRVqvUa0XDEzsbWDYMTrTWmMJgiJi8SRoMRUjlI7VCp1snzlDwPieIYrSW7OzuMhn3Wrm2SpWXhH0UDhv3+uJAAx3XHIeoSqSwcz0WI0i49TRKyKMV1XIqsIB6G5FmC0oLuzjZSGpBZmeVWbWJZZeh6v9cbnycIWYDJEWh2twd4fgWlNXu6PW0JKtUAy3LR2sOyPYQoswP7Q4Nt2czMzBNUAnY3V1FFSjzocfHsi/iVBjvbQ7LE4urlVaYXj2I7PuGwTxZ28Zw6eSpot6b4qZ/8aR599GGELAPnw/6QX/mVf8f69R2+9BuncR2Pbi/EtwSWLDBomrUG85Nt/vTzX8VzbEZRTMVzMIBtSVxHIkTCG24/SF4UDEYx3X5E1asw0ayWGlelmWlWmW7VeNsDtxNGMRu7/TKOpMh45KvPY2ldPpTFh3//USqBg+uWTsK2Y7PZXcV3XGxdQ4hSh1wicRFSapIUbOWw3QkRaM5eWQHKSYS8gDSLWN2KCaMC3y3f2zApLfmlFGhp6I9GIEqNrpZlPMFmp0+SGqI4o9MLsbRNnOS063WksIjiDC3L8PqKZ5NmGQUZaRbjuRolS8QMI6gHHijB7nBIrRowSnMyBH/ypSfJ8pzdQUnvxhScW76K1oKpdoW3PXg7W7u7UGTlueTwtecukueGT/zx51icafGlrzyHMZpeuIvRCb24w+GDdXxXsdXpkeYpD9y1xI/8rTfxsY8/wqG5GcLYsL7Z58DUJNOTTVY7fQbhNt3BDlkxpF1X3HbiIGs7Xd724H0M+iFaW6zv9jACPMcex1MoQDJKMrqjEWGSMjtR6nOvrO3gOS4rm12CsfFVFCc88Lrb2NrapBW4XLi4RuBVePKxM/zHD/4q251tPvanD/ELP/G/UJ+sMju3wPzBRbSSJElEFA65667X3ZAP/Muf+AV+6Ed+hGcfeYjDrQa/+D/8Y97+9nfw5re8mbMvnebxrz3OL/2v/wbPclFFjCR6Za1UmDGVXr7iaaW/tZL6htv0tzgEpY6uNFz786kj99qjvSHH2XSvfQzfTDvy7b3WFMW+hu6Vx/bncQz/rY/vNHd/yWMPfdNKY4qCYTh6zXVfLXxxL+T8W9Xb7R///h+959UOjDRNsGyJ7VgkacbkVJvCZBw5NM/5iyuYokBrTSWoYIrSJdFSiqLIabUCqlUP17NLnYO2yJKSlpPnGUorev2yUDv70gW+8PCTnDm/PLYfN8ThiFarAkKytLTEteUVLF3OzG9td2i3W3S7Pba3dwiqAZWKh1+xufP224jjnDSDwkhOnrydUTSi1mjxrne+iywv2Nhax5iCJEnwHI9Tp89y+vQlXnzxEgiBFwQURUIYDca2/oYsSbl2bYVDRxY4eGiBR7/6JD/99gUuPfdFOttXMbrA8jVHl46QxQWtRoO8MPz2Hz+CIScKI3zHpTAF7VYNv+Ji2aXxg8nHDpauTbXqlxdoIUBZOI6NySXVIOBHf/BtfOhTD/GZh55GCsmRxQO02k2mJ9pjAbhifW0bYUqUpMCQFzmDwZAiyVDj8NU0Tnn3G+7gi098jUIkoHKGYY/LVzfodQb0ekOSNGM4GqG1zbXVbeIkRWvF6++6jWqtCkVOnqeEYQhKsjA/w9Vr63z/m+9jcqJFpeJTqTiloN2xSdPSWt2yLcIsZDjokScZSklc22A5onTKlJokTVFKYIoMgWGzO0KYAiE1luNy4uQir7vvOLfdtsjUdIur11dL+RaS62ubjAYjZqfaNBs1ojBhZWUNARRCkJlS3zY91SaNE1zHIY4ztrd6bG2tE8cFm1sdarUqSik+9/AzZFnGcBgxM92k4rt0uyHXrm8QRzFCaopC8NQz58izjLXrW4wGoxKdTnOKLGPUH/HQl59hNBjhaIed3QF5XuallecMZ166wuFDCyRxgmVrtK04dLS0Gy8wIAXatqg36ihLE4UxDz96mhNHD1LkGfNzM7QnmuRZhigMw94QRwt8z+b2O46gLYcvPnKWa8vrROEQy9OcPnsBZZX2/1IVBNWAer1KnqRkSYzSkg89dIlf/Kc/w5HDx9jY6JCmhte/7n4ef/hXMYBlORRFBCbH8VyU5fDxj/482f/H3puHSZLe9Z2f94orI6/KrPvqu3tOaUajkUaXJRBCMiuwwAKEzOldfDxrvH7WNl4/9i5+zGLDw67NA34MNsZgL9gYIyMJgWTBCAk8M5Jac/Z0T99XVXXXlVV5xh2xf0RWd3VPzyBj/Fh/6H2eeroyMyIysjryjd/3/X2PNEAbSZ4lTLRbWE4JOsRYa5HlZRalNgYpc3o7uyRxRJpG1CeqZbh9mrC92QEUSiuUUvg1f0zhLMqcvKyg4vsIIWi2JvCrFbrdHnlRMByMmGg3Si2kMRjbYm9VNwlDHKeCkFZpdiA1eZYhZOmY6PoVEDnVuofrumRZjlQCY2mqtWp5PWVpSbEpsjGg0gglSbMMJRRGaZI4IxgG7G7vUqmUFPbRYIjnV8jSMhvUOIYkyRgOotLcyEhqjSp5VhAn4fj4inpruoy1kJI4jvCrfrmQICVSKjqbO0hVOnEaS7HbHzAKIoJRgBSK3a0doiCCvOBd73g7q9eu8Q/+wT/m0vlVvnzyeTIMf/l//RGmpqfp7uzQas1g2xW+67u/i6NHD/P7n/0U8wcPE4QpqoAn/+CPePbF0wyC0izJsy3SOGIwCtHKRkqLMM554h33U694JQthfJ8qCkGep9Q8w86wz2S9wtxUk6KA3/jUSa6u3MSxDKMoQoiyA2wZ6Achk40JTp2/RiEyHnnkCGGSsrK1TZJlfOADbwGVM1Fz6Q9HFIDvaaI448Z2wBefPwsChkFIlhWkaUnputHp06rX2NodUBqbCXYHIVpa1CouCzMz/KePf4nRKCCME4QQaF3q85IkQUsBQoKQjKKYHJhtt1jb2GGiViPLC37/C8/TbtRY3dwZRyv49IOI3jCAosB3SnMm2zEMw4CVzS2yQhAnZTbn7ihgaqLGxu6IRrXU6L37bQ9BnlGxDZ97+gXWNnY4MNemICctIhB7zp9dipzSPGbcQfngt74DpSTvfMtDnDp/HWN8PNtnstliEJSd43ajBkVBUaQEccRHvvsd9IMRQihsbXH6wgq//cmnadVc6l6dqcYMUlW5vjmiWa8zOzkJSL7xXQ+jlGYUZvSGAQU5O4MRWQ5RknN5ZYvF2WmurK1T9Ww2d/s0a1UsbViabDEYBqRJxnqni1aSdsvH1jlveGAJWxuKZxOqVZsf+dG/z9//C3+PgpKOh1Zs7WyTpSlKCPyKSxSGKK345G//JnlR8PN/9xd4+uwruNM+v/Bvf5G//bf/DmdeeYnH3/EEP/evfpnPPf08H/yWD/MdH/oov/gvf4ksK6M3kGJMyRzXZIIS0d0uokptMdwGbEW5zWsCuLHe/tbYp/Xd68693tgLQd/rot099sDjfpOVe53L/ufyIifNc5IsvSOv7nYA+b3H7TiEWx/t1vdf3tV9vG1hctskZW8BbbzDHcfe313Mi7LOKTup5Vz46q6cIMuLOzL3Xit/by9MfY/6/9XW13cfay9a44/Zi/0wVcq7d/jTg6tfp2X+dx6vpmWO7WDHE4TR+jX3/e+hvfuOb/8oH37HsVe/l9TEQYqWORW/hhIZV6+tUfF8LMfw9MkLPPjAEQQFTz1zkkE/ZGmxzfrGTQ4sz+C6FZ5/6QwHlpZwHJvPPPkljhxeIisyhARjLCQSY2xazQmm2w3iKKaz0wMKjh45wH33LeMYC6fisdvpsb11kyvXVjGyQne3D2WgQmlpXa+x09khDELa01N0dnapVDw2tjvMz85QrdS5fn2dJMs4cnCZ9fUORw8fGjvj5czNtQlGCQeWD5GSc+3qRWam2szNz1CvVghGEUGc89SXnmVmssaJ40c5MDvD//urT/KdH/5zBLkHRQaqjhSSYwdnmVy5zmMPzhEnBW6lSpymxFGM1hrIyZKCk89doDXRwPNtLl1cZWJyAsuxxt/3AssosrQgTiNc3+KBI8scO7yINgopCqSWpe5IFHzlK2dLukyWYVmGItcoofA8G8j5wy+epuIaJiYbuDWPhckJhCht9rUx1Ksujq3wKh5SG5SyOP3yVY4fXWIYDJEItDJ8+bkztKfqZHlOxfdIo4ibNzvMz8+wsdnB9Sxs2ym7kkUKCLSlKR2Nc5pND79S4akvn+bQ8gLXii5vPj5HmgkEBVrlSLnndKhYdjfxXUNB2X3s9XdxPKs01dAOflWzuzvi8OEl6g2PZtUjFxK/XiNNYozSXLq6zlR7Ai0L4iRCKjCWpNvdYWW1y8LsFGkxwrHrVDyNVGXEwwMnDiKVxnVcTp++jmNZTE7XociJwowwSnj6Kxd419sfJksiqn4DlAQpsLRDlo8pqL5LxXc4f/461ZqLZWmefeEi83NNWu0G/f6QSsVBWyXVNs8KgkFEmWdW0niiMKJS8Tn10iscWJphtj2HMZLVG2tU/RKoCARf/spZLGWhkARRjOUY8jzn8JEFatUaSTxAScXU1ASXL99gZrZNGI1wvSphGDIcDKjXfEajmBeuBzz8lj/Do29/gv/tr/0ttK349Y//e97ytjdQdX22tq5hWQ2kSHAqNQoM4Sjg2z7yL/johx8e32RVqT1RpTW1kgopUpIkQ0hJkgTkSRnLEYYRtm0DZZ6dXy8BTJ6DMaVxiLasWxq2a5dXqdZshr0ejmsRjIZ41TpCKFzPQclyLnM9h93tDsFwhGW5KGXodbtoo8nyGIEiS/Pye6UsAGzHoIxESdBWmZ846A1wHHucg5cRhxGWbRHHEVrbpRXAWDtY5DnGdpBa4fn+eGXdYDseUpa6tFIzUq6IV6oeShmELB1VpSzBYhyMgAJt2UBBnpfAFooyuiEM2Vxfpz3dQqkSPEdhzCc/dYmf/smf5Pt/4AfobHfQtku90UZbDnEGw1GXxx97guvXVgmiDkcOHeT48QdI8pypxUVG/T5CCd7zDe9kcrJGZ7eDcjyU0HQ3tnjPe9/L2554jN/4d7/F8tsnsCyNURZKV/jMk0/xwPFD/PZnT3Ls8Dwr69tcu7HFZKvOIIjo9FJcG7QqHR0tU1CxbRo1i+npFq2GTaNaQQoI4rDs4pPjGIvfe/IFnnj8PqJ4RKPmI6XBc0rQYlsSowryJMHVNmFcUHGqRGlCvaJoNhq4jkErBQV87Df/C/6Ex9XrN1m5ucWDR5doVD2EFBhl0Nri/NUb1GsWDz94iD/80iWOH5oBcoZBTH8UstsLmGw2kEKyvjPEdx0GQUySJPiehWVK185jh+bJ8oyq5+I7FqNoyMb2gImaj1aK589eZm66jZIl1bvu1yhEudiZpAWW7XLm7EWuXdvmyNIkcZzhOfatPLWluUm2dobMtJqkeYEtBUUu2egOmJmsU+Qpjm2xNNciG0eLWKbsAvsVC1tr4iRGklPkOb0gwjY2QihOn7vG4twsiJRRFOE5DlLA7GSV6bkaioy1zR5Vt4LRBr/isbEzRGtNTsanf/8kb3zgCEla0Kz5FGR4jsPnnzrFA8cOMjFRJS8E0xMNgijEshVVzybNUowUdLo9wiTHSImRgrrvI5XAsSRhFPLTf+kf8n1/6a/zV9//w0ilsE25oAgQhiGWUux2O7iuw+UrF2lNTHLkyAmEEJw9f4Y3zr2V9qEKj9z/RtbWtvi1T/wWf/mb/xfecf87eM+j7+Gdx99KPbFxogpWWOOXf+aX+Be//it86EMfvF2aj2Vqcp9e7Jax03jsvXYHINxfdxXconwCFLdcK8fduT3q4x+n6/oqtHn71Wf3cmS/RUvce3183n9cFXo7wy+74/F+sPlqLZ181XH3PvPeI7HvUxXk+4579zFFqfO7wxG0pDre69zv/tz7QdpeVumd29z7L1DO5/vP6LVq9lfTTPd+3+/U+dWMr2vuvoZGluU/tsdO5lUhj68/7tba7X9+/89/zfjG6R6OuRtQFpBBkeasrm6ibUGcFEy1G4z6A15+5QrbvREXL15me3OT0ShjFAg8X/DIGx7A810+//lnec973kIuQBjD8SPL9HZH+BUPKcuiRGlNt9tFqgLLUgx6Md3uiKXFNkmSMdFqokWKFC7rGzdpNhs4tssLL19kaaFOHO0wNztDNIpQxqE9OUu/H1Cr+0y1SuOJxcV5dnsh3d0Ok1Mt/Fqd7u6ArBA0J+rsdHfo9kbs7HTZ2dlGUNCot7CNB2LI1UtXsV1JdxjTmqpji7F1graJUzh3aYOjx2voqUeId1OESPnXv/zzfPMHvpGf/mf/hhO+S6XqksYJWmm8ik2WpgyHQ4wFhw/NoRSIouwIFCJFJAUCBVIwCgIc3ymNKYwpOxp5itSCJE5LnVESoTS0GjVqzZJuJ1Vp0TwM+jhOlV5/yNEDi3hVm36/h2UUw+4QKQRXV9dpNmv41TL6IE0SjIBOp8NzZy9x3+FFKpVSS1ZozexCkyItqPhlrppxy5BzIQvaE1WMEgi7dH7USlMUGekgQrqaIArQWpOMnS5tWzH36CLtWmVM0WHsthehVUZvJ6TqdQiGBXEQMhwG4+K9pJ8IcjQ2m5s7NJo+WVbQ2e3R7QY0qj6ep7m+usV9x5bJ4hgKwbMvnuPowXkkkjxWXLq6wvRkgxtrXTY3d8iyiLpfYTQKcRyb7U4Hoy2adRdEiioktikNImq+T8238D2b0WDExZXrzM5PYluGQXeHG+sDfL9SWq5XPGbeljfMAAAgAElEQVRmWygpqVSrTLZrtKebhEGEpQ1KKFAZJBFKlJlo+TgEWooco3MuX73JseOHiMOU7c42H//dZzl+eBHPsxCFJhgMsLRgfnGKT332FBXPMDPTICfBrVQgj1FCkxWG3a1N5mYnSKOAmu8SjgbkaUqj4RLHQ86cXef9jy/xV3/qt/jxv/ujHDhYp7d5jm/5lreSxDFJFqB0hm9XgAzLq5JkYDs2H/3O9/DB7/zn/PlvO4HWNlkBSoixH4Fk0ItxXY8iSyDPbnXQBAKtbdZX14iCAMd1xwWPoSjGgEcI4jhFKU19osGw26faaoKUkAtEEZVrv3m56qxUAmiUcXCrFdaurVJr1PAqFbIMVlZWabZKYBSORkhTdlAYG9ckYQ/HscZGCGX2HEIiUNi2V66oa3tsAGSxu3GTSsWmUBqpBFIowlHpGLp5Y51rV1eoVR20KleYpYDOxhbGthkOuihLIgqLrZur+PUmShmklOxubqItD6MNUmZkWQDCQmlJHMbEgzXcikNeCCyryq//5ov8xm/8Oo6tMY6mWa+PY03KKApV8fmVf/uv+c3f+P/4we/5C2xudzjxxgeYW5jEIefyyiY/+zM/wwff/80EwxGTs/MIlbC+eg1NwfTkFKiYX//NT/Lo+45Q5BZ/+Jk/ZGq+zYljyxSFJClgtlWjXq0yO9XAUh6upfjDJ7/E0tIsWitc2yWTAWRVVjbW6XUHnF8d0G7WiNIRFadGlIb0BiFaKaQlaFQrZHlSru/nGWkSYVuKTn+AbQxCWWz1A7Z2t6n7VXb6A6q2plGxiNOCdNx9efChg7TqE8zP+YRxztREA4BP/eevcOzIDIIENY4HKQqYn2nTHw6pVSr0RiOmJ5rjxTM1NrUR/MEfPMsDJ46gjIXRkqKwkDJhu7uBZ03QHSYUxZAojphs1lAipzsasTQ7DTkYabPTG+JaGeGoi2sbKFxWNzosTTe5enOHpYUp8sxCO4o0g35Q4Do5jq3Z7u3yyoVVFmcmKMipuDZhnOPYKXGsUNIBhihllbRzrQijFKSLbQRJMsKxPbRQFOTEWczkZA1LKXZ6Ca6lCZMenuNSUPDKuVV2eyEPHz/EF09dYqbdQKmciuPzO586ybHjyxxcbhFECdvdEVIKPNuQZTnLi9M8f/oSVy5f5ciBOaI0peJ4rHf6tOs1Ov1RmdNaq1GveNh26cAb5znb3S513+fjP/Ycp14+yw9/81/B8x3IIQgCkjil4lZQSjKKAnZ2hkhlMTU9y9nzZ9BaokTBZHuaze1V/vmv/ysWpuZ434fex33ugwipCeKY7dU1qs0JMIb55YNsXV/hoYce4V2PvIcXnrzIP/vVn+UDH3gvIlMINLkcQ7A9YLcf3O2ZsoxHPoY8ewBL3QWeirsB112g7Y9zz3y9sfe+8hYYK+4ARPeqJe/Ur92pubv9/H7YePud7gCJ40W+27XsnVq5vePe7uTtP+MChGZPmShEKfsohRHy1t+jPD9BMc4p3KOUvhoa36lMvB3dcLcOcE8H98cBsH2aulsXgLi9mFfca9vXxwH33vfr4O5ramRZ9mN3X/T/reNP2tH7yX/0T/iG4417HZFgGJCnGcYovIrDYDCi6le4enWNpaUFzly4zsMnljhzcY1RmNJuV3n3ux/Bc1y++MXn+MZ3v5VhEKCMheM4aC1IiyHGtpDCIs/LlW/LGKI4QSLZ3ekTJzHD0ZADy3NILan6FZ49+RILc9Ps7PRw3QoH52dI4phRkDAKBFoKbq5v4ftVRsMRxnEYDkesra4RZwVRmNHv96j4LmEYUBSlQ6LWpS1/veqysbHJiRMnSIscJUqr/FqtwkRtko3NHWzTRGKjpc1ub0QYB2RFyPvf9iZudFaZa9fInRqWZXjrE28lHI34hY9/ho8cXsZoQxplxEFKnhR84vdPct/hQ2jtEIYjbMcprwIhCIMRlmXT3e3h+i7xMKDIcizHRSlRzmvjiUqpspvjuC5FUWbBZFlKFMUY26JICxAZohB4VUNvp0ccJ3hOhSJTeFUPY2naEzWyNCGNE5QqnQeTNIc859jBBYyl6ff6pFmK7VqIHJQyZGlZKEpR0ubEmPM/GAyx7FJ7NBwOcR0HpQWFFNiWjVEW2mj8iocxBv9wfUxz0kghGQwGGNtmZ7fHX/mXz/Chx9sgNLbrcfL5SzRrHp5jc/XqGjdWtxAU1BvVkrKmJI1mnZvrW+x2BzSbVf7gqZcZjoYl5VUI5mbbbG5tc+XqTdZudji0PEu/P8L3PZ7+yiWeeOw465u7JGmOY1sURYrvewRhgONoLGPzhadf4r4TB4jjkI2tHZo1n/4g5OChwwTDGKNt4lFGo1lBSoHjmLGYGqTWbG92CIIYxzUoJVlb20JrSaXql7QcocpOV64YDcvuUBjFTE62yYuCjY1t5uZnefC+JS5eWmW67XN99QbtyRq9XhelJcePztFqN8iLgiQuKTTD4YggiPAqFZ768hmmWnVsxyGKU66srLO1M6DdbrCxtcvS0gzK0mx2hnz79/41imLIP/zpX+D++2bxqx5pNERqQRCUGro0l8RJjtGatdUbfP/3vpuNG9ew7DKnLRgNMEpRCFFGZBQZO1vb2I6N0mV3sQw4T6nWa+McPEEYBChTLhIIAZvr6zQaNYo8J44CKtUqe+u8SkqSOCqdOAFjTElRy3KCYYBSgnqzUhZVhUAIxWRrkudOnmF6ehZtXKQsyLLSAl1KiTKK0TBEGRttDMN+b+zcajHo9Sny0swoHA1R2pQZh0mC1DZCwKDbo1KpkOcFvW6PxcVSVzzo9RmNQpQ2VOv10nnW0eN7vcEYiWW55UqyBK9aKaNAlCbLbgf7FnmOMZpqtUaWg9SGLE35jY+d4qMf/TCdzg6t5iRXL1+mMdHkuWefY2FpEakVj7zhjXzgfe9nanKa2flp6vUqaZRgtEeapnz7h/4cQRCgLYub1y/ieFVOn73Mv/8PH+P/+cl/yrf/+Q/zsU/+DlOP1HGchHrbxliKKFdopbh47QbL8226vQFJtotSBd1RyBsePIGUmjQr2NzpYhvJk1++wnTL5tjyAtMtH88S1DxBGKUYo0mzjP4oJEtTWhNNtFZQCE4+e56ZqVlsy8NzyuiFy6ubzE+2qFYcXFujJaRZgpYwijOe/PyzeDUX33UYRSOipM/CdBkvA3D00CJSls6Wrm2I90LlhURLyvui7ZSZhEryzAvnOX32KoeWZ1hansEyEoqMHJDCsLJ+k2rFQQqbwSjEsgpc2yZODEopLGOwtOHFcytkRUi7bkhzjW175AiCBMJoQL3qUa1XqFYMTz97ntnpGnmesdsfUPMUaZ7RrFWYaTfLTFWpAMHGbo9mtcWnPv0Ux4/O8oWnTzM73cIyiiBKcG2LfpiiZEYUhUhl6A4CHKfsPA6CEMe4nLpwk4Nz0/RHAbZloYRgeX6SmckJ1js9plp1Lq7cYKZVJ4xHHDgwwef+6FmqNZ/pZoNGzcY2OUVh2O4N8WzDwswEtbpHnOW4lsV6p89cu8koCqk4Bsey6A+6nLu4QpwWnLt0g7TImG03yPOCA/khvuHoe7Gc8n5qaRvbsun3B1T9CsNgiOu4VP06n33y02yurfLA/Q8x6PfRSjOKRnR7O5y8+AKf/sTv8pnP/wGPLj+MY1vYRrOxtUl/0GdxdoEiy7h4+RI7Ox3mZufxqzaPHnoT//xn/wXv/pZ3lqYZd9b0d4y7e0d3+CYK8erXv8ra7k8C7va/7/5zeT1wd+dz945K+Grr2lc7Zt5jm/F2rz7eXfrGPBsD0/J6v+O87sj5+yq6nvu6fa8+m9d7/PqjKMqfO5swX90xiuLVwA6+Du6+psYtcPffqJP70xi/82v/ivc8cuiO1Z+9C98oA0V+KweoXq+SpSkTzQYbGzvUfZuHHjzOGx4+xv3HFjl2bIndbofN9V1sYyhkQa3e4NkXzjA/N00YDbEdgRQaJRySOKYoEpI44dnnXqFRq3Jt5SabWzvkeYrranqDkMnJNi+ffoVatQqFpNPp0dlaKcOgFUy0J8iy0gZ8fm66LIJj2NruIKUiiTOOHz9MrzdgfWOD+dlJLMtQrfrYtsXqjRtUPQu/2qDeqHH2/HkmGk1On7nA4SNHefnsyxgDW50B/UGPIN3m/hPHmJueZ/1mj5Wb1/i7v/QMf+4tVSqzBxBFmXulleHRB4/jvHKKYdAnTRNsR5PGEccOzjMIRvhNDzOmUSldhiRblkEKhePaZFlCf6dfZnLlAmOXDoFRENPvjrBtRZLkaGWgEOzs7JJlGcNhSK1RQyJQuiCOU/K8DDg2ykIpi+dfPM/MXLusI4uMNE2xjCYIQoztkOUFw35Ao+HT7ZYxEDmC/qCPyMpcr88+dZLDi/PlpDPWCXzy809zfHmhdCcUBZZjEEISRCXFRwrFcDBCydL6v9PpUj02hVaKbKxXUEpTIPEqVbr9XR49WEdqSb8XMjvZxLE0xmgcYzBaMxgFtFp1er0BfrUsoqenmgyHI3zf5/7jS/gVh8nJFmmakKYlGOzs9Jhq11nf2mFqsoHnOXiOplr32d7pUxQF7XYDS5eAc2eny2gUcX1lk6X5NutbO9SrNkmS8fzLV3Bdh7xIsC2wjeTGxjbNiVrZKREFaZpitE0YhDz/8mWaNZd2u8nKyjoLC9MA2JZNGCVYjkOR59xc3aRSqZBlObbjEA4DXNfBMoacMnx+ZnqCfrdLuz2JkBa25bGy2uH85assLUySpgWO41JkpdnIzY1tJpo+czOTVGs+V6/fZHpmiolWjfZEjQJJpVIlTgIsy+WffPoGb3n8zdSqhscea9JoTmK7GpnHxEnIRGsBtMR2KhhTWs/X6nW0ljQmFvjXv/Qp3vjGReTYrJIC8nRU5uxVqmUhudPFsi12OrvYY/OEEthFuBUPREEy1iNWqj6MtWflHDqetfICxoCs2+ngeC5RUOoilVRoI9DGEEZDLMtC6TICo8iGfOmZF1hcmsJyFKP+sPy/GusR80JgOV55XYqysNdKjc+xpFFJqUiTGMd1GA2G5AVYlkuWRTAOuC8z/NLSsEhJPL+CMQZrDBKklATDHZKodEgMwj5aaqRSDPt9lG0wWpSVY1Hm7WV5QZ4m49qnBEvaskjikN/8+Cu8612PM9lqo41Fs1lDADMz0+XnkwopFeEw4l3v+gaeeeYp/sy7nmDl6gphmFGvVQjDCKkNv/zL/4bl2Sap8PjZn/uX/PiP/wTxKGBqcoY3P/oYfX91PIfYdIcFKxu7+BWH5dkJoiTic390iTecmAdhcC2fQRzysU88w0unrnP82AxZVuB7NotTE2VhXKR4jmIUDBHCYIxGK0m9UqHilVTXoijvJ3GeMTPpE8YBiJQ0y3Eth05vCJTmLbZlkFIwikud7X3HShMXYzSW9nAdDYUFhUaKgiwXBHF5LKMFruUQJwlaSYQoiJKEURiWrn+iYH6qxbnzqxw7PEeQpAxGQ0SRlaVkYdjudql5ZdyA5zhImSOkxcuX1lnb3B532WC21cBzynNWwiUZ0/OzrKDuK6SyaVVdgqjH0eVFiiIjSRMalQpJNsT3KiRpXurclWanN6DieljGsNtPeeiBRYZhn2MHD2G0RCmFkpIoSan7Ht1Bn6c+/xUsv0azXkGrPYYEaJUx23ZBZMRJRNXzCeMYrQQbOx2mJiaI4oiZVp3t7oCa6/P8mWu89bGHOPXSOSzPwjaSIBwyiiTP/JdTLB2YIk0jbFNSoYWQuLZFnJQZhHmec3O7gxawPDtNf5QQhCmHFqfRSvPbP/48z51+mfc99l42t7aZaLVQRRnHMwqGGMuit9vlxvoaFIpub5d2a4o0Tel1Owhganoa3/eZSmf4P37qb/EfP/Fx3vvIu7l48Sye4zE7v0iv1yWNIlavX+X8lUs8/PAjrFy/RrsxQZylPHj0IX76H/003/Sh95RKsWLcbbk7zy0r54u98SrGVT6GTGK8xrOP0rjfJVMKcSuLba92e72x5/54TxOSfWDuXoCudBYez637gFbZ9ZN3AKd7PX93ePmtvt6+v8tent3+XLu9I+7f9/b7y1sdvXI/dYfZy93gjr3cvvE2eb6f1inG32M57vh9taDtzg7lHi3ztcv6u1/Y9zcrXt+987VA4NfB3dfQuN25+9Pp2v1Jx7/9lX/Hj3zToTueu2OCSOHs2bPYlgRZ5kHFUcL21g5ZDgtzU6UOxbLQWpGFEecuXODmRp/5+Wk2tjepV+vMTE0ShQFfeOp5FmaXkMqUjnFSMRqVlLVapcqgP2J+ts1oNAQhmJlusnRwmSTJOHRsGbfiE4YJYTBkdq7NcDiiu9Nld7eH49WYm5nihRdeRNkW8wvL2JaFRNAfDPFcydTMFBPNJtevrhGnAaNRxMraTRbmZnE9l+EgYXNzm5l2g15/wOFDh1hb2eX4A8ep1mocWFomiodMTU0z0ZrmypU1XFezvDTJR7/prfzvP/dpHr9/ElWZh1zx1B99kePHD/Mt//fP8MOPPoBl22x3eghVrsDUGx7haEgSpiRpShgEWK6hyEAYRZankKVIy8YyFsFgiLEMcRhTFILPf+kU9x89hBQSbZVdCikhywrak03SNCWNY9I0xrbK3KOnv3SWM+dXkWQcPjxTmq4UOdqyKITA2DbGGIa9kp539uIKs9MTGKPo7PQYdEOuXNvmwIEZsjzm+KFFgiDk8tXVMgPQaI4uzmMsTZGW+VyQkyQFtlchGYUM+n1c3x4bcRRUqxWiCVVGOhirnLalJApDLGWYtS7iuw0KwDYOa6vXcVyHcxeuMzs9ycnnLlCrOVQ8p6Qx7omYRY7vezz73AVmZppESYIQsLXdpdsNqVQswjDi0KElpqd9jKWo+C71hktWFDRqHq1WlXMXrpDGZVj07PQUrl1hZqpJGMUYI8lTQa3qc+zYIhOtKp7njwORc2r1FmfPXaPVasCYcGJ0qSM5engBz7OIw4R6o8ooDBFSEPQGeH4FIQtEkeFUHE69XGpxtjc7ZQi9FGU3aTBACcn5Cyv0hiGuKxiFAdW6T7Pu0W428DyP7U6ZZ/jlk2eYnW4z0WoQDgd0On0qFZfnT11kYW6i1HBKWF3bpFlvkKcZr1xaJw4injz5CkcOSQ4ePYTj1YjjLkpkBEG3NFNyqgihxje2shgQApIkZnc35+/8n5/ig+8/iFaypBcXMVEYoCyvBCjjTlnF9ymKouw+jd0wsyRDSo3WZty1LmmRaZoipEIZxc7GNpY2BEGAYztIBcoohNAoZdHd2cayNcPeAMfyicMYSUkHF8Zw/L6jWE65oCWlxHVd8iwnjkK0NvR3dzG2BgrC0YAbqzeoNxqEwYgkFhi7tMfvdbaoNZso44wDyhNc1y3NdJzye6aUYjQclrrOfo8wGOK6NqN+H8sSxGGE1h5uzUVITZrEuJ7HcLeHsR2ULCnPUTDEchxum3uUUSFKKYyy+Xf/8UV+6Ie+jygO2N3ZwHVKsxmv4kFWsLmxQbVS5dLl6/zgD/0wBw8c5ebVc7zxkfvxajWi4YAzZ14hTnPe+80fYHNrjdbUIb71z/5PXDn7Em960xtIM1hYmuWZ9S9gBIzilIrbYOXmDlVHU68Yoiji6OE5rm90uLraxTERQdhlbq7N2998P5YlSy1oNiLLBM+9dJ6buyMWptskWc6nPnua5aUmQkiyca6dpQuU0iRFgXElMs/Q2vDlU1dYnJnkhbPXqFRcqq5NEMVkGez0A1r1JlESkaQZVc9BKYlRFmkekuXlqv5v/c4XWd3scXhxGssSCDKGYWnNn+YJw1GI0Qqp9iIYQAnD0sJ0GdJeFPiehzZ2uZ2wePHMJQ4uTlOIDCUtesEQITQHZppMTVTI8pwgTgnjLtdv9HGtGkKU4DGKQqqORxQPkdKm39umyAI82yUdZ/EpZYFIGAY5QpRsAC0lO/1RWfQKsK0CJSWObZNmMVopLq2uM1H3ubq2iWVrLK04duQArUYdYxm6/SG+42BrzfWNDloZHMsljMui2zaK/mjAKBxx6pVVDi22xsW9Is9TDi7P8JUXz/HmNx5CS0WnO8QYC9+1abR9XMvCtR3SPB3PkRLHskupQlmUlJEVmcZzPaIs5+r1DQ4sTPGf//GL/NW/+AM8WLuPVmMKy3bQpnS51VpiWRZJnLGz0+fgwWU8t8ry0gEWlpY5/copHnnkzSUdewxEGpM1fvep/8TNzR3eevwJ6rUmnlchjSIcx0EISb3eYLI9S61ao1Lx+czv/S5r66scPXKMN9z/CJvndpg60bp17oy7cbcNUcS9pFa3H5Zohr3N9nfu5D5wVsAY7H11tMy7u3P3eu21RpbnpQHLPU757k7evZ7fy7m79dprnMNejMJ+querTVnKpoiS6hagvFObt287KImaY3r9/q3vBIK3KZh71NGvbtz1nsUesPuv31+pcm57vdy9e42vg7uvoZFlyY/d5vb+jwN3P/ETP8V3vO0ocLtjt9ewlhTkypAPtxB5SoYgz0pxcrVWI0kzev0tbqxtkAQRK9dvMDnbpj0xxZGjB2lO1Nnd3uaFc1c5fvQIto6YmZ/Hq1cRokCJgkJobNciiQNurl7HrzeoVaucfuUCUmZIYciSkKnJFkGwy3A3JSdgFMTkWUIQ5xw4eIxhILGM4PrKDU6cOMqNtZsY49DrDZhfmGV6dpLRYMjW1k0KclrtNn6tSbPRZHtznbpvcfnaGt1Bn6MnDpOgOH/2EtdXVzl0eLpcgVMVEBk3VzY5d3oVr6oppKbIYip+m+5uhw+98z5GjUOoehtNzsJMC6th8eTnnuZbpttEQconnnyONz94AqFAKoHl6Fu6DCkEColQNoKizFmioCDGsh2MU1KQbNvixdMXeNtjDyCNYHVlE8c4XL26ylS7QZYUfOWFiyzOT5MnQ6S2yhX+JKdZ85ibnCzd+CYqY4fW8kaslWHY72JZBm08dnsD5iZbWLZLlieQabSIWZyfJhMFUiTkqSLNEubnJzFakMcFQuWlK2deoGwboTVqPME+f/oc01MTJWVUFkhKq3zvxHRprJCnCCkYDvu4VQ8J5OGQJAdFQZ4n1BpVHM/DtktXwOMnlmk2XVZWN9ndHdKaaiHI2drcptbwmGzXSBNBc6JKMBoy0WpRrxcMR1vMzhyhO9giDHIcT49XEhVaK5SWBKOARr3C1HSdK9c3qNUckBG93oit7V0W5+a4evkGURTTajc4e3mFVrXJZz/3AlPtFi++fOkWYPIqFcgFg94uz710noW5FsrSDEcRlVqF4WhI3fdI84KPf+Zpjh+cLTsLtkt7okISpaQxuK7Hr/zqUzz26DJaWXR2eywfmGdmuk00CqnVS3AZhiFf+MIVKrWI2Zl5Njc7pIVgolnjpRcvMNVqIrREm5yaa+FoC2UcTr18jVazjhSKYNRnkBk+8Pa3cfHqFR5/58MUcUY8GlBxayTJDiXMSDCVSUQhsJTi2tVr2HZ5Q9fGYml5hmG/z+NvOUyWh6SDdVBVHNcnCkK0VmjLQ5ly1XTYHaEsTZGnpVNtlKEtBXlClgywZEpaCJAQBYPSCdMpO5mO546pzi6D7hBtJEpkaNtCKgvLdijyDG1ppNZkaUZR5GRZDHlZOGTZeE1cZEhVUp211qRxGbCutcGvl26FUmm0gZ//uU/w2FsfwPFs4ighGIbYlqbfK6npiAxlSut/pWB3p4Nlabyaj+WUIczGUijLxbgeysCw20cpQ5EWSCUQuiip1kVRZrtZdpltpw2j4QjbNWgtScdxHP/hY2f48Hd8K3HQp92cwWjJ9WurNOpTFMLBcmFra5OPfM/38L5veD/f/t3fxV//G3+Tj3/8E9y8fp2NjZAkETzz1JcYdAfMzS/QbAtGoy6t1gKpFlieRFmCMxsv4foWRuds7G4TRJpTz77CfceniKIAKV2UggMLE1iWR6NW4wtfvkan12N2ssGzZ28wVdes39zm/uOH2B1GtOoVbK04uFgjG6+8K2mIM4iCiP6ojy0Fo2GK4xiMshiGKcpSLMxMkGcZjjGcfOEcB5emUEqS5oY8HuBXPKI45YXTVxBKkOUS2yjSPGFxvs39R9qkaUJ/lJClMY4RlKH3BmMMQRKjtEFpp4yZyRKEULxwaZNXXrnK4eWpkhKPJE4jDi/N0elHuHZJ1dVKEacJWpe0TFHkKHLSvGCuPc3HP/McDxxfIM8LPNemIAdRUiS1sdGmQlr2LEgzQXcQkCWCj3/iSzz8xqNkeYYUMb5jEadpqYPOc5J8xGCUlyZRlsFzy067YyRRMqTiWWQCPvnbT1GbKNkycRKhZMLzL9wkkQ6FCmh4DeJkhNGl7KI3ijiy2MKYKsNQcPLFqxw5OMfu7g5BnDM/0wRl8P0KFcuQ5zYvv3KB2elJbFuXjoyZxcrGANsqi/w8z4ijkMEg4GOffI43PzRPr7tFs2aoeDYP2cv8wq/+Rz78TR/hwtnzTE62Soq0LFDKkCQxcRLTak1iWTZFkSGLnK3dTa5evMyhwwdIkxhLuWzvbDLRbPBPf+0XWVxYYEo3aNZrGMvm8spNOts3qNXroG02NlYJwiH1epP5uUXWrlyhu7XB/NISkYC//vf+Bt/x4W8rad8llgAYd5rvrMNusTeL8mcvQm1Pr6fGa5XyHuBsD9SUtduY9TIGqq/qEd3Vndu/zW0DlOJWp2z/kFLekfu2/9zv1ajYD5zuzrO7G6IU+37bA3J3w7S8KLPqboFLUWbaFZTxCEVRjLPzsn3dr3E3DUpq8jhPek/Dt/9M9tM+b4PJ/Rq81wdrd+dN351rd286593A8E6NX1Hkd72vuMdzXwd3X1Pjtlvm/9jO3YeWo3s8u/fFkoTDPnF/lyCBmYVFtLJQUmHbTilWTnI2OwPuv+8oG5tbnDl7lt5uj6l2k2vXruJahqNHDnD54jVcTxIFKVKAscY5XONVCikklrF55iLbEnsAACAASURBVMsvY2nFytomjUaFhx44QaNZZTgMcBxDxatSq3lMT09x4cIV6n6VqekWG1tb9Id9jh8/zMraBq3WFJYp6HZ3GQ561KsunU6fNIPl5WXSJGd9fY0sy8jyHL9WhdxhanKWojCcOXOV+44dJstyLEvQ2R5gTBkqOz0zxaVL1zl18SrvfNvjkMO165tMTTbJk5Dv/Xu/yPf+he8iC3Nct0YUp3zwg38W8dxJpIJjy1NkSYJXcVBKkcXl5BRGIZZtIXWp74qTEMuyoBC4dpWNtR55Draryg7S1CSULr3U6j6WrXBdTRSPkFowO9MqHRKTctXSrXgkccRwMMQ2holWjWA0IssyHKfUNf3+0yeZmWhi2QYhJbYn8X1DmqZ0+136g4BGq4LnV0mThGAU0tkaUpDheDa93SFa2Vy7voYSpVBamVJDJwpIo4jFuUmKvNTyKWmNTSYs1GK91MuJkrpmWRZ5Ifi9L59laaJAWxItC7Ki1E8arbl85QaO1uRpxsraNvMzkwwHI9ZvbpIm5SQYRylFLvCrFZIsIQwjjLYJgl38isFIl6wYoaSNMWXelFRjaoaUkGd0dnrUG1PUqjau7dHrxNiuZn5+imvX1jl2fBljaxzHolHz6fV2eOiBgzz74nkef9P9TE3WS2qbFFy/vsGgH3Df0QMobVhd3WBrq0er1cC2bPK0oFKtcN+RRZIkwbbt8c22XBHc2RnQbPqQp1R9C6HAsjRKSVZXb+LZDoUQCKmJwoj77ztIEIzY3R1wc6PDA/cd4ivPnWVuZoIsTTGOYTDo4ziaim8hjEOj7vMHT73EgaUp8iyliGOefPoCH37fY3zqi2c4cHgBhKTi+yTBAGNchLLRdhlRMBoNaU+1SupRUd44tTE89IaDfPf3/Dzf+W3LRHGGUy1X+JUxCFFm35Hn5bXnOESjPo5jjx02JUWRsru9iyhk6TRp24iiKLeRAlUmOZNlKbbtlHEr44iAYb9fXouypFxqJcmLAm2VdE0hBeEoLFf+tRnnyJWulJZVdguN0WRZjjGGKAyJo7ikzhYFWmve9MgJjKVJs2AM+Cwsx8aydZk5mKS4ro/AIIVFxW/gOD5ZFqPkuGOoxivMUlLk4DhOCVBce6xHLKlrCEGapGRZekuXqLUhSxOkLOmiUin+0yfO8d5v/DPkec5wMGKrc5HJmSZB3EfbILFxXZ+PfOdHmJysceDgAa5cvMznnvwCP/iDf5EHHn6Q3/307/ADP/B9fN/3fy/b2x2eeNtbkNj81E/9DMeOH6Y10cRxXH7u//oVjr9jHsu4KOnxxecu8NBDi0y26qxt9nnp3Dq9YcDCdIsoSdnt93j0+GGee/Y0Fy9c58ZmgGOlTE9NIpVgulnHmJICGScxWZFScy1ubne5eGWD5kSNRrVKL4ip+T5G63G8gMups1doNes0qx69wYj7jx1AjTW9llEkSYBlaaSUzE01cWyNpSW2MeW8S45jmbEZFLhOaeIh5J55Q4ZnC7I0pEhjlDIMRiO00nz691/mW7/p4fLOXkjWOwN8r9RLS5HfCkxPsxTPscpCeFy8aq2Ixl3qxoRPxdVEaUCe54zCHMfySLMEy2gQRUnfNiW4vLG5i2M5PPboUfKijI5IUkGBwrEdoqQ0t0LkvHhmlYWZNmkcUS5mGYZhRNNvgLTIMsUwhcOLZYi8P87gO3Zolprv0vBLKvogiKl6PnkOdd8jimN2hgGCnCOLTT739Is8cGyOZs0v5xttygJVCoySzM34BHGObSwkBqNzlErpDxKaNZckyYmSjFbN54GHltjodKhVa9RqDX7tR/8LL7xymX/0P/9DpBSE4YBavX6L3qa0Iolz+oMBE606o3AAEq5dvUCt1uTI4eMU5Fy9colGo06ns8tup8e5rXOcOH6CNx1+nDBO2O31qNdKB+aVK+epez6TMwvUG3W6vS6e43Hyhec4dOAAltE4tsO73/Bu/uaP/Sjf8eFvu6OGL6H4q0HWnra3oGAfghlXYnc+fq2KUYkSgO0BtLvHvQDK3eDu7sevty+UoGY/tNtf0d6rC/d6Yy/a4NY5jP/dA3avNfb2KQSlIdl4lBh5/LmK/Z9u/57j3/ZRSvf/fufrrz32DFhuP77XWb7e43s9dyeofC3a5tdDzL/GRp6XDl+vFTZ5N/f5T+KC+Xrj1EtnXuN9xxd1ARtrq6Wdsl8jTjM2NnZAKK6vrHH6lfP84TNnuLayTa83YGFhmkOLs0RRyLlz55mbblKvVSBPGAxHKGPxwounIc3J0xypFZZVBq6CxHJdDi/PcuHSGq2JJqMwZzAaUgioVH2KXFEQ87nPf4UvnXwJS2ts2xBFIc16hbc/8Sbaky0mmk08zyNNAqYm62glOX3mPKtrm0y1p7l5s8PZC1cIg4AsT1lcXsLYVTY6N0mLkDQLefObTvDCqQus3djBtizWbtxke2OHNE5I85R3v+cJvvPbvpE8y/nSV86xvDTLZ588SZ4LfvVH3sEPfN9fpuLavO1t76bIJLVqm9+7fA2tJXmRY9mGl05fJM9FaZaQQZrmJe8b6PV3EeTEQYiSiiQOmZmvU6kZgv+fvTcPkjQ/6/w+v+O9886srKurqqu7Z3p6bo1OhG4WZARIgCQExsgSZolYExvB2hs+MAvaiLXXNmywgR3shhdjsEHrkBGSkMQhIXSPNJfmnunpu6u66668j/f++Y83q6d7NBKClSOIsH4dGVWZ/eZbb57v8zzfazLBsjWf+OKDOJ5dZH9pQRRPMSanVK6jtYttOTzzxGX6gwmVcpk4islNTr0WYDuSaDpFUeiGpuMJ4XTK2177Cqr1GgjB7vY+0uSMhyG27bG11aNRbaFdhziKMHnGcBgS+D6NZp04ighKHns7Ha5sHRAEHl7gc7jXIQ2TAo0bDWd0CkkcJuR5juuV2BkMi/DqNJ9tNyFJUqbDCX/wpcvYrkNuEgw5e7uHKGXR7w4pee7MVGWHuUaT8Tji+u4hy/M1Ws0G7XaLUjlAKU0uoNsb4Hsuzzx7iVKpwnQckyRdoukEpRXd7giDII0TDHD27GVc12WuWcOIkPGkgxEh3UH/Bs3LcTVRGnOkMfjkp79OvekzGHZ57atPMxwMUEqwsNDC9z1qZY8TJ1f42qNnGQ4mLMzPUSv5Rb7leEqO4PLFLTASIRRRlM4y2CTatugOx8RpxOnbFwA47PSI4pg0TZiEU9I0JwqLYOWtnR5Cxsw158mylFfcdxKAV77idprNCpVaQL8/pDU3R5ikjKYTDDlKK+abFTY3C3fadqvO+37iB3Atzcf//BmazQbD0QgjJVqnxOkYqWKypHDBK4KSM7KUWdNWnFIsW/ORP/xlfumXP02p3r6RHZRl2WzyakjihDiMyPIEaaB7eEiSxIUbZBTRmJuj2mij7KBAnKUGIekeHBSFk2TmQFkUO7bjkOcZ5VoNx7ZI4wl+ECClnGXewXg0wswMgsJpSJbmpGnKkXYvy7JC8zYaY1sWw/6AzavXi2iD3KAtC4BpOMCIFNspUF/LLlxnpYTpZEqpXCVNDWE4IIpGHO5fJ81GSKEYDYdEUUyWZoRhTJpmYOBw9wDLdsjzopELJ4VDqBBi9thysjRjPBwBoC0HhCgGL/sd7r7rTvb3Ozz79FkwGWsr9xA4LRQlyIvji6KUP/nYJ9jcuEwlULzzne/iV371Q9SaLQwJ73//TzMadfmjD/8BINAyIAxT/tmv/rccW2rz3/03v044nqIdGIZd4nSClAk/+gP388Q3zhEnGYtzc3z/A7dx+YUt+uMQY3IC1yPOEt76lrt5+9tfy3t/9DWUKyWqQQnfsxlNJ0RxzLX9DgiJb2tG0ymLzRoPnFnHshRpLjjoj2dcNkm7XsV3LF537+2kadHcO47FNAoRQjKehoTxFNe26I3GpCab6SULXV2WH+WoQRhnM/2XQlk2aS544co2goxzG4f0hymXN3q4qkR3NKZS8shNxs/+5GuL4GoDltL4roOtC32x6+jZoEDhOTbGQJ4nTKOENJOMo4RqqYxSgkbFQUpJ2ffJc3Bth9/78JfJspwoLjSWkygijhN2Dw6YjMf4vsvVvS5aSibTkJ1uWBgxAE+c3yhcV4Xk9a+4A9eyUEozDiPiJKEaeAiREsZjjIh43X2rpJnB0pIwTtHaI8tjkixEGI2lYnzHYTgJeeLcVa7uHJJkgna9gpQJUTzgh950P0mekyQRQmjyNCHL0iIDNE+YxhFl30UrjVaKMJ7iOwIlYeegx9cefoGHH7lIjkEpwVK7SYYEafM//7Nf4X/6h/8DWZazu7PNyspKocvUNlrb5GlOkmQszC8yGg25euUaB3sd1tdu54XzzzOZhvzFZz7B6uoJpuEEz/V57JFH6PR6/Pnn/oqPf+pPeOjRh4njlKBSI1E2p+95DZmwCrdqKSmVSrxw7jne9c53s7S8ysUL59AZiNzwX73vv+an3vv+gnJuCk5UEQHzIkVQcJPu7OinECDEN+fZvcj5e9l1lF1X6M++uVa8Od/u6CKFuGXbl15/8U+bWy7fXDe+mJf30sy8lws9LwaW8hb87JbYhZu2uZXe+aIW7+b9vnjMBpNnxYVCV3eE0918bC9tkgqwIZ+9Hi+NQfhOWqJbgZpvnYv3UsSueAZe/jmVt9zn5ZrOv+36HnL3//HKsvRDRRf+coGFxfpOJyd/1/X7v/lrfN9da990ezFXEkgJg06Hnb1DTp25i3A8xC8FKCkpeR7PPHuJxcUSvd6Ifm/I089eQqCYn5sjyw2NRpXxJKTeqDMcxcwvz82oe4XLm2VZxNOYZ54+S3u+SS4M4WjKhUs7OI7NaBJycn2ZOC20JiaFKBly7Vq3QJ7qNpal2d/v0OkOC7RISurVEju7OywtLXHQGVKr1nHdEuWyT6lcRmvF6uoCUjhsXtvCshzOnd/gNa+5C5Pn9HoDxuMxc3NNqqUKQmR41RLNeoMHv/YIrVaTarXNC+fOUa1WuO32da5dv8obvu9VHHQGtBYWeNUyVE/exzve+V7iZMzTT53jD770dX5scQ6TGfIsp1op8dkHH6PsujxzfoOFZh0lC6t4icR1HfLMQC5I05Ref4Ahp1yukqYZK3MNXM/GCEjjmDzN+dJDz9GolCjXAoxJaTZKVGsBcZLxiS88zD2nThSuhY5VuM/ZDoP+kHIpACMLjYQxRRh6rvF8B8uyGQ0nLCw2cB2X6XiEpSzcwMF1imw5z7dJU8NoPKQUlKkELn7ZLRxJtUUSxTNbeVC6QDS0tkmzBKEUX7m2xerJOn5QIo4KKmqeZbi25sxCTLPsMRmNcewC7dSW4vyFayCgVi0TxTGXL+8QZwn33HMCy7HY3T1ka2ePNE2o1cqkWY7vOxhjePzJywR+QLVapts7IAyhUq2jlYOlNRcub1CvVmg2awgE17b3EPmYublVjNFUmwEl3+fhb5xjvl3l/MXrrK0ucnVzm1c/cJpOZ0Cz2QADfuBCnqEtjZCCq1d3WFhscXxtnr/+4je47fgS17e3QeQEJa/Q9CQ5H/30wyRxzPLiXJETKAvUYa7dwHEKU44sNXi+i1YWWQ693gRbCar1EmmeMD/XIDcR04kiSsbU6mW+8MWnuHx1m2Y9IDMZzWaNv/rCU9x15jYc1y2QttyQxwnxNClow0rz7z7zLLcv1vjc15/hTW+5m+Mn1xgN+2xvXqLRbJJFQ+IkwwvKCFWY5kxGY1zfR6rCFCEcbqOtEu3FJivLDtPxiDQO0UoiMaRxSJoYvCAgSSLcoIbWkiicEkdRgUgpQRyFoEyh3U0SpJQFMqckWVqYkmByptMQPYt4McDBzjauXbz3szTB9jw2rmxQqVSQSmPbNtqymYynaFshBWircJ3M8ryw05ZFU9VszyGlJE1SpJppP/IQpCRLQtIoJQ4TTG7Qto/juIyGQ3zfRVsOEoEX+MRhiMkNg/4IP/CLplTbBXosFZa2kUpg8pgkzrDsgDyPCqrmrIC4vnEd13VwXGdm3iCwbafQG3Gc+++9j+NrJ/BcxeHhAUHgs9/ZI06neIEiiQwfeP8v8ov/8Bf46Ec+wqXLu3R6B5y8c4Xd7S3SJOanf+Z9/OIv/me88U2vp9lssr+7TaNVZXdrh9Eg5tTJ43z0Y5/irrcW5xRLW1zd6nDm9kWqgUVvMGIw7fLaV54uCnldUAs//PGv84p71/j4XzzGvXceJ05DDgcRuUjoHAxoNctUSh621mjtYds2h4Mhtl04WI4mMcfaddIswrYUUZLy1196itvWl3jyuUvMz9XwXJc4HRUmK46HUhJyg+cFCGmhROGE6dg2SgksLbA0WKpw+42SGCktpFGMxmPyLGZtYQ6kYX5ujmGYUg0cpMgZh1FxjMMJZc9hNB4TeDZCGK5u71OvlEmSjEkYIYUsTEM07HYn9EYxZd+ZDSzyQnMmASNn5j2K19x/Aikhmhm72Lam2x/gqox2q8qTl65z94k10jTGdWxspcnzCEultOtVhFRIlbPXHTKeDJEyZ5oklHyH/miIaxfItWNZDIZjAt/ncNDHsmyePHuNdrNOnCbYyiFJukxjQcn38DyLuXqA57qc39ihHHjMVcpEKQipcS3N/mhKJXDZO+yRpIayFzCNQnzX5XDYx1EZcZxT9ssIElzL4csPXmRxrc1Cu4ynXbr9Ia5t89nfeI4vPfgg967dz+XLlxkPhjQbraKBn0xQSvGnn/gEtUaJeq3G3m4HP/CYb8/j2A7lSpUkSimVSliWTRRGLC7Og84QYxjLEfev3M1wMMJ3HObqDeI05+LlSzTqTTzPYW9vB98v0W4v0O8W+Xmbm5tcunAJz3colcq8+YG38o9/9b/gPe/58RcpjObFHzdb29+gSR6haCYvBkwvrdG+g1rwZm3et1t/17oyM/mtmrUjlPElzeFRkPq3wP1uiV242agFXqR83rzNrZTRF81Xju4hbmqUhHhRa1fs/+b9FAYs+ZElzU2vwc3r715330rT/PYavKJp+9tq7Y7W92iZf49WlkYfMtw8HTjKr8hvTLm/lXvRdwvBe21teMv1m12MjsDxce8Q12/ilVwQGlsWJ8V+d8TywgKLi3UWmwHjOCNMQ/YPB+zsd7l0bY9T6/PUaj7jKMazFRsXr7G0vEwYR0UOU56CMSwcW8a2XXa29jh7foNT64t0u31atTLjyZC1k+soDFk6RQibTmfA3WdO0O9P2DvYI4klJ08co1Z1cRyLzevbrJ84hnI0lXKLx594ApNG1Bo1DAmj0ZDdvQ7j6RSDYb61SOBrLl/epj3XwnE05XJAUK4RTcZcvXaNw90R9VqV1bVVkAY/UMUX+bUdXNdBWz5xFPPYk89zYn0FPRrz7l/5TX7hFz6I7ZVorS3w4z/8Azz+qU+y2Kjj2R5Ka44tNahUqyy0q9i2gzSK6TgmzXMeevosgVXG8jSup7G0g7Zd8jQuclyM4PGnLjE/X0MLRfew0K3MzTfodwcFLU1AlhZUxzvX17i+sUep4iF08V5Ls6wIW84jbM8mjg1SaP7sM49zx5llRmGfyXhCUPJQUpOEERk5SnikSQSyoIROpxGff+wx7rl9jUk4KCiiro+QkizLiaOIaDImqFWYjiZkafHa7+92kMT85uVdfugVx9GWwLFgMh7hl8ocdg5ZqhvyTKB0grY8hNJIMsoVH9txqTVqeL7i+IljKDIkBm271OoNTJ4XqFuWAhBHKbbtUSl5VCsV+oMprbk242lEyZs1lkIWhgGuZjQcMBlPMblkcWmV/b0OaZoynUSFLsoIpuMJC+06riMYDAbUm00c1+L5569xeDCmFJTQlsvu7gGWJVhcapDGRfB1q+HjBxYXLu1z+8lloum0mDzbmnvvWqI/GDI3N0eahpCnhZ5AC0aDaRHAPRhTbTaxHYtoMiUcJQyjPrby6Pf7pFlOlmjCaMB8u8b1rX2iKKPdLpNmKa1mE2kJ1o4tFPbeFzeoVMuYPGc6CVk9toC2BYN+yK//P8/w/rfdw1vuXueDH/oIH/i5H0C7HvWaJOwPgQlOUMVgIaWNJkE6giQrTloHVy/i+T7a9Vg5voI0HYb9AaVymSxL6Rwc4pVdrFnG4sFej1LZBVGY/Liej7KLcG9taZSySMOYKCyy46TImEzGlCoVhFYYo7CdEtEkZTLs4vk1HM9Dao3juiSxIYoS5trzKMtGiKIxzPMMy7GQxrB5ZZNKrYKyFOEwJApDHM/CsgvTh3gaIkxONB5j2X6hp0OglYe27Fl4fUAURQiV43gWWVpoLl3PZzya4AdltA7wSwHhdECaRggESRQyGQzwPYtcSMJxwle+9DTrx1eRliLPM0aDIRhBnCiq1SpKFmwQyMlNhmXbrBz/YabRFOVIRtEU8gzX9SiXyoTjKZZVw/N9PvDB96Nsi9d9/93YuPzZJz5G72CL1775rYwHY975Iz+MozOEUwadUqoGGASj0ZTzFy7x1a88xSQaMHdfE8cupt0PPvg8C8tltFMiTAW10hxnL2+xNFdDSsnVa9u86u4VFIJ7Ti+TmwzHctnY7jBXq3Fsfg5kYZ4zmUQImSHIUFrizGIzyo6kPxrhOh7jcZ/+eMidZwp6nOf7lD2XPJ1gcGbIiSDLDEI5JFlEFE8L6q7OyE1GFKWMxgkGgW25PPzMeRxH4zsW24cdLl7aZnlpHlcVbpqXrx9ybbuH5xrSNKZWKvPY05c4tdImSdPivSkFcWoQQiNlNhugSrI8JU1j4tRw2B+zON/AtS3SJCeM4sIN1+TEcWG0lJmMmY86KJ+D7pRRf0SlUmbrcMh8s8Xa/DyXt/coBwFGmKIp1BYGiTYJWR6itYPrOARecU4puR5CKDzbwyhIM8Gn/vopTp9c5tN/9jBPnt3lFXefYOP6NseWlnjqucusLTWxnDKW7WAwJGnCeBpS8l3qQQ2JoDcaEMWGP/v0E8wtNqkEFqPRlM5Bl+V2HWkrtHYIwxTfdkApwihCKYkblNne3eWV9x/HVjlztRqDacL1wxH94YT7Svfyc298P1GY8PiTj1BvNZhOpzQaTYaDHuNxj9Nn7kPnGeSCWqNFteQzGHQLPbjIi+FHlDHXaqIsidQ21VoTZ6J55Oo3+Nkf/jluu/026vUKh4MDLCOZbzeRtk2/3+GRRx7mttvuJE5TXNfh8SeeYGVtnVN33EEaxkgDlta8+YG38U9+7b/kJ3/yncUrf5RXlhc5eEqrl2jJZp2fFOR5oV+/meeXz379VgYqR4jfUctzpJW7WWf3cvq5v81SN9WpRe16pFcTtzRjRzXl0Xop5fJmtO6bnDS/aRtZSA5mhMubG8dbIhBmaJu4aX+CgkUihCTHUIwTgTx/sbGT8obDJ2SzI8iBfPb030w8/XaN2Mtdvv0S4ubtXnrfb9+mf6+5+3u0sjT50C3OQTcmNS9yar/bSN1LV379mZe9/eaPmkhCEBrHtRDGgEgIo5DMpDz7wgs4rsvGxhbnN3u8+11v5d47VlhdnsPVEkWRI5cmKe25Ft1ukTGX5Vlh6e44xRRRKibDId3DAxYW2nS6A06fXOX85eusLM/jeS57uwdoJUhzw4mTx4mThI2r18lNjFKFDiaLNJ6vCaMRl6/sUCoHlIMKJ9ZXGAwmhFGE69gFNa5Wo1opk6YpOzuHDAZ97rzzDGdfuEy3O6BgJhsmkym7uwecuWOd6zv7VCsVGs0GcRQihKJUCvB9H9/z+YvPPMjpE8u0202UV+KnXnOC3/jX/4a3vv09GBmiUfzO5x/mzRWXbzz+PO1mgziJcB2fLIuRQvDZBx9lOJowV29yYu0YQamEsiCJCuRnHPYJ/ApIwXg8ZXGxgXY8hBH88ee+ymtecUehA7KLDLled4CUEtd3+cNP/jWvue8OjDBMxgWdUmsLS9tEUcxgMOHLjzzPmduWKZUk5bJHnsijURlSSaLJFK/kMJkkdHtdyuUqGMGnP/cN3vGm1xNHIeVyCdt2+OhfPcjpk6vs7hySZYa5hQZ5nmPbDgKIo5harcpHP/dVzrsB7379bSgtiOMYy3ZASBxLIrNB8YWch+wfDCiXK+zt9KhVPPIs4+y5TeYX2mRkHBx0adQrYASCnJ3dAxxLcdjps7PbLZqhkseTz53jyuYe7WaFSqVC4Ac88vjTrK+1mYZjgpKNbRXW9N3+mKXFNtvbexx0BwSeQ6VSRhpFrVFl4/ouy0tL7O7uU6n4bO8e0mo08T2XRr1Mr9fhsNOhVi0hpSLP8lkgtWIyCTEISp6DH1gMBoWrne06nLtwjdtPrjPoFXqbIPBm3wtF43z23FUW2k0OD7pYWrF5bY/VlSWeev48Z24/hedZeL6HpQWOZ5OlGd1eUUAuLDSpVgNGswyrTmeAbWnm5mqk8ZQrGzs0GjXCJGU46FEpVXj3qxfJVUCWJGz3Rlw/GHPffbeRRod4ToCyIM8kUZwWDoG2TZI6aJMQj3fIGeFVlpDKIY4TfuY/+R1++r330+t2kUpRKgdYtj+jR2qq9SpRFKKUIk0y0iRhMprgeR4mz4mm0xkCXIR7Z2lKpdpgNJigtYXJZkYVWuGWXPK0aAqllLNA24TO4T5B2cUQs331OlIYSqWg0BkaAUhczwOKLEltaVxvlrs3idGWQtsOllfQO0eDLrZjAQ5SCZQWhJMxQkhs2yGJInJjKFfLYEBbmnAaoi0JZDOtnMZyfSzbQduazmEfzy+htMZzNZ5nYzlFMai0JpyO2by6xeraEuPxCMsuCpg0LhDF/rhBuRTw9NPPsnJsnVK5zIVLV6g2WgTVKtE0RghBv9el0WpiWYrlpTVW11a499470cpw+eIGp06f4XNf/CpV3yVPp0xHA2rlClK7bG9t8bUHH+be+++gUzrgoUdfwA1KjKOEO04uoJVDFKVUPM1wOqVW9kmSiFa9hOdaN1xi81yy1+1zenWhoCuarHCMFSlZHuG7PuMwxHNcaOtv2AAAIABJREFUBrNswDTP8VyPHMHOwZCVhfaNiJXAsxlOxlRKLnFaNDpRkiIEGCIcy2cwTtHaYGkHkMRJTK3sFtEzSBZbNcqBS57n+J7D0kKjQB5lUZTv7B9w4liDcuAyDRNsbbPYbhY6wTTDdx0AtNR89dGznFhdYrczpFmu8Km/fITja/NYAnzPozcq8kwx8JnPPsLa8QWG0xAtBZZlFw2alDO6WVHvl32bpy7sctfJ5YJKfuU6p5ZaWFpwcXOHg+6Us5c2Ob48x15vSOBaM9dZTac/KoYnWhHGMbkxhRGRpbjz5AKClIX5Et/3wB08/NR5XnlmnSgTLLYK5984NWzsHRC4DlpK9jt9quWAp85tstyu8+Qz52g1azxw3yk+87lHuXBll2efvMr3v/4MUZaQ5FMsJRhNp7iO4JlzG5SC4AYaE0YRgeeitGYSJUxHPVYX5/jTf/4wb2i8CcuX1Bo1/KCEtiza7TYYqFVrJHGK0IKS7xAEHlEa4WibJC0y/OIkxrEdSkGJRx59kNXjJ5hMQ2zb4cFLj3D6zlVOzt3O3sEuEsNcewFL2QzGPZIoJZmGVKt1yqWANI15+qlvsLZ2kjRJKJUCXNvl6sZlSuUiq/NN976RX/71f8p73vOuG7Wd0jPky5ijBBcAMjPL35SFH8E3KbH+huYuv9H0iBvXb0XT/sPry291/6Pm8aXN3UuNWv4mHOvlbxcv217daH9mtFVxo7m9EZ7Azc3g0b5A3EJzvRU4uVUu9c2P91tgkeY7M2D5bt73e83d36OVJNGHjn43s2wN4GUbOzNzRftu5uG9+yd/lve+4fZbbrs53w4EJs/YuX4d1y0TlFziMCJOBK7j43kerXqdWqNGnqS88pX34nouWTJla2ufKEyYb7cwSA4ODrFti8k0Zm6+hesVJ84sKyipBoNrazxHY9seg96Aq5s7xHFCkiQcW24zGk+QKIJygDXLgCu5Dt3eLq7r0ZprMp1kCJUTlFwW55fodjsII9nZvUa9WqApB4eH1Ko1+r0RQklazTpb24ecOX2cjc0d8txw8sQaw8EE21HkuaFVr9MbdNnZ7bCz12drd59qJcB1HHw/YDIpdEaLczW2tw+I44hyu4ZMbV53WvKf//N/w9v/wRtwgyZvfNMb+fnf/t94z9oSpZKP7WiUKIwbBIK1xXmWF9tIIXj0mbOsLi+SJFGhaZICz6liZCG4dj2LJIlQykUIw4mFFp5XNAC2UzTVlqXJs5zOYY/Tx5cplXy0ZeE6FlEYc+XyNhc2rmNJxdxciztOrSJEDiImjTMs6TEej3E9hySOCQIPZUvSJKfk+4XGK0tYWWrgOBZpnJJlOdqyOblcBNA7ts1hp0+5EhSzMqVmzaUDQnHXqZN84tou73n9Oo6lGI2m+EEJKQTnNrZplXPyXDAc96lWqihl8dg3LmBrQ30WWu4HJZQlqder5Lmh2+lS8S3OXb7OXKuJpRS+69Fu1bhwaZPFdp27z6xybeuATmfIwX6f29bXyI3CGIkQNnEc0en2qVcrDIchiwtFPl69UeWzn38MW0iu7+xx550nyTJDGE7p9gYcXztGp9OnWilzdWOL0WTEifUFtrc7VMrlgooXRwgl0VoRRwn1eoBtW7iuzXgcMp1MsWybclDi4sVrLC21uX5tm9rs8QkJzXoVgSHwXSbjkLMXtlg/voiWhkE/JCg5DAZjJFmRpea4pFFKuexjKIYFlqXRojC8yfOcJI0p+TaNRo3+OKTerHP50iaDQcjWXofjJ06SG8PbX3OGf/+lDf7BD5whmhxiWS6pSfEcH6kUUmsMgiztkE4OESbDLs+jrBJSaqQQ/F8f/iI/+777boRvp2mK0i69Tg/HtYtMSMdl0OthOw5SSYb9EeVyhd5hj2q9ynQ8nSFtRW5jEmd4vj/7NssZ9vtYtl0Yp2jNxqUNao064+EQ368SlKuzRtvGsQSu56GkII1TlGXjBgHTyRQlLQwGL/CIorDQ9CiNsjRpls50IAaljnR7GQe7u1RqAQaYjsPC9ESCtoqmMU0LjcdkPMHkYWGckgviMEFaFoN+r8g0nIQoqdG2wg9cLLugpo5HU+I4xpBw8tQ6hsIcRsqcJMmRykIq0O7tICRzzTag6I+GtNsLxTw6h93dLfzAx5qZ8jiWz2Gny/zCHHESs3n1HHv7Q977vvfzr/71/0Iy6dOol8mSFEvb/Pf/8jd4/wd+mnf+2E+gdULW6HDy+CJlz+PYfIvd3iFa2Xzpq8+zvOiz0GqRZQaTFfrOMEkJXJf+OOTStQNKgYtWgp3OhCiZoBTYWoDJyXKBY2uSNOPytX3m5xqzgkwilKLq++R5EU2gBGR5hmVJ+uOQkuehVUE7T9Icx4YHH7+EVA62bbCUO9N+5kRxiKVteqMpW/sdlC4cim1tYWubC1e38V2bFzauc+fJY0yjKUkGUWL41Kce4dSpZTqjIY5lYWlFmuRoJalUfTzLploqMYkS6s0q+4d9kmhKq1Gj7Pt89jMPc9eda6yfWCTwPa4f9IiikOcubrPcbiIw9IZjAtfl6fOXWVlqsdBoohRoVZj+bGztUC3ZSKkZhXDb6jyCFNt28CzNJE5R0sK1NTudPuXAQynFtf0uk/GEkmcjyBiMJ1jScPHaPvVqmclkysc+/RilsqY/HLPTGXHiWBOtJDsHPY7NtbBmbI0wjlk7tkDgOSAMx48vcuLUMeqtgEa1hFQSR9nsdELmG3PsdSecODY3G9YUzob1so+UmnLgEbguWTLm+n6H//Ef/QtU5KF1oUWuVutUKzWSJEZrm16vT6VcLdgu0iKM4tnrnsxQHUjiBK0Kt+WlpVWkKpxwfc/l//7yR3jdK+/GzSoMhwMWFhYxOaRZkWd4sLtLqznHtc0N6vU6w2Gf1ZV1yqUKX/rK53ny2SfQQiEtzbXrG9TKNSzX5i33v4X26Tp5XiBzuTG3yOiElOSm0AzP4KgCVRZFHZjnZpYnK46KQ5R8MUvuqEJ8qVbvqCkSQpCZnJtz3L6VO+Z3ul6OYfZy+3opUmjMi91sluc3nDALhK1o7o9q3hcNVQoXSylU8eU1e8RHSCQzZO7F7LsXH//Rb9yoc8VMlyduMv765ubupZq/IxfNb6XD+/bMum++/WaU8+/Kyvtec/f3aKVp/KEXr/1NwYWzD8t3r7fjdZV9Kr777f5iMU1KU/xyHWRhJau0BcIwGo0Iyj6j/ogsidm4tk+v16Neb5Jngt39HmvHlyjV6hwcFOHI5WqV0Wg8m4gKjBFk6RSlCk1MkqQMh1NKJZ9LV7a48/Q6m9d2ECLj+NoKTz+zQW5SAt/mYHuXnZ0Djq/NMRpNqJQqZKbHYDjhxPopEDnRaMT+3j5apURhcaJfXprH5Iad3Q71egUpBVeubJEkIeurbbqdLhtXN0mShMceO8ftp9fYur7FeBoT+GXG0yk/+LbX4Tou2rKYTApEsFyr4Lo28+0GYZzwxGMXOH5inpyMH7yrwQd/7Q9510+8CyE1P/XeH8V97hmUUuzu7uG7Pp/90qOsLS5wcNCnXK4QpWPmWzVGg5CPfflrvOK22wq6rpAIaQr6WJTgOS5xHGErgxLw/PMb1OtF1lwcRQXVUwpcxyY3Bb3ACAMiJ88yHMuiVS8znkR8/MuPsL7Qotfr06y2GA4neL6mVPKJ4gTXdnnuuas4rkWpVOIjf/ogzXKZ3Bhc12I0GuO5Dv2ZHsZybLIownFstJKMRuOioVMWWkni8QRpa5S22Avg7iUbk0NQrZIDSgl+9Y8e5ofvb4GwUJYhDlMmkymtuku3F9Fu1zHkXL68TeBqJmEMEoLA5tK5c9x3zx3sHQ7Z2NinXHVxXZtub8LqahELcNAZcsdtq/QHQ6aTmGqtxF9+/glOrS+glCAIXPb3esRxxub17Vk+lMXJ4wtU6h6NekCaZDieTZ4lhZOichhOemRpxny7Qa83YDSa8uWvXWb9WIvLVy4TlB0cR+E4DrZjEU4mdDpdLG1TLpfZ2Njh+IljSJlTDRRaC7I04bAzpNFogYiR0hDFIWEcEQRlVpfmuXBxg0ajxJUrh3T6/cKEQWv6owm251DyLBAC29HFZ1Frnn3uMu1WnTAK8XwXgWbz+h5z7Sa2ZdOoV2g26iiR8I//z2d448kWzbkGf/T5p5kMtrnnrmXiGGzPIQwNCIMxcZHjdngVtINXWyLLFFpLpuMhSkvuuvMYrYYpqJq2nlFBR1Sq5RnCaQo9RG5wXBelFV7gFYQaJUDkOI6H1hpjcowQpGlcaJhNilAOru+CSRkPBwDUmy3SJMVxi2BypQrrbJPnRTwCFGHnlo2ROZgc27aKLDPbQihFnlEgRllaIMppijAGNStKBZosTag2qiRJglYOYMjiogkdDrqYvKCaKinxA588K0xSCv11EVQvhSFNYoKSDyYnSWJs1wOpECRYVkFDd30bhMVk3MeyJfu7O1SqTZS0OX9+i1L1AWxtk5MjdY5JIiwtkGS88NyzrKytolXBVBgMeuS5zS/90j/irrvu5OMf+wRvfNtbOXXyDOsr6/z+7/4u//Z3/3fe/8H/FKNs0kxxz333Um/4WLqEUobf/vjvcfHcOU6fXiHLcxpVmzBKCSdTlufLIFz+3Ye/ytqiR7VeRwqFkhaf+svHueP24zSrLkoKNneHrM4H+J6HQGMrh3QWTxHFCfONJlIYptMxllJMoxghMyxdZGeeu7JDrezPdDeF5q3QIeU4lgXYLM/XadcDtLKR0rB10KFVK2PyjFGY0ChXadZKWEqSGcVkmrG53eXBL53jgQdO0KjXSLMc13IRUvLgYxdJMsMr71nHc4vvPSUl564eUCvb2DrlhctXqVRK5Mbw+FMXedXdJ6hXPFIDSW64+67jR6U4AJ7jUPVt1o+tzuhvRdYexrCy2CI1oERObzTAsTSXNndpttqU/OL9dX6rwx0rLZJkgjAFza8/jnGsIuNTSMEkiil5DnGasn0QstCqAwZL2ViWS6vRwPcsAs/mlfetM1f1QUrCKKZVDzDGkMQZZd/jz/7iIU6fPkatEiCkREvB4bBPKQgouxrP0ly6usvGtQ6NukPguSQZfP7LT3NyvY1ju8RJyv7BHpbjMI0TLK3pj6dUSgGf+c1zJAeGleYyruMhZWE6FUcZQips2+EvPvNJms0WSlkILbEtzeHhLpVqA9uysRxNLahgTM5hZ49KtcZ0NOLyxedpNZr81RNf4FX33MX1cztUKk1q5Rq5MXh+QJKEVNwSxhKsrB7H9wM8P8CSkiee/AZzrTmazQarx9a5eOUCSwvLXNu4zMKxY+RZzi9/6J/yU+/98YJdqyRaiZm7sSCd6Sg5ombO9GuzPg+kLAb9N+rCwqBNiltpmC8Xg3B0+5EW729yx/xO13d6v6OtjmiPN2vljlDFF+mY5gZieYNOWmw5o6yaWYP7UvbbrQYkL7plfotjNMXnTMx29fLN3TfhprPb/y6+k98a7fwPWd9r7v4erSxLPvQiB/plnIRe0s0f/fxuUTVL3fPf/DdvgqvNjGMcTUZYjou2fbK8CNq2pWEyGoEUPH/2CrV6DUHCzvYOTz+7ySvuPUW96vP4Mxc5trrIxQtbXNnYYmlpjiyJefqZ8xxbbBNFY8glSmrG4x6WVehUgpJDu1lFCcXO4SErxxaoVGsEFYfFpXmSKKFcKdHtHtLvT6jVaqRJynSaMOyPGQ+6CBMS1NqkSVI0DGUfQ2HMYMgYhxOOHVvm0sUN5lpV+v0hliU4e2GTt7z5DQwGI+666yS7WzucWF9ha3uLVrOJ67hsbG7z1LNXuP22ldm0u6DoIBKE9Ng/GPD8cxu058s06nPk0Ygfe/UCH/iV3+VdP/Y28mnM2XKb6oUL9Psjai2fasnDDRyq1XLhGqgUJhP0+0NefedplC3Ikqxw8EvzAv2wVDHFQhBOYxzPo9msgJQFGjFr0NMsx5giKFzMXCrjaYjrubglHyMySkGJJy9scnp1gSzLKFV9HM9FSBsEdA4GBL5HteriOjbdTp9mo4Jf8oiSEc1aHa/kY7uaBx++SODaoLJiMprnOLaFpTVoiUgNyigSM8GyAgbdLm94++1EMTglH600wuRkWcrvf+55fvC2HJEnTMYZeSKwtKRSa9JeqCHznHgasbg8TxpHdDqFy6LvOiS5RRC4+K5ibX0Z1y5iPBq1Mo7v0Dns0mpUKVV8qtUSm9cOWFnwWJhzCcoBaIXSmmqthONq5ttNtFZsbO6xt99nvtniDz/6dQwJKytNDg/7KKFQlmRurobt2AgpqVZ9dncG3HaiRaMV0GxWsYViMJwW0RcI3MAjKPlIZXFwOCTwPabjKUKA7XlFAenZDAdjyHK8wCPLDSaZUW+kZDqdkiUxjXaVteOLLC/MMxyMWFxsIS2JiGNMHmP5LkZIbNel3+tx8vgSVza3mV9ooSyLp54+z9rqAlKl9A8mRNGU0WjI3HydH7m3yvyxk2xvXeM/fvM93PGmd+M4KcpxmI5GlCst8twQhRFJHFOqzpNmEimtQoOWhFi2Q5zENKouSvSLqApjyLKYOC6yqQygdWFoItXMUTMVKGXIU4MgJZ72QBikZXO4c1jQVmfn/XAao+2Crpkbg1QSbdkzJ8/CdVVIjZSGNJoitToaGSOkYjQYY1kF9VEqXew3NxiToSyroP2KwklTKU1uwGQZw+4IqS0sR5GlGbbj0u92sZXE8h2k1lh2gJSGLM/pHnZJkxitPJTlkCQp2i7cPaWy0LNh2rC7T7lWLlBEIRkPJ6RpjOU4GGRhuGFLRt0dSpW5gnZoMn7rf32Yu247gbRsBsMJvtRYjsPO1g5CaBrNJtpSWNrj33/4j3nglQ/w0Jcf4tGHnuZtb30Lb3/HmygHFYajA+6+7wyvftX38Y4fezOjYR+TKUzqUa/bHOxNOH/2eY4dm+dP/u1f8o5feC1SKixLkSQG17IwykbP9KyvvHeVatVHGEEUJzzx3EVuPzlPfzTFslz++BOP88bXniIzBWJnSYfHnn2WUtlDqhxLl8hFhqVBa422LExuyHNI0pSLm7vEGdSrZWxLEqUTPNdmEk2BnCxP0NomjCOUVGgpiuNVGeQay/EII8OVzU1SYwiCMl/80mPYrmJ1scH9960iBHzl0XOsr8whVUJvMGFhrspr7l8nJyaMDVkeoaVFrVQjNfv4do1Gpcgz9F3N8dVWkT2nXD77hcc5dXwBrSXkgiRLEKooPidxiDIuL1y5RL3qkyeC3U6PWqnMfneCZ0m0FowmEQutFmk0LmijymN1cYZoKcXhcEjJC2aZeQbftXEsTdkXjCcZlSCgUbFxtE1mLHY6faqVgCyFKM5xtcez5y/hBxZJmrAy3yJMDEmW4bsuaQ633zbPcDLAtwMcS5AZSWD7RElIks9MoZo1FuZqSG2TGUOWZxw7Ns9DX3+e1WPz7HS7HJ9v4FmFs2SSZSit+MxvPI8xhg/+4AeIkkJvmmY5k/GIKBrzwvnnWFxY4I47zlApl4jjiHAyIo5D6rUq2zv7bFzdwLI0lmWTJAnNZpuvP/QVjq2ss7y8jNKSq5cu8/3/0QOs1c7g+8VwM5x26Rx2aLXbKCeg29nHdl3yLGfQ7eEGPuVKhcXFZebmlhkMuzQbLdpz8wzHI9qtebRt8YZ738Q//61/wTt+5IdmiJEhJyuoltLMzFLEjX/GmEL9JYrqjJv+96gBLOq3m2u5l183+zke/f631d69NL7hZkbZt9vPraTQF7VyN1RlNyF5HG0xq4Nv4pPdon0TQt/Q1x1F5ajZgKx4diQv11CZPLsBlxYDOTFjT926/5uP96V6vr953ZqTd8szcFNW3cs/Z9+qIX3p7cV1bVnfcXP3vSiE/x+vo9QSiWQ8Sdk8/zz7V54nnE5w7GJy4vselnY4tbpCs15nPJ4yCSf0hkM+/ed/zcVLV/AdyWjQ49UPnGF1aR7PdXFcl2tbh2Q5eH4JUcSKMQ1TBBaQkSU5Uioub25hjGFjcwepJKPBlPFwynQcMeyPabfbrK4sk8Qxk+mYJM5oNl20myKVxWQ8xXYcSuUKFy9dJZ4M6HU7jMZjVo8t8fwzzzE/16DXG7G4uESt1mZ1bQ0jKOiSUiItxfbuNqdvO82Fi5vEUczC3BxBIJiMxwx6xSVN82Kqn+d85etP876feCtpHJOkBuGW8V2XP/onr6dSqaEqPmvHl/ngQ0+wdnwRk+c05qpYSkGecvXqVcJpSn8wwgsctC0QKBzX59nnN4viUhQmA1kuGI8znr+4TZZDLgQmzcniGMiQIsO2LGzLJYlz/vRzD6G0olQpkxlTFM9S4Qce964vFoYANZ8wCjEG/vLzj6Iswdx8jZwUpeHq5h5+4LG6Nk/VK7HQbEOuuXzhOllseP1rbieoCISRWNoiSQrLaNezsURBZ3v27BWEtMlMSq1RwbY0tXoJk3PDGj/Pi0l7ud5E+2UqjSZXru/heC6f/MzDpGlEp9fj2u4BvV6PMBqRJOEsfLtwvet2h2QpZEmKsmFv/6BwHj0c0GpWOewOyPOcXn/I3WdWGPSHtOpl9revoTiifuS4rkIqRRQnrB9f4K47jxMlE37ozae4/551Ll/aZqHdZuNahzjJyHJBkhiee26DzuGYO04fY319mYP9AZZdYjgeoYQFGEbTA+I4AYp8nmaryngaou3CrW5v7xClC82j67gEQYnpeMp4PEHbBerd6/Wo1irkwNmzVzBZhlKSlZV54uwQx3U5d+4Qy/FIoriYms6CkQ96Y1yvcAXMk4gzp0/yBx95iDw2aAGe69CoV4rP+DTk53/7c3hug/FwzM/8/C9x/foW08kUIRzyNATADeo8+9w1Nje6KMtmMDhE68K0REqFbResgSxLsB2N1g6OU6HRbGI7NnlWZN1NJ0O0sgGNyQ3DwRRpycL1zAjGgw4mj2i0a4xGI7SlyLIULwjI87ywwc5zLNshmVGGlbIYDycIKejsdwmnGQKXJAyRApJogutKtLKLwnE0IEkmDIcHQMpRuKSQgigMi2xGCUkc43guUs6aPq0KRE5r0szcMBY62N0hywo32EarTrlWZePqRkGx1vpFaj4CqQpqeLnRxqCwlCRPQ/zAxvP9ouAwmumkDyZHSodoOsbMzHeePbvL6vE1ptOQUlAiy3NSLBrtZSyvjLR8Dnd7jIcRb3j9W4ijnLe+7Y381m/9K5aOLRNOYw46XZAOQhRoZqPeoj2/zKOPPsrv/R+/g+P4IEJWT7SQdoJSEiksru33SRKBYxWsAa0LJ0ljcvZ6fcbhhNwkeJ7F973iDCsLi9x72wplz6E15xIlUcFWkJo/+uRDvOKeO8mQOJbDX33hMVQek+eKMM7Y7/YY/7/svXmwbdld3/dZa+157zOfO7/75qn7vVa31BISCA0gJDEZjBAECMGkTOLgVOJAIOVKUqacuJyqVBmIk9iQkHJibAewBiQkodYs9TyrW/2mHt54353vmYc9r/yxznv9XvdrSRamSpXSr+pW3bPPtO++Z+/z+63vFE9wXXj6GxeIwoD9Cy2ELukNRiht0esPcJQ01FPHYbvbw3UcQ3McjdEwQ08VUuREnmJhvkm9EpJmKffdd5SVhSZxlqLRlKWk1YyMrb/QOI5gZb7OaDomTs1nyXMt8rKgMxrh2BEb3QGW7eO7LtMkAySvrG0znEx5/3vegm0ZV9nBOMezFdPpCFsERJ7HenfMwZUVPvXpJ3nyuRdxXMV2b5c0H3NpbROBwPdclIR6tc5DT1wweaK6xLZsEA61oEFvNMFY1pcURYHQsNcfUvFdLFniOQ5CwGA8NOdIb4RrSb702cd56vlzHD+ynyiqMN9u89BzF3nk8bMErkOcZvzZRx9GCEm73mB3MKY/HvPSxYsIkeL7IZGrmE7HJh5pMiYvctI8JXBtXCVotZvk+YR9C1V2RyXnrvXY6k1xlKTiwP/zR/87/+WP/j3KvCAIfQa9PQI3YK49x/JSm1On7sGSLpNxTEFBmqdIy0JKG5MtaRmGgh8gbEVQidje3eAt970Zz5Z0u7tM4ik/8Y6f48333o/QBukKfI8gatFsLbDX3aMUBctL+5hOxigFYcUjSXOCIGRr4zq2KGk2mkR+yNbWBu1Wm8l4ylOPPw4a/rMf/XVDjioMOmTy2QSWtG5r3W+4Zb5RKSGxpHrD+/9dqtAlhS5ft/1mBp+4c0TCjbo1YPyvq27EILxRqb/CsbiBfpa6nLGcTH1nCN13b30PuftrruI2Wuar9e2sgvxVEbwL51+hmVx/9T3fYJ1HoEmmKYFvk2UpUbWFkpLhcGgQB6HY3d6j0+2xsb3Lu975NtqtKs1GhY2tHa6u7aFkji4K9rp9FpbaCCk4feo4Uhl7fyEUeZYThB6WcimLFNf1OH/hMocP72Pt2gZ5ltGs1/j8157lbW8+yYXzr1AUOdfXt3Acm/X1DVb3LWBbLroUpKkA4TM/18JyXJ545iz33HWUyXjC3MIC4+mEaiVgbWODleV5JvGEVrvGYDhheXmBSxevkCcJ586+yL7VVcaTGMeySGarvloLfN9hfm4e23bI8xw/isjylPEo5uTRFWxH4QcORSlw/BCd5UDM//FHf8qpH3g7oV/jHd/3Zq499GXaoaG4oBXxNEZT0Gw1CcMAz3WYThMsB5CaMLAIQmNqoWYrfC+/cp2TRw/w7AsvsX/F0AmLsiBNUiZxjBd4M+TC5sjKElrnWLNgaCk0ynEQwPJcHUFJGIUoW6GkInJdwppPGmcgBY5r06jXQUj+9We+wmqjwTSLcWyPIk8JI5+yKIkqAc7MUrvUGsex2Ov06O+Niao+9WoNy1GAIo8LxL7QhLZ7gVkNLDRZmrK5s8k7TrSMYUaa0apHWLbi5PH9lHmKECbTyHVtpMgQwsWyDTrZnq/R2RvywrlrrO6bYxKb1VupBUHkYFmSSuRj2Ta1asTG5i6DUUDzAAAgAElEQVSXrm0R+gqtEyzLZzAYYlkWUlooSzEYjEmSFCUlYeTh+67JbJSSwWDMZBrTbtdwPJs4ydhY73Dk0DJZYvOlrzzP0aMLvHL5IsvLizz21FlWFhso28G2HcryhmtaSa1RQ0phstECH9c35jGlLk3wse8hlMS2LIb9HmmWU6lWqFUjlhYa9Psj1jf3aLVrZmiwfYokxw8clG0hlCLLMnRZEgYujm0y5FzXpchSzl7YYHEu4PKlHQ4dWWK30wOtqdcrvHBxj9Wqg2NDaA0ZFiGHDrVxnCqXr13HcSsEYZ2llWWCIDRukI6H1oXRudjOTcO/IIRkOp1lyRkH1yxNADPMWpaFkBa6LMjSCWGlSpYlTKcxtUYL32tQagfL8pDSIN7KMkibsiyyNJ1pdAVpmqNLba5d0qCJvu8hhNG/jYYm6kXrkiRJsB0XQTmLWRgjlaGDypmuI88zdnd2iaoVQGM5NrbtIpRClwW9vQ5BFOJ6xhlXKWXiDbQ2cSCWRT7TADWaFaOTzUuEFmRZgmWZ/UziCSiJ1MbUxQ0MWmDNHD61NrmEg26X6ozFcMNo5k8+eoaDK3M02/PUG00sYZCtwDPxCkLrGZV6xN/9u/85v/ALH2I87LCxvsMf/V9/xLt+8B0059pobeO4AQ898iAnjx8ly+D3f//3+IVf/BCLi/sYDPZYmF/AkSF/8pGPc1V1OP+NyzgVl0/9xWO86Z79RL6Ho4YMk4w0E7SrDZTFzNRDmuMjNZfWt7nr6D4qgQWlWUk/dewgmoIsNwsTdx87TGfUJfQiHn3mHCcOruA6LnGacmT/Mp5jU5Zg2wLLgv44Za5apygkSnmAS+Q7KAHTOMO1LUAS5yme47G1t0Ej9LFdjyQvCBybShAhpYNtOTx57iqtmsfKQoMkzbAtlyxTdAcpvUHMXL1OVuQoWZKXmmroMolzmvWAAoypR15gK0U1CJBS0h9PsZRgMJlSFBmX1jaJKlWubQ/Y2tmgNypp1zy+/twlPvgj91OLAhCKyA8ZT8bUK+Y9XceiP+lw9/EDBhUqTXbq5x98lruPrGAMr40GdZqkfOmx8xw7uMBXHj3L6socpdZM05h6FPDIY2c5fdd+Sp0T1G3uOrJEWhpNmNaCwytLHD3QJssSSl2y/0CbRi00iFqpiAJJ4AtGkwGe61FkBb7noIEw9LCEJi9yXEvdlGf4vstomrK1O2C3O+auQysoofnz//E5/tWffJzjzcMsLrexLZfJJMYLfDQl/X6fjevbfOWrX+TchfPce8/97HX2zPlVb4CABz7/Ge666260LhkNB0RhRFkW+H5AkZWMxiMa9QZ26LDvWJunvvwcm5sbTKcTtnZ2KPKSubkGlGYB0pKSnb1d8qLkxRfPsra2xv7VQ0zjKZ7rMhh08f2AMAxJ8wJbSir1KkJK/qt/8Fv87M/+tKEXCnFDCQOYQaO8g1znZiD3Ta2ZoS/eGLxuEBXv5I7JbLtJfRN3ROxu1eLd3PYtes3X9qNv5A2hlHUz8PwNX4fbcakbw+RrqaM3Yx5uCBa1nj1R39bPmr/zDsPZbX32DUqrobeWM1TtdqTx1t9fRfVuONzfuv3WmIbX/IWve887HIXZz52e+3rE7sbjvkfL/C6qNxrubq2/LrfMv/Of/hevM1N5gz0gGY1pzs2hbRfb8aAwJ7JxNUwIXJu8LBgMJyzMz7G4ssjcXIsXX7rC0cOrWDJnc2OXVrtpMpzkbNVbYTJ8hI3tuChLk+UFo36fSqVGo1HDsiTb27sUeYkf+Jy++yCOrRj0e0ipuef0XQyHI6qVgGk8ZhrvkeeQF4pKzeXqtS0s26EsNfFkhHJ9VlZXqFQCJsMBh47fS1FIQj+iuzcgzcZ09vrUKxXG/SHNZo217QH33XOK62vXKMoUIaDXH7PbHfPKK+scObzKZDImqNTIs5jAD4kiH2FbWA4MejFFKfH9kCzt8fYTp/iP/v4/5cM/+9M0miH/8okzvMOGPAclHezAwQ4kSijKokAJizQpGA9jfM9DWeZCvre1w9bWDrt7Aw7tX6TIcxSCZJzhRBZxkhBVKjiOixYFAs10kvD5R57m+NF9IBRSCrIkQVo2AsF0NCYMXQb9KUma4gUOlWpIlhiTCsuyyNKMbm+A6/rcf/dxkjRmbrlJXmjCyGU0HlCrtiiyEqUUve5gljsmCKOA6TDF8Y3hhrQhTzQ//8cf42c/8BajjxKKyXiC57tIqZizt1FKI8uCeDwGbebgstRGA6pcPvKpZ7j37gP4noXnRSgF03iCpRTr6x2W5lv4oYPl+ly9skFZZkBmHO9sYyIxnkyp1es88/xl5loBtiooS0W1VqHTGdPtjqnWImzbolatoizFcDgm8H2eefYiSRazvNBi3755HN9iMOzTbNRZnGtw5coalp1Tq/vUay3qtXni6ZRm3eSqKbuBIENgstLKskDYNmiN7xvL8k5nQqNZwbaFCce2XJRtm4UF1zRGnh8wGo6RojRmLJUQy1HowkHaoERBlpsvIsua6VzTlHGvg6WMkB8puHr1Ku/8vtM0WzUzEOkMy1KEoUe3O+BH37of6QcsttocaXo0TuzDcV3OnbnCsdOn8fzq7PqVI2RJGkM8LUAY1D2IIopy9uWVjUjTBMtWxoZ6piexHXv2xayYjmMsR7K3u04lrCKUwI8qxHGJ1jl5kTMZ7uH6JnrDWKlghm5l9B15luI4/k2aj7JtygK2rq+bQd+xcP3oZl6d7broMgcESjk4boDteDNtUYrlmMHLUkZbKpCkaUw6TbA9lyLLCKOQNDHaw6IwQemu586MPvTM3hwsyyZLpyRxguMaYwshSopCk6Yxtq1I4pg8yXD8kLwscR2fNE0pdUGeTrEtHyGMGchklBJUKoDiY598kd/+zV9HC4s0zVm/do1hb49qJeL5Z5+hXgnxIgelFH/zZ36avc4meRbTai7yxS98gfd/4L30hkOCoMGHfvbD/PZ/85t0d3cZD2J+7Md/lOV9LXQhede738V//Ku/ztNPvMjG9jpv/4nDnDy5wGKrxomTy2Z40oKysIn8CKE042kH341m4dw2pc5Q0uijQs8lLVLcmeGW1gopCzxL49ouJRbSMmhHvV7Btl1s5ZBmqQkiFuB7AVKWCAme69MfbFMJHbQo0cLQ2adpZtDavEQpC9e10EDVMwPQ1d0R1cBHohnFI2xbIFXJXDPEsxVaaxzbJU40ggzHVux0O8w1K3iuTV5kgMCyNJ7rUZKTFSWucrEtBULw5Qef48TRVc5dvEYYeLRrFVw3o16bY7ufszLnUq86HFtZYRRPOXCwRVFobNsCbbPRm7LSNu6MJkapQEiL585vsNKe59/82dc4cWKFk0eX6A/7hJ7PI8+c58C+eYqi5NCB/WgKDqwaSmKRFSRZimNJjh3az6cffpGj+/fx6DMXabSa1CMHKHnw8bMcWFmkM9jj68+e4cjBJXzXJc4ylDTGM8N4QOA2CGwXW0Y8d+Ei0UwekJUaJUpGkymR73Hu5TXcQNGstvnTjz/F99+3jwPLS3zyEw+xuNri/cc/wE+d/hCVakh/sIOFT4kCu2Q6mZJONY1GxF33HOPe+95MPM155OEHsWyLIPCZTMfU6nUO7D+I67i0anX6/R6eHyKVg7I8JpMJoefz8ssv4jQEYd6g2Wiac1KCb3v4nsXG2jrKtdne2KRRb+F4Ib29Lebai9SbbdzAR5Qlw/GQsiyoVqrkRU4tiiikxrJs7j/wNlbfvIgQgqI0+t2b9MOZHu21WNidbt8aLC6lvCO6drsWT8+ukbeHnb+R9u6v2ofeGCKzovjWg+LN59wwMXkj4OHmeHXrjt5hBHoDIOQOw92Nwey1VNDX793NR99x/76d4e5WWuY3e49vvd3U94a776J6o+Hu1tWWG/VGKyHfKYL3Z3/6sW8x3BnusS6gzHMm4zHVKELaktF0PHOjU8TThFIXdDtj4mnJkZOHKQuBIOPs2avc96YTNJttM7SNhqwuzzMYjqhVm+zubKGkY5AKCXlmKFR+EJBTUhY52xt7nDp9jH3L8zhOQhTVsByLsBLhuT7TyWRGtcKECSeQlSVR5HPl0jWOHD7E7s4WSwtNqtUGL734EpeubDPfanH+xZdQymF+roXjWEglOXvuCmHo4LoecT5g3+oKvheyvb3H5tY67XaTTm9Ct18wP1fj7hMHmU6n2LbD9fXrzLfnkJZAqJI8LcnSkigKsW2FtiRKQlaM+Ll3HuOXfvt/5W/+/Id55/e/k1/+3f+TnzmwgFTC2LULh153hO9HbG5v0mo3CKs+48GAIAgotcSv+HhOyNxCjSCKOHP+MpZUTLOY+VYNqWymcWrcFwcjgxwIyfGDq+SF0YFIrdDAsN8x1B3XxbI9HM8iqgTkSWYy9ZQizzOKIse2bZS0sC0LTWlQAumgM/jo5x/lzSePI+wCpWxKNLYSBKGPwLiajZIhvm9MMNK4QJPytISfftdppCVBmsa+mDlh1cMS13PIcnCDGnmW43se0lHkccZkPGbfUkS14tEbxARRQJ7n6CKj05myvLLI2Zeu4ChIpynLi3NcvrbN4uI8V65topRBWzwn4OVXLnHs4DyuE+FFc7i+Q78zodGo4IeKPDGNoOvYpGmKUgGbm9scO75K6NsoS5IkGa7jMeqN8X2b4WTI0soKEofhqMsLZ6+wuFDH80NcL+TCS+u0Ww2GvRFgkSZjbJUjsaA06LnlYIZhIYnHCWvXt2k16iSTjL3dDtKyiGoVs9jie+z1tqg3asbZTSrSJKW3t0ujMcc0njDodnBthyzNkZYiqjZBuJw7fxXXliwvL1PqnOFwzMJSk/F4SKvVIEsyXNciy6a05u+mP7iKY7lkjfu5951/i9/4e79MocHzPYa9Lr7rYdk+yBKlMtAlru8zGSdk6YhvfOMV5ts5UgmGvS5KwnQWN5BPYpRjkRelCfyWirBSoywFRVEihEHotq5vUGs1mIwGeF4NQUGeJVjSMosWkpnRjZitcGfoPEUpF6EKLEthOw7JNCFPCygL0NDd2SOqVQ2gToFQGoGc9QQzHUyeoZQgnkyMmyc20haMekO0FmhdGE2gUIz6HYKoglSGpqzLkrxIsWzJZDwxumbbJk+n5FkMSIrChLNblkEe3UpAUWSIQiMtY6xQFhlFnmPZCqlcwEIobYZjCQ8+vMO7f+gHECIEprQXloiiOSxfM7/URKqQpByjlM3mxia1SoAT+DTrPivzVeLBHqM4o1K1+LkP/SLKSnDcGl/64lfoD7ocOnaEH3rPj/HYY4+TlxmNdsSZs18nOlYwHKZIKyUvJEUhsS2YpDm+6+DaNlkuSPKYahjwl194krWdMbV6E9suSFKLMCgR0mOaJHz8449w8tQR8qIAoVCyZDAcEnie0dxJSVmm5EWBY1vs9gd4roky2OuPmU4HNBpNskIisFBCoKWAMjZURNc3jIciocgEkyQjKyW+bVBS3zOh3sNJwiNPXeDgvmWSLEGXgkkcAyWTJKFeCZhvGtS9LAFpI0rF2u6UwHUo8pKHHz3L/v2L2EqRZSknj66SZROW51soobi4tkWj0qbUCY0wNEwLEbHe6ZIWEAYRn/v0sxw70cbzIsJAc3mjR7PqIUTJNI753Je/welTh3FtxcGDy3zhq89y6MACvmsxjQVLcxXiZMLm9oBaZNHv9WlGNqNpzFcfe4XNzT4H9y2wN+zz5uMHyfIph/fPk+ca33PI8pJr13bZ6o45uG+BQ/uXGSUZnm8YGM+ducxCu0F3rKl6DtMsRcuS+XYDx7bojUaMx2NqoU3oNRlMEizHRmsFWLztviU2uz0iT3Hq1AKf/93zrAwOEFQCfC8gCuukeYxtuzjKRkmboijxIx/H8hkPh3Q720gpOXz4KNVKFd8PUdJoZx3PY2N7g0qlapD5yYg8nWBJjZCK5twispbxkX/xGeqNJu1GnTiOCQKHItcEYR3X9ZC2xSSeELgeYbXKpYsvU4sCPCXoj0YkaUqz2aIsczzHZ2dvh631NdpLy1iuxW/8zm/xoQ//NJYQN9VhN1R1EoOsC4xOSt7o+WCWkniru+TtvWCpXx/8rWb6Y4OGC9RsgJTiVQfNG33lrfWqocsb96F3qhtD3a2o4TfrVm/PxtOGGnlj/7WeOWYaHY+5DAtu5NaZwfjWIyVnR8m8lgZ0WaKkcUd9VTdXGor/LUjoq3+TRAo1Q0IVtxqpvH7wFLdsf/XveaPj9Hrk7o2QuVtv33a0brv1veHuu6i+HeTuW9V3uqLyrYc7U1IYepttKaZxwiTOZtlfmrwo8MMaWZGTpzmT6ZTtrW26O316vT0cx+XwsUN4QUC7XePZr3+DxbkGnhfR7w+oNyso5VKUKaPhGN8PUMoxblDA7vYuC60aly5d49HHn+XggRU0gm5nyte/fpnFpRrVakCvP+Ta9Q3q9Ygit5mfa9FoRGxu7aCkTbUaceGli9RrFapVn8MHV9jZ26VWj9jc6uHYivPnX6LZrJp8uXYd1/GAnGtr12g2G0ymY4o8Z3NrD8uyOXpoP1JKzr50haOHVqnWI6LIxfNdlFKUpWA8meJ5HmfPvshcu4GkQAoPIQs0Q37xh04RXzrLx776Ir/zD3+D//qf/Us+sDJvLoal5vraDtVKSBAah8EyU+R5yWA0Rms9y5Or0t0bYtuG6tVsVmk1q2RFRp7m/PkXH+PUoQM4jsf169uEUWAysJhd2GZsEMuycFx3hkjYlGXBeGjiHba2O1SiKgJIkhghYdhPcF0bREGa5jiOzXNnX+Gtp4/g+zaWJRClZPP6NlIVJGmKkAq0JAyrPPzMNwgcRTVy0VLyrvcdww98tNCUWUaRGZrUU8+fZ76hKTIbIQS9/g5PP3OVRj0iTsZIy8H3A3Z3eoyGU5aWWly9tkWtFpJnObVqBddzKfMcJWFhscGFly+zb6VFUea0mjUm45jRcMKlKxscWJ2jWa9SliWX17bwPdfQH6VkMDBh091Oj8A1K/xb2wPm5iOyIsN3I7704HPcffIgiJIwiLjw0jVWVhYpNUxHQ9J8wum7js/Qn4Q/+8SjvOf7T7G2tslOp8vKyiJeEJBnmizV+L5jFiGskjBsGqqhY3Ppyibj8YQ0LUiTklrVMQiVZYOWBH4ASDN8SHCsCrudNdqtCrbjkRUJ1XoN2/FQljujtZRcuraOkoL5dp3xaEqr3WB7e4d2s8X6eoe8NIsVjm/zled32dcEUQpqp97HmXOX+am/8TZcu8TzHGzXRgtBlk7pdTvU6lUsJZDKR2uF7dj8o3/8b/mJH7uLeJpQbTRBKFzfhCl7XkAhNEoIhDRNSBKPKfOEeDpFoCnylObCPFmWEYQVhDZobjxNUZaD1jlClAwHPcLIWK8ry9ButFZoSmzbNoY/noftGEqxsh3CinHSS6YT8mSKrQDpUBYFAJ5nPhdSWXiBTZoOmY5j/MDB9T08zyeZocdxnFBr1GeobEmW5bi+jy4NzdZxfYMYIrBm1CXLdnFclzzLUErR7/YIowBdGsMZQW6GOtdDzNxni6KkyPNZJE2BlJJL11zeev/9WCogjBSTaR+lHIoiI89y4mmGrae4tofjVfCrDQJZI0kytC5pLcwxt7AfTcnWegehElzP4dChwzTaNYbDDr/6q7/McDggL2KqdYe33v+DnNl7mqIUvHxll93elBfOXuHw/jbDScFXvvYcV9a2Obi6zPlL12lU67hhyMpiEy2gGnhINJ3+iJ3eiOV2g+X9c3i2ya67oUOsBh5laTLBpCwYT0d4TkCcFsSZJvJsPMfBd2wC30HOzBek1GT5GCEsdJkzTSYU5CjhUZaZWThQBb7n4zkege+SpKkxDXFc9s032esOqNcqCKmpBDZSFFSjiCTNTFZcmpq8R0shhcWFy1dp1iI8xyOqRIS+y9lL12jVQgbjIcpSJFmBbVns9gbUqwGlTrGVT280wXctirKkVfVAZ8RFzqF9C2R5btxGlSbNM1zL4eW1Pd5x3wmksrAEPPHMWd7/3jchpPl8FKXNJMkIPY8Xzl1llOWsLs5RIpDK4eiBBSzP4uVr29iOx6X1Lvvma0ip8T2LsjTRFKsrbV54/kVOnTxIPHN5dCzT4B5cXmCaZjQrIZ/89GOcuusAoJCyJMkSykLTqISMRmMELh/7+MPMrcxRDRR//smnOHa0TZZr6rUKWmjeuvA+jiwfJwpCw9pQgtF4iJ6dU1JafORjH+PA/n0URUm1UsP3QhYWFgiCgLzIsZTFeDKkVquTJjlRpUapYX1znWarzbA3QEqFF/hmOHc6/PHHPsKPvecnmEwnBgH2PLIip9vtUKlWCYKAarXGSy+/yObmNlElolqtsL27xTfOfJ0Tx09h2w6ffeCTLC4doN1uURQJWguCwOcdJ3+Axbtad5DVvWbAkrcPSq+rO6Btt2bb3aRqYhbCb7hl3hjubkUJX9tXvtZ45bX78Nqh7ZsZtLxRx3qDOnmb3vCWfblJ2Zw9zoxyrx2AXl83SJpixnmVUt7cYurOCJqYSV5uIp23DHOvR+bMfa9GS5TcMIt5/Wtyy3P4Jrdft0ff9N7vDXffRfWthrs7ZV98K6Tu20XyXjvc3Z5vd8upq405x2RqjAqq9Qa25SJFiesaC/AkznAsRbtZ49LVbba2erSaHnefPI5QFpay6HU6HD20ymjmhGbsx3Ns5SGVIIlTE0ysS3rdAZYlaTVrTKdTmnNNLMviytUtAi/k6to2SZ5y7PAyluMShiGTUYySAmk5DAZ9tC44euwYly6tcezIQUMBExmO4zLoD7Fti95wyFvvv4/19Q1O3X2cF198iQOry2xubZOlJbrM8WyLje1dBsMRnuNz6NAqm1u7rO5bIYwiDh/ch1bgBy6e65NmCYby5hgOvDKCfE2OshK0sFHKR8mQXncDzxGcmiv4ud/8ff7w//7fEM8+O7uiSS5f3aRdq4EoWF/f5dnnX+Hl61vce+ooju2hbOPulqUZlitwHAkiR0hBkQOl5uT+FfzAR9kW03FMkmR4noOSNsP+2GhulObrL7xCrz9iaWkepJxpzBSWpag3ajOamPn+ULZFPM0JA5/RcEilWsGyLRYXmjiewrY9pvEIW9koCX7omVDoEqML6o85tLpEtRIadE4qqnctIi1hmqLx1LgtJhn/y2fO8CP3NGbRGfDFh77OD7/zLWRZSaMWURQpWRpjKaNRqkYhlWqE4zgkScL1zR1azRrVakQU+EynZnh3HJsgDJCWIpzR4BZW5lCypNvpmSy5oiRNJ6RZzG5nj4WFFnk2plZzmUz6FMWUalTj+sY6QegRT81nUmvNzk4fqTXPn71KlqTMz1fxHAhCB2kF5ouakjedOkhZlPQGA44eWaAkQ1kSY87gceXaGkeP7MNxfR579AKuIxkMRhw6tEyrVWc0mmLZ0iDPUuK6HufOXeKhJ85zcLWN73lsbnaoVCq0miHDQYxlu/hBBSgpy4L169tkWcorl65x+sQBAt9jMh7i2C5CaCpVl+EwoVKJKIqCTrdHo1XlDx5Y44fvmce2KmxaB7nn1JuQYoO5+Tbj8RDHMxpBx3HwfJ/HHn6CpeUlssJEoZR6yr/4Vw/yH3zo9OyL2xi8dLZ3qNQiBt0OyrWxpCJJUrPANB0jpSSq1ZBKYTkORVlAmVMWYKmcyXhiXDGVIJ7E2DNtm5AW/c4eju8hpOLyK1eo1iPzZa81aAyDIC8YDUbkeY7jOtgz+qVQFgjFoNsnqlYZDgbGxS812rd4OgKtMIZqpjGwbAvbMSvNUlloXZjFFNebUdvN59qyXcqiYDQY4vku0/F0FpwOo+EI13MIoogyN4YrpVCkSYwXBDMqlpg1XxJlm5XsfrePH4ScPV8yt1DB9yqUmOPR7/WpRBFoeTPmQQh3FhcAu5tbPPHkk3zyU5/h+97+TqRwcRyLbmdIeyHi0suXqNXbZNOMWqMBZcgf/PN/Q5Erjh4/Qhh6/MEDf0y7GbF/aR4pBW85dYinzlxkfavHD/3AXSwv1Xnp6jZvO32EcVyw0KgS+pKK76BLhe9Dp5+x2KyhhcD3LNA5WiteuLjOcqtBbzg2x9mySdMCJSSdYULoucw3Kugy55W1LYLAJS8KXNu9+R0pFQjh4VgeYVBFCYfReIDjSGzLQ8+avjQvmcQxgWcjMFRm25Z0h0NCP0AgDNVZGKOWG1RL17ZxlACdIi2bxTkfrQscWzCJB+SFYqFZxbEEjiUpESRZQeD51CompzHJUnw34OK168y16ljCRlDgOZp9S/N89BOPcuL4AkWuqPjGGMaybNqNOoIYrXNslbFvaYlnzr3CgeV5QHBtq8P+hSYvr23ytnuPcWW9Q+S7bO12WZpr0xsNWGxVWZ5r4Ls2K+06SRbj2CYA3nfUzLio4Nix/SRpirJshNDYCuPInOUUZYltK06d2A+UWLN8QNdxeOiLT3Lk6DKZVjx3YZ0jR+c5vNwkySbcf+9RXNcy8R2l5OP/8BmO5ifpjzuEYQUljbGV5xljmjiZIrSmXquxsLBI6HsMR0OyPCFOUzzXw3EcLl58mSgKGYwGvPzySyRJwmOPPcj3v/2dhjoZRfhhRJEX5FnK/OEqX3zicd7zpncxGvSoVGqzgUNSmV0DHMchS1OkUBw6eJRS51RqNWzHpVGfIwhClGXhuD6e5TCZTmi123z9qcc5dPQYWgn+yR/+Lh/4wHtf08zdjuy8ii3duW6ovoxRzqsDzW2ej1rfdltKebPvk3foL8vZMPTqPtyZJPm67a9BrwzttJx5BNy5NPpm1p2+5Xk3kUluDHg3dIW3D3aakhvjoS4LEDdiy199zqv6w1eHO+OQOdvtG1tv9N03aZe3oo+3/l9eezT0Hfbs1sNyp4Hu1ne/9TXfaPi786fg32W4+/+XPcz36raKoujbelyapUCJVMbSeTIxTc9g0COZ9ImHHQtzR3wAACAASURBVNqtGr1+n08+8DCjcc4HP/B2rlxf54EvPM6gO6JMEj71mUc4c/YSvhfQ6QxACooi58rV6whhzU4mzXQ6ot2oAUaTMk0z0qzgwqVNNnemXL/eo9AZ73733bNMKkVnd0Cz1kAJ2+jDioxqVGEyyalVIz77+YdxbGOJf+GlKywvLqBLOHToEP1ej+WlOZ544mlWlheYTGOajTploRmNpyZoV5esLC3ieh7PPPsCnu/S7fW4dHmdLz/4NL7nEscxeW7c8ECTZQlfffAp0BplSSxbQVEnKzNKVaCFoF7dR5aklAX827//Yf7R//B7/IdfeYa8KMiLnLuP7SfLjPX/YmuBE4eXeN8PvgWN4Itf+jq97og4jomqAbYIUbhcW+ty9sx1nn3hIllaIIVm0B9w5tzLVOsRzVaDXnfMzmaHJ7/x4ixTS3P/m+7mxNFDxlofg8qKmQ5NCME0ntDp9NBaQClotutcubLBtWu7TCZT0iQ1qJ4wls1u4FNIjV9xZnRbyPOcnd1dKDMcxwZpIW2f//bsi5S6uOlOFUYRluPieh4bgwJdSpJsQJbHvPnkSf71x76KHwQM+zFXX+ny2c+dZTgq2bf/IIPBkHgac+Glq2gE+5ZbZFnKYDAiTVP6/Ql7eyMsZRNPE7Iso9ft0+kMcFwXS0miyOfSlevGbCVssrkxYjTUQEDk1RgPc4KgTqld4nGXAyttAtelXg+QykSnttttzp6/yHK7xqkTB7n4yiX6/S573S6TyYTr17fI84x4mnD5ygbVio8uA2ynSr87RZc2QmoWF+pMJwm9zgRJSS0KqFcDrly+ji5LllfaNNsBlXqTvBTE05hTxw/wk+9/K5evboCGp565RJZNKHNJFLa4fOU6ZWmhsciLjKWlJu25FvecPoQfulQqFVzX4vr6DtNpzGg04PLadZQtqVYDllfm6HcHfPmrXyNO4UsPnUFaAasH9rOyukyWg+NFDPtD0iRFCIOknT59CscOyFNAmzgAgcSxFL29DoKCdDrBkrP4FSWQokBjcuaS2ORfukFoMqGUBVKRxVMGnV1832Nv+zp+4CAkCKlRymE6SRj2J+SZJqqElIXJwzt87ABKWUajJySd3T2yLMH1bWrNKmElIJmaawCWR1oYWnG1USPPUmqNBkIKbCegyATxRFOp1U0GnjQZZEqZOATLsme5jWo2981WeMsCOXNHlEpRqVXJ8wLHdZlOJiAE9Wb9ZvNk2zMnOCGRlk08jRl09qDIYOYpkCYpZVFSbzYAuL6+wTTuYDs3bMsdqtWK0VIWs6bKikgKiS5y1l55kUbboTVX54M//pN4YZMTJ+/m2Wee42//2t8GNIePHMd3Iz76sU+TxoK9zhq/9p/8ClFF8tDDDzBJBux8ckij4nHhylXSPCbJMp595jo/eP9xhtMJaZFy73GDCH72c0+SFRmIlKLIQUtG4wFlKbEsiRYCrWEwGpjFwv4EraEWhYS+R5prEA6eE3Hu4iaObZFkE8qy4MBSy7gFOw55URAnuRnStEXJhEky5KHHn+Pa9g6NioOlSrQusZSLUnL2uyTJjR6w0CUbgwGLS01jmKIcJrHm2fMbADfjtww9VJBkE5IsBu0DIUkqmas36Q7G5HnBxbUNLMksjiCgLDWObSGFg+e4JFnG4dU2RQFffvw8k2mOLjSFLvipn3gnriV45foe67sDHNuZDaUlaJckFUjhoTW86cRhg0gKm9WFGpM05u7D+5gkE+47tkrFd1hoVMnSlFYU4iiFJQtCV5Dm8QyRkziWS2/YI47H5KWhR1vK0PryokBJiNOcSZIReEab1x/3SfOEwWSM64Y4yuF9H3wbaTYl0YLnz2xwZF+T6bhDNXQodQFoOoMJn//jp/i9/+l3WFpdoFlrIbTk4qXLdPa6pGmO1JrJsE8l8llcaKO1CcTWoqBej2i3Wuzt7ZAkCaurxjXWshRb29fQRcGPvf8n2d3eIo0nbG5dJ8szbMelu7dHL9Z8+EM/habAtRSW7VLkRmOppCIIQoQQJElKs9nklcsvMU2mdLs9pPKYn1/EdVyUsqhV6/T2NqlEIViOMb9JMzTwK+/+W3+Vdu62upPb5XdaSsqZPOLfT5UzauW3esxfpaQwUTbfqzeu7yF3f831rZC7b0dz953WBz/4I6jt89/8Qdqwuosspd/dpSwSokqNLDPB1529PrVGk+nU0ASrUcDdx00YtFIOm9t79Pa2UFLghz6Wa/P0N85Tas3SYhMpFa1Ww+Re2Ra2CphMpzzyxHMc2LfIxvoW9XqVq1fWObJ/gVrkM4mHrK60CXyPixfXcCxJY66JchRalFx48RKtRoVOt4vrWZRFgRAZ7VaVZKo5fe/dnLtwDteuE6djht0ujVqI0Jqt9T2q9RrdvS6Ly/MMxxlHjx6i3pjHsiS1SshkMiWLM0aTnOFkzP1vOokfRARhiBA2lgvTSc7atW3uu+8uHNeeCZ1NQ2lJQZ7lJjJBgxPW0OWU0d5l3nU85JNPbfLxq9v8jeUGw27CeBrjej7CkjTbVbTOyfKMEydWcR0HSyqeff4CniNxbJuFhTYLK03mm3UuXlun3a7jBT6eDaHv8fHPPsSJ/csICXONiErNNNidbp8nn7uAg6ASBaxf3qLeiHA8lzQrsdCEkVkxHfT6uK7N5vYORw4eIM1ywsho6B578hz7l+cNldd2mE5TXMfBoBj2LJg6o9Aax7UZ9Lr8zC+8AxCUeYEEdIkxklGSS9eucnqfRehFxJOY9c0t3nTXQQLfIgw9Lq/t8va3HQdR4LiKPCm4cHGT0/ccIQh9ihSeP/MKjiOp1WrU6hWyXHPx0pbJ6/M9RuOYRiOi19kDUkbTlKWFBXa29hiPJpw4sZ9Wu4rrK3Z2etgIpOfy2JMXcVyjFy2KkiTpo0iYTno4jmahVcH1JY4LopiyO4Bz5/c4fng/YcXBC40WbW6uTmd3TKPmo2ROlhram9YFO9tDhsOYza0O9735OJOpuS8vEnZ3R9RC3wTa6wzXsZEzzVpZClb3LTKNY3zPYa7RQluSTKeMekP2uj0atciYDWkNZcreXp+iNHrHslRUqwYd88OIF86scfTQfr701ec4dGAB21JcGVh88P67ieMcd99dPP3k0ywt2uiiwJ5pxNCaL37uIRqNKo12k6LMGHR7ZrjRks997ml+8sfvRkiJ5/soW5FlOWVeIJTCdkIQijie4HgeYJElGbZtk+cZEo1SrtlnrQmrLfJCY1s2ne09pGWy8izbQlmSPC+xbIsiK0Eo9rZ3TcaZbRNUKijLRpcFUsKwt0tYNSZJOs+xbcc0zWSkidH6FIXJ+3R9C8czKJyUJlA9ngywHBeNQCqTs1dqEMJk9yWTySzDTlHmCVk2wLI9lHKRlsC2XZI4niEiEl0WCGEZZFKJWYaixvMDEPbNnEDLdsxJJEwo+T/5pw/wa3/n15E5JNN1PDfk2ksbNJseUk5xRcAkifnv/7t/gMLi2LHDWJ7H0uICyyvz7Oys86u/8vMcv+ctvPfd76Xq1fhn//wPePvbvo9WI8CxMtrz+yhLzSc/8Re874d/lFa9zv/7kU/QjbocWt3H5x54lvvuOcCbTi9iKYdnXniZI/sXjdZy2OfwkcP4nsVkEvOJv3iCe+/Zz9cePcvJkwdRMwMSgaDqB1iWZHEuQlIQT6ekOiXybQSai9c3uffYKoPpGN9x0MJBqZJuf49KEKIpsJVlchCTFNt2cW2PleUF6pUKcZZTlBZCCrqjMb7nkWZmtb7TG7K2vcdSu4ZvO0htsb61TegZR+TFlsWff+JhTpw4QJoVeI5HqRVfePACq0tNXAs2dnd46GvPcuDgMr7rM4wTHMclCiKSVLCx1yHJYjzHxraMMYllaWzLhMXH2YSVhRpSWZy5cInlhRrjiabbH7M8kxMkWYomQyrY7Q7wPYfOYEQt8jnz0iWiwMX3Qj71mYc4dnQZzzF61sDzibOcOB0Ruppnz12lWW+T6RLLAlu6SCFIspi9YUm9WgEp0QhsZVBVW1nsdCc8+Oh53nL6IJ3hCM92KYGXL22y0KyRlSn1io/jOCBsHAX33bWCkgmu7RqtdlmgpMUD//Pz7J5b477qe/jLL32ad7z9HTiey9mzZ7AdwUJ7aYaUVemPxgRhFWaUOM8J0dJoY8MwJI4TOp0uSgoarSaHD51ElylffOARrmy/iK0cWguLeI5Plk+oVys8cf4L/OXnH+Kth78PaSnWN9ZZW1tjZ2eT0ajD/Pyi0asVBUJrPM+n2WjwyKNfxpIWvZ6hUmdJTJakJOmE9fUNFheXufLKi4yTmLn2HFIIHnj8C9x77z3cRHNuoVMKoBAz1EgIilvQJDG7fZNS+Rok7ibipEHNIBsBKGFe4VUUjJvPu01J9gaUxW+2/Ua/euvtOzHP7kRSvEHxvIHavR7HuoGOvfbH3KdnGOarke6v3c/iFjzzdkuW20iW2uTa3XpsXv2PvBGG+c3rzsjdzXe8+ZjvRG71PVrmd1H9+9Dcfadl2zbl9Rfe8H7jKmtOynw0pLO3RbNRI80l2Wwlp1qtMBqnSNsmCEKi0KXIEkMNsoxOTMmSaqXCxSubRJ7L9maHH/yBkyRxQqVaM0HcyoQvC2ETVTwWF5o3oe/A92k2q5w5e2lGeRIsLrep1CIqNR9dGn7/zvYujUaVSsXB92y2tnY4cuQwRZaz2+mwuDjP9k7HNMGuT6c7BC05cGCZTrdLJQpJ8inra9c5fOgAynIYjFNEWaKsjP5gxHNnvkHouxw7dphKpYrj2iil2Ov08Tyb4aCP6wmUUEzGU8LIIYkT0jTDtoyLWTyJ+dJXnuLwwUMzpzyNFCWe5zIZ7vFL7z3NRx+/wl9sdPjlu1axHYXnuVy8vEazXkMIYdwvZWH0No7F0kILx7UotXFPy7MU13dYmGsaK3lH4tgueaYZ9iaEvkul5lOtRRS6wHYcbFtycN8ytVoNqSRhNTLU2SyjzFIs1zWUCSlxXGNjHfkBjmcTVDwsx2Z7Y4+V+QU+/qUHWWrU+NwjT3DfXUdmlIyCXm9IVAkoEXzj3GXmak3u/cM/5rd+6YfJ05R4OkFgbOqzLMP1HN68mpIlCb5rIcqSySRmeWUO17XY3Nzm6LFVlGXc9bY396g2Q/atzpPGKQqF1rC81JhFFyjSNCOKAhoN0ySCMHTaJDWD3zRjtzNmrz/mxMnDeL7FM8+/TKteobfXJ6oEFEVJEAUstGrMzy9g2Q5eEGFJ7/9j7z2DJc3O+77fCW9+O998J8edsAEZYKZAkIRMigZImmBRMGVLlCg5SDRLdFlVJl2URYlyuSRRLNmmVCzStE2TIEGKIJEzdhe72Dw7Oe/OzA1zQ9/Obz7+cHp2ZndnFwCtsvEBp6rrdjjd/Xbf7tPPc/4Jx6nhey2MCfjonz/H2952iIqSqohYXJgn0BJHSYbDMbVmA0drpNKWAug69PojjJA2hF4LTAm9nRGHDizS3R7R643Z3LIunJ12g8FwaDcQKoWjtaX8KZuJuLa2iZLSmqZIKMuS6y+tcOTwPrQp8TwXJCjtUJYFjUaNqqy4eXOd1bUtHEe+shYMhxOWF2eY69Q4c+4lFhZmyExJMdzhwRNvoevN8cv/4z/l7/78j4Ew/N7vfITlXfM89eQL3Lh5m/e+77uYTEY4jsuf/vEn2LtvL1/8/Fd59ztaNEKDqxVFlduIBqwLbxTXyNIc19FoxyNLUlxXoxyLdKVJguO6mMpumgwHQ6oyxVQlSkuiWoSjHbobW4Shj5Ia7dl4j8oAoiQMa5ayKSTCCLJsbOMJ0hI/rIMwVFWB0s5UUC+ma9Y0ykFqtFYoWZAlPZT2p0igoMwN1txEIpg6bGqHqiyt3XY1ROhp0LlrUSKpXExVkUzGFHlOEAVMRiOEAKkqytK6libjMY7nYcO4DRiBkBYhzCa5bTRNhTGGP/zoad75nrdh8oL5hRYrKxt4cRvtueSlIM0hTUd88AMfJI5jWjMNBGKqk7VU33ZzBonmB9/3fn7yJz7Elas3KKoNHji+n1rUpJIJ1669xPd/31+hVq/TG+7wsY99mu/7T07gOz4PP7yAkAWDkWC7P+TIvkWbd1cJXEdw/voGy7NWv/bA0b0IKejMNFBCY4zgE184xcur21y6usq+3fNIKUizhDPnr9Jqdggcl95wSLPmEYUBoecxnOT4nk9RlNQjGxmQZ4KsmAAZWakxlWSUpNOwb6hKg6M0ZVkRBx6ffvwisy1FHPhcXx1ycNcMWZFTlhVaaVr1gLIqsVFlJUcPH8SYiv5oROgpzl5b4z1vOQLCkJqKOPQ5cXQfp8+/xJ7lGepRQOg7lKZECciyhFrg4CjFpZUB11c22TXXoTvI0KJgcaaF47oIqXA9j5trXXzfZ9/iHK6v2NzZoRm7jMZ98sLhscfPc/zwXmqhQ5bnfO2JCxw5tJenz1zmXW8/RuB5ZFM9MgKyoiSOAqpS4vkRjz9zkX275knzCXlecurCVTxPErga1zEYU9oiuCzRWlMagePajat66NMdDqjHPlIIWrWYWxs7fPkLZ3ng6C56wwm+p9GyRCmPwghy4zGeJDjaaveSKx6jrOKH3vVejh87jtaStVur7F7eTbvVQCJQ2rphR2Fo19rK4PvWLKrIxmjtUZU23L7Icq5dv0ar3cHzXEajIScffAjP9zi4/yBxGFOZnF53h7zI+eRTXyAMIk4sHuf27XXml3bxlce/wtrmbd759veQF9ZFejDs4QYeg51talHM3Mwy/d4AL/Bot9oYA61WC6EEi/NLZEmCdl2MMXRmZjECfu9Pf48P/PiP3i3CXtMEGXG3YbNusNMmTkqbCXofzR3cbUGUfHUTd+/0V1//5vTPex/7613/WlnR6+a/5vy9Grs3m3v/575rcvJqYxbxmtvvk+N3n8vWsOXOptrr9YB/mfHGzd19Z9/z9+s/87ebu2+h8f9Gc/eX7e7vHfc2d69OHhHTL751pVu5sUqzETEcjWjPLhCEEXmaoKVdyIUQlm6E4S8+9Sgrq33e9paTLO2a5+bqBidPHAQBi/MdxqMhvmtotTq4XsB2t4frOlbb4niUVYoQNv5gYXGBJEmpqpI4jDl97irJ2LCytkU9ijCVgmnhZMoCz/PZ3uqys9Pn5IkjPPbEs8RhwPxcm16/z2Sc4bous7PztNsh/e6YmdkFGo0ZVtc2OHx4P1luqMUhg9GY6zdXWJhpMRmNuHztJrMz82zc7uJ6ljL4wrkrzHZaHD68H8dV1Ot1snSE6wa0mg2Q1uJ8a6tHMklQDniux/WX1rl8ZYVG0y4anlcHIsKowbA/oly9yuWBovP97+Uff+IL/PiBJTrtpg0bV4o0TcjLCtf3KAtr1e64zlQ3JMiTDO0qBr0xruuRZglKOpy78BIXbqzxwMElPvfUixzeu4x2NJUBiSJPS6TCFhpaYSpDVVa4vkNpIE9Tm43k+VBBlhd4nmNjBAYjWq06nufSDHxmZzvsW5y3xzj9/GZZhuc6BKHPbKfF33n2HJ/95//ZNNxY4zouCEvH9XzH6jgY4joug4GlHA0HGY5n6WitVo1+3+5MP3fqIvt2L7C2sUXkWye+K9dWuXjlJkJWzLQbfPmrZyirCXGsMSZFGENVSh5/6hz79y2BtCLtzkyHRj1CCkAKFuc7bG33WFiYZXO7SzLJiRoh6XiEGzi8fGMFRMHOaIeV9S2eeOEiew/Mce3qbaqqZHamzeZmjyDSeB5IXdKZa9DfsZmJRZ5w/uLL1CIfKRRplhL4errnKLlyfQ3fVVx9aYMTx/ZQr/mcOXud8WTMzGwTRzmMJ5Y+K4W15t/pd9Fa8fnHXuTd77DGCpNJyvxch6IoLMqn7ugtjEWSS9u8B56LFIa5mSaTScqpMzc4dngXn3vseR5+8DCmNASBT6c1QyOqceHCTeYffg8vv/QChw7MUlUZ7/mud+IHIYeOHOTo0f04ntVvSuny6KNP8673vI3jxw4RuJt4nkPcqFlnQSTadaa2445FvqrCOvAKQZFPYBoXIaRkMhrhaJded5tao/FKBARSUlU25sH1HFzfI09TijJBa4+iBCEqtFIIYYBqisBOWF25TqNt6ZErN1aIaoENPR+OcH2XsmTaIOZTJDpDUKBURVlZ7WOe5ziOQSiru02TBNe16NJdzZdEoJBSM+r3cX3rKFuW5VTr51BkGcpxpmiqsRRPpa0GVdgAddfzKAuLdPS3+8SNmKLIKIoS7Wj+8KNn+fCHf5pOs81kvIHjRvhBPNVDWQ3a5QtncB2f1kwbZAkVhGHAyy+/RL1e4+Vblwi8gp/92Z/BiwPe8shbqEczBEHIpUtnmV/aTeA3ef6FUzz11Nc4cvIBRt0B7r6cyuSYqiDJCjzt8cyLV/Ajj8gP+MrXLnJo/yzLnQ6jycBGvUjnFQODR584z8H9i8T1mCQv2dzocezgHIUpCdyArIROs8lwknDmwnX2LM9NzXJglGQoZWm/ZVlhgP5wB0crlHbwPQ8lBIHnkuYZVWVsDpnWr1jK75prE/oOTz5/icN7F/FdhaNtVqExgj/5xDMcObjM02dusndpjpWtLRpxiOtoHK1wXZ84dHGUY6N/pAYj6bQaKGXz+4qy5PSlGzRqMXlR0KxFrG712Lcwx6XrN9i3PMvOKKVT89DaFt7d/ph2HHLhyioHds9hyDGUFi0ajmjWpsYtzZiqqvAch7QomZlvk+YFs+0ake+T5jYofWPrNlJYBM4gSLOK0hj275rlys1V6vUIrRxmWg08R1vNvavpDiZIFM+evU5vnDPXjinKjJl6xNdOXaYznW+M4urLa7RbMZ2Oz3NPn+X48X24rkNeZGA8uoMhceBSDwK2B0M++U/P8Qv/5d/mvfvfz+3NdRqNGkorut0eK6s3WFia55Mf/zP2HjiIweB5VvealSmjUY/AcxhPdsgKq0OUUlKrx3R3dpifnWcyGSEwlBTMzy8ihWQ8nKB0QTIpaTSafObZL3D79ho/+NYf4PTZU8wvLLG8sMR3vPM70Eri+wFKWs2no7R1YjSSc+fPs3f/AWr1GDP9LvX62wRBTJGXnD79HMePP0RVlbiOi3IdvvPkd/KLv/rf8oEf/2vTKoxX/WXadN3rIKnu5LOJu4jd3Zru1SYod3Vr9lSZe/Cne1li96kVv17d+TpE7j7zXtvIvQ5Pm24ev5Eq7Y2UaPc+551XcG+D+movCXu6g+e9aWt1R98n7s685xl4/Tt+d1gc9d73Q97zOPfDK7nPbd/c+HZz9y00/v/MuQPeFLmbPjuj0Zh6o4XrWVRgOMoJ/RB3GrRcVQUYKIqcNM958MGjLM7NEzcbCK04ff4q+/ctML8wT5ImYCrG/RGDQc6Tz5zjwQcPIaXiyaefZ3l5kSQbE4QBURwx7I/xAh8lrNtYkg4Zjbt0WgFSGnzPY+X2Nq1GzPMvnGF+fobb6zvWXU7CYDRgfm6Wmzdv4Xkus7OzrK5tkuUQx5KN2zucvnSFMHBoz4RMki7t5hIvnDpNs+7h6ooo9NnZnpAXht1LewBJfzDi+s01vvvdb2FxYY6Pf+Zxjh7di0QhNZhScu7sFWbnZvD9AM/zrGmBY398Z2fa7N27m1pcx9Gajc01vFCSGYc4khw/PMdfe/scp1+8QLRwlN984lk+uH+BosyRErSjcL2AXndAODVdMAaU0ORpyePPnmb38hyUimSSE4QO2nFot+oc2r1AXA/oRPVp1pDlple5NW4QCuv8N5mgtTv9GFgdnT+1pZfaIZ0kJJMMN3BQSpOkCVk6QQhotNp87Itf4+jBPba5q0p6vQFlXlgdkqj49VOX+Fe/8F6MrBiNEvwgYDQa4/k26Fppza/+7qf53hNtlHKRyjoKFoUgigLuOF/5juLq9ZssL85wc3WL5bk2mIr+YMj88jxL8y0a9ZitrR02t4c8fOw4Tz93mb27F1ldHTIcjhiNcxYWWlRVyXgywXUdkvGEjfUNao06Qgp830NIYYsmz8PIylorCNfGb+Ql860mkQ7ZN7/EmdPX+f7vPYkWDlEYI8QYIyNc17UC/ELgSEmRJ3iOZK7dmBrdKKLQY2fHBt+OxymHD+7m8tVb7F6eoVZzKcuCxYVZlpfmGI7HmMIQxO4rRkHra11qNUkcRxw/uofbtzcoSggDnyRJpo6Rliq7tbmJEgbhuEghmYzGmKoizyyty/d9FufnCCOfxbk6o+GYsxdu0esNOXnibQR+yNeurbBw6GFOnGxw5MgBas0YISVKWVe99bXbxLFPkowRwuHwkd3EtZg0nVCPM1Tgo7SLVh7bt7u4vv3cuZ6PkYoyT9HKo9ftEtU88sxq0qqytG6AStsirSxRSqCUpigMUrtoR1AZm7eoPQftCCaTnCCIENLSL4ssJUsTBr0ucTRLs92iqhRC+jQakUXUpMRxPIwo6Hf7uJ62TpxKoISgzBIcqTDKx5hqShvtTptQu34pid1hB2uElBq0G1DkOWHkA4rxcIgfutNGLgchqKqCMi+Q0kZ2VKVBKk1Z5DiuIktt2DnGOo0OB1380Keq7Ou++dJNjj38nbjSobezguNE9LtdPO1CVTEZD1BCUK83rOZWlUgjuXbtGruXd6G1Q+B3ELkCE3FzdYgxO3zog/+AIqt453uOYEyTZFLwqU99kp/6qQ+Co3nHQyf5o4/9Gc1dDq4O6Q1zapFi/+4lnn7+Evt2LXD+8honjixS5obAhUleMBhnOK7N4DSlIIxcVtZ3mGvXOHF8D6awLsSVkURBhOsKQt9u4o3Tgjhw6Y2GtOshSZ5hynJK1iqpBSWuE1FVLkibkSiFIM8rHnv2EnuX2nz0Tx/loZMH7EaJLsGEzLbrfPkrX+XQwb30xyObryklJ44usdHf4MieRYQsaDciisrm2WUFhJ5Hkk0QQqIQGCMQ0lLUMQUrm9uEfsBMs47SLrc2tnFcFvNF/AAAIABJREFUh06zTpanLMzFVMY2nK5rcy+LIidLU3zPYffiLGmeMU6HhI4GFI7jgXSoqoJaYJuPc1fXWZrpUI99BuMhnWaN7iAhCgLyMqcdaHzH5dT5G7SaNTzXpR75Nm5iOObZF65weN9eHOXYuCJPYypjKfvS5dNfusgPftdDpFmCI3OKqiIMY2I/RCmF5/hs9/oEoaRd0zx0Yj9CajZ6I3w/4My1DfbN1ynzAVp7GKH49Z//NX7hF3+FSy9c4cQDx4jiiDwvUdqjMzNDXAvZu/cIXuSglaa7vUkUBnhehO+67Gzt0Go2kI5j40uEYTwZEdcbNOt1RsM+rXYLP/AoCmsy4Tk+yquoRx3SNOWzz3+R3/i1/57JmmH//sNEkU8tiulubU4lHzZAvLvdndI5C7a2+1y6dpljJ05iKtskJsmEyhTkGXzi05/gu7//B1hducHczBzrt9eot1sIYHNzh+/94ffct+4zd64zd4PN7zphvj4P75UqTry6MXnl8V496c0rwfs0aq9quL7e/bENzisxA/fcdifPTgqmmyrqFQSO+8x7Izrkax0s5StRB68d995+J0Pz1S6Yr2/nXvse3v89vTNsCPq9mYWva9Xf4PKrn/0bGXcC1B3H+3Zz960yvhnN3dcbfxkk782bOwHCMBmlSA15WRD6HRQlo8kEqSRpkSGUIM0KwGZwCXJOn32JdjMgnYwIHYfO4jzSGE6fOk8cBOw/tJft7XVOHD9EhUJKOLh/P2WZ4XuaspCkyZgo9pmMJjYGoMyp10KC0OfGyjpZWrK+MWC+0+LUi5f5nu96GxcvXKYVB+zZv4zv5HRaDUI/otWs0d3pst0doqRDVJdURUlVFYwHIw4fOsDTz51h9dYmnhfSaDU5f/kai4szbG2NgIww9FnbWGVnkHB7Y8zhg8vMznYQMufAvl14nmMzAHsDwshnZnEWIQxpYkPPHRe0CDGisuHcGLQ2U3qPwyc+9VVOHj+EMYpKuPhBnb0th7B6mf/4b/09vjQMyK6eYa4WIqQVqfu+RU23NnZwXRcjDF96+nkO7drFdnfI+laXpV0dtGtpRkorvMCzBbEGMT0ZYZAIXM/apDvSwfFs4LFSmgpDOs5RWmPKkn5vhyhq8MefeJIHjy4jAa0USrkopdm63eWRBw5Y1EFBkRW8fHONTqcBApLC8KN//Z12ja3A9TR3FtzJJMH3PSoh+Zf//gV+4juXqYwNZR0OJvhRhKsFtze2qNcidoYFvu+y0+8ThhGdhQau4/Llx8+wa6GN6ym63SGdTofQ10S+Zv/+RVbXtuhu91haXiIKHKQ0XLlyg1a9RlxvIIyEyhBEPkmaEIYhk1GCMYKt7jbD4Zhmu81oPKTZquF5PsYRVKYkjD1mZ+ucPvsyhw8v0BtsUm/WKXNLXZJKMuj3CcIGlUrZ3ChQuuTMhZssLDYQShDVaiSDhNB3eeHMRQ4fWp4iS4Z+fwIGrly/xZ49M2hPkvT7NNst8hJa7TpFJtne6rO6tkmzERGGAVWZYyoY9jNurK3TbjVxtcQPFLc3NojDkKtX14iDmEaniaEkzVLi0OOzXz7NgX3znL3wMt3uiGMn9xA15jFS8Mt/8AyB6/I933OYL37+q+zeu2hNcNKcZJIwO9ti9eYaVWEIooCbN9d48YULfPEr53j4oV0Wea8Uw+EY7YDjOUgt2N7cJggCpFCUpqAqKxzHJ8tSm0s1HE1dMK0te5oV+GFs7ecdlwpDVWQIBHlWopRLlowJ43Cqq3PsDqyQuL5PENWoTAHY+AHtVBgkxpRT9zyDkKClpCxKfC8kHXfRjrDaQBkxHgwpiwTH8ZEyREpL57SNikEKh6IokZrprnBBlgxRyuaxeYHVFAqhrNmKkDjaoSoNCGPzqZQiGScoJdGOi1IOZZGTp2Mc18fzreuwsAF9dLsJx45+N2VZUKvPY4wkqEXWydPTuJ6LNBOi+ixFqagmY4xw+Kmf+DD/6c98mGFvm6AW8PkvfoETx49w/tQztFpNtrdv8b/+u3/F3/17P48baIxIeeShd/O//bvf4ODyHoyT8Lu/+eec+P4lkhSGSZ9mVEdIxZG9HW6u3eKREwf4wz96ggeO7cJIhVaSuuey2Z8Q+h7NhgZT0qzZEPDI8/GDgCwvmKQZvuNiKJGyYKvXoxmHJJmNjtBKMRhVhIEGSqTwEKJGhUFpm2X48voWrVrEKE05un+RspKcOLYHR1vUPMvGFs0SOdKrI4Sw+jOlyIsSIQ2NKKaoChztUJbCZn6SMUoqfM8WrEla4GobvWEEUJVIoQg8D1NVVJXBcxxqUQRoAlfjOcZmURYVve0tarVwmp2oGKUFpSnQjt1kuLWa0G5FaO1gqgJtCkojp/b5imY95pNfepq9ezrM1ny2hyPa9ZAvP3GaIweWKKQkKWBpYRbXtZ89U1VcX91g/+55vKBGI5YUldXHj9KEqhKEnoerFUcO72I0HhL6LpVwCNyQjc0tOs2AkoKytBsRtSDACeuUxiBMiTAVk8kI34UocNnpjwjCmPc1foK/8bf/a/7RT/13CGEp4/1hn1rYwHWgKDIEkOcWiRemIopqFEi00FQoglqM0A7jXo+qshpUzw/wpaEy5ZSOLahyA1VJWeVI1xrZ7Ox08T2HR099mbm2SyhmSbKM0HXZ3L7Ndm+b+flFtKtsLMdUTmCkpBZGeErTCCOuXb9IOhkTxzXOXTxPp9Xh+LEHOHfmFAf2HeUjH/sDQq1Y2r0HpOCB/UeYO9rAok/TMkxaJtUr2rLpeUsTt8Pq5O74ZdrT3WbolYruVeMOowZxj7vmN1pD3od++YaI2itH9PqmbEqi5E5swN3m7e7cV5+7z2O85nXeq127c6j3nu6SUO+EJNzNybubjSeoYPp3+n6+6qhfe+7Vx3q/PL/7N5p3bnv98d9n1mtOd+8rhPg2cvetNP5Dau7+Mgjf10fuYOXWbeq1Jo6uGPa6jEY7SF8x3FmjSAZIHRBEEVIYRsMejqvZtXsBJQVXr95kcW4OP/Qo84IvfuUZQl9z6sVzdJp1GvWYKPIoqgIhDVmW4roOWV7iOJqqmApjldXYJEnGzrbdbRyNUx5+6Aih76MktFo1lpdmcTyD8jRFMiLLSjzP5/pLN2m3OwRByKC3yVZvwMmTD3Hm7Mvs3TPPcDymzEv2799Hb2ubRs0jCkNW1nY4fPgQniNQsmQ4gr27lpmba3L28hV2L+3CDz2U9pFKQVXguK5dFIRAGAfllJRVgla24KpMNf3BBe1oBBLX9Th8aB+mLCxKVgmLHDglexb30xiv8Eu/8b9z04t4XydGKIk00OsOcL2AwSDBDzRSCw7u20UQhnRaTRYXOhhs/o8UCgEUpiBLE4LQs4u/ERSp3dl2HBfXUTg6IC0KTAVlVrK+ssXswgwYyLOcWi3CGMXt9W0W51q4rrIFeG7Isox6M6aqSi5ceYmZThPhSDqdJo7r8/EvPcf4wYhdnQWKIkXIEVr7JJMJQejjaA2ioiwrnPQWJ/YtYcoSrRTD4YTAD5lkE2bm2oyHY25v9ajXAiaTjAP795CnJeNxxgOH9mJ5liXNVpOrV19CaUOzYTPsgsAj8nzOXrxFuxXT3R5w9Mh+NrY3SLOUU+eucPDAMnlWkBUZnqfo9Xb4ypPneejEAeIoQksHpNWjra5v0uk0EMI6pZYYPKW4fXubykh8L8APQgRw5txVFmbb5EXF1mafC5ducvTIPhbmmqRZhuv7jAYptWZIURXs2bto40JG1gZ/dW2bxYUZLl9dY+/uxVeQgMpMEaG8wIsCwjCgWY/wHA+jJEIJdnoDnjl9jXe+9Sh5mjCaJIwnCTOdRcqyYKYTU1QJYRCSZQVxLcYY2Ltnnq8+dZZ3vf0Bjh7Zza/80RX+6jsPY4BLfZ8P/8xfR8lNjh07TJElpJMMR7qMhkMQBWEYcPPGOlI5dDpN9h3Yyz/5Zx9FpLc4fGgfw8GYz33uMR56yxGktGhUGIUIbGSKMSWu59j1QNqidTQYEEYB/W6PSZIS12tsrd8miiOEsK6RRZ7jBRGOo0nTdLrR4lGVFYP+AFNag5rJeGC1FSiEqHA8m6tYYSjSHMd1yLN0qncSaC0ZDns4Xg2BpjSGfr/HoDfAcV083wdhrM4ztVRz7UAySXBcnyIvKPIcx9EYDEq7SCmsU58zNSDSmqIs0VLR6/YI4xAMpGlKFMeUVYmpzDRrT5ElGf1enzAOKYrxVOObc+LEXoQ+zMWLl+i02xRlQZIk7PR28ByXRx97nD1797C+tsnv//4fkGc5Qmg++GMfxPcVm5urNDuzHDl0mMmky9Hje9jp93j/j7yfv/Vzf5PSGCjGuBq6t3d4//u/hzDURNFuJsmIam6TLz1xniDQzHZqgKGiIi8FH/noM/zEB9/NytY2gevgOg6SAt93SIvMospCE7geg3FGGASUFXiOpY3b2AFL6Yo8y2JwtEYrW6xp6fHUi5fYszBj95KmevGqMuRFSVYoQOI5Gq1AS9tES+Hw5OkraF2QF5Juf0ir3ubU2SuEoUcU+DjaozKGsoSitBsv11e3iQKLeLnaIy8nFKXB1SGf/NxXOXZ07yuxG+m0QTGmIgo8huOEwPFwlWSrZ3XcRmhcHfCZz5/h6JFFu0mnBEoKlEjZ6Nvfw3a9xXa/j1QG35EMx0PyCnzXoT8e4jqC5eUOgeuRZuB5Ci01+3YvMJok7AwG1KffGykMWV6yvt1jcaaFqzW+J3C0ZjAuOH3xFgd2dfAcF621bbI9l/5oSBRYZkJVlUShde6UAlytCTwbuVFWWF2sAISkSMc0ahGFETTqMX/2qy/wmc99kV/58C8jlWRxYRE/CAmDCGEkUlkdqEFQlCV5kuBoFypDf9CbsgYUeZaCAM9x8XzrQiqlpU0PBwNqtTqD0QTPD9GOyyiZ4HseVVHiuS79YZ/PPv8FKiN4x5H34LoOk3RIszbPpz/7WQ4fOYISBVme4YUhkzRj3O9Rq9UJazFJmaCUJp1MuLVyi+MPPmI10HnOlStXWJxd4KGHHsF3HJwwRGsHgeAf/8tf4/1/9X13azoztcF9nX7ttTTMVzcFr20mXlsh3qlT7H3v3OebqyPvxC7IN7nfm1Ifv8F5b3b764/ZvMH1r7793kd+LVJ3p8W8EyVxZ9Zd9PEN0NCqmiKrr0fovl6E2b1z3xjRe/WQ0roIw7dpmd9S43XN3f0b8zcdr3Un+mbGa5u71+01GIOpwHVdktEmnja4jqQyLnPzywRhE88NKY2gKhKKfIJUNhMqywoW5mdJ0glbG12uXb9Bpx3T3RnQbCxwa71Pp91ie6tHXuY0W3V6OwN8L8IIA5X9egWhy2AwRitNmmVcurxCo2YDSdMsp9b0WFiapaxS1m6vEkUuXuxANSIKXUajgqIS7OyMaLYa7N2zSF7AC6cu0qpHJOkEqoqZmRmiuMa1l66ztWFpnFKHJKOENBmzvdNH4LB6e4tbaxu89eFjXL++zsbmBrOzc1b74giMsHlWGIOQ1oyhuhM6LCco6XH96i06nVmKqrC22Uox6A+snqcomIwTHn30FPv37aMSQ9Ik5Wd/4Dv43U89zYd/9R+y/olPMxolNJs1TFlxc2WN+U7bakUqwf/x0Ud5+Pg+u6vpKKgkQk53n6S0phXGNpZVVpGOM9zQUKQZ2hGk44Kd7RFlUbK12QMkge9YfV5VUVaglGTP8ixBYEN/ywz+/PNPMdOIcFyJkLC4MIt2NRjB6bNX+cVzL/GPfulHmK35dLsDOrMtytJaaQuhGA5GuK4tcoVUHJkpyA2cPn0VV2uLWu0MqLesbiEKQ4LAxfNczl28wa7lWfrbIy5dW6FWD9jY2Gar28eUhtnZFo1GxMbtLeJ6RFFWbGz0OXJ4iWYjZpIkKCWYnW/jas38XJvKWD3ncDTBdRwG/QmPPHSUwXDAeDRh/XZ3+nmO8D2HZJJhqsKG5boeYRjQaDSo12KkMhSFbe4VEEYBW70NPBmwZ1cNrX2eef48u5bn0NrF90ObK+V6vHx9ldAPSNMMKWym3U5vyIH9S/hBSGUKKqHBQFkUbNzeIYoDqsJuiGjtMByMWVnZYGamwfJ8m0HfIo6NRo3JuCCIfJSaUhi11au5rk9eVJSmZDwacejAbtI8R7uK3/nyOh9410HW1jZ454/9DX7rt36bg/siGq2IzdubrNxct+6QZYnne7x07Sbz83M899xpdu9ZwtWaf/4v/k/+q7/zvdTrMc88dZaTDx4kju13znE1m2ubRHFMd7tLFMdWE6g1Uljtme/7ZGmKlIqoZo2AXFcw7PVxPE06Sag1WiTjMePRiDCyjq5ZkuF4Lo6rrWOfAaU1w/4QPwgwWNQiSzLKqsB1PcBmm/W725SlRQY9P0QIBUIzGY+J6yFxrY4xEu1YNDqdJCCwNFIqQCKFxlQlru8xGQ+RUqKVSzJJqcrcFp/9IY7noKa0IRu8W1mTlTBiOBigtUY7eopqD6jVmxRFAsLYUHSh7LojJKvrIYsLizz37LNEcYzju3Taba5fv86hQ4eo0Pz2v/1tXOnw9ne8k3qjzYc+9NO8+11v4/jJQ6R5QW9nQhzF7OxsENY6uK7Lc8+fZWF+P9rNQEBVOKTFkDzPUFJz4sSDnNp4jL1Lu2k1Q4aTIUVhDb08z+ddbz3Ek6fOk6QZczNNbu8MKYqJpTb6PkVR4CiXwSjh8tU1lhdncJRDUeYIAWmWW+2vYx0fMRVpnuNNXWBdR9FpRjYiwAiMgPEkw3etGU0zjnC1Qk1tBCdpwuNfO8/upXlmWzGh77O6OWTPQovQDZht+zRqPo7jkFeGwHVJs4wXL1xn//IC9ShGK8n2oIfn+rjOnSZTM7PYIHAsUldMI3N8T7Ox0+fRx1/k0IFdGGNY6/aZa0Vs7OwQ+j7dwZgDe2dQ2mboGVPhOpLROKfTaCNkBqbisSfPcWDfPJ7jkCQlYWgp8dZgxEEYAUaxPZxQCxyU1HQHY3xPE2pBWpY4jstoNCLwPJpxhNaS9W6fRuRTlYo//pMneP9730KaJgwmE8ZJRi2yMgkpSoqyQimHZ1+8SKdTp8I6LRshmKTZVOOqcJUEU5FVFY6WFEikVJx64gb/+pd/neqcx/zSHFmeIJVCCkmRV5w7f4bZhXmMEChpN0arsqKq7G9v5HkYaSl3ZVXiBz55UZCmOaPRCFPB+voqcVwjSSY06nW70VIUUFmmghSSosgxVcmLV8+w2RtwYvE4aZYSBhF5XiCEYGF+AahQ2koTXNcly3N832c4GhJHAb4fEQYRs/MLaMfl8uWLDEdjDhw4yGg0pN6oI8uSSZoQRDae6szzp/ihD/6VVzdc9zRhd6q0irt5cBUG9Tpd3OuplFVluJOXd+/pzULH32xYOuUb30/eQ8W89ziMuROcfv/530irc+8xvPby12ukXqsfvKuhuzfzTtzVzlXWnOoOnGpNVu6Hzr1Weyi/zvHceXX3/me/8Vr+3rL/283dt9C4b3P3/+H4us0dBoFiMOjTqAnWb91EOx6+o0hRlMolH3dRTo0ym6CVYZIZ/MDH0S6+75GmIzwv5NDBvdy8ucJDJ45QCkGSJ/SGO7TbAfv3H2R1dZ3t7QGznXmktrxrKWEyGRGE1sXPdSy9pihz8rKgKA1pCtvdAbNz88RxDc+NKSuFyVOU1GR5xWRSUKs1WV3bJI5jqhJcR9DdWufAwf34nkO73eZzX3mWd7/7IWbbIUmScvDAQba3ttiza4kbKz0OH9pNb9AjKyqUcIjDkCOHd/O5LzzFieMHkdIu9Gle4mhJxQiJhxAeZZWBiREGGm2X4Xgd161Z7UxV4fsBSI3Wlm5xaN9epDIIamjHRzoZP/ZdJ8jXb/ApscCzL7zA2xbbJKMRnoaVtVs42pBnKe9+xwNgBNpVjMdjsqTEDe4smtbFryKlKjPyfEwUa6T0UcJDGMXqyztcub7K/n1LVBi8IKAsMlzPRWlNvz/CDzVlWTIYDPE8hyI3HD2wB6WgNAVxPSbLc9b6ff7+0xc5cjziH37ou5Ci4vLlFRaWWyjlUuYOg8GA0WDMYDC2wcpiavRRbpLmGZ16Az8MeOmlNcajhCzNadRj0jS1tMlxysG9yyAMWVZy4OASW90ui7MNGo0mUVRjOBixdnuLOPRxXIeNzR61IMQNBEHkkUwmNJs1xok1fSlLENrj9/7wCzx8fB9xWOfa1XVq9YA4DPB9n+5Wn917FnAdRVlV1OImn/jskxw7uoeylIzShDiOKbKMIh2CsMV4HFmEIW5qykxye+smW9sJDxzexelz10gmOY520dpBCUUtjnnh+Svs3jXDjVu36bQazHRaICqSJEWqius3NpnpNBkPhszMzXD92i0cR3Hx8i3GSUK/O2Z+rkmzUQdj6O4MCENnagcfot2KsiwQQnP58iqtVgxoHNdBORLflZb+pCQVBVSKRw7v5ud/6zF+8H3v49/+9u/w7rfvZ3nXHLVGzNLyLjwvsAhTaSjygkF/yNeePs3b3/4gn/3Ulzl9fouf+9n34LiCzkyTj3zkUd7yyBH8wEMpqNXrpOOEequNqQxrKxvEccx4OCAIfYyxrniO6yGUQ5GnBL6D0lbv5wUeyTjD823kBVQko9TqQMvSZjwaW/CUeUkU10AwRZQVfhBPN0UUmJIsHeMHNhoizw2OGzLc2UQrl/FwTFQLybMCrQPSZISU9xgdAUJoQKKUwNGW6HMnR217s0uj1cJxNZPR2Dar0+MzlaHX7RHFEdr1GPYGr7jZ3inuHNdFCYfNjdt0ZjtgNONRitaKLJ3wc//F/8KPf+BHWVxaZHNzi5nZNkVVEocR/X6Pze4AbeBHfuiHyYzg9//vj/Df/IO/z769i2x31/CjmD/4v/6CXYt7iKOI0STDdTxGw4Irl1bZe3iBNCtx/RZOqKCEQbLGy9eHXJw8R+TX+PhnnuLkA7vZGeQ8f+FllhY63N7e4cjeBRq1iDgISNKMmUaA74WWLjvVVGIklZDUwgCD4Nkzl5ifqRO4nm1cUGR5zmZvB99zKcupMYpIbINjJINxyteeO8fLK12arRq+pxAit5+LLKeqDFppmq0m9TCgIkfiEvkhjq6sHjaQTLIUx3UAgTG2oVmaa7OyscXWIOeZ01c5cchGPggESgmKqiTwPW6ubSAQaEcR+y5pXtCKI+YXWni+R1ZURKGH4yhqnl1XsjzFlTnPnL3B8nwHR0vGaUotbJMWELo5/cEWJ44exQAf+/hTvPXkMSbFmLIQOMqa5jhSUxYln/zCczx0bBfj1Ob2TZKMVuQjtCYrClwBRkiyosBRisj3KMqKJDMUqqRRc4kDF991iaOQ/niM61hEqhaFjNOc2WaNrMqphx47/QFh6FNWBkdZWunOYIg/NXWSWiOlBmFYXlvm1/6n3+Inf/gnybOMssopK5t7uL29Q1VV1t1TKTAgpOTmzVt84jOf5eiRoxbJlYY0y6a6V+t0q7XD+vptzpx+gUfe8jaklPi+hzEVWZLgOi6u5xAEATu9HvW4hlaSL517nOEkYU61UVJS8+oot7LGYF5IJcDRLoN+n1GvT73ToSoqfMdlOOjhBRFKSMaTCf/+Lz5KHNQ4dPAocT2i1moilIA05crVCyzs2QfAW06+lbkjrTdsCu62APaclNI6b98HkXrtJas9fDVaZ9emb674vEPjfEXz9xrN2r2Pe9/m7g2e8878b+Zo/sP4UtwfibtzjZJqusF29zmluN97/s0e2zeDXb75+HZz9y00yjL7H+78P8W9X85vHoT7S2nu/uQPf58H9s7flwttOV6CjfUNmi0fkXmMkx6tuXmk06DK+6hCod0YKQxFOcHz69bquzIoJdna2OSZp5/jzKUVxsMRW9tbzM7GDAcpVTYmDhQ7Oz3WNrbYtbRAu1lDK0MyHKJchZAaJR2EliSjCUlqzVuu31hnaX6W8ShhZ2eNB47sJghszo5xJFWyg/J8srRgc32H5eVFXnr5Br42zC/MM5lklFXF7j3L7Ox0cTzBxsYaDxzaxcXLLzHoZ0RRk9X1DZIkYzBKWF6e56WXN0kmud3d05KTDx7C9T2OHNpttRleAAbOnL6A7/r47rRAExY9ARDK6hNdbbUnpqqQ011MgaEoK2tRr63xgpEGLQrKyQBTFjiO5nhb8M8+d56/WB9yzHFZnJ2lXa8R1kPcwKWchi0jS7SSUxt3MKU1dHBcyMZjPCcCFFIreywIkAbP85ntxLiuwPcdtIK4WacqIM9S4tjHVJo/+8wTnDyyC+0GVKZE6QrHkTy+tslvXrzJ71y+wc//59/HB95zkKWFFtpxMJXkM198nrc+fJhPf/ZrHDu2Cz/w8XTEV598mrmOJowaPHflFjMR+NqnqApOnbrMyWP70a6k1aqhJPT7E3xfkY4n5FmKchyu31ij0fBxHYV2AhwPDAVFUTLTbpMWJV4QUG/UiBoho8GINCmpAMeTPPfsOcLAUG9EjCcJh/Yss3Z7m4WFFo2Gi+P6r6zB9VZEtzvisafOc+Lofvr9CSceWGI8so6qvqe5cvkmruMipUWZBv0hSmtWVreoNzt4rqFZqyGloN6YYX6uQ3+wA2TTEGtLUU7SnLww7Nm9i88/9gK7dzW5cHGFxflZet0dlhfnqMocL/CROEyGCY26z+xMzEsvbbNv3xx+4NIfDgjjGEFFENUsgqVLEI79AQOa9dC6QFYlN26s4jmSx756hT27Z61lujEcWtxF4Af87mdO8Td/+kOs3HqW7/u+R3jqyRdYXppFyoqLFy5z5cotvvbE03Q6NVxPk05Sjh0/wuLiAh/7i0f5kR88RF5kXL+2xqA/5PiJZSokV85fJ4hCwkZIkVtNVX0aEu8FdSqhrBaFEqNcTJEgpaVpIRSO9jEo+jsDPF+QpSO21nu0Z9sURQpVbnf8jc2fM1VJRWmNMrQ3RQpylLI7r0VK7C1MAAAgAElEQVSe43rhtGGy7pvJaIiSJY4fkidjxr3bNBoNQLGxeotmO6LIS4rC4LiKXneTKArY2d5BOR5pmiCFwnF8olqNioqyKPH8gKosEGK6yaU0nm+p38JYjWpFhSkFeT4BUzHsD/BDj7hew+pGLL1TKgetJZ/+9AX2H9rHzHzLoo5hjSIvMKYg9H0a9RoH9h/l1//n3+Rtb30rc7OLNENFWI+QfovAqfOv/8U/5kc/8EM4cUzNyxF6wlx7P0u7XfK8wlQSz1WMRxn9cUbotvmPfuhHqGTFvpMdjhxapjtMOHt5je985DBlmfPihZvsmmswGKesbQ2ZJDlRGAIlWSboDrcxRvPU2esUFdTrHr6uGE4qOvUaSpUYYxs7AzTjmDTJGCUloR+xvrnNzrDg8ScvcWDPPGlZ8sgD+60TrzJUhY3O8F2XrCjwdWmbQwye9ixNUQm+/LUL7FmeY2tgHRbTyYjJsIcpM8pywngyYvd8h1oYE3hQC0OysmAwGiCFi5Ka25tbLLRreJ5AK8k4rfA9h7wsCNyQSTom9Ke/n8JhnI+njpsuSnssdJp4nmSc5vhuSFWMkcqigLXQQ0qPqqrIRcVsp0VlBBJ47vQ1wriGkiVZPqE908KYktBzKKucZj2kqAxbgwn1KEQrSWnAcx2KquKp01cwpaEe+ix0Gja3VEqQCmlKTDZBSE3gR4yTlMCVeJ5H6PkUJdSiGC1LXF1RiZAyN3z8z5/k+Il9FsEsx7ha8/FfO8/v/94f829+6d/gaMsSCfwIV3sUxYR2p44moNmq47k+STpiY20D3w+5cvkyD518ECMNg2GP0HOmVE05jTdxaTaatBp1tOdQYZiM+2jt4Xke/UGPtbVVwlqE63gIpamE4IvPfYGqKjk8s48jh0+w2d0grjfIigKEwNMuFy5doF6rE8QBHhX9fpfBaIhQmgsXzrJ79z5urtxiz/Jedi8vMxz2UVLh+jZSaNjbJCkrZucXYIoG+Qsaz/deX+dN/xpAGkt5FXYHCKZRLXdO8hU8aoraYRHAO8o8eD1id6/2rrovvXB6HN9kvXnvcRRVhZLylce/F5n7Rhq7e9Ewe5yvj4G4d9wxHHmjObZJlVPsrOKuFu9uhp4lsVZ3cDw7/1Vh8a+l3Vmt6/2u/6bped/g+HZz9y00ynKK3In/h703D5L0vOs8P8/x3nlnZV1d1fdpXbaQbNkyYGNjw6zxgU8wzO4MMMywA7s7wTJMLLM7A0wwzJqdjdgFhg0wYGAwvoUPbNnGlmzJlw5bah2tvquru7qurKzK672f/ePJbrXakiwzu7FErJ+Iiu7Kynzzycw3n/f5/b4XPKOi+y4+9/+ScPN//b++l7e98tDkKa97wskXIR6NKEusO6AT0l3fwNWWmlmIEsd3kQikNmRpjud7KOFQZH2MSThy7FbKeMiu+Sla9Tr33v8ot9x0gCjyabZaTHVm2DU7z8rlDToz05w7f5Fms4Mp4ezZs9QbVZS2HPn2VJtKtUKrUWM8tlEMvf6YarVCo9FgOI4xRUl/q4fQIXnhsLqyRmuqzXa/T5rFjJKci5cvs7gwS7vdJh2VZFlJvVGlUvGQuExNzRAnGaPxmNmZJmvrXS5d2mKtu8HrXvMyiizDD0Iur25Qq4YIJaxORtrFZrozRRD4ZHmMUpYalcQJ2lEUudXICGmgLCmLHHMFRUBMxNMCY0q0tJvN3CiEjmw24aRb9PaXHeHF0y6//PnjjI7cgL+1ynSlgRAuX7jvm+yem55YnTsoLSwNUwi2uls4jod2FEpLpKsm55DtTCVpfJWadlVf5Cg7ZybLnsn4lQdP8JBWfLHXp77PZdT2aR2aRu2pcfTWBX7oJYu86fb9xOME7dpMtbIApRW3vGgfq6ur7N+9G9e1uWN52eOGo/vw3SbCVfy3v38v77hznjS1Vu/zM1OcPrtMrRayvt7joUfOcfTwHooCvMgDLSZ5XJUJMqI5feYSjXqVe+9/lIP7d7G0vML8/Ayj4RilFHmes7Mzpj3VZKu7g++GzM21iIIq8SinVq8TVVwee+oc8Thmqt1CKesg6wUuSgqCKGCmXSNOEqLQ57EnzzFKSmZnpigKQafT5PSZZVssjmJ620OEFOzaPUeZC5TrohzHUjbJcbQNDw+CCmHoMR6mEyTTIIyhP+xz7NAiYVSlGimePLlErWYNU5IsxsrkSyqtKtrRbG31mW7XcT0Xz3evZtkFYRUkpMkIUxQoVVqnUM9FasVDDz9JqxHQmWoy2kmIqtZNU0rBx76xxEuOHOV/+8Df8k//u19hbmGOV716ESHg6IsOkcaGhx54jEsXN+htb/PaH/5+ZmZaeJ7ihpuO4QcBH/vQJ1E647WvOYoxkm8+dJIbbzpEb3vEysVV5uaniSoRyTi56lSaxCmO44MqMEVqaeNCoZRi7dIllHJsoPeEPZOlMdVa1V68pabeqBPHQ1zPGpSMhzmeX2VzbYNq3Ra8SZzh+T7j0QghBNk4Q7suQjkYIQgC3xZ7uaUFOn4NhEI5AqFAapf+dp+pmQ47vW2qdZuVJ6S2mksh8X2fJB6jJAg5QQqF3S/nWYqUV2hhVjcYj4a4vjehm1oK2GB7B+1qm/unXYKgaumbYpKBhTWaybIEDLz5jTfSbL0cYTzyrMQYG2wmhUZKxcbaeT764Y/wstvu4CMf/iC//5/+TxrtKW68+RYCrXns8W/wC7/0S6RZQei4OFrw0EMP41dLwqBJnmf4XsinP303N914E+VwzJkzj/Gbv/m/8IH3fZZjr9pFlid42rB3oUle5iRpwaE9cyQ5rG8NqUU+UzUH7YS4jqWvSgEb22NuOrTAVCPAdx1KoWlPMj9L5FWNldaaQZziuy5R4AAFURgRBT5RzSctBLPNCKUU1YqPpwWOWwGhQSprGGVsBIcphdVKSgkUzEzb4qjq+RTZGkWRMdVaxCjXrhdJRui5pGXJ8oqlJIdBgKMCpCw4fuoCQVSlOxhSrVQwQlu3UiRSKIzJUcZwab1Ls14nwxA4Pucvd6kEHr7rsjMaURSCKIhsvpt0kKLA0Q4Gq2+73N1h79wsQhjuffBJ9sx2iPOC2XZ1EvFgnX9rYUCc5oR+QFEapHRJsxwlBP1xyurGNmmWEwUuu2aatKpV62CqAFmQJgX3fP0J6rWI++59hEOH50EUuHpiSCGkPa6QFMYwTEYIQvIsZVyMWdw3y9cfOo2jNY5XoXc54z/8q/fwQ/tfj5Q2NsdxXbIsJc6G+H6VIhcENZe1lS4f+vCHeOnttxNGEaPRNocPHeTM2acIg4hKpU6WpuQmpVQFrq4yjlO2d7Ypypx6o4EpC7K8RCvBYDBEKo8vfenLHDl4I0k2ZjTqQyH4yZ/7Uf72C/fz1te8lXNnTzIcJ1SjCs1anfu/9LdUalMkccLM1BSD/g7asw7HlahGb7PL2bNPMDU1R7Nhs+6mZjpUa3VbuCUZRQlCCpqtDo5nG4cC+Be//i9529ve/NzF1TV7tOtpmte7Y16JPLi2qAOeQacsJ9Ef4trH/x1pms8bmXDN816RE327Q6UdV4qub0c7nkkqvZKJfKWIuxKjcv2cnnvO8pr7XXndz1VkXot6fnuRJjDXZBBei2Zer4e8nor53MO8wOL1e26Zf4/G1eLu/6Px0ttvoza6AHx7cXfltCvThDJJ8SOFkBXarQbjJMELWghVQJkihKY0CVLaAOJCFuRphjB249Fd32Sju4HWLhsbIza7l5mf6xCGEdJx6W31mJ2dYm1jg30H9jCKR5w7u8Se3btwPI0pFPEoYTSM8RyH8+cvUo1Cnjx1gbww9LaHzM1O4QcBjh8iBXh+xNe/+giRH/LwIycxCA7uX8T3QiqhSxgEPPHEGQbDAa7j8NSpUywuzPLU2SUOHjzAYDgk9BV5Dlu9PkorwsBqXRYX59ja3uHmm4+xsbFFo1VHK0WapkiprB4jy3F9Yd+bwmAo0Fra30troSwmAe5Saaw7ns15YbJAgC2quJrDJSmKK52kMe1WjZ949Yv4nfd/njM65HVTVcqypBF6VOqW+pdn+WRTbgtKx7XOgKawXbwsyy35dkJzKUyGNe2G0SDh0Y1Njne3eN/ly7zkB/ZTPdBELoa8/rZ9vPmOfbzhpfs5sDhDMYyZareJx308r4oUDqaQlsZXGhwnQGuXLIsZJzGNZpVxnFOWOW5gC4c4tqHJRZ5wZmmZOw5UkeQIZS3A+ztDpmemWL6wTrVS4eKlDSqej+NpHFezvdWnu9mjVgsp8nyiT3PZv2eWLMtoNitcvrRBp9PmwtIlWo0am5tbCAq63W2mGk0G8ZiVFWuhffLMMu2pkD0Ls6ysbDHVamFEQRj4JMnYXpi0QxT5ttufJ0zPzjIzPc3Jk0so6eB6ivn5KYRUVFtVOp02jlZ85K77aVU9wtBHCIPnaqR2iJOE7Z0BQeihlWJra4gwcPLMRQ4fXGA0GuJqS0MTCiphQGlSgjBEKwHSxpNoaYPRHUfjhS5PPLnEwq4OeZFhjGD5/Ap+oHEDB0s7lLja48ypJYo0Y9+eBmk+QmkXL6zTaoVo7aO14n/6wGnecedR/o9Pn+C1r/kB2lNTKLHFzs5gEsadsr66xotvvZGDhxYJApfj33yQffsWAZ9P3HW3zcFTO+zbN4sQJRvrG1SqEXNzM6ytbrJ7/8Ikc8/HCMPWxgbVRhMlHeI4I0/GgLFB3HEXrSVZJgkiPSm8FEVhQJRIqdjasBbzrhfR7/Xxfc82XhxFVInAwLA/pihtNpzreoxHIxxfT+JeSkRpqavlpKGmlEIIKMuCIs8RUuN4AUEQYITCc13G4wGOq0E4k02EYbCzjRe4OI5isNMnqkSURU5ZFLiuS5LG5GmGH1SAEu25Fk3JShzfoTSG4XaforAFrB/aYlE7rqWhKYUxguFghyDwkFJjDLzrp3+L229/MY22oigFjiPY6m5w9sxJWtECn7/7S2xv73DDiw7yL3/1Vzh4wy185m8+w55ds8wv7GJze4eiGDMerjLekezddxChR3hqFqmtBuXAgYP0etvEcZ+gWkX5Dd73h3/M3h+cRymNkQolNfd94ymO7FtktbvJ5z/9IEHVRzuaVqPK6Ys9PLcAI/jKAycm5kg5RZkjhEQi2Or3qYQ230/KAkzJxvY20/UKeQlZnqAkjOMMz5GEnuYLX/wWexc79junQZmS0uRIaXEOgUQRs7HdJ/A9q53VJYUpCVyPUZzZ8HDpkJcO0rUI6/nVHaKogut61v1YO3QaTdZ3xmgpSLMBtUqAo1x2dZoUZcE4sbrAixs7NkqjzHE9B891KYqSv/3SI4SRQ73iUwk8CpOx3ktY3xpiyhxTxlzcGOCqlDzP0G5AmmVUgoiHnzxLuxmxf3EaYXLmphoUZJjS4DkKrS2Oo7VkezgADI7r4EiDoERpTbvW4J4vfYtqPSRwFcvrA1q1Cllh9WbCFOxdmKYa+Rw9shsh9KS5oCkLQZIVACRZTuC7dHtjfNfguBFaxjjSY2FuliDwqIYOLwtfxy/+0q9y6/6XUBqrp7V5kSmeDkjTBCgZ9EdU6yF7d+8BUeJ5PnmeMNVu4zouWimMsHmCvh+htctX7vsC6+trPPHEw9x6y/eR5xkbq6sEfsTG2jqVSo2Pf+ou3vyWd/LkyeN8/atf5vDBG9hcv8zum/YxPD5m3/59tFstatUKURQwGI3oTO+yxanjkGcxw8EWzdYUQkg2tnpkhaHT7NDv79Co1zGUaCk5d+40U40mo2SIF1WQlAwHO4SV2tXi7o7Dr2DuhqkXVGBdT9O8vrgz1/179XHXHPtaiuV/yXihBeG1c3veAvYF0Niuj0D4bubxzNlce4znc6y8/jHXPvqZLqYWwXt2+unzHefZ7/vcf/+eW+bfs3FVc3fNZ2e7eC8cjfu70DGvjGazQXnx0etufaZHkOv5mCxHKh8jBQZNOhwShRpH2sJFOA7juMT1PMY7WwQ6YhAPcEIPR3o0mwGnl9bZNTdHHMccWJzhqZOXWVndYH6+zePHj7Nv3x6q1Rqbm1181zA/P8t2r4/nuhhjtWSOpzFlhpDQaNRJ44x+f8jOsMexI4vWZt54pHlKlsXs3bOb02fXuf32G6jXPS4sr3BhaZlOJ+Shh04xPzNNc7rFxmaP8XBAu1ljYXGend6Q+V2zlBge+PpxDh9aYG2jy4EDu9nodplqVelMt3F9G+DtOh7jUTIJYbcagY/cdQ+H9s5T5PkknwhkaW2w8yyhSCyN05QZFKV1s5TOhDZhLIInLZVTAlJYbZAUEqkgTUtcLRmPtvnJVx/lqTNnuOfkOi+fb+MHNgg4jXNczwMMRtgOntIOBnCUIYkHmCLnDx5b4vdOXeTD5y9zfDzglf/gMO7eFh976CHe8M5Xsu9FLV7z4oNUAmsMnCU5blCxQnelyNOCej1i+eIS7XaNOB6wtLRCPE74wn1f4dCBBQSKZJzQ2+7SajcwRhBVQpI4IQgsDdDxfLKiYDzc4fuPeqRZjlAKrRw2en2mO022NjdZ3DNHZ6bBRm+HTrvF8sV1li9t0ZlqEoUho0FOnoPnW+rL+vo2fuBjMFRrIcvLa+xenGOr16Vdb9IfjFjf7DM7N4V2Ba1mE4ygXosY9WNcN2R2vgPa2pXHg5T19R6+VriBR2mw8RTaAJpvPnyKg/s7FHnOh/76IZaWusxOTUwdSns+JGnC0WMHKMuCx46fpllvYkRGkeZUw4CdrT5FKcjznM3NHY4cWATt27y4YsjppVPUwgC/GlFrBAgVMBzGUEA8HJNmI3yvilKgHY/pThsjUpT0eeDhx9l7eB4lHLprfSo1j1woi7ibAUJUMaTU6i0MEqkhSVLOnVtheqbNDXsXGG11+cXffA9IxZ+87wO85JZp1tfWmZqewpGS9nQbx9GMBkNKI2h3ZjHC58RTp2m2ariu5sC+CO24JGnCvgP72FzvMj8/xaVLl2g1qkgp+av3383NL95rO91CkyMQZYGcIGFFbihyENInz2Nc378a+G1NUoZWcxcGk2y5dOJQWaBdgRTWwKfIU/zQw49CAFto+Z41xJACKQ1lFqO1T1mUZGlCkWcURYEAdrYHVCo1QJJnlvZptT4uEgUY+tvruI7VYVEWCOkRhKGNRpAOaV5QGoFSkjzPcf0QKUuS0Ra+WzIc2XBzgDAKccMAzw/J89LmVV7pvpvSZqMpwXg4RDsuvc0uH7zrcf7Jz/xDylThBpZg1KhNMx4aNje2+Le//hv83M/+PO/94//MW378x3ACj04nxFFj0lzhuAFpJqi2FqhWqyAEw0FJmg8Y5zn97TFb3UtU6wLPafL+P/scr7jlBn7iXe/kd973x0ztquNogSckC7M11rYz2vUGh4/OYqTL2uaA+U4baYaEfsSl9R7HDi3QHw4pSgchSgI3spE5rmIwHhGFEiUCmyGWJxRFAcbqD7Xy8PQISolWPocP7qYkY6O3g68dqyFFUZQZSTa2lMZMce89j3Ds0C7OX1qlU+9QiIKylAROwMmlJcZ5yUy7AyVo7fHEybPs3dUiTmOKQhOFIUlW0I5CjMhY6w2Yqjc5u9KjUXXJ8hjf9RjFQwbDPq4L43RMxa9TlAWuI1mYb9GohBTG4GiHPBfUw4i5qQaO1myPEhamawyTgkpUIctt5E7ke7SaLuCglaFE8tSFdToNa/5TTtBaUWYTSpxgdWOb0CuI05StnZjzF7tIpbjhyG4crahGEa1axLmVy7TqAQjDOFdUggCEJDeGspQ4SpIkPUbDFCOMbd5h4xI2d0ZUfBclXLaHCVIazl3u89WvPcrOUynnjq/zz37kF3A9H5XlKK1JshQlNAhBmqUEQcR4mOO7gjDy0K6HEZKKH02uFQWh10S7Dkq4jEdDAl8yv2sP9UrIsSPHyIqMpMyoVCI2NrfozM6jpLEROJUI1/W56cYX4wcejVaLT3310xys3UxUt40JU5akWYZEsL6+SiEVzXaTIk/wPR8hJKY0rKwss7W1QZ7H7F7ch+O5lKYgzzKqlRpJmhJjCBxNPh6zeukirWbbfiZSIhzNX3/xLm67/SVwHcJ1zebvGTTL66MPMM+MRrhCKbyKNV2Hbj3buILoPdd4IUid4Ns1eeLpA3xbEXrtUZ6PGnr93J9vHteOrMgnGsUr4xnWMtfM4Aq18ulXcsUt89lJlk+jeFde1fPFH1z3KmxEinh6Ji98V28fqB3ne8Xd35fxbMXds+rf/l8c9939cRanG9fc8sxTSiDY6W0jlcSZOMv5tRppWSKuuOuZlMC3oayGkqIsiCp1TGEwJBS5odGoU6lWOHHiLNvDMUHgcfutxyjzjFq1Qp4b7r3/AfZNjDHyzGbAjYYjpFQMBn3anSnA8vnjcczXHn6cPfMtbjy2n0oUUOYF43RImuScX1rD8yRB4KEdwcrKGo1ag+lOHSFcWs0GadFlfX3Agb17SPKcMAzREqqViMsra/S2elQrFZI0pVmv02g0OXFyicOH9pGklpoZhAFCSNbXNmk0K2hHo5Ti6GG7oGvHtQvYJEelBOTEWasoS8rC4GiXOM4QsiRNE5SyND2t7MUEDEk8pizEZNNqdXRpluF6HkI63Hp4nh98+UH0QhW5q8KHT5/mX99znE9cXOMjSyt85NxlPn15kx9/2y186sISx16+D72njtzd4I7b9vLW7z/A219xhB9+ySE85ZIm2xw5uJd773uQPbsXOPH4EjOzMwj0JGtsTJ6mk3w7RZZlRJHPeBQTRi6tVgutNAtzHYQQ+F7A39z9ZW65+SBFaS37i6IkCAOyLENIe94pKfnsg49zeC5gOErxfGsGoJTC0YqNzS7xOGb54jq3vvgo2hE0GhXieEyrXafX65FlOXGcUa2EKEcTRRbJ045iPB4zMzONEBotNd3tHaam63Q6dbTr4DgSUwrOnr9EFLq4gS2OpSwoi4ThwNKFLq5s0J5qIrUNX71y8UyTDCWwqMxwyNFD8xw7uki328XzQWqrydizewYDbPd67N2zm6IAiTWvKU1JVub0t9eZ3zWN0uD4DkWRs9ndYnp6inazyekzK0xPdxAI8jTlzJkLLCzMUpaGMKyyudGnWvfJ8gwtNYacIjfMz7ZxXcXS2TWEkQSRdbgt84Io8ogqEYEfAg6gMcbB0dK62uU5+/Yc4D0fe5jXvP715Lnhf/6Nf8/P/Nevo92ZwhQlCM3DDx1nYXERKRVBUOFrX3mY2dlpVi6tMTc/w1Snw+b6Wf7mk/dx5OheTImNtBgN2HdgN67vMBwOeenLb5psDARCarK0oCxS4vEI3/fpb+8QhAGO6+EHPmKCeIMEoQgCj6IsJ3l4ktFwZKnjWjPo91HatUgXhvFwiFTORK8qKDKbM5dl1kyjKHKUDiwNUDsUeYnnemjHwQ98pJIUZXb1O40xjIa2uMwzawLlBxWEUtbQRSiGwx3SJLGuxL5nG1RSoJWaNPoE2nVtbldQsWtIUV5DJZpsvoxtCCXjkW0mTai8rmcRymQc849++qV8+SvrHD56mGScUmSCJDa87a0/wYc/+AHuuOMOfvLd7+bokcPk5RjH9ajV6tx/39fYe3A/ge8ipSGNhyTJkM1ul2azxaA/YmvlLD/+5rfyMz/78ygnQDDiRTfvZzS+SD/2+bf//b/hh999O1oVGCPYGQ35wj1PcPMNu0lT6+R667G9HD9xmmazxfHTl9i3MEtapASOYxFo164bUBInOYHn89DjS0y3qyRZSugHdHdiKoHDA489RRR5lGWOQfO5Lz3K7oUpXO1xdnmV6XYNIQzlZC2SQrGxPcZ1FIcOLiCEoBoFOI62JlFlQZplTDXrJFlK5AdcWNuiWfcxShJ6AaaUPHbqArOdBg8+epLpdg2tFbXIY2Vjm0trPfbMNTGUOJPzrlGtWL1fVliDsCzHczQgkBN9q1aaLM+RImGcxnieAiFwtYvveaxt9alFIWk2RkwKocivAiWnLlzmoQdOceTwbpKswHM0ZhLH0x+OCQMfz7VxPr5bRSiXi+t99s61GKcpjUpIb9BnFBeUxhAFHuMkw9earZ0+Spa2EeEqjCnY3N5CSo84NdSroQ07xxB6BXmZcHmzT7NSRaqYiq84enCRd9zwU8xne/BcByUFRitKpTETnWIYerbZ4nh85CMf5NixY8RpipI2EsgIS03zg4B4FOP5UIiUNM8wZhInouy/QVTFMTY+qVaLJs7WkOUZvh9Sr9eJkxhHa4bDEbtvkThxFS/Q9Po7nF+6wHA0IogqdKanybOY0A8wSHw/YhTHeJ5Ps95gfmaGXQsLhGHImbNnaDWn0FoTBJZVs9XtUq9UWbl8kT37DpClGd965EHm5xZQUvBHH/0T3vnOH8eY8rmLO64pir4t+uD5DVb4DkXQlWM/b8zBC0Xqriu6rn3UtRjWM26/JgT8Ox37uxlKyuehOj6z1LyeUvncVFH72Kdfg/kuCrvJ817/8XwXj4bvae7+Xo1rDVVgcjILwbX+ptd3PJ7r96eP8d0hef/Db/w+b3/l4Wf5iz1NpbDubhi7gVRaMhz0cYQt6gZbawgBW91NfM9uoJTrMxqN7eIrC9K0wA9Cvv6NR5huV7n9ZbeyfPESkpJzZ5YRUtBo1IkCj1arBkLy1Mkl2lMtqrWIJMkoyxLf9wFBr7dNo1ln7545Oq0axx87SZrmbO/s0O5UCYOIuZlZ0mREaQxT7SaO0pw9d540T5ifnWc0jqnVFfWwycPfOsHu3fNsbQ/Y3uzS3xmQJAkrK6sEYchmd8B6d5vTZy9y58tezGNPnmU8SqjX25P1saRSjUjTMY7jYkqDlGCkQlBiihyhNeM4pcgzxuN4gqiVmBI2uz3CMAAypNYkccYTT5xhZqY14cDbBanfH5EkqQ0vlxKkRGoXKfXkM5osKAZu3DfDu37gRbz9ziO85eUHeOf3H+ZNd+xHSsGhXVMkcYye2PXk4GIAACAASURBVIcrrVFSg8lQcszG+lkCz8MLqyzMz+FIjVQFvu+SZmNKkzEaDNDaogWj8YgwCmzGclHabmJhUNrh8uUN2u0GytEcPrj7avCywGqDtPM0HVVMLtK/+uff4B2vmMXz7EY6HsVoJXjyqXMoaTvEc9Mtli5cRoiC4XBIu123blYmp1qNSJOCIPDREytypRRpZsPoVy5tEPoBd9/zIIcOzOGHHnIS85AlKfEoYTia0J+EoFqpkKVjjMkwWDOL2dkpS8GS1nJ7NBrhKIUUAs91CaMQTIHjai6srLFv9yxSeJw8tcyu2TmEcBEURJWQS5fWCcIIJYWl7GqJ62mWzm3iaA/Hizh9dp252Rph6LO62qVWrdLt9mlUqxaVTRNq1ZAsLXCDEGMUpoSyjCfvtUFrgykt8qtMwcOPnKcahWzv9Gi3q5baoV3yYkCepZYC6rtXz9Odfp9f/Itl3vryg/zR55/ibW9/E7VqnTtf2mJmpk2WWRvxLDfc9bEvsrg4S1Sp0t/uc/HiZRZ372I0tgYgf/nnH2fl4hLGGF7ykqMUeQECijLDDyOyNMMPXKtJReFoG/ItpYKyIM9ztCOJxwPCStVqfIoUrVySOGG7t00YBZRlQVkUGCDPMuuIKSHNUvzA6q/i8dhulr2APC/ob+9Yvarr2qzH0kYllEVJPLbFfa+7RVgJUdoliWMEBjOJkVBSkyU5Qhmrp8wylOPY93LCzNAT/ZNSVoOnlJ4ULgZTloxHI6s1FJLCKIxwkRiy1CI0tqMunrZtN4XNyRIFUth4lauxu6a0GtOy4F/86p/xzne8mbw0uF5ImQu++fBjvPnHfoyf+9mf4eFvPoDna6qNKs16jd/6d7/Nj7/9J5iebpEkMRXfYWvjMgjJ1FSbp048SaNZZ7ZV5V0/+RN0ZhbIMo0qXVJTEAYdSql575/8Ed//thtxtWRnmFINPQ7uX8TRcHl9m727Ojha4Liaz332YX70h27n8195lKP75vj03Q9x47E95GWKko793ilJmhV0mh2UKvFdh7wwhF5Amo/RriQrMgK/QhhEzM+1We/1aFSqhKGH5yqUEjYnUCiMkZw8d5nZToPSWJp0tz/AcSVFbiYUYZs/GHguSV5QiyJKk1MNfQSSJ89d4pYji/z1J+7j5pv306iG7AzHSGnwHE3gO4S+LerWun2iwOXC6gZSKtq1mqWIIqkEIeN0hKDE0Q5JmjEcx3hOyGCcsNqN2RlBq+ZjSkMlsE6UWhpLfS9ynjizSqcZEfke33fzAfJCoq0b0iRO4Up+7MQJUMP2aEAl0MxNVcAYPn/PQxzYP0sl9DiztGpRQ6VZ2+qjhKFRtfTESuBeRZdcxyHNLT0yyWMreTi3wnSrxTA2fObTj7H/wCyBl+Mozcd//TgXjl/gRQdusLEuaUKRjVBKEg+GPPCVz7Fv/2F8PyDLco4cOYJ2NFrbkHpKLJMlS0gTG31QZiVxEpMlcNdH/obde3fhaIWjNXlpGI83SeKUsjAgJOM4Ji9zqlHIOI4Zx0OUdvjiPZ/nLT/9ZraXRijh4bkR1WoVrT1a7RZ5mRH5PkmSctcnPk6ns4uvfP1+67haq9q8U1Ny8eJFWs0OpQHH1cRxbJ04v/i3LC4s0pmeISkyoqjC/PwCX/nqlxBC8YY738D00aZF3IRdw6+4SUoE5WSreMUU5YopyFUny+cq7oz9zIvvoOW6sp98oeM7Zd09V0E3mdJkr/N04WSu6unM1fvY53mmocqV8Z2MU66MoixQSj/PTJ+5j77y/+cze7ne5MW+ju+uPHvuUvyZ7971r/N7mru/h+PbNHdXwiqfZTybxewLud93Gu94x1soLz13mLkpQbuarW7PBqIOBlSrFbRSrK6uoR3NKJU0ajUGgxGeH4CMKIuEMo+RwmcwHrO9PWD/7nkGgz71RoMDe+cJwogTJy+hnZIkSYkCDyUMygmZmZnBcR2EFIxGMa1mncKUIEtLWTSCPCtYXdtgeWWLy+vbhKFLp91ibX2NQb/HoJ/geT4nTpzjwIE9ZNmA1lSH9c01ZjqzHH/8PK1mlUolYKvXpchjqlGTwXhAo1GnXm9SlgbX9alVK+zsdDlwaC/94Zi5mRZKRrz/w3dzy017KYpyEvvgY7VygABpcoosQWkHx3EQZU4l8kEpKK3ZShC4GOzFRklNmmYsLMxSFIV164NJXpgNhxWyxJQlWmmKEuLBEOVIa/Th+ZOVUjIaJoxHKVIotGMDyK/ohFzXJc8nmXyiRJSCogCDJIgqCOlSCI1Sku7aGn7g88QTZ5mdncZgLPqhHITQeIHLxvoGYRjgaAdFwJfv/xbTnSZKKiq1KkliL/QlhvEwmVDdrIFMWQrKokAKwXA4pEKX/dMNCmNRyjzLeeyxk+xbmMYIQbvdQjse9UYdxxVsbQ8ZjzMazSauoxgOYlbXu3SmqxgjJsgGuK6myEvCMODU6XPccft+KCWeZzV9UiiWli5jCsPsdJNqxaO7NaRWq6FdF9fzcbRCSYvIBEFAt7eJIxVhUGW720MKJk58mtEwJgh9Ws06S0uXWb64SqMW0u1tkyUZ1ajK/V9/lMOHFnE9hw9+4n4O7ZubZLcJ5ufncD2XE0+dRyuYmmpQFCWNRoV8Ek3huRrlaFzHIS/s5kYA/cGIMAwRKmd9rU+jXuHSyiV8x+OJE+eInJTF+TlGcUaz4YApQFqaYllskyUKP4qQ0mVjcxspFPVawGMX+rz2+w7xpn/6P9Lf6eFIh8sXv8n0bIeNtQ2SNKESROxenObxR08gTMkHP/QZpCi55dYX0WxWOX3qPI89sUTgZhw6NMeefTP85Z9/mqdOrnDTLUeQOGx1e4SRDfZFgjAl291NtGO1a17gIkRJpRaRJjlZkiGVAOmglMB1QZRjhLIGKI7jTjSlk++O1gg50b8qiZIOSjmMh2PqzSZKKYq8RLvKutlSIqWlnksNfuihlCCNC3v+XNXF2mLOD6x9vNKK8SjG9RybgZhm9Ld3CCs+8Ti1OZRYCmmZ281WliaWrlnkXGn+lrnVp2qlLQUTq73dXF9HSkHgBxRFQZ4NcD2fLLPOm0JK4v42bhDieS7vetsNPPBwn0rVx3VchsMRr7zzTn77t/4DjUaD9//Vn/ML//znecMb3sVb3/ijHD5ykHpnCiU8NlbWCB2H4VYPr9rG9zRR1aHW8BjmJeN0hOsG/Mav/3u+/xUvw4k8Ir9FOd6yjbcbFXkpJxpfMQkdz/nqo5fYMzfNhbUugR8xM60JPcfm+CnNTgpznTpaGb518jK7Ok2SzBqwKCkZjnPy3DqbOlrhOg6+5xB4Hn7g2kuqEQgkvqcIfQcpbJajnCCJS2tbLM622RoMadZC0jwnCjyE1Dx6YoVapWLX84npglYOH/vMgxzcO4vAaubmO3W6gyELu9pMNSoUlNz39RMc2NNhEMdMN2sTS3XNVx98ktmZCp1GFd/VFEU5KQJ9zl7eIHAlweTcSNIMYwzHT62ye7ZBvRIwVa8iZG6biwJ6gz4nz28x255CypJOs0lZpIS+R5Jl3P/g4+yabXNqaZVm1eq/Vrd28D2XNC+RRlHxfXo7A0t/DQIOH5gnzXMMMNuO2NzuEfouvf6AaiWiuzOg3aiT5DlFDklWUiL56N1PoOizd9cUpVH8zedOcPTgLEVhuOWmBVDQG2Y8+tFLFCPJf/Pad6M82yj55kPfYHp+DikciqJg165dhNUqRV7aQkYaTJlisAyBwoAQpdXmORWGY4vGLy9fYro9Rb3p02g0yNIY13UZDvq4nksYNcmyzLp7A81WizgeMhoPaTSaeK5HI5rmXO8cw8t9fK+C1ArPk2xtbtGo1xmPB4yGCZdXL+N5Dp2pKU4+dYKFhUWmOtNs7+zQqNWRQnPvfZ9n3779jEZDKpUKJ06d4Lbb78SYksD3OHn6JK3ONFJL9uw+QCWqIpRg5mjrms3dZJkRFiOyHs9P58xdKT2uFkHPVS5cQ//7fyZG4Dsf5/q/Pve9zXX3eebv4nmf65nAx/PP5TnLtOeZ2VVV49NAzAt8zhcynr+4+/Z7Xl98fjfI3XeDKX5v/F3GFXLtlXE9iZdngbOvdBGMeVZt3nPd/myjNCUG+OwDJ55lYpN/pQGhqTWbJLmhWW8x2B6SpjmVep2o1qFWnUZ6Pm7QwHGqSDJczyWoNuiPEqam20gKLixfxHUspTJNU4qiQHs+0zMzzM5NsbyyTll6rCyv88STpwHJeJBQFNaQdnNzE3JNGLg4HuwM+ggluPPlt9Bp1bl4YZMnnnyKTnuWSq1Ke7rFxkaP6akpvnL/cdbXBywvrxHHJUbkZHnKqdOX8LSm3fTYvbiberuFEYoTJ5e4eGENR7o42qcShfzw6+6gXq9x843H6Mx26PW73HB4AWE0997/MNWaDVdN8yHG5Mi8JElHKDekvLLUOh5ZKclzg1SCLE9szo8ToP2ANAcv8MmLGEdZ5MAWKA4lkkqtgXY9pHasBbDJ8EJNnhqqYY0iLaA0NsDVl3zwrk8zHg8pS5v1IzBQCqsbkFAUKYKS3KQoR4J0kKKCkZ518FSCxsw0588sc9NNN5CMS2ThsrUxwJSST33mPpKkYKrTxojCmk+Qc9MNh3js8bO0p1s4riQMPYQs0RKCSBF4DmXWZ335EhrDxvo6JYao2uSNL10gSYcgDXkJaZKjhCRLE2am6vT7QwajPttbmxSZYn52llazynDQB6nQjubwgQVOPnkR1/X42jceA0rKokA7gvMXLnLs6AGkrNEfJOR5QRKnbKxt0W51yAuFG1QYpSX1ep2PfvJrpGnG8vIK8SCBQrPVHVEWhiiosL4xRglDtVqnP0i5vLbN2uVNpAbtuLheSLc3ZHqmzsLuGdKsIMtgOB7xfTcfQwlNd7PLW3/0dnzP5kOWRUaaDdFacuzoLo4cmbPvn7b6zO76mHarifIcdnp9li93cfwKO8NNLq0sk+cZZZlQZorQ96xj3djghyG33HQjwvPwqpLFvXXCWo0waiEwlKSUssVnvvh1ilKQFYZ6vYrWGXme8G9+6tW85/1fphJUaDRbvP3d/5ibb70VQ8H03DSNZoPt3hKf/eQ99Hpb7Fqc4+f/+Tt4w1teS2FA6oCX3nELg8TlH/2TNzG3q8PF5TVqjZDbbjvIH/5fn+S97/04n/jEV3CUR5kLhlubGFNSbbYmlMaJqYmwNFjtBPT7QzAaYRKEKJESynRoUTLHoSgL21AwGVKUlGVBniVWf4TdXMfjmErNmpiMh0OUlCRJgpQJZZEgREiRF5SFJh5mgMD1HBCKIheUuaK7vo7rhhTlGNexxkWOtpT1sshxfYdqo8rG6hqeH5JlOVIpygKElHQ31jEmJ01SHO2hjCQbJ7iuhzRqQl+2xeD21iZB4BKGHmkynBS+AUWpUFLiuS5SCJQborVLksQUZcnv/t7volSDnf6Y4WjIW9/xLnZ2urznPe/hd37nX5EM1vnMpz7Kj7z+NezdO88f/O7/zs7WFm98/Vs4efYEVKt89lOfReqUwPNRponrTLNrPmL9/KMcbO0i8HzSZMTOzjK/+iu/wK/92j9DyIKijAk80NInMyPSMmOwscXm9oBHv3qCZmCYbs+TmQGVis9ab4Vbj+3BUQCKF+2dJjM5oV/la4+cBVPy+S8/TuSHjBPojXYoyyu0Vk2RSxxVUhQDvnr/cbo7IzZ7Iy6u9ygKw4XVIY52aFUDvnDfY0xVa2ip0NJarGhhuOXIIpXAwdOClfVLaGFI4piX3XoA15UgDa5rEfF2tcJDj5zGYNAIXv/KF1tkrmo/6yv03lffeYysNAjpIKWD1Ia8KHjwqU3qFQkEPHVula1hgetXaTeqvOyW/eSmRGkoTEJpDEoJkjim6vns39vBiAzXMTiyxPN9Vrf7DOOUH7ztRVAIzpzdpDQW3V2cbiEQjJOCrBzSG44osTpRSmFp856NRDl36gKdeoQwY5peSllAp9GwWjsZ4ShFWQKlRqdDbjh2CKmsxvgfvPYw2pE8ceYScV7iSY+55iy//cv/kd3lHH7UwlUaU6Ts3r8HrX0KY9COS6XRIclzHMelP+yhcawRmWN12r4jGQ4G5LmhpCAeW5fnxx//JrmJWdy1iCEniOqU2qcxPYfjRoxGOdu9PiiLvilhCPwqzfYcpYHheMBH7vnP/Nn730+rucCllTWS8YgiGdHstFjb3CBLDU8+9TjbvS633/YyHn30QV71gz/Inr27KcucualpNntdwmrEnXe+iiiMUI5LaQR79xyyhk6+D47DzNQ0WlhHy6TIefKJb7G6fIk/+r0/RWAohLXhZ6KTtOpuq+a9AgqUpqA01i3Z/jz7HvJqfAIW5Stf4H7x2vFCGWKCZ7LLrmxtr1W5XXv7s428LCeshu80J/kcVEj5jJ/np0uW1/1cc5TJ8Z+5H/9Ox3thw5jyulleMwMpMOJas5grEQt/9/G94u7/J+NPv3j22267onMBKErbsR4OR9byvVanRIJwQDpoB8oyxw89jChJkgRT2sc7jiaPR8zMTLNrYYGdUUIQhQwGI3a2d9jc7AKCbz1yHt/1MGLMk6dO02pVgAw/cKjWA5aXV5ibm2N9bROlHFzXYdfCDM1m3VqcJxl3vOwmAi+g1+3z0DdPIIWkUgtZ2DOP4yu8MOSWm25gOMxJkpL5mXmazYh+v89gELN0YZVaLaLZaJAkOVv9IZdW1yiKlBOnzrHTH4EQXFy+RFEUzMxM8+iJZZTW/MCdt2GMtUeX0iJaV7+O4uklTUrrXGk7xyXuxDDGLoJM6CYS3/NBlPS2epNDCFzHs3ob7OZNIifuZLagMRKkozHK0td6Wzv84596I/VmDakVyvEwQttNwURQrKSdR1FM6Gul1f3lacyo36dIE/IsZmH3LIPhDp+79362d3rUalX+7K8+yWtf/X042qHIDVmSMxqnJHlJXhTcfPMhyiKjLAAs9SmbuKgtX1zBD0LiNAcpaTQaSCP5j391L0nmsLo6gkIhCtCepFoPqbeajOMMx3G4uLJJEPqsb26w1duydKTc6t6C0OdLXz/Owq4O589d5LaXHCVNM7I0R+Jy+MA+0iwlzcY2j7G7QzxOaTSrdKYjgoohzfo4rqFa9XnNK48ReC7T7QZ+4HP8iTNEUcBTp5ZwPJf2VI20yBmORszMTlGthjTqFVxHU5qSJIl58c2HmOnMsbrS49jRA7RaVS5f3qTb7ZGmKWEUMByOAItI7+yM0cqfoK2CJBmTFSV5KTlz7iKjJKa3tQ3AiVMXqATgaEO9VmFxzy48R6CksOY6joMwhovLm1xcXuVjn/gyYTQPpookYvXijqVtSgeMzYj7oTtfjFaQxkMG/R0c7fN7n7mAdhR/8bkH2exuUuQFt79kF/3+9tVLjdVfarQb4Hk+cRzjO451H0xivnD3FxiNxjz6+NIEpcp44Bsn+K9+7NV0Og1uv20P7/7pH+ZVr7qFrW6PD/7lZ6i3ZjBGW6l7mSOlmdAzFUp5GJMzNdNCKBiOhiAlcVzQHzKhPxp6m127IZFP04Bdz7P0NIlF8xy78TbGUK3X2Op2cV2fspQo7QOgXQdjcvzIJ40Ttrc2KcsM19O4nqZWrwCQp9Df2bZ0KamsEN9IjLE5ep3ZOcaj4cQVUJEmMVJKGu0mXhBa/VA8Js+ziUFMSb+/PdHb2aiUWqNFVKuTpSWOF05MYK645GYApHGMdhzSJCYe2/P9vX/wDiquohZoWvWAuz7wZ+zZN8e+ffvodRM8r8ndn/08f/qnf4Ejff7hT/8Mv/zLv8b7P/SH7FqY4t4vPMKPvfFNbG0MGY9yPvrhu3DyS1y+0KMytYcbXnULaTFg6dwKUkb8p99/H1ubGQ9/ZHkSDQB5aRBotvsZr/2hG4lCxa2vvJFMWBTalB5aOexf2E3kG+J0hACyAjCQZjnjccKjp5f5kVfdwOrWFtUgACPZ6vcRQuJozdrGFuubO/iezyteeSP1MMBzFbOtOsurG8y3G5xbWSPyXZQQSCWI0wSD3fSOkhEAWWa4/5unmWnPsr4zJooCalUPsO6fSmrGSU6a57zuVS9hEKcUxoAwGGxD4Yo5mDGCNCuohSEY24gr8oI4zdgzW8fVkrwc02zUiXyPncHo/2bvzYNmS+v7vs+znbW3d73vevd9BmYDIRACBgHGCEWWLCRELAnJsmU5Ljll/+E4jmJVHMXlsh07kkp2YseJLWsxAkmYRYKBYRtgmJWZYZY7d+7c/b771utZnyd/PP1ehmHY5Qqp8Ex13Xqnu0+f7j7n9G/7fr6M8pqi8GOxZel1vUUBeW5J4hAnKkLttXqjvMYiKKuaRhx543eXE0WOt919BkeGoyLLM5QStFJNoA3NOOaZC9eJg5CizDFGsLa1R6BDPvfYGjkhlWpQR1M04sCTZZXkwSfPU1bOg2pCyY/+yCswWpCXOVJYptoJRgvuumWZVmJ49vIl7vmnj/O3funvcPLEWco6Z5SNqKuKyYlZf04CQWBwtsZYwY1rN2ikTZz02n9bV+NfVEESNgmDECEds3MTFHnGW97ydqQQSKkp8gLhaoZ7O9T5AGsruntbLC4tYFRAvzfweloFrq4ITEBVllwdrdLtD9jb22F19RqjLAMVMRwMeeyLD5JEEa+485Xcfvud7O3tcPfdb2ZyYhpnYW1thd6wy/TUNGAZjvpYW9NIU6qq5DOf+ThKCvJsRJbntCYmWbmxhqt8LHDyxGnOnfsi7hyoWmJq8zXjt29U0HfWjrX7/99cRvni3P9fl7X2aw30fdvre8ndf+n1UmWMF9xeeMLun8D7t++Ekum3Z2++fP1VJ74Ya8nG7V/p85P5hTmKsvS6OhMSJS2kNhRlRlVVOOtNruPYByzOQqMZI51DaoMKA4rKV5b6/SFXr63SbobEUczuTk5lHdrA0UNzNNKAIh9x8eJFjJYcP3oYiWBxeQ7nYGenS17kTE5NsrKyzmBU4JwgiWM+87nHWJybwdaOIDBkRcbZW49x5uwpLl25yMmT8wShw4ncB85FwezsDAvzc6ysrjE7O8vLbj1Ds9XkyJFlnr1wjVfddStYRVWVHDqyRBD4C84rXn6ULBvhrMVWJVhPI3NC4oRGBQFOCGxdUdcW7PhCLLjZgfVGnH4sUGkBEqwTFEXO5NQE4EmXRe4Dfa0Mvb0Bdmxgo6Xy1R38hcAfU14T45NNwX33PUhVetKlNmo8oy9uavQC47Hi+/5bgVYIZ6nyHC0F7ekWrVbI3a+9jVYnYWNzg5/+y29CKoEaB5tBGNJqtwmigCfPn/faBSkYDkdY66iKCoGku7fHRKdDUVYsH1wGCWEUIxDcf2EHoSvue+gpNjdXCExGEMDywXk2tnv0+hnrW7tMT04QBAGLC1M00hitFXEUj9+v5I2vu5P2ZJu5uWmkFKRpQhCFPsmrKgaDEVmW0WwmTE1MjpPsmjyvSaMUo2OuX+vx3PnLNBshVy5fJxt6qMD8/CR7/QGddoNef0gUexBGkkZcuXaD6Zk2jVYDrSVbWzs89/wVcNYTQtPEjzjHhkOHFggDw+5uD6U0nU6bne094rhBNqro90asr+/gnCNOQsLI09gWFmZYXJzCWf993v6ywwiZM+j36PWHOCAIFHmR8/zFq2gtWbmxzrFDc0y0m7ztTXdSVhnWlezsbrK42Pafm5JjMpqg2W5S5hlxHNDpNJE64KGrFuvgQ3/yB4SRYnt7l3/wD36OZjtFjEly1lo6UwcYDAve9NbXMRwMsZVj2B+SDYdcvXSVz37qAax1fPbTD9Hd6/H9r76FKA7I85wvPPQcUkgeffRZNja3+Es/8UZq62uZVVl67UwY+GufkFirwNWURc5w0CeIU2ztiNMWndlFqqqm3+vRmZocJ1oB2aikLErK3I8HMw7qpfLaTCkleZYzOzc71mQFVEX9gmuvZTToobSh2W7ibI2zPuuQWnkokomIE09o1cZThaVUlGXlK/BOEKchZVlSVzVRHI67gn47RZZ5uIryyejezg5ps3FTK+JqR783wlmBDkJ2tnZ9t7auKfKCMPKvHSUpWmuU0jRaLV9plpKf+Omf49GHH6a3u4GUOb/5W/+MwWDIr/7q/8SVS5eJ44CDy8v0BxmNpI2wmp/52Z8mLwo+/KF70caSpi2UDPn4vR9j7cZ5DswcIe0c4PitJ9HG0e+W/LVf/JtoHbKxusdzj+xS1Y69/hApBHlR8ZGPPk4rDRhkXjNqhWan2+fxZzd4+IkLZLlimPcR0lHVljgwGCmpqppX33GaM0cX2dzdYXaiyfmrKzSTiKl2Om5meOevdqPBYFQShSEWf30UyrFwYAIh4ODcFEZLXveas9S2pLIlQvjvel/PVFSORx++zjC3NJME6xytNPQJIZAXJaHWxEFAf1Qw2fDSBYdFC8uwKCnKGuugN8p9N9f6a3BVFWhl6DQTZtqaJE7oNCOaaROAZhyidYCWAuFAInjuyhofuudRwiDEobA44sDgrC+w/OEHv4AQgjSK/a+8aGCtpjcs+fCHH2Zte9dDlKzF2pLtbh+jNWePL2Gdo7YlzlnmpyexFn7qL72ClZVr2DKjEyfUzlKUBdbWvPzkIcq6Roiaus7R2o+vxqEhMIr1nT1sXaBkxSgbsXlfxmA04O/+lb/LieOnieKQOIk8NXbfTFp5O54iG7K9s8WjjzzMBz/4fpwcB077oLGiZGt3hSAI2Nrc488++DFPU40CdBgyzArarQ7WVsShps5GDPpdpqc6bG2vI4UkCgPAUdvKA1qqmkAHxGFEGsZMT0+ytLhAI2ly7cYqjSTlh17/Zra3NxFK4gRMTU5RViWf+MTHePjhh5iZmaXRSBmOBuzs7jA/t4BUXjqx1+3yA699A7iaTquJURKJJdSCYtBF2xIlJbff/goqNeCf/PqvY1Bez+6Dt6+Q79wMI4U/XvdvN++/qckbs48eoAAAIABJREFUU7edv73UY7/RenGn76bGjK/mP+yvl9r+zX3+im29dBfMufo77FN9969vpfu3r7H7Ttb3NHf/hdc38rmTX+cL/85nfL98cGxtbHHXYvB1HuuTPQcI58EBUiiEE9jaX4iM0dhaet0LjnoczOT5ECzU+KBk8cAkK9dvsLa6zfLSAtOzU+R5zsHlSVZWNsEaAqOZmp5ka3uXRpJQ1lBmI0yoKG2GNp7YKKVBAGmacvzoEptbO2xtrfg5eptz+NAiSZQyHAxY39wiTZpcunyVQwcXQSiGg4xOq8NgMGSU9yhrWFqYY219l4tX13j199/Gc+dv4GrHjbVtwHH52goHDkz6Sp8xTE83Pdo6CRFO4azwZriiHnfwrNfuaOPHHB1eM/iCT9dar83xAIxyrBGTWOt1JPsBmXAO8H5Yly7e4BOffpDFhQlMIKgrD2KQUlLkBaCQAvZ294jThPkDUzzx+DOsrW4wO9seU0g1w8EAo/1Ija29fmg4HJBlOWmjgQlDDyoRgroqaTRTBsOMRsNj3OsaimKAlH7sLcsyjJY+OGk1UDokDDV1XZFlo3GHwxBFKdbVZHlNXWYMhyOiOOSOxV3S0HDHrSdpt1NqVzDYybh8bZN2M/F6t6ziI58+z/J8g/WNLgcOzJAXBXESsbq6QSNN2N7eQ2ifCOOgKAoG/T5SeihFu9Wirv1o8sOPnmdxcYqyKqjKgiDykJnZ6RkmJpuUdUWn0+HRxy6xvDxDGAR0Oi3A0Wo2KcuCSxdvMDnZIEoiwsBXfh994hzHjy0zMz2FCRRKO7Z3togigzEha2ubdNpN0kaMVJLnn7/Cw49d5uq1Nc6ePkIQSJqtFqurW/T7GbiKKIx8N9TmDPsFrVabIu8TphGBaRLHCflwhAi8JUAjibhw4RIHD83R6nQ8GdA4+t0+rVZKFAWeDGkLqjJHGe97J5REa0lRVpgwpiwy3nH3K7myss3cbW9GyJw/+eM/4847FimLEXYsUhcIhHbcftct5FmPp7/0POeeeY6Dhw+ysrLOW972Ri5fvMa/+jfv45//k59nfXWVYyfnybMRjVaHW84coaprNta3OX5siXvu+Tx1OWRiqom1JUILhPMdkOFgQBhqlAq8/6MQBCbFViVlno27dBUAwZiwK5RGa0MUhWitvB+iEvsn4s1kqipKlPaYfK3VWB/qyEcZdZ0D3mJCaYOtfWKMEzgUSkscFiW9ZtnDYsZehlLS63WJIkNZZCgVIJW3ZnAWTGhwzlN0nYMiGzEajmi021SlpxFjHcN+nzj1XmDbm5u0JzpI5Um9blzl9smsGFd+HXk29No+B+96x138/vue5A1veh3tqWl2ttZQKuVXf/XvIESfQ8eO4mxG0kjJq5rf+Z3f5RMf/TRSOd781r/As+e+wNz8HJcuXeTtP/IXiSaWubF+DSMlYmgJjKEzucQXPv9plpdSjp08zalTp+k3LgGConQ0EsOpE3NYYJTXZHnJs+cvI2TJ4twy05Mhz9/o0k4NcRhgtME6wcbOLq1GMk7MJVPNlFGeMT/VAZGjhMI6iZSCylpCE+Ks5MHHnuXQ0jRKifH0BIBkmI1wwFPPXWWykxAYhUSwst1nstmkqmF1e48fes1pBBVKQncwpCgLtPT6QVsXBEaxstWl3YjIiwoPLwmpyhGVlYQmQklNXlSkkUErwyjP6A4GNOKIla0NiionMg3AexG+/4/v4/kL1zh+6ghCWBySyiqMiVlb3WC9X9AdZMzNtLj/kWeYnZpAKsktp45SViX/1+/eyx0vO8qVzT2m2wk73V1uv/UYYWDIC/j8IxdYnp/w3T8nuby67a2GGk2KqqI3GtEYa+HbiSaJU/7gj7/ArWcW2e0PCINgXJwsSCJBHEVs7eVEQUBVV9QW4iDCOccoH/DMB1a4dfk23vHKd+LGY6UgxjAsP3khlfTgIGfBWWSoOX7sDNPTMyRRCFKipbdnCaIY6cDogFanzbHjxyjzIcp4ivPa2i6BtMSNlFGeex9c57BlRZKmjLIBcZTQ7+1RlzXv/6P/xMwBD4J6+zvfyPHkDob9baYnp/jgRz7EwsICaRQSRCFpu8P1q1eRQqKNASc4cuQoly5dZmlxmfX1VayTNJIm169fp9OaBATtdpswMGM7lQLlKtavPU9/b41BbwtbFvT29phaXOLwkeP8xf/6bn77t3+TQZazsLDoQTL+BPf/Sl993wetfDlqe1EUt6/RknIMCPnWlz9vXjr2/FpJ3NdbL9T9ufF/3+g533rs+9KatW/vuV9/fbNQl29qW99gT178Gt+jZX4XrZtWCN/GerGY8tt5/r4g9JXfd+dLQFW+PAUtnMUJP+q3dvUSW2urtCc6lM6hlaDMHEFowWpGoxxbDUCAMhqjJEoGSOEo8pw4Tmm3EjoTbTpTszhZsLa6zfr6LoeXZ3E2p5kmtNqTIAxJq0EQKqK4hZCWna01JAFCBKhAU1UDP8a2O+DxJy8wP7PA8aMH6fdHRGFIZWF1bYejx+bY3uyytb3BRKfFlas3iKKQtDnJxnoPoQsEMVlWc21ljdtfdhDpYHN7l+3dATPTTW5/+cvZ2d1ieqZFHLe4/7NPcOHSDU6dPEZZFDzwhXMcPLSAxFJl2U2aXZaNMAY8lDvE1QVKeSG3tQ4tNALpaWlj4qJQHnYiGJtiOsUo6/o2qtLMzkxy6uThsSdWTRgEbG1tIKgpspzAeNKkDjRVXZKNRiwvzTE13R5T9cZIbOHHXOq68loLFFIFaA0f+dj9nDhyaOydhTdDRmKisTHyeCwuSmKKfESRjUiSFloaoqQBQuFsQW1zjPJjpmVp0UEwPrwM2hi00oRxRD8rmUpqJDVOejuMqpSkzZj1jXUW5+dwLqDVCHj1XSfQJmB2ZpJ+v4vWkqtXVpifm2Nr6wYzU9PUtaEoRxit0UoRxRFGGS5eWuPzDz5Lu2nQ0nL8+AJFWeCsI0qbGGOwtgRRgNDcuLbNjRubHD06jRKKXm+PQEvCIOZTn32Gg/NtpCoIgta4AyYQOuDgwgHKcsAo20OpCFvVnH9uhbqAzY0tFg8usbG5QxI5XN2n1Z5mcb7DsaOLY8CGo6pLOlNN78EWhGxv7fqk2SgarQZFAd3tVVrtGYSELC8J4wTpYGd7l7X1DU6fXOb65S36g5x2qhnmFXEjRcjAaznrEqUldgyLKIYDjI4QQqFUgK1rbqz3MarBr/y7z/MTP/kjhEHI//zr/yvv/MnXAtaPLToFwuJq38kKTMRDD36Ru990N5cuXObqlRU++pH7eNNbXsVv/Ks/4m/91TcxOz9BbSuU1Gxv9ejuDRiNCo4fP4xSiltvO87sgQMEocOECc7GIPwIVRCEICS769cxRmKiiDwrPIjDKMqsjw5TTKioy4IgSLB15n3osGOojyEfjVDK4+WdZTyyXKMDibPjZMs5hDAYDSaIkMrcTB6V3i8g5GSjXbQKWL2+TpJEVHVJEPrPcntzlzA243GsmjBqgnBko974XBknCtb5MVSjMKEhDDVVkSEAbQy2rjBhgAm8j2DaaBEEETtbmyRxPNa2KkbDPr1ulyhuoKTCmJA8K72ZOJYDkzmd9hmeOfcck51DfOJTH+cH3/AGdNRAkVJX8OTjj9NKAt77nvfzjne8hZXukNjuETXnqK3gwNwSUdzk4x/+EKdOLROoaQpxHa2nKXvXefXrvo9/8Zv/nqWFZZphzPse+TCPPXqRE8fmxh0IhTEplS2Yn4xoJAF7/Yqpju88X18ZcObIlO+ouRKcpZWGvO/993P65CGv9aq9UXZtM8qyRsoSJzW1VbTTEK0kvTzj2PI8H/v0I5w4soTn5ysEFUYFDPOKw0szZEVJI0q5ttllutWiqkoiU9MfdGk1ImpX3aT4xWHkIVkSrJNkhcM5yeZuzsNPPM/Rg7MIwAqNMV7DLF1JkWdYDN1BSRwq4kiBCEjCBheu7qGkQeCvg3MHZ7jjtuNsbq8RR8mYjAxhIJif7zA/1WSyHaGEYHKyTRD463p3uMPaVsYdLz/iu5dJgpIQRYrKQl4LosDQakQMs5IkDbHA3EQHW1Y89fzzlGXGdCsBKajqHB0k1FZw+sSSh2+5iI989CFOnzhAYEKCIGA4rHnm4jpz001GhS/43NjaReuARqL5ydvfRqd3ijQOKauCMIgQEqqywhjjixD1COU0RgWUriIIUrRRBIH3pOzvbaJNQBg1+Pz9X+C5808zv7A4LjDX9EYDgiBAID2kLU7YWtskacToMGLl+hYHZmYQUnhvWldhwoi6VsRpm4XFZfp7GXf+4AEuPnKFzsQEpa05fuoMiVCYQDAc9MkGOc889zRPfPFJbr3lZSArqjxneWkRbbxtTHtikmeeeYblgwcRyqGVZFTU9PbWaYQBN66eY3PlAuWgxygrqauC3e01Rv0eO5urzM4v89/8w7/H//JPfp2jc7O8/w/ex5HlQ5hGQC2UH6+z3sd2P0Xa5zTW+EQOvqzdqsfJh+dpfvsJyJ8niMWN9dP7y41pn/sJ6DdKar567X8C+7f9hGv/ZV58/wtv3yil+sbv58/rs/lae7L/Gl/pYgjme8ndd8/680juvvPlD6FnHvgkU63kaz9m7Dky0W6yvr5D0mj54Mo6pLSUZQZIlPYAAe8XpciznNLmFEVOFEr6/V0aaUoYh+zt9Wl1YopRyaA/ZGdnlySJ6Ey2eercRYyGQDvCqMHeTo8oidBKsLGxS7PVYm19nXa7eZNmORoOmZ1tY51ldW3H/4BTkw1zev09unsjTh47yD2ffJC7bjvLaFRgtKDVjFlcOsDeIOPI4UWSOGJjc5N+r2BqqsP11U3OnjpM2klJ4pTdnT64goOHl3n++ascPep9kQ4enmY02iOKDU5apJIMh0PC0JvlCuGQYsTK6iXSpIN0BeDI88J3TARfHrkFQCKkJc9GIGpCE2PHnYDNzR20lJ76J8S4Uq1Imx7v/uBDTzA3M0E2GhJHAdVYrCKlRCqFMZIsy6htRb/fJ0ni8aSHG3vAwNLiHEkSe48lWY33z0/EVFVFv9/FBIqnnrnA9MwkZVkTJg2qaohQgrIqGfT6pI0EayVFkRHHMXmeIaX2huxSgoA8y3n3v7yHH72jQ5Hl6CBAacO1q2u02k2mJlpUZcmTT19k+eAceVbgxuLyMPQjfU+dv85Up8HEZAwosjynLEs2Nnb8HIpwfOr+x3nZmSN86dlr3HX7MbLce+xJpQjG/mdiLDgXCC5dWuPQ8iKf/OyTvOLOUzjhiNPId2KV5NyFi7SaEROTE+Acxmgefexppiea2EoRhhFBkLK7PcKKksmJNjOzk0zPdNje2GF6qgNCosOU1ZUtkjjCBJob19foTLTpD4ZEoUeL27qm0Whw5doKExNttjd3KYoBM7Nz9HsZe90BSRKPiXzeJD6NI/KiYGamRdqOyYY92p0GDkOv22Nrc4MklOgguBkIuHqczEjIRkOMUfz1f3ued7/1Dp7bDXjjD7yavX6XM8cNi0szviP9gh9IT0B1KKk4dfoEjWZIs5UShYa7f+i1RHHMU1+6xFvfdJYnv/Qsm+s9Zg8c4OmnLqCN4sqlFZSWPP/cJZaWp1HKoXTkR79dhtYBo2EfpbzmNE4TsqxAKj3GvVvqqkKZcbFCCKzdJwvue7+FOKcY9ruYIPAUSiGo6wIpBeurW0RR4s9Zvf+D6ltx3Z1dwjgmzzLfmhuDDhy+KxwnDZTUhJEndEopGQ2GNJrpOMDwPnkCb98QxSFlXpBnnoC67wGJ8B5sSmpGo4y02aSuyps6PmsFQRT7Dr8WRFFKNhqNJwU0/V6fztSE35Ybjc9th60dOgyYnIj48Xf9Y/7qL/wc2ggOH15ESseFC+dZOrRMWRYsLizzznf+DL/013+Z+fkp0olprj1/nqMnTpDnI9bWVzFa8OlPfpa7f+hunnryEo3mBH/15/8G73znT9CZmOLgUovp6ZSJ6Tbni2e47ZZTKK343BefpbCCJFYoYTHav++ZqRZp3CDUEWFYkiYNrPNWFaAJlObIkQWU8t1UAWRjz01rHYFu+xF1CuoassJ7D0ohOXVsASF8OFRWBRs7PZSS3POJL3Li2DxxqHju6g2OzM8hhMIEGiQ00gStNXlREJiAOAxu6tKzIqc/zMYdqoq1zV2mJtscmJjg4o0VJlqetCmkP4a2ukOajZT3f+ABVtbXOH5kkZ3+0BNxOw1WNraYaMbs9XOSKGZvmBFpP01gtB8bHuUlzkEURNS1tzdQyttwyPFYfStJCLTAOq8jE8LSG46Iw5AkjPj4Zx/j9NEl/7stHKEJGRUlta05f3GLV5w9wSNPXiZOmsRhiPMuN5R1QZGP2Nzrsbq2xdkzB72OW0gGI1+cjYykNxjx8MPnOH5kgQ995Ekuvmcbsdnh0OJhEJBlmS+oxV7PKqUvhMZxA1sX5MUQkBgTIKTXEDtbEycJYRiSZxnzs3OcOHnq5hjpvjxACqjqiiAIsNZy32c+yfTsDI20RdqI6A/3sFiMNIxGI8IwIIxCJie8bc8ffOA/8PknvsiRyWNo7SUYUZgQhYai8hCnJ59+httffgcLS3NYZ8Fp9nY3iJIEqQxpo+UpnpG3ZIniGGsF/e4mic7ZuvwESii2ehXnrm8x6PU5fPzlXF25xiDLUc6y1+3z+IVnePuP/SUINN/3qu/jb/zSL/H2t/8o40GgmxKPmzj+F0R2X+6KfaUMxK//95O7l9qefFGC9K0ndy/dqfvm3vd3ltz9ea5vtCcvvv97yd130arK/Nf2zZu/1fW1fO6+hS2MW8h+/e7v/A7fd+bgC+5/wXb3LxjjK0kcJkitx3oUkKogzxx5kXuvqSChzIub4mR0SGRStNK4uqasS6x11JWjKAYkQUy32ycIDNooPvfIlzh+5CBRqOnubdJsTBAn8dgsNaTZbOKwNBoJQiruufc+FuanmZmZpNfbZW1tByEUV66tcXBpktBESAGzB2a45xMPcHh5niwvaDZSnrvwPFESsrM7QGuY6HRotf0PQJq2mZzu0GnH3ix2a4uPfPxRXnnHWZSuCcKQxQVvIh2EGpwgChNAIWWIrb0nlhibKrtSUeRDJiYnES6hLHreF28/lZAgXhAkgxiPZsJgMOAP/+RTvOzsCXCOP/7gfdx52xnKsqS716XRbBAE4ZgeqDkwPYEQjjA0FEVBFEWMshytNKPhCBCEYYhzkCQJo1HOcDDA1pa69obuxii2trYIAo3Ugn6vT2ACbO2oywodKMoyY2lxibq2hHHs/bTKIQ6JUpo4inFUlIVDKo8QN9qbEnvRvocAdPe6PHdtjR+6bRZnLUp5ndJ9XzjH9GRjrF/IOLQ8w42VLUbDDKkkSRwzyjwM5+Vnj7O1tUerE6GCCCkFSipajZTtrT0cjrNnDyFQnDm1jDKCKAzRRiOVQGtFNsoAyLOMfn/E3NwcZVFw+uQSlXUgLFVZs7m9S6OVMD+Vcu7CDU92S2OuXFnl9MnDiLGIfq+3RxRp0kaME44kSbnnUw9z4vgiZV6ijUQHMefOrXDs8DwOx7PPXqE7GPDM+Wu0GwnPX7rO7FQbZQRSGVrtBgJBHIQMhnuEyQS2AiUktq4Y9HpE4+QjiAKEVFQlKBOThBHXrm2xsbXL7HSLNDEogTeLQlPkXm9kjB5XtjVlkbM7Erzy1BK3v/nHSaIIFRoOHfSjxkWR+/FX4X0OlfTf6ec/9wDtdoO1latEccTU9DTvf++fcvT4Uf7hP/rX3P3aY0RxyDNPrfLsuSsMhwNOnlym2Uh46smLXLy0wl2v8FAepWLvo6dK6sIRGD1GmXt/QhOGmMBQl+MgH0EQRX7k0YtRsbZkNMzJRrm3bHHc9F3MRiO8xYdhb3eX6dnZMRxmiLOVJ25WlmG/R9pseECBc2MLkPSmZjFJm5RlRTQuqHiDdOju7RFGBq0C1lc2aDRT+rtdgshQFBkmiMa+fA5rnYfGjMfy93b3aHU6MA7MtAm8Nmnsk2friqoqMOMxUW1C8iwnaSRkw4EnbcqaPM+JogSpvRVAVRb81I+fZZAvkaSGRiNhZ2eLkydO0R3soZUhihv81Dvfxb33foLZ6Q7veNe7+eV3vxsn/fXj93/397jlzFmOHD6O0JqJ6Wne9Ma/wi/+/Lv4wJ/+CT/wmh8g33O8770f4siRs/zpH34EtRTSTCKiOOTggVkEJUpI+qOSlY1tGmmIFIZnr64zO6Wpaj/OWltJVjqks5y/sorFMcgGDLOCJA6xFrQ2jPJdb04vAoxR2Kr25McoRAjHIMtQEoyRTDQbZHnFLacOERiNo6LdTFFCsdMf0UwSsqLAaM3uIKcVJ9RjwIEUgvu/+CxHlw/QHYxI4pjAKGYnm0w0U9Z39mgmvnNY1TVaKyrraCQNyspy8vgci4vTBEYDkiTS7PS6HJhqYa3j+uqGH62OYz8pEHri8Cj3Gj0pFLWFq+vbzHSaZMWIQGuKsiLQBiEcSgpf3KtLytqShBG9YcZur8uZY0uExpCXJQqoHZTW0UoDDi5MoJVjfXuDgwvTGBWw0x+Qxh5C1Ot3mZlsc/jIHEgvASjLmmYSYjR0+yOee/YqZ84cpJXGXHjPCq951V289swP3rQ3MSZA64AsH40jDn/s/+mffYiFhQO+YBE2qOoKJSVlnlFXFTjHYDjAViUS2Oluk6YNn3iWxVgC4YvRRZlha8fRI6d8McBnOQQmJEnaOGe5cu0KjUaLvMwZ9boMsxEfffperq2s8yOv+WGqcWImnCAvMpQJWV/f5LHHn+D0ieM0OynOOZ/8xSF5nlNbS1lV3ptXCIzW/jwUDpdtM+huIJIOJp5iafEUrWaL1Y0e6IA773otV1dv0Ag0q9cv8f23vJp//75/zZvf9sMUoy4/9sNv5bd+43/n+1/5Cqz2I5rKCV/LflEEt98Fe2GsKG62sL78BPsik3T7gu7Z/nNeqisl9ztvL/p/38qSL0hIecFevdDzbv/vby6p/MrHCPGCDuFXvsILbvvrzzu5E3xtw/Svv77WntzU3L1om99L7r6LVlUVv/btVkC+88rJV7ag/+lv/97XMDP33RqBG5d/JOXYNLff69JoJPT62zTTA96vzdWoMGI07NFMQ8qyQGnhzZO1wglLkedoFSDRrK+t89yFKxw9fJCnz1/i7OljrKxssLy0SJLEhEHAlasrJGmECTVSmLH+z5KNBoDixPGDKO1b7UWWs76+N9ZFhVy+eg1FzMLyPEEUMX+gjZR+hCVOY6Y6U0zNtol1gySEqpJsbu+gA4cJQ2xV0e60GA1zersjzp5apD3Z8FoZbQnDGKU0tc09zdJZLA4hHRJ9UwRd25L/8/c+yKtfeRdOOJzyWiHv8QZV5auOXzbXHENtnEUITWgSbjlzDK0EzlY005BWO0VrSZxEDIc77O31iKMEozX1uIIppAQhCYyngoWh/zw7nQnyvCSOU4bDjN/9T/fyfXfeygMPPcHJk0exdU026nuDb6EQ0nj64XBEVRZUFdz3+Ue55cwphK3p9/rkZUlsAu8Zpg0I6buO0qFU4MEBxrC1vUOaRGxtbRGGGo/2dbzhbECeFzhbU1swJiQNNe1GSBg1MGEARtLb7dOIY+JGzLVrGzjrWFiYYXurx/TkJGESUjvN+toWgVKMhh7WkKaJx9/f1IiWFMOCIFBo5SjyoTfSrT12Ok0b5FnGRz55PyeOL4790ECgaTUbZNmQMEg4tDRPVdesbuyysDDLjRubdCYb3m8rirh0eZ3ORBulFNube7z8zDG6e10mZ6cZDHtEQcjq9R2Eq/nEfU/wqlecZHaqTavVwBjJscOLFFmBo6SuvDl8XdcUVUmnMQHCodBUVUF3b5ckkkhlfGIhvNl9GBpqJKN+j2arxYHZSbZ3dvz3qz2VU5sYrSVSWNxYI4sTKKV4xanTfO6pSyze9iqiVsKVS9fotAqfWAUK58QYZqP59//2Dzl76wkOHTmE1pKpqVlMEGGtZfngHFmW8/TTa/zCz7+GmdlJer0dXv/6Ozlz9ghpI+appy5z4/oeZW15+cuOEMUNEF475+oAgSXLhuOAKWDY76O18qNsOibLMoosoy5zTOC7QUoF/nsPvE6trnOqcogJIvrdngepKIUUkiD0x6qQDuFqTGgosgKlDVIpBAKtNWWe0Z6coLvb8yN3SpINM5RSDPoD36FTXvsTJxGDXpeqrOlM+jHDOG0g8B1+JTWjQRcpDf1u1+PuywznapJGSr/XRwhFUZQM+gNMYNjZ3iCMIrQJ0CYEV+LGXUsTRlhbj8dRQ3DKJ5smBCHGHb4SKQU/+9f+JT/54z/GXrdPM53k4x/7DEuHjrC5sUGn02Rj8wZffPRLHD96kF/8G7/Cm173en7iL7+TC+cvcXDpMP/5Tz7ED9z9/XT7uzQnIrrbE7ztrbfx+rf+ALsbq7zrZ36Ff/1//Bve8PrXEKoOr3zrQQQVaaTRUlBVNR/71Jc4c/wohXV0WglVnTMzmRCaNs5m5GWGkpIHHzvP0lybLz5+EWk0B+dmSeIArYwPUJGE2pOch3mOVAIjJArBs9fXUNKwvt1jptPCYlFSsbHb49krKxyYbuOcoDfM0UoAJb1BTZYXHpePGsMovIF8UZUszE5R25pGEqOlQgpFUY3Y2N1hbqpFK/HaQK0Vvd7uTZ/GqyurHJhs86nPPcGJo0sEWpCVFa00wdaOR5++xqnDk3RaKUpJQq0YFtV4zNxQVoLQeDjLpz7+KGdvWSQKFEVp+fxD5+h0Gr4zpQxr2z0asRpr4C1pHNJKPOFaKjkubBn2RoXXkmOxVqAELByY9h6Rwo51dJAXlnbTJ6gSQWwMVliM8iOhStY0GykzM23SNObqUzv89v/wa7T2llFGU1nr6YdCUJQVdVUShR4WlWUZp8/cSmhCtPR6VKMl/V4PozXGGKo8Qwr8+LkaF1Wj2HezqXgYVWyxAAAgAElEQVTfH/0hRw+fpCwK6rokigzaRJSV14NrE2Kto9vvE2hJnpdMdqbRyvDYIw9y9Mhp/un//c/42z/0K0zMTKC1pihy8jwniWOyUU6r2eTo0cNEocRaSRjFOOW4cuU60zOzXvfqaoSQxEk4pmM7Brs3KAab3Fjfoz19kivXrrB8cJFOu8XJ06c5/+wzHFw+RKc9QZIkxGnKZKtFv3iOf/j3/ke+9NB9PHfucV7zg2/k0Qcf4fitZ7DCYazAvgjR8LXK/i+V3L0wkYOv1tbt3/dVHIiXSPheKjZ9cQr14vte6u99/d03n9S99Ba/+qlfr4P355nc+Rj7243Vv/aejO/5XnL33bvquvy1b/ax36m27sXP3+/a7Z84D9z/EG962YH9e/nq01Hc/FMHkn53QHtqBlvukfUycLuURUXammTU3yEaj9BIJZBOU1cZRdFHSUccd8bVOEG/v8Glq31WVrscPbyEE4KjhxeZmmry9LlnWV5cojPRot/PCUNDd3OdqBXzxGPnWDp0iNXrWwjh/cuqyhInIdOTMxQjiKKQ0WjE8ePzSOEI4phhN2NxeYE4CjBK8rmHnuTA5CxXb1wmjKDbKxHWj6gEkWF1dZdGIyVuxExON0ibCmcDlA7Y2+mRjTzIwwnrP0upxtXByuvqrECqEJThzlsXcconcwpvDlvmBXXl+Hf/8R5eecdh6rpEqxhkPYZGjAhNwKDbw7kMKyVCWBpxgpICrSX9Xpeq1kxMTHiIQF2PyYeG0XCIEpayLkjT1Bv3Cse1q5t87oHHOXZkDmdLKB2NZsjZW4/SH+4hRYgJvPWCCQxVXiBEjbO+GhlFIYcPLXgSqNU4pwiDkKIYoQMDOKp85B8ftqlrT0LrD7pMTc0ggMDocaev5o/u+xKnFyJqHO/94Be57dYlhLC0Gm2uXrlCPhySGMkDX3iMQAWsbPdIQkUQRUxOpFy9ep2qEkzPtPngRx7kwFSKrXKSRkx/MCRJI99hTVOUVFRVgQoUq6tbY1pn6IOL/h5B2ESZCIFjONzj5JGDXL28ixQFo0GOkiGj4QCtvF+iiTRhlNBspGgpEc7S2+3TH42oa8tEu+31PbYmbchxsmwBSZHXXL2yxqmTSygjWZyfQEiJCUPSNKDb7RPHEZcvbzA7O4M2AVVVo3WAVH58EivA1PSHQ5qtNmHcAqFQxtP6hJQI66jKEShFEDVwNidJm1gkQlu0MjjxZTG7VIKiHKF1QGX7CD3F3/+dh3jXT/8sw6zgl375v+Vd77wbKQV1XYKtwDr2tno8d+48i0tz/MHvfpDb77wNrQ2b6zvsbO/QmWhx//0P8cnPXuLosuD5566zuDjLzOyEhxKgSJKAxx9/nlbDcOr0ElLJsUm1QGkQypu3Z6MMJwRBEoMzOFuA8FYGSdpCm5S6qlFKUFcF1oLQhkB7DWkQNb0OuBEjhECZEOn6XL/8pO+Kds8jZQAuoNfrEaWaYpT7kUpp0CZmMNih2WqhtcRRoIMAHUQERiNlMO7+eSpnUQqSRspw0CWKPLq9qnz3cWdrCxPFBJHXsIL0etqiQCqDiZt0d9ZotjooJdjdWWNmdhpfBDLUtQBywOGsTz6UEjdHOAfDIWGSjDsagqp0RJFGKclP/uXb+Ou//Fv82I+/hf5wlz9+78dYu7bK3//v/j6/8AvvxpiA02dPcOXKE5w9eZZ3/dLPUdsuh47PceNaBihOHJ1jeXmGbKB4/uJlGqlieaFDbDr8yNvfhrMlv/w3/xqnTxzlcvUctdNs9nIS42EUB2bbxAYmWglVVVMWQ6BEmphA5CRpCkJxaOEAeem49dQhptoNBIyLEf43yuiA2kms816HBseoKHjkmcvceuIwn3/oGdY3BxxdnifPM5CSViNi8cAk1voKexSCkYb+sIsOIjqNlO5gyGNPXmBxcQY9BrKsbu3SShOvj5Q1WVFjtKOoC9IoxuiIsqqoKk8sjoLEU0LLnDQNUVpw5OAsCIeUGluHOCd4+uI17jh9BFztR1GFlzjYuiIKtYecJDFCCuJAc/jIPIE0WASrO11OHZ33BEjhUErSiCOsUEgc1pVIrSgrgVERtlZs7eaEgaE36jHTjhkMC+757HmOHZ5HKuFhRUiefX6F2OSsrW4yOZESBSVChljh0FLibOXBWCagqr1GNM8r1JPT/OZv/0def/sbKKsKJwRGBUBJkQ0JZESYBDcngYbDAmsrTKjIhyOv3Te+WCWEQJqQMs/Aef1rHDX5z3/yRxw/cRKtJadOnqWiptVsohGYm5YTFSqUKOfBSWEQUAvIRt5zN4kNC0uHyPKc93z0Pbz7Hb9IGCmiMEaMv4NR1iUMAowJUFJTK7wXsLNUeUlgQjZXt3j63DkOHT+JFB5alqQJtcrYvPgkw8IwyCTClByeP80g22Rzc48gDFmaX8RWFU4qomabieYEz19Z5T/ddy+/8Y//NkePHCEf1fzWv/jf2Lj2PGfvvJXWxDRVoZFm/yz4iqjtqxRm4wAQhLzZoftG3bb92NHejBtf2n/5m41Rv5KSKW7u60t18PZVZd98/Pv1Bxj3c1sh3HhE+4Wv/uXu5pdNyl94e3HX75t5/W9vCfYn5jz198v74Nd+x3P/9j2gynfR+k40d9/s+tonxFfOIb/lL7zxRVCVr3OAOkPd6xEoBSogTmI2t9dxKBrNpjfllgohJXVdY4xmOMqQ2iCEIst2EFJz7qkbUGuccNS15Y7bTtHuNIjSmLIoqIoaYQWVc7RabW7cWOPy1U3mlxY4MD0FrmZiqk1eeCuGNGn6ZCjWpE1DNiy5sb7J7m6Xbq/PjdUtJjoGpCUIvP+NtZYLl67zijvOUlUFYZCws7vHY0+eRyvJwUOLDAZ9jFEo4XUWg15OZWsmJ9t097okqa/OVpUnXQopvLcMHptelgMCU970v2PsOyPHP1ZZVnBgpsnUzKT3q7OQDfcItCYIQ/q9Po1mGxNqiqIk0Iq6LhkMBgyHI5qNJnleIpUYz/47qrrAOVhb2ySKIqoqByQ7O3tMTU8QhYZjR5Yoypo4iokiTRgHhEFAFCVsbm7SajcB6cEuwndeldLsdQf84fvv5ZYzR9BKs721S1lWPPXUeZyriRNPUFNynx4K/X4PYwxp2qCyJWVREEXxmHgW8o/e8yj/1e0TfPTeR/mxH34VUtTUtQ9OvvDgOQ4fXMDEEQcPz7O90+PEyYM0GwmjUUGaRrTbDa5c2yAKA9Y3uxw/ukyv26PfqygLS7c3YGqqTe0K+t0eZVHTG4yYm50iCAyj4YgoCsmGpaexaU+A0zqi2x8wN38AK3KajSZOSKI0BGcpcugPMqx1RJHBumpMmSwIwpDJyYmbgA+ch5c4J9FSYl1NFAW0Wgkrq+tMTU3cHA3VRrOzPSCOIozWzM50KCpf8b525QZppMnLgiDQWFchpCJNEg8SEDAc9DBGcenidSY6TSzOJyCuBlsjlcLhPEgES1VmVHWNczV1mSNlglEGW2seeGaF40eWeGJD8Pq772Rz+yof+8h9vPOnXseXmWuKsqp59twFojjiM59+hHe+60d473s+xIkTS2xtbfOpex/k7K0nmJo6wD//jT/gzrPTTEw2+exnz/HIw89w+x2nufeeB3jggaf56Xe9ibteeYakETEcjkjS5CZ0QQhJNhigtELpAFvWZMNthFAIYQiCiLLMKYuMIIpwtqLIszH5VZCNhoix9lSgyUYDpFZICXUlaDSn0KaF0gkmiHEEhHEKCKIwRUhJPhpR1wVJ0mRzbZs4ScZkVt9ZL0Y9RqMMrb2fXlVaoiRGK0VVVh6kpDUIwbDvgz8ThP667PxxDxCG3oBeSkUcRQyH24RRRJqOkxEU62vrmEDj6gptQoTwnpJVWREEhqrKCePYn8NC4hzk+Yhs0EVKGA1H/NiP3op1R0nTmE6zyeZ2l5/52Z9Cm5q19at84D9/gHe840cxepL3vOe9xGHEkaOH2dsesL51mdbEDH/7b/337O1u8o6feAMzC0sUrmBja48DC4t0h33iRsKBhVn+w2/9PumxiLmJBlJYausIA0NW1AzLfZ2UB0lJEdAbdD0gZexxd88nHuXQ8jTdUUYcGq6urZLE4XgE1gdA3UGGkZ4C/LFPPsbLbj3GB/7sEd78upejjOLTn3mMM6eWEMKfF2VVeeS6s/QGQ25sjWg12kSBQgn48Ifv5/tfdZY4DhFIrK1JwoC8cFin+X/Ye/Noy667vvOzhzPf8c2vXs2zSlJJsiRbsmVb2NgYMNg4NhicdNMdwBDoJHQ6IaTT6WQlsJokK15ACIGGGGMD8YCNHeN5HjTPQ6mkmqdXr9543x3PtM/uP/at0mBJlgms5ZX2Xkur9N4999xz7zvn3N/v952WNzb46tePcGDPHBZLGISUpiLNnNnTWncdpaCsSrRy0RTWWvLSxcMM0ownjjzFRCtkouno7Y88eYFts1MIDGW2QTd1xjG+764BYwyDUUYU+ORlyfmVdbbNtJ0uT3DFqEIgsEJiKoPvKRDyytBfCpCU+IHEVg59+8znH2JuYQI/UHgaQt+HasjMxASB5/HU2Q6nzl5i69wU9z1+gdmpFsNRl1FWEgUhF1e7PPTwcbZsmebTv/4Yi5eW+Ofv+lVGoxG9/pAyS/G0T15kNBqTPPjA/WhfUhYGz/M5c/opvvDlL3L1wevpDfsMRz1qcc1RACuwOHpkHMdYYTl96jSz8/PUGzWMKa9cK0WRkY+jRiyF0wwaTeA5eqxUGnDfl4HvM0oH+IGHQHDo1oPsaO0gLwako5QjRx5mdmaWfndAHNfJspQwCrFGIXHXWhTEZGXOgw/cxWte+zqstGT5gFq9QZkNuXTqBHleUumI3fuuwkrLYw8/zvTcJK3GDMIXdLqbXFha5MTp49x5x/140nLo8LV89cjX+JE3/jAT0wsMC8Od995Le3KaD7/vj/m7f/d/xQQaUT3deLk67blas+cWh/LK3fvbNU4vBZ1zL/ltXvP5d+7++bab/XU1d8+HFYpnbfvCr/ViqN8Lvf5fdT37mL7l0ecc4/eau++iVRbZvwTGls4v7TkvdTpyebsX0uQ9/bjj7xZFiVg6cvnRZ/GEn/tyUlrOHnuUzc1V+sMBUVSn0QywBtzE2acoc4qywA8CoAApCIOIUVaihY/2PCbaDU6dPYopLUJKdu3ahvTUmP4mWbxwiUsX15idnSIMA7I0p8gN03OTHHn0KHOzk6TZCK0VjVrd6SCUh/Yr0rSPpyMG/SHd3pA4CpzuZ6JFGNZ48olzPPzwaWZmG3ieo03leUWRF2zbNk+jkTDsj5iZa+EFARvrHRr1NufOnWNmbs7pJ4qceiOhwrKx3iWOQ1c0Wzep7a6PCIIIWxny0RAdRC4o3LpwVYHTK4VRSHuyNRbcg7ASre2VsHPP96iEpSxc7MQozSiLjDAMqdXrjIYpm90eq+sbzM/NOtqQ0mMzlYjAj4ACgSSOI8qqIE4S0iyj2agjEMT1iCDwKUsXDpvUIvKsRClNUZRjKmCJRRBFCdcd2kMxLlKjsT7v63c+wo3X70f7Dh0Y9Eco5TEaDZxO0krWVjc5deYs83MzZGnqzjGt2NXcZLYRs3fHPHk2ZDAYEfohJ09d5MCebSyv9Zien2KU50y0mwgp2Oz0SeLE5YBt9mjVI5JaDFYwM9PG1w498bR2mYgTNYqyAGuJgpA4jjn65Cmmp9oo7Zp9zwuQ2k3+R4MBQRQDxrl6emBKiQ71WM8ikTgjliDwAOOaWiWp1RJq9SbpKOWeB44QBR4Xzq8xM9vi1Kkl6vWYXr+H52nKoqDRqLF8aQ2pBBOTbZaWVpiZmcGUlkceO8HsbI00NwS+R6Me4nsKL4zI8hzPV25oAAz6fQQVceSRZQWjYUEQeGhfIJBjRNfRgE1ZUJkcW7lhh5QSpQSeVuT5kNKk+J7mVz50jrfevIc3/tQvooVDJG5+WZ1mw2nE3N+44NzZ82zfuQ2tPR597Di33HoDh67eR60eMxyMaE80OXfmPF/87H18+vN38nu/8/f40hfu5ZWvvJpbb70GJSUb6z1WVtd5xS3XcuL4SdZXV5jdsoXKGNZW1ogil2UosGg/QGkfawq0V2Ktc3Fl3NzWGrFzv9QSpSWmrMjTzOlnxpEhvuc5FHfsUlmaFD+M2NxYw/MSrJAIoZFKU5XVFfqpEE6bejncHCGRUmOModdZo9GquTiRJHHaOO1hygwp3DUf1+qYonQaOt/DWtjcWCeIIsrSmWXkWYZQGiUlVZFi8fBDGPZHUIVsbmygPE0YhBR5jtJ67IQLSvsUuQsy93zI0hzPDyhL49DKOEKICs+XztkWyT/+J+/htlffzuzcDFcdOESrXWNyqsH0zAQHD+xFaI9sqLj7zm/we7//B7zznT/Jr/7q/8X//o9/hjCZ4e1veztT7QZRNMIPmvRHKUHSRGnnhluUBd+845vc+Y0HuOb2eQQVG70BYeCRFjme5xGNjX087fGZT93LXfed5obD2/H9EC09PKnYt2cBU1WEvmuQJhrROIZD4uxtLKOsIglDemnGof078ZRi354tHD9zkV0L01x7aDt3PXSMLbNtl/klQStNkRmUlBw5uc7MVJs875GXJVu2zdBIXGZcp9vHU9Jlw3khDx49y4Gds4xMxexEQhzGzviqqoi8ECUDamGEMRlKSrR2To7WWkct1prAD9g216CyJZvDIaudPlft3sXjJ88xOxmz2blEUmsgpBqb6Vg8CZ5WFMZFX7TrMZ5WLHe6BJ5H6DtNNcJSmIrQc+ZCl/F5KQVSuuZWYPC0BhQH9m9nfqrOVCtBCEtRGqpqhBA+y5s9Lm1k3HrDQfK8ZKNfMDdVw5gMT3n4XkCzXmPHtnn+8tce5WU3HOYt17/lyneFp30+99mPsm3rHsI4QkjNqN9n67YFHDtIMDU1yYFdV/HfPvGX6ECya/tOZ9giFefOn6PZbhPGEcZWYzTfZ2Z6isoaPO0jlUev1xnnm9YoipJR2qfVaKNFyHCwjrFgKsjzlDiKMKUhqSWUVUl3bcTvf/wP+b7Dt+Erd949dP+DaOVTGkucOKqs1NoxbbRgOOxzYfEcUiriJKE9MUGFJZAhw8EGG6snOPn4Q1x1w+2sdTZpttr4QcSu7TvRCh66/wEGgw4P3Hc3585fRCFADNkyM8299z/E7vgAO2/YxYc/+nFe/8Y3cfXh67nnoUfxB33OnnyKA9ftI0ragOUyGHWlZXmBerEa13mIl66Tc+fPWJM3zoF8vsdfSvP3QrXslfbpCh3zO20Y/yrN3eXHeNG6+fK2TxvTvBiC98LrpUUmXK6/xbM+h2fs5Vn7+F5z9120TFX8y79u16HL66Xv150wSkn+0+/+Pjcd3AZc5la7G7uSz+ZZV6Ugyy0zC1speh2qYsjmxiWajRYITVUZfF86mlQFnhTkaeo0XJ5E+xVFbtAyZuniBpVNecMbXgvKFdUmregPBuzYsZVKCLAFngfNVhNP9FE+DAcZ0zPzCDEO99aSPB84KlqlUCJ0DltCc3FpjdXVDWpJRGFy6vWYVjthOOyNTVTqJEmNMEqwpsDgcvq2zc9jqxwrAjzlYaoRE5MJWE2eu6k4wrkw1mst8nKAkgpwWVlCjgCDH0agFQiNqIzLxkJeCdnV2qF9mIKiKFA6xFgDwnOIlwZR5SB8Rr0+YZzgax/te5RFRpaNmJiYoixLyrJESoEnY2cwYQp836NIhy7M2NNYZdEiIAg9KpOTFyOC0Ol/yjIlSwcoHZNlGXmRoZRz6BRUFFnm6CyVa8idhsRSVRXXXrWHUToiSZp4XoC1rgAOggYrlzqcOLHI3fc8xU03Xo0faLSuMDbF5JLQrFNvNShsxdLiJWamZlld7dNutzFVzszMBKYo8MYZgL6UmKxio9OlKEtnWFIZLIbZuQmEAFuVKK9CeQIhLHEUoaRPnpUMB0PyYkQtTuj3hzQaNQAuLnWYmJzgvvuOc8edZzh89TyLFy4y0ZwhHxYsLq4SRx6ry+tEXoDyDVlWcO7CRaoSPM9DKp9RWqCVRgrB3OwEWgvqDXcO1ZImUvnU6zWEUFRGMByMmJlqcer0BYxxqHBFRllYfE8yNd0iH404dfoCURig/YCyLPF0QK+b4/maLM1oNBLKIgcFSoUEYYPFpVVCYbjr3mPs2L4NqxVKSBAGJUELxWe/dA/bt85T5iWeco2elhphfb7wyDov398k2r6X9Y0lHn/8cW66cTtSuim6rQCT025O0Nvc5GMf/zo333QVtSTk9IlTPPnESfbt38fdd97P9TccYOniOT79xfvZPq2o12NOnLjA3n1zDIfOmfM1t9+A1ppmM6ZWD9A6AiFIaokLAs9TfN/DVFAYi+8LhGpQlBmmylFK4vs+/W7P5dZZQ5GnSCmJwgArlUOFhaW7ecnpPqVHVWqCsEmeQlLXUMVIz+llq3GkQTrqjo0gAoTwEVi8YJxzJxRSu1DgXi+n1Z6m1+051NB3AyuEGFNrS7RSdDsd0mFKnCSu2OVy7uVlzaRyJgzlCB2GpH1BnNQpzYBmu4GUmiyr8PwYgbsOXSZfgSkrPD9CUKE9n6IowI7jFCqFwI5NfSI2O4u89S3X84t//w95/etex7/9d7/BrbfcxvlzG/xP7/oFfvgHfoDOaMCb3/xW/vk/fTc/9/fezfpan9fd/ibysscH/+j9vPK113Ps5BJv+KFfYM98ncPX3kwcJeiqYrjZxQP27tzJn3/8U+y+dZIsK5hsT5EN1zDWEPiKXneAloLjpy8yt22GV7xiH5HvY6zLNTu3tMbjx8+ze9ssg1GGkhD4Id1BTm9UEnqOGn7i3AYPPnqaq/bNU1lDFGi0rLjnvhPoQDA32eLcpU12LswiUEihycuKu45cpD9MefmhXRRFh8gXxFFAHIYsrnWoRSFHT5xnZqJB7Gt8X7NnYYZh3mfP1jnysqA3LAh8H60FpRkhhKWscnxdR6mA0tjxtVMhpbpSKGYECKVpxDFaSCJf0G7WqIQkTmpQGZTyAYkVltFoNEZ/GV8PznE09DV5UdBPC9I8I/Q1Qmq0hFGWk5UGfVlSax06urHZ5+TZFSbadTzfoqWgP+w7KqgfYHWEkppWImjFHtKHsszYNtNGyAFJ0HT6bllRUfIX/+ohfvkf/CxX126iXmuyvrJGveGGcvsOXkMUxQyHm2gpCLyYyhZo7TEcjgiiBjpQ7Ny5wPYt2xB4fPOOrzE/N0+r3cBQUlTgKx9Kx5goqwJPa4bDEXlhELbAD3wqC1HoOf2ehPXNRaosw6Dw/IBQ+3zlq59jy5btaM9lX/7WX/4Wv/LWXyHwFHk1Ym1tmcPXXY/SgunZWapxgLupDFo6xDEbGTqrXWr1BvNzDr21SITMyS4eRwnLpfUGO/ZsZ3p2jlF/wNnT53n0wa8RKDh3+ijX7p1i1/Yt7N0+x56FKbbOTVMLKloTCRubZ/jdD/wm3/d9t7N4fpn77nqEMIg5tnSMtLNIcGmFQ699AwJ5BbF7RjH4ApWfQI81xC91XaZwCvH84eeXW5AXqj+f64T5fOvp5u6lomkvtIdnHvUzHv02zd1L3fd/X+3+Ut7Ti7+P5x7H95q776J1mZYpnmbXAs8PbX+nrphCPv/0obKX6YLfCvn+xu/8yTNMVVyIrlLSGfPwDFZymbG8tkGj0SSut/FrberNKc6dPU8UKoqsj9Y+SkWUeUluIPA91xBon9D3XR6eNczNz7CwdStr65t8+jNfxxfuZlxvNR0NUMPZ02d44qkLrC6fY+/Bg0gRUas1MZXlC1++i9nZCTxP4/kRCPA8TZZlWGNo1DymZ9p0hxmD4ZDJ9iRFVtFqNTBVwc5d2+h1U4q8wJqCKKpx592PMzszQRBHdAcdfBWzurZCqz0BeA5hk5cLOgHWWbKjJLay43BWhR8kVC6/mKos8TyXy+VuqxVIN+0Xwj1PaI0tynEoqmuwTVleQUfW15YJ44A0y6jXmuRZih+EeDrE2pwkjpA4y/yqKvjyV+6jVa9TbySoIEAITZ5mKCsZps58ZXW1QzIW8VeVwfMCdBBwxzcfZMuWSUcl8wLUWLvjHDlzR+1BjmkyFUp4/Jc//gyvuvUayizHYuj3B9QbTZQ0LK8sc+jQLrK8x44d20CWaO1s3v/2e77IDr3Jjq3T5MMek5MNhqOMickG2odeb0ir3WA0ypzhSZVTWosxKfVGQr0W4tC1gCRJOHn8Iitri5w8c5HZ6SnqzQTlKVaXu8SRwgpLksTIqiSqRejAd0L9PCeMPDyl8TzB7l1TdDo9tsxvQXmSj3zyDm575WHW1tdptev4QUhROJfQdrONkgHnzy0xM90GKZyhhSkJg4B+fwgV+Drk8SdPEAUQRon722PRSnP/Y09yzdX7UNKn0xkS+NqFaSun5UwaMROTTbQ3HqB4mjTrU68nWFXhqZgiz/DCEFsahLBIDyamW2M3z5DAk+SjHpaKwHfBxVYodm7f5rLTAkE26mKlh9IBVpa88vA+/o8/vJ83vm4fzXbEv/43H+AtP3KYIrdo5QYIX/nyPWzZtuBcBVcXOXz4Kj77ya+yY+c823duZ7Ozzu6925icniIdDHjieJ9/9A9ez56927n5lkN84P1f4vz5dW659Rp63f6YspsRRgHdjXVHO7SV0wAVUNnM6f1Kg/Y16ahDmZXU602qqiQdDmg0m6TDPl4Qo33XOPX7GZ7nwVh3E4UJeV5SFjnaSf7QymArS1HkUJVXoh209sbvNx/TswdYW1GWFelw5MxbcoPncuFRnk9vc5koruH5Plk6QGuf5QtLtCca5EVGUq85MygBpnCoshSKQbdHlMRYUyKlpEKRjvr4YQBVRVnmGCPIi5w4CZDKDYlcrmWFKex4uFUxGgyxlWvCgyjCIijSNRjrhKWUhHETKTxuu3mSn//59/AzP/2/cGn5AgevvoY//eDHeSnkl7EAACAASURBVPMbXs07f/Tn+LM/+20Wtuzn3MUT3P66H+Pk8Se58doDvOwVL+M3f+dP+K33/CYf+MP/wKHrDiF8j+7GRTq9Hm9920/wP//0z3Jh6Tyf+tSXOJ5e4KoDO1ne2ECp2JmGeB533H+KXduniWMfz1fUoghjCqoqB2GZbNVpJBY/cAjW5uYIKSuiIOCOe46ybcs0vh8w3aozO2ZlCFG5IrxU7NszSxgERIGPsYZmvYaQ7m/d6Q45duQYjXabhdmY0lq05wZtRVHRiGsIK2i3akShj9QKrSSD1MUL9EdDPGWpJyFpUaC07wYkQpJmhrIqMVVJEnkIXOSMEgqB4uzSEs0kREsFCJRWSCXG0QbO+VEISZqbK/ExcegQPK0kG5t9fN8HnJtk4HnYynJptUczCREUdPopjaTuKOFF5jSCnnbNv1bsmJ9yGt3x91kQeEhhUKIiLwye0vSGjgYfaN/pGpUEGzLIh9iqwpiKz/z6EzSTmNdufyP94SZlYWg0GqT5iCiICTwPIZxjZZql5MWApD5Bf5CRpyl+oF28inWmGlLDzt27rgxQbFHga01hCoTWaCEpi4LNXgdhfS4unqM10XZGQ9INBoR0UUFhEIOnOXXiLGfPnmByYp6pmQXQLh5ImoqN4jwrR7pMLUzT76fUkzoCiJKE9ZU1snRE7Efce+ed7Ny1B+17pEXG/MIc62urBEkAaLRX0b94jEG3x8We5OprDmBMwYljTzExNcXG+gqdjU1aEx57t8+hvADf006LazI2NlbxPY1XGbbNz9PvPckfvPcvue0NN9MKBD/5rndx++t+gGPHT3DXg/fwhjf9GML3qKR4mnornq4sn5uLJsffUa4e5DmPvnDTcbl5e74tntvcPbeWfb7nyPF34Lcigc/WmL1QI/StCOBlROtpJO75fSeu+Ihe2dZaV+XasTO8lM997nObu6c1e8+OmXjx9Vzm3Is97+lt5HOO5dmf7XfS3Mlvv8n31l/Hqmx1Raj6N72+xe3oGeuDH3zfS9qHF4bsObCXqpIuUFy53J0de/ZjVQLao9vrM0pH+EFIGCVopZC2ItKSNC8JopioFmIwLF08jxSWH3zDazjy5BKD4cid+JVBCcu111/N617/aq6/8RV87rPfoN/p8oUv3cGdd9zHbbfc4E5UcXnqItlY7xDHEd1ej9K6SfbLrt/PwmwbLSyD/oDTZxZZ2LaVLM1Y2DpLZQ1BGPLEkTO89rWHmZpp88GPfI3NFQ+rOtTrCWdPL1JVsL7aochKev0OpUlBGO659yGEFahxvp+18MlPfRWlPSyCsrSAGYdjG/efdfO9LM3GDV6OF/r0+84aukwzBv0UP6iRG0mt0URrnzAM6A96dLqbXFq5RLe3ia/cJC3NC/woxgsiVjtD2lOT5IVhOHD71L7HE8dOOcv20jI1NUVRVHiej5Q+o1GOsIpXvOJ6ktgZhIz5tiDGwwEBUmj+5L9+DltJ8tSFpN9y815H8dCOujY5Oc1DDzzF0WOn2bl3JwbJNYcPc+ypY5RFSZpXDDIYZim33rKfLEtJ6k2KoiQKA7DQ7w7IU0sx1pukwx6e77Ke0kxw38PHQILSmrI0PPzoCSYnWuzfs5tDe3extr5JURishdm5SUajkt6mC60eZhUCjSd8XAC3ot9LEVIyOdFiYqJBLYoosoyTx89y240HyNMhWxe2gHFfjp7vIkGGoxHaU+zevY319Q2Uco6cWmtKY2i1mgihuHhpzWlL2w2qyoCtOHHyPL1Bn5uuvwpjSnr9Hp3NrvscIp9uf+Cc1vojNjt9yrICKxgOS7Tnk+cjjBlSFCNOnD5HZSq051GaCiWdKYdSkqmZCZTnESUJXhBRWYcMCaWQ2rm7Dfs5QdhCiZCs6GNMwUTcJC9zZlovZ/nsOj/8xmsQwtEB86wAPE6dWOGP/uAjBGHIK155E3ES8baf+EH27NvNow8/RqNRpz0xQZZmTEzM8OY3HMaUhve9/9NAxTve/mpuv/1annrqFE8+cZbFc5c4cew8y0treFHocg997bSMkdOlFllBEAakw5TRIKPWqAMuM9EPA/q9Hkm96fSvxlEg43pAZYoxfVHT3ewShBFh0qAoLYoRm0snKLMRfr1NZQVKh3hewLDfw1YWYwxCSlqTbYIoRitFrR47pFhLiiwnz5y7Z7PdQmuPjbV1tK6RpzmTsxOMRi4GxVQVWZahxvrasijRWhPGERbpClOlsUiCIB43+pCOMjzfJwwj8jzHlKUrAqwz+3D0LEteFPhhiB+GaK0xZU467BPF0wRBi6Jw6DrWuSfWWgEEloVd01z3suvwtOSTn/ggYTzJv//NXyNMEpZWzmCzIV//2mf5/Ne+yMz2XczO7OXIY0f4z7/3O9z3wF3kqQeqh+9ptm3dwee/+Bfcc99X+d3f/ij/4d/+G370h25FacFUs8ZdR87ieTGdXsa2LS2KMiOOPBq1iMoa0jTHk5JIaZZX12k1pxHCxw98ao0QhMSYip3bp8dOmZJOP2N9c0Do+XhjtMzddy31xKM76jE/VacoCvIix/MUzXrM2370Vg7v3Yoxxg01hUZYjaec46jvKQJfOZfHyn2+4MqsMAjGFHhxZTCXZgUgqMchUlYgnK51mI3IjcEKFz+QJE3KsqQwpUOay5K8LB2TxVQM0hStNF+/83FKY6iqiv6oGGtnBZOtuhv25DlKSoSQ+L5k21ybrKhQ0qc/LDlxYRWQ6CCiRIC15NmAjd6AwpRo5ajZw3zAZr+H89cf50AiiQKHAA+zjAqBKUvyMkcKTRhEfO7/OYpSkrfc8HZGaTa+R+SUZeUabV1RVjlFmdLtbZIkNdrT80gpiUOfKNAYU3Jp+RLGVoRBQJY7+n6apVSVQWlnKuVJjckLiqrAVppma4q4HrO4eG4cVSExpqTb74MUFJUBpQj8Orv37Ofqa27AmJRWs06jniCFYHWjy4c+/GlWB+scP36aqalphmmK5zvnzkazyczMLGEU4kchSivyPKfZaOB5HkWVYmVIoGG0dApblKxnliw3lFmBsZaFhS3YMuWRI0eRVY9W4O7JAsNwsInJR2gs83OzBL5HEHkgLfeeXeXdf/sgaWedqfmb2Ohs0KjX+fl3/yJlLvj1//ufEWrc4BgcgvcioEBV/dVrzmdGLHwnq7LWmYA963fVsx7/bliukfoftwX6H/edfZetZ+rjnom2Xf75O0HtruyreuHnPLPBE88Q1WqtOLfSufzI80DU7hgXz1zEZDlSZ5y/dBSBIvAjsqzAD2LieAvt1hy+J+h0L2Jszigf4oWaTr+L78cI4SiYST1g69YF2u02ixeXOHRggZmZaarK8PhjT3Dp4kWslS5rKIxY2DLDYNTlja9/GddcvZN6o4YfOF2VMRWVsQihMMZQqyekoxI/iLi4uEI9jigKw+NHz9Cs13jqieMoqRkM+pw5v0RRGK65bg+f+/LdgOQdb3sdO3bP0FnPKMuKk2cvAOAFHmEc8LWvHIXKpygzbnr5HrJshLWGypZUtuSH3vQapBRoJQkClw9nLZjSAvKK3bAfBK45RWCtoNmq0+2sIKRmenoKbIXvafwgRkiPMIgIwpDpmSmmpqbwg4DCWEpjabWaPPLoUZQU7Nk2g5KSY8dO4StFnqYEvs/Bg3uw1oUgj0Y5fhDz0ENPMByOSJIEhHAasnGTKmzFKBu5KaBUCCl44okjvPlNN1FVBU8cOU6SRFx3/QFKUwKWPC+obMGOnbPs378Xay2lKTjy+DH27d+DHziaj68DPvzL11GakiDySdMMLww4d36ZzY0+G+t9HnriFHfddwQsnDu/QpqmYEseP3GOW248BBaKvCBJYvbsmiWphSxeXCaKIpKx86BWPulowGiYEQaakyfPUG/WEFiWLq5w6sRZ7rj3MRcy2xvy0CPH+OTn7qWyEESaHTvnnTV17JxL4zh2U0pruff+IxRpwdLFVTqdzbG+ELrdPqWpEFI4G+0kYsuWGQaDEaa0DPp9rK246uBOJiacPs/zPNIsZf/+rcRxQlUZdu3cwsrKJssrGyRJQhiEPHn8HN3eyBU6RjDsDijyil07tpENUywKP3DB355S9Pt9BA4BrIRDTLMscxROWyKEvkK5tTjUQAqfT923iPYUP/2ud3J6+WEWds1w5NElqsrl+H3szz/JaDjih3/kVfzsz72DzU6XP/uTL/PAfU/woT/9LCeOXeDwdQdptpv80R98kNEwY3Nzky995U663S6/9EtvBeCRR56k3Wqwd882tm+fQQh44sgp5uZnx7rVCqzLKivyocuMUs71tDIVUVTHCkG3s0kYBmitCcKIwlSMBn3KIgOhEEKNC2I3DIqiYBzCbgmihAtnLxI1p0FqrEmdSVFVoZVAqxJTGbI0pSjysbuiS3auKgFCM+j1xvEQAXbsvqg9jyDwQQgG/b6bmBt37igpiWs1yqK40pQaM459KEu0lGSjFK016TCnzFMElomJCYfoCMhGGX4QukJ9lGKK0hmUDIdgQWqfNMtAjqf1ZX4Ffa81mmjPR0hLt9PB83z+9L+8nY9/4it01lJG/R5aDPjUZ/6Sm155kH/xL34Dg2DQj4iiSX7p3f8Qm3l0Ohv89n/8d1x97V7e8Y63E8USa2Ja7Sb9YZcgiKCCL3zpY0xOtbnr/UcROGbI626+irw01OKQ7VumCL0ESYgipCgki6tDhAhJS8lEc8ZdUwgqU1EJl21ngbOnLrqweuDEuYt0un1GWcFH/tudjkYmDb4XMsgyF/TtBXzm8/cS+yHLG108T7Hc2WBpfR2lJI1awqWNTTyt6PQHrPf6LK2v4SmJ73t4SjHKU9cQCY2n/PF9uHJGJQKKMfOiNBW+9vHHuaZSSAIdUBmDkhWx74EQSHDI65hieRkrCH2fIq941cuvQSDwlRo7UrvvxtyUGGPQylH8lzc2yUuD7ytqsXMCbtZidm+ZxtoSbEUjCsnHjJJWLQEgzYrxsbp8Pak03UGKqYYgU6xN6fTX0FKzuNxHSLfv0Iv48ntOcu2hg/zTt/8TZmfmuOvubyAQHD36OIuL5/E8Z5SjpCIMQtqtNuC0iUXugtG17+MFAZPtSWpJAliSqA6VJPRjqhLKqqIoXGh54DsWg/YlVVlQFYZbXnEbURhTliVrGyvcd9c9KCRVXmALy8baKoXpMxysISiwtmA06DPs9UmSgL2H9vODb3oTnc46Tx1/iqnpGYqiRI6121ZYLixd4OUvfyWlcZIQh/pU7Nl9NYkvSHsXKPMRNmjRmtnB1VddRdBqsLK6jK1KNtcvMNcquPHGa+hsdOhsDEjTAWEY4XsBnueTjfpEOnY1hRGUJqA5vZX3/MffY8Uc5c6774AKut0RwvqcO3aEzZUllPtQXfP2DP3YM3Gw7zSL7rnrmU2Yy310derl3z9fLfvM9Xx1rXwBqudfZb2U/Ojn0/y5Y7qMitln1eDf6vB5eVv3/98JTdPaauxrIb9tk3y50Xz62F789y9lfY+W+Te8/ibcMv9qYYlPW6BfevwuJhrx82532WnNDjfprHdoNCapxRMIq8Z0IovyFEakWFsiEQRBAykDtApABvhRgzJ1QcNZNhqbOng8dfwUgadYmJ9gfdPlTtWSgPnZSZQKkWNa1kR9hn4/Rfshi4sbTEw2HH1FuWOrDERxdEXPliRNvvSV+zi0fw8nTpyh3mwisJRFRr+3Sbc3JMtTtm9fYOnSOrWGx4E9+7l4cZ1jJ04xOWOx2SSLFxc5fHivC1rXkkcfO8qNN+5D+wpPBSgZY0WGkFCZwv1bVRR5xtGjx5iacnpENdYzGVMxTi1HCChLF51gqsrlazFA+Q1GwyGeVlRljtQ+tjJkoxGVFXQ2OiS1BN8LQTlXPqyg1YwpsowHHjrKvt1bSZKQleVVZmZn6PYdjc/ZW2s+9smvsW1hkvWNDaan2ygl6HY3scIihabMS4oiJUyS8f3DcXSbTZ8gUPh+yJa5WQbDIb1+l6RWc4irkpRlTpqnLC92qNdDpIKHHn0Szw9ot5yhxK//pw/x6ht2MRg4WpHnueI2zw2B7yOs5fB1u5iZbmGtYHpmGiUtvd4m+w5sZ3lpDazFDz3OnFmiqnJqtZiiGDEaFiwtbyDGU3Q/cHENcaSRoiKsRaRj6+6JqTpzcy3ue/AMSeSze/cCh6/eTRiFZGWK0prTZ1YJApcBleeFy1oLA7bOz1JkBc1Wk2MnzjPRikEogvGUu8iKK3mBx06eZ35ummMnz7FtYY7SGDY2OviBx+mzSzSbCe12A6UEo2HGytoqExNtNtYHbNkyxcZ6h8FgyMLCLFPTbfp9ZxxEZXn/Rx7gwJ4ZfA0oRWUdHQ0hXOh3XrpQbyzFOAsuDDywhtIorClRSmJwpkmm8Pi1Tyzx1lu3cNWbfoTAP0BnY4Xff+/7ecfbb8PzBNdcewjfC2m0YjbWV6k3J5ifb3DixAne8VM/yN133s81hw9greWa6w5Ra9TZtm2GV7/qaha2RoyGQwI/oMhL7r37CEtLy3zjjif4/u9/OQcPbcfaAimdM2kxGjpjIt9ppLTWVOPpvqNkVwRBQDoaUVXODCgrnENgEAbOGEiFbmBBhakKRJmOnTRDyrKg1Z7B+g03IMs2MMKivQBTjCiyLn7Uwg/9sTOjRErnzjfsZ3h+RFwP8LRGCEc9E7KiKh3NTgiLpWTY71FvTGFMSb/XIwgdYielQCIwVeUov2nKoN8j8D2ENQih8QOFrYyLORmlLoMMy2g4dPmQ46LO9xSe7xAOYwxR4tw+h/0uWgmCJAIsWebO7aoqCfwQWznH0F/9Vx/k8FU38sfv+z127Z7GCxJqzYofeMPf4Wff/TPc+ppb2Oyv8rYfvZ3l80fRUUBjMqazvk4cJnzwI+/l4P7XkKXLDNMBcTjFxMQ0P/V3Xk8tmeT97/0o+18zS284QitL6CmQkm46ZL2zDhiCwH1+jVpAaTPk2G1SigpfXs4QdDlnWMvO7bOcOHuRRiNm28wEc1MNtPKY3zKNBKQsMFVAEvooLbGVxo986kmA5ym09rh0ZIMHPnCWzlHD4v0D/uHf+mUOz9zEtc2baK7PoC/5bJG7uGXn9/OR3/4SD37qBGfvXWfbLbNcXO3QSCK00mR5zjB1KFrgO4FbmjszLSUlRekomRdXV6knPqYsUfrpocPlYlEIRZoXSAlHTyxx8uwy27dMUo3Ph+rK9hVaumgLYyrq48ZMKoupDHle4mnFmYtLSGVRVUEvzR11UWmUhCx3sSFu+Osop3mRo6TC9yOoXHB6HCaURvGRj93Pgf0LZEXO+/7RV/jX//yfsVPsoxjHjhw//hT79u0nSZpMTU47YyPpUeTV2MGSsUNtSaA1AvDjeGy84nTrRVEglMXY0g0AQ5dnqJRASRda7kuJVIZub5P77n6IrVsXEMINZeIoYuf27ZRmSH+wSVXmDLsFceRhrcX3PTY3N128jx9w9zfuorkj4Nqth5mYmGDLwnZ63U2iOCYvSuI4wgKBHxAEAXme0+1u4vuBk8LIiqxzjnTY5amnVthx1fWsrq0yP90gD0KaUUQ66tFdu8B1O3eDVlxYusT62iXmt2wBoDTlOL8voyorKnKEDvHXS1756pz1s3DX1x7jne96J0EQ8fGPfozYD1hbOY31A6698SaqCpRWV5A7IZ72NRZAJeyzpEAvpkN73lpQSler8OIau2euajzMetaxPON5324PL0bLfKnbfrt9O4PZ51I8n7Xlt/n5pa5n/l1eWmPoGrnnD0QfDxG/p7n7blnfrrn778kR+XbrSsr9uLG7fAr//P/5W2Pd3eUJzNOn72UgXsmY9c4ZfBUi/YjBsIMf+Fihxts584A8zUBKstw1Y858xGDyEqSlNBDHDSph2DLTYunCOhu9Hr7nEyUJg/6A1UtrRM0GGIOvFN+84xvs2rmFej0iijXpKOd9H/o8B3dv4dz5cyRxNDaykEDFKBtwYP9OPE8yO9ui1W6wttbh4SdOYQXccPgqBsOcO+8+Qn+Qsm1hHi/wkSJlc3nEg48+xYH9W2i26kRJzGZvkyhqMj09fYUfb23F4vkl8mFBo97AVJZqrFcMdcxddz/O/v07EWN3ssvuqFWVX5lkSoQzTxhP+6VuuOmvdl9C6WhIEIwnvUpSliNqySRlkVNkfYoyIx2UjNIe1oJWkoMHto/5++7LNktzJtothqMRoedhSsPMVJ2pyRZTk1OMBhkrq8tMNKf50lfvZ9++HXzjzgfYvXsXl8HebFyw+H4I+JhKYEVJXhQ0G22oKkaj1FnDeyFBGDExVaeqwBrJwf27aNdrrqgPNL/z1dMcrA+Zn2vQ7w+R0ndNnjJEiY8Xeijls7K8QWezhx1biYd+yPLiCr1Rn1oSUUsa1Bs1ao2YQW9A4MU0J1q0Wh5Ketx5z3F271ogiAIskl5/iK8grtcJk5DBMKXRbIPJmJpMSNOUOIgoiyH97pAwCFnbWGdqeoIg9qkMfPhjD7JlNubJ4ydZWJjnQ5+4k9e+6lpOnFp0NCzhUMBmq+H0BCjqtRjPg1CBHyYUeea0MlYzOz+FtQapBKUpyNKcJI7p9QcoBUk9YX19CEIQxz5SCYa9FE+D8mJuvmEXQRixvt4niUN8bRj2uxSFxdMBQlWk45ymkycWmZubxJgCIZzlfmVdw2OrnMq4Auov7l/lx1+9HzN5FUp3UcrjLz7xJd7xtlehpD++pjOE8AnDhCLLuHRpiYMH9xInCTt2LiC1x9raKp/4i88QhQErax3ak5N88P0fJgo0XhDh+Zrt29tcffVuXnHr1QglOHvsKeqtCUxVMuyPqLfqCAXGgBeEpGmJ70dUwmCKCmsNeZ4SRLErRoXE92OUtgjhoSUMNy8Q+D55XjgDCM/i+ROUeQ4SbGUQOHqa0BGeFzDoDEAo/LjOqJehlCbPsvEQR7qCXUnKPHXOuEVOWRiEKJHCB6Cztsqov0KtNU0Yt6iq0VjD6qPGyKEpDVk2chbrtkIoTVxrjhENAEVRuNy7CgG2cloR6ZrH/mbKZz51N9ffeAiEHOulS4bDPlFUc5paP6A07v6wvHiRpB6jhDfWePljd1HBluaQJNnHrbe+gkOHrmdux1ZCf4LAF/zom99GJD3e9mM/xd//334BpTP85g7EUNKoGdbXV7n15bchg4qNjWXe8xt/xOu+70YwkhNPniZpRHz6s19mx62TJFGCpyyX1tboD0c06y2OPnWJvTu3I4RiszugMgWBH3PyXIeHHz3Pgd1zDIsRWipE5VGagotrm9QSzczENEJUXNrs067VOX9piYlGHVMZkkBx170PMDc3iZAeUlTUkpDHP3uKxa9k/PQb380t+1/Obbe+kp94+4/zmtfcTGNimsoMaTZC4sjjuptewfYdu4jihB/6wTfwjr/1Vv79r/0m9Y0mZ+9Z4czdmzzw6VPse838OAjd4OsQIUHLAqUUpgKtXd5oEvmkWUkUeigVkJU90lxQC+uYcsil9T6msjSikHrss2/nHEpJKgtUBVoKTpy5SKtWd86vbjKDvVwI4qb7gQ4QwhL4mmatidYhiyvrTDbi8XlVsDns06zFpJmhP3TmZ9ZWrHQG+J7E04rVzU1qcYgVkr17mhR5xsn/OuKGq3Yxz27qSQ1RghdJFha2c//999JsNkhqMRaLJ32GwwFLqxdoNScRQtLrDpBKPl1fCMml5UvU6w3KssDzQ4fOSYG0kiwfXhnkahUgPI2wksCLGGY96vUGtgI/CJBKUhlDXgLCJ45qfP2bn6PVmmZpZZWFHbvorp/n/vseZPuuffy/3/wAK6vr3Lj7epJagjEFge852rIp0cqns77G4oXzzoCtyLHSIrGEWtNZO4dXZJw5fY5DN78aU4zI0xHdfsrG8iqjdMil8+fZPtdARj7CFky1J7i4tMyW6Vmkp8izCkmJ9EJMmTvDmapgz749VMWDfPPeJ3h4ueSdb3sb9z14H295649z90MnCKouE1GDg699DTEJVpqx6MyVc3KMDAtAjls7ybNz8J5u1J5dZz6fbu3FkLbK2jE9/OmflZRX6JzPV8vKZ2jKngk4PF8j+Oz17CS/77REfvZ+n0tYfO4ndOVZ8KzK+QX3/rxavGe+/29X0z9Tl/diDe530tx9j5b5/8P13vf+7gvSQN0kGvxYMhg6Z0IlK6JazChNkbJC2AyFJUtzgjAei5pBmBJMAWWO1gIpnJmBNQKTZxRFwdR0G09bKgxB6DM1NUkYhy5/R3vkWc7q6oBOp8/qyjrG5NSSGj/9ztspqxE7tu4mCCW9XpfRMGU0KqnVai4TLh0xTJ3+YevCFvbtXKAs4et3PUq73aBWV9zy8n3YyvLJT38VU1bUWvDqmw/ie5J7HniEojA8/OiTUBkEozGtUiOFh9Ye7cm206zhUIWPfvyr5HnB97365RR5RVkWlKXhzKlzSKHGRiyCyhrnjonFCkWeVnz9Kw9gjEMflZJO35EXmMpQ5DlV5aGVZTBcozSGJG5RqzdJ4oQ4DhmMek4T5vk0Gi38UOIHisGgjwCKKqc/7BHXAgbDHl7k0Z5qsnVhmt7mOq951fWUZcGrb7sRiwHrRMZhECDHon/P0wgBSmm6nR69bo+1tVWSJGI0GlLkGUoIhPUZ9HIeeeRJ1zx4giiJWFvrcP285tqrdyOlR6vVxPc1RZ6TZhUrKx3W1ze5PITQWqK1wvMcXbRWS9i7azcnTi/T2ezQ728iS0MtiVjvdDGVs8sPI58De+dYX11HCsFmZ9NRj/yIzlqXqqxQvsZgWNg6Q1SLabYbGCoePXqeialp0Jq9+3YShSFV4fPUU4u8463XU4sirjm4h83NHm9/8y18465H2b9vB8dPXeD4ifM0Gg4xKUvDQ488iZSCXjcDEXFp8RKjQcbp00vOdMcaQAEeUkXU6glKu3D6vDCcPnXBGXzYymnO8pJmu8lj8Ijy2AAAIABJREFUR05TGkcV/M/v+zxZZhAC8twShDVnrS9GaOkTR22sLZidrSOU0wBlRTpu5jSeFxAEyZhCBd9/9QRVZfG9CC1rRFELAD/wxnRG1/Bb4wwvwnqCpzw+96lvYHLDn//Zp3jo/kdpT0zw4z/5Vnbs3MHc3AxRFPHo0SWuunofD97/GOfOLJLU6nQ2+pSloSxzavUI5UkX7B35lEVJWRQujFy6eAMwLr9KVlhjCeMErCDLci5LOcoiJxv2weQEjSny0uL7AbbM8D2fYb9LWQzRSjidhbVkaUplSmcG0aqPX0sSJR5SOXdCpSR5ahHW6ZT6/S5FNkRSpzTOnGgwGKC0x8T0FJMzk2hlnf4Yj9GgR2ULiiKlqgqCKKLebONMThTpoMv/x957R1l21feen733yTffylXdXZ271a1Wq4WQRAbbwhhjkh/G4IcTfuM0tsHZi2eezVt+4zDL82wzzhhHghDBgATICFAjCeUculudQ+V444l7zx/7dqsVEIKxZzHrsdeqrqque885Vfeec/Zv/77fzzeJu2gDRoYo10qibdg7eIGVlBaZDULXwvDq11yDzgzLC4usr64jlUsYRvR76yhlJyOlckCa9hmZGCLPYkA/OYEYMKIOvPASrvvkXzO5bSPLnTWWZs9isgyTJfRaswQVyS233Uynl7K4kPPrv/JbXH3Vizh9epZ2B/oiwI1KxP2MicnNzMwt84EPfojNW3ailMMv/8LP0u2lGFNY+dzSKkOVEAfNgw+dJk57JGmfWqXEnQ+eI05gdnGdF79wN9mAJtrLMgpy4jRjZinDVSGduEWcZpw6PUMv7lOKQlwliHwPhOLqK3eRpCl5nnP/Z5/g9vef5Nfe/jv8xrvfzfDwGI3GMJOT4yRZn3qtwZkTJ0gTqwDwoipHDx/n1oO3c+bkWXqtHkZ0+MSn/oGf/7mf5qP//AG2Tm/mv7/3N7lKfg87W1dyw+89at+ERmKQrHd6ZEWGNhKDIBn4neNUIwqNycF1Aj7xlYcR0mOkXsF1BHFmuzmZLhDSWGCPMiytr7F5wzCr7RZ5UZCk2YXugz0/BXmhSdIcYwzzK+sXPHtbJsdYbfeQEuaXW9RLFU7Pr3H9p+7Ec30cx8X3fZq1Er7rYSiol0OW1jrMLa9TDnyOf7TLr//6L3PXw0eolCJyk4BrQS2lkgVGuY5ngWeOi6ag1iyzeXorRQpLyws0m/XBtcdDF/akHR4eJoljwqAMmUAJS2i2suh8AIMq6MddjNZ0um2M0ezYuQfleyhXEMdt2usLtisXRlTLFcDw6le/no0bN7Jt63ayTNNsbuDKq1/JHXfdxQ+/+e342sMPPEvdVo7NyhSSqFxlrbXO8NAwjeYQvu/jlasMNcaQJqfbnaPsCA6dPs2ZuT6eUBw6fIRGc5zx8SkevPc22iuzVEtYknWWWvJ40mP/ZXswSlJowcmjR8h0jtEGPwpp99ucm1kmTlIqFXjHD+1hx8gYtxz8GmMjoyBTvv91r+DxU7Pcdd891KVEeMpC2mDgHX2eoA8ArSme1iEqtJUK/0eOr8eekIN8zm+ncV5W+f/X8Z3O3X/wON+5+2Y8dRd33MAMfBfiWVdWnvv5Tw590cqC53l84dPXs31q+KInPXUbWmSMDU2wvraA4xiU4+MohSm0xfEnlmpYIEj6CVluVyzjuI/nKNZay3Z1RRTkRZ/Qt3SxcqWG5wtKpRpzM0s4jotSDqdOnWV1ZZVuu8ve3duoVKzPTkrFl796D0WRUiqVuP+BI2zeOoHvh1Y+EoWkaYLWOZ/83C1cumc3t9/xACPNGhs3jjMyXOHUmSV6vS4vvno/a6stypWIDZPDdFo9mg2XMCozN7vG5fv34ngeWzZN0e8kOG5BHNswVikVpXKAQHDi2DmGmk20KTh0+DSTY3VK5ZC77n6ITdMTCCmoN+oD+plC62Kw+m6QqsAIg1Kwbes4SJc8iTHGEJZKtFptojDEdR3CUpnZs4tkmc3ZSfOYSqXC6toiaZrQqDfxfStB68cx9WoF3/dwPZ9eL0EpgR9EeJ6P53v0uj2EgSDwiKIaju8zc26Ocqk8yO4zqIE+XGAlL4W2lDVhBOVqlW6ny8hok+XFZQI/IElS26EsrPH+K7c/yI5tk9Z/aKBUKnHNNgcG27N3Ic0D9x9lw6YJSuWI0HdRjkulElEuR4ShD9pwx72Ps2PnFo4dO82ObRtsTpWjOHF8jpGRIaqNCnE/5vDhMygh2LhxzOYEeorA96hVqxe6gUNDNVzXpcgKHGXlSMYYityQZzmtTpdKOUI5gsW5ZSoll7GxOosra1TKZU6emmPT9CR5rrnz/mPs2TGFIwWbNo3R7doAbjCMDjVYb3WIKiVOnpplevM4Bkmr3WdouIbWmnOn5nCU9XUKBHGcEAQ+5UqZeq1Mt92h0azghJZa+vjjp9m8cRQ/CFCOw/4903ZC60BewD0PHGF8tIbn28wrrQc5Z2GVLAPfK6FUaH9fbaVdWaZRysqiLtu5i9VuTLhxD512H8/zuO76T/HDP/QSitx6BpRSXPfhG9ixaztxP+bmL3wNqRT33PMoey/bwaHHzvDQg4+yY+c0n/r455mensL3PX7zd6/jZ9/5cpTUHDz4CC+85nKWl1tEpRK9Xp+777iXzVu3opSk2+njBy5CaDzPysYdV5HE8SA2ANLUhngDKMfKIvO0hS7a+EFAViQY4dHrxPhBiOO56EIjpYtUBunYEPHW2jqVahVLhDWk6XnkvF3tTpME1/XthNRzSOMYM5CASdfBdRWB75AXOZ7rowtNt9Mm8D0LSdGWpmtMge8HFLmNR+m2++jCBjmvra6hixzXcwiiEqtL6wSRP1gFlrRXW7i+QjnOoPC0+VtSGVzPJQp9slxjced2ASnuZTiOR54leN4gKkY5SOlijA3TtqvtBeVqle999S5+9n//S97wxu8jCkqcPbXAwsI8jaGQsFTDLwWcPnMWoSXv+NF38I4f+SHe8zu/wVve/k4Cr2BxaYWJkVGSRLB3/3Y+8pGP8+rXXksQKA4fOUmvtki718ZzffzAx1UOCMn+fVuIfIc8s6/t9IYmRZFRqwXUKj5SCJRUuI5VZ5SCkNF6FSntpN9zJRvHh5AKzIACvLCyRqkcIoSDwOWuvz/Kz779Xfzoj/8g5cghSVr4ZRdPlcjyhHZ7FdcLGR8eJgh9/LCCER6zZ0+wdcs0nfY6xeD1icKAILAeS+X4XHrZDiq1EtObNvPWt7yZndXL+P13fYC812dy1xBSSjzXI81sbqiUksC3r5dQBiVcZpdabBytIyWUQo800/iBf0GyaQtyQykMcR0X33X50m0PMTk5YrvOgy6NMYYz88s0KyWEgEa1hAaUMCytdTBIQt9BG0PouwxVK2zdOkFhGOTnabKisP5Ak9Ltp8Sp5gv/95380qt/gZe8+Cp+7ld+i9975/uQaJK4bwsDrE1icmKSaq1CP+3ieS6dfos0zaw320hOnT7J0FATJW08i5ASXdhFiNX1VcpRmXarRZrGZHmGH0YEnk8/6dnOtxsQ9xJ8z8EIycGDB2k2GjjKoRRFOJ6H0QIhpc0VVQpDRqfdQnkK33VwhENUr7BhYpI//cc/4L0/+l7uvOs27rn/HrZMb7KLMdIhzXLC0EaOVCpVhFL276xjOqtzxP02K6t9yvUtHHjRAY4cOsXuS7ZRmIJOa4HlhVM4RYet2yfIUz247xYUJiP0A3wvIMn6+EGFqBziOB5pFhOGZc6dPUWjMcQXH3iQkutxw62LvPvdP8O+y/bwcz/38ywvrfOrv/Ue/upv309d+Eztv4xADeaBg/fCRZNACq2Rg06akOqpkzxhF9+f8hS40Hm7eBRP69DBs8cdXNyleq4MPPm0rt3Fz/36ZMmn7+tZN3/Ro78OnV6KAUDo62/7Gdu6sLNndjuf+ZhvdTyTnv9s2/9OFMK30fhWPHdyQML61mk+zywkn66ZfmI+ZXu5/4zHXXiIlBSJoFQynJs9TeRXkUIhpYsXhnTW1/CCEOm4uI7C8T2UdOxqVZ7iuWVcJ6IoDEHoURTgBAEGB9c1tNspt3z1USqlgAcePsrYUIUTJ86yYXKU5dUVOr0e9z1wCCkUtXrA7p27CcMym7eM2Y5dL0FJ26VyPZd2p80LrtiL60ZEnqBUilheWWFhaYkD+/fiSIkSimqlysLyLJ7v0VlPqdUVDz0+y/DQKPPzS9SHqhgjOHroDKMjNbpJ24YqI0Bo8rTAGNvViko+27ZMkSR9jjxxlCuu2Id05AB0Yy6sriolSdLE/lmNh1S+nVAmfWbnlvE9RRwnVmrmumAMvU6HXtLjrtuPsW3zRpSniaIKJ47O0ukkTIxvYHWtRZ4VKEfZSbGBNMk5fXqO8fEJlCPpdPqEYYQN0xW4rs/aepszZ5asj6gbU61WAImSDIo86zdzlKAoLGlPF+A6LktLy9QbpQHq2l40gzDEGYRI79+3ncD3EINO1pcfPMb0qP2dpJTMzS8S+i6TE2M8+MhxRkfqdFptXN+l34sJQ5+1tRZKSKY3TYCUNJtlpBQcPzHD6Ngww0PDIC0ifn52gUu2byPLMuu3i3yyLKO13iEMAqIwIggtUn1hbgXPde1iRJIwP7dMtVSmUo6oViyO3eiCPNE4bode3GN0bCOmKGg2G2idE0YlLtk+BYDrSFrtLo1mjSNHTtIcqlMkBSur65TKPmPjdetrdDyGR5pkWYLJNM1qGSFynACEcZBKDW6+gAJPCXpxghsGRF7AUKOO5zk4bkCW5SwuLlOrlzh7eoZ6c4ipyVEEKVKUMSQ2gkKFGDK8wB1o+EEKhZIKbQQ3ffleNkw0+eB1B7nqBQe48c5DbL1sP9Vag253nU99+vP8pzdfg1IWt24wTExuZObcDJPjo2Sm4FXXvoxL9+9mcuMklx/Yy+OPHmHf/t2sra6xvLQGwnDXPWd58+t3UolCGvWIcrlCP8746sGHkErgKsHY5MSgcPfoddYJogAhPeJ+D6kkjiPJ8gKjc8KwfNHkQZD0Y9JeTFguY0wITkSRxIRhyYJltEE4CmFs5IpQAXPnZmgMN61XMk2tXDW38BGtDXk+8Lv1EjCSXncJ13XIUpsrpzyfPF1GpzlIxXlJTxD5pL0UbQSdVsti15VLEqcI4QzolwFBYCE4QRDgBgFSGpJej3KpCsJGqKwtr1Gt1UFo4rhPmiQUukBnGf1+Gy/0UUiU6+GHIUWWWPJqVKPfSwkCFz1QAijloQtBv9eyOX5xjB94CCPI4pSXXTNGPx7BDescvPVe/uwv3s87fuKH6bULlK/wPMXIyBBf+dKXqNcCXv3a70bIEjOH76Q+NIkxgkq9xrnZJ3jLD72VVmuJgwdvYXrjDpbck3guIAMrYfc8+mnOhz95O7t3jBB6EiM9tBYcObnAo4fn2Dy9gfmFRZrlEp1ejyhwAQdNn7zo46oKuU4vgJ2OnZ5nYqhOpeSTG7j1E0/wmT++g1/5qV9h9+U7yROH1fk2o8NTxIkgy2ym6szMGaYmpsniHuvtdZQXEscFmzcN0WhWKJcDlIJKeQytNWdOn8D3PUqVkELH1GpNitQhiiLyIuXySw/w2Q/dwPdd9iY++Ec3UBopUR8rc2puidAPcB1LRFWOZnmty+7pcbLc4LuSLE/tgsAgoB60lSkql1YnttfqOGPH5kmiwLN3eCEoBh26ZrVsAT5oWj0b24DR+K7HbfccYsumETxXUmirHslyze33HOGSbZO4rkIpiZIe3aSN67gc+uw6f/O+P2NtbY7xDZv47Oe+yCsufQnt9TVKpRIGhetYL1+hc4woEMb67l3Hw3N8jLARI1mqqTcq5FlOmub0+z0ee/gQk5MTVCtl2p0OjhKkRUKj2cQYYc+P0EciyTPNF2/6HEHoU6k0OHzkOJds384Tx45RrTVxXEvHtXMRx8oRjcN9995NszmG52rQkJHxh//0B7zzp66lqqeZHJ9m555L0HGPwPcpjMFxnAEpGgagURxR0Fo5i+dK0JKVnsZxBdXKGI2pMmtzS4R+yImjj7B76zZGJ4fwCwctC4QPGBfpCzxPIQtJbmJ838NzJP00QwlFkaWMjo6hXMOHb7mFztJJHlrpcemOacbHRthzyeW84AUv5h+v+ygiXcHppbzyLW9F6vzCxO3iskAb7GLVABhyXrn51MneU+eWhmeHsDzb/188lzxf6D1fS9GzRSZ847y7b664MwNK+YV9DWI3hHj+xd2TAetPbvObhao8//Hcxd358Z3i7tto5FnyOxd/b4x+xirI0ztyT185+VaMo0/N53jmNnbs3IY+98izPHvQt8lTHjtylLGJDUidsbo6C8YHaSUhSgrCKKDX6eF4LtIotLYTDCHsRaUfr1OplsgS6PW7iMIQBg5ZEhNEJXbvnKZeq1CKfKZ3bGbnjq3cc/9DTE1OcdudDzM6UuHSPZvptmK+cvvdTE0N4zkORhfcdPNdzMwss2fvVoRy8D2Pfi/B8V1qlSqF1kRRxNTkBJ//t9vZvWsDSysrZLm9YXpRiS/d+hBbp0cIggiBx+SGYe6++wGmJkYYnWxgpKIUlpE4dDo9lLQr9fVGBaXgxptuY/vmDThOyPDwCFJZz0CWZzjKs14Ik4PUOK6PEOdX5Y29wAifcqWEVC5B4JMmPTxp6PdbRJU6SigmJqt4oaJcLpOnOcPDNRrNOssryww16tx3/6MMDzXIkow46+P7IfVGjTjugnY4fvwszaEqSNtF7PcTihwazTqOgqFmjQ9/7PPs2bUZBt5CMCwtLVMpR8T9HgKF62lMoag1ymgDQrooR+K6kiKzeG8hDQjbVYiTlJmZWf7ohkP84FXDdFodlKeolMtkSQ5CMDneZH29RWOowczMPPVqjdNnZhHCEEUhcwvLuFLw+OFTjI00mV9cY2J8hLm5eULfZ2VljakNQ3T7Vga1tt6hUa9h0AShz8LiCqVyRJ5pVpbWGBtvEKc9hDR4vqRWrbK62raLDybHC3y63RRHwImTiww1h3B8DyFyWq014n7K3MIiqyvrOFKS5hn1RpNOt8f4eIMiT9ESAldRjkJWVttEYYV+t4vRBb4XMj+7QLVRot3t4LsOx47PUS7b4nd1vYPJMuIko1Yr4wjQhSHLM9bbPbIsIfB9Pvdv97Fv7xaWV9qEvoMQBtf1yPMEg8GRHqCQTgCmIMtSikKiXHt6C1mwaUMN5Ti8cP92cCr8/icf4tWvuJJKbZjlVpcbPvdF/vPbXokxEm0MxtjC9qYbvsKOnZt44J5HUNLgKghDD6kUZ06fZvfencycm+elr3gJvudy5LFHmD93knKlShQF3Hfvw+zcuZnHHz3M1dfsY3FpjQ0bR8jiGKm7lCoVjAjotNfw/YA8yZAoHE/iuA79XoYxhqTfQZgEhCCMqqB8jNBIA1I6KFeR9DsURYwwwmbn5Yak36dSqwIGz/VwXdt9Vo5PEqd4nocUkvX1dWqNigW7ICmMJKxUUK4twrV2yDQ4KgAp6HZaBKH1JEsJpShAed6gAyWRUhCWIvJ0FddzyVJ7rRDCdhU9Lxz47lyMKQjCEOV4JHHvQtZfqVKxVE/HR+cgHQnCkMQ9PD/AkQVGOyiV022v4UcBrhtiTfqZ9Q8ZO2HJctsx68cJjz96il97z9/ztre/iT27tjM11uSeO27j+NkWK0vrdNY7VKo1Hn/8GDt2b2dpZoV/+rt/IDUNRifr5EVKs+oxNjzGwswsx48cZ3kh5+qr9/PY+m0YbVACPFcRZxmu47Fty4QlQnoBR04tUgkE0+MjbN4wRK/fYWKoiTZYWXU3RSnr3+7F4HsOUhR85sa72Tw9xYaxUQpTUBjNZ9/3AH/5B+/nx37sR9gwPYHODYvnTjC1ZQI8ydLsOX7lXb/J69/0RhaX51D5GkdPnGB60zZaK10+9uGPceAF+1heXidJCtrtNtL1kKagOTKK8CuQd1heXqPabLDSWiLPDZVKyOhYhRe84Cp2793Nf3rTD7Bn7BIaxTAf/oMv8ugXjzN+ICIMHUsQdiWup+jHCUmW20WnPMVX0kY35AWeF1AUNitUCBvJIkWOGoBJkriL7/nkOuPkuVma9aaluCrBg0dOsd7KWFrvcPX+bUgJEkWrl9kuoCeYnmzgOg5aC5IsIy8S7v3SWVq3af74Pb/NyfkFytVRunEX96TH8HAD6Ti2I4wgy1L6A1nl6ZMzlGslcp3gK4VxHNDW51sql3GFBc74gYWVjY+NIlVBbopBcZbihSXSouDmL3yG7bv2kOUFQeDSbi+xY/deGsPDFDlUqxG14TqlUkQQeGRJjBAGaSwBuCDj5i9/ib2XXkbgGpJ+lwyXIIr4xFc/TWsdrthygCxLERiQCsf16fctFXVtaZ2oXgGtiDsLOLTpLs3hl4YJR7ZSq9Vpdzo2W7ZwuOfe2+l1W7Tbi4SVJtVI2fWeATVbSUsmNRqEa2OU0izGc3x7vVISoSSOsBl/jx89yi+/c5rbb03Zc+k29h84wD13H2F62yjt1YwXXzLB4TP38YY3/yR5muA41r+rRYawHM0Lc0wx+MfqE843C8T51f7nNc+82H/3fMEqzzmeVojacb5wkl9n++YpH092+s5TJJ/qyXuGj85c/PnCgWD9exohnszBe67u3LMd23mlhf362WEo32g838L4O8Xdt9HIn9G5e/KNcH58oxf1Wz+ZnlsKunLkbkLPffreBm9ySWutSzTIABttVIgCSb/fo1Sp4/gu/V4PQTGQDXpIKQbwCAchlc3hynL8IEQ4FixgKYsCIT201izMLzA0VAbpsDg7z8bJYdaWF7lk5zSVcolP33gHl+/fyeZNEyytrDI6Oka3s84LrtjHvQ8ewVXQbNTAGErlEkmaW6AJltC1vtZi6/QYjzx2hB1bNpKlOefmFpicHGPrpg0cP3mSBx46w+5LJgmCAIGmUilbCpWwaO00y1DSxfV8HMfKP9IkJU8zypUIz/VYXFikVCmhJNgIBHtDRjgglNWTa40NFdYgDHme4bguhw+fYHi4OZDNFZTKPhpJp92h3miS5RlZ0bOoZG1X8qvVCm6omJgYRmLIswzHc1DSRUqJ61nf0MTEOFI6LMwvQ6Ho92M+e9PtbJ0e5wv/dhdDzTJXv3APfuAgBvJfKSVB4NtQWCEsHEcJdKGYm5ulUiuzutKh10sIoxJI176mQuA4HkVeIISgUinTWp1h10RAuWzJfVIJZmYW6K8nSAx+4NmCuVbBdVw63R7NRgVjNLVaeXDRTfE8Ra1aptPu0xyuIZUgCDySNAPt2ddMCjqD6AE/8KlWI9I0IdcxcZIQRRFeEFCkBiElbhCgfJfA9y+s7OmiwHFLlEsRvW5COQqZm1/EcWysxNj4KLVqBS9wCUsBjpA88thxJseHOH1qjqGREXv7EYKoVGFtdQ0/cPF9165G+xHdboLRkiAsUWuUcR2PxfllJsaGcQOHLEnpdWKWl1r4rsJz7blSKkesLK1SqwYMDVdxhGOzz3SKNil+4OEoBSi++KWH2LxpbIDaVyyvrFGq1DEG65sVBa7rstaNqVQmuP62Y7zxTa/GDzwq1RIfv/4G3vLmlyBQdNbbSOnhOA5bt01TrVbZsGmSw4eO0e31mJgY5+SJ00xtGKMoCjZsmOK6f/kEl1y6mz17dnPs8CHSNOP+B0+w59JN3HjjHbztR66lUq1Qr9sJWppkOK4izw3K9XAchRKgHEle5CihSJMEgQThkGc9+r021foQadZCSR+dKYTIKfKYLE1RyuY6Steef7ZY8C74iuM4QWtDELrEcQ/HleR5jjBQrpbJ0sTKiGSAG2iSuIOjPPs3VJa82OuuE5UisiQjLFUwg7xIIR2EdDh3+izVWtXK+ZREKZ9eN7byO4qBFFQhEEgJedLHdQPywiCUa3H6fojj+eRZgXQt9VCJAqGsz6koioHU0yFLNUIVRKUIY+zv0+91CMKA85MbY6yHVlCgXMnGTVOcPnmcF73k+0jTLs3hEjv2bGXD+D5++d2/xE/91I/yyY9/lNXVZSI/YGrjRq584ZXcde+9vPJVL0NIyV1fe5jP3ngzZ8/O4/kl7rrndl75ypdx07Ev4UhY6/RxHY/P3Hg3UTXkwYeOc//dR9lzyTTtbp/heoVuumY9eOUa/aRLrjVaGwoN/qDLUY0CkiwjCgJqQ3Vuu+sw5WqJasnny3/+MH/4e79FrT7M/fc9wFBjhCwzDNWrlKsVFpcXiIKAyy/fR5b12DK9mUpplOZwkzzPOHPmJPVGmYnNm4iqoQ0w90tc95GPsm/PblZX16g1h3AcqNdHENqj10oZHW2y1unQ1wXD9TEw4PoKL5CMNrdwYO8Yv/gzb+Jl217Pf//FD5BkKRNba6A1UqoB6t/gOg7dXodKKWKtkxD6Afc8dJip8eGB3NrguQ7dOCPLNO12Sq0cIoBKFPGVe56gUg4phz6NWoWpkTq+7xD4LnGaYgYT/PPSO2lSenECRuB7ik/9twc5/bXj/O7v/CJZJvnJn/wlFubnuWzfpczEMzitkHq9itbaypE9b0DGzKhUShidEkURWTHomqBJ4hjPt0oVgDRNrYzZFCjXtaHoubb3V1/iKMnWzftwFKRZAQh8N8DxFWvrK0RBhSS1ECqBIO73EQj8IEC6dmFSCY9mozGApGhkGBKV6uQ650d++nV8/BM38uI9L2FmdgaAesOSc2//2i1s27KT++78MqMbNyOKHrqzTNZdZz2VDE9uJenHeJ5PNaqizTo33fgpdm3fRbOq2DTZpCwFeZGilPXkSwbFitEYjO2mJzFBGFIUBaZIKLQhywoUgtzk7NuwEzc6y+GTq1x2+XfjB2U8r0wQwfDIRmpOh7g3y6kTM1xyxQGK/HzNctHccpB/d55aKbBe46IoENjz/5tNsRP/TsWdeNbi7smfPd9twMUyTvXcT3j2rQy29Y0y4gojAAAgAElEQVRomc//eP7jOnt2fKe4+zYaTy/ungvp+lyQk29tPIs886J9vP+6g7x4S3mwj6fvFIaGhi7kdDkunDr9KFEQ2Am1lJg8IQw9giiyQActBpQ6i1/GgDH2gqCL3JqpjUGDnbwASdJjqFmm3elz/4OHWW+32LVrG7fd+QCjwyOEocfpc2eJAkWjVsH1fI48NsPQyCg7dm2kXnM5cXwGJe2+kYpO2wYRB2HAY4eOMjoyxJYtG7n9jkdodxL27t1GkRcsLaxjMJyeXWDLxhFK5Yq9UVbtCrkNzU6Q0sHzPJIkJs/thOyGz3+Vndun6bS7rK6uMTVliyjpOBR5wWOPHmG4WbfKB3O+Kzsw5woNCKSwmHeJHOR4hdYbU4AQPlJ1uf1rD1GNmkjpWzlQURCGHv1uj1a7MzDE20lePLjpW4+gBKFZXlojDEM839JF250211y9D8932LZ5ivsfepztWzfZldgiR0l5gXp17sws5XKJMAopjCFLDdff8GWuvGwHpVLEV2+7jyzNKJdD+v0+URiRZbYzirCrh/umBhIJA0lmJSTlUsRd9z+BEIaRsSb9fp8w8K28qxzi+S6zc0s0GzUWFleZmBhBSsXycotKOeLUqTmqlZA8y7n/oeNUKxGuY0PPpZJEUYm4FwOQZRlRKSL0A87NLDM0PIzjOMzNLVCrlS1oxbGZZDovUFLgeOD6DkJq1laXaQ4PE5UjSlGZz3/hPu55+AT7Lp3mzOlZjC7YtnUKpaynYX21w+mZBXrdLjrTlCshoFGOzZ0zxuA4Cs93eeLoWYaHqnRaXZrNBisrq8T9HuVKyUKKXNtqi8rWO+b5DutrbcbHGjiuSxCELC2vUK2VLcZ70BFVyuGLBx9n59YGJ07NUK0EVOshRisWF1aIopAiz5FOwMFHzrFj82auv+0o7/jPb7Ovm5B85LpP8/a3vpR+r0MYlgCF60qEUBz8ym0sLaywddsmdu/ZTbvdZmx83ObFFfa9f+mlW7n1q/fS7rTJ43le98aXcPmBnTxx+BSveMV++r0Yx3GZmZnF9yzS32BwfR8hFI5S5FmKlOB6Eim9C/4x5fq4jiYIHQwOyvERRrO2vEySJpTKJdI4tRl52Xn8vMFog3Rc0iRGORLHce25KQW6MPi+DQFP0z5CMJCGBYPOibTES5MM9qmI+33K1dog884lTRMwOUIqCm09H64jcBwHpRT9Xg/H9ZHKRSppO7rGdvWt/zMb0Hb9gU/uPDAD8rywcQaFodfp2liDIBoEm2PfK8KwurJOuRagte1gCqFxfYcsLcgLm6XXWmvhhz5ZGg+KVJ+rrxzjo9c9xiV7tpJrQa06wezsEd75k28jz7tsmZ5i/2X7SOKCodFRhAtFoYki2/3stPscuGI/V7/4SjZsmuDqaw4wNj7JR/76Q4zvbZCkKV+97XGuvGofo40Se7ZPctmlW1jr9On02nh+BSVcjp1ZZcOo9ZS1+zGtfspQtcLyeptqFFIUOd1+jOc5+K7Hji0T3PPwCWa/NscH/s+/JAqrnDl7jqGhYTyvzC/8/LvZvWMbzbEx/MAlT/uMDE9y9PBjFHlOtbmBD37gn7jiwBWcOHmcAwcus2Hra3N4rgeZwxVXXI5A0xwaIS20Jdh2ewiTMzxUg8IjTwS3fuVuNm5qsra2QhAESFxSVaU6HCD9CTo64rte/EJmHpvnp1//Lv7bz76f/mKP8T1NPFfS7vXxXQVCUolCCq3ZMNak1Y35ws33smfXZuudV4Zzcws8eMdh/HqJailAKYehZpWFxWVq5YBcFwS+g+86FLrAG8QhfP7me9m2ZXKQr5cT+CGu43H7n5/l797/+1x77WuY2DjCr/3S/8GOynZ+4OWv518++M+MbxnnZa+9hPZMTpql+J7H2to6t9zyZdZba1RrVYTQ5LkmCC1sKxzkQOZFgUDyhZs+Q6MxjKMcjBDkaUGeao4cOsTw2BgS0HmOdFw6nVVK5QpamwsLpf1+j/vvvY+9e/daL6RjPZlZnpBrQ5ImSOWglIsXRhw6fJjGyATlagWMRKCpbxLscA/guJJGo45B43k+/X6fZtPeZ8YmNxK5Ga3V4widILw6wm/Q7SW4riLLcvK0x6MP3MbundsohZIwAJGAcFLbzTeCJCuQ0iovHMcuuuZpQpanKMdBKhtRs9rucur0SUZHxnCVj3Ac/uff/hNPLOX8wA98P37oc/ToGTZMj3PdP3yQuHWOQq+xd++VjG/filIueXG+qyWf2sBC4EiHwhh0bhcTGKjDCqOfF8Sk0AWOVM+7sLuYHFlobWWb5w9p8PXFkQ2cP/LnOJand7Yu9sHZr78V+9L5bTwdmvLNK+WeHN8+xd23F57mO+P/0/Grv/6LrHXiwXdPw8sKgzYZaZZQrpTBGWFoeAOCgMCt4AiDpwztdRukKmRuEdCFwHEs8EAqB9fzLZgjS8jzHJRDIRykVAM/jeCTn7mRgwe/xq7tm3jRNS8kNz6vec21bNw4xe5dmzmwbydD9TIKC3LZtXsEI1MQCs+pMT09Ra1WBUBJRblUolwpkWcpO7ZtQiqHbi/hqqv2s+eSXdz34OMUeU6zUefc3CpvfO1VjA2PIIRgaLiJHrTW88z6VYy2kAqtU7525/0kccLW6QmEgE3TG9i8ZSN+4POPH/ocaZrZombvLjzfI0s6OI5EoykwGCMQOLYDgZXgDA8PUanWyPKCrOhjZIqQCSarMFqbpNGoE4TQj/v0+zFSCILQZ6jWxFMu6+tdcmNoNBvUqhXEwIvR7fRpNGpAgeMKvEAyNjGE40jrxXHgmqsuIy9srIPrOAMJng0qfeKJsziOQ7dvA6UNguaADJl01/je77qKnds34XmKSqVi3zZCDBYNDbc+chwhJb7n4TgejvK46csPIHF41asOsHffdoSAXi/m2PGzaGMjFpaXVxkfG+Vrdz1OFEYcP74IeIyPjRJFEYFrvRXra21e/qIXEPiKOIlxlEspqrK22kVIl8XFdRt+rK3szRjB+vo6xmgmxoYgy+mute1NTirm51dwXTkoxl38oMbY2BSzs0uA7fxsGh/mu160B2EEJi9ojtRYXFllrdWmXC0z0qixf88Wdu7YhKskynEIBhlnBoMXCLxAIGTB9u3j6DQnCsvMzS9x18NHCByHNE5xAo/KUA0tNEiBchVpkjI8XLcTfSVYXltlcsM4CIeF+XVcr4QQLlmW8xNvexmV6gijw1O4Xh1NgNY5zaEG4OA4EUI43PpEjr25GTABeW7odVIUkvb6KsqxYIcvfPbmwQ0WpjZMMHN2kWZziCLXfOr6m/j7v/kYN37mZo4eOc7uS3awceMU177mFbzopS/gQ59dQIqYtL9Ov9Pn6JHTLC6uYYxgy9atGKNI4gTl+gipEALiJKHf76McSZrExElKr9dDCwt4ieP+oNhzEdgg5HIV6o0GRSGIyhVczyOMAit7EhLH9QcdPUtrVdJGCaRJTpZZiqkQDr7vkyQJQeizurxMkrZoraVgPPK8i9aaNE6ISiXmzy1RZBaeUuR9m83luvZ3EZIi1xRFQRInA+lsOvC1SsJSbZA/ZygKSzoUykcbK3Xut1bRprCTQSUodI7v+kSlMmGphtGatUEYtxh4fJvDTdIkJs8KjIEsSxACey1Ke2hTUGtUyNIYNwiszzAziELy8qu7gMDogPf+tz+hHNWI/CE++Jef5PavHCVP++zcvYu19RaFKdg8vZFyucJ3veK7mdw0TGMkQssuXpShTUqaJJx5vEOWFWRZztTGMUZrVULfJ8v7gOaOrz3I1qkhwiDD93z2bttEL+nwic/cTSUsM96okeYpDzx8HFdJkiyjHHnkOgNREPiK+UNrvOfH3keSSLptydjEOLVqnTzT/I/f+0P6/Yxuu4PjOpRKIe94+0/RWe+yfdsWVltr/PM/XM9NXzjI1Ve/hFKpCklG2mlDllMJy5w+c5ooCllfX8NxXBaWVnE8ycrKGb5yy7+inSV6a8e4dHONxaVTVKoBrhPgOmW6s4fozJ7A7ShWzx2huzTPa171SrIk56Mf+hd+8R2/ylu2/Bfu/8Aid/zFMTw3pJ+k/OuNB2n32zx69Ay1conXfM8LASiMwHcVuzaP8IY3XMnG8WHrjzeGauSxa8sYgS8pRx7GaJZb64Nrsr2nTW0cQQ0ke+v9GCEVn/zd+/njP/u/iJNZopLH7R85xrve/su89nu/n4O3fo63veHt7Ir28DO/9Nt84p6P4bkecZJQrze49rtfS6fTxvM9ytU6vh8Q93uEYUiv10XrAt/1QEs2TG0likrkRYrjS7zQIQhd9l12qZVdCw+hHWLdwfcccj0gR+cZWarx/YiXv/y7eOCh++j1bCB4P+7S6bYIgpBKqYGrfIwwtJdn2b9rJ7NnTpDlOUm/xx9f90c4OgetkMIjzwRhUKHb6REGEcNDw9b7Ww1IlufxMkOWlXAbG0lTTZ4lROWI1bVFkrRF1jZEZQgDRdLTGM9Q6ABDjpE5USUEYaWpAGmcEvoB5bLtfgohcZyAUnWEbbtfCEpR6IS0iDm7lvM9b3kTL3355UxNDfHSl7yUWrVBzS04fuwwuy/dx/LqKungnJYChFSW8Ki58AGQa9utk+qZUBUhhF1wfw7gn9bP/fPnGq5ynvL9+RL0yUP4VrkS//7j/HnyjcYzaZ8XKul/z6P5f73Nb4+/6v/iwxhzYbXjuaiY5x/3jbenBxdz+VSl8tOeK4Gfef/Ngw6bnRycf7Q2CiUFWdJhdWWJggIjh/ErQ6jQo0g9tAzBcTFZgZKWQmd0gqMydFGQZzHCpJgixnUDMBmiaBMIiUQgFayud7n2e17D615zLVMbJykEhJELjiB3JOVGk9ALmF/IOD3XQhvDkWPLLJxbJO2sY0TOwsIiaZ4hB6uRaZqSJhmzc0uUKhXOzMzS72bcd/+jNIYcosCj3izjRw5XXrETKUs4gcvq6hLXffwg/V6PJGlZOigCJQ2YHM/3OX2qT1G0uWT7Ro4dmyNLU1ZXlkHAD7zmpSRxHyEkuS5I8xgvjMjzFEEBhSVlIgVGCIQyBO4gR4wc1xf4XkieS+K4AFmw+7LNnJs9i5AuriOo1kr0e33arR5GWZlmvVbFZAXdXoIWML84jxCaKAoH0lArxyryHEGBMTmlkod0HPwg4uOf/jKF0ZYqKDS6yOl3+rzsZZeTZn1817NhpiLmza97JXGsEV4FLZS1Dg7uGb2u7QTkJkcIwR//66O2KKagKFJMkfHKqy9leXkNbxDmrgtNr9NnYqzJ2dOzPPToCQotOX7sHGPDTarVEmMjw7TWWxRFSlbkrLVi0qxAKMl9Dz1OlkG1WiNO+2hSqo2QIAyJghKCnIcfPcpd9x5icqJJrRzw6Ru+inQDEpMTVGuIQhL3YrQpSNOETruLzmOUyulnPSqlCFNo4l6bS/ZtIgxdlhdX2bBxCp1BKYyolMscO36OQlrpTdyLqTUqnDkzSxIblPLo97vEcWwn1EVOlvYoRE6nv85Qs86rXnQl3VTb4kAb8n6XMKiSpQUUkiLJ0Vpz5MRZur0+zXqF1uoqRZpQq4YURUJRpLYzLBKkjJmZm+Nfrr8FigzpGPJsDaUsCOSWg/dwfDEDI9i8cZLUrNFP+uTkaDRhuYHnlFldWef73nQtBkMct9iwaZxyNeIf//6TPPLwIa79vpdzxVU7ectb38BlB/ZTrZVZWZ0nCBVHjxy3Pi9Z4frrb+Plr7qa7Tu3cvzYObRO6fda9Psd0riH0gVpv4/W4LuGMPQpCvDDKuiCatkGuedxG11okkSTZTm6SOh0+nhhAzAkSRuDpt1qk+kEYwRryyugc7K4i5QaR3lobTAK/CgkKkeDiVJioTpphjGSenMYtE+lYjtjmgpxx2Yi5klGrRliREa7tY7nWf+sTnOSdof1lUU6rTaeH+GGIY4nka6DYUDPdSRZbuVrusjQ2hbaQma2m2wkOteDbqzG9FbQDMKPsdCJWrOJdBR5UYBx0DrD9UJ836cocny/TJYajIZSZRgpfXQhLLkxSRAoNAkicNmyYzNSBEgkP/TG17G8PEM/W+In/suP8dLv2cP/9vPv5rFHH6WkNH/7p39EtdnEdQu+8PlPUo0aBNKn305R2seVwyzMrbC4vEwYBKy1c/bt3MDt9z3AwuoqQrpoDH61yvWffQRH+BidI0SKEJq3vOFFGHIQGt9TvPoVV2CEoFwqEWeaPJG4StDpxXiPRVQaEWdPL/D4Y4f4qz/9K2pRQBovc/BLNxLVMkJf8qG//TBJbHjrj/84//KRz/HoYw/jOgXXffqDXPPyKzly8kEy7XHs5BHqw+MY5aJdQVRyaPW6LC0vI4qUsXqV5ZlZNk/tYc+urRw/fIY//5vrGd+5k4nRHQjZ4N++9FUevP8Wqps2URveTV93+PP3/zXVsQl2H7gML4R2Z57NW8cRKudP/uT3+Oe/+xt+bM+7+PTv3kt8q0/kljjy+AJn5xY5cW4WrTU6izG5IckgE5K8SKynFIiTFEe59BKNMYJe3KZe9i/EfyRZygsv3YoUGkFGoHzW5/r85f/8rxSdsxA2OXvnCuNjIxhhGB6p8tKXfDe+W8L3Pd77o+/l9W+4lvd96H8QBBGtThupNC+6+hqSfgej7QKkdBwUYpA77zI/t4BwEvbu2U3kB4RBgDTWplAUGUpJTh47QVLkqMBD9y1cRhqXh+57kGOHjuBIweHHDtHtrrN7+2XUKjWkCqwE+LY70YWgl8T0+j2kgXJ9hAzBjt17UcJF65x+mvCe9/0FQSBZXZ2nKPrMnjuL57j0k5g4S3A9B9OZp5v2OXTqHM2pbbgYvMCl3hgi7qWcPP4Ep04cZ2JyDM9AHif4nkAhkcJ6Yo2GPIlxpbJqmKJAeQ69PEYbjdGaNO6SpgmByim5CTrto9OEw489QSfN+fkffAud2HD8+Clu/rePcfyxQxx9/FauuExQ9Fqst2Y5fPcDmMJBujmqeLJQOl+kXJjzCWEtIRIMBVpb+fj56AMlv34p4DrOc84/n/7/F89ZtdFPBadc9FlcPFe96JifbTx9H+ep0E/Ok/Xz+DBPk2CenxmrwYK0QAjn6bt+xnhmh/HJkvXZC9VvpVB7ehn8zY/vFHf/i4/f/q+/MfjqqW8mge3mTG3YhOtaxHoYlYiTjF6ni/R8HC/E9z2KvIfOHbTpY4QhLwaaekegdW5NzlqDULQ6XXr9HmmWogvYvn0LDz58iDvuuZ/V1TUUFvphD0mTJjGLyy1mZlY59sQs3XbC+HCTJE5orbdJ44TJyTHSJMVoTZamBGGAF3hEpYgkTqiWajie5hUvu4LuumbHji20uzE3f+lBPvXZ+5GOIctzRkZG2bxpFNf7f9h7z3DLzvJM8/7SSjuenM+pXKUKyoACAoRAYMBkIZIHjLFxt3sGbOyZYWjaYGO7jQEzY2yMEwbaGFsEIUCARJCEUA6lUCVVKVSuOjnsuPLqH9+uUkSA7b6GH3zXVdeu2nudvY+Ozlrre9/3ee7HQ0nrraFQFh6iDKB461ufi3E02lOcfdZmlHG44hu30Fprc+89D1KplPncF69GSomSijhK7QlfYJHmUtpsO2ElbPZakPdkY4IwaqGNQimD6zmsLq9yyx37aKy00Y4PUuH4AdV6lWZrCaMd8sxWV55rpbADA/0WkV4UtNsdojCiyHO09vjH/3ENeaYocsV3vnM7aVYwNtzXy/MTRGFKlmTct3c/SqlTE9Y8yfC9gDjOuPb7t9liMUtptZtopZmfm8P0jktCC4nYOBTQbkbkGbQ6LZSWuL7foxhaMuXKaoMN6ycJSgH1vjLPOXc7SZSQ5imTk0OsrqxR6UkbHceh1WizZfMkcZQwNDjAWWdsQemCgoQgcInjiKjTYWF2jnLZpdnqcvqu9SRZwvLKGsdPzHPxc89iYX6RsN2gubxAnOV0uiHDA3UUVpZrtEuRS5Tw7DRPQFDyeeiRQ7iu4eof7MZ1HR46cAQ/8EnilJnxERbmV0AItKMRQjA1NUZR5Da/LU2ZnV0jzwRJUtDppLhG01+voFSBYwRhmJLn0O6G7HvoKFCgjcXBO75keanN2bt2oZVg38OH6R/sx/VdXM9B9iaFSY+QGIUxmzeM8+bXPY8ozDFSWi8WOQUZfdWazSgEhkcGkQJ836dUqiOwBQVC0D8whCiE9S+mIIXh7HN38rZfey0bNk5SrZY4cew4jcYycydm+cZXv8v137+XIpNUSh6Xv/Z09ty3nze95SXcffcevnbljVzy4vM5dnSW2RMLNjZE6V432/p2s1SR59ajVuSCLI9ZmJ8nzxOUcQnKfRgT9MwmKUHJI0tzikITBDWUcvBLAUo4CFFQqvgIacmv2jgoWZAmEWGrQ2dtmbXlJRzPB2mQ2sX1AowyhO2QdrNBQU6WWj+xXwpAWH+n47g4jke5WkNKRZ5pChRB2cf1HIbGRkmSiLDdotloUWQGCt0LQ08tNCZJcBwXz/eRSlMUVrhUqpbIsgIpDFE3I86sR0lISWN11Xpke5uyIs+QSiPQkNtrqJSS1eXVUxsOgaDIUwoyut0Qx/V6Gx6BFIb5E4u89W3vYnnpKDvPWMfGzRu47ZZbQBT4vs/f//U/sLzQYu+DhyiVR1CZR2stpFSpsLI6x4FDR/nA+/+Q22+7gzBeYmCoQrVS5VvX7ubmHz2EYxw2rBsncF2M9ji2uMYF52zi1S8/g6VGi+VmG6O1bfrkOXfc9zDdKEEKSZp3ESInjGKOzS2TZAXtbsRNn9rPq1/9MuIkYnhohJ07zmTdxmkarWUmxvq47M2/zNatW8mLiMvf8hpqtQovfMFZfORjf8SGbRuplB0GBn2CADZvmiFNQibGN/Cii19Oq5nwohe9ApEFzM+uMDI6zMrqAoWEycmNLC6kvOqV72Rkah3/+d3v5aqrr2Fp4QjddpsLnnURc0faJKGdCAe+xwc/9AFKfkG72+bE/ApDg1XSNEdJzeLiAg/u24PyfL7+ta/wt3/zKd6w+d088Pk97PnCEbZOj6JlRlZIC/IxDlGWI/KUKInIC4nvStLcyhW/9NWb8JwSQjjcuecgSQpf/+ZNRHHSmzxI5vZ2ePOuX6dUHuJfr/ge9145ZxUrWUQhMjqdiFq1j5XGEkhQQnDkh20+/qf/D+1mm4f37yOKIgpRoI2VnPtBgJKWDu37Lp7vctddt5Nl0oJb4sQSeJMEhbBNrzBjbGAYmWVE7TWMSAn8ClorTtu+jS2nbaHZbjIzs45mu8FV3/hXjh4/jnE8js/Ocd4FLyIKY+t11Iqo2yaOYxvynhd04i5fueoq/vLjn+LE3BzaMQRBGcfxGB+fYHV5lVK5CjKjtXSAZOkEmVNj57NeTJYVJHHM6soSKMFau8Hc0TkOP/IofYMOpA7KWOJxnGQkuYXMJHGC4zoIbWi0mjiui1IKoxySJMHzbANG9qKSorANSiGNQ7U+xLPOfzmUCvbuuY9K/ygPHz3OB//oA2yaCJkYrVAUMbVawb7bv8t3r/gUndZhYm0LtvxxWXVFlpMkttluJ3A5Sijkj6k1siL/iZO8n7SkkP/mvLyfdnr2H7mk/HFF2b/lvZ6gif3/df3Cc/e/eD0VqPLE9fQ64ieuUxkdj5vknexaPP0qTj0+1iGxz+VFcaqME0XB0PAgnNjLU34hRXHqq1uNFkVmJ4GeH+C6Dp1OhzAMrb7dDXr5PwqwOUZK2wyctHdR8YOS7RLnCUHJEhfzPCdLM/r7SqytdFg3M06SxOQIpJK4jmbvfQ8yOlHH9wLyPKIbdqgP9ZOLnEotwCt5iFzgGMPBg4fxXIcwSqx8z/NYWlphcLCPKA4Rwuaufe3qHzIy1MfmjRsoBZK+vjJSCdK0YHR8GK0t3S6KY+uliUKUFAipkDpBEpBmIVILlIRzz9jK5//527zmlc8HIZiZGMH1XKLYGsyLorCbNClPqbtP5cQUBdaFKEniHK00a2tNHONx5133MjIyxJmnb8bzNXGUEHa6eK5hYWGR/v5+umGEVpKbb7mXgf4qSmvCMOafv/I91k8NU6/39T7QSiR2bV+P0lZzv27dBFoLJidHSJMcKQXz88v09/cxMTFMksRobThxfJ4iS2ygsnGYGB+gyBy+fvWNnHXGNopMUa2WaLY6JGmK67tEYcRFGwWlckCRZ/glHykk1//oHsZG++h02lRqZbqdkGajgxQFlVqFg4dPMFivoQ00Gx36+6t0Ol3SNOHw0RP0V6u0Oi0c47C83KBaKyEFGO0QRTF+ULJZSj3pqucHZEXO1MQoruMSlHwc10UbZcOmpYNQAqMNjmsoioLVRgfPs/Af3zen8huFgP6+OkIKdmydZG2twejIIHmR02i0cF2HA0fmGB3pQwhYXFihUq30EOcSp5eXlecFeZZTq5UQQpGkNsy20+1Sq/chkLiuQ39/Ddd1SJKIOEowjkOp4pIXKWmSMj42TJwkp6AaJ0EJSWwz1e7Y/QDTU8MkaRehUiSKME57Xg/BQF+Zj3zm27z5Rc/icNbH2WeeTRjaxsru3ffzSy/ZRYHmbz71T5xx+kaEdKxXsa9KqVTCGNUDzcRs3ryVu+7YzZZtG9l62mbuvPNhAl+RxhHnnX8Oe+69k6mpMW6/7QFe/ooLcD2HUtlnaGSQdqtNrb/vVAB3XuRIYX1paWZ9aMZxCIIyhRBI41DkOe1Wm8baKlIqjLHdeSmtF64oUqSAsBPieG4PICJ6PjaDECnddhvP9/E8nzAMSZMIyIm6Ya9gDymKjKBsJcdpltJYaeD1zmm/FBBFEcYYm7VGQZ7bDDkhwfEs8VKSk/Xyu6QUJGEX4zpE3Q6m50tamJsnzzJcv4wUUBQZWZailIUzKa1xfd82hITE9RyyLLEFZc8fHHbbtBptytUKStvJXhInlColwk7XSrMEKCXRxvp3e/hU0iTn+uvuZGEx4jgoEwcAACAASURBVDWvey1Ly8sUWczMhmmqpQEa7UVECp/5x88zOjHO695wGR/9kz9m+44teH6Zvv4yn/j4J3nppa8kjLrMzEzR6XT5zOf/mVe88zw6aYwfuIwN9nHFl25g+44pu4kTBY6R+K5LFCcYLXC0ZLUVMj02hNEKBGS5ldz7rsNAvYqWAm0U//VXP8S2rZs4eOQeZmam6XRX2brrDP7uLz/Jzm3bKPfXyVP7M7r00kt5zaveQLe1QP/QJLfecQsbZzZS5B2WF9Y4eOAhAmeIJA55/WWvw/NLvO3tv0ZzdZWx8XF+/wN/wItf/FJOzB7Dccv87ac/z6c+/Qm6nRZCeOzctZVKYHCdEq21LgO1MgQ+v/Fr72RyYpSxqTG6jWXSvESGR60kyDKNox2OHDnA5q0bKHJYnF8gSxJ8z+N33/MbvPii53He+LO57EW/xbNedSZFUdCNY0qe39PeCa67ZS/9/fa+6rkOO7bNIASstbqMDfWBKBgfG8B3NUZLMjTvOP8/0Ww2+K13v483nf9W/MD6S61HFYwyFIBbMghsQVDvK/OHf/lRlrMFatSp1mtIAbVq3e46isJCU7RLN2yRpAnbtmxHSEWz1aJULoGAOImI4qhX2C5x3XVXs3nbLpRW5Jn1A8dhx8r24y799f5e86NgZnoj9YEqWZHhuBpHGSDB8w1ZnqAVZIXG8SzIRcQZW9ZvZXyj4Mtf/hrP2X4R9++5j4GBIZSRlPsGCFuLRMuH8LKQUm2aqPCYX5ynWi+xd/c9TE9MELVarMzPs26qzsRYP66vSTOFkFYCPXvsBJV6hSLPcbRDmiQIZUFsNk4ooyhyjDGWUVBYX7qkwHF9wiilHcP9Dx/ggdVjvONXLuNb3/gRy8tQ1poD997IG15zJlGjwerBw5zYcyvLnQVKMmfDpjMx/maEiMiKHHUq1+7x6q+TgJWTj9YXfDLm4JSl4uQrz+Adeyaqe0Hx1OiEJ+1Mn4J4eBwl82eFqvwsX2PXSYpm73t6Sh370xZnTz2ueErMws++TtqCnm79Aqjyc7T+I4q7p3v98abVp66nGZ0/7rEocrRS5FkOAt74nj/j9c/d8tSvEBKBQuQ5VkQjQGmE0ngOOMYlSQVSubQ7C3huPwWQ5F1EoUljCyQQ2E6O9ZnYQPCiEEhpbzRFkTF/osnu+/eyc/t62p0Y3/eYm51j3dQYOqhQrwwQtiKGR4Y58NBhBmsV0igmzyxRbWl5lYnxUZrNNvX+OjZqzob+pmmXwA04fOQYjgdryx22bl3HD35wF5s3j1GulBECjGPN50ZJK5cIDFJZwIKUVrsedjo4To0oaaFUQZ6ERFHMzOSo7Yophef5SGk9e3mB3Zwp62c7CUkobAienVQkMVIo4ihjz32PMDU9Dgju2v0g62fGcV1FTkjYsYj8dqthgSKpizYZUuZMjM7gepo4ijGOy+k7NtNsrDE/v8TQ0CBCQJZHZHlCnscIBY7rWXx+Ibh3935GRvtxtA08h5wojq3HJwhwVAZS0o1iarUySiqmpuo4jv1dSTOBX/IxrpWvKSmRRQuEzQTKMmuKnxit4wcOnmuIopi5+VVazRDfN7iBh28MvudRqriEYUKpFOA6inLZpxR4tFohA4N1irzgyNFF+vp8ojDpwVQMBw/OUatXrGlcSJTx6HY6SBzmZm2xRZ4RpxnKkfhBjeWlBcIwIQjKdMKYUrnEw48cZGiwRLfbQCoX1zGEYYjv23Btx7F0WI3tDrc6HeIsZd3kGIicKOqR45KUPXsPEkUh1bKP41qiZaPRoFzxWF3roI2DkJJCwCOPzFLvq5D0zp0kiclyi0OTykGbhE5niWppgE43xBhNHEenfGUAd93zEOumJuivjmC04XNX3MDpp82wutig1j9gmydCkuUxexbKDIuIs17+VoaHRkjTFOPkDAxUmRxzSXPJs56zi6KISRJFtVYDUh5+6ABf+dK3Ofuc7bieQQqPialxPv3X/4Ndp29let0kN99wK9MzI3h+jXe9++8QySrbTpvi2mvv4rbb9pGlIRPjQ5QrZdI8o7myQhAExLE9HxzfZmZCRlFook6K43tkeQKAMQrHVSjpU+QZ2ijiqEsSxQQlF4qUOErIcwtMydIM47g01hoomaOkZGF+hVK1ius6QEbYbFLpr1EUKdpIsiRC6QAKyFIbUWAchyxLe6AHaQPKjUEA2lgQj5AKgUOaJghyTA9xn+f2WmKnfHbiIaXEGGXzKFEIIE0iOq0mbmDpswhJksS9rDSB6gWud1qtXnh9QZqGlCpl8iwjS0McN8ALfACraHA8CjLbAEgL4jDCONbLKaVh8+YpXnTJOuJsA2EnRpmccrnEww8fYWi4xMr8Mpe/8Y2Ua1UyMrZvGefY7AmuuOLrPPf559JupFxwwcUcOPgwoyNjfPOb3+LY7ALbXzDK+skxbrl7H+snh1m3YRSjM1xH4zrGTi8K6MYpWknCOOLaa+5maa3F1MQQzU6Ia3w6UYKWkk4UkqRdrvmTvey+eze//Euv5sYbb2X99DY+8IE/4MLnX8z/+5E/Y8fWrfSPjeHrOrfcfDN3330Pt992Py+59Lkop866TTOsLqzxipe/lHe/+/cYGhriW1+/gf7BEnOLxxkYHORP/uQjbN+2GYHk4osvpdvKGJoYII4iXnjJC3n40XsYHqhz+JEjSBmzODuLF1SpVSsYFREKh7DV4WUvvZQ8j8i7IZe+7C2cec5FDFQUnl9DGUV9oMryyjxZN2JsZIhvX/1NTt+1g5WVOXzHR4qMy199Me9/2yeZvz9k1wunoQCpNUJAuxuxfmKMoiiIk4SiSHGNIk0zDs8uUCv71Hwfx1F85YN38+Hf+gj/8A+f5dD35njlxa+0BUeWkoRdC+JR2sZwaEOaxyjhUaQpQkC1Pcgvv+V5fOyf/oaXn/8S4jBGCUMn7J6SA2vhIJSFhOV5hpQa3/cQygI6CiFwXBcJOFqzefsZpEWBdj2McWm3W5RLAcYYjGs9y61WEz/w8B2PJIyQQnPjDdeQhoLxyUlL6EZz3Q+u4dCxo4xPTrO6Mo/UBX/29T/nyOIqv3rxb3HowEHGx6fpH+gnI6ZozpGvHEVnEW3tk3hlFo/Psm56M1I4JArKtQpHjx3iwCMPsmlmhErZpd3OuH/PfUxMjOMajyiESi1AWpoYWhkyIciznMD3SVPbIAXIU5tjaIxBCUEYhkRJwR33PsjLXnU5xw4c5twzd3Dmc7YzOjzCnluv4gVn9+EVTe7at8bnrjnKf/vLf+DQnuNEK3McX3yEIqgyODxhoTvisWnUycLJ7js4WfOdKu4KbEGherRsG3X14ydZeWHb/icHBT9NUfaUYu7J//4PIHD+DEf/O19/puP+vcXdMxfVvyjufo7WTyruHr+eTM188v/kx7/+xEKvB0R4Bp3uqY6JsN2GvMjR0qCk5A2Xv5r82N7Hvac96UHa6YVnWFlpUcjcUp8KKIQCodBSAim+E9jMGi1RhSVcZYml0hXCBohneUKz0SLPwTgeFClZnmPcgBtvvIdK1Wd6egqAI4eP4zou1VqNJIMsTXj00cMcOHCYzZtn7I0kcPA9l9VGi6GhflqdDsYJ0Fqz1ljDcw1SFiwvrlGtBdRrFYpMMj4+RJKktLot1q+fJEtj0sTKJ5UsQNgplkQSRfGpYtQYjcDFGAuVViiMW8NxNX7gcODACQb7+zCOQAgH7Qi0MQghe1OFk/rzk5vNHEkPCiFEL7pgEKULpFZMTwwhJRbSIA1+4NDpdClVaijjUQhrDhfCADlh107a4jjCdQ1aKvzAQykbb6CES5plOCbgwKOz1GolFIa//cdv8LJLz7MFri9BQpKCowPuvf8BgsBBatcSHAXMz85RKge4rkuaWtqYdDRh19LeGsvLKNegRAt6v0dCwPzsAuQF3VaElIpjRxc4cGiB6YkBOu0I10jK1RJJXqC0ldXOzi3iljyUsPET2miuu/E+yoHDxo0TOI5HuxvjeR5h2EXJgiyJiKKol60lybMCKVOEzPA8B+VYbPL8/ApKSoLAoX+gjnYMWZpRZCmeY9BaI4RGOxZOoAtodjp4vmuLIGNsoSwLKqUSnmPodhOOHpulXLJ5TlIYJsYHCXyDkgppBMeOzTI4OICQhk67Q6VWIYlSfMelXi+zvLyCdgTGSNLYgoo83wWRIjBoFRBFHTrdENe18tF9+48yOFhHabtZcBzDfQ/cy8ToINNjA1TKFZI87nWUm6RJQhR2eHg2YenYIue96mIKIVAmIy8MY6Mb0WqBbrtJEke4rv3Mxfk5PvvZr7Fl03p812FqepJjR47jBwHLy8s0Gi1GRgcZGBrEcSTr1q/jRzfcxtETDS549iiu63LOOVuZX1zh6NEFTt85RRKGeJ6P0i5rq2sEZZ88h6KQhN2oN4kDv+QhbLcEjW2eGM/FGEHYjXAcF+NokqSNEJo8UwTlgCzp4rj2HLHSaDvtMF6ZJMrQjiAJQ5I4RTkexglorUV0WhHlWp047pInIXEc2iyuKCTutnGMstTgIkWIHGUcus0OSwtLVKoVkihGydTKmgtBq9nCcRy7qVOKbrOJMiWOHZ2lPmAbY512E21OZoL5ZJnN0ivyHMexygetFSuLS7aJJOxEURuXIgVlHLIsJ41zW/TlGWka4nkuRWEzG9PE5ssZV5OnGVoBeYxQgjzP+dgnruVlL38xyrgoUcHxXJIUXvTCVzA+sZFrrrmG6akJ6oMD3HX3HVz3vdu48HkXsnP7Ft76xtfwe+//XbrNBU7bdhrX/fBmZs7vR8uczeuGaXTaeI5i9/4TeI6k0WpzbLFDXznAMYa8yCiXXDZsmGTT+lEkRS/L0Z7LaZbhOYb5lTYffud/Z2igxOj4OJ/6q79icKif173u1Xzjq1fynve8D1PJqZVrJBRMzgzxkkteRTkomNm4C8fNyeKIA48e5txzL6beX+GO2+9hZv06hkaH0arGn3/8k3zog/+NQBfcdvsPKZcDvvgvV9BcXGRq03qirE2tUuXQkQZ7772bvtFBtm/cSZa1uOOeu3jw0RZ/9L738mu/ejluoBHCIygFvPMdb2ewv4z2PdbahzFqkIwG1dJUj3qq2LZ9OwuLCzhOP//19/+Ui17wIh49Msuvv/1yXv2KVzCUb+AvP/RFZs4bQOYwPlwnykKUcPny1+/k9O3TdKMIKS1Vt+x7KJVz06dn+ft//AvefNk7eNuFb2Byah25SGk3Wxx45BH8UgVtjCUnC4kowJGaOG5aIJqQjE4MEfsd3vWu17LwcAulfQonJwkT/vWKL7Jxw2Zcz0FIq+IhKyiymAxN3G6ipJ1YaWmIooSVxirt1ZUeBCZFKocsSdCORxxGtNbWCMo1iiSmQFK4Dp7jkuUZw8NTjIyOoj1Jnuckacr0zCY2bdrCvffcSaU0wOyJRUQl49jRozxr4zmYkkc1kIRFSrh8gjxZwjgBhfGZnV+h1DfGwNDIKbVP2lnm4KMPcOD+Bzn/vF1EcYTr+CgjGB2dQsucKGozNFAny60HsshzkBqjNFpLut02xmhymXP4kTn8/jK7b7+f4eFhMmI6nYx79jzIJS9+DWE3ZNibpG97iSz3+eRH/4wh8yAXnd7H4bkuh1fXEQyNsmP7czj/pS/nzt33MzMyxRc+9VG8cpV6Xw3HK9nd4EnK5cmKDju972kkgPzUAOqk/60Qj+1TftxeUkp5in755P3pSULmT1pPmnnx7yNNPjHn7n8hsPI/eImfMKh54vpFcfdztH6W4u7J6/Edkacbgz9W1D39eiKVSDzheeu/yPj+N7/J//Wu/4wnIrZvGLcTAilA5NYQbQXJCBJcE2Dc1IJLhCbLTgay57Q7DYzjQlGQJhl5keH6vvV9rKwQxgm+H6CNj1aGdnONbrtlMfi+x2k7NjA5NoJRmkOPHKFSDtiz74AN2xaG66+/lU67zeBAH57ncPNde6hXyjQaXTzHw/Uc5heW6KvXuOPu+5iZGiWLI4o0oVSro5QhCjOMDnACQ55lbFw3SZ5llGoljOPYrrx27cVLSXIy0jjG9yxlDwqk49ifnjIWi90rltMko7+vj9tu3UdffxmBIs0iyBVZmqI0hGETrX2KorByqx7sJE1TpFI2L9AxIHLSuIvrlYhjmxOYpAWNtQay59nrhl08z+95gVJanRZrqw2qtQpXffOHbN28Hi0V7XbHylmkZHlpgVLgE8cRI0N9FD1t/MbpIWq1Mtd893Y2bxkniXO+9OUfsXXjGK4L1XIZ1/PR0k4NSuUqURThOCfx68sEvoeSkjCMCEoBl3/k27zxwjFr5A8jHO2yf/9xoiihVg/wKwF+4DLQV0ZKSTdqEYYZnutx7XV3s23TpM0wEnbKFIf2RtsNY0aH60gpKJU8Cgpc11CQ4fs+YccWuK5xcVwfhGLfvkMMDlRJ44R2K0QKK42p18oURYbr+qcIiJ1OhwMH55mZGidJoNOOe9EYGQcOHkMiqZTLZEnK8WML1Op1hJSkaUZeFPi+h1aKWr2fNCt45NGjDA71obQky1OOHl1i3brJXifVhvrmWYTnOkjtkOcd+vrr7H/oGAMDA3TbXeIoo1QuU5CSZzlGabqdlFK5RFGAMQ6+awOpXc8lCHykVEyMDXPVt++gEviUAp+9e45z/c33sG3TODdef4gNm8f59HWz/PbrzqZTNnQX5vEdH9+vWAIbK1Y2mmRo7RD4Jb74hav5jd/8Fb725WvZsWsTSRJRKgcEJZ8oDNl1xk5uvflupmbG+N53fkR/fw0k/KffuIz22lGmpwaQMmdmZoyzztzGdT+4g62nrbPFuDIElTKdVodSxafZaOMHZYJSmThu43s+SZoipWBtZQXtOjja6cVLWMhIlqX4fj+O69JutdBaIXsxGfMn5qhUK2itiWLrpavVq0hlbDOh7NFpLffkjyGIHOPYgkhqF88vQW6ntsZ4FEjy3N6Y88IGzgdlBz/wEQiiMEQa32bbtVpopdBOgJQ2uiFLO2jHt00WJUniiDxLegVqgnFdtDKsLC9iHAPI3jVXY1yHtaVFOu0GQclGOEidkyVNZNGh01zGL/UjRGE9mNoDoei2VhAYlDYUuZV4FrlAKo02Hlob9u29n3PO/SWyKGTu2DwihwvOO4/3vvcDvPb1L2NgsMLE5Ai1yjAz6yZ58Uuez9zcKoFbYvbEPM+58CKiJMSYgJ3btnO0eIgs76K1IYxTAk8x2t+P5zpUyhVqQZkoXeNbV9/K+o3TONrFaJsv6vSaY6vNLjZ6VNDpJvzwEw/xpsteR7UeoJXHpS95CTPT06wsL/P851/Acy98Hpdf/goGh0YJWx12776JDRs3Mzm1jrXmMo7rsby4yvTMNOtmNvHmt/wKf//3n+a//O/voFZxWVte4sILzuWuO27G71vPW97yDhyjefvbLmP7jrPJky6zs3ME1SEGanX2HdzHhRecz7dv+BbDw9t419vfwwff/5u89CWv5WtXfZetW87mK1/5BjPrNxNGXfr6LOzJGJeCDp7TZ6V7acbs7DzHjh2n2WjR6Ya8/GW/zGc++3mmJqbZsGETpUrAjTfeyu/8H7/Hs8fP549/+9NsvXjMhtvnOaefNsVKs4Xnag6fWLIKHG24wPwSV37tm+zydnHR6ReAdFlrt3DdCo526O8bYH5+nlq9DyWsj6zVbOB6HnGSoh0XYxyUVnzg//tjLnz2GWSLHosry7SbMUYpzjn7XIJSgEDa64YxJFFMnuZ859prGewfIMvthFsbTZxElEolXE+jpWOL0cDuIyggz22j7ZZbfsTmTVvJeuAhJTXaKHIyHE9TZJKMhKQ39e90IuaOLzA8MkJffYCLf/k8pliH5zmUghIUMUG2BkmDlXaO448ztxYys+00kjDD9zyM1pyYPUa33eLRB/dyycXnoUVOqWTIkwitDLtvv53+4QGUObkfUsRFAcbHuC5hZw2plbWtIOmEGStLC4yODVEKqmiVsdrqcOc9j9BRkrAbU6v0c+z4IT7+1x/jPW9/Len8lZyzo8b3v3eI8974Ph442OQd73oXBw8tc+jwEZ7/klcSiQGu+f4DqG6Tv/rohzl31wZGxweJotR6HFFoaSWTRa/Ue4xu0vvLqf2kPIkHeayQezzkr/dlJyd3Jyd+j+1LnyrLfPLA4seXMk9AAD6l6Hks1+4nzQKf+HlP3DvLpzn+x68f/5l2PZOM8qdZj/kMH/8Z4il/iqLA/KK4+/lZ/xHF3Y9f/zbT6ymJZhLz5je+kT/54w/z+3/1L1y0rkTUDVlYWCKJQkrlMqLH3Gm11ii5FU4ce4BOs0GRS4v4FYo4zdDCSkTCbhfXlfamJQSNRoOS5+C5ns2ZEgWrjUX8XlfZMZrl5TWM1mhjCKOYKIr40S334zkOWZyzttxidm6ezRtGQSiqtQqn79xMs9Wl2YxotdaoV0tUymWaayFjYwNIFFIa1hodvn/DXXjGFrOrK6tIoVhZXgFVUKtX6HQ6uJ5nLwCyIMsy4jgFZC+/KsXxPIxxIEuwtMOi59ML0cpe3OIoZP36KfzAIUkKvMBFCHq4895GEduVz7IUQdGbChZ2qiMeMyNrYwEQrueQU6CNg+c6uK5LksYUPWN01A2RgOcYyuUSSZywbet6vvy169m8YRzHdbnym9dzxs6teCUX0BijKWRBHFn8uONI8iJh0+Zpom6GcQxbt47guB6e7+A45VNSRiEVhZBc94M72bp1AwJBEPjWK5llaKUQSvGvP9zHa87uR0nJ/PwSR4/NUvJ9JqcH0K7AggELWu0OfdUyA0NDfOXqezl9xzRTE/2IXgHseS5pmJBlFgJRrpY4fmIBP3DJsgzXNWQZHDkybz1sZKRpRpTElEoBjbUGwwN9OI4i8G12lOc5LK+s4hjN0uIKpVKJ1dUGzVaLSsXnlrv34xlJvV7l7nsepuQZypWAvmqZoBIQhiHaMdTqFRvAq7QNjRfQaLXp6x9g796DxHHEunXjNouMHG209aacpHxJm3WYpV2QBZ2wg+u6aKUZHKrzyKOHCbsZpbLP6lqLILD+wiK30jrt2P6rVnaqXKn6HD16gnIlQGlBEid02l127txAQcr0zARjQwPcv+9RPN+wbnqMz153kN981XOp7bgENwgQusLiwjyOU7B79+3MzIwhRIHr2SiFs87eyec+8xVef9lLmZ2bZ8PGGaSSrK22OH58jvGJUfr7q5QqZbbv3EpzrcXk1Bja0Vzwovfze7/9am760R4GBkpc9bXbSZKMzVtHqVQrKOWQxgl+EFifojIYI0mSkCJP0I6DUIao08KvlDGOQxKmNBorBKVKr4ixXds47uJ42lJQc7vJrNQqdDsdkiSlVAlIenLWNI5IM5sV5zkGIQx5kROUytjYkoJuJ0IpRae5ijaSdqtlPXfdmCSJcD2PJEmt1NG4xFGM6528LWcWriAlebqGVpocg9ASYzTdTssWp0WOMcqCjJSdejRXWni+Ic1yjPGxGy7bVHNdl3Kt0tsGKaTURJ0WYTei2jdCltkYC+j5DBG02ysYx7f4/DTsAZ0KOp02rcYajufw7GdvIskmMb5Dkguq9Tqveu0rOffss2h3V5g9Mcv6ddvIc1uQ53nG+NQ4lXLA0GA/GSkDIyMkSc7w4CjfefDbKA1KepT9EmvtNlGc4bqO3ZzLBNcYdu7YhOtoEDlZpsjzAhvJk9njjeDRI7O0Dhb88Xs+SJ4LgsCQJLC2ukqn26HVbBGns1x++ZvwA4ervvp9brrhB0zM9BEENbpxhjFw6MBRvv+969l15nbSLOSXLn0FymguueQS0txQqg6idECl2sfysaNc9trLOP+8ZzE42sctN9/L33z6E7z2da/nupvu5Iffu5aXvvIl+EYz0DeE5yo2bpzm0KFjrDYWqFRq7N+/jxdeeiHVgRrVus/C3Dxlt8buew4ytb6PONRE+QJFbr3k/QM10jRkeKSfVqvFs849m+9c803OPucMjp54BEcZ7rz1Pv7wjz7MFV/9F+64ch9mYgkhMpDCTrGVYLBe5zs33MtZnedwxVe+wf/5+t+1OwDRm4Z6CiUMreYyygj6BwZot7tc8aUr2LF9O8azCoY0TnFdK5lO05Tb99/Kb/76b3LTl+5kbP0Ie/fup14OCAKHdrthC03sJOih/XuAlPWbt1EJfGr1KkmSkaZWLbOyvEJf3xBJHgMpWZzT7XZQqnfNThP6hoZQyiPLJFkCykirnEgzHMclzRKMtJl9xtEUomBmwySe6/D7//Qh7th9Ny844wVoozFFh7xISFsroEvsvuc+1m3czvG5g5S9AD8IOHHiOHvu383s8eN024c5+4ztHH3kCAOjg3YyJRVpntINu0xMTfeUOdpe6zPBwtIKpcCnyFOksPexOI6QOdT7KkjpoF1JESsyqcCpsmvnWYyMTvLg/vs58/Szedbzd/DQrZ9k/RDMNZpMnP4yhjY/j9/7nf+bt/9vb8CRAds3byASMWvNJr/2jl/nK9dez3951zv56J/+d9bWInaccYad6kuFEsWpou3xDyeLuyfT2U+uk+Vc/qSi7dTxT1PI/bjJ3U8u7p7++Me9+495/qc9Dn5WjuSP+7n8tK//dOuZvt/HPucXk7ufo/XvKe5+8vq3FXc5BRQFYdyl0Whw5Ve/w5t+5a0kRx5ibGKaqNMi6s5ClEIG2rfTgFbYwhQ5gwN9FKoEQtDtdCh7Lrm0cs00beIZlxTZy2dyyYoEqTzSuINSBZ1uTLVcJorbuK4i8F3SwiFLE3xPUanV8FxJX73M0HA/J44fYsdpG3j44AnOP+8sHNdjbm6Jyclx6vUqQlopyx27H+TAoSNsXD95ikrp+z4zE2Ps33+c0dHhnglb0TdQo1KtIJTGMU7PYEwPumAN+FEU47kGpZWVx0lI0hhjJHkeQ5ZiHI84TtFGo7Sm2405ePA4wyMBFJZe1BSC0gAAIABJREFUWJDbzVquoAjJsgyjDQiNFAlhGNoQZ6ks/a8AipMh6hlKKYoio73WRBtBu93FL9l8nk4Y4/o2ZPwbV9/C4ECVel+V8dEBKhVDmqecsWsLSZrQWe0SRR20lnRaIQ88cJDR4QGksjlqFDZEGlGgtIU6NFZbJFHGg3tnGRwqQZaTZilbtkySF12k0AhRWGCFdEEZKGKu+NFDXHb+BEVeUCo7ZJFkZHQQbaz3MApbLC03WFlrUq343HP/fjxPUPI8apUaUZIwt7BIpRTQ7cQcOj5Pta9EEmdMT4+jlfUpZVlKq9FkdGSATjvE80soo0nTmNm5eYaG+onjmGajQ7cb4nk2ZL5ac8mKlFq1H8eRtNaa5HlKrVpm/fQEtb4+kjhkw/QAjlsCUXDg4COUKy7GUb3priZPFVHYZWlx2YbFe2WyOLFwi26LeqnEWmuNcqlGlmmyxOb4VcolICcMFzGug5YuRjukWUqn08ZoqFVcBgeGcYy2DQSVoXuNgiLPUQVo45IWBYUsKDJDpeogRI7A5cEHj7NxwxBZnnD1NXtwVc6jJ45xwbO3MToYEMYxf/S56/mdN15Cw1uHUIKgUsEr15FOmfvu/CFbt00jZA5kFAjyLOHhhx5iw+ZJptfNMHtigfm5JZqNkFqtzH333M/mLZtYWWrw9a9+jw2bpvnBd29l586tnLV9lIlxh3XrxyiymDNO38i2nTPce+9+xsdtEZkklopoPB/Z846gFFIZK/MqCkQRo40hzwVZklGq9APWu1gAzbUOWtu/O47BuB5FlpJnKcoY3MChvdolKFUJowgt7OSr2+miHc8qydKQPE97UBO7sXE8H8ctobSDcRzSNEU7xgJWEGijcQxESYxxFXHYpttZxvPrJLHE80AohzjO7UZPQhx18PwyBRqlXPJe4S6lpLG8TKlWQypNGsUoAcoImmtreEGAclSPvKsRQtINu/ilPrRbRsic1uoCQaVm/XphCyW7JHFCUC6TpQlGS8JuiFQCN/CQJAjl0o1yMrkJ3zgEgUOaRDQba/TXy/jlCoOjE+RKghT8wfv+kK1bdzBY87nvvntJipzhkSlc4+CVS7TDNifyfb3iNifNYuI456vfvJfTT5siSRKUgjiVpAjyPMYQc9Nde5keHyRJbbSN4wo8U2K1U1B6aJQLznsuH/rQH7J//2Gec8E2fC/gy1dcySf+/BNc8vyz6e9fx3U37OENl72S88+eod4/Tr1/hL5amW64xHD/JDu2nsMXvvAF6tURorTF8OAgvlfhM3/7OVqrHSSGIwdnufWGH9I/6HPjzbcy2L+eLdtGuPDCF1OqVQiCjLPOv5CsoXjf776Hl7/ueRRJnS988Qu8/k2vZKm1yOlnb2Nioo+yozj48EF8p86D+w4TZymnnTZOczUky3KKLMPzqhgnwHUDpHTwvIBC5ZQrHmeccyZol2q1wpHDB3n2c87gNa95C6loUwoytpcu5Mv/eiXjp42igEePr3L9xx/gL97zMT72F5/kva/7bRCCKEpxjIsUBWQKiHGMoSgUjmMhJCvLs0xPTOMaC7qRSvPQvgcYHhoijjtccu7FeKOC7qpAKcXI8ABuybVTHGm46647GBsdBTIq1Rq1vjq+8Ylz+1lxGuF6AUq7eJ5DXuQ4RiMKB6HAaBehC7rdEGMqNFZtE+7e++/h8LGjTE9O9JrFgrDbxXE9FpcWieOYb11zJVu27bSZs0bx/FddzKGb9rNz0wZIGnSiGJIGzWaXubWEM89+LoeOHCTwq0ih8VyPoKYxqUOttMTWTVspuWWEW1BoB6M1Siu0EAzUa6RZjqsdEIpCO8RRTK0+QKEkMitIkpAkCTGuT5LkRHmXICjTbHZ4dP9ejhxdZHz9FiYmJ5GFw/DYML5T4sEjf8eWfoNWfRyLG8xsey+ul+NXAzZv3ohSXW740W2MD88wf3yeH95yHUuzDY4ce5R3/sY7+fAHP0yWLrFj1/lI6aFl0vPYWavMqf2jhGcut+y878kSwicryk4+/4QC8OTj46Z+4ml2ro8d98Qp4dN9L1Kqp3n+yRMvyZOlmo8998RPl/Lkf0fvE4qCZ6Znnny/x44/+e/iGad4z1y4nQTdnHyfp5tg/qK4+zlaP4/F3cn+jVSC1aVF/vbvPsutN93CrcdDsoUFNs0M0983QBi1iKOm9R25VrrUWF6iQOOX+8jzHKkE7U6IcR0oJCsrS0jlIpCE3S4KjVJ21G87dTYWIUuTnsRQkKYCVeTseeBRqpWAsJvgOoYH9x/i2Owy4yPDKG3YunUDKHond2+akGV4jsP3b7iTzTPjjI8OIqSVZTz66DGksES/g4dPUK+XWFxaZnioj1Kl9LiTsAc3kbI3TbFFWZb1YgxsKl/PK+jSbnXttMY4WFS9tuZ2pdEGHOPgeA5pDEIK0iRGSUVeFGQ9CaYQsndRKHBcz5KzhNXqa6XIipw0TjDaIAqYn1ukUqv3ZBACKSCJIvpOkuOUYv3MOJVKgDbKmtDTBN/3ieOYKIr52jduZtPGCRzP4+DhE2zZMmWx2IUgzwXtbhPXca1PAuu3cF3rNxsYHOQ73/8BWzavQ0hYWljF9TQUklarg+MYi7mWVho37C0xM1SjIKfValGt28y3WjUgT2MOHV5genKcWrVCqVpibGSQatmn0woJux2Wm236a2UAjBJMTY/S7cYEno9xBFore3OXmqAUYBwHKSQLCyu4rkOtViPwXY4dW6Z/oEa57PcmfY7NAyTH9QOytEBoD69UplKvkSPRpkA7EkRGXqRkBayuNZkYH0VrG4mRZRB17eRTaUm1GrC8vIbraZprTQYG6oyPDds8wtxOcZMkodFo0d9f45GDR6jXKiAkWrvEcdK7sXl0uymeWyLPrDc2ikLKFf9UVABFgdGGvfseplotYVyPLElIsy5KOgihKQjpr5dw3QClXDbM9PPIgROc/+wd1k+qFL7vctXdDS6/aCtfveVhzjh9J3FqIyeKAt7/gT/n8sue+7iAb9t4GJ8Yo79vEKNdZo/P0lhbZcfp61AqJcsjPM+h0w7Zsm0d99y9h1e+5sX88+ev5Jxn7+TWW+9l08Yxrvr6rWw7bQNhN0RLyPOYoBzQbUX4pTJ5nhDHCWmaWHhIz2gupLQZdYAQVo6ZpYI8jwg7Ka7r43oa2aNMau3QWluzfpcsQ0hD0qPgFnlBkqQ4jiZJQhtJ4BqK3G4KlNZEoaWRauOSpzlSKRsZEoV4vm/lYwKSMCIMu71cwgLHCZDC2AlGkWJcCbnsTfBdtNG0m008P0BpC2MpioIobJ6SwXpeCSFBKYXjeT1ku2/lio5LEiY019YolT0EmZ3OSUmRp2RpQrlaIy9ACIVxPHKhcP2KDVHPLcHXuJ6lpyLJkgTH8zGOQehtGK04dOgQ/QMDVGo14igm7k1WO+0WnXaXiy+6kMsuv5zL3vB6mo0uk1PrbaB2ZYDV5VWOHD3MseIhZCFIkoRCQLkUsPO0cRwtSPMEzxg6cYznGJSQyEIwMzmBUYb7HjryP9l773C5rvre+7PW2n1PP71JR9UqliXjhsElYMc2BsdgQgIxhJJAaLkEUm5CSO4bCKQQElIgEL8JhDSqIYABm2Dj3oQl2XJRl46ko9PL1N3X/WOPZFu2aW9yb573YZ1nnufMzJm995nZa8/vt74N3/MoOCWeOHyU2QdP8PpXvZzff+9H+MAH/oBNm9fiuUU2bdzKR//io7zxTddTcHyOTS6y9Xnn8JE/ez8zU8e4+4Gd+IU+3vC6N/PaX3wVUjjc/t07+bv/9295xzvfzTe/+e+88OLn09NTY3zFanp7e/jwhz/MDTd8kq3nbKB/aIjxVWfw5l95BxdfdA7DIyOkaUShWKTklrBtl5+++kW0WimGKHHw8H42blrHUN9aqqVeWo2UPU8cZnRVL3EcMTY+Sk9/hX17H2dwcITpySlsx2BqZo5yucyxY0cpl8osLC5imTa+69NstEiaSxw5dJBzL7iAW27+LsPjPn6xQNwwWZxp0VquMxvW8asGOz87wWc+eQNvfvuv8u5rfxXXdfKFIXJWRJJFmIYFJAiZfwdImevt+/uHiKOIycnjFIpFpJBddo3K2QWGyb57pnB9E2WaIBWOZTM3N0ej0WLN2jVYrkWr2URJgyBq5/EDjgldqr2UBnmxnpElmjAOSaKUVruO5xZIk5zqee+dt7Jpyza0htHRMQYHBomz/LoQpQmO45Ak+dw3TJONG8/KvxMNmzu+ezurzh5iXWUDQbuO1CGO0nSaLZYWWlT6R6nX66wYW8HM7DS1nl7mpqY5cvg4h/fvYM3a9RhIoriO65T49rfuYeV4P0rkkS1aAzK/BjieT5yCV+pHSkGWBpiGwjQUhjLJtCCJTfxCgTjKzdkqvf2YXpmh0dUoaTI/v8TRicP0VsrUF7/MysECt937PS675nfwBseIgyYrxzdw/OgsSZgRthb5w/e/n+3b72XdmnHe/M7Xs2J8NWlapFxexe4Hvk6fa7B6y5mcovchu2hbt34UT29WTh+nt2rZKXLn01/z7Kjf979/+uPP7Rj/pATpubPkvt8ennto/WRjd2pr3xeJe5b/8ym15I/T3J187mk16bNs/0dp7n6Sc/f/w3EyvPy5hhJ5BpsSFle/7BrWjI+y5cxtXHfZxUiVi/IRHo7rI0VMq77AzIkpTJVHDiRJTGN5HrIYjcbx3TyEV2t6+vqwHR8hQGcZWZoStkMMqRDSIEk1ruMiDQPLKVIoVimWKtSXlzj7rA1UqlXSJGX//mPdrDZ4fP8kSZbLf5WZ57/19NUwLAOv6FEqF9iwdjQXVEcp3/7OTr63Yx+bNq7Dskx27t7L2nVDlKs+55y3hWKldGqFSCIIg+hJdygBWmiEBL/o5zpCoQCJYVrEcYZlO0hp0WnHtJqtp/C5NWka4RdclFR84Uu3EXRCTMsiSiIgw3E8gnb0pIW5srtoXYbOEkATxVGevZLBY4/uo77c4Bu33Acit4Q3DIUhVe40mqUoQxG0c9t2yzJOCcEd26W+3EBJRbHg85pXX4nje0jD4IEd+3OExJJIJTi4/xie6+dBuZkm7MQ89th+kjTCsiWea3D1lReRac3S4jIHDpzAMm2EkJRKlTxce98B0ixFINk8VEKok+6gEk3E6GgvhiFJ4oTVYyMksUZ29QCPPXEEKST9/WU8z2LN+CDFgo/reWRZwhNPHCaMUlzPptloMr+wmEdTCEWrHTA9k5t5DA/14th2bm0fpQwNDuR6xjSmVCmgkVSqFbJMoTOJNAymjk6gwxYiCTBJ0NpAZAqpbaQsYJiS3p4yGoXWJkpZSGlgOzazc/OkacL0zCyua5EmIT09pZw6iSSMIqTKowocN4+M6LQ7DPXXCMOImekmaCNvGqUAEfH43gPMzk6DiNFCEyUxnTBAoqgvNXP3R2DV+HA3fiTX3Wkd5+uT3RwjaWScmJql1ehg2QYXnL+Zb9+6HUNZmKZLp9Oit6cGImV+YQEDGxOTqBMgsgzbsnInR8NEa0EQRCRJSrlcQWdw+213U+up5ois8iiWe1iz5gy+8G+3YpoGd95+P1e97MWEUcTqNSP09vZxy20HkEry8ldezh237+D+u3cxOtzLwFAf7WaTcq3C0vwSWieYtoXj+USdNlJKwiDIrylIkjCmubyMkE/mInl+gTQFTczy4hwCTRJHOJ6Xa9gsK2+UbJt2s04YhThekTDMYywsxwSg1exg2S5K2hSK5ZzChszRdZ2hyXJyZJaSxhESMG2TYrFIkraRMgTdRhoZYXCSep0wMzVDmmrCbqxGpdaLEPlCVRJHNOvLubulEGQ6t2yanjwOOiNJIso9FZr1Or7vd7WmNsVyfq41lxexLJs0DrtByopUi64OSOSuisrJWQ4IFubmME0nd0YUClCYjg9ao9OUP/mjv+DgoUNYtksUZ8SJZrnRolAsksYRr3vNq1HSYnC4h+/cdjO33n4nf/CHf8q9d22n5Lncesvt3HvXfaRhhKngwJET+K6LZztIIVlqLudIXhKz1GhS8h2UyCnGWpq5XvXEPFs3rKVWLiNVmzNWDdI8aNNf20S5UiHTCZVqgSiESy+5jN997++xuLQEqcPbfuWdtFp1rrjiKq582c9y/vMvRRkOn/n0p3nbr7wLwxD0DZa5485bufOOe3jhRRdTLJbYsWMnv/0/38uxY0d5+Suu4XOf/2euf9Mvcu6FF3Lm1s1cfPF5eG6BdtDIw+MTzYmjR0myNrbnsTTX4YMf/DO2nnUmOs0IWjPs3bODQ0ceYfWGIer1WXr6yzQa8wgRsXXrNgxlMbpiDIRgfHycJE0YGhrCtCwG+/poLjeZmVqgtRzy7W/eysYNW0hieMnPvJyiv4qFqQUGhnw+8ckbKJWr7P/mLKYp+fiffISfu/71/M5rfiufI1nuYmzbFmmW0O60CYIOURIThAGWZdJo5nmkvudRLJV4bO/DpFoTZwmlUqmrsRe0Wx0cX2NbFkLn53SnE1CtVqhWa9iOyfSJExSLJR7YfheO69Fu5QtdCIEhFWSaJI6Zn58nDEPIckZRrVZj/4H9oAU6Trj04hcTpylz8/PEcUQU5/T1jAzPyzMn5+fnOHbsKII8JkpnuaPj3mg/f/iBP8V1LDzPRWQJUWuJZr2BNKu02yGVSg2NZvXaNXiuS7lcoLlwHK8AlqmIkwjfrpCmbS6/6hxU95pj2U6+MJtCHCa0WjFZ5qBsm06ngRIyPxbyeJcsTTky8SiaFMd1KFdrSNPk8X17CcMYtOCJJ3Yw1DfE5MRh1g+4zNWbyOp6MnMTf/+pj3P4yEGmpxb4y49+nOtf+zre98H3M708j7YUn/jHG7jkBVdz0zduJRZtLr/2eWzZeCZf/cI/8c3Pf4Y0y7OLnzEyDTp378yyNNfePeWmxWl0TMQzGrsnn3v60OQu4ydrpKda/j1NUfaUmjU7aezylNvTDrcbwP7sQz/H7ZlH9+S2n25EKE41vqc3vc/eBD/17/Nr6fc7ttP3/eRzTzenUc+6rx9l/AS5+y8e/zeQu5MQ73ONUxa2GAStBh/7m79G4XLi+AH+5d7dbKwWWb9+lDTOcpOAoo0hJFHYwTUSkrRDwbNYWJjH9fzcol0mSKFoNuvoVGIXHFzPhkzQaC4TdgIyJK7rkqQJtu0ThglCKZbrS7i+T9iJUUIwPTXPirEhdJqx9eyNHDt2lLmlRTZvWps7GMrc8ESedIE0JYPD/SzV63xv5wG2nrmK3p4SYdTB9Z3cJVOmDA73oaTqwt8wPTVLmuRFpJC5Bur0+SREHnKpTHXyKtRtVshXMrtW4kLmOrw4DtGZZGlpgfPP20K7HWBZOa1Oa82Xv3IHK8eGQAgef3wfQuZ8fHQucxbIvGAXkKSaWq2C47ps23oGhtDMz82hDIXluAiVN7tZKnhg+6MMD/di2QZh2KETBDzy8D7GV40hVW6j/uD2XYyODqCUYsumdegswTAEQRAyNDjId259kDVrRqCrD6tVi13HSEUa61zArhWOZTE6OoImQKk8f08qweBQfx5+mgn+9QvfZtP6ASDFsnO3y8nJBUrlItIwieOQTifE7y4MlDwLx7EolIpoIfFdCyktoiSmVW9Tq9WYnFqgWrFx3QISgWkrMp3hF0r4BY8oDGg125i27OqgLA4enKJSLYBICIMQx/ZJopwGZRoGQadNtZo7ZYJAKEUYtGktL3Pg0DH6e6uYhiLqBBimSRTHSClot1rd3DoP0zKwHRPLzJuDyclZenqrRGmEIMGyTJYWWwghmJ1dpFot0Wy1cV2bcqWQZ58lKcvLDXQm6KvliMuhI1MMDg4QRTGFQm7mkWU6R1ZE/kWiLAt0dsr6XuuUTGe06immaVMo2GhilLR4bM9hLjx3Mwvzizi+hykFN26f59WXbOJjN97D7/zW7/BLb3oTl156Ca997S/QaoasXeViuy7b73+Q8dWrmJ+d4+D+I/QMVqnUShTLFQqFAkEnZvt9O1mxchRlwMF9xyhXimit2fPYflqtNivHR7n4ojO5/o2f4lXXbaZc9th29npMSyKkhWnmukUhNYaRkaSCNE6wu3o1qYzu3NCEnSa+74GwETLDtCCOEgzDIolC/GKRNEuJwjaW5WBZJvXFpdz5NNOYVh5PIqVFFLbzRRMzNx3JnSUTtM5o1hu0mwGOm2tyhRS5k5+hSOIodyvV0Gm1MMxcb5olCVJKWs0AxzFzSnosKJRs0LmmzLRNtJbdXK+023hKkHk0Qh6poCkWXbI0YWZmPm9e4xipFJ12hyxLctdW20UqGykNOu0GtmOShDH1egPfyxu+5aUGtqHIkphOq0mlltOVkzTGMHPat5AGOolRhslH/upmXnL1lfT1D6CFIMs05UqVpaVFlNCMDA0QhBC0p3E8n/Vb1nPNNa/g0//wD1z24vO55dvf4Tv/cQvbtp7NCXmEVEosQ3WNMhRBrLG7GkfPkWhhI3RKq9NBGQohFV7X7ThDk6aw97EF/vgdH+K1r3sdr3j5y1i3fjWGoZienuSiF17KTd+8mQvOfz6+YzC8Ygy/WOHeux9k6/POYWB4hErVY2ZyP6/6+dcxOzPDZz/7z6waX0lPT5W/+puPctELX8TU8SVeevXVeK7N2nXjDA70IoXF47ueYKi/zLnb1jIwNEYnrOMXChw6eBzpGtimRKYZMQHXXnstQyMVlLLYfu8DnHXWNpASt1CkVi1CJvH8Um60kaZdV0mFYym0hna7Q7PVwjJNntj9KB/+0z/nqitexkf+7KNc9YrXYro2D27fzsoV42QipexatFodXnDhuWx53mpe8YpX8OgtE3zwj/+S973mvZiGiWGaHNh/gIJXPGWAEYYhru1jmnnWXtat/NMso9Vu4vkFxsfX4LhuPlfQLC4uYlkmlpkvvGRpSthp4VomKRAETTyvSJqkeG6R+fkFztx8Fu12wOJinWKpmCNHOiGOM3bs2IFlOiwtLtDptLn/vrvYsOEMHNcnzRJcv0AnikkyjRSKqaljDPTX0FmuKd6z5zFKhRJ+oYDvF7Asi737nqDW08fszAxveNuFnF15AUIK4qiNTAOSOEWbLm55kKmpGcbGRpmZn85ZM4bF7kcfY3jIZ934SkyRgZKgM6TMde6O7YLoatCMvEmVpoGyXbQyUVkLkQZMHJvBc22yJCbXjmp6+/pI0pgoFjz66GNUa8MYRon+oREa9UVGxgaJliQ3PfQ+rrrkLHbsbbGUns25l5zBmSs3k5JydHKBL37hn1g1Xub/eecVrKwKaB1hyyqPQ1N1Ht21i5HhlZQKVfpG+vFq43z5M3/PC656GZ7nI6R6OnL3lLrxWVGn7iK4/iGQutP1d9AlNzzLtk9rtbrlVZee+Mwt/4B9/zCN0DOP//9OhAL8YI1d/vk8Nf8PfkLL/G81/iubuydPzifh6pMR5d/vNMtOTmqdYhq5I9vXv/Y1okRQLVdYW3M5f8sqpmYX6B8ewhAC1+tlbmGCdqeNmWnqzTkqpVKObKHIEpNmexHLcSiWK6fCd03bpFgpI5TENBSL84vIDIwu6hR2mpSKNhqJKVOOTc2jM82OR/Zz1tYzKBSKLM/P4Dp5XpPrO3kQuNAIoRFS57A60NNbY+PGce6+fweuazI83I9GMHHsOFvO3JCv8gudmySInF5i2Rb1xXmcYilfLXkGPs+pC5YQdFesuvzzbi9oWiaaHNo3FNiOg5QweWyB3t4ihqmoNxpoodmwbjwXu9sRPdVBHMvAMAVB0MGybNDdlR+tUaaN1oITk7M4tk2j0aRQLJPEKYYByjBJkwSylJGBKkncRuuMOM5wfZ+x4SrtThuExd4nJjl49AjbtqyDxMSwQqJIY1nd5iLS9PV2w48jDUREYYIhDNpBwCM7j5GwhGdX+MrXbuOMDQOkmcQwLKQSNBsdTMPCkCbfuG83V1/Yj2MbREGIITVamtTK+Zd+o96gXCkzc6JOqWgTh038ShnDNHh49z5GhnpZmO/geTYSA9PMc+EsS9DTUyEIE1zXZnJyFiUFGYojR44SxzGddoaQkoJfxDAsLEPw6KMTDPXXgDzb7tCh43hebhYTRBGLC3XazTx4t93oIEmRSlGpFqi365jKzWtSneC6ik4zQJAjQMiUKAqwbYeFxTqebeO4NnESY5oWUsWYpku5VGC5Psfw4DBCCmzPQpoKE5u5uXmajRbVcpUgaVMsOqSRYGS4glASr2CRZWCQEQYZc/N1LFugLJssjiDNMCyfMGhiGgb790/y2ONTrFzZSxykKK1AwchgBY1kz4HjCFIc1+LBfW0u37aSA8eO8uG//QQTj36ND3/wd7GtHs7athG/ECCEZHB4CCk1ftEljqBULOLYLqZhUF+u882v34brGZyxaQ3FQoGhkSGq1QozM/Nsf/Ax1q5fSbEkKRR6uPaa8/nWV7+KUim9fVX8QpVUa4RIECqnBCvTRamTESKKOAywTUUUhrRbddxCESEtBAqyNjq1SGNBEodYvofQOeKoug1j2NXloDVKGGgshEpB2JDFIDXSyM15pFJoYWEaDo7jEcdthNSYpiJLY8AApXBURhBrpDJy7U+zje0UmDoxg+d7WLaJUCbzc7MkcYhUJobjn6JUS6U4evgQtpM3iKbldGnkBlkWo5QgS8G0HVwvz840TIskTikUi2CYubYwyWMYslRgGLA8P41pSEqVfsKwg1Ayj5owTTLyDDRp2CiVB1ajIYuTfH8aWs0WX/n6Xn75l36BOBQILfNYGWI8zyFJE3r7+xlfs4pircpSvc3kkWmKxRIvufoqggjWrV/DWdu2UCgUOKYPUvTdrpZQdRtKqLc66DRD6wBpeGRddBQgCiWGlMRpjKkk9+/Yx9F/X+Tw4QP8xV9/lCyM+Pt/+Bhbn3cW1eoA73jbr/O661/Hcvswq1esZfOWDZQqNts2r2Vyqs3fBtP4AAAgAElEQVTn/u0L9JVqVApVSgMDHNx3iMte9NPMLi6zPNdg/YbVjK4YpdpXIwxn8d0BHnpoF2vWjiB0gFCSZtBgdM0oQts4rkUULtHX7xA0Ew4dPUBtcAjX6SNO88964vA0K9eO4/pO7tpsSdKwAkSkHUl9Zh5pOzz88G5q/SXm2xN4ZgXHgdmZSUrFMotLHeLI4m/+9i9492+9gRs+8UXuueN+Xv/aVxK2wLJCpo8doKevSqIVc5NLLM8vsnLNKs4bvjR3ilUGpILJ6ROMjQ6zvLCMVyxgWu6pPNhWfYlmJ8S2nK6O1CHLdD6flMJAkomUJM4IoxghIclAKIFtlVhuzGHbBSyrgmkItBZkpNhuznJwlEep6pImKneKRZKmAT09VfxCkd7+forlCuOr1iGVjWFKPNdFCEiSCN8v89Uv38SFF15ImLaxTBfbkPTUelCWxfLSPLbn0mwsMz44TJi1+cdbP8G/fek/eP76C8hEgpQJOgxIRYpRGEBnilp/H2kWUV+u4xeKhGGIrRQyqmMruyuBTyGDREa0mhmddohtdyMeZEaWJWRaU3D6ESqi01oiCWMmDu2np1rN0UXZLeSVxBOSVmOZmeVlHjk4yQUXXoxhSA4c2s9CdYYsm2asZ4LKYEJh4Hyuvu7dxGlCqRSy67EjDDkmtGdwnJQzBpcomsuM9ZcYGQMvafH8c1Zzx53HOTJ/lCuveBlrVw5z921fpyA6bNp2DoHhIER80pA0r2ZOhZ4/OU7WN0ooUk7GI+h8AU6cLI6eUld2jVSeTYMnu3q7081W5Knm5cnXPFtN+ywtI09Hu05H5XJX5af8h8/Ywg8aJ/WEOQ30qa//fry477+f0x3uf5CBytO3KzBM8yfN3X+X8V+L3J0cT9ICf5hT+ORkO/mq8847l4//9cewbYuLXvBCbvjGbVwwVmDF2BBBFOH6Ps1gGakUQ4NjTByfoKc2gDI9Gq0Ew3RJkpRKrYTjOKeoRk8OgWEbOI5DoVTAsEzq9WZeXKhcs5Umgnvv38XcfBPHMigWPPr7aiRxTKmQW7tXa1UajSZxO0RqcBwHLQS5I9xJHSFs2rCWlStHsR0L13fp7691C7aTgtoMQUrQqqNIWJ4/SrVaRQuDZ0zc097Q/GKUT7wszXnzUgiyJMEyjZNHATqjXOrh5lvvY8XoIGQaL3dUwLZMkiTKefhZhlTkVuZdRDBLda6dQaPTjG/cci9Hj02yft0KvvaNOxgb6cewFJ1Oh04nxLHzYFTDtvOogXIRsozl5RaWbecNdtnnzA1r6HRC/vXzt7LpjJUsLzW6FuoQhxk333ofw/01TNPFdW3SVKKzDL/oMzjYR62ngM4U6JiBwWo3+gKyLMOwMjQJSmX8/ue+x6teMIIQEsu2SdIMIQ127drH7PwSwyP9dIKAex/ax4b1o+w5eATfdpBSdXP+DCxDIURGu9HGtEympuYZGuohTuOcFidETqXVkiTRTM8uMTxQZXCoB6uruZo8NoOpTCYmpxnur+D7RRbm6wyP9eefoRZdXaFBtVbh0JFD9Pf7hLEm1eAXSxQLZQwDpqbnsSyBYzscm5ylt7fG3Nw85XKRdrMFIl9kEIgc5cm6upYoxrZclpYblMpF4qxFFCWksSTqwPd2Psaa1UPI7rnpex5JkiGEhRYZUphEYUiaZBiWw7HjM7mhjp07BaZJjDRMWu0Ex8rND2q1EoN9ebMcBAEHj5ygWi4SxhGOY9NT9SgWbaQ0+cc7TjBqtHnxhVsYOfuFOMIjzSTHZ4/il8rceOMXWbtmGMhNc3SmKRbLTByaoFqrMTs7jRCwcnyYhx7czcbNG9i/b4Id33uEoxPHWbVmlBe88ByGhoZQRorODL7xtVv4m888wm+860pMy+bhXXvp7S2hTJXr4bpZX+gMwzC6TV5G2GljWA6WbWAoA7IMISDNNFJJDEOQZmEXzdTEYQQC2l1tm9YZhmUhlUEUBhhGRhrngeipTrEsKzcmaS1iWoIorBMFS5iOg2nZZKlmYW6JUqmcz884pNVcxnFycxVp5u6etp2bv+hMEIVtCkW/u9glaHfaGErQrLfwC0VMy8TzcnMdrVPCMEAZijhKkcqk3WgiECzOzlMoFEiSmE67k19lpEJJyeLcPF7RJeiExHFEoZwjw7ZbyBkFWYYyLHSWnVoJzg1pMpbmF1FKYtsOWZbmbqW+zxdu3M1552yjWCoTBG0s06DdbJIkaR7BoskpkDqlWuuhr7fSZQ206XSaFGq92LZDqVjixi98gYP3TbPrq0fZd+cU++6aYeK+RfylPo7ev8TxHQEPfn0/e757gtn9y+z+1iSt3ia1io9j5dePnZ+Z4E8/8CGuuvwypieO8Xu/9wH++E/+CMN06R8e5tCBI6xYMcy2szezMN3k/R/6EC/66RdRKbtUenrZtGktxaJDq11HK03QafHQ9ge45EWXUPJLjI0Po4H3vOe3uPKKS5ibW+TDf/YhXnbtlSgh2b//AJvP3EyapcxPz+L5RdrNkCTOXXP7hwYQ0iZoL+K4AssyWFqss2LFijyr0LCoLzWZnlumNlDid9/3ATZt3UoWm3zibz/FJZdcTqFQReoMIaFcrhGGGbd953bA5Dd/6z0USz4v/9kXMzpSpVAWtJtt5mcD+noHmDhylEpPD57t8OpXv4bn9b8YKTVkKUJr9u3bw8qV48RJQLvdoVAqEkctMh2jpCbo1GksdjhxfApD2Rgy/14wDEW71e6i3Ir5+UWq5Wo+V8hOaZ9N2+ax3Y8zOtbP0tIJlJGHl4dBkCPvaKI0JklSLFOR6ATHdLANG6Gg02xz5MghCl6Be+6+jcHh4TxzNBPYlsPU5DRbz9pIHHewDftJnZRhkSIp2i7StDC66Jlsz/CzL1OcO/wKpKHJkgxLKaKggUwFy42I6akZ+geHqC+1GB0dR2SKmelptj90F+Pjoxw59DiV/iEsU2GQ61JVVkSaucmSkkbO9kGCsohSRURMWF/CthXV3hoFzyeKA5IkxrRswiDpXm8M6i3F5VdeQxB0+NbN3+Dn33UFvhlz07f/gy0bKxTMCkb5bL63aw979z/GSM8GGp2jlPvX8A9/dwPtE8e57rqX0tMTUrBNyoUya1f1YijFl295iLe/9Q2Ua2N89K8+QRBLpo/uR7gFVq3b2C1znkoDfKbRCKeITE+nYT5nQ8VpZiqnGavoZ3v8NI3Zs93/fkjecx0LZKdp8348iuPJXOgf4RU/4Pln19L9sNv9UZo7cXp22k/Gf+4IOo2nvcHPnrvx443TucgnT+aTjwsh8wyO7vPZU/aZ6lwWK1LIkhjdSbjiiqt4z7t/g0MHD/GPn/snvvr7r8ayLWzHzelHQiIym057joLvEIRJLqT2fZRUINOTU/IZ1wktuxM81x4zNz1PqVDkgQd2IGXK8RNNRgZ78H2fdevGUFJx0813MjRQZW5hkasuv5QoTgnjgPZSk4GhAWKdIg0D17ORUpCkcc4TF8ap9/hkppzoImu50DnmyKHDDA/2kiUJhw88gml6jK3ZjOX5Tz9wcdovJ1elEGRaI0hIE41EEMcdXN8ljjRB2GJuusNio8nocB++5+Q255aR860zQGRkKaRZkme1aQHdVSIpBGmWgM6jEpIoIgg6FEslwiDKv3ilRClFfXkZKQWWnSN5lm2zvLREsdCTv+9Co3VKsx5xy60Pcv7z1rNixRgPbN/F2Fg/w6O9HDu8QLVaII4S6ssBfYM+QUdjOZJi0QOtSHWEEhaajChqY5m5U6jru2Rpmp93QvLnn/sO/+PadXm+nxS02x1Mw87pK4ZEKEnQahJFGb7vYtoGUSvEcm2e2HeE8ZWDCK3ROkFhsuPhQ2zdsprH9hxibLQX01bUalXSKGNudolWO6BSKZKlCYWig7IMhBYcnZjBtiz6B6scPnSMcqlMpVZDGikTRyYZGxng6MQUbsHGc21cR6EMzdJynqNU8AtEcYpp5Vb4rmszN7NMradEp9OhVC4StGO0DllarjM4NMrefUcYHx9CpylpljA/X8eybO68fy9XXHoWnl8ky9oYhiYMI6QwMU1Fux0TBilTMwtYlmSgf5BS1SKJQSmT+dl5av09uZYvTTANQRg1MQwbIS2WllvsevgwF71gE+gUhCKNUmZm56nVKhw9NsPqdaOYhiAKWpimIslsPnnLEX7tZ1/MYivAv+BafFVFqpiOXiQNTd7wy7/Glz7/2wghmDx6gr6BPqRQZKnuGg5Bs9GkVC6SZYKd23fTP9iP5zuYpkDrlBu/8G1MwybN6lz/i7/I3XfcyRN7JvnWdw/wuU//PK1mgF8Q2I7LycyfNMup01mcYNq5WY9lKFAGkoQszed20OngFsoIMuI4d35UlkcWxgSdfGFAGiZBu0PQCSlXS2Q6j46I42WCZkKhWiNLw1zjkwnSBCzHJk0CJBGYJkErwnWL3RXuXOfabizh+d04mChFmTZJFGAYJkmc02KDoIHteugsIwxDHNdGSIMsyUBrpGERRwGZzt08EYq77z7El7++j5GRM/n5V17DAw9s57xzz+Hr37iZO+69l1Yn4Fs3vgFpGKAFURhiGClCWiAErWYzd6dE0Gm1c+q35+aFeHcBot1qYjv2KYMYZRjEUcD0iRksy8YwXLye62g26sRxRKlUQkmDZqNJJ+hQKpXQWpASUfTLxFGDxcVFhJCEYUDv4CgyM2k12vRUPTrBIkvLDfxylVK5AlFCnKWYjsdiq8XcsYP09w/jeYWc3h4GvOs9v8s937uL9/z9L9C6q4c3/uL1vPMtb+Z1r/55nnfexZR7iuzde4A9T+zlooufn7vyZgmN+Q4//dIr+dfPf4Y1K0a4/4H7efFlL6ZRzxe75ut15k9MsWbVajLToGAXyHRIJ9Tcfvv9DPb69PVX8rw3aWF0ZQBRliKEwjEVaSrY+dCj9PcNMLq6hwxJmjk0Fifo7a1x/PhxHLuKkgZJmqIMgwMHDvG8s7ay0DiGafXhFQt0FieQ0iGMM8o9PvMzcziuyZ4njvBHH/wzPvHJj1MslGm2Guzbv4fRlUMMD4yD7vA/f/2PMJTgXe/+HwwOVYnTkILt8pJXvoYP/vIHIE3Zv38vtVovvu+xY+cOXnDRC8kSSLIEuxtro9FI8vNzamqWThiwds06lhsLBJ2Aaq0319YJyXe/+21KpSobzjiTKKzjmBZ20SeIMkSa4DiKNJDsPfQEq1atIY5DCqUCQmuiJF9UMBWESUzQyrX4lmcRtAIWFxYYHBqi2WhQ7q3l2aaZYGZmjkKhRBjXcR2bSqmXFE2cpgiV+wekSZOotYiVxSRhmw995WMkScJ7X/VOMg2FYh9ZmqHjOq1GxEwzY2xkNUEaUSyVSZOEMOzwvfu/yzlnbUUk8ziWR5BGNJoBAz09RLpJEoOhTBzHIQqDvK5QJnahh3YQoVSGCOsEnTaKXD9mWbkLrmU5xElCmKQ0ghTTGSSJbO6eupmdj+zhXS99B1FjlmIho+g5/Pan/oqbvvIl6kGLffv38PADU7zkygv4Xx/8HcZ75rnoTJ89B1KuuKyM6GiiCKKoRW9tiNt2zPLxf93J1guu5Dd++/fZft+DxDP38S9fvokv3nwbllck7fY+pxqy53CIPAXSPaNklU9//ak69Ok17ulNHk/Z1DPIlafVsKc//tzj9Oez53w+d7T8cexGnuvon72WfxL1+8/osfJ9Oa73Q3eaP0Hu/ovH6cjd//c8jKeO51oFePZVj6f+9UlzW6lk7uanFJ/73Gd56KGHiKKI4/MLbOyxqBY9LNPENl3aQR3Dsrp5MwItBV7JR6iTBrPdDk7kDoxPOzb99Ins+T5JkrIwt8D6dSvprVUYXzmCFJrb79nJHQ88giIjSyKet20TShlYts3S4jK9g31omWuOkiSj2WjTbLTwPC//ohIy35fOfw/aefjzsYmjhJ029eUG46tXY5gOplugVOujubTE4vwi5d7+rmj85IE/45envd9aSrJMIoWBzmI6YTMvlOKAWq2XcsnFsi2SJGXX7r2Mjg50KQMOUVzHsvIcH6UUQRBhGg6Q0W4vo8xcW5VnZplYtgFS5XQ/KQnaQZ5pVSlhWhadxnI3gF5i2i7KzJucJEmwTIlGsHnDGio1G0N5OLbJ0EgvqY6wLQ/bFti2x65de8kIWDE+hmmbXZ1MRLsVYtqSIIywLIWUiqXFOo5jn9I76Qz+8qbHuPacGqah0FlKliSEQZJn9KUJwlQc2jtBpeQTRSm25bBYb1DwfaZPzHPs6CzFokfB9zGUhQAMM0f1DNPA9TziKCHTKa5rIYkpl0ocPT4PCHyv0EUNJY6jaDUDRkcGWFisYzs2WRrT19fDUr1OX3+NUrHE0mKLmdkGnu3SaseQaRYXFyj6JkgTpEEcpbiWy/LyMoWiw9TMPJVSBUGCbSksy6dYLjI1OUOp5BF0OlQrvZRKRQZqJQ4cmubE5BQrxmpIw0CZLkkckiYpM3PL9PX1Uqm5VCo+vuuxd/8BJo8v8fDuIxiGoFJySJKQJElQpoNU1im0OWovsXbNOE/sPUStmmfGTR6fxnLsPKOvXMzz1dIY03JAmCgFoz0gpcttu6fYfP5ldNImGDZp5BC2ArZsOYvemkZnUCqVSeIYZUiazQWUIQmDPCTXMCRLC0tUa1WKpTwTstVcxnZM1q1fw6Yz1zEy2s/8bJ3V61Ywc2KG33vfa1HU+fcbb+N5559BEuXXjU6nhRAKw5B5aLtpEidpbjIkDaIwyalmUmEYJlIaaJHmbrfYQO6GZ5lmV7tmoAwTyzGxLId2vdkNuNe4fo0kiTEMSdju4DgOSEkGBJ0A2/YIgohCoUiaJt0oEYMo7GB7HkkqaDXauaFNptFaYhgmy0tL+EUPIawuWpbHnBiGRRznCHd9cRplmGRpyvRUm9e/9Wts3PgznH/hNVxxxVVcdOnz8Uo+Z2xaT6mnwvNfeD4b167h1971dpJsNa96zQe47mc2IZUg7CxjW3m0gesV0Dqj3Vgi7VI4DaXJstxsJ2/wMpRpEIURJ46fwCvkZiqlShnTtPB8lzhdw+z8BAODfRw/Psnuh59gZHiYJM74h7//FFu2nYVUsLzYwLEt4kRTLlUo+EXqMwcxpcuvvO03ue7Vr6KzNEe10pOzPToJSphMTR3FtmLacwv0DlRJ4xglcgfed7zjXdxww8d46y+9nn/5yDd4y1t+jkq5wEuufimWW+Sd73grl1/+U/jFMp/+1L/y0mtexN59u3nzm36V61//St70ll+if3AUS3noJEdJ/VKec+f7FVaMjPPWt7ydiy7+KZYXpxEqw7Z9BgfH2Ln9UTZtWUOWZvzuez/IQ9sf4MKLz8OxHdAmQqZMTBxhaLifgaEeFhfncZwiCIfP/9OX2HLmmfnClATHVRiWpFSr0DPQh27OMzdziIGBUeI4oLE0xa5dj7Ew18BQDmMrh0EIeqqDvPK61xDrRRARpXKR+bkF1q7fgtCC48f384prr+Ml1zyfKEuJ4pBWo85H/+rveOOlr881asDjex5jdGwlbtFn5cgq5hZncdwCCkGSpgjDRIv8fDeUwezcPKNjK5CWQKZw5MhRWq0A03IwpGDlqlX01HqZm51lYGgYU0Krs4TnlkBBpxWwWK+zd+9O1qzZgOu6dIImSkmU8Niz73GEgEKhQhA0ESKj1Ur495u+yKWXXEaz3cT1XJ54fA9SCQxlMH1iijvvuYszNmymt7ePRruOEIIkiXAtRdhYIGkt5M2d7dIMEq55xRm8YMXLmZmeouo7dIImlmORRiFGoZ9K/xiGkhhKIk0DKQXTU8eQOsUxBdWyS5ppklSjzSyPikg0hnQQSiCVjRYJMhVkhk2mTQwisnadE1NTHDt8nIHBfiQKQY6Wp2lClqYcOz7D7scPcdO+79K7xmeb/wJG/Bojw2OknSU8T9FshGxZ9Xw+fcOXWL15LX7BQBmSFSM2Zw3Ms2EkxSt7PP+CM2kuTdPqaHqGyzSbCbPHj1IPQh7Y0eSNb30LpUKBmWNHKJgZ0yemOGPjZgZGVpCK05qv56hNn4WB+bSa6BlauqfQMb+/zu6Z9zX6WZG6H1w3P3NLz/3893O0/FH28YO38Z9X7//oyN1Pmrv/4vF/UnN3uuvP6TTNp8LiJ380GqEkC4stVq8Z4oufvYnjcwuknWU+d88+3nj1hZQrPicm92IZPnEo6EQRlivxfO/kFvNe7qmN0Mn73dtT4e28uADDNBgeG8It+AglKVYKlKpFNpyxknPP3sDWs9YzNDLA4nyTr3zzXiaOHsWxFEOjgyRpiuxqcshcbvz3O0ijDtViD0Y3BDiLU6aPT3LXXTsh0whDMzi0klK5lBsZ5EpfpBKU+4coV0qkhsJUxjP60yfR/5MNbPe90xnKAKQmyTSuXe5mv5k5zSwMMZSDYSj6BwpkcYqUNpCHhWud64K0EHnzJmIECiEsDJV/tkkcn2rmyDIWFxdxLAvD9jEtRRKH1JeW8R2TNHOwfRed5JTOViNEScHE0WP0j/Tnq2xpQhzO4xTLpKlGyZx2Njc/SxxnPLjrcS44d2PunrbQIIkDDMvBth3iKKXT6eQNPALPdUizmIlDx6nUighDcOMde7h8rUcSZziWoFVf4Im9Uywt1xka6MFUBgXPZm5xgYGBXtrNgGLZAxJ6qiWGBvrIsozZmWWKZQ/fMpiZWaRSLhPHGULlFMHl5QZxFGG5ZUzbpKeniGXmDpYFz2XHw3vp6fNw3BLL9SZ9A1VMS3Ho8An8goVp20jTJWq1MGzFQH+NNM6o9paYmVtkZHQIZeQRH51OC9f3ETrCdk2kYVCuVIg7AakAr1hix879kIR4BRvbdZifWaJcqxElHXzfwXVsVq8eZmGhzSOPHmZspDdHcYVNseRjmSlohelaNJp1+ms1bE9QrTqsXj1KGEl8F4jTPNBbapD5uW7bJloovvXd3Zx91gbSLOHgoRnWrhvBcS3uum8nQ4M1LMsgSRJ0lhvdWFJQrI6hpKZ341nEYYJtuQghibIOhimplCPQCiFihBIIYbJ75x6Gh4exbJsvf/477H1iH4NDfQwO9NBsLOJ4HmkaU+vtY/fDe3AdQa3Wz64dj3Ls2DGuuvpyPvnxG3nfh77FB99/LVkKQmYoQ7A4v0yh4pHGBnnmYoRQLkLliHy+aBCRZXEXpReobvEkhDjl0Gq7LkG709VxaZSRUwvTROMVDcJ2QBxmGIaJEA5atpCyhOyGwtuORZKluF6BKEzIMoFtu5imgc4U7WYT23EAjWmbZFmMFDlq53guaRaSRLnNfKfVwrJNklSilEGWpESh4nVv+SqXXfZWSpVtXP+a17B3z4OsWrmaVtDBsCTLRxeIg0maSyeo+mX8SpV2GGOIjIte9EKUcwY/d/0Hef3156G1SZrmdFTLdImjDn65TKvRwnM8ogD++dNfZ9vZ6/OGVtmkSYcwaFKpVPIoE8MkiwN2PribTjTOiv4+Hrz/QUZWrWV8tI8wE9SXl5k4uI9t51yIkJp//qevs3b1GVRqLvVwHsup4HkeKSk/c81VWIZCSxPDMbnkkot4+cteTqliUiqVkTgUyj3ECjLpoaVEmnDFZT+F6zjcfvtdvOqV1+H4kjSRFEsVgriD1hZnbjmbTrDIxRddzEuufDlvf9uv0w6a/O3HP80vvPrldBoJthsRBROU3BHe9fZ3cs0V1zDdOoFvKlatHGNs1RhWuYwSNp4F+x+/j9XrzsCwHF77ql9g5z338Id//sdI6WJZFvMLk9gVE5H2MzlzNz3+ZlzHJ0qP4wqT+++9n2MTE2w5+yyEIbHTgFTZtKOAuYlHcOwBpmabVGtlHMek3mmx7owN9A+M8q1v3MGGbetYmJ8j0wHFksHMzAI6ExT8Aj29VbJYEkcxS0sdqj01WvMHOLB3DytXrKE98wSVYC0Tx48y2DdIoxGwbt06ojh3T1bSRKDY/egOqrUa7XYdz/dyZ0kBwnTwTIFOE7QwsAyDNEvYsesBztx8FlkS0Wo1kcDCwjw9tR4arQ6FYpU0i1CGien5eLbNmlXrkVIQxR0cx0IYinYz5OCeCUbGhpBCU/B9GkuLOK7Ftq3nonXW1S/b1JcW6akMUiwW6emvsH7jRjzbJog62AUvNzkJmtRn9yPTFkGY0YpMjMIAf/r1G9izo87Zmy9gaalOtVYjiZoYhkuctNEoGo0mVsEjSSNkomgut6mVenlk90MsNwKGestkEkhClM4dqvNaCYShCNtNpFAkOsOxC0hDkQYRiZlRKxTp7+vL9XpSsFxfxrQtlGEiUxCWzx987qNsOXMbL9t4DU7VZWBoFEsEGGEdUfSI25rKyrVs3byFT33q01x53eU8+L37+ZP/9SGGzQbVgYSq1csTh/dQMCWeJ9HZKIaaJhAu9XbGudt6+c0/+CxKKa655mIGt2xktKfIZz7+l1z00muxLLurhTtJuzzNYfKk10C39DnZrD1FMXaqnnyu+vQHDQGn6rCT9/PySj5rbfvDxwyc3tw9+X/9INTu6Tq7p95+nPGjNpJPzxI8ffzEUOW/0fg/q7n7/uN0d6BT1rOp5sijx/jLj/wxvlXg+ORhNq9dieMUOW9Fmb5atUtxNOgd6Mcr2JimcdrGf+DeTy0ByWf521yrJ/JJDciuo5dt2/T2Vdm4foSDhydZu3qMW27ZweOPTzB1fI5Oo8Ptd+/EcQRF3+Le+x6lXLC4+db7GOjx2b7je6wZKf9v9t48TK6rvvP+nHPPXWuv7qre1K21tUu2Je8YL4CNMbaxMYvZw5JtMsubxBMSmJlMkjdkyEBIMkkm4YWEECYmbCbGNmBjjLExXpCQJSzZ1i5Z3eq9a6+7nvnjVkuykAlhyDx5n4fzPKXn6eq6dU+p77l1fr/vRiFr02pOM9Rfxo8S4jjuOe+dnlcc+nzlSw+wadMatNQY4rSz5tkLfM4riuEAACAASURBVCmjLgwilNGjVGpNu93ENA3C0McwBLalENLg7z93P+vHxzAMk7vv+zbrxpcDkijuEidhL4pBIoQmihIMZWAI6HS67N23n6GhwTS+wjBotTp4ngtJQqIjgtCnWCxSr9X5X1/8FgP9Ho6dhjE3my0eeWInl16yFWJJknQRQmFaBZRShH5AFAYoJXAzOT7199/gDTe9nGIpD2ikirEdD6XSDbJpW1imiWlaxJHmke/sZHRkkGqlD6RkamqGkUKHg88dY+3aZSDSTtwLkwuMjVQ5evwk1WqZJNZYpkkSJUxMzhEFMa5jcd+DO1i3bjmWZeA5FomIsbxM2sU1DSYmpxGJpNPx6esrYrsOtqV6pjAhoR8zN9ci67o0aq3Unj6KUtpgHBFHEYVMiqYaUqDjmHqjiZv1iKMYyzZ54ql9rF+7kiSKiaIYvxtgOxZSCKanZgiimGwuS6vRJI5i3EyqCxqs9pPLZQnCCGUYPHfgBPm8RTbjkiQC13Y5fnyK3fuOsmn9KJlM2gRoNrrkcplUB9Zz7YzChH3Pv8CqlaP43ZB2x8dxPbqdOvVaG8NUtJstHNsEnaQmBbFk09pRHn50J9/ffYiXX7YFZUq6nTZDg30YSqSNAyT0dLFSSqRZpC/nsuiMEccRtqMQIsI0TAqFHHPTh6jXahiGge2k10GlUuHY0ePUazXG163k6OEXuPjSbZw48QKu66KUQyaTZWZqlmWjozhOhq9/7RtcefWlPPXEflavHWTbts28/PJ1bL3k/+Htb9yW/h0NyGRzpFl9fnqX0jbdTiMNcifNeUx0QhTGqeupZaN1gt9ppRtVmYZ6B36IIRVSSdCp9k5Zqf6n2azhZjxM2051r73vcilN2s0mSqVrOF36kk67RSbn0KjNp/mamvT/QsheTl3PClsmREGQZsiZFsqU+N02ykw770nS5ZFH9rFjT5aR5Rdw+SWvpFopU2vMIY2YXDaDMCymp2coFHJYTp5ytUy9HWI5eRamjlHqGyCTK6AMG9fxeNPrb+YDv/kxXvmKddQW6mRzRaYmZ8jlcwiZGhLFUUCSxFx86SZqi4tp5I1hIA0QpNpYQ6oeyq+4+56dvOLat/DMD/ayY+czbN1yIbbpUW+2qNUmedWrLsU2M0jR5sILt6LoIGSAo2xOHJvBUBLPy2A7Ln63i+O5tFoN3vPu91Aq9nNyco4k0SzW5oiiNnEQk3VM9uzcRdbNkc3m2b17DytXr2T56jUQa0zD5fChAwyPVNiwaTknp45jWYJcNsfTu/fw5tvfyOiyEV73upsxzJj//uGPcsWVl9Huhnz841/g9z/8ISanJ+mrVInCBCUdmm0fLWN0qPjaPd9g4/rzmZuZIEwC7nj/r/Pu972bweFR5mZrlEp9qXOkLhPFkxza16TemqI6MMDc/EmEtBkaLLNqzUosy8F2MjQWFzkxvcjIsjHynscDD36XnU/v5vzt2zk+OUnGschksjQbNcbXrsD2LGanZxisDgAwN7tApVLFUJITx1+gOtAPxFQH+5CGZnHhGNXhCn7Y5P5PHmVsfIxqdZDA72BZFsdPHGVocIgojNi5ayfLl6+gWhnAsdONvVQmQRT1jG00frvJwsIsjuuhlKJYKjEyMobnZdBJem3YjkshVyCMAjzPwzAkYRim0TRSoqQgSiLiRGMoE2XYJAm02y0e2/EIWzdtxe5lRHqZTJrBqOOUsqlM5mbnqA5U2LPvCdyMi0AgE4FyPAzDQoQh84d+ALqGa2dYmNUUBkdoNLvUFlu841du5rzqRdQbDVqNBpX+PrqteUzTJokDTLPAzFyDfKGPOIppdRsEQZu52hSr14zjZASuGSIME6UNbM9BqjSnVwojvUf2tLtCKpRdoh0sIqMOwtQkQSpPMQwDP4S9T+9lZHgYqTV3fPpjPPzEPaze9DLee837SJIQJ+MRBRF+cw6IEZZJGEme2X+QVStWcN6GC3jXHb/CB+74TQ7u+SavvrqA4cZ0GwmZ3BgDAwXqzXmOTe0j8T2iQOIpm0q+wLyQRInk4PNHaHcMfveD/4lyIcutb307wrRfXEj8MFz2oqcTcXa+3bmLu3Mhdi81lso3cda5/qm8t3O/05njJzc9+dHn+fHH2U6XP+ZR/KiC8GfF3b+iEcfhf10qqn66lMwzhz7j35e+dF9kcdJzL5JCYCmTL33mbs7buJq8W+Q33v+rrBlbTpJEfOLeh3nHdReRyeXI5QugAJlw5sL+8T7Xj3rNi28WGn0KHUOAFgmWbbJh3Sry+Rxr1wyy+9nnGBzIEeuQIGkz0F/g6PFpclmTwUqJCy5YR1+lwPjqMTK5LF4uT1+1TLMdkSsU0iBx2ftf0akmz1ASL4mYnZ/Hcm10DEEQpNrFXoB0p93ENE10rNGJSDV+aHSSYPYQlG630+PYKxYXa7iux4b1q7AsmyhMWL9uRWqpLwzanTqu7fZCXVNbdJGy9Qmj1Gp9eHiQMExpjwjBs88dotLfRxh0e+gedLs+pm1x0QWbKBY90JJ2p43nOWzcsIZup0tjsUW24KIx+NJdj9FuLjJQKaNJjSuCMOaZZ45y0ba11GoL2LbJ/Pw8mUw+lTIaKV+93e6eysN7/sBxVo4NYSpFEIbk8nmGcz6e61Dsy2DIdPM7VC1TLObROsH1bAI/JON5zMwsUOnL0e2G1BsdoihhaLCMY5mp/ikO0CItKnzfp1opYhgO2azDyanURVUaohe4O40UBuVyqnXK5xWVaj8npxbIZV32PXeYcjHXKyojojBgeno61QBpMEwFQpCEMUkcY9kGYeAzv1CnVM4hpSCb9ajVm0g0rWYXrUO8jIcQqRlIp+tjWRaO7TA83E8U+xjS4PChCfI5l043YNP6FWlMCAmLC00KpTxxHKMMRTfoYpsOjXqH4aEqCMHCQoOhwQqmqTDtFD2yXRuB7oUOw31ff5KB/jKeZzJUKeDZFt9+/FlWLa9gO2bPmAQ6rZC77vseq5dXT0WJ3P/9SdaMVMisuRTHc5idncKyDCYmZzBti5//pd/j5955PXOzs+TyGRKt2b/vECtXreR7T+zivG2bWLtuDUoJ7v3K/axbO85dX7iftevX8Mi3nmTN2hVMTc2xefMqLNtmfO06Hvj6A0jDYMP6dWzbNMZvf/gh3vHWbb2GsQHCQAgf07TottO/hTKMVI8X95xIZapHFUjCwMfLeikKJ1VqP75kwW2k2lTVo2kqpTBt8xRVylQGnXYzpZtHAabViyNQBu12C9vyUJZBFHSxHZNarYGXyZLEEd12OkelTNqNBqYFCInlZPD9AMOQdFrtHpU44Ja3foEPfOCPWLNmI4FvUi6VUabAUAmxDqgODCK0hed6FPMFglgTJgm5Qh/TswtkVIKb72O+1sRWJkG3gykkV19zLe/5xY/w5jdsp1Frpm6DmWyKxCUxJydOUCoXaNZr5AoFUiTToNVoYRhpQH2n1cV1bGoLdRKtGBy+gGyhxLGjE6xZuZoXjp8kX8qTyzkcOfQstpXlheMHU2MqoWm1WiBslg2v4K8/+QkuvuQSFhcWcB0LIRS+3wVgZnqOL3zhLi7avp18IYOXsfDsHM/tfpxlw8s4cnSWxXqD9Rs30t/fR7NZw1QOH/nIx9h+4fnU6vO0m5IH73+c87ZeShQvcuNrb8S2HQ4fOsDAYB+GGVGtLMM0Bd1Qc9VVr2F2cQo352Bh0vVD8uUy73v3L/DGN97M/fc9zOWXXs37f/M/8+6fewPZvgLagFq9BggOHTyKZdosLCzgKY+IFxjs24ZdqOG5JbLZIsqyyBdtlJ0yMU5Oz1IdGKBvYJAoiolDGF+3ge0Xbcd0LLyshwFMnjxJpdIPMs09LZfLTE5OYAjB0NAIs7Oz5HMF4jgmCJtEcTdli4gYIYqUSkP85r//Q15z3WtST0OtSeII0zJxXZdEa2zTYWho5FTumgYsw+Dk9DSumxZoypC4tp1GkkhJq9XEdd1eNIUgSWIM06Db9fFc71QerNb0rjONTqI0y85IdZyGYTI3t4BjOyhTsXXzVuIowXIcZqansG2bvc/uS42p2l327dvH+Pg6DEyGhkfw3CyGsJhvtPEygvrJvYjGCRabNQ4enmTZuu0UBkaQysFxM3zioU/wwAMPM5obptI/QKV/gCAKCTvz6f2CiFarRaHUj+mk9+BSsQ/TNMlmckxMnODIgedZMzZKGPkoQxCT9O4T6T0HII5DXCdD2w/phAaGEUInplHzcRwFJEhDEicJlWoFTcTHv/VpTK/IK9fdylChwujoCH7Xx7Yd4iBA6Q6maxOHIW6+n8HBlWgds2/fXm5/1Vs4OHOYorGP0YEmvnaJOh3sbItAC773xBzLx1aSKwqyGYjjNrWFOT7x2UNcc+213HLrK+gvrWXrhtU8+d2HyRX6WL5ufeqV0BsJ+nRMwjl0cmfn28lzFC/JOVCnc2FfZ/68tBd98VFns9BOvxaWNHn6FAhwmhXWi/kS/Ih96bmfl1Kcim34Ua8/jez9dMcSUrmkO38xepiOnxV3/4pG/H8RuTvbVvafM5YNDnPX3X/P7be/G8vz+O7DT9AVMbe+5Xa2LUtNCYQhQGhShCldQHqJu/jjIHf/1KdYEtGeQsqWDk0vciFTe2XTtjh/6zpWrhxjZNkgG9YvZ9WqMTasW8Xa8TH6qyUMy0IYMu1cOzmU5aFsB9vOp/EJZwhuhViyypWUB7I0FlvY0mG+3iaTcYDUNEIIgWkp4ihO54PEkAnNRgOlJHEcpkYPCb38K43nZQgCH9NWhGHI888fpq+Sx3Zs4lijhMKyLPxO91TYMEikAbJ3M42itKuJ0PjdLkPDFQzTSHOtOm10EpJxbAzLScPMky5SWbieR5wkCKEQKDASDGkhhGDt+BBDoxWUpTAtGyHTjuQFW8cxbUmcdMhl83hemReOTzAxMUM2a2OaBgITw0iRky2bxkmIMaTg/oeeYPWqUcLuDPlsHmHE+N0OzcU2nU4Xx7WQAizLJEkilGkShR1MlZDvK5LP58llLObm5ti15wjFTJZuENJpNqgt1mg022SzWY5NTFEs2Tim4Njhk6eymkwFuYyDH8SEUUAul+GZZydYPlrlW9/ZxeUXb2bvs4cp95XS7D0pkDKhXg8oZnPMTS9gOw59pSzK1D1tncXJqQU8N93wpOHVmmKxwOzUPIbSZLJZwjDGsS0M2yAKQlqtFo5nsTjfJJ8tIIkxjJBSXxHTtPnejufIZTwKxQzS0AgS2q02luUxMzWPYQgsz0ybBkqgCVMdmimQKkWqTNMhjEO6fkC9FjA42IcmIowDhocHeXzHYTauHcR2TPyu39OxuTy5cz/nbR7GNFN92kLHYrRa4kBT0d/fR8bN4fsJ1Uo/QgrO23QepWLI4sIcpXIfCMX+5w4xMjKCMgWFkkcUSQ4ceJ6Nm9diWx6tTp16vcH52zeRyaXFuNaSyRPTFIsZiqUilUqZe7/yDV513cup9iX8+/d/hTe/fiPtVhtlGUjh9NZcgjCsnpmJQGsfHUOiU+dbpWyUkkRBQJJohKGpLyyQybm96AKJ6FE1U0dagTQsQKQuujokTmIsq4hUKRIvDAj8Lo5rpwYUUYRpOjTqbQqFAjqBTqtJtlA+dd/SiSb0fcwerTWJQyQKy3Z57Rs+wxve+Bu8+bZXpIVW/zDCtPFc6Pptdu7YyepV4wRxjCEs9u5+hk6zwYnJo5SKpRRvFWl8er3Zoa+Qo9OtMzM1weFDz6OIuPaGK3nm6ccZXzdKotOcx9RNWJLP55mbmU6pc3YaPZPEAVEE2XwOaQh0IjFEeq/74Iee4rILz6MyMoTrSkp5QdtvkM+XODm5yNaNFyJtBSKDmynhZQocPT5DdWiURqfJxdsvAa1TGq/UzEzPkc14tJot+itDnL9tY7pBdj1CP0YbBjKao29giOLQWhYXapQrZRZr83SDDp12g2UjKxhbthKByS033c6ll17OO951O792x/twbIe/+Iu/YseOHVx2+XbCqMXI8EpczyKmxbM/OMD6dSuIQh/HlAhTooXmlVddiSElluUyMzfD9ovPp1gpESLxLI+smSU22hTyRSzHolDM8Wd/+n5e9cobMK08mZyLtEy6HYkwNI7tpNtSA8r9OfYfPJDmPcYRhmkzc/wojpUiuKYJnufQaraxrBzdFtgZB6GhXCphmRYajWWn98RsNothGvjdMM27NC1M1+ENb34Pv377HdRmZvAcl8APUEoRhTG2YxPF4SljB6UUrVaqTz908CADA0N89YGvsGH9RqIoItKkjrJSksl4xEn63ZPGZvTYNK6b0vlNk3a7g2W77H9+P+W+PqSOeq66CXGY5jA6loUf+Shp8dl/uJPNm7agpCCXcTGkYHBwCK3hu489gmFYlMoF9uzexbHjxxioDqAcgT9/lKh2AqEN3OIyhF1i9YaL0nw5JELCh+78ff7iT36XMdYwODREGKU07TCIIaqdcmCW0iCMQFkupnLp+n5qvCQlvh+gdUB/MdWsJ0GIbXspU0dDHCcYQpDomCCKcb0CQprEUYvED5lemKK/XCLRCcpQ6MTnI/f+NW+9dYHPPzjLv73hbWxYfyGjY2vIuiUmJo5SrQzw8ENfZaDkYXguUbNJvn+Q5589QL5Ypto/wImJF/jo3/0pb7mmSqVc5TN3fofLLh7B8SxiI8enP/04V1w5im1KWt2IqQWbmYU8Vlny4IO7uPW1v4DtJhi6iWGE/OOX7+W2d77rVLEKqQzlXEXLS5ZI53jti/wKfsTxPynMcTait2Sad3ouuuc8/c+hcPaO1EtmKz+6uPvJNXsvPVLjwzMK6t5nWGKILZ3vZ8Xdv6KxVNz9y7qSvpiXnFrSnnbpWYKH9RkL4kw0UWtNPldg8sQ8hw8eoFtr0sqG3PGB/8jmzRv55Q9+jNdesvqHiq7TOrQfntGZXZ70PEuv16c6NanLSorOxXHc+5JTPcrYmf2e05ikOLPT1ONqi97rDWVgKJUaKyydY8klSWgCP8Awl/SBZ85paS4QY5Av5Lnziw+QczMMrOhHGQpLWmgkcdAFkVqwawS6x0E3LRMt0jmZVhq6nOi0w6cMAylsoEtjcZGBoUFq9QUMGfK3dz7M5o0rMR0LpAatCcMg1cYJnVL8TIUgtT3XWqMMSZKEdFuLZLN55udaNOsdGo06lf5Bms0mcdTGVA5J2EFKxV1f/S6WFAwMlPC7furSGabaoijyEQhMy8FQmjhJcNwi6IRGo065WqavXMS2DbpBB6UkCwt1wjAkjCJcx0UYIbayKRSKBOEckd9ESYcoDvCyJTI5m0SDUCkCo0wTqRMmTy6QzfWjFHzpvicZquSxlGbNmjGcjKTZaJPLFshmHVxHMTu7iGO75PJZlOXSV6mgoy7feOA5Vq0qIwwDx3ExTYc4lhQLOZ7Ze5irXraVdqvD8NAQCTE6Tjh2bIbJiQbLlw+ADJlbXKCY90DZICGbz6OFRX9fkVajjaUsWs0uYRRhuzbZYha/XcO2POq1FosLc2gV4bmptk2YkM3lWVysUSoXUhMVJYjiLoPVErbloXWHJBQIZTI7Mc9Tu46xbm36pR10Axq1JgLI5rI9inBCGLVScb6WmIaBZdkcOHyS8TVDNBsBQVdjmpI1KzM4TpqFZpgOQRcsW3HelmUoBMIM8bshv/elg9x48Si/9/Gv8errrkOIFMmRYYxhSPqrVf70zz+NY/qsXLUCARw9dIy+SoFvP/IYG9avAWGgDJdiKQPELF8+zpOP72TdhlW9dSmYPjlHvdGm3F/iC5/7BuddsI6BgQLN+gJDw0P8/HtfgyFTm//FhTmiKMCyTPxuiGkpWvXplM4lTRACw9CE3Q6GZafUYkvRbjUwVR7Xy/XWTIrkkQREfos4CVMn07iLUgagiOMA23GJIx+l0sKn265jmjZBV2La6b0hiiIy2SxSCKIwxMt6+H7Arqf2MTKSp9NqMjvTpNzfczXVCXfe+TDPHijz27/7WyTCIPYNgjBAiASRaCan5yiW+hldvoooFhw+cBjXy7J6fC2JcBgcqWCoGCktpMwRBF3iKNURHtzzBH3lClEsKGSzlIbXUx2+kAPPfZuhoTJRmFrYiyRtjAkpyOTzpDEiBgiF65p0O6kDpt9o8Jb33cM7fu79XHvVdgaGR4GYXDZLNwwpFAbRooM2AlBgGYpn9z2P5ypymTyubfPs3mdYs2KUbusYysniBzFCzzIzN8en/vZTrFq1gvmFCeJEoCyZUoWFh6nAKw4RawPLDCjks5BE/OOX72bbtguxHRtlCiYmp/nkp+7k1ptfx2tuvITZ6ZNcdtHLufX1b+Sjf/rHXHHN1SQITNskCJrsffoF7rv/m1z7mqsJtY/jZjh6+DkGqlVajZCHH32K3/2d30ZIl//xZx/jjjt+maxT4tjRw7ieSawSgpbkC5+/m23nXwaqxtUvfw3Ts7NkC1mIU4fhX3zbm7nhhtcyOXmCQr6IY2UgVmRzZaSEREcY0iQxE5xMHkM5NBoNuvVJikWPu+/6MqtG12NYPq6rCMM2jeYiUxMnKJaKRInG87K4bgalTNAS1/V40+3v5b+87YNIASqbRwuNKW2kBmmaKfNEKiYmTlDIl2i3W2Q8l3a7RV9/lQMHD7D9vO2pu2rvuhAIwjAmDiMsO3VRFVpAFIFURFFMu93AtGxUzwnSEOm9QpkW0pAI0ySIAmzbQiqBEibtoM2FF19Mq9XAtJz0fiZ7TdLEpFDJMrZ8JcQRQyNDjA2vIPJnaMw/R9awCK0CVr5CpwuZYgGNxjQsfD9k/66DvOvf38Qf/NKfc/UVrwBl8Pz+Z/Ecl0I+R7c1lTZoLBsda6amp+h04PjJCfJZr2fCJslmczyz5/ssHymjEjAyFrEfEIkYkBhGmoNJrAnihFYHOt06BS9DGHYolTIYpgmWjQ58/vK+z/GHv9bPb/3RPK9cfRX1IMvA4DDzc9PoJGZuvkmpWGDq2EFGlhVRwiCMWviBzcDwEN948AFWjK1m4oVjVESex3Y9wEWb+vBMiFU/rglCa7ZsrVIsDtCeW6TZmmFyJmFy1mXzqj4e/d4BXvPa17Nr99O0uzF/+cnP4MeSV990PVmvgIEiESG6J4v54b3ci8cS7TLRLy7mTu+5Th8nz8ipOxeqd/Y5Tmc1v/j50zvc07q5M41XlvaWkPTy7c6lmUsfS6jfuebywzENZ6N25yr+zvVpTu99l0byI449V0zE0s8/CzH/Vzr+byJ3Z44zEbwlB6IzfyfPWERCCGINF1y0jUQnjK1eySuuf0WaX2aaSOWyJts9xzlf+iI/s7B7UWEr0myx0+/QK8GExLbtcy6os6HppWL1pR4vXrinj7MsK00yWAIbzzH9JAFTSLTfwjQicqaHaab2+klcQykHrRMSnZp6JEmcdlh1nGrihKTZamE7NmGQuvAJIIwiTDsmn0kdPl07j9A2BdeiXC6ipAAtaDabPZc/kyWdscTo3RgStE6QRuoAKVEkiYGQBlEYkMkbxBEoU2OZ6Txr9RrZXJaNG1bTV8rSbLbIZvM8ves5ZuZmGRwq0+36vS93TaJjDCPdgLZbLbp+gOc4aZSBAHpugEE3oFQuY1s2Qii6fptsNocyLUgWcW2LRrOLl7VpNnyUErRabbKZDEEQAqmTpuMoEAnfemwPr7pyW2pt75hEYQI6IZPNYlkuX39oJyvHBnn0if1kcyZ9pRzdVpPafA0tA9avG6HWmMf1TAxhY1omShk0m01OTM1jmRLHSbVxEy9MUyjkiLVmzdoxWq0mhjLIZjxMy2HPniPkszboBGUYzM4uopMYgSBbyuF5LrXFBo16E9fL4HhZIEUNbafA4twilhljyDQI2PWcXkh9ev3pJEKZRi8YO8v0dB0vl2Vxrk6h6OB5Nvc/9DSrli/j2PEJRpcNsrBQR0ojzYDTAtNwiMNUNyqEZGzZIJ12m4nJOfr70/DwYiGH62YIgohjx6b4xrd2s3njWK8LrQED03L4/OPT3HrpSv7uG89w2203obWm3W7z5bu+zPjacbQWfPSPP84HfuvtPYqy5unv72HDpvWMr1uDpWxinXDPl79FLmsipYHrZdj99F5WrlyG49jc/aWHOX/7ZioD/dx/32MMDuYZHRumVC6SyWXIZPJMnTzJhz96L9dcuRo36+F6Lq1GC2WqHuomUsTAsNNFrEEaCkOl9w2dgGU7SCMh9FsIGdPtNjAMmygIEULQ7frYTiZFq4Uiiell6zlpV16pXh6cThFB0ybRIRKJZTv4HR8hBH6ng7JtDAOqAxV0EmKYDv3VKnEUEycxb3jH5/it3/httmzdTBBpWq0O8zOzDI8M0u12+KV/cwf33fc1MtZJxlcJbHOecl+C69SIouN8+MN/yF/81Wd5wxtuRimbOAqZOjmJshX5XIFCqUgiTAaGx5ifX0TJmMW5aYqlTcxP76JYzqWscwTtVoM4jnFch4njJwCd6jHbLbxsHmk4vPOX7uVzn/9fkEhc06HWTJ1Bm80Wd9xxB7fe8jYc22FmeoaB/mG+8+gjfPyvPsktt76O3/2d32P7hdtYuWo5QkiOHTuI7RR59NEdbFy/gf7+1VxzzXXMzzRZM74Z17NwXSvtvCeKF04cI5fN0e74WJaN1hJTWaxdtxZlKIJokcNH9vPwtx7CdW0uPH8zy5ZXWLNiE6VSiY0bNzMwUKXTbeN6DoYSxGHMo99+nLFlI2xYt4bQ76IwKBRyKCvNY924aTM33XgDWzZt4V3vfDuGqThx/CBz8wsMDo8iUbzy6lfx67/+H7jhhtdxyWVbGRmqsu/ZvVQGB9FoYkNx882vw844FIpFmq0mpqnw/Q5Kmti2ItYJkyemmDg2RS5bwHUcDJVw5PkpfD/h0ssu4/77H2LDxo3s3LELy7Qp9VUQQCZXwLYdTMsiDkM6nQ7z83M89cQubtxyE1GYmEP7WAAAIABJREFUBlJHYYKOIw4eeB7HTinLjuNgWyb5bJYwSmnCQgriOMS27dT5cnaO3T/YRaVSQfaKO8NIG6bf/vajrFi+GqRGKpNOt4tlKpRc2tynjSDXdoiSFKkzDEmcaGzLxui5cavevc+y7LS5Z9k9VokkjCKiMEW85+falPvygKLV2A+dJknbYjbU9A+vwXBcLDuDwkTrhLn5KdqNLhtem+PaG9/K6656DaVKgV3ff5rNG7eS8TzanQ62CBHoVNsuE8I4oR1EjK9dR5Kk9D7bdpicnCBKfKr9OeIkQVkuOolBW4R+jGGk0VECgZ3NkysPYymDKGwghcB1PEI/5PCBA/z5g5/lim0lvM5NXLh2G8ePnmD95u0YhmRq+iQvvHCEoaFVKCNgoJInm3FItCYMQrzCEPVGna1btqVUWL/L4OAQ9+15nNuuGUXZIZkS6EiTL5Qplfqp1Rrc8Z++xW2vv5yMaqDjXQRJP9/dfYKdO5/mLW+5nZUrV/LqV1/HV+/9R57a+T1uuvGmnvNwkqrpfozi7pQbpjR6f8Mzmvhn79rEacf2M7V1L3WOM0GIM58/k5WWNvPTfa0hjbPmfK7Q8bPHD0c0nHNO5/z9P43anYm2nalp1D/i2B/et557/Ky4+1c0fhrF3Ut1Gk4//+Ji52y+8tnlUtpFOb0otdZow0ALGBodplTtw1QCUymkgHXrVpNMPHPWrP7phbEkvj3lzKnPWPzixQXoGcv7zE941tPpJxFn/v4l5/LDxeep3BX50gvbNExOnpzCUoKsKzFElyAOsV2XoB0SxXFqjmAYRJHGVCbNVgspDRzHIYoj3F6I9dLpg9DHdR2CsIltFqnVGgR+iwSfcinDYm2OTMYkin3cTI44jlOBukgNVISR+pqGQTftGiYC07KJg5gjR09imhauY+F4Bpbt0mo1sa0cUqW5c3EUY6q0iIpDTb3WZNWq5VSrRXy/Q76QRyDxwwCjR72VwqBRa5HJeAig0/YJggjZez/XsdEaZmYXsG0XyzYxlOKeJw4zVuiidUK91knRvk7E4mIdx1GYponfibBti4WFOrVak3Ixy/Llw7QabU5MTuNHIf3lErZjMj9XQylFfznPwmKHiy/cSC6j6HSauHZqcmJbWZRpUCj04XdjTGWxOF87FSi9YmwIx3GxHAvTNLAMRZzEeBmHKA7pdgPa7Tb5fJ52y6dSLmBITavZQimJMhULtTpZL4sWaSyD59gUcjkM26XTblOv18lkXeq1BXIZSac7S7vlI0gLkySJe2HcAtM0Uoqt7yMNMG0DbUQUsxalvgKWraiWCqAVfSUPIQWOazNxYoa+comJE3Pk83kE6fpPEk0YxBiGolopAQk7dh9kw9rlCCmZnV1keGQAZUTkPBdlWCk1UVrEcUiz2eKijWv40uMHuO31N6d6M0OwYeNGFhcX2bf3OS6/6DLGVljESYyUgsHBKnES4zgeX7/vIRxXMTUxx6Uv24YyTB799nfZtGWcvv4yhqE4dGCCrl9jYLCfXTv2I2TE5i3raTab2I6b6l4FXHvtRXzuizvYuqXaMxlK0mJY2YRhRBymYcA6SZscUZhqJ5WpSOKk13AxkIaJFCaW5VKbn8fNZJCGget4TLwwgetleG7vQQrFfO/8OtXhijQ3LnWyTbW0C3NzuNksILAsB03aaFGmjZYxAkkUdJGGDUKi45iIa3nr7bcRxxohTZRhMnHiBX7n//3v/MPn7qLTOMyH/+C93P6myxgfH0EI6Ha7uF4OKUEacNWV5/HWN7+cbus4b3vHB7nskvMZG1vB7OxJbMvB9SwOHD6Ok0mP2bfrCYYGKzSbDYS5lox9AmmYgMa0FEKAMk0KxUIPCUubBVGQ8Lef7fDB3/kNIm3QaXXIZzJIZVJbrJPL5bnuuutRlibWixi6SRTVaTUTPv7xv+ZlV1zOjTffRL6YT6nWSUi5WkHgsGHtRiItMVTI8eP7sZwQyzKJtaZeX2RhYYFioYLrmihlcvjwcaZPzvHkkztYsXw5W7aczzvf9S6a810GqqPsf/YFvnLXN/j5X34jjeYChdwAlmtTHRjANiUPPXg/WiTkcnnKhT4GKkP0FUtEkU+rUSOJNaW+MiSw79nncT2PrOeiTMndd9/HFz9/NzfccA39/VUMaQEG73vPu8kWbd79rvdS6sswPzfJ1776ABdedDGdbosoMdiydTvrN4wzumIltmWxOD9P0GmTYLCwOIfneUihMKVCYnDsyFHyuQw6yZAAruvy3ve9l4svvpzFxTpbt5wHWnDsyHEWFmrYnpM2p8IQ20kZEh/6Lx9l29oLUhqxVIgkzQYdqA5iOYrFxUUyGY9Wu4WUkpgYKdNiaufO7zK6YhWtVotyqUylv0o2myEMA3w/4LtPPMLQ4CiHDx4jThKqQxU0EsMw0Tqm226SiLSIs5Si1ahjux6WZRPHCWEQYDtOL+NU0WymjTApUx3zUlMq1ppUoyqJA4nUCXG4SGP6EEGzzcFjLyCLI9imR8bNEIddZJLQjbuEvo/E5P699zB5/BgXly/Dy2Q5dOgHnLf5EhrNJlIKjp04Rm3mGEqBYzt02y2k4SGMLNXqCFqDbTs8+NBXWbd2IwuzTRxlQALP7t5D/2CVJJJMnZwgl8tgW1bKjrI9EuGiwyZR2MC1XZIEorjL/3zoC7z51WNsKt2AlnDw4EHGN27DzWSRQlKpDFAq9+O6LvW5CTw7wDAsgtBn/95nGFq1BWUoWp0OaE1fqcw3v3kf773xFr769c+waeMYQcdPUVKpOHr8BDt37WKhY3HR9iGa0wbnn7+Gwyd8vvP942QyRW696XU8ueP7lIoFnt35GM36Au96z3vxAfmi/di53TJPbd16zyf6xT8v7brkUkP/jMLu7NedjaeduW87m7MlhTy1110qEBOd9NhpS3u7hDOpmj9KE/d/4n/xo457ca7f6T34mcXvT/reS+OfU9z99FWBPxv/vxwqSTCSBAPNGczHU+PNH74X4MVUxv+TceraP12wnQuzA3rUjXP+5oeOPfP2cfZcf5y5ax1RHR5idHw9lWVrsMrrsEyb2eN7abTmkVIS+F3iOMG2baSh8LwMlmUThFEPXUjodLssCWPTjqpCJzahTCiU8uQLVfYfWMB2CigjixBZTFUkSWKWXEKVYab0gyQhikIsK5NuJJMQZWmEGTIwVOBz9zyCMk38ruJr9z9Fo9nhnq9+l8XFNtlcGcfJUJ+vIVBksjniJOKpnU/x4ENPYdsZZk7WOHZkGsdyITHQiUHgx3zhnu/gOi6dVptc0SWTdVGmSZz4+N0Gi4tzPPv8QaQCjYHW8MS+Qzi2DVpz4MgkURzR319maLBKLuuA1szO1um06xT7ivT19dGsd0FDp9NmcKDM+PhKbNsiiRPKpSJh0qZSKaTXpdDE3YSDByeptTrYhSzKlHT8GTrtFo5j0m52mJ1dpNNuY1kGXb/DiYmZ9OqQCflyjk7XR8ch3VaLYjlPqVyk64c8sWM/0orQMqFQLnPoyCxJnDA8WCHRmna9xczkHJ1uFz8O6S7UWZiewrU0Qplksx6G6MOzxghDSbvVRWiwTYswCJEi5gd7nyeKwPEKJIHmyIFplM7QmNPp3xxod9uU+jziOMayUvOPVasHmZ+b58FH9hGHIVKkzpHohO88vgfTtPj+7mdJkpjtW8cJgi5zc3NUB0toHbB+/TIynsdffuqbhJFGCx9lJjx+JEInis3LSsRJhCYiTiJCndDXX2J4YBDHsKjXasRRSKIT8vkCXiaDVDEvv/p8Hn9sJ7e84Xq+9+TTPPrwU2y7cDOWpXjqie/TbLZ4zc0Xs2nLRoTQ3PKmizh+ZIJms4HtOESx5uP/8x/44ufuQwq4/fZr0HI5/+3D96JMA8tJzRoM08L1MrQac0gZ4/stTEsBPkncQSlNt1UHERKFbcKwRbMxh20naJHq6qShGVrWj2majK9fgZQRgnRTrLWP361huzZxBCdPnMQwoNzfn9qeBxGdVhsQmJZBGEZobaITA8dzeP3b76TZuQqtbiQI0qK5E0Kj5fPWd/wCy5d1+PtP/zqf/uSv8O53X58iKFpgWKle1u25JupEEAWSJLaIQp9Cvsg/fv4DlPLHOXTgICPLRonCkJNHDjA7cZTW/CQj/UVWja+hEyd4lUHKoyvYvXc5N73pM0RRlKLEls3UxMm08aThljd9lru+nNCJruSW11/HCz94hoyEQjnDTH0WUzl0uwFhmICW1BYkMye6JB2XuWMNfvGXfoVrrnkVa8c3kC3kafs+fhRQazWJZKpD/cVffCeTc0fRkcvgwAqKpUGOHZ5HGgbFcpn+SoUwCtEkdDsBy0ZWsH79Fq6//nqiGD76kT8iDGKGR10sp8F3Hrubr9zzN9hmhkIuh7I0c/ML7HjqSe78+89wyfkbGRkdBCQHDxxlcWGOXLWMcEwqy5dRGOyj2wpodwIKhQKelxYjUdLh5Vdewa/8m18jie00u9HStP05fvXXfg2tu9Tqc2QzOaqVEX7u5/4dtipQW2yimz7f/Nq3qXg5upFmbrGB5zrU52dodzqUSmUAMp5LGC5QX5hh/7NH+dJn76dYdbA8Tah9vvDFL7N6zRhXXX05CT6zcycZH9/I7t1pY7UbdMhksyhl8qE/+Bj/4S2/ioglvfoojeOQghhBjKKvOoiWBsJQKNvBcx0a9Sbf/tbDXH7pNUhtkHFzHDt2FNezabXb+EGA67pcctHL6HZaXHnVRaxcMYwIodNspC61WqAyeVzXw3GcVNZRKEIimJ9d5Ps7n8ZxU/dhz3VpNFJUKwxCAj/Ctmy6zQVkEmEKkcoMMLFtk6B7DFGbRNhF+tZeyPiWK1lRHsB0PRZrNWrNNomy2fP0Hmq1Ovc89ZcszB3i0oHz2Lp1EEvO4wqDw4f3IoSmXm+wbtMGBodX4eWyqZbZUdi2Ipf1WFicJUkg1nDly69lbmGOctEDEtyMZMvm81C2A3bE2OpRtI7wE0hJmtBt1QnDJpLUUCwWPpnKwxgyYV3+FiYmZ+iGkiPHAo4cP5Hqp3WC7we4nkciu0wfO45KYgzDJAi6rFx9EVooTMOgXO6n2WwzOTVNX98QnXaLVn4TbnmecmYA1/YwLcX09BQ333QTf/E7NyL0PP/xTx7m6U4eKdLv9MHBFfzt33yCr379azSbLRwZodsNorBNTIL8CUoBQ8peA+7Fww9D4rNCyH/SIYUk+Sm917/0SEGWdL7JT+B78dMeP0Pu/oXHEnL3w9TBH3+81DE/1Gk5g498LmOVM4ufFzkU9XRvZ76g906nHm964218+KN/zhWbV8KZeNxLUCNPdTFOcSDPLqx0iuSdgcwtMTKXouROH7rU+Tj9GgRooXvatN5zZ6LxvddqesXh0sFCgE51d2IpnO+MeS0RWQWpm5xlRjSbAa5XplzKEYQxUioc18MwjLSLLwULC4tYlglRAMpCyZjG4iSOV8K0BPXaAo7pEPXs9uM4odJX5M4772f/gQlWjPUjjJgoAMdJKSei52wmpMBAo3vuhoYySbSBkgLLsrlk+wbCKKRQLOBYMDDQTz5r4zoQBiFzcw06fozW6cN1TEqFAqtWjeA4No5nUShkiJIYaRjU6zUc1+a8DcvRwkTZNguzTQxDEEVdTNPGzuRxvQyjw4NMTU6Ty6f0lUf3HOGKjQUMZVPM5chksyACwqBDrCV+18ey6OWDCcIowst7CCGYmpynv9/FMi0arSbNpo+UGsf2WKwtUC5lEDI1zshkJeVyhXqtnmos4wQtFXEEJ04uMDRQIp/LgLKJujFHj59kcKBIojU/2HuYVSvHiCJBHAuUSFhcTJG35curtJoRjmNhKgPPtrAdG9+PU01l3KU6WMSQHosLDQrFLHO1BkNDg8zN1kFIbNdAWQa2ZXLw4LNUKyVqTR/X9ei2u1SrA6AhaDdRdgZByOLcHM8fPM7wskGSJCGfc5ienCKbK/YcWyFoBXzuH3fwypdt5LGnnmPN+ABxLNFasXr1AAkRI0NVJk/MUSiXsGwbx7V7a9JMtWJJzCUXLMdv1nhixwFWrRhjVT/091V5ev9xtr3sepSyqDUWyWcLhHFCnCQMjlb5t//uD5idPMIF2zbz5S/cz6H9R9mz6zm2nLeVF45OMDjUx7e/tYPx9StYNrqMr97zEK++4Rr2P78f0/Q4eOAI/f0VvvaV7/DG21/Lc88dZfLESaYnTrB85XJsy2B0+TIQEilMtmwZ503v+hveeMtGLCd1TzWURFoZ0GCZJkgD00hpfCmKl1JeDWkhpY2UAsu2kEKl7pVmanaiAbTAUCZRGGAoSRQYmLZBFMUImdKOLNtlYXYBq6eJFSLumQ+lKJiBCQT89d8t8Fvv/1W8fJZ2p40WsGf3s/zRRz/E296ymVtvuRjHMZHSxHZTvZGUJnGcxqAIUkMW23NpN1JaX7O+iDIdojghDENy+SKu16HdcZmfOY4RZSj1DTGybJQdTz2O7eYZGF6FVA50GwxUK7zuddfhZs/j/R+4kz/7/x7ivvuP8bkv7qXZGea//f7vsXHzRnwf3vLGd/Omt78dw1AcPnQY18tQb9X4kz/+c152xeUYVsxjjzxKKT/M/iNHGT9vJbfddjuvfe2rkZYiDtugIzzHIgzahH5INpfliitfThxqrKzm+OHnKRVyeIUMzz3zJAPVKq6dIwo1933569x79wMMVirk8xZf/PxdWLT4r7/9n7n1ttvJlyp0fc1Fl15EtpDBjxRC2Oz5/tOsGBtkxXiFlWu2YuX7caSg0+5QqQ7QDSOK1RyLEx3+5CN/wKtffT1BCMgE0zKwDBtpSizLwvMcdu95imyxyjM79vCh3/8QN958K9dfdyOtRptc0eS5555hZHQVrUbqGP1XH/8fXH7lFYDP2i2rUVEIYRYv59I3PMzEoRNUB4fQQvP83j187d6neOWrriaKm1x40TayxQHC7iyf+vjnOXZyhu2XbCTpdvjf7L13mCRnfe/7ed/KVZ178s7szOYg7SqgsEoEAZIASwJFhAgytjFgbGN8OTbH9j2O1+exwT5cg7myDyAjESyCEmCSQEJISFqFDWi1q03anZ0ceqZzxff8UT2btFrS4+f6D37P0zvb09VvVU93V/3CN0xPTdEz2M/BA3splgcxDYPWwjS2adBsz/KFf7+fC9ddiNBSyL4CYhSWYbKwMIdtWARBkMLmVKr6HAYRruMyuHw5pmGwuDCHaVsUSiX8Vsrj1LRULdEwdcI4TFEZus0PH/kBAwODVBcrOLbNgw9+i95SGU1TqV+iSlACXNdhcGiIDsuARGmYuoHterQaNVTskwiFZWfxoxaBD5ZlIqIq8xO7kWGAVR5hbqFOKVdm9MgRCr29aIZGLpcjiUN27dzG4tQh/uXBO9i0rsg1Z1yN1BKkUpSKeQqZHJWqxvLVK8h4FnpiMDbxIhlHS0uYKES3PZxsXweerkjiGE2C77fwvNRmyLAUKlEpF1cYKaol0Qj9EEOzCYSFKRSGiFKoZxTyxW88QHusn5uvuJooDslnilTrTbyyx4YN5xMmIblCiX379+E5NvVaE1trYdg2QiS0fJ/pSo2evqEUmRCHaIbEsx3CYBHb1Pnqow/yxs1nEhqHMIRHQkB33wCa4TBXGyeoh1xz+TnkjQZ5M+b5gzA6XeEjf/ZBXvmay2i3mywfWs4zzzyBbMPaV5yL0LWUp9lJmqQQHTGmNDQhSBBoQusUMKee6AmRQnrlSZOz47ddKthO5LelNKHjtSKOz8hOxHWpo+sfP7E7MZITbqIz/fv5cu8TMuaT7h+3p6OTwuPRcuLo1PFUcTre3+niV7DM/0Lxn8m5U52T+suNzU/9oT8WiTo25v7pIbjsyl/jnR/+GG+5aPXxvz711icVpMdw1Mc/QZxQ8C0xA5U6VnDJnwb/PMXjL53YnWKN42u60+xCoGOaDp7nopQgCltEYZBynzqQJyFEalIq05NanAiSRGEaOkIzicO44/2lpRfhKAGlCIKAc85eQ3d3Bt3UyOY8DF1HJarT/WkRxwJNWEQqQnXsB5IkQYpUZc+yLRYXqygRkyQx5a48zUaNYrHQsSuQVBdbPPDdZ+kvu2Q8B8MysF0byzAhMZmdmce0Uk8iSBXVhJBs3/Yi+WyOr93zfZYvL7OwsEitXqdYLCCAhcoinufieg6anoq9fOFHB7n6nDIKgaan3b2EBBXqKFKj9mq1iuPl2Pr0Hlau6iWMWowdqXDg0BRzCzOUC3l03eCb33uWTEanVHRpdWwdIMFvh4SxTxSmIheOm4M4xLBsgsCnp7vI3Pw8Xsah1aoThjGDA73sPzCOZ3t0lcvEcUSjWcfLpGbxmq7htyNUrLBsnenpFPqoUExPV/jG93ay5bz16LpGu90CpVGpVCkWXGxT4rdThbpcMYdSiqnJGbIZl65yGSENHC+V2XddjyAMsUydF/YfwjQtunrymI5Gf38Jy01NsSM/xDEtmoGP49pUFurYtkatXmNkeTdnn7WCOEmlq8POxFgzoVFrEPgJB1+corsr2+HOkHZMOiqsSvm0mgusXDlMGMV05zLsm064/JwRxqMiuYxHNusBCUEY4Ho2ExNjmHqG33zPlahE8cSj21mzbpjpyVme27mbN1z9GhYWFrj0VRcgO0JJSiWUygW6erpwTI+HHnyUMzatIZN1eGH3fs497yxKpTzDK5YzemQS2zLoG+hB6gb1WpVcLsctN7+SG972L9x03XpC30dgpsbyJLQaNXRTI0mOnedM20JKjdriIo5joRtGKsfvuhhmOg2WUh4VBYiikHa7iWmlqrGBX6fdVFi2BSLBMCS245IkKRw75dyl/N04irjh1i9y1Rt+m81nn8kLe3ZT7irx7t/4APfc8wB/+KFXc/WvnU8YpNYNiVLoQhCFAe1WC9PQQUgef/RJDNMgm82SqCVhIw3LMTE0k1azheOmyqGmKXn7u/4Hv/bGa5itzDO4ajUzlRqFfB7LkLiOAZGPY+i0kiS1QKkt8JrLtnD99W/h1rfdyjXXvJGNZ4wQtCCKQ/a+sJ/f/+AfYNgxKInnlhHKwjZzvP6KKzEMgWmafPTv/5G9+/Zz223vZGzsCMWuMrouqdVqOKaFbdnMzs4idY3tO3ZhWzqZnINpOJi2Rr1aoVjIkyAp9Y0Q+IrJsSN0F/J88e6v8Ff/z5/zw0d+SHd3N4888jCvf+1recNVV1OrB5S7PTSpkc0UUbGOqRtIAf3L+snIRQ4e2IFjlzBMh6AZ86V//wpnnJk2BQgrFLwi55x/FlguowcOoQSMHpzkq1/5NuedfwaHDoyTJIps1sFKDG55x63c8fk7UZqOpSuiuI2UCd09XcSBy7ZtOxCaz8YzVpPxXPr6B5ieHMPNavz6be/nsssuJogSGos+3b19BEHAsv5lnH3O2RgW6KYgm8/SakdIETA0sJo1Z4wQNWMWFhoUSt1YpkschRS7usi4LlHgE+s2tmnx+S98hUs3XMijjz/G6OgogwNDKQ9U07BtD4RO4DfQEKkNioDv/OA7rF2/EU3TCOMoRQR0kChCCHRNR5JagLSaKUcYBfv376VULLPvwF6Gh1cyemSUc8/ZgkFAu93GMB2UTJBozM/P47qpSm0Uwt59e3FNj8VaBc/zOrYheqoqa3vEKsFMmtRn9mF6eWYaioxTptTTQ9v3yRcKCE1i6KkAV7NWQ5MBI0PdzAUHefXQG8lkZNpkMRIatRhhCCCDnbGPwj+lSmjUpjE0CSohQmOxHtD2Y8IkwjQtwkjheTnmK/NsfeJRVq8YhtDvFNApr3F2usITzzxHoTsHZJGihgqj9NxjWmxcsZply3tJVEIQhugaSENjx1MHqLUWGegdYHx8nJGhFagoIkzAkhGOZxPGEY5h0ju8kWef30V/IcPjzzxBf98QSayYnRtDRk22HdlN88hWztq0AV03qDarlHvKNNoNRCxp1ets27YHyzPIOpL7v3eApm/xm+9+21G/1S9+4U727d+HaFV53bVvQWk6upAnQAulPB4OmRY2UohUb+BUqpinySPFSdudbNS9RONZKvASlaqaStnx2njZfZ0+xz026EiHHT9/cXdMROVk5coT43juoTwu/325/f1svL+T41fF3X+h+FnUMn/Rqd6JHLsTf5/G6fYpj07tjhdXebljEp2OjabpyNo4pZz7Mguf4r44Nus7KuJyisJOdrod0OkgLU3slm4nNU+OFn7ipNvSmqfAhEPaUTzhUE/3J1fp5G9JmdO0dQ4dOkw+m0n5B6SPax3BBz8IMXSDOIqIYtWZGmi0Wi0SEnTNwNBNEArb0UmUotiVSy+4YZIKbQgtVXwyPKQmQSgSUphGHMfoukaSJGmymqR8Dd2QWIZFrVYlSRI8x0HKdFrxg0ef4dorL6CvrxsEWHZKdG8120yOz2DoEsezjkrNL3n69fWX+fK936Zcttm0eTWlcglN6rRbDSzTIuOlXkfHOm6C3QdHOWfE6VzEQZGkUtRKsPP5AyzrLyFFgmVm6O8rIYRCEVPI51izchnL+ko4ThZd01i7sh9I4YfZTIYkdaAgCHRyuQzf+u5znHvWOgxTY2Z6CsdzMU2bifEJBgZ6ma8sEgY+juugaRLHNkHFHDg4xbbnDrDpjBX4fpsojrAsmzCMsCwLxzJwnCw//PFzrFy5nInJaV6xeQTP04linSj2kWjs3z+JYQoyWRepabied9RnxzJSKKHUJKoD14iCEE3TmJtfJOO52IakUMyDijAME03XkaSftb37j+DYNpmCRxTFFAoFlIrJZz26ekr4YQtd0xGkIji2bXaKfo35yiIDAyUc1+yIHugIkaBokiq+CrxMMRUqEZJHH9/Jpx+d5dotq8is3pL6yYmEer2FY3s88eRW1q5ez6bNm9HlDFIK1q5fRSbjMjIywOBQL/d89btc9uqL2PWT5ylLE1iwAAAgAElEQVSVy3iZDD193RzYf4BydxkVNdh45jBhHJAvZMlms4BiemqSIGjzwu7D7N97iI2b1lGvNXFd66jf3BuvOItbbruDt95wJgKtAzSI0bRUAEBKAyGXEoaOFYltolRE0A7wcjmiOEGTMhWfEKnapa7rNOtNPM/tfOYNktjHtG2iMMK2UxuUIEynHrphYpoWSRJx/a13c/U1H+DGG6/A0E38dkylUuWDH/rv3PXZ3+P667Z0VNtERzlXdb6PbYRuEIVRCiJQgqHhIWzLJlUpbKEZqdWFpguSKJ3cx1GY+pz5DXbu2M2rL38TjfocA4ODtHyfrJchWywxPzvDiwcPUOrpw7CLuG6Wdq1FIZfFcgrESUIYtnl+1y6WDZao1qYolXPESUQQhNTqLaYmZvi7v/9ffOvb3+aVr9qC7di0WxGvfe3l/PVf/gUv7N3HhRdcwr79zzM8Moxtm0glqVQWQAi6u7sZHlmFmzVot2oYmo3AoZAp4bdjHLdMEiXc9s5f5/rrbmRycoo3vOnXUDLijDPPQNNNLtpyHk/8aCsf+4dP8L4PvBeF4uDBw+zd+wJd3WV2bfsJhWIe3bJIIhM/ienqXk4YtjD11CvOsl1A8vS2Z/DrUMhn0HSLJFb8zV//Dbe+/Vb6epexWJ8m8CWve/3r+dAf/h6mafGmt1yDQOeb936d+++/h4svvpQwjBDCYHJsns1nbSCIWsRRiG5afPwf/5lXvOICDh/ay6UXX0HfYBeGIRnoHmJydopsIcf46ChhJMgWMtiORbPlY9kOQavBu297L9e99UpsPUtXfy9RnFCZmubvP/p3vPn6N/P8rl1kbI/uvm6atTZ9zVXYnsHKFWsZGxtnxYpVBJFPokDXdfx2i30H9tDb20+cpGIZK0bW0mo0OrL/AiF1mvU6Gc9FagZJGPPDR76PadpkMpm0ERnH9PX1Y+oGQ8PDSE2jVCqzfft2+vr7AQ1dM9E6VhpRHKLpGmFUx9RcbFdH1yV79+6ip28Aw7RoNBroUkeLY0Q8T60yhhQeEzM1li1fi+0I2kF6LTQNg8VKhVq1wviRUXZv20FXOUvB0zl7cw1XrMMwJEkCKI3Z2RlcJ8OuPbtYvWEjuq6nryMIMbUEy06vzUpIpLRQmsHc3Cxd3d3oMlWPdmwDwzTQpMK2BFIanSQmFSrrH+4lmyuh6TYEdSwjnZ5qQqYG54ZFFMbMTE/TVRokSBTlgQFWr97M7NwM3T19+EHA1OQ4xVIWiwDd6DSpDA8/gL7+ZSzMV9i4fhOa1BFRws7tP2LdyuXElZAb31aGyMfysiRImr7k8JF5ZJRFiiZr161CtyPa1Qbf/NE4rlemXMzhBzEDQ0NccukW5g79gPnxWa5/57uJDCsFPom0gBNARNJBUgm0zvX9qGrlqfzsXo6jB0RJcnTd4/l8xydax7LWDiLr6OjieDHAk7311NF/T53GHc990065lfopQw7RKXpPh6A7Aa32MvmkUglJ6kR5UgH4s8evirv/QvGzTO5+UXLnsfj5iztF6qGx1IU5ubh7aaSdmnXrVvOXn/wyV509cOrNfspLOdkI88RjSv9JybjHpnLHijCx5FjwM0/e0qeddBI6GVJwuueL9AlqaRohJOVCnj27dtPT0wOaPM74UiANiVAQhSG2Y9H2fVSSQsOUCpEyTagTEuqNKo7tkcSpxHSSSHQ9VQSUQqAnOiJepFEdxzFdWu10zTAMSZIQTdqpYIKCJImpV5tkshkEcOTIFF1d3RimxuoVfbiugewolREn1BarZHJZ3IxGLu9hGC6JipGkkLUwDInDiPWrV7Bu3WrCsIkm0gLGslL+lWEZxHGM1NMLkxSSeqvN6l4ThCSK0o7w7MwiuZxFqZRB1zWkVOw9cIRSqQCArukcGR9nYb5OPp/lez/YSVfRYa6ySD5n02y0cZ0MgR/TarfJ5h0S1WLNygEgwQ/bCBWSzecRGJi6QOomrudi6RLbdYmigPGJcbrKGUqlElnXxPNcoijlTs5XFtE1iWnqzM0s8N2HdjE00MuDP3yOyy7ewGK1QhBWESKDHzQwdJMoiCh15dENA6HrtP2oA69LaPsB9VqTKPGRms72HQfpKuYRUjI9u0Ah76FpoJKIVquNUpLRQzPs3n0Q2zJZNtiD7TookWB2ivjnd7/IylXDKEDTUw6LEAlSS2FXUrchgWIhg2Gl39e5mUU8L4MgQYUGSkqErohpowmHMIpYPtTDlx6b5MbL1nGgkaFQyKJpEtsscPu/fJrr33wjIAnDgJve9n/x1htfiUDDy3g8+siT7Nj2Aq99/SVYtkO91mR4eDmtdhPbcSh1lRBS8Nj3H6F/2TJcr0S7Ldjz/B4KeY/FapVydzfbn93LRZds5u4vfYsgDOntK+C4LioBwzC54bqLueHWf+WtN56ZvuetJlKTaLpFGKbCAkkSp+e0OBUkSVQqdtL2fXStI4IUBKmEu542VqQQafErJQKDJfNhXdMJwwSpmQiZoBsmo4fmePf77uPL9+ziU5/8GK7rMjVzkN94zx/x1hs2MDSkcf1bLsFyXIRKG2FxHCKkhmGk9ihSk0jNwrSs1Fxd6oRhRKNeJ5vL0W7OYtlu2uDptLxSA3pJrVojm3G44ootfPiP/19+87brOHRolN6eHvx6DS3fxeL8HMPDy6m2YxAuk+Mz3HXH53ANm0J3EdNMlXDLXf2oSCeXKVFvxGTdMlPTM3z603fwJ3/6J3z2s5/h6mtey9PP/Jjh4ZVI4aISn9tueycXX3wZ9933TV535WVH4VVKSTJehkzG5Sc7d1Lu6qPRnCNRAZ5botaeJklq+H4VP/bRAli9YhXP7PgJm8+7EMOQ+GGNVtvH8/IYBizrGaK/f4imH9Ld3c3DDz/ElovOQ4mQd9x8G9VWnbPO2Yywu/jbj36CSy+6FI02lmPx/91+Oz29y7jttvdz23t+m19/1wfoLRfoKZd5btd+3vGOW0gSH8MUlMo5bKPE579wF7/13ncSJlDu6+WeL34VJ9G48dZb+N3f/RBXXvlGMl6BK696PW9/+y1oUifwE3KZAl3FQaYmZ8lmbX7n/R/mDW+6nGJPhvpCi7u+dBcXXHQuSdjGtIpUq4s0my3K5V78sE27VeNdt/4G2R4dQo1IJtSrC2Qdh8tffwULtXl6enrJeTl+9PB3CAIQLQPdMkEpPDeLbkgMx8EyDeIowNCgUO5FN0zGxsfJF4pUZiv47Sae6xLHIabl0qjXSaKEOIH5uVlGhleiklTsybJtLNMkDALafptGq06+kENqOj29fcRIGo0WzUYL00iLIMM0U+uHMKRRgyee/gEb123Cdl0cN0MYxxiaRiRrtOcnoTFLlGgkXgGpWdQW6ixWF1moLJLPZhkfO4xj2IyOHUYTPgP9XZR6daRSLE53pR5zBGi2RuQnWI7AMiwGRzZgZVziMCERCh1J0F5AkwlxnCA0jWK5l4nZWVYuX0kchRwZO0gu6xLWQ57d8RSjhw+zcsVw2vyOQdNTpU1DmuQyy6j5Czg6xLGfNmejAKmnzdgoDsnlyvhJwCMPPoVwsgyMLCOXLSJ0ieulqprNxgy2CLEtC98Pmfcl3YUuIr9JrnuQmcm96BLGxw7Q053H0TR6SsOU+vYhfZtaWEVJk96+dagkj+IAec9k394WlXmbrrziyZ9Mc/Z5l9JVKDM6McHq1WtoNqpkjEmiaoRyi/SvXot2cuEkUqddBJ3G+6mLuVPdjzvF3FIKtXSuPV2aBS/1aj4ZqvnSXPmlypqn38OpJm/qBDP3Uz/3p0/9Xlp4nhwdgcHjoJqJernXder4laDKf6FYMln8Wbb5WbY98XkJS072p1MHOlUI0umY3hm9i85xnG6QvBQf/+RH+Yv79r/MQXHKmlKJYxOzpf0vdXHSaffSBqJjFn1sY4VKH1LHqrKjvuMnN3GOW+toIXnyMQl14u1niHQdhVQSNJtN51/A1q1bidsBgqRTZKVGlEITWK6DElrHIFdPZZV1FyGgHdYI/CaW6RAlMULTU/6PpkMChglxEhMSg17AzQyysFDBch1ilSa7pukipKLVWERKMHWLXN4laPvEUUwmY9P060CEpmkYuotUEEUx0jBptKOO/54N6PhhC5UESAFJEONYFgLB5GSFT3/uPzCMDAmk/mqJRGmSlh8QJ4qwFVKvRxzYd4gV5dQrT0qBYZg06i36entQwiSJBM16iK5laNdDmvUGmq4TxSBii3w5z+z8IutXd6NbgqGhPlp+SKG7G6XBYm0Bz/MYm5hF1xykSBCaQNehHRosLMyjaOJkXAxTofBRhs2hF0cxTJORkWE03cXQJaVCjnptnvnZajqZTSTZfIGZ+QqmY3HWGYOsW9PHLdddgBCKbDZHsTDI3PQsmrCxHJM1GwYRKqHVbCBUjCYEKo4IQx8vY9P2I2ZmaizMVTln8zr2H5pmbHya/t48Qeiju5nOBVNHN0wGhno466zV5LIufqPF00/vJIlgbraCLmHj+mXESYBSCe1GSBxKklhSma+jaxaRX0PXJIcOTWMZNrqQ7DkwilIRUZwQEyETAyIDIg1FjGFKNF1hWRIpYeeOnZiWh1I6UlPc9q5bCcIGYdhk4vAkf/dXH+WpJ59B0UJoitde9Uouv+J8HnpwK/v27mfvngMsVheozM8RRwGalPjNgI3nbsT2XKIoZPTgAYqlLMWuMr19y7jrM9+iXp3jx49sJ5f1eM1rt+B5WaIoJk5SzomhS+69+yPce/8h/uTPvoE0BGEkiZP0i592VzWklk5ANc1GShdFyn0M/RZxGKUTCkUKaRUSw7IRmtZp0ASpZYJMZeQ1QyNREbfe9kWuf9sX+YM//ja3f/xvufvLn+OhHzzKTbf8OoP9cN9X/oQ4Dmk2WmiGpFaZ5/ZPfA4QGGbm6DRRdU43Kkk5lJKUXGxZFrlCjkQFKJWnttBMu91RjCYUi5UZIMFxXKRhARoTE5M0EwPXKyEwefSxx4gWJqkv1EgSh7ilcccnP8PdX/wE73vPB+hdNsTc2AGIHO6++8uE9Xk828UwdO686wv89//7z8mYGj/47oNs2fIqzj7vAkJfY8OG82m0AyYqh0lESCsIMWzJ22+7jsrsIrqwCEOFrickyidOElavWU271cayDPKZIVAmQbVJ4gtMzWXPtm3EmmDjuedx3fXXES7so7E4zszYOLW5KURcY262QqA1Wbt5OcuHe6hVZ7jiTa9B00LyhsZvvu89vO2WW3n26Z3MHtrL97/+TRASnCytUHHZq6/CcXJ84hN/R1/BY3iZy9joGGEsefKJh5mdOUyjUeHIi9M89MMfkS2bPL39MeqNKhnHZX7qMG//rZt44zvegpCKO++8g3zeo9We496vfA03Y2O7GaLIRNfgyScf4f577yWIA756/7/R3dXLZ27/EpoD73vve7CkhZstkXETervzaChmpsb43//0KXY+e4Cntm8jCR1cx6EyOcvAwHKMTB7XgE9+9FO4Vo5IJlxw2auwPA/TNInCiFq9RrHkYdoGIglZnE/VhcMEFhcXSSKFbTpIBKXuEk9vfwIlUtP2Rq2OaaWvQ9dMHv/hVtxchlKpl6nJMeq1Og899DBbtz6FH8Z0l3tZmFskCkKkSjCF4MX9+3E9l7YfMj83QxLHoGKkYWDYissvvxI/DsgXCmlT028T+lXCuXGUaqNle8h0r6CQG6C7q5eBgQH6+kdYuXIVlm3QVSyyc9vjmFpITzFDKW8igtTvNp+1yDgCiUQGCl0qXMsjCn18v07YDFicr6FLnf379lKrVgGJYehYRqpem8+VmJmfw3E9Vq5ch9Qt5hvT1Ks1rnjNxYi4TawiDDtFzRi6idQ1muEillLEYRtTc0jCGFtzUv/YIEQKDaRkbqFB7/AyBpcNMT81S7OVXvuDVoCuSUq5DMQxbWJsQ2JoBkrXMd08frtKvmsQTTfYs+1ZbMtkeq5CdWERw7QJjIhiPodnuLiuSfdQnlyhREyW73z/UXI9GnP1DFnT4XNfvofuwWFuuvGtHNh/kD/4w4/wb/fupum3eeGZrWhRiEpSFE6SjrFYUr4UShwtQuj8bgmeefzPo2nYyfc7zzl+jZPBVkdTt05Oe2xfp89rl3Lfl+as8qTb0pGcCuIpT5t3JyiUEEcZfCc9+7j/v0zye9KxnnCUSx7Ux3t0cezvcPzf4ueNX03u/pMj+k/k3El58ofl5C7Az6fYc3r+XWc/HXjia15zGe/88D/ylotWnXrzk5Z5ybTspI2FOPbhPvkQhDjmjXfCIj/vwFMcfyr5eeP4yjQlDdumxugLWyFOIVS66R1dW3b4d5qmkxATRm2krojCmCROcFwnJZILHb/dxjQtKnMLSKF1BBsStA6nLwj81MQ6TtLXIHSiIELT02aApmk0mw1QKey10Wjh2HaqJChgYWGRanWRbTtfYN3albT9oNNxB8dxO4bYCSQghI5uWtx730NsOnMEy4FzztrAt/7jcdavW0GcpD54pmWhaTq61Hniye0UclkeeXwnF1+wCZHUieMI3w9wXbcjTpH6Hd33rScZWVZmYKgnLZZJza0HBruJwoBczkVKxVyliqFJmo2I7z26gzXDvVimTpRE9PaUSZIEPwgYG59BJoq+nj4WFxfI5bKoBOYrFVzPJfBjCjk7xfAjOXRwjCRJsG0HqWs4bo7Ab5AvZomjsCPjHNPVnSeKmyjh02gEuJ5LlMToZkIm5xL4IWGrzczsAroElcRYtgEyFWCpLqbHb+qp7YFp6gwMlMlkM7QaTZIk5YcF7SaO4yClweNP7GJ4eIBWu42XzdLf18v4+CRd5SJCSqYmarhuBk3XMQzB177xFBvXDeK4Zloiah6jozP09/dz970/Yu3qQVaOLGNqapaMl0PXDe7/xpNs3XaQMzeMkCRBKkCi23zl8RluuGQNf/Xpr3P9dVfTaCwQRTHPPPMM3d29+EHEZ//3Z5mcmuKzX/gWN17/Khq1Bk8+/iwbztjA3PQY69av5MxNawjDNl09ZaSQRJHg7i98gy2XXnhUTdbLZijkiyRxjGmZnHPuRs45dyNCJixfMZDKqQfN9DNmmEBHgSyOWb9+mCvfcAlX3/jPnH9WL+UujyRORY40TSeOwrRhEIW0Gg1M2wIVYTt2B2IEcRgQhyGCBE0KEhUStFs4rpMWk7rBO979Be74/A6ufN0rufeBp/nkx/8nC5Uan/rXO+gu1bj2mrO46YZL0bUORNowcDyXOIrwMlku3HIuURynPEEtQWAQBm0Mw6FWrSG1BEQKIxVCT8WdhCTwA7L5DBAjpKDZDFCAaRnYjpHCz5AsLsyxedNr2LtvG6Vuk+HBdSSGS09vH4/98GFWDg9gOD4rVgzzzf/4BsPDwwysHkLoDkK08XIZxg5PUK1VueTSy7jsslfx71/+IkfGxnnnrW/nwe99n96ubu6863NcccXl5At5Fivz9PcPpeqCScQH3/9eRoYHcS2DvfsO0D/QgxAqbSTEijBZQKDTbNVxvSxKmthenp7BEUwjxs1k2LtnN6tX9xNLiBJF/8AQ997zAH//0Y/x1luuS3mm1QVa1XkKhRJoNhNzVc5cv4GurjLlUonegRI3v+1mTEujVpvFME1WrByi3J0nTgIKxW5e+5rXMj05xXlbzmfbtl1csOUiZqYXeOLxbVx51euxLAulYuq1BuNHpimWujBMmyRWZDyXZtNncWGObN7lrTf8JoNDI/QvK2G6Pp5bYvM564lpsnpkM1EQopKEC8+/iNF982hag8XqKDNjTZQwmJubo39ZD4aRsHHDWZS7yuRyLtmcR22hSrXeoFAsIjWN6YVprnjTVcRENFoNbKn413/9PCuLK2i1G+RzRer1KpbtdLjd6TVISIlKYnRdTxWP2y0sS2fV6nUoBd/59jeZnZln2bJBpJae8zZsXI8Qiud2bWP9+o1Yls2q1Wvo6e3BMFOTb8dxCKMwhVaakmw2m0LCVUQUp16vQmokSkuvLVFEu9HEcjwSEiwzIV6cQCU+1VDgFIcZPTSJ7TrMzEyQsT3m5qtMTR7k0P4DjI8dJKbO2hXLmTjyAoV8EVPXUUISExLHEYKUxiA1jTgWxCqm6du8OHaAvv4ymmZhCAlJE8vW0YBYCXQ9S1fPIIrUzzSOE1qtNqVimXzGxDZBdCB7UkiCMEh5s6aDHyiECon9NomuQMQEoY/UUwVJoUkUGg1fMnZkiqHlq/BcF9v2mJqZQqDR9msE/gKuoZHoGhOH9tM3vIFarYHjeCwsVEniBAhxbAMVtRmbHOOBn/yAt7yxD6l82q0U7l1vBSjNxK9MMTdxkCsu34JhLvK//vkRbrrx1/GDBR5/6lkefexhbrj+OhYX2jy/bxsb+1z2vzjKVdf/BomIOZaDHSvuTp6NHS/tv1TOHF/MLfGZT0y9OvSel6Rkp7LxOvF5afy0CdfJOd1pss2fEyn38iun35tfDnl33GqnhJt27CQ6j/0KlvlfKP4zi7uXhjru5y9X2J3cWTmhuOssfd311/KXtz/Aq9YVeckTj1tYiePqqpNux7h3AvkyY8OX/Kqz3alw36eLo1CBX/C7uPQaFIIkSUVSugrLWGwcplhYgdJ0jvV2OuRb0ouOYZqEQUwSxXiZLJBK/9frNTI5myQOsW29Iy2dGs3+6789wLmb16TiLUIwPzOB5ThITU8976REkxqtVhvX9UgU7N17kOGRwVQsBYNWMyKXzZHPZ+nr6UoV/rRUHc7Q9dSHyNCJ4ojaQhtdFyRxxPr1K0Clps6abjCyvI/nd79AJmNj2dZRkEaSxAwMdJMr5Fi7dnlqVhvMI6RKoSyazpJwtEoUa1b0MTdfpV5rEMcJui5xPZt22+fQoUkyjoWbcSA2ma806O/rp5CzKBYyVBYWCTpJuR9GSCnJZV32vzhBMV8gIcJxnKPJtu+38bwMoR8wNbtIsZinWMhjOel0xw9bWJaD5aQ8wqWiT6mEeqNFLptBCDAN9yi/M51wGUhhApDLdbF9+0FWjQwRozE7s5By+4TCcSyy2WyqdNduY9kmSEHGczpCBiGGYaBrGmNHJtm9d4z164YxLS2FQrUj8jmXxWoN17N57PE9CBKKpSxR4LNp40iHdwb1ajsVeiFNUMYnKmzcsBxFRL6QoVHziZOIlSO9vHh4hhXL+5BajG6YSCnZ+sIir948xD0/3s8rXnEmmZxFPpcnl8/TbgXs3r2PWrXOre+4GQVsOX+4I1EdEwQh69av5vldL3QudqnR/UMP/piFhSoL87OsWbuOZ5/ezsiK5dz+yS8zevgwm8/eQBwrfvjQEywsLLBzxx4ufdUW7vvKg4ys7E/X0VLDZanpKbRRSHzf55Ybt9C3bDXvePdnue+B57nu2jPTb13HID5ot3GzXsoh0VID5SRJGyW27R2FpSMEcRxz7/3P8Wd//TB3f20Xb735aq699hK+8rXHeeCbW+kqSW65+RwuuWwtN914GatWDwKQxBFJklCv1dENHdNyQAhajebRi7JhmECM1Aw0I+X/WJbR+V6kCU0cq475syAImli2RrU6DzLGtjNouolhGLRbTaSe8n+mpuZYvfZ8urrKhO2YWqVBoVggDHzWrl3NxOQYhZLDulXn0duX5TOf+QxnnXM51ekmg319dPcOIYFsPscVV7yBt77tHWw++wyuv+4t2JbFT3Zs59JLX8k73/l2MlmXmZlpspkcW7duo7+vH9dxOfvszWzYeAaVxUXy2RL5ksfExCgZr0CzCVL3ce0clco8BD7ZfJ4oSRC6RbM6g254lMvd1BbmELKLjFcmCGDzWedw1RsuZ74yR8Yr4jhFcnmPuck5dN0iX+rCsQ0Qit9+z2/xiovOo1TqhkRhaNBuK4RURKFPJlugWm1BHHPXnXdyznlnc96WMyh1ZTEsyYYzVzA33UQzkvQzpjuUy1kMwyKKQ+qteRzTozJXSac3ScjmM9fzz5/8LG+79VZ0KxVITlTE8hXLSVoWe/bsYP3GVdRqTZ548knWrFuJUoqP/cMnuPzyV1Mo5mm30qZO0wcva2KZEtfy0DWJ43qMj02AEExNT9PTXSBoN3BMG9N0+ey/fYHzV53P3Pwcju2xc8c2BpYNkdIWJNX6IpomsZzUi3T08GF6enpTiJuUhH7AunVn0N8/gEpigrBNksQgFO1mk2I5j+vlkVJj2/anUUmC53k4rkcUhQgpMXQdyzRSugGpCJdlOJhGaglg6CZR0sY2bJqtJrXqLDlbUZsdpR0EWN4AmfwArXZEHNXJeB7FvMuB/XvYs2MHIyO9tBpzDPR30dddxjYEhXJPKvbVIZHESdo8NfWU5pAoxdjoKJlchlrNJ45sivlepA451yOJ6miaApXQaDY4fHgUaWZZrC4CAsdxMHSDMIzZ//xj9PZ2o+k6SRJTqcxjWnbHoN3AtDKEYRVX10HpkCjm5+upGJFIOY4H9u7F8oooZTBTmUU3dGzbZWZuioG+QUxNYpkJllQkukbey1EP0qL4R4/+gDVr1rNz51N4ToGtTz7KquW9jCwf5PvPPcpVZ+iYkSTWIU5C9h6cRGlFNNpE7Xksw8S0YO2qVWz7yQG+/9hu/vHjt3PVG18LIqS/b5irrr6Wyv4nESrksjfeTCxFhyfcKSxOKOw4RpM5KeeSx4mrLJ1T0+3TnEs7gY+2hNdaypKWzL5PrXp5fCF5/HZH1znJ6/l4TYel/ZxagfPY7eS1Tvy9eMlRnTBfOEX+efJrPX2c+m+6NLRZ2vsvUtz9Cpb5q/il4n/8xUf42/8Y/f9l38eTWH+m7aU4ARr6i0fnFCIl07VFnnymyfj0ESB66ZYCUgCWgW1lUt5PmHaIbcfCcwuIxCQOJVEgaLWrqbAhkt9+15uJohhFKsrR25NHSkUY+SnXSuoIoeE6Hn47FYg4c9MG/LZPrdHAD2u4nk6cNJmbH++oZ1047NMAACAASURBVKYTAYWiVqshpKTeaDI1NcPsTJVKpYJuKkxTEUWC6oJPkkRYtmBgoEg25xInKV9QyoRWq47fbjI3O5X63Yk0sVIqLejS82P6HumGju3YZDMuPeUSzz53EMMykYaO5+WwDJvZ2RqTkxWyeZN6ex5Flb7ebjRNo1jIkMnYmEYKm3M8F12XnLF5FdLSKRTzBH6AUlCpLOLYNnGc4McJvf29KKETKclMZR4lYuK4haGFjB6eJFExui4JgwjTsnj8qQNEocbUZIOdO/axd+9hJsdn8Rs+QTNGaibNdoDlGUhTERMQCx+/1WJ0dDydahoWzWZAO4wplEu0/NS8FxRTE7PomkYYKmZnU/+4NSOlFLYXB9iWQS6bIQhC4iim3Wxz5oYBKrXFVJk0UdRqFRAxUmjkcgVMO6bc7VIo2qxZ2YsCotin1apTb9QwTMnDj2/n9a8+kwe+9RSG4WLoJiqJ+G/X9mMaBsuKNstHBikUMxx88SBS6gTtkJUjq3j2mWeoVRe46ca38Od/8SmqCxVWr11BuauMYXs88eQefvzj5xgfTz3Szr/gPCzT5Lqbr+LZrdvYt/sgKoZirsgNN7+Ber2OSuDMTWew9YldCGD3cy/wa29+PY8+uh3bdkiigLmJcYSQhFFMohSm6WBaDnEMn//cH3Hnv/0hwhjhltu+zJvf9u/87gfvodVMSKI4vWArHSlNhNSxHY/bP/0w7/39r3PTu+7h+rd/hXvvP8L1N17L5z/7e9z3lY8QRiEguPMzH+BLn/sQn779w+i6BkkCHUntOI55Zus2TNOkVC5h2w6fv+OLqCTGNE3q1Srzs/OdpGQpwRD47XrKSYoVAh1IJ/eWbYJI8LwuhHJwnTKmliUI2qmZcb2FZXuAIEngO9/bRRTVEHGWR76/h/f/zu9w+8c/RnNhnrmFebLlbnK5Lj75T3dRq9f4kz/9Yxw74rqrL2fqyHOE7UV+snMnoHj44YdoNhqMTUwwMTlJqVTgsksu5K477ySbzaASRT6b4+DBF1m9ag0qUbywZy/LRlYjDJu+wRESBEEUYloGum7y3z78p3hukfn5GsV8F63qPI2FWVQcoklFPl8kDhWtVkTGLlJvLpDIBppVo+a/iK5Db/cAu3eN8hd/9o8EwiCbzfPAV79G3GoQRQFSCu78/F0sH1qF346Ym1lgZnIOXXNptQKQEpVIvvX1b3PPV+/ldz/wAXL5LLqeRZc5graO55XwvDznnfcKWs0G83OLIHyUClAyJJszkULw/PO70DWdVqNBz4CFEpKP/t3tTI/XqTfr+IGiWY8oFrJsOnM91eoUO7Y9yeuuuRjNzpIrreRv/+GvsV2BYQqmpqZBmXjZLIalc+jwPv76z/+SMI4xzbQp1Nvby/rV6zi07wX0KCKqN2m0E8Zn5jBsh4HBYWZmK1xw/qUpz1SkapXT0xPohtHxXI0pl7vSa1GSStlHccTWpx/F0AQv7NtFrbaI53qYjkE+l0cREUYxs7NTnLFhE+VSL5bhEARBahMC6LpBrVan3Wrjt31UAg98/X7CMCCKI2QS025XafltiuUuektlGhOHqU1OYGVH0DJFpNCoz89j6w5Bu0VlfoagMUtPd5ZqdYaVK5ZRzplkzSXBMg2habQCnzCK+PGPtqZ2NknYaU5D4IcgBa3FGebnD+EWdIQQTM1MYtkOzWYdIVRqXp/LUyqX6OsZAARSk0RJwDf+4+uMrFyPpkG7HSCFpJAvY1tp41AlEik0dF0QhT5xVMd0NBItoRo0SYiJkoB8uRvPsajXZxhZuZLBFcNoumTd2vX4fkCz0SCMQpIkJopTGxfXdTFNg02bz0WJiI3rN0JssmrFENlMhiBQrFuegZyBn2thexrImOHhNQwNrEdJF8PNIDQX2yqR9Zr0LrNQqsQnPvFpVAJ33/15Gs05/ugj/5NtT29nZvIgUxMHUsGP5JfzlDsVr+4ot/mE6Z78qZDLE9dIfia/u5PXXTrvnipOR2eKE3Uam4XTxy9CkzrdWsdM3H++5PVXk7v/5Dh5cvfL+N399Fiq8k/tc3e6eOmk7uTHO72QpQ/ucUXVK191CWLgTNT4T05ckBSvrMv0BJv6gRx/pMd2KE68e+KxnObghBDHFnu5g3/JazjpAXXc4j/DW3IU3KnAc7M064uYmo5pCHTLPtrxObZYx+RBKDTDQCUJtuUQJYI49NEtE00XLC7OkckUeebZPRiaAmEwP7eA51i0W4sIM0urltoINBs+tm2TJAKQGJZOohKqi4v4fgtBwvzMIplMlnboY9tlmu022UyGMAxQSYymaxhmqmbmOjbNZotlg/0gNBJ0ktgnk3PTd0soLNNj9+5DdJUL3Hv/Y2w6Y3VHedNk9NAs5VIRTcYErVmEgDjS0k+ACtF0s2O2K7BdA01XuJbJ3j0T5LJpsdTbmycM2+Q8m8V6k6Fl/ahYoNs2YbvF/PwCuWyR6ZlFLNNkYaGaTi81SRzG7NkziuOk055cNovfTrlNhmmwd+9hTE3Dti2mxiq0mm36evvYf2CUZYM9jB6ZwW9KwrBFPuvRW84RhRGOY1AsOtiWQalcREmJaRhEvp96QbUbrBgeBKkTBhHFUjaF5SioVutkcgam4YLykcomDn0QgkIhS6PR4Mj4LH29WfwoplDqot1sIuOYeq2F7WVwXRNNB9ezyOYzDPSVCcOQ0SPTFIp5LD2hMjeBZuroupcWMUjm56sUCiaGbqLrqXjM3FyV4cFeHMdh209e5Kwzh5iYnMV1PTzHRppFPv/wC9xww/Xs37ePvr4VzIzP4poZJkcnufaaa3AzRa5841V89tN3YDsNdjy7i/m5ObJ5j7POXs25521icNkQftBkdPQIIytHGD00xuBwFxdeci4KxciKbnRD54uf+yavuHADXsbj7FesRwHbt+2hVLa4+OLzOx1wSa7YTRj5NGqL6FJHGh2pEZnQbCySxCa6YXHDDRdxzZvO4sorLiRbGERoZYTMI7QMUsshtDIxBc47bzNXvm4tN994MTdd/xo2bVqFpqfiJ4aZck1r1QqFQq5zDHoKWBB+qngqU/GIoeXLSToCUHEcsXb9ivRiLCWGZZHJZBBSkSSC2ekpPNdNvSZJecXtdh1dTyd+qc1KiGkYJElCHIcgUrW6Rr2KaRq0W22ioIlhmrzhqndQqy+gC43vPvggH/z9D3HWBZvIlQrcd98DrF+7gSSucMamLfztP/wNV77uKtrtKr/z++9j74ExstkiL+zbT72mcLL59HvuL1DIFpmaqHDvfd/mU5/5J4RI+Mu/+hsuu+yV9Pb2YTmKyvwsYaCYGhunb6DI7OwRLM9G0ww0TEb3T3HtTVcycWQ/ldmQQlc/dq4HW8+RxBWCQGEaHoa02Ld7H7V2jZ7eEuCgifS93LvjWbp6lyFlyOCAg5spYGeyLBsa4dvf+QHDywfY/tQ+urqKLMzO8cMHf8zdX74nFXlBcf+93+T33v+HvOfd72Jo3SqeeHobd3zmLlYsG8ISBlMTY+TKOTTLo9VY4Pd++zcI2j62m8Gys0RR+/+w997xllX13f97rbXb6eX2Ov3CDEylSxlAUQQVUEBjN6aYZmLq79FETXkSNXlizC+95xVjAY0kVkBBBZTeh2F6ub2ee/rZba3nj31nmBkGFKOvJ3/4fb3Oa+bM3meXM3vv8y2fQi6TY+LoPJl0inXrV6N1TKnUTbk8xGuufQ379z/DxRefRzqjkEaSSWXRXkwENJsxm87ewvLyAlEAX/ni7YyNrUYpyd59B1m/dg1Ly5NkvRL79xzEcbIUSkVq1YDBoR60iROvRhXhulmaHU06VyRo+3zt9juYeXqCsbH1HDq8l0w2S7vVYn5mOlG2dG2CICTtpPA7Pul0lqd2PUV3VzfSEiwuzTN+eJLh0VGGhkbJprIkRCuFsMCWLq1GjXK5m6WlCrt2PUakQ8rFbjptnyhqk3I9hEjEwe5/8D5GR1ax5eytdPyITDrD/n17KRTySFpE1UmalVlS5SHSfRuo1Ws4aQcVO6RKLlEQ8I1776S9XOXMsWEy2RRdxSzCGFAWRqoE7klyXyhl42UcBnv7sS0QFoRBhNEJrzCOQvKlfnCypJw0rUaTdNpNfpFNE2HbyCAglg6Wm+fo1ASDQ8M0m3VsYRjpkXgpCyUEMgTpKo5BuqVRqHQBQ4wImghHoZRDpxOSzaZIWQKlJCKWxCLk8YefJFfsQUiLTCbF1OwkKZkmFCEi1ohggVShFxP4zCxU6Blcl1hyZLM0mw2ymTyeG1OvzCFETCrlsG3zBFkng9ApZqerFPJZ9o036F1zKf/wl3/NZeediU5ZzM6MU0znmK5Z1DsdekfH2DC2nm3bz0EYixte/To+99VPIlsRU1MNztt5ZSI0hUFLgWVOZq2ZY9OklSTuuJUWzzXaT0SAGZMgEpJp66lxDNmU/P2Yz92LrZfs52TRkufy6GNFXPJK4O4nfH7F2/QYx+25czhxWvdchieP78IcV/k8MaPTLxE1duK2T5n9vch6z+3jx7DM/4FxuuLuRxf/Pc7di4c4+c/TTMy+e6jFHXfezvYNQ8dXO2Z/oI/duC9waKf9Vr5HsfaCh/g913uRG+wl//dIBvq7KeRS7HrqGfpHRnk+shw4/hhkRda8g+UkJuStZgtjIJvNEocRAwP9TE0v8pU7HmT96iGMELiui5A2rm0Ra4llW4RRgJKsfLuJ4apj22QyqeThZlyklGQyNpZl47guRw5PksvkkFLhugqpRKKgiU58j1RiexGFZqVbKpmZWcSxLXzfp7+/B6Uka1Z34XlJIdFstBkc7sVxLCqVZVJWjO/7OHaKZiPxQZLSADLpDBpNrValq1zm4IFF1q8bQdmJTHGhmGepUiOfT2PbCh1rZmbmKBTSZDIpjo7PUirkqTfaDPT3IpXCUlbCZdSaQi6NNhHKToo+SNQ4l6s1enuKSXHpudz70LOkXYtiMUcqnUHHmt7ePoKwje24uF6KSrWG41qkc5lE7t1OCtSndh0gn0slPA87mSB1mj4p12FhcY5SuYCUVgLTyToo6WKIaTdDwijhIbZabbQ2lIsZwiDEkg7ZTJ5M1mNubgGDwEunaNQaNJudxGcREFJRXa7T39eL5RwDiybCIEpIpLDodELSKZtMzkYgiWOYn61y+Ogs69cOEkcdSnlFT083Tz9zECUMhUIOYWVY1ZOisGYj/YPdhG1BIZ8lnbPpHyyTzRd57y+9l3/4u7+msjTPO37697jqys309nWRz+fI5wtobdi/bx/dvSV6enuRQvGtu+5n246zsGwHrU0CpXJT6Dim3F3k7//6FrZsPQPHUZy5aR3GJN5cruth2QqkxrKsFZsQiVL2CrdO4ToeQiaKmUoabDf5nNbJczCM/BUVzeSetyyFMZrQTyBIlhutJAwG27FXYEWKTifA9TyM0AhjMTc7TzrtYVlpOp0a7gocrRO0VuxKxPHzi8JwRZ49JPCTgi2TzRJrg5QKE4sEuuY6SLkC5TaadquFkMc4tHWk1Ml3ZTvYjott2zhOCmFZtMIeFqZnyRcKGB3heS49fd1MT81w6WU7KRaKmEgjLMFlOy9C0Cab7cL3A1zXo5DP0V3OMDwyxL79uxka6iKf7eXpp59hbOM6hoZ78NIuqUyayy+7FC/tMT17BNdzKRRyNFtVhoYGE9XHcjd+EJJKuSzMLvCVL93Jyy67GK07DA+sBUfw3l/4Fa573fVMzR6iq6vMz7z7vVxxxZWk0mn6B4ZAxmAM9XqNWrWOlFlqQYSyUwyNrKFWrRCFIffe+12Ekrz/V9/HLZ/5LFfuvIKuoUHGNm7ikssvxklbxLFhy9nbuP661zE5Oc7A4BAbN5zBn3zsj0FaPPnk02w8ayOjq0ZZWKiyb89uRoeGGZ+YYNW6USLtE8URzYaPiF0+9el/ZcvmLShL8eD9D9DdNYTrWiADiqUsRsOhQ0fo7u1Ci5gjhw6STjvYlqZQ7GZ5qcq27duoVBaIhMNnPvs5tm/Zwr5nn+Kv/ubfuOEN12M7imzOpt0OkZbCtq3jjUvfj9Ax7N1zgG/d/S26u3t4xTlXE0Uhq4ZXo5RCSCjkCziuJPAjspk8GI0xiZ3B4MAgUgo67Ta5XIGxDWfSCVoJ7Ny1ieKAfQcOUCgUUFJhW27CXWs1Wbt2DEHCs773nm8R64BMOk9sEqXhrnI3nuty33fvY+LoEZSEkeFBUrYhbFdZmp8hMB5RbGGwyObyNJYrqBSEsaCxMM6akRHalUl6e7txHQfPUgmfTgqUFAglQSTCR9rERJ0mlu2B0phI4PuGXXv30TNQRjZDghie2bOX9WObcW0X17VZXprDsROrorDj044UUzNLrFu7njAKcRyXxYV5JibnefyRpxgaHUXaBh0LlG2I4ghwqXc0rmtholbCrdMSZUEUGx57+HF6evpwHAuDws6WCKKINes2YQmHQrlI2InxcimmDu4jn5EIoeg0axRLwwg7y5FDh0mnMyv2JIaOH/H4I/czOjSIEprRkRnQMe2aQVtpsinIZIt4XoGtW7up15/iwV0VvvmNRTatz3P7/Uf5xv0T7LzsWu659162b93Oh37nDxgbW8M/fvIWXnvZDgJsLnrlNUkTWgoQ4nmwvlOLOyllArlc+bdTuXaJErE8Ldfu1DgGqfx+1nuBJace7WmXnzpRO90+DeIFFDpXYJov4PP3/cWpe/v+irtj8ePi7n9QxHH44RMndaficX+YU7zn45JfnKz6YnGqfonh5PG2OM0Eb2R0iB07X8XN7/0IN106dtIGjhd25rn34tTlJ+77RYZoBjhBf+UHKAJfBEX9EraT0PcSdUyhJOViiQN79+K5DpZlI6TFqR0hISSh72NZFqw89OwV37ogNFh2IoKSTafYeOYorufyz5+5gyOHptiwfpS7vvkd1m5YgxKJ6awQCXfPtlwOHjhKLpsURZ1Ok3Q2j1SSen2JoBNSb7bZt3+awf5egsCn0w4RRuJ3Ihzbo9lu4To20pLEWhOFSTL66c/ew7k7xkilPJSVnEkm4xFHEEXwzXseYvXoIO12i1w+x2N79tJbyPLYE3tpttr0dpfROqDZ6KCUQMeadMYjjmMcy6HRaqCUwLIt4ljjeR5KwczsPEpJSrkVVVGp6CqV+NZ3nqavp0QulznOZbRthWNJbEthezYCiGONY7sIIchlPcbHp8lmXLxUhg3rhpLJl+dSmV+gkE8zN1ulf6DInr2TPPDIPtat6iObTVFZSiCeUtocPTyNZSt6eosoldwH7Vabex94htHhLgqFHPVaE8d1Ev8oy6CkhzYRn/nCQ4wM5ckXclSW6xSLeTzPZmpqkb6+HsIoRCool0uk0h46jvE8i0w2s6IWm3Qoj9kDKGWIYxAy8S00QtNsdPivrz5KGPoMDXUjhaJabSKlYt2afpSlUJakXC7g+wGjo31kcxmCwEd5XQx2FWnlVmFZEhHHOCmL2ERIR1Gvtdi16xmqlQU2bzuLG153PeNHH2PjpjN49OHHGRjoJ9aGclcRKQRhGBP4HZ58/Em27diK1poojPjal++mt7ebudlFdj/zNDe98TX4fsQXPn8HGzetY2Zqnr7+MiBZXqpSq1Zpt9oICV46nUiZy2QOH4UxRrawrMQWQZL40MkVr0gpQVk2SioW5uYT30mpkJZKPmNE4puASCBnYsVHz8hkMhu0cRyXdCaLIUbrRP1WyOQBZamEs6h1jI7jpFEiJFEUYYzBWrn+5EqjxPdbIEQCOdURUlpUlubxUi6u69JqdrCdhNdq2wpjVMLPM4JGvcFTj+/mT//8y1xw3gV4doqHH36Aiy4+j3JXF7FJ4JNhqKlWG7zq5Vdz05tfgxIFGtUqmXSBarVGV3eZdqeB51hMz8wxtn4dnU6DJ5/cw7ZztlGpVBhevQohNdrETE9NUe4qkUmnaDUTwZrenhJh2CafLSKlS6QjlEwMkhfnlpmaW6BU9Mh4ebAFl11yLnY6j5t3UVhMji9zwYXnsrS4wE++6z286c030WrXEEJy8OARfunnf4Pr3nAdX7jtNs7euJlC3kMqRW9fLxvWr+WsjWP89od+h89/4b9YWqrzhtdfz7ve9dbEty2XZ++evXSXe3nXO9/OTTdejzEdfuG9P8fFF+/kwku24mVA2jHTE0cYO2MT93z92/T0dVPuy6JjC8exyaQTntmWzWclnpAIhkdHSGcyTM+M09VVIpspI4Sgb6AHiAkiSbnchWNbCGGII4t8sQBGk/ZSZFybC8+9gOVqlfVnbGCgv4fBwV6OHD7CRz/2f/iJN/0E37nvIQ4e2E8YtenrHaLdClHKZWZmDkONV119Oa2piFqrwtGjE3zr299gbMNGpo5OI1RIZbFKPl9IGmyuy559u4mNppDPMz09ReCH1Bt1LNvClg73338fqbTH0OgalJLomBV7Fk0mm8Gykgaa7disXrWGnt4ulpeXV4SgQCa9DdLpHGeOjeE4oO0IITWT45OkC2uQto3luUxMHKbZrpPLpfCrNR594A4KbhbLChgcGlpRuoV2uw1GYTkOQRge/z2KogjbSbxglyotLFcgjSGMYjKZAvlcGqMNnViyev1WjIiZnJjAoKlXFsikrWQSJSR1X3PGmVuIo5Aoimk2m7iuh5exmJubpKerGxFpvv3NB1m3ZhWxiVBOCsvJIHQHi5DYGPxOHVtaGCOZmpplcHgAhMCgmJrqoI2kFTQodeWxpMX09DzFcoGUBL+1gFIKS2gefOQhnEyZcldX4icsJb7fJF8sEQUNeruzaB3TO7yMV6hRq4fkCt0YGZDvXscTzy6S9aAr7RCbLjau3kxv2eLWLz5BbAY5MjXFkcMHuP661/KKK6/Cj1v0da0hrB/lmd27uOw1N5PKpBEyKWwSG4QkRzlGL0nynueSpBcT4Ts20TvdUnEaHtyLpV7HJ3un7EsbfZxndzKX7lRu3nPrnMixO6nFf8pU74XzcvOS9B6OmaC/1DhdvfBjzt2P4/9p3Pq5T/Knd8+zWG+/tA++1CLtf0AIEhlQoyzShRIj3VkmjxzB94PTyOYmp5fy0sk0R9too2k3Gyip8FIpkAIjY6SIyOY9jo6Pc9l5Y3SVs7iezatefjFSQhB2wFgrUw6Xeq3J8NAAIBMJbKMJo3YyibIT028BXHjeNnbtOgAI/LCBH9RxUxBGTTKpbFJcmhgpDY6nUXbIW37iUhzbQwhDx28nhaEfE0UJz+PKy87H9VI4rker2aLpR8zP19ixfT2rV3WBCLEdZwUi6WI5Fu12G8dVlMppcjmXbDZD4AdIpRDKQscRpWIe17WZmpkhlXJRjo0fBLTbIT3d5aQgDkJmZxcTKJsOqdUbSCziGDCKqckFqrU6OtasWzcIIibWMQAPPbI7mXK5FvNzCzQaybTkzDPWcvXLz8NyLBLz5BkmxucQGsqFPEcm5rFsi+XlOugOUdDh4gvOxE17YBSVSgMdx6gVdVRjwGjDDa8+h4HBPhCCbDYNQqKFRaGQJzIhgW4jheBfb70bDUzPzCGlSfwCMTTqDfbsOYztOMzOLBBFEbFOkojkR8DgOA6vu/p8zt2xAb8dI7CYmJynp7dIqANiHaOFhVEOtmOvmHeDlILH9k1TqzbIZ8vcefvdOHZAGDY4Oj5BJ9S0/Bbv+dmf4tpXX00YhLSaTd75sx/HAOecvx2D4KnHn04KKuVxy6e/hOM5vPUnX0+z0eTB+x/GsR2uvvZKbEdxyWXns/PKC8lkU3z32w9z9asvJgxj5maXkcqwZ/c+cvkS3T2DPP3EMyvdbH2CGIkkCEOUyCOES626BLJFu93GYAjDiCgK8f2AIPDp7u3BPqZi6xg6vk+jbvD9AGMEStoYLRAmKdI6zQZ+uwEiIghaLC8tonVEHCfWBqEfUqvU8dshnUaTKGgTxQHKUnhuBtdJ/AL9TicxIA8CPG/F8NkkyW+r0SKXz1JdXkIIyGTy6PjYdZNMugM/YGZ6FqNh9apRqktVlA7xvDRDgwNoQnQcolDEGsIg5hOf+P/56pdvJwgaNGsxX/nSPUxPz9Lb20en3eLI4UM0623+7V8/CUiUdDjvoh0gBVFkWJhbJpVKk/JS9A/2oU1Mo97hQx/8Qw7tG6fV9gnDDmEYJc0hx+Lee+/DtiwuvOgCrrh8J8/s2oNlO4BGU0NYGuWmiULJcqXOrZ+9laHhQc4+axtLS0vUasscPnKIM8Y28crLr6KrmOfnfuonSVk2fhTguEmzrFQqcubWs4llzE1vupk1A6u48JxzKWYzuELxn7f9Jxs3nY3v+/zt3/4tYVSn1V4giusoF77ylfuIwgwpu5uuwmqMMfzxH/8pY2PrEx6rdlhaWkZrn/nFScIw5NZbb0WoZFLebi/TP1giCjVSumgNfqdDx28jRQolU7huBqUc5ucXV8RKNI1mk6PPPsW73/4WvvTl21lsahaXx5lfmiKTzfKJP/sbgsDn8p2Xc80117BhbC0LCxXSmSyu4/LQQ49z2SWv4Td/9cPseXYfGS/P2rVrGR1ZRRwbdCRZWpxnZGQVQsJytcrc3Cyzs5OkPI8gDMjlC/R099LT3cv4kQnqtRaddkyp2EWsQ9qdFhqNtCziCBzHAQGx0RihiXXE/PwsjmMlYlGOgxAC27HJF/JEOiSVdsgqD11rYKMpdpfI5nvp7h5idHgdw4Or+O4j32Zyzz42rRugdyBF2nNXeiySWqPG3Nws84vzhJFBWYlKbKcdEEWGVrvNcqNFs5Xw8JTUuJ6kt+CgIkU1bHLoyBStliabzjO6apROp8m6tWOgQQmBkopSVxf1ZoVOu0WjUVvhOhaYOriMBRRzKfIZj51XvQytI2zl4AcRjeoirUYFohBLWKStLCLU2LbmnEvOxcu4BH7yXRZ6UqzfuJ4zz9jM3FSVyckJ1o+N0fF9Oq0G2UwOVoSptuy4abfHiQAAIABJREFUgMHhflzPxrYtwiAkl8lTWaiwZ/c+iDT1iuFjf/x5lhvgZYeRlo8WNi1RYPvON2A5gtpCBfwDDPY/SxBOc+2rNxO0DvKud72NG29+PVHsMzV1hCefeozh0bN48NGnmFmsk8mkUeo0fm9C8N9Q5P+RRsKxezGPuv9+fG9Lgh9d4vrSpRGfix9P7n7EEYX+hyGpvLWOT+oKaP2c9OwPI4I4TLDpL9BxeD7f77nL5sRBGJzucn1OvcdgEnEBYxBSPW+CB3DRyy4kvXo7b/zlj3DTJWOn3bA54a051ik68d9OM9U7/v5F2zzfY/lJCGrBMZ+G53SWxHPQzWN8vOO47tPjSY9rKlkuUkTEQcDjj+2mt6cb20qKMAErE5YQYRRBUMO2jhl+x1gqgQNoHaCURxQFlEtFhoYGWL2qH63DlR/dRLRBG00URTiuQ61WxUu7WI7Ec10CPyAINBhBp+NjWRCGBsdRFAoZbFuSL5Rw3QzjR2aZmqlQLKRRKibWGttOIbAQwsFxLYzRx6GWQggsy6OyVMHxLCzXQhAjlUBKxT/csZerz+sBo/jaNx5j49goGo3jWEiRFDpCqBXVScEDj+6lryvHwcOLFHMeM9NHcWwHjUWt2mZgYOB48WJZDiMDZZrtNul8YoqeSiuUZZHJZDBEIGwWl5bJ5dMIYZHNuCjLplFP/Og6HYMUiq9840k2rCoRRIK+4QH6+kvUlltYjoVEgYmwVEzgh4mxt2Wx/8g4Q325xHgejyefPcCa1SN0Oj6zM7NoQvoHepiZWSSfzyPtZFrTqLfJlzIoaQg7bebna0iVolWrkU6nEFLgKAvf76BMhKscyuUejIC9z85jW4kUOUjyucwKvFDy1FMH6esrs7hQJZ1NYWKNY/vEQcxyvUk6k8ayFE7KQsc68XDTGkFIGEQoLfjO/btIZ7PMNQQFR3DrPXu44vLLabQhnS7gui6YmFKhh4WFRf7zy1/lildcwcz0PG+5+U38wq/8Addfdy4C6CqXkJai3WmxZdsmUp6H0THVap3Jo7MMDvXTbtVX5NMFjz2yi6W5BWZnFzhyaIJnnpzgupsuwmgLISKyuRTtTocNY2uJgg615Qpx5INJpsqO66KkJIp9lEqEi4Rcuc9MjON4SAG2nUAuhZJoI1iar5BOZ3BT7kpCo1haXMSyVxJGSyGVJNZxwtMwYqUA1EgJyAilHGxbgQkQQuOmMljCwu80qCxOk84mnnSWZR1/3sZRjJJW8iwRidiR66YRMrnHhHS491v3s2btCJ1WE8dNIzTkcjkWlhbp6evh6lf+DK1WgGUHhO1lmsvzzM5Pcc83n+KD/+u9vHznRVxy6WuJdB0d2Hz1q1/ixhtvZLDXQ3oWoYFyscwVV1xFqVxmaGCY3u4BtIhRQH93mUZ1kVJ3GbTBdT0EAtuxeM2rr8a1HW667k28/R3vBGOxsDCNEi7fvPse0pkMQ6P9WLZFV08P0onRgSbt5gjjAB2EtJcXuebaV9HTm8N1JS972UV4juKqnTfzildcQm9XN2ftOAvHtlmqLGB7kmwmRxzGdHf38Kf/50/IpUv0r1qFFJpMzubKl+/Eclye3bOfi152DkuLC3R3F4l0E6Gy5AtlgtDQboVMj09yxhnraTQbfP0bt7Nl21Zed9M1IF0keZp+jXI6R7XaoNDXy75nD7Fty0WkU5JGc4L77n2c1aPrOHp0nChqMzM/i20ljTHHNiwsTCd8aAORbqFEir/+y3+kp5xibOsOLtl5Jeecuw3balHMrKKyuEShlCWOY2757G38ynt/g0NHDnPeeeeSLxdptJawbYvxw1OcuekMvvyVOzh71WYqlSpd5SLpTCa5vpVgYGiU6blJiuVEsCYIIkaGVlEsFdCa47zPz3/hswwNDLG0vMTAQD/SgkfufxQM7Ht2L5WFCmHUJp8vsrC0hFIW9eUFioUMuVwBN51H65AoMAil0bFIjOhbS+igjhYxOmoxtbhIodhPY7nC/v276e3t5Ru3f57hnh5WrVtHJu9imaShePDoUcrlInEgKHb3UygWUcIQ+p0EkpxSKFtw4Nm99PYOUi6nMHGE7XjYtkdsNIGJWJyvUq232LDxLLAEjUadnt5h2vUphE4aja2Oj44VmWI3mJhMpkhlaRkd+zz+xL1ccvE5ybM/CpmfnSWTSRELQb0RUCqX8BxBq+NjjIWWMU7KS5A6RmBaIUIbcIpMHD5M3+Aq3GyGXDbL0akJWpUFpLCJgyUcW6KEoekH+JEilevGVh7Ndg3HtrAtiW2HeJ4kpSI+cde/8JHfeiVSOGQyIaVckaWlKg8/8hTdXQXSKfD9GYZLfXTaPs22ACfPp758mHZrmfvuvZ8rdl7F4EgfRw+Ok8sZZvc/DpHmnFdcRV/PYNLgEuakqdtzSpTPcdmOK1Se4mv3/ZU6J+tDfC902UtHtyX0khMF907H1ztmkn561cuTBVVeSLkzPjY7FM9ZQ5z4OllkRqxM/eRJ079TVUBf6Lx/DMv8HxTHOHfHboITL5CXKuX/vUKK0+N0XzhOKO5OkbA9zdaPLzMnfPQ4hvl5HLxkKzfd/Abu3VfjjjtuZ8fY8EmLn1+0vcB4/0c8zTs+sD9uIm9OKPCOHxwn4UpfKCyXTCaN53mUigVSqTSPPfIEWU8hooBmu0GjVktku21DbBJImOcmpONWp4WtMkSxj0AmhrRBBAhsB2q1xOusUW9j2eo4r8xLpXAsFykUlaVlspksCAj8mOpyA1AUVxKIVMbF9WyUbScKXZk0jm1RLOQIowSi6QeJemRCHE78w1zPO+7HhUpEPoQAiSGMSAo2pfirr+7i9ed1YSmHrmKGOA5xnTRCqMT/KohxHJtWI+G3NettjJaMDPVgK59CGoSVwrIkliNpNpcTzz4jMQhsS+M6Fo1mA8tJIJg6NmBAKUEYKD73pYcZ6StQLOcwsc39D+9h3ZohWo02uXKByal5tm8ZpdxdIJ3JoDEszC8n/lJSc+DABD3dXczNJoaxjz59hDWrBtl74CjbNm8gCCIsx2Z0pBfHtnAci3I5j20nEMB8ocjkxAKWbfAcFyXV8QZGGASUSkXGJ+bJplMYDXFkWFiokc54rBoZZHp2kZ7e8ooHok2kY/YdnOaMDcM89cwe+gcKRKFg7dpBhIDZuSVK5TSWsAnCNsu1JsV8D82mT6cTUixmnoMHKolAoJSDJQUjw32ksxnueHSaS7ePccs9e7npxtdjWS7jR8fp6++lXq+TSrtYyuNlF72MublFXvua17Nm9Vquu+bVNBtHyWayfP6Wr7Bl25lIy2V5aRnb8bBsi0wuw+iqEbQxZLIZpIyxHYf+wSG+fNs93HDTVQwO97F7917SKUlX9wBeKoWQhnTapdls4Xruitqhhe0k8Mrkvk1gL0LKFWikTRiG2LZDFEVEUYyOnyP/IyC1UlBjNEJax+1KHMfB92uAwhhBKpVFKI0xCsu2cVYEk5RKbEDarRDbdnG8NFIqWq0WXiqZ2jhOiihOimipJJ12By+VptWoY6/AzVzXQaBwHJd6LREIWr1mlDAMsFbg0d+++0EGBgcpFUvc/OY/4rzzVjEw1M8//dNn2bt7D3/1V3/Hta+9kcnpkG3bzkkmKTri1tu+yJp1a9m583zclAYvy+TUJNr3ec87f547v/Uddpx7AWduPhMtYiK/w/JylXyxQKFcwg8CpJS0O51Eza+R8AvbUcDbfurtCA27du2mf6AXictZZ2/mQx/6MC+76CKQGkRiW2LbHjgOy9UlMukMmWw3ERoNVJt1MoUsX//m3bziVa9mx/ln0fJjioUCtlKEUUihUCAMwsSjMNZs27GNcrmARtBu+rztze/m/vsf5OWvuIK+gW6IDLaT5t/+7d/Zes5WStksteV58ukUv//h3+MdP/k2/tf738+111zD2BmrCUOo1avYlsv0xDwDAyUeevAxpqan6e8p0dXVy523381A/yiWyHHmWeupLi8zPDJMJp2mt7+fdqe9cv1IbMumE/jksllsJ42J4dJLz0dKn8kjs3QVc7i24L57v8XmLRdwzTWv5T0/+/NIpThjbBPbz9mKYwsu23kpkY7xm23+v9/8Lc7ZsYU1a0a56qor+djf/wkXb7qIXD5HvpBDCIGrbPbt241jWRTyRfbs3c2q0dVYlp00K4TF4uJSwu/O5Ont62Z4aARtNLlslt7uIar1Ktu3byOV9hgY6Ke6XKPd7vDgA9/hnPPOpxMEOHZiA6MjjbIcNKAU+H4DHTSwZYTfqZOSDsrtplgsEYaaUncJQzLtyqcNaS/h0UpLEcSwZ/dRBod62PPULvoGu+m0alhKJl6UUYg0CkNMb28fQhi8lI1A0PF9bKnAxMQ6wnUzWOkBCuUySiSZS7NZR0U1jNEo5eAHAalMmanZOZqNDmEU0T/Qj+NKFILa3CzlfBkpDLVqk2KhhLBtcqX+REOgWcH3NQ889QyjAz1onfj8SWURmQ5GGsanKuw5OsHmbeehtcHEMYVsgTAMqVam6OvKouNELdN184xPLVLq7UfHBt9vcWDfAYr5LmYnahw5sI/B/hzPzDzLlTsswrBJp92gExuEU2Zsy6v51OfvY+tYAREtUZmv4HiKRkewWKmTy23ixrfcSCqVZu2aMT7y0T/hla+4gtG1a4nqE1SXpli9cRuDw8Mc516ckncJkRh5y+M5rDxp2Ump0vcZz89VX7i4e6lxatF42gLuRfPlk4/lhY/1xQtP8bx35vgxnTqbe/52Ti6VfwzL/B8Yx6r1EytxuTJl+2HFS5VgPaYgBJykCHTqOifGinNbMrGTLzwOT3zQkq1fuvNifvpDn+CdH7/91JWeG56d5pHwAw+7X2iW/SIbPF7YGYPWhnhlMnnyNr/XgNwkKkvKRjoehVIJaSt2nLOZVrtNtV7DshyEUNRqTWZnF/BbLRxbgVAs15srXaQYx3aJAmi3Evn8f//s14lCQz5XACCdSh1ParXWKKkIQ596rUahkKfZ9vH9RExieKgPyxIsLy+TzqSp15uEQUAYhYRRiDER2VyaSmUZS3lUlhpIJJ2Oz+TENAaNbTvo2HDLbXeitabdalOvNojjeAUamtgezM/MY0xCtg6CAMex8TyPylKVKDZ8+j/uQ8nEOyiby6AsSW9PgYOHZzlweAIjQDkefmiQSpHJZnFsD8dOEYaG2dkFlmotEIrIDzFRgGPZGG2o1RpUlmo4nuCm15xLX18PrWYTlM/5563DDxITW4lgoL+bYiFHZWkZYSJMFPLsvqN881uPMjU9z9p1wywuLGPbLnGsueyiszk6PsWF55wJSMYnFshkPRwrzczsIjMz8wlfSiU+SZ12i+HhbubmKpjYkPI8XNvhnu88zfzCMkIKRkb7sR1BOushpaCrq4AfhDz86F6GR/oI4zbpbJqu7gJdpSLnbh9DWZKzzlyDJS10pAkDHyk1a9YMEUeaifF5HDdNd183y5UK+/dP4DoWtVqDRx/fTxAECATjR+cI/Qg/ijACTBRx954lpJQcOXKUf/+3WxBCMjA4RBho/vzP/oJ2u0Mm5/EHH/lDWs06nU6Lq1/1KlatGubXP/BpvLTHm995M/d9+yGmxyepVxt8+T9vp9Vs0G7UmJud4ZZPfYndz+wFoTDCYIi56NKtxJFm/Mgcr7/pStauH1s5L4u5mUWCICSXz/PgA4/TOcZXRbA4Pw9Au91Y4agkvKAwTLr5fsfHGIHtOFhO4m0Yxcm0u16rJo8DKWg1a0RRgLIkUeTjpVIoJVcm7gZjkmLSshPPxjgCoz10bJMrZLEcG20EcRShrOQhI1UirmLbial9FEVkc1mMkaSzyQTXcxwkEmMEfickjgyBH9BudrjrzvsQIkleK5U6lhJMHjlAJwgYHd1AuxWzf2+Fj338n/ilX/ww8wvwod/+edauX8MZm7ZR7Orita+5nvf+4nup1VocOnSUOLboyhexEPzdP/8rn7/1Fg4d3Me//OM/oSNN0Opw3733EoQhfhgk322ng+c4uK5DKptlYXGeZmMJtM/C/Dxfv+suKksVcvkUpVKav/iLj1MsJt6Oi/NLBD50WuBYaTK2w+SBXdz2+U+y++mnufkNP8HEoUmisM61r7qaiy7YSr26QNjyiaMI13M5fOgQcZzAqG3bQciE42qrpMDIZlL80R/+bz74Ox8k9GP+67avMH10mqXZBd71k+/G9jxq9SbFcjdN3+ePPvoxhDC8/a3vAuNQrdZQlk13Vy+W5ZBKZwjaLc7cdDYXXnAhrjAoC9rtGq1Gi7u+/h0CP+CRxx7HD30+9ZlP0251yOVSNOoNokjjeC6e41BvNAiDiCgOmZmeY2kx5Bd/4bfRJs34xALnbL+cpcoc933nPmzLQVkxv/mbv0EuZ3PjG2/gfe/9NVr1Bnt27+NP/vijbD57DX4wRxwvcd65m8nmUjz48APEkQYNRyYOMza2kb7+QTodny2btxJEAalUCkgQHNlMDsd2Wb9+PflCgVhH5LI59u3dj5uWTE0fINId0jmLhx66n/m5eXrLXWzdspkojECqBBrfSJRea/VlCH2i1jxhbQoVt+m0GlhGUW+2SWVyTM3O4qZcspk8S4sV6tU58ukiSgqqC8vEYYBtwfkXbUdow8iGLdjSZv+ze1DSBWElDR3bIo5j4ijGVQ5+q4PEwrE8YmMIwhjHTlGvNTm4/yC7d+1i3569eI5DMZvGWkll9u8/QKPhs/fZfXSXhqjXawwMDBDHIZ1Oh6Vqg3bcIbYNgQwZGOzFDzsgPGy7iK0U0hLkSx7nnXv2CTqNiocfehhLFKhUGtSaPhdccBmWtIg6PkZrHr7/bpRtMdRTRJsAZa1QfqWh1N193HIim8uyZfMO/LBNIOco96eJI83V5yeK1FHYJpfJkrFdBvuHaDRDdl55LUcOHsRzk+tYywTFo+OIIwf3c+edd/GzP/MeSuUS7373O/jA+99Prlwiloatm1YzsWc3gojQxLyQZ5Q6kW9nnuOefb/QwVNz1FMhj8eWn/o6cf2TOH8vApk8tuyYjcCJ74+9xGnXN5xoPXC6Y3j+vk4o0E55f8qaJxWbL3SeJ67/gwIzf1zc/ThOGz9Mr45j8a+f/Bfu76zlo5+6+4e63R9GnFjYGZMoT+of4J5SOgSS708bEnKypegfGaZ7aBAvlaOru5/evkEKxS506LO4uEQniEjni9h2CiM6RKHG9bzEFy8Iecsbr+bI4RmiUON3goT/EEcEgQ9AHMXEUUA67dJut3Aci0w6Q7mriCYglZbYdsIFKBQKxHpFJdNoUukUUik8zyMMIr74te9i2y5GC4aGB8EkRtWHD41z8w2vTBLpOIFK2baHsCyE8fHbjRXgoKDVbiGEpFDMIaVgenaJ3c8e4I3XXURluYpBE0Y+UkBXd4FSMcXISC+TszW0zLC42GJpoU4YxbhOhtAXLFfaDA/146VzzM3ViAKNqxRB4GNbilKxQC6bRiqffDENgOs5xLHBttIYnWL/gWWWl5ZxLQthDLVqgzj0iUOf87as49zNaynli3zy1m/S8Tvk8xma9TZKwP2P7OUb9zxBHBlWjw4wOTnNvr0T/MfXnsAPYv7ji48mha5tMTM3S2TajAz30Wp1OHp0Gq0Nl71sG319XYlPX8ohk3FRCsIw4NNfuI9cPsu555yFkopYR6ANAs3eA0dptZoIBF+96zHA4WvffByEIdYhu3cfJI5WOFvaQhvJ4HCJ1avKZLMenuNSXIFzdnyfx3cdRakEzmqMTqCaQqz4KkKpWEYKi2wmi5CS3/ngB7Ftj+XlRX71fe+hu6/I4HAvlhPT01fi7z/xe/zu7/8Dn/vsl7GEy/T4FCPDAxSLGSxLYts2rm3ztre/ngfueZL5uQpRFGBMzOOP7sKyPSzLoVgsMDmxQKWyyNNP7uaL//ltlHSIdczWbVuwHYdGo4EQUO7uQghBOpMmjiJMnPg0+b6PFBLH9QCRNGuiCGGS5prj2OQLheONHi9lJxYFJkLrAL8drty/GkOEEDaddkC73WR+bhJph0CElJo4DgjjJIEXwmB7FgiN47or/LWIZqOB67roOEaT2MM0m3WEAINkamIajCBXKGLZieDP9h3bCPyYwA947Q2vpLo8z7e//Sif/uRfMH6ogTQpfvMDP8dTT3yXpepRjKzyRx96D/ms4M3veBc3/sTbKBTyXHDRxRw5PI2rClTnl1meXaCrXERmPN5006u58NwtvOstbyWjPFqNJtdccy1T05PEGGzLJuW6K7ArhXYUXb1dVBcXeP/73sfi4iK//qu/Rm9/H3Pz41iOINJtdu1+jMnJOe78+rc5uG+CCy/YyfzkMrsefoTJ/U+xfcsazhob4z8+8zkuOv9lTB05wOz4JI8/9CCW0cxNzuC6KZZrdbbv2EG9UUdjmJycWlEUFfzse345gborw7oNo+w/uJcwiLn1li8xOjLC6KpVK8I5NtLL0AoNu/cepN4KOXp0kq9//R6uftV1HDo0QXWpSjqVot32efTxJ3ni0cdot33Q8OgDD9Bud3jzW29kdG0/wyP9VJaXuOKKnUgk119/A0IoFhfn6O7uww98wiAEIfDcBFrv2BY93YN89H//NR/789+nGs6yemMPTbNId08WKSKarTratPizj/8pm7dsxFKC9//2b/PYI49QzBX4tff9CqVylsWZkFv+/Q7edP1bePbxw+zYdj5hGCOlzeDwCJbn4KZTREajLEmn0+G7D3yHMAiJdUiz2STWmthEBEHI9PQ0GHj22b3Yts3LL7+Weq0NxmL7tgtoN1vce99dZNIekTFIy0JIScpLaAGFYpa43SCozeDqDq4JqdeqLMwtEcVglKRQ6iYyAWAhtEOnXWdq5gih9hOhKhHiRA6uEyAxOOXkWbRx83ZiESNsMCgCHWE7KZ547DG0DkEYQt0hMiGhNkzPTNBqhxjjMDLczfoNq1i7bjWHDh1gubIAOkZKxer1Z6BFTCrtUVmeZ9OmswmjgFhHCeVB1Fi/ehVODEVVxLYc8vkCVspiubVIp1VFKxtbWBSxVp4pLvPzs6xdu4lYhlSXa2w48wxSjoUOOjTrNQAuvvBS6s06ltAQa0wsiCPDocP76OkdYt/e/UxMjCecuyig0/HpK66jVmnTbFbYtDpPq9Ukm8rRqHUImh3CdpuuUpbFhWlyqTStVotMLksYR7jK0FUuMz4zi+PkmZ+r8t5f/iVSacWb3nQzf/bnf845524nk5HMjR8BHZ0WVfX9xIs1479XPvmDio78vwiD+L48976/+IFHGN8zfgzL/BHH97JCeDET7peKM34h3O6LxQvjnE/GCZ/CUjtluXnBqdap64+MDnPJq16LGNzMG3/5I9y4wsd7sUP+XuqZ/90wZsWjxRz7JvTxcf3zTDmfdxAnfzPmOE7dgDAndHlWujQrRupCgeOl8DI5PM+jurREu15FKYNt26BsjEmECmzHQschu/cc5v6HdpPLeJRKOZT0mJiYIpNNgYFGq0YYxOgIjO6gtSBY8VWLI0EUaZSdTNVsJ5kmpFIevt9OeEQIlLLYsG6IZrOB6zlYdnI+lm3R1V06eVpoK6IwQMcRUnosLlQpdZX53b/5NK/YNMhAfw/IBPpQLGZIrQh4dPUUaVSb2E6GWHdoVNv4YZvKco3+3jKW7RD4HdLpNNKEzC60abSqrFrVyxdvf5ROq87atcPkSoWV4s/DYGi22tTqbbLZDEePzFAo5pHC0Gx2cB0bIVr09vYgVECr3UQqST6X5e7vPM3qkT6iOMZLe0hl2LZpAx2/ycJcnfH5OXp7Cmw9ey39PTkyGQ/Hcyjkc+RyHj0Fl77uEtu3r2FhbplItxkcGObJJw4xOFTC0Karuxekj8TCUjatVhPHFrRaiZy2m/Y4Y20/tmtTrS4RBgFCJ7wvHRksYeGkFLOzFVYP95LKuJy5YYTpyXkkFq1mG8dR5AppOp2AI4dnyWQc0pkClmMSeJOA/QenGOjrYnSojJe2AYNcUUd7+cYc6WwP/3H/ft74puvIFlwQmtnpaRYWFvFSGaIgZHJ8HOUY3va2d/BnH/9LVq1ahx87bD37Ejasd1izfojhkdWJeXupjBSKL912N1t3bOGf//HTvPvn3kSzsZRYdzgZZmaWeObpXZx/0dlkcgX+67a7wBie3X2AG258OZlsesVDKca2Ek6cNhDFIXEU4dkOfrCcoAlQWE5yTwuhsCyAGKUkkY6SewtBs9FG2ZIwqCNkGtuyE5sCk3CI/U4HgKAToEQCwXUcD0s5KOViWS7V5QrKspLPrgi4GL0i9oIGExOGIdaKGm67GWDbCRz5sUeeZnh0hDjwyeZSKDsxtL/l0//F5i3rcD2LMIxYmK/QVSqgLIcDB9N8+at3U8i69A+X6e7JMzk5w/Cq1axeM8yZWy/lf/3ax7j2qsu56S038uu//Ov87oc+QLmYIZfN8fhje1hcrrNm3Tqijk+gNXZKoaUhFpDJp3EVlErdhIHhDz70uwwNjKCUIZtT1JeWeezRvRiT4evf+i43XH8dlmsnTSgraYgtL9ZYs+YMiuks9UqDc84/j5vffAOOE7Nh4yay3UP0DY1giLFcMDKiXBzglltu45LLdtI/tA43m0bICM8R1CpVFmYrNDttSrkechmXgwee5Kff/VNEpsHczDQD3b2sXbOKbC7Na6+7hlbUJpVL0WzVuevOb7B29RiHDz/B5jPP4QO/9QHe/I43U+7K8da33EDs+6RSBZT1f9l77yhJzvLe//O+latz9+SZ3ZndnU3aXa2k1SpLCAEiCCxASAJMjrbB2PdcfH0uDphrTLRFMmDsiwAjgpCEJBACAQpIq6zVStqgzWlmdvL0TKfKVb8/ama1Wq0Sht/P5/x4zqkzZ7pCv9XdVfU87/MNAYQ2a9cM4jqS2ZlJbrz5VqRSor+vSLmjxMT4IVYu70V6HtNEAAAgAElEQVQ184xPTHPTzT9j6dJBRCIolXI06jWMjMHWx3fQ07WI0HPRLQtN1Wk25jj55AEUXWFR7yLiQGDbeVpOguv7aJpgbqZOqWTz1a98jTPOOJtmvcGyFcvo6Sxx/ksvpOFJpqaOcPGrL+Ztb3s7r33bq8gmWcIwZM+enXR0lFGlwuzMDG3lInO1VCSjp7cPVdeBhKbToFgsIKVElSqKoqJpOrv3bKV/0QBRFKQoA13n17ffyoaNZ7Fi9UqkYmIaBr++7RZ6e/tB0/BbDWJ/Frc2gi4F0/UYT6mgmGXaewfJti1CTRJq9VmKpW6SsMHhPZtZs2YFbZWO9Kko046X0BXCIEYzNKSXGlZLRRAFAZqqExKmbhkE5ArdgOCRB3bQs7gPScDkxCSdnUuZnJ0iijRWrD4FTTEQaBRKJZSoSRQ2CCOFrTsOkcm1Y+fylNs6UHWVOE4wNQMRRTTdJuV8ilSpNRooaoIbBGhWB5aqQ1QnDgLCOMRPAkCwf+9u2tu6UdQ49VPN5tny+HbWnXI6zE/0KorCo489RGdXHktNyObKBJ5DhKCtazUjY9MsWbqY9vZ2JsYnSSRYpmBs6ghSTehuy/EP3/slrz2/ROhH+K6DkbNwIo8n947xsldcxo+v+y79HTk0oYMGdWcaJc4wXMvw/Zt/RjGr8IH3/jGbH9nMww9tQVNzPPzYEDu278ZIPE46+9XksjbImDhJk64Ffpg8Ptt5FuTZ86G/WMiPWCj6XniemxzNNZ/yr0v3fSr3PdGhjlXnfKYP9PHHem445vHaFQsG7cd+Ns+GhHvW81rIq46O5sSL9gfO3X+fOJZz90JETk5km/BC47e3VDiRbcLxW8BT4MkTsOVOYI1w/DbHx+VXXMZQWOIDf/+1VHTlWa4G8WIKuxcJx1xYnyQJN927HSmgnLPnXxbzHlbPeRrPftDjyuFnrk9DSolpmai6ge+6GJYOSBzHQ5mXaZdS0N1dYXBJD6VSYV5+WuXuTVs4aeVShATDMLAsC900iOMY27KoVqeRQlIqtaPrGrqm0my0MHQzrcnjBMM0IElSJcU4otl0uGvTY5y0aim+71Kr1SBOpb09r5WOWVWIo4hms0XGtlEUHafloCoKYy2FJdmAnp4ycRwQhT6qquOHIblCBs9rEodJahgtIjJ2lkolT6GQJZvPsXP3Ibq7S8zVaqiKSqFQIZez8EOP1SsWIeOAOGE+IVeRRDiOk3KUwhDXbdLd1YmiqPheCrPbufMQjWadQr6IrpsEQYwiNYRQWTnYSXW2SaFQJI4SqvVZMrbJ+OgshpFQKRbI520UVRCFHlKoNBpNFCVBVSBOQqQCQ8PjKKh0dpZIUCkVsszOtCgWOhgdHSNrF3Bcl4bTIp9PeTIIOHTwCLmMhZUxCaMQRYLn++TzeVSpcdvtjxL4MY7fZKC/B8uyEaQdZt/zyBcyVCp5MtnsvKWEQlslj2ZIRoZmyOUsms0GuXyGrq4ySRJhWgZRmBD4IZ7no0iJaRoEsUXOTNj48tfj++l3XShUIBHoepYrr3gb73jHW7FsC8vQOP/8c5menuXTn/wM3/yPb/PYtv1cdvmFPL5lG0KE3HLzLzl1wxpWrV7Otie2U5urs3z5AIVyHik0fv3z37B3zzBXvOUSmq0miqqya+cBliztYfWaZdx1x0MMrlhCFCfouka9Poem2cRhlCqrSkESBtTrVQwzh5A6UeSiKApRFM2rgab2BEkUkSQxURgRhD66oaeFs6rPQ9QFqlRx3Ra6YaIoEsOyiCOPBImiakhFwfd8BBI7Y+O5LoZh4joeiBTKKRVBFMcEQTBvd6AQhXDDj25l9ZqVuC2XXK7A1/7tWs49ZwO3/vSXDK4YJI5jNpy+FiFSH6VmvYll23zn6pv42Cev5x/+9uOcfubJdPf3IYSK16wjhUqpWCKOQoZHxrn4oovp6Mxg2BkueeUb6OgsMTE9wa6dO1m8qIdlS5fxr1/5BievPYVYJpimgqarmIaJ54dMzjTmu/oqh/YN8dKXXEizPkujUYVIkM0UGZ+e4U/+7AMYppiHwypEQZhCT7MZWk6TvbunOO3sdbSiWUy7gGEKwjimWKowV3PRTBVFqtRm53j8sc006i6nb9zA3fdsor9/UcoHVRN0Q2KbBuVymVgkKLpKW0cns9UqceDS3dWNIlVcz2VkdIxypQ3LtvB8D03TGBwchFih0mYyOTrFKy66CKGblMslKm1lWq05Cvk2brj+RxzYN8SK1b18/rP/TGdXL5e98fVs2nQXltFOZ28fH/nIR1m3ej2Z9hKmZbLu1LVYGZNH7rmfciXL3EyVXHs72WyRnVuf5OC+veimQTZr0GxU6epso9LeAwlMTk5j6AZ+kDA1NU0ulyWfybJv/y4uee1r2L5tO9lshpGhvWRLZWZma5QqRZYNLMPzHa648g34QZ3t9+6jXp+jo6MblAjTSLmf9cYslpVBVbWjYkKIhFw2N/9EEpDAE9seo6uzm5UrTkJTNVRdZXpmBtvKMbhsBUHkk4gIXTNp1GusWr0OTVfx/RYiqBN7MyRRiB8oFLsHqTaaVDo7iYOAOBG06jNU2ttohU2U0COnq6l6LOk9R9f19JrzHKRMOaZSUVCknE9mNRDgualNjBRg6ipJFDM+N06lu4SJkfKm4wjHF0xVE/r6e4njEM9rMTUzQ87U8Jwaji85PHIIw7QolsrolonTbKbCF0jGjgyzb/tjDA4uBmIUQ8HQDCKhoFklqhMTmCYoYj4hlxKhS/K5MoYmUNQIhMZ9dzzCqWdfiGHZSEXBMAykVOhuW4whGoBPEkUIQlCzaJkSSJ0DB/ejKAqFQpEtWx6gUXWZHJ5memyYpf29HDg4xMvO7UfTWshEQ6oCP2ywZv0F7Ng5i6GOUs618Jw6k9UhpFhEFGn8+NYHkZrB17/2RRSZsOfAId7/9nfxf6/+T7q6Ojm0bysbTl7KGRe/DlU3FqpuWChSjhFXeSqFeXrRJgBVpny9Y4uktACSC7IjR19LOLZIe2GJ1TNFAZ/++kIs2J4fK5bybPs8M+c9PolcEEA5cfPkqQn85EWj3Y61LTvROx8ffyju/hvFscXdf994oRfXsxV3xx7qhRd3AIVCnsuvuIxR2vnXb3yL89YtOXFz7LniKV7r89VRJ4w3f+YW7nhymg997BPklp5C2LGKf/nyN9KxyOMu/BdV3L2Q9fOPWqmiajqarjA9NYWu6Fh2ljAMUvNZ16HWmKNYLKBpWgr1shRWDKbwoygKU3PnKMJttbDtDJ7XIAoUHt68g/7F7fh+lMrfRxAEIZZlEccRgR8wO1cjl8shheSuTY9x5vp1ZPMWIDEMm7GRaUbHxihXCqiqzoH9BymVi9i2DUiiKEBRJaqmcfXtT5L1xpicmqa9nMeyMtx//zZqdY+crSGSgGwuj+eFqBpEQZyasgchUlWpVEqoqmBiapJ8Lsf4yBiFkoWuK7gth1whl4ptIIh8n8mpKrZp4vshpVKBMHRRVY3AD+dnrKGYz6EqMD3VIIx9JierqVedTJiba2CbFpqmUqvPUcwVCMOASlsnxYqKqaUy4pmshWGms8ETE3PohoqmSKIkxsrY2IZJdbpOJqcRxen3enh4iLa2TvJFjUP7psgWbSzLwvN9ECmE09I0DF0jjAI0xUDVlLSoEJIoiTAMycrVS8hlDXTdTI3AVcn9D29jxfJ+DhwYwTZ1FE2dnwhJQMb4vsvIkRrt7QWSJIVupfLtklbLTb3yVJV77t/K0oFekiRGsyogJG3LN2BbZe65+yG6ujoxLR2p6px1xtl0d+cRlFBVnSgJ0DSFYtbm7rvv4bI3vYPuLklffy9Z22J46DDrTlnLz35yO2edvYE4Dli8uI/Z2RamkaG3r4vFi0rc/qv7qc3V6O3roVIp8viWHVimgecG1BtNtj3+JFs2b6ent4dNdz3C0OEjFEvzBa3UCCMvNfgGVNVOizElfbArUksb6VIiSFIhIlUhiRMUqZIQp4InrSZRFGBaFqqqHJ1gk4qOkBpJAlHgo2qSRqOBbuhpYaxqGKaFpulUpybT4lsIpKLOd0zT72VgSWdqCQLUGw2ODE9y6mlrWL5qGTNTM9Tm6ti2jaLC9MQ42ZyNads8+OA2Pv73X+Av/sefs2HdCgwrw7e/+V0WdS3ijl/fQz5Twnd8FNNiy+bHWLm6D8O02XdwHzEh3T09fOc/r+V1rz2XH/7gh1xx2VuYmZ7CLuSwLJU4idj6xBNYlk62rR1N05Cxz/qNpxLGgr/+2N/yytdcwrev+REvvehlDCzqwG1Oc+vP72Dp0sVoRsITW7bj+yHZfIbRsWGWrFma8g2lhq16iMhm3+69xEFIrVolUypjGDqGqrJkUS99i5ayY8cOVqxcjpXJIEUEREyOjVMudTI9O02xXGB8egojk8dUTZQ4FbwZGx9HKCrltjYcz59XGVTnEQUKoRuTJE1M1WKuWuVHN97EKSefwp9+8CO8+fK3sfWxR1lz0kmsWH4SM9W9nHP2hSxfvpp7Nm2iXMlw3oUbcYIWr3j5y9Ckim6Y6eQaIRMTo+i6Sa0xg1Aktp7BtvJ88E8+xAc+9AFsM48gJklCDC1DIjVmq1XKpTKKooGS0FYuIIjwQ4e5qoNh6Ji2RCo+GUPByJWxsjlCz4VYMjl5BFWLGRrZz6HZMfry/WQyGcxMHkRqPGFZWRzHQVNVmq1mWiTFpNYhqkIYBWniO6+em8lmOXjoIO3tlXlIvsLtt9+GFzi0d3SgCB3F1BBSQZMQOHUSdwYR+gSRTqRVGBoZZqB/CZqm4zdn8fwQ2zDw4whiCdiops6Rw3sp5otoup7CpYVAUVOVaiEVogUuVJJOusZRxJ4dT9LW3QWoqIaCUCTdHRV0JEJCIiSHD+2jVg8QhpXyuTWVKBFkczkaM6PYukIzUMjkKywbWMHI6ChRkgqy6KZNksDw0EH6+rox9BhNswkiQRh4OIGKnSszM7kPy9DRFAXfd1G1tNBUZKoyoCoGfhCh5VX82MC0bA4dOki53Mbs7CyTkyNkRJMwihCKIPIDDhwco2fpKur1Oov7+hmfGKWzs4P2Sg+dXSWkbLFk2RIylqQ928tVX/s3zj83T6XYThB4aGovQ6M+la5eomgPbdmIetUhEvDnf7OJtSf3MTwVM7hiLU9u3cqhQ8Ocd+HFNGbH8X2XTXfewmvOW4njNlh1xoVkc/mnCrdjiroXUtw9PZLj/h6/9ilvu999fvxUUQrMC8M993vEyTGiW8+I5xI9OXavF4+ce3pRmsa8j/wzPrkXU9z9gXP3e47n66YtkFKP7dId///vK46SSk9AcBXzP6506PEC6HBhKwQRgvQBDFHaSWBeap1jf6xiXoQl4blotz09XXzsqn/nF2Ml/ul7v3kG6vM5pzSeq6g7vut2zHLlZ25Bnv5mrrv+Gr7ylX9GkRJVSGQi+J+f/BJv+fytJAvEu/lZrFR94jmWZwx6YXm2Tt7C+jj9jBSNfKkLzwlwZocIPZeECJKEjrYCzcYsYeiSy+cZHaqhahotdw7NMIlCFSFUsjkbiULLdbAzkg2nnkScmESxh9MIqU15eK06nhvhuj6e51EqlWjUp5FKyFkbl9LereE0XXbvOIDntsiXLVatHkQgUVSF/v7lhIEgimJcz0cKA89v8sMf30oQhbznredwwVkrydg2UQjrT15C/6J0Vt3O5GnWXe55YBu6nuHwyBiu45IEIapIUNSYx7bsJW8XsG2D7p5iar0RKxhGllrVwXMcNj+xnaHxGTQtQaqCbCEHqoaq2kRxQr1RIwxaaJqCEB6FnI3jTDEzU6NUKHLkyBQz1TkyGYNENEmER75QYHSyitAM/MihNhcBPpap4rZ8XCcmSnza2i1sy6bhNjC1LMQxmgUdXSWEYszDbjUWL1mKVCLqc3V6l+YxLR1VGFi6SaM2RRhIhKbTqDdpVZvcd98uBAZSpgVB4Nfo621HVWJU1SAIQxARJCHnnrUOqQiWLevFztvIJCL0HSCCRBKHOrVGHVVRMY0cUoGYVACnXguo1+uEYcwF55zCgjTSgSNVOmybyfGIyakZfnLLDSiKwpHhaWanx7ns8lfj+gpR4PM//vLPaczNUi5UOOWMc7n+5uvZsmUTV7z1/0Dk8Z1vXsf5F24gDhOcVp2f/PgOJsbmUguYyMFzGuzavY/Ovj4ufePrmJyo47Q8arMNXvO681mxYi0zUwFTE1P09HRw8smDZDJZLn7l2ZTbs5QqRZIQYiGxMuVUVCEMCcIAQQpDTiebYuI4IokjavUqcawihZoaNosQRVGIo3kYtpoQxympPgxDSNIURCIgTtDNDAKfQrFAHAuy2cK8lULqfVdszxPjz4vFgKoaJDL1ntRUBVWX2DmL7t4u3v7OS4lFhJAq5bZ2bvv5PQgZ47R8Kp3t6GaeJBb88u79XHDeuXS2d9O9aBBDT3jjpa/jfe/5EKefsY5MIcTICIYO7uYlLz0bzVLp6upm66O7Wb60j9kjo/zjxz6IE2aJNJWWqNO2qJddO/cwNj6KIhO6unvImiZe7SAynmFk5BB7duylVa/zxau+QNYq8v4PXIlQWuzZt4+5asAlb3wVURTQmK2zZPViFi0dQKhFFi1ZB5HKyOhhmkGTibpHGCesXb+ef/z0P1IoZxjatwW3OYem20zVq+RLNpqm0d7WwcSRYR7ffD+aEOTzxXkoXp7QC2jLl7CkJNFUtGKRiVqdYkcWqSXzXmQhntPiwP4nMe0Yy1Ah8JFqAXIWUrd4+7vejeM6vO99b+Xhh3/FSes28pOf3UK9NcWBfQ7bt+1FNWPOumADZ513Po4j0GObSinLjp17CVpzaBFkrSIdPYtY3N/JsuWr6V2yFEPP4LozfPELf4euBmRzORJ0svlOhscnCUOXQskiIvUfNVUDVYkYHtmLLnQGBgZ4/ImHsG0LTSmSb1/E0KHdZPQYXVNxgpDuxUuIhcFVX/4+H/yT9/K5G6/CyhgEjpd2jmVClPhkMyk6oJgvEHgutbk5LMPEabVQhIIQCcVCjkpbGc930XXJbHWWem2Og4d2cf5LX8q6dadiqBYxEVEYkAiFZvUIoTNK1KoxOjGFE0o8P2Lp4rVMTdaI4xDL7MAwJHGSQRBimIIjozNs2zlMKxBIAhoNB1XPoUqII1CU9JqUQiFKgtTfLhEkmqDS3Y1AggTfTxBxCEAI+ElCEgd0dPVwpDrDSavXkskWGRubQBUKUaPF7Ow0DS+imG8nX+5kbKZKFCX0dXeSz2cQpOrQU9Pj1JsuEQp+5LNr2xZUqREmBknskDFNFKngh35qERPFRH5InEBEQtMJSRKFyYkqlc4+tFhj0aJFJIkkny3Snc+AJdC1LGEQoigqRiZLywnIZXIEScjS/hVMT0xgKBEzU03Gjnhsuu8BnHqd7naL//UXS/Ca0HJ9MqUSslTGWHIhmc4+MnaE5+rkCxZ4Jf79/1xCJZOAalGfqlIsl3njFW+mWRd09y1Cs3JYuomRNKk3m/RVevFlKhyVxAlJ9Ozcsih++rp4XojkRCInzyZmsoD4ej4vueP3fWbIpy0LeXecJMTzVg3PdoyF/xfglc+Mhc7fc/EG/6v5+nyncf4MFtLCp5/Vi4s/FHd/iN95KPK3n4V5zWtfxd994evceMDiys/c8jsc1VNx9aMeYsNbuO76a9IXpEAeZ94ZJwnfuvrfePeX73h+kczfKp5ZsS7w/HRDJ1fIopkmECNERBynRPFspkAcQRSF7Nizi1arjpAQRz7VqWkmxsaJ4phYgm3nMK0MHZ0VDFOiSgXdjGl6TR56dD833vJrFDX1W9Q0FUXJ4LvQVu4iDDQUVbBz7xBhmJAv5UgIMQyVOA7Zt3c/hqmn3A1VZXqqSsbOcPmlF6MqCocOTuM6MZqm4XkumqoyPVND0zT8IMANPF5y7lpC34coRNMMHn5sH3EkCIOE1Sv7KJZyjI9VUQyDpuNRnakyW51EUSUIwcZTT2Kgv5tCqYxumkgSQtfDMAxGR6fI2DaeF+J7MYqaQWo5li1fy9IlfZTKBXbtO0KxkEcRFhILpxkTBQqLOsocOTyEqYQYio/rhrRaLvW6Q6vZQspUfGZuro6W2IyOjmDoksABVVOIwog4imk1W1imSpwEzM05+E5CEgvCpEkY+QS+xt69+2k2GiRSsmXHECev7ydKPOIoIPQCDD1LtVrj/ge3E0Uh1ZlZkjgmihM4Ogkzb+jtw/Dw1FG+mWEqnHH6IL7vEEYuQpCqZUpBW3sR08wwO1sn8CMaDZcoCuhoy2NndL7+jS8Th4JP/9Nn8b2QKEg4PHSI++67jzvvvJPJqSE+/OE/IYkko0emscwsirD41a9+Q3Omxlvf+QXe/2dvw7JsJicnueTSi1m9ZoDhkRFGjxyk1N6NH0TUqrNMHDnCnb/eRGdXCdvWKVVsJsdrfO+aH9HZY3POeWeyat1yVq1Ziu9VmZ6aYsPG05it1hgdGWHk8CiKNFE1c97UWCGOI1RVwXEcPL+J46SQz0w2jyAh8D1mq1WESI3CpZJCo3XNSPkSAlRVTfd3msSxj5AJUeThBwExzHf1Uy6H6zTwgyYCG4GFiBREmOA7NUQSUigV2blzP0KkHUFVkxiGxNBMHrjnfkQS8u73vZFGPe2yeK4HccwnPnE1E4eH+P73rubz//wJTF2l1XJp7+jg+huvJWPZNJs+7e0drFrTh2okOE6LifEJ3vPBVzA6tYfJesLLLvkIYdjiDW98HZ1dFaTqsXHjaTRqTWardTo62wkTSbnQhecklModdHZ1oukaDz78UHqP8Q0mjlTJ5fK0dVbIqAqKVFHNHJqZo9F0+JfPfZqxw3sJWy5erUVGMyiYGQwrpFod5TOf+RSZTA6RKBiGyfjYKK4bsmf3IdasXc/Y6BAjowc4+eSNzM610A2bvfsOYRomQqa+g81mE8I6e598gqDVQsQmtllGlTbNhociBEuWrGJuJmFi1GNiapJHH91C4HmU2sq4DY/zz7uQgYHl9A+s5MDBXXz4L/6MTM7kgpeexb9+9Uup24uUqLrO7EyVN11+BbVGjdPPOAM/jJiamuBnP/0ZkZfQbLTQdB3DMBk6PMNFF7yWcnExjTmV2dk5mo0GgefT3d2Frun4fjr5EPgBURgQx5DL5ElEhNSaLO1fhyBLGDdIIklnew9gYGgZ7n/gXr76r//B3//lp/n7t/8db3rL27npum/z3eu/jSI1vvHN/0ARBqo0qdfrOK7L/gP7iIFyuUxCQjabm/dIDY7Cl13Po1RpI18o0dbRxcCS5amAkxC4no8AdM2AoIkeOSS+Q2LqdPQMolsFym3tuNQotuVwWgFh4iOEhjR8RGwxPXKAqeF99LYrhNU5kkRgWBquX8dLfXSABH/efkNBxfcdNEUiI4X2tgoQowhBbXaKMBHEMdiGiYzj+UepgtMMSWJBfbZKT2cXo0eG2LHnCeotHz9SkaZOHPm4botFi5cwMjpGqxFiGhnuuesmVg32sXhRBVs3kQmsWruOSBr09vQRui3yloUQMVEcEQQhURhjWBaKVAn9hL3bt7J930Hau1ZS1HS8wE8tWSIfRYnRNeY9gkMEEY4fUCx3pIJWUiGKfA4N7QcJQyPDFPIFxkcPsXLZstQfM0kolytIVaHS1sbs4d3YSQjNKbTGMGVNoz47iRe4ZAsKcRzy618/wOZHtrF5204GV53M6Mg4t954LZ/8p6u4/Zd3MjE9Qa5oEPsOgdt6qpsmRWoX8yLitxXh+30I+MFTU+nPbUL++43nN0H//cQfirv/D+N37XP37O9zYiWiE11Qz36RnXicRy+elKGWvt8x2wqS47v3zzVSFpr1b3zT6/nR9dcgTn8zV372Fq667u4XepATNsf8IOTKz9xCcuoVvPf97zo6zoVxa7pKlMTEcWrSGccRcRzy1a9/gdsmKoTRcdYIz/eez3JuzznIY9crCpFQiEnFGQqlHG7To9l05mWhNRoND03amFqFKFTJZlQyGQOEIBEJApUokYxPTjE3V8X3fOLEo3dRBy95yUYuuuA0JiYmKBTzuK6HooKqJyQyQlHTROqk1f384IZ7iKMIJVVdIYwCVqwYIAx8ojBkamIKzw1I1VNSLEEuU+CBzXtp1BvMzc1hmAZ93W1IIQiCkHwxg66n/nn1uSaNeotiNsOPbtpEHCZHOVFt7RU8LyCOJcVCHojIZC1qcy2ODE8SB6nhu9Ny8DwXz3GZnWsyW3PQTZMESaMxSRi1iBIXL3LYd2CYVrPF+WeuIQgCoqRFy2miaDFC8QmFTqmtDTdMMLJZLNuiWCwRxYCImZmeQ1H0dBxVj3LZJIolUxN1DMtE1TSiICKTyyJICzCEyg03bcZzXaSSkIiESnsHA31tlCp5Mvkc55xz8rx6ZozvOEyPz+J7EaVSgfVrl6EograO8jzcTweRHrvVcpgYnyYIYzo72/G8AKeRQgxVLeVUafOm55qqIkgIw4Df3PsY+XyOex7YSq3WII5ivn7TvUgp2L5zK17LpTY7x7lnn8uDDz5Eo9kiiiMueulFlNsyqIqCVEx+fusvUBSVT37q0/zsJz9jw4YzuOqfP83uXUOomsltP78bEkEQBvzx2y+hu6+Heq3Jr267m9M2rKOzs4sNZ5xER1cbqiZp7ywzdHicjk4L0xL88Ps/x2nGTE81CLyIQrGAQKFULgMp73BqfJKZiZmjUMo4Se9Clm2TemIZxAkEXoiQCZquUyyVU1hmDEkSAQlxDFJRUnGlOCaby8/77Ukcp4HvOTTr7jx/PyGJI1QpMQwDt9UiSQICvwmJA3GDZr1GFAbMTFdZd8p6GrVG6rkXBtTmqkRByNDhI7hOi8mxMfL5Itd858bU7kEKbvnJg3z5K1+md1E3tdoUk9Nj2FaG8bFR7rvvLsqVdhb1LWPXzv08uQ9QGScAACAASURBVPNxZqdn6OzsQdMEWx8bo7NrOWtOO4mPf+6vMWyVfKFAGIVkcwq1+hRLB1dSKFRwWw66oRMlJnamDd3IkM3a7N2zk7PPPB2IURSTn916G1JKDFOnOdMgly1AIjFUA4nggx94D6VihrGhYXZv30FrroYSJzSbNUqlApZp4bsRixcvZ646h2WbtLf18YWrvsqBfQf54he/xEtfehGmnecfP/lpvCBk2Ypl6b06jmk1m9RqDXRFo1wo09XRhWHkmau2+P73fkQ+X8TMeURJDVUL+c53v87o1AQbT9vAA3ffT6vV4vI3vIFNd99Ne0c3sw2PfDmDH0YkiiRRfW78yXUQp756umrQ1dPNDTfcgCIFmqrhRSGFUoYfX/dD6tU6pXI7nhfhOgGdPRoPbL6Nyen92NmIi19xcfrbj2OefHIXQoKUqSdjvVHHDVuMjY3T1tZFFPtMTY+iKBYzk3MUilk0zcB1AkQC13z3h3zz6mu4oP9C3v+mPwUkf/fHH+PSy9/J5771KUYOHuGdf/w2hExAROQLBbLZLIsWD1Bv1BgdO4LjtLj3/rvmJ+U0DN2g5bQoFosYhkkiIIxChBSUSiUSwDQNAKLIJ3Gn8VuzTE9NMDWnkYgKdqaE1GMO7hnlwfse4Oe3Xc/U1DS33fpzpqcmefyRHUxPtxiZ2EUSmgysHSRBoqoKuiaIo7SLEyfpxEQKl5YoikKQOCRJgqIIosAn8HzKpQqKZmBnsriemz5FZYJh6HR2d4AMyGUzJPMc8tM2nM3AspNBzWNms7S3t7F8+Qr27N9NoVBGM2F4+ACL+5ZRyRYwdPC8FjECRdMwch1EgUOjOk4YeMShj6GpxHFMs9lgYnSGJJZommBw1Wrc6hSBVyc0dEzbSlFYcYwUMZ7fTH03kyjlq+pZNM1CSgESdE2jp6cXy7ZYumwVXlhl1bpFHBg6QIQDQuAEOu3tbQwdPozaNkhcWkW2azmTtVmyWi92rkyEip2NEFrExrNeQXdHFy975SsYHFzBX330r6mUc1z48lfzuc98mve97TIKpSwrly6iVa9CEj2Vwx0jDJI8BeUCmO+GPR2uuKAi+XQPvBPbGzyfeuaJLBJebByLnEuOybkSxDMKrmORbE9fxHN2F5/LtiFJ4qN55gvnF/1u4g+cu99zRMepZR4fxxM8fz/x4omex+//zHmA43+IxxeJ8xfVgjn60c1fGLfv2Lj8iss45xWvPaqwef2m3UeXOx87yOjEJHNNh772Ilv2jDA2U+dnD+zisz/ewvWbdnP2G99LZc15XH7FZSf8HI6Se+OEJI7TxG7hpiUES5cOYC45jWhk67O07V/gaT3nhvPcu4WCUyRIxURXTZqNOcIoIpvPpNLaug5CsHKwh7vveZS2Uom7732YFasG0A09vUElXsrPEoKMncEwVKSmEIdgGhazsyNUKp3kczniSOC0fBRNBZEQx4IkTiWvbdvgrDPW4nrpjLjvB+i6gSLSjp+iSLLZLAf3j+O4TXw/4ubNh3jHSxexc89hFvVWaGsvoSoKjUYLw9QxDI0De0e54dZHWdrXRjFvc3BonCAIOHXtAI7nkLEtpCJJaSkSpxXyo5s3s37NIgzTZHq6TndnO61mA02qQCpFPzXdolwp8fM7n2Dlsm5s28J3PVpNj+nJOUxdp1zKc/s9T9BezmGaqUl8HAsymQyO43DkyCSmoWJZqZS+70UIRaHlBNzz0OOsXbUMkBimii4FRk5hblbl0a27GRjoYHqiiq5pOK6DoaWm17lcltEjk6xa3QOxhlA1hEzVUBORPiBC30cVCrXaLHYmSyZbJBERiHC+KE7VFgM/wPN8VB3iJPVCLJVLDA2PU2nLQhKmZu5hnPrhJamnJolIIapSpHDjJKRcydPfVyGXt9B0m3+/fYQ3nLOS6zbt4trvfZu3v/3NvOc970SVkpiYxYv7UFWNCy84nz//8Ee59tobyOU1LCvD9T++lu3bH6ejvczLX30RF174Lj7ykTdx8qlruP4HP+Wil5/H4UPD5PMlRkfGWLlqgDtuf5Ddu4ZZuWox1193O+vWrSaOYx564DFe89qX09+/mNrcNCtXDJLNmQShTz5fwHUDVE0nmzMIgwaZbJZdT+6js7OdRr2ewrsUSRSlEuwgSeIITZfzyaRgXiIWqagkSYjveSiKRjhvqSCFwHVcVDX1CVvg8Jm2jRBKar8QB7ScFiDxPdj6+HZ6urvRDIMoEeiGjarZgMpPr/8VpUqWfD7PL265i/b2TuxchnWnrMP1AuJY8J1v3cT7/+StQMhb3v5FvvH1L7Fi5SDDQ8OMjEwwsKwPicZMdZbBwX6+9/3rWLl8DR/60If46F99FFUpM3T4IO2dRcodXczMHqGYKdPdVsIPA0Sikc3k2LN3G+0dXUxP1tLEkgg/aSGlBTKFxd11xx2cc945+L7Prp1PUixbLFmymN7exXz2s5/nrLNfQqsxh60JJof3U8gV0C2LgJhCrsTylcsQmqDleMSRiaZlaLVcMhkb1w0wDJUwCvnh92/k/e9/D3OzDZYsTf3XdNtk2WA/VkZFtyRz1Tq6pmNaFhnbZmrKR7dshAbNmoOmaSxa3E0urzE6PEXGaIPE4owzN9I3sARNJizrX4zQDKbGhlm1ajlhEhIj+O411/KVr/47N/30F/z4xp/ys5t/wQp7LTP7m+x5eJgHfv4wk/smGNo6wz03bOIL13yVG278KQdHJnhiyza6uzqw7AyGlUESsHnzI2zceCaqtHj9G97Eq1/1Kt7ylivo7etFiAQ/8DFMA1O38bwGpWIbJIJ6fQpNLdDVVcS0VVpNn1/c9is+9fkvsemWe3nF+ldxwSkvQVFSnpycf5ZdfPrL+dDf/yV/+jeX89FPfZz77rqP88+8gERIpBT4vp8KIJkW2UyGcrkNXdeJowhVU4miOOX/KgKn1YQ4Tq+fVLXrKKlATRyaM0NUZyepLDmNuXpIpaPC3n27KGRKWFkFr1UjmGtSrY7S21dh9/athExy5NAw559zOrlczOzsOJpqQAQyAc3QCIMA13Ox7CyqqhCEMDk+S7FSRioGvuchhIqqaQRxhCJi4iQiEalCdRLFVKs1pqo+ixcPgJAEQYBlZZCJZHxyjOnZCfLZAnNzs0RRql6ZLeYJXR/P8ahOj5LP2chYIhQIkZh2Gc3I47uzmEZCHKX2NFKAVOYhhUIhjtOJtCSMmW06rFh9Ok/s2E5/32Kqs1UCJ8TQFAQeMQmmmaHltPAijdHxaXTTRjN0Ws06tpUhTGICT7Bz61a6OnvxGy59bWVUTeX+3VtY3qcR+BEROuXFG3l02wh2eJiP/82/s+SkATQFDNkkUqDWrPDotiEuuugcujv7uPLN76TQ1sbew3u4+utfpmwlxH6V4X17OTDqctoFLyGRSpqpHCukcryoyvzv7xlqkkdfS064/oXFs+37bK+/kMJpgYcnj/5/ooLq+UzNn+98FkRSnhrZwvs+114v7DN6MSbm4v8Nbtf/n8NzG8/5AR8/83H8a/+VSE4wi/L0mE9uZJqoPz2Up3X8ntUocmEm5Bn7P8/YTvhjXtDkTM0InqnPdPxNJJnf7gTnJ5LjOHAn2OS4CzsIQ1zXJQzTcxESpFBQFIluGHz3W9/nrWsluqo8NZzjvyrx2353CwdbGHOCQJlXlAqpT8+imzlQBUJEJIGPolkEfsz09AxdPW3EkUCXMUHYIlYESmyi6hLXbRHHIW7DIYoT2jvamZmpzqsEpjyH639yG1e+/tUEocv0VI177t3DJZesJ5uziUPQDZv4qLG7Sq05R6GQA2KcZgtVszB0g+GhI7zty7fx+ct6OWllP8x3QYklUSTQbYlQAtyaTxwJWs0mmYzGwQNTZHMW5XIB3dTYvWuUoYkZXnbhGrZu30OlWKCva4DZ2jjFUhue71Gv1zAtlXKxDafVoOU4ZEyLRmsMVbXIZktpMzEGhIpApTo9R6VSIBap31WlmKferFNuy2PobUTUidwI3VCI5hU9pUzw/QhdzdF05zBtK03skyTlVIUege+hGjYikSQiYuTIGNlMnrb2PHEkQETE+PitEMO0kapBHAs0xefwoVE6O9tIBGy6bxdnbliJaRsEgYdMIp7cPcK6tYOQCFRNEMUBcSTnFUtjmJ8FjyOfOFEIvJjNW3Zx6rpe7JwxzztQUJVURTWOF4znU5impqZJttQ03vmVJ/nPj7yC93zl1/zg+/9BsxmgqQZ/+zcf5/P/8mmaTotYCIKWShT5bLrvTs46ewMiEVh2DsOwaDZ9Nt15E+dd8Eo++OE/5+qvvZdtW/dz9vkbiMKIJFHYu2cP3X0FGnM6Tzy2k57eMgNL+vnRtTfzvg++idDXuOP22+ns7GDlqjVoRioIo+mpCuW9v3kEw7Q4/Yz1Kb+0OUZtdgpF76Kju0yUuIhYJQ4czEw+vbKkmkJWpSQME4RMECK1QInCGENTEUlEJASBn8J7A9dF0Q1ct4lpZhBCJw791GKE1KT857fcxate83KiKGDo8GH6l/QzM12l0t6OqkoCPySJwXVcWo6HpgkO7jtEb69JqX0xpmnx8IOPcuqppzJbm+OG7/+UG2/bxbpVA/zvv/0bNNXm61//Fu999/uI4lnuu+9hLrr4TBouGKKA1/AQVEn0DO/44ytRSPjxT2/FcZrYlkUUJXzzm9/mwYe28MUvXUWxaNHy6qhKLoWLqVFq3q6aSJnB8xyEEqIlOkNDR+joqqDqMTue3MfQ0Dhnnnk6YeTwjivfyaWXvpoPfPDD3HP3ZgaW9NHT187hw3tYsaILLVOg6UDoSF7zmjfwqX/63/T1Fenq6Ek5c9JGSoOWM4dUBV5d8pqXXcH11/0bfYOLmJqeolAqIVWVOIyZq/rc9JPvcukfvZkffP9aPvinbycIHTK6wfXX/5hXv+pVGKaJaodsfWQX//TJz3PNDdegRhpHhmo8/Ngv+eZ3r+WMzo1cdMHF5HNZpEhwfJfR4XE62jooFHK0Qhdd1YiDANdxMO0sQehimjYPPHA//f2DdHV3ptd0HBH7Pvc/dD9nbnwJmi6pjjX54V3fYjyYJAxAUxUGFvezauUqlgwupbOtxOBgL4pp47sO//mda5mcmmbd2tVs376LoT2HeOfF78Y0LDRrXgxISJKYVGwk8ZGqTpIoKEKk36FMOLhzgl3icdavX8vpZ2/gA+/9EH/1po9iGGnBLuIAGWk4bh3d1ogTFddpIYUkikPCOKGQL6TerElM4LuoamZeLGSOqDFD0JxhYi6hVFxEqa2N+zbfx2D/EtzZSX5xz+OsW9nLsqVZquM1uvo6OXJwlJ7FvUShiyLTZ6miqURewJM7t7Ny7ToIfUDOq0hIFEUj8GHzww+x8eyzSKIWumnwyMO7OOmUFeixRFViYgFJnKAqqXpn00k4Mp7QsaiP9lIJ12kyPjVGoVChWCwQExOHCY9seZS1KwbJlMq0mi3Gx2c4fPAABTtg5cpO9uwZ4dS1J9MM6mSynUjTwJ2bwBQQ4ZOEMXESEEUxqtSRuoXnOoSJz/4dh2gKk1NOPwvP8cmX25k6cpj2rj7273uSwQ6NmhdiaOB7Ibm2ZbRaCdt3b8M0DNavX89DDz/EGWdcgBd4PLZ5E22ahmHVyGY6UJSEbVO/4BVnNkhiFb1tDXP+aUhRoyO3n3tuv5++vgH6u3o4tH8vxYzg5kcTrr52M1d99nNMTk2SyRZYv24dj+87wKkrFvN/r3oXJy8poStlKqe9iYteeSlRHBIowDHosmeUWQuTYwtVy3PkW8/XXHj+XPX54sT7PVun7envqRAlYcqrPmb9Alfv+Y75X2ucHI/eeu7tTMt+wZXyHzp3v+d4vs7dsfG779w930yDOLr+mQVlOrvx1L7Po4L5ogvS57gRcOw8y7Pv8+zbLWz6fMXd00ORkjAMU/l0mV60UgqklAgEGzaewlv/8nOpbcOzHf63/grFM/4unJcUqSHu5NgYxXwGqaRQFgQ0Gg2e3HmQ7q52hACpSjwvQNVNtNTkCxCoqo7numSyGTzPJ5fNEEQO0bx59bo1KzAtG9VQKFfKrFjeRyajI1CoVlMD1kajjmma3HTLHaxdM4iiSOpz9VT1zrBwXYdCIcfVN/2a/3nlOch5jzvP8xEo/OrOx1m9so8kDiGJqM42KORyhGGCaelEUYyiKIyOT7NtzxivfvmpiAR2769y6qkDKCKhOj1HqZzDNHUsy0QgUJBATL6QRdE0SHQKxXaGDk9SKuYQiqQ21+DOe59g+dJevnntbzh13QCFfI6sbRNHAZqQTI9XqVdncPyEfM4i8ENq9RaZjE0YeGiaZGZ6jtpcA1VJuwmmaXDw8BEURcHOWAgUPNenWChw5707WLa0i337hqmUi8RxnMJ/oziV+hZpB8k2bSYmZsnmsmzfOcTqlYtRFAUpJbWqy0y1hZ1RkELFcz2SRBBHgtnZObK5DEIkRHE6sw0CIWMGlrSjqipJAmEYoSg6iBRynCQxaqrljRCS6ekZdENHCI0fPzjKZecs57r7dvOmy14PicB1A171qtfg+i2mqzPkCzmSOOAT//gP9C8eYPnyNYwMH6BcLuL7Hvffdz8DA70Uih380R/9EW9+x//iPe+6hKnJGfbvH2bzg9tZsqyb9vYeTDNDe0eW+zbdQ09vOwcPHGTNumVEEfQPdHNg/2Ge2LKTVWuWoaipCAQIBpYM0LuoB6lIpAqabqGpFsVSjskj02iagRA2Wx/fQ3d3J9u37SSXyyIVgUh8PLeJpgp8v4mMYxQtVcMMwgApFDRdJ0kSWo0miqKSxDFO08HzfG7/1SYMXaNUKiGkYHD5Uuq1Oj/43s2ce/5GwjAmk8ny4H2bcVot/vM7NzM9Mc5Ja5ajSoW9e/ayZt16dEvnlpvuIJfPsPqkVfiBSzaX5eT1qyhlennPB97N41u2I4XKZz/7z1x66aW0t3fx3Wt+yLLlffw/7L13tGRneeb7+8JOlevk2Cd0jupWK2eBgsFECWTAGISQZZNxGuM4F48vOF08DmPDcDFgghECLJAlEEoookRL6lbn3H369OmT61Te6Zs/dnWQ1I0Ehrtm7uJbq9Y6Z9cO366qvff7vs/7PE93rpNDBw7zB3/0h1z/9usIwpBfe+fbeNvbbiCMDDu376S3r49atcbZZ69neGQJXd3tQJQUqJTBtiyUsLHtNKWFY9hWCi+V4V3vei9XXv5qPv7xT7Bx4zlMTk5SWYClo2v4xCc+xUUXXMp7bnwHa9etxm+E9A50093Tyec+/wUuu/RKlKWYX6hTyHcycWiC6657M0uXj5LL5rAtm/mFKp6TpVyqEQYBQWOGXC7FDx5+iF+67nKy2QyOp5EaKgvzBL7PZ//nF/jAB36dY+NzvOrqC0BEfP3fvsGqdWtYtXYN2nGQWlPxNVFD8Y63vJNv3noHwjvM3Z95iNUD53DZ6lexcuUaXNcminzmS7Ok0hkK+SLl8gI/2vQkI4uGaPo+RgjclMfc3By5XA4/CBjoH2z5LiYWG1FkqFVrrFi+Ej8IGBsbo6u7g5Wjq7j23Kt59cZXccGKc1nZt4L+dB+ZuIiYF0zsmGF2X4WZvQsM5YdZ2buKVJhjzeBaLlh1IQmsFRKEpiXYIwijCK0kvu+jVHKtB0GTer2G1hbtHUVG2paSp435/WUuW3khz2x6ku6OXmzbIY5iyuUSflQllcpiWTa2baGUwnHdpFNBkHic2jZBFCWt1zRpVOcRYZ2j42PEVpFSvYKU0NndQzabZ//B/egwYvnKdmzpgUgUfcMoIp32cN3EZ8+0xI0kks6eXrRKLHWUSorJyTwNWissV5HPp1vJlKBUqpLKpHDtVFLAjH0sx8IPfCylEcJi67YdLFuzGseykVKQzmRwHJeDB/dTyBewbYdKrURvdydIhYkjqlN7GR3NMdTdjS0F7cV2AkKy2SGaxmCJgLBRZffOLeQKHYRRRBwqpLCJgdCvY2tNuVohNhlGlq/h8JHDdLR3oRyLQr4AykKYGOPPYafSmKiJlJqJmRL5QgdSK4rFAkZqBgaGWzzNOrNTM2hZpqOjE8tRGGN4Ys/TXLAuTdOP6eheQlvPWlJ5zczMVgZ1SFg/RswclcY4ufwy/ukrDzBbNfzWRz6AtiS5XIp8Ic3MsWPc/Z3bGOoxBAvH2HNwknd/5A955OGHGRodIjruc3c8TnxJyHIyfny54OflYtuTHnM/7fjxaNvp5/JCq4bTx8uno069cJ8/n3mffj1tWa8YuftFcvdzHmdK7k6Hzr1SuPcn9QT5MWu09gungaBaSV98mvdeuo+X9B2/TLJ3sgNZnGZpK7ERL15uXrLNC60iT0W+flzyaFo95PCCw8AJgrlWGill65UE2lopbrjhOv77P/wzF6waOvOJneFMf/w4eY4nztUIEMfVniQpV9Ns1lBSIJVDFPsIAaMjg9z27/ezdk3SLqi0hZKKZjNJBCzLwfcT6eU4jmnU64lcuO1hW2m+c8djLF86CgpiE1OrVXA9mzAMCaOIVCqD0jbaUhydmGD9uhUIQeID5jg0Gz7ashIegRboqMSKRW3c/8izLF08SCJgEdHXk8d1FEcnpnBtzezcQmKsri0M0NXVzvadB8EIXnXF2ezfP0Z3Zzv9/b0IWSPw69SrEVLFfOXfH2btskEefmIbQ30dCGWIhUBqC+0IfL9BLu9Rq85jWS5eymXxcA8mjlm7vA/LcrC0ojRfIt/ZiVAu2VwGrdPYtkIqgR/EpNNppqdmyebSzM7N4NkpUp6D57pksmnKlTK5XJZUOkVloYJSkunpEq7nsWrFEGAoFrPEUYzSzomWkCgK0VIipAVGUq7UyBfzLBvpSdqSmgGNWoMw1Ph+SF9/G5Z2qFUbOE6K6ek5oigik02BiRKFvMgwNjaBYyuMCRIfQSR+M0JJhRERx01gpRSYlqpYOpNBCMn8bJW3XjyAl27n//7indxy0028972/QVdXP709fRiTyKenMlkEPldddRWDA8NY2uXwkUOUSmX6+3oZWNRPW1uRP/yTP2N0ZAkf+Y1381/+6O/55deuY3hkkFXrFpPNZJmfb5BKJ96My1YuI5drp3+gl86uXqIw4MnHN3HZlRfTP9iN56WITZQkc0IilUIrSRgmMvNf/+o9WNqhr7eIJEDZBj+MGR4dYu/u/Wht0d3ThdaKbc/uQmsPJR20tPAbVYIgUY61HYcoMCAkfrPJ5LEpSnNz5PNtHDk8TrVSo6u7i9HFI3zuM7eyfsMqHNtCSEFXVxt3fOd+Fi8dQiDYtXMfI4uHuOzy8xgY6KZaWWBmeo7BRb3YdorZuVnOv+A8SvNlbFtTqyzwsT/4NL981U30LuqnVCszMrSUfKHAu9/1LqIw4P77HuacjRspLUzhWTYHDx3k9W96PelcFs+10dKghKHuBxw+NAlxTHdvF0IYenp7UUpQKZeT27OMiMIYhCZshoRBHW1ptjy3lZtvvoWJ8Ukuv+xKujrb6ehsJ5WK6ego8vo3XEU6KxAqsW7RloPlapq+z7nnnofteDhuCmU5lBfK4AeE+BSKbXznW9+hv3+AQ4cO8syPNvPRD/82N998I29+zTt490038cbrbiBbSDM5cwQl4ejYYRZmZ5DYfPVLX+eXfulSbMtB2D6OY7N6zQZm5mdx3VSCyEYxkQppL7q855ZbePiJR3n1yHXUG4n/ZVdXW+txZlo+hi4Gg9/0cWybru4utLbQWiUJP+A6zomin1KJDH+tVkvuXULjuA5B6BOHIWFgyOayxHFEsxkgjcJzU9iWy5e++mVWr1oDcaKMrLRGtbpAjEkSbSEEoR/jOBZNv07KyybtcCLxQw38ACMESllopWg0G2RzefxmQBRE7Nm7i2KhmFh4CElbWydCJGbgEeB5DlHcxHEz+M0GiVWIOkFFCIMAE8dobSVzC+vUKscgCLBEiGWlSRUHcFMpjo4fY6B/ETt37qK6UGfV0g5smdAbvLSDbVk4jtsqyJzKZyL57JSEOE5IH1KSmH0bqrUqWloUclmiMOT5Z56hs6uP3sFBUukcQQSuYxOHESY0gEIrRRDGZPN9SM/CsT327d+D43pEYURXVxcIsJSi2NGDZRLqwXdu/zqzx6ZYvHhRMi8jkL6hBtheJ5GqEJVnIQxRysH1XCITYIyi6TdAxmRTWarVEsgUTzy9mRWrV9M3MISSOvEJDGOe3fIsKqqSSVtIbRH7dYywyHUOIKRFoVgg5bkcnZwin89Tr1fJptKU50tUK4fp6R4AGSKF5msPPcB1V/eCcbFTPXz+a/dw8aUbKc/uJo6qjB8L+NfbttJwLqBgBdx69/P82o03c87ZZ3H//fcytKifP/nTP6ano4OgUmLdijZEVCfVtYS1F17NZz/9z7zqmmuIjEx4dcmT4pRQ5aRnnZTyhIXA6SK64+NUT7vTxbBn9Fd+mZj3hfGpOSFKd6p/3HHazYnIsLUvqRJb9tjEp33/TDw/gznhn/fTJ3ZnigvFi16nLv9Fcve/1fjZInf/mR7m0x7xJft+6Xsvh8idYS6vGMk787nEJn5B5ejk2qdH9JKHr37ZttbjW0upXpKIKpVwzRLUTiFU8vCzLN3iLRkuvOqX+atP/SMXrxl+BadzarL58on2qX8fBx8TIrNEWTZGGKampsnmCtSrDbSSOJ5m2egAEoVWiTDM7NQ4qUwb4+MT5AuJDL4x4NgOKc/BbzTRjs2RI0dZvWoE25VEYYClNI6dyD03/QhEjNKKzc/spb2jSEdnB5VKjXQ2hRCSHdv3opWF7/tEsY/n2Yy2Ger1JinXIptNYTs2tq3Q2qC1IJ/xmJ2pUmvUcT2bru7EImFyYpY4MhybXmBkUTfzc2WKHUUO7NsHxieTacN2HJqNkCVDXUBMd2eWfFuOhUqVlJdCYkGcKKYpyyaIAkI/wnZsMAbLVszNzxJGpRMbfwAAIABJREFUCX9CW0nbaxwJgrjOV257ls4Oi86OIn7Tp1Jp0NXVgRCaRqNJOpfF8RKzcW1pYj8gk8tSq9WpVmtkcg6plIfj2AgRo3RSQY6CmK/f/gRDA524roeWKukXlQmClkp7RHGIpQRhEPLIE1vJpj227zrMxo3LkToxso+imC/e+jDr1/STz2eQQrJ792Hai0UMEfl8Dik1lu0QmRATSw4fmua+hzazcsUQwogWEnVc6VGcuBaqlQqZdArttPPe156Pu+hsFi0apbuzm699/RssXryIjq4uJmemyKSyLCyUef/7P8RVV12F5xb5g4/9Md3dvQwODKAtyeVXXkM6m+fv//aved8HPsgHf+tvuOEtl6O1Jo4kfrPGbbfeSjbTw84du7jv+4+Tzlr09nXw8INPct4F57BQKvPED5/h6MQxhkb6k+sT1TIz14wfOUp7oYNKtUJ3Xxcg8IM6KLAtD2NCvn/Xg1zx6ks5fGgs8c9LpWlra+fTn/k6mYxD/8AAvh/xxc99k/ZCinK5RiaXwbJtcvk8URRyz/cf44JLzmf8yBGeenwza89awfqNKxFSMjM1SWwiujq7WbVmlFQmRRyFLFs+miTEEjKZLEpq2ru6qNXm2bPrAMMjfTQaDaS0+fa37qHaCHnioXF27drLpVdeju2lefbpLbznxhu57vo3Mzs7xdkbl5PPFyi0Zbn3wQe49PKL6e7sxBE22JL5mSnSqRS25zF9bAHbsfDSLpXKPNqycFyH6elZOjq7CCJIeS6+X0fbAiXSLJRnGRzqQ2vN7t07WbJklCCqk8poLGkzcWSS57dsRito7+oBaWg0Q4yxcVwPZEwQJ1Ly5WqJOKrT054lXcix+ZmtjAwtRWuF68Z0dXZy3ZvfQDbr8vYb3w2yhCUN9coEdqYNYSS9nT1MHZ3ivTd+lPfceCMjSwo4LripHPPzs8zNzbFl0/MsGhyiWqrg2Q4Kh7/4wF/xvhvex1XnXoWWNpjEP/M4cjRfSoo+xii0FiipsWwNxIiWN5wwBomkVqsTh4KpqSly2RxBGOI6DpZtAYYojrCUYmzscMJncyxsO7lfpFJp/MBndn6Ws9efg21bRGGAVoJGo4G2rMSnNG4JLxmDESESSb0SQMvMWytJEAZoZaEsGyEEzWqNdCZJ/mIErq3IZNJorSiXqzhpD2OgVF7AsS0sz0qUNLWNVJooDpBKt5ALRbPWYN++vXS2d/H0j56krZDDFgFxXEEJlzBsglbMLDTxtEd3fx9bn3+KtlyKqaM76elrw7VtXO3iRw2kUEgBtrYTReaW56hAYZRExFFS5LKS5DkpEMbY2kU5NiZMCpLFrl5kJECHhJFCOx5Bsw5xmNxDlYUwEdOzc9TqisHhEaI4plqp0N7eyfj4GLGJcVwHS1n4YUSzVqHpNwn9Eqs3rmTXM5vp7mlDa4dYGfJdSwnCGi4GEzWIggbZVIrI+GDAcSxsS9Ns1JmeqxIGdZ58ehsDo6sZGh7k6LEptm7dQl9XJ7VqlZGRxWSsAGMiPC+DCZoI6YGdQUgbpRSVhQXa29oRwhDHEfsPHsZRAUfHjjA41IMymmbQ5OkDW3nLtYOEocJpW46VWsSO535El2swSpBLZXn4ie1sOO9CRjsVX7tzM7//Ox9D2w4XXHAhMzOzZDN5NmzYyJHDh9m54zHqlRKXvubX6B1Zx7pVq7G8HMhTDMBPiU+Oc8Sh1fV1Imo5c3L3kgjnRTFsIj5yZpTs5XhwLyj4n4bvd1pPPXPy/9NuY86UiP4sdChfyaf00uW/SO7+NxqnS+5emHyc6mLx4+VSf9pKwZmrH6dWU44Hei9NQoRQvBSKPlm9aS158UFf0dxOj+CdPIZ4SdJzpmpHa06v6Lit/ZjTKGCaRKlLiJPtmFq3yMWnrHvJNa/jdz7+d1yzcfQMZ3QaWBBISGDA8cDatLY5LjpzmhaH4zceg0EqC9u2iP0qykqC+MCP0Y6FJR0OHz5EIZ8inSkgBCyUFrBscD1oNCIcxwUDQdNvmX0rcoU8sZHYdjLnxP8sZHpyjmKhSBRGDAz14tebfO3r93L2hhVYwlCaKzNXWqB/sJt0KovnWfh+g907dtPTm5gUpzMpnnx6G/29HWgrkaj3myHNIKa/ry+pchNjK4XjOqRTNrmchRKa7t4OZibn6exsZ9vuMfp7+7Esg60N1WqVru52/MCnUW2S9jxq1TqbNu1ioL+Xg4fGyOVcyqWAts4CMTHasgijkFTKxdI2mYyHbUHo+7h2lupCg5XLi/R0d+L7PmEY0daWxZiAyWMlwiBmoVrFtTTVchWhBOls7kRVslDMo3AZG5ukUMzR9H0slfg+Sq1ZubwfEzfRSibtkpFBxYrdew7T0VVEq8THqVFv0tGWwvEkS5cOUi7PI6TEsiEKIlYv7iXblkXGkkce286K5cNoVyWJrQjQykUISRTU0EozM12mkC3Q3Z1FSkEYhUDMQqmEkholkqDWcRMkQeo8Ukkmo17Gdh/g0Uce5abfeC+f//wXefCBx7jgnEvQSnLk0EGOHDlMLtvGF7/0d/z5n/0Z//AP/8gVV1zA9NEa7333jSxfPMAbrruKjo4R4uYkt3/7e/R0dvG9795NPu9x5VWv5q7/uI/XX3cl69YvIV9II6VgeHEPYbPGvd9/imtfdwXDw4MoCUHQQJiQ8bFj1Gs+HZ0dfOlLd/Ga112G62awHMWdt/+As845B8vxeOapLVx2xfk88uATdHS2s2LlErRj4fsxczOzXH7lRowIcW3YuHEdhY4elNTYlsa2bA4dGOO7dz7E297+BmITs+mpLYwuGUAQk8u3sWPrLhYND5NKZ5ibm8W2U0CA6ykMEq3S3PWduxhc1MUD9z/G6NIBPNejd6CN2ZkJ0k6BWr3GH/75bfzGLb9LvRHwzhvfijAOO7dvYvXqddzw1ndSLdcRUlKam+F7d9/P0mXLUX6Wj3z4A5x74WrsNBiyZNyQrZsfpLe/F58KM7PHyOXbuPeex1i9djHvfe8HsFXSBuqoRLFP2w5haLj9W1/jgvMvQouE59XR2UWt3uB7d9/PyPAKJian+KfPfIFLL7+Srr4+AOoLNWRsuP32O1iyeBTXsVDENGvjFFN9BGGFhcY8aaeT3v4+ImP4049/gtHhNdx80/u56ddvYaEySbFY5NixedK5PNJOkxEKIUMOHDlI3/Awb37TL7Nmwwq0SmPbaaq1iKNjx+jp6KKro43JyTE6B/q55X2/zbEnJrj61ddijKE0P49naw4c3k0ul6c0V6WtWMCxHaqVMg89+D0GFy/DRhH4AZbrEAfg2DZSC+YX5kh5KaZmJujr6U2QLqHBCIJmSKVSxbI8EDHZrIcRKnleSIlt28gopFqtkHJTOJ6X3M9VIk5ka4fA94lig9SKKGgilYWJQUiJtBS2spBCUK83iYJEEAgTQ2zQLVsZrTVhs0G5toDteNx77z0sX7YCLTUGQzqTRtsOSmnCIGyh+Q2UslqdKjHj4xNMTR+jr7cP13Xo7u4mk0oTEyNkjBYWtcoM6UwBK92BnfKQtqLg5Dm47xm6exdhaYmRMdZxNoARNGqNpBVaxIlaMwalLXzfBlHG4GApiZEBIhIJP9q28YMGSiX3O6VjpLZZKNWoVKq4jke1mgj5RFJgqySxUDE4Xg43k8d1bTKpLFEY09beDhgczyGKI5QyCGGxUJ5l364DLO7LMzg6jCUTnpWTyhEKj0Z5DvwFwjixM/D9hF4gDUQKjIrROEhlUakHlJt1Fi1ZjTCGzvZOenr7cFWGBiFThw/iyAaxFGjjYwJJpDxiYVGvVkin0hgpsFXSvtqsRRw4uIdMIcf4sSMMjBRRgcLSFtPNnYz2CdxcL3tmPXq6h3ngjn9hw2KbSj0km9Ocv26IkQ5NHZexRpYvfP5WLr38VXzyE39FIdtGd0cPo8OL+eP/+klec8koiwZ7CUjR2dmJXegmkhqlkrjkeAxmWjoIx9sYE8XJF8Zp5riAHrwA3TpTAnVqjHN6Rffjy18cn5rTbnd8picQu+Oxb+v9uIW6nTpeIoBySrtp8vcL484zqc+febxcYf+VrvOTCar8Irn7OY+XR+5O/VJ/XuI2rwTxO/N7p16Upy47FZ5+ycx/hhy8n9e2P24rpRKkLuF4i9N+Nde+/g3c8OG/OMnBe0UHaS148Xdx/P/T5q6n/j4ESimmJifxcgWETGwRGo2kxSabSyOEolJpIpWkWCxgaYsgCHDsNEEUohR4nk29Vse2LErzicFyHBvsFkKptSaTzbJv3yG6u9tBJC0ay5YMMHZkgkJbAcd1aSvmsS2JUIZG1ee1//Vb3Hz1MK7n4DgWYRjS19uOVJKgWWNycoZDh6YYWTpE4PuMH5kkCmLiOGTHrjEWylWGhroBSaVaY3JqjnQmzdDgAN+7/ykWj/SiVfIZ1OtNcvksAkMUJRyYYj5DOuORy6cxRuC5LgiDUol0tdYapRRKWggMtVoVIzVSap7dspvB3iKl8gIpz6VSqZPN5SktzNPZ0UWj0aSrq4ilLeZLlUSiW6qkfW9yjjBI2nmLbXlqtSqptIfvN5K21MBvHVsiZTKXXbsP0ZbPkc0lBs5RFFFZqPPVbz3BReevwk25xNFxVqlszd/hznueYWRRN9VqmRUrFiE1CGkI/Sp+WEZbSZInhQIkbe1teJ6D69gcPTpNEIS4rkc6baOlBmkQREkRR0imq5KF+RKdqy/jC1/4PHbKYe36dXzqU3/BJ/7840xOTdDRI+hoG+TsDZfgB9O87VfejrZsPNejv7+HfN7jta99LYsWDaGUotSscMF5l3HO+ZfzhX/9HDe/9y10dnUxPjaRIHRzDZ56fAtLli1FSqvlA+gzumRJ6zcdYeIQ180SBgFKado6OrAci3XrlhDHTWzLIY5CLNumXquRSnn09XdTr1ZYvW4VtWqVbC7DV7/0HXq7O+jra0NKQyqTJQxCokiwUKry7KbNtLVlCEOfQrHIhrNXYEwie7563Qr6+noRgOO4CRpk4pZyrOAH9z3J4KJeyqUypbkypfkFLrzkXJqNOkuWLmHs4Bj5QltiJ+A4REaybN3b+dSffZKP/e5v8/t/9Hts37GF22+/i9e/8dWEUUzgh9RrVbI5D+3lGR1eTC4V8+1//z7vee+7GRkdwXbSSTBiIogVmUw3tt1GR3sftu2ybPkSGvWYG254O+vWrUJbEZVyGSFk4uqAZHhggGajSdP30UoiW9fKP/3TP/OGN7yBVFpz2aWXUiikQQQoqTmwdz89vT089sSPWLN6FVoJjIQoaqB1Ftd1yKQLIGKaQQOtBBvOPovBgX7WnXUWK1cu4+bfuIk3vO56Gs0AbTn4fsj2rc/Q1d1FLtuGNAm39okfPsngokGeeeZZvviFf+WC886lrb3Is5se5uwNZ/G2d9zCB17zIcYOHGDHjudZsnQ5npdCKE1Pdy9aaySJd5fv+6TSaZYvX4nSiR2GVJKG38Txkq6NyIenHn+GgcFeCoU25udL/GjTEwwMDHPXd79DR2cHR44eorunGylJ7rFuoo6bBMVQbdSxXQchBc16HWVZCVqlVMIza/HNlJLEYYDWdsLNtWyEgMD3kVLxnf/4BsuWrUIrmzgyOE4ijmQJiAXQapyztM3Q0AhKK+Zm55I2ZqVaz2k4OjGB1vpEAopIRK1SXppCsUgchziOTRyH+H6TKPCJIh/fD9GiyfzMFEqn8ZSmuRBgZx0iNFue3E4u49GsLeB5dtL9AhybOEQ2n0dZOZ579kf0DQwSRyFbd+2gt2eY7977GNliG3kvg0BR9St4XhvEEZHvE4YBtu0RBYa6bwiNxnIyuLZAi5jIGIgjpJRERrJ7/0GKHb1s2fYsluVQrVZoNOq4nodSmnK5imVDUPMpl47i12cZ7OtMnrFRgJEK42QSNdGgjBI+trbxmw1SqTSxiZicnMVzc2ipCJtNjo7vo693lOHhtYS+QUqFZdlseuZJOjoLCGOjWUCKEClTSGUolSuk830cOXqMhYUFxicm6OrqZvuOrXR2dxAEIVpJDu/ZxqUb1uIZm0bkIx3BoblnuHBdF76fZdVZr+apJ57mwvOW4Xk1bMeBOE68XsfHOToZ88nP3Mv999zDlq3Pcd11b6StmOeP/+QPyWZzbNu+nXPX5Nm9YzuF/uUcOHiMpzdt5ezzzkuSHnGyvH68oC+AyJxUYD9dona65SdjmJeLRU83To/onXHt02hFJEnoyfde3I750m1be3gRghfFEckl/srO4UwI4IuO+or29ZMkd7/wufv/eLwUWTqeOP3kid3JysTLrffTG0SeLrGDVvWC43B6wiE4NcUTUiGkesl2P9vxyqodP80wcXRSATQ+eV5GkLTStcZt3/jymc3WX8nUWoHAib/PvOIpJQBBd08vge9j4pg4ikmnPLQtiEwEQiVIlU74g1JKLCtFFEVJQBnHRCbG8TLYtgtxxK5t25DSIghD6rUE8SktlNGtyu7u3fvxgwaWLRKelxREYUS9Vmfv3oM0GlX27Rsnny0iZUL6Ny2j3Fq1niT7oU+jVmdwoJNqtQyEtBWytOWKZHM5anWfhWoDrW3GxicpFPMMDxaZnZ9FohnsyTB2ZIIYQTqbJZXJcGxijlqzjlQKy3FxPJt6vYISqtWim6ATYRgjWtU/YwRRHBGZmFQ6i5vKA7Bh7QiplEc+n8a2LXp6usBANpchCAPSmRSV0gLGGA6NTZNOeSyUymQyGXq623G0SpI4S5LJZjBxjFJJO6XrJqqbQkrKCwuU5susWjGK5VpIKdiyZQ/Pb9mPNJKb33k1QZiY2hpg67YxlJBY2mF6ep7XXHMulYUa2pbEBIm6oYFv3fEsntuGMA5xpDFowijGEJPNOdz/4LPkczm2bT+CkhZxmJjxQkSjWWv9rg13Pr6dnu5Ontv8DG9+2xt527t+hVRK87d/+9cYFTC6tJ96cx6hFG98/XUsXjpEJltEW4qt2zejtEVsGvT0dnD33d/nrjvvxfYspmZK2K7HLR/9fa5/+1/wPz/9VXp6u9m5fRf33/sgq9aO8JV/vRXfr+I6KTKZHOlMhiD0CYImSktu/+bdWJZLsb0NIY+j2YZqZYF9e/bi2BbLVy4jX8hh25rYhGSLeXbu2ElXbzfj4+O85a3XMjTUy9TkFJlUGlAsVJqUy1Xm5+bZsHEVxfYC6UyK2ZkpKpUqYRgQ+E2MiYjjROSi2UgMze+5+wf4zSZxHLPurJV87cvfxW8aOrt6WDQ0gO8HCcfTsli6YgVSKp5+YjPjR2aphyv4xpdvo6OjnXf+6jv59h23cfbZ5/C+33wftXoZIQ2zs1N87/vfpbQwj53KcdU1V5POaN7+zjfy2A9/iK2zSFzqlVmU8hhYtBa/HvKVL32Lo+MzNJs+URxweP80jXqdyNRo+AtIqQijiMAPcGzNBz/4u+zbc4B0Kk0Q+IwdPsT2bVv57d/5KP/tv32ceqXC2rWrMFFI2KwTRiF33f09mo0m68/awK/+6rsRysLSNn6kWlzaiNljczSDKpXqPAvlOYrFNI4nWbt+FfWwyWf/5V9456++m02bNre4WDbDixczMXEMGQumj05x6NAYt3/nDnZs38XaNWfxp3/8x1QqVYRShFHAf7n5k/xf7/wTbC1Yt2Y9WqrE8LxeIyZJYKWSPLv5SaRWJ7wLQRD7PkhBw/cTs/RQ02wENPwaF116PkopFkoVMukMF15wKQjDpZdeTlt7O4sGh4iiJlIplLYJ/ACAKAwJw4haow5SYlmapl9HSrAtGyEU8/PzGBMRhgFzM7PMTU+fELg6NnG05deYPN+vver1KKHYtm07jz72MONHjxL4PkfGxxg7fIi9e/fQbDST1m474YMVC3nm5+YSbppJjL57urtROuFeR2FA0GwwNzdLKpXCdR1SqRSlhRKQtB7W6nXS6XaclIdEkU57BP40Cwt78dwSExMTPPrIk6w9ewXFNoehoWGETCwLDDGDQ4sTzp+ROG6KIAhRWrJ+7Uqs2OeXXn0F7fk0sYqJZYjWDvfe+QhCuGgrjVAaE9uUyvOkc1mGFi/BySUc4eOJLwiCIODgob3MTk+ilOCsNWeTz+awHRvHc0h5Kfbs3sNzzz1NeWEeiaS3K88569chMNQbdcI4RiobZReJmk20gfJ86cTnF4QBfhhS6OzAtjRxHBKJiIW6w64jk6hshkJvG9OzM4RhxPp1G2n6PiI0aCIcJ4vnpQkig1EOUzMlBvqHqTUarFm9Dik1K1auIQhDbNvm4MGd9A2PJq3Ols+eQweoLoSsWtRGvRnT1r2Izc9so5ixGBs/wGSpShjHVOoBlpMiU8ygsPi1N9/A9W99Gxs3bqSzo5OZmRlGRkY4e+PZ1JslarUS6UyexWvX84Y3XE93sQPiKImuTo1XzUkF8+PR5ItRMylO8cU77vP2M/CrOzmF+CUxdHyKN90L14uT5z0nfepOHcf7oY7TE46v9+LxYnRQK/0TnsOZ4/uXxu8vXvdFnWA/wfhFcveL8Yvxnxw/NsE7MU65aM9Y0frxCf6p3ntIxczRwzTLJeIwSIL4KMLWFlHQRKuAer2CZScKZfv3HmrJN4cobSGUw+x8nYYfkkp5lCsVSnMVjInJ5bOApK1YYGR0EY1mg+GhAfLFHMYEdHa2YcIGJg4Jw5jRxYt55NHn2bXvMP/ve0Y4dHgav2l46NGtaO3iemlmj00zPT3N0iX9tHW1kXIcGrUqpYUy1XqTIAypNX0uuXA9fhCyaKiXKIqJoibdXQ5zU1OMj+2ivWAjlEVkIAwNPT1dtHXkMAgcx2HfwSM4rk293uDI2CS0pO5t22rdvAUImXgSITBG0qzVQUIsBJHU2FaasbFZKuUaW7fvA8B2XFLpFGEYsnvPYS44bx1hEJDPZfnSrfdhKY3neRwZn2Ji/BjGRERx1LKbUMRGgEn8qVLpFO0dxda3noiErFm5mL37p0jnU2x6dgeWlEhjMMZQyGa4/webqFfKdHYV0Bo6OvLkC0UwiXlvsxbhaY8wMIncPwlqJ5RMOByEXHrRGqSC885dih80CCOBFBaNeoASClpWF3c9OwlCcOfdd7Nq4xrctIWjBQf2H6FeaSbd42E7jzz0MF/7+hfQIset//YN6o0aH/7I+ykvVEmn8nzq//l7rrnmajo6iujI5davfJaJg4d4+O7nue3fvsDkXJYoili9djlvfutVdHS2c+7561HKpVZrYJA88oNH2bFtF5aVAgxXvPpiwigxWlYKwjAAo0ll8gwvHk34IMrguTZxECVcwnKdvv5Bmo2Q7p5+8m15vJzLhZeeQ8P3ObBvP7lCno7uDkYXD+ClMhgjCPwQkGSzeb70xW+jLY+Z6TmkFHjpFA8/9DjPPbOd884/h+c378LzsrR3FHjXTdfjpVPc/s3/oFavEoURvh/i+w0a9SpxHPHh3/l77vyPg1x50SUsW76UDRdu5NrrXs9rX/Na/Ibk+je9AyUcUm6eQqGLUqlOHErmjkzw6CMPUqou0NHt8Ou3/BqNZgPfb5J1bYRyaEYRqXTMW3/ldSxZNsDk1DjVapnlq5aQyTrEcZNyyxvuuec2I4Rk//4DrFq5jt7eAWZmptmzdzddXR0Mjw4xPDzIRz76QXLpIvfeeT/S2JhQUSlX+NCHPohtW8zNLvCP//CPgMT3I7x0B6GJ2PL8kyhVxXPSFPPtFPJtYDSTs+Nk8mmkThDCz33+M1x11aU0m1W0DUoViGPJ0aOHsa2Q7dt38jd//TesXbueSrXO+295f6KyaCnGHol5x3U38eiTP8RNOXT2dXHNa17b4ntJIr+BaYk+XHTJq5KkTiYt82EcUVmYJ8a0+LxN7rn3Hp56+glcx0VbijAMmZw8hmXZzMxNo7ShUMgTBAFpL4NnpzAxWLaD4zpJS6VUxFFIMV/AUhqpLAptnScq/tVKlWw2i+V4WI5LLl/EtHi9UinaOzoIg4D4eDt+y3R8+YplXHzhJXS0d2Ji6B8cZnDREMuXLmN2dhbbthMTc5Jw9fHHHua5556FOE78LpXAti08z8N1XXzfZ9HgIjZv3oQfhGhtkc8ViGND06+Ty+UAmyCKMULR8GOC0KHYNkq14WPH85x/1hIKRQu/WaPRqCEkhH6IlKqFSmqiaJ7R0VEsrU5wq6LIJ4rmEKaOEBI/iLFsj4tedRmRcImli/bSVBuSdKEPP1SUy3Xuu+cOfL/ZUhFNgm1taQaGltPW3c/U5DEmJo6CEIRhSC6fBmHwXJeLL7qcbLGdhx54mFq9jDE+sRB4qQyWmwHlIaUiaJSp1soY6WKIsG2bsNU5kU67NP0KkYFyNSbEsG79+UhlEQchw6PDhLEPxhCGgno4gcIgLRsT1/CbPh0d/Ym6s9asX382QkGjWccgkdJi757dlGZnGNu5BaNtTKgZ6R1BK1jWM4fjDfCtew4xsGQ5xbY0Q70dLOoZxnOLbNlyiHLZMDk5T3ePZueOewCLsCl58IHHSafa2bltH/fd9336B7ootmXoaO/k2GyF2CjG9h8iDMOXiWc40Z75f8KITwOCCCGRCOIWsiZfIVjySocxMVEUto718wY6Xjr+z/hm/n80XtpbHJFESz/5j8qcAo0n/8f/iR9n/KLXC8dL1DBfPBeOa1D+ZOMn2k4YfnofuZ/NUK0bwnFk8vjrtm98mU8/Xn7hyqdSGk/wKs80XlyhESdRvUTKrJUUtj4xpelfspZaaYooDjCtVr+pyWmiSNJoKJR0qVUDpIKh0Q4sy0oShsiwf99R0q7EsSzmSw2WLl+DiKs4XppKtU65NItCcWx8At9v0mzWaTQCkIkhs9ACbVv4fsTjP9zC1Veey1/es51GM2Tx4iHSGZcLz1lLaa5CvVqnXA1pNhVzCyFTR49RLdfJFzs5dGwOJ6Xx6z4rF/cijGF8bIrSQolao0I2m6VRqxBXXpFjAAAgAElEQVSrGS67+FxUFNKoThH6TaqVGqX5eaKmTbPhE/pVhvpyCCFIZVy0JQiCmHqlQtj0CZsN/HqDKKhRr1WRJAbgtqOo1RZIpVyEUdTrIQODPWRyGUZHE25RbCIaNZ98oZ22fBa/2WB6pkwYwroVi9iz7wh79x2ju7tId08bftBIqsthA9VK1DBNTAxHxqaJTZM4hihQSBlz5/2PsWbFIiDm3HOWoCxBEEQoDSOLe1m1agQjIDLQCJoYWcfEZaKgjjAGyza87o1rkvbOoIlQIbt3HkJEFnv3TCClhdExjucmQSsKrW0i4+O4NtpKg4AoDhObBEKKhQI2GiUkzSjmsqsvpdCeoTQ3heMW2XDuBlBNgkjwb1+6m2ZzBr+hObD/CAt1h1s+/Hu846YPEOsCfuUgb73hagp5xcE9z/CR3/xdPvz+Wyg3BnjLr36SYxMzhFGNpcsH8DybOKzx8P2Pks2lWTQ8wsT4MaT0yGQ8tFNH6RjTkrudmpwhjiTlhURB1K9XsW2bhx96kqAh2Lr5eaIg5tEHf3TC1H1meg6kRSqbY9GiHh5/6BEO79vHpqc2cfjgQWqVKgvzJdrb8pRm53jPTW8lnU6Ty+WIWoFyJuuybt0KtNKsXLWU8sI0QgoeefBx7rz9BwyPDFKanadcKpNOZYkiQb0W8pa3/SVf/Nw3ufKqX+Kue+6jEdTYf3APxkQ0mxbveOvV/OtX/pKqL7j+unfSaMzxkd/6TfL5di664iL27TnAkz/cz+R8DWF51OpNtu/YQSSyPP/cFuKwTiNIWq+lFCxfvpxisY16c5J6rYYUaTKZNMZ22LDxLFKOIZ8y/M7HPkSx6LBQKdM3upxULkc65aFUhOcKKs05OvuzWCmF42W5//sPMz05RWgizjpniL6BjpaXmcLSMUY0WLn6ElLFEfzIYnZ+nkptgamjs+SdHNIPiCo1HrjjIQI/JvBjMl4G6cN8vcQn/uKv6e/NMjP9NFdcvARljjG27yls5th3cJx169fyBzf+KWvPWYUQMReceyG+7xOHERhJHJnEEkNpwjDERDEmCoiadUwUYQz4TR87ned7d9yFjAxHxw9yxauu4KKLLiaOIwRJW+Pg4CBNv0kmkwMjmS+VeOD+e6nVfMIwJgpjTBwxNzeX8MYQaFtRr9aRQtBs1lEi4dP6fpP50hwg8RsN4iDCENLW0YvrehynADWaTZqVMloKpBKJeE0tQWd8QoTj8vDDDxI2Q+IoIpdLugXiWOBoxXxpnssvv5bVq9dghCJoViCK2LtnLwCBbxK/RyFZs24tLfFAqrUqQRghLQ+pc9RqFUK/hrEdpmamkcbmgYeeQDpdtPWM0j3QRdoR7Dt0iFpDgTZIlSSjgZ+0oweBoRa3NKTQiCgkFIKUl0ZbNn4tQFoSIR2EmCcOfYSUHDx4kGYzoNmIqTdq2Jbgkosux9KCQMQQBmBC/DjE1oKxgwfYt3+Mgd4hKtUyHR3FhMMYSHoXDRPGhtiH9m4PISKUI4m0RMQBxs4irAwgsa2Ey+dlJEEUAiL5zcQBUaOBVDHVRpMdOydYtnwdYUuMzNIWxjRI59MYAe35AqnApyFEyzexjJXuROoMqUyenduewVYSE8dYnsOO5zdRry+wa+szXLxuDRdcdDaKAElEyjWkskVSfUNY89u5+k3XkWkv8tnPfJaMl6Na86nV65x33hLaOw3LR87icOUocyWbNWs2ENemOXZ4Nw/cdzc33fI+Htx0hHe89kpMNWDfkRkuuOhavviVW+kdGcZxs6eoYL4wQjl1nC5peklk8zNJAJO4NAmJzGli3RfaecWntH8eRxNfPJfj20vxQmTvOOL3SsePi7ulPB4zn37bk/M5Higmn7KUnHidbGV9xVMCfsG5+7mPn0Qt8z8/fpZqmi+3jzOpa754tZ9SbfNnvs3PZi9GHL8EX7S1MZx73ka+et9W1nae7mA/2dHi+DQ92uKF/0ghsRVIS+E3A2xtk8mmMUAcxVQqlQSFMxJhNEKqxGxbK1KZFNOTc+SLOfLFLOm0i5dKMzU9j2tbWBKEcnAcB6k0Tzz9PPlsmlqtRjrjAgITC269/QdcefkGygtlNvT4PPf8QeIoIJ93aTR8YiJsR1LMp9i6fR9DQ4OYyBCFEUEUEQQBXe2J+Es2m+LJTdsYGeo5wWm698FnGRnMYWLB4bEZevv6Ev8pN43jei0VuSZKCeIoIooE2tYslCoU2woJP8W10VpTKVexbOuEMX2j0cDzLEAwO7tAPp9HiEQdr1yuIgQ4XsJLazQCbMeiWqlh24lk+ZGjM+Qyabo683R1FcjnvRaXx0kCQ6XwaxLbkQRREylthIRcPkuMjzAaqWBmuszG9SspFB38pk/Cq0wirbBVTR8fn6R/MDHF1iKmXp1HagetPOJIEhsQUhM0k4p5bAwd7QXGj06SzSb8ukP7j5LNpECQqG8K0epNSQQbtNZIIfjWU5Ncf9FiMovPx0s5ZFIZlJJ87467WbJiBdrxEul41yKbySGV5oYb3sTY2BjZdAe33vpNBgaK7Nu9nd+85UZGhvoRKo3rFZDapb2zm86OIuvWr0MIi40bLqC84PKB3/pLrn/jBURh8tvv6Oxg0dAAu3bvZsWKZRgiNj+7hZ7eHog1UtsorVu8SkEmnQagWinRaDQYHhliZmaW4cU9pFNphkYGePyHjzE8MszksWOk0xlES15+WatdcmR0lJ3b97B46egJW5RcLk+lWk2EjOIEGSWGtvYilm2zd+8Bmo0E5ag3GowuHqVaq7DxnPUU2tJEUYAQkje+9ZN8/55H+Myn/45SeYolSwcxRvPIww+xbds2Vq9ehRCG665/E1/+ym2ce87lXHPV1aSzKaIgYnpmmo9+6IP8j3/+O27+9fckRuNKUSjk6Owq0CjPMDQySCMMiLXGtXNgDNVKGSNCMukc9XqTQwcP0dHVRhgFaCRz8xW6OgdohnUOHdxDZ1cXmUyGo+PHSKW8lhda8hsuthV56qmES7R69TraO9rZu3cvlqXJpHPMz5Xw/Rqul6D/1UoJ21UoZZFyHRzt8OymzWSyab7xjW8xMXGMa19zDf/97/4HV191Fb/3ux8jm8nRkevj2qtej+0UKbYP4aXTNEOB0B5btu5i6dINfPufvs1g7yLyhQKWtgmjpJ3NDxrYduLxaOLjyJdCIKjVaripLLFJ1C9j36dQyLJkdDFCxFiWJIhaQaSSNBsNEAKtdOIFKRM+ttKSgf5FZDMZGn4Ny7IIowAhk+Ltnt27Wzy9OQqFAlImvFkjYpqNOm1tbQnNiwClFf+LvfcMt+Mq775/a9b03dvpReeod8tNuIBxCbgDscGUhARIICQBkjeEhOd9CCS5kgAJISShJRAINZQAAdsYsLGxccFVktW7zpF0ett96no/zJEty5Jb4L34wH1dW9KePWvK1szs+173v/hxG9O0kULgex5CCEzTxLJtZubnsSybSCkc100KaE1RW6ixfFmiPip1Hdu2ETKxwEmUgQ1sy0G3kus44abpVCqdtNptojjEsi00IYhitcgDTHiWhmFQX6jiuDZSCmzbxdA0DNMhlSrS0z9EpAS2mUIXJocPHWbV8uVoIkAXOmEUoC3SF8IoQtMMHrl3O129WaQpiUNIJjtl8tI0pOEwNtGgXhOYpkYmk2FqaoJarUG5UqKjqxupa3itJjJqIlDoukmoFFJJkIJcvky5o4LnKWbmp8nkshi6TbM5TyQi4iBmfOwoex9/nJXLliZWDHGEFBqxniJUOkL5BI1pXNMAkfxWAYkgVxgSBjEqTLHl0ccYXLaGvoEhIpUk8SqOMKWDijVC3yfS5ohVhJkuoukOLc8jU+xFIAmCgM7e3gSKq2kQxnR39rBv3x46KgUyOZ8oUKQcl8D30KTO8ekF3vvhz/Dq1/0O9sqViLbP5RduZPr4blKOIIqnQCszUxU08QjDLN/53mGufsU1DPZ10tHZxc233sb1111PO/RxGSdnNcA02HThy2g26+QKecrdHU9rRDxdPuCpRduZMpyfv38znJzrJtDKp4r+iadBLE+XG5+6TC3+KUgKyed63GfKu086xtMqgZ4uknWUUovz+WIxhU7sUHTd+BXn7pc11CLU6lQVoZ/HDXBm3PEvPk7l3J0ITXvmS+zEuNONVSR8oZPXfj4l2Zm2+78JgbbI3XpyH4o4OU9N8Po33sRNH3o2iOazh3YSr+9JXt7J568QxJiZIiOHj6KpCLXItXMcnUzaptJR5L77H6XV9IlVUiwkP1QxUod8sYASGlGsiERMvdEmDBIBByE1fvLTB9m15zCGNDhv01oymRQ9PRXiKEDFGpqQvPLKC8jl07zuI9/H0hSNVpvVKwfQpc63b3uYTMbBdgyOjR+jkE8zN9cgnXJpeh6uazLQWyLwmni+x49/uoUNa4cwTJ3J6Tksw+TKl11IvlCg0fQZHBhg7+EpLCsxYk98rRS6abBQS2TfH99xlJmZBRACqWk0mi1836e6UCWbzyB1yfx8DaFpWJZB22ujFPT29FBbaHD06Bj5Qp5UyqFWb7J//yiBH2MZBvV6Fdd1cFIOmq6xevUSpNSQUjAzO4OKfVzXwWsHiU+UpjMxMcf+A6OYpoWKxKL5MFiGja4bxHHAyOjMYtFwIjmEwA+S4tKyaLXqrF27FCUEcRhCHGGbJiiT8fE5bv7Rw4yOTiKQzMws0KzVIRK02y16uisUCmkiFZFPp5CaQC0q4EVRsDiJkEioq3ixI734HLnl1h/guEkx2Gg0WTq8jDCICBEo1QZYhHqBacUYMs+H/+HDXH75Zdx26zfZuGEFcdTm7rvuAM3knvu2cOjIGJ093Vx7w9VEShC2Yz71r/9KMZ/lS5/7LMvWvoEP//2Xqc7XsWybVrvBWRvXAAqlIvbtPYSKNKYmZ9i5fQ9RGC3ef+D7PrMzc5iWxcJCFd3Q6eiqsPXRA9zxo/upVVuct/lCvvblb+PYLrWFGvWFGo6bYXpqBl03ue2W2+nt6+K+nz6A5Viksmn27zvA1PgkszOzfOFz38TUTVCCB+97DCHgnrseYnDJEgzTJF/IERNR6SjSajeJ44Brb/wbztn0Zj71jx/nn/7hE7hWkVJ+CVe//PXc8aPbOP+88/jcv3+esaMT9HZ3k8pWuPGG3+Q/Pv05Lrv8pQR+zG/91m/juEmn9QN/+RcJV8sPUbHC95qMHT9MNuMCEYZtEqIRL3KGLcug3Woj0MlmC/QPDDI7u4CjG0jdIJXK4ocJUrF7oJ9CqUi73uLaa65DkyaW6bDl0W04Zpr5uQVmZqZIORbTU8f5xCc+yatvvIl8psTU2BTf/MY3qFQKCHQEGulserHQCohjQbXa4iWXXExndx9XXn0N17/qFThph/e+90/xfZ+NG9ez+UXnYelVDh58FM0G7DTbdx3i+Pg8lltgw9kX8P3/voXLLrmCFctXY0qL8fFxTkCrEn6bj5QahmkyOztNu5VI8wd+QBBFKGByYhwVxyzMzVCvL7D18UdIpTPYto2u65i6gdR1LNOi2WqiaWAs+tKFYUgmkwhsmKaB57exTBM3lYIooruzkyiMKZfKBGFA4AdPcJ5tx14UOtFAmWjCwpIuUknq9SpRGHD//fckCarUyReK+L6HaeigEihytTpPPpNGSIES0Go3k/sxVjRbibIqEqSRqB7qmsC0E0+/MI4w7cTKIQgSr1R9UVxFqZgwimi3W6TTGZSKabYaNOtNojBE12By+jgHDu2i2a5TazUZnZjCyXfR9tsoERCGPpZlE4YhmpQIIZAozr1kHbaZRlM6wpDolk7Lb+IFIX6gc+zYHMLUSeUzxHHA2PgYq1afw5r1G/DDNl4YMj09hWvpaItF9olfeKmDH3hU52eRkWBkZBfdnd0YugVKYpoCxzJJOyYibnLhxecjBUSxj1QKXZrYThbTsqjNTaERUqvOEfsxrWYinhWFEbpu0PLbNKMGy9ZvYGBgmCiGn9x9B57nEYcRE1OTjI0dxdTbqIVpTE3Din18b55GC/xQEsWJT+xctcrswhyaEMxOTzM9M8OebfswpUt1pkXgt2m1W0jdACH44k+/zH/+y2sxc3mMeomRQ0fYt2cr+ZzF9m2PcOzQNNUZk7f+4ZeohRal3FL+6gMfYL46S7mnl1jqXHrZS/nvb32DrkKK++67m0goClmX73z1s6xeMZTwgonOmJMmot6JMvmT/Loz51knd8ROff08QhMakQo5teFwYvuncvJO5ePFKn7KOic6ec8Wz3YOJ+/z2fP7U3Pb5H0cw5MF37Me0lPiV527X3CcqXP3i5nNODX+N52859u5O/24E4qaz92i4MlIypEzF3Sxik4ixD7T1k4//gV9K6fK6MbxE7hzBWhC8pqbbuR1f/Qhbrho+ckDX8Denjm0OCaUFjlXoz6/gJUpggpoNeexDAshNQYHepAGTE1NYNkS32tjWQ5KyYTAH0SEfoRjpjAMwex0jUw+j9IlA33ddPWW8b0FwthH1wVxFCedIZK/52YXODbb5M0XlYmigEsvWc/sTJV6zef8TSsThUgNUq5FOV8giGOCoEo2m8OyjcRIN4oIY1i/bilzs/PU6g0Ghntp15tIzScIFIbpYNkpKuUySgnUCd5MrDM5NU+lo4DQoLe7E9uWCE0kghF+QCqdwrItavU6hmlhWhp+28cwLbx2RLPZxDJdRkbH6e0pEytoNFvkcmlSrkUUhGiaiTRNgiAgCCOOjU0SRTEZ12bv/hHymTRxILntx4/T31Ph7gd2sGSgj0zeI5+tcMv3txBENb7+P9vYfPYKoijm9jseZ2iwg+7eNEIoFuYDdENgGskPeXLlSyBAKYjjxI9LKYmSLlJCNpdloLdIR2cBpCCdNtE1uOe+xxkc6GVhvsGBQxP09nQgdA1dE8ShT7vWQElQsc6WLfvp7i4RRk1UDM1Gi2VdvXz2+w/wiuuvBWBufpbeoV4cSyKCNqHyMHSHeq3NAw/cQys8RCGzlF+/8QrCoMnFv3YlpY5uqrWYwyPT2MZx1q9ZQdbOYBkgZIrvfedWNm1cw+BAgcHhpRw+cIz56SpnbbyYf/i7T/LYrnk++NH/oqNg0tvXw57d+/HaIYPDZbK5HLrUkbqF65qMHhkhCmPm5hZIuRmKpQojh0Y4dGiEc87fQKGYQYiYu++8j3TKZdnypfzw1ruIophSOU+r3SSbSzO0tJ8f3no3l7/8EprtJrpp0Ko2GFo6RDaXZe26FTTqVUZHR1ixcgjHtThr01qEkElHRZdITWP9OW/k6ivfyPx0nre95W3cdtvtfPAfP8if/79vY35hmsMHD/H7f/B21q1djqkZbFy/iXymyNve+i48dFauWErYWuBdf/TH/Porb+KDH/47+gc6qM4mioqW5bAw3WDk0DEs08HQBXqmj1BZEIGpQRDP0263EMrEtvJ8/BMfxzFdevv6SbkOP/3xg6QzaeyMTYjH97/9Y1Zu2IBtuRzaOcLZm89naLCfb/zXN9m8+XxU7DA7Pc/KVatptTzSmRQXXvBifuMNv8Wf/sl7uPqqa1g2vIR2u0orrGMYEk2YxLGBEm10zWJ0ZIw/+7N3c90rXoXtOghNUG/NMz83ThQ3Oef8DQgtIowseno70TWDH3zvDs49ez2WbvLGN/8ea931vOT8i5GGhu043POTe6k3FxgYHKTVbC3y30yq1XniOMR2bRbmq3z9m9+kUirRWS4gpKBc7kiEUDSdVDZHsdxNrCQiUhw5cgTbTtNoNHEcB8Mw8AMPNIUUkjAOkwJNS6TiW00fKQ2EJvGaDXSp8CIf103UfH3fTzxIoxhDN/E8H0MaSCuB0ysRUK/WMAwd13UZ7B8CoNmsITWRQI11jdD3WFioUiiVkIbFzOwchm5imFaSpJIgHnQpEVJyQhMsDAIi4sTXTkt4bzt37KCnq5tWu4E0NOI4+c1tt9tYlk0gIgzNxtJiWvUxdBGglIeIAaFTr7Xp6OggCNvkChnuums740dr9A8VEqN2kfhyapqEKMIycmgiIBYxUShptXwcJ0cQSITtsmPnXlauXEHOTmPYCqSgVvPQbIFrphHSwTY0GguTCAkqipFKQOwTxDpeaDF6dARp+Az0dRMFCtuy2bPnADsfv5/hgfXccftXSVt5igUD0wQVCpShI3WHQDMRcYDXbGFIH9O0MBwXQeJ1G0dJwaNJm5HjU+w7eICOSi92Os2KlauRuoaGwkllaFRruDLxtatLHXyfrY9sJ/R9svkyc3OTOCkH07BwLIdms8WR0SNsf2wPpq6xZDhHd6UXTYSEcTLpp0mNkcYOLr7gZThLLqa5sJ1WPWBh6nEyVougXSeXSWOlj3PTK68livcShhWOVQ+z98As527eTCabZenwMN/65tfZt2MvBReC1hz9Pf3UqiHDy88i37l0cUL5FIX0k/8tksIoVDFSaIsF35lznDMJ873wPPipua1Ae1r37snjPLVrdmKsfIIDeyYD9Wc+r6fv64XHcxv7K5+7X6I4Udw9b2eAn0OcuGjP7HP3jKOf5fOn+96dsER4qq3lYnG2+AWc6Ayc+oUkOkxPzgSdYJclW4ufWOPUQxRCPG35qSy+07DZXjCw89Ti7kkj6Kcex42v/nUOb7mbfNp9noXdyef6zBdNrGnISCEtm2ptgZTtEygLXViEBIRBiG0ahKEiXyyxc8chOjoqzM4uMHJknCXDS7BsA2noCF0SBQGljg40qahX59i1+wi9vV2MHZ/AMm3iCA4dHiOby2FInVp1gWzO5tjYHno7s6Qcg507DlHIFwi8NsVKhna7yZHRCfK5LFJP7BGy+VKiPhb4uI6NkGCnMszOzlEuF5FSYBiLAgWmRRhIBCb7DhynWm0yMjZJb2eJbVv3s+/gOEKP8doBpUKe0ZFjWJZE1y00oeM12iQYdoljuzQaDUzbxjTNxWMIyaRthBGTzxY4fOQI+UIGW7cYH5+m0W7QUelk9OgYKorwPUU+5xL7baamGlTKWeJIo9WOEGbEpvUrCEKf9euXLRr0ZghDn7Wrukjbkgs2r0XFHr4fMDs/T29vhShKbAtmpuexDImm68Sxwm8H6KZE0yza7TqmNGk0ZwiDCFPXUcokCAMgQkoTFSs0AZo0WDo0QBBFWLZBqeyiVMDdd++iVMgghEY6kwFlgIrp7ikiiGk2AmIFo0ePsnr5Cv77vv1c8eKraLbaNFqzVEoVatUaLc/DMFI4TgrLtOjpGaBUXobpghf4FMsd1BZ8pPSo1sY4a+067EyR2dk273nvuzl70zoKpTz9fWWCKObun23jtv+5lVa7xUWXXMTZ552Npkne9fvvorOUYd3qq/j+9+/l05+7lULRZvPms5iamCabzWJISRA0yeWLHDwwyqo1q5C6hu97ZLMpSqU81YUmt91yF1se3cVLLr2IcjnPj35wDy+97EUsX7kMqUMmk8f3fHRd0tFZ5MjhY3R1dhEHAdlcFq/VJI41pKVwXId6rYlSggP7RrAdi4mZOX7rLR/l/R/4FFdecRN/9I7fY2ZqjtHRXQwMLScWOr/xuleyauUmPvKRj3HjDa/lwx/6OD0dRXqGlvLggw+weuUgf/+xjzF+aBeXXHg+QtexLIc3vvEmdGny27/5dl5906t4//v/ltWrVpFKO0SEdPaUyObzCCUIwyq6DmGg2PLQXiJfQ0PjzjvvZPP5F7Jt205WrlyOHzZYMjwAMsSQBh/58Md40YsvZKi7wOihLXT1raBZnSBTzNDd1c0//O2H+T9/8Te8411vx3JtNM1ExQLdSiBHV113DSFtMnmbXLGMUgaaEkgNTAO8QLAw16SnXOHs9WuJhCKTSaFJRbvZJlfoJVso4wcgpCQIWkjTQpOSSmeBQrHIB/7qQ1y//joymQyaoRPFCQS5f7CPgYElBEHIocOHqFQqBEGQGMfrJlI3sJ0UmoC+3m4MyyaOky5co1GjUa/hOg5xGGIakkgpSuXSE+IjcRihYkW1Vk2ggIaJqRuMHD5GLp8HBHt370TXTVJuUmRJaaALE6WFCKElCqt60q2LFckkDYrACwgCnygEKU30xQ5NFCn27ttHT3dnMmmoW6BJHnzkYVauWo0Qkka9gbGoTKkRIxDomvZkESIEQigQGmEQogkd32sTqxBd6lSKJVAJbLVaXSCTyYGKiaLFDlWjjkZMGAc46RytVgONCE3FxHYe05CknTSmbjA5Oc6SgU6KJQdHVxi6zSMPPEi53IFhaniBj64nE7FxlFScpu0Qo7HQaCJiErREdYGUa+BkioReiGE7GJEilcvTqM3hRxGuLonigK3btpLLdSGMEE2BEhFjoyMYmsO23Xspdw7QbtTYs/NhLDuNihqsXNJPJqUn153noxsWhmURSgcpbQQazeoxMo6BpunU6wFIiMMATSQKxCNHpzk+OsayVatZMrQUgSQMfdqNJqAhDZ1GbYa4PYuVL+MiaLdr5DsGUVaKzs5uhKbTanvMTk0yX12gUqrQUSpTLGkc2T9KoVRA6jWklOhSxzBs2q02l71EUh56MWHcJvQMmtOj5K0GreoxOioFojjC8wVx7FPJDbH18T3s3F5jci4gZ6XZtWMbH/n7D/I3f/N3bDp3LRvW5MmkmwwNr2DfvqMMb76CdMZNqP6LqCklThhtLOY8yVJ4osslnrW4O2O++IJy06Qwe7pWwym2B+JJHt5T4KXPASl3orMnnvHYTmxbW5Q9Uk8pJE8+N017El75zNnok7nz049HYfzK5+6XJ54s7iJeyEX884kX0sF7vp27RS8PII5P4JVP2oZ68kY4+f3J+3v6HpMlZ+rgnWn5L/Ibfq7kYCEEhRXn82d/9U9ccfapRuenxEnGn4ujT/ttPG0YIBFEQlDIlzl2cBfZQgUNaLTb2JbLD+64n8H+PqSmMzM7RT6XJ+VmyKSy6KaGXMR0+15IvdZCKao1D9cAACAASURBVMHMzBwp16VSKjA5MUNfXx8p16JWb9DZ0YGbStFuekxOzfEfP97BujKUKjl0QycIIuaqDQZ6ChweHUMowUBPN0qLmZ2ZQ9PA831aTY+xiVkq5USZLYxjMpk0kVJ4foCuw8JcnShQSNvEskw6KgWa9TpLBjqYmpolDENm5hdozkesXNqHbuhkcmlmp6pks1n2HxylUskwO1sjk3HwvHYibz85i2UmRs2NehOlIjRD0Gp4ZNIGhmHhByFuyqZYzLJz9xGWDvXjeQHplMOx4xP09nRRKufZuecQ45MLrFwxQCptMTczRzabZn6uytTEHEfHjlHMZ4lC8Noxx8YmyGYdDEPS252QM3VpgtCwbYN0JpdwJmOBFAa6ri1OYkj27jtOT18FTZpousEjj+zh2NgU3Z1FDEM+gc+Pw5h6vUk6m+IHdz3I8GAXQRCybNkgctGuQWoSJWK0RbEG32+zc88IfX0dSMOgs9LLN+/dw8UXbMZN23R1VWg2W5RKHUxPz5HO2CzMzy2qjsZIw0QIhWnqNBse9cYClmmhxQb//NHPc8s3vsJQ/zD9Q32cde4mvLbBzMQU5Y4ifUNdzM9O86Lzfo3+/h5S2ZANG1ZRrddo+y26O5dz7vlDvOZVr+WL/3kr+/d73HHnTj72yf/mwZ89xvXXXMjk+AS+55HLpti/dwTXcUhnMtiOzSMPbuWSyy5g9dpl7N61j3JHnu6eCqlsBhXF+IGPJhfRBUph22nabY9SpYgipNms4rgWR0fHadTr7No5yvv++hvcettjbNs5jtdKs2rVS7n+6qtw7SwXvfglPPTgY5imy5KhLJlihnJHmXM2bUTFBvfeew9f+NLn+KN3/SGHDh6ka9AhnXKwRIHrrr6IG294FZ2Dy0l3DDA3fhTDkNx//wOcf+5m+gYrXHnVZVSrsxTLGXK5NOPjU2RSOVptj2azjptOoQmJpmkMDA7wne9+h+uvv5ZCJc3ZZ29Ak4rZuXFs2+Chhx+io9KLa5dZOtyPIU1u+f6trFm7GcNQzM9V+f6tt3H2Oedx9dW/TqTapDM21do8R/YeIpdNs/XRbdgZQTbnIjSdMND5xje+zrp167n99h+ybNky/Jbiq1/+Gh/9+3/CcfPcftcPOf+8c1EoXNfikx//NMPDgwgUjmXR8pq4Toq3/u7buO666/n0p/6Ns/Ln4rppjh4bJZPJYRgGnuc9wY00pEGpWEZHMj87T7NZx7EtqrV5LMukUu7AtkyCKKRWq6JLHTedwk5lkoJIEzTrNRw3tUgnEMm8pEhEF1KpFLbr4rV9YhVTLlXQNFBCUKsu4KRSuI5LEAQILbGQgcVCTsWgJfzgHTseJ5fNJZYIWoL2SLJjhW5oKBKYWDGXJ4pDlEq6cZom6e3tI45DZmZnCMOQRx97hKGhYbxWgyAK0A3JzPQkUpcJN9b30UQyUTY9NUk+nyf0g0UoaYhumRiGiWHaNJp1HMei0WgkzwU0TMtF6DpeEOO6Dn5jHr/ZwkmVyVe6qNcbSMNANw1CP2DXzgcJo5hCIU13Xy9CKAwj8RFM5nhjwjBkenaGbDbP8fGjuOkSpqkzvzBLT+8A+/ftotLRi2FazNcXcM2ETlCdn8d2HJTfIFYhXZ3dCTxdqAT+qQk6Owc4fnw/y5afxUP330NPVxHP88mXLPZs303fUCdCB6kJYi/C0DUi3eXY2Dilcgdes4prRQRhiB/A1m1b6OvtWxQKstm7ZyeTC/PkSr2s33gBsdI5cGAvqVQK0LAsm2p1nlIuhanHCKWIwjZKSEy3SD5XYWJqgpTrkk672E6KbL5IpOCRR3/GrkdH2XjeEOUOHcNP/GZVrPD9Fh/+7me47ppLEU4/lmthIRg/dC+qNYqptdCEwtRsTEPQqM/z+PZHSRfXcO8jR9myYxevetX1rN2wmquvvZqduw7wr594P2ctX4ZqRkzN1/B9g9WbX4rjOggRP5nhidNnZzwFsfR8i7Mn6SVPff/cQqkTZuSnnwA/efvPV9EzVk8d8+zF3VM9n0/7+clf5nOKU3LaxYL0V527X6J4Epb58+HVvZBQv4Di7ol299OWa4tDT704nyQcn66N+UzASXHyW3G6ztuJuaSY5HY/0Ul7apy6PPERe25anU90HE9s68R5LL7OVPS97LpX8Po/+iA3XPRMRufP97o40dHUFvuaKoHKhBHSTiM1heU4BH7AksF+RkeOYxk6+WIWlOBLX/8BG9YNIfUEEuT7EULTEShSaZdMNoVlWDQaLYQSNFst0mkH27GT7pCUmJbBY4enuG5jho6uIrqMmZupYZk2pVKO2bk6XV1lUq7D7t2HSKdtwjAim80gpEQISbGY4+Ete+go5xBKcfjIcdLpdOIJJlPoukA3IzRhIDVBFAWksw7Hjk4iNI2lywcZHqigIti9f5Se7iKGqeOaib9bKu3guDaGLpmYnCafzyI0wd49I7iOhWWbpNIuoGHZFnEECwvzCM3Adh0UCkNKOiplohiiSLFz7z5WLB9idq7OvoMjrFu3goHBTqIwYP+Bo3R0lLAcKxEiSVkUCxksy+br3/4ZjYbPhg3DizPjevKdq6RER0CtXuPY8WkKxRztZptvfucB1qzpBRWjaSY//PEO1q3pSgj9cUxXV5n+vk503UDTFHEYEngh7XZAOpei1WyyYlk/URhjOy5KKIRIrBNq1TpR7GNbaaIgpl6vMTjYA7EiZevoVp5bHz7Ma193A+lcmrmFKoVchjBUHD8+jWVJHDdFdb7O3Ow8hWJiCB6rCM8LsOzE0FwoyRWXX8LGs9aRzec4d/P5+F6dHTtHOLj3IEtXDBFrISMH6zzwwM+4/bY76K0Mc/jYYQaHBrn33ntYueIs2kGVT33y8+zbvY8bbnw1S4b62bRxDTfecCM/+P42+gfO4orr3sK3b34US4ZceulmFIqdO3Zz7uazObj/MFJKZmem2LZlB5svOJeFuRqHDx1j2/aD3HLrT7n7J1v5+Kd/xNe/cS+f/eIPuOeeA3z35oeYnbPo7ljK//2zf+O8zdcxcrTGH7/znXR2VPj9d7yF4cEVfOWLX2XtWct5yUsvpl5r8rtv/T3e894/Jpd1kIZBOpdGhRH1egPPa/DmN72JN73pd1mypB8/DBkeHEaLBZXOFNt37MAw0/z5+/6azWevY+26lSwZHGLv3v10dlXI59OUKiUmxqYwbQfbNrEdJxEd8ZrJ00FpFCslFLB2/RpM20STEcePjuG4KSbHx3GcFIVCgXQ6h+u45NIpxkYm+ad//RjDKzcxNNjN8cNH8byQhudx+eWXUChl8X2fbVt2svlF5/M///Mt1m88i0pnAc/3iMIY08hgWQaVjjK5bBbdlBBqfPXL/8mnPv0JokjysqsuJZVOsUj1YtnwUh55+GFWLB9OzOYzOQSCDes3ks1ksCaymKbFsbERli9fhm1ZKKUw9GSSxtATTzbLtrnv3vuIiJmYSlAG+3btolAsJ8IjmiQMfPK5ArquJ3YKWgKvTJ7lLE5UCAI/ETuJogidJOkT0sDUJdt3bKOzo5s9+3dSLlUwTQPd0JF6MjkkNZ16q4FpGARhkMDCqzUs26a7s2eR6zeN5ThITWfLli309HYnvK04RhMiEVjRRNKlazZRscK2LMIoIpPJYpk2Q0sGEVJiWiaNWh3bdkil05hGYl8Qtluo0AchSLkuYRDSareJo4i77/kxw0PLULFCl0li2mq3SKVS+F6Ik0pRXaji2C4TE2OMHtlLZzFH4Hk8sm0rtZZHV3d34uEpJaal0VHpYs/O7XR0FpMJpJP4VoZpEUURjuMShhFSU+SyOVKZIoZpUunsJuWmMA2bZquFadpoUqKrkJnZWZrtNkrquFYCVZciRsrELELTDAxNMj87x5KlK6nOHWfDurUgAghNOjochoe60TWHHVsepbenLxHj0gSpbA/pXJFGrcqerffQXekGAaal093dRRyGCAVHjhwkX+qh2gzJ5AtMz8xhODqmYVGtLlAsFKlW6+SLafzmHL5Xx9Z0Wl6Dw0dG6OpdwcTEJD09vYkqsW4kXV5dZ3zsGP09/UjZpl0/Sme+C4TP+NQMQpM0mwE3XtZi+PxXIM1O0mbAV//tE5yzqYJrtNGlIkbH99tYroMSBqVSD//2+Z8Rmyu54MJL+LWXX4wiJJ3NEUcG69av4K6bv4wlquR7luC3NNZsvhzDlAgRJdnUSciop2Upp+GTncAbPZep6f+N3sRTVSZPYJ3EEx27J9d7YTn3czm2Ex3LOI5Ou+4Jmg4IWu02hq7zbIbmp+s0nhy/Ku5+ieL/X7XM08cLu4Gey+15usb4IsfujIOeDz71qQ8V7QyQzpM7fOo04860vRPt9OdU3J1avJ1yDM/U0bvxNTfwmnf+Ha+++BkKvBcQSkg0pdBEzPEjx+jo6SVEJkl2lCQISkiymRSuYy6KraRYtbKXMG5hGA6TY5NMTM5SKpc5fOgw+WIGFcc8/PA2RCzYtfsIHd0F6rUac/NVUq5LFCm++I1bWFry+Z8fbeO8TUME7RYzU3WmJmtMTs+yY/c0jXaLgf4K+axDGEPaTTN6bJJypYwmJa1Wi6GBHmKl8Bsturs6mJic4/Z7Hqe3x0mEAESGibEpwsDHdi38yKeQL7J11xH6+jtQcYjrOAwMdiKlQMUh8zMz2I6N1E3GxmbIZlxyhQzNZhupS3IphyCK0E0doWuMjc6Sy2cR6FimpNnycF2XmZk5MimX7bsPUi6X8P0I1wbLSTM7V6dWr1LuKKFLQRgGdFaK6HaK5HkeockYESc+d72deYaHezFNkyAMWZivIzUdy9S57UcPs3RpL27KJpdNJeRuBfVajYHBzkUzeti5c5R1a3rQNZkUu3HMxMQcuVwaRIyG4tixaTq6OwlDHyF0NCFpN300oaPJpFMnNA2BwLIMdu86juNYZLIp1GKiEccRulVganKMdS+6hHq9RqlYIY5CokjQ3d3LX37gA6xcvpZUKkPgxdSbdcbGjpLP5dCEjmEk+06lHI4fP4Db1YGTyaKpmEZ1gWKlg85SdzLjrgv6+we45PJlLBvuRQvTrNqwHs9rkcunef9f/BOveMXVfOkL/8UFm8+h0l3iO9/5Nq9//eu5+bu3EEuX9Wet401vfgNvfctbGR4YQFHiy1+5mz//q0/xla/dwXdvfYxbf7gVTZR429vezb9/5hbO2ngV//wv3+De+7bxl3/5N2xYv5mXX341b3jdjRzcc4Q7b7+LL/zH51m9bgNbH7mfdavOZsWqFSxfsRI35ZDPZ8DQac21+eTHP85v/M6r8IOAtufz1re9FcvRMJVLKABiLF0iZMzwskEENldcdg0XXLCJlNuPZTp85CN/wfpzNjLQP4BpOlx55dWkHYnntVEIjh49zsDAErK5NBMTM5RLPYyOjiC0GMsBTdhYls7Y+Bj5fBHP85IJL12nWp3H0DTS6QKmaVMolBGazq4dj9PT05VwcnWLxx7eTs9AD6s3nIdrC6684uX86bvfw/pzNiFEC9syiAKNH/7wp1z44vPp7O2ks6cfTSRG3ZZlUq83+eAH/5ZrrrmaOI5wXZfpiTFe/OLNKBHx7ne/lyuvupx0OoVhJAWAqZv09/fw2c9+hgsufBEISRwrcvkC3/vHu2j5dfK5LJ1dFcLYQ0gtKewE/PjHP2JwcBjP87nzx7dz8UteSjaXxU2nyWZzuEaGqelJSqUSe/bspFAs0lrklaFB0GwgRCJ2ZFoOCEUcx9RqtURYxbJYmJ3mzp/8kOFla1BhhOO62JZDsVxExQINBZrAMAyESLh1rmuj6xJNQhgFuG4KpWTi/ybAsQ2ShpZOq9Umm0snCX8UJ/cFGqgYXdcxDAvTNIjC5LN6rYZl2IkVitSJEKQcByEEcaSS4knXEaFPFLSxbJtGo4FA4lg2QgpWLl2V8IrimCgMESQqmSoGoQRCatimxbe+/nmWDS/Day5QLKRQUcyytRdSLBYxjYQ37VgWDz+0hYzrsHJFN5rSk/PUNIgXJyBJECphEGKZFlKLEMREsUYsdOI4kbAXQuG6KWbm5ykUygT1Bex0FsNwkKZFGLVQnoctE0EYKRximdgUmKaFbklStonCw7ZNDD0gbaTRZUwUQ//AUiLVwo9i3OwgkWZgmhah3ybrOmhaApV1dBPleQhDQ0qNdLZIrdHAcjKsXrOGfK4Tw9QQsUZ3VzdxHKNLHd9rEPpVbNsibnsIU5LK9LB7/2GWLBliYvI4+XyBdtNDaoowCCiXSjz0wE8w9TpLlwwjfINYBkTYSF3n7tFv0ZWySXWuxJQ5Du28n+qxQ6zY2MPszFGkrqOkCzIC3cC0SzRbGtv3j/E773w/f/p//pDXvOYGMtk0zUabhx7eykc/9M+88spV6Nph+lZsBs8m07OMTC4NIkIhOcH9hude3J123VMiUXR+PoqUT9v5iSwIOFk05X/fQImJn3O37wQc9XTrP/GZlnjwqvjMx/gkhPOZz+FXxd0vUfhh+wMKlUjon6m9/TzjTDjlE8tPff08BVVO3seZum3PWL6dWhSdsWA7TYfuRKfsGdY7PYr5qUue+Jd67s58p+PanfyKVfSMBd5rbrqB7/3sMMsz3hn+P06e73rq3NfprxnFCdVODUG9USObL6LiABVHaOhomoEmQ6SmEURgGBZR5DM2Ok4+XWByeoqp6SpdHWUcV6dcKkGkePzxvWw6dxPFUpaly/pwXZdjR8eRwqBabeK6Fg8cHOOKc/s5ePgoywY7+OZ3t3DupqUUyi7lUpaVK7sYHOhI7AbSKRSS//jaPZy1uhfLUEhD0FhoYVkmbb+NaWsgLYRSrBoqJ0bRjoMX+riWRbPV4tj4FJ0d3YRBG9sSuI5EU1Breuw5MEpvT5koDEjnC0hDZ37RpywMIh7ffohsKk0mnWX7joOUCln27j+GimIGeit4nk+73Wa+2qKru4TX8jENi9m5BYaH+mnW2szPz9Hd3YHvtcnlXEw9+X4P7J8gZdk4dkyz1eLggSOkUw66dFBohHGLMGwlancCWg2P0aOTLBno5ODhcVKOQ2clhVA6aLBl6166eyocn5hjaKCHMAyJ45D1a/sQmsH4+CwguesnO9m0cRlR5NNqNnDsNI2Gh2FIDFMShIlE+yOP7WGgr8zx45OkXBNIoKBxFOM4BpqAqekFUikHRcTdj0/RWvCplIp0r7sQ17bRpU6z2UBTirlqDcvMsHLVShrNGoVSloydJfRCjh89hmXpmLpMhDGCNm4mR8rU8VoNDN2k1vDwqh65Yhq/3WZs9Bi5rIkKM3i+Qhgen/rYx7n80hejCYvLLn0JrmvwimsvY6q2wMUveSmXX3EJjXqNmck6L7v2Cjy/hZ1y+d53b2XNugHi0CIONd7x9jfxule/ht9982/xta98ife97/8wNnaIdas2cfPNP+C+++5h9YpVXH7FFWiGxW0/upPa3Cyf/+x/8F9f/Rq/+ztv52tf/Qrbth9k38Ej7Ns/SiGf5r++9i1sW0Ldo3+owsuvvQLXrfDYQ4+wbGg5b3j9G7nm5Vfhqzb/8tHP0G5qDPQPsm//XhyrSL3mcfNt3+FDf/v3vOoVVxFHIZaVZWx8njC0KJQKWHbEQw8+im4IJiemefFLXkom61CrVSkUi2BEuGlJoZRBSot6vUqr2SKOE34pSiMIm6TcRLlVGiZKKAxTw498VBSSyeTQdYtGvcW3//tmLr78Is7ZfA669DENm8tedgX5Uh7XNtFEgOcFRMCFF19A06uScVxmp8YxdI3JyTksK40ftbjhxmuJIoVjZ2k2G6RTgvn5eWwnzWte+2pSeRe/VWN+ZhrdztFuVLnrzp/wutf9JsePTpArFECLuOm1v80rL72eSEWk02liJQj8CEM3CGOF0GDJ4BBRnBhNW5bDjh0/Y0nfMFIYCCkwLINiqcz9999Hux1w+OBhurt7MC0dTdOQpo3QJdIwieIIFcaJKXwmjSF1RByj2Q6r1mygsVDFcR2mp6exHSvpTsUxQhrYhp4ozgoFxAnkPY6JYoWpW6Ag8r1EmEooNN1a9MESZNJpgjAgjAJSqQy7du0in82hNBCaRtvziOKYUEWJsqWKQcTEGugyeQ4qTSOMIoSmYegygTFaFrbj4gWJNYLQeEK9sx34SGFjmDpKCOqNBoZjoek6QjeoVedpNJqs3bAe08gShi0sERAGPmPHDuNkK2i6ZH5yDieXZWBgECkC9u7Zw669eyl3dKIJQSiSLpVYnFgyDANiiGUCEW/4KhGjQVGtVnEzWaSho+KI2PfBBMNMI4hIuy6NdkRtYYojx0YodnQmoiokXVdBDGGIAKRmYBhGYrYgFaARC8Hk1DSmZbJr+0F6hzfgBy1sw+Cvv/jX3LvnfhpMUqnczi1bDrC2dxNKQBhBO5I88MA+8uUybqqILiWGprNnzy7KnR1oUrCwMINfm8IxBCoKicI6C3XByOQca9eehZ2ymZmcI5dOYVkGQjd48P67yOQ6GTmynzXLB0i7aWr1aVKpNJKIf7/ty7z7piJa9wbyvecyNT6Go/vAGO2pA0S+TxQFtFtV0u4gYaAhtTr1eZ9D4z4rN1zA//OO9yB1k507HuXf/uWz7N7xEDdc0YlJnUppgN7e5aSySxnctBYV62hI0E7JvxL1kWRC4iTazXPJL0/NbNQTudezdbLiM+RVyThFvOhjt0jQeRrfTTupW6adwZJgEQl1Um75XHPm59TdUwoVn6qqudiQ0J5k5TyNyvTEebK4rkA+DyuEXxV3v+AIQu8DJ7//eRR3J4wRnx7Phj9+PvHUMbGKn2OX61nWeJqQinrO3bMXHqcDcT7PLTzLTM5zKfBWrV7JaJgn2xw501ZOe4RPF4w5aT2hEn6ISBTiVKyo1Rq4jk3baxKriLnZBY6PT1IopJienKLZ8PCaPoYhE4NcDXbvPsDRo2P0dBXI5V0sO4FsHjhwhKNHJ1i/bjnFUo4gDvnJY/dz+aoslqGxblUfui544KHjnHfOMlSckPFNMyb0Q4SQ3Hv/Tgb7uiimdTy/jesmcuLzc3WmZ6oJpMZIOEKmJZmZm6XVhEKxwOzcLEKXZDIpOssl9u8dodJRJJ1OIaXOsaOTlCplOitZICCImghMmvU2+VwWEOzafYBzN63GdW1GRo7R3VXCtAw6KwXy+Sx+GHHXfdtYs3IJuXxmkRcSo+nJ8ejS5MFHd9LXW+Gx7XtwbJNcLsPWHQcZWrKEYsFFEPOtm7ewccMSMhkX27aIwpjRo5PkCzke23qQJQP9KDx0aZBO2aAi8rksx4/P0NGdQwlJFLbp7e6mUfPp7+1kbGwc3/OwTIPb7nyMoYEu8rksvuejCCjkM/heRBwIxicmOXJ0it6eCroO0pCgNEq5LALIF/N4nodhmCzM14gjyOZSmJYkX8gkhsPS4qv3z/DStUvJpkxSwxtBKKYmp+js6mR6cpJMvsDKZUOYhoZl6qAilJTky3lS6VSiwGg71Gs+cWzgtz0MM/HKqteb5PJ55qvTZPNZ3v+Bv8bzYjZsXMbx40cpdxSJooCLLtpMqAKQinqrhps22L3jcSwnxZZ7txC0Q3LFIqWuLmxLJpYbps7w0FKE7tD2BV4Q09ndxT13382SwQEuuOBCOiodFEudaIbk/M2bOPe8DVx6xUUcHx/lXe/6E/74ne/hgXvvY9WalXR1l/jeLV/nltu+x6pVy3jksUeYm5/md97yVvYffJjQNznnonPQLAtp2nhBRG93D+/7v3/FJz7xcT72sX/g8suv5Z//5eP8wR+8jS984XN85pOf5w1v+E2iIGTk8Ch/+u4/48477ubmW37AVVddS29fH8fHZnjssS2sWbOKnoEuXvHKG3n7H7yLnz28lc6OPKZl0Wq3MIwUnhegSxuUzbath0g5WfL5DGHkY9uphA8pI2qNWSwrRRhGhGGALnUWqpNksynqjRqFYo61a9Ym8vhR0n3MZwsUC3kMS8PzGphuCd/3KGZTGMpnbHqKjJuhXm1i5BzCCO67+37GRo9gp00yqTy+F7N//2Emxo+xavU6xiYm6ezqJoxCjhzcT7FYxE7nadTnWbl6DdPTM/T3D6KUz5/8yft4xzXvRNM0UukUrVYLXZdYlsV9997D4MAQKNB0xezsDI7lkkln2b1nF9lsgTAK8IM2KSdNHIf09fVRKJYY6C4RR0HyBJUGjVoNQyTKuoHnJxBD00Ap9aSFgW0RBAHEMbphYJiJTYJS8MhDD9I/OIgfJnLssUqsBAxLBwRhGBIEAdValZSTSiYEkcQxKBWgS8nCwjyptIupWwRhzJ49u9E1jWJnhaDt8ejD99NZ6sRxDSSCMAhwbJM41haf/woNxfzcLJBAS8OgjbXIMTRthziM0XUDy7SwzGR5vdYkCP0E7um30XWNOAyRQsO2Usl1Ml/jp3f/hJ7eCilHJwp85mYm0dMVghCy6Qy+AuKk2/PgQ4+QK3VyaP9+/j/23jtMkrO+9v+8lUPnnpx3dmaDVhu10iqiiBICCQQIYdkEG2QD11wbG67hGnPhZy7Yxte+tsEYgwGDJaJAQgjlLJRXq43aNLOzu5ND93SqXL8/amaTdhUu9vPwB+/z9O5MV3VVdU911fe853zP6V3aBX4S7xITE8UxsiwRhxKeFKJFKXYPb6XaiGkqtmBZJiIMUFWNKEyCwT3fRTdSNBoNhKSSzRQg8skXU2iyRHWugpkyURbyPRVJJkIQRAt/YyTkBflvFAbkM3kCWadrcAOICDmKqZbGOH/F6Ty24xk+e3MnHYVWzlmd5dPfuZdz+jcQo1JzfJo72hhcsQax4IwrgI6OdjzXw63Po8sxqgiRpYg4CIhQ0MwibZ1LqNVruK5LS7GFhltH0VUiSdBcaOWJXz6FKiQyZsL+SZJA0xWIBddecZAIm1zvuTS3n8aPf/BdCqkqudQ8jdoc3d3dA3XQEgAAIABJREFUKKqG4zh8+M/u4LKL1rJveJhYamXgjCsJSNPS1obsVFE0eOqprfQvaSd09rBiRT9BCN2DZ/Hc09tZunFDEjK/QEacUOQs/CeQJOlIKfd6wN2p+uROtY1kP68Uy3A8WDuxnhTH7G/x55ODu+OlmL8aq3jMlk+5jUUQetRw5fjevJNv6zfg7tdo/FeAu1OPU50Zr5/JO1EbfKRv72VbTmYbTsKLHb/eQo+aH0ZI8vFU/38tsDuezXvNTN0xeV/HArZFP9CTvuaE9U4mDs3lsgsSzcETlr3C7M+ReakTx6LePEbTdQSgyIuynnihXyQim82RslNIcTJNJMUxU1OzLO3v5sDICG7DxTYsUrbCSy/tZeeuIUxNJ5vLIMXQv7SX8lyJSMDFf/o1vvi+c0inbXw/RFE0nIZLPmdhWypDB8bIZTMoKniuDzF0dzYTuC6Hx2YYHOjC0HVGDsxzeHyKfF6jpT3NxMgMKctgdHSS0mydrt42FFnG8x0UWUXXTSrzdbIZk/HxKYSIMAyTVNomCEN0XcV1GwhidNXA8308z8XQ9YX+Op2RgxNkMil8z0+KRMPA930kWaWvuxVZkXhp935yuSz1uoNuqAgpRpZCunvy6LpEUyHHwcOTtLYWacqleOHFfXR1NnPvI5u5/KINqFqSLxbFyUxxKmUC0NPZxnPP76arpwCRRK3qIMsye/ePsmLFEmJcQj/Jx3v0sZ1UKw06OvLk8yliInRdZaC3ix/f+UuWLW1H1xVaW/PIipQUYOUa7e0FWlrySfaeKhP4PoqsMTNdJpWy8YPkc4ojsO3ExTPGA2IUWUdIcNvPnsKJ4JKzVxNLEnHrUjRdJpvJEMUh2UyKIJbYv/dFHGeeem2WKKpTyBWJFoxayqUKfuDwkQ9/jMsuuZypmVF0Q8X3fCzTRkgy2XwWIUlcfsXlrF2/hpRlU6vPs3nzNjZuPJv9w3sIY5mWtjbSeYvIk3nuqefo7l7FunUryRXyXP/2t/OhD7+PerXG/PwMqiKhyhqeI/H3f/d3XHLphXhug+efe57Va9fw/e//gLM3bQJidEsiiANyuQJWKo1l2tx04++wb9c+Pv2ZP+Pz//tz2JbK73/4g4wcGOcf//Gf+Osv/hXveMc7+f3f/wM+/JEPgxAYaQ1V6KiSCYGPYdromsGf/8Wn+du//d/UnCk2nb0KWfU575xzeNOV1/PuG9/OhRedy09/8hN+fNuP+cDNv8vaNau55LKLuOYtlxGEHmedvQZVi/Acid/+rfcjAX1L2tm1YweWZWNZFiMjI+zbt4/BgeXUKj63fu9W3nTNFZiWhqIsXO0DkcR4KBKgoCgyjuMBgnTaQFE14pikt0kWC2HtOg3HYW56Dtev43pVCsUMupZianI8mYSxdFKZLMP7D/HB3/sDfuu330WhUGRpfz/LVy4jncnzhS/8H+6++x7e/vbrKBabkVUNSVWJEEgiIp/NoKkqQjawUgZRGFMoFvCCkNL0KMv0NRDHlObn0LTkOxz6AUJAId+MpsggCSQpJmWl8FwPgNb2TuoLQeGmbjI5Mcmu3S/S0d6GaRgEgUu+0EwUy8QxlEuzpFIZxsfHmZstsWv3dro6u0giDhoJa+00MIxEWhWz2ONXR5YlMnYGxdRwGg0MfZGNA0VRqNZqmLqBoqr4nodpGriun0QSJFQTnuuTSWeJ4og9e3bT1NTC0iX95LNZYpFk9+WyBTKZDJVKGYRMLKSFbSzIduM4ybLTdEzTJAqTLLtKpZbkwQmBLGTmy2V8z8XxHOy0jqqqpNJmMk8oZFRNwQ98JEkmDANkSfDwgw/zhgsvYHp6gmzKJPQdbCtFobmX7dt3IITP8MHDtLW1EEWCQwf3I8cOVipLeW6CfC6XsHUCoijAD3xkKWLz8y9g600UW/K0tPURhAGqouA5LvJClIXr+mSzOaJYUK9V0BYyB03LpDrXoFauki5aSELgug6CJAdQVlJEsY+iKCiyTBAESa4mCkLPgJpC1TUiv87M5AFUPAxFcMGqTcxOD/CZf7+bFf2CKy8sMjx9gKEdJlt37GDj2WfheRGyquA6dWQSsP/Mk0/Q2VIgcOYgDhCSIA4C9o0cJhI2Y5MTtLW2oqsyL+3dTWt7G67jEgOmojExOcbU5AFWLO0inc4QhyFR6LN3/g6W9qWo1RUmvSbK1QaXvOFM7rn9a5y2NIUkCWr1Ko1anVy+wMUXd9JebOVr3/wF3/vpEBdceBM7tm6nUhlnfq7G9t0v8fjjT9OaDsiZVfIplcmpKZq6Btm1/RBrzj8XRdKSquIU4I4j7pjSgvnIyWSGCz11x/wuHdODeVR++Op+EK8oY1yogJJYg2R78YKh31GmbnFfgtda/76ydPK1s3rHs4HSCa6ZR/9fFKUt9iAfb8CyyCz+Rpb5azV+PcDd8eP1zEgcyRE5Qj+fot/tmCiEkx9askSSBcqie9iv8TgVAxcvNLu/Gkx8JbD7zhuuZ+sklEa2U8zYr/PITpRvLuxDHF0WhTGykmQMKbLG3GyFsdFJdmwboZC1eeHFXUyMT7F1+0tYpkKlUmdJTxdCCjB1nU0bN6IoJrVGha079tLX28mNX7qbS5c2+KO3r0eSNYJAYsu2YVpbmzBNm5aWFGHo0dJcYHh4AstU0TUNIcUoisS9Dz3NxrXL8dwkOLvYYpJNG7S3djE77dPUoiMMhXQmTUt7K65XJQiSYkiRVRRJY+jAKG1tOXJZCytl4gUejbqDvWB+oigqlfkGnu9hWxq6oREEHmEsMTdXobmliSiKSZkmupEUta7rIasKiqrgNBqkbBPTStwSLUtHyPDzu7fQ1pxDVQyESC7utmVgmAYd7TlAZaC/G8OWCIMo6b1QE9MYRRHs3X+ItG3T2pIjCH2efW4vrc1F7n7wRTaecVpioICDU6/zkzs3IyKF7s48ihIRRCFPPLuDlct6qdcD1q7qR5IlFCW5UcoLrK0kxcgSGIaZOD8SABKeG6CpKrKcuP95nsu2HcO0NBeZnp4EEWCaKeJYRZZilva1k0/L5HN5bNOE9uUYhoYkyxw4MJSYXWQLNGW6aFRCujoHUKU0pelR5mdLtBRb+M43/52zzl/PtW9+K0EY096RQ9cT0wVJUhd0KCqRiAmDBuXqNF/+h6+zbu1aTluxGrcRYWd08vk2FFXDDxpopoOqBCxfuRwsGcuyeftbryP05pibq6JpEkQhw0MHGB+Z4KorLsVtlDk4tI9L33gF5XKJyy67lCAMGZs6SK6QYvTwODu27+fGG3+P8887D0s3GRke4c8/83Es22R6dpYoiCkWW3njG6/isUefpL9/CZs2rWNkeI6f3P5dNp11BqEj+No//SsP3v0Lzr7gfL70pb/ni1/4PJ/57Ke4/NKreOSRx1i39mxu/e69TI0f4po3X05PbwsbN2xg+84dKIrEXGmGM85Yj2V1cPtP7iGTauLeex5CClTe/Y53s3rVILrm0tO7DENXCcKQ6bkpNm5cx9C+IV7aPcwN73oTT/zyUXp7OxPgHoaoWorSTANJKMjq4sx0UkA4DQfTsKnXHKYmZhk9PELDcUilMnzqU59m5fKVrFg5gKYBUkh9rkZTczOSpuGEEW6jQSaV5+d33sPD9/2cC869kCCOEbrE/LTPJRdfwoYN6ynNHyabaSaMQTd0kEHTFDy3gWWYVBs+hpkEUkdISJLM7nsP4Dkemq5hGBqe7xMEAbquI0QCYgQRsixRq1STIlOSUGQJzTKBmJRpI2KJTCZNS3MzDbeOaVoIVQehEoewZctmli4bRJJkdMMiiGO6u7qpVOfRdJ0wCJmdnaFQKCaXWQlkISfnsoAgDJERKEYSSSBiCWKBLMsIBKqiLFyiBbph0GhUSNkp4iim1qhi6iYsvGdZkijkC9TqNXRdJQoDpCjCcV1My0JSFQzdAlS++71bOX31ugWJur6QPQqeFxAFPqosgSSjKTqySCSnlfIc+XwORJyATM9HlUyCIESVVBRFwfU9NM0gikHTZCJClvYtY8++F9m9czfLlw0gxQFx6LFj5y5cJ6atvYm+JSuZnZvAtCwGlvSQNhXa2loZOzBLscVCUzQUWSIIfVRFwZA0Cq0tqFYDXbLYOzREZ3s3c3OzWHaaWFaAGNNIEYQhrueRMk2mZycoNjcxPjmDLDtk07mFHqkY33OTPkoS0yc7rSNLgsDzUFQNoZjo6WYmqyG6ahB5FSJ8UgYoRIkEVJF54smtvOuyqxHuSv7w//yEd795NV/69n+wu+rilMoUMgUy6QyWrlEpz4Kk4TVcTDVGUwMM0yYUEDgegZSmqbWH5tY2iCMOjuymr3+QWJJQJZUwBKc6z/CBHZy3aT2GJqjVqgB8+/Fb+N3rmhOTHq2ZjpWX0NRWoFGeoqdFwascxLTtxBBIVrnvvgfozBbxahVWnX0mdzy+jbYWldUrV3Pm2vPYMzLOirWrOOeMs2g2ylhyAyWsMzMzjmSmyGf66d+wnihcqPNOLIGOAXdJ1SEWXCtfXuPIC2Z1x8ogpeNYtONrmNfPkp3c8yBhwZK8u2Nr14W1eD3g7FT7fD2vX7zvHj0WTgB3J+whjl9x+W/A3a/RCH3vM4vMy8mAXSRefz/eEYnky06yU8kyTz5L8kozESfmhBxl/o4f0oIpyctHeMxrElHxIgCMFpNVf8XxSv16v/I2T7VcLAYwLNL/x392i46dR6j+Ex6L/7a1t9K88mzu+NGtLOtuOXYPx619wt5f8SHixQtIcmSe5yCEyu6Xhlk+2M2OXSO4voNlGcRItLW20N3VztRsmYmpOWamZxgYGEQyNGRToMkK/X1dfPeuu/jzG1dg2zZOPSDwfGQh0dmeRZaSLKcwrKNIJnOzU7y09yD9fe3Uq1UkofDCtmE6W1upuy66oZLKpIi8AMsyaLh1ND1mcrxM4EMmbROFDo26i21azM87pFI6EPPS3oO0t+URkszc7DyKJJNOpRHA409spbe7HUVLjAXm5xtIskwUuliGQSaTRhagyqAaClEo43s+khIxO1VBJkbIMZom43selqYiSRLz81WWLWnHsgy+95NHWTnYTTaTQSyAKmIFWY4QckQcSSDpqIaPCA2gTIxCNpPF9yIq1Rop26C3t5XHn9pBX1crhw6Ps6Svg9GxWQrFPMsHOhkYaCWTtTBMg0MHZ9mw+jS8oIqmmtzz0DP097YiKxDGEQiZIAgxTRlZk48TpSSZXDJ+6DE5NUuhYHHv/Vvpbi+QLxikU2lUxSQMfcK4AWigwKGpKp3N3Tzz4m7uf2GIZQMrkGSLlGXTaASJ5Cv2sTMmL7z4PO3dHcSSzP2PPMKS5cs54+xNxKHK/Q88wKrT+wljlzhSuP+BB+jt6UaWYXpqFEUOUBSNt73lRv75X76KbikomkalXidVsJmcOISqSBBLaJKNqlpMTh5ChD6aZaLoFsQy7//tmzjnrAv47Gf/mief2sLY6DjrN21AtmQ6u5qRZYOhfZMUmy0ct0J7Zx+RLzFxaIq+rm42rF/P//qLz3PRxW+gd7CNiYkS73nv79Ha2kFfXz+aZVAo2DQXLQK/ThCo3Hv/z3nTVdfwl3/5d/zsrjv4nd99N1dd+2amJ6qcffbp7HnpRVqyfXR09TA91eDQgTE6uwpsXL+a+x55nCWDA6RNlUsvu4ilAz0sXTZIZ+9SHrj3Pq550xu5++7b+fCHbuYfv/oVbvnBt+lZ0kOIRBBJxFIIImJmcpLmliYUXeP2n9/OheeeR1OxGSFkXCdAN00kOcbzqqi6hKHZxAQoUgCxYPeu/WTSOb7//dtYunSQr371OwShz5K+Ptpbumnv7MTKpIlDj6DmoKdtpIV+Xl23kKIGvlA4sP8gb7v+PXz5n/+Jq6++lMAN+NEPf8CSJT3cf++96IpNR3cbKApR6GPiEkYBpp5heqaMYcRUSgGEAYqY593v/iAXb7iYWMDBg4dIpTI89cwzbN++hf4lA6hywhggxQRhiKbqRGGMqmjMz1fRVRXfdTBMDaSIxewxTTNASIROIkt1XIdCoYDnJ33QXpBM6ARh0t+nKSpBEFCrNMgVcwRhgCarSJLgzttvI5vJYqYs5svzZNIZarUKmqwQxj4RIX4QUpmfJ4xAVlTCwEvy1hYu5bKsIITA9V08z0VIMkQhruuh6TpIgiBKZLRhFCMrOlEcEEUh61avRgpDkEGRknt6o+GiagqqKuMFAZIsMzs3zXy1jKEqSYamrKCoOnOlMulUgR/edgs9Xb0oisxceS5ReAhQJAnH84lDMAyFfC7P6OQop5+2ikZ1DlmGWr2GkWohVmQiP0DXTdLpNM9ufoGmpk7KY/to68gtxDiEhH4SPRCFMf6CbFHXUhiZTgptPaiqiqKolKo1MpkmNFmiVJ4lnc2jSBJhDGEksMw0uqqRstPopobneZRm59ixcxdtLW1Imkza0lm0dYuJUYwM5VpAvtBKRk8xO3cYcDBjQeDVUdQF58M4pq+7izj2CIKYgVwf5al27tnxArff+nUuvmIT20Z38sVv/gOXn3U5qmYyPj5OU1MWPSyDmlyPg0aNQxOzLFm2kXKljGkYTM9O0tUziGoYSEIhDELq1Tkevu9RVp/eS0aPieOI+378EIPnDfPWy9poNDxUArSeczH0AtOTkxze/QA6ZSRVx3UcGg0P207R29vNrh0jNCKJQ9MH2PpkgyuueQdGrhXN1HnuqaeYnDnIzl072bP9WerVgxQKWYJQkCn00bfxYrKFPIGUTBIfASSL1chJ5Iwn1o7Hgjax8Pvia4+VS8ZHVGTSkZ+PU4qdoqRbZAxPrIdOdRynPr7XPhbr5JiTG6ecqh5PgNoJstEjwO2YifkTxlF27+XjN+Du12gEr+KWeSz1/VrBnbTQhfnawd2pZkleaSZCHLPGqXmqxUiEl6/xcobvyPv7TwJjp87M+0/Y5qutxyJP9vL3LRbEmyfXlx+//opNl75mJ02B9MrnyMK1LgHQMbVqjeHhUQb7e9m1cy9dXc1s2babudkql1ywibHxw5iGTkdbG72d3XT2tGDaBnHkY+gyM/WAv/3hg7z30iVYukbgJjKdIHBxnIggDHjiyd10dhQJIweBQjqtIRNQbM4TBh6u59HV2cKW7QdYfVoftXoDwzKSG65qMHxgknwhj2WoSa9b6CMJCdO2cDw/mQ0XLocOT7B8sC+RnyoxqqahaybPPL0NM2WxtL+L6akZcjmLIAqwLIs4hsCHl3YfYq5cxTBkJiYmSGfSjIyMY9kamq6QTucQQmZ8rEQ2WwA5iVIYHZugqZhjcnIO13XYuH4FimZSrdXYvecgTfkCh0bGyWSzJPMVAiEnf3/PCyjNumi6hkDmsV9uZ+e+UdauWoKQIrq7i+RyJp2dTQhEwhJKMZIMhqkRRQGSBE88vZtCNo3T8MkVMsgiIpuzgHChrybkrvueYcVgF74fkCQfLlhYL0g8FEUlk00BsHRJV9Jnp6nEyExNzZLJ2oShx+YX9tHSkmN0rkZnczvFfJbVl91AqVTCsgxGDx+kq6cn6QchZM+unQhCbFMn8husWDmIamhUnBpSLAgjn6ZinjiMuOfuB7jq6qs5fOgw2WweVdEwDIvxsWnedcNN5Io6flBHkhN4Wj00i67pqIaGrMo89NDj9HT3Mj/foDo7halb7Ni2neeeeoyP/uHHMcw0F15yOTt27uWzn/kkdiaNYRlokkypPENXdz/VaglNSdGYd/mrv/w8zYUMv/j5T7n6mrfQ09NFPp+lf2AA3/d4x9uvZ/2GdcxXKzz5xNM4dR/fhzAO+dOPfYJPferTpOwc3/jX73DmWWfx5S9/hQsvuJSvff3LXHHlpXR0dNDb24MbzTE2NsryFStpa2tlx46dFPMtPHD/w6xZuwYvqJMr2tRqFTIpm9LcLBvPWsuGM9bw0q7tbDr3TNrb2nAdD2IFRUnYcFlRaW4qEIYSgR9zxhnrEZKPqkocODBEc0sRSVIIAv/I/eKjH/1jLrro/AR8hElwu2FYNOouXV09nHvemSxb3o+qyixd2ssnPvFJrrrmMnRV5fDwKM0tWeamDlCrzmGaNrKqYeoWy5ctR1Fh01kbkYTK73/wY3zkIx8km8syMTHBipUrSNsaU1PT6LqO69Q4eGiMtJ1D1TSGhvfiezGFXIFbb72N/GwTXT09CCFIpVLohk57WzvLl608woghBI7jomsaiqwwMzMFSIRhmAA5VWN4725Cz0WzbYRIgsGjKLl/bt+xDcMwyWTS6IZ+ZIJSEhKmaaLICmEY4gc+Tz71GIMDy5Ke1IX4mKX9gyiKiqLpKLJAWTifwyhmcmKCbCaPkASGqhPFMZqu4TTqyfEvKD9kScL1HEzTSlwqYzhwYIi21naElNxhPMcjikIM00omSCWBIks4roOmKYQRzM3NYNomipocs6JqeG6S3WjbNrZlJ6YTioYfJcoCQ1VpVEv09vZRaGoiEgLiCMdxjtyydNPACwJiJBAyS/qWUKvNE0UBcegjkMnkmrHtPPv276Wnu4/HHn+A5StOI5PNcmh4J8WmVjRFghiCICaKQuIIXnhmJ7KeQc9lmK83MMwcQZTkyxlWCiKfhuNSLLTgeQHVSpl6vU6+WKRerzE1O4ttpwljwYEDB2lp6aC7twc18vCDCNVQCUOfCA3VKiLpWVLZJhqOx9jYQbLZFJWZKdKGTBh5hEGIosoL+riQUrVGKKV5fvNuTl9/JpdsuJypoQp33Hof925+mDvu/DZ/+pd/jjdWYXDZSvz5USQlQk6n8ebL1OpVZmYDOvoHk7+ZpqKoKtOT06RTGRpOg6nJcer1OVKWTbU8Rjab5m/u+AaD/Ye4+JIzmC5NMDM6TSQXkLMr0WMdzVIYHX6eYkZA6BKFIam0RhS7NBpVTCODbgoyuQzbdg5z/qVv588+9T+59tq30trcRmdPMxddcAnf+sbXyTe1oMpQSFuMHprmtLOvQrVMQCSmPceAu+SHl4O7l5UgYtHY5BS9dSeWKyeAvtcumTyRufuvV8QtHu9Jj+kYgHnUdHDx2E5WUybXgMWPefEBr9x39xtw92s0Xg3cAUfO+Ncj2Tw523a8dPIo+3biySZOWP/YE/LojEoyXs3s5GjX3Ykc1nHHRpL38XLXoIXlkvz6QdpixtyvyOAd+/rXCu4W33Hy3o+CW3Hk04BXkskey+S984bredd//wJvf6UsvBP2/MorSMQiJvKSMNw4jkjbKfYPHcYwZLJpi2zaou7UWHnaAEJWMNM2kAA2WVH46L88xpvXq5y/qhlVVQnDGMfxqFZr2CkDXTOo1ir0drehGzLlco0wEPh+g7nSHDEKpq7h+xGGaUIUU8hnqNbrZLNpyuUaW7YMcfppS5CEj+cHqIpgdjYJHNY0k337D9He3ozvhJhGipnZGqlUGj+qocoGM1MlojjAdX1Gx6bp7GzBdRuYZho/8Bk5OEZTUxPFgkmxKcfU9DQpy8A008iyRL3mMDM7T3W+jmVb/PTu5zBUQS5jIasC09CREKQzKWzbpFKpQSyjGzJt7XnmSzWyuRQ/vONJTlveS6lcRpVjRKTx1POb6e0cAMlF13V6u5tYuaydarWBpinIsoyiqsRRRBQJAi9Y6JtMzBYSYBoyPVUhl7VIp1Moqkw2ayeBwEi4jkcYxKxc1otYCPKdm51ny9YhOjubE0YuDAn8xEmQOEaSBaW5MqZtEUUh6UwaISd9pc89d4COthz3bB7njGVLqDsumYHz+NQn/wdXXHkpvucwOpZkh+mazmypTDabQ9MNtIyNadnUqnW++o//zMazzmBmeopCocjsTInTTjudwA+pVKpkMllm52ZQ1cQMIpct4Id1xsZH0XUTVda56abf4/D4KOeefw6yBL39S5gtlWhp6yKlm3gBKLrBOZvOZGxykoceeYTTVq3issvfCIGHZmqUyvM8/9xmmlvaeOTBZ5iYPMTOnbtYuWoljzz2CG9963VMT86wev1a2tqbecub38z73/sBDEvFNHUOHzpELp/ltMEl3HnnfazbuIFCS4brr7+O6657KzfddBO/uPMehof28sn/8XECL+A9H3gPUSg4ODLGF77w13R2trNh/SYUSaHeqBLiYigaa1evxYs8IEdlrs73vnsbk6MlkCO6ujoxLYPWtlZS6SzV6jy6kZgO/ft3f8CmszZCFHPPPT9jxfI1fODmP+Rt11+LbibMVK5QQFpsuhOgaxphGHHRhReTSluUSjML12OV4aGDNOoOhUIThq5yyy0/orenl1TW4rLLLicSDRrVBje//yNc/eY3MzNzmL7+QYSSwg9D5EhC0hVyuSyWbaAbOuefeyHf/8F/sGrVSh597HHOPGMj1flpsvkCsaKAFNNUaGHnzj3s3r2PgYElFAoZbv/pnXT5y8jnm8gV0siKgiQkHMcljkIMwyCOIYxIojaQieMY12lg6AaNeh3f94kRmIaNbWZwGi52JoOEhKIohKGPqmqkUhnS6QzygrzZcRwOHT5IW1sHvu/j+4l8UJEVli5dRmW+TMNx0EwTWZGRJEEQRNQaDnEcJrmYMQuAKk0YBgtmQwJZlYiIkEVifHL0XpXEkTiuiywlhlKZdCYxkSDhCjzHQ1e1pGdNkhBxwgjIUtJPFMYRnutgWTau76FriStnvVHD95P+4ziMUSQFz2skclaRRDdExFh2asHRM8TzPKIwySKNohBZSEiyQF7IwJOFIIoFsohQpAgRh0RArRHT0d3Drp1b6WjvIpPOIOsGcQTTpTm2bt1Ge0sL5VIJw7SRhEq6pUh79yBCtshYeWZKs6QsG99zsVNpotCl3khkllEcUquU6OjoJAgDyuUyQaNCxrYZOzTCsoHl6JmkhzgKXGTTxvFcTKvIofE5VD1FFEu4ro8gJI59JGK2Pvs0PUs6iEIfIUw00yDwffw4YP++KjteGmbdWeuYmy+TzWRQ40r1AAAgAElEQVQozc+ydv161nSvYXrvPNm6yQ+3/JTy/C+549lH6VJ6yGcNBBFeJGNkWpFkNTmPFAmBROB6pFIpZElCRPDQg/ewbGk3oibx5Uf+jX/5X/2sP2OQ0JMRkUEQysSZQfrWXU51ehI/CCiN76FRGSMOA1Ipk/nKDJaZZb4UkivGNOoNWgqns+WFPazYcDlXXP5Gfnz7naxevZqRkT089eTz9PUPIPkNDLkG0TxCtmkZ2EhTWwuREEl//mI5cYIc8/gq5mT1x+KE/8vXEi97bpHhOzECYJGRO151tsicHWt+8mrALoiCVwRmJ45jFW1RfHS/R2vpxbf58jr6+N9PJE+OrrMI6hJTpaOPo9s4ul4cH60vfwPufo3G6wF3vErA4WsfJ2fojuzupNs/uYb5tfbxnQgBxcueeWWW7VcCZ78ig3fs6187uFt47TH/H/s41YgXvs0nfuHfsZiFd97g4kGdcm+vZRIgCAImx2bo6e3k0cefT7KZdIOUbbB/6AClcolzzzmD6blZdFOn4To4tTqKKvO+f3qML79/ZaIXj5JeliiWcNyAfCGHogp830c3JQzTTqyktRSHRmZoa8vSqDdoKjYzNDSK64U0NTdDFC2YHGQJohACaGsqYmjge/MIxSDwPFpaijy7ZQ8KCl3tzWzbsZ/OrgKSLLBtFUnx8RsuQ0MTPPfiMOeft4p8NkVrcwEkCUmReeGFA3R2NdPclGHHS0PMz3k0NbXy0s5Jerv72LpzH52dLYCgqVhEiBg7bdHXmaO1JYsikoyoKI6ZnZ6nVmuQShlIskK1XMf360xMT9HW2YZlaqxc1r0QSh4yNTaNrqTIZAIKuSa8oIaqKgusXIiuJz1xk+Nz2HYGgK1bhykW88iyzPjoHFEY47khnhexYkUfpqkmURHEhEHM47/cwfhYmZGxcQaX9vDI4y/S29VCqVQmm81SyGXQdQ1JSQoyRdWIogiEIAyT3LGE1gvw3DDpdQphoLebMAzZedihr5imqblASetm2eAAXb2tiYPjqlVEcYQfyTS1toEk4wcRImUACnIg02QX6R3sRlVV0pksimbw3HObaWtrx7YshvYP0dPbQsOpEMcx2VwO1w0oFgrEsSAOJd58w7u46urLiQOfaqWMpEvk81kkIWOaWbxYZs/QAdraWlCUiHQmxdjEBIqmsmvLi6TzeQrNBSYPT/K5z/4V60/fxFnnrkGSY6yCjaQoLB1Ygaql0dSIKHZ53/s+wM03fxTTFNx6yy1ceeXlVKtVUimF005fx9e/+Q1WrxvEtlRueOeN3P7TO3j04cdxnAq1Wom1a9fyqb/4/3jDGy7lySeeY+/efdx91wPYZo4l/YOYloKVU9i3aw8PPPggG887k3vuvpt6Y45LLz6P559/msvfeDW3fu8HEAumpqZ59tkX6eruIMIlxiOf7kCIEFXX6O5uw3Ukrr327dhpDccNUGSVGAlV0RgbPUwul2V6eoZUKoVAoloto+kKAonv33obX/jCF3nHO29gvlzh4x//BKW5Bm+97i38tz/8CNdddx0jh/dSyBbYuOZcOvuXkslaxEKl5uqUS9Pcduv36V7ai9fwefSxh5krT9PX18WGdevRVJVvf+tbXH31lTz9xCN09PQQL0QHPHD/g3z1q1/nve95H6apU3On+dzn/44rzrqE2ekSmiWjKipRBKqiMDMzjmWnkmIIiMKQarWObhjEYciDD9/DihWr2friCyxd3kMYhkzNzFBsa2J2eo5GwyWMQpCihcwp8MMARU16u1RFJZNO5NZDB4ZIWSkajTqGYSApMqamYVoWyAkIc5xGMiEpFHRdRZJkJFlQa1RR5MRtMIoTtjUIAyRFQCSQlETaNT0zg6ZqSEoyqamqCnEsqFbncVyParWCbhpUyxWEJGEYBhHgNhIgWJqbwzDMxDxJkoiimP1D+yjmmxcmccCwDCQJSuUZwsgnpavMlWYwTROESAxuhETg+7j1Oql0GsMwCcOQKIqI/ZBafR4hg6xI1CrJe45jB1UOEHGI5/ts3foSiqmzfHAZfuBTmi2RymbRVZ2xqVks26ClySadyoAUgBSjqhaG2UTV8QiCOWwzR6NaIVcs0KjVUYRAUU2COMTUVaIwcWGWJAnDMEln8+imjWHZlKsVYqGjSSaNRgMjV2R2qoppFck0FzFVDVmSOTiyH1tXIQ5wXZd6zSNd0JGFxNNPPkexvQ1d19m5ZZiZepX1Z5zD1MQU69adxaGREer1Oi1tncxMTtBUbCIMGqzvXM6Z/RvYNLCer/zyFvYMPcsPHrmTe1/cyk1veR8ygnq9yvx8mXymgKrK+GHI2NgoY4dH+cYD3+Xi8xucd+FBrntDK/Wyiu+VcOqz5IolzPQKzI511KQCzWmNF1/YwZMP3s6qwV5SloXjzWOaBrWK4Oc/e4oVy9aTNg1m5srs2Ledcy/7XabGx1i2YjXzlRqjh/dwx22/YO/wQab2b2b96k7GRnfT0bea1oEzyDU1kQiZj+YgvF5w9zIpJEfbd6QTwNqpXnOkteBX7M1L+tKP78F7dWOUBUAnSQsKrfhIi1IYnayX78RxVCp6LLlynOHeMZ/tsWXrMYTpkfWO7cH7Dbj7NRqvBu6O7cd7LbMQcOqT81RBiEe3e3Q2JKF/j+2LO3FEC4/4FI9X/qILEmmgEDLHdeaeUkx9zEzPCUzcqzJzRxg86f8JJEpisYPuVBT64gUq+aq/FhB35HUnXsyOuG8uMnxHO6TeecP1vP/P/oFrNy05Zq+vZ29HhyxJHBzZT1NzE71dfViWRKlcwnUCNE2jp6eVXCFDrerQ2tKGLMl84GuP8dYzTK7dWEBW4L6Hn6O3KykWogA0TeW2nz3OQF8H//Gjx1i9YgmNWp2pqRK5fIpUWuHw4Um6u9sol+bIpPIgYL4yTTGfYe/+Q3S2NzM0NEZnZxsTkxMgIux0Bk3VCEOFzdv3sOb0LkwjhaTICBlMXWP7zv20tOSQJIU4lnBdj43rlxHHAqHIhLFAUmR83yWXttB1HZBI2yaFnEndqdPf38Lo4cP09BYJvBpChNQaVVLpNNX5CrlcFqFojI6No2kKd921k/YOm0ImhecnfaOpjIrnhrhOhCpHyJKOkCKi2EGTBdlMBsd3SGWbiQgRyOzcdZBiPrtg+OKwe/dhpmermLqKbioUCtlkBt+rMzwyQXdPEdNSULXEVh0pSIq/CGany/T1tNPcZNHX04UsC3JZA9NKs3XLMDOzs3R2FomJaVRdapUGk5OzZDMWEC+YQSTfEVlSEvkngunJGeysjqarPDtU4pKzBpPvVP8myqUZOgtp8q19WFYGw7CYHZ/Eq5dobcnzoZs/xKUXXsbk+BiFphyNqIqQJWzbYnpqmuZCkaaMhRO42HaG5x9/mkJ7nnSqiKRb+FGE58wjCQWnnjjelUsH0BQdz3MwUyoHdh/miUefpL0jw/jMJLmsTVd7C6EXsfell1i5Yg1tbW24foXTTl+DEDG1Spne/i6ueMs1DKxoh9AhnzHwayH9fZ3s2LmdJf0DNDyXMJB47OFn2PL8Fv7ojz/IWeefi+fO41dG+djH/4L+nkFUOWDVqh7KMzF7d+0nm7ZZuXo5n/v8p3nj5VfwsT/+JG69yqYz17Hp3PVc/aZLmJ2scPfdP2fHts1ccskbMKw0n/nc57jm6qvpbOlkw5mr6V/ahxcoPPjQ8/T09XLOeedy47veywMPPs173vMOWrqX8Scf+590NjeTTmt0drYj4pggSFNtjJPLpQnjGooAIWKIfIgDdM0GERGGPrJQqDcq2LaFYSQy39NXruLqK64hm7FxvRL/9m//zle+8n8Jw5h/+Psv8zs3vYvW5iKbn99MT18vUzMHSNlt/NaNH+CqKy4lnTYYXLmK97/ng7z3t97FwJIVqHIKIcvEkeB33/sHnHvuBaxes5zDo1UGB5ZTLSeuuIN9g6xes458PoXml7nuxg/zqRv+DIFMU0si2w0CP2G2w4hao44qaezbv4dcNptMXsgQBSG+5yNijXyuQEdHG5pq4jZ80ukMuqpg2xamqSW5YkAUw8jIAfL5IuOHDy7IMiNKcyV01cDQDSqVebLZHJIs4wcByInbI1FAFMWMDA2Tsm1S2UTyGEUh1UoFfHjhhadpaWlD1SziKEBREgAW+IkbJJGEbVgoikwYBUlvnx8meaSBh2WkMU0bIQlsKwFinucnDJ6WZNwFgbsQK2MnLH8Q0dLSQRR4aKpMo+GgaRaNahVD0zBNCx+QZY0oSuIIQtclDAJ8P0K3TVQlCR6fmprEsiwcv0EqlUVRNKJI4DRqPPv8MwwOnkbNDZECFxF5xFEDz4mx7AzZfJ4oDslnMvzyyQexFZWcJWGaNoHvQARepKKmO2m4Dr+46x7WrT8X1y0hKwqqYiBJMkJVib0aMjENP0AWMcTgeD66ZSMknfr8HI1KmUIuh+t6KKqCatgLE2hq4g5sGczXEomqbhik0nkIZVImNBdMRBCimym6ejqRgdD3OTRxmEJrLz39vXS2L2Fs8jDd3f24nkMma5ArtBABB4e30d/RjKwmpmHnDq5hSXEZHXYfs7HP/vJe3vm+y/jSt77Cw1sf544n7+axrY/wy11PMhuO07e8iUcffIRdkz73P15hZfMNfP17Wzj99DRZK8aLbOqOgp5biqLaNHz46S230NUq0dkuY6dAU3UaYQM3TqOavZh6AyGXkJUUm5+foVavcu5FVyEErFrVhe8K9u7bxyc/+ad4LvzyiQe4/KKzMZQ0v3zsIVadc/mRXtBICGIhjlR8kYiRTsrDLdY6p65fjzJ5p6o3j68vxcJjsQ5ddMM8qjALgYgoTr43rwY0T1YPx6eMOzixGelozbtYy5289+6E93AKhdzRWnwRvB2tp09k8BKX0aMA8PWAOxH/P7IdvxmvbTiNyn/6B3ysnexref7oco5bHsfBr3AUJ+z7ZaLMCOlIS/Mxz78GMxUhycete+Lvr3hUkvy6DVskSSIiXnB+kk+6Thwl4bAvg7RHPstTyE1PWH4yhvPE52969/v41h+98Zh1jpc5vJYRE+PXGwgpKSzCwIVQ40e33c9py7sZn5qhvSPPkr4eJioNtm15gisuWL2ggU8mG2758eO8623n4XsNDD3DzPQchqWTzdp855ZHeMuVZ4AUoiiC3XuG6O1qIp02iKOYKJao10ImZ0q0tuTQjRhJUimVauRyeaqVhNFStUTi1HACDNNC02QajSrPPrOXszauQFYV7rjrCa67+jzCMEyCcAVMT5coFPJMTc6Qz2URQvDSngOsWTOAHwTMzJZpKuaSWWhfwY9KxJHA1HL4cYTnJHLHSqVGKltk5MBBJEmis6eTzc9v4/SVSwl8iUqlQjafQlE1EIJoQbaqKFJyoY5FIo3yXEQU4Dccnn5xGFO3mZyukM1YrD6tl0JTjigKGR+fIpuxSaUsojhmdHyM1uamJDdJSgKaPc8jjALSGTtxZ5UFvh+gqGaSXSwUgsBFUeUk9kJI1GoOMgqe38CyDcIo4uDIFEv7OxHE+IFPGEeYlkW8wMZWqyUqFYdcNkcUgmopNGoeH/3Ofr71R1dSmpshdfHNqCJi4uAQ7b3LGTl4kNaWFuJAQkgxb7rqKu742Z1YGQvfT6zoZUmi4TfQVIPDw+P80X//E772r39DoakJVdXwHIehoUP0Dy7BCyJUzcLQfYaH99PR3kPgC2QZPM/Htk2CMCRoxAhUJCWk3KhgWynwI6II/uYLX2JqaoZrr38zK9b0Uch0MDs7xyc+8XG+8Y2vE+KjKTLvuendfOfb3+Tg3kN84xs/YcPGtfzLv32JO39xL1MTc2x+Zhu93X2oahkrk+c/fvAjbr75ZubLUwQe9PS2EcQNnIbG3FSJ7s427rn/IVpac3T2tKEpJmCQy6X50fd/xP3338dffu6LbH1xC2edvY4nnnycDZvOQUQyzz31JKtWLQdJhVig6xbPPreVH373R9z/8M95/rlnefeNN6EYabZu30Y6LfHoY3cRBpDJpWk0ygiyxEoVXS7i+w7VWpVMxqJUmqCpNY9CAT9wkaQI3xdMTUzS1t5OEHoEYYBTcTk4cphMOktXbycPPPAQF11yEZ6buFSauozjOGzfvpNlgyuo1eexrDTXv+2d/Mctt5DOygwPjzAwuIzhXSNs37GPAwcPce3b3kTk1XG8kHy+iQ/9wYdoae/iq//8JaqNMo4zx4G9M6xZtw7igL17dlHdIXhx2wusWb2GKA4oleZJp1PomsGjjz1GuTxDW1snvT295As5QBCEPmHgY9tZ9u8foq2lFc1MPs99+/cyOLAskWnbJrIkKM/NQBhQqlRpam7H0C3uu+cuLrviSoQkeOih+1m/dhOptIUf+Khqci9JijGJUqlMsVA4co1VFAXHc2jU6+iagaqoEMNcaY5MPoMQAl3VQCRTh4EXEosocZxNZ5MePjVxjo7iGEVOnGTDAB565AHecOHFKFJyX5AUGcdx0RQF3/cQQiTull7ys6Eb1OsNbNvE9RxEHIOiIwsIfC8JsI8CPM/DNC1c10GWQVcNqtUaQgbfDwijiGwmnTj4CgVZUY64VYaeT6lcpqOjlVplFl04xNUZKg2Xg5NzqGYH3X39VOZLbNuxncGlAzjlGbJWQDHbRCQ8nDCkuWMl3//Bz3nLW69mcnqKmdkSA71tTE5N0te7lPlqjVQ6hVuvYJoWU7OzpGwbXVIIo5Ca00hs4SUoNDUxWyqRS2eTgHvfJQxcPNfFC13sVB7bSlEqzRH4HpIQWKoCcRkROIR+sODMCaqm47gOoxNVevvWEgkf36uRybfy4pYXKRbzlMtTLOkdYHbqIDlTQsUnEgJFxJQaIXZhOcQRsSzjuHW8RoN7HrmH/d5hLMtiZmYay7ZRA4VrVl1A2tJpabZQpAVWS1b53A//nq/+yVICFWJ7A1bn2bywbYS1py3jp9/8ewY7PQb6UlRqM9hmmoZfI5MrMj3dQAtlPDcg39zKs5ufYqSykdmKxMUXX8yqtct4acd+Ojt62D+0l5VLl/Enf3DF/8/ee4fZdZbn3r/3Xe+qu+89vUoajbotC7kbbGOMC6YYbGyKDzYthQOBnJOQxvflECAJMWmEnJzky4GEkJCQEGzAYDC25d5lyZItedTLaDRlT9t19e+PtUcajSSbkOQc/uC5rrlm9tprve+71qy99lPu5755x/XrmZnyuP59v0Fh/eVoYULi4mlay/9o+RQiRjvF7zvVB3ylwsRSaYR/qwmhWuMs+FnJb03TqTdqLRbZU1Z7hjUs+Mctf/IsusRL/ejFx50anJ3OpxDFYQsCqp11DYvnlDIpgpw9eR+39kleWbbzY1/Cn1Xu/pPtVQlVfgKxxLNlSJaWgc9ebTuZWVjIRCwQgJxNz+50WxLcteCGC1UwcRqP7sKOZ67GLdaVW9DEO3lePz7s8idKVgjZqpwubgJelOkhCRrPBCc4eybq1PeFOJVVNCamJanJ0qv9jptuPAnR/IkgusmohmFz5OARslkd3xNITWNoRTdhFHJ8fBrHktz6he/yy28ZpK+rwI4de+jqbOfue59ieKiPc9YNcvz4JIVCQhhiOSYQcejQKK+7dC2airHspIfmnh+9wAWbhpifnyMIONHc393TxSNPvIil2+TzRSzLIY4FSsHsXIWpqTny+UySLSROKi7VOoN9nS2ClYDVy/sIwxBEwl5pp2ws0yAIAjwvIJvOMDM9Tf9AW9LXEPhkMokGkFIaShl4TZfydIVYSHa9NMrRo1Nks2nS2TyNRo2O9gKplEO5PAshCBRz8zNEgY5SAs8NGT9eplDKA9GiZ3vMCy8doKerA8PQiIGO9gJDQwPYhsTQDQaWdfPiS/vQNY1czkE3FEolhCO5bA5NJRIKSpnEcYBuaAR+iBQSpWxAR8mEuW/b9n2UChmOjo6Ty9r4fsIWqHRJFAjCMAAR4wcRcRiRzaWJ4oSFzTRNPNdPdM6ExNAUQRChKZ1arYltGcyU57lnxxybu5M+y7LWTi5XYL7SwLRNsrkUuq4jZITnBdzxgQ/hpE2mpsdxnFTi4AqJYdmEQUQuk2LzazbSO9jH0YOHKJZyoEuefXw7HV15hIyJfAh8l0zWRkmTei3moYcfZnh4BQiJxCCMmzQbHqZpogyFUopyuUwURFz9hit547XX0tvXS76Q5Xv3/IDe3l5uuumd7N97kImj03R19HHlldej6xn+919/mbe+9e38/h/8Abfc+m4mxsv8yic+wZvfdDV7Rrbz67/x+6waWsuXvvjXfODDv8DLuw5i2xlSmSJxZDBXnaa3tw+hxUyXy2x6zUay2QxT49MYGZsoilgzvIrIjXhx5FnOOXcVUvn09BWp1yV/+sd/wXvecyuGFfKp3/oTvvgn/5uHtjzOFVdcyTmblvGu97wNJ61z9TVXsWxwNW2FFJ/9zG/R3p0QQsSE6IYJkSKMGhw5PI5tW/h+E9MymJ2dwbZtpss1bMfED3y8po9upBAC6vUqmga2adHZWeL4+ASf+tTn+MWPfoAdO7eTz2fRlCQKPWq1AIlOOpuhPFlmbrbMlVdcTk9PLw9seZhzzzsHz2ui6yGPPfYQH/jge7EzGoYhSWUUBw+/yG3vu5U3vfUtlMtlcvkMppPCa/pk0iaaDgefmEGTMb09vdTqNXa8uA3LtDGNBfkMxQWbLyCTzeM4SV/fju3b6erqQilF4AekM2mclMP0VJlnnnucVcOrQEY4joMUGnEEtUqNdCpHvV4lk8kTCcHqNWsJw4DK/Dzr1m7Ac32EjDENEyES/b/J8QkyqSyWaeG6TcbHJ8kVcoRRQL1SZf+BA5SKRTzfIwwDbNvmR/f9AKkpsrk8M7OzKKXQNEW1UiWMkh5YTeqARFNJIKCkTqPRwDAMli8fQqmkJ7cFG0GTkpnphJTm+PhxTMvGcVJJ/1/oYxoGMYloutuso+sGtVqFlO2A0FCaxPddlJIoqeGHQUunTCIFWIaFYSSEMWHgoZSJ6/lJRUwlP2EY0mzWSdkOUSxwPR8RR5SyGZxMAdN02P3yLi679A20tRVIZ2yiaB5EAz+KUU4bhlVg7ZrVGKYkm8nTVirRqDbYv+9lOjp7sc1UUpWN4wTOmMujaQKimDCOyRcKmLaNYegIKZFKsW/vHvLFDjzPRZMxUkukHdLZAr7vJS0J6QyNeo1ms47nVSCOcOwUYeQhYsnDW56kr28FO3aN0D2wnLST4eChl7HsNEIIOjs6KeaLjB7cSUfWQsYupmUxXS4zOVsjVezHtopUGzW8ICSfz5NJZVjWv5y8THHdhW/muotu4JJ1F7CucwONxizdJQelYpRuEEYR9abPGzZdzLPbv0OmsIyelZswMl2IwMfRXNLGPCmzghAN8oUi9TnFzh0H6Ch1krIktdlpNMvA9WqUcjYRee76zv2cs/ECevs62b//EKOjY5xzznrefvPtzMyVufS8bvbs2YtyOulft7kl+B4TLkAJRZz0i8YtL/IMPWSnMkKeDqFczLyZvD6bmPmZYZsn/JrW+0IsQBpjlFL8OB7rSf94se97JjtzlXEBVvrKcyztHTx1/sRvPonGWoBcLiVWWRhDylPH+hks86fIXr3n7j+ix+70Mc9sS8vop+5/kvny3x7cLRb7bhWwz7K0+MT+Z3y9aNvisc+0/T/KFs99sidusSD54gfVT9rX14J+LnTQipN0LGeyW269iVs+9nu883Wrf6L5kkklWgxR5GGaeYSMOHTkECnH4u8feoHrNqa4oFdgWQm9d1shi2GYrF+7AiETjaNsNgWxINF3S3o5HMfg5T2jHDw0yfYdRyhP1XnD5a9BNxWGoWNbGeq1KrphEMeCnvY2Sm05pmemMUyIaFKtNCmVCoRBRLPhJoLEcYBpJIFY4CeQYcMwOHJkglwmhQCe3LqLgb4OdN1AU1qSldcUXtBENzW0Vl+GkAlZx9GjYzhpg/17JxlasZy773+cgU6HCy8YQncUkRahSYUkRukKISUZy0JpBgePHubwwRq9PXkef3IPaduivT1HFHkoLbnLpSboaG9PvvgiDyGTPrOJyTK9fe089Nhuhofayecc8vkcjzzxAv29bUCIpgnmZpsYps6Rw+NYZorxiTGyuQy2bSGEQGoJQ6kf1BCxolTIYts2acdCGUCsEUUxcRwwNjrD7r1HWbasC90wSWdTRHGMbupoWvJFokkNqek06w0MZbNn7zF6+jpQumLHC3vpbs/z3e3TvOvy5TjpAnc9tpfzX3MhxfZuxscP43keqZRDSJPjxxPNqSCqUcjnCYMQTeoEQYTvx5SnJkhnDEw7RLdKVMsJMUgj9KiWPfIFk2OjY8zPN9m3/yC5XIqUk2N60mX16uVEJKLuoOP5c0RhhKYJpK6hNNXSzlJcdNFGbr/9/bztxpu57bbb6O7ppjJfwTAcfuczv8vVbzyfdFrhpHX8yMU22yl0mdz8rltZvfoCOgrtvOvWmxgYbCObVVz4hssZ6ErzgTtu5c47P8/tH34v5ZlRMjkTIULS2RyNepNabZ72jjZct4GGyc033cG7b38ncRTzzONP8//8xqeYnY1421tv5YnHnyOTauOjn/g4n/n05/naV79CsWhyfOIYl732Ij768TsodSgMs0CIYuvze2kvLSeO57nk/A3ohgBdx7JN3GaEqWcQ0gB8isUOwshFU4JarUGh0IGmOaRTGarVOYIw0TI0DRspNfygASLEMi2aXg2l2bztLTeizIgVy5ejDEWjUcM0dI4eniQMYizLopgr8Gd/9ofcdffdrFm5nqnpefr7+vA8j0998rM0G4JLLr0K20nz27/1p9x33wNce801WFYGZYSYlk694RGGGsVSBl0LuO32n+eSc16HqSSe73PPPXdx1RVvJJvJEsYhpmFQKhZ59LGH6evto1avkErZdHX1omkSvwXZc6bANZIAACAASURBVJsNwsCnkMvR072C0dFj6MogDiSRdIEI03FQpkkunUUoHaEUldocpmFg2gaHDx8kk84yOTXFI49uoaerlxjBC9teYGBgEF0pvvu9b3LeuRcQyzjppYugr285QehjGIqYEEM3WDm0BttOAi+rRcKiSQ3LdLBME6Up9uzdm7BqikT3j0hiWToxEUGYoE8Cz6fRbKBpGjOzZXK5DLV6jc6OrgSqqulUKvO4XhPLMAmisMUknARjlbkZLNMkjGOII+r1GkJAs+kilc7c7Bz5bJG52Rlsy0FpGkpX1Go1LMvB932CMELTFJqUaEphGjrHRo9SKnah59qIAxfVnOfQ2GEQiv7e5dQaM2zb/gwaFluffZqVQ0Mgcyg9BzoE/jyV+TkyqSIxPmHk0jvQTxj7SCUTeBqCbCbL7Mw083NTpJwUbhiiOw5hGLFv78u0lUpIKSjkikQyWZuhJLpuYhoOfhiilEwC/DhOqsGWQxS7CGBy4jgZO00soL2rDT92eeHFSTZesAGJgeOkiYloK7UxNTnB5OQ4jvIxtRAhYqqej67ZiNQy5use40f20b98CM0w0WXyfRIj6O4ZwDRtfNen6dfZ9eI+xicPsrK/A3SBEEm7wRNbnqO7v4fVG/OQK5NxlmOl2jh26ABZI+DYke3och5NREjNAOlSKhQx9JDdI8+ST+Ux8xLbdDDCDJXaJOdf+mZG9k2x8by12GaK3bv3MD0zTaE0yBXn99GY3U82nWVscppzL7sKZSpCKVsoEUAkNF8n0t6vEty94rYT7y304GmcmS3z9KrYmd4Po4VK2SIfblFx45UDrbPZ2X28V/PVZYvo6N96rJQLwe6pPuHCIQvwTE39LLj7qbGF4O5sGN//DArXpWw9J7ef+kFa6Kk7mUVZXEc6NcOw9OckR+aptgDpO/va5CkfxFOCwlbF7rQeu6VA5H+nnVY1XBxYioXXC5mmV8OK/7jWuu6t832lwG5h3ltuvZl3ffz3uPnHkElYejStnkpdJWQoaJIw8DEMnRt++5+48z3n8OhTu6m7IQLBvoPHKRQMDFOA8FEyRqAhYqhV5tn+0oukHIetL+xn+WAnmooZWj7A8sFu5mtlOgsdSE0ilWCuUmZuvoFtJ1n2WEZ4QUQ2l0FISb3hE8eCw4ePk05ZZDIOUgkEksnJOUbHpukf7Efpkm9++2lyaYvZyjxtbWlWLO+DGIIQ/CBCaZIoDrFsk2bDJ44TmKfUNMIwxrFtiGPa2nPs3nOQCzeupr2rgB/GGMok8mNmZyonRM337h1lcqpCJmOTctJIFSKlZGx8mt7eLOPjM7R3FgijAOKY0aMzOBkDrzqGYRhIw8F1Gzi2gSZh/doelBJoSqPRrDO8sgelNEAjijQcJ8NseYauriKGqRMFAbZlEYQhQkDg63zz7qcYHupE0y2UIfEDF4FkZnYWx84gVdC6n2JWrRlIxo9DlFIJ9DqGY0enUSrEMBVus0kmk8L1XXbuPkx3e46UbdDZlcV0DEYrJlduGsb1XC56+61olsQNoDYzT6nYSRQmfSrpbBoI8XwPEekEgSAIYjRN4JiCOEo08Uw7i/ADcqUCUunowuCFF3by2OPbeMPrX097e4Z6vcL/+qv/yTXXXo2QPiBJp22mZ8rYTsJaahoZZueOU5mpUXWbFNqLGIbigx/5Oebny/zSxz9MI6iQMgx0pbF35GVuuekdBMIgk2+nWmnyj//0r8yNj/PVr/w9u0f2cGzsMFu3PsKlr7uUt9x0Kz/3kV+mp22QRx7dzsCyDczMNRhaNYDSNHKZNOWJcb7zzXu58OLNWFaGypzL73/+C1z++su5/QO3ogTU5its2LCBu759F297x9XEsc93vv99bnjbDTiYPPLw/Zy76TyGhtYzX/W45OJz+cLnP8umdRvZs2+Cu771Dd5z89uZGBtl2dAQHX09ZPMZosjn5z/wK1x/3RsRmovvumTSWbzIR2gabsPj8MFDWI6Jk0r02kzLQlM6Qgr2vvQSpVKOsbHjZDN5Zueq7Ng+wqp1w8RaA6V0fD9xJJQuqFQT5kn0EGWF2OkM//B332R41Rquf/t1rF8zjNtsMrLrMLm2HB/8uTvQjJAtW+4nnTP5xC9/nG3bttM32MncbINjR8fYsXU7eD7XvvHd/GDL/fzKTb+KqWu4TZ9YwLp1G06gJB565EesWLGSRqPOsmXLsW0D27JRmkFEhAB2736Rrq4+QGA6Npqu4YU+PV1d6ErDtA0C12P/gUOUSp00aw3KsxWOHTtCWz5P4PvMVSrsG9nH8MphpCHIZXKsXLUaTdfw3SYrVqxEiJimV2flsrUYtoEUUKvWyWTzCTRdU0hNEkagDB0hIgLfx7QNAHwvQEqB12wgZVLhLxYLaCpxmwM/QOgqYQP1PYIgwLJtKrUKuXyWeq1OMVskjEEKjUjEpByHKI4wdB1daklCq0X44nke9aZLKpPFixLGZKUUUkls26BWnSGdymIaBrNzUxQKBYIwIEQQBkkCcnp6JtER1SRRFCKVQmkCEWtIBV7Dx7E1TDOHkesknSpwfGIPE+NVBvr7OHzoZVatGWRwoA8zXSCdKyXXhhjbyrUYRmMC38UPfdKpHESSeq2KEJIwSCDqnufR0TmIH0I6nUug8IFPOpVBaorZmVkMJ4UWJwyeMzMzRBr4cVIhFTJmZGQnHe2d1CsNpAF+pYplhKTSBcKwCbFB03eZmZ5n/YZhDJklCj2mxqawUhb1Ro22UiexCGnWZkk7Jk3Xo+YGuKRoa++l1NZOsbMDz/USZEnkowyF1LQECq/i5PndbGCbTQa6cpiGlcA4RUAkJMtX9qDJCDv9LG2Z1zA2LzHSPTT9Gf7pq/+E60I+V6Svp4OgOZf0FdqSet3DMTt56rkUfd2SRr3CnkM1vr91lK98/Xu889b3096W5u67v8XR0cPMz8xy6eYL+fq3/5miaVPK6vgiwwVXvQ0pFZpI2jlkK7CDMyHGTg24FipiURy3gpXEFiShTjlygb/gBNLrpJ90tqpdsn/yd3xC0/dUkfDF63wl33rpecSn9Mud5ZhT1nd6b93CNTiVE+NkBe7UoO9kPCClTAiMWkn0k2tcdPZxkpz9WeXup8gWV+7+MwK5M9npxCqLbhhOlo5PlrbP1C/2ymtdGpqcCV6YbI+SrM8C1HKB/OQM5e2zwTL/w+30rtVF60okGxbC17MFsQsWRVHrWsolD5Uzrz8mgTgs+ZgvunqtR0irwnfLrTfzxT/7Cy5aN3jm84DF6Z2Tr1sPWikFnutj2TZbtu1lfHyED14+gGM7HB6dZsOafsYnZynl03SUShiGzpGjU+RzRcLYT85LM+jsyJN20pSyKaIwJpU2OXhwgkwmRXu7Q7NRRjcUni/RNYdM2kQ3DMI4wtATZ2wB1qCUoul6lIpZbMtA0wQTkzMYShFEMflcmn/9/lMs7yuxclkn/f2d2LbRujQSpek8t3UEy9BxbJMgcBnZe5hiMYehJ3p5CZJJgIAw8ABBe0cbumEwOztHPp9HIBg7NklXd8LGGfghutIpFXPs2HWQFct76OwsEng+4+Upzj9/NW2lEq7bwDATqvmsncW0Neamx3GcArFIvhCFEMRhROAlcFLPCzEtG93QePix5+nt7kio2aMQpWI0BV7oYzs2EWDoCUPcvr3jhL5gaKgL34tQumLni3vQNUk64yClQRzH6LrB89v20ttdagV3yb2gaYn8yPjENB0dBYTQErgXMVKTDC3vQleKgweOIUSAZZlsWj2MrmuYho7XuR7Qces+ukrGsuwUlcpM0n+ogZICpRy2bNnC2rVr+Oxn7+SCCzczPjGJ0iRp2ySMEqbOBEIjEbFi+eAyOrtLjE+Oki/18for3oAhUkS+zoFDB8mkc1imRRR6CKKECTLSEFFCL69pEsvQmDpe53O/eyevv+paIl9weP8ouWyBf/nm3dh2mp0v7mZ4eCVSE1xwwSYuufAirrv+TezZu581q9dQbzQ5Z+O5vPuWm9E1iWFLBgc7qbtlNm1ei6FMdCWIggYz0xOcu+Yi3Cjk0SceYah/gAs2v4Z0Pkt5bhaFyeOPPcnffuXLfOEPP8/QilWU2tu44orXsf2FnXR2l/ibv/0bqvMV0k6aYnsbK5b3c8mFFyOF4gtf+HPuv/+7XHbpZlYND/L5O/8na9euIpWx8LwGN1x/I7/7e5/h4kvOx3MDmm6TZrNBKpPG0HQKxQKplM3E+HEyuQLHRkfJF/KMjIygDAPf8+ns7KQ2X+HTv/MFbnvfLcSRR7U+h2NniGOBFIKmWyedyaHMNKYtccNpDBwuvfxyztt0LilLJxZVnnxiB1OTc1z7pisoFLOMHT/Kug2rueCCC4hijxiPfC7PyzsO87d/8zVueefN5EtFdr78Ev/9Hb+EW29g2A7EgrFjx8jn83iei9v0WL1qHVEUUalWyWRSzFVmMUyjBQ+LIRbs2rWDZSsSCOOB/fvJZ7MgBPNzsxw6vJ98sQgEdHX18exTzzE5MUHg+fT39yesjaZJyrJpb+8miEL27H2RQrFEGHg0mwmhSCQioiBE0xMHLZYSITXu+9EPaCt1cfToQXLZJDgyTYsg8FvadAZCSIIgTBhzhYAwTJ6JlkUsBJPHj6KUjpAGjz38EH/9wFd4dOej/OC5+7l/2xa27nmaB59/kKdefpIHnt/CIzsf4b6t97Nj33Z+9PwDjOzZzbK21eQKWRpNl1qtitdsksll0TWF0rQElmhZREFM5CfsgZoy0FRSoSuVSlTrNSzbQbVkUYRUpLNZXNfF0HU0pRBEzM/N0mg0KbblmS7P4Hl1TMNhbGycbKmIbefpaMuxc+dzDC5bRbG9hK5s/MBj796XSaWyzMzPY5oWtXqFWiUJkE3T5OjoUTSpYVoGdjqDkklCrFTMMT83ja5rWI5Nw21QniqTz2Zb/eAGUxMT6LrCDQIark8unUZDImONOJIUC0Xcxjy1yjSNpkfKciBuEDQ9wsBHiAhdVzi2w/7RSex0iWy+gJNL9Att26TRcJmenkLGgvJUGSvVQbUuUKkimXQuqRAqwdGjo+RzeaqVeWIZIZAcPXKUdMbh8J5jvPDck/i1GZrVKp3tBYSIaDZ9tm19gZ72duIwxC4cJtfbgycHsbMlDBkw0D5IrpBneFU39eo0hKBpHnGsk04VCMKQA0eP0tEZYJhF7vzjB/noR96Jg0fRdNh79ABXXnkNfZ3LSaUdOnocztt8LXY4R+BPEIgs515+3YnkStxKdJ/wTU4rTLR8Hk4GdrAQ4MQtAjpOQYMtHBNGYWu8M0ttnd2filloalnwl8RZeBLOLAYuFp3GAkSTJXOcDBwXr2HhLBZXH1+pPWrBovjkuKe2TIGmqVbP3alrWyyRcPK8QenGz4K7nxb7saQQ/sNtKeb51Jv25K11qv7dqfZvDUTPtn98irZdwmj5ylWr/9TA7lVsIehclAda8vr0/c/8cDn7dT0T4GBpcLyY4dTTcvTps2dPDizdvgDcJtEzenTbCF+6Zzt3vL5Ef0cWYsHeAxM0XY84inAsnfZiFoTE91w62tuQyqIyO4NpJlh7zdAhitk7coRdI6P0dvfQ1pEmCBrMTvtk8iZCs/C9ECIPP4gZ2TtKIZdDSoUgQJMa1fkqtmVj64Io9DEsM4H6OQ5RGGPoOplsmt7OPLpSpFIJzM+0TarVOraTotmoUSpkyOUzCBEhCGjvaEsY0rwmcRSx98BRspkUURiim2ZSkY1jZsrTpBwHTVM0Gy52ysL3GsRRRK3qks/lOXJsjA1rh3DdgPu2bCef0Tj3nBUIpbPlgZ0MLuvGMHTue2Ar/b1F5uYb5HN5UEm10Pf9lihxzO6Xj3Dk6CQDAz1UK3WiQNDT2Ua9XiedtonixPFDKKRMqN8TiCeMjZWJYkFPd4lUSudHW3awfLCT7s4ilmUShTGhL5P+lAhGj05SLGbQTZ1Grc4LLx0k7RgoJWlrL5wgR4iiGE0piEBTibBwrpDHaI2ZSrcjhcB3XeLOc7FVin07d9Mz2Mb8/BTNusvk8Sm6unpo1Bvouo5hmcQkENNcukRbbzeZTJpHH9lCLmMzO1cnlU6xd+8+PM+lr3cZX/7y37N164ucv+kiMqUCQnhoIiD0GpQ6O7j7ru+x4ZwN1BvzVFuO/d6RQ5imT3l2iv6+AepzdT7y4Y9z5RvfyKbzN6EiyZYHHudrX/s6A/2D/OM/fp03XX0DuVSKPbteYmr8GFOT0xwbG8VOmWx6zUYuee3FjB49SMpWNOuzGGYO0zY4dGA/+WKe3/kff8jG9eupzc1RrVZ56KkdrB1ewyMP/Yg1522g6XsYms4DP7yfatVl43mbSDt50lYeYoP7H3iA/v4Bsrkuevt6eectN7F+zQpWr1rGr3/iU5xz7rmsXL+eUNqMHR7nN3/9E2w8b5jK/CSGVaDpusQRXHftm3nrjdfyzltuwjJs0ukMSulYto1hmtQqVQxDJ4ojXM8FoZFJp0FIcrkcYZRsz6QcHnrwIa66+hpMSzBVLhP6klw+y+REGSdlozTB1PgE/+O3Ps/mjZvp7Cji2A6R1LAsg3vu/hZDK1dx23vfz51/+GleHjmAlBrZbI50JsPM1Dx2ysC2LJRKU0qXuOFN19AM6uTbsyyXwzRqZfLZDFHLQczlijy39Vl6e/qo1xo8+eSjLF++El0l0gJaq7dGa8Gum3WPoaFhAhHiuQH3fv9eVgwuQ2gax0aPsnJoGIRkbm4KpUyUbtGoV1m5YgU7dz1PT18/cSgQMQhdoEmN5596noFlQygtJghDpEqqdC+PjFDM53nm6Sfp6+tHEzC0fCWWYeMHPvfeew9rVq9LdOGkhhQSTSpiIAyC5FksJYdGJvjz+/6Ml47uIN9nMHBOgfOu3oTVa3Pha4d501vewtWXX8zVV17BHe9/PxdvWMOHPvhuOjuKfPJXf4XXXryB229/N2+98QZuvfWdXHPjtRSWpTjeHOfOL/8Rj7/0BE/ufoJL17yO+co0nueRzWSIwhg/aGKaJr4foBsWtXod07Roui6e56ObBo1qFaUMlG4RayT6mAhEHBNFLpZloqTBsWNHsR2bdCpN0KoeabrNfKWObQjS+Sxtbf3oRooA0E2btlInD9z/bdavfw1ST5IVhWyehufiNl3a2zvRDYNqvYJSBvPzVTIpm0p1BiedT8hUKnMYmsSxbJSmYVgWYRSSL7Rx8PB++nr7MZRBFAZ4zWqLtEYHETM6ehQnk6fYVqQ8NYWuxwSej+2kiGWErhtEccihl3azbPVKwgDC0Gd2dg7TsJCxxlR5kp7elXT1DVFxPXoGVjA+MU5boUC9XkMZFm2ldsaOHyObTmMqncBvUJ48zqF9Bymk6uRSAcMrByl1lYgDF01omMrEC+rk8/kEjtrdROTXkWsbxkxn2b3jecJKyIOPPEwuB0omvbBCeEShRi6fxvPmyRbWIbUpMukcMjaxrRqVeo7dhye45X3v4fv3PorldPKP3/hnlvd38Z1v30dH5ghpUzI5F3Lx1W9roYtEC8W0KLF9huDupP9y0t/UhDgR2C31cxa8Tyk1olfgmzgTwm2hyuWHiQbjifnPMsaZArtT5zxZPeTE2k6u9Gyw0lfqqzvbuSwEmouDxYWiwMl1ngzulmreLeyvfgbL/Omx/xvB3cnAYKFkLU/LQpx6gy+GW0pYRHi7VKJ8ASu99NZeWnk6uX3x/PKUPU9b90K33sK+rxLkCbkUZvqT2QmYpgAWKnEn1nTqapdWQ5PK3dkfRqdBYzn9OkUtBiWxqCdvMTR0YLCPj3z6r7lhcz+nD7Zo3hNB3YLF3PL573LHxSnefH4fQRAghIZlaTz5zCEuv2wNk+PzhJFEGAbNeqLRZOoakd9AS+k0q01c18dJ5ajX6uTyGR59fj/HJycZ7O1E120q1TrZXBEpfARNlFCYtsXMbCPJtpoarttACQ1NV8RazMOP7mZ4aJDJiQnSjuL57Qfp7esCpeP6IbmUxsxck5npGSw76bEQQmJZJvVag3Ta4dixMWxLpzxVw7E1hAjR9TSRSII0TTORUlCpuGhxgFICREJbrekGUir27x0lbQnMVI5atUna0ih1FKjUPJ58eh9Z06KtZJLP5vBqTfYfmWV4uBMIGezvReoBtplDyIQURZOSer2BbuhIIWkrGvT3dFOrujyzfRflcoWe7jZsxyYkRsqYZtNPAjwCQLa+DBSptEOt0qC9I0McSx55eoTNG4eSz6gA3VYcGyszMjJOLmuwbMUA997/fNJIH0WsXt2HiHW2bt1PR8lB0zRCP6JaaeB7rSDU0EEmkKEokIRhRKUaJ9pXrs/zh+bozgSoUhsZO0PU0Bg7Mknvii6iKCF80TSNytw8hrLwmj6OY2AaAk0mDICxUEg/S0dXBqWHZJ0OHn/iGa677irOPXctYeSjyRoytHnwwYdI5aE8WWfT+eciCTAtEytdwLLTpLJZsoUMpbYOtm3fTv/gIDfc/DaGh3tp1mbRhORPv/SX/Lf//t/oHejjttvfy/Pbn2XP3oP84R//Gfd8714+/F8/SHtPFidjEwQxjp3h2JFxUk6Rhx54mp6+Erpuk8q34wYaO3fu5IrXvxY7naXUMcDaVcPMzU2QyWY4vH+KQ4d2s3xgJdt2PMHVV93A7e+7jZ//xTv44Y/uYmz0ADdc/2Z+9MOH+dZd3+BH37+Lr//DN3jv+z9Axa+zckU337nrQVb0L+fnP/Rerr7hzTzy4He58qrr0LMDtBWzNNwyK4a6+ejHfpEgVARhjKZ0Xt7zciLELR0ee3grfX29zM/Pc/ToIXp7O0ils4RhlBAL6TpB4JPK5JmZr/HCrhFee+n5aLpNJAxKnb0YcRXfFwhlE8QSIo377rufR594lGuuuY73vuf93HzLu5BRTG9XF0Fk8wsf+UVqjXm++rf/wjXXXoHSIybGZ4gjk1QqId+JQo0f/vBbzFemWbNmFZ/77BdY07eBZr2CZaao+T7zM7PsOzDCxo3nIQSMHx9j9dpVuK7L2OgkmWwGpelITREneGXCOGT3rt3kU0WOHz/GhedfQMNtYDk27YU2Xt41Qk93D7ZhIaTBs889xarhlWSKbXR2dqGE5Llnn2Jqpkxf7wBxFFFoK5FOOyCT3rN6vYKSOh0d7RiGQf/gMhqNCkozaDSaWLZBJpNh+eAKoiBA0xXTs7M4TorZcp3f/+fP8cjOR9BLcNXbL2L4sjZee8mlvPEN1zC8eiXd/f0gwDENjk9N0dHfha47HDt0mJQK+cCHP87GjZspT03R19uFleuiWq2C7zF+9CBO1iGbbae/t403vf5KNq0/l4N79nLOZcu58ytf5MldT7GutJ4oqiNiP0nwAJHSSOkplNKT3mXbIogiGo0arttgbnYSx8gggDD0iJIQDV2T1Os12tt60FMppKbRrDXJpB2U1FCOjdItrHQbAhddRMSRTtNvommS4ZWrkXHCUJl2MjSaTSzHQdcUzUYFQ5f4AYRho0UmoeE4BQzDwG+6mBkD39c5fHAXoedi2xbNwCMKQjoKXfhekyis02x6OCkLTSmaXojruXR1DRILmK9U6CzliZoNhBYRBnWk1AijCKV0urvbmPcicrkudGGQyuSYmZ5jfn6GoeVD+HGMW68DEelchr0j++noascwdXSlEYoQ20oxNzePNDQeve8xiu1tlMd309tRIJcrYOg6IooT9mct8anaS51osU+ARs/6DlLZXvYefImXnnmRVYNDrFzdQ3VmgsCNqFSnsNMxaVvDb0ZUGzUqzRx3/NrXuOHS6/Fqh3DnB1i1vo0vf+VefEOnt/scZmam6e3vYmz8ON+9+xFs2+fi4RKN+iyzlSpXvvEW6noi+yEX/JgT/oW2yIM5UyI6qdohxCmVvDN5fAvacYkLcyZmyaWQR3GSVVZqJ/Y5ldHy1fkrXqktaqnPdnaf7se1k2d+Uqtuib99Gr/Eyd8tABZwUv/uZz13P0X2f6dyt2CvdiOeKXhaGnqc+vp0jPS/dc6z22nB4asFd2cJNP/N856AiCZ0UKc80E7b99Qsj1wikHm6vXJlVBAnGbKF8HlRxW7xnG956w0Jg+Zp/XdnnvfnvvhDhktVPnRVL1LKFjxQ4/GnXsJxDM5ZN8y3732Kyy9ZixRgWgY93d1s33WAzo4cDdfFTqUQEZhmkmUlDnEcgzVDnfR1F3AcE6kJctk0QeAxNz8HQK3qYjsOjz29i+6OHKmUhWkZNOpNpJAYpkFHMcOLuw7Q39+eZLVCKOQzBJ5HHIfEscC0Jc1GiG3raJpkZN8oxVwO09Jxm00sy8TQDdLpVKLlpRT7DxyjkM8l0CNNQ8qQsdEJSm0FZmYrOJkM27btpauzxIH9x1g+0Isb1HFSaV56+QC9XUWCOCEPqNfmOT4xzsZNw4RRiJ1y6OnOoFREHAeMj0/jeT7VeZd0xkRqIIRC1w3qtQaaplOt1vje/dtYv6af/r4ivT0dQEIMEkUBjUaiVeV5HoiYMAhONE9Pl2d4dvtB1q0ZZHKizOteO0QQuGiaQEgIo4ThbtmyTvygjmmZrFrZwzfveZpLzl9PEIWUyxVWDvUzOVlGU1oCuWkx9E1OlAl8H9u2W7pYirm5KtlcN5pUPHtgnEuueweGjNBzHYy8uIv+gQHu+8EP8HAxTYdiKSG7WLZsgLRjI4Sg3qi1pCIEtuXgOBk++rFf5C03vIPRwxPs2fcihWw7//wv36BanWft2jU06k0OHTjO+eefTzaXI440iCMMy6DRbGAYFlEYEfgReBEiFKStLCMv7aVQbMf3PCzTptGMeOuN1yNkhO3o6LrgqaeeYP369bz3ve/mHe+4gfauDkZG9jC0fCVvecvbeNP1b6anuzsZ3/NJ51NMz8zwjX/5JpdcdBGXXHwRpqWQUjBxfIJMOsujjz/G6157CbpVp6e/QCbVIadiGQAAIABJREFUQ0dhJRPlA9xxx39hcmqS9RvOJW2b/Jfb7+DXP/XrnPeaDbSVOvnkJ3+TT//O57jyiitYMTiErll8+Ofv4Ktf+ysajZCZ6QlWr12XJE5mqnR2tmGaNo1GRDafQ1NJH09HR54kBxRz193f4nVXXoxpKjq7iiBiglDieh6mkch4zJcnaCvlydg2525Yj51yAIFuGpiGwdHDBym1d4AIkdLDMbMUiiUyaYeOjhL7946w6YLN6IbgQx98H+//8G1861+/TTaT4q1vfTOmpdj98ot0dbZzw5vezrGxo3zxi1/k2muu53Of+T3e+97byOYdUtMFpFQ4jgWRQOlJL11nR9eJ55fj2BjKRpMaWx75Hhs2bCRsaVr5npf0bkmNYlsb+/btwTRtUqk0ulIopfGDH9zDkaMHGF6zBtdtJvdhKsNLL25j9+4dSCEplEp09fbS0daOEEmiLpVO02y6HB8bo1Rso1wu4/s+oR8ghGRmZgbbcZJqtWHi+i5K6UyNzfGZb3yGZ/c9y6rNy9j8hnX0b2zjtvfcysUXbmLjxg1IIalWq3S19yRr1RWjY0exTItGo0Gp1IYWC8IwZtmyZezc/RLvfvetrf+Plcg3pASmqZFK2ThpC1MTSM0ijAW1eoWnnnmaD3zoDlasWsZNN13LjTe+he6NvXzyC5/m0uEr0ZTC0C00oRFrSWJxvlpBUzqWrmO2WCUdO00QBRhGAqEXsUA3DObnZjFNGyE1XLdGHIcJMkPX8JpNTNtqVTr30tXZwexsGWUYGGYiaaLrOpV6NQkAgoBmrY6hDCqNasKIGSc94JqwWwLyEV5Yo1adA+Fia2mk4WOZaQqlDlzXJ5srEse0eh5DGs0mge8ShTGakWie2raZMD5bBrHXZGpmBt22MGRA4AdIqaOUSRhExELw2EMjvHzgWfr7V/C973+L8zdfjBCCkX27aO/sQsQxumEihaSruwfDSNiMDx08SC5b5PEnfsTKlYOMHjpGHB6irZAll1IUiiV0XSXfyb6H0lTruigCz8WLBEaqQOe5A8RWL1EE64aHeeyBf8XR5jh4YCddnQ7DQx1oWoBbD4jCOvkOQaVR49YrVpJxZmlYLg/vHKO/fZa1m1YyM7uMjs4Ourq6kZrOpZddxvrVa5mYOkxKTmLoAfsOjtMxsJFib2/SWsDS4O4sTJFLAqSlf7+6f/bjEJicOeha6o+dDDJPD/aieEHL+NQVnc4uf/q5/MfYq4+3dMqltBM/07n7KbL/DJ27pSaEaOnxLNW9W3j/bLp3Z9ZmO2Wf0ypxp4MKo1ZfHSRfkLDA/nP2cc5kgpgwis8wx/8ZE/J0eOXStbyatuCrXdOzXYcFDT8pE5hndJZxwmf+4cRIJ1EEJ8dsuD5/cddDfOyGhEZexBHHx8YpFXMoPQki6vUKjlMijpsQg9d0OTZWJu1kODY+gWHFDPSWKM/WKKYdlK6TzqdpVCuYhkHU+p/rup70b8UgpMRtNvBcj0bdp9RWbOkrKUI/YSwrT88ShDG60kk5SS9DECb9DpPjM+RzKQ4eGWPt6uV4oYDYRakMCI+xsSm6u7qoVV1SaUmz4SbZ8dmEcODo6DHa2/PoyiAMQGoQBD5BkNBcO+kMO17cz6qVA0wcL9M/2AWx4KEtO7jssiFm5irkclkMXbF1+xGKOYOX9x/gjZdvYtf+46xfswLP9zD1RH/NMHTm5prkCwUOHZhg2Yo2oihmZrpCoZBndmaOdCaFbprMzc7h2DpCxWjSbNGdJwFrHMcIFH7gYRgaQRihNEUYJE5TFAli/JZ8hIRY0mwmENdnt+3iws1rCXyXsbEx+gZ6UZpOs+FRrTQwbIM4BNM0qFUrWI6NlJJarY6udDQRI6TEtC2UUnh+ja37Zrho/QXMz1X5wref5td+5/McP7CTZZtfj+a5GLqiXq1ipnQsK0Oj6aFpETPlMp7n0d3dTRgG1JsuSjM5dPAYA33LiOI5qvMGpmFSd8f4//7q77nu2qtJpWxWrR5m27Yd3HnnH/F3f/dV3OY8f/KlL/Ebv/lJDENRqVbIpLMIEnHsL//VXzLYv4y1q9Zx4NBhfu1Tv8237vpHnKyDrjn84Id3s2HDejJZh1Q6RS6V5+kntrJ8+RCeX8VKp5mdnqeru4Nms8HW517kmaefIZfO8I63v51sR5qnn3yKDRvWoSsdpRvoRoymafhexP49R3jm2Se4447bqMxJNL2KaTpMTY0TxR7dPb28uHM3gR8y2D9ATIgydZSh88E7PsrE8Wm++527+Yv/9SXiCH7pYx/jsce3sHrNcmyrHT+qI4TkD37vD8gXOvjIRz6IMgykUAgVJ9pcRCgjpFZrUK1U6WjvojxdRlOSXDZDTATCZnz8OJ2dnQghOXZwhN6+fuJIcHxsnM6BQRASS7c4NjpGOuuQShsEQYNDB/fT272aG992C5dedgm33HIjq4ZXEggNTUaEjXk0WxL6JkqTIBSmabBr10usWbOScrlKW1s79Vodw9Bp1gLe/e5b+cu//lPGn5mDSKPemCPjZPGiAMMw8X0fraWtVS5PkLFLCXmQCrGtpC9v4amMFEQC5ufmmJ2aYmjZSiYmp9i9ewcXXngJMWCYOlKB74bUKjXu+d53uOmmW5gpT2FaFqlsFjfwsXWDKA4S4plIcGxsjM6ODu794T28/oo3knIcvv6Nr/KGq66ls6OTZrNBEIakM1nuvfd7xIOCj//XX6Bem6HYVWBsbIxcroCQEHmC6fIUmWyO8tQU/f2DaJqg0ahRrdVo72xDai2ZgShi6tg4xbZudENjama8xfxoI2MdqelMTu3H9Vw6OxNdOEdq2MUudCON785jGHpy/aZncSf3cmDfCBde+lrMQh+hbvA3f/Fl7v3hg/y/7/sUYZxo5UVhRL3RwK3XSaXSWJZFrVYjlU7YMrWWvpzSDerVeXK5LH4Y4bpVbNuBWKPhViEEqSts3cAPBEqLaTSqaEpRrXktQfaYMPTQDYNmtc7BA/sZWrkWK2PRrFXQBISRxHVdcrkClUqFbCab6PJFEVMzo+QyvaiUQRQm/dxEEAlBrVnG1E0iT8O2Ymo1l1S+RLUyi+OYxJFCKnDnZwmVwXT5OHnDR8iE4TQKQ4IgwPd1vMhjcmaO9s4h2tq6OXLkCN3dPSBimi320rSTSiC3SqNSqWAbFnEM2194is2bLmb/vv0oWUe5c7T3Fom9kEBAyskS+j5RHBCFMXGc9GUHYYSZ6yaWJoNXFEll8qS0Bn/02V/lTZevhWACS3fwohrLBvuZLE9imzqxrzGy9xiatoF8+ySWmIfIpTwB7QPtPPGsz+f/8i6+/s/fx3ODpO3g3I3s2b6bJ7Y9ymv6qpSPbGO2avD+X/1z9J4+ZAuRhDgpahWfpbctjCNMZZxgrlxwS5RUhFFADCckBBb7R9GS6t5ie3X9YHXG7QlJyemVwCiOXlXGYPEYp65hoYr44x1/ZvvxAsWkWh0TRYs18E7az3Tufors/0TlTiwpg5/p/TPbjxNELQ3ulo6whPdxAfb5KuOcbaY4/vfU/v59dkaSl9P2Of0KnLr91a7p2f9HyXUTRIScrXb427/7J1x53oqFg04Ednd+fQsPbtvD5at1LhrOL5pNI522qVfncRwTXcUIGSRfgnEIrb4KQ5P84MEXuPA1Q2QzDvOVOh0dOeLAo1KtIjSL6ekq+XwOqUwgJAwj3KaPlBpzc7NJ9teyOXJskrZinpm5GaIwxDAsBKDpimKpgARsSyXwwFY/3dh4mc6udjo6ikRxomdUmXWxUwZRJMhns0RxhO97GEaLXQpB6EeMHp9gYKAHXfv/2XvvMEnO8tz7V+9buapzT09OO7uzWVpJKwmhhIQACUtCCEQQ/gADBoePYxs++7J9sA/Yl304Bh+DDzbR9gGDAwh0BALJEhLKKwmhVdqcw4Sd2LmrK35/9Kx2NknC4Zg/ePaavWaqqt96q7u6+3ne+37uWyMMfJoNj5bXwLJ0Ah/afoBpOaiAbaiksjnaYZMEhb7eEpVynUIh3ylUFUHg+UzPznPFpeehWi7FfAYFUDVJgoqQGgkC0zJJkqjTo6Qq7Ns7jaomOLZJQtRZ1dY1NH0JCay3abdD5uYruK67hDzHwFLhRgKxZPfuI+TzeQI/QjdVUDpU4SSWxHHMwYMT5PMZClmXR7e8wMhQDz/+yX4UAem0g5QCIWI0w+gIvxDhujZhlJDECWEYkk6nEALKi3W2bT9MMZ8hjkP+5Zl51g0UESrc/ewUr7vuOnqKWWSqCElEeXEOlAg/8pGKiqpqxAQ4tkUQ+DzzzFZ6erqRUkdRJJ/9zBdIuUV+8RffxfjqIVzX4gMf+C0+97m/IJPL8OwzW3ng4QdZu2acD37wfTSaNb7299/gfe/7JXL5LGHgs7CwwMLsAo16k1w2z7mbN7Jq9RhW2qFvsI+33HgD3/z2P3Hh5nPx44iNa9dz8MBBenv7eHzL4+TSXXz3jrsZHhrlj/74j7nhxuupV9sYpkFMQKXc5C03v5nRoWG+9a3bWLtpI91dXWRTDroUIATtoImUAqlqqFJj7drVzM/N8Xdf/i4/eeYBzjtvE1OTczzyyGNs3HgOlq3huBrzMzGFriJCS/D8hAsvuoDzztvEjb/wRv7oD3+f8y86n0arxvfv/iEXX3QZjz3yMINjK9BUyVWXXcKrL7+E/ft3ksvlIBbEScDExCTFriKqqqNpBo7jUqlUSKVyeK0A205z8MAkXaUCYRjQbDaIo5BiTw/tAJrNNoVSH6ESU6/WueM7d2CoBsMr+wEPTUoKmW403eTtb38Hl112CV2lHHEgef0bb+Dmm27CMU00vZPY6waQaGz9yTbuuvt+Lrv81ahqwgfe/ytc+4Zr0Y2Owuv7fvm9/OJ7fpnLNlxOFISdHs94qR8FXlSN66AaETMz03QVi1iWg+95xFFHUW7njp20mp3+JE1KUumOd2bgB4ytWknshyhSkigKqhCousnOHdu48rIr2fLkFtau38DBQ4dJOWmqSxTKhIhqrYqp2wShh2lajI6u4ujEEQrFPBvWbSSTSTE9Oc9n7/ws0/40b3rvdbzqjZfR29tHNpvGSRlEocQyXR5/4ikG+gfRpM5ffe7zXHLJJeTzBVRhEUYezVaVXC7PYrWKrmmEUUQYhbSCNoZmMn3kKJOHDtLVN4iQCrEIabareLUGPT0DKNLCtDOkMtnOezGOUOOEam2BsN0i6+RJda+gu5hlz87tdPetIkEyNpjjpmuvwB3N84Hf+TDndJ9DyrVRFLAMA1XTSOgYevt+myRe8shcWtQzdZ223yYRCbrWoX9rikqjUcG00uhqRxkyiDzK5cVOYRiGnf7nOIIkxvd9DDONadqUurqJlJio1cDUdZJEIHUXy1KpNxqk3QytVpsdu3dS7MqScbtoBmVsK02sxISBR+x7qIbAVFI06zWCuIJppAj8gPmFOSzDIIwCLMOBOGKmXKGYzVNbWACho6mg0LHVsE2bUGlgigRVMXnsoZ8wMjZKuVKmUq1QLHYxOTmJZmjEcYhjmSRCIJDs2bsDRSR0d3WjaYKHH7qHoDHPqhX9CAxiqQIxURDht32kEBBHSM0A1UJziuh2gbmpJivP08jG+3j64ds5f12elFHB1NoErRq2qeB5HknYQQCT2CNUAv7xn7/PpZefj6pFWFqO2K8xMz9LsWcFmfwgjzz2LN+5/XbGx1ezYsUKdj23h8995W8Y6jLJWoLt2/bwqqtuxszlUFlaS3kFyJ1QFJrNZsf/dNn2F4skOjTMU1lWy1G007Odl1GuPGuhdbqC5YnHnBmxe7mcbnlx+q+PV5bVnkAej+f1J+//uVrmz1AEgffxU1Gs5fFKTMxfCdf3zDfzyY2fSRICSysyPwU6tlzK9rg65MkCIKdzic9e3HX66l60PXixKTfpjA2nWyH8X4pXUtydDN8nZ9h+5jibmujy85x4Ns9+rJPvpU8svLj/b3/wBN+4bzsfe9sYl60tHL+Qpd1LylKKQoxgeuIY01PzyDhAKItIYZAoCVEY8+zz+8mkHEI/IElCoigg5WgEkSSbTaFLhVw+vbR4HpOEnfuo1Wyh64JGJUQTAuKAgf4Si7OLTE2WiWOBqRtUmh6ZTBoliQgjn2o5IIoTTFOh2ajQ09NL1A5QNY1YAa/hkS9mgIh2K2R6ZpFypc49DzzD+FhXZ8U5jrEsm2qtRi6TQkkS9h+cpG+o+0Xz5bn5OUrdJbxmDU1KKpUWqtoxeJ+fLaOrCu1GSL1eJZPWmZg6zMBwP1JRyaSzTByeIp3rGIGj+CSxAknH96lTjKvEcQOhxFhmGjtjEUdRx/jXMFBilShKqFRqpNIpvvKNh6gutlm9qg+px4R+gpAdBK2DziVksy5CqDzw8DOMDuZAig6NKlYIQo9Sd7aTJLVjVo72s3vvUTauH2V+rk4ul0GVKkkSoxsafjvo0ERbdWzbZXJqlm27jiCVBNd1SKVMHvvJdtatGaTZrPOlh6vcevVGDMPknx/eyRWXb6bcDEjZKSDBNB1aLZ9Gs45mqMR4eK06CBfDTuGmMtRbPjOTR1GNkM2vWsfY+ACbz38da9evYmC4n5vedDNvetONvPaqq9l88WY2rF9HvbGAaWT4xCc+ye///u/TbFdp1AJsJ4WTMrAsSTaf5wf33M/4ynXMz1eJk45JtTQlq1avw3Jy3PWD73HOho1oSpptz+9m8+bVvLB9N5ddcRkf/s3f4PNf/BxJM0KKmHQ6jRKqTE4v8OUvfxkz1eKmN91ErTZLodDPH3/iL0hlSswcOYBtW7z9bR/h0qvP4/bbfsCll4zTjlVaosLVr70a106ha5JzLtxEtebh+wrpXBpF0VlYmCMK2vSXchw8OM/9P3yED/7yBxkfH+Pxp37M337tC3z0tz6C70nO3bQREWtESZV773qeO2//HFdcdSVuuodHn3iBTNrBTes4rk1CxwRb1zQc0+DZrc/RbpcZGekmm8owOzePZVr4bZ/yYhnDSOO6KSzHAiVGUwWWqXFg/x4uvHATlqXQCmOmjxwhqi5Q8dpMTk7z2b/8PK+5/Bp27Xmet77lpk4SJw1u+8d/Zu2q1VTmG3zoQ7/HW99xLVdcdQ6qNKm2alx//Q2gQJD4+O0azz33LNesvBaJyrbnd1AsZjk2NYPnL2BbLnEiOgIecYJumrgZhyju2HyYhkmigOf5zMzMgRJT7C4QB4LJiUlSaRc/8tA1nbnFRbq6ujhy6FBHnVeqWLaJqmk06226e7oo5PPs3LWd3bt30dM/SDqVwtRVvEbH/qFareC1m/T39eF5IZ/81p9y03veSJI2uPVd7+DKyy5C4qMlDb7wuS8wNnoOmt2gUfcRUtDf10u5vIhKzPj4GIVSnqNTE2RTFoalsGPb8wwPjZLLFqhWGvjtJs3mNIV0H4vlBXLFHE46w+LCLFJRMXUbXVo42Tyzs3tpNirUZut0dw9h6hp+0ObZnzzBiuE1aFqG7955F0Fzgu7RleQH17H9uQN052xUw6QVKWRz3bzm0o1suHIVX/jmV5nfs0ipuwchFdpeC13rtDxEicCwbMIkxveaaFKn3WqgihiBJElUFis1sukskUwIvDYPPvwj+noGSWXSBIEPqCSqRCoSkYBQNaQQHJs4QKteJZsv0W60iVUNzVHxF5uUay1ano9hazS9BXJ2hi2P/wujIysw0Vgs10lbKo2Wj5ZOE1TKaKaG5rioRhoR+4SRj6EZKEIyMzONZRsoSJxUHpSODYJqpWkHEe24wlM/eppUsRvHUlFjgW1IMumAw/v2IZCMr17D1OQxVoyMoCsxzz39FN2lHsI4wlBd8t0ZbCfLtu3PsGfHJOetzTE6NtIxoJd0FlNFRy1LUzWEpoFjIdUUupGnGYToqsOjj93D4rHvYjaPkE1qVL1JHCsiHRRJMpJYUTBtk8npw5imShT62EaKTZsz1BYrGJpFuV4j29VHEodk9Jjvfu9+TKefVWvGufyqqyjPlUH4vPvtb0cTklZlmlL/CjJj51AqlQDR6QdcnomcpcBRFAVN007PeZbRIMUZlNs7RdNx+ufJLTYJHW/Ck7OjZfnlywAWp9MzT/XBOw5MnD7W6fn2yTnfyWO/NBX05DhhVt6hWZ6e+x+nXwoB0ZKv64n+u+Tnapk/SxEG7Y+/NJz7H2FifjxOHffkm/EVj7L8TXlKP9grPfMySZZOsagcH3dZgXgWg/P/W/HKirt/9eivYP/ynzPHwGA/b/sv/53bHtnNa1fHXLgqyzXnFl52ZE3TcB0bx7GRqsAPQzTdQEoN3bBQEsGaNQNIAXsPHmNkoIdKrUazFdLb28POfUdxbIOFhTKuYyJFx87BdTsql6YlSZIQVZV47YCFxQZdpSz5YhqpgVQkjXqNI0enKWZTSM0jTgS7ds8hEouOqbeKEBIpBZZl0/ba+O02qqZgOya5XIY1K3opl0OeeGofY6NDHRorMZZpECedxQdD74gc7Nt/hHTKxnVdUKDZ9Ch1d9FoVjEtC6EktNseTtEik8uRKCa2lePhH21jfNUgiWiSykuURENROhTJOAqJooQojKiUa2g6KInKwQNzLFZq5AtpNE1y3FYjjhOiKMI0NeIkYWwgz6qVRXRDR8FAqpI47qCfcZQQhglxFKNpgoH+HJpqoAiVJBYkSowqFcIwBDqo2bfv3MKlF6/n0KEpJmfnWb1ykDCIiBMFIeMlnyfQ9Y5ggOMYDA8Use2OCp4UsGZ8ECFVLNvm20/McNPFw0gp+KeHdvHWt9xAqdRN24/QNRWShGarhWU4uKk0pmFh6DaNZovA98jn82TTaTQJ+UKBoK0webTMxg1jRDRQpcbVr7mOe+/5PtPHZkiiEEUIBvoH+d73vs9vffTXEWoby3RwnE5BqUqJqnYkzXt6+vj2bd/k4osvQNUUwsjDtEziSOHIocOsWr2SVr3MD75/NwowOraCgYFhHnnkKTTVYNO556K6TfYe2I0iY4SecGDPAVpeg6uvehVuqsCeXQf4wffv5YMfeh/9AwV+9PAjnLtpEyP9I/QU0rz/gx/lzTddRaE7z/DwGK7jsnPHDrLZLIuVCqWuLnRdQxExuqFiWyYHDxzgsUce54ILz+ehhx5kw9pVFLrSrFozzqYNV2BZLm6ms9qfK+qcv+lq/uhT7+TqK9+Am82wZ88+Nm3axOLiMUxTEgRtDMslSSIC36PZaNBV6pjRe22fOAY3lUIKSTaboV5vkM1nieOQtt/E8xpomkEUxKxduxbHcvAjFUXouE4WwypQrXlkMikG+kukshbZbJEbrn8z73jbu7Ash4//4ce5+S03kspY3HPfD7j+jW9GQQfhY5o6XjNk4ugcc8fmGRwc5g/+vz/hVRtfRRzHFLoyGKbOPXf/kDBI6OntQdN1kiSi7TWRqt4x3AZ0VWPnrh3kC0UWyxVMy6GnVEIzNKSQ7D+4n0IuTyqdJo5jHtvyEEODo5BANpshERG6ajE3V2Z65iium0LXdFKpDMNDwzz3wjP09w5QrVW487t3svnCzWi6jlAkf3bbp/joH76bW976OkxNI2i1sdMauqajqTq7d+xH1XJcfNk5aNJA15doqkLBdVNEvo+9JDxiuw5Skfi+x+DQIO12SBDXmZudpVDoxrHTgMAyTeq1OpOTkwwPjmHbNtXaAkHQpFJtkC+kMQ2bJx7/Cb/zu7/HG95wFY1mjZHhHg4fnSCTyzMw3NcxGdcN1NhHBhVm5irk8lkM0wSh4qRzKIrK61/3Gi65dhPfvu+7xEc1Cj0ZNFVDEQJV0/DabYQQqFLywIP3kslml/z19A71XyhL/XIKSqKQyxdIOzmEEJQrFWzbRtcUfL9NrVohjAI0w8GyTCrleTLpPLXWAo1qzGOPbEGqHk88+SgrV61DUzuUVds00a0C2UIXO/duo6enl1a7gR9EpNJplCQB0UmEa5UyipDYThroePt1dZVQFIXpY9OkM1laXg0FgWHoxIHAMWyKPRlMC5QwIoh8hO6SqBlKXS66pRAEbeaPLVBpltm+YycDA2M0WouEsc/BAwcoFPI8dv/TrFgxxM7tL7ByrAtNS+M1W6hCRZMaxAqmkaLlh0RCokkHze6iHatYuiDy5vi7R77Ou9+UJQxnaKomf/wnT7H51Rfj9Mzi1WKq1Vrn+zeOcWwH0yzQ8gI0YWK7NpVKhXQ6wwvbnqOVFPjTv7ybD//6L/OF/30HvQOD9A4O8cD9DzI21o1lw+zUDiYPPc2e3ZPc8sHfRMiOXc1xPuYrKe7Otv0Ei+vUfrZTVclPbwA6kyDdy52z09ayfJ5n69NbEu87ad/Zcq9TW3NOBirO1vd3hlmfZm9wtmPjOOqwYuJkCcU73nP38+LuZyaiMPj4S+3/jyvs4PiNunxFoQP1Hm8gXX7Dn76ysmyEk/4+E5De8bNbvv3MxYpyqgLScSN1Tqhk/lt97hKOI1dnQxHP9sDTedVnfZsuUx897t/2Uh9GYmll6mwjLkcylZc4DuCWt7+ZN3XvwjjDatnSYGees1RRdQ3N7CiaBYGP3w4Igxg3m0KqMZNT85x37hr8dkSltsj4yhH2H5hi+95J1q0eQgoFXRO02iGGYdBuh+w/OE0ua1GrNzB0Danp6LpO2/eAGNvWqdeaZHIpcmmXWrmOIgxaXkAch2SzBvl8HqlJqtV6R2EvTjh69BjFrhxJEjE9PU8+lyWJIyrVKuvXDbF3/wG6uzNMHO34qSUkHDp6jBd2HmJksAvHNklnckxOTGOZJtVakyBoIwjw/RjHdTAtlVZdZdeOw+zYuZeRvixDIxk0XUU3bBQ6VJPAj7j9jh+zarSXZtPDTTlYjoUftBGKQbFYJJUx0KTe6X+Vgijs+M/t2nOIUimHEApOykKqkEQKYaCwZ99B8vk0Qgh27D5MVyHf+WDXoN1uohsWXstndqZMs95AKkdkAAAgAElEQVQkSWIs26TZaKPpGqNDXew/MEl3V47Vq/qp1RoYhsH+/VM0mzVc10FRBFHUUeSUQkGoAk2V6JoBdNQUFSEgUbjjJ7O89dJVCKnwnUf3csMNryeVzuK1AhQRk8QRrVYD184RhTGqqlOp1LBNHZIEVZVEYYhlmTTqTaJIsLjgs2vf0wwOlPDaEUODq3j7O96OYWgIoZDNpIkTyeFDhxke7qbtV3GcIopIiJOYg/sPMbRiJUkUo+sG5593DkePHqFaLZNJuzSaLVw3RTaXJ5W2aNbq9HR309VdIgpi9u7dRzqV4fzzN6PpAtPNkM8N8ehDj7Nq5RirRvrZdO45RPhYZoHFuTpXXXkFb775Rm655Qb6BlZxzdWv58P/73uRscHY2Hk88vBdXHrlq9ASEwWF7p5uVE1FCo3pyaNksw6qUJibmyEI2gwODjE6OopqqJyzcQOuY5DPuwRJjN8yueLKy/jAh97O4w/vJfYz/O4fvJuCuwFFi5meOUZvfz+NRhPbMfCDgFTKBkUyPzdLFAWgxNgpF9N0cOw0nu93rAuSzmerY9scd+6cX5hH01QM3SFJEgxVp1qtsWfvIaoLC/zgBz/CzfTSVczhpmyaXplaY57dO4/ysf/6MT79559hxehK3vf+d5MoAbPzk7zj1rdybKpCsxGRzpkoMURBwuNbnuTCCy/gr//6S7zzyluX7jUFTTW4/dt3cO1119LTW8K2bNphh6rWWanWePDBexlfuRpVExRyRYIwJJ3OkHJdNEMnDmKEhL7efp597hl6u/uQqsrwyIolQSWVR7c8RF9fL/fddx/bn9/B6699Hbqqo2kaYRQShAFTU0cZHBjGtExS6Sy/93d/wGTlMN+59zb+9ktfJmzXCYOA6mIFy9IRIqHd9tF0mzdcdyN/8slPUa1MIBOJZpkcPHSIVNpF0w0qCwsd+x8hWFhcxDJdKrUypuNAoqJZPuWFCqrqYOg2KNBoNDGsjkKvobscPXqQarVM32A3UlqYusmxqRn6ent52zveipvKYBg623Y8Syabx3JTIBKqjYi0bfPsjx+mtjhJ79BqEDGKVAgC0LQUjmWxMDNNErXYtPkCNl49Rn7E4df/2+9w1XlXkyTxkhWFQJOSrz70dZ4++AzP7d3GqzdcwuzcAo7r0NHZVti7fw89PSViYqI4xM04CDUhCgKef34rqXQOx7apNj1c18HQdfx2myOH5+jr7yWXd7DUIuedvxnN1FGl5NDBgxS7uvj+XfcytmoN6XwaKTr9gqlUjmq9TK1WJ53N0qxXSbsuCI0g6IiIxXFEHMVLvbNahyEhIYliWr6HYUnCACxHImJBEoUITRLGkp07d9Hf1Y1parS9GhoJC4sLLMw12L9nP5rmU5mtMTd9EMeR7Nn+AoW8RdCYZXiknxgFoSToWscIPiHEC2FipkJ332qCOEbRdIKoQdyaJW5VeGzXj3nX60vUaj4igIvOGyaXauCVEzRNIkTHakAoCqYVUfPADyfI2mmqzRamZRH4AX39fcSiwMQ8NOtltj53hE/9xV9g2ym6i93k8yu4//4HkHFIq1Kh1FPiomveRIIgEWdAx07NjV6CUaac5ffluN1L5WVL7nkvccQSK2kpnzye0x732DuBsp3ZtuC4955QxGmI2+kI3JmVPF+c6XFq6Stg2HX66KKzzuv4po5FwrJna0lt8+e0zJ+h+NlQyzy+osBJf59EBHzFPWOnjn1izJeiEy5/1PKbesms4eTH/ZsRu+XF3U+Hvr3y4m75mtOJfy91/EsVd8tRy5ebtQCig4+cdf/ZV7s4/gIgpLaUhDsds10ZIxRJOu0yPT2Lpqt4XoUgjMimU2xYM8TMsTkc10bqOlEULdEGdB54ZCfZlE2pq4BmGLT9AMOUGJqKKlT27p3AtE1QBYZucvTwLIVimlQmQ3cpj5QKXquFagpUTSEOfPYfPEaplFt6Jgy+d++znLN+mKmpaQb6uwEwDYNarUXasdmx+xDDI7109xRZNTJApVLFtA1275nC1AXNVkCpO49uSlr1OpaVod0OcBwTr9VkaLjI0HARw9aQukbgByiA12ws9bAppCydZ7cfgSQmm3GQEoS0ULWYIKyjaga3f28L4+P9S5SWjlVHd3eOzpdF51752j88jq7GFLsk3//hDjatH0KqKsV8dqmvq/PaCyGJgSOHplks19GkwfTMIoW8iyJACo1dew6zY+8UO3ZPsX7NMPc+8AyrVvSRy6XI5rJMTS0wcXSW3t6uJVn8jvdWB+WMOrQYoRCTIAV858lZbrl0NYoiyKzYTKmUp92OcN0M7aBBrVYllXKWfMMUwtAnIUKVYNsms8eO4To2s7OLKALyhSzpbIpCtofZuRlKxQIjoyu55S1v4fXXvBa/7fFf/+Bj9PeNsmXLj9l8wYVsffpZVq4cp9EsY5oW9arHzNFj1BoNDNPg83/9Fb71zdu4+eab8bwAN2Pz9NNb+dxffY7uUoEfP/YCz7/wAldfcwW6IRkc6aOQy6JIiBKPu37wIwZLQ4TeLN0lhb07d3L/Aw9Q6MqRKw6hRAG2bXPuxnP5wV3f57mf7OIvP/u/SBWhHZpcdPEGunJFEiz+6Rtfxw98+gYHSIQgagXUagsoik8SKaTSBer1OqoKjfoiCIu/+crXeHLL44yODpPKZTDskDe/+XpcK8fIihLFkomMe5DWHPv2zTEwOIgmNCzLIQojUm6RKIzZuWsH/QP9hIGPbZocmZrAdfIkioqqwcTRCYIgQFVVdF0njgyazTb5XJ4oAkWR1CtVtjz6OH/yp5/k7ju+xfvffQu6qnPPfY8wNtaD77fIF/Kk0xlWjIyy5YnHSacczjv/HDQzxrBNTNMhDg0yGRM3JYkjHVUIKvNlzjtvLdXGFNFOF8OVtFotVKkzMX2ITedeiGFpmIZNtVrFchySCPxmwH0/upcVI6twXQdNlSiKShgFLyoiJlHC3Xd+n9GVw0ipUSr1LIkQKcRKgqpqVCpVbNvF1CxWr17DyvExAj/gnnv+hamJSQb6hzANgzAM+OIPv8Ij2x7lI5/4Tf73l77IF77wBZ588mn+/NOf4f959/v44pe+wbXX3UgiJHEYEoQhqqHzkd/+CF7YIG2kqdcn8CNBT09HgCOdSpPLZDAtgzCKcBwHQ3do+U0s20ZRVLY9/yxjK9egSR3Pr6OpOoZlsHXrM2TSaSzHYHJiglWrVlOvtQnCENtyadYb9A/0IlWNKBTEkcLgUC/pTBdhIEDIzmd6HOG6WXrHVqMqkj17d9PT149UDYJKjYXZWdrtJn4YYWdSqKqOoRrcdMMv0LemwK//4Ue58twrSFD4b3/3cS44dw2f+vM/4/o3XceHP/YRgtk269dt7CweqdBV6qZcnkc3TQzdIIk7TJ0kTsgVesnlS4RBiGloRFFEo9kiX+hC0wwmjh4hm3GZnJzCtCzCKMS0TDKpFFGscGTyAOtWr0XEMeVqlUwmj9dqo8kY23ZRUGi12jS9NkanERRFCdF1G6GozM0vohs6oR8ilJjFxUUKuQJCClRdp1z2kFJF6gpECcQBPT2FDuUwSdBVSei3ifwavQM9pBxBdz5Hf1+RTMol5SYMdnehaj6jg8MohFiGjqpAFMdECBSpY7hF8t0jNBtNzFSWw3ufI4WHErVQFIWHdzzFZWsCekpDpBwLx2oRhLMkkU3b92jUG2hSxXVctj17jLmKhZP2EE2LUAYnio1EQafJuev7+O0/up1XXfxqHnr0MTaeex66pvPjp7ZRqc5w1eWbaCwco9Wso3eN0t3b2xGXO41+dXpxd9YM5CXEUs627ac94uR5/DQI35lQvFMRudP/Pts8fxqA5oTI4dnQzpd+/M+Lu5+h+M8t7o773B1H7JYXdSejdifQvJeOE753yUlFyCsp7I6fe6nrbmltZjkWeHxPx+TylRZ5J+Z0/AwnX+G/R3F36jmW86+XF24nH39iNksfFychlXFyQuH0hA/gK5mxwjs++nluvrh08uaXew1PGjahXmmQcjueVrEIlmB/iSoV6o0muYxEomLYJo2Gh99uE8chQRhjWVmE7AiC7Np3jOHeDLVam7Sb6pjd2jotL2bfoWlWrOjFNFVEEjE3XybfnWdxvkK+kMIPI+bmKuSzReIoxGt5eF5Ed08XqbTLwYNHyWfSjAzmMW2LlO3SanuEYcRTW/fRU8gR4pPPZ1HVzj3zyGNbGegrEgYxu3cvMNifp9msYpqCRFHQFIc77t7K6pWDHJtYJFNwODYzTyrloiAh0RGqgSKUJUETDamC47ps2XKYaqPJ7Pw8I0P9S09pDEIghWDN+mHu+uEWRvqKGIaGgkYS+QgZEyIIvJDxsSF0TSWTy7J6rESc+EgpkUIFJQA6iJVUVZIoIZdPk3JS5PJZPK9JyjWZmpzh0KEFVo8PM9RXYP3qfgxbMjZaQojO6mMcRzz73D42rBnliR/vZGion/37JqiVW6iKwf0/eoEVK0odpFCRRFFMIZ1htC+P7wesuOT6jhx/tULadQhQSaWzxLFA12Hfvj0UCnk8z8P39pGoJluf28/KoVEqrXny+TyNRrsj2nHb/Vz8qs14gcd9P9rC+vVj+FGLYk83v/AL1zM4OMLG9etJlAq3/eOdXHDRBZimSrVSR9cNXMNmx7ZDOFnJNa+9hg3r19NoNOjv7+fI4SNkMzmuvuoqerpKbLjwfMZXr6RerZJxXR56+Gn6Bkqkczqu4zA4vJJs3mZwpMTc/DHsXBcrV2+if3icIG7i2Bo3Xv8uNM1BkYKLX70BKRKCdszt/+cbbFi5kU9/6nMM9Y7x7X/4Or/8/ndzeGI/mUwRw1QplLKouo5pZFBFhG0bVKs1CsUS9cUqV155Ide84Q0IPY+pgtQsDuzbR8pSsTIGqrSQeoxuuGTcFKASRgogaYd1bMtkZmaB4eFBZqZmSKWz6LqFkmiEoY+uJbSaNR649znOv2A985Uj2JbLVz77l5y/6VyEonLppa/h1nfeSqyFrBwf47JLLuWCc0ok+KwaH+PIvn2Ymkm10uRrX/su51+0AcNwGB0aZv26FRhGQKwIRKihap2FDojwg5DyYo0d2/fR1ZdH1QXve/9HeMNlVyMSnT3b9/LUk09w0eZLaPstkqUecF3XadTrWIbFd27/DoWCQ7GYJ58vESVRp/dOKCwuVlAVnUq5zPCKARzbISEhjjur9JNTR+jKFwmDCK/lEcYeu3ftYu/uA4yMjRBEIWtWrSdf7EIzVBRFsivYxYd/5f28421vQTck89MzaFqKW9/zLj7wq+9Fl20uvvhKDh6ZpOXX6e4b4L57H2TDmtWEfp2nnnwSVVfoGxzBNDQazTo93SWCtsfkxGGkFhGEbebmajgZE9fJE/qSRIQk1QaOnSZWVCLVxRRtKtVpxleNU6u1CWOfgeF+ao06+XwWRemoaqq6yaHDE0uiTiFIOLrzBUwV7rrzDlatXEGrWkOaNtK0sHTJ4cNHcO0MM0en2L/7WQoD4xw4cICxkWEO7NhONjdAEtc4evQQjpNi4vAR3vu+d/Grf/BRHnnhEf7p61/g3E0bsUyNt7/z/Vy/4Y1cdtGr2L13B4WuXiqLMziOg647yFhQry8Shy2SIEKqBtPTUwgSEhGjCoXdu3YyPDhGRwcgYaE8QyHfRRC1mJycYnRsiGajhoJE1SRrV61hdv4oqpqiWltAlQoTE4fJ5FIosUIURmjSpN3yMS2XmdkpLDeNlDqL1TkK2TymYaCpJlLqWI5LuVYmTkL8dkA2UyBSJJadI2yXiWO/49MZhvhRG1VXUVSFdL6LlCnoSrvoekLcbpJydTSpI6XAdm0QECWSKA7RZEf1UHOKmG4vQtOpNcpki3lUv4Wtxyh4KDFIXWWiupMrLiixWJ2j3AzRtRjDSONFCRF10nlJHOvodkSlomGrOvl0mkhRcVQdoipeoOHJEDVwQfVI51Yi3BJjYyvp7e7md377t3nvO9/D1p1PYrZ3Mnt4N8W+flasWkOqNIJMEpIXu2OWCrWXKe5OzQCP99OdGsdZTC+d5ZzIrxLis/CvTlA+lzPPlrOqThrxJMuDZQqeS8yr5f15Z/K/O9vPqedY7lHc2Xayb/HydqQlOYszsuk6x554PoRQfiqfu3+rBMzP42c4kiR+RXYH/xkRkxC/YpTwXxfJWT4Sfpp4uXnGSXxW24IzhUBBLM1LnEVa+JXEbd/+h5c/6GUilTXwPA8lkGihhYglk4fnsHSXjJNlYrLO3HyNdjvGTqXp7evFawXUqw3iOKZcrqIJwRWbR+juzpHJmDRbdVRNJQgiVFWydvUwpmlwdGIWEjA0jenpOfYcmmViYobI9+gqplFEQkKHcpgvpDhydKJjumw5PL71GdyUyuTkYaKkRa1axrZULjp/JflSjkw6zXHNolbL4/yN56GpKRrNFmMrLVDgyNQ8UmoYus7M3AFuvvEc2mENJ6tSKTdpNDr+cVHsc/d9j+O1F1GUkCgQCNHEay2iyoCYkCsuWc0Vr94IxPi+h6JIFFQCXyEOBG+48mJ8LyAIfaLYo9mqEYYRSgy3fe9JPK9JvdUgTnwc18Z1U0uKgQlJ0kEpFFT8dkQSS4QQ2K6OZjTpH0gjhcru3WUazTaGoWE7GpmcRRRF+O2O31+z2UIInVwmTa3W5KIL1wE+ff15hkZKKCLkjb+wCaFCs+ERRQnNRpv1fXmk0Lj90R1EoeAzn/ks3b1Fdu19nrnJI4jQI/IbTExOMDY2RhLHeJ5HPr+SZiWmVWtRqZUpFQeJY4ntmBimwjvedS2V6jTZXIY3Xvc6wjDA0ExEAo5t8sEPvZeevjy6IfjYx36XF7Y9S6JAq+VzbGqBQEkYHOrnlhtv4umfPI2qdjyjDhw4yP/6y7+ip7uHOIqIYgjqZSxdpdjdhWKavOaqV6MbApSYcnmBu+74Frt27CRMdIr9K+nr60fXFJqNOkQJpp7mkktfTaU6y63vfAvr149zZHKCVCrPL733Q3z1G3+D6UCpx+V//M//Rkyb8fFxpKJQrS4Shh1UW8hOU/z83CKZTIaDBw5RXfCZn62zWK5w3XVXMzc3g66prBofZ25uBhLB9m07EEIwPzdHrCQI2ZHTX5ifxVAd/CDETZlEQUS93kAKSRAEOK5BKmXitVskScyefbsBla78MH/+6S9y3S1vA8tEURXuved73HPXveiaSRR3zOY3XfgauofGCYXN1dfdyIbNm/j0Z/4nH/rA++lKddRVw6hNs10mjCqoUmFq6jBx4jE/P08CaKrEdVx+9dd/Bcu0iWPJx9/zcXTdZGb2GEenDnH5lZdx9z13YtnWEuUPIMHQNYLQ55prXsfmzZcyMDi0ZI+gItDxmgH1Sp1t255H1QWZVIEHH3wQAN/3qVSqDA2OkMSS7955G+msy0DfKIoiOHZsljiGhflFVE3l23d/k7++66/YcMMIv3jrLRS7ujpJV5zwX37zV6nUjpFO6TiWytTUUR7d8iAjK3rxgiq+3+bSyy8jimIMw2BsbCV9fQPs27efxcU6urT55J9+mm3P78a18yzONVBVnZ7eAjPTM4Shz2J5Dk1KhsfGaHotpCbQJMRSI0THixWcbB7TNqnVGgR+QK1eBxIWFhZQJfQP9OM4NppuYOgGI2vOwcp08aZbbiVApVQqkkQhcRwRBj6ZbJr+wT7yxSJSqmiaz7nnrycUCusuehUpN82zz+wk5eTRVJO+0SH8MOQfv/p5vv1Pf4eqqdi2zeLCAv/8j1/knp0/BKmwbt0G5uePkc3mabVaQMjk7FFS6RymlSEWEEYB/f39KEKQctLoms7KsXGarQbbd27H0G3Wjm9ElQbdpQHWblxPGCjYThbNNAjDmFqtSjqdxTA1HCuDKkzmZxexzCztMERRVRRVkMnnmJ8/Rn9PH4KExbkZqovz1BoNZhcWQPWptRapNhZIZ13iMCCdzVCtLJBEPovlBZzCEKpTItBtfBGjGybthk/UDHnqwS2E7YBEKMRSQXNcQkXiRRGKoZMEEUoEKgLDsPAC8DEwnBzCEtSbDfREcuCFrdTKRxBJiBIrqLpGGMS8+5osD/zocboKA/zabzxIs2pxYO8czQZ86x+ew9ZH6O5agSodVq3JMziqg7ZIrqRS8SYxLJdvfuNBmuVe2n6TAwdm+NLX78RrJawZ38jCfI3P//WX2bV3K089/gJBy0UzTbp6VzA4uhKU5ITrCMeLm5++VHgpibl/u/rkf178tDlfwtlz8SROlmjop/YK/tvj58jdf3CcCbn7j+2zW36eU3m9yUnbT155SE55zFlg7qWfs6k/Ki/SE09Z0ViGWAEQx5CcQMqSODqxMnRy1+np5xDypJWfs2GG/5pn+aT5LIliiGVI5XF87vj1H+duK6d0HJ5A7E6+boUlL8DTzvPyb+wkjjjRoKzwvt/7Ijds7lp+xMtc3MkrQ0IK5ufnqNfmmJx8FtdJs2f/YXbvPcSOvQfZfM4GLEMhURQWyg2mp2cZ7CviuA5hFDE3s4hlqFiaJIgiLFtHCFClRhgkzC0s4Ps+mqaiS4GUAtdNoaqysyJKSBzH2KYJstM1rNB5atKZNArgOBZ9vd1Uyk16SiVUqWMaEt8PSGVSxEAcxpimhkKCECoTxw6RzdiUF1sEviCbtigUsrgpF1VI/FaDMNQIAoV0Os2uvUdYMz6CkKDpgoHeEoYhOHx4Gl21qNcaOI6L34I1q3vJZG3iJOhQKKXs0C1juP/B59n63B42jA+g653VyTiJ0AwdBUkcJowOdpHOuBSLKdptD01VQRH47aDzpRp3UN4wjNm+4yCGpiFkjFRBwVoyZo8pFHRGRwaQUkHVFby2R8ecvPP+NU0Tqep0FbNUq3UMS6ft1TFMvYNIGiqeVyMMO8bNQRBQLtdxUt2YlsUn/vnHfOULf8P/+NSfYlkqugbdXd3s37eXXDZLEEakUqlO834mhWlkCdoR255/lrUbxhGKSa1WRUhotRvUqjOUerqIEbTbPralkyQdUZhqbZ7rr38jrpNiz+7tfOc7d3HZla/Gti2isONX1TvYi6op3HrLW9BtB0UoeK0mfX39XH31awmCAM9rc//9P+Lc9Ws6q5yaJBYQBT7QEftREo3zNq6nWOxFty1aQcKRPbsZGhxkdnaOO27/PrWKxzNbn+ajH/0NTMtgZmaKP/uzz3LFZVfw99/4e37t197P5VdegulKSt1Fao0Wr73q9bzh9W8gV0xRrzaxLZfJyUniCPK5PPV6k1KxRDqd5T3v/iXe+/53c+21VyNEgqJqeK0GPT0FVC1FJpNHCKVTkMYxmq6zWF6kp6eXdruD7Oq6RNV0HNdB01RUTUVRYiYmJsmms4QhpJ0cjz22hXVrz+H88y8k3Z16cYVYKgp//PFPcvNb34ShGjzx6I/Z+vwOdu0+wOjYej78G7/N6669knqtRsbOImhgui5RFHBs6jDFrjSJ4vL0k0+iWRoi0TAMlRj4P7d/j1vf9VZKpW7e+54PobdUurq6yedyjK0Yo+U1GBtb2VG8XZL8FlIgVYmqqViWiaIoREmEbli0Ax9dk2i6Rhi2GVu5AqlJkljS29uxChBCsLi4gGGYEAvWrVuHpkqmJudYNT5GvVrn8Scf4ycHt/Lg3sf4xJ/8Dq++aD1uLkMURERRxPT0DIah42ZtxlePMnnkMK1mC1VVWbNmNXv27WB4ZJDQh3vu/iHHjk2RTjkUCiV0wySXLRAGMQvz81xwwWZ6+/qJw4hKtYHrpmh5NfLZLoQA29YJ2gGKhLn5eXRdQ1MVEqEgFB1FasTEVBYWSKddLNNaSgI7/UW6ri+hnoJtL7xAKp0mUjSCWEGoknqtTrM8TxgnHDxwgPLcMQq9XQRBjOM41OsNMvkU1VoVJ+0SK9Cstti//wgDg4NIDdpxiGM7aIqkUalh2CZx1FH4i+KId95yI3MHGkgpSeIIqeoIIRBKgmbZSFUniRWkJpBCXUJIQAiVKAo63wOaSlexm5iAWq2CqktqjTJOOtVZMAsCwjhAVzWqtQrZTIFmu0lMhNduMT6+jihqo5sG9XrHU0/VNdqtBkkiEEqMVCS2Y6HpJqlMhjAIsEyHKIwxNAtVQOT7xHGEZVuESUwcG+hOBqSKJkyEqiKlQFUlhVIW3dBZKFepNdo4ukBVBJpUIY5AdKwKhK4TxipOtodYOnjtCE1KkiAkaMyTcUDVYsK2jxIrKJqkWqlQ7J6iq6sHP2hw5eVDpB2J1CPCxCObyVAodpDIhjfNt7+1hdGRUVqtJk8+tpt8fjWGoTO+Zg2KWkcqHooc5OBEgtQdvvrVr3Ho4FGuuPxK7vmXO/CaEU/edxcjYyVGz7+G/tFxEqGCEGfI4JQXC7aXUoAHXsxTTuRMS9tfzFOSF387rsa+PISQJEnSOU9yJkTr1Dw1OcPvJ6tbLs9xl+8/jtqdmMvpEZ+kbLmU/Z2xZ+7UbFR58X178vHL536mcU7b8lObmP+8uPsPjjMVd6/E/uDfJ049x0up+fw0POMzjX1i68kExU6c1lt3BmXMV6qSeaps7r9nnDqH45TLFz864uQkesKp13X82OPXf+p+heUw/YnzvNiz91JF3hI94vhI+/cf4aL+YPkBL3NxL/63dG0S03bQVZ0w8MgXeih1FekqFnh25xRrV/SgiBqKUCjmUxD7tH0fN9OxKPC8gCBIqDaa5HIZoiikXG7w9LMHUVAQMqFQyOB5PpNTc8zNLWKZBkmiIIFCIY1tOwhVR1HgwMFj5HJZFEXB9+MlOWAPVdXQVZXpqVncrEMQKJi2DYAUEAWQxAGqruB7Ed29BWZnq6iqStv3qDWaRDEsLtYIgwDbUTHtLCnXJY7adPek8Zohd923lfGxPnRNsG/3HF35Aocnj1IqldB0sVQUaaCExEmAKlXiWAAxbd9j+P9n77yjLLmqc/87p3Lduvl2DtyE8i0AACAASURBVJNHM6MZZQkJoQQoSyAJCWGQCMZgYWP7LWNs0nPiYWyDnzG2SMYEk7OESCYpgFCOI2kkTdRMz3Tuvvneiuf9Ud0TWjPSiGe/5bcWp9dd3ber6oS6VXX33t/e3zfaw6b1/dRqc2Q8mzBKMHQXhI5QgjgIueknD7Bh7QAgMI1UD0+TxkJqWYRupKk9c7PzrF49gm2bJCrE0M20vk2F1Gp1ctkcT2/fTamUJQoSWs0UxWu3Oxh6qn8UJwn79k7Q25sHmaBLjUajBSL98jQMk8BXWJa1QGyTw8pUSJKYmj3MBz/4forFHFEYYzsZ0B0cN8ve8UlWrFzG1PQMlUoFgSAkJA7avOjUEwmUwrRSHcA4TnCdLP/ykRs5/oRTsUwD3RIksWJ+usXHP/ExTjhpPZVyP48/8iTHHLOG1SuOx7RdpqfHyXg2xXKW333TW7nm6lcSqIhisYcP/M3fcMkllxBFEfNzNR568BFmZuc47dQXYWZyGLZJoznH5N5tuG4ZpQRBoPjezT9lYNkIl1z8CvxWi+WDfdx5x+08+dTjnHH6S1i79lgGB3u48KLzuemm73HccSeRcXPcfusvWb1mGa/5rSvY/NiTaIYkm8+we9c8mx/dzl/+5ftBdTBsieNkmZ2tMzwyiCkt4jjBthwAqvU9XHb5ZWRzeaSRIFHopo0mQZeQJDaW6aDpAqnFdLtddEMn47qAwHY02u0OoBMGPjMz02SzOYIgQNdsbMsjDEAlBp6XY2hwkC1bnmB0eS9hcxoV+nzpi1/j5JNPZ3JskuHRYfK5PF/+9y/jt7pcesnFZDIe9933ECcdt5Y//59/zjve+WdINw0sNaptup2YjFtANwo88uCjnHTqKWhSY3Zuhlwuz6bjTqTWmKTTVhxjHcvaNccQxwlJkrBly+P0VgawXZNEKerVWurYCYM4jtLSAZWyKSsUgR9hORZxHJIkgJIYho5CY746RyGfQwqJFBLLtonjGNNOpXSCIGbz4w9TqZTo6Rnipzt/SrbQw5ve8maG+3LoooNdKGAZLrOzs8zOpvWNCpiY3EtPuY+//5uP8MMf/pQLL7qA3r4+LNOh2WxxykmnMDjYz0f+8cNs2HA8W7duY6B/gCef2kxPb5mMZ9Nq1kF2WbZsFXEkyGRzzE3PoWkRod/GdbJ0/A7lUoVu0CEOfVTsMzU+Q6VcpDo3TqlYQUoNXZckCQRhgOdlaLUaZHMeagFiCaMIJ5OhUa9SnZ0m6rYYHRwkUYqh0WEac1MkhiKbzWOZLtlclplqA8/NIuOAnU89jmEbrFixmijsIDQfz/JoNZsYtoVmG0il2LcvTQWNghDPzjIrqkw8VMNyJIblYBgmu3c9Q84rkUQhigipNLqdACEWC44UJCnhSpLECw6+QjcMoigkn8vR7XRRhOn2MMH1XFqNOipakAFJJJ7noRTU6vMErQ6WZaKSBQIYw8Cysli2TiI00MA2LEhi4igNxi6S+8RRhOU4xEmMYZoQC3RLJw5DtDBB6RZRIghjqDc6FEu9xCpBCBvDzOI6FkEICTpRonByJSJ0pJnBdgtgenT9iIwl6VQniYMqhpGQRBGJMHEdlzDyUQrGtk2zdtM8QdgkoYmb97B1nWwuj5CS0dESnaBO3hvEMjMMDY7iBy1cN8P0VMjYVJV8DgqFIrGoYemS3XtdvnrL/fzRO94OKiaKAp7a+iSnnPgSpKzy4hNKJLrNeVf9LqadQYhUFH6pJXKwxSWPwn5d6socrh1Ih1wy1oKMglKHlv/s7+8F2KmLpCuH2rgHM3cu3XbwrA/YdUfLinlA9PzZjt7Sv1Mh98Ot7/Cr+Y1z99+o/b9F7hbzeo+EZcULEZcFpqFDLsJDox6L0Q2xJKqy6Fgd+XY9IHqQvlt0dw7NQxZCHEDoFp25hb8V6UN3cdhn6d4t3PBqYZlHezafXTd3uJ2WoIZKLSCMGouMnnAw4rZw8yfJfqRPcEDHj4Vc68X3ar/TuMSJZNHxW3g4qOTQ86MOfqCkY55xxqn8j7/+DBceX+L5H3KLoxxyQhBCoFsWsbJoNtoEQcwv73uKUzatxMsGSE2j243RjFSU2bIESZi+z2ZzIBJsJyFMYqJYIwpg48YRbNfAlBr1WpdypRfLVvT29uBkHJIkpFDOE8cB7Y7PzFSVXL5IrqzT8dsYuo1lSurzTepzHXKFAk9v3cmykT4UGu12i2zGJQ4DanNVJmfnyedcQj9k8+M7KJdz2LZJHEU8+uRuVi3ro1gs0W62GegrYLseSIuAKpaTxdB1duyaTOmwSxaJSmns680my5cN8/CjT7Nr1ziDg33Efgch26BS5ESokChKMG0XqUuEVFhOBoRNrdrFcS3iUKEZEvSEjetH0DQdlKTZ6GDYOiQhSaLQDBsSRRyH7HxmH309FdrtOpZtAAmddoRp2SSxwrRdLF1DSLjr/sdYsWwA3TBxMxZ+0EIKDYmOZZlUqw3yuRxREuBmXITQ0HWDbU9OUC5VuP+hx8lmJbdvnmL1yDCapjF6wsuxiyU6nTbdVhvHNFC6RNctMpk8U/u2Y2iSPXv2UK6USZIOCYogVrSbXcKwxvantzLQO0jsJ5xxzlmpgHoCWiKYmtjJUG+G0858EZHuoksNJRJs0yVfyIIWUshXkEonCBSvuPoSlKYhpYWhG5z54jPptNt8/GOfZM3oCuxCljXr19Ku1ulGk5iayy0338Ypp55FJ/SZm+vw5t/5Q976trfy29ddx89/dguDvWVu+ubNFPpHuOyKa5kcm+KRu+/jymvfwuve8Fr6B3qoNRpUvCznnHc6I8tHCXxB1snhZm2EsBHSZ8PGdbTaNZTWxTbTIEcmYzM5MYGTS52y6ckJPFeQyw9h23nmGzvoNg1MLSGWOUw3mwrZazG+3yVWIbZtMD01RW/PILGKqXfm6NQiSsUiU+N7qc7sSqnQ3SzS1Bjbdj/jYxPc/rM7OfHE4/noRz/PRZecRyYLWa9Ex+8QRvC2G97GW9/6FgzboKe/gOFovOTlL+Hk004mW8ihiPnYx/6R69/wZt74pjegmRGmaWG7HvPVafoqw1zzqrdyxy++zzv/9I8RicKSBuViLzMzMzhZA5TG2//wHeRCm4G+IXbs3MbU1BTHbTyevft2UyqVEQi8bA6VCOIoDRzppkkiEnbufIaengq6ll77QglEIpmfm6fb6WKZJg8+fDf9/QPs3v0M2WyebqvDrbf+kDVrNiCFIEkivvWrb7C9sYvX3XAtPV6F1139UoZHhnA9GzeXZ3Z6BsuWnHPWJbzn3f8TRUIUN8k5Q+imzmlnrmWor4eRkWH27Z3gn/7xn+nv7cOwNXbt3M01r7qObhgzumwVaAnFngEydoZ2s4FTtPDnxmnU6liuS5gkWJkSjpuj2egQdjpkshUSGTM5uY+nN29leMUqSsUCkgS/1SbjeezauQvTNKlVa9SqVTJuKjreaXWwNYtmu0UpnyWMuxA2GewvkS0WmJ9vE0YxQtPIlssUDQe/3Wbrls0M9JXRooDPf/azrFixmkRYRFFEpVLEdi0M3eKxhx+g3DNEHLYRnTmEDJCWg232MDe5kzCYZ2SwwF987MOctenFSGmmtY9Sw/EESkk6nTaarmPZJpq28MwUAhVLMAWWmUciaDTncR0XU7dp1Bu4rocm0xwZy9apzlbZvWc3PaVeuq2AqZkJdENimRZSWlimiWVl6HRD4kRgmw6JCkBpqaD94jWkQqSIiJUiSQTNahXN1FMmWtfD7yRYhguJj4gUMzOTZLJZdNtBaTa5Qj9+AnGQajKGcRc9k8fLDdOIFYZ0MHWXGJ16rZFqv8YdVDCP35wkFk1cmSEIO9TaXe6541GGR3rRVUwYdvn03d/ht17ukXUGqcqQimmxd6bLP3/sp5x4ShlpDxKGJu32Lvy6TcNvMT8doiM4fuMAecvC1XWCqEujFTE2k+d9H/o6U52Q0zZtYNXy1ehCZ2JykpNOfQkTT3yXotvitAteS2VwNdLQiKVATxRISXzAVNjPCH4IIZ44VMPucJan4Lkywo5ktyzYW0e0ZQ/YqYevgzvIZl0yztJ9F53LpajdwTwUByN1B8YQHMzMqfbv81xBenFI3wf6PYKjKPb3jAKM3zh3/33a/1tCledzc5LDXnSHu+kWUyuXplg+L+vjYWZ0OCQvHeRIN3YKZe937o6A6MkXLHZ+uBjQUR659LwtIm6LPugR5nqkuS/9f7IE8TvcHFPH/KAtStEJFGszMy98QYdOBtuxcdwMuq6xalkfKo4olktAjEgiLMtBJSFSgu8nKKL9enSPPrGN5cuGMDSLfD7LI489SbFQwPNcDFMSRgH5fJY4Sq8lXddoNTu0Gm3ynoeXcWm2pvDcHKbuoKL0i67RbFHpLZIoRX9fiZnpeUzLotPpMrZ3kkUBmKHBPhQJtuPiZT0MIZmZqTE4PMDIUAURa4xPzlEquTgO+IGPblrohrYQwVVUegr09ZYwrQTdMDBNjWzWRaEY7CszNFBB0ww000Y3BEJpxJFAM3XGxmYo5Dzq1XlMy0hTTpXgwYe3MTJc4ZHN2yjmXSzLWPi403TOsb1TlAolUOwXPkelhdODA33EicLUTYJugkgsukEL0zTRDZ0oCrAsDdO06O+poJI0bS2OQnQ9TQMNwxCSBMs0aLe7CFxM06Zea2EaJqVKhnvue4JSKUMmY/F3P5rngk19/PtPH+Sci1+FUmqBtjkhDCMa1XlCv41tKXSp0+36jI4uJwxCwgBs20NKC8fKkPEy9PYPglDM1+awrAymaePaLgIN2zK4+bu34HkF+voGkSLGyzoIEubmp3AzWWZmpul0ugghyOXzBEHMJz75b5xx+ilITcMwTSYnx1m+YpihkQGEUDQbVRwrC8rg1ttv40WnngRRglSCyy+9gNCf45LLL6TTbfHIg48xMrSau+5+AKEJNh67hlIxCyLml7f9lPVr12NpDm9+0xv52je+wquvvZYwjPjI//4HXnrBuSAlzUaVfD6PaRl4nsuTTz5NpVKh2+3S01NJ7684IZfL0mjWCKIajptBahE5rw+M1GFO/BZa0klT+DKFVPCYiFypD5UoSLoUPZMdOyYoFAv4fofK4BBerohUMDe9l+HB5TRbXU5+0ckEcYN942P09nn09la47JKruOyyy8gXylx//RvRNZPBgSEM3eLW237BypWriLsx2WwGlQhe99rr0a2FZ1wCQpj4oU/WzZAojYsvvJhzzzsPyxI0mnM4ts3k9DgDg0PseWaC019yFv/27k+zfPlyhIRKTw/FYpE77vw5g4NDtDttkkThui7fveVb9PcP0el0yHp56tXGAiOrhiZ0koW6TtO0sUwTL5sl8ENGhkexbYcgCMlkMhiGwZ49Ozhm3bG877N/Djmf17/pNVz6iotJEsH2p55m0/HrsFyHRqPBBz/4QY477jgq5X4uuvBSfvbz21ixfBmG7uJHc3Q6NTwvJWcplsoEYcwrrnglpd4CUWAysmyUll/l2muu4zWvuQYluiSJREchpCJGUci4TE7P43oFoiRK02l1xZ7duyj3FJCGTeinjL/Llq9krlrHdWzm5mbJ57LUGy36+/swdBPXdZBSUK83yGWzSE3i1ycp91dod31ctwAJ1OdrIG0sXcfJuDQaDTTdQM9WiHSH3uGVYHm0qnVOPuVUNFMjTnxGR1egVMz8fBXLsmj5LTLZAtlskSDQ2fbkboZH11Kfj3BsB6Ri61Pb6S0NYQYOXlbHD1sIYnTN5akt2xkeHkZKuZ+1VSlFEIQIEgzbRClBp90g43koJak3W7hehgRFGMUYuo0QBnbGpq+vj1CFzNfn6LR8dE3gehkQYFiSOInQdZAyIiZB0yRB4KfBYVI2aN/voJsWcZyWVqSp+iniGIYpgU2iBMgEKTWkJrCsdG6ddofJ8XH8TodszsPJ5vFyPfgtRb3ZoFgp05ivYhYLYEhyjkd1egf12jSWrmFKoGuA1oBYwzBhaMUIlgUCjYmJWchsYfXocubDGd79zrv595v2gHcWP/7lHs46/w38zV98g/7RHt75vl+yZv0qPvipR7n51m3c8qsxskPDuHab6Ybkp3dP8aFP38PXvvsoGaefb37zWxy7aTX3P/QYna7i9a9/PTuffJB1K4sEsc/KjS8hDHW8Qp5kIWAeA5oQ+y3DpTaQFILkoMyjpTbLwU7f87GJL20Ji5wEz5fFdaQen6Os51nHHIrEpSmaB89VHOG4Q+1mKWSavvmc83o24niA7PAwuncHJbpJKTB+Q6jy/2f7r07XXKqd8dxFnAc7GQeOUYsXLwrxPDfe4pEHA/wqiVMUC5HS7R52ZJWmPz7rmIXtUkvr7pb8/8hzOJjb82gdwSV9LIz1rDGTdK6LczriDJZs39+HPDC3Z2e5iwUUU0OJtFZv6Xm4+tpX8fobnzi6RQh5SErpgYHU4tODOImJ44jxyRl8X4AyyGYzdDtNUAnVahOlAoRIiOIutfk5jt+wFr8bkyQxU1NTjAz14rouU1MzNJtNLEtnfq6GlBqBHzI1Nb8gwiqJoohqdQ7P0xEqIfRDxiemmZmuMjCQChWbpkaz3qJab5OoGF3XWbVylFK5jNQMpqdmCIIQP4ywnAwT47MYmo7f6SKkpNnyyWUdbFtjenqKzU8+Q5J0EUonCjsLKV8Bui7wuz5xnDqxmib4yk0/xzB1dMNgx859JEiiWKHpFlOTNaJYMTzSD6TEIBIdpQStZoszTt+AEDEnn7gG27EJoxgp9QVjJ2D5sn78bsxNt9yFFGlOfRxHIBRhGC3IFfpEcQepKxzXTlNaNQPT0hfSmsAwHH586yP43TZxBBKDKEiwLJ3xyWlm52sLVPgBUdRFiIBWe5Yo7vLiM9axbKSXQq5Ixw8olYvc9nQdy3F44vGHsUyd3fvGEbpFIV9AJBHN+ixju8colVKH17AcLCvL+97718hEEkYRzzwzRpIIoiTGylhIIfiTd/4pk5MTSF3j/vsf48VnnYttOxhhQhQntFpNun6LgaEKSRTT3z9AvVZnz549RFGKWv7B299Ou9teQIwNLrr4QsoDJUxD8Xcf+Cv6h3pxzDyuYzG5dxd+t8P43n28/nWvJYk6aFpEz0AfYRRx9rkvZ9uOPWhKZ8OGDdz7wL3UO1Wuufoi3vSm32LZyAh//t6/5O8/9LfccstN7N27G9PSeO/73oPvt4kjn76+Pmbnpnn66S1MTsxzzIb11BoNHNdlZmaOLZsfottpU2+0SZSkG8wzPzeLSmBmZpJmq4MlExxN4QddisUycRIzOzODSiBMJJ1uQG1+DqEi8gUXv9uiWMqjhCRWEAQ+259+EsjgZvN0/AaGo/PGN15FxjExpcn4nn309PQR+BEf+MDf4mUz/P7b3s5HPvxxzn/ZhagoxPMyvOi0M4jCaMH5CpienkTXLaIwWaiV0rAskw99+P1cecXVNJpNSuU8860apd48zdYs5XyJ0WWriKIQP/BBxtTrNSDh3LNfimVaZDIZ7AUn5vLLrqJYKmLbNlEYcucvfoFl6kgBtVqdwA+xLZunntoCIhXMtiwT23bQdYPe/n50w2DP3t3MeDVWnTvM5/71Rl7z6mtYtXoV+VweQxe86KyTiTRFELYY2zPO+973AYYGR/nqV77H4NAA//LP/8TY2D5UJDEMQcbLMD3RoqdnkGqtRaFUotas0ek06Mlr+M05gjjic5/9NGEU0uk0ifwAwxC06/PYmkNi2NjZAkLq5LwMJD4T+/YwNDKEMAxCpZifnSX2A9A1CsUCW57cgt/tMD09Ra02T6fbSaVVhMC0LErlEkmiqNfq6FIRhl1cz0OTJt1WwM4de6nNN1EqZNvWJzEMA4HO2NOPYId1zKhOd3YvuUovTi5HtpCjUkmzP3bv3kO5XMYwDZavWoumhXT9kN3jTb7w5X9FUCVfkAgnIFvoY+90Fa9QJF8oMDkxhWu56NLE95scs3YViQrwg2b6VRmn9U2GYaBUhIrA91tYlgFofP+HNyOFTtfvYpsGtmmTKMn3v/99piaqgIFjewwNjeJ3fSrlPgI/SNmBMfD9OE3b1SwCP0ITFlKYNOo1WGBa1QybIEpTQMMwIE4SoqRNEHXRpIHnFjFMHc0wiBKF7jo8/sRDqTapCsh6OqPDy2j7XSIkQSQQehcvbxB0Q0qFEiIICObGqU8+QS5j4dkmhi7RNR2lN0HZBHGMLl0cAfiKTquN6xb58X/s4BVvuIV7nxL84Tv+mc9/89Ncc/2FvOO9V7JsVZFLX/VHvOjCK/jSN37IuVe9gSuuvIbX/tbbeOUlN9Bqnc6DT63hxs9v4+4tCbE7yi9/9RAf/ugH2bvvUb705a9x0qln8MqrriTrJNz/i6/ih22OOelsSr0jfOrjn0TXNJSKCVWCtmCLLmrq7TcjDkLvDpeeud/hO4hEZCk29XxWmETsZ548GottcaylKZ4pmvZsRO75iAYPuGAHHLj0uEUtvaVaeOl2KRYAh0MQOoGUS1M6D7W9D0UclwIB4ohpms/VfoPc/Re3F4LcCSEJ4gDtiE7C8/bwPNuX3iZHvt0OV+T66425ZJ/nQbSOpr3QKNAh6aAveLSjHOEIyN6z5A2WONeg9kN/S2vzDo4YHUIgs2Ssq6++gta229G154nVPE+euiRORc4tm96+Hp7YvJ1SsczMXJ2cK+h2AkzTQDPBNNyFNNIFR8hwAYUUCXGssJwFsfNOiGHY2I6VRuGVotsNyORc8vkCYRKg6Qmm2UO9Po7paGRyFbJ5D6U0vn3TXaxd04emmWzdOk657JLLphFt07KRmkkUBigVYxmSsWf2YrsOvb0VHnzoaYJ2SC5v8+BjOzh23TImJie5/+Ea69f1oQkTTesghEMYB2zZsofB/kqqESUkrVab4zesWoji6njZHIYeo5IuSum0uzG5jCQIQjTdAE1nkVnsOz+8iw1rRxBavKAnpyOAJ5/aTaVcSD9vAaYhWL92EIXggQe3MjBQQEqNu+55gtGRQYRuoxk2SoAhTcJQ8JOfPsSK5RU0YfLAAzvZsX2StasreBmT6ek6O7ZPEwYRph1TKufJ53PEsaJR61Kdb1IqlbBNF123AYWmScIgxLIyrB0uUd5wFoPDwxTzNl7Oo39wkAhBGIdkchUMu4TnWKngvGmRIPjUJ/+N3/+9G5C6wrIFbk6n1WnS7cTkcj0EYZ1XXHERU1P7sB2JJMvA8lE69Sbf+NxXsPM9qAQG+/upN+rcfsevGB4e5vs/+CErVq7CsEPanTqWJVFxQhD66LqGbVtEQhI0fTY/tJkzzj6HxO8yObWHjO1y5x0Pcco5J3DhpZeSL/YxV+vw+Oa9TEzN8YMf/Jjly1ay+aFfcf7F5zM4NEq51Ifh5skWSwRK8dkvfJH1q5dT7i2wb3wvYRSxY+vTDA73YTsuu3c9g+83GB0dJpftZevTTzE4OMDszCy5fI6eoodlupiOi+HY2IaDLisgu+i6JO7Umd6zh0hqGPkeuu0WSawwLINWq07G1Ni2dQfDK5YxVa3TV+nDMDU6nRazYzsoF8sYdgYjk+Pi86/iLTe8GdPJoJIMn/nEZzl2/Ym85c1v5x1//McUemyy+QynnnoSoLj7V7fxu2/5PVxHYjohQije+NvXoRuwbesTlAqD5HJ5EhWQ0CVJNN733r/m+I0b+NGPb+KrX/0SGddLCUBklijpEIdN8pkcl112GaPHDfHju37E1773TV56yvkpgUoc02p0iWIfy7JSAhSRQgWmaXLf/XfykjNfkuqNSYGl20gdkkRQyBdS8g6REhWZpsHY2F4+fNOH+e0/vp4Np6/lZS9/MbqWaqx1/A65jIehWwgZ4+VtEplWiM5MNSjkeoiSiDe/4Q9481uu49JLL2FwYITHnvolBW81n/vMN3nxmSdxz70PMbp8GegC3dTIS8GtP/oAJ558IoRDmNkurl3ANDKYuoGmusxOTzI/56MsnUKhB8M0ECKmXW2R84oIYRErE2UIKp7Lw/fei8i4GIbJYH8/zUYd07QpVXoIg4BooR5xZmaWLVu2YNs2rVYb3SoQJRIZxUQqxrIk+ZxLua8XTQvZ/Nhj9PUN49hZMqVe/EQiDBszk6MeTDEzN0PG9qjPdXAzaV2o4zg06g1kYrBv+wOUi1mkZnHu2RfxzS9/ma1P72PZ2jVkPJsVa5bxve//hIKWp1gqE0aKsbEJSqUcKk6JohwrQ6RifD9AiFQyJo58LD1LGHeIAx8BrBxdw+5ndlEoZghaLfQFEq7ly5djaKkY+OzMNJZppRIDhkmr1SbrZYnCDpbjEAHoKblW1+/guDoiVki5mFmQ2lZRp03GsWh3W2i6gRQSXRe0/RqObtFutlBIDEPiWllmZ+epFItEQRuhC+JEJ/I7dNvTqG6ChoZpmbRaO0jaM+gyptlW6IbFfL2BkBbVWg2ZdfjJD/cgCgmF8gpEtsT4LJSH1/D+b/0L37r507zt3b9Pb/9VTMz/jJ6R9fzvj36KCy48g061yOp1fezdl9CVM2Rzp1AoLeOSKy9gaH0Rt08wMFzh/Je/jN5iP2+89o3Ua9Ns376bU048j12bn+CMM87hK1/5FNWxX3DMsEErhOPOvIxi33JMpVEZ6ENYJkLTD4P8HIpgLVoTByN0h9t+RHPkKLYupoMeyWY5XO3dc9XUPdexz35/OOTwUCf34P0VaSr4YtrZoc7a4VebkCzpa8k4i7+EWCin0H+Tlvnfpb3QtMwX5tjJZ2loPHd7rgt1sbDzUK20pTfXoRViL9Cx40DEYn9N2q/VxCGvo3mIHO1sf+22iH4JUibQxbGXfDZCyAWUZrGWbnHrIvXKAf2//ZjeQTWG8nDXh1J8994Z1mVnFwdZeMkli352VOjQdpBzKaBvoESn26I2U6XRqJLL58hkPVSS0GpV0TWdMATDNNCEyc5duxkbnyLjxZ/DZQAAIABJREFUZHAzLlNTKfqWkKYcxklAdb5JsWSi6Q579+whm7HQdIvA72I5xXRg1SZOFBCx8dgV/PLOJxgd7QURUSn3sG37Tvp7e7j3/idwLegb6EdIgW5Y1Bo+A0N9VGs1LFOSzWSYnKmx4dhlhO15atUmZ529EcswEUQkccpQp2sOQsRksg71ZnMB6Yqp15oUi2W+96P7WHfMCFEUIDDRhIYmAwzd5es33c1xx65CoJAIEhI2rBtBJSplr0QHIAg79JTzQEp2ohlpVDIOu8zVWhyzug/NsIhDqBRz6KZBu1lHJQpJwr7xCVQcs2njCoRQ7NoxSy5rMrq8RNZz6bS7VCpltu8cZ75RZ/XqUTSpI6XOrb94mIH+PKVyFtPSiKKQOGkQdCGJBCpJ2LByJa1Wk2POvoIocui0G5iGiUgkIk4wLInCJwoCbC+P5ToIPXXwTzpxE7atE0YhggXGPwTZjEccdtAMb4HxcZBEmfT0eyRJhJfLcOypm9i3Z4x8PouX89A0g3w+Ty5X4L3veR+ve931NKvzLB9dhpIyJRix8vzDh/6ZdmMcTWQo9/RyznnnEXQ7GKZBpdLH0PByNj/2OPO1KQb7hnjr77yFa199BX5tGk0LuerqK5lrtPjojf/C6193HY4V86Uv3ciGDScwPzPPfb96kBt++60MrFyJl8+g2xY9lX42b3maVavXEEUJbtalVBrC9yXImFJxmPm5MXqKQ+wb20O23Mvc9DhPPf4ghVIFx05rKh2nhBJgZRwKlRFaLZ981mVybIxyXxYv00Mmm6HWatM3MMDMxF6cOGR6egovm0U3XSI0IgFIievleN0br8OyLB588CFKhRynnH4ySlP81nWvpm+4F1t3iAOfUj7DL269lZNOP41lK4dRQmEZGe659x76+1IB41KpxO/9/g1cculFGFaaTnf1K17J+Seu4ORzT+Scsy/GyXq0/XmCKKRQ9JidjLntZ7ex7pg1SN3ivnsfpTrf5NrXvor3/MN7uH3zHZx13Nl4ORfHdpGahpQa9fo8lmXTbrUZGV2GaUoQWvpaiHinbKAan//S5yhbQ3zoex/ijW9/A3E+4nd/5zpcx+Fv/+7vOOOMs8nmbPywjRIKqZuYtsvjj28hm8sThxFIjWXDg5imohk0OPvMY/jO17/HaSefgOsFREFCFIWcf/GZfPxjXyGfzbD2mBUkfszcZA0/lowMrSNSHl2h89P/uJ21q1bQbTWJ4oiJqQlyuTKTe+f40Edu5PyXn8eDD93DcP8IruXy/f/4Ces2rKPbnGR213bcfJ7+ZcspWBpCcwgDhZt3mJjZSSWbR3abPPb0LpYNeNRbXVavOxbPy5J1DeyMiW46tDs+Gc8k7obMTEyhmwZKaSxfvpKZqUlyOYc4SZifmaK3lGfLww9QKY1QyJVSDUFDYZouQhMYliRSIY7hMrxsPa12zNTkBPm8y8rjzsT1LCa3P8rQYIkff/9nfPeHP+Pi0y9GIpECCvkicRTT8Tt4WY9Gs07gd8jlCwgpCQMfaVooAVEQEHWb2F6edrvO4NAAup1DNzU0PXU2E5EgpIbUdaSK0OwMW554kJGRlTiOk/aZKASpRmu9MYclDbqdCNNyQJP4foSQEt2SJGGIZpokQmCbBp0F+Ril0iCCZppparsEqWnYpoXn2eimiW44dLo+2UIe23TodlpYrg3+LNKfRxOKJAlRaDz91OMUyyU6rQgsg1/88ilWLFvH4LIKIyPHoJsZOs2QUinP7Mwkb/q9V5Mtj/Khv/gnjtvgYTrL8DyHC84+B0Wez3/9a5x+xhn09/fwmU99lic330u73WKgr5evffkbbFy7iYm9s/zgP27DTxQvu+A8sq7J/Q/fg+XplIZXUMoXeOL+byG7k0zPB5x3xZsYWnsaURCxc2qcweEhpJ7Wu0mlDrGdhNRIlNqP1h0QKj8M2rTUROGAvt3B9uQBcrxFTWbtMP08l81yYOyD2eGfCwnb3/cSh2rpsQfq6ZYeJw+q1Tu0tu9w+niLe8WodJUHE/I9i9F+yXxUWneoLbCXar9x7v77tP/KmjulFFESvwCH8GiQO/Wsbc+OfPwnuEm/tmP37PH/S522F9jiOCEIUppnOAyiBwuI1+E/i4MxxmetSxy+P5Ti2I3ruf5d/8YVp1YOQuj+786MEBqO47Bv3wyaCMjmXFrtJiR+ShAC1GqNhRoKCKMQ17bJ5bLYjoFtmCAFtXoLx7EIQ598LpfqYk11MHQNx7bZ8uQY+ayDH6TpV4ZuITCQmkkSK3oqHq5rksu5qZyC61Kt1pmcmcfQU+r0Wq0OKGzbwsu4uK6N69h42Rwzc3PEgaRenaVQdshmyykBjhDUG20ybo56vUapnCGKfGzHRcr0oVvI5wiiiJXL+9C1BJTG12++i2OPWU6j1qZWneeM0zYwP1djx/YJimUHIQRRFKIbGkotBDNUgq4bgMXd9z7OsmX9qCRGioBuu0W2WCIKIqSUJInCtm1iEsKgw+13Ps7K5UNUenIL7JmKJJbc/+hWjl0/iu2YaVTP9Ni6dQ8bN4yyfLiHhARN04iTmIxjUakUcVwLRZLKEVgWcaz4ya0PM9xfJFPo44ZP3Mall16CoRsEQZt9+6bwshkQ8cJnHKEJDSFTg98wTWq1eXKZPt7+B3/CcZs24nk2rVaLrJdDAWEYoGkWjm0SxTFC6giRCrXHC8+vnkovpUqRMAqYm5vFy5nEsaJW63LcppMYGCjQaLcIwpCM4xGFimM3HMP6datQwsBxbIKoi64JpLDSeyCJ6BssMjtXY/369Vx55SspFgtU+noJog633HQzl1xwPi8+8wx6ewaIAkUUKAaGVvDIw5vpdKr867/9I1e96gr8js9N376ZE084kdWrl6NpsG9sF9lchnazhWnq1GozZFSASupMTszSPzBItdmkWOml1DuA5XqEsYFhWcTdJnGnRa3VxcsWCEIfKdMIr2FJ2m2QmgIVYxgWSZQQBQHFnj4Mw2B8fB+WbWCZFtu3badcqdCu1vnXT32G++65n5e97Fymx/eQz7p0202yGYffed0fcvnll9KNA1avP45SMZMS+QiLdetO4l3vehd33H43PeU+bNvjpRecTtbzCP0YTZq89PRhCsVx3Pw5WK5CN3UM3UTXdFqNNh/8X//Eq66+HNux0YVPuZBnoLfMfffcyZ+9+8/Y88wOLr/+Qv7li5/gpjtuoi8eoGegjCZNpGFgmjZhFCGkhgboUqPdbjI7WecTN3+MW+7/Lh/95F/Rv24Z1171Gv7kne/i+je8liBoYJomJ510EoZhcusPvsPI0DJ0K4swLL75xc9x7jkvZmZyHM+1Mc0yHX+eOPb56/d9lJeffxYbNx5Hrpghk3OwnV5M20PJmFNOO5Mtjz/MyhXLuOP2X7J8+RpM06FYzBMlGtL0qFQcLMvlC//+FU4+bRP5Yo6xPXvwPIvLXvEKclkHkohCrsJD9z/KyjVrSIiQwsfz8lh2hkarDUmE0nRM2yRJQvL5ItNTe6nOzzC6Zh27djxBpTKA1E0MTTA/MwkITNvF1g2SOMD3u0hNUCqXiIRBoiQ9A0NpOnnQxc24KKUoFEpohkajUSObz6JJHTARQhKGCbbp4Mc+jXYXpM3b3/5OLr/0bJrNJj3lLKtXDdFsJXzn299ncmqWF609DVPTaDYaWKaVptNbFl2/i2maZHNZgjAgiRNsy06v9USh6Qaul2VybCfFYpF2u4thOoRBQBylAuDdVg2pmSAE3XYL3cywesVqEKkkg6YL2rU5/E6AYRhkvCxCM5ECOu0mbiYDSmEYaR1yt9PEtiyk1IgTgWXoCKUwdA1JmhJvGmkWRhRGRFG4oBUYUa1WyTg2QkCrUcfL2ATNGUTcSZ1DBEQQaSGazBHogvvv2skxmzZwzLpNZPIVlExrDefm53AyNnOz0/yvr3yIP3rb7+MnHU499SwSEbFm1QbyWY8f//AnPPDAQ7z1rW/DciympybZuHETJ5xwAoVimbvuvo8bfvcPQFkU8zZzs3O89jWv4bvf/S5f+eLXQWkM9Q3wox99hxv//v28/prTKWVh8OTL2XDS6eiGza/uvI3TTj8TwzJTS088my0zVqAtkUB4IWVE+zOQlqB8B/M6PJcM1/P0zgFCk4Pb89feSSkX2DnVQfN77nUc3PdSvoSlDtvBM5A8W/gcUqmFg8dOa/cODranv1+Ic/ebmrv/hu1oa++EkFiGdfB/+M9ydRYRNsFi3vDBI6hnveRR3pRHWycHh9bKHTK3JWMv3e9Ix/1ntMUauCM1TUpsy9xfY5fOb0EKfWHdzzW3/XV2h1mXUOn5O1Ld4Fe//gX2zDQOoIiLjJtH2w5zzcVRwoZNa1ixajndIMFxPKJIg8RCJYJsxqLgmehaxOTUDLZpEgUBe/bso1prMDffoFguIUiJIzqdBEPL0NdXZHa2ysx0lfVrlxNHkqnpakpZ342YmpzD7/hEYYDrOnS7XVCKRqPJL+56nN7eEuvWDFLMZ1FKUG90cF2HbDZDvVqj1WozV22gpMaKFSOsWtlLXyVHz8Awc7PzmKaVaj55We6//wlUEiJQaYRMplE7KTWiKK2B0wxBt9UijAKuu+Y84gQM0+SJreOMT0wjpeLOh3YipE4cxCnahbYQkUwQghSNlIpNG0cJg4B6tY1KwDQtFBLNNAnjaP/1IoRC13UuetmpCAGddpdOp40QiiiMOeHYEaSE5oLI8c9vfYjeniytdpNdu/cuEK9ExFGCrktmZmZToe8oxnFMOn6AYeusO6aPZ+aaaZ0JBkkY0m3OUSzlaTW6jO3eR7NRJUHh2BaNZiuNxGrpfeB5Hs1Wkxtv/Ee++MUvkCjYt3c8TScLAlzX3f9Y2q+PJEAlCZZpIoXANA2SOCKJQkqVIt1Ol7m5WU4+cSOf+NcbiZMIz8tgWRahn6BUxOWXX0S90cLJWKgkwrZMTMeg2Wix9alt7Ns7zWD/Sjau34RuSPygxd69E3zy45+jv3eE665/Pf/wkX9iw4aNfOYzX6RRa3PcppMIwg5//Vcf4MILL+CjN/4DGRdM3aCvPECn2aXbqaESH8cx0GWMbUk0kTA9tRelmeybmmZoeJhOp0nitxACbCfDnp3bMLAgSXjgoQdodgMK+TIoyOdzjO3dxdTUFPVaI5V4qM4j44Qohtn5Bq5XQugmk9PT+O02zeoc1bkZjj12He1mnUrW4xUXXsKrrryWqZlJhoZH0C2bIEoIo5hWkHDDH7yNenueRx7eTKsVEcchQRSyadNJmKbFAw/cj2Vb/PxnPyfrDCDIUK+G3HXnw3j5leTLZ/C5L32Hpx7dy/xsnblpH01kaVTH+B9/9CZ6BzwSo83YxE4yeZtKfw9XXXMNlZ4yf/buP0VIxR/+0W/zra9+lfNuOJnhF3t84vsfZ8Mla9BXKj73808xckaOVS8bYNPlKzntmg2c9prV/M3fv58rL30pbjbHrb/4Cd/+5pdRSZV2c5r5+RnC2EdqoJIAv5ugCRct0ek05rj40stAGvT2DxCpVF5Fszw6AVz1ipfydx/8PKZZIo5s/I7N+O5Jdu3YBQRI6XP66aeiaRrj49OM7Z7g+jdcRztWbN25C8fSKJXKbN+2lZe99CWgSarVDmuO2cjgskHazRqh36Wn1MvvvPEtrF47Qhh1yeUK5LIVwigmTCBbKLFj524s00QpnyCI0GWG4ZFjKeZHaTRh48YzCLsdqrMzNGrzVGdnmJuc4r6770FFCVNje9i9ZxfF3jLNZo3a3Cyh3yXotLnvnrsJ2k0c00AgMd0MhinJZFzCIKJWbZLEEYahYZga3W6LJx7bjFAxjin5wuc/wQ9/8GNcXeMv3vtudu3ey1PbtvK66167oFVqEicKx3W586470medEDiOQ6JiWq0OpmZgaJIgCkBohFGIJiRBmFDpWY5mZLCzWcKokdZ4ahI/DFBSw7QdgjDCMh1arS7NVoOEkDAOUAps12H32E5QKrUxVIxhatiWjooTun6bOAkxdI1cvkwYxkRBQBLHaTBB0wnjmFYnlZLxgy6hHxBHCrlQ7mAaBv39/XTaDRq1OeLIZ2z39gXbJyGJI+I4Rpo2j9y1jcce34VQea549TXsHZ8llrBn3zPYjomXdSmXijiOA0jeccNbmKtOcfcdP0CogCRJGN+xjdtu/ynLR4eYm56AJODmr3+J0YEe1q8cZaivyJ//xXvxcg4zcxM4GUFtfoaVy0dpN+tcfeUryZRyFMs5vve9b3LeCR5vuOokutVn8BPJ8pUbadS6vOfP3sXYnr1pQFotOCmHsRsWM44WX0IcyRJJ28H1bot25FJ7Mu33IE6GhW0HrLtDA9oHatWW2roLtuBBtXeHlVhY8j5RCcmCXbbY4/7jUfv3V4jD1Mml7xd/ls5psd7u4HWmiN+z7d+lq/nPEHn/DXL3X9x+PeTu6ESthZQcev0+n0Nz9MjdgfGPzjk4ahbNF4TYLUWzjna/oz3u12kLkZej0OJbnMP+PdVB5/UIyN2h7w6/DrU/NUIc0pcQEnP0DLR9dx/dUp496wN1gAAiSQv5JQiZEEQJtp1FkxYq0bn/4S2sWNZPq9mm2WwhhY6XSQXO+/pLjE/Mkc9nsV2H2vwclmkzsa9BoVAgjtvoEnw/oNP1efLpKYaHy4Shz649ExRyWUxTY9vOPfT29Kb1hELQ7YSsWz1Kq9UkDEMqPRXuvHsLj2/by3B/gSgMsSwTXddwMxnGx+eIw4R6dQyVBOh2BdvSmJqex3EzKAQjg2UcVyeO4pTkJU6QUhLFURqp1DUUMYYAw7Hwg4gtT+6it1LEtR1KlRxuzuak41YRxwlf+86vGOkvYVgmUtNBJHS7HSzLRcgYIRMsw+I/fvYIx6wawjRNYiRh2MUyDOIoRtNSYXgSQRDGzMxMk8sVeWbPPnoqBbrdAMs2mJmdp6+vgmlaiCSktyeD5WhU+soLbLICTdMRQmLoqU5fp93GNA3UAkmDm7F597cnueL0Fax40UWsXbWSX915B8OjIzhWkXwxS6HkEEbpF6hje8QqLRLXNUGcRNiOIIl9zj33bDTNoFwu8uBDDzI4NIQQkm4nAKkWnOZUamIxTFOtVXEsmzgKMC2DMApw7By25dBp13n1a67isUc3Y5gmlmPyzI5xiuUc11x9JfV6nUKhjKYLdu7Yxr6xMR56cDMnnnAKs7MtbNvj29/9DicevwHr/7D35nGW1OW9/7v27VSdpfuc0/t0T/fsw84M6yAoq4BsyoUgCqImLiFxibnJvdHEJTHR+EuM1xiSmMUkNzeJCCISQRBQdhiGYfZh1t73s59T+++P6tmamQE1eb38w2dePd1d9a1vfb/VVXWez/fzPJ/HUDCNNF/74l/S29dDsaeXs8+/gE/c/TsMDQyydfurfO5zn+a2O27hfXd8EKKQWq1MqTTJ3HSdQr6TbNahXJ7AcVIJqzQziWM7NBpNujrzREYeSROZnJxD10TShgyilDDBQYPIhUp5hoEVy1GMLJX5eer1BrVGBVmBgf4hdFPBttpoeQ3cRh0jlSGORL7w+S9wwUUXoioKtqmj6xrZTAYv8NF0nW/8+VfZtGk7N73zJgxHI0Rm0+YtdPb0EURw5rkXcv27LiNtqyxbspxv3PNPnHr6CgBuuP5G6s0Sl116CY8/8Th+5NPV044oB5ipmN7+LKKWxkktZ8kancGOfmTN4h3X3MZ37vsuH7zzfezZNcuO3a+xpG8QUY3QNIswlhkZG0fTJRRFRpQglTLxWxqOY2GmZGwrS7U0R0+xyFmnrSHrqChWlhARWdGYmp3jjPPO4x+++R/Umi5rTh8g9Evc9au3EIY+2bZ25udLKIpKqVRi48vbGRhYw2d+79NcdOGpWG3dIMu4XkCj1cJ2BPzAQhJ0CId55y3vxY9KZNo0grjBPV/9Gx579BHWntpLzsnQcj3iKOLTn/4cH/zAh7nz/bdRa1XItefQ5ITpcr0GqZSGnS0goDExPoOmiciygmkk8v5LlyzDTId0dPcgiBpTY9OkswnLND0zy4qhAcIoZs++nbRn2wkDiUr9IHPTw3QO9vHQ9/8v56zbwPDIKEIckUmZdHR2o2oWlmEyNrKPFWtWEytJDl7asVFkka2vbGKgv5e0kwKg1mghyhpB0EBWFQI/RlE0EH2CwGVs7AApx6K/s499e3ZhGiKGLrB8+SmMD4/T293HwNIhir3tmIbOffd9n7OGTsdI2UTE9PT0E8UBnuejqCqilIRYRoEPRARRQCwriWhGGBKFEZ7oI6oaoqAQNNwkykEUeXnXKyzpXZY40pLE/OwsmVwBUfCZK81i6BaSoFCqzdPb008CsjziKCQKPMI4QpY0VE1GIMLzPATJol6rQuhhGHpSB08UCMMQw0rRqteTqIsIFFEBIVpgRCVaLXfhPaoiIvDC809R7OxG0ySEGGRV5fFHn8ELZQZOOYWD2ydItQtkM50YKRtDVLF0k7GxCcYnJoGY3a8cINMrYGU0JK+EbbUhCh5bnnuBVJvJ/d/+DwxLo1BsR2zVmJsc5/v338vw3t2cuv4ipmYmeMsl5xKENSzV5MdPPEm0ULx+64//ja5MQKcTUszMMpBPMz07TmHpWbgth/npWS5722Wcc+ElxCTRLPGhhbjXuQfJFlE4ln06mZ/1RkzcEf2Exb0cP3LsSOjkiUorvLEdjmtapGWw2I5m4E4GthaXYzhiR6cycTjUUzgue3fs/ETxUGjoz87c/RLc/TfbmwF3i5m648UCH5fJOyyfeoh0OTocL1lNOhJzHHPyOnjJttcraJ784TkUlX0kF+/kdrj/NwXyFs1HYIFVWRjrsXsXzeSnt0P19E42PgHe1NiP1MOLjg37XlxH79iej+HqTjaPQ7VRojg80iaOUVWFL/zdT7hwgOMyccnBC7l4h3PzDt1Ai2PMD4FHAUk0iOOIKJRIFBw9ujvaqFXrEAdYtkM27RAGPpOzCZDr6uqgUWviu02+/eBLnL5miHqjjO0oCKLK7t3DdHe2Y+ccDF1h266DDPQWKLZnUXUdUZbpKBbYvnMHxUIbc9Oz7H5tH5ZlYacdrJRBFAWkHZW+7ja6ujrYs2ccXVGRFJnJ6Rm279xP4MfUa/PYWYtUuoAsKYwMT1LIZ0FKiqUjxMQxC0XEZSBh7sIYfK+CJllESMSxgiB6tOcy1KtNEEIybQ6iKOA3mwiCwORkhYH+XgxDQ4hd4hDKpTq6kTg0nusiSTIDSzqJiHjgB68w1N/B5PgUjpNOQHEmTRwnzFbge6iahqyKZNNZSqUadtpCVRTSGQffD/ADn2JnG7IiJvkpKLSaLRB8FFVAQGJ2poLtpFA1lSAMklp4ooQIPLO7StGSOe+q/8Hk9AzVWoO+JT1IssSPHnuEgcF+JElP7l0pQhJCJDFiZPgAoyMj7NszimkZyLJIHItEMfR09+B5Pl/96lf5kz/6Oje/60ZMS6VariGIAvVaDVGQ0HULRXKZnZnESunEgY8sa8yXJujp60VVNJrNMl//2j2cfdaZZHM2XthClmVm55q88NIrDA4tJxYgX+xgz/YRTj/zFBRdpt4qc/75q5mZmeKB+x6ip6uH8y4+j2zeJgh8NElj7aoB1qwd5IwzzuSrf/ZXfPhDH+Cxxx5hcNlSHn74Mf72r/6Vi95yMT1Le1AsjUqlhCiqOOkcjgOz0yU0PYMkmZTmJsk6ORBCxicmMI08iiYyMzeKYqWIBI32Yjs7tz1LoaCgmdpCIeUmQdDAlNMIgkSz0aRZE9FUkbEDw3QUivR19/Pww4/S19dDtTVNrr2HUBDRNYP5uXnOOuetnLn+LAQpQFNE3FqFT9z9+9xw09vx/ApS0OLKt13DLe96H1OzkwSNGkODyzBMkyB2iWIJRY3o61nCkz96mjXL8gSuh6raEGmJOiBNDNnCx+Ob3/gWv/aB27n93e+gISjUapMsH+qn6cP4vjlSdoa6WyPnWKRUn/nZUUzLJopTXHbZBi6/8nIMI0VffydWSqU5v5dCMUstVgjcFq5bIRJEWs2IW2+4jjvvuIO3XHQekhCQK/Sim2kMI8+X/vCPWb3qFIqdPYyOTXLGqacjSgHXvOMy/DBElCVmpiZwDJ1WrYEsphFiF0WJsdJ9iGKELEHQajI/OcGGy65h9dq1ZNvaqbfm6MwPcft73se//b9/5eWXX0BVYzRFQkLh05/+Iy668CI0VWbrtr0s7S4iEvDIoz9gcGgFpcoclmVhGCbjY8P0LxtiYnyMtJ2UbsikHKZGptj26nbS7VkMU0dwI1r1OpIaIcYmE9NluotdpFNFIkHAcSyyuQzDI8O09QxgGBqVyhSdPUOMDI9jqgZWyiaWRcJYwPdCOoq9vPzyZvIdnQiiiCiLSLLJ9OQ45bkJUppBs9FAjEUcK4dCinl3DsfJ49hZWm6LatPFyaX43B99kTVrz6ItFSIg8x/3/yeXrbuclusjSSqB20QSZGRRZmZBACUKPSQ5ed/EUcKEC6JIo9VEM3Q0VCozVSS5iRSbiLpIFPn05HppNuaRBIHQD0hnc+w/sIe2bA5J0lEVBUkMmZiYJmVbSJKILCXhvZpmohsGkR8TxTFBGBPHSWin4zh4QYSiakxPTSTqq4pKtVIj9DzcIMQwNIg9FMMgDAICP0LRRep1l9rMftSwTlchhyKHNBpw4OAEUxPTrF13HmvXnQuxxClnn4IspzB1A6/VQFEl6vUWU5OT6LpI6Pt868V/5tLz+jltWZagMcPffv2zXH7+Sn5w/9+gV3Zy6XkKa3pquCMb0ZvP0amPMtA2T5tygLi0mXQ4wTPf/xbhzDYmhh9EZzdSsBOV11i/pptCUaKnrwNJssguWUr7kjW0qg0e/sHD/MoHP4KYySMKIbGY+FgiC8BuMZB6Hdg5FhgdzkU7xhs8miyIj2kjcOKcs0OZauIC0yWHvQmdAAAgAElEQVQI0uE8t6Pz3U5U5+549e4OjenonLmjf0/GeURE5egcvJ/VErpDTGKxouhQCvHhPhfP45DHHsVHqBLxqFDYX4K7XyB7M+BOFE/O0r35GODFN8zrWr7RUI5jbwRkfsYb/6cCd0d+TVizn+vMJz7bzy30cmxfwE/R10/HNh4uonmclaeLL9nAP/7D33PqQNuJDn6TZznqkBg8r4ms6oiqiKzoyJpGtdakWnF5actubEsFIcZxTCrzFeIwwrQU7IzO6uU9KKqCaVpEgUi5XMGxdJyMQxyLWJaCLAq4boBpmIyOTTEzNU/asTB1ePypV9BVhcGBLgwjxcT4NKah02y6CMS0t+UWAJuD73k0Wy2y2SyDfb0UixbdnRkqtQqOXcD1mhQ7skShhyySlLIgCUElEhCkmHq1iSjKSKKEJIMgKFQr1QXg5xO6Ert2TJBpkxMnAJFazcVK6Swf6kHTJGIC4kiiXvdIZy0QAqIwQpZkwgiazRaWZTE01ImiRFhWcj475dBqejz/4k66Ootomo4kCXhBg7m5CqmUjYBAq9Vkfq5CyrYQpYRBEEQ5Ed0RkrBQSZJoNptIssQrm0ewTA3LNACJOE5qFcqyzNXnn8XH/+5pbr31nUiKwpL+fhAlKtUqK1auIAiS+lSu20LTNKrVOqqqYds2nZ1dtLcXCAIXURTwvABVE5BkEVEUWLduPYODS9m+bQdPPfkSjz36FKefuRbTTLNv/z7a29OU5kvY6SwIIq1WgICAZZsLH3oyhmKzfv15IHhIsoWIwFe+8v+Rz3dwzvrzqdebbHllB0QSp51yCl/606+w4aLzKVXKfOoTv83a1aezcsVapmdKpO0c+XyeD3/wo+zedYC3XnkRTs4h5djc9p73oOkS6UwaRVFYsWolV1x5CQgCYRDz//7l39lw0bm4XhOA0ZGDpJw2FMVktjSPpHhoWlI6oLd3KfPVCqphYqXbUDQLCQHfa9HT08n01DS6ImPoEo3KHJXSPLV6MxH+iAUcx2ZqepIv/OEXueKKyzEdi89//o+47bbbsJ0UIjqaohKE0Gp6WI5E06stlAaBlJHhy3/yDX7l9neiWxqxrPKdex/ge/d/jxuuvobJmTLlSoVKeR5Dl3GyaSRBJI4izjjjNNLZAoqqL7D2TQQRdFXklU0bSdsm9333Efr6l7F67RoiwyWf68IQdG6+6Uquu+EqNFPGdhxiP6KBjOW047khqixz110fwE7b+K6HLMuogo/v+Tj5biQjhyZJGIaFKMmYus6WV7fw3PNPc9f776A9304Q+WiGTBT6nHX22WQyWep1j6uvvJ4Pf+QubDuF63sYVoowljB0K7nnA4Fmq4EkC8zNz/K3f/tNVq5eyezMTKLQKSmIso5pplFki/HRWXbu2MWFF1yIrmv09PZhmDo/euwRVqxYyQXnX8ju3TtoaytADI36LJpp0N+/FMN0EhGiaCGCIwrRTBXiGCedwfd8JsYncNIZTN3AdjRcD1K6ycEDB+ns6WFsdJSenl62bnmVQkeB+VoLJ50lDCI6unvwvXrCiIcSjVqTkZFRFEVG13R+8uTjiFGALsu49Sqbt75Cb083owcOYKd0BETStk0mneeppzbR01Ngx/Y9TE1NIwgBKTPPzi07yWRs9u/dxX33PsoZp5/C5Zddip0yESUF34t58D9/yLplZ2CaFiLJZFtuA4QY00wxMT5B1slQrzVQFB1JlRFD8Pwkx1oSBErlWXbt3k6h2MGLL2ykt38Jqqbh+T6KqiFKSdmcOIrJZXPIioCsJKqYvufj2BaSnLz3EEWiKEASJTzfJ/R8qtUyIgIpM0XDbxFFITNTE2iKgmFpKLJEs9lifn6e9lwBSHLwmm4rKdsTx4S+hyKG1Gb2kjEMgtBDVGXm5l0OHCzT1r2E7mX92Oku9h04QGehkyeeeJgwiLFMk8mpCUzbpuX6EEPg+8i0OGftCHp9I7q7FaGxmaGugMnhpzn91DyyXCVlpFDEGF2v4hkFQt2gHIZo+XZkXSDbbpDN6ZhGSNawWdq3ipzdTTEzgJ6Oqdeq5HNpXFScTBYvCDGcHPvHXc4+bwOirB7Lji185ieLm0cEVI72G05UGzk+apuwaJ+wqI0AJ/Rtj4iaRMeGdwpJbb1DR8WL/r2ZnLvFautHs4fHYwl/fjsEiI/HQB5L3LwRy/dLcPcLZG8M7t4MtXzsjfD61YnXt/t5wN0RFaCjHtQT0uCLWMYT0uwLff8U4Gkx3ElYszfPzB1iFd/0I3qccR1i835qwHdChm5ht5C8PJMmi+b4prpP+l/4S7N4ntklZ/Ds4w8y2Jl+/cE/wztLEEXmZmfRFRNiEUkQ8YMQO52mWfM4dc1KVFlEEhNpfVUVcDIWghghShFxrNJqtZAkmX/5j6c5f91qFE3m+Rd3YKhKInM9V0HXFJ59aQenrx0i7VhMT80yN1tl9dAAAgqeF7Frz16W9OSZmSvTls8Q+h5xLCJLIpatYqga6ZyDoog8+viLLB3ooNmskrJ1EBRkOQmVA4Hhg1NYtokoSDz+1FbmZuqkUiojoyVC38cwRYjhRz9+lVXLB5JQHRlEQeGJp7ZzysoOVE1byDexIAoThvMwoypy8OAUpi5jmQYxAkEIsqKg6zJCLICU/AVlSaFea1KrNslk01TKZWRJYMv2faRtA01TcZw0jXqL4ZFJCsUcgpBIyHueR7PexDRMDh4Yx7Y1At9FlBK1zigSKBQMrJRKhAd4eF6Eoijsn5gn7RQZCbKsXL0cVdMWJJoVSuVZbCfDyPAEghCj6RqB7zEyPIamaciKBjGU5su0tWfRdRVZUnDdFnEIW7fswjQy9PbleeGFjSxbtoING86h3mhiaDaOY9J058lkO5N3DEnh5ThK9MVarofX9Hni8acpFLohjmk0InRd46yzz6Svp5eP/+bHOW/dev7iz/+C66+7CUWBSy55C6IkkG5L87aLL8Vx0ji2TbkyjxQJvPjic1z99rejKTpLl3VRq86hqxo/fORRBpYNYtkpRFlGkiXCOAkdu+3WW/jYb9yNoovUqjUOHjhIR1cHniegmSk0U8PSDUaGRxgfH0cQwDAVREFGkQxiYsaHp0mZNpKgQCgRBAaCoLBv3wS21UHLrZB2OimXXXa/to+Va1Zy6aWXIisSkiLy9quuQFEkwsjn5Y2b0HSNV1/dTN+SPmqVEMdqJ+O08747P8L1N7yV93/gg0hyRBCEeA2Pr3/tHv7h7/6Bj/z6RzjtrNO49NJL+b3f/T0O7hvjvIvWIQoyqqIgSzGtQKBcKqFrGpqsIggp4kAgCmJymQJr1w7wmd//BO+65VJqVRVDjIjDKuvPXU+x2EewEBKsayqqHKOKCoEfomgCQqzhLUjjz8/PJwXLFYu5UhXL0CjNVjDNDKIkUm+VUASVj/z6+5EVkSiMaS3UN5ufn0dRMwShgBDDQw8+wG23vYvZ2VlM0+KDH/gQF264AF2VERHYuPElsm05JidHEYSQt77tMlRdxTRT2JaNohkMj4zxxJNPs3rlCuI45tlnnqOtvY1iRxHimCAIWXvKKn78kx/T29dLtTpPPt9NuVTBbbbIZHJYlsW2nVuJwohMOo2mqowcHKHQkSebzTE6MkYmm8PJ5nj0hz+i0J4jCspksj3s2bmHtrY2/CBCUSXS6TSyrNCez6NqKju2bqVYaEMUErXJVquCYdns2LabFStXkMk4TExOsGrlWlotD1EQqFar9C1fQS6bw0lnaFQbzEzOsOmVlyl2d9I/tJTJ8RF+97c/ywd+9S4yOY0zTz+LT37ik9x4/XXc/M4b+Yuv3sPU1ASf/+wXuOG6d2FmbcJQ5NKLzyeYE/FaLlHoIikJwy/LCnEU0daWQ5AlNM2AOCYMPIiT0DNJEhGk5Hsmk+W5Z5/m3HPPIyYkjkBSBWRJx/N9JEmCOEJEwG21QBKJwgi/5SErIppmJLVgSXL8kvx+nyiKUDUV07IQRAlZUZAlGcd2qNQqyHIChmv1OpIioqgqxAGCJGJYKcQ4RlIVdEVhfvoApqYgijGSatDyIZXtwilmyLZ3sH/PNLEgEAUBoiSxetka4jjCtExe27MTEZW5yQmCZolWeYyvP3oPv/IWk0JWINY0BLMLwymSLS7BThfIdBRRtBQ+MYEg4vhzmKKAJUm41Tqy28SrVVAiAUM02TNRxw0MxqdazFdDJqervPLCq9TLs5hBwCtPPcbc2H46Cx2cf92HMFL2YQ80FhYYpIXP/HAh50c8Clgd8b2Ol5MnHgZNh+mGo5Uxj94OR4G046XzJD7o8aDZsWzbEQYwPiZK7VBU24mZvUPKndGCT3pIifyEkXKLRxKfHAQee75D1+JQTuHxU68W84wC4jG1BH8J7n6B7I3A3ZsRTzmauj25HbtW8rOAuyg+PjA79Lgcj0A/tl28kFx6AvupWbGfHvgsPvbnWX/5eerxnbzjBaYwXvw4v7EdB4K+7thMNs0ffPXbXHf2cdi7n2FFKhYE7JTKwT1TbN8+ysiBMWzbxLJNXt26l1YtpNmoMzkzxfRcle7uJaiKjYDKntcmMAwTyzIghrWrlvDc8zvo7cnTUcjhtnymZ8tk0xaZjIlpSDz2xBYEIsan5+kq6DiOyb6D4/T2tWNpIooqgQCaqRG4PrKUqCuqusDcTAUrpbFpy3Y2nLuaOJZRNYEgaqIqGgISIQJxLDM2WiKTTSEpKoMDfXT3FNm7b4xlg/3ougiiiyxrdHd2oMgyTz+zlXybgSIrnLK6F3VhVVmQRCJiJCGRi67XaqiaTqvVwvM8Wk2faqVOrV7HsR1AwHNbxCw4OEi0GgGKJPPSK3vIpnXy7Q6aLtLf34Usq8iKShTECKJAvuBALKAZOsQJwBPjkLm5chLyJUdopsIrr+ymq7ODx5/cSn9fJ6qqoao6kqTguS6yInP3t/Zz84blrLvudlRNR1oANa4bMjM7SSadxbbbME0VVZao1Kqk0zkMwwJgdnaebC7HwYP7abQapCwbXbdAUDD1NE8+/ixrThtk9aq1+H6T7bs2sXbNWRzcP8mrWzexdLAD1xVotlwUTUNEQhIT8RlVUdn8yhaiMKCvdwCvFfO1r9/Dq1s2c+aZp6KqOte+/XJ0Q+e5555j7eo1/N5nPs1bLt5Ay2+h6Sq1cpWUZWBaOinbxHZSdHS0YZoGa9asolaeobeng80bX+GUVWuRdRUQaLktWi2XqalZujo7uPii8ynk03hBknA/MDCA4zhEsYimm0RCiKXa+H6IaelEeFiagGNlcJsuntsk0y4QxDXslEitOY1hZ4mkFoXOPOlsllwmhyw6PPDdR1m37mwiAlK2iee3EMQIRRbwAw/dlBElkWJHnmVDg0hSzNT0BDfceA23334zDzz4b1x1zQVs2fwa+Y42VM3gf1xzA2vXnMrpZ53NRz9xN929bcxOzzM7WeN3fufjuEKTOJQhChBEHy8WyGaylOYqjA1PEssVdENgduoApiVy7WXv5dv/8X+pVScwhT5+6xN3csU163DalvDa9kkyuTwp2yQKWnz9jz/Nku4laKbFgw8/xPxsnYMHDtLTlzD6TS9C1UwIA0w5Zr7UQtFMIgI0XUzYFMEHkoUVTUuBAKZpsXv3LK9s2syyoSXc8d5bkNVk0ez551/k9tvew9TcGF1dHbRaDZb0diErKk4mhe1YuE0PWU2UOkUhUf+cnJ5lzepViFKEooYs6RlgZmaGtmyO0ZERli0bYvfunSwd7EcURbp6OohDle/e/wDf/Ot/5PobbyDEpdiZw7HTiIKI23Kx7RSSKiKKErpmEEUx1XqTnTt2sqSvm67OLPPVmEe+/wM+9vGPMTA4yBmnn8Lzzz/P0NAyKuUKU+MjLF3SjSrFTI2OMDVZoa2YKAIXch1UqwmTn86kiSQTWdXZtnMHvf192IVOWl6AphtUSjWK+Q4MQ6LpV5A0cKw0ncUBVq0ZRNFDbrzhGhqVOje/82Ycx2FifJINF5zPh371N1DEFFIqplquEnoRe54bZXJ6IdxUTeF5bhJ63aghSAJuHCGJEmIU06yV8EIf0zTxAxdZElFkhYmJUVYtOxVRgzjwCf2AWAggkJFVmWajgaHpNOo1VM2i5bpYppkkm6hyotoch7jNGk66gKbKNJpldMtBM3QarRZRBI8/8n2W9C2lUqvRXuhAXkj1MAwDSQYv8JCJ0PWkxIQkxARBQKNa4sCel1E0GyeTolprMF/ysdJtpKw8mmxip0x8t8XU+EFafkTk+6i6wu4921m18lRGD+7G0GJif5p/eek7fO3uXjrzNnZhCULHaaRMhWa9ht+oUJ8dZXrfJKI/QXNuAjPWaGSHODCvENqruf+xXfzolTmufM/vYCy9ArXvcpZe8FY61r6FydjG6luDmT6H5zfv55yL3saq/gF2795Lw4vRcv1MB2mW9PUlIFgQQYgPA7jEnxCOZY7eRATZ4kiixYygKEqHfan48P5De4/xOBaedfG4bRYrVp4of+5kvvUhpk8UxTeMnjueCcLxQ0qP0/Ko74vLZC0e0+IjhV+Cu19UeyNw9+ZUMRclsB6O1z1RDt0henrx15uxIzHSix/M4/Xw+rMc/2E9zNgtvEgPtxKl4z6UC7NY6Oln1b48Obg7GSuXqGIKSc26/0Jgd5hlE4UFduJ4I15kopC8WOMjxx9pvZi5PXJtb7rpOm795F9x4zmFhd3CyV/QJ9kfERHHEnEc8tSLu5AVmJicZ256nlXLelE0sC2N8YlZMo6NZRsgJHMUogjdUghCD1138NwanZ3F5EMFMNMpDE3FMA2eeWEbK4f62HtwmiDw6Cra+JHPrr3jVGstyuUyqmRQLjWYnq4yPVNn795ZBDEmkzUZHZ3nB09sY83KXro6OyjXA4IwQFMMypUpTKOLSBApz81i6CI7ts8wOFhAkCPKpRLVUpWevk4UGSQ5ySX98U92oCkKrt9k2bJeFNXg3gefZtlgJy2/gSzLhEHMM89so7c3h+8FWKZFHPv4AdiWw/0/eJlzzlmJrqooqoIoQrXWIGXb+J5PFEZouowgiiwd6ESWk5IIURgRhiGlShXT1ECIUdQk/6BcqiBLErIsEUYBkhJjmAaiooCkQBhTLBQQRYGBgQyCECEp4Hpu4hhbFp4bsHFvjSvWD7Kv5mCnLERBIvRCFE1GU3VkWcIPm6iyhBeEBM0GmhwwOzNJo9VK6gzKPrlcEV22qFZmafkxum4iKSKDQ738z9/+fT73B1/i7rs/RnuuwMF92ygUbSzbJp3pxGvU8VoeiiwgiB4IGmEo4rkx3/y7b/H04y/y8qbNvP2Gi1l39qmsX78uYWARsE2Fzdu2cumVV1KvNNm5dT+XXXYxTbeEqkjYlkwYtYiFEEmVSEqdifzZn32J005bSbPhIqoOtp0m325TrdVAlfn+Aw+wYmApXqOE12qRyWTZtWsPnb3tzM8lzJIkaURhQLU8i6mp+H5IKu1gpZIvYpWWH6BaOrJuoEkqppam5YuoWpYoFnBbAYaeBgxm5qaQlZi1py4loomiyoyNjDA5Ms5d7/0Ad9z5fvzQJQxispkMgqDQrPvEcUQmU+DWm29lz+69PPOTp7ngvHP4kz/5Yy7acDGWrXPaGecxOjHD1ddcSUwd21KJI51/+udvkW23UBUZx84hiDKSrPLgffezdGk3ntcgnc3gmBblcsg//+v3yGQ68QSBFYODSHFMvruTCy++BEnNEbgCczPjdHSkqZTniCKVz3/m/3DTrbejWwb/ef8DXH/jVfT0FaiW5/BadTryOZrNEpaTJpZS5LIp9uw+yMsvvcTQ0h7m5ivoegoQmJ0vQVRD1XViLP76y39C6NZYtWIQI6UwNjzL9m27OP+884ljkWI+TaspEogN3FYLvxXwxGPPUmzvJl/IIEYBQqQiiAFjY7uxNRnH1hGEGEXV+MqXvsId772Z0ZERTjvtTNywScq2sS2DMHCRlRSeEKNJCre85xZ0U0mYSBE02aFeKyNIPoZlIisqc7PzjIyOLzBoAt+45x5uefctTM7OYSgxQ8sHeee7bqancwlx7FPMF5L3RbmEpqtYuQyT07P4rZju/k4kSccybPy4RXt7hi2bN5JNm4RI7N/+GnqsUCjmaJanaUvnEGKRequGbshUaxV0VUORJCK/Rld3D56f1GkzDIeMkyEWZZpRzPpzLuTA/t385Jkn6V+5hNLwXtryJimzzu/92Z/yjotuRDZMAr9JvVZjYnyMnp4+gijClFUa9QqiLDI6MUkuVyCKQiQleXfOl6rkMnl0U+dHj38XVUvjOFk01aBWq6NKEqokUW2WMVNZgriFoZv4YYSoJIq7oR+iaxpuXSAWQxAEBFFFVUQajTqqLKMpCstWDIAYMjszTq08Qy7XTa1WQ1FkZEFkYnyStnwB328hRB5xLDE1uh9FaJFxcuiqQGnOZWyihuqkyeWKRGHMawd2USx247pNCh0dOJZNI3RJmRbNShkxaNCbT6GILoX2Nm586xiZ7iyB0Ml8aY7KxD4qo8OklBhR0fjB0yP0Dp3Ng0+Vuegdn+Kf7n+Oa278BI14gEee3MKGS66iFRQIJBtdzaH4Os++sJXtG7dzxsoz0IUUG196mrvuej9NVyU9cCp79rZYukRj26YnKOTbybYPEJt6AqKOcQWOrkW34G8KJ/enFod1Hr3tiFLk0eBGOAlAEji5mP+xzNyh/Lmj94oLJYgO+cNH/3z0vF7X86J2/1UWxRGisOBzHhNld6z3fPTXYtD5S3D3C2T/nXXu/nsqWSymmn9WYLPowTgEkBZAytG0/YkVi5Kt4s8aGvlG4O6krFxCpf/M03+jMZ2g7+OC3Pjoa7YYzJ28j5tvvpH/841/5Oxl2Z+JsTvc58LL37IsNm3eS7sNUeRj2Tq9vZ206j6vbttHX0+RocEl7HptmPZCG7ImYTkmUeQiSzKBF/PIY0/R15ljeGSM8bEJ5mZnsdMqtpNioH8J+w9MosgKe/bPEwQR/T0FZudqNBotzj9nLdlsjh8/+yrLBjpptAL27Z+hv7uNyak5tuw4SCZtMbS0m4cefZHZmQbLlhaIAcPUiRaupWXqiTy+G2IaErIkkkqlMEyDWqWSXENBQpQVilkbx7ZxbJ1YCPDcFoNLikiijKEbBEFS5qKzI0tMlAgIRALbth2gq7uNffvG6e9pI5fLJDXpSEI6dF0jjiNUVePe7z3Dsv4eBDmJtXebDaanZklnHBRFQ1GUw6t4URhTLlWwHRPP81A1nWqlhqoqeEFEq+mhyCKqquJ7IRMTkygqyWIFAqEfoyg6zUadcrnGtRvW8+l/eJxb7rwTTddoNhtATKNWQdc0ZEnGbbrEQsz+A8P09XWjqhr7R/ayYvkgbqtJLGqJ1oookbJSKJpMELQIQw8/8rjogkswtRSlcoWNL2/kDz7zRX7l3e8ml02jqSJzc1N0dHbgeXUkOUQUNYIgwLFt1p29jmJbG1/68pe58647sJ3UAusNsiLxxI/+k7PWrSMIRNJWlvu+cy+bX93MqaesxUzZvPTsJnxfxjTTiJKArOooqsKGC9+CYaQQkFANkSCsUi1PYlhFFDFi9eoV7N61m+6+bjw3plbz+Pznv8yFF60nbafRdJ2YgP379iVlGlQNNIOJqTHiqEWtPEWlVEfXNcbGxslkMkRxRK1eZ35ujmaztZDjleRlSYKCaRiohoQkidTrDR574gnWrjmFlGlz+eVXk7LTaJrKffc+wODQMgzd5okfP0NHscCXvvxVzll/Npalcs3V1zI/P8ftt9+J7WSp1srksu3c8zd/yS23vBNJEpFEgXTaZsNFZ5FtN9C1LHff/VusXrWGa665lmJHF2eedTaqYnHpW6/lHddew749Y1x5xZUMDPazbKiPv/ubb3H9dTexf3gnhq4wMzVNxs6zb+8YmmLxnw89we/+789xx6/cxulnn4YXNDl3/RnIqo6qasiKwvzcPJKioxkGoqITRCJT4wepN1ps37adU089Fct2KJcrzM+XyObaqDXnsZ0UI8OjvOPaaxlc3k+uPYMgyIiCRjaXw0oZyEpMdb6EKKfQDZGUZjE9WWblqhWIkpDkcSkBrWqdva8dpKt7gFzWQZQVytU6Vsrm7DPPot5o0d3TQ0TE1OgeGs0ampnGj01C30WQBHKZNOmUgipBHHs06zUkSWP/gT20t+dQFIOw5XFgz37+9+/+L1YOraC9y2T58gEmJ8YYGBhE0mUMO0U6lyUWY7JZFdd1aTZ8Jsdn6O7uI4wlUkYKTYFSpYKm6yiKhhwG6KrCyIH9OI5NrJhs3riZ5559ljPXn4GWbmd4ZJydW7djyRFBLKDrBo5tU6mUIdTIZDNEeMiqALHM+MFRNm/ZRls+z8zEGCuW9bN27WpEReah79xLT28XggaXvu0q3KmYKA6J45hMNoeVsgFw3UT8SFVVJEnESlmJYy8JhKGPH/g4doatO7bSlsvR3z9EJt2OLAoMjwwjiclzNjo6QkexAwGFciVRyjwEShI5+0QK3/dCzJRGtCBgEcQJC3dg+CApJ43X8JAkFVUxse0ski7itloIsUgkRWTsFBOj+7EMgyAK8ZseHR1ZvPoUshhiagZuGBNLGQYG1zI8fADfC+ju6cL3k3ILVirF9h2baXccGpUx2mxwlAjkGEmW8X3oXDlHdXaaZm2S0NtL1siza1zl3oc20b3qei665Q/Rs6t5aVeJzqHTOfey66h5CoJm05bLcN66U1ixdiVeGNKeySMg8cxTT3PFDTfhumUkd5JqPeKHP/wRURySNrL8/XceYbrusXfzJvzI5/wN1yBo6uvUII+be/aG4O71/sex/cFip+fkAOrNER/H6/fIvvgEP7/ejhYxOVm7Nwv+jm4niod7PcH4jz3maOB6tP0S3P0C2X8vuHsdCf3z9/i6eOMToZsT3Pgn4PgOq1BGx134inMAACAASURBVK6wEJ+YlTvc0xvkr53I3oivTABLDMdRyEzOe5KDj2LTjmdHrsPilZmFPLlDErdH8ZNH/j/eTI7dG8XRScJ0jz3nynUXo0y+cJLJLD789QzeoTzKaqlKqVRBElpkMw52SiMIPGZmp+ks2GhaktRuGQ6GYTE7Pc/E+BSymKyE+60aubRLysigqgqZtI6hgGZIyKJIo95EUxWyuRTrzhrC91y275ygLWuTzRhs2zlMvj3L5HSJGBjs76LWqFKptlBEkXPXLadaa9BRzDI+OcuGC84kjjympsukUiahX0GQdLxWiyByF5wuCd9z8QMfUZKQZRnfD3l+4056eooc3D/Jrj1jdHfnkaVkoUHVknDMSqWMJImEQczcXCVRuSRR4My3ZymX5ujsypHLmURRA1HSGB2dIJVKLVzimDAKWbW8D0GMieOk3p6qakkYK/Daa+MYhpLI6YsCQRAiKwozM2Ucx0ZWJKIoRJRlhFjEMAwURSYMfEQJJElAVmQkRU2Kmgc+ohij6SrDc3U6i318/aGtXHXF24AIRUpWPEWSkhBxIPDbn/pfXH3d1WTbC0iSCDh0dfVRmpvHVLNgGEiygCBG1OsumqbieQFBEKGpOoJYZ+lgH0PLeunqcbjy7TeRa0uz97WddBRypJwscSSg6xq7du3ASWfQdY1Go4Fp6Gx5dSP5YgdLlixNFEGBKIo4ePAg9UqdX/21j3Dn++7i1Zdf4QMfuIP29iJ/ec83Oe30U+nuzOC1Yj78oY9x9TuuRZBi5ksVdu3cQ3u+g53bttEMamScNAf2jFCp1ZDCJo6Vpdg5gKop6JaBlTY5/8L1FPJ5dNPAbTUQhAjDNEhqGkoIoogsiggClMplTEWl0ajT1tZGFEcQxUzPTNPV2Ymu66iaTrPVTMJtBQVVVmm6JXy/hWO30d1XpFlrEPgCD9z3IGtOXYvnNli9ajWaLuO2PL77wAOcf946Hn74J1x66YWIUoilpxkZGecLX/gSa9asIdvuYNs2V155CVHs8truvRQKOYLQT+T6TRtJUnCbHmeceQYf/eivUezKk86kkVWT995xF1tefZpPfeqT3PLumxid2EN3oZv9+8dpby/wve99m3PXn83c7BzFYid9SzoAkaeefY5PfvJuLnnbENVGmTBSufi8a7nmusvIteURRYm0k0HERyAg9EM0WaVaLdPX10NXVw+aahHHIZ/61P/kwgs2kG8voJkGUQjfu+/7dA+dzue+9EU2XHIesSAhSxEQIggiBw+M0FUsMDY6TyZn8cOHHmHd+vUIks/k1AEKhQINH9KyxI+ffopla0+hUa0gSgpGyiGIwG010I0UDbeFqiW14UQFXnppM7/567/Ne26/lVAIMBQJUQ4JoxBZVZOQbVmi2NHO/Pw8umqjahIj4+P82oc+TE9fH6Iq0NnVRT5foFatMTszQ6U0j2On0DSZ6ckxyuUy+XwbqqYQhCGZbB5JDqnXp8i2F4mCGFVVObh3BCedo9jTw2ylSnuhg/6+AdavW08khQiKgqWlqM1XKM/O8usf/wS3v/t2JEUmk8nyj3//LWQV0pkcqmrznX9/iEcffpJNm7YTxgrN+jSZVBIi314oMjlZ4v57v8u69WfT2b2Cj3z6N7j0jLcgCDKRAIIoHnZsoyhGEmREQSYK42ShL/CRpCSHUlI18u3tyLJEpVJF1SXK8zMYuk0Ugmlp5PN5ml4TWdbYueM10o6D61WJ4iaBH6PpOs1WgyeeeIQlSwbR9CRXT1XERLzKSKFpCkHgMzs7QzabJQYkGULXhTj5u3mtJtXSLGbKQbfS1BvziKGPGPoosYgfRuwd3kfNj3CyKbJOnrSTwXXrjI2MoGoqcRQTt+Zx4gqWLhARECoqKFqiVJx7inahRFiN2Le/SeisYX+jl7fc9gVidQm21UneMlE0jZ62LC888ySrVi1jthRgprI0avNUKzOoaoq2fA/1WpPbbr2ZZYODSO4oTz/+fQ4cmGRkdIbVq09nxeplTIxvZ9maIXoKZzA3PMJrr23i9DMvwM7nAQlE8Sif6ShfSFxQQz8JuDu0SC8exfgda4uVuBdv/+l818XM3NHjOKI5cSygO8JGLtaTEI5qczwti2PtzebkHd3uiGt57LkO1QtcfMwRQPhLcPcLa/+V4O5EAion/v2/wo6PXmKEEzzIbzCG/+rctZPYG4mhHEkeXhjzTzG2Y9m04/b+BlsXvyjfDLg76vwkKlbHAsP4uL3ousatn/wGN64/FJ55wkGf1AQEVEXBdz32HBgjDD3aczbEIbk2ccGpipFUHUUOcf0GQuTSnlER1IA9e8fIWm0IcYQfxGimQaVSo9GsU2hzODA8Sr3eYHJ6hkJnGk1XMHSZJZ3dvPzqawSRh4BIWy5Lvs0mm7ZwXZ9iMU2j6RHEoBsikhAjirBqRT9btuynozOHZaX44eMvsrTPoNVK7glBCpHk5MNekUSmpufQDBVZMYiCkGKbgyzL5At5OjuKCJKI34qJIpDkJMfOshTGx2awbZtMNkcYRkhinHzQj0/w8sZJVizvT0Tc4pgYCdPQEtAUJ5+XURQQRS6SDJIQUypV8bwIw0yxY9c+li9bmgA0WT4swqMoMoposG//KI6jMz0zRcrO8PyLO+jtLiQFxMMmrVYDUZRQVRNJVvE8F11XAJ8wgI/90wFuOGeQH26e46yzVpHOpHFdl3qjiWPp+F6EaThcdcVVBFKcCNH4Hl7go6gNJKVBq1FleLJKOm3RbNQRUCCWeHXTFjZu3EQUQi5dxLHz3PvtB+nq7GN4Yh893QWIAiqlEimnnXrDI45jCvn2pJiwoiCKEtu2b6NZL3H2mefyyuZtPPzIg3R1daNpGl1dXRRzPfT0L8WwFLo72/jzr/4Fl1x8KX/w2S9wy63vQtPLpOw2ZmfrnH7G6bixi6lbfOlLX+Hyy6+ikHMwUiZCrPD3f/3vvOu2q/nCH3yGtNPFH33xHs678Eyee/5psm062TadyJfYvWsXxWI79XoVP/CZGJ3EstME9RphFKPqFulcB5oYoqkalXKFYkcH5VoVVVVwUg7j42PouonnNsi1FXBdn7s/+ptcduWFCAK4bhKqOz9bwTbTfO6zf8jV77gCUYqw0xZR7FKv17n44osIohbnrLuIu3/j11i1coiRA5MUC0XOPONsdu7axcBgH7KsIEoBsiLS0zPAzPQYsqzyp1/+Gu3pXvKdKZYtW057W4Z6o4Jh6wyP7MdOOTzw3R+wc9t+vvDZPyWMZDa+tJl/+6d/xbQcnvjxY3z0Qx9GkgR0Q+W6d1xDocNh5aoVbNhwAaYtEdQNFM1CVGPuuON6OjqXUK1WmZqcRpYlDFxURUQWBYQ4xnZSeL5PEIBlpGm6DW688Z0EgZ+IaygWqqxSKbVoTs3QV5BJSXOo7hwHJidRdZV9e0bZ8uprjB/ci+dL9PQXGN03jGlrhFGNpltGlmUktYDQLHPaWacxXZ2jNl8hk2vH9QKCKCKV0tm/d4xCZwE/bOJHIq/t2kKz2uBTd/8WkiaDHNGoV2j4HoKU1PYzrDSKBKX5Wf5/9t47yq6zuvv/PKeX29v0qlHvsmzL3bjLBdwx3cb0lkBICOQlgENIQiDwBn55AwFSICQk4AAGTLHBxt3Gkm1JtnqZGWl6uf3cU98/7ozKSHJJVn4r71psrTujmaec55w55969n+/e328qk8F3ItAErR1t3P39H6AYBqlEAdfxCcIQ09LJJdPoioKpK+zasYOOzh4sy0BIPomUydNPbSHb0kYQVjgyvJNKOSAWjzMzPcvkZBXNjjFTrmGn0kiyhKHo+G6DPft3U8iluf++B+ju6qWjq5c777wDPwrZumUrba0tdHe10buoG0kY+J5GJh+x+aoLWbqyn/Vnr+D5Z58jl45TLBcplkvkOpYwtG+QM9atJQxsrr72At7/yT/g7GWbUPSmFIuqKASBj5BdIKLu1NANjXqt0XRuQ/CDEE3XEQJc12VqcpJYPIGhqtz90++iqSYtLTlct4GiyYQhtLe3YugauqI3U90kBUlEBIHLkoGVKKqBQFAqligWJ0nH082MiEYNO2HRcB0kGcLIJ/LAdyo0nDKakUCSZdLxOJJi4EYKcigDHlFQBXw8QtwgTiGzBKfukMikGB8fJ5VMcHjoMHbcQhYSM8PbSebTNDyPMIiQwhC57vDZe/6Wy9Y3uP/RKX68vcasu4ZbX/cR0sk8bqXEv33z2xw4OIKcy3NkbBDPrXHuhefhSwqi4dPe3onTqJDJ2oR+jA99+OP85Wf/nIH+DrY/t5XLV1n89Mf3cu+j+3j8scfp7l7E2eefyZ5tJS44aznf+ftv0bEkheaOUnJ01p97LkIox5XInOwgSJJ0Gu9izjeYr3k7RUqSOG3Ad6J38Urt1Mc6huSdjNYt3LAWC8a87COfNNdCOz2XxvEb9eIlqmR+G9z9jzbf9z95IpLySgKI+Qdjfqx03Pf/TAHowuDweFbMhXfZMTmFeaafU9HlnszUeLq79fhaPuloWtUreaxOx345J3t38lwvgfjNX9tTMXger3l3Im3uwgfu1Gs6ATubc1jEST0WPuqnXenCE2v+LY4OeulZbrn1Ju79j39mUXtqfoq52zE6CaU7NWto81oJBJl0kud3HUbXm+yPQghU1ULIOrIiIXCpVYoYlomuNYk76tU6Xq1Crdqg0GZRLnsYekgqZZPPtVGpNVB1k4bTYHJ8iuFDh0kmbeLJOKqu0NtZoLO9lSAIGTwyQaVc5uChI8yUa4yMz5KO68QtmZ6+bhLJZi3U9EwJSXHZsm0f/T0tdLfn8b0aViyJaSVQFIso9FBVjTAMaTghz2w9RD6fQrMUhBQhJIntz++lkI8jhIeqChpOM8VUkZu7a7FYjDCI2L5jP+ViiZhtsWfvGFu3j3Dt1WchySFB6CPkeUFfgeM46LqJQOB5oMjNgO/554cxdQPLMhGKIBVPUJwtNsXUkajVKphmk/FT0+WmOHgkk81miQKZdMJGUZp1eNPT08RjSYIQnLqDrglkSSGKBJLUJCD4/m8muWxVD1e9+Z10tnYShA1kVcPQ4gRhQHFyrFnHZ5mEnuBLX/wb1qxZQywuUyzWMa0WhJrgR3ffx5KBPgK/Trkyg9co8bE/+gTJZAHbtFi2fDlPPfU4fb29JGI5li9fzORYhV/c92vOOe88iqUpVEXDsHQiQhTFoFqpYVoW2VyO9q4B2jtaWbFsMWuWLMELPFKZOLYq8673fYC33/kmLFNlZnaS8zddzNVXX83X/u7vKE3V+Phdn+Wyy65DM1S8wKEtk8M2NS46/0I+86ef5aJLLqRUHuf+++7n8ss3s2f3IFduvgbTNrns0guRaLDl6WdYv+4c/MDAd6rIqo+px0CEJGIp8vkWdEMg6XZTo5FmCu0zW54hmY4RT9kcOTyCGzqkk1lGh0aJ3AaxtE46FWNkZBRF6Fx9zWY0TUdVLX7vQx/m3E0XMDM7SzIV47WvuwECh1Q6TSRDENVw3ahZiyYkQink2qtvJJPs4N3vei+vve1G4i0Gi5au4fCBPZiWiaLoEAogJG4lEXaWar1OZ05HUkIsPUYkoOZUMQ0by1aYmpjG1jNsOu8szrtwPR/43feyevVaajWPV73qIhYt7iVdMBkanmb/vlE+9smPks4UaNQj/v3ffsiGdWfyzJbH6F40gGbqhGEdQ0kRKnVidoqZsaexct04PvjIyIqG5/pMj7sk0k2afMWUkFUV3VSR1RCZgKpbYmrsELt37mHzazYTKDpmdhHZdBpZ1mnr6mDx8gF6lvTT0Z1HlWV+9KMf8uCDj7NhwznkW7op1xwObN9G38CyZkqd8IlnW4hEjT0v7OFjH76Ly67cREdnK0SC8ze9infe+XbyLVlyhRya2URaZyenEELF1lVUWSabzjJbLKHKCjt27ME04pimRiQJZCGRzybJZ+LU6lXiMQNVkXBdh4gQzZCZnfVIZA2kIGBmqsK2F56ju2stquqgaTKKHCOZ7MZQFZ7fsYNCPk++Lc32Z7fR1VIgqE2g6hGyJLHzhd30dHZwcGSEDRvO4vDhUb7zr/9MW0cKRVUYWDzAbLFIKt5GvVFm6FAZx6ny7NYtdPf3E4/buPUqpYkSZUdn0eKVFKfGqU3XKHvgiMNsf2qYe374z/zOe9/FoW2jZOMxAi9i9+7dtLUUMCSLgwf205LPUy2VsBNxVFWlVq1TqzUlYYQEbsOhtdDU/9y56wUePPQE56++CENVkWWJerWOPxcMe76LqqsEEchzdP7NTbNm5oQgxHFdTN3CtEyCKETVLaIQYraFKsuIQEJVFVzXJQgCVE3FdWs0vKa+WsxuIvGV0gSKHEAk0DQD21AYHNlPe9cyZCGhSBGyEIxNjFAtzxBGEpquQBggAh+JCGSNHz74IJdclCLReQP9q67g1je/l43nnUMjCinVBINDk5x70UUsXd/KysUXkm9TUOUUVjykViwzNnSYidkZNMPl3771E/7wd36Xqy9ZzJ7nnuctr13H7bdcTHvbDOtWJdi8aTGFXBc/+tk9uI0qV1x3Dff98nEuu+oK1p1xJg//4kf45TFWn3cFsp2e2xw+zhcQ8tGspvmW4z3Yo16HkJqZREcdi4V2Kk4DCUnIcyCBDASciKqd2r893v86JQPmCUhedMLIo6e1gGnzv15bd6Lf1UTj5Bfpe/x5Ljx208+SJOkUbb8N7v5Hme97nzzxN68MuXpxpO7l2bEb/uQg4fRznw6RO/WYlwruojlikqN6JfOw1yu6HC+Gbr3yq/NiNXfHpzyeWBP4crG1EyY7xXm++Lm8gtlf9ixLzrmW8W33YenyiekAL5fxKYqazFKyxLPb9qNrCsmExeRUmYNDk9iWydDwFAk71kw9kVUioVKpeyRtnWJphL7eAkOD48QSFr7vEfqwY8cBknEdRVIpFkt0tKYYHB4kGbeYmJjA1CMmpqYYGhpDV2QqtRJ9XS0ISWZ8okJfTwuqrNDV2YpQZBARIQGpVIxUKk5XRwZFVZGEykOPPUNPT1vzrTUM8H2PSJKoOw62ZdG/qJPAd1HVppip63q0tqSRFUG9Vsc04kxMzCAQBEHE6GgzhcrzfR56fBfrV/di2za5XJKezgyWrYAIiQgJQw9JhEgiQkJBhE2afc/1CIKAF3YeYNnAAJMTs+TySSIRMj42TWtbgQMHR0klDTRdJQwjtj6zl3QixdTULLlcAlmNkITKE0+9QEd7FkkSWLZBJASqrlOpVlEUCVXVmgytIkJV4JxVi3nrF3/OJee/ikOD+xgcHiabKyCrCo16HStmYtgy9fo0srDYvn07K1YsZmZyhmw2iywihBSwYuViLNtAUXTqVZ+/+fLX+Mjvf4yHfv0I3d39lGbrLBroo609g6xE7Nr7HIauc2RkjLiVpK0jhyRUhBCMjx0mZsUpl8tEQROhnhg/Qsy2EZJg3+6D3P3Du7n40otp1BscOLifc847D8tMUK/VUPUYb33r7UDEQ48+xJVXbOaG629m7Zp1ZFJJ7v7+3WzadCZEglKxQj6XYmZ2mlWr19DV1c273/E73PG2N9FoVAkCj+mZKc4779xmmkwYoseSGFYKSbGJREi15jMxOYNumsxMTSABURQwePAg7d2LsOIxQmTyLZ0YikG14pJIGFhJDVW1aDR8kvEUqqrihzV0TUMSBmeecTGqHtHV1YGqqnzu859n2/adrN+whi9+4Uuce86rMEwbz3dwvQaGqnBw30EODQ7z5re8jmw+Tq0+ha6a5HJpRg7PztGyG0xNj+D5HmEY0NGWw/erJPMdeJ5H4NSxFEEgJDy/QTqdwYpbWGaMW26+mVQmTsMp09PTwwXnX8gf//FHcR2Zes3HMDU0A5KJDJ4bcvjwYT7zmU/xvve/H01T8Op16rU6sm2j6CENR8KMJZmZqmOZJkHoEeGjaRJ79xyktSOBaRqoiokkNEI/xDJ1iFQkz6FRHmXjBdfgR02Cmi984R9YtWT5HNFNiKYpjA5Pkkgk8dwapq3zmlffQrVeYf/B/fT29ZHPp1FknR07tpMr5ECSkYjIpbPccNMNSKoMkoLnBtz2+tdRr5SIxRJ4DZ+vfvVrXHrZJciShqpomKaCLMvUnAayohJEGu3dnXihh6SYgIfvuRiGTsy2UNTmOsMoRFO1OT1LF1NPMTU5Sq06S2trJ+0d7ezbM4okHFrbOpobUgLKpRLdfX1MTU8zOXKYjtYMYVgmlzFByeA6Pq2FPOlcASk0+Pa3/o1zzjqLDRtXoWoWjlND0yWCIOB//cGfc8GFF1Kvydx++xt49OHfMHZkkpidRpZMBhYXCFHp6OzijW94PdWGxhte/2o0pYImR9z85jvI5Vr50jf/lqySp1BoYWpqnHQ2Ra3qki+00HB9ajW3GWyFIY7jMDY2QraQIvIF42OThLhoqkEqk2VgXTsddjeaJjE1PUk8lmLH9u0k0nEMs1mzGYURyAIFjZnJSUTkUanUIAqxYjamqRNFTYkeISKQmoyrod/MvvDcxtx7fYMjhw+RTCaJgoCxI4OIMEJS9KakQuCgSjKu2wAh8+TW50mm28nmknihD4ogk0lRaO1E1hV0PU7NDUnnO2mECqVZndd/7Eba+s+ltWcxmq0iFB9FaQYliubxwEMPsmzZahKZOCEKb3vj+7jhjWv5zaOj/OmnP0Z9cpCCdoRP/P5XuH/rg3z0zedw1lqDmzZvJBM/hKEV0YKQeqWMaTvcd+8jXHLxOXz56z/Fq+tcdc15TEwf4Jf3P8l99z9AJhbSu3ojrV39JzF3c5wEwqm8jOOZLE/Pm3C6pMt5OYL5+cMFY146M+zUQdnpHcroBB/25LTM/7wtRARfrB7v1MHcwvbTjf9tcPc/yF5OcDcP4QZhgB/4BGGAF/jIkgr812++0+cIv/zg7vQA2ELUaOG+zoIJ5tC0pk7biQjZS6VFng6XemmQ/DQ2rxV33BqOonXzaN5pELfTr2LBS5x61ElrnmMRPRUSKE7ov/Dri5y5mIdGj72p/eEXfsBVq2Jz5BqcOrB7EdbMSAiC0Gf5QAeHhicolRvEbZvujjx7948gCQnTaCJ601OzSLJENpumXvFIpgpMTE2hyhaxWJrA94jCGobu06g7TM+UCXyHbNagpzND4FYZGx2kUp5manIMSYQEYZ1cyuLI2DSFXJ6YbTIxW2b9uhX87MFnWNTXNocyhkiywG2ETE5MY8WaEgC93QWE1Nw1lCSZIAgJgmiuVs3A9+rNlEdVhgg8N2jOJck4jovnRiSTNkHko+s6u3eOksnEEYR05LPU6w6lUpl0JolhapRK03O6SRKe5yJJKkQRsqywfcd+FFkgKwLTNMhm0ui6Sr3edEIjETJ4aIpMKs7UzAyaJrBtm0q5zuRUic72ApatoiggSQph1KCrM4UfOEhKgISGquocHh7D0BQsy6Qptl5D11RmZoq0tfbwyN4al116EaahsGrVeizbZOszT1EtFmnt6KZSrmHIAsNMsGzxEkxDpVYv4vsuIoqolMsoukwYCoTQMHSVC867BE1X+P4PvstFF16IH3j09LSiaip+EJHLJUH4rF6zCtO0qVSL/Ot3vsuaVSuIJ2x2v7CHerVKqTiLoqgU8jYNt4EbwOD+MS687HwiJUCJDDaevYbAlbj88uu48abXYMdS3HDjTbzz3e9k7fqVKFHE5s1X02jUWLt2GYWWVjy3QRAKVixfCbJPNptHUzSGDw/y1jvuRFUl/NAnncmTzqQIAo/i7CSJuMmOnU/R0d6B2ygzNTlJIhYnZsVQFLAtlUq5iO816O5qR1Nt6tUylXKZmJ0Av4Gh6YxMjJLIJNn23PO0tfRQrdYYHR8inhQ4bhG34aAZCol4nEqlioiaTsNrXv1GFEXmm//wHcyYRUdHKwDF6SrJmEapXKGnr4dY0gYEtfI4cSOF0wBZFU2Ba1MnFrOxbBtJEmiqjGHFaNRdLEvF8zy++70fs/GsTbhuyMTYOJIEsbiBYZgMHhpG1WSmp8ZZtnQl7W2t1Co+Bw8N0tfXw1997q/YsH495XKFTZvO4qyz12HEQqSwwoF928jkM5TrgkZtEtkXqIZOKp1rbhwJCSKJw0ND3H//Y2SzNm3tnTj1GgKoVctYMZV6rYIU+HR291KP6vh+jcnxI2w6cxX5bJadzz+P53kYpkkuGUOSoVpz6O7t5xMf/xSdHR1ksjmsuEkQuoyMTDCweAlTs9PE4gnCMMR1G0xOHkGSwNY1SsUpoqDB1q3Pksu0kc23sHz50jnBbB1V1Tl4YA+qqhGEIZVanVwmR6NRaj6nkoqiSgweOkQ+n6VWrTaJUFSVBx94kP5F/YRhQLlc5ZOf+hxXXXUpoRcgyRp2QsWOpYhbJiFRk+jDb3D48Ci6aeI4Lral09KWo1QsoSo2khpDkgOiqMG+3bsIGnX++OMf4447b6dYnuS5p8dYtnQpU5MzBJ5GuTLC0uX9hJHPa269gPe9+8Oce945EAXkW/Lc/qY3c8+9D3DTLbdwxeWXcNkVr2JqYje2FaOtt5sAGV3TuPjCCxisjnLoicMsX70YRdUQUkTdqWCYerPOLgxRZAVd18gXCk0B8rlUnkQsRkjA57/7V7z/d2/jrr/4C9b0ryWVTDA7O0sh30oqkyKKIhzHoVKq4DgNAs/nmeeepq9/CXXHIWaaeJ5DQMgn/+kzfP/XP+LKjRfSqNUZGzmMaRlIkiAK3aY2q66RS6eIZB2JiHg8gaIZRAiGD+0jl00SeB6KLBEEHu1t7YyNDpLOJRGKTugJ5EhGVhW2bv0N7R29pFIFJNVkpuTQfl6SbGcHtVqF0dFhWrrbqRQnaNR8FFWjWBkjnXaQvXbaWhYxOv0bJg/V+NRdn+aeu7/LnbdczCNbH2Ljqjg3X9bHTRckWL6oA12fpDIzRWu7Ryreycx4iVyujZ/hZwAAIABJREFUlelikSvOO5tYIuTh54e55orrWLy4n0QixdozNnL/T+5BjwTv/MDHcYkhJP9Er0KcqLF2cn7QMQTqVN6jWDBugZNxXCbYsWDrGKp26p3/+ZaFBDBH209C8+YDVOmU65wfE54ijXKeYKX5mic5WYjQHR+AiuPO6/jVnvr8T9XenPO3wd3/E/Zygrv5m8t1XXw/wPcDCJu3oqoo/42rewXB3WmRpgU35wKE7ljD6evejv//i9bI/adZM09v0glFxMedy2mP8Z8LtF9y1AJ071T95+u0jrW/3LUc63fNtVfxzfsPsDpbfpljT7RINNE7RZLobM0xODxBueKi65BJxRjoa2d4ZIrJYpXSzDirlvax7+AQmWyc3ftn6F+UIpXQiRSP2ZkySTvF2GiFfE5nerZCOm2SzeggXMoz0yhSQHt+EbVqSMxOMDo6icCl4UfIikFfdzv9/R0EITz5zAHWru4lDEFVZe57cAtdHV3EbfNorYbnOwgUZFnBcZo016qqUK82KBcrbHluF+lUDCEiyuUqU1Nlctk0USTN6cNJyIpAlpui46lkhl89tJW+7gI/+cU2zjl7Gel0k1RFCHCcGoYeQwgFRVGIUAkBPwjI5lMosoqmNYPNnbuHiNkCy2qmt0ZCYOsJNF1BVUNSmWaqU7nkICTI5VLISnNH+ukte/n1o3tYsbSX53ceor21haee2kNrS45iscLQ0CgtLWlAolp1CAOfp/aVGOjuYuOVb0Ezm4k3kjBwPZd8S5q4ZeOi4ToRCd1i/4FDVCtVEkmLICziOnVaWjrYu/MAI+PjZNOtyLKMqodIoYZlK5x/wZmsWrWC1tYsQeQhSzpPPvEcHR0tKEaEqkqUSiVURWL9+jPQTZ2IgEK2QDqdIZvNNBFTq5lNKKsGhkhipXUqlVmcaoDrlxCRyd3fvYc1a1bR0tbBtddeS4SHbiiEgUM+l+UrX/n/uOmma1EUnXQmRa1a5w2vfwtLlvSSy7cSj8VwnBq6YRCEHqYRR5EMfDwURVCcnmRifIT+ngGmjjSwdJtEUsJQNaqVEo16mVqljGE0SYb279+HKhQUKWT3rh10t3UwfHgvjtMgRENWdZLxJKpi88CDv+KMjauJAhvXAUkyIVKR5QhFbUo+9Pb0EioOvj/Ja299NZ4Xki+kkSWZnTuHEGGZto5OhCThRS66GqM6O8rZGy7igQef5C133jwnQu/jehEgowhB4IcIxaA2PcYLO3fQ0t7D8tVnQwhnn3k+H/rg76FqCi/sepp0ssBNN97GO97xLlIpg9Ur1+MFAV/7+t/T3dNFIhZn1YoziCUM0pkcxeIMhZY0Tk1CiQSGbBFPdiGrBsP7nmNRVzdbtz1NvlBACBlFNmg0QnK5PEsHVnPo0G5a8p0YFlQrFfygjiwFBF4dU4tTDXX8Otx20xt4x1vvpF6cQdVdjowMsWLFKkwzhqa5jI6NYNtpGq7EFZddiq5rFFryc2nSIZaZZO/eA7S1tRFGIeVSBV2TSKVtJNdFFgExW6M8O4EfSuzaOUg+V2Db9m0YukYikcJpuOSyCR789a9ZsmQZpmkifJBEjVJxjMMHjyArCvlcDlmWcBt1RkbGUFSVHdu3sXzFKoQIMQyLns5lpFI2lhFHURVK1THi8QSBG2BaJg3XIYgCLDPBjh3Ps2rVasy4Ta3hMDvr8I2vf4+lKxZhxWQUxSces9AVj7fe8RZGx0YpV8vYRpLZ8hDpfDMFvS3bz62vfSMdHYtYd8ZyZAFB1NwoqldneOPr3kPdk3nyqSfYsG4FoTdNaXaIrr4NWJkWDu3aQa4lT0P4DCweoP+MNJ//xl8zvm+cVUtXEoURiiQzPTkDAmRF5tChA5RKs9hmAkWT0DQZAoUDu47w+3/5ISZHa/zL9+6mO95OIpkgHo9h282UcUmSkIWKU3fZtnULS5Yvpn/xMhpus465USujKRJCUdBnFd76zmspDUYkbJMgdFBUMA2Lnc8/TypdQFc16uUyWjyNLCJMy8ILQVUMVEnCd8sokgSSROQ76IqK79UgimHHMk2SKh3KZYeOlj5UQyUMfGpOnXNuW4EIBYV0Gq/o8OPv/5If/uQJ+vuSdHUtIQolNCNCTC9m595fsn/wB7zzTf/ETOVR2rMr+fTHN7EoXea6s87m8WcP0LHUI6m0E4kGoeRQr6k4YRURKVSqQ2hxFSOWYOTIfqIo4oe/miQej0jYLTyzdR9/+/X/zde++jl2bX2QTHsb2e6ek72KBWyNL+ZtNNMQo6PfX6r/icEdx8YcRQJPh9xxQr+XNsGxoOz0c50KbWtuNs2lowppDmU8Favo8cdaeOwXW9fJfebLXH4b3P0/YC83uGu4Hr4XQARRCFEY4foNNFWZ2z05bpdEzIMrC3XuFr4WWnjCPMcg4ZP7nkpc+/heL8mKeXRc1Nz1OAnxl+d+f4rXQptnplygObcw2DupJk8Sp3ueTzxPcSI0HoXBKc7zleODYRQctwt14uukmaIFRznF2o/J4r3ctSzcAWv+vG7DmibByrz+3SuwoxigAFVX6eluYc+BYep1GDw8jee7TExW6G7L0NXejtPwMQ2Teq1BJmNSLjcwrDjT4w4tbXlkNcBzS1jxBFHk0mhE+KGPcGdR5DjJfJZybYa+vm78SOH5PeMsXpRndmoaU9NIpmOoVgIhwfIlLc3UOREhQomUZZFKa0iagEjCqQ4zMRY0HQi5+SFkaBIPPLydno52TNtiz/4xers6QEDMjrPj+WG6ugoIAgLfQ9MUkDSEHPHTn28hFlc4Y8Ni9u4fYtPGPmamZ1FkBdf1URQZ244zNTndlGEIoqbekiojR4J6ucGRkRly+Sx7dh9i2eI+Hnl4F4V8Btf1mtpNYY2ZmSrprDUn7q2hGzqJhIEigySrVMsNeno7GOhtwQ8COtpb8H2fatXBMEMs3cY0DFKpBF7Dw7AMjJjJJ787TGdaY/Gmi/FDlbvu+jNWLV9ErpChWPNIJ22kSCFmJXGiUZKZJJoeQ9UUVN3CThSYLVdoLST52Ec/w403XMPI6CGcqkcjdNBMA0UzqNbqVGszhKGMLENPX44gAlUxEULhvvvvZ9nyVYShR+AGjAxO8eijj9DW3snw8ChO3SWRyjSPLStU60UkIZGKZQgJiKfySKrgjre9jt7uVhrVIqlkng994GNcf8N1BERYdpzrb74JZKjWKhw6dJCe3n4ufdUVNBplFg10Y+gqjYZPEPioqkIoXCLRYOuTu3jvez7AJZdeRW//Eo6MjBBPGZgxDT9w8JAI5CaBg+dXMXQL1w3RdAk/rKLrgr6+bsquRyQChodHGFg0gG2pHD60BzuusahvHX7gc/UVr+GO2+9gcGgHt7/53bzhTbc364eUgGJ5Ck3WsfQ8U1Ml2juyc6itIJvO4EUNDC3Gxz72KcaPTLB8aR8oLu96zwfp719MR3c7nuviNFxMQ+eOt7ydi8+/ghuuv5F6rciBfdPsO3CEJQNL2Lb1ab705S/z/ve9E8sQ2KbG/T97hI62Fl7YcZDNmy/gr7/wt7zt7e/ibe+4g/7eHEuXLiIW07HiEYlUAoRPGPmoqo4sNTg4fAChq9h2Ar9WYro4RiLdRTqfpF6vNFkMx6rs2vMU2UInsi5o7+hB0TTGRw7jhg3CSMYws/i+hGzECT0XXdO46qpLSWYzPPmbHXT0FVDkHPGUScOr8rWvfYvFS5YjSYJkPMbU2DjJFpNISiBLAlNN89wzuxnoX4rvSqi6hzM9zp49Q4RytpnOp2fw3GatW1d/PyLwGB8fYe3GdYhQQlIVUFwUPU5Pbx+SrCIpKpJwkGUJSTZJxfPcesNbed3rrqE0W8VxGji1ErouOGvTmcxMV3lh5y7aOrootFjUy2PEEjZC11G1BPv37sWIx6g6Pk7VYcujT9LR0cvvvOf9XLBpE1FYQhESvQNLaGvJ0tLSxf79w00dvHgaIQze/d4PcuXm6zCMJD/6/o95/NEtrFlxJoSQziW45ZbrkSQXQ7HQDEFxfIKvfeXf+JM//xTxdJ7bb7+RZYt7OTI0hmHFae9ZjNNw0YXOF/7ma3z16//CtVe/GksR4Dd41YXrueDVZzM4vRc3McNd/+ev2XLgGQrkkWWjKZej6NQrHo89/iv+6eFvc8VrVnLG5jPYt+cZcmmDSy44m+Gdk7S3dyDLJuVqEUOVaTR8FFXFNDU6+rtwXZfpsSkELmEYoBoGuq4gCYnu3m7u+soXOFzdz/qBcxGSimHEcBoujdo06WyKKFLRDRvXFxwe3EkYBghJQUQ+fugR+YJKdabJuhwGyJqKHY8xuOdZdu16lt6lA0yOBQg1wg+q2FYcWYQ8OvgAbmWGZFrB0hWe27qD3n6d664/m56CQdhw+fKXv8F3vvtrWhNH+IevfpF4NMNtV7dx/eYc15yvkDFDGtFBJEVmUbdBzrZxgxnqXgUJgW2FyJFMAMiKgSrp+I5DpKg45YipmsRvdpQ5c9NZXHDhWVx/7XXccdudJOM+N9/+IULJRkghzNeuCTFX9TZH5f+S/saCIG1By1Gdu6PtESf6oyf6YMeQuWOI3jwb56kCnyDwmWefPrpmScxJZHBcwHRy7V0UNTc2TyVLcHz5ysL2lw4wT24/WhF4Gpdd4mRtu+Ptt8Hd/yDzvMYnT4RzTx1thGHQDOrm+86l4Siqgiydrjjz5ZKqzMPFJ8LWzQBu/nGLFryOrfZUOyinDydP3r0QiJODtheRQDjJ5pa0MH3y6BHmHtLmdYtOHPey5j85uFwYvJ6OifLF2qO5fwuDXXHC/Kfipjpx7UKaS1n5T6KG88cJowAhNVHi1956Ewee+jFJyzix2/xhjtclnCdvmf8ZmmmdovlGtHigi77uAm0taWzTIpWKoSvgNDxSiTgv7DlMR3sXnhuxa88orYUCs+UGY5PTxEwVy5A5MnwIiEglZBKWTqQbmLqJIkroVpap6VmkCNpakpRKJSRJZnKqyNhkka6uDgRSM+WRECFkojBgePgIiaTFT+5/mkW9Heiyh6ZnMcx5muEI33PpaG9FUprEOoOHx/nVo3vo784Ss01MU0aKmh9Fe/aOUMgn8F2XhjvDyuU9c6ltkEpYaJqCptqMjk0TBj6maSJJMp7nNgv1G0Gzv5CQUNi7fwTHc0mnTGK2jm4ZlEoVCrkWdEtFVj0s08CyLKJIEPgCTdP4zvcfYs2qXvwg5JHHt1EqVyjk0pQrVWIxm0ajjqLKFLIZZotFYvEYk9PTxGJ2k53O90EIvnLvC2w9VOL1b7iVCMHZ65fT3tWNYcWJ3Ll6RN9G1SIQPlu2PEuh0EUYNmU4Du7diywEpZrLm97wFsBH11VsO0YsEUMSglqljG2b1OoVLDNGBMwWp1FVHV3XCMOIttZWDNtClXSmp6bp7upgybIBDC3OIw8/wcrVy6g7LiLSkBQfz3Nx6nWe+s1Wli5dAXJAtVIm8Jq6eoquMTU9xsrVPdgxwT/+4/dZv341kuxRLE8Si6UwrTiKoqLbKq3tOYqzVRAyfuDzhS98niuuvLyZilmcwTLj3HLLLSTiSXw/Ip+LMT42SjqdYnxsklgiR4SCqer4noeQBOOjI8iyhhVLEAUBe/bso9DWyezUDP0D/RwePkzMTpDN55E0FVk2EYrPDdffShhCW1s/jz7+K559dicbN65nZPQQ6WwCU4tD1EwhK5dnmZ4qY+gxyuUSYRhgmAnSqTxrVq/Ctm0kxUORbcbHJ+nq7kGSZWqVCrIsuO6aG/jG17/NZ//yU3T12qxecw4f+MAHEJLCpZddweLFq8imUyTjcX7xk59wy22vJ5mOc+mll/Htf/0aQkrxx//r92htyZLO5hFSRECAaceoOyXGRg8jhIRpxqg7NTKZAkLSCEKPx554iHPPvZTp4hSJRB5ZiRCyIJFoIZdPU6+4TE9MkU5n8BoeqVQGzdRJprOEkUQUhGiqReD7WJbF5MQ4qVQKU7dJpRMk4lmQ6gSBz5o16xCApmpEhGhmklqxiixVcOsNNDNienqKG2+8iZtvvgVdEySTaVRd564/uYvLLr2cXz/wK3Zsf4GW1k5iqQxPPPYEG85ajxM4fO/b/8HQ0CDr1i+nWq7hBx6mrlGvVVGFSxT5eK5Poxbgeg5uME2h0EJLawumbmCYcYRsEsoyna1dEHhs2/Ys7T19HBoeIR232b93N6tWraVeqZCI6fhBg66+bopTs9z2uluIp2MkUhnqTgNNlZmYGCERK5BMauzZsw1F1ogpIUsXLaJQaMW0bJYv72b50g38/OcPsf/gdjacuZEDh/aydOlqHnnoWYqlab70xb/hE5+8izfdeT1L+5YiyxF79+3n9z78Ec4681y6e7o5cOAA2VyBlYszXHjWGRihy9DoJK25JL5fY//+PeRSaRYt6eSm19zC9Tddx5KNS+jf0EtdcSiLMovOaOPKWy7mptdcgVsT2KkYlh3DDzwsS+MvvvEVzly8EUWoRJEPUoSqmxBGuE4dWdOIPJnIlzgydoj29laCwMNtVJAkQbVS4pJ1FyASdf7uh//CJesvJnAdfN8hncgjqRqVao0gaiBJGplMgtAPSFhxQhHQJE5qRbEsIq+BIqv4niCUIlpSKZLpGNuefpbde3ZjxUzaW/N85lufY9GZXVyxeTO9S1YxXW1gGgZOY5ZkvJ/3vOfPeOKZHfzg7u+xrl9lILEbU9nGW266hrNXL6avdxgtTKOILr76t/dyxrqNZAtxLEOlVCoTsywc1ycIHeoNn1S6g2ptFkOGWt0l3drN9IjD4K4pQr2DQIpRq5RYtXo5rlcn8iWC8kE6uleQaOtGyHPaatExH0VI0lEPZWGe17xvGBGdROm/0Ps4Pn3z9L0WhoQnar0dQ85OnkGSju93zJE5nmhlPqxcGCC+VNnSyW0vF0wRC/o3v504nTjBZZVfJLCDVxbc/XeoYP/WXqFFUdhEauQ5KFqALMtoiop8Wi2z/7odDZT+247wW1to0XFh4P/fNr9pMF/I/IP9rXMNvLK48bi+kQBJldAsmfauAj19HSxa3EnXoh4026YRSWzYsJp4OsH9j+3hzDPWsnP3OAcHJ1ixdBkHhyv84Be7aWk7k5887DNbS/PTX06hqmmOjDdwIgPNzNFSaGdkbAwhCXRNor0jx8CiduTI4cCu53hu6zN49RqyIiHLKlEYsHxFD5NT01x75RlIGM2aRlFBSE2dQEmGeqPO87sGUVQJ3VS5+II1vOv2VxGFEASCTDqL7/nIkmDVih4ee3Qfu3YeRoQSYSQQeAjANC127RxB1SUULaK1NUulVKNSrlGt1ZElga4b7Nl5kEajQcWp0dXbwoplHWhyhG1pBEEDyxYg13BdByEsCFWiUPCzXz7DzHSVu3/4KDddtwnf81E1lfPOWcP6dUtRZMjl0nMpo02dtZEjM2zfOczUZJnWQo56vcG///BxdNNEU3Xu/bO3cPZZZzI7MUVUrZNNmwhJ5nW3vQmnXGN8pMQ99/yAUu0ITjXJGRvOZevTu3jwV08hkOjp6SSTThJL5SmVS/zylw/gOA6EIU61TK1SQteajHGZVLqpDShJZLNZYrbVpAeXZOLJBPWqg6QIGt40gTyOF5R57PHHWb16BbISMjR4mOee202lMoskRXR2dXDVVVdy770/Z3xsmiiUmJmuYpkpFDVGIp2lr2cplemQkSNDmJbMxOQIsqShGSammUDIEgEOQtKJJzOohkzVneD3PvRRfF/C9wTpVJ72jhSxuMK/fuebpDMx0Cxi6Tzluke+JYvnO+i6IIo8vAYEQYgXeOTzbQwNjqFIGoV8Acs2yWTzOPUa3T2dqIqJoumMjI7S8Dy80KNWr/Hje3/Kvj2TfPAP3suH/+B3ECKirbWzSVEfVIlwiKI6hmbwlf/zdZ588hmiKMA0m8H77W+5gyuvupoo1Pnud36EIlkMDCzjZz97gP/43j0kkmmCKORPPv1p3nTHNUTCZUn/OSQzSR5+9GHefMcdXHLZlVRnptm1cw9/941/4fLrbkVSXDzfwXdD4naGO956G4W2JL7rECChaDJVp0IYCWRZpaWlE9NMEgYqpXIFSTUxrARCFbzq8gtoOCqZXIpaTQJZQdElJmcmkBQdy1SIx3W+/a2/Z2Z6lJ/c/VO8ikdttsL//twXME2bhx9+hN179hH4AW97x9vxPJcjR44gYTB4cIh6rcTgwUPYRgZNNfEjB9ef4dmnt5A2U+x79gHu/tbXqNcdDFPjkcceRDcEs1PT7N5/CKfh8Cef+EMi4bFyWS9r1y4jmU2x94Vn6etqYXZiHEtWWLGsn3t+cA9BQ8I0NHRZZmJiDMvQieQ0oWSDrGGnE7znve/h3HPPg0hmaqJMqCUJpDieK9DkBkEww9TEQdo62nEx6O4dIPRd+nu6mZ6dpl6bRpc8YpZJsebh133isSQzsxWqFYUoitFwQ3KtrUxMb4Uo4N4fPEToBgxPO/StWIvjeowfGaY4W+LZHY/ws59/G7fhMXqkwUf/6FPMzNYYnyyxbt1qPBcuvuhKNN3io7//QWanJujr7WXJsmW8933vpeHWWbqsn1p9hpbOPhYvW4quR4zNjIGuMTpRZPGKM2npWka5DH5DsP+F56jUJ/GCOomUQe+iLN3dHciqYHZmEtvWmS3PEE+08Kef/jK+a/PNf/wrCBVq9QqKHKEqJlEIDadOELjUSxVsWyJfsOjubGluPEYCRdLRJA1TN4jH4+RmBvj8H76Gu/7xUwRus9ZbkmUUVSGRTDVlY5Q61XKNdDZP3asQiiZ7cLE2hWnkcSOZocNDlGaKqDJ4ESSMOCtXdLGoM4npFzmybw+b1vWytM1DrQ7yus2v4l233MYzT2zjbW97O1//4vspKNs5b1GZtW2TnL9G46JNOVYOnIMX7mZs9j7Gh1tBFPHV7bzv/Rci3J1UKkXK1RLpdIpyuYpp6GSyeSoVmfEJHdtI0KjUURSLnfvGkU1B71KLMCrz/PZHufzSc+npauc7//59Nm++gkOH9tKojSPwmuBCFJ72Y//4j/9wgSbwf52U5MUtOoGN89S8FS+1dkmIE2oIX+xYL+c6/E+33yJ3/80W+O4nj4eLT2XNIOtYOqCiyEgS6Lq2ALWTOTGVciEaeLodhoU/L0ClxPF5vicjdBARhuEpd2fmf78wtXHeTiUz8EotEiAddx3m5zwx/3lupdEri1OAo2Qm0XHpAacTFz969aQ5jZLTpkoekyuQTpjhpLNbOPPR19G/7lEcf75r1ETOohPnOPY3OnlDIIyCo6kOgmZB+3nnnzOnf5c/uoTm7tg8WjeHhB5FkuffxI+/d2BemiOau5aSoiArMulsklgihmZqSKrEmtW96JaO49Wo1arYpsrUdIXzz15DPKvTXtDp6uik0KoxPHyYgRX9GGaWKLQJQhfdhHxLAhkdWTUZnSoTBD6puE1XdxYroSMJFaImYx2iRsJKEQodCRfkCEn1QFhEUYiqaGiaweTENLlsjvsf2EpvV4EwcNi5d5D21hZ+/OMtrFzVSxhKFGerRJFHPGGSyRUgEsiqRhj6uJ6LaSkoiiCVspktTiPJEYlkEl03GBoaI5m0iSXA83x81yeVshGRj+dFVKsOshRRKLSg6TqyrHJ4eJRkIsHBQ0P0drZhWSr7h0boKCSatOpRhCxkolDi+z95isX9bWx9di+GoWFoOqoe0daSo1iskUonmZ4u09JikUzaeG6AaWdZffnrUVWJI2MHiKe7kBWLZcsHyLcneWrLC/R0d5FNt/GZP/kEG1YtJmdF/PK+/2D5uRsxVJnZiQmeeupp1i7v4IV9e1iydAPOTITnR8i6hmxqVIolJGTCIKRaqWGoNo4zyczkBGHNwymWieUzRAToVhshIFB4wxvfzJ1veythFJJKtTI+OktvTz+WnSAKm2lZB/cf4jdPbuXP/uwveesdbyMMJbY8/giL+vv50Y/uZf/QCG9/980IAbpmUiqW8LwGmifz+tveyA23vhZCCU3TqDsBmhzDCysIxUfXUuhWRGmmRK1WZe36lchKhCZkBD6SFDAyOsXsTJF0KkW1WmFk8iCqapHPtqOpMm1deao1j0gIJieGSOfb0fQEE5PTyHqEH4ToSiv79gxi6gaeE7JsaS/5FoVsJgWSSuA7xC2NWnEGIWxULSAIG1QqRS684CIG+pfw9BPbePzxF+jr6+bd77mdD3zg/fzRH/8pXlTh3HMv4Ic/uJuz1q9n5co+KrUJYokk69ecycc//nEGBgZIZ1JEgczgwWE+8+nP8sbXv5lzzzqbYmWSa667HFmWKJeLWGaMB379AJs3X01pdhyhaghDba4zFPihhBA6FScilUgjRQ1Ms0EoksiShMCjXikRBhGRcKnVAnRdb0p8SAq2reFHYKk+XuCy9owN6PEYbe1tJFJJJqcmueTSC5memCGREHR1F1CUgIvPuwThyeBVGRoq07+kG8fzkc0EmgL7D+4nlWnWnHb2tPPk1i2sWHsRi1asImbHsMwkgoihw/vobGkjk7NJZtOoZgII8AhobemkXhM8/Kufk21JUGhJEbNsMrluXn3jNfjCx3HKNHyXdDZNzamjynFGx8dJxlWGd24hkbEZOTyOU/OQJY3QtfjIRz7C2WevxbYS1GpVYok0uq5Tr8ygGTEO7t1FS0seRTOJpzNMTJUxdAtNQOhrTE5N8aUvf4lzzjqfwYN7yGbj1Ks1MlYe1BQr1p6Djo2um5imxC8fuJ9Vq87BqZfZuHE99977c+7/xWO874Nvo148zMBAL5//q+9x6VWrWLF6Ge//wDvAFaw4Yz2WESObsjl7/WJe2DXBFVdeyeTECOBjGhqyZNGQJNpaTTzHoNC2GCeaJIgcyuPTTE5uZeUZq4mrCYQ6gx+GJPNx1CgkElVqtf/L3nuH2VVeZ9+/3dvp50yvmtGoS6ggwAhEER0EBmPZJes/AAAgAElEQVQsio2NHduBOG5xjUviks+OS4JLAu4GN9wdF4wNxoAxVRSDepkZTe9z+tn9/ePMSDMjCYGdvF/e6/LSda7R2fvZez+7PWfdz1rrviVidTKmmkL1hzF0gb0HD7Fy8VqeOfgIKSU987sjMTU1wWBfNwkrSjxm4ucn8AIfwxTp2bWHRDTB2GgPsmWhqwa+66HFJJ5/cIqrtzXy+a9/ny2nbcahWnstoOGIebKD48RraymWbYq5EpqigCAzNtKHLgpMTRWobWhAU0Mk20UxDFzfRRQlLEvmM3d/lddcPUBx8k+0WOP0HhhFDEVe/6pOnnvii3zw5nNZ3ipzwbntLKr3Wb4sScUdRYxKiEEZy4gRs+rQjQqlkkjESOM6HoZVi6ooCIRMTo8QTRrImkpuqogqhkjk0CISshDn9jsf4ZEdPltOzxCWplmzYiWyYnHBpVcxWhI4af1JjOdFitlhnnjop5x+7mVIhgXCEb9jthxo1p+Y66mEc9a/kHdzLC9nZu+AQACIgnzU/o5kjDFHZmGuD3LsI8wnOJmfUjnLGn9EWHz+91k7sZj5/GVHNO2O9q9n1wkihEFANcF17r85xURh8IIpmfDXtMz/VfbiRcyP0MwLYjUcrkgLyVQW3vhjgbm/1F4IgB794FUJHoXjJRf+xcCuenDmHzuc+yLPbygKHE3pe8L9zwKlIzovc+DLgu9zurAQdB1v9y8UGju86niDyNHLZ2fOjrrmwszAdCyQvWAQE2YixOvWrSVe2DkvV2DegDarBRgGR673grSC4977Y04sQDIZp72lHisSwfN8IhGL6ak89fW1eF6AZgoYShTDMPEcgXJlCtd1SMXq+PVvD9C5pBlZ00nEohw8cIiW5joi0QiOGyJJJmHoEQQBAR6hYDDYP1qVBQg8FElAEEwEVHxPwqmALIlkpwqsX7sYP3CRJIWG+hTbn9nJWZvX4LplhofGGRiapLmhlh27+2ltrkoxhGFQTXV0AxRFJZ/P4fsesixj6BEQAyRJIB63ECWB0NdQZJP7H3qe1uZaglBA00wUTUaSBexygCgKCFJIJGrgVFxqa1LopoEo+nS01mKYOrt2H8IyTaan82SzOU7ZsISxsWk6O5uQZYmnn95HIholFo1z/x+ex9BCGptqZ8hiBG760l5SZsgjz4+wcf0p/OmZHaRq4iCExBMG0ZhOe3snNTVJensPcv7552HFYgQorD91E4KUJD+VJ5/LsX79egZ7fRKJen5zzy9417vfzCuvuQIv9NENC0M1UGSFUqlINBYjCH08W+f97/4oD/z+cb7y5W/RvrSdTE0Ky7QQ5TJBReINb3gjkiygGyIhHrd+7t84/7wtSLJPqVREFKGjs51TTl3PksWLectb3sqll15Bx6JmPNcnV6ywceNGKnYJXTURJZ1oJIlT8fjbv72Fb333GwRUKGWnkUVQxJCntj+BIInU1WXQNIv9+3fQ0NSGbkUoFm1ESUUURSYnJygWCsTiqRk2TQ9VVnE8m0VtHRzqPYjjTpHLFTGjcfI5m9a2TkIhwLF9YrEYqipRLjl84+vfY/Pm0znU1813vv1tzr/wXFS1qtclh2G1dkRUEBUdSTHx8EFQSERNCvkKp516Jm9649+wc89Omhqrz8fe3Xu5+lXbOPOMU5DR6exs49ILr+at73wbuhZnfKxIQ0OS+vpali3vQlVFHEfgkUceY82aNTz19NOccmorS5a30DfQS219HXa5hBmJ0LV4MZ7vo6gygiQhSzKhE6DLMqXCJLGISMrQcStlensO4lTyxE2b/XufY3p6ms6lq5manEDXTRRVQxBlJDFgcnwMSVGpuD6KHEfXEpSzDnKoYsQliqUi6WQt2eki6XSKaDxCpeIgSCKOF5DO1CBrKjUNcXK5cSanJohFE6iySV1dI7KkEIYijuNg6BaqqqHpMq5rY+oJnnjyGTraOwmkkGIhT7lYQXBBkgVi0ThDA6M0NtTT1NZAc2sLgmjyxf/4JrWZBPWN9YQE+LbJGS/bwoa1L2Nxx1Kc4iSI1XTseLKG0akcxYpLIlXDHd/6Los7llMu51i/fjWe6xGJGIyNT5BO1yAgUK44NDbU4dgOZdshQMY0LCbHptj5/G6SSQvbK3PlVZcTj2vEkyZB4FHKO7i+w/d/+CNGh4cQxYCv3H4ri7taqW9oQDMSfP0r32Xt2nVsOfds+gf6WL1hCYtb1qPoAmefezptLR1kUjWMj42RTCXY8ezzNDe24IY+b33XO/nspz/Ltddu49U3vgZV1qn4AooFYaji5UV0XWJyvIeYqpEb2oUWFlACH00Q8YvjiP4U3Tv30lqT4tCe58iP91Abi9K98wEi4igjBx6izsrRkCjhVQ7Q3iSxv/937N3ejyYK5LMT2KUCkUg1Gjw5MUwomkihwni+iBGNk6xrwlQNioVJhKCE75Spr4/yo7se4PLLTfIDGUzNQww9RERUKYITGFTyWeLROJoVB7+EqirYnoOi6CCCZcbQVBXHdym7ZSRZwS543HrPHdzxkdPwillWr9pAJf88qpmnuVVgZVcdtbUJpMCjNh3FiujYJY+aTAMEGlJooSgBhWKefKGIaSUQxADHrVCxy0QjJpNTOVRNJRaL4TgeYSAhSRK1NdXnxfYcEhGdQm6ciy86nVJxmIRu8czePL94uIef3/0H1q8/jaiukS979Ox4mMDOc/bW6whlbR64OwKM5oO7hT7Cn5f0M+tXzbJYHiOwcDjN8kiu08K+zW17JP3y6HNgzhksLJF6sVHH2Wje0e1fSPognAkCHAGZxzJRnH+tj2d/BXf/i+zFgjtBqKZkSqKIJErHqbN7qWDu6IfwxfTjWJ8g8GcidPNZjITDzv38Y4kzqX8LCVD+HLAnzOxnlrmI4wHN2T4uXH6ciKUoSrNIaWbpwkjg0eBEOO764/V9QURTmKnDOyoW+OKsStIymwc/N7oozLkXR9v8qOuRrdLpJF73gzMpmzPbH2MX88VNj3WE+RHlhVfr6OYSCAKxRAwv8BGQEUSJfL6MogsUiiXARlVFioUKUVOnbJdRDY90XRO6bqCrCrKssHt/H11LOnBc8Oxwhj5fQzcMglAhapmIcogshhC4OG4FUZDwfZ89B7ppa21C1xUkWURVBcbGcsiqQEtzDYIAoiQSi5o01KcJQptF7RlEOQDBx6nYyKKCIMiEApiGjihKTEzkicUTZLPT6IZ2uOBblhUEMWTJknpEyaVcDhBECVEUyeZyPP1UN21t9ZRKeXRNpZCvoKhS9UqKfjWqL8iYlomhm0xN5WhuziBKAZKoIkhVFrq4FaXv0AQDg+OkEjrLljaBGCJLMqIo8nR3nkOVKO/5h3cx1DeIIkqk6hPkcmOIEoiSjOd5KIpCKpkiHktSCX3MeIbf3vtHBM9k1+7drF63ElNT6R/ZSyJuUsjaXH7ZqzGsIrt376e9fTGFbJZSySEejxP4DsVSnud3/IlXXnMF527ZxNhEPxddchG6LiEEIvnCKKocQRTlqsCwZ+O4JS659AIkScbzbFRNRdc1bNvG812aGhs4/7zz+eMfH+VPTz1JoeiTjKWJp6okLKpmUim5KIqOJAtcfNmljE0OI8uzACqcqZODrmUrGJ8c58DeQ2RqonR39xCLREkk08iShh+EWJZFPJmgWCyjKAqKolKuVBBmxu5oLMLgQDeZukZGBidob+8CZGy3hGVFqrV5QoCqRdiwYT0///lPOXPz6SxZvIhIxKimDgcBXqWC4weIikaATCiEVdCn6OSygxRyPuUSnHvumWw85SR27t5NS3Mr+XyWUrmCYSqsW3Ma2669kssuehlGwiSUAwYPHSAIHDKpOhAkBof6MIwEV111Je//x/dy2mkbGOzrp6mljWi0nsDTkRUH3/ORFBlJFJA0jYnRMSJmFSgRgJ2fYnRgN0N9T1G2p6m4UzTWVR3xjo4Ofv/7R1m16mQK+QKqpiNIMq7nIgghhiqj6QaBIBEKJRQlYGToIJGIiBf6qKrO5ESW55/fQzRmEAohphlBlRQcx6Zkl/EBM+Ljex61NfWIYcjQ0DS33f4VatIZvv/9H3Dfvb9l+bJVpNIZ8H0ef/JROhcv498/eyvnnX8OuqWhyAa+7RGzqqmzk+NZDE1ncLCPdF1mxomUWblyPY11Bp4bIIoaIj433fQaamqi1fFLAsUwcLyQp5/ewdLly7AicQzTpKW1mTe+4c1s3XoRH/uXj3D1K65hZHSYmpo6fM/Drjikk1FkRScIBUqlAopiUS5WmBifoK62HlGyaWiqRzU0/LCMrIj0HDhELF7HNdu28aY3/g2nnrKBt779bbzvPe+mubUNzTD52Mc/RmHS441vfSP9vfvYevnFrNywmp3bhxgZOcBjj99LPNbK62+6ia2XXcLWrZdy042v4z3v/SDnX3gxV159NaHvsf7k9SiyzBe/8EU2nnI6oeKTHxtGVctI8iR26RDDh/ZSCmLUtGeI16xEs5IEisZkMUdr+2pGxqdpal9Mxa8QIpOsEakUQgQtjWRkmM7aZAcPMDaep7O1jX/97i9Z374eWUsQCCY7duxDUyTi8QhGJMLoUA87nn8GSQwol4roigJ+CfwyUhhC4NDV0ozuL+LrD9/JA88+xtkrN1CxsyiqgRKNIYUOkiIQKgKB7ZPL5qmta0TVoqi6jCjIFMo2oqZz23e/zYM9T3D9Kx1uumYx04UykGVqcgJTaqW2rha75PDc9lFsv0JDbQ257ASqYTGZHaFYyGIaGna5gO/7pNNpdu7ZT039SuzyOKqmzfwuCyAJuLZbnWgSFAwrQiFfIDc9he+7lCouihKSioukEz6aGsMuuDzTI3LXvTv58Q9/xsjAMBMT49z8929jcX2Eg3t2cubFV2FEE4f9trnlOvM5A47tGb2QzSVDCcJgXjDgeEwGVYKTuTp7Ryb0XwiM+UEAwixBSlXPNyCY77MeRdby4vyvI5G8o4HlsSyc8dWOtDvy/yrZS4AkSYepHgTxhSbKq/bXmru/2n+7CaI4ox8m4AXe4dqx49WQVSMa/tE7+gvsz61XE8T5n5eIp/5/tGOT3LxQiu/x9nNY127+UkIE3vqNfSfexX/7NasOwhBiGDoHeof44S8fx4omEQWTiakKvhsQBiHFQom+/nFcJySdSiMJAngeTsWhrb2NlUtX4boiiqrQNzjE6HiBBx/ajW+HPHjfdg7s7wHBB9HDqZRQJQVRkNmzr5eVy1txnTLFQonu7kFcVyCVTqBqOggKe/YNkp0q85O7H8X1bCRRwXUCXNsHJFQ5JAw8xsenyGZzfOuuxzh0aALT1HHs8ky0QEBAxnOqcicD/aPYZQ9RUIlYCvg+pUIJS49y8rpOfN9D10x+8ovHiEYj2JUKQeghihp+ICJIAtGYjh84PPjYLgaHRgkBSRbRNBlJEnjqmYPIusDgyBSdnU0ECMhSyOTEFB++6wC3vP2dfOJjH8S2c7znvW9h6bJ6ImaKmtoGPA8CVwUkHNsn8BR27+yhnJ+kYleQRZ0ffP9OvvfDb3FooJd8Lo+ZiCJL8MO77qB3cBfpVA0P3v8Q+aks8ajIF75wGwcP9JDNTSMrImtPXkc0ESFdH+ctb38TsZiIKoWUCjZRPY2i+QSBz/59veSzAaFnUcjnCbEhkJkYmyY7XeaWW96BU5YIA4lUOs7mszcgSgq5bIknn3oOP3BBCLjnN3cTi5v8+MffR5RcREshU9eALpsEskrFC0k3NdPatYRCqUgykaBryRISiSRLO5rQpYCh7gP87u5fIkgSgiRRqjgAVWBXLtPT00MsFsFzQwRfQxYSyIrJ4qVLsN0igVRGkqUqJbysEIYgIiLJPpduvRCEkLr6NIIYYNsOFdtFNmKomoZTyCL7RVTBQQwd8BzAp66+gT/84RHCMKBsT7Fs6WK+ece3qWtooKWlEcfxSKZqicYseg7sRtN0ZM1iw/qNZFK1RKwa1p10OoYWR5Jkbr31VqJRg8efeIRVq9dQqRQJKFBxxtB1FcQQu1JCEEMcx6OpsYVKscJoboRQlkE0iUTTtCx9GW3LzqBp0Rq6d+5DSXYxlhO44hXbCMOQWDSBKEiUSkU0XUJRVBRVoWLbVSH1ok9+Ok9zZzu+ImDoMVRVJ5GMsvmsU4km4uiGiR9InHbSRgxBZKS/l5793fT3jZGINzLQPYyMR2NzHd0H97F4SQdbt17Cu971Hhw3QAglVM1g1cq15HJTfOif34FqlpkYGMGtBISySt63KUznufziK7jm6muIRVWUUCQ/NYEYlkgnRMZG+1BkGd8OqBQCZKrptff95ndMOQGuIOF6Piu6uijns+hSiFfJoogO3//Bt9h46jpuv/0/OHjwIKlUBkGUKBZKyJLCww/8jqLtUnY9EskUihri+iUKxWnq6lMUiyXCUMSzQybHHKYnKoyO5fj+93/Ce973cRKxDG+48Sa+8IXbuP2O/2IqK1KYrPCKiy8kGg/4yV3f4OZbXs+mM05hZHSaf3j3m0jGo1z3yjczMt7DD3/8PcZGxrnzju9R8ly2br2Kf/vXW5nqn+LhPzzOorZWGprSvPamV5GKi0yNurRkwLMHqGRtfC/NoqVrWNa2iu6Du3CcgOH+ffiuSMSwCOw8bmGYgd6DFKbHwJ7iwXu+T1wPmczJqMmN1HZdxMM7BE46+zq0ZA2fe/fpfOn3XyIWddC1aVavqiH0s9jFEgO9vQR2npNP2cTi9mWogk8pP0SlmKev5yB+AKOjE0iyjut5/M05NyApOvfu+jGf+NFtDPYNEuaHkM0oxYqHX8jjiwKZmjT5XI5D+wb5zHc+zwfu+Ai/6/ktyy6op3NjO16o8sdfr+eR35/NH365nr/7bB7MpUiZFFkvxEgnaV7TyvCkRqDU48kJSn4MJdJBsmEFRU9G1AxkouSyDpFILd/+zn1MThQpFlxENOxKiCSICIJEKpFBQAZBJh6LEYlEyGTiGJpK0Q5xRJWy6yHLKrJs8vP7trNkSSe6KvDvt36a//z6N/jqV7/Ez399P+1ti/FcjyBcKCX+f9klmGMh8+v/jpc5ttAk8UiwwQ89IEQS5mfABf+XauqO3d+qz+P53kzQ5L8hs+049tfI3f+weZ73T/PnO+bfzGowTDzmuiNtZnNxFzr7C6M/C6UOFr56J1o//5hz2x5hGKpG0I7o2VWPfThqJnA40B5SJUyY+2K+WMHy43TqGLV2L6Kub5ZtU5AOzwgJQrXujHD+VXxx0dC5udIn2u6Yc1InOEa107M1dHM/AH4wk6o1N1USOBZj59xjhoQLKI2rS59+ZjebFoULonbC8R+Rahhpps0cVs2jGh3/uReYEUgVqts21KdZvaINz69QLjs88MgBVnTWEAoSkUiVVdGyTBQJBFFnYGSUQHApTI9zqD/H4OAEjXU1FItlUmYLglJi/4EJWlpN4mkVy4oihCGlQh7XtwAFyzToGxglnclgRXQilkp3Tx+qJCOIIrKooggqkZiM65ZoaqnBdW1838FQk/T1DxONxpEkESsiYxky7c311NYlkCSBSDTKrv09JGNRAk/gZ795kqmpaVat7ECWNURRZnR4mlgszv6DvdTWRgkCj+x0ked2dJPNFcmkI1gRA0kWIRARRJ9Zvd/9+4dpb03T3FJHGAqMDU+j6TpBGKAb0NRSy4oVrfzyt4/RnEmwY+8QH7p7mn/74idIJ0PKnkalUuTU004lnc5QKFW1B1OpGhRVoTA9yfPP7SSRSLNjxy5aOhehCCGrl3dx9jlruPD8zWTSdahajHf+3Xu4ZOsFnHXe6axfuw4kizPPPIMQD9sJOO+8C4nGZVAkXN8idD1kSUGWVUJkQlRUVUISPTTVYGx0hL6+Xu79zR9Ys2IDH/jQ+6nNdOD7FRrrknz5S9/iA//4CT536xep5Kfp6enHsBIgmbS2tVGxiwwMHuArt3+ZS15+Mcs6W5kcHWLDxtMJbA9FCvA8F9WMo8kqiqbhuz6TE1MkEnFkqappmMvayGqcPfu6SdXWsXTVMgrlMoZuIEkKKjq6buJ5IZm6BhRRRNUUECFTW0fg+HiCiqSreJU8uclBVE3CQ8ANReQwQBJDdF2tEuEoItlsDt0wGR+f4Jc//gWr1r8MzdBRZQhFFc8PkKQAE5nJ/DTX3XgtX/3PL7Gs62Tu+c3PaGteTk2qjpp0ggN7u1m3vos1y5r45396L5df8QpE2cAJHAg1Pvf5r7DlvDM5+dQVOKWA22//CitWdLJu/WKGpgrElJADz++huWExTgCiqCArOhXbRdVUQgGMqIlsqNUIWnmacv4giYSBTIVivoAt1BKpbcOykshhwK5n/0g8FcPFRLdSyE6JYslHEFVy2RzJRJzu7kFa2zrxXAEBnXJxBALQVK1KNiQKaKqC77tcse1atKhCU3MDqViKaCRN3i6Sqk+BbSNIMle8/BKCsIwVlTBUi3/66Ee54vLL+cC73s+W887ihuuu4/prb0AMNWRVZN/+nVWnWY8hGz7brtvGtutfiRGVGegfpL6umZ6eIQJPJF6bwvUdzKjKXXfdycpVqxkdzrPtulez9YItVCo2DY2tXP+q13DaaSdRLtmMDWdpa1nBY4/uwIgkMEyDxmQMXyrh2GUKpSKarpOpbcB1c8QiJnY5wDCqqXcNDY3IokwyZiCoJqEo8bmPf4L9B3s4a8s5rFrVzP33/JJ8NuTmt/4tZdvnn973bvoPDXLmprMYnxzhyutu5Ikn/8Ta1evJTuQQ7Ai/+d2veH5HN2vXbmL9xg4mxrL85r7fcPrmU/Ac2Ln3OW6+5S1cetnVvO2df0cQ+khCdbIDZBKRgEIxS9HOkK6rZWjoIIqgMjo4Stl+nIzRwPjIQSxZYnIqjy9U8OwRMnVRRsYKRCM69dERJru3Q9hPNivx3R/dy8/v/T1Mj/HgPfewYfMKrj13M48deJRgohYroZOKWjy1/Qnq6hJkauqJ1zShmQZBZZpkVEcRFIyYTGDLTOYniaVS4AtoocDJi1cjlWO0WYv48Hc/ypkbI5itAfsHxnmk+x7682Ns3rwYIdaL0Rly9imdPLOzn309I0QGOjh52WrOWbuZku9S21xPNGlx2sozGdzfRvOGJaRbzsaWVvL4czZnXbKJ0ZzB3r5h6lqXIEZWIyamiFqnUirB2FgO3TCIRSQWt6lEYhahbVN2fBINLRRtAdcLsAwJz8ni2AVKro8Ry9DTP0o8aqBpKoZmkssVyI/75Ioy01mfvftKvOLqlxOKLl1dXZy+4TR6u3ezbnGGkg0ty1cdjh6FhNVMq5lI3kKmzOpP/hGW8hfSkav6jPJhP+SF8p+EOX7m3GXHs2PVzYmCBASIgnR4+dy6vYX9nyWHOVKLd2zegpcOZ4+OcYYzi8Jwbt2iMKO3fOJ9/zUt83+RvVidu+Otm10/n0Dj8JoFfxc2WPiwnGj9C7Vd8IrPKzadHQxmoYVwZNnxXsy/oBbvxQqkn3A7YTYfet7CF9sLOGqYOl67P89mwVyVvOXIZzZl9+jre6LBZ2GdXvXbWWefwTs/+jXOPylzLFx4tAnMLTqcWXai85x/j0RhPgXwLH+LKIiMjE7Q3zfFScsbKBRzmJpCoVDBikQplV3y+QotLQ3ouo4fiAwNT7LptNUc7O5j0aImXD9LskZh0aIGNFUmGWvEqXiIgs3URD+Skua+B59l+fIWUukoghAQBAGypBAxI+RzFeKJOL/67WOsWNLMjp09LOlsrab0CQZ3/fwBli2uw3EDUskkD/1xB/FIjDt+8DjtTWny+RKWqdPbO8Ly5YsYHBgjGomwbGkLHe1N5PN5BMGr6peFAcVSiebmeoIgQNEUXNdnUXsTK5e2YBhWdSLCCxgZmSQei8xAdAlDMdizr5+25joCT+Ce+7fT1VmPrCjoqoamaxTzRQLfY9vnnuCd//JVrr/hWnoP9DExmiORzjA2OkrEMJFkhdM3ncNb3nIz5UqW53c8zcrlq2mob2Z8fJzdO3eyZs1KpqanETWZx/7wB5LJGj7/+dtYu34dr7j6MoLARZJ0br/9m6w5aRWO62BXHJKpOJ4kI4oeI4cGeOXWq/n9Qw9w9SuupFgqousqohwyMT5GIWcTeApPP/0U6zds4O/f8jYWdy3ntE3r0DSVRe0djI9M87Of/oqPfvwjXHTpFr7ytS/x92/5Ox597DE+85nPsH7dcpqaGsikavC8kMVLushP52iobyBfLpDLTSNIIhEryeR4AV0XkQSRbC5LOp1m+1NP0tDQWE2/NC0qlRKGoRKNmrh2BXwXS1cpF3NAQKlcQJRCXM9GkST6+vtJJhN4XlUzTzc0isUCh7oP0LhoGZJkYCoagh8gyxJjY+MIYYgsywSBhCJrCIJMLJ6kr+cgTS0t6LqK6zjIssrA4ACSJFEo2JjROCEyHYu6uOOOr/Pam66lob6FD33o/ezbs59vfec73HDDtUiiz4rlS7AStRhWjOzUONnsJBdddD5Lli1CVgIIFL5155289rU3kM1Pk7JkDvUdYOmKkygHImHgISAgyTKVSgXP9zFNE88PEGUJERXTiKFbcYZHJ5nMOtQ1dhGN1SKKPpqkEAQByXSCbK6Mplnc/avfosgCqZoMoe8Rj0fxw4BoLIKsiAj4BKGHoUXI5vOUy/nqOjGG6/lU7DKmruJ5FYYHBhgZGSOWiaObGpOjE/Tu7SWWqmVyfArTslAVFc8ROePMzVRKJU49ZRWRdJILL7oAzTIoV8r4nku55JJKZwhDKBVL9B0aorGhgUKhiChIyKrKTa97AxecfwGxeBxJUsnny6xbtYzxkREsQ+TSy87mRz/8Geeefz6eHzA4MMDJGzZSX99EfUM9zzz9FK//m+t43wffhetUeHb7szQ0deFUBJLxemTRQtV8QnxkWSGfz6EqOrKuocgCB/buxrJ0UBQG+g9x+qmbGBqbZM2qNWSC7QUAACAASURBVEyPTXDOlrMw9DRve8fbOeWUM3nowQd4x9vezrXXX8P7/vEfmB4a4tmnH6Orqx3NUtGUBCtWdHDS2pVsPOUkDh7cx/jYJC1NrViWxdPbn6O5tY5E0uQ1N27j1n/7Iq7j09nZhSKp5CtTTExNIsomo6O7ScZqiUYaEEQPPR6hruF0JsshNYtOYteeB2jv7CQRb6QwCZ5XIGKaKGKZwB4lV7IoeG00d2zGEyoMHszxp70jjA2Os3ltO/H6buKGzYc+fRtfu/tXXLdlKw2NDWi6jiQJhIFAENh4pRyCGOJ6LlG9lkDKUxOrI18qMFlyOTA6hioqBIHE0uVdbD31HIygHmdcISpHqQmXEPdSlEYlendVSClLEQpJVreu5PwN51DbGMezywSuSzIaZ3ykH1WzkAQZUcpy94Pf5KSlCTSpxKKWODgSdtbEUFVMwyGXH2Vp21UMjO0nmupg2pGw0m3I0RZ8qZVpGoikV4DVgJ5oQZM9XNdG0zVs2yOshLTWJrGnBtC8aVCjFHJZJFHAcRxkTD75nw9Qv3gV7/3AJ/B8m0N9/Vx+xVV85fZvUsyOkB3YSaS2ga51pyEwV2dtxp9bWN92+Dd7FgwdVm87ri1MhTx+u4W+7PEFvee3q/ojgiAeszZubt3ewmPNzmEvlEc4Ru9esO/Hs3nELIf/CHP4EU50jkfsr+Duf5EdD9wdYdiZXRYe1z92fLeq0RMsDCW/VPB2YnD3Yl7U2S3nfYSqgzQX7MwFHoeja8JMP2YPMcNU+ZJemxOJnp9oOwHCIKzquczVzZvtn3D0+b0geBOY02q2pu7Y7KEvxmbFz2fBnSjMMiwdqbWDowegcPY5mncX5mrLLOzTkTO86PKXs+1dt/GKU2uOtHkp49ssSp4FfccoOj7625HQ4GyfRVEgHovQ0ztMbSZKLK4xOTZOJpPm4Sd2sWRJG6ahMTWZpVK2UdWqNlpdbQJFEZnOZklmLJwyyJLMw492U1vjICsSAmE1JVOOsKSrsXol/QBBhFKxzO5d/Rw6NI7nBXQfGuGs01cShDaDQ5M0N9ewb/8Q0UiStatqyWUL1NbWUalMoaqgKCInrWwlErHwfAdN05AldYbxMjLDViogiTKapnCwu49YzECSBAYHJ+nvn6iyIwoChmHy1DN7yNTEqJRd9u3vp74hjWFqVa1HJIIQvvf9R5DEkKGRCdpaG2hrimNYBqPjU/T0jPK27xxkw8W3sPSsa7lh2zW85rU38vLLLsc0YshKjHg6gq4qaJqOoancfPMtgEMsbpBJxynkffLFArIoYzsVoobBpz79byxZ3smi1jZEweCXd/+Wl23ayHXXXkV3dx/pZCNbzjmfAwd3EgQiIyNj1NenyFeKBIFPRFa44tJLOWvLOdVZ6dBHlKDi2uiqweOPPs2b3/g23vSmN5KdnuRtb38rHR2LiCVMamoyfPWr3+YXP/01H/3YP2NFZP7mTa/j5r99E7Iicd2121jetYQzN5/J4MAgK1esoLWpme6+Q7Q0teJUHPLlHLFEhsD30RWTR/64nf6BbtoXtWHoBr7v09LSjOv67Nm9B8syMVQRxykTiegoisT06AjTUxPEYxGsqEV3z0FkVULVZCQkbNvBtm10TaX3UA+OXSYRMamvb8QXdQgEhvsHiBkWoiozPDxMTU0t999/Px0dXTNvsEgYQl1tHN93MQ0DxxcJAhfLiqApOlY0jUAAno1hxVi2uAs3KDI5kefNt7yRO7/2Tf7lU/9KLBFH1RVSyRi6lcTzQZE9IlET26mg6VXQFXpw6dbzkWUZTTWRg2lS9Y0UHQHDSjA1OY6ma8iyjK7raJp2uBZbFgVAIkQkwCQeixJJteCgMtjbTTwiIQkio+NTyKqGKGuossYTjz7K2VvOpa+vB1WvRm9DAkShmplQKhfJ53MYRhLNlCiVi3ge3PKmd/Lyyy+lVJzG0FT27N5HW3snuqGhRlTcistY3zCipJFM15HKpHAcm76+vplU1SQTU2NETFANC0Wq6lGKgoAqq4jodB/o4YYbruXqq6+hvaOd6ckpXBfq6zO4nk86kWH1mjXkiwXyhSI1NTU4dg7fdWhua0C3QjafcSG6qSOIsKi9mfe/94Ncs+1VHNy/jwsuuZh7f/0jJFVA1Q1S8Qz9g/vRTBHDFJmY6Ee3dAq5IoahY0Y0hFCiVC7jex7FfJ7xiUly+SISAcmExdoNG/jCF2/nw+//ENfeeD2iaJHPj5GIRCmXbLZuvZCDPXtZe9IaHv3Dg9zw6ldTKJU50NPLw394nN5DhzjUd5Dunt34TsieXbvo6x9A8CXOPOsclq1YRKmcRVbg9FPOQAxDrrv2Om688XU4fpFoLIVhJokZLv29Y6SSdfQN9mJnn2S4J4tu2hSLo7S1nsXU+DT56UPoRgm/4qDJFcYH9zI0NM2vHhpkOJdi5apNaOo0XnGMnDfFuhV1rOkSwKlHDF22vWoxb9jWQVtziVt/cg+FAYfmpjp0RcV1CniVIgESQwMDqDGVUj7g7t89S0PbSnp7xjl4oJ/GxhZ279pFqq4OUYR8oYAqBSiqQKauiWjcYjI3RFN7M4poEuAT+h5SaJPPjiKJLpLogldGFl12PP8MbrlI0hL49u8e4KyVRXBG8e0hxnM/p6UxgueM03vwAJaQYjx7H+9779fwmWRlk08i4hA602Qnx0nEFMLAxtJCTKVMpVTEdvJ4tsvgoRHue7qbdDKFH4AvWUhiNbPK8xwsw6RYctl09il88Y776B8YZuXK1XQtWUEYQk93D6E7zVjvsyQaWll3xnlIokgozIKx+dIBR08dh4e9jrmuwUKPTBTEw5rKwUz7I1G1Y5OoHF0fd2w7FrPlfJbLI+Dp6EjjkfM4kj0nHMMPf6kRu/kmihzx5+Z366/g7v9lO37kbiGxxvGDH4JQTXs8tpjisfb9564/VpsXZ7PFsseNZC0AKuHcdL7wL3l1/gybPaZY7cdhsXE4nEZ6NGh8gR7OA3ezkOUviNjNpBmE4UIQ98L7nIWAR8BZtSfhzIB6dJ/mf3/VNVdx/bu/zJWz0ggvxRY+mycAd9Wjz00prbYPgup96VrciG5GCMMQUXQplm3ammpx7DIHDvUxMjJKdnIau1KkvqGGIHDRDQ0rooMg8eQTfTQ1RmjvaEKWQ2TFRJIkKpUyZjyGIITkpkv09kyh6QK6ZlCXSdLSlCEWU1AUGU0T8X2butoYkhSQqcngegWiloVjV1ltDVNjbCyL6wb84r5nWb2skVjCQpYlVFVjeipPY3MdqlalsC6WbGRZIRaN4tgBg4MT+L5EW0sDP7/nCTra63Adj46OJkrlIpZlEYtoQIDvV/C9AFUzePzJnZx9xkqmctNsOn0lIQFPbj9AIm7ymd+M8rvukJdfuJUPffBDnHHmJmrq61i5ag116Si6qaFFTPL5aRzbI2KZTE5MYkZCXMdm1/N7aW1ehCCoFAtFTEsnk0kTiVpcfukVSKHNrp17+cQn/533vPsfqW9Mcf11r0FVokiixqc+/XFe9/obMPQ4qUQNuiGQHx/DKZWRFAlJlUimM8iSgKKIIIQEno6mKdTW1vHE44/z05/9klNPWU9tXRpBCACdvoFutl52GcVckcVLW/nAh9/H8mWraGiugTDkda9+NZdeeAHZIlTKDs3NNYRhBSOucXD3AT53622cs2ULsWQthXyePz3zFLt2PMOVr7iSnu5eEAV0Q6dUKhEGId09PTQ3tzAy3INlGfQe3E86kyQSTaEaFl4QEgYCyVQGTTOAKnh3XZdiqUgymSKasFCEEDn0KZRcIrpALjtFuraeQNHAd6tsk2FANBqlZJfQDYVqWlGIIHoEdhHTipMr+8iih6LoiIKCGEDPrqeJ6ALlUoXf3f8oJ61ZwfBQnsu3Xsm//svHuevHP8GIRkimUiB6iIqB5/uUC5NEonECP4BQQhJNZDnE9StIkkQ8nubg3l0kalsw9TiCGyCrMtFoFNd1KJVKBIAiK4gi/OqHP6CtpQFRChBk0MQQQdYRBTCEIs8++QjpdC2SYiCZBkEA+ckpOhe1k6xrQFMETEMjmElT7ekeIhaNoyo6vhciqwqjEwPU1DQhigkuvuA0VLX6/JRzLn98aDvtHSso2RXMRApdVFEFASOikS/k0XUZ3ZSZzo5T35AiXypQW1eL79h45QqVYol0PMb0xAS26/H+932Mc7ecw823vAFVk/HDEpquYpoWCCGlQglZ0ampqUVSAmIxg1KlhONXSNU00ts3ghFJYSgm73zPu1i1ZgWN9bVcfsUl2JUK8XiKK6+4mvbGFmTVQFAUQCCdrkVRZGzHrgJnXOLRFFOTk7hutT4xQOSpJ57lpJUbueuHP+aszecxMTpGXCrxzLNPc/Lpm7jhpteRL5RJJtJsOmMFixbV8MxTB3jzza/nc5/7FJmaGpafcgb/+eU7+PGPf8XSrnWcvHElv73nQW64/rWs33AyuAEnb1hLV8dSvnXnD3jP+95LQ30dLa1tOHbI3t1P0z/Qx6c++QmGBgdoqmnl4Qf+iKzI1Mc6+NjH/5HV69pp71yGYbaSalIxlCWYlorj28Q0GzOcolQYxTAlytlukhGNZ57J89SeMue//FJ0QSQ33E1ro8zyFpe1y+pwxRwCvVRKOQwpRlBRKJeG2Lhc4dQzZN71n79i09J1gFdNsUOm4sChwSEOHBomlrZo7+ykoametWuXk25I0LJoOY4nc9+9j9AzMMSyRU1IoUI5yCMKKqaRqNZ4+v4MuHPITQ5jKgJeJY9AiCxKeF6FpoYGLFNBCkMe2v0k157fQDY7hqlJCIUa8CRKxQl+8r0nqYkXyEQDtp53GoubDSJCnnJ+jImRPkK/guyNIkg6Dz/6FKZuEdN9fHuawsQUcS2OqC/BZIJIIo+atqGi4LouqqxQKeeJWmmmp6cYHvE479KX85vf3s83vv5t1q5fxze++TlK+SGWNado6trA8o0vww+Cw5lCC0HHiTya46+fP4l7ZIL6xFlsf65+XhDOwsjqvmZ9qmBeUGWmLcHhAMWx7S/zToU5/uHRXuVfwd3/s+Z59j/Nr3Or2pHZgyO1bYIgMT9eFC5ou9AW1uAdSwNvrh0djzqqxVEzIS825VE4DCFAOCpSJwjSvNmRw+DpzwB2IcIMMJt5MV7q9rO0tOHCujmOGw2sXokj13phemM4cx9DqiLGJ9IrCQmquifHGFDmskT5wYJ9zTvZhffz2Pd1dkA9WqtQWNAOXvnKK/nIl3/P5g5hZlSauVcvMe3yxdbgzfbtsNrLbH4mVYHaQq6MFoshewUcp4Tj+LTUt9FQF0VQfBoa6hEpEbVUREFG0RKUizlyhQLNrSlcV6imzNllQGF4pEQylWLXnh5ammo51DdIfX09X/32H1nSWcvvH3sGu2KzqL0BTdMRRQ0zohMQEgQSv/z1n+jqasCKqhQKFQ72DLGorQlNl1m3plrnIYsSY8OTTI5OIckK5XKFWCwGgoSsiwhiyD33bSdimFimSblsI8sCG9ct5fFnnqezvYG+3gHS8QQhAqqm8bO7H2PN6g7wA/p7B0gmTJL1aVqaMkhiiIDEzx7ex2PZxSSjCS6+ZCuLO5dz/Q3XU9fcgKzq1CZr+dCHP8pFF13K//fRf2HzOacSiViUKkUyNRkMyWQ6u5NI/RLu+srPWbysg3giga6XSFhRymGFQinP9Te8i1fd+Bque/U20hmd3TufIlOXoa4+RX1zmrqGNO1NzYhCkSDMossaQ8MHaGxqo+D4KKaMKulU9RaFqsC07BEGKrnsNK/adjmXX3YJDfXNSJJCpVLkhlffwo2vfS2T0yMsXtZBoVBi+/bnuOCCi5EMGUlW0FSLH/3wv4jHPfbv6WZ4tBvPddmzs4fW9mZedd2r+M4d/8Wvfvo9Tt+8iZbmRroWtaNpEZKJGsKggiAVkWQJTdNoaWlDVTWsWBJJ1lEME0nWKdkOtqugmykqjo1hWfiuT+B57N+/D0VRiMeiSJKIIuuoegRBtTAicQaH+kkm6yGQCfwAnwqyKiNJIggCNZkMIiKBLyBJKqKgougJwlDC1HV8bCRZoORMMj41TX1zJ26gYEU1li1fymc/+zV+9OOfcee3b0OPGyxZ0kFdTYpYNIqkiXhoSIrK/h3baWpuwxB8svkcaAahl8dQm9BklSce+QHLNm5B9gMG+g9RwSedTLNn9y5SqQyapjE8MUgynoZABDvPngOHWNy5HMmDn37vk7QsW0lP/wDBxCHaV52DrFlASHZyCt0QiMUS/OqXv2bZ4hamij6KbDIxOkw+O0Y8UYuumdjeFJoSR9Wr0UTPkXjy8WfpaIuSLxQZHZzGEQKWLWmjUpggHk/zozu+Q01dnKKbo76lFQTwA9C1KKaVQhAUZEWsssKqJpqmUyzb9PQO0t65hGeffpa29laWLu0AycN2wbLiTBf7MAwT265gWCZWxCISi+C6eXRkFCVO0RlHFerJ1MkUS0WMiMoZZ59DLJqkNDmJ55UpVUp4LvzzRz/FhZeeh207fP1LX0ZVZEZGx8ikU4wND9LS2IjnSvhU8IMQWYhiFyqoaoR//eTHOe+cU8m0dXDgQDevv+Eazjz/ZBrrTuOKrbewbGUXn3zv59l74LesWHMSxaLFwYPd/P1bb0YzdBLJev75fZ/gsjPXoUUt7rjjNv7uzW/mvPNO4onHHqOzfRV1rWn+/i3vRBYNPC/k01/4GEtXLCIeTTI8ME1DcxtaJOT+Bx6mq+s0xgvTfOeu/6KtpZFkJkZ7a4qE5jI1dgi3PIFdGMEuTOHkpwjLOYrF55FUCbssMVU5hORIFOwJxIZz2XLOJlobWimUc7QsW8YH3/kfrF+jkNYMYoaHpiqYehI/KKMaFTwniqVHMCI1XHreSt5x652cu3oTvh+giiKyqfHUjgO0dqyiuXExju0xPDxIpraJQs5l377dNNU1IqsKLfXNZLOTJFJx3EoOXdbxBRkEAc8toCgqoVPEwEGQZSR85DDE9wMESSP07BlGW4WHnt/OVed0YLtZfM9FUVUqdpF4NM7GDW3UZUKiai1oAxRcuPVrT7Ll/LU89+wgD2336FieRDdkPvLuBznvkhi6KKFrJkPjYwRSQF1NhViNSsGeppCbQPGSlMtFggAkMcI3H3iGdXU6z/cqCEYdy5ev5NXXX8vv7r2P6294KxmtxODQfq570zuQjRiyIs383M/4cfN+0oU5MG3+L/usXzGrM7fQGwmpsqzPTjLPZdCc9TNDqqzswkzk8C8TRj+y7yN+7Gxq5qy/fWRCfvb8jj4zgTkuyVH2Yro416Wczb6SRHFB/16c/RXc/S+yE0shvFDh6EuNov1PxL/+HHA3E6GbSdM8llTCf4v+HfNfzv/J7QRRRAjnzjzN33pW+hwEROnEKZkvPFM0O9RVi31nwV1I+ILg7ER24khgtf9bzjuHbf9wG1edWjsHoL/Eq3yM3PkFvZlZehygKQjoqoqqyIQYGJLIo9t3YUViaJqPJCookkouN4Xr+oShhCwb/OLep1mzuoOG+noq5RJjw0WKhRy6puF51Ro5UQqprfs/7L13mFxnef7/Of2c6WV3dmZ706pbsqxiuWCDhXsv4EIINuBAIGA7FFMDXwghDUIKBmNMQgATgzs24IKxjdwlq1hWLyttr9NnTv/9MVptkeSW5PrlD57rmp2dc95z3vfMnPLc73M/95PAsW327OujqTFN2JAIBVWWLelCFqFUNnFs93Dx8QiyJCEgsmh+O7944Gl6ujL4vkA8GuLR32+iLh4lFo1hlk3+8OyrLFrYxfDoJM3NKSKRIBs37SQWCzI+MUnA0Gioi9ZqdYWC9A2M0t6WRpRF6hJBVE3CCKhoAY3R4Qkc26W9qZGde/bT2txI4DDNSzU0BN+harn82/MhoplF/PmNN/DFr3yFmz97K75dQBAdEnVxXM/CdKuc+a53IKkSZ52zDvBq4kceyJJEpTJINJTm+Q37uPDdp6NHAmTHBjjYt5FEXQJBNJjIjtPS3EhndyeuXSUQ0NA1HUnR2Lp1K+FwhHQ6jVkxyRdzRCIRxsaypBubjziJoWAISZLYu28fvQd7aW5pQvYVhg8NgG9hVvPIagDfl7jjzh9ywrLF/O3ff5OPfORDVCoVXnp+C23tbZx/3tloGvi4iKKAoSvMm9dJKGjQ3bkIPSiyeOli2lo7SCTiFHIl6pIpLr7yQrSwgSAJ1KdSTIxl2b9/H/WpOkZGhjDUJLlsAdexScQimJUKiiLh+y6SLOArCr5togoegqqxd88+6pJxZFEgEk9QrlRIpepxXR/H8+gfGEBRFCQRIpEIoiAxPNaPrDqoSphctogsqWh6ABEXUZDJ5XK1kjiShGs7mNUKqiwjuhI4PpWCSSwR4+CBgyQTcTzPQjN0Vq5cwcUXnQ9ilVg0QTQWRZRE8oU8CFYtX0wUEQUHJZjEtU1kwUeTBQTRomyNcejQNlqbm9GCceyqi6zplEolGupT7N69m3A4XIsoR2O169cXGOr7PaGYRjKdxhYcFi1Zh+JJyKaJrEcQFAXHsdF0HUXR8DyRkYFJVqxYxaZXXqGppQV8H0WRsO0qqq7X6r6KFooSwKyaSLKL61Zo72im99BBUulGBEVFFHxkSWB0eJh0cwvze7rJZBoIBEOARL5Qu+aqVrVGnRVc8pMjjI8OEw1GwNcJh0Mk66Js3bqRE1ecRKahFUMPUy27lCsVgoEQuiHjOyq6oaGrNbVF3/NrtcgqVUKRGAgOAhK2WwVfwCw7VCo2mqKz9ZVNXH31NXziEzfz4IO/omqW6OxsRFEkSsUKq1atJZ1JI8s+kixSLOQomiVAQBRkZClAsTjM2ESWq99zLXff9Qt0JUrv/iE+dfOXuPkvvonlD3PF1aew/plXGRh4mW9886+JR9r49//4IT3zFtOQzjA4MEymoZlLr1hHNTeMI+l88Ytf4FM334QgCSxbehJf/co3+Ptv/RPf+fa3WbigC9MssPO1YdINcfbu38wrW56mp30R9ckQOCL3/uIh1p5yIhFDZfkJ83HMErGwRjCk4oka2axDPFWH4+gYoRjF/L4afdAOI+sikiLQEE6xZ+8uFp70HlQ5yKFDAwRDOuGQwgXnLOLWL36L6963jt7Jl1BcnYChUzUrKKqCRZl8cYhSeRhZKnH2mnri6T5u/cGvWdu9HNMWmBivsnL1KUQiEQwjgOfDxPg4mqrjuA6JZB3haJRoOMirmzaQbqlDQsHzXYxQHNN2CQSC+KKEWSkiuFVcQUD0PDy/VjKnVCog+CqyKoIHT+16gdNXy8QSnVSdenShjISPclh1tir2o0dilKwQX/jqb5FKIdauDZKM6rzyEszrKhDUFc49p4fGTBjBlygUCnR0duE4DhFPQHI0rLxGa8NJTOSzGIaKqim4nkUpn2RRW5KNe0eoa1lIc3MjvQcPcMmlF/Evt91GRyZI796dLF51FvGGTG3S/IiPcGw2zkxANvNpfizgN2PjWeBwyl+cXUuvViahJojy37W5tefeTpTw8PEejmQey2V96/hz6njfnq/+R3D3f8jmgru5KpQzecBTvOQ3ysE7vv3PgrtjycUeibActfx4/U+1n6Pk+N8RVJnzerNjnLv9m7HpiNIclc/DO5m5r1r5zLeSa1ebqUKo3UB83zsy6ukctJnURXHWDXH2EXGk/dG1/qZm4WpArRYdO/b2UAOBV73nctzePzBFYT0m7XLmMkE8vGxu22N92zMmNGauOypC6FEsFNm6bRfF/Chd81rYuXcvbS117N47gGk6ZNJhcnkLVdHZ2ztCXSJCsj6KWXV49sUtLO7pqUXGFBnfh2AwgO1YgI8kysSjIZ54eguFSonFC1oRRJE9+wZoa2lk154+cvkKO3f309JUj2063HXPH7hw3TIs00ZRFMLhIIasEI1EMasWA4dGGJ8s0tbaQDgaYnholGg0RF0ySqlUIhg0MAwVWZLxXJdDB4cBn4Z0As+1mJzMEgzq9A+MEAhqhEIBRkcnCRgh6pKhmpQ+Pr4PsioxMJbn/j1RVCXC6OA+Fi1ZzPs+8KfE4xGiEZdoNMZdd/0Xi5fOxwjqDA4O0pBOs3d/L7qqoCgaIyMjKJqOaQ7gmAGGJkzmdSSpmirZoQmeffYZFi87A49aHb9UOkE0EMAxq9iWy8f+4iYuuOA8GpuaUWSFAwcOceDAIWLxOJKsEo+n2H9gEA8fSRTQZB3wMAyDzs5OBgYGKE3kaWluIRaLoAVUShUbx/VZtWoFplXlA9e/H0mWCQZDPPuHF8jn87R3NPLaa5tpSjfhuTVxjbHJUUJGmHt/+TCLF7cjyWCaDqqq4To+Y2NDpFsasXFxXIfc5CSxaB2VShHHcWlq6uCF9S8yOjbKvO52du/eSSQcQpZlqtUSVrWKrMhoskAxP4GoBEgk4siSQLlUouK4JOvqcF0fUZIQFB1DN+g/2Iuhq8iyiuO4hEM6HiaCH6BYLBEOR8AHw9ColKtIksyePXu5+pprWLPqJCJBDcG32bVrI4GQi64K2K5AXaIOVZKolnMgCkiqgO2UcPwqrgOua2MYGqqqkJscwrNsBN8lnkxiOiArCjgWdiWLpDSQK43jWZCKdLNh07NE4g1EYknC4SCO5xJP1mEYBoIk4fs1hkapXCBTHyde346oxDGrAhOFSXZveQqvNECkpQVJ1pBliUKhxNYtr5HJtGJWXCZGs3huhfVPP03PvB5GhobxPBfNMDD0ALnCGIYeQ1Nlhkf6iEQCiKKPTy3iVijliUbCyCKEw8EalRuToaFRXFdkfLxWMsD1XSzTRBAEJM/Ftis4lonv+oxPVDACGvsP7MYIKFiWzXvecx2nrD2ddevO4uTVK+ns6ELEQRJCWJ5FLpvDCNTo0pqqIOIzNjlRK9Hi5BB9DUM1GB8Z46knnkIVZZavXM77rr2aX49NMAAAIABJREFUgb5ROjvncfJpq4iGdaqVMosWL+G+++7jpFUncfHFF3HJJecRCgWoS6Uo5MuUShV0TcVxCkTi9fQe6KO9uY2Ozih16SSZljTnXbSGE5acyfzulUxmd3LLZz6BKKo8+usXufTSdTQ2NfPd277H079/js2bXwMpSyKo0z5/Obt3vsb551+ALMv8yZ+8n6/+1ZexXYWbbv4LOjuaUVSIJwQa6tO8691X8Hd/cxvF3AjJZIwNL23iQx+8EU+s0NqSIqCrfObWL9HV2UxDQx3j2QLtHUsIhAPkizaaoVPJ7kMLhFGUBsp2EVGw0NEQRZdtByS6eubT2JBBlny2bt7A9771C05fdQK/f3wndZkG6kMCpllGkoRajUUpiIBCJpVBsCz0UAxFllm3OkJzl8kDT/yCK2/8NN/6yXd44pUnePiFR1nRvozxkX4UWaappRVfFNn66ibq6+upb2hjdHQ/yXAdkgySrKPpQRDl2nPUMxHcCrbnYpZLyKpWuycrMppmYHsWoPCx65pwyjJ333034aCPJdu4XomKOY6neIS9HsrZfmTfJp2Kc+llHbh2GZUWuhaWaIg2o4ohBLkPqxDFE6qIkoBlmliWiaXUiqjv6B/l+e0HSAUNFF3CtCoMj47S1gRjkwI/vm8nz72yiQ/ecD0NDQ1se+01Lr38Mqq5YQ7u38u7L7kWIxSq+TtTPsLhZ/PMCebp5/fsXLspxo3reUfy9Gq5dbOLlE8BQ++IbzkdRXurUaxZHsVRqpnTTLmZ0cLZNfOEGeIrxxemez1pB0GYyqk7us3c5eIM97Gmfv7WQd4fwd3/ITs6cne8BNKj7f9vcHfsqN3xol6v3/dReV//I5G749nbjegdf19TqcAzSzvMzc17K7l2NQe9xm8XqQEox517Ez16LK8P7vzjfK3Ts2NHEqVFaQYIPPaYr/307Vy+OoUvzKWhHreLN7Fi+kZfW3vs2cGpxYau0pSO1wq9hqLM7+7Csj3q6iKEQyrFkkWhWEIPBGluTmOoIuMTOWKRCK0tCRTNYGgoS6Y5haQIiLLI5k27icXCeL7I08++xpmnLmbpklYANm/Zw5JFXfz+D1sYHClw5qlLmZgs0NKcQpA8Fs9r5oFfv8z8zkbyhSJPP7ud9uYUogiWUyGdidHVkaFUKSNLAg0N9YyNTvDwExtYcUIXmqohiT62bVOtVNm1e4RMOoqmS1iWSSKZoFq1GRnJkZssEY0ECBgaobDOzl2HiMUjvLxpJ8lYmOHhSdaXl3LZRedw2umnsfLU03j4scdZvnwpipNlw4bn6e8bZ0HPcurq4iiiQiQQ4YJzLuf+e37FBz74PsZHx0k1pHFdD8828f0qcjBENV8ATSCsOiw9cSGFsoptmZTLLrFYEkO06TvUR++Bfq6//sPc+rnPcMEFFyGKMpqu0929AFXXsB0HUVKJJusIhRUk0cYqV0CS0VQNXddrIHdgD4lUGtMXMB2wbZNAMIKkygRCBk8+8RLNTS0omsSSxfNIJCMkEkk0zeDPbvgYJ61YRTQWw4iE0SWNatkjmx+kVMqTSjdy7tkXc8Xll2PaRRRRJhoJ4douO7ZsRVENTKtMQ0OGC8+7gvd/4GJOWLIAz/WwLYtXX32Vgb5DGLpCuZSnPJ4jkkghG1FkUUaSJRzTrEVUZa1WmFYQEUQJFwlBFEin6lBFn1wpj+cKjI1kSdalkCXQtJqkvyQL5HNZNmx8hUgkxoIFC3jv1Vcj4fGTH92BKvssOGE5jmsiy2Fy+SzJWJyhgUGCQRXNiFHI5wkGdarlKq7rEo1F6R/or00euSaaJCLgky2WKYyPoAVCyKqK5zi4gkMgEKdSLKAqFtFYmEAsgyAryKKAJwg1YSKxptjr+wKOY9PX10sy3YOixyiVSwRkk4lD22np6ESLZLCqHoomI0kK+/cdJN3QxEMPPYwqazSk4mi6xwmLl7Jj2066euYhqTKKFESSdBRVYmy4SH//Xjra28CV8CwFu+wj+B4TI0MEwga9+3bXPmfzJJNhDC1C1RTZvmsXnZ1tuI6PohjIkkbvwUPE6xJ4okA0kQLfwQga1NenkCWdUDjIqaeeRnt7hnefcxrze7pxXRvfryAKOr4gEAwHyOez6IaKZToU8xMEIyEMOYgrTKCJCSzLJRAUqI/GCegaclBkeHgfDek2brzxk1x73bUYeoDHn3iS7u42VqxagueJnHfuWWTSKfKFLJNZC9N0aGyqp1AZpj7RRDZXIhQK4DsltECQ5Sedyv2//CWXXnElz65/mYfue5iXnn+Bdeuu453vOp2bP3Ezf3nzJ7n4inM4Ze1pzO9ZxMqVy+jvH+SH3/0B4wWfFasW8clPfJJFCxYTjkTo7mnnrHXn8t73XIksy9z987up5Ec4853nkW5sY8Wq5QQjClXHZunyZQwMDRKMxRibHMLzIN60mGXLFnJg91Y0XCRJZ2x8H/WJelyviOZpeEIJIxJGM5JY5hARLUC5MkE4tRpBERnoG+J7/3IbmYYMl1y2kob0dhb2KNTFh7DKEooGlmXiexJWJUcgWk++WEJVVWynpshcrlTI5xN0LOpm0UlryaSaufKsNXzkwzcwmO/lv37yM5bPn4/l2CTr0iQjCSzTQQkJbH1uA+0dGRB8stk8wUiCsckJDEWlkhtH9i1EsTadqxlBZFlB8MH1PQ71DfODu+4j0FzlZ/e+gCudyClnfopPff4emtJnsXMn/N2/reepZ3ay7uIVqCpkGpMIdiOPP/0gze3tRPRmXAqIqkk41Ea+mMV2SgQDBuPjo7VJFtHCEFPs2WMwlm2nu62AoitIsk5Dqg3KMnc/tplndhbpauvmhBNOJBZJcujgIJ4c4Au3fJy25gbOvOB8FD18ZIJ2JrirgbSZYMefEd2b/YSXRYmZfuM0mJodsZqb9vNmQc50Lt1sauU0kJvWT5jpSBwBoDPaTvXvTXlub4MRNXOOe67vNXf50QDwrYPZP4K7/0M2F9wdS91net3s17FqeLy+Hcvpf+NtZyp3ev6UmMfsqN0UR/pIqPrw55mXw/RldHSA/khu1RvVpHu9cb5BRG66L45ZOkI4rlhKbd2xxzX7CI/Um/Nrdf4QhSNqUMekn86Y36rxyWvgTTy8S2EGoVMSZ24/PZaZuXKvfy4c7/efvvGJh99nsyqmfjl/Vu28q666nGs+dRtXrGmYcTgz7lRT7zPHdPjG7x/OZ5z6M1u1c2rZNAcfpvMzYXqqzEdAFGXMio8iKpTMCoYeQhBkJFlm1/bd9Cw8Ad3wEXwdNehiFzXyxSKJujqqZY/JbIlYNAiIDPSNMj5RpbO7lT07B9FVaGtvZXJyiGBAIZOqp69/jOUndLNkUQuFYoH5Pc0UilnC4RCbNh5g6eJWCqUiza31dLU38rv1W+jpSiPgIMg+gUCIXK6IYWjk8oPs3jvMuncsxjEFfMHB8QU4rBDb1Z0hFAogSR6i6OCYLqIKoUAYs1rEth0URUXVBJKxJKVyiXQ6xv4DQzwwOI8V81t48pG76Z7fhkSYPzz1BMuWdFG0JgkFWrnvvt+QSMQJR3QK5TyqbnDKqSu56r3noqkGhhHBsiwmJ0cIJRsRZQVDlhkfL5CMixw8sIGqI9DU3sNvH32Kzo42DNXGqZQQJZ1gJEEgHuHCC87B9z1sx0SWRRxzAiOgYtkukqYiC2VEBBQlhKQayJKO71tYZgVNDxCMpPClGk1UEjQ0WSAQqNUXVBWB7/7jbZx//lm4sozvW6iqzp/+6Ye5/NJruPraywkERMrlPBEjycjQIMMjWRqbeuie38Fo7wAXnrsORfbw7BLxaKx2ukkiiUyKO/71l/z4339OfV0jH//4x4jE44wXBilXLeKJNoygQktbJ3X1LYQiaeRYkm9+8++pi9cRNmQCuo7j+niCjKZAtTLBxFg/uqKDoiIILqaZw7QLBIw6qhWTRF2M4eE+fMECBUYHDiFWqpiSzIIFCzBCBq7vIYsShqHS3t3JgmXLMV2NUqHMvj3b+NSHv0rQCDNvfieSLOAiE5Bttm16npa2HiJ6gPF8H+lUG4asgRpEVHR+88hvCKkq9ckQZVNif+8AvueQH+tn8zOPo0kCZVuisXsJuVIeVRURJZmKZWLoAURRwrRNXMti2ysvsviEkygLIo5dIqrabHj59yxbfjaDw0OEE1FC0SSiL9cK98oy4Ug9+7fv4zv/+C88+bunWLFyCbZmkKnLsGfvDiL1QUKhBPgusqjge1X0cBxJ1KiULB555BFUwSQYUkkk6zA0nS9+8et0dy1l2bIlTIznMEIyxcIwy5Ys4r57H6SjbR6lQhXLLNHaGUdWJTzbQ1VUwppOGR9P9NAVD8us4Lo2sm6QamiikB1iYLCfdENtAqhQHCM7MUIiUY9dFlF0F0VtQLCGqVj9VHIxjIRHvlwhoSUJBgMIiotuSFhSmovPv5zJkXF6updQro7yjneuRpQsqmUH07LQAyKOJ+A4KhEtyRO/uR9JHacpvZZy0ebd73oX6foUra1dmJbIZ279f5xx+pl4VZn21hZ6Frbz6OOPcsFlZ/Gh993M+Ret5Pv//iNkN8bIaC/fv+0OhocH2bLraW796rcIBcM0ZWTOv/x9pBsaePJ3T/BfP/85p556Njt27+YdZ67mneefQjjSxc7dB7niqosZHxvk1s99hmVdLnZ1hN0HhqiLR5ADCQZ7JzhhWReSUMGxTR79/WYWrzqZRF09hewA2zduJZSOIPgipewYPg5KuYyn+ezZ/iqty64ESeRPr/ggqqbw3uuvZP+hp3nqsfWcvCJK2I+BpuI7DqFEGi+YQNdCuGaOaJ2OJzWjSeM4gomHzlg2T7XsMTR0gObWVYTDcbREA7ue/Q+uPFvmu/c/TkO4uTYp40AkEcOqmuiyQm58P6FIAk+RkJTgkaLggmDjCWVEFyRFxbcsHMcCXcaxBRzPYOPkbi6/8gYuuPI6OpYuIT2vk7XvPI2lJ69ECYdYtKiH59YPYhU8etoT9Pa+Sn1djMbu5eiuQFHehy7KhENxLKtE7548DZkWYokkHh6BUIBqsYrjmSyYH2Zhp4ljVpDdANXqUI027miMlJo4cLDAP377bymXymQyzbQ0tRIO1TExuIdcdoi1p52DnqyvpZ8cngCe4piJMwDZ1PsU06ymajsN9ub6hDUwNh0Zm1s+4a3m1k3FC6cigFN+qnd40nimH1rTsJhqP8PzOOJHCbP2NddfEsXDzCoEZulFzLFjuUI1JtZUKkxt2ymNiJk+5f8muBOOpnD90f4nrVopvO0v+Ngh49ezOcW9j8qxOn4/M/uYrXrJkTHUQulTF4RwzHb+ccDdkfWe+wbH8DrjnAFC3tBEAbw5UdKp+nDHGIMgSsdcfnR1FI4ag38YvBy7/ayU5FnbT9M4Ocb2s8Ed8IYiLccH8jPB3WEQz8xo3PT36vreHM67z0c/cD3fuWH+4Y9zwN3cvqcmBY7QOafWHT6XZ8wGClORyMPfxtTnOYcPgojgeQwNDBCL1CTY88U8waBKIVtAkXVCMfDcAJabozChEY4F8CVQJB3PlRkcGqS1JU0+X0ISBQKhmliK75o4Lrz08i6WL63V+ypXbCKRMLZj4XkeqqpQLpXZf2CEhfNbaqBcFHBcB0VWEZAZHR5H12RcHAKBEM+/tJOAobBiWTvVso+iWoCOh8i9j7zI8kXNtDXVo+o6uWyeuvow9z38Oy48610ge5hVD13zEAUNRQfbUikWJilXy2i6zp/deZCv/fXXWdDaQGFiCBOFgBbi0Sfu4dTTTuZ9V3+C667/APN6FrFyxXJ8LBQVspMVJNEnFNEo5Bw+d+uXef659bz8yvOI2Gi6QrnqEgzEeem5h4kFMyRSKVzVQ1XCyILCRRecx/e/9xWqlkDHvMUgg+wHKJdLFApFmpubGOrvJZXJIMsagiRTKExSyBeor2tAEmVEUQGhymQ2iyzq4PuEozq+K7B9+x4kxaGxqZVv/cN3uOmmW1A0A1l0KBVKaIaGosg4nkcwEGRseJjBwT46OjpR1CC/e2o9p596JuXsBKXSIVq6uqlUqvieQDAYYnRsFLNqEQ2HiYRCFK0ioyNDIPg0NWewTR1Zd9CVIHg6k7kJwuEAll1FUzV8T2XH9leY191GteoRDIboHxpGkGQS0QTF8gSpVBzX9TBUkdGxSRxHor4+w+DwKKlUmvGJCQIBEVkWkTSVfdt3Eg+ESXW0IwgijmcjChJWucy9DzzAlVddief76IqG71tsfPkF1py8hko5z1Dffl5+4Q80Na+ikB+io7UJXwriVhzC9TKa1sBIXz8Fz6YumaClKcPw8BC5yRGWnnga69c/RzoVZrB/mFWrlhOMJ8hVTGRRRcJB11RGRwaoVgX6+/rpmdfNpk2bWH3yGiTfBlVHEERGBweIR8JIAYnCSBEXG0ERECWdkJFieGiAXz3wIJecdxlqUOIjH/0YP7rzDlyhQNmzqE5W6emZT9nM4wkKvmtzYP9eGjMNiEoESRDxHBdNUUCyqFou1arNntd2MTQwxsRElrWnrqK1rRHPr9YmGsQArm8TDMT4wQ9/xI0ffj8eHo7l1CItyBzYt5W2+cuxbQ/Jr9XDtCwXDwVF1sCzcJ1aXUpZrU0qjY4OkUg04Fgg6j6Oo6MIearlAsFAEyVrFN0IYtsyiDKeIIAg4nvjbH15E4Ij0JDJ0NmxkEJhHA+TWLQeT/ApFrMYRhBZ0igXCwQVAVsoIgrNjI72EwqG0XSVHTt2cPb5F3PvfY/wyoYXePcZ63A9m0xjPZohsXnzHhb3LMPzshTKJn/zle9SMkc47eSzOe/8s/nkR77AuLmDRcs72LGpxD/802dpzKTwHZuNGzfS3DKfZ9b/ga6uJsJRhe3bd3Dlle9F1QQsq8Tf/L/bWdbTyGmnr6Wxu4ctm7ez6IRFDPYdJJlpRpcs9u3aysIlqxjaP8rtt9/OTbfcwER+O3qgGU20mZwYQNAVwtY4QkAh37cXMXMZTe0LKEwMM3BokIbGdv7i+s+za88j/OqnH8QtlAnGfKqFLGowSMn2EG0T23Yp43Lb7U/x5U9fB34Js+JgC/O5+Jq/ZsOmZ6mKNgYSP73nHpY2jNEUGaE8nsdYfD1X3PhPfO39XyGgBXll8wYM0aWtKUYwrGB6PoFwI0ogjI9PeewQsldG8iRsycV3TCQlyMsbNxCINfHTlx7hlz/9YW2iwLeIJmJYroxT8bGtCroEjlkCo46Rgf187ctf5MWXt/PPnzuDL3zrMR6+8yNIoSJUbWzXxnZzTA77RBIGDQ119PXvJ56IEgkGGB4aJWAEqVSqqLKBLzlU7Ap9hwQSEYNv/OBJhieDfPijn+OklSdRLORoamniZ3c9SlQe48F77uS+3z2HqwYQxenn+tT0/lxwd8QzOAzuZnsZs70Q70gb8Zht3rxve2zzj/iks2vczfRuar7GsWouC3NKkh3te9X6mDvO2evnumVTdMsjgQCOdYy1Uc38vt+MqZr+pjf4I7j7X7Y3A+7mgrg3+nx8e/32x4rGHWv5m7W5F9Osvo4484f7eBOg7vXA11uyw1THI9pIc/YniFKtlpxfA0zeUfUD37wd67inAJQvUKtGcPj/ww2mRnH477FPj2OBvJlbzgRnU/x18cjvfZxthZkDeWPzmf5e9t/7JZrrQhxBbG/1vnFUt4fHegQMHtV5bfGUwpbg16hRtkONxm8yOjxIXV0dpWwFQcoiCQqS6vDgb/pYd+Yafv7QK3Q1JzlpeRuaXqML4os88czLnHziPPbun2DFSe0Us2Ue+vWrnLa2m0xTBM8DRVEwzSqBgM6hg8MYhkYsGsNxylRNC00zEASRQ31DmKZLLBwiGFB4afNuFnW3UihVaGutQ1FVnl6/nTPPnIdV9Xn8yVdZNL+Fzs5G8tkJjGAc0ywhSbXfb+PmvWTqozQ2tVAxc7hOGVF2CIUa8FwHPHj+5d2IJ97CP//r1/nXf74DyxaoOAWWLekC0aP/4DC7dgzR0ZUhmgiiKCKW5RA0DHLZMqoqUShNkkxmMCsuiipTreQJRVQK+SHqEnGefvIZlq1YxdikRKYxjUAeXQ9Qqtr4BBD8KqKoousGjmsjCBaSINaiTZKM5Tp4rotrm4QCAcpVG3wfWRWRRIH9+/poaExQyOWIJ1Kokobnm2zduo3uroVUrAKaFsKxauBpvDROKhGkOlEikozUBDZECdM0kTSByfEiwUAU3VApFIsEAjp7drzGwnkdVEQDWZKoVmu5d4Jgc2j/Ibo6OznYewAtHCUWi6OqOpZlI4t2LT9QEJBklUqljKoq9B7cT2dHB5UqBA2f0ZEBAsEYwVCIUtlE0XQkZBzHxwho+H6FYmEUWTAolXwWL1vFH9Y/QUd7NwguY+P9RI0Er27ZytLly1DDAXzXqZ3+Qq0WlIiH7Xl4pREe+M/vUzAF5i1ezprTz0LUE4i+h287aLKIIPh4ok/ZrBLSAnzp01/hli/cyPBQCU1yGZmYYPWatTiei4eI7dpIdk3VDxksU6RYLRMOqSiCja4YbN60kYZ0I+l0BkHWmJiYQNM0BAH6Dh2gub0LRfAplCaJhxIgqezaf5Cg5JBMNFC1bYyQiuVUqFYKZEdHGDw0QnvHUhBcRseGaW3pJpYMsG3bXpKxGM888SjrrrgYRRTRNRnHtnGQ8ByXYj7P5MQk3fNacWwdQRFwLRtFDjAxPomii0QjYYqlLLZr0ndgkK6uFjQtjOd6eIJTy/kUwPds8qU8RshgYM8YI9ksq05fTWHkALF4HbYj4ntTvAIP0zbB95AlhbGxfto7OhgdniCRqqNcLGL5Epqgoxs2ohdhZGgAyRugWKjS3D6PYtEkWt/E2lVreOH5Fym5Lu+59DyisTpu//73mJgcpLGlkVLRRNUURkb6ybQ0sWPjy2x8cRfvPHslgwMjPPzws3zwIx+nIRNn364dNHd08y//9K9c957rcByLcFQnHAlQLXgcGtlLOrWQ4f79fP8H3+EfvvVXFHM++UKWaCjLc+tzbNrax1XvXYYspIglInzilk/yox/fyS/uuosvfOFr/MPf/x1nnXUGmzfVSqQk6sLEEiFGs4co5XM0N6XJ5/PoYhrHGaJYzRGqn09IVXnysUdp7WgjovTR15fjjjvuZ83as7nsveew9ZXnWH3SYjxNZnLX00QbW7CGDrCnt4QT6MFXDMZGJzh51WqUoMPgnl08dv9DnHVmJ82pMvlSloDuocsOw2M5GutaGM+NMllS0PUJZMkhFEhRkW2GJlaQ6X4X4UiQpx/ZQEtrklD+KZqbqhzYs5UNIz2sO/tGAiGPzdte47bb7uXCpSvpaevAssu1CUY1iRpJUi3kUdwJXKeK5dsE1SCu69DbN87IuMoZHziDjs44o/29xNOdVM08vft2IQoKk7kCa1avQlFrtSWf/vX9vLhxMx/95EeIxX2eevBuvvaN/+Sn/3oBkVCQob5hRMklFBUoToJu1KJChmFgWiZm1UTTNHQtiGXblEsuWlBjcHSUhx7YytnnXcOHP//vqEqaR37zEHf9/Kdcfe1lvPDiHxgaGKY1HuDnP/sxdzzwCJKmz2IHufhIM3zINwPuZoK22X6leNTy/y6wm7JjBRmOZW+1v+mgx+ztRNHH8/wjwGzafZwhfudPa2Z43tGje6ugbsreCrj7Iy3zf9neWC0TjuYdv9Hn49kbtT9evt9bB/jeUbBm9qeZ6pG1Lt64j6P50m/TBOF1+56mmILtuIfpkG+7s1mfarTHmctr45jK1Zub53b8nl9/zcz8vulcujfYVniddcewqd9QQODZPRZd+tDr7Ptw9vDxzqWjNptz7k1RG46QK6abCZ4Doo/rC3iuT6FSRZV9ApqE63jgquw7uJ2gpoNbYf6CDMGQwkkndNDYEOWRJ7eyeH4Lru0yNDTJsqXzeG1bLwODeZqaYthVl3wlR2trktd2HWTf/hGqFZNYJMzgwCjPvtRLNl8gmy1SyFn4vsiBg6M8v3EPK5fNp6G+DlVVwHeYP68ZwzAAl2gsQC5fZF5XGwgOgq+Rro/wm6c3sWRBhpGRYe59ZBttjWF0XUFVNOrrdKKhIIODWWJ1YbLjFdKpNhzbRlJkzKrNx3+8h5tvuon6cJDPfuqv2LZ9FzdcfwW3/OUtbN5wiJtu+gJ//rGrSURilPKj/ObX9zF/Xg/lik0oHOXWWz/Heeefg6JIiJJI74G9/MePf8jyNSsJGA4D+7awckknSqARNSJTLBXQpXANXAsuxbKJbNiIooekQi7XT7XsYBgGxWIJVVGYLJYIBYN4ns2u7dtIpVsQ8DHtCoLoE4vFUVSBUDgEgI2KIIokU40EQxEUSUcSBSyriiRBJBLC80x0w+D+e/4LfEjEUoiijusXMaseniNgO1WihsDYUB+j4+NkmtrxHQ1F1pBFH8+t4pVtEvVJbFwS6RSy6iNJInv27CYSieJ6NqFgmHw+R9Us4QsWrutSX5+hWnGQgwquC6bl4TkmlUoVQRSRFRnbLlIqVtGUIPhQERS0YBiAj/7ZhwiG5RrdBwtNF5kYnUARROqbU1h4SL4wfd4fVpDzfYdnf/VTOsMOqcYmJsYnMW3INGZAcHFFF1twcF0PR5IxghEK5RJnvmMdgZiOFooSjYfp6uzCdh08RDxRpuo4DPcdxPd9AuEwsuhRLhbwchNsfeZx1q9/ipa2Dlo65lH1RVzPRVBEBEnCwScS0JG1IL5TpeJW6TvUy3/c+SNWr14FroVleYQjcQqlHFYZxseLqEaKG268lYU93ZjVMitXr+ZTN3+RhromwvF6YpEgAVEglm5CREQQJCbHswiySCgUZHhwiM6udrBMQoEEpXweI6JRLpeJxCLksmOIsoqiyhzq7aW9qwdd1ZHlAIV8hVAwiGVXmJwcoVwtIss+RiCFV3VpbmvCU1wkx6ZQLKMiYv/0AAAgAElEQVRpBppm4GEhyjKybFDIVQkaOrF4GNOsEI3FKOcmCao+oh6unY9MYBU1PveZL7PukqsIp1oR9DhSKMbk2F4+eMP78QQHR7C54Nx1rFl9MsFQEEm10AMhJscLhMIBYokgghgkU1dPY10XaiBLa2MX//itO7n0sqt5YeMmBNsiUZ/ine84m+uueT9XXnkVl15yKdde+z4kzybSIPL0M1v57F/+BXfecRe6ofC7x1+gpbmNSGgJ+fI4PqOYEz6SJPHMs3/gQx/5EKVyiUULOvj0X36WJYtPAEHAp8Sjj/2KlWuWYloTBALNBOMypYKNb9aRaghjyCZGOAxaFMETSEQTJFMJEqHFxJM6XT0RFFFk27YtzGtvRvQ9BF9FcEYoWCKZeJD85ATjeZ9wZCn19Wl+/fCPWbnmHXz9y99l25YtrLs0wdhwGdEIIUk+rlUikWnHKVcpFXtJRFSS8TSynMT10vTuU/nLL97OeVddhu/ZNLd103toO2J1G7GUy47Xypz/JzdRLVd5+re/Z/W7Tufi8y8iEl/PF2+7i6WZ5UTiQRQjhqQFkXwLp1Lk8UefRQ2liIVk8FVu/PZnWXveOSyal2H79md54rH1LFq+ikBAIzsxzs7tOzh57YlYThXVUEEUSGYStPQsw4g0YhVN7rv7Efbtc1m1RCUo16PoOQTBRVZcwuE0+BV838OxbCRJBt+nWCziuB6VUplofZTBg0UydRFOWtrNy5u3csq5H2Vf/25aUglOWXMiTzzxGKevPYXGjMJjD97DBedeSEvPUiRNmQXu5ubaeYcjUVOvY6WJTC0/2o+bGf17a3l2b2Rv1md8s/1NqWPWxOlgauzTYoizwdlM93JWXcAj7uexqJxv79j/mHP3f8gcx/nKNM/2WK/pi+T4PORpyt5s7u9cR3oqyXTqxDr6pDxW+7djczPfpqHUbFBzJNdKmFG4/Fj7O5zz9j9xuU/VCzwqv28qP87zjoxVVdQ3Fbn05/xuMy7h2X0zxQufokDWwneu6x6hIMLM72uOTdXvE6bHPZ1zN63EObfO3vT77PPCP0L9PG6Ph7c8FpV2upee+d2873ULnL/BuTRj7EcifzPBoDANJX3fPwwWp/nq1Fw9FFWhUsihiCI+HtnJMUJRiWioHcvP4nseeEF8QWNyfAJRDRLTBeKxGLlCns1bB8kWJlm2rJO2tgQBI8SzL73KWacv5cWXd9Pd1s6Lmw5wxikLcewqsuixetVC0vURioUq3fMaiMWj5HJF8qU83R1pisUCgaCGaVl4roKiSmiahCDKlEqjZMdNfv/cayyc30YgJJOM6uQmPV7c2st1l5+GJEls2nqAhlQdeCApGpomYug64+M5NN1HkX3GR8qUS2P8akuJlYsXceLatVzzJ+9l3dnvxLEhGQlx+eUX8+cf/yCheIiB/j5STVEeum8jp52+Bl33UWSFUrHE/AXz2bJlE5FQkPpUPStWrELxBcxCkXiiFVNKYloytmlSzOZBUNmzczfhQIiQoeI7GrquMDLUjyIFCKkKu/bsJ92YYXRgP9FwDEmUqJSrVEz3sHKmhIeLpqn07t7JxPg4oWAEXQswNnIISazR7kQEfLGCJIKiajz//POk69P4noQoqixctJJQJAGygKyKWBUHXdUAl72795JqmU8sXk80HCdbMglqJlVzAtezEcUAO3e9QGOmjVyuSCE/ieQ5qLJBKp0GyaWYrTI0spdoPIouxwnoBju27yKgG8SjESTXwhF8dElEj+goUhBDj+E7DpXSIIIHoXAYQfTwbBfRCzA4fIC6VD0SYSQJchPjTAwXCcSipNuaAQHJFxBEFUEQcV0bfJeDe1/l2UfuxkFmybr30rr0TFrmLyfd0la74gQQEWpXhygg+h6uYyNJIpLq4fkCsizhizKuK1IoZBkePEA8FEZVJeKJKPlcjtz4OC8/v56+fdvITwxiOmVOOf8adu8/SHNrKyK1Woq+KODjsHXjRsK6ghZOgO8RrJTZu+dFLrvyGmQtjCQbKIaEaedRFA1VkTh0sBdVlLjj9u9y62c+RzKR4qUXX+ass95Be2eKcExlsH+UgcEyzY11SJqA7fsEognu+el/0dGYAUnEkVV8K4jtOoyODqJoQRRNxXUsRFHhq5/7EvFYiqVLlyI7eXxfpVAcwfVKbNn8Kt/+px9y8SVXEQpGcD2BQmGUWF09uiHjWmXC4SSirCArMuPjo0iey+DQAQIBA8t2kSWZkeEx4ok6HNtBM4L4io9ddijnJpAEGcWA8y45H1HUkOQSkuMie2WKk2NEwgb4FcrZERAClIpF6uqTWKaD4EO15OH5RXQ1SqUwSb5SJdMcIT82TtVLcNXV52FoMh9+/0cZGJmgMZNhx84Xuf/+uzl33YW0N/dwYN8OmjoXEVHD5Eb38pkvfRrbLXLTJ75EJtPOp2+9ha3bX+aGGz5AR2sXL2x4ke98/8d845uf4bEHn+CERZ30j46SSAbZu3sH2fEsi5YsoLWlEUWVcS0HVYJSbhJFDPLkE+vpWdJJ2apSKVT47nd/xIKFreSKI/zu8RdId7ZSsbK4TpyFJ53CCYt7cP0yji0TjYpMFMqoSLiRNrIHnuK5373I7r5+zr/i3XS0nECtpMVBbrrlI1x+xRdp71pDJiFSzRVJpMPYpko4HsWUI0QoUaj6RGMBbCfKL+99mk999kqigTTFsoFVqJKIJ7AnXiBmSLy8YxRF6WD9hi0sWTafvXuG+O1v1rP+sWf5+i2L+PXv7iJcP87f/OxBnn3tJbbs2MKGDZvZYe5m5+Am3nVymWiDxKnvPJ2LrrqBYBx+/rMHuOTyC3nh9/fR1NbDYz//T9aeuIAf/fhnvPbqdk5cthxVFLn28j/j+msu46nH7mHewqW8uHE7t/3wK3znnx8gEdYJBXQ0I4keECkVKgwPDJFpbMWXXDxUrvzgr3nnmsXUZ8pUHfjIp57ktd5DrFnezb7Bg/RN1PPtf/sJDzz0W7SARLFaYdXK1Tz0q4c5oSfDbbffzpf+7m+RI3X4vjPDd6w9e2cJpxxDL2KqvMGRx7xwtPKAMCf6Nw3GpvUkpn3DuUIpx/E2/Ol2x3pN+dEz36f2frx9TxU4P6I/4THrSGYBX78G2qbB32G/8Ejf0/WOp46tppY5E+S+dfsjuPs/ZI5jf+X1W/hH/X/8iNvcmZI3AmZvPzL39m3OTA7TKpmvC+6OI3Tyduy4EUBBmDUO6bCy05ujJh8vTnkscDf1/xS4O3xT86YB2nEv7alctRktpsZ35LiOl+923JG/8Y3keHHEmUuuvOoyPv6NXzK/3iYe0t9wn7N3NA1KBaaeIP5R66d+j9pDQjyybOqpIwgiuqJTrlQxqzbRaIRiaZzN2wZpb25EEC0UTcIIJlFFFUmpkkzU88qWPbS0JOnpbsE1PXbtPcTQyDiZ+ijdXW28vHEHK06Yh2aoZCfzvLBxL7GQQSQaQVZEFEVGFsEIhtmwYSeqptDRlCYaMwgGAti2w5ZXe0k3RNF1Fce1cRwTz5XYsm2AzvYIDakEhdwIsVhNtnvh/AyaJlMqltn8Wj9LFnaQzY3iebB77xDxWIxUKgKCj49CtVRCVuCeFyc5Y9UZfP/O73LB+efzk5/8hEd/8yhXXn0Jru/ywIP3Ud8QImgYbNrwKhdecD6xWIhCqcjIUJbVq07hzh/8mFLZpLmlhWBQp1IpoogKojKBosb4/Ofu4Inf/ZZF85fQe3CY73z7n/nzm/6csu3iiwKaKiGIDuVKnkg4iqGHicYTVKsmyWQc0zHRDRXbNhkdGaK+oYGqaaJrOq7nY1UcOjsXI8oag8MjZBoaEBBQFBnXd0GwkESBAwcOsHjRAjTDoFqpYBgGruvx6tZXSTWkmJyYIB6OMTE+STQao7Wtje/dfgcnLVuKKIJhBFGMAPlSGS0QQtGCRMNxFE3HF8EIBTCzWXxXQJMlJkb7+fzn/473/cl1qIpO1TKRRR9VVUkkawWCBdEA30WVg5gVmaGRfQyP7iOZbCGoNLD/wD4Uw0IQNV58aQNN6TZESUYQBAKqxMjIMJZtM29+D5IqEwlHsS3r8JnugVvliV89wj0/+U8uvOhixsaLnHHO5ejRNK5nz4jqMXV7Oc5Ve1gZVwDRdzFkmcLkMH41z8iBvah6hP4Dhzh08CCu7XDmuRcQjtTRtXQVHYtWE42GSTemp+n7h/frWjZh3aBQGMGIxhjYv53RsV3Ek2kMvQ1BtRF9AA9cEUOL8tUvfY3zzr0Iq2Lz/7F33lF2XFW6/1WuunVz7JxbycoOsmVJloPkhLMxNjbYBoYwQ7DHDHlggAGGYYBhGDIm2iTbgME2yQEbOUpWTq3YLamTuvt2982hwvvjdlZLsoH3Hn+w17qrV91TVedUddW5Z+/v299+61veguuWCIZCvLxxG+//4Md569tuwMJF01TmtjVhSTA6OsiubTtorm6gqroWV7CIxiJ8/X+/RsfeTgYHk9TVNnKwYxdV0Ri6orBnx04uuOQSEtUJRkYG2LVrN9hedM2D49rU1MU4e8XZCEIZVQPHLePzBZAljbJVwrZLlC2HUqmMKFSCfxuf3cGejoO0trXhD5gokjyGONskh5MYWhDbylMs5/EaPrqOHcE0PZRKLook0tvVR3rIQfeVMMMJEGXymTSSY6GZUYJhPwI2Xk8QUdXwBUI4YgnbUvH4dATFSz7n8NADj7Bz5yHa2+YQjVQzcHyU2lov3/rqj7nrn9/Om970Lj79mU+z/rLVNDTECEf8PL3hT7S3z0cUDXTZ4vL16zjQsYfrr7uS6666AMMjo+gqj/zu93z2s59HlAucec4qREUgFqlGUSAY8hEI+sC10TQDXfPh2Ao7d24nEDIwTYXm1mrSmUEUVcAuq6y54Dx8Ph1D06ivbSDoi+Dzq/h9ESTJoaurj0RNjI593TS1L0Ayovj8UUpanPrm+US9+4gk4jz/TJru4S289PxuYrEIc+a20tBQw0hvnk988Yfc+sZFCIMOtlzJj07myojFAqoZpFAYIVtw+Z9v/pFFc1fwj+/6NK+99To8ukYuN4xS2o0s5ojULmHekosJVzfQ2jKHe7/7UwaHRjncsYU1KxvYvPs42UGFf77nLN50x79wwcXnsH3TM7zzjhC3XJqgq9fmh/dt4fJrb0YPmBw5fIAVZ5/L8NBxzmhp4okn/sBzv/sebbVpWppqWLfqQlQ1zIs7tvKGW66juiqIaxdwBKhOVOMJmCxcchE/+eVjPPGnXWzeuImFZ8SRBAdfMEA6n0L3REjnk1x4URM+o4QihkmPaqxb3cZFa5cjFFJYYpSnNqf4j898jbvf+R4eeOgXbN+6i8vWX863vvEtug8cord/mNff8Q9YMhNB+Enk7vSOyGxtJ6xOZoiZTBNdmXASTyxT8ErsVPuNh6snnb5xZ2/2YyZLNAjTELtZ9pwQTBnfnj6eqYIsU89fSb1wHOcV6CfMbn937v6G7NU4dzNh7qlI3iTq4058JmHf6aqa05G6Ex2XCtwuztr259pMLcQJcxxwObkDNY5U/Zl5f8CECuZEHTd39tdyHNE7gcZ4GkSx4nhOismMtUzbdie1pSYdmAkcz50yuVDJ95vh5I334zg24wIjFclhF1ESsZ0pNfCmobezXunE99PjaO5Y/87YmGancgpUSj7M9j95zVWXEVu4jlve+41KkfOT3riJEODY5tQCCFP6HN9v/JmdUq5h2rkmUD2HkdE0lmUTiYQRRYlctkAo5MfnC5DNFVBkh2zBwrKK2ILL1u1HWTivCZcig4OjWDaUyiWWL51DLltEVqC+top0OsejT2xjfmuM886agwvEq2IU8nlKRRtNlUmN5ukbTNLSGGffwW4SsQC27fLgIy8iiLBx60FCfp1oNILtWEiCS6ls09oaBVEinx5CVTUOHk7iMXQc28Ln95HLZmmor8JjGDyxYTsCDk2NCSzHRZZlSgUL2xHwR/z8YY/Fm972jxiKS39fL80NTRw4cICzV57L4UNdrFl9HprqoGoiXjNBMKJSLJawgFy6wNNPPokqWtx4yw0MHO/FYxrk8lkyw0foOrKbRF0dK9dchGNZbNq0g/lz27n9TbeSLebRNBEXm9079jE6OkpTYxO2LaLrOkd7+jEDQSRZIJ/Nk8vmKBbL+Hx+NF2t/LiJGqAgyw6C6AFJRDMlsqksxVKRVGoUXVfoOdpLMBilOlFDqWwznBzG7/Ozbet2/vGf3sXb3/FWbNsmFA4xMnKU5EgfxWKaQMhk7tyl5LJprFIJJAVZEEilRip0KFUllyliYWOYfgwjhKoqeH0htm3bgkfXuObG68llsihKRShkJHkcwzQ42tVFJBpBEBWOHN6LKOv89GcPcvElF+LxmJU51bKJxoOIsoyumcQSYVaddwUtrY0EAhpBU2P3zr3MXbgIQRbBcSccOwDbcUkOJpk/fy6XXHopA6M5QvFavKEItuMiMl5H6sTPTPzeERQEAWTXRsHFLaTZu2srmVyaQtFl38EuWlqaWbB4MfHaKqyihW56cSSJsitQLmSRJXnK21r53xuyQn/XMRJ1CWxHoDbiZ2A4Q01jA6Lgo1CyUUWQRBdBqCyxRofSDCeTvPeeu7jtDbfw+S98Ab/fz/mrVnLvt7/JHW98J44oICkp0pn9JAfK4JZZtGgR6UyOt73j3ay68DxEwebsxUuZt7CZoaF+3v72t/G2t7yTW26+DUPz89vf/J5F55xJKOQlHPRS19DEu991Dy+/vJV5c+fiuAUi0SgIYHg85HOFSsFni8ocK7qIkoyhqQwlh1E1DU1WWLx4GR7TxLaKlApFLKfEyMgwwaCfH93/U5qbW9ANA0VQsByLfKFAKpXF0A0CHpd8Og26QqGYpfvIAHXVC3jv3Z9nwaJ2ElURHLeMbasoMmTSQ2DnGRnMV+ofItNz5AhzWpponV+DosJQspfP/MdHueY111BXW01Lawx/qJ5581poaqmhvq4VSXRpmTuPVK7IPXffzXXXX4mqKjzwiwe48447yZdSSLKCi8CqVSsJewxEJUu5BC9u2kA0luBYdxc4LhIq27fvqohtuZXfiOrqOCPJYTw+k0DIh+Q62I5FIBxl8Hgf+WweQ/Pi8/rRZJvOI/t45pktmKpGJBhF1Vxa2xbR15ciaGj07N+MrsHeTc+TiAdJDRwiNZzkytdcx9GjvSxbvgLTH6a5rQ3LybJm1RJK+T7CER+ClCOb17jx9h9w+3WvxREHcYUigVAdl1/dRiajcefb3oYrmzTWt7C3Yw+6tQ9dsXji+ePsOTTK3CULUVWVtatW8dBD99OUUFh+hpf5c9v49aN/4OyVSzl4YJCoUcfKlQOIoxlMO46vtp9wtZ/NG+s58+IE6cEMDXUNDPZ389QfnmLegrm0hUdojOfQ9G6EfBcv/ulZYrEl1C8+g2JZxAzVYIRq8Am13P0v72fBkmVcd9MaPv7p7/PWN95KOGTyxJM7aWxoZ3A4zeaXhynaaZrrziMeFbHKRYIxC00pU7JGsEouH/yvJ3jHu79AvDbMnHkxnnzyJb70pS9gGAqRaIDHHvox//bZ/yJS34ArVfLrhInf26kO18yf9hPV3sfz76YHtyf3n8olGlenPNW5T2cnst2EWdunr5cnj5k59unnPLWDKYrgOFP7FMa+H0f8xmvYTS6BxpeQ4wys/xfI3V8no/Hv9nf7/2iuY+M6dkWAYJrS419ujmvjuKcXeKlQo07/wjquPWvUZrwfgQrXW0SYuB5RkJClv951nfY+icJpRWYeePA+bvvyrlfc5zjq+JeaIIgEQz5iiSi9xwcoWWUUIYQ/YFIolXBck2LWg675MX1B/IFWFsxtxGMaGIZCKGjQ0l7DgvmNlMo2QyM5BNmmWCzx019t4eLVS2ioj2AYKpZtUbYsfvDAC2zd1kmp5BAIelm5Yj7ReIDV5y9m05bDPP3sbm58zXksW9jIa69eSSgYordnCEP3kE65HDyUQhYDFNIqEnC8P0lrYw0HDvYhijKWZbFscQvZ3Ch79/RywYqFnLmsGUkp098/gmVVVEw10cIqZBgeSfL84z/m/PPPJejz893vfJuL1l6AJOl0He1DElWcMuzdu4NwKI6sWCiKhKKbCBJ85ztf4pbbrqC7r4NEbRiv1yAai2EXVHzqfLKjKqLmsGr1Cpqb6mlsbqBYzOD1SEiChSxatLctoKV5LsPJHAIquVyxkiunqqTTGQL+CO9/30cwdB8CMmWrjCTLgIhrQ76YqlAqrQKpzBA+X4AdO3chiiDJIlVVjRi6j0ymxG2vfzOmaVIqlTlj0Rn84L7v4zguhUKew4cOEgk1EQk04jVqyI5UIsPBQADbthBEgcxIEtEuY2oifUcO4YgVEZlMusQdt9/FcN4lVxZYunwFiZp6srleBMkmk85SKpbx+U00Raa2oZbR0RH2duykoT6Goklcc92FFPNgFTyIcok9hx9D1V1UMUKxWCaVHuBjn/goF1+0hmgswI9/9AOam5oQBBnLPnFeMRQP8apaXN2kpGjo4ShmJAqUkcm9yrdFBLcSVNq1Yzvf+NLnSY8Oc9a5qzjjnNVccuk6wlVRsnaBgmvjiDYIZUQ3jyJkJhw7x3Eq84FQoZqnRkbo7+lBlU28RoCtG7fg981FVlVS2SG+/IXvsW/vfgYH+ig7abp7dvPoY78imxnhmqsvw+/TcF2BpuZGSlaax/7wUw51bkNTdbCCxMKLuP/b30FCIF3IIft0/ufL/0t1XR1er5fMcJJwsIFsWqahbhmXrL+a6264jea2BcxbcCbVDXVksyl27diBK8rEE35ed9NNnLFgMTU1jdgO6KoBjoTPDFeo3EAuk8EqWyiSQjqTJRGPo8gK9U0RJEWgXCyDIFIo5hElgUgkDDjcfMv1SKKOrvhIjowQDocIBYM0NTUT8Ac4cuRlbPsYPl8czYrw3//1JZKZI3zum3dTV9fAnl07kWQBQ/egYaEJJfKjx6mLR3j/3R9g5PgALQ1VREM6mVSRPTs7qa1p4+FfPsbiM5Zy1dUriScCfPveH3LtDdchiDIbN+5j3579jIzkCEXifOf738IWFHqHBvnEZ/6dXNkmUtuGrPkxVI39u3aQHuxi64vPYMgOc5tr0T0S7e1teM0w+zuOsHPHfgzDy4Znn8ERyuQLWRqb5yLYOumRAqIrsmP7dkbSQ+iqB00yUSUvn/rEZ+jY8xLVtTFaW+egy34ky+Zwxx6K2Rz/+sGPUzbjKIEw+VKeefMWIMpLWTS3lbbmQzz+0FMoql2pq1jWeOZP2xjOi/zmgR9i2ucy5HgQ7QCBkMnPH3obeWkHLhaFQp6OjgMc3RfiB/c+wXe++z/EEiZvfcs/UlPVgCio5HJlVpxzKbfc+iZcCVK5UYTyKBeuWoRQThIJyAS143zkwxdTHV0MZDiQ3Ec88X6yniHECCjpOsJajGXnSQh2I/F4lNff/Dpqa2pYf8VVbN6yjVw+h64IBOUYVrqDpXMG2fb8t3jy5/fz25/9iE/88910vPQcTz33c775nS/SWNOC7tTz6O9+y30//iXJlJeyOA9JE4nVRAiG49Q0RhnJ7eNYzyG2bhxioNuPbRnIQojuHolgoJm6Jh8f//R/sG3nAA8+9BN+94ffcPMtNzCaHiAcUZkzvwlH+vMcjWkzzRRnRRTEKeJuJ//ub8VmBvtP1DD4y8x1XZxZ5vr/2/Z35O7/sp0euZs9CjsVYZqsoTZ2xESND3fGOcbbpWk849l6nI4YTu7r4CIK0izw+WS0ZTp8Pr3+3aS9QlXFKSjbK61jd8L1jKNr08Y6pdB4BZufOPN4Lt7EMacc46kQskoEc3pNvRNICRM43rhzM1XLczYtzPEacaIoTSB4les6WVRrtns/ziGfRAvtCTrAKa5l7PDK2E5EBabaTTddf3IETxCZDaubiKTNvI6JMJc7lo83PqZxBHLSxDG0VxJlcpk8smqTHEpiaCoHjwzS0NRGb18fEh4UTUQQCgwNjCAJLpJUxHU9yJJIz7Ekf/zTIRadUU13Xz9rVixhz4E9VMWqQChjeGSGkynOP2c+ll2kqipCMjnKzj2d1CQiZFKjOG6Bw11JFs1vo7t/kKqqCAIOdjmHoUuoHpP2tgSuC89t3EZjQwOdx0ZpaEoQihhoskohX+JwVz+JWATLLhMMmyCIFIsQ8Mj09yXp7U8xkrbY8EIXh/JemmprMTSZj37sE3z5698gVRzG7wlhFXP4TB3HLuPTg4wk++ncf5Sf/ehnLF2+HFFwMTSX3oN7aGidgyL7kVQTQZaIN7USrUqAoqDKKh6fSijsQ5YFFEkBzUSRNTwidB7vwTArKpSKLGE7o+iqgiRUCsXjllh9/hpMrxfTq7H75b00NtZQdoo4ooTo2GRHM+TSaUYGh8mkS7S1tRGJRnFsF1GRKeQtiqUyl6y/ENOjoxsanZ2dRAIxVEVBVWRMr4eR9CjxqgSCImG7FqLk0NPfS7FkkR1NcXx4gGy+hGH4sR2XaCDIUF83IZ+PxkQcRchiemWOHu3CFwiQGhxAU2RMr0Yhn8LnDbJl04s0NDUhKDqKI1J0BAwjgNeM4Lh5RlP9eD0RxLKPsm2h+xTKtowhhZnTVo1IgU0bXqa6bQ5t8+cANsIs847jWriujSQAjoMuS6hShcrjIiEI8viLgSC4yJKMxzDo7jqCVSrjMQwsy0ZWZGyhiODAxmdfoO9IB9e+5d00z1tC2ZEQZQnESiadKIjIglwJL4+r07qV9gqaJSII4KDgOmW2b99E2/wmysUC/mgVqpRG9wQZHUlRKGVZv34tD//sGRJNXhKJuRw/MkgoXkXLnHbOOW8VomLQXFNLf18vrXNa8Qb9fPCej7Ju3UX09B5B0iTWrrsaSZM4tnMj/mA1/3D7nZx79lmkUgVqGueQyQ1TVxfl/PPP5K73voOammU8rhIAACAASURBVCiCUOaCNUvYvmkDTc1txKvrkVyL73z7l/zju97CcLofr9dPKplC83pBEpBFh2RyAFNLcMvr72D9+kvQdAO7nKOQz2GXbLJZC4+pkUoPomsyiqFTzOfRFZ1yyUH26JSdFKPpHOFwCLssYHi8jI72kc8XCcZiBKLtpFNJBC3PuvVXEA3W0H+sh0AoSqw6RjabR9EMcqUMihHEF6xDkGVCIZVoPIo3FMZRPQQCAdrmNFbeMSRGRnv49nfu5czlqzlwYCtf+sKXmTd/Kbe+8Ubmz23h/BXnYhcLLF44F81Ty5HDx/D7NBSPzGiqDGIeTQ5Q1VRHupQjl9OJV9WRLZTx+aLYZZuBgWM0t8T5yhf/hyuvvRpJtGiqD7Nhw1Zsp0hNbRWp1AgDA8eZt2AxomRiF7MYPoWBkX7Wrl9HLFFLqSDzmU99nKbmOIrfRJB9yKrKVddehG2V8Jr1/Ph7v6CxOUbRzVB2C9TEakj1b0KPzaO+cTGf+/AHufatryXVf4xg1Rn88P4fsm9bJ+evnk9msAuPLWG5BUoWxOpa2fB0Fz59P1qwipvv+FcUtcC8eU1sffkFGrwSRXeYJ3c5rDz/YnTZoufoMQ70HeThH93HBat1oqEgmieMk88iayKJxlZqGs9F9rmIgwOMZA5SoohimPznfz5OQc4xcHSAu+65i3//j//lnOXLefaFLTz17EtcvHY5jiTgi9ZiOwKtCYkjR4+w7rIbkAONXHjFWubMWYokiii6w8OPPs6enXu46wP/yuFei188+izxcATJyaJSxusT8CsaKuAPKeimn8G+Pvbu6GPfkE568DCDaYN3/dM7mDunhbChoYTr2bnxjxQHu/AlGlh/9TU4koiEiiMKuIIAYxm245jX6VCmCWollbXnJHNsjJ00Jgw1yTYbT4U5Ef2aaSdnpU3P8T8V1XImYneytJZJXYOZ2ON0FG6csimOacjNzKNzXXfKOkuY0i4iin8+agd/p2X+TdnpnbtXYjPIbFPyk2azV6uCOdVZm6RsznTiZncgxp3Ak9IDX1Ue3YkL+Vd01GmiLCdT7nzlzt1pWoUphTxP6jhNmTLGHOLZ9h+nTCKA4I7nDp56DOPHzMzJm0q9dKlQBURRnHInZlAZZr+6k7RV7OQO3km4sSec8CQ7jTmH5XIZURLHnPGp+1YQTkNXUXWddDaD45Spr4uh6QFGRobZc6CPmuoosusykBwhEvUyMDyERwuybcchNu/s4carzkFRZQJ+H7IiURUL4zhQKgkYHg/H+roJB0McH0gSCfvp6e9lwdwGbBcOHe5n3sJmaqvCaKrOcHKUeMKPKAqkMwUkQSUzmuO5jXvY0XGUi9cuZe/+YyxfuoBiyUbXDQQsRFFEEkV2d3SzYEE9ZcumWLRwLZAkGUmWKJVKNDXWsKfjGA8+30F9dYLW1ibWX3YpL2/dyKoLzueBHz9GTW0MVbExTY3uY4N4TS8DQ71ccfV6OvYcJFe2OO/81XgCYXqPHSI5kqK2sQlkDbeQxhElJElEFl0UVUFA4MMf+gjLly0DwUY2dFK5MlXVCWRRQhJFjvf1UirlKRYdNM0EScAul9m5Yzc1tfWAy/BIkkg0Smo0hSQIqLJCoeDg84WIxeKYfh+SJGFbZUqlMpQEMiNpNE0kPdpHMJTARcDvCyDJDgg2xwf6GRwcpK6mmYHjQ/i8fkQkRnIZkESisSihaIhIKEQikQAgGouSzhbYsXsvTa0t1Dc3EIjG2N/RgUcTSQ8PUt/QwNFjPQQCIcKRGCXbIpfO4POGyRegWExjmn4kUcYuFdBUGcP0IEgqIZ+G4Lrs2LaNSMCLYZoUCnkOHTzMaDrNygtW4zivTLp7/PWwHXva/oLggGuj4DDQ18PuHdsRHAu5JPDss8+xa/cuAsEQXtIURgfo7z7CuWvXIemVeoInUOSF6XPoJG1ImJL/Co4gIAsOhXSK4ePHqW9uZvB4ks4DHQTjMYqlPJnUCIGASTk/SHP9fFzX4HNf+iwBb4CFZ5xBbU01jU3NHO/JsvqCs6muDvPdrz/CJZeeTTQWxe+PUC5LFMpZFD3AYN8gL+/tIWgorLlwFS9tfJm6+gbe9y93Uyo5bNm6lZq6MOFQmN7uHhKJKIYewQyEECSHA/t3c+ttd2CaBqIkoCgKdtlB1mRcXKxSCY/HSyqV47rrriaeCIMrkctm8Hv99PUMkMvK+Px+VEUmm88C4NF9iLhks8N4DA+S7KArJq4D/f3DbNu2C0VW8HpNBoe6EfGCraH4dXp7h7nl1ju49rqrEGUbSa6UBykUctilAh7FxrYyHO7cR8u8RRTKeTSPjmU5WKUi3T2H0XQZR7AImHEuu3wdtl2iYJkE/EH8Hp3RwX4+8m938+hjv2blylXYls2yM1dxyYWriEYCOK6ApvrwmpBP5yhYJSRFwOsLoeo6llPidVdfz3U3XEsgEiRVKHDt1Zcyms5x/PgwbgmaWlvxmn5UTWPTxhdoaG5B01Xy+TTBUBTbdUinRsGB0ZFRXEfkkosvIRjwYtnlyvsVClIopFE0kXLZYemKVeQdD7F4bSUfeXQIn6kjl/P8+slDGDGbtUuvpKm5gXPOXY2ph3j+2c1csO4qDh4ZwuMLIaoFVBGyowO0Ni6kaJ/B9364AUesor19Kf3Hj3HBqhXYIwcYzg1z6Y138+BPHqG+oQGrqNDZeZxnH9/AsjOWUirYBAIlbMdClGUUBQYGcoRjNaT7duP3SWiyn2eeeomjPRbLz7mAs85fya5dW3jtNZdjiyXOW3k+kXCCT3/qXubXezE1mUjEJGMXichHKKV7iMcT9PSk0UIxjnb3kBxMUluVYOmyBZgeA9FRWL5sBff/8nk+981fo2oBNm/p5ezFiymUDYaLQd70vvvxRxoYyfv57i+38fZ3fZx4Io4iC3zui59l9boLKJQLPP3wDwl5TW5/9z1Eq6pBkCtCczMCqpPzwavZniavMqX91GvVmbWWZ55vpqjLydfEp7LZ8+3GHc0TzzNOt2RS/23GcVNz86Y6dzPzDGfu8+fa3527vyH7azh3Jz7Q06MWJ9rp2mfbf9zGX7CZCpvujM/UIycf2Jmo2Ako2itwpF7p4z+J2E13Lsfz32aiPuNbgiBUNhzntM7nTEdosnrelLO64xPiVBGXEx2nSkHP8YiOy0wFTJgSaaJCjZxAaIVJB9XFxXWmyxGP5/RNde4mVJ/GcuckUZ5yRSdDAE/M3Rnfnl74fNImHLxzE1NONf5LcZoSCTOfq4kQWeV4aQoddWqEcDxw0NPTh6qZ/ObxLTTVxPFoXpBsynaWeXMakXWJ4eEREtEYyaESNVUtdHYd41jvKOGQydG+AUJ+L0MDKXx+iYd+tZlowEOpVELXFGKRMLhgWRaO41BfW0XZcuns6qe9vQnLtvH5vDiOTSwapFguUi5ZJJNZcEVS6Sy9x0cJBUya6qupr0uQz5d58aW9VMdCHDh0jEQigiiJNDdV4Qoutg122cb06vz8txuZ31ZPqVQiFPTjWmV6B5Lc/Oa7aKlv4+577uKue+4CUeMbX/0BV71mPTW1Vezcfoh3vfOfuPKKK4nFYtxw3Y1cevlVNDY3YeXTjAz2UF0VRaYE5TxbXniebGqIWF0TiqIguiUcKk7YJRddTMfeDoKRKIbPQFK1imCG65LOZAkFAnh9Ho73DqHpHmy78l69vGkbba3tFAp5ahqqkBWNfDpHb/cREAVkUeUrX/0KtTUJBElB11UkWaZcLvHP99yNrKrMnd/OwGA/R470EvQHsGwLXBdd89DXO0jAF6ZYyNHV2UltTTXgYvgCeD0eHKtMuZjDdSCZTBKLxyjkiximxZJFZ7Bl8wZyhT4kwURRZEoli+qaGl7euBmfL4BheikUShRdh7DfID08RDjkJ5PPEg1Xs3f3LjZvfJ5oPIzH58cVdQrFDJlMgerqWkaTA7g49PQeZ8HipTS0NjN9jji5TeQRO85Y/utY8E0AwXU43LGPTDrL/v0HSNTWUNPYgD8SYe68ubS1tVfKaRzcwf7tL1BfE6GqoR1XVCfmvqmsDHFKfVHHdabMUSAKTHynYqMqMk89+TgrV63iaPdRquM1aLqOEQiiaV7CgRC6KmKJkOwbpapa5sJ1FzM6kOGxxx5jXtsc9u3bx+HOvdxww43c//0H2LtjJ63zGggFQxw91svHP/5JVpy9HL8/RlNdDR/+5Kc4sm8v6y69BNd1CYdjXHvd1cybNxdDM1iydDHZbIlwIEpPdw8/++nPWbBoHqqukB0tkqgKgitg2y5DQwMoiorh9eC4DpokkU4XkBURwyMzODSIxzBwhSKyLKIqKtFqE0EsksuNIIoOquoFW0IQbIqlYRRZp1hIo6keRAm8ppf6+kaCoQCgUCxkMT0xSsUSDjlCgRg33XAjtVURLKfMsa5e4vF6EGx002Tjs09TV99MsKqZn/7oAZYtmUd3ZxdhM4Ko2pSKBTyeIH988kUWLqpmaHCIYk7krrvew803X8Mzz/yeN9z6Bu64/R9wLJ3f/faPyILCm99+A3YpR0NdCz/8/q9YtGgBRzq34zO96LqJmztGNjlIdqQP0U7z2tfficf04LiVfKG+3m6q6htpbWkBwaWnu59wuJqXXnqRc887E1E1Odx5gKqqIGVbo1wuEA4F6Ni9F9MboFy0EZE4cLADj66gKCpWqYiqCqhaAFwYHhkhHI1j2Tb5fIFwtIZ03makfy/rVp/HqOUhpHt5YdNuNm7dwNr1S/AFLf79k98lnbMZPH6c5gYPXtvEVSN88msbeHHzJqoa47zm+gs5PnyEhsYqDux5jmrfEFmlTPdAlCuuuB5JtEgmh1nYupDd237JJRcvYN6iPE5BZNeuA1RVV1EuDOHqUQ4fLxL1KQwN9VMudjJ/7jw2bj7A4090cMNNN1JdFaVYzDGaKyFIIs8//xJvuOOt7OtK8txzz1NfHaSlvQXDmMNo5hDQQ0P1fHSPh43PvUBLUzt7OzqYN38uR4910rG3g6VLlrB0xVze+a73EY210XnQ5N+++i1++fhOfvjwZnzxebjFCN39fdz45jtZtKQZQ1V5/sUXufGmW/jjU8/gFLMM7d+GEohz1RvfjCwqFR6R4E4EVF3G8u9OwhRyxpCpqe1T1wmTuNfkNy5jQeuxz0yxlpn9nKjwPvv6c2b+2sly8Kb3Uflrj6XBzJZDOH0sp5uxx526yeXkVAfPcdyJsf25Qirj9nfn7m/Ixp27TC6DJIp/4T/3ryeAcnJ7tbTIE8IZlW9Phqb9NZ27kwiCzETq3LFSAs5E9EVAOqHI5ml7m9HL9FFaloUqyxNR8fHyBVM/4xFyx7HHOOgnc7IqNj5BSGOLLcsey3sZO1aUZlJ2hWnO3cRIXyWH/GQjOhUyedNN13P/U13UyP0Y2hjFa9q+r/DZnaBzVkwc+39NOrdT/hMCeHUdRXNprQvi2iVGhtMEI9UYuobjKAiigtfnx3byiGKBrTu20FTfyM69fSw6o5758+vZs/sY7W1N2E6WqmiMjRsP0txk4jUNtrzcSTwRIhj0VYRtyjI///WLLF7YzG+e2ExrfRxBFCgU86iGjiJKOAg8u7GD9tZa4tURDnf1sXblEn7xq+eZ05bgN79/mbbGOAIOyeE8XlPBF/BQKGQol2H37iP09g9SU+Vn7pwGPB6TYCDAcDJJ/0CKi5Y187Vfb2GoZ5gly5bgihAM1XD5pZfxxS9+jvNXruHerz/AO95xG7phcv99D3LeuRexaNlCqqujPPObn9O9bxvxulriYZ2howcoDg4ienSC1Y30D/QTC5hYbiVwoWkapsekLCqoHgldlLDsitBPqVDEdV1KxTyhYBRJ1SiWS+SzWZYvPxvTYyApEkU7RyHvoAgS1dVRTK+GLMssXbKI2voqUqM5ylYJ02MgqxLX3ngVc+bNJ50vohkmiXg1kijzy188zE9+/FO+/4Mf8/MHH2b9utdQLCXRVJmR0SRDA/1Ew1VYpTIyDlaxQE9fP9U1NZSKZQQRgnqMQtpm/95DNNbVEvT5yGSzmIEQ3mCM7S9vIhqLEY3EyOTymMEAkpujWEiSKybxhqsYPp6ipjrO4oUL2PTyRixBxPAEGU6NULQEFEVHlF2GBvupr29GknUc8ZWXeqksFFy6e3sI+gOTaJvoIrou3Z2dNLfNo23OPDyBIJKiUxQcXFFAV1U2v7iJZ5/5Axue+DWdB/fwwsZd9I7kaJ/TOsG2mJg1pgTiyqUysiyPvWGVXE9ZVLAdmxce/wOqKrP83BU8+dwGGusaGD4+RDxRBaqBbQnoskEpN4oWbSDg09m//xGKOZH5c5fz2COPkkwm+f3vfscDD3+FUl7n0x/7Ip/9z/ewaOnZiJKE6TO5ZN2FeEWFzsPdfOxD7+Eb3/82Vq5ENB4iFq9iOJni6LFO/D4/Dz74EGcsWsgTv/sTo8N55s9dwHmrzmR4dBBfIMj77/koa9Yup1iw+M///C8SiRi11bUgixSKBfp7e9BUH93dh4knIjiOg6qLWFaOUjFLqZjHtkESNMpFFdOII8g2iuTBsnIUCoMYWgBVE9i/9xAeXyWloVwu4zhlRgZsXMHCdRRCYS+l4jBhfxgFgR/84Fucs2IVwWCCc5av5I13voEyUBdPIKkRDhzNcN6yxRzs2E45lSEeqiJHgUwqhyT6aWlYiOR6KJXzIKa5ev06PCY0tzRQ09BCb+9hwhE/c+c34A3amOoc/vtzX+XS9StobPcii2GicQVT99DT248nFkH1xRENP5LHiyArdB7qJBIIIVkQrYphIyGIDpLoYNsi9//wQS655CIGh7vxh+L4/SbpkW4ULUoyOYCEg6Hp6B4/um5yzdXXctd73onjlOg6fARBcPF6NfJFD0eOHKalsYpUshvD0PAHYjiCjq34CBhpsl0v0LzgjXQdf5HOrj6a2+cQ9jfxra8+TFNjggvWXoRbTNFQZbNhWyc1CS+d+4+RLs5h4cKzONZznLPOuhifN8ZvH36I8xbW0jWQpbpxDQIqhzp3E40HKKf301xnsnnDTua315BNZWltX0qxkEfXHJJFk+Yl64n6DQYGezAcCUO3WLKiie899EfCnio8Xg/BeC2+QILDhw5y/Y1X4wn6aD37Glqa6ujc8wJ2NkU2buDTzqI5fg5dRx/gj7/fTDwcpVAUaGidSz5XQBQd0qNJdF3FEKC3P8lX7v0Evd0DfOtb3+Of3vo2XrPucm654VbmLQjQ2hTnvNVXEDaqkLQCjY3tPPX0i5QzRYqjSaIeeNsH/w3X9CMLEpLj4ojjQdXx391TrEtmaZ+6JQonUg/FGQDFeOrPKWbAU7RN6fcUjDJgglE1nV46Hrg6tXrmlF5eVftM6uX41C1Jf3ke39+du78hG3fuVEUdq3lx8sjC6exEBG886jF7PtyryWGbpGO+ehrl9DGO5QmO15ib+TnN2WYbqzvWMLNt0mE5oWXad5OooTMxDtd1QBQQBOmU4zpRBXTG9pg0pyAK0yI80xG16ZEh23aQZXkGnXWWq59cfU2MZvzc4zdmDAMEKqUdptM4x2/cOEVyHE07GY12ercz74Nwmmdp6dLF+OZcOEbTTExvHEfkpn2YBdmbnpPnztKzM3EfRArFIrbl0N8zQqmcRjc1LKuiKOhikR5NMTSUQkDEUA32dvSSiMdZtqSZDRt3s7ujl4vWLOS5F3bQ2ljHocOdLJhfj9/v4/hAkpa2OL19Kbp7hvGaCqoms7/rCAvnNbCno4do0Et6NMuGlzoIeTV8fh+bNh2gsSZKOKTyxz/t5fwV85EVmaM9g7S319HeWksk4gXKxGNhRlNpvN4ADz68mSVnNPDS5gPYtoAsanR19hP0G4iKwONP7aS9NUFDY5y6M29iX8cWItEq/vu/v8rrbrmB5196mhtuuhEklc9+8bNctO4qXti4kc4Du7j1dVfgD4jkcxl0w0vL3EVk0jk2PPlbqqqrcBST5oYafvm1f6fnwDaC0VZSmRKSpFXyzEyTcj6D3/BVnruK1j2+gA9HBEUxccfqs/m8PsyAiagIuIKNqIgIjodMJoPh1Si7FvmsxL6ubmLVcQb6e6itb0DExHLzaIaJZbkoioJHVyuy8vkiVtninBXnsXL1apYvP5Obbno9L760ibPOXIqqGhzcf5Ddu/ezeMkChgaPo6gGritRVVWHIivk8zkMXSVdKHH46D4aWlvxh2rRdA9e04fgwo6tW1h+1tmEwiFK5RKyImJqHqyyRCBcj99XDa6KqICsSuRdgZq6RmRBwspk8MgW3kAYWTPpPbiPn3z3a1x0xdWUZA0VC3dazcmpz33FRMFBwuGN11/HTVdfRTgaHQvYKOzac4DaeIzPfOh9DBzv5czVF1TyagHXtZEREVxwcKiqr2P+2cs5//yLWTT/TAaH0rzmpptRZWVMkZcTcpUBNFWtMC9wK9F8NDy6zOOP/IzFy9pxLYtidgRdzGN6/QRjVaRHRxgdGcQbMLHsIqJbIlcGWYWaxBzuv/c+5i1q5Sc/uZfb3/gGNDlIOFxLNBrnt79/jDnzFhCMxgGXN73xXWgqnLliGceO9mEEgsxrr6O+9gyefvIZFi+YQy4zxI9+8gir117EsiVzUXJ5du/ZyeXXXIbqcclncnzpi/9Na0sz6y5bS3//MWqr29EMCAUT2OUipuEwPNRDTaKJdPEIsUgNkqihKSrJwWEMJYBmSBhGFYoqVESmRBdZF9FkyBRSIAmIsommGViWimNLIMgYhgfbKSKKDobuoVwuYVujhAI6iq6zb/dORBUWnn0OQ4ODHDq8k8svuxFZtrBLIv5wlFRuiM0vPU5NwkNtfRxvMIzi8SFIEInG8JgGA4NHQHbpO9ZPvLoBIxbFo8YI+hQs28KMxpElm53bdxCtWoCm9rLqgmVs3b6L6mgTmWwSwzDYtu0o0WgARfajqjrgEvAFcQpZNMmgr7eHw0cOoHt0RkaOkhlSGEkP4lFVmprq8Hh8fOPr91Hf0IimSnQd6EaRNZpb2ikWy3i8fkxdQBDK3HzLzfiDYdaedTF3vv3NeBIhDE8Er8/A9OrYNvg8VZREB0dwx9grCoqnBsvpZ3BgCwOjOk/+4UWKls2yZfO55pq1BCJ+nEKOQqaAP2zy1W9n6Eh28OLzSd5w/Xl0DnRw5zs+yK7tm2mursEeeoZcZju79soEE0v46Mc/wBtuv51HH3mC7XsGiXoHWbLIopB2kTwWtlLAK3pJCRZuzmY0KyJpQcI+H4LbTWroOFaxxOWXnMevH93EksXnU9UUIz2UIlEd46knf09TbRXH9u/GFSOo3rk88fQLJFwQPEWygIBInVdCVw/zne99CdVYxZZtz9PWPI+gGaCnuxcz6GXeoiVctu56LlizAl/A5ODhI4TjCbwBD1u2bWHlmguwlAAfeu9dXL7+Kl58/kWCgSBoCkd3/onuowe46ra3IQogiG4l6CQwlm/HGHo3iZGdlIY5FvyrqJCPB2WnODWzrj/Fyr4nRcmm13qeTeNhqpN2YjD7ZDTO8bbZKJOns5PtM3UenzQHJpTOp6rc/6WUTPi7c/c3ZSfSMk+Ww/ZqbLYH/cT2yQjKq8+9e2V2imv4K9WsO1Vvr1rRaMaYKsyy00XTX9n/yXXcU0a7Jvt0kUSRgcEBFFmdoB1O0j2nn7MyeU5Xr5xKt3Rdd2IWtixrBvVy9mupjEE6aXmK2a9COEXbdLvppuu5/8kuFoZTJ93nti/vHMvTm+64TnY3/gMyu8wxgCSK5HN5XNfC5zPpO96Pruu4rszgYB6fN0C20INpBshmsghYtDRG8fh9jI6OMqepGqds8eLmg5y1pJVy2SYQ9JPPWURjoUrNJtvi8af3UxUPEI34GRoeZukZLQiiQFtzgtFUmtraOK1NCbLZArqhIQqQSAQRRYHGhhp27TlEXW0MTZbwjiFW23YeoLY2iuH1Egr6KBaKLFvUiig5VMW9tDbHiCcCRKN+RElEEBRc26GmNsaDv36OK//hLi5Yu473f+Bf+d+vfI3R0WHa5zQSDgexiwWuufJy6qo9zGmuJuBTGE724+aTlPP7CPgVAv56+o/up2nJOaiqTvrYflqXXkEquZf2hQqRwCWIukG5XETRRWTZxuPxjAUKJnVPy1YJVa7UcJMlEUESkSURVxhLKh9LVtix8WWK2QyqpOD1eFG9XkJBP6P9+xk+toPjPQMYWhBXtpAUD73dncSikYqCrOsgIKJoGi+9sInGhkZ27dyN4VFBcJEFFReJLVt30do2h3AsiO24mKYPSVEQJZlyuczQ8BC5QhGf1yQaiyBJIrlsgcGhARRdQ1V1wpEImayNx/SgqAL5YgbHkXjuhRdpaGyiZFnYZQtFEpEUCdu2GRgYpLq6Co/Xiyfox5UUkETqamtZtWYNZWQkWUGYdW6dMSdV1kvccPONqIaHYauAI8jICOi43PeFT3DgwAE+9vkv4CJNO8v4MkoUBFzHISuIyIYXX7yGOcvPRJVVynYlh1U8AVmvzEFTi+4iSCg4/OZn9xJVMtTX1lBiBDNYi2rOw3HyaKYPj0dH1MzKv9q1yCWP4w9WoUgyrmTQPPdsPvdvn+HzX/wKZRs+9pEP85533UlX1yHe+k9vpbolzt6d+4nEIoSC1ZTKaZYsX86P7nuQC9espK4ugeVatLY18+yGFxgaHOX1N9+CJAi89673cMUVZ7LorMWMplMMDPRztLufa2+6iVA0gW74iUVNDh3s5x1vfzuJeCPLli0jEAri0XUc2yad7aVsOeiGTDo7RCRcjeAK5EsZSgWXZHKAQrFMMBxElCRsy0LXKvmLsqRQLJYRXJlcLk0iXkdfzwCRSIx8rkQgZOI4RWyrgCIL5MoOgitzz93v56bX3YouK6iaiGPJxKt9eDwmx451USjkOfPM5YhmDBeZkeEUuiaRzReQJZfRdB8jFfrPMAAAIABJREFUqT6qqhoZHhrC5/OiKS7FvI2sgO0IKE6R9MgwIX+MQ3uO8eRTT1Fd00BdTQt33vlurn7NG3h5yybOOms5kmajqX5EwUbTJNKpQW57/b+wYMFZzF0wn3h1Na5rEwlXYdmVMjN9vSNEggFCpkZ7YxV/fPoJgqaHT33885QcaGtpIZ9PUyhmyAlqpcyGYzMyMsgV62/kE5/8FFdfeRWOa3Nwdw9HDx8gEvbglku4okBmJIfX9GPZNoo3jOIWUawkhaEOegcV3veBj/DLRx6hpb2ZZHKANWuv5PY3f5gfP/wMyxYu4+KLl1IVbyeZHCVVslm56koiPi97t/wKr3GUQtll+epbqK4/g0vXX8zNN72WD33gQ9x+57tZvcJDXbVAOaei+BwKBZdyegBPMIihxRAkH46r4vPH6D28GY0UsVAMSSyhSQE2b3qeWOMCYkGTlzZuYeX5axjoG2T3vh0sWHY2gUQji89aQ2lEQTST9PVsJ6KGCdSXifrraYjUkB59jLqqBTz5+0cZSua47LIbSZUyeP0Bvv3Nb7B4wVwUTednDzxAKBTi0Ucf47W3XIeuSNx7733Mr6uheyDL2suuZO/BDu77yieJhwP449WsWX9VJbgtTjpBU5272X5vT7RJcGFya5b2abPdZH+z28nWx9O/nzprnsq5m/z2xNp6J/R8AvDyysoynDCPCsJEQXSorFNeydrwldjfnbu/IZvp3M3G7Z3MvTq1zeQhn/rBe3WO2qRM7cmOmfmynMYlelW5dtPtxIjP7Ajk6e7Z1Py/SpmBGcePfcZr7U2LZo/dvkk36dTRm1kTdaegaOM0zfH77PF4ToTppwWCpqN9E7l3nBiVGv+MU34d16lM2lPOBQKOY4+N4eSO3cmu9GTu4sls6bLFyI2ruOWer3OoO8XKeaGKw+Y63PblnQBcf06MmRz6SRtH8MQJdHI8H2ACgKRCGUyn0ri2RDweIZ0uEo17UBSZYsGmWBAJR/z4vT6y2Syy4vDS5sPUJML89o9buWDlEhIxP16fzsHOXuKxCJFokLJljdHTBETBpb29Bl3XKeZLCEiUijabd+xn6aJWxLEfSUPX0AwdVZXZsfsgXlNH03RqayNYVhmfz4ttFUin89TWxhAlkWQyhWlqDA0lcXFwbAvHcVFkhV17OonHw0hyRbgkEPSgKAqLFjRx8/u+wfU3XcPaiy+ipaWRjo7dhINxBNdhz46XSA4e4uVNm3j22Q3U1Tdz1orzMYwSo8PHGM4V0SPVeI0AJVy8wTCLz1nD0Z5udDXDY7/dSqimhapEjCNHu6iqilXeI7GCCrm4Y/mjQsWRcCdV0ERRoL+/n7JtYRj6GFIONbVVxKsTdHYdw+8PUC4WcMoOB3Ztpjam0zz3HIZTZRRdoFx2kZE4uP8QQwNJRFdEMxR0w8AuW/+HvfMOs6uu8//re/rtfXrPzKSShISEklASOtIVVEAQO5ZddV3X1V0VV1fXXXdXXXV/FlREsSGCoID0FgIJIYQkkJ5MMn3mzu3ltN8fd+60zCRB2ee3z+/xM888M/eebzvnfM/nfOr7g+tKPP7E49TX1zKvs41sNk+xXGL9uWczODyCoquVUEEhyBWKlRIMkoym63j9PhzLwXFMZEmp1ODzGRXYfwlK5RJDQ0k8Xg8I8Hi8FE1oaqoA3UiKQiadIRQOoKoKw8OjxOIxFE3DFmC5FfRJya1kmaAYSJICrjNdIKnuclEx9jiuWymcrRhYSAhZo+S42AMZ/H4/Tz1yF4/c930yo1luev9fYURqkBWVKl+cqtxVk/x9rkBzdSRXRUFgC6di/BnnRUfzzwowVPV/CRkskxefeYhFnTX0jQ3jC4bwhRNoukoxX8bw+SmVspSzYyiqhkulhqTh8WA7Jvv27uP6627CzY1yzXVv574HH+L8dWdi+H3EY/W8730fxOfRWLFqEY6To6mpkZWndmM7PgZ6h1jQ3YGgiO4P4AsEcByX3bte4/u3fZ/v3vZDfnL7j/g///WfnLT8VEKxWjRNpb4+gWNZlassZAb6D9Le0s173vcO0qlRWru6kCWBZWbJpgcIhtoI+OrQVS+lUhmPV2J4ZJBCeYR4rJZgMIDjVnITZVlmoG8AVdMply2EJFHIlZBcHSFbyJJOJpMmm81QLBaQZJfBwQEi4SiZVA4tkEBG8K6bb6Svbz8eXxhZcdH1IEMjBwgGAviDPkLBELZl03tkAI8RIOj3M5wcwKt56O09TDQaIhDwoih+rFIJF5f+nl08/cxLNLQ3kc/m2Ll1G3UNLfj8QYYHBznnwjV4AxKFcpbly1bS0BGgtsmDkHwYai3Dw3sp5vN4PF4yqRzXX381mzY9S7wmiKKWUSQfiuRHNYoospdIzIs3oJHMDOKPeljYfRL+cJCGpnYWLJ7HM88+xSmrVuO6lXQUVVL42R13csqK1TS21fLa9p38+Ps/5rrr3s5YqkR7Vy19A/sJ+WvYtXMzm17YSnNrMzZFUikTy/FSE4+TSx2iJupj67bXWLPmbDKZNC3tnRw6fICb3vU+xrIDfPIDlxPyauzb1Y+jefngx/6K++59mEKyD61wkGC4wNZXLOYtvRqrXKSv/wgrTl7GH//4CJaT54l7N3LR+qXonlFS2Vre+4Ff8s5rl5IvKCC5RMIhJC3Iw8++Qld7I8mhbbglmaI1wJYXX+OyC87m6Wd3sWxFG13zF6LqPl5+ZSt+f4hETT09hw7T2TEPIyjzwIO7qAlfwGPPPE0kfir7DrxCfZ1FV/NCwspedCOJ5BG89MpWfJKHb37j//Cum97NP37mcwyODPCBW24hGomzbds2FnTVcXDvDroWLeLH3/0Pntr0POvWnc9n/upj3PSmRejRGj75xf9g996DROLRiVdtJRd3ZkrEsZUbISkcjS45JdPOcWYN35xUzyZ/Z4IAzqXcTY7jThtrav+pfG1CYZsiXM11TnPl3c0ESJml5/T2Yrx9NUDKrda9+4vn7v8rOlFAldk31UxLgnvcPlNbnbivhTnnmNLiOJ+PQ38WaubsZ3JchXhK/t9Uy83R04lJRa6KLulUShxUy0ocSxk6Fk0KXMf22FbBU6b2nEnHG6NKtuMwtabMBFubsNQdRzE/1rGJou4ndj2uvfZqzrroctSOc1DazkRuXcO1117Nb+66h6tWxY/bfzZDSGWNAtetAK4IQJIMdF0lny0RDjegKDL5whjRcJiRZIbNW/YRDRvohkB1vRSKZVYun4+qGSiyQ7aQw7IdMpkiW3fsoqkhwd69vdTUJqitDaHqCpJwSSYLPPzYTjra6+nqaGTDpq20ttRTAcCBkZEkgaCPluYaPIYH27aZ8KRLCulUmkg0jKRUYOb9vgCSLPAFDSRVQZM1igWLjZv2snrlUlypYhAo5rPYbglN95DPF9k7kGPdFW8iEYsBNh0dTfzqFw/Rf6SH9tYIq1Z0MG/BKs694E3U1bfw8GPPoaoxsOoIJBZS17kE0xZodprXDvSi1C1m8+N3kho6zJrTPoPWlmT4cJJINIame9FUA6eidiCohJ5Mq21EBdVRVzWCwQCyokzfR4rAFRKSauAg+OoXPkdzQxe/vfuXnH7acrJyHa7wMDx8iO98+9v0Hhzk7LPO4Zo3v413v/u95IopBvoHkIVMKBKjqaGB7dtf5qQlC4kk4kSjYQYGB1AUQVNrS8VwIiR0Q0fVNEzLwrIdkskk4WAQsNE0AyGrmFYZx3XZt28f4XAYn98HQLFkk84UCYSCeL0eJEVFFhKOaVEqF3nyySdYsmQpiqpWyga4DrJQkV0XxXURrowp5PEIZIejORoICcpliyO9vWx87nl6Nj7G4L5XGT70Ktuee5yBVx/HcWS2bthJRI3znk99HE+oHo8/OJEzPFO5m3hWhIUtKZiShCNZVMADpGl88VgkI9j0wiYeeOC3vP0db6O2ZTWj/R5SyQJev4tuhClaJqoMdnoQbyAIsoHi8ZEc6cfrkfB7Fdrq67j4vNOp62hj38Eeli9czIG+UW699ausWnE6D977ey665EqCwRjCDTA6MoIvGCMWSnD3r3/OipMXUXRUctkMjU21dHW3ccbZZ7Pu/AvQDY2TOpaTyliMprJ4NJ0tLzxFPBoln82TGk3S0taM4ygIJUfn/CaEauDYZTTFRpWKDKXSuLjk8qNEYl4O7yvz9JNb0DUf4UArZXOMYDCMZTvIsorrOMhCQjc8CATlYhlZ8ox7vzTy+Qwen46uK5hlm7raBvLZIq4t44nWoOKyfdtzNLdH2LNrAMvKoWsBCqUhhKRQyBexHZdsNkdHXS3btu5A1lXqm+uwCibRaJRCoUyipoVCsUTQ7yOXz6G7BZauPBNXkQgFQ2RHc/ijMWxFEPBJFAsqqqrjuiq3//he1qxZx+DIARRVMJbpIxxSkYWKQCXgjbJ/107WnrGeXLKALnt59IknSadKGL4cxTzUJubxu/sfZfmqc5C9cS676CJufv+7qGlpoq7Oz8KFC1FlD8W8S8KvkBwc5sc/+iktrd3owQznnrUOXRj8+q67OO+yS0nl+4jE/Ph9jWTTBzjttLMo2yVe3bMVXfLgDc7jPe//MG9/x7WEpUMcPJyipW1BxRuYs6ipNTh8aBtvvfZMekcD7D6ymzVXrOXcsy7lyOARxkbTHN79Mks7bBTfAM3t51GQ4/T29LB02SLuu+9eirki0ejJfPxj7cSiQxQzEUz8nHfOSXi13VgIiqaFXSqhh+sJNXRTn4hTyL5CLNhMrtTDKWsWkR/bz7PPb0HoMsga555/CV/+8q3URZvZu2cXJy1o57///UucfsE7UP0mY8Uij2/o4aSTGxnu1Xj+2T3g281gIcipy9qoZwi9dyuPPr+Rd77nOv7hs3/HKacuZf36S3jhhU0cPNjD4kVLGDmY5rkNL5K1vLy4aSuBUD3r1p3Eym4JrzXG6nWXotd0EgoEUDV5XPSpWkun84PjyRmTspIzYUSfytsQ4oRTfU5UuZsJZzdb/9k8edP6HiVTzJS9Jr+vRjK8HuVu2kfxF8/d/7d0bOVu9s02cXSGJeHo+OOq4nC0EjjHiBO/R2ddzeVBmb7Wo/+fnWYiVr4e5W5SGankw82ljswlnLiOPel9EwKOBz3uThl/PCdv3BEx8dkd90oIdxb2MpHDNs31VhH4xyF+ZyJZVqnq0atMfWwmMieik5heDqHSbmZuj5jm8Zp6DlMRQGcPHZt6rY6fOwmzKIEz+r3lmquwDjyFkKTxl8rMsMxqERln/G9VqWPi3KreTCHL4NpI2AwO9pDJW4TDEq4pc6ivn+amBn7/5CucvLgNyxQoskMk7CdfKqLpMq7j8PN7N9LRWEdzUwud7XGKpTLPvLCLzrY6vF4dXImDBweJxQKctKQJIWwOHuon6A+y/0A/8XiQfD6PYSioisL9f3yBtpYElm1x8PAA8XgE17ExPAGKhSKaqrNvTz/xRBjbNlFkDRkZy7FBgnmdDUiyiyS5OLYEkolh+HAcUGSJthqN+qUX4boOmizxu3t/RzHZw5VXvYma1k7KahSh6piui6wrtHe2E4/FSTQ3EqqNIeHi8xikUzlUVyHh91Lb0M2Cky/AX+8FK0A4XIvrChRZQTeM8VzHqvVzErYIwHKdCvisENjT0F0rJFMJFfR7vMhCor1xAV/4p8/yuc9/Ht1fg7At3nzplbzv5htZe/oS2tq68QV8eH1+WlvbCdXEMXx+/KEgmu4SjAZYuGAhvUcG+NtPfJLzzzuP2ro4Bw/up76+FtM0UZVKjnMhV0BSZDRVxevz41gV1L69+/YxNNRHNFaLQKI2UYtAxrUsdLXi4UqODtFYl8C1bRxXIEsSrhA4QqZrwSKE7E6EQUqMh1UKcMZztNRxfl0Nq1ZklWKugEfXGBnoZeDgfr76d+8nf3gbS5pDHOnZiqEVKecH8HtMli5fzcMPP4kvFuWad99IQfKhGfoUD1v1uZ3C26uPnBBIuONVq8bvxtR+VV43Bx81LYvWhjCnrFiFL9bGawf7aWjyEQwayGoYWQHZLpHPDqBGEmhaEKtoUyomufv2Tbhek1C0hfnNNaj1jXz76z9g1dIF3Hb7r6mvreUTn/wIa89axX1/eJS3vPVy0skcW178PflsnlC0gc3PbeDU08/An2jggfseYv6CTnTDgyx7yOZS1EWClHMq3/nRd+nqPpmOrlr6+o/QtXgZHi3I2EiG+tZaRkdTpDJJdN2P6+gk+/egCYMNzz1B35EiC5acDAiKZYt0ukQ05mXxkmV87tZ/5qx1pxMOB7ApI3BxHYHmmki6D9u2cM08hmZhCgW/L4otldB1D4ZuUC5kGBzqRUUhM1Yg1lrPtuc38R//8u+sX78ab6CFl7ceZF5rE7Y1SiTRRsjjZ9MLr9DS2oY/7CebyhD2q4DEj+64m1gsRM+BHXTM62I4WeaW993ClVddQTDgJVUoIyk2ZtlCVQw8WoCx1AF0vUg03EgoLJMcHkVWVBYsbiTo1VBkF1lYxENNuEocWdPIFZI4ooShC4oIArFK/c14SMEbjBKO1CDLSQYGkkSjQby6wte+8hW++91v0zvUi+zmoejyt5/4JKtPW4ViSKTTo/gjcdaefTZe2SYQb0LWZGrqwmx6biPdC5pprp9HX88ovoCNUCKUzDKKqvHsUy+ya3cPC+fPp6m1nbb5p5AeS9NVn2X79qcZyUtoJIg2+CnloDxci+7XaG9bTFBrJlUskzPTLGpdilHeTLymwL0/28G6d32Rr3/jv1mx7CR84QQnn3Ia3/nWf3LJ+jrMoX5ifgnXLKIaEPIXsR0PHk0nHIwiUyZvCn50x/N0dXfT1LqY0b7HuOuel0nEFpEIyzy5Kc2vf3oPXd1riNQmMIRCoiVOfUsjJdemtbkRw+vwytbDNLcluOCicwiHmhD+OuavXE80uJgXX9xJvqhQMFXcYJ7L1y2jPLSF+S1hPLLEsw/dhVcucNfPf8RlF59DMl1k48aXGOjZTSapcMn6el566k4iHhMLL9EFZ1FbV4+sSiAruO5k+o4zg2cfrQRN5fligm9U3/MzlbuqV22izSxS55TRp306WradnoM3ExSKCblndqWwOr+Y5byOJX9X/srMlO2mIp27ogJ0V/2VqMgrsiSqjrs3xGsHf1Hu/lfRiSh3M0mSRKV47AnHJc+VRDozx2yyvXvM8WebUUwwgbnr2k1pPyVfrPLF6/d8Hc9DNKdy544rl9WE39c989EkS3LlnKpzV3+latHxmYrS+FqmhAnMptzN9AjOfk+O420TlXGqlR2EOLZVfirzncHm3pBrBVPmP8b9m6yPd/ReZereFuOvhQnwlepqK1Q2y9iWjRCCeCxMPr2bUKiLQwOH0Z0ggyNpzjtrGaoMhUKOoZFh+ofTdM5rB6FimWVWLutieCTN9lcP0twUxyyXWbKgFUmSyOdLFAtlXty6n4ULW0iOjhGJhojFQ4TCAerqIuiGgW5oSELCcSQWdrchyzKO41BbG8N1KmUDntqwg/nzm7Edm1g0jKrLDA+NIEkSlmUjZFBkeVKNEi64ErJiIEkVlLF3fHsHV7z3U9hll0P7DzDY10N7Ww1nXnIllqpUAIimXHfXdTEtG10zGBlLoqsqlmnh9fj41Z0/QygK3YsX4w8GKqF+koTh9aGpCvlinkAoWNnnTEWXnW7iUBUVWZ4a7ju9bIZAQpJVDuzvYfOLWwn4Q1x8ycX0DwyRqKnFAlafuoa/+uuPcsEFF+EWK6UYSq6N5FHx+7wUi3l03aBsWSiSwpGeXsZGUlxx+WWoqkqpVCSeiIOQGEsmMbyein3GAcPQKRWLaJpOJpXCMHQMj059fT2OA/l8gWKphCQJRkbShENRkGRe3LINTZEJx2JUuErlpV3NrQSnYhKpouQi445zAReBISSeePQJ8tkcAa+PJ554nPRIH7//2ffoaggT98Khg/tI1NQiKTqJxgRef5gHH3qKPz78DJs3b2X+0jO44MprKCsahmYcI5JgpgV5ajjS3BxkLl4hqzpF08W0YWwsi0c3UDWVsVQWywSfpuCgo/nCJIfH0FQf27e9RCDoIAoF1p61Bkn28JOf3k1tfYKPffiTrDh5IR/66/fT3t7J3/7dJ7nggkuor51HPBLj4gsv47ob38wZa87GNHM0tzfijwRI51IsP2kBY6NHMM0SsiQTicR5ZcvL7N/fx3U3Xs3119/E4iXzaO9ox8xZXHnx5Zy99nQMH4R8EcKBEPt37cFreHjkkadZsng1jS2NzOtYhCUsUmNpAn4/0WgUNJV0OsXF55/HBWev56abbyI5MkogEMI1BaphYZplVMUANIb70/QODqNKJpl0Fk31cuRQP5FYDH/Uz1imhD+UwEVi947nSY2meG7zBlpa5zOWHmXR/E5kIaPoQeqaO/n0Zz6EzxdAskNY7hiaN4RQ/fz9p7/AVW++nMaWVnKFMv5AiEXzGjnUc5BobT3+eJxiwcQxHTyqi+b14rh+vN4acmaK0ZE027btpb1tEbm0SSwWxTB0UulkBSBJdcmmsiTitciSgtcXwxEqxWIGy8yiGH4SdY3kS2W8wSihoIbr2MQicRYvXIRQbGTdwLFMPHqMSy+9DFUTZDIj9B3Jc8cdd7Ji+TLuvvtXDB8ewm/oDIwMc84FF/GuGz7A5he2cMWVV5JKZnBshWymgFkusWLlSlJjaTrmtZBIhBE41DSfxGDJoTZiIwae5MnHnmJh57ko3lpeHdzJ2MhOfD6N3XteRZZ19m3LcNfPPs3ybgPJKZJlHv2jghtvfBfFXJ6xVJZyocSTf3yG3/xhB4lojkXzwyiEsMhiGAqKCqZVQtM85PM2hj/G+jOvIhSrob9/AFEaY/+hfaw84y1kRvdx/jnzWL8uyLYtB/n5T+9j+YoOrrvxFq655u0oSCT7+9G8Bv/1je9zxRUXMzKc5Kv//p+cufYc7vjJT0g01rHmnDfz9IYdDCV1Lrn6er72b1/HH2rgqSeeI5ca5cL1nSzsCPGmcxYhFfdjsI+V3WHWLPNx3mktNDabLJrfQmNDC2k7wikXXItjSwhhg1NBdnSc8Xpt416micivGbLIBArkDM+/AKZ6/WY3xFfe8VPMTMfkX8f35FVGm4orcSz8idmcIidOM9sLZFmafMWKmSGjk3I4TNYWfiPo9Sh34k8NN/sLnRgVC7ljXODpQu2Jht0dj14fxP/rp0q9s6pL3p52TEypmfTnkpDkcUCFyudJ/9KUS1opxDTefjp65lxrmHWcE6TJEIapFvBj3a/XG456dPuq1b+a/DzZWkw7XiVJqoahHjvsauL8q+M6fyYvmLq+ExlLEpQe++fxxUy39zHbHj5KCB2fQ7jYloNdtiuWaDdFz5E8wZCX4f4c/lAAIQkcu4yhCrw+g517DrNo0XyEJLN39yHCoQChSAhZhtt+9jjvfcf57N17kLraKE9u3ME5py9FkmVkpfJ8qmpFAXMsBxcJyzTpOTxIV2cTtk0FwlquFAI3yyYej4dSsYgrZAyPiuuAbbk8s+EV1py+EMd10XUdhI1ju9i2g2WbGLpeOTfLxrLLvOe2g9x+23exnTKyYqDpKocP7aWhvgZL8RPwGLiuBa4zcUknboUryKSzyIDH8PL4E0+zcvlCgrEItqKiODaWC0JSQAik8XvgUsk3mvo8TX0OJCFP7tE59rtEJX/xy1/5N7Zs2cpvfnMnlm1PAALZwkIVKvlckQ3PPoeZSeLKCouWLqO2rg6UCqiQazlIqoqmKOzasYehgSFaWhpIpsaYP78LSXKxHIf+gT5a29oRCEqlMuVSmXw+TywWJZ0aI5GIMTo6TH9fH23zulEUlQP7D7Bo4XxKlo3jVDz1pWIJu2QiKQKP3wvCAVc66ll0HRtZVrFKJdLpFIVCkVQqxcJFizmw/wC5XI5QKERzUwOpkUF+9N9fZ2xkgMvedjNLTz294olzTAKKRqlkkhpLEY8ncOwcFjqupmELG+FOCg7VR8Rx7Iqn1J1h/Jip650IL5LEBN+oeGoVZMfhpY0baOkIc2RokAULFrH/tb10tC9AN0IIyaFv5CXcUohPffwr3Hj9TSxapmBbYVSfhD+QIJMv8bbL3svXv/ZZFizp5OFHnqeuLkr3wk7sssRr27bTN5Bk8cnNxOPNqCLPWLFEJFaHcCRkp8hYepiBvlHu+92DfPBv3o1bKuM6QfqG9rJ82Zkc6d2N1wggKwaH9/Twtre+hQcfvx+PJ4iqVJ5XRVEolAt4tDBFa5ByCYSsYBgaqbE0wVAQ2xYVhEzTxSw7SLKF16eRTmXIZcoMjRyma14Hjqyj+yKUMyUcYYOZRjcMhofSBEIxbEwyqQyBcBRZUXjmsQc5ZWE9qr8FfBKKFMIumdzwtrdx+49+gBHx8+LmV6ir8xMJh9EVD5nMAL5oPZriY/fOV3Fdh2hdGEOTGe7vIxIOIas6hidAppgkFm5kw9MvsGrVIoaGjpBNm3R0dCEkC0uolIsOuVRmHNjJxnYsPB6d3bt20bFoEVgGsijT178Hw1ePxx9GETa50SH84RCKkOgbTKJ5Q9QkAuTTKUr5Ij379zNvYRuO5AM7g6ZrZHM57FKRaDSMI8dxzQIqNtu2v0bUlyCdT+IN+/EHIjz72CY6O5tpaq5DkQ30oEy5bFPIFYlEYwz09aJoDsnREWLRWnSfjoSBXwLJytLTv4ENTz+Mx9vNWCrO6tPO46mnHmbF6gV0NUf4+U+/w8qlURpiKsmBl3nwpUY655/GT35+Jx/+8Puob44j7CI//q//Zsgu0h0pIZW38ZYrr8OxR9B9Hiyncr2EDa7koeiALNqoX3EuNjr7n70XT6if/bt2sayzjWzaIh6NUBYyPSMDPPlEkpe2pJm3eAEXX3UxsYiMrNeRT0t4g4Lt23ay8oy1yI6L5Aq2vraDVScv53DPYSKBWvYd3Egi2ojI8A1QAAAgAElEQVSiRnj/e97L2lNXcO555/OlWz/O+nMWsaCrkZdeupfh3jzLl9WhSRrBSAulQpGgP4HkbUVpXcvJK1aB5FCtaSyN8zJ7IrJnXCmZyUBmyjmSqNTIO8pE7M75XwX/wJ347OAiC3kyxLxqCHdnGhJn512zt5+c8YRA7mbMPcssM/7O6C/G35NVcap6/SaG+/NLIFRJ040TVg7+4rn7H6bX47mby2Ly+umNV9jFFAvJtPyOozxPx/fYvJ45p7veZ7FAVxNXq3NODTOacw3HtmQfZ1WzfjO3ffw4XrfjjA1MWuqrkbPjv5OhCzPugSQqOYPHyamZsI29UR7OqsB5AmOJcU/oT2//MUvaIkcrd7Pt4TlzTF0kSWFsLIMQAkWLY2gp8skysXodVdFQFAmfVyeTzqHpBsGAv1IzTFUwizbxRBwhOSgKHDgwSCLqpb4ujqqpdLTVoRsarmtiePSqSw3XcbAdG0TF0+71eBkdGyYQ8KGoMoah4roSqqrgArKsICsy4GA7Dpbl0NpcjywLVE0lly0iyTCWTOEPerFMi3yuiD9g8OCWg7yQX8zXvvYVDN2D7tGxVAnbFeieIKoWoG/X/kqdOFWpeG2qj2j1QskyiiQhHMiMjeE4gj8+9AdWnrYK0xVIOLhCGi8wruBgV4pmV5LGZtySCUlgmidp7vsuoyoKS09azluvuRZXKSIrEiWriCs5OJg42OiaSkNDI4uXLmT+gm6eevxJhnv7aWxtBcByHDLpLE8/vYHly5fT2tzCL+/6FatWrUTXVYQQpDNpYvE4jHvU/D4fBw4cJBaP4zgOuqJgWiY+n49wKIii6jiOQyAYoFgsoegCR9hoikypXKCQLROJhXGFDTggKnaMqcHtmqbz/Mbn0KwSX/7SFwgYOn/8w/2cdcFFRGNRWtraMF0HXVUw/H4WLVvF+kuupL6+Hln3YbsWPhXKkkEJB0/IQ6qcRmgxhKzhYiIogqtO3NQqZ5kAPnCnPyNHK3cnQGLSsi5RBmTK+Rz9+3bTOW8h4UQrg4MZOlrmM5wZoZzP4TMEfm8LA4ez7Nvbw4UXrMVWPdz+vYcoFkbRVQ+J+lrsvM7pp53G7Xf8nMsvuwJJdsgXhvGHVNLJYbZufYV8Kc/8Bcsx8ylcw6BkCcoFk7t/9XPmdy2gpamdclGwfedufnHHXaxdcyE19R5yGZNiOYtAZiyXQVM8/OQnv+SSy68mGPdjCxgaGUHz6DhuDiFA9RTJFzIEfFEkWUaSJXRDQ5Qhk0ui+z24ioZXcxge7iUY8KIoMvWNrZRyY7iSiyW5ZNJjDA0NEvLq7DvwKnV1dYymUuRKeQqjZZLJFEeO7GFeY4CaqAfNX0NZCPzeED/6wZ189K8+ynVvfyvv/sANSBq0NHSRSg7Q07uZpkQrQtE5uG8n8+fVMdg7TGNrIz6Pgp0bxV/TQDadwSrkiUV1JFenvnEeI6kkjQkPMEo63YfsBjBlGY+h4vHJlMqDePzauAc/RDgUI1soYRUFuselXB5G6EFkRUdyZJyyhWNn8cgOhq7z3KbtNDZ3UswViIUDFLMporURTFtFUwUlUyfgTaAQ4l++8C3Sdh9tzQl279zO08++wNBImkDITzAYxKP7WDh/AcMjfZTNHN//3m2cetZCBgeGsEzBUH+KocHDjIz2EgwGGR0Zo2fvq3z5H/6BlevXU443oYlWCgMq8xIFGutewso+j1TcR37oZfbt2Mdpa8dorl2MI+kU07s59bJP8cKzG/jHz32azZsOUVtXi6E47HzxJRTq2fzoNm750GV4o2NoeLEsCITjCFnHtkpYLvj9JppkYnm6yRfDNEe6yOWOUOcpUC6VCdT5GE0eojAGbU31NDfJLO7wsWBBEze+628JB7t49Ik/cuYZ51EuZwlHYoQSNXzybz7BmWvP4rGNL7BoQS3p7BixWC1GAMIei137BkgkGli2dDELVi2lrrad9sbVRAKL2bLXx3kXfYIHHt5Ky7x11IQT7Ni+g9HhYZZ2d9Fx0umoug9XnpRLXMR4ZEaVT0z3PM3JQcRkkaLpMtD09lONStMBWECRlYki39PnnB52Pje7mktemOscJunEAQonPXCuO8nzJw/P5bmb3v+NoL+EZf4vouMDqkwKtUIcezOeOB2tcE11S08+xK9vxKr4Vvmp5nfJEzll0+rbzUHVPLpjz1VhE5MP0ky2MeW78SbS1HGPkxf2etStmWuadQ1zsLZKq8me02vQTadqbt6sx5zZPbHTlDvBOABMxfJ+IuirU9WpOdmaNP3+HvPeuXOPNX2cimIkgOVnX87ozkcwNGV8jMmdNqXzHIpdZbaqp8Hj0ZAUmXx6FMMXwxf0M9g3SCqZJRSLI8kK5VIRy3YJxcLImoHkynj8Gqrs4LgOkqwyv6sOVdV5eft+6mqiWJaJqqnIqjqxbgAhSxSyRVRVI58t4vVU0CwVRUWSxTjCnhjfnxJiXOESVPIMZUUCHFy3AkYiVMHAYJJYJIpbtnCKRV7d9QqfuDvN579xBytPPQUHZwL5tVwsousCjwGyDLGQn/79O1CdPL5gmPzoGD179hEPhaBUQsNDaniEgNcDjsVwepRLLr+0YmJ0HYSooJ9JUPnM5Mv7qFsydd8cIy+2esTBwnEsNI+MpDjggGNXgCkkBDIyEpWXp6xU8vZs16FzURfNHS08cM/91NUkSGfS2HaOxYu6QThoukxLYzsg4ZiQTeVJpbKM9R3h0J5tbN+6ifauxSRqEphlm5e2bKOmJg4uGB4vqVSWUqmMY4Mkq1gW+D06spAplkqE/AH6hgYIBP3j4d4SAgnXrSDsWq6Jaut8618+T1tIJZ0aZMniRSw/5TSSWYuu+Z04rl0pGTG+x11cNENDyBKurOA6NhISliuPI8xJ4ApU2Rjns1UwFnXGHRjP+XDH0Y6lSdTS8YJ3ledtvA0z8nBnevKEJE/jTwIVCYldr25jflcbyVwSj2FgGArJzCAe3YvhAweDkbExamq8nHXmUgYGUtz8zg/zT198P6tWnIljezHz0NyuEonEGEvl2PziZh55+HFe2rKddevWEKtvZ/WqJbR1tFC0Cnj8frY+/zJ1kTCbNz7FVVdfRNYqIBlF7vzJXaw7+zzecu1VjI71oikKuUya/sMjlPIwNHiE1rZWPvLRWyiXk+THUpXC9qaDLLlkM6MUCiWSg2USsWZGRw/jUQPIQiaTGuXVHbupqQ9XnlNbQVI0xlJ5VN3HyGgSQw+iaQl0j4fRwYNoUoB0qhfHkjBlA8mN4fc4eJUyNQ0xvGoRCikaWjuQ/C0c7ush5A8gC4VE3Ed9fSNvuvRSymYSVdLQZAVN1YiE6jBlQDIIh+L89I5fsuac05ElgeNYuLKK7Sr4/QEKRZN0RiGdGSUQtMmnRzi8fwONXd2gLkBTfWhKjkIuQ7lcwnUMiiUTf8jPcLIfj9+PrLpYpRLl0ggBbzOuNYYk6eTzFg/8/mE6F3egekOMjGU4ackCMPPongoibdmRkb0a+WwWWQJXmKiaTKaQontJMyefupZiViUY8XHW+vM53PMqq09dgYOFZeXIl0bZs28/pZLNFVddiKHVIVwV3ZAwrQx//49f5NxzLmZ+1xJ6Dw3QuXghV7zlBu6951fUhmHLpk2ofoWOJWvImu14Ih0sO/1aCAuWnnIuWvA0pPqLCPoCZMe28fKWHB0rFpAdLRNrqiEaSXC4Z5iHHnucjtYoz27cyNvfvgJyCnsOvoqhx8hlM5jlJIos4fUEyZckJEOhNDqAi8W2fYdo7DwLQ29G5FLkCr1IyPh8QXKlYYoFiWe3WUSjCj5R5LmND7Cw3Udjrcpbr34na8/o4tFHX+S666/jcP8hVq5cyFBvD80tLWza/BKNDUv40S/uZPXqFXS3r2BwqJ/G9noamxuRNPjdQ7/jppuv4rf33sXlb7mRQ31jnHHRDfz+0UNcf+OHePLB2zh0pEj3qpWAPCEzVIMQqo65uZQ7h3HcAcH4e2xmLpqY0nuSS818I1TGHpcDxo3Ux8OXcJgMdZ9NippW3XdKft1Mi/hsc8yJZTCDJkHvZow542diTS4T5/dG0V+Uu/9FdOLK3RtJMwXwyiacUJrGRZRZVzNnbbxJK0zl6IyNfBylbrLhiXj05ljblIDKo44ct17dlCXMUAZPrNj7n3qfJseeauWybHvCYuW67kQZAxcX13EriJfV7+a4ZtVCmY5biZU3yxbKeJ6Xi4vrutjO5NjHOyMxXgR9GpOucqiqV/R1omVOWez03yn0yX+/hwuX+GbvVy0+L2Zb8XSSRAVyO5cawxeMYjoyPsOlVCgQTcTI5gpYtoWua0iqMnFdJQlKhTxCklBVDSG7GLpBLOTDssp4vN7Jd9eUpSuKOhEKrBta5UUpSZimSTaXw+PRQVRy6aRxkBvHdrFsB1WRqb5shCQjywLHMVFlGUVkeO7FDfzT/QMEOtfy9W99g5LpIAmQkBCmjYrMkR07efHpJzn46mt4XZnNmzchXJenN2zggQceZKTvMDteeZnNG5/l9tu+z9NP/oEdr2wkOdzDjleeZ926C1E0DVnVyZdMFEmaCOmVjmeEkQSmVd2jcxk6xBTjRlWC4GjWcgyqGo/mzV/I4MgohWKJ+Z0dpDM5AgE/fX2D9PUNMjo0zE9vv53aaJz777sPX8Bg0ZJ57HptB91LlqLIMoqq4vcFCUX9aLoGgMfrwes1MIxKCQvLtNix/RVqa+uwLYd8vkgiET9KCJAkiUKpjFu0MUsOt/3w65xz7jruuv8ZrrnhZryhKC3zOpFlt6L85/P4PN5ZDDXHshYfw2I9s+8Uz7egKrhMyYMRs1nYZ9yIoyIfKuPu3f0akYCXYDRGNptBVlVCoSiF/BjBoJ9cpsS/fuWfufSqy+k90osqfNx081uI1oe4447f8vd/91kuveQyjEAZy7JJJYtEwlFWrlzC0mVdjGWGicQaEa7Fju07qW9uwwWaG1vIpJJ0tDeCazEwkmQ0mab3SIkzzz4FYRXJZnIcONRHZ1cn//qvX+Nb3/4RS05aSPf8DhAmfb1HiAWjbNu2k96+YZo7Ogj4dTRVJxyOYpkSoaBGIWeRSaXQNIVnn91IY3OUSKwGy5TRNBlNlbEdG0kSFIouydEkhtdPuewQjwSQFImyVaK+uRVNUdC0LMP9h8FVEY5FLJZg/6E+fL4wfn8Ay7IxSy6P3PcgDz/8Ry688BxUyUJRJXp7D+C4Lt5AiHK5iObxMToyTCIWpLa+DtM0wZEYGkqieWrIZnPEwiFyRQiFfPi8EtnkEPX1p2K5LpbpYBg2ruMiSwqG4adUNClb4FoaVlnB6wvSPzyALBmk0iOoSoCxkSPYuIT8Eb7w2S9y9TUXI1wdr9eH4xTp6zuCoQfQFQ/xRC0SHnxGgIGeEfr6hsBSUWUvoWCEV17axC0f/BtuuPkGcrk8tbU+RoZSNNS3YtkmvoBKfX0D4WAEVVPZu+cQ+/YNEAiHsKUi73zHLezetYex0TQNdQ3c9uPbWb5yBY1NNSRqEzS1LaG+vo3R0Tz3P/g4zU0B8uUk0egKFF8QyzAIKBbF7F4Kg/tZuHwxjzx6gLXrVpMtjpBOD/DSS5v46Mf/hls//yU+86n3YjtJik6ZgOHhi1/6LfO7E9Q3+Mlk8ugeBY+hkEunsQsZCoUUkZp5KN5m1HCOqF4gPTaEKgcolJPIig/bFnzw87/h4jWNnL8iwZoz26kPlVGlDDe89SrG0jv45R0Pc9t3v8evf3kXq09bwYLGVQz3DfPtb36DgNfPJeddzkDvIaJRP//8r39NKFRDY2M9Tz71OG9927VImsaDjzyCzxdmzZnnMpLax8mnnsp3vn8HPa++SmNrEwuWrMRRPZW6pGIy/sAVVNCAp/AFl0nl5Ki/VMuwuBUwqfG/J0JCVMDmZipdU8EBnXEDY6XD9JrO1f+qku30ed055dg/RdFy3eoap88yWctu+phSFQvOrYZm/r9R7v6Sc/c/TMfOuYOjJMY3gObKuZu0ZThzKndzjjlFuZv6eeL4G5BjN3OumTTX3DOPH3d8UQGmqK75RHLwTlx1nJ1mju0iKh6YKYwSKtYhxwVZFtO+O8bACCGw7Yp1X5YrcfBOlWEeIx9wNsu949oTfWa7Hm9kTuVUuv7tN3HbBxbMssjXE69eeU1JAu65fwPnrV2O6pOwC1mG+/poamkjayncc/8mrrpsNYoskF1AUZAcm0KpjMfnw3UtXEdgWRaKriCPjzzBsYFkJk/Iq+MikJVKzkAldFamkC8gK6ISjulKfP+Xj6MlWhFCome4RF1IYc3iMF++p78yruNyaqvKxv1ZTDPHNz9/KYlokFd3vsa2l3Zyw0e+gxKIs3NLpT5gNp/Hdh3KVpmamjDzOtuRhYHH66VkmQhZBeHg2ha4FX6gqhq2U/Geefx+irk03/uPb7P45JWcds56kFRcpzxxJSVJOu49PpFn4k/Ja53Wf3y/CSp5lQM9R9D9IWzbRte9FPJlDh96jTPPPpNyuYzlOiiOTJkSjrB47L6HOfXMcwiFAyRHR6mtS1A0y9PmkFyXSh6dwujIGOVyiUg0hm1ZeH0GtmPNOG8omyaHDh0i4PUhCw+j6X10dy4FW0bRZCy7jJBAUTSSqSSHDh6iq6sbVVWnXZfXz1cmw18n2MJRAFrjLnR3ruLCVZojImD8muNWjH333vULLjj7NIxgmOHkAOFIAsfVCegqudIArqVwxw/v4bp3vYXR5CC9uwbpXtyN5LMZHZXIj4yhe1zmdbWwf9covQMHaKhtoLElTjY3iq4FcYWfQ3tfpb2zDVQP+159jubWbgyPj127dtI1bzmOZOI6Y/TuTtO8oJv92zbSvWQJ6YKDbrioms773/P3fOmL/4CkWJiWRcAbRagu5aKJpshYdg5N95DLjxEKBwCdsbE03/vuHeC6fPxvPkI+O4xtejECKnlziGigCXAoFHOomoaQVMqlEh6Pj3LZItm7A8WIEInXYFkj2GWdTG6QRLSNgvAgW3n6Du6he8FCsjmbkdFBNE3j7rv/wPnrT+flbVtpa2+jvb0DTTaxhYuDgSwH0I0Siu7FKhexi1lsJDyGn1Qyi205BHw6A0MD+EN+gt4QsuIwODJENNaA6xjk8gcI+Wv5w+8fZe3as9ANlaGhXlRdIhavQZY8vPTiyyw+qQtXFTzy4LOsP28lXjXGSN8+MlaWaCiBLvk5MrKf5vqFmE6ZI0d2EQtHEQQY6B9h+86t3Pvb+/j8rR+jtaWGRx7eyBlnnMWN73gXP/jhd4j5S/QOSqBJ7Nu1n5WrF/Ptb/6Qm9/5bjRviWeefoF4tJaOeR1IcgmPL8pv77qTC9ddyupV57J56wPs2bWLJx9/kvVnn03HySuxXRtFkgCJzS9s4bv//V3+82vf4H3veT+3/+wb5DNZLjjvUu6+9+dE2xsYeuFeDC2NVCiwd+Qgi076N17pfYru5k42PPcU519wAUJ4OXQkR3bgRX78/dt5ccc2/s8XLiJRE2Y0OYDh0ZFlDcfNg+0yMpwiGu/EF1HxJJYjBZaRSQ1il4aJW5sZGjDRAsNkUiqxmnr6BtPEggUkU2UkNYLuEciqB6cURdLGGOxPMjrmYWhE42s/uJfOWgWfR0E1AnR3LaOlKcLZF17GPQ++xE9+9WP+6dOfpaW1hWwuQ2NTM5/+x8/ymX/4DO+88RZ+f/9j7Nj9FLV1Hdx522/AEjy/6Zf8+Kf3I0WCuPYkfxdUcu7k8Zw4mDtfbVJmmczNlRDYroMk5BPi+ZXcuylRMLO8550JOfboEauwL5WUgKP52Gy5eHNGRo0rb9KcssbxZPS5OWxFuft/k3P3F+Xuf5iOVu6m2hz+Z+hPAVSZrvgdDU0/mxAiCTEDkvuNEfrnUrbmFoQmBZ4/ZZ6pdDzGNNcanPHzrgItnAiYiZjweoDtWLhOxWPiuPY46mLlPk4UJz+WkjelnWVV1qIoFS+eGE98fiPpf0LJu+5tN/LDWxZWJ2B8gqmTTl8DcCzk1nK5RKlYwqeBbZXoOXSIaNiHv2YhAhNZQN+RIepq67AdCUkxyRYGCXhjvPjyLjrbGglHwgD84527OTBq8qaLL+LyKy4lGg1h2S6yVHmZmWaZ7dt3cv/v/gACPvih9xKOhDEtmUIhR9BrVFTuUhlLskCRUHSdsbyEWx7F3P8svZvvo/O001ASJ3HkyCi/u+sXLD31EmRdp3PhIuoa26cjUs5Q3CeEcpgGRDQnSQ6Htu2hoTFBWSrgCzXguAJHVKyU0iz7be5n8OhAmelHZ+93vBDxiX1G5RWZG0tjuyZer5/dr+3jqSef4z0fvGHWvpIkkc3lGBwcpL29vfIszDEPkqBcMnFdl1//+h4uvugihBAEQyFkafp1cBwH07bxGsZ4HcPKd5Xnb3rb49my53obzAWuNfN713EmvMczj1V7VgvOz3xmq7xqLlAsgYNAYf+unTQ2xJBkH4ZHoezkGRw4QigYQPfG6T+ym927DrB8wWJ6Dx0hZ9ssW94Jtodf/eI+mprrqWlooq21lXfefCN33PEDDvXuwJDr0L0OpmnhCSRQhGB4cBBFkgnHYwjJoVSw0BQfljVGsZyjlDfxeCLseW0va845jYefeIpFCxcQjQZJDo+y8Zmt3PGzn/KLX/6cnTt38vQzj/PWN9/Al774Zb76b19lZHiYYMQPLgyOjhCNxyjkyvzzl27l1i/8I4oqc6RnL11d8ygWXITjw6WALRSy+RT+kIEoA66CojqUnTQlM0YsYDE2fJh8MUI0HiGfH2NwsIeG+jbMksPHPvoJ/vqjH8IXrOcjH/gIH/7g+zjzwpUYEjh6DWChpTdCYBEIlVQ6T7Fskx5+mXi8HlyIxSKk8wayLKOqlbxR25QYOPwKXQuWkDFzZNIZXBuKuTxNTV1Y5SwBv8Evfn03V1/2NiSvgWmVyI8M4GgWQV8FQKZccjACGqZVRpUC7Nl1mJq6RoIhGaQc+UKKr9x6K5//4q1oai0Dgz3EaxqxLNi4YRvLT2lAOH6sUh7FtTFFDoREKBgnl8lhCQVVsXGsHPlUhnKhmbvvu51rrr2Y+rp29u3ZzTf/65t86UtfQlEkHn3oedas66ZckPjh937PBz98JZl8L7JbSzBRQnYjmEhkRyxqayXKwoc1OMK2154mWNfOooUryOVLyIpFoVTGyhXZsuGHLGzSEY5FsZThrruTXPORz3Hv7Xfyob+9hfsf+g3z5rUQi7az4Zkn2ffaIe7/3R95+7UBLr1wBaVBh1RmCx0nrUY2gZxJMZEis6dMXV03pUIO37zLKEhtaMEUwy9+l6DqJZNL4/WrqJrEaM8+vNE6bFknMzJAfV2M/ft7iUQayRZHUckw0AcPP/oiV9+wBr8Zx9ZUDh/ejmJ2UF8jMZQusf/gDqx0Pd//w8uEw81csG4Ndz7+DP/yqQvpOezQ1LyYk5ctZ2/PPsqmTDJV4rFNL3Dfz2/nG596F2deez2WFphI5QBwqgArx1HqKm0knKMMxxUFqSp/VpW+6WNMKl1VMJXq55nHZ19DVaGcZmtFTAX/mrKGant7StpLlSMfH0jleHTsd6FULYXwJ44+G/0FUOV/ER0dlvnGCtmz0+vfTlU/kSQqgA+ztTj609GC9UTo0p9lNDgq6GjWNUz7WvwpV/aEZ5gILjvWUNPDBo63GjE9TFGIigBWHQtxtCB3nGs6NWSsGi5XrZ33xhU5qM41HbRGkv68Yu8Ab37LVZPlEWZLlD5OwvNMUmQF27FxHQ3HURlLWTiuAaVRNM0ik0sRTQRx5DKOW6CUtfGqcRwJGhpr0Q2d67+1gxs++TUuuOxyrr32KpacvAzda2C6TkW3ksARlbpm0XiMs889m9PXno7u9eJKMraQMG0HVZOxga/82+2cdc56Hn7oKULBKNrwPkZ6D7Dh8QfIFdL0ZHT6MwqaL85b3/FuWruX0Pp/2XvvOMuqKu/7e+LNsW7l2NVdnbvJ0HQTBQQkiURRwTAKBhgdRx0YZ0QdnVEUE5geRAyDkkQBSYKi5Ew3nejcXV053JxOfP+4oW7dureqmvA+vO+H1Z9Tfc85e++zzz47rLXXWr/V24c/GKk12qafVSxS9ixiWDmNLRJpaOKmm37B8ccfj45E0XULyS6FPJlfW881+l6v0fM000JgdGiI0ZE4qsNBOpXgnHPfg2EadTKLOFSFcDiCZZlF/5I6fVQoaGAFYNXKVagOB06HA8MykCVxRtonn3qaBT095bJsKI61+b7Z7DSXH0hliJn5xG0qz8mVptWl71sHFKtgUiuy4eWXkSUBfyDItm1byeayWJZJQyQEtpeh/WMsXnYYuiaQzugcetRaNmzeSFNLG4t6u8HM0rd0OZIEa9ceiaI4CPibMfMBxsdiNDcuRFYExseidLV3k0ykcbhdxGJR8vk8Xm8ALW/g83uINEXYuWsHq1YfQjqXpndBLzYS+VyOr3/t61x26cc45phj8fl8hEJ+2trakEQ49oS1xGPjhIIedLPgDyYpIk63imBCJpdmxYoV2LaJZYjYgoXb4yYWH8fpdCJJKrKqIAo2iiQhyRLDQwO4PW6QLPJpDS0n4vYE2d+/H7fHSUtzKyPDQ5iGwBlnnsVjf/8ra45dw8b1L3PO2WcTbmzC0mwUl40gZNDiEql8llxew+v34/F4cDoaaGrpxbJcCFIIp1tBFEWisSgBfwCHSyCbSSErbvKGhUNx4/f58bq9KC4vqiwyNLAfxekmFA6CYOL3BfjR93/MylVL2b5jJ20t7Xi8bnZuTRMMOhkd30lHdwCsKFs3bsbnauDhe5/k9NNPpTG8AF0XcahhDC3GE4//g3VHrcXpNFFUB4JgEgj5cTnC2KaKqniRZQ8u0UkuncfpCuLxtrFjxyZOO/M4ZMVEUiQ8bpVj1q0jm82RiGXZs28HLU3dSJKDQw9fgpAZKHAAACAASURBVCfoR7NMQuFOHn74MRLRWDEIiYIkZUlnLbZteY3WribCTZ2k0zkcqorDKWPpaURL5tA1h5I1VOTGFWjJvQzt3sS7zng/rb1hPOEQPm8r9935Dw4/6ggmJoY57bSTGRoZ4k93buD3tz3NsWtPItieJBc1iCeGcEgykxk3stODKRg4nCMMR/fT2rYQER+S4iEW24XT60KUBExTwzJMHG4vHq8XRZKxTI2mxlZS2RQutwufJ4jDLXHwoX0E/Y24/GnG4kn8voPxNw2SM7bQ0deBy9nNwWvhtS1b+KePHcnmV+7jpY393HPfC+ioxHIZNMXi+9fdwHvOPguP341Khi3rX2Tbpuc572OXY9rStHmmXpDv6nllivebKRRNtyCYGcS8nolneYO+LkDK9PwFrV4lv1X9jCreqcL0cypX7Q20+dPsa2HJFP7NpHd87t5GNCXcTRcOpneoEvN+YLHn6lG9OHfTAC0qalO50BeuCzNslktaksp4bpV1LwOsUAowLU47DkTYK7XUTF+4atZ2SuSq1WrV+avPhRqHXfNqLSFwOvNc0I3NdKqtrE3pobWivZTrJEqIgoiuG0hSYfKtDHRei0rxZ0rpSkfZTwihiPRU+63n0+NmtF2VcFd6Zvl9DgSIpYIuvPB9/PKhHTw3IPO9218gnkxxSG+oXIuZR8X1GmNHURRkVUB2qATDfjw+L6LiYeeOAbLxcWLDA5BKkstOMhFP4nT5sSydj/x8Gx+4+gece8HZyKW3FkQkUca2LbS8hm0XAoFrmoZTcSAIMpoBqizjdTkRLQvbtpAEC6csEB0fpSdi8Oqzf4fUPlS9n6de2ktL7xKWrDmRQ066gBWHHE/3otU0tvZioGIIIragYNsKolCtJa1630rfyIpvMKPtRaE40GUQJA4++GAuPv88Tj/7HCRBRCqO++qN2dnFxdl7UcmxfK5eMKOUab6a4HK6cLoD2LZNZ08HhqXVKqact9AvrdIL1B9HxS4kFtECRLFgUiNLYtVMV/i/p7tren8XhIr3m33uKFStti9ILe1beW6qGNOV+eyiZg6htkBYS/tXMCG2isJecYwKxV3vYsBMsYho63IoNIT9jIyNsqC3h00bN7K4bymCCIkE7Nq2C7+7mYMPP4yOnl78Hj+6Do0NERKpCW76xc8JN7SQycZpbW9CUdxIShqvN8hVn72c8953LtFEEgGBxx59jHCogU2bt9HcHCGbzfHe957LFZ/8LIIM2VyWYCiMpLjI59OYukUo2Egum2V4cIjVq1axa9d+2tubyGopPB4/DqdCLDaE0yXgdHlQXQ7yeg6328XA4ACCYLN69SoymQyKohKbKKCtbt26gVhiBKfDgyw7sW2xgHKr5QCTVDKN1x1k/SvP0tO1lMf++hydXa243AWN7vbtO7jrzjvp6e7F4/UxMTHGoqW9nPbuk3GoCn/+819oa2pFdek8/+wT6JkgnQsjON1uDN0sbNKpFi+tf4rWzjYMCybHRnnxxRfp7e0lkUwiy3lGR+OYpkhzSzsIIoJt41AVNFNk88YNLOhdQENLK4pDJZ2OMTrYT1Okg3AkWGhLWSCdStHZEyQWHcftaGTPtighf4TWlkby2ji9C0OEm90oip+BkS2oqp+Az01PTwfbNu/EoYok43Ey6VQh1qOtIcsCmVyCyegQDkVncHgXslPA7feyY8sA8ViavoUrSMUNbPL4/H5y2Tw7tu/k2BPX8MiDzxBuCOD2GezcM0R3Tx+GpWNoHo48fDW2JNAQjOD12KSTFn9+4CEOX3s4qZSNnk8TDPqRJJVsdhwzb6FpGXwty5nIu+lubcDI7GR//xitXWvRdInXdmyjf+8G7rjzXs4//wwMQ+P4445lcGIX4WAnt/7+LyxY1kLY3UwwEsHKRbn9tsf4yyPbWLlqLW4hSzpuYVsj7Nk8SuPCtWRzIqbt51NXfp8jD11BMOjCtCxy2Rx5E1RRwDA1dFPD5XIzOjpJS3uIVHocVXSjGy4sOvj4R3/M+847jKZwL69uyHDlv9zJ2WeuYu0hC/E6YixtC7Nq2cEsajfwkeL2Ox7i4L7DaexoYUF3G+0tQYJOiXQmS3R0Pyecfiaqx1eYM4pzjiUIZbPM0upa7a8/XatXEQ6r6Ks7ja8s3J2+kVQsuRQvuTB/WTXASkpzV7XvXGmtr7biKT25UrATp3jqGv561XNpyd/PrjFnzka2XeKHpp4v1cE5eKP0js/d24imzDKrd1crF/giMzULYuLroWrVdulpJdviSrW0XWHfXG/XpDK+XbXPSCHEcf3Yaq/HfG8uP7/Xa0L55vrWzWVYVro99cwC+Is4Rz2miixrB+rEjqtntlm+Xpzg6n2b+ca/KhZWyDOHWWalieBs6eZLP/z+T3j8iSe5+uwWupv8eF3KzER1x07ZdqN4LhWU04ZGMh5lz+5B8kaWzrYw/+fRIS6/8l+IdCzA4Q8jqi4E2cH27TtZ0NODLChIksjAwCDhcBhZMRkfjxLwhUkkcrgUkXwmRTI2xp7tW9k3MEAyGSfk8+L1uHH7RdralrJrzy5WHNRL7yGnEItH8XqD2EIptlxhJBU8Yw1ES0KyJUyxSpCZNb7iLFSMDWkLNhYSCgbrn36SSLiDtgXdWKqIAShV3eLAhLsqk+qi4HTAwt20ewKCZaNhY9kWqqwW22AWAe91UBk1rmz6WL3jO0veGW94YMJdPRIomFfWSlcS7g50JRcoxc8savmLPa5cjmCjZXS2b9mEYOVoaG3E5XBhUQATkiQTxCD59AT/9pmv8KWvXENje5gnH32E4f15UlqUT3zmI1iiyuCObbR2hUmnE0gE2T/yCssXHcfYxDDtrQsZGO+nMdTA7p07eXXDqxx51El09zaTTsXAFjEsCc3I4PX6EAUH2VySiYkhfnvzbzjx5PNYvryHXDZFpCHCyhVreOHlv+H2yNimAz2vIzvyZDIxFDnE4/94muNPPB7J4Sj6/WSRBBXDAGwBUTSxDAHdSOPyigwNTqCqQdweH7Iio8oa8fg4qYROS3MPup4hk83icDjI5xMgiHjcXrxeL9GJKEMDEyxbsZzhoX684QiCkUPLZVFcQRLRcYLBAIaRR3EpJOPD5HWLcEMLmm4iCTYuP2x6ZTvtLUtw+xREQSgAu2TzOOQ8gqOBgX07aW7rwjDyuJwi8egYnlAvlpbG5ZQYiyYQRCdOIUNiYpi27qXEonF++tMf87F/uoxwJMSN3/sJV3zyExi6xKuvbKOjtw1b1Glta2Lv3l0korswch20LZQIulfz3EtP0dLipa1lKR6fwlN/fZSjj1nHQ4/+nUwsy7tPPQlNz+FyO9AtHa9PZXRoALfLh21L5PM6jY3N/PKXvyQ2meSKy/8J3chgkcPQRJpbW0nEYiCA19uIlsswMrmVn91wL9dc81l29e+ir3cpen4vfm8ftqSSzI9j6W5kKYPb4yARz5JKjrCgqZ1YbBsJy0FHRzsSzaQTz/P0vb8k2HwYh649g6FJnX39e1ixahUP3X8PZ53xXmxdIJ7dx+jIIPff+TSDY/9gYiSBbepce9XBuJ1BBFUnL7mwExtRnT34gk0k4zbta65kPGrglBLEBp7FLY6QSk4iWRqGodPQ1kNqeD9Oj0gmn0VRg0zGx1FFLw7RgWUNEwgFGIvmsWyRgNtPJjGEJXvQdA3ZFglH2hke6Mdladz3zCZOOGwpzz75PIsOPpsrr70Nj9fFXx54gOv++7+57BOfRbcU/uPKSznuPe/mn774ZSRZLi+LpiBO87mDYlDzivNK4c5GKv+amqVm8hO1/OJKPnclE0qbguXSTJ619vWSgX15E8wuOWhMAZ8YloFU3FyuzD0Xh10PQKV+eqrS2tOCwb+Z9I5Z5tuIDCN3baGjFI4Ki98Zaee7W2Dbs3e8yh2I6WpxAU03kMRqAa5yp6QAH1HaSTGtgl9RSaNXUVuoOq+Fnlk28anS4BS0CsIcGp1qpmpq8qh8crW2rZ6mb2bdZ+abuedepwzBrkBLmu1ZM585u+6wVr2K2rciAt4UyuN0jV3pvNbufmUNDcPA4XBgW2bNWldq3crfSyjCpJf9veya366Ut4yeWiddmcQCpDwIMxaSSjpqzRFceOH7aD3o3Ty92+aaHz+EqaVY0R1iRqiEChSuqV2+qu8kAJKEw+2mpb2Frz6Q4t5XNT5zzVd54sH7WP/cM7zy1N/Ij+6jzSsR69/IQ3fcysCWJ/nTrTcRG9rL0488wMbH7ueZvzzIg3/8I69teJXhVIxAJERzZydtC/vo6FvEqiOOpHXRIrzNLfQetI7G7gUsO+QoAk0LsC0Lh+JAsO2C30BRQyXYBaCPQtBquxgodW6N0LyovN0kUIok2dTRw7ev+RxnXnIZOc0uCHYz4vdUtN8Mqr5e1YfrzG1lrRPMitBZ6FdgiyJicfEURQHbNmc8C4SC1qlKU21Puy9X7KDUOWyhrgBd62ql1q6+Br+qnDnML6vTTnteKXD8AVp7CBQZGEFEFOXCppFNWdNZ2oV2q072vvwqnT29uDu7kfMGluJBkmzSk0MYWhJ/Qyf5jM2xJ7dz1hkford3NceefAYLFvro7urB4/IxObKHu377d1YechAvvPwy3//2z/j4FVeSy5t4vEEsIUUylsHn8xEI+Ojq7ebO2+5m0YpFaDmBc844jlUrTqCnN0gqNYaWy+NAwqP6WLl6Md/65g8ZmRziXaecQD6l8cAD93PJxR9k945+/D4vm7e/QDjSRE63cXrdBH1+nG4HmAaKKJLOpRBsN7qexxKzTO7fRiajkclD3hRpCjUR8PuwTK3AREqQyWmEw22MT2SYGJ2kucEm4DTwuhU0S0H1NJKMRXG4/DhkB2edcTqdnQ2Emxr52KUfpbujh97lS1h3yLFcfsVH8ARV9uzeS09XB6oC6VgWQYohqkGG9w+xsGsZA7tGyOYmSKajeLwRHAGIjWVxO1xIkobH42J0fBSfz0Vyoh930I+hGSiig8nhQZpamjBEG9HpQJRVRC3HmmNPwBtswc5rrDzkIHJIKC6JviWtiGKeiN+FIDlxBjpQbTcLlzTj9zViGlkW9y6nqcWNJOnIQgFNVZBNIuEWNmx6gb4lSxifiBII+wjITrSMgiiFyWomqtuPJAOCzYplh/LXhx/HMDS6urppbuqlf+8AoQYP37v+ehb1Lic+Mcrdd9/HcSecwZpjj2Dbtr0cduThWJKO4PRy4zc/x9o1JzIwEifcGkJP5nGrIbxuN4LDQSKfwBsI4AByOS/5bJJ8JktW0Ok1xnh152Ze3JojHOyhsU9mZds6FJeDzePP89SDuzhk1WoG92/hC1ddza7t2zls1UpyVpT2rmb0dI6wqpDLu0H2Iss6Xs9yRvb+nbaOlUiuCKbgZO+2J4kEutHlDKagkI4OF60kZLJJHUkQGddT/OOPsHhpFFtWyKZsPG5QpTCpTBZdTtHpW4qe1XA2WSSSCsGIRDSWoiO0AFmyeWmbSV9XO60dE5x71iexNAXD10E6b7F/cBBvSGDDEy9y8kWXFS01AApraPXsW7IWKJwIFYLMFL9UnlPrWIyVBKVqc8kCEJyBIAhMgZlUaN3KfN5Ufssyy+lLbizFFbIoLApT6alADC7eK9W35C9ol9em6RxlqY5TM+bUUY6OV75U0nROWa+9meEPKukdzd3biLRcQXNXViqXmYXX3+5TC3DtMio1cjMRiUoMUZ2yKbImZdtmuyZwypx1LDvtT9fgTGnhihqlWYqtp7mbC2jl9SLR1dr7rgugYptF/8Tpu1ZWsW1FQaqZ742QQLUnVdGcogp4pRZNj7FX2Pm16wC0VH6z6u84lwbugIFWRKGMmVKI33TgYECCKPGB93+YvFbQ4FxzTgvLO8OVCShWqurc5oM3bOKuu/4XodS6gkg0kSOXSeF1u1AVmfE9m9m7bzeK7GJ8LE5zczOmbdDa0UprTwfIEnnDwpZk3LaKYRhIkogoy4BVGEOihGWZ2LZYQCUtMeZvyf7egZONwNeu+iT//cOfkrNFLMFGZOY3nAtQpSxwzNMsRWBKI1UwA6yvCS71/ymU2/qiZq17lS0927Pm80XqC3fT79cr642vAiWm5sCpUtM3vR1K364whv/3ph9jx3dxyWWX42lZxnPPPUhjSxeNjY1ER4dxOt2gBDjj1NP58/0PYuteTnzXYfzylh+weNEhJOJZLr/8U9xxx63s37MLXcoTboywf9sY133vG5xx+tlceOGFpDKjSA53wSxSVhkbG6O9vZ19A3t5+IHn+OQnLmJ8PEVjqxdN05BFD//1lW/w4Q9fhsub587fvcDJ7zmexrYgomHQv28PPQt62LVzN6tWr2RwaBBVVWlsbSKZzWJlDXx+L4aZQ1EkJEXGMuUCqI6WQjQshgcmaW5tQzMyKA4noUCQxx57jL7FffgDAvmcgcvZxJ/+8BcirT6CXpOjDj+CZ557ikMOP4GcIeJ2iowOJxjaP4ws2fh8Kk5PgGDAj4CNJhroiTSDQ/tQnE66upeClENWQbBdaPo4gulE0/OoDj+S5EawY+T1PFs2DdO3rA3ZEjEtAcPQ0LImoUgz6UyO/m1b6T1oIWecdja33HwL7a2N/O62Ozj77NMxLZ2x0TgyGt0LFzM4PMLY0AChoET3otVkkhnS8SguvxOHLKO6AuQtGTObQVFtRElEyxuoDgXJdpJIxhmfHGJiIsWqg5aTSuTwh1VU2YuWs5FViUQ0y9e+9l/0LuhhzVGr6Vu5DIdDRBbByNuokodEagJZETB0sEyDgLcJgxxj47sIejrJZLL87+2/4eOXX4po2Nzxh7s566xzSGayPPiHe/jghz5N/+AAgZAL3RqlqakN09QwszoNkRDZfAZNF7ElkRefe5kTjj8e20iRc3nJbv4d/S88w4OvDnDJhb/E1W0jKk7MnINPfPxSfvqT/6Ep5GPzqxvpW3EIt/32Jn70rd/wz58/lIP7XER8MoaRRXG60HJD5ESNn/18G++/5Hyaeo6isWsFDkVjZM/fQF/AF6/4Ht/42ul4gv0ICOSyWSzLIiM7ceQXoFl/w+9eTjY7TijcRianEc9tpStyPKn0C5h2H5dcegvf+PJFhJtiSEwiIvKfN77AlpdMfnfje9m8bRO/elhDFpzc+Kubuf223yHTzN8e+R12ej/f/MWd9C5ciFkEmrLqCCTlzbc6PE0Z5KTEd86SphaISaUAOTvvOkWlZ01ZoU2ZeBbSS9PcnKZbxZV45+pZuNoKyy6XXUl22V+wfKWCry+EKxLFA+M950vvoGW+jUjLZ6c18BTzWmt5f31Lfj2koeoBMV9EolKaysE1V7iA+QpStYS+EtNWEoywhQL/XccMsbouQpFxpur6XHWaPxrnFImiOC1cwMwJ4fXTlMA4narfxy4yYWL5vNivilWohvStnggty0ISxWkMcyW6oiAW/W7EkvHo1LsdqHlltbBXNnmza9+vNv8sf+tZ+kM9+vznrmZffz/vWengiCURGgMufC6Vf791B+85/0O8+/STS29VFu6gADG//bXttLe0oqoqOhKSJJNOJTnnzEv4wx9vJ9ToBVHHYUnYAliYWJiItlhAEit9M6G4wFSvH1U0n3Acc9HrDREiioX6Dr32Gr+5+dd84dqvInjcYOTnUX6p7NljMtZDfay+X1d0rLFpUP0kcY6NhblGaq1d69LG1usxezwQqhRyq6/Xqtts9+Z6v/oz13ThTtYT7N36NwL+CA7PQpRgAMEU0Q3IZHR8YYiOTLBl6w6WHdRDLuZm68ZXOOLQo3h6/cN0d3WhKA56exeTTUfRLRlR8nDB2efx85/dwA++fwPd3V18+KMX4wkHyed1LFPE5/URTQ6iSCq33/ooH/n4xeTzSf766BOsW7sOp9PB6FAUh1NhPLqdz1/+LfaO7OfZl59GFHVGB3cTDIWxLRG/L8T7zrmQ9557Dqpb4V2nnEg4EEaSBDLZNA6XRDqjI0mgqk5ERBRZYXj/GA0NIUwzj+x0ksmkkUQJVVUx9AkcDg+xcZ3PfOqL3PK7n6HIBrmsjj/gZXwshscXwLANvO4AN/30Fi655GLuvftOREngvReeh2kZqE6FwT2bCIabyedFGhpb0ewMNgZYThKpfmKDo3T0LMbh8ZHN5zG0ODu2bWfpoiNASpFN58hlcwhI6NoY3YuWMzaeRLLB7fGQyRpIooKNjpmzkBWIxSb4xn99m29862soskg8FgVBJBXdx9JV6/j6td+kMRjg01/6DPHJJD6fHyOfZctrO+jtXYjP7yGfT4OYI5fyEAj60Y0xJMVX1O5YiLLF0OAEfm8DmWwaQQzSv3cnRxy2govPfx+/+P2vwLaRBMikYvh8TYyNDeALuMlmdAb6BwkHO5EUk8ZWlckhk3A4RCozjqbHaQw3MDYSxeEO4/EEiacn8Xu8jA7vo7k5jG55EESJXTv24JeiDI+PcfBRxxFPCyTiw4TDERzOAPf84WFOOOZwHCETr5lg96M/YEJIMa6/m1WHnsTI8C6WrDoY284gSxLPP/cSTZ09PPnXJ+nucPCVq7/JmoPh4x88hbYmiWhiFK/YTVbYx5/vkzn5FPAFF2K5l+NpPwSvJLJv+AlCLo34/lcQtcJGg2XmyWQzhMN9JDJD5LJRIp5lJLXXiI1FuPyqW/ni549l6WITpyuIJTWxY2+Sdq+Bomq4nE727R7GErvIiHG2bHmO39zhJG6O8e9f/HdOO+NkLv/ERzjjtMv5xf/5Div6nHz1up/QvnAZeVtExsQsoUnWBWiaCkszn/llalaZQs2czeKskk+ZWh+mSi2Zd9qUkNpnoh/Pz5SyJPCVeAxrljAINepZr9RiZaS3YGO/RO8Id28j0vK5qgYuwsSWe8j/t4W7EhM7F/R/uQ6zCHe10tUso1qIE0p/mH79rRLuKgTJN0u4E8QpxdKMe3U0l9OELqyKb1CP3SvlK2rxhKnduOnC3fRYNW+mcDeXsFftP/hGhLt6dakms+rLS7aJZcH48AST41EcniA3/vinXPedr2PoJrploDgAwUSxC8Gwi3YZGCJFLV2x/kIhrEVZBKqjmfy/KdyVRFvJtPn1j37IZZ/6NBOiSECeERq2Zu4CTY+pVq3pf6PCXa1RNpdWbD5l1LpfPn8bCHf1QiKU8sBbJ9wJgsDTf/8bK5f14fUr7O6fpMGnIjlUkN1oZoKwGqJ/X5yRwd08+sjznH/xaVx9zZe58Sc/QHXI6HmDq666ht/c8gPSeQfDw5M0NzqxBAgEwsSiUbx+mXQmgccdQhJdyIqKbseJD4/R2NRHhjiCYfPt/7mRz37u07g8BrIYJJlIozjzPHjHPZx4+ntRvH5MS8POJ0knsxx73En87dHHGR8eIRD00t7TgqjYTMbGkEWVpsY28nmLnJ7H6bbBEhFwMrRnA6LsxxtoQHGqOGSJ/fv7cbk8+P0+ZNmJZeukMxrbNu9m6+bNpPVxrrj8CixLZqS/n+jkBIesO4p0Msa+nQNc9ZnPcfNNP8XjBdHlxekN0b99gJ4Fbgb6JxgcHGflIcuRRUgkJ2kItaNbE6TzeTzOCLKoYOpZbMVFPhejwdfCxs2P09G+DFnVmJycJDk2Ss+SFRiCRCYVR7ZVhgbHae/pwemV0VIKe/fuIqdlWLniIEwrRy4VxTI0Iq1dmDkNU3YzOjSIxyHhCrhAdCIaGj/7/re5/LNfRJLdYGtoZhLbkjHsNFg2bleAVCaFzxdhaHgvrU3dGKbA5MQotphl2/phXG6JlQcvRxQd2LJJNmMQ9LsZGtxOKNyFwymQyiRwyG5e27qbSLNKINiALAQYHNxOfDJNd3srWj5BpL0Tw7TJ6SaK4uCG67/HF770ecYmRggEAsTjKZwuJyJuAo4JXt30KkuWH0pedxEdmkA30/gbgjQ0dbB7wxaSQoq+RatwGsOkxx5i17Nb0J2LaVh2HINDEzQ1RUhn8vzipt9w+tnv5th1ixjdaTCReJiP/dN3+fm3PkE2voH2di9On0VyQiDcbJPVPPhkCcP207DkREzzIFwhg1wyhaiPEdv3EIJo4XDKTE4Ooxphnt18L8evu4J0YjPeQIBUNk825UF22sjaDkzLRSgUIpEYQRY8IIDL7SeTMkgmhpBcGnq8jxHJ4ukXUyRTHj768U9w4inv4i/3PUI8uZvPf+oqjlyziu//8jYylooDHeMNCnfz5Svr0fRN6JIAVuI3SiaWU9gUb5ZwZ9oGsijPI1+xnvVKfZsJd28NpMs7NAsVgm5OwdVPR9mZUhdXHrWpEDjZmnFuw9QuR8VRLx+UGDdhWhqhVA4U9TdFs6iKo6DbESnAqVjTSpxWvmUWfLxEaYbZX7UpnkDBfwxRKJjtCdR0fSnXwWZarSrLmQs8ZaaZY+mYmRrscjy7ytpO+0aCTcEG2yoKXDPrVKv86vmwsi2r6zmz3lDSsRXyTe8/hTrb09LClDbJtooaw2J7z3CIrsxb/H71jnpU736xucpkWda0/iBQSCAg1i+j2FcKGrSZbTs11mqTVO7FQmH5EiRESaKhNcL9jz2I2+vm3675ZxA1RMXC4RCREJBsGav0T7CwRAsRCywdERMRE8kGwbIQLBvBmjl+psZR7b5a+a3r5bURZmyW1BoPM6kw/xSDoCCrEoNj/fzqlpvxia6adZhJhT5WKTDUHD1VaKoVN+bln1A5yqbisM1nlpxZpxIaXL375WeWUIXfIBBMZV3Lz7Rnzjy1tHYH4pM3F82ogygUDxFbnDm+TAvau5chugReeXEjghXH6ZXJZSdIx3ejZZJE02O0doTYuu1lHrjvETRtP//x75/CsuOYCOQtL8uWHcbxx72XsZEE7z37bByCgM8fBEvlkx/7PA/c/RSFkWSiiTZZwWZsZAxB8TKZ6kfQnIiSzDX/8TkSqUkkyUv//m34nAaCrnDse87BHXSgiBkCsxovdgAAIABJREFUiouR/QmCPolbb/4ZqiuHkB/hmX/cj61lyGfyBIMLUJwBBvoHcYgq7z7hPNBltFyKoaHteMJBPAEJWUoxMbSNZGwUQzfIazYbNu1m/57dpDPjNIS97Ni5m/vvfYBFTUt47KGnuf5r1zI5FmXF6sPp7x9Gdrho7Ajx+z/8HwQ5jxr2gqQjmhrR8VE+8IEraG3vIBh2MTayh2wiim1q6ORBasTnbiMZzzAyOEIqkWes/1WEfJahwc00NgQxNZFsOkfA14ASXsrevRO4BBWnK8JNP7uPvr7lJBNDxMeHUeQMS1csZeHKVjTGGBt5DZfLg6DY/OtVn8VQwSBHY1sIf9iLbruwbY2RsSG27B5CkF3Ypk46YTAysAdRFGgINZCIJ3nxhfW4RJlXn9+AP9DMZC7D4OgI4VCYgMPDqiMP53s/uQlLdpExcmSjNietO4GBXbtpbWgBy4OhOVAcWQwTfnTd15HNEJmUzK79uwiHO+ldupD12zbga20mbxokUgb/9eX/ISj7uegDl2JYGYKBELrtI5/I4hVs4hODxBMtHHzouYwM5dFySQYnRvA3NBEKNRObnMB2Z2lrDuJy5lF8HWSlk+k+YQnxicd56ebvIGpO3I1eWru7uOYL32DdsUfzt4dexOvvJK+s4jv//U2+cN0d/PHvCu19xzO6t4Mt691YpkjCHucnP3+eeGoAbXAT8f03sPmp+7Atmbidw7PybAx/J5MTkzSHFmAFYhx77HlYZgynRyQx3o9HEXG5soT8ThyeVlzuEDoZDDlGqLEDwXYTHUuR1rfh9MoEfIfx1IsvEbKg0aFyx4OPMByN8uTDDxEIeWhpXsQlH/ww8YH9GMkUtmVjCDayALIAVPhBT6epTeXKo0RWFRMjCFI5RFK5hHrx68SSH13lBvXU9lPJq80q8rf2DMGumpeem0pzqywqzFxNpo4p2IDaZZd4B8EW31LB7kDpHUCVt5hM07h2tvslJ9QSpHWB5ruY12c5aju2zka13f/LkLUV6WarS22Af0qjY+bOyrSd6em792VYghlw+jOZoNlp9hQ2JaSlOnU/kDKLl0uBEapvzN2OU7U60CgppS8uVJwLxR/TNasVtSi2qyCIpSAWs5Q+D6oTM2uudNVkFb+JKMpF5+jZnyECplkQUqtragvU+L61qTKFLMusXrkKny+A2+PEptL090Bp9hz17woz/tZMVTF/zL9uwozTja9u4IKLL0H2+Cp87ubTbvNfUGe7Np9S5gqtMefIFQ50ZM1N9hxCql1Cc6sBdFSPXucMNP/Vo6wtrd27REEil85gmXHCwQjhhiaSyQzNze3E4ikaG9sZHYmiaTLbNsT51FUXsGXjCF1dS2lpacXlCfOjG27krNPfxYIFbRx59EFc+dmP8NwzD9O1uActn6FvcQ/HHX8osWgeWXVjCzaCAIJhEgpFQDRQJR+aYYAt4vUF0PImDtmLbZrE4nEUZwBFhH17d9PU3IDo9CEIFtdf/wveddLpfOQjH+Lab3wTW3WwfuNWfD43Pq8DMLBNi3POORPVCRPjUbq7FiJJAWQ8yLaL4YEoza3thSDfbh/fue56TjphLQ2NIXTdprNzAYsWNZOKJ3H7/Sxdsph//dcvgGjTt6QDh+rB7VRQFRlJUrANk1QshSg76Ort5uQT34UgFvyNm1sbsSxwelyoqhM9qyErMg7VQSgYQhRFPN4mFEeY2++4j6PXncjNv/odXQu6GB2dpLGxiUjYX/CJM3SOWbuGsYlBYtEYwUATg3sm2LM3RlNLM4rowqnayKKLXC7BKe8+E0uQsXQdI2ciSSoYGWxD45knX+KMd59LIjtINDFJqLEF1WfjFP3kcnm8niDbt+8m3BJGEG0iQReqouBze9m7dx/BhiBafoLTTz0Bt0vGNnU8vjCXffQyPH4XoiywY/fLuJ0R8jmTbCbJnh17cXv9LFuxDFVVQRzHobgZ6k8jWQEef+xp/EEPR65ZhN+Xxe2PgJFFVhVSqTStrUH27tnJrh0DDE28Su+Cdi664IOc976P0LOoCbfHRT6fQRAsnKoPURDYt283qlMlb2aQ9EPpXdSG7XsWPbaNTS8O07fkEB59+m6cqsVxxx/FvoF+Fq/spG/xYp56+mnIpdi1+UWcTRlWHhQkqIQZHuwgmzBYfZiNKdhYZgZTgE1b9tHkX4Fm+4gEFhNu7CZjRwl6W4knxlDkHKKlYssiuXwWtyqSSUzg8spkszn8jmV89+uPsnxVBNGh4XAFEVHRdSejE9vp7WvFFiS2Pv8CR609kqMOPpp//dLVHHTwoezdu59UPMbqZYuwJAeR9k5KEA52YZKatqFlFTfmKjVq9eabSr5zup+/XZVmxmQ0zUeu4kb5CdPB4mrbK8xvI+z1zf5TMfOqS6vgWN8iIJUSvRPn7m1Ecwl3lVQIxyGUf9cTzuwKQalmPDum562Xrvp+rTQzRbZqwaog+JUQ18qq+WKspGq0zDKKolBUG5cEt4pyS5NCtTax5Ms014793Cmq3r/8r/R+le1QLSrNVaZAbVZ3hsg1Z50OnKbeQ2BKQBIqTOamptop08wCEmal8D2zn8xXpCl9Z1EQitrW4g5cnf5Qn0kvapSKCJIlEzmBqf5vMwXCUXl/BhWrUE/QFLArFqKpw7JNZEUuaP1KmuziUQT4nPdXmtlzqnNW969SPyqOr1mfVFiV59ezqp9ZcSaINLa00NjWii1U9n8bVVEwixpVyzZrmHyXyigC9dRZ5KaQ1+xifLXXIeBUIO5W9p9673+g7SJQBBqpEJZnsBzV8ejmeo8aGrha2roDJaHq90xWambaMqJtVeidyhlYKNbt/rvuoK3VS1vnQjI5i4A/RDqTwzBttLxJZ/tiHn7or9x221209Wicdur53HbH/3LcMSeRzxssXNhFpMGJZHhp7+xAECWWLD2IocEYLkeQH/3gp6xds4ZnXthEQ0MYn88NmGSTOqKkMD4+QNDfiG4YmKbJHbffQWtrGzISX/nPqznxpBNx+wKkkkkawkEmJoYwRRcuh8Jf7nucQw9dxQUfugB/MMxdd9/DYYcfQXMkRC6bxONzs33nbjLpGJJo8+LzL9PV0Ystahh6FlGysGyDv/79JQIBP4aW55abf8FHPvYhorEYpi0SCPppaQ3Q3NBMa2cnV1x+BXfedTcrD1qO3+/EF2hix2tbMAwdjy+ILEo4HH5kRUUQcmhZkxtu+CEnnXIihpHH4fCRjE+Sz2UxDQtJdZJNp3nmmadRZBnVJ6CoEt29behWhoNWH4XX70NxOHErNrt37SAQDhKbGEF1Snzmyiu55P2XEp2MgRmjqbWdnD6BZSbZsulVXA4/A0N7Gdo/TsYUaA16+fENP+bwo9YRH+9HlVWu/revMjqSonfBAr77nRtYvfxIQiEfsck4r23dQTjcwNKlS0CRcDgFcqkEsWicPXv2sWDhAhLpGI0RD+lkFI/LhSDYaJaIrEjs2rWDxkgEX8DGo7agSA4MM09jpIMFvQu49957aWttY/Mru3A5ArS1BxiZ2EpvbwPeQIhgsBVDczEZHSYZjRKLxkkk48TjE/Qs6MEp++lbeDjpdJ73nPkuPEGDZCJNNpthZGQYr9eL1xXGFkz8QR9O1YmmObGdOhoeJOUQmh178Xl3kEhGWbbsLBZ0LuTGH/+Ko49dS2LCZOuOjbz/wktZvbKPZ55+lTv/sJ+WVjcOK0+4c5jFi5wYGvz65wOsO6obU0wTbtARrGEQEjgcDaRyTeRpAENm/eYNBAIuPI6GQnB0VcE2c9imRiYrYktJJmNjrFlzFMGgzEA0ik0DoUAz3qADRbAYHXbz4avu5F8+czr3PPI0X/vu7zlo9SrWHXsiz7/0Cn/6w52MDe5h5cGH0LVgIZTmYkEour1PbemLoljU5BV5uyJeZDXq9xTfKUytphXzY+UcaJrGNGuawnxaXziq9omrLK8WQnihzHpxo+d7rfJZFXUt/m/ZFqI4xTkWXHbmZ4nyeukd4e5tRAci3JVFqXJnLTJLVSv1lLA2PV89mkpbL51d/ldPKKmt3Zq6Tpm5mx7cup6mDqFSDJlZn1r3DFNHnGUQVtf5QKm2APNGynrj5byRZ08X9aa+VUEQKmq4ikJPOc+sGt/5v0OplJIG056rP9R51rReLjCtr82GeFizxLrCXW3N3pQms7ghwZTgWzY3OVAU2fJT5teW9YXBeukOhKbnMhFx+oKIkoht69M2BcwKf8cSqmjNEgWhuHkzu3BXEgLfiPaq2rTxzaJCudOFxmoSazATr4febOFuPmnLJrLC9OdX/7IRSY0OsKivjYmEjsfvw8JgMjpJKBzC7/eSTdtcccUVHHr4UiQ6+fb1X+cb3/guX/jnz+D1+1i5eiXR0UH+cv8fWX3EcvJmnr07R4glonR3d/Htb/03Z511EqsOOwh/0I1lGuSzWU447lQ+9IEP0dQaJJ3ScbpVRBEW9S3E5VKRFZ2u9mY6u7oQVIPR4RHCgQhaLkMgFMbOp/nfX/yKI4/oJNDYhOqQWb1yOaeedDIHLT+UhkgE1elClJ20NjQyMTHK8uVLUWUJUXQRjya55kv/STjYwNEnnIDf78LQU5x00tF0dfcQjjQzPDRCIOhnZDSG0+li285tXHHFJ9mxcw8De0doirRw4rrj+cAl78cf8pPJ6eBSAQfrn38JPTVKINzC4MB+liztIx6Lorq8uN0OHLLE8OAQvmADlmnR292D0+FEzyd54u9P4HGquFQJLBGHJJOIThAb3Ue4uRlJVdEyUTyeEGvXHMf4RJT29ggtjWEuvvhyLrr4AjwehWw6jW2r9PX1oCpeWnq7sZJDrDtmHZotoioSyCJLV6+mtbObww7tY+3hy9HjIxjJbci+BoLBCKalY9ppVFtBkgQswUukrZuGxhYcCowNb8fpbsPtbSCn66SzOTBtxgYGCbg99O/ai0MN89tf30pjk8I1X/gWjz/zPAP7d/Guk97FBe+7iM//y2dRJDdfvfY/OfucU/E5gxxz/KlcfsWnMTSDfDaDW/URDDWQSKW48jNf4IKLL8LImLzv/Es45JBD2LR5IwsW9OLzhTAtgVAgjMPhZmx8GK/XxWtbXqMx0kkyGsUdcSI5Qzid3bgaW/DYo8SGN6HnRvn29bfx4cs/ybMv/xWfs52bfvJTjJxKqM3PMSdewoqDTf7x18c44ojFeJUI+XSGYNDLkcctIZ8aRRJcDA+N0NKooE3sxjCSaKJEc/NScqJEOLwI03BhWpMYiTiS5CCrmeQtkXCgAS1n43TJqK4Mbo+HJ55L8L0f/pmzzzyUHXu2ougyQ+NRTjrtKHzsp7X5cNwNPaxefRiNLe2AwNo1a3jh6cdYsWIlfUuXYgoygliam4vzBFNzdYHE8t9a/Fn1/CFQf34TqueeGTzt7NdrlFjjWj1Ba+a1+VheVGvuyjx6RTsVlr63h3D3DqDKW0wzAVVeP81E2tSrUsxu7zubo2s1TSETFZ6l6TqyLNZVzR8I1QRQmQYIMnf+yoDpJf+0cl+2hXK6wv3a57PVq1TmfOs037qWqLDLY81IJyLUSP/6hK35vC8wA0ClHs2HlS4FQq7OM9+QCqU2KPlYVqOHVgK/HCjVCstRRrW0ptqjtKN4IKLDgYaMmJG/LFPP3FwQiuXmchkcTnUasIyNAILNbIBCtb5toZ2r54sqEJsZWvyZY6FaSzcXcEo11V38Z801f6oX+Hs2er1BwV8PVTMVswGozJW3RNVbedUp6l0vyOtTPre2JLJ3/Ws43Dlae5aip9PIcoxkSsAZ8mAmbGRPhK0bnsQjRzjp1HfT2thOMNDM1771MRYvXMcHP/AJ7rz75ygeB4N7Jrnnrj+STO7lc9dch+LKYmpubPKk41GyOZ3GllY0w8ApQz6vMzmeJtzQTFbfTTaj4XL58Hn8GPkM0WiMLZu3c9SxByOLXhTVQ95MY6UTjI9PosgOFMWB7ZIIBSPouo2u23zz6us5/4Jz+f3tt3LtV/+DMy+4gD/fcxfXffO/eO85Z3HYUYfz+1tv5/bb/8hll36Yk047HrDo37uH1vZWnE4FTc8hCU4U2cPgcJTGpjDbd2wn6HTQ1tHCc8++wJ/+9AjLlvZx7oUns3XrRloivTjCNk3hNjatf43urg4MrwMznUS2LdzuCJIDjGwKxeFEsyUUuQDOJIoi2VwOI5HEsCX27B7i6GOOZnxgKzt293PU2mMY3reFUEc3o+MTxEb6aQi14fY4SSUThCPNPP74k3R1ddHR2YVDcWDoWTQ9x5/+dB8LOlaxZt3hWOIYu3cM89zTr3HyCYfi8vpxevx4fH6OOWYt99//KC5fhkQ8RiKapaWpC2wDZB3RdqNZNpLTxYP33sPZ555LPpMmNTGMt6WBXD5BOpmhKdKDgIIsiWzfuoWmSANZc4xLLrqS2+/8FV5PhN3btxEKN6FbA9haK1/68lfYt30HN/3qRtp6wzgMi/GMidfrRzRyqE4Xzz3xAosWdDI+tg9/JExjQzfJnMx/Xn0Fv7zlFhKZFKIkMzE5TCAYwDQFJFEhGR/E1GW83gbGxwcJRUJYloXPF2D37l0sXrycRGoANb2ePc//ibvvG+eD/3ojztbtyGNH8/gL97L26HUItsAT/3iKdScfw5mnHMvdN12BldqHKySQykmoDg1ndJx9tPO+S2/j8Vvfgy3nyGng8nWwf8hg5UEnITqX8tz67SxekcObHcSMvkJO9+Jq7iQ59Aqq4sImiORIY2sO9vcP0NTcSTKewh9UUMUQtqij6RPkEjIjyQYu/Jefc9evb2NgaICxWIIXXtjC3k33c9G5p/GRL34TU1LK8P0lQ0hbEGcN6TSfdWYqWHl1wPPaVF/IEiru17Iuqm2mWXm/FDS9Xtn1Z8qZ6aeHWSikk6S33t/uHbTMtxG9mcJdiawyc1cL3KM+vRHhDqbgZ/9vC3clAaKe0FYKqVASAuYrsFXWYb6Im3NRfeGuFNNNmJbu/y/C3YGgn1ZSqQ3qgbO8JcKdZSNUagFLO5gHINi/1cKdZVlI8kxNpU0BMEcSxbrjYQZATinUxYz3+39PuCvNYZJUX5v6ZtDbVbgrx5isMut8Owl3hm6w95VXaWwTydlO9u/6B06nl6XLzmY8nWPDi48SDC7iK1/+N1at6uWqK69ky9atrF61DNXRzPoNL7H64OUEgz72DWykqXEBiUSeSKufb3z5t6xY3cE9f3yIn//iOvKZLKKi4nZ7iSXT+F0qTz79Autf2ciFF1xEY1OA8fEJdM2iqamJZGKUC8+7iE9/5irOOPtYDFMlHs/z1DPPcsopaxFsgVxOJ5fL4fJ48fncWNjIkshX/u1aurq7uexDH+bBBx7mxh//jHvu/yOKUySvZbHyGopDQRRsxsdG8AR9+L1B+vcNsGDBQnbv2UlrWyPYMg7FS//gAN/+9nV87/rr+fvfHuHIIw/D5/Ozf98EoXCIu/9wK0evPZK7/nA/H/3khYQDjYyPxEnExol0L8YtWUhoxNIZ8qkUqfgEbe2dGEi4fI0ApNNp/H4/8dQwpq6hyCoupwvBUlBkkVw6TTaXJtTUimHamFoah0PGNG0kUSCXzyEKYVKpSSwhhcsNtubC6/OiazbvOfV8HnjgfmRFZ9Pmndxy8+/54tWfItwUJplKYlg6bjHMeHQfqlOnJbKKZHKULRu3cfiRh2GjMZFM0Bhu5pabf8URB/WxZPVh5C0Btyqh59JkcjECoQCJeJJguK0Qa9XUSScTqC4nk6Ma/qDChpf3EAioCEg0trjo35PAFkFP6yxduQhvg4t8PEo8mWHLpg2sXtKLs6ERRfBwy02/5Pzzz+eeP9/OpR/6GFf88xf45rVfQlFVfMEghmWQTEwQCkfI5TVEZBKJYXzeBjTNJJ/PggQD/QOsPGgVtmnRv3eczgWduMQEdryf9S/+iOefS3PCqT9GXRCn0dmCYRpIssj69a/wlwcf4Euf/yzf+rcPcNJhTvr6GhFxks2nUTwdmHKcdMZFuDGLkXHjdCtMTsRoaGhjbDKDJ7KczuVnsbz3FDZu+Q333/5djlm7Bl1Kkh7ejSQYNLcsYd++VzE1C2wJny+AKIj0799LJmkTbgyiqDrkJXJ2E5df/VvuvPsJYokojc0tvPDiFh6++waysUGu+/WfUD0BBMEuzw9vjnBXAkKZrt2ajaZCHVSHc5q+eTkVh7lwTZzBFNSe9aZjW1SnfX3CXSnfWxXbrpIORLh7xyzzLaYDM8ucH00BsAjMRAia1ZDpAJ5SDaMyNUxrprbMol22UJcxEsrTRoGTFYs7MIUrlYr+uYSW6nedbiJQ9u+jYHpU8qeq9KybvdyZZdZ6l/nVtbbJnz2DkZ9qgZl1rFEXYX7Prv5V637JzE6AGbtilf6ale9b7/3rmtoWCp+zC5bfvQRRVXXUepOpHjT1e2aLzyzTtu2p+th22Rdprn4yrciSD2n1Mw6Q6vf9ivYonpd7vSgxBXg01fKV/oDVbVJYmErlTO3UAjz15JO0trWW48VN9Y/K/NNJLPppzKBqwaPCHLtUtlhHsKvVCtOKnmfaN+LTNg2g5gDKKAdxnwu0pao9Kq/XCwA/o2fUEKQPpK71yitdlySVx//6AD0Lm/CHumgMLiKXzhNPjmIqe1m54miEvMgjf3uW89/3IZyOFvbsHuGIIw8np0vkNY1QOIKiOpHMBhxqkL8/9hw9XStYvsJPc7PKxz52GZPJ9TjVCIahk83nkRWJRDxFY7iNI448DH9QIqPFsO0sk/H9OD0Wr23p55ovf5nmlnYmRpK8uuFVOnu6WLZsBbapk8tquFxeNm/awuJFC1EEiX17d+Nxu3G6VdYeswZvwEdnTzsXnHch/ft309wWQTPyOGSJRDLO/8Pee8fHVV75/+/b5s6dXjWqlixZcsEdGwymGEzvzWACCRAIm03Ckra7yW76hhBSNsmG/W6STSCFTWiBJJDQTA3FFNsU9y5bVm/T2y2/P6SRZkYjWSaQJfvjvF7X1sx97vOce+d5zn3O+ZzicKjY7DYM08SywOnyEI8n6O7qxa6puFwOBFEgOtjLOWedy0MP/oH6pnpCkRAIEhs2bcbncrL06KNxOn2E/EFmtrZh5hUwBYx8Fo/Tjp5NkEzEweYgm0rgcWoMDQ8TitRiGTqSAJlUCodmw2v34XUHEQQFm82JZWXBNFBsEoYkMTzYh8fhAMFBNtdLMpFBtTnIGUl6h7YgSSYBTx02qQZVy2EaEvfd8wdaWltoalV5680dtM1u5PSzlqO6PIiSgCxYWHoehyqjOUSCITcf/fBnuOji8/D47Wiane6ufsJVAY479lj+/sa/Y95RLeQtAbtdRRJMDu4/QKSqAYfDTyIZR7bJHOo4QHdXJ/X1tYCC1+dDVnPs3N7D1q3rMYwUfk89mjtHfCjFUbPb+O39d9M2t4Uf/uC/ef6pdRy9ZDl33/8wzfVNvPHGJta/toFTTj2X++/5GQsXLOSD11xD96FD3P7//pNTTz2FbF7HymcxDJPezm76evqoq5uBYeXI5bKkEhmCoQABfwCbamN4OIrmzJHJxklmDWK6iiwcw4LZaTZs/DY7NxhIqo177rmHdc88x9nnX8iieTOJJpNs3tLJrT97Fm84xLz5x/Cl2+5i0bF+PKKKqMf40I2Ps2iOAyOfxuORGRrqRpVCWNkDpIdf5uprViEpVXhrjqWrx6KltQ49Z8cS86SSabK5BD6XD8PUMa0sBw7tp611LpJsgTASFx3wedh/qJs/rNuJP9LE4FAfd//mf5gzq4Xf3nsnmiJy8dXXY8lyhV2VAGOGrokJ3qwxI/T4zrCwX7BG93eF/48k6+9IEr3KRithVE6Zo57/5uj7d6JidSRyf7JrhUmOibJ3qmzc7yQdiVvm+6UQ/oZJEkUksbisglBUF+QvoxFUySr5PC10xzQm1LhihLMJJQ/ebRIFaeRA4AhqVE6bjHf5fkzLGC/sXkS6YRyZnv4eoEK64HeTRpTov7EH8xdQobyIiFDycinM+yOllSeuxK7a30kW/39HBcWskB1z8obCuy4//mISBXxVIWS7D0kJ0J2N0jp/OXraS51vAcNDGXq7u7njzp/y9zd/iOfXP0HfUD+JTJye/p1s2rCT11/r5ve/f4Jbv3MrvX0HmNcW4bHf/ZIXn38Vt6OGvkMGNqGWWDyKqtlJpVNoDhVFUXjqqeewqSq6maNjX4zqSCvDAwZ2OciKlcs4eKgdVZOw2/1s3baVXG4IUcmiKSLxgQGeefxRFs+bS+ehPZhWjksuuoxs0mTunKMJBGvRNI1MNonicaC5HJDXiXX30N/Xg8ftI50ScGpVaLYAek5k02sb8XrczJ+/CKfDiW7oZDIp0sk0XpePX/zibkLhGixL4eX1G1myZDlnn3M2sVgKu81BY1MTwwMZ9uzq5Bvf+B41NU2IQoK+7gME/AGcjiA1M5oZTmbwBKsZiCbp7j5AdLiXqoiHXC7Bn+75HmauA6QoaWOA+EAXhpFFstmxu1V8XhsD/R1IioBqlzlwsIOurh4MPUdL3Sm41JmIskDaOIhh5Ojq6kFVNW64/jp87hn84Xev8tTjm8Fw47AL5JJxFEPkkd8+Qk/fTuyym3wmx/dv/wKWkCNvxOgf6CAQ9BDv6eOJxx6l7ajZRDMGWcMEDOKDXTS0zcSU7fQOpnE4a9m+bQ91dU3MbGolnzXJ5ZLEEr0MDHVw/PHLWHvVxSxeNptkKo2s5nj6qT+TjCV5+ZXnEaUs+/cd5NzzLqKxbRGXXXsziWGd5cccy/nnn8O/feMrPLHuSfxuHzu27GXT65v40he/wMDAILI0YhBLDEeZ0TCDlpnNpNNZMqkUkgSKopLL55BkiUMdHfh9Xqx8CIcUJNaTxu+MEJhXg1Z9JScuuZSjAr9n25uvMn/2HG645kZEQ0MSBQTZ5B8qYTthAAAgAElEQVS/8Hn+5eav8cqzG9j3+it87Kqz8AsQj3mIkWfNmjm0NgTwu2RMIGdJxPMxHn/kOWxpN3/45S/o3P4nyOcYHLDYvaUTl6+eoUSaeCKJ0+kmEc+jyHYUWaWmqoZ4LAaiAZgoksLBQx3YnCEE1ccxK1Zwwkkncdxxx3D04oU0N88c9yD4i8TEeLhOpb3fkdBYorVJzwsl5W5FUfyruEP+LdL7yt3fMBWSoBRoZKJPVbPj8CRJo+iFKJVcI4jSlG55hfPlrm+FWm+Fc4WMhgIT3USnrqc1spktrq5SXsersNktP4AR17tC+7JadG+HCpkaJ6slZlrG6BgCbzdubzJrlyzJHIllarLqaGPnrdFnVyacS2oljqFhFgUUt1JNucmovH5dgfK6UcLVBN6nqJ1Xfs24va3yb3I4mmz+FLtCWmU1A995Gp3ZZgHlLnxdhLwhjh7j91/8bMt5LqqGR7E8sMruxDIFdMOcMM5U8qOQJnvCXC0gX4WjDOGbDJ2aDhUQtZH1N732xcfhqDgNeOV6T0zd1yTFyMt5kEY3msI0n0slxLJ4lIJsLTyX4vGK203+DMSSI5vLoHnC+OxOBhMd+FxecpZBpMmLKCqEg15mzWum59AhfvZf9/HQ73/H7NYIsmnnd3ffT0PYQ8DTy9Kjm2iuqecL//o1bG4/kfoazj7/QiwJfNUWD//ueVyuEE5XmEDQQax3AMPMccHaM8iYaQxDpXluPdHYMH9++jlWLlvJ+mdfoLGhimg0ys9+dR+nnXoB+bjAFZdejaVY6LLF6eedxc6D27np5i9iovHZf/oCmsfNR6+9iZwRB0khl5D49c9+xb49e7FkiWBDHfFkEtWh8f3v/4D29nYO7tmHASw85lgOHurmA5euITGU4sF7HkaSHDS2tZIydR56/LeEAy42vryeSDBAOtbHpz95M7t3bSOZTWDIInf9/E62b3mFW77+WQ52bMeUfARq28gh0r1/C7lEP1VVAVLxHAGvTE39TGyahzc2bCXWl+DMtZ+gezBLZ3sf+aiAK1CNZHOSMyxI2ckZEpZNAEvHFEPMPWoB4bCLRP8QeT1NTo8DoIh+0lmThqYZXHTpeZhiDkG28fWvX0+4WkfSLHoOHuTnd/6MZDbHZVddSybtRLSDKLtIp0FSFNzOGq5e+3ekozlEWeS1VzcgGCLt7QfwO928uX4jv7jzVwx192CXMjiVNKlYB/PnzSGZGkKUDETZjoWIkRcxs36Gk3uRFJVwVS1NjRE8mpe1V61BcCr0DGRRqCEUqkPXFaz8IEMHnuWPT/2JrJ5j0cIlNDe18OCDd7G3vZcnnnicCy65DEvJ4fWF0A2wzBSeUBhdcnKgYz+a5kHTfHi9IWpqakFX6DrUQTgYRs/B/n0bSSeH8fk14rEOSCbB5cfTdh7O2WdQ63yT+U1Ohg8ZRKN7SWcUfHKE3qFBVl14Fp+59Ue0nPhJPvS5P7Lu1SyICQxT5uxV88kIAk5fBLvoQszoRBx5zjtvBfH8IS5bcxqqlCbX+TuOmjdEzj6LeDKFx+ZENFPkdQndSBHwe0kk0qiqg1Q2gyKrmHkDwbRwqDakfBq7mOF7X/84HQf6sDQv5158IYuOPgGnImFEe8EwMY1CDTkLURjxABHEkZjPYo1q/D0rjrYv1E0uc+OvUGS8QKZljtSsm1BzufytVPCgMEcPCzDGMmSPu2eW73WtskMo6XPqfXHptWbZUdznezms7X23zHeZ3g23zMNReXrY8Qk4nYkojC62dwplKc18OTU0f5gxy5MPlC/OaS60QqZDwaqclfNIaKJqUeCtwOvb73uyrFTT7fNIRx4rUzD6udwxt3QjWcDhpjnKJL+NKJX2M9FVbKqMlMIUn95ZKs4CW/K7vuPCfbzf8rXylyYfEctKB7wTNO2skdO8l7HzU5wruFtON1upWCYPp0uiMGKQqvQCn+q+K31fzoNV1vbtZN+c1JlorHbl+FjlLrK6bkyIdyxf/6Yg0b59C0N7NyJZWcLVTeQySSwrRyIdIxEd5lBHJz/50X9y+ukLOfG40/jGLd/n/ItPRlFl2mbOQ9NsBHwR6hrqOf+8C+k61E1tbQTNG8Q0TdKJYRpqfPgCdezb30kg6ETBzquvvsSstlYsC1RJHqm3p3dRH4kQ6zNYcuxSDDPLN2/9Dh//h5sYHujjlm/cyle+ehtulx2vO4Qo2HBqLjZu2Mrpp53G/AWzkRSDlStPpP3ADqpCtfj8bsJhBy2zWhFFO7msRTgcQM+ZzJ+/mC1bdvLMY89w7MqV5PN59u/Zx3U3XIvD7aWptQUkA7fDTW93N7JiIYp56hoiCKKBbmaYe9QiahtqUe0yigx1dWHmzZ9N30AXNfU1vPDieppbZrBrx3ZmzZqJTVEZjkWprW0maySRBAvdyBCuCqC57IiyiapEkGUZWU3QsXMngmni9LgxFBMZP8OdCWRi7D/YRSgYQEQgl8tjCiJ5I4WsCBimxaUXXc0pJ5+Kx+dGEA0Ode3D69QQRBVZcaE5wsyoayDsC/I/d/ySE1cfxxuvv47b5aWnt4fk4DCmKXH62Rfg9IU4uHcXy45ZTEZPMmtmFYJl4HareD12InUz6ezuQLZJeHx+BgcHsSkSA0M9KKpFMj2I1+fF5fIwNDiI1+EmFY2y/s+vsXfnFryuejoOtPPpT32MB+7/DU31TXz+C//KNR+5Dk84yKymJtKpJLmMQS5tsWvXThYsmcfS5XMwUYhG+9CzIgf27ScUCWBTHLy+aSNNMxtwaHaGY30kE1EEAX591+9ZtnwhsgLJZAx/IIhhCDjdLmLxGEZOpT/ZjeqIoLqacQr76Nn+Zx7745+xhQKIgpOqWo1777qPWW0rkBSRPfuGkCQX//nrP/KBs2cTcNswVTeyqBCNJUlms0g2FbdLY2BwEL/PhyBaGGYeVRLIpWI4RQeWauLxuMnkdQKhEMnYMIpqxzQhk8mCIKDZnQhAPptjZ7/Js5v2wXCWSz5wDVu3HeC7/34L55x9Gpq3gWhfJwuPW4nq8yEJ0ljGzBFXzFIZW4yoFZfDKZY7hX1P8d6hchbM0tJbk8u+8TaFdhYj4RTF8nxExk3SRQmX5X8fniYPAxjhTZKkd70EQoHed8t8n0qo4LZZDnkXf55wrgzlEYXSRTbtsSksvhG7xwgyNFFYjDpuUsBjKiFq4+ihMHZFCQIlShWRHkGUipMJTkA2xtxaR9G8SZG4kj4L91SKHhWuFwWJkkGL7nJqVGncMlTo2zSNt4UwlmN1h20/+lzGUbbSaycIuQrzZcy+NQnyVU6FOOjJnsuU15bdYfl9GqY5YT6YFdpNGFOo+NMV8TR+f5PNuRKaRqD1BJ7KA78rIEVHilBO5hZdjkIdzq5Z0qdlVXbFKY89HP1cSKRyOBSt3O5afIzVOxydG+W23vL7mNDnNBVci5GYjkrPYbIxp+qr+Jjs/Nuhw/1O5eijKIrYFHkKXkZmliiInLL6FLZt24bH62HL6y+RzybIZFMMD8fweFTmzmnmm9/8PGGvglPLU9/gxxRynHTKiZhmjr27tnLzJ27E5lQZ6B/gu7d+B0nS6DswSMBZzWuv7sUXqefNtzbiD7pJJodB1JlRV0siHkORBAw9i92lItmcpDJ5krk4bXPnYdccfPrmm/jBf3ybqmoPP/zhd7jxo9dh6SZPPr6Omz/xD3Qe7GDdukfIZJJksxl+/+Dv8UYk4vFOLD1BLNPFtm07iEajGIbOq69tYt/eQ1imxD33Pkh9bSNnnnEyomDRdbALvztIMjqMLNjQVA0Bg+6OTl5+6QX6ug8iWX4ky8tgf5aAv5ZkLoWq2dix4y0MPYkvFMDhdlFdO4NczuKEE04BS6Ft9lF0HeplX3s71bX15AyLWDxFf3c3HpebZDqFYJMZGogiCDlEycI0FJpmL0B1e9i5fSs7N28mPtiL2+0gnzdpa56JIsn09vSzeetuVNWO3aYxPBzHNEx+cedd1NTVgADt+7oQLCe6LuPzhbHbXezZvRFJSfL65j9z/mWnMhzto6a6AZtNo621lTt+8Us8Phc11V5EIUVL60xMQyCbNnj66acZHBpCsjmZv/x4nI4aamvm0Nub5J7fPEYypqPKVYR9c0D3MDyQQbBs6DmLmpo6DMvCGwjh9QVZdepqqmpDvLxhPalMijPPOZeFRy8gXF2Nnpf4+R334HZ4aKivIxBwce99v+C8865h/SsvICoiiAJ+v59MIkEunkS37GQzGWbPaiSRTpDPG4iijD8QBEvi4gvPQ7XZ0PMmHrcfWVExEdENi0hNHaJiMaOmBkmwI9sCVLd8AndDGytW7+C4GS0smFVDf2+CD3zgWh5/+Df4/DbmLW1j+cp5/OHu32NJKu37Tay0hSqr5LJZnA4VlyaRyuVxud0YZp50fAjNpmCKJqY1zGD/G6SHukilLPyBWno6O7HZNZLJNJKsoFtg5E3yuTzJeBq76mDbm1Ee/PU2TjphIS2zGzhj9Qp+dcePuOHDN/Lnl17itTfeQpIkbJI0UrNtFOW3EMY8eiq940RBmvDeNUevNSxjTCUb3yOUo1wjUutwbphQMFKNtxMFcczrwSwRYELROKVScRywmKjkTZ5gZfSTMK44jpughTHe4K+TTOVI6X3k7l2m/w3kbjIamaSVFlS51aFCzFzBYnKEVo9xCL84Ych4n+NjlZ63SlpW7rP8m8L2uHyxWmPK1uRuVCNBudKoK8HE7dKIq+o4u4LAqLvTxG3fVGjgeK25UTVjSsE2LnxGEjQIJd8fKb1dJK9SH+MuwaWIW+F3/t9xVyjjRRTKDX8l82qy51Gphl15/cbDfV/WaBo798q/7di6HHVtLF+nR4bGVb7jctSoEC92RMk5ptm2vN+3Y+0cQ5bK+JxuT4dNdjLJeO8G/SXW3klt3YdBNAvXlc/zSuu9Y387yxbPoTeVR7ISBEJVuDwBkvEcdlVHtTmQlZGNau9AJ+dccDpOT4D2/Qfo7exHEhJccP5pbG/vJhvL4LA52LRtM83VNv78/HOcdPqJGPYMIY8fXzBA/2A7Rk5HEUUMIB5P4HI4SVsZbHKEGQ3N6CQYGE7SNLOOA3vbueraa9HsMopscMEl51IV8qNnda778LW43XbWXHkJl112CVde9QGWLFmOLjhoqZvFD771c05efRp1NXU89thjdHQe4oSTjsNus/Paq28wNBRFVTScWpz+4WEyKZ2FCxfRfXAffV3DhMNBDD2OKNqZN6eVVCZKPJHE63cwNNhJqMqN3RUgp2cx8mmyqRgefwQBibxuISka/b3D2G0OdN0EU8QX9DDyBtJwuBUGugbw+vzYNAeJZBqfO0Te7EeWJMyci6zNgSzLOFQZKWdi1wwefuR+AqF69u7Zg64beHw+6hoayaQMRFFEtdsRBRWHU0UQdHq6e4hF83ziY/9MNhHnZ3fcSSyZ4q2XX2HVqtVsfGMX/qpGgkENm+winc4iSgLzFi8kFhtAU0ycdotnn32JZ599kRXHnUJ1QwREB8mcSB4FU88g2bNs27GBlStPADGGqtp59JHHmDd/Li5HCFOXURSFeLwfxW4nl89RFaknnhrC5tJYfPRSYrEMiubEW+XjrLPOJewPsmTeAv700GOEQ16yuRgf+uAV3PHTP9LYWkVjYwuCKJFMDaFJblRRQvG46enowKnZMAQLzebj3772b7Q0t+By+snrKYaj/aRTeTS7j8HoAKFwFbJNIZlKkNVjuGQvnfs6CYR0BsVhahrOwG0E6NzxTW7/0aMcf+KVPPbMY8yubSGVTRMJz6C1aSYbt/Ug+Ew+962HuPiC89GMXiQMLCNDPptAsrtxOh3EhgdRRJNEXMfu8RLNR3H7QvjsDgaHEmx89SUaa3zEkwlcLheSzYauG7hdbhRZQQS6e3qZ3ebk9JNqSGQdRPUcrc1z2b1jB4bhpKWtgZ0bnsHm8LBg4dEIslwkQ4qM6FPUh630lyhIiKJYluCpVBmyRo38b1/+lSJ2oybDoj1laf+V7qE0nEAo+76ovVD651giMsv6q8f7vV/E/D1E7yXlbtxaUpxtszD5hbEFV0wjlnKxyH+60mIc3+QXsgeOWddHLcDlMHzxpmxEHSoB8gsqwtiYEzNwTsQWLNOsqFQIML0NcLGyNtr1CMej3xd3YTGBxwLnFZ+RYBWdnY7FavxZFTI4lt0RI2UHxj8fnkqV68NSkZAr/K7FwrpydtGRQxSEEZ99QRq71+Kj0u9RyFY5sVDGkdxd6edSxW6c5ykRr0JmTlEq+Z1K4tgKvJZny6zI2OGVuzFb4JjxoNSlesPGjdTW1o6dK9zRVM9KEJXRcUd6H3POtqwSNKdEXSysXWGkVMdh3SeLXWOsKUoIjFpZJ1g4R+dU8bqdLM5tAr/l8WpTXjXad5GbZflzGGPJNJEk+W0ZKMYNMZUk1DhN10V0cjPR1MpdpTU2oa8ydHXczWok+VUunubX3/8GBzveorFpHrGMg3wyzaEdm/DYYwRqZ9F+sBeHorFryzOE6pvRfNVkhjtw2NsRLRuSIoKY5KVXdjOzpZHlxzXTtSdFXYufhQsX8tP/+m/8mp+a2pkkE0n0nEgoUkMqlyWV0vEGggwmhvj+rT9kxTFH0z/YTdvs2cxpaWEwkaOusR4jnUNRBHbs3ImEjb27eth18AAzWhvJZtJomou1H1hLNDqEx+NFscGhgwdpaa3HF/IxGNvLnNYlXPPBG7jmQ9dz76/vZeG8RvT0AFtff4E5i1ZRX1/P977/H5y4chUoCp397dg1hWCoFpsmY5gGFjZ27DjAXb/6NRdcdBFdPV0osowq2XF5IjhdASzZQhQUREEknRjGLpscbN9FPptAkQwsM4uhZxEARfCguGzYHBq6aWFXVTKpBGbeTjqVwyBFuj/G0EAn4ZpaTEEnXNXEgkXH4/F4cDo9qJqGYpPIZhOYWR1F0BgezPLiiy/hlE26DvQQ8gfIpvv52Ceux+N3cfUHr2LHts188IYbUW122tpquPPHd9PU0oAo5Rjs68bj8iBLCrU1TRgW/OmRR+ns7GVgaJCjj12KarPIpQR+8K3/4JQTj2E4lmCgexDNsrP9jTcJh+bw+KOP0NV9iLCvBpstRz6XwjDyiLIdRRDZsuUN3G4nTz6xnqOOaqPr0AHCoQjXXn0jV665CMMaQhCzDEeHqKtvYDgxjCg7ESUv/rBES2MtQ8OdOB1eUskcLp+LrJhHQSUyowHB7sTnChOP93DBeZdxqKMfTTPw+UOIio1AVYhENoZmU4kO95HLZshnc4QD1XR1bMbtcZPMZwi7GxiMxfD4bWRyIs01Q/zXd+/B3TyTM88+hZqaBr717e9i1wLMabHR0+Mg7K/hpScf5bnnNjNnkY9cNovX4SOZjpJJ5fF4g+TMBKrdhk0QSPVmkelFUJ2IJKmvbcQUYxiZPIoikYrl6TwwiObMoRtZAuF6JBXSSQVFT5C3Ajzw+FaaZy3ku9//Ge2HOjh15WpeeOYJwj4bx59xPgbCCEJVopBNrtyN7yfKA2TGvTJGZPt4PN74ns8q+v/tK3ljiJpQ/Hf5/qqCjK9kuB0l3cyXGDwnk+VH6ub/TtD7bpnv07RIEoWRQ5IQxakW8ZGTBRimNZY9sxBA+3ZIwBrJEPlXoELQ7NvNOPh/jcozdo4FFlvGlPqKaZrvenbMt0vjZT3eeyQKQkWFY8aMGUfclznqUjOp6+TheBHFI35OZrk75mQ03XbvEJmmiWGYGHr+8I0n+Q2mQ5Ik/6/PetM0RlKEv00qJIvy+P3oio+6lqV4q5pZtOQEmuceR82cY1CCLezadhDL0JHlHGlLJxhsZNNL2xgeGiSTj9JxsJtn1r3Ojm19XHHJcbQ2NnBwTw93/eoXhKtCeL1Brrj8KiI1Pq655ByiXQeoCgTI53QS/T14NRt7t26hPhzkHz72YapCLhRyRAc66ezu4KTjj0MSNERRZfNbOwkGqjHyAvvad7L6tJUoNguLDIIoI6Ly7FMvk03n0XWTurp6IpEIWBZBfx2R2gDrX30S2Zbmw9esGSmXcMppXHXDTXzpS19Ac2gcddRs2g9sR1QMZjRGcHodJJMJent7yObTZLNxjjvuaD716X8gGh2itraOWF8fV19+JeuffZ5kNEYubWKZoCoidruF0yZg5DL4g2G8NU3s3HYAp9NDPNaPKKdxu5xkU2kyiSSmbpBKpnA4nBiGgdfrJVzj46hFizDzAiATjUe59davs2fvfg7s3cFPf3w7mViUra+/xZtvvcn+/fs4/YzVrDrlZOraZiF7XHT19aNqKnv27KC1ZTYgcMXay3DIDlYsW8aLzz5JXZULTXbS0zNIzcxZGKrGq6+8Svu+fWzfup1TVq/m8jUf5GMf+zip9DA7t+8hnU7wxS99nu9++9+pcXvYv30/X7/lh7TOOxZ7QKG6IcKaiy/k27d8hWw6jtujIYg6ppUnmcjz4L0vEgzWcc6FK/jyF76Oy+Vj46aXuPfBn2BJKWyKiq5LVFc3sn3ndurrmqiprkWS4Gc//Q2hYC0OhxfTBK/HTyqVxucN4HHnMHJRXnr2OfRUCqfHR2dPNzX1VUh2O6IVI97fhZXJYTNlRARUmwPNrlFdXYOgqGRM8FfVIyoeBnqjBAJVbNzRS8Pii8ngZu7MKPl4D4bu4Pb/vAPJhJYZYRzOevr6hjjvvDM57YIL6YuLbN9tQ7DVM5zMsnmni5zopW+4HUF3Ilg5BgcNXnxlB5LmJhnrIBrtYsOmF0hkh1FVFdVmZ9eubYSrvUTjAokE7N29GVV0ozlc1Mxsoy8tsO6ZDWhqgE98/FOcdvpp7NixG1NUWPfMnxFNE0yzzM3xL6NCBs3JzhXOv5P7zmnxJYoVFEAo8KpISkWlbTwr/d8GvY/cvcv03kLupiILQSjU6xivbVaMIJlUckOEibi1MJqdklH0Rpxg9RgvUjnu4z3GiWlMcJ0q1NCryPkk6IlQwb3ucDTmPlq0+RRGNzsjrqlmmRlnKtv6yP2Vj1Cp/YiyVJz9aSrUpBxDnd52Uih51pUdSsu/n2jtZxS1ZPwZVUD4Rk6PnxcFoZTrKeK03unNcTG2WmqTPNyFVulB0ZwqbnN4BqbJY4W5MeqO6XK5JqB5hSUx+SwRxpExxq2mU1kby9ddOao32bVjltCy52Fa41Kk4qVCaaKTI63TNhmvJbxRkB/WSAH3IqtyxX4FAdMyS1C+sb4Oc+10ZU057+X9jiG5U1x/uL6tabSFkTldvIYLlLdMTjh5FQ1tM7FkL7otAZJIMpOjprYZrz9CKpvHblfJ6QK5XI6ZM6o4dKgdnzafSI0HfyRNOuZmyxuv8NMf385Z5x7LI396hmDEy4//6+d0HuphweJGrlx7BX3DAwgyOF0qPpeHT3z8kyw/5hgQTKrq5zEYS5M1RT79z1/gxBWn8PS6J7nggovoONhOJBLC7XHy/PMvccyyZSiaiqKM1Fmz220MDyTYsOktZs9uxOFykoonWHv5Ws6/+EIUyY4gGuzZvZdQoIaeriR79h4i6K/l2adeYc3aC0inMqw+7SRUzSSbM6iuqcYmayQSeZ5et56W5lZU1YFdE7A7VOwOO/lcHkmWuOyKK/n0pz7LxZdchG6ksckyqXgMy9KRbA5E2YaiamgOOw67Siw+SCgSIZPOYFPsI8iHaeHQNAaH+nG7fAgCRKNDGJbIoYP70OwOhoeipFIJ3C6N3/72D1x62YWcuvoMXnjhFWY0ttA6aybPv7CeRUuWsuTohYhGH4ok4A8Eyeh50pkkHk81sijQP9SFy+Hh1NNOZkZTBNXmJxD0URX2oYgymUQKt9vDrp27mT23DZsq88EPfJArrryCru5unnh0HSevWsWhQx389oEHmDuniuaZzcye10bLnGpkSae+ugaX3cHJJx/Ljt3tuD0+UqksmsOFptpY99RjLFmykE2vv86111zH0OAwkUgQt1cjk9LZ8tZe+nqi1NTUMrOpnkceXUc2kyUY8tLS3MJt37yVBYsWEAhGSKXSY4W+X3rxSRqaZhMIViPJJpmcicfnRtVs7N+/j+pAiGQqg6TIaJpGKpUl4A9iAgP9g7h9GvnUEJapkTd0NLsDu92krqaaX/z8bpaddRk2SUXse4FI03LmtDVxsOMAiqrROxhDtSvMbG7AH6pixfEr+Yebv8nunds46YSV3Hf3OpYfvQCfxwmGg4EkeHx25s85CsHIocpubIqHSKQVSZKQ0MlmTQQMwhEPH/34gzQ31NPWppFLWghqjujAPjyhJv702Ovs2bOPj9zwEUQRbJKdSJWfXbu2c/nlV2DKNkAYS6oyJjkESjyEiqPDi72yikMeRpKxjO5lMEdi9Epc/wv5FaDYjbL8ONz7YLJ90rjb50QFs1ymF2rmjdOIBBXFQttRLse2AYXzf31F7323zPcQ/S0pd8BY1h9RGilbMOJGNbJVmCoOrkCFDI9jC6hIuSsfbXzZUPLXWKa3Cb0f2YZqWvFQ06SRhW2NZ9osFEqfpG+zLFVvEVeT8lqe7GYyMkfdT0v92Q9P5c96suf7dpSrwz3rsZTs7+BvMl0SReltu3qW04Tf5R27j0l+y4qxdgVemFK5K3WUmb7iNFmrt4NmjSkYh7m0IHeORLkrxAZKkjylEUccc6Et3QgcbixdN5AqBMpP9Rymy/1kcY3TjR+czjiVYkcrUcH9tnxuG+SxRJmclQHJjldwsPPV59m+/gFcxi6c9Stw+0PINo18ViCZ7qDjwAbcWpiDnZvxOObS2rKY+37372QHHXzspjXkxXYuvfij1DfVsn1bO6tOPpVAlUQsa9I6t41Meoj9+7aTNzQ+dN3f8drrb9LQ1Mgzf3iYlpoI8f5eFs1u5bOf+ya33fI1rvvIdfz939+Az++ku6eD+fPn09M1gCjLON0eTD3P7r1bqa9ror9/kHCNC0u/JyEAACAASURBVFVz4nW5ufSSS7HZVWTJhmEaeFxh/vu/78Zf6yIYtOOwGTTVhxFsMj5/gHhiEH9IQ1ODyJLCNR+6Ec3u44yzVqA5LVKZfjTNSWdXJ3abik1VyZoGn/vXL/Ktb30Hl9+Lw6ETj8fBEHA5HBiqG7vDRXfnQfxOlVw+jdPloquzF03zkU7GURUbWzdvIRgM4nQ62b5jF26PB4/XyXA8TzgcIJuK4/aG2Ld/FyeffCLLlh3P3vZ9iLKN+hnNON0BBDI8ue5pTj/jTAJ+H+1vPoJdURiKpunsH8TnVjnUPoDP78Oy0kgOhVA4iGKXqYnMZveeN3n+uad57tHHOHbhUgZTKVpmtWKhoxtZbrjhOvK6wQ9+8CP+6R8/i91u4/VNm7jkksuJ1DRgswURUUmnBrnnF//N4oVLGI7GCNeH8Lqr6enup6a2keHhJNncEGeeeyzbtm5nycJTsMQ4smTH5/VhmHnQNT7zyS9y+eVrueEj13Hhxedh5kXmzJ1NqMrLcLSfi84/j0AgTF/fSCbOfE5HEEVq6uvQTTsoGpoTVJuLTDaDpAgEAkFES2MwGsPldTGUGCborcK0TLKZHOFwFZlkH5aeJBM38Ae8CIrCvp0bUIU8kWCIsMPG3GMuQWYXu3ceZGiwBxQnjzz9EpdefgmGnuKPDz/E08+8zLLj57Pq+DVk0z0Ips75Z9YT8IrEYgNs2/Uyt/1wA2ef28Rzjz+CJmggJtCtPFndYl/HFmyCRHWkDsPIMjjcw0VrluF22LApSfLDEQRVIqzZ2fxWN5sP9vOhaz5EuKqGfe0HWb7kWH5z96/IZVP4fH7qZs1CksSJ+wphPB9CuewZMYRZRQa88cLlY3Ko4l5mmkawaYQFVFLwCsXUpzcGVNwNCcXK3MQ2f22XTHhfuXtP0d+OcjeK2gjli3vkO1GUkEYt2cWxZpNhPWPKygjEg2WO+mGPWlIKPs0FQVC81MetLeW9F+w8oz7cplkSGzUZujJVnNeRPR0mojlCIcV8aUzi5DF1hbspt6uXIQSToqQUWcqKk7eUqspT3UV5rsgJJSUq/KqHpWm62QmCOJJGeZLzoji5wnykNHZfU9TbqURCmQJfcl9FSKVpGRNcPA4/10rn9lgsAhNfnZY1gjRNheCOlIYv7q/4GHGTrJgOvwKNG2Qqq/1W2efyl3xFDoWCEipU7HesXZkSNSW6yDiKKBTewFPMmXHDQmFtTk+JrKTYjXZQwkvpEx8ds+j8dKgST2OSoUIc35R9HUk8KEXPuky2SYKIgIUsKMiCRSKXpaezj7c2rKc67GP//n3se+tl/ufHP+CUM8/AhcWbr7xOdUsbLXXNbHjjIYZjcVJplXMvP5fbvv0Tjll0Li+98DhHLa5nyaJ5eNwqPV17SER1wpEWBMnFvf/zW4b6TJ568lF2bt/C8qXHMHN2M5JDRHbY+cmddzF3Vj2nnLKSE487EUcgyE1/90nOPPUcnnzqeUxEdu7cRjgUoK93mMZZs1AUhYb6WuySHck00AURS1a57MI1nHXu+ah2G4YJTz/zHMcvW0J9fT3BqjrOvfAqorEMi+bP56UXX8alBujrHeTh3z3Oicct55yzVzKYSOLV7BhomEIG0zTweAIMDcapDgVZueJYXE4bimggyR6efuQZXHYXqkdFlWRMI4dNkRhKDOLUNGSHFzAxMoP4AzX0Dw6ye9de2tpmE41HaWyahSiJDMUGCTpUjGyO3p4+nnjkIdwuB7lcHl/AwZf+8UucfdbZeAJeLAUsM8esltnMmjUL1QaGYDCjeRG/+vl93PfrB7jg7ItJZQbo6Ojgn/7p6xy3dB5f+uKXWX3qeQzHhqlrbsbhCuL2RYjUz0ARDfbs3YU/GMDvD5FIxjB1kaOXLMTh8dLd2U19XS0//N6/s/KU81j/4lPcdtsXuPr6DyPhR7cU/FVhTGQESUJWJRSbgKYprH95K821rWSTaUwhSSpn49XX3iAZj5HNpNm6+Q2uvW4tgZDM2jUfBtWgr7ODhoYZ9A3HSA334PD5EVSNnoOdhEJVGJhk8zqa5MAmy8SivWSyGTTVjmnksfI5VElEVGy43S6ymTyaTUOSRTbveJVgOEg2Y6G5A0iCnbSRxlIUMA1qauoxDIuqSAjB6SI6HKemdTkNri46drzIwMEDbNsxwIqV8+jvjnPqqSs5+YTVaKpKpNZF44xm7r7vMX5y54sce1wVjdURdKo5/cyTsRkJZjbWoTh9WLKBnsrS2Z/jpn9+kg9edixD0UM4NR+q3cJIZvC4JPScTPfALmRTx5AEPKEaemIONr76OkF/LU8/8wL3/uZOzrpoDeuf/hORmhqWHLNiJAvlSIzOuKSxCjJoJKNcqapTtA8cy7w+lYQqyOCRzOemWaoIFvaf5fKwOBZ9aiVrMgk52TtyvP2498S4u2ix+BzZm0w27l+H3lfu3kP0t6PcTY+kUb/j0vi5ySe5NeqXNSYQCu57FFv1p07oPkG5m6RPShZnJWbeBbRIGFfkpkLySi6o+LlUKFnTrJsiIKAbBqI0uX/74TiY7Lp3Q3QdLmGKKEqF3fs7MVrRv0dw1TTQucJ9lLulTpaxtZynos6nPD+thCZTnC8odUeE3JW1s6wJfitHPjcON/YkCFbFppQikRNW1JgR6i8jyzQRKyRWmSqJy5hiNebSPT2qiMyWnZ9uX2PJrMr5nspoMQVPhXFlScDp8bHwmJXMmLuUfErHq+qoxMkMdvGDH93BuVdcj1t1cMdPfkxjc4TqSAMzm2dSGwqw7OhFBCMB5i1eRC7ei9/txakq7N7+FnPnLmLDhpeQLYllS1ew9JjjaZhRTVU4yJxZrWx561n0dJzHHn6Uj1x7I1XVdWx6YwM1dXVcdPFVfOHzX+I7t32XCy6+jO/98NvcfPPHEVHYv7+fSKiB3bv2sH37NkKhIIgyNpuMrqe58ooreXH989TU1GJTVFatOglLSGFTFZLJJCeddDxLjmrhkksu5iu3fJW0mUXIJTjhpGMZiA/ir47g1OzouonD4UQVFeyKDciTSQ8RT4t4fF6GYnF004aRT4Ml8NWv38Llay9n86bXkIQcfp+TvkP9CDYZPW3DrYmYVj+m4AQM/AEXNruIprmQRIEd27fi0BxkMzl008Lj8dLffYDqqiokCULBIJGqap56Zh2tbc2Yhs5z6zdRV1eDTdZp37kFtWoGluRk8dKjcbpk3nrrdebOm09DYzMXXXQJ9z/0MP/2ta8hY5KKD3LLbd/nirVrsGsSOhkUySQQquJf/uXLnHvuJciKhKq4eeSRR2meEWH7ti0oksjZZ5/BcLwft8fORz56Pfv37aHzQJSWWa14PF6+8MUvs3TZXDxuL6eddhprr7wUv7+GrZs3s+9AO65AkJkzamlqaOL+e+9l9amnEgrN4FOf/QyXrDmXdErnYPs+TNMiGKlCtduJDg8SidSSSCRpaAiTy6fp6+8eyRBqCiDoIFk4nR5ESSSTyvGnhx8h4Pfw4AOPMO+o2aQzw8QTA6SzBvUN9aiqA0VWGRjqJJ9NgCCj2j1AFsVmp6d7CM0RpK+/H82jIku16K4lzJ3nJdrxNMsXnUb9nMUMD4vs2rMLlyZiSUG+9e3bqa6ZRXPrIu6891mOObYJKyvjdh9EzA7idgropoHD6USVTHKZNB63mznN85BpxxLT+Py1INpQJejt7SccrkbTHPi9dtLGMMMDAnu37OSMS6/ngac3olhJbvr43/OnJ55g6+vruezKtcycPReECm6ZY/JgYl27SorY1DTSLq/rFHZ9Jcm9pvG+m07/0/9+nKSyPVR5oq/xv8eNhH9tel+5ew/R/zXlrkCiKJQEmFpYWKNIWslmt9i6TnHx6wJNVOxKsy9NtFcXeYqOULnlvoyHku+nSZYw3aLPowLAGkURS/gu5n+030kVmyPb1I9cMdKmku935XHKeRJGeymN+BJEoUR5njaNXjclHW7TXRTv9JcirtNBOSqzUJYhtGgeFKMiQsVrzBLErXz+j9s7K3FaPs+P/EVX+MYsc+ecPC6htL/SmL4je4lNeNEX0LqS+59wUUXFb7pKbaVWh1OspjsvxFG+i9tPhq4VDV5yzXRn7uHiICuOVd5uzGNhdF2Xo8lFZBbN38mUvnIPDssysdntKHYHJna0qka8NY3Uty2ht38zCxYuwC5I2CUH4UATdfXV7N/fR9vsBTz75ycxyRCu0ujtOUB1oJGtW3YwNBAlEpnB4OAB3KqOw25ncDDL5q3PItmyLFi6gNfeeIO3NmzmxBNX4fdVc9tt32Ph0mWccPLxeH1err7uMoJ+O88//wSCmudjH/04TpfGww//gRNPPJ5LL1jDmWedzPxFszFQkBUNm2ISHexBc7kJRFTsqh3ZJqBbCWLRKG6Hn0QiSTDsBdPktNPPRZEldu3dQiRQhdfvxOd1YeYNPvuZT3HMypMJ+Fz0Dwzi8/vp6u4kGAqiKm5SmRh2m8J3brudeXOaqG9q4ejlK4hURXA6VCwhhySL9PSkCAZM/C4NWfGTM8J0HDxAOBImlU6STicIB6owjDR6Lkt/7xBefwC314PT46WtrY1EJk3jzFnksXDaXdTV1SMiYpMUGmfOxu1QyWcyZNI6/nA9g4NxfnP3vaz9wBpmtzYw0J8iEU+za/duTj7pZBSbQvuBdvKGzoZ1z3Dfr35Fa2MTgm7y6OOPsfLEk1h+zAqcLidDQ33cd+8DHH/CcTz3zLPMm3cUM1qaeWv7DmbUhkbqsFkimWSSbMqgp7eb19/YyJVXr0VzuNHsATZt3MVll15EbPAgfT0dxJKDzF98FB+68nrOWH0aLS31yHKeX9/9R9auvQy7Q8QyHTz+x99z2jlnk8pmMHUDQzfYv/8A4VCQVDKB0+VEUhQESeBQewdun410Nomm+dBzab765W+w5tK1BAIuZrW2YlNFnC4H8ViM6uoGcjmdoYEh7HY7iUSGcCCI0+XBRMQmScTiKfxVNRimiJ5I4nIGEBQbeWREGqhvWMT+9gd46g8v8PTTb3LF1dfzxOPrqG8KsGr1Sva070G2CVx42cn86z/eSV2jg+a6mWQT/SC78HoDJKID5HMimsdGd982ZjaGCUdacHslFMHOQE8XiVSMqqoaMqk0uq5zoCOG5q0jFjN4/Lm9PLJuPTfd/M9891u38JlPfhyb00n79g3MX7yQtqMWjYThTBLuUe5RVWqin957ohBrJ0nyaG1hcdSL6/Ay8MiUqQlmtyJeK/dT/ooqdckspf+txCrvK3fvIfq/qtwVLxRBFJGkkRop1iiiN5liNSH2qgIdDiMoKIhW2Ya7fHX+RfFRAtNULCbbeBW+L3OBtKyi5DDChPbvCAmTIX/TUSsZ3Yy/DY6EaSh3h+1iFNk70qQl7yBVRILLUeHJ5lpxYhHLKvbeLbQ83OjTb1mOsJnm20LqJutvquvLFcDy5CPTfhmXuUoeyUv83bPhTr/dO7Vqp2fMKftcrpQdARUjm5PJyQnzSwABAxmQkBDFPIYuYFN9VM88ASkR44FffIXZS0NUR2Zz/+/uoHX2LAIhB7o1k+aZszGyaXoP9NAb38/M1mpkzUK3snR17GZGrZOe7kGqa2dRHfDzla/ehtPXxIKjT6V9x0H8gRDBUDWWoLDuqSc54aTjkGQJ3VAQdBGfJ8iixUdz/4O/o64+wgknLaerq50brv0wnoDCwFAvDmeIoeEEZj6BJOZJ5PK4tQg//dFvCfrq8LoDeD0OvvTFr+Nyenn55RdZtmIVF563hvPPPg2vC8I1s7FrAru3b6exuo6zLzgPu8dPLhXDEwySyKSRFI2+/ih+l5tkvI90Is6iecvxB5zYXR7SeYPrr7mey9dejifgxgAsw8PwnjiJ1HaytjSW5icXy2Gz2XC7XNjsKmbewKEp/Pznv2TZ0mPQXC6yuRyyKJPK5bG7vCDbMAWJfCKP1xvg5z/7OUsXLWXdI0/S1XmQeCJNS+si2nds5/P/9K98/BM3IdttHNz3JjOb5mOYAtU1EWTBpH9wkEhDA5Lm5JzzT8VSFZaedBLuUITZM1vp6u5Cc9qQZejr62TVqlUkkzHmL1yGjgA2G65AALdsksiYeHxhejsOsWDhAh59/E/Uz6hFUQWSqW4cmpMTVh5LT/8OLl69li9/7mvs3dvNvff8gR98/3b6+3uorfXidEGkehbhSBWaU+X/3X4X/Yf2sXL1qciqioyI2+1BEkU8bjeGYWK3a+iGRSKVpq46Qlf3fiI1VRi6wtatb3Hh+WuQJZUXX3qaxUcfRTqdZuOGN6mprkdWbBiGgCjKPPXUEzTUzcPv9ZLJpckaOnbZQTavI8oiG958nVqnA1kM0h/dS7XTQVSx0F1uZgXaUFPPo9h9fPe//pN//NxNeOxBcmmTUKCaTZu2oikeLlq7gK9+/tecdWGYoR6J/mgOn8eJQ9FJmTqZnAu3o437frkZ2efGNIfIR2O4FEhmc2h2BwODfQQDYV54tYt//cajtLUGeWabxOzGZn53151kkcHMMBCNoYlZzjz7bJz+MKIsjsnkysrdRHk0lrBsOjJszIBYfN1hL5vASyUyDH20r0r7y3d2r/W/gdrB+8rde4r+7yp3ZQqKNbL4ZUmG0dpmpmmOfi9RHpc0sbfimLFKys9Im6LQ3Uk33BMyGhboiJQEYVquXeVcTha/VjhESSxTgkat4mM16wr9TB5zNy3ui/3Vi/qq3G8pjwXejnj0d0IHKzzzotifQjlGAUayHWK9I8hegQRRGq3lWDqfxuYrxXV7ZMafUZE1cAw9Lo8XLQ5GF0Ac0fSkMUSP0vPFfI09klJFvRhhmwyRE96GZXHCZl4cqVVY/PxhRIkceyMXIVWFc5V4FUcRulIUk0nf7JPG8E3yN5TaZYvttEdKE9f0+PdTZQydrK8SHosUp8pJcqbuu+RsmYdCATgfr0k5hQGteN2UxdqVI4Djc1kEJBBGCoxb1kgstiiChYk9UM1xZ16JYqtnKCey+oyrOP+cD7LplW3s3PYGq1afQNZKo6oWct6D5vaRSDqwCWkU2SBU24qkBXD7PRhmlkWzj2ZgYBeLjlqOKyDR0FRHZ+8hjlo8F8WS6O3qwePXuPKyK7n99v+gfe9+/JqX39x3LxedfyGiAMGQF80eJBFPEAh40fNpqgMBDElG0bz86qd3seLY5cxdUEukys2dd9zJIw89xhuvb2H79u18+tM38caGN7ni0vNpmNmIZfMw0HMAfyiIoAbJSCnsmkZv+0F8bot42mJwaAC3y4nbGcASBfoG4sg2J96AB0PQMYwcTpvE+eeeidvpIZ1Kk0xk0S0Bf60DzVvP8GAeh6LQ2BhkeKCLRCaL6grgtGU5sK+T+QuW4PI7eOPlzbg0k4GhQQTRRHU4cGh2VCPLM+veoHluPXMWNdJ18CB33XMvmC5WHL8Qh1Pillu+z4mrjqOq2oeeN+jtPIAWiHDmORdw/IoTGOrtYOmSReTzGYZ6e+np3M/ixUtIxmJYugl5g/sfuJ+62kbcnmr27znAE088wSmrV2GYAm9teQshl8XvdKKbMk7NSTKaoDpSD4LOKaeeSk0kzLpH/8jiRQvZuv0QiWSSOeE0H/jop0gJKba8uZ2rrjibBx/6Laecvor+wWFM7IQDIboO9fDaK+t54L6HuOVbtzLQM8S+3bvoHzhEIi7w0RtvZMWik9i45TUaZtQRi0XZu/MAdTPn4HRAX0cMnz+AJMZxOj1odo36xjr+P/beO06uuvr/f94yvc/s7mzvyWbTSCMFkhh66N1QBVRQ+KnAx4IfC34sqFgQxMYHARFRFKUjSO8llCSk9y3Z3mant3vv74+pOzuzSQAVP9+cPCazc+/7vsu9933e73NepwwPjWIym6mpTpl1Gm0WYokgoiTT3DQTSY4QU+LEonESsRgIMpKURBKgxluFaLERExWGu/dhrW5Aj4iogmBxU+GpZ7D7dVyCgKtqBus3bKCqoYpvfed/OPfMM5m94DD8PWFGoyFGOrazYtUMHDqZWDRITFPQKxqSDHEkJIuKUdTwOBQkHfQOJfF4ylCUAAF/DL1BorZK4thjGhgZGaGqvJz29lmcfPqFXH3t1by3ZTfnnvIxfnfnb1hz6WcwWe0IopiJaJBaQ7QUY8ko1Cd8CswysxEw08rrqZT4KTan5v09kSbWdSCUiWheyLsy9eVHzpzaFSKvF0XK/XuiZGbokHD3EaL/u8JdcVLTiVJEUUCWJERJgqxQVpqEvP+nKpMS7fI2lhQR7j4Un7sD6VHp60pSSmVVpNxEoetAfe4OhFKb/bwN9wGO6t+jm5pMgpgnCAnCh47sJZIpjV8pJCOzqU+dkwraLL5QFAvyo2WevZaeERqIYirSYzEfvQmCzMEKQe/j3Zl0TZ45YMrxPW/eZc5lzE/Tl6SiXhYRFDPBjzLCXQlzzFKoUYbyEcJSI/yg7+1U9b4fRLRQ4J2y7YMR7rLXpN5XtSCAyn7RvBLzZvL7r03ghoUAvSBAXEuAKCIIelTBhKO8Gr3BzKlnnseRRx3FCatW8vKrb1BTXYuQFBkeCTIy3MszTzzD0sVzka0VuB1tBEb6CAe3M+r34bQaMMgWvvXN73Hq2SfjD0dxuBzYLQaee/ZlZLON9jkzOWHVqTQ1NNHWPo2EFuW7N3yLjRvfw+utwmp2sXf3PmKxMBXecrq79qEoOkaHRwkG/Ry5fBFq0siLL7yKqmgsWbIESTRx0aUnUlNbQXVVK5Kop3XaDBQ1jtEkYjQY0esMrH1tM/U1lQx0b6euqY2xYASX04VRLxOOhDAazIz5gljMZp548gmGhgaoq3BR7iljYGgUs91FT+cOYskQRosRp9ONJsHo2AiNDbUklBhKJMw7b76GEo9SX1dDUgVNtOAur2RkbJzpLc04XQ527+nEYDQT8gew2awAOG0JRM2Ay12HbJL4+DlrGB8LM3vuNAL+ILPnLeGRRx5GSCosnb8Yo14mqUrMmTOXpYcfRktrMz19/bz7znqUpELrtDq2bN9OTV095194ASedsIZ5C+ZSU1+NosbxVpbR0jyd99btxlFmoLGuHkmUuP/Pf6C+0UtvfxeJZITnnn+a6upGOrv34vY4mTd/MXt2jlFbN4177rwTs6RQUd9MXFXo3jvGc089yZVfuJpQMMb4aIhoOInJZsbhdNLUUs8RS4/B7x9EReQvf76PNeedy52338fFF5/D2rffZMuGTcxun47dZqLc40BDTyA0hk6yoolgNFQw5h/AP96Lx17G3598kpHRUaqra9AbZAb7+3C53CQTCmazEUFMoJMFfOOjOBxWfL4gdruVUCiMyWhGEkXikTgGXcpHNRWfREAnySgWOy0tR2Ow7SYZ8OFtPYxILIHJYkEvauj0Drp27WTuwqWM7NuFrIzi9BgQdUZEyYMIqFqSp//xBEsWHEZNlQ7fgA9R0+Eqs2BSQ+zrGcLlsmCSrLyxYTtWi5HeTgN/eHozM+YswWp14PG40OtNPPTX3+NymDnu5NOR9MaU8jSrqUspbwr3Jrl5n10xyReackFPSu9hMmUyQuHkclOvA0VqBHI57CZ66aT2C6I40e2g8NoMZcqpakb4LFC6/ptQOziUxPwQ/Rsp5YuXevm17DERWUp9REFI+ytlMC6NqcOp5MpoWe1x+rgopfyhSvzO9EBTlZQ2u2S50m1+UEoFDM3Vk1QUYol4qm9C3kYMMW+UhTbdhVhCoQ6tVLkUiYKYFSimSiyeaj0XKOfDzDinMdFAtfD3lKRqZLKraqqKoOWeqaYqKcgiT3jNok2kcjOWosx7oJOk1KIgSkURLw3hgN6ZCdcUvHMZH73MeyVo6fudLlfsyWlFjk1qp9gGvegCNvGaTA7CfJ9ALZ3ou9CHNaXFzVMO5PkT5pdJpQoRJrSRNcMWxVyOuSLIXn7fM/3P+C9O+JS4VxPGx8GjdoVInQaTEr/vT7DL9lfNm0Pp8Wbvee5EHvI2uc79WQ0UG1/uHZ76XS18NzOUuS7DnzPfhVSY6FjVSJlqCgKIoDOZEIQQMSWIp8ZMdWs5juoazjj/Qspr2+jqj3PeJ6+lumE6CxcsRcFEWVkjvtFRvva169m6qYO+7n5knR+XVeSKT69iaN8OJCGOXowRGenAaY1z1LHLiIZHeOjhB3jjrdc5dvVq7vz9PcTjCcrKKtDpjGzYsJmkAnX1DfT3DeIpq8BV6UTTYugAk9WCyQq3/vyXGPQ2kgmVWDSBXuegvKwcTYigM/iICwGQY4QDvQwOjREOhvjpjd8hHh6jqamNgYE+bDY3iWgEs0mP3WKmv2cfBqOAxWpkzZo1rFxxFDaHlzF/ELfHSTIZpqa2lv7+fnp7elBVBbPJgtVgYNO6d7GIKqLRysLFS2htbaWnqwtRhdGhIRLxBAHfOIIk4o8maGps5sknnsfjdJOIhAnGFUzOCuLxEO++/gqaKjE42MuChfNYu/Ztujt7MAgaq49dxTnnnIbBKPHQA3+nsqKSY49ewauvPEdE0bDYHGzbtgNRExkaihGNGpEkN48++hJRxlGlIHFlFL0hhqImGBkZ4tLLLgFFJeiL8vXrvsP01jbcHi+1NY1UV9dz9FHHozeamDFzOnE1QSwhMh7WuO9Pf+ALn/skBosVvc6OXmdi2dJFfPHLVyPKAtFoBL8/gNlsJxQN88nLr0ATBLw1XtpntlFXV8M5565h03vbOO3U1cw5bC4XX3IJp5x6OuWV1cQTGqpmQFQUBEHGF4jxnev/h/HBfTxw31+RZAuBRIxjjj2aFUcuxz/uJxaNo5MhMBbEajaxr2sXfT0DJBMqdbUNDA2OoJP1dO7di8lsJBAIkkgmSQbDyLLMzm2bUugeAnFVIKaY0exlNM45HZfHyaN33cY9v/wNyxcexV8f+Acet4vt2zczbUYbgyNJRoIL+MLXn2A4JNC5bwNBEnT2wgjUAAAAIABJREFU9bBq5UqCvjF84yO4y1w4y8uxurxs3hsjIkxDMBgY6h9l41oTiWAL9z/6Dv0DAR584CGamuu4/vqvs3X7djo7uxFEEYNen2E8OX6Q5QGZvclExY+mZfizAmmFa+58hq8V58QZXpgKzCek65ocpK8wcF8hH83PQwc5cAEya1EmxYuGqqp55yf0ZiI/U9W89DCFgt9/jsh0CLn7J9P/a8hdacpNtJQzrZSOuimkol8KUtb4pzDAx8Q6KHJeSIXXL2VnXSQYxj/Pj6tgSzYJpdOQxAwTLKINy96FyXVmx6oWjjV3J1L3oYS2LIdNFZzQCsrko3yFwynWv/3TgYmh7480LY3qFdQups0tC591NlhOroI8M7bcO5b5W0PNjjgbNCh3cap8FqnLaQ9JL3ZqHnKTwZyyudc0Jpg5JhLJlBIkHcRFzRO0Jj3XtODwflC9CeeyCy1Zh3pBnGyGkyqaRuYz48k37UtVPrmPme/8jYMoIkvSBO1opk+qquXuoaalksySDkWdPw4OTgDen6lnSQE7D8Gcsq2MEJsnXOePYaLvZaZRIVuu0Jw1v81i8ye/XfIE9oymuqR5Zinel2eWmdsU5VovRPBSf6U5gpBJyZF5byQERCQEJEEGOWXKqQoCVU0NXPXZy/AFYticZby7YTeJuIhBiKGTAxy7einm6Bjr39pDQ3M9dqeAyyZgRMA3Mkxn/6tUulwYk8O43Abmti+iZdoc7n/wCRYvPIzmafO54oqr8Y356OpYT1/3DubOXojelCShxYlGFQRRQa9L0LFrA4LBxicuupDTTjqZC9dcyJ/+/CB1NQ3MaJ9OUg0hWsrQS1aeeuIF/ONhaqorkfVlHHfy2UhGF7FYgHhgiKqaWiKJGLGYwuhYEHd5OUosSHf3XowGmeu+fA1HrT4NHUnioQBJJCzOKqw2D5VeL2PD3YiChNEiEk8q6E1uAuM+dnfswuutQVVlrFYryWSSUCCAx+VBsxkQJRW3y06lx8uPb/oxRx99FJFAEJu9GvQCVXVVGPQWduxcxyv/eJSVJ62m3FtHeDxEVVU1b65di6DTWDhnHqMjAzzw0BOceur56PQhuvoGWbLkY5x1yvkcd+JyXnzpBY5ctgxZhHgsiaeiAkUws7fbj93hxuPS8akrzyYeizMwNsixJ6+moqKBQOfrvPrKRr7/wzu48ILzeP65F9FpdnQ4+fxnrmHxvGnc/7dHOGlVC576lZxzzikQijN/3iI2b+tjfKCT7/7oZ0xra8NkAKfTRm1tFRabk3A8SCTsJ55M0tY2A73eToVXz5ZN2+nrHeBnv/khA/3j3PWbP9C9azvzDp+Dx+ahe+8uzr3oXPb1DDCzfS71jQ2M+fqQBTNWqwNJl0RvVFASOt55ews1NXVIOpVg0I/F7iUeAyWi4HE78XiNqMkYJoOVQGgEk8uJkRgWgw67w0USCQEVWQQEBZ2pnF39cVpqgsyo8tK1o4PDVx1P9471lLdNxy4NUV3byMwFc7jtnsd5b/0+LrvoZH7z80eZ1jofi9OPrLOjYCISHiYaluno6uKXd7yOw6nH5TRjEMFUN5u7HniNt3YP8elLv8BXvnINOlnFZDCjJjVaKw1UtMxgzoJloEvN5ky03exaWBAlswgHIh+lOziTypy1Vb5pZy5jcqYPk8uneFRhGxnULvNduGJkvgv3QilQorhSNMcD30+u1w+TDiF3h+g/hnSSiE6no1RKqQMjrUSizI8eCaJAYU6v0oUpuptMXf/PEk7/c2kSOlgCoSikDKr0YZGqqmhpIVwUIB6LT0KT8vuWrw3U6WQSyWT2t5gRtD7ERaVQ+5nLa7R/EoUPZ4FTFJVkMllUOypLec9CEPbLG94PUncg9EHGWjiuAnD5P5IOCm0vcY2QCpAHsozV7sBktTGtbQaPPPw4L7/+JAsXL6CnJ0bEMpuE24OjpQ2pbBavvPwumhTAarbgNE7H4anFaPcSUQR27V5LY5OLBfNncNqpp/Lscw9y/1/uwOk0ceVV17D6pJOJRhJEInHKXeW47A7cjnLstira2pbxzBMvIQkyd911O6KcwFtlp6amhn3dA1jMLt58eQPjoyEOX7QQBEhEYuzeton5h0/HYVFwONzUNk2jr68PBBFZp8PhdCKJEl0dfQiKHiUBv/j5behlgYHBQRKKhs1iJRbzYbLIKEmFWEzGZLARCiRx2Csw6s1YzB4Om7uYV19fi9vjYsw/QrnXxboNb2Ox6kgGw1j1enxDY7z1zlqOPOJI4rEETqed/p5BDLKJcChMMDDGvGUrOeGkM0jE4pAIsqtjE4HQKMcdfwIoBrpH+yivLsOkh7dfe5n1b2+hzOVGlpKsffdFWloaueTii3jm6WcJBaJ4PC58o34iwRC1VZUMDQ3Q2zOIoDoxCEY8difVZS7u+8PtSJYyTj37XDRRJZRIUNVgIhDvZm/X23z6s6czY1Yzqhhnb9dOBEnl7rvvYGC4F6fHSlWtm6bWaZxz5lk01tVTW1vP8OAwTY3NWE1WLCYrY2PjlJeVc9WV/x/JZJy+vj6aWxuprC7jN7+9nYs/eQmLlx/B8aedjNkuk1DGqaxygarhcRjYtO4djDozOsWMyWxiaHCIcChGLJIgHtOwWR088vBDmM066mtbMRiNWKw6TBaFgeFedu/aQzwmEA4pCKqIoIAgmnnzzTcn8PMMiZLEzFkz0dkX4G1r4x/P38PPf/QlRscGmTlzNmXeJuYsXsljj27k2quuZ8GMZbz09Ls0zF6A09tAPOLBoq/GPx7gnT021m6NUObQ8a1vnMHKlXPRVBNjQRXf2ADrNm/FALTPbOSST1yE21XOcces5q9/voeXXnyBs848G0mvSylIPwQm9X4CPH0UKIXqFYcV/hPpP+8JHKL/U5RvuilJUiqJZpo55AfNyAS2yDcTymwcUqKONul8KRJEKWW2Jx78ZuVAaXJftHSPRYQDmHYaQta+ML+u3IhzdeaTKEhZU4dcXyjweSy4TstnaBPvR+6uZlou/gw+WpQaX6ZvGdPMrMmaIBQ8m/Q7lCdw5Y/1QJ5XtiZRQtW0lP8TKTNcg9FQooe5vyGHMMmyjKoqKdPAjKkkuaeTFc4ymtK0OaA4BYo3FeXQOPaLaKtpNFHNExBVVZssIGaQuoxvnSBMMOfL7CE0TUNR1NQY0ihe/v0QBCGN8Bc3k8yUmyCsUoByZZz+C49TfAnP3mcmzq7MuCf0oYiZ0OT8cuKEe5DaQwjZ+/Vha4Mz5qvZ3yXM0g/W1HhSO+k6FVUtcS53H1RVTR1L3wDJYMDtrcRbV8u0mTO48rOXU1HpZTwUp7J+Jo898DjNdWV07ViH4hvlqWdeZ2/nNkQtzusvr+eGH97KgC9JT88ANpuIpA/S0OAi4BvnnDNPxWbTcdoZJxGOJrn2S9chykZiEYXvffuHjI+MIWoyO3b08NnPfJV77/w9a19/nedfeJZoIsyll32cfzz5FCCh1xt44akXOOv0U6isLueIlSswWWy0Tqumd+d6ejq2oyga4YREUgO9TmJ4ZBhZTvGZ2bMPo6a2Hrvdxbp3N6AlY9TUNSIZTMgivPbq82hKHJ3eQFV1Ywop1vRYzHYGBvsQdXoEUeaY446nb2AYQVAZ840wd+4swuEgBhH69vXw1tq3OeLIxSw/cgVmkx0Nhc7OnQz2DpCMqQioxBIKRqMdp91NV+d22mbUYrTImM0menoHmDl/Hh37Ojn/wo9TX1fJ4YcvZd/uDsaG+rj3vjvR6UzY7U5+8MMbGBzuJRqPoZcN6NAx2teD1WojHIgjCw60BPz8Z7fiGxvjzNNPIS650ESB2e1NqFqSam8LLU2zmdk+n+mtM9jbvYtbfv5TZL2M1WFHEyWu+sJVhGLjKMRQJD1B3yhmvRFZNjMyOMLDDz6MTtKRiCSYOXM2gUCQr1z3JdatfwufL8jQ0DAVFeWoigIqnH7mGUyb3c7Tzz5PR9dePGVWIgE/8WgAj9vJ3/74Nwb3jeLzjfLAAw9hMFgwW5xYrVZ++tObOPmUk3jn3XdRlZTiTlEjjI0PYLabmDlrATqDFb3JhMPupGPnDpKCAbvdAdrk+aGqKkaTibr2oxiKCJx67sl87vKzOW7lHCQtSSQq4g9LVNZ7Of3MY7jsikvA5OKue7dy4y33ExMq2Nm7EVk285dH1uGPlmG2VjMyOorZLHP7XS+g2mYiG5188XNX8utf/ZyGpjo+9/mrSSbg5p//jLvu/AXecg9Wq4NIIgZCmh+WMBVPz+zs91SpVlLVFJpaTj6XSmaeinSZXzZn6VJo0ZCz3sjwUjVrHTUVN89TtKVdh1KpvErz3kyqr1z5D8NR519Hh4S7Q/SRo/xogBkmUIxJfGD9iqrxH6hgKm2rdYimpP0heR8Ggqeppc1i90dFr8tDrjLCRgZRKkSHovFEVhD8V5FwAMjalJTnp5f5nfFby/AAVVVTi+sB3tdiQhh8cIRPkmRk6f0LQ/CvQfAEQfhAQtuBkiRJRGPx93WtJshogoQmSKiCxNatb+FxTqPCO41QcoTTzj6eDe90oEb1fOO/r+W/vvQl6mraCIdHWb6ikqGeIcrd5bisJqq9jQz1DtLc0sDLLz3Hy8+sY8fWvVisNn77u99zyy9/zXX/fT1Ws4PLLrqMbRt38eMbb6LK6yUQ8XPTjd/h/vvuY968w7FYPCSTCmgCN998E5u3vsPGd19B1cbZt28v42NBwlocvd2ILxiivKyOZFKho3sAj6uCRFJBL+vQyToEUSSeDDE+PsTgwD4WLJpDNORHEEVsrjKisQiL5y2hb18/SUUhooQZ8/XjcNoZHunHYpfQJD+RhB9BEnG6KtBUGUHT43RUMDoSRGfWo4oacw9fjMVqwGq18+ADjxCOhDlsfhPJeJit7+1gqGecd19/kb8/+gh6o4WmGTPweqvRFIVkIsry5Yu453//RG1tI2FFpWpaM7t3b6W1oZZnn3qG5StXERjXMBjNPPXMozQ0OVHVBMHxCJdfdjlWo46f/Phn9PX186UvX8vade9y3Te+SRIjLk8Te/f2IWkJVi5rp8yuJxKOs3vnHp5/7jmGhgc5bP58NFHG5izn85/7KhXeelzOSjZs2IqnwosqSESCAQZ6+lgwbwnhcIS+7j5C/jAXX/AJxkbHkSSJ2tpqFi9ZyJZNnQz0jnP33fchRpOM9w9hM5k4+YTVLF9xJoGQSu++Hhx2K0abh/e2bOfoE47l6q98EZfLyfHHH88Tjz+FiIGk6ueeP9yFoOlZMPdIunv20tXdwejoGA6nE1E0EworJFQFUR8nEh1n9qwmIokojQ31yLKu5DwwWFUWLj0BQW7C7rDx+P2/4lc/+S46BWKRJB877kjCiSh/efIt/veBLcxfPJcVx57KT3/+Gi+vUwkGkhxzuJfd2zbw1GtDOMoXsK1jnFc3xLj6O/dw/CmfZeXxZ1Fd38QPv/8zxsYivPHGWi646EwuvXQNFrORpKKhCVqaQf5rxRdNU1LGlwURzlWNrBK2mKmkqn34SrH/a3TI5+6fTId87g6ecuF1M9Ga8jVDApl9iyBo6Y+UPpOtoaA+caKvXX6wAo2SefJg6nP5lAsPk0ppUDolQo5SiIRCMYv2gl4U/YjZvqkTrhaFXPiZXA2p5OAT/Wi0vPoPlEpJlsX7mPm8XzY8VUKIyfd4Ym9y/xf0QSPrn4SWFwUy776k/OByPni5hOa5YCIaKqKoS79/uehaE/pY4O+VioIqZv0Csv0tEVQjfXKi9pIcipX1zRKEtC/nZKEvg+pNWiTz6s9EuSxsT8vzicumAchHyfJQsVzeyfwooblItoLABMQq01ZJyqtjv1EkSwRpmSpS5f7SGhS+XcVQuQntFwSLyRyfcE3B+KfyA5xqxBrkzf8C9F4sjOiaHUBaUE49k8w7LYoTo7UW+tyUIkVVePnllwkGQ5R7vROQaCEtSWfmRsb3WBDl1DE1mRNyBahpncnWPZ1YLRX07B3H7BGoKa9DFiwcvmIa0eAYep2GTtKIhFSaWtp55R87WbiijmjCjqT307ljKwvntlHWXEN9YyVqLEx7UxORiMatt/yMyy67nK0d2/jHs6/x+Ws/i81p4MwzT0dnEACJxYuO4N57/0rb9CYC/ghPP/0El15yIZ/93DWcePwa9nWMctNPb+Xss04jEQdVlDHYTQSDg+zduoVKp4vBgQHKypwMjAyApMMsO9m7t4vqGi+amMBgsSJoOgw6PYqmgGri+eeeYfbsGQiKSG/vDuwuPbJeQ5BElLCAw2YnEgph1Mv4gz7MFg/9PXsotyUJRGQSsSjeCivdu3ezact6xoZh4ZJl3HXXfSw4fCEVVRXc9fu/ctqZJ9A2px2dCJKmR7Y4QRIYGe0hHBpjwaKl7NndQWVFJa+9/Apts+ZhsBqZt2gOkqhy0w9vYsVRKxjqH0BSJCSjja3bt3DlFz6DbDFx3Kol1HqdlJXXMm/ZfEZ9PjyeckLRKFXVLkbGR2mdOYP7H/wLc2fOpburh7FRH83TatGJTizGMRTFiG+8g3vufJiBgI+TTjwTKS7R39XFxp0bcHq9VFS3suHd1zHpFda9tZnrv3sdDruEKEuookQoGqfa1szmbU9z/KnH88ifX6N7cBcPPfYkv7zlV2x4Yz3llbXobG6Msh4lEmB2QzmizcUnPnUx/SPjaIk4u/f2YHXUYNCBqsU5dtX5vPrGU/R0jXD6ySegKBEikQA6NYEsCeg0CI6MIZnt+GMSRp0Of88GBC2ByWZDEw1ZFC+TK1xEQ9UUPNV1OGvbGe93snnzo9xyyx8pbzVhx4XBbGTOwtmc8fHzaG5u5N13djA0OkL7rIVs2PQGC2cvoml2Ldd9/xG6e4bQm6qx271Y9EbmLloIqNTWTGPuwjmUVdbQ19eFGtiH1u+nvKGVRatWIhlNSJlOZVGz1P4ru2/K+Lllpm3euilk8rBM4lJptC3Na3P+eCmerqKm0ixM4Xuci76Z+uQiMqd7KRSzsyjNu9S0pYskihP8u3OgAulnlGnroyNEHkqF8BGiQ8LdB6f8CZ7aRKlpQSW9cSAXZTJ9xdT1FJpNlUhMnT12QNqsTJsZcWT/DCG1oTrw8pMrKAjuka4mw+oKxaJJKQQm9f2fR++/hakEwxJnhOLnStZTLLhNYSAKLbdQZQ+RUyykipR+Tw5GONnf+ezzLVgES5plaiUSkaRXyElmqvn1FARtKSbcZftURLjJCMQlA64cyMI5SQgvNpQS54oIcBME0Q9p4S4l3GXHP9V1xY4fUJvF+dZU/CyjNMs/r6gqoiTnPaPiwZ4KSdM0WltacLqc6ZQ3uauEwvlS8FsUUubSmdkdVxK0NDVTUVFOV0c3TU3NdO56F/+4j6qaSuzWSixmN0889ipuRzM333wrZ55xHBZbEkUwEosl8bhbCMaGUUNBJFVh/bpNVFVWU9NQzYpVqzA7LERiYRoq69n83kY+c/nlLF+6nFg8hCzrCYUjvPji86w+6WPYLW5efPkVPr7mXLr3befxvz/Cvff+lgsvPhuLWcbptCDrJYLBAN0dHSw+fCk9+/oQdWasNjOh8VH8Q0OoSoSa6nL8vlHi4RiiXiaTGEhTk9isOiw2HTq9zGD/GC1N7ej1dgTMyDozaiJBIBBGr9MDGmHfOFs278BuNiGqSawV1YhobNuyleq6uTidHm771d0cPm8WCxYuxm6zsn37Zo44YjG7dndQU12DoiZAiyGIOro7OkkmktTV1iJKRgRgZGSUhQsXYDAKPP7oY8xoa8c36uOwufMor64kGY/T1dGBy2PBabOwddMWtm/awvTp7ezYtoebbrmN4479GPFolHg0hN2qQ8BEIgZGvYP5hx3BHXf8gt179tDfO8j6dZtYufJI+ga7iEcNzJ05nyOOmkv7jLn093Vx9903s3TZEaw86gjKKyq47bbbWbR4Pld//tMcuWwpoVAfo+MR7E4Xw4OjeNxuNqzfgbfWRW3zDGa2zKC8xs65Hz8HnS4GmoJsEDEZzax7awMbd/Xy2MMP0NjeRsDXT01lCwZBYdHCOej1Ir/8xS1omsCs9rlcfc1VxOJxpk+fzm//9y6WLl2F2eFgfNyPKBvwR2LIqorTbmd4Xyc1lS6efPp5jGYHdldFls9m2SspHqzX6VBVlep2A6H+EP7eTZx5zg1c/73rWbBgMS+99ArNDY3oJYmF8w/HYjZT5q1gxZHnUlk1k6jmwO2dxYUXno23ug5EJ9NmTGf+/PkoCnR2dHP/w4/x/LMvcOqxR/P0o/ez/KSTuOAzl5OQZXSiVGTKixP4/eTAKun9iyCQy58wgUNkeU7uW8ueEdJK6KniJRQLmJKLyC7k2s87P/G7WJ0ZpVvxNvKPf5QEOzgk3H2k6JBw9+FRIaKXi4qUimaYsd+elJcp73dq31/CVvx9mCQIokQusXqmhQNnCDlUaXIkusllC8tM1GghpHzuBEHMRonMlFc1NY+JFl6fq39/ydPzI5Ue3DjfH+1H5Dmo45OWiRLJ7gXSzD+bmy2N/OYJx0JaY5h5fmoJc898E+MpR1IgvE04Voj+lRBMMrpLVdUIhUIYDKnw1vFYHEkSp0bAMqrQzGKuaZMWt/y/1QI5puT4DnZxFIQJdatpayEhE8WTHOKWn/OusH+QE4KLnc8Iw1ORWiAYFpvZ+RE+s8gkTBbqMv6JWu6d2B9quF8qpXjaj0JKTL/bmfdfoKC8NjHaZuEnOwfS/i+SJE9SHkiCAMUiE+f5YubzGSmdT0tRFWoa6tFJZjo636O+roXxYBCzQ08sHuFXv7mDlSuPIhyKIWhD1NVUU1ZZTW9fDw5bJUhxTILKE48/SyicoLK6At9oFzVNdSiCQGB4lN3bdlJXW8cln7iUT37yE1x40YW0tLbQ39fLsmVLMRl1mMwumhoasFqNDA8EmD1jAcmEwKoVK3A49ASCIzgdLvSylf6+Hqqqa+gfHqF1Wjvbt27B63FQ5nQyFhhDr5ex2x3IOj1xRaXM7SWRUIjEIgSDw7jLnKAJjAyFULQxItEoBpNEKDqMy15Od+cgr736Ot5KD31d+7Da7FRUVrJ543Yq62oxGk1s37qDlvZWOns28clLzyOpDCHr7Pzt/r+QTMRoaq6hsrqRTRs3oqkKNquRoG+cCk8lNVUNyDoB33gQi8WKJIns2bsXg1GluWE6SjyO2+1ANhgZC/jQEDAbLahCFLPJiLfMw+z2GUTiGmWVdbz5+tsc9bFl7Nmzh5amOgL+MQQhhtEk0tu7B1WL0tY2i9PXnIfDamdG+zwa6r2EEmF2d4yye9s2pre1M7IvjlGvp3VmDY4yNwaDDk3ROH/NufQN9KPGfcRjcVQ5TF3jHMLBMJoKZoORispyzjrndM497xIuu+BsPvO5TyEg4/Ptw2gzoioq3R293PiTm7nmK19l2YJpWFw2RFQ2vbebCpcZSRKIJmKcsPo49Dojs+a00NM1yKh/GKfTjctdgdNVjqjT4bSa8Pn9eKpriQwPYLFZ2Lj+dRqbmpk9fxGvvPIWs2bNTaG15NhEhuUqioYoSih6N4vmHc2ODQ9w269v45e33YrD6qKpoRm9LJIIxbnxxzdy0sknYTI7cFXU8p0bv89pZ53H0hXzEDQ9tfWtfO97N3POeafyzD9exOut5pVXX+RjRyxi75aN3HfPnezu3M1Xf/wTMBqRdDIy4oQlQBBSyN0EZZ7ABKukSetUdorn0Ln0kTyeka+I19L7NjHlww0Tyk0tWE3k+6IooKhqXptTXVuw7ylibSGkUbuPmunnoWiZh+j/OKUmpyTKqY+UccpNTJjSGd+kj2bQj4On/Y1D0CCZTEwOoDBJu3WIDoRS6TqK+y7lB5kpJdi9H9JKoWwHQaIoZBMZAxiNhoPzJSwwHczv27+aJElEyouemS9wKckE8NHUsHIAAv1HlQRR+lDf6alIyyqUUv+roogqiSSNIrMWnMLbmwaxVFbT2xtj/Xt7GR0L4iqvZFffbk4+81zefGsLI13d6BkkGetEjei588+P4axswmhy8Le//gm3TqF/73b6uzsY7Oxh+pwZfPv7P6BnYJgnnnsKq9XGhnXrcXns2B1GnI4qHnv0CTZtXUckPsLMGdOIRUMsWzKP0884ATWpYjYaUZPQv2+MuXMPQ0WgtrkJkmEQE5hcTnROD5W17aiyDQwmxiIBHPZKOrsGGR4MoSV0BHwqyZiOwHiY6tpKnA43kaBGNKKSTCr09fTxkx/fjMPhRqeXaJkxHbvXhcntZP6Rq1BVhZ3bd7Jw4WK6tndw+LyFJBQVd2Uje/e8w/kXnM2KI1fy/DPPodOrNDXXUV5Wjk62Eg2McemFl/D22g34g1GMBhN2hx2z2cx7GzYQjyQYHx7n97+7g77erVjtZhwOB7Ksp69vEIOtCoPNSVdPB7v3biapRoih4SmzYytz0D53NoLOgsfbzO5tfQhJHR6Xk2hkjN7eIK89/wrtc2bQ2tZM5+69WOxO2ubM5Jxzj2NsZIwv/deFoI1RX99CJBpHTegYGRije3cH+3bsoKGukaqGaVQ0ziChiby3cSsPP/ggWjLJ7bf9iLWvvoLLauE3t/+EwcFekgmJck8dDk85VV4vs2a08uv//Tm/+P4XMYtjBMb6+O63f8zbG9/F5ilny45u1m/q5L331lNVVU00PkRtXTOHL12Mp9JN0/RazA4JNREnMLiP4b69RMPj+MN+ZJPAgiVzUJABHccddzzB8fGS80CWRWRZRAqr+Bjl0q/fzSc/PpPrP386wf7t7Ny6Hn9glNv/9062bNmErNfh8lTy+D8e4ps3fIMtWzohOcZF513Inh1d3PGb31Bd6Wb2rPn4RoMsXXI4NnUQU3IAh03ikedfxKyzIGpyGnX78HmVqqlF0jYVp4y4pWpKUX/pDJUyjU8JYh+OOJPJc5dSNv1n8nA4hNw9jY83AAAgAElEQVT90+kQcvevICEdbVNO+4+AkraVVlU1Zd/ORIyqKOUzjaI25KUu2c/GUkgje5nvEmMoPJfx3yuNRE1G8gpzU2U+KadlIZ08uxTyNlGbPnU/C1ESrUirUNjSwebJ2x+OeCBUUiQugkjk8iUKKSG5AKnIrzOF2B1YAJN8tOb9CCJCgV9Ups78ulOKDIqaIqb6nL5jpXwJCnz8tDyUJUOKomTbSYEz+/GHK9SKZkw0CxC6fIFyQn35Yyk0eyxhIjqx+XxfigMzxcxsdQ7mOWlphFEsuB+TzViZ2kyT4m+1lneeIn8fFBX6IE9qbD+qsAIEL9WXif+yvSvpo5g2qVe11OYyfc9SyICGpMo4HU5ECTx2Lw6HE4NeYtGidqyWBIcftoDf3nYbl12yBn8kgWhOYDA1EUpEcXrMaBE7CxdVMXvhLJ577hVaG9uQlATIw2x4fQf/882v09TSyNDIOAZHFY01FsJBkRhxtm9aR9/IPixmK8sWriCSGOXe393Jo489wZWfvwZXRRMvPvsmZV4P3YNB7FawWIwIBEn6xvGP9lNZ1sq4bwwRke49e/A4HThtdtSYgeNPWMXGDR3IkoFv/8+VnHfeeQT8MUTBzNNP/5bgsJWm6UlMQhWCwcDHVnyMz1xxMZ+4+ExC0SRVlR5ETQBVoq+nn/aZ89BkCRk/Ib+G3uhEQcDm8qI3WTCarfzi1t+y+phTMZsVZGOYbVv2oje4aJpeS029G5DZumkDVXX1kIwxraESZ1kFoaCI2+NhxDeEEgWnTUJLRrCZzBhNegRFh8PhxlXuJBKMIKgiC49YRiQSRVW7CAz2EYwlqaytRmc2YTI5sNqruPryK7n4krOIKePYnC7WvvkuFV4rZU4X4aQfo1nggk98mlhcxWQyogkxQIfF7sDmtPOHPz7IEctPRjIk2bN7HYOdIyyYv5Ce3kEaW9qYPbeZcV8Mq1XHSHCcCm8zKiDqBIgmOH3NpZx41rm4nUla3RF2dXRS19TCiWedzrSGBvoHB/B6HdTUWEnEVG740a84+cRzMIhR1KRI78AIbpcDSY0iykkMVi/oDJisOpJRlWBcYHRoHKfTiS+YxGC2EA70YbA4U9Mi/VEANe8j6wVEUcZktqC5Z+JOBtm15W1+/7vbOPHkE6mpbufoY07FH4nirXHTWlVDPACz2hv5xU33881vf4Mbvvs1rEaNvo5+pi+Yz2cvv4hPn30Uf73/jwyH4Od3/BGffwR7WTkC6by7mZzDeUpLITN/RSEtOGV87vJyW5bguaTNLYv5zOXbVOSje8AE/7sMpVxwMmtDhlUUQ9+K701S+esm8yBRLL4Wi1mTzSLr0b+ZDga5E/5TtYv/KRSPRQ/d4H8x5QSJjPPsRC10qa1LPtqlknK0ZT+amwNCBIXMBkYrYZteqm4VkdJoXcZ+/0BRSUFkwng+TDSzVJDgnPipFf2dIbXE9UL6DkxV9/vt26RyopQKcJP2o8u8D/mRB3PJuzMeQwJJ5eAjZB4U302b+JUS7rK/IZv0vJQAkRHY8nPrZTWlByDcZcqlopVN6EzxjXyhaakoZpO2p7StBeXy2shWIeY75OeOq6qGJOXdl7w2ilE+X5iKDlaPPeG5FPoWZp5dnhJgf8Jd0ePi5HfyQHI4Fu3vFO0cDB1IRM5SfZw8nvweaQhIxGNRzAY9Lz73HO0zW3Da9OzctgGbWaa3s4/a+ia+8F9f5a9/vJuBkV34RgWqamoYCvWR9BuACG5vHV/5/PV89WtXIchxknERi0XP8JgfV0UN/mCcprpmdLoEc+cfy2vrXuOq86/lZ7++AVUb442Xn+bIlaspd3jQGayEYnF+/bvfsWrJElpaKhGFcuxOgTvvuouLLzmbmN+AZEggYCdJEEknIcspdGRk1IesmdGkcdyOWrZuXc+c2dN4771NlFdUYXd5sOrcvPTqIyycdxTbdj/H9LZV9PVtQ9QkKtwN9Az0MWtOM4OD/Rj0ZjRVx47te5gzfy6CGGH71l3MmTWLrVvfo619LslknO1btjB71kxCUT9Gk4uRAR86o4DV4uSee+7i7HPOwuEoQ0nGEXQmErEg3/7vL/Ot799MODzGI488xnlrLiYY7MPjdjE2EgRVj2gQ0RuMqEocs1VPTFHp2tuDx21HL9dw2aWn8Otb7+CaL/83t9z8HZxOJ329gzQ1t7Bp3U4sDhHkJHff/RfGRsf43BcuprF2Fm+89Syz5i4GVU8wGMbpsBEMD2C3VuAqK6e/p4vQuMi7b2+mutrNnPktKEk/mqDDNx5GknVYLQLxiISqxXG4bChJATSBvoFuaisbOXLlMTz59KMk4kOU26qQdAb+/uRTHHX0MSjxYZKCBKIeVRC5/ivXsXzlSaxauZw//P42LrjoCgLRGBXlDoZ693LHb/+CqJP5+re+ikoUo87AyMgAl56zmhtu+j5LVpyGPwJ//MPdXHrJpRPmQSnVoIaGoEFcifPy336LNrQDITLOb594C79PYvXqNQwP+7j4c1cgoCehBHn9la1s2riNs9echd3u5pe/vJ3DGpO0VNrY1tGFt66Bsy+6HPQ2RH3ahFHTEKVUyP+SekpRmLAPESYJZgV911RUNCRByvLtfI6T4pcT097kloFUnWpedPTiiFxmHS5U2BUR1sTUWpOJuJ71+y0RtliACYjdVOkS/tWkNxgPuDOHkLt/Mh1C7v69lLHHziB6ma2bKIipSE3pcloBZxMQptzhFfra7acXBd+TSSNtp56vjSrUThWgY6WiRZbyOdS0iajZJF2XkFpUxLwrD5yKI3KTezix5hySV/xfsbqnipI5saWDFF8ziEWBz9KEEM2o6eeeiTiY/lXCDC8XebCgb4UIXqmAI0WumTKoSd6xwkiR2n6En4xaVMj0uRjKmK1DmNjXwnJZx42Ce5I3zmJy4yRnlAIULH/8Tz/zLBXeCgx6/YTrC30TC59B4dtTWE4rUa6QtIL3ZFIfCoXsUuhkmgp9CDN9SDc2sa336R9cLLpmMVTwgOor4peXmSuaqpScE6kChXNs8hOSJAFNUzCZTYTCEUZHx3jm6edoqG+m2ltJ90AfJ591PsN9byGJOhKJQQb7tiOb3FRWmBjs9bF+3V4E1cott/6Ayy5bw44d/TzwtweYM3MefT3DVDi9eMsMCAYdx5/wcb785Ws47tglVNXWohPsBMcEHnz8b3grqvAHA5RVlrFw0UIaa6ro7dnNKy+9w76+Lo499lj0BpG4YuXev/yRZctWoDOI9A32IUoSgiRisVoIjo9z6833UFlWzvTprYiChsPlxmwx4Q/6EaU44XEHcbqor17O6Fg3VpuCxermys98ncs+dRF7du/BYjMSjfuJBCP86Ec3ceKJq/GFglgtRkaG92GQJfb17MOolwn6fYSDfsaDvfzkB7cxNBBj8+a1LF66lKGhMSrKq1CUJH9//FHaZ89BVBU2rHub2upG9KYEM2cdhiA4EMUgVqsbi9XNb++8C6vVCkKScm85AX8QTRaRRBmLAdSkxupTjsJodTB/XisSGhazCU3VMOh1mG1u9vX00N4+g4a6GlafeCLlXgdjIxFcbheJhIjL7cJssdDZ2YNBL7N7ZwennXYaq1cfj90pMn1GA1VVbnp69+FyWbG7PAQDAdav34BOErn5Z79i3vzDcNldhCMhopEQ8Wgch93F0R9bhn+sF6fTRdJowx8O0NpSSzjQjyCIxJMRfvmr21m8eCVnnH4GN37/B5y4+jgWLFnA2jfeY+Zhh9HduTeFJi+cQ2NzBS6PDn9gkERMxmySmd3swSGPsv29d7DqBPSJcSobZk7gCaVmsUCKV+ix0DpjATUt8xGtdVjMDo4/+mMM9K6nwhNj87p1PPG3e1n78sPoElHKzH62v/c8C+bUM3t6FS899ifGh7t5b+8AZ5z/Scpq6sCoRxBFJCGnVEm5A6RW/kwUXo2UH2C+F9tEfd4UaxWpSJgCpYRAbUKdqTVULDif4dvaBJ6e+jun8CvkHSmkTsuWn9hqeuck5PqfEvwmjueDWNn8M+lQQJWPEB0S7j4KlNuQZkL2alnmMhFZOFDKML8PRweeM3iYqr5iYtzU5QpFtKlFNlGUslHucgUPbnwHInIV69PB1X1g13xYbDl/cSp8TqIgpn2U1Am55973wlDMzEXMOZlnSdMmmQBmELFs2VLmmSX6ld/n/aUJKCrMFfmdNdssnF/7E+5K9C//7xlt09HrdDnhpNh9ImcCVWo8paKMZvwfD/o55gvgJdDPyUEIMr0sqOrgWt5Pt6aICvw+2iomKOa3cSCBhHLXTWxdJXXLREHEYjXjdJdhNJl55eVXaWlpQ0tqCFKAmmobw6N+WluXYzDEMZnMaHjQG8aJBgReevltqmrtjAyP0dY2E5fLSJnbxbTp9Rh0Cfz+bkw2F4O+IEO948xtrcLmdGC0mKmvraGutooVR69k/TvvMHfeXMbDfvas28Gdt9/O8aedyLQ5h1PhdnLvH+9l4aJ5GMwmHHY9leW1hHzjjA5FGOzpp3ffXmpry1CSPl57cTuz59RTXetMRVkUZMZGozicVciyxKc+/SnOv+hsbDYvoyNbqatto6/Pz8mnn4iaDGK1OHA63Yz7RokEA5y35gICgSBrX3uNygo3lTV12F012NxmTFYnZeUNXHzRVXzqks/grajmtVdf4ITjj+HNt99ixvRZXHPtl/n4mrNpbm4inlDRyQJzZ7ezefMGfviDX3LWmosQ5AQ7tmzDYvFw5113cNElHycSSmJ3GBEFgXhMxagTefapF5m7YAliMoansgJBNFNRrsdgtaIIGna3E0QJXzBMV3cnvtEBopExyr3VDA32oJcdjPt9eOxGBvp2EwkOU19Tye13/J5ly5bzxS9di8EoYzba6e/vIxoNI4giSkIhGklgMtmpqann9tt/zfIjj2L2rJmokkww4sdkNWJ3eJB1fkaHdjKtqYYXXnib5rZm9BKMjw5S5nEQEWzo9ElqK7x87dr/5tjVJzJ7+jTeevdNEsCs9pmYrEb27t2Gf2yQluYm6hsrMRltyJINJakiGfWIskJFdSu1jbOxmK1Efb2MK1YcDmeOzxbMg1wwktR5iQRRUYdsc1JeX8/85UfROmse8xctIRCKsnHjbrxV9VTVeRkdCzPQ14Vep/LYA3+md89OyupbWHXWxVz91W/gdJUhm2Q0MYmuKPOdyD8zAcS07E5nah6WzwNSCsJM2p9ia0kRXjeBv4vk45r5fcrcn+KJ0yfuyVLB9zJ9ELNCZL7lSsYMM+XP9z74/b+QDpllfoTokFnmR5dUVUVRlAnmRZqaCtKgIUwyY8ynf0WAllxcKQ0EUi57H6AvheaJhddlzS3yTKayVqT7MSctZXZZ9LegZcfyz7iPB2qGWfL6IiZwGSo0ldVIRWpV1fSiQ8bkQ0z5LqTr2F+PCpHjokJeGo0rhf6UQg4Lc+IV8z2bqt6i/SwwtywkVZvo05BKRq4xlYVLxnyxmAlqpl/55pmKoiBJUlHBsWj9JY5n8gBmSMm+82lEr+Adzb9XhW1nzFULTTEPtk/Z81OeTZdJm2jmv6eqqpS8Nr/H4gcw7yzVF8jxrsK6C+dW4fEcqdl60gUQtAS7Nm9gZLAfsyHJm6+s5aI1Z7Btb4iy8kFCviFUQcJjaSSeVPFF9+F0NrF9Z4BPXv5FfnTj5zlq1Yk88pe7OOnEo1EFga9efxPfuuFKvM65dHavJRn2YLF56ezcxJKjVyLa3GjxJCF/CLfdRdgfoqujg9bptQx0Bxkc6aCpdTqRhJ8yu4Rq9GIxeLj77tu54OOX8dBjd7Fq1Up0eplQ0E9t1Tzefvd5KisasNj02G1Gkoiccfr5nHXsGi679iLGx0fxGBO88Y8HaD/+OAxSNTt2vUNj9RFYnCJEYmzveILayhORHRGUiBmzrGPrhlf5/Oe+zr33345ssFBZbqGzL4CnrIqXn3uUnq4YZ5y+GkmOs2/fTozmeh559EH+/ujfeOSR+zE5qonFfAz091FZXoMsyQRDQYaGRnA47ATjUaqrq0hqYTq7dlDmacRicqIXZQL+EcZH/cREkc9/6kv86dHfkYwHqahw4RsZx2yrAFL8QJJlRscG0ZPEYtBx7Re/whe/cQVyvAWDXmJkbDstzYfx94fup6Xdi8vVhsPj5c3Xn+Ohv/2dM065gPb507nuuq9x44++i82uI5kIMTIQpr6hia7OTnZ3rsfrasdktKEzJnj+hec4/+Jz0SQVQ0xPWOzBYppJMNCFrPeixIex2fUIkp2uvX1YHQai4RhOZxmh4RHiWhxBb2R0LExiXOGpp+7h2q9cS1I0ISYAIY7ZoBAwegnt68JkNqA3Cjz8p8e5+FOXMTDQjUEIs6urF7e9gpa22YRUFQEVSYuDBlH0iOn3XdU0ZGmy2XN+NOtIJIJe1uV4IhAPRzAYjIiiyJhvDIfdmhKERBGkjEIyhQpq5OZqSRKF3JqW5eUqIJDJrpvhYWLh/iJfT1yEGWmaWlRAy79WQ8iuGZqWb4kySStIvg1Cqbo1TUWSpLSv/NTc9aNkjpmhgzHLPBQt8xD9P0uiKKLT6ZAlMRU/JW/DcSD+dv9XKRWxKnUvREHK+qAdotKU0gSmBClV01BU9aA2zULaqf1D7ZPw/sTcwohk+XjywfZTU9XJgusHJEWZmN8x06f3cw+nWikL0dd/xlg0TSsZkfWA61CVD6jO+OiSipbnjytS5q2isWUabYct51NXfZmQYqK+qYpkQqSlaSn3/eENZJMOfyiMLFl5+62NbNn4At+67tNo8QCSGmH5caegCAbMBjM/ueE7NNRUE/T7iEVFVCGJs7yCx/7+FCRVoiMDCNEwNV4vkqznsiuuon3uHHZ3dmGvrKBlxkwsNivhcBSD0cKIbydjgS7OPW81I6P7+J/rv48kWnC7qhkbjfD444+mIlZ6yxgZGWHj1h76B/1c+dkruPzTp6ImE1htNkbDGstPvxibsZFYWEdD7VxsdjOhcJBwJEhFRT0Gg0QkkESv05FQI8w6fD5PvvAs5bU1YNART0rc/ps7CfojnHjSGXzmmsvY0b2TpCBidVViskqcd/453PCDHxCPiezZvQe9XkdFeQVGk5GXXnqZWDRGfX0t3/zGN6mvKeeFp5/DhIUKew3DAz42rdvKunfXY7XYsDnN1NZ4+NktP0Qv6/C4PWzbvAWL0UQsOI6kxpDUGEIigtNRznsbthIKJPnWN39AlXsOl19xBXf87lamNy9mcMSHgoHWGfMpq6onkYiwbPEJlJdXcfiyFn7/+9u56ac3Ul5WgUFnpXP3KN/93o+JRmO4PFZWLF9N28xWLr38TOrrWxAFE0rCwk9uvAs9UeKhIIFgBMnsQNEixBIxIsEkft//z957x9lxl/f+72mn9z3n7J7tu1pp1btkuRdccME2YAi2sWmGCyFw4WII3Nwk5EcCSQgk9wbiBAwYG9xAmGLAFcsGucqyLFm9rlZbz7bT68z8/ji97a5ciJ3so9eRNDPfPvMtz/N5SprHHnsCj9uDquoMnDjFycEJxsamkXSZA3sPohLjM5/9M04cP4LZJCCajGQ1neDISbLRID6/g2wmRTqhc+27ryQSmSQcmULVs0RjYZoDTh781X1IYpq0aCQjmlAFuaGgrJwEIWfjLYoSimIABCRJQpQkDJKExWpFVmRUNYvT6UAxKMiKXBGoe74kiFLFGUjLxxd+M5Je1S69gtn770kLaplvMC2oZb41SBByi6QgiCDkD3L5U60ApZhQBU9zfwTEu6CCIBbl4JWBf0v2ao3j+lVeM0e+AhWeU7Klgbq/smN/VZnld6m5UwRH0PO2YafBMMzpRfQ10iw2d2haydZK1yl6/aMkwZzVU2WD61y15RtpXpuvpqDasgtxywBqbLyoZVLKmb5qj5sFFcIapqZg31CvPXVRxqrnul4fvCo8Lzycx+Gj/DstV68pjkGVaqym6ciyUnyn5eNcrnbZCKSuuGzQ3+JjsdTfmn42oEqJdINyySN0BdQVKg5sxW9AL8VlnM9hUddfG3ZeY6+XnxcN7REb3K+d//k0mlZ4SQiAze7AaLGS0U1MzESxO1w8+tCTvPDCY5hMGte89xxE2UsorGKzmWnxt9HT7WP5ig7cTi+SCLamZhLRaaaDIzz22O9wu42YDS6cjnbsLiORWIQ1azfR5HIyEzzFzMQ4hw4eQJLA19xE/9IeHG4zRosbs8NENByms6eHl3a8SOei5VgMOS+EJoOLj33sEzgdHlKpNJIos2btOqZnxnj+mV1MTc2wctV6tm9/niuuuJjD+36Po6kN0DBarKQEhWRsAlWLY7NZOH5yJx5PM5GZScZHZ/A0BQiOB3E6HQiyRkJLIRntCLKGwWBkfHSaiy58GwZJ4pHHHifQ6acl0ILZbMVmcWJzmxkaGiLQ2s7w0CiqANHoNJFwhHAoQkdnB16/n50v7uTTn/2fpJMz9HYv4YGfPsjQ4BgrV64hEgqzrL+P0EyQPzzzB5KxKHfffQ/Ll6/A5bbhdjlAzaHssiwSCYcxGw2oosKvHvg5oiaSSOhMTicIjk/w4Q+9Gwkn8WyMrff9Am+zjyZ/J4l4mKnxDE9vf4ItZy9l08ZNoMHnPvtZzjnnLB55+Pfs27efzZvX4PSYMFsEJN3BVZf/CZHEcboXtTEyeoqLL7kAITKGzWvn6/9yL2dfsCln92hxIAlmtm59kKuvvgZRBKvFwcaNZ3LF5dfQEvARCDTT2txK+6Imfr/td/T3L+bo4YMYLG6+fdt32LiiH7vLy68e2EpPdy8OmxM1myCZzjA1NY3VoLB4cT8Dxw6yqLuVbdu20dOXs8HTERH0kkaAKIn53bTaBjfnT1bTNSRJziUX8uiWkFu79Pw9Qc6vF3l34Xo+aGhpj6i2psv9RFHMqdpmMkh578blXrhL+kSVe0oNlla2t9Rqj5Q7N6m3fxQ8dhbyFcoprJW5PAWPyzXOxYqXpZNGodyS9+Saauu2/81ECzZ3byJaYO7eWiQI5MMqSBRceuRsbyr/vA4sxJxUsu+iqPNeqftejymb7Xq+6Rrlq0e1rNt80pfXdTqMXY4KDO4bxNxVlzdLoPvqtgv5IPI1htwFpmmO9gnFA3udzaXRZiMIJJMpZFmqsltoPD46MDk5hdlsLmNU6zN39WzxCnZqc7IPc22Q1bZWdYzbG2Yt6euU3ksd6XTB3beat4usbnON05nCAavI8M7ZlJr+1NgazsW8zYe5K/uuiutS2a9A2axKud1OgUqBgk93zs5Nr7WMhsydXjrcgYCGiC4qCJKK2aCgaUlWruxDzc5w3jmXMROJMzyq8c5rbsZg0Fi1ajH+QD/TsSA+fz+6lCY2M0p4eogmn4v+1RswCyn27z/JF7/wDc6/ZC2yOsnYVILnXtjB4iVt2F02AgEXWnaGTHyMeCTM8eMH6OjsRSWJxWJDQ6It0EwqIxMNJ7E6NCaCg5iMTmLxCHfeeSerV60kmRQ4evQQi3rW8Dd/8/ds/91P+NSnPsXYxAw2t5kmdwuZ6BTTE6OEwyHsLisz01MkoyYCXQ6ikQSJWJjerlXoosbuXTvp7GojHI1htCgYRAvpZBg9raJYLDy97QmsFoX1mzcwOTaJllG5/8d3s3J5P9GkRnt7BwgaZotCs78Nj9tOMpHAqBgJTk4xEZxgzZo13Hrr51m7cT3xuEbfsiX4W3z88pc/44zNG5DlDCazjj/Qxy9+spUv/dVf4/N6SSdjCJrGiWMDiCY7BrOVk6eG8TW3kMzGOefMzbjsTi694iq+9Fd/xg9/sJVTgyfYvGURdpudC8++mH/7t3/hgvMu5Jmnd3LvfbezanU/a1dvJB6NkElluPji8zGZVI4NnOLLX/4rzFaFmekJZNGCKClISgaP24fFYsPtcaELGg6rFdFs5KwzL+fwoRfwujtIxrMc2HuITWdu4qt/+3XOOecsEsks9/z4fhSLwuqVS/C4LISmJrF7HQR8rQweG8BmsfGLnz3IO9/zAf7u//sqR09Msnn9Gvbu2YfTYWZwYIhEKktvz2I+8dGPs7h/BQGfm5nJcZb1r+bOf/sGZ5yxBU1UKmJ4alo+REHVH7HoyC03Z0Sq1i9RBEHIu/0SEEQdXRDQ8+caQSxnwhp4Fc4zT6KUWytFUapaNwtsV4F5y03TWi3GcsFhPl+xreWLau1apetUOAQryf4KDJ5YLGX2pbP2YWm9fG1r8n8GLdjcvYlowebuvwYV7POgFEi5QnWt7qJVIiGvXlTfn+RclIdw9AJjNPsn1ciWrtH9+ZQ133AEp6sI+KpwA6Fq3N9g9dlKm8xqVcvZGdO5Wlb+1VQbnjdEP4qZGzBv89yUdE3LucCuYVgrvUY2yluwjSu366tmDhupMRZs8moLrmTSavYnvSwMQ6GfZXnqMm9Q0cei7SI0tO+ryF+FYlaMexXaWuhTtX3jXGWXp5tNnbZ8xArBxsUGNqLV32qhzLni/b2WI818QzTMZXtXuJ9z0a4VGfncaxfIRQiDfQf345bChCfHcFrtCCY3Tn8nsSyYlCyhw89h89rRNJ3pmWkUWSEcPIzH2c3QyRjB8Qk03UCgp4mxIQN2V4RA3zKi0RjugITT3oqsixjEKBOhCOMhlVZPB2khi5SNk5wMsmjt2aR1AU23oGoCopYhEwnhtFiZyo6Rjab5zYMPc/YFF+Fs8xIa0vB6ZDBmCU3FsSg+ZiZmWLzUTVxXCY5MEw1H8fmczExHOTkwyeaz12J1QTIqkkwmiUWj6JqGTVD45Gdv5bt33sV0dJDmpla2P/kUZ2xegWZuQtYinDp+DHegj4nBMXr6W9CyZtLpMLpoJBZKomZ03C4LV111GQ898jjB6WE8PjuiZGZ6PM6//et3+NQnP87ff+UbeP0WPviR60gkZ3ju2T1ceO5ZuHydfOPff8i7LmYN4ScAACAASURBVL+UQKsXg8GBwWjm5PBBOruamZ5IYjV4ufmDN/K9O7+N2WpiZmo/DvNqdux+hPUbNjM9meWhBx/FaTXxtovWIEhm7r//XrZsOYefb/01nR29OB1eLn37RUzNDPHIL5/HahNYtWY5Pd09TCdGMZjb+cL/+hKf+sTHyagZNm/pZCoSxmj0kYinEBUZyZDFKeVQrGef38XSZWswWEwgiATHJhGTGnuPDLGoL4DdbkOUTEwFD9LU7ESUFAxmByOjI4RHj5NMq6SzVtJJnZWrFhMJh3nggV/S3d3B1ddcjtlg513XXscnPvMZevo66eryMnNynHQmS1OLH4fXzql9h0hqJ+lffjUxFEQxDUBW1XLOohrMpYLtermagSBCQTtRL3dGUtRzyZ8DqmWGeoldm22ulsorx+sbr2/lqYrMWFU4AhDyqp5VbWxw7mi0rs7tCKxeW/NCPLHEUJfTW93mbgG5e4NpAbn7r0Eltc0CapFTjyhSQR2pIDOrRnQooW/UPJmj7qp0881Re/VqJPZzoXivFQV4DQtoAd16g8UnsyF3jdpfUJmb63Bf7pFRnCdTVtawBrfnX45aJ5h5XfXLaiqoaQolJyf1bDoaecusRpBKiF2xEQ37UZTW1kE259t3oahuNI/0ZUx2tU1fef8qYrU18JLZsOx5IK5QxdwJJS9wxbKg5rphWQ3e86v2Elqoe162Q/XbWJCqlz4DoeLApmsqCAVRGTR5mvA1L0WW3WR1I5GEilFKE41E8Dc3k0omsFmdjAyP09nVy8x0iMCiNVjcHdh97ZhcLr7w5/8Hf0szbl8Lf/GVv+bZ3+2kuaWPM8+5iFjUSmh0nNGRCZyOVpr9fSTDQSSDiMlswWR1EwxOEAyOs3f3XhzNRjKkMTosZI0iqbSG2+1F1bIktRRunw9ZM2E2QzwVZWjkEM/v2I7Ha0KUQ4yMpfjaV7+BiIDRKNPU4sZkNmG2SGTSEVLhBFo2zYsvPM/M9CS9SwNsOnMlohTD52tD13Se3r6dzs52IhGNZCKC3WnFYrNitXsYHDqCzeoiGk8yMXOEQJsXgTinhg/x/vffyMREiPb2biTFgA7Ikonzzj0bo9kAWoZr33U14XAUj8fH6jUbuPn9H+KGmz7EPff8hPdcdy3JZBiLReKhXz1Md3cAs0FCEiS+9x/fp7PNw7nnbcZoMBIJjuBxteP2+tFFEy88uY13XnM17iY3osGAy+7B09REf/9KNm8+B3+znw9++EPc+P73YbYaWbO5n6WrOmlu9zEZnuY/vvVzEqkM73zPuRiM43S0LWXXrmdp6+hBFkz86Z/+T/7kT64nmUwh6tOMjsa5/bv3csElZ/KD797FF/78i3z4lg8xPjKEKCssW9mDYhBR1RSpeAqXx4PF6kTLSjQ1uWnvaMXraeZf/u+3WLNqHeHIFL2LevH7Wnj7JRexb88u/L5mnn/mOd5+2eV0tLez/6UXOX7iFB/56If5yMc+wuREEKNJxmAQkWUzssmYc2AiCMhSHqFrOJWE/GJQgLQK8ybPsECNpk9hTolVJiY5U5TGdVWfZeoFGq9HpXS1iF05M1byMl2eV6i7dNbdq6rWTrGuwK4Rw1eL5Eniq9iL/0i0gNy9iWgBufuvSwUPiZpO0amBzuxS62qVyhzNR05f7+kcaJqgIwolSfrpomzl6eeqqyApzGZUDIpc29Z8gPAC6FZwklDwRKgXBWvzYV0btKUM3Zwt3elSwa5L1fQ6ZTZQbanyXFhsY4P1tsbuq3C/WEadwN916y1465SKHhOrEZsC0tbI22Yjtb1iOXnUrl5/qiWrBRTqVTsiqd5kZ0H2avpT1s5qqmejOOdemH+u6SBJpXwCOUl70UumnrMxSiSS2KyWUjqxNuB6vRNMI+Su2rPlfNGvXJvnw3DN/0DTyMvmfJG7wpzSEWb17FkirQpBKMXT0/Q0siJx4MBuAh4zVsWAjoguKOzfdwg9leHFF5/jppvfi6on2fHkk6xbv4qZmWle3LGb1eedjyEpkRKybLnkA9xz29/i9bUhGZKoWTu9nRrRTJbpUJyWpmbuv/9xPnLLnyAoJoJTCXxOO6lEmFQ0SzI8xqmhGSwOD6HYJI62XvxuD22BFpJ6hmRWIx3OMj66l76lK9AFO4ooMTYyTCYVx2xz8fgjj3PuuZtxu02EkxlsFgtuh5WXduxAFHPfk8ftRpJlfP5WJiaDuF12VE3jmee2s2btGqKxLEcPHWX1htWkswmcVhOpNCj6OIpm566fPMj7P/ARFMVMOp5mZjqIKCY5cmyUZSuWk9VSmKwWjLIFVJWtW+/l7W+/ArPJyE+3/pSr3vEOHnv0N1x+5bU4LBbu/9GdvPP6G0lmQoiCiIwFQdD59r/9K7d87BZkXcJgVghHY1x33c388PbbGB49xrPPHeZPP3ULP7n7Xi67/GIsdjM6hrxHwzTxeIbfP/kc5194LrqeBEDNQiKp4nJbkQSZ8fFpZGUCs6WL4RNBVq1czHhwnHh8iOaOHjKxJCaTk1f2HsDuttPa4uDhh57iiquuQZAzHN+1C197B1lBJDI1g83VhGJUiUZjtATa+NY//TsbzlhDc6ANr7eF6akhmtvbGDt1iuhkmBs+8HG2P/M4N73/Zj56y8fp6ujkx/f8kA/edAsZLYLZ6uLBXzxIi9PG2rO20NrmQFOTPPm7Z1m6Zg29gcX89sEfcsU170R0tuWYuioUqZGX6UYesF/L3pebZ7OpLebRtfz6WkDmyp2a5GzR8+nqeK6sdoBSnM8Idfe32dbm+axbFQKi4v9r80ni63VqeGNoAbl7E9ECcvdfl3J2eTn4Xiq4Lc5LzxoH5c79NF0t2u+pefW4WpqLuZvjiVAtST9dlG0+aGGlpFBSpNyBtWqFLMTLKbG2hfGoruB0ccnqB6eDcM6PdCEvBdXrldkIPTsNpiGXKI/81qJalF3PBgYV3O8XkGVNVWsQoWxWRZhDMjmnTdYsiFcNg0VJuloPwZuTGna2DkpYhxFsuPHPoZo4G+WOPWUqs3kpc/kc1jQdk9FQka9Cwiw2ln7Xu1+Ig1eN3JX3Zbb7ev56Nm+ipzMWjRC603HkUow9NS+nLtXaEKWVRBYkJMmMx9XC1OA4WaPAZDCIqGmoWQ2b2caq1cuRDSKpdJSmjj4ysoSrpZO+FVvIagNYsiZefmUHTudaFi/p488+/mk2r11Jb2ARmhginhLobO8lPhVl9Zlv49ArLyILOsHxSSxmE6HJcbKpNGFBQDK7UUWJlk4XLocbIZ3hyL6j6FkRh8+N3WzF7VFAkNEFmJwewWDQMJsNZDUdgSyLF3cQiU9gdbViNhp59LePQkZg6doNtLS2cfzkEE63Bz01SlZPYXRYGT0xxIqV/RgtJlRdRtLjuH0+DGYbk8PjOB0KwYHdSGkNTTLgCXj5xQMP0BpoQZKyHDk8xDPP7qBvcReR+ATxeJaXdrzETGiKDetXMzYewmqz4PW7iESmOPPsLSQyWUaHTrCkuxmDzU02m2UyGEM0GpkJx7jokkuZDocwW8xE4glE2cJ73/dB0iq4vSLrlm9m70tPcc6l1yEZIJWYJhWOkhZUkskwRrMZv9+PxWQFKYOiKCSTWWwWGVlOIBlSTE2cpL11GVsf+A1t7U0oYpQPfuDTfPiW9zI6PoJABlESsDucvO+G93DZRTewZFk78fQ4kuRiZngfqqBhMNnYuOU82lo76VvSjc/vR03DxvVrePq5P7B8+VKi0RgdHW2oiEyMjmM1KAwOB1nc18NnPvNprDYH27a/gLe5lcHhCc67eDMoCsuWreChX/2aK665mmhsEoMB7rnzPs5925Xs3TnIpvU9HDt6HJu3tehMhbpfe+WdRvvRa9n7xAaMT+l5fu0SSoHHa1nBSrSu8KeR+UphbucEj5Ttg3O3d97aGjXaEfUFa29mWkDu3kS0gNz99yNN09B08vYwAEJj9Ews5cmlFMlms4iiUOEiXdPVipAEQgWrVJ9mQ9tEUZxVwj5fCfzpUkH6XuhPo3Gpm3eeSONcevuvL83lDKaRhDJHcyF59Wi+tnj10MDDhw7Tt7gvz+hl0XVQ8khrNXJXHf+tvN3zpXrIXgFVnE8/qm0QNU0vomYVKNhpqGQW8s7HfqNA5YipWlaNpIs5O5e8owJB1Cvz5hmqhohd9XPqI3fV72Y+PS3YqzX61qr7WY+pL0d4G6HKr4UK64GazVQwnkLZ83K7wrpl5LUlCgdESVA4dmQXicgkpI3cePOHuffe79PZ5ef737mD6667nKSaoa2tmamREwQHJhkL7qe9bx2nJiQOv7yfdRtX4nDb8bc0E5s4zPhkDLOlDacPJF3B5e/k1IlhQuPjLFlxBloG9h35Od29G0hEFaxOMMhGomNhdHMIi7WZyaEJBk4NsnbjJppaO8hKMhKQSWdAU4mGZ4AsdrORYDCEzdVMLDKCyWTDbHBw661f4Jv//M8k01FkgxGj0UY2McH2p55jxcrl2L0ejEqaRCzM/oPDrF6/GFFvZmp6GJfLgcGoEp5KEo9lMJplVFLIopWsCi6XlVRKwG418dzTf0BQVTwBH3ZzAKNZxmLT0VQjgiAST0VATGOx+kjGQlglCx+4/hb+8Z//kd88ci/bHt/Jnfd+i7HhEHfccS+BVj833HQVg0fHSCdh0ap+4rEQFrOFu++6h76ePlauX0UqncFqtxNLxGlyyQwdGcYX6ABZxCBqIBhRRdDFLGhZJNFCNqOhGET0RIKR4BgubxNOl5vJkVE8HheJVAyTYkHTFcaCkwTavWRVA+HgMQQ9TlYw4zL42frA/XhbfZx34SWk4uOo2DDbbWhCmkQwydatP+Q9113HkYNHaW53E+haya4dL/Pyjme56eYPM3DyMIFAgKmJECaTgNHuwmmRefzRX/HgLx9m1eoNfPSjHyKjSWT0NOlUjGP7DrB69WYSGY07f3QHF565GrOjhb7Vq0ioKpJe8uhYUEipjnUriFJOa0bT83OlKj5k2RyrF7e1mqrPGeVlFeLiQc7mWdfVihQ6QvmyVsovCAhla4yu55y8qLpW1NyRqtb5QtrZ7lWNRCFl/X5RWnIFvV7afDsWkLsFmi8tIHf//UjPq23l9NlBQytbR6rnZkk9sYDsiaJQ9GpVlC/l0aNcEXqFx6iG7aDg17MOEjAbOyUK6NobE6a95G10dlSxHs03xdzSzdeT5ip9Prr/dUqdg1EpedWsg4ZVMXcFGyqAQKAlp04DSGIu7Gy14XithPP1o4Iqc4GpmRXRK9zPMxgFg/cialbettNg7kSxpDJUj+ojZ2X8WNljEQH0kpqxgFbTl0aIXdFWr7y+OezdToe5K3/vs5XV8JpKFLm6ztfjy9A0jVQySSqdwWhQasqeTxzAkrt0oVim0+1EEERMFhvXv+ediGhkUwl6u9rJZibJpATi4SQz4+OY3SZ8vn7cHg+h8DEcrnZ+dM9PSWQ0Nm05g+mIztKV6/F7e9m9Zzct7V5ikRgms8LE9DgmXUC2SGgSCJk43e1d7Hzh9wydPEFn6xr2H9mBz9fMxEgcp8XA0OAwiixhUYyER07gcdhRjEYUs41YMoPd7sBscyKaLYgajAencbub2LhpC9H4BNHoJIok8PLOnXT29vC7J7ez6YwzOLJ/P5l4CItRxufzMT2VxmqVSKqnmBidRhJMKIoRs8lEPBbF4ZQZHx/DbDQiyTKf+dSnOf/889m540XWrF2HJIr8zd98meYWD06XGRQDE+OTmA1GYtMzmK1W9u85QDwWZ+eul7nqqot47NFf8uEPfhDJaMRitXLppW9n0aLF3PHD2/E2ebnlwx/hQ7d8lG2/fYiD+w9y0wc/SFtPJ1lEPvnJT3HtO64mNBwkHE2xuK+bo8cP4vQ6GR0+itvjRQSymRRGixE1JbLv5YOEpsI89JutXHje23jsN9s4cegkXYu8jAUHOXzwIO2BLpLJDLKssGfPblqcNkDF7HChCWYEyYTRZsHhcmI2OzAbcruupEjoCDz95HZ6u3swmwz09HZjMPsR5Rl8HjfpmIXfPfEQl1x6AZlMmiOHD9PZ3Uomk8VssNLW3sy6DVtoamrB6XIxPZ0iK8icHBqhraOZVCLB4NAJ1ixfjtvlRTDbsdlt6OhogiEXHoGSnVzNOqnrqGpJW6Pcm25xfjSyya1DjfwF5KhM+CLkUpen0AE1r7lUHW6nxE7l/y+UwjtBLWKmahrkz08VbXmV+1E5Clh9HsptKyUv0G9mWkDu3kS0gNz9d6fc4qznkbyijYkoICDWlbRBJZI1q40ZJdQvn7HsMDQ743S6+voaelHS9mqpuo7Gnv0KUX7mHodXW/dc6Yr1iszikfPVIXc1qV4FgldMU15Gpcj0tMqZrfzTRXLLe1P0rFnuabKO7VzRhq5BHxrppL5WBnTWPbDOs3LkTtCqnQ3k3nf551LP61o9qfRcVK+fjXpeROuqvXvWKa8aZWwkAz+dUZ5LZFP9XKuDEtej+qhD/gBc861ogMaeF17g0MHDnH/uWfh8dp7f/hwWe4AjhwcITR7mmuuuIpFM0OSUmRw+BtZ2WgPL2bvvAAazSFtbC6eGTjAzoeMPOPG2uLn0/Mv40d13YrApPPvII2w+8wxampcyMLgTl72NPfuep72tA5tVQlT8SHQwMvoMbpsfBIGMqhGOhdmzYwcbN2/CYLfR1d9PLAFWY+6QndIlUHVkSSKrqhhkhXQ2gUyWZ3//LP29SzE3WQiH4jjsNuIxnUwyiK7FiSZVFvUtJZsGgy3O9GQEQfNhskg8/cxTXHbp25manCYancThsBGLpUETaPI3Ew7HsDudjJ44RioTp6OrFVkWEM0uTh4dxuv1Iss6Ho+Xe+/+KTt27OD6699La2sTHq+D6ckwkmLEYjERjsTxNrUxNT2ISZaYno7gbethZmyQTFZDkg3IBiOSnFPx2/XSLjLJFOdccBHHDu+ks7eXA4cGWLtqGboqMTR4Ar/PxWg4THQ6xdZ77uMTH7+FrASpWIa77vgxt37u82RFDZfbSmg6wfPPbuOsM8/jyLHjrFizFFkFwSgST6VQ0xmi8Swms4LVYkBLQ2R6DHdLE5qkkMmAlIXf/vohFvW2EQkHaVu8Ga8rQzwcZ2QoTm9fJ3f9+HtcfPHFhGdidPf0IWhJYqkkuqYSj2Z4ccceAgEf3R3NuP2dvHLgIF1dHt557XX84ic/xm42Mh0Ok8VCd5cP2WwkK7tz3/Ys3qBfjXZK9RzKxY0VSmeRmjlWEBEXmDihCrnLpxIkND3PaFLyoCzWEd7pBQQv/7yA7Ol5LSdBlBCo1a5o5Amz5IWzlL7c6V095E4SBVRNRy+LnfdfCbk73QBTC7RAC/RqSABJkpEkEYOiICKgatnXVKQoSIiChCTlf0KtW/s3O2m6iqbXYRqE2VGHN5JyEXzKan+DQy0AFcjU6VLBPkEUhIqDvKbpxd+bWYinqnkBiFaQUos5JmMW+zCghPq9BajwHqqRugIzK56m1Pj1eJ+6pr16RzdzkChKcyJu5fR6vEdN1/Ju1QFBJK3paILA0rXrePf7biKekZmOJrD77aiKyvqzV3LFdecwEZRIi1Gi8SmMgo0Xn3uCvbteJODz4rKZiYwfwGKMsm5jP44mO5Jo4ZHfPgGaQpO/lRUbl7J/74vEJ5IIBoV4RmXZqtVookw60sbRgReYTj5DNm1CNJlAkXl+5/N4/U2sX7cJTQenxcjEwEHSsQjBoZMMHjuE2aChGCUyagKLVUaX0sSjKSbGp9i0dhMehxc9E+PIgT1YjQIWl5/2nn68rR0sXrmGeGKSn//0UcS0m4nxUf78z/8So8HI8uVLeeml3Xz9a9/F5+kkOBbE7XbQ5HHy1JNPYXc4ESQZRVHIZhPIssbw0ADJUAiDQcFksyHZbETDM/zwjrv4yle/Ss+SHuw+HydHJth/7Bgej4+xsVFMJgO/+NkviceTmMxmnE4boekZBKuZphY/AvClz96KrKbRUlEuueQ8zr30bKangzR5ncQiUZYvXcf99z5ENJTkc5/5LEMnj+L3B+jqauXLf/M5spkxHnzkKdr7+jjnonOJpcOEwmMcPrab//0XtzI+Nko2nSESinBqcJCpSIJERiAaiyOkY9jtBiQ9SWwmyMTQSW668Wamp8ZJxaMIiEQiEdav3UA2o/LALx7g+MljmMQmBo6eZDp6FEWRue7d7yIQaKG52U9oKsVUMMjkzCg2u4Nnn99BOpNlcf9SHv3NPXzxc5+ku70D0rB166/xuH1EI5OktTjJyDQvbt/G9//1nzBW62C+RShnM1em0l5nrcqpe9fmFdBz638dBLFxfbXlF8Ksl8qtJfWPsK//Z9KCWuYbTAtqmf/dKScREqr+FUUJWZIRBKGkgpBfkMpDhM525MmdC/Wc1CuvGibLEoJeylsosagQIehl98rDpJfSC/lAqeV1Z7JZJFHOHdhew8Gyuk+lNhbGJ0clNRRtznEoUHUZc9U937YWlEfqxynUq37VqJ+MIEj5fSavbisI5Ay1KtNXx0grp/ke/It5BSEfjqGshipUbN6G6IW85L6NcvWgwnXRO2bZc4GCWl2ZWlA5Q1ZUSyzVpekgiEKFpLY6fSNEsnGMozn6l6+jxtat6jsvGPpL5GZOLoCwXvErtE3Lv98cGpmzUSk2rY4abUH9Uaj6f3Ufa9rdqE/kGcCKvCJls5yGqql11DPrpdZFIR8gWaixBar+1oq3G5Q537dW78BXCNlcckORm4uyKCEgIkhGBEHHbBXQM0kkjNitOmODh1CwYbFlGD4whi6kaelZjiIkiMWieP0eTpw8Rjgcptm/lGAwiJpNYTDIJFUNn10glEyhxyxE41n2HHiexUs34vE0cXj/CaIzSZxNTXT2NCOqJoZGRnFaDQiylcVL1nDi2EF6l7STyiRoaetgJpLCLGgY7SbSmTSRYJDBQ7txevzIOiTDUzjdflRB4sTgKcLhEEa7j9bWLgZPHcAXaCGjxgkGJ3CYXaQSaUZGTnHk8DHOPud8LrpoC5qexGBQ8DibueCCZQi6zLe/9T16eloJdPUTaG3C6VB44ZnfkYhG6Fu1EkFowut1MR1K8Pd//VU2rl2HpOTe8XtvuIGMlgZJJR3LYLXY6e3uZXxshJHRIbq7uxgfD/KXf/2XXHXNu8iqMvte2Q8pEVFKoYkxrr/x/RwbGuWv/vff09Hmxt+yDJNJQheMNHk8TE+P0tHWjq/Zx7tveAc2VweypON22EmlQZO9bFzWzy9+9jMuvPRiLC4HgqDgcjTxjmuuINDeSiQ8RTg8zV9/9at85OabiEfCWM1mkrqIzWJBlCEZt9PS0cEfnn+ZK9/xDjJpFUUyMhOaprW1FatJ4cLzz8FqMLDvyFEWLV5Ee7M3p96pyShGGxarE504Po+FL37p77j04nNwOMwYDNC7qIvNZ5zN9m3PQkajo6+LDr+PPXt2cXxghB/c/hMuvPJtKJKJ9uYuNE3F6vKSzU9JuUzkWL5HzzZ3Cutz+U/X1CJSlZs/+f/r+f1TkPJ3tYrVovB3aS8Sqn6F9LV7YXUbJaHSxVyhJ6WwCFWhpqpIF0q15DSKqNAAKay95fUXatQFvaLZQn5dfDPGtaum01HLXGDu3mBaYO4WaDYSBAFFyi3AYv4EmAsrMI9YYxVLbu5grapqDSNQsYwKkFVVJFGsyV9qU6VnSwBFVkrlviEoUGVbit61XkMZrx+VgnrP/VYqn1fH7SrGQayTvqhCV0f98FUhG43s2srf4zwYovKntXHIxOK/9eIBVtiP1XF8Uh0HTxCr+l9gEgqMTnWcuddjnMr6OduXXbIhma2Q0gGo0u6kfroCFdIWv7OycsqpFA8wN07VooXyX53GNehRqU2no/pZwWSf5pJQMxzzzVeXuatvW1xijnNBkg2SGautiWQ6S1aVESQznZ29xOPH8bl8OF02RkcjJFPT2B0u0DKYTAKJpAGPL4DBbMHm9JBNKkxOBUlGTpKRgWiMxUuX0rV4CSePDZOKJZEVhWZ/C9HJNLISZGToJCsWbSEpHkFRnCRSWbLqKUR5miN7JaLZfXS0nMGhA69gdztxum1MjA1j0EUGju4jk44Qng6y7eFnWLl6JYlkkumZaa559w3c+P4PYLQZMJtthGZCtDT7GR0eQhAttDR3MjQ8QUtLgNu+dRvbtz/L8qXLcDpt/OQnDyJJRo4ePciK1YuRdBO3/et3iE5FCfiaCXS72fvyEA6rg4nILjyObnbu3MUr+3azds1STo0ew+N2kU1lEZCRZQ1Rgng8xhe/8Be8/e2XIYgCfl+Aa699J+lUBovFitfbhNvjxGhUMCgGMmkdl9vIVVe+i0w2QyZlZPTUMVKZFBannVgmhctpQpFNiBqIqp1MBsYGxzCbnfzhmZewyFHWbdpEKJ5C1SU0VWZyfBy/x8PAiaMEgyHsjiaufdc13HH7baxauwJBEjAYZUZOhRCkNE899QcQUlxy6QWomoZBsXHv3b9k9ep+br/9Du780Y+46pprefSx37B65WrcLh/33/MrpibGWdy7iPe86z10tLZjdjkx2q1YnV70cJzFi/o5OTxG79LlIMWRZZF9+/Zw2RVX8NOf/oTP//kX+dznvkAg0MbylUvZvWc/i/qWcOTIPnoWLUETNNDzjEnBnKHOHj3f+VJa86vXIJFKpq++YnZBr6V6bSoxZiUhVWXO2rlZ/lwsa2tF/M76HSt0Ja8GWhLClpjDmkx1G1OMA/gW0AJZsLl7E9GCzd0CnR7lbXY0nUQymfdkWGD4clREQso8ZOVArvzCP8+adCGn2qlVqWb9Z2idN9qm6rZFFN5QVcn6bclL+/RGG1+OBFGpiNtVi0zMboOnU4lAze0lrCzva7DdmjX9fNKItR7Wyr+rRi2b08au6r4gCEiimEO7y9pXrprzqo3u6zgrqEearZM/UwAAIABJREFUXmZHN8eYF9IKgjCr/VuBqtterjZZ7VWzYf0N66g68NRRh55NFbYYrD5/rQplTOgc83GuL/N031j59yY0iC1aOuAVahcREcmoKdBFFFFkIjjM6MhOXEqA/Yd2EZzSOPfC8wj425ieHEMnyZ4Xn+Osc7eQzqoEJ0IksjE6u5ZgTKuMxaxI2ouIupesaiM4MgSiQP/yZaSzaaaGpzky8BQbN56BlpaJJoIIihtRNqNnppHlBA7rOsZn9hELNWGWQ3jaW5mcmMQkK+zftROXS6S1vYdQXCY2E2bDWWcwPDzM2NAwyayXo8cHuPSKs5GN4G3ykU4mgASyUWZmIorRZEaUNSaHpzAoFm6//ft86MMfQBSNNHmbGDx1nI7OAKlkit8/8RJHDu3jbRdvYfmmlRiyNgaOn0IzDZCN+bC53NhtCiePH6Ctewmjw6dQRAvpBHg7mjAajaRSKSSsSLLG44//Fo/Lx4pVa9n6s63cdtu3+N22x5HQmZiYxGpz8A9f+0f+8i8+g6i0EE9O8bEPfJIf3/89BFEnpWYwmw0Ioomp0UlMxiQW2UdSEwhPj2Kx2TA73UyNniLQ1skll1zOP339GwwMHKent4tly5cxOnAQt7+bZ55/iQvO3Qx6mj17XsHpcdPT24WaUhibPMjxo2OsXr0WXVR54ndPcPXVf8JzT7/MihUdDA4G8TX7eeoPT3DheRsxSQaeeXon7V1L6OpuIqtqpFNZTEYTFoeRmUQUgyBBLMIT255i05YzMVgs2FwuZDXN+PAQstFCMpXgPdfdyGc/83nOPmcL6UyUZ557mbdffhnBoVdQzB46+pchiAZEXaQ6jm5hD280n7S8/VruXkHgVstY5cSp1Wt49byaS00+36a8arRWlr4652w2x/VQu3o2dOV5xWLeyn2zui7IOX0Ry1RahLxWzVsBuVvwlvkmogXkboFOlyRJRtN0FFnJB3PVcu6yEYqSKvLqa5l0hkwmk1Nly+upz3f25w7fpyGpf0OpesNpLJXUdSGP8Pxx2lJ5e3Z0UBCkCmSrtsT60tDackrMzKuWKOoN4prNE7GbvYVVaaokpQUp7lwMZ8HWsKTp02jsS8yUputks2oxJEI14vZGS2Ar0Mh5pi16xixDUmcroxy5K1c3EgQBSZKZ9eNvWO4cyB2z90vT9ByjWshdxty9VvOg035jxW9YbCxoqVAfAwSVtJ5ElhUEQUZHwGiSCAQWEZ7RcHhdrFh/NqosklazJNIxzHYDbjlDJDyMy23BrAiYbYswWRVefmEbSTQ+9dH/x7vecTmCPkVWzWKxmkmkYmSFDDMTEn196wmOiYiGDLFpBV9bEyNjx2l2L2JmKo43oBObdpIlhs2ik9Z0LCYngmokKybxNVnICjb2HppmzbpOjg8cprXJTavLiafFRGurE12aRtPNGGQTJpMJkwnCERWz2YUiW1FVHYOSIZVUWblsA5Jk4K57fsjGzeuQZQVFtiBbMwQCvZgsRlraPQiyk6cef5Ct9z3A2g2b+e5tP2DdGRuxWGSMosruV0bwelz8fOvPaHJ6eXn/Phb3LsmFNDA5CI6Pks6kWLxkCeFwkvPPP4+bbr4Rs9mEIgtEQlGCY1NceeWVqOks//j1/2DPwT3c+sn/gcXrJhwKYZIkxk6e4sHfPsuDv3iAVavaMMg6Lp8Pi0knqyUw2QyYbW1cedlVPHDv/dz8vvfxhS/+GZ6WFrKyARsZfv3wU2x/dicXXXgWMxMh/sf/+ARL+pdhMdux242kspN0dy/hoQefINDWzuYzNoKmYzAoDA4cZ/Hi5UzMhFmzfh0m2YBR0Onq7sbi8oCcRRMEEEXuuvseFDFFc2sLFllAscgsW7EUm9XC6KlTZAQvA0eP0trq4/HHH6dvaR/r121h9er1ZDJJHn74t1x82VW4PV4mRg6yf98RepcsQZKN+TW2Sjgo1Efn9EKoGbHkCKUwG0RBbICqVXvJnN9eVZpvxdrzf5ch+8UnOWSwkFYUxZwqfkU5s++JpRpqW1ZX86BCXbNs/a4A8t4a9tsLaplvIlpg7hbo9KjyIJc7zEkYDYaizVsqncmrYOpIopgLpi7kPG9q+YDogiigqQX1jcICXyUhE3MLnKZpuSDseaYkk1URpZzapiSKFFUFZyFdoNIer2BkNM9Dn1D1myttvXLnsrmbL1W3Rai4W9YGoMaOqQ5jB+VoXPWvYHunU1B4qQCvNL1mc2rY7mqGoTp9uTRTrJWOloeVn6u+4mZasLnT1OKBWxRyntcqpKc0fr9FielsTE+1yk/Rw1npWVEtqE4d9ahu3LcGHjkr8s2j/IJ9XrHcfDurqaa/ZQy5rmk5o3+hlLfwLRTbPhcznC+z1PLCSSrfz1m+l+r3ULQJLVyTY+qE8r7Wb81p03zLyR1scz+hwVdWmncikqDkhyBnIymKCoKkYPe6afK3Y7GasBrMBMfGcdjdZFIyVl+AyWAYi81LNGtEE2QcNhOJFOjJDNdeuwWn20E0HsJocYMaJhWbwmrz4fB7GR/fQ98iH5LJgNXk4f67H2D1srVk1Bm8zU089+QYM1PDeJ1JVFJkMmlstmYkW4axU0fp6lmLzeGls9PHzud30dVmIZvVGZ1WEAw6gpRB1CV8VjspNUkqk2Z8aBK7r5lsKonZIDETjyJixW2XCPhNbH/6GUTNitdv5tSJMTo6/KTTYDJZOXbsIF19nVjMRtxWP719PbS0+hkfmqHFZcNit3Ho5AhGdDo6u1m9fgMWt4O2Vh+TExPcdcddnHH2OgxmmY6udqx2K6IWIjg+gtPpYGj0BJLZhd3hxO9xQSpFMqvytkvOwyBorF3exdjkDO0tLZwYHMDT2ca3v/4NFrU1c94FF5CWdETRji6CYrQxdGISPTnD9ddfx3M7nubLX/lLMqYmmmwQngoyeHKYJ57YxqrlS2lqaaLF7+X6G67n+LFjtAVa2P3KLrzuLpxOP00+J4okYjYYiYTDDBw/zPNP72HV2n62/2EbzX4/meQoL+x6CVnx8sq+nYhpIzariZmZGb79rX+nLdBJS7OPUyeDKGYrE2PjHDp0kLaeRcyMn+TZ556ho2MxX7j1y1x19XV4nG70bIx0PESgpYPWjnYQNFr8TWQSccLhODaHG1UXkKVqIShFIUf1vBCEUoClkop4iWXL7S1ScW7kbOw0Sg7Fqm10S3bE9ZYdHYGsWohJKRRV08vVN8WqvHre5lqnPF3t3lNoUcVyRc7KTyysj0I9a7/yNaCsDVSuEtIczrveLLTA3L2JaIG5W6DXSqIoFg/NkijkHbHkDudiGfMlSVLebg/QBcQ8w1dCaRpJuMWi1QoIaLqGIsnoes6RCsI8WKaCBLHGruv1GYP5kCRKuU3sDbQJrL2qPy6aXhuvrD6z1Ng6SqDAa5QO9nB6qprFdPUYmZo6S4f3eTN3VTGUCmXP9g5EsTIek5DLVFRdlCS5qNpTVmhF/yWpVhWpsLGL+flxut9BNXNXYNBqeOQ69wqk6bUyjfkidDoUQ0aU29RVvL8qG8R8ITXXs34b82EI67R7vkxzIe2roYYB1RvE+ao81NYTntQ/iFbWSV7dWkfTVBRFwef3oxiNOJwOdMXFqZNjyIKMWZRRtSwTwRGOHTuOy+2lva+XUDRCLJXCJRvY+eIe2rsWIxkt2A0nmRgcRZQ0RMVKQs3QFujnxWd34bQmMFltaKpEV28TVqcdq2Li5MCziBhwOFoxm7LIBguqrpJIhnHaLRw5vA9/S4CsruGwm1FkGZPJQhaJUGgKRdKwW6xEpocITUxw8sQJulr9YBQQjWaSmomWrqUsX9qNICcwGC3ogkYylSWdjrNy1QrGxsZwOpoITU6RTCSwOZ1s3ryZkeHDHD76Cv0runngJ79h+bIVTE3PEI0lcLmdSKLCqpWr2bv3GLte2k1PbxcGo0AykebQoePY7W6cHjff/NrXOfvMs9h38BCK1YYoJxgcHmLD5i2MjU1gc7v452/8M9dccxWRmSCXX3ElG87uR9VEzIZ2VDXEgf2vEGjxMTk5QmtHM5lMFoetCYvVRVoCC3HCYyEwSXR1LqKzbTEvvbgXi8uMKgi0drTz20ce5bxzLkCWzGSzWVQtgavJydFjR/B4XbiaXCxfvhTFqOHzOhk4eQK3y0R311pMJge+NoGhE0OcODbNshX9nHnecuwWN91dnfj9zfzoxz9l86bNnBocRjHY6GxvpaWllUceeZS+xYtY3reETDqN0WLE3tREa3uAp//wDH5fC+mUiMOl4HRY2fbkNvqXL0NooBrZyD6tYMlbbQOX+/Ar82maSqXmT369LTJes+87ufOJNGu6xqgcFQherS111fKUn96lpbDR/jx7veVtfyvQAnP3JqIF5m6BXivVQxhEMeeIBUFE13MhlCWp5KUwtxTnFvWCOlXhOF25eAtk1Syaqucl8wKiVHJRYDIackxiUR1EqCqjdLfi4FU4aRcv6+er6Wv1wWyuwSnPq9d3+d/oYDhX3fVQgLJS8+0rbICVVDyslx3eG9VakS+vpiJLcs6rFwWHJfl65mG3VdPPemNSt4xKRrTeCNSMRh2viCV0rf546xXfaG27ioxlYecuY27L85SrOpYzPLquUX6UmZMpqWPbp2l6pYfLMirEcioyf6JQZOoK6TVdQxLz6sN1xqYeQlkcs4o0VDJz1eMhlBy3qHkEXqwap2Ke6hNSuSCmjIHM2Qk2CmQ8Pyqkn4u91vNCq8K/xb7XJqw/f+uhFvmZXEAJqhlGXa9Ey0u//Hqp63kPxvmvSEwT6GhlYPAogycPkk0lcTptKAYjPb2LiYQ0HC4H0bCKQczS3N6D2+fHrKQYmziA17EGl9NMOBIjFInidllZtaYPm81ELJbFZLaR1mZQDD6GBqaIR8KIUjM2XzsSCbSsgLvJQzIVx+NyceTgCex2Jx6fh5GhQSaDM/i8HnSjHa/bgpSN8R+3/QetzTZ8ze3YnV4uPOdsLjivn4nJabzNAcKhUXa//AqSojEwEOSpp/6ALJvo7G4hlUpiUCykk1lefOFZEokUt3z0k1xx9UX8v29+i/CEyKY1l7N69SIOHztOU5OXWz/3eZYvW05HZxeKYuTE8UE2bNzEilWr+PhHP44gCPQsWoqkGBEVidZACy6XC5PFTlYVEDNhrFYnBqOVt110ITfeeAPnnncRsdAEU8OHsDvMhMIRjIoBPRUhFAnR4m8nGonSGvARiaWQDUYSiSTX33gjP7r7R5y7aSm6rjAyNUV//wp8Ph8P/eZBvv5P/0Q6mebKK64k4G8mEY/zve/dweTENFabGYerCbvThWIwoygmTGYT0eg0Blmir7sXXRA5PnAUi8XB0WOHGBkcY8XKpXibPZjMRmwWO5dcfAUf+vAHWLV2LaKuYpAldu/ZR7PfT0dnB21trWzYuJZEWsVoNmG1Objv/q388tcPcM07LuZnW+9m5brV7N69l3afh7GxKXoWLy9OrIK3zKJ34spJUTYDBQp4Vs16XmWrV1xiymZS+XUjrYpK1K3yviCAqqqluVcHgSuvf75mCKU9oL4QUqxTTm26/HnnLYLawekxd2+dXi3QAi1QBenkVKUURcmpbUpiXiVTygcBzS1fsiTWOE0pJ1mWkGW56JilnDHLZDKEo1HQhVIMKSjW8Vagmrh1b2IaGR3l5V27AMikS3EQ67Ji89wI/5hUOkacHlUzYLnDx9y2afMhLW+nV172f5YjsUYCiNdSVjYfJ1CWZfR8X7Uq1e56jJGm1/dLJAq86vh38+3b6zkONWUX2bvXhwyYUHUrK9efz9vefgOSrpJOJrBYLEwEJzEYo4wN70bLjmPz+xFMFoKTowQH94CtlX2HYnzs45/GbjVDMkM6fYpQ/BADo5NYzG6mp0OYrVaOn5jE7ldYvHgF7mYPE+kjhKcTjI+HGBkKYrM5MRgsrFi6nqamNtxuN1azCZ/Hy9TEJMdODBCLzqCmYlx80fmIkk4oHAHJzN13349Hc/HyU/t48clXMGsG1q3bRFtHNxdccAk33vgRtpxxJtlsGk1TyaSy6LrAFVdeDsCxk6cAG1/6i89z2ZWriGd3c+jIEf70E58gHk/wt3/3FZpbAtx++/dQDEaOnDiAxWzgyIEjfPOb/847rr6WE8cHuOzyq1A1gbZFXeiKhNVqQ0bGpJm45wc/5vvf+S6/efABHA47CALjY8MI2QRDx17BbvAiqSkU8QSTk2FsVjdNLh+HDx3FZHIgK0YWLe7i7vt+wAP33YPJaqS7v4+zzj0ft8eFIGT47P+6hd89/ChaMoOayPDVr3yNnbue4/3vv56L3nYJH/vIpxgbn0bTFKKRFDMzCRAkLGYbkqhwz4/vJTSZomuRE5NVwOdZxIpla5mJDfDwY79EEZuYmpqipaWdcCTE/v2vICsCHV2tXHLZBSQSCdLpNCdOHEMUobm3jVAyRiqRYtXi5aSTTYwNZdm+7SWSKRm3K4CW1glPzmA2WOp+n4W9vYCuzXfu5uZ5fWdEUBIOv1YqPyeIQu63QG88LXjLfINpwVvmAv2xSZJk0ukUat7uqSRVq1z09aJ4v/FqK0tyPjiwWsyk5zTdKxPmPSpUO1YoevOcg7mqdxh7vRiycm9h5fVUb2yvz4GwUtpZdF09z75oeg5plaU6RvIN8szXy2M54jMbvZ57byMBQKNDRaM+1kOCiv0uR7vqlFGN3FT3T6tGdl5LYO88I1XhUbNusspnjfbhughoPbvAsntiUUpeVVb+X6183KrTlHvkrHLIU683852h1e+vnjZCBSo733JFiYJn1mqvgHPmLSJ51WpkjRFnACWvvimIEulUipnJEM89sZWVq5ay98AI/uYmIjNBNm9ez4nhASZHRFSidHV7EDQvBnMao9hEKBIi0NLDY9vu5PdPvMKtX/g06UwMXY2TSBrx9/p4+N4HWL+mF1/bWuLiJE5LM3tf3kMyGqMtEKC1p4tkaoZPfuwT/MNt38FOEj2bYDol0OzJcODwMbp6lzFwKsi6decTm5zCKMlEskmSCZXx4SCLlvRjctuJjAzj6WwlnTKh60GSkTCSYOaVl4+yfv1mDux/jiXr1iNkNfTkEb57231sOfMylq7uJ6tFsEku/uX/fpf/85W/5OihQ4RCQVoDAV568RXsHi9PP/M017/vemx2O9lMlPvu+QV+XwcbNmxAME9hkr38+M6fcvv3vsELe18BVUcRdaKxCRx2GxoykUicSDRBOqWRzmZIxydYs7yXmaiIYjIgGU2kMxmsRgOCCMHxcSRFY2IkTN+ipezd9zxdPRuwGESOHjrIj+77Kddecx09i3q48867uPmmm7DZJCaDw9jtZuLRECarh3hawKgYMYoC+/Yd4bt33sGXbv0CwyeHcHk9dC0KIAoS//C1b/LJj9+Ize1HEbJMzsTZt+8IZ59zNgazjkqCqcEpEpEk4dgU689Yyy9//gh9vcvw+71MDAfJqmlOnjrKwMBhoikDN33w/Qzs///ZO+84Sco6/78rdM5hct6Znc15YQMsYckCBgQERREQ9FAM553hPHM8w5nBcICKShBMIJJUQElL2MjmMDuzk/NMT+eq+v3RXd3V1d0zs6vcD7z5vl61O1311BOqnnqe7+cbt7Bm80UomkIKkDUZiyaQFtIF38Hx7WF6QKrC+Z7RxJ2IACyzbuY1iYa9toxbwGxdDAqjX5baGzWDa0kxCSY3A1XTQeZrI0qmTscTLXMO3L3CNAfu5uh/mwTIBGIgw2CmUqmMuZ+aLig3G3AHkE6nkeUM45RWVEQRpOwCq5nYNnNNmVDN4owM8/8GuNNQc+kj4NUJ7iTJiqKksz5lAoqSnvEe9QTBXTlWViz7fGZmujNgPp8KYrbaXb2tck9J75Nq6JMZ3KFlfFBnAndF9+t9fbWDO8M4S4I7Yx9KtaGqReAN8to7USDv82f4P1dtif69GsCdqJt+zQDutNy3aTbTnB7c6f6f+v2SJKKqGolkAofdTiIZJzY8jGRxgjpOX08P46PDNDfWYXeKCGolKSFKKp1ETcjItiS9xyapqqokNrmfzqNjiHipbRSxuawoyRh2eyM4RWx2D7EREZ/PQtfAFpSITMDvp/tYD62t8xgaU3DaJTQ1hWr10nPkEJqSpqltMdV1tXQd7uKrX/4Sfq+VK6+6jLZ5LXQdO8TAcD8NLeuIjB9huK+btrbTUFMxVJ8Vf6gBpDFsig+L1cpA/xCjo6Pc+J4b+fQXv4hVcDIxvofVq1YRjYuMjo1js0u4nB5CoWp27XqZ9197Dd+++RtU1FVgtbkYHZhCSwv8z613cPllb2XBogrCwVrSKbjvvnvYfPEZeJxhfvebPzA20seV17wVWbSTSsWZmBgk5G/gtttv47p3X0cincTncBFLJbFaNUQ1xpGjY4TDYaKxKQJhPwO9Q3gDTibGh6itqMJiCTA0NIHdJSBZBI4d7iAxpXLJW67h17+9k7r6elKJBC63h4nBowQrq+kdHKGqto6+Y/uZisn0HOkl6PGyaGUbqkVgoLeH2Pgk9W0LmJqK8uMf/YQb/+UmUlPd2Nx+Aj4HI+PJjE+kzcro8CBd/b20NTRz6y0/4J03XEv/QD8tLW1MjI8jSmn+eP9jLF22kOraIIODXdhtVQSqG/EIcZ7c8jJnn3cGms2KpgpImpBzl3glwZ35OylP///AnYqaBWyzB3cCpX23X800lwrhVURzPndz9P+DjOZsmUArIpKUZXw1fRPIHAKF9viYmCBRlHQ7OSRZzEbZEkveqxlqQa8lByAFQyOC6Sg5imwbsxxz1v8gl1A7t3HoeQFNm495w8mNQcsGtZi91bpgYB2NpBVk+5mZ9E0sY7Zm0rSWa9vkx1XuMJYv7qnhTZTxbxJNz7fUkam/+Nnr0TT1fEXG6JoFwVjKHHo5SRSJx+KFm7JhfJphfObnk3uOJnAjiGJBBDUtW2eRj5qhvZLnDOaPZl+7cn0xni8F2oxmlTmgNVOfyvigmM+LegJ5Idu+Pi9mShRv+Hs2UVz1ctOyhqUAa5k2C/smZt/5LAKrzJL11buR980rrFXN1mKRrWhaxhxWEGTSgp1UOobN5sTrC+HxhokqSWSbl4MHdlIVqsQXrGBg6BgW2UOoMowmDON11WNzpJBFLyPDw9z9y7sZGIzT0taMoKVJqzbiygCy6sBmc+MLVBCorEaVLfh8djo6DmCxpUjEkoTDIRQkRE1ieKyD7Vu3Egy4OHltG7u270SQRarr63jx2ZdYvKSN8eE+/vKnx9l46mYeeuhh5rU343W46e7YTlJxIVusOJwuNp5yKrfe/hNWrVrO6MgUdY31BMJhVNXC//zPz1mzdhNVVT4EIcWR/R0sW7ocp9tJZ+cRlixdjN9fz0c++nHe9773E0sk6eo6xNNPb+GJJ5/k7HPPxOn1snf3XhobGhjsG6SxoZLvfuf7VFfXkEynuO7q63n3je/FYrGhqSJqIsKWF1+kurYa0PD461BVlcjkGEG/H0VV8fs9yBYrkpoAwcbLu/fh9DpxOK2gKGgK3PSBDyPKCj6fm4cefoglSxdidzpJpiGeSOP3h7A7HIiyg5pwmOTUOJJNRrRK+HxOnHaZ2OgAQacTIR2jKmClr2+CwaFxJAQ8gRCDA9343Q60lMrrLn4LZ2w6hY0bT+LYsWN4fV4+97mvcP55F/Kd73yP9acsQ9UktJQXt30B8VgvrlA1QmwcQVCprKxEtFiyZtdZICYao1pm5252fZ1+DxMM/2cO3U9VNe7ZM4hwyu0zmqbzA9q0695s1o9yfsr6GEqt++Zy+csCun/fayWQik5zAVVeRTQH7ubo1UMCoighSXKOOda0DNsjiDJokM6mVxBFGQQNUZAQBAFFUVBUNePQnkGIWTlhMeNXkjkv0ZeMDWceSM7+3jKjKxMO2vw7ByzM9+vgJWvKaga7GdIM4NQ0npLax0KAWpQyoog002ECiwUSzGyYazGfxmLa7c0M8op6ng11rTP9xSqwsgxDEcg3Aigtoy3N5f8rMfbZamw0TUOS5ZJgtdxv472566Y+6IDOnDRcL6tkc0IWvZFZAEBVzQOg6fqWCcoyu7EUjEMvU6YvRZJ3QyAVTVWJxuLY7Q60bKCYcveX6jPGZzoNFeTrywbAmW3Ov4K+FHcCiywTT8Sz+f9mulvIRyPVq6Ack5dnbo0JlHNhlHLPU0WyyNisInanh5QmgNVGWpAZHRxlbHQYi2ylt7eXRGKEysZ5yE433Uc7qK/fiNPrRJRFhofGsNsF1qxdRWtTDbHxSRyuAI6QhXRCJOgFFTdf/MJ3WL7qZDRBIDKR4I8PP8OKtWtJRKPIog9RmiKtRKnw19Dc1IQ/4MXh9tJ20gqqa2uYmlS4+bbfYpPqWNq+kOWLGqiolhAddrwBN9HJPvqOHCHo9HPXHXfg9bj49Kc+RXVdA+PjY7jdTkTRi1VSeOqvz3HWOWdw4NAuamvr6D68j0DIj0PwU1NfR9O8BrTkJJpQxZXvuIRESube3/yK8y+6gh279vLGN11CTV0NasqKoI4yMHyQDZsvxh2qYMOp5+IJO/AF6jnr7NNwuGSeePJRli5rQ5CraGwIoKZHkRIhLj7vHN527WUEKwOkUyqSHOexR//AxGgMi5jiped301zfhiCkGRyYpLGpHWQLE1O9uGwelKkE/d0D1M9vZ2JihHvveZArrnorm8/cgN2q8cgfH2Tt2nWMT6VxWlwIqoDdbietgtXl5uvfuJlLrngTjoDIsy/u5pSN6xge6OPB+x9gfut80qrGw488zLe+/mmCoQCDg2NYbF4kKU1720LSaS2Tc7G6jWRcpbGxjqee/RNTqkxrSxOq3cbQ+Ch9HaOEqwIggkg2MqVhTdaFifm1zrhWF6Y2EFCy5UuJZIt3tJm+08w1If9ZIKCpStF9qun7M0Y2zp8v16NsHeg7pJYiPNDlAAAgAElEQVQVThUufeYkDppg3FEz69BrTWsHc+DuVUVz4G6OXq1kzJGnkWWc9VxWuimlpmY1fRpKWkWUBHp7evF43Jlys4VfJZCHERz+I+Rns9a0lQNWZTRWRQnTS4K7Gfpm+GM2kTvNd5YtnWXwZ2MyWbZPOSoEZGVheUlwp9eQZRxKaPRKJXefuU/HTzP6FBpBkRkklvFDE8VMsuxiwXGZtgxgrlCpVr5vmmacJ9ODwaJxnCgJmYBMAtNoDWdRx4kEXjCanJ4wuCMz5zweL8lEvEAbXHY9MGkb9cin07yZbPlyIoj8nFE1FbfLhcPuxOFwIEs2xsYmqa6uxePxY5WsRCbieN0eohPDJMaP8twzDyNJMWSbitsXJJpMY7UH2XTum+nr6WLjxpOwWpx093Tgc9o4/4Jz2Lt3J+GQm2cef5a6mlpc9gSxWIotz+3EahdIJNK8//0fp7qmgY9+7FPcfvuvkEmyeukyYpMTrFmzArffxa7dL2J3WXF6/ditDlRkJC2Fwy7QPxrD7XWysL2Z4b6jHO3q41jXEea3ttHd2cXg2BgbTzkdwSKxdMVibFYbDpsNp9vD7l37qKiuJhZPIeIgkYzS0bGbcKAGURVomdfEfffdy1e++hU2bT6LN19+PVdf/XZa59UjWWyo8QQSEnaLgk20IqTjVFRW0Xmsl7YFSxCJIIp+JKuD8y6+hLt+8wN+8sNnWNLezvbtd1JTvZS6+hZGR6LUNlThcPkI19QQT0epqgoQnYoxOR4hFKrA4rLx/JbnmYpEqausQZKhpXkenR2HePs73oYs2FiwYBGTk+N87vOfZMPa9Vz/nuuorqnGarGwe9d+Fi1cSXVNDelUkkULVqJp8PAfH2PdupOpqqmiq+soDQ212JwOYrE41TV1vLDleRRVQSCzB89vb2XHtr2Mjk2yc/suTt24icqQB4sk47a6sUl2tm3dxpGOgyxctBBBtOSsO/JzPbun5r5JM0Ay/tJyYMe4QZcTdsxqXTW3lk2tkBduiUXLlfHbKgR3RbXlqGA7LtVX029jeT2n3astGNls6HjA3ZzP3StMcz53c/Rao7SioijpzCIsaKAJ2KxWUukUai68ni79B1GQygfIECCdVpFlsaCcLnUzB2bJ+cMYEjnPloScecr0pPfB6A+makpRMJjCujN9N8MTs59DJtxMflx/v9+gmO2fyXxRFIu0TPk+ZMjMipp7Yjwvihm/HYCUoiCKApJQrAkx+9CZx6dHbitXTn9Wxneglpg7xr5Nt1FrmpZPW6A/E7P5oZANBp71IRPIzHFJKl2+yGfOoOnSAYlq8GnNXBJydempR0qRkWlSDSCjlE/KTGkv9DLGb6XAp85Ms/TFzJ02356rxlBPFlyWY5QESviEGkh/Vn8Po2W8M62oJYMRQX5OaqpSEP5cn5PGV6b772SYZ/MalPc3zvgmGfxAyfgYq7ogQ5ARNFBSCXq7uxDSKuFQJY898hDLVy9k6OhR5re30d19jFClj9GpGIFgEEH2oalORgePIBChtW0ZPf2HsakJnB4PL23dwbIVK+k93MefHnsStz/FprNfR23lArp7DtDV1cvyVYtIKzF6unvxearxu93s37OdpvoqAlU1HOo4Sl1DA7FYlIG+HprqaukfniIeGUASxvBULUdJxgh5XaTiUQ52ThCPT7Jq1ck8++w2Tj1nMw5HgOGRIVxeBzIwORlBS8XY9sLLLFy6DNFi5d477+NDH76W/Qe2YRVq2bJlK6+7+Cx+89vfcfa5Z6GoCtu3d0JqmHPOOZnfP/Qwy9oW8cxTL7F+4yJkyUdNtY+hkXEkq5PR8Umqa63YLa0MTvRQXdPIQF8P0cQo3Yd6GO4c4YyLzuHSSy/n4YcfZmS8B7vdidvrI5qMYNM0YlEVh8PL0OAQNc0V9PcOsnfnbra/uJWNp22ifUEbdoedM047kx//6CfIFqhvrEaS4dtfvZnLr7iciuoKREkkFk1w+mkXsm3bFgaGOrFZbOzde4Ab3/sBXnz+r7jdLjo6D+Ny2UkqAh6Xh5GBYaITEUSLk/sf+C2nnX46bW3tvLhlB5GpCF/9r//i7rt/xeR4Fx5PgHvu+jUbNpxK24JWDuzfycoNJyF7fAgl9rLMN5H55lQ09Mx1qkrWRzXjy12cAaBcDr3Zfpv6WqYDzvzapv9t9O81Uz7ISfm6810VQVPLri2yWBgh3PgF6zvzaymQik5zPnevIprT3M3Ra40kUciaLGhoWsY3RxTIhVw303Ru3ALZnFkmjZUoSqiKUmxKqdepmTQZs6BiSWUZKmGyMpMrut53QdRzjxn7awR3edOPwisnSqU1d2Yt07Qanlmcz4wv834lUcyMs8SdxdoQoeAwm8IWt1UImMolGy8vb55+HHqOtoLnYQBBWjaCbM6SsUyOo8xUKt2yqmrZtCMltH6CkP2vDNgpMAecodxMfmjZMrk6Zun/VqKior7BNEIBM5ibAdxp2b4Z29JJf1b/CHCnkfF/KwdiC3xCC2Z34UgFIS+KyOhByolFdK1sCWCeLaWKmeuiqBEI+ugd7SMYqKCxoRWrx4vsdGCxe0nEp5AYwSYFkGQZ2WZFtkjYrA5S0SGcDj+KJDAyNAGySGPLAmIJCU2d5JFHnuTcC87H5lSxWp04XAKtbfO5+7Zf47SKhHwutr+0E28wTHRykr7+ATq6hmgJ+ZmcmMLucuO0y6TiCSYmVcJBG411bmIxiVA4TCSWIKVJJCLjKMkofce6iE1EcLlTDPePoKUkDu/vxBf00zs0gdthpaqqAZffhyYLrFi2iFhawhvyY7X7ecc1V/O2q67k6JF9uOUkYnSAugoVv0NBEKCxfRk2i0owGKbj2D7aFyzgQMc+nA6ZsMfKL279PhtOOZtNm9Zw+ob5hB1BgqEQwYoquroHmN++kJraKpoaWwkEvcRGp/C6XSCkkTSNVAwO7T/CL3/5S8YnBlja1oY36KO2uZH169bT1NCE1aLS2dHBGy66hMqaSvx+H52dnVgtDk7ftBG7y47d6UADXG4L52w+j/vvv5/KqiBBv4OGpnqufMc72LNrB7FYhFA4SF9vD+GaRiRRIhwMsvXF53G7K5i/oJVQyM9TTz7L9Tdezyf/8+NE41HWnbyGg4eP4nQ6Wb5qGcEKLyISdlHA6fOA3ZqDY2X3UeNMz+W1M2uizXeZv5vZfZuZdbz0npT/WyvQ5BXcz3TLXbGoaTqhkdlnvsjwhldfGqHZ0JxZ5quI5sDdHL1WScyabYqiSCqVJrNN5Bl5PbCKpoEmZNgglXxiVaOxYIYHyi+xGaYua+qWL5GrWxIFA2c4Uz8lNIEiLaCZcsFNzL53ZnNBUUDTTNAm70iQ7VO+12aWuBTbOHsq9BbQzWULmyhRqw6aj2PDMj5xzBtzQYlMUB5yjOzMRqAC+aA0hQLSQnAn6gBlxhrzdwsUSoNz5pU6aCtlXmt4LmPjE3R29uH3+xEENQcGNWPZbH2qBoIoFEThNM9l3fexnNGe0bdMpyJzxFLgZxZmUEbTxlw9JcwrC56H2UHFBO60MkAsVzx76KDOPK6SfoOG4DWFGujpGcqMb0wmf1+54C3meSxkfVCL3kd2XuSTvJtnXW52Gf6FzDcpGtY+U71G4UaedSSzIuXPaJpIZbgKVYAEKVwuB7GpOIgi3nAt+4+OsXfPIVKpFBUBL3YxiWB30du1D69TwGV1IRBAE6yoghOL1cvAZC8Xv+lsnnjsBTzuCEM9MeoqWnjhpbsQU1VUV1fTOzhILBVDttVgtYxC1I1TtvLr+2/m57e9yBlnLiUR7SKRhvqa+Wx5cRtf/Np/E3JVIUt2wM7Tz2xlwaIqFqxex/2/fYiVCxfy+S9/i9H+fp559mksTpHFTfNwSGFUl0DI4SCtiqiais8pYrc7SaUjOB1BrrjyStKT+9i7/yDLVq7hjp//jIfv30mwvpp5ixaTmHqeuFpFfa0HO6NY4wJWcZJgYyXHjsZZuTSEzWvn9a8/B5etHuQEcirGyHA3C5auwO6rIhGHeLyff7vp3znv4lM53NNLIi3gtlkYi4wyMjHAkqUL2LjxbB77y1/xejw47XZkycWuHYd55E9/YvVJKxEtKWRZQsWBwx3GH6qkb7Abi8XO4OAEdruHSGSSVHyYimo/9S3NOOQaBMmKxaPgr2qiv2cAv9eLr7aS7t4h7MTo7drP0nUbicWTdBw9SlVNNfVNNVT5ErS0NDNv3iJsgQCXve51WF125i9aicNbwzlnns0N11zNwY4jVDY1I+pBtwzmyGS/lUwapLzbhXlV1wwz1TijywVIgWyUydySVSzUMB7lTK4FQTD4zGUOSRTRNKMvnlBwqFluwngYSczWkXHBEzIRmwXDOmIoK5mFf68hmjPLfBXRnFnmHP0zkM68KoqSM3fI/M6YQakoOfMPRAEBMZMbT8uxNgX1mcOSm/VmYtasYjZmjRmTlJkBRwbc5eFk2QSuooCmFvd52v7ndkwz1Dvez78QoBaAOzPTXWrtPg4tSHGp0uZnuklqISM+O//Gcu/deF0tYXpb7qnpd+smjcagHjPRVDSGy+UEDf78l6c4+6zT0UihadM8z+lIZ2JypqiFWkiz2aSRSoUZLwJqMzZvAmPTlNNNPAvamAnEzTCPSoGt6QCYatCeGhqZtm1NVUumtzDXXfA7Z0Jd+rpukllOV19uTfpHpGbRh6tqKgICsiCSVlI8+8xzLFm6FC0RRxIVHvzD/Zyy4WRqmxbSuX8LycQ4g6MT1IYD2N1WFA1sdjduT5CUEmVyQiYdHeTQvlHuu/sXLFklceHFlxGLwfBIigXzV3Ko5zAOcZJf3HovTc21vOmNV/HAIw9y9tmXEo0cQpSPkk7U4/M2MDo+Tuu8Cnbt3ks8laKispqagIBg94DgZnwkjsdt4Z677ubsC84mVFfNvp3PMzwicM7rz2L4WB+IVjTBws9uu5W3XHoNv//DHVx7zU3cfvuPuea6SxgdTzM2Hqeu2o+W7MFbESAy7me8tx+nZRjRFUD0u/ndAy+xfpGNQEMrv7nzSa66/AKsLompyBSxiJ3RiU6sgsL4ZASPt5a//e0lxhM23nPDmxno7kd12GhobObuX/ycqy65mMeffZk1a5YiWwBBZmxoDF/Ag2yxMH/+Ml584Wn8fh/9/QP89Kd38NYr3kJNfQu797zMwsWtDA0O4Hb72Lt7L8PDoyxZuhCPXSBYEUZyOEmmJvn0f3yJ7o5Jbr7189hFCw/e/0cufvMlTKUUJvqOEvR7SIgOBEUlHkvS2zvIddfewP33/Aqrw093/yD33v9rLr14MzW1NXR3D+Jyhujs3I/PIbFj/8tc+a5rsFld0883g7lmsSWGZvp/el+0mVIjlFoL8uczHISegkA13SOUDKiSJ3WGb8/slKBqWqGZtaGsXMZa47VAc2aZryKa09zN0T8T6do8i8WStZ/PiPLyph9kAI6mFsjeisksodN/5SMqFkgYhWmg20wBFHJ1m3pjZop1jd0sAn8U97/0SMvVk9HmlAqsUmKDPI6gGeXMDKe9R28r+6tIN5EDA2pO6zF7cFdIuv+bsUSpQCvl5o2xr4qiIEkSqqpNa9KjapnyFoslZwbY3DwvIwvWygD8EvfnGXNDW2atmd5Pg9O+EcyIWXBVJBU3v2eDpksva4y6abxHMEuiS82XUg9HEEqbsWqFyct1Jk1/94qiIgjZsWTHlosuK5RgIXXfwXLmkqaomUZgZ2wfSmgBSlWoPzvyQqmCssJMvrnFa5JRI54LGlSq6WmuZSijs9DNwDPzSqSyugqrzUJPfz+RWJwFi5bgcHtIRCc5tH8PHp8Xl8+LmpDRVAWLYCE+GSedTJBKx7BY3Hh8FXz3Oz/k61/7DJORQyxY/BZUzc/YSAR/UGawZ5SuzikqqqoIhgP899d+yJvetp6mxjX09w7jc4Z54MEHqW5wU1Ej09k1SENDHY899kc2nbqe2OQYU2O9qAL465roPbqHDSet5q9P/YWFS9sJVdTSUFeP2+JiItKHRJJkdJxVK1cSDIR59pnHWLt8GQtaapCtKk63nyNdvbS3z0PUvIgWkZ07X+bw3hepXrySdFrDKUaosEGwphavr5rWeW18879/yopl8xgfiyFi4/kXH6dpXj2aIuK0WHnyTw9zzQ038J1vf5Ozzz2VQGUDgpKitaGW6955LYOjKgvmt+EPekgmYzz++DM0NzUxODBAc9N8mudVcdmlV3DbrT/j4x/7JC89/wIL2hbgcNvZtWs7CxYsJZmI88STT3Lx6y8kFAyzd/cOnC4PksXO+JjGhvWrOXlVOzIKL+/cxZIly9j+/HaClUFk2UIkGmd4ZIxn/vYEExMR5jW3UVPVwG0/uxVBhG9+58u8/R3nU1NXT0VFAC2t8tlPf463XfM2YrEY4XCQxsZqNNFeep3MWs8YI1OKglljpQMqMbu+qEXfV+a6rv0SEAuiT+e/Vd3UuSias6k+ScoIwNIZ6WnuuyruW2Zd0rRM7tKcDyuFa2B+zTGtC6Zh5ODrcQg/X400Z5b5KqI5cDdH/5SkaciyhEXOBN1QUTIJzkswd6VpeshX6sJM9R5PXjqgmNnMmuDNTkD/94wSXZUx4x3Hqys4oaiFZX+bNkxxeiA7q7qLwB0lwZ3xfnOLaSXDhOgmnTnmvUwluhVi3hpRALJ+oKgzjsVsxWgEeopaOn2ATjlmQgcuHP87zfVD74ypY0Xv/DjmQDm5Qcl5VE7LOBPDpGvzyjRW9l6zKWmJsscz23NlZykMyhUvYnqFgvoKE8IUXitRm6FcvpQkSQiiiDvgJxQKY7G7UDSZxMRR0nGFippGXJ4QofqFuIMhYgmF7v4xJItET28PTinACy8/wxWXX8rURD+TYx1Maj6cDg/j4xN0de4n4LFy76+e5IYPvh1ZjnPO5iUEfc28uO0xlCmRkSmVN172JvyV1VgdXlwOP889u4WTVq9mcnSUI919tNXYGRzsweLz4bPDxOgECxeuYHIyxeHD3VjlGJ/88Ac57/WXY5fAJqqogooiS9jtKkcP93LD9TfS3uzG4/bicLiYHB8mHFzEI3++n0Xt87BqEQSrhcqKWg4e2oXD6cXt8JGOpRgc3M/3vvULNpyyiMlInOe2bGHzuSsJ+GqpqW/F6fVy0qZ1KOkRmpra8fitJCbH6O/az12/+Bmf+MJXkSWB3z/wKzadvoFYLE46IXDjjTfy+/sf4PChTq666kouu+xyrrzyCnbv2cXqFYtZv3ETbleAtavX8ss772L9+vW0L2jjyOGD2KxO/viHB1i+YiUvbtvB9776DU4+aTH9wxGCzmoa2xfiC1cgiyIenxufP4AmWFDTaVw2P067k4MHDlBVHaZ90WJu+8nP+MbXvk5lRRBRUzh85BCy08lpZ27msUf/giQ5WLRwASTiyG5vaXCnz22hOF2ReS7mzdvFGaJklogWTHb+59bV8oIYMAiKRAHJCBRLCTUN9WhZHzujqWW+9WzL0/gc5/eI/zvgbs4s8xWmObPMOfq/RKqqkkqnM+HFC0zSdGn6iX8OZlNIM5kjhpWtp5w55t/Rp1wfjGaamlB0vtz9+eu6yVj2+nGYHeYbK80I5/uit136fNlqT8Ass1xkwpnegW6OqjMbxndrjLSpKOnsSS0XiQ2yUSzL+d0dx/M0RnArFelNnaEqc0Q2WZJQVBVNVaePDjcT4DGApZz0XC9SdIt+Tzb6qf7ss+Fhc5E/BUpq7HJjEQRS6XQulPhsTIB1dq/AdLWEGWtZE9OsFlEzm3Qapfem8ZejcmaauXpmWD/Mc3a68rNf5woFPPm0IZnzQ3197Nu/D5/HS0NjI4qWJDoxRcDnw2a1ERveTc9wD4JUQ9+eg/zizjv4yCc/ymRsgorqBUSjo0hCGp/HT0rpIxGVqa2fhyZH2LfzeSy2ZcTpImC38MidO3n9u87lG//9U278l+voH9iGy9KKz2vB7w0Rt2r8+he/4uo3v4lDhx4FqYJ57QuYiMig+XF5+7j1+3dx2psupr21CodcydBQJ+PDEbZt6eG2e77H3ffdQ/+xFwjXN/Grn9/LFZe9Dclux626UMUhjnYdYLDbwfKlKRTJxthYJePxDipCPpR0GNlux+kXSE+mcYREhrsTTIwMUdPQhMsaZfeeg8Q1F4uXLGTri09SH3SA001tOMxQX4Qj3UmWb1ib0Qalk6Co/OSWm3nrNdficPu5/74/sHHTBrq6jzCvpZ1PfepLfO2rX2F4eJTv/+BrvPemq5HHu7n6X/6Th//0DNGpCXqGJ5gY7WXF0hV0dwzg8NnwhX1E+pN8+itf4t8/8FH+/UPv5Ye3fBItUEcyGiPk8THaP8g119/I7bd/j77+bgZ6Rpi/ZBXRoSkCAZWI4iUcFBkdHMPjDROZUtCEBJWVLhxWO/v3drBo4zIsgp2UqqCQRsIUNbPALNM8J/PWBbq5ZMaHvjDapU6FgCuf9xEK18njTW9Sikrn6TNeL93HXH/0fpIx0ZQM5p6vxSiZOh2PWeYcuHuFaQ7czdH/JdJDm+sMY1pnvv8B4M4Yyny66zPR/3VwV9bRfaZq/w5wZ06RMFtwl2vbZIpjJlXTDGk6SoO76cJwl6PZgjudYVBNaM98b+5cVvNY7s2W25eNJouKquaBVuaifnPmp24aqvc1h4v0OWZ6B2XMMY3XjYCuIIl5GXNgvUxBvaV8FMv5/5nAnblvxmf4SoO7XHj5Muk+SpWdmaYHdxIaqVQaFYhGphBkkASRge4emhoa2X/wBSpDPl589jAurx9JFFm2dBE7tm2jb2gEr9/KmjXt7H15FwtXrERLWDhyoJOJsW6WL1/Oo49t4/WXbmZ0oB+LFqBzZCetLUsY6jtERXU7vT0HkOyT+N31RKYi+FxBvK4gO19+lKbmlRw5dACnw0VXRy8vbN3KG990PlXNS5iIduCQK5mKDiKkBURRRbBBRWgJE8Oj2B0Oujt34Pfb8FfMo+vQYT75ic/w1qveQX19HfPb/SQUgcrqFUwlh9n13NMc6TzMBRddQiImYLEkkOx+lKREwBdlYCBByOfmz39+mk1nvI6pWD+JdAwtMUUgXEkqGmV0ZIof3n4nn/zQe7nz7l9x3b/cwHhkEtlZiSDLWEQro90DLDt1A9teeAKbzcKO7S9z6sazOGvzOTz48B+wyrB/z15aF67kheefZsWSZj7z+a/w7x/9CBbZyfMv7GT5ssU4/Va+819f47Kr3004UI0an6SyysrLB3rxut2cffqZnH3GZm666QP0D3RRU1eLTXbwxssu4UffvZ1lKxr49e8e55T1q3jPje+jsbEBt8vFZ7/wBfp7j7Ln5d3s27Ofj33hk6QUERUNlXQ2sXnpOT0TuJspRYgRcGmaWnDduL7l0hn9XRqy2d5b+jubA3dz4O4VpzlwN0dzBKqqoChpNIRcYBOYWRs3HRk3rrSSykR0VLUiAFEugEIu554wfa6+cm2XyntXVK5McIby5cow14a/cznYyq3dM4C7fJuFNBPzmwlGpl8tZub1TV5VlVwp87vIQdhsfruZtE26+V8pzU7Ol8SgwcvltMuCiulzJ5WmmQCbecwl7xUyJptAaQBmGoO5i+XCfBdEpiyTA7L8/DC/MxOwMAG0GbVqZfpVULZEECBFVbOpVrLv1xRgRU81ARTm8dPNQY35/EzAEcrP33Jzr2gsswB5xiBApcpnAhBJRWtQMZV+h4KQiTQpFgVYUhgeGkJUQRIlLC4rRw/uRox7GFfSvOf6d/P5T3+ePz/8CDv3bueRR+9j797nqa4Ok9BcxCMpLGmNQ/v2MG9BI13H9iIIIlNRhZb6hYQbnSgxlf27/8b8hYuJJqZwekK8+9qv8YXPXUFDYwuiFKR/eD+V4SbikxPs2Po899z5c5atPJd57RVUVrQyqURZMn8dH/jA9cQiSb70hS8zPL6fttY2JuPDPP9kL0/8+U5aWkJ8/6dPcPfPv0VFqInIZIqlK5pRBIVYIo2iKaDZ8doljvXuwu8OEI1YQBrH5qjD4/IzNPwMg30K4ODI4W7q6+tpmleLYLVgk63YhBSxpMjwcISG5ir2vnyIptY2ZKeLSDLJ1HAUVVBx2S38/JYfct1NN3GsZy8HDuzhvPMvoOPwAKFgmHC4hm98/bssWHEyExMTnLKunZAnjcdTweDIBJV19XR0HKWuuoXxqWGiY8dIywGiU3EaG+pJJidwWP1YrVZGhkZ4+qmnmFdfSUPTPD7woX9j89ln09pcxfi4QHNrmKbaFu6//wHOveiN2GT49T13cPKm06gMVWC3yezasZ31p50GdjdpNEQ1hYZomo8aRp2+Rj7vnXk9MH7Dep5Hc2CSgrmoaVnrHCmr9SsdEOrEQJ55Z5jpqzaMUcsEbNGtPnRwV/4bfO3QXECVVxHN+dzN0RxlFnhJkpCkbHBwQSh0qTmhOjOLdYGTtGYw5dDyWrTMFlesFdAbLx3cZIa2NePGWaZcib+mKyeKMiVzvxUEdJhhw5wluNO0wvDSRia+VBtagf9GCaAsiKiqgpgNRZ/pQ+G7yHdRnNbXLl+u/FiM/dVBnSAImfazzMaJCA3yWtOZp4SqqQXmozlWQ8j0SxLFjLarXPjtbCNa9qbc083OaXPzBRpMfd6bOll+fpSD84V9MQdqEbJ3TvsoTPeWceQjpWSiWOYAr7Gd3JGvTw9eUzAPsiAvE2DmBDTQM8y9mQMzlTJRM1HWp2/mAA7lQXxmVhSmRlFUFYfDidVqAwTSmoDH60TAznBvN0898TiXvPnN2JxOnnrmGe6++y7e+MY3Y7f48XrtBP1uBoZ6sLns2O01TE7uwyZ5cHsbiY70cvjYMapqWnH7bPR1ddHbk2bJqtW87uILGRnsR5JlhnpH2fLsUzTVhFFSVhyuCiprW1i2tAmbs5Gx/j5sPonKyjrOPGMdr7/4Ihr2NLYAACAASURBVK695t8IB62sXraYuBJn0eIFrF5xCsc6Y3z84x8iHG7l4OG9OFwi73/f5zj/gs3s2r4XuyOKxxqib2KC6tp2JIsVQZ7CJlgYHOvEKlkY6u3HapGoa2zDalNx26ZwhRuRRYEdW7YwMX4MX7CJq6+9ifPOPp2UkMLjdTM5FsFjd/HLn9zHs08/xbnnn8XKtUsYGRzC73cyNhrB5w7zvhvfz9vedjlPPvlXzjnzbBKJEdrbW3E5JaYmh0koEk6bm/HhbtwOhZTiYnIqgctmwSpJ/PTWH9Ha0sJA/zCVFQHGxofxBTx4/A60+DCaCouXLiehJQl77CxftZFQlZ/h3h6sNpFv3nIrleFq/HY785e0MzI8TmfnYYZHemipaUZ0e1BQkTUNTdS1atmgPYI+d8gG8RHL7kkFgqPsMZNgTF/7BEFEUZTc2luu3tmT+Z7SdeTS2BRtlwYLA177gVR0mguo8iqiOXA3R3MERgZFFEVEUUKSJDQyvnmiZEEQJDQtA3D0hNrT1pgzL8vUL2BitLLmb7lwhwXMJ5n20DKuR7MEdmo2fIKiKFmGPq95LKWDOV5wh6bmxp5hXDOHoqZzkcrK7lHZwrN1Gi+OUKgDMhDEfPrmfN+E/K5vDkqh/9b/zt1TBiHNAOwKI7EVao5KOupj0PKRAVVms8fcNJjp0FQkcXawUBIFUyTFbP+zufHMQLvo3RjeWcH4Tc/BrMEsKJu9ro83o1US0CPY5Q8zlRAgGI/s+9ZfoappWdyW18IV9D0LYgFUxMy3nf0yRCFrsi2IiNncmAX1GMZmBKwlxSfGcobnYQ7mVFbmr+UjVQJoooAm5A9BVYvBqnGuZ5+tfmiqUgTwjGXNYiVVVdEjdgoF7yd/ZHooIqBgnJ06kyrJMrJVxmq1IEhWZIdMdV0db7j0TVRUhwlXB/j1vffw3vd8GItsJxo7Rio2gcvtJhJLYPcE6Nq9lYbKZnbuOMB9v3mQyHiCga5tVNZ4CNS2s2/PIcZG44SCNqyigCYJXHnlO7nm3TcwpUkEfRWMR/ro7+1j/+5OPO5qujrH+fCnPsZNV78Vq0NmdHwEizDO29/xFlauXkQiPYWaEhiNO7BZLFQ3gL+6nsnxOE1hG09v3c3HP/Je7N4KfF4HgwP7CQZcpEUnAX8Au+winbAxGRlh6/N7UNUUi5YuYTw6wbNPb2H9hjOR3VE6O48g2x3EUl5a6pYzMrWPS17/Ln7y889z8to2vvuNW9mw9nR6h7azYcMprF2xjOef306wYRFiMsqv7vstp51+Bk6vm6nRYdasXk9lqJEvfuUbnH/RuXicoCpJ/P4a/OFaRIuNZ57bRn3jAp55+lkqAhU4vTagm6VLVxIMN+PyViA7PPh8Gr3du/F5a+jpmCLYECRc3USVN0SotpnBoQESUxrPPrudpKLRWN1Kb/8hKhpthEPVjA9EWLRkMTXN1bzw4kEamqsyghPRipjVSGcCg2UOQZAye6wgA0I2MmWh+WXBGpYVWmpZQZ2a/VYLogSjC9LyQqvM+lR4/fgBVem1Sk+QrteXT4Vj3m50oZ5QUJseEfS1TnPg7lVEc+BujuZoerJZrSiqiqoHyhDE4wJ3prO5v3T2qaQ5WXYD0EOSz57ErHmHcfsoD+KOG9yVOSNKwgyqE4qAxAmToGWZAbFAC1e6ydKauRmb+Hu6V2Z8RnCgGsCmrgETRRFdHzI9aUXAsHxfTL/F0gzNjCayZi2pSXs6U643IDdWXds281Murx3O12gsnQVcWYZKlIqj6+Wl5ab5KxROkVJmo6W0kgLFZpdm0lNETOdjOq1m2jyGMg+6rEavAPiVudfUH718+TeUFxqVaRQVDUmQEEUJu82G0+nA4XRis9vweD28613X8ocHH+G73/o+V19zLeFKD1u37mR++0KsFjsOp5ue3n4SaZUHH/4zn/7yJ/DYavjYRz/BhRdsJui1sWTRUsZG++k9NsSCRSezetl6XnppN+s3bmZitB9BVPH7/HR2HMMRCPPlL3+Jb/zXZwiHK5CtdoaHRzL56OIRhoYHmZyIU1HRSMeRw+x8aRcVYR+hQA0f/NeP0FgbZNM5F7Dt+a309U/w0IN/4eSTNtLfozCZnCAeHWNkpBd/2EFak5i/aBmRaJz+oUFam1eSSlkZ7o8wOjGEzx4mHKihoTGIqvST0uKEwm0cPXCMNSdfQmVVA4cP7aW1voGYFEeWBNwuF1uefYqGljAbT91EUoFguJING05m976DfP3b3+bmH9+MpsRRtBSBQJDBgSE0QUaSJOa1NLNj+w4k2UpjUyOimGYskqK6pgWrJOJ2iAxNDLNv50HqquYhyvC3J5+jp7+DFctPZu+eXdisMqPDQ9xzz71sWH8KX//6N2hb2MCC9oXUVy9j69ZtRGP9iJJINGrj5Z1bWbpiGaqYEZhI+emRXbvJa6qzc05VFZOgSCj4BHRBn/5NKapi2FummeOmb/AfobHLg8fZ1l2orSzXt9cqzYG7VxHNgbs5mqPypGskRDFjtikIYp7xMjN/2dw9gknyaCiR/V/LarkyDJCuidCyRURRypiuZE8c35IvZBV/GpqQlwzm81uZNXjltCbF9ZaDhblfRuljqY3qHwXuDFqfAvOzUkVnsF08fqPIaXpl0tKYNV7TbeBG4CeKGWZG07IRIk24uZQ5ZDnKzFVIKQoWWTaYZRbnbTP3p+Cg8Pma7zO/B8Fwrkjrp98rSLmBGaPb6ZL4WUgLcuURBERBN4PMTjVNKxqv/nfuK9DHp6kF94qiiKLnJxTzGr+Csekmm3pPNS0PcnVfO01DlAql8uVm/7TaU2O5snhKy2nqzFrrPFjTsqkTzOtTZmR6UnbzuqFr5IrXETMAFnPvThdOaapKLsBFdn0TRRFNgpNOOomrr7mO0dEJrDYNVRNIp9IIwFgsyb59e6irq2XH7t2s3tDA4qUrufj80xgd3EtFdTNuT5DOjoM0NM7jQMceWlsbWL56KaORIT74/vdz9llnoSgpmlsasDi8LFu6iLbmOnpHx6isrGBocJBAqApVSFJfP490wkIiCbXVXoLBRuLpNB1HOrjm+hvYv3sbG848n+9987uctnkVGzdtRLQK1DcsRI3b2Lr1ZWrrGokmFJAkRMmG0+VmdGKckcEhLDaV1rYW0oziFBuxWgX2730Ku7UCSQ6TFsbYdOoafnDbHSxcXEds6hitLbV0du+jubmFyGQELRnB6hRxuD04nR4SiTSjw0PUNTSw+qQ1yBaZbdueo6G+mttv/Ql9PYO0zGvnSMd+XC43F194CQ6Hk0hklEDAjyQHcTmcWCSVQ/t3E66rxucMkowo2F0SDY1tzG9rYPeO/fT291Ff6SGZSBAMhrjlR7fynne/F4dTpaGuhXMuvJQdL22htaUCjzfAN799O29960Wk0ypury+zrunzRPe70/Q5I+bmlGCYa8Z1xwj2DHrtfA7LMt8Thm9d/3/mPUgocxTSzKbxmYtGEFjUkvDP4W8Hxwfu/jlGPEdzNEf/FCSJAlaLjCyJyBbLCSXlNpNIxtNAFCREYXYRNWeiZCqNMRrmiZKqKaizSKRtJFEQijQmr1bKMJr/mGf+jyJRlJCz/p9G08njq0PIHYIoYrVYCthwTdPKBjwpRaqmlQ2iUqoszDwPJAEQxZzkfiYSRHH67y2H6gx9UTNRShVFRVEyKR5yYMNwFI1BVQui1un3GZ9DzsTT0Hf1OJ6pXudrgVRt5rQamXIqaimrBjGTsVEF4qkECUVBlKxYnRZsbmheUIfd6cfu9FBZWcWzTz2N02XB5bRQW+XnYx++kYX1G4gkx1Bkmc9+6ge874OfIa5YaF+1jEg6Sjql8ugjf+bOX96N1xvgtp/+lJr6RqwOB5HYGN/71hfxB22IDh91rfWMj/fTWF+J3eVEUxw88MCTbNt5gMZ5jXjDDuYtW0Z9+1LWnXoKyXSS9RvXs2fvXj74oY/icoSYmkzjcPu5677fMTLayZq1SwhWhHH7fETGR/A4bEQjE4QDPhqbl7B46Qoki51kWuZNl7+LbbufZv7CRURSh/F4fGzb/hRXv/WDXHfN6cQnxvB52zhwpA9pcpKLz72AycgUldUhAvYQw13d7H5pCzYxwb++7/30dXbhtll4/LGHaWqpQ5IF2hcs4IwzzsTr8/HQQ39AkgVsNicf/8R/cOFF51FTU8utN38bLR0lEo3SO5RESVlxusHqniQeT+L0erDZbEyMjrFuwzoO7d1BIjpObU0lwYoQFissXbiOtJLkd7+9mTvuuI1773qUlqaF3HzzVxgd7sPhcCFqIJQJzvPPTBkXjzkYU4rmNHevMM1p7uZojo6PdJt/ASHrm5fxFQAxyziCIEhZGV1hvh3QZXd5TzythFRQl4DnAhcIRr2fgCAKaFpeomjWw2UCwxS2aZTEz5YKtZDF7RRIVtHQDEm3BUHIApRsy0I+AIbZ/8H4ZKbpjenQn6He7glsokbzSNN4ShfXSgKWosihglCguSoc9/Tj1DStIKCGrs3T54Dekq7V04+MaadROj7N89BmNic00vGYDZnLiVmNttmPMWNyrIGgzwXdb0X34TKMwazJEoTcyxIofF7G8sZnk28hE64/J1QpK6XXx1xGi2gU2wsSup+apuqBZIAS/rm50ZUAo6XmlqhltXX6/yYquKOcP2nOlzfvhycKWU2dQaNg9oPUA1/k2zKvAKLpgMJnmImaSfY5C4AsSshiXlOjadkk7FY73kAISbKTiCnExyK0tjbQMziEmvZj86W49NKPsHHleSxsXsKFl56OTUtw6GA/qujjI/92E/X155LUjtJzcJDly5agak7SiptArYv581bz0MOPsHBRG70DCerrKhnq72LHSy+DZuWMM04jFo0xMjjOka4uXnpuO7/42V2sWNWKL+wnqdgJBUOIlilEycvI5BgOt5/m+Y3U1QZJxjXS0QRehxVcAVJx8NqtjA9209vTi5RIMDQ0isPdyNvfcQGJxCRWix23qxmrPY7X6eJ1F74B2Svj9jqIRadoqFnCUO9h3n3Tu/CHWpE0mb0HDtDYVIfb4yQWmeLJJ3byhrdfhcOTRk73Ude0jKQyiT9QxXNb9vPEnx4mlrDTeaSb//rCfxBPjPHEXx5FS05gc3nx24J47X5+87tfsmjZybicdpKxCFPDI1Q0VvOVT38RvyeCw2qlfdUmHvrTX1l38mk4ZSeBKqgJVXLvvfcwf2E7nV0H2HzuqXj9VsYn+hkdjvL4X/7MyRvXE1XTyDm/bDH77RtTIaiGryNj3WIMkaUnI9fXVd0XT1+bCu8u/S2VIuOaLObSn+Rbzc/pPIli3s+49JpeaCKeP1TTNzZdpNrXHs2ZZb6KaA7czdEc/f0kiiKynGFiMuu8YDB/KgXuZg+0cgArx0hmNyTDvccB12Zd8kTu1mFvprCW9R/SN8ssrC0DkE60bzrrLZwAuCsXeXPa9rJMcWEAHDM4F4r+zvVztiAp+79qNC8UxUyQlCyyKzSfNICwWYDI/y0fDzNYLUe6H6HRf08PxIJgNA0s0QamV2Aam/me4x/79GorVRNy0yDj15g1w9LUsn6OpaikiexM98yqZr1+o6mmMQjObOfkbFYAc5tC4bqQK6kW+BRrgoAkijhtdmpqaohMTRKsClFVXcO2l3ahJZKsXrOUlnYXnoooda2r0RD44x8e5vChQ/zrhz4Akh27LcXRw0cYGeolXKGgKimOHD6CDTebTzuTutpaRkYGsUngC4QI1c6juilE70AvgZAP2S4hpkN4fHauescbsTtc9Bw+TE2tH0EW2LlzjL/9+REsosT//OgWFrfPJxgMoKaT/PhH32H1SUvwhDxIQoq0Okm4wktK9GC1WTnacQSPy47V4sYf9GC3W5kYTyAIkEgm+d3vHiIecTA8NExltZ2BoX0EfLVU1VczOjpOx5G9rF67lu7uHjq7jlJXX8mqFesQLBJqEtQpiCQm6T8W5a5f3MsFrzuDM047FYfTzZo1y9i16wUWt67m1v/5OZ5gNevWn0QoGOazn/00b337lYQDHlQlTiKRIFxVR1KNctqmzRzt7GBsAsbGE8xrmsfNt3yXjetX4/Z6OHqwi1Wr1tA4r4Wwrw67zYMkObHIbmx2mZ/c/hMuvuQSBIsF0WCGnYU2hrmlmeaHaIqGKZg+68Lf5pl3PNYjBf6uWh4imk07c23lygkzrOnFoK+Umfo/C82Bu1cRzYG7OZqjfwzpjFLGFCPjo6dpapZpzefw0SNa5qTlRX5wpnp1mWQe22Xuz1ZRKiR5kQYC470UtH58VFhfQT8FSCZSyLJcVNbYVsGmKxilpCe6yQkFrZh7O5227Hgd2XNlc5x8sfZlJqA3U59m0YnCn5T3b5uOyvmqYKhPLAAA/1gyz0WdSRKy/+e0b+Y+GgBtUURMslFHNZMUXxQKfBhLjVoxCh2M7zanJSz/DHRwrbeNPh4DA2r0wyw174wMpvHdzMYYtlS5kuITg+Ykwxzr2kaTnx75MRSuIzMIDFBN64qRZS9cozLP2nA123ZaVVDQ8FVWYLW5URRwOe20LKijvXEezz2zjbXrziOtTZFIaSxZtJCakIc//P4xzrtoGU8/sZ2F80P0dgkMDAzR1LCGfXuO4vWFkC1WHvvLE3iCPmTJzkN/fJylK9eQjAioio1EVOAD7/s4TrfEokVtbNnyInt2dbByaRN7Xt6L31eNw+Fh8cLFqEqKxe3zWL54Acg29u3dzqmnbmRqMs4PvvlLmhpb8QQaSBPEG3Jh9fioqq7C73Xg9vmxWRwIqsreA11Eo2kqKuo4af1JeB0DOB1gk32IahXBxhZGR3u45Ts/4IKLLuTwwb0snL8EiJBWhxmf2I/XkYBUnAMHDtHSXM9DD/yR8zafCaTw+D30D4wyMtLPgvZ6du7eyjtveAdOvwuvr4KDB1+mb6CDM889l8mJAewOJ3t3H8DjtaFGhwhVNeMK+BA0OxarTG/vMU477RSiUxG8vgBNjZU4XRbiShpNHUeUk/QPdjI62o0s2hFEkeWr1yBZLXnNs5AXyOU0uCXmQmaumqMlZ1JumAWnJcQKBUKfjCCvUPun11dwl3EtUdUyZvuGXa2soLLkykoG4OXLzYG7OXpFaA7czdEcvXKkO1JnmFYxayJW5CpO6Y0gWwcZtsrsl6SbuwkFZiSlaRq2dFbjmM1dqqoiW6QiBlAw/ZXXlumn/l5wV75XRtDwj6QTAoT/qD7lQt/n2WjNdG06IAIUBAgpRca8S6/E85uubf280ZyzZB/L+ErmzFbFYs3mdK0XmHKVMbMqT0JBKaM5oyAUAu+CBOolNLzmv2dD5djLonPTRNQsdb0YME7fr2yIqDLlBFPZQusD/VlkIuRrKFqmP+mkymOPPExV43ISk4dpaErx0s77SI+lqK5rQJas7N+zh9aWBUTSHZy88jxGRw8iu5wsWraaQGWQ2lYJn6+JwZERFixeiDMYxu8NUVdVTTo1RWyqh6GhLg7u38U733k5S1ZVU1PVxq/ufJS1a9fy4stP0tywlrvu+D2Ll1iwOOv5wIfeR21tBa1tTVisDhLxCIJq421XXM9/fPR9iLYkzoALyWZjuO8wNk+AhKKRSMTwemX6uwfxerwk0yJut5e0omCzW3j8gadYtGApigZuv5spVULQojTXzgfBg0AUj8vH2Fg/wUob8YgTK3Yqgs3EolbS6XHWntTK3r27WbvyNMYmIoSr6rnm6qsJ+LxsvuDNRKPw+nMu5aprrqSiwsfGU05iciqO5HRisThprq9jqPcAQjzO8FCULS88zcaT1xJX4sTjMToOH0VJiSxbuYixoS6mEpN4fF6+8sXvMX/eUqqrGqiqbCQSGWdh+yKq6upIQw7ciYJupGtIWZ7TzGszfgs54YfhmnmuSkXffGYO5j/xrDlnieUy7xZRXhh0IlQs1Pm/C+6E2Thaz9GJUzIRn3vAczRH/4ukqhnpnaZpKNnADQIaiqohiBlpJhTKvEE34yQjZS9DRTFUTCf0OvO6wsLfryyVZphn26fi8//7m6LeonnR1ANjlPJjU03dFE03z6R1069n8rBl69RKJPA13z8NyDMCQ5idduhEyZjEfTakgzbFFIBBVPX3X6INVc2NVc2Wy6Uz0JlGTctdM/tn6s/SPAfzdHzBIIzBR3LvydCPzE+TX6Y+ljJ1CuTzZx0PFbCSJkBsXkvM18tRufv08xlt6fR1ZXLkGcmciy/zf1pNI2hw7MB+/H4bTpuD8ZFJ1m28gMcff4BjPYdZv24dI6O9xKcmSEWTRMbiaI44NXXNiKIfu0vmlm/dxW9/+0dOOXUtr3/D2UiSSHVVDaGKCsbHx3A4ZMbHhhkZiVDpd2D1hvCFqti7+2VkNcnC5asZGB7CrkWxO22I7iZS8QRDnbsRHTJHOg7jslez/tRl/OiWu7n0DRfSM3CElkVNWGUf0akUI6OD1FSHGO4Z4/03/ivfuuW7HNi3jY/8+3/y2GOPIlrSJJIRrISYih6j48g+altO4utf/Cyf+cS/oUgJpiZGsNnsmRQ9WoqJiQQul5NELIEkWwhWNTI1PMCRzi7WrttE/8gwNtHB/sMdtC9dxv2/+R0//sEvePixXxNPRDm8eweLTt5EbOwIdluAru4O6urqiE+paIJGIpmksroaWbKgxNPcc++d/OmhF1i6soH3XH8jW55/ESWt4PF4+OhHP8R9v74bsHC4ow9FSbJy6QKkyiAOyUkyFTPNM+Mqb37/hcIQ4/dS6rr5fNEXq2HSFgu5YEozmVWqqBkBq2lulqfCr1nI7sN6kCZVVfl/7J13nBxnff/fz8xsr9erTr1asmRZsrFxw8Y2xRSD6aaaFlogoaQQICSUAD8gkJDQAoHEBmMILRQb27hiG9vqzerldLq6d3u3fWee3x9TdnZu94osgXH2o9dob2aeecrM88w83+fzLVJKNFV1pfrThz8QnPPL6eljadhAAw00gBVYWlFQVRVN1RCYcdsqzp+rYTjr4bPD9rhZz/PmfPL6Q2GudXoq1L2e18hZPTmeASgVncI5pn/y9fljeHQ0DN2JKVkLXg+ngmqh2vYSelpl1/P2OE+4vZU6eRvSETANo9pbqa4bjgppA9XwaT58Pj99K9cxnlNI5/1MZIPcfs+vKJYLtMXb+MI/fAFD5IiEFQ7t3cmapYuIx5dx0cUvoCSLHDhwikMnD/PVb/8LL33lS2hvWUhrUx8///lv2Ll9HxPpUdKZFNGmCAuX9DI8Pkq2MEW2kGbJki5Wrd1MuSh59KFHGUuX+OpX/5ltjz7Eja96Hb/49e+Ymipy8cUXs3LVUnL5Md5w00s4dGQnK5avYmy4zOF9+9n68O9pjSfJTEzS3JrgY5/8GzR/hlVrFvDwo79lIp3iOddcTySU5J//+Stks3mWLV9CPJjj7z76fohEaVt0Lqf6QfjLfPeW/yYeW0480UxmqkTPwkWk0iMcO7gFgywrzlnFYDpFKJHg+LFDrF6yggdvvweh+xgc7GcylaKU1/jezT9lz84TZCZ9GFKybMlKwsEEbW0d+PxR9JLg+MHjnDp+gtt//itWLO7hL9/7Fl7ygmt5z3vex3e+858EQiqbNq/jZz/+BuOpEVITRX55+wN0x1Tu/tXPMQydUnl+Xpe9qIRIOTPQ9fKc83Mcmz1JGIYxzaOuPhc3tE9DNNQyzzIaapkNNPDHg+0JUQgz9pOBAUbFo5a13lcl9Hm9Z1bB457LZRlglWfnWq0Saki9psrWbPaAM7Zt2rV1WKRptjzCOur1Yum1rauthjmfmrpXfWcywPd6vpwPvGzqdMKtdp61VqTdsZpsGBKEIpxg2Y63TiqqTo5Tixr2JTOxQfPykjnjydnz0PXq8APea2yVLrufOl7zXKqoTvu9eTjPz96E6+9K8rrhG8Tc2oAwQ0+41UFt1tLLzDnqYYritFu6xq6temajbtxAat/7mse97vtmO19vs8tQ1Ko6V5Xtibnnteubzo56+6ZdJ6vtSoFYIszg4BCdXd34hILUC8TjUS54xoVkpgroFNDCkNUnWNC9nKnxHBs2LaIltpwLLz6Pvr52fJqGikZ7ZzOr1iyloyNJc1sfkUgcgY8Tx4Zo72yjqbWDfbv3kh4d5qvfvpWJ8VGuufYq4m0dHNqZYfmydbzmtS9l5bo+ujo7OHjwAP3Hh4gnQ/h9EcqFPP/wj59l8aINpKeG2LhpM4FggCf276WptQU1EKQlnuDh321H1QShoMLLX3EDQyMD7Nl9mIsvPp/x1ASpgUEMoSKCfnyqSjRukC9kWbJ4LQ/9bgcLFy6lVApQLJdp62ghmWwiOzXF1FSGlrZ2CpNFdmx9jFOnhvjMZ77En7/n3Zy/cQ279mzlwkvWsWxRK8FknPYWP7t2byORiHP06AkSyTDDYxP85Mc/YlFfN8mIn1ish117H+NZV13FyOgQL37Jizl06ABTkxkmUpP0LNhIJNrE2OhRNm7oQtGDjIyO0rd6NSFf0Amr4wQsl4Yz3iTub567H9RSq54+DnTLyZW9qOWoSFv9UvW8N+amBm0yfbaOSZWaZi1rCEcArbybTFa+xvfN9Y54uqBhc/cUQkO4a6CBPy4kElUx7fFUi9Gzzxg1Ag5P8545J9hqISqyxlfJtHOoJdxN/2t+ZXo/avO7euYztQWi07ERU2YRcpyST+NDPJtwNy29lKiqxrT4a3Xs6ez2SvfKtstezjkPVtgOeVZs6mZzXDMb3LYwVQfs8x7hrhKmw3VfvGNiFnWrucKQci6mjBUB0wVFUbHDNcB04a5qMcYV+sH97KDaDnIuLflDTBntGIU1hUvXO0oIxVV/e8lnjsKdDelHEwFi/iZ+eOvtvP0Nr2fd+tWEEn6GxoeIRMdQ/SHaejcwMBrk4x94I9dc/XwOHnqI1ugaXvDCZ3PVFRcRDkQYHhvkUVMgXAAAIABJREFUdw/fw5IlXQyPHkdoBrnCGLrIEgxrJGId6FIlHAozMjDAS298A0G/pDkZxvAHmBg7xLq1y9i2Yzu9fYs5cWIfra0ttLUspKQX0MshDuzdw/oNF7L+vAuJNGnEk01M5XOMT6aIR+P4gwnSw5NkJ/0kkxGiScHYWD+9C7pZvWI927dvoyneyo9u/imP79hB38IuEgHIc4COtrUIIhRKWe6842EUJWZ6Z1bKDKemaEkkGeofAEPyk9t+QakwxfUvfyXZso89Ox/j6msvIZHwc2JgkHOWryIvQwRUhVhcAhqxWIxCaYpIrJmAX0Ux8oQD8MSRPFdc/Qx++as7WHveekqlcbY9vp233vRujh0d4uT4IF//t2/RnewgO5Hh3sd2k4jHWXXeOigYSNXVNzC/O5XFlNp2wHN9pyiiOhj49N5Vmxuva4fqqo13zFa9a2epl1u4UxXF+qZPX6R7OqARxLyBBhpowIJAseZAlXhRZvw8H4qimRyWIbEZPGno87aVMVkwU1hECmffgaSmKpx0+DPrwyjMldFp19ulSPO3wry5WZTqSESzkghODtVbpTQD0/eojsReET69ldB6Ak7F5XWd6+bg4l+V5qYJFeFSwfHm7Y6ZVPUs3EKdEC67MRNmGEFZYb1sIceVt2HtS0NHUB1c15wUqVUs6VzhvsbNeLnz8DJQXrjbXbWabkhUFBRDOvZ2wLT+b7fHabvTZpz7YAfhrmy2+qW9Va6ppSWlCMXy4KdiyFrTEmvsSuGEtbPvi1kF19gWXnvJyjlpVOpc8QiqgFSQ1iao7jtPRp3TUETV5oVQ1Kp3i3cfqm3r3Hl5bSbt8Vtpf3WMPMnMY1coeQwMlIjKPb+/g/u3PowWiHHs0HGSIYWQ1k5bMkyq/zj+0DE+/c+fY92F61m44AImxh9jxYo1SKGCWqZjYR/XXvdisnlBItbD2PAIoqzQnlyAJsNM5kcp6zla2trYfPkV+EWZlavW4I8kGB04Qd/Cczl47CjnbzqPn/3Pzzl33SbCiR4efvxhbnzZjWiawvI1K1m1ppfx4d3s2bqbgwePEvYH6G3rZPDEJKXJLK++8TWsPCeI4isRjfawcNlGQrE+DD8sXb0WNRzhZW94MS940TU8/vAjbNm2h6bYMzh+YAdhRWPl6iRvfNv1+P3HKesp7r1nB63RIKXCBJoapyUaZ8Om9Vz+7BeTnlL44he/RDQeoz0ZZODYYc4753zS+Qh6YYjcZBqNbu69+3EmxjI8+sgOZLHI4kULWLfxApJda7jq0gWoumBkcIybv/7fFLIab3nn+5nMZ/jrv3k3zQGVu379S2796bfp6ltCS9LHpgvWc++vf43hyzv9R1pK9mYfrx5PhmE4faHmYkY9TQe8Tsemx1KtdrBkl139DvbmKqV0eqmQAiGF9Xdlv+oKKV3pRFVsSt0l2J2u6vjTBQ3m7iyjwdw10MBTE4YhrSDgCk7cLOQ0RscSlRCKmMMsz16JrPZYKRRhXj+Hqb2k4gtwuroJzuRUCk8a4UpTq2bz/NZV+Lv6oRDmnJeXDbPj2Hkr5fFUWevaevWs6zjFy8jV83hpM231Vo3ddVKUqjSOaqCThzVpsdKZbvrnywbPjTWa61OpPZGrX6dawd6rVJ0EjkBcr1mVImuv0HthSHtSNjvrVMlasZI7imIzXuucrxLQK8/KVmVzO2Gphbncd1mHHXX2XXHx5rJfLz/3BN5hJD11Mdlz17ie1gABKJR1nRtuuB5FNYiE49x5x/3EIm3Ek3GO7JukubUJX6hIeeIUfp9CNB5EV3XWru7mnHMuItzShCwpSMoUCjmi8QDxRBt6WSMSThCKhimW88QiCTKZHPl8lkQiwsTEOBgqsVgrR48ewxcIoKgaz7joGWQyoCoafX29XP3ca5lIT9LWkeTwocP0LuiluSWBPxgBqRILRRkcOUVLezObNm9gYOQoy5ev5Mjho4RCPooTIyQTYSYmJ2jtWIDqh6Wr17BuwwYWLVtBNj3Kh9//IZoTcQJ+P5o/SCSQ5Obv/C9SJonEDHbtfILDBwb53cP3s3nzORx4Yoi3vvUt/Pben3D3bx/mimduYGT/78n54iSaumlKJti9dRfhaIyWtibGJ8bwa36am9qIhkMc2P8Eu3fu5dHHfs/KVevI5crce8cdLOpbjKEbfOoTH+GLn/k4A0OjfPQjH+dZz34m5TKsX7+ByXSG/YePcs7685yHaitg2k5Kqt7fUtZlqWeCYglqXo0EewiZo7ZavbOWtsF0b5bePljxgu0MT3endY3Laemq8n36CXcN5q6BBhpoYBa4V/Zs5wyqquLz+VBVzVwBtQUzSW3KoV7ezodUmEyerJ7YTWfmhHVUYuiGS6ByM3HOTM76wNkfb3OVtqKfaKafNhmfJ7yM3nxyqMeaVZoras7wazlOqeVgpbqe1uZJ59h3ecuy972UpmOLReW4+3pXeq8jlHo1tA38dd1kw+yV9Xosni1MOayUd5MVntfb/qp8XHWb6fnP5FhlWlopnYDvhqXaauetqkrVVsVyWisctgfS2fqilzmtBVs9WGIzEdIpxy5T1XymvZ2qVs5Z9TDslRdbODUqbKMtqHvvq/d5TXs29eo5EzPtYUlraQ0Arn7jtS+qXOeF7VjC8QIspfWGqdcfTIbQpymUSnlKokxnXzeBWAItFOVHP/4t27buIZU6hlIM0bXwXMZGp1DUIPHWLiYmc+QKaYySzvDQUTRhUCjmGRqdoKhPIvwSoRlkiyO0tLWSyWVpbmkhGAoxPJQiEIiSLxTZsW0b52/eTCAQp7W9i4GhAYRPIZ9LM5Yao7NvGQuXLGYqm2XF6hVMZrKk01mam5rJ53NkMlOcs+5czt90IavXnsvGTReiKH4GB4Yp5XR+fNvtTE1M0NUWIhnRCQRjZCZzHDnUz+DAMIYSQ9UWcsGllxAKL+HIwcNMTYzT1hri9W96Hh3dcS591sWcGjmB0LLEQhprVrbQ2uzjI3/9YT70528npYeZ6tpEMB7GFwxTKOToaA+D1PjUpz7BosU9LF6ylJ/+6GeMj43zta9+lbGxIXoWLOH6l76Cxx97jMnUGDv37OHk4AjnnX8Rd9/zEFOZKV7zmleybfsWJiZSHDi0l+07tvHCF70IabkNtp+x/SapLFSYR+s5grL7qr1NZ9lrq4VX279OP4fF+NUbB7WO206RzEUXS3hzFnBkjXROiWab/4+zdtAQ7hpooIEGpkEo5oTVp/pckYLOYnnWh1dVNBR1fq9laUhLrfTsopYA9WQhXELTmV5pdRiMWYRbr0rhHwL2ZN1UwZ0/zuRzmKvaodcZSk01Y5cKqKkeaF6jqAqqolStuldBVNQt3TCd2dQYD1UTUVdDXM5WpKGb563I54qqmPWwNiedLhFqpValcnlGD6ZPjsO28lDUWQX0Ga+vI+Q9GUhrIcqukaZpGBi8/Z1vZMmKBbzqVW/GFyxSLJ8iP+nnbX/xT/Qu2kA82kE00sqFl7yUXHkCUSrR0R4imxujq6eL3t4lJKILiQR72Lt7hEI+wEQqhaooHDt6xCouTLkI8VicVecsxZAGC5csYePGTbS0NVMWWZpbIzQ1N6P5QhSLBUKRMCOjo8QScd7wujdz5NgxovEAv73nl5TLKtt37GHv3oMoSoiSrtGU7GR4YJzrXvgm8jnJ+Ogx+g8+gp7XCftCUDJIRpKUfON84d8+y/b995PojlIqlIlHg6w/r5uR1OOoShvHDmd43Y3v5drnvIKd23aTyR/m2//5JXrbVzA6VSQU8hMYPUSxrFM2dBSlTH//DiLROJ//wucp6QXuvfcBZAmCvhAf+fDf0tyURNEC3HzLrXR39hANhXjJy17G+//6w+zad4JdewdYu2Y1t3zvFqbSadauW82ipV2kxgcJhXwYsnRG+4Miai8a1BfU5j4yZlv0mJbzHBaFzHwN1IZgB9CIc3e20Yhz10ADf/oQmPr8um6yL5WPnmW/4Jma1Y/nNf28mUO91VTzP6GYjhXcsdhsNqry0Tu7rxp7Rbj2SUm1ZxOLLTAMp+5Qrbbo3rcxW0y600G9smdTkfQKeorlMXPa6rRH+LCZNcXVT9x2VDOxZfWepPf4TM5VvKh84227OQUMHYS0VJrmFievKh6W9VzPNByhag5tq9f++dybetfPVJ7AZC4dQVdRpoUQce6VYXvzm6VMuwxvmacRF69WrD1hO52p8a6a7f0hpYFuSN7w8tfz0Y98kK6uGHv3bqOjeSGhhGCw/xgn9h8j0tzOeRdtZPeW7SxdugY1kmAkPcWi3k5kaZLjx06iKGE0JcDQZIqO1i5akglO9B8kEgmQbOokEExSNEog82hKACE0xlNpnnXFNdz/4J34AyqhkJ9SucRk6jjCUBBKHCNokJ8s4FeChAJhFF8BSZFtW3axqLOPXft3sXrtakQBlLAPf8BHMBRmYjKNWiyQyRXo6V0CWpCx4UGakqDKcY7vT5PXhmmPbWAk9Sgdrasw9HZy+SzFQD8HH/4xO/dMcumzr6ent5vv3/KfXHDhpSxcuIRcIUVHz3Iy2Qwd7W2kxif43X33sHbduezcuYdFCxayas1yjh4+xfFjw7zt7W/he7d8iWWrLmDvoa20+tsYONVPx+JzGRk4zLKeMMMpnalchta2Vkq6wfbHHyaeaOfya5+P7g+iiup3i8QAw/x+eEP31Itf5x7nphqv9Z7w9JL5jP7p7/WZR4T9rq20w66DlY/XDq9K31mgPg1VMqER566BBhpo4IxDURT8Ph+ai1lzO844GxBCnNX8zxiksALE13IE84fFbOvHFZux2qqhM8Gr7mOSQqff3vmuYJ9NzFoXrxprjWtOl9Vy8rFVjj2bzQBWHZ9j3vOtU72y3dDUykRZPwNx+54s5ioEzgdSGkhpoCgqDz74IO/5y5vQKZDLSxYtPJdoLAnE+OD7P8WyZZvp6+5i/559nHfuCsq6YODEcSKKgdCL7N3+KIl4iK6+Tko+hfUbziGejPHY41uQhqBYAr0smJqYgrLB4PAJCqUsExNpbrrprdx3/92UivDhv/0YR44cRS9lUaSPnTsPIbQQqpIk1txJIBZGi/k5cewkmkjyqU98hcykzkUXXYE/EOPXt99LLN6CXwtyaM9OtHyagD/OQP8pspkxsuljhOLNSDWG7o8Q7eignM1y6uTj9LR105oMIqJDPL79EZpb1rHpoj9j0wUXIhQDv9/ggk2rWbpoAdc85zoWrjofn79IczLK8MlRhOHn8sueS2okw2WXXkpzS4yH7/8JzU0Gq9b1sfWJbSxasprxkQx6Dr71nVtZtKSXcn6KbKZAJqfy9re/m0iwhXvufphCvkx//wkK+QyqT+JT9ZrvX0VRLXs5T58RSv3FuhqoF4P0bLzDDMNoqFY+STQcqpxlNByqNNDA0w+qqqKqqrnCKCUIU62p8jkSrp8asYWsTTrqJp6VSIxpjqtNQW8GFUPLW6bLvGhavqcDrw/NemnccwrHBYvwelibpSyPCqVp/nZ6TIzNSDn2cnOE7e1xmiOAWmXYx638bSHAfQz77xrC0UwqowLLzb/b5b2d9zzuR0UYUkCY3iRNNtVwzju/bkHNYuhcB5x7abOxs6m8Cs82ax1r5Kco6ryen5uBOFMMsJeTrurTSqWPK1Z/NxneiurkbHWpd38cl/ZWDLuKCrNCdXQ/M22teHeV9DarXDvWoPeQI9wqgu7eblqSXTQ1dZMazvH4Y/vpXeTHEAZXXnkR7e0BMsUiCxavZnhokJGJSWIhGO4/QKmcZcHic8gVJSg+YokkpVIWvSxpbm6htbmFYEIBFU6cOEw4pNPS2o2iqmSzGa5/yQvxB8HvC3LFFZfR0ZVEQ2PLo9tZf/75HB/op6u1Bb9PwVBMgcUoFtANjRXLl3P3nXey6aJNBMJB4tEkzS1JisUSza2tHDx4mHhbB0tXLsfn9xGJRBgcPEowEEWXZeLxTsYHC6w+t5u9O49jMMGPf/gIOx59hHUXLeHIsS28483/yIte9FruvP1ONp+3nq6ebi679Ao++YlP0t3ZxPhYnqA/BhTYsWMXS5ctZWx0DMOAYmmK22+/jwsuvJSjR49R1PNEA00Y5Swf/vtP8ppXvZyRoRHaWlvYvms7J471c9HFV/H1b36NDeevJRZtpr29m67eBeSlgSpUz5irsLLe+JXMItqZz7+yL13H7T5b7aCn0tfdjlWcfVeaal2E6bUw6+g6Ltx/uL+nspKLK81MMVX/lNFwqNJAAw00cBZRmYwJNE3Dp/mrVvNt2E4M6mK+xjYzwLG9c3l4+GOzaBIz9pu91RJw5ou5MjF2bL1pKoRnoA6nC2OOq9y2wxDD0DFcjlhOB46TFtOIxnHyUivdH8rm8E8J9rMAS9ie4VkYxny4kD8u5upoyRRUVeJNAYJRg2gznHfBIoYHdVqaF9Pc0sPk1BTBpgi+cJKCEaW7r51EQmPt6l4O79/GVDFEyQhysn+Q0VMDZLKTRKMRIuEIhWIZn6+diTFY3LeO9EgJvawhpCAS85Fs8VPSJ0hPjiJlgb1PbOU/vvYd1q87j2IpT9/STgqZIVSjiGoYCB1ampp4yfUvpLMrzjXPu4r01Bg6RZLNMXKZLOFQlC995Vss23Ax/kSErK6z+4lD5IoKJ45uIT+ZJj9V5K1vegff//7vGBhJEUv2MVXMceWzunnrG1+CnvHz4N3H+P6tt/DIow+wbt1yJicGuPuuu/jZD28joej41BBDA2PkMjly2TE6O5sYHR0CNJqau2nuWEkw3IEsq/z6J7+gqb2Ju+/+DdGQn5/874/5zZ0PcOzoUb705c/x2NZHOP/8dSxdtojx8VFK5Sl2bN2HMPyUigK9dHo9zxsCZ87XSVnTJu+PAXN99U9l5P1h0LC5O8to2Nw10MD/HQhAt7x8lXXdOVbB9Em12+ZOICnpOj5VrTpuGHpVvKtaqCzIWn94bPKm2z3M7dUknNXRmZgHr81h7XVDb8n17D7OFKRhzM5y1fkGGhJUVXHYK1vwqast5Jose5N4S7BZxWlqTkKr3qV68qQoqins1cnXztv8Q7FpJksFyxO70WvvaAhPxaeHqzAMWaUuNc2OcXplatrm1buF9e5TvZ46H3bOZBrODpvnHLPsLOvVd7aRN1vNvLHy1BrjzI63OZs692z2r95aSkBDsPOxLSRicXSK/O7+B7jhhucglALHjgwSjgtaEwtJjYyQD6gkRIqtWw5zwVXXMDUuOXJogIWL2ykbOsFQCH8kBIrCkb1HCQX9aH5INIUpFCXJRDPlko7P56NQzpLLpIlFIhh6icce3c2FF11GtphDaDpjJ0doaY1iSEkhrxMMRTBKsGHDJu67/1e0dbRQLBXYtWM/mzaeQyZvoAXCBFWDfG4c4QujBcKUMxn8Qbjvtw/xzEufweDgcbq6ehCApgomJ0bpP3qSaERy5aU3ctsPv8gXv/odvvilr5IeTbFnxzbWblhBKS8p5EbRJRilHL5AkGhHH11JhQcf2I4/0MzSFcu5/qVv4b/++6tEYwrjo0PEtChKOMI/fOLj3Piy57Ju3SWc7B/nrrt+w3OeeyVDw0cJxxfyzne+nU99/EO0dKxiy2NbuPaGy9BC7WC9q2zS1g6B4H0r1bK99MKOmVgLti3e/PqT63rnGutXVo8MOcNAENTSxDAveLqrcjZs7hpooIEG/gjQHepDoKkawUBgXoyLROCrwQDOBCdYgaNGZdkB/hEZKi9sVTbbbmOu7Nt8cDYWKh0VyFkEAjug97QQEPbmOV5TsHuSmKvN3OmGxgCq7E1PB9Ns9GZhJMUMgp2V4ZOqz1MFf0jbSy9TM+f+ICVSwJJVK2nqaGNsbIyenl4e/f1WJlIZWto68PkjjKYH8EclLU0d+KVGZvRxyiWDXC6LbhQAQSgcZvDUIKJsIEplFi1pJ5sfo6e3A7/PTyQaIp/LmH1D+NA0U80vnR5D0eAZl2yirGfJZlL4NYkh0uRLEwT8Pu6+8240xU84EuJXt/+EfKFAsVDksYe3csGGi9i36yCxRByfJimXS0gkuq7z0Y98DKEq6AU/y5auRvP5aW1vBUVjKjtJOj2JJMTCvjXce/+DXHTxM5iYnOJ5lz2P3dv28d6/+BDdfQv5zKf+hcnsEQ4c2EVTTKe9LUIs6uPEEzsZGDhJZ1eSVau72bvrIb74iXdzYMf97Hj8UX7+s7sINkUxKPNXH/oQXX2r+MkvfsYDD/+W5rYkk9kcmhqgpyPGW1//Kh6670H0coHRkWHymSzC7YDEoKb3WfN5K/UXqObSfyzGzlS9VKYvEtVgAufTv2delBCO9oOdn6ooTiijBipoMHdnGQ3mroEGGrAZPSnL5sfP8HrdrMbpKXdN/6DaKJd1fD7Nk972TIhl/GczPvVswCreMuuxeQJp2iAZc2dTzHzmBjdTIzzXTfOC6bWZm41lqmRUfb1nv5bHTFch8yvLWzdUhJROsGqBPq2ds8G+R9Mmd94I2hZsQVOgmnZ4ThtkTeazliBwugzsbKlsy5sn8xGdqzfQuaIWA1iP83LsEj3H51pO1b6ionuYf8Wa0NcSkOu1eCYvo9Xp7OO2bWbFhq9YLpIbG0VFJT0+SldnEweP99PX14VuGGRTw5T9McYPbyESVmhadBmFYpnR4RThYBipGTQ3tRD0+dm7eze9K4P4tBgTIwrJeC8nhw+wYEGvNWlXMHQfpUIOBYNgMMhEMY1fCSHLJdKTI/QfS3PuhnPYtXMPa89ZTzozRCgUIpfLgSLQVB0/MD6S5q/+9pN88+avkc1P4Fc0Hrzvbi585hXoUiHi09B1nYA/Qmp8EIMcSiBMJKwgdD8Dx1P0di7mwOG7aI0t59TQdr7+r7fyzvf9JVBiy6MPcd6mi0g2SfbuepzOjij4YnzzG9/nrz/wIcZSWaJRP9/6j6/T17OI/Ogoq1YvA6Fy550P8MYPvJ1MapxHHtrCxZc/D78/wP/+4uf09ixi964nCEX8XHLBOahSZWQ0S0nRaUm2s2rjUookCIR8NZ+9yZ5X+sjpjIYKkyecPlEPbltrd3+zjxlY9ske5s70kmlMY/Yq19vpTW0EOz383xDu5sPcNRyqnGU0HKo00EADgMWqmbHNVFVDURTKumHp0NjqM/bXy7nK+l9ihkYX9WSXGgUa5sdYmDH7aiTAMIzKpM11vPLr3gAhTRf/sqqSVOJuiTrCoWeyUWNfYgdvlyiKVrU6W1OgqNVmzIlMvWC7NeG9ofWcsLhVLu003q1OfWs5DHELHBWBVYKohI6vh9mERjNv29uBx7DTI7Satn0SgemQx7lGaCBUs38KxUyoqFZWlsg1Sz3qChKogIK0tun9o/rXfbyK+avlsEdomEpJ9mZYDhcqAjQoCCmQjmOS+jBQqDwRYeYpKvm7z9VTVXOEO6W6vyhyehvdcAdrVxQFwzOpVi2HO4ahV/3aZZrje+YXhX3eevrOVi26upxrCAWhKBhljdTUBMeO7aY5oVIUflraujl6dJh0RhLRChhSJxDroVyaQpay5HJFWjr7GBvM4A+WKIssQyMlhN5OLBYjGGnixPDjLO5dx8T4OLqeRxFlFPIU8nmmskNk0gbRmJ8H7rufocFhli9bS1ePhl7OMjmZIj0xQmtnD3lD47rnXstVl15Kd0c3737XX/LK17yOBct76WxpYnJkFEMz6OpeQzjsJzs5iqIItGCSe27/KV1dPfjD7QTUCPlihvREDn+glYnxI4yfOERu/DB9CxfQtWId3/zmf3DBhRfxre99jrvu/A3nnXceiuajszmAP9zCs656CVdeeh3v/vP3cfD4d1m5eA3nbryEcy+/iszwLvaf2McLbnguoWiQqaFJYtE0L3nNP1HMTHLzLTeTz+bRS/Cft32bl95wJVt/+yglrcDA4DgtsRDZgk60vRW/Zmpj6wh0RaBKW/A33/XS1uYQivNadz93mykXiumASbqev9lXKn1GWmkVRUGXjsuUytitwQg770DFWiq0xq8zPhzHUaKifikrBTuvWWuk2e849U/Bo/QZwHwcqniXchtooIEGGvgDIeD3A1DWjer4ZzaTZpNR1kfzTKsBqIpSyfN06IXThC4NkNS1IywWC/g0rbYE67EDe9I4A3kprgny3Io8i65uXMyfVdjp5TNDIO+zjaebusvptsc9OTYMfZokOBeHFjXZ9ScFM8ex1AiJRAsDNDN4Uqe1L0xq5AStTX58gTbKhTGGB3M0t4fJpDMcHxiko7sPyAMlgqEIOmW6ujrAKIMoMDVRoKt1Een0ICMjQ/T29CAMH+P5LLFoE1k9Q0trF/0nDrFp8wX4/RoFfZJyrkS5DIsXrWTXzn2USyX6j5/kV7++nWz6OKmJQd77F3/O2Ogoba0dFAoGB544SvfiHjp62shmMzQ3dTI6PMX4yf3E4kny+QL7Dm1j6aKV6OQZHx/n2NEd/Py2H/OvX/4sBw7sI2NE+clt3yOXLbOgdyWf/9zXOHHoEMFAjL4Fqxk4+jBN7Qq7dz7GL3/zA3KlUdpbV1POJCgaw5RzcULJNq649hxi0SSZ7ABBX4g9R3V6ewKcPPQob3v9DbR3L+MHt/4vi9u7WNy7nMkVKQaKRc5dv4yu5iSLz1lHQfVTlAUEoAkBRvUXwxaA7P6guwQpG4a1cCMlII3pjLScvmAjMZlxxZXmTKGyINPAfPF/Q9xtoIEGGngKQ1PNGHqq6qu2h0E6Nghulsf86HkYGQ9mdajgrMtavINJGjn7Ne0kpKjpaXG+UIRqeh60y8Jy1Y85+dA0rWbLnPh0UHcWIb31k5UV4jmpSXqdbrjKNIzagmW9GFD2s7LLloZheu+kmoGar82VE7ag1jU2m+XaasWKc7e3SqPJybfG5nHJX/UspBkCwFsvaTEGdvuqno/HOMg+571fum5uEqrcnDtqXnawcCGJ86c9AAAgAElEQVQqeVqbfa+m2UO6VGdn2qZhJoOmOrC5D2kYNZ+ZlyOvwZnXhLvfSZejHaDuOPU+f7ud9cJRmAsRpiqeO3zGgkULyBYMfvA/d7B//wjlbJFiJks07GNqfIxSqczqczeSn0qTjIXp7ukl2dGJNHL0LGijXNaZmswQi4eIRIMcPbqXfD5NOa/h80NnVztCmHxyOJqkZAhUn49MMYei+VH9fkbHx8gXMuzbdxip+5jK6gwOp5mcSNHT0YoaCBBLJpmYTOMP+dm2Ywetrc0MDpyita2TSLiJUqEAUjA+PsXb3vIO9u7awer15xFPNrF29XL27tqBYgRpb21hzZpuPvqRv+e1N72LULKTHbsP8O63vp63/dmbeeMbb4KSYPWadfzXd29my2O7CCcX0Nm7mNVrlpLTJ5HCQJHdHDx8An9QI59NE4jG0SIt/PxndzA2MMC9992OlAk+95n38bLrr2X5ki7OP3cpSxe1cuNLb+D1r7oJf1jnZa95LSPDJ/jebbdQ0ksE/QHKxSIaAiFNPlwoqqURIdE9/UFBoHi0L3S97HwXZnvPGzarbC9AesdXjbFkxwWVEhShYBiyzmtcujwL2yxepZ62yOc+3kA1GsJdAw000MBTBIqqEAgE8Pk0M2aRop62MGXHFzpdPBnHG2cTTr3+QHUzDEtoOROw6u1WE3yyec0V05YCzsQ99AhyXrMXJzC5d98wqphBR8CosyChCHOThoFh2dC5BdWqcm01UnurB08d6jfxyTs7mXkZZnbUE/JOZ4zOtz11w7kISXNbE1dedQWJpgS+cCfpjEIqXSQ3OUFqYpKjxwfIZCYZPnWAXXu3o/n8DA+Nkc9PoCiCpqYWfH6FoC+CIqFcnGLn9q2oShApDSYzoxhkKUymCWmSWEQjIAo0t0XJ5jO0tHYSDCZJtjSTK+XxBX0845kX0pxMoBdz5HJFVNHOwoXnsnvPIVacswqp5InEfNz3wN34Az5UX5BwJERLa4xPffpvee41V3FqaJThkRE+/Y8fp6UlwCf/4dP4RJDcVIZvffc/+OKXPk8sZJAZ2M3wqe3k9VN84cufAJlhcGCYD3zg/axc2Usmr7B72y7+5wc/QahxksnFGHqYUEQBo5VkSCE9NsKp/lP8+Pu3kBvXWbwizC23foXbf/EzFq+7mHd88GOMDB9g3eoksWScgRMjNMUUtvzuUbo6W3nnX7ybU0ODnDh4jLAuCIWj6EJQUKarOtf6HthjSwhLHVNYz1xRZ/x+2NfN2n88i5X20bKLdTZji84hL1m9KGaO8afeN+qpgIZw10ADDTTwVIEEaZghEFRVQ1M1/D6/s1YpsGJtOXszfNg8tm8Vy6BZYu856Q3PJqvOujcvxzM77Otsm6uZy7Zzrvq7jmxiCwhuIdBrpzXjhNhOb9tF2ZMYL8M1Q15epqoihNSxQZnnJL1WAHHnb5tFsydMDnMozM0wf+36CMW0oZpd2DOczbH9muka6RaKlepNGCAMhJAgdUz7Pg2JimEI03AIywmE4nPfMDNr3Ey2iqL6kKimPZ0sYzqiMTfAscOsYvbA6oZm2XbdvPdVkRLFsikShtl+IaSTv4LhbO7n48QXdN0SBWGy44ZEGBJdUHMzb4GCoQgz/IGioqjmuFdcAqs7f2f8GXpNdU0DiYFEt7gcp65Y/U9Kh/FRqDB2umFYI89upT0qVfwaXP38y2lf2sHk+ASxeIBwrImh4TG6O7pYuLCXpqYoe/fvJSJi6GmF0dQkgWAX8WgzqcGTjB45RlmBnr71tPUsoq1rEf6IH5/M0tocQxcqyeZmUBR8WoJMYQxh6CRCcYKaj8zkBEv6YoT8KqnUKGhlUukJIokYEb+BX8lww4uv4cpnXczw4ACRUIhYU4xnXHYBsYQPRclTNsqUpWTxqqWUfVEKk1O0tjbzoX/4GNGWHnbu2kVB1wg3rSRTNmjp6EaRcbRgH22LrmHl4iUE/AoD6QH8sVa+/OWbiUYiNAX66exewyve8H7+/M3vZOfvD3LzLb9m1YaryRgqv3/wlzxw/xPIwkk+8/lPk+joIhTp5Ovf+CT3/upOirkU1z17M5NTRZYu28DRQ1t55Qsu4Ic/uIc3vO51aMUUfkVF0ft5+Pb7ObDz94xPjIPUCJcV60mbdqGKoni+AdY/S2MDQBWK9W4Aw7JVtUc9QlDGZQNqMX8Vy1Zz063NvgZhsuTuDURVP1YU4Xq7YJ0XVJz44Oh2WGSepRHxx1Mdf6qj4VDlLKPhUKWBBhp4slBV1QySLgT6aQaOPTPrm8Lz+2TzmetZMe1/GzaDwxwFpDPCmHnymlE4qyeEPUnULdu+F3ZVRfUzU1TFUp80qgRfIQSqqrnYNm89ZdVfc2lGhaGsnVdFvVQ4qqDC28VsFeR6QrAUVRUyBa+ZIKr/tPNz7ptneUK4BF8pnYnlnDBLunrxvMxquU9aCwXYQr313GUlvfva6kI8KrTgUm2z9qq6j1vwA2E5nZE1zgsEk1MZBgcGEBI6ezopFAp0tCzgrrvvpbWtHaEL4jGNu+98gG9+7Zu8/g0vY7KUJpcBn5ogktBQlCDpyQnCwQCp8XGQAr8/yMmTg8QSTRRLWQq5En4tgC8QYv++Pezbs48lS5dSKGSZnMjQ2d3LWGqUcDRALOA37fiMMlNTU7z8Fa9iaipHV1c3AhXNF6RYKJNOZ4jGmkAqnDo1TCQSZ2hoFAolIrEYqi+IkDoXbtrM3//9x3nR9dezbOkCgppBNjuKJM/jW7fQ3Rmnra0bLRjkxKEj3Hrr91m9ZjGIScLJOEePP8HVz7yeWFsH2dw44bBCczzC0WMplq1cTzASpG/hSrZv3cvwKZ2A1sFVz97MV778b7z7ve/llh/8lC/869eJ+sJc8+xncfHll2EIha4FbQz2l2lt8fHQvfdxxfOfiwyEkHYoHAXXwmCt96a741QGnrCHlGesCNfymnehylnGca33zKahUHl3e/twvWsq74LK/vS6PF0xH4cqDeaugQYaaOBPABLTjs7v8+H3+dBUtaJ1Zs3ypq/OuifkrqOCWdVuasHtM9C9OWVISalUfhKtrNTVrp/thdBui6qIqvZ52UJBtb2H2+6spu1dPds1F2wGrCJAWIKG5z7UY+Lq2XHNtj/tvljna01mpnuNdAm8UmKrKTpe82pcr+vlSt0VFRS1igF02ExFzEmNymY8q23yXGU6apHWU7TscVAslco5eMGrsAGVdkhMBxIz9m67jLoZV/qF443PcgDkvX/T4vfV6GtzUYW0VYAlYMiKraLJoJiTWlmjzxuWfaLfV2E568cQdItq9vW166MInHE3zX5USqQ0SMRjbNx4HvG2ZoZGJtFLOop/ko0XLCNXHkMNGuw/2M9znn8t6Yl+Dux8lNYmH4lYGCk1jg/0k89NEdQC5LN5enubaGlqQhd+Fi5ZgSiXkZQJBAIMD42gKRqtTVEuu/yZYBQpFzO0dCxkLJUin5kkqKiU9TJSSnyBIK982asZHR1jYjzN57/4ZUpFSWYyT0dHL5mpIkcOHWN0ZIy2tg6kIYhFgqQnJvjef93K3h17iIR9LFrQw+bzN5FNZ4lqXfzTJ/6dUiFCsRjhpS+7nuGhFP39+xHlBOGQyqf/6aMsWLIEKdczNaFSKpygKA/yPz+9hY7uJnKT42iGxOfrYsmKJfT0ruUvPvgxFq7sJt7SzHe/dzMHTmzjzTe9mU994kv87Bf3oAailAoFysLg8a2/Jxr0kSkV+cD7Psgt//kdHnr4Hg4f6Ucv5lBkmRLSJKktrQvDYmDtzR7XzjGnf5pj0Az34dYQqH7nTetVrneeaZpsXTNTh3ctlNivKbN8z3uhqpyG2DIXNO5SAw000MCfIBRVtdQ2bbZFzss+z4y1d4brJATl8pMX7hCSsl6qeWq2NtqrxbZdlld10CuAOWqJdWBI6oSSOPOYq3rmfOy3vHZvCGXGlW5HILFs0hTVUgmszL6AudnbzAr38xF2UORayeZvW1bWTYbbDD+iVials9niTaubcuZsLs8ShDAn69lcbs7X2JP6OdtOzbLwEIrHSKWmiEWjZLJlWtv7CIVaOXp4jA2XXE3HoiV855b/QlU1fv3DXzB4bDvR6CTxSJTRwVP4fH5SIynGRk4wOjLASGoYoRjopTRG2cdnPvNZtAAcPLSbYMhHKBIil50gFNBAUbjl+zcTCoYx8ipaOMHwZJ7JvMGP/ucn7Nqxh1gswfve+z4MSiiaJJefpLevE0SJpuYYhw/vx5BFgkGDRMzHTTfdSHd3B9FoiG9+42uUCgXe9c53E0/ovPWtr+Ub3/428aY2tj92kAP7htD8gmCwhaAW5Jvf+AaHDvaT6IrwyU9+Hr9sA13hTTdeR1vSTzQa4e3v/AsOH97FgYMPcHj/QRZ3L6GjczUrVi+lZ1EX998/wD998euEIu2cs3INf/OB97L5gpUcGdjHVdc8i53bt/L4g4/wohdcyMtvfBkPbj3Fx/76Y4ipDEqxSMQXmFM3r/f8FSGYw3pEXQhM1U5v0PHqNJbar4tctlXGn5yVagMNtcyzjIZaZgMNNHC2YK+jaqqGqmioqhnTSDfMIK/2CqqiaCD16WxblW26FTNLWvHmFB+KUKwPvPdjW21lV2HWJD6fSj32EGFOuhUPA1JZ5a3EyxNV8f8EQtFMcsd1zL2GbMbfk+6irLxllcCg65bnNsu7oOmxzcNhioq6j7BnPnbeLkHDOyeqt6rtxWzqnHPNpwr2vfTE+auwjNazkIbJ9ArVVZLAiWnnsHS2fRnVz9BTlqdhdTarCAG42IDK5j4H9rqz4+jBeur281WqGASzXXbEOTe7asJiK4WKREFVrHylbuZrCZSO2iGuMhyVUFdfFhruOHc448Oj5oZpe2TbLUmnvpW6GbphW/qZ55QK0yoUxYmDp9h2UbLyt5BgKBZrKQRCVVBUtWLbZP+z9is+Bi02EhxPprZXSmk9Q5M5lM4+XhU+KsyAEKYmgN+n0t7ZSjpfID2RJjWVJxiOUcgb3P6Lm5lMZWhv6WEqm2LNRecxOjIAUpKaMog1xUmNpZgYn2BR32pCYQWfoZMIhzh26Dix1h5u+9FtPO/aKyiX0iSal1IsFSmXFAK+FqSis3HjBTQ1d3D3ffcxdirPoqWL8QXC6Lkc8USMYCxIJBlCFkqUSgUCgRClcoC29mZUVWFqKkNLSxf5XImSrhCKxRCqTv+BEzS1N/OC619MamyC5StXEo8LwhE/3/3eD3nty6+grS3MwJEM7c2S3ftH+fKXvsqbXvcaioUSz7xwMdnJER589DA/v2s7y5evpL25mcsuu5qHt29n7Tnn0dzkZ9XSBezfe4yAX6FvwWIKU2HUQInOnoU8sesJ9m3bxd2Pb2XJghU0tXSz6eKrWLWojZI/y67Ht/Km65/NeDpF/+EhNl94OcKvWe9y8z2qCMXz/rf7QzU/ZkjD1I4Qdkqrv1hjzl4006WbSa50Dt0wnI4unDEhnDFrSMNRK9YNaQmR9negMrbdkB4VCSHN/qwq0+2Yn86Yj1qmeLJeoBqYGcVCvnGDG2iggT84BFAslUz1RsMxca8L2/5HSmlONhWfo85j4swYr7vdTEjDQHHF2hNOmmoIcNpRL609Sa0qS0pLSAE71IJAVMIWWI5HzD8r7bPV8AxpCQIuIcZdTr1phbtOtTAbC1UvePtM3+t6aevn4RXMrH1ncuZx2y8EhiFRlGqB1FF9tdLMBbO2H1P4dxgFWd/OdNa+IyyPs05wb70qvSnkVlQTvee9+dl1qxyo9BshqlOXPc9LddJV+k8+XyAQDJh1cAo1hTthVKt0Cs/E16hBudiqrl7B22t7pbjGtqIodUd35VmZ6noV4bAiWpv5mvdNVVWEIcmXCyiKQv/BIwSCKolIC8ePHSYYLJCItzM2fIrm5la0cBOGEsAoF5lMj9HT08HWXfvo7uqktTlJIZ9jIj+FUVLp6e7g0MG9dPb2cPjQboxSgUWLl2HIBMVCkXA4RqFYJhQuMJYao6W1m3JeoVgqEvKrZDMZDD3PeDrFwiVLESKK1FV0I4OqgWGohIMhMlMZMpkpkskm+vuPMTY+wpq1G8hkSxSnsgS1Mrf+4MfkdB8vff4z0Y0yy5adx9Gje7jj9nt5zjWXYehpDBHhG1/9f7znXW8nHFtAuuDnfe96I+vPWc5zn38Dew4cJxwyuPqqTUyMDvOB9/4rb3/H64gndaTM8diWfdxz//288+1vQi3lUGJdlKcm+d3vHuKqa57Hkf3b+f6Pb+eZm9dw1UXL6Vi8jjtu38JYHm56z7solgvgee5OP/HsG86iBthCnZTVwp0bur0oYDsOclQyq3O2BTnb06W9YOIW7lw9DDGtpkyzTRXWAeWMqA/86cAfCM65wQ21zAYaaKCBpyEk4PP58KmKE/POscGp8VG02QDbUskw9GkqkEJR6zqBqAmrHLtcabEzdgwzhEvQYrqFhZvBkoZemUjUSuuaMLsZEtunm217UqW2qShoqu1dU0EIpUqws3/tOGu6blh2YbJmfb2YqzfN2reuxjOaxkpNz9Nta1jTxrAebC+S3pkZFUHBnky587RVW60TVQJhxUNlpT62gOL1KOku1qsqJmts9nHvtd59015w9qnOXNUTa8Kj6ukwjIqo2mr1B3/Aj+vCynMzpt/HuTxHRTFVaFUhLEawerrsMHoIxy5PVp33cPROn7LqYv0zDMN5P5iLLpYtlyGRGGiaDx2D9q4OwsF20lNF/MEwqi/EyWM7aG0LU2aK48ceIzMxQWp0mPbWJMcP76F3wVKi8QTFUonJ7CTlQhpNkTyxdz+9fUsxCkE6WxbS1bGYoBrBpxk0N8cJ+BUCGkxNFIiH28iPS9RAiImJNNFIguZEM2NjEyxY0MexY0eYyqRMhlTTUDVBuZwjPZ7m8JEn+M1v7uLVr34zvQsXsGLVSj7z2c+iaBrRaIw7fnUvn/rU59m4fjNSCfOr2+9jdCzHc6+7gYsvvphTQ8fw+X20NLVwwyvexF33bePSyy5jfOg4z3n25Xzwg3/Jrt27eO6zr+Hk8X6GhsYolHTe+8EXgjJGf/8Yt/z37SxefB5/++FPsXrNBppaW2ltjpBsa0Gi8NMf3cbGzZfwnOe+luGxEnfc8wC33nYbd/32Tm58/euZyhWqbCsd+2UPk++1o7aFMNv+ze5/td4j0zQeqIyhSp91r/0IR8CrsHbuPiem9b1ao9seTw3Uh/bHrkADDTTQQANnF5qqYqim7pmBNNU2Z7mmXC6jadqs6eYCQ+rYqkEAUlTU52Du1hVnytOkWadKqapacb5hSImu65aKK9PsrQwJSGn64/gDqwTZAvFTBY5g6hbwmM4wzmTTeLowajC1p5WPi70yf62FiNP0SguWvdJpXDdre6SkbLGn1hXTkpR1HVU11alL5ZLTjytlnJlnYd+vWu00FXoliqIRjgXoHzxGKjWKXwWfEeCJJw7Tu3Q9BV3Qt7CPQmkKv89HoZjFp4bQczke3bKN9etXkB45yaJFy/AFE7S2tzCVnSAUCJPL5DB0Sf/xAWLNMfyqykR6iubmVoYGc7QkkvSfGmRoYIhlK5czlctz5PBhWpu6yUyViUaSPPDgQ1x1xRWMpoaIxqL4tCjhaIiWtgQvfOELKRfCpAZHiMTDrFiylIBQOX5yH+vOXcd9997PDa98FR//2HtZumQBh/fvo6ezmaamGJoW5/cP7yca6WfxqnO45MqlbN60mb07d7F+7Up+/cuf87zrruM73/p3rr7mcgp5HX8gRktrElVEeO+f/xWve+2rWbayFzSNkdQwujRoivqJJlp44fUv4cieXTyy5TGWrV1OT++VKNk8kaYoj2+9lVK5jD8WrB0SwxHSnxzsvjptrHv6cK0+bczy/fHW0VlIqmQ6z9r+30NDLfMso6GW2UADDTwVYRjS8rKnOyqPimLaJ5n7pkMTRVExPJMEoaimwCaFSVgYZgytWfwT1oUdrH1uU2LFM7G3ZwLWErBVi3o5mXYf9QUDWwVU18uOGqIt4E2Lc2czop48pqnyncZ3th5T4179rirDJWjZ6WaCtClYJ5bUzI5wqlQxPUKmyTQZCEVxVG1t2EHH5yOMzXY/59PLZuoHAIZHzXKa2qYnn9n61oxMbp08bQ+oXjVLxVbLdKWDapbaC4k5ZrP5HKFgsBKT0Khcqziq2i42f1plq9XyvLCfcEUts54KskI6lWFqfJj0yHFUPUcpr6JGE6xYu5JHHridvq4ogcQq1EAbsjxILB5gx/ZdbNiwmVwujz8aYOsj99PVFqWtOYYS7OHUYIpIU4KyUaA92sLYxDiReITR1AhCBmluaqdsTDAxNoQ0VCbG85QKsGbdRg4deoL2zmZ0I0c01uLEEBwYGKClqRctWOLQ/ieIxpoIRUA1IrztLX/G97/336Qzo6giQjgUYjI7QiYLRnGEL3z2y7z6hnewYGWY+377KH//dx/jWVddwMYNzyQajVNmhBdc9zwe2bKbBQsWcGj7Y5x/8TOQ+Bg4MczyZWs4cewQW7ZvYcXyRfQs6GB0Mk92agqfv8DCha2URiX9qXGSrct53wc+wc7H7uCL/+8zJGMaJ44e4NRwiVe/7Z0k2poplQvmQoUhnXHp/hV1FPcc9UpAlwaqsONi1upp1axcPdin3Nrb01k5V84urYNaddPOwmLRnwLmo5bZEO7OMhrCXQMNNPBUh1vQM6Q0451Zwh2Kqd7lVtE808KdnWc9tsSeQEoMFNSawp2iKFadZv7wzybcuUMNuO38qmzL5twmxclzvpivcGejnq3d9HS2+q19/2apo8uJiqNSa12rqtWTR/dM0L6Xf+rCnXAxeqcr3LkdwrjrNlfhzrOcUfM+2H1WFxW1ZABhjS1b+JuvcGer+FVs9uy6zCzcFUtlouEwB/c9gSzkyKQm0I0Uo+kM527YgGqUKBSyaMEOHt2yi42b+ohGO0iNjhOwVCp37tvKutXLiIY1Bo4fJR7voLWjF82nUChnyGfLaFoQ1R+mUCjxvz//Ma+98Q1MZoZoaepgdHSMaCTK5OQk/lCI0ZER2trayOYyNDV3kEqNEQqFCAZDYAR4fOuDrN+wHgwVzacgpEYhN8XoyAk2XXQlOx7fyn333cPV11yBECo3f/eHvOrlL2NsZJAP/M1fceLoKX70gx8QSRQ4eniE7s6FFPVJ7r3vHp73/Bfxzne8i83r13H9K55Pc2sbQX+UD3/4o7zwumsJhcJ89z//ize/5a34oyGiwSjf+c5/cPWzLyUWb8Hv93HTG/+MT3/6nzl2eB+p9ARf+9rX+Mq//zvxaJjOpSvxRYIYegFF9eEExzH0eQl3uuVQRxHUFO7cmg7u62xUqW03hLszgvkIdw1vmWcZDW+ZDTTQwFMd5mq+MJ0hgDMBsCQhsOzRnK+zy1bKIc5OQ7CreL6kSnCSwlKPc6njCKCsG45NkQ3TIYvhePWcbSVZeM7Z9l817dmkpFAqOQHk3XGcbDsRd3LdiSEnHIFQSlmxeRSiaptWtzrH3eenoZ6d2ywQKKaarKhMwOas5uioZEEul8Pn89kztmkqU/Z9UizGSAilYm9YZ2I4TbDybIodo66G8FvFcokZ4nI5TantLXNaXVz32V0Xd9+ZSei22+l2iuLkY1/vvQ91JMV6bXLqCRV7VyynFdYYthly6Urv9j5qb/ZSTqWu1bZ73jZUjWUXVFUBYdDU3IJQ/BTygqKcwq8JDu7eyeGDB1m46nzGRse48IJzyWRS5Eohki1thCJRguEIY6kRTg6MsHTZGpIt3SiKoJAv4g8oFLITaIEQiWQruYJOsrmNtmSIfCGHT1MolFXiiTgjo8OEIiFK5RyJZJzx1DhtbW0YUuD3+wiGQpSKBVTNRzQaxOcPIkQAVfHxuc99kUueuRnNL7nmyucTjYVYd+5q8vkC42MDfOVfvsueffs5Z/0yrr7qOlNIJMff/f1HWLp0Jd/4xje57PKrePSxbSxfsoK1azbwb1//DqmJUc5dt5HBwWH6+hbRt6Abny/EJZc+i3/79//gqquvYeDEKM+64mpu/9Vv+P323XS0dNHT0caPbv02bW0LaW5r5k1veRcvfOnr+eDfvodgLIFhSHyqABTnSdneh51fz5Pyvje8ipM11SvtviNq9IsZ3kOVw/XOV97F7s0MbfN/J2i5Fw1vmU8hNJi7Bhpo4E8J9lq9YbF4EgNVqA6zdyZRb9VfClDEdCbPJBK8Xh4Na2ZeETigvqBSS6Cox7gIcFQ03apwVQJEjW/oTEGhYTqjV4vJqVN5KwNX3T22L7MydhYDa0ilalXd9vQ4n7J1XUcIpWIDVkO4g/o2aF4mynu8bhswndxoNeIPuu+hW5CqW0Ydb5lzrcv/b+/Ow+O4ywSPf39V1d1qtVr3YdmxfJI4ieMk5HYOQg4SIJNJgIElkOVZZjILc7PAAw8wwzHMMDxz7cywAw8Dwy4BJjCwy20SEhKcBIjj2InJYTvGjmVbtqxbarXUR9Vv/6iq7urq6pbkI4TO++ERTquru0pV1VK99b6/9xe1zoXUWmKhzN1Stskxyuer4U9x4W9nKPsY9X7aKOfm3GVC2xZevk4Gz+2q6BA3LcbGxxjaP0TcyfLMjkfQhubK295Ke5PBvmd3MTSa5YZb3ohpGszlMm7zDA3FoiYeT5LJ5ikUpkmYJuPjR+nsSGKZHWAohkdG6enrYWTweUCTTrcx59h0dvUQs5Lk5oskrCQKh917nmZg1Qpi8RTT09O0tbVTLOaJx90AUDsWxYLBxMQYuqDp7+/m2LEDbL7yJu6++3OsWNlPU6yJFb3LeHLXU4xP5GhOLaOzw6C3qxNlTLJt+wGuvvpKJiZHaWtv59DgMaZGhlm9ai2jsw7/5U2/zTe+fg8f/djHWbd+Dbt27uBf/9dnaO9sY3JijL/7x8/RkYNJxBEAAB3hSURBVG7lrrveztat97Ju/Xn87JHH2LTpHDRZBlafz+TUEJ2tvezYvpc3/rfXkdMWiVgcS9k4qnZbjajgLshrlVPz92mNj3qpMsJBex02o25i1c/c1WMYJkbkb5PGJ2WZLyES3AkhGkHRLpdlVgd59adJMAwr1HkztLyhQhGRQfBPfyj0i1yHQqMVaKf+RctCagUDpbUHyjbLl0D+c950Ad7T4SAv+P1gt7dg6WLUNofH03krc8usAq8JLlcVMPrlh47jlTwVo6/O6ql1RVdDcCxe5PMR33MC+zfqGBjh8l0VnpqgVmlvtKqpDcLrCwV79YLU8DKnKr8QXGfl+VdbOFAMX8ybeHOSlZ73/vXG2PqPS41TQjcRwkc06jdA5Q0Rt8zTUKDmNF/83OcYWN5Bd3sSZXXgaIN0Z5EzVlxGU2/ce71/E8TdVtt2iMcsbKOJ/NwMh/bu5pwz1+LEHMbGRmlNdaJ1E9rM4tgKMLGxiMcVdn6GI4P76FpxPqlkkszkKNnMFOneFpIqxuH9Q6w88ywMM8dcRjGZGaIwl2DFyn4yM9NYMYtDhwaZGxnmrE0XkM0W+MgHPsK/ffGfGJvRjIw8h5ru5Yt3/wvvef+7iTXHmZ+YJ5cv8P3v/YBkc5orb7iCs9etZst3f8gX7/4282MH+O3b3kJrRzcqDo/e+xB3vvPNmIkED9z/LDfcsJmZ7Azrz1qHlYiBkWVqxOH+LQ8xNv0UX/6P+/jFw9/n7n//Jq+64So2Xr65lO11y23Lv0UrO6YqyvdjoksfwzeLFpoIp9b5oNxozzuW3s0KFV3hHg76/G0ITsNgvExLMkHKMl9SpCxTCNEIDENhWaZXahj+U1//HpY7qXrw71Jo+WBdHOWOlEsJzJT/f+G5Grzs2mLfS+vydAk11xUa7+fXphkYFVf0yoguwyy9v3fxYntjHsNrDJcn1d6OyvfzaixDmaRy8xe3ZPEEuzouJSDU5WYO9Y5BKVReROCiwuWYVd0fl/oTLTRGc+H3C2+xX3661DGaCzEME9NY3JQIVSWeEZm3YLmmv61uGbFZ8VhHBPW1AtqKZQI3LZRyJ53WgG0WuODyV7L6zLOIpdrZvuNxVq/fwOTcFGesPhNlVd/kMJTCME0MZVAszrB/zzNMjh4nETM5evQQhlEgnU4yMzkOqkh2bgJNhpHjhzl+9BDd3T2YZjNTU5N0tLUQb0owOTlFIWtg27D8jGXs2Pk4yeYkbe09mFYRSJBMWsRicQxlYVpxnGKOY2NjjI9NcOkll/Gpv/40r371FRjA+z7wXj74wf9BKh0jlU7R2dHDv3zmM9x40030L1/B7HSOr9/zf7nt9js46xXn8vVv3cMll23mP7/5Lf70T/+QizZfxrqz19PR08Pa9evp64ujsbFtTTrdzsc+9A9cdPEAxVyBi155JYalsPMZrnv16znn/I0UHPdzrbzyS+04pQC58vircll5jWMWfrzQGVfzBodX6lDxvjU+4rXKNY3w77mXKSnLfAmRzJ0QohG5zTTcScAdp1AqYYRyZk8rvDvJ0fd1a5dyGaUxa9WldUu7zCiVTobG1NUrY6wThobePRzkVv6cwekWgtsQnl5hwSmbQtsetKQGKhoodfi0K15fvUpvP9XIGtYL8qIyj+EsYz1GqMmHDjQDcbc9uLLQsrp+WWX4p10ocxcu01yME83kqVBn2pO5jI2a4By8GxCB964qfa6xbkf5mTR3omn/TA9mdoL3F+pxbw5pb/ylwtTzoFNoYx6HJKYqVG211k7gvHE7u8Yti1/u2kUTDoZZJNXSzNNP72XDua8gFrNQBqQSTWitmM3mae3oZm4+R7Ho0JRKMTo6wRf++XP80Xv/DMMyyGUymE2a7Ayk2hStqRU8u3sHGzeezze/8R3OWDnAss4E6849l8xMjie37aS9Nck5G1YwPWUxPTfBj7ds4cabrqcp1UZufp5jR4c555yNTE5M8ZUv3c0b33IH8XgT2ZlJzCaLX/zsMa65ajPJpKazv5eR4WEKc/O0NKc5MnSEB7c+QirdzlvveDt/+Pt/wLv/4A5iOs3Fl5zD4WMjOPY0R4byXHDZhVjNCe/YeZ8zIzDmzs+GhX7nBrN49Zxo5i7qOf/Gk3+Slc8Z99yqCAyhlI18OWftQDJ3LymSuRNCNCJD+ROBKwzTvftf/hvtlW75zU+qLvgqLyFrhVd+2/alZUCq7zz7g/FLgV5EsBf1Dsowq8uWIn+O+uuuynqo6IxeWEWDFu1dkNXIgC18R9u/UvL+dWzwmr0Et6V8YVU/a7iU4C68zQsHorryWEX/JN6D+pm7ha+GTj5zV/2a0BoWmckLNpuJep+lCGfuAs/gX0QDpYYY5S8jclu1CpwTgTxQMLOz2KSKiVW6iFdKY5oGDjEcpXEwMVU4lHDTP/66iii0MijYis6ePtKxJn7+s0eZnZ3jyiuuRikbxzZIJTvJZ7LMzmbp7uthYmqM7MwMnZ1d5AtFWjs76GlLM7BuDYnmFpJmMypepK2th1gcLJWkt7+T6akZLjj/IpYt66ejLcHU7BxFW/O97/2AV7/6Un61dycrV15IQdlcftHl/M9/+mcuv/xaCsU51q1fTy5X4Lvf/z5vvu1WPvjnH+XeB37MLTdfS7q7j/bWDt72trfSkoqxfv06ZiamGR8+zn0/+A5Xv+pWxsanuOqqzex9fg9XXHEmM+M2kyMz7Hr6ATKzRQZW9TM6Ps/qs9YFOpoGj01lcGcExtn6+1apcpOoWsfwRDN3Uc8VtfaKC6p/L+pgKamqfP3LOWsHS8vcySTmQgghlqzyj7eBMsrjeLSh3PE8/txahp8F8rME4fnhwqPqyo8dp0jl5UE582YoFbigcf8tJcX8wMXLhmioyB7V/LmC3Q8dOyLbVPuedPCdK9rNQ0XgVGr17dS/H25W3an2xiA5lG5nB8c1BbfBcbyLuNI8du66lF9uZ8RK2+I+ERh/pRTBxjXuMpXb6gTGNlZtg7bxx/35+z24XHif+tmz8jigymySE3jeQKGVLjUFUTUydf5+sEPHqKqRRNWYuvqZvHrK52RoW0LTDvhzS9qhbTcCY92Wys/UlcYp1erqU1q+MhAI0lSPxTM0pXMINI6fXfXPZa0r4sGokl9/TJVNcE5FRdExQRVQKExVxKnKvldOT2GhKmsKOzq48Q1vZXp6hqyVpClmEssXiccT7B8ZZWDtGg4eOcYZAyuZLIyDaTCfn8dCs3xNP/n8HNnpMawmyOUcmjoLmEYMyIBO0ZLSjI8OYhmK5iaL5kQbx4fHmB4bwTLa6es7j0LhAO///ffxyb/9NG++8128611/zJe//Hfsee4pBlau5/KLLuV/f/n/MZ/L87GPf5CmJoOOdJGZODz22HamZ0YwnElSqSTNqfWcZxTYu+8FHn7kZ5y14UzsXI4fPfRzNp55JtfccDMj0xfTxAzFXCvnX7gGRwcycl7pbs3wXutyxq503LwMrI6uJFjwFoh2AllARblBU8R71SzPVl61gzu/KF7A6dg2pinhylK8vHOcQgghThnbcQMq0zSxTAvTtGrPo3Wa+BnFWk08ShlHpSouMrTjeGNUFEXbm8g9sPwp2TbDdL+8UlNlGHW/6nEcjePo0nY72p+r0H/sTg/h2Lb75T+vHbR2St/3H9u2+1XaF7r85URlz4LD3rwvfx1F28Fx3H+jAtjF7lP//cqPwUG7DT+8ffmbxHHs0o0G7dilLJlSJircGObXzFhg/7r9EBcq1ntxOFoTsyyakklyuXnmcoq8XeD5fb9k7dmvZGa2wIr+5QwfOkhzuo2pyUk62tOYsRimZTCbmaWlNY1pmLS2pzAtjV3MMTU5Ck6WmZlxYgkTq8liPj+NaWpisRgf+vBHmJnNcMedb0cDt9xyKz1nrOUtb7idVwwsZ3I8B9oim53g3E0ruP3Nt/LUU0+wfs1qDg4OcuTQCG2t7Xz1q//Bhz78UYZHp+hb1s+Tu3Zx7jmX8rV7vsTg4AG++53v8+Z3/C6rert47c03Mzh4kBX9XRTmMrwweJjmdDOG4QR3iNshNXJfRe9DQy2iPPw088fcGoaqCArdz/rLO2u3VDLm7jSTMXdCCOEGDhqwnSIKs2rsWtQk5g4a7WgMw/IKs6ozMyp0gakXcc8yuO6qMVje30THcS/gHCecGXJKUzWAUc4gQd2J2IHqMYmh7Ql3y9QVE8cbaEd5F0BQlUnzx6X4VZde5q1W585qTsXyGhNHO4FMV+X6lDJLbxruYRN+r8CLKhvLlBqouOtCVY4HLC0XyqYFZ0AoZWyd8Hngb0n9zB266G2rlzUItY8/kTF35dfW52fbjEDpXHjMnTtMsrKDZcU6vHOu1jQKPtM0eXz7E2zatIl4zMId9aYD56Aq74PANgXP74rPX50OqO5NkfIesLWDFShxXmicZ7XQGNVA9j4sXyiSm51jfPQQsbimq2u122GzOE++kCWe7GJ6YojWdBNGrI2jRw+yvH8lYFIoZJmZmadvWS8Tk2Ok0s3EHMVcrgCGSSye4OH77iWTV1x99aswtY1tmAwPDdLdZfHEz59n+eo+9u99jg0bzmNszOGnW+/nPe99N3v27sJq6iZlxYkZmmMjw7SkW1i2bDlTEzPMzefo7Wvnud27OXfjJn7x2B4u3LiWQrFIIpHg8e3bWLeyj+bWdnLZaZ57ZiezmTmcRD+33fEmTCsLTgxlmChvPKPbpEmX9tpS1J67MfwbuMYRC77EKWd3lTJwIl7rnzfgfxa9SgPvfxLcLW3MnWTuhBBCnFYaMEwD0zRIxOKYhhGZDQozDQvDdLu++Re5J8vPMNXiZ5WiArsw/3l/uxZafiHhjFZFJs9d0Wm/yLEdp6JFfi1KseTb/bZt17ywXwo/A+b+t1MV2C3FqczMnijHz4M5djm7a5iLzk4uptGE1poLL7yAWCxGVMFezQytYTI2NoYmqkx4cczT0Dk0ilKKRDxOsiVJZ/cyLKuFI/uf58jgC+RtjZXsYGJ6hq6uTkaGjmA7Dv3LlnFg/wvMzc5hOzYQZ3wsQzrdjS5a5OZsigWIxVLkCgajw3muvfYm5ufnSTSZGJZJX/8y9u/fz5VXXkmzamGgZy0/un8X99zzde76vXdx9PAoa1adTW9/N8mmOFsffJCBVauIxRWFYobmtIlpOZimRUdnB889t4cf3fdTHnroZ7zjHe9gNjvBZZefz0OPPE6haJPPjDJ24CkuOO9c3vA7b6JgF7GdfMQeWfo+9z9Pjnbv3bhzFAbe0cvmL+24LO28cYNSCeZOhmTuTjPJ3AkhRDS3dK9YkRUIdwwMUrgXso4TvPdbv6nJgk1Pqrcq9Dj6wiScdau3ploZvaj3qPd88P0j/3b7jWJCpYwAppfu8ksvF5/Rq1QRy4U6aFZnD/3H4S6i5XE3hmEsubgvKpsWvPPvvq/pb1bFtiw4xs7L5NUayxhevta2nAx/XX4wFQxeDcMoBWeVn4JQpi48HjScFV8g0xcspzaUwvazbt7RUqXxtNWdTbWhMLzmMG7GJrpRRymT56/T/zfcbTUUTBihPazxA/Tyz2DbNkNHj7GiJc0ze3aCVaC7q4eZyXGWrVhJvqho6+gjn5unaM9jmDA9mSVhmvQtX80Lh/bR3ZsmNwvpVCeHB4c4dmyMiy+/hM9/9gu86Y23YJo5rtp8DVu3Pki6tZnvfOfbXHftbWg1S2Z6km2PPsSGM6/iW9/9Gp/4q09wfHicXCGDYUJhXvPOu97Dt7/9Nf7zG19jzcA6mtpWsO2Re3nHnW9n/9AcB555gv4V3ezc+SQzMwWmRga5/Y63sGbtAHEUWsdoXztAoVgg4VjYZvkYGaiIc1WX+lGW5xCs/+nzj4UdqipYWGDssg58j+pumO7YOnfsX7gkE8B6mXfJ9Mkk5i8hEtwJIUS04OWYOz6rXAIG0cGSO14pODH2ix/cOf7ceYZRN7grTfjsNxapsWUnEtxFvcYfs+JoTbh5SdhCz9dUMRimMrgrPfZLWxcI7hztNU5Y4p39xQR35U00K7blNyG4CzMCQd6JBnfh8tXFBnfasTFNk2Jp//nRslOxXGk7HBtlui34/eDOL++tdc6diuDO387gT+xoDbkcv9z1BO3tzXR3d9Ha0cHo2CgJK0ZmJkNnVx9TU6MUi3l6+87g+NFRio5Nd18vs9kMTrFIKtmGY8OWLfdz/U3XgZPHsfMcOXyAQs7g7HM38OBPfsLIyHGWdSxnYFUH69au4MjwC/R3n8+R4UNs276DFcsHuOTSV7rj98wkgwcneP3rb2T79q08++yTLD9jIw//9AE2b76CN77pndxy89W84fbbGRsbZ/nyM3j0iV9w6YXXMXjgOV7Yv43/+t//hHhbK7btYGGijYWDO788spbw86cyuAuW/brvVVqUomNjKEOCuzokuHsJkeBOCCGWpmg72HaxKhPlXtiGLS64c7TtBRm1xwq5ooO7qPFylcNKNKZpRY6Nisoo1Vuu1l/wepN8n6o/NMFOltpxKgI2wy+nLXXYjN4WP5gtj7Hyx9LV2kpVmn+vcmPK4/Aql158+WutYKw8knDhYG2h91vqcfT5Qfhirtj8oC64D8u9KyOWr/OujpddA9CO25beKGU4K7fJP+/t0OeiXqYvHGjWEvVZjtob7q8AB3+P1vrZogMPjVOwyUxNUpyfoikdJ2ZZTE1laEm1MZvJkEjA4SOHaE620du3iszcNO2dfRTzMDl5iLb2bop5jWnEiCebODy4l/7+PuJmgt3P76Wnp4/Ojm5yuRxz0xMYZp6fP/ww6Y4UTqGL3fue5pZbf4uu9l5273mazo42tGNRsKEl1cIn//KjvO1tt5FK9tHVvwzDjPHT+35Ke1sTw8MjTE1PcetvvZbs/Dz/+Om/ZfXqM/jIxz9CrimBZcRwHPcGilahY+KGc6XHhqp9M8fvdFk19YvybyQsjqp4DxXxXGCsbWWRgVu5EQgA/ce/7rLplwoZcyeEEOI3jtsB0sHwxs4kEolS58uFukeGqdKX21TAUOZJpVQMVR5T55ZZ1r7cUd54qVr0Cba8N03rlAVxL4by3Gk140CPjtyf7gwMp6gjo3YgkAGqdYxU6Ot0Mk2LbHb+hF9fb55E/7xfKmORweZC5/ivm/ZuRmgFmDHQMZqakqRjkM9mODh4BCeeYn5ultlMht7eXrq6O2lJtTKXnWX0+AimlaC3rweFJjubYcuWH7J921P0LVvO07ueZfCFowysXk1TMsnIyDjDx0bpXN7J6OQU527azMUXXcfw0Wm2b99Fb98ydjyxky9+4d/Zu3cfH/7zv+DxHVs5euwIn/zk3/A3f/33GEqzZcu93HLb7cQtg23bfs7ZZ53HyPFRfvLg/XTELC7a1MrNr70YM95CQTsoL9sV/ID5xz5YzqvQdTN2wWlfoP65tbj9jzeGsfJ7klB6cUjm7jSTzJ0QQpw8BeQLhYrOfeHng0pldN7fONu2iccTS256EizLM73xflXLeOME/bntNJXz3AWXg+rxT2G11hW8H+7/d2mdRmW2zHgR/vLUK/n0JyGPCspLr4t6vT/HnmGAdjANw23wojWcQDARzsTVKrM0Fdi6OrNXKwsXVaYZfm0twXOzWLSJx9wOneFSyXBppRNYqwqFbmZgMnGto8o0K8fu1SrL9M/dcKbOpzBwtI3pJ2/9TDTlbMviufOhOdo/p715AnXl87UuU/3go2oa+8D8gQUM5mdnaUnEOfirfaxaN8Do8WHmZzM0JWJkZg6ycu35aKOFualRctlZBo8c4+zzNtGcamViZoqWVCvZbI5EPMmjD9zLpVdcgbLiTGcypHQze/c9ydp1q2lKNDM1p5mePEY6meDo2Bjf++a93PV7v8PBoXE6Uh3cc889LOvv5/986Ut8/K8+werVa8jl5unu6eDJXz7PzPQkV1x8IXYhR2dnmkOHh8jOzrJm7SraujrJ57MUZqaYT66mrz/l7Qjv5lX13i2X8Dp2ZEOcxZZv+3nTYMk3Ed/zs2zB8stgps7b3Ir59PwzrTRpuddqUzpkVpLMnRBCiIbhBzOxWIx4LLak15a6X1onNgmuJnCBf5LlQcEujwup1bGyVvdErXXdUryFLJSpOhWZrFJGzM8KhFJ6jvayt1qDdseX2bbtjjk7zVkiHbjYjNz2UKbqVOwPQykSicRJvovL1hrbu4j2r6NPx6VxoZCvGAMVzGgDkW3uF6K8Vh860JTnVHEcTSqVQhuKVevXUtR5WjtS9A8sw7CgtXsVZizF/Fye5w8M0t3fx9r1a4jHFOOjR7AMi+NHj2Lg8PzeZ3jNa2+iaDtMjo8RM0w++/nPcs7GCzg8NMLwyBi7n9nJ0NGDPPnLp1g10M2rrr2cdFsbT+54mve978947etew/XXXcMPfvg9psfS/OiH9xNvcoib7XzjK/dwaP8LdHe3s2JVN88f2MvI+AimmeTOt/8Rh4/NcnhwhJEjx0k4Szu6pcntTdO9+cKJZeY09cfsLbbbrji9JLgTQgjxkha+lIjFYiS8QC84NsgPxHTotY528xjhOcSClzZa66qSPBVa1rbtyFI0v8zSz8gF/ztoMRfc4W0Pv147duXE3l6mEKVwvMyHEbqzvpQyw1rLhfdrPaWLv1Bzhlrv4Zfd+jMrGArQGtt2vPm6Fl6n+xqn4rHSbsDgfwV/rvDP6eAGl6XzwAvmFtpvUQGhf3wWs88WyuJGiSqc9MspbcfxGplAIFniLmMYEUFq5cCn8LkbXlMsFqv4rqMrbzgo1BICPB3IMqpSB8dyzF87a1fxLuHjHBinmfC6xBqmhbIsTKOLQr4Nkx7S6dUoYhw7eBBjfpoVfd3M5U0SiRSZqQztqVYKc/P09fWQbklw1itWcXR0hO6eLmJmjNamJNe/5noOHz5OX98Ah4eGuOqKq1i1ci3LV67n/i0/5pprr+VT//Aprtp8CXd/9Uvs2PkYTc0xxiaOMZ55hg0bl1Ows3zla5/n+msuYXLsKNNT0+x44mlmMgXOOvsVXHjJhfzFx/6Snq4OcvkcBw8dYS6X9/a3Runo8yh4xrsl3crtNOzNfxfcZ2FRZZka//NZLrXWFa+Jfp1bNlo+VhA9jq48nFdL1u4kSXAnhBDiN45/UWGalhfoWaUL89nZbMWyJ5txe7EY4e6bukZrijpXvI7Wi5pD8HQ40XE62nHKzVtCk5w7tlM1Xu60qrXPf8P485S5nSoD4x9rjMXzb46EhTPC4Y6HQYsdr7cQN/Nzaj6zfvCoFTgKUEVs5rGNPJgFitl5etvSPPrAvejCHMpIkpuH5qY29u35FZmZDPt270EpB02RdGuaXD5PMZ/n4P6DpFtbeGjro7R1dLJhwzn85L6tHD86zr33PUwuU2ToyDH+5D1/zHxukr1793Dxxa/kmWd3MTU1wa23XcVNN95Gb/t57N59iK6OBHf97p3s3LmT3bsP8oH3f5QdO59kcnqcbU/8gvnpYyzv7+bG191E14reRf384ePt/k6pvW/Ln+Ho2xp+AOczAp95FVEaKn49ZMydEEIIIYQQQjQAydwJIYQQQgghRAOQ4E4IIYQQQgghGoAEd0IIIYQQQgjRACS4E0IIIYQQQogGIMGdEEIIIYQQQjQACe6EEEIIIYQQogFIcCeEEEIIIYQQDUCCOyGEEEIIIYRoABLcCSGEEEIIIUQDkOBOCCGEEEIIIRqABHdCCCGEEEII0QAkuBNCCCGEEEKIBiDBnRBCCCGEEEI0AAnuhBBCCCGEEKIBSHAnhBBCCCGEEA1AgjshhBBCCCGEaAAS3AkhhBBCCCFEA5DgTgghhBBCCCEagAR3QgghhBBCCNEAJLgTQgghhBBCiAYgwZ0QQgghhBBCNAAJ7oQQQgghhBCiAUhwJ4QQQgghhBANQII7IYQQQgghhGgAEtwJIYQQQgghRAOQ4E4IIYQQQgghGoAEd0IIIYQQQgjRACS4E0IIIYQQQogGIMGdEEIIIYQQQjQACe6EEEIIIYQQogFIcCeEEEIIIYQQDUCCOyGEEEIIIYRoABLcCSGEEEIIIUQDkOBOCCGEEEIIIRqABHdCCCGEEEII0QAkuBNCCCGEEEKIBiDBnRBCCCGEEEI0AAnuhBBCCCGEEKIBSHAnhBBCCCGEEA1AgjshhBBCCCGEaAAS3AkhhBBCCCFEA5DgTgghhBBCCCEagAR3QgghhBBCCNEA/j9Vq3MtmIsi1wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image = skimage.io.imread(image_list[1])\n", - "fig = plt.figure(figsize=(15,15))\n", - "plt.axis('off')\n", - "plt.imshow(image)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAKmCAYAAADuJmcoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXmQJNl93/d5L7Puvs/p6ek5dgd7LxaLxbUACIAiIZISqaBEybIiZJuyQ6ZlUzJtKkw5LNm0LEoKBkU5JNIOStRFmCRIkCJ4AAQoANzFsYvFtbvYe3Z2dnbn6ume6bu7rsz3/EdWVmVVZ1VldVef8/tMdHRPVubLV3m+7/tdylqLIAiCIAiCIAiCcLTRB90BQRAEQRAEQRAEYfeIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4Boi4EwRBEARBEARBOAaIuBMEQRAEQRAEQTgGiLgTBEEQBEEQBEE4BrgH3YGjRKVcsgfdB0EQhDuX4BGsMRhrMcbiKNV2baWDz6zp/Og2MU3oHT7tLck2NNbiGx9HO7iOEywzZmc7bWkXQHc4Lu23UzhKJf4OO0XR6Nte7yt6PLR2gj3WrgejfKy1WGtxtNO+EZvwWKqY7xKzrbG26/kJ+w2Ncxm3rJ9Ez0s/8BOe235aGeLuoH60H3dswmu32z47bRuHjTm31m7/FkqZrut0Q8ds0ukxVN+nAizBvaO23zuGyHqANcn6ppRPcPQUSon9qZV0JpvoJpUjJwiCIBxarDX1H2MaP8qC63R+hYXrHkYcxyGTSvPU00/h+T7Fcvlg+6M0WoFvD+fx2i3GWKwxTUJfKwetNCpmcCoIgnBUUdaKMSopYrkTBEHoP+FUpInMgYdGEBszLx61qoUz4OHseFJLUHQ2vZ+Wuyj9sEp1ssT1aqUzFhyl8K3ZE8vPYcQ0jXFUk6XXqoRCts+Wu4MkzmraD4ud0io41pHjHVqgouNMFbOs0xRNp/taobEYjLHompV+ryx3ndiN5S604nZ7Hu2V5S7ao0jL9WVaqyZLXus+AXTMETbsrG9iuetMUsuduGUKgiAIB0p9WBEZ8HnGA8CJ8xvqs/uYINwp7LUbbBxqFxMJHd0X665/8jwQhCgi7gRBEIQDxdRd5fz6Mrcm6uIsdyBudIKwE/Y6bi+W6G561JYdLdfGglI4Srd5TgjCnYm4ZfaAuGUKgiDsDM12dyxsYJ3rpzWhW7IORUM0aq2D+L0OlkClVdd12tG6/9Y2duseGTfwTbrsTsC0Gd84Me5evV6DvboBx1E/L3HG6QNw54xL5LET9+QwkZGfcHyplcIe0tjYfrh5JrlW4twym8fn2ye04lwkW0nuqrm9b9baba6RSfYZrBds1+tpjbZvrUVphRI7VB1xyxQEQRAODbaWqKMp/uagOiMIhwBdV3WHU9gIgnA0EXEnCIIg9JXQRaopM2Hsentjsev8WSOJhDW2q0UuyTpJaf2+/bKkxVmoui3bLytedJ+hxWwv476MtTU3vSBRRaz1Tqva+e8sqlotLt2SkcQuU0GeldjvHPYtcir6meQkKY3v2R/q933Sr1C7xw4iHnAn90SvVtsk60XXqV8W0eQ/9X7G97G9F15copRgsi2wrnWwJqpavYMdXIutt1bUOt3xtlPRP9VOd3/HI+JOEARB2DUmIuSCjGfCUWA/XTbDMgsH7R5qjd3XQlAHIVoEYTudBaJwfBBxJwiCIPSB6Mxz0sGsDDLuJPbDcpcEYy3OPnlClitlHMfB7VQkXRD2gdA1Xuo6Hn9E3AmCIAiJUDEFrq0NrHQtYffb1ouzEPUjKUVHYmpqte6777uM1Pvay+/XLllIh54R54IVno/WenDBZ92aVE1F4uOSuESJ1vYKcRwX3/Pqdcp2i1bN7n3x32+7r1fnemrb+xa/LNw2OtHhB/vqVLPLbr8n9oo4N9L672iuI2vQ2mlKshKu16nOZJS4ZCxxNdwaCUQi23b8Fv2jW+KhdrlutFKxoZKd7vVe5xPstmu2mZXVNYaHhtCOg/GqOGr7kL55n+H38muPxqiHRacjHtwvWkNcPhWjI6uFe6qtqFCgFSayq9BFM+qe2VgW0w/l1xJhqUg/JU61EyLuBEEQhBjisqft/IV6EFabUHgctBvg0WP/3LeqXoWUdg/cmrdXZDKZptjTo4JSGmtt03nZTb06of8MDQ5grAFf4Wi3a9BkI/OluM0fd0TcCYIgCHXC4VtcgH98UpRkxA3ed5p+Pq6NuLbiUt7vNUECFthrYdQ2WUjYDwLLYWO95nVbt42tIxaTbMI0m3d66nNcf7XSuy4JkYRWC02Y6KQXmoROwvOrrQKl+i5dtdZ1C3EvRL9DNPkMtEvg0ZleLY2NZCExbekggcZ+lOjqdO/EX6fRrDd2B5Zz6LXgX2g9NcbfVpIAArEW2puNtejIE7p+LmOsfzs5z9b6WOvEn+0OTVgsGEvc20OpoC/W2s5JVmxwTvpl3b8TEHEnCIIg1Kk7ltno7G74Uo17A8sL9zASDrp3NggVBKHfRJ+pcWJNEPqFiDtBEAShTiPrZdQdq7YkztRxAMWWhe5opTHW1AoRyzkShINGR5Lq7Id1UrhzUXKBJadSLsnBEgThSKOM1/M2SWt6tduu3xgLjlKJ3fmiffTj3DcTWB+TJtpIuu1u2AtrXLdkKHu9r712y4yzOSc577vfy3a2zYcckgmSuPu73eetRL9Cr+6use3tcQxmJ9fLrm6ZrW3FLNuNXS5pe8mutv5aCFWYJafL6bE22K9SgZCNulSGLphR46Vq+axpn8oHdM3aeTjulYMinckmOgBiuRMEQTjW2Jb/9R43dNw5iMLRB0NvMT+CkBS9gzgu4Q4nvr660AdE3AmCIBxrmtOc6zZvURsG5XeYoe40m74fojFs16k1H00G0YmkVoBO32E336nfJRE6WRg607CStSZw7Gat2Kk1L0zoEk0AE5eopVfanQ+/ljwmSbsWCypIOrPXGS3jjHMqmRGksX6vyUu6WN86ljHQuqnMRbf1+3389qqMiCKw+MeRNMlKP63M+2W5bqbXfdnmP3vYPPh6zRvElUIIv76OWPM6JlkROiLiThAE4ZhhIgOtwKUFZGpUsNZHKefYJlnxra3V5pNrXbgTaOQ23i9sLSvncS1dclwQcScIgnAE0XWLXCS1eS0KIzoJrFtMBp1eyjuZPW4MqJPtYzf0o92OEShKoSx4poqrU233HVoVVOSL92q5CNuIWhF2OnvfLoatVcQp5dALeyYCo/2t/e41Mii+9EX7mLHYmCVrqRnv9pDanu3262ensaxR4oqCq5jzlqS9pmNmtm/TqexIr/Gn3dZv9SToFg+YhLiSILthN1a3+r2ltj8Hwkya0bqifstnwed+y7Jkd5GKqUQexsjV/td2W2sVBtUUQxdX/7R1H3EtRmPu6p9bDSo431qH7zhFcNYj2UZFvnREjo4gCMIRJBR1TfEtYrDYFYEbmkKpZK/G/riiyUkTItRT0x5sNw4bh8lS1Oukx8G4Xgp3MiLuBEEQDj3bBxM2Jn5Jxg67w1Gail8NLJEq1XX9fsQZdrI2CXceoQCQpCTN7FXMmyAcR0TcCYIgHHLi3F7CAU6zM812a95eDxFbXTJ3Q90NK8if3b+Ge0BrjaOdjoPrOBFWXxYdeNbaUPUMAnb7+rvpa6f07D0evzg3zu0E7lG9EJdEpR/0I2lPXUgROU97lFglrr9JE5MkKjsSvectOE7379LJPTQp9TZiSiHsxn1ToXCUqrdxmARdGLsakvS+iVsv7tkeLmt2wYxzfdz/QuhBzcwEWVW2lfvo8FkrNrh26qc83KVk10yMiDtBEIRDSpitTsUWjjp+b7cw+6UxyerX9RvfGhR6V8IymmGwLh4k7Zuwj5TKRbKZLM4+Dv6j1/1+7lc4Xqim575Yr3eKiDtBEIR9Jpy9NlS3faYjOqA+Nxw7E14TfpEl4adKKay1wWxvgoFWv4vw7pSDnqXvx367W9OaLRL9YDdWsd7KKnReJ2r9izsO9c966+I+1x/c+d1gYu413cfxaawlLDQYR5bls7kdtZfU0ha3zLfBhIzWTq0cRfxRS5xQRbEvJSp6RSuFoX1iovj7qX2ZEc/atkcizlrXsW8x167d0TOtexZOYyxa17JmxqyuWs5+9DTGeXs0Cpu32WfvTgN3NCLuBEEQ9hnbUGsNjp8hTjhG7Ly2nnAn4GgHpVTNVbA2Ur8Dr5Wk94fcR8JeIuJOEARhX4iULKhPY0aToYi6Ew4vMhgVOmGtqWk5H+3ULFtyyQjCgSDiThAEYR+wTXWM6n9FVujeRuJaUrZWg81I7MtB0iqIQrdFP1K/qx/E1bnrtt5O2+i0bbft9tPddmfJQXanR8KkJruZqEnqrtuaDCVpW52OS1wtuW79qbtSaye6sGsfm5aFteyii+zuM4b2Y0LCNz5aNWpENtpsXC3JkhHFs9d3RNwx7NdEorVB0pP6Hjq4W+our6Jun7drX4hH3vyCIAj7go35EQThsGAk8c2BYIw5tMfe0W5TZswGR/f5rVD4xt/nWFZhP1FSSyU5lXJJDpYg3FFsn/9S9TTV0Rejt229JIkATMy7NWkChnBbay1KB4kHnLjU6gc4CDnutal2axkIs4MeVpKkeN9JKYw4C1Hc536YfCNy7ew0QUncvaaiNSL3aKC70zID3a6L1vZ2ch11KoXQqb2k6+2GJJbJpOy1S3FYGsFia/2OtwEntfDVz0cfso5aa1BKd7XWWbvzfcVZ3WxLcpfWBCu1hVhjUFq3TR6jrOqhgOvxt1elM9lEB0PcMgVBEHZA9GUUP0AVBEEQBEHYX0TcCYIgtCWucGwtFiU6Axs7GyvyThAEQRCE/UXEnSAIQlu2Z7UM3S2j1ro4l6tWV6fYpAIxmjBeJnZIglCLaFdNke2Hg15dMePcODst61ZXbXd0r/W0G6z1sUrti4vbTmk6pkq1LS6/V+cgaeIHpcNi8b0dv+ZjH/6/v+cg7v7vdD/vpzvkTtvox76V1lhjMLZR96z5Xm9ef1tyIq2bHqDBqbe7Sgy0U8KYPJXgmdEt+VBQR2/391HDHVPX/m/3OCNz47ubaHlV2/JxSx9Rtd9t1rPKotC12q2HMy7zMCLiThAEoQ2hdS5qpXPqb6Hoi+bgfP2N8XHcFL5XRccG/h8dnEiMyUELnYZgOdBuCPtEELdqJMnEPhEIuw4j/yPAYa79qJRGK42NpiA9fN0U9ghJqNIDklBFEI4iccIrUpagNrBQtaQo0dn/uIQOYRKG6CDQj3lrhnvtZLnr90CyU4KWficmSGKlSWqJ2yt2Whag27at7fQ6uIsmYHD6kDThoOiHxa6TZavXhEMqosRbrXjRtjqVLKgnczFePb1/0iQue5U8pRO7STyyF0lZ4tjJPR9XRqRXmtoITLN9obUv0f1Y6wO0ybCZrM2d2qfavemUUt3rfES/UvjOiEmyotT23oXrxSVWiUuCmqjsQVfirKRH91maFEmoIgiCkIAwq1d9wHeQnREEQdhn/DvASq31zmvR9UKvok4Q9gIRd4IgHHO2Tx0a49f/DmfvVQcXoaiHg+5kiWuy8HXvWdI4nMNCp9nzuNn5pNaxXmfz+2Hx69dAr5OFIYwnal0nGqNjrN0WP5R0nwddXmKnMZXttjN2d5bMpDF3nWKPQjc27Tg9u7F1skL2w3LfFHOnguPYa5xhHLsRddHvFZ6/1u/a7TqpW0tbYqoapQWSW//a3dfG9i8er58iUStds6olv3attfWYurbrhR4pOwkdVmHfgt+7KUHYHyvd9n7ondZEuUMQcScIwrEmPghbXgzC3hMn7PrD4Z8IiOeo9vsQYi3G7u6IHnRca0i7fhyFCS9h/+inUDzuiLgTBOFYEx9XHBV8MoAQ9oa9yL4I4Kj+FXjeT45qvw8jwaTB7iydh8UC3DFzpOSFEOrEBAYKsUhClR6QhCqCcJB0TowSrNFwt4wrWRC/VYCTMD150gQGezHrvFs3Tt/aPYmriaYzb17eOaFJ6+CylyQm7fuy28d0ckHWqSxAr7S6jDlK49v40gP7Rdx32av+xCX3sKHL9F6Vi0g4VtyNB1hckpUdf4eIr3f4p2WPj9Eu2cmzIRmq52dZt+u5H/du0rY6PsPi1q/97pTIq2upAxX+2v4utdG92rC9YL1ubpmhRc3WktYoFMbYfbK0qeBZYWrlMY45klBFEIQ7BlN/+2zPgnmcUNGXVx9ibfrBTmLGDiu6VnfO37PvcrRmnqODJbObwJtdEh0oH7CRSRAScVjunYNCKWoCT27Yg0DEnSAIRwIVZrWMLGvE020fKPvWkkoF9d8abbQEmUeJGWvHFh7vkBgh+lmnIuY7Fp67FHSOUn2f1ddK1eJ/ems36cx20nb74b4Vurp1o9Ose8ci3zooBB5NFBElXKZVcL0ctLtcVLBHz4dWCq01nu83fdaNTlbv2GWx57SPx6TLqQ4S3phd7XM3pQo6YVsSZRwma12UfsWd9sNFs9t1qpXCt6bJ1XXH++ySAGanLrFN75Fenw823HdjUayxq+a80EmTNm+nakXSGztSqrV/tXePbRya9oa21vY6Ediuj3BFmT1BxJ0gCEcC0yi+E1lqW37T8tnhHPDEsdMaWceV4xhr4/tVlHJwlD7y3y8UdoJwXAgS1MjzVzj6iNYVBOFoYA1Yg438BG6Y0Z9mjHd0BqBmB9Yv4WjhOClge8r3o8at5WWKxdJBd0MQ+ow8f4XjgVjuBEE4UMLEAFEXDmuq29eL27jum7Td9UnXXBBj3d+iMTxhHaXaalFXMKcPLlVJLXKhe07YZ1Vz4etlJvkgrH/9c4dsppNb5l6L4O0uYM1JVnaaaCSMvYk7P6FLaBC/2GuPe2enbmG+8cmkXFw3LNbcw/XZoeZW6O4ZPTax5aATHhtVi/XpVAfONHuNAaDRgQOZqWWjRDWvV6PXJCt9SXhij4ZVqfXail5j4cRGtEZbbKqslnssOI3RC8iiCGrqtdawa9ePndTK69U9PClhu74NfFKaLsUYH8PYJCu2+Xkfd53GoVSjtfBbbUuyohRK2W19az4HjVa6P0ZqqX9UfHh2uCxop7k9Zbe7oJqYeyh8vja7e96ZNiwRd4IgHAri69EJQhx7l5ikVdg1Bnd93c2Bo5tS3CUn7aSwWYvr9D58qA++DjqWsBPGgFYorbF3YCKMw0tcXHWQTTaucPpRQSkHrB/8rnOw38UCtIl5Cyc/+30LN8RbTEx7La5bsiklR8SdIAj7ho2Zf0z6uLYqGBxGB4atFpCdWKzCQUFj5jAyw95h4Bs3E99pdr5TIpa4PlkTb3XsSNj3DmMDVQtsbzfbHSXJOiHNKcXDv3Y+SOk8U753g5/W/frGQ+HEXqg9HxvVOaFKndp6nvFJJxBR3a6T2IHvDi0RFkvaTe1o2ySJaHq5TzoRWuw6WvBUYCVRSmGM37R+364xrbAtFvh+JFnptY3w63dKXtgfi5Xatm3ceW+azIuxVCXdv7HgKOr3THRfrfvtVrLAMz6uduoJVSpeBb3Daz05tmap6/w9w/dS3DupcQ3En1xjfLRuiMcgWYlCKV0/D9uSrETNbFErWsJbMZwXCeeQus+TdP7+oeDc3pGjKer3GhF3giDsI9FaOmGClMM1Gxd9eR6unu0vvjWBENF6B4WSj88LN5hRb3bL3CmJE6rU6tzdoR5F+4cFrMUewePs14XTAXekjsKpZZvs55Nzr9wi40g7LsbauutoGCN73GgIxYO1TEcF3x1Qom5fkcMpCMKBYK3taBk7KJoTtty5OErjRGax72T6Vaupl4QqSqs7oijvQWKtDazkR/JeP1zZgLVqqcPZJ8JEU1qp+s9eUfU9qtUqS0tLQFA6Jo697sdeE8b0Hfz717LT69gYizluvvJ9RB38yT06VMolOViCEDsn5G1bEueG4RAN5G52ZezuXpRk4NC5iPlexWXs1766JWWoH0tVix2LScgS1nHyre3LrH+nGfUwfi15jardx9JZ28iQ2hzH0n96HeB1PwZhAoodduiYEBaSjzsO/awbubtEKbEpLnra/26eEUkS4iRNIFJHNdZvFN6Ofqc4V7ju7nHNLtvJEvl0SobSus+u363urp4kOZPC86u4Tgo4mFqT4ZGPCxHoVNsufjy//fxpHb6fG+lSoklWWlZvWbT9Gm9OhtJMq3tmdFkcrfXzansIQmFjbq+4to5zQpV0JpvoghS3TEEQ+kpjNu0OH6EKLSSJkdiNIA4HKXsr6PYWuXeEw0zc/XkQc9697TNpIh8bFsSu/c9RTmycuNBMp2Qou2GvkrfcCYi4EwShRxovu3i3iGRP4r1I19+XdOMtGNvdkrLXmdo6WTdjv7NtbyUK3SydWqmIvSTsw27iZZJb/bqv80/+8S/ieYGVOenV99GpPBtln6JvWfUs82WPv/HALK/M3+aZ5TIfmy7wxfkNrLU8cP+9/OX/7EcTtpyMfiTf2Cs6WWF2WmoBgu/a7p7rlLyoH88UFdlxpzIKVtWuobhcNV2sir2eyySlN+KsdEmtY42OJRUy7S3s0fs1bv+9JiGKv/ebY2C7JX5K/lntuNWSqLQTdjstsRBFofCsT6VSJZfNxloVm+K/OyVUsaaeGGj7Z03/C/pbN1nH9zV0r+3krmya8uGE9992okl5g/7ZbZ91o9ektRLLJ26ZPSFumYJA0wAgvCGSPkacDrOg/XDLVJE2+jEY9o2How9+DqzTAL8py1kHN7Y4+nGM9r/mXHusMXzin/0LNJY3i1UGBgpsbGwC8PGZAR47O1dfV3VpsnWgFPeujBtM/ZOnX+YjH/kQH/veD2/7LOn3iMsIeyeJuyT0Q9zFuWVG46w6izsTI+50U3/a9Wm/xF3v7e7e1bSbuOuVJOKuX/tKSr/EXSNxi4s1DXfyuLOwc3EX15/ty5rcMjt8hdAts1ncdd2sSdzFuWrGbhP+7rB+N+F33OKWk7plirjrARF3gtAc09RYluyFdtTEXdWrktrzVNjd6SzuOg8s7hRx94/+4c/zsakC77/7dGNhh2CQvRJ3ALc31vlXL1xBKcU/+N//l/ryzc0tcvlc5x0j4i4JIu4OTtzFxdBFPxNxl4Bo7bbWgu2xq++juGu/2r6Ku7DF0ENIxJ2Iuz1BxJ1w3Ikb8KrawjC7ZdwLxI/Zzol5BMUKww4vrSi69lJpDjKv1abq4wC4366dSdw6d9bu9gHU7ufdt7ffjiSDmJ0Iv6ef+gZff/objJsqD0/kGSvkGcvlyGUy9XU+/9IbTA/l+Ny11fqyn3n8/m3Xb9y4Ju4aT7retnW6HIMweU1437y5eIvfurjI4ECBoeEhCgMFpqYm+cpXniKVSvHf/M3/kvGJsVrbwWBNxYlKW+uzCu69pFGG/bg+otddEnEXDsS11n0pYt7pO7QTUgqVOHmKiR4Q23693bDT50q35EW9b9t6NHc+EI7bf2iZUtGMuz0Kv+TPEBVktd3HMW0S0d20fsyyuCOe1Auxddukkxtx90JLQ7Vf24VcZ63U3l03aRvxtXC3b5DUVVPEndAVEXfC8SLmxRR+0sbXX8Rd7+yVuIv7zv0Vd9H/9TaIabSR7Pj9we99hhdfeoUPjmX54LlZlOsmEldNPVTbBVkn0dbN2LwbcWetxSqolCtkMxk2NzZwXZd0TaBevHmLd5yYrK8b7e8/ffoV/spf+VF+51OfBmCgUOB//rs/ua1vR0XcBevB2toqQ0NDbddPvP+YZSLuDk7cddrvvoo7Cyi1r5lmRdy12RDYqbhD1WL9QqcLrWPjWkXcdUbEXQ+IuBOOFzWLXDTAudcBdZgwI+al0qu4i2s3iu7xNXiY3dn2itijkeAZv5OBVpJtfvPXP8V9D9zPo48+VN/23/3qJ7i9tEypVALgf3jkDIO5/PZuq6Dv0QFLnJgyre5ZqPokhKkN7K0NSkIoFTjuWiwaRdX3yKTTVD0PBWilMdaAUoG4i7hMWYKBgm/8pn4Y38eiSDlObXypqHpVVpaWGRgaJOW6VEplPM9ncGig9j0cDAZVc1UK9wmBK+BasUgh5ZLN5TG+z8vXb/AHb6+Ahf/uv/8bTE9Oo1xNpVoBwI1kCA2v97iBZ5O7YG3AnXTok2SQ3cldr9168fsK14v5LK692u9OrpqJxV3shMDO3D7bsRfirhPtXZtNU39U4mmC9vtRNBI17acnQUhcXc7dlpxwlG6bzKpuncc2JjS0jn3u7qe46+Sq3FXche2pXsVdbCvEqrM2NCVxqfXT1mZcduKWGWx3fASeiLs9QMSdcJywMbXpdKyzf/cHYz8sd83ribjbCQct7m7fus0v//Kvct9Ahomsg1aKx8+fxnoeFxaX2CxXeOzMqUbXwhnidq6SLeKuk7Wt6Xxbi0JjVfB3XacZW58J9n0fsKytrpJOZcjmsriuy9bmFkMjw/ieF4jDyAxyuVwmlU41lilVv1YDy6FCaUXz86X1AAAgAElEQVTV8/AqFQaGhqhWymjlUCmXWVlZYWp6Gmt9bE1AGmvQKhBqG2sbGGMYGxujWCxSGMijam6dVgXC9esXLuLf/xjf+30fpWq8wHWTGHNTDEdH3HWwCMa1V/u9V+LuKFjuOtFN3NUPm93dIPhOFXeQzGJ4EOIu7nMRd0cXEXd7gIg74SigYx6ku7nPQ+EWPh+Tust1E3yNPt25dYSiM7+hC9OuXNZ6PM+tg752g/O4xAHFrSK/8euf4saNeX5gdoh3n46ItpoKU8pgMDhaY02jDVUrw6BR2wSUqbnkhOvUkw4AtvYmV+UqNu3g1Nw3lWexylIslQBDtVylMJhnbW2LoZEhtOPUimIrrAJjA2GncTDWYmryyNUabNBna2sxbyiU1lSrVZRWWGNJp9MAeLaKxqBVGq1c/GoZZS2+D17VJ5PO4FUM1lFox6KcwG7o6BRVr4KrHJSF61euMzw4SGogh06lMFqD9dHaQVmL4+paCQdLsViCVIpf+MYFfvpnfppcLoOrfDy/iqMNKXeAahVQ66SVg/YsWqeCdPFpTbFSwqJwnAxV45OqDRF35tbX/vroxH4mv+iU0KTJKlwbnfsx38GJWFV7xcYkqlB2e+KVpG1Za3FoPC/iSSoZWtfbuRxLUky9X+c96cTBQU7wRc+PSjBB2g+6nfVuMcJNqHhRVY+Js83rdm8urncNLwug9neQQEXpxt3ZaymEpj0oA4TJZvbRZ3ePEHG3B4i4E44CUXHXj/tbxN3ecZTE3fr6Br/9yf/IjfmbGGP4qXffRS6TDaxiLe1aqwJLGQawNQtaaCkKX+SBZmsSd0phCGbCg8vYUq5USKfTeFUP7WjW19bIpzOkcpm62KoWy1SrVYwxZDJpsrkstxdvkc7kyBfyoBXKcdA1K5jne/ieRzabw1qLbw1aKTQK33g1EagBi1ZOPd7UcRwW5m8yNjlBpVTGoKlWi1SLPpurVRztMzkzwsL8LUDz6c8+yY98/0cZGh1gaek22XyayckJnnnmee6/5xzlShUFDAwUqJTKpHIZjNIYFEMDWdKZNAqF53m4rkO1UkG7DjdvXOPU3Bxv3LzJb76+SCaTY2Z2mkuXLjE7e4oH7ruPRx5/lP/wr36N07OneODBBzh3/hy//cnf4qGHH+Dk7AmGR0b4xV/4ZSbGRvnw93yIe+65a8fX1nEQdyGdMmiKuOuwRxF3TRzEW+04iLvgd/M+Rdw1EHG3B4i4Ew4fce6LDcLsdD091FsQcbd3HHZx96v/6t8zP79QX/b3PnB//e/6C5n2r8wg5i1wPQzdC2s2PQLhpJvEnSVwy9FKY1XgOlkuFhkYGAxi62xjmKZUzWVKO0HCDGuwxuC4KXzPw3FcqBoslqrvkUqnAUvgGaxwHB0kJPE8rFJY41MqFnEdTblUIjcwgNaaTDaL51UoblYwxqda9ahWyuQLBTaXthgaybK1UeLXfv3z/PAPfJDCaAZrgmGl51uwiotvXOSRh++lVK4wNDjMV7/6HC+8+ho//ld/BJ1x8Y1BOw5vX77G3Nws4LO1toyjIZPN88qFS6Rch4mxMfK5PCuri6yub5DLZhgeHOClC9e4fGOej7znIU7MTDI6NoyfdnlreZ17pibAcfGtx3feXuA9Z07hVat45RJF4zMxNAzA1ZVlfvfiIkXPZ2x0hJ/8Oz/RfC6PubgLl8W5iYu4646Iu2ai19F+jbOPg7iz1lKqVCjk8/XafyLuGoi42wNE3AmHhXqIRCSGLbw4NdtfKrsRd7bmJhHuNS6WLo7dxOEJ8bQb1HSsBRcGnGHbrlsslfnd3/40ly+/xftHs5ybGGJueAinXuNPYZWNFfZh3FkYDxe4WgYJTIyxlMtB0o9U2g2yR+ayOMoJXCMj16Wm1q9arF25XMF1A9fLhrWvNhDQGuN5WN/ipFw866OMAauYv7bIiZkZNje3eOn5F7n77rM4KZd8ocClS5cZyGX55V/7fX7ir/0ok9PDpDMum1tlMukU2WyG9dU1jO+jXMXa6jqjoyO46RSba0U2N4v89me/wE/9zb9OpVolpxXfeuEbPPzQ/WgKgWukm8X3fZTWuI7DVrGE9X1y+QxVr8q1qzeZO3Ua65Ww1vKJ//gZzs3O8IH3vpO3Ll9nZmaaZ579LqtrS3zPY4/gK8346DiLC0tYq5g7fQpfG5782jd4z6MPBnUYKxU2Nrb4ky8/w1/+ke/nytWr5AtQXC+xurbB0PAAMydnmDwxg+O63Lp1m+GxcbR28AjuP1c7TRlH51fX+PevXOPvR+r0tSPJwD66XqfrOBqzdRB0jOmLjHLrLsJdBoxx4q5rqtZ2RG5A03HEezjFXbv14kRYEmF21K4j26OrZq/rR9cIj5/fFGcbY6muCSitG8l06rF5MddpbD28xoZtsaZz/8NbK+6y3mmsHTTEXWAN1Ad+XewWEXd7gIg74bBg6jPIjaQo4YM7mnhExN3xYkfiriWgPbruv/6Vf8/8zYUgY2U+HzsxAKE+VLHJWaKCQNWyxBk8FBqtXb74pa9y5tRJTp+bQ9fjKFTQj5rVLkwWEkSkBY0Z30c7Go3e5rpZ9X1s2WNteZWxqQmq1se1sLq6TqXk89Wnv8N73vUwGI+h4SGK5RJXr89zZm6WNy9f4u6zd1MtG7IDmmq1xODAGMb4FDc3efXCGzz+gcdY21inXCrhuC6pVApMMPt7+/YSs6dOggXtGy5cfonx8XHGx06ysblJJpenXCyRzWWDgZMC7aSpVEuAj/ENSrnYagljLesr6wwNDbKwuEguk2V8ahLPGKxfJZ1ycNIZwOVTv/95/uKf+wFSqRQVb4uFhUUGBgfIZ3No5bG+XuTNN67x7sfeibE+yimztbrB1maJ3/zDPyGXy/KBh86jHJeRkVEmZ2YYHhsLRoRhfGPNDhsV8f/y26/zU3/vf+r4DOmHuAszDJpabORB0au8EXFXW0vEXRPdxF19MraDaNsPcWfrz9XosnCb7dlTRdwdLCLu9gARd8J+0poYJfoy71WsJRVaSdaLWycpDtGXW8PWmIw7z32z1Z2pXV2lXtwxv/WNZ/nc5/4T/+1Dc4wOBqn5G7WnGueiKfYonCSI3U0o/C2e57OyvML4ZGAVMtbg+z5aa1La4cUXX+bs2dPk8jmMMShH1eoAKoLroFprywVlsVhSTiZY11i8apUb1+dJK5dLF98k7aa46767UJkUtlRhYXGJJ772HXxjefT+e6j4VR566D5efOk1vvT15/hrf+H7GR8dxHFdsGB8S7FUZmC4gPWqlMpF5q9fZ2ZmisLwGH5Z4ftV3LTHW2++TT6f58zpMzz19W9z/twZRicn8bwK2VwG37MsLiyztbHF3MlxwKLdFL6Twvc9Lr95hfN3nWF9ZZ2BQoHr85cYGx1mY2OLgYECvueTGhjC1Q5OKkgU43keVntUK4aN9SJTk1NYC+trt1laucnsyZM4ukBxo8KLL13g4YfPk81luHbtGlMnZ/CrgbunUoFwW1ie54WX3uC+s2cYKqTZKq6SL2Rxlcv44BgpN412M5Bz0OkMxUoVHIdPv/Q2l0tVfvp//dtk3HT9zPvW4tSEimPAT3grh9dsu2u39Xo/SLEHjSdPWCrD1lypobu48zEoZdExgq6+KKHYC46ZrhWEbz8p1q2mXb2kR0vf47IKNmVK7Md5UNufJQ1n7e1usj033+Z8BAmVkm0bdXnVKnCdb2o3wXFoCo8IY8mi8fAET7qw3U61IpPus1s/Ol2rccfbJBR3vSaMCa+pONGmY/ro9ewOHb++Uqp2GI9u9syk4s752Z/92T3uyvHB972fPeg+CHcODdfL7Q+qXsVd3KMu7kWXZL3dzHDEZfJM7gd/582tNOLLVNP/o4S125Lwj/7hz/Nj4y4fPj1FLpOOfBKJUwn3FXNa4s6UUg5KKUrFEmtra4yNj6F0kDpcq8DaFfyGsfGxwBqnNZfffJuRsSGUdtDKwRiL1hrHSeF7BqUUDoqFGwukUy7rq2tsbm6RSadwlEM65TIzM4nnVbm9dJtMKk8um+Opb73A+x65H8/3GR8boVQqcurkNPhV7rn7LBvrG2RzGYyxLC2v4nkexvNIZ1KUyxXKlTJTUxPoVAatnKD8QUYxPT3N2to6xWKJQi6P7xsGhwtoV2Osx9ZWiUwmw/raBi++/BpDA3kGR4YwSlEtlxjI5XBdhye/8nVOzUwxMJgJvq/rkEqnUVpRLvlk8zn8qke16mGMpVr1UcpheHQEayzWGPK5HOub64yNj7G5VkI7itNzM2gdxDVefusaL1+4zOLiEqNDAxQGclQqZXK5ARzjcM87zpNJpTDGkMsO4+oUTzz1DMvLt3nj0kU8o3AdjeM4GN/n4dkJPnxqjF/61Od4z+PvDwaiNrgiwmtCoxIbpMJrtt2123q978bzoB/Y+u+GJ0TYo66WO4IMgLHrqW1/dO1HxMO6a3/bLQ1dqVv71Mmy0+7znlFNv5oW9qOOYLs26scuAbbl721tJmioaW6swzp1X4a4Y9/jPrv1o9fja2NEkIqZ4et5PBJjLay3FdPHHYS6xtIQdwf7PNkNjuv+n4nWE3GXHBF3wr5Szxwl4m73ez6a9EPc/V//8OeZfPtVRm9e48OnJpvfqKErb70N23RtKVoHB/G9NNbw8kuvMT09SWFwAGtso5g4CosJsk/WPDutUhQGBtBWceXNKwwNDaK1w4svv8rg4CCOTXHjzWuU14vg+yxcn2docACMYWtzCzfjsry8SiabIZvWrK8t893vXmGwkOPS21f50HvfiVKGL3/jGzz28H3ge9x1Zha/WkE7kM8FlsNcLsuv/e5neP6FV3nfux9kcGSIgeEC6VyOtaU1rOfx7We/y8hwjq1SBQuMj4+xtrHJ5NQEbsbl2ede4MTUFNZo/u0n/pCBnMsjj9wXlIDIgGdKXLv8NkOFHDeuXWViZJAb8zcYnhglN5BnZW2dSrXK4MgQmjTlYlAX78b1m/yH3/ksT3z1Rc6fnuH2rSU2t9bJpB0qJcXs3AzGgpt2cXQQE6m1w9//xV/lY+97jOdeuMQPfPxDpDMu5UoJrSGTLjA5MU6xWGRlZY3R0TGszpAvDHJy5gQTU5NMnZhGo6iUSixcv8pzzz7Lzbcvs7a6yfefP03q+lv841//Q9717sfIZdzGVdDDI+nIijtragPEgxF34XEwtvNYX8TddpKIO2Pj7YW69ToVcdeyTMTdfiHibg8QcSfsNcaYesaoTkP21tTBXdeL+SwUba2xVVqrphd6MnFna9sFv5Wi6SdsLyruahXEOGzirhFMbvs6qAwHDgbb5HZWj3SKWRbS+n9aPmulUqnyT37un/HlJ7/G33p4jtnR0caHkROjbMNKZ2nOZAmgHU25WMKremRS6SbXHc/4eJ6H4wSWu+npSdKZNMZvdh8OdqVwU2nKmyVSbgqv7JFJpymub5JJpSlulHDQ/ManP8PpyUkqG0Xmr94ALKvLa3zlmeeZGh9j4fYSs6dPsbF8i4nxCVZWNqiUqhSyWXzfkMul+e6FCwzk0mxsbPK9H3oP5XKFickx1tbWuL28jFZQLpVZW19nYWGRP//xj5BJaSYnx7HW4rpp1tfWGRkaQmvL4uJNpifGKJeLDBZyGN8jl82glcXxNUPZLMXNTTCGjdUVUFsMFnI8/ex3ue+uc8xfvc5gLo8xHtZahkcHOHX6JKVKFddxUGhGRkYol0rgW27evMnk5BiOozh3cop7z81x6tQ0E5MjTIwPsbC4QGmzzOLibcZHR1mcv4l2U1gU6Uya+87OMjI6xF1n5igMpED5eJ7P0OAo165fYWAojW/LjEwMs765STpnqfo+Tz/zEl/9+qu888F38yuf/BTvvO9eJifGGR0ZYXhwCOVkWVtZZ+XWMj9y/1lef+rL/JvPPsn583cxODRUu36SW6DaXbuhq2b0s70Sd3H3XxzNT0jbSNlOy1xJXOxYKOzCR130J7JlL3Q7HHUBGvkJ+xS6XoZW9ehP9P0T/kTXiyM8hrHJOuI+ixF3QRGSVrmnEl9PSVCK5pcSzeff1nvVRWQRnt/GT/T7BXFyDQtv+7hA3bxd5Cdc3nz+dsZOjmB47G3M1qG4U5F/xqpoOdKuhIfE2saPql8X0WNZ25cOz19NaO/wYATttb+WjwJJxZ3E3PWAxNwJ/aRzQHw7K1dAr+KuUyxdtA1DIO6iXUsWc2dr2wW/Wwnbc2Li5uJeIPHsT8xdGHDd78QOcfFDvWQSTMo//4VfYnNrq6lsQZRWC4u1jWLiQD2WKAzmX11ZQyvFyMhIUyxKNJFKNJ11O7TRzF+fx2BxlCaby/Dii68yUCgwPTmJm3L5o//0Bd513z1oUqxvrHP3XXMs31onn88yMjmOryzpTJqrr7+MVTnW1ko4WjNYSFP0ypyYnmRhcYkzp+coFUu1jJyQSqUYGCxQKpa4cvUqU5MTvH7xMnedPUsul8W6mq2NLTLpoK6cU8scd3vpFjMzk5SKRSqVLYyxrK6uMzY6yq2lZYbyOdIZzdraGpVqhfnF28yOjbNR8Xnrxi1OjI8zOpBnYXmF+++5m6rxmZga59Llt/nGd17lfY88wNDgINPTE9y8uUi1GvQ3m8niOJpisYjjpsnnsziuZnVtBWsMK0ubzM6coFyu8NaVKyxtlnn0nfczOjZKuVQkm8tSLVuKpVXSGZdbt9aYHJsG5aMcQyrt4vvwu3/wRX744x/E1Sl8H5aX15iaPsHyygIzM1PcvnWLiYkxfOthqg6XL79FIZtiY32dazdu8oM/+uf5uadexAJ/56f+FsNDg71ertuvk5gB8V7F3HVL9FFfr/a7KcEFDat367ImaZqkdsxOE6z0gLFhVsT28UZx7ySttsddNbe7/blWR9VfMpFlNvor3Evb9vuZ/CJ6vnuZjGiltU/RmLPwGlGobddys+jX4Qbb2o+Nv9tRT3cWXdZIxhJnuQt60jz2CK6RDpdWE52SpjSF9IWXT/i71jfTxZTXXCMvcvytRdViVo8qklBlDxBxJ3Qm5sUYc8WED/vm2b7ty1qJ3qtJs14dBGHf4oKgo8KvPjPcsl3w2d5k0EwinLoNJDslgNjpPrvTXAAcqL8FX3zhFT796T/CGMPPPB4RdLVVtXYwnhckYlAK4xu8ahVrYWVlhXQ6TXa4wMbyGmkfSl6VyVMz+L7H7dtLjI6N4Wi9fQq4FvyjjMYqDzeVwqtW8X2FtgqlFV7ZY/n2Cgs3F/mTJ7/BA3fP8f7HHuFb33qJ+ZvL/JmPPcq1Gzc4c+Y02ewQ3/zOV3jg3neQSQ9w9a2rDA3m+aOvf4utcpm//eP/BY5Osba6Qbm0zNDACF944mlee/sK733oPO985z3cWrxFJpVmdvYUq+tb/NFnnuAv/bmP8+prr3PffXcxMl5gY3OTcrHKxsYWmWwgMlc20qTUGo7SPP3ERT728XfylW9+i0funyDlWEolj4rnoXSOZ197m/e/6x7yqRxbq0uUjOHKzVs4Ost73/VO5m8u4aZhZmaC+fkF0qkc+fwwjmvZ2lpj/uZNZk/MMDQ2xs35RWZnZtncKpLJZNlau0W+kKfqW8pVnxvzi5w7e4a19RUqpTIDuUG+/dxL3H1+hktvX+ee0/eSTXu8fPEqZ8/MUhhIk8tlyaSzVEplrl+/yZmzc1QrFTzfUK74DI8MYYzF8zy8SpWBQoH19XWctBtYYTVY18Fxg3IVWil83yNlUlS8MtrROCrF6xcucWp6iq3SJtrRzJ07yW+/eJkLm2X+t//jp0FB0S8xpPI1y3DtCalA26hgqFmKLViC+MJtV3/MhMhBJFlpFYO+8Wr9VfVaeNAyiD8IwRfXflxa+9AZW7VfZ6/YjVWuYwbN6D6Uapt4RrVMYrUjev4cpWMn/aItdGsvST/iJg5iW7W2nmV2Lwhr9TXrhM65Y+trdch+GeLGDJA809t1ERpifT/+2RHHnSDuxC2zB8QtU+jM9geVtc3uFt1cjZK6C3Ra77CIu7jJtXgf++btAvboZZVgnW7nIK6NZC5duyEcYAQ/3/rWc/y7f/sJnnjiqzyuNvizd83W4ula96yx1vDU09/k1NwsxhjW19bJ5IJabNlclmrVI5PPksmkqZTKKEeTzedAK/L5HK4OBq+q0Q2gNvCwCkc5+J4Hxsd10iireOKJp/iV3/g0Y9lAZChgc7PIhx9/DN+vUi5V+MYLr/H+DzyI4xg2NtZYmL/BvXdNsrK6xMj4KPnCIAuLyzx490nuP3OSnKupFot89vNf5L577sJay6mZab7yref5wY++DzedZqiQJ5fOsLG1RS6X59qNy0yODvPGlSvcdfccm8Utqr7PyOgoG1tFNra2WFpe4Uuf+w4vXfo2s1PD5AezmNQaX/zK86Rdy7kzZ8kVRhken6JadXj4gYcYHh0GUkCOwvA4Y2PjTIyNksmk+NOvPsvpkycol6sUt8rMnpqlUqlSqZapVEp867svMzo4yNLyGoV8nopXYmVtGd+vkB8cZn1jE2sM5WKRfDaDcjTF4gZjYyNgfM6dm+O1ixfRyiWfzVPa2uLM2VnGxoZJpVJ85Wvf4a3L8wzm8wwPD1GtVIKyDuVirU6bxatWSKVdMtkUtxeXqHoemWwa3/fJZHMoA8pYrBfM3VeKZbR2cVMurutQKlb41Ge+wPve+wiuq7h+/SavvHyBh8Ym+fjZU7zy9Nf5d3/wJNfeuMYjjz0aXIeoIIZHOfHDw5r72bb4JlomfmKW7Rfbn9/1p1dbsdk51q4TuxF3yRaGDoSNrh8NcdeJOBfK+D11cnZvEO1neG22Xnu2w/+6tl9va/uEQNx1H0WruNySfST2mu60x+gEbXfNGRf3H1dbrzOh10hywXYnuGWKuOsBEXdCZ+JmS7u7VnZblnTbxmeJmtgzOom7eB/75u1qa+5J346yuHvyT7/CJz7xSb785Nf4sfE033Nqgu+Zm6SQyURXi/wK4yEMp0/PYnzD6soKg8NDpFw3KE+QSuNojXI0jtYUCgXSmTRWB/E3ruM2XC63DWgsvu/jOilWbt9mYfEWhVyOhRu3+NJT32Zzq8S9Z2Y5eWKSkeFBZk6cYGtri09//glSjuY9D9/L9KlJxsYGqZSLDBWyXLlyCa01y2vrTM+cIpPO4jiKkdFRVlY3ePvKDR689zxvX73CxPgYF1+/RDrl8PCD97C2vsHo6DALNxfJ5XO46RRzU8M4rks2k8HzPAZHBkilgmLqjuPyG3/4Oe6aO0lOWyYnUkxOjDE6doLx6WFuL6zzrgfegdIOmcIQufwgkGJ1ZYPCYJ5bt1b4g89/nccefYjR8XEKhSy3F25z/zvewdDwEKlUipHhYfKFPM+/8ApbxU1GRgZ57JGHGSgMUKn6zJycoljcZHR8mMGhHEpl+dXf+j3edf89DA4WsMbw6oXLTE+NsnjrFrlMBpThpYsX+e6FKzx6/71Mjg8H8Y9+lVTKYWutzOW355k9Mckbb73N7MlplIaJyVHm5xcYHx9FaVhcuMXo6DCrKxv8zh9/kbmZaSxQKBTQFm7fuk3aTZFyUly/foNMOos1PstLy1gDH3zvu7DKkstlGB0ZZv76POOjo5S2Nhl2HWbL61xa2+LzTz7F009/kw99+PGauNs+DNO12ExLMGCtx4fFxHodFnFniQrRoynuwviwxrE8XuLOWtPWZbx+HXVp7zCLO2uDcjF7di/sQtwlOcL9EHfWmqB+nUpuwBRxJzQh4k6IozF/GzxZjImKmPbB5k1thEHTHVwvo8HV8W1sfxbvtIi5b2z9O7QOWrr1o77vRHuKf8UrQmnS+NcrrcHy7foTDiCTDhrD9XRfj0M8/+ZXf40//qM/YebaBd6Z1XzkzDTvGR8giHHUTf21CkzVY3NrC9d1wBLpn0JpTSaTARUIt7BcAY4O6tspFdS2c4JAf1c7TdevxYKxeFUfY/wgLs2At1nlwmsXSWmHcrFC2kmTUQ6Lt1b4/g+/j9cvvMHwUIE3L19n7tQJVleXePPaDd7/6INcfus6S0tLzM3OYA24pJmaOkGmkCOTzrK5vsXrVxb5pd/8LN/3PY9z4tQs2YFB1lZvceP6AmdPz3L52jVGB3JkM3lymRQry0uUSmW0q0AZJiYncByH8bFhquUSKB/jeQwPDfHE089w18kZTp0aAFVmfHSSl1+4xfDICKfnZnj14mVmT86wVaripLJceuMqz77wMg8+cI58foC0spycm6ZY3CKXy7K6ssbgcIFMNsvKyhqVahXfK5HN5ZicGEEB5VIFrVzctIvCks3m8Dyf1167xOTUNA+cP8fNm7dQWvP6m2/zxaef53s/9FiQfdQY8vk8czNzPHL/g6yu3cZ1DIVCntcuXGSwkCObTXP15k0euP8uNjY20FqxvrbJyvI6xVKZW4u3ef3iW5w+OcP66gbzC7f42Affw+DwINlMBsdxKJXKDAwM4HlVjDFUPQ9r4dkXXubM3ElcN006laZYqqAsuKkUmXSKE3NjWMeQSivSac2Uv8Fpv8IP3XuaX/jUZ3n1pVd47NGHUPVkEs0W6eDvaIxSe8+H6LJuyTyCum4m8frtPmulyVktWiMy8uyJL9rNNkv4dvZe3Cnd+vzam0Fv3HO898yNUbdW1TbhVZx3TPt3TLt9NSYZ6kILFblGm6+j3Yi7sDUVk7im+drffjc4LUlZ4giP007eofHfJGk7rUfYtnwGKsa1KWkMfuCNWrtntcIam7hv1h5dgScJVfYAibkT4mgE7IbO5Y2HRugB3i0oPO4l1I+LbafirhNxsYKx+47sspPffVzimLjcYL0G1ieNdeu1YHKvMT9J+3H96g1+65O/y+bWFgA/enaMe2emAepZLZXWbG5uorUmW6tTF04KWAUYg7VgfFOvJ9eIpwmuL98ayuUyuVwWhW4+rtF1be0c2iDFvudVcbTD0khZCgwAACAASURBVK3boBTVapVCIc/ll6+SyigmJscoFAYwHvzeH36Rxx97mM2tDdJpRaVcYX5pi/vvO4vjGOZvLGCt5ZO//xR/57/+i2hHMTQ8wsKVBYqVIr5TQllLxknhOBm+9p3nOTtzAuVAterxnsceoFTyyGQybGxsks25pNwCfrWE0gbfGDZLZUilKK4XyWiH8ZFBbty4xszpCdJulme+9RKlSpmPfvB9bG06zC++xtTEGC+8dIOHHjmFk59g+cY8KScwNY1NznD5jSs41iMzoDk1dxbKG1RskGTI9xwKhUGKxRWsr6lWfYaG8pQq6zhOAd8rsblZ5NbiMn/4xaf4if/qx8Aq8rkCuXyBleUVrK2SzWZ55jsv8u53P8Li4m0yJk0q7TM0nKe4WaRUKvP//d4T/MSP/zVK1dvY6iblkmZkZICKV+LqtRsMDw4xPTPNtWsLPPnMc5wcm+auM3PcvLnIubNz5PJZilslBgp5Ll6+zMuX3uJHf+jPsHhriVNzJ7EWHNdhY32VodFhlm8vMTgwQjrjUq1WwDoUt0p8+jNf4q//5z+CwWCsz9pmhUI+R8px8DwPjcUvrVGtelybv4lvDOfPn+X/uXCLD37o/Xzv93000b3Rja4FoHtYv9e2AKz1cbTbcQDdHIcX/N3RSLEPMXfb1tujmLu44uS7FnfGJEo8YqzpWdaE4s5YE1tUO6T+7ohu22PMXUhTIfCY6y3u/eckKB6+mwRh8d8kqftj6762i7u4BGtxSVxie6GpJ3AzhiBWOPGhV7GJ344CSWPu3O6rCMKdTVR8xImZRjbJWu2guFuv6b20exe+TqKqqU7ZHsxOhW4uTSUUVPODFhrCFiLHKO7pWw8oj87Y72wAECVp9snWz5MmTIkOBhMlatG6PiAJ199Y3+Bf/otfwfd9LPCRyTwfemckKUowPUwZDyo+KdfF9z3QLjbMLmaDFa1ncVIu9SB7op83cLWLm3Mbwp/QatzIlqeUwiqDsopK2SOTclieX2VkZpRsLsfG6jqqWmXx9jWW15YYHxvBGMPa6jLGGE7MjuDpKrNz0zjApz/3JVY2tpg7NcH0iXFuL6/y0L3nmZnIUiqtkMmkuHVzjVQ+S8VaxoZHWFm5xdjYIE5mnB/+gY9xe3mBfCGP8aBStAwNF7hxcwG0orJlmJ4YpLzlUfEquNks4ydPcPPN27z6+kVKGzd57IF7Gc6mWVq4jeNkePejD7Oyvs5GpYx2XCoVH2tchkdP8LWv3uTP/uBJBkcHcByN7ys2l1e4954zLCyvMJDPcmthibWtVe46e5bVlXVymQxrKyukcwO4KchkLcZWKG9VcTMK43sMDeZJp/KcP3kfi1dWGBzNUxgeoGQrVFOKvJtnfWOTfC6HqxWzJ6Z48cXnuP++eygWy2inwB9/8WnuvfcspcoKg4VBvFKa5YVFMo7hyW8+z9lT06TGc5S2DHOnTvPDhSGs1jiO5urCVda3VskV0pSKReavL5AfyvLYA+epVrbIZxRvvP4Kjs0yPDLI4MgAfrFCLp3D2hIXXr3CubvPUfU91jZX+Kt/+YcoltaoVqpk8wOk3QpexWOrbBkeHka7PtncBJVyhbsHBlldXuHq2zf4C4Uy76gs849/7p/j+z5/9x/8JDmVbSRXqj0m/B7zHiSdSOk1yVGnZ4lWCkNzIoe4hCpNn3d4rFks1qpEQ1xjbXyGwqQirXW9hKIwbgwd1434777d2hWbeCxs0MZ0rSZUuo3lTe19s5OJUpNAKcRdDzt9Z+k27bW226tAi7o476RPrSSXrgmOeow4dWKOe5zgM7XsTOF4oxdNrZSPtc3eA8cNccvsAXHLvEPpcSCQxAVzL9kPd4Nt+1ANV4fwcMVPjMUcyw5quB9xGf2wgHaKfUhagyg8Ls8/+wL/+l//B7785Nf4+te/yc+8/z4+fGqSD89NMjc20vBmUaHrliKbzoDn86UvfJWTJ6bI5bNoJ3jheb6PV6myfHuJ3EAhtjhxfH8CkV71PKwOZne1Dnx7rbIoozC+ZWtji7cuXWF4aIi1W5usLW2wuVbixMxJtE4zPFhgdvYEKyurAGxubXFqZoqhgQIXLl5mdHSMqckp3nHmFAMDeRxX8Y3nXuTU1CQf/ejjZHIZUuksjpPl+vwSwyMjnDg5w8rKOql0jvxAnpXlFXLZPLncII7KUKp4VH2fxaVlzt9zHt83vPDS8yirGB4d4//99d/l/Y8+wgvffYWVjTU+8NgjDI+OMTEzS7liyeYLLC4uMzJSwEHhplzwSpSrVV6+eIWXL1/h8XfdS7Vcwa8alG8ZHR2mVC6Tyabwqx4DAwPkswXS6QybG1ugYXCwwNZWibWVNbSGVDpNtVyhMJKjWvK4Mb/I9IlxsoOGG/PrLK+vkUpBpVhkdGiA1aVlNjY2GB0ewqtUGBocIJPJY62lVKligbnZKc7ffQbfq2Ct4eqVG3z1uZd58P67GRrMcWpmjHw2RSaXZ21tnZWVNbK5LF9+5jsMZoa45x138dTXnyObTnH+/BluLt7mvnvfQbnscXtphTNnz+BozSuvv4FXqbK+scno6DBvv3WVc2fOUql4+J7FcVwyaZf19Q1S6RTf/OYLnJydRqFJuSmy2SwvvfQKw6OjfPfFV8lmMkxOT5HL51hZ3KC0ucZHT4/ygdlx/vkn/4StrS3Ov+PuwDtL9WZE6lTPs1d6nXwL7/92rm+9xtxZa3E6Og029ye+uzt8biZsK/Y4xC5LJmw7zYc2JqHar9MeG32c7oi9ig3ctp+E75GDdidMXrqoO/GCM85q2d/vHNTqU0dS3EnM3R4g4u5OIG4mrjdE3AWLDou460sh2D6Iu1/8Z7/EF77wp9y+/Bb/43vvDQTdqclIQ+EOopZiqFYr+JUKm6vrWGM4fWYO3xq0U6stRHDMteOQyqSbYn/afJt6DIdSmpTrsrGxgeumgtgFa0Ap/LLhhedfJuW6pN0U2UyG9ZUVrDUUS1t4vk+ukAVrcByH1y5cZHR0mNHRYfL5LLeXVpicnGCjWCGdzWKqFSyWTC5DaWOTlOtSLFdIpzOsrW3wG7//p5w9NYPrumilyQ8MUCxXqFRLZLNZbi7c5tIb1xgcHOT1N9+m6lU4MTVBOpMim80xOpDia995gdmpGV6++BbvfugBnvzaN/m+D78niCXUDssrmxRLPtPTU+Ryafxalsil5TVcbVhZW+Pc2XM8cM9Zbt28xfDwEN989kVy6QyFwQIDgwO8eflNctksK8urbKwWGRkZxnUdLr/1FsOjw7z80uvcWFhkeWmVM6fnUFrz1lvXKW/5fOWZ7zKQTVMxRc7fdR/gMzE2SNp1MFWPlOvgKEW1UqWQD0Tt8y9eZGgoz9TMFNev32BmdpqhoUEcDSjLq69f5tb6BjNTE8ydmsIrFymXihgctHaYmpqgVKowNjzMYG6Q4ZFhXnz1AvecO82ly2/x3dcucWJinMtvX+P1t67wjrNneObbzzE5OorrplhdX2dwMMf62hae5/HCyxdQCv7oC1/jwXvOYaylVKqQy2TZ2NhkYKAQxGOqwG0sPzDA7Mw0aIV2HbTjoj3NreVFilvrVMsl/vx99zBaXeUXP/XHfOSjH8TWrtHE0T3HSNxpFD6GJLa74yzuwrqbYdKXOCHQ7XxHn/31uOEeEXHXTD+EVuOcxpqd92SfUUTcCU2IuDv+WIJsKA2/+d4KnbZPdtJw6+nkHhGXUCVpXGyS5B57RRB2qJqMnEnFXfy36194a2tyg+hLNC7tehytrq7RNuK2j7b78//0/0a//B3+0n1n+PDcJO/+/9l7zyDLzvPO73dyvDl0DtM9OQAYAIPAJC61JCWvJO9qpd1ylVclr/1xq+x1lcv64nItxZKrKLnkpbyrWklU5JISCQICSIIJAJExiByEAQYDDCZ07tt9cz7JH8693be7b/fcCSBBc56pM3PnnDed95zzvO//iaOJjXcq6CdW3vC/DFV3oiRRK9dYXV3n0NFDoTmmIm2YKYmihOu5GIYR+thtM5cVdvze7ND1XHzfR5dV2s0mlXwRp9nGaTnkFovk10tk0xkIAv767x/m2LFRFE2k7TaJx0yEwCO3WsQwdZ44/Qonjx9GURUK+RKxWIwXX3mDHz33Cvl8noiuoWgKmqYSt21S6STff/pF9o2PkEoleOal17nnxH5iMYtWu4UdiWJHIqgKXLh4mbHhMQ4fnmVxaQlLt/F9l/GxEdxWg3wuj++2KFdbZLJZPnXf3ayvr3LvyRMsrawQi0XRNYNW02N1pUQ6k6JcrnBlfoWRkVEKhRL1coXp8TEisSjzCwvs2zfJ2mqRkewwpqnTdFpUqhVk0afVapPOZEhG45x+8TUymRSGZaEbBmvLq8zum+TggVkq1QYfXFjg2RfOcXhmhsWFFW47dgRZ0UnEY4higO+28VwPIQhzQ7p+gO/5PPC9J7jv7pPEIzaaJhF4Lqok4/seudU1rKhBvVpn/+w+RlNJLEtH11Sq5RrnLlzCskwee+5Fsokk585fxGm7LK2tMj6a5eihWT64dBlD1zl522F0Q2VtPc/4cJZatcH01BCGbuC4PrZlYEc1GrVGmBvPddg/O83xQzOUCwXMaJRqtYnkg6rqfPVbj3L0wDTlUhlZVDj79ttIooCmqsiyGpomB2EE02x2CEPXmJ+bp1Io88v7RpHnLvEHX3uYT3/mUwNbTXS/72ul7nfa+71eK7jr5QMBQRikpOdPl7ac2yvPncCOTeduQaXCKLa7NHI91KeaHwgb89udmquBOz/ozukewrxe3tfXx6xbvAPO+vQ5uBtDJyooO9lt14JhCwvecuzsedB141poUCFkMODxYe0FQtPRG43Q2QXu4fyKnRQtvde2lr4F7rp0C9x9CHQL3P0iUA+oEzpM7Bryp1yNuhuJQehamefPUqLXH+AMWvJGlu2rU29L2yX8gwK9q0Vl61c+AL74hS/xv909y1giHm50hNDebKO1PR5Z76ai2WgwMjqMIEv4YoAvbCY0FwQhTDLeEUR0AaPA1ndNFDrXQu8O/CDg7Jtvk84kyS+sYqgaywsrtBotbN3g0qUV3nj7ffZPj/Hksy/x8btuY3xmkma9TWGtyqX3lkjbaXKFNTRNY2Z8BEmRKRZKRBIJZEUhbtucffddfvVT9xKxI8STMcrlMrncGr4X8Esfvw9wmZub5547DjM2lqSQX0MQIBKxabVbVCsVxkdH0AwDBI96s8z5d+c4feYMB6dGcFtNquUyjUaLZDLLci5PZihBrVZAlQxq9RqWruA5Dm+8dY6oYdNqNfnB86dZzFc4dOAgqijTrNZo1Jr4QcDQUJpas0kyneXCxStcWlji4OFZDF3FbdWJJ+I0Ww5es4WuqdTqDSKxOK22x8zEMLlcHlEUeenVs3z7qVf4jc/eT6mxyKlTM9RaVUTBQPCcMMDL6BCtlkOt0SaZzSDLCvVmm7vvOIFuGORXFpElaNRqVMs1DFXDjFrk19eJxiLU6i1MVUaVZFzHQxAUspkhMtkYyVgM27ZotT3WCmVO3jGNHTFYXFpmZCiLpqjUW2VSqQTJZBxVUchm01RrZb71gyc5dcftmKZGuZbHNk1GRtLIUpg7URDBabWJJtMoikIpV0TXTc68fZ7jh6bwfI+V1QJRSyYRtYlGbVzXxXNdllbXuHxljeHsOIIE0aSC5uusruTwHJd/dmyW3//qg5w4cQzDNPb40m6MerVu1wvu+rV5VU48SBLzbeBugGJXO3ktXW6QiIgobE31cDUuvuc6tyG0ZAOJ9IsqvcNCok9Tg68Se5fsB+42f/cH1R8GuOvSh62BvhEa5DsZtBVJkLpizj499J65Be66dAvcfQh0C9z9vFMfk8ugk1q3Iz3sSkhFQexswsPgF6VSCVVVNxasfho2L9gpPesCnN6olX2Bwk2IWvuzBHeisPPoS4Kw4+g3J34nf48feJ0FoFeyd23UL3VDPxnhtUpLu1qy8N+d5b/4hS/xv99/BASxA7aETUG10CklCF171g5Y6wTlCQceRlAT4JGHf8iRg/sRZXHD/EsMOm11TJbCyJbhdT/wQPAQRAGPMIcYAQSuj9v2CfyAdrNOPGqzPJfDMqM0Gi0MW8G2DeYWFpmaGuXooXGWVxaYGs+iGwp+W0ZVRL775LPUnBYHD87wZw8/wak7TmCaNoIAhimhyhqi6LOyMscn770Dw1D47hMv8srr73JwepJEyiY9EqfRcnGdJqlUHEn0MMwYsiwjBUGYm67tIqoGmmaSW8lhagayqLJ/Ns27F95jciyNYcrklh2y40k0TUYQfErFEtnsMLnldRKpKMgiim7wj4+d5uD0flLpNM+99Ca/+slTnH3nHb72vR/zyfvuQjNt/vNXvsN4eoRGY512u0ml3MBxfGK2hqppWMkkruOj6zrzl1ZYWi3wwk/Osn92Eitq4dRbuEGTWqOOqdnYEZFjB2aIx2IsL+dIp1IIgo9mxahUq8RjYaCRbDbJG2+8RTxiEo2a5FZXUVWJeGYY3Y5gxRNYsQgOAW+ffYOJqQmQFH7y2jsYmoikiui2zvuX3md8LM3qYhHd1NANi2rZZWJiGNvQqNWbpFJJ1vJ5MsMpEsk0vuTjBi6aobF4ZZXxqSn2T07gek0QfRKJBJKssJrLE0/EWVvPIwoikqjwoyeeZSydIplMcGlhgTtvO0w8EcG0DEzdIDs+hqioSIoWarVEkVg0ypm3z1JvVhgdH0YQdQIJTEul0aiTX1nlNw7t48lnn2Pq1ClEPAgcpMDBFeXwO+n5YndLqCJL0pYgFdsFOP34wF58tJ92ZUebu1hn9I7Xxw+18l1BT09xIehqjMRdNXbbbrP/ue1Hn4LdJObbNXNb2wp6Dnbwsm5wLUHc7CvcM/eW3zz8jezWPUdnLeg9C5saNwggXJK3HL0TLwpC39vu8tLtHF4Qgi1LUe8cDbKSBoGHsIcJ/NWub5TrarF6/vSja48uuqnB84L+kUV7afu7EB4i4Q5p8+jO27Y355rG1vsstgsCvG397QbsBMEPxyIG0BE2SQg79yHdcj1HEGwGcRN2+TY+qnQL3H0IdAvc/XxTPwAl9FwTRYndpEamYYR+JP0A4h7+Hv1AzocFwn7Wtvg3kwQh6OQZCiXGXuDf1Pu7GZLRbgLZsLHNsf3+F75E/tWX+Z/uOrStn57/bZgmdQQDnkfbcRA7m186AE4QBJqNBqvLOY4cPxxGs+xuSDZEqOHCH4SDCoUUggS+SOCBIingCyzMLbG2uk5+dY0//+qDZCM275+/xOzkFMvLK/zdw49y1/GDaLpONBLBaTfRDR3DMBEDgWq1wSOPPc3M5Ch3Hj+M13ZoNdtcXJzntTfOEtMk0qkopUIBy44gSwKGroEPlUqNaCxCo9Xg+JEDxBNx8AVct4WqqngeNBttrqwsYUdMKvUqkUQMUZVp1Zo0Gw2yQ0lqtTJr+TU8z+Hk8WOkswnq9TqGHkFRZRzHRdd0hoZDU1JdUzFMnSvzi/zNQ9/j3/+P/z2pbBQ7onP0wBTNVov9s9O0Gg0OzUxh2RamJvP6O+9z4vhhJEnkwOwMlUqeZCKO4zhIskipWEKVJF49c5ZjR2c5eeIQ5WqZaMRCCmRiyQiNWptvfudZPvvpUwReQCxuoagypmngOj6XLy7xje89yYHxMVKZNKVime8/9SrvXZzn8Ow+LMtkYX6JfK6AJIRP2G21ya3kmJoaxQ8EZFnmoR88xWfuv5vFpRyJZIqIbWPbFp4XEOBTr7X4xiNPcs/JQ8iKhChLXL48x+jYMItLqxiaiev5oWmoL/LI95/i5O2HsWyDer0epjZQFERJRlNkPM/DskwUWULXFWb3TVCrVzn/wUXePHeeu44folSp4Doe8WQK8HFdj4WFRSLRCL7n0ag3OXbkAIlYFE1VcNoOAqAqKq+9/jaB77OyusKoLmItXOYPH/gB/+SXPo0n6gjsDG3f17crCPMx9m6wB9G4DMpn+mn/u3S1jXQ38fTGuHvBXZ9fe9LAbLEf4NxW4jra8gO2mdXtJB+/B7j0XRR3ji3wt5Tu+1y2sNTdBx/0/L1ZoV/JwcCd0BGr7Q3ernb92uh6ff8CQt/X3fIC9pbr1+tgJa8P3HXh+NW0wn1H1l0AO7h9N5/X/mC55yv7OdPe3QJ3HwLdAncfbdoiHexJwr0hKOxbJ7wgiiL5fAHD0AmCYAsj3MyHslVbt5s2qJe6VfuWv4q2btPXQOjxGxOuunG4lj62l9+LgqssDjdK/RL/9v47mBRb6LS1db/QfZ67JSO+Xuodz+9/4UsY77/Jvzo+y8FsaIbZK+EWBZFACDbnsaOtW1paRhAENF3r5MraKnSQJJGZmWm8wN8iLej+khUZz/M7G0YJQRSpl+p4LZ+/+KsH0AiQEUkkYkiCiCaL3HP7MZYWclyeXyFhWaQyMQ7PjJPPr7OykqNcqjE5OcKVuWUEKYyIOD0+xNhohnQ6ydp6HlmSeOKlV/id3/gsF+cuc98dR1EVBU3RqDebGIaG02pTKtWxzAjDoxkO7Z/G8z2qlQa+G+A6dYqlOmYkgm1aRGIpLDOKqZp4rswH7y8wOhzFMFT+8uvfJBOP8dDjT3L74YM47VCzqRsqtWob1/UZHRuh3mjRarWpVGtUK0Vs22Z+bpWZ8TF0TUfVYT2/TjIVJ5mIIUkiE6NZXn/rHKNjw0RjEc5d+oA7jh3lO088RUTTGcomWF5ZRZHCxO7pdJJquUI2mWJoJEGxlGdoKIMiyXhOwNp6jlg8xm2HD/N3//gd7r3jEH7goygyQSBgW1Fi8QhjyRSPPP48tx3ez1ohz/uXcvzL/+azXL48jyyL7JueZG5ukdGRLEtLywwNpUgm4oiKhNf2WV1d4+DUBJlUgvPvX+bMmxc4cewQ751/n6bjEomaeJ5P1LQYGU7g+R66pmCZFpVKleGhNKtLBV4+8zZHD+wnt7LGuQvvMzs1Tj5foFypEI/FqNebYfAZTUfVw/yK6+sFVEVGEKDVanNg/z5uP3yQ1996m2w2RTIZ5y+++hAnDs/QqDfIpJPg+6FvqCAR+D6SJKKqCq1mK/Q/9AXW14rsm54gM5QgaDQ5f/4D7s3E+OYTpxFUndGRLLIghRFdAUHon4ksTAq9dXO917cvbuPPu33vfhCuLd1O+/P9ne1s8cTr0X7BNi1Tn7F2S/bz5ftZg7tNjdmmT5sf+KHwq3NcbRz9Ot4eDOVqOKPfs9vg9x3N3VYNq99puyd5eFfZKIg7ygtbfgsDaO2knec7a0I/rV73ler2vZ1uJLBLr4Z6q6b2aqCqI7ju1aB2dHyKouB67nWBo357oQ2rqIHb2LofC0d7reBO+LlLaH4L3H0IdAvc/fzQoFaO3WXJ830sy9ysTw/DuEZJbi/dSJ7MrYw3QJYkOuvPwPWutZ+bWfZaKdjQgAnXPW+O6wBBxwetp20Gk9pfK33xC1/i6aee47XnX+R/vfcQI7EoYQ6mjtnHhslRmENOQETouTk/CLAsC9M0kTrgb8utd7V0orDTfKSzpvq+j+d7CIJArdpieWGFP/nKN3DqTSaGM8SjJqYZCi0QBHK5HPVGk2wixWg2g2HptNsNTEtHEGFqcpxkIsHy4gpzy2t8cGWJ248fYP7KZarNFulMBlVRKJXLfPK+k9imwfHDswQElMp1DN1E0SQ816XddtAVjVbLQTMNfM9FM1RM08R1XcrFAkNjE3h+QK1cQdc1fMehWamgSBKyKFIorhB4Lq2Wi6YaFEp1NEVBkXTev3CF4eEUZ89d5NU33yUZjfDyG2/xyI+f4dP334VpqkSsGMPDw4yMjPDnX3+Qo/unqdUaaKocBn8p5EnEowxns7iOiyDBkYPTSKJIOmbjugER22ZqapxIzGZuYZGIZVKv1RECGc93iCWiOG2XVj0Elg2nRiQSwXMFzr7/LlFdY2gohSRJLC/lUBSNUnGd3FqR189f4mN3n6BQyfPZz/wSqipRKheZX1gB32dm/zSKqqCqEqIoIikSTaeNbZj4bZfMUBpR9JlbXOHClVVO3XGEaESn5QQoisDZc+/zxtsXOTg7ji/4VCt1VE0hm82wvpYn8OHg7D7qjQYCPjNjWTRT59z7HyCJEtlMClEUqdZq+IFPbi1PLBYlHougyCqyouK2XXK5PIZpsW/fJIViAds0ieoamaE0tm3TbDZotto06nXKpRqKqvBnX32AqKGRySRRNZnAE1FllUQyhm6rmIZFs9nGcR1mNfDmL6IeOIquqSAEBGJHg3ITJO+D8LZQf9qjMdiFrupXLXQ1F3v31tvvAMWuQh8OuNtoSwj6mksOUnegjvuCu01Y3F+x17ku0GdQXYHfJhDdANH9zDi3/L7aeHfX2u2l9RN26XuwPq+dBgV3W6+Gv13PRRKlm6b5uhFwt3HuOjR3YVu3wN0vNN0Cdx9t6tXWDUpSZ/O8I8ogHz1w57huqO25SqM/r+BO7GglxV0Wt0GoK60Pti32e4G77RE0r0Z//Ef/L48/9iRPP/Uc/+72aT6zb4RTY6nNMSDgei6NRgPHcVAUBQiBXL1eR1GUzXkMAkRJ7CQ490DoF7VNIBCEnVvYjSTqoaS3WCiwslBkfb3I2+cvYakin/7kKRbm51FVBcdtU2vWGRkbIhKxUXWTl3/yJmuFdRIxi3a7TSIRpV5tce7cBTLxFPPLeZ7+yTscOzDC+FAUPRIl8MFt+5iWgRXRaTUdTNsAQeSJ519jKDWMKPk0Gk3arTYLi2s4bY+l5TWGRjI4TgNJErgyP89YeohirYVhmqiyT371AvXaGtXSCr5TQ1ZcZFkiFo+SjCaRBYOLF1eotZqMpsaYX8yRTEdRJZ03z13g4L4pxkaHmBkfwbIMZDlAkhTy+RqPP3Wa9XKJ+++4HQIR3dRwnCayIuO02/i+wGPPnCYRN0ll4njNOrF4iYNcpwAAIABJREFUDNuM8dqb7zE+nKBWrRFPxpBEgYsfXMbSY5i2hoCAJMg89+xrHL9tP4LkUqvWiSWSHJodRRIFqpUqjuORyWRYyxUpVXLEIjE+fuoOTEtjeDRJrVknwENCRJdVNEVDUAQUXaZcrVBtNNBMDUGUqOYrYYoKQ6fZqIAgsF6ocuL4fpaX5kkNDaNqIgdmZzkwMcHyyhIjI8NcmZ9HU1RkWabtOOD7PPXia6TiERJxm2plnezIKKMjWVqtFlfmFpmd2YcohW9kOpMk3/G581worJcpFMosL68zvm+ai5fnyWZifPDBBxzaN8HCcg7TNFhaWqFWq9FqtfnKNx7llz9xD9lYBEEQSMRi5AvrqIrBVx/4HkcPTdN267hKhFQ2RTyiUysXkdt1Hv/OD/jx2Qvc+7FT+AIEgrgR8ioIPLoahms1ibsF7q4P3G1aQwy8Le9z6vrAndQn2Esvda/1H18I7kRRQhTEjp99dzi3wN3miLZfDX9LkkwQ+B2rmBs3P70F7gajW+DuQ6Bb4O6jQP3dfkNm2S0zODDY/k1vD3wyyEcfbGyy+zjz3gQSugtUAJIo7jA5vFrd3e6l37m9zDhvRiCYvW3+txvBbD8GMzENj/799msh2OV8L33xC1/i3dMvcXtthXtGEnxiIsMnxtIoktQxt2QjEIqAgE+ApmuoitpRvYWgXFXULXMgdpf6YNOEM+hz65uBfmQEQcBxXB79zjMogkStUOL82fcQWgJ//eCPiKoKWdsEMcA2dHRNp9H2eO7lN3j6xVe49/YjBAHkCxUuzS8xlo0zPr2Paq0BgYeiqrg+FBsFZiYOEJVVRkaTaFaUlYU1IhGTQjFPpVYhFo/hNGtUKyWKhRzTo2nSqQiu7/P8K28wNTqOrilUG1Xa7Sa2qdJqNrAti0atSSRu88orr5NbXkQQamRTw1TrdaxoAklOEImnaDhlZEmhVGxx6coCs9PD3HffbZhRgZn9QxSLFV57+11+/fOf4tW332F6bBhZFFFFBVUx0HSFYrnIiWMHGIlnmJoe5zs/eoLxoTQEErYVYTWXY329yHq+xOtvXiSuRYgmLP7wv3yd8aE0R47uY301T6vZxGk3MIwIS4tFKs0ipqVjGAa+GDA5M0LL8dAkhUatjiD4WNEY6VSKaCxCNBZj7soy//DtpyiVm8xMj9B0KliGgqYa2IZJo9pAlgWSmThu4KBpIu2WQyqVwjJtREmhUazh+g0UBSqlEqpuY9s2J28/SL1WQVZUWpUaq7k8uqljRAzSqRSryzkuXVpnZnqSQGojiTq5tSKXFua59+RhWq06mUyCpuvht9tELYNWswmCgNt0kWSRBx5+gkPTGTTVwQ9kEEX+8qHvUms73H3bEVKpOD4e9WYbI5IgElFYL6yhqjKKpJJMxLn3ruM0Wk0SyRipTJpKrUY8mqBer3FwZpxkKokiGYieSyFfRNMt7FiK5NA4kzGTkXqeJx96kK/98Fl++VP34+GhqAZOICEBsiD22cr3mnGJO5joILx+IzhLT1Gxh792c7P5BASd717os2bt1HX0RCPZFOlscr5OQBOhXxtX0WhtMpFgF75Cz3j6Mp+e++8a5vX40HXHtoV9d+d30+1hIxBNH2a7cb3/CDZmZPuffsFedgOxm+tdd40P57wb22UzpFV3Jnb/czXaG9htXu+aZ25vu/f/0gDA6VoFlF3qzovnuxt9h3uNLhz2AX9jTQ2P7nP0O2Ptfko7jD736LnbR69AXQQRJPoEZ9s1KMq2N6RzqvuebopQth/bRnML3P1i0y1w91GgG5AO9qG9ANiHqQG7nna7vgHBNYK767l2M8rf/PZu3KjyWlr4oy99mScefwr9vTf47WOznBxJgiDS1aEFvg8B1CtVFE3deOMCOgEGuo45nQtCIOzcUPbruM9JkYCgo5mulCrIssrXvvk449kEw0NhEA2CgDfeu8D9dxzh+NFZhoeSKIpMOptlPV/gg/klfMHj1G234TgemqaTjNnYloIZNVAVGUM1QBDIDqdJJyPkVys8/vzLKKrHSDaDphvk1gooqsbY2BiLC2soUkA8HsGOWERjUdZyRcyIzeT4KLIi4gktVF1kbGyMZCqG67lYtoUVsVjN5RgfSxCPmSiygqaFicLLtTovn3mfdCqJroMViXLu3CWuLK1w/PAsntBEkIJQ8wQ89+pb3HPXIYbTSVoNj4mxSWKxJBcvfsCLZ95kLDuMqulcmVuhUi0yOpxmaHiIP/yzr3Pq+HESiQjxeIyhdJqLcwvMTI6iGSLjQxlefPMshw9MM5RO4/kOmq4gKzqpZArdhKGhDC2njaSE+f1MU6fZqKMoEnYsQjFfpNFoIkki+XwJx3GxVI1UIornuYyNZSmVKzQaTSDMsel7Ad957GlmJ6coVSrE4xFqlTLtdo12s0Y8EkEUwbBMVN3guRd+wvjoEI7joGkqmqawuLzG1MwEmqFRWFunXqnw/KtvkY6liMYs4kNxJFnHNjSmxoYJApfV9TVczyUSjZNbW8e2LHxfwGmBYaksLC5y3513Ek9YOE4DL9CQJZl9I1k+ce9Jmo0qxUKeRr1BEMBDjz7J5EiG4dERfNdHEAXsqI1p2Hz9oe+iCzKKLBF4Pooi0Wg2MU2daqVKq9nkvXfn+YfvPsV9d5xAkiRESUJWZZLJBDbQLK7xJ994mN/+F7+B7/kdQOVflUH24z0DCfKu0tZWANn1mR6E6/RFaDsuD8ov+p4cvPKuRfyuZrTf/PX8DujmleuuXT1z1Gc6Nswir3VNGPCegj3+162xte/dgcDNpEE0XtcSBOh6Vshg2zj69df/uQRXub43uNuhGRUECPq7ZAyifQvb6JS/xom4Be5+wekWuPso0HbtDvhh3vGeD3rwD3U7G7uaxq5Xs7e9zp799LTrdTbpvVX20qxt1471Ss+u1tfmuEMgG2wr9/NFPx1w1/Wj+93Dw3xuZoyRWHSLIFwIBGRV4fVX3+C5068yMzmOYugbz3NjVoVeYNd5Ll3pbLD7W9oNHkMAvu8hiRKiFIJJr+0jizL5XIHXz5znysISc4vzDKeT5PMlPvdLp7iyOE80atKo18lmkri+QDIZ4fD+SU7dcQRF1pmfX+LJZ0+TSUaZnBreSDqsiBKCCKVKkXqlQqXUYDQb58TRGTTFoO15/Pk3vg1ewHsfLPDdH7/C7EQKw9BptFqUilVeOHOWdHSE+bkc4xOjVCoVNE0lGrVpNpo0mi2ardA0MxKxaLZLmJZGOd8iOzJBq+1gWDYPfP95Pnn/yY75X0Cz1ebAzAR2zKLZ8ojGEsiSxtzldRqVgCMHj1KrNHjixdNMj6dx/SqaYTEzMYEia3znh09RLJewYzqHDs/iuD5XLq9y5x23oWoKnueiagpHDk3jeA6KLJDNZjlxeD+qoVIuFbEiFpph4jgBoiKjKC7lcjX0h0VEVVVURaRSq6GoGoZpkl9fRxQkGo020UgUWZaIJ2zGRrJksmlsyyKZSmIYKrISBtSxTJt0PI6mqPzHrzzKr3z64zhtD1kUkcTQJ69QrOH7Ij4Cr735LvfceTuCINJqt1hfL+K4Acl0kvPn3iOdjOE5DpVKi0rNZXxyhHK1gK5bCL6PKIJuGUiSzNDIMJVKlUg0QrFcw7Zi5JYLiLLP1MwkraaHLAWUikXSmTFkWQj95fw2Fy9f4uD+fSiyxtzlJZrNNsePHKBSrqEoCtF4lPfOXyBiRqgWywylU0Rsi1qlhqwKFItFEvEYhUKe0dEskajNgekRrIiKR5uANgEKsqZj2RYz6Rj7BZf/+6HHmBjKMDkxSt1pI8kK/WMb93KCAKk3mMYetPHl9mouNj7zLYy8cy00VRNFESHw+7a5vYcdI+xNJbAHv/hpgruQb3WSTm8zH9wKjbZquLYGV9m9zy16n+s01bwecCcKIn7gb9FedTVVu71D24OiDJrYPAg8XM/rs0b3NykeqM3O0W8MvZrloOdcsO160NOWKHTT6fSKLLtj6z0X0rWDu26dnfuvGwF31+qW01uvqzn+qNOg4E64Gfm1flGo3WremqyfOfUulCFz8AdZO4Euv+xda7cb71xtQekH7gah3s+sa9rTy8Q2JG998uf1TeEwwLXt/YsCW3I+3Qwzy58uDfig92phl/v7T3/yZxQKRf7lTJoD2cyO60HPVAVBgO/5+L4f5tFyPSRV3lNbIARb29gzh/EG8g9oNluYusGbPzmLoWuMjIxQLBZ54ZUzHNk3TSabxHU9cmsFHn3iJX778x9nZHIUL/CpFqo0anVUS6FSzBOPRjEiEdoBNGsNZD9gNbfOyOgQshLH9xvIcgVBUhBEnaXVZTKJURrNBoYpceH8KrP7RvjO409zz8ljfOMHj6GpCr/zz/8ZlqUT4LGymkcWVWRJ5esP/4B/9z/8NpLis55bI2rZLK+ss7K6xuGDk9QbNRQjgu+6GKaGLAoEaCga1Op1Vlcq7JsdRxI6uc8K62QzCURJQhANEH1q1Tpf+YdH+De//muYtoaqShSK6xiaiuu2WF1vkE2lyeVWmJwYolReQ5As4olYuKkJFFaW1/mTrz3M//K7v4ll6xRKBbLZFOX1CkEg4nkBoxNDXLn8AZZpIooyASKmZVJaz5NIxnA8D900ECWRRqWOYUcIBAlRCGiUS8iaSuAJFPNlTNvA9ZtE7RhLi7kQ4DoNfL+J58iYpkkQ+ETjEVaWV2jVAgrlErfffgxJEalWq8TiUeYuLpNKxVEUEc/zKeZL+IFPo1nna9/+Pv/2X/xzdNtAUhVEQaRRa/DH//XvMbD53d/6POmUxuKVPIZl8/yrZ/jcL38CURaRZInADZA1Ccd1yS3lyMYztKlxeX6BZk3gxNFJfK+BHo3jthw8z2Fxfomp2QPk10r84Z8/wL//3d/i6Vde4b/9/MdQFIVmo40sq9SqDVZzORzHI5GI0Wq1QBAYGY5vRCp2XQ/LNMgVyqRTKRAEZKlzH40agiij2RaC79Bs1JFEge8/+wJvaUn+w3/4PxBlDVHbHlRp50c3iMkbhGDFC4ItPHuTj2+e7HKoMBJjCBzFgcDdznEEwma9vfhF0I/t9DvZr5G+lXev53cXW1Hc8Lfq3v9AednDyoOVGgjcDXZPvU+gm2Jha18huOsfd7U/bY+IGQKivSchIAgDYHk+sixtBN66WTTIGAYpJ0lhcnHHc3dc2zQp9Xec29bLVccRBFv3c4IgIvV5BH6ftb+bq+7mUOg2sRNufvRI1fSBXtJbmrtroFuau48C7dTcDYpHuhqR3vLbv5JBQduNmBRuSnz3bu96TSp31+jd0tz1a+EPvvhH/M+3T/OJ8Qwpy+pfsfdZiQKiFEa9lEUplKx3onPu5vrR9/+7UU/hwnqRtbU1dFlDCEBWJCRRQJUlms0amXQcRVHwXJ+ZiQmSsQgvvPwTolEbwRc489Y5Xn77DPeeOEK1WieWSFBtNjB1DcHzSSbiyJrO4lyBZ198BUmpYZkWgqChGhq6brOaWyOWiLC8WEJTBG4/fhDD0Lj7tkOcODwDgYSqKzQaDVKJJJ7rM798mTffe4+jM+P4XotWu4HTcMnnS/zknXcZyYSpBZLJDKZuIUsKZ958k3bLJRY1UVUJVdURxICvfO0R0rEY8biNbumsrq0jShKaLlOrV5mdHCEzlEJUWpQrJUqFKuNjY4iorBVKqIrClcUFWq0aQ0NRbDuBQMDC/CKmafDdx5/mrsOHOXBwGkmWSCQinXQHGSRJoV5roBs68biBbuiIkoKsqqyu5mg1HNLZDE7boVqrUq83sE0L1xPCQB8BBJ1IppVSDdM0EASQZcjlCiSSCUzLRBAgnooQtZMYho5pabiOgx0xCVyH4dE0SyvLiJIY5kOUFMrFGrFolIX5BZ5/+Qwvv/k2o9kU8XiUk0cOIQTw9Es/wXVcxsbGaNTbTI+nmRoaZt/0GMX1HO26y8j4GLIoYZgGbSdMd/Dlv/g6lqYwNT1KvVonaHuYMZNYPMLSUp6piREajQq5QgHBh4XFFQ7OzlCqtXHdgLFUkrnFFUQZYhEVUZJwXT/0b1xZ568e/h7D6QSVag1ZllBkmWw2zvkLF5EliVjMZm5ukUxmhFbDoVyso6smxXyFeqNKPJmg7fkIAkiSiKYrHJgYw1pe4FvfeoQX3r3I/Z84dVWzt4EABOEmVxTELTy7n+au37lB4ePOU/21YoNU/bA0d5u+WMFGMvINt4GrtzR4n/x0NXcb2tZr0t1s1bANZD5JuGaIokg31+HNpEH97q5WTgBcz+krsLxZmrvtbYTg7sY0d9dPXRPqjz7dMsv8EOgWuLtZtOlgHka4DB1kdzrkBn3K7Wytaz7R79gC5ISd5f0g9KDqHmKfhWwQk8vdqF+Alr2ie+3W/vbjejRsH65Eql+gm8HusTeH32btfhG4rn4Hvc+z6zBPZyPSWztA5K033+HP/stf8Xv3HIJOUJTdn0uw9WfHPGljge6zwdkC8jpJ2cPnFy7sbuAhyyr53DqvvfwmhhKGfscH3/V579wHSIKCKmtIgkAut87Y6DD1TsRB2zRo1FqUS3WGR7KIsk9uvcTs1DiLc/PImsbI6DCvnHmXj91/groPq6slkraNoeugagSyhCwHNGpNlnIr3H3HSZZXigiIuM0WudUVMqk4oiCQTNvEM3EkwSAQJSRVJPANaLaQFAlFiqKpOqu5Swg+jGVS+K5D1LKI2hGsVBLLtrn96FFSw6P84xOn2Tc1iR2Rqdaq5NbbjI0PY0aiOC4oqoKiKNxx13EyQ8M4LZdKcY3A8bCjBrVyFbwAQ9FolGsYhkWlXGFkfJh8oYRm2NhRE0PXSMTiBL5IPtdAknSq5RY/euo1nnvtDY7MTDI5msWyFDy3RTFfwVANAiFA0xUUTUJSRNaWq7RbLqYl06g2+eDCAt9/9lmOzk7j+QGRWJR2y6XtOzSqBfKri+RWl2i7LYIAYvEIQeChGzq+J7C8ukoiGUeSJRr1Bopq4NEml19FVgQERHLL68wvFVAVgwe++wQzoxkSEQNfaKPIAo7b5rUz7/Ljly/w3/3aZxkdTiGIAclMmla7gSKLSLJANp1AFF0y6QSaKmLbJqpucv7SZcbHR2k262QyURr1MtVqkZimMT02jNtqEYkYtLwGsiyyvl7g77//BHceO4ZhpzE0HTtmkMwkWFuvYmk6BD6Tk1mymQiz08Momk46ncL3PBbmlhkZybJ/YoxULMbYUIZnnn+VqK5jRJMMpZKsr63jOLC0UmdsPEUxX8DQdX7w5DMcO7QfVZVx2g7FtTzxeBLXCZCMEOzOTE0xLLsMV5b58sOP8Suf/zx+EJqydkMWKX4YOsMXAwi6Wpu9N9qSKO5YewYNSCUKOwM/dI/O6tAXVGwNsrFXXbGnfud6n+ApgwZZ2X70cnYEAa+r4QqCjuYzCOd34DVp77V+u2mi73dgl7j3Pfkdk7zedSR8PgJhEI6QTXfXXy9ww1KBD4HfE6W5YzmxwcD7kc9mUJGgw9MHv3s2xgaOE6bvEcXr00T1gtIN08o+efR6C1xtrOHciRva536uHlvP7XzHQ4Pxzd1Vb5Kfzbx52/sM38ntf/pTP+C5M/DKxiFu/t6u3RWE0CR285356NItcPch0C1wd7OoR4vV+Xm172nQcrvV263u9vWon9ToRsDdtZT5MOr+9Oj6JWu7su4d93315XPLArJxbJpPdVt48IFHeOaZ5/i9+49uLIyyItNstpCkncln95Qg9C54Wyv1nOnZjAmh/9ylC5eJxGOcf+d9DFUjM5TB8zzOnn0bSQiTO6uqxsWLc8iyzN8+/CMOz0xQrzf51g+fZP/YCIZmUGs08T2fVqvFg48+y/7JMdLJFIZl4zoeVxZWcNtNDNPmqw99n5NH9iPIMo1mCDrwPaqNMgdmJtBUnYtzc2iqyAuvnmFidBjHc5AUEd3SKeYrVIoNZAkcp4KlaUiyyI+ee5523aO4XmJsJEl6OMvocJZUKsk3v/s402MTGBGLpYUVotEItWaTu28/Rrvtgu9imgaP/Og0v/zp+5EEiXa7haKGydPLpRJ+20NVFFZzK0xMTqLoNrpqYFpRREFB1Qwk1aNULmGaFqIQmk4ahhJqWgXIra2j6yp2JMI/PPJD0skYn77vTgQBhrIpSpUymqYTjyUhEPC8Fp7r0GqGwVAW5tb5m4e+z30nj1IuV5kcH8OQRSYnJ1B1FcdxiEZtvv2DZ9k3PkY6lSQWi6DrOkEgUKlUqTcbKKqC67SIRSMUCkUC16NWr2EZJgsX53EdF8s0kFUNEHn1rXMogshv/vpn0TSJWqNBPB5DkRQ8xyObSnBodpjhoRSioLCwuIQV1RFlhYhtks2mw2h4ohi2bZkEBLSaLb75/ccZisdptVukM0lkWSYaszE1jVgiwvp6kXg8QaPeptVqEo/HuPDBAodmpvnjv/x7PnbXMVyvRa3W4MrcCj966jR3HD+Eoir4vhcK0BCYu7JAJpOl3WqjKgq6qZLNplBVhamxITzfQzMMBHxcz8W2IgwPDSMIMD+3xPDIMBPDw9gRm8uXr1Ct1Tl34TLTU+Od79qn2WyjaRrxZJxoPEGilOf/+vqD3HfyEEYsiSd4BELHtFLYFD6JQo+Q5gapH4caRJB3IzqDvnX7Njdoua20/Z6CIEBk65yJgnhdAse9qAtOusKw/tO4ld/vbGNHsQ3yfREEEZ9wrQkENswygx5IK/TVvW7tbYuPXMd3btD0AKIoIgrSDSmidr4DV+l/0L4G/ib6CSe2gzdhy//6dydcwx6vH7jb4x3c0v12cNflB1f3v/1Z0y1w9yHQLXB3fdSbf2770aXec91vq+vkujdA6/8hdoOsdP2+hY4KZXsgk2sFd/20aHvRoNLdQeteyzVBEK4qkb55dP3gbruzd+/5q/exvc6mBHVlZQVN05CkbkLxkP7g9/+Qf7s/wycmQt863/M4f+49SuUSmUwGv+sHIOyQh+84QulxrzlPsFEv6PwrBAKB49P2HDzXAz+gVW2iCBJ+IJKOJ0jEY1y6eBlBCEgn42iaitN2EAWBc+9fJJNK8dSrb/CxO49TrtbwfI+opuP5ARPj4zz06BMcOrCP245MUGvXUE2ZtfUVdE3gyZfOcerEIVLpNB87eQzXh6XlVUxDo9GoIYoSmuFj2Sa2lSAasYglTMaS+9A0k2QijaTqrCznyaYTvPH6OfKFNcqlZYZTCWRVxTRl/vGx0xzfP0sulyMzMkQggGGYjKXH0PUIkirw1tvnMVSZzFAKVZexIzFkEdbWipy6/TiaplKvN1lYXOa99y4RiZjsmxqjUqwgSTJW1ELTbVbXVpBViUq1jBnRcf0Wxfw6Q0PDNOptVE1FkmU0VQ6fpxBQqVSYmp6g3XY4decJDh2cxTBVdF0llohQyFfJZrO8c+4Cmq4h4FIuV4hGLFZXVslmxjgyPUm5UuGd9y4StU3GJkbCBPF+QLVaplmv89gz7zA1lEEIRFRdRVZVXnrlLMOZDPFElEqlim7qNGsNkokouq7htNpEojaLl1dZWV1nanKc1dUCz7x0ho/feQJD17EjFrIqo5k6rUqTwnqY9F0zJGTNpVqr8eMnX+fEiUPUamVEVcfQVVRNxnVcFENHEgLa7Ta2ZSFJIiePHOLy/DKRqEUsHqVYKmFYBuVyiUg8SiKR5PRLrzO3kGP/9CgiCnedOE4kanNs/wSmqeH7AaVimempCeK2iWHoiKKAZVtcvrKAaRjYto2qKmiqSq1eI19YJxq1aTQaGJaJaVm88PIZ9u+fpu14RKMxHvneEzx9+ieossxabp1cbh1FFBgbGyKZjDEzNR6uGb5Pfq1AOp0ikERQDBA1RkeGuE31aJ07y//5dw/yuV/9JKIQbtsFpA5A2RT+7Gnq3ke71rUG2G196LYdsDvAGzS0/jXTNYI73/d3jVa5xeIhCDVWvTzvei1JrkZdcCKKIlfmrhCLxTaubYS6D4TOHG+OW5IEPM8J8zi6LRDoPG1wfa9zHwGB1/EZlEQ8AAHEPrfRHyTtDu42cq32BEgJ14Td1+vdXoGuBi7oCW6yvZ2+Wt+e/reMfw9t5PaALqFfXlczebV39FrBXWfk2zSDGyX3mJM9++yn3e13z7fA3S3qpVvgbnC6noTiXer9trZ/aIOCu/6aPmHHuZuhufuw6Hr73RqB66MP7nZrYac0fZCXaWsUMFULE4YvzC3y5f/4p9gX3uQ3j85seQmclkM8FiU9lN7cJgjCYAEChO4/Yrg52DDBAs+HwAlYuDyPBJRyRdy6w3qugKzI+EFAq+XitByqpQqmqaKqMhBQq9YwDYNatcb+fZO0W22OTo+RzSRCQCCJCILHyHCWK3MLfLC0yNGDk0RsE1XXiSeTJKI2lVKJT566jVa7RTITanA0w+L8+xeJGhqxqI1mmkiCQrlUQ1Z85ueXScQzLKwXOfvuBXzP45kXXmFpeQWRKnMra0wMp7GjFpnsBOu5IpIakMuXGMukubQwhxQoxKM2C/NziEg88cxp9u+fYGw4g2UbiIpAs9mgUCjQqNWIRiwWlpexLA3d1IjHYiRiSZYX11EUGc8XeeGV19k/M4YQCCiaGvqJGTqtWp3l5RWS8Sw/euJlZvftQ1VVSpU8XsNHFETqtSZT01MECHh4uK7Hcy++RjRiMjSSYWUpj+dCrVZnYmqI9cIazZbL8MgwbddH0TQct4FmyESjEYaHsti2hWZqVMoVmq0m0YiJKMK999yNpoj4gUez2UY3bV577T1O3n6cVtNBRCRfKJEZyrCaK2DaNqqmky+WsONRZvZPI8kyS4trxEwbSfZ569wFhocyNNstms0GbdelWnH5k799mMMzE4iIuG6AGbF48NGnmM6OEklGsRWZVrVKpVwnkUzh+W0EUSCfLyCJEtGozejoOIoiEeCjGSqe55FbLVKtNnAcj9OGRpHvAAAgAElEQVSvnyWdjOO3Wqyvl1hbLRKLmzhOgwCQJAXfBztikV/PMzo+zNz8EpqqoqkaiVQKTdcp5IsUS0VUWWJkZJjAh0bTwTAjmFaE8WwCRdcBgWajxfLyClHL4DOfuod4zGJ4KEmjXUeA0OdVECkUiojAc6fPMJxJomoivhugqgqtRpuGLxJNZbjblvjKH/8nfvjiW/zTz/4SiBIB4haecjVwt522m9f1UjdYRW/0xZ8qXSO428sFYafx3NaTN3N92TTRDwcXdM5FolHYEnFzw/CyA4CEjaiPnh9qhx23jSB0tHCCvGFq6PoOgiAgOXlajQqyoiAi4vlC32Ae1wrues9tHMEgYKUfdcHZplR6cGFA95kO6PXZM97w/8JAgo9O7T5ndgd3ewvGbwDcDRrV5xa4u0W9dAvcDU5bJXnX9rHcAnc31u//H8BdGIRCvCFwJ8kyoijx5f/nT3nxxZf5vfuOMBSNdopttivLMoIgoupauIGAjdQFA3TXGVmwUdf3ffzAp1ZtUK9UsS0Lp9VG8OHs2++RTiWQFInX3nybc+cvMzaUQldVVFUiIPRf8VyPZqOJomg4bQfT0EglY7SbTTzfQ5El0qk4uqGztpbn4/eexLYNdMWgVKyjKQae41AqVtANBUPX0G0bQZaQBJnZfZPoihBqceJRRMIyvuBgmxGeff4Mh04c4LEXTnPswBSZuMkLr76GZQr8+uc+RyRiUapWUBUbQ9PwRZcj+w9gGyYRU+Xtdy8zMpQkGtUxNZMTRw+BLKCoKrVKBUkNc5ZZkTAUfyQawfc9YvEoCLC8tIZtRfj2Y8+TSUdIpdNEDJNY3KBWaSCioOsm5WIF0zCJWjaWGUdBIreeR1Ek8oU1JsemOxJ8FwQBx/Vw2i2sSIR9kxPEk1FkRSYeTZJMptF0FVkBRRFJJJJUa3UKhSKqphGNGQS+z3q+SLvZ5m8e+DYRQ2N4OEs0ZuN7DgQBjbaPoog8ffplisUy2UyGw7MHAHj9zbP842NPcf+dt+G4XpgEvu2wsLRCJpvGsG1kRabVajE2MoIiyWiqAIHA+OQYkipRrlSwDANNtRhJJRmfHCZmRyiXazz/+lu47YCnXjzLqZMHWFtZRQx86o0W7baLZkhIkoLnerQdB8dxEEQFQQBZlpAVCUVVSMVTaJpG23E4uG+KVDJO1ND5xqNPMZrJICk+mq5Qr7eI2DaGYVAslSiXSqRSSWJRG8/zaTZaVCphGoRyqcxQNkU+XyC3lkdRNL764PdIRWNIkkyrUUUxNERZxmm7jKXSZFJRPN9jbGIEz3cJfI/AF5AlmfX1ApGITblc4dGnXmbfeJZEPEohX0SVFS5emqfacpncN0HcVDkYi9G4cJ6/fuYVPvf5f9r5eD88cBcCjtCk8Ba4G4w2fbECeiNR+r6/w6gvCDvfmOsg8AgCH0kSuPDBBRy3Tdt1EQVQJAUI8HwXSZTI5VZ59/XnePBbDzE8Mo4gyJiGtQOQhF1cH7jbWuB61+KfHrjbTh8muNtThXgL3O1Jt1IhfAj0i50KoV8o2q3/An0lX95NnLV+Psc90Zmvm7pt9JfcCQMlWRUIzUX6FbmR72yQgC0/TfI7uYqkHuZ/4+31p62boquHFO9t64tf+BK/d9+RGxkagdAr3e9KDOi89AL1WhPbtmg2HL78p3/Lr3zyHsaGs6wsr5FMx9AMnVazRa1aY2gowemXz3D00Cz1egjShjJj/NXXv02lVudf//o/IZWKIhtRfvzjp6k36hydneLAoQMsLc8hEyeaEClWS7zxk0VO3TmDIEA0GsHzfS58cIWDh2Zxmk0a9TqReIx3z3/AwQNTLOeKpNNJ1lZWGR4dDv3IREKtmCChKxL5Qo0f/vglfvVjtzG/vMrL77xPImZTbzT4N7/1a7z0ymvcedcdrK8XcNptUukUbtul3mxQKTd46AdP8Wuf+ThXFua548QxFF1BtVQs1aJZa1EsrzE8kmFuboFkPMN//rsH+J3f/Cy6pqObBvhQb7bA94hHDdbWyiSSGebnl1lZXfv/2HvvKDuy+77zU7nqVb0cOueIRiM08iTOUKRISZREypJl2d5dyT5ndx2Otd5j7zn2/uE9lndlU/TqLC1RlMRMUSSlIYcz5EROHswMMDPAIMdupEaj88v5Vdo/XjfQABppZijR4vwO6jRO1a1776u69bv3e3/hy8T2cUrVMqYVQHYEPGxm5+ZJpVL8+beeYHxsgB1jm3l970HGx/pp0GBwdBBR8PA9j/373uXxF/bzf/6r36FQKNDW3komvUxrWyvpTJpINILnOhTyRULhEKVCAdfxmTo/TSqeWAEmGYrVPOW8jSzpqLrP2Pgo5XIJv1GjVilgBlPsO3CKM+evsGdiA72dCcxoDNupcfr4ZQRBZHBDK47jMHl2mmKhwjvHT/FPf/NTNGwbWVKo1W1iMRNVlanbDcxgAtd3yGUWUBWJUDDG4lyeoyfOMjExSDASx7Ed8pkiZkDn8sxlRjcOMTU5ydBgH67tkl7KE02G0DQNWZLIZnMUSxWWljIkkxFSLVE8D4qFMqlkimIhSy6bJZFMoGghHKdKrWqjawEkCdKZDKZl8Huf/xaf3DNBKhmhUMzT3dlBPBojs5xBkn1ylSq93Z3N79ODP/7GX/Mv/qe/h2P7qKrKl77zfT7ziQdRVBFVDuC7Ag3bpqU1TqWUxfdgenqeY2cvsmfLZrSgRkDXyWby9HR3Iksy5Uad5XSG9vZ28HxKpQqO20CUJFKtKarVCpLtIopQLhU4Oj3NfiHMb/76pxndOIojSAh4gIvEzTG370fPeVcTj7x/+SD07VppkpJfk7VJPbx1OIaEld3P9XT2XVMhrKh0URBxV3g83ZXMp4J4DRJcuTBDrd6gtbWFaqXCG2++QX93L8/96Gl+8Zd+kSeffYb5+TRL85dJBRvs2b2DYrnGiWPHsOtZ6pU8LbEovV19mMkWatUySwtXyGVyWKaJIcLuXcNMTma4MJOlbaCTjVsepKWtBWSJbCGP7Tjc/+DPU6jkkFUNWQ0gSCq4ArqqXeWs8yQVYcUvQMBbCelcG4e3CpLWGVv+qqvoWo4m+a4e5Y3UDf6a97leW/cq/vsCiPd2z7XfvwqwhKtruvXprtyrmyfXWry5zXulUbj2CXywNBUflHxIhfATkJ9ty93NmvsasLg21tZPY/vByXo4525i3+4kqz/lbmLubtk3VhxFPuCNn5+2naRVl5kPajf6duPjXi13PvD7/8//y4k33+J3d468365xLbBOwPeaFpRmQhQRv+Zy+vBZ/uhP/5p6pYQkwn07NpPPZbDdOvWKy8WL0/T2dCBKHtVKna7OdiqVGsdPTzHQ24Mn2LQlo7SlIrz09jt0tiaJRaMEdZWu1iSplhSu5xNQw1QbRZZzi3iOz6kTl+jqjdPa3kq1auN5ArWyTaGUZXr6Mv39XSCrXL4yz6FjpxgbHUIQBHRNQVRkqrUqfsOhWqpSzlewiwsIgouhipRKS7R1RombUVLxCPg+La1xIvEoqizjug7NbHE+kgxGKEgikWBjfzetLXHakmHePXGccrFGS6IFVQdZ95vk77KMGTCp1xtMz86BozA40E+tUuP1t97BMg1UVUbWZDRNAcHHsoIcOHaSsZEBauUqhmFQzpewbY/F5Sy+K3LoxDlkWWZsuI/h4U60gEQ8FcZzmzFmoqjg2QJnz8yxa/sIX/z2Y3QmY3R1t2PbNouLy0QjEXwfFEVFkCRcr4YVDGHqAQ4fPctjL7zGg7u2EQ6F+fKjzzAzu8TxS+e5b8cWVE1ldmGeSCyGqAQ4fOIsv/jxh/jyY0/ycw/txLN9ljNLTJ6bQZYkBgY6kUSNb//gBS5ML7CxvxtZEqiUBV7Zd4SX3zmK6zTo6GjD8yEYscB1sAwZTRGo1300XWNsbBDPs1EllQPvHOXwkdOcPDvFppEBAmYTMJuWxdJShta2FK5rUyyUOXb8LLgyU5NXcD2Hnu4OKpUqngeKrFIsZZuxep6NKIo06nUKhSqFXAXDsBBEERGRQiHPz92/nWgkSCIRp2+gi0qlysWLM7S2pShXSkSiIVRNoVZvoKkam0YGEUXwHJ+jx8/ymV/4GJZpoogymqrz377+XSY2DuO7PoGATi5XxDQtfM+jt6eT6fPnsGt12ttbm9xzkojtOkSjzfddrdX44re+zwM7tqCpWtMFT1LI5vPoVoBqtYalSgyKDb7/7klefe0NPvLwg9dAxwccA3e7mLu/DWnGq/l4K+6Ma+VGr4+b5Jo35E1y9/akZr2rSVhEQcQVHBzfQ5VUJEHm5PFT/Ivf/mecPHCQL/3RFzh5/Cx7X9zPkQNHmJk8TWdLipHePmZO7qM/FSAol5g+tZ/li8dplCpIjQq9be0IjTr5xQXmp0+Qmb7IUEcLiYCMYhdwGz7ZzGXy6RySb+M788ycPMTU4dc59OrTlGbPsnDmXY7te5GFi0c5+c6rUC1Sz82juFVEXHzfQZAVXEFeeQbyChLxbumquf5DXfuX64Dh7WS9RCq3b+u9yXtbg9y7lXL1vmtZTlfm3nWn/ps329e3sN+bV9G1Kn96vtm18qFb5k9AfpbB3XpJUdYzrd+Ko0QUb/WB3pusGEyuuSrcUm5OnnIXtTcn9lvcc3dZMf92rGl/k3JvGa2asl7ygVVZ72n5nsvqC7wG3m8ueWO9/+n3/oBf6AjxqdHe2/T9zp1vem34zX++j4hIo243Y7kyeZxag8XZJZ55/k12jg+zY/sGNgz1cvDdo3R3tZHN5hkeGmLq/AWS8QiKKiGJCrqhk80V0DWVWDRCrV4hGAwSsiw6Uwm6utpwag6qImEYGvWGjaIZLM4u89UfPsGvfPwRdMVA8V2GNvSTy+XxXdi77wBvHz1No1Hm3Mxl+jo7cTyPSCRMuVBicKgfVVMQcXEaMiErjCJ62HaNp155gb72FLppEg6HSMZMfMA0QsQTUQK6Ts1uEAoH2fv62/R2d2A7NlbIbPK+iQLZdIZg0EIQ4IcvvEhbop1X3zpGf3snoiziOiDLIuVyFUVV8TyP7Zs30tbejriyY+/U6pybnmkmlDE0AmaASqWKbXtMbB4jl8lRrVWRZQFFbi4ML07PcvrcNBuH+nnz2Gn62hKEQgaSCMVyCUXWcF0Xx/YIhSPct2ML2VyG1kSU9vYWMtkcgYBBJBrBB9LLzd/hA9VyEdMMIYkSo8ND7Nm2iUa9jhW02NDXzQO7JmiJhUnEwniuSyhk4QsCy+kiG0eH0FSViKHR1t6C4AkUyzlaEy1898lX+OhD25AklbH+HgKKxEMP7qS9PYkoG1yZnafcqNCeirJhdAjbbqAoMo7ToJTNUcgVMawQrtvMRlkul9FUg1DQorezA8+2iSeivHngMAO9PeRyBSRRAN9DlCTy+RI/3vsOExs38Oq+w3zsI7sImDq1ag3P98nnSnR1dCEg43oCIBG2Iriuyx9+/VHawiEajQb1Rp1UaxxFlTl5eoqnXn6DjSP9WJbJ9555maChkUxECQQDyLKMqio4jovv+0iyQDqd50cvvclwTyeP//gVetrasBsNNvR1Y+g60ViEpeU0iWSSYNAiaJpousrC3DwbNgyjaRr5QhFVUyiUiliWhet5qKrK9vERBN/DtEwEUcSuO2i6hqJpmEETTZHxXZe2RoHf2LaB//zdp3jwI/cjCHcP7tZLhiKI4k2+/vdKVH3VWrKm7g/SYne9NeYG17nr4tpuI3cAd6LYdKlfz/q3Kq7rIEoSrufhujaSL/LNr3+Dz/2Xz3LpwjlK2RKaBEsL8wwOjTKby1Es5UkvX+K+PduYXZxha7+JGfAolxYIWzqxeITOnm7i8Qj1Wo1YLEQwYqJpenNDRDW4ePEinm8zM5sj2ZZiIV2lvaObltYITq2C3aji1KtoioTbqCH5HsX8IqLfYPbyJS6dPUUhm+HYkcPIsoChG0i6jCbJSEhNS5HgXfdErrnw3pxV8+rzWzvXrcxR/gpJ/C29htZQMVzf0ur/7z5r5+3lWpzj3QO9e1skrJek7nZ5G9bd6P8AwN21xH4fgrufGflZBHeroO5u5VaWuxuzXr5XEcTVz/JOla34p9/j9ymt2OR9728qVu1nQ24Xn7Ku6r0hsPtW4G5tvb/3Hz/Lv79vjNZw6Jb9uOt3KlwrLwkiy0s5PveFbxHWNOxiiYsXLjF5/hLtqQSRiIXvVyiVKgTNAKZhEYvFyWbT6JpCOBTk4sUZglaQ6cuzlEsV+vt68BwPRZNxGh75XIkjp8/R19XF/Owsgu82s1nWbOYWl1lYmKNQr7ChezPVQo32NoeZmSzJeJRyschgbwfnLp3nUx+7n5ZYhPaOViRVp2bbxIJBcvkmoJRkkIUq1WKG2SuXCQUtzs3M09qaJN7Sjizr2KUKQStMDRczaBIwDbLpPNFgGN8TWVhI05JKoirNZDW1YoZoJMzcwjLWihXP0kxG+1uxgiJWMA6oZDLzxGNxNNVA1WQEScB2G0iiyOLCMo2aTTpbZOuWzWimhbOSWVRWlWaCjFqVF/fuo7e1FZc6wWAIWVYY7u+hs7OFXC7P7u3jvLx3P4V8GUMNIiIQCGgouoSHQ6VWQVc1OjpakRUR33URRQFV0XBsh0qlhmEEsBs2ru2unKtSrVQIBPVm7I8AiD6S7NPW2s7FyXPIgkC5VCMYieK7An7DoVYqc/zUJL09XXz1mz/gIw+M4zoee7Zs5PNf+zb3bdvMxUuX+d4Lr7Jr8zBWUGVmeoZDkyf5rU89zHB/H41Kg9nL81RrNXzXR1EM4okWJFmkVqtQq9eQJAlBVdEMHdfz6O5u5+lXXsMKmPR29/DFb/6AbRuHVtyNREKhEK+9/S59HSn2HTtGX1s7y+ksR06fZWSgnyeff4OBzjYc1+XoySkMTaeUK+JLHp/4yG6+/9xLDPd3kmqJoaoKtVoZI6Ay0tuHoivous5Ibw/d3e007Dp1u0Ew2ARZlUoFQ9dRNBlREPnYg3tYmF9mbjGN4MDAYDey3IRXiixjhsKk01kkWcT3oVKr8pdP7WXLhhHKlTKOW8eyDEKRCJ7vregNkCSJ5aUlREFCFmWee2EvjXqeeCyMIMnIsoogCuQzaSqVCr+8dZSvPvYMR05PsX3blrtUEevE2nk3p+x/r9kwf1KUyuvF0Aniio69R9fKtSKKazKFencGiD5QbzQQENj77Jv8yef/mD1bN3PxxGE2jw7x5oED/PZvfYaPfuxBnn35Vc6dPo7TyJKwGvS2G0ydPMjsuYPk81lKfhDRGmIpp/LIJz7JgaOXaOvdjKtFmUkXMVM9nDqfZbks0T64mZGJbWzZ84u4wTgTD/wGrpTAdiV2PbSTQt1leGwLM3PLWOEklqlgBiRqhTROKUMlM8uRd/YjOmWWpieZO3+ScnaWVFBHkgKIikYDF2kdt77rgdZtns8N3kK32hgVrgPq69f5QVrwVvtzlyU/iNZu0491fusHAO6u1f/Tuf77ENz9BOTvJri7mVBcYkUx+x6iwHWHJK6keb+FWcxf55CE5j2rdQhr6AlWLV2yKF4lF11bdm27knQvXDq3s9AIVw9xZfd1td2rJd7Dh70eYfnfpAgIt4z5+yBkbSazq945K42tJbr1fO+qQl09t5rJbD2qc/Hq82r6z98IrK95Aa03cQn8p9/7A869/Tb/cufodeNjld9WXOd9CKK/wt8rgN8M3veElcGG30zc4Ht8/vPfpae1lVqxwpbhPg4dOY6pCXR3tOG4Hl3dHYRjEQKmCU4dwXO4MH2ZUDCAFTSIxiQWFudpa+8kX6hiWgG6Ojt4ee8+Xn/nXfra+4hEoximwY9eeJXRzjZU1SaRiFEsl1EVjUqlxmsHn+cf/tKv8WfffoK3Th5iZKidkCyTzmSJJBIousrGkQFkWcMM6Dj1Ck7dIxaOkMsXeez57zHcnWLhwjIXpieJhMJIcgDbE9i+dSPhRARZVpk6O8s3nnqJTWMjGDosLuVYXi5w4NQUg0O9TJ66TFdvGF8Uef2NKdq7k1RzDSqlMhI+5XwRagKtPS0sppdpbetg397jTJ2+zObd26g3XMrFAqV8nnNT5+lsaWXq7CyJZCsNz+fEyQv0drRhhSyWljMErBCiKOB5PrppMtjfjWHpCH6Qx555keGBXmLxGKKgMNTbgShCKBjg1LlLvHX4BD2dbQTMZhzXj559mUefe5Gff+A+ltJZIvE4tWKNva8fJBhSqFYcnn/lbb735GsMd3eSak2wMLdMsVjl4PETPPvyfvbsnMB2HHK5PJquoogy6VwORVVJtqRYXszwR1/7IfNLC/T2dbD/yHHG+nvp6Y4TMBJIoka1XubnP7qdStUhFLV4aNcmYsk4ddujvaOFDf29xJNJNCNAsVgiEoxQrhRpaUtSqdmIskpmMYOmGvg+mGEdaFqEv/gXT9DdkWDPngnsegnHqTOxaZAjp84wNDSA5wkossVHH9iN41b56J49pFJRCoUCqXiUWCzCjokNZLIL5AtLvPb2MWrFGiMjXeQLdU6cPM8DOybo6mlHlkXqNQdDU1BlmWAkjKU0XeqSiSiS3EyYgyuzvJglbBo4uMi6RiNbQpFkZEnisWdf4L7tGzh6foq2RALTtHBdyOUrlKoOyViE0yfOIiFQrdrsGhsln88R0FXOTc6iiBquWycSCnL+3AX8ukdAD9BoNNB0HQGB5aU0GzeOI8pqU+doEoqhkYilKBUq5BZn+bmxfjoVgT/466d4+JH7EX0fX/RxBAcJ6aql7kaL3dpzq9QH1+kvocmhtva42ZnuA/b2WIec3KMZY7dKyH6dl8mqMr7b6lm51/NWdCjXKGR8cP1mAhRBsEEUsB0bURSQBWiggN1g4fwkc5dmeem5l3jlyWc5cfgYmmpQr1col4ts2zxOJnOQA28eQZd8xhKLjHUlaW3pYnLyIAFDYjEXpKV7E/uOXuY3f/tfUvN17EaSK0sFhjdtxxMjLKR12ruTDIyO09Y9gCcF2HnfL/P4c0+yefNHeeftE4xtnuDk+VlmF+vsfujX0eMjvPDOUcbv/xit3cMcOn2Gid17mJk/T7w9SVtHL91tAZx6hlNHj7C0vMiZw29x/tg+kvE4iWgLjqggieDadeSVdZOI2BwPgCeIOAhI6zx4EWEFvLgguCB6SB7NrJsIzZgxX0AQVi2jK2s4H0RRWplXJW6kZFgFemtJzu+Gl28tZYF/1/QIq22urkne28JEFAVWwwDWHuuxHnirBOjCmsO/mWD9buRDcPczJH+XwN3tLHLimg28Ww1wgfXySt26vhtuviqr7p13iklYXfDf/fxzu/qEuyr1XuVvUyl4nreiDD94Wd/Cth7sutmtaP1yK9dW/nprwPH67dx896q1bktr/JYVr78DvoKCheZk6HleM5jf8/E8t8ndlc0y3NtHuVQm1RIjm82xY9s4mizi+T56wEDRNF5/6yAdqTjxaIhYPIbjephWkEq1RqGQwzQCuK5IJBLBMgM4rk1na4odWzbiug6yLlKtVRgb6ERXFVzPxzACCJLC/GKaltYk28c3ML+UZ/OGAXRFoLslzsyVedra2vAlGUWRr/KX1WtlbMdmKZ3FdT1832XL6CCO45GIJTh89gwTm8cxrRBBK4jtNKjX63iORyQSY+NgH6GwxcLiAslECgGJoGEQMDRM3aJYzRONxWlUfdq7E4gC6EEdzTQwwyFiqRSNRoNkIk6j0eDw8Uk812dkQw92rY6uKkyeu8jYhhEmz17g+8+/SSFXYOvEGNnlNNFokIDVdJ/zfQFJ9JmZuYJpGJimiev6+K7Aky/vZXy4D1EQ+cq3n2Dz6ABz8/O0tiTp7+3myIlJto6Pomo6nuvy4r4D7BgdRhFlvvnEMzy0axu5dJbpmXmGh3tIploY6e/lgV2bCIdNBMEnYAR45/Ax7t+1ha1jI0iSgGPbGLpGKBykUbeJRsJUK3W+9J0f8NH7dzE61MvYaB/xRITtmzeAD5FoEElSeOxHz7Np4xBWUCOdLpJIxgiYAWy7get6yLKEoqrksnkkSaZcLnP8+BlK1RKxSAhJkjACBqrazAZZqdSQZAlN03FdF5wGY2ODVMplkoko8XiccCREd0cbkiTx2NMvsLyQY3Cgh2I5y8JillDIRBAE2tpSzM3OE44EicZC6AGdlnCCnTu2oOoCB949ydEz5xgb7CeTyXJ28jyxSBRoulrW6zau7SDLCuVqrekO6zjIcvP5nzpzhmQyju3YBAMmoihz7vxlHrp/B9FYiK6WVp57bR/bNo8zN7/IwWMnKZUqxCMWbx85xtxSmnK1ytjoIPV6jVg8zLvHzzAy0EcoarK4uEgyEcMwTTLpLLF4BNfzUCSZUrGEGTSZPHOOjq5WXNdBUVQ8r+kuXK9UKJbLtLe0cn93gv/8rSd45JEHroKi9aww68lVzXf9TuGtVNNPTm7hQQP+dW6i7yeEYLW+G2PS19I/eALN7KaygiKrOI6NLKlUywWOHDjI17/6DebnFlicv0QoEmDv3uf4+7/2SZ575nHSi/P09US4dGGJ+aU0g+1hylWBQkVGM00GB7eSThcxQ2HeOnKKyfOX+V/+53/Gm6+/wdLSHLqhMb5xM488/AjnL03h+wJDwxsY37SFP/2zP+PTv/qrTE/Pcfz4SVKpJFu3biKVTGJZISRRIV/MsnPHTmZnllFFhVKxzvaJnQwNbmZweDOvvfoK/QMjzC4UEGSRXGYZ37FZylTwEAi2diIKIqKs4noeoijh4tJkWlw93HWTgLASa7biJsDqFoJ/9bwPgn/TKqwJ6lZJ34U1Z1ervWbhu/r/FfR1O0vxerHvd7vOuVbuPVqwbzH3rzurr9eU/37a/emTD8HdT0D+LoG7a0p97UezqpRvDe5cr0leKopNK9HdyJ3AnSje2QVlrWXn7uRnD9x5fhOYSOL7z5K1nq6w4ogAACAASURBVPzEwZ23mj78VoTm187+3n/8LN6JQ/zjLUO37K94mwmrmRtFwBdEHNfFR8B3AM8ns5ghl87iNlwMUycWCzE3O0tHZ4rvPP4kw329IIrIisI3f/A06XyJwbYEtYaDIMqEYnGOHD9LJBgmGAjwyr63GO4fQFIUarUavutSKBTQNJVcLotp6dQbdSLhELVqjWiyA8UI4LgeVtjEF30KWfjGD5+mPRFg15YxNEFHNTQCpoWHiKZrlMtVFhcWCVomRkDFsgKUayUsXUaWQgho1LwK4+PjzMwtYZoBZFnk7OlzRONRZFnFdTwkSUIUBaxwAssKEQiYBFSFaqlCvLWDQ0fO8u6xSR7+yA7SmUXC0TCyoiHJGoIoMze3wKNPvMSWjRto2A2iYZOduzfxxt43WZhbpFSqMDg4zBPPvkpfRy9DfR3U7Tq9fR2kkjGMgIqsCLieg2FoLC8tEbRMPM/jwvkrfPcHL7Br+yZ2TWwgEg03qQ4qVfr6uglHgxSKRXRDZ+fEZtLLGXK5Ai2tLTz1wn7+6W/9GrqhsmV0CEWVCYYsRkcHMQMWnuvz7cefZOOGHnRDQtN1REmmu7MVK2iC62LoGoos8oNnnicaCCCKCo26w7uHT5HJFdkw2Es8GcHzGzTqNRYXl8hlC1iWiWUGmZubp6sjRbFcJBKJUK/W8Twfz3GQZKhV6zi2QzAcYnlxmSuz86SSUXp7O7GCFpqhkl5aYnY+y/eeeYN0psBrbx1jbKCNaMRieKCXSrmELIDnCsxcmcMyTVzXwTQtZLFBf083guihGSKyKPPS3reaWYI9n86eDubnFpEUDVlVMK0g+WIRSfXJLeVQFJGBrk5ef+MwpWKdZEuYp196nZBu0N3Xhao2LYiCJBCJhDCtAHv3HeGxF1/nkw/vpFopoUkyihHiW99/mkQ8huu7RKIhQsEIOC6hkImiihi6RF9vF6GgQcjQ8DyXjWMjmKbO7PwCoiCwbetGlpaX8Xy7SViPi91o4PkurueQTmdpNOpE4xG8RoNqpYyhqaiy0rSOaE0SdlH0yWVy+I6NFbb4SGeSN55/nhcOn2Hb9m13nTdv1fvkBuV1U7m/6+CuGTcm4iDjey61Yr5JGu4JHNv/Gi8+8zQB1eDlF15havIMc4uXeWD3GEMdOnOXTpEIqwTVPPXSEl3tHZyYnGZDv0HDE9kw8QivvHOMo6dnGdswxKM/eg4r0s4v/+qv88KLz/OJT/48R44cplgq8uKLPyZgyPzJnz/K/Q9+jEd/8Dhf/srX+OSnfonDB45z9MgxPvaxR3D9Gp5XR/BU5ueWMcwQhw+foL9vjMHhbUTCnVRqOq++forhsUeYXqwwn66gWe2cnV6ks83C0GQM0aFRyVHKzZPo2YgZCuEAIOH4LogK0Aw5EP2m9Wm98eGuWLoEZEBG9CUa+CtWPxdBcEHwEG4Yme8F3K0XO3qjfAjufnrkQ3D3E5D/XsHdnZOhXG+qvuYyeetJyfev0j03wdlVN4+b278R3Hlr+rGadnY95XKze6N/PTBcPfU+vsGb2l3jUrK2H++5/nt0z1zr+niv7fpcC2T/SYgormY3u/ZeVvt7Y4zArbKwef56jpnX/94bh5DvuSAInD0zxZ984UuM52b4eH8H3fHITX28G5dY3/fxXR/RA1wPRZT5wy98g5dfOYjm+yiChK5oCB7ImoSiNDnoFFWlIxVHN00czyfVlqIrFefAiVNMjI6wkCmSzZdIxKJYhoEVCqLKCrVajoPHT6DKGuFIEAEfSRJxPYdEOIkgKhi6hd3wUdQAejDA+XMX0XStCWpcBysYZPemYQrZLIvLaZAlkqkklbpLIGih6QblQpG9+w8zef4yLdEowYhJJBoim60TiSbQDR3XqWFYFqFQkEqlwtximndPXGBspB9VVVlcXGbqwiXaWlvwPYHlpUUCpoYg+JimSd2t0NXaR0cqiRFwcRsumqBw4exlzp68gCbIiK7Pgw/tQhBFyqUSHd1t2G6DtvZ2dF1D0w0USeXgsTPY9abL0cTmMWRZ4Qvf+h5bxoaoVsookkJ6MUPYiiLLzZi7eCxGf2cnz768l5GhHnL5HKZlkkol8XwXTVcIhiwOHzlJNBIh2RKhtS1Fo97g4w/vJpPOYlg64ZCF6MNn//zrjA32YOgGoiQyNtJPsZDDx2NuZg4zEMBxXBp2lUsX53n0qRfZtGGI9kSSd4+fZmJiFFlSGBzoY+fWMSTZp9FoZhO1gkF0WQNf4u13j3Hy9FkeeWgn33riaaKWRUdXikbNQVM1XNdGVQUMI0ijXqdYKBEKhYhGQgTDIQRfplSo8Cdf/ys2jwzy548+TVsszP/w67/AxsF2Ll2ZwW40wBeIhMPYjUbTpTadJRoOETANCoU8kYiJaYbRNIVcLkM4lGDj6CCGphKwDDzX5RuP/YjxgUFKxSKCr6AqBo16lZZkkt6uDv7bN7/LP/r0p9ixfTPxlghtkQQ/fGkv3e0JcvkayVSKaCxKo1Ynn8vRFk/w8Yd3ISoioiChKRpG0OLZl/exbeMwqWQE264giTL73j2MazdobU2gSBKGqmM3bEwzQGdnJ1Y4SqGQx6579PT20WjUsYImmqohShKe6+D7IEkyiqIRCATwPR8rGMTHoae3A9u1EWW5OfmIApquIkky4VCIhYUlQmYAWVXoiEbYEjH5o8df5L77dt6Vjlxv83G9jdKb9ztvdvd8X7IeuPObLpRrk6aszhe3A3miKOL5HpIoXVdudcN17W9Ye83zPRRs/Nw8j331j5k6doD/8O/+LY9sHyazOMu5c+dZmL9CLrvMx/bsIaw4mEKJqckZOjv62TwSojUeJhIU2LKxl45OB0Xx+Npfv8qvf2Y7OyaGeOmVlwmFTHL5KgffeR23nuXL3/wGQ0MjxGJRDh98i56uOLMLad5841XKpTy6rrG4sMDuHfcRT4WZm5uhra0dTbV4e/+bHDt+hN6+HhoNkWefexk14KBoEpMXznL+8iW6+nuQA3GSyW7iLT384mf+Pvv2vYJuhOhpiXPlwiS59AKC5xMNh5ibuUyjnOfssYOEtQABWUP2JQRfQ0TDFx0c53qPG9f1wHVR8VBwkDwbQXRQJWHlXag4vo+08swFYdUVE1hZmV2LWb+enJw115rjwuVOcXl3C+5uP/++D5Al+Dfdfltwd4/tCsJqzOi1tezfwBbMe5IPwd1PQP57BXf3ujl3O6++tR/vtUnr9m3dWN91tsKVazdODLdcnK9z+gMFd3DDrtf7B3f3Itc/m3u792bS7w9WVi21N8bDrZy87b3XgNt6O3B36LPv87nPfp7jx4/z7/aMoSnq3XZ5nap8fAEUQeLk8TMErSBXpmc5cnKSTLrCnokx7FqDYDDIxYuXMc0A8wtL1Ko14vEYs1fmCUXCWCEL13GoN+rct3UcVTV45rV3OHX+Mg9uGyeTTlNzbIrZIomkQSoepbW9E0WWcR0bBNA0lXwmR91p4OEyv7DIc6/tp6+7jUq5TDhkIokibsNBVFxE4FuPPcOm0QFaO+I4nkgsFiOdzbO0uAx4bB0bw2u4DPR1kyvmkSSJw0enKRRyXL5yme6OVvLFIqoqI8kS0ViM/q5eZFVElAQqlSojw4Noug6uC3gYAZVqrY6iaThuGbss4ns+tlMgGoxStmskkikOHjvDlq3jhBNhKrUqjUaDcCTM5OR5YtEooq5hBoNYwSCC7/PWoWM88sBOTk5NIXo+gicSNA0MwyARj5LPFvjTv3ycmQsLDPZ1EYo0Scvn5paIRUNoqoxlBSiVypimRaNhoxkqxUKRaDSCIivIske1Um26DVarPPXCXrZPbCSfzWFXG+zevglREnFcG0WSuTQ9QyweQdVUgsEggi9y5NhJIpEgxWKDbL7IQG834ViUZCyK79fBlxBEkf/wh19g2/gQlhXGMA0EH6amLhEMhPjuMy+xcaCLoBVg++Yx2ttauTI7gyJpnDt3iUQ8Qia7hBkIUqvVOXvuIkOD/Xiuh24YOLbPS6++RcQK0N3Wwu4t47QnIqiKgOdXGRgaxLJMFEXn2PEzJJIJGnWHp1/bzyP372iSN8simiYzP5fFCBh4nkNmuQR4/NevfJuP3r8D27YZ7u1CV1VMU+eZZ98klykwv7jA4EA/ekBn15YNCKKIIIksLS9x4tQUv/DIA8i6hOtLnL8wTSoZxzB08D2ChsHMzAzxlhgB00IUVOqNGjvGR8F3ScRCXLhwnnA8yuhwP8lEDCsYQlU0ysUquC4nT5+jra0VX5ApFQokk0n2vn6Qo6fOMDLYh4BIpVzFCGh4ro+ua/iILC9liMfjfPOvf8T4eD+arlG3bVRDJ5PJoaoigiggSXLTlTMaY3F+jlgq2bTmIxDzbb7z8n727Lk7gHejrKeX/1Ysd+tx063q5dssElbB3yp1wd2I63sosoxol/jd3/kt3n1jLwuXpwgGAtTLiziOzYWZeaYmJ9m1fQu5+XP0dlps2tDO1PQMg6Nj1IrTjAz0090ZRxAbDPb3YFpRVAlGBjupFrPYro+h67S19aHJPnt2jjM1s8TSwhK5bI7M8hUMDRRNo1LJAx6pZIJsOo1t2+x9/SU2bd6E74u8+Pxr/JN/8o9xnAZf+sqXmZtLs3PHLg4deodkIsmZM2f4e5/5DPVanWNnz/LIQx/hpZdeoVSr8dGH76OQL1HNLnLpwiQdHR3USmWQNDzPoVEtkwzpXLl4gsX5S8iSixYIIioKLi6yLF8HwkRPwHccvEaZcj5NITNPuZBDBGTVwBUURFFBWOG1W/Vqun5T+m7tzXfOqHkv4O42tdxlf9ar8x4td/fY7vrGjA/B3c+M/PSAu5utH6sho/irU5LftKqsUcaScHOikvXc6VY9uX1o0q0I6x/XJoZrx3pt3Cjrgbu1v8b1VsjAryu3ailaaXsFEggCV5OiXB/YvvKkvLV9u7ncauqPq8bMOxGV3+HarSxW68l6Vrr3A+4+SFkvecrVpChrrl214rHOEFnHwicJ1xLnrB53Wi78f//lD/nX24d4oDN5R3XrrzHn+oKPj4cnyXgISL6EgIiPQHp2CVVWyGdyLC4sEQrolIoNdm8b5xs/eI6AplCu1VAQOHT8LNu3baZerRO2AiCA73rMXZ4nvZihoyXF8dPn2LV1EMct0tefYG55BisQ4htPPMXPPfgAmi5i15um7UbDppAvEA6HEEWDipchnFKJRAJETZPejn6efuw17GqGoJlheSHN4pU0h44d5eMPbUfTdYJWhOzyIgFD59yFWb799Gvct30C123Q3dmGiA++y8zlGTo7knR3pmhrTSIg0qiVqJYrZJeLWAETTZM4dGgKPJlYJM7S/BKC66FYCpnlZYKWhR6wUAwTQQyTLczQ1ZNgdjqDpEuEoikyS0sk4xYvvrmfgcF+FqavEA5G8X2ZaDKEIPkIDRffdvjTr32PbLrEpz/5CSIJg8HBLgrFIo+/uJdPf+IhNFkCFzzXJ2ZadHe2EwyHuHx5Drvh8/iP9/GJRx4gYCkIkkupWCCbLuI7IgIepqVh6jq6YVCu1CiWi+i6iqoqtMRiCILQpBGQBRRFJhIOocgC5UqZH76wl/t27UAUVRRFxwPCkSCqZhCMhJiYGOM7TzxFd2uClpY4LgK5XAHPc9kyOgy+RCKRwPXKuG6dUr6KHhDYNjZMSzzG177/JI/ct5OqU8fQDAKmzhsH32FosItINIykKDi2y9Gj5+jqaMcHKvkSAU2iWimx58HtzGUyVEoVWjuSNFwbzdQBGUGU0HWDernBE8++xhtHTvB//PP/EUlsJgPxHY8L5y8zdekcvT1tvPjK2zz7yiFGu9upVets3bwBSZGb9AGygKwoLCwt8/BHdjPYP0ChXMAXZC5NL1AtVcD1iCbDGKoCCLg1l7379iHi093dheu7OPUKghog0RJlfnaWas5FkRUuXb6AFbRQVBVFk7E9B8+rYJomnidQLjao1mxKxTKabvCdp14hEjB48+1DGKpBMpFgaXGJkYF2ArrM5Suz/OjF19i5ZRMgUK/VyeQLpNPLdHe106g36OvvRhAlfB9kVcMwTSRJQpYkqvUakVgEUVG4eOgEqD6qpSJJCinNQqwXePbgSbZt33pNRwrNxeT1c4iwzsEdrQ53HW6wTqKU9Xc819ON/tVrPj7SSqzxHbNa+v5Vi9/tRBE8bERERUd0y1w5/Q5/+u//N0Q8RsYHGRjsQpWK6EqMyzN1KuUlkkaGhzeF2b5ziJde3Ud3R4hP/twYqXCFzs4WqtUSgigTDoYoFTSWihc5c06ks0ukv8OgsyOG52t4jQDnzhzmlz61mQsXL/DzD0ww1BHmvq1jnDt7kq6EzHBfN3PTZ/hHn3mI0XYbM95GuVRFN+O8vv8Ak1cuYadneOb5p1lKz7G1r4WYXOdHe99meXGB6YsLJDra+eLXvoiqpth93w4e/+ETfPpTv4JpteF4IsuLp+jvNEnFTUK6Q1Wy2Lh9N7m5s5A/w4lXX+XS2SMc3vcSpYWL5M6foVK5SCVXwpRUnPwC8ydf5clH/4Lv/8UXOHHgxxw7+GOuXDjA8Vff5vi+l+ltj2HEw9heDVFU8QUZ8EGsI3krAHwla93NjpvXD46mC/Ft1jRcn3CuOdzWX+fc6ty1Y61V7OrK57ZjCppZ1ldDLHx/zcAX/JsSFd0uecpalpK13mbX+nTr5/TTJB+Cu5+A/PSAu3WU7F2cujPBePNjWDvw79SLG10x7yaXx3rg7rrrqx+gsLbcGvAj3GDpW9f6dn1dzfpuXe7WJ66Xe7em3br8ekDupwXc3W183d32ccVRZP33fYt7ctkc//Vzn+ff7Bpdaexu1K1/FWw2lb1Pw3YQEThzdJL0UgbTMjl65DiRUJB8vsi7J8+we2Izna0J9h84wrbxAfp62unubAXfY+PYELIq47o2hUIBAZHZ2Xna21IszC/huC7hSIBAQGfD8BCyqBIMRAgETHpbW6jVa9RrNRKxBLqhUcgXm2TelkmlXiRoxXFqEqqsYxoa1WoOSXSJxXRa2xMUigKdnZ2UKmW6O9tAbG5nNBoNsvkSw6OjfOyh3fg+6KrExYvTFPN5rGAAK2gRigZJZzIrXJPNeK5atcHicg7f98nm82wc30goHOTSpWmmLlxidHQQSZMxAzqqqiJKCr4gUas0MA2R5aU0vb19yIaMIMgIeESjYXra23Bsj6WFRc5OXeLKlQU6upIsLy8zOz1POBImHAhQqlbp7e1AUaVmhsuQRbVc54c/fo3Brk7+/K+e4JH7d5JMxlAUhW98/0cEAxqjw4Psf/c4A13tGKaKIsvoWoBX3jhIJBjmzNQ5SsWm5W5hfolYMk7A0MGHbCbPV777FI88uBM9oKMo8opbGhTzRYrFMg/u2YEgCriuQ7VaQZalpgUKn4Bpkl5Os2VsEMNQsRsNVF1HkkSCwSCGYfBn336MuBnACipUKlWikTiGqTEzM4+h68SDFh3dHdTqdWRRJpfNs2v7NnKZAoqkks5kMTSDjRtHqZQrZNIZXNvhzbfeZfP4CLplEAxZPP386+zeNk40FqZSLhGOxMlmc+iqTjBoMdTbxY6JUTRdQ8DnjTffpq0liaEbdHW1UanU2LJlI7u2juN7Hi2pGKomI8kygtSkiPA9n7PnpzFUlVAkTKVcRlIUvvroU6TCFoMDPdiejabqvPTGfjYODzI63MvQ0ADZfIFCoUQ8FiGfr+DjYFkBFNmgUirR1dNOPleiXmtgBU0kSUBWRHLZIgHDIpcr8vt/9pccPTPFaE8nmiwy0NvFxKYN5AtFjpw4Q6NeZ2igh9m5ecLhEPfv3EqxUCIaDaGoCgHTolquYFkmXd1dFEsFVEVhaTlNMBTCddyr81fzOTV3I8OawsUrVwiHQhi6CYJIWyTIlojOqxcX6OvvbWoa4ZoOvGdvkzvqsVvI3S5C7wDugHuyxN2NeILQBBquw/LsJf6vf/O/U1heYGYxw/ad97Fz1x6q1TqLyzVe33+Ejs44/+BX9pCIRPBEn5HBDtpaWlBViUqlSjAcxnE8JEUhm8ujBwKk2jqQtCiF3CKpRJzFxQzvHjpLd3cfn/r4CNlsgRdeWKCUW2LbliG6e1ViCaiUZTRFYPvmIbo74njUeeHFvXR3dnLxwgWCpsLS/DSO4xJMtJEv20RCBucuTCEZJtVinrm5RS5dmWF+6QrbNk7wV9/9C/717/4r8oUiM1cuM31pis6EyMkj+5EEAdfz6RjaRtV2Eb0K2cVLLMxexohYqKbG0RPHmZo6y8FDR3nnrbc5dGAfX//SHzF36TwzFydpiYfpaEsSCYWZv3KFiW3jdHQkeePNg6RzNm3JDlRFR0BBECRcHwRRwkNYiXdZ3fa+8R2vWTvdxebqarlVud3a4N7lzuCuWf9K22saX48K4Xb1OY6NIAhI0t329UNw9zMjP93g7mZT+b2Cu1VQt96ux6260XTZuH0bt2vzQ3B3fbm/q+BOFG+dEXW9tn7///4cHxXKPNiZXNPYXajbVWDng+AJlIsVTh4+xVPPvEpAUenrbse162RzBWRZIhwM4rsumq4xNtyDXS+zYbiXYjFHJBygYduYwQC5fJ5qpUI4ZLC4lCZomgSDJtVKBVESWEyn8X2RllQKpwG5TIlarUFXVwehYKjJFZbPIgk+4XAIFwE1EECggSioiIJMrVQis7SI7Rbp629DMw1QQmiBOHooRDQaxgqblMtldFUh1drSjB2SJSzLQhIFdEVCkUSi0SCL2TymZeE0BD731W/T19FCNBYmlyuSSqUIhSKkWloIBkN4go+sSISjIdrbUiiGRrXWQDcMSqVSk5bB0BHtGqVSFrvhoOhBFFNBlERUVaVSqvLkc6+xdcMI7d2tLCwsc2VxkaH+TnzP5yuPPsn28Q20d7UwNNyOIDsIXhNILSwsU6vUSESSbBgbZcvYEKohY1gGmiazc2KUwcEuJFlkqKeNHzy9l9cPHKGvvY1G3eXVfccZ6G4nEY/y4psHuX/nNkwrgCjLNGo1dM3AdTzOX7hCyDQwDJ1quYoeMLAbDpoWwPM9VFVGlkUcp45m6MiyTLlSRlFlRN/j1MkziHi0tCbwcEkv59E0DcdzEQSB+3duwWuUEASbWDyGogVxRYdoOMITz73MR+7bjmqoyLqK4DvohgYe5HIFHnvqZbaMDXLlygIz07PMzs1xaeYKmiqzbWJTc5NC9Dk3dYFHHtyNZZrksjkClkW9YYPnEwxZSCIcP3ESNSBgWga+7xIJhpAVhWdeeJ1Tkxfo7eoEwUfXVaKJBJVaheVshngyyqmTZxBsm3A4zJuHjnH/fTsolMsrQF+jUiyya9tGBMHj8sw8pycv8PqhEzy4cwLJUEESKZaqhMMRXE9CU3RyuRy+77Jv3zGuzM/TkkywuJjlW4//mPHBPsKRENVKGQEVSVaYmZknbGnge+zZsYlN46OYpoER0HHcGgFdY+f2rTieh+tB3akQT0ZB8KnV6yuKQiIWDbIwt4SsqogSVy3miqIgSk1kJ4nXQI4kCoiWTkQ3mZmcpqWthYYsIK1MPK31Ap/9q6d5+OEHrk/ecLvp8mcE3BVRMQSP0tIc/+tv/Bpyo86W+x/hd/75v2Uh5zE+8TCBUDe5hkyl5nFh8gi7t3RxeXqG0Y2dhMNBps5f4NLFGbZu20kdB9v3SbZ1YLs+CAUOHUjTN6xx7uQyLfEO6qUqwXCE0ZE4cn2egBqlsy/EpnGZwX4NBZ0v/8lLmHGNFqPOhk4ZXa8hhzT2jHXRHldImA4PTnQz3K3T0t3HKy+/xs4tu9HVDDNzF/jMJx/g/NmT9Pf2c2l+kU/+0ifxcxl+4zc/zeTUaYaGNjBz+RLJZIhqboqWqEo4GELVLCpOg0jEJB4LYKgCgh7A1UwiLZ2MbNiEbulU5hz+f/beO0iy6zrz/D3v05vyvqqrXbUDGt6QFCWS0kgUNdqNldkdbcRG7KyJ3dhYM/pjIjZGZsQZjUjNzK4oDo1IgqIDCRAAAdDAm4bpBtCN9t5Ul8/MSp/P7x/Z1ehuFBoNENRoJZyKF1WR+d69t17ePO9+93znO7fuHiFlNSikDSw1w6f+yScYHd/Am0cvsmnbXQjGACvLZ2k0W5w7dZJjr+1h6eSbPPzQQ0yOjRF4HTTNIpI0AsTLG5wi6xWR/8cJ7mRZYi0SeGPD/RDc/aOxv2/g7krKobjOzuGNgDvhXaJ0a32sgb4r+4S359jdSL7elSqb1wq9XFbPfKeF/CVgdxUPO367c3m/4G6t7Xc6bsSuyku8judcr931qIwfBMhbj2a53vFOoiZccc56deN+Hrs2h/NP/uiz/F+3TF8z9kt0pHU+66sbu7TJgcj8uXnOnZqlr1iAMGLXrhnm5+YIfI9sLke1WqfYk2d0ZIjFxWVSiUSXBtduYzs2siLTafnsP3yck+dmSdomhqHhByHnZi+SsG1a7Rbf+tFPEUOTm3Zuot1p0vbKOCmFk6cWiGKfMOhGN1rtOovLZeyEhSAKdFptDGSa3hz19kV8zyVhZSikxijVquimg6onUXQfVZRRNAG300RRZOrNFlHgEwVdufn/+OVvkNZkbMui0ayTTDt4fsx3f/QUG0bGuG37NoqFHjTNQlG6YhP1epujR09xbnaO3nwKz+3w3Iuv0tdXxDBMVpcquO02iiQjSRKqbtBut5m7uEg2lUfXbCrVReQwYnl5FdUwOXVulr5iHkmVGB7pJ59OYpkGiixz1+4dSKJEo9FCVGLarQayoNCo17FMA0PVOXrqDJunx/nqd77P7h2bqVerCGJMu90mCgOiMKRaa3DszHk+efct9PX38c3vPc7/9N/9VyAESJLE0VNn2TgxhKwKVFebaJrWVQAVJKZGRzBtk4sXFnAci6PHTtLb04OkihiGjqIo1CpdZT9VMxAlGc/1EQQRv+kR+SGW+9X7sQAAIABJREFUZYIInU6HfL6ILMsoqowkCbTbLdx2h2QmSbXSRJR0KpUlms02W6bG0QwNRAjjkDj0qVQqtNoNZFlg25ZJZFHm3LlZFFnhmX37+N3PfAo7YaGbNkEQ8M0Hfsgn7r4V1TBotVrohnEp18zEMHXarRZRHNDblyOVyRL6MWuEKl3TKWYT7Nq2hUw6g64bLCzO4zgOpqHjmAZiDLah03bbJNNJNowNo6gqoijgdzw6rsumjRMEXptOu8XCYoWJsVFu2roRzdDQDIszp87zpW8/QNY00DSNL37th9x+ywy6oaKKGqfOz7JhagRRELE0FU2XiWMfVdIRBIXPfuE+fu2X7yaXT3DzzCYEIe6WK3DbVGs1VEnA9wKcpMP3H/spY0N9FIo54qj7+tz8Iudn59EkGb/jUa1W+enzrzKzaRwBugIqskwYdKOT4uUaqyKBH+DFAqaiUV4pUy6X6OnruezHJVlhKqHx1z96itvvuOU6fuiKYx1n+vMshSPoiqNc9oPvEdzBZZrlGj3zSuAXXSc1Yd28PVGCOEaMXNzFk3zu//7fyaVtVCfDJz/zO7zyxlGee+VNRsY38n/+i3/JoYOvc+dNM0wWG/T1ORR7+6ivzhEFITESg8ODNNoNBEnA8wJ0w2JhYRHTyLG4uMTYaI6+njyl8jw9vUPUWwH5vE3G7CCKAvv2nOJXP7Ybr7lEozHLrlsmGO7L4PltnESCffv2snFiCE2oszx/nnZtgaFeB0NqkrM8pvtUhlNtdm9KMphq0V+wKeTyHDx4FPQ0L73yEr/9m/+UqQ0TqJpGLpen1W6Sy5iMD+hcOHMYQ5PRTJNMyqbTqFCrebz08iGmtv86urOBhx7dy733/hbtjkQ6k+PZ557jlz/5G5yZbTBz6yeJ02PIiSHM4jRObgLB7ufciRKpwhQ337aTwV6ZSuU0uioQeSWOHnyJxdlzZNIZjh96A7dZJ5dJI0vy5RJD636e7/C6eM2658r1w/WQ0XtdI8GVNMp1z+yOM377WlMQumlHV/d5nc30d1l3rh1rzV251v3PudF+rX0I7n4B9vcN3L1bxOxGwN27BufWfP4lcPduG33vBu4A3q2Ewtr3aL2m1ivSLQrC277k7x/cfbC2VtD7/TiHtbF9EI7lRvdnrwfu3tpF+8U4uphuxO5KYHflWC7n9l3v4SJ250IUxFw8O8+jT+5BjCNmtmwgiGMyaYdyqUQ6m0XXNc6dm8U0dDLpFIePnmKgvw9FVYlj2HfgCNVKjZGhIR5+5iXuvmk7pqEjySL9PQVMU2d1tcpgIc/rJ05yy85NIICqavheiGMn0A0FiFmt1Mjm0yTTCQA67Q5xFNGuLuL6IUkng2Vl6LghxCHtaJUgDlFEHa+zSuyFhIGL67qIooRuGAihz1oO35bxYSQBUpk0ohjj+x5GIsVAoYdCMUEY+wShT0wXnJRLq1iWw8rKKhs2TCARoioKPfluEekoimjV2kSBTyGfp1Qqo6gKgqDy1e/9kN1btvJn//4+bt89Tez6lKt1vvS9R/kvf/0TJJI29UYDTVWQRAFZlFEkhUazwdmz8/T09KCoIm7HRYhEEkkLw9CxbJvT58+Rsg22To8ThSGyKOG6HplsmjiOCYIIXdPZODVMb0+RixcX2bJhnJ8+8wI7dmxAEkWSdlcsxLBkdD1BEPhEUczFC/M4toOqqXzlu4+QMA2WS2VWSmUGhroL+OWFZaqrDZYWShT6eqhWqvzrv7qPHdMTfO8HP2bD6DBhHOEkHQRBRFV1oJtL2mjV0XQVTTXxAp/AA0OzME0B3eiCat3QUVQFSVOIOgJPPPsKgz39WJaNaVrUa3VeO3iMzRvG2Tg6hGmqCJIEgsLLe99g89gAEJHKZi+r18qS3M39iiKWl5cxdBXPdVEUCwGB+blFdF1D1zRcrwGIRBE0my0sx0KMBULfo1ZZ5eyZc7xx8Ci3330zru8RR6CoCrPn5rhwcZ5CPkepXCaTdlguLTPQO0A2nyOZSiLKCpEfoasqt85sIGlbzM7NI6OSTtt4nkun5dLfm6enL4/n+UyOj2CaXbXQZs3F9yLePHqKTRNDJFMOhqHjdlxUXaXZ6NJkm/UW2VyWpeUSO3dsIpF2IBLQDR1RlEk4Do16u6sUu1Ii4Tg4lkWttkoi4aBqGnEMYRSiKioxMWEY0qjVEUUJWVIJI5/KaoVGq0V/X5FYkNacEJam8cyZBfbufZ3bbt/9Do7o+r7u5wF3l57+Pxe4u9KujOAJa8W2xRuP6omigCiKNErz/O1f/TkLZ4+xZds2Nu6+i0ce/jH/5Df/KcdOnOKLX/wCgd+mXV8mb4nctbuH3oEibT8Cv41pJjAsG1GOcdIObstFlVWEWEBAZO/LZ9gwXSTsxNjJEMuSCWKTP/n8g9x5y1ZMuYblWAwPTKBKPoooghiRziZxFJHVNrz0xlHuvONOaCwjaRKOnSCVyhCGLrqhIEkisuQxNJhEkWOGR0aQQpelistyqc2xcyWSmTQHDx0nFiJ27dpJPpfljTde58LZkxhylahTJp/NYjgOQeDRbLV4/Y1TOIl+Yi1HtR6SyvQSRQK16goHThzm5t130gks0j1jOIVhfvrTp9gwvZlTx09RKOR4/pmn+M3PfIaX9+3juRf30JMvQmxcEgFK8erLe8klC5w5fZKEqSJJEoViAT++WtH0Ru26gYIPANxdccX7fn8tcnej4O5Graske3VbH4K7f+D2iwZ34qXMpCtFUcS1CNYVr63Nuat2ItY51sRNpEuUuHWjUev8rHUh8JYoylr5gqvGeynCdqO0zLUvyJXtrnest4/z1nh52xHBZaGVy7tLa/flEugTxfXv0ds+g58jKvVOamTv1zHEV/x+pwjblXa96Nx6tva/XnW/1j3/7Y7+euNYz64XhYzimMce/Qnf/tb9/I8zw6iKcnXvV8xVEBBE8bKQgQjdfDAgjgU8zyXyAtxWm7/5zg8ppB36inn6B4p0vCbEAaoiocUqodtCkWI0ScBvuXztoRcZGewjm0uytLxEtV7l9ZPnmZke5uYto0BAfKnQuYTI/MUyw5OjFAd66Uk6pFMOYRAQCiIr1QZJw+rKXgsydjpJeXEFTQmo11aoVkL8yMNOJ9DUDLqeIBYCVE2l4Xq06hH5TA+aKnRzBVSZdiNkcW4VWVLRLZ1auYwXdtBVk7m5Msl0AvtS3TdN1ZFUBUGJ8VwfxzJRVZUgEAiikFKpjGUb2LaOpsocfPM8qqZhmSLEIrNnl/jqwz9k19btPPX8XkxbI+UUePhHzzC/XGLT6ACyLNLbM06ltIBjmazWa8hiTL6ngGGqKLKAEOgcO3aSVrtG6MWcPjdLX18vCDKmlcRttboASZRotZtMbxohlUmgqzKtZoCVSCPpEqIiE4oxxLBartI31kMsxiTSNsRw7OQ5Ns1MIasifX0FWo0OXj1C0SxOHDlCPmMTxyHP732DDdMjTAz1MDk+Sm+xSCGXwzA1PK9FqVxmcmoDrhuQymqcOTVLvdbg1QOHueeWGdKZNFEk49gJZFEmEqC+WqVSqZJOpfA7PpphIBk2J85c5Kv3/4hd05uJ/QAJjZf37CeTSBC4bUQhor93gENHz/KNh37CHbumKddX2b17O4qhoicMGm4L20xC6DM62IsQCxRyeX7woyeQIh8vgL/8yv0MFhNAiG1bEAvISjdKtrSygJXQOXToGCMDg7jo6LbOhbmLfOuHP2WsMMrPnn6BkeE+0hkb1+1QbzQZ6B9EklSa9RZxFGNZJkHkMjDQi2XaCJKBpidRFZXK6jKV1RLZTJL/8IXvcPvubXhhh6bbYmCwl+PnDpGwZfr68nTcDt1SIBKJRJLjx8+QzWfQdA1REDh7/gJ37d5OoVAkDETOnD9PPp8j8Du0GnVKpWWyySz79r/J0TNn2Dw1jiSA1/EQhZhGvQIx9BQKSHKMqIhEQsjgUIFEOovreiRSDqWVMo7tEBOjKAr1Wh1d1xEEgU69wYGDJyn2D5BJmtQX5zDzRSRZIopCYuD2oTx9csjfPP4sd95561v0zss+q6ve8PbIwnoedX27XHrmKqB16Sl9pdLZJZGV7rMwusxuudbWBWsxV48xvs65lwYuSRJq3CYQDEJBhSjk3Jt7eeEHX+LYiaeIFY1I3kSmN8Pdt/0azz73GBMjG5k7v8iGqQF+5eZ+BgeH0RJJXn3lJSorVTZtmiQIAjRdwW27aJLKyaUOkj1NGFToyUaohkM6YyPFbWw1x+L8HH19RYqpFgnTx8kmQYow0zaUVxHEBbTMZo4df4LB/glymR4efHAPd94yjSZHVFZjyuV5BkaLHDl7gUDNYEgepqXjBy6SbCBIGq2mh2HHFPpVXn7DJ5kbYtuWCW7afhNH3jzG3j37yBYT/MWf/0c++Ut3o2lzBH6Mneyn2ljg8cf3kBv+L7j9k79LI2ozPjmFKMDMzDT7D+7n7lvu5rlXXmfnrbeTSSR56uEHmZic4sSxI9x8080cO3qMXDZPGGhs3biZU8dOMbX5Tg6fWKUwsYm+/i20WtBuLnPi5CmShsTp/U9z5uCrTEztJFa7dVSjKEQSQIJLxdCvmW/XWftcxUZab1qsxxxbV9zk6kMQIgQhvnS8FUS4asK9o10b+Xtv66z1RFW6x9tZV10gGb/nPn4R9iG4+wXYLxrcrRtYW2/xvA64W8/WgNYNi168x/D9ejzoGwF378euT8VbX6gD3gqp32jX7yrL/3do1/t417sfNxqdu7aNd7/u59+pWy8KWavV+eyffY5nn3mB/3oozZ0D+bcBu6vbuLSrLAiEQbcWYavu0Ww0kUWFTrtNp+l2a9gBPRmHjZMjyFHM/NwiI6NDaIaNKGmsNttoSYtOGKLZJsuVGoYKDzzxNLdt20gmlaCQydKpBxSSKXryeRRBQRYVJFlkdnYRx0pQrdXx/YDjJ0+TSzlIkoSmm+RzBTy/jmLHdIImbQ8SlkWz3UaVVZKJNOlcGlmNkGWFSrWMKEe4nksy7WAYGp1OC1XT8HyPTidgbnaR5/ceYMP4MHte309fLksmm+TEqVlESaHYk0GUZVaWy7TaLkEYYBgGqqoRBQHLyyUy2SwiEqpqoEgKS0tl/CBkcHCA0soyqbRNqbxKOpfm4sICI70DDA31UShmqJTrHD9+gZRjMtBfJJ9Nsryywncff5aPf/QuBvqLDI0OIqoCsiCyd+/rXLxQYuOmMZJJG0k3eXrPG2zdMMGXvvldGtVVJqfH0DSNRr2OoerEyKiShu962AmLz33569w+s5HQ94iCmIcef5qX9x9h17atCIjIkowsS0yM9mM5DpVSCdu2WF4q8dSefSSTNsm0hazKmI7D1IZJ/E4LyzJYXllm/6EjTEwMU11dRZIkevv6iMIYTVMJIw/HTjDYW+TjH7mDREJDEOHl1w6Qy3Rz6NxmneHhIU6eOEu13MRxUvy/X/sm47295DNZTElibGQQUYQfP/U8PYUM6UwSz3MJQo9cIU/fQJFbtk1hGAr59AAXzixQWqqTy+ZQ5S7tMgoDBElAkqFcLfPmkfNs2zRB71A/t2yfxjIsMpksURhhmjaiJEMcEMQeTsIilXQ4e/pct75hvUoY+OQTCarVOj3FHIVChmazQaflsnPHNgSpW0FLNXR03ehSgVfbhEHEl/72QQgCcvk0CwtzOI5NsdhDu+kx2JtjcXmZ4eEhAj/C1JOM9kxgG2kadZfe3gG+8PWH2DQ1TK3aYLVap1Kp0NObo9N0KeSzCIJArd7kc1/9FtsnhhEQ0HWbKBax7BRRLDMyMsTGiVEIA5YXVzh24iypdAI/CFAVpSuskskyP79MX18vnuvTaLbJF3KUSyUM3aLT6iArCp7roRs6cRQTRTF+x6PQUySVTmJZOvsPHKDYX0QUpcu+UADSpsm4JfG573Zz8K5e+K4XVbjCb96gz4xuJEFIeOvXGkvkhsHdWhPvgU4XxzGhoBIjIBFSXzjFKz/9AW8+/xTDo9OcOlXh9/7gD6m3Y/a/dpiF0gLbt9/E9793Hwvzh9i9ZZgHHvwxbmeJX/vEPfiui6mLpLMZTp06STaTxrJs/uzzD/DUky9xx7Zp4ghSKRXLUlCNFEdPLnJhbg7LUOjv70NRJQLfwzRNGs0jyL5IJAnsO2jx4IP72LpVxjAtbr9tE/X6Iuk0iHTIptIsrwgUe7bxub98mE99bAbLMnD9djeyq4pcmM3Qduus1uucutiiVD3D2MQ2xsZHuePuO1htVChkE0yND1FdOoCtuSScNM1qFdcXQMrgCxnqzVWmpzcTujG5XJEXn9+DZdqsrJbZvGOG1w7uZ355ibs//nHarsCmmR38L//bv+D5l/ZSbbj09Gp849t/w10fv4dEOkNhoI/bbrqDY8dPM75hI7d/5KOksyYHD7/GvXdtI5mWOXxoD8nkKJauY9sJvBgCQUT6OebAO4G7dV69gfm0bmvvqY33a+/2714N7i7/9Ysazg3bh+DuF2D/0MHd9ezvNbgT35l28I8J3F1vZ+16bfznAHf/9t98nuef28Mf3raJOwdyN9TG2q41CMRhxLnT5zly6AxDA31Uq1U6rVa3tpIgsri4SKvVJOFYOIZJT0+ejhfg+RG+F3Lf9x9jYWGJ7Vs3USlXmZtfZuv0KGlTp7eQx/cCOh2PqalRmvUalfIKleoqxd48AgKKovLEC6/ys5df595bdtDfkyUOQ1Iph1K5imkazC/Mk0hZxLHA93/4IiMDeURRwu14KKrG8y+/jiyDLJokkkn8wMNxUjRqlW6NuHQSzwuIYxFN1SGCbRun0HSNYjFLfbVGKpugUqqzYWoCSRFBELEsm3qjhZOwqa5WSabSEIcosoooKwRuyGuvH6JQzHPw8HE2b5qiXKnypfsfZmwgSy6fRTdMpsaGsO0UjmOi6jJhAKai0ey0mFteYmxkgEw2xW07Z0ikEhiOhSgJyJJErVThO4/9lMMn5pga7qPZaWI7aVYrqyRtk6GeLDu2bkCxTVrNFoEX8NBjT+J3Aojh1OkzhKHPx++9jcrCEnEUceTEOW6/eSe33bQNSZapV+uYpkEchiwtLZNIJrAMnSgKyeWyDPf20jvYh6QIGKZOGEXdItq6TKvZxLRMRob6kRUJ0zQRRZEzJ8+RSqUoLZeQpK6U+OFjp0g5FnPzs9iWSX9vD45jMzLYRy6bZGWpRKXa4JUDR9k5s5XtG8dIJ9O8uGcfC8sr9BeyWJfqIvb1FWm32yyVSgwO9VKt1TAtizD0kcSY5mobt+Ny6NgppjeMsLy4zKuvH6KyWqG/v0i1WulGXpcb3HzzZiRNvbSodfD9gGa9hSTLyJJIp1NHM7qFvBu1Otl0kiiKsCydfC5DLpvmwR8/w67tmxFl0HUNy7aoVurEInzxvvuZGB7A7bicOXueR3/2MoPFPPuPn0KWBMZHBvA9FwSRMIiYn19hZGyAVDJJebnM9x5+koW5ZZ54eh8TY/3Mzc+RySW585btyEq3RmMcxdi2ged2kEWZB3/yNDObNqAoMhsnhhkZ6MWybQRB4svfehi/E5DP5SiVKhw5coJcykEURManxojCECdhY9kWtUaDR3/2PLt3ziCJEp22x+pqjWw2g+e5qIpK4AdcmJ1DVRUkUUS6tFHwrfsfI2GZZHMZRDGmWa8TRxHJdPrSBlO3oAoImJrGprTOX3z3Ue79yF1XpANcAlmCyHoe9ka85lr6wrviu79DcLdW0DxCQSRCjH3efOEnnD30MjkroulJNF2J+dU2d33ko5w6dpo777mD/Qf2E/tNdm1KMjHYw66d2zlx4g2mxvrR5W4ZmFJpmWTCobRaRiBmy5aN3H7rDnJJGVUWWC7N0fE6vPDKIYJQZ3h0kHRSJ5F0iOOQeq2G4yRorQpk7UE8oUPs5JnZqmIoApadp90KukrCpoAgyOi6yUq5DrLE8OQ4UlhGFGI0VSSMQhr1JrMLbWStiZlIEkrDrNaW+MhHP83UhgkOHzvC5NQYhw+8xm27Z8hbTTr1JRRFR5FEVlZjSqshtbaE7TiMTUyysLBC6Ed881vf5vd+//d4Zd+bvPzqy7z22j4eeuhhvvPdH/Djxx7h2LEjnDh5gk6ryezsBSZGijz62GPodorz55eYmdnF/lf24foBh48fZ/P2nSQsm43Tmzl14giLcwusVpb4y39/H5l0krGpCQJBJBYkpPXm5Ifg7ir7ENz9I7IPAtxdphJG8dUiIsJb7vhqQY63T/71KJLr2bVA66qctBvk0wtcGuM6762X5LquaMt1qIk3rlz0DuMTupLD67UTrXE1uTJ38FpqwLUDeu9juJyvsA7t9b3aVYnL17G38hffTsW80tajXl4e96XjSjrG265HYK0G03ptvfcEavjWn/8F/+22ce4azL/tvXdphTiMmTs7S9DxkQWRJ557la3T45iGTrPeIvRbqIqI53r0FPM0Gi0cx6RSraJbJoZhEvo+jVKFpG4x1NPD/Q/9lF2bJ7Fsk4HBXiRFBgE0U2e1UUKSQ/L5BF7k4ocenY6LnbAYGupj81g/bqdNOuUgRC61WhlViSHu8NLeowz1jiJJFuWlFXzRY3xsgmQyiaxF3dw53SSf6UeUFFzPw1Ad4tCnXKngODZRLKBpFntfPczPnn+ZieE+REnAcmy+/v2Hmdk4yUq5Rk9vL6IcU11tYCeSfPnbD7F1cgTb1BFVjcDzUTUVVTNx2x6e5xGGAVu2bKDZrPHNB57kv//936K/t5cIAdd1sWyTY0fO8MVv/ZCdW8eJQ4k9r+zj07/+Swz097Jv/yEuXpxj2/bNeIFHFPhdarUoIEYxU8OD2JrFlm3TOEmDC2cuMjYyRE+xgCgKqJqKqMpdQC4KWLpGb18fkiQiCTAw1IuiatTrdb7+4OP8ykfvxXJMNE1GEAQkoRu5I4ZvP/g444P9qKpCTESMgG4adFp1wihC0XTOnrpA6HYjO4qiEgYBECPLEp1Wm2qlwf6Dx4gCH8exSKdSiLpGsSeHKomcOHERXTPIFTJEUYznesgInD47y6237GRmy4auWEroUi3X0BWVXDpJIu1gmBaFnjRB7BETMjo6SqvRRDcNRFkgikL8jocbtPEjn5ltk0iaQNttMD05weBQH6Ik4qSTGKbNmbMXyCQMTMeh3WpRLTf40t8+wM4tG4gIkBUJRRERJAnfC0jYNp1OmyDw8P0Aw7K4OLfArh0byeXzaEZXdKZcqhFFAoqmsHFilPhSwdGR4SGGihmy2STTY4PMbJ4mjkJyhTwSCpIkI8QRpq1TrdawDJud27YwOTmEY0oMj/VhJ2VKq8sUetLEkchqpcbJ0+fZd+gIW6bHadTahIHP6MggiiaTSFiUS2Usy+Li7CKOaXDq7BySEPPIM3s4Oz/Pnbt3oGgKHddnablMJpNlYXEBXVc5cOgUk6ODfPuhxxgZ6CXwA3zXI5NN0Wq0qVbqfPnBR7ln906cRAJBEKjXG2zbuhXbNmg0ami6ju04rC7No5sWsmZ0wV0csfb8MDSNcVvhZ4fOsHHz9DV+cX1PfkPe7jJF7PrnRXF0WRxlrct4HUroes/8+FI/XPV8fGeLL1FCVdUgaq+yf8/PKJ99jaUzBykOqfSO3UN+ZBPj2yaZm53HMZP80b/9LK/ueYXZs4f5tXsHMFU4fvQYH/3YbtTYZWRggFNnj6PpKqqmIYoCpmmQzsrIlGhXFhAUCU8qUHcVigM7+Jd//E0+dscYUVAjCkMM0yAMIxYWFjCKDapVj5Jb4Y03m4wWkxTzRebmmnzlbx7iEx//JTRJptQGRVbRjDaW3cC0VojaYDsm8wvzGGqCfK6X/nGTXFHlwMF57n/4LKKp8L/+D/8znXabma0zqLrJQNqkWT0NtQN4zZBIkoijgGf2Vbn7V3+XJ154ht/69KeJ4ohHHn6EJ558knQuz+tvvM6X//qvKc8exaHMrZuHsYUWu7ekuGV7HznL4+5bxlCiJYJqCUMTOXZylounLjI1OsnoaD/nL55mcHCARKLAxQslDh08R3/fRva8dJTNm7dx923b+PEjD/CRe+8hDGMUSQK6QjpBFCJeqj17o3blRu31n93XazO+5veVc+/dRFY+GHsn8ZT11rV/n4RVPgR3vwD7IMDdGqi71q4Ed+9mN4o/rgfuLrcVr/fluuIarp+39W59vlO7V79/g42ve+1b6ptXtuP7PrV6DV03rurnWsB8bd8/z1f374/wyXs7bz0hmsvvIVzlzIHLD4P38kAA+Nd/+udMLp/hpsHe93TdmoURNOoNAjcgcH0M0+TmnRsIAx/f8xBFifmFc1imRrPZplZtUyz0gBIjyBLtThtFEgk9l289/RQ379hKupBhanqY3GCGTiNE0TRiEbwwBFnAdyVSdoogBLcdYztpVCVENTR0S6NSKtHXm8Ntefh+HV0FP2ywuHKRscEBVNlBkkTS6YBMMY8ka7RqTSKhRTabpeNVUTWFtlvDC2tEBLy57zTHzp1nZLAfVTcIghhDttg6NYZuyHRcjxgwZJWBgSI9xR4UVcN1W2iKRizI3LxzG6oElmnQ9gPiKOpuCgkSf/nFb/DCGwf5zK9+hHq9immr7Nh6E/Vak4cefZLtWzeimQaddoeHH3ue3/yVu8kWUpw/O8cbRw4y2F/ESdoUczlG+vqJpTah76LJCo3VKn7L48WX91EoZOjt6cPzPSRZoF1v8dSLrzI2PMxTe17l7MUFpiaGieMYSVVIZdM4joMgxOiqzNJSGcu0MdNJdm3fhqIbSFJEp11FELue6fy5WXTVRIm66pytThM7YRNFMa1mB10Czw+olGo88fyr2KLMD37yPLtmNiNJIkEQousanVYLEYVOy0WU4Pip03gdD90x0TSNQ/sPktALPP7kK/QV0hiWhmnqyJFEMuWwuLSEnbaQNAEkaNRaKJJCvpAhWczgeyGl8jKWYxDHfQzYAAAgAElEQVRHMbKsosoaiq4SA77rY+gWhtXdle/p6ccPYkwrgSQEKJrWVSUUFURRYdOGIeq1KrppM39xmWIxz9hgL5lcElUVCWMft90hjiVU1eymZQkgaUp3jiOSyKQwHIvIj+l0WsiyzJGjJ9FVHdPS0NRu4ffuAytGEF183+0Kkly6v41qm1OnLpBOJYmlAFVVCf2QF195nZHhPlbKcwwOjBIDiWSCdDLLylKNVrPF6weOsGNmI1OjQ937EgisVuukUg6GreP6HZKZDKVShcGBfvLZFBMDPUxMDTEzPcbN2zaiWSbVeoMoivjJMy+zaXIC3ewql27fNI1uaEyNDJBMOWTSGWS5qwxZqzZIpzPMbBgnm03T6XRQFAVFVfjcF77JPbfvRAQUTUHWdfa/+hKGZZNIdyP3Qhy99fAQBBzDYIMu8Mf3Pcg99975rr7sg1wiXq8A+g2Du3XOX7+vCIiRInjmxz/g/LEDLF84ROy3WG7HfOq3/ph07wxu5ONWRUrlc+w/ehQ5ltg40sOdMykymSS6YVEsJFDFkHNnztA/1ItpWghCjOt2WCmXiAMZMfKQA5PlKnz+Pz1OMjfKZz9/H3/0f/wzUqZHMqWjahqu62IYJslEipf3OVw4DZGkU1mtMZRZIJm1sRwbTYsp5E2IytjDY/huiIGFhoPsyqTzNq12FUOz0bUM83NlTh/tIGkyBw7XWGhm2HHXJjS3Q2+xj3NnLtBuxCQNj9CbI6ofQYgsRFWm1m4ztv13mNp+F7d/5DYW55YQBY+bd+/m5pt28/Vv3sdzLzzL7Tdl+IPf3sWd0zE3b9C4Z1eOm2f66E35bB1PMZgXuG1bH5MjJoNDCcr1Cn5rhYGCzp/+u3/Dzp2biUOfV1/cy979T/Nbv/1pyrU2I5MbcGOPdvkEUxNDfPub3+Lxhx9n49gEspNAkrubY+8ld35tztzIXLlx8vG17f3dAaj12GfXP/9DcPcP0t4vuFubDlEUI4pXy+RLonDFAlx42/FukZnr2bXXXRXsfg9RJkF4S+xkTZxFFIR1VS9vpM7dtW3/vPYWFeaKSKgoXQXsYE1g5mpRFnGNwhJfArLXBPaiOF4XxFwV+3ufUbr1bL3E5TiKuVbx6kbnwo2c150bAtE6Z76fKN2aXTl3BUFgd2Me65rPBECILp0lQCxCJMRIKERRd0c69KDddAm9DpIgUVqps7JSp9DTQ6tVpVYqIxGxWl3BSmaJIgHf66CbKlEUcm52GUO1eO7Z/WRsi1KpjOfVyZoJTFnlzInzJDSTF/a+TMZxkGSFarWGkzJpVTu8su8Q42OjCLJAx69jaw6SILM4v0AqoUDkUl6aQzMzaFYGQdRRFJtMtodKo4Jta+iGgyzAytICF2fnGB0Y5/CBEzz14htsmRwhdD1M1aG20sRKFpkYHSGTzXLx3AUyjk29PQ9iRDZbxDITfOGrP+SWnZtIphIEsYsgRtRqLTRDx3XrSHJEs9FB1S0OHzyMbduEUYRqKOzcsoPbds4gSWAYBo8/+gKmqtHfX2Bm6xjtdpNKaZVmrcNAb5bevgLVco3+gQJKbJJKWdTrVbL5JLKmEkUegSsiChqGZXH81BFmlxrs2rWDk6fOEIYRfX0D6KpMbyFHu+OSMVN0qj4jk0NEtJBlkNAQghZxBLFk8e++9B22Tw5jJh2EOGT29FkSloVmOsiChHgpwmgnbF47eJjHn3yFnTPjaKrIylKJyIP/57772TI1Sv9Ake1bpjg/N89nfu2XEEWBhYUlqpU6+Xyecr1MoaePIAzp6S8wOj5EGIqUFpcoZFLYhkbPQIqtm4aoVutk0kk6nRZHjp3m0adfYmJokKRtEXTaPPGT13H9Bk5KIcZDDKFWbWKZNrbhsFqu4XZcTp44QbEnh6wJLC3ME4UdXF/gGw//CK/dIpNM85VvPMRQbxLNtBFEkbDTpFNbJUZE0yw0RSUOY3QZatU6yWyWKAApltHMNJIsUCkvo2sK9VqTWNGQZR0ECUnuRj2XFs6TyaRBkPBcn97eHrzQQzdMBFFFklWCICB0RVpNj2Ixz9Fjx2k1Gzz4s+dI2iYPPPYstmJSLpUY6O/jvocfZdfGSWRBZ7FyjnwhxZlTc2TSWf7qa/eTT1js2L6FdruF7Tg0Gm1OnDjP5k1T2AmLMPSIQp/IjfE7HbxOCyH2iSIP1bZZKZVIJTPEoUCr5aIqCkdPnKeQSJFKaCwuzCMEHooo0Kw3qCxXkY1uAXPDMFAViTD0sdMOnU4bwzQulUWQ2bZtE0IUYBoqrusSxQK9fT2sVhvk81kE4VL27xXg7tIfbExpfP57j/GRj9x1+Tm5dlzSPVk//eKKn/dqgiBePuK1Hi51thbBW4vsCYLE9Z4I1/r4KI6Q6BALER4iMTJxKFJfvkDl9AnSmsfi7CF0c4jZVbjprk8xv7LIiaNvsu/ZF1hyy5w+fZA7Jnx+/eMbie0cRw6eYXAkR+StoIgK2WyeSrVO6Ie0Wi1s2yRfKHTpxYqMbKlYWYd7tt1E3pb45C9tIpftkE5rCGj4voco+6iqgueFvPDSBdTkBaanh9jQ45ByllGiBF6rTiFrIYgRsm4jixbNygpi2MBJyjT8Zew4jWU5tCKJMwsB33/4eWZ2FigHBt958FVWV33+2e/8AblkL0+/9BxjU6PUa0uM9qxy4sgbuOU6kiCgySarQRrZmEQQkyRTKWrVKqaSpRV3uDC/yiM/eJL+ngr//NN3Mj5skLTTJFMFBKlBO9Bpuj6u5yNKIp7vk+4bwJAjNvRaTA6mWDx3gNeOl9m27VN878EnuO1j2xgb3Uyr41FaXqG32MMD33uYez46gay5KEEFxdOoLM5Sml1geHoSyTQIoggtlojWpUiuO0lumGlz/feEK6LTfzdUzLeN4kNw96HBzx+5e7ua0Pry/Fef8z54gu9g6xUFf6925XUfBLj7IGxd1vZaQfYredPX4Zm/Ey3xnT6jNarqtTufH6RduUMWRyGSIF1eAHxws+JSHzfQ5nudM1e290f/6rPcPdSz/nliCIJwScFLJI4l4gCWF0tIosTS3Aq+H+J3WoiiQCxEBJGPk7RprJZQJBXTNrFSKQQEAj/AsQwazTaZbIYwqJLJmLx04A22bJognU3SkyogCBLZTJpUxkaSodjTze8xDA232SQOXJK2ScoxcSyDZqMBMbRbTfwgoNZoY2kmUSQiqRqpTJYgCBAIkQWBRDJNFEaomgII1JsdhoeGcBI29WaDbD7FyGAfkiKBJLBaa1Brdjh+9jQbNw3heg2SGZPKagk7kcc0EyyvdOvkLS4vMjkygWMnWFxYxbZSZDJFmo0mmqYTBhGW6RAFEbZtkkyn0A29O3sEgVq1wrN7XmZwoJfR4QH8uI5lG3z9bx/j+VcO8LF7bsG2bdKZFIHvY5o69XqdqQ1TWLaBIMRoukYQBKxWqoiCwn/4yv0M9eYZGx9meKgXSRbo6cnhJC2iOOSRx55i4/QEghiTyTr09WcIwgAh0hEihWPHj1EsZrgwO8+Djz3Nf/Nbn8SyDBC789PreLQ7LnEc0Ww0UBSFU6fPUSzksQydmY2jWAmNiBBVkWm3XPqzRSamxvD8DtXVKpIkoGk6oihhGDpHjp+k1WxRq9ZIpxIIcYBlK1RXyyRshz379jM9OU6z1aFWq3TzsyQJJ2HRajXp6S/Sl8/z+HMvMzo4SIzI5ulJzsyeZ2piGFmWaXd8vvPoT9i+eQJFEalUK/T05lEkEdO26bR8NMXA1B0UWeSmzZNs3jjBE0++wPzyCr35FIrczQeLwgBBFKnV6938pwjctsePn36RLZs24HbaALyw51UWF2bJZRxM20CWVUIg6XSLnEtiDHGIiICmK8iyQrPRot5o8NX7H6FSqjLc388Xvv5dNk0M8dXvf5/VcoOBwT40Q0eSJNKZNFsmx5gcH2ZiuEihN8380iLJhMm9t+1AlASq1RoTkxNUKw1eee1NJieGCYMW22c20mg0CfyQSqWBplr88GdPcetNW1EUmXarhWXZtFoeiqJ2F5SSgqSoKJqGIstomsbi/CJfe+Axdm6eRBYEJEkAIUA3dVqtAE23qFRavLD3IONDBVRFRhRFNMvGsB0WFxcp9hS6/i8Gt+OiaCqarlwqjSDiui6OrnD4yDFGx0ZBEIlE6S2PeYVfNDWNvQtl7rz7jus7xF+QXe7iHRbq75QDeOX1V27IxcT4sUYkyEiCgBy6LF84S3n2BN7KPNXSWRSpRqcdkR7cgKzlOH78BBNjQ9x205185UtfQUbll2/fwaOP/JhaJ+LFPQe5bfc4lqVgahbNRpNsPscbbx4gl8t063CqGrMXLyLEAqadoOOLqMYFVKtNrBh4oc3CSkDklbqbz5JIs9kiCkN2bh8nm7Wx9Ax/+qff49adv0InvIhumtQaHqlUjmbDRRSX0aSAZDpDpd6kHRloRoxqQMddJZ9xuOWmaVZrAS+/XqfZSvAbv/kb3HvvLRw69Ab5Qp4zZ84gxxA1z9KqV8kmI1Rdoul5pPpnUMwhJqenWVy+SLPexHZ6+cvP/Rnf+cZXGc76/PPfv4P+rEmzVaLlGZydq4GRQpOjSykxMZlMFieRoF0vE/suoqhhZXpodHw2bBjh/PnDHDr8Gs8/d5FP/PJtZNMp+vp6+f7936fY08vU1KdIOKO4nSaSVKNvQODE8TfJZvuw7QyansCPwhtfx9z4iTfQ1Lqrtxts/+e3D8Hdhwa8f3AXRWty/FfXjvkQ3H0wtu4dupwoeDUtReDqHIbLUdMofnt4k+t9Rtens34QttaDKAgEYQjExHFEt4Dte69dcz37RYK7P/5Xn+UPb9t0nfPWKE5r/5PIgz/4Cd965EmGCxmefeE1jh4/x+apYVqNBoalkUgniImoVyrMLyxz+ORZCoU8YeCTSHYXye1Wh2Q6RX21TLvtcvO2GQSpG4l4Y/9RBgd6CcKA87OzSLKAk06jqTrHjpwg6ZiErkutViebThBFERcuzNPf34vnd0gkE+iGRbvZIQ5Bty08P0RRFXRVRIjBCyOCIMTzfEzLJAzjLrWO7sLaC3xy+RxxHKGbBrph4gcRDz35ImP9RQRiHMdGQMJJ5tEMgyj08TyXoYEinhdw8PAxpjdOcv7CRZKpBF7b4+W9BxgfG2FtMqu6jCRKhEHIyRNnyObSrCwtE0YRqWSCdCaNJHm4rs/kyAR37t7B8vIymqYhKxK6oSFKIn9133fZND6KqqmUyxUg7tZu0w1sO8lof5G+vl78IMDzO1iWiSgK1KtVDEPjtQNHWVxeZmpqDCKPhcV5vvbAjzl9dI5mo8lieYmEbeI4FotLJW65eQe1Wg1FkbAsk2q1zlfuf5h7bt1Fp9Nd/HcjbzkUWSIWu1LqtWodz/VJJJIIyLTbTQ4dPUIYhSQTCZaXykRRSKVSxfVcwjAkYZmYhkatXiWZtGjU66ScFLqqkc1lkDSFMHCJYzg/O48siVhWt55dHAtsnZ7i5JkL/O3DP+POm2Z47Nnn2LVtM54f4DgOM9MT2LaJJAsoikxMROR3cwNFSeHI4ZP05AqsVkvkC1nmLsySchwcQ2Xr1k0YpoFpGsiKzOpqlWIxQ6vpcujIiW6NN1VjoL+IaRm4nTaFXI6eQoowCFE0lcNHT9Db34cUg+u2Ka+sYJoGXsfr1nUMI9yORyqZwG13GCj0kM9l2TUzTRQFDPZkGOgdoK+/B9/zabXbFHuLKJKIqknMLS5gWRpTG8ZxXRfXdxElkWwuR+B383omx8dYWJxnenoUSRBRFIXvPvIEZ88toIgSmiZQyKRQFJkwiIiiGCeZotPxmJ9fxkk4SLJK6Pu0Gi10XeXV1w/QX8yyurrK5NgwiiRR6M1y9vwFfvL86+zaNoOuG1TKdSxDImFbxIjU6k1UXSeRtC/VSYUgCJFkqctKCYMukJdFNE0Fz+P1g0fYvGkaBIFIlBDjt4M7gFv7c/zJfQ9w77X0zP8fgDviiDV4140Exghity6g6LUR3Bp7nvwJaVNg/swxWtU5nIRAMjNEIzYZndiOqum8sX8vtpFFN+Do0QPs3JBj84YhUoUcn/7EDtxOg1q9jCIpZLJZKqur5As5wjAkiHyCMEC3LERBwvV8ytU2bs3m5Mk6zU6Gz/3Ftzl86CK339JLIpkgCiOiKMIwDNqNEr29A9TrTcbHRsnlMlhOC920cOwMi0vLvHngCCODadpNF0lOEkk2ew+cJWmrCJJMHMU4RpJmbRUrPcZ/+trz/H/svWeQXed95vk7OZ+bb+fcaKARSZAAo0hK9kh2WWLJ63HN2Dtj18yGD7uzW7W7tWGqtqbG3vWW1/YEeT322NI4SbREKzGIFEmJUZRAkAABBpAEiIxGo/PN9+Rz9sNFaBJNAJQoyePS03Wqu8993xPufe973ucfnv+mLXt47fB+ZCXGdixaXY//4rOf5U//6HMMFhIGqgU6jTl0S2e12SWQBtDtES4sruDkdFw3x+//2z8hC1qcP3OU/+43fp7JQdBlka7fIM5cfuv3H2VqqsJIv4uiKCRJTJIkBL4PSUjOzWE7RY6fnefzX9zH1GCR4VGXg28cZ3x0K8WiwebNW2jU69xz772US1U0q48jb79JIa9z+MB+oriD117lxMkFwjBjcHwGUZF6ocY3gp+Ru58qfkbufgzYiNy9L4qvF3r5vgFwmUCsG0HpRWa0Pknz/SIrvfDCS7liV7ZrDcQPrt2xcR2TD0sePwpy96MIjmyEjF6463tv5eoAmF4I7AddVG9bf4hLhSyvJRLzo7yX18Pl42cgiBfDbpKUKypsvXCfH/as6wVS3n+Mjeoi3iguhWNCj9j9H7fPbthfUmTiOIJERNU0hCgl6HqEnS4DfX3s3bmZSqnA5qkJJkcH2XfgNWqNGqoiYCo6jdU6uiJiGwaOqSFLAo7rsLiwhCrLvcV3GGEaLvVaG8ty2f/yWxx9+ywDg2XqrToDg2UGh/pJEwFZk4m9gO+9dJBKzuXCwiJLSzUC3yNOE9549yTzCyvMTI+ztNzgr7/xJJvHxykUC3z5kaeYmhjBsAzq9Rbtjoeh63S6XVRVZXV1DdM0kWURQ9No1Bt0Oz5vvPkOfdUyna6Pqpk4bo7xYh9BGFMpV3oCKEFGkqUEgY9rG0SRR7lU4PTcaYaGqtg5myQLWWusIGUqz+47xPTYMJar0+n0SjX4XR9ZknEti+WVedycxaapKUzTIMoSum2fxcVV+gZKdLsdytUS5+fmeefdE/T3V5BlkV2z05hWT3hDUzUUVUFRRDTNJM0SckUXUeoVk9Z0iXarhaopBL5PlqVsn93MvlePIEQpY8NVZCFjanyCu+68GUFIGR2qUhkok2XQXyr0FArzOeSLIYfFSh/33bmX5aUlFEVAEBTIRP7DX/4ts5uGsSyVKIzJ5QokUUYYxnzuL77Kz99zK6VCgcHBQY4fP8v4+BCFYo44DpmamkBRpJ6cui6jqgpeNyCXKxJGAdVqP512B6/bQFUNMiSyRKBcqSArCrquYls2qqpSr63xibtvIYw9Nk+OksvnsR2bDGi32yQXyUMQBiRxjOvkieIEVdU4deoMlqZhOhrz8/P0D1TxuwGDA/3ops3cmbMkUc9I4ORzHHn9HcIo5sVXX6dccLEMl9Nn5jB1iVzeRTM0bMci8BNU1USRVRRFgkQgy2LSNO4tiGOBJMtI0xTbthEkkdHhfvKuw5898HVu3TmL69o4loFl6TRqNQRSzp+bp1wqIYgpggjFYg5NU0CQsBwbyzbJ5wssLaxiOya+72OaBt1uG1WXCXwf23XYMTtFX7nA5i2TbJ4eodPpEPgxum4iSxpnTp0hDEK+9ew+lpdWsSyL0PNQFYUsTSiVcmydnWawv0RGSkKEqmsUiwVu3bUDWZJoNFsM9FWJw5g0gVdee4tSMUe5XCBJE0RRJAwjAj8gjGIkEjrdDs1WG12TWZk/T73uMVgpIGQJZs4lyVLEayxC7x6p8sePPcttt996ed9GqRAbiaZdKzzzeuGblw2C69M/yK6c4zrPqPXXlWY9gk2wwsrZY/zlv/8dTr72AoTL+N4ClhQjiD6r9TqaM8Hue/4BmpLnqw9+mdvvuI0v/KcHsdwIVU/YOS4wM2aj6j6mIqLIIqOjEyRZRpTEtLsdJFXBsA1ESUTWFFJBwrULOG6JF/e9zve+/wZzFxa4/Z6buP+Xd/Kxe0aQCXslC+Se4nAQeCS+Txwb+GGb/qEOabqCZpeQFIs46QkqjY0O4QcS3XbIybMrOLlhFG2IgbKObRTxuxmrq3VkQeMP//RR1oIida/OYF+B/+qf/DMKfTn27LmNhfPnKOdlWgvHOH/mOGOjOVbaCbI1wNDsJ9D1EoMDffzlX32BQr5Co9vEFTN+5Rdvoz93DiWNSNIIRUvIMCi4Am5eY3SwSKvVU/9cW1ulUCjSbnXIkhjP61KulNm5rcLjj77M/Z+c4s7dfbg5lYcfeZ7vfucpPvvLv8zyyhpRknHyzBuMTlSZmNlOFJaplDbx8kvPMVCxSf1VFhcXqY5sRlU2KpDwwWPsPc/0y+vS9ePr+gboa5G7nwSP2kg85XrtBeGnq6n+M3L3Y8AHkbv1uBFv3KV2l3ApD2yjQbbRoa41GK916o9iSH5U5O6jxOUQkut8SW/k2tL3HES44X4/TqRcrO2WJZdzJi6RO0G4mphdC+L6xcElq9UGr/8oQ+XS8f6f//v3+d9ve7963BXEcUwUxXz74RcoWDYHXj5IFoYoQoZq2YhSRppEyJJEt9PlkadfYX51lU/duwcllYm7MbmSzeKFBUb6y6wsL5GJCtVqiUatxqE3j1IulZBNEUHO0A0R0pCBSp7h8UEq5TyFYo5208OxCtTrC0RBiGvaRHHMls2bKNoldEtjcHSA8dEhHNdFlzXyhSID5RKnz55laWmFm7fOYBdcVENHM2wM20WVIIoTbNcmTmKKBZtOs0kURFRKfShInD07Rz7nEPghrZZHuVjBcWRyBY2ECKQU1VRRZBFdlVhdXKLbbNNtNij3jfCNb73Azm07UBUbx3Jpt1vcdstOVE0hTj3C0EMQep67LEn5i795iLvv3EEcRuiGSZxkiIrAa/tP8fWnXuST/2AX7U4LTdaJopDpqYneGBMyZEUmSSO8ToBhWqwsr1Ao5/B8H0kR6bQbaIZGrVZDkxV0zaDVaJLPF+i0OhiOxY4tWzhw8AixF6ArKvliAUHpIkoxOaeAZptkSczJYyep9leRFBmv0+ShJ59jdmYzAhmB16VQdiFViIKEN44d5547d5EkCYVCCVU2SBMBx3H55H239O5HN2g3febPr2E7Cm7eJU0TTNPEdR3CLCGlp6qZxDKf/9KjTIz106i1iaMI2xJxcn1cmF9i38G3mJma7IU6Bj4iImkccursaYYHiuRKBQzTpFFvYhgmYRCQzxUxzF7NOkVWel7YKCOKIxIiLENlcLhCnGRYrk2n43H63AKSKPH9/a/z7qlT3LR9BkGRCeOYF188zObpcT5+915cV2ffK0d58/gpdm+boNlskSsU8cIMTXc4e+o839t3gMFyAc1wkDUBLwwwLYso7IUyGrqBIAp43S7Ly8sYukoaRViGiakbtFptco7aUxK1LE6ePANJguFoaIqO54Woikly0SC2uLBEloJuOKhqRhSFCFnP20kmEHg+uqGhKDKGpaCbCvVanUKhSBhE/NkDjzB3eoE7924nCiMOHTnGu2cX2LlpnELOATKOHT/J1OQoURjQabXQNIUki3HyObyuT6ddR1NlvK7Hc/teJo4lpqanyNIEx9YQsgRF12g3O4DAVx/9DsN9VWQxxnQcVEPrEUkZSv2jZHHIW++8xchwP4IsI2TXWLwKAs+dOM89924Qnvn++XIDcveBh73OxHxl4b1+X/bhHhIXEUQ9Rd3nv/HHPP/Y19CDVYRkjXLZIEgbmLKK77fxEwWruBO14CKkOrIsUCwVOX5yiSe/+33SOOMzt20m66yRsy0uLM9Tr9exbZd210MQBPKFHK12C91Q8Xwf183R7gYEfkSKxMDwDEtrHe657+c49e5Z6ueX6bOqyIYHmUAcZRcNWR7FismL33uXbdt2IaQhZXULXWIatQamqZHFIVHcQXUdShWd6U0DODmNRnsVXVgiE3xEGVRTIkg6pGwiMEy0XMzeHbvZNLqLL3/jAWa3bGVh4RyvvfIke7ZNomtQqVh0Y5vVhszw7J0U8n0X76nNu8fP8en7P84X/+OfMDXqoMjnyOXGIQuQlZDEjxnqK1Ap9UKtbcchCHwcx8UwLRTd6okv+W0Cr0Ol4LLr9hEsoYOrauTMIb7+5Ev8xm/+JiurdQ6+ephnn3uRyeFNdDo+splD13LsP7APU6kwNizhd0+jqDIDQ7eiO1fnw197jF21+n3f/z8cubtiqN8glOqnDuFn5O7vI9Ik/tfv99RdwkYDPr0s0X/1vvXCJO/Jrbr4Ws9rdyVpbL1U68a4lKC6Xkb2vX03GpDJ+twx8YMFRC61S7MrW0+g5L3bTwOXyPH66xAuppb33uMPvrYr9//BmmMfVhXyvdbPH90Cdam/KIg9mXlRvCK2cp2+V7xzPen4lPeKnLz/ej8w438d3i+Usn6fIAj8+Rf+mse+9cRlj9368S+KIkmSQCbQWK3RbrRRpQw351Dtq6IqKhfmF5EUGUnQUW0NQchotTrcvnWc7ZNDtBoNdF2l0WpS6/gYhgOCQi5nIEg6hqGjazKSIJIkIpqko8g6otrL1ykU80h6jiTKEDKR1K+TRmusLpwh8HwmpibJ5V0SCUQNFF2j0/WRJAnXdWg1miiqQJpGPPLMKyytdtiyZQLbNiHNkESRZqNJ4DewVJ3lhVUqff0IkkS74xEnCX6YIkgqTzx1iNnJcTRVJYl8JClFMyWSCLyOh6GKCKFKLHQQUoUk6RLEHYaGBj/CTHoAACAASURBVDh7eo777t7LVx56nNjrMFQtY+cMwiDixX2HyDk51tZarKw2qQ4OcHZugeOnz7N3925M00EUwfe6nD51hko5z96bZ7HdIpppkckilp4nzSJUXUKUJJJQYmV1Bce1EUUBRZGQRIUwaKMYNogafjdASsGPOqi6TArImo6kqqyu1NB1lU3jgxw9dpqh/gGMgkumyAiygmaoZO0mjdVVjJyBlXdJBIEkgF1bZ8myAE3JCJMAXdWp19r0DVTZNTvZ65sKgIQf+MhqRterEyUKrpvjwtwCX/zqtzAlmR27dhDFKZqm0vU7hFFAEnfI0pQ4igh8H9dSGBsa57HvvoAqSQyODBD5HpZlMDRYxXFMBBIUXSZDIEoiRoZHMAyHVIiQJIEkilAkiSyFRq2FrktomkgUhYR+xFr9HP/hT55m69Y+VFNi6byAbaq0Wl1M2+Wp5w6ysNrkrVPH2DI5ytjwBF9/+Ds89/39/MavfxpN1pFkgSiB4WqJwXKJRsOnUikjkBK0anidNqQpWzZPYlgmbx48iSRnOLZOuxnyR3/8CHffs5c0TYgTj3aryUBfhUyWKRZLyKKGLMtIKrTbHYp9A8SZwuDwCIVikTT2evltrRaB7yHrBoIo8eWvfIfaQoOTx07j5AxMw0JAZHVtBVWTKLgunXYICCimSLdFT/FWEoginy3jQxRyDoWKSwrMTo6zeXSI535wmD03baHZaNNo1emrFGi2WwiJTJJklCp9BH5ImmZ4XkoS+YRRwNZNW2j5DTy/zejIIFmS4VgOgqKhqjqCJLN5ehLbdjB0izSKSaOIhaVl+scniAUV0zJoNVp0OwGlcoXsOqHxdw6V+Z0vPsS9997Vi8S+mCpwde79pep5l/Kpe7P6Rl66K3EW2bq5+socfLndxS5pmr5njs/INiSI2cVwTA2fTBAIBQ0EcJM2f/MHn6dba1MoaBTyNkIMxHUE3SAOfHRB46mX3ubT9/8T2kEKmsVaw2N4sIRrrOHFDt957Elu2r0DQa/huEWWFrs01zLqjfMMDORprfjUWzqvvr7EzMQQzZUFJHS6SRNZl4gCibHNW6itrlJ18mRiG7MoE8sOYayiiTk8r4ukySCNcGG1zb5XDrNp63Y8llCFiCQOkEQZRdOJExFLMRAFhSiIOHv6BP1FjbBmcvb4PLbh0AoiBFnjm8+9xf2/9Cvc/wu/SL3jM75lhoHhcV559W127tyGmpxDY40s6SDLGW8eb7Pnrs9y4OBxBMC2HObOLnLzjh3U2quY2gori2+ze8s0YtpBLelIsUPeFojTBoY52FMxNk3OnjtHzs3he11efPUEmWgzOJwjiuq4loWKTux3ybIEUfT52M2baa82+L0//Vuq4yX+p//2n/Lg1x9i1003MTTQxysHf8BnPvtZ8sMjqELA2vIC45vGsAdsVNlFkBQyQSJDRMwkUuGizNq6ELD1K8xrbVdLAV79fZEEgff/XHEa/F0jdgA9T/uHXRN+lPgZufsxIP2QOXcbycVfT0L+kufvCim8Er55bVxZqK872nv6bkRw3uOnEq4hILLBGX/aHq0bwfWlna+PH4bcXT7+R0DuNsKNGmLXl0IQhSsLh/WvfVj0lNneF5IKPPfMC3zxi1/hH43l+dTU8IZ90zQjjVOWFpbQNQ1REHAdG1GW8TwPSRRYWlqi2+5y9Ogp+qsFIs+n3ehQrBRAFBAkAUlRME2TerfG0dOnGR8bQHdNFpcb5HIO3U4LVddwXAdSWFurU6u3GBsbIQpCEuqkSZck7tBsrpEkAUauwtDoOKpmIKsyqqrSangUCjniOCJJYhQFHNukWatjGAbTQ4NsGh9kanIEw5QhS3lp/0ECL+CNo6coOD1vnqBIqLpB7+EAjUaHP/zrb3DTzChOTicTUtIswdAVFF2HTEYQwHIMolAgTkJOn1jCsgwq1TL7X3mTN47PMT0xwdbZLQwNDfGv/u2f0Zdz+Orjz/Lzd99BFCVMjo9RqpTQDZ2vPPwk/+xX76fVatLt9qTvu56PpikUqmVyxTxxFKLIEpEfsDC/wle//QRbN42TxAmyKHP8+Bl+8MrrPP/Sq+iiRF9/j5CDQJKEWJYGQkIcBeiaBoJMu9lGkkTcXAGyFK/bZGpqGEHKenXXwhBT1wnaHexCgSTLcPN5Qj/Bb3k8/fxLzG6eRlFkwjDqecziBF3X+fwDX2Wor4SmKr3jRRFxHLK4uIhuyCiqgaKJyGLGfXfvYXS4nx+88iqPP/c9ts2Mk2UJURhBInPhwjK2aZIkCf39ZQRBZOvmKcqVPJ7XxnVtojggXyr2hFHWVhEFnUa9iW1bnD59mrW1VfKFIrKokiSwML9MPp8HMlZWVpBlCcuyWVpYYWh0mD63xEB/DiFNefRbLyKIMV998hkGCnnu+9htVPI5bp6dZtf2raiywczkGNtnJnFzBc6dnsM0FTRTw3ZcKtUSh4+8g+XolKoFkighClP6BweZn1+kWi2T4DE6NoKmmGiaws03jROxRhi1SeOU5aUGjz3xEtu3b+HpZ37AQ088z1DJRhMydNNClCUEScTrNHrvqyYDMqkgEkegGhJh4LFjdoLx8SqTk1X8OMB2TEI/pFrtQ9N0Aj9EU03iNKbZbHDo0DHm51eYHB8GARRZJO/ayKpMlmQYhsnwyCBbNo2RiSJ/9Y3HOXr2PDu2TFMslcmyGFESSNOYVrNFLudy+tQFyiUXXdep1es0Gw127dyKbpggyUiajigJJHFIEgZoIpBGpFnI3NkzPP7Mc+y96SYU1SBJMzRNZnCgQrvVIooiDMvmegvQu0cq/M668giXBI3W4xK5u2qe3XDfRv9cmeMvz7NZsuFxP4jcXTYEiypxJiKmEc3FOf7Tv//XOPoKw2MOU1uGaIcdnHIZMY0YHBrB0BSWLqyw5+O/zKkzF0gFiXyhSL1W49/83u+SBRmRGLJ7q8Vtt0yTpgqmaVAq2kxO96FpGt1OiGPKNDstao01SgUN05AJ4y5f+8rbvHZ4hfs+fQcH95/D0E2mZgZQnBzFgVnefmOV1bUAUZMxS2N88cHnuPO2nSArKKrKlplpVhYuMFAdwbFyFIs5Wq0mSRqRJBGe56FpCrIiYzkuq9EipeE+ar7L//B/fp0kG2HfkZP82j/+rxkdH2Govx9DM3n8208xPjZMs34BKZijvXaGnGtiuzn03BSiVuWlA0eZnd1KksT09RepDpT5X//73+fFp5/gVz/zSYaHZHx/kQyH1lqDWr1NdWCUZrdGlsZouo6hayAIqKrKWk3kwplFigUbx8qTxjqd9gqG5RJmBoePrRIETV576yjn1rr8i3/xP1Jfi9h7652MjIwxf+48hXwRwzBpNGSe/fYTNFdaPPT1b+EqBkOT27DsAnFGT9xMiK+MrUu1FD8EsdnAJ3f1nuusSf/u4VI018/I3d8rXCJ3VwfubWy52AjXGxKCILwvH4/Lf1+n5+V2VxdjvFiCYYNeN5pjdiWWf50R5zr38VHm1V1CEIYYlt2z8v4IpOsSrlUj6HKbLLuhcNuNcijW5z58lO/Hhrkb721xuV3v99X9Pio0G03+4Pc+x68NWnxspIqlaRtdcO9XCk8//X3KhTxz5y6QJWDoOvVGC1kWekQjZ+A1mkyOjRDHAc1mk9GRERZXVtENDUmW6HQDDNNEQWdybBRZ0gkDyBVcZFGk1W7QP1QlzVKEFN49fpqnX3qN2fERarUaK0tLKIKGKhskiUSx1Ecs6D1FtWaDIAio1db4y689wa07t6CoEpD2ChtLMufPL5KlAkPDA6iqTJZldDo1sjRhba3F0/sO4gc99b2J8RE0W0cSFPyLxcHrtSa3bt+MpckYtkGxWiJfyAEZZ88uUS5Ve2FyQQffS8nnHb791H40VaZcrZClCk+9eIh777qNh771NBOjQ9iqzK0372ByZACEjFdefZPlpTXyBRtRlNi9cyuf+/wDzE6P0d9fRZBEBAFs20LW1Iu5qyAkCbWVNSr9VW69aSu6rl0cTymGZrJ50yRjg/1Mb5rs1UETBERSyCIUTaZer5FzLERkAi9CNzQyUmI/odGoo+oiURKRK9i06k1cJ8+xt08ReiERIrlCEVkW8Vpt0jDm9Pw8mybHkEQBWemdL4kT6vU6uiIx0F/BzeUxTZV6rY5pm5iWjqrJiKJMkob4XhdZkeh6XVzH4FP33Um30748Vz/3wmHqzRYjQwMUS3nSLOH4iTNUKmVEUUBWBdIsodVuk5ERhj62Y3Ly3Qt8+ZGn2Lm5p8JqOxa+F2PoBmmckMQJWZqi6yqyJKHI6kWJd4H5+ToPPPoUW8aGURWVbTMT9A1WyVs6lqVRKhQwNZXHnnmBTZOjaIrG4deOEKchfsdn/4HXmZ0ZJwwDJEVjZWWZmc1j5AoukqIShzGOk2N5eZWXD72GKggUKjqOXaTbCXsS8mqIQRVDsUnTBNsy6KvkmTu7QJam3Lp1ksWVZbZsGuMbTz5PEsT0DVSxHJ0kjnriJI02pmnx3edeYnZ6C5EPWSLy0OPPcfTkae66YzeCKJKmCYqi8taRd+l0fQI/olgqgJCwNL/GO8fn2DQ1hOOYvaLuYUS3G9BsdjAMnVqtzh9/6evcfusOpkYG+eS9d2HZDo1GC9sxLqqHZpTKJUQECoUip0+doZB3cXIWiiBDliHKEsgiiq5AHBB4HoamQJowf26eOI0pFXJs3zJDHGcIskqaJECvNMDZs+eYGBsiE5UbMtzdNVxCnt5yhVStd759QN7dB2LDBcYGERgXSdyNhnxe6pdIGqqkIDUXOfjM4xw//DyDkzPEgsGum+9FNQZ45PEXuHnzGPVOEyH1cUyX1BrhxMlz3LJnLwICeTfHPXfdQdiKefKFJ/mn/+hu5s+d5NkXXmd6YoCuV0MzoN3xKRbKZLQwDZX+/jJJHKApGqJYZXKTyo6bR9DtLcxs2sv3X/oBfYMuVnGEbmiw585fQXcr7D/wCmZukqeePUI5L1Ou9lGqlNGVXv7u0oUlUiHj1OkTCGJGpVLgxPFjTE1NcWF+HgSRbrtLX65EFkR4XZ9NM9t54803CeUB/stf/+dYtsFbR97ggS99GUPTmBgrsnkshxKcRJcDhoYGWVltMzJzL5o7ws6dezk/d44oCXj10H5MQ8XW3mVh/iT33FHFUFM03UUMNZADwjQPgouodijli0CKpmlkWUKSxJhmxPhYH44bo6oCftjF89ooukWSSTzy5H4KDsxum2B8fIIvf/Fr3H73Zzj86gFkSUbTVGzbRFUUao0l+vsLZELK3ptGSbxzxEiMjE70PGeiSCrECNnFsXRRiGd9xNCHN5zfKLnbaIX9dwW9L99Ps6D5z8jdjwEbee4+7Md7I+3Xz8cfltxd67XrkbtLuBa5e18O7U8eWYoiK8iqRhrHH6rrxuTuhnv/UNaan+QEcJmAX/TQ/SSsS7/9W7/LtvYCn5oauua9JmlKkib4LZ9SIY9jO4iCwOpyjVK5gKKp6LqCKGb43Q6aKKJpOoIqUu2rsLy4RrlSJgxDDFPHdhxA6I0FWcAwNNaWa1iWxdtvH6VadomikE7b4+zpczz6wj5+/s69mLpCs92gXu/S6USMjIxhWS5RmqHpOmkaE4U+WZqiKirTo0OIF0lPEicIwOkz5zkzv8To0BDLq2s8+NiTOLpJvmDS9bqMjY4zUCpTLbi4loksS0iyQOjHiAJEoU9ftYxtWTTX6nhhTN9gP2mS4nU8vvTI05QsF01TEOUMXXNYXV1mYmiMgaEqURxSLJbp1JrkXYdbb93Fv/o3n+ef/+NPI8kittvzPm2dnaFaLvK3jz7JyGAfhqlz/NgpZqbHaDVbFIo5dMOgXqv1RFIUlWatDmTEcYxm6AgXjRNrq2u02m0efOQZbprdRC7vgJgRRQFRHELW89aFQUiWCQTdDpKsUl9r44e92lUvvfQ6Z+bOMTMzSavZRpZVTFOj24344wceYbRSYmR8hDDwkRWBLI5wcg4zMxOEUYCsKIRhgGkYKLJCrVajWMxjOyaqotH1OmiaQZr0vHpJmiCJCs16HRAQRIF8vkAchciqjKarWIZBvdEkClNu3jVLEAY0Ww3y+V4uZrFUwvM8yBKiIEDXNSRVI/B8Ws0WrpPn9Lk59u7egaKpnDtznlK5hCT1lAZzObsXhhn6fO3xZxgfHuT1N45gGCq5fImP37WbcrVCFKVYjoGi6biuRaVc4MLcAoVCjqnJYSzLoNP18QOPsYlBuh2P2I+YX7iAqqo4rsuDjz5B3jYoFgtkKbRbTWRFQVMV1lZXqFRyVPsrLC/VemFTWYqsSLx54Aynz51lemaUOIlwciaHXj/KjtlppjaNk6UJxUqJzdNTPWVSTScKIpqNNoHnEwQRlmkyUCnyzDMv89VHn+W23TvYsXUzu2/aSr1WR0DA63r4nk8u7/LFbz5B2ImYnhoFYibGJkmikOGRPqIoYv+B1yCF4aFhvvTNbzM1Ooxt29w0O43v+ZQrRZI4QRQFdE1HkAQEUWJ5YYUs7qkJp1lCIedy/MRpkjSlkMtdFFAR8LwusgSR1yGJYxYWlknSjNNz83hBjCzLCIKI6Tog9EpQRFGEpiloisK7x47RNzRyQ/O7IAjv8d69B5eI3o1iw9P9cEbLjWAYNrIscOA7j/Hs4w8xMppn1TeIIhldK1EuVyi4eYLWApmckl00NHxn37uMjE6hmTaHD7/BE99+komxUWRklls1LMmjU6szMjFNxVXww4SgGyAIGaat0awtI0kiiqrhdXz+6m+eIENi5848F+ZPkiVVzHyF48ffZXp6Csct0PUCRrfsZmBkmLWVZRy3gCAq7NgyRf/wEG7OYXXxDFG3TZYFpEmAaao4jk2tUaevWmJhYZ5CsYxtuSiqxur8KmSgWXmeevYQU5u28Zv/zf/CC8+/iNepYxo61b5BhgcrzG4ZwG9foHbuAFHURSAlimTqYZ7jZ1cZnxjnnXfeIp9zuOeejyGIIl79IL/4ic2MDBbptupkyCR+SqZ6nD4b8fIrb7F15zCx7yFJIvPz55FEAT/oIkoRpUKejreCJEuoko5hGEhCRrfTZfeeO5geG6DRWKHV6PDOW2f52sNPM9hfJs0S3nzzMLtv2YUgpNiuRpSELC4tMDzgYBshx0+cIAjAzRVQTIc0ixCReyNsXRSZsM6YcC388OTuei6SnybWhUj/jNz9/cF/ruROFPlAd/qPi9yttxh+lF+CDIE0SXpW54/Ec3fDvf+zIXcZkCQJkvjRlktYj+PHT/FH/9+f8i/v2Lqxp+59EBDodNp4Lf+yLL+h6biuy7F3T1IuF+l4HcgSBCHhjbffplqpIGgiXhCQy+c5d3KOWq2Ooaooskzoh6w2F1DkgEZ9Ea+zxgsvHuGNo++iCDEFx2F5eQXdUKi3mty8bRaEhGo1j2XauLkCmSiQSCmSLhI1PNI0BBJkWUJRNBxHx7YNgiAiCEIs0+bc/CJeEPPya8e5687dGJpKnAgMjJQwXQdJMOjvH8Jv1bF0DU2RkWWF118/wshAH5at0mm2qK/VmDuzyMPfP8Ddt92KLCqkUUIlX6DdCRgYqGDndFTF4ML8OYqFCqmYsLC4RL3Z5cCBN3jp0FtUcia375xBTBM0S+XEyeOYloqAiCxJTE2OUCwVCfyA227aQZrGFAq5nnKj56NpKokXIQKaoRFnMYZjksQpqqr1iK7WU8bcvX0biiqiajKSBEkWoegyXrMBcYqm6yiaRdht02h0OHL0FNu2TnNh4QLT45NsnpkiiVMKxSqypLK8usT+V47RbIV88uN38R//+kFu2baZlBBRFQjiAFkSqK2tYtkGcRyRpjEL8yvopkLfQBkQyNJejqLXDZAkBUVRCcMQKZMRJRFREkEQEUUVQejVwYuCEN/zKJWLlMp5TFsnTWIs28Lrehi6iyhIKIpKEPXKBMiKBkh0210c20ZRFCr5HMViAVlUOHN6nsXVxYvHMRDFjDgOMCyLscEh5uYuEMUxrqNTKvURZl26Qcpz+w6RSSnFfI4sTcjSGF1XqK3WiLIQUerl3PYPllE1AcuwKDguuqGytNJgZLCfXVs2EfodbMPic3/6AJumBsjlXSRRoL+vQBR5RL7CN5/6DrYho+kalp7Hj86SSh1kSUBRVSwzz/hQH27eJhZSCn0Vmn6ADEiyyvJSnbffPMnU+CSnT53lxZcPsnN2itXVRUZHSgwOOAwOlKnV13p5cX1DgIgog6yIGKaOnMncdfteOp0WKyuLKJLG8bOnmZwcwet2GezrJwmh4/vcunMrX/jbh7l770102h0G+oosXJgnCkKWFpdpN5vkCkWOvHmUVrNDuVAk9mPMgkrohaiKiptzEcVeLTRVFui2agSdJrZjIQL5chkrXyJXKjPQP0wUJuQKBYI4RjY0hCQhFUBWFJIw7NUb0/Re6PEN4O3lBmYuT7Wv8p79H5qE/ZjJXau5xok3DvG9b36Fkf4Cu/fu4Pb7f4Py0BjPP/88hw88w8xMH+eOH0fRJSwNojBl5uZPoaoG45MzCJKMYzsM9vXx1usHOXpqiSMHX6Wcd+gfKeKo0GqkvPzSEaY3lwmjGppsEoYB77x9lMHhTczOzFAeMgmXE/qcETIWWU4dhkeGCdsSy/NznD35FubkKKZtM1gcY3SgzPLCcbqezIWFOQolG0PxUcQA28kQpLhXRkgEr+sjSxmSJOPYecIoZH7uArFl4yOz2i3z0JOL9I99gnv3TFNwSjSay5hunomxTehqQODP4bXPkjbeopAvEoQBcWahF7dgFkZ55cD3GBkZYmCwn4MHD7G0vMbJA2+gZSDEIYLcRtJS5FAkUTuE0QTfefJlxiccXEsiy+iVBUkjcrkCqmAgYKBIGt0udFogSAlxUKOQ04iCFlkgowgdhvuraFKeIycX2LVzG/ff/4vsf/kHDA/2EcU+R147xujENu79uU/z3ae/iySE7Nxkc/DwEUrFPvKlIVRFJrtIyH6S5E5YFx32EQuQfwT4Gbn7e4lL5G4ju8IlXZ+eR1t8z6i81G59mQThYpuNxu57BDkuCrC8r8VVmyRkV4mbXF7sbxBuefkcXC2Ksl5k5dJ2STxl/Vmzi3+k69pfOUfvAgRRIPvANh8elwRCbjREcj2uVPD58AZTuAZBvsYMlF7Me0+SGFGQrgyGSwPmmnj/Fd9gWChcFl15//ZRTEi//Vu/yyc1n/vGBtbtvfo9yLKM7OLnH3kxS2cW8TshohQSJh0yUrJUIA4S3j1+nGLORFNUdNUmixMe+s6zbBodxXUdoijgzJlzvP7O21TyJkHs8/wr+xkuFbAsF1k2MSyX6elx+qsltszOIsgiuYJLksG7Z+fZvWsndt5BNlSSDNrtGq36GmIGOaeIeFHsQhRkVM0EUaHrBai6Rm2thmXoRGHA0NA4vhfwyttHue+O3Rw/fpqtW6awDIskTJBNAdnMsGwbUZFIhARVlxgbH6HRapIhIkgSjusiqCK/9HN3IQopqqaimjrVapFi0cIwNbodH0UR0TWLMElQVIvPfeHrfOrOW9l7x07uu+dObLvAwcNvsm3rOCQyzVqbsfFRuu0mLx8+xMlTc2zbvIkkClFMEb/rY1gqQdhBkDIURUXIIsI4JJVkkGVkRUVXDVaWljAMnaWFRUqFPJKi8vLLr/PywTcZ6S8Thx5SJmDZVi9XI5P47nf3MzDQh5XPMzQyQNxtomQJkm0jSOB3m6wuX0ASInKFKn1Fl1t3TZNkIR+/aw+NRoM0hiRMETIRzbBw3TxxnLK21kQQRL7z1H52zM4QeAGCIPLwt59lx46tuHmLMPZRVZU0FfFDnzRNcfN5ojAiI+Xo2+9SqVbxgohitUKUpsgZ+F4MgoRl23S7HocOvUMcBywuLlCpFpBlhTAMgbjnGWv7fOFvHmZydJBSX5EkDllYmGd6dAzb0tH1XhiuYdmEUYqiqIxNjFOtllF1Fc3QaK3UkJKYSt4l7+QRxRhREDFcG0nV0G0LSVCACMs0CLodgm4HxTbJRMgVchTyOeKo2xNDGRrCj0J2bptGSBTmz/fKIwR+hJMv8cJLr2JLBQzdZGg0T6fVpFCsYFsFdN1GNyySJMULWyAJaKpJfaXGk088S7Plo+sKBw4f4N67dlOrrVCsFJieGkMQRcr9fchyRrlYIvQygm6EqkrUG20efPgJdmyeIo1DWs0GlqaQZD75So7TJ+ZIw4jRsSFazQ75fJEkyzhx5iyBH/DVJ57jV3/hE/zFg49x++6dvPPOu0xOjmPnbB556kVeO3qa3du3IaYiDz72PJsnBonTCBGJhaVF+vortJoepu0iShJuIY+br6CZeWJJQLNsMgRazSaWqRN4PrKk0un4PPrUc2yZGib1AnRTJ4wCLMPAqzcI/AZOsUAqXAxNzi7V67watwwUOX3kdaSBURzHJhUuPT+Fi2HN1y5xcBkbvXz1cuDyM0mSrjxzPigcXyAjDsOe5+roazz2lT+nbLXIBJ+pmz/BhZMNTh07gaia/MN/+Oskmcfpk0foc1xytsnJ+SUUeQxPUBnsH8Tvdjh+9F3efP0IE5t2sXp+H9WJWUIMStIKI4P9GJrM+FgFXckwDZMg7BBEIY01hUZrhVxRwFZBEjOcikqIQtoNkejgFEosLUX0VyrMnTrL1q3bkApVUFVqq01UJcaRm5TshPbyCTRVwm/NE8YZoqIRRV002UOSTVJfxou6LNc7zK24PPbN59gxs4kvfetNmq0Ov/bZW0k0ly/9zV/wmfs/g5QlHHnzVUZGx/jLf/c/s3U0T5qEWLpKmsqcXpYY234fipXn+FvH0UyVanUYKVE5uP9ZvvLNx7l5t87WLQNIsYpkgG4YSJlOzmzzsbtHqBYdskxCN0zCMMSxe1Eo7SBmsdnAlDPyhoIoi2RCjO2W6Hgxhm4iqm1UXSHLbDpBSCDmGBkfxa82uwAAIABJREFU5Qff38fE2E727X+Fj3/iPkRRouM1sXSHF59/GdvNaDbWaMwtcOLQS5w/+Tpz548xML4JWbNIkXvGsSxFEiXSrDdPXcK11lZX1rPZVVuaCVevU96TUvTTQZYlXK+W8BWlz58syfsZufsx4HqCKpc+YuEDTA7r87Y+qM3VfTakf1ftuZHE1BstYn7D4ikbeBWvtOuxmiSJe6aYddf80xJi+Sjmig/rvesRKhBFiTAKkUWpR9qz7AaI1vuv+MbOfa37/FHJ3f/12/8v/9ueTSiKet22gpD2FjBAFMa02h4PPPwYd+3ZjlOwSdIU3bZwLBOv00LIEiLfI/ID5peXGeyvoGoSiiSwsrxEo+FjmRqjI0PojsvbJ+e4945bEGWZKE5QVA0/9CmV8rQbXZyciyzLzJ1f5vV3TnPrzh0kSUSURCRBSt7tLfZ0Q0MQe6IrpWIeURRpNtvIikqSRIgIWKYOCMwvLLHv0JsU8w6/9HMfo930qJRK6LqGaeq02x1EWSZOUoSLyqCFYgFRkHokI5dDFESSJMUPAkrlElEYYzsOoiSzVqth6DKiJOF1PGzbQZRUxEzm4KEjTEyOMDsxiCILuIU8aZKRxCmlnE0Ydjl1+jyqpuI4JrIqE3R99r/xLrt3zDI3N4/r6tg5i3q9hihBu9XGsk2WF1Yo9/UIj6ZrPeNQkrKyvIrj2hi6TqPeotlqMzk+wuzmKfa9fIgsTRkbH6PRaBCGEVEYsWP7LIViHgBVUxGyGMsy0TQTWZJ5+oWXKBVKFEpVJFlGyDLW1upUB/vQdJl2q8XKao2h4SEERJqtZq+4tChRLBXwPI9tszNkpBiGTrfTIfZChkeHezUOVZU4SlFUDcvWCcOQLEsvKnzKyIIKGRi2RZomeH6XNExZWqrx8qtHmJmeIAxjJsZHOXHqFBkpI6PDvbpTrkUQ+hiGiaoqLC8ss2fPTny/i6orDI8OoCgmSRoTRSFxFNKo1XHzOZqNNlkKrUYL23bw/C7FYo7V1TX6h/qwXAdFAkSBJElo1JsIYq+IdpoEKJKG53tYjkkSZxdzs0VM22FtdQk356JqGr4fknNyIAj81dce4mN7byFNRERRo6+vyPJigx3bp4EA0zCRNAPbtlFkGRFo1OsomtArQN9soGsSndYqR05c4M49u5gaHyKJe++nJMsoqkwGqKpCGAQsLKzyzPcO8uSLr3D7LbOYloGpyQwNVoEYw9TJ5fOoukbgBUgIHHjtCJs3j5Ev5vD9LnEcsWnTOIVCjlt3zbKyUuPNY6e5a89NFEsOmQCrazVu27ObW2/eTkZKu9vm9bdOcNfeXVT6ynzhgW+yuLbG9s2bkAQZBIGFhWU67Ta+H2AbFmv1lZ4hLO2pSouCxPe+f5AHHn6GXTOTfOv5/Xz8jptRJHplKMIQTVWRkPDCDoVy9bJ3Q7ooV/JBGMy7/OHD3+Xe++6+PC9enitvdAK+wYaX1g1pliIg9EqhbLCWEJC4FJWShgHf+PM/wFAidBmOHT/Dd7//Fjft+Tjj09NomkbOVGk1FmmszGFoMrom4pb6eO2NRYxCP3Pn5xkeHGZpZZW+ah8/+ME+bt45wcPffhohS9i7o8T3XjxEo+kzONiHpkj4XQ/dMKnVl5ndtp1ipYAsp0h4uLkc9dYanVBBt/o4O3eG1WaLUrGKWzLZs/cuun6AVegjCkMEUuRkjW7rPFncxDIgzSJ0XSBJihw+fJJSsYoixoRBiqWbJJJEmBo8/NDb3PtztzA/H5FZVW6/+1723PIxTNfmjttv48SJ4zSbdc6dOUu5YjJWzcjbIoLoIWQC9bbP3IrArfd8BjtXhI7FxKYBGs0Vvv6Nr9BqLfHJO3cwO2GiSTGdVosg8TEUA0GAMAowdIMg8JEUFQQB3/OJk4Q4SujGInPnVQbLJs3VJSSKSHqK5/moik4cJbhWkW6rRcfr0g1iHvzWQfYfOMqWrdv5zGd+ge+/+Dwz05t59PFvMbZpgnKlj1Khn9vv2Mmp4+fw/Baua9Bq1/E8HzFMGZnchp/1nveaEBImKWEUocjKlfF2rSF7zTXH38XQS3ph9ddZMPZu6ycfPvozcvdjwLUEVdbj0iS63kkDXPaUXWx0Vf/1f/c8dh80un50cnct/Kjk7r2CIuJVD7z1x7r8Xl3HI3ZNMnqNY7yn3TVfvTFclq3ewAu6ES4JqkDWs6JyqT7gNQqqf+AV39gHKIriZVVWYd31/ajE7rd/63f5l3dsRRRvtNipgizIpBGsLDSJw/T/Z+89gyw573O/X+d4+uQzZ/JO2pmN2F0EYhFIMIiQREpXwSXJctnlkn3LVfYHu+qWP7hsV0mU7rWksn19b0lXgVESSAoEQIIJBAkCIDI2YLE5zMbZnRxP7NO5/eHMAlhwF1hSpMIt/Ld6t/Z0v293z+l5+33e//N/HkxJwNYziKmMoRsgJATtOmfOn2ewp0y73UKVBNpByKvHjlHOWWiKQjGfp1AoMjI8QJwKeLHA8XNX6C+XyeQsNjbqZJwcui6ytLTK2mqD2dllXnr9KI5u0Wi0eeP4Ge7asw1N08mYFq8dfJOj586zdWQI33NRdIMrV64iizJRFBNFKdVKjrm5BXp6KpuALODg8bP80scfYH19g7/822+jiQrX5ufo7y1ujvUKmmqSEHa9vjQD3wt44jvPs7y0ipOxMS0DRVEQUgVF1VhaXMHOZFAUmTD2SKIE3TAQRBUhlVhfrvPMqweZmuinUMqhyiIoMnEYQ5yg6l3VxJcPHCMKIyqVAkma0Nffy/bxcRRF4cL5y10REVEnCqCYLWDqGVIUXnjlIIMD/aiqTugHhL6PIglkbIskTllfa1DtGyCMfFRNplar0Wm7xDFUSllEUcayMyi6yoWLF1FliRMnzyKQYpgGUZJSX6sRRzETY1tpd2IkxSCKOsRRgu/5GJbJ0tIiuUKWjY0GHdfHyeUwLANN0xFFAdf1QEixchaKKlOr1SnmC1R7yzSaTR558mkIEzzPp1Qq0nFdLMsijmOiKEYQBJ5+7nW2DA6gKjKqLKMqMi+++AZHT13k3r272Nioc+78FcbHhugf7GVwsB9ZUZAlgSgO8X0fVVVpNJpsHe7DyposLi1RqVaIk5gEldm5eWzHJutY2KZJAkRBwpUrc5RKJSRRQtYUQj8gSSJEWaLWaFCvryNLKqvLdYrlYpctkMSIEiyvbJAv5JmbX8BQVGTJQFU12u0W2UIOBBG37RP7MZ2OT6PR4qH77iKJUxAVWi2PKOrQbnkokkg2Z9Cqu8zMrSIKIooqEochHbeNmOoYRgZF0giDgMe/+33uv3Mv1Z4ijWaDMEo4fnqavp4CkiwR+kG3Rs2wOHL0FJIi8V/+xsM0Wy0KZYe+/jJB4IEAsiyRChJJFEOcEgUR2yYnkHSBRr2OpmvIkghCdwGs0WjS31dl/76dCKQgi3RcH1FSQBSRFZEwCmg0muzbNUkchVi2xczVBX71Ew/xzAsHKORsaut1Go0GjmORximtVocLl68w0NuHLCmEXoRtZQg8n+Xlde7es5P7924nSaIuLdjqLk4IgoysGFy9PE3vwCCpcH08jHk/b68HBsv86de+ywMP7v+x0fKdFje3jPcYwpPkbUXDtw/vNnj352/tF1SSOCH0PVrzl/nOI3/Kzu1TxEqG3/qv/yeavkP/yC4uzFzh8tUZZi9fY3R4ADHZoFVbwzQV6u0O23d/kj33fox6o0kum6dUKaNqCm67zaWLJ8nk+sjYOjllieGto8hqRLEo4XeWMS2FbLaX+YUZBFFElFP8sIEll4hjldWNFm7Uwxe+8CT33nsfE1snGd6yi5W6S2tjg06rTa6cJ4lCTFPjxae/yJY+C1nsUNuYJ1cos7rSZGlV5tmnD6FIJv09RWQjJYw9kOHSzAIdv8TwWA9//+RZ5pZX+e//9e/xV599nL37pvjGNx7n4x//KOOjI6yurxB3rlHNtGjWZjE0EUGUQc5gl/fRM7STFIj8Oo987S/4yEceQJcKfO6vv8R/96sD9GQd0ihCVhMEwSYKWpvzihS308K2LCRJptVyUU2LGAlBUfkPXzzHN36wjp516RkQyfUMIosBgiBhmV3l1nY9Ipe1abUWyReyzK/ErNYTvKDNJz55P5VyD4aRozI0wO6d40yfO4eqFbg0t8jOvR8FCdabdYhcVq5eRVhfYMvWbYh2EYjRFUiQNmtS334Y/7HAnbQ5LvxMJnPviDSNkTYFxrpAO+wy8H4s3nHPm9nFf2x65gfg7ucQt2NifrN9N6Nxvtfx8H5JvX/e4O7H+7s1uHurq9ugWb5f/GOAu+vnud3f5/eq8/t5gbtk80We3lZ28P3jDz/zJ4yvzvCLt7A3uFXEQoqUpsSdDs2VBb79w++zY2IYXZbRRWitz5F4S4RhQKfjcXF2hb6+XvpHhlhbbrBnxzayxTyZbA9+KON2WuiGRhT42KbJtrEhFFmh024gyQJyIhFECZKocvrcZfbt2cG+vTvo682yZ/dW7tgxyrlzl6kUS6wsX2N8YowtA/1dL6goJhUktgwNcujQcURR5OyFqziGRLlS4srVOUzT5PT0ZT56730IpJR78jx4715GtwwxOtZLq7VBsZxHVnRSRLx2C8vUaTXqaJrI5NgUYRCRCpDNZXBdF121eeb5V9g2NYGsiNQ2NhAlGQRps740JQhDLk1f5tOf+giiAnEUsji3SioKkCT8xd88yvbRIZyCw8ToOI988wfs3DoCgoBhm+iKwn/47FfQVY2x0RFKvWUEUv7T577M5PAgWsZkZb7Gt77/Cp2mxwuvHqa2uoEqp5sZZpEf/OgAvT1VvvToUwz3VyiWclTKeUa2DCHKIeurdWRZQ9MMXLdDLpthqL8XTVO6GTIEMraBJCusrq7z2Lef5ZOfuA/f7yBtjo5OPouiaoBIb38VyzHRDRVBFAmDkFa7jWWaaLpGq76G1/HJOjncwEOxVAxdYcfEGLqq0tffg+83MQyHwI8xdJN2s4Np2uzYPo5uaASdAM8NuHDuCtu3jXPv3fvQdI3PPfYkO8aH6RuqEsddql0UJSiShKrqtFotOm5APldAUMDteNhOBgWFTtMjDAIOvnmUHVPjpKKEH4GAgojMI08+TRqH9PeX0TUH13WxMzYJArKiockKSwsbfOv7B6iWCtQ3mohpgKxJWFaGJBVJSYgTkemzM7xx5CSGnmKaZWavLvLvv/gYji7T31tmZnaZHx04yPBAD41WE1ESEIQIS7XJ5x1kJeHMmYtEQcLw8ACKqjI3v0C+XERRVc5fuMxjTz/H2OAAd0xN0ttb6RpUlwvEccpAfz9J1KHd7uBkHdbW6hiGzfDQIONjQ9TrdQrFHJqmsba6jq5rNGst8rk8iqEjAV67g6ZpzMzOo6ndWtW15Q001eRvH/0uaRAhyRKmoaBZCkHoErkxly5e49SZy8zOzZPLWEyfu0wcxBiKSrGYYXFxgUMnzlLbqPOphx9ClKNNunOGdrtJT6WCIAj0Vwc5cWya6emLDA32AQn1Wo2PP/ghoihAksC0VbLZEqsrq2iG2gWousHytUtd/8pNFkOXpvX+dc5FMaKyZ98Nn11fhPuHgLvbVty8oU0IItiGzP/+P/4u/X0D5CtDlEb34SYWX/3qkwwNjLJ9+wR/83d/w6d/5beYW1wmal6kks/S6TQIUxHVGuXiXJNdu/eQigKWZaCbJq+9/ip95SzPvXQYU1f45Q8P48gSPQULx1GIoxRRVKjX1yjk+1lZlMlkwQ9WiDBJxYBi2SEMVPxOiy0jBRwzQRTzXLh8lXy2yPT0NLoUcvXcmyxdmWbX1h5sA9qNdYYGBnG9CGSbvmGbrTscxsYdWutLLHs5Iq/KoddPsOeOPfj+Oqqa43uvv8L//D/8G6bPnGZy7wQ/ev5ZPvbRh7h85RJeu8Xu3buYOfMatcXTOJaMYRogimhmGa18F6nkcOXSeQYmRsgXBrl2tc65Nw+xpR+GB1wW5gMM2yGKV6lmh0AOSZIYSRGxLRtREkgTAUXTcMOYSrWflY0mo30VXjl6kF98aIrxvjK19XlURUWSujXsHd8nkAJiYjRRxdJMOu4KohBzz95JvvTXj9E7MMrAUC+SaHDl4lEmhvtRFRvNMXEqRRotlZVVmLkyh+c3KRRVTh99mWJGo1DM4Uk5JN72TnzrOXqvR/ZnCO6ue0X+rKNr79RNqiAIyJJ0izn4TWjNH4C7f/kRhuHvvxup3xa4E9/hC/YeA/AH4O7W8QG4g58mc/cPjT/+4/8XKU35hdH+n7htKkZ4rTpHj7yJKiXsnBzi3MwVzk5fREhCFMGltnYFWXMYGx0j6+T5zguvMTI0QMHJUSjlMR0bTc8SxqDKKYoikTF15hdWUCWZtuthWDK5XAav7ZMiIooiLx04xs7JUeIopO3WWVpept5oMTIywmsHjrJ92xAt18PJ5SCB7z3zItu2b0UWRYq5LOcuzPDhB/YThx2arTa2bRPGCS8fPsa1KyvMLS0wsqWX0I/QdA3EiCj0SEi62TZBIg58SGMC32NxYZ5SZYB8Psfy8jKZjImdsVicXeXytTl279qG53mYtkngh2iaTqPewMllEQQBU9WwcyZhFCIgYuk2K7V1FEnmQ3fsICWh43fIOnnu2budXN4h42TYWN/AUBXq600++uH92FmHRAyQRLhrxwRB6CPpMpVcBUNRuTK7yLkrc2zpLWNnFHp7e2m3PPbs3k2cgFtvMzm5hZQEXVdoNVu4nTpONociGXzx77/Bh+7cTRLHzM/NIcoSqmHSarfR9O4keH11g4/sv5vACzAtHREwTGNTmVMiCELSNEE3VDbW12GzFikKNidBskzQaWHbWdptDzNjsb6xjigkSJJMtVpFNzRUXSaNJer1BidPTdNb7UEURfzIQ9hUam3XO2iqjue1KVXKCKLA2GAvQ8P9m6u3AnESo2k6geextklTDf0Yt+0hqyJ21kFVddIoxWv7BL7P8FAvhqkjKQqCqCAjs7Fe5/579rBlqI8o9qnXXEzDIAqDbs1Xs4VpaGiKid+JOHT8NG+cmWbn+ACqJhEFKYZtkqQxz754iIFKlXvv2YuqgiQ7fO1bP2Tn2ABRFLBtaowUhb6ePL29ZTKORa6QRVNkps9eJedkyOZNVEmlXCyhaSphHFGpVmi7HWbnr3Hh6lU+/uA9SJJInISsr9aoVMv4YYCsqgiCSKdZJ5vN8sMXXuOHrx6mmHEQRQFVlckXczSbLTKOjWmapFFKPp9ndXkVQRVZuLrAkWOnUSSJck+ZXDbPwuwCT/7gRaZGt/DQg/dhmV2LA91Q6HTanLtwgYHKAKVCkaH+fqo9BaIw4sLFa1ydW2Lr6CC6IaFIIq++eZIdYyM4GRMIaTVbhHFIoZBnYWEFERG3HXHwyCkeuHcvopRy9do1DKsrlFLbqJPN2lybm6W25pLJmCAk6KZJlICR+kSpgGZngG7t2u2Au5Jt8UdfvlE9858K3CEkuJ7Ho3/3RU4deI5f/Ve/zsjWHbx29DxIBh998CFeeO4lBCnBDTr09Q4jySLu6nHCjoskJyysrDMwfA9Pv3CY+YU5zl84z65d2/nCFz/PfR+6l1PHD3Hh0iJx7NHrNHBUC02Ru2OPaKIbWXQ9ZWG+xvFjC+RKApWqjaSbaHJElLgIgkmhlMW2YhQ5JF8apd5sYZp56rV1GrVldDlFE1MkocPstWlMXaHZqtFoebz4wzUe+ep32H/PPYhhhsS1+fef/yY7J+7n4OsHuOeuO5mePknHUxncPsLH7/sUADv2TVIplJFlmUIux8LCAnPzc0TtOQp6gK52RXY002Blw8cThhEVm+GhfmYWmrzwwkHEROcv/uz3+c1f30fW6uDYW7h05QK2FSJEGrHoEScxpCltt4ksq11KpCQTpxJONk+91WasLLDv7gJTwxOILR8FsBybTsej0agTBgFaTieKQuRYxvd8Kn0Vtu/ax+e/8Bg9pVG233EXI+NDZKwcK0sXOXTgAFtGJplfXaDcV+TQgTNMTe7jEw/dx9CQw+WZM2RUgdnZRQZGJkgyA6jCPyW4i38mLKR3hyhu3sNbpVO3sif5ANz9ZxlJEv/+dWrluzNxwk22t+J9KkSvi6a85UnG5kCfgiy+Ta97t1DKOz3n3ilYcn27LoLytlCKQDf5/87t/dvdSmTleiXdO4+DG2mA3Z9Xunncj3vovSUCInQzToIovHUvovDedMK36gpucg83265f70+6Je8m4t7kPm5637e6blLEdxiB33pwuPFKrn9bSZpsAsO0K9gi3EYh/k8Y/9e/+7954fmX+F/vnuS+/tItj7ueHUwEgXRzciKJ3ayTFIqcPH6SXK5L/SsWBhiZmOLQiVMs1dYY6u9D0x0ENY9uZgkjAVMzKJWKhEGTtutSr3WwbRtdV4hCl7X1GqZtY1kWQRhi2zb5Qolms4Nu6YiShCgJTE4MoRkypmUi6wqGoZMxDLK5HLMLi6SJjOM4aIqMJCbk8xbtlkep2MPs4gxbJwZRRZPIreHk80iqjmZoTI70MjrQx5snz7Klt4+ueGJIFMbolkYcxtTWa4jEaLqMH3oYtk2pPECqyKRCgkiEaeo06y1UBbZtGyMVBQK/Q5rGzM+vcuzoObYMDvLNb3+fXVPDGLZCKql4ftdMfOHKRZ57/QQDlTJRCqWeCpaZIU08oshnYWER3dKwbZsojOmpFMg4FlEY0q53sIwM56YvUaqUqK2uYZcz9PaX2b5tnG1jg+zcPQVpgmGatNttdFNBJGKwv8zFi1c4+MZJdmwbp95cx87kUTWDKI4YHepDFEXqLZdHvv0MD913N77vIgLNZhPLypDL50jEEN9vossCq+vrGJZOnCQIioyiSSiaSLvZIpvNIkoqGxsbNFp1qr1VGvUmkqQjiBJ/9jdf5YE792JbDqpmsL6yTuB38N0WsR8QCD75XJ7eah+aoeFHTRSpq16azeZBismVMzh5h4SuXYKiidQa6xRyDu1WG1XTkGWZ1lqDQqGIIKlcunSFgf4KsiHSafqokkar0UZSZHRLxs7YkILv+rTrDaQYYiLOTE/zwoHD7JnaRiZrEoYJf/alxxgf7GdgqGdzrA0plzPs3T3BPXdMouoS2WwZzwvw3A6lYpFCxiLfU0R3TCRFIQ099u4aZ2pqC45jYdomaeLS01tCVlVERSMFamsrVPty5Eo2rbbLyvo61eFewtAlCTyIIzRVZWF2GUMy2bp1C9mczaGD0zz9+hvcuWMMWzcJOh3W1xcplHpotTzGR0e4Z882pLiFZUogdq0gLEsnjQU6rgekbGxsEIQRS9dWKRRzDA31oxsylq2QCimu16ankCWfzzI/P8+Z8+eZvbrB6MgwT3z7eYZLY8hywpHjp/nms6/wwP49nJ4+z+GzFxBl2Do2iKIqaIbORx/YjybJ9FTLBBEokkyj2cYp5LFsmziKsR2dQs7Esk18L6BS7qFYLhKnEbZjgABOJo/XibBsHdXQUBSVNEqI6Jp9G5ksCRJSer2+/BYhvPWC5L7eLM9MzzIxObY5WXgHsLuJyMr1d+J7zSO74LD7hxQEQUISJK4XgHS7vbGDyBeonTnE2YPfpJK1cYZ3E4kWLz13jI9/5Jcp95Swsjr5UoWMVaaUU+gtGJw++hpitIEmxQiKw8Ez59m9dz97du9FlWSuzVyl027wzW98m2LvFJlsjsuXLyJoFZJE5LXXDjHYX8KpOLSiNpZmk6/0MDhWor9SQk5UWhs10G0MQSVsNijYKZVSgbYvd8VZCmUSbxm3vYEgKwyP9nHxymlKjkkmI+J6dfIZG1PUmJwcpKck09+bJ4qbNIJFMn0DvPbcy/zGb4zT9uf5qy8cJ5PL8sCHPkozikGRyWfyaLpExrZp1H3GxkcYHq/Snn8eSdhA12wkSaPuxWj2IH3jD3Lk9ElGJib53uOf59OfuJ/l9auY2ZCs4jI1UiJNTXoHqiiqi5CmCLKApht0Om2K+QKiJGIbNlES4foRtlNC0co0vXV6SxWIGqSA54ekcQc3UPnBS3O4AYxl8uiGgRu7EHbfxTV3g1NnZshUp9hoznP3nruZnb/Mli3bsbN9dPyIhdk1wsUVUlIGxwbI92R4/bWX8RsBYuyjKDGXLl5gz133kIomgqgSp20SQSBONcRNwPdecVMxn5uIrLz3Jrw197ldYCgIyY/18+626fVJIsI7puq3mum/1Wqz/5+fKvnN4gNw93OI+B1qmT/LuJ5lETczfNdBYFeA5cePv1nm52a48d1t36vY+73avfOc73fce8V7rnAIb/OXr9/LPyTTeItT/FTxblNN4Rbg7vb7+8myf2+f+cb20BUAIO0C0J/VCtJn/uBPuL+o87u7J27vujbv5ToETZIEMYXFmQsIqUil1DWZVnSFjh9z1+7tzM0vMzU2jKZqWNkcvhcRRSkjWwZoNpvki3kOHz1NLtudYM9enUU3ZGzLZnZ2AYBCIb8pXOEThiGKKtFue8iyRCZj43s+bbcDQsjK6iqFvMPV2Vmmpsb5D1/4BluH+2g0GiRxSMY2ulmUIEGSUqIw5vjR82wdH0FUoeU2UBQFQ7Wp1TaYGh9BMzRyxQyNeoNOx0fVVCzbRlW7VEK32UGSRRC6gjKCICOJIoYqszC7xA9fO8TZ6cvcuXcPsqLhez66plPfaNDfV0VVFcZHe7lw6QK19QZRnGAYJtNnp/E7HXbt3IEfhKyurjE40Mfq0ipx1EFVFQREdNWg43aQRJkvPvokOyfHgG4WSpa73l3FUhHT1HE7LoauQZoSeC6WZZCkCXEUYWdsBATCMCQMQ06du0ClkKOvr4IopmiaQbPRxNq0BpDkrmHurqlxZEVGFER0w0DXDXw/QJJk4iTqiqmQkMQxhmWiKAqeFyLLEs1WA8s0qdcaqKqOZdsUCnmSOEHTDCRJRJLPbyHWAAAgAElEQVQk5BRMw+ialEsagiCQyzldtUxSZE2hVXfRdAO33SYIPPxOh4yTIYoioihEMzRSBAIvQDO07uQqY6PIGoIkoSoyQRiwMLvAN555nq1jWygWs+iaRgIIyDz65PdJw669x7X5OSzLpNlsk81mieOIv/zbrzMxOsz45Bh37tqOIoGkqvhewIP37kMgJUlD6o0NslmbK1ev0tNTplZbx9AtFFmj4/pouk6n41Eu51FUldmrs8xenQUhwc6YJCRkHAtFVRHTFN/ziaOIOAw2TcRTMrkMK8tL6LpGpVIEQSXoeLTbLSxLp9FsUiwXGR4eJE0D1ldXmRzfyuTIANW+Mn//xFMsr64xNNiLrlmsrdeoVMqomoiqKCiG0V2EsUzcRh1JUREFgY31boZXEmSOn55meLgfRZaJ4hDX7VCqVDBNE9uyyTgOvh/Q11umWq6SpBEHjh3nEx9+EDvXBWIPf/xBoijmBy8d5Fc+tp99u6YoFBxkWSRJIiRFplGvI8sSX3rim9yxdZwkTjBNm07bY/bqPKIi09vfx6nTF/jKd57n1TdOsLS0SCmXoVwu4nsBrutx5sxFRElA11X8IMC0LKLAp76xTrbcFVURid8b3PH2lFSQZB49cIKPfPQm3nfXx9V3teuOte89Fl9/V62v1zBMA1EQudF6+saQCPn+N77cFQaRFcpbdjE6OsX8UpOeah/FnjKLi/P4fsDE+FbOnTnR/d6SNRw9IgzbyIbD9j0PkMh5nnv2eXbs3Em5XGZq+1YefvgXqfb18eSTj9PbU2RqcgS3do3/6nd/jcRfQVBiKpVe2k2X1fU1BFFGFkWiKGZuZYlMbggJAVkLiaOuV2KMQq40xPJKnTCOKVV78byI6dPH2TYxgiYFCPjks053occPSKUOpUqWldVr5AsZbNtgbHwLY329VKsSyDH9g+MUKlu580P3U+4bJAq7folz167S8Vpsn5pCllrMXj1F49oRNCVC0ywE1WSlLeLkJwilXlIBLp6Z5uGHP8H56Uu8fugoP3z+Rzi6xMBIkc/84beoDmyhdyggCXOEYffdYhoGQRQTRWGXpSBAqW8U1cwSCia2EuK6bSQhRhIkXNclCURiTB5/8mUq+QzFbIxoamTzJRI/ADGhp+iwY9sk333mNWqdkO99/3nGJqZ4/Ikn+PCHP4wkQM62aNaXWFhdo1QqoqsSLzz7LD09ZeZnLmDqMnEUoagavSM7iMN081EXEZAQfkpw9w+L2wV3t5eB+2nP+QG4+88gkjj6/fdMML/LAuFm8dYgfdOdb2f3rme6bqq6eb2PfxC4u/WAf7NrS2+y93YBzntmp1KI07dzY2+vmNywlvme8bbp5ftcx231drP+330d6Q0ywD92/PsIwbyVoX0nvfetLOf1VdqbgbX0x9p1M4m3P3CKoogsd41JgzBAeoc9w2f+4I9ZeuMQ//rOrQxtqh3e/P66z94N2WZJIolTkjhCSlOuXb5C2FnHsfKsrrZYWF5Ht2UU1SYMQ/pKZRRVJU5ENmot3jh6hrHhQdbX1imVHNxQ5MUDxxgZ6CNjavT1lkGARt1lY71FoZDdpL0JyGpXFENWFAQS7EyGJOm+JJM0QRVVysUKqmpiGDathsuurWP4oU+lVERRRQQhZXVtnYvn58hkDCRRQBEVwhja3gZ+2CKNEwJPYG5xnnwpi2kbtF0f23bI5fLMzi7heyG6YWDoBlYmQ5JGxEmMoqmooozfdgkDj0KxQG+5wtTwCN/83gsMD/Rz6dI1/uqr3+QXHrybYiGP5/lEcUD/YA+6YpImXfB8ZWYWJ5MlEUWaTRfD0IijgKXFJSQpQZFkJFnFMm0kUUaUBLZvHaHdblMq5wm9JoIkYOdzpIKIJEusLS+RsSziMGJlZRUnY3Lq9GU6rs+bx8/y4sE36auUyTgmE+OjpHFCGIVYGQu32VV5i+MYTdcRJQGEFNM0SJKEOIppNlq4bR8nkyFJY9I0wTAMwjjCsC0EoF6vYVhZRElCVWVkSUKR1c1xFdJEwPcCZEXG63TodDpUSkUcxyYIQt48cgZVUbGz3Rq/VISNtRqVniqrK2tvgb40iRHELsVXURQUWUEQJLRN1VRSiKOUK5dmMG2rm5kmoVQuMlAtQRqTzWYRRAlJVRGQ2Dk1QS7rsLaxwbZtk2i6gWkZSJJAs9Xkwf334uRybKytAwkdt45uOnQ6LTRNQTc10gQuX1zA0GyqPX0IqUQ2m6PTiVheqrG6WmP60mUkSULXBNotl3whS840MTMqbqdFFIYYponneQiJyLWrsywuLNHbWyLsdFB0CyGVsc0sq4t1rlyao9xTIfA9MhkD122jWwaCLOK2XDRVxHNdDh04wb67t+O7bQYrAwwM9ZHJZ2jUWjgZm8szM+SKJh0votMJyRXyyJKIRMzy6sbm+0xi9uoyn/vKUzx0/x3oms7Kyjp+EFIoFAg6ESvLa2TzOUBAU2Wa7TZXZxbJZHW2jvaTzeUQFRnbsTBMnX/7H7/IJ/ffxeTUFhrNBu1WE9syECUBSZEhiVE1mT07J1EEEa8T8sprx+m0OmRsC1ETcV0PrxORxDFTY4Pcs2cHhVKOeq1GkqRkMlmKhRyVUpEUgVw+T5JGhEGIIqUYTp4E4bbA3VsLdALYaUD/vrvf89g4TTeZHpuLgbcJ7kzT2uR6pDfsBTbpzwJxkrB69Tjnjz7P2vIGv/hf/DesNlQEwaATRIxvneCpp7/PxvIioyMjZPI2E1MTfPep75GzIyShCzSQdeZW2ixtxNy5704yGYfDbxwgl7M5PX2Rrz/+GHfesZtSscCRo28y2F9EllOqFRPbKTE9PYOsOHS8DoYmougWQSJx6twaf/r/Pcu20QmqVZ00EYmiiI3VZdxQRDEyTO2+kzABRVIxCFCFhPX1adx2g/W1FbJOFkGRiYIIUZSwjCySoGMYORqL11hcWGF5I2WjqbN970O8cWKJ6tAISBKmlWFtdYOeSoWR8VHefPNNsnoT2/TwV85jmCKSbBIKOheXdIrVbZSqk6yvLHDs4BuY+SqPf+UxHnjg4zzz7A/xmg1+4YEhlmcE6quLjI/GOIpDTHfRLIkTRFFEkrsenLplsbzRot2JUFWbdmOJJA7QVJk0DllfW6N/sJcUnzvuGqOnoNLXZ7O44vLywfOUSznyGZXlqzM4lkT/UD/X5l0+8cmH+cpXv8YffeYzXLl8kZkL5/H9Fq1OjQc+fD8Xzk1TKlRwnCpHz51hYmycmXOniLw28xePMjixCydTJBYVuJ5fvg1wd8Oz/TMBej85uEs32WHvlqt9Jwvu1rV2AjfOl7uf/WOLqnwA7n4O8b5WCO9TU3fDsbd91p8XuLt1/KzB3ftFSvquJUnhHX/fTvuf/r5ur/8f/+G+F7i74Zzv8Ut/a9rmrfb/w1eggjDADwKSJEFTtRuA3f+2fzvbegrv28fbwO7tz5IkJU0ShDTh7IlTqJJIqdrP5WtzFMpFiuUigqAhpB5pEhKFAR23TRJH1Oo+5y5eo69UQJJSVBm+9YPX2TM1wXOvH6ZcyFHuKdFuu+Syeao9VeIkRFa7VgNh0PU/67R9ipUcgtC14IiiCEWRcKwuyIgEkCSQxAQ/9KhUimi6wonj5yhki/QN9vKtH7xOxpGxHY1STw4za6NKEj3lCq1mi1SMeeaVN5kc3YKq6Rw9dp6M5RBEHp999CmGqlUqPSWiOEQSU2ISSFI01WKjVsPJZrreZ04WK+ugILC6UUPVVF47coxPfWQ/+ZxBxw1Ik5Rz56/SU6nSabvoWjd709/Xy4sHjtOsNTl84iwf+/DdKLpK72APzbqLU8hjmDqiIuL6bZI45PiJ04xsGUKSFbz2BlbGJJE1YsB3OxQLJY4ePcsrB0/yxsmL3LN3N8/+6A3uvWcPT79wgP/2tz6NYWpYjkGaCuQKOQzDRJYlDN3mq19/isHeCh3XRRAFVF1haXEZURBJEnjk608ReynDW/qp1dYwDBNJUkiR8bwARdFQZIUk7X6nkNJqtllZWsMPXVRNRpZk3E4bSenS/LLZLLIsEwYh2VwWx1EpFHOIsoQkyyDIZDI2zWaTXLYrXqJpBrqmE4YhAgKioIEggwgry4vohoooyEiSjOPoiKKEphvEEUiqhGnpeG4bRIFUlEmJiZMURVUQhISMY7C+0cQwTcIoQlZEojgCNSVF5Et//x0OHzvF/j07kVWjS1mVUgQB2s0O/f19PP/SawwO9qCoIikxqm7z5tFTHDp1ht/8tV/AsnV03UG3MyiqitdpIildAQDbyZKmIrKkkgoqf/uN7/HwRx8gDAJkWULSVDRdw223KRYKrCytUKjm0BQJSRLxvRAnW6C5Vqe21mRpeYmhLUP09Q3SaqyxuLSMkOjYuQwxEZKYIisqtm0iiSKqImPoKlEck6bgdzpouonjOEhS18qiWsxQ7a1Qb7YwDINT5y6RxGBbNmfOXaRaKeP5HTzPwzB1BvsHiZIOURRQLJRouw1II0K/w/5dOzh24iwXZ+bYe8cu8rksQdClSYdRjJDC6so6Ti5Ls9lCklWOnLiILMuMjQySK5q0my0mRseRSdixbRQn67Cxvo5pdS0ilpdXydgmoiAhygoIECcBIiKh52Lm8iAISMLtv4tSAapZh3/7yI21dzeMs9zkXXCb4E64ae3fO94fAvhBwKnXn+XIS08zOX4n2aE9hL6IZZoUC1mmz5/l3g/dQ8ay+MIXP8+v/9av0XZdduzYxczFk0SdGqury2ScCjv2foTjZ6+ya9cdLC0vUamU6R/s4epcjX/1S5/m7//2EfLFCjNzq3RCCd+PkERYWRf588//iKIjsn3bOKaRslrzSUSN5aV1dDXgof07EQMPK1cg8FxMQ+XaQo0QiZzdz7GjJ8nlCjgZhYWFK1TyKWkSdb/72jr5fI6cU6DT6YAg4GQtWu0aiiLiCyavnkw4eLLNw7/5e/zwh6/z8Kc/jR95XDh3hePHTnDHXfdQ92LWVlxsNWb+ynkcI0JTUwzNZmFpiY1OHj+UqW7ZiqoK9JR78Az45Y/tI+skjI8IfOL+XqqGxOiUys7dE7TqVTxhBk1SyTo5ZLnrs5rECYgKmYyNqagIQQfBdxEVlTRJsC2VOPLRNZWU7sKkU1LRhJDQ97m2HPPZLx/hoft2IYZNGp1eri3Mky/oPPH4q0wO2ShKhiQMuXr5Evfuf5CNepu77r6Tl196hb179nDk8BFESeXBT35ic/FqHEFIkWUX1dDpH95KKOoghF3a4084D/mnAndvnftd4O6n89YT3vr3A3D3Lzw+AHc37v0A3N3GOf+ZgTtJlBBFkd/+7d/hd377d/ijP/wTjr/yGv/LPVO334m4Sb185/UJAnGcMH3qLJauUi4XiFMVWZVJiFE1AxIJ32sgCtBut1hcWiZNU559/Ri/+vEPY2gKK6ur+L7L6MgEhqEyNT7CM68eYt8dO9AUkY31Jrbl8LXvPEXesbAsi3yhiCxJmKZFp9Mi8HwkWULTNQxdZ2NtiWa7iWLo1GprhIFLT18vgiCwvLhCq9mhXCoRJhE502F4tIppa8iaRBhGiAh4ro8iS2i2ytTIZJf2GQQ88+Ib3Ll7F0gJ9+7dQ39/H28ePYasiCwtLmKZBiCgKsYm5a8rNhHFCYIss3Bllt7eHvoH+ogDn95qifmFeZ78/oucPHOJQ6cv89ADd2NoCidPnuPM+csUCwVyuRxjgwNMjQ0jKgKarhKnMZqqksk61Bt1RFlE0RTiKKBULDB9/jIZyyaNW92Jr2qCICCLIoEfIQoSUQiy1KVG3XfvXfz1I1/n9377V9AMDcdxuDxzGVPv0v4EUaBRq+G7EVdm55gYHSJfLHQpn0ncrXeUFSRJ5t4772Cwvx9F7aqe2rZNrdZAM22kTS+3wPMQJY0wDDazkRGWaRLGHrquI0kymqHSajVxMpuZ5TRFUVVIU8yMhihLCAjEaYogykiiQKvZ7IoeaDqC0PU0W1/rqjcqssHy4gq6oZJxzK78dSoSxymClOD7IXGcoGo6qRjTaDQo5rOIooKsqAhCQhwlKIqMKKakJKyvNpFlCU1TiZMY0zYQZFBVg73bt3H37u0YugKijKYrpMS4rQ5ONocgRJRLOTzfZW19FUUVUVQLXVXIZSz6+itIMqyttdB0jTiJsUyNRq1BmqTIskocd2tx3XbA7m3jBEGArsnopoYXeYgiaLpC7HtkLINOFEKaoKoKhm7gdgKkNOULj36HctEhl8tgmA6CGCEAj33rRe65ZxeKLpPEIaqiEkURtVodVezSd/VNOXdNVWjUO9iOTZKmhEFAs92m0WhRKObRdY2ecom+vj4M3aC/v8r8/CIZx0KWJSzbAiQ0Q0TTVcIgwdBVBBJCz6dUKBF2fH54+Dhnpy+yc3IMz/O69GfLQlc1BEFE0VTCMCCby1MultgyMkg2l0GWY8RU5PkXDhJHEUODVeKk6+Hn+R4gUC6V0QyNSxev8bVv/4A9OyfRLRXDMFicvYbh5JFkBZLwfTN31+P63PLl2dWfC7iTBIkfF2jZ/J/QZRjJssTz332MxuIMn/yF32C2HnPqxGkMXePxJx7jl3/5FwnDiKyVYcvYKN/9wffoHxhgYXaB4d4M7sYchiKSzVd57uWj3PfRT1Eqlnnp5ZfZs+cOnn76u6zXQ772yFfxOi4zV64RJSKqYfHm0cN8aO8k587N8ksPf5Ldu0axDAFFTVmrdfj615/i4x+7j8HhCo4eYWqw0exgWSa6LOCnOkNjO/Dcbnb/yJEjRGGD3t4SGa3dzWoNDGEYJqkQU1tfo1jMsbR8FVFMQQjwgw6RYvP4d09y4uwcn//ylxkdHCNfzuPkHcqFMtundnD46DFOn7/M1ontRK0lnvr2E0yO5oiDBmkikcQJO+76FIcOH2di+x2UqyUyVoY/+HeP4y61OXn4PF/83JfIqzpD/Sai3ebUuTk+97lXuPsjPWRVk47XIRUEcrkCzUYNJ1/Cc1ukUUzHbaMgUezrJ/DbNGorBG6HOImRsIniGM1WiNsRiDEN12DX7vvoKxts6c1y8OgqV65e5I69U2wd3kExbzO2/W5qtRpbtowSpRJjE1tZWV7g6BtHaLdbnD59miiFQrXEyMAAl8+d4PVXX6RYMLi2vMaW8T0oTgmIIE0RhNuzR3rr2f5nBu5+PCP3k5z/A3D3Lz7et+bup1Grukl/7+ylS9G7UQQFuvS6JIE0FUhT4aYiKO+Od+8XNukeN3ii8W6BEuGW4OlmgizXz3tzT53uzhvFWd4N7G79c7lViEJX2ah7T7fe3nkd796um4rfTJzlRuGT6/WQAtJNfVDeffytz3kz+maXjnnzPt77rm4v/DDE63ikicjT3/4e/+buSe7qK95W2zTtTh1SIe1S5boXTBIlzF6+zLlTZ6jYEpKcImkOxCmqrHYNVqOIhcUFvvmdl7k2P8vIQA+VYglFMNk6NUz/QC8r6zXiJKV3oJfPPvotPvLADmZnlpgcGsBxuquUM1fnOHj0OL/xqU8SRWDrMgkpqyt1nnruR+zcuR1RktCklCQKiaKIC1fm+fpTh7lz+w40I0USNcI4JfACnvjOc+y/ey+CohB7sLAyTzHvEPoJcSBhmgbNdhPN1LAyDmms4ActoihEVw2ef+0wO8eGsTImiiqjqRqVcg//z189ytbBLcxcW6K3p4phqQReTBREuJ1Wt77CD3Cyef787x5n+9gQsqzwN098jwf372XX9gn27JpEl6G/WtmkZUncdecuslmDlDbZYgYzo2LZBkmcoKsastoFNOuraxTyOTzXJYxSMnaWa1fnUdWUbKmKolnEgYcqiwS+h+u7lHsLrK/XmZlZIk49Bvr72T01jCSlaIbIRr1GtTzIX37+UdyNBkP9VXRTpdVe5c67d6ObNp7nI6UJoqTidTw6rkfGyZDEMUgxQeihqToIIpIg4rfqBF4bVZFRNJN2q44opaiKRBjEhEGMpMgYhkkcQaPeJOvkQFBJ0hBJlWg3m5imTZSAIEi0W21kSSKJAyK/g5PJ4Pthd5KvasRRjGXozFyZwSlk0UwNUYlx2x1CP+Q/HrvMC9eWePnqEkfW2hxc2uDVuWVeuLTIkdUWmR07efbSDCfqLV6YWaPv3v088tJhnru0wKvzG5zsBBxea/D09BWkTpPX5upMmmbXz04TcL02up0hdF0UQycRRQRSVEkgjBOSJCZfKJDL5tBUAyFOWVtb5fCJE4z2VQm8EFUVCD0Xz22TxCmCECLJEpaVxfM8avUa5WyJF19+hYnxQQxL62a+7RyBG+B3AkS5q/InhDFICkEYIYopUtphYXmZhz/xALJsoBsmnaBNq17DyRXYt2eSZmMdWRJIPL8rBhSEPPfSIVbWm1R7qiRxTOi5KLKElS90BwoSREnC1HT+8ivfZayvypeeeArH0OitlpEVAd/3OH/xEoqkUCwV8dwOrx04gmnY5AtFgthDkw0kSebAGycpVUqYuQwFXePIuQvcf9cODFMlFRJ0XSdMfJrtJqqq02nFPPXMi7z0xptIRGiyiOMUWVpa543T5xgZ7qNQKiKkKUHgYTsWSZpQr7dptetUq/0U7CxvHDvFlpEBUlIunTtFb28PoqJ0659vEsnmXPKd2/WQ/DbDd91z03Zd8QfepmMKbDZ+13bDGpvQzZanySbQe3uLSSDt1riKoszi4hJHnvk2vp/QkS1qjYR9d97F5cuXuX//fXzuc59nZHiYP//rz3Lf/vvpr/aztrTE1skJDFPm5IlDXZ+4NGT+2jUyuQKLazG77trP62+8St7oo91Z4sSp8/wf/+dnOPTmAT78kTt45gfP0dfr8NCD9zFQgf6eGDmtkUYJAW3QxtioZ9k+UsKxaggCqIZKRIqpKyiSgqTa1JstAgxGJyZoBQLVokFGj0n8NiAShQFep9PN0KsKSeAxOzOLaWZJBIdaLff/s/eeQZZc55nmk97fvK5ueV9tqg3awQONBkA4kiI1XGlHlLRUrEYz2v2viZB2V7FLSSM/RispNCRFQTQACRIECZFogCBhyYbthm+0N1Vtylddb9Lvj6yGLTQaoJnQBr+OG12Vledk3ntPnnPez7wvLx0+yaM/nuLOL97D7/3H32HXjs1YmkbGyKGrNnGY0NNlMzTUTU//ICW9wVhJolE7ScHtRo195qoxsTvEVVdfxY8ef46zp88TJxGfuuNaxkcTWlGLA4fOcvXunYz2SeiEyGKGmWWf3ZvHSRIPx3YJg4AEAUlKHV0IIh0vRtUtzIxNpbqCrpgYukaj06ZvYAxRjRClDo1ymVy2i+W6RyYjYiuL2GZC229T6tHZsnmI2soSR07O8OTTh/jyfY9ycuosummxZ891tJsVSl19OG6WTZu3MrFuAyPDwzz0rW9x/PQMN9xyM1Hig7+IFEacnzlFqX87upUHIUR+Q9Bm7QTGd4/t9967JG8b4xejwbs0eyu4e/O672y/Vr8JonhhnyZc5LzoLbJTP3uQ9wtw9zOwnxWhysX6ey+8+FbiEfjwUbSLUfWvnnGx1u86crH7eBPAXJpd6luKL1HE/J338Va78HC+/71dSHsREH9aocv3uKefhTdIVVT+4s/+M1eZEZ+aHCX1Ol1aW0EQVkFdC5KESFCJEQgqS5x8/SWG+/tweodRLBtFUqk1GzhuhjgRaDY6HDx0it5uA102KbolCl0OLX+ByGviex0azQ6lriJRBEuLFb7/o/3csecqevvzzC/Moao6hq6zccMYmq5zZvostqUTkaCqOoePnaC310WRRZIwJAgSwjChq1hkfLiXQjFLp+VjWg5hFKKrGu1mC8PUKXblURT43kP72bJ+I81mk1xJpd0MME0DWVaRZY3qSpNibxeKplGuVLn8si0cO3mG8bEhvnj3fWyaGCUMQybHB4mjiEq1yvj4CNVyBcOyUicCEiQCQcfnew8/ym9/+pOrET2Ja6/YiiAKOI6D4zoUCzl03UBSEgI/QNcMQESRVVTdxO/4qKrMwuIiTsYg9j1EUSBXKOKHMW0vRJJkapUGQ0P95PNZgiBdrMIwScWb/QBFUpEkkVatSafhcdnkBJ24RSZj4HtpXaFpu8iqxMzMDOPD/fQN9FKuVFBEGaKYJIqJw5DXXj2CbQkoqoShpgyiK4srLC006C71rrIDJ8zNpnV+MTGNZhNVM1AMHVlLdQIVTUfRNRRJQlYUFhdWKBRzICQEUUwUp8LPjWYL0zSplysk0YWaS/D9EN3OICsKohjSqC4jJG1eOb/A96eXeXK+wkvLDX5wdJrjocypWOWsbLBr13Y+8Ynbuf2mq7hs63puvP5KfvzUcwz29rG0MEerWeWV1w6ytLyErticOnmKdruDIEbIUsLv/Pavc/DQUW649go+9lu/yeHp89z38uucQuXRE7Psn69hdWq8tNhifXcBUZSQZQ2vkyCbBoblEAUBXqeJKIKkKBiWzs5tk+imjpPNEPptNENFEBKCICDj5EgSmWa9w4/2HaCUz1OuzTM5OYooiQReiGHaTB8/iaqqkIDhZIkFmWeefpmeUjfECUmcIEkqURyj6tpqbZvJ5+76Brd+5EbCMKLTbOA4OpokIooGQQSipLAwt8yVW8fRVClN3RYEaq0OgiiiKAqVcpmMk2FudpG+XBdDw4MM93QzOjyEput0OlU834cY7tn7OFdethVZFrj3ocfZPDFOFKbfbZSItNsBPcUSX77nO2zfOMbpmXk+9bGbaXc8MlkXRJmEkGajgyDIiILGV+/dy/WXb2N8sJ9SIc8/f+v7DHRlOTF1hhuu2klvXxeKoqJYMgkJtUodQ9FQRBFJU2g227hZh/7+7pQ6PRFIOm0cN4ukaqvz6Bpry0Xm18F8lh8cmWbd+vE3z09SF+PaUjZrHFvj0FrO1dSRKpIkCQohc2dOs+/7X2f3Rz7G7tt/lYQMfVywm1cAACAASURBVH0lSt09BGGMLKsMDg3T29fL4OAg3T3d7HtqH0NDg1TLx+lyQjJaQNiq49pZcj0l+oe20Gz5OK7F+PA4X7n7Lj75iV+mVOrizJkpTp88jhDAJ3/pFk6fOIzn1ZnYuI7QazA118aLcgxlqmzqb9KM62hSgcBT0Q0RGYXQ8xGSmEariW0pSHoeUYbunj5Upc3S0hl0sQmCx0p5EU0X0DQxFUdPBHpLw8iyw1NPv8Kfff5Reoau4Ibdv8z+Z/chJx0GRycgEXnsscfJ5XIEoc/oRDdRHBIGIQee+CqmtEDil0miEK/dRs2M4UmjKLJFqXuA9RvH6esv0eic48v/8EUsPcezB37M8sJx9lwxjqsJGLrMyFiJgtlGN23C0CcMQnRDp9lsoqoSoiCiGQYxMYqisFRpYFgCcSwi+QkqCQvlRcLAQ5YUWs02sQyqKmPoad2y1/EJ/SU01cQLe/mLf9jLr//mpzl67CQfveNWOp0m27ft4MjR47x28DVIwLLSjJh2q82OHVczN79IxlFJYp/Ltm5g+vhrKEpCxh0i2zNGIipvaN+9fby9t126PMJPvgf6SQhV3txnX3SXTrqPEt/nvJ+O/QLc/QxsLXAXxe81CV+6Xay1+A4Qd6HFO499GJzxfmmBl9DDu45cGrj7MKmrb0bX1ur3gwChNftY/f/97uzNmob37mvNdmtE6d4vwncx+6DvOU7SsfRHn/0z/uCq9fTlcnwYxk4EATGWieNUT47Y5+jrL5LRdQpdPUSKhWZqzJ6d454Hf0hPPk/GzaCrGgN93cRxiy3rJ3HdLHNz54mSNp1OQNbNE4YJbjaLoigM9fUyM7PI2Eg3kphyEoqSTDbrIooiy0sr9A/00qjXUTWNTsunp5Chb7gPEdJIUUKahieK5PIuMzNzGLpFo9Eik3UggdHhAfKFLOVKGcs2EAKRufkV+vu7kOQAy8xRr9dRFBW/E3DgxUOcm5mju1RElEQsK8PTz7+CY2mUclkOHz9FsZCl2FXAsS26imnqmaIo1NvNdPOoKDSqddqtDps2jFGt1oijNC1O13VkRSYIQ/yOh5PJ8NVv3E8xZ9NV7EaUZMrLZdxsBhBoNVs4rovj2CQktGp1fN+nWqlj2jaqqqEqCn/6d3fSX8ihKiKW7fDU0/sZHx9BFEVUVUU3dJaXlqnXGzz42IuM9BfpHSxh6hqaruJ5HrppUW/UGBvqT+UthIREEFJSEkWlUa3huBlUTcOwVKIgJIwSWs0OhWIBw3I5euQ4x06e4qHHnuLwySkmx0cwHRNBENAMg4Q0LTQMIgRRpF6rYRgGcZxgWdZqRlmEomrEcYSqqhi6RqvVQJEFJFlEQESUZDTdoOF77D89zd1HZ/jR2QV+fG6Bc37Iv/nVm9i2dQM37bmS66++jGtvuIEH9z7C8nKZo8dO8tzzL7L4+hFmD53g/OvH2dTdxR2bxti9fpwrBoa4ZXILt05u4YaRUXb1lNhRyrN7ZIAb142iLVbpUQVOnpzCmTnHK1PnCETw/JAkBkkQ8DIunpXjdCxy34HX2HduiRtHellqNjA1FZGE0E+JagRJwvd9arUamq7QarWoLq9gWiaiKKeFpIioSlqT+fSLr+J1OmzePEoSQxjGfP3+H7Bz62ZkIUKSZLK5AufOzVKrNTh7boF14yNYpkEYRMiKjGVbtFotPC9lgZ0cHSGOWWVijZFEkVajyfmZFdx8liAImNy4nk6jkjKZKgqWk0EzzTfqcSzLoFlrUurupruvgGGq6KZMIoRYjp7q2B09RW9Pie2TGzEMk1anxtb16zBNE9O2EAV47PFneOq5V8iaBjOLC+zaNsnIxCiSJJIrZEmSBEmUOH36FJZhIwgStWoDIYmYGBvGdixmZhfYf+QEghBy655raDSaWJaB53uYGYNWrU02l00jEHFEJptFUVXiOMEwdVRNxfciDr/+Gn2DAyiasbr2fTBwB3Df/te56torV52FbyF/iGMkQUwzJd4WOXjnnPzuQ2tnzpBGzEWZoFHmvnvuRg0rdI9sQna6EdExTI0oTkCAdsfjxInjbNu+A1VV+ev//FfccsvNjI2PI8R1mivTzM+cxm81yea7SBSVJ/YdQlIt7IyFpTvcfMvNbFi3HlkSMXWVvv5edu7cyMM//A79feO8+OIRSj3jtMMGX7n3Ubq6hxgoiWiax+zSCo5Z4MUXDpLLaaiygmnaSIpKx/c5evwEPUObmV9YIkJGFjxsE1orZ1F0Bce28bwOlmnQCSIiLyBjuZyePsfYxEYWGgEvvDCNbWeZmTnDL330Dp59/gVGx0Y5euQY1WqF5aUliiUbzTBptToMZhuszL6CJKY15nEQ4olFBGscRUmdUqoqU61WyBVLBNWYfT96DslQ6C7luXJHD0mziiyJGFkNjRg/BFGUSOKEMEx1PE0jTbmOojh9tjWdMOnQ9CtUqwmmJhLGVURJAyIEUhKo555ewOtIZDIW7WaNIGigiDanpmYo9g5z3e5NWHaHal3h9KlT/Mqv/iq1epuv3vU1brvtdgaHBhEFgfv/5X5WKmVeP3SU/r4+9u79DoMD/SCGTB07SEJErRazccd1qyJx8ZvZPBfG4MWH/eqYfHPwvjlmL9GpcYn24cHdpQA7YJUz+Rfg7l+xrQXuLjDl/CRf6fv5MC4l2/OnGET6OYC7D9O7wNoMkh/cLpoScCntV5faDwqwLuX6P6s+EuBP/+Qv+YNrNvFBqXvfHH9pxEWME8JWg8rUCc6fOEHG7SI/OEiMhiIpyBIkUcIVmzdTKhXoNBvEQYelhRlUxaTRaOB5LQrFPKEv8dSrp3j06de4dtcOTF1ncWmBTNZmw+g6vKCJbmg4Zo5ETEjidHNqWSZRGJEv5jlz5hwZJ4MiCcRIiIKArsi0Wk1M26BWbdPxanSVChx9bYYNkxP4QYc4TlkbK5UyVsYkCnwyGZOe3gKKLGLoNn5b5OHHn2J0qAfbsXj96HHm52psGBtCFkWeePwArmEzPjHE4PAAI4P9q7VXaUrHuXOzPPzk0wz39WK6NpIs47UDfrxvPw//+Fk2jAxTqzXIOA66btCoNREkAcMw8P00lXDLxvUsL1SxLYfP/tfP41oqkhhjuanswl3f/B7rx0bRFAPVMqiUa8RJzNSp0xQLLn4Qc/2uHQwO9SPJEs1WnWI+i6aryIpAu9NGVg06fot8Mcf4YD//8sRT3HT95QSeh9fp4PsehmUiKikLpqqqacRJU4hXqbCXl5dBANUyqddauPk8fhjg5lxiIWZ+boHZ+QXGh4cY7Olh19bNdPf2IKvSaj2ihJhEhEGAhIgkJRiGzMpSDUVRU0ILKWF+fg7bUAk6PookE/kd4rCNlZFZKa/w9/te5eFzi3i9wwzuvpbxK6/ilpt3Yyg6i0tVKvUarx0+y6GjZ5l6+TDloyepn5ji45MbuGF8mN3jQ1w3OsjGvgHGe7oZLnVTcl0WFlcwTQc/SGn20017giiLadRRM/H8EEk3yNkuG/p6cd08lw8Nsqsnx67uHvZMjLBel9iSVaDd5oVTpwj9DpIoMH7zHXzph0/w0mKNBw+fZH3BxpBlwlBA1TQcJ0OcJMzNLjLU30sUQhwLCKKCpqskqxl6vYUsPV05JFHEsXIIgspQTy+apuFHEdV6C0VRyOdzKeGJaVMsuoR+mzgOQUrlLDy/QyZn43sezVqbbMYhSUKC0ENWNRbLNebmlsgVs9gZmyjyEBPwoxhV02g0msRJjCKrqRh8GHLghdewDB3dVKhWyuimxsLCArqhoqsObsZBN/RV9lsRt2AiCXDfg4+ybcsGVF3BNhSKbobR8TF27ZoEWSAJfSQRvHYLVU7BsKGZnDu7wBe+8QDbJocZHeklm7cJfB9BSLj1+isY6i9RKBZot1tk3AyqqlBeWqJaaZBxXMI4QtJF4iglo9J1DUkSCcMYARk6TbLFPJKmI0q8geTeto68z1R93UCRO3/wFJdfseMd826EKKWb/vdOJ1v70NoCzAmJIBNGIYpf5/knH2Fh+jQf+/XfJdO/DikOsWyXH/zwESYm1mFYFj29vbgZh3a7zcjIENVqhUq1jGZ2UVs6j2momCqEUYxkCJT6drBhchvtwMdQdaamzjMyMshnP/uH3PyRmzn8+mGOHD/NkZMn2X3TxzlxdpHvPPwozeVZ/sNv3cG28T7OLZ7H6cpiGxk6nQq6ppB1s4iayKnpKTS7wErVY+P6LbQ8mYWFZSQtS29PDq/TQEuakKQOnjAMSGKIkREJiSMf3VCZPj/Nrq0FDjxzirlyhX/3v/02Tm6YdrNGu+OxadMkcRJiWSZ9A32IqOx//gV6zAXqC4eQBQNJgjD0wOjh6BkPXTPI5jJMn5lBknSmlztsHhvi9WPPsP/oQVZWfHZtL+KgoekSsiXg1Q0iWgDYToYgDJAliVarhqooeEFEEickgkgQtIiELF/80kly3TaqG6CRsgqn0V6ZpZUQx1bp7TdxcwaKpKCrJfr6+pkvn6KQlciqAt996ACCIDA2Ns6Gya3s2HkVw0P9PPrII/T29tLf38/VV10NSszWzZv4yE23cnpqBkkrMNhd4OBLzxM2KwxPrMPN6QiCSRAFbytV+aDg7qID+n8IuLtU+wW4+1dvF6QQ3lZ6+daoCyCIb4pTv6FXt0ZfAmnd3NsiOu9x3XemYKZ+2re/LmVMrSVEnrwtM/+96+suWQD8EkDHWu3WXore/kJYW3R9rSuuWTt34foXBXdvvas17l24oHP39mjbe/Z3QWg9YdUz+yGiZT+h/fEf/SUTS1PcPj7wtuPxG9++QLI6QZHEqRj5qj5SFIVEooSUBBB6tFaWmD5ylnqlRSSoqJZLsaeHRNFQdR1BiPAaTfxOm8gPWJqbZWFuDlkS6O7rxdAtarUaJ8+cJSEgk7MY7BlCFwUylg5Cgh8HdOVLiFKIIgqYtsNypYJtadQbDSCm3qgjKyKiJJLL5YkJuOveJ5hc140spp9x4IXEYYxkyql0QCdi7+OPsXVyDE2TaTTrOK6FICY0GzWkKMLNF/n2A09QWWlw/788gZVNuGzjZkJfBiQ2b55gw7p+ECERJTRTZsuO9VQrFWxHQxATVlYqPPTYPsbHhkjihH37XyWr62QME1kMUOQQ1y5y/fXbsJw8nU6LR55+lr5inmq5SrEni0hA0KqzvLSIauh84UsPUatW+My//SjDIwOopoqQyMRRxIbREQK/g6ooBFGAqilUK0tkXZ0waJPNFt6oq11eKOM3fWxLJw7reJ0GsqoShyAJMkmS4OYN+roydHV3EUQxTi5LIkhIkgRJRKPWotP20Yy0/jD2Q3TLwc0WMHQThQTbzZAkCZ7nIQoikiRimiYj44PIhsTCwiLf/P6jXHPdLjzfT/sWRbyWSBgmiFJAo72MrCbIRg7V0FlemscxJExCzp1+hla9zNTJ45xZWeJzR8/x5Oky13/mt7n61lu54YYrsNU2//TFb3PqwMtoZ2bYYjl0R/Dxrdu5cXyc7fkiw0YX67rHKLk2SZxQrVSRlBg/aCFi4HsRkigSJR1UUUNEhiiNLIa+RyBJ6QY8Ab/ZJoliMG2iOAQBFEGCSCIM0iicrGjYbh7ZyNGTN7m8t5drRobY2VtCWTrLnsFBGtUy5SDh5fkyY9dezkPHzvPA62d46nyZYUdieLCHeqWdEtYoMhECKipJKPDscy8xuXUzbq6InjFIRKg3GwgC2BmberVBd18BRZco12u4xQKWkmF2/jyzi+cRJYGM41JeruA3Q6RE4fy5RTKlDIYqUa/VSWJodZpousTo+EY0VUESBQQpoVKt4BayiFJKhhKFCYZpkSQQhBF9/b3ExPz1F77JNbu2EMchpqFRXqqgKGn6rdfupPdar5P4IYppsn3bFmRBprncxHQcMq7Fawdfp7dUxFB1as0W01PnsSwD3RCpV8voukGxO8PN1+3AMiw0zUISVRRNIsKjp6+AJpl0Om0yWYNGs546LASXf7zne6iSQDZrYdkmUQJ3f3svWzasI4pDVFUhVBVmz09hOjaGbUESpinX8DaPrHjBGchb17u3r3g/PHaGPXuuX3UciqtrqbSqdStyQdIcIVlj8Ux/iBPeYPwTxXfXdSdIJIKEnAjolsbf/qc/Zvdte7CK48ydn+XRH+zF1C2K+RxdXQVWlpf5/oN7UWWZyPfp7+nnm9+4l2OHT1Dsc1HjKq4p06zMIYigakP0bbkBw85x7ugxTkydY2LTEHffeSdxJ+DBh75P19AQqqowuzTLE4+9wkAebrp+nM98Ygea7BPFS8StFlIgE0cJXtujWCwQhQFmpojhKFQa8Pl/3Mfg+CayfVl6h0coDgwi+Ms0lk4ihg1q1TKqIlPqKuJ7LUia2JpFLDYxMyaKM0Yii7iDCs8946GYbV5+ZpqPffIjlEp5ECJKXd08+eQ+lmcPcuLoMa65bBPfufvvKeRNzIyCnVGp+QndE7eQGP0Ue3rJdfVQ7OlB0nTu/NuvcPWNG5i8bAO7RodZOP48H728D60Y0QodpNjBtBdQ1Axh6BMEHvV6Fdu2UHSLIA5JxAgn59BoNdE1jeXFkK/d/ThPHzjKtVdfS9GCKIRWy+P5/QfYc9M6DKODIksQgSirLC7VsR2Lhbl5LMXlwHOvMbmhj+7hy/ib//5lurp7Caqn6SoN4ro2yytLSIqGZWfY/9xL7D9wgKHREeYWF2l2fNrtDoNjwywvH2f21DRivUmhbwRRVvAFBUEIEIWQOElH+tplMPEqGLqUnd87a95Wf7rEfZQkCLzz34djx3gvW33+4pgU277XrvSnY78Adz8De1+2THhzdn2fcNsFIHQp4O5CtxdszbjLJYyl9x/Q793JpQ7VDxuV+kketrWueDFfzfuDuw92zUt5z6IgIIipttBPmsb7QaxcrrC9NU+Xk3nX3y7o6l0oBE7rDklnzSRNR5LFdGOe+AG1lQpnps6i6hbZvEsm56YseFFEmEDg+zTrDRRZplFvcubsLKIAjmPQaLUwzDSqNDTcTyGX4cjJKUxVQ1E0xkcGkEQR0zGxHIcgSOUS4jgmimOmz8zgtQJKXd3Uqg1yWRdN02i1OjSbHRATutwcX73/AYZ6eyBJWfXabQ9REYmCAEPV6O0qYGcc/MCHOKFcrqIoMqZlU1sp42SzDPT1ceL0NB+/5XoyOZNisUS76WGYOogxQcen0WzjZF3cbBYBgVqlhmnpRGGE4zhsnBgjCENsy+KaXdso5HLIskqn06TZrKBrNrIiIyGjahIbJ4ZRVDkVz9YUoiCg2Wil6UCdgOGeLtpem4l1w1RrNQxT56//4W76iwUyjs3T+1+gVMwiqqm3OpfL4nU8svk8QZDW1lUqFaamzqHIEkHg4ebsdBxICkmU1vwpqszZM2fZuGkdnY4HgoAsKyAklJfLqJqCLKlUqjUyrk273SIM05rHxYVlZFFi6tQUXd1dhGGEvsro2Gl76LpKGIeomkYhl+eaHVvTaEcUoikyrUadQKxhOiKtapWonRB7AqoqIBBB6HP80CHOnpli/caNVBKL+5fg3/3+7zPQ63LzTXvQrBxf+Pt/pLSwiDB1jts2b+WygX4cXafd6XDy5Cn6+voQJIEvfOVrPP6j/Ty3/2WOHT3B5Pr1mJaNaZnomokgSiiSkpJTJDGiIDE3O8c/3HkXV+zchqZpJOKqjK+QpiadP3cOK5tBFEIUGerVMsQhhmUhyQqJmIraC4KIIoGAmNaSmiYkCbZpkJVkru7vY/f4IPWpKZ49M8f/9KmP8vFP3IY0MMoff+V+lGaNLlNPI6iyjCgKtDtNxteNEAYdJDkFEJIoYVomtm0RhiGOk0FSJRqNJrphEIcx1UqLheV5tu/YRJIIGIaNpuk06k2+fN9etkxOYGYsojAgDGMMw0TTFLyORxyCqRtUymVCP0KWBSzbprJcBUivG0R4nTaKoqQi57LENbt2IEqgKqmW37ce+AFbJjdQr9VRFQVN12g2WnQ6HRAFNN2g2Whx513fYXS4F0mUePzZ/XTnXIIg4MlnDjC7sMxgbzeiKKDpGoEfYVkG7Vabc+fnyTgZ5ufmcRwbQQDP82lU2xx45SCjI/2IooiiqDz37Gu02m1WqlUu37GZhBiv43P59suQZQlVVfC8DoIks3D2NF09PWimvTqvv3t1fv+6dnjq3BI37LnuQos15+n0l/de2d7udF69zlvBnSCkES0ijj37OH67SndPD2hdrF+/ict37ESWFP78L/6cvt4+TMOk1qizadMmfvTUPhwnw+49e7j1tls5NzdNRg2YPXccS4lJBJHp82W6Rnewd+8PGenro+1HDI/2MTIwTKnUw6d/4zcY37CRP/njP2J0fJSeYj/Hj77M9dfvpGDJhHGIIAS4GRdF1UgEMA0L3dBXiS0E4riNZWWZPV/j+t07UK0MimqhaA71pWlqi9NkTAXf72AYRppOrmskSUyrFqCbBkeOneb1I0t8/os/xMkNcuy4x/Bokf/l05+h1amhGyqKqnD8+Gm2bN6Km1FZXCwzf36GjSMyvreIa2eQJIEg0egeuhorN0IUR7z2yqtYuopl6nzsox8jjtuUl8r8t7/6C37nt3+T6ZkFzp5X8Ts2inACNRTxEJCkVNvOdV3CICSMImRZQhAlQKFe79DyBbp7h7l811V88o4tFHIJchwS+D7ZfA5NUwnCFlk3jyiKeEGI3wmYX1ihUMiRzWWQZZWjx46xZesWpubavHTwJI1OxKb145S6B1AUha985SvsuelmHnjwQe64/XZ27trF9/Z+l2uvvobA99E1iXXjQ5QXpjlzep4zp88wftl2bDdHJCgpuR/iG1V4a++Pkg+YQfThwd1a2WQ/XXD3lmuJ777Pn7b9Atz9DOxSwF3yjt8vdu4vwN2b9v97cLearhCtCpX+PCwIQ5770hfZ2Nu95t9DPyDwQ5Jo1TsWQyxGJAiISYKcxLQqVc4fO8bKYpmDh08wPjxCbqCEpKtpJDVJWFmuYBo6siggSyKLC8vc/4MnUGSFnq4ckOA4NlbGIQx9avU6hqEzM7vEYG8/shxjmyblSg3LtolFkTBoIQkJXtvHtF0K+QJB24M4plh0aLeqtBpVao2Ig4eO09dbQJbhyOF5CBO2bllHEKTeUEVOU9AajQaCKJLJZfA6AbIsE8eQcTK0mx2SwKNZb5DvzjMwWMKLA7Kuw/zsIn915z187CPXEAQBi0tVjp6Ypr+7G0lMqbBzeRdREojjBBIJSVJoNhocOnwCr+0RRQkPPvQUY6P9aLqHoogoskGzVuPosaP09hYxXZuICFGSUXUDWTVQNANV1QnjBt3dOUwzlVTQNANDkOjr7SImYGigF6/Twsm5qWC6amCYGcrlFrZlcu5cGtXIuA6SKtNVKlIpV5FlBc20EEWo1aqIAuRy2VTsOwGSmGqlimno2LaFIMqUV8r09vYwNzdPLp9HU3VEScU0Le6697tsHBvBybs0my3qtQbZXJZ6vYHl6KnQvCCiKQr1cpmMbdFqd4jiGFmS0LQCYiiiJS2qyyfw2vN47Yg48DBti66eEoVSkb96pcyOO36Nm268ncWFJr/3f/wpnDqLcWYJf2qOfT8+wNjQKI5rIggJkpyKtRe7Cui6RaPWoCuf4eYbLsdxZa7adRX33PsAJ06eoiufBUGkXq9iGhZTJ6YoFkssLs0hSQKPP/M8r7xymG2bNqEqErHvU6tU+eevfY1nX3yJG6+5gnatSuz7KDIkcYdYNElEkU7HQ1aUtCY0TogiAVFUabfagEC73cRyLAzLxA99ioUCGy2LnmSFP//qvVQXmgx2DXOkMs/ew9McmV1kR3eORBGQVIl2u4miSgjEIEoEvp+m9wlpVN6PJRRF48Sx0xBE5N0sqq7RN9CDpCpohkkYp1knYRTz5AuvcdWurbg5F0lWscwMRAKdWot6NSV8UWUVTdGZPbtET3+JaqVOu9XGMHXK5Spx0EFVUtmE5aVFMo6F53nEoY9lmcycm2PTxHoQElzXpdVssbxSpr+/H1mTsazUgVQtV9BUmXzBJZd32bx+FMexmZ4+w3XXXcvkunFOnjzDkWOnGBrop93upI4p0mf81OmznDpzDgmRQraLV145yte++wgfv+l6VFVbnRMUjp84w603Xc3ycpnZ+XnWjY8iSOIbzIuSLKNqKqYmc+L1VzEtBzdXJEriNSVyLgXcjdsK7uZtF1q8q/1PA9wJSGnatBTy4H13cvT1/dz8kU9ybKpMFGl891++y/btl3HD7hs4e/YcyyvL3LB7N74IHd9jcsskbj5Hy2/TqNfZNFpi8fxpHCNORbgFg8ENVzM4PIal6wxNrMdr1HnxxZfp7e0jXyxxz9e/gSAI/NqvfJq93/s2tqOxeesuKtUmuWIBXQ1QdYlmu4kkiBS78jQaVRRFI/YbCHFMp11n08Y+4miZxYqArrvUqjG0lyg5EoFfRyBZzYyK8AMfVUlod9Iosp3JMX1qkYeenOPMmSZxmPC7v/MfOHr8IGEcUm9W8dotXDeL62YorzQwTZXuQoagdpA4WEJVLFqtBMMZ4IXDTaqBjKqqbN24jqef/CHzZ07w3EvPctdXv0GtGhN2AhCb/PhHp0hig6effglBaeLmRlBkD1lV6Xgt4jghjmOIIkRRQpFtOu2Eg6+e4svffJntV2wn5zTJyitI/jyGnUMzNDqdFvl8nmqljijKCMhpXWyrSam7gKwKRFGbaq3KwEAfuhJz7FydQydmaXQUXLfAiaOvsWnzZQwPj/GVu+7mtz7zG+i6ztzcLONjoyiKwrFjx2m1RU5NzTBY6ubUwdeI/TZGVmFwqB9RzQAqAhIJ0XuO/1+Auw9vvwB3PwN7a83deyXuvV+q4VvtwsT73kmAb+n3rTT6HzCF+EL/7+YzuvQ7vihQfR8SkEupTft5gDvxEu7xw5G98J7R++5FvgAAIABJREFUuLfKHiRJ8jaGzff9TD6ktMYF+8Z//Rs+umnsLX2l6YpxkhDGEUuzi5RXqgSBj5gIRGFEGIWEQUS9UuWF51/g0NHjLM7N0dvbz9DQIJZp0fA6eB0PAQFNTfXIBNJIX6PWJGPbxH7I6HA/hq7RP9BNtV5PmTX9gMee3k9XLsfGiTEQBCxHTxfiGBw3Q6XeQJUFGs0GjmmSCBJLi8sUuzKIcoIgBSyvzGOaKu2OwPGps/R358k4FpNj6yjmXAxLwrb1N0RhG7UGbj6H7dj4F3TU4hjbMqlW6ilpR+Cl0QVDR5AkDMtAiMGyLQ4ePsZoXw+iJPCV7zzMSrXO5MQIgR+gaSpxktbv+X7A8WPTZDIZjh8/xbcffZruvMvIyCBP7X+N9WP9KErI0nKZOBQplUr09BSJkxjN0AmDGCFOQBBotT0e+MGTbNowTjZrEgQBpmUjiGm6VlexQDabIYmjN0BYobtIvVIjiQUQJCzLRpVFRFHAdmwkWUQ3LUzTRBQSDMMgihOqKxVc10WRFBr1BoEfkJCgqgqSJBGFIa12CxIZ0zIRRJAVCSERkGWZVquNoqqMD/URBT62m7JU2rZNEIaYlkm9XkNTNdqtNqokoCoClVqDTKFAmAiomgIRCFHAuVNH6Ph1evt7yfWMg6SgGg7fPzTF104s8Yef/b+QZJn/8jd/w2f/0//NR/I5Rrv72Dw5yfTUOeIg4qZbbiQIOiiynDLqJmndVxjEeJ5PLp9FM1UsQyeXyzG/MMdSvczO7ZPomoIsKQhI3Hv/XrZftgnTMlA1jcs2bOCG667hgQcfQRMTerq7CXyPa6/YydU7dyCKKkIs0mp0yNgOgiCBrBGGIaZhQJImwCdxnF4jEVBVFVVTEIUESVEBkTAMUFQV285Qq9fYPTLAZqfIffsP4EcR/8/v/+/cdNse/uCf7uWF5TZXF21MwyYKEmRJRZBEkiRGlmSII6IoRJDSqPA/3H0fN1yxA0mEKAlRdRkSAUGUiMKIOAjRTZ3rr95FQkIYBaiqRhLBAw89xsToIKVSAdXQmDm/wOP7nmf6zDyTm8YwDQPdNDB0A03XcDIOge8TRSG+79NqpWm9hw4fxTIMOh2fTstPx6ahE8cJc/OLaGoq1ZB+Xilxz8j4MLZlI4gCoigSeB49PSUazTaKrFAtV6hUaxSyWZzVrIJmq42hm/zzvXuZnlui3WqzbnyYgf5+TFWkq5in0/FI4hhBhMHBAQxDY2WlzKaNY0hiGlmxHCdlL5VlkiihWi5jEDMwNgqympZkvGPef0/SMkFId6errzAIsSa3Xmj99nN5y0Z2ze6Ed19zDXCXuoUT4rjD43vvpSvv4uYGyBTGcDI51k+Ms7Awy+L8AhPrJ+gp9RBFEXd++UvcdtttWLbNwUMHsS2H3t5e6CzSqS3QbiwQRwETE1v4wtcf4upr9/Cte77Bzqt3k9EVbCfDwOAwX/j8F7jtlts4dfIUjzz8KL7fQNEkps/M8Oyzz9OszLJxPI8iihimQRSENJtN4jhBEGJEISYK0jkJoY0kJOT7NmOaGaLYxmtWOHb0VbqyKp12G1FKP4cwCIhpgqihmiKtdhVLsxnavAVVkvnMb/06I8Mb2LR1K0HYpru7i+8/9BAbNkyiqiqHjxzluut30qouoATTSEID08oShDL1lsj67XeQ7x3GzWQ4efwoGVPD0HQWy2U+9alf4aYbb+eb93ydjRuHuXL9Ri6/NmJkrJcv3fUymUGFzaOlNGqXTbMtOn4b0zBTh0a1iSSqeJ2IBx45wSd/6UbkxKe5PIsqS3hhSm4UhKnsQy5XxDBsOp02JAJxHGGY+qoEjUJXV4lGo41rWzz70hnOzddodwSyGY3u7jzZbIFt23aRybg0WjWq1SrDI8PEEZw6eYqtWy7jc1/4Jz79a/+WF57bRylv0FVwafg1iqUenOIoUSQiiAKsgrs3in7e9iysdexi9tYHILmEvdGb/f7swV26f04rsS6U3fwC3P2rskuRQvgwX+kHbfNBwd0b+mQ/wYB7P3B30baX8AD/vMDdT+s+3tnT/yhilbXsj//oL7iseo4dA29G7ARpdeOxuvi3my3ESESVFFRZZXZmHkkQESOZJEzTKrq7i7SbLcbHhskPDCOoGlEUkTUsvHqL5eUycRgiyhKKJHDu7Ayum+GVV4+w7+VD5DIWmycnWFpaJkHAzbkcOTTNtk0bCMOEc7OzFAougqGnRYlxzOFDh+ntzpMgEkcRuqESRD5u3kFUNfY99wIDfd1oisrSUoX+gX4Ge/twHJN6o47jOHz9gb1s3TiMpsl0Wm3kRKTZahGSIBsqvufTatZBSOh4Her1RsrulnFZWa6QhBFe20NR042l1+mw++odZLMuAgJX7NrKFTs3Y5oaod9GkgUUVSGMIlrNDj988gC6pLK8skJfscDEyBDFUhdDY3n6B4cQEgWUmHyhiBfFaLqGJMn87efuYefkJLXyIrbtoCkaRTeDqUrU6y0yrosoyXgdD4AgatNut0jiBE3VKRa66DQaqLKKrmsIIrTaDRZmF8kXcpTLZZI4RDIMWq02izMr3PmN77Fr2yZajTaSILI0XyYKoNXw8PwWkiTi2DYz52dRZJlv3v8oD+97inXD/WQyDnEs0miU02io10FWBDRFQNJMvI6HZugkAiiKiqpoRKGAooiItFlZmiFrqCi6SrNRob4yz8LCKSwTHEPHdEeQ7BGIIjwv4s+eO8G///0/YM+e6/nzP/lL6q+/zO/ecB3/ZucV7Ll+N6XeAlKSUKuUyReyZAsFjh4+SrVSQ5FUNE3n4KuHyboZAj/iwYefZP3YKPlCnjBI6O/p5dqrrkRTNWbOz+K1IizDZHFxgU67Tm/fMEkCuq7gOBYb1k8Qe20USURX0w1lu91GVGIUTcdxXBJBolyrocgyuqrQqlWorayQBB6KruJ1fBRNBWLK5WVMyyFBIkpEdMNIo6eSgqpYqIqN5zW4fnyAq/oKHHn8Ub7+yI+Y3DTKznGNTtbg3hdPszC/xJBrICkqhqYjSgKV6gqWbRIHTZrNFh+57irsjEMiCYTNZZIwTFMg45goCigvLmHaBnESYegqMhGyqNCsN1g3MYKsy0RigiAo2BmHyI/YvGkdi4tLHD8xRSHrEsUxiqYwc34O1dAQpdQx4GRdTEVGlgRMw8DN5BEEDYQYRUqZV4uFXBrFV0TiIARBoFarojsGYrK6mokpK24YBjhZm1azQV9vDxs3jtHptJGUNM240+4wP7/M9slJPnrT9XQVssiKSELA4FA3siSg6zqmrROGHqIMKyvLjI33o2kyCTGyoq3isBRUNhoNtEyepblZ3EIXkqIhfoBam3cyaEZhiLFxy4XZ+l3nv7FWXATcrXXorZvgdAUQEcKEB795L8cPHeeGm2+k6onIioapK/zd3/0tGddlYmIdSZxw/798B13R2LRhI3d96ctMDI/TU+ri1YOHOfrKU5yfPkpPQSchppDvJje0jWyhh06zTa6nn5eeepqlchlF1zF0i/OnznDb7Xfw6guH+b3/+LscOXma5XJCf7fKjddtZ0Ofgddo0G56iGqSpnKHKXFSIscoSoZ6o47tgK4W8MMOgqgQaxN84lf+V149PMWNV/Rg23YaIU9SJsmgrSHIBRbKi2QsAzkUOHLkRdTY4vIrhmg3Tawek+lTU7gZi207trJ370Ns27adQpeJrvuUF6dZPP0MpuYTxQl2ppfuoQ28crpNd6kHyzSwLIf/979/nnzvILfs/hheXGX67El27byCJ574Mfueeo3Jy2T6urrZMrEBN1+jlHEQJAmv00HXdNxsFjERiJMoJedKQjIZiztu3YgkNigURxAUEckyWF44nzoXo4goCvBaCdVqjWKhiKKqiBIEfkQ2m2VxaZ44lsk4WZq1Bq0wg2FmsQ2R//n2K2nHIgcPnuS7332QiXXr2LRlnCiOSeKYz33uC0xMrMd1c6wb6eeZ557nlz/5y9RqZ+gdKHDuxGHmF1aY2HYVsqITJ+G7ImvvBncfZA+0VuTu0nbiP8/I3QWQ9wtw96/M1iJUeadJkkySxB9o8FwYBslbfl/rBaQaUW8jQUlf78dSmZKAvFvI/EKp9ltfa8UTfxIik0tp917v+Z2vi5ffvl3o/Z22Frh7I3r6BpPnu+Oya5HJvO09r97UxSabtUTM388+bDR0e/U8lmG+8Vmldc0RxALNSp3583O4tkGj3kCQJIJA4PTUeXryBRIpQpJBFBLiOCJfyLOysoKbyaLKCoEX4jXbvHrwOAkS02fnGeguERFg2wbLyxWGB/vZODaEndFQJJGMY+NkcgSRSH9fP3EMnh8gSiLFriJRGCEgs7BQ5szsAi8ePMboYC+OY1NZKWPbLrKi06jW8NoBvkda52IY1BotSt0FFFnBb3oESY0rt29EFFXCEDTDRLMKiJIISYVWs4Kqy+iqShgLSJqBrukszi7g5mz8KEGzs9SbAZKkAyG6YSLLKisrFZ546gCT69cRhB6aJqZkJEkCkUZlqY6mS2xeN0wSJXT159l+WRoF8joenlfh2w89RD6Tx9BdTDtDEsWIooQgymzdNEEiJmi6xeuHTtDXV0JUEgRZQFRlBFEkikDXTYhFTFOhUq2QzbnEicCD33+aVr1FxjaoV5a597tPkndy1Ms1VF2kp6efpcU6jqFSWargZrPs2roRQUhr2/72zm9x803XkkgS/+XL32DnpnVYmgpxgoCIqlusGx5g2+QoGccEIaHdbOO4JlGQoEgqsiSnG/m4iaor+D6ICTRrNeZmzpPryoMY0lw+S+RVWV48QXlliVzeRVAzuOYwSeLQ8Q1Mx0FREr768jF+MFPhD//g/+T1117msXu+xr+/9jq2jo4QxgGW4/Dqq4cZGOhGlCRa7Q4bN28giUK+/cjDbFw3Tt9gP5ppkO8qIMsmqi6zfsMQqqETJQKVhTqf/9o9rB8f4p/u+hoD/x97bx4lx3Veef7ixR6Re2ZlZe0rCkBhIXaCi0iKonZbdrcttWX7TM90u8dzumf6zOk5Z8b6oz122+2x2rIsq+VRj22ZlmVb1NJaSYr7ApIgQBA7CJBYC0AtqC0r98iMdf6IAgmSAAlZkk/PGX44cVAVGfEiMitfvHffd797u4rMX5pmaHSQiYkxJE1Fl3XmZ+ZRVZnKyjKtZo3F+Qq5XJ6W47Dnxf08vX8ft++8HbfTWc2Cd/BcF7feRJFgdnaGbCbB0vIimm7iddo06jUs08Q2bYJIJowiPN9B+D6deh1NjZBkjUiSUVULWdbR7CzF7j7WppP0eQt86aH96N48H9iVZXL3OH/0g70MGwlyyYhavUwUBJimQPIaBH4bp1XFsg08L6RVrZJMWJx+9QxKCIdfPklXdw8nT5xnaGAQWZbpdDyajQamZaGoKrVKlVQmTRCBpqpkcxlmryyTz6eQJQVTS5IwLaYvnSeVNzBMFU0zkKSIK3OzKJpNJpejUq0zNz9Ps13nqw/+gKyZQcgSVkqj3QyQOhAFIcdPnGLN2jGCIAB8Tp04RS6VodX2SOZyKJJAURVct0UYBTSaDdKpHKEno+s2ua4MdtLED30q5RVyeRtVjZhfWCadSaMqOpVqFVVVkWWDRNpCCIEkS9h2knazgaGrtL0OQhEomorTbLI0u0T/aD+RiJAicdNUsbeOJ54fYKzd8JYjrvntdSr/dUbF64msXH32XwPuQkmijcbsqwcpn9tPT9EmMbCFoeGNhKHE8tIyO7avx7Atsj19RKrMQE8Pxb5ulsplSr39bNwyySunTrBmeJLBERNZqeM2ryA5HqcuTNHbP4CkKPjY9Ge76B3sJ5fLoUgxZT+ZSfB//ckfsXnHLdz/1QeoVVeIgiaf/sQHsBMmpUQbVZNohxKddp1kIonXllHlWBm41WzE86tQo9VqstBwSeVHkcwSi9P7sfwldm1Yh2G6+G4bQ0kRBjUuVSX+99/6Nh//hTEkcgTyFENDk3iRYK6sYmVMZEMi7DiYukY2180dd76Pb3/7W8gE5AwFr3WJrFnHqXsY2TShFHBpep6JyY/heRGaZuIrKptuWc/EWC+KsHj54DFuu+MuVspLHDt6Ek+NSKc93PYcA/mQbjtJx2vhtBpYponbcfA6HartNuevZEimOijRApKTR0+FCNGgkB8hCCIqtXmSso6sgmx61GoaTzxxFiESyLKD67YwhEWkeoShBygx/bjTpqml+e7ffJ8P3DpET+8KQtvNM4dOcfTlAwRuk5//+IfQE0lmzp7m+MlX2bRtK6Ojgzz2w2/woU/8Crds2sn5s1Os3bCe7zz0JOP9A5x59QTbt21ESfQhyQnAe9uc5dqfb5jVjqTVbPW1M6+39J9rGFHXa0esiqrF8gFXpePe+PezAV+rc8joZ7dwD++Bu59JBO9ScwdAFJMff5I/7Tude6Ns9D/cCuE6gOcffObNnfuTfDbvLlNz43inzN072TS82/1epc38LDv0W+N61/rKX3yVvY89we6B7tePiYjFfRRFYW56DlmSUWQR11itxMp3iq7RajTpKhaQZPA8b7VGKkEUweFjJ5GIqTKSBH67w8BgH6lUCl1TqZRXCCIf0zK4MDXNo8/to7/YxeiaQZxmk3q9Qa3RJJ1OU6/UyGSSMS1t9ctcqdbQVZX+/h66CjnWjAzG9EhNQRECp+MCEYZhkEwkefzZffQUs6TTaXRdwfd86vU66XQGSQZJyGiqAUg4TmwSa1smuqaysFihVOqj03CJJBVdtdFUg0wiyaXZ2dcnel/862/SlUwwMFAiBJyWwze+/yjnZ6+wbcPa2H4hbeO5PrIQKKrGl+7/Bru3rWOl0iCfzZPNpwnDiJbT5oX9h9m5fZKNExMk7CQvHjhGd7FArVYlmUwCUK/XMXSNKBScPnuB3lIXhmkgAbpmIiPYt/8wXfkshmni+W2IIjRVp9N2OXLiDOPD/fT0FqjUKpyemuPKQhlLl1mzdgivEyBJsarX6TNTGLpBMmEThgHnzk/z0fvuwLJNhBRx29ZJsvksiipzZXYe1wso9fYAMY1WN3TCICSZShMRoag6RBJ+4NNs1OJBV1ZRVTPOF8gyhgU6BlMnzlAvn0KhSr57LalMiUjSUbQEL+49yP6Dx1gul1m7boT/+MJxHFXhf/23/yOf+9yf8fFciv5kkjCIlVJlISCM6Cp2o6oCWch0FbvwfR9NV8lYNuNrRmm3HISAIPB5Yc8+MplkLA4jFEI/5PGn9rBj6wZGxobYvmkDbcdhdHiY8kqZkAjP82k3Xb7xvR8yNjxIrV6jr7eXMIiwbIt0OkWxkGXd6Ch2Ira8WF5cXhVzAF3XaLZaBEFIGEmUenvxvYBEMkXgB2irq+9h5NFs1mIBF6C8UsFxnBjcRSALOVZ/kwFJIpm08VyHe0fHqZdbfH3vWXTZ4aP3bWdF7eFrz7zAnYM5olCiVa9DEJFIpYlCcP0QwzKx7AReGGGYNslcjkq1xeTGdTz8+B7yqSSmqWNY2qqNR5v//FcPsGvbRprNJpZt06rX2PviQfYcPMYdOzYSeAHLyytcvDjNmokhKpU6USAgUhAiFlVJpjIQRTzwg0fo7cqzbnKCE6fOcPj4Rd5/+zYWFq6QtJO02g7Pv/QyQ4M9OE4LRZHxXI9sOh33CU0jAqrlMqqqIMsyrueiyAphKBGGcPzEKcLQJwxjgZ9sNoPTauJ2OqQzWTRVpVptEAY+qiKv1qvGQkC+76FpGn4n9h+TFXUV9Mnouk6nWifbnSeSpB8L3L01VEXhD/7u+6+LqgSB/6ba7Kusi+sPBjdu9030NQkCFJoLU5w//iIDA/1sv/vDXJi6wqHDR+ktlcilLdatn2R+qYxlmjSqFQ4c2MfHP/IxuvIFTF2l1azyp1/8MkMDNpmkjNdYxJAEdiqLi4WPTv/ABMePHsP1PBRV5fixYzRbTVRV4VO/+ivcftsdPPfsM2zauJaF+SsMj40xu7jIaI9Fo10n1dWHJlQ6fgvdstDMAEVWV+0NfEzLxPc8ugbGULQcZnqY4V6TO3dtQIkqSKKJbuo4jotQO5i2zvt23Y1htVhe6GBoNs/uneKZ51/jY5/473A6EfPziwz19fGjRx/lzvfdxfT0DBMTa0knTPp7u9jzzPfR/DI9xSKO2ybwfRQ1RbWd48DhY9RbLXKFPElbIwo8nnzsWXbs3IllG3zz6w9w8fwFpqam6C2obFq/AR2TVNoGEWCaVlzTKcVUyoeenuXv/ut+Nt/SSyFnIYk0hi1otBpIUorp2Vly+QyphIakaoSBQasj0VPM0duXJpGMCMImEhKBFNcaCmTCCBqNGtWWx+bxzRS7YvD3+c//V167dJnNkxuwbYtdt+5CNTRyySTjayfRNIPPfe6zfPpTn8Sw0vzmb/4ml6fOMzTcTSqRoDx7loHBPlpuQN/ETiKhIkU3BnfvHNJNHR9dnWtf97i3Zwlv/PpPP94Dd/8fC8/zfudmULlEvNJ2szVTYRi9Ce2/B+5uHO+Buzjeeq3/8Lt/yP+8cZAdvfk3TQKkCGqVKiuLywjiya+syERhSKfZQZZlEpk0uUKOMPIACUVVMSwTpNgS4cLZy0ysGYtXTKMOHcchIiQEErZFubxMd6mLK3NL9JSKDPf3MD4+jOt1cNuxqIGQYx6+aSmsrCxTbzR4dv9hunM5HnjoCe69cyf1Zp0wDLESSXzP5TsPPsHasSFCfBRdxml4VKo1XjlzgY0T46iKTrtZxfcCzEQCxTBiiqJu4vvw9PP7WbNmDD+q0um0ee75k/ieRDKZwHUD0uksYRDiez5//F/+lrvuvh0JGaKInZvW8cqpV8nlMszNzlMsFlkzMsj779iJbRq8+NIhSvk85irI8SKHW7duwEoYPPnsPn7w2F4Kts6psxcYGR1kYt04iiSIAsEjj+8ll04zMjKIokSxEEvk4wc+siJoN0IWl8pcujzH0GA/bceltthEVVVmpmfoLuaoV8skEjG9UFUNlpZWeOT5l8jaJgnbxLQNdu3Yxob1E1i2QNNjafFLly+Tz+a4/9sP8f7bd/Hg48+SzyYZ3zBO02nQbjfRVAkhAkLJoLxcpre/ByuZYKVex287dDoddF3H93w0XYMwVtCMoghNldFMBacVEBHbwhDFnAAtCpi9fBglvEQhO0Ghfxtqug+EhSQbMW9A+OzYsZH+gW7+9PgFPvOZf8f09GW+870f0X15jqf3HGTz5Ab+n7/6OrdMrkMRClbCIgpcPD9CM1Q0Q0fR4Oy51+jr7kOV4/rLZqNG4LfJZVIYuoKhmlSWaoRuwMBgiVJvAVWXkaWIVMpmanaa/sEBwiDg4rkL9A8MMTY8RL1ep1QqxaqRhsnC/AJ+GJDNZbATNhArMWayWZxWB6/jke3KYifTfPmvv44UyXQXezl69DiZVBpV1YhCaDsOF147RcpOcXFqhr994EfseeEY27dMks3luTh1CRF5JJJW7EcnJIIQDDNJuthHVzLHvWvHcJYafO2p47x24mV+/eeKPHF2gQdevkBRCRnsGaJeb+P5EalMmvm5K6RyXVTrNZLZDEEYUegu4nY6jAz18o0HH2P75nVEUsDTz77I+akZ/sWv/TKyIsULC4pCFHjIwH1370YQYOgKlmUTEFEoFUklsuiagSIrzF+ZR5JErBosy/TkcwwND+K6LusGRmmtNFlcXGJkqECj1sCXJdauHSGVtHHbbTRZQiixQb3n+xw/egpZkkilEwghIWSBqsT2FK7rEYQ+mXSCQiH3eh87cOA4Z89dJmWn8MMAw4gziqqmxnWFRMiqwHU7JBIJwkCi7QTIqsZKuYqqqASrVFG/1SaZS/3E4A7g+WsUM4WQ3/RaxKoo1/UmADcJ7iIptlmoXDrJxdde5tbbdhLZaS7OLNPT00sxn+Pc1Dnuv/+vufvOu3jkRw8xMtLHYG8frVqNL37+Tyh25SD0+eQ/+zUKaQ1dFXSqc2STJi2nQtMR9PUO4nQEA4ND5AoFosjHDzyGBoeYnZthbm6Wz/3R56iVK3zwQ+/HsnS+/d0nWKk1uXX7ANmMTicI8IMAH5VmM2L2ygLppB0DfDW2ZBGyghPI5LuHqNSB4BJh+wqaEtLymiSSBcqVFooBwq9hKxH4Hi/vP8yJE01eeFXCjXIYiTwf+chH0XWVerXBxz/+Cc5dmCKXjxkfzzz1FJLfYKAnRbsyhS7L2JZN4HeQJJVzF2tsv/ODaLqGhI9haBw7dpyP3PcRWq5Ds9VERCEjw0OoSshYfy9uU3DwpYP0DJv4nVWhHlkQhrFH5NFzKgsVh9u3D1PMGmiWxtT5CyQSKUw9QbFvhFAxaXcWWC47/OcvPEEQtNl9W4kwqiJJLpKQkBWdltNGUdQY6AUeERIZ02RirB9ZbpPJpVk7tpGWL/Hyyy/zG//yN+jrH+Dzn/9jJElldGSU2ZkZ1q5ZQyqd5fS503z8ox/lrvfdRbvjsW5yC+3aNLouOHvhNYY27AJZRnnLd/inDe7imj35XY650ZrIe+DuvbgmwjD4nZv9o90I2L0VyMEbKearr10LQqJrzhOS9DMFd1fv+a31AO9+5htxM+Du6vsLb5BSD6O3005j6qn4Meiub0/nXw/cXf3sg9XP/npPgnf7OF4vh/gJOvRb6aHX7nu3+A+/+4d85rbJN+5HxEIKUgTTF6bpNB10RePwkVP0lrpxXY9KrUa+kEO3bQLPIww8CH3ajsPy0jLZdILZmVlsS6e/twdFVRFCQhOCttsgk0uj6jqNRoNKpcKel46QSSTIZdOYlo6Q4dDR0xw6fopcMkkikcC0Lc6dmeLg8dfYtH4tp85cYKCvmzu23EIQucgKqIYOQsZ1Wzy19wBb10+SyWUor1TIpJNYlsadu7dx/sI0L+w/wi2bJlBUlWazia6reH7I8nIVRVYZGizRarVQ9RBFUxkeHSJL7v7DAAAgAElEQVSZNFEUiUwxTaO2QqtVpeU02bp5PYZm8eL+Q/iezxPP7WfbxnUUu7v45oOPc+u2W7h8eZZsNosfdejrK2HZSRRdRdEUms0Whm6wvLSIKgm2blhLKpPkli0bCYMw9nKTJOqNJvVGi+07NyLJ4Ls+ly7NIoj9+jptl1azzcLiErfuvAVNV3jp4GGe3nuEnds2cvjkSUaH+pBkQRAInIaLJMk89sxeeotZirk0ExvGMRI2zXqThGUTCR/DsFherNFVSOO0He7cuRmAsZFecvkUQeiRy6VxWg5CCJKpFC/uO8rDzz7H3bu3I+SIIAqwDQNF1fC9kNnZWVzPwUrYqyDOp9VuUqtWyObyuO0GphpCGCIRcfzEAcbGNpDp2QyFXip+SBR61Jt1TFNHliNSqS6+cnyK5xYq/Lv/7V/z2c9+kd/YtJ67x8cY6u9l7dgIqqaytDLHzm1bUDWNhfkZFE0gJIVWs4UiCwI/oFDoQtV1VFUBJGShEoZxH8tk8nQ6AdVKnfnFJQ4cPsLkhrVYlonX6aCrKrliEVkWeJ5HX18vRBFhFPLIU0/z6DPPs23zRo6dOMXzB15mx7YtLC8vY1omnXabhJ0gDEIW5pfp7R3gtVdPoyAzNjTE0EA/Aol8rsj3HnqUgZ4SqqZhWRZ/+TffY8fWHSiKRV+um5/7yIfIdadx3QDbtnhx7z5GBwdZXi6TSMWfu0Dgex0M28b1ZQrJNLv7ehgz4P49Z9i6totf/yf3cXDR4wevLXL3SA9CKLgdj2w2h9eoc/n8FIW0jWkb+I0GQtM4d+4C+UyC/v5uTFsjk0ixbs04C/OLyIpELp+jslJBFhK5QgZJFiAEzaZDoVgglUnRabsEgUu9ViWgjWbKqJpAkmKhnkTSRpFlkAROyyHyJSY3jGIndNx2QK7QhWWaBEGAaemYlsnS4jJ20kZRdb7x/cfQhUK+kI7tD3wPWY7tJhTdQFGI/4aOi6JbRAFcunQFVVbouC6jYyO4roeqK1imiSwUJDnC9V067TaaquO5Ed979CnGhvtJp20gwtAVvCDk4pkpSkM9hJKEjHzdZ/bNUvCfn17knnvuvOEYF88brnfyjdt9U82dUIkin4NPfJugs8jgyCBaYoRc1yBnzlxgz3NP84u/8IsM9g+ihBIjgwOU+vIEvoIkZO665z4OHz7M2MQ4tXqN06+c4OSRYyRVj2Z1hlAWBFISRcsyMrmLjlBYXrzCV/7yL7lyZY6evhJjY6P09fby0Q9/hH0v7iWXSbDn6afYPLmJYycOM9mr0JeMyFgaTtDEEAV++3ceYPrcLHe+bz2u20FRBGEU1/G2vIBkshvZLGLrHSKnhiUrJK00z+85wvnTi2zYuIawniZwFykUesj26bhilPlGxL/5X/4n7rhrFxenL+C0m0S+TG+pjyPHj9FyYiruQP8Q1eUrXDx/HFuuoQqB0FUMS8cLVdZu/TCOZJNOW+TSJp7n0ds/QGWpwg8ffpCJtWP09/Xy3DNP8+2HHuaDH9yIbfnctn2EWu0MXYXeuJbacTAsC9/zGR5s8qF7hunWXMzAp95skcsXwVUQqk+6bw2+lMNrzJGwbLxOm0JexZADEmYaz1VJ2t2sVDwOHnqZ4aFh2u02rtdGiAhdqHjhMlWnjCQnkRV48OGnKfUMsFJvcOb8RXRFcOHSPOvWjJNPpUilsxw4fIJTp06xbesWyrUVDh45QqXWYsvO7UiEXDpzBMNMMzwwAIp9wzKUOOv25hne68kNSbwDZfPa87huG+HqMZIkVrPf72Xu3ot3iZuiZb5LXH3WXt/Y8Y3/r26vZ5RWQd8/SubuHwncxVjq5jOHQvpxzCevw8N+hw4ni1hRMLzOBW56vemn0KF/3DZeeH4fv1Ky3rQviELCMGRhbgHD0Om0OhiajirHK9MICdPUUHQNWVMRksTMxRlEGPIX3/oeWycncDuxXL9p6DRbDnv2HWbdxBi6qmDZKq7rMT+/jOf7nLs4zWh/f2yHoCqEgc/MzCy6ZmOqKrIkUyp1U6nU6Sv14zodBvp66SnmcVoOhqIT4CPJEZKioGkWtcoi9925G4GM03FJJlM0m3Uq1RXCMKCvt48Tp84yuX6ME6+8iqYqaKqMasTUUTNh4bRapPMpRKACMkLTELKCFEq4foDrdBCR4PSZywwPj6LKgv6eEl3FAhvXr8FOplAUwY5bNlIpV/ib7z7MB953G5IaxfQsWUFWBR23TRQIVEUjjHwURWZ4eIhIgKZpfO3bP2RlqUKpmCGVTtPdVcD12himhkDBdX1c12N6+gqyrCArMo8+v4+dW9djmDrz8/PcuXsXiipTyKXJ5DLohs7xI69x8NiruK0Oew69wqd+7l4G+nvixREBXsdD0xRcv4MsKXztmw/zvt3baLst0rk0mqZh2QaqLtOqNxCyIJVKIis6rhfidVw+cMd2iAKWlmJRFgmBLCu8uP8QE2tGSKZtVlaWSdixpUEiaWFYOvghiuwzc+kCc3ML5As5CqUuDLsLL9BwakukEwqKoqMqGhESoS/x3//dj/j0r/5zPvUrn+A//sEf8X+8/046jouqKmiaim2b2EmLsZESum5AFHupRVEAkcBO2oRR7IklJAXkEElINBoOsqKhqCamZSKEyvzcMj947HGOnHoVy9BZv34CScTiKG6ng26aqKpCp+PGNFMhMT8/T0+xizt2bsf3fbqLRfyOx/iaUZqtJolkklqtEq8oS4Inn36OQjZHLpNmbnYO2zLwvQ6yLDhx4jS2bbF23RpkSWJmdobdu3aRzKXQLRVDE/i+QzKXIkTCMEymzpxHW7XKsOw4G6kSEeARRhGKGgvZpDNZkpbFlqxKsh3yew88x0fuWc/u93+Mz3/vCXrlgN6ubqRQ0Gy2GVozRhgEuG0XVTdACHpKRUqlLgxDZ3l5kWKxhCQJOq6Lpqq0mg0SqTSGoaOoCtVGg1Q6g6YbuF5n1e4g4PsP7sFxOqyZGEGKwGm5mLZN6AdIQlCr1WJBkaRJb28vyZQNcoDvSrRqTebmFkkkbTw/QKgymiyjGTqqprFhdITe7iKSzKqqIjhOO/bxs2Jj8Vq1Srvpcujoazz05It8/N67UFWJUncB3TCQZZlavYqiKARhRBB6NJt1UukkIKPIGqPD/bHvmBQLziwvL6HpFqHTIV3MgiSQbjBw3uwz/fnpRe5+B3DH62INb9t9w3hT5i6KJ8dPf++rpKyIwZFhHHpQtQzFQjeaAoViF1/64peQo1iMCTXADzReOnCIUs8AuXwORZGZnZtjZWkBU5aYv3ycXFrCzmY4O1VhueIyPHkrrUjGkiKGhga45557KJW6mZudxTAMfuf//B2iIGDXrm0MDg3wyNMv0vJcPnz3FlK6RNsFO6nSbnncd9cu7rxrkk6nDsQ1x1EY4rRaCN0kiAxS+bUoYZXqwhyavEKzUaavt49Oq00i6SMiHUWu0nRUVtoV/u4bZ5mbX2TD+vXMz69w8eIMH/7oL3Jg734qlQrbtm/hyLEjXJ6Zxe94bFw3wvTlk/TnFRQgUCSabYfpuSpD6z5AI5TpLhY4efQQAwNDTF2aYWVxmY///MdQNY0Tx44hS4J9h6d57oW9bN2QoctWSJtyLAgTBmi6TuB7MY1bUzGtJF7DQVUNwqSN73jYRppQuCw2JDSrG8OrUl2ZI5eF4cEeDC2WzZFklVaziaKrjI2NAZDLZnGcGpKQ0NUEnnBAVqg3wGk7HD56gV233c2e5/axbv0mPvyhD3Dfhz/Bc888RbvdwvUCxtdtYObSNMdPnGBsfISJdWsxbRM7lePLX/gs996+iVfPXGJsdBwtU4oVaK/7pX2nRZB35K69w2tvlKJERKvq6Dc65z1w915cE9cDd/GAcoOH+up2NSN3LTC7FsC9k+f5ta+9cYz0tk1cZ1/ATYiuXHPK1QLUawVX3t7qjUpcb3Rnb+9ar3fhdxELuZ4AybWCJ1EUxj5GN4n4rnfdIIrvL4ziTX7T+5feZJ8QRrF3zlvv+2YFUm7qHq9p520ZzFVwGxEL1/z+7/8n1vllSslULJ8fRiAkonrAF774NXZu2kgUhJiWSbXcpOO5mAmTCInHnj7AYN8IkR/gOnXcVovFhUVct8aVK8uErsAwVXRDQ1dDbMtiYX4Rt9VGFRYXzs0wPNRHOmHRnStQKhZI2TaJZIpz52f43lMv86E73sfZczOMj4+jGQanTp3BMCOSCZNE2sI0dfr6elmpLGPaGoZlYJg6baeFbdlMz87R8TskkiZB4BP6bRRFJplKoKiCyckRnnz8ZfqLfRw6cprhsWEIfWRNBRU0VaCIiIrTwg89Iq+DZpjUnQ62EqAoGpph88KBU0xMrEVWQr7wlb+nryuPZWmoeoSMAlFIo9HAVCCfTVCvrOB12iQsg07LRRMqU5dmeO7FA0xOTJBI5fAjgZE2icIA12mzZniATN5G1QwazRqaBr4bcfbcObq783i+z5MvHuD2XVvxwxab142RzeeolJv0dPezvDxHMpkgl8kihITbaXHm1fMEgU9PT5Hx4W5GJvqQRYSiSDSqNSxbJ8JH1S1CP+KWDWtAExi2je+HRKGE0+pQr6wggvgZ4kcRzUYNfI+u7iy6odFoOBR7evD9CKe6QCTB2JohnHYbVVbJZtKsLC0grASNRgsr6iDCkMMv7SGfNcj3rkNoWRQjpOO2CQMXQzeRUIkCmXqtimXo/N7zr3BleopWq8q5l1/m3979PmQhqNVX0A0DTdXQNBWn3cA0EkRhXOsoKSpBBLIexl0AhXAV3Hmhi+/5RGHEH//ZX3DvHbfjh/Hq9dnTr3HlyjyWqvLpX/p4rNi5sowiqXTaHpoK5aUy6YwNwiTqdMhkUuRzGYQkyKZzzFycY2SkD0WFfC6N77q0Oi5BGKtMrhkbwHFqfPPBx7n9tlvxA/jS/X/P8OAA69YPk0rGpumWbcUiPZqGnUyg6gqyiMGKatkEbQcCj1wqiWUaCHxkw8QwbVbml1leKZPLF4iEjGZq1JpVFLmLixcvoAiFnT3dnDjf4HzV4Tf+1a8wJxssnT9DVyJNK2gga1JMc3MCVDmBpLZpVuskjCQd18XMJCEIqFSqFApFlpcXyRdyyEInQqLd8bBtmxAPSYCMhKbrSESslMscfPUM68bXIlBI2SnchofnBchCAUnCStrIQtCo12jU6zz33EHSpk0oy3zt+z/irt1bCYIAWZIJAVVVCH0PIUc0nRpGMk277ZNM5YgA0zZBAq8tUS23ePipvWxcM4YiYM2aPkzLorxcw0pbqJqKIiuopoYbuuiKAYSrdZAhEjJCAVVXkSQFSagkUzkIQVWh06zHND1JuuG4+NZn+1sjlMAM2vRt37kq/wDXtvbGRPV6DV9nXxSPkXEWJN7c0MWQVV585LtIUoQn6ew7OEMoGfhRxGDfMEdfPsYv/fInGd4wzNTseXq7Mzz0re9zeeoMY8ODJNMZVNWgu7sHJWixOH+SQq5KIddLebZO10AvPUMTuFE3iaTJwsIUhUKS6soiXrvDwswypVIJ33X5V//DP+cLn/scly5cZLnqUMgp7LqjxNxsxN88dJnFZSg3A1Qj4JG9l7HUPo6cnmXvGZcf7TvHidNtMhmbvoFhFGuURuUcCdHAay7iuS5Oa4W+/gwiAiPhUfVV2tUGTs0i2TtJoKa4654PcejYUX7pk79MuVJmfHyE02fP0D/YTyJhs2nTRjzPpVDKIssRijtLozaPZVkokk6hu5tyU2doaCuqrLG0vMLi0iI93Xm6CzaXz03z7OPPoWCQyRTY+/R+fvlDQ2yf7MYyGgRSBvARkowkKWiaCZGMouj4HQ/NMghlgSrA9QC1g+QIPHowMz3MXpnGVDUSdoKOV0bTNDquR+ALXK9D4FcwDBPLNqlUl8nkMyiywPV92q15yjWVVrAZkwXe/75uTp1wOHTwLOmuFOvWbSKVSpGw+7hw8SyvvvYKtprj1l3DbNqwiUyml3TGIJO1ODc1z+7bdnP29PP05rOkFAOrdwhPUpDxiXhz35AlsbpYf+3k7Wr27Y2foygAQt7wxHu3yd7VGaK0en6ELMnx71G8X+LtontvnvfF280nEq5zF1G4+j4k3pDk+0lafCPeA3c/g7geuLuZGryf0K7spuJ6dpBvvew/PLv3k8WNwN0/rK1/+NnX87n7cT6jiBtTO39aEb4T2L/mOr//u3/Ib+1eTymVggg812PqwiWEkJidmWN8tA9Fk6nXmximRb3SwHHaZFImsuRjaQE/eOIhtm4YwvUaBJFLo93A1G3CSBD4IS8cOUomYdFstJhcv47KSg1T16m324RSBCKuu5MVhe889CSaopBI2Jy9cIk7tm3ESkesWdODUHzKlQXGxweQJJlMJs3SUpm208FzfRrNFlbCQDM0Wg0HVdHwPZfu7i6SqeSq8TWYho4iyzTqLWRVpV5v8IPH9rJ1Sx/bd65D022kMKJZa2DoGgQBi7MLaLJN2k7jdyK+8OffYNemW2jUVwhDSKbTvPLqeZ598TA7blnLbdu3kMumEbLA912EGgOIE6+c4cpyhaHBYXRDkMlmqVbrrKxUsBMWmWyW0cE+KuUqz790hIX5RfoHSihCUMhncZ02VsJkZblKOpvG89uYpo1pxKp82VyGW7dtxvc9FFkjmUxSXi7zzYceYWK0n0Kui6/83ffp7crTrDfRNI3BgW623LKRiJBSqRtNM5DDWDb/5CvnKOSLLC/WsBIGuhrL2GuGQRSGBL4fmzGrCtValWy+yHKlSiafw+l0UHWDIAgRkkQ6lUAQMHX2HMXeYYRqEEkytm3TabVomxksJYzl8hWZCDhx8hAT63eSyE4gjBYtZwZJpIFY1TCIIjzfR1UVLteq/PmJy/zGv/x1pmcW+YXxQe7dsPH1B4WsCDodF03R8cMgztgpEkLIhGGI124TdNrIYfz3l6QOjdoi1doVNN1GURSiIOSOXTtWpfGb6LpOOptm247NbNy0HjORwk7a5PNdHD58mJHhWCXScTrIssTJ46/FcvFJm2q1RiTJfOkv/4aUbfPADx/mrt27qFbrRBGopoVp27HghudjJWx27dgaC7ioMju3bCKfz2CaFpl0jscef5ZcOkMikaTZctB1FSSoliuYpomsKPiBh+u20XUFw9IQqrZqN+Hx5a/8Pbdum8SyLJYXl7F0DSGBYoUYukZXd4lEOsNALsm2bI4///tvcXlhicL6dXz5sRf5+l/9gPffsgnDktC0CEltc/nCPN2lAmcvnKVYKuI0I8LIQ5FVdEPH7XRYuLKIrpsEgYdhGBAFRIGE02qjKipRGKAqgmJfL7u23YJpqkhBh8rKEu2Ox/efeApDFRSKWWZmZkikUihqXEOp6xqlvhIIn8k1gwR+gGmauB0XVVeZvjyNosiYphHT+yMfWUhIBLRbDTQ1FtrxOh6arrBp0xjpdJKRoZ6Ydul26CrmURWFKzPzyCF4Xgfd0NF1gyDwUVUVIWSclrNK1dWRhUwYBJx97Ty6rqGpEmfPn6dU6gZZub5N0U2ME5EEBcvgkmSSy2WumaCuvs6NmS7XHxKvw1wRMkHg8fADf8nmTesYGV/Hpm13I2s6I6PDTE2dpVau0Go3KfX1MzgwgqmlWK7XuPeDHyadyXL08BGuzMyydnKCY0cOMTExhKU1WL6yQLqQRkna7H3pCJs234MU+ZS6+zl75hyVcp1ctosjh48zODKA03apNFocOT/N+SvL0PIZz22jZG+hOlfhnu13MNIzwvTpywx072BD3zipRJac3c/BR6b5xD3vZ+voGJo6SNgp8drLywStgHPHmnz72ePsO1lntqwyt+iyaSJHq7xAoxVQrbhUHcEzR69w/OirZPNZdt+2m2wmi27oNGt11q6bYGZmDttKcPTICZ57bi8jg72cPXUMzVuAoINhm7Qdl5bvoSVH8aV0XLagqq/7nYYSIDTGJiYoV6volsHeFx5lcf4KqXQ346ODhKKB3/GQhEwileLC+fMkU0lUTUKWJeqNFoEvYdlpmu4yZjKBqrgI08TMWOzdc4q+XhCiie9GJGybpcXFVYVnFdM0MK0E7baLqsjIsky9XkfTS2QTOWo1id/77P3cd8cWerKbSJbOsH5DkfMnVZaqe/j9P/gsH/rgvex76THWT47gBT7zC4t0FXv5+gPfpOO1mZo6z0D3AJLv0aqeI20rtJsNeid34UUqsoC3Gpa/sVh/vQ5z7ZL21eNvFty9PcR1zNLfOo/8WdglxO/x2lTIe+Duv9n4ccHd1YzdP0b8/xHcSRI3lMK9XsjXybr9twbu3tFEXZI4cfwkf/5fvsJndq+P14L8CLft0qzXSaeSeK5HKptCyDJ2wo4nXQhSCQtdU2i3GtSqK+RzFpemp0kaOpfmrtByOqSTGTKpPEN9/SwsL7N720YMQ2d+aQVD11FkBTthU+wpYhgamqbghz66YdJuODx78Ci6LDOzsESlWWdh5Qqjw4MYho6mxj5jmq7hOA52wubchUtcnpmjVOxiqVymq5BHEjK+G6DqKo1aA0WNfd3aTofA9WPKGBKO06ZYKrJj80aE7LCysoSmJvjsn/01chhhmypJy8A0TKIoioGNrrJSWWFidJB0LkGn42FaFoVslrVjQ+RyKYIgQl4Vf5FliSAKY7piMoUiyYwMD6EbKkEYkEqnsCyTMIyQFQXCiHq9wYN7XuKffPRekAI0WaG2Uo1NecMAKRIoskyAh0BG03RqtfoqtTBkbu4KTsslk8lgWialfJpcPoMsFH74+Au8evYSE8P9pDMpwtBlfn6ermIXruuSSMT1S9Valb/9wY8YKObp7++h0ajhtuNaOkVTCfx4Mh6FIYoSf0+IBIlUklAK0Q0DVdNQ1XiC3mw0mDpzjjXjw/iShlBUdMOgWa/SatTRUlmq02cx5ZBKucLS8jI9PUWEnsRFxW3XyOUyRJGFkBWEHHuFCUnwu88eoXvzLXz0o/ey/6Uj/IsNk2QTqVUlzKuS2PEAPT+3SCqVQhYyjt8mCqFZq/PiC/tJmQaaqgI+igK+H5CwEviRhOe6+J6HoWl02nH21/M8NFMnlCU0U0OWtdfV6oYG+2i3HYIwjBUiOw6XLs3y7L6DjA4Pk8lnMAyDvQcO4zodPv1Pfz7+PJoNMpkMDz/yJGvXjCNJAtM00U0d3/UIfA/XczEMA1VTEZJMebnCyZNnqNXqLCwusG7dGmLT8ICO42CZBpIs47sdhIBOp41QBEKJrTzmZubZcctmVpbnyaTjOlgiiIKAUIS47RDbyhIiU603WFlY4L4tm9jZU+KBfcep1xv8m8/8e77x8iF25AwWFxaBkISV4bUzpwmjgHy+gKYkME0FSYqZEvNzC9QbTZYWV+gqFlZBfUTgx6q2nufSbjtMz1ym0N2LF3isLC2hqwLfc0lmsmzesBZNk+msZkSFqiIrMivLK+TyOYSQabXrZHPp2LDc91lYKFPoypLNZYmikGajiZ2wWV5cQhHguS6plE2r2UQVGrphEEUhZsKM/RVXPepkWaCqChenZth38AT5ZJKQCEPXUFQFIeRVARPQDR0hSbGnnutTrdQ49sqrDA70YeoK7XaskihUnevy+m9inIik2EbpqbPTbNy04R1ZLW/fed0j37YnjGKjoO9+9UvcdcetGIk0J16bZaG8Qj5fwO04jI2O8NwLz/Pgwz9ix45b2fPkC1xemOW2O26jXqkhRRHPPPUkI+MjlIo9tDt1bL2B16hjJA0iVafVAVXr48nHH+Pw0Vco5AsU8nmef34vd9x+Fy8dOkAun+OhJ/awc3g7eT1Fb64PSXboKunQkTj20lE2bF1PoVBAUyTcdou25+NHPgRJurpsFDkCVUfIBrptodDCMiK2T6xnonuA4fwAp88s8/iRy9y+LkHHlxnoH2eh3ObPHngaVSh86pOfpH9ggO985zuMjY1x/199he7uEmdOn6W/b4Af/vBBfv3Xfp3Kyjw9xRRe5TyK8EGE6KZFKAlcUWRhJeD48eOEYcDiUplXTp5kqbzClu3bkDWVbC5HsVQimxAMDIzz3e8+xObNa0jYPqqkxplARVmtPZZotioEQUQqleP48ROkkzk0y2JhqY2IXCpND9XK8tu//X/z8x/bQBg00OUEtfoK+a5ibJcjCSzLxml7BIEPSNTqVSRJQjETBO0WQmhs3r6Ddm0WVYJk3ifwXR579AC/9ulP8Qu/9KssLzYodue4+567OXb0NPlcDk01OXfhAsPjgyQSSfoLfZw+9SqKtIIUNAncDr2TuwiVBPLb8nbvDO6u3fMG2+o9cHc13gN3P4O46nP3pu2dHtg/VWD35sau0gNf365zrZ8muPtJqIc/DXD3uq/JW1p6cwe6Hmn0mn1R9DYweLU9IVYnkVf3v+U4aZWi+brwCXF9XrSa+hdIN/3G3ul78U5fmWqtzl/f/7f81u71KLJKp9Fi8dJCLJcvSVSrdVRZxfMCpCjiiadfYKinSDZlEUoOqqowMzvPYrmMZamM901Q7OphZGQN9RWPhx8/zFKtzuT6CVJJi0w2gef5jI6NMXtpDsdp8/T+Q4wOlPDcDhDRajbRdYNarcl9d+8mm0lTyCRIJyyG+kZQhEYYCgzNwvdDGs0GiqpSrlQRksJypcbo6MBqhkKm0+owN7NIIqFjJ21WyiuYlsmx4yexNZtUOo2sxqvplmXSajv4bhuIaXhjQyNUag0m1w5RLldRVI0wdNF0Bcf36O/rQtGg0XTJ5nLUanUy2TSpTBJZyDTqder1BqZt0lrNAEhRhOd20LV48EUIhCTjBwFhGNJsNTl79hKyJJFIWJw8M8XYYB8JW8P3fbK5DD968lleOHCCHZtuwbINhBwihIrTcrl0eYaurgItp4miCNotl1QqAYTk8lnm5+eRJYUNY8P0FbNcmp2lu5il6Tj09BaZX5jDtg0Cz90by08AACAASURBVMcNHGQlYv1YP6alksxY6JqBYchEUYBhWKhSDG6EAp7vIYQGxAp0od9GyDKyrK76I4Lv+/QN9Mdqe6oBRKyUl5DDNpYagrPC0vlTyIqKaVtksykkNY+ZNFCMAF3OEHkWQg5j03cRQSD4+/0n2f2Be5mc3MRf/MXf8nPFNJaVjCfSYUgYhXiuG1NkIomnn36RKIjI5vI4zQq2aSMiCUFAKp3EDRuohgShjGmkEKGNooKuaWiKiE2wDYXFhSUkIprNBu1mHdPUkFftQmQh4wXeKuBTMU2bmelLnJ+apr/Uy9q1YwgpwnMd3rd7B1u2rENRFTRd46sPfIveYoHbd+4k9P2YKSCi2FBbVnBdj2atwf0PfIuBUjcRMVAIg5CEZdPdXcS2DfwgAAHpVJJWoxk/mxBESJTLdf7sr77OYE8P7Uabw4ePs3XrRqYvzaBpJnYqxR/+6ZfZOL4eRRhkst14gUAoJpqeIoraNB0Pw7S5bbCfucV59p46wL//zL/mT77zHPcNj5C0CiwtL7BmYg35rhLzV5ZIJRO0Ow6arrFSXqanp490Kk3/QD9B4OH7PmEUUKvWsBM2nttByIJSqRj7QIYhhibHoF3VUFQdISQsy6bjOCQTSVRFplFvEPg+qhYvoNimjaGbaJqOrmnkcmmiVdpUp91BFjL1Wg2/E6JpWrx41HIJfDh05CSBF2BbFrIMV/2uiATtdgdZEdh2gqG+EsXuPEKRsNNJwtCn43gIEfcTP4g9OSVJou22MQydsZEhIklg6DLlcplUJo2kqAjePk7ezNh5dZL7w+NnX1fMvNH48LbJ6k2CuyCKEFLIvke/yW237ubhR59ipSG4ZeutHDhwCM/t4Dltbr/9DtZv2ggRjA+PUOzp4bf/X/beO9iO8zzz/PXXOZ18c8C9uPciEjkwiFHZ0tgj2ZbtLWs8a689Hs94az27tVu7teuwsx7Pujwrq2xJtix7rWBKQ4kSKYoUc05gAgghEZEIF7i48eTTp/P+0RckAIIgRYlbM1V6UacKOPj66+7TX3e/zxue5//4Ez7za5+hUMjRO9hHN2yTSjb5YpmVow5K4CElAfPVBrVGSL64mvGJMW6++aOcmT5JqZSjWMxTXVrk2htv5A//w5/zyzf+c+ZnTnP4wKtcs3ktrx+fZnhgFM1oM7Z6FMvQkAkRUgoo1Goqqp6wYiyHooQgCYTqEEcScRijSF28RhWJrNdC1VRWrVhBj9zHd144xg1bhzg3fY4wkckNrKK3PMzmTZuJopjbbr2VF198kU996hfwfZ81q65h9vwSN994Cw8/+gA33bgDTfLR4hlqi+fQTYOUFNNxCJQKY5PbyOdyTExOMjgwxNDQMFGsoKgCRZEIw4B2u8193/nPYFR4/tUjDI8M8/pr+xgdrWSMmkpCGAfohkIURNi2w+LiAsPDoyRpwtlzCnd8Zzcrxwew7CJDgxv51K99BjVdQpZSom5AKglkVaXrd5CEQAgbyzQwTItarUZvpTcjVIuXCJdqOLaMnvPoL7s4lTaSX6GnWGbj1j52v1jnC3/9tzz+yItU6zUmJ9bwwQ99CkPXkITMxi0bGVs5jqwoPP/0M5w6NQdSQt6VOTN9lrWbbiDSSwhJvCX5kAJRHCNdwSkVkrjonrm8bPPHtzRdLsa8yF9+N77xj7s3IS74hxc0+C4GeO9lxivbz8Dd+2DJj0mo8n5m7d7yAvn/Ady9V/tpgbsrzfUutnzL364E7i58FSdZlOlijaErz3rpA0JIVwd3l4jJppdLaqbveH5f+fPPsSNtctNID1KasnR+jl27XuHU0Wl6+8ropoEsCTRF4Wu3/5Cdm9bTm88zd/4czdoSflhj+twch46ew7RsJEVjdHyEVrdDGIa0vQ7XbtuAJFSefGE3G9atpNPp4OYcbv/uw/i+R8G12bhxPV6jSbGYY/b8LP29FV4/fpr9J84QBAHlYp6/+eZ3+fAN2/HDkO8/9jhbrpnk3OxZumGTnt4BfD8gilJyrsu61VMIRUGWgSTB9wLuf/R5Nm2cIgxCoiijKu/v7+XwodOcOHmGTrvDYr2GqevYOQdd2Lh2gSj2KQ0OMTm5glp9gd7+XuYWlvBbEnNzLVSzQD5fRtcsDNtAEkpGr66pkMYEfsDC/BKqqmKYOrIicdc999NXyGNbOvX6EqYhCKMsqh/GEaqmgAQ9lR5IYoQkuHb7ZgzTRMQBlmNTXVxiuL+PmfNLzJxbYP+Rw4yN9KGqmSNaq9UpFBwMU8fN2SRpimHoyIpKFMZ02l0ee+Z5JleOMDQ8wKqpFaiaIIllgqCL7Wh4nRaGpdOshthWDhIZ1ykQ+5BKCWkasDA/T7HYA0nCwvwiiiaDBELWaTdb1GtVdJFkfQqy8gabrWZaJEIhSCQ0RdBqLOE6OrNnjvP60f3MnDjONVu2IgYmEPkeEiFnZDKxieQJYjUiUDziVhuJiPnzs/zVq2fZsuMmTs/M8Du/99/z1d/9XQzTBAGnT51G11VURckkF6IIRVZ5+PHn2PXyAcYHB6kUbOIwQlEUbMfCydvMnunS29dLtblAs11H0wW1ehNTU4miAEURqIpAN0xs0yTyPFxdQ0Ui7DRIYglV14lJWarVsAwHSQLLNhio9DI+MgJJzHd/cBdrplbiex6qLtFqtrEskzWTK0mJOXviNE8+9wyjg/2YpkqrWeelF/fz5DMvcN21O7jl+utJYrAdBcdxcSybO+79IWfOTrN6ciW3f+8uzkyfpb9UplwpIxEjhIbXibDNIgUjz/BAL5aqs2H9KrpBk96+ERTNwPNDhnoGeOrZl7lux0Y6/iJCC5Z7+BRSVSaXLxMnEu1Wm+vXreKGoRG+fvfDnJqd40BjiUdOneET68YIAolmI6ZULFKrnuXFVw5QKrqYlkESw//9xa+xc/N64jjCNA1azRZ2TqfdaqBrGkiCsBtRXVikmHfxOx5CNVF0BxKIE5g5O0uz0WFhfhGRJizMLdDb20McxaiqysJsA0VWM/FyCSCh3W4tA0OToNvFdV0MM8/M+XlyhTxJLKMqmUxF0A0JvABFkvB8D9Oy0RQTx3EI/ADTdVBUlSgOqTWa5Ep5hJRlIFVVJ44TTEul2fFQNBVV11B1LWPJlVVURbC0tEC5t4JQ9Cu+h9/Nu/PCZl6jwdR111117FuqR94luEsRQMhzD9xBpVSif2CcWC5TKPXz3K6X+aVP/zLnz07zxNNPseO67SxV5xBSzN998e/5t//697AsEyNvMbF2ir6eAtV6zO3f/CYL517Foou3UOX8YhM3P0y+fyN2qchjjz1GvT6HrMSMDA+wYmyEP/7zv+a3PvEvGeotY0gxfeUiu3efYXh4BbPzByjl+tn30j5WTw2gK1m5LIrNwQOHKffk0RIVWVaIUp8UF98L6e3po7Z0FkvXSZMo63QSMr7fxbQVtkyup9aocPeu19gwpnJmvs3CfMjiwiLbtm3l29/5Dtdfdz3tdoNDBw9z+vRZNmzYwvT0DBs2TfCNr32ZnrKO0j2F79XQDAuhyEiqQleU8OM8s/Oz5HIF7vn+vaiyyprJ9aRpyMnjx8g5DlIq6M8P8qef/zwD4yPIIuWTN30I2+kiZEGhmMPz2kRJiKnmQJKxbYs4iZCVhE5ks+ul49xy60oKRRMkg8gCul1CL8DUYhIpY4qNk4AoTllc9Jg9fxZN1VEVBSFnQaJAmFh+Dk0YBMLHlkvUuxqaeRohafz1X+7imht0rt1+KwcOHuAjP3cTE2tGePzxp7jjju9z2wdvI5Vj9h88SJKmrFk1xSt7DvPLv/ar+N4Svh9T7ulHLo4iCxmRxpesyWwNJ5e0mryxci/57g0P7ar3xNXsTWD31lnfPJ63bvfj+poXRNUzcPfmdz8Dd/8V2MVlmRLLQOAqD+43ogQ/9jW9UmL6shHpmyQtGZNm+pbk1eUNolc8p/TSCufLiVcujzq+HdnJlchPLtgbxCRvezZXtmS58TXlTSKRKzW+XvkjLX8uIoe54rFdRhyz/I+MZOUCoYl00e8jLRcZpMsENBcRriyPky70z0pcEeFfKYKUkfdeOlaWBF/64ld44pHH+b1tUwhSRJoS+TGvvLCfA6+d5sbbtiFkLcuMeQkClTCcQ6RVTp4+ShIJzJzKw8/twzFcbrnpOp56YTcb1kxw/NAJQj/EtDR0TWBaMqWiRSlnoEgS5XKRbsenttTk+u2bQZGQ5RSh6iwu1egpF6jXGlR6etiwdhxFSDSbLc7MzDMxOkISJmzftI7AD+l2QlyzyNEjxyiXevjC1+5i/fg4YccnX7aJ4gRF00AWrFs7QRJEQIKsZAQg52cXGRvtp9Px6Hohjz7/EusmxvG7LVRVAgXarTa1ubOYhkARgvkljzNnlnj0mecxVAWRSAz0FomCNmkUk8YBpqXx+slpcoUisgDDyqFZEIYeamqgyyZDK4ZRDZ1csUQsKUhJzInjp6hXm1R6i3heG1M3aNSbBEFAqaeAJBIa7SZJKqNqBvOLi2yYugbbNHj99CxbN28iDiM0Q2Wgr5f77nuCod5+ZFnHMFWq1SqqqtFqNjEtix88+jzrVq7EdWzm5mcxTUEcpxljoZ317imSSjfsoigGba+F7WYlo6qhocgWumoxd24BPe8gFAXHNLOMkASqZaLpGnGSoGo6kixoLs4Tpz6WpSNIwU+RfAm/eYLpY/spGgrV9nGGJ1fRjUFKJHRFIGQNOVFI5IRUTZCFQE4FftgmEvC53Ys8/9RT/M6/+hQPPvksf/cbv04SR6RCZWnuLF/+xrc4cmiabdu3EpMSNTtEfsDEikH27H+VD990HYZpgJTQ6TTRNY3580scfe0QvQN95IsFpCShUV0kCrIS1ygGzbTxw4RMLkxGVnQiQlIpQTXNN9L3itCwDIdUgjTs0qzXKZQLpJKMpCg0Gx7nZ6tMT89RLvXQO9CPkGVM00KWVfpHR6n0lLBzDoqmoesOPZU8O3ZsApEQRD5uwSElK/91CjYTK4a4dudmJMlg34Fj3HT9tQz0F1iYP4dl5vDCGN00aNTmGBvtBZEiNIlUgGk7CFkACY5tk3MdNm1aTzfqZjIhLS/rF5MFhmLiBwkH9x9hcKCPxPfR3Bybhgc4s7TA2XqLP/2jf8ef3H4vWwsaceJh5ywiSWekr8yzzz3HxEgfGCrXX78ZTVbY88o+bM3g2999kNGBIn39PchColGrEYUhxaEBYsgydkIg0oT56XOoksr3fvA4cRBxzfopnnnpVeIEKuUyqmbw6t6DfOsHT3DT9ZsQcvasVFUTz2vgujlAJiWi1WlhGTayUEnjlDgNiJMuhiFYXGzS29eD0BNkGSQSZs/PYOjZWFOxWJxbIKFLb18RVZbpdDpZcEUIhFDxvQTLtFFkNXvWpymB72UlpTF06lXyro1kZj2flz/j341dIHrocQzM1euvPlZ6c7yEdOXI7hXetFIScuSlp0has6iGQb7gsmbDLXz5C19i6+YpSq5LtV1lZGSYRx55hJtvvpW//pu/5YMfvo31Wzay0KphWQ6njp8ibLfoNuapuF1WDwb4c7MoWpVY62dizU7WrNtEY36GV189xm233oaERNf3+X++9I98dMfHGRjoJ/Q6LC0s8eorLzC5boLhgR76ihYDeYOKa1Es2iiyiZQKSNv0DvZhaBqSFBKEESQqhqbR9H2KA2Ok7Qbddh1FU+j6XSRZRhICVVWRY49O3cax88j6Rr7zwDPMVwPm5s6zafMGVoyO88N7H2br5lV0PZ+tO7biU2Ohfoql8x6f+PhHOXH0EAUzACKEIpMmMXQDPN/GrUyiawb5ygBdL2D9unUsnj+P0E36BldgmjmaS3X27TnE2EQv0ydOsWVshM0bZknqDpp1gqBtoKRFDKtJux1imDpRHCNkCUnImFrAtvU96HpEkBoosoxbXIXXniONA5IgxG9HGIaOaksYtssTz53g1T3nmFx7Db40jyqrJL5Ku3qYGW8l33lkD4P9MkWpiW6oRKFCs9VkzdoyRbNAr2kxOiBzz5Ov8K07H+I3P/OrfPyTn6DZrPFH/9v/zm/++mcp2g61pSqzMycYXL0ekg5Rt4ad62NwaBUpAiFS4ksI4tIrArvMLvK23sjiXRh+sRTCj+FNShf7cJfv68rtNj+u2565epdn7VOyY07e8n/v1X4G7t4HuxzcvRsyFfhJM3hXm//iSMh7m/1Kh/bT7s177+WcV0rZ/6RH8w4mXfqPqzGhXm4XjvcSKYt32N3VlsYjDz7KLXrAh8YGlsdmqLHb8ekplYiCLlNjq5BEmyCq4gVzJGkLVXHIFSwG+gYZHh5jem6OQyfm0YTGpnVrmBwZxNBk3FzuDep4x80TRJBzLUzTQNN1kgRMy8AtWHjdDsVCjjSMyZWK2LZJq9EgDCJyhRxRlICU1ca/dvwkt96wE0WT8YI2lqXT21shSRPanQZJmjIyUOH02bOsXT3G3Nx5TF0ljWNay2QocRpj2iYL8wuUCyUeeORp1FRHImsK33P4CIM9BUxdwbFdYj9GpMobAFPTst6ZkeF+Qt9jzepxvnXfY6xeOUSn06Ld8Sj3VKjXGxSKRTTNoOt52FaeMPaRUoi8lFJPGa/TBgGariELFeKUNMkY+9ycg24YnJ+Zp1FrMDa+YhngS/idiCSSsEyLUqkEtJDkiE1bp1D1mGZriSRJII5ZNTnGU8/uxut47N1/mHKxgK5pFCsF4tjnmlWj9A304HWa5AouSRyTIlOplAjDgCRKEJJAMXQECikhqqYiIRCKRLNWp1Fvcsd9D7Nz+0YsUycMA1RFYWmpju26KIrAtkyELKgt1bDzBpZVJo40GktVwGNx+gUWl85SLldA7WVochulygSm1Yeu5UkTJXPGlsuVswi6yMIhqcznXz3N+tUbueG6jTz0xHP8L7fdQtSN+MJXvkZtqcrGa1YxUKmwcnSI2G9iLEsZCJFi2wYb1kyQEHNueo6+3hLzC7NomsRidZ6Tp05TcE2kJCSNY9I4wnIs6o06qiYT+B6Li/NU8llv6rFjr1Pp60FoGl0/QNENZEWl64fImkrY7bK0sJBdu2VB3nanQ7vdZOe1W8m5FmmSoms61WqdZ59/kUqlwn33P8S6tVPkCy6ddgdV07FsA8/zMAydMIqIwhCQSJIYWc6IQRRFQTN0PvCB7Zn+myRz9ux57rr3EbZt3syJoyf4/gMPsXPrFnTXotv1sUwLv+3RaNWxbAtJkoiijP7fdpzMqUkzYhxFzijX4xi6XZ/XTxxncKCHNI2pL1XZOraC60eHue/Bp/hvf/+3ePDwGZ45fo5JQ6ZYLGEaOiuGBzj02jGK5QqGbtKst5mYHMOwDVZNDFFrdihXegijGMO00E2LOI5I45gojIjjiHqtTipi4iRm85bVDA5X8KIOAz0D9Pf2UKs2OXtunjsffprhSonNG1dnrKGKsuykRXQ7/nJwLCHwQyQ5BClGkkDTVCQhUau1+eb3H2f1+Ggm/B6ndDpd8rkiIDAMk06nie0uk7JIKr4fI6sCRaikKQR+yJ3ff4Dech4k0HVt+cGdOZyyotGp1bBtC9l0kZLkHZ74VzddVRETq646RpKkS3uY3iW4i4IO937vTrotjw998r8h1zsFusXNt36Q4bFB5harpJrGqrVr2LplG9X5eTRJZnRwiJzr0G40if2Qc6+f5NSZE+QtjZ6SyrEDj+MqCgExsjvCSz86RigXyRf6sFydMPQ5evw4p87O8Zmbf42c6yAjoWomqmaSyibtlszzu3bT8WcYHhtCtQ00YpBT/CgkkWwURSBL4HfbRHGMqploTo5au4Ph5AjqZzFNGVXViONkuV/bQ5ZVWmnMwWOn2Xf0MELXGSlNknYSTrfOE8Yxt958HTu2bWdu4RQrJ1ayZ88+xsdX0tPTz769e1hYOo8uJzx67z/RVyqCiNANHZIYjxKvHmwgqwZ9A8M8+fjDjI72c/TYKfbu34uu69SWFjmw/wAf/NB2egbynDi6n5uvW4mrzZEaCVKyBqHJGG5KpyMjpCzIliQxQRDjOA5et4uiGuiGhqQVMPQSkl0m8BYIgxaOKVNvzaFrGr6XQCwYH82zddMoUrKEretoik4Yd2m3TG7/px8SxxFrJwcp2zlCESEJCTeXp5AvEwQJRv95Xj/isWuPjFsY4kO3rcbvKnz9a1/j937v31Kr1Tl+4nVOHz/JD++9l5tu/SDf+PJf8Nyj91Pq66NvbA2qbmYtMVddnW+/1i+19zTLO/qgPw1wd8U9X+ZP/jTsZ+DufbCfgbv3Zv+1grsL0aIrXb+rgbtLWJ7eYXdvtzT+w//1F3x20MY2zDfHphK+H9BuNGm320xNjRF1I6KkScerIyHxwOO72LF9J6ap4HUD2q2IfDmP18roltMwwjJ1ZmZmMF0bP4hwczmOHD3JwSMnmZoYQVFkLNMiTSWqS1Us16C3p4LX6RCFEaquYxoGaRxRLLqZdpyQcVwHJNh8zRqiKMQwVDRdIV/MMT+/SLlSJudaKKrK6IphKsUcntehULAJ/IAoivC7ITnbxnBMoiig02rTbXfJmRbVus/swhKmqfErn/oYrmPjmDrTZ85jaAatZpcndr1Ab7FEsadEmqbEYcDkxBimbbFp3SpkIRGFEaVKmSjOynd0wyQOU+65/xG8pk+5kvX/dBsBqqFj2gZJmpAg0fUCuh0P3dQplYtoukaj3qRcKVEs5Dl/bhZFU5CExOFDx/mnux7F1TSKhTxh0MIwDVIkwq4PadaUb5k6ElDM53FsBymVMA0D2zZpNuuZYHISQRrTbrUpFvM0G01yhSLVhSU0TcayLbqdLlGcZHp7iU+n7ZNEEEU+aZLi5lzWrFyBamo0G03yro3ndbFdJxOgJkVKE4IgQDdNhAqdZoym6liWRrsxw9ypg/T1DaLoNrm+USQ9RxTJyKpOFEZ0vQ5CJAihZLqRSUQcxwgJ/mzXEX7nt3+bSqnIw48/xv/4gR0gKVi6wcuv7qXWaDA5PoShaQwPDiDFPoau0PG6hGFAHIcUS0VIE+66/xEGe0vkcjbtVoNyucCKwWEKBZc0jZHSBNtyUDR5eV15mIaOLEmEXps4THhy1yusv2Yt7XZruUwvQlV1kGWEkJFTsCwD3++imRatZhshSTz+3PNs3bQBSUASgWGY7Hl1L4vVKsMDA/jdLmPjoxmoIc3EuZOUrtdF03W6nofrughZplat4bguhmnSaDSw3WXNyiRFVzVcN8+uF/dy3c7tqIrC5IoRSpUKEQm6pvHgg48ytWIc1dJQ1ew3X1pY5JGnnmZ8eBRJSsgX8rRbLZCgulTDMCx6envpqZTQZNBNE0PPJA1Mx2HVwAD/cNcPyRVz/Jt/89v8p7se4bWFJlt7XYTI2G673ZB9+w/ieSGmrSNkiNOYcqUHJBlJktB1kyAICEMfr90mjRMc16Xr+fh+zBO7drN6YiVtr4NpWXzu7+4g8HyefOlHrBwe4vXp8/zGL30CJ2/jBx5JEpPpE8eomoZhaAghoygqQkjIkkaayHzxa3eybf06wjBi76ETzM7N099TxHVdwjDh9rseYP2qCWRZQVIS4iQmTkDXs0y3pmVloELIeF6XDetX4+RsFFUliRNUVQFJ0G63URSd+sIcpUqJVDUQP4VejPcL3CWhz/y5M8TdLvc/9gKj4+vIVUpEKaRSTC5fRDYMojAmiSJs08Q1DA6/dggplRgaGeLhBx5gdGgIL2ihEjE/c5S0c4q8oRMJKA2uQbEqDIys5/Dh4ziuztLSIv0DoxS7w8zMn8sCJoUSr+7dy+iKlZw4eZK5+gncvE1//zD7X36Z+pLPytEKsYhJETz88JOMDvVhGgaykBCyhm5YoDhU+lcAMkFjDk2V8TodZEVBSBKOkyOMAoSq0lMZZmR0jF27drFh3WZkXWfALVKveTy/52WmVo4ysXoMyNbC0mKNwI+xczorRgZp1hfYsrqPKPDQtARVU/BaLc7XBf2j17NibBwvCBga7KHrtdA0m4mJMUZGBjF0nfGxcWzXxPciTp86w0DJQCQdJCvi8YemcQopMVUca4AwaGSl8UmCpqn4fpc4SbHMXNbrafUgVJtI6PjtRTRVoVGfRVUSZFlFSjRIEqJgkSBu4zoWhmKwsLSEqqnMzge0vRaf/vTHGO53aDfmCBIfTVPRVI1as0u51Mu5hTZFZ5DXTi9x5txpjr62h5/7+KfQNBXTshCKgmFavPaj/fziL/4izU6HrWuHqLgqumtxzfZbiZHfolH8M3D33u1n4O59sMvZMi/RJEsuLZO8XID8J7eLay4v/V6IyzvA3r29X+DuktLDq/wAVyvpfL/A3dXKSePk4uu3fBw/Fri7nPLlKrZcEit4U+/lhedf5qv/+A3+1+vXvsEQlS4XgiZ+RLNaQ1cESdTlwKEDpKmP6+awjSI5Z4gNazYTJhF+t43nBRSKvZw9f54Na1eThhGGoWHoGo5rUy6XWKpWCYKA4eF+KqUCceiTpilnpmfI53LIsoyuCzptD8d2mZldolDK43e71JaWsEyT2flF2m0fy7FQFYUkjTBtI9MykyWCMGNn9P2QZr1JEMSkpCRJTF9fiXozyzosLTX55g8eotsJqBQd0jjCXY6464bG7gPH2bZlDSsnR6hW63zvgccpuHmOnTpL2+vy2uun+IWP3UKuXEQ2TQI/RFNUOr6P7TogBPVqmxdfPsjE1CiKpiDLCvfc9xg9uQIrV/RTzBVw8wb1apW8k2fPq4cYXTGIEFlGZM/eQ1SKJVRVpdVuYRj2MrOehNduc/LUNOVKCU3XqC/WWTU6Qk+5xB33PMj12zYiSyppKvPgI8+zae16UlkmjnyElCCrArfgUi6V+PLtd7Jl/SpMQydJUnTDQlYEUeSjqjJxnGAYJrIqaDVbhEHE4nyVQqlAt+2RL2RU3V0vQlVTKr0VDGe3jAAAIABJREFUFFWh2WqRK+aXwXkmCi2rKqkkSJOEbqeFZZmwXA4jAEVOWJo5hteYoa9nBYW+NbR8iUCO8bsxmibTbrdQVNB0QRh5xEGmCRmGAUkc87lXX+e3fvN3+eY3vstz3/4q//7Xf400UVB0gddsMDU2zM03bmNuZoaxFcNISUichIRhsHxPxViWRb1eJUkidm7ZjOMYNFvVLKIvBJKQSZOQOIqYn68yM1PDtFXiKCIOQ4gjfK+DUASSJDMyMEIUB9imSRKFyELg+110TSFNIqpzi7RbbWRFQTYsThx+na/feTe/8vOfoN1qksvncFybTqfF8MgAmzauQzMUVq5cScdrAimqpiDLMkE3wFjOimZZZTWLZktZ5q/ZamaspSIrYVqcm0UIhShJeH7XbtavGqeYd5B1lbbX4YFlRk7XtPj6t+9kaLAf07JoNTp8/dt38S9+5VdIYikjHxESqqoQ+AGFQh5ZzqQWVEVQW1pAkmWarRaGaRIFAYois3N8jLWOyz//H/5nvvC5P2PnTTfx7EyVH7Uinj70OjuGehjo78fSFQxT5/y5WQrFIl7LR1UUps+cJQpDwrBL0bWp12pUeivEUYJlWxDbzM8tMbFyBbbtomkmm6bGmJpYwfaNa3Fdh6kVQ0RRRL7ooKpylpGTBIZhEMcxHa+DQOZbLx1ivtblzHyNIJX52uFTHPEldEXiMx+5gS0bVtNqtTAMC8dxmBwbxnYtJAGKpgAShuW+QWSjKhpCiOWsq4quayRpjCwLFEUhS84JNFXJWFabdVzXJdX09wzuLt7qz26/+x1JVS6INAPvGtzpmsq5U8fY++LTrN+wiWLRQbcLRFGKosAf/uEfc9vNH+Lll3YjpJRCPseuXc9w6y23MD8/S7m3wonjxzh+7Cgf/PAtRK15arOHIW7x3WdavHy4iaZrTEyOcWamQRLKTExO8MUvfJF2PcVQFVzXZe++V3FzBQzLwg8DojhGkfKcPHaGrZsnWLeql75+G5GGqGqmNTg+PkUStpHIwLcXhBiWi2L3kQqDOIwRfguBhGYokGZERqqmZUHa0EcjwNUUNq2ZQtBBy/WTd8vcct1tbBjfwKP3P8Uz+/YxNTlKuZzHMW2G+vs4e36OciVHwVFx1AazMycplEwURUIVElZpgmdfPo2bz+G4OWzLQlFkZufrzM9NU8pbHDl2nL6+QZrNDo8+9CPWrtnMX37h88RiAlMNuXbnTmSlga4KRAqOY6CpCkmSEgYhsiIQSolcrkyz3SCRTRarDSKh8vqx0yiKyVNPPMvIYIV8rkStUc3IxNA4fFam7QlyhowiQaMdsPfgLNddV6KvHKEQIswA1y3RDTz8IEASCgcOHub+expMjPqs31EC4dFjreLBhx/kX/7Gb+Dmihi2y2NPPM1tt36YQwcPsOfAPkq6x0DJoOXVGV29HVmzSCWFNE0yreCL23yucA9cunIvbxp66xqXLiNgyfym9JIZLu19u3wO6T313F0g4bsqQV6aZoQu0pvH+5Paz8Dd+2BXkkK4YG9e4IuyNj91cHfl77NI3n9Z4O7d2lXZRt9HcPd2djGT9XsDd+887tJtWO7gS/nTf//nfNSJ+fDKIZDeZEBNl0Fga6GK125TXZxHlkKEFFMq96PrRWTVIpF9WuECpuoQBi18z6eQLyFJCVHYJp9zee6VVykWcuRKOf7hG99lbKCPYtEhCn16enMEQca0mc/ns5IzQ6e1WMXNF2m2PIo9faiqRBAEzM/P49gWQsh8+4eP02w0WbFiiKVqlWKpgNcKUHWN8+fn0VQDx3bRFY3v3PsoT7+0l1tv2M7C3DxmziaVBKblsHHNGsrFMgVby9r/4xChKuRKBa5ZP4VmSLQ7LQzNQpNV+vv6mZwaY2h4kOHhCkgpESmylUNTDGQpi8IvLVbxw5jPf+Vubt62hfJgAQF0Wm0eevIFJgaH6emxkFUd05ERJFQXajz3ykHm5zNR3FK5RLFYZGm+yqEjx+jtLWOYFt1OwL4D++nv6aFYyGeN9kLilT37GOrvZ/feA2xaN0FKGyGn6JZOOWfj+R0so4CipLSaDSBGVrKSyPWT45RKRVpNj9deO8GBg6dYNTWG3+3geR5CktANi1ajgWkZOLZF0A0xTINqtU6rVcO2cpi6Q6tVx7Syxnwn5+L7IUkS43c9wiDAsGwSsntLFoJux0MoCiKRadTO4XcX6dSmGSjkCXIOit6P7hQwVRkrdQnCNnKicPc9T1ApljDNHJ1WC1VV0DSNz+89wf/0B/+ag4dP8Ed/9Mf8x1//DLKsc/S1afI9BlIcoCkSftDCVnWiKKQb+ghNRVI0kjBczixlATRZyLS9JmmaZXst0wQEqmkhSykiFWiaySv7jzE1sQJZkjFUhSgIyTsOsSxoNNvc/p27uGnHVlr1GpqiUK1VmZudwTI0lhYX+MYdd3H2/Dk2rFsPikpfzwCDpR5GxkbIFQpIpIRxF1kRhKFPSozndTB0G6SUOA6zEqlugKZqyIpCHMcoqkqapgS+/wYzXKPeyACCJEMUo8oSyDKKrrB982YeeuR+Ou0Gr0+fZmRslGOHjtOo1zk3M8uWzRvo6xugUWvS1zfIfQ89xdrJSe6+50EUOaVcKiArmSciKwI/iJEVBa/dwnUMhO5g6CZh0EUREn6nhazZCAk+tmo1n//efdxy4wcYmRhlYmqKmz70QX7/P/0NH1s5iJAijhw+zv7XTrBmajWOoROFIa5rZaW0lo6QwLFt0gTCKKbjeTimTqVsUG3MYbsKgd/BNCxOn5lmYXGR0bFh/upr32K4t8L52hL/eOw8d/3oCC/NN3juXBXihNmWR82X6M0XWTNYYc3EOAN9PXxy8xQ7h4pcs3odmuNw5+69PFnv8spii229OWxLJyUiTiKkVEUIlVazi2FrBKGHquhIkkBWZFISojgijkOELGdZyeWm7DRJkIRKp14jX8yDaiGl8Ts88a9sF4dun5mevyq4u2A/LrhbXFxECposndnHdTvXEnQXOHh0icG+Ifbvf5Vf/9XPUp9vkcYJs3Mz5AoOU+umSMKIXLkIqoLjOkiyyu3fvpsf3fci/aVV9NrDrOoZZuv4Kgx1iO8//SwfuukmvvX1b7Pjupu57/Gn+NWP/DJ+4OG4Nus2bMskaCpForDL4cOvomoRQgpozR1nZW8JV6iggkgVLMNCpZutX1kmjiPCJEWzHGJDwYs8IESNmgSRRxQGy5k7GVVTCcMIRXep1xeIY5B1nViNefChp6jXmrx+4jRTE2tYv249G1Zt4yt//1Ua3QZ9JRPbMij3j7O0OIMsfI4feJRySUNTQMgSJAlOZRULbYVrNq7HsPNEQcze3T9i07YddJoLpLFPkkK+VGGxdoi//dI3WLdxNWdqJ3ny5XNsG17DxNpZcqaJFNrIYp5ONyuRzPQWNUBibiGmpzLEqemjqJaB6TgYTolCrp8DPzrK4488xyc/fCPtdhO0iBCJ2cUc/+6P7uXsTJ1rt/TR31MmDk2efWGJnVsqqKmH39aQVJV2s0mapmiGhm3nUVSTqU0BZUXhlRdbHD20RNhp85FP/jx33HEHr+zdT8sL+MQ/+2cousba9WuxCzkO7n0SrzmLrCYUBtdi2AVkRQMpA3aKyIDeWxjJr7hq3+muudSfk5bL0N8y8m3BXWbvBdxdzT+8/Dh/Bu7+C7d3B+7efEy/rRj1W7e+aNtL57jqVmn6RuRAFu9NquBKZCQX5r5Sqvq92OXZsUuJUt6etORK5ClxSlYOlaaXbXNlUph3InuJkjQDdNKFCM+bnyR5++uXXnIO0kXA7gKgTy+Jrr5JzvLWOFQKfO9791PsLLFluBcpFUgIYpEsZ04EzaUlzp46hmUqtIM2LT9hcGQCOTSQtYRUCUjSmNp8i6BZJ4jBKRawHJO4G3BmeoFCPs+5hTl2bNuAqsr4XkSYJAwM9aNqGp7nE4cphu2gmTZpHFJfqqI4FmEU89Xv/gAljlFlmX2HjrJm1SqsXIEkhUP7T7NlzWpkScI0Mta4bpKQM5ZfsqZLc3GeVrfFxjWrWT85jqbK5EoOzU4bxy5w+uQM+ZwNREBMFEsUCkWiyKPTriNi0JDRlRTTzZHPF3GdCFWWSeIQy1YykowgRBESQpbwIh/DtEjSFNM02bZhgp6BIpIqoWqZZt6x46fYuHYSt5DH8zpIkopqOCiWgRpJPPHij9i0dgpZCHL5HF/55g/4hY9/kFKxQJpEzC/M8+hTu1m/boIwimgsLWIpMg8/v5+hnl6mVo5z5PhxBlYMU+rtwVAUTMum0w3QXRtd0zBNm64foi5HfQ0L/K5Hzi7z9EsvMj48TL6QyUU4dh7TKCFEgqzI2E4eSdKI05T6YpNdr+xnzcrVSEJCkmOajTpWoQCyiqwIlCiCJEHIClGcoOk6SipIk5ggbKEaKkmUCfFqaQevNoemSHgoyGYFy3LptD2EahDrEXKqIiSd3XsOMTs/x/p1ozQWW6iKwp3HpvlXf/AHIOn849e+zt/9zmfRTZO/+MvbOXzwFNdeM4Yii2WSiJR8T57FxTl6inmCro8kJFRNoe01MRTw/BihyUiBj2s7mSSGbRBELToLXRRZQiiZTMXRE8foLZTRVKi3Wtz/xHP0FMfRDVCFxqkzZxkfGc5K/GSV4yfO8PQrP2JsdJKe/mFkSeXIuXNs37EVEcZ87it/xweuvYbF2WlEqqAaKlG3RZoKLCdHHEb4nkcUgOMoRFGKpriEkYeiy8RJRJoky71nMXHUJYkD0iTT5mu36khJpn0oSVlWWaSQiphTp84wNDTM0PAYiqzTWy5QLhXZvOka2q0W+byGoijEkkoSdNn1ykv80ic/zsiKXuI0yBhyZY0kldBVBb/tZVp7hoWEQhh1SAMFKdWQSFAMLXOmVZkPrZ7k//x/v8qtN95AHPjIssJHP/5hOgNj/PV9jzC/Zy8rR1YwPNJHLCUcPHiU/a+dZO2a9SRpSqcRomlZ2amlm6hCIRAJYRRRLpXp1NtIUUIrTthXC/j8s3t4/lyTD6zdyDWb1rFixSQ3jY/x4TWruG3VSrb19LKiZ4C+XJGCrTI21ItlOQhFW9ac1PCDBNMyUITK6sFBbpkaZWPB5cjsArcfPsdGWyVNY8IoJIpCNE0hiTPdyGKxhIQg9EN0zUJKBapmEIYRURTi+10UbbnUTJKYPnmCvv4eQllGvsK7IpHIyHku+lztzfrM9Dy33noj6UUvowuVHReXY16gkX+DWOWN94+UAb6L3QgJbDPl8MEXifwqG279GH/yuS9x7NA0pmuyfet1RK0E04iYnj7OmTOnKJcrLNVa9PeNUFuscc+99/PI/U9x/TU3s210FEf1cPWsPFFYFkHHg1Rnz4HjbL3xA3z0s59Fas4xYk5QqmQ6b5KiYCgaTz35OAW3zMLCHNVaFb8Tcn56iZ7eEuWijGZIoGhEaUiaxiiaTixSVFXLsrf5HGGqoOVH0GSbTn0JWY5I4hTSjGE5iiKCMCCKQnRZzXrY0gTf91HRKBX7OXJ6ARmNrtdkfO1a4sRj7cpVKB2VR3bvYe2G7Zw//gqPP3I3/fk8mj+PoUQkqYJqGiwtLnFuvklkrmBq1WpOHDtL7+AgbinPyROH2bJ1B06hgu2UuP+HDzA8uB1bVXn6scf4wI5ttOpHaNbPccO6laDFdKIOBcOhEwQIJaUbtKk3uiiih3+4YzelUpn+vhTd6KFUWInmDHHqxFF6Kw7X7xwmIiHxfXJWL8dONyFJ6Bsa4KWXd3PrdauQkjaSHLBhjYVEkD0PDAlZKCCXsHWHbtOn6zWR1RRL6SdNlygVB9l3+CxPH21gWxIDwyOkksov/Pwv8tqho8hpwr4De2nMHSfttjDMAkrcpHdwI+XKCCGgvNF7vcxI/rZ8Bm/9I0tZhl2W5ExaQRKkl3hQl3pVmQ8olquelj22Zf8vI9S6dJ9v55tdsCtl6d6Nf39BHuGdwOWPYz8Dd++DvTtw95PYj3/xLyya9yPb9pPIH1zNrvxTvbss3QUAdiVmoitt+07ncCFTd6Vh7/WaCpFdkyyjujzX24zd9dwL7P/enXxiKM/a/tLyy3yZbjONibo+Tz3+LLW5Kr4HvZVByuV+Cvk+vvSVu3nwmZe55aatmVhv4BOHIaqs4S9nO6IgRJYVqtUWdz/6FJ/80I3Iy2VYI8NDLMwvMdDfiyRJKLKComYnnpAgC5BEimm7nHz9NEEQMjLQR29PmfGxYdIkK638+zu+z+bVK5maWoGbs/nKt76DIGF8YgSRhCiKQr3p81dfuZ2piT76+vsyEgnDYmG+hu3oxEFI3rH5+2/dyeqxIeI0Jl8oEIYJr79+ltn5GjnXpON1kbWIttfCMBWSMMZyHMIgwvdDZKHgeUEmPCwLNEUlXpZTiOOYXM5B1zU0XUWSII5C1k6OISRQdRXdzABfs9nEMi16e8tct209Xd+j0lfmP999L5/99M8hiZRUiuh2O0RJyNqJlVR6yyiqTCmfQ9M07nv8RT5+2w18+Vvf49OfuJXewYGsxEaCIPCz39a06HodvE4HIQt03SAOIhRNQlEUSFRGhyoUyzmSNCONSJIkKwWVU+I4Jk2zvq44jjFsnd0HjzAy2Ee5t4Kqqxi6Tr3RArL+DRSZbhBgmBpxHCJJEUgxXqeDbRboNOtIcgCdGnOzZ3FdF9kqURycQBY2kgBZlUiTlNBLiWMfkJicGGbDxlUEYYdSpZfPHzjJb/7+f0c3iHjtzjtYESQUcw7FvM3OzWtQ5IB8QcEydbpdDzfncvb8PMVShSRMSNMY0hgimSefeYE1k6tQFAFSShhEtDoBrZaPqlpomoUXwNMv7mbN2muIU8HWbddimQ6qZSCrKju2b8d0HZycg1soMDU5gWqrCFUmjWPyBZfx4QHyjk6nuUR/pczWjeswDZ2Zc+c5PT3N+tWTvPDKHvp7+nFcmziISJBJkpQ4THBsJ7smUiYaHPoJnU6DFHDdrMx5cbGKJAks08UwLKIwxnFyGHqWgYzCEN/3adQbqGqmHVjIuQwMDpAvllBUjUIxh24YVOt1BgYHqFZr2K7L/GyVpcUqm9ato1QqIImUKIkxDBOBIBUZLZNuaPhBQBSHeI0GqpoxUSqqCkpKGEUZi3AKXa/LTStHCU6c5HN33sO27ZuRJIGmq9ywcyN3Pr+PF5Y6vLLY5COTI5QrJQo5hySJ6HTa5Ao6UeKjGhJ+0EHVBbKicqJa4xtHZtk1W0OKU9av2kxR0/kXt9zEh9dOMFDMU6mUMyKVNMlKItOs502WFb55x93MzS0yNjJOksbLJeEJmqohJIl2s42QVEAQdAMsy6Jku1w7MMA/7HuNawfLyLKBQGZ2ZgHLtqmUSnjdTkY2pKvLpWQJqSShKSpRHGdSEFGcMZRKMmGnia6ryJZzxbLM9Arvlqu9lW4cLtOsDGaEHW/OsrzdpVmKt53rCl8qssOxAydo1UJ23vxpDKXMB268iVXr1xNGES+++By9Pb202i0efPhhtm7dhq4bLM7N8dgzz3HL+g8y2jeUVWukNQxVQtMUZEUGSdDxfWQzzw07b2OmMY8qZP7xm9/FFSZhkuA6LudmzuJ3A3p6+oijiJHREYIgZO3qtfjdgPnzR5gaG0QVCjOz59E0BVXTsmycqiBLMnEUE6OgW0UUs0wagSZSOo0ZVJH9QrIs43d9/j/23jxYkus68/vde3PPrP3t+9LL6w0NoBuNlSIoiiIlkfZoC3kUsiZi5g8pPI4JO8LhGUc4YmzLExPUyBJpkxQtjSRqNBS1kSAJEsROgCCIHY0Guhu97+/122uvyj39R74GGkCDAClSMXLwRFS8qldZmVlV91ae757vfF+hWCAKcxsUsowwitnc3KTb6XPs+BFCaVMqVhgeHsCrVuh3ewwMDFIsFNkzfxOPfeW7PHX8eX71Vz/B9Mw2uo0rPPvMd5iZGSNKImzDYLMj2L7/o0ih+Lsvf5XR0RE2NzcYHx0iTvIKle0USJOU4VGTifES+26a5fyFEzzw2NP889/4BSp2j0zG2K5Hv93Acl2yNCUIYwI/5P5vPMTQ2BD7904TRRsY9ijVwVkanQhbByl8KkWdrmqAlrHcyPiPX3qUL953mI8eLPNb/+1H0LJNDBP8KKDgFgiDDp7n4gchgZ/gljLaratoWkhKTIKi292k4KUkssTxM4ucXFzjwN672b//Vu75wAEy1Ua3Qq5eXiEIe8zNDHHr3kmajatUhgzM2hTCUuhuzqJ5P/F2w/N8rMvr6JXXZsT3T9DE1qKIuO7xNeXNHzS3e/9Vune+7p1+d3+/+Am4+zHENXB3o/46KX9Y2wN4c3ntRqzjt1bxri9lvwW4ZDciBf7w8W6g6Pr+uR9eKOUtR+LdBv27gbu3A7sbrap8P3D3lh5AufXJZ++8/bBx/f6zrYqd3KoyXvsbhhH//t/9Hp8oSXaODCJECpnIV5uyvMnfbzY5f/oi7WaHer3Nrpvm8UreljCDztRElZ1zk9h2rvbW73RxLIOrKw1GRwcwdI3FpVUefvJFnn7ldRZmx9m1Y452t0u5UuLypasYhsED3/4eexd25MAo6GEaGn6/h+XYebdTlFGrVdizcxulcgHLtKg3mjz+9PNMj42wa36GkaEK/aCH57kMVopsn58mIeHS+fP0+z61oRF2TQ4zNFJDqIxer8un//RLfOxD92IYiigIgYT9C9sJ/JCBkQGEBNt26HUDqqUaxWKNNDFo93wszcIxC9QbbcIowi14KN3Cthwy8ot7r9NBU4p+P+TihcukaYztGGRpghAZkgxNU9immUvLawql5SuDpmHS63ap15t4BQfd0nKJ7V6XsZEhlCZRel5VchyTglcgSiLIMrrtLn4/4IN33YbrWWybGkY3NAzDJPIDgn4XTSlc1yXyI1JiTMfEdTySKO8ZCPwunXYfkUgMS1CqlbEdi163x+ZmnVqtwubmBkIKbMsGkfcKbTSaHDq4n0KxiNIFqcggk9hbPojtdhvNNLFsizQNsSwDv99BsywsyyaLwG+vI+nRa67jFSsgLZzKGPV2gqHbRFFMu9lESo0Tx85SKNu4BZckDUnTGN0y+L0XT2A7Nvd84CCf/PefIjx7DqKIm/ftot9t0uvUmZ8bI00j3IKbUxbjlE434viJ01imjSTDMhTdXsjLr5xkx/we1lvLJHGCpjvUBsb4z1/5JrfuP0CpNkShWsE0bQqVAZxCCWXkq/yaaSE0DanrSF0jyQT9vo9h6cRpilcskWQZSZL3quqaII1z82RdU5hGrmI5OzaOrmt85cHHOHDTLZSKLo8++l1m56YxbQvTMOm0u5SrJS5fuUCtUkPTHO77xje4ed9NJGlGHCYYholtOTTrHU6fOMPQ0AhpnOH3Q2zPQcrcZ9MruKRpSpREFDyHMAxRukGSpZw6dYqBwQGUpiGUpN/vUy5X6LU7nDl/kf37dxOnMYuLS0xOTnLu7AVqtRrZFu222+oglcpvccbJM68zODxCkqaEiY+2lWLphkkQhZAJ/L7PLRODyPExLMeh2+vimSb0IpbWG5R6LR5ZbaCHPWYHiyRxxJl2m6VNn1evbPDw5SbfXe5y9GoLKQT7ZrczLeGemWm2j0/yZ//579i7ewHf76GbCk3P0HUrp6hv/eSHYUCv28U0LXbv3Mn83NwWyyJmfX2DSrlMFIUIoTB0nbOnL/Cf/vor3HnwVqIwxrJsdFPj8XMXuK1WRNN0EJKnnj7M8ZPnWdi+jYwI23VIkwSEyMElgjTLFRiFFG/QmnXD5PL5s0zOTpJI7YaVux8U3AkhONLwmZgav34vQG6P8wYDJruxEMS7HeC1l77LxuYKxXKJV198mkcf/Bo7F/axVm8zN7+d0YlB4giOH3+dg7cdxHUd+t0WZ86c5+TRs9x54C4MQ3Lq2CsMVjXiwKfX72BoBmEQYLgu/Vjj/MVF9HKBuckRHnziaXbP7mFmehYAwzDx/YiBgRqu69Budzh2/DXGxyc4duwYSbjO7MTwli1NgULBpd/vYOh6XpGPYkjB9EoUSsOsbXYwDR1dxGRRkyQK0JSk1+8RRQFKqbzymcVbQF1gOwU8r8L0/E6OHD9BoVBlfHySysgQWZgQhhF+GKKEYGSkwvapHdz39Ue478HHOLSnytCwgyEzpCaJ/D7HTq8g7O0MDQwwMzXB2MQkcZgQhD6zc3O0W20unLvA0WNHqZSH6Hd7/M2X/pp2M2ZqfAcHD45StWNSTSdKQSdEaia9Xh/XK1AolJifm2Xb9jEqno5pSXpZEWlU8YqDJFGDYkGxuXaRml4iabRJ/Q6HbtvH9lmXfRNQclOcgoamq7yaGea/1UJkxFHG4OAYyys9dDR0zSJLC2xuSmI/QSiDlY0CL7yyQqoN86u/dhdjk4PUN/scOXyJndtuRRMhCzt2EPkNVLKKrvtIfRBvcCfD49tJM4eckfPeeeO7gbt3vO6GrKxriyD5nHnrK/IM7JoX3XvFtbzyGqUyz/Pfyu568ybe8vhaCngtV32/4ovvJ34C7n4McQ3c3Sjx//sCgrfGewz+GwwS8S7//3HGjwbcvXu8Xx70jVZV3m/l7kYX3h9HXOuKFAj+8LN/zCOPPM6/uWPXVuJwjaoj81VHmdHcWGfl0lX8vs/czDSDtSrChCAKsGw7FwIQKZqUKF3xwKPfodftYmk6/X6MZWisb25Sr+deayXP4dZ9CxSKuVl2q92mUixRrZZZmJsliRJ6PZ9mp0kaJ8RhiFQ6vX6AFBpraxtUqmXqjQaabmDbJsdPneXmvbtwXIdWq47jmly5fIW5+WkM3cAPIlxDUa1WUaaFYwjWNuqYpoHrOQyWSjiWlTd+p0nu7aZplCtlojjGsAzqGxuYpkmxWCDLFJpuUq2WWVla47FvP8e+vdtI0lx2XYpcNOKZ517G0BSubZGlCUE/xtAJZSWvAAAgAElEQVT1vA8ov9azsbZOsVQgCgKazSau55Bs0UU2t85R13IBhxdfeY3JiTE0XcfzXKIwRtMUgd8nI8UwTJr1FqZjI4Sg02yTpSmnTl9kYKiMpkuK5SJKSdIkJo0iXNeDNE/KozjEsAyWriyjSQ3DsJBaStgPWLqyxuh4jTBOuHxpibGxUUzTpNPsUB3MhVu67S6WZdHrdnOPNyExdD2nnEUhYT/CUBLf71Msl4ijaIvGLYnjGKUUSrNotzsoEiQ9Lpw/Q3VwEN3wUIaL0l2SJBcIkUIjSwTnz11maKiCWywAYFkGGfD7h8+TZYLf+PWP86k/+GP+lw/ezZ6FBXbMz5CR0ut0sG2TIAxotbtkaUqapmRZyunT5zl1/gLzU9NEUUC71UTpGv1uyuj4NMWKQaVSo1AaxPcjbtq9h1KtmlMes5hCoUiWgW7oJFlMlkT5xVbkpsZ5sq5jGDpplqKkTppAGicUSgV00yJNU+I0Q9/qjUuTlDhLqBQrWJbJjpl5bMtBKTh7+gJz22bodFvYloNtmHT7HUxLxzBMNlabvHL8NW7eu5cwCDEth2ajlfepHT3BE8+/xN23H+Dllw4jhKBU8QDo9/vYtpVXh2QONnVNI5N5clIpFfF7/RxkC4luKiBDZoI9u3fiFlwajSYTk+MoLTeE11VesVVI0jjFsm2Wl1f51Oe/wO0H91GrDiOFQmkpmtQIgiAHP4BhWTiWgaY0PvW393P7HQcQQuDaOs8+9QxPP/MiGxfP8a9++oNsn5olU5LjGw0ur7f56VvvYGZolHt2bOOOyUluHpugbOXVzuGRYbqdHkIqbj90G6Zp4gc+WZbR6/WxTBvdyCtmSZxsUZgtkjT/XnRTEschURxRqZSJ44Qkzu0W4jhCUzq33bIf0zTIMkGr2UTTFa1Oiz0jtTcuHvc99BTtXp9DN+/GsDWEUHm1IM2QUoM3gFRGHEVbQjkSITVaG2sMDg2Q6SbyRrnBDwjuAM5Ektn5mev3ArwVzGX8YODu+CsvMjA8xM237iWLWoisz0//9M+jaS6bG3UMXaHrFnPz8yRxxPrGOo3mJvc/+Dh3L9zB2MQkF8+fxtIU9fWLOTjYap9I4wikIsJkam43G2GLC+fP8LHbf4mx8XF83+fb336Em/bdTKlY5uix13Bch1ePvMJP3fMhHnjga9Q3m+zds43Bkokiw3RdIEEIga4ZhFFIEidkaQq6Tphk2KUqpAlp3IWkhSIjiiJMM19sEVISheHWonjOjAA4e/p1NjcbTG+/jRMnTjA4NMSFpSvs3rELkNiOy9LiJc6eOcXg8Ajbp7ZzaOet/Ml9X+bALh3PdgjjAF1JBkd3YpZ2cerUSa4sLlIpVzh69Dhzc9M8+NDD3LJ/P888+xwf/4WPMzw8QRr6zM3N8Jdf/CtQNqVSh9GigTJN/CChYGn4QUC1WiVLBVJJpATHMuh12rnHnjmM0AroRoGLF47g9+pYeoojLfx2HdfK8Io202MOpkpISYmBOMmQSMrlAo5rs7K8jGG49LoRT37nMCMjNUYGh+n1Y/7yS/ezfX4Wy7Fo+VX+7qtPUB6YZWrao1yqMj6+HaU8HnjgYS5fOMUT334Sv1vHVC3SuIfnjVIansErVEhTAyGTG7bGvHPo3hjcvT1unEe+VzXv2n7eO/F7S+3kbY9vsPVbz+JGOg0/AXf/5cb3A3c3rrr9sPETcAf//wR3v/N/fJL/fu8EH5gafsvzqVQ5tIsTGitXuHL5AkWzQHVwgFQKKqPDmLqFbtgEvRQpNDSlUSrqXF1a5YkXXuXXf+njuAWPOEzRNMGf/s193H3brYQRrG3WeeKFV5kYqjAwUEUpiWM7+Sp0Ar/3+S9y867tDI8OEfoBBc8jisErlvAcF9d1WF1dZXh4kCwTOI5DYzNX2rQMA8dVWxLhAtd1gAzD9Og2GpRKRTp+j7DXYGBwijSLiaKASrmAbuoIYSF0RbFcII4TNN3KgVAaYzgK17Npd5pcXVviL7/xEIbK2Dk/jWdaPPT08xw4sJdOp4OmWURhxI5tc7x+4lQuX91qU64O8MJLR5iaHMUPesRRSLFYYPHKIrZtUSh5BFGIYVoIIbAMk26ri8wE3X7Ilx96irtuu4U4TrBdl1cPv06r1aFYcLEdGylz0GY5eeJgKI36ZpO/eegJdm+fJE4ivGIRoRL8XgfSjGeeOUKz3mWgUsiFA5QijVNeffUkY6MjJGmI3w8YHhqm0dqgXK5RLlfpdXwuXVxiYKDG5uYGjmWhmwZkkKQJumYQ+AFREHPuzDnSJObffu6L3HPzAoahYdkuvUYTwzAQQhGGCbrtkSUGlmFx5fLrGDKgViwS6wUMp4LtlJAILC0lIEDHJUs0vvSVh7j9thlst4aQOZX100cuoWuKf/Xb/4xTJ04Rra6zzS7Q73ZJVYpSkjCMsO38c3PtMkeOHWOwNoDSBJ5u0my2OHr6PHceOohuaNhFjc1Gn+n5BZyKRpZpPPf0KwwMDlEoV0ClxFlIFHRQmp5TW9Mwp0YmPmkSo+vWFgi2iQKfJInoNDu88NyrzM/tQLcMEHnPpmF7FCqDJDJDpBmmmQM2W7cJwoDywDCWYdPrtpiZnsb2DJB5/3MURhimxsbGKgWvxNnTl9GkZOeuBQzD5MK5ixx57XVuv/0g1XKJhW2z/PnffJkTZ8/ycx/5EFEU4Ps+tm3j+z6QIaSgWa+TkaEMA6lprC8u0240ubK4RLlQJCSgXC4jsxihydy82TLQdIPGRj33RUwSpO7w5a88gGe5pAk4XpFd87voh31q5SqaVLSbq6RJSqFYJIwT1tfWsR2PbruJpmncMTnGJ7/4Ze66+zaC3iajAyN89vN/xB0/9zHumhinVC4iNRgqeuydmSGIAzQDkqRPJmJMS8M2TQLfR6m8/1QIxZ/8p79iZmICXWm8dPhV9uzag27m9gPr6+soJdENjcAPQEAch7Q6Gzhe7u2YJilZmrxxHZAyoVQoIQTEUcT6apN6vU6r3WBhdBQZByQiotVoMjc+xp7tswwMVHOKbZwhUAT9iKNHTzI6OoRQkjRJME1jiw6d5oBxY5WBoQFSzfiRgbvzqcbctrnr95K/p78HuDt/9AqmVWVsYoLm6gVaG8usLK5y31cf4fBLrzJYHabV7TMzP8OZk6fwXJuvfONh/uUv/hZRklKuDbC2fJntczOcP3mYqaltKKnj2iZJ6JPGKa1eRqPjM7Jjkqeff4k9225GCkmapgwNjpIlCWGU4rgWBc8ljjJeePF5kkjg93zm5oepFRWaBlJTeUXQMCCFJMtwHZeNtaso20JoOpmuIUgIunVE0iGLIoTIvVDzgZBhmOZbGh2lJikWK0jpcPriMtXaGLbtsXPfLRw/cphKbZALV65QLjiMjYywvr5BwXNZvXqFW2dH+NJjL7J/WxnTViRhgF0cY7nuMjk5gWGovApYGeD5F59nZGg075MbGSUIAk6fOYllBtSqBouLZxBaxkDVYMfEEN979iXqjQ4jA1WKJYdOLxe8ch2HlICkH2NpDv04xK7NEGYGllXBMvroWkQWdVkNFtHsGMPS6McCggw/DRG6hXI9et0A17SI4z5hEKAbBp5b4erSGm6hStFLyeigmzA8OsT01Aix7PH1bz3Hwr6DXFnd4MN3/xoXzq6wa+82etFVJqYLHHnuBP/0136Dp779MCrboFZ1GBgsslJfo9FcJRMxjlf9RwvueM/K20/A3T/qiKLof3v36tyb1Eop5d+Tnvnuz78rXRL5jprx20U8ftQ2Au83kuzNcxA3aGZ9t3j7+V4TeRFkqK0yuBR539y7Ncgi3tkoe/3n8g+B7hYvL/HpT3+OHRsX+dm5cVBZfuLXDr3FJuhurHHxzBn8ZouCblEbGcX0ihiWzcriMo5TIOj1EUSkaUCcxHQ3WpRLReZGhzhx+iwTk+MYSpBKxezUDCIRbJseZr3eJooCBoou46NDLC0uohs6fj/gy994lN/4xZ+j0WgxOFRGM3UK5SKmYRKFEf1uC9NzsCyTLA4J/C5+r0ulWObEiXMMDVZxikUQGuVaBT/0EUoisgzN0mh1u2RJhh9ITM/AdYpsrrUoF8t0W03CsMerL5+gVvFot7p88YuPMz+dmyZvrjfx3DK9boTvC14+eoqPf+QD2J5Jseaxb+9ugqiPbZb56jcfZOfOaaIkZGioRpxmBGGEZplMTU8glEIzDEzbQddMbNvFtDwCPyXoR6SdjI2NOsrUKVUrGIaNYUruOXQTZAlBt8vSxcsMDAzyzCuvsX/vTvq9PrbjoIROc30Ty9Cpt1oUByrsmJhgfGoCr1Ck12gSBQLTNkiIWNi9l5HxwVzsxHZ48YXDTE+PMTpaw3Iter0ApWuUB4r5pDF00lTQanawLJuLF5aY3zaDH8ZkQhKGMbZpoXSFrmm5AXq5QrFYYe/MGK5rYtomaALpqFw0RgniuEUURei6SRJ1CZtrCKFo+wnF4SmyyEJIHWVkxLGG0m2iKCBMfO44tAfTKqA0jSwK+fTh8ziWzq//s3/On//JF7jDFOytlWm1GpSKLotXFvEchzQKcS2Dfr+DV3AYHaqSZjFZFqFMh7GxEW47cADLdbHcAn5PMDM7RRS3uHx+kWq5RmW4hlOwESrLBZbSDPVGZU7RbrWwrTx5NC2bhBTdMkhFChlkmcB0HKZmJ0mSECUhiqMt+XsNTamc1KM0pGlimRYIPQdXxLlqac/ni1++n0P7b0LEObAwHYssg/p6E8t2cFyTHTvmaTXr5FWIjMGBfGyblk+xOMz+/bv5wB0HSPwYaShcx0ZXGplmoEyHbquJ7Xj4QYjn2GRJjG6ZPPr4s5i6zfzcNhwnr2xnQqJ0jXpjE9N0UCpDMwW2a2FaFk8/8T3uOHgLjUaTLz/8APd+4CCB32ZyZoZur0uY+NiWhWaa1JsNLMPEcR0M3aDX6eTVECHZVynxrYce5dZ77kIQ8tEP38OHBweRSr6hUKiUSZalmIaJUgo/6BOHMaZu0dhcxykUSRCsLK/imjrbZ7eRpgm+HzA5NYHSNDRTgMhQmkLp+fcbR5DEKZbtoaRJlmiYlo1pugihIXWB7ZoYRoEgCTFsE003iNKYv7r/m1y8sMjy8hpfa/S4d2IUpekMjw1RqVZIRQ4qdN0gzTKUUmRpbiNw/swVBmpVyDKkSlCJRoai3dykWimBMm+cmN7g9l7xV88e4d5773ljeyneKUBx7eG1Y177m2YZKQkgEVsKLl2/w/MP3YftuUzv3I3MYp579gUSLeOlw8f5rd/+bV4++hIf+dAdfPb//hQfvPfDDA+P4XRqoOm4rk0UdDn5+glGJyapFk10yyCTGRkJ/XaTVifGKY1wZXmFD33ioxx98XV2TMywtHiJcsElCHqYho40FMViieeeeYbxsUkM3WDnjjkuXXmVxO8hhWBpeRHH8TAtPfc2FBmkKZplojQDx3Aw7RJOYRpdGhB2SUM/pxX7bXqhQ5pqpFGPUxfXqZUd0lQSpzFCKo69ego/jHn94gYrqxe4845D6NJCKTBNHUOTdLpdytUBqoOjCCStxiqDBcn22jB/98QpZqfLWMoHNUCrr3H50irF4gTlgRK2V8CxPFxHx3YsHnvkMY4dO8Ha8ibz8/v47/7lv2az2eLI0SPceWCaktbPe9S1lJIdE8UhuhIoIVAqVwjuh33CdA2vNItduxmjOMjaymlc2STurdNvr+LiItKYVEiIDdJUR9NMShWbXqtOwRwmTLpkWYdeDyzLodFcQpMps2NTBHYPqQmsVCc2Y5qLF4j0m/jbhy5z+OhlPvqRj/Erv/LzNFtrfPvxx2m3+ixs20e5oDNU6ZP5R5iZrFCrDnDh3Emi9fOI9lVef/lpjChg8/JJwqCzJfClUKkAoUgQyDRDQ5HdQP01JSUj3crnrsnwbZEvc/NL3g+wy7IMpd6Zn99IvO9aXnk9xfL7pb3pdTZaNxZgyX4kAO8n4O7HEHH87oIq10LTtDd8r9L0faKYH0m8E3C93V/uH9Li4C3ncd39H6SZ9frzfTtnWbxtBfNdj529sz/yrfHj/VDCIOCzn/kj/s0du3CMrQb5a4Ip4s1zjzs+jc0Nmq06/bDDemOdwM8YGBwkTTNs10HoKl+9lrB8dYWNtToDtRqaZWKYJuv1JpMT41y5fJ6+H1AplxidGKHd7jA7N0Gr2eTQgf0EYUipUCRDEgYhB2/Zi2kZDI3U8AOfJI5odzokce4tZhgavX4f3w+I4wghxJbBKui6RqVSJE0y4iBG0yQb62vYlomh571gnuciZA5ApEjpdnq8cPgolqZhWQZpAt955ii7d8wSRwmdRsjC7gmkJimVS7SaHR558hm2z07x4XsOkSYBUkK72cQPYjzXJUlyytXIYBlNSTTdBKFod/vc//CT7N21A11XpFsyyVmWkaYpiPzv6VPnWVxcIogDRseGEAjazRbddivvZxWCYqmI7XmUyyXWVtdwXZuRkUHSNOXxJ55lYcccURhQrlZpNVu8dvQ0g4NlkiSnhZqWCSJBKEhCyEiRWoLv96hVynieh6bptNodqrUqSZRgmCamaZIkGZpSaEpy5swFXj1xhpv2zSOUQFM63U4XkWo0G5vYWxTNLM3odTq4BRu51b+YZWqLzqtBmrK6ukxtYBCZKEK/S5x2cYtlygOjaIaBwiRNUlIRIqWxBYwyDF1HSfVGn/HvvXSa/+GXD3KxkdFuNzl8+DAf3bkdx7FwHY8rVxaZmBin3+/R7XZI0oQwDLmydBWlFJVyGTKF5rpUqjWE0lC6RhBF2JaHkBLTMqnVBsgQRHGCaZqkafJGP0a3297yKMsTGonammoCId9c+VUy9567NvullHnyLCWWaYIQudhIHG31pUnSVOTvWcurtCLL0HSN6akJ4sgnCAJMy0ZJjSuXl96gxna7PZIs7/VyHBeAgcEqS1cXCcM2xXIN086pkFmasrm5QRrH9LpdHNshiiJsy6LRyBcBdNNCSkUcRexe2EUWJzzx1NPsXJjD7/fw+31MM1fOzERGGkcIBEE/RKAoV4q5oMXwIHffdRt+2Kc2UCPN8gpHFsckQYhh29i2Q6PewHZc/L5PoVhAKo3GRoOrV5b54L59fPKv7+NnPvwhvvSVBzkwOMKlC+fxXA/PK9Dv+bhekSDwiaMIqQSBH2GaBp5j0Wm3kUJQKZfQhACh4fs+xVK+YBDFMaZlECcJnXYbz/PQdQNd6Jw9dY7GZovVpQ0Mw+Z3P/2H7N+1k8D3kSIhDIItcJmgKYWSOlJKbt69iz07tjM8PMSRzTofmKixuVkniWNSslx8ydbpdru5+FAGtm0iUHz76ReYGh/Btm0EWd4fLRX9doNKrUKm9BuCux8mvntljQ/ee8/72vbtx7y2iAoSISRpFvPCM08zVPIYnJikOjKIynrEfoeVK+f4+Cd+FdNy2L6wgO3a7N6zl6997Rt85j/+GRPFChv1Op1ui7nZaUquTbO+hEza+H4XTUmyMCTqdtHcCuWhSWa37WKpfpXnDr/IeGWImZkZXjv2KrqhY1kGly5c5NLFCyzs2sfi1WW+9+x3uXDpLPXWOoqU+flZdFOn5HmkSYiuG2RZRhJHuZWBVOiaTpwphF6j027Rri9jmxIkhP0uDz92mKsbm4yPFenVQ0wzw/NKRHFAv99jZGQax6tyfrHBRz/2C1y6cArTLtLtdmi1mlQrZdbW1qgNDORz0TQIei1SP1cOnhmbQsbjfOHB5/nA7TsJ5BiuV+PixVV27N3Oa6+e4JFHHuYTv/iJvDpWLLNzYTeGOcjwyChnz53ljjv38V//kw9R8XyKso5d1NBMMGQfTVkIKZBKwzYt1tbXsW0PXZMoawxpT5BIjTToELUu0GssU7A12ps9TEtBprG81OYr9z3Bnj0zkEYoTaBpNv1+B8d0kEISJTFRDOOTcwjZpJdJkkjRa9RxB0xavTKPPn2Oc5cDxifm+G9+5ddwyxaaYbF7915Wljfwg5C5MYfvPvE1ZscMakWLLA7xg2Uso0S93ma9fpVTzz1OZ+My586eZnm9TqvVoFq2UEoQpxZK5YqogndaGbwx1t+S4167//4SymuvzRUs3/rcD8oSu1Fcv893E2D5Cbj7LzTeD7hL0zxZ/NEDu7dApOtu11YE8oFzvdjL2+P6AfyDVt9+4LO9XlSEa5OKLQPY9xdvPd/r779tBfP7mkm+13qpuG7/76/R9t0iy9I3mm9B8Dv/+yeJj7/Cb96y420b5rc8wcxI0phnn3yIRrPN7NQMI6OzdDsC3ZAce/0k46NDRFvS9VmaorIUQ+mMDg2xtF4nyXLq2Nj4CEmSUKsViOOQbr+H47qEaYplGszNTubedYZBkqYUPI8XXzrC7NwkQeyTZHFOP5CCQsFFSo1Os0Oz2aJWLSPIFevcQpFOt4euS/7i6w9w88ICZ09fotvJqYoFz0ZJ+Nyf/x17t2/HshyCIKBQskmjHrZlMzs5wd/c/wi33LSHIGlyzx0HidIetiOZnBxCMwzqjSaakQPhldU1wihgbGQAJSBLUzRN0er06LZDLNtkcnIMU9NJ4oxOu4dhOdiOw8zoCK+99jrjI8N02h0MQ6fR2MTzXDJgaWmZxeUVDh7YS3WwRpykeI7Dtx9/iu1zU7iex9p6A6l0Gs08IZUZzM1NkaQJQRAwNzON3+vkgEdTZMDY6BCGKcmSmDBMiaOQbqdFo7FJpTxAHIX0/A72lvl7EEQ4jpsrcab5nO51+/S7AZqmkDJFU2DoGiXHozxQIIkjgn6fbsdnbb3F6HANQzfQNEWaxmRpjFuy6TQ7OI4DysTSFN1Oi0ymRGGKa5nILKa+sYpdLmAWBpHSxfc7xJGi1Wxi2hpZKqivbpImCYauI5QCKTi6uMS992zjP/zld/if/8ff5sL5i/zm7CSmpdPpdJBS58LlRfq9EN3QKBYd4iTBMiyGRkbpdn2E0kFo2JUqQuWgLkMihIbSTTIkUZaglIaQEk1p1/0O5BPfNi2E1N6o4mWZyOmSUpJGCXEUY5k26dY8zbL0TTl5mfe5SClz+wXdQOmCsNfFNk2UYdPq1jHMnPaapAlJElMoe6RpguPYtNo9uj2foaEhfv8P/4x7Dh1C0xRu0SJNBLZt0mw1qNc3GR0bxjA8Tr9+CV0KfD/AsooMD1Xp9fo4XoEkidlcXaVUqWEaFqZpAmJL/U8niXOBj/n5SaTMgWGtWiEM8t4kIYAUgn6E5xY4c/I0A8NlKgNVdFOn3WlTLBfp9Xu5gXkQkUQxR15+lYnpyZyi7Ni5H17BJYhSOp3cOPzbT3yPvTt38eSlixy6424effw73DMzw/e+9wwzk5OA5HNf+CIHbz2Arout78xA1w2CIP/8HNtidXmZcqFIt99D000K5QKGaRJnCYapo+saydZFI6cSC9ZXFhkZqeFYJvc//CgjA2XOnr/MybNnueeOW3OKcpywdGWFYslD1zU6nTahHyKFwPJsisUC9c11tpdsHNfBcW00pWGZBmkWbfVCp6RJiqYkUmqMjdQolb28FzNVrK8u45VKiDggy1I0u8gP6zf79nh6cZ0PvofX3VstEPLfbbaqC7kmai7OZeoa3/7m18l0yQd+5ucIs4TnnnqQJOxhkzAyMkG90aTdDfnM5z/H8Mg4+3bvZ5hhGvUN9u67iUqtgpIZWdimaIPMcmpz0O/iaDpJGHJpZYmhiW28dvQog1NlZrSdKNPm7JkL3LT3VgQGcZIbf6dphusVGR0f5+TJExS0Pr/wsz9PrVigZCYMlmyEJkmzXARDilxKPxMCmckcjEsFepVquUi3vUbkN7FMHUnMqSt1Qnz27JlgqFxDahJDt0BlWFa+gHP69GlOX9yg2drg9kN3MDE9g6kbDA4MYtkOk1NTPP/csygBi1cuEwcdLD1AExluqUwYhSyMzdOM1zh+0Wdh180cuO0uhAyZmJxiamYa3dDp+T1sp8Crrx2lPKxhmoqb9u7jd/7tv+PMsYvsmC2yc7KCYRv4fshgoUw/CtF1nc2NDdI4RdMVCJ1mt4vmzOHWpknSiLS/jB5couQIgtAkljGWlSHSHo5lc3W9Qa2m5f38UYBuGWy0M1rNIoVSSK/bxC1M0k7bZEmPbjDPS89fZW5mB6s9i289U+e+B15maHCO2w8d4ntPP8rP/PxHME0HU9kE/TaazNi49CgTQxJLNijaBS6cv4Byh/nGN0/ysx/7TYSysAfHEaZHt7FGIVihceo5jp15DVvEDJRHubi0iOGZWEojydI3KJRyi4n2znz1Wu72TkGVG0f+3LXq3fU5441y43dN4cU1eudbN3hvm4QfjbDKT8DdjyHeD7j7h4kbcZLfqRz0/Sp31wbfP0SbXnYdgPpB6Krvt9J4I1rm+4/rwd2bj3+4yCs8zUaL//DJT/E/HZxn+/DAO48o8tUpmUQcf/kIa4uLVEsjbN++k1ToLK80GBgepjxQJux3ScMATSmIJesr61xdvEqr00EZOifPXGDb7CSdThfPMRFZgnQKRGFuoJzECS8cPsZXH/wes6PD1AYrnDx5ijgOSeOAJ557kX27d6IZJlGYoLYqJGRZ7u+k67ieS6dZJ01ioiRDKT1XFgwDtk9PYFo2o2MDOaUq9JGaIooTZscmeeW1kzz/8jGmJ4YxDElzYwWRScIg4tT5Jb71nWe567YddFq5kuVmfRNN0zC9Am7Bod/t4jg2CzvmKVXLOd1TKnrdPkrT8YouX/36dzl78Tw756dJM4MHHn6ahR3z/NV997NrbgoQTIyO0Gw0KVeKKKmwPZMojt6gOu3ds8Da+ia2Xch7bbo+J06eYXxiEqkUrmvTabY4efI01UqZ0dHhXOhhy/eq4BXZXN/IRVqiBKXraIbC0ASRH6B0m/NnrlCtFBkZGWZtucn/+f/8GbffehO26WBYNrqu0253cFyTRrDvQZUAACAASURBVL1JoVjgb7/2CAvb51FSkGUR/W6bwcEBDGnilgr02110LaeZjI6Pk6QRmqnjRz7SEBi2jhA5zVDTNJCSbr2FUzBYWVllYmobQbfFxdMvUi4XMZwRep0Qx9RYXV+jXBqg1+uRpBFRlNJY2eTRp55h/54FkJLffeEkv/zxg/zxt17jX/z6xwn8PmOXL9LrdvH7vS3VTossha9/67tsNhrs2D6NJg3iGPRimVKtimabKEuDNKf9aVKgMsmVC0ssLS5TKnoolRH4PaTMxVGyLEVeV5ET5EqGSewjZEoYd5C6TZpmiCwXZWhu1tFNAykFYRC+AeYykRskC6W2fC8FMk1YX7xMfX2FYqWEbub+c0Jo2JaDYRpkMqfBZlmK47oUykUCv8NP330PL774Kt989EkmR4eoDhQJIx+BoFAscnVxGd10uP/rjwMBc3PT6JZLu1UniFPccgUhBJVqhTiOWLq6iOu5SCXodFr0un1s2+HsmTPUaiUKBRvTMkiTlE6rg+d69LoR3/jmY1y+fJWRwTIjYwO023WyOMHzXALfxzJ1NHL1Xk3T0XSdgufiuA7dXp+g30fpuf2ESMC1bZSuceC2W7i8eIWPLMzzt5/9f/mvbr4ZQyl27VmgUCrR63c5dMt+TF3SbNVzRgt6vvCZJeimhR/4RGFEKiRuqUqn06HZalIsFfPvSJNkaf4dW7ZNFEWEUYhp2FxdWaNQKnHT3p0Mj41w110HmJoYwvYclO5ApvPyS0cYHqqQJAmObVMsFBFKIPR8zv/FC4fZbQqSOKZYKBAFIRkCTSn8fsDxY6cgBddx0U2FbgAyIU4SlNSwLEkqJGG3g6ZpGE4Rvk/V4QeJVxp97rzz0Pfd5u0VOyHepIIIFCkCSNCkoLe8xPy+g9ilGqlQ7Jga4bXDL/PyK8eZ27Gbk2fPMTQ4RhqmjA2N8qef+SIfvvcjTM/P8fz3nqJSrnL+ymWmJsZYXDyXi+sYJrbjkkQRaRJRGxoiVRaOV+Vqb5NtUzuxbIdOt5t7bgpBFMc4bl4BHhwcYHnxMvMzM1TLBRaXLuJ3WxQ9iWFCJiUKiRQ6gd/D1BUg0TWDKPAxXAdf6ARRB88AU8sVTVUimNs+yO7ZSYxII3YSRBIThckWLVOipI7lOBx+/TyDtRH279vPxmaLaqWCaZpEUcTmxgbbd+xACEGj2WJiYhxJlzAOuHxlkYHBUSQZsT/NX3/nCX7pl/8JQkqOv/4ix44eYWZiHlNXfP4zn+PQwduZHJuk6FZ46dnn2TU/x+Swy8njT7FnYZKpQUm9tYrrOiT9PpmU9Ht9CgWPKEnQdUWShcRCUh7dS6sf4gctPLlK3L5EECYcOSf5xkPPMTm7DUd18bsNDty2k0z5aEIhopD1VpdvPfga/9cfP8Vddw9RKdrolOhEV3ETwaVlh9//w/u48wMH+F8/+SirGzGf/+yfMjJS4Z6fupVDdy+gUovTx0+zungZLdtgc+UMo84qImmj6xYnL3UxvHE2o3lu/5lfIjSrnLnQYHLnB9lx0728/MrrTE/P0PZDZL/Pi08+wsWTT2GphIrnkhqF3OxcqTfsD26c3t0oV3t/ieC168a7gTvgXcBdBplA3IA6+t456Jtg9O8TPwF3P4b4RwHuuK777/vSMrM3Xvfjjh83uHvT7+SHeS8/enD34Oc+y784sDNPFm+wVUpKu9Xi/m8+xORgjfHhQTx3lNNnLnLxyiJf/c6T3HlgF1KZFByTq1eX6ff7/NFffJOhskel5FEoeZy/vMit+/eg6xpSCjqtFu1WG7NYRleSXrdLo95k29wsiR8zMzOO51lUykWq1SIbaxu4tsnM7CwCQT+KkFsVjTAIEQharQ6u50Ia54pzQkImcT0HIVNsy8JxCqyurbC8tsbc7CRRnOC4LqSC0+cvc+7yMiODRWxLQ5MpmmbgeUVc02a93uLWfdspF4bz/QOlcgWp60DG+to6nXYXz3VQloWma4RBjGVbaIbB2uoat+y7hddOvE6n3WZ++zbOnLnEd559idWNdfq9LtNj4xiWiVdw8Pt9MjKiOMR1XQzTQEpFt9vFdT1My+FP/vzLLGyboWRblAcG6Ps+rmOxuVlnbnocr1TakuUOUZrENA26nT5pHHHm3Hkmp6aIkoQkCon9Pu1Oh0KpxtjICHEc0m63GKgO85Gfup2NjSZKKRzHIU5z+ma9scHQ8BBJkrK0tMLk6ChKSbq9Nlma0Ky3KHhl2t0OUmTEce7rJ7Tcvy9JYjRd4QcB/b6P6xRoNupYpkVMhql0NAN0yyDqJ4T9Dn5vheHxcTKRK0JG/RamZ9Pc6LK2tkGrU2dxcY3J0RF2L2xDN3R+96WT/Ot/eidnF9e4+8M/S8HR+N0/+CM+uG0eXeaUWsMy6fUCut0eaSC4vLLE2HANTRmMjo6TGSZC5X5E/aCPbXj4vR6aksRhwl/+9VeZnZpgaHgQTRM5eFV5khfH8VsYCBIFpAiZIpXIZdpNL5+DScpLL75EwfWwvVzwR9N1kixFbvUnC6lyUZQoyqmoYYhrbNEwdR2pGXnlMFOQgd/vYVoOSRQihSSMYvzAp9dtIaXB408+w/pmk5+59y6UlicFlmXTarYZHhrBj31GawPsWpjOew6FpNNpU6pWEZqBBJQmCeMIy7JI04RWq4lhGhiWg6Y0et0e1VqZtbVlyuUScZxgmVZOJ5Um0+OTPPbk97jz9v3ohsKxDSzTot/z0XWDTqedA2ndBKnIsgzXdej1+iRxlKvrWiZhGNBYq7OyvILj2XT7fUqVEjJJaHV9zp2/yLaZSVY2N7BME6UktmUgydBtM6cBZxLDNHKfOjMXtikUCjiuR4JC02ROPxd5ko7IW6067fbWarui1Wrz0ovHyWLBU888z4GDt+ZCSDLDLTqEQUi3HfIHn/0Ct928m0LBptnK/QLTKKXRaKBbJu1Wm3a/x8HJQdIMTNtibW2TNIkxTAulNCYnxzEMA9M0yUjIRILS83GnKZMkCdncbGEqgWkaCNP5kVXuHju7+J60zO8H7kCSCkiSmI2lReh12Lb/NsJUoBs6m1fPYRs6lcFRTNtjbm4bZ89d4bb9B/jmo49zYNshhoeH6fo9bM2iVC4yMT2DoSmajTV0ca0HShD2u+hSYlgmml3k6to6H/nFn+dvv/B1KrUStVruHdjtdSgUPE6dOsvY2DiGrgj9Hr7fo1Sr8d3vPkoSxwwNV7BsEyEEcRTjeUWEyEiTMO8vDkKkEuiOh1EapNNqYKmUJOpj6DpZP0NoPdJ+F5W49PSQpN/HMJxcBEdAt+ujmyZL6z4ryyscPHAbYZyxtraCZeXUZyFykahKpUqSZgwOVGhtXkLTYKA2hh8EpFFAlCp2bLuTJ55/moFKCdPKvRHXlxtYpk6v02FhxwKteovNdcFAucKpE0d5+cVvUHR7zG+fYsDrkmkhSIEt2ZoP2hYjS9Lv+ziuge0VMbwZolQSxT3i9kVM5YP8/9h771hNrvPM83dO5frqizfnezvnwGYSsywqy5Jn5QB44F14F+NdYDYA88fsYgK8M4PdtScZ4/HYmrEtWRJlkQqUKFEkJebQjN1sdjc75+6b43e/VLnO/lGXVDfZkpq2NPAudIBq4Fau6u/UOc/7Pu/z2Jy6Inj0sdfZvXMbo30OtqaTqBhhZAil4+gGdT+kd2A3+w9M8dnPbqBgCly9C93tIDodDp9q8Ju/+XG+/q2vs9QZYNvWbfTUerjrjls4eeYo4+t7+dpffQfXKnD25DGaq1fo6fYQ7fO4rs5qK6TSu4mhsY2Mb7kH4Vo8+ewz7N5zM1smNvPsU8/wiU9+ip6xEVLDY/H0MXq6y4TBLI1WyKkTF5hupqxbN/EuAPu7BO7eYckpJd6XGPkluPv/cLsxcPde+uTPq10D267d8m6WLi+6VqwJDFxVHCoFXFt3mp/r543t3gGUV2cQ37m+YO0+rnPc9QparxZieaeEVq0Nn1evu+pN3OBd/iSq5t/0ZeR38Rdf+CIvPfUsv7Nn47tnz4Ra02zJxWDSJGLp8iQzly4x2tuNsgqYXhmF5PvPvMRdt+1j+/g6XKeISlOSOOPhJ15g48gwWmZy6827We20+PoPnmXbxDr6R3r51vefYsuGDYRxhO3ZXDp3gdZqwIOPPM+v3H07XrFArexgGALTMoniBD+KieOEjRs30mq0MUwDv71KfXmZSqmIadqcP3uRc+cvUS7ZzC8u5NF3paFkwuzsLJVSjUajQeDXKXoeCIkmcyXNZrNBEgQIlXDfh/ZSrRRI0oBq1wimbdNqNyg4Gp6tUynXWFyegSyhUq3SCRJIQxI/4Pn9b7F9xw6ccplmvcGzz7/OxvUTZCTMz89T8coEccS+PTvorpRxCy5jI32MD/UxPjjA1s2b6HR8iqUCSRqRqTR/DkNHCMlqvUEc5iIPppuxvLjIlnVjdPdUKZRd4sjH82wajQbdPV1MTc8yMNjP0uI8XtXF77RI0oiS5+G6Bbq6aywvz1FwdQrFMlls8tB3n2NhdpF1mwaxXAvDtPE7HZaW63zlWz/k9pu3E8UhaZIQRwlBEGNoBo3lBpcuTbFxbJRCQaLbJeKWD6lCdz0c0+DChSlGRkfRNYGWdkiyDE3TcjVVaWHqNogEXWpkicSyNRbnp5ECVubmcc2ElcVpRrfchh9KsiwmSRMSJFpmkaUJQRCwfmIdIoPKQBUhdd68eJnf/Mw+Oo06f/HIm9z3oa38yz/8E/7ZR+4kiRSZipmZmUWkGVkc4TkW1VqJ3du2M9A/gm5pCJ2cfqnA0EwswyUhxrQMQKDpBrfevIeuvi6EyBB6XkspMEizNBcZ8H2kJtHepfIIpK6/S+nMohhJXjP3xa99lzs/dAeGIRFKQ6WKdnMVyzJy2hIqp9dJgRAZhmYh3TJurQdLN6jPz+LYNu1OiGlJBEkuVKVpmLaDkBKFoFCskCYJu3dsQ6LoGxjEdDwMyyZKEgolj6bfQkQBfcNDmIUymRI0l+fRdAOV6Xz1gW9TKeiUPRspDdqNNsVilS8/8DAzk4ts374FmSVUq0WU1LE0CyklhmWSKEUmBM1GnXKtyN133czU9AxCaGRRTkFNsxSEWvOHNHMWh5IIJKg8S+W4bs6KyARhlFKtlXEcF9O0Mc38+ZNUcPDNt/jofXdjOS4PPfg4N+/bh2VrOWgXguZqizCKcR07p1mmGYYmSZIU07RZXlwhiRJeePZVuqo1dKm/SztVqcK2HFYWltCQpFHM8MAg3338MT714bsJkgDLzSnDIpPEUYpt6WzZOMr6zetxdYsnn36BrTu3oeug6RoqUehS0JPW0Y0ipUoV07LwSgV000BqOkJqKBRhFBFGIaapoWk6nbaf3xcppqVheWVUHKHreb3ojdYdqKuHIPH+kWf/5OKaoMq11Mtrh3Dx7tjy7r8iX5+RoQmFo8Nr+5/FcRTKkLgFE4OYJ7/zIOvHBkHrYmj9LjSrgmaZBGHKG4ePcNe+O5FSrQX7FJ1mK68pdUxQCY4IaawuYOkaghSpaSRIOq0IWyvy2NPfYO/Oe7k8eZm+WjeJHzI9PcXw+DgaCsexWF5aYbXZZn5hkaJtceXcWVLdYmSgn7PH3qRvYALb0el0VsmSvGRA6gapEERRhG6XwOhFFxK/OYsKm6RpBKYgyzSEYSMsgWM4eEaZVtzmrSPnaHUspqansLQywqly8813oOKUs+cuYds6g4OD+H7I3Nw8/b0DRHGA45gszMyQBXV0UuxikUwlRGFIkggGhjdQ0Yo89NjD3LprDwN9Q4xv3c6hw0f46Cc/weTlS5w4dZTjbx1jz503UekyyNqzPPP0K6wfLrNu/TimUFiaRSe00EiJFgM0J6IV1ilpA7jlfpQxhtO3k/rSNBXPxp87QxI1UGlEf9VlZLBKd5eF0ENSkWBIAxVq+XddJEipU/YSPvORrQSrDVynhB+tEjY1EnOA82cvYhllvvrtt7jjVz7OR+65l4XleUbGRhEYDA1sYGBkkJH167n59h1onbeQ4Xm6uqsEcYfQGGF052/y0GMHeP2V19myfgvjQ2PYhsmbbx2iVCrRakccfPM0ptXFhz/7u/SM7WBmZoqeLgOpViD16e7pwXALZDjoQkeJ9/cruTYbvHrhKh/I93vgvdtBeG+PU1ctmfpJWbt3gNl7EwK8+/d7l+urZl59tQ8+5/wluPsFtA+eufuvwHm8+mrix5zedzx5rmnX/aH94u7lJ7Xr9ZsbLWj96e/0g4C7n2/78//8JX53osZtQz3XrM9ErhqpqVyF7fWXX2d6ZomB/l76BvqxvRJSt4iDmA2jQ0gpKZWL+B2fJI2Ym53n/JVpOu0AJWB8pA/D0Ljr1j0Uii5JGDA3v8jp8xdxbJOu7hp+O+abj73Ib3/mI3z7sacZ6qtRrZTQdB0pJdMzs1QqFXw/QAiBadvMTM8QZwnfeOwZJgaHaDXamIbFxMQolm3Q1VXFMA0uXpwi0xTlcgkpJeVSicDvYNoWBdchiiNc1wYUtiFwTIOyV6DZrFOreGTKJEmjvK7IdRkdGSFKEvy2T6lcztUsXZfFhSUs06Jg2dRqVXQpCeOE3u5uTMMEpXAdByV0TMclzRQCiWnlYkamZVIqFvnKQz+gv7tKpVJCSIWm61i2jVK5EInKMiSgG5Jmu0W12o1pOeimQRDmNTqvv3EY13Z46bWD1KpluruK6FY+AWw2WhSLZcQaGNF0Hce18IMI23ZRSrJ+dJjuaokkDjBNA13TSbIMqQu2rx/FNCWdTps4itGFTsErQSYwDZPnXzvI6EAvftAGw6JaLlDwCgjLJuj4DAwNokQOSgxTB2nQaDSxbBsp84ivaVjoRsLi/BK262G4Np2OT1/V4+L5S0xs3UqrHWHZNppmoBkWupFT9CzXwTB1DMukXCmTaYJ/d+AMe7d1Uyu5/PMvPclvfOYj6JZO4/hxdo6NoxsWYRTxyA+fYMP4BJ5bIAoCSrUqVyaniJKErt4qQgdDc/NMnFL47RaGaUEGQinCwM+j12t0ySDoIKUkzd6pmRCkWYpl2WsUzVwkJcsyFApd10mTNBcgSRRx4LNx/ToazRX+7Etf5bab92KYRi5+lWakWUqn016zTtBRaYZa0z5KIh/LsXPfqTWfvDAIMA2bNE2BPNtk6gYJueWDYRgMjw5h2CamlgPRPFMs0XWdOAzRNBPdMNCkwPNcDNfFsh1WFlbYMD5MGkfolkN9pZH7gh05ztYN6xEyB0itViu3O6iv4HoFWq0mpmWjayZREGBZFlEU0dXVRaFQ4MzJcygEZ8+eo7unG4RYo3DbBH5ImqR86YGHGOqtUPSKJJkiSVOQktD3kZqObTsEgY9uGCwt1LnzQ7fl4ju64NiJM/TUKtiuhUCtmatXcF0X3/dZrTfQNA3D1EniJO/nlk29XufipWkef+Z5br/lJqQuUGseZ2SKSrkKSHRpIDTFrq2bcFwbp+AgdY32Uh3XsfA7HQpFF8fNs5cPPPANauUyExsnyJKIQsFBCskjr73G7ZsmOHX6IhcuXGZkeJDQD9YsDhRZmgeBmo0m33z0R4wP9yOFoN1s09VVy9kSQhLFILO8hlOaHyBz996J4Xs2vzS1yL33vj9zd604mbjm2EypNQExBWtB1Mhv8fahA8xeOsf6DaN0Oh0e+96jKL/F9KUr7LrpTiKlsf+VV+nv7eUHTz1Nn+hh06bNLC0tUnAcJqcuMzIyRJZlmLaDShJMfKIwADJ0TcPvdFBS0vZDjp89y32f/jDL8z7rxtaTJbkw1NDQMELkyqPnz59jbHQcv9Oht7ePo28fYnp6kjBL6e8pMdTXj2HqCJGRpilZorAti04YkyQpXbU+llZbVHvXkSQhWtYmidqoLMV0HLR3+r7I+3an4ZMKKFf7cZ2csVFf9HnjxAGGhvvxXI/NW/ZRrhQwDJNOp8P8/Bxnz56mXK1QrVSYn52hr8shjTsYtoWUAkNCodxDM8jZBAVcfvDic6wfG0NpuYVJ0fN46cWX+NQnP8no+g28+sp+Ll+6xPce+RK/93ufZHSwmzSuo2sZumETpgaoAFNqYGv4cUanDngFhNODdHvwTMm508dw9DpFu0BztYFjS4aGRvFcSRAsYlo6SmhAXiOdZhm64WAYFrWKh2lBHHbQpSRLEhaCHg4eOs+l6Saf+Oxv8YlPfYb1E+uYmZ5Gk4JNWzaztLTEE088RRT6hI1LONklSk6GkA5zizGGu4Fjl5cYHJlguL+PWrVKtVpGSMH+/fv52Mc+xtLSEtVKhb6+fi5PLhFFktPHT1CrGRRLkjMnjrKy6NPXM0Sh0kNKhrwODfL6ebufPLcTVwE/uL6wygdpNzJ3vj64u+avD3zdX4K7X0D7+YM7hSblNZm3v2m7Rj3yXYD3HpD1cwB3P8sK4R2bgatlm98bJ/mbgbvrFcy+J/z5s+/+Bve7kfbj+/i//uW/5n/eOfq+d/LO/6kuFCcPH+Xk2yfYvGkjw8NjGJbD4nILpEGSwaGDh1ldo1X6nYCeni4sE+IkYf3oMDft3s7ISDempWE7udx6nMQ89fwr3LZnO1s3r2NgqJ9WO6DklunvLjM6NsAtN22jWPIIQ5+3jp5Yo0xpHDt+htGREVKVew4V1jzb7tx3M55XZG5+ka9874d8aN8uHMcAcpGgUqlIseLhd3x0XdBqNrl4YYrB4X40TWKtyaA7jo2wLHTLQZoOhu2AbmBoBnESYdnmWnQ8n7hPTc5z+coCR46dobe3i2LRQzcMat1dZElKu9EiTfMI8le/9QMOHznD5rHxXHgCxfzcAv/mCw+xbUMvaZLgFgrYtsPFS5NcmZmlq1JCkVL0CgRBiGG7pEkCwNLSIoYusVyPL37tEXZs3Uyn45OplDTM2LhhAsPQuDI9w55d25idnqRSLtNuB1TKJVApQhP4nYB6vYHt2GiaxupKk3/9p19luKuLJ19+lTtu34Nt2ywuLuWALEuplot0Oi0qFY+iV+TK5WkOHz7Lwz96ju2b1nHLvl1Uu8qUKx66nctcLy0ukEoNr1hBkWfGpC6Jk+RdkQ3IiOOIYsmBOOPylZOMjA0BLolUlIsFZi9dZGx8jFgrYFsWYRSztLSC43koBMmaaIhpmwhNogT84Rtn+Ce/fRcLs3P8sy/+kP/jf/lvGRkbYPnZl9g1Nk4UJnTaPrbrsHv7TsIwouh5ZFmG4bqUShUq1RpKy5C65I39b3H06DEmxkfRDR1dMyDLkFqu6ommkJoJKiNNY7I0FwRS5KbEmsw93YQQqIy8fi5LaLfa6LqOJiRCk6RxwvjYCKZt4nkFtm3agGVa+cRQ5oAty1Is08KyLeIoFzRA5H6LqBQ/TImTlOXF5Zyu51gEnYTVegOVKZI4xTQtMi3B1HX8jk+UxLx15G2efPYF9uzagWGY70Z/TdOg3WytjQEZq80WdsEjjlL6u3pI4pw6bFguYZD7ffV11RibGMNxTRzbJFMZqVLYjkuaphimTtAJkeSCAWEUglJEYYjv+1SLOcWsXm8wODyYy3brGlLTyRLFcy+8zNYNGxjo7yVLFYaurdUoCUzTJAwivvaNhxkfGwYhWF5YoVypUl9ZwS0YbN26CaeQZ+iSOM6DJo0GYRDgFgp4pcKaf6VDEiaUSnltoWFI0iQl8CMKjktvXzdR1MFxXFbrdaIw4o3XD7G0uEylVqBU9EAp7DVRpM5KnSxN8MoeSkAch+hSZ9eO7QwODSCETqfdJAoj6vVVzswvsaFcZHion2q5hN+OOXPmAirNKJRygaMkTbBti5t2b8upsIZJuVoGIQnDiDTO0EyHLPRZWl7GrVbQbnT4+Bng7ng74dbbbr5q+1oG7zo19e8ce/XIqEjJlKCxusKRA6+yZaiMpadEYYc777yP2A+4eP4Ci62MTMCtt93GlfNTRHM6+27ZR5pEVEplpq9cptzTQ8G1mZ+fRWkWedI3QpLRXF2iVCyiaTpJFFGu9vDYW8+RYbJ9Yi/TVy5TqZZRmeLc+TPUl5bRTTMPCoZh/p1cbXD02BHGJrZwdvIyPV7G+EAfpqURhkFez2jZpHGKH8VcmZyiXO7GK3cTCwfTEKi4gSHTXKhManTanVwB1sxVijVLYJkmpqXwSjk12S57zMwHOHoV3+9QHaoiMsnRt4/Q3d2NaVmMjI4ipUaaKRYX5uipWgRhC6kJVBLSqi/RCsEpjdJqd9i2bQc9hV6OvH6cRAvYvm0TXtGjUPAoFMssRZNs6Oomakn+7C8f5vP37qNSCnCdjGYnIMHlz/7yOzz6wmluv7+HYye38Y/+8ZN89NfX0Teyjcyo4VW6aS+dwaaNpq8QrITIFIJgDp0YshaKBE3XSRCoKA+SdYKEOM5y78hwhTDMsN1u6h2Tg0cv8ScPHOSNo7PUA5N//vv/ijRu47oV1q9fh+s6PPbYDzh16iT7dm/BypaQ7SOoeB4pMyYXHTZv/W8Y3/5huocGUJnO+HAfcRzz13/9AAXPpaerlwMHDrBr1y6uXLmM4zhYlYiu3ipxVGLThps4dXKeLmcZGcPpw2/RNzyKUSmh8f6EwQcFd9fs9w7L4zpifNdbd/1z/GzdimszeT9ZFOaDtF+Cu19A+0Vk7t4BQX9bcPfe675Tf3dN+zmBu5+6Xa0NRO8Bm+qqa/1NM3fvv/R/3czo9dof/dv/yH09NgPl0vtJnkJAFPHEo49TsCzGRkfR7CKagjSFP/nywxw9cY7dW9ZTX1qhVi6RpDG2aZLGMXEY09VdzSWMLYllaKQpZIng4KGTjAwPcuzUJfbu2YpmSPx2XptmWILuHo+LVy5Sq1VYnFvB8yyiKKZarbK8tMoTLx5gcWGFLZvXEcV+ntUTGgsLy9gFm1pXmfvuugnDkLRbLbIszeu+mj5ammHokiAMqNQqDAwP8/aRU8zMLNDX28uBQ8foqnbR6tTxvCKmoaOUhcxiOgAAIABJREFUwrIMomAtOg7ESpCmAt/vcP7CLH4nZsPEGM+/cYDt60fRDJ1USKSWe9I5rkGWRgR+m6JToG9Nplrqiq6uKhXDZHJujuGBPuI4oeA5+H6Tvq5uIL9+uGYQjabyyKtuoEkdy3IJOj7PvHSAu2/Zg2loPPX8C3z70f3s27EZBGxYP4ZlG1RqPdTrLWxLh7TB0vzUGn3MpFIskkQBq8srnD4/ybmLM/RUS3z8w7eTWRpRkmLZBlG7Q9ju0OxkFCtFpCYJAp+u3hqVssveHRspV4vYrk2iQPkRaCYiCSFLyKTkC196iFt3bUHFPipNMG2bOE7WsrEGKosRGrRWZ1hZWcWQDqbjYasWR986zLqt22i0Yywn91LTBGhS4lg2YeBjmzZJHKMJCQr+6OAZ/vGv34JKBf/xT7/O8XPTzC81+OFzL/K53bsxdIs0zfC8An6nQRJF2IUiMRq2V8KwHF56+Q02btpMSgYIhoaHWL9hPVLX0XSTLOkwMz1NpVJGCYnUjPybIgVIhWFaZFnuJRoEPkKTxHGEFIooSjDWvNBywKfQNB0pBHESEccxlmURhhGOWwAUhpnXq6pMR9OMtXOY6FpunJys+WAamkYnSigWi3iuQxInaJaFoeXv/ML5i6wsr1KrVbEsG2JIggSvUOQrD32XheUV7r/nLpRSNFZXcVwXISVhx6dgWywtr2DYFjo6aZjw1FPP4ngOhWoZTSqkBlKHctXDsnRMy6TdbqFJgWFZSM0AmYNdSd6XZ+dnqdW6ckERz0VIQX25TpLEjI4NoWkSqQn0NeN7lMDUDA4fO8XI6CitRgvTEDRXFim5FkrPs2G33HwTlm1i2TauY/Bv/+QvuedDHyJJIuI0YGZ6hkqpgmlamLaBAHRDJ0liULny3+LCLAvzK1y5PM3g4AAdv8nAUBf79u6lu7eXZqMD5P52uibxiu5aLZZOqVym3ezw6uuHWLd+PSqTGK6BNHNBGSk0ojBmLenHzMwsVy5N8fqBo4yPjlEsuTw5PcctPSUyFdBqNTl69CyvHD7GSmOF7ds2YugGM1MzVGoVpNAIgrxGEQRCiVz0R5NkQiMJW7ieieHaSPV+s+Xrtp8B7p48M3ndmrufZoh+zXipFJnQMXXBsTdfRWtOI80C9VWfse17uHTxLEEUcM+vfA6vkte5nj1+ESfxECScPHGcV157ibvuuZczpy4yPXWFiYlRnHIuUBMFLfzmEoYUiCwhVSKvpTRMwuUIoxBjaQNoWYZpWhRKHkmaUPWKuKUiQRBQLJZ46sknGBsdZ93ERt4+dpjVziq7JrrpKTpkyDzrrjIyUsKghVMscfbMSUZHJ7BKRUyvmqv6dpaJ2k3iMEFqEtu20XWdJM2Io5BEpJBoCCLSJCYOTQ6/fZoYh/s/fD+Dg4O0U4kuJX19/bgFF69YQDd1VlZWESjKpTKTF49QLLq4tg1hgFRQDwSjG3Zz4vgxCsUCGRlj42OwYtCzrohrOxSrXaw2mkSpg9c8y+FDL/LMoUP87kdG0YyE0G/hlgbphA6YQ9y+cwBXS+nuqbCwcJIP7d2Ickaodg8Sd1YwOichuIwtNQwRk6QBXrkPJTJ03cDQLVQqsAyNMGyjaQbFYjfZ2rdUKAizXg6davDHX32D/ScDfuNzn+Tv/3e/x4c/9hnKtRpHDh2kWq7xzW99g7179jDQ30uUxGwajsiaJwhWzlCsTrDSNGnIMSq9+3j6lacQSUxnKeKP/sMf8NGP38/OXTtYXl7m5n23UvAKTM/McOrkKXbv2k2tWOWxx37E+JYNOMUubr7to5y7Mku5kGAZTVZXV1m/5U4U2c8V3LEWHHx3TnpV57neup/WbnwOfb0dfwnu/k60X4K7nw3ueDe6+P4Lv3Ps/1/A3b/6F3/AP9q3nsFK+Zq7SdcU3uI0ZWVuFlPA6PAgXrlKqlmsLizidwLuvv0mNo8PY1sWw/09+EFA0Sty+PgpkiSlWHBxPDtXy5udplFvAoJqtZsnnn2Fm/fuoOh6uAWLxcVFJqemiYOIUs1jtVGnu7uCQFJwS5w9f46x0RFsx8W2LG7asYXJ6QUG+mtImVcvmpaNULmJq2FqrNZXaXfaaEJg2Qa241Bwi8xcmQal8Mouk1OzlKtdTF6c4pHnXuGOvbv41uPPcPz0eW7btY7WahPHMvBbLYJOC1O3UBIylVGuVPnDL3yFIydP8+n77mVkeIiBoX6+9tiP2D0xjOU6xGu1QLquE8VtbMeENGX3tm0kqeLAoSPUuoq4ro0lLbbv3EyaplQqZVZWlnFsi5GhIUqlIpatcebsRfr7emm0c/86wzCQUifyYyBjx4YJCl6BY2+fZOvGMdrNkJNnL2DogpHRQer1OoGfcOnyDNWySxKtEvoNpGYRtEOiMKJQcBECBgaGScOIW27aRVd3ldQUaLqGpWkUCwXKxSJ//OVHuHXvVuIkplQtIXRJGoU59VIKDMsmUxA1WjQ7IZ5joLIU2ytSX6rTUyniWjqZyutelJJrWYcIwzJYmFvEslLSWNHdM4Bm2hx94yUGB/rR3TKmWyD2A3RN5NL+pRJ+J8B1HbIEwjC3YSBT3HPfVlSagdI4ePwM63bcxic//RmC2QuMFlwMw8ojxJ0OjqVhGAa65WIVPFptH8M0MTSTYqlMpuK17FxeLSGlBKGRxW0q1TJ+GCGljqbn1gYoyLIkr9MyTNI0BkRe66QbJEmKYVoopYjjCE3P6bmhHxH4IeaakXa2JqAiEGvF8SlplpKlck2B0qLT6iCkIIlTEBKUIokihGmiazqaUkRJgmlZSCXx2z5f+/b36HQ6zM3NMzY6zNzUHE/86FmGBwa4/ZabuPO2fVh2ntHKLQ3yPrAwO0en1aK3rxfLc2mvtvjiVx7k85/9NF2DPXkNGIooCIjjENPOlT7bHR/L0NeKmSVpClLLJeL9VofpqVnanSZDw0NALrY0PzfPwz94At/36e3uwnItwiDAshykpqFruVrr+nXjtNo+f/KVr3HPbXvJ4ij3ybI9JLlfJTL/3gVBi11bdnDu3HnSJCJJY0ZGR/D9CNM0USrBMk00KWm32mQoTN1ASUUcZPidkP7BXnQj9ymM44xzpy/w4v4D7Ny1NRfOMHSEUMzPzzEw0IMmLSzLprnaIohTbMdBmmuy6QhCPyRL8wzF6mqDOElprDYJOjFbt24iDDs88tZh7hvpxbBFnuVEp6vscfPubcRxQhxH/OiFV9mzYwuZygNBQkAURldVeiuEbjB95SK9fV2kmoZ2o7m7nwHuXp2rc/fdd7zvsBsGdyiU0NBFysGXnsNJG5S7hyj39LO82mJmdop7P3wvR45e4MsPfJnR4VFIdVSQIIRk2/ZtlCs1luor9PeOsnHdOKal4acZczOzvPbyY4wO9iPSCEgQuokmIFHwxqUTrLQD7th7P5VikXorZzO8/trLFCyXSlc3J04cp1QsE0cx1VqNxx59mCAIGV83wfaxHoqWJEwzTMvM/d50iWUYIHX6BsZwHYeVZgNhFTENSas+h0oiWo3VXFxqTSQpjnMxIjQNkWjoa3ZMFy/McfzENImWMDjUw49++H2SrIYmE3q6u1lZXiKKQpqtFgW3QKVapegVMJRPEreRQNhuIoXEVw5eZZCu7m5c18WyTBqNVQxDcPD5U5ydO8PY+BhHjhxldHQH4eQbfPmv/4LP//efoys+hlftQTd0/Fjnh0++xNRswF07a/QVurEKk2zeVmCith27dx26YbOyMotqniZszREFijhsosgIIgvL1vPnjjIcp8DiwgympaEQrCy3MC2LhcV5HMPl8lzM17/xFEtRjbs++Vv8+kdvIko0pucW2bxlK721MrpuIoVgauoKXrHI5s2bOfzKg8hkhZH+MvN1wVtHLzK46TZq3Rs5c+ktPNPi5l13sG7zCLph4HkeKMF/+OP/hN/x+djHPkYYhgwMDCKTIqVSF6ObBjl19gRJmtDTN8QzT3yF3m4babg4xU245cIvwd1a+yW4+wW0GwN3H4wmmKd280j09X9MP23bTz7v9cDd9Qo+rxUtYY1SeZ27WHukNPtxwen19nvnvNeue08m77pP+f7lem2tBOaa5cf7/vga7wi0iLXunu/3/mHwvef72R+H/NgrV6a5hyaGYfz4CKVQUqBJgSY1pk9dIIwC+gdHwHBJFCASZJoR+R1mZub4468/hoWgv6+HpXqDQtHl9LmL7NuxlXJ3idWlFXTN4Js/eImP3H0rmmYwM7fI5o3j/Pk3vstnP34HujSwDJuZ2SUGB/oxjVyNUmWSMIhBZPT09KEbGmdOn+Px519hz9ZtrCwvsm5iBCkybCMHDYtLS4RRhFso0FqpU3QcUpXgeiWCMKbthziuheVaSKkoei5ZFGIYBp/+2F0sLy/zuU/dz3BvF/Ya1TEVkmK5mr9v0yKKEwzDotVosHV8iJnZBru3jDE9fRFNh4/cfSfnzk4ydXmO8cFBJi9fptpVRtMsNGnntC9d5+TJC9x6yy4mp+fRNAPbtnjz4GsMDfSQSTB0E9ty+MsHHmT7pnGiBIZH1iF1gWsVMCwbtfYj/u7jT1LUi3T31tBNqFRygZRyscDRE6f5yN23gaahFxzmp6d57a232bxuAtcrUqn1YRW7cEoVDNchTSNWV1cpVz2qpQrVWpm5hWnIUoRSoATtdsD03CK7N45RKFgYho6uWyzOrxJ2ErxigZnpOQqui4HOtx99iQNHj7Fjx2b8KMPUbbZsmsB2bFpBiFMo5r9dKdBMgyxTNJdW6OvvQWoFhG2hMEnqczQ6PqVyF5ZVo7HSRrfWlMPILSpA5tkyLR8ALcvi/375EB/a1ouua8RxxJHZlN/59fv5y7/6Iv/bPfdiWwZZGhNFIQXXZaXewg8yat1DIE0UAn+1Td/QAGgKlQSYEoRu5e9FCCBF6jaaboGSCKkjlCDNQuSaEpPUcjPqLM2Nxh3bBjKiOMQwXVTkY5AhlSSKJa5dwA+aLMys4jcj0iTCMDQazUauCtkKMHSLualFnnr6JarlMqWKS5zGEEcIpfgvf/VVdm7bga1b6Gv+eaZhIZQgI0ZIjY3jE3RVK+zZuxMhU9yCx2qjyeZtm1ltLKMbOqZp0Go30Q0t/zZl4BYLeOUiQRTkmaBE8eJrB7nrjtsx9AzXMVhZXMJ2XDRp5M8oDFqNFZIow/cjnIJNHMTYtommCVotn56ePnqG+mnWG0xdnuLQW0cZGhxgsGuIKE4YGOgjSmNsz0EpxepSC6UC+vq7aDYTKiWHW3buJAwzegYGEYaJ0HUyEZKGGVGng2mApucBqKHhPrxSkdqafYkUWZ5FReB3QjQhCYL2GjAHr1ggDH1GxwZYnJ1ndnIehYFAsX7jGNu3bkSkEm2tjjzLFK5bIPBDdNsliROefn4/pqkzODRAHAQIpYijEJXkfpyLC8v09fRScF1GR3vp668gNbBNhwHh01v20IXD0lKDx55/lU99/G68sodl5IGs3du2EqcZCoGuSzIV47oWApCaTqxC/KUGYdSm1FVF07ycbv2eAeq6I8r12FlXLbN2ie07t6FEPvZma5Dy6nH0aoXsd/5WP96IIMMg4uArr2AJg1hL6BnrY/rQK+hmGV8r0D+wkb6uEXq7B3jou9+kv1ClUinTaLRYXFxifHyclIhDh9+ktdrm2JHDbN+2g/GxLQi5Spr6SKXjFp08SJhqvHH2OFPLPnfe8hEWFufoHxhi8so0N996J5k0CPyA4eExTDe3p1BpRqvZZPPWCYa7q1haTCYy0jQ3c0iiBKkEpOQGD1kAdhGn1ItlDxMnHTQaOLpDwXMxTBMhZB4wyhRhGCBUltfm6pJO6FOr1JhqJ4RBzNDABrZs3c34SA+WpWOYEtNc89JUiqmLF6iUypw/fRSTZYhb6LaLSlM6UYh0ejh16iLlcgXTdYmjhNnpWXp7ehkYHuDpHzzDpm0j1MpFLJHw8pFJHv7+8+wYrXLg8GF+5b69hGmB//33H+See29jauYst960nkKXRzOWpKmHVa7S0UcpuV2szr1C0llCE93EaQvTKaGkgSYlJTMmzirMLElE2qFYMvGTEf7628ep9dzMSnOR//PfvUCpIOkdugOrtIG//9v/gNt3beHc5SXWrRshDOp4luT426fZsHkd333kcfbu2kBPOWTx0mNQP8tQXy+zLR+n+27u/8Q/RNhFShWLdaMbiRKJtARDAyO8+sYr9PaPMr3Q4OP3f4433nwbzTDo6+/GcAy8WoWmX6fZrDMxtg5Ns4lDn72338P09DIjNYtDJ46wbtsWLK1MRoIiJsPKA3TvkVW5VnLoJ4uWvOOhdz0g95N8ot/b3qFv/u3aL8Hd34n2i7RCeEcM5YNu+wlHXD9zd512o1k0rtMJbtSq4EaueaPt+tGa92+9LvBci75eE6V537l+9kP94f/z7/moEawZ3V6VsZMpQhloqeDx7/2QMFqmWu1FNyz8TkCSJFiWgVLguDbdXVVKpsErh0+wY/06vv/cS9y+bzubJgbo+G2EyLMwq40Wt+zajl2wsSyb1944SrXisWfLBlZWVnj6hdfZODHGpk0TmJZOq9XGNI08A1Nwc9NpMxedKFeKDPd2853Hn+XWvTvp6amxML/IwuIKXdVulEpI0xTT1LBNgcpiCtUuOi2f0A858tYJxtf1EUUhaZZPfApuBcOCJI4oVYsEfhuhCRzLIoxSQCdLNZ577iATG8fR1jzXkjCkr7ebUydmsEyDDZsmsL0CVsFCKkF/fw+mqWN7OcCMw5j6coOLFy6SJClbt2xmZm6ZR556iYX5RbaOjdA3UKNUKaGZNkmaf9hv2rmVcq1Eqx0yfXmedrtFpeLmWRkgDEL2bNuMVfGwXIM4CknTlMWFFQqVEnt2baVQcVFS0W41qVXLTIwN4XgFdKcAukUWZsRJCiojDNrYrkWcQsErMTe7gOeVMAmpLy5gWzqmYxInEV7Ro1jyCAIf23ZAgSkiWp0GUlNolk2UZviNBrfu2UKrXadWKaJJiKMOmlSEfgvDENSXFymVKwRBBAiKpSLN1QZCdnBkBV3Bpck3qVQnkJrDMy8c5Jn9B7ll7040aWLoFpkC0zZyOtJSncNHTvCfXnmBT+weRkiwpOS1SyEfvmMPf/HAw/xPO7fgFUv4fgclwLRtdMOmMjiMV64ipIbUFFHYQeo6tmWByAiDAE03ciEcASDRtB8bw4o1KfIsy9D0PMPXbLSwbDvvbyIXTFEqI0tzoRwlJEmWoDJFmmSszC9hFVzanSbfe/RpNkys46++8SBvHDrF5NQs+27ZQyYy3j5+HJHq7Lt5L7aTy6BrmoHjFKg3Gtx+y01oOui6zuXLVyiWPOoruaG5ZkjSJMZ2TQaH+lBSgZK0Wx1sy6ZYdCmXi8hM0KjXKXlFZienqFbL+EGIaZhkqcpr/lJwCi4funVfTpnU8xrmJIKZ6Rm6e/L+qVRK0S1hWS6HDx+jq1pFNzU0TWNhbpHn979G2SuiGy7fe/SHbNu0kb6ePqq1Lr73o8f51U/cj6ZLHMchixWO61BfaGAaOjNTs5w+eZnB3hJZluBVPJAK3bXQBLSbTTThoGk2YZximTqKjDhOUEoRZRqG5WBauVfm6soyQuhomsR1bZI4wTQt0kRD10yWFxv88Z9/hbtuuZX9rx9koL8Xw9AJg9xzbmmxjuPYhFGIZRkEYYCuG3Q6HbZt3sjoyDBkWa5yqkkaqy2CdkacCDQ9Y3W1iaHn9ZtxnCKFJEkVJUPhOjaZivGKLju2rMdybYQAwynkNhtAfWmBF196hU0b1wOKjt/J6ZlKoBk6lnSYnp5kYGiQDDNH7O8ZV24I3F3V2kHAzb/+G9fddj3mzNVr3ju2GkKx/7lnaC3MsG3bDtJwnuVGh81bP8Y//Sd/wOf+3q9y6tRpBgcHGLEnKJQLOK5LsVwlE4KXXn2e1mqDTRs309c/QLPZYHZmhoHhQerL81QrNbIkQmUpaZLSanc4NnmB9X2bWT++hbdPHqdSqVLyXDrtVUxNkYQRjmvTbDaIQx9DCq5Mz3Py5GVOvn2Mvl6TSjmv44vjCNOyQSikzANLtusSphq214XSLCxdkoarRH4DKQSatuZhqUmUyoMCWZYSBBGK/HuiSYcjZy7TaQfMzs4yODiMZZnYboHF+YVccKztc+HiRTat34JGgt9cwtYCLEMjSRIkYBcKuLVRegYmUCrDNE3q9TrlciUfGwsFdu7czRe++CXu+5W7eOmpA1hmnT27u9k2AffftZMwSUjiNp//1T24+ip33zIOekTHXyFNBcgi/aP7cIrDaEmdrHWZTnMJy9TI0hBNy+uFBYJ6U+fA29N8+5HnuWnPDjSR0JR9vPH2eVqZjutVaUUmG3Z+gpENt3D89EVOnjrOTfu2kYarlMsFHMfBdB1G1k9w5sxFbK2J1j5GY/oAeuccdqlGkPayGo0Smj10YkWl3IthWvzwR48zOz/J0HAf+/e/zOTUImka8fv/9F9Q6fZ49Pvf4Zlnn+Kzv/ZrpFnGxQtn6evuol5f5dWXX6VU9HjmxdfpG16H7/tMnT9AozlPudJFX/9G0jXAJpXxE/rQ9WaXP3lC+0GzdNec4edCHPvFgbsbJIj/suXtp+WUrr+/vCEEJNbqSMR1lr/Jf5Eiu0qS+acJoNxoy7IbVnnO7+Bq5a6fvic39k5/2n5X5/Dy5XrXzjKVU7yuCpF+0HfzyHcepe89zJt340NSQ2UZC9PzdIKA0eEhTp27xPMvvYEfBLhuLuKRZRmNZosoitAkbBrv5+iJ0/ze7/w9HNchTTNcx8JxLGYXlzl57jI/eObFXEQlTugEAWNjI1QqRQYG+rBMgygMabVbNJoN2u0OmqZjrtWYdTo+585eYHW1gaZLytUio4PdDAz1EsURff297D90hFazTZamWJZBq9lAkNJsNsiSGMsymbwyzZvHT3Px0hSaruEUCnlGwTCIogjHddA1jWajiW2ZJGnC8VPnaLV9pNDwvAJpkqvQxVGM4xao15tkWZZHWnWDKIyZmZymd6CHYskDxFpdkI5byCce6zeMMzIyxKVLk3R111hYbfL2+SvUVxtoUlsDWeS1U0auhthq+8zOLLCwuMxD33+SNAlJ0yRXCrQsLl+6nJsrGxqa/o5AR8bs9DwIUFKQZSm1WhmFIokj4iRCSo2F+SWEgksXL3Px/GV0w0STBiiNKIr5zw8+gq4b2LaN47ggcjphrauKV/TwQx+vVCAMAxr1OlKT1GoVBgb7MU2DL3/jEdIsZWximMHBPpbXKENC5t8N23XwOwGVaoUkSTA0HaXEWhDBo9looQu4cuk85VqNWncfs/Mr7D98isvzK8RRTJpmpKnKKXpIskxx/uwMf3Z6FrOjeOqZw3RVB/g33zrAjq3j/OlffYP/cfcWpGGiazkFslAsInWTKMnIUGQSMpWiVJrTfk0DIUFmCs8romkGum4gpIamSbIsy6l7a+qDWZLllMMkIQwCiqXiu/04p9WwNonT8P2AyQuX0YROECVcujRJo9FECEmlUubzv/ZpFhYW+F//wf/AP/y93+W3fuPXCMMIgaS3p4fRiX40I8ZyBYajEUY+qYJypUwYRVimSZzECBSddotyuYgmBVmqMC0LyzHJVIKUgqefeo4rV6aZnp1DaIKMlLPnzvPlhx4GpXC9Alma4TgOAkEUJ9imQ8HNxUE0XSINSRzH+J0OTsHl7ZOn86xqBlmc4fs+jdUG+/btwbKtd0V0ypUKWZJx8K3DTF6eouP7dDo+tVoV07T4/Kc+QZal6JqOoRtkaYofdOgf7KXT6SA0jfn5JU6fPUsYhbl1iKET+hFpHFMouJw8foqnn3k+V51FIYVEZQq/4+MHEc8+t39NqCVXprVtizTLxWiCIGRpaYk4Snj8iadxbJt7b92H1GBxsc7RYyeYnprlwoWLfPf7j/HnX30Q3TBQa9/tTruDFFCplMjIMA2d1159jaXFRYSCWq3GFx54kP/ylQcpFbtorQYsLTTJYonf6RBFMYVCgTSIQYHK8nEizRJ0TRJHCR2/ndf4SEG5WuajH76TIPDJVIbtOPmIsxZ4UEoRJykCcgVX/vbFAgXb5psPfeeadTcyTl3P9y5JE7q7uti6ZSualrEwdZl1G7dz9sIVbrlpD1EcE8cxL768H6/kkGUZr7/+KrquU/Q8PvHxz2Ab1lqZQUJf/wBj4xPESYTjdtHqpMRpRBxGpFmK53l4roMvfcIgYHRkHMe2CQKfM2dOUvBcmq0mBw+8QRzHvHXoAGma8v+y997Bkl33nd/nnHPz7dz9cpz3JgOYGYRBGoIAE0AqLkVqS1ptaXdtecv7h7fKdvmP/ce1Wm2tqFWwLcoryUsFUkxigBgACgBBgBSR8wxmMIPB5Pxi55uD/7gPkQNgQEq27OKp6he6b+jbfc+953e+KUyGDAY9bt53C2PjoyRpiFRyI/C8MPzZOCiiKEY3LC6cv0AUByAKdFjTFKZpQA5RFG5ED6X4vo9m6Ji2U3zXSUq7s0a/12HXNdfyyU/8KtMzM1iWhRKKsbFxfD9AN0xGWmM4rs35cydpNqsbkVIZUgrSJKHb7SCVRqfbxbJtVpaWmRifoFypYFkW6cZ5++sf/5f8y//+32LoVX7/9z9NEgmSOEPLBZZRwzbKxEFI1S2hU0yY2LaJadqYVplUOHiDNU6deoFhv41laAy9Dpqmb2iJLZDQmhBs2TFCL4jxk4SuZ/KlL9/DEy+c4CvffhCr1OATv/zLnLq0yuT8FHHm8c9+7Rd5+dh+/vY7D3HqxDKT44uU3BYCjZKZsnRuP/HwNLbuU3IsOoMc05nkhls+iu1WKVdrCCHod7tMTU5w50c+zGc/91mmp8dZuXCJT//Bp4j8NitLZ/C9Nr/08Z/hxLGX8QcDJidGyUnRhGJuZpqx0Ra/8LE7GZmY45bbP4pM/Z2JAAAgAElEQVRhV9myuMDTjz1EFvkbRoESJd585r+RLSffEofwTky67O0yD66gvdcx8f/T7afI3XtoSRL/++KvK798vxfU7R3jA36Mc1BeQdHy4+rf3m65V9s7uWpe/lCu7DO9PHL3zrOZP7rft0f43gm5+63f/BSfGLfZOzN+2dcVOiqPeeXoS0yNj1GrT9JqNTl/YYVGrYqhawhSpGbgOBZKCpqNGmvr62i6YnFxhjiOiYMI34t4+fhJslxyy803MFots97v89yBI3zsw7eztrxCr9dFSsXc9CRSkwiZ4TgF7andbmMahaV9nuc8e+Bltm/bVNjL6xozU+PohiSOfbq9Ljddt4swDMmJi5ukpTAMQZaG5FlKlhWufNPj42yan8N2SqytrZJlKf3BgEqlTL83IM9yLMvGdlwMw+L4qfMsLG5CN3VMHSwFpm6AEPQGIUGSs+uqOVpjDZShEcYR9WYNKQt9VBj5oASGZZBngk9/5svcdP1OyCUPPvw44w2XW27Yye7tC7RGm5y/eJFqrUquJEoVx66bJmme4rpl5qZmWb54iampMpbtMuz5xEHEyvISttJxHRPTNOi0u4yOj2NrFnbJQikIh0PC3oBKo0oUeUhSRJLx51/4GvNjTZCKw0dPsXXzZlaW1vnS3zzEjq3zTLbqjE62EMrGKlUxLIf2eps0TsilwLYN2u0Or8bfVOp1BgMPwy7iDs6fX+LWm29At3SkLgrrfF0nCnOE1LCcEtGGPmzl4hKGaaKbdoF4IckzRb97DmV6aPokttvArZR58Imn+cCNV7NtyyaQOYicQX+I0gwEGusrba65eSc1S2Ot3eGq3dtx6hPotuSJZ1/kji2b8fyELA1xSyXCJMV2XYRmQB5BlqJrOp4/pFRxEQgG/R6moZOLwqZbilcnYYprhWEYr10zi8GyQMp8A9Ur+maSpkhZGLJIJclTiOOUe/7mXoIgZHZhHqSkNdYqUDGV86Uvf5vnXzzK5oUJGs0KhqYYdHoYmsawP6RUsfCDPpZVmGYYmo7QC3qrEII0KQZ0tVqtyGrLC62epmykBEROmmZIqbGytE6z1mB+0yyOa7K+vsLk9BTbtixglx0c1yElR6LI8pzPf+lujhw5xpbFLUgtL/Lh8rSY2JOCJI7ZNDdPHEQ88/QBJkYnMB21QeWVhKGHkDlJlNDv+WzdsplWo4Zu2Dzx/DOMNEpMTU3w8svH6Kx1CcOA+x/+PjNTI1SqDoatuHD2IvVmGUHO+MQsUeyzuHUR13Xprff5rU/9KfNTNRzXYnZ+gTMXzlCvu8RhhBAU35tSDDtDTpw8xfj4KEJK7EoZmcHBgwep1yuFyYpuoJsaFy6epVYvMz7RICdhYmSGXdfsxLRMLMviuj272LY4TRRFZBlIoVMq1fD6bQbeEMMyib2AOApIopRS2cWPhnzgjlu47trteF2Pz37lm3Q7HbZumUNISblS5bOPP8G2sr0RVq0xHPoYlk6v69FpDxlplUnjqDj/lAJNQ9OKzzpNU6I4RtcMosQj8kLWO6s0Rmoozaaghb37veidbndrgz43/fI/ffsF3mZTxTi1+C/f+JnFPieOvMRErQximXMvH+TSYILmxDiNSkR7GDM1McU9993PNZu2c/b0Kfbs2sMrR49x4vgxFjZtwrVsPM+jUi+cTQ8d2E9MTMVt0e/1qNckxDHahub14NkT7Bq9DmWYNGt1wjAiSmI2LWxBMy0Mw6HaaNIfesRxwurKKjdct5fIjyiXQyoWyASskkuSJuTkZHmGppsFOmaaoJfJpQWaQCFRWUwa90ijuGDIWDZZmhZZjVnRV8kllm0WY6lc48TFLocPH6ZSqVNySyhN4ntRgdpKga6ZaErDckwunDmEJgJkOkA3FEIU7q7KNIlVFafSxLYsLN3k0Ud/yKaFBTRN5/jxE5w9c5bp2Rn27X4f266b4d7vfIdL5y9x201bcc31olg1M3rDLhmSMNELJ1EEWWYzObuTUE0Qhqfprj+P7ncxdYs4C9G1It8zidMilsWPyUSD2cW9pLni6JlVnvyh4vq9H+Oun/81Dj19grHWItMLm5BJwNryJRYXNzMysZkbbroR0yqT5yl3f/0L2KZPeuExFkd9jHwJ2zFY7klqs3exOiwTCJN6tc7apVWGfpczZ0/j+QF/9fm/pt/zOPL8Izz+dz8kTtf56B3bOXvuFCvL5xGxT8W2+b3f+W323XYLWZrSXe/je0MOHz7E5ukSidUAzeTgs09y+sxJbti1GcOZwqzUQeSoVJJddgCaX6Ej5Zvpzf/QkQjvsPZ7XuOntMx/gFbQMt/pyyj0ca9bFf9oUVYIs998Mr363OWa4HKzC+KKHtkb8m5yiov/O+naXuUQX265y9nDXk4nd7n+9lZd3+WO5Y0h5q+yp98NYH/tc77M5/J23fmtjytZRgrB5z/7RT45XaZZKhXr5XlB69tw5oOcPI5ZvbRKlmlMzEyTGxKRZszOTVKpVjAMg27PY/XiEqQ5K2td/DBG5IL5mSmOHz/F0tIq3/zuY+y5egdTM6PUq+XCAh6QUcDRE8epugbffuhJWtUmp04tMzM9QaVWJs8ySCUrK22+dO997N21g/Zah2qtztT0BF+/90Gu37UTkeYYmkJqJnkuKLkOSZJSqVSLgbTMMGxJnORIZTLsdkiyCNs2+fI9j7EwWqff7rBpYQpBhmWYZNJCKh3bMiEOCIY9vCRk25YdhcgbD9cuE+YB/aGHWyrz8tHjfPv7P2DntgWUrqFrGpZhoYSOJMMfRixf6lCpl+h12yhpsnfPNYRehmlp7Nq9DcMyqbXq1JpVNE3jyRcOMDM5Q6VUhTQmHAS8cugIaZhy+uIFZhenmJgcpVGvI5WJ6dhEgcfkaB3dFJy9dBFDVSm7FUg7xBksX1xltDmCaVkkWcKF06tMTc/glGyiMOSqrQukKmPlwhBTWZRKGtW6zdMvHuKW66+i2axhaDp//H99nnjoMTkxijI0DMvCVBXa6wPqjRF6PY84gzwussHCYYDtOFy9cytoAbatkUURmhBkoY9mF7l6Qkh6vR5O1aTSaGJpRYBx4HcgHVAqN2h3L6GpGrXWNMPBAMOQfOD6LYzULAxDEfghQgiefvogutKoVsv82elL/OLNs0zPNNhzzTx/8PXH+eitu/jzL32L3/2ln8H3h9RbDeIoIhWSnELnkgYDlOWQoyGEjmHZxeAcnTgOCROvQPsQ5Fle5PsphZRFvIdSqvDSFEWRkymJeHXmPivs+VdPXKTXGVCpVBG6QDNyNs8tcGlphWFvwOzsJEnmY5dcBoMhc/MT3H7HXkqVEroSJElCmuX83h9+hjvetw/dMFGGjjIMUJKh72FInSiKeeXocaIwojZexY9CkjTGMS0s0yLPEyCnvbqOZVuQw4VzF3lm/4ucOX2OqalxSiWHlXPnadarrK2tU6vWEFKRkSKVYNeuHWzdsgnDLnIoozAuEE1R0EOVUASez8ryKs++eIDZyQkq5TL+YEB7dZ1KpYluWiSZoFyuMhgMqNQrGCSUbIMb9t7AwPfQLI1EJpiaydToBFkmqY02ib2EUtlBKRPLKuG6DnGW4ZYtpCjQsdtuuJ6xqQnSBLIsZcvmaTSVY2oGlqkz6A/IkhinUSYKfLx2wNT4BHmWIo2UcqWMYzcZDPpIM8dbW2fT7Axlt0S1UifwE5ZXChdRXTe576EfMjs3Q61RwxA6f/YXX+HA/iNcfc0udCMnzTKUUpi2ieXYVJolhKYolyvEUYJpmDiOxftvu4nde64uBsCJpNPu8gf33sO+iRHqzTpnji2xstLFLZc5e/Y8X/j2A8yMNXFcG13XUcJg0EmQIi0iHEyDDEjSDEOB5tQoGSZZHGNWyogs/9F7zGWE6JddZuO/ew6fZde+Wy5zd3qb9obtCynI8wxQ5FlOZ20dXddwSzbt84chifjwr/133H3/g7z/1puZGN3CH/3Jn/Cx6z/KM089y9hIndXVVVqtMcIopFyvcubUSeYW5kGB3x9y4fxZdt14K9WSTa1qEXQv0V65hGW7BRVM77Bz281kusvpU6+wtLLMzqt2FyjxoL9hliSZmp6hVq4xOzPHffd9i5deeYVcGjTKFu21JeqVGrpW3M2zLCNJimImiWKGSYLSXZqtaUKvTzRcKkyh8rzIqTSM18YqUiqiLMXUdfxByksHX8Z1ZwiCM+y9/kPMLWzBizyq1QbBsIvUdCy7hCKhs7ZEv9fD1hMcWyBkTpZJciEgSyE3OPTKBSYb4xw98hKNZgukhu0WdOY0SZmdnePkiZOUXIff+B9/HYdNDDtDfvauEQzVJ8t08jylWqmQpwmWKTBVDlHKea9CZI2jZIZqn0bPdSqtBmvtDkrZKCMn8gPIdTpRmbPeNE+/eIG/+vL3OHLS49/8z5+i2qwxOdlidqLFBz58B07JYX7rJLruMD+/hSd/8AKjlTGW/dMYKNbOn+PG7S3itedJ40s0jZhaZZJh1EQfu53R+Ztwaw2qtTphEPM7v/e73HXXh7jUXuPP//IrnH3+UWqiyx23uHziI5v5hY9OM7/lFl7Y/zC/9ol9DC8dYK0jOH0RvvrNr2OZLv31Nrfe8n6mZxc5fbHDF//rH7Fv360s7LyWktdGr9Z54fHvs3XPHSTCQpcBhRVS/qZH8fOtPewdO89lxug/OtZ9s77udYOlN3brLHtdr/fq85d77q37f6/tp8XdP0C7Es3dq1/k280EXO61d0LsBD8eavf6tt+87ytZ9ifZ35WHkf946721uLuS5X7S9lu/+Sn++XyDuuu+/t7e8MHKjRtKMujx7LMvMD81ga6JgtqD5Pz5i7RGmpw/f5E/+fI3+OBN1/LU/gNYusmFpTVePnmWfTft4ekXDvLkgSPcte8GRkeaOBsauzCM+PTnvsbi1ASbZmcYnxhlZnyMpw+8RLNWZXHzDN5wwHBDa6cbOvv27sayLQxTx9RNNMNg77XXkKcZZ89dJI1TllfbKCUQIsOyLeI4pdvtvn5xS+Evv/ZN2utDFmbnaHcGvHL8ErfesJNarYznDVG6xnAYbMzIFqLuKC6ockmaIoVBEPhcvHSBcqmOZTkYyiLyU+q1OjfuuhqnXCr0S0rRXltDKcG5sxcgh7PnLzE5PVI4OTol8jRjZXmVNCsMJNI0RRk6aZLhDQZMjo+QxBnDQcBw0OGVY6epl8vFYFBXlCsuvjegt75a2OtTIERJHIOAcqXEcBDjOA5JPEQzLKSQaIaGNxzw0COP8eBjz7BnxyK9bhelaUV8gGNz4MAJnnnxKHe8/1pyMm6+bg/e0MOxbbqdLtsX5tm2fRGkYDAYYNkmItfRNEkUBSwtLfON+3/AjXu2YrsOnW6XwA/oDwaUyjb+0EdXOoEfkSUpdskl36BzJ3GEoRdxAl6nSy5lgYR6PuQp/X6f0dFphl6EbdsoJVlbXSEIAoQw+PRn72ZxeooHH3mW1bU1Hg3h337yWqQQuK7DNx59icnxcdq9iA83y2ii0J2EQUjZdVC6SalSLejAho7QLaQozEekeBVhS7Fdq6BLZaIYG+UbgeRSEoVhEV0gC61MGAQIQeGYmRZU2yiMEEJw/3cfxjBNRqfGieMYJSBLYGpykrGJsYKySmGLbxgG5UoZTS/CxzvrHXRd5/zZS7Q7XXZs24rSRKHbQxTrbDjHCiFoterUG3Uy8iI2wygiH6IwQuk6QojCKt8w0JSkXq8ThTGObeM6Jm7JwbYcpKao1GoFwiIFURgipNygHPLacb9Oxd/Ql1A4e9ZqNWqlEsPhAKEEZdchyzIsx2XoD4vA8jBC0xWWZbC6vMLW7VtACNxSCV3XMS2dVnOEJIoREpyqg98fEkQhml7EQXz97u8wPT3Gl+++mxuv212gl1JDU6ApyaDfIwg8SmWXLJP0egNM08RxXZI8pVFvcu/ffo/11TW2bFvciPmI8IYDGq06OTmVUoWLy0tIKfGGQ9bWVvnrb32X2YlRWiMtHnj4h+y9djeGoUMGD/3wMSbHR9h59XaGww5KqdfuAaVSCd0sjE667ddzJg29uB4FQYCmF9eI1eUVnjh/jn/1/hsJo5hatU673aFUKzE9NcH1V21ldKyFYeoIKUmijO/c9wNeOXWcTXNT5GTourZBF45Amogspj/o49QqhfHHj9PecD+xVUpr17U/5mY2XGA3kHDHsZiYGKffXqd76SQSndrMDYyNb+XcybM898x+ykEZw9KplGtoMufUyePohs2hlw6iaTpbt2wvZCO6jpKCo0ePsP2qq7lw+iQrS6cpWWDpBpko+vQzxw/TKk2x3o+45qqrUbpFGBVI6PGXjzA+Mc3a+hqNZhNLN/nO336bTfOLCE1x/txRrr9mKxNjo2SJj5IFzU4qWUxyZhRSALuMVapjmmWGgx6OHhP5fZSuFYZmShWGcWlaSGM2grrzDPwgpN3tMjI5y0uHT7De7XL11dfQWe9w9vRJxicmUZrGmVMnaTYbeJ6PbWTEUR+RJ4VWOImRUqI0m0Fi0u70mJyeot5s0B30qVYr9PsDavU6+/e/wI4dOzhy5AjNeZPnn/wB1+2e4ta9o2hZjukaCAntzjqu4xDFEbqwOXHsLLm1wOKOvSRRRm/5AGnq4ftr6Dr0B22eeeQ881sMDFfR7o3y7/7XP2VqchN3ffSXGQxi7vrZXyBLAnbvugbXtXnyyScYHWkxNtMgDAvd/PTsFH1vQLU0yvzECFm8zurFp9HVKo2KQ4pgpSe4sBZzfjlidvNVLC+tADlra20OHz7Mx37mYyRJyuc+85d8/K5r+eTH38em+QY6CY2RMqcu+Ox/4SB3fvB9XLV9nqNnVjly6hS2U+Wmm27ie/c9wOT0NLVmg5HREW684VqCKGZtfZ0f3PtlFncucOb4Sa659U6kbgER4jLOtFfulvlaj7lMH9rYVv6jz72xn11uvbcWfJd77t32/27tp8XdP0D7+4lCyH/ktf9vFHc/+r4v1/7/Vtz9h9/8HT650GKiVnvT84mQKHJUniLCiBeeeI4nn36CufExDh45Tr/XZ3Jmin53yHDo0V5fZ2KsRdXUKZdNFmZn+Nw3H+D6nTv44O230u6soUuNOI6p10qkWULgbwx2heLgkRNs2bKFyZkpLNuiNdJgtFFldn6SNA3JSVCqCOU0TQfD0AsNV3eAUhpKabTX2ly4uEy9WkUzDL5y73e5de8eNE3SbvdIk5QsBSm1DY1cmamREU6f6yBExtzMJB9637WkeYIX+ERxQqc7oNFoYOkGSRyTpBnSsFGWi6ErhNDQDb0IpPUzgl7If/7Dz7N5cpwjLx/F0KFSb6EpjYsXLxCGAaal0ay3KFcqzMxOkuWFPbff62MYGt964HtMtOpYho7p2iDERgC2Rq/XJ88EDz78BFddtQlNaDzy2LPsvf4aSlUb21aYhsTRwTIN4iggjFNKjWbhhSDhxQPH8YOIUsNBigLleeypZ9i2bR5JykfefzOaITEsnZJbKTR2us7Bw0e5ZuscQqSkaYbrOqQ5WJZFTsby6hJKCQxLI4oCnJLN7//hX7B7+zySDMvUGK2XqTXKRV9UgnKtUsxH5hqGZiKVQRjGWG6ZXmeNkmORJBGGoaEEpEGCIRVCd+n2+tTrdZbOHmGstYksM9BsA8vQ6XXbWIbByOgkKys+Dz92kIppMT06ytz0CFPXjNMqF86vF85fwLdm+eoXv8IPnj3Iv/jAB9A1nTgICiRNQLfvYZUqCGWSCYXINQSSPGMDSZAImRd/54rYl3zqdz/D+EgFx7UwDAPD3MgRA2SekqVpgUzmEomEXKIrDd8P2H71NqYW5kFpSASDTp9HH3uSnTu2kwNhXCDNOWJDm5gVZh6mAYBhFlqw66/fg2EZKCUJ/QRdtyATSARZHiEl+IGH7ZiIVCGFLLSAiMIxMQ4B0DeyKZXSEDJjfn6OudlpBn2PwA+wyiWEpiF0jSRLybKcpUtLlCtllJIoqdB0nSzLNkKTU6IgRCgJuSCKIuI44k8+9yV+7q6PYNoaw2EfyzbRDJ0o9Bn0+xx68SXKZRvD0GjUW7TXu1iWWXyWShJHHpZt4gcetXqZJI3I0wKNi5PCTOn5/QdZX13lput20xhpEMYRum3i9ToYWtHPwsCDLMcuF8VqlGZIZaCbOkpJdu/cztzsFGtrazh2DdM00a2UOA6xzTLC0HFdp4imIEORsHPbZl44eJAzZ85y2417cc0SnW4PTUnW1pe56yO3YbpFKHqz1UIKQZamRRRGXJhGGUahP0ziQv/o+x7Ll5YQQue55w/w7IsHac5Ps29+sjDtkfDFb9/HWKOOYWiFJjpPYMMmfTDw+MFTz/Ir/+QuEFlBD88FSmnomiBDI/E9kjii3GgU1Oofp73hRv2ZF89w2+37fszNFMVdGAYbmmODNM84/NJLhL0LXGgHjM7uplWfo14fp1y2mB3fxPHjx0iynF5nmUMvPkenP+CWm9/PiwcPsLiwyMraKo3WCChFa3QUb9gnT6FaLaOrEK+7htAUIs84eO40W6e20hiZxPdDGs1Rhp6PEopN8/NouoFuGEip8AdDnnrycdbW11lfX+GDt99C1Y2QIkLkGUiDLM8QWYpQCk1ppBmg2+h6mRCDIBiShV3SyCuCu+OYLEsBUEoRRRFCFG7QeZ5TbdQpVyu8cnyZpaUhO67eTWukybA/YGR0hFOnTiKlot1p4wUh/W6bkYpGlgywLL14D2mhU44z6PuCrdfsRZkWvV5R2K2vrdLvDbBti6NHDzM6Mk6zOcoPn/k+v/HPr+W63TaXzrzIeHMLKeuUSg5p+up7lsTDnKPHl5nZ8zMYbove8hkq1jpp5iOJN5yXwZCKJL2Wr37jGInTYH7uJg4dPsNtt32QX/z4L7G6usI3vvVV7vjQHUgFzZEGlXoJaRicPH6ShcV5nn/xOVbWL1HyMiZHOiyd/z55+jJlU5APPB56cQ0x+UH6cZ3DLxxmz803UalWeOyRx5mbXeCGvTdy6PAhfu+3/yM7p8p8/GcaTI6vEYYJjUYJ3czx/IDrd0wyWrOwDZN7H3yCG2+5jeWlPh/50EdoNEeYmBzhj/7P3+cDH/551i+dBSTTC4sszoxx9vRBZOoxd9W1KKtwhlaXGeX9v1ncXR4tfDcE8afF3T+K9u7F3buR/iAIQzRNf/Na7yaUfoN+7b3wg1/3Yrky6PndLGCvxHjknYu0t9/4O5XBb7fc68XdZQrmt3+LV9z+w29+in93y06apTcgdvmr+xPoAk4fPcaZk2eolCrMLWxifGKC7/zdM2zZvEh9dIT2yjqLm+dZW1tjbKxVZK85FidPn2Xv7qsIwpBatYLvD/nitx7i43fdwezsOI16hSzLsG0Lx3WZGx9lYma60ATlCUkcU61UkJpANzR63S6WaRKFCabtoFRBz/n+488wUqujpNiYBRd0ej3+7Cv3MNqsMTs5iqZJDhx6mTCI+Np9DyHSjGajRqfTLtw1p8ZpNl08r0fg95FKp9ao4XsheSbQDYM4jlhfXcetlNFMi1wIli5ewOsXZixKg2/c+wOiaMidt9/EzPw4M3Nj1JouQlokaULJtahUyoWRkNA4efI0uq5h2RZCCEylIwSM1Mo0G40i/0oqcrHBs88ykiRH5IrVtTbbt82S5+D1BjQaVUzXJI5DDh48ROR72JbF3fc9yFMHjrJz21byKEbJnG/c/yidbp9NmyaIgxDXLaFJgTf0GZ9oYRgag8GAJM7whhG6ZhCEPtOTo5TLDvVGBafk0Ol2KJeqeEMPzZBYtkWapZimSeD5mIZO3Skxt2maTreDUhrTMxPouiIIQ2ynMKsxTQtNGq+d1UmWF9tKAkzTIAhCDEMjywoTGd/z0d0Sbskii3wG7VVqzRmiJCUj29hKcW5JqfH8/qO8dPwMhqbYvnmOhxP4uX3bicIBSgieeeUCN978fjTTxT1zgX63zfTUBI5t4ns+YRQyOjlFrgyQkjTNUEIrevCGNi7P06JQTmO8oU+WKl544RDXXbeTUtnZMASRpOSkaYLKM3RdJ8kyDKUhKFCjLMvRDA2pCnVTp9vFtRw0Jdg0N023N+DM2QtUK+UNd1z5WpGolCLPQVOFRb/lOIXb5gZa9ugjT9Hv9CiX7cKZMS6+oziKiJOYNMpIohila8WhqcLNNo4T0iQuvi+liJJiUiZOUjRZBMLZrrOR+5ahyQLJrFTK5BQunFJKwiBAquKiraTayGAsyEZK0+i0O+zbez3VapU4i1AURaVuFvpd23aYmZ4hyzNMw6DTHnL3vfdRdUuUyoULXhAM0A0TwzQJwgBD17BMt5iAMXRycq7dvYvZyXGqlTJ2ySlQrywlCgJWVta4tLTM5OQ4umEQhAmPPPIEX7z7Hm7YtQvD1EnimEGvR7VW5tLSMvV6gyD06A87ZGlOlkGUxJiWRRSEDHpdDMNAKoPtW7dy+uw5rt65k0tLS3zt3vvYtjDP9i3zhHFAqVqm7BYoJBQTJ+31dSrVGnmWE0YFvVgqVRje5BmO43Dy+FmazSZT85PcWNLww4Asy9B1ydRIk68/8AgnTp6hVrKZnBlDKQ3y4pq599qrMPTCkdAwDaSUSBSBNyCXBg997+8YH21QbtQRPzZy9/qff3d25bIB5le8qQ3HyCRL6fc6/PXn/5I7P/Q+/uun/yObd+2l76WUSmWiJOazX/gC127fw3e/ey+1aoNzZ44wPbuJcqnBDx/5Ac3WKFsW53jllSOMjE4A+UbcicHYyEThZOqvQOSjmSZfe+x+8hxu3b2PYZARxRnmBtW25LosL13CtB2efe5pGs0RJILdu6/FD0IatQbHjjzOwtwYkoQcRX8YoZkaIonRTLPQKSMQhoNdapIIi2rZIRqsomSCkpIsSwrNrqah60WwvWaayA2at2GapBkcPnqWlTUPoQvm5uZo1lv4oc/U1BQvHSNoU/4AACAASURBVNrPzOw85VKF2ZkphutnSOIBkCGEKujiGehWCbc6heU00ZTBiWPHqJYruG4Jt1zGGw7YvmMnWSbQpMFv/8HvcNPVDbbM16gYGW7JwvPbZFlBKVRKoWs2UeTTGp9lYufNCAPaZ5/lsYe/y6b5xSK+KTcoOXWUOeD0UokvfvW7aKVRPv6JT3L1rh3YJZ1y3UJpOR/64Ifo9rocPHgIQ9c58vJRBr2MbVu38t0HHmCiWYZ4wOrpx4mjoyTJMlXHIQ1coiRn4dqfY//xAbfd9mFGazVimRGGAa5bLc6Zcxf5xt2fo1WCq+cq7NxpIlWbPHEYeh0s2yrkH3YMeUQQSL749edp1Wc5duoETzzxGL/+L/4b1ttr3Hnnh7GcBvd846vcsHcviZTI2Gdl9TSnXz5IeWKRysg4UuhvU9y9rs1+c+d68+Ot8qhXx8NvB4a8ueATl6Vevh3tMicnz35Ky/xH3f4+ohAMQ/+RAu29Olm+93DFK5udePft/aTF3Tts+zLPvXfk7u+vuHu1sPuR/QsQUrJy6hQnXzqMnue45QqtmRnMSpWlS+tcvWWRkZEGWRxTrdWQAjQBK8vLbFmY5eyZZcrlInw8jH1GRmscfvkYe6+6iompceI4QNMFbqUoEJQmME0dESfkSYTn9bm0dAnbttA0gzD0qdaq6JqJY5fQdK0Q/icRIiuoankWEkUB9dE6tmux+6otjNfqTEyMkuUZkxNjjI2Nse+Gazh34RKNeoVqzUE3JLq+4Ybolgo91EaWUxRDEMTYrk2WxJRKLrqmWFtZRlKIvOu1FmEYoDTBjsUtzCyMUWvUGHgejlvesLAHKYpA8ThKIC/Cp33PpznaACSGbpKkGXGWMDI+imlaSM0AkSOVYuh5dNa6VCpVDNNm/4uHufqqTUgEM5umqDSroAmiMOXp548wNTZGvzekValy4+49nDx1kW/f9wDXbJnhQ++7lYnRBoarePzJA0yOj1MpV6jWati2SRwl2I6DP4x55NEDTI5OYZdNLFtRbZQY9IZEYUyp4iBFkZkVxz5OqUyWgW052KYJuaDWaIDIybIUy3FIM0iSDLdU3RD3Z5BLgsEQqSRJnmI5FkJT2LYNqqDBBlGC41ZROoULq2URex16S+epNCbBtIiFj6EZdFa7ZGlCmiX4vs/spjnufP8edu/awl+eXeM37tyB49ikUREAPnH1bbiOzt33PMD/8vFfYGKsSRj7CF3DLleIYxCGhWHaSHI0ISi0vil5HiJEQTmMohBBhjQUhqZz883XUalWCaPBhpW9XRiVxDEiCQrKqabTWVkpTH3ylDAOULpESyJELjANjTAKkFIUx5RkVCpVbMcurg9v1DPnhSapQGyKokvIIlg+z3LmZmcZGWmgaQFx3MOwKhs3bYlpWmRhRBj4HDt2bIP6mW848xVU19emmHKJEIrADxAqpzVaQ0iNLItJI5/IH2IqyKW2QcEsEKgihLz4XdwjMvIsgY33Wy5XXjsu3SyQj+HQx7RLhAOP9lqXklvhr7/6DSZHRkEzOH78FLfeciMlx6K93sY2dDTLxrJdDMPAUoosl/T7PXRNFuZI5TJOtUSSpfieh9ftU3IsrEqZcrVOozWGblkM/RBDCRzTYtfWrTRqdaSp0DRFuWTT7/UQSDIRkoucaqmOZTvolmLYHeAPfaqVGgidUrVRTGJYOtt3bsNwDdyqw56rtlGtlnDdwqXScm16nR5pmmGaBoPBEM/3cd0aWZbjDYfoukaWJrTX1hl6fQSCbttHNzS+cvI0H906y8nT5yhXSuR5iGYoDGmya/tmGo0qUoFp2IAgikKUkZGnoogCsYzCSVE3SeIAhMHC1Bh5lmD/RLTM1/985NzqT1TcAeQCTF3n+9/5Klummhx75vvo7ggf+sS/Rs9AUxpufYSDD+9nfm6W06dP0F5fp9u+QKlU4djx42jKZOD5LE6XMQxJudxgeWmFsdYogd/l0UefYnJ6hn7nHFnYJ5OCl8+f5BN7P0B36NP3IurNScIoRdMNyDPiMCKMIyanZ7lw/jy1ao3777uXlbU1zp8/xc6tC8yMValWyrxy8hJ/+8DTbNoyS73iboRzJwUd0iqjW1WUUycnIw86KIqcTX3DRCyJYtIsJcszslyQpQWzJIoS1tfbPLn/CD//i7/KnuuvRVOK5585QGusRb/bxtAUhuVSrdUJvC7rF47gGIJUZCAUaRiQCoVbaXDi9BJnTh6hVrJZWT7H9Nw0pqkBGmfPncI0LRyrzIsvvsSJi8/zr391O2a+jilMlOvj2DXSBNZWe5w4fo6V5S6Ti5sZnd9FUprBkBFV/0WmpicYDtYReUKeZYRewOHjCYfPDrjrn/wKP/uxX0d3M2YXZmiNVjh06CCbF3eyvNph6IWMjU3wmT/7Cyq1BruuWcTVBgjvHJ1T32PSvsTkVEajZiLzjEE/JRcWz542WekoWvVJXnjmWfa972bcqku5UqFaaXDo4FH++L/8KTfvcrj9phFu3lUiF+DFkiwOMU2LOIAs6NIYG8EPAlrNFnd++EamJhTNiXkeffIJJme34A0izpw6zeT8Nk4e3k+pUqEXZYyPjXL89HkWp1s88/whbr75dkgkUl0pLfPdx7+XG9q+W7D5lWzjtX3/VHP3j7tlWfrv3wuKdjnzlDeiYwVC8d6/3Hfed4EqSSk2ZhTEa7MNb5ydeHW24d3bW1GxN86A/ChiJl874d+I1737Mb4xiPI1c5a37O2dgO0rWe7K4i3hf/9Pv8f/dNP2N6yXkAtJmudoJKyePMH5c2dxKjUaE5M4tSbkOd3OKqatozSFaRkYSiMjJ/QDlFL4nk+SpCy3u8zOztJsjVGtVoCcaqnC2NQIORllyyaPMs6cPc/E+AQKxfnzy4SepD/s4lYsKs5YQXUc+mhCsr66juXohNGQbrdNHKYEfsL4aAvDEuSagemYDPtdSo6FzGPizMdxDQxDJ/A9ojAgCBNmpkep1x0yKciFYDhMMC0Hy3LQpIVlOfS6fcpVAykzjr50lumJcTxvSG+wxvj4BCePXcK0bdyyhR8MqJZtPK9Nb9XDsUtcOL+CWykRkTLsBJw6dopGtUwYxmhOGUROpVzGUgXdkxySJCQMMwzDRaqMPAvJcoXULJIYjh85Tq0qyLKA7YubuHR+Bde1Wbl0jmrVIcslEpPF2UX+4vN/zYfu/AAjs9NopsIhBRIWNs3SG3RpjtQgVTTrdXRNQ9N1hoMh3U4fp1LG9xLqdRff6/HFb97H1vkFIs8j8iPscgmrUqK70qZcKhEnIUHo45o6pDEiT4mjiCgI0GyHNMmRQkPXTXTdxAsGxayzYaBrBkppdNZW0XSBkBmaoZGmGVmeQZJjmgWZ0bRqxPGALNWQecSwu4ZUBsJ10QybOFS0V3wefPRJtm3eSr+f4Lg10tTHtEykFJz2Vrhu5zyarqMp+E9ffoL33bqbYX+dO+s1wkEPXdMQKDTTxXSrBFFMrV7D0BVpGpHlKZlWFE9JAiAL+2qtQLNELtEtrXCGFGDZZQyjyBjzg7AI3J6fRzctsjTHNYxCM2kZmIZJ6AdopsHpk6epVqtYhk0SJkjLQrctTMcglyA0hYxT0HQ2xDskcYCmtGIQaOgMh8PiuigzwsjDsBRC6fhBjKGbxH6IqXRyKZC6RLcM3HKpGKwKhaDIB/SDkCgJ0C1ZfDaa5MSJk8zMzhAnGXkagqGRKoEyDLyBX7j+AWn2akC12rhnFNo7suKadf89DzI3NYWmFJmek2sKXZN02wPSFCzDRDM13HIJZSi2bd2CYZsIGVNzGhzYf5B+fwXXMdDdOoNhF5HHxL5HEuc4hoFuOZiOy5nTpyH1UbqB7VpYjo3QNDTlIEXh/S1FRpYlnD51mkazjpQGrbERgqjN+vIqpqaT5RLPD6k0q1i6ueHcq+j32piahqEc7vnO/UyOjQIpuiYI/YJa2l1v01vvQJZjGhZxnGNZLrbjkoQRQRRQKZdYWVlD5IJ6vUno+fzhH/8FV23dXhSP3oBmo4bp1kHofOVvvsmR40epToxwy/wYzWYNELhOA1O3mZke57Fnn2P/y8e44Zod5CmcPHGO0dHWxmSKLKiESiMM4oLem4FQJpbMiYKQSnOUfIMO+KZ722VuUK/PuxY3ZJG//vKj51b5wAdue/N679Bk/qP3v1RokAqabhnimEMv7icMDRZmF2mML/L0U8/wlS9/ie2bdrC20mbHlj0snzvDzq0WF0+cYNPkVm68aTcvHT9KHMSkqcbspq2Ylsnpk8dRdontm+cRStD3BljCA0yOXjjDtolN6K7L8uqg+N5sB8uyWFtbpV6rYpfqDPp9lKToFyKjJBy6S5eYnYdSySKNJdWyw1hL0qqU0ZSGH4OuaxiGwg8jLNsiSjVUniAyj0FnGbURm/NqjJQUkihJeO7pF6hURimXCvZGlkjOnD7Lvn0f5N7vfJex8WmGYRfdNGmNTzD0PCbGR3ju2ScoW5I8uoiSObpbRlkGWZwQJwq7NIJeHmWiOYvvx4zPzqM0xerqCg2nyZNPP8Lc7AJe3yNPPFbXnmfHbIZmGJi2Q5oOSMIQJEjNZHxsionRWTytBq0bcI0KerjMhaWDCDQiadPAZy1qcXC1xPceaxNlDX71n/23GLaOrtUouVUMlVMul0kzwdrKBVqtBo8/+xQ/d9fNbJ6tcf6Jb9JfewyyY1RKCY5dY6Q+xflXXkFHR1QWeOgVn7ltt7DjqhvQNJebbt5Hpd6ic97H60vssuRf/eqvoMdwyzU5mxdnsByNXn+d8dFJgjTByBV5NkTZNtGgh6WbrK+uk6cBrpWRWKOkMTy3/zi//E8/TqU6wuRYjYnpWR76wQ/Zd+ONfOELX8V1LcbHx1AkNBp13MYMcQ5SKASCXORkIuH1dLd37jxvNTl5t+Lu8l4Zb+rCb9vE22x/Y8u8+4j0ze2nxd0/QEvTH0XuroTG+E7h5D8JwvT2+7588fde9HeX2+abf8M7FXe8aakrOcrLzK5c6Vu7wvZuSGAQhvwf//l/43+4YdublknzHKU08iTjofsfZv/Bw+zZdTX1VuGMJaQqDC0sA2/oYeo6lmGytraOEoowCHj0qWLgsGPzPDNzM+iaTr/bQ8qcIAhYW+3Q7fUxdA1NCZ546rnXcs6OnzjFKyfP8NhTL3H7bdfiBR5pBG7ZotfponSFpmsFTcwwMHSDPINqtUKaJShNoht6of2xjNfMIITQiaOMaqVOHKZUylUs1yJNYqIwIIoT3FJpIxQ6IQwivOEQw7DQdA0hIUtzvvzth5gcrVIq2ZQqZTRlUqvXqNYqhZYnLELBddOgVKqQIRgMhgyGHvV6lROvnObJ5/ezY9sijlsCqUiTlAcfeoRa2UUqQZIlaFLyyOPP4vV9yGO67S6Vep08h6WlFe5+4CEmWjUGAx/TcHn4sWdoVCuEwbAoGg2T5eV1Hvj+Y9x+y64iFy5KMHQDKWFxYRNCCtxKmeHQI02hVHEpV8v4wyHVepWHf/g4s9NTlMtVllcusWluBh3J1q2bSZOQcrVELgTr621atRppDmlaDN7DKCOIEpRuYLklBl6AZZqF3XeeEycFCiqFLGhhgO/5BZ0xCimVbPwoxLZtBn2P0A+wDIv1tWWqjTpprHHu7EnGRkfpdlbRNZ1SuY5uF4igYZoYmsGhI0cRwF9947vcuGc7ml44NP6XF0/xb35pH7ph4Ac+Mo9pzW2nUXdJ05j8/CphEKHpBrbrgtLQdAPXdiGniMvIMuI4RtP1ondlr+cOIYrBmdgIj0/TFKm0wiFXUhiLCMHM7DRZmhIGEfff9xBrK0tMz0yRS0GSpJiGge95jI6PbZjWSjRNkVJQJbM0KxAxIYgCD003CgOkvNCWKa0w2ijoaxp5nhMFAVEUFbP+WY6QEsO08AZDLMsmCIoCOM/zAjWWGsXVOyMnwzALY5wsTdGUQZykVKsVlKYRBQGGUcR/KN1AIrB0A9/3MAyTIu7hLSSjrLB/Rwgmx8dxXadA9kQxyhA5aJqOYRg88/SzGJZBpVKh3x/iOg7e0MOydE4eO0u722XLllnGxyeIkxRdLwa9luUglU6nvU4uJEhJtVIh8DwarbGCJiolmtQZ9DwsxyDLUjzPxxt61Oo1LLNE6CWQCTSjWH95aZXnnj/AwsICpmngDfroumLQ6xf00zAiT3OmJ8dJs4xypUyv28PQdFojI1iWhVDFZEcUhXzqD/+UPTu3YTsW/zd77x1k13meef7O+U4+N6fOAd0AGokgwBwkKlCWZNnyeOQ0a894q7yunX82zFTtTnk21Vr21o7L9o5dlu0ZlWyPFSxZmZZEiRQzRRKMIAgSOaMBdLo5nfztH+cCTE1QKsvjrVm9XV0N9L33O7fvOef7vud9n/d5JBGaEOi6geM42LbLYDDA0FQq+SxzC3OEgYdpmhi6jpQKw6HHsWMn2LO0jWNByJKRXnuGbhB4HjKOabXbLG3dwpaZSVQJ7U6fp54/yLbF1BZCaDpxkpAkcmTXAZqqECcqMvRZXV2hND4GchPjq00WsjeBu7fE82sd3vPeO38oxss7DE+YJAhF5Zknn6RWrfC5z/0VH/rIz/LMCwe5tFqnVh3j6PET+C0PIRQef/xBbrppJ44hmZ/bxvLyeS5dOkerO2B+fgf1ZpMde25AkZKzZ06jmTZ+v08UR+RyNngtOu0ep1bPsmtmEcOyqI4vEgQx6/U6U9MzCE1wafkiuUIRVShcvniRWm0M27ZZXT3J9l0zKElEMZdnMOwghEapWMS0LEI/IIyg3+1i2y6JcLEyFcIk9Xf0uuuYWkLo+6TU0fCaMJFpGkzOLHLl8jkq1TJC6KA4zG3ZzTe+dR8fuPdnKVfKjI9XaNSbxFHE9OQE7VaT8bExGuurTFUd4jBCFfoowTQgCBUGw4jS2CxHD79GoVTCybqsrq2yuLCVC2cvsW1pK1GcsLqyxsMP3cf/8Bt7KJV1CjmHQW9ANqeDTOes8ysxGVsl42TwrWlqM7vot9uo3hqG0qTf6RHGHiIY8PKxDf7gz79NtzXkf/8/foff//3f5+ab9/PioUPMzE7RbKzx0sGXGatNUM4XOHnqBO3GFaaqJr3WJSarERuNZSxDo1KsIUOVeusMw1DlmRePsf/OT/B333qWD3/so7z22kkWtmyn2Wqyvr7K5/7m08zOz/HAA1+F4Rr/8jd/jaVFQeB3gCEyjgg8D8vMI6RKFEUI3UZXFZAqbjafzotRyGPPnubZZ1/F8wUzsxNMjE8QRB6NZoNsxsG2LWZmp8nncxQzGkePvEyxWMKPIVcokXZHX0VXEhDvcEe8Od6sfvnu4G7T++7HvUFNR33XZ/wE3P0DxE/A3Rt/wn9J4O7/+t3f571Ri9snK297TqKmm7aXnnkBS9G5de8+cmNjJGq6eejUm5iqxDDt1EQ7CMlmM1y4cJFKvkCv22P71i0MPI+FrfPIJKLVbiKEyur6Kv/p69/mnlvvwHUMLEvjwsWL3HbrPoTlMOwPcRyLjKnx/g/cydAbUijkGXoDJDGKktBqd6iOVVFUHV0ziaMQAN/zSaTkOw89wVi5gGXqaLqGrus02x2mp2dQVY0rl1d54LFn2DIzTSx9HNciDmOy2RK9roeqxsgkRjc1hCYwjAwb601QUsBw27496KYkVyigqzk0XafZruNaBuvrG4xPjqcKV8IiJkyBhmbwqc9+najXJ+OYbF+Yo1Kr0Ov30HWdRx45QL3ZIQ59StUsl69c4uTRs3QHHjfv20OpkE8rOJaOogmC4YAPvecmTLNIfaPHX37lQX7+o+/HtBzqa3XGxsbRbYNyrcxN+3ZSnRvHaw+5eOoS5y5cZG73Iv1WD8t16HS6JIogCCVCxMRxiGkZhKHP3MwEGTePqgiyRYvV1RUWF+cQmkqz1URRwXJMhoM+vU6P737/acqFIo7l8ruf+hyECeVyETdrI3SVS8uXKFcKSGLiKMK0DKJIIQwivv7tB7l53y76ww6O42KYBnESY5kW3iAFWb4XUCpnWF9ZQUmgkM+hmSrN+nmymRqhp+MHIYZlkiQxgT9kcX6eP/7rb7BjfoKtWybRNI2/PH6Z//pjN5AEPrqm4g8H/N9feoqP3HsLw0GfP/3M11nK2NTGJkHoGLaNbtrESUobFWIE2qSC42SIIwlSQUFBKAqKlNd6VTUhUqCn6aAkdDrtVDFTkei6iSIllmky6Hg8/MgBFuYmKJXLoGtpb5YqUIUxAnYK7U4T09ERqoYiQdXUkS1IgmVAlMTphk6CkiiEYQrikiSt5auqmpp66wZCFenG37RI4oT1lXXCMCSTz6XJjCTtf7s6mQRxhzDw0yqBKtA0DZmQ3ie6jpSwsVHHdbMIVaTKulGMrpnoRpqQkYkcKYjGKChomkoUp96SYRgSBCGBNxwp/6V2E4pUkHGEpqvkMzlK5QJSAX8EJIWmYWoxQjWYmhqnMl4lUXXOnzpBsVgkiSVS1YlR0TRJs9HEMiyGA48vf/O7XFleYevCIsPuAMu0MSyL4bCXJo80LTV81jRUKXjmmed58LHHue2WfQQDj+HA43uPPsW2ubmRaXUd27ZTwQiZ+k+6rgFINE2AVLAth6HXI/AD2p0+hw+dYG2lydYd09ywtEi338VxDBIZpsBaUWk1OiiKQhxHdDtrjE9U8L0hQk1ptkLX8D0fQxfs37ObSrnIwY113jdXwbRtNCEQIqLdbiCThDiWFIt5Hnr0AFOTNW7evwfdEjgZB/UqAFcUfM8fJSQUVM1AyDD1e6uNbb6w/ojgbvKueyhXSn8vcKeJlAZs2jYb7R6nL9fZsmUbP/WRn8Z2ChiWw5Hjp/jIXR8hXypy9MhLjJdtxjIlLCtheqbCRG2eudktvHZyhZPnzrBj91IKrIVBbWyMYjaHZaaJn6MvPcaTF1+moGdYmp7GiwIUYXNlrcGOXXs4efo0g/6AWrVCq9tCQTI1Pcuhlw9TKdcYeC3OnDtMzi5hGwZXrpxjYmJq1KKQns+sm8cyDfwoQstNoGeq6JqG7/Uh7CCj4YiSG+M4DpqmjVQ6BV2vQSmXJ5GSM+fO89LBU7xw8GU+8cv/DZdXrzAxWePosUPMTswSBQHHjhymWiqnyTU1IQ4aKHGMY1r4gz5SUVD1IvX2gFJ1lkIhR66QQ9E0Ai9EiSSarnHs5FFs22Xt8jKnTrzCTTcnxGzguAZ/9qVLPPFSi3x0CySzOPocYTBJs1MGdQ9nXumTtPocuP8Qf/PwAQ4d6fLKsQ5Liy6t/gQ/97H/iv/+X/8bpFT46Y99lEZ7g9pkIVUk1k26nR6h18dvr/Lw9+5jsuhRta/Qb7yKL1tM16bI2nnWrlxmGGzg5CZ5bcVm622/jKJvpewUGZ+fZnpqnk4n9bL92je+zJ3v/RD/87/+LVbPPsb/+W/upFa8DLKPLjx0JSbjOGRtFxmliRjXLeCHfTTNTXvJMya6aaQ9oYMslpnl1NkVfvlXfwFImJ4a5/77v83i4hYeePA73HHnbRw6fJ733nUnLz39EKYy4NThx1nYegO2nSdGI0FNYd4mWhKb3jPKm6t6PwF3/z+P64G7qxTMzcy73/r7dzL3vuqRh3yzV85VI913OvYbj3/1d5tdmO9m07B5vJXwcf3611Vw9ybq6ttesxmR8u3j/ucCd5/87X/Hz8+XqGQy6fPkGyRaFAVFJugknD1+lO1L23FLRQZeAIqaVneyGYa9PlEMUZAKg8RRRCHncvLMORzHodsfIJOE4kgu3rRMPM8jjmCyVOHV42fZMlujvrFBsVjCsBxUI6V3WpZJGIapV1GjhyY0hB7S6fbJZHNYdrrJliipoACCeqNOtVokSSTtVpfZqRqeNxIRMM20VKIEDAddDr76KruX5piYrBLHChvr9XSTqoDneyixxMlk0XUToesM+x4nTp9lbaPFlrk5vv6dh1mYnSb0E3r9AcLSEJpCIhVMK/W/g7QPSagxJAq+F/Da8TOMV0vsXppnan6WWIJpmQglQddNNuoN9u7axsTUOIaus1HvMAgDdu3eThRG5Av5tJKkaWl/UhSgSIsvfO0BPnLPPvK5DF+9/xGqhQztXo+F7YuoWrpBSxTQhE4hnyebzeA6NkJRiKKQV48c49uPPMldN+1DiJTb7w28dGMvNAJvQKfdQSoR+UIRpMZw0EezbGwngyoluqbjez65bJYvffshChmTCxfPcc/NexBKgmNorFy+THV8HMu0UnCEguf5KCicOHmKybEqtVp1pJ6YEMsoNY2WoKk6huHgOC5B2GPY66BEEbZrM2g1sW2BargpddI2kKpCHCcYQtBuerx0+DjzM2Vu2r+Hf3/wNP/dL9yCkkTkc1nOnj7F4bOrfPzjP0W/7+H7KvHBV3DNHFLTqNRqtLs9nEzmmhqlUFWG/hChKgwGfQzDRMYxqpKgaWk/nCpS24g4SStrqddcghA6g/4AwzRJQomKijfoI5MY21AxTIPa+BjC0IC0eqfrAjnaYOtGKjYjY5n6qgkVVVHwPY/m+hq5fJEwTjA0QRwFaIaB7/mj6iJ4Qy+tLBupHUcYpj5ZSMn9DzzM5OQ4+VLxmhmywuuVSCEShKoT+FeVMlWSKL42FwtVYX1tnUK5RBQMUGWELjT6Qz8VPRrN7QoKuqEjhCAK45RaNpLzR1XRdYMoCHAydkpDkhBGQ6SMWF9vgAKZjEu/10fTNTx/iB94ZPNF3FxqlWDoNp//6td5zx13EkUKjz76JGPVEl4QUSoUQEr+9C8/ix9Jfu2Xfh7iGMfUWVtbwczYGIaRAvPROlVf3yCTM5mYKrF//w6Gwx45J0PGdbh1/41kcy7tdpPaWIXAD0ZG52nVMFX1NQj8gE6nTT6fxTQ0HCeDpuuEYcj55WVmZsap1KqMjdXQdY0wCjANE28YEgVgWSkFz3FdhKahmSaabqIbFr7vJm6hTAAAIABJREFUEQz7DPqpZctwOOTA8jLvn08rbL1enziJiIHaxBjZQg4/CFicm8J2dEzbwDAM4mi0aRzVanXdoNvpEo2Udk0VTp89y9SWuc2VFX5EcDd2x53vuF5tFq+nXV//EqoCMuKVl18AKfnIvR9lbn4LFy9cIGPpfO97D7C7cgvN9hVOnj7L8rlVxrM2/e4lisUihqHSbK9zefkSA79HzjUoFScwdIMTp44xPTWF3+9z5uxZytUKeVtnfXCKexbvQVVDNE2j2R4wNbud9Xodz/dZWFwAmZDLZYmjiOHQ4/CRw4xNTPHAt59n4zLcsG+CrKtQKkyiKBGGmapf6ppG4PeQREglJhYWipaeZ8NQCYcNRBKgqBJVScWJojjCMMxrn6UaQ4KCorls9AzWNta57a57GBufoN6oM1EbwzBtnn76CUrlCnES02w2sISPpgxIkhjHcen2O6iqieaMg5Zho9mi0WwxNT3DsWNHmRyb4PTJ4+RKRWbn5lhfW0dTFZ488QM+/oE5clmFP/yrc3xsz09x89J2HNdBxhFRHKNbGRQzjzRKZPMGUecipbxg58w8N81vZ3t1hhdeM/neofMszs0RxpLTZ8/gODb9YZPti9P0Oh2SBCbGyujBJbprL7BjIUvF6RB6K2RdnWx+F5HnceXyMkomSxOHG2/9Vzz13GWWL/dZ3DpFrpxQKs/hexGvHj7M1m0LTE2P89R3D1C/eJIPv6/M2JiKpmmjaqiaJkGDhHa3j2UHdEOfmBK9YZ+MnaHT6xBEIYOhQq+XIBXBU088xa13fYgvfOlLnD51Ade12btnD7lcng++/15sx2Fto8uF8+dZu3KerYuzlHLw7A8eZ9e+m4mFm9bslOTazXCVKvlGoHc90ZQ37o2vfr9xT3/9Is673Z3vTA99uxjLT8DdP0pcD9z9qKIom8Xrjf9vvpLSk399cPduVcK/f1zv73u3yt2PMtaP+qwfPjb7aH7nt3+Pf3vnrmvA7m3vQVFQkojDL76MoSSMT08SqRq6IogTybFjp/jqdx5hfmKM8clxrlxZYdDvMxgMGPpDKmOVVJ45iFClQsZxSYDBYIjj2IR+zN899DSTYyXKeQfXsUmkwDQtYhngDTzOX7zM9PQUTzx9gAefeIlXj5xmcbHCC68c5yvfeYJdC/Nkc1ks1yQIAkigUMjQbnWwbJuJWo21tRVUITBHGXfTNOm1uqAIFKkShgnlUpl+36dWq6CqoOqCKysrqLFKLpdLxT1UFdPSmZ2bRkmg0+7TavVY2raNOE4oVDIEQYCqpobQ6aSf0vMUKel1G8gkVfZ77923MTE5TruxjtB11JEQTBL5VMfGmB6r0m62sBwbwzQZnxhny5YpVEPQa3cRmkZ9vcnvffrzVDIujmVgag57d25BVSJKxRy37N2Jpkly+QzFSirOIiVoI4qcZpu0my3OnzyLbelEYcDs7BSVXBZd17FMi9/787/k7pv349gOiZR4wy7FcgmhKfT7PqbpsrG2zoXlNarlCsN+nyOvnWBhYZ5Wq8PeHYtYjs7777qdqZmp1GpC6Eipki8UWF1ZQ1HUaz12hiGo1sq4toUmdFRSs+bA99A1QaPewnVcFNVIzcG1ANcxWL+8ipPPEAcxg34f1bRACAb9AWEcYZomSSTRNZtbb1xiZrKCQswH7t2DOlJT7Xc75LMu9z23zPvv2odtZfnj//gFtLUWx89cZNviFirVKk4mcy3pZOgaiqowHPQwLJ3BsI9h2iBjhKrQbjcIAh/DdEYS5XJkTRAiVB1VUbAsm+FgyJmT5/nu9x9i7w07GA56FIt5xiYmsGwbtJRyE8cRmqHSajbJZHIpM0CSqmwKgYxjwihMKa9egOm4qJqg12ljW/qIgpia0MZJkqrIynRTKEmrHsPBAEWo7Nm5g0KhQH84II4jLNMYzSOjRV9J/fV0I61MXWUHKSNKmKKo6LqObmhEwYAk8omlRLdshCIJwgghtFTOP4qvVROHg2GqtKmqqJrG6WMnr6k1aiL1DwzCAb7vUSqUyBVy+H5wrQI56PXJFHLEUSoCEkc+MoQ7b7+Vft9HEwaf+8o3qOYdHn7yOabHaxTyGfbfsJu777qdXreL1+8x6HXJ5bMYrkVjo0EURYRBgCYEpm3T3Gjhuu410NNpNun1emSzWXxvSKVWptPqjPwYBaqmEoY+ikzpmZZtYhg6zXYTXWisrq4yGPQZGxvj2UMvs31xIU1gBCFDzyMMAoZDjwe+/ziPPvEce3ZvTb06VQM/jIhkgqqZqJqGJgSBNyDjOuiWSSGX48mz59njCqIwotXqkisWyBUKxKOEnmlbGLogkWHqdadoyCT1WUtkQhCEJDJBN3Rs2yCSCiKJOHX6DHOLC2+giL1xEdlkXXl9gXnbY9rWHe+4Xm26Rm3yO5lIFCL6nTqx71HM5Oj1+ww7LYh8jhw9TjSMqdXGeeHgs8xMTbBz6zhuRkfXR2uEpdNqe+zZswfbcrhwfo2lnbuY3zLL+fNnUWTCen2D9Y0VTrz6IpHVZ2ttDtuyUDUdKS2sXAUnk0MqCkmc0G7VSeKEQr7IoVde5p733YsfeLx46Hlm58o4ZkKl6CClN/JglanarSrQNCOtZgcx+coUjl1g4AUE/gAZdvH7LVRFMhgMcV2XJEnbD8IgQNNt1pYvoJsWIYKnnn+VSq3MjTfdjiI0VFRy2SzNVput27bjZjIcO/4qt956O446oNm8SMbNEsUxYRwS+gkYJZYvrTA+OcHc7AIoaY+6Y1m4lkW2WOTI0VdZWNjKQ9+7jxdee5Jf/Ohe/uSLp/nnH/g5DEOkFGmhp7ZKQscLJWamgu2WSZKA3sZZVBmQCHVkd2Pyze8/S8GpMF/dyUMvPM14rUy1WqXRWcPvtjh54jSlSo1S3ubyyQPknQbhYB1T88lk81jZIoqis7Z6CtPSuFTXmN31TwhFhkGnz2379nH+/DnKExOcPnUeXbM5duwYURxSb66RdI7xwfdu4+675xCiwksvrTM+UaBUKjP0PQI/wXazKCT0IouHHz3OxYtrTE7kKJdLBGGA7xn84PGXKI0VOXz4BLGaZ32jzf/2v36SJx57lMFwyE37b0YqKl/96tepjY1Rq1RYmJ/k8OGX2Vhbxht02Lb7ZjS3hoJEZXNJyh9WNOVHjavg73pxPTuFzd/bT8DdP0r8OMDdVWrNG+Na7UpKpHw7ifGtoitXq3lvzCwkiXxbtuHNwi8/ftS3meDJ6yDz9eO98e9TFWVTmuZmY72bAEoy+nt/WKGUt47/O7/97/itO/egJqk8vCIhiVNDZUVJkMEQNY54/Bt/g5qEFCe3oOoOqpQpLUeqaKpg6/wkVkbnyvlVoihgYqLKlSvrKFIjn09tFDI5l2whSxhHDLoDLDvDX3/xAU6eWOY3fuWfMjNVoO+lfV0ySeXgLcchDkj9myyNmdoYrx0/xh233cD83DbmJ2bYu3sH+ayDrkEw6CMUhTgKOX7qHNMz02i6gmWC65YplnLopsbG2ga6atLvd6lUKnRbPodfO0s4kHzu777D7m1zCDOtHCQJqRBIYjPsh5iOoFlvomkqMQFfvP87fOJjH0VXNTqdNgO/Q7lSJgwS4qECqiSKQ3TDJIhSiXdhmAhdQ5ERQa9BvlLB0MxUQCIO6Q3a6Yav0cS2LTKFDBKJ7ZrpOYpijhw5RaFY4OzxM5hCsjBTY2KyjJ7J4OYcytUSvU6XfN5lOPSIk4hcMTuqIor0/I4y8d21ddTQw3ShlCkw7AZMTE6ABVEYcOuNu0cGzRHdThvXtZBINNUiAXRTpZgv8d1HnuDQq0fYv2cX5XIJVUC1nCWMfCbm5zEtDalIDF2n3x3g9dNMs6anVcTYE/z1F7/J7NwUOdci9IdYroEXhanXmyYIwohsvoBUNGI1QRMhIvJZXVmnWCujaQIl6BGaeTQnj6km6JqNIQwiP2Tlyhpfve8R9t+4AxTJv3v+OPfetI1ur4+um/Q6Q6JI0opt/IZKtVrgwIsH+YX9u3FNm207t2LoFnEs0TQNRZF4w2Fq1ZDo/Pmnv4AlTMbHxul02piWgWlmsKwsqipJIkkcSTRNQRlRmeMg4sEHHiHoDjE1ld07l8iWChiOieVYWEYCMiT0h+hCI4oidM3Asi08f4g6ooOqo/7XOE7QDZMoikEoMKosGoZBbzAg9odYpsFwOMSw7NRUXF4Vn1JQhDoSNwFFSytVummhqRpxrIzop6Q0vVimlbhul+eefZ4t8/NopgqqHIlrSEwz7atLpIphuQihp/OTqnH+1CkqxRyDXi8VfxepGJamC6IkIvCGGLpOsVoiXyzQ6/cwbZsnHn2GpaUt2JaFUEzarRamYaOaNkkcoSkS27AZ9HsM+wMy2TyGaRBEki9+6ZtYhk6llOOuu/fjaBnmt04RBAqWncU0FIRm4GYdJAm5UpEoUdBUh+ULq+iKTta1iYIhfhAx9AaYpommWWi6QSLByaRiLE8+8RzTc2V0UyOJJaauEYQecRDgODYySRCawLFsosTCzhVxs0Vc26LsmviRhpPN0Ol2yY56GHVVMDs7SbXsADFCKOQLRYSqoUmdXrtHEqSg3Q9DhCbSik4cc+DSCu+b20KrMeDUyWXOX1xjbm4aKUNs00CGMaGRGpj3+30sOxWWEkGCkkRomkK308Y0Uv84hIGlq3hen/GZmWuG9Ndbd960Nr1VlUFR0LamPd9Kkq5JbxRbudrkoMDVbqNNI1IGdIYhk6bghcf/I6YywSvHL9DteUzMLPDEsy/xkbs/wtrlNc4un+dy/Qy37dyCZkkuXbrMysUmpco4ISGB4fLsSy+wZ/9d1KYLSDVmrDKBk8tTrU0yNzXF0O+TUGcsO44QKnECui7oDAMCX6M2PsEzB37A0tYb6PXaONkcxUqF1eWzWLpCY2UFU42JBy3yxRymaWEZgjhO1ZDDOCZM0iSQJCGM0sRJYjhAgtdv4ehp77sC+L6PpmmggOWaqHqEoZvEscXqeodBELO4tIdqaYz1lVX63Q7VSnp/OaaGXaiQzbnUNy7RXT+DrYOZLxOFIbLXwSnPojhTGNkcQkZpK0KzzsTEJKgqZy9ewDWLnL9whpMnzvC5B77IJz52KwcOXeKX7vwpbNPG9wcYpoEfxahqTIxE0S1Uu8Sw0yL2mqjREE1oKFFKFe/4HUwrz423fJCJ+Rnohjx/9iiB4lNzLS4un2JxfguXzr5Ie/15zOBVClYfT9Mxx3eSUxLaq6u0OldodFzq/RLVxTuozE7RaUhm56dZb6yxtH0XInbp1l9kbvEuvvfwM3zly1/g6Ye+ym9+YoyceY5KJc9936/zmS88xc03lohDH0PExIaFlSsRemuEosyff+oJ8sUi23eUGXo9lHCIkDqPPXKA9929i+npCl//7sv8yi/9j/ztF/6Cf/Grv8yWuXnu+8Y32bYwTzGbxR/EnLl0hpW1PvlMicHGEcZyJrGqUZqZQ1EUIhmjoL2teL4ZuLtaMXtjNe+tlb43xvWsw14XZ1FG/5ZvEDJ8PcSIocEb7mf5lrF+GBzxE3D3DxA/rsrdW0/iW1/5biMpm43xDlTP14/54wd3mwKo672H0eObgbtNs4/vckxFSQHedTOj7xBXrQ4UkjSrOMq6aaqamhErkmefOsDlixfJlaqoZhYnX+ZTn/0qu+ZmELqgvtFkcnIcU7eRMQx6Pe5//Clu3LmVOImZnpzgwvIypmmysrJOJuOiCoFMUgrVwtwE5y9fIA4GzC+k/lT1RpNCsUDgRygqnDu/zOR4jX6/h6aq7N+7k4mpCTbWG3zrgcdYmBqnvr7B0RNnGB8bR7ds/uyvvszQD9m9YzuqorCxtoEiIoJoiDfsU6oW6HbbTIxP0O10kSRksgZLS/N86J47yGQzowx7agyccRz+7C++StY1yRdsfvDMy+iqYHxigpt27WF1tcWDDz1NrVqiUi1hmS5JDKeOnsIyDJQkIY5jBAqSODUANnSSOOLUydPkS4V0o6yCoeu02x0M3SKTcdGEQDMMBsMhcZigKoIkUbB0kyiIaDQ7/OzP/hT5fJ5Gs4VhmRi6hjccIISC7dpknBK6MLEsC1WkM7Qc9bvGcYymgpQxjUYf3VAYhsNU7KUwThB65HKpqXgYBGRzOeJY0u/76ELgDTqQRHRaHfbdsMSeHYs4rgWKRAgT3/Mp5POYpkGjsYE39Fhfa/LQI89Tyhd48YUzzMyVsGxBHMHKygb7b9qF5w1TCq2RescJVaPf66Z2CGGIYZq011bJZkx6nTalShnDthj2egyGQ0y3gO3kkImSVnRG6ptIya6l7Xzmb7/By6bDv/21ezhw4EWeeupZdm1b5NOf+RIPHW9x4tBz3HTr3fz+p/6I/+WD92C5WebmFrCzLqCQxKnUuESi6YIkSkVITKGxur7O/Jbxa/L1iiKI4lRW3zDNVPVRJkRBRBRGREFEIZejUCzQG/SYmZ0hkjFSxsRhaigdSxCGhVQFQtNT4QqZJguiMErNv0feZq+9dhTf98gX8ggh0kVVURgMhmiahmU6XLXXkIwEWIQgSZIRDXvUmq+kv0NK/NBD1/RrCaxOp4NQVYSqpNeQrrG4dZEwCPGGAXEU4wcBuq4iSa9bIcSbEm5CTWmXQtPRdBOhGSN/yvSzFEKkG+UoQQgBUmJZFsPhgMgLU4GTOCEMEzLZbKoGGsUoSULgecRJai+SyDShUN/YgCjmtptvpFwqMDNRIZdxMF2LMO7iez62a7KydoFcrkgcx2SyLt1uD03TCL0B1WqJ7z70EFsWZjFdG9fNEEcjyiUqQRCQzWWJk5B2q83iwiJRmBD6El0zCKMQVaiEEaiajh9GI7Ejg3a9wdnT55icmiJJQNMMvMGQaqWE4xiQxKiKxDBcvEHA9NQslfIYhm7R7W6gGyrtThM7Y/D179yHjsbM7AwSiVAV+r0BR86e48bxMn/y11/h4x+8mxv27rgGMBsbDYSuYekOegKxF/Ld7z7GzoWtBGoMugBVYNo5pGqiC0kiVUQcsLqyRnl8HBX1nRedzeIt6+Xp9XWqe29K//NuPT/XWeUSIiwrx8VXX2Z15QjPPXeRn/9nv0atWqU/GJLtlel7Pc6ce436+gof/+l7yehDfvD9p9i37xYmZl0StUdj3efMyUusX6rzMz/zCeprDc6fusLKygVMy+L48WNkHIv7D95Hu9XhhtktBMGQOImRqoqZrZIvjOEFPlu3bcMb+HhDD8NIVRMb9Tr1jQa5XNpHPj01Sb+7SqVcRgiJoioYRlqxE8IgjkMUBQYh5IpjbDR9TKEi5IA46CGEgmUZKCrEI+VSmYCMTDSh4UUKhw4fYXVdkC84bF/aycUL5+n3e6hCS61u/ICBF5K1NOJhj0HzPPlcJmU2tNtoQqU5VCiPL4ICrp3awLhOhk6ng5QSTdNR4whfKpw+d45LK4e4986dfHjve7Bt6xoAiaOYxIsBlVCaOIVJrOwUuhgy6DZQEg+hpon8ixevkGBy400fxrDztFptxmsT3LX/vdTsKb7x4P24wqLTHFJ0FGSwQU4L6HckppYhaq+yvnIG33JYaW2l0a/S9/IY5hTV0jzFSpFWq4FMYo4eOcbk+AyBsp1GdIju5YjlIyf4n/7VNOWsg2VaBAOPrQs15qZh3645TBFgCIltGHSbTXTFxA9AM9q85+738bUvfItbbrydjBujGkNuvHWRsbyJbiqsdxK+9I0Hue3u/dy2/3YqlQqqELzw4gt4XsCWhSWcrMU9d72HlUvLXFl+jVrZpNULmFrYjW3nkdjXbqfNWpDeDfC99bHNbtPrbaPfDQtspoz/toaln4C7f5z4cYA7dRMQ9mMBd+/yuv8SwV36nE16HN5hvKvxZg+7JKVpjT5AJY45cewE6+t1dCSVXA63VGN8cgrNsFmanUJFJUrSDWWz2UbXDOrrDRzHZGF2glIxTxCE+J6PF3hMTIzhOi4o0Gx2EIqK7ToIQ2X30jzj42XCIMJxTUzTRBcGuq7zp5/9W+69+zYkEse26fa6xFFMvpBHUVQOvnqM+ZFP3c37bwBVQzMMjh87jW3Z7FhapNFoUKkU0YxUcMKybHwvxBv49HpD3IyL61pkMjbtTgvLcomTKJWzT1JFvssXr7Bv1xLfevQH3HXbDRx67SS7t2/FshwUmaruyThhfLxKLp8jiVPRiYLrcuTIcbKuw4sHD6MCcRTg5jKEYcTyhWXCMMDNuCBTrzcUcB2HIEyQccJwMEiVGVHxBwGWZfFnn/kSg+EQoag8/NxBbty5lW6/T7FcSml3MkEIlTAM8DyfQy+dotFoIhSZ0tqMlJqnkGbTWs1GKlzhSQollyAJqFQq+J4EEtyMSxgFCKERRwkJKoZhcmX5Mq5rYZoaQRQjNEEYpBLdQhf84AcvknEcdEODJMbKOgR+wMTYBC8ePEo5X2DlcoelXWNYroFpuFSLRSxXR8YxtuugqApJEqOiEUUhmkjPiVBViD1UKVldW6NYKVDfqKOJlOajWw4oqY2CpovRfJH2u337xEWMCZt/ctcuLNNkYqLGru1biMKQQ2cusWV+EUWV5Cs1Dh0/wUdv2IPQDbKFAr7nsb7W4C++8GXGykXK5SKJjPG8AF2zKJWK7Ny5bdQPJkcMA43A93Fc59qdmYqFRGhCo9vtYZoGbiZLqZDHdCxUXYAETRFINTVuv0phVIVAkTFC1ZCJgqZrCC3tAwvDiHK5RDaXRYyOaxjmtdcmSYKmGQRBOKrQq0RewO/+P3/MXbfenFpCCMGDDz5Ma71NpVZCESqGmR4rkRJFSj7/5a8xOz2F6zikoiyCIAiJ45j/8Fdf5Jb9N5JxXaI4IIwCdM3E97y0mnB1jlK1tDdxNGN1Ol1s28T3g1HPFCRxPLJMkCMPvNTcvFKt4WbsFFCbZkqRVQWdZpOM66AZOohU3MlxHbqjTaeh6URRwBe+8lVmJmrYloGUGrZr8fQzBzGFgZQR3VYfy0oNuxv1Bq7r4PX7DAcDtizMEckEw7KQUUK/38N2HKRM++iQCefOn8N2HOrrdRwry8Zag1KlCEpCHEcowiDwQySpEbuiqGQdi0K5RJxI/CDEcV2IUxEgmcQYukAF6o0WmayLpqe9tt1ul4E3gEShXK0y6PdRpGTPnhuQJDDKoodByMMXL/OhrdO855a9uFkHVYHBoI9p6RhW2lco4xDigEE37aubnZtGVSJURY5AuQqxgqomKRMgCrhy5QrjM9Mof09w95evXuSe9919dXG7/kuvs8rFMkKoJo9951ssn3+JTHYboaJh2w6/9cnfYc9CWh2sb6zRWF1jvFogYyVs27aLbNbG8zuYuoNhFhFmzM7d2xmEXS4snySXybB7941ksi75XIGLF86xsC1hydqBaaZAOQhTCmCmNMnly3XyxRKNZoNWvc342Diqpqe946rGrp176PQ6XLlykUF7jfGxIrlshigaoigKmpaKH/X7PXRdkMQx0sigaDbV2hzICL+7Quh3R+vbEJkkRHGEqqaUZ6EIVE2h2R+wttEkX9rKHXfcTqPRYHJqiqnpGUzLIptxOH7sGFLoOFrC8pkjFDOCTC6llCdhTKvZpjazE8XIoemCVrOJoVssX1omm83R6fbIZLIMOi06Q48/+tIfcdeNU2y1tlAdy6eVnSQhiCKEll7TmmGA4eLmKrQHMTJI7QI0JSKOQjRdY/nSKkMfqpNLaIbDhQvnU5P2RKIbGguVOe7/wYNMVYu060eplhMyZprkDEIf6ftcvNRhattd7LnjFwlih7n5JYrlKn/0x3/E3e+5k/rGOlMz0xRzRUqlKicur/KHf/BJzh95gdv2VtizmDAY9Mi5eZQoIUqaTE06tDc2MHSVRAbpHKuCoRfQDZPZeRdVcTl36ih7924j4yY0O23cTJF44ON5IY89e47VuuDKep25iQleOHiQmZlZbrhhLzfs3UuhVOPlwy9QzBZZubxMtWwQ+xtIRUc18pRqkyTCRXm9FvamO+Wtt9o/BLi7yhlTVDa9d38C7v4/HJuBu3ermL01kpEy2pvGeMPPN5Zqrz5/s/LvVaXNzV5zlbZ59X1dBYNvLEFvfpH+MHDq+o9c77N4u+n466NcBb1vFmJ592O+2/OS0QYzbYVQ+J1P/t6bzMmllKCkcugi9jjxyiE0RUFVTC4sr1MpVXCr46DofO2+B7lhaStfuu9Bbrv5BnRdJY58Dr3yKo8feIm779iPqkrcrE2n0yFfyFEo5Gk0WqPKgOSpFw+xsbGB69jpOZESzw/IFQoIXZBImaoNxgnVXIZKNY+qSpAKg2BAvpBFxpIzZ87zkQ+/j5xjUqqUkWoqUtDvtlicm2XHjgWEoRFHPqYpOHH0EpcubDA5PktjvUutWsP3UzqVoip0uz0sy0xV5kZUtCRRkHFKV3vg8af5zX/+T9lYW+WuO25BNw28Ycjnv3w/O7dvoTZWxbQsvKHH8sVlCvks/nDA9x49wM379rC4MMdqfZXpyRreSFyhWClTLhUZDAZkci6KqqAJjWa9x2e++E1u2btEHEVYdoZuu8+5sxe5/6En+MWf+SBHT53hg++/gx0Lc4RRRDaXwdBT/6EojGi3e9iOi2GmG+DXjp/k4oUL7FlaQDcNwjDBUBUIIxpr62TyOWpjZRTDIJsvIjQDQ6gkKKhC0u12iMKQbLbId777GF/+zsN8/MPvJ058dNPAtF00XcewTHr9Pv3+EBknzC7Oo4xsDeIk9R6KwoipsTKf/db9fOze28kW9bQi0w/J5Gz6vS7ZfJ4okakogFBJQgXT1NANQbvVwnZS36AoDjF0ldAfUsiYrK330iqzZSGEQiwEyBhIgYkQglf6Lap6wukzyzz06AFuu20PjiWIoognTvX5tV/9ZW657RZq1Qwr5y+xq1ykWCrR6XZS6fmhx8NPPkvWMtmyZQ5NFwjVYNAf8rt/+Cldvv+vAAAgAElEQVRu3LXEpYuXOHt2mY21OlNTNTRDIBMFFMlw2EdBwTQteu0O/+GvP8+OxUVs18HQFBJiEhgBOQ1UUFQFy7TQhSD0hyRKgpRpxVBogjAaoqrpZl8VqaceSFQEqqqmAje+xyOPPMns3AyWbaMqox5hGfPeu+7AcmxkIomimIsXl3Eti0I+i6HrJDLB0A2Ggz6oCktbF8gXctdEsK4K9QghmJ2colAqoowAmqqIN33+qR2AD0mMVBUQKlJRyLoWUZxKuNc3GjiunXrgjeZy3w9GVhLpuFEcp5LiYYAXxCPQkVZ1VUUliBPW19ZQkORyTtpz6GRQVEkh5+A6GaJY4cgrZzENgyOHz9Gu93j0wHN88H13pL1Kho6hC8Jhn3qzS7lWJpN1sG0HXdMJhh6WbYCSXmbdTgvDMhgO++TyWR567EmePvAy97z3TqQMU8sLqaCpOm7GxdAN2q0Wju0QxxFhnKDrBn/y6f/EjUvbU2CrgB+kAjgb9Tr5kkur3UjFjhSF+777PZ57/hh3334HSZTS2PPZAoahE4URg/4QTdMxbZvnLl9hr5NW6q9SwxUkQjNGc15C32vR67WJkoDJ6SqdXpdevcHqymWajTqDbpuMbZJIiR8kmIrk/PmLTG+Zvy7gum6M1sZk2GPhtttHi9Nm69rrX9eLIAmJY4X62TMsXzjIxOQtXKo3GavVWD20wcLWBTRd4+ypE7hql51bt7GxdpnSeI4o8TG0EoO+4PL6RbJOnmOvvcb09D52LN1MPlNjMOxw8vRxpqan6bbavHz6KDdumUZFomuCOIZECjQny/KlddqdDmNjY1RKNTYadcIgQNcUSuUqJ0+fot3p88KLL1AbL7Jn+yxKOEC3rJTCpqhEUUAhXyAIfFBVnMIEupMnihUunDlGyU0wNI3eIEBJ1BT4xzG6oaMqOoN+g/bAozVIWK03afs+eiKoVCsUSkUkEIQRXr/HzMw0/UEXOVimllGRIiECosEAP1QQThHFLDMYRhimjqporK9vUK1WkYnEsmwM06I37PLi80/Rax7hE7ffy+JiDZTU8kYT2jWFXcPW6AcxTqGGbrlohknzygmIfGxDEEYhnh+giALtroaTn0ASMz87T5QkZFwLoUIcRuzdfiN/8c0v8M9+bjf19aOYukKYeBi5Kj05zTDaQajvBUfg5Gz8ZMijjz/Iv/j1X8GycxTyWV54/nke+N6DnD51jmef/xPWX434zV8vcfvNHqZXw8oKoigEIbHshNDv4DoZNFMnkkAcEwc+wnQxhcT31hCaxu6dZTxvhTAYMhgWuHwF1q7UQXF58eAFEjmB78N/+y9/g2w2R3VsjLWNOo7jcm75CgdffJrYh3033oyTd7h87gj9VhNLN5mcmyMySghlc/T1uu/zG8VSNr93rgfuNqNvvr6vTsdU3mmMzY71tuP8BNz9o8Rm4O5HDSk376F7p1AV5W3f13udQrqJFOqbn/dOPOR3jx8fuLt27E1G+eGEWH70Ct9VVTtVUd5SsbsaKnEsOXvyNKtnTpGEPtmMS740zqWVNrOLi+mEkSTsWJzFdTJUSwUy2Sz9fodCwaaUt5kdK+JmcuTzGXq9LhIwDHNkHWDguC6GoTNeKTNWKVIoFbHtDJ/895/lzr17cPM2QRjQ6faRCfR7QyYmKtTr68g4pt3qUajm6ba7GKpOGEbYjo2mq7S6XVBB1yWDbgvDssmX8igCur02pqXx3MsHGXg+lXKOYinLRuMKvh+SxAndTp9ctkCj3qHRalKtVUiSBNN0Rp5eKhOVIpmMAzJOBTMMnTiCQtZlZm6CP/j05zh64hT79uygVilgmBqdbpc7bt3Po08+x7btW9BtDY30+lRHfUeapqGbetqDpSg06y28YcRDB15m39I8lVqJKFJ48gcv8sSLL/Hrv/AxNF3htpt2Mxz0qFQqfO3bD5A1TQr5LMRp/1oYJhimw+e//G3mZitMjpcYz7mpQl4U8vX7HuXE0ePYKqyvbSCEThB3ESIDiQUyIQwb6EaOMPJQVQj8EF2z2LN9K7sX5oiRZIs50DSGPR/bcVJzat3EMEzGxkrEQkdYFmgCXVVpNVrEcUAc+9y6dyvlCRPbdhj2EzJuHi/spJXLKDW6jeOIJPAIPYluClBikJLA93BsC2EYOLZOp9HgyrmTTM3tRnUKJOEAqcREV3n+isqL5y9ycNjlZ+/cxe7dO5mamOTIkZMsbZ9F0xKCKGTr/vdQrFXQbB3p11nodsk6WWzLJIoCFNXAthx2b9vKnht2YZg6iUxpRXEEcxNjHDr8Kltmt/HMgZf5wPvfSxAN0E0VVdEJAp9ERhj/L3tvGmNJdp5nPuec2CPufm8ulXvte1dVb9XN3kSKHFKLJVkaSLRgG4ZnAPuPAWOAgX8MbFgjDwxoIFiQSUqasURR3HdxbS7dZHez9727uqq69iWzsir3u8d+5kdkdReb1VRRskYzAE9WIOtGxo17b2bEOec73/s9r+kQDmOSMOSuI4ep1qvF500KWwFlFVkjtCCJh2RpQp4kyDzl6sIC5UYNJQykMMmzpPisSVo8V0nCKCwG9GyTnhfFuJ7HSKuF6VgoQ6AkDPsd2u0NtC6ANmmSoAyTiYlxZibHMY3iXstSkIbAsmySZLNejIKemuu8IHcKwTAMaY3UQReBeRwmWJb71uAPGq3zQmZm5KAkmSiyQFk0REgFQFAuMegPyLMMe9Ps3Lbtt+0QjE3JqJBFZtDxQeecO3WKIAgKKqBp0mjUsG2ba1cWKJd8DK+ENCXlShnPL3Hq5AW+9sj3mJqqcdeRQ0zPjCPkkMDzCkpsHFEpl8nCAR/79Nd5zz130u2ss3L1GjrO8MulIjtGIX9zHRspBX7gIYTk0IGDHL5tH0JlxOmQLCmsPCwpCy/NYUiv2yXwPRZXVjEthzhOGatW+cHjj/O17z9Bq1Fjem4GlMLzfUwR4HlVdGZy4cxV7r37Xu6//zYGww5x0sd2FVokxGEha9Ya/uhP/py5mUnCYY9ddQ/btZHKYPnqVUrlEnGsSbMc27NRdhXPr+AHNSy7gumWcSsN6qPjBM0GQaNJblqYWvOxv/wi++a2kGcZrXepubultjlufvrUFR566L53H9husWkypHT45Mf+mNGWyXsf+h0uXV2iNTrK9Ogsjuvy1JOPY1g9jhyapFaxcCyfJK6gHJNhvkK73+Zb33qeO++dZRgPOXthhfXeCltmWljSI6j4JEmKryr86LUfcmh2DsF1ubYkTnMyZTExsZ3ltXXaGxs4psfy6jWmpyZ49JFvMTk9h1aSZ596FqFMHrjvKEa2hm3pApCTJpuG5EUtrUQjDZP1fkKlPkq73WXLWJ2wvYBEcm1pnaX5qzRaLaIoJNfFwqjUmiyv8eTTb7K2nvHhf/ovEZlgGPaJ0xjTckhzwfnTJxgdHWG9s4STryGidXLTRpsOWTRAWmX85hS5dkAoHNtkeXmVTruN43gAXLx4kXK5TIxm/uorGKR84J79pEpClm/ez5vS9iSlF6YgfcqVKZJUYkkHRZd42Me1i6x2kmrOX7pCvbGDysgWuv11HMtGmgopMnSesLy2hl9qcM++e/jeN55jIzOpulVcYyeR2snU3b9LpTVGmMU4pott2kxPTrN9+y7eOHaKRqMBIt+k0UZ89tOf53/6R/dx7+0WctilVRlHuWtYKsDyFEZgkaQBnr8F2wZMk1gLbMNGaEUuI7L+EEc1yUSXkj0DmUmWJtRHJnjtjTfYMj1GZaRSqAC0y/lLb/L6sVOcOXOOo/fcw9Wr1/jCl77IZ7/wJf7tv/nXeFaJKE5ZXJ2nYUsG68sMoiG7D95G7tVR75I5fyfx8qeXMN3s+e9+3K1m/25ljvvz4O4fqP1dgrsCo67eenxj1u16u9Vg5mbZuh/7mRA/kSEs9r0NDbi5kPPd9t383b0NMBE3bPon4Cbv3G7W9GZC/cbtViErNz3fJv3sxszqzuWLeJZTvJZQpJnm2sWLrCwukAyH+G6NtUHK5MxWlGHhuRI/KEh685cXKJUCOu02cRjimpp0kJBHRYFOs1Hi2lqIH/jEUYQwwCkb9LsR62trGAjSKEEZNhtrfb71vScYqVXYPTtOqeohlMB1HYa9Ab7rYpoGWRZhmzZJknFp/gqVik+tUWdxYZmJLS16GyuYtoNOU2xLobUmzTSDbo8Um2SYYOmY3FSUpGTr9DSW69Dt96m2qhCbfOQvv0IjqBINY2zTwvMtDCHJ05x2r4vtOKxsLFFvNUmyFL8c4JdLLF1b46vf+AF3HTrIYDjknn37iLt9tu+YITcEmYLArtDr9Wg1q5QrHr7rgvLoDpbJ8xDH8lhbW6bf7uGXC4LXYDCg6pvce/ggOoezZ+cpBRb79s5xYOsMvfYGrm2hXB9luly9cpltsxNMTI8RxyFu4KOFwnEdcjHg0IFd1FyXp599leeOz5NkKbPTo0xOtFhZXqXVKFGpB/y3zz3OfbftYaNziXozIM01wvIQIiIchPhuBdOwCcMhggjbNrEsg2G/i9A5judBnrO+vkaepLTXNxC2gykFWTRk2N6ALEKQ4/gBlm3hex65tnC8CtK0QOYFSVMXIJAoDkmTFNuwMB0fqXPIM5I4xy3VUY7g3JVjVKjSudJBVVfxyjuwlCJJJIZlo5MEy1GsdPp852qX33nvATw/INcZ0tDcfng3lm2SJTEvn7rM+OxOXNvhyqUF8tijGvVZ767hlyqQeShTMuynfOz//hx3HtmPFoW1gFQKZRq0RkbYvm0bpqU5eHAXtmtgWQX0ozvokukUx3URyqHbGVAKbLRZ0Ag7K6sYRoIXeAg0Ub9Nb32Jfr+PqQorB8cvEZSraK2IogilZHGvpBqdFeASZchNk3KFlhJhKLI0JYkjPvoXn+Dee+5GGqBTzXBlmaUr53nhpVPs3b8boSRJFGIZBpkEYSkM20CLDFMWUl7TKAAqtm0hUotLF+bxXQ+lwDAVSZxurhTnmLaJJkfnbNYcOhRedopud4Bj2YgsL6TMyoQ8obOxjm2qTdkwJFmKZTgAJFlEHIco00YqudnXgYlJnsGzL75KlqVU6zVIkrcyH7bjkeWSuJ8SDmKSKMVyDNzAYv/WSWa3bsUp+1ieQ78dUW+WMAyFRGKZFmvtAZfnlxhtlqlV63iOBURIw6Kz1keiePP4G9SaNYZhSBhGOG5h/o6ICYd90CnlUpkkSWi3V3Bdl/6gx/ETp+ludDl/9jwXL8yzb/8+6s0ao40KNb/CHYcPItDkaUrYDTEDiyxNSaOUb3zzu4gko7GljBDw8PceY9f23ZSCKmESYZomSRJz9x1HkLkg7q8x0ayitaS92mE4KKTBa+tr2IaFpWzSqIvYhH8Nh2FRFylBiBzSFKlB5oJwEHFg72500ifXGX61WsB9bqHpdwxs1zNxP5pf5qGH7oeiGhwt+LHtxhHvndm7Gy2HMqnppnDia5/h6AGT2sF/xszcCP/p//wD7tx9N41anUG/Tb0yzcbyJcpVD8P0+OTXHkc5FuOVKlbusG1unLLn0qiO4AUtwsSgNTLB97/zDTynxKDX5xuvfZ19k/vYUquT6QF5nqCEQbu7gmnaJLnJlskdtNtdSiVJqVzDsgNGxrdw7epVmrUml8+9hFtSnDuzyFjTwzLBSE0C1ylk6UJDGm/WxktEBuXaCDrRJGEfEXfoD9u4vosfOOg0wjENDCnRQoNpEdOj00kZHdvB9p07SeKIcq0KUhJ4Hs8+8Si79x3AMCwunXmOuivQaY4ZlJCDDkJprPIkCwtd4hwarRZ+UMXyAqpBhSzPqDXqNFrj9Pop/+E//QeefPlRfue9v8Lk2Ch5PMRUAqWLrF0MXFkL+co3X2d61zR+uQbCJpMZcfsitpGS9lNIJVqErPdszl5eYmJ8C1F/wJXFZSZn5rhw/gLNehNLSrrtFbqddbZMb2P/rgf43OMv877f+jB+Y4JrlxYZ9GN8z8cyNzh/6TSVeonLF+fprXQJ02ssrayhRJOnn/m/0MsBd93RoRxYrCxdY3xyDEMKYh2TJBFJFKLzFEFKGPVI4hxDpphmgFRV8jxGGznaiDGUQy6GpHmIX6qQJzH1ssF4YwvJMOTKwoAz8wndOMNzS6RZyPvf9wD1Rp277zzKr/3Gr7O8HPOlr36VnbvnmJiq8cYr36FVt0Eqxqa2YVanMSj66BuTIW/PA9/Our09T3w78PtpxPm3VXM/vg/eBqXc+HWzNZ53mwuLG+5rcQv9x8+Du7+H9rcN7q6TLW+8aq7Lef4mouXPKvJ4KxS7SYbwVrN1mc42BzXrZ3zVv0v7yXPcapbup55183fwe//xP/P+7ZvF9eTIPEanEc89+QqD4ZAdO7bhVyp85wdPs3vHVoSAUjnYnMS5lMpBIR0FXM8FBRcvLxY1ZmSstNepjXr0ul10qqhXRxD4hElIrV7l/IVLBOUSGEYBFskztu+YxXdtqrUKaZ4x6HfJ8hTfd5m/fAU/CIiiAkAyOzON0AmWYaC1BKnQQmEZNi+/epyZ6SmSOCHLNCXXpFSp4DomvY1lgmqFilfj4qViRbNUqgCC3nDIsTPnCVyXy4sr7NyxnTCK8P2APBuSxT0qgYFSAQqJZRgYIiXJJZ7nUXUDKtXSZuZN8/zrx9i9cyuGaSF0ITwXSmGYJmGYgjALWIRKMAwTMFldWeLi2bNMT46T5RmWaRLFMa7vcvXaMp/++qN88L3vIY5ibN/C9V1sr0S3E9LpDmlUy5QrZbIkww8COoOrSJkThxmu49HbiLh27RqjzSa+a7PRb7Nr2yxr7VVu27cP17FQlmB+YZltMyM4joukjJIWhpURDnIMZWK5Jv1+l6Dks9Fug5C4QYmNTge/UiIcFIbxIPA8l7/68jfYNTeJ67r0un2CcqWQCgkD03EZbhrMB75Hp9sraieyjDgOgQxpFij3sD/EdXxyqYnikCQpDNWVKZB5SDIAEa+TZWuYZhOnXtSzSNPAtG3iNGGt3WYwWuX9R7YCkGQx6KKGyXaKbJnQOZ9/6hK/8OB9rK+t8xcf/zjPvPwKd45NUfZbCGkhDc13v/cECsnEaJOZuXGkWSzDZGmGQBHHES++9AqvvvY6O3dsxzDMTeCI+Za0MokTdKYpBT5KCgzL3ASd2KwuXSEahAyiGC8oYbs+QVDGshw8v7TpOWag0diWhZAFKOXVV1/n6WdfYO++bYXHYp4U8CIKE3WlCqjLeKNO4LpYliJPBZblEsYpdx+9H1RBazUM6Pd6xUr8JrFJakGUZAilEKrI8iEMomiIQGM7FlIopDIwzEKGK5V8S6qpswJuMhwOi2xSDsooBvI4KkzVARQSLwgIwxjXLUiepmkV0kylAP2W7FJfB8AIQTgYonXOju1zTE5OYNs2tmMz6A9wHGez1k8QRzG//0cfZevkGONbxlBKYUiJYdubHn05Zd8njAakaYbv+ywtLTPSatLeWEcZGVOT08RZhlepYEgD13GxLJOFhQUmJ6fIMk2lUi3qUzetp1zXZWlpCc8LCrN5ZTAcxpQrNTy/xOy2bTRrFUbHRimVSyAKuFKtWiPLIwxLsbq6Sn8woFxyiKIhQdnh9KXTvP9D92OZLmjB1MQ4ORkb62t4no+UCg1kaU4Q2Hz21AXuHqky7Mf0eyF/8qmHqfgeM1unkJaJFoIkSun2+rieU9RyymLxUUrYWN/Adpxi4SDJsD2XPB7Q63aotkZvObh75+B2PVB7tT3k6L13vetYJ27ynJs1KSSOVHzxT/8PDh/Zy8PPLDHSqnLy1BlqRhUlBV/75mdZvnYJFXeoVMpYlkGzZWGmOZ5pElRzpCMgk1y8eJGXXjlJpTbJwuIiD77vvdSbTSzTIjM6HNp6G6ZOybIuw2Ef0zBBaBzLx7TKHH/zPBNTk9RbVV555VWajVHOnztNrV7Dtl327L8dLW1OvPECO2bqlAMX4ZrEWVz0q1lBkRVKkWmN51foDjMsT5FlA9pL81TLLZaXOjz9/AVa0020o8mky/cefpE3Xn6D1sReXnj5OPe/9wMsrl4i6cfU6jWWVpfxPY+9u/cWFi3hkMktAd31xUJiaVokcUqYakKq9CLBlrFxHM9HbY5XvmeCyAqCtzCYP3uNk0uv8eEHHmBqoo5rgWVYpEJvSqkj0ixmY32DY+cuc/97HqQSNLEdmyheJWlfLVRYmUZZJrHO+Pq3f8RqJ+T+B99HPxpguV6hCnJsVtfWWFtbZXR8gijJmd26FS0Uc6O7mF+/RKNeoRTUsUyLZrOOZ9VptmY5dfwCw07Em8dOUjLLvPnqG/ze//q/81u/Ns2g/Sp3Hx6HPGLr9glMK8f1FcOw8A9cWl6iWWshlEk4sMkSB9d1yHLodgYU08ccw1DkebEYlyQxtuUSJymu47HW7nDl6iUuXlwgz3weuP9ujtz5EO+5926qtQp5rjl1+jwvv/gczUqVqwsX2DY3wZWF84SDNRyVMRj0STCZ2nkHgiKBcmMGTL/j8U/cU9fLl35KcPf2sW///y1Z5k3O/bMk8N+WdN5aidfPg7u/h/a3D+5ylJQ/1llftz3QWpNl+bsalf9DBHdSiMI895Zf/f/bwd11OWYOCKHRaUzY6/LkU88yOzHDp771KGXXpd6oc3jfXvJck6UptmshpOTcuUtEUUQURvS7fQypsNzCA83zPdIsI81Tltc6nDh1gbmJSS7PX6Faq2BYBo5tsby8gmlbKNPkR0+9yEP33UW322EYhji2Ra8/IE4iPNcmz4rgeuHKCo7jUCoFmKbFuXPnCAIPPyjR7vQ4c+4yrXqd0dEm3U4fPyhkId2NVXKh0FmC0implixdWefrjz3Dod078HyPTrtLpV5jcqTB9q2zXJpf5OLFRdI8Yev2adAxy1fnKXkmptPgD//kE9y+fyeLiwt4pQqGMpi/eIXFxSXCOMR1TQ7s3YnruWSpJokzpAFpmvPZL3+L0UaD5aU1avUSplNAWCQmXmAyPTbC6uo6aZpSrlawPZ9w2Kc10uTw7h20O50CImPKYrKuTOIk57/82efYs3UL5UqFPM+IoggpwbGKCWQU9TAtk2PH3uTQoX389SOP8RsffIhKtcRg0KVaqaFFMcnePjOH0Bmj4+PEoeS7j/yImbkm8RCQmxmZJAYh8Eo+QiiiJCGolJFK4VgO3XaHVquBUgaBZbJlfAShJH4QIA2LJC4mKtIwC4sAy0JQSOuKyawBOkcYorAXMBRZkmMoG2kX9YjKkEhDkGUxg/V1XLtEb+MCSyvzzMzciXYcEII4SRGymBD9/g9e4zcfOMiVhavEcUS57JOmCWmSMBz0SZOYi4srPPjBX8XzPDY22nzol36Z4ekTbG9N818+8kkmx0dRjqZVG6VcqfDya6+zb/8OkjRCGRZaF8GLEJLA93jxtdfZv28XhipqwkxlomSRjUrSjCxNC7CGKPrHjbVi0tyqlQnKJQzHQygTLRSkGoRE67dXRAsiX3GfmqbJ1PQke3btQEiI44IUmecFtU5IUfgsovnS177JRKuF79koaaNMiyzLeenF12mO1lCGYrDpr7extoEfBLCpShiGIVrnm4CTYrW3vbFKrVHDNBS5Ljzycp0VtatKFSROKTcDzaK/V5tFGlIWgd91f7pC2SHf8oTLMo1lOeQ6LwLaLCfJ4sLQOUneqo8Nh0OkUDz+xJPMzk4jlSrkm1AAGzYXEnOtSaKYmbEWs7MzSFHQYgPP4+rSMpbj8Kcf/yuO7N1HUPLI85w33zzD2NgoGs34aJNms0KSabxSGY0mDgcIikypYSgM08JzC3CQVJt+nWmCZVuUS2XCMCTNcvxyiX5/wPp6e9MzMSfPEqq1ClEUMegPisym61CuBqRZiuM45BpOnzjDqdPnqDfqHLxtPxpYX14vPDK1Js8SKrXKpp9kcc2Zpkl3Y43XL89z+1iTj3z8i7Q3umx0Io4c2MXIWAvL3fQwzARfffgR9uzYimEXNgpCCzQ5tmujjOI6Nw1RXGfJgLMXLtIYGceybnFB9J3B3eZ1/ejZKzz44HtAX8/UvfvTflpwlyYpzz72OON+H2VauGNHmNs6xYsvvcyh7UdIs5hGvUES9zh04CDnT71Gc6zFlpERPNvGsUyG0RAtbFQu8PwaS2tD3FKLAwcOFrLtXFOtVhjmXc69fhpLavJ8gNApvhugyYkGERkuk3O7QcLVpQVmprYitKQ1OsKFC+c4deoUjbEtfP6Ln2VuaoQtTRdTwpXlDtVaEZAIcqQowEqmaaKFgeVWyShUB65M0WmK43pcvrLA9Ow4tiExTRvXrdAa28IwgbVuxO59+3n12Es4hsPo+NjmmJWxsb7Cxto6Jd9m+eoJHFMUAZwQdHtDVtt9pnbeyfjkVi5evoBtuywszHPp0iUcT236lNpcPH+Ff/+n/w5zfcDh/dM0qh6OIUmTFGWb5GmO5xX1taVSk6MP/CK+VwUUWRaRZW2stIAzCSURUpAkCVGisIMW4+PTpFnM6JYJLEMx6PcwlCoWuqIYx/NI4pSgVGK9vcajzzzOkcN7MVQheX7uuedQysDzfDzfxTY09961n4VLr2DoNa6cP8/v/vYhbjs4hUg2cByLTKe8ceI4jdYIvldGkON5Ho7tYpk2F8+tsLYyZMvkCFLkKGnieRZZFqOLqhYcxy7UDIaFaW76W25s0GrV2bFjD3FWplQu8fFPfQ2/7HHt2lXGxsYwpEW17GEqxZnTJ4GUfbu3sX/fbk689jThsI9XaTG163aktN6a911v//8I7q6f++fB3T9Iux7cvVMq+Df9OZSURZ3Ru1xgtxKxXw/+3k2O+da5Nr/fzDPjbd2xfutIKfmJfTc/YxGQ/vcwa7/V9mMD2U+BrFxvWr8t2hQIHv3+D/nkJz/Hvzu6563zhf0er770Gk8/+wr333GEoFzhgaN3Ew5ivvjtR7ht926SOCYM+61TNWoAACAASURBVCRpim072KaFUpJzF+d56dhJRus1nn75dfZs3876apu/+PI3ePCuwyShw+pSm/GxGm5gkeoBx49f4ns/eIq7Dx/Acx2uLC7RKAdEccyFy/Ns3zbN6voG3/zeMzSrJUZGmpw9e4HBMOTy1RUO7NuF5dicePMMvuszMjZGFEX84Z9/lhNn5tk2NUJrpMna2hpKFVdHrRKQUtQInXrzNFdXB5w+e4WcjJ1bp3Bsi+5Gn3a3y9Zt00DCwuIVfuH+o0zPTWI4NoZpYJKQZyl2qclEq4EyFHmeUi7XuXD+Mo/+6EVuP7SH6a0TCClpd3r0ewOWry1jKMnTz7xAs1omHAyZHB8h8F1QOYNelzTJceyAVA9Zb/dp1GsElRJaQCYUCsHGWocfPvMcu3fO0OttEFSqZFpw7NibvHnqFB964HZGx1ubxc150TlmBjpVKEOQ6A7SyJie2E6cpOyaGcEvuYWsRyTYdo1OZ4i0JLYy+cyXHuXAvrlisi0lJc+jUm+BzIAMx/URmERRRJaC55dQShYZd60xjYL82Gl3GBsfQVz3Vuv20GhkXkBECqiGJo6HhL3+5qSgqBbQeYYyCiPlfreD5zlkAuKwi2UVgXMWhyTDdUQusU2baHCVeqOGdCbQQm5CNzR/+uIZGrMNfvWu7eSZ4I8++gmuXl1k396dSKGwLYvORockjnnhzQV2HTjE6vIaQiiyNCO9cI7x1iStWo0fPf8CR+85UgRepqTZqBKUA0zTKYJIITeDlwzDlNxx6DaklGRZVrwfqciSjPlLi3z0v/0VRw7uoVwOQAlMqQraoiwGyo1OH8svkelC2igQSFUENMoyEEUCCyVVoYhAEEUhlm0TJxGO40AGStmkWYyUgigcYjs2h/bvo1arkSSDwoYhh0d/9CS9bofZuSksxyGNU6IoxlawsbEOm3YpgVsYj+d5hMhB5pJOt12YeMviPShZkO+u99dxEm/WDhZ9mDIMDNMkz3KyPKXfH1AqBcRRRJYV3oubHR7SMEiztJjEa0muC29BrXPSJMY0FFEYgtbkOmNubrqwGMk1hjLodbsoU9Hr9Yu+M9fYjkFrtIVhSnr9QQHmiVMqtYKEetdtt2FKsfkZcsbGRgkCr5jgAUHZwzRtBr0ha2vL1GpVtC6C0TQNKVcraF3IUS3LIkkSlq6tYlkFuMm0CiR9NIyQUuH7Pqah8H2PLE8QOuf8+XPYtsfaRpfWyAhaSNIsY2Ojw9e/+yjnTy/zwfd/ACUNXNdFCIXvelimhWVbtNtdOutdLLvIpmo0pmlhGgaXT7zG/Jl5/slv/hIH9u9kz7YpxsabJFlImqZkaYrr2OzdtQ1vk1Ybx2lBZiUnjEKUVAz7QwyhGcYJYbfD1pkpgmrzx6SRtzy43fhwdjtzW2eL8exnDO6uP861RndSnvja51lZfoHa2BGEX+eRR5/knu13E4Ux0zOTPPv84yzOn+OOw7sZGx1DSUijHNuB/jDi2mLGM088z/4DOzhx4hgb3YzXT55m//6DCEMzf+kyX3niq7zx5il+60P/I8NuG6UiXNsmjxO0TnDdgIvzi2jpUQ4C8njIRrvH6OgEcTykVm8wsWWKhcvznDv1Jh96/71USwa25fLKCyeo16uAJs1DRA6mU5QpZJnCr45g26MoLciGy+i8h7I1IyM2dTdAJRrSIV4Q4lZ9nnvxFcamdmFaFvWgychIE2Equr0O9VoNpSSeI3n1+UcYqyqEYeF4VbrtNaygiu2NkQiPa6vLNBtNHNulVAqYnp5CGALPCdhY7fGdl77FG8de5N/8zq+zZ8csBim2bRR9apZgKpMkjknynCBoYvlltPZxA5PBYJnB+jLnzp5nMEhwfJM8jzEyRaU1ynPPP0+pPML4xDjtdhfPsVi8ukiWpViWQ3NkjJdfepFypYJpmiil2D+3m4984uP80gc/gNYQhSFXrlyiVPGZv3yOT/zFH5DFF3CtK2zfdo0PPLgPkzUa1TKaIZ3+gFTVOT/f44XX15gdDzYX1QwQJlJaBKUGbxx/k7GxBnneI4pDVpZX0KIAAvpeBYQuFnFy+MEPf8BtB29DSAvbUSwur/Nf/+ybnL24TGeoqderPPPM0/zyL/8KAolpmTz7wrP82j/6VeZmt/Ktb3+3kLHGq6TxOrZfYdeB+9DSQYhi0eUtKaV692WQG0EpN+67EZhys+NvPO6t++6GiO6mWXfxNsjlnXPuG2GJeZ7fdP5+vf08uPt7aDcGdz9LE9w8k/aztLcombfwWjcef7Pz3Hjkj1/EPz24K47/hwvu4G/K3L390x888jjq1Ov8k4Pb39o3bHc4dfIslrI4cuAAWQrKd+ms9xlptbjj4F5AMhwOaY020DpnY71Dlud89FNf5qG7DvPoMy+zf8ccFy9fpd/uE4UJR3ZvQ6BpTVXYMtakVmkihYPr1Lm2sIRrGozUq1RKBXnP81xqtQq+77CyssrYaIvJ0WkWr15jpNWgWqkwPjZGUHKp1opakm88+hi1ShM3CDBNxYFtMxzcvo16s0QUDqk1ynQ6bcrVEpbtsNEf4pc8wt6AfiR49eRZPvwb72c47BIEHl/9zqMc2LkbncekSRdTFSvzwlbkQpBJyaA7oN5ooh0L13XxA38Tza8ol0p883tP88vvvw/LNbEtn9XVDc6cucCRI/u4urjIsWNnufPwPsZH6pTKDoNeh0qjRlAOAIVlOgzCDZzyCLZbGDE7jkOWa1567g2mpifZuX0aw85J0xBTeZimhZSa3dvGqVZc+oOowGPrjDgJEdY6yszodweUvTrpwOTPPvUVqiWHwJObxtcpjm0wGEj+9JNfZ//OGdIo5cDOw0T5CleuXmLh6jJ7d+wj0hG5SDb9yxIcq0xnfZ3lpTUef/IFdm7fSp5kDAY91lbWqddrGIZRZGXcACiw146pWLi4gG1bmwOxKEy5pUGaa6QykAKSJEbIAJmn6DwhTod4pRJht82wF+M5LuQJ7ZUFvFKDayuXcAyDYSiozEzQX49wHIuPP/YCu/dMcGj7NGhYXLjGLzxwN/ccPYyhHCzTptvp8l//5NMcveMQ337tKgf376Raq5OmGR/5s7/kgamtCJkzMt5g/76dSMMBHSGkLuimGJiGRZ5nha2ALND9pmkQhQVF9Atf/mt27txBlmX02j2++8jjHNq7l5mZcbI8JUGjk0J6HOUJcaLBMMmRGHIThKCzYhBVAkROTo7OdZEFFRKhJEpIpDQwjcKywLQcJAbKFJt2AlYhByVHKIUycsJeH78UMLd1iqktLZxNqwbXCVDCQKmivs3xHKQhMbKcPItZX1tCaoElTRyvqE1D5ximIIwGKMMuArs4xnFs+r1+8fvZDM7SNCUaDrEdh+GgTxzFhdRbCiAjTmOkEgwGfUzTKDIXQm0uJORIqTCUJAojbMfGME2kIYt7J80Kjy0lsQyFFEXNXKZzDKXodTsEJZ8kjrFtuzD+Ngs5omFI8ixj0Oni+sW1myYx/UG/kJjaNp3OBnmiMaWg1ajQ3pStD4dDsiQiyVLCMEQagnDQJ4yGLFxaQkhJqRKQ5Rndbp/AdcmSBJ0lDPt9+r0upmsz6HaoBCVGxrZg2B7zFxcZGRtBCEG5XGX77DYOHdmDV3LotJd45dXnsY0M1y8xHA4IhxGf+eI3yNKcubkpXM8nSTLiKCaPIR/06bd7jG+pY7sKJTSmAZ2NdaqVKmjBqTOnqDUqRfY0BdN0yLNi0UIKgZCy6IdEjrJtNlaWqddraMN5VwLfTx3cNh8+evI87//wb789mv0tM3ca6F1p07l0klRd5L73/Qs6UcITT77EPYeOkicphqF47fVn0UnCrt2jZPEQ1ykhLcXStR6vvvoGew/vBmtIvVymXG2Q4rHe7bG6vsSdh28nS3OGcsgH7/gVnMDFQaPzHr5jkScJaTrEcH06w4z1tSG2YdFeXmTL3HbOnT3PyGgLKQWD/pCLp47jmhZbtngM+6soaTM3V8O2i+tSSAtFTpRmJFmC61WwvCqJkZAmHQbrlzGlgc4UyysSw9YIKyXJBSJvceyVlzHUTu6+5wEc16BsWYRxRLVeJwgC1tfXcCyLzvoV8qhNI1Aoq0SYSJKsR6k+ysKVNZTlkemQZmMLUkouXbxIEATYlkuWCr7w8Jd4+JFv8ku338uOOZdaqYohFOQZyhDYhoFOCpN12y9jeU0M00eZJQbxMoIQJzd59tnnUFbA9OwIWTTA1xZYik5nyOzM3uKeRfHKS89w++13Uq5UGQ6HeI5N4AUEvsf5c2eIo4ig5HH04D18+iufA53z2c99hl/+H36Xf/Wv/he+9+1HsQg5+foLpL05du+KcIQiTwZ0ujGGCU65RW5M8enPP8bSWo2Hjo5SqZQKJUCcFZRi+szNbiUXIY4HaRrTqI8jZVFfLKXFcNgrpNJCMb5lkn6/T789IIr6DBKL7zyxwMyeo4T9Pv/4N3+dD3zg/Zw48SZRlILpceHSRXSuubx4lcnJ7czMTXH+xFNk8RqOW2Zq2+1IpwwUCRW5qVx5t7TF39RuFawi3ppLXw/UNDe1+xI3yw7eLAFTvOOfB3f/L7abWiHc8P369hM2BPBjj2885t3CqXdmBG/maXezTd/k+B973juoQfqdld0/8Ylu/h7+Lu1moJRbzYbe9DNvfiAlisH3c5/+AgeGK+yZHEeYhTyRNOXCiXNYpsnUtlkwJH6lxMZGj09/9WH27Jzh4oUFRlsN7Ou1MbZLtxuysrzERLPBky8d40MP3oHtKI7efQdT0+OUKz6VWpmgHJDpPpXSOMNsA+Vo8tQmjXvs2bsV3/NJE1ia36DaCuj1+tRqTSqVOnkukSpjtFWFPEMYBqbjUPJLGGRkSUyrXuPM+TPUAhffc+l2+liWQblaIc+L1eY8y2hvdBHSoVwq0W2vg0rxjQpbZxtImTE63gQBk2MjtHsb9Pp9WuNbcP0ylu8hhaSzvo5n27hBgFYWOs7ZWN+gXA4KBLoq0NT3Hd2P5drkWU6qYwxDMDM5ysWLC2yZmGB6bJphNKTeaqAMgyeffY3TZy8xPTmF47gUZXkKWxWSM88PGAxCSDNmdoyRkyOFgxQullkiyQrTbNf1yaWN41UxbYPhYIhlK7IowfC2YFsVZKJpt7sEVZ/b9myhUavz+hvnGZtsYFkmlrQ4f+4cB3ZN02zVyEioBsWk2XId9h7cTYIg70Z01jqMjDTod3uYtiQoldCkzEw1EWgc2+LKlXmmt22lvdGmXCmRZmlBMSQniUKEZdAYa9IfDnG9EhpJkqYEfh3TtFhfWcH1TZIsQZkKU9oYUpCmfYSwsNKEGIXJgHBjuchPhx0ars2wv0hMihdsRUjBN05d4rd/+31MT7TQKkFmiq9/5btMbxlHixTDMkBkRFGfrVvH+NjDr/Dv/7d/S8kP6K516A4i0nNn+eZXH+PxZ15iz/Y5SmUf1y3kUEoWQAChIBc5kCA3vX3SpAgatBAgNbft34tOJN//zhOE3Yhf/MUHGJ2o45fLaBSWZSINE6EMkjDjE3/1BUbrZUSe4Nol0jhGShO0wFQmcViYxytR4M4NQ6J1ijQEqUxJhgVEI80SUplAamFoiHodlFJkaNJ4wOryNSrlUaRtISyBpRySOMVUJjrPi4ygsrBsD7REochNgTRNLMumt9HllZdf5Yvf+TZ3HTlQ+ODp4nouauPE9X8IKUEVWTtTKvIkYf7iZaygguf7GEoRD2LOnrxAa2QEyzQRQuPYLhJBkuVEyQDTUkRhjJQGynTodQe4XkAaFxLUwpSdQnqucwaDPspUaJGT5wlxMixqaksBtuMiMcm1QuuYdrtT1Nqiafd7VOotpGWiLAPT8cgyA89wcEyvuC51Rq8/xHE3axcNC9/3sBwPZdqIvLhOhMgYqZdJoyGmUmQ6x3EdDMdleXmVwCsIt77t4VSq2K6P5QekaYaSUButFJRWnRKFA5Kwz1NPPcWe7bOUggqPfP9FOmsJU7OTaDS1WpmJVouRRpPm2Bh5mmGaClPldHttPvLiK/yzB2/HtT10ZqAZ0hv0qdXqkEM0HPKpr/6Qfbu24npuEXx0B1w6dZlaq06cxShDYVBIa7WG7toS5WoAToC4xdqHm411nz29yIMPveftyeKN22bN/s2sELLrEDNdYMkkiu7gDC8fe5i9dz+EKJepeE0e/sJT7Nmxn5PHjzHsrXH6zdfZOjODa5qYysGyFb3BAMuxePnVk+zYuo3JZhXDdogyeObFN5jZfoij9z6AZVl8+Qdfoh/2aVolAtsBlZBsLCB1grZN0jgGLajWa7Raswz6Q4ZpD2X5jGwZQRgW5IL22hqWYVOq+bzyynFcR1Op28hUYioDKRVkkAtBnuQIDUZQKSSjwkfJjChcxTId4jTh6z88zcqVi2wZn8QwM66srGNZZWa2T+NV66yudSg3x3n8hz9kcnKUzlqXZm2Mk6fepBxoqrWiJt7zq/TDDo42WQshMxzqjRnSSGF4igtnL1CvNpBaE/UF33r4W1xLF5nTJW7ft4Nt401y0ScMu1iWRxTHCENjpDY6izErHsrdRhr2WO8uUa+MEvaGCN1mullipOZiC0Ge5qSiqF1rVmzSeMjpS11OnLjEQw++lzdeP0Wj2cC2bQbdbtGnSAvL9KhXRlCBYmn9CsfPneah23+dybGAT372z7ky/wJbJ+F3f+cwD90/wx27Q1bjEt9/qsPkzgpVp0ver5BkyySpwHc9pOizf2cF0zAJo5gsTUHmZHEPkUXEbkweufh5lTBdQ4qs8OkzIBkWGb2Nfh/Tduh2O3jlJrVKHUvk3LZ/F9cWT/PP/+d/jW3bzE7PsrR0hcXFs9x9510EnsOevTvYunWaHz7+XWZGRrm6eo6s26NanWDijvtR0ikUJELz1lcufsJO7GaAlHe2W6Zmbm5Z/rZu7Lo9wjvPcf113+4F3vnzG4BJ4vqZf/y4nwd3fw/tpwV3N7Ybs2xCyh//g21+v57Fu1mt3a1m537WdmNW7x+y/ffO/d0Y0P7ef/zP/Nq4x3itihYCKSDvRSycn8eyHeqtOtIwUEKxsdHGcmwO79uF73vkWUap5tPubuAFNmkYF6CCTPLKsXNMj4yyY26WRr3GqZNnWVtdp1wpEVR8oiQm8B2WFteoVAO0BttyaI7WwZR0ohDl2nzth0+yfXoU13NYX9/AD1zSNMZ1A4aDHuWKT5RGROGQxcVlwuGgAPIYBnt2zAKwurrOM68cY256kkqtIBh2Ox1My+OFl47z7Sd+xB3795GmMX7g8tff/BFKGYyNjRBFIaZl0d7oMDW5je//8DkqfplqpU63M0RI8H2fbqdDvz/EdV2SuDBO1zkM+n2QFGbLcQRohMjJtWDQ6+E5NpVaFcuyef7ll9m5YxZNzqAfMdoaZfu2WSzb2pSp6QI9L/XmRFiTpQmOa9PtdvEcn421Dr//x39Bt73B4YM7Wb66xNUr1/ijP/8M9x7ei2kqPM8HMrrdHkGtwrDfIxp0cT0bZZqkWbGiH4YpQgmWrq6RpxpD2fzll7/DA/fcieu7/MEff45d22ep1mvIXDFoh8wvLHH+8mWmZydxPJc4ySDPMZTEMAyCoEK33ecr33qCA7v34joBOoMsAdMTJHGGaToYZmGkvbq8zsjYCGkSY5gKgSZNQ5QhsFyLwWBQADO0IkkiDAuG/RjX9VjtdMnCDfKkQ3fQxlSK06feRCpBa3wayx/lM8cvMbO9ymSzidApg+4GpuUwMz1JpVHFcg1MwyZNUgzDprPe49jCkMnxJuEwwrVc/vCjf86/uPce3vfe+7jnzgNU62XSNALB5iptXiD7dQ4UMptiIi9JkkJSgoBBt4dlmmSbE+zxiTpvnDzO5NQ4UqpN2WaKRGx6PglWrq5x5eoie/fu5otfephz58+zZ+8OVpZXimsuiTFk4cMohCBNUsJoWMgVMxtTxaytXGJteRHPdIiyHmHYRsicJIkxLRNTmTiOjWl65EITJyGGNLA2zbSFKPzOpBQkcfLW/miYFlkzo1gEmJme5OjdR9HkZGm6SbwsJMHdbhfbNMgzUMpCCYVOc6QChGZkfBQdDpA6xVACpQSWbRcLA0mMFppwEGKaFnE4wHMswuEQx7ZJ4wSkwDQUx984DlrjlzySNKXTbuO6brF6nAniMN6E2BQQBCkL+M38pQVK5TJSiKKf8HwMJVFKYVk2Tz7xLGF/QBINqZRLhGEPZeSsrS9juyZR3MeyJOgCBHPyxElGx1ukOiOJo7ekqOQC17GxbIs4SYjjBIAs6lKrlYniIco2wZAkUYQyzAIkNIwYDkNefu5VhC4AZLbrYHseH/urL/ML991DmuXs37+HrdvncP3CgiGNUwI/wA8CVlZW+fhnPs/MlgniKMW0U5xkg6lGiTRNGIRdDGljGoWcM4pDsjxltNliZnYSRFFK8d3vP06jWqHeqmKYCnJNlmkMVUhgN5aXqTcapMp+V5+tW2k/ml/mwYfuu2lGTmt4N4P0G1/RNCz6/T5nXnqJeGON99z/Qebnezz2g5f5p//4w5w88RqO4/LUM48hDJt6IOlvLDAxMY1r+5Q8ByUEO7ZtY9hbp1L2EVoThUPiRHP27DmOH3+dnTt2cnL+TQypqFoVgqBErhO6KxcxlCBD41hm8bezPVJZxi832DK7lcAr8dxzzzLSGiHPYkxL8dJLT7Jz917On76IKzRKW3guCFlI2aQQKFMhtEZIgV2ukOSKJBEsLV1GxBt4tsMwDJnb3mLH7BiGiBHK57HHXufN0xexy2M8+8IL7D9wiPb6CrfddoQoHhD4ZbrdNr3uIla+iiU0hmbTsiYkThUXF/vUG9M4jsPq2iIlL2BsdJwkSai1Gnz+0U9x9L37+P6Xv8fRQ9s5eHCOfNAmtZo89fxx3jh2mrGRCUwpSVUElkupuY9enmFIC9t1GPT65OEQkRdkWakUWZ4V6gQhSZOESqnMYNBj8eol1lbPgetgOf8Pe28eY9l133d+znL3+/ZXe3V19b6qm1SLu0TJlmXD4zhxbNnO2MCMMQMMBoP5byaZTDAZODMTBMEkHiSBncSWZcuyZEsWJUqiRImiJFIU911cm90ku7u6uqu6lre/d/czf9xqihKbFGXZQRDoAAVU3Xfffbeq7rn3/H7fzcGtOHiBh7RD7v/ug/QnY0ZJzD33f51vfO5Bnnn8YezRBl+49884MH2Zj35omr/zgSU+cvMyy1M206FFZ1Og3Rr/4l/dxa/+0o1UdMggG9BoTfPyC5cZdvr83IeP4bmayWRElpQxLZ7roSILz3KY5BGOHCCyLZJClf4NrkuaJCgrwLanufOLz/JXX3iY9506ieMJnnz6Maamd/HAExf4+n3fQ6iQG07dxtkz53AdH8dx2LW0h9FwyHg8plKtsDC/yOmXXuDK+ou0fUGcGvZcfzNSl+yiH5wgb7/i/Jso7q61/9X9fpK19vc/66fF3d/6SNP0d7/PizVv2Kz+8HgzSld2296KRl0LYXsz+iZ3xHA/CsW61ra3e8/V7fKH0Ls3zskU74DOvdOZ/HjjJzlKYd4atSCF4InHn+Zjf/Sn/JNbjxG6HkYYhDEUk5TV1y6ijMSvV9C2jbItijQvTQx2nO1GgyHNVh0jcrQWXL50GVtptjc7LCy3uf66AzQbAWFVs7G1zlx7liRLyYucsB6y0dnGxcWYctGslU1exKy/egGTFMhCcNdXv80vfuhm+v0e09NTTKIx1VqF8XjElY1tvvnQw7z3xBGUpdjc2mJ+ZpbW9BRCShr1CkqXURMrK5eohgEz0y2MyOludwGo1RrMtKc5vH+OSrWObVl0trdRxuLokYNMz04xGo3x/IB6vUGaTfB9zcxcAzew0I7AUjt28soiDELGowmbVzZptBoYY0jiGJCMRuM3KBeGHCEUG1c2qFRCBv0Rfhiyd+8ceVGglEWeG+7+5nfwLYvvPvIkRw/vf6MpZVs2Fy9cwvOc0nZcldmDSlrEk4RTx/Zz/MgBsniMFIJWs8H1B/eRRDF+UBo/DAY91I7jYhJHGDJc30EpQZZOcN2QmZk5gtCj1ZzCsmw8L+DQnmWqjSqbm1scO3wcN3CQCAbdIf2tIY8/9wpPnX2NW953nEG/j+/75UxQkjCsMOxN6Gz3OLx/kUojRKiCKOrhhzaj4ZCw2sIYiZKKV154jceeeYGD+5YYjXqAQSrJJI4IKyGFKdBak2cJWpdUwNGoTzWok6Yptq+p+TmTYZ+puUVMErOxdZlmex7bb/F7z6/zP/3GTcy1fSzpkGcpYeAitYPlOShLEccjnJ3i3uSKT37qLv7+b/8Ojm8R+gEPfudRXr94iZ8/dhTHtcjyrNQDqhJlE28EhSuGO1EZ0ly9n5SUtaeffJa5hRls20ZJSRxPqNYClC1Y3rObOErxXJthv8+gO8APfLRSFHnOwYMHWd6zC9d1mG5OsbJ6kSNH9iFl6WDpODa24zAajdE77pGe65a6r7xAmAlpMsDWCs/2se0Qy3bIM8WllS1Ct8Vg0MUNXLTjk+UpFGV2XByVhjlFXuw4XpbF3SSKcFwXJctrYzwZ4gYu3X4PpZwyKFmWfASlLNI02imoEgQQTyIuXVjFtjSj0bDMyDM5qVEIywLHJpcWVhgSDwfYjqYoDI7jIYVCSUO/18VxbcgL4ijG9l0EMDs7g+e6FBi2Nzf5/U98kg/ddkupSRQ221sdtGXhOC4YwWg4wgsC2u02AsjyDFvZZEVpb97vD+hs9fnKvd9m365F9u5ZptfrIoVhMkxRyqPTjTCpwNU+Joc4jpiaaTMcD0nihPVLa0xPTfHM088QOCFpkZEkKa7nEnhuGR6f2/zpp+5gaW6JsFLHoAl8ydrqBp/+7J1cd+IE2lbMNtv8+R1f5NZbbywjNCzJh2+5lSiKqDaqFEVBr9tlNBnguj4mNwz6PbSl8MOQuVaTYA4xWgAAIABJREFUarXGC8+fplqtUdESkUgefPhZXnjpPPVqhUa9ycbGNrV6nSRN8P0KquwfkKQJRw4fpNaoIpWBwpT/a6lL6mFhyCcjKpUKxvZQP0I4UGDeVjJxtbh7+3HtY1/dqkSpiXZsh1ce/zxz0x4bw5hCSL757YfZPb2LKIpIs5zNrU0OHz3JbMPi4MF95HnGhQvnCXwHMNgalIQ0jbEtiyLPmZlbYOXiRWZnlzl44DAjM+BnT/wsSRKjbYtavUHUu4QUBqElMs9JowmFtrlwuYsXNkiyjLVLl9m3dx/j8QAocHyXqdYCp0+f5fnTj3Di2AwzU1Uc28aQU5icPM9L47IsBSGwgxqokgoZeApbRpCV1GNXGULHQglBbjlc7Ea4/i4a7Xk+/HO/iOs41Ko+WltsbG2wubmB74Ate9R1gkmzHQ1oTp4ZVDDLgSO3IaSHZRkWd82ydnkDbWu2treo1Oo89OyjnD59gancYu9SyOxUlSIbkFshT37vebY7CceP7kZLG6sRYlWmycwc0jUkSUGl6pOOxlBkJOmodOWVFvF4Qp5naF02E6N4RBC4zM02cdSYpDPkkXvuRsYDqlrzuU98ko1zZ+lePsf26ut0V19l13zC8aOz3P7+93Dhyll+7fYqqHWStEt7ps5gkhBlEmUyhDPgv/rwrVjWOtk4xqp6dLt9am4bzxU06kOiCKrV0lDJtmwc1yV1ClJpeG7F5vnTEfWpAwTOpNQNJ0lpolX0yMmp1Oe46ebDWHZMNN5madcuOp2IXO9mbRvqlTZ3f+2bfOC2D2I7DquXVtm9vI99+/fz4osvlvpuUxrHHT3cJu2sMhqN2HPifbjhbDm3fmCBe00IhqvxCG+Zo8XbF2XXQv2u7v/9MPNrb7tm9p28itZde1Vc3id+Wtz9rY+iyH/3zZzZH6Wh+3GLmLfQMH9E2f+THP/H7Ur8TY6f5GPerpj+4499gn98yzEKUyCVZP3yGsKAMDDqDanWq/RHI8J6laIALUs9ihEFaZLQ7Q2QwJX1Kzi2g8lzfM8nzwpQOSsXL6G1pt6o4NgKW/s8/8oZ2q0Gg8GA6ekW8SBDWRmeUyGNcybxgHySsHJxjWatwa7ZGcLAYzSaMBpNmJmZZjza0dXYFp7eEdMiqdbqPPvMC9TqVSaTGC1LDY4QsLy8C88pIxQ62z2a7Qb2jolD4Ps4gcJWHmmasr21yWe+8l2uP3EQx7WI44QiM1i2h1QZvu+QJAmj8bDs/FGaIPzeH32SG95zBKkUn/iruzj1niMIIZBK8tqZC6ytbzI3N8OgXxoXKG3TajZ24iJKZz4jDVubXYqijJVo1nzOnF2hWaviufZOu0CwtrqG1hadrR6VapWtjQ6VSogUknu//SDLS/NUaiEYQ2e7RxhWWF/fZDyJS6F6npMVCbVGnV53QK1epVqvlo5zuUEqxerFK9RqDZI0BiGIo4jRaEy9USdOY/zQRSmbRjNEioILK5f4yjcf4Zd/8cPcfP1hgsDGscvMQ60thBCMhmM+9qkvkkwSDh3ahVCSPE+xLcGg38N1PNJUoLXFyrnz7Nmzl+XFefzAKY1HtEVeGFy3RHGFuIpCZgjhMBwOURomgwnjYR+/4jLqrDMajtFegyIeoBRU6zN85WyH//4f3IbYQU5MoXeKH0jiDKXLvK/QcxlPhjiOy6WLV/iXn7yTdrvNddcfZzAY8tCDj/DAXV/lt37hF1A7CwqTG0ajUiNmDG+4PgoBaqdLqlTpZCqFYG5+docOY0pXQUsyHg8RQoLZMReBMo7ASP7yji9w/XXHy/w27ZClEbZjEYRV9u7ZhVBl8G9YCRBCEkURQRBQmGJHd1eeQ3f7MiZNMAXU6k2GkxhLB6R5TmEEd939LaYqTVpTpYttmhuUMOVCXiiU3okj2KFVCiHo9wb86//wR3zolpvL3CQlSbMYz/UoAMcuqXu52bH9N6KMHTDfd8Ycj4Y88NBDLO9aKIPN4wTX80vRvzAISqMFYYoyS28HMVTSIk1ztC3J8tLcSWobx/O+n3m2s9KQWmE7Nu+/6QaU0qRpikBQqZTzxnZspBQ4jvOGaH8wGqKVRhjBcFia93ieR7VS58ZTJ5lbmEdpTZ4VWLZFNayjbJcL5y/zla/dy3XHjvH8i88ztzCLkAIvrFLxK0RRjO/ZeK7H6dNnCcKy+15rNBiNBhRFjqVDppptHMcmzVJ8z2X1wmtUwhrD3pjpmWksVyOE4MC+ZerNKlCumCyliaIR3W6X++77Lnd/+wF2zbVpNJoUecGjjz/O7qVFtG0z7A+Znm4zPdWkVg1xTYrvV3jllfPkqeH48f1Yjk1YKTWGSukd0yOBZe84jSJ2TBmK8v6mNAZBPB7j+i6XL55narqF0S7yRxR3XCVVXuMhWD95irn52R/vgcj3n4kSKEzBa6+9RrTxPN3uJmFrCSdsMy/34AZVVi+u0mpN8dKLzzCZDGG8xu7lXSRRxHgc0Wq1gdKgxw8C/EqpPfR8n7QoOPPqBa5s9plu7+Iz9/wVx5aOsLi0hNKKja1NQp2AyXB9D1nk5EVBBuT4eF6FRrNOtVpjY+NKGesjYG1tDd+t8vRTT3PDqUNMN2xcW1PkZselOEVQIvValS7eCRLLq1GrtEjTEVHvMuQGvRMpoqVFHEU89ORjuLU99Dt9Dh46im1rAt+l3+uWhliWot1oMBluUw0KTDRAIFGOpj+csLnRwa0uUp/axdqVK/i+S6/Xw7JdPM9hdXWFu5/4OoFXY3hmyPyMw/Un9qEpEOTEWczh/Yc4vH+Jes0nB9xqG9tvk+WKSuCitYMxKSYtyLOcggRp4PHHvks8HtNotBBkWK67I6spsJRkqtmmVtOcPHGQdkNj6RFTUx4HD86yvFRj354p3nv9AZb3zNNqhIgi5tYjJ/jju5/h1IkKkzgnLaAwZUi6rXIK2WVuZokoWsEWAZkBxxZo7dJsVsnzAYWxSmqy0hTGMB6PkZ5hu7vNv/2P3+ar977MB26+Dl93UFKQJCmNRo00GZFlKU7gUQ0dmjUXhSAaDtneGnHHXY+w0YmZmVugVm1w+MhRBIYgcHnsiad47LEnMCYv78FpxtFDe7m8+hyb514kDGvsOvZenHABQ/GWOXfNmfg2xd27Rdt+GJ1787HeadsPH+NqY/Rar/20uPtPNIo8+903Uxv/SyvuQPwnccT8myzu/vLTf8VXvvQV/tHNR0pHQiFJkphGEDLuj9hc36LWqKMcG2VrHMchy/LSGt2IUgujSkrYxz/zRfZOzZAnOS+ffZ3l5d3Yjsu/+/iXufnkSR548DkO7N7D1kafoFFhcWEGqSSeY2NJiclsxvE2rlXh9dcvMbNYQddcWtPTKMvm6RdeolLxqAY1VlfXmZpqkmYZg+GYestndmYK1/Vw3QpZanBtxV98+V5OnTyKYymiyRhtaQQCy7Lpdrq4bkiv36deq7K1tU1Y8en2txgNUrI0Y2X1Ir/0wdtxQwvL0Zw9e4EvfeNhXnzuHNefPIrnVnCcAKUcTC65sr5BpVplabpN4AcIKTlx+AArF1YJAhcQ3PPNx7j3kef44I3X4Xk+emdhaYqCyxcvMZmUuh7btqjVm7iuR5JOcAPJfHuOe77zCMcP7cd1y0XU177xMEmccfd9j3Jk7x563QGWrShy0ErRaFTRWgKK4XBMrzdkYWGeP73jbg4uzZFmGdoShNUQSVk0drtdHMtmPBwjhEYUmmic8O1HHuTchRXq1YDZuRmSLMUPXSxHYWkQIiHNY8JqyKnrT2BrhzSecMdX72K6ViUaDvHDUrTtuC46g8D1WVrag7Y8LOUQjSNc20VJm8vrW9TqNRwHXnruHGdeO8/+AwvE0RitNYUpCx7PDylyMIUgz0fEicHzfaLJAM/2kEVEnI7pbW3huFXC9n4uvfYsXqD5/TMx//Nvf5jNfheLDGMyHKcGsjTS+Nf/6j9w+wduwtKK8aCPdihpr07I5x54gd/8tV/GCEOz0eTyeoffuf4U9VYTYwxxlDIeR2xvdgmCKlE0RgCu52JpTZplSFm6ZGIK4iRCSYHZQcCKPEdrg20r/KDFxvo2zWaLPI+IozG1epOTx4++4SImpURpyPJSryM1TKJR6ZBZgJAKy7LLRoMUKCkpTEEcxxTZJVyrgpQ1LLeCCm1kVmD5Gm3D9dcf5bN3fp4j+w9j+TaTKMF3HZJoQprm5bGKq7E05T3Sth2W5+ZotJoIUWBK7KXMEkQjhAIJ2U4xBZIsyjGmDDsXqiDLJxzetxvPc1m5eJnnX3yF5d17SbvriGTAYP083Uvn8IoJOBWSNMbzSq1fnhagJbbrYqTCoABVUgYBUxgwECcxnu/t5OWVhaXrOAhZ/i21FqRpQq87JAgDijwnrAT0e11cxycIHdIiASRJVNAbdtnY6HDnl79Fuz1FWKmhdUKWZzx/+jTnLrzKsQPLaK3oD/s0p9pEUY5JwLM9ut0ttBYc3L+f/nhMs9UkS2OSaMJkNGSUxSBTbE8QjTsIxniuSxA22LO8FyMEOTlu1cULHPI0JktikvEYLQuEMFQCn1pQZf/Sbg4eP0CRg0QxN9Musw6NoNmsImTBcNwlSWP+5JEnWHLg6NF9zEzXqbdqRHFUojgbXf7FH3yak4f3YFkSacnyWkCAMiSTiCIvUNrCSIWlcnJytq6sMjM/jdE28kcsDN/Qz/3QeODMOW79lb/7Ez0TzU6j4+KFFT73iY9x6rpbOXbTr/B//vN/z02HbsCtNPmrz32eVq2CIiaLB/zMbR8AJjiOQxA2KCQ7z1FDmqekoozzmEQTcmN49oVXMKrOarLCL534OyALGu0WrufRaLbYunSGIo9L19Z4UtK3lWJzo48tLV595QWU5+HbNvVKHWXZzM4vsrF+BSkCNtbPo6KM0XZKq12nMDlSKhzXYTgel8YlucEJaiB9siSnKCIsxlgl55lMpeRxQYEml23uvfcMywsee/buozU1tdN0Kg2PbNcmTSLOnn6adqVA5wJlOUzMmDRxaVT3oCpT4Nqcfe00e5b2YDLw6zWkhNCr0xlu8NJDL2LphN2LisV5H5EXGCp4xFjpAN9xQAgs30FZe9B2ncFklWhjTCFBkjIeTZDSImxUySYZg8GE6fYMYRggdM4kyzE7kSPkOaLISbMCCoPrWShVrhnqNZ9GvUI87lGt+NhFhi1ttHGI4iGjTsSBPQFkOc1KjSLp4YoxRV5FqhFJJIlG2zhiBkf7pPkltAOgMNJDSUOcpIzGY4QwBH5AsdWjogqOHL2dX7h9md2zE0yeUqvVUUqRJAlWWkUJi4IuV1YvU/OmsURKNaggsFjY+z6+9d3HOHj4ML/+0V/nkUcf4djxQwShw5EjJzlw8ABSSpqNBr7vE08GrF16lsWqBiNp7TuKX9v9NrPuGlt/Wtz9dFwdxZvcMn9YM/dmOuQ7ERjfoGP+qP12rgRxjf3fzfG5xn5v/v7tqJlCCCTfp4PKHd2a2NlW/izeCPR+yzmJa7j8GIPc6VYK4PuBBd//utbvc6393jz+n//rX/I/HJjm5sWpHRFrSdPSWvPC00/wwjOPELg2zekFTp9+jV1Li5i8IInGDIcdLlw8R6vdxlBqqG46eYLtTpdHnn2R1y9fKY09di9wZHkeieHgviU2tjeZX5xjMkwREtIsKU9UKGzPQ2mfJ599HqUFU60ZZG5jaxupBZ5jUa2VJiWX1zdLwXmRsGthiqLIQHt84xtPsb3VQeqEZjPg+qOH0VLgeBZZkvPii2dpNZt4vkeaZXzs01/lhuuOYkxBpRIwHg6p1+dI4j6TSen0OTU3y5999mvsnpvn6/c/ynAy5jf/3s9gLIPllJ3OIs8QFHz2i9/iPUf2U2uEKEtiOxZaC2r1Gl4QsN3t8L4TRzn76qvsX1pka6PDJ/7yblSeUPEDWq0WfuBhiowiHbJ9ZZsiK5BSE0UTpFbc8N7jVKohlmOxvrHJsSNLvHp2jdtvOobWOVsbHabmp1EaavUKcVTw9LOvIHZcEnctLyJ1wZH9i7z+2hXOr1xicW6ONInx200KAZ7SnD1zjnqrQV5kTJIJXhAw3VrguefOc/zQEpMoYTgccf93HmZppo3l+WSZwRiFMYIg9FA6JY5yWmGDhcVFMjPB8QK01KRRQq1dZ/f+3QgZs7aygutKcgnCscijnKm5NkbkFIWgWhHs27dANEkQSmF7Dnk8wXZL/aKlNZKcIvMIq4KNtTXqlTlyNSYajPC9Bibepsgj7LBOHnf5Ny8P+Ue/eTOW55GnBWFlCmmVsQJpPIG84AMfvJk4TjEFO1mLDrbtcO7yBoePv48HvvskJ06cpNft88gTT3LT0iKO52E5FqaA1YtrzMxOY0j40pfuYXlpV+n6aQqkpRHsIHJItO2AkKgdB0nHKTvtRV4iuX7oUJjSGCcIA5JCUFCQF6WWsey5KtI0Q6rSfdP1Q5SwmAyGaK1RtqYQgjROEEWONhGjzgpeMI8TVFGug1AWeVrGCRS5oEjLQOAbb3gfbqVsWkTRGMcNKLBwbU2cxDv6OiiKHK1Ld8m5udmdTL6SY2NpTVHkFHm2w6MvyLIM13NQqrx3K2UQsiBJIuIoQ7sVtBvSmpnm4MF9xOM+wVQLIx2CsEWtOc3mVpdxbw1pCizXB1sj3RLpkUYiDSTjPslkgLbKfDvHd0AqRDpgMuyipSY3EqUdCsxOxp6myHciJUSBbTnc8YW7OLBvD8NBn/Ovn8MPfKJhTBYX/MmffY59u+cIPY/9exeZmW6UXfcYtja2ObhnDx+4+WZee30FP6jSaNbRUnF5ZY07vnA349GYqakmfhiibY3v+GAKJtEYy3Wp1lsYw04kRU4SF0zPLDKZTEBprMAlTiN8x0YJG5MXRGnCaDDC8T0MCsvyUa5kHI9Z3L0LRA4iQ2MjtSQvEvJkQJ4b8kIgLRtPOTDaYmlmCgQMR0OKuMCxNCsrK4xGE1Yvb3L7radwbI/tzR5bmx3qjQZRNCop/dpCCkkWJ2RZXl5bcUS9VieX3rtA7q49Hry4yXW33fLXeq9BovOESaGJJhMuPXUPrh2hqz7Vxnv42Cf+nLmKR3tqjko9pMgculde4T3H9nPx3GmmZ6eQyqHTm/Ct+77Jrl3LeLYmTSYoIbBkhud6PP29FxkMDUcOv4eHXnqa3/7VX+fKxmUcbTHqDlhZvczCrIVJRzhGUDiCpCgIpCKcWsSu1lhc2ovrBBQGbNdhPBrR2dxAioLl3TNE8ZgYzYvnzrJncRZLZeRpTF5QuucKieX5pAKU5dAbGzxXMd5eLZk6lmaSxDhSAzmFFhSywt//tX/AQw9/F9dyqNdKDWk+GbByYZVouEU9tBl317F9i4yMXAaoYIHMDkC7tBpNFud3MY4mWJ5LHE/453/8L/nob70fVrrU9Ro/e9t1LM+1KbICbdsIlYPRKNsjIUVIi2DhJI7rEk0mKGEjfMOks00SJXS628zMzTAeJSTJgHojpFoJcVyXcRqjigJba/IkZTIpHWwdWyK1QaoyAzTNxc71OSDwXCbjMSiJVAIUWI7L4twc/+aOJzCDc8zPzaCUQNk+hZiA8bCkQEofYWUk4w5Gu2C79IZ9KkEdJ5wlCKsIk+H4PklekKEYp5pGFWw1xHE0rueTZorhuEM0mVBttJmkfYzKCfxpXF+RqpQ4jxhNYr738kUarTkW9+zj+veeotVs43k+nu9y5+c/z5FDBzl/7nU818V3PaxKg4tnniYveiRCsThzALu9VK5PTalTFObtZmS54rym+6V469e1ZUzX1tm9+RhX6ZlvVzBeLeCuuRaXb5zlD2z/aXH3tzCKaxiqvFNEwdWsjWshfO8WvfpJUK4ffu8P//y2F9ybpsO1svLe+UPf+ropchDy+52Od3Gub7ff1XH/tx/gt+ZDECVKIDCQ54BAFIZnnvkeB/fuZWHfQfJcMN2okuQ5k/EEy1JgDK1WizyXDAc9er0+nusilGaqWed9J48wM9VgZWWF0PPQWuF4DtPzM0zGEa7r0e/3+aPPfImf++CtWLbN+XMXufeBR/j5n7kVAKkk4+EYy1IMh0Nq9SpaK146/Rpf/MYj/OIHbyEab9HrbTIZ9Oh1hhw6uA9EjmML6rV6GfwsBMPBkDyLmZ1plforx8ayNIf2LmPZkiRJqFYqZUabbSOEoVoNqVWrZDk89PhTzLfqvHTuHB88dZJ9+/dSrXj0ez20ZWHbLnkBG+ub7Nu3BKIU53c7ffI8wfFspATPcxkPRiRJzO6FOWZmp7n/kSd534nDzFx9UFia5154GduFqZlphsMRru9hKPA8H8dxyUqYqjS8yXOeeOo083NNZuba7N69jFGUVvC2w/3feZypVoPTr77Od5/6Hu87eZjt7W3SNOXlV87zkQ/fQrVeJaiUxSd5gRKKwPdIkpgwrJRGGJam0axx6OAy99z7AMeOHOTeBx7h9curnDp+kMwUJElMpRqipKAocjYvdWlNNXA8hRu6OG6AUjYvnz7L1+57mFtvPlXe/IuC+x56lGatRlgt9XN5kmFUGUptaY3nOsRxWga4OleDvyViJ8BaK4mUkuFwiOfbpGmC53hE0RDbc1hf7yGzAcIkoBX/8flV/tnv/DzKqYN0kJZNnuUoq7TM10oxGg7wAp+iKB0U0zRCWw4Gwx988Un27FrgM5+9g9/4jd9kaqrNN++/n1t2LVCpVUiT0pnRDwOUkni+y6ED+0uNmdYYSjqmRJAbg5Dl+UeTCSbNUEqTZTlRnGK7fhnKK0trfiUVeV4gVBncbmmrLBJ37j6W1mir1PddRSRMbmCHniXRKFUQJ0OGgw61ahvpBkhl0dnuYllleHWRl7pGKQRRFJUF9I5Wz7J0yWwsDFmWIoVC7Djulk9WWb5XSYQsQ4Kj8RhtWQwHAyzbKhE0VaKJ5VNcEMcTbEczHJWaRN/3UVqXdL6iQEvFZDjEssvCWEiN1BZBGOKHFZRjM56M8J0AClkG4hamNPLR0Ol1yKIJlVqVIs9BSgadLeI0ww/Cnf+vAFm6/hU7geogsB2LySim3WzieS6OazM9NUscTZjEEdV6lSOH9jI7v4Dn+1i2heNaOK5ia6vLs8+/wML8LEElYDAccMeXv8XG5hWOHjlMEAQcP3qMT33+i9x60/VUqiHD4bDUDiqJlAVZljLo9VC6pOf+xR1fQqOYnpohTSaE1RqDwZC7v/5NsjhBqIJqrVYihP0hRV4wGo4IgipS5Hiej1I2gpQkjrHsAGVphIYsTnGcAL0TVG/JAh0PqNaqFIWhPTXNN77xELVKhfnFOcBw5MAylqVRWqKUoDA5jmPtNLlKR1STF1i2jZQSy7HpbKzRnGpRyHdDy7z2uOv1tR+ht3v7YZBIk2GUhTEZrzz6bQoz4eCxUzz+zAq/eutHmZufpjCCbrfLg/c/TD7sMjM9x/zCNJWKTTyZ4Ps++/Yuo7XA0lAUBa4XYvKcKErodEfECaysXmYr7XDLiZtotRoMRwO2tzZZWtrDoLNCnkywpCgDuHNDHkV4zQWwfIpcIZXFo48/xu7lPfhhwJXNDWZm5snznDNnT/PU04+wsLib+SkXKfMyR1NpijwnCEKSNCXODbZXIwzbUMTk0TaiKAl5BQWebZffCU2zvZvRJOHw4SNkpiAIA9IkJaiE+EHIdDNk1Fun4kEhDZYdcmU7IjYuYb1NZ3sLPwi5snEF1/FYW1tnOOzTWJrnf/3H/5RbDi4wP93Gcyw8W5EkUdloTiYYA2mRYiwXO2ix1RkilUBoiJII2wnob/cIq1WmpudKVFiUNGwvDJDSQjkB2BaeU7oKZyZHWxaW42DSsrDL84wiV5xbWaOzvU2jViMaj/A9j1yX94Ik2cnSLAzXLRzk+JEJSowZjHM6g/IZGaUDLEcQJRlatcmlpNpqgKUJKlWE0URJTDQZQJ5hhE2SGYqsvH6yHRbNYNBF4GBMgW2D64UkicbIAikNnlMjTiO80MYUOZ7tM4odarVp7r7vGaTwGI1iLq1dYTSJwOR8495v0Gq2uXTpMuNoRK3RYqae01k/gxQWi3uP4rSWSwOaHTfbH1zNvnW8W5Lau0Hz/joooDHmnZE73vraT4u7v4VxreLunYqdqwjXj3u7F7xzVMKbDVfevO2djieusc/bdQykuApZix/Y993QNd/RYOaqXvGHXi9M8QMF8FXTlLebeb1uny99/kvcstACSitoVeSYOOal773EyrlLHD64n0Z7ijEOZ14+w8bly8wvLlLkJU6odxzsnnj6BRqVgD+786vsmZ3hgSee59ULqxzev4zv2cxMNdnc6jE13WL18jpBJaDaqJPFCWGlwt75WVZX13BsTa835KFnX2BppsXUTIs8z/ADjywrXaU2rmxhaYtmu8ZsvYojBc2WzeX1Szh+lbmlvSQU1Np1GlMzDLo9LLt058uTmFrTx3It+v0BtuMzHsXUG7Uy6DpP6XcGVKt1JmlE6PvEk4ggrBKnCTccP0izVefYoX0s7V7E8Vwmgz5FXuB4DkppkhiW5qd47vkXadRClLSxLZs0HbO+folKLWA4GFOtVliYm8aYgsuX1/ne6TNUA4+lXQsICYNBn6WlBRAO4BBHBZ2NAQ8/8gKdrUtMtdsoy2LzygatasAkS6m4FQ4c2o22FeNRhLIl/V6fsBIy1WryyTvvwdcOURpzw/WHsG2Ler3Gwuw0f/Cpz3JgeQEhDMoYHNtGoDAUhKFHagS+76E0FEVCmo6oB1UqtRp7lndx8vABLCWxXIskjokmY7Isxfcd8rHDxtYlGrMVjBBYVgUjDYWBm288xWTULxd0QrB79zxBJcB1LBylSJMMrUsqa54npElKkmZYto2WgiJPyQpwLU0SJztUw/IBa1sOg94AaeWYAirNGsJYdK+cx7EF/99Lm/yT/+Z2orQgFwrbc0EV2JZNNJ6gRFl4DYcDlJal1kpsSV6mAAAgAElEQVTKHQolpZ7xiTP83V/6CL/20Y+SpCmuZzN1+QJz09M4roPr+SRxyssvvcLjTz3DkcP7sRwLbbv84cf/nPeePA47ZjrRZIK705F2XAeRC/7s05/lxHveg3bscsFdQJ4XpWOr1kihSPMUYQRKajobW6ytrTM7O1PeA4qCQb+PbVsYwHV8iixh0NnGcx36/XWkMoxHCb4/TSwF40lEvVajyHKG/R6W65WOkHmG6zpIISiKjDwvSkRZCQqTYVsuwgjiJMFxPHrdHl4QIqShMAVCWpDnaEuTF6UeN44jLEtTFCXeaAxkaU5RpAhpyIscYQQCjRISU4BAkKcpoe+DNBgjMdJmNEnAshHSQ1mKLB8jco3MFdous/GUVuRkpGlCNOiR5TmO5yO0he8FuF4AKAojyJK0RE8paYVSlmXH+dfPUwlDnnv+ZV458xqmyGi3pnBcj5ULF8jzjEarpEmNx6X20SjIiwTPDdi1awEEjMYjbNuiEdQ4dvgITz31LAu7ZnntzHnq1ZDp6SbVasjGxga2H+7Q66DIU5qNOlrCxtoWV9a2eeq5s9x84ym8wN15phXs2b2bqZlZPM8BAc8+/RxLu3cThlU8zyFNMoQsUEpR5IbJqMcrr5zh3338M5w8ehhlSVzLw3Ed8rzgD//00yztniYf9snSnCCsYgpBs1JlPJpw170PcMvNJ3EchdI2tq1xXIcwDLDsHd3pcASCMr5jxyy2dMtco9VuguW+6yiEHx4Prm7ywQ/e9mO95+pzMkOiyBBaI/KYC889yMzCHEFlN3fe8xD7FvbQrDew7JALF1YZRa9jyQHXnTiE49p4tsAUO3RuZbB1WdS6nke/32Myjshzw8bGNjOze/nS419n9/4D3Hz8Rs6de509u3dj2YogrOBri36vi1IJAkESxZBnCL+JUR7bnTG1eotOp8PLp19kfn4ey9ZsbHSxbIfVlQv0e5c5depGfD1B2TYFAkspjCznF0WOFVSROsTWAXE0QJgBgecTxRGuDinynOEw4r5vP8zhozcxPb9EWqTUm1W63R5ZbrDDCkk04OxLjxI44KoS1da6QrO1jyCsMeh3mJ5ZIImTMvMVyPOM+7/3EOdeu8hs4nNy/wz1qoVtCUyeA4o8K9dvuXJRYR1dnUW708jMKptDwyGV6hSe18SSObbrMJqMd9ySXYJqnTjOUFYNtzKN9OsME5ugtUSua9RmlhF+G2FXSC0XpzFHQpU77nmQ5cM3EDbbuI0ZjBMQpw7SrqKdCkmmcL0myg25lHZxW3VWR7P87u/dT6MacPjkUSamQOgpvn7vq3z5O6ucOPVhlK7iuguM4gqVSooS5b1ZSpteb4ClUxy7jGNSuiAvErLUxlEZQhf0Y4dzq2PcwMPEXXyvhsGQRA4m13znvqeYxNPc+eWHGBcB//Af/i/0+j32HdzH6VdeYXFxno/8/C9QGIPnuzQbLaZnF7HyKww7r5OmGfsPX4duLKOE3qGDvfvi7s0I27W2vZtxLbOVtzNR+T4i+A48vDeO9dPi7m99XKu4e6fx10XdBO+MCAp491fcjziPtyvu/rrjnSfStYu7nVLurdTLaxR3p186w9f+4i/5H08deGObkprty2u8+vJZXr2wypHDB8nzHEsrktzgWhaB51IYUZo5CMlrZ89TrVT53Fe/Ravmc/zgPp554Qy3nXovl9c3WV6Y5cHHn2b34gKOH9DrD3n2pdOsra0z1agyHA4QAhzLpj3dwA9Kh8yP3H4z9VoFx3VwHAuBoN8fsL3VLTvoUhOEPsPBkN3LCyChVm/guCG2XwNpiCYRGEk0HmFbil6vS7vVIkrGrF1aI8vA1i61WgOlNMNBn42NLWr1ClIpkiymyDIEJeLXaDdw3FLM7fk+QgniuHT0y3cy8vKsoLvVo9ftk+cZs7NTdLe7aNui29liZr5NHMVUwwbxpMzLqtWqIOAjH7yVqXajdFtF4Hkuk/EE161ia5v/+/c+znStwuZmh5tOHWKr0yeoVNBKMOqXweZ/+pdfw7EMU+0G/d4IN3CwtN5xp1Rsbmxy+803UAsc/MDC930G/RGO6/D+G6+nWi0zujxLM+wP6HQGeL7NoN/FC6qMJ2PSLKWztY3nuVQrVRzfJ8tzkjhlY3Ob1lQDz3NxHfcNMwzb8UmLFMuxiKOEPDOMRn2azRYYmAy6uLZCKJskSwgCjzSOubx6GT8IeejRZ9izZ5miSLFshWXbZGmK62nyPEXZDtubm5iiKA1LhKTTvUI1bOM4Fnke4VoBcTzBc10unn+JOzbG/NP/7pcxRGUulePjOHaZr1YobF3qDpMkxQ+CnQ6gBRRlwTeKANh7/EYcW+OHIb3BNiZP2IPE8QOEUGRZSUWsVavsXV7CD3wmeUQa5wSuz1S7QZKMkbJ8mGqtUFojhSBPc6ZarVLPaCmEMMRJgr2Tf7W9vUUQ+AhR5sIJBI8//jRhJSAMA/Iiw2BwXGeHrrqDphUpYWDT7W6hJGjLplJtobSFsDSWLp39kiQhCCoIKXfiCXZMRoQsdXMFaKVJ05giz/Bdn0lUalqVFDuOoBaGlMlkjDQl8htHcal5EYY8z9Fa88++cg/ntrY5s7pKaEna9dqOdlmitU1RSOJJQmEE/X6PwHcZ9LbRjkMcpeSZIYqiEvVWLlKB5zgkUV5GMbiaznYP3/eRUuIFAZ5Tun1alo1BleimUijLJo0zXNfjD/7w49xw3ckStRwNGPS7TE9PMxkn7NmzzNzsNLt2LWAKw/nXVpiemaHRqJcOmraL0iVVVVuafr9HJayzsbFFYQxhpYLjOOzZu4fOdofHnnkWSxk8r0Il9JmZm2JzcxPLsqmEFSzLYjIZEkcxSlkMOx3OX7iEY7vcetMNRMmYNIsZDUdMRmOmZ2bZ6vR58MFHWN69xNz8HJZlo5Sks7XJaBRRa4QM+kOU0GR5Snuqzc/edjuVSoBlS0aDMZZtkSYxS3PzBI7LnY8/zXXLu9i4so0xhs52h289/AT/7W/+PYbDEYYyb7NcfF1lmxjGowlJnOC45TkoJRkPJ2jHob+9QWt2mlxYf23k7oGVTT74oR+vuLv6STkKJTKSvGA87HHxhYdpz81SiBYtcYh6M0Ag2Noe8PV7vs6tt1zH4kyIwnBp7QLtZq2kEmoNRUGW5xRCkGU5lpA7hjoOfqXNVidmdqnOr3zov8YA/d6AbqeL4zpsbW2x8vrrrK2+SrsV4Ls+BkmWRKSWj19t0axNMRoNaLVb7FleJktSgiBE2zZPPv4IWxuXSKMe+/YdwNM56xvrBEEFSwm0Y5MlaVmwCwvbbzLqR0iZU2RdNKLU0xVlBmeSCi6uxTz5wvNYdsjCrjmGoz6e56G1i5CK0NfMtCrEkwEmj8kKm9RY9MeGJMvZNb/IJE6JkrTMPRSCz33nC/QGm+xzbG6/7SjTbYs4mpR0yDxDWjZuUCGVisbMPqygiZEu40lK4FeIk5R6vY2SFnmeMxpsYNs2vu+j7TK7M0tSbMfC1j5XNroYqalUWiBtLNthMBwhpY3l2jh+nbzQWG6F97z3/Szv3Y/jWmi7jEbwvTaOX8N2fWwnwPVqiKDBVx/9Hjfc9F5Wr+R4lSV+49d+CSyF5dWw/TlOn+nwtQde4Wd+9kNE4yGrq5vUG4sU6SWkMVAkuH5pllQNS41wmhkm4xG27dBqzeHonDgeM0gC/u2/v5Pjx5aZadhMhglGGhw7hNxQq81ybl3w8DOv8r/97/8Hn/3sp9i3f4k9S/PsWlzgysYGp0+f5tT7TqFUad7zyivnaYcTLl94nkq1iludxps6gORqzuiPLu6uNd6pMPubOMaP0uG9df+fFnd/6+M/m+JuJzvvb4La+Z9LcXfN3/SHLur7vvUdVh64j984sf8HtnfXO7z8/IucfM8hDh86gHR9LGWztnKedqtGf5TQnJriU5+7i+Vd86yvbfDUs6d58eXX+a2Pfpg0TfjyNx/EVz57F+ZZmG4TRQnTU9Mgbb7z2DMsLM5DkXPD9YegyPCrPlpf7e66XLj4Ou3WLELAaDRi0B/QHwxwXRth4PzKJb7x4JPceN1xJpOY11de59LWJRYXD5KkDr7O0UaTJz08mdG7vEl9qo0hRQKTwYjt3jatZpNGY5qtjSH/7+//BdcfO4RSgu1Oh3a7xvkLF5idn+biyhozMzMMh6MSkcImKwyu65Rc8PwqqmQYD3p0tjp42uNPPvM1Du1doj1Vwwts1i6vMTM1w8VLl5iZnWY8SJDaYNsWX//mAxzYv0yWlovJ8WiMH/pkaUqaloYYpoh4/w2H2btvmoXZKpXAoz07T4FgPBxgkgirEnDi0GF836beqOC5ZXaf1prJeEya5sxOtQi9Cnd/57vccuNR0rTsLAfVEGUpJpPSzXG0vU23N8AIi2arTlFkaMct9QmWDQUEfgUjUnJjsGyHjfVtomFamoIUhiwrTSqk0IzziKBSRxmNQqJkhhBw+dI61TDAVQXDzhby/2fvvYMsu+77zs85595z00v9OufpmenJETMIBMAESHRJtiSrJJWklVYbaqvs2trS2rvrtVfeWrskJ3kl2Qq2pDUUKZIgIZAgCQIMoEAkIg2AGUwABhMxsXO/eHPYP24PMCSHICRLtbW7/FV11evX971+3fed+87v9/v+Pl+7hjA37EuyjIpt44cJFy8tMjE+irYEcRxgmArTVARBD8MADBvPdXBsi163j2FoDAuiXpl8GDpHFRXWLl/C9SQPXT7P//CT9xLLLbRWzlOtNBDCgdwsE7hCEvZDnn/uCLNzs0hTc/HcJWzbRRkWFGDZDqZSpPYAUeBj2Q5R1ibLIuILV3CsKkhzQ+6Ts7K8ViLiKzba0Shp8fRTzzM3O4WSeTmDuEGpK/KCJEkwLJt6s04U9lhbuopWYNo2eVZ2CG279PQzbRuJJEkSZmdnGRoeJE1SsiwlDANczyNP03KuyFSsrFyi31umVjeR0iUNBbZTIy1ikg0PPKkU2nLINq4qYRCWZta6XItLiws0m4MUeYFhSjqdFpZjkcQRSRqXMiHPYW1hCSkS8jQhSBN++4VXePr8RZ59+xJLyuD5y1c5042o1et044RzKyucXF1n2bAIm0303DRPvnGJzzx/hP/rK1/nMy++zN++bTeuZdDtrmLaFZIoxe/2qDg2vc46R149xuToBHGc43o22jZot1ZpDg6RF0UJcEFRKAdpaKQ0SdIU07LIcgj6IUmU8JWvPsnP/9RPYShBGvpos6BSMen1UlZW1vns5x/njsMHKSiI/IBHH/8L0ijn0597nM0zU7h1mziOsG2HNCvtTLptn8ZAE63LmU1E2WHM84LNM9MMDw8yOjrBH37qMyyvLJCmMevr60yOjG3IUC2W1zpYtkcadtg0s5nZ2U24VRtUTKM5hG0auG5Z5FCWjWd6/MmDDzM7OYZUBYUoE/FatU6c+GRJhuNWMB0LU1ukUcbli+exjBxlOQhVCvUsbbO+0uHhzz9Kw7IYGKhSkDM1NUrVsalW6liuTaXi0e+GHD9+mtOnLzA9NYFUBl7Fw9KaIAjK643fx1AmyjQpoj6VWhVh2Iji20l93zuePXOR//of/U9/6cfd+BxNkRikSGnQ766xevY1hscn+eLX3+TqpStMTE5w9q1zDI4McfntK1w8dwwvt5BxlU07JiGNiYMY09CstVcRpkZbDnmaYmYpQpr0+32+9tQz/Ok3vkQ7lvgrXUaGponDlKAfMDY2RrfbYseW3WRpQq1aIApBbppoBRcXFnErA8RBxMrqIv32OvVqnYpbodPqsLi4QNWtMD0+SRqts3DlDBXLBWniulUcyyCXpd+eynMSoXFrIziGS5z0iKJV4r6PNgwMmRDmfUy3yjeef5Mf+LGfZtvWHSwvX6Pda+G6FeyNwkjYXccgJAh8mgNN3OlDFE6T3K5Qb47T6cUYhkRrzfLyMotXl9l712Ze+eIbfOzQFFV8lGFhWBohJVEUkW3MBTIwQcooGEPYloWUBbHwaTSGCfwIwyjo+9eRRUrgdwnCPq31ZQQ5K9eukKcxQZjxwAO/S5SmjNY0sohI/RYyD4n9daTMCXtgSgdlZORFhCxCVJEhCihw+Mwjj3H6/Hk2bZmj5/fJChD2MFcuX2dmajOH9+xifqaKqI5gVSYYmT5IYQzjNEb47BMvc/99t7NpeoCB4SaXr1xnpC5YX1/DMkHpgp7fQeQmaQJFrqhUKliWTZ4nFEmPXBQY3ja27NiNaWQMVjLIFXbVI+hdpqBPYVp86isv0ZM2I9U6P/PTf4fW+jV+/3d/kw9/8B5Gx2cZHx9HCEEYxZw7f47dO/fz+Of+gB1bB4iSlIGhSQam9pEVBfJ9yjK/lYKxcev7yd3//+JWJuY3QnBrb7rvkEJya+Py73i+G1LGW/ys+B7viBsefDf/zu8Wt3qub4eYFNw64SsVjiV+5cbXzTCWd+SgGz3oW0FRym4Pt07uAEmJ7V5dXeZzD3+B//bQPIVQFEJSZPDSsy8S9NvM79yB0FW6foSlSpNNq1JBGSYVz+HcmbOsttrMz07y0KNfo9sPGB0eYLBRY3x8jB2b59iyeYpO1MWreXz16ZeZHB2EIuPVoyep2ZqdO+aw3CpBmBHF4YaEw6Td6jDQbKIKRbtXPl5bBqqANM9I45g0SPAsm1Onr7B//xyudtg0MUuehShZSrKklvTDBGnVWVzvoVWO5Vql31mvh1Mdxqs0yNMYqXJ+6GN3o4yMX//9B/nb992P3w83NscGjWaNfuRjmBpT2YR+GwOBZVoE3YDffOAz7Nq8Cc+r4XgVKvUal65f4v579lAfMLB0lTzPUEZMtxNRq1bQRtmJFMIkSwtOHj/L5pkZpKVJM4NvvnCUqalRHK+Cadr0+uuY2sIPQhyvjmE5mLUBhJKsra7gOA6NwWGEgKWlBUaGBllcWiJKu/RaCZcvXGag7nLm7EWeeuk19uzYxL5dW0njlGq1htY2aRbSb3fI05TlxSWaEyO4lSqu42Iog163j+do+p0upmFh2Ra+36dIEyyvRiEUrmMzUNXYDY96tcbK0gr1eo2kyFBIbGWQpi2kkSFVSQG1LRMpBRgORnUAgSDNY4oih0KhrQraspibnWR5cQHHkYRBimFoJAqpNEmUY+qcKCjpi91+G9t2yMIMy85ZXrpC1bHw28tIy+Kp7hV++PBWtF1DqRZSmNSHp+l1lwn9NRx3CKTi//zNP6TjhxzYv40w7PHvfvtB7v/o3aX9gjKIoi5ff+UUw7PzjE9NkaYJqjB46M+/zEe2bUfbFnmRUiAwNdiewqs6mMok8EPIBZ/87Bf58D13YnluqV8R717xpJIEvT6GoXBsl89+8Wvs2rmXQsqSXIoBFPT6XRzHRlB27gwtSfO8nNUhJ01SnvjaU2zdPl96TmUplWoT02ogjBpKuxi2RS4LlDbRSpEkOUoahL5PmvilDDJLMEyDPC2TFLdWIU4iDKOUUTm2A8LAlCYrC8tkQUQRp3zic4/ywbvuYHFtlf907A1s18bRioMDFSYlyDDgx3fv5uDoAPtHGnxs504+Oj/PjkaNfGWZP378SapRn/Us4+//Nz/Df/mzP441O82/f+hR9owMU3Vr2JbDS0eOMD4+juO4zM6Mc/3adV5++TXGRgc35r9ser0WQhRkcYYhJYVBeU0tMkxTkPh9yDP6vS6NZoPtO7fQai+iPQ+hNYU0QVhEYcrwaIOdO+agiEniCLvmsnvXFrbNzzFYtRlqNHDqFZQyWF1aw7Yt8iTh4UceY3Z6jErNRiiTOEwIgx61oSZerYqUgrVOi+nxMQzl0m3HXL62zPyOKbyKw8LVa5x+8yy26aCUojo0SLvXwbEcfuPfP8C2uWmagwPESUwUhLiGJs0yRA5//ujXuPeOw5jKoN3tEAR9lDRJ0wxlSJKoIIliagMlLMerDGA5Hnlamqb3Ox3SrGDf7CiPPnmE++85XAJ7ZM7IxAitVpdao0YcR3RaPs++dJRNU2NMTo4ipSzprQiuX1kkT6HZGCbyOyChtbJYyrorjb9ScveJt67dct4uzwv6QVDaVdxqbv+dUQmFUaQIQ9NqLbNw7ijN0VGeevkMP37/T2JJg7MXLjA1MUaU+rTWW3zknl2MjklMKUjSEK/ikGawHlp846mn2To3hSEKgjjEcW2CIEboMV49d56aM8DB+X3cdugQpqMZnxqh328xMTFPHF5jdek0dVuTpSlSFORRQrM2xOL1awxMb6FaaTI5Nc3q6jrScjG9KkkYk2c5L7z8PN2+T21wmrnZJlNDA+Vcq5EiMwNEiqBBbksypUCaRGGfqhYUaVB2sD0LlUK/H7DcMbnj0B30g4CKJWkMjVEgcIuYMPPx+20s26EbZAh3ANOolGqbVpuhoSbKkCwur5AnBVlh8MjTn+Dpxx/mB+7YxKUr1/naU29w4OBOiPukSYS0KjjNWZz6FKqoI1REv7+KYdbRTo0sdFm6/hZaBeCvsHLtNK6dIYIeIlsj7i+zdKXFeF2Q9pbJe5e5bccupsZydN4n6lyjCNdJey1EUnaTk2AFVfRI/FXMuE3ur5EGLRJ/nTRcgSBCZKvMjDp4eQJFgsj7bJ0Y5lNfeogDWwLi3nmqbkp39Qyd5be4+vYZzpw8xpWLCxy6/RBz2+ZptVoMuJIsT0EpTG0iUkERF5g2mJbCciWQEUQBtufhJwVImyJZpmnHzI4N44cZuQqRhU0/ykgzB1Fookzy/PMnufsDH2Hb7DaOvXySD9xzH1Z1ECFSpBQ888wzbN26lS2bt3LyxFmGnTZGuoDrVaiObcEbnkdJBcXNnbvvTOBuWkWAQJVjiRtfJcTqRvPvuwFV3iveS855s3zze/nclcd/qzfm95O7v4H4Xsndt9sX3OqU3dyVez+RvweU5bvFtx//l03ubhW3Su7yW/wdt6qTvJ/Kya2SuzRN2UiH+c3f/D3+wYHNKKM0F86zgk9/5hE2T40xs2kWpW2SJEUbipXFxRI/b1sbC0iysLDEnYcO0Gw2sCWYpuJHfug+pCqo1Cp0O11q9QrVqotlW4wNN/nkF59gy/QYLx0/zT2H9zA03HzH0Nggo9/zIS+7WAvXShleY3CAXreDbdssL63guDb1Wg1DGkyMj/H8ayeZnRhgcHiQ1eU12u0WhipR+DeIn+vrXR548DHuOrgd27UxlIHf6+FWa0RRsDHgb5EXEAQBR469yd2HD3D09ZO4tqY+UMMwFVIqBJIsBa9iEwQhnXaPhcUVfuCDd/HAH3yR0UaNerPBQ498lXvuvhNtKizH5qUXj3P27EWmxscQymZ80xRxHBHHyYZNQcrY0BBSSVbX2rz60nGOHD/NffceJksysrzAMKySfDk6ytraGoEf4HoOggKlRCklFHDixCnmNs/R7/X5s89/idv37aZSq/PmmTNMjA8xMzPD7h3z/LsHPsmlq9fYtmUGS1tIqcjzCNd1iKOIRr2GUBpRCP7DH32abTPTDA0PEsUxgR/huRVeePEVJsZHybMYDE1eCD7+yc/z6BPPcWD3Fvq9PmMTY2AoWt02UigswyZJA+IwxLZLf7U0jrFMRZxEdNZb/M4fPMQdt+3BMDU3PJm6nXYpobM1SRrTGBimKAqyLEXKUsbo+12U0BvrK8G2LKK+xKs4FCLDcuDhV17n9TTlx+7dTtUbBWGQESIzF8sbIgrXSRIft1ZBa480DllebrN/706EMHEsg5HhJoZplLNnjsmnnzrHgX07oSj96Ios48lnX+Dw2ChSKQzTpN1qIWR5rrIsISdHmzZZnvORu+8smSOiIMtyDEMRRj55nqAMgVIluc80Dfbu3olhKAxtvgtHKdINb7HyGpelGVle+vEpKSnIKPKcTbOzJZVNl3AWaRgoszQoFkKU87pSlXNveUGW5kRhiLZ0CcBAYFsOeQrdbg8hRbk2EGXBxLEJg5A0TQj9gNePnyCJUmZnNjG/dTO//twL3P+zP8GLR47xD+++k4NjI2weHcUVBjsnpzZ+d0nWFEKSZzlJklDzPA4MD7JvdpYPb53Dba3zW498mcO3H+a++z5IY8dO/vWffYZ7p8fZtHkzogBTm/R6XYaGhpmbm6XIM2zXRQiJpU38Xpeq6yAFFFKW4AAhgYI8TdFa47gOqPL/kUQhjuuSbuD88zQhSwzOnzvPyOgwhiGxtQVk5TVeSWzHpd4cIE4TKATHjp7ipSNHcbTm6rUF9u/bie1YZGlBmmY0BwdQplnCj5TA8VyKHDbPzTExPsK2LTNoq5zJ1IZi69YtDI2M4lia9VaLer3G8vIy+7bP41Y9bFtz9uw5moODLF5f4dNf+BL33XsPd99+Wyn9tRT1RgOtNUoZIAR+r0+v6+N6DlDg2B5SKNIkKqXxAqQ0+ObJE9hZBGSMDTfK627FLZUHloVt25w5c47/+PEv8Q/+3s8xONgoi48yJy3SjaKOU0pzlYGSBqa2Wbh6mamZSXLT+at17r6LebkUpXpBSfmej8/fmbnTrK0sc+yZr5DpYSr5NKffPM3SwjX2HzrEW6dOoW3FW6deZvvsOHlayrOFLOWMcRQxNDrMjvktiDQt16EACoMwyfm9P/0Ud33kPn7w4A8yOjZIGCc0h4bI4pilhQWEsvDbC4wN1omDTinzlBJRFOQo7EqNMIWBxjB+r4+Qir4flDYmSYLj2GhTc/vhO/naE48yPT1MQ5nEYYDSpQ1InmW8fuQU0nEZHpkkzRSmIQjaC+RpiFepEgQ+eZTQ7XU5eWaBCxfPsmXrPEtXr1KpDVCpeHTXL2FXmyUICUW9NoTWNS5efBvHcWm3u9TqAxQFuG6FdrfH6TOnmBlcoJo02Ld7ipHBOQYqLoNNi0wWmG6NgbHNCD2EMmsYSU4S+3iVCtJw8IM++G1WV06TJl1efvFZrly/xljDwzZtwn6fmjfIxbfeZnxyGG1KpEpQpvfloM8AACAASURBVIF0QmSmyTeutcooAU6fevAxduyaI8t8Qr9FHvTQqpTCkkWQxjTrmonxAYosRMUJRZaQE5NnAZeuXmLntgxkSNTv4vtLaCPE0SljQw4/+Xf/DhPjVdbaqwwND4P0WFu6ymuvHKNedRlsNMmSolSbRBFBEGBaFkqW115DSsI4xtY2aerTardL0ncSIg2HggLHcqlUalSHprl0tcU3nnyVPXv3c+7CBV585QgH77htw4/UIPAD1tfWMbXmxPFTbJ00GfASFlfXGNu0m9rQtjKx4/0mdzd+cqsW27s3/3O6eO8V76YM32t/L76f3P1Nxq2Su28Zh9wgxhXf1r37jscI8U7SdnOid+O+vwrI5Nuf/9tf482vVXzLse+vMnGr5K50WipvvXvcd77eW3Xrvn3C7tuTuyLPyg/vIudXfvnf8o/v3FkS34TANE3Ov3kaS0jmt24hFyaLiytkSYJta5LQx6lUyLKMVqtNkiQopXjg019i6+QonqvZPj/HwsIitXrlna6DbVt0Ol3OnrvA5Ngw9997O4ZSVGyTwWadoZEGyijNoUO/T7PZpN/t8/BjX+POQ3tQWrO8uMzI6BC+36fWqFJxK+XQrFKcu3CJe+/cT63m4vs+wyNNtNZkWblR8vt9LEujTZuRWoWp6VEKWV40tWGgbZc33jzD0uISWVai5E3D5M6De5FCcPHiZTzHJSdFa4ciE5w49hZnzl1ky5ZJVpbXOH/hMp974hk++oHb2b9jms889mX27dnC3j1bibOYIleEfsZQs87M5CS9dsRzR47jWhLTNIjiGIqMfhCQZBmNZgNba7ZvGWbX1jGyLCBKItqtNq++8hZf+PrziDTlC088x9aZSZqN2kZFV5TACQGD9QmWrq/xqYef4KOHbufhR54DGXPn4X34QR/L9VhcWuVDtx/k4N4dVKse/V6AbVtEaYgySp/C1ZVVKpUmSpkYRUaWZXTWuxSF5Ny5KzzwqUf5qR/7GI7n4Id9XM8DYNumTawurXH7wd24VY9ElKbQlmWhJFy+uMKfPfIY2zZN49k2fhxj2xZBt4OSCsfR3HPb4ZJWmRUl5VEU2IaBICUM/Q3qqUYptTEDVw6kW7ZJGpZEvvXlBbI4walbtDqrGNrgV549yy/+V3+LnZuGkMoijko4Rq9zhSyLMS0XbVooaaL0MO31NUZHhrjt4F6EMDANzZe//hR7d23BcV2UIej2Ohy6/4cZHxujKApaa+sYhuLVI0f54NbNpEmZKBS5yW/93p+wa34nz7/wKnOzm8iLsjCiTKNMkkRpZiskKKNc7d1OC9eplDJXId6ZnUuTmDSKMUyzvE5SUOSl8bthKKI4Ii9yTG0QxyGO7eA4DnkeIQDTsFBSIkVOe22dJEkwNzY5URBjGCZhFJSbeSXf6QhmKRQZOBUHU1F68wlJEpbWB3maYVmay5cuc31phQ/cdRdJnvLJ8xdI05T0zBl+ePMmqp6HrTUXzr3N1Mw0Upk89vhXmN+6mTAIyNOUKIjQdknTbNTL2bs8S7ErNe6Zm0WvrPLQo4/zha8/w9jYCHt++Af5N3/2abYMVHBth8Av50hPnz7NyOgI3U4Py7HLa5u2SCKfteVFKvU6RSHKuUglMYBur7txLiRFAY6jQaqNmciCfq/Hf/z9T7Oyvsy+3Tvo+z2klHRa62UVXhlo1yHekGpq7VCr1JiamMDzXOY3TeE4FmmSlOcly5CiXHe1Wo2Hv/AIB/ftw7I0v/PAH7Jj8yyNAQ9taZZXVmjWayjDoNPtECc5tm2iyNGWwcJiCdIpioKx8TE6rQ6BHzI+MsrjX3+KZ196hV3bt+JVHCgEly5e5nOPfZnhxgC//4kHeeGV4+yY24SgwFQmaZqT5yFhGJRFAWUxOzxCj4h7DuygVq9gmIql68t4nkcYludvaGiID33gNoTIy6JGEVOQl2AZSoN6S2vWVtd46eUTzG6aZnVlgZGRIVJloW6xScw3tpffTZ1yZKXLPffe9e7xG/sI8c6n5HsrfXJAkZEWCtMwke1Fnj+1zIc/8ENYlmZ+62auXLnMkZdfoiBkZmIIRxW4jlP6S8qN7oU0SNIueewTBxFSmmCYHH/zAq1uzFOnXmPEnaFqORy4bS+nTp9idHQcbVl4tse58xexVIQsYlQeYSiFUiaCnCjyycnxnApImyRJsByHPM8RRUZzsIHr2Jx643Vef/0lDCXYvXcrTpGCKEDnpSRZJNS9MUxPUIgC06xT5Aki6aBETpqWckQtFd1en3Xf4sd+9CeoN2q42sHUDmHQw+9cxak3WF9dplqpsbC4TH1wBMu0sB0PSzu4boU//dM/Kie48jU+8bU/hCTiZ+65HSkspJMwNF7H8WoMTt6OU5kEdxg/zUrwUaHIRQ+/u4LoL6CzFdorJ6m5MUXqE8cOtdoWmnaGkjlam+R5zMRUnSKHLIuJ04y11QTD8tDKLInKhirPe55jV1yGBytIMhzloF2ntEDZSKyVqdFSc/rsBYJM0+8ulkUUMkgTtoxP8Mzxt7jrtklkmFPRkPotPDOFcI2wfQZLtUurJGWiq5MUaYvZzZM0qoLIX0aIGMN0CHwfx60QxTGGNAijFG1qPLfCequFW3HQVpU8N1AG2I5HnpcQmyyJaQcRQVhwfTFkdGKan/n5X+DwHYepeBbaLEE027Ztw++X/okfuPtunvnqnzE9qgmijKGJnXgjW8v3y42dblGUyrF3VtO3R7mubuxbb15n+bd12Mp9crEBPvvrSfjeX2JXHvP95O5vML5bcvct3wvxvubhxC3eTH+VRO79xPt5xr9acvedd976uO99z3d88BUlfOSf/bN/xS9M16lVqwghSf0u1y+8TXttjflt28F0EEnM7/7p59i3ex634r1DETNNkzwvvbaOHD1BxXXZu3MLA40qa611Nm2eYX29TRgExHHM0vIK0xPTaGXSHKxz9szbSAy2zs8wNDzI6toKcZxgGCZaO3S7Id4GbW10bASpDSwlS1lfo8Zau0UWlkTEKM34whPPMDUygHYrWI6NMCRpLvmTh76MJGD37nnSNCYKYqYmx9C2Lu3DKKhsVOCPnXiTJInZs2sHjuuytra+IRtKWFltMTY8wuDwMEEvJvTLLs327bNEUUi9Uefy5QVWWx327ZwnSnzuvmM/nVabIstJw4SlhTU+89knOXzHNuyKg+PV+eYrLzIzPsTwYJNuu8+zz55kz+7d1JoN0jTF1SapKM1q+36ANiyyOGPv/h1smhhm+/YtJEFI1atw9cI1/uKZl9i9fRuGqQmjGG0ZeDXNbfvmUYZk5/wcp85fYsumaer1OnFScPXqEt1Oh3q9ShD6uI5HEIRYlkkSpSRRwsBAs6xoioyhoSq1aoWxiXEc12PTpmm2z05gaEFexERxSuD7FFlKpeowOtKgUqkQRBHa1GRhSt6NKPIeRe5y9MRZrq+ssW/nDrRtlB24Agyn9EEydFnlNkwDmSdcu3SJStWlKJKSdChMnJpDv99FaxMlDb74lW+we88OwiDD9RzCsI+lbUzLw6lU+MMT1/jFn7gdU9dwjBp50SMI1jBESBos41Tq9AMo8hIaEqaKRqOO1ooo6VGteRQiY9+eHWXnzCiNc+Is4fT1gIFGjbcvvE273WZ2dpqvPvkc98zMYFoWptZkhNx9++0UOXz8oUf5gQ/dU0ImjALIiKIIQ5nkGxJKpTTrK22Gh8dIkwzD0EAJV6Eoffcs2ybLBUWJ5EXlCiELOt0OlUp1wx+vIM/LbpIoBMLWhEmGVhbd1SXWlq+VpvPaQIiCQoBtWeQ5aF3en6UZhrIoROnv9/KRVxkdadLurWAqjW3ZkOf4/T6e6xKFCRWvQqNepVJ1+fVvvkAYhPziXbezZWKCpN/HshVh4DM4OECcJOQUbN+yBYoC0zSxtM3x10+wvLzMxPg4QkDQ62PbNoiiBLHkOXsmx7hjYoS3Ll3m0Sef4x//k39IWG/w8Ucf5/bNs1imiec5aO1QrVTp+V1syyXLBaZtYdcq5bxqIdDaIhcgi7z0ANOaIIjQlqbX7aBMa0O+CZa20LJgcKjKxNQovV4X09A4lTqGtojCqNzo5wW27RJFMQPNGtW6g+1ItCrft2XBLMbzSkqvUCbKMJgcHkVbNkUGL778KncdOoClFdJQaKM8V61Om8HBJranifwOcehTrTaoN0dRQrC2tkpR5AwODjHQHGRkbIwnnvomeZ5z34c+QL/fo1qtIZXi5aOvc9eh2/hb93+Uj9xzJ0HYw3E0Z8+dp1pxSWUJRbJti6QfkWcSFXSxbIPQD0mSjKHBIUzTwLZNrl9bpN/1cWoGaRKibV3aqAgTIc2NEYEURIbtmmzaNImyDE6/+Sabt86RylsndxQ3KXtuEfM/+DGqG11sbjpO3NRPeO/kTqDIiLPSf+/qqdd46ugZtm3ajRKCWsWj3485e+FtRkYmOXPiBI6bU6lXsPUGfAJBkkZo5aAMA9t1iNKUXmByaS3j4vUV3l5f4ad/+OfxaprJyWls1+OtM2/huQ5Xr1yk0RxhaqzO2vJlFDFaW2R5ea3Ii6wsascJ2mtiuR79MOLi2TdLj9INaNXo8BiTU9MoaTDeMOmHBt1EYsoEMFAmmIYgESGOU8dyh6BISPwVDAmGUqSy7GQnGLx49Ar79t2BH6Vcv36B2vAgrW4PlYAoNI6hCQOfftCn1qgjEaytr3Hu3Dmag0MAHH3mz7l7fgjLuo5MHWanpklVQWY1aY7uJBET2FUXoZ3SZ64IIe5gFF3yeJ0iDli+vkCe5mhpQJpjKZvBhktzNEUWJonKKVSNdjtAWwqZK5RpkpkuD3/+SSLTZsv40EYnuUxUijxnsFktVQyUFkRJHJdE4AIMo6QM53HE6TMXOHd1nZ07t6BNg6IQKKWIwoinj59g32aFn0ZkRCgTsqSknZr2IFF/HUWMygMMlRGlHnleoInot5apuF75WWhamKbG0g5hGCOkokCQJBnDw8Ost1LeOHWV5eUujaaNMhQ5EIcJlikRWvPcc6+yeP06lfoA8/PbePmlV/BMiVuvUuQFx44dZ7DZZHRsjCgKaV09yvrSWZzKAM3x7VRHNm9sL99tYxTvuae+kdzdctm+e/smmeUN8/O/qW7ereP7yd3faPy1Jnfc/Pb71vv+uuP/rcndr/zyr/JP79mLV62889MLp8/gdztMT06gtEM/SNHkbJ6ZpN5olPjhLKdScen3+/T7PqtrLebnZtm+ZTNexSWOAhzPxrI0cZwwNDyIkIKBgTpFplBSsLS8zMz0DK+89gZvXjjP7NQYbsV5J6H66pPP0/dDatUKW7fOURQ5fuhjSInf96lWPTJykiDGqVR5481znLl0hY/edRC3VqMoCt6+dAXD0Bzev4fRoQr9fg9BuWGTStLv+2hbk8QJfreHNDVz01NMjQ3T6fQxDJM8T6nVqsRRwvFTZ8nTnOGRYZI449d+95PcfXg3jmcSJwmu6zE+NsrhfbvJs7ys2grF0NAIT3z9ebZv2Uyr1eFj938YjARlavxeTN2V7NoxT0FBEmekkeDSpeu8feUKQ4MNTr1+EtOp0hwcRqLIUxhoDGK6Bp5XkkFfO36aRrXKV77xEh/9wKGyG2lbnDv3NlLG5EQoQ1Af8FhcWGJsdIyRkfK89Lohb565QJFljE8MM9BssLqyxgtHjrJ793ZWllapVCqYhkkh5YYFhUV7vVVKQd0KiwuLjI6PEgQ9LNtEOzZam1BkFKKUxIkc0jzH1prl60s889SLjIy4VKujmIbinrtuK+fTTEmalD5EaVG2rLKkrCYqKQh7XYYG60hlEAQ+hqkockGUhSRpgqkMsjRnanQE09XYdtllDvwutuNimg3++OhZ/v5P3UmaJRhakXZzknydOGojioTEb9HtG0xMbydJIyxHoV23/P8XKXHsb9CgC0zDLiVSolyx/+bB5/m5/+InMZSi0+syNTFJr9vllVdPsH+wSbfXL8mMZkKe50hDsXl6Em2VoBIhC3Jy8iyHXCA3umGWLiXE62ttfuv3/4gdW7egDZPXXz9Fxavg1ZxSRlgIhNoobhUSoXIsWxOHMdq2aHfaGKo0CwdBQoFEIHJJGvl4roldq5DECXmWY5r63eeV0Om0ydKcXtcnSQJsp8LU9CRCCZLMxzYr+H2/7NZk+YaENkQZisZAg//jK1/j7/13P4c48xazo+NQ5Ig8Y729higKCll2cBYXF6l6NbRlkKUpFAX1+gAjY0N4ngdFgWXbxFHZ/ZFClMbnGxuzPVNTfHDzLGpxkd955DH+l//tf+ahp1/kS8eOI4IOkwPDGIaJNEAIE2WY9AMf23WJ/T7VWqMsZIkCRWlYDqKUrguBrU1yBOlGh00KwfjEKINDDWxL43keohAkeSmj1ZZFEscbcjqD0A/Ii4xet41lS3otnzRN+U+f/DTLK8sMDjSo1qqEUcKVS1extMbzKixcXeT+D32QV199jSvXrjA9M1VSext1sizDcV2COCQOfOqNOmma0+1HaLNUgkilCMOItZUW0jCI/ZCBWpXpyQnqjSpKmVw4f56PfPCe0nw9DOn3uqRZwvDoIIODgziujTAMDCXJkgRH2/zT3/gPTFQcTFOU3nmqJKt2Ol0KEqIoYWpqCtMWWI6NFBKQ71hcSCWJwn7pTSkKtGURpym99TXGJ8aIhYV5q8+29yjaZmnCwG23f8dnYX5DvnzTc3y3uJHcIS2SKOJLD/4R7cLi0O678BwXv9slTgqitOD6tatUnArz81NIleFokzRNyw4aBVkuUYYijPvkCM6dv8qRE2eJUgNvvMmP3vdDDA0OcOzoqxRIJiYnqVartFurzM3NI4s+3dYi9gaNvux0ZGVRCEmWFiSqJEbajke9ViMIfeI0YXFhESUV33jqy/T7HapGzvXlHsffOMXubXN0uyHKKDuz2rUxzBqYFfxuizRYhSwuidRO6duXCYPXT7cYGipl9mnSpTEyTBhEjDdHWFls0Wm136EC247H5SuXGRoaQimDc+fP8cabJ9i1eZIzbxzhaqfF3/3oD9EPQwYGZ/Hqc+SigjVg0motYFgmQRijspT+2ir0lwl66wR+wAsvHuHoibfYvmsQQwosw0IWBq31JUzLpjBgZTXhia+UHf2aW0GaBn6WIM0K227bj5uVqoSCcq5YKIm50R0tCpBmji0N4g0VwQ0agsRHaJe5+dsYrEpEmiEMBRKkEswNzFIfvAqWxKuaCJmSRBFSSo6dvEqj6uHapUcnUuHVt+OYJiRdEt+HXIIqiDYATL1eF8sqZdO2bdPr9dCmptvN6XZiXKdGIXsURUmINqSk014nlxa79t7F1ORmGkMTbN26gwN7D/DIZx5kfs9Ozpx+i3qjSZqUnpYnTp5i24yDStcJopytu+9CD0xtyDLLlQR/Pcndt6jMvp/c/X8v3mvm7kbcPMMmpXxnDu/mZO67NYjfKwTfCkr5z00C330tG7rkm6od3zpc+t3pmTcwKuXGoTzuVjN87/zN77Eabk7u8qLgX/zyr/JLH9iOUOYGIU6QhQEnjx1n7/4DYDpkWYGSOb/0G3/Cj3zsXgyzlDK02q13Npp5XnDl2gKjYyNoS9Lr90EqDEPT90PCXkCWFkhh0u8nPPjoYxw+uIuBoQG0bTE+PoItJObGHJAUAiUUraVVDh3aRbXhIlTG+soKlmFgOyZaW7z99jUGqsOYZka/FzE6PEp3vc3QgEertcLg4CAPfeHrOEbOzGQTcoUQeUnbisHSDpar6a8uUSQxnlMhy1K+8czzjNaHeOr5o7TaXWY3bdrw0TNROXTbPV4/doEXjx/lwJ4ZZmfGOX/mKmtLXUaGG3S764iiwNYel96+wtjEBF0/wnUcTpx+i4OH95cGwGlGa22Nat3hjx98lH07t6BtmyjOaDSrHDl2gotvL7F7fite1eORr/wF+3fPY9oSaYLUsqwmGooszQgCnzvuOMje/TsYHh/AqWiWri9Qdz2EVOS5pFatU+SSgcEG169fYWCgRhyVHYJdO7YyMTKKlAZrq20KJI8//TKHb9tDvdmg2JAXJalPGIX4/ZBaY4A0K2eyLNvi4S9+ldvv2E+706FSqSFyE9M0WLh2idHBSXrdNtWKTbfXIUkT9h3ajzBsDFMxNTmKaUCR9VldWaNas+gHMYICw8gpkpQ4KGltcZKRZgVxEmE5LlJpbNtBGyZpGqC1wZ//+V+wZXYcs1JBJhG9tQWyLMJxq/zq0XP89z+2F1OIcnYIiWGlODKn8NcJeh2EYTMyuQ+l6wgnI8kjjGSALA9BGhiWBZlA5AJMTZImFKKUNd/7oz9LnKbIIqazusL69UWSAoxr19g0OEyWZtimRc+P8Sql3UVjoI7tuIgiI08LyAVn3jzL8NAQvW4Px3bKeTZVGkDffmAvtXoNgK8/9U3uuvN28g3pse1ZlKgkSSFSZLFB8TRNeu0lRJ6itYeQNuttn357jWq1QpZGOF7ZKVXSBFHSCvu+j6ENMpFAJHC1IPR71LxmaTcQJGitNzzuBNrWxGlAte5SqVQJgoA8i3Bdzf/62c9z9+F9nP/mC3xwbhKR+gTdNdLYJwl7aC3Jk5jl5SVmZ6borC/Rba+hdZnIV6sOGRLQxDEUssCPOojCRFsKv9uh2+lSdaqsLJddXG2Z7KlV+eY3nuKNhSV+6Z/8Iyb3HeBffPzj9NvLbJ+cJkkChMwpMjBNjWHYxGlSKsrzFCE1WZGDTMjyHFOZFEJhSInIC5RU5EVOa/k6AzWPOA5IkpSXXznGyEBtQ/JVdq88rzyX/W6XLE4Jwxjbq5NnCf3QZ9/8AbqdPgcO7sPQkjgOaVTqGKYm6q/hVmz6Ucz0plmisIQ3aNNGCJOYmDjLce0GRQrK0ORCYlUcDEyCMKLT7dMcGiJXAmkUbNu+nR3bt2FqhTAysiymMVDD1EbZCbdMLMvEsW18P8J2K0hpEEYhUihM0+H69WUuhCE/ctd+tJkDGbnIITf54888ims6fOqxp7j3zoP4nZCjr51kanKSOIy5cvkKp944y8R4s0yghSKNQZkOsihQwqTaGETkBd9jPO474tdefosP3cLf7l1v2I3bN75uEZKETFi0Vq6Q9a7Sb13g3JUeo+4oRloQdjsUpqBR0UhRcP3KGXbu2IwfdGnWm6RRvyxgmB5ffPwvmJidwTE05JpTb5xk94EPcqFznmpkodKCtdV1du7ZS7VmoUSByA16QZex0VFeeuZ5Bmp1hOxiCBOlTYo0ezdhNSW1xijXFpY489YlisRnqFGjkBpbl76SV69dZ3FxjUJIDu6eYve2idIWwFYoFEWWoSyPtFBYTp0k7FPRUCRhKccOTDKdsbi2zMLiOnfefR8VWzHUnCCL29hmzuWrV+lFPlu2by+ljAWsrqxhKEEe+bzy9CNM1iU6WmTzRJ0TrTOIzGLnlv2MT24ltoZo9frUGhWKTOBZNmQh3YWzrF06hSk6iDxBmgWiyNm6aY5dW6dQhkIWipQeQZJw6vRVxqsjSFOgbYepmXHsmlWqD0RBkWdMjNRw0hBEQlE21skRZXEhCEkoMC1NkRYEUcxT3zzBm1cuMTe3Gc+pEOWCasXF0zFJFGJokzQrC3dCCizHYGCog2taRH5KkVhIWcH3M77+3DWOv3GR7buHMcyQqNVHuxqUQ6ZDbJnh2U0S0QGRkSY+WZwjhUmYB6RpjNQevWyILOszNuZx8vwa/+P//kU++oEDNOv5BmisvOa0W11+7be/wMk3zvORj/4gQRTSarcwpEBLm8nJTbiex+BwHYSis3KCqpuSG5ra2FZ0fYbspnGA4h2J5nvHrSCC3y3+n0nubhRKCpRhfj+5++uO95Pc3Rwl5eb9Wxa8V5TJ0Q2SD2Tvg7j5vZ7v5rj5jfqXtUJ4v6/jPRfMxiv6l7/yq9wdrfOh6RHyQtDtdOm2O9Rdk6889mV27tyF7bh0Oj1sx2Ftrc09t+3hdz/+MJsnxxgaHmRwcIDlxRW+8c0XUQW0u13yNKPesEvPK2ly9LU3MYVJN4x4+oVX2LF1js8++mUWlhYx8pTJ0QZxENDrdKg3alTrVcIwQls2luswMzVOnITlMLfvMzw6UgKp84xep0/QT/mdBx5hz44pxibGEUowt2mC5aVl5jZPs7y6xu75eQxMapU6EJBmopzL0nUefPgJdm0Zx6u5JSBBCBIf1tfb7No7x5Xry7x87DwmMDw8SGu9xeTsOBNTo5y8+BYfvuM2Dh3Yh9aSM5dP8+SzZ9i/dx7bs0mKjOdePMLWyWke+MQjXL58jXvuuo1+q8XI2BivHz3JcHMAU7ssL61zaO9cOcemNJ946HE2z05zYP8uXjl+ivm5aUbGR5ifmkQBlhaYZjnkvt5aJ0sTHM9idtMEKytL9NaXCYMejmPx4ONPcPddh6lWLQBsp9Tt9/wOQ8NDrK2tMzzUJAz7tDsd3IZLQc4LL73C9NgwB3Zsxq25BP0QUym63TamYWHbDgKwLAPTlATdDtoyGRsZwrQ0TsUh7PcoMoiTELdqI9HYrqbX6+J5LrVaFYoCv5thOSlx0ibLErpdQZz41AcqOHaNOC5N0w3DQelylkxpiWGZaFOW83aq7KDlG50AJQzmpkeAFO2a5HGC3+9Rqxr882dP8M9/4cPk8TKW6XPuzFmGB2fwgzWCzipZ1KHbbeO6DubANEhNHEckcYxjmCAVhYAspcRBF/D2xQU++/nHOXG9S8scZmZmljQpEf9KGvzrf/VrfOgj95FduMjVS9dYXV7na08/x/TkJMYG4EQoKEhJ43KgP88L/vzRxzly9Bh37N/Pgw99jp1bt5Tza6ZJIUFJRRRF3LZ/LydOnOL6tavMbJqiKDKKrKTIGgUU9FheuUB7vUVzfBph6HITnWe4lqJSaaCEQZalxEmAEBlpnlEoUc6TYWKYDnmWYkqLMOyTAYbp0m+37cYfrAAAIABJREFU+dwXHmfr7AyWUcIZhDBKMEbQZ2V1gUrVQyqTf/nEk3zsI4dQ589y7+wkrmdTFAmGAX6/jTIdtFVSAG1DEPY7G556ITcgQVEUsnr9Kq5t4Xc72I6DaVloUxNHCdVaAyU1QRRz6uRpxsfHWF5Y+b/Ze+8g2a77zu9z7rn59u0wPT05h5cz0kMkQVGitKIYdpeyVOu1zZKtssv22uV1lWW77JK02l2Jlre4sna1VmklkZSYBJAEQQJEJAEQwHsg4sPDy3nSm9gzHW4O/uPOe4RIggS8VLnKxV9V13R13+7p7hvO+Z7fN/Dv/+rLfPS+93P/jlnE4hKf+uID7JyZ4df/y9/E76ny7x55nGcuXOb43CLTFYeSaSGlQpwUesUkzZGqup2XVyxqKbkgF4IgDFEL1jS6prHZarO12caxqpw6eZkHHn6U2w/dQpoWekdI8f0Q23L4oz/9c/p6eugb6GdzfZMojJiemeba3BUa9QqIrNhPTpljLx1nfHwY27GwHYtOp8XQyACbW02GBkeYm1/EdnSSKMM0TKSqEPoBUbcDUcibJ89y+vQl8gx6exs4JacAS5kgzW9kARadiizLkJpyM++y2+5SbzRotdvoho6QClmaIKWKQOC4JY4/+QJnz53l9iMHCMMEMkkUxvTVqnh+wK9+5BdQNQ3bsejra5CToxka5XKJ/r5BpFIYnOS5gip1FG07/DtLsBwbtid976VeWFjn3ncRXp7dmEv8iH+Qb6vuTD3j5RceY2VlifuPfIxUKLx07BjkOb39I1hOiW8+8kXuvfN2mlcv4aolNFuga2pBhxYZe6b3o8uIK1cWuHppnurIGF5X4+mXn+Of/hf/lGpPFdsx0aRJq71Ja6vNpfNXOXLkIK2NNRwjYWPjCiWzONcyRcGyTNIkJsvSgm6tm0RhzNjUTvr7G6RZjFttoGkqm81r9Pe41Eo2166dRxeCkl0iyTqkiY8mJIGXECsCoWsowiEMPPJgkzwNEYpCarRpLjk89egLHL5zH089+hhhnDA+Po1hW2w0WwwPzdDNffxOysrCdeqVErbhE29cImpfZnq4REmm1B2b2NQ5ubzCJz/xm6R6D2ZtAKFUUUUMqY+3cYlo+Qyb63NcmJvnpWOvcmD3HqQmiGOF02+doeSWMSxQvJxWbPHMt6+yY/cUs/2jiIpOKk2uzK9Tdge5dmWFS3OLXJlb59zFq5huHcNRicIIgURRFKSibHfXJHmaQJYic5XEMrk2fx3DFgwOD5HHCYgMVSuun5qhkmXJNsMphVygazpSvUKUtNCMQj+dplCr9rB//wCzU0PUqwpp5JNHGnnmo8sIpEGGQSvM6Gxdx3Zsoii6qaOTpiQiQagVfuO/+lOWLr/Fwf27GBqR/INfvY+aLYiiFnkKK0srXLq2QpZVeeaFC/zvv/0vMMwSrU2P6clp7J4Kz3z3u9x6yz7mrpxGUzo0RvvwN86wuniNLU/hlnt+jURRC7fMH5hd/jTr/ytwV/xvfgbu/i7q3YC7H+zQCUCRKtm25f9/yPHw9niEt9upvtPtxxq1bP99O+3jxsH6bsHde9UI3tz+bXpDsb3CIhD83u/+Af/T0d03t1cUBdMyMXSDzsYGGjl9I6P4fsj6ehMBlLepmJPDfQwMNEiS7eBfTTI+NIiua0xNjGLbJusb6ygoKLnAtmws02Sr3eWNMxfZu2OSQ3tmueO2WxgeHWY7IRm3UiUMQ65fX+F7b5xiYnwEoQjWrrcwdQOhSEzLJs9UOt0OyytrGJpGuVTirsP7MG2NVrtDFIc4tklrawvD0LAdG8tyOHfuEsdePsHEeAO3UkXXLdJc4aHHX2BmtFYMpJrGxnqTv3rgcX7lF99H22ujqybNZptzVxa45eAubNuk1Wmj6QaTEyOINKfk2rTam4xODnNgx24UFUrlEpZpMjTYSxwWE+Vq1WFoqI7j6Aip871X3+CRp7/L8ddO86Gfuw+hxLilClJKupttJiZHydKUo7cfwHVtpCKIgoCr1+Ygz4pAbt2k6/lUqhW6nTae16XeW0XJM2y7MAHZv3snUkrWVpYplcrkGWxttXAck8uXFpiZmSJJIubml+jvbxBEIaHvMzrUj2nolF0XRZckUWHMkqcxqmqgaRpCZFy8eIVaT2FqYRgGS9dXMU1z+7xMyTMwLJ0w7GKZFbIsIUkKs5QwKJxFP/UnD3B47zBR1KVarfFnn32MF06+ymhfD65TwdBNhAJ5JraF3CBVBaEokGd0Ox66aW4bO8TYloPXDfH9NpZtgCIQmUQ3df7VG5f57z68G123Ie0wd/UyWSao9RQ5ebahMHflEpZdwq31kioWurE9yQ8jsjgoZvAUNL5iXyQsLq7yZ195jNTu45Of/HU03UJVCoOcNM340C98mCjy+MKzx/jEHbezurbG4soKR44cwnFsFFmEeqdZiiYL4KWokkN79rBn5w50VWVmahLTNDl27Hs06nVMu/idVamS5zA4NEB/fwOhQLyt51AVgd/1SVMf3VQpuzWQVqElk5LA80iTBKkb5HmGpknCoDBaQfn+dU7XTdI0I0sipNBRNRBSAWkh0gRTLzR2mq6hGyrFDsvptlvbgEel29pi/88d4VuPPMvH9+1AiJwogixJCcMIfVu/ogiBJot9m6cphmkQxzFZmpDlhQ4xS4oJTrVaodvt4ns+UuTkaUK349HutDENnf6BPrqdLhvrTdY3Njm4fw9SLYDx0eEhTly6xDeefIaZ6Uk++MG7ef/77uK+992L6B/iD7/4IHdPjpHEMaqqoijqTS2OpukoikTJUlRNR9V0ENBcXSvuA5qqEvoRk+OT7JoeIwhCSq6LbhjkZGiawer1VaqlEhMT45QqZS5duMxXHn+cW/cdpr9RJSdBaiqGXhj6PH/sJXbsmCaKYzabTWr1WmH+kMETTz3HjpkZSmWzyIdTFLY2t6hUK+iqytLCIp996BHWNlrUqzVmZqcIIw9EsUhQ6Ak1yAV+x0ORAsNQWV9vEkcx1WqVHEjTtADgaUroBwR+UHQ18uJcv3f/LIqqoBsGr7xykuXVdVzHYc++nTcD74PAx7QKTZCUkm9+62lOnbrEztkJdF2l0+4U13wlJ4sLrXa1p+gkvFdw9+zcCu97/z03deJvv/0kPf6N12R5ghAaid/i2vkTnDp9nn077qRcbaAKHa/ToVrv4/KlqygyY3SkylBviUrZROhFlIAQgihNsEoZaZzj1qs41V6iyOXkuYuMTA+xe2I3lqUj1eKau7hwhR2zuxgbneTc+VMsL15FsEW9VkJmCYpU0GybNI5IYr+QEeQZqu5QKvegai4XL12gWq2yuLiBrhm022s019Z5+YXnmd65i8TboLe3B8NWyIkhE0hFR+oWQtpEqaRkGRC10SSkaUauxrTWJD31Hsan+hjqm+ba2hrXV9ap9zcwLAdFLfHqy69jSpPO+iKkHc6d/g6Nko2m5mgSBCp2qUyU93Bpc5Uju+9kY6NV6IlTn+7GNbzmEvgbGEpClIS4tUF6K1UcQyOXEUGYMXd1jgtnLjA2PoWu5GwGOWfOLTAx3Y8uFF67cIWnnjnO+SvXiXKd9XUfoVosLW/S6ca88eZp+ht11le3iGI49vx3KVcaqKqFZkmkKoo4GgWiLGZ0YILpiVFUNYMwRdEkeZYhtzXXAkjTgjKe5xlCKHTiecplicgV0jglitIifibrEIUxTkkljROy3ERRMsLII8l1DKeCZhlE3jp2ySHPUjTNQFUlcSeB1MOQCocO3crunWOoxDhOjGqpyCzHdWxAxTB0Bocn2NzKcCpTPPPd43zgAx9E0w0sXWdx9Tq/9Iu/yJVL5ylXLEZGGnQDH+Et0Wqu4VaH6B25BWlaP2rm+d5Oyp9QN6ILvm+y8tN533cyafk+G6BY3PkZuPs7qHcL7n7oMUW5mef206gb4O4nbrc9GLxdCPrj6r2Cu/+3lb3NLfMGuDt18iwfc/Ni4rVdSpaTZiCEwpUrC9R7e5GWg6oIatVC05RlFMChpwp5jrqtZ5q7eo1SyUZT1YL6pOsYuollmARBiGlpNJubRYdKgZ5alavzi4yMjt60S9/YbAI5fsej0ddgdnqaOEkQUvDsc68iiOjvqxLGEVI3UaSBomQ4tkYUehiGoORWMWwD3VJZXV1lfHSENE0RUpASoWuSkaE6/aNDxHHK9ZVlNC3j3qO7aDTqqIaB74f0lBy63ibTU+PoRo1ytYquZBy9ZS92ycSwDWzHRdVNvvP068xM93PqzBv09FRJM4czZ04UK3xpsdKepSm2a1NyS0zOjJPmGZqm0O367JoeZXVlhfV2wN6dM5TcIgD4rbfOsn/vNIauoqsKXmeDMOgihcAq2UgJvX11lhY3eOXVM+zevYM0yzCtAtS65RIKAk3aXLw4hyFVdF1y/NUTeFsRL718mvZWh7HxQR569EUiz8exbb76xLe5Zf9eWpvFpLhSq5EJkIZOFPqYmoXf9VC1nGZznTgMcF2XzqaHbToojkGcZjQaDSxdsnp9CUOX5GmhF8uVnCzTIEtQpGBhbq7oEuSFM+WR/bvQpI7vpzhumVPnr7F/xyT1ep0kifD9NuQJuqYi8hyRCbbWN9GlUXRuVA1VqsTBFkquomsWqpOTZALLKZNEKn/4+jX+x0/sx/OK/MRLZ6+ysd5maGSIVPiEXkQSRdilGobbQKsM4q0vkqQ+ulYmDiKSZBOzZCPVgsoc+G38wOOPv3mS+aUV/vj/+jSa1EnTjFarhWMVJh2KYjF37S3OXrjK7UMNGo06h/fvRjU1dF1FqipSSIQoJruKkKRJQkaOqRvololm6MRpysTUxE2QoUqNLC+cYDW9AIV5liBERqfVwtR1dMsotDPCQNF1lFxB5IXODwFSK+iOkEGek8QphmYQeR6mrhN6HteX5nHswuSItMgb1AwdVBNNFWw0W7hVl/mFeRqDjaIbpyhIRUUR0G61+dM33mRjbZVfmxoHIXBcpwg/z0Jsx8AtW8Rdj62N9SIKJM8RUtBcX6NSdlFkoZ8SZLiuTRB2icMukpig0yIOtmhtbVItu5i6xPdb2I5JuVTixeOv0PG7TE0M45ZdICHJQw4MD/G+qQmOvfA8X37iO9x2+yFURccwTI4cOcC1NOX4Sy8x09+HkHIbTOs3NSdp2CSXGrlQEJlCHqeoulUY0SgCQUq71cQsKfT1Nzjxxls0Gg00rciXi8OY1lYLVdNxK2WW5pf5xMd/hVazRbmsM79wBdt0ieOEteUmTz57jLvvvIMwCDE1Fce2yRSJYzvUqnVUVcXzWoReQBR0kbpJpkg00yHLBffffSudVpfB/n4qNRchiw6fogiee/5FlFzhCw88zK2HjxDFIZomuEHvzdIcyzJJsoQg8pFSoCmF0YtUC33SixcvcGisgdQNNjc2efCxp1laaXL0yH7cissDD30LkWUMDPcRhiGKlERRxMGDe9m3dydSFeQkGKbO+vo6tmuxub5OpeximAaisIt9T7XqVNm3b/eP9vH7SeP1jb8iBCw6qxu88O0nuDq/xo6JW7g6t4Kl20xOTCM0nYceeohOt4vXXkPVYtI8Qtd1yAQgUaSGavRyZe46Xmxx+vRlJmZ2cjlY4qXXX+ZjH/wIcRJTrfWQJxHlqkNzY5X5uQVMS2VyaIAkWcLvrKIrBrqukqkauiqRAuIoQNN0slySZSphapAjSdIM3/Ppel0mZ6Y4/r0TJJnLvn3TDDRsBAG6ZhHGVeJYRdcydENiGRZBpqOpCqm/SRx0sSyLPNEwjIRGn4pKwPLlyywuXWT52gUMXZLFAQ984Ysc3jVOt3mBtHuRmgONsokic3IhEVY/ojyEVhvkb156go/e9gkUJUWJVpDJBmlnEcI2xB66ouCnGaqqYZBhaSqGKcmlRNEUStUaszv3UXYdYgV0s4rTA/PLW7x1aZHJmXsRjJIbOR/++EcYGx9nYnIPAyNF5E+10sPlM1c5eaXJpWsruD3DdEPYaEeomomhqsRpjmpYKGqKoxokScByu0MWOxg6GIZBp9MtrslZ0QWWolg0ieOYL377dQ7P1rGMElIxsEs2eR6BkuM6A0VmrmFg2XVsR8EP1iAr0zc0RnNrib6eKt1Om5yiK+gFAaZjoOU6JduiUmrhVB0qlomWQyfcxNYNOu0Q27TJCegEHV555SRNz+TQrbcyMTnB5z73GXrrVfp7GvhdH8MymV9awihZdNotks4CWRoRYzO5//2FUdcPn0nv+bz8SXWjewc/PXD3TkDx7ZeBn4G7v6PK0uS33+kwudmpe1sUws39tJ19827Cy99tiR/sfv3Ig6KIXLj5MX5MV+/tr/9R/ON3exP5zV/i5i0Tf3sbuS3uv0Ex/b3f/QM+VimCyckLoxahKGSqRhqEnHnjJH19vRjVGiIVdLseUtNQVcHy0hJSpGxutDl27E2GB/pQyDGkSeAnfPrfP8Rgf40ky3nt9TOUHZdOq8PS6gq79+/g8edeYKAyxED/EMdeO8HOmRE2VjcIfI9q2YY8xXTKtNoFh94pWYhcMLNrDMPSyCVkaYqqSBI/olzR6bZCqtUektwjDmK67Q6Vkk0Wx4U+pVZjefE63lYLVS0sfrM8RlFcvvjg0xw+sAM/9DEUQZoUgveNZotde3fRbntcv77M40+8yM/dfy+6JXnsyReYHpsgT1PWlhf52mNPc8/ROxgenUbXTb71+GMsrc/zgXt+HoyMqwvX6GzplCyNcsmm3dwonCatEu31Fk65wo5dO7h19wyaEOimII4jLs3NYZo21aoLKGy1QkzTQeiS5uo6vY1eQKMbRHzhW89y99GDWKrBn/z5F/m5++5keX2dSk8FUPD9kMefeYk7bj3M6NgE9XqFY6+d4Pz8Irfu38fR2/egblPujh45RBSEHD/+Gn01lzT1WVxrUqpW8Nod3IqzTVVxaK9F9PUP4Hkt6v0uUoWgm2EbVqGNbLZYWdnEsm0s1yZOMkqVHlABTaIbDqpm09vboOW32LVvD5ubTdxKFWnoDIwOcM/hHbiug2moIDICz6Pk6IWYX6pFh0TkWNUy7XabrtfFcR3SWJKRkxHgtXzKpQpe4KPv6eOu3TW0zEPXVaJcEoc+qCqjO2YIO9fJowi9Z5ZAzSm7I7QW3iwiJXIwyv2opk13fRUvUrAtm8vzS/ybr7/G7qPv42Mf/Tj/8BP/sAD0toM0cyzTwusk/O7v/HMOHdiHtxbxxlun+Pmds6RJTByn2FYZRQIiJ8syojjH0CVBEJDlGZZlkyYpmSj0t6pUik6bUIilQEjJ6tISaRxSsnQ8fwvf8zAME0UpzFniG4J2RRIHIbksmuZR4GGYDiCRuk4aJyRJiOVY5KpCjEkmJYZpo6k6Sq4RBR6aLtB0A6/jY+gKQpFomqRScWj0Vgm8LUSSEoc+XmeDKOzyr4+/yj/5x79A++RpRntrRHFIFEboQqJmELXbRJ01Ou0Ona11bM0gzyCI25RMmyTeJIkDbK2KJoq4kCDy0XQVTdchzjAshzTz6bSWEVmICFJa7XXIE3bvnGJ2bIT+vn6STECuEocC3dAQCgzXXG7tH8Bc2+JffPZLnDl9jnvvuYdGb4Ndt93O73/uy+yqOihpgqFuL/8Khe7qGqpWAJx2x8cwbT7zF59naqRBp9XkwUce5/DBu3BKgpWVZUaGR1CFZHFumVrd4eXXXuf4ydN88P57WbpymUefeIHdszP8yWc/x9joCP19I0BOlsSoumBgoBfLdHDLLqqhkyPwvQ6momIZKr7vU+8dxA9TqmWHOIrJk4QwjDCcErlWZs/eKUxbUrZKLJxdwShbZKTkeUy54vD6W6c5vGcXuqahSZ0sgYe+8QQXL17BsSx0qUKaIYVClIbb3XKLLEmZrNfZXFtClSqWbXHHkX3smR2it69Gp9Wlt1ZlYmIEw9R5/OnnmZ2eRLN0gsgjiQqtbGurU+g3pUKqScw0xaraJIpAlUbR0X0n+uQPDNKPn7rIx/7zT74Dm+cnUzxvjP1qphFJgZ21WbnwJrM9B7BLfVy5eBnLMUiziPnLF5mcmaXbDAjbMTt3DNPubiAyGy3XCMMuZqmHE+cv0/EynnjyRXbtv4NL166wFS7xv/zG/4pju8xdvYxp6BiWU3SODAtdDcijDebOfY/BvjqJ52PZJRIlwtRspFTwfa9gWOSCVLOJUoW11jrddpOp8Wkq1Tq1nhpxkrOytEy1WuKlF5/GqqoM9veShCFBsMGx488zOzuLmkHL9zFK/diuS3trldTbIM0gSD3arZDjL3yPyZk9NEZsdo30sWu6n5qZkrYXKOtb1K2MAVfQqJYwNQPUMok1yPDUUTLLRpUqW2sJm9EcBycGEXGT1NskC3wKU98QoeToVolM0QqtrRSorkmsCPKkhVBKeLHC/ErI0mrIxYWMF149y9V5jw//yj9mZno/r77+Gjv3THLfPfeSxjlRlHPp0nmGh8eZmNlDb2OEemOEA0cOsXfvPkrlCu1OwOL1Fc6cXaa/t5c8FWx1Q0K/i1suE3QCtFTh2vwCPQNlMsCwDZI0LuZ6uktXdNB0FZcqL1x8i4/8/AewxQXysEZTriHSHtQcNB1IEzSpkmcena0NHNsCJSDPQ7IoprPVZLPZwbQyVJmiqQaWZpIqXdp+kzDU6HTWiPMuhlVCiypEYUCbmDfO+iwumEyPOpw8fZ2vPbNOvW+UV149wcc++lF27d1Lx2tT6alw6tRJ9u4/gGm4ZHkZ0b3M5TNX2bn3HmpT+wqTrx/izv1wKT+wxbvFZ/nNHMucG2ZLP616J3D3/ceKeb6q/Qzc/dQr+wkh5nCD3vi3dXY3KZA/QI38adY7gbt3Ovh+END9tOpHfbtcvPM2QRhyX9oqTq7tDySlLAbCLObsm29Rc0uUXBdF1YjDkFOnzjLQ30DXVD734Dc5tGuWy1cWuOuOI5w5d4FKucRfP/QYY4N97JgcYnCwly889BiLy03W1jeolCxuu+MgURzT3WozOzmCYao06lUsy8D3fXrq1SKPKYpwnDJuyS5W8tMMzTAJvAC34pAlha4jywXXF1ZxHBXHKfPoE8+yY+c4UZjhlCz8IKBcKZORkaYp9XoNqUBvXy+6aZAkMXmWc9vhPbTaHf7ygW/SKDl85dHnEaSMjw2hGzqmaXL9+iq3HtpHkiYIFRzTpFIt4wc+hqlzYHYG1dCJogjbNqmXHe645TDkOkIVLC4s87kvPsftR6bwOl0qtQq5Iuh0fXrrPWiGhiIFge/jlktoRuG2OTM1gVspEUcRfhBS7+3FMAxUTcUyDc6fu0SSpPT29nLb/t3YjkkSRhBFDI8O4VRKtNabqKqO7wU88d2XGR/opbfukiQJ+3bMMDbQR7VaIwi69DZ6kFKg6zq//ek/Y3l9g/ffdQQvCJiYnmFzo0XFtfH9AF3TWV3Z4C++/DDNjTVmZ0fptNrkCBy3wraRIIZmUe/pwbItNpubuOUyYRihSslWs4mm6piGTpYnSFl01lS1WIiQUiWKE1obG9R76wRhQKfdKRwDPR8UtXBd03XSNEE1dLIspeyWydLCIbFY4MhQdYMT1xZ4cnGVI7smWLm+gpLEaJpFnOQ8+OUvc9cdR0kReJvrBEGHWu8MlqWTJwoby2dxLIMszTFKdRSpIpKASm8f564t88hry/wP//1vUq1VePaZY7z44nGe+vYzfO97r3DoyH68rocmDV599TX27tnJ//H7n+Lq9QU+fsshFClIkpgkzbFLFnEUIUQR0t3a3ERTVQzTLHSyQhTfR0riKOXZ517E7wb0DzZQ8hzD1FBEzkaziWWbBfVP02k2W9i2TY5SBN+qBXVIUWUR8i5EsV+2gZRpWsUKdZIhhIomVQpzxYwsTZGKSkZClueEUYS1bZKQbIcxa7oBIifJUpqrq5RKDisrK2iqwisrq7z46ln+wb4dQEErFiInjSOiqI1hCDrdLXKpU6mU8IOAsxfnUFUDmQkMq9CvxHFIlLTJsxzTKMLeoyAkjv2CZZCklEou7a02pmmi6BpSKqRpRhhFRKGPZjm8+cZJzp27yNj4UEEz1LXtCImM909Pcahe4Z995q+p1Vxs2+YD99/DI6+e4MU332K24mJYxe/qmAZbno+q6xQdLnj6me+ye8cEtVqFQ/sPYpXKJHGXku2iCJWV5RX6+god1Pj4OHPXFtg1O03FdRkaGKRWr3L3HUcoV0qYlonvdSk5NpquU6v34pZdsjzj6pWrOCUHwzCYu3oVyyroUkEUFlo6UpaWlouAZ0UtaKGOiyDBNHTiOOHhbz7JvoO70TUJ5Gi6wb1Hj6KpGmEUsrqywl9+6YHtRRXJ/j27UTWJ67rkeY6qq+i6ged5CKHw8uWL9GrKtgtlMdZcvnyVocFBTrx5jvHJEQzLIE0iZmcmAYjCoKAiiiI0PklSVFUt8klJ6a6uE2cxpm2j5Co3ponvZpzP8pTGgcM/chR9T+yZPCMWgvWrF/jzv3qQicYAg2O7cMs9VHp66G0Uk/8z589w5eoJjt65F9IURRhcX5jD9zbp6a3jBRnPPn8M3XSI04zZHXs4u3KWiakpdgzvZHVtlf7BAYQiWFicZ3h4hDgKqbomWxtLjA4OoIjiWhonadHpTDKSOEQBVFUtIlNMh3K1D7fWoF4fwPdCOr7H/MI8lmUxMjTM4uIC/QMDnD33JrtnZ7D0QjO2a88+4iAo7P81nUzabG02MWSCJWJ008SwbNqbW0xP70CVoCg5ZDmKVNG2c9fKbgVVKKiaJCIl1wx6x0bpGdoF0iQTGVHk89Dxb9DttpjoqeO1NhFpgpSSpZVVpG5gmCWSXEEVCaoikIpGHMGJV17GtEqkwuUbjzzJhfPX2DF7kMHhEe665z5uufV2Ll44T6fVZO/+Q6ytLeP7HnGcFJEluoZu6Hzjm9/g4P4D1GoVHKfM4sISp08IlmswAAAgAElEQVS/yc994JfxuwHDIw3SqMP6+jqnzlzg9LnzjI1PgchxqxXcWgVblYU+jwyR5Ti2Q77dmc5jQZZLXnv5DKU+galsEUUWHX8N6aWolobntUnTGE3XaLfb25EgGd0wQNWKrN08AcsskeceUhF0OiGWrhGnHiDIMguRVqlVe4kTH6EYZKJwXZ672sTvBgw0IMksnn7hEv/Jf/zrfPyjv0y9XkMo8OSTTzI1NcXwyDBr62sMDPSxuLDCieNfI+h4TO04hNEY3b7K/eT6Ic+Jd3+yff893sYy+2nUu6V4/gzc/R3U/5/A3dvUdj/Vz/Fewd0f/Mv/k7tHGoUFlGDbcjNDVRSi9UW21taxNA3PC0nSGMNUMQ0NRYDfCbntwD50zaBarqBKhYGhBpUemz07p3jj9JlCj1Gyuf+uI4wODXLbkQP09ffS9Tw2mptMDPWzunIBy0yp9fSxudnGLTskaUrgB6hSQ1EkK8ur9DV6yPKc+YUlHNViZWmFJCsuojkKSgbdoA2ZgmuXiOMA2ykTJQm6aWBYJhmQJCFR6JOkaTFISAlxTrmisrBwFduocfXSKh+87w7W1zucn5vn9sN78XwPwzAoVxwQMYat0lxbZ2x8lCgKsSwbhIJUCt2XW3JIkphypQgOD/wWigKVcpnTl65weN80WZaRpBkPPfo0tx06gOe18Lw2itimOaUxQqgEgY9hGqiaQFd1orAIjRayGCA3N5q8fuos+/fswjJNWpubkKX4nsfsjimiOERXJVma4HV9ym6Z2w7uplxxWF24RKXikKOwsrzBl7/xHQ7vnQIZ0+6sYuoOH7r3bqbGBwmCkPHxCb70pUd4881z7J2dJE5jdFNHWib7ZgeZnBreNkKo0e0E6JbED7vomk4c5ywtrvHkd14kiTOmpibIU0jCCNfRWV1eRiqgSYWV66tUajWkVNhY3yCOImzThDwhzzN0XUdqKlmWksYpummh6TpSoTiGdZ2gG5KnIBWD1fVVevsahFHMH52Y4+MfvoWZWla474UhX/r8Vzl86FauXT3N/tlxHMfCsEtoCDY2r9Ho24uqG0ReTJ4tkba28LfWSXKJ47p86oFXeeb1a9iNUT7xqx/l1ddO8dTXv8Qv7jc4Mm5w954at0xYnHr1Of764ZfYt3sP73vf+7FMnZOnTrNn5zR3TY7T7RbZbFmeE4UhhmGyfH21cGDMBKfeOkNfXx9hGACg6gppkhKHGWdOX0bJJG+dfIWZ8dFCYC/BLjn4XoAiJa1Wm0q1SpoVAbPGNsgJ/ACpGhi6QRSG2yHzAoSCIAMysixFSIW0s8Xq8nVs0yDJwLBKrCwtUqlWCmrWjY6groBQUIQKQhIFMUoWkucZpZLJn758gt/+rU/y2HeOc+9YH4HXRmYJ7eYGmqYSpZukRHhdeOL4afoHBojTgBMnL6BrFVSKGI80jvC8kCD0yeMOCgZRAKoqsZyUwI/pbPqIVBYuv3aOY1hICVHskSQ+GRGa0JlfuIph6YyNjyOEJAoDVFUjzTKkVFCkyh0jA/yTf/VpBvsazMxOMDU1xpG7buMPv/hV7t8xQ5pl5JqNYdvESYKqqmiaxi0H95NlCVEcoSjFolSn1aJcLpOLnErNBSUjo4h72DEzyerKMr4fUK6UaLU2qfW4BKGHUHKiIECVBevCdquIPCRJI77yzUeYHBmlUu4BEdPxuoXmhxzT0thobtHf34+5vTh07sw5us1NHNNgbm6eSk+NHXumt4FeXOQ/qhqartLeauH5XSqVMkdvvZWDe/ewf99uNjbW+bd/+XmWlpbZv2/PdtSJwLQsPM/juavz3D0zhq4XLrmBH9DaCiiXq2w2W9QbPRi2RhJ10RRJlmbbeYsZfhihSIlhWoU+LU6RMiPzPKI4wq2UUXJxk0P1bsb5v3hrnnvuu+uHHpdSvqeVVwVBLBS2luYR8zpxtopdG+HqtUVGJ6Z5+NGHKbk13jpxgjvvPkKzeZk0LvPii6fYvf8AipZglcqcu7jEVlgizVQ+9Et/j6ee+jpdJWdlbYO7D9+NYZiQF5Eeq2vLqKpClgYsL56nZAL4kAcIMnRVL+JSwm1HYSkLgCUUcsVE1V06scSwHBAqfY0afhhQ66nTbRf0+6e+/SiTwxO011cpOQq2piOlghSQxgmdMMGyK9iORRZ3yLwmioAsFpi6gqJE5GmEmqsomg45xXUkT0jibtG1MWwis0bP+G5Su48019jaahJ116kYKS+fOk7gbXDL5HQRFG5YJHGMbtmgGRi2TU5Knhmsb3ZZ38xZWGwzMLiHXO/l4pUmO3cfZasbc9/7f4Geuku726bdaaFqCn2NHgzDJopDhkaGKFfKSEVS2pZMzMzOEschikjZaLYZGRlhYmwCv+tjmia1HpdabYgrC2vkaoMUQYrLY089RX1gjCzPSGIDP8gxLBchdLpejMwjXn7pIj29g0jD5/yFBarDOmN1mziFpXWJrvaiql2SJEWqkigM0Q2tWDhjO94iU0iTmJXliK995VH275sBcpJYkGctgigmiRV0rcIXP/s4Q0MN9HLCyqbBlx98jtv2DDA8MEB/r4GI15i/vkqaOLz/vqNsbq5i2BZBnDA2Msbq2hqvvPwyy8vLBEFI3bWZv3iM/sYwYzMHMXtH3jVK+xm4+1n9rboB7n5sw/fHuGP+pAv+2ymSP44++YPPv12Dpyg3AF3+LscHsS2qfXtzOv9bz79z/TBAfC/g7nd/5/f5raN7bj5amK3k5GnMyuJ1Lp0/S7VcJYwSLLuEpmlARqlU2l7dMtCkSpIkvPLKW1QqJVRVstHcwI9CyrZNT7VKEPlYlkG52kvgByxfX6beV6NcqRB2ujQ3ljA0FdOpYpWKcOy/+cbjTI2NMDI6hKoZ2JZNmkSEYUylUqHbbDMyNsjq2hqO66AZBidfP8XwcAPLcKn11DAtFVXT2NhoommFOczc/AK2ZdBud8jznP7BAVTT5MypC5BHjIwMs7Hhs2N6lsDvcOHKIi2/w95dk0XYrqGjGzpJWujDSpZNq9XanjR3SZIcx7UI/EJ30u10SbMMQcz8wkWqlRK2U+LwwV0sLizzV19/jF94/91Mj40SBQGarmLqxSAqBLTbHTY3O5RchygqaE5hECGlyvdePcn8whKjowM4tsOO6UniOGZtZR17W2d3fXmF/oEGSRzTaXfIkpjNzQ5JmtHbV6frdxFpRLcbIITGVrvD6ctz7J0eIUl8NEMgcg3HKSHVIouw3eqwcn2dxevrjA7UKdfKReyIlJRsjTiOMQ2LPAPLtllcWMDreggpMXUbKSRffvTb/L3778K0TESeoukaW80mtlM4dpZcF83Q0TWdPE9xSi62YyPIyLfp1aoqWVstAutzBEl2g5qcFfvc0FEUlevXV0iTnFrdJYkjvntpkf/ow4fI0wjXjImRdNpbTI4O4rgloqiNqsSkZFjlCkngkWYBpfIkYVroT7rdRbrra6hKzh8/cY3jF7bIc/iN/+zXOHBwD//8X/4Rn7jFYM9ET7HarBb6IU3T6XFNju7q5d9+4Tsc2LePz332s/zX/+1/w8zMNPbmBoauEUcRm61NbMuGXOA4LteuzmEaJp954CEO7dmFbVsgIIoCNMMoLMEti76+PlwTymUXq1zCsGwQYJlWAVKSdDtnUaIZxs0FMUPX8KMEXdPQpSSMYzRNIxMJYeSzsbaMZqioukLiR9iug2EapBlIqVMp20RJhKoVFNkojJCaIAkTFEVhc6OJ41jksUccR7TbLV5aXmH/jkEW3zzL7r4qgowkDHj+xecplRpEaYJAw7H7ef6Va8wtLlCtWOzbe2D7nOhgOyZZrvHYk99DyjKWmTK32OSbTz3LQF8PeR6w3vR54qnvcPuhA2R5BDLedh5VyPJs2ywkI0thbGwEy7LQNHObtq2SpSlpWnQmpZQoUuGjhw8yoWn8s7/8PEcO7iNLYj7+kQ/xe5/9G+6eHCfLJTfialRFKY5NRaHslijZNlJVsR2HPE0JfB+n5ECe0dps4pRckjQhjiK+8NWHePPceXZMTfCZBx7k8L7dRGGAaZm4pTLkxViTZDmR38X3Ag7t28/GRhPLtDFLBuVKBYAsSbBt+2ZeqG6YdDsdqpUqtbKLpuuUHJeO7+FWHDRVxfMKgxPTNImiYrHkpVdeZmR4EHKFPMvwfJ+eeg8H9uwpNMCWjdfpcv36MoqUOI7DN05f4I6+Cq2tFoZZ5NhVyoVRVK2nhqIKUHKSwCOO0sKExzQQgiKcHbGtsCgMk7peCxFGdAOfam8dEgVuxB8B2bZR2DtFAD07t/qjYxDedj97B4rn39o+z8mkyr/51/+OHf0DDA42KNWH6O8foeMFDA4N06g3GB8fZ2ujxZk3T3Px0lWsaplrV8+TpR0q9WEuXJ4nwyZOIvr7+2j09nPL0YPUsh4sy6bV2uTKlUsMj4xiW+Z2hukWfTWHs2+9SK1WJUv9In4jlyhSkCUJAKqmEUURUZziVPsw7R6sci9xXGi0zp49wfDwGJubbeIo4tvffpQ9ew+RxiG7Zmcx9ZSSYxPGMUkcomoGul0jSiWW49BuryPDDoZhEvkRQs2REqSiIKVOu9su8mMVhSQtAtVzqWJV+in1TJIrLgKXqL2AiNu8efxJHA0Geue5bfIDaFoxz8qyAsBrajG2xHGEIQVrWyZf/+YTLG14XFla4tBtd7O21qRU62d8apY9e/eysbWKrklanQ59jQalko2UgjSFarUMIiOOErpdj8XFOarVGopUyPOUi+dP09ffj25IVE2hWnVJswTHquJW66BIDh+9nZnpXXQ8H1WzOPHaGywvrjK/ssYbb57g9PnTONVBvvXUU/QODnF1qU21p4YpO+yYOsDjLx7jfXsroAo++VsP0uy2+cCdU0ipABmdTptyuYrneyRJSp5nqIqOAKTqUnIc6nUDqeQoqAgCslSgGxa50Nm3d4ZcbpIoISdPNPna11/j1t02brWG1HKULKUxNEMrcLl8+QrLa+soikGWS3qqPcRJQr2nhioLA6mnHn2YyRETTbMZnT6AWm7cnJLmb/N1eLu/w8056bYZ0U1fih97hr293g7uChTwfWOVdztvfod3vjmH/wEzJeXGuxVGLj8Dd38H9eM6dzfqP6QP9k7dt3d6TirfB37ff48bTj7vlg9cgLp3HkDezTd67+Dud3/n9/mf79x98xUiLe7mImdrY53VxWUaff2Uqr289tZFpKpRrZQwTYdrV+aYm1vE97rkeYLnewXtseTiewFXrizQW6vx8OPPc2D3DoZGBjh/6QrPfPd1Hn7qGB+6/yiaoRGEIY99+wX2T81gmy6dOELXDbI0hSxjbGSYOExBgTffPIWhSfRtswHT1lhaWcSt2GRRjCZUBvv7SInZWGvzJ3/5VQ7unSZPQ6o1F9vSWb6+TJZG2E4Vxy6hCAXTKpEkOf1D/Th6mflra5iVCp/+7N/woffdwtLqOr/0oTuJEw/d0IiTGMu06LYDHNvF62xh2SZZlvB/f/5hiGHnnjHarU2yOMYwTaRmYRkOadSktR6gSwfV1mnU69xx+CBJmvNXX3qYvZOjGI5Fd6vLY09+l0a9h96+PixLI8vSYjJouQSeR7lSod7Tw+joMLqpE3R9NF3nbx56lIpjUS2XIM2Y2TWNVBU0VZIEIaWSTRJnVKoVkAKrZGEYLn/yhYcY7u9l5+5p7rp9D65l0W559DUGkKpg7tplbENDKAKr7DI2OszIYC9OxaXaU2FjYwPHdMhlEV5dKlVYb64j1RzLcunp6UXXNRRFgID7774VVZWYps71pQWCbodavQEiR7ctFE0nyVT89gaqbqBItQC/ojAeT5OUKCpWMk3LJIkhTjNM0yAIfHy/i+M4rCwvMzLcT6vdxDIE/9vTr/KffuQWdBX8TpvOVpdUMTl1+lKRFafZLCy2eOKpZ5jasRezOoBlV3jmmeP09o/iVBTiRKXpwW9/5imc9Bp//64xvnvBJ0fnjTdOMpCc51fuHCsyIhWlyBOTGrqqowhZmJXkcO+efo586B9x5OBBjt53N9LQePXZp3EUFV1qoCSYuoNA8uRTz3Hk8AHmr13nuZffoK/qUnZtqj0VUjJIU2zHQDdULlw8x75DewtQJ7Wiqy2KEPWu5yEVFanrSFUlDIsuWp5mKIogTRXiKCHyfaI4wjAt8kygqTpuqYQiJHkuQTPRDZNMCFRVI08ztjbXC0pvGCEVhTCOMaVK2PVR8hRDFWxtruCYBW22t17l2SvX+M4Lb/DJA+PkWUwUhWS5YHxsEs0ocXVxizizefDJZ/lHf/+XGR8ZZGp8Jy+8cp63rl7l7jvuw671EGNy66330zcwzsOPfYfbbzvKHbffwsLCHLpQ+fzjL7N3ZoD+HhVNTbbBWoqmSuIoQYoi6F4qkCQBpmWj6hagbE/wcnS90OChQJ4q5FmOqurcMzHBpx/4Onfcdgip5Nx+9FY+9fmvcN/oGJpI6G41EaoCUiVJMzRVsrqyhqII/MBDESmbW03ckkuaZpTKZTbbHUKviwTuvfso4yNjDPT1c/TI4W1gJLh48SJf/dpTPP3Cc+yemaHcU8ZQDDY3tiCHIPApOSaKakBe6KlVqRJ6AUL7f9h70xjLzjO/7/ee9+zL3W/te3V1V+8bu5uLKEoajeSxMF6QBM4kCAI4CewEyCcn+eZgJrARI07GRqxBLI1mIo08lkYaal9JijtFsrk0yW42e63qrqru2qvufs9+8uFUS5SGlKiMxv6iB7hA4d6q99xb577nvM/7PP/fXyNN0pxO2ffR9kh+N64u84UvfZP7T5+k12thOTZZKnIKIhlJmhuSO44NpHieC4BTLBBFMZ/94l9w9cYSjzz8IOtra7x+8SLzc/tAwMbWFsdHBzAsA1XL2940XUXVNf6vz/45Z08dR1FUbE+n3fbphxGqbqKoWl5A3mvNzsgQQkGzddqbu4zMTpAIBSG0n9HJ5Xfi979/Pr+y9Qs97n4yxi9J7iQKASlDUZ2lhcs0GndRVBPTcLl9e4WVlVsMD4+wencVx7A5cOAItzfXwDI5dfp+NLXI88+8hlYsc/L4PLapEwSC6+tLXL59ncMTRxgYHMAtOJTLJRZvLjIwMMi1q1dJQp/e7l0KlsTUTRRSVCFzfZaSIVUTVdMIkpRUaEjDBrMESoEgEvjdBrtbm+yfn+fWrWXGRmcwNI0D+w/xte88ikh3mZsaRVMSkjRFtxyCOETRHDSvTpoZ2E6ZfhRhKilJCoqaEscpGfnmahD1UKUGUiVEw/SqaG6NwvhxFLsOQsHWFLo7C9BZJg22GChW+Or5x7i1FXJsfA5EbgmuGRbtno+iujzz4utceucmlcoEb1+9zejEQR74yN/nwOGT1Op1VNOlPjBGs9PBcwzeufwG46MTVOsDtNtt4jhmc30Ny3RotHbRpILt2Bi6gaLkm8JbW9tUymXSNMG2XVbv3sG2TN58802SNKNarbN4a4lqrYZtSWSasbKyjJA2Bw6dxjQLVAYmWV3foVQZJYokvW5Cr6ER6iq379zh+lvXEZbNgDVIra7Qju/y8qsr/N5/9hFKZoCUkiD0MYx8o8MPAoQicC0LUkiCALuiUx8oEKdNIMN2inTbTUy7kHtZZhEJfWxPIpKM0foQv/Pxw4yPDJHKlBu3rlCwp/nzrz7JY6/cwizU+K3f/hStdsDVKzd5/scvMjM5ydWr1xgeHWX/3BxjZZO33ngKza5w4OgZMIv87Mx5/3n188/9dZK7e8P+MgbGB418vHdfSO6t6X+jufsbi3vJ3Qc9b+8v53yf33+PL8a9Cp2i/NUvznvr5t4/GXy/d/7zX3oFgcjyPV8pBAriA3zm/Mu31/vwM4+fl7f+0z/4F/wvDx5EUzTSOCVTBImiIoSgubZGe6fJ1laT4eExGm2fweFhBut1DFXS6bZxHRMpFW6v5Bc6RZdMT0zSbXX5ynce59ypeTSRMVovUSkW+NwXv8FQqYpXNrizcYfpegXL0BBZyuTwEL0kxU/J9QRCQdVUqtUCUuooqsqnP/Ml/vbHH6FSHyCKA3a2t3DcAtVqjShMcVyHldW72K7DytIWd+9ucHN5hfuPH0QrOuw0t7HMApblsLF9m+H6GJ1mj2LZotNsYusmK3d6bK81+d4LTzExVubYvilq9RIzsxPYlkOxPEAcgWk7pFlOitve3qZYrhEnCVtbOxyZm+HCxavMTNYpVsqomsbdu2t87st/CXHE8MgMpeoAfhRhmza+H6ECTz/5HGMDdUzbwysXaXV69Ps+szOTSCkIs5gkAV23kNKg0d1hc2uD6kCJXreVJ7eGglBSpsYHGZ0cIcliPK9Au72DaapkqUK3LRB2StcPKVUrREmIqqYEmcK5Y4ewdYlrGyzdWsQulXELRUQieOWFtzg4N08/6hFFERIwTY1iySaTEtIEyzTQdYUgiHAcmySJKZUK+Q6ymmP1dUUSRzGdThe/28FyYX1tlbCfIo0UoQoMyyCNM9IEVKHjlQqkCfT7PYRISdUEQ6r4QYhbqiDVnNhq6BaGZRP4IY5t4ToeaRrjFMsgVYoFm3/+zJv87//Nx2n2QnS7QIqK6lYo2GW+/e1n8LwS1dogm1ttfudTn6JSHUIksL7aYHxuBhXwrAIvXLjMoy/d5h+dtRksF5Bqg4ePenzywdOcnbVwLRdNV0nDiDTIcm+jJEHVcpw/AuI4ot1u859/8hRXtgUPHDlAe3eTR184z8fm5oiSBA2DftClG3SYOziDoum4poOtw/TUGCOjo/S7AVvrTQolj5gIRVMZmZzMaxZSxe/n//ckiuh023huAUN3yETuw6ea+e56mqUoqYKi6Pzhpz/LM+df4uEHTyFkShB2kIpCHKj02j6dVhvHdRGKjiLzdsVURKimTpJlKFIipJK3zSZhDuC5s8I771xlqDJGq9lDFQbQZnX5Gv/wxH5EmrKyuoOm2/hhgSeevUqQ+CSRwUOPfIKBehlbrzM2MYNZdJmd289AZYSvfusJHnzww7heBUVVMR2H9Y3bHD12EsurcPnGGtOzR7l+4RXuP30Qx4Ek8ckiHy8NCRJJpEKx4qElGqmaQBwTdPt0egHlahkhEjKpkaQQdHOvL0URdHstHNfCDwM+Mr+f//VzX+I733uMhx85wfzcPq5feo2i7RBGKUJAHPaJQ4VP//EXuP/caaSmIFUwpErB0dnd3cQ0dLq9EFt3efvSVcI4Io5Thodq9IMOge/TbvXQdYPh4VHGRkc5c9/p/HwKgWUYhKGPH0cMj40SJAmeYaNJFT+OCYIumi6J4xRNU7EsC8syaTaa+L6kOjKCZVvsn58lbLeJ0gDbKnDz6jI3rt9iZnaKwA/RdB3Hc9jY2EJVdTRNzytwjsXJIweoVEtIDWrlOqVSBSnhh4uLnB30IINuu0e/06PT6nL96gJXrq2ipikT46P0+x2kNGk2unSabWxbIwh7SKGRpXuLLxES9nwQGQKJrpmgqPAT4MIvv/e/X3L3EzjZB7QaSonR0Fi7sUaa+dQ9nUyrU6wNECPZv/8AJCFjYxMoqsKrb5zn0PwJttc2uHz5GpZboj48wvLSIidPnsHvhwwMDvPSlfPokYIUDtNT0+ys3iX2fbxCgdu3VpgYr9Nur6GbsNNqIWVuW5QBmZISJxm6zEgUHTXJIBa0AoNieYwLb7zCxNgoKAJN1zHcAYquy7VLr7K6uszNm9eIOyucOX4QRa0iTReRBaRRH11JSXUPaRbxgwiAYqHO5u4WQlUQGURJhpAqSZqgagamU6YXKxjFcdzaJP3MwzJKKHEb0blD3FonbG6j6DZpAFHQ5Nr2CiLSODp5EF8odBLBalvlS99+AssZ4eI7CwyMzjNz8Cwb2x1On32QWwtXKBYK3F25g6ZILENDyRI6rSamYePUhtFNBcMUZGGAY7pkWUjRK+MHLZZXbqFg0uls4hUMquU6zd123r5u2riOhaqp9EMYn5olDNqMjIxg2iaaqRDGEYVyBbdYZXxiklq9xuLiVf72p/4OlumhSRMpDWYPHeHm9evEYUYvFvT6GdeWtrjeWOf4wUN8/L5xZsZVMj9GcyTl+hytVoxl5ARNqQuCRKHdK2Da48ThFlKGCFWh09XY2upTKVaJ4y5pGqBKQRIL2g0fiUGW+kRxLyeny5TBagk1kxQHK2xttjhy4D6mJyYQWo9XXnud//6//R+oDrhUh0uMTIyz2+kjtQgad1DdEpXxOUy7DiTkxQre9VD+6jwS9/Tiv0pid292/vRnRVF+ktyl6a/OsrhX9bv3eHdX3rvebH60ved+k9z9DcQHqdz9OuIXVfDe7/Vf9/EFP235hA82Ae793S+KXq+Pufg2E+VSPhsAhECQkUQRtxcWUKXKvv2ztNtd7qxusrm9y9TEKNvrW2iGRhCEeJ7L6PAQUpG5VUC5gq7p2LpkbGSQNItxPQ/TsZmbniBJUvbtn2JyYADSDF3X2W60GB4eQBEKwyODRFHCyspddF3F9pwcA65qjNerdLpdOt0unmujKFCt1tne2sm1LLpOpVLJ0c9xypXrC/ze3/sk6xvrWJZBluQVkCiIqVQ9mtsdGo02mYjxPIeN9R1K1UE+9+++wdkT+6jXKkxNz6Cpai7evrNGoZiTC4Ui6LSbSKlimSYClZfOv8bw4ACGYXJwboYgirBNl34voN3oU7FLtP02hw8dYGN9i289/iyzE2OYpo4UUPIchocHGRgZpNvvUS6VGB6qo0rJ7cUlKrUKURDttcWCaatUqhWCno9l23nr4p7KSQiFVjM3Eu53+xSLLpmSsbPZ5E///Xc5uH+UUrGcC5+zlMbOLmkGEtBVjTAIcAoupu1ClrJ+d4NGo0mv16c+UiOMYjRdZ319E69QBEWh1WjSarYI9ry6+n0fRSgE/ZDdnQblaplev8fa3VV0Xc/Jl2iEUUAQpMQd2eYAACAASURBVIwMj+M4JorUaLdauF5eIRII4sSnudOgWCzQbbeJQh9daqi6TiYU/F4fVUq2t3bodHuYlokqBX6vS5rE6JaFokj+2Qtv81+eGWRpeZXhsQnWVzeoVytkWcYTjz3D7/z2IyzcXuHw8cN89nNfZXZqmO2tbSqVEudfeYO5A9PcuHaTP/3RFf7Bhyd46HCV9eVF1tfvYlkZjuOQpC4ZKa5bBCXdq3KB1HLctdyDlSByXY9pmLiOg5b2UL1hRsdHeefKVQ4VCyhSRddUFFVgmgZJKjANGykUZmcnczJmktDvBfzhZ77A8UP7iJO85Y4MSPP2Vank4nu/7+O6LmkGSZrtASMyMlK6nf4eIh2iKObhB8/w4QfOEIYhZBmarpGm0Nrt8n98+rN87MP3o+3BatK9Y8RpjKbmhtVSSnq93Fcr7PVQVEmv0+Hi1WsMlKt88evfZLheB9Hj2PggcZyQJiGZkDx7/seYVonl1TUeOnMS23ZZurPG0OgATz39IndWVyiVXBYWlnnhxQuU3ALTk2MYhkGj0WB3twFJhFsoYtkur154k6MH9zNULVMs2UCMZXsEQULbT2kHCbaT+/S12j6KkkNgLMtB6gZ3797FtE2ajRZRFFMouDllWJFohgoCFKkRhwGfPHiI19a2+NBDJ9F0gy8//iIfnd2Padp86StfZ3Z6GtOyOXZkHiGy3M+x34c0Y3dnC9PUEYqKYTmsrqxzd22dY8cOUygU8kWyotFsdrh6dYEfPPMMZ0+fREoVr+hhmnl75dNPP0cYxkxMjqNpKkJCGkYomoLUVKIgpNNuYzsOURQRBgGddhdd13A9B1WTjIwP0G/v0tzdxPQ8XnnlLQzV5PR9J+m0W0ipkGYJUkquX1vkiede4MSxg/hBwNDwIJ7nkmUZlm2hawZZltHpdnh28Ta/NTOKFLmXnVDy62mlXObGwjK6LpmdGUc3VeIopVKpUCx6qFruHampOgKFTqeNVCWGYdDtdNF1PaeiCvkB75R5vF9ydy8+qD4/7yVQ6aw22FhdIg2anH/9DfpBwuj4NFIR7GxtsHZ3nW6vx8VLF7BND9ctcGD+IO1Ok6XlBU6dPsutxQVu31qg4JbZ6G7wj//Bf0etPpzr1EKfftAnIyNGpVQssr62xoF9c/i9DrapYRoquppv5ihShzTDT2B3e4cwyvAGZohSweTkDJki2drZIY4SdMvljQuvMjk+yfjUDKbtYZs6E6Nlrl97hxeefZGTx+dQZA62UcwShlUizWQOWcoEhYJJEocIVUVoJpXaINL2SISB1IukmJh2AUO3iKKIXmeTqL9DGrRJYh9Nk8RZgKXnvsRvLS+h+g4TYwOsbrR5/LHnKLqzRD2ds+fu4/ix+6mUB+n2+oyOjqFrGoNDQziOg2laOI7Lzs5urt8PAoZHRtF0nY3Nu/j9HqZuoaASpRE7u03cooVTcCm4Je5urGJaOkLR0A2LZnsXQzNBpAgyKtUB3n77HWZnJtna3iEMw5xJsGf7ZFkujWaTQsFmeGiMtdU1ZmZmGBke5s6dJaZn93P/ufvp9/qcO/cQxWKZftjjW09+j7i1Ta8fs7R2k/3TU0QiYHu7A2lKGGyhGSZZCprqcOG1q7z4wsvM7qshFAjjGL+v8vhjT3LfySN0eg26vU5OQw5TLNPCsAxAybWScY9+GGLqOlEoCYWNXZjixLEPoeomQ6N1PvLRvwVpxuKtmzRaLSqVOqbh0dpexN9cRDGLHL3vw0SphhDvNf9+nVyJnx0/Txz3Xvn/sS7/+Sn+G83df6T4VZO79zIP/yDxHz25S9PcqPhdroq/7JB5D3OG8gs+6507q/zpv/0c/+nBWVRFodFsopsGKClqlvCD73yfeqnM0PAIG+s7qJrO8PAAQb+P6zhYtsXudgvXcblxYwnHzimaf/TnX2VisIrn2YyODuIHAaVamZ1GE90y8coFytUiYTdAChVVNXLPM8uk2WzgFTwURc39mra2GRyo0mm10FSN/+cLX+XUwTmGRwZpdbosLd3BMnW67R5f+Nr3KFk2rWaXoldk8dZ1KuUinmczOFTFcnVsEjqtHUqFMq3dXER9Y2GFp19+g6MHp+l2+wwODdHttWg0d/nIww9gmQV2tpusrKyTpgmGqaPIhHa7TZqmmKZJFEQYhkW3HZDGCSMjw6iaglOw0HWTtbubvHT+IkcOHOTO8gZnzhzC7wfUBgZYWLxNtVSkWCkQBH1sW0cogh899yIHDuxDKJAkOfXMdRz6vQjXdRBCEEUBQpG5EbGUJEnK7u4ujuOyu9MEISiVSmiaTq/XR1EF3U4Pr1DizInDKEC33UVk4Pd8bNPGcUxsw2J9bZNOP6BYq9PrtlFVlULRYXikTm2gRJSBVDUsx+PtyzcZGR1FUxUcx8EruFi2hRQSXWpsbexy4a0rnH/jCocOTtNtdRgeHiAMI7qdLp5XIowDkjilVKkQJxGXL+a0z0LRJYoC/CBAkzHN3SaubZPuiepM1yGMEuIkxrUtNtbX0VSNar2GUAS9TgvT0Ol12vzxlTUGJl1+96GjpInKO9eWicMYz7Yplkrcvr7Ivtlpun2fY6ePkZLxsYcfoFIpMjhcZ3l5hRfevMaTV1s8fLjIb983QZrmMJdyWWN8ZJB+Z5teu41rWGSKQZJAt59DUaIwxfd7+UJB7FH4FIUwCND2DK1H6gW+/PglTpw4xuHDs1x78SVeeeV1KiV3r005o9Pyc32VEtH3u5TKJaIgJejHfPyR+1m4ucjIyHB+s1MEQigkSUyv20FVVSzLpO/HXH3nBpZlomp5xUGgEfbDfKNEkSgyQ9MkYRRimjaqau6Zp2tomsFHHjqXt8I6JkII2u02QhE5/MQP0A0TMoGy58enaxpJnFKt1Th0YD8b2xucPXYAJYswZY8sCUjimH4Y43g1Tt93lpGRSaYnp3EKDtMzs4xMTaNKwYEDs0xNjVEslXju+VfY2GywsLDOwbkJwtCnWLSp1kqMjk/geDkw5tihA2yurjB7YJ52P6RSG8UPNRaWmyw2ugTtHjUnJQnb2AWXLAZNlfiBTxyHVKsFmjsNBgcHcrP1To9Op0Ov09tbJAmiOEXNAlQpeXh6imd+9BRpoc5/8vf+Lv/8C/+eD01PcOLY0Tyhd3Rsy0CqEkXJNzAC389tMhyHZrNDgsqbb17k9IljOJ7D6t07VGsV7i7v8OVHv4tlmpw8coBavYymGXz3uz+gVqtimiaW5lAu5RAi3dSJkwhVpvi+n+vW4gyRgW4Ze22OEtu2uXnjJoahEscBSZwTKovlAmEEo8PjtJtdvvr173D8yGFevfAyY6PDSKnh92Luv+8cSdZFKrC9s0OpVGbp9jJrq+t87buPcfvWEgXX5aU7a5ytllA1Da/komqSKIzo9jrcf/YY8wdniKIQqWh78oaMjIRer4+h27RbbXTD2POt1CHL6LRy8qmm6+/vQvw+8e7kTnl3S9fe6x84uRMJn/m3n2ff0DQLNy5D3GF0fI5abYhM6DQaDWqVIkkqcFybD33oESYmphgZHuXNt15kemaGrc27FAtFFq4tMzIyxfruGo2gwfzENKVigSyN2W7sUCgV2N7Z5uCpE6SphudU8btddCOjvbuBpqqEQUCr3afbSxBagfrEQW4trzMwNo83PE+73UG3PeJUYDsFpKZTcB16vT6lSo0ozfjx+RdRoxbVYszwaI2jB6bJ0hCEoBcrmM4wvV5KeXAYhMA0TTY21lB0g36cUaiMkGoufmrT6ElQK3jlCn53F7+3S9BaRct20fGJ/BZCgh+HxH5Cs9VCdyp8/qvfw4330U9clpf6HDryAMdO7WffgVEEBuVyjes3bmBZNsWiRxhFpEmCbuTEbc0weevSGxw6epTB4WHCOGZtZQlD07B0C9stsbqxg26abG3tUqkV6XY7aKpBuTbI+uYGA/VRLr55iWqlSqVWJUsS7txZwXE8RsfGWFtbpVIpQ5qSxFG+OZSkrG1usbW1jmFICl6FsfEJnnv+aUrlIpVaFcOyuHLlCqfvOwNZhqrpHDt2kAMjh/jaYy/zzvUGZx85h5p10c0MRUhsS6dQ1UhDA8Ow6Pfz67fn2RycHyOKQwzVI4kklXIdIXyi2Md1bNrtLpVyrmsNwwDL0PO1YtrD86qkqUKm6Pybz36NLz76AqdPfhSpmRTKBfweREmP0bFxdjc7rK5sUnKrtLcuogRN2pnDyOwRhJTvs/78TXL3m/glkWXp798jYX6QlssP3Fbxc7CU9z72r17yfY939Ese73rfP3/8XzBq7uuj/OS33k8n8K//1R/xP5/LdXZJmmFYOogUmWYsXr7CQLWKUyyTZoJSsYhTLNLrdGg2GkR+wOsXr/Hs+QucOnaQHzz1AmdPHeOtt97h/mOHSJKIar1Eq9Pm+fNvMjk2jK7r2K5NmsRITSLTBFXT+c4TLzI1Psirb7zF7MwIGYJOq0Or1WN7ewNNKmzvbBNHCRKYmRwFKdjebfKXjz3Dxx48gyIV9k2OMjo6xGe+9C1u3rzN2ZMH+JMvfYOPP/IQ7U4boUCcBPhph0arQ7PTJgh95g8eZqRWx7RVagN1wiBBEQmHj+1H02xef+0ipZLDj1+7xMLyMuPDgxQLDlI1IQVFaPkCsN8hSVOGh4fo93yiMERqEs0UFEsO01NDrK7f4ciRaRAC1/NIoojZqYm8Zc3QcFwHkQlarQ531japVcs0GtsMDdVycMn6Dk+/eJ7905Ncu3YTz3X59g+fYXxoCEUo9LpdquUShmEjEHzlWz/k2MF57q6solsatuMghEIUxfSDPqVihf/3q99g38QohWKRGzeXeOvKdTzLyi/+QiBViW26CESuMZI5MjlNIizbJA5jnnr+Ve47eYxua4ft7V2SJEU3TVSRsrO9TbVWQQjJQK1KtVbM4R9phm4YOK5HEHZJRZ8w9lGlSs9v8MTTb/D0axd4+NxJ+v0+pmmTRDGbW03KpRI7uw3K5RJIiapqaJrG9vpaXuXUdRAKUgoyEuI45PPXNvjEyUHmxoa4e2cDTTWo1cp4ts7n/uxRThw/TL/bpVApcf7Cm0xMjJFGMZZl8caFNyl4Do++dJOLt3f4Hz8xTrlcQtN1kiSjudPE9gp02wlXr1zGMlUsTUGaHo7jYtgmZAqqZqDILLcVUOVPqqtS5i2qUZygSo1n3t7i7ANnCCOfLzz2LP/wY48gFR1FaPzwied4/OnnOXfyCEGcnwOhKLz08itcePMSO1tbHD18hK3NXZI4wivklZMkislzSYGmqmRAqVzEcVySJMYwdNJMIfR9Lr59mYF6JYcUxDGGkZu/v/7aGwyPjiJVA0UKBCmqLtne2cir17aNes/wXKo/uZaqMrduQCRIqeefUzMolAsk3QbXr1yi6ioYukocJqxuR2w1MnTDRTWKDAxPomiSbsdnu9HB1B16YRfbc0mTjGqpgMgSVlY3OHv6EAMDVe7evYuqKChSQ0iNeI+06HkuK3c32G10WVza4NtPvsj9Zx7g+MF9KBEYMkYVCWm/jaLqeYU1zTA0jW67gee6xH6fJI4wXY+NrW2kUHMfPS1PeuM0II4zshQKIuHZV17n8P1HuLm4yIm6S7fbxLR14jBDkQppEqMoEIYBtuURhj5xHPPo937I2dPnGB2s0+l0iJPcEF4zNGzT5sjBA8zPz2FaBrZlEUYhyyt3GBsdQRGSQrmIaVu8+voFhgYH6DTbRGGEEAo7u00KRY80TQjCEDLy6w+5Nq1an0DXNNIYMlQ0uwRpPh8My+DkicMIRWFicpQwDOn3+rTbPcrlErqu5efXK5CRUq2WqFSrnDw+z+HD+6lWq1zY2uaRySHYs9nQDRMSKBQLqHrecbC5tUOpUEEoGZqmIFUFw8i/7xkRqpZbfyRxmkMjRO5HKDV9D5/ywePdyd270Q/vvg9/kEhJ+P73nuLUgRN0mjuQ9InCHuPj07R7KZ7n4Hk2UpVEcYBh5drtbq+NKhXurNxm/75DHD1ykm6vRafdYD3doV6tcWz2GFkSsXT7FsMTU/h+gKrp2I5OEvmsrt4GJaDV2ma7EbDd7GB4A5iFEd5ZWKVYn0TaVRy3CNLAKg+jGwYZgiiKqZTKXLp4kW6nxfTMDKvrq/jdJtffeZ2T+0cwiLBtC0m++FFUHcWq45aGcd0C65t3UdWMfnd3j15s4JgWupoTiB1do2jpBNEOImmR+JsoSQdLjZEZhD0fXXNIE0mvH/Ha6yu89MrbVIaPERYcHjj9MR746Gks12Vu/34UYVAsDJCKvKWwNlhjcGSAhRs3GB+fwLItWq0Whqlz8a03+NBDH2Jt7Q6CjGvXLjM6Moym59ZCQb9HpeQh0pSNOysE3U3qFY/25iYDVQ/iPokfUyoU0TWJZpnomo4iFGzPY2trk0q1SpLEWGZuz7S5vY1teThugaGhIQQJSQZxEjIxMcH6+ip+GNAPgr3PI1heWcFzPIIw4vW33mChuYWSKNy+dYkTJ49im+CoOmEQ4YctVPJNkSgMsF3J6EiFwO+giLybwzIlriuBGMc16XZ62GYRzZDEUZg7xElBEIZ0I50r17bQdYt+7w6aOcxr72xx/7nf4uLly5gW/Ls/+zKVwRIFtwRJglQSFm9epLP5NgPFAu7IYaqjM2jqT9eyPwtUyWfYPY3cvY2bX8yaeO/4GV0dGfd0Dr/auvzdjAyxVwC6N/5fffz82L9J7v4GIk2T3/95m4NfR/yqCZtUct+tv8kK3r22zHvxyw51j7Yp36u/mXsAlZyMmd1Levdas1YXl1m6s0apXKVcH0CRKn6vh9B0sjii1+nRanVodvt89MGTpEnC0YP7EAJ2m00mx0cZGqqy09ilVCoyMTbKjWsLVMpFNFWl0WigaSpb6xvsNNpsNzo0mg1OnzhEseiwtHSXSq3Kqxcu49o6rmdTq5UZGKgzMT4KIiNJU8rlCkf2TdHr9BBKkutFbJOD05O88Nol9k8OsX9qkuHRURzXxg99ytUhkFBwKxTcMl6hSLfnUy6XUXVBGIQoQqXf64MKijAoFQs4ns78/Bzzs1MUiwU21jaRqsEzz52nXikjlBghM0zLIE0Ef/Cv/4SD0xOYpoGqGbQbbeIoZmxsJPeiKhYRWcaTz75EwXH43Je/yaljh9je3MaxbVzPY3pqEtM2KRRdAr9LEmWUKxXm5yZ5883LnH/jHaZGRvnRyxf45Ec/hFQlpmnQajYwbZeb1xeZGh0hjmNK5SJJlreXKVKi6WreVpppnD55iDDKF429TsDXnv4xD544Sr/TIwh8TEtjY22HQrFIkuULQVVTMXQJaYqmGViKhm2axHHuH2hYuXA/8nMKqSJzaMfw6DBR5KMIgZKl+H7u1+P3Q4SEam2ArY0mSRpz4vARTh3Zj1Qllu2wvbGL4xV49LtPsX92imqtQjfoYhg2nU4XTVNJoxBFCPp+iGrmu5GqInjx5jKf+MRxxmolVKnx+T//OlNjgzz+5LMM1soMDtYZmZjAMjSuLyxy4uRRuu0uC9dvsbG+TbVW4k+evM5QeovZIpw7fQzdMPI2PKHQ3m2h6ja9bsTG2hKjI3UMTcFwq/T7MZbnsrR0F9Ow2d3ZwvNcfN/f8/uTtNttVFVD32u1feriOh/68EOoasozTz3PmeFBpDD4yte/R6vVZX5mgomJIVJkblGQJVQqJUaGhnji+R8zOznFF7/6TU4dO4xhqSiK/IkGCzJ838e0zb1rVo7Zj+MEVVOxbYvZmQmiMCTLJE8+9RyaqmFaBm9efJuZ2dkcoZ4ledKYpNiuiUDJARdpRhxH7xK459SRNMtICclSCIMETddRANOxub10h2rVRbc9asPjWKbD9596geHhQar1AQzLQghJr9Nna7eD5xSIkgChKMRhRKVSQpUZ1xdu5b5vhdzvKYlS4jBEUVVUVSUT0Om0cW2PyclJioUSlq4zNT1J0G1z/s1r1AbKrG6tY2kaqqGTpBm65fykfVyqOt1OJzePFyqFcomCUyDJEvZKsQhNoAgVVVHY3lzlzMQ4f/joD/kn/+Qf8fuf+xKfPHKIKEhycl2aIhWFLIvo9ztkiULBc0jTlP2zc5iOR2tnl9pAlT/6/OcZGahj2SZZkrK5tUmxWMKyTL73g8dwbZuDB+fxigW+8tVvMTU9huc5jAwN0W61KboFVpZXUKRKfXCQbqdFHIeUKlWazSZhEJIkCVJR0B03t2CxDTJNkioKugLra2v4/T4I+PQff4H9M5OUiiW8oku5VOKHj/+I7z3+LEfn54niCCHyBDZJEjrdFqqq0Nxt8vrmFvu1FE3TME0TUNhc20II6Ps+hmHxf/7xX3Df4XnSJEJqSk7nzHL6nqYr9P1uTsrVdJRM5lRhBaSqkinwnl1h7xO/rrbMlJhnn3mZU/tPEPTbxL38ficUA7cwyOLiIqWiQ7PTIokDypUiQhFASq1So9/ts7m5QbfTZ/7IPKOjY/zolWcpFYpM1qbJkpDbS0tMze7HtG263S5lu0Cv28I2DSzLwLI8qvVppGaRpgrjMwcZHJvDsGxUy92r6mmgWmhSIfD72KbJ1XfeZmJ8nGKpSBLHhKHPxdeeZ2RgkJqboiEQioqiSkSS0AtCjNIQSSYJ/D5dv03Rs5Gk6PredUc3kaqaJ+RpRK/bREs7+J0GaeDncpA0RegqcRjT7/ZRNZ1ur0dxaJaHP/Ypvvbq9/nIwY9z7NRxFBEThH4uwVBtGo0etqOSCQ3DsLi1eJv9c/vY2NwgiSKiJMHUDSrlEo5joakqnU6b6alJpK7RbLYoeB7rqyu8/toLbG3cZmp8hHJJQRMhShqxtbmAJiOCINerabqg3Ytot1t0Wh00XaNYKmIaNlka0Wm1MFQdVTWoVGusrm1RqVbY3t6gXKuiSCWXHLgOteoAiqZimRZpklIqlrhw4QKTYzPsm5vjG09+g32jVc6cnEKIjLFhD1WoaKpKnPWJ/D5ZlubXcyLSNMA2LKI4BpESpz2SrI8qDKI4QKoSxyrQ97sgMqRUiaMIVUq6sc3/9E8f5Xc/eYqCF7BwaxdZmOP8K2/zX/ze7zGzb4RKucb8oXlW76xRKji8+uqPOXJ4msb6Fdo7u8wc/zCGVwYRI4TGe2yTvGs+iZ957a9jTZbtbef8qmO8Fz/jFw3xm+TuP0AkcfT7v+w0pukvbk18r1bNnz957z759zDh766s/XoMyN9/gIxsT2z6wQSn9z7Le1X87sWD4c5ehU+QkFsviCRDRDF3Fm9Qrk9SKleJo4g4imh1OliahtAkiipwPZeZkRFsC1q93h5mXkEi+Ivv/4ijBw9gmjbLS2tUymXqtTpZlrK5ucHA4BjNlo/netTqdZ5/+TWiLOTk0QMsLS5TGRhAqhquZVIpeyhCyb2hNJteN6ZUsmi3WygyxS24SE2FoIeqa0RJwub2Jr/78XMUCy5D48M0Ww2yNCUNIgzDpt8LMW0bqem0dvsQhgRRF9022FxrkEQpmUywrRKqJgg6HVRMdMtAVVV2d3aoDtZYubnA/P5ZNL1AFIVEYR/HdOl0O3ziI+coFT2Cfp8kC9Ckg9+Djbu7fP0HT3Hm+EkUXfDC66+yf3qCu7c3OHX0AD944nmKtk2h4NHcaWDoKv1ej9CPMA2XO8vrDAwWKHgOlmZx4NB+Hjx3DKHEdFurqEqCbZTo+A3W1tZ58vlLfPiBs7nJb+SjZJKg5xP4XcDPtVyqShInxGFEseTx4Inj2I7FN554kvGRITyvgOcZxIEPZDk4Q9FpbO3mRuJBjGYYfPOxp5kZG0LVVLa2trBdi77fwbAdgsDAsW0Cv4Wpa/j9AKfgIaUgigN03SaTKilg2RJVUVB1K68mo0Am+dq3n8aWksGBKmPjQ0CGrUj8KMB2PaJUYJoWO9tNnIJFv7NLt9Xg/M1VmrbB6QNTBGFIn5D5fRMs3LjFvukJkizjwqWrnDl5mOZuiyyDS5eukqYRM3MTfP+xZ3h2KeFTx0o8dOoIvV6HweEyYRgTBQlpAudfuUyl6PDcCxd5+P77ubVwG1vZQddMPE9jfWOHsfFZDN3AskzSyEdkGrrpkmZZrg/KFKSigIhZ2tjh4PEjiMzkgbMP8y+/9CjTZsj8gUkevP8ko8NDdLo9XF0l6PfQNBXd0bFLBmdOncFwtT2tl87mWoOnnnqOsZERtD1Cqapr+FGC389y7zkpQeiEQRepSvp+kBtBJxqvvfYGaeozPT3KzPQYUhi5fk9AGPk4jkmaRsRBjtzOUolIFRRNkKTJ3u07JQwCVDWHIqm6JE7zXWykyvT+w1jlcfRinVAxUVWH+86dwyuUcAtFEhK+9vVvs729zV9+/wd89MEzWGUH0zCR6PTbPUgzjhw6QpSEGLZFlEb0fJ+BkVGiXsDitZs4lkOpWiNlz/za0KjXawgBbrnG8u01Fq81GRmdw6kZ9NubhHEXREKWqpAKpKqiSJHbdqRg6zqdNCHxfWzDQkodkUX4/R6qrlIoVYkywf2jQ/SKJZ57/mU+fugQqqYTRR16vV36/Rbr6+uMjowhNJ1uv49pGOi6JOi0KJcqtFtNDh+YY9/MPpTMQDcktfoo/aiDzBS+/c3nOXxshvpAFcs0cG2bkltEKpInnniOGzeW2N5q8b1XnmVja4f5uf171EsFy/GwVA1VSHp9H822ULP8/LVbLUxdR1MgTvJkXjcMXMfl7OkTGI5KnEaI1KTTbjJ/aJJjh+fx/T6Foku300VKFUUqOKZHnGYEYZcfr6zx23MTNHZbeE4RkUnIIm7cvEWxUMC0DdqtXVZur3Jg/yyq1JG6DqqCKhJ2N3qUqyWEyMj29D1R2AehoEgJQn4g9Ni9eL/k7l6L5geNnY02k4V9CFUhiVOStM/63RuUyiVUs0SmmIQoiDSvlCpqxtbWDrX6AK1ujO2VWF68xsTkCLX6DK5XYnRfgWFthKGhM96YCwAAIABJREFUYUyvTJpJ3rr0FlMT06RJytbqXVqtbQK/w/LSXW7f3KQ6OsTE9D5uLC5RKJS4u7KMYXvoqsr2bpM4zVCJUOKEfreFbZcpVQfx04je9jbdnuCV157HiRc5um8YTQpUCYau0g0CItOiXBsnigpkmUIqAkzdI4sipCKIhEUUxJh63gkTBR3i3jY63bySE/q4ho5n20RJRqalxC24uOjzxPnLjO47wr5DZzHdEpcW3uH03P10/V1sw6G5mcNPkqwJogXoZImCoqiUy0XSJKZaqSKk5IUXn2dyZh9LiwuEYYuBWpnmzg6h30Zhl+bmbZqbt6jYGUMVyWBJw7UTRNIni3pkaRdTFWgiQ818En8bv7mGoZks37pGqVpGWhBnAZrqsLW+hchAlTFxpiKAWqVEv9tBFRpp0CeLY1RVsrm9TaFcwpB6bkTe6XDtxjXGxsepDLoYusluf5u//3f+FiNT+/i3n3mU0/fVsWiRRkBSxfVykJUgwzA0BBBnGe1uD1KBJiVCSGQWEGcupu7R3FrFTIvYZkTfbyOYYaezQZr0+Lu/cwBNxoRphRSVv/j2JVQdzj14H41GiwOH9nNnaY2JmVEuX73DuXNn2di4wM7CSxQnDzNz/AE03UZFR0j5rrXxXqWOfEP0J8++a23914l3j/FBxroHT/nZMX72uXdDWd6r3VNRQKq/Se5+7fFBaJlZxi9M7n6aqb9/cvfzX5SfT+7+Q8RPdzl+xb97j+f+tz/4Fzw8Xv/JuOlei0Xsh9y5vUSj2WJsbArf97m5cJtqvYLj2piGQRiFxFG+E9ZptLBdB9ctsHjrDpZuEYchxw7N4RRc4igiS1NUTfLCS69za3kZy9Cp1upkCCxTx+/12Tc5RrfXJcsSRsZGubO6SrnkYBkqnXaXkdFhbi0t4zg2j37nCabGBpCqSpJkBEGEaRk4tsZuo02awchonmD0uj2EEPi+TxLHaFLjzsoWxWKBVrNBFAS0e23+5Cs/ZG5mEk3TKLkuq3fXGahXUaTO+sY6upm3rZiWkbdOBQGB72MaBpqm84ef/TIXrlzm4TPHWV5a5I03F+g1YwbqVdLEJ04VPv/l73BzYYmpsQHuO3WAnfUt/tVn/pJ//F//V6iqxenTB9ENlXq1SLlSQNUkUlNQdJU33rrM5ExOPDz/+puMDNYJwgBVUVGUFCEku9vbGLpGHCbs7HTRTRWRKTx8/2mQKSt3b5OmCY7rEO+ZuKdxhu26dDpd0jTF8wpsrG/y6S/+JQcmRzl55BDlSgnd1Ol1W2RpjOPa9IIg1x2SYpgWKWDaNtWix8jIMGkm9gyvFZRMRUqN19+6wPjYMFmcEYa5L18URfhBgCIVLCtv/9N0DUXovPn6FarFKmHg4xVMotBnamyAsekR6iNV+v0euqHTbnWx7PzGlqUJJAlKliGkgm3aPL6zy7kTM8igx2M/+jEH9u8DRUWisLG6y+DQMJfevsGRg/MsLKxwYH4Oy9IZGa4zNjHC6+/c4qNnZ3jj2ac5d3yO5378GgXPpFqt0+32cRybOI64euMGL796lftOHWb5zl327Rsjy/qEqYZhu+x2M1AMdNNCVSEOA1SpkyqQkaPnpartod0Fx2eq/N9/9gwPPnCOXrfFW5cuc25oDF0zyRJQNYlXcIiSGGnoua+dUEkShSTM54Sqahh6viExNzeD67lkabKH0o5QUsGffv7LVMomgwNlFNJ8owRBliY5sEcRnLrvGFPT43S6PnEiiKOY5aVlSqXCnnbPJ40zNFXPb5hKSka013qqEUcxqpYbo+fQlZ9qiHOwTLa3EaWiyNzoWtHy/5Vu2qQAmWB+3wzT01M8fO4MSZKi6Spkgn/2L/8Njzx4DsM0+NJXvsv+fTOUK6W8RVLNtWTNnV2+/fiTHD04z8bWFq5tsby0gmPnnn+tZovvfPNHfOSR+3Bck5cuvEGUwfa6QMt0bA2KgzV6cUQSREgpkaqk0+mRZRmFYpWd7W38IK+IKlKgCIX/j703jbXsOs/0nrX22vNwhjvPdatuzVUki5NYnGRZotXpji3L7UZiODbaQRAg6PzoJGiggQbyIw0ksdvuSd1uS21LsmVbtClqoAZSIk2JgziJU3Eqssiaq+6tO535nD3vnR/7kixLtEzaUn5pAQQKp07tc8Bz9lnr/b73e94szdF1o7K+5TnyyirOyl6++OiTHJsaR0kby3BxnBrNYIIy1ylEiaHrhKMRlmWRpQk5CUIrMUyFYWl0um3C/gDLdmi1t8iylDvu+BC1WoBA0W71ePqZ55mZnMKybc6fv8jRQ/vZd2A3xIKlqVmWds1z5dIlXNtESEGe5bS2WqRpRpwk2L7HlfV1xqcnKSgZjYYYqorMAEEcxziug2ZoFFnG66+9xczsJN1uG88LcD0PXSkMw0AIyfnzpxFCYeoGQa3OouoRWA7/93+4mw/fcpQsH1Lk0KjXqDfrtLY7HD64n/FGnc988csc3b8b3dTRhCAcDfmDL3yN4zcdpqBACh1NCvIsrWJPPI/iA+6Y7ycK4f2s3/vdT3Hs0DEMzcLULQbdDiLuYBg63c6Ahbl5NK3ElAaWabCxfoX5mXm2NjYp8oxmc5w4DDl0zXXoyuBf/f7/yfrmJh+79aOUpeCVl59lYmKMvXt2kyUJb5w8yfTCFKYVsLCwD99vkJQps7NzbKxvsrS4iyiM8b0A1/MxdB3XsYnimMmJCTa21rFdhywRbGxeYWZqgourG1w6+yYLDVjZPVPF1pBTSEWY5ji1KfzxfWD4FJQ4ro4mSsI4QtMKBBm1ZpN41KfTukKaREhZMup3MJUijHoYpsEgTIhLjbBQCHuJ9Y1tWmHK9TfdwdTYHKavMxj26SYtZsemqtlUTbK5fZnGhM+l1Uv4tQajQYjr2PS6HWzTYPPKFVYvXaDXWmcsMIg66ySjczT9gmFvjSJu4RgxhC1qpsQgQZURhkgppABylC7Ii6rznOURRZmidv7OMCVlvsnUmIOWRrglZO1tDMfEdCxqzTq5qDJANSXY6myjTIUVuNi2S6fXI8syNAFxOMJxfb71rftwXZ9mo8Hs7CyDwZD1tXWm7QUeePQ+pNQ5fy7iK199iGPXfQjTdVHeZbKwIElihKwo0kVRYlo2htKJk5gilyjNIIlidFNRkmKakr7s0ys6xEWN/+Wf/zEXL/W547YFTENDVzaDyOTy6pDvPHqaWtDgumtvYO++A5i6g2kYDEZ9ZqdmeOXFH1D3R/iGjj22xPjiQTTNRFCSlQUFxV8zSO8kQf+9xdyPW+/n2u/n5a/WAu8l7n4WhfBTWm+Lu6tn5H5UiP1M3F29Hn7oe/z6fPDXrlsWBbqmOPvmGbIkZdfSfJXF5joIUYkZx7HZ2NxECMHZ86s88/zLzE+N02p1qdWbvPTKKWzTYGFhFidwuHDhErZt4Tg27VaH6fExZqcmidOUmbkZ7vnaA1y6tMrK7iXyvGCs6e8EmzepzpQlnXYLXZlkWc7p8+fJs5xHnn+FO286immZ2LZLq9XFcx2gmt9qjtVBSOI4xnZsdF2hmzq2ZbG12WZruwdUtLaLl1fZt7LINYeO0NwBEDz+2DPMTIyRphn3fPO73HTTUbwgIM8LiiKv4CZFjhd4WKZFt9vDNRX/5BN3VZtVr8X+PYf4/Bcf5MZr99LpbGN7AfuWlzhz/hI333yEPEsw9YIXXzvLrcdvpCQnZUCZg+OY6IbB2toVTLOyhU3PTLJ2eR3HcdjY3GK8XqfW9DEME8sxMHQTQ9egLHAdl7W1Fk8+/wI333SssiqKDCVLkjRD0zRcz0OTCqWbbG9tYlrWTjBzQVDzObx3mcnJyZ3gZp0sT0HkWJbJ9tY2UmlomkYSRgyHQ/wgAERFC5WC3/4vf8y4XwXH60JHaILmZIDSFJ3tPr/72T/hthuvw/NdTNuiyAvICgogDmM0aTA1Pkm/09sBxpQUeUoUh1i+DaLAde3KjqUZhKMelCWmYZLEMf1+H991uPut09x1bIXz5y+TF+C5LuPjTWzXIR5GvPXmRR5+5Bnq9Rq33HITs7OzPPjgd+n1u0zPTvLvv/oCH79+HF1qPP7ky9x47ADXHj3AH/3p11lemuPhR57l8KE9CAFLi1M8+cxJfv4jx/nOd59kNOowVjcwTIcCxfjMIoblVQPfZQrkCKHISxgMWximgSar6q2gApA88vI6N998IwKIwgGf/8zn+JW77qIoYTQaoGmCrCzI8xLdMKGQO/l571ICu50urlcRM6WU6IZBlqaYpoXUNLS8wLQEcRxi2XYlrgAhK4S5UBqlqOBMhmljmjZxFDE1PYlUkizPGPQG5GmJYZjESUQUVRmQmtQpi5KyLMjz6iBTwTDMnSqrROk6YqdA0e8N6HX7eF6A1BUIQa/XRzcqrL7cAX7YjlOFh8sKIHTTNYcxDIOnnnqG199cpV53mJ+brQpWaQ4CwmHI0vwczWaDrCgwjOo6hmmwsb5BEPgcWNrLdmeVh596mn/yiU/w9Ycf40PXXcdw0KLuaqAbIBWWboKsSKK6bkJRohlORectCjzfqT5HIQl3KKHDwRDXdeh0+3zt2Rf5l//yf+fN555jujFOXuQkcQQllHkBGqRxTLvVJk/Td0LDpdQ58dIr6MpAaTovvPAC9XqN+lgT13cZ9Cu8+4nnX+Evv3o/Nxw9TK3eJByGPPjIY9z1sTuREiaa0+i6wX/6oz9ivO4zNTFBKWFjfZPP3/NVbr35Rl559TVmFxdwPKfq+hc5eZETRzGGadDrdPnMn36RQysreL7HxtYGX//Od7nh2iNYtkFZCnRdJ01S8jzHtGwQOfV6kziOSZKcb598ncNTY9xw4CBpMsLxFWlUZe0JKSkosR2LwWDER26/Gdd3KcsMTWroSnLbTTeCzCtwGAZlmVPkKUmSYDk2Qv5kOncf9BDaPdVjamaKIq8ijPIsJh9uMBr18L0mra0tClGyfmWLtcuXaNRqbG1ts3rpEoPBAMN0uHLlMrVGk9EwYmu4gWEobjh4A7puoqkC3/PY3trm9ZOvcc01x3jt1AkM3aXRmEDpOq5vURQC3/cZDkaURUFru01elji2Ta/Xxfc8hBSMTYwTJQlrq9us7NlFlgx55eTrvPbcI9xwZBHTKFG6Tl6kaKZHlJUE47Nk+BRCVvOlSYQoS0zHpswidF3S6w8Ih21828A0TSSQxhFllqAphWU4aLqHbgWY3gSoKYLAJkpTmhNTTDYnuHDpPKZmc2HrAoeWDhOHMf3BiCQdYdsm4+PTRKOEtYunkRIaNY9nnn4U39GJRm2adYuxmo5tQt3RyZIerqWjFQXkCUoBVMRLZSiEplCqhhAGWQpSGICGQMdULrqysa0AIRRSmTvzqzGj4QZKxfQ6bcLRgMsXz9AfDPA8H9u2kTuZlq7nV0UvXcd3XdbXLiHKEql09u07gKZpBLX6jv24mkWdmGxy+8du5frrb2TX7iVOvPg8o0HG7Nwc4+MZ6agqNgVBjTxLKreEVCRJgmna5JlGmuZIpaF0QZqElGUOQJlnmHqDvUsH2LU4weRUuQOhsfn2g8+xuZ3x1qWEX/u1X2d51zK93oD/+KlPcfjQESYnG5w/fQ5L5WjlBlcuX+Ha4x9F9yZ33As7weTIv3Z/CCHfV17k32f9/yXuoETpxs/E3U965Tvi7se1dd/rsaJ4u1L87r+9WiC+vd62Y/4oYOXta5YUfwf65t9llbwdzvh2eOKP27TeHWS9+p0VZcG9d3+Jm2aaZFm6kwkiKLOcN159nTKO2bW0yOnza7iuD0IQBD6GoTANA8tSnHjlLf7qyRcJw4g7brmGRlBH6QaLi3P4nsPFi+eJopiJiSaaqma7BsMhfuBz8fwllnctMgxHrG9vo0lYWpilVg+wbH0HWZ/TbLjEUUyt3iBNKi/5pdVV9iwvsjg1jmkZ6LrF66+epdNp06h7CCXp9XoIUXVtTNclGsUorWTY6zMahuiGy7MnTjA/NYltmuxd2cW58+eZXZhHKklewoVLl9mzZxk/CHj1jbOs7J7DUIo4TMjyhKIs8DyXTruN5bg4jkXNt3BdF03pXLywyveff4Xf+LV/hG5q+IGH43mE4ZAP33ETaodcOBxtc/yW6wjDIYatEY2GCLQqkFhTBLWAOE6qDTFK2N7q0qwFrOzZRZSE6IaqDlAaDPpdTFOnyHOklNQnmhzav5f1tXVMS0cpRafTo96YQFNVR1DpCkH1+fR7A4IgYGurRRRGWI5JEuX0un06nS5JNqIW+O8Q/EqhoZsWSpYgQSmD7a1txibGSPKCqUaNQ4cOoKRGGA12BGJ1mGk0apw+f5FjRw+h6QopJf1+n3hQWXWSNEVTOrpSvPTSG/zlAw9z64euAcB2bCzLJotDokEP2zSglKBkNcMHJGlBnOT84Ztr/OZHb6AsFI3mGL3+kAcefJx9K0uMT09y6fxFXnvtLJ/8pbuYn5vhG996mKVds4yGQ47fej2/fc+T/B+fWEYC9375IWYmm9QCj1a7zfGbD1OWgttvvYGyLGm3O1y5soVjaSzvXuT6YweYmZpAVwKl5WjKwvbG0XWDKBohRcnm5jq1WoO8KMiyGEM3gQpEImRJXuTcfmiMnjaF0nTGx8e4/wfP85GVZcJwhOOaKEOh6yYCQTgckUUJpq4jtZwyL8nTnCiMKcoM0zZ2aLvQ61aCqaRkcnqKoGkxNjGJYCeUm0rMdTtdTN0mDhMoczStEmu2bVaB22GIYVqYhkU0zPjTe+7l2LVHcBynwqHnEk0pLp4/j+e7ZFmC43nv/EZVv72gCY3RaITrOAg0NE2vOvNZlZdYZBlpFJIXeZVjWEKapCRhype+8nUWZqdwPAfX9Tnx0hvcfvwGDFMxGAz4f//zp0lHMd974hlOvvEWplJ85u57abe32L20WB39S1CGgSwFjqtz9NBR8lzykZ+7jVS0mV+aJk1iwn4fT69mE7MswXJMur0BQlbxFJbjIjSNLM/IsxJN09B1kzwrsEybPEsBwS2L83zm/od4aW2D25cXECIDctIk4ulnnmXX8jJCSByrisaIo5jAH0dpJkrYzM4uYVk2nmdVNF7pQJqiazmabhINU2YnJnA9k4mpCSzbJE9jFhZm+Z3/9GnuuOU2/sNnPs///Ju/SrPZIE1yoqjP/MIu5iZnCYcxB/buJi+gtdVCkxpJHGOaJpZp7UB5FHsW5jEMA9Oy8QOHI/v24bk2nU6bWq1BkRf0+n0GwyGCCpQyHAxwXQfTsAi3LjHp13Bdm9XVy4TDkHarT55ljE00MG2Lsijx6wG6oaOUrGI20oRer8e3H3qSffuXEFIgpUGWxlBWNGOl61SG0x9T2L2KXTYIQ47/2q9hmuaP7qYfcH+/51v3cc3eI1UHWgqUpbN58XXaW5epBQG2XRWopuf2srW1BaJyofh+DWUaXF69giEFjudiWQ7nt8+xsbnFTYdvhrLEtm0c10VKjQMHD5MXOQuLS9iWQ5ZnvHbyVTSpoXQFZYnjOGy3trlw/jSN5jhZnlEUGcNBH00KkgLQDFYvb3D69SdZX32dF595nDtvuY7xuoam68RJjuU1SaWLHUySFXpFoM1SDEMRDnsYSkOZOr32FiJNsRwTnQRLQRyN0CTYpkEahSjlEEUZBSbtXoimu6R5imdENJoetqHR27jE1PQ0n/v6Z2lvt9jdnKPb2qLhuxRJhA6koz55NKAelKThBmXWIequMjPlYBsJSgwR5RBJSD7KsG0DUUJRSJCQC0mORNkOmbQQZg1l5QijBL0klznSgEKDOEtI8oxhOkAYJZmmIXSFMhxMa4xRLPC0EZbKqDuCMu5QZjllOmTQ61LzAopSYeqCcDTg4qVLGMrEdtxK+DkuaZrgez5CSpQy6Q96BPWAbz/+ILceP878nEDza3z+j+8jDjOu3TtB4OvInblJoUFRFOiGhbND7y0ykz/4L3dz0823IsWQokjRLR8jAb20EXHM3FTCVHNEQUCeFSAVurOLR598nVFm0+t3uP6GY7xw4gU++clP8PrJU2y3rnBoeRed7QucfeO7KHueQzd9mFKvV+fiq3rnb2fbXW2bvBqy8pM+Q5dliaa9e05/r8bI+3nJq0Eq7/WYEOJntsyfxsr/jjl3b3fy3hZ58N4zc2VZ/i1duncF109/vfta7879/c3P/dE/wb/+v36bf/Ghg0hZVZQrS5Ri0Oly5q1zmFJjcmKC5tQkTzz5PBcvrjI3O4lSaifUdkij3sRWBmOBA2XKWLNJrzcgjCOkBv1eh7nFOQzT4PyFS0SjiKmpcUQpePr5Vzh8YC9hknBw/x5mJsYwDIM0S0mSCN93+fSf3MfehWnqjYDeMKZRr6GUhm0b+IHLzOwUpm1hWQ4vv/wmVza3WNk9T0FJve5DUVZGaGVgKkV7axPDUNTrDXqDiPnpOvV6Dcdx6fb6jI/V0S0dTVXZXfv27aGgIgsePnKQdquFY1nEo8puZVmVzW1raxPPC4jjCPIM13MpSsHUxAydXpug7lBKQZbk+HVvB0xiMRyOaG93KYWkOTFOiaRISi6e3mBqbgptJwJCKR3TtGhvbiKRPP7UCabH67i2je7o5GmCRLG1uY1laYxGQ2zLoN8fUAjodXq4votl26xdXkcpgytrLTzXoiCn3+tjuzaUlalcSllBTzRJrV5jNIr5wy/ex9EDe5idn8BQJtEoQlcG3e6gmheKR9XrFSWNZoOiKEAT+J5LGI7QlcK0BZtb24BFPQjodtrc+qEbsSwThCBNE0zL5M1X3iTJcxaW5tEMVQE50Pj4R29FUxJN1xFoKGkw6nWIRn1ctzpMS8Mgy3M0IRhkBZ89s8n/dOduXnn1NA88+AQLC3MMhiM++UsfJQh8pCE5d+Ys1xw+wEuvnGSr1SIvSgLX5f4Hv8+XnjvHv/7No6R5gWM5LC/OQ1li2RajUUSjGbxjL9xY3+StM5dJ0wJTL5maHKcocjqdFrJMGA22EUKnwKq6UZRIKSiKBMOwSYoc13UoCkGRlzv3Zh9NrzDuv/f57/Dh22/jyuUN/sff+MesnziBH7jkeUaWpujKhLKk02pjWwaDXpesyFDKpMghikLGJ8aghCzPMU2T3/+jL3DtoYPotoFhmaR5jBQGJTpFmVVFn1JU2Yj9FEPX0ZSsKsxvU8mAPK+smwJQyuTIwb1V8UDqJFFOv9PDD3yCwEFXCigQsrL0XR02G4UplmlSlgVFURHPpCbI05QyL1BSVCTPnYpvHEWcPn2Wul9nenyMWsNnNBpRbzTZt2eZ5156gT17lnAdm1G/z9MnTvK//tZvsDw/h2lZHL/pGLNTYwgp8X2PvChQSqMsS4bRiCSSjIYhrq+wTKuCpgQew+1VdJGh2R5SaRRFiW5UvwlJlKAsG6FpVcdTSqIowTLNKvVMKaSoLMm9Xo9n1zb4p7/16/jdIWmW8bX7HmD30jIb6y2mpqcqAEdRcPHCBR594kn2rSyT5xXARukaRZlUr+2YDLoZ9977FQJHZ2xyGtty+cFzL3LjTUdpt1vU6pXVSyBYu3yFg4cOcuP1R3B8g1q9zhNPPI8UCTOzC4RRysmTp6h5Ns3xCVzH5sv3fZPrjh5B1xRlWdLabiGE5NHvP8Xd993P7bfcRJ4lGEZVQLBskyRJSZOUURgyNtZ8p1Pb73eRUpLnBS8//TxKCian6liGxd1f+Ss2O22Go5A9e3ZRlgVCgtTVDnCkpCx25sMl7N+zl4KsCl7OqwD4Qb9Hp9Oh3qgcHD+Wl3nVX/27Z9/irl/4ed4tjF71tA948PRGs9iuRCKr70E6IumsY9k6mtBoNCd46dWXePbESY5ecz2NRpPm+ASe71NvNAlqdWqeQ1nmnDt7lrv+4R103hpWc6tpwuTENL3+AE3pKF2xsbmBqZtcuHiO8bGqYOTaAVmZQlmyvnGFwPOZmpzEtBz8wMe17aoIkySsbbRw3YCzp8/x7DMPcWj/Lq4/uILv2ShTYtsuoFHqHpbXxLCqWbCNjYsEvkuWFvQ7LWq+S38UEjgOsixAk0SDNmlY7RclJXEUoQmBZuooTZKmMW+efoWgUUdXOcVgk5IcQU4adnBrHs+efAbb1Dk4v4Tr6GxcOYMpNIb9NlG4RZJ00GVCzTPQRYatKyQFhq7QJGjv7G0GOTmaYaAMG9220MvqHJhlGUlSIKTJKByRZCWgYbs1ikJAaeB5TbJcw/MbxHFMGmXEYUSeF2RpiesHIAvSPCHLksqyPmyTp0PyIqcocvr9EXE82qHjSjyvhmVXs8NSqwRQGIZsbGzg+gH1esBw0OelUydYvXSRyVqdjW6bZ599gpuPLbMyO8K0bNbWLlUFjZ0Z56IQxElYAcW0GqfeOMXKviPoWoiQBcrySbMBynTICklWhmjKxA9mGQwHaMpgoyW4/ztP8Cv//W9x5513cP0N1zE/P8vYWJNokPKX93yB4zfeyFPff5jrrxlnevE6ZpcPk5R65T75a+Luve6hnwxI5W9aUl59zb+buHs/62fi7qewPqi4exuu8l65Ne+tld7LClk98Z2u19/q+vhRSlD1esUPfbn+Ztvl2xXut5/3t4u7H33Fz332C/z6cgNLr2xZSVYFj587+TphJ2Tf3j24tYDX3zqLaRns2bebyckxojBCKZ1wOMI2LAQaX37gMWaaNSaDGspUKF3Dc0yGgxFjY2NVJcwwGRsbx3Fd1te3ieOE6ckxbNvixZdfZX5mEivwyPKMYW+IbUhMXXH9tUfJFFiew6g/IFMF0tCo+Q0GvVFlX1IZShPMzzRZ2TuDVCaySOn3h9RqdZK0xDQs0nRENJT8xVe+x/LyHLUxDc8ZR0gNy3b43U//OcdvuIH19cs0Gx7DXncnk26D0+deZWrKo94IKAqL++9/mmsOL7KxvkWRF/hBne8+8CyD7ogHn3qGvSuLlAIsV2LpNqdPX2bfwf3WdQXiAAAgAElEQVTYnkO3tUkQ1Gm3+7zy2il2792F6/gURUbYy1i7sE6W9JieGqff7fPWqbPUfJ/19SucOr/KrpUl9q4s8G8/8xfsX1pENxUZGSU5ZAK74VEUVUU3SVKUYVMPxhgNRmxtbzO7tABSpzluUGSK1voAkUuyNEYpDSkL+v0upqFhGSZSWaRJxv7lRSanx4miEZRxdQi3ahV7Q1Y2Ld2wCGpNirKorLCGYjQYYBo6pmkiclFZAKXG66+e4vGnX+TgwV1ITaMscpIwwjQM/JpLfcynIENTBlkhMNMumZZgu+NomBRJD90ShFGMG9RAanR7XcoyJ0v7vHRhg/237efIgokuDdK0ApD0u5v0e9ss79rPtx58mIMHVmg2a4wGIbats7Q4R823+We/9wWuO7CHD+8zWFiaIYwTNM3E9wKeeuYEB/Yt02w0oNS4/ztPkmchcTrg5huPEvgOc8vzlOTYtkIKges32Vh7kzxtUWtOkqUJhgzpDhJcx6PIM/rtFoW5I2AKRRZGCEvDkBYIya37m3zm3scZn2iwZ99hzr50gsl6k7LMMAwFGYRpQn28SZEXnDv1Fo3xCSzLQTd1DFtnFA2Q6Oi6otfvcPzm6zCsSmzkaYyOqqhmQtLvbxH2ct48eY5GvY6p5zz/3LOMjY0xjAagFZi6Q1mwQ3rMyfIYUUpM00DpGnlZkpdgBwElOZqmKlgMFpqhvfNbVhQFZVlSJAlKE3TbPT732a8xGUziB0YlgrMMpOD8uQt4XgMpwHEcLNMhiXr84Z//BdONGeZnZwgHbSzDYX52nCyNcRyHuufzkY/9HLZlUBYFGxsbTExNMjU7jWnqrK+vYxkGhm7x//y7z/DMCy8z1rCZnm2iCYGQHpYVkMUJl86cxNIkWZyh6z6IkjAZQFkS1DzarRZB4BPGGZbpYNkmcRJj6BpClgx6Z6jVF1CU3LrY4D9//bs8dv4id+5bZH5ulprXZHHXFGgSBJRSw6vVmF9cwDI0+sPuO/dqzW+QxBFPP/0ce3YvMjMzzez8EhdXL1Gv1yiLjOnJCXynClYvtMrmunf3Ao5nIWXBqD/AMk12LS8xt7RIOCo4++YFTp+/yB0fOc6pt96gtd3ixhuuq0LqRSXry1xi6BYH969w+y3XYOg2hmYSDkPyLKLTbmEZHrplEDTq5MMheRyDJqu5yxwMZTHhSzzXIUtKELBn1xQfuvl69h9YIS8yWq1tDFMHcjRRfYfSPKHT28Lx6iizIrOahlV1YUqB6zq4NR+pVcUA+WP2yasad1yQNtded3QHnvL+IQ9XA95L4Mknf8CkP45A2yGngiarTnS31aO7eYWnn3yEozf9HNfceBud7oi1jStMNhs8+fgT1Oo+F86fZH5xnjzTeez1Rzjxyqt84hd+ibGxcTa2tgmaTQzT4tL5i6iy4MxbJ5nevYvGWJOiKAhqNaIkZnp8nkRmNKbqUOQEok4mMl56/iTD4YB+b8Ddf/5lairh5A++j0efG44sMTvRpChKTjz3JOPTy4yyCCfwkMY4tiEZDvtEGQTBBJ1eiGE7OwVCHVNVETSDUQ9NlmRZiWE6SCHI0hRD1yjKnCwbUuQphiGYaNbRiRBhjzQNIY8o4z6aSIgGm4yS0yxpk0w0NfJoi7or0co+tp7gmgWGlqLKBClKsixBMySa7aIMoxIZQpLGCdIUlLKgKDPyIicaxZS5TlJ4hInDxMwhCuExpMbE4mEMd4phpHjjlbPM7L6GQmtweTMi1xq4zV30Ew/lzRGMT5MUfcKkj5YXlEWObXlYpo9UGbLMMSkY9a6g9D5OnpAM2iSFYHJ2F+1Oj8l6k2g4QtMU8SgkHSYYbkVPti2bcW+Kx158its/dhObmxbPfO8J7vjQEZpWD2Fo1LwpauOQZON845snWV5YgKJENzIGYZsjR1bIpMa9D6zy5W+8zLFrd+PoJqNRjGHaCGmBMGiHF5CWjk7AV7/5FG9slzz39Amee/Z57rjtDk69dRopJI8/8SzXH91Nlpxnee8Moaqz59jHKYXC0CSCYues/fYdUrzzn9iBqfykQCrveW+Ld50hYsfVI8W7ZPurdcDV0JQfhqf8basofjZz91NZH1Tcvdf83duWyw+6iqLY+dMH+WJe/dwfbkW//+t8kPf79lXffPhhjs1PA5CVOWVRoiS0r7TQLA+vVtlFgsAnS2OENKqsIk2iazt2QVmQZSnjNZvrrtlPmiY4NY+sKFCmjuu7xGmG51hE4YgsiUmjGMvQmZocwzQVo9GQvStLhGGI5wcYO8IxjqtZnayAsYkxBt1+FYJdJmyvbyBKie+75GVRkR7zklFvgG0rsjTHqzcQQmJYFvFwRJlnlEJQ5oJvP/oMuxcmESInjBKkVrK+vsn1R/YyMTmG4zgIJJ32AMtyOX9+lTfPrDHerOMHNfI0pznmoxka4xPjVZU/zxgfb/DA40/w0dtuZHZujnAYUYaSJB0iZILnVhlwlJUty9B1GmNN/uwr30AMYhpjHo89dYLbbrsZyxM898Jr7FpaYGFpCSFhMBxw8o2z7FmaYzQa8rE7j+MELlKWGJZBmqT82b3fZM/8HLqmoYB+d4BjObzw4svMzU0zGg0Zn5jg0rnLlIUENPrdAa+9eYrFhXGSNKtCp02FbdvEccqg2+Ott85CkTM+ViMcDLBrNQzT5vLFVTxXEY+GWK6HlBUwIUtToKDTaeH5XiUaNY0oDKtw9QJOn7vAZLPO/NIchmFUh14hiMIR7HTJsyxjNAxxHGfHNpOTpyWWqRD5kCQvcV2XNEnRdYVjVWjr33nmTf7xPziGaTrkZY6SBlFUZQnNzs1gOxZ5lpPmGVPTk3z7ge9xYP9+XNvl5MlTfPXlLf63/3Y34WaXj/3CLSAgiVMMZZKlMU89+xKDQZ+HHvkBjqWxsnueo0f2YzsWcZTwg+deY9+ePfTafQajEa7v43guIm2hK2hM7qIoBUUaUqs1EJoiihPqYxPoVPMom+tncVyNIteJkwxdVbNm3ztxhV/+5V9kOMz457/zu/wPH76DNEnRpE5e5ChDp8wL2q0WruPiN2oUebETXi7QdQ3DsIESXSnUjh02LyGNIjRZuVuTLMJUBg89/BhPvvAC+1YW8Go+M3OzKKXjWlYl3C2bLMsQQqMockZhyPZGiygKKxJoWUIpKKKUN0+dot4IQBMVOa3Co+x0ZgUI0HRFISArStY3t7nu+muI4z5Caly+dIVXX32Le+77K/btWaQxViMMQ1zHQUnByq5FVvatsL62RqPuc+niFbzAqbrerTYCQXNyDF0q5M4E1l9+/Ztce/Qguq7QBOi6gUBydP8+HMsgHIUcPLAf0zSQKqbTb+PXPJQuKaXGMN5GVyZJGmMaAbpw6fe75KWG6waEo4QszZCyQvOXlAgJvXYP222giYJRd52PH17hhk/+Cp+79z5uWVkhFwVJVqA0SRRFKKWhaQpdV3z2T/6cI/v3k+cpjbE6cRLzb//gv/Lzt99Gu9Wp7NJFiSgLHNfn8uVVJmenGA17ZEWO4zl875FH2bW8UEEhygLdMOn3hpimQbvdwbYd7v3at2jUPQ4dWiHwPWbn5nAch9FggK7pOw4Eu+pE7ty/Wxtt0rSKoglHQzzfZ7u1Ta3mkyUpWVJgmQ69QQ+pSSzTIk9LdJVhex5C0zFtG900q5nmnflm17ORmkYWlwgkQmjouo7rOtU8naD6/6wppKi6pZTVzB6yokvLH9kR33u93Iu49tg1H/ig+cNbseXYpO3ih7ZzgevVcV2P4aDL/K7dJFlMKUzGmmOMT46RFbCwuJteZwvd1NlY38CyHCYWPB585FHuvP5ORqOQ6elpXnj+WSYnJnFsF6/eYHZ+ERnD6TdOsbm2hqVplElIXHZ4/eWLbK/FGLKgF5/k8qkTrJ55kV7rFIYcsrn6FnfeuouFeZvJGZOJyRpJOkBzHKRp4foTNBqzKCMgCltkcR8lMjRSAqug17qEZ4PMehRxhzIbkEZttDJFFjGGkqApsiInSROUrlWfXVZQ5FTe2BxEKUEUFahrZ+xE0yS9Tsy+PR3GgwMUWYbnOeRpjCY1DF1RUmCaOlLIasbMqKyIMsvI4xhNKOIox7J8uqOSPG9g2Qv0QgPpTBIrj2BymbHZZa60emiGjsgUvuMTJTmOFVCrT+xASWympxcoS43RKMYxJb5bg8KizD0Cf5GLl/ukpaSQikLmlIWGMkwgQmklWllQJgOKIsR2bbZaW7iWgaDkzKXzBM0ahmOS5Mk7FuEkSRgMhiy4SzTnmiyvLPHxf/QRfvvf/A7b7ZQ7jh/E1HW63U3K0qLV6mKZJX5gk5cxaVrQaI6xsbrKcJCiCDl2ZB7LVgyHfZA5RZlXLAAxRZooRJHh6XXSUGd5/7Us7VpiZe9eVnbvosgLbNfn4J4xfKcgyTJqk/M0J3ahlF41H9ixXr7HzOvb4u6nva6+l8V7PPb2O3uv8/T7/Rn4GVDlp7R+EuLu3Q7YB/tRF6KyFimlXyX0/tZ/dfUr/53EXRVf8H7fZXXVT/3HP+A3Di+985imaYz6XZ595gXmp2aoTU6hdJ0ojlCaRllmhHFKFIYM+kMs0+Dka6fo9To0mjV0XeF5VaZc0Gxg2ebOkGw1eL168TK9bh/LNCsuUlmgSUEUxzi2SRzHbLdaeH5AGEZVRpUhSJMEyip0eDAYYiidMo2ggMCvITWNbrfPpUuXMDQDQ2oMwz7NsTHSAkaj6v2PhoNqIwgC8hy63S7XX3cQyzFpNOpITcMLPJrjTZ57/gQPPfYDjh7ajx8ERFFKvz+i3xmR5xn1wMe0TIoiQygNiUBpGlsb2whZcuvNxzANRRIlfOPbj9DfGmI6MD1Tx7JMNq5sU6/5rK1uEEYxfuAz6HVIhhGLu2YQQqfRrNEbtpkcn8D3fdZW17EcG01Jjh5Y2bHFafj1GkVZFfY1TaPT6bF3fr6ajfR8Oq02g/6Qoixp9XpMTowR1H16nR6//4UvccORQ2xc2WZhYRbP02mOB+iGRZLEVWaQabC91aXmV7jsXbsW2dzYxA8chG5TlGAqDaWVxFGIafsIJElcEcXSNCGo+XQ7PWzXQWrVYStOEnTDZGVlmWYjQKgqpN40zQqeIASGodNqtag3amR5jmXZIEC3NJRmMOh26HU3cbw6SVLZjWzXZXN9iy+fXueffnw3tdoESZaSpwmeV2N7q83E1CTb25usr29w/3ceQ+oaK3uWGWs28R2Pb3zrIS7mDv/NYYPpiSaPPvYqM7N16s06eVaytdnGdS3OnrmAZZl0+wPGGgG7luZ3yJ6SoiixTJPvfvdZGs2AV06eZt++ZZShs3buNRxbkZUOnXYfx6xmHLdafZpjTXKh0KjmidrbF6rZU+lXRE+pkFJw/GCDrphEKYuHHn6YmyYnUZokSdMqT3BnPs2yrB3YSF7NPJQ7lnOK6lpKo7W9jeXYDPo9LNOpKIl5RikKNE2iS4OD+/dxw3WHGZ9owM5vXFlAsUN3U4aJplUbdJQk2JaFY7sIUVIKUJqi1+3zwg9eYHpmglozQO4EgedpugNYqaidQNXFBZSu2L9vBcez0ZSAUvLvP/3HrK21+Ac/dzu79yxW9lAgilLKPKNeqzMchTTqPr1Oh8bYGBcvXcY0TEpKXKfqGmhSMegPGA5HXNlc58jhgyglK+EyHPHWqTPopsmhg/uZn59hY30DKRWCFCF11la3+KtHH2N+dpHW5iZnzlxkz+5lNGXS7gxwHKuamdJNlGGyurpWASuEII6qAodne+RSgyJj9cJpNKn44pPPs9kecufKboTIkcJA06r7O45ihICyKFmcmqE53kRqJf1en9FoyHWHjiKlRhwnRFHMo088xdED++l1h9SbdWzfRdfeHkEo2L17CSgxNFHllEmd4TCivd3mwsUL1Pwa440ax2+9kUG/i6GblV0tjKvuK4I8z4mimFdffo1et0+tFmDbLl+97wFs3aDRrHHq9VPs2l3Nwl2+eJlzZy7SbDRxaw5xHDMcjPjDP72HlYUJ8rwgiXMuXLiM77skcYRjW5SUmKZRbWClQuzkNEZRuEOULXcEgFZ1ePNqDz535iy1wK/2ZXjf4u7Yr/5qtV/+PcXdp/7jpzm65+i7D+zM9pclGLpBNOphmBZjY02yTPLayyeYW5xja6tFicbEeA3LcZicnKbf7eNPOXQ7A248cjNr62toUqNeryPKKttvdW2Nze1NTL0Sw37dJS8HbG1fYuvyWU6+9AJnTr1C3Rck0SpNy2Si2WR6KsCxBIf2r6DnAiUEUupo0kMJF0yD+fll/KBGFIfkeYJtSZTMkaKg39ki7LUQecJg0MaQJeQxFClZEjHqd6p5xyKr8jzLHEOTpPGIIqso2tXnloOo4kWEVuVvFkW1x4Lknqfu55UzIw7O7UZISZxUOW1SKpI0BSqwkdJNylIilY7UTKRhUwrFMCmRRkBcKApNR8gatcYcG52QheU92LZHGOd0+0NMXaJExtTUPI9//xGazQZKKYQmaLfb9Ad96o0GaZYS1GoMux3OnD1HXkps22a73WbXnkMEtRqDMOLKxhVsKyCMEwxT4DgmZZxCmWKYiiiO2N7eotlscOb0OUohGRufAGXgBz6mUQklXRloQjA1N8lLr7+M5SpqTY8v3n0PUWRw+43TxEkfyxSEkeCF55/n2HWHKcoYP3CIooRup41j2izv2cv0VIPxhk4Uxbieg20b5HlGnpdstQL+8Av3svfIIUYDnZmFY8zs3s/GlSvU6w1mpmfI84xub0DNCimzPkLT2X/t7UhlV3PdO/fFz8TdX18/E3cfYL0fcffDoBT5I/CUH7VDFu8IqPf6hN81c5Tl2x28HycQrzZ//P09xu8OpL6/L+AbJ0+RvPEq+6aawE7bOUn43vce4/D+PdTGJ8kLGI1GdDtdPN8lSTPq9RqalAx7A756/8PccsNRarUa/U4XS9fQTQPDcdhc36TIC8JRyPqVLVzHIomSnSBrk/WNLXSlU0qB0nVMy6Td7TIxOU4cVjMpmpQMRz2cwEEiePW103z2S9/mrttuQGgave6INKsOf7ZjUasF5EmJ6zl4gU2aVaHmfuCxtbnN6uoGS8tLhHGMZdnsXl7AD3x6/WEFEOlX6H+pKlDFoDdiaWkeNIFuGCRpwt7dS0xPT9DrDrhy+Qqea6MsHQro94ckSc7p82eZnBynSAvq9QDH0Li0tsmx6w/heR4lEj9o0Om0ef7E6zz/8htcd+QAu3YtsLQwQy5zpmZm0HUDP9CxTIswjHnxlTdY2bubrMgo0oQ8T9FURdIr8pwkjVhb26IW1PE9B8f1MQydosgqi2zNZ3l5F4aloyuN9mabnz9+M2WpWLuyzolXX2NpYZp6LaAQFUExL3LyvKrwjfpDxsbG6fX6vP7WGaanx9FNl3A0QumV/U43DaIw4403zuJYFsrUCMMRSplomo6UOidffZPxyTrD4QjH99G0KsdNNxWmaZFlKUWeE0URum7iBw7b29s4tsWwO0DoitGoh+f4WJaDE7gMeyPSJMN2XNbbHS5YBccP+BimQtMd2q0W4+M1Op0RW5sdPN9nc3OTN8+c4x/edReHrzlIt9Nl9fIq7W6XMB/ixRvccO0RTp48jee7XHPtYZBaRYHMqnnKybEGL77yJr/x3/0ip948TxwP+dJXv8fK7iW+cPd3uOn6AzzyxEvs3T3HkaN78QOfZ3/wAvNTDlkWI/WgqlJnMSiDWr1JmhUMhhHxYFRR2zRBrT5OOCr44z/7Fp5rMjE5TppEfO6+Z7j9juP88id/kfziGfxaHaXrKEsnjmJkCeEopJQCigRd6QxHIUmcMBoOsV1vh4JmojStwtmXFWBla3MLz69hmBZ5VsUUaErx+qunCIcV3fLSuUvYjoVpmwhRgV9KiqprmxUoTUc3dEzLqA6yZiXmvcBBalV8glL6O5AqVWHqyNKsqtpTPccwFZBTArqhc9stN3LLh46xuLxIUaRIrQqqHQ6HKCHRTR2pQRSOGI1GfPpPv0jN8fniV7/Fkf0rBIGHIkMIyRfv/Tq+57FncY7xqSmUtmNxzwvyvCDwfTY2Nmg2x2i1ujQaDZQ0EMLCsupcOHOJwKuTjHQavonSMgxbkOcxlCVpljMKRxiWheN4IEFX1ZyakII0zJGugVAajjQZRSMubG3zz/7Fv+LffOHPuKYJjuZSSklZ7gSma1UHnDzbOeyVBEGArgwsxwckjuvyubvv5cDKCvOzs9z3wEPc880H+diHK3DKwtQ0Sgkcy0S3LE6ffJlms8GltW0+9UdfZGlmmsurq4w16tz99a9z3eG9CEpMw+GJ7z9Ft9ul2WxgmzbI/4+9Nw2y67zP/H7nnPfs5+637+19ARqNfSMAgqsWSnbsGdfYlmM7y2QmNZXJOJmqVCUpJ+N8SexkMk6mJpmx48SxZY3H2kVTlERt3EUSIkASBLFvxA40eu+7n33Jh9MgtUAyrbGmKlV6Uf0B954+p/v2Wd7n/f+f3yOhCIkbt27zxjun2LN9D7opsW/vDsbGR1lfWyOOQhojo3TbbQxNoV6voxn5IoQQOQToyOo6j802sSyDY8fe4UvPvkazVGB4eAhVUzf84Lln7Stfe4k7d+8wMz36HkgKSdo4l2TkDViDqgpaq6sMNWp5PIIs3gsx/7EtYFmK2LL9J3om/+C88OUXX2Xf3L4f2i6VJBAqTrFKEKc8++2v0F5dYvPkJL67gizB5XOniZKQUq3Jyto6oTtgOVzj4W2P0+106fd7jDSGScKYk++c4M6tG9y59S5Lize4cvoyJ06c4rtHXsfWTE6+/hK7xkbYs63Jts02dUeibtUx7IxywUFREmxLRxcqwhBIQkLRVFIZTNtAxiL0XfzBOmncIQ46ZIFHGAUb7eUyysbnKnQDP/BzwR0nyJKMoVtESUqSpkiBT+S5kObvyZKEauURJ3GW4/J1yyaVDFSjRKvrMfBTVtY6zLsDel7Eg3sewyoNoagOkm6TSCZhpqMYJcxigyBTqTSnQZRoDVLK47tQnGH6sYFiNcjU/H6ZSCqGU6QyNESUpQTtdULPp1IscuPKRUwhEakSI8MNksjn+rV3GR4fxbENNEtF1fNszMXlFRy9QELGyFSTxZU7FCsWURIRBGA7Q1Rrm6g0RvEiBUmzSTDotbs45fy6TUOXimMQhx2kNCEIPEaGRyGVSZOUlZUVisU84L7d7hBFEadPnsQqCYSscujAY7z0ygkePzTMoL9EycwXPnfsmMR2csBQDmoxUVWZvh9gaCnVso4fupCa2HYB1+2gqSZZqnLmWsLXXznD5SWFJ59+mQce+TnK5QoHDx1i586dZIDtFBgdb7J4/S3SqM3uA48QqBMoUt5m/55o+p7z//uBKvc4Fz89oEq+f8iyvDXzXlbl99qZ0g0NcC/v7n7wlA9yjJ+Ju5/C+CDi7ocCyT+AT+4nh6T8zZ+g9xvf77f78cf8zCf/NX933xbg3smccunts2yeGqU6VKHjRVw4dY6hWpnaUJ0kg0wR3LhyDdvOW96mRpqsr7cxNJNGvYKuaXh+QLvvEw08bNNAyuCd0xfYPDWBZtlYjkOr1aVQLFIdqiELdSPxUUZoKpphoMmCLEnpD/JcNkVVGHT6VEp1zp6/Squ1RnN0khePnOCl10/w0AM7kKWMVFJxnBJpmjHwB/nDpdvh6rUbTEyM5W0+lo0iKxsru3morWGYZBLourlBprTwvZC5rTOEUQBKhqqpGJaRwxQ0A6EIblyf5+LF6+zavQmh5flbl969zXOvv8nhvfnq+ZUrl5mcGGJyc5M0FSSJiixM0ixFzlJePnqCrTNTTEyMkkmgWRqqqUCi5N4XkREjo6o5+UpVFQxTBznLQTWdLqqs0lltYRUtarUGpmmxfPcummNvEOMyhC42gCQxg8GAbrtNsVDIWxJTmJoaZXpqdANgISMLJTfcl4oIVSXwQnTL5rmXXmd5bZ3Dhw9g2GYuciyTlIwYiSSFOEgZHxtF0zSEKpMkMZpqc/vmAppu8G/+8tvs2zFJrVEnyaQNmmd+g03TDCEUhKIQ+D5kGZKcv+b2B7h9l1K5TKFoEfgZkqKTCoGSZZTKJRZaHZ663eJvPzQHcZu+18cu1Bj0O5iWgqw4ZJnEy995nfGxJg88sJeXXzhGpVai223zpy9dYMc47J8bJY5jjh+/xMpqH6dgUKtXQJI4d/YyL7z8Fnt3bcOyHAqWyYWLN3j0kQdpNIpUy0U6bY+PfujBnD6rw9LKKltnJ1EkGK5X6XUWSeKAQmkYKZNRpJhEMVB1Hcuy0XUD0xIgy+hmBc8FRZUwNINOp8/E+DBClXn+xDwHDu1CkhKOvfQdpocbIEG738HSDEI/B/bImorvdjEMC9/PW1ffvXIVxym+B8+JomjDvK+QJimW4RDFMoGXAjEg47shFy/c4NjxNzmwczeVeh3dNkmyBLKcdNbptFCFjiyr9Dpd4jjM9yvnYcKSpuSeOySyJCGLcsiCLCskG0CBNM1QUJCzPFsvTTaw6kpetVFVGd0UICeQSshKvhB16eK7NGo14jgmlRJIM9I4Zf/unRTsAg8fPMjIaIPl5WX8fgsvyHj3+m0eevAgE2NNMiXP2YujkGvXbnD7zgIvvX6Uhw4eYGFhiS9/8zk2T07ieR2QMlQNZqdqVEs6RjnBMSMkySOKM1Q1BxPJqorQVBRVQ9dsFCGIwhB5w+dhaDq+HJIiYSgFnEqJ7VPD/P6nnuR//B/+G+4c+RpqKCOKJWRZZjDo47kelm3h9lqst9cxDAPfC1BVE1mIjSiHFQ7u20vBcTBsI/c9JSmbxsbYPD3LF57+BiVLp1gooBkG9YKOqhtoTpmHDx4ijRKefeU1nnjsMHt3bkVRwLQMQi/m+VePcHDPnjymIUtzwaopkGVsmZ7h5rV5qsN2HqejCjx/wAtHXjKPYHQAACAASURBVGNu804cy8R3O1SHqrS7bQzDptPpEkcJv//lr/HLuyYxNJXZTTMc2LaZeq2MZqpI0sa9RFPJMpgYHcXQJar1IkkaE27kDIZhhKIIJFKSNCMOI0hTLNtEUZScMP1jgQ75OHLlFjMPHv7JnsU/8H99rUCh7PzQdpKUV9MRJsVSlcmJWdQsIhx00BQfU9Xx+13GN80RJjLdbp8vv/ok670+h3YcpN/rIxSVK5cvsbbWQpYVzpx4ncRdIwv6HJwT7NjRZOtshWYx5NDOcTJzY6Yqa2imTSgFZLKE76dohkUQpciyQ6Y5JJgoooCiybltI2zlws73ELFMFsS51UFWyTb8j7JqkyBQzCLCKIAwWL67gO8nqEYJWdVwyhUixUZ1aqSajexUSFQb301RhINhVhCiQJgI7iysYDp1bHuILNVwisP0JI89ww/jxRJCr6DbVfxUYb2bcHepjVVs0g8kjEKNlXZA202Y2bIP0JAlDUMYpIGHpsj0ehlDzSEuXzqXL0hmMn7oE2YK612XrhsxNj1LqghUWWflzgrttR4jzUmiRCIKEyyrRBBkLMyvYloC07ZJYwUltdEpIEUDVlbXqNSqyDqsd31iDBR1iJ4rcf7SSQrlKrKi4xg6WeQisphCIUERKRIRvV6XXneNOBUYhkGv16PX61EuVxhtjmE4CttmdmFpJn/6yX/JowcnGR62MDUT29SJ0w4poBsGSRQjKbnA0e0qSTogin1UvYCj17lx4ybFkkUcybTXB1T0mIJl8+bby4wP1fjlX/04k9PbqA8NISsKqyvLlIpFBl6fJz/9L5idGUZ36ojSLEKKfuR1cv8utZ8uUOXesSSJ+4KV3mdv/OR7/5m4+ymN5D45dz/49YPjg/nV7g9R+fHbf5AzRPoAXx9gLxurH/lE+f3XlXtG0Y0X/5ff+9/4bw9vIUMiQUbOEtaXl2l1Woxv2kKChhQn1IdrqEZuPs7SlDSIUJDw3YBBb0CplFObSmWHzsAnzCS8wYAL586xddcsQZyw2mrh2A6mZfHpL36dnZunMXUVU9cYtLssrna4fu0mIssgCkk8nyCO6PY6VGvlnBLpx1iWxsAP2DQ5yo7N0wy6A6ZHGsw0qkShD1JK4kZYloaUJdy4cQdL04jDlBfeepvtW2cxTY0scJEVFS9wMWyd/qCHoitIqULge1iGhixJXLh0hXKlhhAGbsvj2NE3GamXiV0fYcl03S6Ts3M88523OLB1M4ZtkGQxqoCPPnIY0zTRDY1i1SJTwLBKmKpGZ20VXVdQhYKkx2wen2JqchLTtPD9AbIs4fd9FCHh+j0QgjSKyEgoVUo5LTBJIIiIfPjGt4+CFFCtFzB1FZKIzvoKqqpgqgaR5+N7Ho5VwO+F+AOP115/m5nJCXTLAlnCNmR63T6yJGMVHdY6y1iWTbFUR5Y0wjhGGNBeWWPfvu2MNKsEvosmVDqrawhdJ1MUhAyamgdm37p1h2++fIRd27YRhhmL8zeYnZtmfX2Vj3/0MKZZJEsUsiT3YSHJZEmEP3BRFYUg9FE0gSwEumHhuh5C02mMNJBlgyzMWLh1B10VKJJBpig8f/EGi0pEI11ny/QUrtenVB7Cj8AwHWTZJM1ihGrxzomLHD78IFfevckjH9rLhbPX+fbbV/jt39zL0vwyExOTHH3zHGOjDR555AFGRsb44pPPsm3LNKqQmZ4a5dibJ9iyeYKllRW2bp3htdffotkYZWhoCMs2UFVBu9ODyOXm/AKHDu3dmKCCqfmsLt2gUmsiGyP0fEh6yyipQJYUUqFAFuH5HkkcYxiCLE0p1g3GJxvIskaSwZHzq3z04x8jRefPn3meh6amyCSw9QKSnOH6A1RNR8pkLLOA6w5wbIs0yli+00IhRRMCTVfwgxBVaCDLhEHCF770DAt359k6N00Sh3iDgDhIef27b/OJX/tIDijQZAI/RFYEkqrmcAxVRZEF165eI0kSas1aXiU0DJIoIZUyJEkmTlPkjb+1LOUiQUgKEjL97gDVtECRUZV8RfrzX/oqb715nr0P7CbZ2NZ3PYQi0V33uXD+Gl/+9qvs3LwFRQgUNaXb6xKn4GgaivCJoz5ZlKEoKSgJcZQxt2kTpWoZxcor2kQJsZ9gmQ7Tm2eYmRzBsoq8+NIRfv1XfoF6w6JYrXH37irPfud5tu7YimqWyTKF54+8RaNpY5OiDDJi3USzFKI4RCg2GXkGXiappMSARIZMFiZkYYgwchR75IV8bG6KY3eX+NrpW3x4zy5CPyJOEjQ9hxIhQRRHlKt1dMNBVgRJGBHEAZKs8n/+35/jxs3rPHZoP8gpKCnFosnYzASmXqBoGszOzqCoeahyay1E0QzS2GN9bYVSuchjjxzMo0ZME8cuEEcZmSwxMz3G5Mw4C4srPPfi6+zcPofve2iqQrHg8Gef/0s+8vBjCFUh8LtoMuzdvRPLNIjiBKFZDHwXp1Sks+pz5KXvsra0ilYtcnCyiW0XaK+2SIlRTZlex0XXVGzbJAgChCxjWwamaZKlcv77CxWZe1VAmSTKkKS8dTMLQ9x+H8sqEJPTEn/UxPFeJWGqVkbZvPX73vtBUMqPYmZ/75NbRuLqqWuUa5X7bClvSM28sqHbBcxqBafeIAhC7tw4hyoHlEe2o9gVdNPizLnX+ZXDv4lh6Eiyxp35u9QrJRYX21y/cpHD+zezZ2uDuU1D6AUH0zAwVA1dNUglFUVSEbJEELhkSZRX2uR7kR0WmawhaTqqaYAUIySfoNMmCwLiwM2JuVYBxTaQTY2+n1KoDaOoJqkkc+3aMlGisrbSpjE0TrfrYReL6GZO05QVHVmYvPStZymVaxi6iakXWby1ztJ6C7vQIEZDMxwSWcbWK3Q7Lt2+z8jEJp588evs2rOHieYW4gQSJFw/ZKg6jmWXaI5OcP3WbSYmN7Fwd5Gx0RFKTpHlhVWiIKTX65IpKYMoQDVtdEXFLFjIeh4R0VpZZbg5zptHj1EulWk2mwhVQQ58wigmBJxiESmLuXHtEq7bxtA1Bu1VSobP80eOcOHyFeoFG1nKOHPpAuVKlSxdJvK62M4oEWusL6yhyAP6vXUOHvrbyEQYZoF2f51ipUyKkkOYFIHXbRNnBvXmNgrVOkqc0lpdze0ghs56a5WxuTora/NcuXqRX/jFf4/f+1+/RG10hJnKMpKo41o30BF4vodlbsINuyRKn8SPUeR80TqOEs6cu4lh6UhyjCoXuXa1ze2lq+zft52Z8VF+/e/+55w5d5Utc5u5cOECjeEGsiERyS5JpLOlscytedh96BMoasp7ZfL7jvevpL8+UOWDz41/+Pvep6N8X6Oe9L4W+N7D34OrfFDBJ0k/o2X+VMY9cfeTAFH+Zse/m4rdDx1V+v7f/R75VQK+/NRX+c9mG6RS3vIkJIlw0OP61etMjE2QB6LkQcDICoO+h67qXL5wlbXVDkPNBnfmF3j5jZPs3rmVft+j3elQLBVJ4gQpg4JtYTklpAxM02RoqIJTtKgWC0RJTLFUYGFxiThL+NqLR3jswX3U6yUCz0fVBZ968qsc3rebLEuJNnwjipz7Y5ojQ6hC4EYejZEaI6MNZKFQqlSQpJgkjej1XRzLoV6voxoa48MNCraNpqqkCUjIaELj0sUrmLqOZVpIQiBlGZqqkaYJ1Vodoab4nouUZWyZncnboCQJTRdoqsDtdNi/dQbbKSELFbfr8bkvfIO52VEsy+LNN96hVCggFIGiSkhSmmPP45D5hbtokgqxwndefZNNU6N0Oy36fZdKJW+5sCwbRShkkkK80XqpqYIkClFklT/611/iiYcfoForkmYJWQpRmOL7CWurA4Rq8aVnXqBadnCKhQ0flkS/32dicpQkibELFp7rU65U0TbanpyCQxTk0BuhSKRxSOi5lCp1+n0PoWlYloWmG2SyhCI0lu4sYcgqgRvQHwxQVcHeXVvp9wccOfoWu3dsQ5JVDM0gSTKECpKUkmUpA7eHEDKqrKDpOv1+Dz8IiIOQDAl34FIoFrEti16vjyISBoM2jeEKQeii6BDFAXfVmMd2buK1777N5Ss3OHjwAH4oYzk1ZEUHVOLYR9d1xkaqhLFPp7OGpZv84j/+Z/yXv3oor1xXynz+yW/h+yHbtk5z/fpt3njrDL/2yx/j5Mmz7N+/k0qlzLXrtynYJo3GECfPXGTX9s0cP36GTVOjfOWZF7BMgaEJZEmwb/eOPLAZif/nT79Ea/EmlZJOsVin3w8oOYJW28WwUvygT7lU49atJVRFyyMRkoQwCrBtBxlQZIUsS3H7XXYdeIz5G3f44z/5E5ZPn+eRg/s3DOwZSZygqoIkSvCCwUZWYZij6Q2N4bEGcRpy8+ZtKqU6hmEBKd12l2vXb/C3fuFjSJKMqgks28L3PVq9dc5fuMqeXXvIMhlNy6tpcppfr3Ka33Oq5SJOyUFWMjQ9x3HLQs39zRlI9+INJJn+oI9l2vmC3L0Hu5Qhb2Du0yxmZmqC/Q/sQdMFkpxBGqOJ3PP1qc88ydbZzfzcRx6h22lRqRQJw4AvPP0tzp+/zv6dW5GVBCQZScq9jEIVmIbD2fMXcT03v8cIwc1rt7hw4RJLy6uMjI1QruSgnu1zW3AHLqZh0FkZcPn8Te4urXPo0GE0zUFOYpbvtigYDRQpQtZDMhkUdEgUhJBpdwa01rropoUkh+i6lgvdOMaybcIgJIxCNKHR63v88Teeo1Kp8Mj0BC9/5wibZqZzOIQEaRJj6hbLi4sIJSOJffzQRZJVkiRhbmaCJz50iF5/nWq1RrlSZWRslLvzC1imxuT0GEIVRHGSZy16HoZh5L5eRXuvq6HfG2BZJv1enzRNMG2bQsEhDEOiKOb8pSvs3b2ddmsd08qDmc9dvMSDhw4gKwpC09BNmyjJCIJu3hopcoiWtFGFnZpoUB0q8rbr8pHpSXwvQggNw3SIY4l6rcLK6hqGaRB6PkgSQstyCrDI7+ukeexBnPhASpLGSFkunOIoh3MVyg6pLP3YnLt7k8rbrXUqu76/lfJ+U4q/6in/3LdfYvPE1r9iq/eHpjpoukOlOoKslbi52KIqAm5cOY836LNMwv5dB/BSD9cLefa5b3D7+gW81lkeffgA4eAuxaIJMuiqII2T/J4hBHEU5y2RioYQJqpRQtVLCC3PXVSkDCmN86xSr0Pi94lDH6GoxElCrOoIs0SCxcCXsQtN3jlxnu5A4vadFlBAaBpOqUq738d0SnQ9n0GY4ccgywZ37syDpDIytZX68BhH3zhGz00xrSFGJibRDYfmyFjevplBuxugmQX8GCrVIS4svMvt2/NMVMYZHZ+kVK6yuLhE4AcoQlB0HJrDzbytXxFcvHAG23EoFG0KhSKqKjh//jybprfQ73usra9QKNQw9UJ+/psqSeYxMzNFuVKkULAIY48kyDh29GWKtsnqyl3iMCUIPN69dp3nnjvKhQtXqDZrXDx9hmq5xoUTR0iTkNOnj7Ey30bT+ly7eo6yPU2pWGHxdhtVxAw3m0RphmqWibMcAhQHPbI0Qkpj0iQGSaJUG2a959J3AzShMX93gebYCIqq0Gl3kfSEU6fOce3qDeZv3+XCpbPYZo1Dew3CSCFN6sSxjWFqpLGLSoopC2TVQJYEru9h6ialpoZTGEVWHUSlz0on4e1Ti+w99DGOvXODPQcfZ3hsHFkotDu9HKSk5nRtb7XF2bee5/ATv0JxZIZUzj7wLPiv77n7SefX71ft77eH+4m7+732V42fibufwoii6H/Ke2bzCpYiv78S8Dcr+O5XWfvrVdv+qvF+MPkH22/er8z3bfe+uJN48smv8PjEECkyMpCGPm+9eSJvm9SdHAQRx0jKhvgTgiRKefX1t7k9v8xTz73GlqkxTl++wVunLlAsWDQbVUxD5+VXjrK8vMZwYwTHsbGcHEogyTnSutYcwnZywIJlm6hCYcfsNJWyw5UrV2k0KqiaxtjQENV6hSRJMC2LJIlzqIMq8AYuSRpTKBXxBi6qCp4fYtkOskjxPI8oTrl1Z5GXjhxn/74dZGlMFIXEQYpuFrl6+RrHT5xlabXFA3t2AhKZJBH5Oa7b2ggLVYhZuLtAvV4hyyRu3rxDrTnEYNCn0+qSxTGlko3qyMRJRJoEjDccKpUavudx/OQFtmyewjJMZNnkC1/8FlNjE5AJGo1RiFPu3F5AFwq1apGbt25z8eotNs1MkSYpfhAiywqqYSJUDdPQWZhfpFopc+rUBa7fneejjx9GUWWqtRqqpuF5Mc995w1OnL7Gm6cu8Y/+019n4A5YXFqmUimjCIlKuZifF2perSkUKiwtLmLbJlmakkQZ7XYbWcrw3QHrq6sMVWskCJ76+nOUHZNi0aHf72GYDp21Nq++dpyhSg7VOXn+PFEYMDkxRhqHTI6PUCrXOH/uEv/mqW/w2IP7iZNgQ5z0ybIETROEboDrudiVYo62N00s26LValEoFAjDPDMrHKQEQUq/H2DZBX7vldM8/thmNo3Uef75V9m1cyuHDx1Et1VUUyeIPN55+y1Gx6pcu3IbwxAYhoplmai2zb/6wvP8zm8cYu/OLXQ6bSRJot3pEscJBw/swbaNHAZjCkaadXwv4MSJszzy6MEchlOwKdomt2/PI5ExNTlKv9+lXHSwLIMXX3qHZrOKqgkMQ+fa1evIicv0RI1ac5jFxUWCwTojY9P0/XWiyKPXchmfns4rHVGUi/w0ya9jSSIjwXM9+oMBwhnl5ImTlJwiv/XxD+Utx6qMLCmYhkmaZniei2bl7WxxFON5LpVaAT8JsSyTLMswhMm/+MM/Yf/OLdiWwd59O9F0fQNqIBOnESiwbfsmdm/by9vHT/LG8RNs2bKJNEsZdPu01zr8/r/6JI8d2o+qKriBh6YptFot7IKTC5kkRQKiIOLmtZs58bactwiDTBhGfOHJp9m1bRbP81lZWsvbCk2dwB/kLXdZRhKFZGlEHKUc2L8vhw1YGo1aiV63g2VYXLlyA01RmRhrIAwFQzexrRKWY9Lr90GWGRsdQTd0mo0GipZnvC0tLDM8MkytMcTa2hLVShWyjPX1deIwpljUcRyLas1kbGyIjIzlpWtsntnE1NQWomSdkB5qJiDVSKIEWUkpFisUnQKaoROmPrKkEMURg5634UtV0FQNWYYkgdlygU/849/if/6zv+A/+vBjKJJEHOdQK9O0yDII3QGmoeQVXtui6JTIspQ48WmvrVAs2EhyDkpQVYEiBLpIiNOI5ZV1FFXjs5//S6bGhjEsiyTOCIKIE++cZGpiBs/18Dx/I48rhyKpah5SrukqBw7sJgoDLNtBkRSEEBzav4cbN+9w6fJVhpsjZLKCJClEbsyFc9dII5WF+TUaQ+OQwqDnUiyWOXZniQsvH2H/7u0s3l3g7t1VnnnudUYbFSwrz2Ajg063h1W0WF9tYTsF0gT+/DNPs23rJH7gkmYJmqaRAYPBADmL0TWBbpkgi/u2Y/1gteAvL9zhgUcfui9s4fue0UikWZZ7/O7z77Of/RJ77+O3+1FDUvJmBoSKUSozumkLUQrd5ZuYwN//B0/g3nUpahovPPMZKtqAxw9vYte2LVhqxGizDkCUJKhSnpMpKSpxKiGrGrpp4gUxhVKFDJXVtTYFx4IshsTDHXRJAp/IGyAUDT+S6PopVqGGXpng3et3KVdnkJQip05fpDk+QWVojE1bd9Lp9slkiZGxSTJF592r1ylWmoxMbqVcG2V5cQ3LKaMIg0J1iLtL68zO7WWoMUW1PoKiaVhOgdX1dRShgqRRbYzjFCu02x100+L1U0c5OL6X4ZERTp08SblcpVSsUC453Lx1A0mWMS2TJEnwPI9SsbxRrdLx3AGGrnPz5m2yVGJ4eIRSpUjg+qyvrhGHLoYlOH3yPOVSnVvXbzN/Zx5daHzuc3/B6JBOyUz45je/yd2lefZtqzHZdOjcPcf+3ZtJonn83hK6EfHzHzlMY0hnYmqIgm0w3FSZmW7w9pEj3F0+w/XLb1OtWdy4eomh0gypUFA1G013gJjW6jISGcWCQ+j7JFmeF6uqZu4TzKBcrQEp1Wqdp577On/vP/mPmdsyR6lU5rHHH+BLTz2HrQ+YGa/y9JPHcYOUSs2gaEukYUaWAkInilJM3YJMoePG/MG/fJJjb64gSg1OnfMI5RqzOx7mwOGP8+xLr7Bz127anXX2HziEaZokcUilXOD4q98g8uGBn/87hLJAIW+Pzq8vBTYq1PeuqPt57n7EVXHf9/P58V81N/4R72X3r97fT8i977n70cf53uiEn1XufkojjvPK3T0x970kzJ9+Ne9vtlr3vtnzg+43+6EL5Z64+73f/Wf8k4feN4jLWcq5U2epVSooqoYkCxTy1VDkfGXbdT0kSSIMfK7dWiAj5ZGDu1lYXCYMI27NL/HYowdI45g0jlhZ6TA3O0smxYRBgGEaG3CFmCiKabfaFAs2a6vryOSBx0KRCIIAy7aADKdQQFVzEEPg+6iqilA14sCj2+shhMqXv/Eye7fPsTB/hyiMMQyDuwuLDA830XSNSqlMteRQrlXxXRfP8yiXKnQ6HooM27fNsml6HFkI2u0OqqYRhT7NkSbLSyvEcQJxiq5pyEpOBqzX66SylOPmhcC2rI0Q0hBZygPdDU3GdVN8N2T/3p3Mz9/F91wMu0Cv1eXdKzd56egJHjywG8PUMHSNNEvoDlxu3VnkF3/hCTQ9D/2NgiCHjSg5EW5leTUPB09SpqYm2bt9C4WijWVZ+H6AECqW5aDJMg8f2osmZ0xNjVIuO5SKuWDVdY04yn0eumliGHkGnmnpeTtYFPP28TN8/tmXOLRnB0kcc/3GbQqmQ7fnUi8VGB9rogiJKPAwTRu3N2BuZopT5y+waXaKzTOTlMsFso1wa9MyiZMUTVN44kMPksQRkJGlWS6wNI2V5TVMVUc3dCQt99yFXoBm6MRxsuHHS1E1DSHrGw8lhf/r7E1++xP7sKwinu+zd+9uHMem0+lw9tx5JiYnSOKEJPKQsgxVM6nVKiRJyu/8yYvEK+/yH358N45l0O/3qFaKCFXn9JlL+GHM7p1bOXn6IiONMr4fosgyFy9d59XXz/Pxn394o1XMYnV1hfW1Njt2zHHz9jxbtkzz3TdO0mjUOHnqGgcPbueTn/0qH3p0P2kcsrx0iy2bhxGmg4xCydFZWWtj2iaeF6GpeRuyZZt55VpR0HWLLMs2RG5OzAwjGN56AEOzaLdaKIMeY8PNvACfZCiSgiRDFPlkQBwkVCrVDaJcimk7RFGIgoLn+py7dImdW2cRiowkJGQh8lgFIZDYAIFIEm7PJU0S9uzZiaZrxHHCP/+jT/LWyfP8vV/9Vb7yrWfZPrcJw7KQZQnDNIjD3JeXh6FDu9Xmz7/wZVaXVtm9e9tGywEbHo41RocbvPDiq3z1udd44sMP4wc+ywt3qdQagEzgDvB8D0VoqJqBqqnESYiUpKRpiue6rKyssGl6PM94I6JYKpOmEu12i8bIMFkKAy+v9Huui7BMvN6AM2cv8sDB/WSyhG3qhFHEu5evcPHdK+zYNoesSViOQ6GoI8kJke9iWzrdnoftaCgiIc0UgoGHbpioho4slPcnI4qK0BQkBFHoY1kFVKGTJAmyotBaW6fb6XPp/BU+9+p3+e3//r/iD7/wFA/NTBFGIYZpgpSRRgmkCd1WizhJ8fyYQc9FMzRUVSUNY5IoxbAt1tbWsR2HOE3orK9gmCaGU0Q3DCaG6gyPjqAoCl995lmKToFt2+fwvYg/+YvPc3DfLv7405/mQ4cPoagqsqyQJhm9XocoCTA0AzKJTjuPqul2Oxx7820uXL7Ovt27uXnjFpZtQiLx3ItHGPQ8jp44zWtH3+TjH37kvYrfcxcvM564KFnK5FgDSZLpd10mxhu5N1DLnwumaSB0QbFQYuB6eL0BczMTFMpFDFNH01QUSSChYFom2QaJUTdtMln9QE/TZ28s8aEPP/qBxF1G9kPE7Xtjwtr81/IOKbJEFIVkUv4s11SB7lQZrVf41Lf/gmNHjzJVanL5/AmGazUmJ0apFCTsQpEkTRn0OiDLKIrA0E0ySSaTFOxiBaGaCFWgqHkWoCyBqkgkkc9g0CYMPRRZoMgqwiyiGUVUq87CShvNLBOmKvPzS/R6PlmWYdsOYxNjjE5M5t5PU+CYNp1+j+HmCFahzHBzhJW1dQxd586tG5iWzfziXeJEolAqY9kOumESRgFpkr0nzBVFYJk2fddDlmWCwCcKAyQr4aG9D6HrOnahSLFUpt1uk8Qhw6OjaJqOUNV8DqEIshTCMKLTaZOkCZZlcfXKFXbs3o1ExpHvvoqUxTRqJWQ5QtMUwkDmc5/7DFEUc+H8Se7cepdiZYjdW8epFlWmZyY5c+EKmyfKFB2N7VtmKdoqjaEis1t2MDzcwBQpqsiQpITLp+9Qa5g4BYmZ6Sa1aplqpYauJZRLRS5fvE2rcxdv0EeWc3KpH4aEQR/bMPMupjgiyzIsp4Tnh4yPT7C6uk6tUmXgeUj9hD0P78C0TMIwYHHpOi8deQU9S3lg9zDXriywe98cqggQQs47mEyVFIXlpWUsq8jAdYEiM9NbuHm7w9e+eYILl5aYntvCvv2HGBmeYvvWHbj9AaVGmTwqqoVjW6wvL3D8rRdx7CazBw+DpKBnCpl0r+CQXz3fVwr5wGT4H91C/W8zp/+g4u69937MT/O9P8fPxN1PafxM3P2wuPu93/19/snDO97bp5SmDLod5AycSo0kk4j8GF1VUIUgSDMUkWGYGnEY0mzW2b11E1snRqjXymyZGmO4WuTnHj+Eall011tYms6g7zE+OYlu5Se467r4XphPyJMETcj0212qlRK+61EoWMRxxJsnTzNUq2DZebZcnMTomsbq6jqWZRInMYqUYmgC3bIoKkVMVSVLAgw9aX87OwAAIABJREFUf9grio5hmkRxiqoJavUySSahCxnL1HHdkNu31/jk08/w+OH9pBIYpoldcFCEwOv3WV9do1ytICuCP/vU0xAn3F1aZHR0hCxLN+ieBrKqI2kqvYGPlRncuLrMN194k4MH9qBKJl//9qu8e+UGJy5d4InHDyAsifGxGnNz40xP1BCGRBCGaJaGaZuUyhUmxidZW1nBNEyEliPaTcskCX0URaHfH/AHn32av/VzHyWOQkzTIIgCVpbXKJZLRGGShwGnCQNvQK1sIxHT73WoVcusLqxx/OR5hoebmKad+6QkBVlRkUjp9zvcvb3I9i1zfPjxR7Bsg2K5SLfV59137zC7aRxDV0migG67Tb1RptfqcerkeWxTZ+veLSRSgqFp3L55h06nS71eQ5FzX0Cv2wVSFDlDKCqaqqNICoO+S7lcZuXuMhlglR2ErOB2e2imia7ruAMX3dBpr7cIvR53V5f4jt/jNx4dQxURQimjazoXL11E0xSGhmuMNWZ56YU3Of7WOQq6xVhzFLOQZ3H9o//9SX7jkc30l7o88MAUi8sL+P4AyzKQZI2RkTrbt2zi2vWbJHHKtrkpvvbN14ijkKnxUbbMjKLZJt955Q2EDI1ahUG/z5lLN3nk0UO8c+oCl68tsG3LFPWKzbHjp/nE33mMgmNx4+Z1PvrhPWSSj2IUUCSZfreTI8W1KllmAD6xlFIomHheSKFQIssEaRrRH/RRREa/M8AwLIZ3Pkwmy8xt38YLR44yVyvnbZLk4KDQ93NkuV0gS2SQBWmS5MHi6YbYIoU05aGD+3Bsi0xKSUlJM4leb5Bn4EkyKTJZKiHLEY1mBUmRyTJI4gxdaFx8d56aU+byzVtsnZvGthyEEMRxgiKrSJIKpAz6A77xrZcYbzT5xZ/7OMIQG/l9+aRzbGQUTSjYRoH15S77D+xGM0wqBYcolJBSCdPQNtoaFSRFyVtV5ZTl+bvYloVlW9TrRUbHhtANB5QUCYl+18f1BuimjVDyyf+d+XnkTEa1TF559XV2bd9Gt9vjnTPnGBseQVUFtVqJ8bHmhl+3iizpRP4AXQZTNVhd6vFHn/pLJidszp69jeyPsrJ6Hbuko5kKQQRpFjDo93H9BKdYQkJFUiJkdDqtHifeOUWx6FAsOsiyyrG33mF6YpgdDx/mO6++zoc2TaOqefu0JEnEcYLb62IoKmtrXf7401+jUtDyrK8UqoU6ywvrFKoFdMMgTVPCKGZ9ZZnxySm6/QBZkWmtLZKl+efTbQ2oVCsMjw6TJjKzUxP8xRef4rf+/n/AG2+/TbPZQNdyyqXnu5TKOaTqlVePMj09jVBkIGHzxDi2rvN//PFnuTN/h82T42RZwCOPHMQuqHzkif3s2DaBJhR6XosoDTixtMQ/eGwflq5g6NDr9tkxN4thWywuLlOtVUiThJSMJBOkSR59YDsmqirhuhGarpNLrvxcTZMMVZGJwxjNtMgkgXRfmfb9Qw5cpg49+G8t7joLgw/47L63P4GQBMePvsXY8Gie9ybJKIbKxWuX2DShMFS2KVVtgjDlxIljjI5tISUny1qmDUCKRJpBz/VRNBPdKpIJHc/vk8QhaRISDlYhHiAlOYpfkmVAINQCncwmlYtElDALIyh6GaFYbNq0nZHREVIixsabtNb7WE6BTqeVe3ddj0Gvi1Mos7SwhGXZaAJUCaYnp+j0+xQqdRpDDWrVGiDT73fwIxdLsxFCIklyIZPGGcLUOX/2FBNjw3zx+c9x/cY1tk1sxrJNrl69SqPZ5Nz5M1QrZQzTZHllievXr1EoFpi/fYd6dRjbLKDrJhfOn6AxNEylWqdWK7PeXiZ2M4aHTNzBAmni4w4GHD9xhv5gHTKfxnCRiYkma6sdRuoSWdiiVKlyc2kd3bCZnJkgibuYlo6mGpAmqIqCEvtoQhCHMbVmAUuzMFUVERkIOcBWdRwnw7Ik0ixCiTsUTYPLV5cYak4yf3eZ0bEmi/M3EZKEISSyKMCLQ4aGhmm1OyzOL6PKCsJS0UyDq/MXmZoZR6gKV6+d5vjFN6lr29g1F7J37xzlooymxMhymZiIRAmIAxnTtIjjhIJT4PbVO1SGImrDTRr1T/Brv/nv8+hHDuO5AY5dZm1xjXeOn2DnwV3cvnmHbdu2o6sKFy+cxa74/NIv/0NizUKSMoxIIVHS964diXvtlxtC79+BuLvHmrifkPvrijt+nPD7mbj76Y974u7eh519T/n1/2/i7v1Yhg949PeE3ftf//R3/xm/89AO4iih2+1jGiaxP+DsqQtMTU6SpCn9/oA//eIzHNi9A1nT6Ky3MYXNwq1FYs+jvbaObmj4gU+700MoGrVajTRN8PsDbMtivd1mz+5trK4uYzsleq0Wg24X29BZb/UxLZt3Tpyn3eliGAaVZg2ymN7AZ+uWOY6+dYG5rdtRhcL6yhqrK0tMTI+TyRL9jpe3acgKcRxSb5Tou33KQzX8TMIu50S1drtHwSkS+AFhEBF4A1wvIEzgz5/8FmevXucf/uavMDzWRGgSYegT+hF/8MnP8OiDB3AKBZaXVlEk2L1zltm5WWQUTFPD9wekJPS7HWQpX/XM4xoCKsPDDA/V+OTnvszHnzjI/v07GB1tsH/PdgzLZP3OCsVymdVWm1qjgZRKSChouooQCrqm0lpb5zNPPcuDe7ezurpEvVbG9XqEQUyaSBiGw89/6CFSyUfKJMIgotPuM7l5nIX5OxiqhKpqedUr8pmcmsSyLexCkYWFVYZGm1SrJTzXxTLz0OpUksiimJvXbrOy3GLrtq28ffosjaJNa6WHkBWcksa2Hbs3MPQ6drGMUyySZQqarVOvF3FKxkY+nUBJVcrlKvX6MKmckZCSpTHlcgVNN3LPDQmpohBnkPg5Jr48UsWPfAqmRWetRalSJkWQkeC6A2zLQdds/t+Tl3GGBXvGKoyNjOO6MWbBJgwjvF6PW9dvoasZr7x2nJ27Jpgcm2Ziqolmp7z86lnK1oBfemiacJD7f5575Q0ef/QBIMOxHVaXF/EDl8ZonX5vwMrSKstrbR59eD9btkyztr7OptlJIMZz+4SBz9SGh/HKjUWULOW7R85Qdixa6x00U2f73BRjY8Nk5JWpd07cZWWlRVELSLIKsd4j8z28MKJabebxBV5A6A/QTJMkVgjCAYouSLOcZNlt9yk7Jr/7h99g3+4dFAoWR94+zePTm5FUA2SZdCNjUhEqitDzjME0r7InYbKB8wDHKdHt9bALdl4xlgVZnBG6PqHrYWh57qDnDlANgzSTiOOUdy9dwtJyiFGhaPPLv/QxRsaqPHhwF7V6DdLcTyYpMrIQOTwkSJFVGU2xaDaGGWrayKoKWbbRtKOQpgqtzip2wWHnjjlMQ4csAUmgCsjklCvv3uLPPvNlHn34MKqqkiQxQgiKToFXX3ud5ZU1GsMNDNuk3VrG0GxOnDjL1Zs3uXT9OpOTTRRB/ne3HApOCVNTKJeKRFHE2NgIk+NjkIYEfkAUZdiFMu3OgG6ri+MYWEWbWILVdgur1uCJDz9KvTqKqsiMTtYxCjXc1i2IPYRi4QURTtGGLEMoOaxKSmVkGVxvwKbNm1CEitAtNFNlz97t7JiY5J9+6gv81//df8HTTz/DjuHhPL9NyNy9cRtN11AtnUqtygO7tjLUaOA4RV5+5Rhbd+7gTz/zFP1ul+8cfYODe3N6pqmaZMQkcUDsRXzq01/msccPkKQJs7ObQMrw/QGFkomqydy8fZuvPXeE2ckZQi+g3elRG25gGCZBLyIIMqZmxokTH1VTOXrsBEmosGP3dn7hY4d55MEDVGsV2q1VatUyaRbTbXUo2AU+/9RX2DQ9S6XW4PrVG5SjmPrQEJmioP9/7L15jGXXfef3OXff3r7Uvm/dXb2Q7OYqkqI4lCyNbXkM29FkZhInGCf5I8AESYBkBhMgMQzPwJhBMo41M5EnkmVJtGQtlERSohbuTVIkm2R3c+l9r71eVb1Xb7v7vfnjliSSJmnJYwUJoB9wga6u+27drr73nPM9v+9i5fgX/+7LPPfaae7/0DEMS6Xn9jAME1lKicIsi1OW5Yy6bmu4/V7WXZQVElISKcHtttGNrGMlq3rmEPvX1IPnV7nvvrvfOb++x/HTeZe/Qvf80z/9PDNDsz/z/A2QkJKKhOGRoWzjRZYIgj5xv8PrF19hc3OLg4MjiCikWDCYm53EsASh28eyLXY7Hex8Cc20iEkpFYqkkU9/e42kt0PQayGnCW63g27mSCWdrg9r2x3ytf1YhXFWtvpY+Rp9L6Q6MIDruRRLRRQVTr3+MjmnQq5QpOf1Ic203oP1Ifqej1MapjIwxPbGMo3NNcYmp+m2e2i6gaSrOIXMGEbIgm63w5Wrl6jVarSbTfqdXa5cukgQROTzBcI4QpIEgwMjdFptziyd55PHPkm+XOLs2QtMzyzg+y4D9TphErHbcqkPjFCu1NENk2qpQpRGtNo7VOs1DMvk6tWr6JLC6up5bly9RCJUvv+9x7h04TJvvfkKI4NVFmfzHJodY3FmhOnhMiM1i9mxAsW8jaIZKJJgcXaE4WqO0A345jd/wMTEJAKfJArRZBCyjCQrSEIgyTGqkq0XEhEg/JRUiRGqSuLGbG+tMjM5yNraEq1OzMhEZrKmOWVkOSEM+iiKRCypxG4Tr78LSUQ+X6NYrRC5LqvX1/jiIw/ysY99BJHWeOqHT3Ps8J1cvnKdixc3WFg8St7W2G4mxKmKLEJMWUPIJu1myMamz3JDxbQr9Lw6L56OUQo57n/gPnq7Pt/81iNEIkRSYXV1iVJB59DBI8iSTGOzwdy+WWYW7iZRNGRSZASx/Dbny5/86f3cMH8WcPfOt++vruf/6huaUSrfXzolhHgnpfLHEQjvdRd79My3n494+zjwU+Cn/BLc/e3Xj8Hd2+v/r+Dub14/vY9DzRvEcUwUhZimTRSGXL98iWq5jCTJCEVFN00mByqYpkGaJDj5HEkasr2zzfjYMCura1SqFWoD1SwPS1IIIp+rN24wPj6cZR5Vilm+jSKjKTpCpNiWyXarw5Ubq2iqSjHncPrcBRb3zyBkQRJlnUZVVRkdHiSMfHzXpdNtY5k6umHh9l2cfI4wDFBVlW6ngxASQRCQLxYxLQtFVei02+i6gUBCCAnLNui0O9QH61y7tsxAtcyvfuzDFEtFJAlWlldxcjk0Veetty4xNTpEPp9H1w3yhQJxGkCaoOsa+UIeVVFRFA1NU4mjmDSJUTUZQzNQVQ1ZEhw9OEO330U3dNI4wfPcPXOJIu1uh1K59LYd3iz8PAs0zgK985qOJMsMDNZI0pQojsjni7R3uzz57IssLEwTRQGyorLT3OXihasMVso0t5vkinlSIXC9zGxme7OBJAmiONnbnW/zH778EB86eoQrl69gGBqB72MaOqap4XsecRxRKxdptjr8n1/4FnceW8xyfBQLkUIYxfz7z/8lhxbmM8txRULXVJI42RvwRBZLsRdSnqQJqqqSJilCZPEGURxg6DKpkGjutHEsA9+LUDQJRZH3TDUyWpFQVIQk0DWNKAz51z86w6fuGkOKY6ZnZkgRBH6E7eTp91wam9scOrifrcYWL588z8H9c9hWnhOvneQLz12jceEktxyZRVU1CoUS5VKBW25ewO3HPPK957nl5gW63RblSgFdN3jm+EssrTW467ajbG01efi7x0lTwdVry+w/MEOpkGd8bJhmq0mawrkz17FNnQvXVvkv/uGvcfDQAtdurHDi1DkmRms4tskPnjjO0ECVmw9NEXptCuU6XthFEzpBJBOFAk2Ts85s4FMol5AVA03Xs0i8MMs2i8Lsd/nprx1nYmyI6Zkpzp29yKFSGc/PaGiqLCFLKbIiQSrwfJ80jkiSBEVWMB0LgCjMqMbt3Xb2c8jWv34Qki/k8FyPJE1J0hRNyzq9fuAzMjyM4+SybD0tJfT76IaKqkrIErhtn0//35/jlkOLCASd3Q5L15ao1IuUyzW+8c3v4HltxsfHiJN4b80teO7ZF3nw24+ysrTKXXfeiiSnSHJG2wzDkOPPvsgPnnyJ//b3/ktkKaXX7WIYGkmSkMQhpmFQrZQYGKwShiFpkqJpJrValdmpSWYmJjBMmySJs7gNoNvpYjs5dE0jjCLsnE2r2cSysu6xoqm0mk0uXr6CSCCXzxGGPkISOI5Dv+diqDKKDL1uE0WB1ZUGeTMh8F1008Kw89m/IUrpu5kGLhURYRhTLJX42jcepeAUKBVN4jhEVWSSRHBpY5O77v0Ijz71FPdOj+C6Lopk8N0fPM7tx27Bc7uEgYuly+QLJeIk5rEnn+HmQ4c5/uIJZAn+69/9h1y9fAVVFtlGjCpljoiSii5gano020BLwXV7FIt5/CBAkVUmx8d44L57GBkZ5qknf8S+/Qv85de/yfz0NGfeOsNbZy8zOzOBqskIAZtbDZrbHWRJ8NmvfIVbbz5CLueg6QqqprG+ukEul0PVNA7uP0ihVCBJYn743Uc5efICw9UipqWBEMyND6MrcGD/LIgs5Lrf7WXjgq4ThWG2JaDIGViWsrzGFLJNBSHh9dpcuXyVwaFBkg+0U/lpPbfc4MPvAnd//az7zit/59Hv/1x6O3jbBu1ehyNNU6LeNo2185SLN9hXuBlVTQnjmCjw0RSVNA6JI/D6fTRZJvI9Os0dlKhP2G/Tb+8g0ix+JBSAooOiE6Gx3emhWAOY+TqyWSJAIV8dorG+zvTUDJ7rUyyVaTQaNBrrWI7F8MBo9uzLcP3SZQYGBmh3WvTdHr4XoKsSzcYm+w/ehGHn6PU7BFGIY1toqo7veVy7cpF8Lsfk+DikCWkSEyURsiwzPj7B6uoa7d02N5aWGRsZw/MD8lWdubE51hubjI1OEEcxnu+j6xqlYhGEwHc9pL1MSNffBQQryyuYqsWXv/wfyOU1us0O9THByy8/x7nXzzA2UuYTH/8VpieH0RSJRHQwDZ0kiUiSGFWTEJLA7fuEfowQKYqWIiGRpoKtzRtMTs0gCJGElGlqA58g8DIWhSRnc1uaZDEvQpDKEkKSifyAam2QSIQU8mUunTtDs92j3QsolSv4boeVpWuYmkneKSFrJnHcIgl8btzwCfSEem2QQrFKRSmweMccJ189x/zUCPd++DaESHjoW49y/IXXuO+euzn+o9OcfuMNjh05gEAQexAIje8+dYI//sKP+Nh9v8JqI+DmOz7Knfd8CNPR2Vjf5JZjx/BCj3s+dAeHD+1nd3udbqfBjeWLLK2uMTqxD0Sy16J7O4B6/0X3f2zn7m9WP73Wj4Hfu7tuf91PfPf5WUdSvOP4ZefuF1DvBe7eLwLh56sPYty+v9DyF1fv3j989/fgD37/X/LAzDCykjk8ShK0mttEbki5WsWPE1TDIEWQ07OFtO+HdLsucRIyNJQZiHhe5qh4+coSxUKBKA3IFSzq9TLb201MyyRfcEhICMIQJZV54+wFRifGSQTomsa3fvAst9+0yHCtlGVvqYLIh0KxyNraOoWSjURCEieUKwU0w+Dxp37EYLmKWXAIg4Ctxg6ObZOS0Pd8NtabFEtFrly6hiRLWJbN2koD38tcETVVQ1U1qtUKQ0ODuP0+Qs6EuLbtoMgqcRJz0759BF7A8tIqtWqZftdFMyVSEizLJIlSJCEThRFIEpoqEych7d02umoQRyHbjQa5oomVMwhCH4GM53l8+otf5daDB0CRSFJoN9sUcnmef+EktWoJz/OwbIs0SSkWCnzuaw9z7NA+ZFlB1wyErOB5LiffPMfC9BgS2aKsUMyxu9NisDrAZx98mO5uSN4qMjA4RBRLdDpb6KaGIMsXW13ZZKRaot3u8thzL3PnLYfQNZVet4Pn+tiWTrVSRtVkOv2Qmw/so1DOky+YpKlMnPbodJvcdccRNF2i1+9imQ5RGCEJCd2w2NpqEkY+7W6bYqmIrKikMSiqQBIyO9s72I6Fpio0Wx3K1SrNzQZ//Pmvcucti0iSxG67k2XxpFnHL3ADLMviD46/wW8cLnDq9Svce+89RFGMYTn8+V98E7/XY3x8jFMnzzBQr2PnHG46eJBcrky7s8vnn7nI790zzF23HuTNMxdptTrUahWefvZFrt9YZXW1zcLsJONTAxiyjaaYJLGE7yd87KP3o6kqnU6XuZlxpiZH+d7jJ1heWiGOQk6ePsehg/soVUpMDdRJJLj7npvIFfNAytjoIMduXkSVJSRSpsdqzCyM095u0GtvU6yYxIGOH0I+VyIKA/LFHP2+j2Fp+F6AkyvgBxGSpKKpBooCgoA0CfjPf+1DjB66GydncfNNR/jf/sk/Y7RaI+dYeK6Losm4rpsZaWgaiqqiGyZCUdjcWEcAhplFNximyU6ziZAkWru75AqZJst1+5n9PilpEhN6IdvbOyiSgueHrK83WFtep1goI0sqX/ryN7ly6QaH9s9zcH6OleVVavUqjz/xBGksmJwdIUlSlpdXuPP2IyiqkQGZNEEIWFtf5/r1TX7jEw9QruSRFUHg+wAEXkKtWmN9dYNbb70p0/TZGooqkyQQRQm6oVMs5ul1u5Ak9LshuUKO0PdRVZmTp1/HtguompwF7KaZq6gQMr1ej8efPc6++TlUNdNuRXGIZsi4nstAfZCllWUmJscJowBVy+JT8jmHxvoGURRQqxfZaW7juwmD9QJCQBS6JIkCaUIUxWiaipOziNOUIAzRdIPpySkq1RqK8Fi+sUyhUCRJ4ej0BP/isw/yP/0Pv8upp59kbHCIKJTpdrtMTIzTbbcwDAVSjyBKURSFqdERcjmH+akxFuemuXj+CjNTU5iWihcmKLqCqmukqcCxLXyvT76QI4rDvd3plPPnr/Dcj15ifnqaixcvUR+ooaQmr548zSc/8QCyIhgYGmGgUkO3dWQ5xfNdBgYH8PsuV65fp7HdYnJkkFzeYXV1jXyhQKlSJU0kJKHQcz0kWaDrGmfCmH9871EGBqpYtoFuakgioVwoUiwXUFSB53lEcaYDVRWVft/F0PVsYe/7GT1XsGcZls2Djm0Qej6lSpVEkn+yGPggLVw0OsnM7NTPOSO/83rPPPP8zwTu4iTOHKr3pu4klbIuf9JHwmf13Mu8+fqLrO9eY6a+gBcmGEYOy8yRxCmhFyHJErIig4jQFAlD12i1fexClVDScFMdX+ToeoLywByyXkUyh1HMUaJYUK+PcuHSJSYmpzN9s2qSpnDx4gXiKKZcKlKp1bAsg43NLYqlMleuXGTf7D4MU8NxMiqeJimUSyUkSebGyiqGbVGrl7Btk+WlJYK+i+f2KJXLBL6LJATnz5+hVCiQKxdwcgXiOMV1PUZHxhkaHEKSBQ89+g2ubqwwMzRPzslh2w6ra6vUa3U2Nhrouo6ha1y9cplqscTZN9+kUKhDEvPG669gGLB8sU3kuxy7fYAbb7Y5sv829s0NMTtdxzJCNCmi12kipzbLS9ep1weQpACEj6xoeG6I7/momoysRsR+jKqrTE1No6qCyPeISYiCgDiNkWUZeS/jM4oiBAJZloiTGD8WNFtdHMtEVlJUUyMOfKZHhwiSiKXVNTxXZ37hAEa+REoPkXZJNEFJq5AEIYnWp1zbj2YZ+F5MsVLCKMMXv/AlNlZXKVc05ubnuXBth1Qt8BdffYSjd/wqrd2YYqnOK69d4Pf/7ZNM7jvMuUvrRMEAkTpKz9MQiszY1CCSmhBHIRNT40xNj7O9cYWdzausn/wh/dYlinZItVSinB8CVSVJo3e8V283TXn38fbA8qzeL7j8P2Zt/V699qwk6cf3+LZj76y3d+febpTyXue/V/0S3P0C6r3A3d9u/X+vO/de3/uD3/+X/LM7DyCEyDQaSUqntcvF85eYnppC0TU0Q4ckpbW9Q86xWd9o8NyJ1/A9j8mJCc6du4JtZiJsL4wYGhjizbMXqNdL9Ht9+j2PUqmEadn4vo/nBhRKRSQhKJULSIpMkoKhqshCopTPRPG6qeIHAY1Gi7fOXuDA/llkIdA0hZ3tHfLFPDeWV9jZ7mDrFnbeQDcMhCQolyuYtg4Ifvj0CQ4dmGd5ZYVSqYSqqIR+RLPZIgwCHnrsSUxVIYxCnJyNbmpEcYCmGYBEmiRIEiRRwle+9RjXl9dYXJjh05//Cp32LmPDQ8RJTBgmuL0+zd0WqixlIaK7HVRF4dTp85RyuUwDZGjIqkyapKSxwHMDXnvzPLfflFnhS7KEoemEXsCXvvU4YwMlSpUC3W4H0zRJ4ohbFudRdYWrV69TrZbYbbewbItDB2YxTYPA8wnjgO5um4nxEUIvwu25HDm4H8Ow+dwXvkXeMhkeKaMoCkEQoRkGtmNhqCrz++aQJcH42BBer4ukqBRKxcxyniwbUtUMmjstavUS3W6TrY0mup39vhRVRtU1FFlic6OZgVPDJEZgWjbrqxsU8jlUTUVICiDh+5lQPzOLEfTbXXQrc+1cXbrBb/3GJ4jjzDjFNg2SJMQ0NKQ0RZEU/vSVi/zjTywyOTXJyNAIpmVx+vSbrG9s8omPf4Tx0UF63T6TUxPYjk2SRGi6yVcee55/+icP8vl//lvstlycnMHU5Bi1WpUgDJgYH0ZOodfvc8cdR1A1mW6rx58/+B2mxkZ46bVz7FuY4dsP/5B2p8vWdov5uUnWNzaZnhhifGyQsxeuc+SmfZDCqy+d5vLSKnP7J7FtkwtnLyFExPrqBk88dYJTb55ndmYY29F55Dvfo5zTMCwJVSoSI8jZOdLUp++6JKnE7m4TWRYIkQUOS1IGRlrNHZI4wrJNXC/iDz/zKIsHZjENh9sHBqlVS6ysrPDqydMsLMyjqRqyIvA9D0mWM5fFKEJKk6xD6Ae0220kScpiTZKYXKGYxYfsabEUWUKIzH3w+tUVHnzoERampsgXi6ytrTE2NkGuWIBUMDY8Qs5x0FRP7XYQAAAgAElEQVSJra0dypUKiiozOzfF6PAYifARssLs1BSySJG17LlAZDrdeq3G2bMXWdw/g50zsuy/JCGOYrqdHqVSiQMH5vZC1wVJGpAmMb2OixAyum6QpjGd1i7tdgfbLrC91aBUKaKqKtVKGSdfwDR1FFnKupiGSSJiFFWlXCjRaGzx7AsvU3IKuH6PXMHGtExkRaVaKmGaBmEQEMcRvW6PIMjorEgS6+sb2E6OqekFtjdXiUIfIcUgKZlG2LYJghjfD5BkDZBRVBXNMJFlic31FUrlCqZhE4cxpDEv3ljm6LHDfO67z3Dv9DSKoTMyMki320WSJHTTRCgStp2Zw1RqFfpdF1VTcN0+Tz//Cgf37+Pp48+xMLtAkkQ0Wy0s04Ekxs459Dq9jPZr2Tx3/CWmJ6fIWTalcom3zp5nsF4jTmVeOPEy99x9K6Ef8kd/8lnuves2JAXW11cpV8qQgNv3OHr0Ju669Ri6oWVZeXkn65J2+3z1oUf5zuPPcv/dd2DaJt1uh0K0i0mKYajops5WY4disbCnCyYzSpFlJEkhjmJ0XSMIQsIwRFFkVO3H0RIJkiTtsQBSgn4P33PJF4ukb+vcfRC4e+jkWe6++86fc0b+m4E7SUh795vw4+WllKa0t66xvnSJpN9EESrC8ZkePIKWUzFtDS9ySaQEoan4fpppzB2HGIU4Vbh8vUG+OkKhNkp1cIal9V0qlUH6boyq57CcCtvbLRxL48KFcxw6dAhZEqRJxOXLl3Fdl3K5BElMLmej6zpnzr3J/n0HWV1dZXe3SeD79NwecZIQRjHFYpn19fUsSsM0KBQKXLt8jutXr+BYeZAErtejNjCU0WsVGcd2iKKIVFFQNR1dMzAMi9ZOC13TSEg4s3GGwPeZHZknikKKpSLXr12lUCjt5edJWHsGboZmoCoqnhvyZ5//E6YmJzlz9gRjQ/tYuf4W03MOb720RKns4OQTDEPGMFRIExzLxvfg3JuvMTu3gJBiZDklSWXiOMW2DQxDQ0igyZn+VVIEvW4HyzCI4gxo65qW5W0qCoEf/tTITpJAljhx4iX6vYBapYyiC+IoIYkSZEWgaAZXL5/nwoVVXL/P9NwcuZxGa2cdSZHQ5AII2O1vIhKHIA4p5ivsNDc5eeEkv/d7/xWHDx/k+9/7DkeP3pll/y1dprG6Qd+LOPHaG4Dg+PFXuLgp+O3f/C1+4zd+hw/f/XewysPccdcdTE8O8taZ05RLJYYGa0gi5c3XT+J31tnZuIYu9RkaGSWXr7G149Lp+ljlCnLGdX/bS/GBPbB3vD3Z6X/b4O7964Nu7b2aQT+HL9Ivwd0von4J7uAP/+CP+O9vmUGRFaQkZWu9gaVpnD9znoWZCYTq4AYh65vrlPI2uiwIIkHOsZibHENKIq5c2eaJ505RdgyGhwfQDQNFsvjWY89y7KYFojhhYGCA5k4H07JYX9vKrNMlmRvLKxSqJcI4Zqexg6MZlKslJMA0NK7dWMLJOVy9sUy332d2egy320eVMk2F7VgYlkFOtRkeGqTr99B1A10zSOKEIHbpdlxMxeTypWsM1MtopoFuGvy7z38DTZZ4+MnnmR0dYXH/HAKBbumEQbCnNQFN1Wk125i2gZymLMyMc3hxjo31DSaGa7z02mUOzE0jRDbhGoZBPm+gaTqddg/TsPn6I0/g92McXWVzo0GpWsKwDEglNNXi819+lH/w6x/nL7/zA+44dgRFVfD7Ho889hQfvfd2ZubGQSTYjs7uboskjrGdzEBmZXWNcqmAlTcJIp/l5SUsU8N3fTRFwnY0Ll+7Rq5YZGZ+GksLWFtfp5Q3eOSZZ7nr2BEQ2W5wGAZ0+12GR4YJkpiB4UH63Q6yAmaugOt5GRVSVQmiCE2VMRSVIOghEVDOF1E1i1arSxrJpJFELldC1w2uX1/KtHm5PJcuXePc+SUcy0I3VVzXRdcNfK+P70e8dOI1xkYHsfQCnh9x5dp1piZqRGlI6CekKZi6jJQE9Ftb/KuXzjK1f4gTTz/BLUdvZmt3l8985i+56cgCw6MDlMp5NF1lc22FpeUVRkeG+ebD3+XE2Uv8H19/iQ+N2MxUJQ4szNDa8fnek0/TbLVZXl5ndnYCw9Cp5Svohku9nifwEmTZJ4ldNEVw2x0HccMuly9d59d/9SMZ9c3SOXp0kddPXcA0DTRdYbOxRS5vs7O5Q7FeYGximOb2LrVCAVNLMHSThfk5Xnz1LB/72IeI0z4LU6Os3riGZgZY+gT9sI+cQt/dRpIFtYFRZEWgyhL9fojhFOj1+miaimmYGLqBLFQkReL+IwN85fEz3HrsKP/qL77OvVPDmIbOwcX9uG6IrBoIAmRFxnU9xF6mYOi5mZA+n0OSZVRZQdZkfD/LK5RlZU9TIEjimJQEKU0RiUElX6BSraCbKrWBCk7JIRUJkiowHI3KQBnTUCiWKkiKiqKrJFKMiBWanU1yuRySkGm3mhimQ0JMFAV7XS2NW4/egmUbGbU4AlCQFLBth8D3iRKXrz/8DXJG5oQpRMoff+bPOf78aeanJ1FkaG210BWdP/nsgxw5OI9jm4Rh5iwrayph4BFHMUmc8uDXvommJ6iKimnluHz5Ok+98DrlnE2tXkQxJFRFIQxTco6DEBktkDTLEHN9j2vX1/D6ISNjU9hOifOXLjA6Mki702Vp+SqmqZAkEbKiEUUSSZRi58soqooQEpIs8H0X08kjSwbf/tZjLMxN4/U63HNwls9973nuuuNuxlSNC1fOYVvZBp1p5kFW2XV92tub2QaapuN6Hm7fpVjNc9utd3Dj+jrnL19jpFrj1KlTTE9PsrvTJo1COh2PUrmMECn9rsfI8CimaTE4PAhpyuzsFJIsUapXeOPM6xycn+Lffu5L3HLwMLYtkyQBwyMjpAhUSSdXsJAkhSiMsW2TKA5QVJXG5hYvnziNbTh8/P77iP0uyLC2u8OQoSLwKBQd2rtdHCdPGMZcu7JGnKQZGFc0FEnFDzyEAE3TMxfgOM5IYGnWuUQSxHFCHMcE/V4mN8jlSIT814K7E9eW+E//u3/yN5iR33m9dE2hWCn+tZ9L05QwjmhsNrAdG5Dwey02L52goIGqqzxx/lXWtgMOTB1k+VqPXlei3ZV4+cRbLB7+OKEruHJtlergNIlcZmMn4tDhe3CDhNW1Bn6kUq1M0uw1qQ4M4oU+QeSy09rAcEq0Ol1GJ2eIkQijlKmpCWzbQtdUxkaH2G3t4IcpiBhV1SkXy1y9epnR8TGq9TqaYeEH0HVdWu02o+MT7O5soQmwVAnLtOn1Xcr1Gk7BYafVJZfLxrRSqYwfRVhOGVmodNodBJBzbC5eOouiaCRWm4NDtzM4NEwcRqysLrEwv0CS7Jk+aQrNnQZrK0s0NhucfOVlyiWdZmuLffuOkGJx7fJxfucf/RpqZHDoaI1cIcQ0NUw9M3KLo4Q0jbAKMDo+jKymJGFK6KUouoJpq4Sxi+e7JKFMHHogQRB6P8kUVFQN13UzyQviJ+ODJGXmVdJehnCxPEES65QKDlHsoqMjhEwkg2HITA0PUx0aYaPZZnrqINeubFMyRwm6PTy5jZuGlO1h1Pg6ERaqpPP6669xYe0K09PTmAWH6el51LTI+Mwg+xdHWZw/wP7FmxmaWGR+/1E+/sl/wO/+9m+yb+F2uj0Fc3QQO2egaTFxf5P52Wma2y1Cd4el61cYrBYZLKZcO/8Ks/c+QKNfYt/Nv0ZxeD/2QBlD0fc6d2/LrPsluPvg834J7n72+sWBu/dq675b1PlXH9b/N+7j7X/38kuv8jsVFUVRAQjTmGKlSGNtnVw+h2E5pHKKqghUAWksoSgZDS4KoNvuMjBQoVKzSaOQ0aEhLFtnt9VFCJfDi9OsLjWIg5h8LofpGCgy7LaaSELCKRQpOg5JHOB7Lt975kWeOfEWWpSyvLnJxNQIW9tNrlxa4v77PsT46CASIc3tTSxTRtMyo4EEieJQDXSFZqOBaZkIWaBoKpowEMiMjA6iqAqbW00e+cHj3LJ/nt3dFkEc86lP/gqLRw7g2AYijQhclzhNMcw8L/3oVbY3GkxOjRClSbZwcAza3Q4jY2N89i8e45MfuzOjIWk67d0OuUIeEKQiyqhcsUrQizm8f5qO22PhwDx2Pke/3UPVNFJJopor0NzusNpYYXSwSq/fozZQZf++aZ790StMTUwACqqQ0EQKhBimhdvz+NFrbzA1NogsZdo4Rcr0bZqmIys2imLi2A6aoSAr4HkJg8MDlKsl/s69d/DEMyeYnpwgdLs0m9uMjA/j9vpIJGxvNhgYGkTIKhfPL/HpL36Dei6HZeg4lkno95CVFN3U0c0CqBpyKvPaqTcxDBWnYJEQkqYxTk6nWC2QpBkAfuv8JW66aQHbMfE9H0GKnPj0e10OHtpHHCUI4RP4PWr1AcIoC7NWdAVd04lDgaprnF5e48MfvYORgTKHD+0jCSIee+QZfue3f53njr/IxMgQURBz/sJ1JmZHydlF3jp9kf2HDlG1fIz2Drmixsc/cSeB38G2Uy5dWWN8uMBNRw8RhxF+u4NVNqmW66yubJEr5+n2e0yMTyASnX43QlcMDt20yKXL16hUKllOViqhmSmmqWKoCo3tXeb3zTM2NYIALF3nxvUlFE1GL+RIhcQLL5xicKDMzNwkYaQjqU5Gi0siiqWUMJRBSqnVpwgDiSRV6XX76GqCEB7EPUynlr3tgqzb1u1imXnSVOK5M00WD87z2uk3uG1sHMOxCKMIWRFZ8LfQCIJM82HZdjZSxSmqrpKKhMALEZJM4LlIQsLULUzDyuIUlCQDhn0XWZKxbR3b0XAsjcj3IYmJ+j16u20URaG32+X6uauYjr23oAFZFoReyFZjhz/57Jf4yJ13ZlEbl1eoV/Ps7uxg6Aa9ToecaaHqWd6bIiSIE65fuc4Xv/wNbr35CI8//iRf/vZ3abV7HJw/gGPnUSSN7/zgWUaqdY7efBg7p3Ph4mUsO88th/cTxzH5fAHP87KIBgSKpBBHKaqi0mq2OHbzbShIBK7PV779XRRZ567bFhkaGkakGpKk0u+6e8YzfXrtJqaVI0kEpqHjuS52zqFcrRJEEf/m//oiOaeEque4ePEioyWBjCAVxt5GWErf99B0GySVJJVQZJlUZP2lgcEantfDtFVElNLeuc7HPvUp/sd/8xm23zrP+OAYlWqNNEmIQp+43yPnWARBQL/fz1wCNR3f9YmiLgkdFvftR7U0pudniAWkImF1aYmB4Rq+7yNQ6HR61GplRCpjmLC5ucGLL5xianqIoO0TJyH14UHu/tAx9i1M0N7ocOnKBYpFJ4szEQq+H6KqGm6vz9e+8TAzE5O8+cZbEKfcdNNBhgaqWKbG8kqDkeFRvnL6DHcM17l6rYGqOySxjOv28Nw+X330OdY3t5gcq6HrGghQFRVJUkAInj1+gomxcXpuf69bomZ65lQgqxqJ2yFXH0RoBvLeZt0Hde2+cHaFD993N28njb2fZ/XbM+1+XImAP/uzBzly4JafTM3v9dm9BDD6/T6mYWCYGpoi4zfXWD/3PIHfwnJsPC/m3OolRqQRNKOCVR4ilTU2tna49Y772djaphe4lGojGFaFMIFqfYBECPqey8joGJbl8OLzz7J//2GaOy1y+SKGaTEwNExjbZPBgSqu10HXVTRV5eKZS6SJTJIGCFnCckpoqoIiy2xvb3H82aeZnd7H2bNvUa0Momk6r77yEm57l7m5fciqge3kWVldpjY0iBuEjI1Nc+nCBfJOjtdefJmNtSVGR4bRNJXWbpvmzhY7Ow3a3RZDw0MEoUd9ZJSvPvMQm+ttDo7vZ31tiebODmMjo3zv+49Qrw3Q63bo7XY4f+ZNrly5yNbmMnEaMjpapN/JJBUnT/2QT/za3yMOQmw9ixCJUxlNlnHdLpJICX0XXct0p5qe6bxBxvUCvv3wywyNVBGezelXLxCoKvWSk/3nJhDHCYZlEMYJmqkiFAUhZ6yhOExIEpkgEERptmEnC59KSSMl5fUz18gXszB5RZIQaQyEqFKXwXIOKfbZ2tpicHKSTtAk6fexhIxpyLixQtReJyKg3YPQhVvuOILw+kiJzNLadZy8haKa5PNlnnnmGf6zT/0Wp0++xsT4OJWhYfy4zeradRzDIPFiNlfXcIomlplimfDyy49RdnQMevTdLc6cvc7Y9EeZnprPpKFSgiwkEpK/goA+6D17J01T+oBzPxggCiGQpJ9fevVu2uXbD+nHxirip/f54/t4d6bde40NvwR3v4D6xXfuflpJkrzjgZSkn/KLf/HmLe9dn/vsF7hnrP6TrwUp/U6H7cY2kpABCVnTEZLIdrBllW63TxQnHH/+BLVKifbuLm9dvEIpX6BULNDutpGFwHayUORPP/gwIknYt2+GXreLrioUcg5nzl1idb1BKW/Q7XUp5HNcvHyDv/fARxgerPPwU88zOTLA0ECV+dkJUhJ2d1uYpknoByyvbFCtl1ld36RUqZEk2QslkgTTstAULQspv7qEpiiQxri9HiNDNRbnZ1hZ2eDO24+yuDCP5/s4jk6v3UIii0ewLANJ0bF1ncefP0EchFQqJTRNI4wCFFVD0VRuu/kgI8NDfPcHT7MwNwkS9Hs9NE1BkQ0UReO5F06wf/8UhUoRIQtM20KWJRrr66Rpgm4YlIp5co5Nc3uHAwfmcHIOsixYX13BdT1MU6dULuD2O0RRgJUvEMcJpmEyPTFCZ3eXlZUtdnfbjI4OEEcx21tNnn3hFLauUamWs7VDKvBcF1mSiKOYKIowNYNyqYCmKZimmWk4FJkgCHAckzgMCL0+tWodW5Up5nOMTY0jZBlNJdNlCRmBjO+FRElIqZinWinRabVJwozuaTk2rWZrrwOScGD/FJAgSSmGabHV2MGyDLwgJElThCShKTJxkiLJKooq0e91iJGwbRu31+Z/ffoUv/OJm7CMzLbfNCzWVrd49dQ55uYmGRuuk89bOLkcYRTidtuUK3X+l8//kNunNfYdmGWwWmN2dpLv/OBJJsfq1Osllm40uOP2w/hRjKkbWIZGY7vJn3/pWxw5NI8iy1xfvkqxWOSll97g4OI+/vKh73Po8Dy6quE4NpcuXOHcxeuYhkQhlxm5nLuyxML8BGGvx8ZGg6Uba7z6xkXuvfs2VF1jc32LQs5hbHSIXr/PVmOLpWur7GztUixIpEmIJCz6roummpiOzW6ngyylJLGPqsi4XohpFyHNgFYaJziOTRSHSLKMb40yNjbOUH2QcP0GecsmjmP6/T6aqiKrKi++8BK7zV0G6nVIQd3Tf/TdHk4uhyRJWKZJ4AdASuB79L0+YRTR63RxbIsojOj1ehQKOeI42YsjEGw11rPQ9ShCSrIsu77bzzLMJEHoByiyjNvvc9vNB7MMv36PYimj5+byOTbXN1hdXSefz6EaOkmS0Ot2aGxsEccJ7XaXfQtz+J7PnceOcttNNzE4MMrlC5fZWNvgN//uAywuzmFaGkKK0GQZx7YxDIWHvvsduu02w0MD9LpdLl9eoVgqYTk2QRRQq5aRJAVdUwiiGFWS+fgDH6E+UGZ9fQPTtjJaLClSHPPg177O2PAgTrGcOYEmCaZtUSgWQJZIk5jG+io3HTlMmiaUbANdcVF1C6EYWfajrhHECvlCGd8L0RQFaS/TMfBDXn31FAf270OWZeKggxb1KCwu8Morr/P3776N3e02/b5HuZJRsNMoRIgYz/OwbYdOx+OHTz3D7MwsQRhhWAaFYg3f72XjgSSRd3IYWhbqXiyU+NM//zJHDy2yvr5OseAg5JjAC5gcm6bb3UU3JcbGJlE1CyFkkjigWCgxuzBFQpIt0hCsLGd6TttyOHX6TY4sLnLp8lVW1jZZmJtFU1WCIOTL334Uv99jupwj7u7y0A+f54nnX+NDRw9nekpDZ35qjPvvux1FlQhDfy8fVUFIEu3dDmvrm+RzDoVCZuqFgCgKkGRIo4gzr59mdGKCFIF4X5j20/qxmcq7p/D3A3fvrlTAww8/9g5K5nt9Nt27I90w9vSmKXgtrpw5gey3kFQDN4yRVYdOtMPH7/9PuLa0zuT0Ap4fUq3WWVq6ztjIKH2vh2XZ1AYGSNKErZ0GumJSq9dpNLbRNJMkFWysraGoGsVCESFnVNZczgQR49gmbq/Dc8efYGZ6P2srqwwM1djZ3qaUL3P12lWiKGJra5N77rkfJ59H1gzK5TKbmw0WFvZjWw6WbRGEfV584QWKhQq2lctCo+UUz/cgFUxOz1IfGMR2bLy+y8b6OsVSGcu0GBoczrquSUKr1aRQz3H8h8f5zb/7m/R7HSrVGq3WDpIsUa8PZC7RiQRyxJVrbzI6PoNp56hU87zy3FUsM8cDH1vEdyMsQ8PWBSkxhqGTJi7yXhiwhIwQMikJQRCgKgq6bhKFESffWGbx8ByqluP1N95kY7vD7EQNIcjkFkZGLTZMmzgMsrE7ipAliVTTuXxtlTNnL3H67FvMTwxm4AEVP0j55sMvcHhxEl1XQUREsY+kiCyeRVNJCCjWBkmFipA1SGKWl65hGgq6JmFIOUJ5l52dkMHyflos0em45EoW9ZEyG2ubREHC8OgQtu2w1WgioZEmgvpIhevLNxgeHaFUqqGbeSxLRZddus1lNlauMLlvmtHRSSLXZ3trnWJhkImFYxi2iSQpey7H710/e8bjB8uM3q9+3GD5+SLDfoa7ecel3tWR/xkMWH4J7n4B9XZwJ0kC6RcItN794L4d+f+8JUnvJTh97/Pe7/pf+df/O//NsYXss2QZf+3GFpcvXGZkeAjLtlFMkzBOiKKEbrtPt9PF932eeeFVPnzXLXQ6u5QKeXRN54fPnuSuW49g2TpJmpDLF1lZaXDfHUfp9npIAiqVAl6vx+7uLuOjw7huQLmk47o+6+tbTI+O8dxLJ6lX8vT7Pj86fZY7bjlIr7v7E5MC284hCZWBwWEkVWAaFpKskqZyRi0VKRvrDfq9PqZu8uVHvsfYQI2t7R1+9OpJhqtlTNOk77q4rpd1EPM5In8XaW/nJRV71LJEIkoSDizMMjBQZ2t9h1K1SBSmmFZmbNJqbfPvP/cQUyODdPs9RkcH0AwNXTPYWNvJqJGGhKpDKkmEYUC/28MwNJrb29QGqoRRQKfVRhYJY8ND9FyXYjmPSCNMS2OgWqBQLhAlEUKSMQyNxtYuiqqgKILLl65QLhRZ29xhaKBK6AcUCgU21hu8fvYa7W6b+ZlJojCk1+tiWRbt3TZOzibwfer1CpASIQijGCEk7FwOSYLObhuiCENX2d5ucujQPoSUderWNzbIlyy6bQ9NNfmLr32HWw7tQ7PNn3QQFVnCsWyEodFtd5CFgmMZRJGPZqlIUkqrtUupWMLJOaDK5PI5ZFVBkgVxHCOrGq3dLo6poykCO18kTWJ+/5nTfHzWYWOjhWlLJLFAUU1kWaPda3Pw4AK2pbK9s0WxlEdRVa5vtDh++hK/faxEoZjn+0++wPTYOKsraxQLJpVqHtXQuH5jk3q9QKFS/klw/fUbK/z6r34EXdfwel3qw4N0Ol0uXb7ByMgwtxw9hEhjnn3uBG+8dYGbj+wnZxuMDdeJYthotOh7LkcOzZCzLQTg5HMUCw75QhFVF0RBjCqprK1vMjU9xrVLlzl7fo2PPnA/ui6xvbOLpuo4OYdO20VSZKy8jaarxEHI5sY2uVyO1bVVNBVURQYpW0SrhsYfP3KZv/+PPoVh2NQH6vzRF7/EkVKJJCajb6pyNv2mMDczw+baOv1Oj06/R7FUwDB1PDeg0dhC06093aVCQojtmICgUMhnuXl+gKxmZkG6qQEpvu+h6Zl5gEw25uYLOTRDJd0DmLqqocoSSmaCSBQG6IZGt9tGVRWeePJZvvvUczxw3z1IUoqmm3Q6u3ieR6lYIpd3GKxVKVfKlMsVLMuiWqvz0ovHeerF5/nVj94Nok++WKDdbiKLlDQNUWSBLKUcWdzPwuw0cRRTKub5/pMneOm10wzVqhQrDn2vh6paJEmEqinMLcxiFGzioE+n2+fc+UuMTYyhaBJh3+PmI4cIY3jyqeeZm50FEbO+vookUrrtHQxNYnFhliCCTrvHK2+8zvhQHllWUDUFwzDx/ADLKiBQUBSFjZV1uu02mq5h6CZjo2MgRNbJC1K8XptPf+tp/vn//E85d+oUc6NjVKoVhCSQJYmV5RvIkqBcLrO100TXTaqlMsVyjT/8489w34duZ3NzmzfOvk7O/n/Ye/NgS677vu9zzum9++7b25fZ9xlsBAEIFCFKFFlWlFiWFVUcuVJSlWRX/nDyT/7KH07kSE5ciR1ZlpRIsrWQFE2CC7iDBMFlgME6mBkMZjAzmH3evtz37tq39/zRbwgQBMHFYmxX8Vd161V13z797u3ue85v+3xtXMskS1OCED79hS+TRQm/8Nj7EUpQKDp5xUMwwDQNAj/BMCVR3ANMBv2Yxz/xRUoFG6lJpJ4TCk3T5Oob1/joZ77IAyeO8n/+0Z/yW//Nf82ly1cQQmP/nj05HGuzjWWbzE9N0Go1+MilK/zSkd20qmU+/NhD3L65wEef+Cr1gsfsngky0lyzTs97etJ0p4TWtpkYH+Nbz7zI6bMXOX7sEBkpuq5y2mEY0N/apDk5SYoCkb2jQ/ZW+w4p823zsfyuPJ3YcRXfinvPx83EW/rt7mpjveOZcvZ6miVkScCNN87x2gtfxEz6FG2bxGywth3wxs1FAtPB05oUK03uLK1QqlSolMv4wyG6prHZ3qRULCGURNMVtVoTIRXD4QjXKxJFMVEUYugWhWIRTdO4cfMGxVKZ4SAgjSVba1usr2xy3/EHkLqGbTmYlsbmZhvHLlAsFAjjiCDwWVlZ4dVXX+HwkeOcev5ZpqdnsV2XTqfHhQvnqNXK7Nm9nyzTMKSNbmNYd+4AACAASURBVBisbdzKe1sTgW67KE0yGo0Ig5CZqfz4tbU1HNtmOBxy+colXj5zmrNXLvA//MN/gpR5X/6zz36DffsOUCqVWVq8QxwHuG7CVmeFSrlG4GuceeV1ao0iG2vXeeSRe9BZwzEL3Lz2KvVaGSHzMnCivI8zDAOUKclEAplCaZIkTQlGIwzD4PiJPWTZBlL0mZsfZ+/cHFImSCTpzoIsp7QKZKpQIiITBkEgyOIhBbfO1Uuv896HHsMzUpTSkaaG0CRHju7D0sNc7gUNfyC4dPEGU+NTpPEIsogskwwDydJalyAUoNk4liIYrJMR45hF3DKgtllvJ5S8EkIqCqUKNy+tMje+l3PnX8QyTWrVJs1anV27d7G0vEmh2KBaHaO7vMHthfNcvvgiVbtDGm4wPlah3BrHHwZcPH8ZoVscue9RvOpYDl4iD1K89al6K0Tlh7e7AKR3en1/e3Mt/IPOle38T29m5L47O7eThXs3nTve3Ped93+fM//UufsJ2F3nTso3v/L/WFm0H8XeTVDxe7d97y31u//L7/M79+2Bt9Q7Z2TcunQVU9coVytstjvoloNMY4Khz+OffYqya/Lkt5/lfQ/eny80Nzcpuh7b3SFnL9yg7NoMhl22Oh2efvYVLl9fQFeKhx+6l3K1CGmCJMXQNF5+5TWOHDnI2kabsdYklWqdP/nYZ/nN//aXCfwR+/fuZmNjB8usEuI4pVwqg5DYrsMoCAiDhEKhnJP+NOh1O8RJSKVcQtMUJAmPvvc+NF3R6w1pNVs0JyZwbAPTNPmLT3+JuckJLl56g4png2ZRrDWRykBJjSiM0C0T03bobvf5wz//DHunG2ysbnLquVd45ex57r/nAHvmpikUHEpFD9t2IZO0NzoILaRUc6mW6nhuiYXrt2jUa1RrZTQj72VCKgzbIiOjWCkTRz5jkw36gwFxlOwQzoZ0ez6GbmFZLlLoZFGIbemMRiMWV9bYs/cArfECr5w7y5FDe9na3CKNoNUsM96sUm8U2VhfIwwCLNPgjavXGWvUc2S9qTH0fRIkmVC01zewDZvRMORf/ttPcOn6Ivcev4dCpcidO3dyqEGvQ7NRZnVtm0Khhi4NCpaO40n8bkCx4KF0Dc3SidIYpRsYhoVEosm81BdMNC3H4QspiKIQoQRRMEJJiMIA3bQBSbFYQoqEYb/H9uYif3BugX/0gQdYWd/m6VMv8HM//zCWWeSlF1/l299+nl/55fdz9doNGvUKlqVx5Y2r/MnXLvHr759DjVYZb1bp9wbcc/Qof/nxJ9hubzMajCiUCpRKVfbu2QUyQWoG7fY2uiZpTo2RyAShBEk4YmFxSLXaYt/uWb769LNMTU2g64papcArZy5x37ED9Hp9ep0uG1t9jh07zMGDu/jil77M/N59lGoV3KLL8vIyQ79Po9VAVwYLt5fZ3O7QaFZQQnHkyB6sssvLL19hcnwPYeZTLnlIIRn2tkk1j4JXRqQp+RPtUyrYDPodbNtGaSZpmoHUCYI+h+5/jEwkJETs3dUiWd3m9tUlTj33CvNz0yAl5VIR4oTNtU2i0YiBH1Gp1cgyiVQGhWKFMBximAbdfo8kySdt13XpdXqsra7heR5BGFCplglHAVmWIpXCK9URQkMhidKYRKUYytgBligG/QGQEUUjHMvFMm3WVtdptqr4I5+iW2R2bIpqvYJXshmNojyzXSkx8kcEYUitUSJOE7a321i2Q5LEzMxOMDM2xdVrt3A8m2KxQHtzE9MwSaOEKA6xPXfHSZIYps3Wdo+psRb3HD1AqZSXkMsMHK9EGAYImYESJFmKa2lUKw0mJ6dIkgjTksRRTAzouslzz7zMrolJfL9DvVZkNOhScBTry3f4o3/3N0hhcPyeE0yPN2nVLAajEbrMdsA2gnDQw/d9wjDiC09/g+PHjlAsWCDuBkEU3R1NsnLF4kvnLvDzjz3Mn33paxxwLdyCS5KEhOGQasml1+sAGZZto6TJM8+9gGNoPHzfcUxTImTM/j2HcGwHxzLY3NzEq1RYurXC9NQUZ86cp1z2aI01ENIkTEKiOKNUrpHKkKLXQDdNNAO++cyLjFfHmTs0jcjyhVgchtSqZe49fgjHszlx+ABBOOIvHv8UtxdW+fAvPoYfDNB1wSc+/wRLC5s88tB7eXltg/fUy0zNNtB0yWgU0B/2uefYfhzPRkqFEgZK5WL3mpZTL4WQaJrO3MwUhw/vIs1ymY9clkUj0008S8d0C6RI5Nt7gt5pLp7fw/z87PeWmP2gOfwtzt1zz7zAkT3H3vXYLMuQQpKMOty+fJaN66ep2C5hmmG1dhPhMTt7kObYLE+9+CzvPfIQE5NjNOt1Bv0+N27cQDMsZnfvpVZu0OsNsF2H1fVNuv0hmg6aZqCUDkJQrpVI4xjPc3FcB89z0AyNm1dvcvbsWWrNcVY316mPt7BMA103uXzlAvv3HWRrq8fq+gqe52HbNjPT08zNzQMZ460xbNtg2OvhlYpMT02ztrDO0PeptSqYpiLJIkqlClffuM6eXXtpb2yhaznxdXl1hUxpiCwiI6VULu3Qr22efekFxqbHKBtlVpaX0A3F/v1HeObkSTrbPdrtdfr9HuMTTYJBzJnTz1MsChxngFdwKBUKhKMO0xNlZBJSr1cQIqfykmRIpTGKAlIpkZrH1vYI1zIIowDTtCDLybGjXhvHqCFRyAxsQ98hYb5Jfox2JGWSAFIJvcjh9LkbNCpFbCtlz545So5A6AZC10nIUEqgk2AqA5FBnCRITefatUtMzs1iKAlxDFlGFA+oFGs0mlMEsaLWGCMYjfBHPmkcYymJrSk+8dXHKbOIbeoUazMUi5KPfeyP+PAv/10mJif43Oc+wbFj86xv3EalAfuPTkOywdrNk6ThIlVngEsHw7bJdJf+Zp9zL5zDK9WYO3KUyvhuMhTZTnAjfVvp8Y/m1N21d38m/zbsblb/3Uql7zptP9K477Dtp87dT8C+49yJu/Wx/xl4dvzwzp2S35vV+73f/d/5nx7Yu0MnfNP1S7OMYXuLeq2CUArHK5BJhRIZ7Y0tlpbX6A37nDi4m1ZrHE0TrG9s0qjVqVSrWJpGrVJEqIx6rcLXnn2VQ7tmcG2HcsXDMHQgxdAVve0uQki2Oz1m5qb5f/7qMzi6wdxkk3K9hIhTbt1Z5cEHTjA+VseyJJVqDSEkg/6QOEmwHJvQjxgMfAoljygKUJrIfwA1jc52F9fOEc2dThev4PE3X/wGB/fsQpKwsdHm4fvuIc0yTr50jnsO7cZ0CghNI0kg8H38wRCn4DIaRVx94yZHd89iOzolr8iXv/k8SRrx0P2HKZTKFAoew/6QYrHIyvIqlXKFre4qZAmm5hGMEnrtNleuXsfzHHqDAdeu3WZmdopUCJTSCINc160/HBJFOdafFLrbW4yNT2I5DqNRRBRGRKMBtmPiFgtUylUGw4hCUcM2dIrFYk6IM2x27ZnLI9lZQrVeRirBsDdkZnqKTqeDbug5FlwpDMcjjhPSJCbwR1imxdH9e2lv99m/by/IFNu1sS0T09TY2tzEtFzOnblMqVDEtjT6vTalQoV+r4/lmAiliLMEkHS2uiRhjJBpLnJt5uV9aZYwGvnYtoVUCk1Jwihk2Oliuh5hGCOFIotDnr2xwLdWb/Eb7z/I1iZ84+SL/M7v/L0885NqjLXG2FhbY3q8RqlaxTAU3zp7lWevdfmf/8FxuoMBnmPiWBZRGGHoFhMTFR5+8AT1aonbi2s0GnXIMrqdbTTTQmTQ2drGsA2krkjSmKA/5LNfOMOhA7v44pef5tbSGg8+cJTu9hYCwdz0GFJKCp5Lv9vl8S+/gFIwPl7j4L4psLyd2EpKq1nPCYClErrUaTbqvPjKBaanWogko9wso1s6jWqTV8+9QWPMpd/dRmQS19LpjCRKChzTII5G9HobSKmwLItub4jtFAnDGLRcY7E0e5Q0ixgMupiGzh9/6il+7ZGHKDgFKrUyYRKhhGJlcYXXL15iamKCiblZDN1AKkmaQBTGZIQYhoGma0ipKBQKrK2uoWuKcqmMlBLLyqEBmp4HEIrFAsMgIQwiDE1HNzVGYYBIsh26oWCz3SZJUzRNoUROUfVcJ9evExnFQpVioYRu5s4qQjEY9NGUwrYdwlGAZev4/mhHmF1hWSZJknLl9VucPHWW44f3Yzs5nCQcBgwGfZSShDvZcSEk7XaHzc02lWIR2zIQIsOxbXrdLsg869wfDJBaTt2UxERRRr83xLQMgignvypNg1RiC51hb0C9VcR1DDQJaTyiUa9SL4+z78AhTMvEcwyWbl9iaXkRz7EYBiGGaeWLRN1Cagb33nMfhmPT2VzDth100yRKYjRdIpTG1tYixytFnnz9Ch/40PsYj1MQeebUNHPan7VTci+RbG/3WFldZ352irGxJqap2NxYA2GiaRpR5DMKAtxylamxMf78o49z7MA+bi3eYWZmMs+6WDvak6kgIcTfDjEdE8M2KNkujuFRHc+R/NubbWzbwnEcTNvOdQTJcGyT+48eZqo1RmusiZQZ5UqRuZlJxhtT2JbFi0tLHDIV0si1slzHYbxWYXy8yV996nPsm51FCYOXT5+lUi6xtbWFYRi5LmMGcRwTp7kWqkAhhCCJMxKl4ZqSTOlkiJ2eu++/kLy4vMJ7/+6v3J2Uv3uO/kFz+Fucu7qYQdPlW/a9k+XOqcxCeu1VBus3yOIMLJfGzAGSRMNzCzz3wimW2yvcd+hekjSCNMWxbWzH5crVy4xNTEEMC4sLTE1PUq5UsQyL8xdeYWpylosXLnD+tTO0tzaQmaBQ8Oh2O+imznZ3m1vX3kBISWt8nG+f+jqtqQkWb9xiY32DS1fOcOvWbcIg4cyZ59ne2uS1Cy9Tb0yg6xq9XpcoDBgOBwyHA0r1Kjeu36Rgl6lWSyys3mFzY42lpQVKhQqFQikPGDkeSpP0B33md+/Gdl021la4c+c2tVqNLEs5e/Y0smqRrQjm52dptppUKiV0zcDQLWZnd7G6sohhmFy8cJaF24tMTU5z+Ng887umGAz7NMu7WVteYna+giEVURSCIA/CAnEWIjVJnKQMBikf+chXObh/DM/zgAyp8oy07oJuOMRphLIFyIgsEUgpdqQsJJquAQJDd1CGpD2UnHruLAVPUKm7WLbByB8gND3XKcwSpFCoZCcYISVSk6QyZnbXPFEWIdMUXWqkWcrS+gLrK1ukwmJiapZ+v0cS+6wtr2K7CUQ6nlNDS0acuKdKdxDSjwyee+Gr/OqvfYheT1H0XMbHaigV0d5ex1Qx7e4SL73wFK1ihG1rGCKiVXXoj+DOyhZbq5u89z2PMDW/h8JYixgT9ZZnKBPkGcu79/p/ws6dEN/bI/u2d/Gjlnf+1Ln7/8nSNPmn+QXM7T9+1u7dISt3yzHfyd5JG+Q7o2Z3SzQz9m/ewrEssp39SgiyJGE08POeJa/EYDACIdA1iKMMx7XYvWuC3dMzhEHKsNun6BUouB6Wa5OJjDgJsAyN9Y1tSo7H4b3TfOnkC0yONZmbGWNlaYEwCul1t7EMnVq9CkLS63XZv2uWyYkxdu+eIQ5G6LpFreayurYMaUrBqzIcBYRRjG1Z9Ht9olGAkimLS7cwdcHywirdrS6JH+WfwzboDwe0t/v8wUc+zS/93KNM1ys06xUyJai16nnphqnzvkceICFf6GcJbK5tUGlU8IoeSIHSJePjDcYnmrg1F6WZXL++yG/86i9hWAZxxo4ANCRC8Nef/RKH5qfQhUXoZ4TxAK+oE0SCXrdHuVCgXGmgqRSl5VHHNEkxTJ3RwGdjrYNjeShNI4pDCqUaSSwYdAdsbKxRrloEUUASCzRl7DQI+0hp0+sNESqvIYiimEtXF5icHsslJfwMiYUyIvzAx3Jy2YiUPDsQDEJeOHUGTdOQsc6ffezzvOe+Q8xNNuhvbcAopFgsMOgP0E0TmSmi0YjZ6WlOv/IaoyBgfu8cvt8HXeIUCsRhgpYqRv0Bjm3gFvJau+EwpFiy8YcBYKKbOoicOJYkCYamEyURtmni93OIwGdev8kvfOgw9EImJmZZWLzNz/3sfTz/3Ms0qh4ba2vEoc8D77mfN67dYWa+wZmrK/zskSYz3gjHkhhmkSSJsR0Py/R48qsv8N6HjpAJePW1y7SqVc6fu8zExATXr97m/NlLfOaJr7O91WVrc5uZ6RaatNE0ncMHmmgyRtMMen2f48f2USx4DDs9NtfbnHn1ErNzEwRBgmFJSqUis7vmSFUHSxURmU/QH2FKiKNlHKdKikYsRkyMFdGFwfLKMhNTE4BExPDiC+fYu2cva8uXKRUVo0hiSYN+fw2hgWGViRKBpkEaR1Q8g+XVdSrNGlIZ1EoW/+yPPsvPvu9ncK0Kmipy+vQpDrqScrmM6SkMkYKQGI7HwtIytxYWmJ+b4OqVK9RrVfz+kD/+t3/JVGsc13PJ0gQpNUajiHKxSJykOVhipxSl1+9RKJYoeAWSFEb+FroOKTkQJ0fTa2x3eli2zannX+HK9Tvs3b0byzHY6rWJ0wTHKTIYjAiikGLVQ0hBGCakowDbtsiEYrg9oLPVJQhiKtUSKSlZmhGFEWkaMVYvc8+xvdieQxbHuDvAmCe++jVmJ2eoVMp4rrtDrINarcKda9d5/uw59u3fi7R0siyGNEPXJBDj97fJYh8lLJShsD2XKAjZXGwTx+DaDv1ul90H56g0K8SJIPQznIJHICSJcqhVqriWyTef/gZR4DM2vothP0APt/EcG8NxCROQukUwirELuci5ZbgIkREEPqZpkkSSMO1StqfR9CF/9e2T/MZ/+VuI9byvTdd1wlHE0A/JBAils7mxQaXoMDNR59biKpVangEtl8sUS17+OTNFpVJj4dZ1qrUS9x07wPTsBJahsbSwjG1Ae7NLoVhmZXmZWqmGVTFII8WdG7cYGyvheR6f/NTnOXZoP45jEI1GZHFKphTdbpdyuYXSFZ/+yhNcvrTAex44ThCPMF2PTmfA1StXcV2Ps+0NHp4qUfTK+IMhiBTbdojClKlmFSUFlmngOiaWrdNolghGUV4CJiVSF+jKIBgFGIaOVAIhMgwRI5SOzOSOCIJ6x9VYKvJ7+8/O3+Z979Bvd3cm/44qlxDkyco3a7TSnSLNp77yNGPFsR9YWCakIPOHXDv/dW6+8RKuN01xbJa+L1BWgZXFZcbHpvn66yf5zV/+bbxi3mObBgm3F2/jxwlHjz2ApiSZLqlWCoR+j0zm+oCepnjuxbPs3buH9cXLeN4sgpRRsITjZWRpzMlvPs9EY4yr1y4RBn3WF69T1AUvPPdtupurzM5McvPWdVZW1wm722x32tSrM2SRz7PffILduw9y+pUz7Jk/SpxlOF6BIAypj9VQmsK1XAquQ7FQpN8bIRB5cCgcEcYhzUaTKIq5fvUqaRAwPT3LxuYWYZDyzOsv8mt//5c4vv8ItUoLKQ1eOvs8SoY8+eRnuHphgXAUsbKyyMbyNX7mkYcRwmeqVcTSMjwDGi2DasPAMS3iINiRKsqrIZI0Qabs6AOC0nXKVUW9UUH4EZqUhDJCBQmZMMmyGF3XiEYJmrBI4yjviUtyrdc0znbWYCmZliCkTuB32Ts/jWnl5GGpciiNRGAohcwyoiRCaYowCknTFEu30BCILC/fTESGEFB0XRrlIrdv3SAajShWWoQYhJFNJsCwYvygS8GqsftQiUpZsbl8mv3zLr3Na6yvfJXFG18l6r/CaPs0nr5AwSiSjLqUnQJ2YRducZLJXfex0rG4cbvH8nKH6eMfojp7AKvUgsz6LsdOkJcrv9U1+/GcO/G2vz+evV277s3Sy7wkM/0O8+W7Sz8zIPteHgzwzpp33wGviHd+wn/q3P0ELEnyzN1/Ks7dD4Ks/HgPwl1Sj+B//ae/zwd3T94dLJ++dEWn3Wbl9gKNZgMpFYZpEwUBaZbmN2uasrK8yjPPn8GxbF5/4ybt9jalQoEsg3/+p3/NBx55gCRJmZkeJ0lSojTl9uIK060mWRrRaFSJ0wxNM/DKZRaWNnA9j2F3xLMvvsqRw3sZ9PvohoFmGXz8iSd54bUrPHjvMYSSrK4sMTXexB/2MXWJPxiSodHcoSgqpbPd6WFbNv3BCMtyePalcxRsm7/3d36eLEswHXNHfD3AcRwMwyBJciHNOITBwMdxbLySgz/yGfa6eXQsjZFSkEYxQRgQBhGH9s9j2Sbb3S1s3eLzX/o6Va9IZ7vL+x95D/3BgFu3l0hJqTcqJGmCpgn27ptHKAFZyuLtVVzLYdjr4/tDLFMjwURTJhcvXmV+dppoFLC22uaTn3uK9fU2Dz14L/1Bj0KhBFnGyvIa1UYupq7pJsVKYaf230Qpha47OI7N2soqpUIJpSRRnGAYOezFME2WFxeoV6tEQYRjGdSrHuVylQfuOYRbcPEHA5742re4cPU6u3dNc2dhmWq5nJO/shDfDzh4aB/lSoUkgaXFVVpjY/h+yOVLV7F0g8HIp1gq0u10CaOEQrFIHAY8+fRJZqfGQKSM/BFZGBAnSU6HUyYqjcmymP/t1Gv8Vw+PUSkXmJ6do91uUyp7O+CEkLk9h1hd3WJtfZuXXnyFy5sB//pjT/CbHzpOZ2ub9tY2UoJb8jAsiyyTtLe6bGx0uH1ngVajkUNLyhXCMGJ2dopur8fAD/j7v/KLHDtygBs3rzMx1QAkvj/AsUqceuEcM5MT1KslWo0Gn/n8V6hWS+zZt4v1jQ2++NTzPHRiN/O7WhRLHuaOLlG9MUa3u46SEqUJ0ixA0z003aK9uUa9UcEfhLS3thgfb7G2voHf9wmCkOX1DerGCBkFlBrjBIM2miaIozR/PpQk8EPiOCWKYmzHIk5CdGkShyGPHW3xu//6s3zg/e/DiNY4eN9B/uTLJ3l01zzJaJ2tXh+pBEoTzM1OMD0zjuO41Bp1oighGIXsmpmmNxgyOTNNnCWYtksYxihdYVo2URxj2TaDwQCvWKLf6yN1ydD3KVWmAMko6rC5toZIciHmgucRxTGNep17jx9h6A/QDQ0pJLrS6feGOK5BmsRommRrR8NPSjBNne2tLUxbR+lw6rnTVEpl/IGfZ2cy6HW30HRBKhMQIbqhkcQhiIzDB/ZSb1YZjUIMQycMQ0zLJI5iypUCM/OzuOUSUmhomoWhGcRxrnVnWS5RlJJJHaHpIBRpAr//B3/G7qkp/uQv/4YH7z+KbiuWlhf4v//fj5IFAe3tTaan51DSZtDvMhomkEn8QcQbV5dZWl+nNWaSiQil6cSxIEkylJJITcfQDcgSkjRBaAoQSCXQRUoWQ5zB1dVN7nv0Ma68dIqi6aKkwbA/wrQsbNfG7/exdC0vE7dt/EHE2XOvUSlVqNXqtNtrkOWalrdu3qLguaSJwt1ZmFfrRVzXIckkxXIp1z10DPxeG4iJowzLtgiSmK9940U++Nj7KBRdTEND1w22t7u021tYps6tq0uUSlWOHTrMAw8cIyPDtCziIKVQKOBaJt96/hRPvn6B3/iZByDN+z3jOEYpjZOnXuLytdvsnpnl0194mtmpKT73lW8yNzuG4+SSFNtbWxiGQjfzgMLS4iK2Y5FlKVfOv8DG+iqNsSYgdqQQvnciznam4Wfu7PTb/QB7t3n73CuvMlGZ+oFjKAJuv36apcvn8MoTRN4kd26vMjG9H6XrVJtj6JbDrTs3cUWRF148Sa1SxTQUhaJN0TWJ/CFPffEJhv0V9CxiYWGBbz53kt72Jo4BN27fobu9yZH9e/jCl75AydIZbPbIRopPfvTjBEHC3IxAo8exg/uRcY+D+/azf9cYk60iMxMl9s7PsL12lUcffZD9e6fYXrtFteyyb+8ultdXePXMS5w//yogeeZbX6JeruM4BTq9gLPnLlKvV9nuDmhNjPP6669z8tlvcf+972E48InCiM31LSQK3TIplKpoyqTT7bE22OT0cxeYmZyi2+vy/HPP8vqrZ+murXLk8B52TY9hmYs88OAEJ/Ydgizg6sWXmZ6eRKQxQrp87vEvY1uT3L5+iyTt5/eMVCAFUkhEdjewk6AImGhUyKRApDFJmpJIE0WKbpgIKUnTBCEEum6CFMRxREqGUhpxnGLZBlEUYesmWhIxPVanWC2QZjmkSgpJmkh03cjBQJpGJlLSOMlLtdOEJE4IoxBNe7NXWqqd+1bFbLTX8YMRQWxy+eoCR46coFydZNAPCeIU05UYbkirtZeJufvRa01KU/McOPCPqdYfomgfQmeOgnOEVAqK9Rkm549SmzzK66+eZXl5gwuv3+ED/8Wvc8+DH6A51sTQDJSmdrQYf/xn412OetvfH2OEu+WW75AMuWtvipG/w3myd3bufhgf4u3H/dS5+wnYXefurv0gQMmPau8EPnm3V5pm3wNZeesYP65lGSzcWeJD5ujNPjshkAJuX73OqN9HVxKvUALyzy6kZGtrm4JXIE0T/KHP/SeOsry8zvR4k/HxBncWljl0eC/9bpd+f8DevbsA6HX73Fla4/0P38/uXTMUii5uwcW2bUzLRuk6nuuhaYpWs0UUjGg0a6yvr6NrGkIJRJpxfWGZI3vnQcD4WI3FxSXK5SKj0QhdV1TrDZIk5d/81Sd45P7jJFlKtVLiDz/yabIkYXpinHq1QpLEVOs1kiTGsAyEAMMw8vEqZaIwQpM6hqkDWZ75IiNLEvzRCKXp3Lx2myxOKJZKRGGEW/CwbAtd19A1naLtYGoGxUoRy7JQUjE5OY6uaRiWjuPYhFGAVBqGYdLvDUjCmI3NLfbsnUfpOY3QdAokUcLq6jrnL1xibnaKT37hKX7uoQd4+bVL7Ns1iWUb6MpA0zRK5SLLi6s0m00221sIMqrNKtubW0RBxF9/6iuoNKFc8Gi3t6hUcq06z/N2IlAZpq52dPOKeAWX9Y11PvL4kxzciV+LkgAAIABJREFUM4cyFKE/YqJRY+/uOcrVMo1WI5cpSEEoQalcQekGUip83+cjn/oCRw/spVDyqJZLmLqGYVn4/hBERqlcASFYXlig3++zf/8eup0O5UoOSimWSiQphGGEY2j8H6ev8c9+82fza4NAN1z6gwHNZh3LMmmNjxFFsL3VYazV4CvPn6flRfz6LxymUavjDwNMU2d8vMHS0irtzQ6GZu7otjkUXZNKucJffvwr3FlYoVzJS0xd12VtfYuJ8RbXb97h9PmLPProfWi6SRJF9HshpWKBm7cWaDXrnDr1CieO70M3dRzPYW5+hvvvOcTindfIZEyWKZ4/dYVjRw5jGgZXrlygWMgzXZoBUphIZeK4JkoKuu0+juuglGLQH6GUxrnX3mB6chxPT/ISWmUQ+Bn12hj9oY9hCCQ+cSywDAPT1AnjhDAIcT2PJMkIhiGD3ibT++9j1Fvj/LUr9IYZ9zUbdNsrVOoz6JpBHMWITOK4xVxwVyr+5R/9KcN+n/vvv5dKrYaQeTRbCImm60iRkWYpppkvcFzXzTNzek4sdD2L9kafLIvJiNCVzqnnXmZ2bgqlNJI4plav0et1sWwTTZMopTEc+MRhynZnk1q9jhACy7TyaHiakMQxxUIBIfMsR71YRQrFX3zi07RqZSzLpFCw0SyDOMmFrKMwIsvy5vkgDBGIPFsexSRJgq7pdHs9bMdC6rnsilIagT8kGAUgIE5SdD3HlBu6SZxltNvbmLrFvulpHMfh2dNneODEIUplD9t2eO8990EaI0QOnoK8pFGTBl/4ytN8+MMfZHx8gmdeeoFrNy8zO9lCCYWu57AJpSlGo9yp8/0hpmkyGo0wTIM0TRj02iRZBprg3qlxeiWLP//iNzDXNlBoBEFItVb+TrRaZQlxkpCkGdOTszzx1a/xgZ99FJTCMiWO5xAFMaVymXa7TaM1xpUrb7DV3qTZahJGAe3NLuOTk/i+T5bEDPtdTMfE8yoYpsFoNCQKM049e4Yjhw6gaTrt9S2Gg5DWeIMwGPHxz3yZ44cOoikNzSTX9Msk/V6PQb+Ppmsc2L+H17Y6PDY7Qa/TZ31jE8PUGQwG7Nkzz+z4BKTgmDYra+tEUcyu+cm8J0pIXM9hNPJRSiPLUhzXRWmKJEnI/C5CaVTqTRCSTMgf2bl7t7n6rdvvvu9Tjz/xruLlWZYjKFJ/iwunT5KMQor1GUqTu+i2O+iGQ6NZx3Y8BsOAM1fPkvUS9u89mGcfRYhuSC6eP43nFBkNA9J0SLVU5fqNm6yub7K2dIOxaoELr72OqSsmmjXuLC6yf+8c1y+fxjR19h/cx9Fjh6hWBZMTY4g0oNmoYRoS18ohWYaR4Q/7zM/txXEMpIwouiWqtQp37lzGtG1OnHiAOAy5dfMKk80mnuOwvdXh8uU3cGwXQ9PIsgzPcUAKpqdm6fd6QMa1a9fY7mxz6+ZNrly7SLfTZTgccvIbz/Db/+S/46VnXqFZLXPlykXiMGBucoJiQZGJTVpNj1qpwaDTZ6EdcOn1szz6vg9S0AUGkOo6mioQjHzGx1uUqy5RGGKa+TybZilJEuXXDolMFaSKVEhMIYgzjU4vRmYpmci+S8MtifN5SzNyaY40BU3T83J0KUkiiMMQw5DEmYRMoqSGyNROqWdKHEdkQBQFmIZNksRoukG3s8Vg2MPxvPweTjOkzMujyQS12iRhmHLymefIMovWRInbN2/Tak7S7Q0xDYdeepl+38eym2A1cLxxwqzL6voNongDywnRrZiR0SLdaVG4fO5VCpUKvf6IRz/wIaxCjRSFFPnzku3Q4b/fi/+gNe1doMoPZ98XivL9jwDE25ywt737u5y7u21db57j7hr+nUAsb7efOnc/AXu7c/dW+9tw8n7Um/dvM1v39nH/8F/9Gx55i+yBVJI0jsjCEcFwiCJF6XZO2/MKCCkwLSP/QQlDet0enuPw+Je/ycxEjUazysRkg053m6PHDtNs1BACer0+QRjxqaeew9YUw16XNItzQeQ0xPdDdE1nZWmFaqnA5cs3OXh4FwuLd5iYqpORMhx0mGg22Dc7jaFJSiULlE6pWqbb7RHdXVDJjCRJkWlGpeZhGJIoDjlxcA9zM1O5ELc/xNxZ9AhNopk6pm4SxxGu6+bR3O0OjmMTJSEZKUmcYVtFsiim2xtSKBTpd4YEw5AkiqhUy+imhu+PMGyLJMmoVKu8duENFjfWmJwZgzSP0CVpShTnMIlOp0u50qDXH/GVr36bhx89gWFr2J5LhiQIIzSZ4Dg2QTBCCMXU7BRjVY8oidgzN8nERJOh3yONJP1+b0c/rkCn3afWqDL0B2ytbyCEoFKpcf+Jg2hKUq0WsW0d3+9RrNZzwleW4AdDCsUSSreI4xSpKSq1Mgd2zeVRRdfB0DVc26HSqu0segRKCF564Swz8/NomkYQjtBNHakkD504guVaSE0Qhj4jf4DtFtFNHc3IewaSNEUn5ciR/YTRCNuxUSoXbR30h0ghWF1Z5/O3b/Nbf+dhlK6wXY9ePyRNNNIkJ3b6o4BBb8SpZ06hK8nHnr/NP/7lQxgyZaxVR4iczBiFIULCGxcXGHQCNKVQMqNQ0Bj2B9RqJeamGxw5spvZuXFWVzZQmsbMzCT//jNP8+KZq/zGr34Qw7GJI8FoGOB5Ho5j4Lkaly5dQWQpExNjNCZbCE1CBkpJtExgew6jMGV5rUuajshiRb3mUihWME2XMIwQmUDTTLa2NkjTmJWlTUrlArbjsLi4SpplHD68h25/yNj0XraHGa4ZYdoaSaoIIxiMthGAZeT9axmSOM4QqUDqAiF1LMdlz8wYT51fYf+x+9kzW+fgrjFuv3KRRmucFINht4fn2vnvhJAopegP+hzat4fjJ04gNZX3kF5+nWa9SpYkGJpGIvLIMVLmryRFKEWns533kYQjCo6Orkkso0AUwa7dcyRJgmmadDod+v2cBKtk3oQfjEIKXon2ZjcvSy5VMDSdLJUsLS5za2GRSqGEZzuESYzUFLoULC+vsW9+lsmpJo5j5L2nEjTDJA3SHQhChpCKNM6Fq0cjn2KxyGAwIE1TKuUypAmDwYAoDCAJkFmE4Tp0ex0KxQLdXpd//8TnOHPmPA/cc4K15VVOnjyFlgleu3qJ//63/yGVWgVS8P0Ax7GYGK9TbRRJEoGmLNI0IknBcyyQMeVGieNHj3Bg/giD3jakAZpmoRl5RFwpnWKxTBiPMAwLsryPJ05ChNQxXRclHXRp8C8+9hHuvf8ePnjwAEIo2u1NSmUXpZtkUcCgu5VfN03D7/Y4sG83cRLTHw4wTNje7lAuVwmCAM9zMVyTcrlAqVIiihKKpQp6Ivnn/+qPKTkummHQbDVJDUG/G6AbGrohmJ6Y4tKVNzh0cJ449InigL/65Cd56P4HGAVD7j1+GNvUCaMhhmWTpnnvc6Fg4BUshgMfpQm6qwvsqtf5w3/3ONdvL/DIgyfQ9bzPutPp8pWTz6GQzEyPs3f3NG6liNKMfOGbZaRJiNIthMiDEhKFoRsooaOZDrbnkckd8mj2vfPv3U1XArj/gXt+6Pn6nfZ9+5vPfl/nLttZECRpyuL5b7LdXibIaniVWZxKTqRs1Rv4fofF5VXqtSaX7lzgQ4/8AhurS1TKHl/+4uPUa1XGxxssLt7h1Isvs7R8nV1zk1y8dJ5i0eEX3vcItULM/oOHUWkfRxswPtFkeW2Z4/fuozVmUquCa8UksUJLY0QS5CAslUCaf6dSplhOgaefepJyrYhnG+giQzMUjWadsqsTjNrIbEgctnn4waOUC5JguELJySi5GZXaHGdPv8DXv/4EzXqTaqWSyxLJXB9yeXGBPfN70ZSGoUnGmlUuts9z6dKrHKiOc+v2G+gYzI632DPr4boZvY0RxWKBNNZ45qlTjM1Msr21xOzcLJKINEtQWohTEtSbFuWSRNMcDCsPCMRJvBMESnYupEKzTKSmEEJDZiHdrs/jn/02u3aP43kOSZJgOzZJnEAmGI6iHafOIE4yojAFTScRGnFWxi44pDJFCh1T00nTlCSJQaRkIs2lVbKMQX+4IytjkSQxjuNi3u2dlSoPWuzca0JTaCLD0qG3tcjs7CRh38ctlZCmjWZ4pKnFEydf5NDuMoPeTUqVcdobPUIfXKvAyE9JUoPuIEMRsbG2wo0bN7l0+Tr3PPYhDh27D2W5ZDvUkbvO3Q+y/7DcyY/Wcyd2fMEfwR38wdvewbnL3rLthyFp3rWfOnc/AXs35+5uFu0HyQ68W3buR7W/jTHemv27e/z/9Xv/gv/xwYNI8WZ/YRSl6BncvnQdKRTlxhianWvTpVmuWwURpjJASpbWNqhVyxzdN8/y8irT4xM4joumYHF1g9ZYk3A0RNcEhkq5fGWBgR/w3kfew/rGJq1WFV138f0BtqPh2ILNrWXGxsfRdY1CwSUMMhy7RBQOWV7eoFwuEUQRlmujoyOylCQKqNcaDPsBpmYSBSG9Xo84ipmdnsZxXcqVKmEQYlqKZ55/jc9/43keec89eQmckERRtrNfw7RsDGUQDrtcfO065UIJy7GRekKn3SdJMs6/ehklJf2Bz0uXLzPRqmMZBuEowNF1eoMOg4HP7rlZmjWXgmcwHAZsrWzxzLMvceDQbpShqFYabHf6FIouE60SmBpuuUAYBQSjGCV0RJgQ+j7NWpnxVgWVJdy8eY2Dew7jmhZR2IdER6mYKM1wikU2N9oMOh1sy8CxbLxCGdspIJTO9tYqvX6XxlidOM3QbRtdE8TJgM7mGq6uE4zy0rZBfwvDyr+jURCzuLKCaSjamx3W1rco1xqYpslw6OMUHMr1Yi7kHAaYhoFEEgxGRP4QZUgylVMH41jiWi6BH5BlMTIekIy6eOUxtvtbCMPEFDpJFJIEISM/4bMX7/BnX/8a/+gffJgLly7TarXQDQ+p6Vw89zof/cTn+ZmHT3Dn1iKFQoHf+/iz3LOnyh4vxLVdZqanCELBmRdfZ9DtMzMzSS/oMzXVIoxTFhbWieOE7e0O+w7M8srZ19i7ew83b6ww1hpjvb3J9duXOXxohuOH9nH1yi00GVEpu0SxT6leZTgYcGdxicmZKUxHUhvzqNTGyXaymltrmyihuLOwycrygMmJWZ78+sv84i9+gNsL15icnaHbb2OZEr87YBTHOK6GVBmGoVEqV/CqTTRNx7UMbMdkFAyZaE7w8cef4srrNzi8/wB+FOF5FkVXQRznxMLmXvxgQBptEscCzbIIhj2KxSZCs5FC8emnznLi6CxJmnLr1i0ef/YsB60SSo0g9rFNE4QkFXn5omnqFMuFHIjj9zA0C8/JiXhKF6REyAzCkY8/6GHbCtAIRyPIUtI0wtQ0ukMfoTSkYRD4PqQpioQ0SXLqo9TwPJd+dwshNUSq8bkvfpnB5gb3PnAPUkrCKKbb7ZHGkidPPkOlVKRcL6GkwWgQ4RY9mq0q9UaZKBwhydAMDZIMlWXESYplugyHAyzXJEszdM0gCAK+8JWvE/oh0zMzDIcDRklCoVgmDEPK1RobWx1sy0OJDJEl6Epx76HjHDlyFNPUKZXL9P4/9t48yJbzPO/7fV9/vfdZZ86Zfblz5+47doAASZAyaFEiZTtW2VLZrrIdJ6lUKuUqJ5U/8kecOHE5ia2UbSmSQpnFSCJEUiTBDftC4GK/2HEvcPdl7j77nLVPr1/+6LkgAAIQ5FCVqhS/qVPnTE+fb3p6us/3Pu/7vM/T7rJr1x5sSzE+OUovLGwcTFMhlEDnglwbhOEGtpPTXltH5ymj48PYjonMHBxHEIarxL2cjY0NpIhQpgNaYdsB0SAmyU1sw0RmAqENhOljmkVVwRCyqER2u3zpt3+NHz/0BCOuyY75KbrdENNUZCLDCSr0WyuQ9ehFMbWyg2VKgtoQedQmjUFjY5gSiSaOE2zbJk1jXMfm+pUr1EdLHNi9C0tZ/Ol3foRONaPlCbQa4Hg2nbWELIyY2FLCK3uE4YBSpcKh/fu5tngZ0zKxbRM3sBEC0kwTxzFxFGLaEnSCtBRpnPHdkwuMdbrcedMu7vvcncSDEJlldDY2GJkYY+vMJG8fP8s9n7kVDWQDWVQoVSFo4ThlUl3Q3IpFXJDlGtNzWL+6TLlRJhcgUB8dEG4Gim9tDLjl1kMfuV5/lFj7R0V6l968zPT07Ae2ySxFS4NcpygTdO8q77z+EqlR4eA9v87w+BjVwMe2fQxlsry6wczUBEKm9PsXkK0ES2pefO0wuXQ5evQUC2evc+HUcb7y1Tu5a/de6lWX5mSF6WaFkpWCFHi2ZrgeYDkWJU8xXHEouw6mYaCEAp1z9sRxhoaa+GUfISkq8FpvvgbI2LZ1C5YRoHE58tZZXnrjNFO7ZwmUQlgZQ/VplN1ksqFxfQ/btqi5AvKEBx59hpWVi/y9v/O3OPPWT6n5Nn96/9O8c/Zprly9yjtvXKGVH+P6xVUuX7nM737/D7n15r2cPHKWZrXELTeP0bl2hgvH38ItKyxlUK0o+r0W1ZrPrv1zlB3Ys3Mrivg9KxekROYKxyyjlEscxqyvLLG4conq8Di9KMWSAscpEkJSQxQOWLm2iOP6OK7JTQfm8B0bkecIMqJBn1znWJaL6UmUyohocn01xzAt/FKDLKvyJ9/4Y1xPEXhF/1/YH4DOEHlB44SiCqfRBZPD3EzwKBOtBNI0MApeAVmmyXSRwDI0hDovNANGhmilPXptsK2AbiekVCoT1Eq8cuIof+e3/2tWly/RW36JbROS1B5mrbPCxMRuSo7N4vXzXLt0HaM0yuyOg3z2vi9TDgqm1ya0KfQwhfhAv+nHPT79+Djbg7/gXe+vmH3iOwpT9ELr+Wfbbjx/WHD+vSP4iAnfv+3TgzvxS3D3VzE+Cdz97J/z0VzcG+MXUVn7RY4PLzTHjr7Lr5bgvZtQAFrTDwd0V1dJo5jacB3TdYiTFNOyMI3CY6zd3kAIk3AwYHJqjKjXZ2HhEmMjI2y0Cs+7K9eusXXrLDrPC08toen3Q2bHJzGkYMfOeYaGKrx05HVGmw0qlTKDMKTT6ZJlOf1eiuNaaK1ZWV7nzNkFJieG+c6DT3Hbof202x0aI3XefOVtLl2+zOzsFButLp7nEw4iTMvi4uWrTI6PYrs2Z8+e5+rl69RrFbrdLtu2bUXotODWy8LzSEqFFhqtc7Jck+dgGAYnzy4wMTFOkkQoZeC6Pu++e5oX3nqHQ3t2YFsmB/ftotFsAOA4NoZSWLaFzqDXDUnzmF6ng+0GeLbD6uoaYxMjKNOEPMd2XEDT73axXRdDSCxTkSU5ju3w7/7Dn3DXrYfodDo4nku310Upxdf+5EFuu2kfT774Atvm5jCkwPZdLNvCd12GalUGUUy/3+fPf/IY+3Zuo91ukSXwyNMvs2f7NvygzNL1Fcq1gCxJsByLLNP4QQlDSaI4QhmKLC2a3RvNYcJ+l0ZziCzNeOHI64yNDFEuB8TxgCgM8VwPQwqWllbxPQ+9STFUlkUSZ1iWiWNJEDHKlEhp8j/9ztfYO78daVl4gYNpOFy9eBHDyLlw/jL/7M8f5r/5L77CTTtmmd4yw+joCKZlsbG+hue5NIaHqZVdymWfIAj4w0ffYaexzEjNJ04SpqfHeeTxZ9m+bQvN4Sp//sDTnDh9jjvvOkCeaFZWW4yPNxluVJnbOsXy6gqTE+N0un1mZyf593/4Z/yN3/gC7x4/RZZpTp44z1e/ci/NZp1KNWBt05fPkBanz1xktDlGKShh2x6msnj55deZGB/luw88wUijxptvnsT1bMJ+yB237eWhRw5zdWmJ3bu2oJTE3OyRCCo1Ou0Onu8iKGTbBRqhNd/+3iMEgUdjpMkLz73KV3/9XqbGyti2AiKSJNlMyAiEsihVGqyvLhJHHer1UcrVKnHUx/XLaC3I84w7t5f419/4KbfdshfLNLn3c5/hG4/+lLu2TGKZJleuXqNUqaCFJM9ihJT0ej2kKNQhhQbHdRiEA5QpaG1sIISBFArHdcjSBKSFNAxM2yyommIzCNEaQylMJdFZ8RlQVM4GDPohUirIUxzHI0pSds5vpVYtEVT9wn8yznn6uRfYsX0Ltx46QKVaxlQSKRVJlJCkMUkckyQFndRzPMIoROeCNM3xSyWuXblGpVwiSSJM08RUJkkaMzs9w8hIY5NOOEDmMeZmVjoehLiWQioTz7NJs5QkTlHSQFk2mc6wTBNlGLx99DjtXoexsSamKQvgaiiSeECW5mysbxCUfHq9Hv3OgOMnT1MuVTCUwf/6O18jGrTZunWKsuPxxtFXGRkOME2LJM3ItEG32yOo1snTjBMnT9EcH0MbAkEGOaytrqNMxcxYk0tJjyffOMOXdm1Hpxmpljzy+BPs3bOTNM6Iwg5SaKrVOqsrK2itybWBMguQY6hC0XLx2jXKtQpplhEnKZZd0HcNw0BoSeCXuGn/HnbsnMfzHEzbIEk0/+rf/BG337Qby7UxTZuN9Ra+7+E6DqbpIBDkmcBy3KK66fsMwoiN9Q3Ic1zPp93qUilXOb+wQCWN2b1vB5kuepDarS4j46NobZBnOUtLq2zfPofWGS+8+CZj48OkaYLjOmgNSZahDOM9YTGd50gp2FhaoTpS36Rkyo8Fd4N4wF2//fc+fh3+6MX55zYNrkJQ8X5uNy0kSmhOHHuNcGOR61cvMTt/gItXlgt1VCW5fm2Rc+fPc+3KJWZmZli8fp1vP/xdFo6fZnRikmPH38IQIfPzWzm4bwc7d20l8AWOGdELOzz8yLN01zaYnN6CECn5JpWuuE4NLGWhdY4yNkVnpKDRGCfPUwbxAEGxnhb+sgJzc43TQmAbFtLIuLZ0ljzO2DIzBkmKsg1OnjjFKy++wvb5OZZXO5i2je8KDGXiVYcZaZQYG7aZGK2hjITacIVGpY5vWUxMVhgZGiFwbGZmJrncWuSFF15i39R+hsom2+bHqFeazG/dhV+yCj9RqamW6+R5UpjdmzZJlrxHw5ZCMojjTR+9FNOUSAGWY1Gtj3Dq1DleevYV9uyaK6qpoqiqKtPE9wrVY8MQmxW+Gy02AqkclO0iDEUmHNJUYgUNTpw5xeTYBErFKNNgdGyEidEaWsfkoqBIC5FjmQFaZCijqOQJCl/QOIowTXsTjkiiJAIkwiiUX5XaTEqInCQXoCUkinOXNrhyZZFSeZj1dpsoiWmONrm4ssCXv3Qfl86+Ti1IiPoDeqlFs1lnZbFHt73GIO5w4NBtuJVhRienkdL8QOyr33/x/kLHp6iifdQen/owNgs2Hwnufv5XftppPy2404D6Jbj7xY//X4K79z0A/uD3v8bdUw1ugLuiqqexJORpRj+MCarVwjtGCJQ0SLME0zDotHvk0kYKiWeZLF67yomz5zhx/hrHTl/i5IVL3HJwN45lEPVDOp0etu3geD5hf8Bbx08z3qzjmIqy7+N6NpZl097o0myO4Ttl4iTFts1C2ldInn7xdcZHhti3YztxFNMcqWOaBraUTE2M43g+nV6fXGv++//jj/nMTfuYnBqj1qwRxTFRN2R6aoqV5RVKgUucJ8zMThDHMUpZvPLKUaqVMoaUDAYh7VaXLM3xGzXmt82BNLAth167R7fd4/Vjx/mHv/Ub1OsV2t0uJcdh6foytmNjOhaDLKa9tIoUkod/+hxe4DA1N4tpFMIKvuchpCwcPCkU6nKtUVpBZhL1IhzbJI1Drl+9yuzUGJVamX4UkpMRZwlIk2eeP87a6gZfvPcu2u2YSjkgz1LyPCGKIgZhhGG72K7LSLVMniY89PhTNCujfO7uO1lbXS0C6LJPp9MnywV5LvHLFUSuGQwiPN8liRNWVtap1KpcuLBAo1mj3Wrx8ptv0e52ufnALtIkQmcZpmkQhj0GYUyj2QStWVpepjxkozMHWzqQhCxfPcFGq4MyDaSyueuWW3CDMspRGEIhE4mlIi4sHOfrVwZ8/X/+z9BoHNvixLsXqJTKnD93jsuXLzE+3sQ2i96Fbz72Mm8utPhPvzDF9GSD+flptsxNEcUDDhzcgTIyHn/yBX7zb97Hbbfs4+yZBRqNJk8ffoWfvnCEmw7OkeURpaCCZVtYlqAXtti2tRA/2b51D68cOcEdt+9hdX0RoWx6/R6lIMDIDZaWlxiqV8lSsEyH9kYXsgFHXjtK2XNZWumwf/8e0jjEMCRhPGB4uMQ7p05iCoPt2+Zw/aJ/UOcpyq1hmW7hT6sl169cR8cr9DstGsMjzMzN88xzrzE9Vsc0Yxw7QZgaT2WYIifNcuIUgvoYtmHQ73UQWpNlhQ1BfbioVIVhm3a3TbVe4YXjbe77a1/A8wIMpfn2Az/hC/NbyTXU6nWyLMUQkOsEQ0ps00HngniQYJDQ73Zpb7RwbQulJDpXZIkGLRHCIBNF0CGlQaqh34/xbRdlmGgh6XZb+IFHmkYsLa9gKosfPfY0Fy5cYcvUBGE4oFIro2yFU/LI0j6djZjvPvAYSM3BQ3OYlodtWSRpSp5nuG5xb3bafVaW1ykHVa5eXaZaqxDHGY7t0NpoE5Q8LLvowVXKJEkSkFAql9G5Ruc5tm0hdEbY72MIgWkYxWvHLEzMlWJtdXVzLpM8j0mzGNsymZqcYG7rFnSeIgyBY7tkqcZ2TOJBTKlUJhlkuG6JyxevMjM9g2O7lCtVRmqlovenWkMqgecE6HgFx1GUgyKws10HaXkkScrk7BS5zBFGShxG5JmmVCmj0RgSQtfi6LvnuXtyohCJcMr0W2uMjDXQmaQUBLS7HTqr6/iBT1AqYSuHS5cuEpRqLC2vs7K6WHh5liqYto0hDYSUWLbD6uIG9aEhwrCHaUuk0kRJB60FYSeltdJh265xatUJDFnYtYRhiDTAkIqFhUssLi4yOjqKUiZZVki/26aP45RAmzhe8beqcI2tU02kZaJsC8v2sJ2AOMoJ+wP+72+YZAbRAAAgAElEQVQ/xK9+8R6kzEmyAT956kXuuvUA0pAgcnIKAJ5vStsJCoXBKOxSCQKk66CRyLzo3/y5CE3A779xnjvvuesT1+Gf3/jzW7/+7a//HC1TS4FGsLF8hXPvvk7NhvG5A4yNz9HuxkRxTJ4nLC4uMT42zsTYJOQZ3/nm/bx29ih7Z8dxfclN+/ZRdRL27ZzFtdoEboZvGGR5B6UUI6OzHD16kt6gw475GYSAPMuKypQQ6DxHKcVgEGKaJnmWkeuENCtAsqRYs4VxQ0EwL1QlpUSaNmvtdaZmZtg2NYYjix5WITXDtWHGRpoop8L933mEXvc6s9OjgCbulzl//BhTY2OFz6DWDFcymkNVJkZqDDdqLJw5T1m22DJT5/abB4yxHR112bFtnHrZwlEgZILnK/IkAjLyDDzXQqdFgkcDuQaNIs00Uha9rNeuXKRUCnA8iygKMZUDqeLi2QvMbhkr1DKBXOTFI01QtkmSZmhhYLoeSAvTHkJ5TRx/iNRU2HYdZZToJWuMjlew8gzyLkJ3CbwUHUeQpfzJ/U8xt22KRIeYtkU8SMkyXaydsvDNdByfJE5ptdo4ro+pLDCMTeoohR9ikhFGmlPnLmJbFY4fO8XU1jvZvvMQq+stbrvzDpqjTTrdLq+8cwRfSbZtqdFePV8knmWfJFxHmDW8ShXTM1FOnXJjEpRNjsB4Xw3ul+Dug+NTV+70L8HdX8n4JHAnP4IWWWSqPlhUvrHPR9EhfxGXeZ5rbtg1fLqC9M9GlmXcGS4V4AIKnjAQhgN0EnLs6AmmZ6YK6go5plCkaQJodJrytW/9iOeOnODmfds5duw42+emyOKEN05fYqJZZ+HaCru3TeJaJmfPLTAzO42Ukna7h6EUrx49zm37d2KYhWeM7drFB5CGZw4fYWRoiD+8/wfcecs+NtY3cF2Hmw/tBaFZXl5jcXmFxlCN5eVFVlbWCYKAJElJkoTqcJXOSovJsSYLFy8xPFznxMkzTE+OYyqbp547wrat0zjlAMOQmxWqANs0eevoCZ567mXuvutWTp85j2koTNeh02rz3PNHsKXk2LtnSOOEqfGRwhx5MCAIXKIw4VsPPsbs1BhBySfTOWXPw3Fs9u7diW1b2JZNFA2KD/vN73vdPoYSyE3T3MOHX+XxZ45w5M1jBLbBxPgInutQqVff63e0HQvDMOj3B9x+8CCB5/L9R5/k2DsXuPngdizLIM/TQh3Tcfnn//Zr3Lx7O7at8H0P2zC4trzO5PQI/bCLW7JIkgG+VyqkmNkkU+TFhbu+vo4GfNfn+vUVJqfGUUqSpyl7dm9nuFzh8tWrTEyNE0URtmWT6RTfC9hYa6FzjWVJMlJsqwy5ZnXpOv3+KlvmDhbeYKaJsiDThbhM2O1iYdLvr/ONyy3+l3/yq3R7Ayzb4aUXX2PXzp1YtsWli5fYvWcbvu8SDSLeOHkRk5DP76rz/R8/ie9aXLp8HUNCc6TJhYWL9Lptbr/jZl597R1ef+sEly8vIoUkTmN+6zfvQwhBGA5wnEL0I04iymWP+lCNKIoxpMNbb59k/7456rUKcQr1WgnDMFm8vsLq+iLrG+uFKI1jFL5xpskbb5/mztsPcmDfbr75Zw/x1790N3meMj05zmAQctOBXUjgqWdfY+vcBEoZhP0url9FSsFgECGExHYsBr0VRkbHqQ2PgVRsmZvk/NlzzM+P0FlfxHJdkkGPNE1BGJSrQ9h+jdbyMr1eC8+1ieMcrTOE1KRJjOfZXNkYYEiDJ1+/wt2fuZUoioniiEP753nqmZfZMzlFq9XCdR2iQYjt2mysrRNFCd7m+eq0W5w4dYZv/PkPmZseY2xsnCTN+Pb3fswDDz1Bs1am3hguvAzzDCUNTGWijMKnyTBNbMfCNA2MTd9Ny3Eouz57du0i8B2qtUphfm5KojSBPKNaaVCvVNi5bQbLLlRCc53T74cUflMCRKEKWw7KtNodvv/Qo+zfvRMhBJ7vEccRlWqZKIqQUtFpt3FdFy1y4kHM4uJikQRzLDAsDNshyTSOH+CVCoGZNE5YXVljaGioAAqGYHVlGXdTUOnqlev80be+g8gz6rUqlmljKJM4GdDv9njwsSfZMjVb3DuZptFsEAQ+SE3gOixeX8J1fVqtNQ6//DI758bpdDoApDmb/a8Kx/PQCOJ4QJ4l5LnG8wN0njOIBhgG/N4Pn+Af/cPf4uqxo4yPjDDIBRMjNUzTREqbsN/DdW3qpYBcCNJUY9kenm/TavXpdAccPvIie7bPk1P0YKI1cVTYCbzy0psIchzHwg0ckiii1e5gCEm5VGXx2jJR3ibs5ixcWMD1LOI4wjAEWmTU6iWGm0Osri5hSCAXJHHKd777IOQ51XoN1/dYuH6FPZMjGIbE9Dx0rul0uhx+9gg/fOxZpkcbbJ+dwvc9/MBFmZKdc1uoVMsYSrK+vk6p4iOEJN9UIDQMWZyrfpdSUEYrhUagPo4/JuCphaUPiKlorT+8y/teF1/vb9+7sf+zz7zw8+Bu83PZtxSnj7+JSHus9SX1xhjNkQlq1Sqe52DbLnEcc+bUcY6+fYSfnjjM7Mw0f+Pe+zBFwo7ZKapBGSk0ggSdJYjcQOQucRJj+bBj9y6GGw0MnZCnWXFeTQudF0qwOs8KE3hZiAnlOsdURZVbowvFWKWQsjiHclNEJFU2bx87xfp6ytR0HcuS5Dol02A7Ho4FiY4Ros+Bg7cTKNDa4ML1DqfOvsv+A3uRCizfQ2iLTIWkuebRHz/D1LZptk+O8/0jj3D2ap9fu/cetm6boxp42JZAZwmQF58DWQZSIaWDzFOk1KRZEaMpyyaKM7733cfYf2AnUPSyKUOQpRmGNMjSBM+zmNs2g2ubGEqRZummRZKJIQW5FkjTQZguynJxgiqG8tHCIslyUAZmHpP22yRJB50N8I28uMaTCENoLOUQDWIuX19ny+w4QmvCHqwsXcUPygihkVJiWQ461+R5zvXF69Trw+S68GO0LHPzfyRIEk2nq3nxlZcZHR1nanKavs5ZuHCNbTt34PtFJX4QxRw5+hK/+dWvcOnsa1iihec6CJ3g+D7KnUZaLuvdDZojsyg7INcFYVG+D9y917L0CfHof9wQ73v+iyPgG3TMTzfvZpz+Hrj74PzvbZfyhsTKh45DfKDPDn5mhfBJx/F+u4SCLv5LcPcLH58oqPIx2z4senIDyH1UNe8XAe7eb7Au/5JZkd//V/+GWyebm446m9YHUtJud7h68m1MZWK5PlmW0u91yWLNtavXcCxFr9fnjgP7mZ1o4loWP378WWzXxg0CfuWum6mXAu44uIt6vcS5S4v84KmXGamWcW0b25Qo22J+apySZ3H02An+7MGfsnfbLIHvgdCMNutkOqNRqdJsDoGAXBdy+L0o5oHHD/PV+z5Hr9theLjMo8+9iWc75GnGUM0jj/r0ej3GmnXGx0Z45vDLPP/qMQLPww/KPPLsq3i2xeTkJLbtYpoKDHA8i4nmOPt2b8cwBJOTE/i+zxOPPs38lgm2zU8jBTQaQ3z/kcMsra5x86HdtNsb2K6iXB9i3655VlfXGKpV8WybKIvI0FxeuMIPHnwaEWVUh0qYrsuDjz7DiRNnMbTg//rmw3zmtgP0eyFHj51hdmqEL993N0HJxbYtshzWV1YJez08z2F1aZmN9Q2mpicQucmTT79EJ+zzlXs/S71R49SJUzQbZcqVEu1Ojzv27KTZbBCGEZ1OH9t1mZ+bIeyF2K5Da71PKajS21jDMmwqlSq/84ffYP+2rbi+s2lQrbm2uMLpM1dpDA8T9nuUSyXWVtYp1Ss0R0cKmp3lkAvJ8tIVqtUhPK+EsoyCkql8cp2TElEq+4VRq1slSjRCS/717/0Hbt29qxC2idp89d/+Ab/2n3yBncM2lhdgO2XeeuNdSk7Am0ffYmKsQaMxROCXeOanL/K/f/d5/smv7aFsmSRJzBc+fzuGtNixc56XjhzlpVff4eab9lF2XDbaHXbsnGfL7DikEUNDTaYmm5w+c4HhWoOzp68zNtFASIOHHnmG2elpBIq1tXVMU7NjxyRXL6/xwx+9yME98zz59AuUAo/qUJ0syrl2dZ2hWg0/cBEyY2Wlx6037eXalUVeevlNds9PEdRdfN+n0+nx9tvnOHv6GuXApl6pc+rcZXbt3IoyNXHYwXVs4kwgLRNUEaiYTkCUS4RIMFXO5MwMZOskvXV0rrBdm3a3T5zmOF6A6QSsXDuHMtKCEpRmeK5EGDb9bpvffXSZ3/itv8/wji/yK188hKkcfL9EmmqaI00eOvwat05N0usVAX/c28DxKlimjec6GEogRIZTqtBoNvlr997LUKPJIE6xLcmu7dv44ufuZqgxhOta9LttTGlgaA0awt4qURwXlhRIDGmS5wLbcnCcIugwbYFbqZKmMVqndNtt8kyzcHYRy5aUKopSxcdUPqaluKFk6Qc2WZ5iuwG+59IfdKnVytxx6wG6vS7Veplut42UOVrnnDx1ilfeOMbOHfOFKumgh0DSbrdpNIcRQtPv9XFsG1Mpet0uvU6Xen2IjbUu77x7mjNnLzA+OkI0iFCyEOfodHqMjYxx08G9bN06i6kUSZzzxBPP8PbbJzlwYDe7d2zDd32ee/4l1tY2mJoapdNtU674GCJlY6PHt37wOHPz4+zfcxPdvsmPHnuC6fExfM8qzpXOaLe7VKtV8hRsIeiGfSyrqO4pVfSbXVxZ5TO/8jn+3f3f4WDZxfI9lBDk5AhhY9s2URyRxzFWqUqOweL1FYaHqkSDjMnpGfbt3kkS9cnTDCXBsS2SQYTOEuq1IcYnmzi+TZIk6Fzyxmvn8HyNkhlbts7SHBulXCox1Kjh+Q5B4BVJFEMWyYJWp7CosS3+5P4H2DI1heva3HLXTRimYBANqJTKvHv2FLUgQGJABqYymBpvMDM2xHCzRrfb4+Gfvsj0WBOQuJ5VCCtJA993SLIQ8p/RCAHOn72A70pWFjcIhodACFT+QUD23hDw3OWVT7RB+DC4Az5yrtlg/ue2aTKg6Jd0bJuN1SW2H/gcZ85ewLZchIBz58/SaIzx4IMPEA/W8ZyMUMUM1zw6lxcxpEljOEBZheKnIRWW5aGFRmDgOCaGTrAEKJFuCkQI8qxor8izojJViHMUFaMblL8b9kFZliEkpGn2XluSMCS2bReMkkQzNDSFyJbJewKr5PD4I0cIB5qRURvP0DQaoxhCYBkZWgqGRj12757FVjGQIGWGgYUwMrIkZufO3TRqHj9443F2zw9x395fQeQ5lpEgTSDTZHmKtEySTGJISSYUbx09zkijSZ4nhZG9BoSBFiZzW2eRKsW0wBASRXFfIEAK0FmMZYpNECVQpk2UaKRhg7TALOOVRpBWHewqUCKTOVokJEnCibeOs3T9HMMNl+efPcZzT73GngNzRcyY5YgsJxdguza7dk/gS/AtB4wy3dYKgV/BtCTSEGRJ/l5/Y7VWJ9VpceLjDHROmufEicGrr7/DxvoAvzrC2Ng0p069Q3VsDkfZ2JbEsUxaa+ssnF0gUn1qgQ/xMpUgwRAS0ytxaXGD5tStSLNEluWMNEfIco3QOabI+agI968W3H2Kvf/SQbf4ELh7/1yb2/+CSf+yvXYfxAq/BHd/JeOTwB18DMD7GMGTTyuCcqPC91H73QBwN6p17z+OD1cEP/z48Bz/4//wL/mnt+8CQOb5ppqRIMmKlMHSyirjE9NYpsvaygajzRH++e/+KdWazdzcFqQy6YQtmkN1Ot0NPn/3TYw2Ryl7JQwMDJVhO4qw12dmboq5ySZDtSqBH/Dcc28yP9ugXq8QZwZpJtg2NUkvXMOxPNIo5wePHmZ4qMTWrT6OW8ayAjobXSQhjcYolpDUqxUqlQq9jQ43HdyFqQwef/INEBkrrRX27t5DbWiYbivk2RePkSaSu28/QK1eZsvUCNt3bsExHXSekesBkpw0ThCZIs81nXYby1XkImd83GNtbRHPVmRaopXL0sJ17rnzJmr1CsoyWb2+guUE2Aa0Wys8e+QIQeAVYgCOSanqs2V6mpnZaZJMYynYNjfOlukG4+N1VjsbpGGP6fEmc5M1RoZ9LFMw1BihvbGG5wps2+f8xSvU6jVc36FUDgjDAf1el2dfe50t4w2eff0I7VbI/PwItukjhY3hGqg8QQuw/aCgcnkWSysrvPnOSX7wyPPce9et2LZNL2qT5jnf/uHD/Of/4DcxLYOVtQ38ch3LtnGMhNGRGp5voGWGMB1K1WGWLq7ilcsIy0ZLCRnYSpGlOVeuXcX1TYQpEJlBEsc4tlnQdCwTQc7G2jLVWsAdB2/BMD3OHT3Fs+dX+G//q79LqRSAYSO1R61SYtAN+cFPnuAf/+O/iTIVb7xxgv/z4Td5+sgb/It/9Fk6nT6NZp3FpRWGhoZ4/pkjVMoeS8urjI8OceXaIu++s8CenduIopCN9TXCQcjq+gonz1xluDaEZVmcO3eG2flZTNtmfGQcIW1eePFt0l6MZQaUygFplpGkmmeee5Wb9u/l3ZNnChlw32NqepzRkQZvHXuH8elx6sN1Xn31LTzXZsf2Wa6tLNNv9xmuVQnDHlMzw5RrNucXlnj+peP87V//HIYB/bhHEJRBFGI/ju2gM4gyieuV6HdalDybPE0RErLuIp3OOuXAQ5vDaC0wdIxlgFIeSdSFPMMiJk4ycuFQrhYS5m9dijm0ZxyzXGZtbYDjefSjAcpStDp9Pvv52/id+7/Hl/Zup9tpU6kNMejHJHEKQjPodUniAd1Oh1LgkQ66kERYUrO8sc5QY4hMZChDIXJNHKVEg5g0TUnzBMsJyLVESkk06AO6EOtQFoYycX2bMOlBmqFsG2Xam9l2xbceeIi9O7YzOjpCr9MhCBzyLCeMQnzPIokGhGGfOBowCENcxyloYpuVJqFVUak1FUIoqpUa2+ZnSdKksCyxykhJ0b9nCLIkxbU9NlrLIGMc28VWPklaKK7ObZll69Y5LNNG2haub5EkMZVqjUxYbKwvEJRcDGFhKhfbsvjxI0/zmTtuw1AGOh+wZcs4Tx5+ldnZWQZRTOC7JCJDGpLP3/MZyE2+/+Cj3HXvZ9i7vUkSr2PqHJ1JRJ5CmmIpg/X1Pj96+FkO7JpGCwNpukihyCONb0qC6Z288ubLTFopY9UJoiTCcwOSJCEXYNo2plvZ7MGL+dYDP2DX3CzloMLlK1coV30sP0AJBzRESUSaJkRRQqM5DhLa7TZpmnH+/EX2zI9RrTdQtkecJugspbPUo9VdxXAKgZPVxVUMZZPlgnq9Rp5rXNdj+445/uCb3+SrX/5SQd0WJr1wjYpn4uc9lhdXC+GaTpd2a4AfBDRHm6Q6ozY0xL6deyjXyghlkKUdbKdQEo2THNsqEemQXnsdBQwGMROzWzByEErheg4CTWaA/KhoVcCLV9e457MfT8v8gHiEKECi0PoDa3aeZbSv9z9i+qImkiURb7zyEq3la+w4cCvr6xsEnoehBFcXL/L4Tx+iG/a4+dbbGWkGHLjJ5vpyyGduvotjJ95i+9YpTDRJFGIahV9rniUM6CEkSG0SpzmpKPp+c12oJWe5RRxbSBmh7KJnVlqKXEAehiizREyKkBrSHC0dXNsmNyJSDPoRyByqgaJsa7QwEa5J2OtR9hwatTK2oUi0S9gLiXurhVqypBA+2jwLGoHWkjyNkKhNqmiI6youXj/D1dUBW0ZneeXV17CDrXhWocyqLJsszbCUwDAipJly5KlFmls8rJJJFidoJfH8En/6zR8xPbOVwDHQiWB56RqBH5ALkxyNMHMyJKZTASNBWE5h/G7XUE6VzK6RiwDbqaIMg7C/gZGuk4RrRP0Wpkg4+c4R6oGP5wS4ShI4OY3hkcLb1DBAG+SkYGgG/QHSNMnIIe9TrtXwS0WlWQgDqSQ6TTAMWYjfJZDGgsgeIHMfy4YstWn1Bqx0DLbO72OtHbJr/z006hPUygVrIc9TLl86z/j4CF/+yj3kyUWEvkBuCKTtEmY+QXUerzRDuewzPDxMhoUU4j0z7vxD1/mHbxWtiz0+MibWHxHFCoNCQOX9j+JnH7QUEB+ojgnxM8D0M/bcx96aP3+f6o8HcB8GfB9+94ff9mnA3c/+jk1bDPOX4O4XPv5jwN3/2/FJAPCGi/2Hwd+Hwd2N8VFU0BtzPP30s9zzPuuDGzeJIeDKhQUqJY8gKDPox9TqVTSa2w/tY8vsGGBgmTZ+yWZ5cY3JqTHanQ5rKy2efv5V5mamePz5Fyl5DjOz0/T6EYHn8fBTz6M0TI41QWecOHmO+R3zlEo+lYpHpeJRLldRyuDa9SXGmkOYSrK6VnhJLS+vUK2U6LS7TE6N4/kelqW4fPES1XqNMBywd8cOgsBmZKxOmhYVR9d32L9vG75rMD8/S6vdodkcxvVdJAZxHGMYgtWVNTqtHpZVKLJ976HH2bFtFss0sSwbWzmYykHnivu/+xiXri2ytLbKzYf2IIDORgfL8VheXiYaDPjs3XeiTAvLKoQXWuttGo0mWVqYnQe+h5QCyzTp9UMO7tvPSGOIXq9LEHiUaxUEghxFv9dDa43ruZu0wIigXCKJEwxhIITB3MQoNx3YxdTIEIcOHWJoyCeJC2qFUJp0kOBXKoThgCxOee31NymXqphK8aXPf4bllRWk1GRZTJbC9rkZlFlU64689hbff+QZDu7aRqnkkGQ5lmNTrg2TJglCaCq2Yn19BUmKpQT9VgvXVbTbHcYnJwq/qDQuDJ3zHMd1WF/bQMpCgKNSrbCxvkGeaH7v69/ioV7MbdurzM5O0u/1GBoe4rVXj+J7LmjNqTPn2T4/wY9+8gShN0K1d5Z/+g/uo99L+NFPnqPb6XHo4D4c2yHLYtIs55Zb9tNsDvHTZ1/htkO7+fYDj7NjforDz7/GoYO7cD2bW289xMWFq5RKLnt2zXL+4hVMpajWalw4v0ASx9x8aDcvvvwmq+vLbNs2x9joCDOTDZ46/BqWBQcO7Ma2XS5cuMTjT7zAwX07CcolTGVy5vQFDh3Yw4svv86+vTs4cfIs23duIUkSgpKHH3gkccaXf+UuLl+5QqnioVyJaShAIJUizXKEAD/wCzqOaZAkCRLQhkkedQj7IVI5pHnKYNBGMCiy1qZNp7WBkuC7Fq1On4nJKaRSDPotDr+7xmfvOsQgM7EcH8dxCpqt46DzHM/1ePDhJ7l1ZJjAD9BZjlROoSoHGKaB1uB4AUJIDGFw+vQZTpw+y9jYOAC9dreolmt44smnuf8HD/LZu27DNA0syy68o7KC4qVMkzyjEGoI+wgBnusX4BBBluZEUYJl2tz3xS+wsHABxzGxbItWqwVC4Dkua+tr1OoVTNNCKQshBEmSkGV50UucpCRJxtPPPs/W+RmiOKbX7xc9f0lMnuWsLq9RrgabPS5Foq210cd2LKCoUgRBhTRNioBLSrSGLMsZDEI6rXV8zyMaxIBBEDj0ewPQguPHT+H7Hl/96/eiBZw7ewYpBVmacmjfPhzfJUkTTCVZWV2hUqnR70VYlsWu7VsJKmXiziqkyWYvEWSAX6oQDiLanQELV64xPdXAL1dBFObtplIMVSu8tbzGhUvnODBcoVwaJkpjlDJBGjiuQ5LGkOUoQ6IMyd7t27BcmyjKNnv8Cpq4EopOt4OUAkMZOLaDkIpur4Pj2GSZLu6Nc2cpVWpoJO1Oh3qtxsryKlu2TpPqDCkkEoUyTZ45/Bzj46PkGQhhYDkm99x+G6ZpkyQZq8vLBOWAh198iYZl0Ww26PX7eK7H1+//Ic1qUCgMCsHC+cusrbR56cgbjDaqVGsBUqrCXFoYIChUSzV4nsv6Rgvb8QobHK3f88T72NBOwN6v/gae537qNf/GCvz+ceTl1wiMyke+RwOGANeyuHjmGLPbb9n08RwHLVhaXEEKi+vXV2hUy7x5+RW++oXtXH0no1yqsX/PXmQeIXRhIp8kUWEvohSO60Ne9IEvXFzA8cqQp1j2z+7FN159mWqtghQKpQq6XxxGWMogyfICrFKAX8uxCHu9IoGSe3znWz/GK7uUKjW63ZAoKRgFlu1SrtQxTAUSrq9u4AcBnuchTEWc5QgkaEEcJyij6E21Hbvol9Qay7b59uEHEdLgb93xJXIEcZJw9dICE+NDhUF4kmBaJlIY9MJ1tMjZtfMmTCuHRGGpQl8gCiN2bt+FgcB3BVma0G23qA8PY0gBebZpXSBQpoPllsgxQVj4wRBxnOMGVcJOH1tJer0lkmidLC7ULk2j6JMbaU5QLntAhut5TE7OoEWMMiR5nmNaRRI0SRJs28Ha9Iw1lMK2HQaDEK0LWmaeFte4kLJYI6TJ0soiqXZ5581z1JsTPPv822hZ59Spk+zbd4Be2GNycopBOMB0FZ7rcenSRUxL4QcO7f45smgFz4ko+QG+XyLXJkoFBEPTGLaFZTs3itwfuEY/eegPXP8fuive93wD3H18xP2B6hhFRfUDv+nnGHV/4cF9aP9fTLT/l7FAuLH/L8HdX8H4/wTcfcK8nxbc3QB1hhTvy6T8bI5/+S/+N/67O3b9DPBt/kwCcWudi6dOUx1uYFkunu+TpEVpX5kmQuTI3EBnmijqYUqDVrtFt9vDlIpnXn4bz3MolTw838fzAkxhcv3aStHrUPKQhuYPvvkjbj+0jzAaYNqaTmeVNIVKuYxSBnNbpqjXq/TbOaYjifMBw40qvl1GixjLNVGmpNNuYVsGtudz5do1/vh7j7F72zRxFuG5Rc+BaQkyUmZmxwh7A0ql0qYaZnH2/v0f/RnbZ6apDw0TBAHrG4tUqiV2bd+CaVgsL65h2WVs26PbDjGFwZ75GW45tJ39e7cRRhFg8MYbx7l4eZHZiXGmJqdobXQxLYcshTzThZeVSOj2WlSDMkmckuWQS8HVxWU6S2vkeUalXiUTmgwhJNgAACAASURBVHAQsbi8jut4uF6AaXsMkg5KSnrdLpZy6XZizp2/wEijSa1WJc1CkrTP0FCTLO/T6YQEQQnLBtMqI6WBEgLbMpkYbVCpDfPjxw8TuCYT08NUhwJOnligOTxMuVIi1wmriyuMNRqMDzcYHR0h0wYZMY5fIg01g94GOu+xdO0ySRJiSYFlKnqdLp3+GrVaFYkgjVL6nZCg5hXed1GC75UAg1waoAW99Q7f/O4P6ezayz/727cxNz9Dv9fl9KkLlD2fkZEmOk859s5x5mbGWVhe49lzff7LX5unUS/x6JPPs212ijgasLKyRnejhakkwxNN8k0BjNXlVWxh4Psuv3rfPbTbbcolHykF7e4aQRDQ7rQZH28Q9ls0R8YxTZNnDr/Itq2zXLx0mYnJBlMzoywuX2VmdoJut0ulVmb7thlmphtIKRG5ic4Fo81hzl+4wqVLi8xMj7G8vILUmqmpcZSpmN86jaEMfvjwU0xPj+L5LlNTk2xsrHH56sVNaq1HGqcIKYkGReUujmJWlxbJ0hTXdej1+vR6fZTtk+WCoNJAmAEibWEKDWlEliYIpTCkxHEtuu1VTMsiTlN0HpHEfV67EHP3rYeIIkG5WgOdIwBlKvIkoddN+I1f/1Xefv4lKrZHEidkmz2AeZbSbvcIqjVMZZPlIAyT2lCDNBWUvYCw26NSLiFFTpbB3NwW7rrlZoTQOK5dKMnJImGBlmQZgKI/6BAnPUzTJk8skCCliZSqEHwxTNqtFuOT45iWiWEYpFlWWAxYJt1ej7A/wFBmkVSxbAxlkCRpQcXaBNdjzQbSkBjSoFwuE0dRQUnTOecvXKRaCYijCCkMWq0uLzz/JvNb5yiXSvT7fYTQRUAqwFCKPMswlCx6m/KcsNdHInA9h153UIC0MGR0cgRhaISOUbbF2PgY5VKJ4++cJM0HNMaahXpnHPP/sPemsZac553f733f2qtOnf3ue+97k002SUmUJXnRKM5gEgdjA06cxYE/zIcAEyDBfEmASRAMBpkZG7HHjsayLVmWpYwlkyJliqJEauOiJiWyyebS7H2/ffd79tqr8qEuKYps0bJsBfmgt3FwgdPn1D3n3nuqnv/7/J/fv9UeK6menkc0Cvjrrz6OXkimJ+aoVdpcv3YO1y5wKj75DqGw2W5x5PBB9J2ZPykkQoiSvicFn/3Wt/mf/sf/lkefep6TuxbpDwMcx+Hs629SrXkIYDQaolSBrks0XbDdC3C8KutrG2iaIE8ykrjMJJQKRCHQDQNkwfb2JgBpnPPUN7/H3XcdYfn2JteuLTMchDRrDapVmzCN0XSHP//cl6jZVeJkgOd6TE3OkSVg6AZhMGTQ62MYBr//qU+RRhF7lvbzyPkrnH/6FMNhwFjTJxgOef7MGT54z1GajSrhMOSP/+Mj+KbJ5Zs3Obg0h2FaGKaFUor+oIeuS8g0NM3YmTsKqFRt0AzCOMY07bKALiR3LGEFVI7c9d77f9w1/8eIu9dff5OWM/beJxTFDsWzoNft0tteZ2Z+D8u3r+N6Lk8/813OvXoR3zcxZErNyVnrXufYfIah9vL6yy/zg1M/4MDuGQzLLLNgVQkCSZIUCh0QCAmjKKPbGSKJqVZrRFEZD1BrtLE9D1236Hc7iCJHFFkZxaEKlLIo0MmEJE7CMl8tEwyGOW+8cZ4467OwuJthr4vn+bzx2g9ot6ZI8wG2rVGkOWvbm/h+FVFkGKZRCuq8wNjZMC3SGMcp45mCoMw+3VjtEsg1HjzwMXRTYsiCVr3G3PQUiIyCgiLLyQtIkhglHZLYQnNGZMEAEZddMtsy0WSBKhI8S6BpkKQZTsUnAzIKNLtKlNbBqGNXG4wSE8uuoRluGcuUJQz7W7hWAUmfeLCCo8VIIAkHSAqyOMAyFFkRgyrn+OIkIiPCNBzSPCEjRYkSLqaMct5TSrWTgFDOJ5eCrgQY5TlI3QA0NNPArXgIWfD6q+dpTk5w7totbm2sMl6bYWJ6ikajSZLGrK6vIE3w7CoVx8WxJG+8foq52XWiwQ08WyKFRRzlJIWk0B306gSmWyvbZO/iTfxDiDsl5Ns17Psd70cOcYdGx8/F3c/Xj6w7ibv3E18/6/X2RWDHmvkjVsw7WEDf3bnL89IHfd/wdnkieOs54q2ZO8FDDz3OTLuFW68jpU4UpyhNolsag0G52766vM2nP/8Yh/bNIPIC09So+j5+xadiG5y/ep35mTHG2y1MwyrR2kmCYercur3KzNw0Jw4dpEDg13xMTbC+uobvN1AK+v0eSZIgkNRbPpZrEwYxFIo3z17EczSEUBRCEkcJbsUlCGOUoZhoNti1awHbNhGpw//xh5/nP/nYh0u7YX+EX/NAFOWOtJBsbKxzz9H9+NV62caXOboSXLp8iWajznAY0GjU0GTOdneL06+/Rr3p4LgglU2UJNSbDQzTYNeueWbnJrAsh6985ZusbWxhWhrNZhNdN0q8t29z7dp1qtUmv/+pv2L3/Ax+tcz3m5+aJE4TwjDCq3iYZoUkSvnU577Evcf2EychUZJiaRpkObZTwbBdijylyOGVM2eJwoh6rUp3e0ghC/JCw/dr9Hqb5YlCQRqH9Pt9+kFIFAXMTY8zPtYkTUtQxLPfP8PhfXvQlCIKA2zfpeJXGG83ocjRDAPHNiHLUaqg1y13WL3WOAUG270Aw/FRrk+r6TMYRAhNx7AspFHma4Vh/PacRp5nO5a4gutXbjH3gT3ct3eMar3BY1/7BgcOLLC0tMTzL5ym1aoxPtGmUa/w5498nUwz+O1f2oVf9bAsm5Mn76YgYG5+jMWlCRqtCo6jU6nU6HS6ZEmKZZmsrG5y8MAS585fZG5+loe/8i0O7t/D0q4pNN3i/LmrTE20EWT0egGubfP4k89y9/G9LMxNYlUqCMAwJGkSs7y8Sq1eJ41T+v0ezz33EiIRaLrihZde5YGTR/E9G69aYWFuFikE6+ubOI5DkhZEUcLa+hb79u0mzwUoDV1Bq+EBObrS6ff6+FWf4TDAtm1Go4BG1aHT2S4tOHlOvdlAiIwozDBMF6mbKMOl208whIlERwhJY2yc7U6HNBpRq9YQQiPPUpSSDPubLO0/ihKg2Q7rq6vcXl6m1aiXQAXDZHt7ky9963t8bN9u0izFck2CQRdDFOimvRP8XQI8oihCN80dW12KbhogBFEUYxgm3/3uc/zFXz/CiaMHcVwbqUkgJ81Sep0+Dz/6OEeO7EVXOpZdIQoSdF1HKfH2LjVCEIQR3W4Xv1pBqRJhHkUxYRSgWyZ5DvV6gzCISOMITdcJd7D6FEUpwgyJlMXb3YgkSSgoyi6UkoyPtdENnTCKiIKYql9lYryF3EGdm4ZRhgsrQafTwXEc8jxjY2MTx6ughEaell1voStAoWk6pmWVsSm6QTAaoDSTWzeXGfaGzM5M02g2SHeCi9M0QlM2UiqiOMCveriWjWNYnD1/hVfPXeLYkYPcXllBUxIh38prU8RJiuVWYccSVZDDzkzb9dvX2Hv3PTz5zGnumqhSqTYBRbvdoru1iec6WLZDGIzo97oYhizn3PwKN2/exPMstrs9/uRzX2Lv4gJ+tbLjiRKlDduycBwHkCwvr7D3wC78RoNas8ELL56mXavhuBKhNDTd4NCBfVy+fIn9+3exfGuF1dvr1OoOmlbOuiAK8izlIx+6n+nJMb785a/xTx64i8PzE1TrNcgLJqbG+egHTuB4ThlrkyU8cNdhJsYbnLzrIIiCasMHSriMrhtITYMkRyodZWiEUYChSQzd4PLFy7TbTaC0ld2x6BOgdu17h1vmvY+7c/adePsfwO7dS3SWh3c4/FviTpAmMa5js7xymUNHjxLGMceOHGJmusquBZ/56RrNSsHr19/gw/c6fOe717jvgx/AcipopoHjmOR5xptnz+D5NUzLJkmGJGlMWkgMy2JhcRbHskjSrCyyJbieTVGUdOduv4duV0GzKHJJIRIGfXj9tQsE5NTcCpoyUWZBriccPnaAXfMLeLbCsW0ycvYfOkie7CApCoGhGdQbbbIkxtY1BAV5liMdm7jIKSiIkwihBGEQoekGf/XME3z4gRHj1oMYpkAUBQrKLnYWkRY5hlmKWfIcXdfp9wwe/tzXmFncg2nrCDtG6jZRkpILgeE4RHmO5jTIlIfhNjCdOka1SZibVMeXkLpFlEQYKoBsRL+3SjjcRBMhmugTj7Yhj0pbb6EhVEaRFVAINE2hFBS5tuPAKB0Jhq4DkkIYIC1MXUOKfOd3IMne+ioL8jxDaSZxHGM5HsrQybKCAgOlWYxGASKRrK9CrdpiuJ1z95HjLO3ZB6Kg3W6xtd1hcXEXjlNh1N/mzTPfZfXaFXYf3qRdB13lFIWJ7o5h+S2Cosb43D6qzVkEiiIXvFt+/W3i7oe50D80cL71eSg3n8SPNO7e73hv1bnvtF+++6MpxPuDTN496/Z2pf/2l5+28n+r6fLe1/u3ibyfz9z9jNadxN37zcT9f7neL4rh3Y9563FFUfD7v/eHnByvv+u5PxR3Koel+Tl016Wz1cGyLMIootvrUKtWieMITViILGVyqoGgtK5cuHiFSqWCZVoc3LdIq1nDMHRWV9a5ceMmhq5wKx7NRp0sg4f+5ikO7NuFaZlsb21i6BrtsTZBOKTb61Gv13n9tQu4Hly9usLs7CKa0vA8g2AwYGJqijBMEFIy6JeWPSEyZmfnCYOQKAnZ3uhTMXUcV6c5VmM4GjAcjnDdCqNRgGFYeK5ZDs4jKEjZ2tqk2ahx/vwVOp0e0zNTZFnCYKtDfxBw+PBBDEtnNBjyxFM/4LGnT/Ghk8fKE6wUKE1w5eI1bt5aZRRH3HvvETRNowCCUYCmJOMTbYQ0OXZgP1978ml2L03g+y4rt1ZpjbVRO8H3Shi8fPo1TCmYnmoSxiHVRotwOMBxHIpCkuRQr3kUhWCs1WbYH/LQE99hujWOXbFoNMbLLo2lELIgiUOgQGiSWmsMTSswDQMhBY1mA7/iMTvWotcdsr6+WdL5dI0kSVHA7eXb1Js1VAE3rl8jyYc022PkqSKOU1ZvrvLI17/D4b1LOL69M0RvIJWGZhmlXQuFphtEYUgch1R8l3gU8AdnrnO7d4tgMOTEPcf42lfLjLVas0ouNPbs3ctzz55ienKcf/bv/or/+TfuIxluc+DgHqIkIi/KGQwKwaXLN2m3x3BsD6kZ3Lp2i1MvvMra+gb79+/m+vJKuYMcx8zPzODaBr5f4dtPP8vszAxKKizTZHVlhTQTvPLqWX7zN36VWzdvUa/5JJlAaZJ6vUIYBMxMz6LpFttbXSBnemqSm9dXSdKYj/7i/WxsbBAGEdVGlTzN6Pf6jIKQU98/w8z0DG+8eYm7jh9kZWWd1lgbTTdRApJoxCtn3mR2dpYsK3OY8qLsCBmGSTjs8clPf5ETxw/hemVocRIP0DQTkCRpjG7bGKZO0O8QjPqMRl36QYFtWSTBoBSTaNR8nzCKmGk5fOWp73Ps+FFGiWRsfJw8TZBKoXYw7IauuOv4Pv7FH/4pHz+4l15nm3DQQ+QphuWCkKyv3ESKAqkUAkowhhIYlolSEsMykVIxNTHBod27GZtok2UpSRYhVWln7PX6vPLGWY4f240UJklU8Mijj2PoBbVmDc3Qdwp9SLOMRrPBoN+HArI0K8miKsd2bEzTJI4zsizHtHTSJEXTSkR4gaBardLrbpf0TVlu/sRxQpIm2PbObN5OwdHrdanV6ty8ucL4VAPLMhmNhvi+T5omaDuW0ziOATBNE9vz+cIXv8zRQ4dQmsYoGlFxXXq9Hlev3aRarTHoD3n+hRdZWlwiiVOGvT7r6xu4rkcYRdiOTRqHKGWzvr6OX/OIwogoiqh5Pp/+8iP88kc/TK3qoSmD3vYaCIXjegyCBE038KoNiiwlSxMM2yIrme9k2RB3domXXnqNk9MNdKtSXhqyDKUJKHIKoWPoil63i6FLdEMQhSG6YdJo13G8Csf3H2I4HCCVKIm5aWkPS9OEwXBAGAScuOduhCbKOT5dZ7LVpl71yfIRpmUjhGQ4HNBs+CRxxObmNq+cfZPDB3cThn1s18O2LNI0Ic9SRqOAZqPKi7dvMWUq/u1nHuKXPnACISWb2xtIqWGYJlIJXNcmKzJs18I0TQxTllE4uk6SZFiWTRbHoGkgJLbjsHF7BSUKNtY2mJgYK6EV3Lnge/H6TWZO3PvOK/Edxd27152u5O8v7sBzHbIwoN/vMDG+yNk3LtPrbpOEm6TBBkUSYOuK1cEyxw+MEW5MYtY9Xjl9mjNnLnJg7yyartNotjAMA9uxydKU/mDED75/mtbYJEpCNBqipERpejnPVWTle5cGjltjY2vE+UvXmR6bABExGki+9rWnwUjYu7REmpYZjqZdwTAc0jQnB4RmI+wqQVqAMhDKwXBrpFKiLBfddHdARgl2pUYudYQ0oJBIoUAo1I69+tLaNV48O+To4i5EliEKKLKsBLxIgdR1oiAEeDviJEkVVsVlbHqcx//mCSZnF7FNhxwdy22A5mI6NTB9NLOC0l2UZjLobKNp5dxdFnURyZA86JJGQ2xDQ1GUFNEkxVBa2Y0rcgpREEchhmGV70EqEKV9GZETBiUJOckiNKmh6Q6vvX6WsYZPkSdYzs4MbF6gaRppnqE0o7SAKwU5xElEHKe88Pwp/GqbvBDkUuPlM9dwaxUmp5doNqsEQYDSJa7rsrW1Tb3WYtgfkSV9qh5849Un+dX7p+mHIzY3OrTHZ9HcFkGcMTl/F251DKEsJKKcPX23FfIOf893WuW8YHl7y01wp8/V3xXG8s6P2E/Cu/jRDZeyM/726/l71fs/HIl6v9f449bPxd3PYOVZ+i/f2anL83IH9+8r7H4SaMr7Pa8cFt35Q7zD//04QqcQgieeeIoHZ9tv35cXBULpqKJg48ZtLFNHuBYyK7OrdF1hmya2WWGUjsjznCgImZudoLc1otlqokkT17QJsxHSAM+rYe+EGJu2zdL8BIPBiFfPXeEvH/0WHzt5jKdOnWbP/CRJEu3YFSVbnS5Vv0at3gAkM7MTDDs9DKnze3/8OT72wZNYjo2QgrzI6Ha6WIZJGoHlOZiGTxqmuG7ZJfvC15/i4IE5ZmdnMaRidfkW7fY4olCEowDb1knCmG6ni1SC5dvr+LU6UtdwPY/5uWmyPMd2PT730Lf43pmznDx+iCSMsUyXgiHH9x+l6ttsrN6i5ljEkWAwCFjf3KY7HLB3aYY0HmA7GpopUZpFnmsk8ZAkHjA9USOLE0xNw3AaPPzY19m7Z4Y8LsiVYn5hhvX1NXy/jluplwHyhglSp0Dj2e++yOxME5krNK3AdgQHFvYyd3AWx6qytd7j3NmL+H4TS4dubwjKwPGq9AcjNCWwK1WEsOiubGBLA6ddY9jt0xprkWuSiubgOia5TKjVGhS5RqEyNMNEkx7BoGBjY0C76WG6GidPHMZv1ImjAilKIZfEKW++cYGpyWmCcIQSOb1uF8/1SHP4X77xAv/50TEaFZ+lXWO0xiq8/PKLHDt6iNEwZdALWVle59lXz/H4q+v8q//ufoRmYImC8VaboF/+v61bXL12nlrV48L5y1y8cJVbN1dZWFhkz+45bi7fJstCDuyfY2F+jpdePk/V91jaNcdLZ87woZO/ADLgqWe+zd13H+Xxr51lYcnlyOE9RFGIriscz+EHP3iBOM1YW9mk6VdYu71MrTWGZZkM+iFvnL3CkcM1/JqB51fIM4lAkakISzd45fRrRKOYjzz4AMs315ifn0YJQcX38FyHXMTkuoFbrTI73aa7cpXmzDxC5PR727gVj1zZbKx06A4ijt11BF3pJYAgHqK7DkJTyEJDIdEMi0K3Wd3u42gJQqQ0Gj5xAVkWohgx6HcxNBdNSaabCf/+oTf4xMcfoB9npGgI00EoHdPYIfZJ+NAHT9C5coXJsQVMu8YgSNjYWiNNRoxPtkmSDMesEIcxAjAtyeqNq7iWQa83wPMd0izh1bNvMjk9iW4aJFmG43jkFFR8l+PHD0GqozQJosCzXKamlrDNnGAYYpp2mTln6+RpgGVbKF1H6hqGbSELjSRKMQyttHyJjCiOGIxC/FrZrdjc3iZLMgzLLHf3i4Sou43jORS6jW2ZdDfXUcIou9mmSRzF1KpV0rSgKHKarTort5dpttqMBgG6pvHQY1+lXq1SFAW99VWSOOT5l0+zd/dSKR6DEZVqhVqzTdCLKVLB/NI8WRFTa/jYrsfE1AwJKbayWb+1TqVW48aNq7RazVLAjiLazRa9XpfV5Q0c3aDeqtMPA1595TzT0xaCDMesM0wGmIVks7eK4ehEYYwhHHIKmo5Hx3MQCI7UJ8nIdxgG5s4mTYFmKNK0RNbX6uPkSUpeCIIsw6lU6W52aE5Pc+HSFR554hvsX1zE0DSef+516i2fSqWGbddATxh1U6LeNo7tkGsGhAF6zaW7OqLfv8nEVAMpmijdYmZ+nhN3H2cUD3Gqfjl7V+zYXzULu1Kj1Wzyyaef5RMHlqgqk2e//yrHDh9Aqp1OExmmYVMUBbphkkRJKdB0jSAcolsapqWXoef9Dl7F2IF4gGV6JHnI2q1rTM4tkgkNKe5Q0QJ//sZNPvILH3y76SDFnSDpP7zJ9+kJ3Enc8dZ1XwiEUOhulWBrlSwZ0Vlf5fVXnifNR0yPV8t57EJhV1bwrC6G2A/ETI+PsTjbxjRVmaEpVRm0nSREaYFtWKzc3Oabz73KwUO7sc2IUVonzTVE1iUrDHRNUkjJdnfIlx/5NmvbMXPzDprRANPhwV96kKnZWdK0pCHHsoLutimUR6G3kGYTzaqhKRvXaaC8cZzqFIV0MdwGqCq61yYyGuhum1x4pLnE9lo41RlSrYFdneXctQ5nhxdY3uzyX37s1xBKJzYFsZQgdQzdpEhylNTRjXL+M4gzlG6SETA102B9c4vlLcGBI59A923iwsOuTuA1JhnEOUJvo0yHTErCvIshDPIiJEvWEdkQQUA4HCBIkSKnyJPydyt1sgyU1NF0gzTPwZBIpZebHgKyNNoxT8UUaEihKPIITRlkWcb1K+eoN8cxdIe0CBF5OXdXFBlKaJBnKAlpnBBmClnYJInAa8/yrVMvcXM1pt6Y48R996JbNo1mrYwcEopqo06aZayv3SYLB/R7a5B0eeT5h/mdfzqHMAVS2NSaTRJcKv48owGM7b4Xw3B/qLgE7wWo3KEjJ9/Rn5Y7Yu6dGKHi7dv7w1h+kvXObt7fFaRyZ4/eu1/FnQRosfOe3puL99OIu58DVX5GK39X5+4fqmP3twWg/zhxd0cK57uO+c7jvvu+57/3Ar9WLwOD37qvAESeM9ze5tKFy4yNN9EMg2En5NU3ztPr9Wg26gghMDSdzmaHmu8QBSN83yFKY7a3tqjXq6xtdGk2xzAMnX6ng27qrG9s4fk+65vbrG5v848+cj9OxeTIgYWyIzYYcfbNK1y4coPFuSmGw+Btu16SJHieSX8w5B9//KPcXL7FdneLKBqQxBG2bfOvP/lZ8rhg9545kjRB6YIXXzxNlET8o1/4IJohqdfbUEgsx0LqOoPekKIA09qZLRCC/mCI67hIpRj1U/yKT5rEbHc6SCU5ee9x7r/7MJZpEoflLm+jajMxNoVuKEzHBKGjNIGuKRbmZzhyYBe9XhfXtel2e+iGjq6bdLc6mHYJcNje6nL+wnXG22NUqxUsXcNxLC5cusFfPfIN7j12kD2Ls1QqFkoVUBhcuXINw9QwDJ3l28uMtx00wygtWjWPlVsdKlWTNIr507/8IpKcZ154gWPHD5OmGa7r0NnaIk8Tev1tlC5Bpph6hl3R6PYCxttjCCExbAvL1FlbXSaMAly3wnani+2Y9Dp98jzlU//Pl5ger9FqN4nCEM3QSeIUy7JJ4ogsTbFsk1rVp9/r4Vc9Ntc2qXg+nzy7gvQUv/6hI1y7cZ27T+zj8Sef5tDBg5x6/jR3332Maq2Kpkv+5V88yW//8j5aqk8Uhly+cp00zzh77iKXr96i2azRbDWwHZsozslyOHz4IEtLCzzy2JPU6g5Li9Osb6yzsDjD9esrNGpV3rxwjarvEScRV69fYXJiiv17D5JnsP/ADEHQJ89K7Pcbb15idmaK6ZlJKhWPsXaLjbX18pMoNU6dOo3rWNx19BCvvvoGszNz9IcBo1HA08+9yJ5ds4x2/v5W1jdpNHwuXrnElx9/hguXrhOGMfVaHY2cXqeDb2t0Npcp4i6GOwEF2I5HEKQYhsPa6m1OnDiIbWsoUjRVkOU5pm2Xu9S5KIsATaHpionxNt3NDYwsIhwMS1BJoUgygalrpKnAMHQsR+Ojh8f5X//gG3zkwx+iUm2iSQtTN0jCmChMuHH1JtMzc/z7L36NDy8tlJ0gQ6ferOO4LsNBgK6b6IZBViRoOnQ7XRzHRTesMqB90EcIWFxYLO1sSqIKQTAYlgWnVCRhjO1JknREIWO8ioXjGiRJhECW8zwUZHmGQtDr9bHssvuTZTkvPP88zUaDhx57jL17dhFFEb7tYVkGSgnyJCaJQpQhKYqcIAjKnf28IBhFSE0jS1O8HUthGAWYtoFp2Hz2i19i1/w8hqETRyH1ep1gFKAMk9Eo4J7jx/E8D79WxavWsC2bD5y8nyItSKMc3VT0hyP8Wo1wGPDJz/wFD9x/V/mZMU3IIYoikjTg61//Difvu5c0zXe6jAMoJI898U0mx8aZmpngxvVbjLdbzMxNYVkW169eZrLtU6QJUmg4nkc0yshzB78yiUAjz0IM00bXNP7oK0/wO7/zWzzztSdYaNVRJIhCkBaQ5BlK6iRRAgjCcIQuJbZjU6lWkULguh79zQFz09M0Ky5zs5Osr6zgOR71po1rW6yvblCpmEilY+uKMIn433/3k3gqZ3HXIlIKLNskjhNuL29igZ8ZcgAAIABJREFUmhqf+dxfsXthEd+vksYplumwfOM2mi7Lme9+l+tXr3Fgps2071KrVjh0YAnL1nfsWIo8E3S2t4FyBtq0LWzLgqKE+EgkUZAAGo5j09nuMBoNCYKozAUUORsrt5mYngZZAlfutJ65uf6+MQjvua7/GGmX/Rha5ltLCkGWpUgpuXT+DJ5rsXrjIkQ9jh7ejZnHxPGAXCQszA84dSZjvDaGprloyi4jdowSBGRY5g5ITCINDdOSzC/NcvzuI2giRsQVHnr4K1y5cpGjRw8TZAkUZWaaZfscPnw/R+86guOO4VWmiXMTu9KiUCbV8XnsSh1hmFiOi1A6luWCVNiuS5oVrK6vYzsVNCnJsoTRaEAURdiWSZrGVF2XIi+pxJbtEacppmVx5dJV7vrIbp759mv85q/8FrbbxKlM4JrTZJmH448zjAWmVyWz2uA0yXQfszqJXZvErc6TUsX22izs3QVGim02MDSbcBiycvMmvu2ikltkvTXS/hpmHJElHUgD8nCEjDP0HNbWN2k0mmRZjhBF6aJIYqQmyiD3Imc46OF4HkmUlDN/SpFmKZmoMBiYZCLBtCDqx+iWAikZm5jB9SzCZEghGyUpU5Vh8IM0J0cRx4qtTsKjDz9JfzRCmT5ffuQRHvzAxwkGAZcvXiWMUra3tpicmkRIge15rG1uoJsG83PzpFFEEmzyNy88yj++T2BbGrqm0KSJbla4sjzAH9vH0qF7UJpDlv+o3fg90ucd9epbtzt1wn4a4fbTrr+buPvpHvPjQs9/GnH385m7n9H6/5244737CX8Xcfdnf/rnfHhu4kfuKwBNwOqNZSzLoNfvo+sag37MytoaiwszGKZehgjnBVmcoEnJ8u0VLl69yszcFHEc8+a5y3T7EWPtcYJgQJYkLK+scu7yDebnZzBMk0e++SxTrRqtVg3L0rEdm1arxcL8LFmcEiUBE+Ml+EIAtmWxsb1Gs9WiKAos16TR8EmTEK/iEAYJ0602Z85e5fixvQTDIW7F5c1z5/nuD15GKwoOHd5LURikWUZnJ3T5dz/1BU4cOYBUO3AaKXEdF6XK3KAwSvl3/+Ev+fDJo/g1D9u1iUYBmtJJ45Tnv3+aqYk2N29exbWrpb3I0EgzwcbGKs1WidGPwpBGq4ammQgp0Q2d27dWqNWqCJXT6wwYa4/R8GvcurXC2Fgd13URGvT6I27cXGWyUSWNS0hDQc7aap8vPPYE9991kDyLGR9v0u1tYpk2CLh06TJvnFtmz+4pDF3j4O4F9u2eI4tC5nctMOwPydKERr2KJgWm5aJpOprSiMIRURjhVWq89NIZpBQ0my2SOCBOAmqtOgK97GY6FrqhI6Rk38IsE5NtLNvCME00TUfXdYLBEMPUMXasc1KUdpjhsI+pazxz/ibfefk0nzh5jFazydKuaVY3lnng/vuRwuTIkf2srW6Akvzel1/in/+nczz+9ef52C/ch+97eK5NEAbs2j3PPfccx7ZtTr/yGl998hT33XOUyckJ/s0ffJ5qxeITH/8A1YqH45g4O3S1iYlJOp0eu5bmuXDpCg/cf5zBsMuFC7fZs2cP/+HPvsjHfule/IpXgmh0g1azgW7obKxvsrXVochzBILz568yOTXOjZsrHDq4lyzJOXfuEtvdHku756lWfeZmJllb3WDQHzIzO0WjXmU4GrFraZoP3n8MQxe88eZNlm9tsDTXZm1tg2Cwje+aXLtykYm5Q4xGO50pVc5kNBseaRYz6HV28N4KufPzD8MIx/ORoiwUlaaQoiAIhiT9LkpKcgT1Ros8F/QHPRzHp9fvI1WGaTh85MgUn//6m5y4524GgwDTMKEo0HWTiYlJwijBr1RoJ2G5AWSYIGBzY5N6vUlRlMMScTLCtE10ZVAgGAyG5Vxenu5kxBlkeUYcBeiiDEHWDZ04ijENk1E4BAo0paFkeT7KshjTsEGV1kohBb3tLq5Xwj+KorRrNhsNHM9henICz3OJogSZCzY31lCqFIP1WpWVHTiN5zkoTWd9dZ2/fPhhTN1idnKSKAzpdHu4nsNgMEAoxd2Hj2BZNlIJBsMB9k42X5YXVPxKmddnmqRpRpRkNJtN+p0+o2HAoD/AtHUc1yuhLnnB3UcOYJgG1WqVJE7Ii5xKxUPInH2797G6ukE4inBdh09//j8yPTHB6dfe5Nnvv8x9dx9mYX4e3/cJwhDDMDh0YA+3blykSBM0pUhzMByTznaIbVdJkhDTLSiykr73zJXrfOyjH+azjz7BPa0qvd5mmZ2mGSWRMFfouiKOIrIdgmgYBMRxRJIkJHHGi6deodfp8OTTTzNWr2Boilq9gaYJut0elmljmIIsV+R5DFJy8p4T2EJgug5ZmqAZGpblEEcJXsVlenyc3//jz3LyriOYpsXFc5fQdB3btqg3fKq+T6NR4/vXb7G/7aOUZBQEZWyBBEM3CYMIyyqJj2ur61R9n6zIUUInjiOiMCYMYhzLJSvyHVhHhlepIJBkFET9LvVWG6G0H1v+/UOJOynlnTt377h+vwX6sXXJ9avnsZVgcX4W0j5FElFv1BG65LtnLnHv/hpF2gJs1la3cF0bKctug9LK+J+8KEgKyq6kLBhFBTLLMQ2bzPSYmJplvN0k13TINVy/im64eH4T29FQZo0sl/jNFlIpDMsijtKyiM1S+tubJaHT85FCMAoCpCxjBwzDIAiGIAQV18XxXPr9HhQ56yvLGJqOX20SJQlxkvDpr36WT/zTk/zZnz7Mr//Sr2PZDkIzGUYxmlA4fp3uMCBKIEfDcPydDViDNCvIMkGhbGy3jqZsChIcxySNC5TI+e7TT7AwO4umCvJsRB4NkUVKnkUkOYyGIXkGtq2TFznd3gDP80iSuJxmzYsSqkpBmiRvMw8Mw8I0THRNJ4ojXK/CzZUO33jsSWYXp6hVLfJEYpgWg8EI3fRI05gsy/nKY08wNTOF5ZgloCbUePrpb7G6us36eoeJ2YNsbK2x1ely38mP0KiPsbS4h1ZzgopXYWFhEdPUWVtbw3IcxibGStvx2go3rl3ikVMP8d//k91MjXvYlkEQBphmg1wYWLV5WnOHqNQmyPK3Mg5/MnH3VuH6c3H3d3s9Pxd3P6P17pm7O4FMfpr1buDJu2EoUP45vNui+X7f8a1sjx85xrs6ff2XXmD3WPO9g9xZzosvv8LU9CStsTE0rUSRt5s1Gs0G5JIkEShRkGUFb164zDdfeIWZ8XFaYy2iOOHitRu8eOYa+3ctUqtbeJ6NEoKZmUm8mo/UJAfnppmbncKyvXJGTamdE1755mZnp9ja3MZxbYIgwnIsLM8miXO2Oz0c26Tb2abmt0mTnF5vyMzsNPOTEziex3AYMBwOmJ+e5eCuPew/sJc4jcv3IyWWVWKc77vrKOsbW7ieg2mX5LMoSnj0sW+yvdFhYrLFiaO7sR2dKAwQQhJHfRzLIUty/uap5zB0wa7dizzyle9w+MAiWZagNIsw6CPRyJKCtbVNHv/Ws3zt29/n7MXL3HvsAJ5joeuSIIhxbJc0Sbl29SaO6+BVHaTQ0TSF65pkUcLL589z/PAekiwjywuqlTpNrwyBdVyDKAqxHZetrSHdbp/FXfPs3bUPIco5mSwNyfOE6clxLNeloMwXS9KUa9dvsnJjmzhIefq5l9i1uAvHqxONRqyub5DECTWvwjAYlrERUifPNEzXIk4ClFIIBN1un0rF5/bqKr5fhVxwe/k2jbpHFIVourbzc4Q8z+hud/ndly6x0Mj4H/6b/4K8KLi1fJ1KxeXV1y+wuLgLpekYpkWt3uC//t8+w//52/dTZAW7FubwKy6vvfYGpi7Zu3c3tWqVF154mddev0CjXuVXPvohzpx5k0e/+jT//J/9Bnmecu7cJVqNBsvLa0xNTXP58k10XaPVbmM7ZZFj2QaeWyGOUkzD5OlTp/nA/fvpbPdxXRcQbGxsEwQhtXoDS1f4novr+gRhxOzcBMN+n6tXbnH1yjIzU+NUaz6Vms1zp04TjmKG233CJKLiO1RrHnEcYTsmr71+ntEw4pd/8YMszM9w9twljhzah2loKGXQ64e0x+fRLaMUMxSQZ6RRn2jUB3L82hhSd+n3B0gSXNchR1LkKb1eD9MyGQ1HmHalLFyVTpHnpEmMVArLNhkNE5QuETLGc32UblI3BmTuLJVqBV0UO0HFGdHOPNnCwhz/4g/+iI/uWaQ/CgjCiEqtjijK4PBREJBRBhk7VoVhGFGpVkniEL/iEMchAkkQDLEsAykNgjBka6tDpVIhSVN0zUPXbJRmoQmDotCI4xGGaTHsDzFMkyRNcO0KW5vbKE2h6zpCludBpWm4jkua5iil8dkvfIm7jh8s8d+aw3CQYBg2tVqdLM3LLDtlcdfRYzSq1dJJkGY4ngOioN5o7IjOkDhKUEpQrfqEYUAUxdhehSAI8Cql0NKNMt/u1TOv8f2Xz7Bvz25+/9N/wb7FBdIsw3JNbNvAcQySNCFPC4qi4I8+/WmOH96HYVokaUGn0+OvH/0quxfLEHnHtPjQAyc5tGcXURLhVSos31rmq09+l7XVLcbmJzEKgS4KsnyA0nzSfEi93sTxPExTsrGxjG5UyHMIB32W7rqLb3zz2/zKob1srN/G9zwKqSM0xbPfeY7JyXFs2y5FuV5i433PIRyNQGhsb2yCyHjwgTLawqlU8LwKuUywLIskFeQiRSmb1eVlDNPhG089x+6ZKf6vP/5zHnzwbkBnNIiRoiQRSyG5fus699x1mOGwy/ZWlyiJGY5CyDO63S66bvHoucucaHhcvHSRhflFwiAijMKSsGgaICCJE5qtBr1ujzRJ+eKXn2DXwjSWVRbc3/r2KarVKqZpoBl62fXLBblmIKIBUmmYlkNZub+3YruSa9x94thPXA+833o/cVcUP6QN5llKZ/M2ngb1mo9hC0yzQpDlRGnB/r05z768wWxzF1EiePXMy1y+cJa5xQU0rQQEJWlJ47XtKsFgSBjBCy+dRykHzQhpL04zNTdLEhnY1TEcf4LbG10QLqMgpT/cRrdchCaRMqfX2yZNY+wCttduE4/6NKtVomBEkpZ0WtMuY3XyrBQ+URiU3Ugh2ej0y05YEmBbNmleYGiS0WjI0y98B81RnDl9gf/swU+gDEV/0KcQOUkek+UDojxFN2yefvppglHG9Pg4Is8o0oyq6yGylO6wS5JEKCmomRYby8uYVkg4vM3ibAtNjLh65TV+cPoSkxMNhEhIZUihanzu849S5DHt2RqFKvCdKlmeYJolqVepcs5UIsqNN9Msf3EZRFGI0hSmbZMXAq/i02qPo5tgGDqykMQJhAG8fPoMtu0RRTEVf4xer4/n1RgFOZ/7wtdpNHYxGiY4bpNCFSzt3s/S0j6yTLLd6TA5Ncnm5ib9QY+KX0EpyWDQx9Rt1tdXkUWCyAZ85XsP82u/OMHshEvVM0mzHKW7hEWVQtVR7hxj03vIC4UQ762B33ZovkvQvbNwFcXff5bup1lvgVTy/Ce1Z75TfJabiqXN9M6Peee7+KG4++Hs3rur9/cDu7xz/Vzc/YzWnYAq744W+Pus9+vgCd7bxfvbvuv7He9f/6t/y28d2/Mj9+VFKR5vXrxOe6yF7TpIzUBIHcMQmKZBnkMUpHzyTx7mnrv3lRkiSqFQHD18oNxd7HRYmp/h2s1V9u5ewNAFmhRlRlSlQlZk9LY7yDxna6PDa69folHzoYDBoNyRr9UqrNxe4YUzrzM9MYbrOgghGQQBlmlRrVbJswypIE8kSZIyHAWcu3iVqckJ/uAzD3F039KOeBiytrrJ9Nw0URpjGQ5JGHDuzTcZmxhH03SqfgVNL20PSZJgGCZzkxM88sR38H2d6elxBDlK6QRhiOfo9LshUmisrG6y3t3m6LFDNL0agrK4G/RDanWPOMq4fu02RSG45/hRJltNjhzYDSQoKciznChMCYYBpmngeQ6zs1Ok5CihkcQBSRKxuGuBvUtzWJaJ0g1cr8qg32N+YRLICcOQZquJ69Z4/vlXmZwYI0kjXLtKnqdkRcpoNGRsYhzLshkOh+i6huU4aLqB0jR836Xiu0xPtTFtG9MyiUcjHNdhbn6WIskRqjxRm6ZLHJe7kEHQZ3Nzk0qliuNUuHTxOp1Bl/GxcS5dvMrM9DhhFFDkJWVwNBziui69bo//+/wqv3nvOEuLc9Rqfkk8i/pMTExR9Zs4nsup51/gq6eXefnSbf6r+8c5+/olhFAs7V6EImdmeoLz5y5ScX10XUcKwbnz15ifmeTChcu0GzUmxmo4tsHVqzdwHBvLMmk2m5w/f4U3z11j7/4FpNQxTZOXXznLwsIk33/+DXbvmsP1LdbWbnPwwF5s296B4pSDBbVGjc3NLV55+XVmp8Y5f/EqL71yAdeRRFGZMzQzNYnvO0xMtMlEwuTEJINexGtnzvMrH38Qy7FwXIut7W0mxidwbYevf/sFLly8wbOnznD02F76/T4F8OgTz/DBD9xfkvyUoj/slQRbJYj62+i6wLYrFNIhQ8d1NLqdLeIoKmdUbAMlFZqmoesGluOiLAuhNNJoRJ7FDAcDmq0GQZijaRBFPbKkhBA4rsO/+cyTHD2yD9exWFlZxXFsNF0jSWLW1le5cvkKD8zMYFoOUtMQSpKlZYacZdkgdroDaQ5SQ2qKOBiWFqxBUNJku12yLMW0vZLI6rkIKcqgexRSFWxubGC7JfQhSyN6vSGb61vUGjWEKOhv93nq29/l6NFD5OQ7hUZ5rsuLEhwilcbB3Xt38upMup2QP/iTL9Cs+ExPTZLmKVmeYhrlbEsSxyVZrz+g3qiTFRndXpfhaES9VkcgSJKIbnebohBoSidDoGkavX4JP1JKkqcppmlx9MghhKY4eeI4460Wnl9B6ZI8S4nikGDHzmroOu26T7NRB1ESJF3XYapZo+J77Nu3B6UpJiYn8KsVHNdmc3OTre1txpptrl5f5sSHTtB0XG7fuoLtCJReR+oK3XBIUkGW5Gyt92hPjKGUxnA0ZOLQQZ479QIf3rMbw4TOdgen0gBgZmayFMtSISiDr6NwxGjQw3EcbLfK9HSbZquBYem4lQpCKobDEbZrEmc5V68s02jV2Fjt0W7WQQjWN3r0t7f58AP3kasIv9Km3xkyMVVnOAhwHJtjhw5gWII8j6n6DXr9Abv27sE2TZIwwbQc/uLp7/Gre5eYmZ0kT1XZsdYVeZ4ghSg3AgxjJ9bn/2XvzWIsOa88v9+3xB53z32vrI21s7iTIimpMeqenu7BvMw0bMM9GD+M7QcDBubBD8bYMPxgeGygDUOtNkY96oXdUkuiJEpsbZTEXSTFnUWyWPuWlftyb9499vBDJClKokiqR7JhWAe4KNzMm9+NWxkZ8Z1z/uf3F1i2zamjt6ANRZrGXL9+k0MHFhmGCTl5UdTa8ytEGzjE3FhaZWR8Ym939rNb091Bnwf++I+Le/AHlep/xfjQzp38afHWsSyaW6sM2ptorYgJyTG4vrQMokyjco0nX9nm+L7DZDJndm6BA4cOobVE6cKXElGcs5ChtSDKLF598wIbW6ucOnqKbpKSY7C91sQu+6RY2I5PtxdSq45TqroE/QCRZ4RBSMUv7XWpB0xMzeBX6nQHQ155/VWmJyaLOVnLYjgc4rjF/T7PYyyzmNE2HB+pBMNeB4TEtFy67Q2UgMnRSe45fg+HZw8Rp0XHWAiJ77qkcUTJq2CaDlEccXD/fibGapi2RxTH2LZVkKfDgLLrk2cR4bBFp7lKtWSTRj2yNECJFPKMYNjj0pWrHDmwgKlAKU2nv82tx09Qr9TQcojKNUIJpMz3SLSSYBhimHuedErvQYsyDGWilARZWBrkSIKgQ6XqYFl2oW7ICgCNNm26vQFjEyP4nke5VMbUJfJMcunKZTaa21QqZaJhyD33PEivN2BsrMqg38P1yjTGxmjuNrl8+Ty3nj7NcDBge3sbx3EwpIltayxL8flH/ox/81/ci2EJTCNHK+gFIdr0Ec4kjdEFMlWmMTaFlMVM2S+cj3tduZ9+4QPO2V8DKOUfEu8e1se3IvhpgwTy9wopH/SaX3yv9yd3H/zaj5tC/Da5+w3FR/nc/cfGh1F4BL9cnvkPWa985U1GSyVEllEABXMUijzMWFm6gONUsO0yWZYS521INcNeQL8/oNPpcNuthwjiAWQJ3U6b2287Rrffx8DkhZfOsn//PmbGfJZXrjE1P0+UZtiej2WaGNLANk1M1+Qnr7/JoB+xuFDnyedfxHUKQ2otIY2KqmqlVMZ3XfrNNuV6hd1OD22apDnFvJvj0u30MAyTn7z6FicO7efQ4jxpnCJyxWM/fonf+8efJk16DHt9hr0uWtk4ZgmtNM2dLXrdPqSKYaf53gB0nuYcP3iAhflpojCm5JeJkwTHtmm1djEdk0HQ58C+WU4fO4LIICFGGgZ//fB3ObJvDrdeRWmLsdFRPvfXD3PyyDwLixMYhqTklclygVAax7X53uPPc+LYERzfIiEm7KX84PvPcvDALE7VIoq6aGliGxWiuMtg0MLQCmFYhAnUx6dIc0mcDBkfr+H7HmW/xk9efJlg0KRcKlEbGycTmjCDdnObarVGlkq+/s0fkqWK6ZkKURhQrdX28O+SdrtDpVohTVL+/Ctf58Thg3iOR5JFKJXglUqsXrrK+YtXOHDgIAkZ1UaZt19/mbrn4LkmtudgOn7hdZaH2K5Bu9Nj2S/zzz91jPGxOR799jdJ4z6eNhmZOcBDX/oWW9vbtIOER15a4V/dP8qsnzA5McqBA/P84InnOHJoH/2og+MZzEzN8OqLZ4miIdqIOXZskbWNbY4fP8z5S+e59eRBWtsDri2tMjMxxpVr67z2+kVW11rccss+dteaBIMO3V6L6YkxSpURlpdWmZkdI8sCGrUKlrKJkgTTduj3+mzv7DA6OkKl3GBlZb2QHinNkYPzbKxv0ajY7Nu/wLXlm4Rhws3lDXynhOd5tHabzB2YoFT1C7pif8C3H3uKxcXDVOtljh6e48ihWR78xGneePUs9957G7btceaNa/R7MDLlYtoBOnMxpctm8wZrS6sMdwPscgllwKDdIksK4pph2pjKZtjvFb6CSVZQYnVCtxPj+TXc2iSGZWBbmlZzBdssiJgChe8rpCXR0uPFiz3uvusI5fIUwjHIogGOJUmyGKNU44H77+LffelR7ptZwDA0eZywuXKVSskmiQrPrOGwjWv5kKWkScogzRGqhFuuM4yH2JaF4/qkwx5ZGhW2SYZGmYo8ihkEXRzfIgwDTNtBkGKbXmFoLmVROJExx08c2UNpFzCJYThAqRRSSa/TxbY1pha0djYZDLrUKjZ3njrAxPQYg7CH69rkqaAfJpQqlT3yZUyWFsbkcs9vy3Ud+r0eg7iPX6kSxTnVegPHtchyA0PZPPzwNzk0P48hc27eXMV1PCqlGmmUYhoW/aCNNjVZmhMEKY5TJkoi4ijnh4//mJmpWVqtLrZtYmgYDjqYpslut4freQwGAyrVClmWoi0DoQWz89MgBOcvXuX40VMgh1Trdc6/dRnXCTFsH9dusNvtEMRDTLsMpOR5zkR9lP/lb7/Kv/23/yN/9eW/5cjYJKblYykHLQwCkkIBkQnyPAFTQZ6RDvqQFOqCMB6Q5xmWYXP14hJ/83eP8s75M9xz5z2Yls3StSWe+OFzfPLT93Hx3HXiMOfJZ5/k4KEJbjm4iOM3SAXcvHmdmmczCHMykZITYxgmpumwvdbkb7/+PRam51AK3nz7LTY2moyPNzg67rOxts7/+flHcLRiZnrqp75gWSFPzbKUNEmwLINBMkAahZx5dGIC23XxXBvft0iSIYiEbmcXU0kywyLqd6iUHELtovnZan4/jLAPHEEVerxfGr8An+CDt4oflty9P/JcUq2OMgz7SJFgEpFnDpcuX+CZ62/y4B2znD8fcGj+AK7tkucp2rJI4xRyiRYa23LIckizjDgTCMPh1MkTzE1NM0QzOjqP4zSIhUnJqzII4MfPvECnPWDf4jz9Xh+VQpQF5FLguD5auBiGibAEgyhj2Ak4cugouYYgCrCUS0pAf7iNyAXaKWO5JaIgpvAJz9DaZOXmTSyjKHA0Wy2q1SphMCTLErRb2AfkWY6UGmXaiDilubPOzZsXGBlrMAxioNj7dLodTEMTDQf02+tkcYTKY6LBFpZKyJIAgSigKAJc2+f4oQWibIBKFUJnlGwf08gxrULlkaZJQbzM3/1N5mjTIJQ5Mk3I4wipINEZUu4ldkKSZTlkGTqX5GlhSp5nKaSQxxnSFIyMOMS55sKNFc6cv8j2TodOr8/MXAOd23z6k79DpVFjdHKC2sg4tZExMoru8qAfMDE5hUqGpOR0uh0WFubodVsIBWk85N9/80+585ZRvvXYGd652OTNCy3a18v84PUVHGec43f+HtofZ3TmADnqvVGW91MuhfjFhE+In8JT8kxA/g8Bpbz/Fb/4F6JEYVj+/scHrfl+m4T3P/9o2MrPv/8v25MX33s3oXv33zzP31u36Hb+8g7iBx2TlL+lZf5G4jed3P0/FVEUM7q9DhRt8VxIQECWsnFzGctW1EfHUVqTxGnh9yQEvX6feq1CHMfUG8XAvG2ZRFFEt9NnfHICrRSCjMnpMf7q699idnKcxYU5gsGAN8+8zdbGJlIqDK1pt7uM1muYWlOpulTLZVzXZWJsDAS4JcXYRBm/5oCI2NpaRwlFtVYp6KB5hsxToqBPlicgBAf2zRGnGdMzI7RbTep1h4MHJ8jzAMOw8XwPISV5mvO5h75Go+Lh+TajoyO8ceYcGTmTU5NkZJTrVWzX4s+/9HXeOX+VuakxXM/hsR89w9zMFCW/hGXaXLh4hcnJCdIsRJsa1/O4eXOFhZkZdptbSOBPPv8Qdx49wOLCJLlIiYLC/NU0HTaiB3ZGAAAgAElEQVTWdwiGA249fgwpBf1Bn85uh0rFZ9AdUK17WI77njlplgeYlqDdHFIbqZHubSxlFmHkCb3+kFqtMJhtbTeZnhpjdHyOq1dWicIU13IwpUGparO6uoZlWaRJxOzcFMNel5HRBufOXaJWr5PEKd1uG8M0sC2TE4cOUq5WEAKiOGBzY4tBd8hOu83IyAiNsVFMQ2KbmvmZWeojI9y4sYLn2PQ6Xba2N/HsKk+cWyOq25w8NM362k08p8wtBxbodnq0dxMmZyZZnJ/i2pVrPPfODe5o9DhwYB8CwVcf+RGVkst2c5cjhxdxPQeEYmN1k6vXVnE9m/mFKWzHZXZmhizOmZwa4ennXuLWUycRIqFWczh8eD/7981y9twVJibqZAI2mzscPbKfQb+H75iMjI1SrZfJ8qwgwZoGUkIcRXi+x9raetFtzCWPfvdZTENTq5U489YF7rv3di5evMraRouJiQmyNKZa9XAci8uXL9OolqlXfVynkB0PgohTJ0/w7LOvcPDgXIGaz8AwTK5dW8H1DEplm7n5EW45sgBZSKfdxjAcciExPA9XSZo7HaRlUK5WCYcRrg8JEUJke5X5Yj4vzTLKZZ+drW2qjSpSSXZ3myiZEEUBrpUzGARYjkWSpUjDwPbKxJFFHIWcvOdT5LmHNhTD/pA0Lbq5YZiSpwkvvPAq9+2bIwgGIAXlaoNet4fExNIFlS+MM5TY62JlOSof4mhIo6DoBglBkuUUCHqffmcXy1BIJJZtYWiN0gVFrt3ZolwuI6RE6kLiLaVRIMrzjDAKig0VSSG1FT55MmTQ38G0Kni+hxQK03Do9YZIrbAtA6kUWhcS3VazyaDfRyoBQmJogyRJiJIY09AMgyElv04S5eRpTrO1g9KCfrtFEkeUPIfxiXGEIYnDHMvRZLLH9u4SbiVF5wYKCIZDfM8nS2OCIMIwTP7yq4/wwL2389Y777D/8H6UVpimU9BqM4HrekURJo1BZCRphue5DPtDarU6N64v8dSPnub2u04jTI9w2MeRfTJhcPnKMkEQc+jQYdJYF/I520UZmmevXOWe+27jmz94it89cQzDKuYhkRKdxaytLFPyygRByDAYIoUkCQIc18WwnWIeTQgee/xJrq0ssW9ugjtPn8TxbOIkZm5uikMHFlCWoFqvYhiSQ4tzjI016PXa+OUKnU6f8ZER2s02/+FL3+D0ieOYhkESpSRJjufZLM7PMDs/jeVqRkdrTE6M872rS9ze8PBLVfbPjGFbBssry5TLLpBjKouzZy+yudnEdV1sy6bXDZHoPaKhYjjoYxomSRoXnazMwLZ8cilAKjxD0Gu3cUuVX9jqfe71q3zq0w985D354/YBzv/kOn7F++ibvBTEUYBMw+KplOzsrnDk+EnifsjJE5I33mpz9OB+uv0eaZaQpDmGbRDGMTGKMMmIkpQ880gSjV8eodPpUypVCeMIv1Sh0+kgyTEE9HbXScMeB/Yv0Ovt0hitYZhg2WWU4ZLngjQbIowMlMK0KiAGxHmPLMkxDEUuUmSuMZWHY0mkgEGvx8rNFf7yob9kanKOxsgI1VoVZWiCKGZyaoZcKIQ2idOcLB4iAVObdNu7SDIUxVxyY3QS1yphaZc8HaKlJM8jgkGHJNjFshWt5javv/wUx44eJwxC2sOiw56mMVqJArQjM+JYY5qKPCmStyRJyLIUwygUEVmeI4QkS9OCcqg1Wze3yFSVVi/Hdjx0HGE6LgBBGGFoo9jEmw7onGHSQsgUS/kEhiAxDPLM4MXnz7K6NiQZpGSxz/XLawzDnOO33kkQJaA0fqmKYXk89+yzjDbGihnGcMDExBitdhNpWKytb7D/4CHazRZffewr+I0BSTxgd2PIv/jUZ7jtlsMcnZtjdLzBqYNHMeUIX3jke/z+P/kMKJt31ZYflAn9YnL3Pmnjr6U994vvKT/gj+Yf+lb/cYK8X/7DH7Tux+0gCvHb5O43Ev9vJncfZG3wD40vf/GrHPMN4N3krrg4qTzl0sULaC0wLY8wTNCGiWkaKAXN1i5ZllOploDCWPL6jSVKnsfo2AhCalrNFn7JY219nQfuOs3oSGHYHQUBBw4scPXaDSbGxzHtAsTgeS6j46NUKy6u6+F6Jb766Pc5e+4y++cnsWybPKfwoEKipcS0LDY3tnAsk3gYIGRGkqY0xkbwfJ9ypcL/8O8+x90njtLpdJmdneLatRuMjE2wvd2kWqsxDAKyJOaO20/iuDYAr7x6FtMymJufISVhbW2dMIw4urjIiSMHqTdqpEnCzZV15uemMQyTNEkZGx0jy1KEyLAcmyiKOXLwANtbLb795JPcc/oUd5w4zOzMBLVald6gT5qmeF6JJEp55/xldppNnnzhFfbPTeH7Pq7rsrGxzmijwbMvvczk+DjDYb9ItvOIfq/Pys0deoM+tm3T6/aIgyFZHGH7JcgoKtJp4T/k+CWq1RJZEpFmEcGgBwpEDo7jMjU9jus6GEqxurrBwuIcP3r8eSzLpFGvkOVZIY+JC7PxwaCPYSoajTr97oB9+xfxS4V8LgoGrK+soi0LpQzSNKXeaJClCWma8W+++F3KZsq9t5/AMFOazR021pokScTS8jpK2Jw5+zY7w4T/7Us/4H/915/myOFFtGkVs25Zwv7FBbSWewPmmn6vT78/4MDiPqamxlCGIggiet0BO9stLMdgdmaCcqXG6GiddnsL3y/x3Iuvc/99t7G4fx+NsTrTU+MICv8qLXJSoXj8qRcwDYXv+yyvrPLUMy8yMzVOyfexTINvfvtxgv6Qe+44wTsXrnPyxGHGJxo8+t3Huf+uk3zvqVe5/747GalX8Eseg36PMBgSBAHnzl6k2xvQarWZnJ5BGwYHDyywtrKO47o898LrnHn7ItvbXW45NENv0CbJYtrtFo16la2NLcrlGto2SRGoJODK5SVO3Xmq8L+TCtMycByX/iBAaRspCoPc/mCAaRiUSiXa3Q62ZdHv9tCq8GSKwz6O6xEEIcrQSCUQysSxR5huOPzJ3zzFA5/4JGkeYVs2YRAXFME9+MSDD36C//kLf8P9++YxtAFCF8WVvJBouq5FhiYMAto7O4TdNpcvvEmntUOapkhd0GulNgpgTJZjKEGeJmQIet0eai9xy7Mcy1H0ev092I1GaYNkz2i5223jeS5SSaQhGfQCvvXw41xeOs/JYwfY2Rnwrulup93FsV20oTBMA9MwSOOMbreLqdWeJ5bAti0cx92TKFsoXZgwZ6nihZ+8zJm33+ET99yBVDnNrU1s22FyehqhBJ1el0a9Tsl3kDIv5Fi5II+LtcIgIgwCgiBkfWOLWrXGp+6/B0HOiZNHyffmW6Mo5dzbVxgfH+W1V8/wV199mDtPH8cwFUE/4l3suJaa2ekZPCG4urbKzL59EAck/U20adHpRChVAGu2NrpMzkyQRBEZGS8sLfP7//hTPPfcK9y3b66wLpGaXMCw0yIHyuUqQisswyCNYyxTI7VmMAgK8qTS2LbF4YOL3Hrrcfyyj+sVcvB+v4frOsREgMDzXJQqCoeeV6DqLdvloS9+laMHD9JqdSn5Hp7v4Pk+tmWzvb3JwsIcQgqSLEIbit2dXV7bbjEedPiLr3yXO04cwnFtxsYaBMMAKcFxPTzHoVIp43seWmv+j3//VQa9Hov75tja2OCzD32Fe0+fJM+zQiFiWihlkhKjDQudx2yubVCq1ZBK/cy99tmbHw+m8nGTu+Vz6/gV/yPXy/KUKBhw9eLb+J6HlBIlUgzT4tmLr+KYDkfGj4NUiFwThBH97hDb8+j1h2hdYXd3gGnY7Ow0gT2aqGvtFfXWqVRruJ7FztYmpAnNzetMTkxQKTkMowFaSobDXfqDiEqpThwHDIMWcRghhObS+SVqFZObNy5QLddRWiNURhZlBN2AJOmSJiGGklw8f5Fur8vv/qPfIwgHGKak3WlRq1TZ3tpCSMmFi+ep1uoEg13SFLTSOI5Nt91ECEkQ9AmjYK+rBOGgzSAY4lia3dYmlbJNFA4pl8v0+x0828W0TN54+y2yLKVer0EWEwcRzzz/PP1eymi9TL/fJ88zHNtBqJwojIpufp4jRGEVYpomWZrh22Wa/YjvP/Ejjh89gi0jEqEKmXiaofak9kkmuX5jGaVtLMMmiSLOvnOT8xcucGjfIlPTk8RJn9N33MrIWI1B1OLuB+4nyxSVSg2/VMJyHLY2m+yb20eSpizduMr8/ByXL19ifX2VkbFJfK9EpVziqz/6CpbqcebCFf7lZ/6Io4vz5Fm050UqkdokTkEZDg/c9ft895HHefz5Z7jv3rv2EpL//yV3Hz6v99vk7v9T8WHJnfiYj3ehKB8wW/qh8UG2Bx8V708I3/94/bHHODnReO+4c7HXKo9Cdre2GJ+aQ5s2hl1IAmSWsbO9w+TEBI7jFJs9ZRAMQs6+c5GrS8vsX5jn7DuX6PQ7zMxMMNKogZQIbeB7LqZpoqQkTVKW1zZ5460L7Judpd3uUR8p09puMRyG9Achd992ilrJ4zs/fImTJ06SZRpDWnR3A5QGzy+TZzmlkk8UhnjlMrvtHr7rI4RkZXmN+2+9nSjIuHJ1DZEbLMwfJJUxpVIFhESbkqnJERzbKYxEo4h+b8CpE7cQxyHpXuU66IcM+gOGQcjKyipTM5Mszs9gmUV1/1vfexxTFebGUgik1gXVLwoYG61x7+lbC+y7qTFds9gcOzbBMKTZbOE4NvV6mYXZOXZ2tlheWcPSJoYyGR2vcfPmMvsXp6jWGwiRYZo2SZShDcX09DS2vTcvIgvZT32kQbvdLaStWnHhwkUmxhto3wCZUCqbREEfyxaYdqUgigHt1i4/fPJpnn7uDJ9+4G6SNOLIkaMM+0NGxqo4tlWQVJXCME2yLCEIhmxvbzMxNcFgOERpRZrl2Npke3ObSqXK9nYT13O5fPkGX14b8OI7r/OpUwc4sH+OmzeXePvceU6fPMbVy6tcvnqdWq3CmTdv8PCZmxwqB/w3//wBHMdia2uHjc0m3/z7p/mnf/A73FxeZX52lp2dHUZGx/naNx+nVnIZmxzjc3/xNT5xz2288vJb7OzssrPR5ejxgyhXkyYZV69col4f5bXXL3Di2BF2Ox12drbwyiUuX7pBvVLnjTcvEgYRc3PT3LyxxqEDi6ytrjE1Mcr87CTr61ukSUy1XObg/jlqtRJZrnj+pbMsra1yxx3HGaka9HsdPvOZB+n3hzglF/ZQ8U888yIP3Hsn1XKV6alpnvnx6+QpnH3nMvWKTZ4LnnjqZW49dYyDBxcYrZYZHasyDAdICTOz06RJDplBLgK0CVL4dHe32VzfpjE6AkphWy55ZjMcxrSafcrlEaSWIGDQ7eLaNnlemN8KKXAtp0DS+xXa3ZRypYIyNMNeB0MKbN+n10txXZer6y2CxGB81EebNuVandXVFVxLARZLS9d4+613eHBxAdM0yckJgkI+LaQuyISGhTY0tmPQb64yM1lFkhXeTrkkCgOuXLpKGscoJIapiYIhUZTwhS8+TDyImJubRSgwlIlpW2RZQpzExSZcFp/VdV2EEOxs75CECfV6lVsOH+bUyWNI0+Chr/w9rqmZnJqk3xtSH2mQkzMcDsjJieMEmcNgOAAhcDyXKI4Z9PvkeV7MBloF0KjT7nDs2C1Mjo8QBAOyLKFWq5NmkGd5QZJMIvIsJAgjBp2U1nbISHWOLBtgOy5RnOA4Lts7TZQ2GBufIM8zhMrQRrHZSqIEUxt87gtfotnc4p47b2ffzBRjoyNIqXBsh/Zum2xPavfWm+c4duQo8wfnSZKMdqvH+OQog90tfNfHtBW9focDi7cQJwF/941HOHbLIR48MI+aneW+e+9j5+zblL0yeSbQsiDf+qUSaSbJ8xwlC6rfYBgglcIwNP1hYbJcLpdx9iwpgjAmzwWG1DieSyoztFEYw2d5ijYVpmmw2+6BEEhgYWYav1yiUa8xv28G2yk6tkoqpIJer0sYDFBa45Y8fMvlx9eX+GenDnLH6RNUSz79Xp80Sel2B0gkpqnwyz5KCVbXCiuFO08d4/DBfeRZxgsvv86RhTmmJiex7AJlb1kWWZqShn0QiiwKaDWbjExOgNRk75uvea3V59777vrIe/XHTe7OvXyOxujoR66XZgnn33yNfnMNQyuCKKTme2RpxuI+xfefucIdh27DNG3iOMcyXGynjFYGhlHiyadf4PnnXuSeu+6lXJbYjsS1cobDFmHYYazaIEm7hIMmjooRUZ+Kr3HsjDhoYaqUsL9LGu5i6oz27jrD3iY6HTDYbSKylG995a+xVMBEzcNSkh9+7ztk2ZB0sMPrLzzO6JhPEuzSaW9y7foNPnHnKWwjpdfeII17pGEXI0uIwy5kIdVKCUMLbEOjTQ+7VGV9bY1KyQGVgsyxHYcoCnA8h+GwR5ZLWs0W42PjJNEAKTKyOGRiZJQCCJ4wMT5NvVIhCvtYpgE57O4qPL9Mo1rCsFUBg7FtlFLkWb4HTEqAvTm6vfk6VEJjdJT9++ZwHUWaDJCGSxwnuG6JLMtI05xBkPDaixdIowZnz56nMtpgYrTG5NQc6zc2MMQoTz35MjdXlthptrnzjk/Ra0esbawW9hJScO3qVUbqI1y+dAnbMpmdnSCOEoL+gHJlBMu2ybKE77/8LVqtdW6fOM6n77oNx5KIPCnUUWgs02EwzPErEzTGFskMh7n5AxyeO8affeHPePCBuykMMN+VHYr35sx+5hzPxS/IIT9+vIdn4cN2zr/O5O6jpJofJql836t+9pn4+Yzgp+/17po/v/77H/Db5O43Eh+V3H2c+DBrg1813l0ly/IPTPo+6I/o7/72K/wn+8d++npRXIDIYfnqEr12m/r4HEIrhJIM+h06nRblUpUsE0ipSeIc8kI+uLS8CgLmZ6Z5/e1LfOelF/n03adQEuIUTKcwxO20+5i2hVKK8bFRpifGcF2PjfUtPN/EUArHcfi/vvgId548Sp7mXFlZ4vDBeWzXpNVq0txpIpTi/KXrjI2PMwxCLMtCmi5KapSUbG9sMz5SJ7dTaiNlyiWfP/vyt9k3M0EcB7hO4V2HSBEyJ4kyLMsgz3O00JhmhlYCQxnITLF0bY3rq6vcdcet+L7LcDAoaH3KprnT4rFnX6Fe8piYGMGxfUzTIMlj8jzGtiXbG12UqRhEQ5RhoQyb7bUdoighjiPckolpaVaXNjh6ZH9Bz1QmO9u71OpVRhoVsjxGmybt9i61yhjn3lpmeWWJRr1MEsWUqzW0aaNslyBMkFlxJRoOBkxNjrG1tYVtlhj0AnrdkEq1gdQFpU4gUVKilWJmYoxTR48V/zcKBArP9Vlevo7jFACWYDhkOBhSrVfJ8hjLtjBNE5mnmIZGSAUoGiMjWIaiud2iXC4zMjbBU8sb/Gf334Xr5Vy+cY47bzvObafu5IUXXsE2S0xMjTAzM8nX39jgf//X91PyXL7+909TKbmcPX+d48cK9Pv83CQP/d33OXZkH+3dNlPTU8zNTBJHQ8amxrn3rpNEYcr8zDTVis/++QUe+9FTLB6exTQsmtvbvP7qDVzLo1ZrMD5eB5lSLpXJEsWTT7+GaTrMzc8Q9DtMjk9w4Z0rbG3tUK+4VKoVzpw5x/zcFEpJ4iimVCkhpcPOzi7/9A8/iekYJGGLyfEG7d6QXIByfbRhoLRBpeTR7w9ZXmmSI1jcN8vkWIM4CLhxc4k8VWhlsrh/AcsxCAd9ShWX8YlRwiBGSpN+GDMyMoEUQ6SI0aKEqVPCQUh5pMb2zi6e4yJVitQJGRGGpRgMQ2zLIglDPM8jE0bRmRMKUxokKaSpJJUeSVJ0aT1DkAwGRBJq9QkM02CunvOVH53nvrtvQdg2URJhWprd7WX80jiVWpkDB6dwd3v0+0MsLRgOO0jDQmiDVAKZAEMSxkO0GNIf9HA8D8vysR2HJIoY9vp8+/vfo+yXKdeqeOUyreYuv/PgJ5kYnyi6cypHicJ3TqmCMJdmOUkcIIXg6tXr2LZDEud88W+/wT13naAzaGM4FbJcc3hxnumZMZSUlMsl2u120fFSouiWZzmmVmTpu0h8cD2PYFDMBu6223sXXXB8hZKFpCyKIrSSYHq4rs/W+ia+60Aa4TqNAmpjgeUAeojQNq12F9NyeOzJZ7nt9tvwXAchJZZpkKRFNX3YjSFLuHLpMvfdcYq77zqNYUrGxsdZX9vEdX2iINzDlwfkKbz82hkyZRJHHcZqVWrVMXSpRta+iUDT7rcYnxgpru8CTp86gWHYkAuM2f3kach3vvI1bpmdZ3ttl97uAKPqI6QkSUCSk8RR0amwLbRhYNsGSZLh+j5JmmEqi34/wClVkFnRUVxeXsZ0bUxVEEUtyyIKhsWkQCzZ2W7iujZ+ySWKi3P2ke98m/m5KaIoAHIEhYRX5Dl+rUp/EPDZP/0Cadnn1lEf07IwUFy8dJ13Ll5D5pKpsQkSERCFAVEcFhAa38K0ii7jxvo6z770BlOjo4yNj7GxvkZjrEwUDYmTECMNwTDJ4rgAgcR5kby+bzfwxNXVX2vn7qkfPM3ivgMfuZ7Oc7ZXb6LTIZahcMseUbhNfzfm6s55/tGJT2I5BnESkZFiWBKpM+JoQJJGBEnG7MIUZT9F5jmmkoS9DqQQxwkiHpCnQ0iHmMRYeUKUJyiVkaUBadDHUQKdRgT9LSwjprN9k4rloeliWiFzMw2mR3xMUXSoly4tMTs/g++ETI/V0KaCPEApyfr6NjVriCbAsyUyi5HEdLZWyKI+pgZDC/rdFtJw6UcgDQfXddEip9Vs49pltHJIU4lpusTZECktqvVxhJCkSYQSCZIclSckWUiSRXhKkkQBpinJ0pwshck5j+qIjYEGmWMZNuR5YXuQ53vQlAJapZRGiD3/TVOT9Pu45GgEg7TYtUspC9qt55GmOa5ZImZAebLE+Uvv8M7rIbEUvH1pmUgoXrl0HioVKm4d05KQpxhKM7+wSLVc2I34rsPStWtkpJhmcV0Mg5jdZodGZZSn3noc5cVcvXaB/+oP/wWTUzXII7QqzkglNYZZJGyG4yINi2GUkRsuShd+iKcOnuCz/+HP+OSnfio9/mXJ3cffJX9YfPgav87k7gPf/Vfuun28z/zxwS6/Te5+I5Glyf/083n3u3NQ73XVPqIsofY8mH5ZfPh45gd//5dCWN53XO9aI3zzkb/ngdnR9/1MQi5NyDPi3U2Q4NVqCHLyOC4GwTNJGsLq5hrSyLi5vEzZcwmCPtMTYzimTWO0wchonaSXcGhxgZ2NLchSXNuCLGV1ZZksjil5Fttba0gpMWyXpZV1xusVOrsd6o0Rjh06hFQZ2sjYNzdNniYYWgM5YxOjLJ1d462LV6iVXaamxwjDAMu0ePX1N5mYHMewLKRp09/ZRhmKyniDu08dpVYro828MBAVms2VJq5TRaicTGhyIUnTCENbtFpt3KoBMqdc9QuSFxl5nqAMVfjb5SGGqTh+eIGDBxcoV8uEYUAapWihcR2fKE64cXOT515+jTtOHSEJI/IgRtsWaRpRq5ZJU4drlzf4/Jcf5ZMP3Mn582v81SPf4RN37CfOwCuXyYWCNIMsQwnB5OQErmNRrrlo00IKybDfw9QZu81NSpWicheGEWGY0Wr3ae7sMLcwg2Fp0jQjilLyJEJJwdL1Fd544xz79+/HtE0QguGgT5pHKCOnUp4gyySGZWH7CpWZSKFRtoftepAFRLkmyTKElEXlWirCXjGr8NCL7/Dm7jr77ZjFfeM0JicR0kYIkySKuXDlGseOL7K+ucN/9+ff47/9g0V+9OQrzE6PUa/alHyLq0tLbKy18EsO8wvTTIyUGfT6LG20WNw3hW1pdnd3qY/WkQJarQ3OX7yIlJI0B8PQ1EsNWs02N5Y2OXZkln7QZWTUx3NtnnnmJSr1BqalqVfdwrJBCja32tQbFZQpqFR9pqanefWlMzimTbc75ObSOiONBla5jDBSZudHMGxJlie4pk1nN+Tll89y9PgtJEGAZSp6gxaNapVhd0gUN9na3CGJE2zHod6ocvH8dRy3z9zUCKMjkxhmiGGVGA5XuXLhCp5dwvddHFsThm0sZ5QkssjzLtqweOWF5zl26nacko+hIoQwGAQZrlNGC4WpJcN+H9t1EEqSJDFaRpBGNFs7eK5NHA6RQmP7PmkuyaMAIx2QCZecBCEMTHOc6XrERliiVi1hKpM0SqlUJ9ltb2EYBr5XYfPsWRqVKnkOSppEYUASDrCNYpYtCQO01NjlUbIkodMPkJaitbODVgK/Po7vVbHMGk8++xMWF+ao10qEcYTtWcRxgEgiwqy/R/dTpEnRTVNKIoXC98uYhsPWRpNz5y5z1+23Q5bQ7zbRMiOKIgQJYTiEXGBbLkJEBQlSKYQwcfwynu/R7XdRe4keIsZ2PHyvQrfbo1Qu7dkomEit9gphNobSRGGE53k4rgtCISTsdraxjBK25ZMRkyfvXuclBxbmyJIE23MIwz67zR0cQxP0+vzgyR8zMzPPX3z5W/yzf/L7DMKUPNOs3iwk46srN3FNgwToBxEvvfImp44exbMMvvj1b7JvZgq/6pJnCgyfnZ0NRJwhcwenNIHlmAipSEQxoylmppFWxqNP/Zg7ZybwfRMhYywNIjNIwgihBKa2+ftvP8b0xAiGVnQ7LbTlIKVk0OvjOTZ5ltDa2UAqQRiG1KoNDGmyub5GpVLGUAqtNMNhiF+uYXkOaVZI1gb9gCgS/PiFn3B8cQElTXZ3e1has91sUR1pEA/6PPy1h/n9z/wBn3/qSf7ze+4hJyZKYt48d5EjBw/w+AuvcWD/LF7ZwfVKiNzEtizCMGRzaxPHtbEci9PHD1Ot+pTqDtVqmSQGrWyUsDAdmwxBLhSm7bJ8/Rr18fG95C4nywXV03cxPTn+MwnfR93fP0zR85onP+MAACAASURBVPhzT3Ns3/EPXQsgU4prVy+RD1tU5o9gxy1EmnN16SoX1rc4On0A0zToBSGW5Rb+kKkg2t0CoUmynIXxUcpaIE1BlsdEaUCWCa6cP49jV6jWHLQUxKkgFCmuIQkGA7RSRTtDZIhcIqTAMDSDQR/TdtCkRMMhhiEwTYcMiW0IFvaN4Fk5WkgMw0RrAyk1tqGZaJQoV6ooVXhz5mmCZUr6Xeh02kiZ4BgC11TEWUoeBdgiI4tisqSYNUYK0ihn2GkRDW+idAUpC1lvlgZAmzdfvcjlC1eYmp/GsTRaaBKVkQvJ6uomjl/CdDUit+kMMlINlkiA4nNqo0jmoJjr300hU5osCLBMF4VA5C6mW2KYD9GmhLREqjz+8qFvcPzULYSdmKeff4nFWw7xxovnEEmJU3fOcmN5g9bWJguzByibDif2H2J+bobF+f0cPnSUrVaXyzeuMLewHwSYto1hOkxOjdFoNNjc2KTf7VCplvm7p76G5VrsLrf54z/8I3bWN7AMiZRgmoW1jVImSVx4HEoKsnDh5VdQenMpyJGcOnyaz37+s3zyk594FxsCec7PuxwoIX4BdiL2/N8E75LnP/j77zMW+NDz/lcHtPxq8UHdvPeO7GcOrfhURePl3ecfXMJ5F5Tybhfwl8lc343fJne/gfh5E3P4gMTqI5K7Isn61ZO7X0fkObz6/AvcPTXyvuPOSDKJSDOuXbxErVbDrdTotbvkORhKYTsO/W6f8akxXM8jDiNq5QrdXp9uu8fU1DhvvXOB2fkpap6DyDMcxybOwC9X0IaBZTtUa8UGr9YoYzs2WQb7FqaRMiPNMnaaLSrVarEhk+D6LkqrwhQ3jjG0wvFs9h+cY3xyjOWVNQxt0ut2WV7dII0zhoOASqVMyXeIk5RcSHzXR2uF0gbhsKh8CwVCZrS3W3t4bonrOWghsWyTLMvYXGvje1XOvHWWmalxDNsgzwS25aCVA3lxwS/tzVF5JZcwDHF9Z0/fP2DYG9Co+ZTLZeIkxXI8zr9zjqXlmzz8ncc4un+RLz36A/7L//T3qI/W8F2XKBhQq/rMzUyRAWmWkwmB79fRpkmcD/GrHkFQVFUH/QGmNhj0+xhKMejHpFFCY6SB7RiUSi6TU+Nsb22jpCYMQkrlEn/y53/N/Ngo1UqZF15/i7tvv5VcpGR5ihAKy7JJ4pRefwvyHEOZpKHCsHKUVghZSFDiMCmIijmY2iCNEpQQxHHEl155i9CO+a//6DPMz08DEMURs7PTdNsdrlxdolLxePzcBuv9lP/+j07z+plz2KZdzGZIzdUb6xzYN8+dtx+n3e1y9fpNpsdHOHf+KiePHqJU8rh2fYlKvYzreJDnWKaBazu8ffYyYyMNllfWeeLZl7n11GFmZ6f47g9/zPFjh/jJy29x+MhBZmamqJRcbMugVPGp1UqYroGlUi5eusypU0dpjDRQpuYb33meY0cPFGQ2Jdna3GKiUWV1aZWy7WFJi3NnLjE+Mc43Hn2C07ceJ80Ef/rZr7J/fpIbSyvUR+poZVCq1lhZaxJHWeG3VPKYmqiTCcHl62uUymVMN0dnOd12j9XVAQuLC/SzJlkeEsR9RA5pHKDyHtKosG9hjJgQJW3SSJLlEYZpkOYpwbBHnkrSNMey7MKGQCrCQYg2TLTWaKNA4FtmgqFdSuUGWRITJh2kEBhF0RZtl/F8xZnXzlCf2k8UJWhDE0UR1VoVEAgp+NOHv83tE2OkaVagvQ2DYgMg9jyaPHr9HgDdzTbkmuvX13nj3BIzUwe5srzCd59+gWFvyORIlUa9jMhAGQZKa7QhEaRYjk+n3cW2C6mxNjWKgkCXJQXFUAg4fvQWdra3cD2bUqmE0gZSmhhaow2DwWBAnITkuQZRgBAsy2Aw7JOkEaZVVOUd2yaOYvq9PoZhFL6Bgz6uW3Q8O70uSVx0hK9fv8G5ixcpl7wiWVSCJElwPZtwWCT2Udyn3exj2TZaSWzHJCMjSYMCE+/aaMui3etxeP9BSrUat508yhNPPMXXvvddyrbJy2+c4bbTxzBtgzTNyMhxXId+p0d7d5ejpw5x/OhB/LKPY3tkCJ594mVkHhCGO0zNjhKJkCzL6PTaSK0wTIWeHyFNJU8+8yIPLs6jtUEYRe/9vg1T881Hv8MttxwmCgLm980jpSAXGaZtE4ZDkriw2JBK8Pbbl5memqbT7uL6NoIUqQQ3rt9A5oLdVodXX3mL2flxDKOYcwyCIUlS+DUePbAP13Vo7XR56OFHqbguO9ttSqUStmmxdGOFU7ee4vJwyIPTE0iV09ntMTM1Tr8/wHUVt952mJ2bmyxdXSLPcpQhiJOYcqVMlmaYpvXe/do0PcKg+LxJGqGNQgYfx4XViWUa3Lh+g8ZIA8M0yRG8cXOF2//gD/lwTuavFss3V5mpz33k61JgY+UGhEPmD51mc+kalit4cflVfvfY7/zf7L1prGXXeab3rL322tPZZ77zUPfWPA8sklUcRYqWZMu2rDh20nbcaCAwujtBgg4SIEh+JL/SaTgNG3ba7e64Zchqty3Zbk2mVBQlzmORRVYVa2DNc9Wdh3PuGfe4dn7sS4qiaLLUkJD80CocFHBqn6nOOnt/w/s9L0JFCCPN5+pNM7fK0SldXeCp51/gnbM3KRZ9ygMmIssLQF4hH9OoDw5i0M+jB52RpjFqHRwiTZNMa4Q0EGQoV2CaNlobVKt1NPF6wC7yQpPSCCPGkCr3szMlAvLRhjjCMDJSneIVXOIk94zTaYLlWIRhmBNaRUxtoEwQ9ImjGCFjlNTotE0YrSJEF6Ej0jShUi2T6pAkSQjjCGXB4sIMlqkwKWA5AmEKymUPtCZNc2/ONIG5mVmCIMBzfbSWfP1vj1AplqkWfeyCRRSFiHV5Yv75NdevNzj11mk2T0+QyC6ZSMDQ9PtdlOkjcOg0m5w69Q67d96P45qsLXS4eucSm7bsINWKW7euUR+usbwU8PDDT7Bnzx6GhgeZ3rgByy1x6fI5aoODWL5HyS9SLBYI+n3a7Q79bh/L8+iHEWGU8uyZF2knDVrdFp878BkO7NtGErXo9xpkOgdpua6bz9RLiSEEURySGSZxKhBmgXJ9FGHK9Swkt5aZLG7CHZS4rvP+HvxwcveJBY6PaVvdbXL3/+X6+7p6H5+siR957Ccf//Pk7meyPiq5+3AaLz7QyfuoRO+HXbSPT/A+aR7PMIyPfQ4ArfWPAFj+r3/x+/yP92//kdc3DJCGyfGjb5MEAZWBQeIEfN/HlAZZllccTMskA6IwZn52gdu3bvOd54/y2IP3EoYhR156Hdc2mRodwLIUb5x4l0tX7lB0XfyKz7/8N/+BXZunkdIiigM6nR5ZmiCERhNjWorBoRphPwD0ugbdJokiXMfB9wv0ut0cAmKa69XWjOWlZQyZMTQwyAuvn+Da7Vm2bBpntbGGY7skUUK320GTYRoWSZIgjJxS11hdwXd9ojjlxIkzVMo+7UYbMOh3I7701e9y+MAeNm2Z5M7tGcggiTRvHT/Lt468jKMkW7duwrIVBd+j024ThTG2pVBKkaYRUsD4+CiO52O5Lt1+j6Jrs2l6knu2b0PZksnRKgNDVXy3zMmT7/Dpxx/AQKJkTglUloXtFojDmCgJaHVXcRwX2/YRJCwvNVhcyL1qLEtRLFfo9QKUUty5fRvLNhFGRrlSRWuR+/nJlG2TE0xMTRBFIYfv3U+WadIsptloUasN0F5r4bgOJjb9fhfXU3Q6K5w5f5nR0WFERn5DIXRKEsasLq1SLBS5c/MO/+L4ef7Jbx7ikft2ceL4SaY3bSBNNc3VZZ488hRPPP4w46Pj/Ld/+DV+bU+RbUMWJ09f4N57dtHr9tm1azNbtmxkcKDGN77zCvfdt41tOzZjK4OZ23M8dOgezpy5SL1WoVqrcOnydWZnFhgcqGNKg4JXoFous9Josmf3DpSZUSr5XLxyjfvv28edO/M8+shhdJZx/fptLl+4xPkLl9myZQppGpQqPmsryxw4sJvvPv0SxVIBy1Rcv73Anj3bmNowzjPPv8pnPv0AqRIMjgyRZBndMGRuYZmC63Hf4XsJogidan7hwUO5dEfHjAwPkmUpXrmCkUl27tzG0aMn6XY7TI4XsZwqu/buQag8+Lpx7ToLiw38Qp2h0WGkF6FEGZFJbLPIqZMXqZZcVKGC4ZjM3bnCQH0UaXr0giZpBoaRkcQhtnLWk7jcP8mQJo4puX17llq9mge/RY+w10RJH3SOhdcSjCRiZXkGQ2Q4hTIpmo1DVb7ynXd4+KH70VmSd8czA6UUYRhy6PBBvn3k+xyYmqbVWsM084TSMASO59Dv99+XL9kqox/2GByssWnTVp564XXOX73JLz36CC8dO86hfTt47pVXuH//LsIownFdECLvCtgurlMgieL1k6cmifX6zEuGTlOePPI0R557kR1bNzIyNkyvHyBNhVI27549R7U2gGEIlKUQ0qHgOyjTpLW2hjAEnU4nB0yZiiCISZOU2zMzedAfrZtyR3kn0PVyY+9nX3iZXTu2MThYJ9Mp1nrxKNNg2SbvnDiPAIplN7cKSVMsx2ZpaZlMp/iezZ2ZWSrVMpkwcT2PguetBzyaTdMbuP+evczMzPKrn/8cSZqwsrqKXy5h2wpBwsryEkXfx6t6+L6P1uTdRQFDYx4DNZuBsr8uBy7S7yeUi4N86c+/xYE9+/mjv/0uhw8f5NixE+wfHKAf5QUi17FprjVwHZsojBkeGWZ0fBRERhzH693NDClzsE+n06ZareA5Jf7oS3/G7m1bQGh836PX6WFKk06niylsRkfHsNyUoB9iK5dWs0W9XkEaAmVbeIUCIhPs3b6VoaFRzpy/xPz8EmXfp1go4Jd83p6dpzA/z9BQnbAfoKRJpVJky5ZJkiTk+NGzFFyXTZsncDw7B0LFIY7j0myuYZqKXrdHe61HbaBGlqW0Wy1c1ybshXz/+dfYMDmOY9uUix5rzQaFUpHMkPz7c3f49OMPf+w1WiDWqYp3F7Tu2bOTf/WlP2H/tgMfe1yaQangcOf6FWRxBN3t8tevf5cvHvoVlGVTLleIophKpYKyTOIowrYkcbzK2NgY06MbGCkVUVmIVBLbsgjDPn6xkENObEEYKqTp4DoCmWZoYx39LnJ/PENK2r0WWWrQarfpdloYRoq0LAQCRznEZGgEWoNfKqLTNLeBEAZS5b6EOZpDk6a516A0JXEUYiqJaWYYEixlYqm8QCN1RtRr49nmBxQCKd1WQJR2kDJmYW6BanGCoLeGzrokSZ8wDjEtSbFcoVT2iaOIJAVh5HL2UqlErV7H8UwyUnZs3Um1XMB2Mjq9Vj4aIRxAgNCYmaIyXGbbtg1IDOLIJ0sUyATXL7C21kMqKPk2g2OT3J6Zx3YNhuqThNrn+vUZtHaZm1vlC1/4B+zbfwiEYG5uBs+zuXDxPEOjU0glc0lxyadcKpPqlEsXz2M7DgWnyHOvPs/TJ54jMiOu3bjJI9s+xa8+9isUXIMsCrl84QyjI5MoM6PgF4ijeP38ogmjGGXbxJkkRWF7gzjFMhgGGbnHs8gyXN+iOdNncKr8/h68m+Tuk1gSP5R4flJE/BGPNe4uTv5prb+vq/dJFgsfnNsz7qIS9PPk7mewPjK5+/D6iH5t9lH//nGvcxdkzE9KEPOXysgrK/lzvPjCyzwy8aPD2EmaewV1mi2GamUqA4MoZRNGEWT5jzfohZi2ibHuHVOrlGisrPLphw/z5tunOXbqHP/gi59lbHyEXrtNqVJlcHCQoNNDArXBCpcuXWPT5DimYRLFIdVqlfZaC3SeITSaa/iFAp1Wl2LRJ0lTdBLRarXpdrtIQ+C6Lp1uj//4nRcYqVZxbYty0UUqyZvHz7F721YePnwPcRpSrw/w5rGTuYxxfBS/VCRJUpRSCJHRabWpD9QRmaDZ7PDtZ19GpSmTk5N87ZtPc3tmgS9+7lHK1SJZllIq+QRhSLfT58gLb/KPfvPzLK4u8+yrb7Bv11b6QcDc3AJjI6NEUUwUhSRpguva2E6BNE3p93oE/S5DQ0M0G2torbFcm6HRIcJ+RGe1S6O5yuTUGL5fotNpEwQRUZTPdJgSFuYXGBsbodvO5WNR1KNYLjM4NITWGYWSj05SHNcmDALKlRJSSjzfQRqKV197m1LJx3JMHNtBCgNpmjz3wmts2byRjIyrl28xMDCA7Zr0+x0MHLQOMJXBlWtX2b59V066EwJ0xh9/+W84fM8uCr4PQjA/v8h/mG0yaqzy+COHsCyH0bERlhaXOXHiFPcc2IUUmonxSV47e41/9hv302w2uD2zwKF799Ht9zh06B5WVhrM3JlhZmaefTunmZgeJ+j3KVfKLM8tcfnyDfbu287M3Dw/eP4NBmtlSkWfdqfDQL3Ktas3WFpssrzSIAwDGmtttm7fxNjoEMqymJ6e5M6tO7x57B2mp8YYGxnELxa4cvUmggzXtqlWKqy1u4T9kI1Tk5Bl3HNgNwYZnmNR9Kx8Tsj3QAjiJCEIA0wlGRse5sq1a/TDkH6vR8Fy6YU9bFdS8BxazTXeeOsd9u7ZSRgGnDx1kV944jDN5Zt89wen2L9vJ9IGJWyUMpmeHuPc+ets2jxFlPbprobYjo0UNhsmxmisLOBVqySZwFOC5koTt1DANHP5DCKnzZqmJE5ipGmQ6pQ4iYn7PUp+AVNZGEohpYVOU1qtLrZrI0xBGGoWZueolBRJnBLHJoalsJXLi6cXeOzxB7HsHJwUBBGrjVWKpRK2bfG3Tz3LAxMjWJZa9x5KWW008PzCeqKpiMMYp2DlCaAhKBTLTE9t5N3zlzANgycevp84Drl68zaGDhifGEdZNlpnORkzzZBSrePq86QijTLu3JlBGrl1wtYtG7lv/15qA1V0muB5PoZhkpFR8suQwbnzFxgeGsLyCuh0/XMUfJRl4zgOnuex1ugwO7OA5zoMDw1gqvx31O+HWKZDmiWkcYJhGOzasZ0ojvA8JyfbdjuUykUEkkuXL/PiGyd4/JGHyUREBiiVUytN06LX7WMYBrbtIpC4tk2WZQT9PspxcpgSGb5XYKBa4+SpswwOD2E7NpkwsC2JkgLPcnL5cMHDwGBttYnn2qAjGu1Vyp5Je2UFDIVpllCmTRTDxUu3mZqc4M9ffIEvfuHzHHvrJI9u3ogwDJTtEHY7dHtdKrUq9doAt+/M5AoImfv/hWGQSzJ7fZSpcByXOIoxTZuw22X37twDLo4Tnn/pNaIgZmpyA7/3r7/EPbt30A3XUIbDa6++xZsnT7FhfBTHcVGWxcL8PI6t8FwHQyquXrtJBmyaGicMQ8qVEkcvXGAwitBxyMzsHO+cu8j0xDj//ht/x/bpDVimnZ/jDY2hcnsQ27bRWhOtB7mO6+KXirTWmkhp4rgO3W4Px3EYrNdxXZcw6JOlKa21JtVaDQzFa7eX+PSnH+LjglLBusHxTzCH/+BDh/m3X/lT9m3d//cfJAQ6Cem3V4mkx+TgANODoyjb4bnvP8Xk5AaUpTDW91KaJugkpWBDpVTGMRWu1LiORSbJi6IIkigm1SnSlJw+dYnVVpta3YcoIU4TDJlbkJj54BaG4ebSSlthWyrvdicJRpZL92NsIq0QWUQY5jLoXreH6xUIwxCl8jEC08y79IZhEEURjusRx7lXnU411roliRACJS1M0yCOIjIEmYY4jrhw4Sr1wRKmzKgVa9heGUdJms0VhoaG6UUh5VKFNMlYWZ7Bcz0cpwBZSBQH2JZDr98ll9ymGIBSGVJmSMumH0R86xtPsWfPLjQpaEFED2HGKBzOvnuV61evMTIxAECvm5LqEMfxaAcprx89xujEML12wrHjJ6nXxhHCZHJqmtXVJgvLi3iei+8X8P0ilXKV+cUlTJnHRonOOPbGsZzgPTzCy6++wF898zc89tlH6Pf67BrYye984bcIej2kITFJiMMew/WBdVsm6PV6JFGM69pEYZAncTrDUB5+sYbl1rC9AjrT78eW7+1cU0m+8jd/wYMP3p/Hnz9h5+7j1k+enr0HNcp++trMn+H6ac7c/TQVAz9ffLTWV+vs/dvd6IClId6//bTWH/3BH/O/PLDrx+43paLX7qGTBLEeAKY6Q0qTVrPFpYtXeefUOXSWksuscmPNku9hqXzeq14psrbWwnYUwrJASorFEtunJ9g6PU633eJ3/rPPoeMYZQheePUkvW6E53h5xbNaw/M91lpreI6itbaG4+TtfVspbGVi2xbLyytcPH+Df/TrX+TShRusLC6Thl2kFKRJynOvnciR5Eb+Ph95+DCdtS6vvPomnXabVMckSY7bLhYrrDU6CFtRLBX5xQfvY/fGTaytdrBNm08/fIhKrUCseyzML+J4LsdOnMYwTP7xb/86mYwoFEz+81/+FFqnlPwSu3buwpQWX3/yOaIwpVyqkJkKhIEUBq1Gg2LBpNMLuD2zyJ35ZTr9HmEaUywOMHdnlZPnLwGa1cYahXKFgl+gWi4RdFosL91iYKBI3AFPFQi7HVCSVICw8kAbaRLGXYShCeMI23IxhM3czAxzs/Pce89eqtUyaRrhuDbdfpder8sTjz+EkAJTOjSbeQU9jHrYnsRyAtyCQhkmuzbfw62bCyQRNFYaXLt6nd/4lU+jHJsgDrk9M8uXb6/wv/5XD/Pf/e4/JOgnzM+vEMdQqQ7w0MOHuH3rFrt2bOF/+uMnuX3pJEkUEgYRlUqJWr1Cu9UlFpoL129wYP82ZBbgmDHPPP8KhVIhN6tNNWOjA1QGqrzyxmkkgpmbS+g04+Q7F+l3+5hSMT+/wuOPP0gQBNxzYCc3b9wkIyMNe3z1q9+kWvaxTEEShWCaFEslCrbLSH2Yd469S2zY1AZGcWyX1mqTS2cv05i/xcLMTVYWF7lxa5Z2t8/po+e5df4mCzdmEf0+Ny9eQxgZG7dOMTk9wpatk5y+eJ4zFy4xNT3K6tIsJd/iM4/fw+2bV1FK8Ktf+BRvvnOWqLeESGF1aY3VpRXWlkMK5VEMW7B//xSG0HhmjWrFxrMzbs9eod1bxK8JoiQgFQ5ZYnH9+iU6wTLdTogycyNux/aIkx5Bv01zbQVDanSW4DgGcdwjy1L63ZhUm0g1RHWwQqybpEmEYw2ydedBpPLywCnqo7KUfj/KZcxLy8RRbrVhWxZDQ8PoNGV1ZZUDe/cwv7ZMmsXEaUCqI0olF61TtE7X8eiS2ChQrI2RJAYLs6u8+tLb7Nk0zb4dW+h0WoyNT7Bt83aUjJiZucXMnduAiWHYWJaLwCBNUzQQRiELC0t8+Wvf4J3TZ8gAx7Gp1it4rovlOmQit4IJ4i79MGJ2Zonvv3gM28kD/jCKsZSFFIooTImChFazS9Gv8NSzr9Ht9Oj2epimiTByuE6r1c4tJko+q6srRFH4/jk/ikM8z+XihYtcv3qDQqHAY4fup9vp4tgOvX47/+2GMefOXeEHzx0lxcKyCqRxxuriCjqIcT2bOI7otFtkpHTXuvzbL/8lZ969zHe++yyzs0tYhQKIjCuXL+P7LqAJ1gKIYWl2mQtnztBtLjE0sB0d2bTaLQQxQnWRVkya9Tm4fyuNxiIl38oJno6LVArXz33eOt0uftFFoJHKZHrzNLZjgzAIohDLcul1Qzy3CEgkJp1OQD9oc+/Bvdy5fZswTNCJwaH997Nl81ZKpTL/w+/+DlevX8W1bLrtHq8dO8tnH3kcx3JZmF0iilIsz6HbazE7e4Pf/zf/D/v2bGdsdICl5QXeOv0OreYqkbI4dHAfkxsm2L9/B61ul1434IuPPcFaI2Dr/h2UR2qkRkqSJmRa0w/662AXCyklSRTTbC7h+S5xFGFKC9sqMHNnDtd1WVxYZq3ZzqW1QZ6Mv5/Q/QwCS8tS/G//+//MXxz5ysccZVAqV3A8l6HRYc5dOotTLGMoi0q9RpiG636dSW4zZOSdtiz06LViUiPAqSp0wQI0ZJqCW4BMYCmHWBu4/gZmZteIdYbteLiem0uO80iBNEl5++gZpGmT6D4YmjjIsCwH05Z045Ann36RF167hGEolHIwlU25MoAQCmFIDENhKZs0SQj7EWiBKa31UYDc6sS1XfLZJU2SRMRJl17YQot1+WyWEcSad06cI0tDkqhJ2FplqXWGVmceG5+XnnmVkjeMaXp4bplSeQBl54RoIytgyRJhH5JA4tpVhFaYMkGICCOzckWMafOLn/tlzp0/jyktukEDy/DpLCekOmFsc5360AB2QRKnMcePnubUW5dpNeHIk99n45aHWetKrt1aZnrrNNt2bMMrW5huyrU7F9m3fx/lSpFmq0WnE5BqiW0Z6CTmzs3bmCgMJH/yjT/j2VPP0hBrHNiykw3OFBvdMTZtmKS5skwS9tH06QUrZLpDqlvYHoDGdTw8zydJNEIKlFKYSuWF7SBGOQUSrfOkb724+8FmhZ+4P/0N/5+wsizLmxv/P0zs3ntvH7z9LNbPO3c/wbqbzt0HJZXvw1v/E2wMPvx877WX3/v7bjbEB9vCP/jBcz/WtQOIhcnKtUt0mw3qE1NoIeh3uyiZUxTjIGF6wwYCneDYNjqOuXLxOmOjo2QStm3fzLbN0wzU6yzNrWJZ+WxElmmcQpE//NLXWVhpUC26jI4MolyHzVsnEDJDqny+J+j0KXol0lgTxymul2v7G6srDAyOY1gWmDFry1127dzF7OJNNm4epFTzcf06nXbC5k2TDA/6VOs1PK+MKQRpklCuFNm4dTuxNnj39DmOPPsaO6am8X2bxfl5/EKZOAwYHR1iodkAZXD48D7K1QJKSuIgpBN0SZLcu+61Y8eZGB/iT7/2JL/02MNUKlWuXLqaI+WlQZKCjlMG6hVarTZ/8bVnmBgrUi5X0WlGSojrFKhUS5y7dJmJkVF0rEmiHk+/fpT/+rf/C/7ia9/jzZPnQk2iRQAAIABJREFUOH/2EqfOXWH7pim6a02aC7PUyiVwbOI0ybHMWtNrt4mjAJHl5M+4OYewHFy/RCoEUqR4peH12cAWrutgKIflxUUQmkLJJ0lSwAQd4HoCnYKlXHr9gE6rh1+rIW0baWSUK2VMCVHQpj5QxpA5LvnCuUu8nQZs8yIqxSJBNyCNElwnl9cmcczC4hJDI2P8kz/4Nv/yHz/Cts2TtJtN9uzdxdjYKBcvXsvNwknZu3sHQZRQq5RJs4zdu/bmHdEkQCoXz69QqRYZGarwwIP76YU9DhzYx7Yt02idcOrMJaanJ7Acjes5FNwiICh6HsIz2LFtE7Nz8+zfu4swTkjDDkOjo9QGhzCU4uKV63Q6LQqujRRgey7jWyfphzmuWhgGhYJDpVJipdHmxOnLWJbJ8GiV4dEqFy7cYWxkEElGmoRMbdxEP+hRLZUIwgy/Uqffjzh+4iJjIyMIrRgZHOXlo2f5jd/6PPPLi4yMjGGKBCkzDEMRJykrq6s4doEgbJNmmldevMTWzbswpINp+kgB2jColDxUprEsCGIDpWzioEUcp5QrVQzTRWeSuBdhej5Rms9PRGGPNOpjWSZhGON6ZZASzJQoDCiXKiwsrKKsjEyHOF6Nh3cN8q+/+jKffeIRZBqxutZmbnYev1AkTgN27t7Mt147w32jo5imjSEV7Xbe2TfIyHSKMvJChY4T+msdgqCPYcKuPXs58tzLnDx3iUP37qdcLvO9I0c4sO8Aw+NjpOtnSiM1kDJhZXVuvXvkUSoVeOiB/UxNjaN1ShhEGMoEaWCailQnRHHI6uIy1WoNv1hg09QY5WoRiURZBpal6Ac9DAGu56BMyfLyIo8/eh9xHFEbHEIpm3ajQ6fR5pvPPse9e/bQaXUIgohCqULB9+iHAZZpcfnSNb7x3Rc5ff4OW6c3smF6FJ3lHcJqbQADC9e2qRRzyZuRwiuvvcHU5ARuySYzdE4ZTTMsUwESu+Cwb88O9u7bxu7dm6nVfKJ+A8v0KVeqOEVr3fQ54i//6kkmxkbZtHmap7//Nlt2jQMuwdotDCNGWcNESUy1PkC5PsDo5BjvNtrcf99+rly9ysGRAdAGpqFwPYlEgLZAKkhDpDRItMCybHScsNaYoVYpE8XkoAyRYSqTMBJcuHKLrz75XX7h0Xvx6y7NtSae7+IWLOpDRUrFKgB7d24hI6VWq3H+4mUGBovopIdnFUkTk7PnL3L6/BW+8Cu/yNBQne1bNpJqg+MLCzw0XsJUBlna5eEH7kcoQXmwQJJoTCPDcWwyIfH9MkmkUcokCnOibLPRwJDgWGV63Q5eKYe7YEiW5xroNOXytWvs2rUFaZqsrCwzMDJMJiRnWgEPHD647iObJzzv/dF8oAgsxEeCID4pWpi5M8dwcQxD5jX6D8YXpgGd9hphGDHke9y+dYfB4XHeefsY2zZvpdfv4pcGgARnfbYwzkBYEtMycU1FHCaEYYTlFjBMRRx2IUvWUf8S10nZNDVKpjNSsT67lxoo06IfdonTlNXGGiPDQ9h2PoeYmTmZOcsESZqxecMUowM+BU9hGAZhFJEJiJIw72nqfB4/Q1DwPXSaSzQxYqSh1qFJVj7va8l8vg8Dy3IwhCTodsh0jGuaHDywDUOnEGdgJFg6wzQFpqfIjAzDsOh1WhRLPhmCVmMZQ2QkOkJLuHFnlm8deZ2BkQmuXXiL8clNJFoQxiGeBYZO8ByT+mCZOIpxilWEjnBskwyBMhXDQzUs4ZBECdt2TrM4t0JpyGR+XnLhxilmbjTQep6SP0aagqUcNkxsZMPkJMWSl9PGh4cxTZPWWpdnTr3A915/Fn+wwOzqHU5dfodf2PYYj9z7EOOVCQqml8OgXJ9OGBIlMY1mE88xKJYKSKXI0pig20FKQUaMYeZ2LaZpozONtIpos0K5NorpFN7v1r03GpZ9IOjdtHEr//ef/Qmf+ghCrM4+uL/F+h7/wDTd+v5Ns+zHfgsfvz5a7vnh+/OnzzCM3Frlg+CWT3qN94AnnxR2Z5n+xJm5v2/wKs8RPuGN5NTVn8syf9rrrmSZP+X13nf9ngzzbuSY760PHnbrrWPsHan92DEag3CtSafbY2BsgswQ9NsddAq3b80SRwnKlJRqpXWohkQKwUuvvc2NO7M0Gg1qlTJBEOC6uUwIAY1Gk4LnMzlcRzmS8eEBpISo18NQkjTRmFJy5fJ16vUqS4vzeVdN5PjwpYUVhkbqIEykKVFKUCvXSaXJ0HANx3PprHVpr3X5d197ks986jDVWiW3mRCChfkF0jTNEfUy1+5PTIxgGyYvHT3Onu1bOX32El8/8iKPPnAv3zryHFunJ/EKJl4hh3nEUUIcJYyMjeFaDq1Gi507NyOlYMfUJMb6tzMyNortukgF7bUWx06eZaBSptFo8trxC3zmsYOE/RjDkERpgF8oYxqSkl+gUi2jlEIKOHxwP6fPnOXhBw7w4L17uXbrDk88cpgoivnLbz3F/r07KFZrhAk4tk2WJNiWjcDAVnkyl2GilEk/1NhegW67i22ZYCjINJZlrZ+QBb12G9d1cDwPUzk5eZOYOA4oFEroLMVxLQp+AcOUpHEMQBB0MU3B/PwC1WoNKR2WFpf5qwtn+Kf/5S+zaeM0d2bmGBoeRJoGN2/dplar0O10aIYpf/HiJX7vdx+g3erQaDYwzRxOMTezwOpSEx2n1IeqaJ3R6fQI+n081+XIM68zOlyjWC7y4ksnGB0e4NLly2zfvoUojNi4cYpz5y4zNDzAS6+8yROPP8StG3eYWZhjcnyM6zdm+MHzb7Jrx0aSNMbQcO7slbw7bFt85a+OsGfnVq5cu8HAQIXpqdFcVqgUyysreJ6DMASuVaBWqyEyOHfuChs3TnP02Bl+7Vcex3YUXsGhudZiy9YttFprNJstSqUSYRwzMTnKpYuXmdq4AcOUSEMyMjzISy+/RRCEeJ7DwYN7EMqiUqtikNFvt3FLpXyOQynKpXJOIw26JHHCpo1babe7VKouwsj3g2PlCUKaZPTjmIJfyWU2SYhSFonOMJWNEAae6xBEObDINCVSGjndrtNB2SqXPSpFJnJIQNhPGKgP0+00EKIDsoxtW7x4dpm9e7bT63apDw2TJCmlUhnDhDRJ2L5jC//8z7/KEzu2kSSaYrFElmYII8OQBnGiMV0P27Z55/hJBBnbt27GcouE/YCZ+QX27NxGpepz7fJFNkxN4RdLaCCJE3SSYNkmUkmEkAhhIsUP5emWctCpQOgMA9DrBucig2q1giEkUkkqlXLuyZlmtFoNOu0WlmXi+wVm52YxpYnjuEhDUSrmlew0TXNbFmFwz97dhP0urmPjF0tkwsBQgn7QJQj6TE9PsXfndu7cmePQffupVEr5rOy6HN1SCiklkLG21mLjxg3Ua7X3L/wC6PcCin6Rfj9AylyyJgyBlDnYwnZdUhGDhjQJuHXjAmkckQmbfiegPlBhrbXK1at32H9wJ45tkwYr6DQmFRYZBrbjgSHzc0DSZusDh7n34G6yO7OQ5QXHfnOWbmeNQsEnEybSNOh2c89LMsjSlCTqI2Qum+t01giCHo7tYLsO1UqZh+8/iO+5tNtdBgeHc+COAN/PfUYd16FUKuK4DmfPnOP++/ejE41jO3Q7ndyb7uABfNdiYLBGFAWkSYxSNsfm5jhYLeD7Hgtz85x59zLTmzZy+swZbt6aZ8PEGEJITDuXIetUI00Dx3WJ4yQ3pvc85meXeerFV9kwOoLjeYhMUip5+CWPDRtGUcqk0+vQbjYZGhklE5IHf/u3cjS7WE++PhDM3c0V/JPivKtv3GBsYuKHx38gMtQapDSQImN1dZlMxzQbq2zYsIknv/NtZubncIt1qoNFUp137MN+QiYEypToLCFOUzq9jJmZ63kX0BGkqSBJDHQCtq1yz0UDpFSkSUqShBjKQGuwLZfa4Ci2Y+REW0MglYXIBEIa+fXI8TCkQBoZSZqg1q9PlqXQSYKUuRRTKUWY9FGmRZLECCPLeQA6wbYcoiDENNejdCOHFWmtMQyRe2xqnfswKhPQmMpEJylpqnEcD9fxkEZOyI6SOGcnIJiZm6NSKSOkQa06RNl3cGyTzRunSZKYNE1wXZeMjCjWKNPGIMPIDFIjXSc+yg9kQJI0CxHSpN8zmdg4werCAgvzTT7zuScoWC6DlTHOnjvHocOPcvbkBY6fPc715Rucnz3P6WtnuLV8Hacsue9T+3j2uRcZ8wb5/MO/xtTgFE5qcM+9B1haXiZNNdPTmzAMg+WVZQaGBpkYGyYJ+7nFhJHbVigTRJZCppGmzOewhYGpFFmagnRIhEOpMoiQ6hP37f5tB/jLb3yVQ4fv/ZgdLX78nvX9+5P3se6uafL++VP8uED0k14zb6j86GtlWV6i+dGmTfaRieXdvb9PTu60zjDVz2fufurrbpK7jPyi98HMSnzC7YPHwUfP3L2X1KWpvusO4HtvYX5+kcOi95HHJHGKLeJcslSqkaU59lYgqVZqFH0Pv+yAyBA6o9Pu4peK1EplhgdrbN+2eR1xLvnat7/H1et3GKxXGKhXiJMEz3Op13OCU6PRZKBeJkoSlpdW0DrjG8+8yH3791IoGPjFAgD1+iD1epW5uVlqtSEATCloLnVJjHwmot8PMXQ+E7hlaoybN+4wOJSb9ypL4qz7LKVZhhQCKTTtTpeRkUF2bp1GpxkvvHqcf/oPf5NvP/U8G8ZH2TA+SLfXoFYtkWnotkO+/t0XaKyuMTkxRqfdYHV1lbHJcWSmcbxcOqpsB2VbBP0Onuexb+dWquUSjunwmccO4/oWa40OQZjw+vETdBo9Mg1gYCmL69duo5OIdrvF6ydP8cD9+0iSiAMH9rG82mR5tcHnPvUgtbExEm1gmCY3rtwgjRNcJ6Ef9vCKDgvLS9ieAuEipMqr5AZ02y0M6bA4P/8+zSqIYnzHwvN84lQgTUWsUzqNJRId0+32KZWLrLVWKRTKxEEPtY55dsyMKA6o1wboBzEiMfi94xfYNSDxHAfX96nVBvjGt77DwEAFv+BRKpf4d1/+GudaHv/s81NkOsNxXCzLpt1q4dg21XKZ2Zl5bt6cIxEJtUqFOEhYaTRodbo88tD9rLVatFsd9uzaSsH3GRkZYH5ukThOuHV7hm3bt+B4NpY0WWussXHTFMMjA7iux9jYOHHYZeOmCVqra4S9CFsppJmbIT9w6H5ef+MEe/ds5tz5C4xvGKG71mFhcYmpTZM51bHV5qmnj5JEEUvLDTKdcePGDI8+epBWu8XE5DhBGNFu9xkdG6DfD+l2+1QqNYSVXxB0onn7rVMMDdYwlYXt5DCG4eFBXM/h5TfeZXrTJGmquXDmPBfOXWF4bJzmWgvHcQijFNcrILKMV44eZ3JsI7duzVKquFgWiCxCp11WVpcp1YpIq5jPhUiwlGRpuZX//69DOYJeB891SJOERmMtPxd4HmGvRbFUotPpYtkOi4urKEciZZFON2WttYpjRUhMXNej2w/Yc+hTKMvLyXfSJEuh220xPDqGNFLm55fYW6tiCIPlxRVK5SpZlqLJVQlhHJNlmsFqnbPvvoslBVGa4dgWjrQYHR7Adkw8pQjigCyNqdfreTBpWyQ6wTRthJGbDYdhiGHkdgg6EXztr7/D8sICFy5c5vzFC+zYthkDzdLKMl7B/6FZrAEGkjjqI0RGHMY5JlwpwjDJpa7KJuh3MK28oBKEEXEcs7iwQBRFeK5Lu9en1Q1IY0GxVCaONUGQ8Oaxd2gHXR46fC9RFHPszbcQCDy3QLQ+pyYME9cvEoQ9lGlhWblH42B9AGVbhHFCr9fD932QeWm52+nieUXanR5oSRIILNOiVHDprXVJMounnnuFew/sZHCwTMkrU69V6OmYgqUgzZBmDCgMQ5LoFKUkWdKjvHUbzUaD6PoMpimJooD26gyGSPAch143QDpubsQcR/zdk0fYvnUrhWKBdrtNpeITRyGVeoUsM+l1OwwO5IAUU9mYQmLbuSzfdSzIBJcuXmNoeADbsRDC4OibJxkdrkBq8M2/e4bDhw7Q7rUo+i6DQxV8381nGitlsizjq0eO8As7t7C60qDk+8wvNJiYnGBouEap4HPt8m2qtSpxkmBZueVOFISE/XyeNeiHmEpx9t2LXL01x8bxCcrFCnEcY1g5KTIHcShMZbK6tMTQaJ7cvXR9js2bpt5P7j4cJ/zotfqHvbz3r/mfcH2XYSGnFn+EKkggENKkUCiglCToLiOFYnF5meGxzVhelTDUjPsiL+imBk+/eAozaTM0NIo0NRp49+w1rl68ytTEFMo0yHB47gfPM3PzBkNjQ3lDX5lkqQEpaCslTGKEdjANjXQMlGmQJrmfbrqe8GcCkiT/TSE0RiYwpEmSppimSRzHeRHGyGf3oijEtAySRKNMizRNSJMUJQ2iMMZAIk2Iw4Aky7H6+Xy9WO/uSVKdUyp1kqKz3LdSZOvkZxJsJQjjPpYpiIKUJLOpVMeQloXr2mSppuLb+J5EmZJE5zJlkQma0QBvvH2WgZFJTDcjymKkgCQ18qKHyiFKGCamA0ki+Nuvfp1evEh5aAvvnp+jNjLAzdtL/OlTX+Hzv/4Yr554Hn/MZd+hHTz8qX088enP8uorr7HSaKEXM8pqmIM79lMplRkbHabX7VGrlekHfW7dvMnI6Bi25VCr12i3W2zduoVb189TrbikUW6dJKXGEPnet0yTOA7z7znLINO5IlcV8SqjmHb+We8mb3n77DEefezDMKH35Mo/1LV9dHJ3N9Hyj+72D6/3Om3i/eLee8etWw986CF31x38qE7bj2j0PiGxuxu13Q+N3j8KwJJl/Dy5+1msu+3cfZiUebc5/Ae7dB8+Yb+3QX8Saed7b+EP/+Bf8ejkj0syM0AkKTcuX6BY8HBKedAlspTGSosXXz5GGPaxrPxgy7IAg9u3Znnx6Al8NwdOvHXiNPVKie2bp9FZxrNH3+bA7q24Tj78Xyy6YEiUbdHtdEl1Sq1WoVots3F0FNfzyEgJ+hFaC1qtFu1Ol3K5QLcT0eq0sSzJ17/1HMMDZQSQRgmOY5HqhKHhIVZXmmid4bg2QdBHIPKZmgyefOr7jA5UsZ086PQ8G0MI9uzYQpZmPPXqMVzHZOvGUQq+w+L8Ep5f5Oibp+j0AnSm2b97G45jopSi0+6zstIkihKSVPPNI8/gKYuC59NcbZClmqWFFV578xSeZ1Esu1y7MsPfHHmB3/7iZ9i0aQuGlHzre8/TWmvzg9feZt+OKTzPY2J0hIWFFWr1Or1ewODwIAP1KnHUR4tc6hR1+zzzylGqJZ9+1CaK15Nzz0ZKg7XVFqViAUFGGocgNLZT5ObNW7TbbYrlEoap6Hd79LohBb8IZMRRgGOZdDothgZHEYbMfXgySRT1cR2LMNJIQzM3M0e5XCFNM/6P732f/+YL97J98zRBEPCnf/51RofrPHjoIAsLywwPDyOlydffnuG//6UpvvHt5ygUbAbqNc6cPseGyVFKxSKnTp9nebXFlq0bKFd8Xnn1JGE/JCNjYnyY2fklPNelH4QoWzEzO8ft2zO5zNTI5XOuYzFzZ5YwiKnVqjSbOcnvmedfY8PkGLdnZpkcH8a2HebnFrFtJ6eLXb/DK6+d4rOfPkQUBkxMjhHFKVcu3mDn7u10O11MZRKHEXt372JhYYmC51CtFNm3bxdBFDI8OojWCQW/SK8bUq74OalRayw7BxNIaVL1a/huASFgcXmFtWaL0+9eZmQkJzVeuHSbjVMjJFHAYL1CpjO++/Sb7Ng+zeryKq8fPcX05AaEAcNDA5Apzp2/zrF3TrB35yaSOCSKuvhln3anh+P4pElEr9tBWTa2lUNB+lGMKQ10ktuDADnh0XVynzidV9Idx0EaBuWijzTyrpjjOlQrPitLS0T9Hm6hwFDF5Xa3yMDgEKmOcL0CpqmwbMWlC+ewbIf9+3cxc+o0jqnwix7vmd2GQYhpWuv03twjyjYlylKcPH+O3Tt3MD+/xJ2ZWV584w0OHdjH0vIi9VoFhEFxPUlM05QsE/n8sDSBFCkFZAZxnGJLhTIN9u/fi2OblCs+S0vL1Oo1up0cNBBGAUqZiCzDMKDb6aAME9vzaK21EUiee/lVXMvCNDLcgker1c6TyyQhTfNEUwqD+mCdP//r/0jVLTE6OoSSeWW8Wipz+PBBskwTBgELi8t88+ln2TQxjpT5vJow8/lmgaDT6RP0+/R7Paq1Mq1WO6foWjaZhiiNsS17neIZIYSBaxXIEpmbThsZhUIFDJuDe3dTrZWQUnPt6iwDtRrCUSTdHgtzc5gyREqPDEGvn9BaW6NWqnAjzRgbn0QtN8EQGFJSKhTISJCmRbPZplCp5aAoU2KbJkMjo6RpRJZBEvUxlc3tW3Mo5aFMWGvkHfE0y9BJTK/XIQwDwiDmO0ee5TOfeQLDyFhcWKDXD0hCKPou3V6fN945ze6d2zl2/DQl38EQgrDfp1As0en28ByHG5nBHt9icHAIncQM1geJU02haKMTzbeffpVzl65x7z27abdadDsdpDTxi0WSKMEwckBIqehy6MA+btycZW5+ITe7r+YAqWKxhCEM1ppt1horDI6OgKHY8pnP5f5gd5HcffCeu0nu/s9//vsc2H7Ph673P/qsGQKdxkiR0V1bYnF5mbHxDTnVEc3li6fZPjmKchyk6XLx2gxlByzbxrYkSZzgFcpMTYzj+wVMI7dbdf0K23dsw3EsTCunVAqRKzsymaGxIbZQZoQwJVmqCXv93IPWlKRRjGmq92FIlrKIgwhpynW5u4LMwJQ5SdQwDNJUY0gzl2ImGdIU2K5LEscgFGkKpi0R0sCQCmHkhV/I0KnGMPIREImBXFdMJEmMIQ00EIQBOstQpoljWcRxQq0+QpymdNtrdNurZKnGsQS2LXOoi2WTrXe7FlZTjh07imNLhkcqaDSGNshQXLp8mYLr4zgWSRKR6hRlKjZs2MbIyDRtGqzOFvh/2XuzJ0mv88zvd863b7lvlbV2LV1VvaIbOyECJEUpJHMk2xGaC4cVMdd2+MLhv8CXjrAnQiN5QhMeUfLQkobBHQQXAMTKxr50N9B79YLuru6uvbJyz2/3xVcAQRAkQWmosCN4OqqiK/Pkl1mVX2ae57zP+3sunP+Afi/kz//7rzBhzfL25dMYls2llatMWovcvbqDKx3uXzzJWHOMcrnI2TPv0GyOkZIyGvlsbG5QLBRotVqkKezt7WGaJo5tc+HC+1RKDr3ODqauEPg9NEVkgK0wII6izApLwr6DESkVRomK4VbR9f2Yg8+wBD04eZjKVO4Tl36KffLj//8tV+4+Pu83F3f/JR/Hb3aM34m7f4HxLybu+MV9giwMUfxGaNcPp/305Vd+Qdyl+9/v3fiAzu4GExNjjEIysAEQRSkF12NqqkGSjMh5Hv4owLJtzl+6xtWba+y0Wxiq5J3zVzj1zjmeePQk5WKZJx49Sau1S7FQIE4SBr092gOfXKnMKIhxLIXNjR3eO3+FAzNTDEcBumljWi6W5xCnMYVKAUNVSdKsCnfu/EUOzy1SzVt86/vPoMQJnmeRKzlc/+A2L75+lgeOHUU3dYRMUVWN/mDI9tY2x5dmIQrxY4lpa2zvrKPt26TeP3OJxz//IMfvW6Lf2cLSTYrFEq2dNgvzcywfnGV5eY5OZ49uZxdVNfHcAobjkMvlSNOEI4uz5FyTb33rpzxw/1E21tdpNsc4vHgQpMByDarVBo+cPIqmS/xRxF6rzWunz/OFh0/yxKMP0vM75AsFbNfjzt0dXn37HOFgSKWUJ19w6ba3KBWK+IM+hqZyZHGBZnMcL1ekVKpjGg7RKCYchpQLLooGu+v3GAz76LbBXmtE3nMoFfPcubOGZTvYTg7TzOAYceQjhI9IFVRdwx8mBGGYVXsMG4UIVTcYDH1kGFIolvn+O+e5GI/4N3/0OVxL4erV65imwR984XOYhoHnFfD9gMvXbvE//h//mT87lqPZrPO5R06yvbWDYRgsLx+k225za/UexXKeaqNMY6JBsZinXilj6yYzsxO4ORfTMul1BwghqdernL94hSPLC7iuQ61WJUkS3jn9HkmacmD6AJqmcvHyCj949jX++MuP4Tguqiq48cEHrK1tM/JDTNMgVyrSnGxgmyqVcp6z713gxgf3mDu4gGsYKLpKqiScP3+FqWaTYeBTq5V5+ZW3uP/kEdI0Q9ffubfKcy+/zqGDS1SqZeIoQUqZLdaHfSKRhTyfe/cyxXyBr37tSYajIUmacmhpnsFgSBD6lAt5bENy88ZNrly5jqaaWJqNbejU6zV+8uzbrN5cp1bP8dd/+10c3ebBB48zPpYnDTUc0yUOU4TiEIYS29RRdclg0GcUCVzTRqoqw+GIMAxRZEoaxxh6Vq1JyXZnDcdmOPDp9Xr09vZIgwDTcriztoqXs1i5dpv5A/cx6q6SoqBbOf76m6/x0MMPs9faxDQs/GGAris4noOhu6iqzisr15hQyAiTikqSJqRpRuP0LEF3bw9V0cmXyni5HNPTVdqdPS5fvsUXfu8xjh8+wr17q5w5f5YHjh1hZ7eF6xXZ2FhD1TKwiu8HnH//Avm8hW6obKxv4NgO+UJ2fglFUG1U0AwFN+eg6VoGa9i36IZhyLDf2bf36bRbfc6cvcCxI0cYDIacOH4UyzKxVJVh4Ge5W0FILueBZmV5lX6AIlJmmmM0miWkDPFHLUh9bFslV6rsLyZNpicnOb60jKJI3JxLrpTHMGzanR6tnS71yhjPvvAyjz50gigK8IOAJE1xXJfTZ99n5doNpqYmiIKYHz3zAgcXDvLqqZeJgoTKWAXNVkk1he985xksXUc3Bb1ei3ZrRH9vhNco8fWvf5+lmWlUrY+muUQR3PhgjXqlgWu7fPvMeR58+GG6K1fRrCww4wQpAAAgAElEQVSYXGg5NEvS744olkrE0mDY72Mq2Ws0SlKSJKa1u0trexPL8Lh69Q4rK6ssH5xh0O+wsXkPr5DHNDTCyOe98+dp1iZYXjhKEGVZZlKR5PNFDM2mNt6kUq9QLefJlcYo5utoSkg+5+D3h5i2C0IhiQPeuLfBF6fHGA59HMvip6+9y/SBKXy/j2U5bK+1uP/4MqVKEdPS8QfD/Q0MSQpEYUgURbiehm07PP3iGzxwbJlT77zD9GQTx8ruSwgFgSRnaei2Td+PsBYP/dbE3UsvnvqVcQgpMQmZPbK1s8mgvcnQH1FvTiBESq3ooKsJH6zf3XeZCA7UHfLlcQa9HgXPI/ZHOJbAMlN0NUHXFGJCcgUDxzUJ/AhVMTIQUjhCESkRCuvrbXp7EdWaIBFZRVZVVfr9rCUjCkIMw2Iw8DEtmzhOGI36+5EoFk//8Gnm54+QpsPMOpnEGLrJcBBw6+Yt7q6u4uZswsAnSSU3b96i1WpTH2vQHw2IowRNzaKbkiQiTWJAIYljpKJk1SgEhm2TpAmJTHFdjyAMMVWFJPIRqaAfhEhNxVYNbCuz7apailBTXNsjimM0XScKQwouPHhsmUY5D0GACCGJBS++8ByHDj+UZSMqAk2JEKEOImYU7LJ+I+SdV8/w0ANHePzLB5ienODFp87w6GMnuX/xQY7OnuS+uZPU63Xura+xMH8QRc02oATQbDZwXZuVy5cxDYeJ5hSGYXHlyiWO33eC9t4OiqJx584d6rUaw94mqgwxpIZrm5AmJEkMaeaOUlWJECndbofRaMRgMCRfncIuNEjJPsvSzyCFVFXyl//x3/PEz/Xe/UuKu087yu/E3e/GLxm/Stx9vPD7oar6rM5bwc/E2y+d8+GJ/0uE3Yf39eFxkiRD1e5s7/JldfizOQJSkSIRSATbN+8QKwZOoYiiGx9RMivVAqVKnk63Q7FUJhzFRFFIEocUXIfFqUnmZhuUSwWOLC3w6IP38R/+05PU8zq2qdPpDVnf3ObZl19nfW2LqUYDz7ZQgG67R7FQJO96GLrOX331G6RBxMzUOKNRB8ty8Qcp/V6HfnubcNDFMVxWbqzx2vlL/Hd/9qdcun6TA9OTjIY+Fy7e5g+feJRiJYeUWX+Pouj4Q5+//eYPOLx4EMsrYLomqqLgmg5vvXOBAwfmKBQ82p02edei12mTYvHumYsUiiUsN4s/uHntKtVKCdPM4Xp5EJKL71+hVq/wn775FAfnD+AWStz3wDK7O+tougKKQM95eLYOKQRRnzAaEsUB/+5vvk69lEPRUx46cQRNEeTzFUaDkL/8u2/w7vkV/qd/868plix0SyFJEwrlGp3OENOyEKqCoqvstrZJE4mqxQhVoKkmG1vrWPkaUZRi2A75Qp5Rr49lK+Qcl5u3r7F6a4cnn3meRx88zPb2JpalI6VCHAkUAZbloKhZBdV2bOIEFMshSiWaAkJxuXBzlUd+/wSy38EPIpxihbGJKcYnJ0iF5NXX3mBpaZm/ffJpdM/gRCXkS7/3GKNwmGGkFUm+lOPp537KgclpXn/rHO+eXeGxh48zGgwJgwjXc+mOelQbVfwg4AdPPUe1nCcKIhQhsU2LW3fWadaqrN27R6Veplwq88bb55gYr+B6DsVSnoW5CZycg+3ZWI5NoZBnutmg1+shRMqLL73JufdWqNYNOq2UGzc3OHZ0jnAYcu/OOkkUIRNJe7dLrVHH94fkclkO5HA4JFcooNkW16+ssjw/T7FSpNfto+ka7XaP//yNZ3n4wZPoVhYhUK2U2et2+IM/fISJ2hgrVz5gcryBaahEYYgfRxRLRV598xx5N8fa+i4JMLvQxPUMjhyZYWd3l1s31pkeb3JvY4OFuXHGmk0UReHbTz1HruiiKCmWpRDHgiRV0Q0PXTWIZeb1ME1JHA7xh13QXFTNYDgM0HWDOE4zq5Oiouk6umGgmDpCqshUoqBwfeUWAigVm2ztXiVnWthKgnQ8pqYXSBOwDYvu7jampqLqWXbUocNLfPO7z7BYm4AoZNj3cSwbIXyiKEUoCqqmEAU+g36fnfVNDFUyNzuJgk4uZ/Hq22d54PghLEOlkDORJDhWDoSCoppcev8KP/jxSyi6ZHZ6jlF/wO7OBrVKlmVmWHqGV5caiEzQCk3NMO9plPXM2R5n3znP6u013HwO1zWJk5Bc3mF7eyezepEgFQWJRCQZtEZNBGEwwrJ1RiOfnJdDqmDbHq5b4R+/+SNWVu4xOTGFUASKoYCmopoGuVIOoaooUmVrY5Nup82F8xcwDY2Va7eYmhknX8mhSAVdNQhGAVdWVnC1POViEUWNmZmZgDTl4MEF/vHb36NWKFIqZTlvr7z6Fg+dPEwhn2c0iJiamuKZ51+mWPDY2Gpx5eYNlqcaSNMmV/Bw8x6mZxMrgp9cuMyRY8v81fd+zOMHZpAJRNGQKFb3oxkcVGnwzDMvML8wxyDwUTRBHFusXL5KOZcjinwOH11mYixHGKRomkOtNkachrzz+gqt7hZr6zt883sv88d/9ACaadLptCmVSvR7fb73gx9zbPkgvb0utVoDKUco6ghTszKgkKkQRTEikSSkvHT1Fo+OVbmycoNiLse75y/jeQ7jkxNsb21xcH6O1985S7NRIZUJ+XKBKIowDJM0Efyff/dtZscmkKqCVBROHFtka2uLxfkZypUCvj8ijkOkEMRxTGtvj0K5wrcv3ub45x795VFGn/jKLsv+yf2eoI9DVz78SohJSbn61jVmZ+Y/Ol66X6USSUTq95GKIA0DVBGhaylRNCRve2xtbZHLTxKOBpi2RqVUomCBJOReK+Dqxbc4fPgovX6bMIqwDA+ZaghVoxcEDPohulAI48zOmIqYIAhIY0EsQhzTwTUNKhWHONVIyC5XVRtDzwSZZXn0+71MLAZZsP375+5y6s3zHD+xSMkrYxZSXCdPQppV49TsL2VYJqViCVO3sE0LTVUoFSo0mhMMgw4Snaefe5PpqTF0JUURCqme9YmpIkERCkEiubszxNEU4jjKypFJgoIgIFs/pErCxcu3uHOnRbXR5J13T1OtV7DUlDSQ9IMRqqKTEmfaPQVFEURxiKqpSEUSKYLbVzfxcgUqY0Z2WWxm2X8iZq+tce3WGgfmZnh35Rp0fcZrddzxBh/cuEWaJBi6pNPZpdSo093r0u3ukd9vG8nl85iWnbmWwpjRsM9ep00Yh0xNTNDvdYijiHt3bqJIhbn5g9y5u4qi6uRzTkYTVQWhPyLxE6TIiLFRGKLrNlGYEGJQbRwm1a3sl0x/tWny49Cgcytn+cIXHv/o508ThZ8uyz6rWPtVR/nk9R+3T/7i6+qzPKpfvO6Tt/zni7s0TVEU8ZGl9JNvH78Td7+l8Vkqdx/vl5OftTeOzz73190v/Kw/DwT/9n//i4+qdmL/W/rhnDhFBkNSRcErFBBSAQS6oiGEpNfrk8t5CCFYuXyT7zz7Eoszk6RpQrfbo1Ir43mZ9UzXNZYWJqmWi2iGjue6NMbqHF6cp1YqkKRJRjpMYra2dnjrzDl+8vrbHBhv8Pgjx1laXiJKMoDHlUtX+b+/+QMeOXGMdqdHpVbBtGz+/snnOLG0wMx0hbvrt5meqCNShakDM2xsblGuFlBUub9RKhFSMlmrYNkWf/3/fJNHHnogq+j1e0xMTZAISd610XUd13WwTIt799aZaDZ44/T7zB2YIAwCrt+4wytvn8U1DTa3dtA1lXPvXWd8rMr9x5axbZtwFNNqbVMpF7McGs8jCHx2tzdQVQlJSr/XJ+c6fO7kcfIFj6OHFyGJiKKA//zdZ1n54CZ/8qXPsXRgHNe1kDJBaAoIGPRH5HJ5hoMhQkrSJMZ2HRzLZThos72xQ787ol6voBoWEtja2CQYjhgORghpoZgxea/OgbkxPv/gY0gtI5sJqXJl5QalcgUpUqRUCYIQN+eh6zq60ImjDHU16PXY6HR56tYdBuu3aNQqbGztMj4zxfq9DXRN5dL5Czz04Aneevt9Phja/Dcns3iDKyu3WVycpdfrM3NgijAMWV6a483Xz/AnX/kix48tcOfOXU69fhrb0NnZ3eXA7BRCSILAhzhienqC6zdWqderbG3vMjk1huvYuK5Da69NuVRkdfUe4806T/7wBeYOjON6ThbQXSygqRqKIrlzZ5NvPPkScZTw6CPHKRRsDh2aploeZ35unBs3b7IwP0tzooHjOly5fJ2R73NgapIfPv0ClWKera0dHMfCc2wUTSfyA5578W2Wl2a5cHGFcq2I67ocObTA7dU1cgWXtXvrbKxts7m5TbVWxtQNhqMhO7stqrUypVIJL+eQJAnNRpWFhVmCwCeMYmrVAqqiEAQRBw/OUsjbbGxuYxgG99a3WViYQYiUQ0uzuF4WdP1h7lsUZTAcISVCQLu9l1VK/IBCMYcUbpYRpWch2oqUdHs9TCND7pumwXA4QAoN0zDo9fpMT0+iaSr37q1TLFh0e0MmqgWi/Ay6UcA0HDY3Nqg1SqSkdPsDFFXQbu/y3BtneHxuhjhO0Mxs8aZIgzAKifdzq9hf6Ia+j+s6bGxs890fPc94vcTF61c5vjxPPufSbrcZDoe4bpNRkIAUlKslHjy5zNLyQSQJSRzg2AaDfpsESafTzih2aZwtMtPsb6NrKlGQRTuoms7VlasUCnkqtRrNsSZRGGVxEUOfxtgYcRLgB34WFi5Sup0W3/nei0yON5FC4d69TTTFwnJNpJKFt1eLRX7v849iODqaruGPRmiqRppASkIcRSRJiK4pmJZGo1qnOlbjgftP4uZtwthnNAhQVRPfDxhvjlGr1VAkpCLB9Tx+9PRzTI1PcejgQaq1CpohUVTBfcuHUfTMKqzth7dfu3qD7qjP73/xcZq1MkHcyei/CFTN3Af9uLx0/RZf+ZM/4qWXX+fzszOkQL+zh+M4WJqKqiqMRhEL87NIRWaL3ShESp3W9jaOqaJoKqZloagqvp/w7/7ma/z4pZf54u89gqaZ6KbKsSNHGCtV2drdRApJqVxgr91GCoX7T5z4qPdZNwykojAcBqiKgj+MMU2D3Z02uupw+eoKr/3kRf7oc/fTHK/S7XV4+JETCClQpcS1TaTQObS8gG7qGKZGkqYfofUVqTBZrTAc+eiaymtvnWH54AKGYeA5LkEU7VeCJELILGfUyeyGzZyFu3T0M+VWfbgG+HD8qgqGSLO+pR89/yxHD54gFYJECNJUoCYJOxurrFx4lWQ4ZHPtBlubt9hau4WMYrxKHa9Uod0eMtGsceXKOaRQCBkwioY0KhOMjVVIohhdN0nimF5nN7M5CkGSKjz7wxdYXD6IYQqIU/yBTxTFJCTEUfIR3CeKQ4QEIVOCIGLQT/jg9i3qzQaXL13FMF0MQ0dTJaoiqdUbLB1ewhARrmMQJwn9Xjd7f1A1kiRGqAmmqWNoOoaqEwUhg6CLoRv7tGdBGKScefsSS0vzGFp2u5CA3e0uruvghzHDIfzo+y+wtDyJ7WT5pEJIojBCkSq6qiMVg6s3Nrh8+QaTExO89NzzzM8dRFVjdCM7riIVwmhEmoREYRa2rigKSRJni3QpGG/OkSQBpiGIgohnX/gJQRhRb4zz9jvv0+5KhIgxLJtGpUIYRtQnZynmcly7skKv06M5Pk4YD7lw8TxLS0vkcjlM06HfH6LpGq7rYjsulVqdJM0yAbc2N2g0GvR7XdxcEct2WV1dpVIukEQ+qpIgSRkNe5Cm9DptTMsAEoaDQWZFV0zyzTksb4xUUcjwe59FSGXj/atneeILn//Uc/wXZ3/8tfCbroU/+2P65x/vn3rdZx/yE2XFj2sKEL8Td7+N8ZmiED6lX+6TT3n8a6p0n3V8eIQk+YTX/mNUnwtvvMH9Y+Wfzf9Q3CFIo4SttVv0RyGlcjWzsqTZjn0cxYxGPnutLpqiYjs2Rw8uIAS8f3EFL2dRLpQRUhKHIevr69Rqpcy7HWc9NO1Wh93tXXL5AsVKDidnYZgmlXKJ8XqVR+8/Srmcww8GRLHANHXef/8CzXqFmbEq771/k7nZaRRdx48C/vCJh6iUq1ieoNHIZ4Gn3ZDnXn2Lzz/+MAkxI3+EZqjsbO6SL+RwXQvD0Hjg6BK2Ltm8u0qlYDPqtbF0QZwKNM0kChO++rXvcvTwLOVKCVNT9xH2IUcOHSZvuxw4ME0YRtiuzeXrV1iYG8MP++imwLQ1LF0nSVM2N7dxPReRxJnYFGS9TWFEHMYUqkWkouD7ProuGY0GPHjyBEsHZ6jWyjTGqoRRgOc6pKSEYUS+UKC10yZXyDEc9CGFMAjYur0B0qdUzGOYLkEYEofBfjN0immYaJqObuVB8xl0FQbBLpZZIBEpmm7wD994iq2dNieOH2XQ72CYFqquMRyOSBFcOX8ar2gjZMSu32fyvlncuMeBmQlc16HebJKQUCjm0BTJyuUVDNPif/kP3+Ov/+cvkwJra1ucPH6ItY1N6vUamqqytbWFruv0Oz0KBQ/f90mSiAfuP8J4s8HtW3dZ39ikUa/ieA7jY5m96srVm7RaeywvzxLHEadOvc2VlZv4YUi54LG5ucXU5DiqAo5lYZgat27eploqc+/eOrpqUK5XePDkUebnZ7Fsg3ItRxj0sawCr732FvV6nlKpCKqaUf66PZYXF3ju+VdZPDjN2FidYqmAZZlcunyNcrVCOPI5emgBPwiZnGqyensVTdXxfZ9iscigO6TfGfLmW+f44z/6Aru7bd498z7NZpVqtYLteDzzk1eYma5z5uwFlhbnCMKAWr3E9FSDbm+A63rk8vmMMGoZlIo5vJzLlZXbTE00uXbjKoWCx6A/wLZtEBJ/1MM0DaIwRIgURZFYhgkpjHwfRVEIBiFRkDXWj/whfuDjeTmSOAEBSZpgmQajQbZBYzs2UlUwTB3N0Bj0UlxXJ/D7fPWps3zp8S8x6A8plUu0OttopspoNGTk94ljH5FKDhgaaSKJ0hGQoggLZJLZ4aIYISS6kQWHt7tdHMfh1OvvsDw/ySP3HyEMA4bDgKvXriKJydV1FAsM00AqYOkGJDEjf4BpahimToIgly9gaJmwkgJGoyGkEqlmIdZSqOi6TZomHJiZpDk+Rm8w4t//X18jGPlMz0ziODZhEKEIG0Vmts0s708yMzNObaxInIZUKiXefOc0hWIZx/Wy+Iyci5QQJCEkWTj09SvX+Na3fsTi7DJf/eo3aO92KBdLbKxtky+56KZKkqTEAjY3NgiHEZqq8+2nfszJ+44gRUSSRiRpwub6Fpau8w9f/zGfe+QkG5vrQNZPI1WVjY2tjGBbLqMZGosH51k8vICdK2DaNl7Rob9zb7/XKSVF4ro5irqCNdnk7bfP8MjUJAPfR8YRURSjJAmrt1cpN8ZQ1CxGBwRxkqArKpV926OmKcRRyCjwabV7VAsl/ts/+a+wPYcoHnFg7iCD/gjb0fnH7zzD0uw4ubyLqmm09to4OY8g6GOYOoZpoqkmJBLXtXnxpTeoV+u8+fZ72IZFvVFjqKQsVPNohoKVM5GqxDRNBp0ucRhx8946qq4gZbaHLyWQquxsbRP4AWEYUa2VsB2b2elJ2nudTAhECbliHikkhmGyubGD4zhsbqxRKBX5q7M3efzxx349/S79xXrGp4m7j8h8qAgheemlU5xYvI8wCUlJUeOEnVtXOf/O89jqgK3V23i2hqElmJqgYLvo+QK9XhtTNel3u+QLRYJRyPPPXeDiuesU8gJTU9ANg831TQzLwfFyoAqiNEBTVBYXF0llTJyGKOioKFiWQyRTglGMqmp0uns4nrv/yyRoiommFYki0CzJtZWbuPk8ipKgq4I0jTFNFV2HoNtB0VUSYWAbOoauE4UBipREocLWxjaCBKkkQARSIYp8hJTcvbPOaDTic58/gVAGJEmIlCZSSN449RZjk+OgRtg5i4WDi2hqJkbDKM5on2mCSAKkFEREFIt18jmPxliOI0fuQ9MNcgWdYdjl1ed/ShCkeF4OXdOyPuUw+qg6FYZhBmbxe4jUx7UdNKEyMz1PvVxDJhGprzJWn2Z1q0Wt6BLEKa3eiOmJad47+zZf/oOvEEQpfjBianoMx82hmxphGNHvj6jXGgz9IZquc/bMu/QHA7a2N6jWavhBxHA4QtMUvGKZ7e1NxqpFinmL1dXrlPMWmirRpIQkRkqBZugkYYgiVaJEI1+ZRpQm0AwPSBCkWS/zL12N/vzJfuWDSzz2+Ud+9WbFp1z2q71pn9a09OuO+JuOD4/xi49E7m+O/ryB7rN69H79fYr9jZqft2L+/O/8O3H3Wxj/1CiETz7tH6dg/nPGR6fgL6lYf+Pr3+LPZ2s/P/9j4m7QG3Dr+hWK5WpmN5QKaZpkBLDA59z5SxSLHqalY9gaummSxpJOZ0AcJ/Q6e9RqZcIownVdLMskSmIs26bVavPmu+/zwH1H+Iu/+SbHjx1AKilhmCBJCKKAKIjw/RDbcgj9AeFoyNbmDqquc2B2BkuqfPXb3+eJRx8k8EdcuXSZ8lgDhI5lFYhTSa7ksTy/wNb6Bq5t0m13UABN19E0bb/MLVEUhWF/gGVobKzdYxCMKJbzxImCoqp0uh0euv8wpuuRAJdWrrO0tICma6RJwnd//DyHFg8ihMKZ01coFryMwujYaIbJcBTid9vEaYaFtmyTW9du4BTrmHZGLFNUQS5v097rI6WOZdmoiiT0hwyCPoZhAIIoAF0zWF29h21b9Ps+jpNDVSRvvnWGZ069zsHZKXRDR1cNCjWHVEmJEpVUSAa9bYb9HuVKgc2tHdIkZRR00EURyxbk7Crd/hq9dhfTUJmfabIwO0EQjNBMBd8fEqcxpmuBSCjXS8SJ5C/P3OLBk5M4po7rmoyNN2m12rzxzvtMNYuEoyGu45Cmgv/171/mf/j9aTzPZXNjm0LegzSmUq6wunqXUrnAT0+9Q71aYmpqjDfePkMYBiwszOD7AR/cuEm1WqLT6VIsuAjg1CvvMtasc+jwPP1+l42tLWZmJnFtm6XFOSYnx4lCn3qtjOPYbGxskSYxnmtimDpbW7ssLMzz7jvnaHfvceHcNe7c2WB+fpo0CfCDEZZRJE0irt24zc1baxiKpN/v0x8O2W23OXxskWs376JoGucv3WBmZob6WIPtnR1q5TKKqtDr99ANnQtnb6ApkjgM8BwT2/A4c/oSR5amMC2bURAgZMK1G3e5fWedqclxAEbDDoKUfN4liiO8nEcQjnj51GmmJiZ46kcvoatw+vQVXnn9HMeOztMcK1GuFtD34w1SkZCkIUkSkuw38QeBj2HokEAwGmVCY7/iqYgBrqezvbOF43mEUYwq1ay9Psnw/AiBFApSKvQHfXTLIE4Tzl06S604Q7+7QxwPef1Knz/8wwdJ0oBefwCKih9kyHJN1fHyeeZm51l56RXqtTy91gjHzJEkAVLTCKMQy7JRVBWEYDQM8DyXQb/Pg8ePcu2DFaYnqmxt77G2sc2Nmx+wON0kjAXtVhddVTE0hb3dLRJFw3ZswliQCoPBUCGKI1TdJI4hjiWqZpKEATHxfgSBRpJIkiRiNOqhaipIne2NDSabDRpjZRRVkCQhvV6XMAx47uVT3L6zzqHFRSxPR6r7CHYkSSzodIfUxxrESYiiCuI0QioGqqqQBD6KSDl74TxSply7/QHrW1scnp/jqWdf4MSRg7TbOyhSpdPqkc/nGAwHmKbJ8uIsiAiISNMkiyRIYHJynImxJoWKh75f/XedPGE0glRQrzewHBuppERpih8MUVOdQWuAY5vsbV1HCkEUCTzXw7IctNSnsjzLs8++xBcXZgl8n5xXQNEMVEXBy2cbRmmakiSZU8PQTIgjkjjC9zNcfZyEeK6GoRn0um3m5mfY2rhHkvaJR5LXX3uDpUPTPHb/Y6gyQkqBYRs4rsteu0POsjEtE6kKhsMRAPfurZGEEt3SWT48S7Gcx3Ftvvf6W7Ru3eL40SXSIKTX7iFUHVUxMC2LXNHDzedQJASjIVEQIqTGBx+scuXaTVQpGJ8YIyVGUQVSCoIwwMu7SCWDDgkB62treJ6TVZZMk1N3dnjiid/7teLuUxe8n7oYzn6KBZCGvHbqdY5NLzBqt4ijEelwm3Pvvkghn6NWP0B5YglhFFBUD02z2Wtvoac+sd/h/Jm3sd0CfhDQ6/XRZIcvfvkJNLvMxt11NMPl4pXThCIhFR4/+fELLB06imWlRHGCqlus7Uk820IqKcNhF9PyME2bod/P4FEp6IaDP0zRdAGJj2lIZOozMdbAc4zMJSK0rLLbEfQGKX60y+uvXac0OYmrZuHpipSEfoBtukhVpdvvodlFWr0QQ+jYjo2QYJoebs5GTbNNrCTJWhWSJGBsvIlhGghAk4I06qPoBlkoSpavpxkapuWSIhFKjCFTJhplglEb29Ppd7vIVCJSmJ1fYGd7jWq1TBiOSNOUIApISTEtCykFcZhmZF/bIoozd5Zifdj7J1C0PJdXVjh9ZY2lqTK3t7dQzTz1fJHJuUXWtteYPjhFq7NHMVdme3cXBNlrzc0hFQVFRNy4fo1SIU+lVKBcr1EqlTF0h0K+yCuvPc/BpTnicIjw9+h31jHUhFzBIhj1s367JMC2dAajIZEfoGgWqjeOUz2IbplIoSJFdp6nqIjPKNMOzx9hZXWFiYnmLz/XP+Nr4rOLp99O39tH14gsZuQTtfb/wvf5SXH38zN/J+5+C+P/b+LuO99+8udAKh8Xd6Qi+yALewz8FC9XINnflUnjkDAIKBZzlCuFbEcnjZBCg0SyvrbJe5evMz1eplDIoeo6Ukpu3rrLt559gaOL89iGiZIK6tUKczMTOHkDVVOQqoY/6CNlZoXo94Y8+9Kb3Hd4lsFgQKlYojHWIEkTPMtkqllnMBywubFBs1bBLRYYDSOkoqEqChcvX0BN1SxzR8mqGbqukTg9mi0AACAASURBVIosZymOs54AVVUwLBfN0FF1hcbEGCgqu9ttbNfOesxau6iGRa834MatVaYnmgShz16rzUMnjxIFEV/7xtMsHpjiRy+/y5eeeITV1TVq9QaKYkA4RDVMdMMgCgNkGqNaed54810810DTVPr9HpblEYcpIIkTP0MxqwLbshGpxDBs/uo//iNffOxBkiRhMBiSppIwCGiONfjcQycycIwQOKZDp79FnKZIxcKwLDQ1JEkSbMfGNE3iOMErWvzkh6epN2wM3aPVuUujMcZw0EcKgWVmfzfNyDDUpp1l9yBAlQZ+JHhzbZcvHp7l+vUVCjmPp576MbqucfnaHdq760RBwM1bd/mLH7zHny5bnLjvIDkvly2u/QDLzjLYrt24TbGQ5/77j3Lx4grtVpvLV29x/8lDaJrGXquFbZjkczlWV9dojNUwTB3P9ejstVEUSa1WZqxRZWt7h363z1ijjmaYdDttXNeh0+kwGAzZa3eZmh5jZeUGlVKFjbUtFubnMKyI8eY4qpJR4UxT5c7de9Sqk8RxxPh4jUatBqlgYrJJvpCjWi8ThBFTU5O4jsP8/AFs1wEhKZfy9LsDhoMhUkpUVeXs6WscWprh3TMXEDKiVh3L7LP9Lo2xOrbtcuHSFb7w+CMsHZxDILEsi52dDaZnJtF0DU1TkYrCoN/LhHy+yPUbq2zu7HDx4l1KRQ/L0rh45QbLSwdwHA/dMNA0SZoGaJqKqkh2dlp4OQ9FUdlrZQQ1VVPo9wcUikWUdEBKTBgl6JaLqqqoqp7tF0qBPxoRxxGqojMYDLDszLYnFEmjWaRYqPL88y9w8r4FXnxvk4cfOYqiqFh2Dt22szegWKAbWSVUkRqn33ibyaKL55RJwoQoGSFULdv977QxdYNBv4+hGRiWlpE0URAiE+y25VIulZlpjqHKhDTJ0RyfJtlHnlfKHlJ3SIXADxPiSPBv/+Jr2JZCtVolCDOw0fb2LjnXAlUSpynBIOTVV95kYrKObRsZwMBPOLQwx/jEGL1+B8e10A0dxzVRVYmhqZQLOcYnxtE1gyQBTdOIAtjZ3CNNBYVSAanAaDTCMHUUmdH2pEixDIOTRw4xvzTD4twUjz5wHykps5NN1H1cvKYavHzqDQxVYebAFKZlsrOzAyLZhyFokGYUS8MwyRUK7O3u8uQzT3Ps0BFeePEUtq1Tr9U/stoZpka6j4vXpcnrr77F+toqRS9CVTUqtSatVicD3oQR/9s/fI9//a8eo7e+S71URipaRq9VJQiFwaD/EYJeUZQsJkdkO95SkSRxSBpHdLu7lEoVcq7H9vY2+aJLkoZEQ0GjXkU3BZpwcByV/qjPtes3KJSKOK5HOPSzTLlul+EwwLJs8vk8jpPH0FUMW0FRJbqq8fiRYwhTIen3MdWsSnPjxh2K5RK7u3uYjoVIU8IgII0jVE3FtnK4js34WA3HzHqNUjLbXb8/IJf36Pf7BFEAZM9zrpARM7e21ikUS7xyd/e3Iu4SkaArCs8+/RzBdoexapU48mlt3aG3t0GpXGflylUaBw6x2x5gmh53761SKrn0d9dQSMkVGvSHIYoiKRXKmHYL3Yq5eXuPrdu3qDaaTMxOYFgOF85dRIkt5ucPAj1AQ1EtTr39PvVaHkMV2KZBgkYY+jiuRZKmRFFEmsC1q9cxLRXL1LJ+wDgg2p+nKGr2uRYlvPLTtxCKRWPM4+KFHYQDFUtjNBqhSIllW/jBACESYqGwttHiJ8+9yv1HjxCEQxJiNCVrZVCTjHZpmDZRlKDoCZaTETgtwyUKEnSpIHSV7a0ter0uruuiKIIwyConI38AUUISZu0PiqZiaA66zIiRihrSaIyBiFA1SZqAoigYhkGn08bQdUBBqJnzRlVNEDAkJohSVMPgzr0WuWKTVick6txk7tCDTE4vcOaNU/SDmOVjh5EaaJpOGkpUPcvea7V20XSDzt4eZ8++RRLH1Gt1PNdlt5Nlqn5w4zZSCoqFAqoGjm1hqgmOkcWNDP0upClSCDzPJgxHJHF2pjluDivfRPPqqDLdjz9Ispa730DcAVy7u8LS8uIvP9c/42vi/yviLquipfth5eLXzv+n3efvxN2/+PhV4u7XFYozclP6M9vmx27zWYq6n5Z999HxhfhUgfdAfx1VUT428WcWEAWJPxgx6A8wHY/+YIhpmWiKgqYZCFI0TbK31yWNBaEfZHlxiqDZbLC+tpXZyep10kRw99Ya/XafIA6xDB3HtTBdDdPVMS0VYpV+d4Sl6bT2urzw6jscXp4jIcXQDaqNMk89+xonjx9DmilSKESkKCTYhk6jUUe1HFrrW0TDAMc0GPZH9DoDmuMNUiCIIkzbIU4gCiKGgwGWqbK3s4mhSfr9Lo7lsLu7yfb6NlqsoVs2uqbR2WtnFYt+yPd/9AJf+fITkKZ02j2KtQphHOPmczz8wBFMSyOf05hoVHnq6edZmG6i6BAnCYbtokgNRSpcvXId2zGYn52g3xsgFYVCucLQ91HNlDRJ6XW6+NEQy/JQhEFrJ/O+Ly9MoZkCQ3O5c2udXq9Fs1Gn3+kyGg4wDRh0dxmmCY6TR1VM4iBAFaDrNm6hih+BomfWFqG73Lh1jbmZaTRLwcoVAQ3DNAlHKhubPcyCg65Ihv0hIJAJtLZahFHETW3En35+ie2NDaanxgmimGE/4cGHHmVyrMq1axvkPY+/e+YM93kJX/zS/fRaPd546zSupdGcGOO5F99iZmqaifE6p0+f4/Kly7R2d0mSGNc2KZeKnD57ieZYne8+9SLNehaaWmvWiVLQBCgprN66x26rQyFfQKQQp2kGf7E08qU63X4f0zQh1ikVPLqDAYZhsra+w6Urt1hanMXvh7z86lk2dtqM1cu88OKbNGtTbG5tMuj3sS0L17ExHA1NV4nCmOvXbzHsDdla22K8WcUP+lnDv0jpd9vky0VQoNttk/Msxsaq5ApFFpfmWNtYp9Ao7WceDuj3+5BGFByLUq1Coin0el32dreJYsH4+DipkIz8kBTBGy+/y9LyDKmS8OzL7/Dnf/ZfI0TAYBSQdz0WDx5gfW0Dp6Cz22rh2A6GrjMaDOmPhtTqVfr9AaoqsAwX0ohR0Gc0GGBaFnudEZqZx7aLkKSkaZztUu737mYCJyQKs1y1SxeuEgwDCnkPRdqkUULezaNbJYI0RZU65UqDSBr0dncYtPdI04xkKBWNYWebv//hT/ji8qHsPU0RtDotTCySIMZ0HUajPpZlMoqGCEUhGEYMhj0q5Upm99MEhp7iD1rcW7vN7OGjSNMgVQ0s1yNNJEIIwshHEQmmrvL4Y/dT8VxUTSEMEp789jNs3t3mwPwBJBq6ItBUwdTkBHEcoil6Vq0Qgv5gQJIm9DqdLDJGqETDmLt31nn33CVO3Hcio+f5Q8JgxGDQw3JMSpUSjfEK3e4umq7g2BZJCIKMTLezs4PUVEzXo9cdYNk2mmGQLxYY+QGlcoEADcNyaG3vsLx4ED8K8Uc+EoVee0C3F1GpVhgM+zhWniAYMgwGVGoN2js9cl6epeVFSrUafhBw+dIlotEIz7QYDQf7MScDamMV/ubrP+bk4XHStIOMFRynjCwo6ELj9dt3+Fdf+QI3zt1kvNJEpMF+33CUVST9DVrb21iuR5IGBIMhipNBoLL3GwchdUQa0221gAQ356EaNnEApq2ByPqZgqiL6nhohk290dyPJUhRNRMhNWwrz9/947eZm5gi55n4oz6eZ6Nrkk5njxQYhCMGg10aBRupCnZ3e7z27kXGqh7f/MFzzI43sC2TbrvNaJQBROI44crlawgpsD1rf0NQsr62jW153Fnd5pXXzjE7O4ll2URRRk0cDgfEYYSXz++Lu8dI9416H/a5f3J82kL20yAPH0IpQKAFCeN5yXBrBxmGDHr3uH3lPUrFOkiL1kiwsb7H0sEjjAZDdN1k6AcUXI/NrXVq9QrXblxmaekIqbDw8lPYdpPhYIDtFLi9eo8Lly5ye/UORw8/TL2uk89bhPutGqoiWDowhW0q+OGQOFXQNSejZUqfBJUnv/ksR45NIzSLnOtlWYaGxeZej1y+QBilkGrEUcJea5u52Vm2Nm5SH29yZGmcompiOFkGaJxkkKU0ySrrUigoUlCtuBSLJikJuqYTBEOkFKRammW2+UMkKWEiSWVEEoZZmDmCIJXEUcCZs5c4d+kDDswuYmgBaRihqsl+DIzN1vYmQjXQdZ0wGrDd2iBfLGQb4HEfkQiSMEKq2QZ3tzNi2A+wLDOzj6KhSJUgGSIVhe5gxJn/l703jbXkPO/8flVv7adOnf2cu6997+29m2w2SZEiRVmWbI1hO5szcGLPAEkm+ZBgknxIECAI4CBBgGAyE2M8I3iJI2+yLVGmSZEUSVGkRDXZXJrd7Gaz97693n07+6m9Kh/qkqYkitoTINAD1Id77q1ThXPeW+/7vM//+f1PnsKxSySxzDunzyPLA6xigxvXLzHoNvn0L3+Ofq/L5to6tXIDtz9ANTTanQGFYonQC9GFoF6rUK02uHv3DqZls7S0jK6qEMU0W5vohkqhWKS1dBPigFhKGPR6pLGfmbgnAaoi6Hc6hG6ALEnoxTF82cGqTSOLjACbLU6zCudHJ3Y/OM5dO8ux++7ZHcPff3wUNOhnEz/uCvv748Pwwo9ac3/0NT84+yNe+9HvI1vrf/S6/hfJ3c8hftLK3Qc2Bh/Th/fD4sNf8kdOEh8xCORb17/7hQ+dlkQJ6yvrRMGAXN6hUq/hudku2fVrNwj8gEqliqppCCFQZYOlpTUuXb3O8soKexcmqNTLKJpCHMcgZHa6HY4dOcDw8BDdTp/G0BBxnNLp9Nne6vDW6Yusrm7SqFU5uHcey8qxurrJpcu3qVdt5qanyDt52u1tTMui0+wgC4nXT79DuVggSVOGG3X+4Itf4eTb73Fo7ywTU2Os3F2j3e5iGCa6YRKGMYqhoOkGiqoitGyx9/yLr3Lx4g32zc9RLNTRdJtUBAx6AwzTQhE6idtjtFbh5dfeQhE6w+NjqLKMYZg89cw30RWFaq3C1MQIkHD83oO7D8qYyM8sGCQ5pdncYXxyBKeQBznl7PnzNBoVtja3cJwSSBAGEbm8QZqGWKbD0p01hFDY2t7CMDUsQyXwQuq1IpVKkUS1kFWVvGPT73VQDR3LKhP4EbduLXP2/FWmp6dRRYofhplXF9DrtEjSlL17ZtE0g3angyrLpClsrK3g9VwuXrxM7LYp1TIAjaJqCKHwx5eWmd9fZW5iBFVWMHST7vY2qqxQrtb5v//8Kxx/8B7u3F7hrS3Bf/X5SVotl1q9hKmZdHoD5uZnCKOE+bk5CiWL7Z0tDh6eZ3iozIH9ezjz7iV+8zd+GUVRuLu0xtjwGGnoIWSFt05dZGN9k4pjY5omVs5CEYL5vXOkacIfffEJHrjvIBsbO5y/cI3RRpHQ7/H26bPoWkb86/X6TExOMDzSYH7fDLImMAyVuYUZxidHsPMWszOj5HI2V67cZHV1g5GROrZjI0SW1PS6PUpFB03TuLF4l067xcTYMJEfcv7cRUqFPGEYI0sCt9tFlQUvfedN4ijAdfuUigVMQ8cyDDRN5+KV62iaQNNMQLCxsZlVKQZd9u4/QJwm/M3jz3HgwByyJBiu1VA0gWmZ7J0Z5+rlG2zttPjE/YeZ3TPJc994jUcfvh9VMVCFvtsbIGU+d7pO4Ipd/681ZCHj+x5WLk8uZxPHAtMoAxLd/gqSHDIYuEhKNsEpQkGSVISsEXgeqppV7Rwns9zY2myzvrpJwXHY3tnhwJ465sg8athh/cZlCuOH8JQKGpk1ia7p6JrGysomhysFZCEIowjHLtN3+ximRhh6GIYOaSaxThMAmXzeJgh95DSiP3DpuyFXby2z78A9CEPFD0MUoSIhiBOZgddBKAJFkUlJQEro9iNu3bjNv/nTv+QzD93LxvYGCwvz/M//x79mvFHEKdm4A5e84+B7Hs1mE9M0uLu0zCuvvc7Rg3vJ5XKEcUyaxjhOgYKdZ/nuOpcv3aAx7JBzLOx8jjCK6XZchCEwLBNVM/C8GM9PUYUEcoppZBCbQX9AKqVYloVpmsRxnMkPheD0qXc5dfo8n//Vz+H6AbaT4/y7l5CFSnunh2UbIMe4nse5c5epVSs4pRy+6zM2OoRpaQg1BQRSCqEX8srJN9jeajIzN4bnB9i5IkGYcPnyIvffdy+37tzFVBUMUyOKQoQweGNlnfvuu5eTr73DodGMzirveh+mSBg5G9upI8sakizQdYskSQiD4ANPMUlReeprzzM61EARMkJT8P2ABIVCqUS/75KkEpIQ+J6/6zeYNbp4/QES8a6c3efRT9xPmkRZhUcIkCTiOMyqiapFwSnRb29TMCyi2McpFDm4fwHX7/LIA/dy88YyBcfGMAzeevs8lpHBXlbW1tkzO0UY+FkFXegUiiXSWOLZb5zg2MF9jIzXEUImikNc180gPELCtG1eXdrmU99j4vyjJncfF7IEkaTh1Io8+9W/Y7psMuju0AlVcrUF/EigpnD8kUdBkjMbG83ALpRRtRzrq3ewZZ/aUJ0o8Wg1t0kik3J1DM1xuHH7EiOjh7i7ukHOrlMslMnbmQWKZlj4SUoQyqhSjyRWINVQFZVOe5VUER8k5rOzM8gKOGYOGRi4HqsrSzQao0iJT7e/ydLtJnaxjmEbqCKiVisjS2lmRSFDTAhy1m+YkuB5MWEY4fa7VIsFnN3/DXcwQNNN4ihCVXUSKTvH0LPEMJEEvW0dz/XQTRlZTUmVBB2V0fFhpqeHyekKmqSRyklGsBUqQhIs3b1FFCXIQkJTFTQ1UxDIUZas+UEMsrqL1s+elesb6xSLJRQh8EKfVFaQ5Uwur+sJjcYE29ur2E6DdifikUceQ0hw//H7GR5qZMbiisHG5iphFGFZJqaZHXEU4Xsui4vXCMOYZrPF0MgYiqqwvLzE5MwMqqazsnyX+T1zJNEAP/SxnRyB32Vt+TbVWgVNA0WCJAwQqSCJBV1Fp1BboNyYIxUaKQEy4oeMyI+Pk++c/B47hO+On10y973xM1DGSfL38TN+/Gv+NPfx0ef+Irn7OcT7yd0PUtv+oIH6vXAViY9+j4+zQ/gwqOXDVbx/oOhkIctZtv+//S//Ow+PVb/nTT70d8jIkkS3nQFPZKEQBBFWziJv5zBNk5e+/Tp7ZqbZaTbZWN3m3QtXSaWEB44fyRqGtaynLQWiMGJyegIrZxBHMRISnh/Qbfco10rsbHeoVcq88OppDs5PZPdJQsFxqFerNIYK2XmyRJIG6IaRJUpJzJ6ZyYzyJwTLS3c4dnCeidEapYqD6/V46/RFnnz5da7fvM2xI/t3F0pdLMuk2+3xvvHD8o0dxodGyRd1Ov0WSClCkfHdgH/7548zOzpGc3uTeqPC6NAwF6/dYmZmirWVNdIkxTZ1LMvANHUMXSUhg02EYYDb6xMGCYWiw9rKKpquYuRsgsBnc32T+flZOt0e9aEavh+iapmRque5pEmMIgxK5QruwMOydBzHpt/vIckCIQQbm5v88Zee5J4Dc/h+H8PQMQ2TJMhMat1eD0tXaNTLeO6Afm9Ac6eFbedI4xhVU/C8EKGoPPH0ixzcN0tzu0Wx7JDP5ZkYHaFayZMIQZykxFHM//r6Bf7H3/kUxZzK+bMXOPnGaRw7T6WUxw9CVN1kbHSIoZEhbmz2+fxhiyAYsGdmlrPvXmZ2dorJyWGazSaDgcvG5jbFkoWiKqRJwu3bd7EsE1kWlIoOQRgwPztDu91jbXWNufnZjJZaKdKoV0CGbqfDu+evEqcRYRSxb24a3w+Y2zPD7MwE7717llxOYc/sNDmriFMq0O10cAceb51+l8npUXRdo9duY1o5DMsg8H3arRara9tMjg/z+lvvYuiCSr3Eiy++zr6FWa5cWWRkuEGz1aRaKbP/wDzdThtdN8hZObq9HpVqhaeeeZG9c1PkTJNOt8/x40dI04RSqcTp0+dYWdlACIVKxaFaLWeI+sDn4uVFtra2mJoYRjNykMKly4vsnZvmOydOMzpcp+cOWFr+B+rnUKNGqVzg8Sde4Dd+7VFAxh14fPmJ54mTACdvY9k27fYahUKZwAvJ2Xl83yWVwDTzpAg8P0RXNFIpYWtrmWq1zMrKFuVyGVIZdpu8SSWSJEDIKmtrm9j5HJZloisaly4uoqsa45Nj+FHA0ydvsX96hDT0UJ0hcoUiIvFxbBvPc8nZDvv2L+BeX0SWBaqq0u30cJw87XYLVZVxXQ9dNzL6XAK6bgAJQlNQZIkEiXyhyPzcAqphEZOgqSppnKIoGqkkk0YJMgpCaJAIZKGgqgbbm5uMVMscPXqIidFhjJzF0QMLjIzVkZEySEQUQ5LuSmRSCoUSI7UaSRKjmyZ+EKDpGeDAsnK89K2T3F1eZ35uHNOyPlBr5PJ5FFVkvpGywptvnmFjbZuhRjWzTZF2KXsxmJaRWSwkyS7ZNHuONqpDrK6uU6tUKJZLSFLCM994mf3z8yzsW8jgESJl0Hf5+kuvMT89iaxkMt92q4VEgqILep0+qqpg5yws3aBWrRAlPpqiI0kZrOP+40eBmKdfeI6poSq2nQOhYOXydLd22Pfwozx34k1+aWEW3ws+oLEKSSZMI2RJo9vuEoZe9gwnzhIfRRBFWU/3/NQs+bwJEhiGgedHmEYOTdXodDoUioVMWm5adLt9dCOTsEqyTBJFJHFCp9MhCAIkJErlMsvLK2hqBvgplYr0+z6abhC4bXQp65GUEHhBTKWSJfBxJJHLmURRhKEb/OlXnuXI3ln2LuyhPxggyxJCyOxstfBcj17f5aXX3mEwGHD0yDxIEr1uJutDkkiiCMM0uSkZ3HPPEWSJj10gfnhef//4uAVvSkwUxugi5GvPPcHRiT3stFoUh+ZxKhM0hkYYG2qwubPD+vomW1s7LN64Ti6fQWna2+tUCiZ+6CIUGcsqYBglZEVj8c5tbl67xdr2LfotnTBIGZ9wkEJBmPpICqwvu6yt3aVRc5AUk253kH0vaUiMimVakMDm5ma2ntCyyneWrGximBZpEmPmchhGiTCOaPeaaEIgC5BSiShK0A0docjIstg1Ks/IzqqqYpkmiiITJxGpJEiTrD4aRhESIKtqtsZKUuIkpdlucfbUJSYnJ1A1GSFUWq0BOV0HYnRDzRI3YeBHHnEcZxWrNPNWdIpZO0cuZ+P7WS8fkQ+Swub6Dla+iJRGSHK2GSahYOgaJDGxnJJKCqpigRQTJR7trS6Vag3DKnLx0iIrK7e4fetaJimPY3K5PHEic/jQETRdx7JybG5v8c7pU+TzDiQpQqjsNJu0mjskaYqmG+w7cJDNrW0qlQqBF7CzvUEYdAl8FztnEnqdXdNymTQNSfzdjRNhoeVKqIU6OWcYJA1kGaQY+QcCVH60cHf6HLx//8eM559X/Cgr8/834gclfD9aVfH99fyHfxbKL5K7n3m8n9z95IXej8/tf9RevI/zMM9+l/LKKyf45Nh3G5d/+OISEoamc/nSRUbHxtF3e7PiOPOzi4KUUqGIhIRTyJK9106d49MP34dpGPzRXz/Fp44dhCSh1exkvl+KwA8HKKpgaXWVWrWKqinIGjhOETtvc/naTRQ5Zu/CDP1Bj8e//gKTI8PcXb7JUKNBp91l4HWQJAnTNBn0e8RRiO8HaLpGueRgWXZWmQCiOOLIwX08eHQvI/UKhYKN7djcvHaDJ579JtEgppgvoAqDZ795gu2tNvc/eJBCpYyiGfiuhxAK9x3cx9nzF1lY2IMkVGzH4Vsn3ubtM+9RtnMsr6xTK5doDNWy/owkymiThkav18Xt9ojSGF2Tdw1UBVvNPoW8TalUzJLwJM1ISCKh026hCQshZT1ummFlsAoh43oDojjEKVdI0nQXH25zYKyGSCOcooWsqAhhEAc+KSnFSoFyrUQqw9ryKpZtU6vV8H2X0B0QRz6G5fDs86/ghyFHFmZJ05RWq4mVL/GXX3mOBx+8N+vdk2X++Pxt/qPPHiCJPJpbG5TyBW4uLtEb+BRKJrfvLuMUSpRKJc698x5/e3KRXz42hO91sa0SmxvbaIbMq2+d4tChBTRdZWJynChOME2LdqtLoz7M2uoWt+62OPHm25QKGqRJ5hmmC65ev82+vXu4tngbRZEZmxjl2995E13TmJ6dJF+wadTrOHaeb73yOmNjI5RzAf1emyRN+bun32BstE6r2SHv2MxMjnL31l10Wc6qEXGMpqh02m2qpQLnLi4yWitj6yqHj+xDy+mU7ALtdoex0QaaprC+tkZ1ZIgg9AhCH1IZXdcp1UsEUczC/AyapuD6HqViHqEkBGGAbuS4cPYCD95/lPpIg/WNTRRVplxxuH17maOH9rOyssGeuRncnk+n1WF1eZNqsUApb3PuwjX2H9hDvV7m+tWbPPnUCT79Sw8iS5DEPqMjQ9y8scybb5/i1//Rw4xPjPDGqQskkcTa6jbjUyUSXDTVRAiVft9H1218L0CooGkp/X6HgtMg8KFSLiHLKoEfZZIyWUKSE6JogKpq6LqBECa3b68iSTG1UoUzZy8zPFxDswyeOnGTz3z2c5w/dxo52GBiLMfaZgBJQNG2CVKZVNJQVjeI0yiT5uYyX0lZkVBFgqmb9AYepNmYCaMYhIQsy5nnom4hVIMogjiWUDSdJIowDSNbaAlBt9VFlnXkXVPqNA2J/JAv/vXjfOaTD5GvFJFNDV2XyOdtJClFllWkNPPGkmSIo5A4CrAsByEEghTf90GSkFWBqioIITM+UufgvhnKlVFa7TZxklIoFdje3kaRVTRFZD6h+Rxf/trTPPzA/QghZZTOOMY0zczmJE1JslIlqZQBmjaWNnnxW2/wyCMPYtpZUnRw3xyGodJsb+LkbbrdFkmSMlSqUygWsk23ICKNwTQNt51G0AAAIABJREFUVEXe3XwL8QOPar1K3rGRkfHciC/82Zd48PgRFC1FkhIO7JnBycsEUQhyHiEEs8NjqLP7+LsnnuRX98/vypJBUQTdXgfNNAiDCCn0uLV4iUajhkhSrl56j3I5j6oIFKFmz96wj6YKtrdaBK7EMy88R9VxKBYcmjs7lAoFZEVkC2VS4jjzt0xFViWUFYVmq4NmGERByN8++SyB71Otluh2uhRLJaI44g9OX2BBjUlTmT/+0tN84vgxgtDFNnMUChVM0yAIQizLYmqoQbfXY3i4wfb2Dk4xT7fbo1goYFomYejz2cce4L2rV5gYaWCYBoapkyQJyW4l17RyNB56DMexP5A2/yBZ5kfO4R/zOz8JEBs3eenLX6Db2SD1x9lJNPbvO07sx7R2tpEVUGRBqVAin3eyzQmRYukOhcoI7165wFDZIa+rrKytsb2zwdb2Oo5d5/jxR9m//wgJPcbG6myt3OHUO1cZndyLUyhx7u1XqTfq5CyLUBKcfOsVbKdEtVij53kEro+QpIyIK2yUNMYNZQahRpyqKKrJxavL3LzRoTFW5cSJFxltHMIN+lh2Dt+NEEaOSEoJ/ZCB56EbJrpukoQeiirwwogwgVRoKGmKUFV0TccwzGxetSzCIOsp9IOQcq3B6PQQdkFCVVR6nYi/+dIL7D0wSRqnqKpK4Af4sY+sqKSpRBwGKCIFQgwrh7zbd+wHPk7eJkkiZFnN2iGiYHc+yaBG/d6AxcXLjA6NEsgRy6sbnD9zgbHxUQxFRko17txZZGl1g4nJgyimwej4LDs7HaJYMDk5z8bGJlub2yALVEVnaWmJhT1zbG5u4Ho+k5PT1BpDjDSGM6BdPo9mmpSqVWShMOh0cXImadzFydusLi9iyiG6kDAMhcjziAOfJAZXNtArk+SdGYRugJAyqnL601XtAPJmlaE95Z9orP908bPog/tZxE93H9/bciVJ/CK5+3nEB8md/KFy7cdlWh8RP+/kDlI8z+fRuP39V/vQj6qqcun8FVQpoVKtESUJqqIhZJnA9xGywrXrt6jVy6TEyEhMjw9jWQZJnFJ1bALXxfezndu1tU1UVSVfzHZBNVUj8AJyOYvt1hZpImWeX3tnmZocIkljIGZmfBTPC6hVMomYLGQ0M5vwTTOHrqtYpkEcx2imidv1SBPBi6+8xd75OeI4wTB1zJxJsVxA0zXiOMLWDfbtmeHEG+d4+bVzPPrwMQ4sDPOdU2e5/9hBJEkjCkCWEkzLpN3ssHfvHm7cvMNOq42lGzxwzyHK+Rxfff4EU6N1xseHCQKfQiHPk89+gwMHFrIKiK6hSBL5ooPX79Pvefz+n32V+4/eg6FKu5YHKp7rYZoGii4hyxAFIEkZGlxWVGQpIy16vpvJOYWCqiiZxEjTsVVYX1tDklIMy8b1sslPMQ2QFcIkMy53dI1ub4C++1lYpo6QJWRhMDE+zuzEKKqQSOKIQqVAkqoc2DcPUoKkyvyr04v8p5/fR+y7RGFEr9VkamKKvfN7qA8NUazk0A2TxWu3EZLM//AnT/MH//xXkKSYKBhwa3GNhx6+j4tXrlKrFhgaKoMkceHiVUih3e6gKhory+ucO3+NB47fx7F75ygVLExD58SJ09x7/2EKTp7t7TaHD83z+lvnmJocIYkijh8/iqopCKEw6LnsNFskcYyVM7H0kPWNNWr1Bg8/8giGaSGExPZ2E11T0ZXsMw1DH90w6fX6vHfhKi++fJK9e2dYW9rAsXNUqiXCNOaZp19DVSWKxTymaVAsOAjDyAiKaUIYRpx47W1m9owjCbG7SRJg5Sw2t7axTA1d1zlx4h1MVWZmeopUCDqdDjnTQDNU2q0uuqoxMT7C4q07qLJga7NJrVTgzTfPMzMxyrdfP8fCwlgmS3R9fvmxT3Dm7GVuLy1z5NBeLl68TqFQYGamRr1RRQiFiYlJZEnj4vk7zO0tE8UDhFCIYkhiCZDRDQPkkDDsQQqKkkfXDVrtHTQ9A/L0+wNMQ0eSUkgDej0f28pz+9YqlmVTKeexDAtVkbmyeJuRsQanrnZ49JGHqVXzNFeu0F29SWn8CPmcBWmMF6XohsUzzz7PeCGz/IiCCM00SZKQ5uY6qmFiWnkUIeh0ulimRZwmdDptcvkCmm7Q6/fRDTPbzdY0DF1le3MTy7ZJJYmclQGOZBmEIuH6PXTF5L5DBygUCshmtksdBn0URc+sHRSd02+dwynYyBIou35ZiqIhZIkkDpFkCc3Q2djaxDRMoiBEETLFosO/+cMvMz87ycjYCGEUZLvvmkG32yGOQhzH5uHjx0h2QQWDwS4pNzPo3PVuy2Spvu+jqDq6arJvbhbTsVE0hdD3iZMY09SQpBhF7FJGDYOxsRlkWcLzXXTN4CtPPc3RQwfo9DqYhkavPyDwfJxigSAM0ISGYea4cOkKRw7tI1+wUIWMqQp2tpawnTx+rGNoKj03YFk2+Je//y/43U89ihdmz7ZOp03eyapXvutjqjKmIfCDrFd7eHiIXrebwXLaPXTLIgr6xFGIlMooSo4LVy7wwL33EIURuq7iuwN2mpn9i+e6GKbF9tYWqmkSxQmWnSdn2wiRyeUO7VtgZHiIQsEmTTP4iesFvL26yq/Mj5HGEqfPXWVtbYtGNU/gBWiqzkvffo1bd+6yf+8ClmVhmBqKqiJJYFkmzWamgBj0MxJkRhhMmJ2b2oUnZYtgTVOJdyt3X790i0OHDuwSBnen359Bcre6scJzf/FHhDu3UZMNnj53jc8+9k8wdZ00yuiua9vrnDtzCtvKWhnyTp5avULkRfhxJju0JJ809ChVR6nUGyRxShgoBKkPkYFViMjlBTV7HLtW5dqVRexcjrGJEpVSma3NdSynzND4FKvLd8hbeWRdoEiQJiExASkaSeDR7vucOXsGSc6+0zByOP/OXeb3D5HPV9haczFtgapKdNo9ohQ0S0dFIk0y6IcfBKgizTw4VZ0EmTPvvMnk+ASyLEMKQRBgWTlSWc6sgCSw8w6KpkOikaYeCR6JFHHg0KFdjz0FIQtkRSApwK4NVM6yCCM/m6djjTgKkBQJSU7RdEG7vUMURiBlPbpCllBUgQTYdpl6fRhVkQmJyDs1xkYWUJQIkgA51cjlbTqDkLdPn2Vp7S5z8wfptPs0GiO0OwN8z2Vmdg/tTofNrS2qlRq2bVKpVCmVy4RByPLKCtVSib7rsrG1RbFUxvVc3IFHu7mNqSmQumiqSru9ScnWCQZ9FEVm0O3gOAX8MEQvDmFVxlBFHgRIctYJJ6eCVPrp0i/DUulEbQoF58ce6z9d/P8zufuFifnPKcIw+D35/YTue/SQP+4g/bAU8/1ePHkXtPLD4uOTO4m/+OJfcaRoft+9iVRCQs6MT8OITnMHu2CQKxaI4xQSaDc73F1aYfHWbe4/foidnSaqonHuwjWcvEGahChyii4LFN3g754/waunzvOZh+8jSQO2ttqUKxWSOEaSIUliiqUqqgBv0KPfbbGx0eW9S9cZHx9CETJOPkenM0DTFALfZX2tx1/9/Qke/cQxFJHS7XZQNJ1nv/E6YRigCoO3z12l0SgwNtNAUw2SNESSIPBDZBR2mi3+6skX+Gf/9B/z0AMHGPg9FFlm3+wE+VyO5vYWg36LQilHs9OiUHYIfZ9+p8cTL34bQ00YnxwlX8hTyxs89NA9yGpCQoJumMzNzpDGCaqs0O/0iZEQmoEiaUgJTDXKDA8ViaKEXq9HLmcSRiGaoZHEgo21HSr1CkKVkRWBaqi43W0KeSPrO2y2yFs5Qi9FExruoIVkOVSGGgih0ml3yeVtTMvI+lYkCbc7IPEignBApVFGShNa231u3dxmZW2bQllDThPy+Rzt7iZRnKIrOposc/bMOWzd5P989zr/2WemqRQLVAol3M6Ab79yhr37ppAEGLrKzmaXpTtr9HodHj+zwn/x6TqVYo6lu8s06iPcWV3j9Nn3eOSTD2DoBt2OS7VS5tatO2wsbdFutWg0ithOjr1757DyOhsbW5x/9xrDjQZ37y4xPTuFWbB56+S7zM7OMDQ+gm0YhKGPUCH0Y+RURs/pOOU81UaJKPC4du0SI2MTrG5lvWHLS8sMD9VxchZ//jfPsmd6lH7PR+g5FD3baZVincceuR9DsTj7zhUmpkZIU3j3wnV+/Tc/y+joCIahs7K2SrFkEcWCL//N11lb2mbf4QUWDi4w6HpcfPc9Kk6OVrNFs9Wm6NT4xssnmZmeYmNzBzuX4+ribabGRqmWSrx77jLNVov5hT0gSei6iZNzaLc3aDRqjIyNMDxaxSpYTAzXWLq1wnC9xsXLi7S7LV587R18P2JudoqllXX27Z/k1KnLjI+NIQuZTnOLlaWbvHXuEgf2THPhvZvUG8MM2l1KRYf19XVa7TamXqDfXCGNY3J5OyOnRRG6abC1tYadN0GSGPQjVC3btNE0jffeu8zjT7xE0THIF2zyhSK6rvGVx7/Ff/0fP8zv/Hf/ir175nj1299hZGSa3s4infYOTm2UOOiwvbbImTtbHGsMQyxnoJHER5YknGKZ7e0dFCETSxHCEKi6ikKCSkLgB6gKQIzQFISqZcmnJJPLOwRRnAmKEpm+20ZRJJI0wdALhLGPaulEJMhCoGkq0cBHNQySWGJzZZNaqYQqh0ianEl33QhJhPiuz7Ury1y7dpOtjS1mJocxlByGYYIc4Lo+qqKQL5jICpmXnlBJ0oQ0UfC9hCRR8DyfomOAEGiGmSV6SdbnASmqqkEKQlF5X4pq2gaaJhNFAUQunWafu7dXKVaqSGmCbedBU3DdLt6gTamYR9EEM1PjBGmKU6oQxVmP5Ddeeo2RaoPl23f4/T/7W44dOsgjD95HFEUkfkwYyvhegpUXhOEAS2h4YYiuCp4+e5Zf+9VfZ8EpoukqEhJRmJAmIKcqhmWRqAmyqpLTVVIjT4xANwsIWc5IoZJAVnRMu5BZJYRtHnjokwz6g2zBravIOR3L1Gi1OpiWhSQJdMNCpClJFCKT2eoIOWVleZNCKbMn8NwAK+cQeSFPPvVNtlSdQ3mFIIw5fs9+Jsfq1Cp1ut0+QmRE533z88RJSHNni4JTRZYSut0Wlqlj6AYoKo6tsL12GxKfYj6HrNvohkmcgiwUojhh0Ovw7dub/Pv/+T/7vhaM7wVH/KDj/UhCnUTpEBEiUotgsMNX//V/yfxUmXKlyrlrXf7b//5/4ukTz/Hq668zMzJKoZSjWC5TcMqcO3eRPXunEFrK4rVVhkdrNJtbTA5PoagJg8hFCl2S0EdVJILYY3uzTa1eYH1zm2bTJZV0ttdXqVaqWQXq8l3OXbpNzwsRUUK/6/Kt19/F7/bwvD5OocHATVi8vkS72SPvzPLMCy+iF6oM/JBaY5xvvHqCz37uU3zr5a+zvNnk6p1lNteb3Lq5RbEyzPJqk8uXV7ALFXQ9oxjnnBKaJoOsZUli4DI6PI43CNAsnX7oM/A1el6EY2nIskAIBSQZfzAgcNtEQYSChipUFDlGiGyNIu+uvZIka+BQxO6zwrDwg4g4NUlFmCkLeimmJVBFDtMwUFQZIae0vJg//KO/Z2Z2Gll3CcOUv378WQ7sPYBGhKBHEkcoss3G5hayZLOx6XP5+irH7rmX+lCOlbur2Faejc2r7D90hHwxj6YpFAo29XqZBJn1zTVct0fOzFHMF7hz9y5Do6NoqsL5d94k8lz8fgtDibAtmX5vGV145E2FNPI/gOopuolRrKKXRjBK06h6FVns2oenGbznx0nsvsuKbfeQJQkkOH3xFPv2z+865f084Ck/LKRMLvtTEOo/vvfuo3R8H9eA9eNel+86flG5+zlEFIW/l6bpd4FRftL4cLXux32/H1YsfOaZ577LAuH9kHfR9qkkoUgSN65cp1DMY1p5kl3CpCyBUASaIigUCximyTtnL/DOe9eZmxmjUnFod7qMT4whaYKbd5cJk5SHHjjKneVl5vbMcnPxDpVKGdM08f0ASGk122xsbDI6NszWZoduf0CpYOPk81y4cJX9e0ZYvHaVatnBdhw+/eiDyEqC57ogychCYnykhqUb7DSbmKbG8eOHicIAz/MI/IAkkUjiFFkW6JrG3PQYCQFGTiGXMzANi1K5yOKNm4yMNDIPPCXD1luWQb/fQ8gKDx87Qr1WY31jm6vXbnL40AJJmiIJ0E1jF/Mk0HQNJGi2djAshdCLiYKQTqeHUyjw8olTjA2PcuXaTUbHGwhFIgy9TKoqS6RJwqA/IEkSzFweL4izBFHTUXUDkAj8gCAKMxsJScL3PWQhPiAp9ft9giBA1zUGgw6yku4eOq2Oi+1USOOUxvAIQpNRNZOB65JKAbXqOGGY9TkWCjbv0uGf/toxdENle32D5vYOz77wMvvm9lAo5vE8n+XlVSRNYWJ6nMffXmcquUEapizeucroaI18Ps/I8Ahvn7nM6GgR13UZDFyef/ENRoeGmN87y9ZOi5HhBqauEYU+t2/fYmZ2gsmZSVTTYnJ2muuL1yiWCgyVi0RpRH24wsbqMlEckUQSxUKZVqsNgBCZ+bRhaERel63tFgt797K2ukkpb7PRbFMsl7hza5laqUgSJ0jIJElWvXOKVWI5wfd7SFLC9NQ0zXaPOIWTr7/Gwp4pvv7cd2i3e9SqZd5+5yJLy5v84//g87Q6HZ548pvsm5kkjUJWV9ZptrrcvLFCrVHkwQePImSZ8bERGsNDjE2M0hm00U0D0zIRko5lGnznxCmGh0rkCyabrW1GRkYZ9Ad885uvc2jfHjzPZ3ximISEWq1MGAYMD1UwNJ3zF64zXC8xNj6CpZnk7DzvXbhCEsXMzsyQhgmmZfDaqYs8cN9het0Ot+4sMTkxxRf/8msszI7hulvIsoxll0hTCUUoxEkGiigVi8RRJr9TNQ0rZxKEPuWyxdr2MidP3eA7J9/ljbcvMXBd/p1f/wy6BRdWYkq1Or/zT/4TbtzZwBFbSGlIpVzBcwNUzeT+TxznzZdfYXpohDRNSIS6iw5XsU2DXqudUfkGLkLRiFOZMEmRkEjSFN3Q6bQ62VS6qzqIoghVzSoskthNOiSFOExJItANQRInqEpmM5FEIbKa4+rFqxSsHOfPnmNtZYXJ+SkiZFJkSGP6zR2SJGJ4tEy9MYyu59nYXqdYrNPp9XBDD00zGR4tkS/aeK67W3lUSVPwvYg//bMvc+zoYZAkWhsdjFyOVAYhS5CEkMokCby/zZeSQJrJuVNSojjkb776BAXLQddNisUSmmHiuy66lfWzZgAcmVanTRBGmEY2JmRkomhAvVZlbGSIP/mLL/PpRx7lsU88mMmw5JTMLy9AUlX+5Re+yJXL16kXS2hyF9WyCMOAV26tMjM1SWkwQNU1mjstCoUiiqah6RFuv0fsC3TFoLW1TBB0UVXQNINYUkhkhTQKQBL4vo9QMpuXTrdFsVxA1VRa7Q62nc98UK2svxEkfDciisLss0kk3L5HGMYIRUPTM88zRVGzig8J3zr5Jluawm8e3kccplhmVo2OkoBiyQER43kupmFx5cpNXjp5msMHpnA9j0KhgITCytIGVt6k3e5SqTVQVIs4Fpw+e47RkRph6BKFPoNBn367yUtNn0ce+ySxBLGU/sRdS74cIMghUpNw+wbvvv4U3fY6k1P7QHWYO/pZ1NwEpZJOFMqsX1vByuts73T41neeY2yiRmc7wFAcgmiVvFMmiAbEKQSxTqk2zc76NXKGgqZk371TKTLod5iaPky/H9N3+5TLJdwgYHhknMNHjtHvden2JarlIa4t3mFu73GmJ+d558Ii+cIkL3/nJE55HMmw+faZE/zSr/y73Lhxi27bY2Otiarb7Gy38WOPYmWcWn0Ktxex04oYmtzDybfPo5t1bt69S7vdZGh4nGvXLmHlGyi6SZokeG6MJFTyZYOYBFkyeP21V1lbXmO0VkIiIYki4sBHklIURUE3DNIkaz2RJAlVM/FDj0iSCMIQOVVASgmCAFVVieOYMAx5+plXcfJFLEdCQWLQden1O8iKRipJoOokOPh+F0nEVEo5FCEhRIlKpZTNS2lEKksMYhfLtkjkBE0X1GsmpaERtjd7RIHCnbs3GBqrUyxXMTSNF57/OkONUfo9j2azzcrKKjNz86AqdH2PnKGgCBVVKPj9LlHUZnZ6AlX4dDsblByTxHOBBClNkDWVWJLBKhBRwsqNoltlkHf7DH/S+Igl7PvPsBdf/SafeuyTpP+fVdOyJOunSe7SNPmYBPFHey2z//rxxH7ff71f9Nz9XCKKwt+Df5BPSkC8Czf5SQfO+4AU+Yc0Un/vOd/XhP2hk5MLZ5isFP/h73l/eKe7P0gQxWytrWPZuYwwlSSoSgZIsUwDTVMxTBMphbHxUfbNTJEmEZqaNTAPBh4IOLiwhwePHWFza5vp6QnCMAJSXNfDKWTeP+sbmxSLBRzHxtyVWpWKeYrFPGmaUqtW6HbWsSyNbq9NKgQJcVYRi1MKxSJxHGEaGTrZtnMsLMwiSRAGAb1+n7xToN3sZh5LsoQiC0xLx/VddF1H13VCPwQJbt68Td7OYedzCE0h9AP6vT6GqWObOZrNFq1Wh8Zwg9mZSSR51wfKUImSmDSV+NJXnuHIwQWiJKJUKWZafNNmbX2TP3n8aT736YeZHB3BcQrU6xUMQ2VnZ4dytZR937teVJ7rU6s3iKIERddBlvE8N7sfQ0dRtd2EMiWNYxRFQSjZAs4wdCCT2KbEdNodhCxhWxU8LyGKQVXBMBOMXAFZSZDSzF8wZ2uZf56UsL2zxX/z3Cv889/+NL7rE8chnU6H5nab4Xqdo0fv4cRrr1MuFVGExvXbtxkaGuLFt67xW59aYGNjh3vvmSNn5giDhDBKOX7vYfKOiabpVCplpiZGaLc65Bydra0mY6PDPPHUi+QMjT17Jlm6u0KhVMqMnyVBvVIkkaBg5Tj5xhnmFmYoOjaO42AYFpIksbyyxtBQjXa/g9iVW1brBXTNYKvZ581T7+ENPEbHRgmCkHIhT6/voukq5969jqLF1CoVvvbsSUpFk2azyeTYGJ7rIxSFPQuzqJJPtVxh8eZdPvnQMUzTYGRkmCOH51EUhbxjMzs1yo3rt7AtHVnIvPXOFX7zNz7HdnOHra1NSqUiUQhmLqO7SVKCoqpYdo6SU+QP/6/H+d3f+Q0kErqdDo3hOoO+h53Ls7a6znvvXWFtc4e9C3uI4gjLNKjVqyzeXOL4fUfIWTqzs1PcWLzBm29exPMHHD68F9PUee3kaU6+dZk7y2v89m99HlUX5CyNUqlEa6fH4f1z/NmXnuLewxPUG8P0B5msbGN9g1Z7m7GxMcIwysiNukqUSB9MdIahMTs5zIOHF7ANCVVJ2VjfYnaiTpwGrLQTfuu3f5flu3dZ2LuXzaVLaIbOoN9DFhnEoOt6fPmbb/DY3AxxEmfPojRl0OthqFpGnHP75HI2iawgFJUoijEME0UVtFttCoU8EjKKqhGGIbphIEswcF12trdxnAJCUkmReObZF5ClGF3X0LSMKpqkCXEs8fgTT9Frtzm4f57RsRFkTaHTzaAasgRSmmb/cxJ0uy7Vah3DUrByDpquoxsZuCVKPDQtAyFIksD1PMIwJI4TXn3zDA89cC9Xr13la8++zMGDe9EMlTiNMTQN1wv428efZKQ+hGHpCCFYX1/nqadf4PChg0gSmIrKU8+/zGc+/QiGZSAUFSFDr98HIaEKhSgMsfM2iqKi6TqaqhOFEe3mDp1OF8PQ+dTDD6GbJutr6zz1wvMcO3qANIlpNbdRdZM9U1M8dOw4vW6HclEgKQZCFrx2Z53/8Ld+nS987QUem5vFMDIITNYvGCBJCpqa9Zt12psgxXiunwF8ZDXrQQsCZCGQhUARMqqqkEQRtpMnimN0w8Qb+FhmjjDw0DSNJAFZUknTCMMw2NraIY5S8vkC/+Lf/gn3Hz1Eu9UCSebWzdvU61V812ddVfnkWJ0v/PlXmR0botPpfOATurqyRqPRIAxj0iTl6MEFEAlbm00KTpFep8e59y4z1KiiGTog4Q18+j2XoeEqaZptEuiGRhRFKMDZbsQnP/3wrglC8pFQCvl9OFoak6Qpiiy+b/6PpRCBgZwkrFx7g97ObZ577h0+94/+PU6+eY7hqRlWttcZGZ5gbnKOv3/lSZa2lnB3XGw7x5Wr5wg9iUHPZXp2GFXNiKGry2sMDU+QpBAOttBFikSC0DSCMCSOIqrVcQzdQqgCw7TwfI8oDLFyJnmnwKHD9xKHLq12E7tU5r1zJ4hSi9t3lqlURlhdX2FzexXLMhiuDmErKqHb48jBexiq16hXqsxOT3Hz+iXGh8dQNEGhVGJl8y5h5NHt9rB1DVPA2NgQ5WKFZ7/+Ao5Tolou8s3nvo7nR5QqDkLWGAw8JqcnmZqZQJVBERnBOiVFCBmQCMMw81uUZKRd+up2q03f9chZBTQhgZzJopMkyap5acrqWp+x8Qa5vCDyY3RVJZe38QMfeRd+pMsxU+MjDNfKJL6HoehUxxqQuiRJiKYbGQE2tdhc73HmrXe4dvkGY6NzvH7mNeZn7+XQoUNMTk9SrdbRdZNOt8vC/H6iMEJVVGzbptPpUh8aYuAPKBYKtHe26Hb66Kr6/7D3nkGSZeeZ3nPP9TZ9ZnnT3dXV3vf0DGYwwyEBArShWEohUdofWoVCuyspQr82NiRKEdzYjVBQ5Epa0CwgkIThggBBYIkh3AzGe9c90z3tu7qrTXVXl03vrtePW2MANAYgSC7/4FRUVVZm1rk3b54857zf937vi2UoXF88S6GQR+CTxD5SEiKklDiKsvkxlbNaRbdKLj+ObhbJlGxi+BBw92P3t/d6+N0B3YvZdXTuHxDc/fD5p2lGPf1xryvZ8rP7m6lmwvsX5P1U5g+KH26dyYf2ci9s8TNw9/fQgjD87ayYxTNdAAAgAElEQVQw+v2L/u6b9beLCvzo7F2SfFjE4Pv7APjD3/80/2jn5D2fI0nJ1g1446XXqRUKyIqGYTsoqoY/9An9ALbETAa9PpKsUN+o8/XHnuLIgXlMx0QzdMIgRBEStmlx/uxlNFnB1DUkWbCx2eRP/vJbPHj0IIqi4AcBjmMTRRHdbpdeN+avvvMMe+dnCMOIhYUb1MbHKZZqIElohoWXK5Bz8qzcbbC8vMnoaI1+rwkp5HI2siqAhChIcD0bWWi0Gl1s1+H2nSVOvX0e2zIwNB1ZNkljGU0XrCyvMDk5hqZni/v6eptvf/d5Du/dg6SqRMGQ5149SaVYpr7Z5PzlK7iOhWmbaLqKrKogCeZmxxFKpnapKNnGMRl06Pt9PvmLDyMrMnEYcuPmbXI5h0zG3cXvB8iqQhKnEAnCUOJ/+z8/wy/cfxBJVkACTZOJQj8zGhYSg34PXTdQJIiTmFRSuHx5gX63i+NZ6LrOsB/w7IsnuXp9mZqrZYqLkkx9cwNdhCi6Rre9jqGYRMOIXqeN6dp869It7vvEYf6rXzzBtYXr5NwCrUYTVdYoFct893sv8cqrZ9i7exvLd1cRQmbb3Db+4sk3+WefnKPRbGNaNmkscfXqMqtrTbqdAVEY8uIrp7NaPqDZbDC7fYLrVy+RJhI3biyzZ888umVSLha4dWuZJIrY3KhjaApvnjzH2PgY33rsGX7pkz9HvdXi7JlLuI7LxkYd19V4/pXXMFWd0fGR9yTJO+0ebqEEks6xI4dYWVkn8WM820XVNDRLozY+gm3b7Nw1SZLAeG2cTqvFwrU7kKRMTo1hexZhPKTsuly6dJ39++cJQx8/7OM4eSRZZGO518fUdEZHq7ieQ66Q49j9R4hTQbu1zuzsJHfvrrK2WieNJBYWrlEsOLSbHV5//Sx518S2VYoFj8e/9yI510YmZdD3eeedSxw/fogjx/cxPTXO57/0GHv3bMe0TO7cuUuhkMe2bJ5+7g2GwwG1WpHd85kEuWlpmJpCs1nnox85yP0fOYRmqMhSRK/XZzj0+cuvP0fRczm0fxpFUfC8Ao1WH9sxEFKY1cUmErKUKbaShiBU4iRTo/T9AM8rEPhtxsar7N61jUcePkKhmCP2h6yvrbD3vodptjdQ1JTRyV20ez069Ru06mvYtkK5Osm5C9c4MT5GKqUkoc+g18tEd9pdnFyeOA6RFBWh6HRbHSxD36I6xgSBT5rESKmEoqmoqpZldFOwbQvdsAj9lDhKSZKY+d2zpHFEsVgAso1cFGYboOMH9lCrlSiOVEgUkFOZZ55+ldXlNTxTJVcqsbS0xssvv4M/6OG5Gq5nIxKFTqtJSoA/9NENg2CYYhg2jUYLVVfQdYGiqhw5sAfLMSlVcowVqzzz4ssYmka1UiUOsxrOJ555mSP7D+LmLCDGtmwOHThAGEV8+nNfZHFpiX/+3/236KaKJKdIQkIgOHf+YuY7mqbICKI0xjStbK5J4PKFK0xNTCGR0O11kVWZoe8ThQMeOHaYMPB5+tnn2T0/j6XptDobBIGg0eiQMOD5F98g5xbRiHGnK7zx1nkemduRrV/vCcHopEIFJSaREjyniON4CKGj6XbGgJAS0jAgQULVNeIkZTAYIEcqK+t1HC+HLCvEfoDvR1iOSRAExFHK4sJtLlw6j6qoVCuj/P7/9yVGSyVWNje479hhXn/zJHM75hCywrDnU6kWee32be6ruDzykSMgpaiqzF9991mKbg7P87h1c5k4SjBtnXKlQKvV5nf++GvUVzfJuw4Dv8+XvvoUl6/dYN+ubSiqjG0qyELl2RffYGZijGHf5+0zF5CExpVI4aMPP4hMiCzFgHKPtfjdUgyBH/hZYPUHniNLEUoiEwdr3LzyNOdOvcN//y9+h1x1hsU7daYm51i8fI3PffHPeeqJp1GTTTY3bvLC6XdQgpigKaiM2cztmkGVK7zx1ivk3SKm7DAcNMkXLTY3e9RXF9E1HdtxIBqSxkPa/Q71xgpRBLv27SdNJTY31xgfH2P5zk0My2H5xgLTM3NM75jD79c5fOw+ysVMRG1qYoJiKcdIeQ9n33qdo0ePkEoRt1YWkKME23TxA59yuYQ/zBQ3NU1j+7YpDu/eyUS5gFMYIYoTVEvj6o271KozFEsOmugzt+0gtZFRZBERDBPW765QrtgoUoqqWpkwmKoSxhGKpiILgRCZBYyqZgI9CQH1ZsI3HnuZyclxPDfTUhBCfg98p0nC/I5ZLDtBlgS2kSMWfRRFJ4oCkjBASVM6rXVMXYCUougWESlR2EeTQJVlAj/MAiBSC8M2UWyN3Qf2omgD8oV9PP/CS3gllSDqc3OxyczsNIvXriMJ6HTaaJqGqms4ts3SzRu4hsKg18JzS9y6eYuRWoVu+y6TY6PYtkG3sYKpyfi9NmEaIxQVFAvVHsXKjWIUZ1ENF+R3fezuRS384fH6o5/wo++yjDy17YV/UHD3wy37tP3YffVPnfH7u3utPwN3/wlaGGaZuySJyeTB33ep/0Frgh+VzUvuken7sMGTgTbpx/b7Lrg7/fZpDhfs73/s/SORGcdI9Ls9+v0+uVKROEqQkahvNhFCQdcz3yHTNFA1BdPU2Ds/y/p6gzSW8Ic+d9fv0u2EGKbHc6+ewo8HjE3m0GWLO7dXuO/APpI0oD/o4uZskkiwvlwn55lIOjz4wKEsWpnEnDpzDs2MiWMJWTFo95rYlk1/MOTmrQW+/vjTzI3N0RkGjI5MZjWDaQKSIApTFNvk337qCziqzvh4jdJohfGxcfJunqXFu2iaiqaroEpIcvb+WYbFsB9g2zb79+5EVpRMOUsxmZ2eJl9wqI0VGK0VaG42yec8JFljOBgShwGmpZKmMZqmEIaZAWir0cfJZYIUJBKarPHYc08wNVLDcVwG/R62Z9DebNBpdRl0hvQ7Az5ycB9f+cb32LnNo9/ewNZsVMlgc3OVONrANm1k1UFKQnTbYn19k4mpcXRDo99tEAwjHCdHGCYcP3oI2XARShYNtnUXy9botIfYrkWaqnQ6XarjFf6Pp9/if/rNRzJak0gpuIJE1QkHQ06+8hZIKi+9fpZ/+j/8N0yO1sh5Lobj8JnvXGCKNbZNz/Kdx1/j2NF53MoIYZqyVm9y8OAcXs4mDjM5flnINDYbuI7LzTsNTjxwH4s37nD6nQUeevA4p0+dpVjIoykqN28sUyrkWd9YY2KkwvbtUwwGQ7729Se5vLCEbSgUC3nOvHOFRx9+kFrNIUKh0x0iqwaObSEhE8cJQlEplIvcXrrBtRs3eO31s8xMVijkDJrNJtWxMcIk5cy5s9xZWuWTH/8ocRJx4WpG21UNgxiZeqdLq9VjtDbOE996nR1TZa5evsbaSgNJaDz97EkuXLrC3v3bQJbQdIMwjCnkHISkYjsenuvyncef5MSx/eiWSRKnbJ8dR88ZvPz6WWanp7GtTH3y1u0NqpUS65ub7Nw5xcKVK+Q8i717tmM7FsgphiXz7W+9iopBtaZzZfEqR/fdzzvn3sa2DBzLZvnuGppmUCi7aHIOSUppNDfQLAnP8Th96iZjI1WqYyWGvR5eLoekmciqTioUclaBNBFousHq2gq6IYjDEFkkRIGfbcBJUE0LRZExdINUEsiahazI7Jod5VN//jwPPfIQQjForN1lfPt+zPwoQeMKerKBnAw5ct/P8W++8HV+YXaGWBJIksg2YxJ0223MXC7znRIqqqbS7fVQSJEUA91yCcIYXZFBAUkW9Ht9vHyBOBYIAfX1Fp/6o89zZP8uiPo4XokEQErwh31URZCIlG7PJ5cvoMgCKYkhDjNq8EiFpZs3EZrK6ESV9Y27nDl3iZ2zU7h2jiDy0Q1ty+MyoyMJ1SBBRhEpfr/JE4+/iWU6RFGmCpqmMk7RodvpsG/fbhRFRQgFVZM4tHcOZysjF6cSigr+wEdWZA4d2MWOmQny+TJpIiG27AsShpQreUxDy+qQNJNBd0iaRqiazPr6OpVymc2NFZJI4hvfforl5VX27JmHJEY3VXRDY2Zmlu888TyOaVIbnyJXzjM1M0bezaOKDjlbpRumjB0Z5e23L/DA5ByKUBgMWogkRZI1pDRBFoI4jhCajJTGWybnBr1BD0VVMEybKN6ySJAkVE2jP0xYXrpN0XNJiRhGAZqezcmhLzEYBMhKSrs5ZM+efTz51EskiWB0ZIRtk6NomsLeA/PIioxh6vzhZ75GwXN59sYiv7xzkm49oxh32m3GR8oMhgNq5REUIfPsy28yPzdFf9hDFiqHd23j6JH9OK6LJCmM5PNUKg4jowVyOY9ec4ikaFy4ssjBg3uRZZXx8RE2N1eY+OjDTE5PIyHDB3zC3gUM0lZG6N26I0VR7m2BIMmkCbRXrtJcfIvX3jhPT+QRYYOCrtNZ7zIYrjK380Eunf9z5EhlYrZMlG6nNurTVzqU0xpnT17EySfs2HWYYiGfeUrmbAaDNrn8DIVyjV7YJsHHVi1UVSCkIXlXJ/ETdC0hHHQxdZdUTpjZtoPEl9HyEjPbZ3HNIm4xR6U8yfLqEtPbZjl99iz3Hf84uiaojUxy7tJldu89xupai/sfeYh8pcTd9XUcr0wQw74De0nTkPrmOhNT27h6/Spnz7yDbricfPMc7e6AZqfNnr17UKWIy1ebnLm6SnmiyM2lJjlvlGJFR6Q6zUGPr33uW+zYdhBZ7yEkDfo+fuIja5lVQxx00Q0PKYmYGS9QLedJYrIMcZxsCU9lDIGYIUJkjKUoHmb7sSiBNFPu9YMhpu6g6TbNfhdDhmG9hapL6KYDskBWElQhESc2Yb9D4vfQzQpvnL3L2TNXmJufplwqk/fKTIyOkAooFososkIun0fTNPx4iKrIBP3M9mhl+RZ5z6HXabK4eAXDzrO8egPT0DGJCPodhKGh63mCWIBVRs2NYOZrqEJ/P7f0N8xKvTdOP1BfJ23V6X3w693n+X5EdVuee1IVP9BN+n6m5Cc+l5++fT+4i9N4i9T2/rGTNIWt1/Gj6ZgfVof3k7Qf7OOHixezPT8gCZIk/Zmgyt9H8/3hb783ANOseP/DPhQfBsJ+YuWse2RtP6zf73z7iXvW28G7Qyj7eefWEooQjE9O0ml3MrpTGPKlv3qcHdNjuJ6Xec7FMUEQcHdplbX1Jp1ul3cuLfDgA0fIF/JICPbt3kEwHFKtFei0Bzz/6ttcWrzF/Uf34XgOIBEOY/r9AZ12E8d1SbbqaiTg0P49OJ6BbbuEQUyxnCcMYlRFI5+zcTWD8bFJ/p8/+wo120JTJV5/+zRTE6P8xV9/j0P7d7Fn2ww51yFfzJGQKdu1mi3Onb/CSyffppz3yBVdNEWh1WyiCA1JCF5+9RTlYoGrC4sUih7r6w1efu0k22enaLZa5As5dFWj1xvgFfL0Bz0MTc+OIcsMhz5pnBmv2raNZpnIikq93sS2HKQ4ZnJqMvPfIqHR2ESSBCNjo5iWxZe/8QSGpuK6JvO7ZoiCzMNpOBhQLBXoNFs4ThFJVgiDPkHgoxkGssjsGixDJU0EiqJSG6mhmyqqqtLttpAQnD19GURIqVShP+ygKyZxlPCpc4v81j9+OMsOSvDM08/h2BpxqtBtdch7Lp2ez9yOaarVEm+9/TaSBKev3uLXjlR48ZUz5ByDI4d34XoWK+sbzM5OUy44kCT0ej2+8+RrTI1XuHh5kZ1zs6ytblCulthc32Rmaow4DolDn5dee4dut8/cjhnSNGF9o47jGLRbHe6urDPoD9m3ezs756Z46dUzFAsOQpJotztomoKTL6DpBroiCIcBnU5/i9KambiPjVZYuHqLgwfmGRurISsyqqKBkJBlmamJUQqeS6GYp9FoYVkGhWIeRZERaUI+n8d1HQQp05OjtDp1Tr1zmV/9tY9x4eICjzxynDdOnmV+5xT1egPb8Rj0BgiZrRpQQRzFmKqKYej0hz5XLi9SzOdACA7t38cbr5+mXCqxvlZnfn6Gm7eWUVWFYqHAk8++huPoVMoV6s0m/nCA7RjsmZ/n+rU7dPpN7ju6l1s31zlybDcbG3UMy8J13Eyp0TTRNY04GeC4Foqs0usMsU2Nfft3gkgJgyyirVsWkG1EthQ+MhPxNKLeqGMZFnGSMPR9hr6P57rEcYw/GAKg6zp+EBIGQ3Rd5/Rtn4c+eoIkThBpihA6qiLo1Ze4ceM6mqkRSBYbjR4HqyU63UyRUBYCRZZRFAVkQb83QJaUTKVSy5RKZTWzK9BVlV6nTbp1vR03t2V6LtFpt3jp5TdY32jw4IkjKJoEspKp72pbdHRNA0mwvrKBZZk0G5u4nkMY+NheDtdzuL54nWqlgmVp2KbFQycepNNrZ0qacUwYBnR7fdycS5okpGlGcbJsk06rwZPPv8mxQ/vY2FhnfGIMSWS1zdVqORNdEVkuIU1j4ijGMCxkTUWSBIN+F13PqMhJHKEbOqqqIeQswCiEhERCFMdbypE6//cffBZBwszMFCurK0RhjGXZlAo5TMuiVizx6tvvMFYpEQdklEJZ58b1JdbWmhzYvwvbcQmSiG63RTTsI6VDXMPGUFz+4JuvUC3mODI6TbPexPMcoiAhTGJULasxlLeCd1KaBRQ1PfvMKUqW/W02GpmITpzgD4dEUYTnWCiKhFBkEIKEhDSRMoqgANuxGKmVELLE1NQYhw/vQ1FgbHwUN+cSx+FWJlam0WgyOVHj3339q/zTjz+MaRrEScTaxgalUpFiqYgqCzRdwzYNLNtEAgzTwjLtrfOHP/7yN/nVX3iIyemRLQVFAXGKbpns2bWdfq+LbVtIAl6/tsgv/5N/QirJPyyx8IF1+weX9XuBO0kAScLta+c5/9YzTM7O41NBVXzOnTlHq51w5fp1Lly6zYljE+SdIlevvc3KSsj/+s8OkcZtztxZ5xcf/DlsT+eb3/0Og0GAlCp4nrs1hjTWlm+iqglSMkRKVRQ1k/UfDPt4nkun2+T8uTOUq2OYjonn5giHMZvNFeIwQUg6tm0AMZv1VUZHRjh44DCLi9cIoyHDoI9j20hC4oET99PtdcjlCty+fZs0gX37DjI6UqNcrjI6PoUfhNRGxhgfnyGKYmzbxLQ0pNRgfLSKbcClhSvcuH2Vi2cu02sHRGEHw4oJoz6qYrJ6Z4W9+/aA7BOEgjBKkUSCpiiZd14SMvQT0iSlVKkRBj6O57xXzxlH4Xt1u+9uqiVJZPXuCVkweKu8QtM1fAK6g5AvfeUJDh/en1kjRDGDIQRhQhQGxGGKIutoqoppepx+5xJXr68hCxnHs9i/7wCvvPpC5r3oONy5cxvDNOn3+wAkaYxpmJx++yTjo+PU63Wq1RFc10ZRBOVijpU711BEiqEkCEVC1m1Mt4Zm5cgVx9CtAkLoP3Y/+RM16YM3f3QfuqHyF499lWPHj3xYFx8Ajf/pwZ2Q5Pfuff96pO9DrJ+41u4neezD2r35rWkqgZRmitY/A3d/980fDn+bD0YXtjzBflT7hwB3Lzz/0k8E7tburuLYJrl8nn5/kNVtJSlHD+7J5J1VhWAYEEYxjuNQKJR489Q57jt2iOHAZ2J8gm63iaYpKLJMtVIi9CPanT77dm3j/mP7Wd+sYxo6SZjSqLf5gy99g7npURzDwHMdWq0Wpm3S8/t02n1eevltcm4eRUkhFQih0GrVGQ4CTMPm0P5ZZqbGsF2LibEakLB/9/bMrDRKuLhwjUq1mMVaJEEwHFAueIzVqqysbzI2UmPQ7aMoGqZpMxyGaKqE7VioqophmOQLOQLfp1opIcugKBq3by3z9vnLTE1OYlomkKVQoyhBCBnH8RgOA1RVxg9j1teb71E/yqUaly9do1zNoagCoUjolguSxMrqGg8cP8jE9Ajbt0+gqR6OUyCM+yT4kBrcWepSrY7ihx16rUa28ZUNpFRkiqf1DoZpZYauhERxQOhH5AoOg/4wizpPlIgjgaoLhkHEp87d4J//0g5UKxPHSVN48dVTPPiRE6wsN3nrrXNZNk/V8YOIy1cv8+ADRykWC3zpxWt40Rofe/Q+hCyhajJRNOTG9SUqRY8o8HnhlTc5dnQ/q6vr7Ns3z+palomSFYW3Tp1hfLQMaYxIYyqlPLt3b6fX71Otljl/6Rp7d8+xsrxKrVJhYeEWuqJw69YKRw7vpVxwGR2pce3aLbZvn6Y2PsrCwnU8xyINfS5dvEW71WN0bISNjTWSJERRLBZvLnPw4F7WN+o0Wi1Wl9d5/Hsvk7MN8p5HGie8/MYpZmbGuX59idmZKS6cv4ScJvR6XQqlPFeuLVKtlSiP1ZieHaM/6LBjxwSSCNk1P8fVq9fZsWMbqyvrvPHmOww6Q1zHhjTl8pUFGps9ZmenOf3OJXbNz7Fw+QbVSomL567S6QyzmivfZ3S0xMuvnWV+xyxLt1bpdxMuXb2KYxlMz0zhOBZBGGT+XyJgfLyG63kYlobh2IxOjPLkU6/x/EtnmdsxzVe/9gy7d9cIkw7BMOW55y6xe/ccpjWk3d3AsFwKxSIXL12lVimQBH2SaEA/GmKYOpv1Orpu4ORchv0htpOZl5uWlc2BsooqC2Tx7gZeRlNUNjfrXK0rTM1MMOj3cc0izVYPCYlWs02lto0wDXGcPCcePM7vfemv+YW9u2i325imTpJEWRZMyEiphJAysEAKqZQQJyFJEiELCKIA2/EyauC7CsRJgqwIZmemmBitZmqvlkGz2cV1HdIENE1nMPCRJRXHtTP6pCYxCAakSKi6ThRFTE1NIoUx3XYbUoWrV5dpdnqM1gqYtkkYRuTyeWQhEwyGWE5m69IfDBBCcPzYIRQVxiZrICXIcoqQJYIgCwLIisgAn8gEEhYuLYDIqJySSFG2KNuyrGzdTkjSGElKt9gIIG2tRUEQcvTgARzbxLAMvFwB3TAy03VNZ2OjzneffYFPPPpRxidG0BWLQqmIpmW2HdtnZhj4fUzHIoljlm7eolQuMWitceatU4yNTXBqrU3edjg+PglJdm5//h+/wb69OzMRGCAKIxTZIAplVFVn4DdQZRk5VUiFxBe//FWOHj6ILGfrjVBT8nmbpVs3qFQqpCiZQXoQIWSxVUMFN68vMFarkCQRQTCkkPdIEli4cplCKU8UZDWis3NjjIxU2Dc1RkmVSYVPGA4zS4V6i1K5SLO5jmFm6p1BEPPvv/QYJ/bvZ311k7947ElGigXuP7SHIBhgew5hHGLbFr1OhyAM8HIO/UEPXVcRioQ/6DP9kYfIuDA/et3+ScBdSkAUJZw++TyVXMoTT73Mb/6X/xLbTRimId968nUuXVvj1pWzVIoDTCnkv/jPTxB21jhxuML0JExP2jx38iz9O0sMApVqaZy8XeWZ08+zePsOemzgd8EyDeS0TyplwQNFkiEK8fvLWLpMtZTjypWzjE1O0h/4+EFAzitgmQ6DwZDNjQaGJuHaDu1WE0PT8MM+czt3Uq1UKRQLuJ6L6zlcu3KTamWEYrHC9u3bCPwBMQqqYbJRb1Ku1Lhy9Ro7d+1i7+5d3F66Trng0evGdFsdFq8vcODQA8iKRm/Y4+c+/lGEkjDYtCjka9iGwMuZ5PIaqSzz+hvnefLVUxzevwsjycZGqKhsbNRJUtBMA8uxiNIQkhQhJBRFIdkSX0lTCVlSIM1AgCJUEFlmJwh8ojgg1QWybHHh9AJzu7YjmymkEteurfHKCy+x98Ch7PMqUsIopt3tc/b8ArWReYKwRS6fp1IZQZVNduzcTb/fw/M8dF0nTeH69UXytkN9s8H2bfOs1TeZmtlOFPkMBxt4rowUNbGlFEuVEGpCkErI1hSyN4mVqyGpDhLqlnBK+n1j76dqPyG4A7hy+zLH7zv6YV38g4K7JE0yXpv0/n7+x9fa/acBd1lZ1vvX+Gfg7u+hDQaD99Qy3+Vmv/++b0UAxAeoF/egYP604O5e/d7DkYHa7csUbPsDZ8QHxFoyIoiQBLEfIEsC3cyAjSQJVFWl1cg44XEco+k6f/Llb1BwbQxZxbZVatUSaZzw1b96iiMHdnDnzl3CIKBYztNqtnjqxZNcuHqdPTunKeQLDPpDht0ejmtweO825ua30Ww10A0NSc6i14auE0cRslApFXJopsT62galcpVet4VlmvQHAdPbxxBSViCuGxb9Xg/T0iGBYRhybmGR+R0zWVmwELiuhWWpVKoVXjv5Dr12m507tyEJ6A2GqLqG52UG7ZZpUd9scfnKZXbv2kGaJrzw8pvMbd+GZZrsnt9JDKRJwvrqOo7noKsGaZJ58ShCJY57DLo+vU6fP/yzr7FzosKd25ssrdxl2+w4uqaxdncTKZUxdBPPs+n127SaTbxCnvNnr+BYJrqW1fYNBiEpCpop6DXbFAtFkkgi2VLJDIMhnXqHfMGmUd8Akd3v2Cb9fpdCqcwTT73C1FSVVr3P//gHf8SDv/4Iv/7ALoQSIStZFkVXVA7u20Vv0Mfvx+zdu5PJ6VHGxmtMTI6xvrrO8toGn37iPP/6Hx9E13Q21uvcWd5g187tXL9xk1Ixx8VL1zh38Rq7d23D9Tx2zm0jDEIuLVxncnKEldV1ds7NcG3xFkEUsmfPPJqu4OULXLq8yMrKGlOTI4yPj2KaBndW1jlx4ii9QaYQenNpCcsyKBYL7Ngxi+PaDHo9qrURvvXtZxgbrbB0c5nF63dYXVujWMgEfa4tLHH8yAGCoEep4BEFMbIm8/OPPMD1a7e4uniTbXMzTE+P0u50mZ4YZeXuCvNz2/HDkFwhjyTJlIsFnn76VSxTR1d1zpy9gOc5qLqGomgUC0XWVusUCx6752dYXLxDp92h0Whx5PBBIt/HMHVmtk1RyHu8/sZpLl9aIIkTDMOgWi2yeGOJNE34xMcfwnVtzl64wi994qPs37uNnFfg5s0lcoU8cRIhSeDmNBqbQ1y3iFACdCNH6Ee4lsbq6l1qZZfx8c+kd74AACAASURBVArFUgnHtogjwVe+8QJHD89lWSjHQTM8kjiiXC6xvraC43okkkwU+Di2h2Vk5s3+oIs/DLEti0arjSTJJKQEfoiuaQSBn9HNJLhw/jITE2M8984qDzxwHNdzSSKFf/1v/hW/8Rv/GQk6hjtKu+mzcmORai7H86eucmy0jGXbSJlGJf1+n3arg+d6SEj0ez0syyQRgigIGPa26lENk9APkWWFIAgQQtDpthFIGKZOqVzE8mwkWcFzPISQGfaHhH6CkFUEKaouiOIIRTPQdBMplYiGQ9I4YrPe4tOf+w/s270TL5en2x7guSaalhIEYUYX7fbodQcYikyj1cKwMkEhw7QRMjiOw3DQJwzDzCdRSOh6JpoSxzHylgpuMAzI5/K8dfostVoty3T2O+iaQpqILHAVDFBVjTiKtmZ5FUnI2fwuBKZl43g2qmYiC5Uzp99hYmoSPwzQNIMTx4/i2jZpGqKqCs32BpIcIpSUJA0p10ZIk5TA9xkZGWEwDMnlVAwFbFfjuVsrzExUmdFcfvdTn+f44QM88JH7kWU5o5hKIvODFVLmnSWndJpNbFOlsbGCZuc4evggrUYjM28ni0q36k1c2yFOEjrdPpqqo+sqa2ur5As51tc2qJZGCMKUz37hLzl+5Bh37qzT7XaYmp4kjiMkWTAYDknSCFlIrLRb7KgWEDI0Wz0U2SJJwXJMomCYqRWbNucvXePm8hpykjBaqzA5WkZVBf1hj0Le3RJUAVWVicMhuuHw148/w97dO+l2+2iaxh+evs7HPvEoklC31t73N60fBu7uLauQEkcS7Y27SGGb4w/+Ei889wZOIc/Lr5xmtDbNqy99k9/6n3+DndtVcrbB/JzN3PQYum6gyh6jFYXDey10DqDrgubGOsW5Ifd95H527T7C3qNFxvfV+PqT32Fp/RpPv/0SM6UapmkiC4GmWERBC9dxKBWLIMUsXDqHU8iTd6sYhkUQ9pBQadZbWEaO1dU6y8urbN++kyhKCPyIpVu3ub10m8nxGSamplhbX0UWcPr0m+SKRYql2pa/roxlOUxOTXN98RJPP/09LMOmUhvBNGFjcxPDHCOfL3L2rbOsrQoGwZDR2gjPPvVdRiddPNfDcbQtsB1TqtSYnZrFMUBKU4SsoOgqru2Sz+chTYiiIBOVkQTxu3RhRUHX9UxdWQi0rYx0HMUEYUarlWUVRVMQgxQtTTl8ZBu66iNiCUmJ8NwSxUoZ19WRiFEVme7Ax7TzrDd6RGnKxNg25nbsod5sMTe/G1nXEGmm8Om5GYNqdHSMJE5ZXV0lTWN2755DiIR+t04aN7ANgRQNSeIAocpIZgG3NE1pbFdmTJ6hg8zDTkqQJPkDYnx/Q1OCe7ARM1rlD+CyDzwv0gN2zO34oX++F7h7n7D8/vffVuky6/X9r+8/6gerAX+aY/4wlfKnbx8kqmbf2Wlk3siS9LOau7+X1h8Mfvu9iZoMUWdA7/vR/rvtXkDupwV39+rjXu3xJ55h30jpvXOEdz807w7ajGJw5dICaRJTKJWQhUy31yNNIQxDvEIeWZYRQmbPjhl63T6GqqIoEucvXWF6apxGvYNlati2hZAhCHxc12J+bgezkyNEYVbPFkcJtq2hGRqb9U1c16Y3GODlM1NLVVHYWF1H0RQqlSq9fhdFS7EdG021MC0VTdOoVkcJ8VFFpnJHmtHyDFNFV3UMy2L3/I5sMg4DBn5AEgf0ux0M02bP/BwFzyJJYnRLIwVM20aWEobDgHarjW05XF68hqYoOK7NSKWMYRgoQnD9xhJra5t4nkO5UkbmfSuCP/jcX3D0wB7CQRPDdHAdl0dPHEYWMcurTRIpYqRSRJJkDNMmCVN+548+z/z0GJZlUKuViWKJ8ckR+sMezWaH0I8zY/ZSgV6/gSZptBsdGs02xXKR+uYmtq3Ta/dZ21jDcSxkNZN7T+OEOA4Qkszs9DYUDT67sM7v/dZ/jalkmdZur4FpOiiSRK/dZnNjE8dxeOutc8ztnAU5IYqyyPi1hVs8/MhDGP4y47USy8sbfOvxN3jwxEEc16PTa2PoBrqu8cADxxibGEPIKhcvXKFWq9LtdhkdrWEYOrfvrHDo0D5a7S6tVgfbdjj51lk++tBxLMug2epy89YdaqNVZmeneev0Oa7fuku91WX/3h04ts3tO3d57oXX6fd63Llzh3K5TKHgoSgKw0GfQwfnmZwcQ8gKnpejUiwRRgFvvHmK6alxNE3DzjkkUYJtm+zesxNZVzJFRBLejZGdPPUO41PjqIZBo96ivt7gzq11nnvxLQ7s2c7Y2AiW4xCE2cZcVXSSOGVzY42lpTuM1CpEcczrJy+iyYJCwQEpRZIlSBMkEh796DEmJ8bQdYVGq8nxY/so5PL83r/7M3QV9uye5eRbp7m7ss622SkKxRyKKhMEw4w2qoDnVBkOY27cusr1xQ1cx8Kx1MyrcbxMrphHSjWSJEXVVCYn8riuhUBGU21SFISUcO7cRWrVEqbjEgsZv9NHUzRCP0RVJWQ5wTAcOt0uQpYxLYtOp4PnFUiiEN/PjLeFqlLwMmB9+kaTufmd1EZG6bQ6/Nqv/zKDfhvDcOj2fQQ+ptTAHzR44NFHWb14laLnkSYx3U4HTde2VGWHLN9ZwfPczPha09FkmSSKUFUdSVYzqlSavhcIsx0bkhTN0PDDkDAMMS2LJIxJ4oTBIOD//fTnCQc+27ZPkkoxCSlCKATDkE6zCVGESCVkVee+w4cwrcyipNfu0eu3KZfzqGpGhdY0A003sE0dZDL2QxQjJAVZFqQpqKqGpqlkVJuMeirLCmEQoGuZGmMaJ0hIPPbEU9x/3zFUXSGJQxRVI4lBiC26KiBERjEVsrq1MKTvZfBSEvwgIooSJqfGUbXsGsmKktHtwyH+oMdn//TrLN66yYG9u4nCGFO36PR6JGlCu93GsixkVSPs9wmHXYZBwNl2xOR4jRnVYaI2waWFq8xsmyZNIE4SSFJUVQUpJcJHkgUiFmhKytrabexcjTRJME2TOIrwBz7DQcSbb55CV1VMyyBfKkAq6PW76GamnKoqWhZlFxL9fp9CqUiz1eCxx59ifvs0uqlhWw6NzTrlaoVBf8jFW0tMugZCqGxstPnaN1/Ial8NjX6ni6qovPTqaaYnx9gxNcrTr5zi/iN7GJ8Y5fVTb3P55k12bptCNw1kRRAnEYoiISs2+a0M7atvvM3s9CTP37zLr/zKJ0m2lAelnxDc3aspkgKpyr/63/8ladBkdvtBNMMhCFNKxWk+9+nP8o9+7RC7x01qNQVDsxFKB1WxEKrEF77wVbbtGCOft/B72by3sXyX5y5dIGfLPPm9lykWbLbvn+PQ4RN87NFHOTbls3h3kcdPnWHUGMO0ddIkBEkmSVNkRc6CKI6DJru8+eZrzM3PcuP6EpKcYjsu6+sbHDl+jP6ww61bN9A0lWqtQqlcJklC1jfWqFQyOnKtNkIxX6DbHeAPB2iaRr/fY+nmLXKezfzcXiYnpykUyoRhlzCAS5evYXsxji1QtAKb9Q3WV27xsY8/SrnqoWk6aRrRbrXJeQVUXVC0DaJkgFC0rJY16CPLMkkcZ2q4ZKrTSZyQJpmacZIk9Pv9TOEY8AOfKArRdI0wBD8IMEyTNIlRlOR9ZCNnvodSmiKhYtkW/qCHJmuQCqJY5blnn0bWCtSqU/iDhInJKUrVGgPfR8iCU2++zujoGFevXiUMAoaDAdduLGK7LqOjVQa9JrKcIiU+adyDJGbQ7SJUGRQNlCJeYYxU0RGSjLRVQpQ5+Ykfm2n70HaPf70ndfEDfx5+aB9CyPxgu2fm7l6H/Ftl87KexdY1+P6M3I8+6t8M3P1dtXvTMt8HeT8Dd38vrdvt/3aavDtbbykqCfFDwOsHs2k/7r4fHEQfzMy92348uMvuVBYvUHLsezwuIQ9TElUlJmLtzDm8nI1drhLHmSInaYJpGohYADJhFGWGnSLEdD0M06ZaKaHoCoaRcGelzu27G+zcuQPLMYkln24ri/YKObtOG5t1NjZW0DUZ3TBw3QK2lWcw9FEtQb3TwHRyGIpFMOxjmQJFmCwvNzAdCylJUWWZKA5IUpVecwVJqEQx5Isl6ut1LLtAvd5A1zNJX0XL/OEsz0VzPOIoRSgKuqaiCIO1Wy1cz8v8csKIC+cu8eW/fop2q8snPvEofX9IvuRgOTaSUEkFnD53gU6vg2OpOI5Bd9hGVWV63S7TtQoFz8PIF2m0ujSbDYrVAqmIGa2VmJ6YYGO9wcXLC4yNFfi3f/IVfuXRE8zMTLJ0fQ2/l5Ar5NhcX8U0NVzbRFOzjaqqxliWgaYrfO+pFzlx7CDNRpPyaBWhaaiGgaaaBH7MoNdFkTNvMVnRtuTqZX7nzQX+xW8+gKLoWQ1Qr41tezTX15CJaDc2abebVEdGGJ+Y2JKGT0gSlYsXbjC3a5Zf/V9+hxJ9ZidGeebFc/zSLx6lOuKycO0Gew7t587tu5y9sMDUZInNjU08x8VwTGzLZnFxiZnRMYadAbJhY9s2b52+QBIPmZgsU65WiJMY29SplguEfp80Snj8e8/zCw/fz+m3L/LIRw7hOA6Q0mi2IE05fvQgQyKKpSKyrPD5L36bT/z8CQzD4LFvP8uhQ3t58+QZTEPh6vVbHDiwn3OXrlKulLBNmzOnLzI9PYUqUqRoQBQqvPrKW+yc2871G3fYtX8/X/7idzhxbC9LC2usrbSZmPJQdQ0hgSornHzzPHPbZlHNBCmR6HY6TIyNcvnSNUzLolotc2D/HKfPXuLuWp2J8TE0VaNRb3BneYV8vsrX/+PTHDt8gE6jz+Urtxmt1djcaFD0HOb3bmd25yTbJmd56vmXmZoeR0oE/YZPGg2RgW6/xe9/9svcf+QBvv7Yd+nWM/Pv+X276Poh/WGA73eJkgHdZp9TZ64z6PqM10b5D3/+TY4cm8f3+9xdvUvOU9F1HU3W0PQckpISpyHEEAYyquNiaRL9Zh1VEai2hywkmq0GQkjIikSrvkkqVDq9Ho8emaQ0/wBrqyvkC0U2Vu8ikpRU0vjMZ/6Ujz/yS7SjFqvXT9Gv3+Yrb97h5+ZmUBUNSdERuoHf7aHqChDjuiaITHExkWRQ1YyuGQ6RUhkJgaqpDIYDFFUFWRDFErKkIisqvj+g220ga2oW5LpyhaJjs33bBIpsQyJIgz79ziamYREmKYbjoJsG333sKQquQ6Va4sbSXQahz/REgSTS0HWLVI7o9wegqqRSBvZVRSFJI4SUjZkwCgnDhPXVBobqZPO6lCJrgiDxAYk4hW7f5+yZKxw/fhRFBknOgomyrGyxRrIFHxKEEMixTK/VpVPvYuk6YTBEVqUs+6LJqLJMOPRprKzj94Z86jOfZ6RY5U+//E3GRyp88uc/RhJLfObPvsLsdA3H8thYrTM1PYUsYOHKBc5fXOGlt28yVigRDRo8+Ikj/PG3nuMj+3ZRmxgnGoRAyI2r16nWKgz9YabumwyIQ9DNHIGICSWVnGtlYliSyvl3LmcZStXghVfeYNfcTlzXJolDwmGPVqNOv9MlCRKK+SKdbps4jBmrjWJqGoamcPLCFY4c2ImOx8WLV3DyOp7toQiFS5t15gsezXaXx558gUeOH0akgkF3iOEZODmPsVoZ17ExZAUhJ1sG8ILxiSr798xh63l0XSZOfAa9zL9Q1VQ0XUOkEpHvUyl5vLpa55GHTyDJOkJK3tv0/pAU+9bv91QZ77Fi+4GCpfS5fu08k7Pz7D18mJGdM3zq//pddu85TiAJKu4Cu7eVuXL5Ert2j+MPh9RqDgQJ+/ZMUfYmWFoKEamLqQgmtxXYMbaT7758AcUzuX7hFIcPP0ycpqy3lvnd3/8mH/vYJ/j47gDPWeCLz1/m9K1FRr1JTCOh12rj97u4qqC9WafbaKNqDpIaokuCZrdJdaSKokkoMhCEuK6J7Tk4rkunm1Gg250upm1hmDrnzp+lW1+jlC/SbLToD3qMjtbIlaqohk2SQKNdx7Jy9Hoxnh0zO+sxOTLJmXMXM3E2rcGT315harRGzvWJowTXc7JShW6Mn8TousWt29cpFEoZ2CEkSROSJEZs0aKjJAsEqYZLp9fFKXhEQUiSxCiqsmWrkNLrxXzh89+jOjmD6wqCQYIQSlbHG4IiFBJpgK7mSEQHVSlzZ7mDUEOuXmrQ6UX06dFve5iOyUZjk7HRGs36OqPVcsYe0EBBwTAtFFthanaakZES3eYy67ev01i9i2UnEAxQhYzQLIRmkyguhbFdKGYeORUk9zQj/yCnUgJJ2gJ80gcevzdouVeeajAYbqmBvhvU+P/Ze68gy+77zu9zcr45dc5hehJmkAMJMK6otNKutOvdUqksP7j05FBb9qOLZZftWpW1u15rdy1plZkJEYGgiAwMwgAzwOScenqmp6fzzelkP5weACSGJCiK6xf+qm5V9733nNv39rnn/L+/3zeIOwvcZPevvv0Ke/bs+th2ER+OHT74O+5ygzv0RPETusd/uGdJEJPv2Ude98NP5GcFdz89sLszgdtRdn1kPz+8rzufzJ33/4vJ3c+tGs3Wl4nihGux888QxaRT/LOg949ncPz45/yoyd2rL7/OAevjtst3ShQgEmB16RrrN6+Sy2fQ0wVEQaS6VcWx7cT4QIwI4xBN17i5tEI2lWF7c3tHmxRCFCCKETOzU4SBz5Pfe5mZsZGke63I3FxZZqBSRJIVcrkc9VoXSVORlZ3ueuDSbtaJo5C07bC6vEVERD6fZfnmMk7K5tkXDvHeqXMMF/PYKRvPSyIaCCLsVIa//saz7Nk9jSiG/B//4c/43GP3YRgGnhewsrxOqVhGkGTCMNgJ542o1tYwLYU/+9a3mJmq0HXb2CkHQ5V48J6FHdeyGF1TkVUZVU5oGL7nMz05Ti7jYNs2uqahyDpEMbZlY9o6QegSR0ngcMaxcbsdFEUkCjQ0QyQIe1TKBTbXmtyze550ysF2NKq1LTRdZm1zg2Ixi++7yJJMrVYnCAI2N7YRY5GlxXVK+RLdfkAYxXQ7HXLZNFEU87ffe4n9u+cwLZ1UOoXreUQhIMBWXuPXH9mFKCfGKVEY4HseqqpiWja9nku+UCKTL9LtBWiKxJXLl1hZXqFcLKLKEqur2/zq/UP80ucfYXNrg/seuo/xqSFq1W1Gh8eQRIlCPo1jGzi2SbXWIJV2uHl9haPvnWJ4qMzK7TVurKyx/+AcYeBxbfEm+/bsQldNum4bx7YQdpz/1lar5IoZ5ucncb2AWIyZnpnk+KmzSIrEwp5djI8PJxlMuo4qq1y5ssgvf/FxlpdvEsdgmTppJ8X4+AgXTl9GlWU6nRYLu2aRZYn33znO7oV5vvr179LptfEij6WbK8zPjfE333yWvbunyeZzjA0XefXQG4BEOm2ya/couq6xe+88hqljmgrXb9xAk2Rq1RYrqxuMTAwyMFRk9fYWuqGxtrbJ3t2zzM9Ncf36DaIoxA98FhZmkRSB+dlxXjv0DqVylpHRCo1WmytXltjYqrF/3yyiJFDd3mR+1zQ3llbptl3+3z/9Ll/4pcfouz6ypLC+usXKzXX+m9/7x+zZM0M6l0a3k0n1v/m33+CRB/diWTqXri0zOzNMqZTBMnRGhiv0ui6GaSAgkEk5rK9XUTUdWXNpt6uIUojr9wkDH1FRadWrlEolZE2j0/WI40SnE8egqTqGbiW23Y5Fr9vlf/+Pz/LQQwdx7BRev4dlmLTaHWRZJIwkZMkjDvrEXof7Hv0C7WuLiEjIqpEYcwigalqSuylA33ORYgVVNUCQIRIQkZFkMTFLkmUUWaHdbqNKIIuJHlAkJAxcUlYGZcdafO/8NFNTY0iySBRLvPfucS5fvkbKyuCkbJxUijBIvkyVchlBEYgin8sXr7MwO4VmyASBhKKqyLKAbugEQYyu6URRRK/TQ5IlBDEiIkAQBPrdPn/yV98g6PeYmBxDFJOAciEWiLwQRRBZX1tldKhIpZwnFmJEKbFyF3bCzDudNpqmEoQhopA0sy6cv8Dpsxc5f+kSmiqTL5USTxxETh0/Q6/XJ5vNcObsOWYnx7l0bZHf/Zf/lMmJIZqtJq1Wiy998XOk0xn6HQ/bTnH2zAVkWSGby7G+usXBA3sQgzatoMfInkmOnbrBp+fmMC2bF196hX27F8jmMni+90FIvICBKhvEdOg21ynn8rR7/s5nFJLNWigKRFHA/Qf3IQgRpqXTqDcxLRtBFHBsmzCMCLwQQY6oNxt0u12ctI0kC5TzBSzLwHcD/uLJJ/ni5z6FKAhsrK+xMDjA9c0VcqrO/vk52u0ef/3si9x/cBeqJmCaOttbVQqFHOcvXWF+bgo7ZRMDrusmEgVFJuklaIQhqKpJs9GAWOAP/+QrfOlzj6JrGi9dvcGv/MoXiQUl0UMmV++PXYt/eJp3t0u6phuE3RqHD71Ktx0gCGnatTR5S+Erf/NXnDl9kt3DFrOzabK5FI5lI0oqgQ+uv4lhCbx7covvvnmDvZMTqJqMEJtcPLfG5voKn37wYR7Z/wSHXnwXdzPie2+8hm6mKJYqtEOdjhfwxG6RTz00jpPa5ti507xx/iIP7NqDEINpCmTzOoKQODObloEgyhSKFTY366iKQa/TxDANlpZuIMsqYRiRy2XxPY+NjTWIY8YnJnBSOc5dvMTk1AxOOkW704UwZnNtlVazQeR7KJrOyNAwg4MDmJZKp+1y6vQqM7sGWbsFM/uypHIyQhSjaQq+7xFH0G632aqtk8vnsAwTRPDcHhIWfpDkYkaRSOBLBKGLKIYQhJiaTOh2UdXk3BgEIZKUrAkQJLywhaR6DA+UEQSXIHIR5AhBjOi6HSTSuL2Ak+9fJFvKUG9sIJkVzl9apuO6LOy7h3ymjJ2yKeRyKDvO237gky2W2NhYpzI4jCxJeGGPzvoWfq9Bv7OMbYVoqgdRjGNn8CMRH5MgAjuVQ7PzCfWShCb/sfXkXY5J4cf89pNKkuVEryYkWkM/DBCF5JzVqvf4zK8/ctftfkpC6AfTtp8MvD7c891ixv7/BHcf3e0nY8R+hMb6C3D386l6vfFlQUw6EpIggAiSJHK3ztxPU/9Q4O6Zp5/jgVL6R79QHBER09xew5LiRBNiF4jjGHtn2ud5Hp12E92ycF2flJOi3ewQBQHdTo8rVxYJfI+UY+CHEZVKiYmhCtl8lupWnW6vw9j4MIqqEXh+ohGMJZ568VX2zE9iWCbba2u0Wi10TUFVdL7+1MtomoyuJpo+Yti3MMuBPQvYjr3T/U4oo14/CQRdmJ8mJsJ3ezz+8EF0XWd1ZZ1UKk0ul+fWzVVM20TRZEI/QBQT0Xij1mS8UiESoVDMI4oSpq6iGzqZTOKQ6HsekpjY6UdB4haqqokNu67rBGGI1/PxPRdJFonjEM1QE8oTAoHn0ev1iMMQx8kTxS6qIeO7Ptl0gZsrK6TSNpIYk3IMDEul3uwgS9DpdMlms+i6lmiJJBlF1mk3+4xNjhNGMeVKEYEQz/VwXZ/7D+5FlER6fRdJkZEVmQsb2/zp8fPsH8liOzaiLNFqNjB0DUmUPhCD1+stcuUBbt1cpVZr8vzzLzI+MsS99x3k9dfeolIp8K1j6/zaI5M0m00GBoq0+gGqJmEbGgISr732Dum0QaPZIp/LMTBYodVqEwcR+UIORZYZGh1kYLCEqon4vs/oyABXrtygUiqxsnoLx3aobjXRNJ1SqYyTMVlb3SQWYGZ6kmq1zvjkCMVSgTNnL7C9vU2r0yGbzbC+tkkuk0noiLaFrutkshnMnWN4afEWA5UCqproO69eXcLSNPKFApmUwf5793Dj5k327ltAFGIGKjkqlTKiJJGyTSrlDJqqc21phWxOBZLg63q9iqapFEs5gn6AH8SMjg0RxiEIMRcvLNF3XSRJJJ/P7uiqRIaGK9i2wcrKCn4YEAUhuWzi1tl3+2RzWVKWxmAlxytvHGV8fBBZgSgWCANYvb3Fb/7KZ/CJkwBrKXGsPX36EvsOzPPu0eNMTo9/ENp7/P1zfP6zDxMLMaPjI2QcE01TqFYbDAxWCCOBjc11ioU8siiSSqeRZSWx4HcDwiDC6wdkUjlkWSGKwsTExI+wbHsnNsVEUzVEMcl0ukMbjKKIR+ZzfPvl8+zevYs4jLEMk1gQGBoe5vC7x3nw/v102y3EoEWAxpNHzvPY1GSSvdlzkSWBfs9NNC8kWpQo8JJ8N0mk1WqiyEnH2HKsJAZDSgwRtlZXWL6xTBwmrnvNZhVDt3E9D1GSMS0dP/QS3ayqEwQhp89c5OatVaYmh5AVhVqthqZr9D2fbD4FcUx9uwlxiKQJWEaaKIxx/Q6BF6LrFp7rJVRdRcX3AgQpptfroms6oiixd34XY2ND6IZBs5kc93EUISMSxxGFfIZ01sH3ekiKiusmduwIycIsCkMURfmAaiTLEkPDg8zMzrBv3wKVgQpRFCWdcwQc22FpcYnR8RHKpRKGYXDg4D5SmRRRHKCpCul0CtM0EjfBMOJ/+df/nr0zM7x/4jQZx2Z+bpa/+Po3+fyj+7ld3UQfzHLqwi0eGR8n5TjMzU7TajbQDR1BFBFFKckbIwmm9/0aYdCBEGQ9+RyFOGZl5SaZbJowjpAkAVmR8Psejm0jCBLdbjcB46pCt9vHsFVURaVUqVCtVun2uoyMjnLyxGkuX7vO7/3Ob7O9vYUsiolJgiQhx302bm3xxrvHue/gfk5fusQTj92HqScgIApDJFmi3e4wOjrK4XeOUSkVcZzEQbFeq+M4NmurW1g7TdB2u4WmaZiSRKVcQJIF3ttq8MUvfI4Q6WcGd6KsIgZt3n3jNaamdzM3f5Cnnv0aDz1QYGomzdRMls88mGXl9hIDlQq+H+N6Hiu31kjlUvy7v77Bw9NfYmF4Aitl4bk+giBx+dJFCgNjSIJCBeJyEQAAIABJREFUsVBgcHiMUrnC7vE9zA7OYCslrp3bYvlmzLdfO8KbJ1cYKjssjBf4zH0GinGJ54/e4PjiBabKA6ytLZN1CoRRAIJIJpun0ewgRAJR5FEsVVBUHUVWQBRotzsoikSpVGR9fRVFkkBMmo3b21tEcYSqqZw8/j5zM/OkUzaCAJlcFk3ViEKflZXrmGaa81cvs3rrBr12TKh1IIypb2+QSluIooAialgpG8uxkklJGCRTbVkkCgVEJbHBT8CJSiyECEKErmiEvpcYf8lJk0mWVSChZ+q6QTafpVhII8UgCDGqptLr9FFUA1lREWMNhIjDb7zL3L5psvkMX/32c8SxwW/9s99heHiQWr3J6OgYsixy+sxJxsbGqdVq5IslotjH73t0e11k2YNenXZznWxaR5UFdFWj1/Po+QJBrOCGMlbKAVFFN7Mkdqv/ZcCdIAhEd0CXsGMARUwcx1TXtxhZGLjrdr8Ad59oix/Y9hfg7udQzUbry+zo7JAS7rKqKohCknfyw6Pkj5qhxDvOmj/8GHx4EH0wD7zLPu5G7fzBEnjo4QeJr57foRzc5RmiSOyGnDj6PulSCjOTQ7eyhEFAHCd22Jqi0mw0EUSZjY0qWxtVstkMG5vb2KZNsZin3mhi2xZxJNCo11BUmVazQTqV4q33TlLK5tFVHcPSaXda6LrNmQsX2TM7ia6oiEKILMs0mh1KpSLTY4NM75pBEMDrukCEoSdhxKl0mliQiEkyr7793ZdYmJtCVmU0XcfQDGqNOo7t0O+7iZam0+P0mfOMjQ7RbrXodXpomk7kyYS+gKooZDJ5Wo0emqnRbbURYhE/iNB0iWwuR6/TxzQMiGP+4hvPUslnsSwbUYBut4ehqhiGRhBG+EGAaiSd+ptLtyEWk0WIYSIrEs1mi7NnLzM+Okqj2WBqagLbsrl8aZHA9ykW80iSimka2I4DgciTT7+Ipil8//W3Ga6UePPISaanRhBE0A0FQRYxbBNd0RAkQIyJIoEYme1um/K+YT5/3xy6YaDrOl13x65bkBMX0loTxzFIOSncfsjJk+dZv71JKqXT7bqEIRw4sJdXDh9hd1mE0OPNd09gmBrZbAFFFqhub/G1b77Ab/3TX6LXazE6OszNG7dZu71BKmWhWzaOY5HLpdnc3KZcLuJ6XSRJRlM1FEkh5aQYGhrAc32yuRz1RpOrV5fQNBnbMrlw/iqVcpGl6zcpl4vEYYSmKGxsVtk1O8WNpRWuXrlB6Ps06nXyxTyeH3D0vTNcvnSdRr3FkfcvkstbaEZyARoZHaHTbpFKOzsZfyLbWzVKw2WiMNFYPff9NxgaHEAUSJwDdZvZmUm2auuUK4P4vk/f9SiXy8iyiiQqyHISot3ttBKasKqRSdvcuLnG1NQYy7duMTI6yO3VVVIpC1kSsdIpatt1LNPk2tIywyODBHFAp93h2ImLfP6Jh3j/+AXuuWcGUAkDgaeeeZ3d8yOopoLneiiKjCiJ7Nk7he8GpFI2qqEjIiAJIvfsmSGKRLq9Dn/0x1/n3n2ziKKAk0nT6XX5w//7q7x/6iqPPniAZi3R08UChL6MLBgYegZJUBAlgSj20RSVRqtDGEXUqzUsO4/v+0RhSLfTRtcVojim2WwmFG3gyIU19h84wFf+6isUskViAqrVTUqlIqrqMDS9l9s3ztLZXubB+/dw/PglhnIFdFVBlCQQBTzfJwgCQCD2m/QDlzD0MB2DKPKJophWq4lhWkkekCRze3mVv3v1be7ZvYBpWjQadRzH3KFsynS7XVQl0SMGcUSxnGfv7l1IkDSfdA3LTqzGbcuit2NsUiyUKA/k6bouTz/7KlEQUCplcft9zp27wtL1m4yPjeK7Hr7ns3xjlWw2y3a1imGYCWVak5LsS8tGlhR6HY+33n6bTqdNeaBEp9shk82AICY5f5JMt9smFiIURf0IpT8GMcZ1kyy8OIYwCvHDpPlEHKMqCoPDyQIrjJJmlKiIeEGfzbVNut0OA0Nler0Ovh8SxzG5lMOlK0vsnpvh7157g1PnzvOlzz6K191ivdVk+v59vPPeJe4rl5AkgW7fxe27+EGAZhiEYYCsKIhCAHFIELh4/T69jo+dLtJqNjAtA8uyCLz4g3yx0A8JQx/f92g2uztupB5OKo1pW/T7XTTdQpJkbMchk0kT+S6WlcHJ6GSzDsQidiqVhJNrCqYYgigxPTVOHMc8/vBBuu0WqqzQbnZQFA3NMHAch1q1zsraBinLxjQNXNenUi7x4qvvMDw4iGGZiUuwH5ByEn1oqVTA9z2E0SFm5ueJkH8suPvhhvDdqGhuGKH6VY68/gKba5s8+OhnmJp9DDkQWLre5FtffYYvPDTD+GSRMA5xnBSe55FKpfjjb9/idz77m7QaXRYXFykUKoRBjCCFVEbT9Nsi1dsdrJSBIEn0en2qm9vIctIw6vRiHn30CUZzZe6dnUQXB/j26yd450ybs4si/+2vZ9g3G9Jng+8ducq903MEXoul6xeQJIGUYxJHfSRVQ9dtbty4mWgwo4B+r8NAZYBer0u5WKbf71GttymXCxiGgm3qBG4fUVJJ5xyqtW1a7Q7FYgE/dFleuUW92iZbqOBHNTpbML9/mPW1PpqcZnRsjl5/Dcc06TQ9JF0i9L0klkMAyzLxfB9FE4ljEUlUCaMIWQcxTlg+UaQgShqGncL3vQ+aDmEQJNpsIURRYuQ7RneRCJFIrx+gGWmCSEagh6gqjE9PEkvQ7wVcuFilWCkxMzOHKGjk8nmCwEU3DcIgZGBgAFEUabaqhH6fQj6LKgUQ1PC9DQTBJ2XnEGKHWtVDsrNkKlPIZh4rM0A2X0LVU4iikkhtfhT2iH8QMPzwWvLvU3eMPz5K7RQEgaWlq8wdnLn7n/ET9vlRemXyGsIHhig/KYbsg9tdHo929ivcRYf3yYc1d54T/9DvH9ZHKZh3bj/4/n7S/n8Icv8C3P18qlarfzlOWqGIO51JRZF2/ml36Q58AMwSYBdFPxh6fqc+sGP9Me6an6TOn7tIvlX9kY9HccTXvvYMw/k0xdEKqVwZYhlRFOn3etRrDVzXpVQoIMkqnuvx508+jyZE7FqYQxBEOp0umq6TyaZoN3tU63ViAmQxcZk6cuIypmbw9AtvUMxZGKaGpuiMDhQQBZBigZsrt3CcRNMmyRJe4CNrGrIk43X7SCIcOXaCSrlEjIgky6iaim1ojFXKhITISuJ2Zxo2iirRarWxTDOxEE6naFTrDAyVsRwHRU6651EY80d/+VUIfcbGh9BMg8APaDc6dFodqtUWrXaddDpFo9rir7/9LA8c2M2Bvbt59sXXGR4o4aQcer0erUYNQRRQFBlF03FdnzCKyGRzGIbJv/vLb7FvZhJZi3nrnVOcunCD0cEipYEUsaBw6+Ztnn35MAcW5rDtFIqmI0sSqqJy+cIirhswMlzhgXv30Ol0mR4fgTjE9/s4GQdZlQniiNiPCEIPUZIwnRSKrLFhh5iyQK/nJgs7VSWI/YQHH0Gn3cYyLRrbG6ysrKOqBgOlIhfPXeYf/cpnGBgY5PyFa1y+co1jmxK/+cgYf/vMq3z6sYP0uh7lUhldk5B25Nm5Uh5FTsxxMpksmWwKWZHQLBNV1ei025SKBU6fOs/AUIX1tU0Mw+DFl98mk7H53t8dwrFMjp04x9TUKGNTo5w9eQ5Fkjh64gIEAfNz09TrTVZWVul1+5SKeVrNNq1Wj2zaZmHXLFvbW8SCwLXFm+zZPcflS0s89tC9TE4OMj0zjmZIaIZBvd7CtDXa7T5rq5vYpkGhkEU2dDRFwTIsBislVMWg2+vg+S6FQgXXDcgXbaJYxjQtZFnB9wNkWeX7L7xJJu1we2WN8+cvs3vXFO8cOcfs9CTzu6aoVmuYlo4oinS7XVZuryVTRtMk2qH9jY6OcPjd4xRLOUq5PL7nsb6xzb69s7helziSOXPmCrNTQ4hiQL6Y49Kly9gpE83Q2KpVee2ldxkcLKLpGgQRoR8gKBK6ZmJZBucvXGGgmKVYKhIlkghOnbrIP/m1z3D58nWK+RyCJKDpSdZVv++haRqC6OP26yiqTqvdZXu7xsBA4nCnG1kEAWRFQJYFGs0ahmkRxzGplMMfPHWN3//l3fz7r7zA7/7OvyQKYmRVZGxyjO31dWTZpBWKqPE2Oi1qjRqvXKryxMw0nVYLVTfo9XoYhoEoSQS+D56PrJqoqgmRRBQKKLKQ5ApKMpIsEUYgRCLHT13gxNmLjA4PUKqUcHttFE0lFmQEQSYWBEQBZFXG811USSKdcUg5DooiE8UxESHNrQaSlJxHfS8iFmLsVIrZiTmOnTjN/PwYpmFRyJcZHhpEkmQ21jf4+t8+w+EjF7iyeI0nHn9kZ4rlYxkq7VaH//yVb7K9vs2e3QuYlsbI+BiCIKLqOmHi74NIMm3XdBXikLfffpehwcHEDEIU8bx+Mn0QZeId8b2cNM8Rd5xFW60GIKBqGqIkJueQKMTSHZyUyXZ1g1w+iygK3F5ZI5fNcuDAPsrlEsVsiscfe5j3Th6n4EjMjwzxN4fPcv7iFb64MIeAgOk4nD59llazxfDIMCAgiAJB0KTfS/LHUtkMum4RCwqKJhNHEd2OiyLrLC7eIJ/LEwYh7x0/RiGf5bkXD7Fn9zymqdPudAiDxFm21/fQNRPP9RIHWcfESeeJpBBJAlXR+daTz6CIEre2tzj6zvss7J1Htwz63T6tWp102qbX7gMiqXSGv/zGM4R+yPjoMEJMom8VBSzLZPHaDbqdhCmRStkEURIrIYkSt2+voesaF9Y3UAbLTM/M/cTJ3SepWJSRvRonj7xBiMjU/G76scX/9N//d3h9lbXVNT7/2BCqKeD2XcIwwvdd/tOTi/z2p34JRZYxrRSNZp10NoWiSIhIiEKM7eQ4/NbrNJpNvCBCN21UVSebs7m1vMzk6BSLi0sMjI0hBxG3b6/zwK4FDszuYvf4Lt4/XOf5k+t87r4cD+zLs7S9xHNvv8+gPcDgcBnDNNjYuE0qXSbwAuq1GvlcDsNQESWJZqPB+QtnMXSTVruNrplcunye4cES165cQpUk8gNDyKqEuMOOEsXEzKZcqnDy5GkqlWFGKiPkCzZxHNHseJiayKWLl0inI4YqA1y5dIVMKY2m6gjEqKqG2/dQ5CS6IvJU3jtylKHhCfywh7TTGG81PS5euYLhZJDFEASSDMUw+CC2RBREhEjA8z1kSSIMQlTDJIgEDMum091OzG3kgLXVBodePkS2MM7g0AADlUFUxQBJ4OL5s5RKpR2XTydpYMUeqbRDv9NGFkIIm8iSjG7YCKJGvd5F1iyMTB4jVUa3syjqjism4odrzx956N1tchf/2Mc/WX18u3KlwlZnk1w++7HHfvLy9gefcQfcCXxyttzdnvVJAOJPv+e7NXF+/B5+aqPSX4C7n0/VavUv30H1sighKzKKnDie3a0+KpZMfhbuOn37JAYsn6QOvXaIOeMjuXtC8iWIo2SMXbu5ydbWKsODBoqooaspBEkk8H08L0DXDf7Nn3+be/fMoqkKuqGxf26cocEyfVfmlTcOc+ryRWQxIJfW2Wq2EGKFcmmY1w4fBzHgkfv3o4gSvabL3j3z9Pouzz//LnMzE+i6gSCL5It5ZFVF0w3a7R6m4dBudSGOsTMarVabmyvrdN2Yickxbt+6Ra/bRNZE+m6XbKmArOvIos7Xv/och46dYaBQxLFM0imHwOtRrpQIY58w9pAUgygWEMUeD927m8HBErKcdPOWrt8mbdoIsUCmmKKUs+k2m2TSaQbyaTY21wlimVIuxyuvHaaSNVGVGKdYQTV0XM+lXqsT9H2ee+4NFuan0AyF4XyGUi7Pa++e5PHHHuTTjxwgm3a4vbyOoctoisLe2Sl812d7u0q/7aHYWqJp2myyvLTOvQ/cg6zotNs9ysMDtKob5HIZVM2gXW+hxAKJAZVAu9khjALWMzK97TqCH6ArMpKkoFppJEGl1WzhBz6W7SAqOt3aJrZpUt2uYVk22UKBbNbC7XexbY2e20XyN1i6uMhv/vqXuHr1JvsP7OJ7z7zCYLGA7waEocfilatIYsSbbx5jfHiCbqeLbekcO3KWsZFh1lY3uHLpOrlsBp8koDYIYWHPHJZjsjA/w/LyKqOjw5i6Sb/tMjo+iOsF3HtgL5Zt8OIr7zA3P0WxVEzyxGSV94+fZ2Z+lIGBChcuXCWXzXPhyg1mpyewLJvxiWE0U+PkiTOockyplEGIJI69f5FbKzdZ2DXHxuY2EzOjLN26zuXTl7EtE2WHXvjO2+8RByLXFpcZHasQxh6gcu7ERTIph063heNo1GqbTE1MkUnbbK5vMjc9jt8P2H//Hq4tXieTSSEJItv1BqVyCVWVcQybxavLGILDtavXub26wcXLi/h+yMRECdPUCXyXbDrNtSvL9DsekigyMl6hVMlRGq4kHdG5qWQKBZi2w/zsJEtLa6TTOu8dO8PX//YQn3rwAGtbVV574xgL0yNMjqdoNZtIso4oKEyP5snl0rx66ChvHTnN8KCDYcjU6i0qA0Vqta3EXEhSkOIe25sdFheXSaUUstlBoriNIAuEcUyjXidjG0iyRrvV5N9+7xb/4z+5F9vJcOjEdb70xX/EkaMnGB4ZZnXlNjdX1mmsxdiSTmVmgHbzNvlcnuXFDQ4OVFAtkwAJTdMQiSAMEv2taqJqqR3wEyMrMVEoJrlVmoYgQLfdIpvPcv8D93D/AwdI57JEwZ1utkCrVicOAoQo5DvfeY5KKYXjmCAqIErUqhuIkkjge8mUxrLxd6htqqHhxzFh30MUodPrUihUkDUN09LodbucOXOON98+xu/+i/+K1VvL/OqXvkAqnUaURBQ9mRxqukHWcnjoofuBEMuykmkb8U6mX4QgSYSxC0JA4EWIKJSLFb7xnWeYn51GlEUUUU/0dWJIHCXaPq/vEoXxBys8SVL43/7wT5idHkfVVRBjFEUgxkJWPBzdxnMjYknANA0UReI//OVfsr25yWOPPkwc9zF0gfGKQ7/b5FKnQyTI/NLcNGIs0u55TIzN06i3MUwFWYbQDwgVHdVII6ARBxHdbhvTSRF6PgLsBNZDsZJHlCREUWR0dAjf7zMxNoYshYl7aruD6WTo1hq0m1UMVYRAIpfK44cx/W6POOqStfOAjKHpXLy6yP377+Frb7zBF/Yv4PV7tNsNKgMVJEnhuRcPE4UgSAL79sxgGir5fBY/8Ll0eREJibcOH2NwsMzIcBlFFTFNDVPXEEVotxpIkkixVCBvmIhTM+SKI8RilCxBYwWE6Ke7kO9UL4oJNq7zN3/1NT73m79HtjDA//yv/gcGBofZ3Fzm4ILEwXvKyKKDkeojazKWneb983X2DE0ShQFxFJBOO4Seh6paiZREswCTwaFRekGIbVicO3WCsekpREkhm83hRwGnzh5ndn4fsZKhMjJDtbaJFHQR/D6lSpH5wRn6vTGunlV48/IFJEQW9mgMVbb44++8zHpjlRfeeZ0JZ4R01iGfKyBLBrVWA1VNomUQDfLFIdzuNvValYHhCWrNPgPDE1iGSqPW5PXXX6VSGqJcLkIs0Gt57N61C0UWcCyRxetXabRCxChg7dYiBw+WGBud4r2jR5mYmMIyQpRYJQpEYnyIA0RBxg9ERFWl2WlSKZdxm83EUVYQCZB46pWjbHV1ZgedJEJAjBPALpJM8EiAoBTHeEGMrCr0uh00RSAO+/hBCzmICIMuraaFlhrg4SceZ2JiGk3XqdVqCIjYlkaEjJ3TqDZuo0uJrleVQRTa1KsrGLqO44zQ83xqWzcwiiMUJxbQzTySrOzMeHYomD888LkrwLgrt+tjG98VGH3E0OTOz/HHXvTD3+pbXXY/NH3XY/wnLXHvNk37kNV2Z/r24xFUfJfbx6dzwk8wavn4+/v7grsda4Yfsb4X7nL7yHuJf5Fz93Oper3xZUEQUHbspBVFQZakH3lA/LTg7GetNw69xcG8/eEdO4sYSRQI/IDG+iaSGJFOGciqiWFn6ffdD8JrBVGgYBt4no9lW4RhSCabRlFkPN/jmy+8zu//i19jbGgQRdVIpVI0Gm1kRea1d4/x27/xBWRZI4j6TE1VUHWTRq3D4VOnOXXhArvnxoHwgwy9TqtDvpAnjmL+4D9+nScevg8hltBUgyPHznH2+g0+9cABbNsiDAIc28G2MrSa3STrKooI/T4Hd0/z/dff4uD+XSi6Trvbp1WvkUnnOXbkPLmshaICgYQsJ8YMoigiShKqqpDJOAgyhGGA7ejIqkq762I6adKZPG63y3Mvv85v/+pnsVI2mmkR9Vt0m4kRiCwpaIbOyGCeEB9dV7AtDWKfYiFDoZhhY30DWVNIZ7O0Gk3S6TSHj55geKgMQszgUIWO20HXFXRF47W332PvnjEUTSImRFZEUikLL/BRTRNZVYnikI31DdLpNCdurfLG5hqP7Jvmf/0//zOD5SzjE6N4YcDy7Zs4lkPKMZHExKAiDkIECUzHYXOrTqFcpNVqJ9lefkit2uSZU1V+93MLZHIW5aESpUoO3ZAZGSmysrZKqVyi0WqTzWYZnxplfGKMa4vLqIbCVq2KYRq8894pDh7cSyaX4v2T5yhkMhiayZlT5xks51haWiSddkinbdqdDhsbG+TzmZ3w1piVlRUqlTJ7ds/iej63bt3GMHViIibGk0iOTNrh5s1bLOyZZnR8EFWTkcQYRZHwQ59KIU/f9YCYq1eXGR4eZGxkiPePnadUKpJOp8nlchBGdHsujWaH1dsb1LbbHDi4B0mGcqVIt9vD9Xy+8eTr5DIWk1MTbGxtk8lkuXlthWqtxsBAiXQuhW6bvPDim8xNT2DpButr69y4cZPQ93jr7ZPs3j3PW++eZs/+WdrdBvv3zVHKpxgeKBLQxzQsdN2g3erR6fpcWbzBwECBdCaVUIzjiOUbW6RTGRRB5v0jJyhlMjRaPY4dv8T5yxfYNTdOv++Sz6V56/Bx3n7/PP/4lx9FVBV0M8WtlSoxAsVSCd0w2L9vF/cf3EMunyVCwDTSyXeh3cYwZfpeBzeQSWdKDA6WaTa2yOWKIEj0eh7Xri0xNjqC109c6DRd48T1No/sGSHwXR7fN8altQ4Q8eILz3Pvfffx3rtHefThBV5+/WkWdu9DiiK2t6tMjSuw0UVRDby+jyIlgv1+z0VXdfqej6KoO1fJaKeRJaKo6k5nF2RFIo6DJGtNTMKHJSE5Z4uCiKariFJMLEQMlyZQdQXiJNi81WySz2V2jBSS4ON+r4fne0iyRL1eT0CAl0SO9HsuxVKRIEic9a5fv4GiqIwMDSbRKSLkC1mcdOL42uv1kUSFKI6oDORx3S5R5CHLGgKJvlhRVURBJAoScBDHiT1+q9VCVVV2zU5h2faOligmjiPiOKLT6aEbOqKUMAskaYc1IsLjn3oQx7F2LOf7SIJCFIDntWk12nheQDptQSximib7du1CFiVeev0N5mfm0C0Dv7uNIMVc7PXYrnX4zOQ0umHT7fk4qQyvvH6IsdFBNFXDdT1UI5koCAhIYkyv20EQTdrtLt9+6rvcd2Afggg9r4MoiHheoq3udHqYjpMAKEHEsh3iWAIxplgusVXdRjdt3jt2HEkRyWQyCFKIadtcungFK6UxNFghnUlRSmmIvksmm0bTFaIwZnNzmwtXlwiiAFUWcWwD09IRhJBOp8vaxiajIyN896V3+PTD9yBKIpIkknIcmo0m1Wodx3GQVBlZlnhvcYl+ymF6fi9B5JMom8S/N7gLkWgtX+Lpp57i8S/8BqvrG+SLIzz80GM8/Z1vcnA+z+5ph3Teot30CP0ijZbKXPkedMvE9T1kRcGPQlqdNk7KIYx8ojg5/l5+6fsUKxksaYhT759lcKJAGMgsLi4yPDJGt9Ol2Wyg2yqiJKIrNo1GC0SZSPBRNQ3iiEzBYn5ognumd2FKJW5ft1ncvsFvfH6KBx/aR3Fc5O8Ov8GxK2d49dgh5oq7QQhwnFQyOY9i0rkMmWyexatXyGYyBF4fWVU4e/YMg4PDlMsVWp1tev0Ot24tgRhx5swxdCnD9es3Wd9YBaHP1PQkN1bq9Lou585eYmFuF5IYEwheElmjSHhBgCybKIR4bpdyuYTrdpEVERDxXRdVkZicnKKctzHkAFmWIBYQ4iRrUpCS61MkxIiyhKpoeK6HZZqJ/r3TQTNMQk8jiGOeffoF7rnv0+TyZTqdLq1mCyfl4PldQi9MfAXoIhEgxhFh2CKK+sShm7AKRJmtxmoCQDwZzciTSpc+jh5+FGb7ZHd+wk0TquMd0xThRxgK3rnnbw99g08//thd9/+zLZH/IaZvd+onafk+yQf7ycDdT6Zi/vj6Bbj7OdQdcCfLMrKUnNAV+e5TO/gvD+7ue+BeTh56lXIqyZC7A/xlWSX0PE6dPEUmZRFFAapho2pWQnvcyXGRJIlsNkM67dDpdBJRbBwjSInI/5EDu+h1uwRBSDqVYmVljbHxEb7x9Av881//PE7KZuXWGoKUOKCJgkGn2+exB/ayuHyThdkJND1xzYzjCFGQCIKAIAjYOzdKp93CSVl4nss9e+YYHxlEURJukaImC68wFKlWa6iaRhxFvPr2Ee6/Zw8Ls+OomoqkKsiKjhi5uN2QP//6S3zhswfp95psb7bRVJVOu7MDZkU818WwjGTRpkh4noukKIQh+H7Mv/5PX+NXP/sQk8MVslkHO5tB0XQUMaTXdTl24iyLN24zMT5Kq97C9yO+871X2TU1yTtHTzA8VECSJSzHRtV1vCAkdF1M08SxLVbW1lA1hZNnL7D/3n14/T66ovPgwT14QZdep0O+mKPvulS3tymUS/huQK1axXZsdDXR4lzobaEHXSbGR7lv3wKaoSArCfWpWC6gShqtVp1GrUbKcRJqpmNz/PgZdi1aWFGjAAAgAElEQVTs4uLFywwMVDh69ARzc7N02j0Kap2XXznCE0/cy9bmNrZjIooQRCGFQg7XdSmUColVsyphWjYrt9cZHB4gnbaxbRtFEem7fSzLYnJyhPpGnV6vj6knejRZirhy7QaFQp6trSrVWoPx8WHeePMIZ89dplTMUShk2djcZGuzSiGfJZ12gJjvfv9VHNPGNDXGxwbw/B6SJCWmMqLA1779XQ7sm6e62eDIsbNUyln8IGRkaIhby6sMDCSRA6qagPPFy0sUSwXGJ8Z47dBRPvfph3jz8HEOHtxNvV5LjEYkmYmRAXRDo93pYFoWvV6fxSs3OXn2GpvVKhOTI3ihz9jgALdvrbG9VSVlO6yvr5LPZZmeHKfT7TM/N0Gj02JoqES/3yVl2zz51Es89ukD9HsulmVjmg6vHjrG3oUxFpdWmJ6e+MAoJQqS5kEc9BFin9cPvYXlZNjarHPgnklGR4cYKBexLYtKJcvMeJnNrS1GxkbpdjxarT62nVCaImK2q/XEkVISCaOQRq3DoTeOsGfvDFEcEAYeqpFGlpOojkZjE8uwiQQJRdUwNI0wCDBNC8/v8wdPL/GvfutBWq0WYZCwA6qhja5rXL16jcGBAfqdDqJYZ3SsTCY/gm0anDlzknw24v96+iiPjgyTTuWJw5Be38M0LQI/IIqg1+0iyzJhFCIAwY7JiL+TRdVsNPF8lzCOUFQDIvjTP/kKU1NjaKa+Q2cWknOaJ/PNZ57m3v37ds7rMp1WC0mS6HQ6yedEhGVb9PsehmkgSyLtVgsEkXw+xzefepbL166Rtm3m5mfJ5bI46RSqppAr5khn0vT7PZ773gs899Kr5J0sA4MlEEL6/S6moQPKB6fuO4uNOI7xfQ+v76EoCpIsIQkSiiITCzGtdgtFVpAVCYSEeua5AYKYyAFazQQMipKYOCZHCc1MiEWOHjnOV7/5XQ7smySbySJLMn/0Z3/Cnl27MQwDRVFwUg5z01NcvHiNa0uLpLUQUYo5sb3Fdq3LfeUBFEXn1soqqXSGfXt2YVkmURyh6xpRDKEfIkQxge8lroCugGFoGLJCrpAGAVyvj6pqqKqOaRh0Oz0UQ0VTFbY2N0ml0vS6HooqJRopVUaWNURRpDJQBkDVE11Uu92lWM6RTqVxXZeMJuBYJp12G0VNaNW1WpP1zW1GBososoTtmORzeWrVbQrFApVSkTgWObAnccZttdofZAXKcqL3S3IYVSRF5m8urzI/M0alMgo7jIqfBdzFooxfXeaF55/nM1/6DWbn5ikPFPjOk19n5dZl1HSJCgt87dApXA8unrrA//O1w3zuoYeJidENkzCKEEUJ20nhuV08LzmGoihmZmaKZnuD5asbPPzYp2j0l3n9tbf5zBNfQFEVPM9lfHKCntch5aSQMVi6fpVieRDPa6Hs8H4lSU4ioYgJwohUWuO+uX2EnRR/9b1XeffYFeqNDr//X/9zGo0mgdTk0uo13jrxLievnObyrcu8fPQ1rty8wnxlnnq9zgsnnmf11iqiLzEzvptvHvoG7WoTWy7Qc/tcuHSGy+eukMuW2NhaoRd6dBo9trZrLN/eYunmRe7ZfZCZyWEMQ8QPRF556UXKO5pJAZE4CIiigJgQRUmctTXNQNM0At/Dtgx0VUCIE+2oLCu0W13iCBAVJCUxOFIUicAPdwLSJeIoQlEU+lEDIhVZEygMTTIwPISkOGiaRrW2TS6fYWtrkyiMaDQapBwJUQiIo4gb189TKuR3zkUqoqgiygpBKJOzcwSAlbKIhR9yR/8ZwN1H9W0f9YG425aimJiKSZJIHMV3RTF37rlw4xyPfeofxi3zblv/AtzdvX4B7n6KqtcbX1YUBU3TUXUNWUostn/k4fCRcXIURbie+4GL3D9MfZwjvXbivQ/BHQKxAFHks3XrNlLsYmgKi7c3SaVLBIHI6TPnKeZzSTdmR/ypyBKOnbiEqbqG2++xtVbFdV2KxSQg3Qt8BMQk20qMGRkeIAxCOp0ehXyeXreHaSeBx/lcir27ZrAdB9O02Nzc2rG+F7AsmzCIgQ6ZrIUgCri+C1JMLldEEoXk4hGL1LYbXFlcpl5tUMhkMU2TXfPTCIJELAQYlkocRUg7J17t/2PvvYIsuc47z985J/31ruqW73Jd1dW+0WgQlhCdRI40bic0OwrNaHffNnY39mVj52FfGDFrJnZmVjsjQw1lZilR4oAkIEIiQHjCELYbjW6099VdXdXlq67Nm34fsgiSYJMC3Tzxi6iouFnpbta9med/vr8xbaoFmxffeJ29uyexHQff9zB0k8uX5ymXKmxtbBMlCbppIuOUXpDmGDk42QwP3nsIy9TQdInbbRGFEUozcN0OXi9hu+Ey0N+HnTFwrAzZXJmhWh2RKGYnx9Adi3azw81bi2gyHTTquoHSDRzHoVLLk8lajI0M47ldNKnYWNvCtC2EComjiDiJ8Xs+lXKZJE5oNtvkcjk6zRbdTpc/urTAb3/2GENDAzhOBttRlPtrZAsFDMtGJBALHds2yeUdvF4KHM6evcLmZpPJiV288srr1EoFxnftwrZt/uXv/RX/wz/7NEcO7eH1t97FtjSuXZ3n2WffxsmYVGpVnEzmg5uh70cIqRgeHUQKgW6YbK2tpyY3SUSlXOTm/C3anTaDg3XK5RK+76Ebinp9MNU+trvU632srW8yNzfFYL1GvpDh7LlLdNodpqamWF1dQzckSoPxsTrlYpnllWXeefd9CoVsOpMuBLGAfMaiWCygayY916XW14fj2GxsbhIFMd1eh9k9E9T6q7QaXZSKULrEsk3GRwfptNtUyqVUj7SxkT6wPZ9Go8HoruF0osIwuH79FkMD/TzwwGFmZiZwey4rq+tsbjao9VVoNFoYhs7oyADZbJ6/efoNTEPw+jsnue++e1hdWU07LJrGxPgIYRDh+SG2bYMUHLlnD41Gk8OH99JzXU6cOMPk+ChS66JpMY3mOvmCxYF9E+QKFfbMTlOtFTENm0ajR7lapJi3qZQyaTxBD0gkX/jiN7jv0AxONgNE/B//9kucP3eNt06c5ciBGbKZHHNzEwgEQeijGzpxLNGFiRAREp9sJkckNRQRbqeJ5/XQLZNet8mD+2fwe35K0dMFGafA8aur3HvfIY4cuZdKpYoIG4yM5LEdA82qoiyTQjFPa/027529zbhIDW6CwMPM5Ehi2FxbJwrTQdXKnSWSOKFULJPIhE67jWnq9Ho9MhkHy7TQjDSmQZOKvTO7sbJmer9TafdeaTrFUpEDc3uIwpCe28VzXTzfRwCmZbG93cB2HNptlz/8k8dYXV6l1+4wNDJAEARYtsP4rhEmdo0wMDhInMDW9ha5Ytqp84IeUpcoqZjbM8ul85d56MGHMaw0v+/M++eoVOqQkKbtSMVXvvYE05MTKKXx4guvQpwOwBzb4j9/7a/pq5RIkph8PouUaTB6c3sby0q1iXEco6SGphms3FlF00067SYCybXLV3n1O29yeP9+Tp85w71H95LLFVFCUM6YWE6O784ONrYblCtlbi/c5tjRA/S2lzA0wUs31vjf/ufforfQ4s133+fdM2c5sH8Gy7ZobLdQUmGYxvdGODu/lG4Qej1s26RQztN1uyQCTNtCytTcJopiMjkHZRi43TaG1Oh2enzpsSe55+CBlL7d87l18yalUh4hdZ56+uXUDVjTiUL466ee4cjBg3TbHZ68cIX9/UWEhMwOO8UyTe45PEe9v0o2a6OkSEFcu/PB4zVfyHHp8hWqlQpvvXOKmelJAs9ne7uVai/D8ANQ/dLNO3zmEw9THRhJnSN/RnCnDBvZXuW1b7/M0kaXo0eP8fhjf8DHHz7GlWtX+O1P/QalimL/rr2UM0M42h4+88BDaAZIRBrNs6PjlzvX3rKc9HlKgEgC+utlJsbGKVUFVkZnauoYN25c4Y03XmXX2BT5XJGbN65xe2GJcrmfxTsrjE3uIZvLsLm+AnGEVIJIpDIHgUAKQRj6CCL2js6wb3Q3OZGl4owxXJ7mtVNvEcYxIojRTYkUccqmUZKl1iILm/P8V3//17m4cI3Zw1MY5Zjbt28yNjvHQ5++n5GZOgPDQwzsGsLq2+DZl7/O4ECWjXaTvqFRDjywh09+ssjsHp9qbRORuUHkGxy/vABOk5ffe4/3r1/ktXcvcmN7CX/bpa9SQTdSRk+n3SaTyeK5TSxTYTsZoihMh/8xuG4XTTeJQhcl0gkLESeYtkUcRfhej06rhW5V+fIXn8Ip1snnR3BbGm23i+t1ubN0m0qljKFr9NWr5B2TOwsXSMIefjegv78fIRTtbpq5F2NhWFWUVUCIGD/2kKaGrmc/Uu7bD9fdgMgPm4n8qL0mSZJGH/BdcHV3cLe10uIf/c5nfzS77Sc867ud78+nxPe9jx9Hjfxxy75X3zVS+RGH2jHl+eGf5EeLJD/Y7y81d7+Aarc7nzdME8uyPnBJkh/hs5XOCYCm6agd58yP2hb/6JXu784PgDtIREKcxFw9d4GLly/SdT36+wfJF6pousWtm7cZHRlMnTxJ8HxvJ3ogQUmR0nd6XV55+RTLaxtMTQ6jGYqO2+Zr33yJkYE+9u+b3XElEtT6qrS2XHJOCTdoU+kvkESCZqOdnmMs0I2UFuV5O2YNQtDYaGOZORbm11lc2KReH0LpguWlFTSVRiF8+WtP8+gn7mOwVsN3PTptFyubxQ8hEQG+10FJiUoEidKJZUj/UJHpsV0oZWFYaSbhwsIyb797kbNnr/D2yQscPrgXzwt44cU32Lt7GrfrEiU+i7cXqddrhEh6vodlKZIwIg4jhOOQyZZxnBxDg/1EoUu3t4lu6zRb2xhmwtrmbTL5Ok4mx9b6Fo5lYGoazVYHTel03A5SJVi2icBAVxqtRofNrRalapmw18KyM1imDYnC0hWb61soqfF//v6fcmzvHr5w5Q7/yz85iu8H2I5NgsAPGoQJ2JkscbJD61I6G+sb2LbNzflbdNsuQ4OjRH5EtVygks/RabcIk5iLFy9zYcNHay+ysbFO1s6xd3Y3jmEyWKnRcj28jkfGtrFMg267RRwJrl6+QRyFvP3WacqFApausb3dZG7PDHEQ0dxusmf/Ls6cu0SxmOP6/ALFQgGBRmO7Ta1WwzIdSsUSUqZdmEazxUB/jfHxUcIwwTB02p12ap4RByilGBoeYHJilFyxSBjGhGGErpnksjmkUJi2xcLtZYaHhygU89gZi2qpSBD1eO2ttxkeqhNGMRtrd1C6ZHl1hRvzC7RbTUzTwcmkNMhSucDWZoNc3uLOygqe36NYyjM8OkCcgOPYuF2XfNahnC9QqJXJZTNpp7NWYWVtE9C4fm2ZX/3EUWw9olCop7b5ms78zduMT0/huyHnL16jv16l53eRBpRLZS5cuMLI8CDFQp5up4uuNJxMAcspohl5eoEiTjycTIZWs8UX/+RveOj+Y/zv/+4LHNwzhu/3yJfKPPf8O7QbTT5+3z7efvsUpqkoFTOEvTa/+okHOHP2Cg/et5+e3+P4idMMDdXTDlIsyBmSdqONSEJ6QQtNs1Cmiee2KOQtzpy9yNDoMH/41FXu3zNCLltEaQkQEcWSx547zuzuEer1EQI/Im+1SGIB0iIQisWVW0yOT9Fbb3H85AV+/cBu2p0ulb4KERqdTpckCpAYdNw2uVwWpQRJLIlFjK6pHQMmncD3iSKJkIowjnjxxZeYGB/BdMy0e0XqeKxrJl7QpdVsUiqV0GTa/clknQ8cjg3TREgNvxdRsPLIRDKxa4xswSKKEra2G/TX+zGtdOJGQKpT3LkHG44JCL7y2BMc3r+PC+cv49gZan1pB3x4aIyNlTa/92d/xkP3HwMBk7t2pTlxSUKlVGVoaIjG9hbNRoOH779vJ1RZpVENppUaVmnp+ZIIlDLpuR5KathWhvNnL+F2urx78jSvvnOCf/TZz2DbJg8fu5dGZwvLcoj8EMeUeBEs3l6k53qcOHmaPbMzrCzdZHNzlYzwEMA7y1sc2jdBKcyiSx234zI9O0mz0eSr33iKQiZHqZwniqId+ULyAZjWlEcY+qnZR7mEYVoIoaf/EyGQEnzfRWg6SRhSyudw2z2mRsd57sWXcAyTOIh4++QJ9kxNoJl5us1UYjA4NEDgR1y/ssTM9CSWZXFr4SoT1SK6rtFsNul2uli2jaYEjWaDJIkxdIN2q02n7WNbaaZiEPW4dO0y9eogs7snIUnQjdTZ2LBtDDM15oiSkFcXVtk9PsbA4CgRqUnSz0bLlJhBg+Nvv8XRhz7N//vv/wMP7j9CtxHzjWdept90qNX6UULDtAHNo1DKpcAyjAh9H1M3U5FPnGaRJYkg6KW0Q00TqDiPpgdESZvIt/n6N75GNpcjnysjhcZLz38b27Q5sP8Ar7/1Arsmp+l5EdevXEVEHroEqRJipaGSNKIjjiOSMEJTkjDYJpNJJQSt9gZ+0OXA1CGmhyYpZvI8eOBeDo7PMFQcZnpgkvsPPUxjtcv40F4G88NktRyrN7YZr8zw3vWTVKnzwtNP8+13X+WbLzzLjRsuUq+wdGeJz/3avaw3b/LU159h74RGvWyzdGsduzhMpXyKQ3uKHJ4rc2jKZmagzJe+8Tb//J/cx8fu1bFzLf786XfYOzyOYTq0uz0M00TXdPzAww96IFJ2U5JEmJqBpmKUTNCEjpCSMEgp4EpKlNIIjS7NVsDo9BBmXqPnNUmEgVKKfXv3cXvxNplMjnZng157G1OF2IZBIVcjCBVSmqAsvFBiZctIU+ImAZDQV5shiRxabhPTMH8u4O6nX+vuawrg6698hUd/5ZEfudV/YXLbj6mP9k7vHkB+l739mN0lOyZZYieq4ge3u7uj/vfv95fg7hdQ3W7n86ahp9bjQuyEl/9gxXHyQ7kacfyDKfM/P2D3vVkEuQM2//jJF3hopLbz99TqVSUamyvLLC0vcWhuD6tbW4yNjqFrBmO7hhBCsL6+kZoWCA2lzNR5KwyQSmFbDiPDwwxWy7z55nHq5RKagHNX5/nUx+/fGfgl+J6H3/NRmkDpCVub2xSzeTqeT6FQ3JkB39rRvkjsjEkQeilVJGug7eRYvfn+e+ybGcFtbSOUQb5UotftcOnaWWamprHyeRzH4L3j72BaGYp9Ns1Gh77qAHEEd+7cxjazNLab2BkTQ4PN9TVM08By8mRyJeZ2j+KYCZ/9zMM71ssepqGTrzkYpoFt5nji6Zc5ODdDu9OkkM8hkwQv8ElIkIlBr7VOxkq1erqZRxgC28jy3rsXef/cVQ4emMPJ2izdXmD37mkSofF/feGrrKytMDM1gm4qQh80ZUKcGrNohk7/YJ0gSmMdpCbpeR52Jk8cSdxOj2arwaHdk7x8fYHPfW4f1WI/JILA7/DE159iZnYv+UKROI4QRHRbLc68e4VvPfMCc7tH2FjfoFys8Obxs/hhyOBgjWs3rlOtFLl6bZ5CIcvfu2+Y3TOTAHhtl3bHZ7vVZWFzlb0zu/ny157lvqP7OXXqPKVSmedf/DZzM+OUSmUyGYNrN67jdaDRXsX3NwkCD8cuoRkO+VwOO2Nz9eo8o2OjnDp+mtffPM34riF838OyLJQU3Ly5QLlQTDu1tRqaVCzfWabaV8XJFjlz/io3rizSXy3j9zySwGfpxk00IbCyeZqtbVZXVigYBmvLd8hlLXpBl57rcunqTer1PvoqVQQJWcdA17KUy8WduA7F4OAQba+H23M58/5Fdk+OsXDzFs1ml4vnbuA2XZyMRafTpVwscvr0eeavL5DPZLly+QZPPvkaxG3mZneh2zYiCbk8f4Nf/fVHEbpGoVJlbX2dfCHD/M1b7Ns3x7mzl9AMmJwaRQrBW2+dYnJsjND3GRobQkjF1SvzjPQPgmojVYxhGbhuiziJ0JSB53mYpsVAPYtuRLSaDQ4fPohpZZFCMTlW4M6dBSamxpjevYv6UD+NRpeZmRk0zebgwVn8OOLJv32R46evcfTgHnw/odXsYRby+L0WtiWx7QKR5hCFEVLpJCgGB4bwez1O3PT52L4RhBLEiSRJFJouWFtdIVucpL8+gB94SCVZXbsNMqFcGSDnjBL5CZl8yAuvvMGhok3YS01PzIyDYWURUidytzl3/jKtRodMrohTyiLiAKWlmhkh0gxSTUrCJEHXdHaNDhP2Ouh6BokgCFxct4nvt7F0mzBM0A2Tbq+D4VhpILSI02y92Gdrs0kub1Mo5piY3IWdlanWLY4plgoIRKphNnVIkhTUaCqliSoDEcP+vXvwAo/t5jZ7986h6xphGKA0yBZ07tl/AMOQoCVolk6QhGgiQdNjNF1w4cIV3n3/ArN7U+dHpacAXyqZDjCjhK7bw9B1kjDB9XtEIkTXFbomeepvvs2xe/czf+cW+2f28OxTr/DKK29z7/1H0HI6iRS8/uppBkfqLCysU6sMo0udgaE6S/Pn+NZLLzE1Nc7a1ibXw4QjB/cil1cxVIilSZZXtxkbG+PIgUOUSmV0w0iBJgZaEhELn0RoKBQBEqdUJkEhE0HYi2luz2MbEpE4dKIWptRRSqEpjSgOWF5e4N6PPZA6P8qYmb3T9JIAWxkoJMqICOM2uYJFMZOnWDRoNDap5fPE/jbtps/irW3GJ8a4fWsVJ58jmy3w+uunGOgr0Ghu0T/Yj+XoGIaGYZoM9Q3x/EtvUC7kKZaKnDx5huvXbzMyMQKxwO/0aG22eOP2KqWMx8zcAUIlEIlA/iy0TJGwsX6HM++f4l/8839GIiS/8sDneOKZx/kXn/jHbK8vUquXUBpIoaFrRvrMEBKpYoTSAIkyFLHwiRJJrxdgOQYkCk06bLdboEcIaRCHJmcWLvPgsc/QXlqnsXENTI1yPc/I+Cj5Yh1LT+/NfQP9NJo9NrfaFBwdLWwQ6g661Oi5PWzHAiVIhCTwXfKZDEpKSqV+zl28wsEDR7lxdQFlZhCaRcbS2WpsousahmUTRD6h20FXGgP1Pt458Roj1TF83+XQgXu4Z+ZePvfI5/jY3P3cf3gPoiPZXm4ymJ/gtatv0ImLPPudq2x3QPNi+vsmicRtVJLBcyVWZpNPPDBLrZRg2wrLluyfNsnm5vniN19nsm8vypDEsoshMkiZoCQEXoiumUgVIYQkSQRhFKCriCBwSXSFH0tcP2b15ja790yg6xpLSy3m9nwMTZlUBvI02i1KhQGk1iFcXMDvLGKYoEwTI1uiG0icbB7bceh22vg9F+n5RJ1tPLeRWrnEEXqu8D0g8RMBvB9c97sOlB+83qFopo0k8aEt79apu/uxRTZhemb6rqYmCSD54R7ZXTMfP+J6P319tGv348wOvx/4/dgjie/R7u9yhA9+7gYif2mo8guqIAw+b5vmh9rRP1gpBUL80LJfdH33A/fqK9/5PnAHCEEcJizfvkVGtxkeHCAGipUyUlM79sIRy8urPPftN9GlpFIpEscBYRBg6CadloflaBQKGYpZm0IxizIUh/buYXFxGYFAk4LN7SZWNjXGyORzZPM5YiDqdbEtg831DTIZG6krDMtIXeAi8HoJjumgCx1N6BRMi3wml4rShUKQGgPMToySyeQRmkYUuPQVbXK1CrpQWKbN+uomr75+gtGxMa7fuEKz6TJYH4EkoNXaxnGKdNoedxZX6atVUUrDcmzCKGJ1dYOxXcMkIsTJOIRRzNhQP7lCFiPrEEUhURSCFJhOBpKU+tnzexi2gW7p6EqHRKNarqAJyGYdbMfCMo0dx1LJC6+fpOjYTI4Oky+k+VmWbdLt9tB0neZ2g8DrkbFMSNSOMYWRUn9IcHI2IomJDIW5q8T4cBmR6Oi6YnNjjXpfP9VqgW6n/QGVRBeSK9cu8ZlP/grPPPM6U5O7uHTpLEePHWJsbIjA9zh37jK3bt7hY8fu4S+++TIDeYOM7RBHMdW+ClbGoT48wOBwH7duLTA9MYhhaGw3GuRyGUqZIvPXVlhc3GRqaoqhwSG8qMPQ0Aj1gVG6vYBszqTZ2qbdatNf7+P69UVKhQK79+7m8OE5dFNjc2uTL/zpV3nggcM0Wi2iOOba/G021jdJSHjn3XNUK0VarRazM1NEYcDJ9y8yt3eaU2fOMzs3gx9GKKXIWA5PPf0yfdUcrXabIIrxgwhDt3B7XcIgoFIuUC4XaTYa3Lq1Qrla4MzZiwwPD3Jzfoko8ZidnaSvUsbzAk68e4HPfPoRxscG6e+v8s3nXuPm7SUq+Rw35he5//4jmI6JbupMT4xw4MAcWxsNQGdjY43J8TFOnbpAtVTkiSeeZWpsjHdPnmFy1wiGpuN2e3S7Pdotl1q1Rr2/D7fnoxupViqOIqRIcDIWnh+SyZTodgISNGwnT3OrgabpGLqVGoHEMUcOHSYIAzRNImWC5/mUy2XypRKeH6CbFoEf8sX/9ATffO4tSHyuXpvn6OEZms021XKe57/9Ni++8h4fu38/UoBl27S7PobtIGNvh8kgSaRCKp3vXNjiyER5R38XsLWxRTaTp7e1xdQ9H8eyFe12g0TEWKZOuVRhY2Oble0myhQYpmJjeYHZfB89z2W71cSwLRIg41isrG0zMDBEvT6AYRjYpk4UCnTNhlhhaDYCHaESgiBESoWmyTRrS6VOa4GfGoBIqRMHEk3XUUqgDAEigkQhSQfp81cXKJZKICAKY/7m6ecp5h0cy8YwdBrbDXTTIF/I4wXhB/dVJRTdrssLL75Cf1/tA/Oqer2fUyfP4DgmuVwmvVVLgdQMgig1WAjcAFszuXT2Kn19A7idkDhQBL2Y4bF+LMsgCEKU0lBS0u508Hf0vLqhI4gQSmKYOpoSaCKhVDFZ30op5d9+4ziHD0xzeO8Ujz3xHOdP32TPxAznz1+gr1RhqL/CCy8/zvR4DqLbOEbE3OQIhVyFa/MbXGiGPHTfFHbLw8pk0O0cgyODJKTdLU1XCBWTKC3okXUAACAASURBVEUYhbRaW6yupd95z/VBQBJHKKkgTpBJzK2bN6hW+whC0HQtpQR7Pst37iCkoq9WRTN0Njc2eeLp55jbPUsum2dh/ibHT57jvfPnefThR2g2egz0FdjY3kAZipKuc+PGDXLZIiPDQ7S7m+TyNnbGJvR96n1VpFS0ml3KxT6UTKMnel0XPwjodnrksg5u18WwDHRNUR0oQpJSYYPQp37sAIVshpHxWWIlEAnIRP3U4C6IY5qrC7z47DNUqwMMDO/iP379MfYNH6ZUr9NsBiyuLDFcL6XW7klKGex2Omg4IASBiEEZNDsR3/rma6ytbFMf6kepEKlAkwm2YRN4AVHkMVQtYSnFhevXGZuZ4dChIwz1z9Bq9sjkLDa31sg4Npo0uX79BpVyP06ugBcDoUsc+FimkeZOygSVpAZeuiaRIiEmYGCgxMKtC7S7TSampnFyDlcvX6XTdblx4wYH9x3A7XTYNTWF6/UQSlKq1MjnC8zfuMbKygq3bt6kUqkiZZeVjevMX53HNDKcfu84Q4VRHpy7HzY3+Y1PfZbIc/jayyc5fS7gzdMNLE1nsJLBKUgyGZ2e60EcY9sWeqJx774S//efv8REeQDLNAiDLlJokEjCpIfpCCIvIopCDEMniRMCHwzdJg5DIj/B63pcvHaVixevs7LeY33bI0o0CsUicZLQbffQJMRhi27rArplk69MorQyAXlimSBlqveNwwjbMjByebabHZJIsrF2h9DvUK4OkKZzCZQQPwHguVun7fuXJR+s9mHh0d2FSHdHNMvbS8zs2f0TnMXdIc9HXe+nr5+94fJzY4h+qD6MH34J7n4RlcSfF0J+0CWDH86muxvg+1EhiT8YVv6zUTXjHd713cCdFBK3sU0lX6DreuimgZPNoTQtnV1UGpZl4PU8vvPuGfbNjKIpgddzWVxc5vq1BQrVLF7PJYkiuq6LHwbYmSz5fJb19U1+/8uPs29yjEvXb/HkS2/w6INHU91HkrC1sgoyIpfLEAQJcRzheT4giMKYf/X//AW6arN79yhr63cYHCwRJz5BLLAtC02mmjehBKEfYFgWSsS4nSa9BIJODyUEf/yVJ7m1vEGn6XLP4WmWlzdZXlzH0KHWVyYIFYsLd1hZWac+2MezL7/OnpkJAK5cm+fLTz7DI/cfQdNNSMDOWJDEREKkRg1+gG3laLVcwiAiiHzypQIxMb7XQ9dslJAs3l7Ctgz6alVuLtykUi6SRAm/+8d/xf/6P/13lDMWw8PpTdkP3DQrURk8/s1nqBYLDA/1s3xnGVN3cL0upmXQbLaI4pAwiogjye+fucE/fGASKSM0ZbK+ukalVkRIg2efeZHd0xNYloVIgCimb6CEoWd55aUTDNQrHDg0SRCEbGxusLXZpFwqMzAwRLmY51vvrzJX17lwaT61wx+q8ZWvP09fLc/q6hoTu4ZSUxTHolDI0vNc4sjFsgVDw1X+9pnnmNszSqlawjAyhEFCNptB6jFx6FIfGOTS+WtcvrJAs9lgoF7mztIdDF1RKuZ49JGjJEISRzH1eh+lYoFMJsPA8ACdVotqpUwhl6Pb7rKyusL61ja7d48zNDqMkDoIwdVL11i8fQfHtJCmZN++OSrVKrpupFTPgRJ9fRV832dtdR0lNdrtLv39VUbHhlKKDZKBehlD1/G8kGpfjd3TE1y7eo1z568wPFLnyKE5Nte3CL2Q++8/zMlT56gP9oGQ3L51B0tTPP7k88ztGcd1ewwMDjJQrzN/9SblQpbT71+lkHeoVUpsrG/xwrdP8ODHjuB5Ppcv3+D48bOYukatr8SdpRUKhRyWbRKJiCjsILUEpQsMU8MLXHRlgFDEUcKf/MXjvP3uOY4dOYIQAXES4fV8rEwR07JBQrPZxLayGLrO7PQot27f4h/++qP89VOv8fc+8wCagmq5xPOvnuR3/uvPYDs62YxDp+uCFFimyY2rF6mUSySJ5Oq1G2SyeWZG6xRzGXzPx7JsnEyG7c0mI6OjnHjlGf79l77BZz/7Scq1Pny3h+v6BL5HZWSIYrHA1uY2s7unWDhzmaF6H6VyicbWBoYGUehhODniOMHtumQcB5HE6JYgJkRpEBMSJwHIHbOonYSYII5Ikjg1+ckWiCJBHAveO3GGW7du841vPcs99+xD0xWGMgh9jySKKRSqHD9xksGBfjRdsnt8Aidn4VgWcZJg2RZKpVo/pWkpuFFpjpxlmkxPTaPrBkJKgiDAcz0GB+tcuHiRwcGBNDIgirAcGyFiFBIdjdZWh3zFSnPVzBQkHTqyD6kEnW4bZ8ccYntri4zjkM3lSJKEKAxJZJwajyjF5toKGVtnbeEsp06form5RlYPePjoFJmipN1uMlAp49hw7srb3HNoHMPwGSw5GCJCeD6mUcRxUnfImbkJjq+ucv+xfcj1LpqVwbALJHGA1+uh6RoJMWES4gc9kiQhm89RKDi0NhtkMnmiKCDr2LjdDlIoiF3OnrvG6Og4QoJj5Qj8LoZpUCyW8HyfIIjpdjvEMRw5eA9f/NJXmB7dRbvb4vyV6wRRwP49+/jCHz3GIx+bI4xiHDvLi+cusX90iM2NFkJA/2CeVquJqRtsbW3hez6mZdNqufzuFx/n4Nw4yU6uoO3YbG81GB4ZoNVqMT4xiuOYhFFAr9sjCEL+fGGb3/yn/5irFy4xNrEXDC0Fd0KS3oR/ipIatWKGP/mDP+Tee++nNjDK649fJG9ZvPXKSxhJh0I+pFKpYOg6UiqESF1OwSdRMTEGTzzxJJurgoP3TtNsrzI8PIAuNaIQSHoEfkycJBgmFIwinXaXpfVt4kSjnC3x5BPfoK+vn3K1jKZJcvkcShhUqwPkChWMTAkjU8MxFJ1OlziOUJrE9XroQiOJQgQxSRKiGaDHMeVigVq1zjtvvs1AbQClCUqFMp1Wl6WlRaanp3ns8b9kYGCQbC7LneU71Mpl+mr95LJZBIJXXn6e/bMH8Xoub71+nEc+dT92zmbX1Bih1+aB+x5GRgHZjMbkcB9zY9PsH58kb/fTblZ4/JnzPP/2IsP9FXJ2hOPo9HqbSEPw0NFhvn36PEPZYXLFPGt32oCJbRv0PBdt574SRxGGYZBIgRd00TVBkqSTNFs9g3xxnP76DNXaIKiEal8FtxNRLBbJ2iHN9QV0qcgWh0DPIwwTYUQUizXaXReJjh+EKF0RJArbKdE/MEIc9mg1Nyjkq7TdHqaZTvomHxlh/F2A7UPg7vtaZh8V3DU3uzzy6x9L9/YjdIE/oFz77lj4I+2du8Yv3L1+VKfxbvq5n77+7kv/4WPe/Tp+Fwp896+/BHf/BSoKw89LKX9g2c9L1Pmzgrv0HJK7grskFty5OY+hJNvNBoZpUihXiCOBlArPS7tGQwP93Htwju3NLUqlIpqhUcjnqPf3YWYtLM0gDNNZ6Vwhz+ba1o6lt2TPxCj9/TVOn7+GYxpMj4/hex6aUhw/cYqEiGwuR7PZw7IMQj8dbMZhRCWbwclolMsFotin5/YIo4hCtcbW+hZvHn+Pgb4quUIeEcdohsnKnWV0KbELFWzdwHRMBqpFHn3gHvbPzRAGIbcXVxgdGcCxDI6feJ/dMzPoSrG9uUUun2HP7FSqQyBB1xTtdpvB/j7WVzZJEsHWxiaQ0ls2VtdxLBPTsOi5PufOXmByaheulw7+Yj/AsDIsL9+h1ldJA0i9Hv31KiJJWLi1xOrmFqMDA+RzFttbTQzdYHu7wdbmNpZlsnt8jHwuSwLU6n0EQUgml3ZgwiACIchkc3RaPT71ib1YtkHgu4jEwMnaCAm+F5LPZsmXS0ilkSQplcRybNZWNrjnyD56nptq5dwAgSIIYoZHRjAMgyD0+fKzb/DI3AD33XeY3TNT+L7H2HCd4eEhFm4t0Gg0mZycYH1ji2q1imWaEHXJZGwKhQJJ7CNVjK45bG9tkss5uG4HXTdot5usrTRYWFjl4YeOYhpw5vRZdo0Ncu3aLU6eupDSZ02btdUNLMMk8EPa7TaFUoFaXwXf85FSsrG+gWOZ3HPPAcKd7kwSwdeeeI6jB/cQBBF79s1SLBXRdA2EoNvt8pdf/RYPP3SQ9bV18vkcQkiazRbVao3nX3oNkojTZy4xNTHOX371afbumWBpeY1qX4XVlRXqtRrVaon33r9AMZ9jbnY3lmWwsbHJ7OwUvh/SbDR47Tvvc++RWaSIqJQz5MslhFQEUYyUkrWVDY7de5AoDsnns4zsGqW/r0ShkOXa9Xn2759ldXWd4aE6C4tLLNxcZnh4ACEEpm2SJAFKafhhiBAK3TDQlSSKYhrNBmMjNT716DH+4i+/xX337SWKo52w6EVM0yQIeuRzOW5ev43j2BSLeY4c2o2uKWYmhsjmHb7453/Lr33qAabG6yRJQrGQYWN9AyUgm8nQ7bSpVUuEYerKFwYBtVoV00zt9lutdhr2rCSmaZMkCY999Sn+x9/6FCdPnOBP//O3eOSBY2hKkYiYcjV9f1urG1iGxsvPvshErS+dQEtCPNdDCQlKw7JtlJJkc1kSAWEcoilBu91GKkkUhWiGhRQJja1tbNsijFPdl1Q6kDofSylJwpjT587z3/z2b+L10m6BiBJC38OyTRYWlrl+4ya6LimXizu2/DGu20VISafbRQiBZdv4QYDruqmLXJLGGiBSV2Kv5/PEk08xPTlBNpdlbGwEYOecFJqCJApT3VICSlP4YRfT1FlbXeOvv/UcpWyOWr0P3dDTc4/5INolCHxWV1bIZLMoI6XlaZqOiEJ63TZZDfqrNSZ3jTE9PoSlC7ZbDSxTp1DI8vRLT/Ebv/ZJwrBLFIWEO/mntpnDDQVKN9AdkygOeXX+Fvv37kOstVDKQAgd00rde1/89nfYNTaG49hoUmLoJkEQIkSMpkwef/KbHNo7S5KExFFMq9Oj2VhhaGCCbKFImAQsL6xjORpbm9vYlo1hWkhNQyJYXFzhiW++yN//9KNcu36Dj913hF2jo0xNjNBqduh2Xaq1LI6TxbGz+I11sqZOpVzF7XjYGQ3X9dGETsbJkCuk9wHLtrnnwAylUh7NSKNyoighl3GQmsS2TTQtte/f2tpCCsW3XnyD7XyJo0cPs3ZniYnpfSS6QhAjUT81uIuERI993n/3OL1eyBe+9HX++9/5b4njLYaGKgwOOExMFhGJtTPBDFIKYtjRLBsIYRJ4AUePPIST9RgbGUPXUuMGgYZp6SBTSq/SFI2GRyIlXddNHSOdApoeMr17mkbbxbZtNF3i9wIuXjy/M5kAtxcWOXnyHcbHJ9KxTByiNG3nM60RR1FKG45DkjDB9z22t7eRaMRhQM/vkstkGds1xa3F2yhd48ihezANk1arRSlfQCTw3nvHmZiYwtBN1tdXuXb5EvV6HyMjM+hOwIl3X+PGpRZL81cYHuqnVtWJkjaaYaJhARFJEiEQ7JmcZO/wboRX5Y++8Tr37bNI8PCDGCFC7tuX58z8NVp3dCzb5t13XmVkbCylPEfp8yaO0smiMEnzJaMwwA813nv/fd559yJRnLBv7yFW1pfYPTON0CCfq2DoGitL5xCxS8YugmahmQZRHEAc4IUJ+XwBx8mTL5ZwsjmSRKKbJko3yReyNDabuL0e1foQiUg9E35acPfDdRdw98GWHw3cPfbSX/HxR78XgfBRwN33HfnvPNvkI4+XP3qn8WepjwbuPuI633fJP2y68kvN3S+g4jj6/IeX/bxw/88K7pIkRgjJxx99iPnjb1Kw7Z0TFBiaxuL8PCtrd3D9HhPjY0hpoTSTMI5otlp0Oy6maaKUwjIsDFMjiSMSQkxLR2ippsFtudxcWKZULFKuFCmVi6yvb1CrVVlZXePY4cMM12qcPXORUj6HiGFifJRirYCVySA1h3/zu3/G+GAfA31llu8sMzUxTK1/F82Gi1I6uXwZ2y4gdEm32WLX8GBKlQREFIDSyWUyLMwv8eaJq8zOjdNobpLL6Bi6otfucPHCIvfcuxeh9SCUzEzuxgt9TEPDNjWUqUCJ1LlSSpyMw/T4CJ1Wj//wn77Bg0cPUa1WaTSalMtlHNPk3KkLmJqJTBQD/dkP8vpEJPDbHrGWUChkQURsbqyTy2Vxu23CIKDT7jIxOsLQ6AhCeGRzOdy2z7/7k69gazpzM7sIoxjNMBDKoNPtoauE5eVlKuUKumbj5DJEIfyr75zjysl32Ds3Sc9tIqWR0kaTiEyuRKlUxbBtlG6wurpGoVBGCoNmYx0no3Hq9Fk21z3Onr3G6PAI/fU63U6XV994h06ScGzMYG7fDEEU81dfe5rh/jKbqzuz25pkcnqaZqNNs9mlXCpx/vwVdKGxvLzFxYsLVKtVJscneO/EFbq9DWwr5NXX32FieBrDlChhUq1U6XQaVGs27sYG5WKOWCik0piZneGN75xkfGyY5aUVysUC5XwRX6TuoUoKLNPi9PsXmJkY4ZXXjlPIZdE0nbXlLe47epBLFy4xOjFKL4r4g//4JEcO7UVpAsOUHD4wSZQElEolvF6PVqPN0OAg8/OLmKZGIZ9l394Zzp67wscfOMa581c5fGQvQeDx1ol3sVVKv9s1OcIrL7/NYH+Njtdja6uBqRv4XY9CNkun22NleYl8TidKGpQHR4kFaIaFqRlkMzbZYoFiJcvS8gqantJ21teW6e+vEIU+Zy9cIQ59Dhw4xHdeP8Wh/XtSHYShYYoiGxtdCoUap9+7Rr0+QLu9jmnouG6XWq2A4xicOz9Pf38u7aKZef71v/kqv/LwEWxTsrayxpNPvsH9Dxxie2uL9Y1VlBDUajWkBgf2jJPNZMjlcziOTcZMsK3UFCAKfIgC9EwOwzTx3C4LNxcwFVi5PgQ7QbNJ6qDXbm9jGCZ7Z2ZQUmdqdJhHjgwRrt3iX//xkzz4wGFWVzdRQlItVGhsLPLsqYt8enaOVrOFRoihFAkQiwilJJZtEaZuVchIEYWCbCaPkgaaMkkkiDhEioQwitBME9BQOzEvQegTxxGGrrF/376dmAmF2DGHcDtbtDtt+gbrDPePoOsC09JYW9kim3N2cuW6FEtlhEq3W9/YoFgo4vneTqC6YHO9gZNJ1x8ZGkpjQkyNdjuNKRBCsr3VYGttCVPXCJMQlIYydUzNgUSRy5YY7RtDVzaFcpZWswEClNR2MtgUjUaDUrmUDvQ1BRgksUDGAZqUmEYF4egYOQMz79BoefQXBjE0iWHE7Ns9jW1mMfQcvh/t2LMp/CQGWyIMjShSxIHO27c3+Ae/+VtYG9sIoeEYmTQqJYzYO7cPiaTb7SICF4lCGhY9z0fXHfbOTLOxeoftzQ2yuTxWpkCvvY5l96GbJgk+eAZB3NkJftfxg4BOt4ff9umvD0EC++amCcMeppnmrnb9FtduzrN/7yyW5eA4OS7fuIET9LBsgyQS/NXjz6NpMRO7Jlhd3CCbzeJ5HRISDMtEqRipJ0ShTxCE6CoddEdRiO/52BmbIPCplCo4To7nTp7lX/7b3yURirDdYHRyNyHxDrj76Tt3XgSWirh29hzCyPMPHv6nRMqhUhrg4oVbNNY69PcNoVS4o/9KiOMETVPIxEBKE7/XZnCogmE1kK5CRul3RzM0kBK3F6JbGl7ogTC5urJCIgP2Tw/T2VpmaXWRvuEMff01zp29jZAaS0vzDI2NUSjm8INeKgHwQ5zKNJVyGdftYYgEESUkmkQIRbQz+aMMgzDqACFh0KKUz5B3JI1mA10z2Wp2wTSZmp1lZeEWa6srtJsNSsUStmWRyea4desmi7cX+OQnPs3AoINhCd498T79g32cO3OZQ4cPse/AGKWCjggTtLhEp+dz8cw8pqmjazpJlPomXLt6hXKpyj1Ts5w40eKl99e4f/8EceJjSZu+jEZ9epn5qzpzh2YhSXN6kzACEuIoTqOkhEnghQS9hOOnrnNj0WWwPszRY8fIFQzGx0fQdcXt1UVMMkShR8+dJ2sIdKtAL3aRuqLXdsmLIt2oQ8bOkUiTKJF4CdhSEcuY9COls77apFR2UE6BRIAQP8kY8qOBuyTlfH7IQfOjgaXTV07/Etz9xMf8YXD34W7fL8HdL6CiKPz8h5f9tMLOOI5/iM4p7+qS890XP/6D8b0vjuCFZ19irr/MzhweSkqunD2LiH12jY6g2TnQdwxMBOhKkctl2d7aTgX+SQqy4ljSafewMjZanBDGEULX0KTi2qWb9A/WuHLtBrV6P0GU8Hv/37eYHeujWMoSRj6Vaon1jXXyhRztdoym2Vi64p5756gPD7DV6pAvl3ByGdxWZ8cSWUdpkk6nTeyGOJksm41GGjgsBa4fo0mBpmu4fo/DByYJwphM1saybXquh65bTEz201hfotPYpH9kmEAKLMckCT0iz+etExfYs2eOKGzjxwlxkhB4LuVyhbGBGt85forx0Tq2qSFFmqNVKpaxsiamo0BaCJlqQgzLwIs8lKal/65IcOLkGTQkmw2fgaEaQeDSP1ADTafT2ObO0gq1vhrDlRKalNT6+2g11iEKkVLD+f/Ze7MgSa7z3u+X5+SeWXtV7/s6PT37ACAAEiAlkNK1ZNFSSPLycMPhN7/Y746ww3Y4bMe1rixdy/LVFa9EiRREiqJIAgRIEDsw2AaYATCDWTD79ExP70vtlXv6IRsgAIIgKF3KfuDXURET1Tmnsruys77/+f6L5dBq1ikWi9lUSkkJvIT/6uFH+Z/+5ed44IFjmJaNkoS4OZc4TrCcPPV6A6dYII58iAJs1wVNghLwx3/6MMcPHeHcuSsUCybXb64yPz9NsVzk2edP8OsP3c93Tq9wdNjCdSX1rRYlq8jU3CCGpdE/VKNQypEqHrou8dsejz32Im3P5/hdB9BNndn5STRN49KV6yzsGyKJAoYGBuirVDn77ru8eeoSA8MD2DmXQrVIEIRs7vYo9/VjGjbVcpl3zlxgZCzbLCgWc0RJD2nE7Gy12Nra5Ny7VxkeGmJocIhXTr7Ng587zpkzF9EUjdW1FWxL55EfvsS99xzkzvIdDu+b5M+/+h0efOAQWxurmLokDiS3l1bw/YggjtFNg6GBAU69eYGBvj7aLZ87K1v09xc4dGQ/y3fuUCyXGR8fxc3l2d5qEHZ95mf7iMIm1eFBDMPCcR2anRaFco6r15eZn53Ath3yxRpStVGFRuwFhF2f118/g2UrXLu2xKFD+3n0sWexdMn3v3+Se+7ex/r2BnfddZjTZ25y9u2z/N5v/zq7u3WeevoEE0O1zJm1sYapmjz+g1cwDIVqtUScSp598TQTI1WSyEcoOufeWYJEwbFVXjp9hl/74t2kAqSmcs+9C2hKhO97bGw0GZueIEhClNgAJSYIUkhUpOERhiFJApZpohsmUup0212EqtMLAmq1Go++vslgQcHz21lEiOXsOdtaCFXBMBWkDOn1Gri2i6bpfP7YNH/w1R/x21/+LaSi06i30GwbXVeoBQ0UVSCEwPd8et0OtmOSxglx6KPpKZ63g7QN0iig22yikKCoEEQ+YQKGnUeqBmmikKYBzcYuhqYhFIkA1EThuWdP8PDfP8prp05x/sJFjh49gGnlKJb7IE459cZpnn7hNe4sb9Nut7l05Sqrd9aZmhqj222j7xnx+N2A1bUN+gb66HY6rN5a5k+++i1G+kqUyjkc10JVNbrtHl/7xrc5vLiIpmk8/dRzHDhyHMNyskmD1CARIAPCMERqWRZbruTQ63VxbAdN1bPdXAGkCZZtIxWVNE6RKIS+B0mAaVvEKHi+h1AgCkJqlRqq0Kg3u5h2jlyxQpwqGKaJZVlsbDa4vVZnfmGRVBVYwiL248w0zHTQk5ja5Dz+jSVUIUGmhCjYjptZ3UuJqhmomk5K5jTYa7VIAg9dF3jtJhtrG7xx5gKz+w/i5spohsw2KoWKmdPQTAshNb728Lc4cmARx7JZW9ni//rLf89v/dp9pFGC70V0vTpCGKhSJ+6G7KzWqQwWicKYf/fDZ1i6eJF9UxPk8y6dTouFuSkMU0Wzs42+IAhw7DxeN2RtZZuUEL8XYeoFun4D07ExNR2paNy+tYrULHRDRQiFJ+o9Pv+Fu7l+9RKOa1PuK4OSaaQRMQo/ZvskH7CQ/1mlJSmbO7ss3brB2tktDhw8ytlz1zn94tP0ej3eWbpIzU3IGU42GbcNFFVkgDxlj66tk8QgFJ1UEwg1iy7wQoFQTepbGxm1OAqwNEl/aZBCXqHd1XjpxVf59V//HEVdpdfu8NLJVxCaxcEDxzj92kniKIJUIZ8rUK70U87nuXL9BpvbPQb6JwnpEAYd0ijA1NUsqzGIsA0LKSRSEURRDwgwbA3NVElFgdGRcZI4YOnOLSZHp6jVBvCigM21XaSqMTg4yOjYSOZovbbB1atr3Hvv5xAii7doN3c4d/ot8vk+dCPEslUiEWIYDoahITUBMiINYaBWhTRANwSFosvC4Cx/+ejLzI25SNkipQdJythEh688eprDk7NoUiB1HRFDmkZEaULst4iTlEZo8ua5i3z5P/nPqQ1McPadNzl08B5efek1hkeGCHoKr7/wXcpOjKEmWM4QnW4jm9ILLdOh6ilpBGGvx87WbVQ1QZcOQRKgaZl+v7O7g6FJ8gPDSPHeFaZ8BAa81zX+5LPKB0iNHz7uA+3mngP6R7+iJGOepB9a+yfrzJW33wd3ipJpAsVHHj8pTfp48uKPE/h+/PjIyX7kPD7tc//0+vjYg59GBSVj0/HB+8CPj/tg7/9eNMNHv6Sq/hLc/YeujwN3SfKPyRj58aTu4zJFPvgGv2fF/fOYsjz27AnuH67uLaZw68ptGrubKEoPoSqUa31IzX7/tdU990/TMDEMHcPKzDyyHeXMft8PAjqeR7Fc4tkXTnLu8hJz08P01SoIVWCaJptrGwzUst3bcrVEvlzEdh00KWm02px+8x2+/p0fcWz/JLqu4nUzL9WRcgAAIABJREFUmociJRfOXeLG7WVsU6PX8zBNM8uJyju8/c5FCrk8pALDNLObQaqws71LsZBHNbIGJwrjTB8VhFy7eZEw6jEyNoBQMyt7UjXbTW77WbSAaWM7GlJmomglhStXbjIzM8Xhw/uxbYPA83jtjTMUcnmuXLnJxsYWqqrSaHT4v7/2Le46MI+qaiQxmLaOqqp43S7TU+OsrK6xW2+jSYWhkUE0zaC+U0dKhUefegnChKmZCYZHhrBsi8Dr0u50iZNMB+k4BqqUJEmaNUbdgNM7Tb78wEG6nQ6O4xAGEYoq2dzaoVQp4bhuxtFXoN1qYVoZZae+UyeNEoYH+vCDHgcOzHLo4AJf/+YjTE+O4fUC4ijipQu3+c3PzHD9xnU2N+uYhkmuYPHo488jkphioYCU0Gp2CPyYI4f38+6VG0xP1NB1jfXVDRr1JjnH5Y3T51ClhqFpKKpKX1+Nna0GO40mL75ymmOHF3Adi6tXbpKmCd2ehxAS27ERQjI5NUG+WMDNOXtBuSrFYp75uWlee/0sJ0+d4/ihWR770Qs89Kv3omkq5VqFYrnI3cfmUVWFgf4ymhTcfXSOZqfJ9k6L28vrbK/tMjM1QeSHqELSqjdRdY2trV3eOnOZ2ZkxRob62dzdysKocy7bm9tsbWxz4cJVRoYHuXHrNrotsF0bqTmYuk2v63Ph4hX6+6qUC0Wee+F1+vvKDI0OI1Sdd9+9zLWrS5SKeXZ2GrR6HWrVMmmacvzoYkYRVjR0Q1CvNxka7mdmapwg6LC5ucPQcD+1aoFypUAcheRcF026LMxPU+236bYDTNPlkR+8xOcfOE676/HG62dwTANdV5meHufBzx4mjAJUVeLYmTPuxtoWff0DnHjlbeZmJ4jjBBFI/vUff40jizOQpORzKrGSOQimSUrQ8wj8HqaVz/RVUYxj2Tz6+jqfOzhKIZ9HU3V8P8zytTTJ7vZ25jKcguPYhNEe/VBKbtxeYeHgUeI4YWd7h1qlzJmzb/H86Qs8uH+B9bVNco5NFISAShh6IGI0VWDoNtJw0FWNOEqwHIdUqBm4ULMMuCSO3t95d1z3A80J3Ll1hx889xL/5e//Nr/64P2MjwzhFgqoUrK+toZtm5RLOQ4fXODw4QMUci5Tk+NMTY6RKgn5fJ5Oq4WSJEhToVTNkxBh6DqGpvIrn3uAQiGHYWQAsN3qoCiCJIoYnxgjiiLGxkZBZA3je5/7QopsTZnFHkCKlFmOpJAyC49WIAw9hFAIw+B9qmkcJ2iGluUTpgm+76Mqgp7Xo1DI43V7XLl6nXev32ZkeIil26sMDA6xvrGD4zroWnavtWybOA7p9QKkquMFUCj1cXVzm+ljR/mT/+ffcmx6GkgJwghN17KwvnQvRL1ez5zxVImUYFs6YadBmMD4zByz8wvZhCtNUBSFJE0zS/04yfRLKEyNjeF7AUqqcOPmEuWiw+jIILlcnseeegZT0/n6tx/n8/cfp3+gxtr6OoVqmXwhz/GJGWwtYmJ8kEazwWB/H/liDgBNM/E9HylVem2fb3z3CQqOw+BQhUa9zVPPvc7RI/PZtDiEKIhZXl5ndGIMTc2yBN/YbPLFL30B0zCQJLiFIojsvVKU9EPgLuUnDdd+eqXYlsX/+q/+DQdHJqn0DdFu7XL3saMcOnKUm0u3aW2tUsw7mLaNqioEYeYUm0QJURShKApxHCOkpOf5SDVF0RKkcFAwUNUEw9DRVI0kSojThCDuIoTKvoX96GaCVKDT7bF8p0UYS06+/iLHjt3P5MQEnU6bK5feZXholHa7R6VWppAvUSrV2GlsE4cBQsQIuTe5kwZR5BPHcdZ7SBUhJJqpEacJGxstCsUy7dYupunQ6zaxLJPr129QLpezGJhelyRJuHVrCSkF62traNJANzTq23Usvca16+dZPDRLoSBRYkEQ+BTzJaTIjGMsPTMLi0IPRaYESYgwVGI/ZnZglAtn2kxMBei6jqZpBH7AsXmNv3riPHOD40ghSUlIpUIqXcI4pd7pceHKEh1PsnjwLgZrY1y5doXJyVkWDx9kfWuFodoQtWKCErUplgaJTR0hBLphoRk2KJKuF2A7eTrtLpZt0Ol2MA0bw3azzQFSVpeXyLkWhlv4ENL5+Cvrkydmn+bZD/apyd7f9c+qD4I7+Hmu+5+sT25//3kmcz/11T/2pT7hnPYkVD/Ln+PH/+vDx/0S3P0C6mMnd//IC/Y9sPah6R0ZWDQtK/ugjuIPHftp67nnTvDAnu4uTRR6HY/Ll94lSRvYtkV1YBBFmsR7lIIkSUj3AEQcxaRJSq/j02n1aDayPLv77j6KYVsIRWF8ZJCJwSrlagHDMkjikND3OXpwgWLews27aKaJokpu3Fpma22DkdEhBvor9OcyK/VSMYdhmggpiZMU21Ip5B3iJKVUymPZJoYuIYXJiTEe+eELDFRruDmXwAv5o688zLHFeQzdJEli1lc30XWDVFGQqqRWKeHm8ui6ixQ2qyvb5Es2ftgjjH0GhqqYtoquabzz9nliP4ZE4cr1m0xOjiJ1hcZunW67y7efeInDczPMzE1Sq1VRFEm5WGK4VqBer6OkCt2mT4pPHIYkpNQbDSanxxnq66dULrO9XafT6VIqugRRwpEDCximiWFpODmba9euU6v1Y5o2KCr/259+nYWpYXw/JJdzCYOQd9Y2+f3/+HgW5K2qWLbJ7m6X7e1dBob6Mo1MlNnGSylRdYMkjui2mmi6xZXLS9y+vcLRQwu4ronnBexfmCIMAqQQhH5CM064Z26QIOgxOjpAGIa0mg0+d99xKpUS167dpL+/jyROcdwcS7fuUCk61KolVKERBAG+F3Lj5h0eeOBeNKnz6snzDI30Ybkms5MzjIwPMD7WR861+cH3n+XwoQW6XY9iscja+jara5vML8yh6Rq6pnHnzjqaZuI4DqpU2NnaYWJyPNMzKhFCEYyNjvD8iVcZmxxDM3TW19eI44Dbt5eRacjV69eZnpli6dYaY8NjTC/OcPXmLV4/c5GFA1PkinnWVtaYGBtiZLgfyzJ54qlXuP+zR3n99TN0W238ns8TT5/kniOL3Lp9hyPHFtFMnTfevsD48ChJmBJ4Po16k3KpSKVSxrV1vv39E3zm3sP0Wh3arTYHDuzjzbfOcfDgPKVSkSiOaLc61PoqOLZJuVrje48/x4GFKcqlEpcvXeHY8UXKlRLnL1xlbGyYdqeNrkbs7LZ55ZVLNJtNStWUJ3/0JideeouZyWGmZycxnTxjfS65nMPU9DhWziKKArrdLrZlUm80sW2bQqGI53soSkxff41mvc1X/vpx/pv/9nexXBO3WMCLOgShzLKekpROu4mhC2JhQhpj6IIwgYMzE+QdGymyqQFpgpRkQeRmRv3WDZOe56OpEk3PNiDuOjBFQ8khVclbb72DZZrMz83zoxdOct/wOHaugEJMp9NCFwa+30CVKYHnIWIly5hKY2zHodPzUQwbEUcI2NOwxSRJhGGYJElmIhEGEbqR0Uzvu+c4bj5Hs9WkVquh6QZSCFzXISXG85qoukQIyZPPPc/hQ/uJySYzYRBBlBBHIU6hiCK1LGeuG2FoDrppouoSgIvnL2buoDs7GIZOtVZFampmA29kbIAkTYEEIRVIJK1WE03XiNMIVQpSBGkcZ9rJIETTxPvmKUKIbPqlZlvKcZzsGYbYxLGCaRpomoHvBwwODGM5BfLFEn/xd4+wtdPk/vs/i2mapIokXyjiujlsO4eiGjj5Ct/5/jNcurTEiRu3OH7/cdR6nf5CnlKliKbpdHsemq4SxRHdbpt8rsjF85dQDQ3XMdhYX0WPQzxFxyhUSYWGGvnEqfK+xidJk72IDRVVSjRNwzRNvv2dR3noi19gcKBGqVJECMH46BCVcj9TIyPoJiBgYmqSr37z7xkb7OPi8m0WB2sIXSEMQ0qVAmmS0mq2UVIVv+dDkvIPjz3DyuYunzl6CNNWqVaq5G0X09aQqka31SUKE/wgIIoSdCPTuZ5pdPnCFx5gc2ON9bUVBkZGQKi8B+4E8v0G7efpF3Tbotvz+MFjTxBvrLFv8Qj5fIrhGDz5zPfIGXBjdY3jR6fRNJV2q4tINRyjSBT77zfhipL9bSSJwOtptOoaui1RtWjPxVnJmnVFEgM5u0Lgd9C1GFN3iEIfBOhGEaHkub18lcOH7uLVV08wMDCEaVoU8gViGVBvbaBqCqmikuoauppH6gJFhMRJiqk72XRqb4Jp6jqazHTfaRihRCpC0Yj8Ljknh+WY3Lpzm7GRKYKwh22bdDtdlpaWaOw2WFw8xL59C5CmqELn7bdPcfdnp2g3Y/LuALpMMWVIr9elsbNOvmCikKCmBmHcRdNUPD8lSSzWN0NcS6CbOtVakb96/CxHFopEkY+uaRi6wcEplb/+0TkOjs8idAU/DPnq3zzNxMwBfvjUi+y2Uh78/JepVPrw/DqpqlCq9tFqepRLRRorVwj822hSIvQBfFNBUyxMp0CUCJJEYJoOdq4KQqPV3sG1NYJOA90p0NjdodOqE6cRpUoRRTU/dM188OqK4724ho8BEj8T3L0/RfsxVfKTTAM/rnpKmwMH9/PeFOvTZEK/t/5HAc7Ht8A/bTr2UT7dPx3ovTed+2nZcx9/bh+uD/f6P+28P26lX4K7X3h9HLj7x9ZPjl/fc95MUKVGmqZEYfCpdkg+Ws1Gk1kty2dKEthc3UZNAhQR4Dg5bLeEZjqoatZsaKpGFEV02h1efPkNJsaHubV0h7fOXmRiYoTZiSHajRZJEmPbBt12m7xjE0Qx7XYHy8zCPr2uR5zE2K5LGEWZA5euUXZzCE2wvLzC7PQ0pqVh2ja6rhH6AVIKNE0QhhG2ZZMv5EBJ6XV6JEmK7dhUSyXWNrZ4++y7TE9PMFAsEIYhhUIe0zI4c/YirUabXN7FtA2SMEHTDFqtLmkqcF2XVCboevaz+n4PN++wvblDznXZ3NjiqRdPMzE6gGXpIFNyjksaJ3z2rsMYpoYQCt1OB13T8X2PSiVHf38lA5WJRFOh2e5QLhXxelmYtAKcePk0AwMDRGFIo7FLEseEYUzgB1RrJXy/R7FUQhcaf/znf8ut5TV+7zcfQlcF+UIOXdNod7o8st7m2ESFP/zTv+JXHvwMqiax7AJCTUFJMHQTITU0+R5PIDOXaDXqlGs1JsZGmRwfpdloEgYBSaKwvr7O1MwkfX1VLlxb5nc+N0EcKezsbtFXK+E6Lv1DNW7cvEW1UmFwqJ/tzW28XoCby0xjAt9jd7eNZdkUiwVOvPomiwtTNBp1ABzLYm1zm5HxQXqdgN36LqVSjjgMMVWNrd0mjUabubkZ0iTBdWyuXb/F0GANz+timxaGrtPzPdZX17l2ZYnJ2Sl006DXbrF//wK9rs/8/BT/8OgzHFiYplFvUq1VqPZVOXXqHY4eOZCFuscxtmXy3R+e4L7PHmN6cpTV1VWGhwfotbvcurXC9k6DnGuzb36Sq1dv0l8rU280mZubpl6v02l7LCxMc+7CJWzbZH5umvpunU6nh65qCKmws73DO+fexXVt8nmLqdlx1u9sYuhZk7q9U2dza5uhoUF6XY+NzS3K5QLXrt9gaHiYxf1TrK9tUszn+cuvf5/ZmWFsy+Xl187y/Im3uPv4AVqNHRqNFs+cOIfrGszM9NPthnS7XX7jS59DVVWkUIhCj6HRUSzLJkkyIwDbtlE1g+8+8jSL++dJ0gTP80iJM/MKTeOJ59/gS188hJSQIqk3dsi5eXRdY2Njk2q1lIFDN4+uKUBMFEaUK0MIIAiCPUpeRKvV2HOcDQBBQqbNkkLQqNdxXYc4Sfirv3uckbEJRofH+cM//NeUiyX+i9/9Hb75zb9ndngY0xCQhEhVokgFUmWP4tgmCAO8bhvDMhCqJBUaUonxfQ9NVRHKnvmIAmmS7sUjZO6qJKCqOoaRWfgbpkEUhXQ77cyMJ4FWq0mn3UVBUi2VEALCOCSKEuIo4bU33uLtdy8xPjSGmyuQJGDoJvXtBvXdJpquommSP/vaNyi7eWb3zVCqlPB8jySKkWpGXVtdXSeXyxMnURa2bRh7DoigkBmn+L6PVCVbW1tcu3oNXZNYlp1NtxC02m1000QB4iR530lRSRWkJtna3qFarZGmUOvvR0qVI4v7OXxwEVIFBJkpi1R59rkXmRib2Ms91VlcXODg/nn+6LHv81u/9R+h1XeYGBzKJrKKBBSiKEDTNDRdJQkTBgYH0U2DJIozOqyqk6/0EafpXmTAniPI3mehkJmcIE5ims0mjmMRBgELC7Noe/lzYeBz69YSpVKeXKlAGASYlkYYQhBAf8llbHyEv337PHcP1LBMi06nx52VFSzL4PzFqzx74jSH9k1jWDrVQg5b1xjo68dxder1FmkiqdSKJGSRDUqq8PSJk5y+cJnA6zA7M8HbTY/9+2aRqkZ9Z4v+weG9jLmfnNz9PBVEHiDovdthZmocoemIuEiYSsKgx8xUCbc/x0i1QhRFSCXLpE0jSJSQaE8TnqYpvu8TJQnLy1tcOH+NsckaUdTBNDIJRRiFhH5mcvbkY48xOzdDEPSII4PA66IbGufPn6XT1SlXKySRz33338/pN0+yuHiQd85fYHB0BNvRuHbtMuVihY7X5eb1ZUaGB+m1d5FSEoVBRrFLUiRAmm08KIqg22pSKvVx9cYVUBJSJHdWN6hVBykUCqytrVKv1ykWihiGydj4BPVGk2ee/SEL+xZIYhgZHaXTu4PX1UljnbdPPcX8zDi6ZaAZNkJk15mSqghdQ1FAUy0UReO5p59mZmYMVZMkacyB8XnqmyW++fx57t7vEEYJmqZx96LDd5+6zmitHxD0DfTz6sk3CMOE3//P/mtuLt1kaHgI2xZsNXaZmJzB0lTq26vE3gq5Qgm31Ec3EqiaQRgppAiiMMayXZxcHhQDXTfxe7t0WrtoaYJu52g36uiqTrmvH6GbKIr80DXzIRKikmleNU37+cEdHwZ32Xo/H0ga3z+S9XJ7a/w84O6j9dPB3ada8VMe9wkr7C3xTwF32bE//7n8Etz9M9QvGty9x7H1/B6NZhPrPVOUn7Pm981x4eUT1FwXUoXmbpurVy5TdG1ur23R15+5K0lVIoSa0XWkIF/IM1CroOkC0zAYGqhRKOYplvM0t3dJ05h8ziL0PHY2NymU+3BdB7/n4Xd88m4es1DED2Jcx6ZVr2OoGkocIw2JZRqQCKy8ix9EaKqk02pRcC2QCoVCnjhMiJMQRYl5/MmXWdw3R5Kk3FlZ4x+efoFDs7PoqkqhkGd0dJjAC/G8Nq+dOgeKZGpyBMMxaO/WUU0N3daI05B2u873vvcSM1Oz9HoRtmnjd0NUVUGJEgxNp1yocODQLO1OGyFTDFXH7wVousbW1hbVvgK6oeN5HufPXaBay2HaGnEYU99uIfaMKBShYjsuXc9n7fYyz79+jtGBQfoHakglxHUcAt+jv69CFPTY3Fjj/KUbSEXjS194gLmZaSzXQRMpKyvrfPXvH+Gxus//8C9/FdMyOXZoHykpjuMQpWA6Kr1ehzCIsc08SdCh5wU0Wx1KhQI5W6frZxqd5555mXfOXaFSKhLFCrfv3GF0rJ9GY5f//Rsv8KUjY/zN3/4Q3VAYGallFCspSEhZXl1l+c4qg7U+nnruNV587QzHjixQyNtcubLNzNw0f/aX3+X3fveLVGolSmWdIIgZGxlmaGSQVqvJw998kvm5Ya7fuMHbb11gYniU4bFhAj/g5Vff5sDiPNeu3mKwv0I+Z3Hj+nU21rY58fJpDh1ZQBWCxm4Lp5DDchxu31jmscdf4a7jh2i0GmhKSq1SolypcHt1AzdfpK/aj5MrkCgplaKDJObEixdobTe4dP4q9x87xEvPvcrC4jxj4yMUCzmkzGiRc+NjrK1vsrS8zsTEMKPjgxhSJ01ieu0eQ339xH5Ks7tLGMSUywWKBYdSKc++hSnKpQJT0yPEEhzN5tRb59mt19k3P83ExAivvXaWibEhFg/Mc+3adfr7KvhRj17XwzJNOm2Pf/HFB9AtA8N0mJ2aYnZqjP/zT/+eQ3ODjI7VePALdzM+PkjoRYxP9XP30QV0JeWlF08y1FfDKhe5efMOnu+j6wq7ux1cN0ccpjzz/GmOHT6AIkM0XVCp5rKcLFXy+Xv2U9+6TeT10FKLtdtrFPIuQRCQz+fYqTeo1Gq0Ox2SpIfXbfEnT6xybLpK6GfU6jSJiOIehimxLQcpZBajYtkIqaILgWFZWXMZRNyzMMwf/MUjfPk3fpOtjU3eeP11vvjQQzz22ikemJ+mWd9Akyle2MPQXKSwaLZbuHmVvGmwunKTrtfFcR2EauJ7TaSq0m33cOwcqmoQxiFpkpKm6R69KqO//3f/yx9yeP88pmnsWfmHBH5Ar+vx3UefwFR1BvoHkUJF0zMXRCETBCqNRpenX3mbVFH5zPFDCE1BSmg0t1hbu8XzL77J/OwkKAqf/+x9FAsFVEN9n0Kp6RqKVDh96gyn3jzHwf37SeIos1lXIgI/RFFUpNBJE4GqS9IEfN9neGQ4m/inWayDIiWmbhGmAUJkkzxVzUxbTrxwkvHJUXK5PFEU0+v52K5OmmaB6+fPXeDG0hLjU9OgCLrtLlPT0xiahaapmVumrkLU4/fvOUD12N38xaM/4u7BfiBFkRq+72EYOpDSajXQVSPLEw0TiOBf/Zt/x2ceegiRJPitFrZh0Ox56LpGFteWkCQJQRBgmBJdVwkDn7W1VfIFF1XXuXN7mROvvsa+uWmiJEJRE3zPo1ousbbW5hvf/BEP3LtAnEacuL3O20+9zERfP6VShe88+Qx3HdpPznG45+hBhIQkDul0Oxw+tMDObhs3b/Hv//YRlm9vcfzYPlIZo6sqO9u73HPXYY4e2ke1XMR2HJ549wZfePCz7O5uU3AdipUqCYJ/KriL04D/+X/8A37j87/GytJlOn4Pu2jQDmNiz8f2BKfe3KCztQIomJbAsiQpXdI9q36SbHpn6CaKFFQHKoxMDyEVcCwXqRoEXg/N0DF0DWnBzOQxkriObsZcubRMKV9DkQmDo4Ncu7LJ5uYOqzfeJF8qMjE5haKbxFKnXOoj9Dxc00FEgo31NYbGZlASAZGPkiZEcYcwiEjThDQKkSjEcUSqRJimoNutY+UNKjUXTXWpN1JyhQqb28towqRWraGqKqqaXRfV8iCTU5M88eR3scwcG5u3ePXpd4nSBNONqdfvMDMyRSDaOFaRJE7RDJ1Or8VTT51gYmoaz99B1VMmZsYQCSgCkjRCKCqGZbIwMs1fPP4mx+YtpBBIoXJoweFPvvUKh8fnME2LVBtg8cA9IHTm52YRxNR3Aiamptjc3CANNtneOE9/IUXa86TuAKkR4QQmkaaTpoJcvojn+dm9SWasJl2L6TS3sJWEVqeDKqBUHgAzR4yG+Ajs+SAMSJKE1dVVCsXC/yfg7qXTJzh4aJFfgrsPHvtLcPf/y/pFg7v3/i2UDFwB72fqfXw23k9f/+VnXmBff4Vevcut69dZ211DIcoaHM1hcGQEoWjEcRZtIBSFOIqzyVYSYpomQhUkCURhQhxGNNoe5b4aXc/DMDUMQ3Ll0hVs08ItuHRjD5Gq/PXDj3BgYQzLcEljjW4YYqgmSaIQRyFCKOxs7fK9Hz7L5NgIUtNZX18n8veAnYzRpMOd1R3GxodISLAdi1+9/zNMDNfwQ59aX5Ug9JEi4Stfe4xf+dxdHD68gKprRGHM2dMXUSKNxx47QRL2qJULTM9M0WzU+eq3HuHYvjke/dFzHFo8SL6SZ3V9HSEVdpu7TE1N8PQzJ5FSMjRcY+36CpZlohgaii5RdZW0G2O5Lrpl0Wl1efjbj3Pg4BRJEgFZ6LrX9dA1E6/XoVSy6XodCuUycQq5Yh6hGaRk7nO1fBE/CXALNq1GnZxpkIRtdN2ir1zmUiR58FCNra1NqtVaFlCupNhOjjQIsXQLN+cSEaOoZmYR77p7lBwjixTwY4rFPNVqkem5CQxDo1x2kVjs7HR58Z2LPHR0lOmZEfYtLqCkCvWdOqGfsHJnlYGBMgKVjtdjZnqUajnHmXcuMzjQz+Gjc2zvbCHVlM2tXS5dXmJkqEqr1aPb67G7tYNtGBw+PItAJ+cUmRgd481z55mYHGFnt86hxXluXr/J0vIqc7OTpCisrG5y6NACM9OjeJ5HEsY0W23W1zfIOwYDAzXuuns/nU4LVdUYHOknShIMXefU62cZ7qty9twVgiDg3cvXGBzsZ7fZZGy0n8nhIn63we3l28wfnCWKMlH35uYml68uMTs7yfrGLi+8cobf+LUHOHfuMoN9ffQPDXLm/GUOHV5gc2ebUrXI1loT3/MJg4B80eXOyiq2kyMMIQxTrl66Rrvdpd5sMTxYQVEiLl6+zO7GDtMLkyi6RNdNiAX19e3M2VLXMBwd1RLEaYImI7xeg3anxStvXKPRbDAxNstXvvY94rDHxfMr9PXVSBWJ6TqMTAyi2zokAadPnWJsYAw7l+fcO1cYGupHyIT52SGESJGqQhQprCzv4joFNE1jp9FjYHgk068p2c8lFAUhdLxuQKGQhSf32jsU8kXO3azzn37pfnTdJE1Ten4XVZcYmkMcqwggjHooSoIQBlLRUNSUO0s3SOMOhmGhajYXb65x8Ngx1je28MKY8ZFx3jr7Dg9OTWQREIpABime7xPFIarM7lPNrk/OzSMUBVWBKOySc61MD2u6oChEsY9Us0wwYM8dUyFNND577BCGrnJndYXaQA2J5Ctf/1t0dB76/IMkSpTlnjkmqqaRJCmW7qKpOpZpcmBuirsOHyAVEaqhEgGuVaSYq/HW2TPkrRzPv3ySw0cPYjiZZkdTVKQi6XU7SF3Q31fhyOFF0hTOnDlLX63G00+/yNzsAooiM7AgYkh9oijLdfhEAAAgAElEQVTFshyEKpAy0975YRupCYSq0thaxlA1SCDdE/FPjo+QxDEkCUkc0mruIoVJnMRAwtjEGKMjo0ReQHu3sReGnqKZGl4cki0Wsb2zxY7fQxuZ4ORrp7h/fBRVVVFiiVBB6pIk1bDNHIpM39eYJwTsnx8n7zgoioJp2qQIiBLSXhuZK5AIgU6MUE0UFIQiUXWdQqGEkNl7lysUGOobYGdrl+HBEVburDM4OESnG5DPOywsjGeaqETj0u3bfPnoHFZOYjkmIlIYHR1B1SVSDYiTkHa7Qz6fR9N0vv340+QMgy/9yn3cfXwfzUYDzwszJ2nbRDMkQehTLJZACl5a2WLxwDRBZ5Mk8qgOjBCnkkSJSUmQyJ/6Of1JZQiDEy++zML0IgiVO7duMjF9gPXrK6zduUU7bZPEsNpc58j8VAaopYahGZnk0Q9RdJe2H6IRZSA4jRFJSBrvPaSKpiokUUgchKSJQGrp3kTIwHEMpBpg6DaGZTM46pJzBAgNTavw5ptvoWqS6ZEJSLpoUuett86QK2bSiijxyJVKFCr9dP2E7e06KqApKkocZWZfqkrkewiZTdJ0RaD4AVevnmdu3yyba0s063Xcvj4Mw6C5u8uNmzcoV/qIkzC7JqTLjesXGR0aIZFd9s/Ns7RyldVVwZFjQ6iJgkgFQsbEUQiJhu0WsWwDXboEvQjLlKRRkkWHIEEoJGlMr9fj6Owif/P0OQ7NquiGRjcIuPtgma8+8S5Dtf2Mzxyk2erQ2N1lp14nVyhRHCiS+gnEbTRlA5mEmMUJAkwcp4JIdcK0TdDYwjRt4jiFJKaxdQdFKBiGhhAOQs2hGA6qatGLwC1VUFKBTNNPxi0CLNtCVdWP+abyMY8P1oca1L1vK5/CEfLHNXdogkI+h0KKUBQSMjbZB7+SVPmASUpm86Kwx67Yy8b7cPbdx53vz6Jg/tPBXZr+dHnUJ/1O3iMkfNhf48cLCaGiKOL9IPpPcSa/dMv8RdQ/B7gDPuQm9GnX+Gh9+8nn+exIFV3V8Ls+hlQ5evgg5XKVodExkniPQ0yaaey6HmEQEkcxu/U6hm7Q7fSo15tYto1haFQHa1y/scTY2DBJHKIgGBsbJUUhBnTbYenaEu+8e4PP3LXAlSs36TS7XL1+E1vXUNKUdrONKgXFUpGF2Um2Nnd459xl9i2MY9sOaZz9FS0vbzDQV8EwBaomSYkxHZP2bpskTbNML01FlYLRoT7GxofxAw9Fgd36Lg//w4tsbOzQX60idcng0CCFUokg9Lnn4D7yhTxKEtNX62Plzgq3bq/i2DbTs6MEvs/czCTpHqg8d/YyT5w4Sa1SopDPIYTK7uYO5VqJJEloNjv8yv334hRMwijGdV2iMEbVVExDZd++WUzLpFDIc/vWKidPv8XczBRKqhCEIV/91iNMTwwwMDRKHCYsXb+KpqUUKmUsy8EyTWb3V6hVKliWy/ceeZLjxw+Dkl0r3U4ro7H6HrqpZyL6KEFKQRRF1HfrhGGH3Z1dHCeHooCqSV568SXm5sZpNbtcu3qdFU/hCwf6sC2Ddy5cxnYsXjt1lv0LM4yMDOH1ejx/4gwzM2Pk8wVGRoYYHx3A83vkixl9dGJ8mFq1AGmM3+kwMz3N8u01rt5YZni4jzhNUBBcu3aL5dU1Dh+YxXQs8o7D7m6T1bVN+msVNrd3aDQaXLl+m/m5CaSUWI6N7/skcULH8ylXi9y6scLO9i66oZEv5Nje3aVSrSClZG5ukm6vBwrkCi7VahHD0nEcm3wxh2Vp9NWK9A0UkYagmMvR83pYhg1JyrnzVyjkc5y7eAMhEvbNTeK4Nst31jj5xjkEMY5jUSwUaLV6zM1NZ/TmTofl5TV6rQZCEQRhSLFcoFDOMz4+xG59h1q1xMzUGMPDo/hJitR1LMvBtB2+850nmN83SX9/jctXr9PXn+m/tjY2kEJQrfWhq4LDixOMjIxx6do1Pv+5Y7z0yjuMTYxQqlSIkgg/9EmFghTQX6lSLJURqsIPn3iRqYkBksTHsgx8r0cY+JQKBeIoxdB1ur0Of/XwD7nr6D7SNH3fwMf3Ah77wQuUyyVu3VpjbW2L/r4+LDvPXz67zv0Lo6iaiaqJjJIXx0hVI00gDFtYjoHnd0lR9gwpFPKui2kZ3Lq1hm07HJ4a4O+eOMnv/M6XmZycIGdoOJaGur6OlAlJGEKSgBLsGUIY9LopqZLS6bTf19RJVSMIQkBBNyzSNCGIItJ0L1dOiMyoRxEkcZRNyjSVII6o1xvousb81ASDA0OkaZw58poWP3ryGSrFIrqu4/dCojDC9wJ8P+TvvvcYx48dQGgapAppknDy5Cmu3VihVCxw733HMMyMTZDRJAWtegvd0FENFa/TxdBNpFTJOQ4rK6v0PA/H3nP6U0Wmd+w1sdw9/ZJI2fNCz6ZfCEgVTDObnJumRRiGqAokpPR6HQxDY7e+TbVaBtVEM3RULXuf4gR0XeWP/vwvePWNN/ns3XcjVQ2Egu/5JFFCIV/i4vIqY0cPsnzuAkdHR0iSDIgpAoIoQgodqWS/6ySJiOM2oddBE4JU1fdosTKz8FcUoihr7dQ4Iu51SXRnj8ALvU43A+dhiNRUkjhrwqVQ2dzYoVgoEfjZ5qVp2vheSD7ncOnSdf77h79OLUzZNzONJiRDI2WSJMzyCXsNbNfCLeRQdY2u12VhcppqrUwSx5hWBnwt26bb7aHpKlKoGIaBkBnl9cadNeaOHsHvdtF1nVJt4H39YKaO/MeBO6lqPPfCSxxfOE6lWmV56SYDw2OYpo2QktNvvsrg0CzDfX30lVJ0s4QfqOhmArEgjAVvvXuTazdvMjk4SkKWPSdVFc/3UVUNP4iyjYG9PkRKlTSJIE2y/LYgwNR1SNLs3mjbFHJ56o02t2+v4wUhaxtLRH5Eqnqcefs0tVo/Xs9jfn4R19Fo1FvUd9q4dokb15apDfTT6fXQVUEah5lbrcyyAxUUSBLCMCCXKxChEscxA0MTVGp91Hd36XU6TE/P4gcBt24t4fmZhtixTcrlEucuvoWpO5y7fIbawBTlkkLO0EjiFKGm+JFHiiRX0lASlZefewmh6uQqOmmY9VWabpCkmbRDCoEQCgfG5/jak+9wz8EcQRrRaA7yZ3/+CAfmv8j09CTlUpkEwcz8PnL5AufPvUnJUAg7G/TaGxiWg2kPoGo5NNVEKgmtxia6ptDptCGBKPTJ53Js7qyhSolpuJlWNkxpNNYZGh4DxdwDDJ8M7pIkyzr8+PpZQOIj4I4MfPw84G5s3+AHlsg2lz7NeSi815v+uDdOP+H4n7Xefwhw94mv+AnLvw9M0x8DxA8enz336UMd4Jc5d7+Qeg/cfXDv4KORBp+2Pk40+mkr0+Z9+Ln3JnzvPd9pd5iRMaQKnVYHy7CRhotbKGHmbHa3d7EMgyhJsnuEoqCrGpqmoao6KysblEolcrkc3/7ej7jvvqNohkqu4BCFEb2Ox9rKJiiCRBE4Tg6vG1CtFjl2cJ5ma5d8Ps+3v/88xw7PkHMd/J7PX//DDzm4fxrLMgn8gKWlFV48dZ7DB0YxLRvHyoMCSQTf+NZzFG2bUrFEt+Ozs9Nle2eHJ198lSOLc3SabQzbxjA1VHVPu5OzMTSNB+4/wj2fOUC+ZLBvcRKhQRL4rK+uUizk8TwPw9T5P/7tw9x75ACT46OUS3lUIzMmeM+VMwx9BgeHqTeaTI+P4OZykECpUtxzd0tp1FvkS0WkVPY2uRR63S6+FxBHXVZWVjl/4Sq3b60wNjTCUH8NyzCQqmRzfYOHHvgMEQGWWUAoAk3JdhExXLrtNrZjohVNpGrx7oWr3F7e5NChfYShz+b6HYqVMs1mG8vNZVqn0CeOQZUGoe/j5iwULcK0HMJeiNfz2N7YZnS0jyTxsS2X9fUN/KjNzIBNu91iYmIUt5BnemYSQxNcefcWcRxz/713EQUxO7t1bMdCEQrra+tsb22zsbFJGAYUCzmEAo2dzGwmilPuvf8uvNAnCvws1FoV7JufZKe+wxunzzMzPcHW5g5bW3VGRwZ4/fQF+msl7vvMEZ557pX/l703C5LsvO47f9939y33zNr36q7eNzQWEiBBiloo05btsGTZnogZh2P0MDEPMxETfpm3eZrV47DH43FIHFGkJFIkRQkkAYIEiH1fuhuN7kbva3V17VW5593vPNzqJgCCJEhRcsQET0V1R+W9eTPr1s3M75z/Ob8/u3ZNEyYxS0srzMxMUa1XOHf+MvsX9vLu2Yss7J7hyR88x7Gjhzh18gzFUgHN0JCKQr1ewXUcNENja2sbgcRySjz+xKvcWW1RazQoFstcv3aJZ194m727d7G4uMynHj7G8tomu3eNMzRUwbRN7txZYW52il1z4ziOxXCjwfZ2i1azQ7VaRNc1nn/xdfbumWV8qML2dodiuUgQBJSqpfz6yFLazSaSjDSKWLx1k8QfkCURN65c4xOfuI9CyWF5dYXZ+RkUaRAnCSKLqVQrqKrK+Phorn5IldnZYYoll2MH91KvFCAO2Fi9TbmkEwc9dNXi5rXb3Lx1g9GxYe47vJfBoEeaBAhSKpUy7VYX27a5deMOpVIxb4ULAqYnx1EUDd0w0E2Tc2fPs7nZg0zS6QTUqlVqwzZhGPDaxW0eWqih6/lsW6fTQddVFCWf+dB0Bz9IIFWRaISDkDBOsHSddnObmzdXOXH6HAu75ylbGd7INF7RRcsiHNvg/3r8BxytFMmSCFXRCIJtoqhHGEboWhnLMzE0jSgI8FyPaCfp0pSMOOznwBXLQZUKfn+Apml5whfkFMEkirBdh2KpRKFYQJHkpL6rN5ACbMciTmLmZqfRNR3TMgkHMV/62jcZrtd48+QptttNjh89gm6apOTzZI1qhX379zO/awavkANtTN0kE5CEKf/zv/l/GG1UsT0b13EQO/1LURSzurLOgQN7cD0rb6NXJAM/wLG9He8wDSE0MjLCKEEKFQWIw4BM01FVAzJQSen3WiiGjqqruQIoBGnGDrE0n/uRikqSxkDGQ8ePcnj/fkzbxh8EIDJcx+XCuUvUq3VevH6LsfkJjNU1Skae+CJA03PzaolCa2MV3TJJE58sadLe2sYwbVJ0dFXkrwEyhJH7y6Vpj+baIprw0b0KaZTQ7XZwPY92q5XPMSuSIIyQQsEwHb74J19nbqaBV7DRdIkf9LBdnTCKeenVt9j2PP7gkWPcurXOt77/HAvzDUxTwx8EFEpVFKGTJipJLJHCwLI0BoGPV3AREhYXb1OuVnAcByEl3U4Hy7Hw/R6qphHFEePH7se1LdxSFcOwSe8mdtmPVIf348w/TmQpPP/8SxxaOEKWZgRhzMbqBmcvnObBT3yK9fU+l65cYLRkMTyscO7CIi8//yIL+2cgjckUhR+89iooGZP1CpphkDe9JpBKbNtFyh0it8zNxv1+b4eeDUkSowqJppqkJDlUgtxeI0oCbt5a5/CRh2m3lpmfGGZpaYBtlJib3c36+h06vW1uXllkbHycdq9NKlKSLKYXGkzN7afV6ZBEUa7cAlGYE3xFlkIaY+gq/W4Tw9BYWd3GUHWWbt9i18ICb739Frt2LZAl0G53mJyewrEMTrz1KkcO7Wf18mUeefg4g84Wm7cu4BaG2N5uYbo2Ao3Wto+WlYjTPtMLsxi2hm6ZyBQUVSGKkzyZ13SSLCf6plnG3ok5/t/vnWbPfJ0zlz22exmlPSM09CFUVWd5fYuC52CZKnFvGeHfIe5vkEkbuzxKe5DR7XYZ+B1UGRAGTaIowtA1pMxQpURRdGyjyPbGOraj0es16QUdgqBLuVwHaeSJkkg/kAB9OO6i9j8qqfpZ1+AHusTu7vtzeDFnGVTGvHvH+knP46OOp8i8UPVBoMpHqYvvP8bP2v7LCZF3WwPZzpr73o8/Wn+LDz7ivWT1ri+8+HHF9FfJ3X/m+CjlLsvyxOrvMj6qLfPeC2jntl2750mvXiJNEi5evkK5UqDolThx6jRD43VMxyFKcr8SReZENd/38woakqefe41LV25w6OAejt93gP/xf/r3HDs4R6fTxrEcgnbI8toGQ0N1VFXwx3/6DabLRXphRK/Xp1ovUKnUOXpwH8Wqgx8GOJ5DFITs2jdLQophO0xNT3Lh4jWOHpyn0xzwZ1//Pvv3TuF6Od69XHHZ3NzEtW02VzaY2TXLw/cfobm1RavdxbBsTMfOKaO6QZqkmDtzcTeuX2dqehRBxubGJprIqNXKmJaF6dhYjsXC9Cgjo0MYppHPbQR5rz2Zgj/w0XQDoQn27p1HkwJVE6QkDAagKwr+YECtUaITdOhudzAMk1arTalUym0IopA4Tti7Zze7d81x9r3z3L69yvjYMFmaUK6U8Ps97txaR7cUWq1t6kPDmFaJMAxQNMH//uwJVm5dYc/COI8/9Qz7FuYw9RzPLImJUoFXqAIqIlNQdCBT6LUH6LrCoN/GdMqQaeiqQRiErK0s43glvv3ks+zfc5AkkRCuMjY6ymtvnuHowT15BVPTiPyEO0sbLN5exjAVzr73HoWiQ5okvPjSW7iOy3CjTqlUYmlphVOnL+DaFqZjUqs3+KM/eZyCqVErF/FjnxMn32NuZjJX5q7e4HO/9gh/+hffZdfsBFev3+bhh+7j1u07fPqRB7h67TozM+MUCx6D/gDbNLA0g6vXbqBrGlHoMzYyRBLHHNi7l3PvvsdIo8bK8hr1ao0ojGhtbuH3+9y+tcTS7VUG/QBVyzh65ABDjRpZIllf3cS0Tfbs2oPteMzMTrDVWmd4dIzpmXF0UyNJEhRVsHxnhcAfcOXaItNTE+iqTrvT5MVX36Lg6TzwwEF0QyGVJq5X5rHvPscDDxxie71Fp9VjbHwMKQWLSyvcWLyDEAoTE2NYpk2aZViOi2mp1BsVOu0utumhaCqGrtJuNZGKQn8QEfkBT/3wdQ4enkWK5J59iFTyiq6UGrphsrm2TaM2RL3usL3VRDNLSEVFSMkPn3+LqekZLMfm6Wdf5+qNNfyBz9DwEJE/YPHWKv/2P/4lj37qPvp+n5JbYG56kj/6syf457//G5TKNopm8sZ7t/mHD+1nfW0Tx3JIsxRFERimQa/bv1euTJJkB24Soxs5KTdJAuI4wHULzM/NIBWFoXqRZ09dYmSkwVf//GvUR8YJ4oRGEmBbDnEckoYRlUKZTqeHWbQwTI80iYnDHUBEFCMQWFrGdnMTx3PJVBNS0DSdNE0QQqBqeRvW1UvX+NZ3v8fhQwfyBV4UICXU60NYlpETLXWNJE0RwPraOuVSmSMH9qLpCg/ef5hPPnSMNBFoZl75FwIs00C389k50hRd0UkjSSYy/F5IxbE5cGg/upVbTJClBJGPbReo1mpYtoFUwQ8GpAkoQoHER1FTRBYhUsg0gaJIyDKSsJ8rUyhoqsYLz79MY7iGaihI1UAgiJMEw7Dx+xEnT77F2PAIhqYjsxQhEjKhkQGmZSCkQNUkumaSJEluXh0OODY5RO3I/fz3/+v/yT8+fgxVU+h0m2QyQWQCVUham0tsbi3T7bQwMCnURlDdIq5h8MoLz2Eq4Lg2YZahRD7CKWAWSmytrqIqEtWwUVWFOIoxLQshQKoqA99H0yRSybjvvn0MugGtVhvdMOh2u0RhiFNwEElCx3P5wr5JbFdn765JFCzSVKKpKkkQoEiFKIjQVJ13T5/DMrX8c86xcpsfQ0PVNAI/QIocaKOpGqo0kIpK2daw9+7l7TdfYnb+EFJTyUiRmUTJBOnO8uDjJnU/SgAFz7/4Mod2HUFIieMV8Dc6FEo27U6PG9eWCMIV7j+2B9uwKTXK7D2yDxmEKJqClsUcO3iA2YlxhiouimqSJDGappJEad56KFKkUEAIkjRBqipS5qRTIVWkIlF1C6EpSEWh20lwXAev6LK64XPmzAUeuO8oBSNhcW2Ni5dOs7a6xPz8HP6gxUsvn8C0XRYWFojDEJFmzMwsEMYZsbDwY4Fm1eh1NzAtF93MbUuEFChSQ1MhjX2qtWGuXrrGxNgEm+0WlWqDwA9QNYPR0VFc1+LEidc5uO8wtze2WV9aY2Z2nI2NOzxw8AGkkUPckClJCitL25y/8B718QqmqaCrGlmUoRkqSZarpp1uF003UbRcPdR2/Br3Tczzh399kjs3b5PIPu31ZfTRBpZaZWRyAtfIWF+8SNZZRNigumXKI0fJlBKF+iiFYpliscjNG9eplGt0+ymqqjAY9FF1k0w1kYokDLp0m+uoikARaj73ahp0Bl2yLO86QPxsYeGjvOp+8YTn41l/ZWlGZdz70D0/pj35R6hcPycw/mc/xi8a70vQPnwa7p0X8RMeUdztcP1w6vfzPMNfmZj/rcTd5O6ucna3mpNl6S9EtfxF4+5L86cldwDds6exDI16rczm5iambuHYBqZnghRkmUBkGVEcQ5q3Y3U6bVzPY2F+htdPnGFypE7gBzx6/DCmnQ/JKyiYuk2r3aHvDyh6NqPVEr1Wi8rIEEII1tZXKLgeoLDd2sRx3dxrqR/QGK+jqhqqojLwQw4d2ItlqTnBKpUYVk558ooeQkkpeBaGrlAsutiFElkcsL6+QWO4gWZapGnuj7S2uo6m5TMmmjQYHh5ie3MLRSoYhoXIopwgJyW9bp8sA8syeOa5Vxlp1IjTkDBIUaRCEmf8+y/9BdMjDd69eIG52Un8Xp8XXnk9H6T3KmRJDoXp+10SkVEultANnSiMiaMIXc/bknRdp9cfkGUppqkzPzfLY9/7IWtr65QKDpnI6DZ9Ribq9Ad9Ll64Rb1aw3ZNFFXwejPgD373N1DVmIceOEbBK3Dt2k2WlleZnRnF8co89t2n2bd3gSxJCOI+2xtdDCO31HBcHT/M0FSDt14/wZ4983iuRbsXsHfPPIpm88qrpxiabDA/PcHC3GRuoeD7LC2t0N7uoCoGr799hmZ7m8//5sO0Wx1GR0cYHxvBdTz8wYAojKhVKwzVq0xNTnL1xg2GGg163S7T46OcO3eZUtXh6OEDLC2tMDU1ztzcBDduLXHs8D40RSEMAjRVo1CwOXHqHHMz47n9BKCqKrqio2sajmtz5eot9u+bp9PtUygU6HT6LC+tMDE+yvr6Jo5r89jjz3BgYZbbi3fYv2+BzY1t9u6eQ2h+TqSNE65dvcHwcJVrNxepVOp841tPo+uCsYk6p06dx7JMrl69zvTUBKZtMj4yDEC9WuXOnVUq5TKj4w1mZ0YQEvxBD9PUWd3s4nkFFnbPQhZz4s33uHjpJgu7p0Hk3ofDI2OMjI6w1eqiGhaW53Hm3fOEUR/Ps2i1umiKydPPvkqpYFIuFzh/4Qp/+o2n+Nyn72fPwjxh3EdRBSKTpIqCbjuEcYrtFcmEhmsZJGFKFPc48c553j51nUq5SKVaYm19k4nxCaRUmJ+fZbjRYHp6ggyollziJOPWrVUe/uRhDEtHFZLFpRV+/dH7aXdaqBpYdomvvrhKVYR87/sv88CxwzgFmzAKkVKQpqDrBqqesbR4C8vWiaI+WRqi6DamoeH329hukVKljqZpBL7PN546wWc/+zCTY5OMT08xNj7G1595kU/vnkPVIPVDFCRRmiBNSa8fo5BhGTogkIoCSAb9Nrqh0+r00dwSmtRz+w9F2ZnrkGSpYLgxxNToGMrOQrbf6yClQFMN/MGAq1evUix4O/cDy7Lo9Xr4OypPmuU2DYaRv6ZzWqmk3+mhWjpJEnLirVOcO3uRuZk5VFMljRLeeOsU+/YtYNgGcRDQ63VxXYfHHnuSyYkJdF0yGPSwnNygXEqVQW+Nbq/FwO/iFQokUuRUzEzgD3oMeh003UTTNIaHGiDzOeAkydcnqqKjKvl7sCISKqUKYRASRgGaCqpu59Y4SXKvQp3G+eeM7/fRdcmltWXKu/dT21xjpFzGMLTcXJ4U3w/oNNvEUZdKo0S1XMHSXMJEEqQJapoS+100RVIol8k0HSsTDNBBahR0A12qCN0ARN5mK5W8AGkYaFquPipKXk1XUoMnn3qOoWqNsfFxbNtl4PepVqo8efYsu5QY3VYxDZOiW+OvnniGQwd2E8c9BAm9fp+i52KbOuVqmULRJcsytre20XWNNBM4jk0c5z6JaZrcO5dZlvC/ff0JpibK7Np1BJRcj7xrLJ2JH4dT/LS4a1+Qq+Nd6u5QfruQdFY2uXb7Eq5XRlNtymUd0ia24tIKNvFcCz0GaRhoaUocR0iRA2NSoeZqbRrn6pDpkBETx7ncEEUhcZqg63krX+6hKHObAhJ6/QFnTr5DQoJbtDlz7iaNoWkcU3DpzEvse+B+TFPn6vX3aLc7CCQr600OH7mPmzduYRsuhrB55bXnqDeGafcGjI1P4nllDJmPVMThAMPMfWc1VSdL8wJNnCkkSd49sLa1yejYFJZuIqWKaZlst7cZqdXZ2tri5KWLDLYGRLTZaq5jqRZ+0mZzc5mV1RtUqnVWlzfYf+wA5YqHrlhkEag56BWBIAgiHLeAVFSi0N+Z0c0Ju5qmUhBFnn7nHJ/71P38t3/wrznwiU/wxb/4Y/ZN7UdN+qgypr95C63k4VaGkeoIuu6QqVru6Qi4pkWv08Mt5G3CpmmQIjEsj3Z7A9vSIE6I4wy/n+EVPJIsYXVzjVKxlh9Hfozurw8LReLujR8/xN2M5f1K3k+JP33yK3zmfR538PGTuw9M2P1YW+YvEr9M8eVHc4A/9ig/I7n7aNX+503ufjVz97cS99oyP9RSqSg/Suzen/j9vC2XP68h+kcaHr7vtuefeoqZWpk4StAUFc0wMCyDfjdX6BRFQVVB3fFw8fsDrl1fxLBs/vLb3+df/rO/j9/psrx4m812k1qlwZf+/AnmpydwSzYyS7AMnW8/9QKfeuQhKiPD6JpBe7tD2SsTxH1SEZD2Y8ySi11wScMIIVMc287paVmKYcL2xgmjtxsAACAASURBVAbbzW327p1HoPLGm++SpG2qlSLnL1yiVqsQhCGGZSP1jFK1wKAf8NhfP8uxw3t55pmXKZdcbMtEKII0zUizmCAOKBRLRGFMKjWyTEE1zLwt0zDQVAvHdKg1GqiKQpYK/virf03Vc/j8Zx+hXC4xOjzEoDeg22rzzGun2DM9iyJTbNtAUQS6qhD1BvhBSBInWJZNGOaGu9eu38bQbU6+e56V1VX27Jtie6tFrVzm0MF92J4FCpQqHoZu0mn2iMOYiflJ1ldXUITCpx9doN3cQtN10hQs26HdypHsI1MzSEWysbqMa2bEYRe3UMTzygghWVlepVB0kaqKSCW1uoEfdjHsCr7fZHxigixNMA1Bv7nMC8+9gedYeWKQQdErUGlUEQI2N1c4fng35XKD1948C2lGGEXESYQkQWSAUHALLpnMWLm5BsDc3ASlRpH5fXN4nkur2ealV08xNzOFH+Xn0Q9C1te3qJRK3L69wuT4CMPDdb7/7OvsP7xAImBjNTdqj5OEJ7/3PMePHiCMEq5cWeT6rTt8+4lX+MLf+wRCwszcDMt31lCkwu07SxRKHtVGFWmo2AWXjTvLFIoVEHkrWqVSplEuoYiU4SGPasWj1x2wvLTF3OxYDpMRgouXrnPp0nVGxxpkWcyZs1fYNTdFa7CN47oYhsn2dhvH9li6vUSn3aZSKvCHX/wrHnxoP0IkDDdqWJ5DlGVImaDIHBd/6dxFXFNSK1dYvr1GpVQlGAwIwx7To3WKlSJxKqiWa9Q9B8sVIFN01SBLMhQlwdQtwkEPTYkxNJVus4llG2y1NvGKNeqVUSbG6yzeWmR6dgSRJWzcWadYdjEMjSQNUJWMKPJRFJ1i2ePQgWmiaICqSlKhYGk2T/3wNT7x0FGEJpCixyOH5tANA8eyqNaGyLQUKUX+PqObRBlkSUqpXCHo5+8/juUShD6SBN2w6Q9CDEOQkeQQp7DD+O59/Nkf/TGOabG8uMg7711mWjVxnRKB6FOo1VBSi357A01IUiUhSkwKpREyRaBkKZZdxLAcSMFWUzTTQ6qC3qCHiDP83oCB30E3dWzPzg2dk5gzJ89TH66BhDt3tvirJ57AM83cAmJrC03VkUqCquiEg5AkzgfkM0I0Q8UPA3TDIvRjVJkS9iP+w5e+ya9/9mFKNY84DjBsnU0GzI4PkyQRUlVRNZV+t4+t23mrvKFw+eINavUGYRqAkqDrJWy3gmEVyBCosSDodeh2NikVqgRhgGZ6OfkvTcmSiCgKIU4wDZ0kjlE1lSCNKRgR280mpWoF1dCJspgszVXHgd9H0xWEFEgUpMiQCHTb5dtnL3P8kQdQl5aoeAUSkaumMk3wN5dJgjbFSg1N98jQkLqOahmoioZAxasVKNTqpIlOHHXJFAuVFDXLQNHJNJ3Ez02042RAs7mBa+f+rELkbZ8IEFIQxSkijZmZmqDVbqHqKq5TIPAHfOWFF/i18UkuXbnB5OgYl67c5Lm3TnNwboLX3znL5Ng4g0FAGEW4BYcoAVUz2NjYwnYcbNfF7wQ0O20sz6LT7VDyCkhVoKoSBclrK02mZ3YzPT+dq4si9yoUisinBoUgE/zom50Fq8jL+cpdP7oPfJZneJ5H0t5pShMC3bFYXl7h6MEjRFGfl155g2vXt6gONfDsFNswENIhSnoI3SSTKlJV8OMYhJbP08UxcRKDSEmFRFMNkjRDM4yc8ZklkOUeeGEYkrEDXVN13GINFIltSRolF1PpMVxzmZqdoLl9m+tnr7Fv/x5Wltq0+ovsm59kdeUaL73wfe4sX8ctl9i1sI9B6OdzcqZJv9dla7uFrltkcZ9Br4PpuIRRbgWRIen2+rQCycjoGNVKlWazSaVSZvnWbTzP4dKVc7iex+3bi8yNjHFt8Rxb2y2OHrqP5vYKlfI0hlWm7hZQpcFbFy9wcHaBbvMOTd/k1LsXGB+p5gUSVcW0DOIoB8dpqk4cxahqPrcXhhFoNXpNybdeep1/9a/+Ga3WChOjdZ5/6gfsGi/S2riRQ/HMITK1hGHaZImP1EReTMoEQiaEYQtFMyhXJ+gOBvn59kMM0yKNwfdD4gRsz0PTLUzLo1CoIxQdqeSglL+ZEveBFeVP3JJl6QfWmD8r7mwv8sAD933o6D/+9VFJm/yIde1H7aeIHLzy/u+fDl75m8fdQhe8v83yRwrjPfbMx34e994Jdvb+2V+/omX+LcRHtWUqivIBuexnwVB+2p85J9HJHbLY3zxeOHORw0UTZcfPru8H6LqGkALbsVEVhSROyTJBt92jWCzw/ItvkyYxjz5yP9tbTYQUTE5PMjo+CmTcd3iBMBzQabf4ztOvMj87SaPiUa8UiYI+G5stur0ulZLHIAxQVJXWZh/LsUjjGJEk6IaJQBIGPq+/cZLZ6Slcr0qhWM5nAIXK8NAww/VRTpw8z5FDh9AMnTD0SXa8ANMd76bxkRG6vTblcoGh4QaqprG+scWt28tUalV6PR9NMzEsC01Cr9NDouAPQr7zvec5sH8X3W6XYsljY3MNTdc5dnhv/jxkimmZmIYDaUax5HJozyxOwUYho9/toCiS5TvLkGUUijUMw+K551/nG088T80rMDxURTc05ucnaDQq9Pt94jihViuRZQJV1TFNl8GgT7vdo1QukgF/+JVv8ImjB/i3p6/z4HyDp55+HsuyaDRqxElEpVoizVKcgoeqqoyOj6CpGgliB2uuoWqSYtGj095G1SVKJtnaXKZQcIgjEDLDtm1WVzZRFY3bi0uMj1U4duwQWZaxudWi7/t4nkO/69OoF3nhlRNMjFfZNT9GtV7g1DtnGR8dpVbzOPnOWer1Kjdu3UJRMgqeh1uw2dzaxrIdsjRjdWkFYsiiBM+1uXNnhdGRYRZvLrGwaw7XsWluNzn93mWOHNnL/n27GAwCDN3gzvIdFEUhTRLCIKJSKuFVPIZHa1y4dIV/+V/+Y+7cXEIgePb5N1jZ2GD3ril2zU9RKLhIKTl79hJjoyNsb62zsdkkCCNq9TJZFqHbBpZjUS6VCfyQSxdv8OhnPomqKpy/cInh0WEq5QrjYyOsr21Qrda4fvUW1UqRYrXK9eu32dxuE0UJtaEhSvUyvX6fOI4peSZDtSHeevMc48N1VpaXqZQKrN5ahgziKKTn9yjXyiwtr+bY8kZ+7ZSqRUzX5uaNW0SBT+wPqFddUqHhuAYDv4cfpDz5vTPsXhil0+6iqDovvvx2bjBcKmAYJghJs9WjUi7T7feo1qs4js1QvZarXqqKadi02x3ePXuJualh2s0mX/7z73Dx4k327ZpFaKAqgj27p/lPf/QtDh3cw3ZrE6/YQCDRNJUg9Cl6NpHv025uIchwLIM0zVBVBUVC0B/Q7fbQTJMrl69jmhamadLe2sI2TUhjhosWX/vL7/GFf/J7SFVlYnY3TqHEE6fP8cjsBJZh0O108vkVS4dMARIcr0aEhlOrEfsRQeCzub5GqegipEDTipDJvOVKSsh2FnSmRRAEO2/UgrHREYIgv/YKpRKzI2N5caLVZnRsIjcHD0Nee+0E3/reM9iaSqNeRyopqqqjqQad7T5/9KWvMz8zjOMV+MTxw9QbVRRNkKUZqqbz1bMXWVM09pdKBGHuKaYIhe//4AWOHjmMoinUGw2EEEhFo98L0DUFpMy7IYIAoaqohophOwhpoWgGV65cypVGTUXXNXTTJO61cl9STSWMExRdRUgHlBjdyHbmnoq5p2e/j6rmpu1kGQoBwaCDaRqEseAHl2/yiU/eh7O0hEJM7PfZbq2QJAFJLPFKdVSzhqIZ+eyfFCAyRJaQxXmrG6mCUFQ63S1M091RllKSJCZNM/76208wNzuJYeooioa2o9ZEYZjDY9KMLE7IZEKtXuXpZ14iiyUnTpzl9Tdf4dDe3aRpzJGxGqND4wgp2Wgv89uffQDXcjh4YIEsTfEK3r3PyTTpkWUhrmPmcA8/4NrNO3zl8af47MMP4noFFKGxvrGBZeaFwpfvbPD3fvs3KJbKxHFy73P8g6S/960DPqS4/KT1guM6vPD48wyPjOb3iXy2N9coFgtYjseR+z9Jkm1y+rXzTI/OUCp5+MkKItNI0wDd1EgTWF1uc/VGF9srYBgppu5gqBZRGqJqKkJA4AcgVZJMkJCAkkGcYdkOkCHTBFNTKBdMRJJgWinDIwXisEcwCFGlYP/+GaoljeGKztzoKL2NDTq9CMWs097ss2tsitpIlZXFNmYpJQlDyt44dqWAqhnEUR9DFSRhiNA0EJI81zeoNUbZ3Fqj1elSqdTw/T7Fkku316VWm8BxXHRD4aknv8o/+d3/grGxcc68d4abS8ukUmFta42RmoNnK8zMTdL3Q0rFMmfOrnDx8i0WDixgGTl5FyF3CjWCIAqJU5sgFMRC4scJrWbMr3/+d/mnX/h9/s1//HcsHJiht3WTPbXLtFfAci0CtURj9ACW1aDd3Kbf3cAybRRpIIQk9Pv0mmsI1UBVbbxSEc3QCfyYQa+PlJLh8TkKtRE0p4Jm6DlRVCr5QKYAeTfp+gXUuI+4Kn/Kth9X035SfOWJL/M//Ov/7mNZH3x0cvfL3e+XGe//1T8OM+OngRM/dOSdf3/2SftVcve3EB8FVCH7aLH5w/t93BrCLyOxS3c8nO47fpRTzz3DcKmAVCT9/iBvFVQUNEUlimK6vR5xlFfm3nrjNNNTY4RRSLVS4g+/+hifefh+0iwjyfKKRbO5jWPbbG81yZKMuelxSkWXdrvN2uo6oxNjVGtl4jjGDwKkouC6BaQUREHIysoqlXI1X9ioKmMjQ3RaXfzQR9clqp63jUhFoEqDP/nmk+ydm8C2zXxhIAWarmMYFqEfIhCUayXSJEVIQZalVKpVhBCUymVM00RRFDY3ttAUmS98pcQyTNIkpt6okqXg+z5eIZ/dS+OYUrmIoigM+n00zcA0DRZv3qBQ8hCKRDMdLK+AomnYrovjFkl3SJ9vnDzH3PgoAM++9jYH9syxubWJaeosLi5jmga2a4OQO1VoieWYXLhwiUqlTKFY4NiBBQa9Pm+sN/m1YzOMDDUoVkqYlkWrvQlpRqPRyH/nNGF9bT2fz7EsdEMly8jRymT0+31s2+a1l9/GsVXOnT2PP8i4dXuRkudhOw5vnDrLaNVj965J1tc2ePPts5TLBRqNOkLCiRPvMTpa55GH7+fU6bPUaxXWNtYZblT55mMvMDFWYnxshEKhQKVawnFtpBDoet6mura2mSefccKVyzcxjNzGYG1ri5PvnOfAvl00m03anS63bi/z6U8fR1EV2q0O33n8BdrtHgf3zxJFMWfOXqJRr1Gv14izvAI9OlonSwTVSolms02h4PDgg0cpFl22trdoDDVI04ypyYm8tSr0mZyewfU8/sMXv85nHj7OVnM7JxwmGbcXlyl4HndW1ykUHVzPRTcMkiRldXkZ27YxDRPL0Hjt7dPMzk7RaXUYHRmi3mhAlrfjFjyXUqlIuVxA1wxmJkd5+plXCMMQz3N2wB4K65ubSFUyOTXO+QvX2bMwi6aqCDJuLy0RRQkb61u88upJtra2SNOEqdkZNjbWcD0X1y1y8uRlDhycQdcNEArLyxscPLAXPwhQ1PxaazV7NJstojimXC2jSEkYDEDkptFSUVlbW2djo8mNa9eZmBjl/mP7mRhrUKtWiUXKl//0MXbPTfDyG2eYmx3ny69s8Mm9Y6iqTqfb48t//m0ePH6AcOAjRJYrubAzqybJ0hhd1/IqtVBwPY/z5y/TqFXQdY0gCBn0u2TAwZkhvvLEm/z6536Nt956k5mZOc6+9x73jdbI4gSSFKGmZGiEAx8pM9JUoz48SiIEUb+DIjNEju0gTFJUxcitDDJBGPgoqkIQxDlZbucDO0liLl64SK1eRVE0MiSWaWLaFm7BIQxDTNMiTWJmpqZ54NhhavXc2DxJYwzdRJUKUlF58MH7sG2DKIixHBtdVxGSe8biL169xn/9B/8V3LyOomnEUYTIYGpiAkWqfOXP/4K9e+fRTR2pSDRNR9EU0jRBUdQdI/acUhnHCVLohFHE+sodRsdG6XW7ZGTEcUzab9Ha3qK5uYmuKRiaQpxIdC2l3+0QRSma5qJpSj6/vAO+StMEiU+7vY1la0RxwuXVNeb37SG6eYnW9jaqVKhURxBoFEolgjhBNXXSNJ8FbDWbeI5Lr99l+XaLjJ3WdVVDUTOEUIFcxdre3sa2LCbHxrCcHG6lqhq+H+YKlq6TxhG9fp9up4dQyIEhKfzg2Vf53Kc+iaVJdENlsqQS+z6eV+Lc+Yvs3jONt+PzmGQxiqKgKAphGKKqKqalYVkWgR8Q+CGlSgXHddg3P43tOsRBxPUrN6nWSnnrrarw0uIaoyMNxsbH8wXgXbT5Dsj0IxcHd/8XIFLuFfHvtaKluWL3jcf/msMLRyEDTWQs3rpOuVTh3IXzFMtVzp15nfHGHFtrV2gMVzAsSRzkyquQoCgG58++x/mLV7FtjaFGEV3VCYIYpCAKQ6IoQlFyEI6qWVy/eZNSpYwmxE4bakySJCRRjFQgDlOkzKEScZShqx5Cpug6iCzDsTQ0oVKvDGMWitSG6zQaHpOTNQZBQrUywuLyJUzDxe9lrG+vYtsWtqWRRj2yNEUxdKIgzAtTUiWMJY3GKJ43xFtvnqBULHP91lXq9REMy+OHzzzJ5OQkI40J0kTw8kvPsrHZotqYZnpmhCCNmRkbI03g+q1FUBRsXWI4dd45e5r7ju/B0PJ5SjKB7wfYlo0f5jP23/3u49hukaWlJbzCKM1uyOLiLX7rU5/lS1//Mx46ME5Na/Hlp9/i+P4HUew6ullCUTQMTdLvt8jiBN3MC42ahM72CprpYdslUpGiSEkSZ4SDLrbjkOwUoTKpkmXJjn1AiiRjbXUZz3XzdZbYadH8G60cf/K9P2DBdc+w4KPj9OXTPPqZRz52ciclH2BIKO+z/3r/fh+Ov1ly9+E9xY9tu6vSvR+G8oF7fIzf7+79P7jvh2fu3qfW/yq5+88T70/u3h8/6c/xyxWEP37cvRAlgi9+94d8aqKBVBWEyNtrWtstBt0+uqaDzImPgR8wMtLAMFQq1QpSSD754FH8IOTGjSWe/MFr7N0zS8GzSaIEkUjGhiuEvk+lViZJEtyCRxCGRKHP1tYmI6OjGKaNbmucO32Rr377aUardb741SfYNTXKiXdOY6gqRa/El7/2HUq2hWlkmLpOHCa8ffIsqiY4fvQgQkriOMErufj9gDiK+MZ3fsDkSAPVVHALHs3tFoZhoKo6STzgzu1lCo6HqkgGvR7f+e5LnDl/jbmpUXRDMDxcQwqdWzfv4PsBpVIR1zRJ45iTJ04zOlTHsS0SkRCGfVzHxLTd/DwqGe1WE1M36Hd6RGFEb2dBOjZcY2pylPNXrtLZjrh04zrnLl/lwWNHKJequbSuaeimQq/X4+58UKVSwjAN4jT30+r3ByyLlP0z+cyMabl0Oi3CsEOpXERKSa+9jcgSNCVPShRVJUnkvQRfkRqm6RCFISWvzJPff4pPPHgfQ0MTJJHk3PnLTEwMMz7WoLm1wul3z1MueUxPT9Dp9GgM1Qn6PWzTJowDDEOnVhqm0x0wNFTG82xMXaNeqXDzxh2uXr9Dp92j0+kSpwHjE+P4vk+j1uD7P3iV4w8col4tMzExzNLqMhNTI8zMzVCqlbBdG6/o0O62mZoe473zl7lyZZHf/NynGanXuXj1Io1aja3NJq+9cR7SlFq9RBh20VWFixduEmQJ49MTDDWqrK+s8cpLb2F6JqZpYug6V69cx9A0HMsjSSW3b6+SRjGjQzUuXLyUJ7uex3eefJlHP/MwruMiFYFuqLTbXWzHo7m1iet4vPLqKfbvn6de9Tjx5hnmZyeJwohLly5TKnq8/OxbOKaB4zlkMkMzc1z/4u0VHnrgOGGY8u0nX+DRTx1FkBIGYT4LsrBAFIScPn0OxzbQFIXNjU0uX7zFg0cP8/QLpzl+/DC2a+C4ReJIECcRuxbqaKqBVA06bZ/JyXF000AIQbPV5tz5S8zPz+J5LsVSEcM0ydIUCImTFMc1CYIBaRazd88co6OjOZVQVZBqxkZzHceusDA7zoWLl/inv/ubeKUSE406tqqhaQa6bvLKq6c4fv8RXNclSRPi7C7gRUVkGf1uDyHAtZ0cmKFbeJ7L5soKQhj5rFeWEMUJgZ/yzR+eYt/sHPVaBcPM2LdvmmqaoMYalmnR7rWpDe9FkQlBr4VruihCIlTB5toNssjPCzRemY1ehiY6SGUnqVH1fO7yyk0aw8NEYUCchCiKpNVqsbq6Tq1eI45Dev0OUoEw9JGqgmWbCHLlzLAMMiJs1yBKIItiIt9H1QRCT3nu6TeYGM9tY9hRdfyBj0DwxtIyj37mUR7/zhPsHZ9EZKBqkjgOabebjA0PUSjb5AX7fHFHls9AaTs+dgINReYjAhKJpsJwo0acxLieQ5JmGKaJXSiQCkmlVqfdapJGAUL4+K02BauQgxock9iPGQwG94pjcRzTbQeYpkE0aNNvdXl9ZZ3f/I3Pkdy8TrFcwilWSaSG1AxQDTTdRJUSFAWpCGzbJo0T1lfWaTRq6I6CZZmkMbzx5puMjIwhsnysQTd0oijCtB3anRaaoaMoKpqWH9Mf9Ha6Kiws0ybJYgzbplQpc3D3LgxdY/HWEnsPLPDVE2d4aH4cxzKpVCs89vgrxH6E65o4rkW/179HP0UI4lih1eyjagZRkrKxsYWlKaiaxLEswoFPe6tFKlKK5QJSSF5Z2mBudoKJqSnSLPuAEvdTk7u7P35UhX/nNtfz0GMbKQVJliCQlEoF6tUqA7/PydeusLH5Lp//Bw+BiFGTOsj8NZ2lOd2zVKkwMzPOSKOMquRQsFTk0JQo9LFsGylUukGT1dU2b7z2HlPTuzDVkDQKUaRA1S1OvXOacn0Uw1R22gsVFNVgbW2VYqGAqknWl3tolkrfj7ArGkrSwrMyDEuwGQRcPvsecepz4eJ1xoZnGJscodftoes2aZbiD9pEWZLb+uycjyiOSdKETq/D2vaAem2E9eXbpJnJ8Og4a9vLzM3OMhiEtDsR7VYLRWrs2rWfK9evMTc2zHMvvYGqFlhe32a5E7G97jM+YqOqKQcO7MHSYgSSOIpJUrh8+SKG4WAZGoatMj45Tr02y9LtNfYc+QxrG5vUqmW6m4s8OFbn7KWXKNcinOo8Q+VDxIkg8HtkRAR+F1VR8LubCMVEMQy2Nu4waK3glodB5uCWOE1IU5U4aBFFIVEU7hR01NwGRAo0UpZuXmFr9Q6242LZOcVV7MwF/uLxc4wE/YR9V26u8i/+m98FPp5peU77zI94b936EVnTLzu5+7Bn9Edve99x77ZgSn5UkPmYj/URj/5Ttvzykru/OwrI/49D/B3CVH7ekFLeewGZlomm69iOjes6xFFEu9NG09Tcw8nQsR0Lz3WRqsLtm0s4rkvf9zl2aB/N7Ta9Tp+1lXUECsGgj+OaXL16gyBMMCyHza0tbNtkbHwY3/e5deM2vV6ParWEzCTVUpl/8Tu/zqkzF3j97HlGx4aRUvJ7v/VbLMzvRkEniSDoh+zaNcWR/btpd9o8++JrmFbuc2ZaJr1un3/+j76AaRpYVt63XywWee7F14niiI2NTb7xxNOce/fCDjxBcnDPLhbvbHH67AVUVSJkShTG9Po+s7PTCKGwsrSMKhWq5RIigzgI2dhYA5ky6PfZWNukudUmDfukwYCVxZu0tjZwdBXXc/EKLsMjQxRKHp//jUf55LGD/N4Xfovf+dynkVIlGEQEg5jQjwAwbRPTNnJ0uKKg6RqmZbK5sUmlVuIfPLIHRVfxSh6qpmIYOuVKiSiOCMIARQo21tZwHRvLzCvXuqajqRrbW03SNOXqlRv88Zf/kiRO2bewi3KpzK0bt7l8+SZRlLC+vs7G+jobW01UTWVufobh4QYTE2P83//p66yurTMyMkSpWOTlV09iGDajY2O89sYpms0WBw4skCQZR48e4tD+PRzYv5dyqcT0zBTtVgvLNHnsO8/wj/7+59jY2uKtk2c48c5ZpmcmsQsOtuvQ7fYRiqDb61GtFen1+izsmWNkuMazz72OqqkcOLBAu9NmanqCh47vxw8iDE3jztIytmVw584661vN3GNL1ZBCMDUxwuzcFKquEgQhq2tbuI7Liy+dQFN1yqUK9x8/lPv2DTfwPI8rV27w+7/3ecIdslxOMvPp78xENIbq+H7Awq4ZkiTm7ZNnWdg1zde++T0812b37jk0TeXYoX10Ol2am9usra0jFIiSgE88eJhXXz9Nmkk+9+n7QEqWVlbYNTdDpVTk9ddOUfBcHjx+hO2tFvVqhcNHD/E7v/1ZDM3gH/72p6k2hjAMjTQF03IwTINM+gx8n7/8qyd59fV3SHeAMUIKbMvk0IF9GKbJv/tPXwPy961ev4+uqywtLeXwDAUqlRKqKjBME6/kEUQBbslBKBl/8pXvIBXJxMQo6xvr/NFTV9k7Pc7/8n98kbW1TbY3W3R7PkuLyyAUCsUSppUbVSdpShDFKKrE0HWWl5fvPcfq/8fem8fYdd15fp9z7r68+9Z6VfVqZ7GKOymSkiyJktXdbtsz0z2ZYDA9mCBpIA0EAfJHAgyQAQYIEkz+yNIzwCQ9g0Z3enHbbdluj9u7ZdmWZGu3FoqkSEncl2IVydpe1dvf3W/+uEVJtmm37HFPJ4AP8UDy1bnnvlf1bt3z/f2+S7XG9PQktutRKJYoVytkmaBYKvHAhMnb71zAtgyKRQuygOs3riIVnW67h+O49PsR3d4AwzCIAp87t1ZIwgBNFagyd8e0HY/JmV2021uE4QBD10nSlDiKeeoHL9Dc2ODq1es7NNkIQ9c5cvgwUuR6KNs20Q0dx3PY2mrS7XUwTAPTNjF0FUWRaJqCIXdYrgAAIABJREFU2BFVra6t5l2OJGByvMFnP/9l/uDf/wVkAkPXcRwHTVPJsowsyXi73SeOcnML3/fxigXiNOA7zz9Hp51v9vr9fJOYZgklz9sxehBIII1TkihCM3XSJEJVFAb9PoP+AE3VGA6H9GKB6pQIpYZTrmAVikgRYqoqm2tN+v0BfjQgCkO+8vUniaKILEkwdINyZZxSoY5tFhgp10ijBLIU08pZCJ3ekEzGBKmfG3YhSSJJFOedoTDMmRbjjUl0SyeK/Fyvq0g+8uD9KDu7qebmJopUMC0LSUa5UkHTtJ37bE5nNU2TleVl4ihGCIFlu6RpBhIKnsP3n3+R48eP0esN+PiuOpZrE0Q+w+GQx+5/gEE/YnnlNp12F8PQUXfchzvtDpvNDkkm2Nho8a1nXmK0MYY/HJImMVubm2iKwvhojWq1QjAMQOS6xoJXIhN5Ztsvcxw/foTlazfy+7lqMD0zQ5IktFvbkEQcPjbH44//fVRRwLWLSC0EJJblUixWMC0bt2AxN9vA0CWqEERxiKopCCFw3QLD4SDv0IkUzyvTbkWce+ssw8EAKcjBfa+PYZdIUfGDPlEaE6dpDkqykOFgQBxnrK9v45UqFCs1tlsDkmGMHpkMm/Dtb7xBrVZncnqMmalFqrVRBoM2re0WlmWTSZV+GKIbDr4fvLe30nSNbm8Tt2Cytr5MbaTEzNw0MzMLXDh/Ece1cRyHdquDbtlESYTnedy5c43qSInVm2s8cOw3uL26ztl33qFcH+f61Q2CICaKBlRKHuGgT5qkOwA/Zu+++zBNhzjyCeMuqp5y6/YNlpeusLXd4ZVXX8IrFNCkpLl6iVPvLlOoeHz08QP80df/gjiIqFaKdDubQIqhW7hWXkBL4ojhcIDj2ti2g6Io+GFAisCyHYpFj8Ggj5QQBQOyNEIKyVZzk+Ub19GkpF6t5DEuMs8p/KAu7u9qvHL9hb/rl/Chxgc7aj/pevnTu3I/b5zJ3+X4Vefu5xj30tzdrSzdpVPei4KZ/dj8nzbvlzXuVh7SLOOxjz7K//65r/DoxAgZCaoiIYWt9S2GvQGu62JaFkmW80eSMAEpUVSF106eYc/uWWrVMrV6heUby+iqim7o2CUDVI3eIKDoebl5x61VpmcnuXzlBpVKjV5/QLlSQpMKra0Bj33kOO1uh7GxUfYs7uLgwi6K5TJSheGwg2ooeUfLMrEKNqZuMD4+iutYNOpV3jn3Ln/6l9/jkaMHKHgumQTdtFCEIEtSwshn3955VEVQ9EocWtzF5NQ4l85f5uXX3+KRh45x4qHDlIouvh+iawa3Vtcpl1w8z+bWzWVcr0AUR9RGK5i2TZJC2bNJophMVRkOAixdp7nVpTJSQ9F0qvUxvvWdl5lfmOT2zXVEmmFYBokI0UTCXz31NL/xscdBClQt47vP/ZAjR/Yg1QzfT9A0gySO6Xd6aKpKlqQ4jsu/PnmJj903TRz6aIrCIOhh2RahL7h1c5XrV68zPjFBtVan3e3S7nRRNRU/aCMlFAouUtGwHYsffO9lJsaraJpBp+PT3NrMAdTiLI3GOO0gQUsD9i3uQtNNrlxd5mvfeJZ/9MmHcSyT1bVVCoUCk1Nj+UYoCqiNlBn0Q06+cZ5C2aHZ6jA6PsbFS1fYam1z9cZ67ijY8zl2eA+nTr3FwqHdLMzV0ZWEa9eWqdcbKApoKvRaLSQKm3c6IFPeefcKM9MTmEZeXT579jKVcolS2eXV18+xud3hwP5RauMjLN1sMjZSo1YysTWVNM64en2JkXoFKXSGPR9D1yl4FpZjUB8dw3JUbty8wkithFMoYDsmly5ex3MLnDr9DhPjVeI04PKlG5QKJT71mW/waycO02n3uPDuFXbvm0dVdWQiaPc6zO2eZHRsClUVpOmQM29f5t3L1/NQawRrd7YYDkPGJxrsXpxhdW2V8ZEGSzdXcB2HM2fO4xVdZubneP30ORb3ziMUMGyTVFHyDoCIqY+WsV0dPwxznZDISNMEw7SwjAJnTr9LY7TKF7/xHMcfOETm99ENizgeMOz0OXb0GG7BIQ37vH3uHdY3+ozXiqRJjOmYJGlGFOaaGwWFQTfg+rVV5hf28tyLr3PikSMUy0Vs2+HZtzY5MGnzyIPHeeKJbzE/P83+hTwPslj28IMBhm6gSIVLF85RH3XQVQ8hJUk6RNUkisiQArq9AJmGbG01kbr2nrHBsX17WL5zHa/R4LtPvkylUOVTTz/LJ/fvYxh0UIwQU6iQDeh2BmiWTphGhEFEqTpFp71FHPYIwgEKCsVChXZ7DV0x0GwbtISHj99Pr+3z9W8/y8EDu3EKFmkQsL66wfZWi9sr65x88zQH9u6ju9WlWq3SaXVQhMnGxjqqKpFSodsZkiQ+fhjmFXWhI1ID29Z58MHDPHLifhRNxfcDMpEhVYUTc9P86899kX/5P/0Lnvj8Zzk6P5vHHezkh953YD+KNHBMF00TZGmc59IlCUmaYJg6iUgQiiROM4JoiKLrZOQB71mWax01TUVNJVJkkCaoqkGSqqjCRrWKmK7L57/ydXaNTaLpOof37yEc9Pmzz36eY/fdh9AgiPycvmpalO87zFe+9hQPNCZRFANFSFRpoKAh0hxsSlUSRz4iy/XpKZCJlCxJMA2H1lYHXdfJ0vzznaQxbsFGVTWSCKSaMegP8k1+luH7fTRdI00zbLeQ56JJaG13WbmxxOk3T7H34AEW9i3y7DPP0ZMpDUNFFxqI3NrfdCRTM3XGG6PYbq7z6w+GSFVB03S6W12++b3nObx3noP7diOlxLRdFE2hWCrQ3NqmPDKCqkuEqucUwJUNDi8uUJ+YuHsTfv+RkXeSP/BHirzDKrK7G8Ufad2RpSnZB0xY/vIrn+fI4n15t0woaJZDsVqnWKlRrYzzwis/YG39FjNzCwyDNrphoOo6UZSg6hpZlhCGuUwCqaCrJsPeEJKEOAVIyAIfVXOwjBJxkrB33ywGIWEa7ehxdSqeja6koOjYuk4aBKQpaIaXX6+6RmOiQhT6+NEQBZs41dBLLpeXLrJvz1HeePMUC3uPMjEzxWuvvoipWUzPzRCT5ufXFEzLII0jBEkudwAsxyUKIhQsTLtMkGQMhttMNMZorrc4c+YUk5OTrC5fJcvyTt9DD32UguNxY20FR69QqcHjj3+Ezq3bHD1+mMqIhYEO9CGtYNoamVDJZIpII6IoQDcctptddL3AyqrP6nrM9PQ0Dz/yIIIBetpEszLuP3Ccz33/Gvff/2t87GO/zueefIoxb4eib7sUyiN0t5tkpLhOHiti2CWiYZfNjSsMe3cYtjbY2lhBUx2qtTGiKGHQ7zNsbRAFfUK/h6bnUpBUSvxBj0K5TopEiIy8X/NhxEC/iGjo7pE/OffuCr/1O7/5nrlJkr1vF/LjD2T+uf5g9+1udyzN3n/cnX8v85RkJ1Pug/N+1sjpn/cGbj9yuWbvv567j7vH/nLGh13o3u/qV26Zfwvjw4K7nzX+U+L9ux/Sl158hUcnR7hrY6vrGv1en/WNLbrd25RKHmQQBklONVIESRzTGB1B1VWyNEXVVTzXzjNXVIXlW7e5fvM2i/OzuSsYsLa2Qb1axCs4xEmcazWSmKtXbyH1gNqIi6XbbG6vMtqo5jQiNdfB2ZZNmiY4hQJDP0DTNbKgT7u1jW7qKIaOWyxwcPcUpRGPTmc7z8QRgn7XJ00zfvjaGXbP7yIKE+IMhFQwbYNyrcTi7mmEBrZtYpgGtuMipIJlqZTLJbrtHkmcUqpVMWybgd9n6PtkMs9r0gyDKMpQMHjiS0/xa7/+MJ1OG6/skZGxa34GqUYYmsqXvvE0WRRTrpTwiiUsTWVyapxOt4tQFLrNTcZHKyhSoGu5tX9GRpqmubW672PZFlrQY2ahQRwlJElKmglU1USVOn/5ua+xOD9Lperlluaqjm07JHGMbeRV6HDoo6p5Z2Bt9Q5zc9O02l1u3Vnl0IF9jIyU6fV7pKTMz05TLdsIAY5jkWYZjfEKy7fXIYu5fO0m+/fPI6Vku91GCIGpG2ys51rC0WqJycY4G6ubvPraOUZHSqyvN5mZGicMA7I0pTE+Sj8Y4lg2umFy8vQVZmfn2NzYZLvZIstSvFKBOPGp1WtsbW0zXq/TanWIk4SjDx6i3e2gGTqTU6M8fOIo/aGPgsrK0hq7d02QyQGmbfDsD37IrrkpRkZGUFSd02feQdUzHEdB1TO2m13K5RIXLtxgvD7B9lYfQ4f1jS1GaiPs2bubbreDzAKiMMZxXObnJ9BMnRdfeIOH77+PG8srbG9tUysVqI+PUCh5bKxvsXrnDhAzMzvFkSP7SDOBEBqWZXL7zhrb223OvnWeYBiw2WxiWgaO61Apl+h2B0zNjDHZGOXtd84zNTWFrlmk6ZB+b0iWaYDENm0UIei1+xiajiIkoZ9rzmZmxhkdqxMMQ3RFomQZpm2zvrnKeKOO1CSGIdna3OKvv/4cUQR7FyaoVCsM/ZgoiPj8l57k2JE9tLc2UZWMNA3RNYmlmgiREUchUQrHdk9QHylj2SZzM3Xa7RZCwnAYU69XMQzo99rYlkap6HH65FnGRmt5t9uy0DQrNz1Sczff5mYLKVU8r5jnPCoSXVNw9Zi4MMrhQ4/Q7/Z54eVX+e3Dh1B1jV6nS0qMXawRRxG2qSLSBF0VqGaRJA5IogGGKtFkhB/4lMtlbq3cplqpEQ9DgnCL2ugYB/bvwXBspG5imkXSBDqtLkW3wOUb15kcH88pgqqKZdvEaRvXKfPv/vgJ3jj9NocP7EFTLARKnpNl5MZGQ79PmiXohkEcBfzRn38GPVMZHxsjyxJevnGD+x/czzMvn+ahycncDVKopEmCYZn8+z/7NPsW5nINlaqgaXmki6KoJGlCFAUoipKzDaIERUjSJNmJEJBIIUmTbEeTJ3KKLDJ3xZQCPwwIgoCD+/bjlUp0uy0sx0LVFRbmZimWPKJBlygIEKpOLBReu7XB7/3uPyVbuU0QhkipkCQRSRYz6PcwrTw0W1fMPMheCoTI4yJ0I9fR5XSzmLdOn6UxMYoUksAP2d5uY9sOQqY5HBI5C6U/6GPbDlGS5PdTKQmDgDAMKHgFFnbPk6QJkOGaDt9dW2NBS7EsE2SGVCEIQkzToNvt097q4DoFXn/9NJVCkSwFQzdwLJ2JyTGEIvLMNUVD09TcxMp16XcHpGmMYZgICc8v3eHxE8exS9V70sruRf36sbv1B7/4oyFfwPraBhOVqR1HYvHevuOu5npmchI9C4kHbfB7ZGmEpWr4/T6xP0SkCSKK0ARE/pAkiRkOumhCEqcqmdCR1iiF0V0I1WP33v20OtuILMR28gzVLEuIkhCpqbkNv0jRdI3A72OqAsNQIYvI0jjPeZSSd84vkaQm15eucPDI/ViWQRjrLK+sMD4+yezsboZBxNWLZ6nVKhSLFaIsYRinEEES9pEI4jTCNMp0uwNMq4xQDfxgyMb6BoqqoSoae/ceBATlsku5XOO5557O2RZRwPT4KL7foVS30Uybp79zCk2PMXUbQ9cwdYM46CIUgwvnr+LYJTQtQ1UFQZBy8UKTYnkXl2+ssOfAESYn5zj/9otUCgq60scwCkSJpCLnWDgyh5opvHjqhxzZ/QAjtQkMyyWOA/qb1+kNeoRRiK5b9HtDVMtG1ys4Rp1icZxSsYrmVRG6iVsokiQp261tFCWPspAI/MGANE0wHQ/VdJBSId3p4H+48R+3E/1x3Z0APvvkp3n81x77wJy/+ez3oj7ea/w0CuZPA1wfBHIfdLX8MON934sPvL9f6sb9513sR+f/Ctz9LYwsS/9VtgNkfqTW8YHn7jV+GV26uzEJP88adzt4H338UdKrF8l2LkkA27IxDYPr187j2kU0zSCOU5Ik15DouoZu6DtV0pRMZGhS8m//5HMcWpwjjGP27N6FrmucP38JRUikIrFMjc3mNpVKBcs2802Q5fCVZ77H7ulJ0kQwPlFnc7OJ53moqpLrOML4vRu4YRq5e9cgr9KqmkYU5sBPpDGGpWGaBkJKVNVAU1R0XWdqsoGi5HoW3TIwdD2/8QcBgR8x9AcompJXUlWVIAzodXv4w4BqrcL3X3iNycnx3DxAERQKHoEf4Q8GCKkQxylxkjJWKVMZqdBqt1DVnQDYJKXf7+DaHhO1EWbmphCKxDR0RkdrRHFEr9sDBPVqEcPQ6e1UpIMgRNPzDEFN1ygU8kzAPz17g0cPTKJoak6PUfPNXmu7za7pCaanJxAyobnZxiuUcht1RdDvdYnjBLdQJM2g1+3x/edf4bETDzAxOcHFS9epjdTY2twCUrxiAduxIPF589Q5hICi53Dl2jJFr8DVG0t8/DcfI01SXnjxJAcO5A5zAoWbS7dYXNhFFOXuXopQOXpkX/4z0BXarQ4l1+H6jVv4Ax/PdcnChGAQMjFaZ/naLebmJ9nYaDI5NUGv36NaK6EoCoPBgPGxMUwjN9koVgqouopt29iuhZQ5na3V7BCHKY5r0GxvUq6U2TUzy//z6a/x0RPHSVOYm52kXPZQNEkQBAz7Ia5TYHNjixdfOc2lSzeY2zXC2OgYKyt3iOOEzc1NoihkcmKSMIrZbrUZHa3jOQ7N9U00S2VivI5tGIRZguU4OI7HoNfFDwYUy2VUVSMMIgzDQFEVxsfHCYc+4/URpifGWNtsohsahm4yMdGg1+3R7XcplUt4nkuapOi6Tpz6JLHgzz7zTRQyapUi260Wjuvyh3/yHzhycBFERpJm6KZOu91FCkG5VKC93aJQdEAmpEkCUskDohWFs29f4R//55+kUipy8uQ7TM/MIYWKPwgYG60RhkOkzKjWyiiqzkRjEsNQyEj5i+c3mHbBdmx0XcO2LXzfZ3JikjiKqdZKrK7exrFNpJQkUczY2DhpEuaW6wjWN1uUiiWazS1s2+blF0/x3EsnOXxwT+7iJwW6qhHFIX/21Zf5xMf/Pss3l/l7n/gkG9fOo6VgOw5R7DMcJlimRhoHxFFIlqUIzSEKBtRGKnQ7XaI4QtUs+gMfx3XRpIoiNQZ+mzSRWLZDTG4UkWUJaRIwOlpDUVIOHjpEmiRkgGHlesU4HtBq9pgZn+TxEw9hmArn3r7Il7/zPc68fZ7ZiXFK5SKW62BaFopUkEKhaNuYho3r5U6Ev7FnnmRsBE3o7NJ1Nje2sCwbKRUykXFwzyKWZZGJNM/ylHlGHzsbfHUnwDwKIzRVy01g0nxulmYomkYYhShS4vshzc1tXK9AkuaAU1Vyeqft2CRJiuWY9Po9DMvG0A2yLCH2hziui9QN/ur1k/yj/+q/4FN/9hmO1muoqsrK8jLFHSOqKIrQ9TwAPU1yypgQvNdY0JS86NTrdsmAk6fPMD5Rx7IcwjDmzz/3RRZ3zWJYOtvNJpqmo+s6hmGQJhmKVMiyNM8cBFzHQSoKQubh5KoiCYKIsp4xU/FYuXWHYtlD13Q2Npo8++Jr3HdoP4PegDgMgYwwCClVimxubjEyUkVRFSzHIkkTspzQgu/noefDfoBXcFlb26DZ3OJsZ8j+xRlGJ2Z+whTtw8UbZT/yT8GOBdCOt/qBA/v4d3/6h9y3cN9PHKnsdL/7rU3K5TLt7XUKBZcgjOn3ety4dpFiqYzrOUhFEiUJqm7ghwGZ7lGqzVCoNdCK46hKIc84lDrFYolev0uKAUgsQyKlQCoqaZySkdEbDDAtB0XRYCcXMb9GJEkKqVRZuXWHUmWcjY0tFhfuQ7cLjNTqBEGA47rYhQIl1yEhIU0zvGKR5eVlVAFKOsDQNVKRkSWSZnOTpZsrTM0uUiyVqVarpGmK43johsm169dIYp/bt1dx3RK6bnDk6DGq9hiJ2sR1Rlm6vkk/2MSQBpfPX8AtmRiGhWbESMXh4rvvcurMGfbvXyQYDPEjye1Vn+4w4trNnJVUrVYZrarIdIgiYqReQrOKuNUKamGbVucWkzNVRszddHoDet02ceSjEJJkEiE1LMeDFFTXw/Wq6LrJIAjoD/sUisW8S4vAsCyqlQqGYZLsFGs0VSPwhyi6QdErkaYp7NAzP+Tu8EPPvPfR4r1lhICXX3me//5f/nc/MufD6N8+2B37WePe4G6noSLeNz65C+rS9CfX/eC57l6SH5z3/vyf3K3f6xK+e+zPD/x+1gF5O1LcdWW6x/xfgbu/hZGmyXvg7j/1uJub94ue+3974is8Ol0H8gszy2DtzjpVTUUKE9ctcWP5NrXRKlJkGKZOHEZAXp2TKqzdWeP4voWdzVTEcOhjORaOZZJlUKuVUXWDdrePlAp2waPf97lxfYWje49QLFRQVdB1m0Ih/4W0trZBnEQYms5w6GM6FlEc4/s+Uhos3Vxla6uNoapEvk/ByztlvW4PyyogFR25Y26SkeyAPhgOuqiKoNfq8/TTr7F+e4tjDx5GVXWCaIhmSAxLJR5mXLxyjaLnsH/vLgquhZTQaXV49eW3eP7FMyzMT6OoOrpjoBuSYtkmCQSmrvHuu5ewTQMAz6vyuc9/i/WNbXRNpTpagTgmHPQQWYTnOYRxhFtwQUg0w6bXH+J6Ht1OC8fNb77D/gBd13h9vc8j+xskcV55Vg2FVrtF0fOQIkUqGZousSwPTTN2MokSpGKg6RZC0ciEgu24HNo3x8rKHUZG6ihSsryyxuHDe5iaaaAbKkEYocoEXdfwXIdCwaY+PkqSZuyem6bb9WlutvAHMUHYR1UUNKlTrVQhi7E9lbfPX6Lf99lutcnIGK9XEAJeO3mOwwcXefv8NWZnJtlsbtOYanD12lUWFiZYWl6iVCxy6q2LzM/NoOkaiAzXceh2eyiKwpmz59EMwUhthCRKiUKfZ7//InPTE7Q2eohMo+N32LNnL9dv3KFSrXP00CKIXFfZaXdwXRdFaihSp9/pUyyVsEyTPQuTPHD/AqZlcvnqTW4ur7FrdoparcTtOy36vRDDsPjil7/PI/fvZ3n5NrNTDTKZcuPadbqtFpPzc5y/cBnLtGlubLBncQakxaVLVxkdHyETKb6fkMQJr752mlsrt1lausUjj+YmO1tbXfp9nzCOKRaLOfDQNBAp/V4HiSRD59iR/ZRKLuWChul6SEVjfKxKZaRMRoppOSAlmqFQ9Sy8gsXmxiau5+Yh5JpFHKdsbGxhaiYfuf8g/WGXLOpze3WNSrWKqknGxor8/r/9Mp/42ENcu76MVyojpMnNG1eJo4D6SJUvP3eJcHWVBz5yH1EUEYUhT33neV568S0OHJjAcTWiMMArlImjDKHqKNKmN9hEMw1sq4SqmQghKXrFHUdHydWry8xMjDP0B6SkKFgkacxj903zH757kiOH9+IURviTb32V39y7j85WjOkKPNcjSyL8QRch83DzKMqojzVobg3IFJMgTFFUC6tQw606bG1uYGgWuutgmh5JkqCrILIIKSWqllv2Z4BbKHL9+hJ/9MQXeOzhB+j2+8hIp+/3mJ2f2KHjQqlY5qFj9zEz0aBSqWDbLlLXEJkkiVKSMKFYKDHaqEGW8cbrJ5loNPi/vvgN/unv/GN+/3Nf4tcXF3jxhR+yudFkZKyG7ebgJUkjVF3DD2JUTdsBeJJhv4OqKEhyC/fm+iaDnS6XlAppluVuiFIghMry8h1q1RqtVhPDMPGDEMvOgd0wCCDLUA0bRTNASEhiBBCmkGSCJy9e4fETx/j2t5/hxMw0AJVKmTQBIRR0wyJLMrJMoGiQxBFplpKmoEiNJA4Jgrzbpus683Oz+e8/oaJInaMHD1IqewyHA4qlYg4SsxzUyR0d1l2qZpIkZFke5RFnGXE4RFcl/UHEZ8++zW/sbuAVCpDmwCT0E44dOYI/jPjMl/+affPTjIxUkAr4wyEvvfEWk40RSuUSqqbkTpGRQEqBZVtsNVucv3iNiakxvHKRgufw0so6Dx7fQ7E6/ove4e/5zF1wB3mBt2xUf2JeIvJipVessN3pU2/sQtc0tjt9+oFPZbSBapl0whSMAopdR3PGsMtTlBqLIFykboE0yMiLCUiBUE3s0hhOsUGhOkZr/SZpENJp9TA1FT8R6HYZqZdJMotAauiGg6paiExBU3VarRYj9f28duodSrUpxhuzWAUb17VJ4pjiSA3V1Lh25Roj9WoOvjeb2LaLqgu0rIeUglRkiCzFdhxM2+PqjSUyJK5ncePmdS5duki1VufOnRUq1REUaaEqNtevX+fa9UvMzMzjlQqEQ43Xf/g6xx48yMx0jfMXbqE4Fks324zNTqClKaMTU1RqHgWrRK8TcvHmJg8/+ltkUjA+NsLuuTm2t66hp9toMkExPVJ9BKkXUM0irzz3LkdOHEDxdT7z9b9m39Qcw/42hD5GcYJidQLLKQLg6CpxGtHcuEanvUR3e5lo0KJYqoGATEgQCkgVRbcwnQKW5QCCIIzJ4pCtjXVUITAsmw8P2n5Ju1gBWZLR01ss7ln4kS/9MmMJ7gXu7saJ3MsY5W8Ci+95Fn3IF3kvAPfzdgQ/sNrf+PVfgbv/xCOJo3/1dwHs4G+u/t2rM/jBjmEYhMwRvVdxEYrAqxToNrd5+fRpds2O49VK2MUCZBlpHLGxvoGOQmu9ydbGBoZh0OkPsF0H03EolD3KtQqKmgel2q6LoQlMQyeOM06dvkCn3WfX7ASaoeBVCghNob+9jaoAWcaTT7/A4twcTqWEXXDZbnXRVY0kSvCDIWOj43z2S09hawpzuxqEUV4xFFJB1WAwbCEMD2SGaesM/SGaqiMyhX4/wHZcSiWTI/fvAyRhGGJoJqkvUDKN7VabN989z77FOfwgDyJXdR3bdPnCN77Pf/u7v4Nbsun3c6pLHMWAYHt7C8ux3tNt6KZBFAfs3bOb6kiZydkJEBFKljEMQ1B0hJpz5UFyZ3Ud23VwHAdV08lETHt7kLtz2S6ZUEiskNmxCVZvb+AWbQa9HkmS4hXzTqtVkCAwAAAgAElEQVRUdQy9AGkMaUSn1UbXzZymoeQGCo6Vg1Vp2Yw3GshM0Gpus7qyyuL+3awvLxN2m9y4eZPRmpNnGmUpg65PGKasrW5y/vI1WptbrK4vc+TILI3GFKZl0Om2GAx7aLqCXa4w3ZjCNQvoBYPmZhO74DE64TJS9xipTbLZbNLvdVlYnOftty+ye2EWoYBdrjIM+kw2qqRpwvl3rtHvDjBNG6FLCqUiuxdnKZerXL1yg2qlQhpl3FreYGpygq32JkKGXLl0i3rDxrZ0kijlzZPnCIcB3e4qcewjhSBLJVKoXL96k8pojUwKkHDhnUuU7SrVmsbYhEuxWGA41BmpGnR7XZ7+/iv83n/5WzSbTbyah2EbOE6Bc+eu8NBDD7K11WFycgLd0tBsHd0tkIUp/jDAsSw6rR4brSZXrl5nvFZlfGycvXsXKZgCTVMoFV0s1+HCpRvMzY8ACau3tjh35gp7FmtI00RXIOj3cGyDVCqgSvrdJtWShcgyVM2DbEAUZXRaQQ6ugiGq7vDKq2f4yy88w0PHDvKHf/Q1Hjp+GMu2UFQtD7WWCY2JMQxDI0tSep0+3XYXz3H44Rvvsn/vPFeuXEFTJefevcXU7C4e2L/AeM1EChPdsclEyoF98xzZO02QSJJU5IHmSIbDENex6XRauF4NVVhkmQQlQ1MyBAmrq+vMzI2zZ3Ga2lidP/nzL/PREw+RipiTb77F9PQ4f/7VH/Dbv/0PabY2+MHzL/KJfXvY3loj9uHG1esUixamXQRpgJpimzaqW8Qpj2AWK5RKZVQVfL/DsJugKCaJiDBskyRVkWr+/vudLqZpkiUCVTNobfdIFJ/62Ai7GzPYmkHQ80lkRhQMsQyN9g5V3LQ1tppdNtdafPvZ53j04SNEoaTV6vLHn3qC0+fOIkWAiDWuXr+EYemMjjf46K4F/s0X/orf/Wf/hP/l3/zfTGoFTjzyCMGgi2XnGzchFKSioWS5q5wiFQSgqBpZKsmEnmvXshhVUTEshTQLQaS0trYwbI3QD2lMTpAkCQXPJR2GvPLSqzgFG8croBgaSZShKwqmquZxP1LDMHMmhAZMPfgItcoY2eXzjBY8BLmjoaEaCFL6gyaGLlCEnscXSIkichopIgdZiqrR7XR37Pdzw5Qsi5FKthPBkCBTBc00QGa5U2QaESUCVVGJ4whVVdCVvDuJEPiDIY7tEsYpqiJ56ty7fHx+Bt0wSeNce+gP+6yv3WF0tMKuXWOUKiWSRKIbDlutHkmUMj42gm1bOWNCSgzLzBkfUkPTNaanGmSxjwAG/SGdQoVj++fRvdqH7NT9+Pjp4E6IvM89NzdD+3bvJ+ZJdmi2mkGhMoZqlVi5tULQ38aKYwpOGbtSoziyQKG8m1Qr4nojSGGBatDubBAFPRwtRihWXjQQkmTH9VNVEu4sXWIwCLnV19nsgwFU6iWM0jjS3Yeuq+ilaYgMAt8nFD4r6wnf+PbTPP6xj3P8gY8wOdFAlYL+MOTG0k0mZ6bQNY3Odoup+RmQGn7YJmhvE/d9xuZ202+ugt/NN9C6QpJmmEaBW3dWmZydI05UJidnCZOEqZlpqvUa754+i+NaOAUTJQuYrNV58+Tr7JrZz7e/+xX+wX/22zgll7fP32B2foF+L+Kdt8/h2pM4bkYmBKZT48LVO5y9cImyN0uiO8zML5DFfaplG0tsoispsUgp1vcQpD38fgeTmPGJSU5dusrBBx/FskPoeTlI01Ts0gSaltHprdPeXKG1voYIAkzdwymOY5oVDKuEbhj5Nb2jxxRkkO20iqSCZhWwiiVct8j506/Ra68xMbdI+lOtWX/0Ich+4tlfCPAJ+MJ3n+D3/pv/+id1dT/nuNt1u2fswIeUEt7tpu3UfbjbCfuJ9T4kuMsTJu59sl8c3P3IGe6u9mP//+CMPHsxfx2/CjH/WxnpPTR3/18Z4gN/3+uzP797F//n57/GickRIOcVJ2lCGia8fuY0cRDQGB/FKRTQDW0nTDNkOBwihcRyLUbHRilVc6qZV/JwSy4AlmMhheDOnTXa7W3SFOpjdSrVMo5rE/i5hipJE5DQaW5RqZZBwMxEI9c0FQvEcYyu6bz04uu8cvIsx+/bi2XamKokzTImpxs7Vedb2JaZn9sykVJHkUCWsL25TcFxubl0C1VR0TSDgueysnKbcrWMEHD54hWee/kk040GtltAJiljo3W8YhHLsZFCMugPGfYGfPHJZ3nk/gMYho5h6Egl16q4BQfTtOh2u5iW+d73PIkyXnn9FHPTE3k1WQg0TcvdMGVuuhBGMfX6CFJKBoMBaZISxz7FYglFqiRJRByFfOq1S/zmscU8GNrvY1garuvQbXfwhwGGYRBGEaoUtFstqrUqza1t3GIRVVWI4pC7hd84jHnxhVcYrVWpj9a4vXqHickG5946x9AfcPz4UVJCvvbN59izMIdj21y+eoMDh/ayd3EXzz3/Bn/v4w/T6/VJUskbJ88yNzvF5atLtDtd6vUqP3j2FW4u3WHfoQVOvnGWgwf38fIrL7Owa5bhIKXd3ubYsUOcPXuBqakGWZrQ6rR488xFVJkxNTHOrVurTDYmsB0LPwoYDoa8deZdRsplDNOiVPa4dPEq281ttlsd5ndN88abb3HikQdotTrMzDXQdYs0FqRJhmPbaJqg6BVJUoiTlLffuYhXsCgWS2RZim0a9HtdTNNm6A/pdPuoqsGtlTVW126zf98eXCt3ZV26eYv+oE+pVOTpp19k9+4ZxhqjWK6dO5j6AZqmcfrU27iWvUMl03nplVMcu/8QszNT9Fo9Bv0hGRkrt26SpCnffvpl7rvvEEEYYBk612/coFYr4/shipoi9dwJ1bYc7qxtoGoaXqHA//r7f8LxQ3uw7ALf+d4r1EYcXKeAaVlkachg0KVQKFEueUyMVUnilMvXb/LNp19m3+4Gf/zpL3P/kX0oqkDTDDbWNkmTjE9//kkUqXNg/zyTE3UG/QELC/OkUchXn3qNo4f3Uq+PYpsarueCzHIq7bBPr9OnVC3zR3/6V0w16lQqZfwgYOi30A0V3VQhiUAkCKmy3WxiGAauVyRNU9I05frVFS5fXeLokX2Ylk6lUiRKIsgyDt9/gm8++S3+x3/+P3Dxhy8xUR+l3++TRDEFz6K51cK2baSa0u8OUQwr72STEflDQr9Hr9dGFTpZliCVvPujGQ6D3hBV5s7Cw2FuHhL4Ad9+6lkUmTA9NY2pW4RBHhCtqArloosUedhxuVoljmJsy6bX71CwTaanJkmEQNc0ZicaHDt8gKJX4OKFa5z46EOMjtcZDAZIabC9eZvH/uFv8ekvfZV/8c/+Caqm0O93sR2HjAxV2wFHOzuKu7qTLMvQNI0khbdOv8XkVAPLtFDUXHsnhczzD7OMbntAmmVYlkGzuYHIBJ1+j10L83nHRgp0JY9WSNOEKIoQqkKahAR+yLu37zB99Dif/ewT3Fpa4oGFBb789W9RK1fynK40QlHyTUkUpghF7sTuSMhyOpXcoZBpqrbznvI3k6YJQggCP+K1V9/k+8+9wP6De1E0JdcRRhFSz/V6aRoz7PbQdBWpqiRxjGnugDBFokiFU3dWeXRqlCgK0TUNKVU0VaFSyWlvnW6barmKKjXa2508YF5IXNd5jxYcRxHXri4zUqvx5qmzLC/fZmqyAVlMlKZc224xffwopYKNUaz9glm199rR/vjGD5bOrGI6+j1XyL+nAikl9bEx3GIRw/IojTS4unwD23TRdZNEiFzXruoM+l2iQZd+p8n2xh2iVGAZOil3N5MZ7e1NvvvUV6lWRth76DgLu/fgmDrD4TaqZqLbdVRdIFQNQ9EY9LtouiDJVA7tPYBuWgRhQn84JIljSuUq0zMznDv7Fr4/QFEVPNdlq9lE01L67W3GR8YIshhNzUgjHyFSpK6iqTq9bohXGmUYhICOVFVKxTJRHJOlGZZh4ZXLDIdDpqamKTgFJmZnuX7jOouLhxgfn6S5vk3gDxDAudOvYdsG09NzdFpNTp18lU4vJIo1Tpz4JEIKUEFVEqLeGoPOBroSI4SKabn0IgWEgmMXCYYhfhTx/ZOv8vGPfRJVDHniK1/ixLFfo+B5NNe3cFwbXdURSYprOVTHJsg0A7dUQzeMHfq2JEOSifdhl0C85x6aZdkOqFfIgiGt9gauW8awCx/q03ZvPPKLgbt9xxeoVCs//7E/vtTPAFwfXi/3/vz31/mPAHfiAxTUn3GuX3zcqyXz48/kTDu5w9z7Fbj7Wxj/vwB3Ur7fov6xT+4PfvACj03tUDN3KoKaV2bp8kXqjka/06VWq4Guo6oqlmtRKHqURso79AkdpMByLVJJvsmQuTW13AmCLRQLBFHE0A9wPAdNkxQ9b8f+NyZLE4bDHsPBkCCMcVwXr1RGqgr+wOfMybM8/tGH2bt7FttUWbuzxshIlZmFOYSq09rsYBgG589fZW52mmAYIlNBEgQMuj08t0gSpbTaPW7f2mCkVuMPPvV5Ll9fYvf0BMViMY+B8EOyJKUxVcey8g6eqin02t2d2AgLVQoeOnoA27UYDgf0Bz0cx8HQTQb9Ie1WB8u2CKLcme+dty5gmzr+YECl6KEISbvbpVQp0+30IBO0tzu4rk0YhgTDYW46kEGn1aTgFOh12qRJiGlo9LSE+cYof/CHf8FDDx5CUyBL05x6Ssb6nTWGQUgcBaiawmazyWijgaIIktjPw0BJuHVrGZmkGJpKbbRKZ9ChMTWGYRYQQuC4HmEMpqkxPT1Lp9OmUDQplD2QAplJVlc2mZ4a491LSywu7kJTJDeXbvHA/UdobmwxMlpl19QkUghK9RJzsw1sw8IyFRRFpbnZYmqmRpYo2LbNs8+9ztvnL7N71wQl22FudprVtU1c2+XalRssrd5i9/wsI7U6Mog5+do5ZndNsXTtJvWRGm7BpTFeR6qSA/v3MBz6TDTGCOOUbntIFAqaGy1MI9ckDP2YkXqNbr/N9OwYzeYW3U6XkZEqSRqytnGH25ubuM4IE6PTfO3rz5KmLT7ykYd48rs/4Pj9B7l1e429+/ZiawaWaTG/exav7CFUlTAZogiFQXdIwfTIIjh/8Qr9Xo/NzW1OPHKcJE0QWYZtGiiaim5orNy5ze7FeXw/YKwxiucVsDUXy05ZXVthZnYXmumgmTbDfoA/9Fld26BWryIxEEnK2OgYAo2nn3mTxx49BGRkaYRh5M62cZJgWxYvv/IW0xMTfOKT93H/fXOMjdUoFQyKpSKWbZOmWR6K64c88pHDvHn6Ms88f5rRWpFPf+EZjh/Zi25KHrhvL//zEyf5xAMLNLe2cB1Jr9tG1XQcp4BVKGKZFhNjNYpFD8MwMAxtJ0Mup/5GQUCWpbkxiMjodLpIqSGlgqrqvHHyLL/x+Ee4cOkKU1Oj2I6FpurMjdX45ktvs2/PPKZt8sQzL/CxfXtRVJWrl29y4/ZNDh44hEAShH2yOML1iiiaRpbFtNfXiIIWtq0hMzB1hTDsQqag6jqmqSFFfp0pikKappimydTUONtrTUQCqqrw9PMv8tKbpzh6eA9R4LPZbLKyskqn08exXHQLvKKGW7DxnBqxCFFVjaKXR0NYps30zHSuYZISw7RACuZqVf6Pz36BxcVd3N8ok4k8XFozNDLSHBylSV7Lv2vbHsXkcgFBr9tl6eYSo2N1dF0jjmP6vX4eR5FmxJEgiiOuX7tOY6Kem4woGtNz04RhuGPAopAkIZDQ3t7KgZWqEoYxUig88c4lHn74Qb73zHP889/8GIqiMj83x5unzrBnz8J7xiO9Xh8ygWXb9Ps5lVtV1fdq6RnQbDaxbZskiVGlRpomLC+v4BWLVMpljh89jK7n4E8KQb/TQ3XsHQ14Rq+9hW3qZEJ9f+ObJly4cIlS0eOHy7d4fLpOkqTEScRwOCTwQ65dW0JRJOWCRxwlrN/ZpFIps7y0TGNqnCTOozBUVWPpxgqr69tMTTUoFFye/+GbHN6/h5gYXTcwVIkyM4emm1he+ZfXudtxx8iy7L01v/7MV9k9sfjT9wE79/4kk0irjPQaSLNEt7VJe20Fx3IwHINYCDTDQlM0vHIF13IQyf/L3pvFyJXdZ56/e+5+b+xLRu57JsnkVqxVqs2SJbXa7R67YbRtTHsMNDA9jfHbzDzPg18aaHtm0D1eejxtu9uWbUiWZW1WValUUhVrJ1kkq1gLt2RyTeYeGZGx3v3Mww3WJqpUJUsNDKADBJiMjLj3RsaJOOf7f9//+yL8foMk9tO2AV17F8DcvrlKrTZJsTLG9vYO7tA47e1N9up1MuUaiWajEKMIC8PKY1o2keziqBKpCMojk+iWRawKctnULKnfa5NzDXrtXfxWi5xjYOgBt29epd/rkStlyQ1N0Ox0MRIPPw5J4oR2s83WVh1N1SkUazR2G9iWw5Xlq4yPTVLI57h1+xaW6+K42bT/VNeYmZ0jm3GJA5/jzz7FZz7zRWpDVcrlIvfedz+dVoNXXn0LtByZwjD13TYPPvQY6xtrjNUcot4meFsUMxqRAqZZI9EySM2hUJ1GEQ6+n2DaJiu3rvL4Iw+TRA1eevksnzryGAmC3s4ySB1DT1VKUdJnrx/h5nK0Ww2SyKe+cROhmai6nkoyB5+XRCbESUIYBiRRiKamzqnFbIZ+v0ssJbnS0MeabT8tcPelJ/+CX/uXv/Kx5Y0fNX4O7u72/w+BOyEQqvpzcPfTHh8H3N1ZuJT3eOGfzrkHhipiEIALg0rdh4HcR3So/sJnHuPf/fXXPwDwVFUhY5r0/JA3Lq4wPT6Om8u9+3RVSxvt40SmIE6k51IVBk3tEiEV/L6HY1toqjmwsQ5Tu98oYGurTsaxMQwdRSa4uRz5fAHN0NEMnUazgeOm1se2qtLzejgFl7ffvEihlMPNZVB1nSRRuPD2JUxDZ+ngvrSJWIG333iH2nCZMEzBYpwo1EbKHH/1NaYmanzu8Qd58NghTNum1+2gqRo3b6zT7Xr0gjrdXovpuXF63Tb5fDF1nVMUcvkshqnhOg6qppLNZ4iCiFarjWFYGIbBv/vjv+Cho4fIFQuM1Gp4vsf+pXnCKMS0HLLFLO1WFxnDhXeWGapWcDImhp4a1pBIbt68Ra02BKgYpsnObh1NV8lPDeG1uxw5tA/b0WGwCez1PL705W/x+OMPk8kWkTJBKCrZfAFF6GxurCETmZqeKKCpKm+cPc/Bg0uouo7vh5iWRRSElMolLNslm8sR9lp85WvfZnaqgmMLNN2k0+6zem0VyzCoVArMLszwpb/6JuOjVUaHhzCMtIq826hjqhqbWzuUhssIAatXr6CKhMuXbrCwcAA3a/DqK2+yurrFwf0zPPTAEdY3N/A7fYrVMsVqmVarxVA5z9zcBEKoXDi/zMuvvM2+hRlMQ4MkoVDKpw6rroNuCqIQXn/9POVyGsxtGBambvLEd19E06DRaLN//zwXLi9THaqw22gyvzBLMV9k+dIKlXKJkbEaE+OjOLaDTODo0X0Mj5S4em2d2nAR09QpV0q8eW6ZkZEqz75wirHRIdZWN+h1erh2KgV++pmXmJkaR9c1ZmbGef3cBR55+D6EELzw4glq1SJXlq8zPTuBbpuUCjl2d5rMz06jIvjGN57GsU10PaHvhWTdApmcjUwE/XYXTSjcvLnKyEgVmUTMzk2SzWV54qln+Y1/8Tl+///+GwoZg4xj0O0GqJqBaZiEQcLSgQW+9+wJ9u+fwHFsFEVQLBbQVBVF0Uhiidf3yeUydLtd8nmbTz14kF6vy/zsCNVKETtj4jo2x8+t8auPH8EPA5ysg+tkUYXBXqOd9jX5HrXhGu1WC9MySBLJ7/3eX/L5z312YIJkYhoOQRihAqWRYdp7bWwnS+CHxEGE61pMTY/hBz1sy0YIA103GM4kjO6/h3w+z/7FRZxmk1hRUKTG/Q8cZmtjC9PQaXV2kJ6HH6YSRa/bxtYFkCBlgqGlAdaqAFM3002TTHvZkjgiSsAwdFCg22kzOTFFNp8jjkOOHj3MoX37MU2Tt998B01VmZqaojI0hKqSMoGGiWNnMEwTYeh09rq8/PJJvvnE07xy6hSPPvQg/b6Hamhpb6EKmqaTlQE7QiVu1RkplzDt1JERCVHgp7EsShotkKoBRGo6FYWYljaID7HodzuYpoNluQih0O/3sEwHx7XI5TNomo5QdYIoIEGiatq7a0zkB4R+kBb5BjmFqmqAInjkN34NO+Py8ssneGRqHEUBw9JZXJhFDgxe1Duh9pZFFEcYpkmcpM6Xvu+hDlx8TdMYuGzGRGHC5YuXmJyaSIsfhoGhq8SksQDddpeMnUFVU1dARUmz3FTDII7ThTfwfTRdZ2ioiqapfO/8BT47M8oT33uO/UvzdDo9dM3i+InTLO2bod3uYBgmzb0Opmlg2Sa2a5Er5PF8j37XI5vNMr8wwfbONlLG3H/vQYLAw87l0DWVPzh9mYWFGWYWlojl3bfI7wdodx93l2XeWafvjAfvv5ev/NVXmJ/90QAPQFNiUCRKoqAL2Fy7wdZ2g1y2yO3VK2QcG0s3kJpJLAxizSRTHOLm1Yu0Wh1idLK5PEIRhAjm5/YhI4VXTp1GJjF2IY+t22QKVRJDRxdWKh9TEoRmEAUJsd9A1wRSWDi5ITTdxLRMIim5ef0GWctAx0PIgJ2tW1TLObrdHWqjU+SKVYSqgW7h9zoYIkBRBIZmYJkme606lWqZ3d1t8lmTfnePzbUbmLrK1uYq0zPT5At59potNtY3iUON2+s3sV3BTnONUq3Abt3j0vJ5pmZmaXd6rKxcZeHQUUrlEgcPH2FqZhrD1Bgqlwg766iJTzZfBGGiZ6tEioUUKrlcHqFomLpFJpNDqAr7pw/y//7Nn3PvfUNMjFn82Ze/xoGxWWJ/l74EI5vBzblsb61BnKDIBCWJifweid8jUS0sJzPQI6ZzSggVAWhCIMMAIaC5W4dEEiURu3st3FwpXZN/DOB4/689P3XV/qTgbv3GBr/1O7/+gaiAT77lTXfM74+Kfn+A+MeJIPhR5imDo3E3yePHMnERd8uze08b99MBdx8cEhDKhz1P3+snlFL+nLn7WYyPA+7EANT9tI1X7lCyQqgDZ6APHf1jfqpOnXiNT428R6GrCuQKBUYnJiCSxGHM0HANKRMCz0fV7gSypguqUNLA1iSO6bZ6eN0+7cYe9e06rp025MdRjKnrRIGH3++RzRdQhaBR36Xd3EstviXUdxtYtkk279Laa2JoGq1GE6EpuHkXoRhUhyoINV3IkzBhYmIUVRNIEhSRqrvHRmo091pUalWkIhCqzl5jh2q5wPBwjdZeE80QqJqOqqqsLK8wUhtmbm4GoUomJ6eRCeiahe+lWUC9Xo8ojnAcB8/zae+1aLVbZLJZNE2j1WyTzWV59IF72NzaxnEcFBTcjMVeq4GiqliWQyJjdE3n+rVbvHr2bXbrTYaqeVSh0u20MU0T17VRDRNFaPQ9n3whh2EZlKdq/Ml//lsefeSBgWGAjqKqSARzszM4rss771zhG9/6PlnbojYyghAatm2gqRqWYaKpGq3mHj94/gymrmJZFqZp0ev0CH2ffr/Pbr3B7vYuqvQ4fGgahQBNSJA6y5dvoCApFQvsNOoMjQyxfnONTz10H/1+n9trGyhICoUspWKJdrtDvprKQh014eatW8xMzxCGKrEM2NyoMzszydraFlKmfZWaKpCqSq5cJIpCHMdke3Ob1dV1CoUCiwuzDA/XKBZzNBpNLi5f49KV6xw6uICqqSgIakNDHH/pVWZnp/jBc6+mAEtINE1wz72HuHnrFgv75jAMnWwux9b2Dlk7y9Wrt8hlXWIlIfACDENNM45UUDWTWrVGFHtkMjaablCrjRAnEUtLi2iKSi6b5eWXX2d0uEoQhJi6SCv/SUSn3SWXy9Dr9ojjhGzWwnUcMo6TAnXborG9S6/b5+KFFUqFPK5tMjk7ipOx8f2EZr2L79cx9AyvnTyLIkMOHpgDIpyMjUQSRiH7981w6sRp6rs+5VIGTZXki2U21uvIRLLbaPLk0y/w3//GLxP4AaurWxSLhTRjTEpu397m9uo6q6sbjAxX8DyfZ186xacfOkq5XKBQyCGEIJPPpH1NpsVoJY+TzYCqEQUx2xs7fO3rT3PvscOEYSpPNS2DOE6QUnL4wBxOxsILeni9NrqmIBUVVSjs7Tb41hPPcmhpH3EU8+zxEzSauxy55xCGkTZc9Ho+T3/vOQ7sm2HTS81EwjjiiSee5MDkNCQSRQ0xNA1VQN9rkjE0EkWl4/kU83nazV3iRJJISbcb4rouKBAHIb0wIF/IEwYRqqoN7PsFcRzhuA6qZiAVSbu1h0CwubbF5sY2Bw/ux/P62K6NZZvEiY+uWUS+ZK/VwTRV1jd2OXHyLIeX9jFSLfG5zz7C5sYOZ994k4XF2RR8eV0UoTJaqbJy/Rrm4gGmVAWh6fi+P/j+VXjxxZeZmZtNvxPjeOCSl24AgrCHlAJN1TCM1KlVKCJ1qSRB000UIfG9Ppqmo6Cj2TqJlOiaRhTFIFOQiZI6lQZBiFB1EhT+zxde4eFHH+Y//oc/5n995EE0TaHX62KYBl6/j2poKIogCEI0odHca2JZduqkK9LvbVXVUrm/UFKX5TsSTcNCiFTmnyoCFTqtPSzHQVHS4Hev76f9R4kcAEmdBIGMohQ8ijQSRA6ef3H5MkdHq4zWKtgZB8Mw2d7Y5bFH7qfbbVOpVmi1u0xNTRFEAZZtoBsavV4fXTcQisDzPKyMQbPZYGS0RiITbMdCMyxCz+PltW0OHzpAvlx9d32+2/jE4O4uD1eAp37wDEcXf9g184eOpiSog+6qynCNyYl51tbW6LW36Hc7hH0PmSSYbjbdYicRI+PT1IYn0M10vquA1HR0XcUUGrXxCUZHayiaREk07LDe4ncAACAASURBVFwBL4lwFAMpBVJEoEDYC1CiFkEUksvXUI30HKoAVdWoVqtYqsL25g0c2yCfc4nCPooqkcJG1R2iGDQUTBGTJF3iYDCXkRiWhWWZrK5eI5dxUYWkvr1BEgWUiiVurt6kUq1imQ6WYeH1+8zPz5HN57DtPJXyBKpqMjM3y+kzp3CsHOXiONPzM5RKZRKZUC5VUBTBjZU3MJQuhq7Q6gfYhTJoBRJFEoYeuzs7hIGHruuoqkaQhDhungsrl3n8s/cQen3Onr7G/fvvY2drEzNXIZMvIYSOq7sMjY6jOzmcTAHLyWA6WTTDRFFVFPEec5cW8YE4Ynn5Iv1uB4GktbeHYRqMTcxgmM6g6P+R0+MDe9Ner4tpWnxScPfMiaf49OMPpcf7mEzYj7qa91+vHDAkH5cB//jn/Ml35D8NVvHjn+uj2byfg7ufwfhYssyPmXf3/qF86PaBcybyXTr2joOOHJQq5KD8cDcJ5gcu6X0/P/Lop3niW99hYSh13UqUVDaBUCgWcuw1GlSHyyiJpLu9i5PPE3PHalaShDH9Vo9eq5sGjSYJZ14/z/59i+ztdVFUCAKf26tr7GztYJoWMo5ZW9tkZGwU3XJxbAdd1wdV0QwylhiGQRgm5EoVgjBCV3Wy+RyB5+P3PGzDJowlvtfj4qXLqaTLEAhVYa/TwTDT5uOdrR0c18ZyM2TzGTRTo+cl2G4eoUS0Gk3+6989yQP3HCAk5plnTtJo7JHP5YmSCNO2CIKQd85folzI47oZZKxgWhYykZiWSRJJVm+vkck5xFGAICaTtSAMiJIEJ5PFMg02V2+xcvEao8NjfPPJF3n0wft46OH7MPWEer1BNlPCDxI03UJTVa7fuEqplKfZaKJrJn937jy/85ufo76VgpxOd5eMW0JTNDSzi4wTSrkaTz79Ar/6K7+I5Wisr90knxtG0VWa3QY5V8MM+kzOTlEpj3Lj2ga3bq4zPT2CaRr4Xp/btzdZ29hhZddjKNMl6K7htdZR9Ty7jR5LS1NY+Qw7jRalUgkZR9i2xfZ2g1ari6Zr3Lq5ges63Lh5nYojiLpNup0+tZFJhGHz1uXLTE9NYeoGW1vbzM1OUatWKeZLqIZCHEPWsXFtm26nia44LK+ss7h/H8+/cIrTZ94kSmJOvfYWSuhx9OAiSZQQxTF/+hd/z/UbN/niFx7j9dPnODA/zbUbN1k6tJ/a6BCJHnLz5g3yuoauWkhFo7m5ydtvLZN1M0zPznBl+QbDo2NImUpZdUOj32+BruO6WQIv4LtPPc/oUB63UIZYcvKVs1QqJQxTpbGxyU6jx6Gjh5B6iNBjrpxfY3uji5AqhbyJbkjK5SL13W6a6xiGbG17KLHK4QP7eeb4K9gZC5nAypVVHNuhubfH+PgMgdfEMbO8dOo1Wq1dTr+2wsRYmYxjpz2VUcjM3BRHji5w6swKJ964yGcef5BytcJzz53mqWdf5sjB/YyM2WgIbNOh1epjmgZSqnz/e6dod/s88OnD6IaJgsqxY/N4fhuhxhimSibjIMMW/+X4Gv/qi0fvlHvQhUng9wnj1LhjfHyc5u42bsZEEnP6tbd5440L3HP/Ydp7DXKOxc5OA9txUAwDRQqkIkiiiEolC0jq2y2q1RK5bAqSGjt7ZPM5ZmanCKOIP//743zuc58B4CtPPcN91SKVkQoi0fG7XTrtBrYJMkjQLA3XKmAZLu29HQxDog1s21VVR0qVMImRUUKv28PJFkAziAOfMAzZ29tLexjjGAUF23XZ2tzkwvJlli9c5aWTpzhyYD+GoeB7XYRuIpUEoUii0Mf3fErVHAv7Z3GzGSzHpt/tEcYB0xMzoAaYlsAys4hEoCoq+4dHeKu5xTfOnOOxyWkUwwRVRcqIYiGLppvoA7mkEAq9fhuF1IlYFWkWYhj5mLaF0FSiMELTLRAhfa+PlAmI1MlSoKIkAoU0RiAMPUIvQDUMFF1DCHj+B08xPTHHydVVHv70MZ5//hUen51FVTU0Na36K5qGpqopMycMgiDCsfNAQhwlacSMUOh09siYDqphkQiFRCYoMibutwiCEMfJIGNQkoSg18bN5JAyVY9YtsXORlpMU4UgSeJU7g8YAzmoqqXKizCJee72Bg+PVdA0lU6nj+s6FAomJJLAT9jZXmOoWkY1TISmomiCsCdpdzpkclmkmmDnbDQ9lS8LVbDX3EMhQddUhGlwvtmhkrUojBxgYJz8w2v8j90B/vD6/eF9wZ0jxHGMGeXQDfUjjqcAatqzpZD+LARDI2MsX16hVa8jk4Ruv8vIyDCqTJBCRYQRUjNINBOEhqKoae9lFHHp8tvYlo7n9dHcDJZhs9dsknMNEqGBkpDCMQXNUGi2PJrb24zM7CdWNCQKQkqUKCTuN+lHMapq0252yY2O0PUDohgst4BhWQS9HhKfvt8mjjyKxTzdbgdLVQYFTIWRUpbu3ia1oQLFoo3rgJMx6DT3cEyNa9feJokltakJrl6/QnO7zubtdeJezMTkNI3d3TSiZmoSu5Ijnx8ik80R9TpkdYXlt88wPp4BA2JVx7RGAJcoSVClJI4SKiNTeM06e7ubREGb2OvRbdZZrI3j5hQ21va4cqvOWGUKOzdMbXgMTaR/D9WySFARpPs8qerEuoOmmaiqQSQBBIqqkSQpcN7Z2iDqNbE1gZ0rYVZqZErDGJqBqqofnAIKiIHTOorCwAj1A3YqPwmwC/wIrawwvzCXzt6PwYT96Hn6QcHZwDckLV4l8oeiCj58E+9aab7fPOVuF/OTo7CPen13PtrvZxDvdt+Hf5eODzrFvMcU3h0RKPwc3P1Mxn+rnrsPfKEPZDIfGO+bZe9VdD7+J+tvv3f8XWkmgwonQOD1eePNd9jZa5GzTZ547nmOLO0DRUnz4xLJxu0Net0+vh+AIoijhFdPn8PS0pwr1TKJohjTsshmswRRjOPYpJX3PoVigW898X32Lcwik5i/+to/sH9uGinSnKHdepNMJoMQCp6X8KW//RZHDyzQD9LNo9ftE4URbsal76WSmUzWxbYdNNWgsdvENA1OnjjL7PQEUehhmSq6AC/oYlkG+6bHGR4fQQgo5/MUCzmq1RK6mWYp6bpGEsVpc7Zl0el6vHLiLEtL87RaLZI4plSqoKs6iiLo9Ty6nR6mbuE6GcIwIo4S4iiiNjbM6uoamgovnT3LwmR1IC+x+P7zJykVc+i6yvMvvsbhw/vRdQPbyhAGEU3Vx0gkQZjwg+Ov4jgujuWyurpOLudiGhk03WRpcQrHdUGqOE4OoUag6BiaQ6exzYXzZxganeH22jUqNRvNlFTKJf7qr7/NgX2L6IbG2OgQ79zc5OhsCVPX8P0+qpVj8cDCwP1KUK1U6DT2SJKQfr9HLp/hxZNn+YVH72d9Y4+Z2WlcN8vZc5dptX1konBx+RYTk2NMTI/S77XodnpUKkXcjEUQ+Lz+xlvMLczz5rnLDNeGOPv6W2nlNwzZ3K5jWSqjtQKvnHqDhx+6h2LOYXp6HNMyuXFzjdpwlaV903zqwXt45dXTHD22RKlSHLCre1y5fI3J4RqmYVAeHeL5F89g6waRDJmemWZieoJIxhiWyvrNdRzH5u23LrCxtsHE+CgSjcDz2d7cZni4imnodDst9hoN9h9YwHAsWp0ehq6zsLiPfs/j6e8+z76ZGVZW3uGRxw5TrhZYXw94/dw5Qj/B91LX2uMvnKZWK7K7W2f52jU0Q2FmZoSRkSEqlQK2YzFULRGGAb2ej9dP2NjcZGOrwYG5eXqeN3BbVdlrNVNpc6JwcGmBo4dmUHVBv+dRrbiM1cqsrGywMDeLpsLqrQ2+/eRLHLtnkT/4f77Cv/03v8k3vnOchx86jKEZfOvbz7K0bxGh6YBCp9Mjl83Q3N5jY7vN/plpElSkUOl1u5i2SSbrMj09TZIkZAeusJow0DWDr3/rORYXJxkZrXHx4mVGx8aw3CxhFNFr99BUjaHaECtXLjBUG6KYL/P66xep15vksmkYtm5qoEg0Q8PvthifP4RjW7zxxts8OjNBFEVs3N7k5KnX2b+4SBhE6JrNTqNOPl8m8Ht0eg1CP8K2bBQhBpJBjU6nTz6XSb9bcvm0bylIMC0T27ERmsr2xvaAwVOxHZuFhXkOH97H4UP7KFXLRInEyWTpdnp4PT+NGOj7GHoKcjXdQAgDQ9fJui7ZYoHdepvqcIlYJgS+5OqVFVauXGVkfJSz58/zq//qX/BH3/guj8/OpGsBpGYxg1w6kMRRKnsUIr3vTktAQgykzKMiUsCz12xhmhaalvaTyQTarT0syyKRMYmMUnZtwNypaCShZLQ2zr8//hL/2//yP9No7LEQ9Cm6GXrdDrqhEydJ6mAZRym7IuEP//S/Mjc5wfb2FvlCPo32gJRhU+6YRaQZfc16nW6nhWHZmLZNImMUBUzDYK/dxnIckjhmr14nW8gRhCGqoeP5PrplIhMgkWnPoJJGP/i+T7O5y6GRKt1Ol0KpkP5dkoSdrTrFUoFcJUuUSBQp0uifOMH3PJ57+RSTY8Pp3DZNdF0nDEKiMGV7gyAijiSa5fD8ynWKWYPFI/ehip+0FePjP29mdpqv/sNXWJzY/4nOIAbZgLPz+5hZPEgkDKTXplXfYu3mCt3dTaLEp9/eIm6vQ9RGtWwUCVLGNLd3OP7cDzhz+jSPPfYYUT+m3+2xWd+iWKwwSOYjlawlZF2X6sgYsdBBpttYr9NgZ2uDN86epDo2TaE8hJvJYtglbCuPaebQ9Dy2XcSyUxOhKAgwBMQJSEXge30MFcKgBzLBdh0U4kF7QoJIAkzNQIgE0zaIwpjdRpex8THKQ8OUqkP0opgzb77K+NgIpUKRSrEMIaiJR6exjte7Tad1nWwODCuLaZUxzGIaReA6uNkykYRICpxcEdvQCOMEPwqxnAzdfoDn+9yoX2Pf0kFyuSKV3BjFYonkfe+JgoKSRCRCRwoVJYnR4x79vTq95jZRq05j4wYFU6AYqTpI1zX63Q66YWC7OSzXRUEhGJh5ve/g6cxSlPdYYOXujPAnHRd33uKXfvmL//gD3XVIkAqKIj/WtvY9eeSPe2E/ZYrtzlHvwup9fKbvk1/Tz8Hdz2D8NwN3H+qlSxftuwqKfyJw9wufeYxzzz9LLZf7ALiL/IAkjJjfP0+hVKBd32FyepxEUVCkQtAP6Hd7uI6LYRqpDM0wOHRwP8VSIa0ge3765SUltpPhrfOX+e7xl3n8kQcwTYOtzW0euPfIoNdB4/DSIlEUks1l6HX7tNs98oU0XLfXDblw6QpHD6cARDM18vk81WoZ3/MxdD11iJNp+ClIstksGxublHJ5lETiOBYQE0UBlmsThxG2ZeF5Hptb2zxz/AS9fo/pybHUFEaoRFFENpMlDiI0TcX3ImxLR6hpYHPgBThult3dBqZp8kdf+ipf/MyjDNRCtPZamKaB7VjEisTNuLiWwX2HFul09hgZHsf3I2anJoiSED/weebFMxxdmicIQpJEptJJWzA+PMzb5y8zNTnO9PQ0L71ymkqlQL5QTHuTohjDMHn77Ytk3Bz//v/4c44encQysygoqEqM40g2tyOK5SylUh7XcvD7CYZmkM3mOH/hEo5jsbLdZH7IIgr9tNcwV6LZ7NDzAtZub9Npdzl14hwTk0Nsbe9w5eoNfukLjxBHMUPDY6zd3iBOJPVGm/vuO0rWdVi5scbi/nnCKEBVJdeurjIyXKWx20AIBde1KFdqdFotms0mS0uLoMDIcJVczqGx12JqooYuEgzdxHFsstksV6/fYnJqnBdffg3XscnlMoR+wOjkCL1+j1KxQD6XJ+s6JH7AmTfeYWRqjH2L82ze3qLtdSlXKnh+yO21NXRD4BgWYRDieR6mbrB8+TqFYhHXsri9up6ClmyGra0tJidGefnk68wuzKIKlb29Fn4Q89wLp/jn/+Rxrq3cSBl3NWBouIKmZRirVRiqDqHrGtlsjqvXVvnUp44yPFphfn4K01IpFvK4WRdNFZimjmZobG1usb29y+z0HDs7Wyztn8YybF49/Q6HlubQ9RSkCKFQ32pgGg6mpYJMUIWGaUHGyTEzPcmXv/o001NlgiDdYJdLOc69fYXFuXF+4bF7UQREYUy90SKfzZPJ2GnO1MBY5Oa1Vf7TV5/j13/pF0EbZGJJSJKQMPCRUnL29Dm++/0X2a03eOf8Movzc3zusw9juSZXLi0zNFTBzRVQhEoSx1y7cp3bq+tUahWOv/wy+xcXMAyX8dERSsUSzzz3POub29xzz8GU/VEVFsZH+L0//RqPP/YwjzzyAO2rV8hlc1imzeTYGGEQ0/cCKpUh+kEXmUjCMKRYcbEMG89LzV0c10YRChk3h9frkc3naLXarK2tUSpW0/4xIfADj3yhiO95aXVcUQh8H0VL2fwoiYmThH7fI5fLoRsGt2+tUcinPY39oIttZzBMGxTB+uo6EQmvnX6LhcXpNEtUMShkM4xPjiORHJ4c5Q+//iS6avDozDRJLFEUOVgfUnlav9fDtMxBNqYxUFikNyEEURiiKGLgLplgmhaKoqLrOkmUIISGYWrIOJU0okAQ9jH0lEGOowSk4H/4kz9juJzj2L3H+MM/+TN+7dgx+j2Pa9euMTY+9u7zlSSh2+1h2g73Hz1MFMW8dvYsi4tz9DpdTMtKgWQUgyJQNZU4CpFJhN/vUqxU8H2f5eUVXNvi2eMvcuDg0mBNgWzGQVEFqq6jqAJF01LzG0UjCAJUVQx6yVXCMGDUVmjXG5iGgdBSQ5coDEniGNMy8OOQIIiIgoSvffNpJmpViqUCY8NVMln33f6lREq67c5AIprKTg3DwE8SHvqVf8rm+m0Wj9xHijJ/kvHJQOGDD91P83bnE+0NpUzSzEMUElSyhSKVcglV1TEMk263xfbODjLwiXtNunt72MURNjc36HU7ZG2HSxcusL29TaddZ3ZmEdd1yeQcQEMo7zEnqqKgqSqoOokcZBQi6XfaLC9f4r5j92Jli6ha2kerqDqariM0PZXnqikLq6kqcRgS9HtIQNMNQr+PrgniOBy8JpE6uioSgURTIIpitnc20A2dodoYe4021UoJzTAIwpBydYj5xf1kXYetjZs0m1tkMgaa0iNJesRBG00k5LIZYmGj60UMI4OiaoRRiNAcTCeD5WSQikBXoD/IisyXKmSyBTRV56lXXuKf/fIXGZ+e4I//4s84ungsLRzF8bsGQIpMUmYzkShJyO3L51B0G6/fx/e6tJq7aELBypeRSHq9Ho7jcHvtNu12m/JQDV3XMTT9g7PoDnuE8p7CixQw/eSJyfClJ/6Sf/Nv//VP/PwfN9L+VJAfG4Xe6dtTfsw2+P//4C5JJJqu/xzc/bRHHEe/e6en7mcx3pNevm9IiZTJB+//sPTzR1xPnPzoJu4//fYzKXunpN10Aujstbh16zax71PN2bz1ztsMD9XQjAwySojjOA0ndx3+r//813z66D1cvnQNBjks+WIOU9cJfH/QhA+tZpuluSkqlTK7O3WKxRxxAnt7LQxDxzB0TNMkIXXcPPf2ZXqdLiAplSoc2T+DrqoIVcWwbHqdDmEY0Wp16HS8NLdKT+n7O5XJNAQ6Dfqs7zYRqkIQhfS6fWzbJg5iDNumUCowPlTGMHRqw9WBEUTA7dV1up0emqry6qk3CIKQ8clRbMcgDEMsJwWJ//G/fBlVxvzL/+7zKEgMy2RnY4czZ99i5dp15vdNo0hJ6Ic4to1hGBTKeV564Rxf/+4LLM5O8J3jz/PAvQe5//BBDEtDN9L4Bs/rE+V1stk8M3Nz+H6XQqHC1NQI2byNoWXo9zskUrJT3+XcufNMTYxx4rU3efSRY7iuiyBmb2+HUqVCvjxKs9EnY+fJODkUmfDSidPcc+Qw7VaPXNbl5PJtzr70Ko5lUd/tUxuZYme7RX27wfrGLqMjQzzz3Ekeuv8Qc7MzzM5OvssgvPDCKarlPKVSgaWDi6Co6KbC+NQ4mmHiewGu4zI+Okqv1+e10++wb3GOF186w8KBBZLQQ1USSuUCe90ujuOkroKmRquxSymfQdcNRsdGMR2H0ZFhVtfWuO+eg1xeXmF7a4fp6TGECiQJYtDLc+LU6+TzOarVCjdurJPLZBgaKjM2McL3nnmJmakxyqUcK1eukM8XKRYLuK7L+PgY2zsNCpk8V5avsdfqMDE+SqGY5+rVm9RGhlnct0DQD/B7Hn7oMzE5wtGj+2k19pgYG6WQrxIlIZubm9SbW1xd3mRqaoybt25SKGQoFXIUChn6gU+iJLgZl+3tXXa26px87U327Z+nsdvAzWTodFoksUI2r2EYgnyuiOOYfP/5UywdmMO2bYRQWblyG0WqaKrKzs4u/V5AJuty/p3rjI1VWV65weRYmdNnLmIYJhOTNS5fucnQcBHLMvC6PW7f3uKNN69yeGmW4y+9yuhI6nophM5z57f533/nt4kSUkln4mFoqXurbmrEcUS5UubY0f3Mzc5y9dpNDiwtpH1zcdqTOFQbQioqEolM4MQrp6kNVchms7z51iWOHj6Madk8870XiOOYbqfPYw8/hESiGxqe7+FYDs+/vsyjjz3MmTNn+OqLp3hsZoZOq4WmGzRbbba264RxhGEqqCgYmkYkA0IvTO3NpUIUS3RNp9Pz0NUUsJmmiSYEK8u3sW0L3TTSYpuqEcVxet1SUq/XyeezBJ6PZVmomoau6+iaihwUAhSZumt22w1UVUfVTNp7HZ58+lk+9amjLMzOIVRJ4PVQYnUQmi1RNQNFKDw6PcWL167z7MUrfGZ2jjCJB5ECKYjQ9JRZVYWGlAqqSFmTRMZEUQQijWAI/IBnvn+cmZlJhCqIojh1A41jEilp7LbSuALSx8eJRAC9Vofnnn2RX/yt/5Ew7HDk6CG+UMwTRTFhGKFqEsMwkYmk3/ORJJhW2jOn6RpSxhw5soRMEvr9fmrFHyfvmi/sNhq4ro2hqWkmp2qiqBojI6Osr65z+MghFDWNL0BKeq0mumkR+j6GaaKgpKBWQqfd4cKFy4yMjgIKr166yNJwBdNMza8QEt/z0TSdVrtBNucQRxLTsLh5fY2d+i6HDx8giUOiKEj7lh07LaDpOplMBpQ0qP7y5auMjpb5o3PXeeSBe7lx/QZT+w7dNWz54427Gaq8v4j7wwf+wz/74x/be/eBoSjvyyBLGbZINVEtFydfYWhsmpHhKbxAEoUgdJdieZxc1sa1TFZvrLBvcZEDBw4wPjWBUE063Q4ZV6Xb2CaMInTTSgGkTF9BJMUdLg8hBLbtMDE1i6proBlIBAJJoiQkJGmbiIy5fesG2XwBoWqpI2R5iHZrD9POYmVLhHEataCbGl6QGoQpQpAkqfmOlCrVoSqWrSOjiGLWQiZdvP4eF985w1Apj9f2SLxddNFG0CGJG3TamygE6JqNZZdJEptuEGM5JUKZZncaTgZQEZqVFiiEhiI0EqGiGha66SI0E912eOvqeT77hc+D0PjMZx/j5adPMFS7s+9K2cxEqBCHRJ0m11cuoUiFytQcuVIVO5enVBvl5sYW+VwOXTfQLQfLtilVh1m9cY3JqUmSKEQILa3Tf1jNp0C/30NLJJCgGfrdaxDKu9PkI0d+xGV6ZooPztkfP/GlTFBV5SOMVwYz891Qu4873pN2/mg55j8O2N0xdvlgaHp63x3p5fvHhyWjQrz3+A9e2Y+G2XckqR8OZ/85uPsZjDiOfveTsmSfZNwViN0BcncBdz9ufHhivH+88tKrPDxWGcz5dII5jk25kGf1+jX26ts0mw0O33OMvq/Q73SIoogoSnOIDi3OogmDbz/zIvvnJ1PJkKrQ7/T4xhPf58DCLEJVefbF17jvngMoChQLBfaaTdbXt9ne2eXL3/kei1Nj9Ho97IyNQGF2epJMxqFaqwAKUeDTaXfShVykbIQYWGo7toNlW4Sxh+/5mKaNlAmNxh6xjLm5us5QrYZhmWSyGUzDRJEK9e1dbDeDRKApCaVSMd2gSPiTv/gqRw/uo93ucOnKdT79wDFGRkewXYtOu0W73SXjZnj15Bn++ecfZX5uEkUoJDJG01XajRaLCzMcODBHvbGDZejs1vdwHBc/jNjZ2eW7z71GpxPw+V94kHuOLBL4Hq6TZXt7C9e1SZKYXq/Hf3rpIp9/8ABhFAIBObdIvb6OoiYYRgYhEnZ26uTzOY7dc4gg9Dm0NEOpPIyUHpKArc0N8vkyoeJjmS62YdNs1llbu8R99z6A70ccP36Se44d4uXLm/xPv3IfCgpTk5OcPbvM5ZU1DsyNMzWZOkDumxslkbC6uo6uG3znqRc4eGCBrGuk0QSq4I1z58nnsigiDYSPkoR33rlMtVwi8MI0CFhV6ff6aW+MjFCSkPGxampik8/SrLcBhUI+x+lTZxkfHaY0YNqeee4kI8MlJiZGOX/hEvsWZ9naqhMOMuJ8P0j7UYVgbnYKw02NTESoIKXEztp02h3Ghms0GntYukalmKXTC3BzGU6+9iZjo2k19PnnX6NSLjA5OcKVlZtUqyVUzRhci8dTTxxnYmSIi5dXqA2XECr4ns+1GzcpVzP0exGqYvLlrz3HzMQojmtxeWWFifEhbq2uUSgUeOXU6yxfvcnSgX0UsgV2dxtUKyVKpfTv5Xs+E5NDhEHMzVvXmZ+bQFV0JqbGubW6Rj7vUilX6PU8vG7Ik989RSIDnnzmBP1ewPz8FMuXV5mdH2H/vnF0VePq1TX+2S/9Ii+8fILf/PVfJpN3sU2D7zxxnDAE0zI5enSe6akR3IzF5eVrWJbNN17f4Qv370MRKlHg4/Wa6KYLIqHX7eI4LkKoWJZOt9ejmC9gWhqQ4HfbrFy5QibjoOoa3U6XbrcPcUJtuIbtOFiaQbPZ4vq1myAET//gVb7w2Uf48lefYt/ibOpga5jEUcinlsZYvR9MLQAAIABJREFU2YlYWtrH8y++wmfm5khkkoZPez2eP3GKe48dRVdDVFJ2FRVIYqSUGKaFaTl4/YBCsYCMIwzDeBf4PPn9V5ifn8G2LRgYQaia9m7sSy6fhzhBxglhECAUhV63S5xEA9OpiCSJEEKgC4kXxDhOARRBfbvO2EiRftcnkzGJQp+nn34e29To93xOnXqd6dkpkjjGiT1KU/P8/lf+ls8dWMS0bQLPQ9N14jgi8AOE0AcZcwm9Xndgk55+t0spEYpgfn42ZSLV1HAhjsJBPlzC+u0tFEXgug4gieWgtzuR/PmFC/z2b/8Wx44c5Pf/wx/w+Ow0QtVTBjrnEgZpJEDKAOmoWhowrqoaumEgSbMLbTuV5wuh0G40UXUNJ+OiqgpRGKDEqewu8GMau02GKhV0c/B+aBoyjoh9H6EZBH6AbVtp3EL6lmIYaQ6oZdskcczs2Ci7u5tYqs7bb51HqKnM07YtkiSi2WhQKpSob+1SLJaYmpoAJJcvXaKQz+E4NkEYsr62SaVawvd9PC9l7MqVCigedpJAvsLQUJV8bXTAXv0k46Ofd7ctYKvVZig78gnOcaevh3cBlzKQxcqBpFWoKtlCgdLoONlSFU1VqW9toWsapqbQaOxQqZTwkhhVWGi6xs7GNdQoQFgOlu1+qKicskViYAwSS4WEdA4mCBQkapqqB0rKSCuJpFQskSQRiiJQdYMoCGnv7WA7LmGskEiBaWWQ0kc3DKIoeRcU6I6DaWURqkJrb5dep4cgIPR72KaGY+p4nQ6J7BIHLWTYxRk0SwrVRtcdhGoRJyL9fKCCEGRyWVTTRdcsNAEJaWFTkBo0CVUllqBqBmmEgcK55Td4/DOPpusRErWo8Xff/DsOzR9BFYIoCEhUHTXqs/z2GYSiMDI1jwSCwAMl7YlLJKzdXsVxU7MVSdquI0jYa+5SyBeJ5V3QA4CMCf2Av//bv8G2XapDQwPwfZfpwUeDu79+8i/57X/9Wz/6yR855Ltg578tw/aPP94nZefee4zygX8/PO4Aw7v9/m5y05+Du5/RiOPod/+xLpgSBgzYh+1O33sTZfIjvF0Htzv33olH+FHX81Ea5McffyQNNR+rvtfCKQSG4xB6Iau3VpFhyNhIDXQDoacLtWVayBiSEAzL4Acvv8bRpRlGxofY3tkmX8yTtQ1mZyZotzuMjVQo5kv0uj5//lffZGlhmum5McbGhjk4P4fQDCrDVU6/co5KsYimazg5l16/h4wEX/76dznx5gU+ff8REmI8r0MYhDiuwzvnL3Pi9Ovs3z+Pa2aorzf4wz/9e6bHxuj32lxYXuGegwv4vSah18HKFAkjiabbEHuEvQ5uoYJpWQgF6ttb3HNkP0O1EjLyKJdLrN7e4p23rjA9PoKihmlWk6IxMl7Bdmwsy0bXDWSscO3KJtXREsKSGJaBbeRRDRfLsNjZrFOqlCgMVXjw0AIPHFskk8+hGTamlWVr4zYZx0WRCmEQpmHu6w0+f2yS7l6DaqWM7wfkCgWiMEDX0zwwQ5GoSo6/+fI/MDFboFTNY+gavcY2q9eusrB/P74wEVhYukKjsUW5ViFXGeebf/8EG+tbzM5MMjJco767w2hZMDM/jWpbjI8Mc+niVYaHy+w2dpkYH6bR2KVYGGf11hb5gsvU5Ai9vs9Op0u2WERTBWdfO8d4rUSYeDS2d8m7LsVSAXSdK+9c4PW3LrG0tIjtmFi6xHXS0G03W2Bzu04xW0BVEs6eeQslSThy9CA9z+PylZuMjo9w4eIVDh+Yob61jarZLF+9yqGDC+iaRb40hOPkeO3M24wMV2HADnV7fcpDedqdPYRM8LsBX/3G9zm0NM/Gxjq6kBSGR7Asi5xjsbuzS+j5HLv3CPlCjkSGLCxO4wU9DENg6hpJBPP75tAci3PnLmKJAKIefb/N9NwImrQ4+do5bNvil/7JY4yPjwxkwlAeqjA+PY4f+kyPjrCztsPxH5zk5GtvcejADEjJ1uYW/x97bxokyXned/7eN+/Muo++z+numZ77xGAwxEVSXFGyRFu2wxu7H3atCO9GeDdiFV47bClWlsTwxkqWrJVDWq3FIE1RJAguSZEEIIAgARAggMFF3DODue+ePqu7uqrryjv3Q/YMhgRIAhCosCP4TGR0d1VmZU5lVuX7vP9rdHQQ1+3S67oUB4oMjA2h6gaObZJoNqVymaxT4FsPfp+nnnyDX/0Hd7J9dpgkjjh8214O376Pt46f4vCRbZBAq52QKdjs2DmDEKl7qu91sK08QoSMj/cxMz3L9tktxFHnJmLlBRGdEH7xjh3EwQZJ2OXL/9/D7N57BxfOXyGfNbFNkQ4kwpjQi/jM577G0Y8cwXKcFKmLYp554TX27d9FFAUsryxTyJUwFMHpM2cZGR3h8/d/i/nFGh85ehtjYyN87N47KOTyvPDCaywsXWd0pB9N0TCMDIEX8a/+/Wf51C//Gkduv4PvPfEdto6OgyJRdI39B/cQRWmwdau9gTQ0EsXCMm38MCYKAqLQRRChZwp0Wk1c18MqFNjoetx++27ipIfl6ERBQqsVbEaYqJvaIplq0lI7BOIootvq0OkE1JZqyERiORliqeAGGradQVUTkBHT26dYnr+M4WQQmoVqWMxsGyVbKJIrZNDVhEIuh6poVIslvvDk9/hX//s/5zMPfYePb5lCShVBwqULlygU8ogwvhk6HSegagZSgOf1Ns2mEhRVIZYqUZSgSEngdxGJTxgJ+vorPP3MMaa2TCCEJIw6/P6Tz7LnVz7Jr/3DTyEl/MEf/Qm//Yu/AEiIU75HEkf4QZcoCiFMcxUb9Tq+38MyDSQaURjidV2SJMHtdYmCkCee/AGKSChXCnRaXUwzR6vXJo4Fvh/y2PeeZmp6gj//zBc4sGcnhqWn7pimg6YrtFsbOLaJ0A1CBFJJHUF1XeJ2moRBj+fPnWK2r4yUKovza4yO9kECqq5imDZONkccxnRdF8syyWQzRGHEQ4/+gHMXrrFz2zSaYWAXsgip4Hd9RJJg6HpqvBLDV84vcM+9h+m4PpVSlQ8O3SW3/PbjR4u33u23bZvh5MUTZJXCe3IWFO+6bCqqZdp0b+o80gGnTJsa32/juy3c1es4jk2+WKZQncBybAzLQLNz6Jk8plNIj1DeOMrNyIrNCQaxqcVTlBtUwdTlNdnEL8I4pt1pE/g9dF0hkjYJEXEco2sWdraCbhdAN8hk88SxSsf1iBIdXcsgjSyxZpPoNkJVcL0AFRVb14iIkGqCIIQkQFMlUniEMsSwypDoBL0OUaKg6Dk0p4I0HHQrg5MfJuh2UYWCbmXxo+Tm50/ytkuGVNRN9DtBJAlKkiDaMdsPTaf/DxGRz1a4667b+dPP/EdGnRLrK/MgI2qX3yJRdEa3TON3N2itLtBer9FYXqbbajIyPEK5f5hWswGBi2noKEJg5cqsXDhNp75GvjhAoihIIYmT9D1VVA3ZqTN3+QIokkNH77o5Qf+O6+PGRfEul18Yxdz36F/x27/7m9xollI06m0UK7lhc/njrr/N6+rHN0PvD2H7yfEL7wZhfvB6t0buvZjI3Hj+VkOVG4eXOhwnm+hfygZ5x3rv2PbntMyfSUWbmru/zeUiN6kDP6m5e7/I3Ac5HgEcPnKYa6++RMG208c2M/TyxSJer4tQFCoDQwjdIoljVKnQ66aWv+v1dYIwZmO9SavVYfvsDJZlszC/yPziMn2VEplcDt0wieOAM6fPMzk2iO3o1GrLhJ6P4zisra6xsLDIYH8/Zy9eYXxihChOZ84VqbJj6yR3HNqDpqWubIZloCgqoR9iWwazW6eQiiQOIzyvy0eO7KZQyVCuFBkZ7E9nt+Mg1cnEKq6b0i51LTUakKqGqqoIwDTS4FC356Vh3IUijeYGzWabSiVHba1GvlBAUTQMy2B9tYFlW/R6HvPXF/nWY88yPTaApimsrzVRlTSs+U8+ex+7t06SyTlomsbq6jKlSpE4idJjEAmGqtNstqitrlEqlhBC8up6hzt3DdPtdFPLatMmjkN0Q6HTdRGKRLVTmtHh2/fgWCaW5uDHPUxDxTAMdDODVC2CwMXQdUzTREiFTqfLoX0HKeYLeG6PfMHh5IXzHNk9SxRCrbZGNuMwOT7I959+jUazw0qtzvSWSWzHYmW5hqGrrNTWGBwYZKO5Rn+lQK/TZXJinLMXrjE6MUh9rQERtNbbFPMFEplw4NBePNdFkhD0PBTDZHlpJY24SCDjOGw0m1iWycjwMOuNBp7r4nUbeL0eumHw4g+O099X5uq1Gv19ZSzLZnWtgWmbPPvcy2Qck7GxYaRM9TFRFNNutQl9nyiKWV5ZY3x8iLX6OqPDA1y+fJXHn3iNXbNTPPzdZ9gyNc7aehNdUzBNnUTE6JqGqirEscKF81c4deo8o5NDKKpg2+QI5VKZfKHE9bk1+vqGaW10yGRsBocHCKMQTTPo9XpU+sooqprqjYiJo4SRkUG6nssv/dJd2I6C6/WQiiCXy/HU0y/TaHgYukkxX6Zea3P8jXOMTVZR1YQkCYnCHv/w1z4GxDz2xLMsLtbYtWsnn/vLb1FbrbFlyxDZTIavf/NxRofKaIrG0uIyn/vCQxzev50/+4uHuO3gLJ7vkssVCfweiioIw1Sn4zgOpy8vMdyXTgbV1xqcv7jA1MQkL7/yGrNbJ+h125saLpvVWo3l5VX27t2FEDEQ02k3KRXz9HoexWIVVdU5+eZ5FhaWKOTytNs9Lly4xvziGh+/9zC2o5MQoEmda3Nz3H3nQfKFHIqqs7R0lVzB5vatFQK7SCar8OAzr3JkeHDTOTE1OzKtLIEfpsYfUsMyDLzuRmoSQYoA+GHq5hhGIaVymZ7rkstmScIQJ5MFoaLoVmqsIiGKIyAhiWKkAnEUcuzY8xiaiaabnDt3lSeff4433jrB0cMHcD2P5YU6f/mVrzLS10ccJ5hOBhGHZPMlNif1UaUCwiBJYoqlPM1mgzdee4NqucqdW4Y52+rxD/7xp/j9L3+VuyYniOKIfD6Prmt4ro+QkoWFRTIZJ6VLJzGmadPtdNF1k8D3EFGEKiGMA3TDBEVLtVEiZnZ2mjiJgIA/fPpFPv3pf4Om6hiGye//wf/N/3pk/2YkTwwiIkg8VKHgul00VWdluc7FixcYGh5KMzyRtFptpCIxDAOQNOrrJEnC1OQWdFOjUMihbaKhQgFN0VFVleZ6g/GJUV546TWO3nHoZuaURKIoGm63hxRqGj2QiM3n0/tap9OhUCxy/4kL3FbJAYKBwWpqvmFZBGGU5hBqWqoNU9WUCqukeuuxwSFOnD3Hgd2zhHGKbioqmGYaco+SBkprmsqxazVGB/vQDYtcufyu9/X3Vu/tnv+jd/vx8VH+7HP/7/ujZ77HEkIQxTGOpXPl/BlMXWd1o01leBypvG0LqqpqGp3Bu4xpNn8mpBPRQRDgbayiKyJFY0WK2N1oKjUJfruBiHw0CZoUtDstdDPNWkwSiGKBlAqGbuEUK6hWllarh1RUTNOGnofX89B1jUSBSCZ4PYFI0gkmt9MhY9kocYAmY4hFqqe0NEK9iO4UsXNVNNNJWQlAr9tNzaU0I82D5BZ66+akCptjsRvvW5REDI2O8M1HH2Dv/gMIoSKkSxh3+djHDvMX9/0lB3fsR08Url+5xK6Dd+KGEk23WF1vMDE5jWkatFpNso6JNNJJ0FiohIpOiIIqwcoXqTWarC3NUS6XUEhQRYxUFXob65w7exqpaBw6ctdmNvBPvkaTzXb71rrvO3/F7/zeb/1QU/guCiI+rGbqvdRPbxQ/vHqfQ/Of/lrihz/Lb7/uTztu8fPm7mdRH05z93ZuyY/W33Vzp6oKf/6N73DnaPWH9psIQaVSJAhDMtk8iaIjgU4rDY4mjhEkRHHCuYtXObR/J47jEEYRff0VRocHWV6spSHY7S6ZjEkYhAwMVLFtnSDwyGQcQj8kCkIeePL77J3dhuNY1OvrFEt53F6POIyxMxaN9XUc2yYMQnzfI4kTVlZWqVTKZLIZYuD5535AuZSnVCmSyFRHo2oaG40NVEWmtudS59HHn+X4mQsoImJ0uI+e6xMEAVIKVE0jSSDwfAIvnfHPl/JMjo+iGzrZnINuGPiej6IqN1G7IPCxHYu7jxzCyZjYtg0IMpksSRwzWi0zNNxPt9fFMDQMU0tnMKVko9lMzV5Mh3wxTy6bu6mLeKnWZO9YjmKpQEKM5wUgQFEkctP4wnAsSFQEIZ1WjU67RZTEeD0Xy7LRNJsYFd9to2sanu8jpUoQBFy9OMfqap1Ot8uLP3iNma3jNJZrfOkrjzI2WqVaKSKE4NLlRTKOxYF929FNk5XlGqVSnrnri4yNDbG+vk6lYKFKwfJKneMnLzKzdYqu20KTGkkQU1upU1tZY2himDiOqa2soqkKnudjmBblcomV5VX6+iuEUcRDjzzF1PgoTx97hddPnqHZbDHSl2FifJS+/n7y2SzFYpETJy9z8MAuTNNAUxVMKzXL6esrYVk2goS5uXkQCaqUDA72o2kqjfUmw8NDDAz2pYYZnsfiQhPX7bFlcpSxsRGK5SLZTAaxaRTw2PeOsb7eYGVlHcswGR0ZoFQtgEhorq3TavdoNrsMDg6zsdHl6rU5pqYmMEyD69cXWa83+P6xV5iZHuPCxUv09VWIkwg/CLAzNmOjw7Q22uQLOp7nIaRCrbbOrp2zaJpkaLCPC+cu88qrJ1itb7B37wSGpuC6PXJZG11XEVIwPjrEztkZPD/AsXUKeZvBgQqqqrJ9dpokCjF0g+WlGn3lLAvXl1FVi317t2JaKhKVq1evbFLPBHEUE8YR9z+3yscPTKJqGrpmsGfPHkgEO7ZPc/XSJQaHBhBSBZm6Se7etQMhBQkhQeDhOBaFQo5SuY8Eia6brK82ePPN03z03qNk8wUMXcXruVQrOWxbw7IMXn35LTJZkx07Z9BNCynSjMhKuUoURnz6z75MpZBnbmGFAVMlb9ooioIAen6aM2npOrqmY2oaUdAjDEMM08TO5kFINFUhXyqx3mylNMwoRMbgBxGaYZIoGnEUpN97YXDTsCNMQhQhqJTLPP/CKyRRxODAMHfevp+De3YiFNjodFlb2aDRaDKzZYwTb51lfHIcXZVEcYqyJXGCTCAIE6IoJI58Mo5NoZjngQe/y+HbDhAvXuOSH/OP/9t/xL/73BdZfv1NtkyMbiIlaY6caZrohgFCEIZBijh5AYahoWgqQc9F1ZX0OUUjQSH0eiRJgqJI5tdW+OJbF/iNf/HP0HWTjWabs2cusDV0Ge8fQkiBlAmIiNZGE9vKYpoGvh/S6fbYMjWOqihouo7bc3n55dcZHRsh2jTHyBULGKaF4ziYZurw2e110sk7TSH0w9SafmgAkpijRw6jG9rNu1Yck2rgTBO/l94LNDU1HLvBZIniGITg2OXrVFoN+vrLqRZQ09PBbQJSVTcD4AW+7yOlTCf1pMILL73BkYM7yeYccsUcQlUQMuH0ydNUKqmpRZTEKFJBndxKGAQMDo9gZTPvEkD8XuuDNXcA99x7J//p83/B7uk9H3DfP/6IBJsOl7VlZnbuxs4WUXQbqbx9Tm4gc9yk3L3tEXDr0cZxTJzErC9fZ211mWwui9RMwhubCmiur6ElISdPvI6ppjRox0nDvJM4QUgFVdWQIm302p067eYGIo4wVUGzXsPSU21ugiCROopmYTn96E4OoRq0ez6qbtLrdkgUBT/RKfcNIQyTXGkE3cqCYiEQ9HwPr5ei0JZtp3RLIW/Sb5Ob78HbzR2k7CxVV0kSePaVY9xz753p5IQQuG6P9kaHqclB/vQvP89kqQ9VxOjZMk6+gKJI+gdGkEoac9JorrO4OMfK8gqh5+LYNmJzUpokAt1IzZ42aiwsLbO0OM/JE29w9tQJojAgkyswvW2WRKS5eak3wTuvt5smfj9SX3zkr/jdT//WTc3Y23TBH7le/o6bu7c/M+86mv5Q9/RfSnMnpfi5W+bPoj6M5i5J4h+//XvBeXkbbJY/pbF7L6D0PffeRXzx7A9vt5kTtFJbo1AsoesmSRBhGgZx4NPrdGg01imWi+zcMU2hmCMMAuprdTRNo1lv8J/u+xYHds6CTDNcdEXj3PnL+IFPdbDC0soqjpWlVC4x3lclEjA4PICUgnqtjipl6rAoJYauEfgh33niGZaXV5mensCxLFy3t6l1U5maGIUENF1HKgrrzQaGbmBZNoEfYFg2nXqb10+e5Z/8/U+ydWacMAywbBspBIZpkQBBENFudVCFTrfXRTc0rlydw7J0rIyDoiiYdprNo6oqG80mEKNIQbvVYmlxGdu0ee2Nt/jWt59ibXmZHTu2kMk56UCi2wWp4LkecRRiGQaKAD+A06fOUyyXkEJJc7V6TSa3jsCmDafUVFQpaDbW06Y2jkmUHGok6DRX6LkrSDWhUB7BsjKomk4cJwRuDyFCpGYQhGmgtIwT5uYWmJqawPM8PnrvHYwMVPjDB05weDJt4HtulyeefolPfPQoO3dOs7xSwzB1pAhpt1qoisby0hozM1uYm7tMpZI6r+3YvpXXj5+mkMuxXt9gYGAA0zIYmRhGSoNOq0W9XmdichQzkxpSzM8vYdsmxVKRZnODscF+hkdH8LoefdUCR24/QK/bpO369NyITtulWCyysRnk2jdQ4dnnn6O/r8rgQJVOu8ex515l29YpMlmbIAi5eOEqmipptVqMjA6jGgYvv3qSbMZhy8Q4u3bNMDBYYWi4j06njW0ZdDotFhYXabc6HNy/h+HhISYmRggDP0UtR4bwPJ8HH3yUg4f2k80XuDY3z+rqOm+dvsjs7BSaoZPNZanXm1y9tki1kmdmW4o4E0VpLpdUEAgeeeQpCvkMpWKJbCaP2wuIo5hE7VBfXSWftbhybQ43dBntL3P8+CmmpraAACfr0Gq18V0XwzTw/RjTMpiaHkNTtc3vhBgrYyNEQi6XYWRkgI1mj/HRQYrlLL1Oi1dfPk0YRWScDP/PZ77Kkdv2oBs6EwNlLCVFTlTNQlE0nn/uJR56+LtMTYzy5a8+wsFDexCaljrXSYGUIGVMEvn4fky362LaDvGmN3qpmGfn7CRf+fpDbN8+RbVc5tjzr9JoNhFJwsmTZ7n7rqNYls7pM2fp7+tncWGF63Mr2GYGU7f5o89/g//5n/5zeq7LkydP41+6goLAsW2yGROhKLTbXdyey9L8IuVKgSiMEULBd31UKfE9Fytfxs7kaNVrqEmEYdp4Xvod4QU9FJHqkjRV5/jrrzM2PkIiFOI4RkiFqalJhkYGyReL+F6bbq+VBqELi5HBAXbObkFKmJ2dxvVcLMtBNcx0kBYLfvt3/5gD+3eRzTpomkq308OxHAYHBlB1hWK+wFeefo7a0gr/7Nf/Rx55803qzQbbh4aIw4i/+MKXeOvsWQ7s28O1q3MUi0U+89kvMzwwiJ21cN0Oum4iVUFCTLfbRSQaigr/4ZkX2fNLv4AxNsHdd38EQ7eJI/jjP/5z/ptylqFSFd/zCLwAVdtsjBSVr379QWampoA0NsYwUifRJBQoiorb7VDpr6Ibxs3Js4QEIVP30jhObga/u70uQRBiWBaapqJoEqTKRquJqWlIlDSiBgjDmG89+G1G+8vEvouqm5AkKSKu60hV4/lLVxn0u1TKRQxTRyBwXT81eiHVUMZRiCIVNjbaZLJZLp6/xNjoCLWVFSanRkEkJJuOqZVKhWY9jepJpKDVaHL/c28SeAG3HbkDqYMUPyl77ifVD5un/Oi/W597t7rr7qN84/5vsGVi+gPu/511Y0+GaVEdGOaRR7/N9t0HkJsGSjfXSMQmAXNzu1vRnVseS4PsFbK2zZXL56jXlyn1DaNpBkkSAQLTtNjYaLF9+24y+QJvvXWSWm2JJPYoZDIkSYggzTdUJISNa3itderL8/QXHYJuAzdspI2RohHGFpnsIEahD90uo2Uq5PvGMUuD5CsjaNk8VnYQPzGQTgGv5wKpqZGqJKyuLKIlIUmS0Go2cHsdiAN67SZJHG7STCVSyJuoXXyTeSRpNuo888r3+eVP3ompxCzP1VEiFQ2NYq7Mx++5hy985f/i0kKN/YfuRmo6uhITkprIIRWq1QFK1QH681lCt8szTz1Kf6VK1rFIpAJIpKJQyGcZHN3CQH8/E1ummdm2g76BQQqVPpIkjR6JEekkyLud71s0dzeW+7/zJX779/7ND61/a5N3g2qZApjivc5RfEj1k0a4H25z97ZBCu9ocj/YC74LVRP4acf9c83dz6g+jObuv8T6wl8/zN7B8s2/wzi1GC6VijTqDVQpIREkcYzn9TAtiyDwyBUzaJpCvb6Gk3UgiXnymRfJZRwGS0UqlQrffPh7TE+MYug2pUKROI7I9xXJ5vIoqsHVK9d58InnOHrHfqSikHFsfNejUi6REG6abkCn1eXg/j1MTY2TxAkIsDMWrY0NpCYgEohEcu3KIpaTQzUkmm5CDEkS4Xo+rfoGyyt1BvurWI5BFAWEXpBqgpIUibxxg3nt1ZNpllshw9DwILqpk8SkpjJRgEhkGnjs2GnDIwW9boeJ8QnWVteplsvs2zHDYKVIoVJIncCikLXlVTL5IrZl0+v0CFyfbDbD3MIqSQIry6vUanWGhgfoum1KIyXk5g1DVXU2NprYjkWv56LpOpoeEXSbtDfqZLNlMtkxvCBCSJWFhSV8r4umxiRJjG7aSM1MA4qBTqdFpVzm9JkLVKtVVpZXObG4TlWu8pHD++kfHGDPnu0Yukqn26avv4yqS/xeG8exOXf2Oo1Gh75Kno7bplQqcebsZYaHBhkd7E/D6NWU0ldrrpOr5nn68Zdp1OtMTYwSKoBp8soLr3LboX3Yts3KSo31RpO33rqIqWucOHWJQt4hn89iZuw0YBqVXsfF1DUmp0fuKxbWAAAgAElEQVTpdDpkszbZrKBY6iOOQwzDpFxKnS+jJKKQy5HLO7TbHarVMrW1OpbtcOr0RXbMzvDQA49jFzUq1SLtVptrV69SymVBCK5dW8AyTcrlMr1OD8OUqIpCt+ORyxdxvZCZkQpXFlboG+inXM6RzRlsGR/FsExOnT5P/0Af1XKRtfUGs9u2oOoqURQRtHs8c+xlpqcmuHT2ErpUCMLU7e3UWxeYGE8z/bK5PFcvLqEmBqq0OLB/Pxlbx/NiHDvLRqtLJpMHEZFxHHrdHnEsMC0TJ2OiKiobzQ0a63WEquL5LmHko+ka333iVe6+6yBx4rG+Xqfbjtm5czv19QbzCzUO7NuOUAT5fJETr52gUCmjaAZXLl9jenyU0aEKb544S6fjs23bFJql43bbGIZFt9vB0ARra6sszDc4d/Eqo+NDBIGXGlxoKr7fwdQluqFjGSaGrqKpGr1eyOzWWTRdcvHiZTrdNIbF80JmZgbodBs4js5iT6W/YnHt+ir5fI5f3rPrZkxKc30BzTDxwphcIYdpmnR73TRDKwwhCpASDMNAmBmkpuGogo36KsKwyGRyJHFAe2MV1TCI44gkElT7yrheF6naKb1PScOe6406hq7j+W1sW0dB57VXzvLQE99memyIMPJQVIlm6mi6je/7xHFCu9EhI1W27dlKHIdpwPSGy9e+9W1md86Qzdj0ej3uGBzi22+c5GMfu5d77rmTHbcd4g/v/xqvLCzzv33qk+zds5sgCsnmsjTWGzx17BXuuO0AmYwNSoJiOERJAET88dMv8WffeIDstu3801//H3DsHKZhE8UJS4s1jt13H79+9AiB56MbOlEcoygKUqgEXoKUGo16naHBQSzTBhmjqJI4TEgSieeFNBp1yn1VfNdLaY+byJnntqkt1zFNC1URdHvtTfdO0DcRNiEThKpi6CpurwcJXL86TxAH2I7F9OQYWUtjfXWZXKlKt91B0XXYjKp45sIF/rvb96RuzBFcOH8ppYFqGgiZxhs0myBA13VUmboVZ3N5CnmH8+cvUCjlUHWdwE9QEokitZS0JiRJGLD947/MQP8wAyNDJEqE5G/f3P2k+knTucPTw3z+/i98eBRNIfA8F6EaJEJh27adRFHKOLlxNG//FPAuZjI/3BSkLaGiW1SrZQQhdqYIMjVcShBIVUe3HISiU9vosGVyEoWE+vJlVAlR4KXsAEIEPm5nlURIzGwJoeuEQOwbGGYWVTPwwi5+1Cbutgl9D1O3NyM/JKEXEfQ66LFAk5Io9Ai8LrZlIonotVbRZAS+jxSp46SpqwReF0KfJIqIoxCSBKm+TVPt9dK4FBHFLC9cJ2z2SOQS81dOkXUURNymtnyFq5dP4ZgJG+sev/lvf4vPfPnr7JzajxpBoqQmLQiVSKigWEgzg1OsMjI+w7XFZYqVPiQSlQjikFCzEEkacxFLFSEVokSmTCAhU53wjzqt/8j5uVWr9sWH/4p/+3u/eYNx+mMukRsd4eYDf6fN3U+qn80o/QP4Gr7fPfzUNX7e3P0MKrol507AzbDYW+vWv/5raQKPvfwae/IGqqICpDbhQkOgsLywgKUEREnC6bOXGBkbI0kEtmkQJgJIxbuWbRHHCdtnt6AoMDY5iu042JrGqydPMDJSIlFjSuUyfruL33G5euUqExNDTA714XU6xGGYalFUhdX6OqePn2FiYpxms0Uub5OEHRJFQ9VS6pau6vjdgFgoaKqKrqVWwJrlELhtSGLa7S62k2ettkEoBPv2z1KsOKl9e6IQKyq6qtJYq9NYm8ewbYSSMDBQZGx0GCUBjwBNS2MW/E4Xt93DC1PefehHuJ1Oqp8p51A0nYW5ZQb6q2lOmWmiaTbXz5xChB7V6XGaiyuoto6SL6DoFtevp+HIlWKeV157k23TI2QyJpZiIooqUejT7XQRIkUILcNCqAZSN0GxWZ97E11P0Aqj+J4PUWr8YlsO+WIVK1PEbbkgFAwtbURff/U4Upf4fkypUKZcKXJ9/hIX6gn//Sd2s7y4gue5rC6vYOoabx4/y+jQGKou0QwH03JQpGDP7q1gQLvRRtdMAj9habVGvpgll7V46vsv01ctMzE+ztzlOUaGKsxum+Z7T73ExQtz7Jye5NSbJ5mcHGJ9o8HgYJV8zkY3debm5rnj4AxSdem5TfKlUWrLDYgTMo5GGAdcu7LI1LYtNFabJBhkMiaPPfEchWyWXMbh8qVLVPtzzF2fp5Ct8NWvPU7G1hkaGEDTNAYGyyiqYGZmkkwmz8ZqizdefyvNAyw6fPWbj/KJT9xLsVTm8cefpb/oIJQ0k6zT8SgWbM6dPYPpFKmWKxCHvPTcCwTdNghBLpslDELarS69jQ7lQo7aao1qpQoonDozx7PHTnJo11aWa6ts372NcrVIGIfU19fxvB4Zx+TYD15l355Z/NhnfHoYxRaEvYDqQB+amVJ9V2uLGLqBqlroembTdEcglYQojshks6zVXbLZlPonEpWLF65z951HMC3Jq6+dZGJslOsL80xPj3Dl0hL79s6gqII3LiygJxrHT1+mv1omYxkszy9x7uwVRkeG2Lp1nEMHttPtdDh9/BwL8yuMjwwRBt5mfIHH+qrH6uo64xODmwgObKy2uH5tmeZGj4GhAa4t1Dh0+wGkkvDMCy/x0Y8eRiGg024zPDDMgw99jwsXLrP7wB50M4OimeydHubBZ0/xa5/6GJOjk/y7//P3+cUjH0Eqkvpyh3w+g+mkplDSsHDbLYqlAs3GKlJTCeMYVYmQponXjbDtLEGS6uq0bJaNTjs1UtLLhH5IIgMUzSQRJm63ia7aqaGIGqGqGnGo0Gq3abd7FIpFBvrLTI0NMTe/RC6bY2l5iXLBIYx9et2EK+cXefDbj/HJTx5BtU00QyMJfQxNpa+YJ5MvgwTNNFAMjY9sGefTn7ufJBKMj09w911H2bV3L9HQMH/6zQd4eWGRl+YX+Pxj32Zg7y5eWV7k5bnrrDYaPHDqHM9fvs6Ftsf/8j/9Or/6i59g+669JIkg8D06nS5/8id/yj2OZHZ0jChM0DQTzw3prNZQNYlUBVEYoKkKI2NjRHFIIpLNDEATPwhIpI9uKvQPDCCA9sYGpqETxyGqIiCUXDh3AVNXkUJiWRaamkHZpDUmSYQiBb7noypyM38y4Pyla4wODbGyuEyxXCQSqebIMIw0K1CRKX02iXnu0hXuGesj8D2iyKfeaDA4MkB6Z45QpAKqilR0Trx2mtHxIaysiSYiDMPkoceeZWbLOHbGRBWSbreDZmpImWxGTggye2Y4eeIc0zNbkVqMSN4fLfNtetx7HSnesIm/dUm3dRyb7du38p+/8pcfWoMnFflDexFS8o72QPCujd2P1o01ZBIRBgmdbkS+VN5kM6VoUhJHqCLV/uumAUKSzTmIsE0cB7i9Deor14i8DqHbSY2MkoQ47GGbBkEQI+IIIQXtdhtdN9A0A12X+IGP77nEgYffatNtrxCHASv1ZUzHxA1C9MSj024S+AHXr1ymmCvQC3oIRadU6Ue3S9jZMnGipJPKxIgkpO11UVQFRWiYuk4UBahCZ3npLcaGqvz1t59g77YhskMDaJHG6nwNQ3j0ggWqw7sZmNzG0buPct83vkjcjqhU+29itul7k+qWkyRBMwxK5WI6CZKk0Q8oEuVW5I23f/+h03RjEe9cbqyVkPClh/+K3/n0b77jNW6tW5G+JOYDNXaKSCm5ty7v/2V+2hYf3kj83dG2D14/2RTmnSUEqOrPm7sPvd7R3L3LWbn1A/RfS91+x2H+49cf4Y7hSvrApsZICAFxyPLSEmsrS8zMTGA6GaQiaXW7mKaJ53lYlonYFKYrQqJbRmocE6Uzont2b8N1uxSLRdJcGIVez+UrDz/OSF+F8ckxcvkC680Wv/8X97F/2wSVYg5V1SlVK/zRZ7+CpSmYholhWXTbXTqdDovzy/h+QKGQRVckSRTxJ5+9j6MHdhP4PSzbot1soSqSJ59+jjCImJwco7WxgaZqdNpt2r0urWYX1wvIZlL9TRzGJIpENQzabg8RJ6iqShRE2LZNksAbb7wBcUihmCUWCaVKhXp9jY1Gi+Onz/Hy6yfYvm2cRFGYm1/ijZNvsVBbZXJ6O3EUYTpZVFXlwQcf4dmXfsDH7zmKqsBgX5liNU9MhOXk+PePv8ltW/tQVC0N+wVMwyaMYlRVxWut4nVaFMv9qFYR1w2JgoRep0ej2cRyTBqNNfKZHAjB3PXr2JZJuVggn89RyBdZmF/imw99l9ltE7xyeY2sX2NsZIjlWp16c4PRkQHa7RYnTl7g+vwiGSdDvd5goK+M49h0Om0yuQyu77O62mCgr4JtmiBj8rkc+Xyey5evks/Z1OvNTR2FyW0H9xBGEdu2TdB1PbKFIlEkAI2l+Ro7Z7dhmRbdnsvA0DDNRpfh4QECP+DS5au4nk82Z2NnMlw4cwnLdsgXM0xPjrO6uk6pVKDaV6LX7WIaJrpqsG/3VpaWakReyNLSCn19Fdyui9/z6PkdpJQ88/wbbJ2ZIJcrsHfnVi5cuEJ/Xx/91SK6pvHsC29y6vRlRJKwsLTMtplpOt0W1cE+pKpRKOYYnRgDqfLCi28QhwH5nM38/Aqu51IqZomSmNAPQQbMbh3k9NlzHDi4lxdfegPLMnjxB2/wCx87ysLCErqucejQQZprLUSSoCsSiFhdWafnpvpVIcB3XZ5+5gT1+gqjY2XiKEFVTaLER1FSXUwcxFy7XOPqlTXGxyax7Sxf+vK32bd3komJcYIgYHIy1XE99uQx9u3bgmnpfOmZFT5xeJbRkWGKhfRakkju//p3OHR4F7liFs1MG6iJiTH6BvpBUbAyDtevz1MolXF7HtVqHtt2eODB71Et9WFbBsffPMXk5Dh9Q/18/+kXUAQ89/yr2JbJ3t2zxCGsrNQZHBpFlYKZqXGkIlEVSX11nU6rxWsXa+zduYdz5y7zxtwcn9w1y7PPPYumpNl7mVwWKVN3PlXC9avXqJbLSEUFBK3WBplCCcvOEccR7XYb4hDf7VEuFYn8HrploKsaJA6KoiGJMUxJ4MVoupbSAqVOfa1ONpfBcWxCP41CiKIenXaHLZNTtNsdDN3EchwM3ebr33oEz/NobNQpZYewbZvQT/B6IQ89/AQD/X0UijlIEmora1imyfMPPsIbzz/NDy5e5vbbD6XNjaZz9z0f4dDhA3z0njv5tV/5ZSqlfj71K5/i0O2H2X7bbdxzzxE+/vF7OHhgb4qaqQpXrl3j9z79u8xdX+DZY8f41/feQRJrrCytbGaWGkCM5diEccIrr7xG3sliqjqKkRpMpMyHGMu0UvdhKdO8szDVX5mmRZxAFKV5qQvXFpnZOkOhVCCO4s0w85joRkyFrhGGEXGcYOgGrudhOzaD/QOYtk6xWCAKI5JEUltaSwc9hpaO86Sk2+mwWFthz0A5RRuVlEGgqiqB76foHQJNS8Oj//pvvsfBfdtx3R5Xr8yhaSr79+wkm8viBx7qZvSDItPX8jyfxkYLv79CEqkMj44QixDxM0bu3n1k8fa2TsbhwMF9fPH+L7FzetcHPJZb9vYeXDjfb8WJTOMC4pjAddFUhVCAEDFJ5BKGLVQZgBfgexFrC9fRVIFuWEhFJ5MrbMYtqKhRhCYVVCnpddoYhoGRyaV5e4qKIgVx4OP2QlSZZup1uy1UTQI+fq9DIZtDURS67R6KEqFqGkEYUikXCQOfUv8kUrPQDBtkSqE3DJ1EpA6HmmaSRAGh56OqGkJRiIVgo7mIIEQIlUOTn2Db4cMsXDgB4TqK0qXVddm2827iRFKoVEmEwu23H2Jsez8PfO2hH0uxTTajJaIoeidy9h5Hnj/+tAoefvwB/uX/8Rs3YwveS33QZufddvHhA2J/N6NxcQtl873+J96vlk9KUH7e3H34daO5uyHc/hnhsj+1fpKM9N2Qw/fSbL740qvc3l/YXP9tM+ZMLgNRQtip02x3yRaKqY5OTfVfK0urOJmU1uh7HpKUax4nKe/csFI+vaarmy5Tm5lGQrBjepJytZRGQygqmUyGjx49QD5rsbQwj2k7bLS7fPLjdzHQ30elXCYitfFWNY2MY6cDjyjg9OnzrNYb7Ns+jaFLbMemtrxKxrEwTYPpLWNMbZmgtlSj5/o8/szz7JidJggCzpy7SqVS4a8fepKZLaPYtoOmG5tzZYKMbtJudmg0WmkenpBsmx5GyNSZra+/nyBOMA2dTsdlZssEe3dupdvroBs6qmXgtTfYvX0rmpVDUdOA7bXFFcYHS9y2ayuqYeB2eximhmJqBFGMomo8O7fCHdtH0DSNjJ3m+cQi1U9JYvyNRYxcFTPTR7fjolsmmqJx4vgpKn1lLNvCMDVkorG4tMTU1ilURaJIOHP2EpZlUi4X2bd3lnK5xNFtQ5y9toyeBOzYPYuiqVy/dp3R0X6GhwaZnBhnYX6JyYlRIr/HyZMnqVSr6KYKQuBYDrqq4tgmPa+L7wYcP3mWZ557kwP7t3Hx0jwJCbZtESYhZy9cotPtUhno59q1RfLZPN959FmiKOHsuavk81nWmx0KpRLPPfsymiJ5/c1zfOTOg7z8ygn279+J63r4PZ/jJ8+zWltGU1VqtQYjY4MkIsHt+Cwv1shkbOYXl/D8kMFKGTcIeO31U2QcE9s0EaqgXCmxZ88ONppt4kjQ7XYYGx2k1dpIv4hVjXKxwP692xkY7qNaqXL+3GXGRvpxclkajeamo6PCynKdXTu3Mj42TBT45EsFRkYHOXvhAtVyiSSOqddXGZ8cplwtoGsagwMDlCtlyoUc2XwO09BYWV5FVzN8/9jLNJsbTG8Z48XnXqFSrZDN5pibXyTwfaqVEgMDA4yPD9J1NzB0iwsXLqEqEtNOg59tyyaXz3D52jVyOR1dT9i/f5LFxRqFQo61eh3bcZCK5PXjx9m9Y4ogiti7dQvXLl7lG9/4Lgf376RerxPFMTtmpxkeH0LRFIQiMQwTqehIVQWRDkIyuTwJkC9mqVRLnDpxDl2xKeZLnHzrFDtnt+J6Hvligb17p1EVSXO9w6F9u/n+0y+wsrrGgQP7QEg63Q7VvhLZfI7HHn+WPXt2UCmXeenMEppUWV1dZ3FlkV/dvxtBzIm3zrHRalMuVlLjnF4PVVV5881TeK7PwGA/QkpUXSWIEywzA1JFswyaq2s4lsFGvY7vuQRBB8MwSWKDbtvl/Jm3cPIWqjQQQhCGIVEoePSxx/jrv/kOdxw4gO2k+sYg6KHrBhuNFoVCgTCM8LwegoQdW6exbR3bzqJrCtmcg6JGeH6PjXaTpcUaExOjRGGEKjU8L+TuOw/x8aNHuGtynHjuGn//N/4ly4vLHL3jCLqmEoY+CB0pdRYXlmhtbPD0959iZmYk1f4GHp/93Bd54slnOH3mLL/9iY9xZGyI/X1lpBBcvjRHbWWVwaF+gmDTkEU1UHSNyS0TZGwrdajU0nBxTdOwTItOq42hG0gUAi9I9b1SEEURTz71LGMjYzzxxDM8cexFjhw+iJAS13eJohgpBWdOn2ZkZJie66WuxJq56RCsbeYMKiRxRJKk2XYPP/wEmqoxONSH2+thOtbNXLxHz19huylxnAxJnKBqGnLTETNJktT5NgxBwO6d2wDQ1NRdudrfD0KgqUpqyJUkuG5Kt/NcD0VKNEXjuhoR+BEjYxOohvru4dDvqT6c5g7AMHQ+cvcRPnvff2bHxM6fSYP2jqO6ARe9A1RMw8tTbVZ6nDExSRjgt1tEkUt9dRkjWqd27SyLF1+nfvU47ZVLFKqVlELeaxBFLZaWV1OEV9O5fOUSzWaDTiDxYoE0HfRMifVuSBT4hGGMruokSUQUBKiaReR5aJtomxcFGLqWImJJhNvpkstl6XXWN3WbKp12E8cxUOyBm00dsEkvDnA9F80wcHs+Oml2n+u5xEKk13Xbo684hKpaNLsL/MFn/wN37dpKvTUPRkLf2Hb6BvcS+G2cfIl4U7eoapL9R/fzN48/zNOvPJOisOJH3usffc9vSiDfea5/PEr3wzV/eYEHnvsm//p3/sX7aux+dB83LPvfS1P1s2zu4luMff5OGrzkluW9bvI+UcCfa+5+RnWjufvbuFR+mPXT9v9+ju/oR45w3zceZvdAqr27YXyUbGokFq5dIRYKtpPHMEzm5xY5d/YiiqowNDyApmsIIViYX0HTVJrNRho8nqTUjiSJiKPUhldVVXzfp1DME0YhumGwvrJGEATohoFp6NRqq/T3V1E0Dd/zqa/V+cyXvsbRw/swTZMwCHB7LplMhmZjg+HRYaoDfZQrJULPI0qgUEgdPxGCMA5ZXVknjhPePHmOKImZ2jJGHEc89MRzVHI5fuXvfYxMNrOp/Yj56jcfZfvMFp5+8gWKhXyKkGxa60PqwheGCXEUs7SwshmGbpJECbXaGsVSjiSK0UwTW5fEkU+2UELKGFWqZBybdqeFpinEieTMmQsUi0XWG03yhTS76PFzc/zi4VmSOCaOA0zDIiZ191Mk+J0aen6IRrOHratESUwUhIyMDWGYZjqTKCXdjR5u4JHNOkRBwNVLV5iYnOCbD36X8+cvMTzQx2uvHsfteXz31Dr9aodWt4OTsXn62A84eGA7vp9w5vQlXnr1FN1Oi43mOn19RfoHB3nu+VcY7O9jfm6JUrnAtevzWJZGJpej0+7w9z55D1ImzGydolwp8ebJM0xNTeC6Lv3VCtlcloxjIUgYqBTYMjXOM8++Rn81z/D4IKZtUa+tsnVmik6nS5JEBGHIlauLOLbJ1OQEE2Npjtzo+CiZTDadyQeCXojv+/QPVChXKpRKBa5cmsP1fSp9BQzDpNFoEgMLiytkc1nyhTyN9XWiKCaJI4r5LHbW4dXXTtJqttKg6ihI0Zkwotlo4GSy2JbN2vIyIo7RtNR4QErBU0+9SKVaJJ/PMjxYxfd8Ou0u585fY2CwgmGmlvPnzl7kxZffZPeubUBCu90hm3Uolsp4gcvtt+/j/2fvvYIlSc/zzOdPbyrLm1PH+9PHTPtxPT0OBA1ISpRC1GpD0o20seZyL/ZibxSxF6uNkDa4iuDSaQFCAglgOCQ8xmFsz/T0tJn2ftqb08fb8un3Ik83BkCPARcgGRv4IrJPRVV25l9pKr/3/97vfTfWNzl37hrbt09x5MMzbN8xydVrN0mnLDK5NAhoNhJ/s3TaRpFV4jhA3qpSxQQMDnRjWBpB4HPt+g1iFCxT54Vvv84Tj24nimMqhTytViJEYtk5Dh89zdy9FSbG+igWC6SzGTTdINzqWwsCL0mOwwhFSpThfM8n9APCINh63AveePsQo0OD9FS7sG2d1dV1bt+5R7WngqYLoiDk2tW7FPM51tbXSTkWlXKBD4+fZueuKWRF8IMfvsWuHVMJAKmW6Z95ElWV+cpX/pzf/OJvcvPDo0xvm6BUKCJiOH/xMj3VLnL5DCBwLIcPT54mn0tj2iYdt02708FJ54kQW2AlAcSe51Iul2k0arRbHTQzy7e+832yjoWkCDKZMmEYAiFCyGybGGb3zDSKrLC8tEQQuAklMYhJpdLYtkkUh5iWkfQMC8HA4CAxMiMj/Xz00WWKpTyyolIoFOnt7kaWBS+98jovv/4uTz32GHZKw+14yLLM7Vv32N/fzz/es5M3f/Qqf/Wjt7hzZ5aXX30d13Xp7unl2tXLnL1wgbfePMDRoyc59P5R/vsdM+wfGeKZ4WE2Nja3JmdMkCVKxSLlcpEwCDBtC8/1OH3iHNXuLmIR43surtuh1W4TBCGarhP4Ie1Wi831GhfOXeI//8Vf8/Tje1C2xEy6Kl3M3rnH6OgIT+zdhaZr3Lx+kz/86tf57V9/njgOyedzW5U7HUkIvCDC91wkWdBqJQDZbfusr61jWBbjYyMUSwU2N9dIZzIEvp9Q1aKYS3dneaK/mviQCmh32okX4JaoS6vZQpAAUyErvPb6u/RWu3CyFrKiosoKbrtNGPgomoaqqAhJoCkqHdflo8VVolKKalc3mVyJkOgnhEV+vvjFgbv78dRTT/B/f+WPfyk2CT8Tn1CtEPAg4Y3CECFJyLFHfWMVIj/puzVUGsu3SBkKcuSjSwljKNRsjHQRv9PGb9fI5QrIkpTQ90j6dZfX1iiWyyiajuVksFIZdCkROYm2kLaQZZBVPK+NpqoEUYTpZIgikdAA46RyvFHbwDLUB6BJlqHdbmBluhPrHllCkxV836PZqCGJxA5DkRTCIEpYACJOWkNkmXQ6R6fpsbq8QMdb5dLtS+zfO022UqETCrbtfo7aaoO7t69R7knEmYAt6xiJHTtneO65/fzhl/+Yib4ZFEX62EH9hHPwCeDus+IvXvoaz//efv7R733ps1f+jPj8sv6/PHB33486iu57Sv99Z+u/uPgVuPslxP+fwR2Ap2iUm6uJVK64PwUhUBWNsNXCstI4W/0NKctE1VX6+3uJ4xi34+J2PGwrxfr6GuVKQoe5/8vSajXpdNykcV2ViQHdTAyda5s1vv2Dl+guFbAdmyCKsZ0Ud25eR1M1UrZN5Ac8+9hOFCMRNVhf2+Dr332VqdFBhJD50xd+QNq2iOMYJ21hprIISU5MPLfGcffmLH/98gG6S2V+/Yv70XQNVVXYs32SdMbGTOtIQqFRbxH6IW+8dYTudJb+3iqFfJ4wijl97jKXrt1keGQI07TRVIN3Dhwma6dQNJM4EvzBn3yDgWoJx7aorWySymWIgzrtRp101sHtuHQaLZr1JtlCFjNlI0KZdz84yaO7d2A5aSRZIfJc2ms13nrnXbbPTOC6DQzTxgtiJAG+12JteRY5M8hrrx2itTpHNpMiikMsy8T3PBRVJwolQi/k1dffZXpmBCGSKqtppwlcly88v4/aZo3e3h5Mw+CtU9fZ2WczMT2azGLGAaoqmJ9fRVUNntozGs0AACAASURBVHlqb0IhrWTYrNXw/QhNSFy7cpu9e3aw2azT1V3CMBQunLvC7t07CMMAz/dZX6tx584sURzR199NJpvl9PHLBJ7L8ROn6O3Ks7G6zOpGg6f27UTVVeysg+u5rC4s09VVptlqU6oUGRzqZ2x0lJu37uC1Wnhek0qlzMGDx1BVlQOHjrFtagQlECwtL3Pr7h3slM2RD8+x/ZFtnDx/mSf37SGMIwaHBnDsDLplYaVMGo0a1UqBCxev09dT5vDRExDHTGyfpruco97YwDCSStV7hz6k2fDJpdPcuHodOfLYXF1Ft00cx0GSFFLpNO8fOc7c/CLlYgav43Hp8nXGBkfZaDTIZDPJLDeQy+XIZdIcPXqKbRMj+J6PYmoUq4lNhBAyE4PDbNZrhGFEuVKm2lXCMnTcYBNDcxCRjaIGrK4v8NIrhxjoK6MoMnEUY5gOt27OcunibQb7hykXquQLaRqtNo/vnUFSZMIg4MDb59i7dwd/+tY8j46W2LN7O7umJ4mjgNl798gWChimmUzgSIlPmywpEEEYtInCAK+dJFTEMbGs4bketmkQ+CF/+Y3vs337BJcuXaO/v4dytYJpCkDCMdP8zbdeo1rJs3P3NsIwYHC4D9NS2aitsbJUJ+2kEMS88OJLvHLoKPue2ks+V2DXzsf4/vHjPNHdQ6NZ5/TZy/zzf/Z7vH/wMCPD/Si6ga4Z9Ja7uHX3FpZlks46aJoOsYyiW4REqIqOFAcQRdRbbcq5PKvra2gpnb27d9BdrmA4DptrTb754nfYtWsbkqSgqhKaonH54lVOnjtPf28FTTFQJI13Dr7PwtI8xVIGr+2jKxLZbBZZ1Th+6iIH3zvKo3v2IAmde7fWINY5cfIEQ0N93Lu7QOhHPPH4HjzfQyBz8OARogBSGZtsLstkXx/7h/qZyWXYN1BlMuWQaW5SDVy22Rq/tX2S35jexlTGwclkiIVEu5n4guXzBXw/6UXzvA7xlk9eHMYcPXyS5YVV+vt7kXUFWZNRdBVNU9A1gygISUQqOsRhTKXSjYagf6CbMAqQ1UTx+MrVm7x/+AS7dz2CrChYKZtHxkcxTB1ZSpKxpPdbIo4FuqElvc6ei2WbuG0XvxPx4rd+yMzkBLICs3fv8r3XXmf3zke2POkSNc8z77/LzOAAMTGykJNexiim2WqiKiqGaeC2WyiqCorGxOgwy4vL6JaKpumEYcSHH54iDgNyhdwDCflErTPg9blNMiWddDpPvlAhln5S2fLni188uAPYt/8Jvv4XX2fbyNTfalSfJz7LdN11O8RE+L7P3NwcirfK+tIsgdcmV8wRRgHtxgqmnWJ1Y5O1WhM7U6F3ZCeNjkLsx5gSBGET01DwOk1sy0CRoZjWMbU46cFzPcKOi9vaSPIzSSJEIpY1hCqjyoIwCBGqjtDSECsEQQBSjKrJhCJEl6Xk9y8K8b0miiwRyRaWoSe+rK5L4Pl4XpM4CvBabYig7cZIskKMj99p4bVbuEqDsB0QuE20uM1ovh+jW0LJ9LBt5mnkWOfurYtks1kyuSLh1sTAfXCXvBY8+9x+igNp/vDLf8R4zxSq9gnU378luPO8kLmNO3zxN57/HGf7s+MfArgDEEImiqNfgbtfxWfHA7XMh0j9/iJCbNEXPqtO+2k0y4f1/D1saw/bRk9vN//HN7/P031l7lvGxjEggY9Cp1En6LQwbJO2qpJzUkmDvSTRaNSxUhaqLpNybGRFfQCCozik3WqTzmVQVAU/lJAUlSCIEjPhMGTfvkfxAh/P7yBLMlcu3+KFlw7xhf2Po0gSrVYLVdfouG0CP8ax00yNjXJvbpGvffdt/uWXvsBQXzfpdBrVspDiiFa9haZoyBJsbm7SNzTI3t2T5LIWqixwUikkSUOWEy+ddtPj+AfHefPdw0yODTHc383I+BBaRiOWI/yggxTDQG8v505fp7e3i2azwfTkOLOzy1y7cZOxsQEe2z1B30AV3TSob7bJ5LMoukMqU+bujXnSlS5My+LevQU2ax1UzcJt1xkZ60OzDJbvziMHIYbjMFYu8r+88BL/6kuPoZgmqmagChm3UyfwO6SKg+RSFroSMjgyyPrmJqlUASH5uG6HIx+cobc3h5AkclmTVMpIqiyRSyqVZW2lTrMesrqyQbmcYXFultsNwXSfTrlY5N13j/HEnse4eWORMPIYH+9HM200Q6Pjyhz78Bab9VWmZvbSbHZYXllldLiH0POobTbIFTLopoIsS8zfmae7u0SumOPW3TlGx4YIvIhiPgtxxCOTY1zdUrSbm1+hkMty5tQlStkc+DGFUhYnnWJjI7G5OHfuMpmsw+Z6jb6BPqJQ4vbtu1S7KxiWxrUbN8lZJmrGomegm3yuwKFDx9kxM45jqqys16h0VUhnbOZmb1NfX+fY8fNUuyuk0ymE7DM8PMDq8hr9fT0IwLI0ImTqrQ5OJo+sqeimhmMplMoZqr0VUvksViaNptoITePu3Bzd5TLDY0P09/XgpFP4vk+5UsBxNHKZDIqscvHyFQaH+7h04S5LC7P0dVW4dPE21YE8L774EhPDFaTY49iHJ+nqLmPbBu1OB2LB+4dOU632YZg2bqfDiVPHGejrhkgmk83R3TUEkgGqIHQDctkM9dom77x7lKuX79LVXURTE8sGYlhaXmb7I5PUG3VurHhYfhPbcHAKDrqpY1kmqiy4de0qmXwm8SvUDeq1BouLCxx4+32iMKJ3aJAoimk125w/d5FsNs3mZp1TZ67wxS/s5733jmKlDFIpC02WkKQAYokwlBPrlNBD8tu06jW6e4sgqWiGw6uvHODXf+sZuvq6OXvhI/7pU7v47rtnePzRx3j3g/eoVCs8MdhHoZBhdGyI7770KlMzE8RyTLvRRNF1zJSJJjxsTcYNZVKZHKq2JdcfxQjXx3VbKKpC2OnQdH2y2QKb63VSqRyRkAhiyDopPjh0hNHBIZxMmjCICeIGshoxMTpFvpRHEyGLq5u8/cEpbs8u8PSje4jlAFVRWV5cQ1EUMpkUU9NDqJpMHAV89esv4LtNfuO3n0FWFIZG+tmxcwQvbBBLMpEXYhkmc4sLvH30EPufeBQhQaPewLJtdDWm3qojqwlgXZpfw0oZBEFIykkjxTJ+x+XNNw8wuq2PTqeGLAlkoaMpRsKy0DRkWaZSzFPuqjB/b4VMJoWMCqGKrEgIIdFsJoIS7VqHcxcukXJshidGUC0TITyiOECRdbrKZfbsmUGWQlaWFvE7bcqlIqokE8QxMdKPe/jimI8uXqRUTvwMk77jkOtXrrJeW+eRHZMgw/zSPBODE5RKZdyOi6oqeK7LcDZDoVRAVhUQsLaySBgEpCyHTjuhVkZbpuhEIeura+TyWeQoJgwCIKKnr5dsvoiiRMRRQKfVSnwIo4BXbs8zntcoVocwckWQYuS/deXuYZzGhy0/G9EWvHrYIkkSsQI0jS2/wE/f3sP2ILbolfcntJNqXJzsNU5EPuIoRo4FcZQk1QiZEEGtvkHou6wt3CT2XHKWgmyHgIEu5dGkgNWlu0hygKpn2FxdohEItj/127ihSXP+GiJYwg/bxLaNalgJPVmVkQyNdiBwMkV8V2CZEsQNhCKjGjKKAlHoosgRmu8R4xLLEoZpoInEJkjTZeLIQ5LBUBRC4UPkYyoGnmuSSfchtvo/FTVRJxaySsrJEsUadiqLIgXUWqv4bhsRCqKgQxR18Bo+KcUHv4WQdaxska7tu+ntGydGJogChGYRqwaaYSA/YFlKxA8Rznn2uWdYc1d485XXGR2a+InPknMjHkrB/Hg6+SB13XrvL1/+r3SPlvj93/8nD80TH+5p9+mNPsl+xWeksfHWv+JnrtnPL7LyKZMKWwOWpI/fjz875p9X0OTh8WmNUj9vfPY9/ytw90uIjwuq3I9fJLiL4/hBOfmXHZ+0j+MfnnzQe3c/JCFhpyza9Qa+75POZFAMg8DtoGzRsJr1JnbKRsTQarVp1Bt0XBchJNZW18gX8iwtLKHreuLrJUAQ0aht0mk1iSNBvpAHJBYWVunt7uaxHWN8ePIUQ0M9SLLA9VxkVcPQTWRZZn1tnbmFRf7Jl54jl8vQbNaoNxp03CZh6GPaBlEc0WrV8QMXTbMwDJ102kHTVJaXlrBTFsQR7XaTIAgYHOxn985p7LRNrdkkV8on1YhYYNsmhqGyvLTCyweP0VPKUC4WmL09j4REd3cRY0vlUVFkWs0WkiRhOzZxLPizr/0Vv/n8fmQlZn15mZWlZQ4cPs328REMU8VMmURRgOd2EHJMrd7mP335G1hj4/zOU1O4ro+uG4mEvueBECiaTq2+SbFcIAw88vksly/eoFBMoRsWvT29hLHLjRu3cdIpTFNHURQMPREp2NzYIO2kiAm4M3ubQj5NSe3Q31fhxrV7XL0+x+T0IIePneOZZx/j9u1FvI7L7N1ZBgf7uXbtDs88vZsTp88yMz1GuZzlvfc/IOWYbNRb6IaJEBK6qlPbrPHDHx1mcmqM4aF+Zm/fIXJdZAHf+v6bPP74dm7evke+UGBoqJ8jH55hx85J3CDgw5MXWV5eopBP7DRkVWF0ZBA/CKh2lbl79x6u51EqFlhe2aCnv4fQD4nCmGwuobjGEcxMjVOv1fHckGwuyxtvHmFmcpyF+WVcz2fHjineOXCYydFBDr93DM00cFIpLl+6ipCSazQOIrKZDHEYc/bUBXY8Ms3CvSUOHT3L5maD2maDand3oqxITLFY4MCBw/T3FzEsnY8uX8cybQzDZGFpAVlWSTkOmbRDFEWMjI1Qq68zPDbM2Qs3WFyd58ndj6EbDsgGPX0DCMXEa9UxLRPP9Xn17Q/Zs3Ocb77wA6bHhxgeGaDtu6SzGUwrjaYHRHEbSdLw/ZCLl66wbdsI28aH6O6qEPgetm3TqCUVsZRt86df/jZascwz03309PRgp1KomqDdbG6ZhMuUy13IsoTb6bCyvILbcclm0iwtr7Bv/xP4gY+mahw48AGPP76XtJOiUilx8NBxBvqr7N07wfj4MMdPnqFSKWOaGmfPXiZlpXEcg5GhXu4uzFEsl1BUle9+73X8lsu+fbtwMg5h6LHzkUlkGdzGGuduLvAv/tv/BkM3uH7+FHnTRBIKvd1VyqUSiiIT+gGmlUj+O5kMimmR+F5LeG7iK9hqNQg7G/h+C0UBt+PjBS3C2EVSwE5bhJGHbur4XoepbWMUSyXCKCJ0QdFkDM0im8lz/uxFDE1DNywufHSZ/+5f/TPCyEXVTKIgRlVUrly/zvjUGK3NgIMHjzA1Pcbe3ZOMjPVjGCZex+fVH73NxNgEpuGgGBq6qmBZGt19FZ5+8gkUVaFRa+Ck00CMiCUiBIqqosgSgphMOrdVoYxxvQ6IiJmZGSQJTNNAVTSiEDqdFmbKBBElfmKexw9ffhMVQV9fGSFiamsbLK+uIssSmqaBAKGo9PT1YJg6H354nP6ebhRdptloo6sGsiojKzKL9xa4cesu33n1DZRYUKlUQUl63qIo4k+/8hccOXaSX3/+OSBRprz20TXyhSJnz1yk2eqw/ZFpJFmmVCySzaXx/YQZcvbUeYqFEhfmb9FfyBGGATFJ9U+SJWzL4S//+vsM9lYTI21JYm11HVmW0TQN09SpbdYBgZWytxiHW0qFmoamaaiayuH5dR57ZILq4BSK6WBoWtLG8Hccn1Y5A+jt68FVWpx+/xRd1e5PXfdheUG4RaeMtwDeT4ckJCQhiKWYWArxIw9JBKyvL8JGDb/TJlYDZEUiUFy0IIXX6bCxeYd6c5auao5Ou8Pq0jJ+fRlNt0k7edrtTdaWb2CnVBRLRZOqnDp+huZGi3KpShgKVEWltlFneWkRXTeIYpDkBLjJUlIBDsKQOBIEYUTKyRHHCu22jxu0abUa6IqOLAw0yUJXbTw3wA/bSFpAO9hAQWNzdZnNlSUI2vitTTZWl8lk88iqShhFZHN5Uukshp3GdhxM20boCkHoIVSZThySLpWYXVmkf6AXSQgUWUHTNHRNRX1gCn//nD4UZlMo5tm7fw/nr57l1XdeZmbLuP7ztlXeBzJff+VrqGmJ/+F//Df09fVu7fNh6z/M2Pzz7ezTAJMkiU8EgL+8at7PbjjJuR/+2S9i+7+MbfwK3P0S4mHgTvqc1bbPE582H/J3Jfa676knaF8682NbhK0bOwI6zTYry6tb4h4mccyWEpnAtu3EMNvzURQFVdUSZTkhyGTS+H5Iq9nByaQTE1whaGxuIohJ2Qa1RofAD8hmcjipFFEU4nbqHDl7jkI6hWmbaIYGKNy+OYumaASRT19vGdUwWF1eJp1xUFQJJ5tCliUURUWRZVRdQdc1NMOk2axDHLGyskKhlCcIIiRZJGp3xBDL+GFAGIU42RRe6LI4u0zaSaHKAiFiNFWmp5xnfHyU69dus7K2ThQF5AtpLNviv37rJcYH+nDSDulCBhFD4HvcuHWXqcnRBzLnhUyGgWoXXdUyfuShygpL80sUSgUMy6C2WafdadIuVdg31YciJzPXsqpgOSlMK02jVSdlJwqebE0OdFoe3/z2t9m1YxpVMeh4Dfr7+tA0FVXVcF0Xz/PxA59iMc/FS5eYnBylUi7y3uFj7H/yUZZXFpFimSvX5shlFfp7q2RzDqZh8s2/eom9u8bwfZcojNio1dm5fRTTVomJqVTLGJZJpdzFrdvz5HIF4jjmzp3b5PNFuqoVlpaW8Fptrl+5QTbroGsyxWIBwzTIFfK03Tbbto2i6wZnz3/Evn27iXyPUrnImweOMDU5jiRJfP+Hb2KZKhc/us701Bj1WotiqYAXBlS7u+iqlKnVGhiqzvLyytZ1ZJLN54nCiMH+Km+/fZjBgX6KxQJtt8XIUA/1jU0Of3COJ57ai6EbrK2sMzU9xdz8AidOXmCgt8rpk+cREZiKQrFcwbFNSsUCumHwzoFjZDMWd+/co1wuIkkxmUxCX8tmCly5cpO+/h5ypRyyolGr1VlbW8f3fd4/eJbBkS6slM3gYD/d1QKGKVFvbiKpUlJNMsDWTZaXVxkY7CPtaFS7SuhyRE9vF6vr66QyGaI45v/8g68z3J8i5RjEgcrS8jp/9d13eGzPJOlMmvfeP8b84goD/d2cOHWeoaFeoigmmzY5Ox/w5I5RhBD4XoBhKrTbHSzL4rvfe42M4/D++0cYHRlCkRKQl047VCpFgjhC03Q2VtbZNjYKJP0yQsRUK0UGBnrRNMHqyho3b99jz56d/Mf/68+ZnBihp7vKa2+8i6IInn7+SUqVCrLQGOzp5eL5j+gf7UeRFQ4cOMTgYA+WozPQXeVrL7/PE48+iq5p/O//+Stsz+bIZvMcev8ouUwa30sqjFcuXSFfKBAKgWJY+C2X9bUab7/zHpPjQ7SbNaKwQau+hizAyRUxFZPAj6l097O+vI4kKbhui2a7TSqdIowgDiP+13/3n1hanWNyfJxOC46fPE1fbzeGrrH/8d1sbK7iZFJIqHTaLtdu3OTCtWvs2DHD+mKNe/Pz9PVVcYMOtmMjCSXx0RMyly5dY2R4CC/wEJFPq1nHtm1qtSamaWIYBkISRGHI8vw6pe4KQRASxxGWoSGEslV1Addto5saiqwRBSGabhJHMbVajUsXLlLqKhKEAevrawSey47pGdqtDj19JTbWVhFIlLsrxCQAVVUVYkXC9Vws06S/rwfCKLHKMW00XcXzEluX8xcv89T+J3n6ySd4570j5NJpECGariEJwdTEODtmptBUna/95Ytcu3YT27I4f+ESzzzzFNu3TyOI0TUNRZIRcgJOhSwwDJsf/vANnp7uR1PVB+IQiiJh6CaLiyu0W20G+nswbYsojFBVlTcOHGJ4oBdVlVlYWEWR1OSZIwdbrQoJUI6iCEmSOTy7zFhfFT3Xi53JQNBBiM9XuYt/Kl948Jz9BAD1qdv6HKlvJuNw9NxxylYPqqZ84jYeRit9IODx8dcP+RtFMlIMhAFus0mr1iCqXaJcLbFWq5POlJAljfrmPJ3OOo6tUMyVmLszB3FEOpXCr63gxRqGUyKXLqKoGpqWxo8kmi2fYrFIMZ8hiDrEIkRTdDRdRzcsdN3EMBM17zCMEUJG2lI3lRUNXbdotT1kodLpuNhGN1Is0HRBELbYrC+hGRpBFKCbFgIVRWgEvg9BCKGHhEvo15O8JVsgCCMkzUzsCJBBJFW3erONkypiWDlMu4CTqaCoKZYbi4yMDiXHfOtcy1tCLVH84wosQubHGeFWPe9jVab+wX72P/MUf/TlP2b76I7Evuqnollzmb87x8GT73Dk0lHOXD3DWmuZVMXkX//rf8H4xOiDcTw4wT9HfNa1/mkp8acJiXx+cPf5KtufL/6//t9fVAb+K3D39xIPA3f3E2r4h8Hq/UWM4Y9fepvHyj9ZvYuJsVM2Qdtjc7NG2rHxokSOX0gCSRIEfsBLL7/DxPjwA3UyWZYJg5AojnCcFEQxG2s1Wo0W33vtbQa6uyCKsVI2X/7m91iYW2RwoBshYiI/YHp8GMO0MCyTKIxQlESp7uTZS6xtbNDXWyGKBUsLy6QdG8MyEbLE6soauqqzvr6J53mYpoksKwgh0DSVRr2OoWuoik4QRgRBiCTJNDabfOPbL3Pi3AUe3zONJAlUOfFP8v0OkpBot1x000TXTbKZDIVcmq7uPOlMGiEEH546z1OP7kQIgWpo1Nc3sG2L7nIR1VBpNdoYuo5h6nzntbcZHepHs1S8lscL3/sRU+NjWLZDKmVQKeUYK6YwsiZrqzVK5TKHDn3A4NAgsRDomp7QYJBo1hs4ThpDN5ncNkAQRDhOFlUFP4iIoyiRWfcDoijC2EoGoyAgm8siCRlZStTg/sNXv8tvP7uXyYkhrly7yvbpbaiaYG5ujkLKxvM7KKpCKpXmjQMn2LVjmDAMsawUqpbMoMYRlLuqtNselqkji5B7sytEcUB3tYtjH55lZKgPK5Wiq1pC1dXETFqC2TvzCCFIWTbtZgtZkrg3N8/yyhrbH9lGx/XI5bPk0xajY8M06nVUXSWXzRGGIflyjlazQafT5t7sEiur64niYAQ/euMglWqJs2cvoCoSe3c/wskzl6hWSmSyDrqpQQzlQo5MIcvC3CID/b1cvPwR/QO99PX3EMcx1UqJG9dvMzY2hCRJfPuH7zA60ktvXy8p22BguJejh09TKmSp9lSRiFBklUsXb7B95xSxCGl32omhdhRz69YspWIOTVLp6skjKworS+sQuVhpHVlWaDfbXLx0hULGplnvkC/k8X0fx7GI44jBoW4iEpEfVdMgFowP9ZJxLDw3JAghk82TtjW6ukrUa3WuXrvN6Ys3GRmsMj0zgSRLdNodent7+Obbl/mtJya4e3sW07AQsiAMAhYWFrl0+TqP7tmOoSXg4+LFj1hYXKK3p4qkSESA7/m0ak3OnD7P2voG1WoZt9NmaXEZRZb4q795iUf37GZ8dJi5uUWu37hLyrYYGR0km7Y4fuoCq+trXLx4Hb/lJ+qpG5tMTE/y5hvv4XZcivksmUKWOJY5P1vj2af2YxkGZ8+d47FKhZXlNaqVLorFIqsrK8iqimmanD97lmIpT6vZJHAD4kiwsb6JaUioqiAOfLJpC6/dSaTQRUJRrG3WkNVEYMNOpVG3FHSvXLrKV77+1/zP/9O/pd3eYHConziSefXttzh/5QKPjI8j4ohMLkMskopHu9nmyvXb7JqZQdV1Mo5DtauEJMuohkEsZJqbLTy/Q29/D+fPX2ZwYBBFk2k365imSaPRIZPLEkURrVYTRVVQFBVDNxPZdEWGKEaSZXzfw/PdxBdU07YSy6QqE4URQRCg6wZLi8uUykVUTSOdSmEaFq7ncvrsBfr6uoiRuHNnnmKlhBCCUydPc+/eHNVqF+aWkJbv+wSBz9LiKpmMAyR+d5adoru7klAGgZnpSZx0CkSEpihIcjJ+RZExTZObN25y7uoNvvTFZ3jn0BEef3wXmq7guy6qnNTV7otZhIGP2/EZ6Ovj1pXL5PJZ3I5LvVbbYnKAk0rTXa2gaSq+H24pZyoUMg6KqtJpNUmlMrzxzmGmpkcJIxeE/OOqnBCEcUw7V0AKO/SOTaMaJgreVlL+88d9kBR/7PXnjc8D7gB27NzBV77xFR7ZqvY8dByfkUE8dGxCEEchCzdn8dwGiiywDAO37RF15nFyZRaWV8jYWbKWSRDUIArxOy6RHzK/MEu+kCPyfeTYx6kM0z00QxjGNJoNzp+7RDZdwEqpyIpAiGCLiaMQBEkvn2GYSVuLoiYTSLKM63ZQVJVWuwVCPLDicD2Pa1ev8MMf/IjpmW2EUZMo8gn8NlEMfhjipHN0Gh6BFyIpCmEYYRhGUtGTYoglNpse6WwOSVE+pg2ZUCN1zSBGfkCvvP/35Xde4tnn9n/CefwYSHkIcHqYbP5zX9hPusvmj77yJ5y5cuYnln/+b3+XwUd6efSpR3n2uf08+9x+du7eQXdPdyIs9LMn/+eKz7pO/2HbI/x0/EPI3uFX4O7vKR4K7mBLKU0kAiJ/T/YIUZSUlx960/6c8eS+x/n3X/8OT/eVH7wnlGTG19ZNlhaX2FhdpTrYnwA7Iba8V6RE1rztJuqZJIBP0xN6RAKsdNoND03TmRjoR1OS9dpeiyf3bueR6QniOGBpZQFL1RCSgqppWKkMc/PLaIqObuhMT45j6Ar5Qhpdd7h25RYba5ukHYcISNkpVEXDslJsrG+QzeUIo5BWs5E07W8lDm++fYSDR06xfWobQRDSXG+wY3KMXTNjKIqE77lYto7ntvBdl9pGk3qtheeDrhv82X/5G3bvGMbz6whkJFniqb27UDWNt945zMBQFUPTqK1vYlgGy2urnDhxlcltY4SBx9BAF4quIGQBnmBmbIIfvXmUwcFhQr+JH3oMVMscvLvEaE8XqqowMNhL2/M4evj05jKJlQAAIABJREFUVt9gMstnmTatRpuUk8IPOzhOitXlTQxLxvcCNE2l1Wxj2VainBgn/TLZTJYffP91hgaHQFJwUjYrtTq27JLLZyhnHWQBZ86colJKMzw4iCxFFMsFlpbX+cJz+6nXVlld3cSyU3x05SbpTI7Ll66yslojlXKo1za5du0KaizhBR6NRoN9+x5nYX6FfFeZD46eIZ9Nsba6QsaxKBdKzN9bYHFhmZs37hG4PpWuAtsmRnn9rQ+oNVvkMinSKZt6s06hkMN2LDRV4cq1a5i2xtHjpxIhmNk1dsxs43/7D1/lmf276eoqImkS/d1Frly+Sr1Rp6ta4faNeUxHIxQ+fhSQK5WIo4jTpy/RaXfYNjlBx/MRakL1UeTknki86VSef+4x5hcWqddr9PZViaKQqYkRZElidWOdUyfO89aBEzzz1JNsNtbpeA0MM0Wn43Hlyg1mpiY4fvwsj+3ayeWPLlMqFVleWEeKfbRUGl3N8NUvv8w//o1f49j7ZxjbNszVazdotpoJLTf00CwNRVVZWljBbflISHz16y/x7JP7uH5ljnuLc3R1dVMo5NA0GTtlMT42yNT0CNW+bpAgFhGqoeG2XH7zyUdw3USqXlU1jh07S7lYIJfLMTkxjOe2yGbz5PI5qpUys3fnGRkZIiBRg9R1ndXFNSQh2LFzB8QRR48dY/uOaRRFZWZihnffO8ro6DCtZpNyocie3TsIw6RKW6ttMjMxgd8JCSPBocMn+J3f/QJIOh8eOYPX9ml1WghVQtcMujIal++uc/niJX73t77EX7/wAnu3JaqaJ06dZXpqAiudprm5SW+5QMrSiQOPe3PL1Nbr5LMZJiYGWV1dRIoF9fWEdihbKTy3TozP6sYq5WqB1bUlHLNELCm4XkCpWODZfU9gWhq5vEGjWSedzjIzNcwXnnmSKPSxjKQirxk2bqcBcczk+DYsy+G/fOO79HalyBdymJbDv/v3f8qt67MMD/aysDxHNuswNjqEbukEUUjoe7z4ne+zfWoPkhKDEImSbwyxiJEQuL7H7du3cWyHKIzRDAk/CBJPUkkl9CMOvPseJ06eY3hwkDu37qLpKr19A0iyTBTHSJKCCGKMtMnw6DCaoaPpKUqVLmIRIEsyXdUuerq7kWNQJYmO56KbBrKuoskGsqLgek0M00SRZWJCgtAHIhrNBumMgyQJWo0mcZT02+maRhR5mIZGVznH0NAA05NjaKZC4HvEccDtWzdJp2yCUOLUyZOUKjk0VefCxYukDZ1KqUgcClRVY27uHqZhsrS4immauG4HIQk+PHGGoaEBLNtKnmVRSDqdZWJ8lFhENNsbyEJ74I0Hgh9evMmXfv/XEIFLeXCCCIEutYlQH/pM/az4uwB3IHj6mX388Z//CdvHdnzCGj8/uBNCEIQB104fZGH+CteunqSnp4c4jkgbJVou5Isp3nnjW2hskE730q57uO0WfrhOtTuPY6XZWF1jY3Ueq2sCPd3NWm2ZIA5pNkN6u3tQjUS921A1Ws02qmoAEQjQDZ1YlokRdNqNxGRegJASL0NZVXA9jyiMsWyLdMZhz+M7CcIWpm4QBaDJDoaRJYpl6q0m7fYGmbSFMLN0OgF+4BNLAR23RTpdpNkJKRYrD3rCkisjEe9JehQDYhHB1iJEyNmrZz8R3ElCPFgeRst8GLgTIqE4Pvv8/p9Z7sfDUtKPb/0+9fLnzVx/Be5+GfErcPf3Ep8E7hJ53l8MNfOT4rMKz/dv0IcztT/mzfcpcR8gCiGYmprk+sljlB3n/ofEgGqotNsurYaLLIU4aQchJTNXsgRIAlVXabVaNOp1LMeELTU9SRJEUYCiKWiaiqwa3Lx5l3wpR9oy8X0fX8TEUUhKN1F0m/OXPuJHB4/w2I5pMqkMkq7htzfZXFugt68LHwm/5VEsp+kZKKPqKoZm8Ed/9i2mxoaRVAnHtnBbbRbvzaHLUNtYxVId1hZrXL1xi6f27oI4wrQVCtU8siZhp1NIkpJw94Ug9EPsVIZvfPtHOJaNbWj4bodHd02gaRqb603ylQpIEvNzc6ytrzE20svq6hqZnLNVLbB5/fUj/O5v76e2sUq708S2TDbXN8nkstRaTa7fvo1mKpQKDqgq33zhdZRA4u3lJl/cNYCqxKyvrSDHgjOnz9HXV0ZTdbyORxD4rK6uYekOy8srOGkHy7LYXAt48cWX2LlzGs1UQciEsYSmqdQ21nAci9GxARpek0uXLjM6PkIcR2wbzWOaEBJRrHTz9sEzlCtV0oUi2UIJnwBFl7HTFrqk0mi2WFvfZGlxnYxl01UpUW/U6O0rs7yyQs7JM7NzJ3ZKJmWb/MEffoff+kf70OQNJkdHCHzBvbklnIzBpYu3MS2D+YUFZE1m554Z8sUiQhYoqkw5m0FF4nuvvcv05BhRDKm0Q3OjSRjEHDt2gbSVplruotRdJJPPsmf7GJZpMD87T9B2cewcf/O993jm6T3YtkIsh/T0ViESOFaKKAo48N5J9u55hP6Bbm7fvk3otYl9HzmWeOVHH3BvYYVnn3uUm7dmKVcyKDJUKpXkN0HXCKKI5dU1Qi8kber093VR6imzsrTKKy+/zyPTk2iyQFUEC/OLtFsevQMVFEVDljUsx0TSDVqNGvfuLqLrOooh88q7x9j/xB5Wl1dYWJhndHQAO5NlbXGNW7fuMjo+TCpjcW9hDlOOGd/WTblSwu2ENFo+33zxFR7bPYLbbNBsdjh2/DKDvd3oqsbG2hoLswscvjzLzNg4m6s17FQKWVfpKhZYWlpGFjLLy6sYps3cwlzS+xf4lMtFDMtCCAVFUYiFIF/IkM6mkAyVltuhv3eQ+nqTlYUVXnvjPXr6C5SreZZWlgn9NlHss7K+Qa6QJmUq5PIOqqKgqxY7dk7x4rde4srlKzz/9KPUmnVm7y3RaboM9Bc5ceQUdQqcO3eRxZVFrq4v8fzoMO12m5Rt0NvbhaQI8sUssmFy5NgZiqUu7ly5ydi2cU6fv0A2k6ZRd6l0VxLlOiERBRFKqkCMQko3CHxBJl2g1lyl1ejw1hvv0tfbjW5pNFobZHMVRKzibtmPxEKn3mqCLEjnMgR+yM0b98jkHcy0gWHpbBsepdHoUK81EHHAQFee7ZOjVPv66B6oIqvJJE7geiiagqpoPDI9TRR6CDVGUeWt3lKBLCnomsqRg8eJOjH9Az102nUQOoZuJIJXIiKMA3r6BxiodtOq1bEtm3Q6jWLIQPxAITKSBH7ggSBJmkVMLMUoskSr1UyqgKpMEEYIWSCkrfQ0krFTSZ+wquhIIqlgCFngdTxMw0BEAkWSiWWZr/7FC8SeT1e5BIpEu9YijmCwf5AgiFhaWCZfLNBpuxw7coLRgQEEiTdYuatMGMZEXoChKjRWl8kV0tTq6wgpQNVTgMR//MoL7Ns9TSaXpb7RJJdxcNs1JCVps7BMm1gFoUkgwDQcYinCbbYI2i6SJLDUGGdwnMWaT1dPH7KItp60n0xV+ziF8adpmT+9zqc8pflp2ZTogejFx0U4HiqPAcQ88+w+5jfuMf/REtlc5r4kxycCuwe5xcfGFhH/hGCHEDJ3b9zEyWqMjW4jDi3akYtI5clV+1BVnch10b0m9fYapuwStZYRQiWMZOqra/huh1g3Gdv+PELoePUlLFNgGylmZ+9QdlTq9TqKXUDVTUQcY+o5TMuk47eQYoMoBEm4yTcSEqZu02h0WFpcYnVpk3yui/n5eQzTQNctkBSCSMN0yihalpAIRVPB91BimdCPt5SrN+m0ltGVFLZeYm1zg57BUYSsEAv5QdWOLYGQBIlJiI8tIBFqHtumJomRtsREPr78+L2HiYpEW1TG+/RMISCK7h//h565ZDwPA3cfu1QeUEH/1jTHT7pufnx9JJFA4I+P/xfTc/e3ybt/+nvGP/XZT2/3k49FHCf35E/eu58msvLx7UrIkvSxvr/P/i6/Ane/hPgkcPcPBfPDJ4/lPmj7tLg/awRg2xb/z/df/3H1Lv6x+paTTpO2bG7euI6paehWIpedeL1IhGGEpiVS00EQsLK0zPLSKtlMemtHWw+lIObUmYv0dJW3fLIirHSaOAwxNQ1Z0ygXs0yODVGrNbAsCy8MadVqaKqSGIh6Aa1mC0WRkSQloZ75MdtGekllbBARjXoNSUCpkGZzo061ZwDNslA0GbyYarWLXD73QPmt1UxmmKMoQpZlVpbX0UyDKJZ48+BxBPDFX3uKk2cuYJomIHAyGVzX587tWYrFAinbxrZsipViclxlhaXFJU6cu8KOqXEa7RqFkoMim8ioaJZOHEU46RTbxoZx3Tbnz13ld37jOSpdRY6urPP0TC+u7wEx6UyW8bFRbl2fI+3kOH3qAgffP0l3tcKVyzd45c13GRvuBSLcThskGBzsI4pjiAWyrLAwv9WEHkXImo6kqvRXq3idDidPnqFFRG9XFlVx8DohcRCTzTjMz82TzTjEUYSmamiqThSGtDptKtUKruuytrbBpctX2bVrBkVTMFQtMfiVZDJpnbt357hxc4mnn9lJa2OdIJLwg5iRkX5cr4OTSpPO2Ni2Rq3ZYqC/hysfXcf3fQYH+yCMeefgMQYHu3Ecm9m5Bd546zCFbJrBoX4G+qtIIqZQyNPstFBkGV3XmZ9bYGR0iFu3bkEkmJtbIo59Wu0mI6PDGIaB53osLS+TdhwUoXP3ziy12iaGptHV1cX6ep3llTWe3v8oj2wfxbR0NEVHliWcdIa5ewtkMwmtOfJDLn90g22TY2RSNtdv3iVXKNCo15iZHOXe3BLpTIpCIff/sveeP3Yk2JXnL7x/3qT3mcxk0haLZNmuaidpNMJihcHMABIws7OL/bj7ZbD7BwwwAywWK+zIzUCtkdQ91epWS9XVrrrLdhmWpymy6D2ZTJ/58nkTfj9EksWqJqtZbVa7mL7EYyJfxHsvXkRkxD333nMO2UwGTVGQRIVLl6/TbLXRVI1MJo3XC3F7IQcP7cEybWanRlm4eZ1CIc/KyhaZjIOiR9ipLLl8DlGAbqeJaaiMD/XRajWpVZt889uvkMkbzE0PkU4ZrK1vIEsKP33zNIoE3/q7F/jiFw5SrdY4vRqwf3oYURA5d+4yhUIR2zYwdI0XXnodx7GobtUYHRsmnc3i+z6mZXHr1i1yuTwJ/yTC97ztG5iIJMk0anXW1yqcPH2e3//9r9A3UERAIF8ssbmxSS6fp2+gH0VRKJbLLC8tEwQRzz73Uy5duU4YBnz56UdxHJvxsWE0VebYh+cYGSmzZ/c8DTLUalWOfvABY2NjSCsV2u0uExNjvH/0A6anJ5EVNTG09nwM02RjZY2XjrzD/MzMtgCPiCDE2LaRjOFFMbqZwXEcwjCk2+0gSEmSnkpl2bFjhna7hW5oqIqKKG6LJegqghAjChKWZSHLIu1Wi0ajxY9ffZWJsUHCMKDT6uJ7IW+/c4wPPjrN9Pgw0zPTLNy6xZtvv8/8rh3J9TcWOH/2An0DfQgxuJ6XXLMl6Ha6GIZFp93BtGyC0OXixas8+dRjxFFMFEcoqoYgiLg99w73TpAlmvU6xXIBRZPxIv8O5zrhq8VJFiklUyq3/RIRoN1qYdv2nftHECbdilaziSInPOYwCBElkY/7G0kBTxQTz1NZlonCiOeff5XrN1dYWl7joX3zKKqM1/U4d/Ei6ZSDZZmcPnMO3TCoVqq8euRdnjh8kCNH3iNXyuM4DpIic/XSFSbGxyjmLERRpFlvIUsKummiqiqPP7QrOb6iiN+LkWSFTqdLNpvB9zwuX7iWFDMUaZtnFie+aUGEqqoIgsC5tQpmeZBcaQDTTn189/2Me2wcx9tKm7e9t36R+Nnk704aec/k8t5RLOYR7IhTb5/8uSIr948kMZYkmcr6KisLl5mcmkAUFXoeDA4NI+gqYSShiDH1zSWUsIadKtFpNUhZDlGUTPcosoqu6oSIqE4fzVZAFPUQhZjN9U3e+On3md09g2E7BIFC5IWEvgsSeGGPdruNEJt897m/p79vAEUziSKRVqdLOlcgikFTLbZq9aQrbOoYVok4FjEMk9pWlWee+SsOP/IEUQBxENPp1kmlHWpba8gIBIEHJF1gw3ZwIyHh5j0gzxKgPFEkm81uAxzhE4+7gc5nAZy7D/O91Sw/ueyeR+6+YPDB454qnD9nvdtjq/delsT/O527z/qu92uR3Gfte4rOPMjnJMvF+wjL3C9+A+5+DXE/cAe/HMD7NMa/13GOohhxO8n4vGMb8GCjHrc/43Y89fST/F/f+j6PDOTv1BQiksqR63kE7R7tVodsKkUcwerKOqZtIooiQeDjuR6iJOJYFulMmk4n8RQKwh7Vah3fC5ifmwFBQJRFJFkhipJ6V62e8PLeOfohY8MDyYhOkICtZrOJqmmYlsXi0kpiAq3pSJLK8eOn8Vyf8alBEGOC0E/GETtdNjdXMYwUna6AkdLpBT2e/eFPGSgV0DSVRrOOKEmYZuKXJ0kSUQR2OoUkyWiaxuzEEMVCFtO0kOSErP2nzzyHqSjsmBrja3/7HF984jCSJKPqBp7rAjHLSytYpsnM+AimaZHJOTTqW6iyRRyJ3Fpc3E7KxQRYpGwaWw0GhgdAFihILr4cYFkWuqlSr9WJERgYLuB5XV59/S3+5b/8HQqlNNdvLPNPf+cpcvksnU6bYjnH8NhIMlonq7SbLVRFQlIMvvZXf8f+ffOAQCxKtLaqqKrB6MgIf/Padb5yYJgoUHn2u69yYN88Z86cp9Nusby0Sqfdo1lvIQKe75Mv5lleXWVifATHMRGiRNxDAKIwot1qYaQdBMHFNk1K+RxOymTx5gqDwyPEksD6xiYpJ4VhWsm4j+8xMTWGIEtkbAfN0JEVmZs3F9m9ewc7dk7juS5DA31MT4zSbrW4dv0mqqzQ7nQIfI+llXVGRwZpNVu89Mo7FHMphgfLXLlynb5ylqH+MqVinlAQaTfb+H4yaibLMtWtDn2lLJoqYpkGF85fY3RkmI1KhTByCSMPSRZIO2lUVePNNz+g0WxQKuX4yQ9fxzQ1giCkf7DM0Q/OkM6kyGYdjp44h4RAX38/1WoV09ATcR9B4pVX3iOOYoYHyziOmQg8rK1g2TK2oyPJERcuXaRQyBD6MTt3zNDrtlG1EEnW6XaayEIIfg+33aJeq9PodCiV+lldXiaVlti1axpNs7CsNIaqc+bMDXbNTWGbGinbotftcnw5YtSKEBFYXt5kYnKcF198hcnJCTqdDrt376RYyiNJSmIhECUS5VEYoOk2jUYDTdcQogQbnDp5nmwmAzGsra2xe/cO1ior5PIZGrUGmmzx+jvvc+DgXhRZQlZU2u0uKdtOxJtkkQP75zmwfxf5Yj7xYTN0DE3Dtgw+/OgSjmXyf37jWaYnx3F7Lv/2f/23fO9rz/BPvvpFjn54kt/73a+imYmHWRiESJKCKIoUS0V6nQ6ObXLj+iKFQolWs4nrg6KZBIGHiETgBeiGQ71ZRVViMtk87VaT5aUlBocHaLdbyIpFDHS7bbRtU2RREImjeNsDMMa2LfbN7eev/ut3mRmZRohVvvmtHxELPpomMz01hm4aCdc4Ssy9FUmh227TabXIZbN02i6W7SDISfVX05LvZRgGghBz7epV5nbOoqgKISGu6yJui96cO3uevoG+ZDxTErBsE9/3UE0dZAFJkBKFTSExn47iCEEg8YSLkxH8MAjRdS0ZowwD6vU6upEIoojbfz89t4um6SBAGIUQR4RhvK2YLCbja8RIIixcX+LM5Rv84X//e9gpE9tObGriKCRfyCIrEsVClud++AIH9u1hz845oljg6vVFctkU6WwG3w8Y6O/n0sJNMrpIvdrg2z94hf275pEViY2NTdLpNDEgyxJvv3MCWRD57gtvsHfnFLKsYJsWipaMXHc6LbxeF1lUEGQRUU4A6d9eXGaoXGBmbhfxtiCGsA14P+seLIrS9hj9Lxr3bsMk4ODjrt6DpAjpTIr+qTL15S6y/Pm2KY7D7YxeQCLmww/eplSWKZUGiICl9QUGBoeJBR1CCa/epLq2SNqW2NhYxjB1YmKWV24yNDICgsba2hq6ZdI3PImm68hSwhV1bItd8zuJBIs41vmH73yPXNZEM8Fy0rieiyjqfP/7P6HXDdn70CHa3ZBUusDlq9cxrDS64ZDK5EGQGB6dQDMsNje728XNkJTjMD+3Cz/s4LldgqCDZkQEYRe/3SJwY9KpDE23i2IYyFqKbKGPWBAR4o8Zd/eN7QbRhZvnmJqeuiMocnfX7UHB3d2v5R7PfZZYyb3W/0WZPLe7b4Lwc/pUd7ZFuMf2f9zNu73e5wF3cRzdJ7cVtgVrHhR436+L98ltf7Ct+uz4WHVWuPP7gyOIGFlRfwPuftXx6wJ3D/Iet/l0D9KB+0XjXpy9o8dPYQcdSrZFLAiJKpMgJGIamYTHdvHCRdbXE4lfRU86GIIoIkkS3W73TrVT07VkhEZOuj2KrHDk7fcplzIohkmEwLtvHef85evsmt+BrhosLq4yOztN4Me89Oq7WLpKsVwEEuUyxzaQNYUgiKluVRkYLFLss5FEGUGU6HR7XDh7lWwqQ6F/gLePnWRmZjwRO5FVWrUtJFmgXM5h2Cqaam9XtZMjIooifrdLFAVsrK2Ry6UpFLO06jUyKRvHMtk3PcHQYD/dboMnH9lPu9PBtE1qjQaWYeF6Looi4aQTqXvDMahVmlhGhuXVRTI5A9+V0FQd07JR5IRnONifIxIlep7PYC7PH791kS8fmEAQBVRVR9MNiFwkWebhh3ZhGIkYycjoALZjsbqymvBIJAkv8oijZDwkCkJkGTw3ZGp0gBvXrlEsFnj77ffxfZ9yfz+Xzl8lHbUwFJFet8bYWB+b1Qq790wlXLd0ikKhSKfnUq1XKeUK+K5Hu92iWMhimQZSrPLR6Qu4Xo98zqFe20AxLRQ54uaNRfqKA3S6Ld587SPmdk8j6xKtVpv6Rp0Ll28hSzIbm1VeffMEE+OjXDp3GVVTMS2DMIq4cOkqg8P9EMV8+OFZhgf7EQVQFJmR4QF830fTFFbXNxnsL7G8tIKmSFSrdYoDaYrFAohw5sI1rt5YYHm1wvBgGcMwuXZ9gRMfnsfUNHJ5gytXL4IQEQcgyhLFUoZM1iIIYkzdJvC7BH7IxOQIAwNZdF1gem4Wy7Eo9xWIgNGRYRqNFq1Ggz275vjpG8c5fGgfqiJjmibHjn7E1WtLTE8McmtpmfOXr7FvzyRb1Q1MI4emyTQaNURJoNnooCga5VKWdmuLbq+N1xMIew3qW1vYukajUqdRa+JFMoNjYwiyxvREH6Ylk07niGKDr3/9JxSyad547xRffvoAntumWMzwzPdf5eHxHLqqUKtWGRwsEuNTqzW5tbiEY1ssLCyiyDLf/d7LjI0O4jgWsioTxwFnPrrMC6++zdzsJLqq8Tdf/w6rS1UefeQA165eY27XLNlCjly+iOf6/Oj51+k2u+zbP4OmSkRuj9dff5uRoSH++hv/gOd5/PZvfxFRELi1uMIrP32LnbNTbG1VcWwbXVNZWdlibGyAw/tmOPSF36bZ7GIYERklorK4iqYoaKqKnbLY2qoiKyqO43Diw5OMz4wSel1OnT3DF59+ikarjSiInDx7hbHxCXq9BtmMRb3RoNuL0HQFooB2q00chZT7i/iuSxiGaKaJIETohkqv50Mk0+q0+NbffY89u3YhiRJh5BFFEbvndvD6W++wtLpCqZjh8MPT7J6fxk5bOKkMhmWhKxLpbFL4USSRYiHH5kaF06cvoxsmsrZteIxIGEUEvocky2TyJSRZJCJEkpKxzZgYRZEolHNoqkytXkFXJLr1Jt22h6GZCIKKIIREUQRiYkGjalryGduZXBwl4CgOAiJiJDHhG8uygiQogISAmJiQh1EyMUBMGEbEcbStCgm+6yIIMdVqhb5CmqceP8zo1BitRp2g18bJZHDdXnIN3R7nL+cz5As54iii23PRNIVsLoPn+ciKRhyESKGAELZRNYXHDu3FdkxEORlbDaMIyzKRZZlS2SJfSHNw/x50TafX6xH6HXRTQ1KSa7IiKLi9HlEcoeo6YRjQrmyh9+UoDQwgqQoIMaIQ8Fljmb+iu/Q9nvnZsvCDpgiappIZsPizv/pP7J3Z9zm2I8INIkRJRopDlq6ew3drlIuztLsBmZzN+tIaGTuFgku3tYQq+3S7TWRAFCS6sUR5bBZUE1HTMEyb0G3i+T28ThNRUeh1XFRVwQtCAhdeevGHPHL4MKW+fpxMEb8n0Om4SKLK4cNfYHZ+DlEMSaVTNBp1BvpH0HQrEWsRk3uw73k0ak0k2qRSKlevXMA0DSRFAb+HIod0WmvginjtEC3VRyRBo9smX5qgkBsDWUFUtv8m+FRy/hnTjQ8/tf9n9uTnBXe/6vhVppOfDe7u/6q7RzQ/33e/X7ND+Ixl996GX27554u7wd3nff/fgLtfQ/y3CO4OHT7IX3z/Zb4wVEzkfm/zBhCQFAXHtrB0hSgMUTQVy3YIw2jbxwRUNZHZDoIAdzv5keWEmN6qN9mzeycIPrJmoGs6uqKyvr7BxMQwcQC6qiDLMm7PhwgyWYfADxNPp1YLQQDDSLy+TMvA9XpYKZXATbgITiqNqWoJwFRUxsaGkMSYdrOLoZkUsja6rmOnbBAjBBQEUeDa1Zvkchlq1TqiEGHoGmHgE4Q+iiyRchw6nQ5LiyuoisLlyzcQpRDHsZEUBdf1sW2bVqOFYajIskiz3kSUZFRNQZY0/vNfP8sjB3cgqfC1r7/AIwf38Mx3vs+1G7cYLBdZXV7CzmRYXd2g1Wyzsy+NkdORJDHhA4YRsiKjyDpxJNBotBBFEV1XqNfq1GoNioVEzS4SYtxegKbqNGp1VFUkigSiwGdjfZ3+gT58z2dwaIBjx06RzWTRFZn/41vVLMSlAAAgAElEQVSv8c+/ugtV0zh7/jLDI32ICLz7wSmyuSz5XJaRsQEWriadx1q9TrfdJvA9fvKTY4yP93Pk/Q/J5wzSKRPZTKEp4Ng29VoXVZdJGxb5vgJBHBIFIZcu3qTZ8TmwfxcDA2XGx4fRdYNbNxY4f+k6u/fMYegag/1lWp1khLaYz9FutdjaqjI83E+j0WRxeY3hoQEmJkfp9XrkcxmymTT1WoOF5VtMT0/S63ns2TPH/PwMpWKBVDqNKAi89uZRvvL0YZaWNpCkgDj2GB0eZHBgAEESMW1t+9xziGNw3RaabuB5LsdOnKBQzFBvuKiaysuvvM3MzDiEAp7r0m63KZdL7JiZ4PjxsyytrJFN2xQLBcZGhnjhpSM8+fg+5mbHaLUaZLIOvY5MvpDDMA1eefU9Hj10iDNnL2PbCrmsQblY5trVFYaHstSrddZXN4kjKBeLXLi6zND4MLKioqvJzdMwbRAUXn/zFPvmJ8nnDfK5DM1WE0NXOVFJ8+TuQfr7SjiOhWkZrG2uMTo8yuC22trZc5c4fPgAmVSKQjFPs1lPijiaws2ba7Q7XfbunUMWZRZvLWJbKQr5HONTo/zwRy8yPj5CGEGn2WJ9bZP5uVlyxRSGrtFrtdmzZzfr65tcunIDTZGZmZng5ZePMDM1zshQP0EYcfHSVaamx/EDn5HhYcp9eQbKaS5tePzDd55Flj0ubrX5Z4cOcfLMWQb7yyDHlIoFEAR838e2bILII2ObTI6P8c67xzl/6SojQ0M4Tpp2p42qhISBh+OksVM54jhEFELiCHTDoNFoYDspgiBA0QzarQayKiPEInEso+kSO2dn8Xo+uqEQhD6N+hZhFKBrMvM7Z8jlbfpLGdIZmyCMcL0IwzBpNxtohkUURkgC9DodBFHi2999kScfP4xqSKytrOO6LqZlJtfGZhNRUO5YvMiKSK/XxTQtgjBAFGFleZlsPovX6bG8uEJlo8bCjUX6hgYRxWScNgxCVFVNlC23FTWjKP64XB/HifVCHCdedwgJDygSEASJMHQJtlUmZVFE0zV6vR6SrCAKAp1OB1WV8X2famUDP4opFJNR9l6nzer6BuVSkXTaIQgC1tc2sFMWi7cWSaVSVLaqDI8MoSgKhmUQxzF/9KdfI1XKMlbOUK83gERwo15v46QddE0jDEM812Np5SaZTApVNfD9MAHGUkgIaIaGgEir3qbZbCJpMrqh47se372+wZ75cfqGRhKxMWIgBH6ZrtwD3aXv8cwvDu4goVo8/fQT/Mlf/jl7px8M4Eli4icXxDGKAK3NNYqFAo4zgmVlaLa3yNh5qrUN2q11Ws1VOu0qYegSdj0ESQPFojgwBqKK57vEQYAmxSCIiR8lIrqWjMd2Ol0UCUZGRsnnsjSaLqaVw+30iMMIO5Wh03FR1MSUXBBFiGJ6boBpmAS+j6ar9DoddF1H13XEuIOqKuQKBVRVZataR4mh123S69TAk8mlyqjpHBBQrVdIOX1UNls4GWf7uAsg3APc3SNuXVtkZH7wZ57/Dbj7Dbj7Dbj7R47PAnfwYIfnthlot+duj64o2+MUP2cK+C4y9ueN+536nxZZuZ8S1pNPPsazP/gJc+UcQpxcy5JTUwRRQNcN2u0OKyuruM1WYjQdx0QiBFGEKMoospJwURCIg4hep4PtmLA9LoS/zesQI+bmp0FKpIszeZtqvUK3m4iPZIt53n7vJB8cO8dP3z2OQkihr4gkqciqiqqrSLKI10v4EYHvo2gKYZwwj+MwwnV9FFVCUgSi0EPRVRRdo7rVwkxJ1Ot1vvPcqwRdl1tLK0xOjxIEAbKqIcoqQRQTyRFRLJErlLAcix+99ibXbm5CHDE+OrQtIKCwWVmjUqnhpNPUay0y6Qy+6yIpEo/sn8freVTWajy8ewpdjxkfKvHw3l3EUYxKmzgMkQRIZzKUbJu/O3GRXeP9+L6HokggynhBgKQoRIAgSLieh5NKk0ql6PZ6hFFEZbHBN555jsOH9mBYJj0/ZOHaDSZmJtAdHd/36S8N8KMfvcrjj+zHslRefOVdTizW+P2nZqls1ijlc0Q+9FyX/ft3slmp4Ng2C1cWeff0GXbvnUE1NQQkTN3GSkkMDvVz8eICu3bOYNo2C9eWMWSdD4+fRTdUWm2fSnUdIYxZXVgnYzn09+co5tPohoyoiPh+B0WJaXe6zEyM4Hd9RFkGQSCVSXH5wlXeffckzWqLZrPLsWPnmJoepe12yZfzEESsr1d45+g5ds2NcfrMKQ7sfRjdskhlU6wuryLFIidOfEQul0LWZWZ3jJPJZMg4aa5eu8Ujhx/i2o0bOI5EuxVRqTRI5/K0uz2uXLvBlfM3GRgdQNYUSqUirhvhd2JuXrzJ+mqFlKMTuRHrGxs4OQdV07h5c5GUpTM+OsS775/E3zahP3/2JgMDBa5eu0Wn49FXHiaImnjdHjcuXadcSLp4I2OjvPb6e1y/vsTA0BDXVyqU+wco9g0jqTZb9QZ2JottmxAFWKZBiEoUBPh+yPraFocOzGCbsLFVY2Kin5PHT1PM93PsRpPzRz9keXmVeq3GxMQYuVweSU3heh1SGZv9+3bxxmvv8P0X3uWRR3cTizGKrtNqediKyrvvfMTM1DSKKaJbMqfPXGNudozA73Hq1EXkGLKORrVSQRBilpZXmJyaoNHsoBkWZ86eR9M0GrUew0P92I7G/K5pnn/xVcaGy9TrNaanx5DVRKo8cHucPHOBwaEBnnn+Lf7nf/UHHHriS7z+5hG+NDvN/gN7ePn1N1hbrnDj2i0Gh/qQFAHVUDBNE1nRCMOY8xcvsWNylFK+hCjECGHIhUs3GRoeRFJ1ao06lq7Ta7soYkwsKthOKgF0MkSxjKJI9DodJFEm8kMQQyDc5uAJyLKOGKukUja2Y4AIpm7Qbge02z0sy6DT6qKKCo3WFvl8nk67iaQreJGP2wnYu2uGo0ePMzEyhpMyabc6NLbaKIqEZekIcYgQJ6OQXgCqakHkcePqLSzdwbFT+G6AqiUjmZZlMDs/m/DRJBEEEUXVgORaHIcxIol4mCAI28UlBa/nEgYBxDFRHCS2OJ6P77qosky43U13/R7EiappZX0dRZaobdV58833yFhpmo2IfC6HoSlsVTcJIp++/hK9To9u10USRBRF5Rvf/D43FldRRZmBcjmxeDFUapUt6lt19uyc58XlFXZaMpZlE0ZJ0SiKfWRJJI5Cep0ecRxx/eoCxUKJpaVN6o0qxD75Yh+9ns/JE2cYHOgnjEK8rkehXEooBJLI6zdXGR2aYHxmhjBO9ocYSw+co0XcFtHg032fnxM/m+belkL5WbXFTz5EhJ/9J4h3hFieeuoJ/uPX/vTBOnhxSIyIJIiEbgeBHkLcxu22SBXyLCxv0K2cJz80RmXpFnQ2iQKPjY0ebTVNcWw3QzOHEbUsgpqCUMHvgCT5CIpMjAxhRBDCkTdfxzYdnFyJMFYQRINmq41p6UiyQ4SciAOFLoahE8YRvXYrEf0RIjTbJoxiRCK63RaIIqEgoBgOvh/itetEfg/Ba+B2N9E0m/6xh0gNjiOlM+iGiWZl6R+YQtZ1Mvk0sSjz8V4W7tmlS/Y4ECcLLl+5wM6Dsz+7K+8xRvmPD+7u03q833vcWSv5P4ruDVo/HSIgbQsMJecuhPHHIi8fi73cK+I74kSCIN417nj7e32eXPnTQOvTj1/F3t8+Wz4B7OK7ft7vSvDJbfkN5+7XEL8ScHfXiSxJ4h1g96Cv/0Xi01y625/1oF1AURTZ+eij/PtnnuPJ4eJdb5JUXGRNwbLMxMjcC1m8tYQqy5iagabIxNscgCgK6LR7+IGHZujEcYymJZykWIjwfBfD1AmDgDD0keQYt9dDVw1kSWN9dQvT1pndMUmpkOZ3v/oU5XIxGUMzdQgDuq02kihRa3RQNI0wBt8L0XSTWrXKj189wuTYMLZj0e10EAQZ0zDpdLpYpkEQhkiCzEi5wMjIILv3zNH1AxRdT7hl3TZxGKAbqSRpE+DFl97giYP7efTQ3sRvLBT4D3/8TXZNTqOoEqdOXyTjpPkv336ew/v2cOrUefrKxcQrThWpN+uMjAwjSonEfhgl6DlVKrNZq5MvFVFVnW6rx7dOXuFLD02g6gqe3yPyfJrVOv/w7A/ZWqsyOjTE3377H5idGScIQlQ94SpquoquKeRz+YQvE3qU+vL4fg9VTfg6siKRTWVwUg6dbo/9+3by0dmzfPWRXZz86CLjYyO8/tZxds5OIMsK6VwGQRR47/3T/NZvPYqh66hyMkrZarYpFJNK+sTEIKIoEwQBqiiztLTC7j07WVpdZWZunFxaJ/BDPjp9jfWNKrlsFkn10XSZyto6F89eYri/jOsFCKLI4vIa6xubLC+toasKkigyPjbI/M4ZJE1lfm4KWYopZE2CbovIMEhlMzQbTQYGSgz0l9ANizAKeO77LzM2Mkin0+Wj01eZn5+5Y1TsdXvIusT4xAi9XsDK6ha6meWD98+ytLRJp9ej2Femb7AfKQop9RWTS3QQYVsWqm5h2ia79szRancIej5+EDAw3IesKPT3lfnWsy+wb98sO3ftwEnZtDttHn5oHj/oMTbez+jYIJqhJ+qtksj1hSU0QyeXz7J4a5m+Uo75nTOsb2whiAJpx2Fjo8pLr7yPKMtU600s0yCdTSeCGoqK77qJqI6iUa3V6OsvY9oami7w9vsn2Lt7N7unB5ifHqdcSDEyOkij3UEyNNaWVimVijTqTRRVxXM9vvT0E4R+xKWLNzh+9AyyqLBV2WJsfIhms5moZToOc9PTmIYBcYQIjI+O8Ppb75DL5JiYGKeyVePUR+cZHhrCdT2GhofxXJ/Z2VGclEGp3MdWpc7BAw+hawrlcpnNzSo/fvFNRoYH6evvZ6uyzujoIFLY5t0z13jqy1/CdCz+xf/+v/Gvv/xlZmenEYKIar3GS0fe4uF9ezAMgzgSkUQJRZHJZ9OcPHeGY6c/YnRwkIXFZdodj82tdSYnJ1E1jSAIcByLyOvieT1CL1HFbNXrmBkHMTKQFYtKpUmlvk4u69DtdVGUxH9LVRVUTSaKAjTdZH11iz//67/H1nSuLdxkeKifTruL7ydWAJ4bkHJSBIGP23N5/71T7Nkzx9T0OJIcE8cy1Uqd//T1byHFkE/nkaTEN87reXzvey8wOzHN2vo6F85fI5POsrFWIZ3JELgCoiSRL2bpdDuomoznBh9b+0SJoAgRuK6LLMnb9xSIvICXX3yNZq1BHMZolkkUwqsvv8mZs5fwei6DA2UC14MoIgxD4ihGimF1aYWBvjJDfX00G3U+PHMJU9MJQyiVSwR+gCAk9g6ObeO6LrphIMTw9OOP0ml36R8c4L33jpOyrWT0U44p92d59dpVdhoSmqYgKxKaoeG6SUfH90Js2ybwQyYnxpBkmVQuTT6fRZIEmq0mxVIx+V2WE6Eay0RUJERRoFFvEPePIAoC41MTCe9qO79/0Jv4p1PFXwbc3evVD8oa+nR84enH+ZOv/dnPBXjxtlm3AIhRl9r6LbqdBptbdfqGJrAKA6xtrJPJl8nkBtHzfWjZASbnHmV0fDdWukQASFJAq1Nn89ZNsn39uKJKp7mFGPkQB2imQTZXpOtJiJKOoRn4gU86ZYEAW1tNjh17j4nJCQxTpdNpIEk6oiTzZ//5j5jftR9D16lvrHDs6HtMTs2j6w5b1RZSsEHkttFkAbfTIoq8BGzKBpu1Fk46AwjEsYiARBQLiEJiZn87Qb9d6LiXHcWn1UePnH+Tx5947AGOwj8+uPs0IHtwnCTcef2DgDuB7ZyYj3PRX+R7Jq/9xfQoPt6SX3c8EEL4uc/9Btz9GuLngTt4gMMXJ9UeURTvWxt58HrJg8X9Tvj7PX+7o3f30jiGvnKZbGPzzh8k24TYOIoQBDERuxAktqo1BNgGZgqxKCT8jVhAM3TEbc6eKIp4no8kKejbapGKkowSddvdbRAsISKxVanznedfY2yoTL6YJ5NNE0YRtVqDD06coq+QQ1M1dEPn1s1lXjlyjInhAVIpB8/zkEUR0zKYmRjFdmwQoFFv4vZclG3TX01VkWSZrY0tUikbSRYRJZFIEFEUmU6rhSLLCIAsabSaTTRVYXZ6nJRjoeg6aytrmJaJLoqYmk6hlOW5F9/EUlQ63R7zOyb55vdepF2v09eXw05ZpNJp3n7nA8bGRtF1g1q1Sq6YQ5CSLqQgCkhCIujySCnN35+9ztxwlnq9jqao2LaNKkkMDpSxbYvrN28yNTlGq9Wk1+lSqVTwvZCZ2VkCL0SWBapbm1i2hShCu9EEBBRVw3N91tfXef3IMbq9Dv/6n/8u//fzF/g3/91BBFGkvy+H13NpddrkigUMU8fQNW4tLjE02E+r1cG0LMI4QlGh1ezieQF9fX3bqokyrXabfDFPsZQBYiRR4I0jJ/jql58kl01z4sOzPHRgD2srmyzcWiXjpDl+/AL5chbfDzh97gpTYyPs3jWHYWo4jk2n3eXS5atcubZEJpviyuVrDA0UWVpawUhlUDWNQjZDrVJFM3XqjSYpxyFtm1iWSTaXgWhb8bOvRBTHrCytkc2liWO4ubBEvlDg9LmrhF5If3+enfMz/OnX/o6H9s5x7OhHFEoZiGNqtTqqrHL02GnGxocRJYk4jBFIhCt0S8dzfS5fvs4Tjz+ELCuEQYhpmXQ7Pf7+2Rd59JG9NNvNpNODSBjHyIrKwEAf1Wo9GSfKZuh1e+QLeQxDp1Qq0Wo3KOTzTIwPky9kGRsbRpFlLEuj57oosoIsCtRqTSwnTbXeJAi6ZHNZRCFClUT+/bMX+YPfOYSh6fQNlOl1u/QPDyDrBlnH4j/+2dfxXJepqXFESeT48bMcefs4X3r6CU6dOs/U1Dg7d01z+swFqrU6tVqdsbFRFm+uUKvVyOVSnD9/hVq9iSAK7N41T6/noas6J8+cZ3CgRKlUpNNuJ2IihQzVrTqarnPhwmWWFpe5eeMW+UKObCbL9esLzM/vQFIU3jjyLvM7JykUcozMPUosCGScFKsr6zw5Pooiy/iuRy6b4eKVazy0f+/2mLh4xxvOskxmJidQJImdu3dx7MRHXFtYZnpiEFGSKQ4MUKtsoBsqvuthGBrdTgfbcXA9n1gATTGJIwFRlvjLb/8tjz28H13XEASJKIqQZeUOUJMVlXQ6g4zIjYVb/O5vP41lm6ytrnPy9AWmp8YwDCs57pqKqipMjE3QbNZRNQVBiAEZ3TB46olDTIyNIYgimiETAUEUsnNmB++88wGTMxOU8kXOnr3IyY/OsbyyQjad5a1332V25zQ9102Sre2CYBCECELi4SpJEpcuXCaXz9FzXRAEmtUmN28tceToCR47dABRSXh3tUqdi1evc3D/bhr1GrfFIS3DYm11A0mUWFxMOJuNRo2RkUEcJ80bb73Pq0fe58nHHsYLehDF6LrB2toawvao/9jYILqhYpga62trXL5xjfGRUVy3R7lcQBAFblYqPD4xhKImoizJPUu88z3CMEJWkp8RbBcaFTzXI5vLEUYxrushyzKaYSbCMaJAGIQYhs5zx8/yla98iXQut53sfxLc3W11cK/77Mdg4E7v5wHjFwd3ccx2ofX+nxYT89TTTyQAb8e+ZP17vH8YxtteqTFht4rf2kTVFAzDxk5lkYwUaUtHliV6LqRyORRNZ211g25rE8tMurex79KubiFLPSRNIkYn52Txuh6u10U3bURJwcmUsUwbVUvUZ4MwwLQMVFVnYHAAVZEQCGk2Gyh6Irp18NDjqKpEGLiossro6CSqZtJqtTh/9gz5tILr9ggCnxjQNAPFKmDaKZx0DmGbR3p7Fwt3aCk/aw1xT6/Bu57yvYBHv3IQ0zLvu+/vjtuuc5/oRN1lIfDpxy/jwnUvYZW7GDh3fv88cff6n9m5u8dE2oN/leRYSNuqxUmz5O5lnyW48vPe9/Ntyed738+7zm/A3a89fiXg7v8Hcbuj92lwVyjm+Q93de8+8Qe8fTWIFYn+wX7qtRqKLNFqtvB8F9NxEEQhqfhFAWEcoigqgiAhiVJSuRElREGiWW3S67h0Oi6mbrOytEG+kKHVrjI1MYaqSXhBYpK7tLTJh+cu8cSjB2g0mrRbPUwzx86pIRzbZGN1jZdfewu/06V/sJ9qtYbtWFQ2N0mlU/yXb/+QoVIByzRoN5qohkk6k0GWodftslWrY6gS0bbMeyyKiIpC6AdUa+tomkizWUVVFb797EvM7hjDMGSOHD/OQ3vnMAyNoXKekeF+vvDEIf7sr77N//I//DNGx/rxAw/LzuD2fExTSSqEgkgml2Jzc4Ne20VWBGRFJIxEuu0afuDxrROX+L0n9mJZad5++ziWZTAw1IdhayAG7N+7C1mWsW2LKAwolgrYuRS+F/Pv/t2fs2N6mELeRtEtxAg0RUPXLfwI3v/gODt3zpGybQb6i+RLef7ye6/xe4+MoeoSm5V1cuksL7zyNnv27MDzfVLpFMV8IiN++tR5LNsim8+QsrLoqsNf/PUPiSMPWRaodxrkygXMlEN9a5OttRWq1S7Xbqyxa+c0Cwu3OHhwng+OnqSzbRzuhjFTs1PUtipMTI0zNTVGyrT58MRZEEI0TeOnb7zL4cP72LVrllQ6xfDwAGEMdirD5Qs3Ef2Q9eU1xibHiEUBUZYRopjLl69TLhdZ36owOjjMmQtXkWWRdMrhypWbLN5coFTIYVkmqZTN2PgQF69d58tfeQxZkhjtz1PKZ5maHEMzdDRVI/IDZFEiDLpk82kUReSN195j7+6d/OD519kxN0qt2mCwv5+g5xEFIasrq9y8tsDQYD8LC+uMjJSxbAdF1fHDmI3ldZx0is3NLdKpFIakUm3UKZWKXL9xi263x0enL5BKq6iaiqJpdHtd6s06IhKGqXLs+CkG+spcuXSNvr5+FM1AURTCOMA0LGRF4Qc/foOds7uYnxqh2qqSzqQQhCjp5AgyN65ewlA1vvDkY3Q9H8sxsA0Fzwu4dOE683PTHHnnfbrdNgu3ViiXshw+eIClhVXOnrvMhQtX2Dk3yejQMN945gccOrSXXCHPu++fZGJinIcOzCAIMaapI4qgmxqKonP8xBnKxTKmpVGtbVIulNis1MgXCpw5e4m9e3cjiCKtRoXRkT40WWYzzvLKj1/kxR/9mJNHj7K7XOTYeyc4cGAPpmlyYN+eRNgDEVFLOlOnT55BFlUqlTq3llYYGx2hkM8x3F9kbn4WVdPZqlTI5lJsVTaxU1lajSaCIOCHIU6uQLdaJ/Q7iJKHH7g8sv8QnuciCUnHS5FVOp0esqKh6kmxSxBFMpkMe+an0HWVra0a587e5PKVZR45tJtGrQ1xjKRIKIqCrApJoktSpBJEAcsxELeFUGRJQVA1YhEUVcHzXTY2NxgdHUZSVcrFAv19RU5fPM9w3wAPPbIfQRbQNB1VUBEQ2KpskcmkkUSRMAiSop8oYJg6qqIm6puSvG0238QyTSxHS64HhTzjo0PYlk5/uYiqyKwsL9Fpdbl29TrloQEyuXQyjuoYCLLA0tIii6sbCMDu+ek7wj8vvvxTpqbGSaUcTEun3W7TaraxLJuPTp9n/+5dHDtxkonxMURRRhJlnr94lcf7iqyvVjANi61KHdPSkRUF3wtQNYUwjOi0ukmxqZwjiiMajQa6adLtdkhn0kQxiQ2CAIIosrRwC8swWULliS88iaTI2+Pw9+/c3Rvc3Vl61/8PdHe+x3MPBu4SLbTPFnyJ4gTMP/3FJ/njv/hT9s38rAAIgKooxGFIr1Xng9e/hx42cSMPW5VACBOqgN/BUHXqdRfT1lhfuYEl9eh5SVKuiDGhV6NV28AyNFQ5RghFel6EkUmzvLROt9NEVzXiWKXr9nDdDqIUk3YyBAGoOoRRgG0mndsoCpEEGy8UEMTkPBaiAFE28MIQTZWJgg45R058I0WFRscnne9Hs3Og2qi6gSiLd7pBdw7uXY9PA957G8l/vM43X/iv/JPf/a3P3PefPFb3kNf/jJPkV2GxfF/qmvDL5bWfDe7usf7nfP/b4PaTdhIfA7RfHNz9quM34O7/s/HfOrgD6O/vY+PSWXK29XHbnY9/SlKSfKiyhBBHrK9vYDkmQRChahpRLBBHibdUGISIokQUJkkDCLg9D01JFNa+99Jr7JqZ4c23jjI1OcTEWD+m4aDqCooq44cxqUyWnGWQz2eQJInKVp3vPPdTdk4N0O0mo5YjA2VSjk0sCMRxUnm1LAuEmP275jGMRKSk1WrhBxGKIiHEAYqmkivkMTUNRVWSzoeqEQsCqiyh6xKarqBrKt1Ol/7SALlCBs/rsWNyFMex2dzYZHh4CEGU8H2Pg/t2IUsCrXaTUl8JtxfQbrtkMibpdBZZVuh2W3ieSz6dI8RHURQEUUXERzc0Hh8sovfl6XVcPjpzkcnJMXRDR9VEem6PykYVSZIQZQnP3Va6EyAORaIg4PSZ8+zbO4OkJMbxqqwmiZusMDE2gqrr3FpYplTOQhxx+ewpnnp0DoSYOPRZWljji198jK7nJl55qo7v93jv/ZOEfsjO+R2ohkan4fHmkaPMTY/y6CP7eP/4SfoHixRKJaIoJHR7OLrMzaUKp88tUMjalMt5RCmm3qixb98ckRBhpSw6bod8Kk0sxKi6zsryGidPXsJxdMrlAmOjg0iyRBjBD55/lfn5HUk3yDQ5cewsB/bPc/P6AhEx+XKRdqtJr92l2WglnV1NJutkqVSrGJZOvphHDGNyGYdXXnuXcjmPaRrEccTIyACyItOsN+g221Q2KmimyQdHT1EoZOl1e3RaHSQxIo5jbty4xe7ZGTTdZM+eWQQZbCeFKIis3FrG930Wbq0wNTGKY1sIiHTdLic/Os/U9DiyrOIYBs1WC0EU0BSNjZV1REVkdW0D27IZHAsa8/oAACAASURBVOrjxo0FpqaHsS0bBBFBFsjkMggRbFY2gRhD14mCiEw2m/BGRBHXTYQ2ojBg+dYKz79/g7G8yeTcJL1tK4XXX3uHqclJ2u0ae/bu44/+5G/Yt3uOam2LK1eu4HsRkqxy+fI1Dh6Y56GD+3jood0MDw3SarUJ/ZD+vjLtTosw8BnoH2B0qES12aRcLlPIZYjimBMfHmdsdAhVU1BUFV3X8N2IQi6H54XkCw79/QUkEqCUSqc5e+4SfaUi7V6Xm9evIYkxQRDyjeff4+r5C/xP/+O/4Q//4A/561de5emxMTRdRdNUXM/Dsh0a9QaGrSPEAtlsFl01OPL2+3zlq08hyxLNRoO+/jKrq6sMDg8nxuS2gSgJSWHG0oGYWJCoVGtkDItWt46sihimjSrbSHKyrq4ZxMDy0hrtZhsnbRNHEV4QoKkq9eomURxRLBaxtTRfePIxJDHg+vUFllZWGRsfoVatIUhJd6harfEXz3wbVRIplwq02k1c1+PmjVukC/ntxCdEN3QK+Sz1RoPQD9ANg1TaYc/8LLpmIGkJX0wUJeIgRhBjFFWlsrmJLCWCJ7IiJeqXsbAtyiISRaAZOrt3zdM32EcUukRRxOZ6hXQ6lYg7bdXYqm5hGgaWbWNoGppto6hSIgAjCXS7HSYmxjmwbz9D/X2k0xYdt0XgwejoEJZtsbGxgSQKiKJKOpVBkQ3GRsepbtZptuoMDgzw4anTLCyusCRIHMylaTbb216EKVQt4el6no+AyMryKulMhsXFZVL5FCBgmhbNRgPj/2HvTWMrO/Mzv9/Z97vz3kte7sWlWKxdW2lrqe12226PJx47y2AGQYAgQQIkAZL5EAwCDDIfBpNJPkwySZxk4nhpe2xL3e5Va6u1lKRSV2mtKqk2soqsIoss7rz7cvZ8ONRercVSt21Af+KA5OXLc8857z3nfZ/3//yfx0x8TqMoxHNdZEWm2+2Sy2W4tLZJlM6y/8Asgiz9nQF3AuAHAdIneOyJskQYhbiex6/8yoO8feoymVzm4/uPIqIw5ML5N7FEn5ypMLhvnGa1iqpq3NrYRhNjlpdu4qT7cL0msuBhKyG5gdnkXqlt0e3uYjs6mmQRhy6BG+HFAZESIQQypq5y/cYib751Fs2wGB0bpdNpoaoGva5LSA9ZkRHiPSXvKOTC24u8/c4lJif3E4chiiAQIIIo4vtd3G4Lt7lLLCUqnKadxUln6bohlpN6H9AIws/NWH1ecHf+6nkeeviBn3vdPxqS+LcD3H2Suf1nja/A3efZ71fg7m8k/raBuyiKb+tv8tHC0p/fjtu2g4+3ezfyhTx9R+7g//nO49zRnwc+TiNNTLFVdNvGyWbotto0dnbxul00Q0fRDKIwof34vkcYhxiaRrvVZmt7nSgMcWyHu48dYnlpifF9g6TTDoZloehqMgFBYHN9A0WKefaZMwyVs4hCiO2YHD5ygHfenuPsxWvMHpwhlbbIZh1UXUcWVdygSeB5VHcaSJLI1k6dP3jkMb7xwD3MX7lBqVgGUdpTvXTpeUmthiQnNTJEUTIh1i0EQaXbCem6EY5tEYUxl64skssWsFIOlmkgAMvLq+RyGTRdZX5xGct2EEURTZOQFQFJUdnd3gJCIt/D0DQiIqLAp91so8gGihrTabXJZPL8i+8/ywNHhjm4fxrdEIljH1FWMcwUuqIhK4nKqG7odNptZDUBsOVihqN3HARFoVmvYqccdmtVgigAQhRdIY5jNm5tsL2xxeuvn+c//Ue/Q6OxjiJLRIHJT55/hcl9IxiaydLiTRRZoddsMzFa4fKVeSxTR9c1mq0moiQwOTXKxsYOswcOsLG6gSZKrNy4iSYrvHVunuNHD7K5U+X+B+6i57q0Wy3m5m5xeW4RRTAwFTh/7nXKpQGef+EMecem2WgRhRGxoLC7XePZF14lmxKQ45jDsxN76q0ynu8yVBlAVhW8KGBkbJC5S1dQRZUbS0mfXLi8QDGf57GfnuKb37gXyzQ4c/pNpqcmaTbanLj/HjTLRJQV5i5exTYsvJ7H40+e5OGH7sFOWSCKpGwTWZR4+8I8g0MDBGFMLmcS+C4vvXyWy4tXOXBwghBYnL/ByvIq+/YNYVg6URSQLaRp99r0DxRZun6de+86RExMFMfImoyoSui6Rq1eRTcUJNEg8gNSlsLJF0+zb2IEQzOQRIkbi8u89PI5/I7LW2evcOzQAbrtLtlsllavRRyHhL6PIolEPvzRtx/l4PQ4T14V+Bf/5e+wurqG6EfEsUC+0MfgYAmEiP/19x/l3ruPUqtWmZ4YoV1rMzk7iyKIHDowST6fwo8CTC0xML9+/QZvvP4OtWqdRqtOvdbENm1GxgcQ5QjDcLg6f419E6NIYkSv08I0DAzdJIxi/CAkJkBRREQx5uKFOTbWq4xOjpLJpXjlZ6f51a+foNWqUczn8T2PVqvDzIFpHj91nn/5r/41dkZlp3qTibFhRhWTJ576KdXNHRrVGsMjFURZpLZdQ9I1LNvm1s1VCvkCpqXx7LMn2T8zzeXLc0ztn2JzfYPNjW3yhT5kxUBVIzqtZlJvJimIQZdG5JHNZgi9MKGXixGyaqAbCt1uG0mW0TUTWZcxjeRZGAcBvutiOgayIuN6HrVGje8+9hiZlMX0zDT5fBbDkBGlGEWSiKOATqvNRGWU8bFhNE3H0C1+/NhPmJ2Z4idPPc3+/dNEsYggJ9YwqqygqiqKIvPtf/co+yem6AUd/vDP/oKjBw4kWo8iiKJMs9Hike89zszUFM+/8ApTk6O0Wjt4vR7dpsvv/9Gf8PyLp8HvkHVMLp59m/Pn5xmtDELsoSgCkiIi68kiWc/1aVYb/NGj3yNrpLh46RITYyPJmBEKyJrF6upVEDwK2SKyplCvVbFsC1nTiBHQTQdNkxClkGajRafXwEqJ7J+Zoed6PPbMSWxDZ0uV+fXpIeysw8s/e4P5+RtkbA1d0xPFhggCL+IvfvQEv/Lg3YixgCTEtBtNbMtEUZREGTSIkESJRr2OZcvIosG/PbuI17nJXQ/9CtIeTf/nATt4f4z9EFVzb3tXRCJxkP2ojMTtdnhbwuXHNuE227sT3YTGe/styfrKhEGILEkMTpf50Xd+xPjovg+P81HMqZN/xXApQ9Bp0urVkXWTKFYQkZDDDnHURDFCvGqNTnOJ8mCRXtyPZqfZXb2J31qjVKoQYRIT4cciim6g6Ta6YpMuDODkBxkZP4BAjOI3CHpdrHQusVxSRSTRQVNNer0uQhzT7biERARBk3I5D8RoRgo/ipFjj1Z1M1FiDSVSlo4oKRhWCkXRMa3UHkgX3xNB+eCW+DLynnhH/ME+v037d+ORn/w5/8M/++8BkIQE0HzaFialrh/unXfnYh9kTEUfB0/vGqR/XsD3Wb3voujjbd4nGQvvtXn3759EHb0duLvd9fikU4n3OiJ+r0OE947oiynLf7wvv/y43efmo9uHz/4rcPcLiL9t4O4TC1U/yGH+Etp9NE6eOs29A7lPbBMTI8syZipF0PORYmhv7SCbJr4f0uklmbAo8BPvNl0jk05jmibVnSqe5/PUyVc4MjtFTJSsponi3gAl7q0mK+QKDn3FDI5lsrWxjSQKDI30kcvZZLMOy0srGLpJq93CMi0EKTH6dewUze0tcpk0NxaXuHh5kas3VzkyOwlEeJ6HqsgoisjarTU8t0cqZeF5Lqad0INUVaPX8fiTv3ycO49NE5MIwwwO9Se+SFIiFuK6LoZp4HsuP33pFc5evMI9dx7FDWNa7Q6GrNJqtdE0jSiO0XWdSIjotTvIkkoUyCwsLJPN9LF+axPp1iZu2kaTk7oDWdYQBQG31yX0k7qXOILN9S2cVIpWt42minheF9PW8cMQEQFN1wmjEMdJocgKAJIoUS4X2Vjf4sDMFK++/ibfO9fi64f7CcOYIwenuHT5KqW+PC++8hZHD82g6hKmZTF/dYnDh2fRdA3TMFlb30AQQiqVIpIUJmIpksilKwtUKiWGhgc59bM3uP++O8CPkWPo1VuUB4tU+vNYhkU2l6VYzmMZaTrdDv39ecr9eRqtKsNDQ+iazr7RIZZv7nLx0jLFvixuuIskiWxuVCn2F+l2O9iOhW4aCdBOZxBFgaeff5XZmTFKfQXStkWn3ULTZAYHS0iySGpPNEaVJM6ceoMjB2dwOz3+4E9+yG/82gnsjMPKrTX6y2VURabZbDEzM8l3vvc099x3B6Is4YcwNjZKfylPvdnEsR3OvnmJY4dnubF0Hd/32H9gimp1lyvzC8R+zMBAkViIsWyHCxeukE47Se1eHKJIEs16k1iUeOLpl9FUkRiBkbEhQMK07WSSqitsb+1QHsgiKwJLq7dIpy0GBgb2FhZ0NtY3URSFV07N02r1uNFWYPcW9953HF2RefLJZxkfGyb0A5au38TUNcqlAqNDFRq1Jtl0iu/96FkqAyUqg0XevnCRKPTQNI2by7d44eWz3H3sGNevrXLk+AwXLl0ln0/jej2IBWRRpttuo+uJiuc7ly4zPjaC5wfYTjoRtul57GxXyRXyVAb7KZYKbG7ucOHCHCurmxw/fpTFa8ukCw65Qo5CsQiCyI9OXeLMC6cYqQwwNDjImZ+9xnNXrvJ7J+5mY3OTkdEhNne2sVM2p06dYWpiH6IgkErZhHFAp9VjcmIC07L47g+eYnpqnFKpjK5riYpno4Gl5+j42/S8NraVQ9MM1Mil0w0QZAVFjjDEHqKYWKe03S6GriXPFzfg6pUF+oolfvL0SSr9g6RSDn/xnR9gmyayqNBpdzl65ADtVgtFVWi32yiyiudFmKaOIAg4KRszLeB6XUJPIp9N01fMMD05iqYbhGGIhEgc+gh793gQRjz70mlOv/EWJ44d5tDMfqIgwDIt3J4HRGxvbnP6zbPcc/woR48cxnNbNJo1REFGkiTq9V0G8iXuODxLHMWcfOU1VrZWeeDEHfh+F9PUqdcb1Ot1PNfFtkz8IOTEXce5urDEiRPHSWdS7O7u0G130S0L8JElCU012NxZJ+XYXL9xgzhOauRq9SrdlkcQ+uhaClXViMKQrushixKvvH6OwXIfS5HPtAxO2sbUNExNwdAdZFnj6sIN8oUMkgyzU1PYjsObb55joD+hQotSMhsVBAHP91lf2+TUK+eYmdmH1w352eoWD913jMr4fsQ9MZVPik+aYL7/t88qgfLFUjSiJH7iQC+IYrI4K0mIoogsStR6dfTAQVHft3kQvAaN7ZuYmkLsu/hxB1NXCQM/MbyXJeqtJsWMjhL5dHsNRElBlCy8dp2t2hITk/fQdiO6UYt2rYGhm8lCligR+j7djksQuMRCTK5YJNLTNJpNFLcKQTfxv+t5RIFLFPb2hKJiHEshl04hC0AQU9/ZxRADAq+LZpr4YUy+UKbjihRKg2img6ioSWlJ/PkAwac1/c5P/pz/5r/7r1CU5L67HZi5XXxSL3/aLoS9lYYvks37pPN6d78favPea8J7bT66j88K7m77np+t2Zccv4zZ/Eff49Pf8ytw9wuIzwLuYA9vi5/8EP0y4t2i3o+v0ggfWoWRxOR3URQ+9D+CIHwoq/d54v4H7+Otk89RTqfeUzsSBeEDKzgfoC4IAo5tQxxx9uzbSRbO0FD1ZJVaFpNlnTAKkUSJKAhZWblFt+syNT6EpmnYGScZxHtuorqoqZimQaNeR9ENeq0e3UYP07C4eHEBw1bI5zIYWiLlrRs6spZk/QQxqa2IIpCFiCAImN43ypEjs9x17ABur0ev1yOdSeP7HqKY0LUMUycIwgT0GYk4gihI9Do9JocH0UyVwA8o95cRJZEwClhf3sRJWbxx7h36y0U63S77hivcf/dxEARUTUOWZf7vP3yErz94D0EYYqdsut0eiCJer4dtOywsrPLyq+c4enAGRVW4vrzCs+s9vnX/IWrVGoah79U5yiiKytm3zieqfJqC4zgEUUgc+rRbTdKZDKKsJjU8oogsyXS6bWRZotFoIskSC3MLlEtFTMNEVSVGKlnylsDy8i0KhRyyKGDZNq+cOce+sQqra6tYlslAuUQ2n6fd7tBtu9xYWsXt9QiCHralIyAxN7fA1MQImVyWTqfH6Mgg7XZCeXrsiRcwFZmpg9Nk0iZSrHBzbY2BwTKCILG1uUO3m3jWmYaOLOvcuL6c1CFJGnfecQg7ZdLs7iKLCteurTLQX6TV6kAMnU6XQiHPmVfPMT4+zLHD09xcWWdkZJB8No1taWztbCcG54JI1/V48/Xz9GVzRGFIJptmcWGZ/VPDTE7vQ5QSYSRZSuT4X3vzbfK5FMW+LKlMGhBYuLZEOpXCc11q1QaFQo7BgQHW1zZ45uQZvvHwfYRBgKwojI+NcOH8VWRVZKDST9ft0eu69HoufpCICLQaTa5cWSCbyXL44CSe73Lo0AFcP6DVbLOyvEqt1qSQz9CXyzCybwgn5eC5HsViEU3TCINkAmfZFp1Oh/vvvZNOu823vnY3z73wMg89cA8iiT3BxUvzVPrLzF+9wf333YVhGliWhbCXVawMlFleWWV4ZJDhoQo/fe4UB6YnmJiaYHt7B0KBs+eu8NDX78LQVcbHhykUCly7tsjc5UU2d3Ygikilba4u3mBksEKr08VJJVS59bUNiqUiqqrS6/bodjv0FYvkcxmGhwbYXN9kcmoSSU0EMhRFQ9U03lrY5T/5h/+YneoOpXKZF196mW4Y8fDkPtKOQ6/XozzYTxTHzExNEUchNxauoxkqYRgwN7dIOu1g2zYEAYVCnjiOEwVLMwFN1do2fYWRhNIdVZFElV67haLpiKKAoghUt7dQ1RS6bWGlEi+80A9AUHj+5CscmN6PpiicPvMmExMj9Jf6KPcXyefzDA4OkM069Hodri0soGsmKytrVCoVoiggDANkSSIWIxr1FutrO/QVC6i6TKuZHMfq8i3yuRSyEOGHEeyNBaMDA8RBwPTUPlRZYWtzm+dOvsj+qUm6nTa5fJYTdx6ntSck1WpXEYjI5frY3NhkcmKYIwcPI8kChq5z8fJVfu/vfRNVU7Ds5Nmcz+ZotTqkbAdFUXA9jyiM6XXcRFk4ComBXD6HIGqIgo9tWXQ7Pl2vnQjNyDKpdBpl7/v85auYpkHkC/ieh522MQyd9Y1Ndrd3+Qf/3m/y3PxVHhzoQ1Jleq6L2+vx+ltzdNpdZmen0HQlMV+XFERR4gdPn+SOwzPvPe8FUcD3/ERFWJaYnpjAD3roqsnJG7d4+L4jpIoVBFH4mBL1x8fmTwBT7wpKcDsK3F8f3P1cOt1nGOg/KhYyNjaClhXo7gbJuQgC22tLXHznVaYm99Os1UD0iMKATDZPEAQgSmRzeWo7m0RR4kOHoGBYBTY313HSDk66gm5adN0mjp5C3AOUopiUdkhi4gnr+R5hHGOncji2QWN9Cc9zCRAI/B6iGNLp1An83h71NsD3ekBEt9sGAkLPo9PrEADpTBbX9bHSadzAx4s8DF0njIMka/clxnpzjbtP3PXe779oMPMJjNvPFT+P6fXBj89HM33v1Shye3D4iwN3fzPQ78uJr8Dd34r4XODui0oYfc74NEWin2d78EUOcUs0ePqV1znan39PyvaD4I73fo6JBAFJUxkaLrNy8Ry7m5uU+isgSslA6neJY/jZqbcYHCihqjLF/hKZXBrdNJAkiSAI0DQdTdP2jj3aU+zyefwnL2IoMiNjgxRKGWwrw/ce+ymTIxXstINqGty6uYqhW3S9FqZpEvoRTi5D6PeIQp/1jS3SuRTWnoJiq9lE0w2ECDZubdFpd5PMXyQQxCKyrBJHUK/uYpsqUSyhaTqIEr4XEEeQslMEYUyz0SBfyOCkbARRAUFAEgU8twNRyOzYBG+du4Aiy0RE2KkUimIhCBG9Tg9TN9g3PIplmeimjGXo3D9apm0G2KbOO29fxrEtVEVGlEQuXr7CzMwk2WyKXq+DrFooiki1WsV2Ugiixq3VFTLZNL4foKoqmq6DKNOq1xkZHeLk82fY2akzOjrI4vxVnrrc5jdPjHHu7EWKpT4Wrl3n0IEJNjZ3mZkdJ4xiWg2X7e1dXj79FqZs886FRXIZh0OHpqjVdnj11be54/hBDMukWqvjhyHX5hYJ4hjdMDh2fIZ0XxoEgXfevkC72aXRcckXkxrD1bUtFEllZ7vBOxeXyKUsMjkLTVcolYpcnLuCYeh0WhHFvjKWqSHGAhfemUNTFC5dWGB63xgXLs1jWwaqqtJXyNHpdoiDJp1em8GhQVw/ZHOzzrX5RUYrAzx/8gxhHKHbGkEYUu4v8txzrzAxNsTC/HUiYpZurnLfPXdQq9WoVPqJopAXXjjDnccPUa/VqAwMsLm1QxjFnD93BbfjUq21SDkWlmWzs1NDllVsXWdwtEKn1+H0q2eZGhsnV8gyf3WBcqkP09CxdZ3L15aY3j+W9LuqcnNlE0sVcWyTsbERXC/kjXPzDI2U0FSDXL7A3Nx12q02sqLi+z7b2zuU+4sIkkC5UmD+yg1StsHuzg521uLg4VlmZiZZvL7E3SfuQk9ZSLKMrMoEYYBl26hazL6pURBFFFljaf4mtmORzWeZmZngxtI1Dh8a49baDsOjA8RCSCqVplgssbRyk9/4ja9TrpRIZVLsn5rAdhyuXJ5ncGiQOI65Nn+DWq0ORLz6+pscOnyACD+hL3a7BEHA+q116tUuN5duUchnadbrHK44PHbmInfddQ+FygD7Dx/ivq/dxz/51/87Tr3JkWOHQBbQTYOb11d46qlnGR2qkC9mMWyTbDpDtbpLr9elf6CEbTv84MdPcmBmeq++BzRbRxQUHCeDpmp0um3M0gCt3U3CToMwjNELFeqbt3DyOWJBIUZAjAVEWWCwv8Tiwg267Q65bJaBSh/Xb1wnn88QxiG7O9vcXL5JXzFHFEX4XkypWCYIuwShn/hvyjqXzt+kmC+RzmvYtkGr1WF3q8qfP/o4VxduMDFWot3axrEcPLdLp9Ugl3GY2jcGcaKG2W61uOPYUW4s3qBQSuO6bTY21vYUW0NkKUY3NQzVpNfrgBAgENPrtXHdHgPFPr77+NMMlUpIokgcCTz/4mkc3Wa3WiOXLdBodFheWeXqwhIHZ6dZurlMqVRElmVEUWfpxnUatSa2mcYLXXTFJJXOsLm+hWFZ7O7UGB0ZRBBjcrk8nW6bKPYRBAFFUenL5zBMnVvVXe4eHsCwDRzHJPBcpiYnqFTK7FZrWHZiFG8aFkEQ4nY6jI+NIIoi9UYdXdfZ3tlFQEAURB578jkOHZrgfz59iX/4D36bzbXLjEwfgThGFP/6xuW/qMzdF62T+mhousZTLzxF0R5EViRMJ03o+WRSecQwxE5pWOki3Z5Lq9VEVw1UUcXqm6ba2EVVbRQtjRtCu+0yNHIYT4jothpEXQE7V0BSdBqtJqZlE4QxXugTeD2iwKfb8xHjALfXxUqlcNJpfN+HwKVe3UJV5QR4xhCEMbpmY+iJXUIshgiCRrbUTyTKZHMFJECzUiiqimFYiSKsKCeq3l9CxDH82ZPf5r/9J//1h17/RYO7L8RC/EIRfyqd8+9e5u6XEV+Bu78V8VnA3XvG4H9N1PTR//qsjN9Perv30+hfBNx9HLaVy0WeeO5FHhjs+5SP6N5QIwjImkEr9Fi6tUl9dYuBviyRKkGcmOKOjFaoNxs4aYdut4Nu6MRRvOf/FuF7HqqpEsQ+ge9y7cpV+gcqTI6PIyCwvbtLJq3TqLUYrfTv+Rp1qW3vkErbbG5uU8j3o0kiQa8NkkosCki6Rl+pTEiXnttDU3Rq202kSGJ3q00um8NK6Simih8Fe7QdkVq9gWEbyKZC2srwx4/8FXffcYB6vYYoivxvf/SnfO3EUbK5DFsb29SqzUQxcWwcSVATc90oRpAFfDfE90MGBspEUczyzSUcx2J7t0Yq47B4ZYlXXjvL+MQYpmWTyWT4wTOvc+exMVIpE9nQ0Pdq+faNDxLFSX2gSFLDoytJvQ2IhERkM2lc18OybERBptPpEscRmmaxtLhBPp9BUSX6hyrErsfPLq2RDnexMxZBGLBvchTDMsgVUhiGjihIKIrJo99/mn/0H32TdMFmbKzM4HAZTTOwTIfJ6UmWVm5QKPTRbXsUygrl0hC5bAbL0nj99XNk0mlanS75XJaN9XVGxwZJ2TamoVIqZNna3ubm+gbf+tZD/OWjT3H33Ue5Mn+dXCHN4FAG2zZYv7WJKktcvjzP3MIaE/uGyeSzBHFI1/eZHh/lzBvncBydYn+JjfUqnrtCLjWEKKo0Gg0y6Sxh6HH58gL333uMymA/sQyVgQq6rqGqMrZl0e50MXWZUn8RRdVQBBkZiWp9kyeefY4H7zuKIGqEYsi1hes0d+sIwKWFG2QyBpVyP7KocPniPNOTI4BLt+2TSeVot3ogRkgxWI5DKm2zvrbBpcuXOHzoIM1GC0M36bQ6dBotrl5bolgpIWgq1Z0NTtw5i+f7mLpKs9Fgd3eHkaEKmiIji5BJO8zPzZNxUvybP/sJE6OjjAwPIUsiV+ZvMjw0hKoopFI2qiLywx//lAP7J4iCANdv0+zW0ZxCQgP2AwK3y8mXTtGfzyJLEoZlUcin6B8s8aMnX+ChB+8inU5x8cJlrl+/yfVrKxw7fhhJVQli8AKPy1fmmJgYQtMlmu0GI+MVdre3GR6oIIsqsqISBdDruHhBSKFUJlfqQxGS41teWqUy0M/rr73Nnzx2kuNHZhkYLqLrCpKs8MMfPs5//mvfwHFsrs5dpdfsIMoiD9xzB9/54Y85NHMAMZaI4oh8Lo3nufQ6Hju7txgd6sftunhdn8iPMW2LOPIRJYgiGU1LI4VNel6Pru+jqiYpwyGVKdJsVJFEUGWddicictvksgkoPH9hjvNvL/D8a6/wu7/7LXp+CJGHrgsUyhUQQhRFpi9XqvCMwQAAIABJREFUZvn6CqVKCVHUaLcSwaR3zl4kZVsomoqpK3jdDj995S0W5jb5x//+b2KobaJeQKzY1BtbpLNZdrfaKJoAqsdOdYftnRZ//Oc/5v57HkAQunRbPsvXN5kY34eqSWiaQRiEhCRm4Jl0Dt1xkGQNK53GzjjcdeQYvh/SVyzQ7bmcfuscJx64E0XR2F6vkXIs4sBlbHSc9Y01BvqThYe11R2Wl67z9jsLjI1M8sePfpev3X8vPdfHsdMYus7u9galosPuZg3HNBHwOX36DDMTU3RDgXqtzVvnLjJYKZERu9iiiN8NWFvZoK+YRzcNer0ez586w9T4EJ1mE91RkWSBQj4FIiiaiqEZCAh7qqTynursNpPj+3lhaRnXW+dXv/E7KE4qGQf21J6j+H0/2U/K1r07Fn9oPH63MEn4oLH47dp/fHvfEP397ctI4Hw0+3fo8CzffvTbzAwfIBRU0k6KhauXkcReYk2kpMmkitxa22Vrt45gWCh2P912B8O0EBQD2S7ScjsUigWESEBSdEwnhSiriYCSpLG6vEDgNREECU22EQUNWZIAgZ7roakmkqRCLGGkSomfrdfCVFUUUabjJmI/rucmGT8ng1MaRDVMdNMmRkTSjD1rjYS9lGy3B3bvds3niT978tv883/+Tz9WO3a7uJ1p9+1q8273ifpou+g2GbZfTuxloIV3a/Ji4li4bcbvg/FZwZ3wiUS4X0Zt3JcRt7t/P1+IIkjyV+DuS4/PAu5upzT5ReKz7uez3MxfTubuwzm5rz30IH/5/Sc4WM793FYffFUQBHKZDOVigWsLC+SzadxYSKS7BRFZURPvJ1lJqDdR4gvo+z66rqNpKoIoEIYhpq5jaCqqqVPdrrG2scnaxhZDQ/14boidsnBSNo5t4Qc+62tbuK6Pomjouky9XsdOZ4mFaG/wlFBUmTCIkSWZOIpZWbnFyuoGxXIOL3SRJAlZVglDH1lW0DUdVdcQxZiXTr6GqsmMjw7S7Xmks1kO7hshimJsyyKbzdBstrjvnkP4noskQRh7VGu7OE6aUqmIH/i4nosoiliOgW4YdFodNFXD1HI88ewZ7r/3ELolUd3d4M6RYZ556w0yaQc75aBrGs16A1mR8F0X3/VQFA0/9DF0nZ2dHRRFwbQcojAiCPz3/IpURUXYE1NwHJvvf/8pEGJKxRxEMftLJj94Y4lv3T/DhQvz9Jf6EESB6s4utmMT+BGSqHLh4hx9eRvDTDKg9XqDOIq5du06nusTRh7pdJaFa8tEcYfaToelm6tomsqrb14kk7LIZFJoqoIkwtLNNdKpFLIscvHSHEeOHqTYlwcB3G6XsbEhFEXGSTnMz8+zublDr+ezdGOV+++9g1JfH+sb2wwOlikU8qQzaVRZZnpqhLcvzJHNZECQ0RSP3V2fWBIwDA1RkhGBlZtrNBstmq0WQyODRFFirhz4PufOX+bo4QO88dbbTE9P4PnJdV67tY6qS0zuGyGVyiBJGpIsYOoajmlyYHY/mxvbDFaKjIwMA3DqzFn6yxmctIMoJWqRhq4hiNBqNCn3l2m3O7RabWQRul2fcrkPAYGNzS0cx6IyUESQZAzTIO1YLC3dpNzfT6fnIskSg4ODuF0XRVXY3NpiYyNZ9Y4igZeuR+QUD6/X48iRA1x4Zw5JSCY9TsphY2OTO+46BmGILEuoioqTzSAJCoHr8uSTz6KrCg/ef4K1tTXG943T9VxEWUBRZMZHhrEsk2azTrXaZHCwwsryKo5jsb6xSb6Qo9VsIQigyiK6YWCYNp1mF98L8HsB6WyGRqOJk0oltYKn32T//gl6vS5zl64yWCmxtLzG1752gmJfjkzkEVg5dEPD8zxSqQzlTJF/9egjHMsXcHs9wihkZHyE733/R/zub3+LP//uDzl4YD/b29tIkkQ2X6BerbO5vcnExATtVgdVUVlcuE55oEzMnjhUEBAEIe1WnTiOEnXVKKJRb1KvbSIrMbVGDYQYTTVwu8l9rRkGU9OTjI+PMNJfQtEl0uksfq+Dael0u4l0//nz73D+3BxvX5hHUUg82bIZlpeWWL65wsb2FkePH2JpaQnbsigUCtx56CCDg2Wgh6qYCKrOyq2bGLpJLtdHLATIooFjZ+h12hQLDn7QJZ9PIQgyz798honxYQQxIo4iNE0lCHwc26HV6hDFMZ1OB1kSicKIVr2D73kYpo7nuRycnuGp50/y5HMv06i2WFy6wV13HkGSJPoHSoSBv2dh02Fje5t9o6M88czz/PrXH0AUYnarVRzbwe30UGQZURZpt7rIe0qbcQS31jYYHBtFEkV+8txL7FS3eanZo3lljuGBAarVOotLy5RKJaIoYny4QqfdThQO36UASonZuyzLtBotVFXF8zw836fQl2dwoISi6Ly4tMLdd84ye+Qegvh90YZ3xRw+82T1c6KFT/am+3h8WeDuo3H//Sf4P/6//4sj08cRQ483Xn2RfMZCVkR6QYQs6/T3DzE6e4xcLo+sOihS4pbX6nlk+ypocmJXIYrSeyBWFMH3u1y7epX+col8Louq28SQLEgKIlEcYxoWuqEjiiK6rtOLRRTDRBBEDDNNu+fTV+xHlGR6rk8m34duGsiKjiCI71sMCJ99bvV5gd2fPvFt/tn/+E+/UFbqs6pIfrTd33SG68N5jU+/AJ/1GvHLJcL9guKLowJB+Arc/ULiK3AHHzwiUUzqCR5/4RT3Vwo/p9WHX0tq82SatTbV+i3SGZNCvoIka4iiTKvZoVlvYhgmkiQgydJ7dW6KnKh4RXGMrMisLq/idT00XcbJOPTaXQ4fmsHtBKSyDp12hyiM6XR7KIrGO+fneOK513ngxHFUU8NIOYR+gO97KIqSXItIwusFiJKErEpk8ykGKgVqjRpOykbTdLY2tlE1EUmUEAUxkTL3XAb7SwxVimimjmVa+H5IOp2AKE3XOHP6TeIoRpJicvkst1bXqdbrTOwbZW1ti17H5dvfe4qH778DSRQxLANCAcuyqVarONkMw0N5CqU0nWaNlG2imCn+8K2b/OrxKW5cWyBtm5x88RUGB4rkCkU8L+DylUXyfTniMMC2Ta5eXSSTy9Ht9TB0A0WS2F5fZ+HqVYoD5feWD1O2xamfncUyFd65dJV6o8G1usCdIyn2T4yzsbHN22cvMbVvDD9KlBVXbt7ioQeOk07b1OtNcrksbs8lCiMWr6+weGOdO+7YjyzJ9Ho+maxDNlOgUMhjWSaz+yfwPI9KZYDlGysMVPr3AKdIq9Wmr1hAkGUkSeR7P36WgXKBlZVbCEJMOm1TrbWII5HDswcpFLLs7O7SV8yhKTKtdhdVVZEkgddefQsBGBsdJopjisUCumny+huL7J8dR1ZFdNOk1+hwZe4GYRiRy6bY3tylNJCi0aji2Ckmxse4Or+IpimYtomiyDz37CkK+QyXrtxg/9Q0vh8hCDLNapVarcHgUAXNMBge7qd/aIAw9Lk0N883v/kAC4s3yFfKSKpMu9MhlXK4Or/IwGAJURR56ZU3eOPsFX7rt76OZVmcef08U5PjZDJp1tY3KJWKOCmbMArxeh6dTg/DsZFkhUe//wx33HmYhWs3kBUFx7ETfzTbQjcsXr/e4rfunSEKQ3Z3axybneaJp1/gjuMH6bhd0oUsshjj91yq21WiUORP/vRHHDswzrX5BcbGxhgeH0MxTBQ5Jl8qEhIhyxKXLl7i0qUFJifHII5JOWleOHma2ZlJdnZr1BsNhocrXLxwlcnJCVRJRtUMup0eRBqdpsv1xSW6vQ71eh1NMblxfZmxkQrdbhNZjtlc22FpZY3/4Pd+g3qtThhE3HXiGH/02At861u/hm07hF6E23X5i+8+QrrV5f7770ZTVRr1FocPHUAzDfryebpdD1kRAYmnnnqOI0cP0pcvoska1WqdS1fmuPOuo4iCSLfTRpRENta3WN/YQlN0UukMnhugGzK9XgvbFnB7bVKOQ3VrG11RePnls/T15TFMDUkREaWYV0+/zfziAtMTkxiaSr22SzabJQpCdMWg1XT52v33Mjhc5o1zb1GplLFth+NHZonjkEw+gyzJZNIZms1dJFHg5MunKJUH+YsfPc3s5AS2o0EEhmawW93A1nM0qlXyeQdB8CmVUqiKgappTIwNo+sKrU6TKIQg8On0ulimw872DroqE3gepq7TbbfRFJMgDNip7jJ3dYFcJsuldxa4e/Ygxb4+nIzN6MQotdoOuVxCvxZFAdsxsHWHbC7NCz97ld/+1q8ShiGaJkMssLS0wtsX5hgeGKXr9zDsxHNU0XQyuTyNWgNVVjh6cD+HDuwnFbZIizI/efE1Gs02s9MT2CmblOOwtr7Bi6ffZHSwH0UxIBbRVJ1LF6/y+DMvc+/dh2m1WliOjZ2ycV0P09Cob9d54socv/Lwvdh2CVGRPjCyCYnJ9GcdRf+OgjsBgYcefoBHfvwd9g/vR9cNdAm6rRqmbSBoafR0CSSbrp+4bmt2ikYvJN03gCirSMioip7MlUQRiAndOvXaJvm+PmRFww0jolAnoIegiiiygR8ECJKErCjUGi1anS56OoUkKghYRCTejn4Q0/VDcn0lVM1ClPX3jv69HvoUCuGHzvlzdFV9u81/+J/9feCLUQ6/Ancf3fFX4A6+Ane/sPhMapkfeBJ83q78vJ/dzyuG8knFsZ8eH08jv7ta+eDX7uOVlW0Gw+6nJpsTeqaIYZlYmsr2dhVdlqm2eti2xfraOgiQyaaSwnZA09S9lVQfRVIQJSkRHIljcpkMoizjex7ZnEPg++iaTs93kWUJw7So11rcurXBkUP7OTY7SbvVQjV1YhJJ8W63gyRLdDsuQizgpBxcr0e9WcdMWwShTzqTRpE1GrUaYeDhpHUCP8JzPbrtLo5tE8cBfujjuR6yoiJLKp7bw/N8wjCiL58jm8uQTecQRYXN9RrjY+MEvoAgRHznx8/yX/zHv0e708G2LdbW13GsLJIkE4Yea5vXKA9kUHUdW8+zdauJntZ4eGiAS9U633n0MQ7uH+Pg7DSapuP2emxt1+l0fGxbw0nZBIFPeaCcGHyrMoHv4rkeqWwOz/fxQx9JSiZxqqJz6dI1Wu0m3/y1h0inHI5N5RipFLl4aZ7VtU3uO3EnVxdusHprk52dKjP7x2k0GoiCQKPdwTR0Xn/zHU6/+jZ/7zcfptX0WNtYZWdnl8GBIW6trZFOZwj8gDOvnaVU6kMURJ55+hTlch/1VpvBwX5efe0tDh89QKudKIpqpsGRwzPMzS9w34njlEp9uN0uxVKJXC7D5SvzrN66RV9fGrfXZXV1A0lQEARYXFhganIETdVZXl4jBjqdNru7O4yOjKAbQiJvH0gszC/jxzFm2uL48cMQCyi6nAiSCDKKrCCJEoOVAW7euoUkSuSzKbKZNLbtcOnydVIphwsXL3HqxTeYGB9iu1bDciwa9RaqorO4uMi+fUP0Oj021ncplwaIQh9RiLl2bRHHcWh0qjRqLY7MziAS0+l1SWUyTIyP0mg02NrehjgxtM5l09QbNQRBpFgsoigyrVab+04cIwwCCoVCQkcKQ1rtDrl8lotLVTJhh6FKkc3NbbwgZGi4yPHjh5BkkZWVdYrFIpIYs72xg6ZoWFaKYqHA1tp6UjelKPxP/8u/5WsP3sW1+XnOX7jC+Pgomqwwf2WeXCbHhQuXubm8wtjICH25HPMLNzh4YBoRgbnL18jlMpi6ytKN64RhgGWZ2LbJI9/5EaW+HEePHkLRVb77V0+yub3FodlJVlZXqVT66S+XOf3aW2yubzI7O8VTz7zAoWMz5ByZ/Ufuw+16zF1YoK8vTxxF1Eyd2XSKwA9YW91gcGwQQUky92+8eZ5s2mFro87mdpU77jjM7vY2L506zcz+aZaWV7gyn1horN1aJ1/I42Qz9BWL6EaSUZIllWajhmUpRKFGOt1Hu+lhmymECMb2TSJKEWEcIMkimqaxb2KEI8cOEMcCvusT+D6qqNBpdRPqehzwg2ee5tD+aab2j+J7Lm7P5wePP8XI8BB+FGLtLTJ02wGPPPFDrt9c5+DkQfZPj5HLpJHkCMs0cHsuTlpnu7qGZqhs7zT440ce49jsnczNX4Y4wnQM7FRCwxZIMvqdTgdRELFsB88LUDWDna1dep7Ha6+fZ2ZmGlWVKZeKFPJ9NOoN0pkU2VyKQ0dmkBDwfJdWs8vly1cZGqxgmDq65uD7PR685xie67K1sc3gcFLjRRTy9sXLlHJ9FCtlWq0W1d0q+XwRRVaTGj9CAq9Lp9UmL0bYKY27jh5iZnqCR370FEcP7ScMQzKpFMOVMpqmgiQThAnlVZZlyoUcOzvbuK6PpioIokQURfR6HWIvZDHy+fXf/AaS2YcghO+OhHulGO9n7j4oqPKJo+oHBFU+amH0WeP9Yfx9upfAX692TPjA17vebR987d24+8Td/Jv/9/9kKD9E6LUJe010VUBPD+DHGn4k0m3sIEQemplO6ttkGVUIkWWVd9FVQmeFOHRRFBFBVAgDAVGUCXyPwPcRkajXd7B0Hcs06HZ7SY3n4CC6IrN7a4Wo18bQZULfRTVTpNMZPC8RdpFEiY/Orj5aOfN5L/vtqJqnT7/M0J1l8oXEIuqXCe7a3S6amiht/03Gh4HdJx1LcuC3Pc8PWobsXeTor5WEeH/7+ffWJ81Yvwy652fbhyAk1NNPAwGCIHwF7n4R8VkFVd6NXzQD+G/TSsbI6DD/8t/9gAeH+j61bUyMIECr1iYOIY48nGwBWRJIZ1M4Ket9uoYg0O32EEWRMAwJghBFV0EQaDdamLpOq+3SajUIfJfdag0hFtAtA0EQUVSVwA+pDA0SCSEXLl5hqL9IKu3QabeRJAnTSsy8Tcui1WyiKjKe72NnUsRxjKpqiIJIq9nBNFRMQ8UPfXTVQBBFVFml1Wohy0JSs6EbyIqK54UEXo90NoOA8B5IDcIu9VqdV147x8S+IWRVQpQEjh2cQdU0BCFG1VRsx6Tb9pifWyCfT6MrGoqk0ev5GJaFaZsIYkjkw7f/4Lv8xt9/mNHRQao7u0RxCMSIksrgULL6HvguURSiaTqCqOC1anQ7XSwnTYyAnU5jWjrNZgNFkbFMhzAI6C9m6B8cwvM9RipZtnZrZNMOpVIfhmXQV8xTLpcQgHTGQdMUHn/yBVJpm3K5SDbjMDpYJpNO0evF+EGLqclxsvk8AhE3b64nJsuFLIIg0Gq1OXfuKpIkcteJo+xs73D40H5qjQaOY+P6QSJiIAjk0jZbW9ss3bhJpVLGDX1838ft9ThydBpNl/G6PbZ36qytV0k5Jpat0et2uXzlBgdnZ/j9P/w+v/PbDyMKAbl0jnarhijCsz99g7vuPEwQh+SLWSzH5ubyCplMGk0zaNZbCAhcujJPz3UZGCiRTjvs7OzS6bQxdJN9+8ZQVYVmu8Y9h2dZWLzJ1P4JVF1la3ObRq1Ff6mP5eWbNBtN+nJZfvLMq0SBS6mYR5JFyuUymZxN2k5zdW6RQ4cPkM6lUVQFSZZ44cVXmZoYw7JNVFXDMFQ2NjYZGBwkjqHbaXPxwhWIQnRVwXUDNE2j2WqRy2VBFPj2Sxt87cAQ/z97bxpkx5Xd+f1yX17m29eqerWjUNjBfV+a6mZLCk3MolZIGtlhO8IzDtsRHn+xwxHzyQ6PPOMYexwzI8utrSWKvUjdzW52i2yKW3dzaS4AQexbAVUoVKH2t++5+kMWQBAESZAiJSvME5EI1Hs37828mfny/O855/8v5NJR6me3x/hECcd1aTRa0aKHZeF5Hs//9c9JJ5NYlk292eDV14/Q7XaZnBjlsUfvxXX6DBULTEyM4bkebq9HJpVEEGQ2Nje5/ba9NOttjhw9ycZWleGhAkuXl5FliQO3741YW+sVFFUmlU7h+R77982wdPkKhUIOBFDkkF/55ceQFZmh4SHarTa6riMEPo88ch8njp/kq1/9EoIscfTsPAfvfZh3Dx3jj//4CQpDBS5fWkRVFWYTJrKi8tJPX2PfbXsQJQnDMBkZGuLoiROMj05y8uQ5du2eRtNlms0muqqxd89eMqk01a0aAT75Yp6B46DqGpIsUd2qkkjEcfodgsAlZqeo15uomoyiKjSaVTpdl3QuiaJEKen1egvH6eIFAxTJ4LlnX+Sd4yd45fW3iWk6+UKOeNJidnqc0sgwAS4Q8uzzP+fu/QfJ5fMUhnI0m3XqjTrxeJ5c2mZiuMzsrl0oSoDveAycNoQhsqIBLqpmgSBhGhYzk+PYcYvvPP00jz38YBS1a7fxPI9ud8DJM2dIJmxUVY80BTt97EQcIxbNo23E0HUNP/Ro1BvomoEe09EMjdGJMq16nX6/TyaTRpYUwkCgXm+QTCbotgZcuHgBUYRX33yLOw4epO8M6PW6JBIWo8NDpDMRY+nc3AXGR0dZvLTEc8//jP37d9Ns1JFkkcOXFxm1TAZeF03TIzZR38WyLMyYycW5edLpBIZhICsKV1ZX0TSFVrvF+PgIhqaSK+aIWTGCMKTf70Po43QGSOM5du/fRy8wkMX3ANTVerhbjkS8b7/3XOG/CbiLnOJo+6THce14PiRad6MFhDz44D08+f1vo/UHdOprKJJI25XJFMr4jkOvsgKhi2mnEEWZbruJ4HUiwjHf2wZdUY2gO+jRaNbQVQPfDahubZFO28T0BIPeANfrgh8Q+B6eG5USNBt1CCLHPZ4wqdRqxJNZJEWJ3udmjPcc+485708B7q63Qd/ltsf3MlIeuuaX/W2CO1VR8AP/k5/I35l9OLh7X6urNayfsv/37KPA3a328Wns1vq4Gsi4FZ9e/gLcffb2eYO7GzH+NXKWD2t/g6zBzYUrw09xJJ/UoqN+6OEH+L3v/hV3DWXe9zDeOLoUCgQ+qDELURIY1DfohR6mrSNpBiIigh/ieR6e62Ea0Sqzpiqga4iESCJYiTihoqGJMooqMej1KRbytJodGo0qhiEjKQI/fv4VZqYncbp1RkeHUIwY68ur+H0XxYghilIUHQs85k5dodPpk4zb4IfIgoocRg9erb6BbhoIksLA8bYLhwWCQMSKJxB1idCJaJcrlS2coEfSsun1B9vpJwKEHotLl8lk0mxuVDBUFQhotGsk00lq1SqCoEAgIIkBIS6LV64wMjqOYsVo9xxS8TStShWZgFCUCEKPneNFnji7wpfvncFQbf70yR+wc2aKZNpCVnxkSafRaJBMJZAkgVa1QiyZQdIiZ1QQBTRVxndDZC0GwYDAdRgaLtFotElYNqsrm9ipAn/28gW8yiIz0+NAgKLI9N0A3dSR5ZAL5+a5Y/8+xNDD1C1URafeanJm7jz77phFDAUCLwL5vgjDI0UGfY/zZy9zZXmd4VKGO++9g2w2SbVaRVVEWs029a0GlhnjhZd/wdTUWMSeKjocP3aOqYkyly5dppgtsrayRqVaYXgohyKJHD+2wOjoCLv37CCTS+N4HsXiCBOTY7x+6Ai//Zu/ihP4LFxaoVjOMXdxnkKuxPKVdUrDGeYXFrl9/yyDbpuxsRKKHGNzo8bSyhobtXXuvm8/uUyK5376M6amy+iKiW3GUS2DiO4goDCUR7NijE6UkRQJQRRJZ9LEbR1NU2h32qiaSHEoy6A34K47d+O4A0zTQpZ1BoM+imqg6CqiJOAHLqok0ag3mJzIIysiC3M11jYuki/kidkZThw+Da5PPGXh912yqRR+GBIzbdbXNnj5528xOpJnY3OZmbESx44eYf/+PcRMG6/vcOLsHMNDQ6iqhmboyLKMoMuMlEtops6ZU+fxHJfRyUmGyznicY1XX3md9dUNWq0eTn+AQMjFuWXOnVvmtrtuo17psLx8mX379nPh/ArZgkoIDDyXXXv2IHptmq0a9WaD0nCZarWFbSe2RXwD2v0OhaEcyZyNrhtsblXxtp+5WNogV8giySrlsTFCJObPLPDS0QUe/aXHyBTzHFuY5/hbr/Hw/Xfxa199jP/w479mbyLJmbML7No1TczU6bUbBN6AkfFhLFvH93tsrK1TKuXIZFP0Bw66brJ0eYl0IkG1vkmxGImeC2FIIDhYhsrmxiq5Yp6Nah1dCEkkE7Q7A0wrQavr8/Unf0jWzCIpHlZCQzF0dCnO9/7ir5meGGf/7ZPkchaHT17m/vtvx45bHH/3DLpi0nNbmKZNpz3g7bdOo8ckduycjtgZCLDjMSRZwdBU0qk4X3/iGxSTWUrlPJquEgD9bo/AUzFjBooo4PsDJDGqj7z/ntsiCnrPJ5lIsrR0hdGxaYpDJQYDB1Uz+PFzL/H8i2+wY3wIyzJQJBE1ruOHPs1GkxNnzrB3905ct00+m0SUZARJxA89+n2Xl195lWIhw9LqMpNTY7T7DpquoZsmQ0NDyJoeaQoaJo7r4SPQaLcQAoGR4WE8x2dtdYPDx09y9txZ9uyapTAyjNzpcenKAlOjEwz6fQQhxNAVRMFnc32dN985xfhwEV1XQFBIp1IM+g7fefoF7r/rNjRVAzEkDCOZBt0w6QcSSQPmhQTlHfvQlOADES1RuM4ZvYmXFoQhHx7NC3nPjQ2v/X3jdrN3+dXvIkH0q9IM2xG8bXIWQRBvSrwi3NDO3x452kRCRBBCwigweW0TQ4FAVFm4tEQ5O0lMtVjZWKFYzOJ2myTTBRauXEYNJDRdQ5ZAVyNZg4VzJ0mkMyAbSARIBCyvLlMqjqBrGu1Bl1ypgNP38egRT1q02h0MK4MfRHX5iiJFC2jJDHosjouMYtqouoEkRXMsSVJENCLeeuTnZnN+s+367jqtAb+Y+yn3P3jv9rWPPr9VcHcz0e6bH1t43XV+T+z86h3z9wfYAQjXrsuNZDLvv0ffTzAjiVfv2PDaE3Njvzd9RoT3Pg/DYDt4cP2VvPnT9sF+P2r7+OP4MPtI0hnxvUjxF2mZn5P9bUfuPkyxfoM/AAAgAElEQVS+4OP2+eyP5NZMEAR27t3DD557ib2F9Ife3kIYIogikiLheS7tRh0rnkBR9YgFCzHK2iDcFiqXEQSBwcBBkhWEwMcd9JFkOcrBFwScXo+NrU2cvsM7x8+yY3KMbC5Lvd5g/769DAYOnWYjokk2dBKJOAuXLhEg4ntR+pckyjz17Es4Xo9kwkAUAgxTRwih2+1iJy1cx0MzTCBAVTVcx+Ptw8dI2HFkRaTX7qJrGslUknqzycZKhVQmTafdQVFlXKdPaahEq9nCdVzGJ0bQdJVUJsX8xUUCP+QnL76OKkk4gx6WHSOXyyIIEqomRXo8rs8fPvk9As/BjEV6W3bc5mytw337x9AVnfJwnlQ6ges7KKpCs9akslXl0KF3SSUSxCwbPwwi3S7H5fLlJXRDo9/rIxs6khBg6DFCUSIRTyAKArlcGtOOcfeOEitbm3QbNRYXl0mnk+gxE4IA3xswMjREu9lhYXGZ9fUqg4ETrdyXh0AQUIQIiBuGTqfbRRQEFuaXeOvQGb7y2L10Oi3qjRbZbJq3Dx2j1+uxur6J7/pomoqua1i2ja5rLF++zNTEJIOBSy6XwTQtKpUqU1OjtDttGvUGG5UmggBP/fhlirkkbx06gRAE1Op1REFAUSRSmTTpdIpep0O91sB1PaanJgiCENdzOX/hErlcGkEQ2axUSCYTDJdLjI4VWVtbx3cDdu2eRkDi/NkF+p0BtVYT2zTodnvopo4oCPiex9Gjp8hlU9SrdTRVRxAFZFkhFjMxTZONjQpB6GOaJo7rAyKiGET1nSHougrbjK2BH/LOu0dJpxIocgxDB9cNqFUbpNNxFFli/tJlNjerNNttrITFm28dZ2S4QL3RYGJsGE3TuXBxjUcfvJfKVo1Dh46iKiq7du9gY30zqt9zXRKJJO3GFhfOzWHpGq1Gg8D3ECSNkZECqiYzNj6K63q0mi3mL11ifuEyJ08vsGfXNEbM5MKFS0xNlnjmuZ+RSqf40pfupjw2xvz8IrZt4XsDYjGT+YVF8rkCxdJQ5BCLEplsmkQyvl2LpSIQzUfctjFjBoIYsjB/GdOI4TgOAgLtTofN9oCJ6Rm8MOSHP36G//G/+xe0221GR8tU6k3Onj9LIhTZt383nU6b7zz1A+65/bbIqZBk4rZNpx2l7RbyBV57/S2qlRqyrDAyUmJktMTAiZ4zZ+CCIETiyn6IJEskUinAoV6vkUhauG4PWQoYLw/z5qEjPHD/QVrtFp4n0u81SCZi1CpVUukkuqbz4EMPYZkGqqIgizKlUglZF/BdD8MwWVnZ4Lb9u5FEkYX5RYaHiwRhQL/nIEsCfuAxOznFqbPnmBgfww98Wq0WhWKBXi8CP51uC0KBeCKJquisrF5BU3UkUeKV19/k6Omz1Lcj9rlchnq1QTIex1QUZnaOIwghiqpiWhaO45BIJhgvl+m2uwRhgGHEcN2A1raOpm3bTE9N8I2/+B47xsbJ5wvopoYohOi6Rsw20XSZVrMVEWqIkSZoMpWk1+7h+z5bm1t0u10StsXD991DvpBnfn6BerOGGfgQgmFoLFxaYmx8hGq1gShI3HFgH5qiEoYBrVYPVVO5sryKKomMjJRoNBpARBQTs6zoPhMl6LUpPPAQhh1HEMIPRLQ+Lg0zRPhQ//vW39Cf7F1+/fHczDUQbmgX3uRbQfjgnqIQEggiBw8e4JXXX8CttACPbD6P5wV0230MU2XQ67G6voYgRlkGqqpuE62YhIIUjSCEJBJJtja30DQdSVFRZBVZFPFch4HjICGhqhqOM6DdaiGrCoVicbtWX0TX9O0IuIDvuaytrW1LJUlIgvAhQODD5+OT2Mm1I/zOf/pb1wH7q3P0KTq7Bfu4a/r3xcLw1ifo+nTna/t/ar82/AAb7WfvI//N+7sK6m60L8Dd52BfgLuPN93Q2X///fzuN3/AQ+X8TY9fEAREScIPQdI0rESS8yfPY+kmqqLj+C6O56DKCpIis7VVIQgCzFgMgQDfHdBqNOj3uqiaShhE+fvFYh5BlJgYHcZ1A1aubJLN5XD6A3747Atkk0mGR4bwQh/H6WDGNHL5HLIkM3duAduKs3d2nJmZCdKZBDErxub6JqYZsXG1Gi3iiSS+79PvRox5QRAyPTmO5zpUNusRy2fMQpIjSu0/fvKvuH3fbmJxizDwcAcdAk+k1+0jiCFaTEBWoVHpcfnyGtNTk8xdXGRqbITiUJFmo45lxxBFAXyPTrPFyvI6uXSKg7ftIx43EAUBWZa5Z7jA//7CCU7/4qdomkSlUmFiapJut0s6mUISJE6evhjVQZlmtAokySiqimXHouii7IMooEkSfcdHUnUkSeLI4SPU61tk83FOHjvPd95c4R8/PIuuqTzz3M+3iVBc2q0uZ87MceT4WXZMThIicObcJVLpBNl8HgXQVY0jR0+SzaS4OHcJ24pRqdT48mP3YMdNVtbWOXnqIhsbG8zunGB8ooymqayub1AeHWJoqMix42dwBg7j5TKioKHrJm+/c5yh4QKVWg1ZkYnHbVwvYGpmmlQmyZ237+HsmQsUsxmWllaJWyZDxTz1Sp35uQUuX95gqJhneKiErpvoRgzVNElnsoyMDqPpRrRSGnSIxXTa7S5O3yGVSrNyZYN2s0MqkSKfK3B+bpHpHeM0Gg0MU+fy5SV6nS5rq+vM7JhADANsO8ZgEIIgsrq2xdETFyjkCpRHcpw6c4FKtU6wXfkyf+E8oedjmQaSCL1uG1nWWFvZxPdcxsfH8JyQzjZpTDxucuHCBay4zqUra+SyKSw7hp20GRst0u932L9/BkmW+B/+8BC/9ZU7iFk2lm0xWh5iaWmZCwuLHDywjx/+6Hkefug+apUqmWQCVZLJF4qMjA4xPDrEyuI6nuOwsVlF1TWGx0cpFlJMT42za3aafQdmyeQiEfg33jzMvffuQVVFds3uYOXKFtl8FlUR8YIB4+MTKJrG6HgZUVT48yefYu++nbz00isoskgqlUQUoblZQ1UMfvLcz1i6ssrQaBHCkEwmCwicPz+HoeskMwnKSY3/7evf45e/+ji333kniUSK0tAwgqLQd0NKu3Zz+NAb3L5jClVTmBop0+v1t4lDLDbWN5EEhVQqydraOoIgcPddd3Du3AWWVhdptzukUikUSUOR1Wjxxxfod/rEYjGq1RpWMkMQhKhSQKOyihQ0SSQ0dk2Psrq5Qi6XRzcy4Lv85IWfsbi0wsT4KIlk6hqRiabqmKYZpYaaGoqmoBsaQ8UClm2xsbbFyTPnGRstU6vX6XQ7pHNJRCmKEo+NDOMHAv3+gFQqSb1eRZIiUCYIAq7jU9ms85dP/YSxkRJBALlcnmK+yK6ZHYyUClimRuA7EPgUijkKxRwxW6daq6HrBrVqDStm4jouoigiiCJxK06v10fTonR70zDpD6K6vR2j46hyDMtMUK9XeOI7P+QXb73Lvp07WZi/xIkTpxkZLuF5UZpdp9vBMix6vV4EAmMxZEnk2z94lnTcpljI8s//4//Db95/D3Y8xrFTZxgZKaEoEvF4mrcOn6DXdvjRC6+RTcbJ5NJUt6oMj5Qo5DN4rsO//8ZfcN8de0ilkzRbHRQlqun775/6CV/77a8hKDqi731AMfrjwJ0oCtuRig9m5Px9A3fgEkX8QvbunuXHr/yMcnKMi5fOk80UqGysoyk+Ay9k5+792MkMgqRCIBKIKqGk4iMAPiEhsmJgGjFkUYlIVxSVAB/P8dFVg8CLMiDa7Tal0TJ6LI4XitfusSAMosVkgW3R+2QEFCWZIAzgA878h8zXLbV6z5545s/4r/7r/3I7qvIFuLtVC8LgfdG0j7P/P4K7D5ufL8Dd52CfFNxdtY+7zCERG+D1yOxq+P1Wb/+r5CqieCupmp+/PfzIQ/yrJ5/iwZEP1uAFQkiwXfAtiQKyopJI2PQ6/W2HyEQzNYIQfN9DN3V0w4Dtc+m0WySTCYxYDBBxHBdRlPDcgMXFK2RzKZaubDA2NoqiylQqq9x31x4QROKpFLKioKoyzsBFkXVOnjhLtVZnanIUVTMQBQl34OE6sHRpg2Qqxvz8IrKoYsRMBEGgslEhlU6iyDKe5yIKUNmsoZsGqqFS3arSbXe568AejJhFKIR4jossSzz73KuMjQwzcFxs26SyVSGbLTBcLtGo19k5M0ZxKI8oC9h2jDCEc6cu4nkBQQjJZJLp6XGCwIFApN9zIr28MOCx8QJm0WLHzCSWbaNoKq7jI0rg+yEH9+2h22lgmtBodgmCgMrWFolkAgLY2trCMGL0ajWMmIkvRHTV3VaLQd8h9H0azR6B12GmnEZRJMojBQzNwHU8YrrFmXPz3HXnXiRJJZWJc/e9+3Acl2a7w/qVFRRNIZNP0+32mBwfpdd3KBayDJwemqEzcHx8t8eDD9xBOpOm1elgxS1ymSTHT83R7fbIJpOUyyPMzy9ycX6JQ++e4quP38ehd06QzUZOWWmohKYZGLrG8WOnKOSzrKysUR4pMTpWIpfLICsyqiJz5sxFspkU+XyaS5cvR/U2wH/4vW9zz517CXyPc2cvUCjk2FhbxTBiyILKkaOnGS0PYydj2KaBpqn4IbS6HQQ/YGikyJmzc6iywujoGLIsE4ZgxiwGA49GvUI6FScRt5DEkMpmxMQ6Pj7G6OhoVAfaaSIKkC8UOHt+nnJ5mCD0cAYBta0WyytrjJaLSJJMpzugWq1y6vRZ9u3fRTafY2pynFw6RbfTZXh0mPkLi1RrNUZGosUXS48j+gNSqQROv8/p02cQpZCHH3oo0rs7d4F9u2fpdnvIdgJRM0HR6Dou6xtblApZFi9HAOWNt94ln02hagrzc/O8c/gYPgLJTJq4bWMbJnFbpdvrocgKcxcvEzOjWtSR8hCuH0Ux+/0ejVqT2Z1TGKZFu9kgnrCxLAtREFEUGVFSkSWZUqnAxQsLeK6H73skkgnOnbvA7K4dSIqIrpu0l+apbC1z+uIKszumkKUQb9BjZHSUTCbND176Kb922wGCIOTw4aOMFEuk8hncgcc7R44zVChQHh+n3xtQqdZoN1tYlkGxVKJYKPHuu6cQAp/V1SskMjkuz19ia2OLbC6DZduEoU635ZPIFLGtNKsbFVTZQZdFDBM8t4uhxZFli2y8QDplM3A6JJNxZElGEhU8P+RPnvw2ybjNyFAZ3/dp1ptkclnqtS1UXWZ0ZCSKYoYhsXgSTVVwPY+LcwsUiyVarRrZbBbXibTAgtBDV2zarXa0eCZAJpkgX8gQT9gM+gMajQa5bJZqvYYoiwiSgG6a9Lp9RDlijFRUnbOnLlLZ2sAyLSRZJgx87FSCTqvJ2toGsqJg2TaCCLIkIysKghjR0z/5vaf4xZtH+QePfoWgG8mC3HZgL6VCBgjRNC1i49Q0nnrqGfbunuWnr7zOL955l2q9wX/+O1+jVMriuT1+58uPIQYOjutQLOTQdA1FlWm1OiiSzFatyVd/6QFCEZKpBIlknE67zTvHTjI9NYYuiszMTCJIkdadKMp4js9TR4/zT37r1wlDGQ0IbgBoERP0VUB0s/dweA0E3LjdqpsepU/euO+t2UeBu5u3+XBwJyBdayGpMvVGiwO77iNXGiZbGCGRKeISUiyOotopHM9HkiR6/T6qHr3LJWEb5G5nJFxLuBMi7blWq0mn1UIWRWrVdXxRpTRSJgBCovvwKiS9/jyu/bXtwH/Qkf9w+yQueW2jzW/+s3/43rg3pNYJH3NNP0195Y373dpdcytX/sYxru53td3HjXSr7a72f21Z4WNaRv2JN8yVIHzc7H7YOQvb98ON6Zi3ah9VcHTjWB9ukbv/0SVTN/tdCIIvRMw/F/u8wB1sX8i/AQr7bITKP1t75NGH+NffepqdSQ1T1d47nm3QKgKEAYQhkiLRaLT4s794lkI6TjqTRJSkKPVSFK/NjyDJUVoaAqKs4AXQ7/fodgaoikqxmMP3XXwP7HiMMPAZDNoMBl2S6QyIAoOBS7fdI5GIc/78IjtnpjAMDYEQL/DwPAfXdfB8H91QUWSQJYXv/OhFStkk8ZSNGEYrhL7r0um0CQIfMRRJ5VKEQoimq4Suh6IqmJZFp9MjFrM4ffwsh0/OcWD3DL4XkEqnEEUJRYsYxCRZACEkDAM6nTYQUq82ePfoeTTTIJlKY1kmzXoVQo/NtQY/ff1tDuzbhSwLBAQs+T4z4yOEhJimSa/fR9ZlVFVDlSUCt0utskKmUEZRFHzfwzBitFotdEUlZtjU1tcwLBNEkTAMefXnbzI1MU65PIrruCj4/M/ffoM9eYV+v0/CthkMBsxfXCJfSFEo5iJGSQUGTp90NoWqaGxubLBVr5HKpMjnc/Q7PZqNDi+/8gv279/J1laVVCZDJr6dWifLWPE4sizTbbfJZlJ0Ol0WLl1hanKMVrvF1OQoe/fOcPzkSe6//27CICQWM4nSGUX8gcuVK2u0W216jsPi8hozOye4vHSF4yfPMTyUZ6w8xNZWHR8XXZdJZ9O4rocYBvQ6HSQR7JjBxvoG6WSSTrvPa28c5fGvPMzCpQVcd4ChKlS2KiiahiAIaJIMMti2xZlTFxgdK+N6Pql0Btf16PcdTp85jhXTWFpeJhG3SMYtRFWgP/CYO3+JQjFHPGmTSafw/ZDLS2sMDReRVZlGtUmnPWB9YxNdEykUImZM01AZLuXYqraw7Ki+rtNsc2VlnWarRT5XwLZjnDpzhjNn5/jSg49s13vWWLmyQrGQZcf0BLKs02q2Scfj+IHH6bPnGR4dQZJCttbWsAyN537yIsVSjtffOM7M9BSddge336cwXOLYsVMEbsDsnt30HZefvvA6uXSaWn2D0lCJC/PL3HZwL6+9cYg9e3YhShKtVhdJkvE8h3q1ztlz80xMjCIrMql0OnI0RQHd0Jk7v8DoaJlLFxfxXJdLy8uMlkfQDQ1DVwHwQ59Tx89Rr7d4/OG7mcwK/MGfP8XS8gr79+yIBN4NnamxMf78pZ8yjMCRoycpl0qohkp7W4Mtl83y9luHcR0XPwiYnZ1heGQYO57k8sIyh48cp96qkk3ZpAtF3nrrEKsbG4yPjhAIIZ1mnZ+/+halQhFJ1dDtGI2tlW2Guy6e66DIOoGgoGgwNlHm+RdeZcfUDhynjyjINOpNbju4F0ES6Lb6uI4T1RIFoBkixnZdpKqp+L6DqscIwxDHcXjqmefJ2EkKpQT1eoter08ylcT1XNwe9B0HXVcZDAakkkm6vTbVahUzZpJKp5i7MMdQeYQgDEgkk0iyguf59PsDNE3HMCx+/0++x+OP3oumKXiBj52IEwQBMVNj0O8jigq9fhdREnAGDoqsIMsynU6bA/tmmR4bJp1OUyzm2TFVJpU2kWQJ3/dwPY943GZtbY1nXnyd++88yNz8AjunJmi3O8zunATBo9OuM19voHkDkskECKBqMn4QbOuSahTyWXRDQ1MVLi8tk0wlseMW01Pj1Go1hodL29EkCc+PGJFXlta5LIR86SuPESKjBuDfBDPc6IR+mH3wPX2rRWGfPiLwmYK7UI6AKgE+ITtmp/m9P/o6+3ffjqZbCLJBLJ7g4rk5ssWhqH4vDFGU6J3uun3k7Tr0q6BOvMqgKWzX9hFgxyxURaZSWaE0PkO47ZhHY18FhDeew3vfhJ/Qeb/Vls1aj7q2wvjE2Kfu628P3L1nVxf/b8UnjKSubq3fq2Q+n/ycbjVyd7Pr/EntpkVCn7iXW9v348HzVbb5j253A6gVRSRJ/gLcfdb2eYK7MPzoIPP1sgcflur4YQ/W30UE7+qPyMOPPoi9+wD/5ls/5P5tLbz3fnoFrlaJykgkEnEO3rEbURIRBRFJVqJf+QBkUSZwQwadJr7nI0kKXhjieyGtVgVVTPLMsz9DlQTidpqELbK2vo4XBAg+uD13u6YvZHNzjUw6j+8LpNMWimpiJeKopoTguQwGA2KpJKomocgBza0Gla0qlm5EqVCmgaarCEi0mz0000Q3dLSEhaKIUdGvLOHLKm63j2oaaKZGp9umXM5z+2170U2dZqeN6wYk0hnEUAJBRFNUPC9yKGK2TKftsLXZpDw0Qn2tSugNUDQIBR1Z10mlY+zZNUWv30M3oxXRP3n7PDm/ScqyCT2PWELH7fvbv4YhoSyAJAEKiiJFzmAQ4gxCdCtOt9Oj2e7j+z66KiOrKrtmpzl+4hSZRBLNEpnZMc2ULbLRabJrapR6ZRNJgomZabrtHi+/9CYH7pxh9coK+XSK0Bfo9lwkyWG4NIQsKHhOyPKVVeIpnZ07J5m/uAKhRL3SZn1ti/Nzl8hnTfBd8F1E3eTE6fMsXl5luJDhnaOnOLB3D4PAodPrsLm6SaPdYXi0hCSJrCwv47sDrqxVIqr8kTzzi5d4+NG7CAZ9Ok2H2/YdwDRNOr06vV6fYj5DrVZBFjxsS8I0DYqlLO8cPUWlVmP//t24/ZBMLs/Y5Bih6hNLmVhmDAQFVTNRZZVep4dq6IhyiKJJFAsJ2q0+/d6Arc0tet0+qVSSK8vrhL5HOmGjKDIDx6fnbUsYSDJLC8vIgcTzPz3EgdtmSaUMJAHctoMoy1hJg/237aLZ6rB2ZY2RoQj4nT6/wPT0Do4fnyMRN2jWG5SKBQqFEd45/Cau47J7516ubLYZGioimxZHj51idnqSdrNJ4PuYtsXK8gYv/ext7rv3TlZXVlm8uIwmhZw9c4axsSEWF65w28GDHNy/k+8+9TS9Xp8777idy5cXufuee1AVA0kMSMRj+IM2siwyu2cfvV6XdMaiVumgqyonj59hZnKUk+fOkivmeP3VY0xNTqJIAvQ9qutVDh86SjqVwtBN2p02p07Nk8vlKY0UCIQOI7kca6ubpJIZYoZFr9lmc7NBOp9h/x17kFQVv+/xynMv8g8f3M//9O+eZO1Khd/9X/4Nv/Yrv8qFuXP80Usv8S9/+zc4dfYMgieRGypgx20EApJWnBOnz3D/3Xdy6O236bTqJPIFEtk0kzsmyCQSVCtVimMl9u7by87ZnSi6ShB4yLpF3DSRZAHDjqFZcYJQxem1cRo1gt4A0e3Q662iaRBIBlNTuxBFGdMQCUQwLAMJiZhpYyciEWgrZrOyvE7gRdHMan0DU0ugyCrrlzd46Wev4vYH/Mrjj2InYwwGXWQphhVL0+/36LtNQsKI/Vc3WV/fpNXu8NLLb/LQAw9QbzT54TM/4d7bbseTJIxYjG67haYIbG2uErgqbx96l0Iux3AhSXm8SChJaJZNvz/A6/fwPBnDtPn5669RyOVxBx61rSbvvHuUYj5DJpPaXhhLo2kW9WYN3RJ54lvPcMedO1FUlV4vIqUyNJPHH/slHKfP7O4xrITO3fccwOl6uJ6Pqhp89/wl7s4k0DWNZr2BIstIksJg4GAn4gCoionvC7SadWrVOslsClmWWF1eY7g0hBMESLKMKAmEfsC/fPFV/q//+9+BqEUpYoJ4LfvkersagbpVH/faO/t6xoSr283c1+sd+1t4ob8vynfduzfwA4LARxDF95FYiNfavEfcEYTCdZ9uR9e208VDRAREBCQefeQefv8bf8TeqQPbBCYyhXyJ7voKoaCyvlUjmbAh8AhFESEUcMMARAHpmi/AtYVfWRRx2lWqm2tks0VERUIURSRZRUQg9PxtorIbzpnrfK7wvbkS3zcHN99u1V478xJf+41/dI3YRLgORl6dt5tdh4AbiUNuRijyYZvwgX2kG8b/aJIR4WMksK7LHLvmL96McOQmI3zSKHJ4dSZAkj4OJF1/zuG1/9/sWK7Ox/XkQjcH+Fc/u/78bsU+ah5u/U66CuxuJEu5/tpcvbWj5+s94iZJ/gLcfeb2eYK7j2v3adIwbrS/TXB343E+9MiD/K9//hR35iO9mw+YCEgisiLTrNTRVQ3fC689oLIs4vsukizib4uCR4tFIYqi0msHHDtzEkEKiOnKtti5QCqdjFajMylkKaBWaaEqcYy4iagKuP0+6+tVfvHGEdKpBCsrq5RGhvDcAFmSEEWJRNym3e5yeWWLwycuMlkeIQwGtFtdUpk0//b3/5R77tiLJECv1STwPVRZQZRlQq9PIIRIsojr9vEGfdotB0mMImm2FeP4sTP84CcvM1ku4Qxczs/NMzw8hCiobG5U+eaPn+eR+2/n7PnzjI7licUs/vDPf8yD991Op9Wi0+kwGLjYcZt2q0M2pvLGybPcdtcduIigKviDSEhckAQ8zyXwPXxfQNdVuu0OvW4P246IUwLfJ51JYsWiGhk/iOoZVldWGfQdRsZH6XVcNjeqfP/QCvtGTBJWgrcOn2J4qMD3n36BX/9HjxGGMvMXLyMIAmfPX0AgRFIVJElhfn4JTRVZWVlhdHQMQzcwDR3Pd5neMYYsibieS7lcZDDwmLuwyOTEOMOlPLt374hqx8aH2dxYJ77tsOmqwfDwMK1ml5XVdZLpFLlSgUImg2nqhIFPzDRIxuP0em0IRX74zMtMTBTpdJuYhoUoS4yMlOh2e2xuVSkUxtD0GONjZUrFEi++/CZTU8OIksDrrx9mdLhIda2CFbcJgxBZkbk4N4/nufzoR28yPT2BacRYW62STCVYWl6h3e6gaQrxRJzADzh75hJDxTzdnks2m+ONXxymkE1y6Mhxbr9jD27okbIt4okourq0vErohiBAKp3C930qW1tIgkR/4FKp1ti1awZF1RgZLrKyvEo6lSCZjHPs5BmGRvJMTI1zeWmF584FWE4FLwhJJ+Ice/ck9XodwzAwDAvbsqKI3VCKyR1D5LJ5+v0e4+MjNJstxkbLLC+tcPbcWYq5LI8+cj/9nsNzL77K1PgIr7z2FlNTY/S7PcbGyliWhaIpXFleIVfIcer0HPv27mR6xwTvHD7G7j27USWFZrXB8vIK3U6Ht46dwYzH+MpXH6XVqiNJAqHg8uLLb9JutZmeHKJZ9vgAACAASURBVMc0TeLxJEeOn2NsfJSnf/w8d997O1bMwHH6WDETwfdZvLjIww/fjWWZfOWuae78pX/As8/9mP/kP/tN4vEEv/nrX+N3v/WXfO3uezny7kmeffFn3H/PnRw9cpx8LkGIz+LSEgcP7Md1fJAhmUqxtrJGwrL5/l89Tz6botVoYsUs2q0m9WoFw4hRyOcQCFE0BQQBTdHRVI1YIkUo6ZxfXMU0DKx4km7PwzANAlz6vTqqoSGIIZubmyxeWiBuJ4DoWX3r8GG+972fs2t2Css2UWSNTiciz7EtnfHxcerVJu1WD0OzkJSQTq+Oqsuk4nl8P0CRVTzPR1VV3j12ii8/+gCqrhJPxUnHbbY2NxkZyoHn0mr2CAIFz5exbJ2pyQnCMCSVzLBV3SSdzRKGoKoKXt/BcQL+8Mlv8tXHHt4mm0rx7//gCXpul3KpRBD4VLblWwJX4P/8+jd47JG7ufv2O9E0FU0z0A0DSRQIxZA/+863ufP2/fiBhxWzEZCQZQ3f9zBtk798423GPIdvPPUj9s9MoaoKjtNH0RU6nRaGaSApErIqkYzb2HEb044RuD7dTpd40uJnr79JKhnH1GM43T6HKg0e/+UvwzYJiIhAeBNwFwG7TwHubmofDe4+bf9XWTvF9zE2CNf9+/59b9VtECSZzfV1yukywaCHKoXUwgBVA0GRsOMWUuDiCgohAookg+sjy8pNnZPA9whCaPX6GHaKzY1qpC26refW7bVRr8sI+jRz8WnsxZ8+xz/7F//FJxrno2oa/yb2QRHzz+Ycw2s1cVfts+n3uhGu9St+6uLED+53qxISt9LX34bdeKvcTHvxxuj0F+Duc7C/U3B33fZp7e8S3AE8/MiD/P4zL3N3PvHB9qJwbTXGjsW4cPZCRE5i6gSBT6/fJRRDJFFGEEREUUIQoFFvoGkG33zyWVabFf7pP/kKuqYRi9ko24QnuqGxvr6FJHqYRpwjRy9g2iqO16eysUUykaLd7jJSHmFoKIcz8JBlidAP8VwfVZU5fvo8M9PTdFs9BoMB0zvKxGwbAbhz305ECQaDPiLhdqqSBqJE4PXxPA/d0GjWm8iywO9942nuv/Mg6UwC1/VZWFykP3CYKA+RK+RIxOOEwNkzF+n3+hyYnSaXTzM5NkSz1cT3Q1JWikI+TTxu8W+//gS7d0xi2RaappFQFV7e8rlnphhp78kiiijR6fYwYzE0TUVRZXQtRhgG26yAKv2eQ6fdQtVkDEOn1WrTbfcQ5WjFNBmPE4vFQBA5efwcvU6P+/aXMVWRs2cucWD/LqrVKjumhtFUCcOwOXVmjqFilnJ5CNuySKaTvH34JMvL66TiBhOjRQ6/e5ahoQLPv/waM9NjiGJItzNgaChPpVZFVTSyuRz1ap2L84sUSnk830cURRJ2jEajhakbvPLqu5w+Pc9QMUs8ESeVSSJIIosXFkAQOHzkJLOzU8iKwtbWBs1ml/37Zjh6/DS7d0+TTuc4cfIsBAHZXJaYGePIu6cZKuXY3NwgnrSYGCsyd+EipWKRHdNjLC8uM1QooJgakiTzJ098n0cevGt7vkwSaRtJFllfWyeby9Dv96lUm5RHSsiyTLPZZs/sDuYXrjA+NoooSfR6bVKpOHv2ToMoIGsyCTPO/OIiI+Uhjp84x8zUFKqqMjd3kdD3SaWSFAo5JEkmkYgDIa++dphEwiaZsGk26nR7XTYrdQqlHM1mh3q1wWrTZzJtML5jAlmUubJ0hZkdk2RzGeLJJKqmM7trioHTQdUkdC3G8vIVAj8gk83y+uuHuO++u5ifv8QddxxAllUOv3OC++49SDKZZGKijGEYDAYDqpsVjhw7SbPRYtfeWVrNNuPjoxw9eoJer8/09ASnT53n8uIyg/6AdCrBvr27qbVbPPDQPUiyQMw0kGSRdrvBHQf3c+LEObKZFCtXIiHxyekJDMtka6tCPpei22iysHiZ8mgZ13EwVJVqrR5p0mky/8c3fsB/+9/8c8LQo1Zv8t3vfo9LFxZ58eIFco7Pnl07qFVrjA0PE08axKwYU5OTbKxXiNsJTp07ydTUFIIgYmgGhiKzY/cU2UyWwA/RVRkrbqFpJrIk8K3vfp89s7OIskC70abvOCDIxOIp7EQGXQLXCzFiNghgmgaaotHq9BAFmXqlyVM/eYEDs7Osra3THwzYOTvNnQfuwrJN/NDBtCw0Q0VVonpZBIFvfvdHnDx1gQN79iIpAQO3gyxK1Co9EMB1XDbWN7FiFrt3zWAaBluVCslUajvVV6PVqCFLEr2exxPfepqF+WXGx4qEQcjWZoU//OZ3eOxLD+AMIgkFQ9PptNtY8STjQyXOz82xa9cslUqdR+67h0ImTbk8jCTLVKt1VjfWqW01yaUT7JgZp7bV5Hs/epbp8XF0XWMwGOB5Lvt2z+L5DoauI8sa7VaH48dOMDJcwnEcNjpdvjQ7yfRoiWQygaJEUjmiJKKqCroekUQFgQ8BqFrExul5PqEfoJsyoiCSTCTRFIWLi0vs+5XHGRkdJUD4ew/uRFFECLd7/wzBXRAEHNi/hyd+/08pZjOEnsP5udPMn3yb8ugUkqwTBBKBGKVWyq7Piy/8NZNT0zc9L8+NorWdbh87kSRlJ5EVBVlTEQTQVPUTpeZ9FuDu0KE3+epvfxnLin2icf6+gbsgiN6v79kX4O7zsC/A3f9H7NOCO4h+UD8u9fLqd58XBrs1XbzPbqybfXbf/ffwr568GsFTrv82CrgL0VyZsRidZg1n0CeesAnCAFU3ECSZwA+QJTGKRIUBiqYxNTHGQ3fNoigygSfheAKvvn4ISYRcqYBuWbh9F1FUePIHL3D73imSCRtTj6i7l5bX+MWhY+zaOYmiKXQaLbY265imjS8EFAoFjh47S2/Q5+CBGUI8VEWNyB8GfYyYhqJqiKKEHY+07UIkvH4XQRSpVVuosooQwuOPPgBhRHIS4NKsV/nKY49gxkzqlTqGGWMwcHj6uddIJSxiMZN0Jo6sqBiGTr/v0233CBmgKhqvHz4Gfsi+PbvwPA/Z7fDq8jqPHRyhtrlGOOggazqSpHD65DmymQyeF4nIdtotBAEUWeWpH/yEv37h5xzcNw346EacP3vyaWZ3jGIYMTRN48LFBRLJFIlEkkwqjue0+dc/PEZRddkxNcrYaAld13jz0ElGikNMTpfxw4D/+AffI59IEDNVdu/eSSZps1WtoeoK+/bP0u/3mBwvIysy7x47w/T0BL1elxCwrDi9nsPcxQVMUydmmnR7PQxDR5JlTp04Fy0ILC5TrTYoD+fY3NhiZLiIiMC7R46TTceZmhzj3Ll5EvE46UyWMAjJF/IEvo9tJ5AkiXg8ThCAYcbY2Kjh+j0SSYNmq4LndzFjMgk7gSBGCw4D18fzQxRNhzAgl7RRNZn19U127x1HMyQazS0uzl/i+IkLjI+V0DUF27Z4+pkXeeyX7qdeazE2NkYIHDl2kl27pllaXiGdSXP69ByGbuD1I3bVeDKBrmsYqomhaxx++wQJO0az2SRXyPL0s68yNTnCwvwi62tbmJrC0EiGmKFTr7c4cOAAV5bX2TE9ydOvnuA3Hr2NeqNNLp+lUWuwf+9uHMfDTiR45bVfkMmmcfoDEGDgDKhu1ZiZ2QlhlMBVLGS5eGGB0dFhZFni8Dsn8NyAaq0WyT3Ua8RiNjHT4p0jx/jVX/0KrVaD/5e9946x7Mrv/D4333dfzqFe5Ry6OrKZpznkDGclzSjtLoyFYBsQFvI6AQ5ar+FdeeWFDViA1+tVsFcSRtoZjkY7oxlymDnksJtkNzuxc+6qDtVduerVe/VyuMl/vCqyQ5HsYZBgY36Ni6que94559573j3ne76/3/dXb7RIpNLIioiuqWS7uljPr3Py5GUefmgXqY4Ymc4ODh4+TjoVJhoJ4trtpfWF85fIdnSgazqjowP4Az7eP/QBXZ1p3niznWtweKgXSbR56ZV3GRsbxhsIcH16hpOnLpBOZ2g1WqwXi2QSfq7cXkOUBGRFI7++Tjgaw2N4+AeP7GFicpRUKk61WGLq+nW6ujqpNxqUimUuXLnC+NAgwWAIRZR46bXXeWjnZNsLwRXwerwguORzOd4/fBSfrpOMRwmGAjg46KpObnWdUqmGqmr4vBo4JpIkIghgOQ6OayEKOorqwbZcgv4Qjz20F4+hcO7CBYaHhjh85DhXL99kbPsAgaBBo2EiSiKSLJLPF7FMGxmRldU828YmQLARBBFV9XL40CmuX5/ZULRs4g8EMAwP1UqNQDiKaTqIkoQsuThOWzjl+VfeZH6pwK//0tfx+z2IskQut8Lk6ADheALD6wfTRKANVCVFRddVBgb6sFoWrgMew0BVJFRNwXVcfD4f2c4M62sVjp0+y64do3zvr18ik4yhyjLxRKKdfiEcYX52jmQqRa1WR5E18rl1QsEAlmXSaDR4b36Rq++8T6FQZGpqno5UmlwuRygcRlIU8mt5FEVGVmRajRaiJOIKLvVanXPnLpNIRgmHoiiKxqVzF7i+NEfXI48RjsUoVioEfD6slrkRNH7PHLfhkvlJoRN3nvs84G6ruj6p/juFXdjo470tuK6LJEkb4R+bvdhKROL+v6mqgmk2+eHLL/DYjsdptUymjr9DWhewbRufN4iLiqKC6LQozs1Qq5VId2RAlO+7F81mA1eU8fkDSILbds2XBdjwJnGFzYXvR657d/Zw83YJAog/h6jKx5ltORy7fpRnn336vnMP6ln1KRIrP/cn7hPwucPNb+u13YMt+MT73F3vZfE+zs1xKxri/vJ3Cwk9CG3xYO6hnwzuHpiDfsByn27ipzyPzeHSzpl8d/mP688vwN2XYJ8H3H2olvVJZT5r5Z/D/jbB3abte+pJtOEJ/rfvPf9hugRxQ0msHUjtomgqitCgWCxtJLL14SJi2TbNRgNZkigWi8iiiOm08Ht9yDIUCkXCwRgLy3le3X+UbCpCKBZBVBRcS0QzNLaPdbA8t8Lpk5e5Mj1HT3eGwaFeJrcNU2s08BperEaL69fnSKXTiKqE4Ap0dCQZG+9Bkh2q1RqKotCo1zF8XlrNOvWW3QaXLiiagaiq+FSFlZV1EokUXo/B2nIBV3AwfDotsw6Y1Bs1cGVEQeD1tw9x4uQFqpUav/mtr+P1aHR1Z8nn15mfXeHcxSnGR4fJdiQJhDQcGx7dNUl/b1cb2CkKgqxy4dYS23cN4QtF8Bi+dhygIBIKhzFNC90wWFvNfajGWS1XiUWi/Ma3niGfXyUSj9Co2ezZtZNWs4YoSTiuuyE00uL9g8cZGe5hcXGWbDbG049PcObceW5O3wAktm2b4PzZc3h8GsFwgEd276CwXCYe1bh0cQqvz0sgEubYmYt0ZUJUKhUMnw9dN+jp6ebP/vJveOyxHazlC7QaNqIkMzQ2QCQWYXV5laDXx5WL03i9fl548V2e2beXbFeUrzyxB5/PoFGt4Jom7/zsEF975jGmr93A5wvg8/oorpc4e3aa6RtzZLNpfF4fHo+Pg4ePU1gv0dfXgyy1U1pEwxmaNYcbNxcZGxlHlHRwW9iuhawrBKIxFK+BhIBjW5RLFWRFQtdVSoU69aZNNJIg4o8yPtZHJBxGVRUCQT993R0IssPMjTlcx2bq2g0aVoOxiTHiyRRm0yQSCLG2WsDv9TC7ME84Esbn9XHt+izNeh2z2URXFY6euIAvoPPIIw9RKpWJRgJk00nW10sEwjLXpm8x0N8PgoaCwNEjJzlws8WvPTWJ1x+g1Wwrri4uLJNIxrlx4xbpTDu/4s/2H2b37l2omgevoXDhwjSNukUkEgbXIRQKUa1WsGwbRZKo1Jrs3LkNWRaZm58jEU9y88ZtIpHwhoS/jO5pJ9lutaosL+fwaBpzc0s8+tjD3Lg5QzqbQFBkovEIPckQdqvBCz/5KZPbt+H1BlheyDFzcwZwOX36NI1mg5DXS369wNBgD7IIl86fJRzO0N3fQ7FUIZlK8eprB/mlX3qa/FqRTCZF0CPhmFUOnrqJ6zp8/WtP861f/Xv09HTy3XfeJYuFYWicP3uWRCJNMBAiFA5ye+42k5Mj+LUAZ06fIxqPs17I0dmZwhcIUq/WOXTwCOlkglu3Zujr6yObyZDPrxGNRXAFaJbLxOIJPJpCs7KOUy/QtFoU1wvcvDlDOJpAVT3UmwVEVcCmhSQ6CILJeiGPz+vDa/gZHhpheLwPSXVwsbDbqfaoVps4tssbPzvAM1/5CqlYhINHjpGOdzB9dZbLl64xdWuG/u4eEokEzVaTdCbFD194kcG+AV59/QDff/6nxII+MpkkRjgKkkJPR4Z9j+/G59XRPT6mrk6xXi4QTwQJRtPM375NIZcjGY9z7foMy4vLpFIJRNGlXK6wuLTET15+k+3bRhDFdu5HXdfbgFTUePKJh9F1hbGhYUbH+nn73UNIrsRfPf8a/dluZm4toMoqJ0+fRRJkIpEI+UKeVDqJ1+/jlbMX+K09E3Qk0wz0DGC1XE6eu0BfbzfNWpOlpVXOX56iI51CkWQkuR1XLCDS19uF68L8/AqGYaDJDn948iy/8zv/GUgSmu5p512TZPhE5u7BZvMvkrn7JMboQVsQN8HfHZ/dim26U5V7cw0hiw6iJPPsN77O+pKJEQiRHNnDenUVu5WnXlkld/Mi4ViG1aVbnHn/TdbLa4yMj+OK+n19lWS5nYZCcFm4cZW5xZt4vDqqbrCR+OAeCCFwL8tx17nPwdzlFopcXDnJ7/yT3/7MdcBnAXefbPcKjTjuR9oMX+yK8qO6NuPlHtxt85PH+M+TEuHTyn125u7B2/i5arqjqk8Cdx8JIn56f34B7r4E+zzg7sMX5ub/tyjzcUNqk/X7MuzTWLx7UyvcHfB5PxP480xs+556krenZ2kszRLz+/no9dzehdM0P7mlZVzLxuPzY8oKdrGE5mknOzebLYJ+L7Lo4soSourB6/UhCDaGR2f35AA93T3cmlrk7TeOMTqSRJZEWjWbUrnB4TNXmF0u4tXE9uK8YWH4NWzLRFQUOjs7+PGLb9CdziAiYLUsJEFGEhRC4SiaroHYZr1AJeDzsp4voCoaZsNEcWUE1UWUFBRVaedml21kUWV+YRlEhXrJwqsF+dPv/Yh4KEixWAXLRbAE+gZ68HglXCzaqpnrLOfWOHb6PAMDnegeP5qkUG7kQXbRVYPi2iqryytUEOlKefF4DCzbwWxUcWwbUXCoVspIokitWcHnjSBgUa7mCfh9OEhE40lkWadULqLqMutrS9yam6EjO8DrL77F5OQYFy9dYnCom3Akgltr8NLpHGnD4qG9kzSadWKRIAtLK3T2ZhEkGVkRyGRiXLs5y7bJMTRdo9VqsH1ihGtXbqHKOvnVAs1Gg7nbc/i9KksLK5w4fZ3Cep2JbaPUqyUMw4MoiFy5cg2fz4vh07GaDaKRII4r4PXprOZyROJxCsUKmuElEPbjDwZYWc2R6UzRslr0DvdgKCLXr94kFY8yff06pUIFJJF0JkGj3uTk8TMkon4sq8mt2wtIIvi8XtaLVUzTwR/wY9UsPJKKK7VFjwyfl4XFVVLpNKqi82fffp69u8dZXFlCkCwMQ0dApJyvMD+7TCAQYG5uiVg4SH9/D4X1Mjeu3aLVrOP3e/H4NQIRLx8cPc3I0CAHD56gXqkxNjrAxUvXmNwxwrWZ26ytl9gxMYTh9bK4uESxUCKejJDLrZGOdeC0XBaXb2L4PbTqJtPTt7i00uI3n94LkkggGMDr93Fl+hoCAslElJmbtykXGphNl8HBTgShgSJ7MbwSpeoaoYiHi5cv0dXTy7EjZ+nr7kH3eDl28iyXL14jFgtitkxi0ba7aCjqRTOM9o7++at4RIn1fIlgQMHn1wklEoi2zZkzFxgcHuSlF19nbGgAQ11jYW6WY6enGB+d4NiRkwwOD5EvFIlE29/DWqPO9euzPPrwLmRVxUEkEIkhCXDs+GEWbq0RC8XxeiWSqRiSLKDrGj/48et869mnSHptTl+ZZ6i3B82r4Q952bt3L//6u9/nmZ5eUBWWbq9Rr9XJr+W4fWse0ZGZX15g5+4dNOo1sp2diLJKo1qnWFxDVWH6xg2aDZu5+VkEEbI9WUqVMpomIylBTp04y7uHjzI2Po7qCyCLOpYloXtDHD9xhsG+XmrFIppgs7a0hCSr+AIhZMXP6RNTvPDyAR57fAdnPjiCV9PQZJ2rV68SDARo1apcvXaLZgsmd29D0QV2TIwRDOkIosXBYyeJeMIMj/VSqa/jD/r4t3/+XaL+GOcvX6W7o4PBri5+8MrbZOJRZMnGbDUIBH04ODTNJqIrcnPqJnt2j+GPBKk3TP7s3/+AazM3mBzvxxvw0NERp1Ip4PXplEtl0ukUqyuzjG+f5Nr0DO++f5xsLIbuN7hx4xqGoaIqGrqhUik1mJ1bpCOd5NbcPLt3ThDwKRSKRX763klu3LjBSE83md4uXESWF3Jca1SZ8EnE4yEqzQZvvHOIbzz5KBeuXKUzm0GTdfp6OhEEB9mroOoq9WoDF5u5+Tl0UWH/oeMYHpVIJMI8Bo99bV97vkRAEkXYkPG/W9J9U6Hx01UzH2ie3NzCv/O4wzZTH7GR4+0u6Y2NlAl3mu3eL9JxL9vi3nW0Obu75/mPdyVz7/j9T//y3zHeP44qQDLVjSiI5FcW0cUWtXoDs1aisV7EcnV6B7chqfp9vXGRkHCwbYtAMMjqwjWsZhNN9SLJGoIkI34I8+487v+3yT5uxUE+yLrlhff/hv/iv/qdjz1/9/34+LXa51nF3Sl2s3k4CPc8z89jG6Povni7e0ptea+2Kv/Rk/x4+zRwtyG6IggfCtVsHlvVupUQzcdcxT1tfjIj+FltE2jf625571f6QcGdwC/A3Zdinwfcbdpn2d/40JXiCzSB9mL0LlndLXcW7p9QPu7cZ7H+wX5qgTh/8urbHJpb5cnOxId1u5KEqkmsrK7i8+ltYGaaSKqKA8iqhCSL1OoNVFVHENq5AgtrBfx+H5Is0mw0cRyXg8fO0dsZ2xB0kIlEA4wOdBLy+3j88V3Iski+sE44GkAQRK5euY6qqPzkZ+9TXCty69YCN2/fJh4LoOoKmq5RLq+zsrJCKBzAddtxK4ZXp96o4romiiIhSCKypNBqtDCtFooqUy1X8QcCeLweqpUKqiIRMAJM7Jhg5vYcD+/eRjoTxbbbSVuDwQCaruP3ewgHvAwP9RAKB5AVCbPZZHVtmUAgSLnQxLZsYpkoI8kYi9jY1QqhQIBqs4bH8DJ19RYew0ep2CCZirOyst5eaEoiXsOHJLvUGzWUDZdTQYBgwE84EkEUVcLBAIePfMDXvvYkb761n87ODkRR4uHxfkr1KtlUBFxYXV3D6zUIBgPYtk292uC1199lbKSfqamb6JrGlas3CIcCqKqGrGhcvHKDlmlheA3iqSjJZIKJ0T66OmMoktsWSQkGEBAoFNYZGxumWCzj9xncnJkn05FCoJ0HUBIlEvE4oXCA27fnSCTiiJKMrmn4fD4cW8DQPCwsrNDb2004GqFcLLJ9xziWZXP+/GX6e7o4ceYiExPDaJrCerlMrVanUW8QiYYBF03Rmbl5E5/XQFNVTp48h2vbJONRvvf9V0glAywuLrBjxxCxWIpr0zcpFcv8dP8hzFaDWDxKX08nt24vcHNmlvGJIQTLpqcriySKfO8/vIRX19izc4Kz5y7z9NNPUCqXqVRrqHLbpXFy5wSJSIBoLIZp2fzswFGikQDRSAjHcbh87SaVShkXh3QqQy5XYKHc5LeefZS1XJ5INIRjQ7lUZqC/F0PXURWVZEeSQCiMZVucv3SF/v4ujh0+RyaTxTYFbt9cYWJ8F7LqUK9UOHv+El2dGSzXYt8Tj1Ct1jh87Ey73r5eXKE9I0uSQL1RZSW3wtJKnqGhXkRJ4szpi3hUnWg0TDyd4PCRk/gMD9FQiNn5NVKJTnp6u6nXq0TjIdLpBLpHJxyOcPToWR5+aJIr0zfoynbQqDdYXlymI5uhWlunWG5w/PgZhoeyrK7mSWfSVKpVdu+aRJYkbLPJ26euIwkCE9snaDZN/vjf/hH/+//8z/mn/8+f8Q8ffZRYLIJtmwyN9rOWX6XRrFOv1gn5/LRaLRq1BtVyFVXVOXfhEtsntxMNRxkaHiIdjxEKhKhWq7S9zwVkTSXTkaYzlSYQDFAp1TD8QXyBIIW1AplEEo+itVkl1+L0mdMkIhGsRh1Z1+jv72Z8tAdXaBINxRBFmUqlhqZ7UBQNr8/L1embPPPMPnRVRt/IwWjZDoFwiIDh48l9T5LOhvD5DIKhMPVSlScfe4Sd28fp6EgTiYYZ6EozOjaEiIcb12aJxZJ4PB403YOqOmSzHQgytFoOoqKwMLvIVx95hK7uTqav3GItXyYYjiBKEh7DC4LA6NAob+8/xPDgEJPjExw9+gHReJRstgNR2kxdIFNcL/DWofd5dPcOHtm7gwuXLhEJh+jq7mL3tjEWF5cY6OtB9xkIgsjS4iLv3bzOvs4UtmW3vRKqVfr7uuju7mB5aRVVU8nl1tA1FUGUkSWFwloRWZJJplK0mi22bx8lHotSr1aY+KVfxh+LfOyctxU4eNCUCJ/HNl29tsz4tUX7W68gPn0R/2mXstXCdP/+99g+tAMREdcVUDUd0xbw+MJUyiWazTrVlRVyS3O4uKR6R+5b47gbfZCkDZVMQaZYqmO7Ev5AoO2N8nNe01alPnEd47o899p3+L1/+T8+UJ2fZp9nFbdVL7+oGLu72vlMY/ez9uPBmLsvJhXCnfYg4PTLMeEOlP4h2fOA4M5x3F/kufsy7IsEd3cmLb93aN97DvcjMdfPs79wbzqF+3JobMHObZbZKkn6z2umaaJpGo5ztztLOBziqaee5KmnnkQaGOEv9h/h9cs3GArqRAJ+NE0lt7yErTCsYQAAIABJREFUrop4A35cSUJW2mqUtukgSiq4YLVaCKKAqKi4toOiyrTMFvm1AkP9HQwP9aHqOo7r0DJbhONhOtIJGs06Xm9bkU1RZdZyBbKdHWiqTl8mgSLL7Nk1QU9PBn/Ai+NaOK6Losr4Al5M00QWFcyWuQE4oVaro3u0NhgVFQ4d/oCuzg4URURTNpOyOwjYnDl/gRu3Vxka6mFwuBfXtkh1JLl44TK5/DqJWAzbtlFVCa/P+2GblUqZWq1GOOJHdCVefPk9OjtSBGJBytUaib4EP/zRy0yMDiCqGoqsEY7FkRWNf/NHz7FzcoSpKzM4doNgyIfjCLTMBqqqIMsbwFSWME0Xj+ajVm27HK4s5xjbNoIqi/gDfl557R127pjkN//7f02X1yEcCnD79iLFapXv//CndCQjREJBYtEQKytrDPT1cnXqJrt2T+K6Lq/99CC7dk2Q7UiSTif5ySsH2Lt3O81mE0GwcewWL776FobXSyIRY/rqder1JmfPX2HHjgl0Vce0TFRVIZfLMz11k3g0wnN//SLdnUkisShzc4uEwyHe/Nn7dGRSTF2aRtEUPjh9GY+h0Gw2KJWrpFJxDJ+Hjo40XsMgmYxy6MgpxscHicUiBIIBPJqKz+9DFCVc2+bmzC3SiSTFwjrJRJRKqUwoEGCgr5Pdu8bo7kzRbNRp1R3On59i9+5tTE4OksnE0T0GzXqT/FqBUDhANpuhVChQr9eZmrrBL3/jqzi2w/LSCkND/eRyeUzLZDVXIBTwksvlCfj9BENBfvLqfoIBLxNjgyTiUWRJwu/30dWdIRjxoqo6iqhwe36JN640+bV923Fx8Xg8bbdM06Zea7Be2JCHj4bQNA2PoTE01E+1UsOyaiwszhGNBZidXyCTSePRdQyPTDIRwXEcBGTOnb9MT3cne3Zux+v18KMXXuP4B2cxdIVMJoXlmPQP9TFzaw5sh3A4yvJyDqtl0tPbjaQqjI8PEQ4FEUSdhfk8hfUqiUSMl17fz+OP7+b7f/0Ct27N0pHpYHx8lOszM4yNDHH6zEV6erp4991jjI4OIAgWu3ftZnx8mGazxOGj56nVa3R3d9GoN3jjzXeIhEJMnzxGzlTY89BuXNdl946dYFv4PRrP/eBH9EVCHDt9mpXlVR7avYPBoX5uX7uNoqq8d/gY2ybGmJq6TqvVwO8PILgSuqZx6tQZ7JbFwuISB499QGdHB4qiIsjg2i64Motzy8RiMRxJoViskEqlWVtdYzWXZzW3zuLiPJOjI3i9PizT5Lt//RLvHz6BJsv09PShKjKCKKAbXvzhEIbhxXYs0plkO+emY1IrV1AMFUlug5mjH5xhdGyIVquKKmsoikY220G1WsJ1Hc6cO0cw4AUcvvOD57HNOkfOnmTvrjHqzTKW1aBUzBOIBnGQMVs29WaLPTt3oYoy3/vh3zDcP0KjYdLR2YlptXMENhsmqmwgCQLHjp+iWFwn25llaWkVXIGjx0/S2ZnBtixc1+bhXZMEwwEUVSYWixCNJCgW1lEUiUQsQiQeRUCi2azz2v63WRQEvjkyQDgWZi2Xo1qr0NWVQdM9NOp1giE/zUaLUCiMaduosgauyHM/fJm+rgx6QEdEwGy2mJtf5HzLYmx87IHmPHFjbnRct83wfcnW7tL9y9wPI5Tu3LzdMm6p/bf2vL4VWbj1NW/GCN0ZJ3Sn7fvqk3z/ue8z1DvcZgFFjVAkyXqlRWZwjEhHP3VT4Nz1ab75D/8T2ikVuLuiTVYDAUEU8fojBMJxLNNCkQU0WcDa2CiRZPkOd1Kx/R56AFQqbkVFblhhucz+82/wT//Zf3tXDOLWVT0Y1HgQt0zX3Tpf3Nbg7ouzTcbuwfPbfRFs151s81Ztt+v/4twt72UTv3i27q4WBe4TjBGFLVrd6NKngTtREH7B3H0Z9kWCO2Fz2437h9Ynnfs89qCs21blPilJ+oOaJElYlvWpL65du3ey76kn0Ycm+IO/eoGnehLUaw0K+XUCoSCK2vbPt5s2OA62K4JtYzYbaLoHR4ArF6eIRkNoukIgECCRiCEILpZlspbPIwgC6/kSSwtLRKJBllZWaTZtfAGDZqMtLFAuVgiFgiSSEQRcHNeiVq3xvR+/xsM7t2NZFvlcHkmSEZBwXYdisS0jrygqC/Or6LpKIV8kXygSi4ZYy+XQ1Lbin0M7Rk9TZB7euwvdq4Hr0KjVUGSZaCxMMp6g0Wig6RqqoiCIEmbLotlqosgqiqoxe2uWdw6f4ptfe4ZYMkKtVuMvry7y6FiG7s40jmuja962QqCiIuDS3ZkknoiSiCdQFAdJFqhXa3iMAKIgsbaWR1Zl6rUauifA2so6hw6/z8jYMC+/8g6ry8vs2jXBmTMX6M52kEgm+ce/+SyxiEoyESOdSpLtzBAPeTlzZopYNEij1SQejfD6W+/z6KM7EUWR8+ev8Owzj1GvtwE2OJy7cJWezgyOZREIBmg0mywsrvLYY3spFookEjEQwDJNOrIZzJZJYa3IzPwS6XiUjo4MS0tLbBsbYG5ugc6uTlqtFqFQgO6uDOfOX6ZarjE42MPgcDfxRBRZFOnp6cK0bBzX4eSJc2QzafKFPJPbxyiWSmiahmlZWK0G+989Tjab5tr0NWLRMHMLi8TiMRS5LdSQy+WQxHYS9YOHTjDQ18O5c1eQZRG/34umaxiGwcyteaymSSQSYmV1jY5smvzaGppHo6szS7lS40+/8zKP7B5jYXGJRDJBwB9AFAXmZxfwGDp+v4+3DhzhV7/1dXxeg1qthqYpLMwvsrq6xlo+TzBs4POHOPL+Kca3jXDoSo5feWKC3Ooauqpx8NAxkokYz7/4JsX1IjMzc/h9Hgr5IrOzCxw9eopUPEFvfyeRaBhZEgkGA+i6xomT5xgeGaBeq3H67BVEUWNwoJuZmTlu3JxleLiX3bu3sWf3BKIAudU8hWIZXyBAuVhmaTGHqrQTTAd8PjSPjumYqKpGfm0NSZLx+31tkZzODGtredLJOIVCiUf27sTwelnLrXHg4HGe2vcYp06dJ5tJcunyNbq7uggEDU6dvEjA70eSXcZHR7l0eYquzgyqpjM5OYYiy1RKJb752Bj/6v/+K77+9Wf4X//l/8Ljjz/Cu+++w2rTxbdeYGJkFF3RcVyX9UKBWq1OyzL5xrPPIEoSmUyajq40iqzw45deo1QsYjkmmXSGkYkxJsZHUVQV3TCQZRnXEWjWmlRrNbxeA1lrM/tvvX2AJ/Y9wZ8/932CvgBdHQlkRUWQFBxBYvvIGKNDA3xw5iwDvX0YPh1FVXFxUTWVtfwasqwga0o7fUzT5MCB9+jsTIEromkarmUjbbiVy5KKaVrYlkkkHsJr+Mh2pIknYwRDQQa6uhgZ7WdkoBePV2tvhhkeKsUSlm3jMYIoioooyRQLJU6dPMM3/97THD91lt27d+K6Drrezv9otizq9RZXLl9hdHiAocFeNI/O2bNXuHBlil/+xtO0Wk0UTcHjMZBkBcMwcGwHRJHccp5Wq8n8/Cx/8fzL7Hv0YWzHoVwq88hDO3l/ZpbHUzFKlRKGRyUeDaF5dBRJRRCFdt5BWUFVdWqNKj6/j1KxzOOP7EDXVTSvhmPaG6khRHqefgqv/36F563sw514PvK4+aIk+D/ePj7I425wd/e5j37/JHZu6xNbqfrd+7nX33qLHUOTbcZ+Q9DE7/VhSwq2IJDt6qezewgjEEJEbDMZH9ORTQggCCKiAKX1HLduXiMcTyOJIu49YE4Q2iIu9wuDcFeZO3/eay8dfZ7/7nf/60+5zp/PHjTm7u8C3N271nuAT3wBrd4xKj8pPOgLAXdb2Zf73dxqg2TLcfSLmLu/W/sFuPt84M5xXNoTyYO9uFRX4KvPfBWpf5w/fvUAQ7qMhIsia4iCSKvWolmrYzoC05enSCajCCK4gkQiFqbeqOL1GdTrdRRNJV9YYb1UIplIIElKe3e71UBWRTwenVA4gii6+P0Bcis5vF4/qqJguTV0Q0XTdAKBENvHRpFlFRDQdZ2LF6/hNXx4PAq6R0NwJRYXcgiOQiDixbFc+vq6kSQRURRQRRXTNlFUCcduYRg6jXqVer2Ka9s0Kg10WaHebCCJCi++doDxkT5q1TpruXUkWUEQREKhCLYtYjXrJEMRDI9BvVXHI2u8M7fCQEQm3ZUGWeD1l97jxvUZYiEvAjZmq0ogHGqnijCgVi+i6zqNqsw77x1jeHQAj6HRaNbQVD+FXIn9B99j+45xjh87x87to22Q2JWlXK5y+/YSHo/Gv/jOe+zp8TM3v4BlO0guFAolJsaHsAWIhiN0diQxDIP97x0l25FCwuTEibOEAwbNep10IoTdckmnU1y4OIWqeXho725UWWJq+gYI4Jg2HZkkiqrzwbGzdHV1sLKaZ3ign6XFFS5duc7gQDfpVALLdrk6dZ14PIaiqKRTSbpSEQ4dO0HfYCeSLOA6Njeu32Z2YZFkKkEkFMS1XaZv3iIaDaLqGoLYFvRpNZuMjg6hqh4y6QSKLBCKhDFNE0mVqNfrSLIMjsOJk5fo7epCVwPMzt3g0Ud2ons0pqZnMAwfhsfgyNEzdHdmUFUFRJHl1WV6+rrJF9YJRaM8/NA2HLPB8moeRZYpVSrIssy7731Af2+WazNzfHXfoywsreD3ebFMk/n5RU6fu4IiS4wND4Bis7xcRDc0qpZIX8iDpqpEo1EWF5aYGB9rq901G8QjEY6duIDPo2Po7RQeD+3ageCIfO97b9KVzaKqBoePnGZ4cJBazcRnaCiywvtHzjDQN8jR4ydIJeKcv3CNnTtHsawWjtvAMS0WFlbp6u/H8PkJBr30ZDspFctYlkWz2cJj6Agb6TckUUIx2ip84yPDKIqK3+dF1/1kOzLk8wV8foNGo8z4xCiyJBP0eYlGorQaLRoNi3giQjgU5803D+LxSKTSHXR3ZfEFAhw52mbUG40mVsskHo/wG8/s4tf+8e/yB7//+xQKOfp7e/HKGv/uwDtMZtJcPDfNyHA/x06eZmioHwf4yU/fIp1KUqnVaLUqaKrG7l076O/vIp2JEozGUTwayBKSqmALMDszT7Vc5+rVaWZn5xgY6EJRBAqFPDt37aTeaKArGljg9emkOrKUmhaWIOM0V7HdOkODWXSfiuOC7bY3fURJbLN1gCiLWK0WIgIDvT1Ydo1ioUStVCUU9HPh0nlmrq9y9vQVTpw5x9jIAK5oYpoOptmgXq+yvLxEMBhBkTXOnruM5KrIoodSoY7P8CJ7dQRRx2q2sByXV1/fz86JYZpmlW2TI+SWl1lamCcU8HHt6k1CviAvv/U20aBBRyaBqsloPg9mzaZlmUxuG6fZbPDOe4fAEYhEojSbLRRVY3lxhbcPHGagt4tIOMCeyW14gwFmZ+ZIpmIsLy3yr779bb45Oka6M0mlWCBfWANRxHUEdI+O7ZisrZW4enWGqdvX6evpxDZNdEOnVCqCJiEhkVtcJRIP49kxgSzpDzTHbc5jjtNWJHU22aEv1T47uNuKdduqnvtafABw9+47h5gcnsSlHafo2g6S6yKJNgBmvU44GgFh073y44BwOwbQwUaURVRZQsXBbNZYrzYIhcNtiHqHl1Gz2USR71fgvNPaz2XrNp979d/zz3/vf7i7F/8/B3cfMYcPwHp+bI9+XvsFuIOP2NpfuGX+HdkXCe7upPHvfZ6fdO5ztb1FbMCnlbvXHXPL8hs/743h+7h67/3sJkkuAMKGS6oAuOKGK4nYdvP4w1fe5shsjj1hHUNTkEUByxbRvCKpjhSm7eIKAoIL1eo6mq7guuA1Arg2SJJIrVonEGznkGqaLaLROJIgs7a2Dq5NsVRBFEQ8mk6z3lblzOXW0XUP5XIFy7LQtHaS9J+88iYjAz109Xbg9Wk4koOkKKwVioSjYUKRIOtr64SjEVRVxWyZfOeHrzI20o/X76Veq6LrPhwEKrUGuqxjtWz8sRCWIqBKEpZtsm18AFmSqazkefXtg2zbNYE/FMA2W+SXl4hlUgiKSDDcdqNbL5f583cP8x//yhPUGy1kSaG7J8G2yVEESUH3eDl99gqpVABRdCiXawRDCZotB90wuH17joGBfiyzuSHmY+MPBogEw8SiCZ544hHeffc4IhKJeJJDh05w4co0yysL/Pa3vsL/+e3neWxnL6lsCt3wMDLaT6tpsr6WR9RcDh05QbVcRrAdasUasVSEiYlJEHQOf3CO0fF+cksrnDxzmWxPFl0XCAQMFmcX2uyraRMMBPjxywcYGexFkiHblaGzM0G91mRhYZlIxE86lQBcrl2/zY7t4xw9dpJsRxxFEXEV6OvvQXAF1gtV5uaWqZYbDA5kqZRLnD13ia7OTmLhGPO3lwiHQrx/6DhXr15hYHCAVqNJtVRh+soNbt9aorMri9USuHFtnkg4gkfXCQX9BEN+Eqk4TbeFILr4Q0FkWWFxcZVwKMTq4hwdyS7e3n+Gjs4Ul65epTubAtdkZuYGjco6V89fYWmlhm27hCI+TMfk3OXL/P1ffRpFlejIpvF4vfj8PlqNCoZhEI8nSacSnLs0zfbJUS6dvcJgbzcryyWeO5LjHzy7h9xqjuWVVRoNl0JhhZnbczy0ZxehiB/LbtDV3UlHVxbD58PwGiiaStgPxfUSwUAIfzDI1WvXCftDHDhwDMe2GR3qplpdYnRkjGQywsBAmqnpGywurzJ9dYZGo8XDj+3BbNURHAvRthEkk5bTaCedz3RhOQ6hoI9WtUG5UOXokbOUizWqtRqBcIBGs8prrxzAa+icPX+ZVCZOMBImEghRLhWRFJfT584wOtbDi6+8Rl93FlWXmVuYY99Xn8IWTFzXYWlukTMnLuE2LQJRg2DYQNUkimslnt05zMGLi+x58iv440nyawVa66t8sJzjP/+1X2bq2gyDfb00nSqSC7Zp0d3ZTSgaYeHWEt/9m+d5eNckxWKeYrFArVQkFNTI55aol0rs/9lB+vp7WV1YJZtKoygy6a4M+w+8z6Gjp3ho9w5q1SqdXVm6ujvI5VZIxJNoSoA3XjtIMBzGtJoguGgejfytWYKe9jvLH4hguwKLt+bwKAaKqOK6FkgOsuHHG/AhKiKO5XLz2hLdfQl6erpZWy3Q09uJKLkUCktUy3WuX1vk7Xc+4Mz5y8QjYSRJ5tS5izTrTbp7u5EMgVbd5MbUFLmVVc5fuMT4UD/BcIh4KoWDia6JeH0+BMWD47TZrIOnTvHM00+i6hq1ehmsBvFUhlQyjGU1eOPtdxgfGiOeDGB4NRBcLLOJqomMjg3jD/qxHAtBMDGbFQ4dPkW5XKS/t5dzxQZ/f3ICV6hgmg4+X5CgL0Q+X6BlNtFUmWAoiiypeEQZXdVQPCo+r8HKwgpG0MCsVLh44RIj4yP8h+NTbJ8c/9h5bVM9cNOvyv1wYmszVp85jden2OY6wUG8RwhlCxXJDV+wO0VRBOEj98qtpu07XS/vPUTaoLUd97ahUul+NJ+LgsDt27N0x/s2zrXXBq4o4iIi3uFKuQFDuXPjt70m2FwVbN5OCQERLItrF46ii00a5VXiYT+WrIGgtGP0nBbra2t4DQMXERsRUfg419W7BUlc1+G7r3+H3/v9f7YhKNO+m5+GdbZiCO8YFQ8keNJe4Isf29aDi4V8PvvbjLm7W6zvo+d9r33x1745Ur98+2g5327TdT86Nm+1625uxtz/+c1vs+O4iOIv3DK/FPuyBFU+aYj97Qy/j7cHYeyEO8r+vC+GzdKbcYYfly5CEEX2PfUVupNJ/uBHrxKvV9B0DVGXEcV2bJiqqrRFVUASJDweD/VaDUWRyefX8Pn9eDyedp48WcG2TKxWA0GCRrNJKBrG8GhIcjvBbcts4vXqaJrB4tIqH5y6wOWrN5lbWGawv4eRwV5coFgsoWkqAjKVYgXD0DG8HorFdRRZZ3rqJrbd3sntzqRw7LaL0npxHU3TeOHVnzE2NIAgCHgDvjZAxUVXNRzHRZJlLMumWCmye9c2fIEAbssiv5xri6AoKqrmQZYUSoUyr8+t8t/8R08QDIcxvO174Pf7aTbr7YlKEggFfHh9BrqmIQgSmqazvl7EY3jpSKeoVCosLCwSDAYQRI33Dx1n27YxarUiPq+fnp5OatUq7x08Rndnit/4jV+iK5vE6/Xwvfdu8MRwmKsXF5mbu4nucVnNrxEMJbk9c4uezgzdPZ2k0imiySgnTpzn5KlLDA/10NPTwe3ZOW7dXuSppx7B8BqEgkGWl1aoVKvYjos/4OPq1AyPPTyJputtN0RVZWZmlrPnrtLVlSbTkcIX9uPKbYZ3aWmZnTsmsB2b/+tP/oqhwU7Wcnm8hpdgMMiRo2ewbZeOdJJwOMR6oczc3AqVcglVU1lZXiERD7Nn9zjNhoXH8KDKCtnODOl0gmJ5nUgsimU1WcuvkUhFmV9cxB8MIArw4kv7eXzvDmRRZj1f5NzZqwwN9LC0sEI8YXD8zEkG+pLs3DHOW28dp6+vk5ZlMzwyQkd3lg9OnuWJJ3Zz+OhZ9j60k9HhYX7wwzdZXllnZKSf53/yBgGfTjQcZH5+mTfeep/J8UH6erOIoksi7mdubp7hkSFOXKvQ5XUx7Ra9fT10dGXxGiqxSATHgUq5QiadpH9gmNJ6iXy+QDQWQFYFZFnH4/Fy6PAJFMll27ZBQqEAwaCfSCRMuVwhFo3S0ZmlWq0SjgS5du02k9vGaNRr9PV2tRVFF5bweg3+9M9/wO5d2yiuV/H7gjSbTRzbQlNVLl64wumzl3nqqb34AwbvHvyAsbERLl6Yprenk+d+8Cq/8o0nOXPuIgMDvaytreAP+CkXq4TDYQKBEA/v3UmtVqdUqrBz5zZsx+bW9C3i8TgvvPhT/tE/+nVefn0/jz+xB4+ho6ptd9mTJ88x2hXguRcPMNDXQ6VUJRb0MDk2wh/86AW+0tWJY5uYLfD7QszPLhMKBwlFQ1y/McW+x/aiqgo/evV1dm3bwcpqDtcROHfxKhMTk/T19qH5VDKZNH6/l3qzRiDip6uzk8ceeQjXdTC8BrIis7ZWIJmIo2g6jZZNT18Pf/RHPyBkBElEs4TCSU6fuUQ4EkczPJh2k2a9guOaeH0GHk+bdTYtC9d1EUXQVIXz5y9hOTYXr0/T29lFsVSmWFqnuyeLYfiYm1viwpUb/PZ/+ltMbhtneWGF51/fDw587el9OI6LZVtoiodUMsPxD87w7Nf2YZk2kWiEcqmErEhIgoLH8NGybDy6SqVS4smHH+PQoQ/40Us/Y+/2XZw4cRmPrhNPxNANnUyyHeucW1vBY3jIreapVhsEAxEEUdp4nzp4DQNV1QkFAgwO9NJqtbhcrvBwIgDIWKbNoQ/OMtDXhaarBPw+1tdLhIJhLlycYmiwC2/Ahz/sp1Iuc+bcJXq6einli8QiEfwhP2O/8ZtInziv3c0+bP5tUyjiywJ3H7V+fwPiHYtmQdxYVG4Vm/cJ7mCf5J63yZR97IavILB9xzb+8M//mO1DOx7gKu6p58N6hftLSCKGz4ekGjgti7mFReKJDIqiILoW01c/ALtJo15GVkQkRUIQpE/tQbnY4MX3f8T/9C9+956effoD3Oo+fBYA8uW78H5Z9sX0+/+71/8gtgUb+yG4u/v/d3/qI+854Rcxd1+OfRHgbtOEO447Qzs3f26yYJ821D8pTcIXsTfx84infK4vputiO5/gwrKRvyWdTLB35y7+zUtv8us7R3BlB4/HaO8yOg6u41Kr1mjUmvh8PmRVQkBA01Qs08K2bPQNUZXlpVXisQi5XB5RlDB8Bqsra3g8HlwcSsV1VFXCcSXq9QY7JsfpSMWJBANoqk6tUgMENI9OuVymXmmg6+24OTZiTEAiFA6gSDI+v5dgIEClWkT3qPj8XkRRplVtks12gNQGXrbdwmq2mJ6eIRgMsv+do9imTf9oLw4CN67dYn52gXDAhyyrvHHgEIau49E8vP7me5RTYfbtGUUUBJrNFpqm4Ng2kiQjiu3FxtLiIvF4nHK5jCTJlIplWi2Tb3/3hzz+2B6uXp6mr6+nLTIjezA8Hv7kT5/j6197BNcRabVarCyv8OgjO1laWqRWrdPdm0XTFH75oW389U8Ps3d0kOGRLD6/higJeIwgEg6W7VKrNdpxR6qK2Wjx1X0Pc+v2bTy6hmXZpFJxLl6cwmw2qNZrJOJJkqkYiWScubklQqEAhUIRXVOYnVsiFgnj8Xjw+jRsx8bwGzguCIjomkw4HKReq7OynOPJR3dTrTaIhCNUqlVeef0ddm4fRhZkbtyepaszzbVrt3hozw46MlHK5TKruQI7Jke5dOUqudw6p09f5tbsAqura2SzaTweFXdj/Hq8Gqurq6SyKaxmk58dOMzDO8cJBUPggior3L49j+NYBMN+VtYWePzRUQyPzq2ZedLJNLbj0N3TBZJEs2Xh2C36+rpZXc2TWymwurTG3r07mBgf5saNm6STMXp7OilXatimw+LSKoNDXTQbNTyGxs2bM/h8Hq7fXKDLH6BerVAsFenpyVKtVTn43mFGx4YpFqqUyzUCwQDnz15mcKSPcDhIsZhHkl1uXJ9jaHgAWRJwbJOurhTr5XVEQeSll/czONhHOpPm8JETRCIhyuUygiDg8eicOXuZHTu38cqrb7F7z3ZM0yS3ts5AXz9e3cdPf/YemXgEXdN4//0TPPLoQ5SKRQaGe/EYOplUHL/fT63aoKu3k/HRfmbnFti1Yxyf10DVFMrFEpKkMH39FidOXGB8YoiZmdv0D/SiyDIXzl+g2bDY/84Rfu1Xv87pc+f5xjf2oRselhcW0HWN+dlFujqzpJIhLh1+j//jL37Af/k7/4SL589gmk3iAS83Ll1GRaSvd4BmrUGj3uDEhQuMjgwRj0eJxqIU1ov0d/eSTCZJJJIsLebI5dfp7e3G4/O0xYnmlnBm2k9pAAAgAElEQVSc9rtC9sjgiEhS+3Bdh0a9xre/90OWFpYY6OtFUmQc12LPjjEUWcIfDNC0GoTCSZq2iyuAz6+jyCK6oeO6LrZtYpkuuCJew4trOzi4xGJRMuk0u3ZNEomFGBkbItuZQVM1XEckGoszPj5CyzL5wY9fYnZuga6OFF/76pN4PDqL84scOHiUSrFMq9Hk4LGTBA2N02cvMPD/svfmQXJc+Z3fJ++r7ruqq6vvbqAbAEGAN4dDckYz8kgzCp12+FxFyF6FtOFdh+x1OBwKx2ptx4bX4dDKIcte61qNZlbSzEgzw+F9ggQBkMR9djeA7gb67q6qrvuuzPQfhcbFJgnOgDoc/EVkVHfmy/deZmXWe9/3+/2+3+Ehjh09QX86yaG3jhKPxTA8BoauYeoGhlciFLRot2ucvnSRSqPKzKUF0n1xvD4PdqdNIBQk4A/R7XaIxqKoisbbb3+Aaej4Al7WVleJx+J0OjaariDJMhurG0zXqvzUcIpOW6Reb2DoGrFEGEkUadSb+P0h2p0OrmsTjoZZuLaEL+hH0VQkARRk5ubn2T01gSuJSKOT7MhIedu4d/c4+bfBnHnT47EDKYq4Q592uoKbMgY7eOc+tm3unBvcPQfZ3v/2W4fZN7b/Q8c+al6xTYTiODaCKN3V620vm4CsWxjeED6Pn2a7lzvarOaplXOEPB6atSZOF2TFwvKFbnhXb3ksd/pK/uqNb/M//vZ/u8O1fvL3t9Mc7NOCu7/fwOb2/NGdtvvQwg6A/rO23nPh4Di9/Mx7J5P5eNsOd75TOqwnTyLett30H998LsXb3o1t37Jw0xv+eVjmZ2T3G9x93L6bjJafVM9Nd/Y/bBO4Ee7xET9w2wnqgiwgiQoP7d/P//KXP+Cnx/sQRBnbtkHosWoB2F0by2PQ7XbIbuTAFTFME0mW6HS6HD12gpHhAVaWN4jHYvj9Ppr1Bm8fO4Xouvh8Xrw+C9exqZTrWB4TFxd/wIskS1QKFXL5At99/nWeevwgXdvh337rezz24BSGaZDPbREMBhEEAUVRMC0DV3Dodrt4fCaqpiJJMq4NqVSSarmCx+9BlCUUScLpdvn2918l6vczuXuUZqNFMOyjkN/ipTePsmdihEPvnyDk83B54TrJeJRQ0M9GpcyD+9MEgwEEUaDT7eC6Loqi3SBt6N0Tf8BHsVjiypUFtvJFhkaG2MoV2DM1QqPe4tvfeZmnn3oE3dARRYm5K9fIbRWYmhym23FZXVll5vJVGvUGPq9JMBjC5/dQq5X41ree59hSnX5vl3gixKkzF5kYG6HTbVEu1YhEI0xfvsbwyABvvPUee3ePkctniURCvPv+adY3CqxvZAmH/CxcW0IQJILBAIoq0ul0qNXqxCLRHhGKLLOZzTMyMkS1UifZF8WyLE6cvIAuy4gInDh1Fk1V8Pp8xBNxms0WwWAIwzRot9vs3zuBovXIHkTJRVElDEMjFo9xcXqa/r4UgYCfZrvJqTMX2DU2SqY/Qbo/QSoVRzd7XlrT8IIrkM3m6HS6VGsV6vUmmXSCaDTC9PRVdF1HMzRsu4PXZxEI+enP9HF1bhFBkLh2bZ3l1QIjo32srq4hSxKdVgfD0HFsh8WlNZ584iHW1jboH0ggq70cyXQqjmUarK1v0my12TM1jmVpLC4vE4/F2dxYZyDTz2ZNQEPBth3SmTiCKJDL5nni8YOsLK9x+MgpdE1FUVRiiQiqpiCIAlu5PIVCieXlDRLxGKZhMDo+jCu4FIpldN0gGgoRCgc4dfosuq7T7bYZHM4Qi8U4/sFpnnryURRVYdfuMSRZRtM0RFzOnp9hfn4R2+kQDvooFUpkswUKhQL9/Sly2RxHjp3E0DRC4RDPv/QmD+yb4sKlafbvm8Tudlm8vkSnazMzM8fgUAYJgbHRIRrNBpVKjWPvnSAeCxP0+xkcHmLf3t3ouoYkCHi9Jo16neMnzzAyMkiz3qZcqRCOBkjHosQUh9/9k+/y5BOPs5nNEo2E2RJE3rt4kYNDg1TKZUJBPx6Ph3AkzKlTp8lu5hgZGUbVFI4ee59atcLE7l2k+/sQJQFBAseF73zvRyQjMSKxKJIigQOiJOG4DqII7XaLg3v2QLeDqetouoptd2i1W3znuRfw6CojE4OoqoGiKviDPpqNOqIks7GaJRDwk88XKBbKfHD8LAGvnx88/xJb+S3GxsZAkNA0udeeINJoNChsFXnn8DEikSCSIqHpCpO7Jjh95jwrG1meeeoxVpZX2L1nF319Sa5dW2Tvnt2EfR7ePHqUar3B5Og4/f19FAsF/D4fyb4E+a0cuGDoJuVyAQGYmBilLxFnatc4J0/OMDaS6YX6iSDJEpcvXcPv99K1O7guSK5IMBTC67MwDBVRkFlZWsPjNdE0g+/88CXyW1mWZ2Z56+gZDj4wQX9/EsPUceweScqJUxeJRsNEY2EUWSFfKBBPxXBdF0mU6NbryKpIJBGm3e0gj+/9WHD3SfZZ59xtc2nf3sxOM4ePA3ef1u7Fcwfw9qHDH+m5+6j8uq5tI0vyDghM2D7xxn8CkqwSjETI59YJBkxwuriOjSQp5HNbZEZ24UrSTXD3Ufbe++/ym//81xF2CN+8F3C3k/3Dn5Xdbj2wcS+yBfenrb8du/kMCiKCIN4XYNer99bnrcWEna7rrgbveOZvgbvb+/u55+4zsH9o4G47X+7v94pQzz4J3Dk3vCIdEWRJxmN50bD540NHGTQ1gr7exLq36udg6AqtZpNKpY7XCvKdv3mV/r4IlmkiShL9fSkkWeaNQ6dJxMK4XZurs5dJJvrZtXucUqHM868dYnQgg+UzsZ0uuqHiujaSLGBqHgIhPxPDGfJbBULhII8+uKsXpe+Az+enkC1huy1q9SqarlApl26EECrIqozdsenaLpVSFZ/Xi6CKdO0u2bUNDF3lsQMH8Pm9aJqOZVlokki72eaLjz9CLBVjaChNq17n0Uf3o+kqjWaD53MVfvrxSZqNnhex22lTKZfRNY1Grc5WIY9jdwEby/Lh9XoIh0Ooika1WiOeiOD3+3G6XQRA13Vs22F9fZOf/ulnEQRQFRVZkiiVyuyZHCceixIMh2k0KhQKefbs3kOfAb/3+nF+9etPo4g6W/kcqlzDH+3j4vQVEvEIW9kClqZz/ORFDEMmmYoyNjrE2Mgw0WiAVDLK1MQw/mAIQZDQdQlBELg0PUcmk6ZcKdPttBkdHebUqQuEQiFMn8bCtev4TYvBRJozxy9y8NEplpZWCAWDnD07zZH3zuKxet7IdqfDyuoa9VqNdDrBuQsXmZoaQTc0ioUijt3GcQTOnp/lyAfnePapA/Sl+pBlmenZOZKpGF27y5nT01QrTXB7OS+XZhb4wuMP4vd7UVQVxVDx+QIcP3OBUrlEXzqBZijIhoDt6KhKgFy2RGYgwYP7p2g3G8zNLbC2tEp/Is788ibhUJjhgRSzs5dJxIKUW0VWVlY5+MAUuewWzUaLc5fmeejgPlRF4dLMDIl4mHcOn+bhA3s5dWaaFy86fOWx3UiyiG7IKJLE4EA/a+vrbGzk2T0xwcZ6HkmUyG6t0dcXx6X3zk3PXuOZJ/ZTLld569Axkukkiqmjyhqm5cEX8IJrs5ldZ+/efUSjYfK5TXAFhkeGwHV5883DDA8P3liEcfH4DNrNLvv27SIRDZCIRSmXKjz88CN0Oi3SAyl0w0cuV+DipSvs3TNGpj/GRjbP8GCGd979AElwyeW2SCTTTE1NspXfIhDyYXp0NrIF+lIJ9u6ZwO72dCjbjsi7R97nvaMnGB1I47UsvKEA0XAAXdeRRZl4PIYg2lw6P8vjjxxkfCDK//mXL/I7v/MvWVlaxJV1zGSGS0uzPDzYj6qpzF9fYmxijFS8j0g0itfnRRBd+jNJOp0OpuXBcR10S6dSLaBrPiZHx2k1OkzPzBKKRZDEni6b69gg9sLRixtZ6NqEQ0GgQ7NZxfKEmBqdJJMZoNlpo2s9YW1ZURBkDUeQsRQvstzLO1ZkjUg4wqnj5/nKl56h2WxRKJT41vd+xGAmgSBCq92mUW9w/OQ5Hn3kIKFoEFF2aLWbWF6LfZMTPPXEQWy7i2FqbOVzBIIBhgb76XRaJPtiPPnwQaZGR8lt5gmGQixeX2T35CiSIlJrVHn77fcJeIKcOz3D7t17aDdsIrEE3a7L+++fY3l9hcF0gmq9gqpqHHnrAmO7hvAFTDbW10kkk/zpN7/HrokhypUCdgcMrbdo99LLbzGcHuSaofNfffFhvF6VkZEBBEngyLHjKIJAIBCg1eyytLLK0HA/gigSS0Zxcem02xi6RquWR9FFvOEgICGO7EHg48HBx9lnDe6EHUhR/n6DO/eOMrebKPZkDMQdmV56cx0XFwkBwXWxRQlEEUnoUiqsU2uUEGWbWqNOqVYh3j9Ew3GQP+Y7+OYLf8Zv/vNfv9Gnz8Hdzvb/T3C3LVOwfV33Tibz8Xarig97OO+UJLv7zA9nFd4B7vicLfMzsfsJ7m63nV4X8V6AHdwkH9mpjttJUbbr+3FfzY875ydx0t8emnp7MvW2uWyzbPZeBs2V6Ag2tuxiWBJCuchzp2d5diyNo0iIooDsOD0K8pZNwB9E1BUeODCFqes4joPtOsiqRLPZ4MHJMVRVQlZEYqk48g3mRFGQePv9M4T9PnxmiG7HRsCl3WzRadk4Qi/cUTdVQuEgiqogSAKdThfN0JAViWq9ArZAOBLBBVRVRzMNJNehXCzTarQwdY25uTkWr6+TSoQobxUxDQNFM2i2mqiywMrqEqFIELsr4AsEWM+uY1omc3OLZAYSbGxk8Xs9/Jvz8/z2f/4Uri2iKjK2YyPIArql0aw38Qf8qKqBKKnIksH/9C9+n4MP7EIQuxi6RLtVRxAE2s0WkVCAfD5HMhmhVCkxNDyIosooioDtOLz0ypt89avPoug6m5sFZFXqhSZ262Sz64ztGiOly2T6Ang9OsVCmZnpVeLRKJVSnWvXNnn08QeI94Up5qo8/OgUm7l1BNEFQWFpfh3XtTF9Kk7X4bkX3qJcKCO6ImNjw3QcB38ggOu2MAwTy9BoNduceH+GfXumWFtfxxEEBEWi063S7XRoVhukUknOXpijVi8huDb9/QmuXr3O0ECGD967iMdjgtATQm80WviDYURRJJ2O8uhDe3n78PtMTu6m3emysrZBIhZhbWWTodEknW6XzFAfgtBlcmqItg3tVqfHYlqtUSzVGB8dolws8/Jrxwh5PSRjfcxMzxIJeahWy4wMD1CpN9BMnVRfEkeAWqtBKhJkfXWTYqHC5kYeSYKRkUF0XaVadphfWGd4LMLw0BCFYpFytUIsFqZcrTKYydBs2iiqzqVNhwODATRdw+sPICk6hWIFr89LMpVAQiAWi5BKJ1AFiedff5V9e6fIrRYx1TaRVAIQGR0Z5vDh41ybu04ykUQSHXRV5v1jJ1mY30BwO+RzOQSq+P0Rjh45R6lUYe++SVRVAmxOnTyJKhtYpomp9xYNjnxwnkQ8RiDsIxL1U6/XmJmd5sEH96BIIvlcAa/Hxw+fe4PrS4s8dGCKeDzG2++eRlEE+vpjLC8vE0vEAJmN1XWuXL7G8PAQCFCqbOF0XHbvHieb3WR4KMbqynVMvxdFlFlbXmdzPQtdB8PrZ+HaOmvZZfZN7WJudobXjp1B03Q0VWIgFaVmqzw5NMCxD47z1a88jeCC43QRZQfNlHCFnrj3+bOXiERD6JZOIbdFLBij1SghKiKBWJjZy1dIhsNUK01+/w//hLjPRJV0Ar4ghc0Kpk/F9Oq02l2q5QbBoJd6o0og7EOUXLaym1iWjuDeCBFzQNGg07ZBkDBME8PSUQSFZrNBpr+feDSMT+/JTJiGCbaNaRiMjQ6iqCrlQpXV65uUtirggixLVGsVLK+BrGiEw1GazR4Iq1WqaIaKK6rIuoasyqxv9ETkFcXi1MkLDI2NMTE+hmGqxOIRSqUt5hbmaTVaVIo1FNVlcmyEUDhCvdbA7w/Q1+8lEPTSbHZwXAFJVrB0mYDXQrAdDI9Bo9Pk8JFjzCzM80vf+CrHlq7x5cEIlmkhyxL5XIFMf5pQpMcOLEsK7504z+6xIVxZxnZcVFlEVzQatRbLc/NkxsZwBZmXL80z9dijO+a13avtBO5s985p3E55eXeX+ahNEm6RmtwkN9nBdiY+uXO7V0By+zXdHmZ5JzkGbOULJPx9H+pJz9N4d3hm73ObnOQOHgr3lgdEvG2/Y3dQRBlVFsmtXSbiD1AqVpG7HepbWQLBGK7kQZbvDHPbbuubL9wpUH6v9/Ju2/Ee3NOZP5ndpod9T1uj2ex5qKVbOYj3Ktfx44dNftoZ4q3jO4U33k/r1XurTx99H+5OnrrVt1vf+e1eOm6Wd3FvPL83gop3LHezVu6+V3enaH0O7j4Du5/gbjv+Vvgsn9wbtu0Rs+8SMf809nFMmJ/2Vf+ka7+7PtcFSbwRp4yAfWMV1WuZ+C0PAUvhuVOXeSQdRwAc22XuynUOHT1JNBzAF/DhYCO5vZj+XDaH23VQNY1ivkCxWMLn91LaKtJotrh06QqHjp3mS48f4PK1RXSlpyVWKVf43otvkoz2cr9cV8CxHSRZpt5ooqi9ULNSoYSuG+i6jmn0QjQ1XadWrfYIQGp1LJ8Pj9eH7TjohkkiEUOUBHLZHH3pPlqNFpKiYndaZLNbhMJh/uCPv0vIZzE83M+502eRXBfTMvD5PPze+ev897/8CKIgsJUvo6gKiqJg2x0c16ZcrmF5fNRrTSRZQRQlEhEPmYE0siwiSjIeTwC728Hr92OaFl6viWlZKJqKLGsA2HYXu+Ogqwq48N77pygWKxSKWbxejXIpTzwRB7cnZfA//8VxxkI28XiY8fEBFKM3kRwaTLF0fZFiIce+fVNIMhSKJSLhCLKs8YMfvk0s5ieVilOvtbBMg2jYx+yVBUaGBmlUW+Q28nh9BhcuzCJJEqqsMjCYplavEgz4qDfqBAJ+0ukkqqyxtLxOrV7np77yBK5jMzo6TKlUZnU9y9TUOJqqIsugaQqdrk0q1Yes9Cj5Tcvg+z96jS8+9Qj1arMnyQDMzC5w8MBeWu0mCwurpJJxbKdHXFGr1/B4vLSaLS7PznPkvQs8sGecdDrF0uISG9k8cwvXGB3pJxqNEgwGAYGllVUCPj+24xDwekj3p8hlC9TqbcbHxygUe7ly5WqZVqNJPJEC4JW3DvPwwf1cuDiDqkqk00lCoRD1SgOvz4Pf5yVpSYRjcUKREM1Gi6tX5rh0aYZdUxPYtoOiqFhek3K1yokT5wgFPQxkMhz/4AKpZAhXEPAHQrTbHQYyaRLxCLlcnldff4d4JMT8whJ9iTiBcIDBwX4KxSyLSzn2PbCfk6fOcPnqAsODac6fv4imaUiiSCQSwcXhvffPEIuGiMbCqKrKoUNHCYeDRKMJWq0W6f4Qyb4kM9PzTIwPk0iEGRhI4/F4ScQijI2P0Om02FhfJ5lMIggioXCQpaU1TEPtESvg4vOHkGUZp2OzlS0wNDBIqVblxAdnMA2DTKafs2cvIYiwurbB/n27KZdrfP2nn+aRsTj/27/7a/yGzvzcPLnsFt8+doxv7NtDPpfHcRw8Pi+qpvSkHdptDN3E6XSJJqJIsoxlWjTrDWyniyir4ApcvDjN7l1j5Le2iPq97Nu7B1D4wQ9fJhoIYHl1vF4vsmbxze/8kImhAVwX2s025XKJbhtUWafebKIbRi/8vN2iVqvzZ3/xPaYmxpFliVOnzxEO+3nlrbfoTydI9CUQJAWPx4OLgGFZOLjkc3n+8M//ijOXLvPU4w/xre99n/W1TTLpNF6vD1XRaDVbGB6NRr2F3++na3eQFOXm7/ZWvkB/Js2hQ+/i81qYXg+6oZHbzKFqGusbG+i61guLDwQJ+oMMDQ8iyzLPvfwaE2MjBPzeGyFTEpIosbKySrovRbvZolqr4Q34cWyHsdF+gh4Tr9fifCHPmNKl2xZoNtvomo6m64gidLpddNVAFl0GhjIg32CzdB1wQRREnE4DXySKKMl85+oGzzzzhfsO7u4e9X4Sqvf76Rm89zZv/f1xc4kTx0+SiQ7teOye5yDCdvmd+iHy7//dH1NYnGEwk2B1bRVT8eN0SzTbJTYLFZJ9Ez3QJtwCay5w+uRxfu2f/aM7mC7vJ/nN3wa4+/TddW+EPd+65k/vjfvb89xtf+d/15lH22zxO0uAfPT9cN1bAPDe7MPltt/vbSfN5+DuM7D7Ce7cG8yQd7NDbksB/Li20xrJ9sPRq9a948fsntdS7vHh3KnU7fUL2x35mKxt4a6/7xi8hBteTVFEkVUkRaPRaGB6PDiba4Q8HgRFIRQM8sADk3gDHkTRQXBsRFfAtR0W5heZm1/k6twiuyYGabfa1GsNPF4Puq5jmRb7p3aTSMapVaqcPj/HxPgQwbCPXSODpNIpuu0OG+ubnLswSzrdh6aq1Gp1Dr97nGg4jCQr2F2HVrNJs9nC6/PQaDYxPSaKpoPQo69GlJBVFWyb2Zl5Mpl+CltFRKnHACq4Aj6fj/n5Fc7MLDDcFyMU9OD3miTiUWwE/vWJK/yLf/QstVoD23ZQFYvf/f0/5dGH92FYBgCm6cUVwPJ4cIF2u0Ms6mNjY51oLEqt3kIQVAyPgusIOLaL5fVQKpWQFQXXdmm1W7huD7iEw0Gq5QrgEo+EGewf5t13T/HIow+zsZpHlQ3Ws5s8sXcEXZNo1EqoGjiCzPe+/zITIwNcnVvogZuxAYqFCtFQjGKhhGUq7NszwfTMHH2pBJVaDUPXyW9lObB/isXrK/zND9+msFXmgf27SCWTaIrKpZkr5Ao5pmfnaDSaWKaOYenUqh2y2QIjwxl8QR+yIhGPRlBVFVVV2dzM4fd6qFarOI5NKBQgHIlQKlQQpV5yv6QoTEyMYnq8aIpCtVojGg3Tl4rT7XZxbAgEPeDa1BsNvF4vjtPlh8+/gdcyKZbqXFtZpy8Z6nk47S77905Qa9Yol6s06g1kWWVtbZNYNMKbh46SikfotFtUSxXWsgWGhgZ7OZCSiNdvce7cLHv3ToArY1kedFUin9tCkQVUVcbSveQ2i9Qbdc6en+YPXl/i2QczeANBHMehUatzbXGZLz/zFCfPnCcSjZDdyILg4g14GBsZpdmoEI/Fqde6VJtNUqk4l2cXePWNo+RyeVbXVsmkUywvbeD3exkdG8K0NCKxGN1uC1V36UsPc/idM3zlK49x7vwlFElkq1DGMk2mJsdpt7tcmp4mEo0iSgI/evkQB/ZPkc3mOXrsDPv27SPgt2jbFWq1JseOnWNooJ+Zy1dYX9sglUogijIrK8uEI34SyRiyrPBX3/0Re/aMYzs2H5w4x969uzFMnQ+OnybVnyQYCvCXf/ESnZbD4HAfPq+PfL5AJBplcWmVSq3E1YVrmLrO2++eIBYNEI2G+ZlHd/MHf/ESv/ILv8LctSv8r7/zL/mNf/2/8/MHDlIqFYgnw9iOQ6dt4/H6aLaaJGJxHMFlYX4Bj8dDu9FANXRM3UOj1mBqaje2a6NrKolknGqtgc/ycuLkWXRVYnh8ENsBV1R5cN9+asU8P3jxNSbHR/EHfMhKjwXS8nhRZJFCLo+h61RLNbIbOUxDJRYLEouFCUQCJKJh/EEftt1FNT3Yjo2iadi2g+2C3+8lFgjwM1/9MqZl8ODeXdQqTebmFxkaGKK4VcTjs+h221y5PI9pWkiSjGN3URSZrt0lmYwjiRLp/p4YuuX10KjXmZ6e5e3D7/PVrzxNMBjg3PkLaKrK6soabx89xpUr83zja19hK5/HHwpi2y7LSytks708xrm5K/zFc8/j83gZHR6i1WzRrLYIh6KcP3eZbqfJsD9AJBJCU3vsx1u5Aoom9yRZSkUQBLrtNrql995vUcLtOqytrhJLxRAkBRA5spTli88+Ce5Oo+TO+7ZDB4Ubwt07UenfD3B3M3LxJ5j4CnAHkdmPA+4+zl566TX2DO/9sfp2t+0I7kSRpWvzmLRIJMOEIlFq7SKK7KVcalGrN+gfjCGJFsINyQgEePfIW/zKb/7SHR4suD/g7qZExQ1pgzs9Y8LHkHZ8+sa3z3Bc947op48ySewtVt7e/M6eu0/nYbutth5piHjr/x/ruu6o496nxLc8fbf6cT+A4Z05dMId++7lvHu12+VHPiQbduP/z8HdZ2CfZVjmzb8/I0+e7bjIstSLZ789pOI+t/NR4O7TtPdxZVx6jmsR6DqgGiZmpI+N6wu8fOoij0W8aIYOYo98RZAEipsF1lc2sHGQVIVEIkE6kyaTSSOpEIyG0SwDVdepFCuEQkFeePkdJsaGKZfLnJtfIJ0MI4g2wUgARAFFFqjX60xOjlFv1G+sCkpIgsiR42cRnB4bnSA4eLxeFFVB1dReWJDY08VyHQdRAEkQcZwuf/jtFzgwtZtri0skE3EQwW53qJRq/D///kV+/T/5OuFoCNNnISka9abNv51d5rf/sy9S2Cri8/dIUv7oj7/Hb/03v0bHtml3mni9PmRRoNVocP7sBfqSSX739/6IJ598CH/Q3xNW11Sy2VwPzLjQ7tpIioym94hYXn/zCCG/H81QkUWblZUVMgN9XLlyhQf2T9KsdhgeHuDkmTOUSiUuX77K1NQesmt53ju/TL3doD9usrayzFB/ilgsgiIrBIJ+3njrBMePzzE4kKBYyOP1uJw4c5HHH3sAQYBcLkt/JoE/HERSZKKxMFfm5viFn3uGSrXJ0tIKkihy8dJVnnrqAcZGBlhZ2WR4uB9Zcnn3vdM88cTDvPHmUQxTJxgJo0oSz7/wBluFEqlUjFAoiKlreH0WkiyzurzO3NwKnUaNTruDrhkcOvQBmXQfp06dIx6PggudbofNzS3C4Sger8H0zGX6UknqtQaG6WEgnaI/kyIRD7F/3+beIOEAACAASURBVG7a7Ra6pmF3OySTMWLRJHPzy0yMDxEI+lhdXaY/3Y8qiYRCAbbyBcrlKgMDSRYWlvjhC2/z8IFdXLlyFVlWabXr4Ii0mh3i8QiRSIBUMoIouDQbDl5PgGIli9dj8oVHDvD6q2/z0P5ddNttTNNicXGVbL7M2Pgwqqxy+NAxdk0MoygSkqTxwouvMDMzx6mTCwyM9rO5tsrU1BSNRoNnn3kcu9Mkn80ze3WFyclxBFHg0NGj5Nc3GR1OYZo2K0tbtBouqb4g1xeXyPT3MT2zQLPVxtIMKtUajtumXKvgdCTCoRCNWo3JyRH27h3HFWwuXZzB7aoEQ1H27tmF67q0W0327ptEEmUEQSSRjoHg9khouh127xpHViXW1zd56qnH0TQd13Xo6++jUMihGzLF/BaPP3YA0+Ph2sISFy5dJRQMsJHNEw17GBvrZ3pmmX/8X/6nZDc38HotXnzxDX7rV3+RP37uEGNjGWanr/Jf/8Y/4Xd/8H1+/uH91OolfIEwsqTguiII0Gm1MSwTcLEsD4LrgizTrraZvzzfI2xSXBZmr9NotojEwjRrVR55eD+JdIqu2wbBoVwo0ajVsd0u+/ZOoVsGLbuNaujUalVOnj7NUH8aAdA1Fcs0GR0awuf3IAoOqmnhImBaFrphIQgSomvz6iuvo8sy7WYDERdcB03TAAHD6LHdDmTSDGb6+ea3v0urXWN8YoR6vUokHOONNw/z4qtv8+STBxAFUGSFRrOJIvdC5QURXLGnkVivNhhMpwmG/DhOF0kSCAYDDI4M0JeIsnffLiyPjmmqKJrJhfPTvP7OER7at5fD7xxl/wO7eezhhxgcHqZeqXLh3AVURaDdboMg8PzyMj87NUK1XKTb6eDiUqtV8QcCqKqCogr09aVYvL5COOYjn81hGR6ajTory6skB/p7YM6FJUnjgQN7EdwP65h99Gi3nVP22YK7mxPOTyj3sebeyju6lza37V5B0JtvHLpHKYRPtp0myl23y/jkPganDnDy+Dv4dBN/3ySKZuAJBDFkhdzqKr6IH1nW+OYLf0Z6IsVXfvFpBD4sj3C/PXfbrIe3T9Q7dhdJ/HDbjut+qOwn2XbJm0GD93ju3d/zzuDuXlv/cF13hyZ+Wru7jnudEt/u6duu48fOK70Zdnn3Fdw7uPu0tq1316t/5wY+B3efgf1DBneu61Kp1TEN/YZGkPChtu+Hfdbgbvu4e2OFVNY0VFVmMNVP9vpV/vyDC+wPmqimgSD2gIoiSAT9ATSPjiRJ1OtNVE1D01Qk+cY47rjIioZlmrRbbaKhEHang93t8qUvPoIsi/iDHgpbBTRNpdNu4Tg2rVYLTddRVZlO2yEUCbG+tsnhk+cpbxVJ90XRNA3HdRAEcFyH1aUVLI+JfIPNsVQoMjN9mf/wF3+W+avXeOXIB8QCXpqNOpFohGajScDyMtAfp1KuIEgipWaL//fyGr/1Cwdpt9t4PV5cXDRNI5NOc/z4GQYG0yC4KIrM/JUr+H0+IuEQuq6xZ/co3/3+i4yODpLPZ3shcrKMpilomo4giAj0RDN1RWN0bBTLMmm3m1TLRTqdNqIg4PNZZDezREJh2p06o7sGsUwVSbCJJzP4vAHClsn3T63z9J4AqWQMwzBpNTqcvXiVRx87yNjwIFO7x3n99XdZ29xgfDTK0mqOVCpOsVTm/MXLKBL4w2GKpTIBv5d9e8eQJIFOxyGf2yIWi+D3WYiyjaZpbGxuMTLcj6yIJFMJFEkkHo3Q15+iXKmBYzMxMUy6L0Eg4EMUJV5/4zBjoxmKpTJX55c4eWaOxw7uxjQs3nrnOPFoiHarzer6BkODaUzT4OTJiwxkkhw/OY0k2WQyCdodm1AwxPXrqySTMZr1BuVSEX8wQLPRxO52CYUCPSmAXImVtQ2Gh9Ksrq5SrdXBFbg6f53pmTkePriXUDCApqtcuHCFLz6xH13TSCRC6LqJIDrouoeXXznCzJV5RoZSeDwG9XodQ/NRLFbweGW8XguvJ4iuqKTTcVrNBltbRYZHhunL9FPI5Xnuh6/x9JOPoGkKJ0+fZWBwAEMViYRCfO3rXyGRTvDSS68TDQXZtWsMQRJRFBFsEASJs+dmMS2Nn/ryE9itNslkhLX1a4QCKWRBBbHL8HCGq/OL/OzP/BS7JkZ5842jXFtaZWpqhL50gqXFPJO7xrg0e5ndu0eoVSuYXpNyscLzLxxldHiAQMDHn/35X/PsM4+xsHCdP/+rH/H0U48jSQLtdgNB6K1Qt9sdFFXm2HunGR8fpdVsIsoitVodwzJodRosXVvGY+i8+Moh+tMpnnj8IV59412e/uJjJFMR4okwuVyVU6fPsmvXMKVShUw6RblYRarm+JMX3uSh/QeY2LWbLz/zJH/44st8YbSfaqVOu9XFcV1UXcFpdxAVGVXXyGdz6KqKI4pkV7NUy1WWV1eIp2KEAhFmrlwlEPDRadXRZAnZNKlUC1imAY6AJEAgEkTVDBCFHjmT3cXr95DpT9NptVBklWazTqPRpNvtsrK2AiJ0Og4IQs+D77i0Wx2a9SqhUIBoJEw4FMLudrHpMUe6Dhw+coxYtBcqa3cdJneNE44G0DQFRVVoNtqcOnOBWDjEyGgGUZLpdtoYukGr1UKRJdrdDogShqZjmgbXry8xOJJBvLGIoWoaV2bn8Pks6o06iizRtTs4rsRWfutGJEWCRCyKafUiNmwHggE/iVgUxBaVWpWRsWHOl4o8PRhBkyXa7TaBgB/LY3F5doFIJEjX6SDLMrF4HM1Q6HY6GJqFosjEYmEERUIQRN6cvc4v/8Y/xhVsBHcnnbR/+ODOvSuS536DuyNH3mPvyL5P37EdbKe5roONK0g0uy6V/Cr5tUUi6YdQDRtZ7VKvlHEaKlutEqfOnOSRLz7Ko0880vOs7gDYP3twJyBL0o4keLbjsE2Ff6/2Obi7+7xb5X9ScCfeln95Vyt3tHU/7XNw93dk9xPcfaSO3X0EdttkJNv5bYosA/yteO6E27adju903t3lhRsafuJtvvXbj4uCgGvbCG4TW1JJpifo1Jo8f/gYT4/1gQCCKCPJIoouIYi96zd0FQGHWrWCZqrgSoCA40C7XgMBfH6TdqeF12thGCYey6TTbqDKIvVKDUUxsLw+DNNC0RQcBKrFHCIOfq/Fow9MkoxFsQJeRFmiWipSr1aRXBevPwCCiKTI1BsNZF1hoD+BILjohsyXnnoMwzAJ+AJ0ul1U3UBCotaq4oouoZCPckjkG1/YhaYb5LJZBFFAUVRqtRr1apX5a9eZnBxDvRFqFYkkEBUJQRFBlFAND3SbpBIRAgEfiqIjyiai4GI7XRzXQdFUOt0O1Vq1p6/l2ODYePwxurZLIBTE8vrweIO89voh0ukkimiyVSgRTyQobOVRDZloLMCXHp7g0qWrBBIJJLFH6pJKxpBUEFQFSXTw+2T2PziO7rEw9SjvvHMGU1Fodzo8sH8Piwur2F2HcDhMrdrijUMfMDycIpkIIysikVQSXdY58u4pPIZK13HxBoIoqkyz1aJYrFDc2iKf2yAUiSDLMrOX5wgEgwiShC9gUC1VuTo9z+hwmqef2s/c9SVs26bbbDExOsDK6ipTk6MsXF9GVGTi4TCXZ68zMtrH8ZMXmdo1TsDvZXVlhVA0QL1eRzcMHESWFleIRMLohkE2V8Dj8+GxTJKJEJIk4PF6iYWjWH4TTVLJ9PWh6TrTC1cJhkN0W12crsPV+XnSQ3E6LUim0uTzeZLJAI8/9gC6aeCKEq1Oi8WFqwhOnW4X/ui9Cs8eGMdptmnUmxx97zQ+r0U8EUEQOtRqXa4uLLF37wQfHD+Jrqgk+9MYukYo7APZpYvN2fdmyZdydNpVvD4PS4tZlldW2DO5mytX59g3Ocqp06c5+PAuiqVZhI7JxUsb1Ls15i4voioSk5PD6IaJpMgsLl1ncu8goWgQ0+MnFQ2ztr7BngcfQNFVbMemnK8wNDxEvV6n3qiRziQxLRvTsujPZDj2/lmeePwBJFUEV6ZaapLLFjj8zlEG0nEmJiaQJJn33jvBYF8SQ9eZPjdLOtHP4FAG02OgyCqTUxO89sY7qIrE2OhAT/dyvcz8tes89sgUkmSxlS8RjcV4651jrKxv8mtf/zL/3b/+Pb78zBcZHk7hD5j8X//q/+YLD+6n2arjD3lxHKDVwnEEZFlB0yXsThlFMVF1hWA4RP9AP7KgUK4W2bVrnFMnzhKLhOl0bSRNRnBl3K6I5MpcvbxAKh6k225RyG+xcn2VaChEaavAxvo6Ho+F5TFxcFFVFcvn5dL0LJnMELJs4w346dg2+Vwey1TRZJWA34ugyjSaTURJR5FERNFFVkSKW0W6LRePV8X0mjSadbLry3h0lWa7w8ZajuvLy/zSL3wNUewRMsmyTLVaRZQkZENFVjRwRMCh63RIJpNomsLW1lbvV92V8IcsVE3HNCza9S4vvXQITRFIpeIIAsiKguWzWN9YxzINRBw6dodao06x2GZpdQND13ln4RrpVpNO26ZrOziuQKvZYmhggLkr1xgYHETWNFxRoAMYhkmn2WZpaY1wPHpzHPqrK2s8/fQX7gJ2O45Ud+z7sL7ctj7b3Tx4t49lH963UzlJuEV+st3iNvGKcBsXw81x+GZKhouzQz/uzte7m2Dlo7adyF4k8cP6dW+9+c49ee52ulaBj55H3OwvQi+SR4C+/lFOHD/BtWszjE4eQFSDBCODZPMlfnTkOf6H3/ln9I+O4AoguzI7ibrfD3B3k2DjRr9vJ7Nz+egp3jYXwaexm8/TDRfTvRDw9PrQY4Xs2t0b/d3JM33HVbHzc79Tuduv8ZNmfB9xXW4vnPPT5tzdKn93Pz7exNu9dMJOwK3X3+2wydvb2okEZfvZcm8Ls/wohszbA1fvbP+GJ5dbpIjwObj7TOz+5tyxM7i7z3Z77O5ObX7a9m8nQ9lp+6S36dO0t8269Yn1igKCIIMoMDCYIRoPM/PuWwwlYzQadVBVHEkmu9YTDFYUBUmQbnjOHATXpdNuIYouti0iyTKdto1tO1heH6ouIikiuWyOzY0ifm8A3epppN24s71PW8IB/AEfi0uLiFJvBNQ1lY31LKZp9gZUtedB7DSaGKpMfn0TQYB6rYEiqzRaHb713R8huwLpTBJBcPnT7/yQgVScv9yssf+hDMl4BAGBarWOPxCmXmszd+U6fek0zXqNRx89wI+ef5Xdk+Ooqkq70UTAJZfL4bo2mqEQi6WwOy6lQgVdt3BFiXajSqfdxTRNGs0GCL1wTtPjRRIlOs0G7UYXQ9VQZBFJELl0bpqHH34UxxVZW12jfyCBKDo4tkS91sBxHOrVOv/0959HLy9hKAqnT11i+tJVlpdWGRrrp1beoriVxe12KBcqHD87xzNPHaTeqJFMhJmdnWN0ZARdVXnu+beQBBddU0gPDNButlmYW+Ta3AqVVpkDB/fi9VoogkKr3mJ6dgan06G4VeiBaBwkAarlMkG/n4Wry6iSjjds0rW7lOs1gqEghmUSjobJbuZIxEIUSiWur6ySiEdJpeJsrG8yPDKIokqYpsFWocjwUD+S2MtZQhARBZFqtYY/4Gf+yjVikQgiAjPTV4mEgiiKxvWlJYKhAIZuMHt5HsvUCQZDbBUKNBpNquUqsViURDyB3x9kYtco3Y7N9fllRAQ6HZtwKMzCtRWqpRq6buDxePGFArRsl3K5zMTIMG+++jZBX5A33jvBN37+Z4gnktTrTVYXVwmGQwyko6xvrLBn3y4QBQzTR3Zzi/Pnr5DJZMARsHSLxeU1HnnoQXKbW5SKdR5/6hFOn7vI1OQIH5w+x3/wtS9TKVZQZBVd8/PG26f42teeQZUUBgYzvH/8DIWtAs+/8hbf+NmvIYouwVCAzbV1zp+f4cyFaQYzcQTRpt6osrK0QTKZpNPuUK3VsG2bid0jaLqF3XUI+nr6cna3y6kT59jMFpi9PMc3fu6rqIaGaqhUqxWSySiqYYDrUiwUKRUrfHDiFB7L6MmreDwsLi0z0J/ig+NnkRwZSZbZu28PgiSxtrZILBbAcdpEIiEG02mi8Qi/+R//DP/Hn/0NuyZGSfWlGPnil7hw7hRTw6PMTl8mGgxTLFc5fvwM168v02510DQdfzAECNRrdUzL4tzZ83hME13TEQUIR0L4gwHq1TqmbtJotHjn8PsUShX6+9NUKk0OHz3OwQP70HUPiqLh9ViIImi63JvQuzbgEouG8Ae8qIpEq9VBECV0TaXdaCCpMsVyEUnsTfoc2+bNtw6T6c9gmhbJZBzd1Hn55RfxGTrNRpOVjRwDQ8Oopk4sEeuFxyoy505exOPxcubsJUKBEOVSFctjUi5Xbkwo4fz5SwQ8QQRRwOv14LoOoixx5vgMqyubvPb6O4RDAXRd5t1TZ9g7uRtfIEC3a9NstvD7enI2xUIJVdbotLtUKmUOPLgPSRQ4NDvDLx6cxKXHVOz1eWk2m1TrDULRYG/RkF44YqfZxe3aLF2fJ54MoRkyIPGvjk3fwaL4k9knj3r3Cu4+rtxdqek39t0JMu+lvnuxjwJjd9vV43MMDY7+WG3cS9dE3BsRtCLdrk0XlceeegZEGVFW+PZL3+ZX/+l/wVd/7utImoXj0GOU/YhcsPvpudvJ/o55QW7a9txKEuVeDt4nSgB8NJD7rOx2792P47n7dG19/PGd6rt1zk4nu3d8fFJbH3/nhTtkwj4Hd5+B3Vedu8/Qe3Z3O9u6GuIn/HLdvTZzu4TCNqhzb8v4vAkab88C/YT6P41tk818Iri7ERwtyRI+X8/T9vvff5XdsojPH0A1PDiuiN9jYpgGjm0jiSK1Wo1SsYggiNi2jaIolMt1TEvnzNlLLC6vk0zE2MpnaTWbBIJ+ZEnlldePMTExRLPR4K+ff41YMIDgwqtvHmNqcgxZETEtHUWVCfj9FLa2iETCKIqCZvRCqSRJpN1q0Wq00XWdZrOJoqo4joPjuExNjOD1WBhmb9/GZo7XOhL/5Gt7ya5vEgwFevddEBCR+cM/+g7NVpPRkQGCQT+bm1kioQCtdot2q4nXMlAVFY/Xg2PbrK+vcfXyEmtr68RiETRdZ2HhGtFIkFKxjM/no9loIAoSuqEhSQqtVgtZElEVnVdefROvx6BQ2CIcCmM7Lk7XJhgOcPXqZeLxMIrqod1u4/P5MU2TX372AL/9p6/zH31pL5OT4wxkUuDYbGTLiIhMX5on09/Pa2+eZmJ8EEkWqTfqOI5NXzLG+UtXuXL1OoP9CU6fu8wXnuyJxx9//zSaqrBv7xSCbGMYOqIo88EHZ1FliT37JvBYFqZhsra+js9rMnN5jvdPXmR8ZIBEPMHl2Xksn4JpWWQyfVy5Mk9hq0g0HgO3p4HVn0lhWiqxeAxZEntgXFUoVypkNwsMD/ejqiqC0Hs32nYXy/IgSTICvbyrd4+cwucxCIeDKIrMK68fYWJsAI9lsbmRI53uo1Aq4vP5cRFYX98gGQ/T7rTRNIOZmat4PB7qtRqhgJ9ms3EjDDWHbhjEwiH+P/beO8iSKzvz+6V3z9t65X1VV3W17wYawAxmMCA44JAUvSgul1pKIVHSrhgrs8sIccVQaCO0FIMSl9oNuiG5M5jBGI4BwEHDNdANNBpAo7331V3eV7163qTTH68aaFMAChg0yZVwIrLNy8x7T2a+l/d+9zvnO4auIWsKgtSQ4s8t59g2sp1UPMLV6xP8wi/9DOKa+mx+NUdTpiFIcurUWXY9sI3XDh5mcLCfAwffYXh4kExLE3/250/T29lKIplk584Rzpy9wEB/L5VSmVgySVNTkkQyRntbc0NYw/NJNzVz7doYbe2tuK7L8y8eolwu09KcZmTbMOVSns6ubgIBnezKCvV6HUWSGR4awNAVFE0hEomQzxZIJOIsLmaRFInevi7Ao1a1OX36AvPzKwwM9IDn88Nn9/Pklx9jcFMvggiyIlKvVFFkGd0wqFbr+I7DoTePMjDQQ29PO7lcnrfeOU1LJoUgCLxz5DSarnDl0hi6oeA6doP1zWXp6GijVq+SSqUJhkKEQyHGx8Zpj0j8zctv8eDevUTTTbx27BTbEhFEX6SYz5PKNBGJRCjkckSiEQzLxLYdFFlB1VXsusN3n/kRR46fZHlx8b2wV1GSqFbK6IaJZZpEIhEikTCJVAJdNwkFAqTSMaoVh4NvvElvXzeSJOC6LtVyDUmWkWUZXW8IT1VKJWRVQ1GURhV1z8UXBFRNRlFkJLGhShkJRwkFAxRLJcqlEgg+Xc0d6LqFqhmIYiP/sVDKYVgm5VKJw4ff5cBbR9m9bQsd7e1UqjV8z8ewDLS1MHh8yDRn8FyJZ3/0PJsG+xBEgWKhTEdHNzOTMzz+pc9jGhqyJLF71w4EoFqpsO+VV9kyMky5XCRgBRgfmySeSDAxNsVLh99kZHAAVVPYd/IkD2QSmKaFrCo4toOqKAQjIXTdQFIbERyyIiP5InatzmpuhbautrW5mMjhqSUe/cIjH3PEgluzOVG8c9HzoyabnxTcNcRbbjGG739+d3P3SvP7OK6DvE7u10bs9rbENeLi7j5ffvFVdg3t/UTtw0bnC/4aYyUgChLJZApPBFGQeGrf13jyK1+mKdOEK0qNOdBay417dX/B3b2lHv7hgDu4aw76iWIM17l/tzFgGwNYd/Ozje1u3z50bf+2Pm/ZR/7e7mLqPtLLda7pbkbu9u0Ws36nH/66c3DhvT8/mOW8/X58Bu7ug/1d5Nzdl/bvesFsxA8BGkpSt8Ih11kSWe+zT9s2Bu4kPHwkRcZ2HSzLYu8De/nL7z/H9oSOHgoiiCKVUglRlKiWK5RLJVzHIZJIISsqqq4hKwqKIiIrMolkhGQiQiBkIUsqpmlSKpTAh/6eTsq1MgICh46eYu+2zRiKSrIphmEaSLKMbuiomk61VCQcCeO4XiNESVVxaiVyK1muXxtH00zMQAi8Orph8hdP/5BKucJAfy/RWADHqfO/vXGScFTmkaEMqVQSRVEQhEah9EJuBdeBl/Yf4dd+9acwTJVatUIynSQUCaIbGqZpkF2eYmlxmXA4gWP7hENhnvnRq1y4NEpzUwxNlzGDCpV8hVg8ius6aLrx3mqR4/qUSyU0RaFcq3P56ig7dm/FsEzqtotjVzl+8gyVUpn+gV4WFpbRlADPP/8q+D6hsIUg+HxpaxvHr1wnFQ8yNTtPKhFDFg0MTSIcC5DMNDOyfSshS0c3NBA9OttaWFlaxrEbb86O9hYS0TCr2RyhQIDlxQV6eto5de48qXgY0zApFGtEw0FisTCFSoXFxSzJVAoEiCfiJBJJ+no6CIaD5Ao5rt+8SUtTshGyI8lcujxKJh4l0dSELArIksBKdoV4KoIkydg1m1qlii/4XB+bYsfWEWRJZGFpEU2TWV5eIZlOMj4+RSgUBASi8SiC0JjsxhIxFF2jr6sLRVWZm5unUq1TrzuEQgbOrRe643Hl4iibhju5ePkazW0ZfN/h3SMnyaTD5PJ5ypUqjQLWMvFUqCGK4zp4gKprvHHgLK0tGV54+QAP7NmGV62iyQrF/CqvHTjMwEAXxVyN5184yO7dQ3R2dSEIGrMzU3T2dIIgoskiAz3tzK0s4rkOuB6KIDA9PcnLLx2hUirQ2pJmfGyK8ZuztHd0cvzYZdLNTRw9cZwr127yc195gqWlVXTdoKUtgyjB2PgUkUgQWVZZXsxx9sJ1towMYeoqMzNzJNNN3BydwLFtTp+7TEd7M9FYGEEEx/HxXJ/Nm4d46+2jtLdmaE6nCUejXL06SiIdB8elWiygiALPPvMiIyMjFPM5opFGYfTV3Cq9vV0k43GaMk1YlsXV6zdIJqKkmlLs2jVMtVLErTsMb97GkaOnSaeiGIaJKEhk81mi8SjJRIzdA8089+JrdHS00dHSzl+/fIAnhnpxvSq+qrA4N0tPbxfhSJhnX3iFwb5eFLkBPhbnF9m5dYS2ZApZFunsaeOrT3+X3Tt2IIuNQuK6oaEZGqFYiEKhTK1cx3VtBLEGooSIj123qVRqmIbJxPgsV6+Okkk3kS/kCQQCmJpCrV5H1VSKuQK6piIoJoosY9ftRu1No6F8mc+XUGQFWZEJBDXUUEPQyLarJNJJbM/G1HQkfGrVKmM3pviln30SM2AhKRL7XnqF2bk5Bgf6cew6vu8iShK+6/HmG0e5NHqDbSObkKWGums2m6Wjq41qtYpdr5FMJQgYKookcunSZQKaSiQYIBgJUiqWaEplkGQd34VH9m4HQNVUJkoltiQCBEJR5mcXMUyDXL4AsoiiKYCPKEmMjY4RCYSYn5mlb7gP1/WRJJ3/4+0Ln5i1u73m1T0D2YcHn9xjGwF3t4O2DwN3d7bX+JckSZ947nG7b76//tQ0m81iCsFP2MPG5kX+Wjih5PuIa8xwtery7f3f4H/9vd8hk0mC4CIIHooPkg+CKODQYETutv+/MHefjq0DVD4GwNpQD8JHg7v1prYf1fcnzZfbqMrpB02NP3gevnHW9DNwdx/sP1pwt8E+7gB3otig671GTbl/2OBOxMfDcerIioLn+GiGxI9eeRl15jqxVBzN0DE1A9/zwfOwLAtVVbE9H89zEWUZ1/fwbBtJboQpGKZOrVbDcxvhSrrWEFwxTANRbax0bx3sZ3xsErvuEE1GUdVGnSdRkigVipi6RqlYQhBFypVGAVGnWm7UoEOkXncJhsNMT4+TSCTYuXWY7s52CvkC+VqBP704xW8+PsTI4CDf+M7f0tvVSkdXO5VKBUkSqdUrGHqAh/fuIBINISsieO7aS7HxDBuDeIV4PEWxUEXXDRzHYdfOLTz04HYK+TxNzSlkXULwRMrFMh4eqqqytLQEgo8vCPzBH32VbUO9mMEQg4O9aLqK67rEk0mCAYuOjhbCkSiu22DPPE9kaXmFWRM3NgAAIABJREFUrVs28e///ClS8Qhnzp7m2LzM47s7Wc0VMHUdu26DUCdbWEGURWRd5+zpC1iWTrVeZWx0jK7Odo6dvIyqKQQtk2DAIpNp4syp8+zYPsjM3CyDw30EdA1Jkjl5+jKJRKyhftfWTCFfIhQMc/zUOdJNCWZn54nFY/i+j2lqtLU1oUgKpUqZWrXGpv4eUtE4125OUq/VMAyVmdlZurrbkSUVwfeZnV2ku7cLQYD8apGpmRmGNjVqlaWbkuQKBW7enMIwdLLZPKFwmFA4iKY3FhMkWWJlOceRd09imRp9fb0EA0GOnzpLrW7T0trMu0dOs2vLAJLqs7yap6WtmYsXrjMy1MvExDiH3jnN8FAv6aYU6aY0b797lExTkmNHzxBPRMnnc/zFa7MUp0f5J7/xi5y/cJkbV2/S3dHO93/wPLFoiIHBXgRU3j16mu3bBxAllRujk+zZswUEEddvlLuoFPLIpkohX+TAoXcZGuxiZnoGQw/j4xC0dE6fvkS95hAIWCws5FlYXmD71gEeenAXgiDR29vNm28dY2hzH5VKma7uTnLZLMdPnEERNQYH+ojHY8xOTTI1PYuqaHR3d1IuVygWK4xsGQLBZ2Fhnmg0QTjUWDhRZQnPdXj90DFaWpooFIsEwyaaLHP14mXCwQBHj5+lo6MdK2CyspylOZPGtuuoqoxhmFTKFaanZ/jCow/hex7DW4Z49+i7KKJIOBhieaVC0DJZyS4yMzNDJpNheSW7poorYFgmW3pbOPTayxx46zSKAAdHx2jy68iaQTqRwPc8BFEgnogTi0YaOcWSzP7X3mDnjm3EYzEymTQ1u8reB3aDB9mVBQzLRNFUJiYmMQydaqXOzPQsz7z4MpsGWjGMIBcuXaKnt5toJMrNG+N0dHQSj0cb7zmnjhUwKeRWcTwf1/HQDR2nWsN2BURZYHlpkWKhiOiLyKrKq6+9ydj4BJs29VEs5hA0HUUREHFZza8SjoVwKjb5fA7Bg2gohodLrV7D0DW2bBlmcLAP1/GxXQdFlfBcF98TOHH0PFs299PZ2dYIvBBFwpEQK8vLmKZBtVKlVq2SW1lhdSVLW0szHZ3t+K5LuV4laAV48/BR3LqH63rEUxGWlpYRRZGnX3yBmatX2Dq4iUg0Qq1WZ2FhmWRTAllplKhRFJlwOMzC1ByFUoHAmjKn48Gmr3yFYDDwicar98oT3Ga+z3v54x943icAd7eicbx7coA+HNyJothQzRY/eVrI3SwgCPdcw1999es/llLmxsBdQ/BCxGvgZ8/j2we+zb/6V/8TsiTj44HgIeEjCyD4DTDsigLiOjf4M3D3cewzcLfW2ge2/xm4+4/E7he4A+4QDfm07G5Qtx4Bvl4O3S1u+Rawgw8AchsIxdywr2vXf0dy6e393HbcPbl+NBKrJQQEz1+rbSLy0z/7s/z1gWO0rKyQ1DUkK4AsK0BDnhsRZEHAdx2ceh2nXm+ETSLguj6yrCJJMtJan6u5HLKqUncdapUKummiGQaJdIJwPIym6pQKOVRFopjNkV8uUCgXaEpnEACnVkOWQDFMajWbWCxKOBJE12XMoAY+VEolKqUc35hY4Cef3MHDw+2UikUsyyCTjhKNhhsFyuVGmKQoKVhBE1H2ESWRhflFIuE4ju/j4pHP55iZnOJbTx+gp7sd3VLQDIVSpYSmKkxNTpLOpFFVHRGV1eUV0i0tSIqGXSki+i6aHuDpr7/Ab/xnT2JYOqYZZm56lmq1iGkZuK6A4AvIisqZk2eZm5kmYKn80Z99i1/8uSfI5wvEIkH6+/poa2/lZz63nd//m1M81BclGonytW/9LclYlJ7uXgq5En69Rl//EFPjM1iqSkdnJ74osbyYpSWTpruviwuXrnHq7GUeemQHs4uLLK8WwVPQDZMr18a5eGmCwb4OdEPh1MnzdLa3Iglw9vwV8rkC6Wic1UKRP/x33+OhB3dQL7koukitVqdWsYlEYswtLJNJx1FlidcPHSOdThEwQ3z1L54l05ygo78d3/Uo5kt0dLSu5dkJeJ6HbhgIkkRTJoVpGhQWV7GCFr7rcerkeYK6wczkDKLssam/nSuXr5LJpFBNnVgwyPET5+hsbcKwFGRTx4okKRVKuLUavu/T1dtLprWZnTu3Issq2WweQ9cBiWq5TndPJ8eOniYdixOOhPjFrzzO7NwSA/2DRNMhdNOko7OTSCTKX/zVtyiWi3zx0Qd4/vkDzE5Nks8uIQoSL714gFMnzrBj+xCyZWBqQXTdoJgvUq06dPf0oAclfMGju7eLnr5Ohjb3cWP0JoObOgkGTMYn5mhpaSYcDlK3XW7emCQUUFldXeHcmctkmlKIAmwa7uPAG4fp7+vh+ZcPI4oSm0cG8QUIhwK0Naf53g+eZXhTD8FIlGqtwuG3jjAw0ENuNc/qYhbLVOjt7SCfW6Gjo416rUJzRxIPnfb2DnL5JQLBMMlkAl03MFSdS5dG6e5uBUCWROZnF5lfWGZiYpKtI8Pk8yXePXmaVCpOe2cLo6MT7Nq5g/xqHll0yS4vkUrFkSUo5nOkg1GqixOMlwT++f/43/LNQ+9SvHwJU1EJx2NIioJpmQi+iyRJ+L5Hb08XoiQg6yqypiHKMvnCCrLq8/y+QwwN9lOvOShiiHcOnaZQWCKVSPLIA7uIRKKUCy6nz11mdm6KgcEeTMvACDYWOgzDwPccatUy+994h5HNQ8iShIBHuVzCDAZw6g7VSoW29hZqToGVlSKbh4fo6mxH01VMy8CpOo0SDvhIvoguqywsLZBuSjI/P0fAslB1gXA4iigoZFcXOXf2Agtzs0TDIQ6+fpigGcCp1dnU18MrBw+hSQozswvMzi4Sj6QpFoqEwhaarmEFQuSLq6QyTawWShSKFZZW88zPLCPJMul0gsmpGVzXQRYEgmYQTdH5qT07ubaaZTDZUKcVfIGgFcKxKxiG3lAClRRqlRqFlVniyQihdArfhz89eZXHn3xiQ2PWeiIMtzIU7gBaAoB/W1jXvfle64lerGd3H+P5IK+FWPMBDNp7/gog0Biz3zv+rsnmekIp6wGeOwVW7gV2Vy5fZ0fHng/w5ParadgtTcKGf2usmnDncevlDArvHSHwzZe+yVd+7af4/OcfQRCktXvdmBmAiIuIu8Z0rgfsGtd1f9HdenOwdUH8Bo/7dDxY71vT+Oz9sOJbOXnvbx8lQnL3vk82VfQ/8tx1wyLvCtUUhPXDNz/MvHXEUNaz92vr3evTncf9OEsp72+SrHwG7j5tu5/g7laCK9x/Jg9uB0nvg6X3k0Dv/Rbfb5budnbuQ9cwPuyXeZtv8poy6E88/kUm33yN1UIRUxGRAFcQ8SQZV5DWwjREBFHA9XxUVUEUJSRJxPNcfM/HX1Mc/cG+/czPLdDe2oLngmO71Gs283NLhIIhHMcBAYqFIsdPXuDU+Wvs3jFMtVonu7RKOBKh7tRQFR1ZVRERuX59DN/ziSTCFApl/uWr76KlDf7Jz+xBEBR8t7HCLooirR0ZVE3Cc20kScAXfVRVw3VcZEmhXC4TiUaQfJGZ2TkikQiKohEwgmzfMbwmruCBD5qqU8iXePq7P6K9JY0VMJEkEVU3WV7JoqoKniBgBcNUSjWi4RCZlgyzc+NEYlE8r040FqVWq6HrKrZTwhf8xsR3x3ZeePlNpqfzzMzOsWf3Vq6PXmfz5j40M4CsqHxuSzf/93MXSclFvvDwDqLxMCdPnUcQfFrbmrl2dYx8rkDA0glFIoxeH8cyFU6dvYQkeBw7c4nPP7wNWW6Il+RzBTram7GrNol4FE3xaGtNMz4+yY2xBbo7W3E9h9Vsjof37uadd06iqDI//598ibGb46wsr9DZ3UalVCUSiXLx4hVkVeLoybMMbx4klYwQWMvZvHRljL0PbqVaLuE6oOk6oqEgqxKO61Auljhx4iy93X3gi8iCzOTELDW7hmmaqLLM9559jccefZC5uTlCodBaLUSVes1GFATa25sJBEzOnrvSyCcTIWCaFPMlOrs6eGn/ITo7WnjplTfo6mwjGAyysLDIO8fO097aRH41x/Ztm/kXf3aA//wn93DhwiW6u9t59bXX6e3rwvc9ZqfmaGltRRMV5qbniUciJOMxrFCIB/c+gKbpzM4ssJotsHPnNoyAie05KJqK5zr0DXRjWAaZpjQ3bk7gODbNzRkcx6VSqvLWO8d55HMPYpo6VsBiYmyUcrHA1q1DRGNhNFXF1A2uXb9BOpUkGApg1yuEQha6qpLLV1iYX2J8YoZoOMqzz77M8KY+PA801cB1POyaw/LiKs0trXiuw+T0HC0tTXj4hCNhREHgwoVzJBPNfPs7z7N5pBfLCjExPkUgYCBKAoV8npmZOSrlKsGgxfUbY2zfvhl88D0IWCGWFvLMTc9x8fwVkskoLR0tWKEAmqGjagq+71PMZZmdmiIcC9PV1c6Xdvbwr//9d/m93/1d/sOrb/C5wV4sTcO369jVMkYwSL1uU6vVsG0bWZJRVIVKpdIoR4KPJIm0xFsIR8LUqw6VcpUX9x9iz+5h2jqbcb0aruCgygbRcIDB/k4UVaFeqaObCp7nkltdYXq2odTa1NSCYQVwPB/b8UCSUTWVSrnCd3/4PILr05RuwvPg6MlTdLa3IogihUKRudl59h98nZ6uTlRZx7E9VEVqlBbQFKxwiEK+AbwUVUGUfLq7usAXiUbD9PX2NN510SiSppGOx0gmYvR0dTF2Y5zpmVkmp2YIB8OcOHEOTdGIpBJouskbbx7hzPnL3JiYpmKX2b1jK8Vikf6+LpaXF9H1xrMUJZFKqcz5+SV2dbZSKlfQTRXDUrGCIWamZxvfC2B5cRHbcUg0JUFs6C6eKdrs2rPrA4eYOyeI906K71XSu3OfIDbYpY9WJ9y4/TiA5O7xdCOhoBuxr/+Hb7Kpc/jjeHLX/4R1JgIf7MhT+77O7/7e73yM/ta3+w3u1rP17vmHMa8/nm30+t6Hzbf+fh/crR3xMW/VJ643t4Gc1XvPub3fu1KLNmiftojLp/XV+gzc3Qe73+AOf721qU+h7fXYuffs/RUB/3ad17vtY7J0t9YmhXUYyfX2bRTc3b6Mco+gy+0miHh+44f9l68eZlcswPzcLMlkHElRQZKxnUa4hk9jlUZfqwFYr9cRJRHX9XAch3qtjiRL7No2Qn9fN7Ztc/TYWbo628nlcpw4fZH+vi5kRUGWBZYWlnFsl61Dg5RrFcKBEJeu3iCdShCJhimWivi+j6woRCJhggGLp09e5tBKkT/8pz9HV3MMD49rl8YwTQMBsEyTcrmI4zhomka+UGiAMdVcu1wBSZLxvYZwh+M5DfbIF1hZylIpV4jFI41QzmqN5aUsoXCEPbu3EY2GEAWBcqnAd7//EqvZFQYHeimVysiKQnZphRf3H2LXjq0kkmFqtTq6aVCr1nBdH3CplIvIkkytXCebzbN5uJ+feOKLpJMRLMugt7ud69dHscwAK8srTI5PEZHq5Gp1/GqR1tZm2tszREIhpqanqdc9erpbOXP2MlevTRAMWnR2NBOwdLo622htSZJMJKhVK9Rtl77ebiSpAehPnjzXyKtwbc5fHOWnf+rxRr6SLjE0PEClXOPM2UtkmpMsLCwxu7DC2PgMLc0pXjnwDj2drQgiZDJpenvbEQQBM2AxPT1HJBalUCjSnElx5tzFRq24rk5uTkwQjYTxfY94LEJbaxOFQgW7Vuf8+ctsGu5vsLSaSigSploqkk7FuXjpGslknIXFFaZmF3Bsm/GxSVpbminki7R3tCCIAoIkcu3yKKdOX8XUFXbtGqFarZJJJ/Fcl+dffINdO7fQnEly7vw1btycore7nRdPTtEb0zl26gK1SpndO7cQTSQYvTZKrVZDwKdYKLP3gW2AjxW06OruQlEVJEkmFgogiSLHT52nr78LzdAaIiqJKN/73o9oa01z7twF+no6eeHlNxka6uXo0VO8/sYxMpkExWKxURewq4NSPoftOLz8yiG2bN5EtVIjEAzg2HUuXLpGX1834UiQWtVmZmaJTQO9+MCNG5NEw0G62luRFImDh94lGgmSSqd5/Y23wReIhIIosoRh6ISiobWQ6jrVUonu3g6qZZeerg5URaRcrlAqlZifm6dcKiJJAvF4kng8ys2bEwz0dwE+bx89iaHpPLfvILFoGNPQqNs2u3dvRdUUJEmkUKhQq9R55pn9bB4eIplIc+LMabq7u6jX65x7+zDPHDjK7//BH/AnP3yOL/b1oMoSc3MzBIKhxn0WJfK5HACyKjdY+WoVd03ZNxAwqFZKXLpykeaWFI9+fnfjPFnAdhwCVgDXdrECBlagEXkgiRLIkMtmCUfDWIZJMBCgVKoiS9KaiFONYCiM7dQYuzmJ4otEo1ECpklg7X6GQ0Fcz0VRdUzTZGl5mc62Nuyqw9WrN0gkkgiixML8CoYZQtdFctkiqtIoN1Or2Xiux8pyFssysYKBRq3RYhHfc3nu5VcY6O5ElkR6+nu4dPkamwYGGBjoIxC08CURURJpa2lhx9YRRoYGGB4aoFyu4to2vuegKjJz8wtIooCsyCwtZjmZK7AjHsQKmLi+S61eBUEiHG3ka9arVUav3aCvrxvdskCU+DdvX+Jf/Mt/3gBgdzFs64VbrmeNYezOQtR3DE8+nyqwg41P1xv+CR/6/08L3F29eo3OVPdHeXPb9v5ngrAesIMPu9Inf+Xx2wqDfzwkcDsrdb/CMtdVFr/VP/d+Z+4fuPuwHtZ/Ho1nIt72+RqT6gt3TAs/CjzdPkVbj+36ID/XO++DtlvH3s623S5qdPe2Qa5gXbslmvSepx/i1wex+ut99lH2Gbi7D/Z3Ae7uW9sbsfsRFrrOdb3nzd08NnyygWodv30fPEQqdYefeOwRfuerT/PTvW2sLC8TSUZAkBEFsXGc7zeUIBW1Ia1MowiyACiK0ijCW7epVqt4rodh6LS1ZUDwCUWCmLqMqiu49cYgIYkC0UgUEZF4MsrLr77FpdFJ3j15DlORaOtsYmlxkWKxwMmFFZ6+MsE/emyIuOhw7uwluns6uHj+MlNTi/T1dSHLMnW7hmO7VCp1LNPCNAJoWmMi1yg4LnD+3CWef/EgrZkI6UwS3/dxbZtjR0/xrWde4eG92wgEDFZXVvnhM/tJxhMsLiwSjgSQJAFBhGggyNBAJ5VSnmgkiuf7RGNB+nraWF4qo6yxU6qqIYk6iqLjOi6KroIgkkqluXzlKq3tGWRFolqpUCqVOXvmIi+8/Ba9HU3IIjRn0kxPTDFTFNjenya3mqNYLHLy1AVqdZsdO7dRK1cZn5hm65ZBDh85T9DQ8Dyfk6evIksSsVicd4+dxqtDqVBFUWSef+kdHn5kN+2dTQRCITra2lBkg3w+Ty6/TD5fAk8gv7rK8Eg/7R2txKIh8rkClXKVRx7aieM6JJJRarUKiqZxq9DvsZPn6O5qo7k1gyKJtKRTXLg0SioVZ3Upi6WrSLJEsVhA0zWWl5cxNI1X33iXzSO9rCxnCYfDnD9/EV3TCIdCLM4v0NXdQ75Yobevm0QsSjQS5NBbxwkEDBKpBFevjpJsimFqFq8dPEFfT0ujiLSqYpgGhmnS3dlQ6lRVlXKpxEMPbue1g2/R2d5GaSHHV778RSKhcENKPhpFFAVa2pKIksvojZvML8+zdecIoUgQu1Zn/0sH6exu4c23jvDArq3YXo22zhZwHUavjlItl9mxdQjLNKhUqnR2dvLwI7vxXY/VbI6tI5sYn5hm586tuK6Laeq88frbbN+6hUKuyLF3L6ApJtncUqPItKmTz+eJx9PcvDlFPleks6uFdFOcZCLO2MQkTr1KNrfKju1DxGNhLl26TCYdJ58v4LkOh98+SXtHC6FICFGSsAIWvuNSqRaYmlikubkZ161TKtcJBiwkEUxTJRoNcuHCTWKRMJquEomGMU2DF14+TCwapDkTo6+vDQeBRz73AK7rcvnCFRbnFzE1iMVi9Ha3oeomPjKqoWMaBj6QjAZ4bGs7//brz/Ff/5e/yR99/4cIxTz9nd2ouobvQ3Y5SyqdQhAlcvkspmUhCo2acKIgoggeS0uL9PR2YdfLeG4NIxhkdXUV07RwbZnV5UU0TaFQyHH50lUsw8SwLHzfR1FkPAdcW2DixjVSySR4LktLy5imhSh6mLrFwTfepa+zC9MMYARUNF1BEAUunL9MKpFBkAW6uzqYmZwhEo7z2uuH2bxjCF3XCEdCHH3nBHPzM3R39XLq1Hki0Qjzc4ukm5p45eDrdHe249gO1UqZv933I3o6WpAEl4HhPiKJEPn8KiObh3nt4GFeP/Q2fb0dGLpOsVCgsJxleXGBqbExZN3itYNvs2V4GM+xMXSNp5/9W37ysUeZnJzkqe+/wJVqmUdb443vc91G1w3MQBBfEBBFgcJKFlUUiKXTeAg4js2sGmDrts14axPChkT8rbFm4+PSrQnlesPc/bAfB5DcL3C3/5XXGOra/Mmc+kBb35Gn9n2NLz72+Q/c/9H2Pit1v3Pu1u+9YX//4G6DZ95DENwCMBsHd580EOyjfofrtfceLl1v348B7j4pc3knq/jx2/oM3N0Hu5/g7pbs/6dptxi7j+HEp9a3JMkIYiO0cSMerJdzt57d4eGHsIkCjRo4uqYiyDJPPPkEv//VpxgJa+iCi6cb1HwfbA8NmB2fxKlVCERD7zkgCGJjpdUHTdOx6w6yrGHXPBRV4uK5c4SMRoiaYVmIqJw9dYFIOMybbx+nq6MFy9IJGCYjAz3oiszISD+Vco2/vrnE4LY2dm7fRMgp09PXw4uvHOChvTuwaz7BQIT+vm5u3hjnpVcPs2loAEWFYCCIIMgg+NhOHd8WWZxfWpMal9m9ZwvYLlrQRJAkBFEgEjR5/Et70TUD1xVRFYOd27eytLLA1769jy2bBjEMC0WViCXTSKqKEQhhe3Yj+R4FTTNQNYFCdpVwMM6LL7xKcyaIKNaQRLAshVqtiqoatLS24rg+b7/zDgP9bSwtztHR0sTIQC+e4NPR1c309Az5Qpa9W9v5P5+5wE9sb6Kcz9PW2kRzaxuqojA7u8TI5mHeOnKUX/r5LzA7u8Tk1BzbRvq4cmOSlpYk4zfHuDA6w549W5gan6Sjs5lyqUSxUOXChUYtuaXsHOVamea2dl55+Qi93Z30b8mAH8J1fRx3mZMnx/jCF3YgKxJ2vcaNG+NIiCCI5LJ5ysUa3V2dSIKCosChw+/S3tGKKEGmpYn5uUVSySaqtRKC5qNZJqW8RzQRZfPmflRZQvFLqJrMUr7KpsF+DFUm0daEFTQJhwNIwOj1m0QTGW5OTHP12jhRSyFkalQqNTzXZ9NgJ3/z3AEe3rOVi5fHSMcjjF65QiweI1dzsTQf33NJJFN851iBJ3cOEotrxFIxdEthemaG1aUChw8dZ35qlVQ0zSv73+DXfu2XyC6tUK3WERWZcrVKOGKSW80zN7dIb3cPhXwJy1KJx2LEwlEmbkzz/e++QlPapKklzemzF2huaWVqdJq5xSVSmTidvW0ETRVJ8Nm6ZTOHDr0Dvkg4EmRsfJItW4Zx7BqDg72USgUUOcjyUpbLV69jqDqpRBMudTo7W7kyepMH9u4iEo1ghUPE4jEC4SBDw0MgClSrBUa2bEJVVd555zipRALXrSJLBqYVILeaZ98Lh2lri6NrCpZlIgk6s3OriHhcvzHJli0jrK4UEFDp6m5mbmGRVDLOpuEhUs1JqpUyQVMnEg2SaEoSigXJr65SLhWpVouEohZSzcF2HcygRSyVRNUNHhns5TtP/SlP/vIvc2FhladeP8K2eICAZeK5NpVKCcvSsTQT26lRKXtgi/zV177Fpr5+Yoko+D6KYuI4oKoBFF9neT5LrrBMwDAapVoUAVmQKBZKROKxRn6uolCr1Lly+SqJdApRU3EEn1RTgmpllXrdQ9cNdm4b4e0jx3jn6EmGhgaRVRVBEgmFgrzy2utkYk0IPiRTCVZWVtmzewei4CJLEivLK/T2dpJpa8ax67S1NnH50hUCmsE3nvkh/+iXfxFNVfH9GsGQRiYTJhiMkEplGLs5j+9LBAMhstkVOjtaeOChXdTsOo7rUMyXicTiBCMh4skoFy9dZKCvg+NnTtLT04lumjy0dy9IApIssmPrEG9PjPFL24YpFIsEgjE0y8LxPerVOoogceHiZfqG+pHlhvLwM+dv8uv/9LdAEN7L7Vovh2Yjq/7rT3zXZxg+rt1exPxWDt0HjfF3s0G3+3druzvH7u72PwjsrJebd/vW09tLfdVd9yZ9BAT4kCPvPfOty4f4Z7/9W7ft91EUhbrdGLvuNlkUcW0HRRCp+85txaEbnotrrOr7oYDv+/Nhc6nbxXLWO2790EABz38/7eP2Yuce997TO5m1uxm2D7OPOv7jzTw/iD37SC/WYbHWa/fDGL71WK/1cuIa08lG6QF/7WauV6Zhvd/yhwWw3W53n3u7P+vdj7uv/fbcwDuLowt3tSfcscnKxsDdpxsf8Jl9Zmvm+2sqm3/PfriuAzQYOKupBcO0uHZjHFWSMBQJWZFZXFrm5uQMhXKZQqGIJDV+Fp7rYtdthLW6UTMz8/zguZc5fuIMoiCwaVM/sqKQKxSxbZtSKY8v+Miqwt492xEEkYmJKULhIIoi09vVzh+evEalPcp/8+VNtCTC/OCZfeSLRVzH4R//+i/Q0dlGMGShaQqVSpnxqWmuXB9ncWGRhbklyuUyYzcmGLs5Cb7AanaVP/6TbzB6/Qa6oSHLUiP0SZSo12vYdp1oPEqxVMZxHZYW5gkEDQTBpbuni9//1/8z4UgI3dAb6mKeS71Wo1QsoMiN0DzPdahWyxiGQSIZx3EcHnhgO4FAgHyuSL1uYzs+giBRrVaRZYlQ2ORzD3+egBUnEU+z/7UjOLZPe3szx4+d4OrRm8YhAAAgAElEQVS1m2zftpVoNM7/8PO7+KN9Y7R2tiLKElbQ5Oi7J1EVmcuXr7GwvEqtZpNOx5FkkaXlLJ3tTXieRywa4R//6leYmpgmELSQJIlEPEGlUsGuu/zND/djmRYry3l8z+fhh7ZRq1e5ePE6kihi1+tEwlEe2DHE4uIyi4tL+D50drRSKBaZnJwinUmzsLCIbdu4ngtAJBzE9TxM06BSKmHqAXK5VRzbxtSD4GlcvX4DfB9NU5AUmUuXxhkfn6W3pxtRECiWi1RKFSRJwnU9lpaX6epuR5BEWltS7N45jKLpHHjzBPJancGbNyfp62zGsV062lpAEMm0tqCoCmFTJbs0SyxqUKnmcX2bA4feJBgKcf3aTTTVIBQMMzUzw96HdrDngW0898KrDAx0UV8rb/HUt55FliRqdh3TMvncI3vZvm0zmq6RTKVwXA/bcTl1+hzXb07S3tlCX18/INLX34Ndr4MIjzyyh0ce2YuqqkSiUWrVOqIoMjw0wLsnznPk3bNEIiFSTQlOnj1PqVzBtCy+872/pae3g02DXUxOT3Pq9BnC4RCaptLf20U4FELTNLIryyAI3BwdY2JikkAgwJeffBzPdanV6szPL6PrOj6Qzxd458gJrIDFyOZ+Mk1pCoUSMzNz7D/4Fr09PYTCIR7cs50XX3yNa1dvsJrN0dKSobe7g/6BPsDn+tVrRCJhLl64zNmzlxBFCd8DWVZIpdLEE0lESeHQ4SNIoogsq7iOQ6lUZmJikq889givH3iDJ5/4EotLS/z1ibMgiJiBAJFIlO8/+yPOnb+wFkWgcHP0Jj/zxGPous7y4hI+jVDj8fFxjrz9DgcOHOTZfS8SiYYJhCwqlQq+D00tzXzruX24nks2m8VzPUSp8XwMzWiEwwbCTE5MgS9gBQL4eFSqFSq1CrFIEMs0qJZLFHOrGIbG2PQUk9MTmJbO0uIic7PzlIplbLtGqVwikWooZVaKVTwP5mYX0NRGHup/8av/KZIoMT09Sy6bY2Z6llg8iShJIAg898p+ovEw5VKJQqGEqul4rkMgEMB1PSqVKgJQr9XRNJ22llZM0+LGxBSrK6vUa3UKqzkkQUQWRVKpJDt6elheXkGSJDRVw641xGsMQ8e1bQKW1eh/za6V6n+3A9P/xy2VTvKNF5/6MVt5H9bcbZ7n8dS+r/Frv/4r9+wrFIsA6IZ5zz7HdXEcm1KphCIpKIr8Y/r4yc3zPbw19dy/j1y/f6gmiu9vn9knt8+Yu49h95O5g08fCH3swpSfZvyI7zfYOGFj7W445+72czZwzC3ZZ9+Hzz32Rf7dvoNsMkTqlQqJcBBfEtEMg/auNqxICMs0GqGarsfy8gqBYADXcRBFkXA4yKaBHjq6WpEkD0mWWVhcprunm3q1zsUrV9mxY5iDbxzh7KVrBDQdK6zxxxfGOblaItgk8nMP960pXqoszS/x+uFjPLBrBFUTqNcrSBLYTh1dV6jXbTo7WklEAqSSMSKRKJpq8H/98Tc5eeYyD+7ZytmzF7h2c4Itw93E4rG1Wn0KCCISAqsrq8iqgmU2Qi8NUyafX0GWPTQjBGs1nzzPWWMGFOx6HU1Vse0aqirjez6KIuK4dRRVJ5tdJpaIIskSddtGEEQ0I4jnCtRrDrZdYXlpnuW5AgIelXKJTYPdXLs2SrIpzImT5/n8I3tZWlwhu5qntbOVz4108L/89Vv89CO9IAjUyjbxRIxMU4JkNMTNsSlisQjlYoV8vsieB3c0Cr67DmNjUwQDBuFwGF1XESSBVw+8w09/5Yt4Xp256SV2bN1MpVbh8NsncJw6ASOIKotcuHiZplSGQCBMMGYRCoUxDJ2lxRVqNZtEMsry8gotLRkCwUb5jFKpRDKZwPfB0HUOvnGUrrYWDL2CXV/G0CLosong1zFNDVGAhfl5erv6yK6WmF9YYnFxnlg0hF11wGuEfSqahmZq/Mlffp8vfXEvTZk0oiAxNDRAcC0/q1Kt8uije/nBMweYm5+ktaOVsu0RDJqsTo+SzS4h4GMFQhy7USUmVXjzzdOkEnGuj07guh57Ht5NMBLi3eMnGdrUR19/N7VKlUQijij6NDcnicWCBEMRFuaXsOs2l65ep29TD57XqC+n6RqyojGwqZdQNIzv+1iW1VCAFH10w0ASBC6cu0AkHOGV1w7hu3WOnjzLQH8XP/nEo/i+RzCmMzw8TKFUZn5hiV07hpmZmUZWfLZvHyYaCzM2NtEQCpJEVE1l7OY4obBBvVIlmUqyb98bbN08jO/b3LwxjmHovPDKm7Q2p0im4tiOy/TsAn193Vy6OkpvbzuFYoGmTApN1QlFwiSScd4+cpze3k58AYrlhhJsKp1icmIKw9TJNKf55tM/YGk5T1tbhkwmRa3m8uaho+SyBRKpFI7rEwmZKJpCrV5FFGVCgQDjY1NEogG+tLuPP/32Pn77v/tnnLlyjc6giV33MAMhdNUgFDAoVUosLawyMz2HJPlYVgDdMNE1nXK5QiIRB8fj0Ntv8Ss/+2XCkSCO5CPJMpKmgSCxZfMmlpdWSSYTlMslCrk801PTPPP8a7S1tDB67Qa6omLXawTCwcZ7QABJbEQEZNIxRBo1H29cu86WwQE6ujOsrCwhyRI/3LefpliCcMJEUUTqdhXf91AFi2qlztLSAn19vVghE8sKYzsupXyZZ196hW3Dm6nWXeLxJJVyiQd2bWU1u0IxX6apKcX09AzXr49i123+/KnvMNTbTTqd4siRo0gidHX1UCqW+MLDD1PIFZiZniWZDLO0MI+h65QKZVzPYUdfB7phkVutsO+FN+jvb8Ox6xRW87R1t60pJ4Nt13j8v/qt93O4Nzr+/BgD9icdatdj0j5snP/IULkNtL+R89azudlZWuPt9/q0sS7WYWveP/MbL3x9nVqEjf2vvLqfcCSMaej33GdZkpBEkW9969u0drZjGcYdrNu9zN1trW/wgW/0efi+3+jb92CdPLx1zt5Q/x//vI/X7qeBQ9cNn7zjOd/JNH5YSON6dms6eftz/LBzN9ruB/V193kbDfe8+9zbw1vfP+7OxjbK3H0G7j6G3W9wB58ywLtLeOSOXRvUeX0vHvzjdt3o5CNzCW/tuSOs4SP8uLVtxLc7wiEEiUcfe5T//Zs/5KFYkEsXLtLakkaQdYrlKmbAol6pNkIxJYlrV24gSyK6oVIqFjEssxE6IYiIksPY5AztHR34voTvuITCQXRNo6O9iW9MLzJrmGR6IjyxrZvpi+foac+QacmQXVkmEAgQCkcZGerBCmroholt16hWq5hGgPn5JRzXJhwKEIsEMXUNRdcolcs49Rq/+Ru/gGnp9PS0samvg3RTElXTURSFbHaVeqXK1cujtLa2giTx8ksH6evvZmpiilgsSrFUoVb3yedWwXd4/oXXuHZ9nO7OFhYXF7AsvRHWIIAkyhQKy8iqhICCqos4roMoaoiSgqZreIKI7bqYhkG13KjvNzE5SiyuEwzrjN64Tt9AN7Wqw57du1haWuH7z71MMhHkrbeOs3nzED+xZ5D//t++yKY4FIoVNF3hmR/tZ+e2zRiGycpKli0jg7iuy/TsHMlkjKBposhQq9ZQVI1sLstL+9/mwd3DfO3bz7NlqIf5mRkCpkpzazNdXR10tLcT0CxKtXkWl+ZZWa4hiA7LqznisSjLSyu4rk9XVwfBsEm1WuHK1RuEgwEcx2FqahZRlDANE03X6WhrwTTh1OkTKBoUi2XCwTDzC0toqoauGeiqwVtHTpJMxVheXKG7u4Pr18ZJphPU6nV8IBQK4rkee7b3YlcrlMslJiZnWc3maco0NURempPk8yV6urrp7cugGxoBU8Gvl8jnshjBVlxf5bf/9B0eSmp8/pFHeOyLD7DvhYPs3rWFN948xs5dW/A8j472DKlknNdfP8r+g28zNNDN4FAfp8+cob2zDUWzmJ6YIZvL09HZgm5qaKLKm4feZnCwl1A4gOPWCUQDOHWbmYlprly+ztj4NG1tGQQfcis5FheXeeihB4nEgmzbOkwwFODGjXF27d6Oj4vrCAQDQeKJIH/0/3ydn/2ZJ0in4+RWi1hWAMM08H2PGzcmaGpuolwqEwnHeebZl+ju7ODylesU8nm6utuIJ+NIosyDe7biOi6BYBBBEBkY7AUBjhw7wcjIAMlUgnKlgmkGmJtd4NLl6zz00C5C4f+XvfcMrixN7/t+J4d7zs0JFzkDnePk2ZkNXJJLSjTpkmhLLssulmVLLlepVFa5/Mlf5FKZklxWiaIYRJrrpXa5mbszOzM7eXpST/f0dA5AA40GGo0M3Iub7z3JHy4wndBo9GzPUqqap+qgGxdvuie97/99/s/zD5PJpohELFaW16jXG8zOzREyDOq1Ivt2j7DvwH6azQaNWpVQOEIiGmF4eIhyucTCwjLJVBQ9ZFKu1olFI5w7dZ54IkK2LUWlWuHxkXaSapm3z8xwZm6Rn3xyFupVDo+MoqkisiKQa++isLIKgk88GqdSqhKyw9TqVQIhYGJimuefepxEOoGmGwRSa5OmmC8TssPIioRlhVFVGV1TaNQbmIbOc089TaPZJNuWAd/Fd5uEo0kaDQdFlokn4mTSSQQJVE3HtmOEw2FUTUPXNUKW1RIZrzkcOrwfz/cQBIlmw8V3AwRfRAAy6RRGyERWFW7cmN5oO8Zjhw4iiSJmOIwkC+iGxnq+wMLcEpVyhcXFJdbyeQ4d2I9pGhzavYu2bBtry6uc+OQ0vd05jp/4mL17R/nT/+9b9HV1EIvHWFxeRpJlkuk058+Po/kByXgIUZZwHY+enjYMQ0YSBGZuzJFuy25opMHvnxjnueef+XSeFLagb23aztOpC/fE3t05Lz2o/ta2lYj5fUewg1V4cNcs+ijB3Z69u/nDP/tD9g3uv3NcO2xFEKCYr/HmBz/nw8sfMleYJZazGT06yHPPP3PfeoMDg1gha+Mc3wkSfN9HEkV2796NGbJwPKcVXy9sJt0I2FT/21xobxVjtv2470+FveMzWpvPm3JUt9v24O5u6qqwxe/3o2J+VmrnbWMLbgcjm/f5zup9OoqNZ2gzKcmtdrZu6HbAs81y9a6+7gTo96Nv3t3lwz6bW41nK6rm3VTM2/vdit66FbgTReELnbvPw/6zA3ebbW71wOzwDv70xfOQd/ymbt9niSXcrvxWf9tp+z4+ASLVco1Or4Kla+i6SsMRMEMtz5a0QRUCiMaixOJRXKeJZugEfktLThRE5udnyeVawMn3fP71qTFOLJc4v15BjTr8T7/zDPu7TNqzHfzox6+i6TrDwwPUanVktcWjrtebmKZOEPg06i6XL42RSiaJRBNEI1E0Q2ZtZZVQKMTNG7OsFgokkwlOn72MoSskk1E8zyEIfGRZQTN0QEDWFGzTxrYsVE1FUGQGB7qRJRnbsvA8kEWFn7z4Ov19HVRrNQ4f2s/QwCC+5xCyTEzTpF6rtShikowbNDd01FQK+WVsK0wQCFTK1ZbEggyKrCAKEtVyBU1VsWwDTVPRdY3Ojh40zebixSvkcjkKa+vksjEazRr7d+/GDkdw/YC9bTbfem+aoZTK5SsTPPf0QW7OLtJsNFE1BRBYWlrF8VzachlCpsm1iSkS8Sgra0VGRgc4emQPgiCQjIbwfJ/h3gy1Rp1oLMYbb5+ktF7m4vkJdu3JEI1adLYPEI2HUDT908QqjuuiKCoXLlykr7ebsB0inogjSSKeGxCJhJmamiGVTOI4TZaW10gn2shlc4iixqVL1xgaGmRleY3TZy5TKVeRFZGh4X5ybRlcx2Xs6gwju/sxQyEC3+Oj46fpbM+iKAFrqwVCpkFxvUw0GmZyYhbTUrkydhXbCnP8+EWGd3eTX1qkWSlQq1awImHsRBbdMDj20QWOjHQxNNzL2TNn+dVffY75uQV6ezq4fGWC69en6evpbAlAR+OMDveyupqnoyuHaapEIjblssMHH3xEezZNR3c7DbfOyuwi6+tFEokosXgE8AhkWFtcIZtMMzk5wzPPPIkgBrz33nHeevskkiIzumsISQqoN5p8cuo83d1dLC2vYmoax46dpKe7g2Pvvs1QXz89vV24TpMggOWlVUKWiR0Ok0on8VyHpYUVmnWXA/v2UKtWKBbXefKJA1y6PEYmk24lPTJNvveDn7F77wiKIiNu6MlFIzZXr07g+y62baFqBjduzHH6zGUWF5dIp+NMT8+QTMVZWV5jbmGJx44ewDBM7JCBYYYQJY0XfvYau4b7CNk2L/7sNQxVIZvLYIVDFAsFFF0jGonQqDeJhiMYIZ2QbXHp/BUiEYtQyODxoXb+3fd+zv/8e7/HxZsLvH5ljOd6sliRCMX1KqqsMDN7g76eXt569zipRAJJFohEbCYnb9LX20XTaaLqJuAiCRKSpOF7HsXCOqpiIEkC1UqZcNhG07RWMpREFEEE2zYQBB9JNZFEicW5BSKRMIauI+sKgqhQLrY8qnbEpl6to6oqsqRw/ONP6O3qJByJ43uwspJnamqWSnEdz3XQTZNqpYKqG4SjJvVanYgdZn29gKGreGJAtVKm2ahjh8KEQzHefPc9UokEiViMSCTM2fMX+OjUaWzdpFIqc3liEkNTeO75Z3Adh2KhwPBgH8lUAlGSEEUJTTeplZsM9A9Td9YJmRpO0yEcNXEadfKra+TacyiqSiBA4DlcqcNjjx2+NU/ucId/e9sECJ8vuPtF7e4t1UcJ7gBWVlZpi7bf8dlOupgcm2C6Osmzv36Ux589wnPPP8Pho4fItbc9sK4gChBs9nIXaPI9REQkUSQQQGCr5CDCL+SdemjG1Ba2c8/dVuDtl2O3e5l2FnN3/4yht5fZuq6I7z9CZtmn7d772aMgsG3lzduuz61sK3AnCF+Au8/Fflng7nbpgk+pilt8tmX9repu7nrcvo1wW3m2S2Sy6fn7LNsZ92vz9vFuU2ar/aiHfe5aGc8CfD9AElvZsIZHBvkX33+Jg+k4k5euEG+LoZoKzaaLV/Wp1+rIioosy7iehygrBIGAqqgEXp2lpRskMu38y5PjvDO9QFWuY9fW+MqBXfyt50fJJE0q1TqalUaQBUaHuhnsbce2Qi3pAkHjT//kOzx1cIiZ2WniyQiqYLK+WqGnuxcRn2I+jxoSMUI6gSBghJJEohYBArt3DxNPRnG9gEYNXM/BMDRECWrlKuuFEqqm4QcbVC1BQhYUlheXiMWjlMpFrHCI8bHrdHWlSWdiFNeLCL6KbWssLCyxtlYiHImh6ialSgnDjuF5Ar5Xp171McwQsiIQBA6+C4ZqgQ++5+K6DaywhShrqFoUz9dYXy9yeew8Bx9/gnyxRDyT5PLlKSJmlIG9/SCIrC+vEo+G2Zsz+fbpVbotl+GhbmJ2mA+PX6Z3MI3j18kX1zi4bx/1agPXCcjl2rh5c4Fquczk9Xnac20sLS/T1dPJ7M0l+gYSFNZLnD59lfZsgkTcQNNMZNWkXHG4NjNDMt2GFATMTk+TTkYoVyvUmg0E0SeTjHPyozPYIZOVfJFMKosoiJRLBWTFo9mokM1kaXgeqmFh2BES6QQ//MFbHDqyB8s2yGbi9PZ1cfb8JWRVYrWQZ8/+ISQxwHUcRFEiGo7x7/74h8xMrXBg3zCGoRGJWLiOR6YtSjTSAuzrhTwDfW2YmkGz6eN6AqlsG44XgCSi6xq6L7J/7y5UVSWVS/LxifOMj09RLKzw9a89SW9vN7Khohjw4x+/zNHHjrBWyGNaGqYdpuG2MjXGogau75BNZ5m6PEtbbwflShXNMDl9+hJjV68z2N1ByIzy6msfsv/gHs6cPU9HZyfXZ+f40pefoKs9S9i2WF7JI0kaH318kSefOEgiEUHWdK5OTmKaOo7nce3qFB3ZdCtG1jYxTQNFU7h6daJ1H0stcPG9n7zMwYOjaIbG8OgQiq5z5fIV2tvbKJerlIpldE3nxvUb2KEQjtNoSR6koqSTcQI/wLIsyoUCmUyc7v4koiQzPjnNoSP7cF0Hp1lhvVhmeHiEv/rLFxka6cb3PXy/Tm93Byc+Ps/C/CyD/Z2ksgkCUSYIWhqZgtAK5q/XqtQbDqcvXKCnp5NwJIqh25SLDS5fnOTvf2MfJ0+f5NzYNN3ZQV488wkvnL3ElwZ6mbg4iVt26RroQhE1pqdvMjIyhO/BK2++y9BgH7F4gjdefgfB8ynnq7iBxPpakRMfniLXkdwI1hfwXJBkhfmleZKpOM1mjWgiSrVR55WfvkJYj5IvrxKJ2eRXyqi6jueBZoIoOrz9yvu0dcUxzBCBKNE32IkZMxm7eJFarcr1Gy19y86eblxXQAp0pq7OkmpPEPgu4UiYSq1CyLJAklBVB6fhYtsxVpfzzM3Pc+jwLto7s7S1Z1lby1OulPnN3/wGJ45/xN7RAZ44ug/DUnFKDRrVKp0dOSzbAkCXJQK/pXsoiBJmSGe5vEw4bCLpCoIkI7pNLl0eo394ED9ozSi//9EV/tn/9k/uWFT6W+yy352A4U5vxdZeh51Ss7Yp1UoIEdyanR8FuLubJXP74SNsmyhl89gq8cpWx65dI/zbP/0DhtpHUVT5rjn8Vs+CIODT0qtLdsX40m8+zcjoMIIobhN5d78veOevrXO40eMGqNvEfveACaH1/YVWthoQNu6Hu77/Vh7UnXj4gjsufCvWzmOL9rn32my/Tf6wXrh7762Htc2YuJ14sTdgNL6/ec7vXdE9qJ3bvVsPWpJulfRlq/J3e9U2n+uHwefbiblv1f9Wfd46biVO2focfSFi/rnYLw3cbeGb3eqzLetvV3eLejuJdfs8ZRq2s0exB7VVlipJknjmmaf4yV+/yJM9neSLeSIRG0k2kGnpKslyKyOlJEvIUoBAgNNw+BcnLnG22KBnJMNvPD7MVw4N0N+Zpasjhx0Oo6keoujjOC6yYtBo1NEUGfyA73z/BZ548iiSLLFnuIdisYAdi4CkcPb0RQyjpSOVSicIhIBiuYTjuCiyzvzsKv/mj/6Sof4uQpaJ7/kgwNTkDK++eYzBgS50w6RRb3Dh4hX6+rqRZYmVpUU8z9tIthCgqDKaphIEkIhHSCTjyLKCoRuEQiGCwMVxHNra2xAEAUVV0Q0VcUNDLnBdNNWg2agjSq24SlXVEPCplspIcmuCkxQZUVQIAg/XbTJ9fZpkMs3K4hqmZWJZNlHbpl5tEI5ZBB5MTlxj/OokoZDG1x8f5Y9eneSxvhCWHSESDiNKPuGwTTwW49z5CXq6Ozn2/knm5xcZ7O8hl8tgWqGWNqAoEI/HqJYr2CEVKxSlu72X2RtLrK4WuT6zwONPHGAtn2d84gaD/X2s5/PUqlVMUyORiJNIJclmU+DDK69/xK7RAVKZNJ7rcubseWLRMBPXZqjV6miqQTwe45PTF0ilEiDArsFeZFVGEEQM3WB+foGFhWXachnSmSQCApIkIMoKAiKqpvHUkwc4tHeIhYU5TMtEM3QWl1ZZXV0lHo9BAMfeO8nwUB8g8vpb7xOL24iC0NI4ExWWlvOMjOxhfm6eRCKGIEF3Rwe93Z2MDPWxuLxIKGQjyBKlUoHdw6NcHb/O5NQMuVwKywohiQqe2yCRjJNMxvE9AVXV0U0dp9kkmUrS29dFpVRmZWmBWqVBR3s7qXQSXVd47bX3+cY3vkI4YqPKMjPXp+nu68bzfQ4d2I0ktp7DcrlKf18XiWSCeDxMtVSho7Odl15+k7BlE46ECQRIJOPMzsyhazo//smr/L3/+m9jmDpmyKJSqQAC2XQcM2ShGwYXzl9h9+4Rstk0CD4vvPQqu3YPIQoBzWYT09BZL6wTi0cxDQPdMujo6KKjvQ1JFjAMA13XSCfTfHLqPD09nSgqnPj4NKahE08k6OrsIJtJbmhMShBIrK2t8+bb75GMR1pSAPNLpFIZXM8hHIlQLJQ4c/oiYTvEwFAvvueyb6CDX3tsF8vjF/k7X9/Lbz1/gOl6iX/+w5f5jaN7mSvn6c118upb7yKLEIlG6MrlaDbqNJ0msWictmyiRYNUVL757R9gWwYdHTlc18UKhZAVkXqjRnt7joAAz/XwAx9VURgZGCSSSJBpS1CtlJievIm3kaXS8Wooqszukd00vSZ+ACEr3JKF8V3a23KkMxlymQyiJCMpAdPXp/nBj15i5uYshx/fhaG3KNWmaVKrNVp6ZKKH58LczQXC4Qi2HcIO26ytrtFsOmQyWWzLZi2/RjwcxvOalMolOrrb+eTjcySTCQRRQJZlTCtEtVqj2XRa77JQ6x3w5okP2TvQhyKK1KtVpq9NMzjYh6ppBILID85d5b/5x/8Qw9DvnDNun4N2tAO/vZdu63lpZ+VuxQw9OnC3ne2UZ/Mw43ju+Wc5cf44r7zzCvsG9t+zcv7Ll77JqSufEOge/+M/+j06uzoeZsgPMIHggSd7Y/P7thCWB0lZPJrr0PIQ+vcd0Z32YHD3kL3fdW89fP0dl9z4udUmyE7Xlfd29qCYu4cp/6C6j6L8zvrfvjFB+EIK4XOxL8DdL9cexfvT30wzvOHB2zTDMDj81a/ywSs/R68U8EoVag04ceoM7bkMXuBTqVQRCPg/3viAU9fO8+SXD/HVIyMcHe4gHrbwg4BqpYokSei6iiqLVEprzFyfJpVMICsaumFQr1VpVGs8+8wTzM0toUkeN260kmEYkTiqHqItlyWVSZFIJSlXSiAJ2HaEZhPwZVwXnnlyP4l4AgGRS5fG+bf//rsc2NvHN77xVcKRCLVaHUVR6O/rIMDH91083yWZSiBLEq++/hbH3j9Bf283zWYdy1aolBuYRgTHaVCqLjA3u0RHZxu1WqmVXr5WoVhYQ9UtBCSWF9Y4e+4cXZ05FFVBFCWK+Qo4JQgcQrYNsoSoyPiOhGEKrBcX6O7o4uzH1wlbKgItUfZ33z2Orqhcm5xiZXGVffv3IoogaTLXxnjsyOEAACAASURBVG7wu197kj958ypfOphjenaeXCbF4uIqs7NLpJNJiutl9u0bpl6r4vke9UYT3dRQNQ1FbHlQJNGnWCzy1z97h4gdJr9WxXEB0aWjPUMqnSKbSqBIEqGQQWm9iK5piLLUmnQDAUFQ2bNrhI9PX2BhcREZD12Tae/sIJtpI2xHEaUWbaS4XqbRaBKLxpAUj6bjcnX8OiHNZr2QZ//+PXzrOy8Sj9okUwneeOsjenu6WgtVRcIPfES3yNkLF8jl0iCq+IJAOpkg8AMMw6C7s721D6rIdPe2k0wn8AIPUZYRUflXPx7ja0f60FUBVZNa98v5yyTTccLhKKoh4wciiqxQq5TRdYu3XvuIUqGKoSvUaw3wBBbnr5FKxlteb0WlVKkQMgxqtQqGqTNxdRIrZFIqVbHDNslkjNmZG4QsE7fmc+nyBF0dGaqlfCvJim2SX1vDNAzGxq5w6fIlxq/OMDTcS61WQdNNFm4uo+smw8ODROIx6nWHtbU18msFRneNIAjQlkkSjoRRZIXlpSX+/Z9+h0P7RwlZYQRB5OrYBLIssri0REd7DsM0GBrqQ9c1BFHA991WoqDAx3MdHKdJve4iyzK6rrG6ssq7xz6kv28QVVPp6Mxx7sJ5XNfl8OEDNJt1CvkSITvMmU8usGffboqlEpYdxo6E0USRjs5WBlPbtvF9SKZTlNZLvPveR/iBz+joEKoBkmTxg++8wZWxKb7+q4+1QI8vookqf+8bBwhnRTJ9aeS4TG5PNy+Nz/C//9k3WZVlLpbW0XHo7czxF9/9DocP7UPTVfq6c4yODnLxwiTvf3SS8YkJDh7cje+3qJu1Sg1VU9G1li5iw68jiDLLKwvIosDU2Awhw6DZcGnv7UDTVRRVwzBMAkGkuF7CCtnIooq/EbPUaDjUK3WK6wUEAjpyKZ595hCSKlEu1JiYmGpp7+k69Vod3/cxDKu1ky8GeH4TtwGiIHP92gzj49eZvDZDT28bogSJZAxNV6nWavR09eD6Hh+c+BjLsnEcH8/3QRSp1hosr6xydfIaS1aYQ+kogeNSy69ix6PY0Qge8B8+meTv/ON/RDRq3zNnfAHuHmwPO46h4QGee/5ZYh02ZSp0DmeJ5iyiOYsvPfcMX/7KlxgaGXgklMbbzfNcJFnaFkNs6hkGfAHuHq7+jktu/PwC3O2gtQf29QW4+xzslwHu4D5A7mEiSe+mXm4xQ23SMXdEn3wIYLdZcqfPx+3lb2nOfDbbbOPuF/Pd4LRVzsf3A/7oJ6/ya30dVKoNMukU1+cWaMumWK5X+fPxOTJ9Uf7bX3ucZw/vw/EaaKqK73lUSnUsK4TnuUxPTRNLRHF9B9d1yLW3E4gSgqQgCAKyIGIaJoIo43oB5eo6dthCkEXKpSqqorG4sMB6vtSK+8kmWx6ShkOz7pPPF/mDP/42z3/p0IbXzWdsfAJJCnj66f2sLhdQNZ31QpGpa9O0tWU/lSQol6qYZgjHrdPb28lTTxzGMA0UVQMhwAy1Ek44bpNwOEIsksQPfCRZQJF1FEXDd3zm51eI2GG8ZhNVk4nFY1QrFQRBYmZmkcXFObLZNjw/YHlpBdu28TyfSrnAwtw8pqoSDmlcuz5D70APkizjuA659gzxRIxCoUy1UqW3t4dQSCcaSfCzn73N1x/v4ycnbpILy1y4cIF9+3ajaxqLi0vk2tPUa9VWEg1ZRlZVEskYvufTqDaZnLhKLhun2qzzpaePMjF1jVePneTv/pdfYd+BUQJf4NyZy1TKFWrVCuVKFUGATCbBxcsTdPf2UFpbQ0DGD2Bqapq9o52s50tkcmnUUIiPT5xBEkTMsI6ua4TDIRRJ5OrYJJVaiVgixqUr10jEIrz51kk+/vgi/+Dv/xaGaUIAAz1d1MpFVFlEllwEGlwdH2f37r3ouoUfCGiqCr6AHQ4zfmWCVCqFbhh8+OFpOjtzSIJIqVTCsixmF9cxPYd6sURHeyeeE/DTF97gwIERJFlAM3RK1TL51SIfffgJe/eMUi43ePudj/n615+kozNLe1cHV8bGiSdjuA786MevkcumiSeirCwukcmkWzQT3yOTSSEEEoapEbI1NF1FRODM2Ss88fgBVF3m+z9+iS8/9zRN3ycaiTE9NUM6nWBkeIiurh5ct0qjUePEifM89tghVlZWsMIW731wAkURiMfipNLpjfeVj6YpqLIKARQKrbiqXDaDImtIskyhkCfXniXXnsF1fARA0RQUVWZ1ZYVwOAKChK4ZOE2X9UKJeDxFpVpEEFrlY5EIqm7guA6qphKPR8lkM6iqSiQWQxBE3n3vJFfHbxAyVdpyWWRZwWk6fPf7LzF5bYqujjbKxTL5tRLhaATLssmm47z5znH27hpAMRScZsDQcD+vvP4uX/3y4+ihMM2Gy9lzF+jr66JSq2NZURqNKql4mA5L5r/7W8/REWry9cf66R9K44VgTYEfX7jOUuUmL0/McmZljaO9HfT3dqDLCslUDE3TWV5YRhQFopEIa6triIKAqAhIokbINpFVle6OPoyQRrajg1q9Sr1WRVc16o6DuBHD9yd/8VccGN2FGW5lp2w0Gly6PM7xDy5QrzY5P36JPSMj1Koukqjx05ffIF9YZ2iwD103KJbXMHUTWVZQVQ1JkjDNVsKi/Po6/X29jF29xr69w4SjEarVBnY4wsLsImbIwHU9spkspUoDp+EQjUWJJhLEUnHSbRl6+nt4eWKKIxEdwXc5fe4cg7t2IYoSoijy8+uL/MrXv7zlIn0rcHc37WoLNh9wK4HCndSzrScrSRTZfnF77+L7YUDFgz1WW9S5zzjuLiGJIp7fiqnfbs7eagybVNpb56dFPQsIWptUQis+dpOkKH0qWXHvOX2Qvlwr9v++w7ujjRbYafXbouTemzHz0764Vedh7M6Ys43+t7hPROHe+LTtv8bDrpt+MWAH96Mob9/np+D5057vpKm2yoj3fLbVRdwSdN+lG7fTZTMbgUmby+KHsftRO2FrTbvt29/+RAbBF9kyPxf7GwV3j6K929sKglsA73Owh3/VbDwAvyC4u3tnaLO920Hf5l+DAL72K1/hn3/nJ/z6aD/H3n2fgYE+fjJX4EqlzD/93adIRiyaDXD9gEplHVkSCXyft4+dpL+/G4BkOoEoCiCL6JrW4syLMr4o4bkuK0tLzM/N8wd/9B95/vmnUXWZSDSCpIisr6xjWyFsO8z83BJXxq/R053DdR00XSPwBaauzbBvTx/pdIxms87a6hph2+S5Zx9HN1WisTggoKoaYdvCcR0Mw0RARNN0PC+gXMpD4KOoKqViCVXVqFebNBo1NE1kvbCOKOisrRZoNhvopszqSgHDDLFwcxGQWnp4qkwilWRtdQUjZFGvNahVHNpyGXSjpbUVj8XwXAdJllEVlUwqQ35lGd+r0tnZy8LSCvFUgkgsgmGauK5LMpnihz98hZHhXm5Mz9DV10dXVyehkIxYyfPNFz7iN3/jScK6ysmPL3Dg4AgT166RSiSIRKMIgogVtrhy5QqyLKMpBhFbI7+2giBaTEzcYHR4iM72FIV8kUjMZmlhFSEAyzKJhkOUqjV8zyESCdM/2E+1WsOr1jh+4jwvvPwef/d3vkqpsML1qSWanktXbyeGppJJJ/GFJpIkcPPmTZaXVzjy+CFMXcX1oKszh67pOPUGRw/v4fyFMT48eZ6bNxfJJm1q1SqvvP42QVCnXitj2zHGx28AEqsreaJRuxX7KQjUqg2ujE2ytrLGnt2jfPNbP6Feq9DV0YbvefzL75zgv//tX+Gj42e4eXOJTCrD9ambXLxyiX37R5mfn8eKRgjbUc6cOk9nRxrDCvPTn73Fr//6s/z05VfpH+iit78X07Q49u4p+rp7aNTrpJIRREFk7PIYyWQc2wrRbDq4zQBVlXC9JrVqFWtDTsLzXRKZJF3tbWiajqSorK6scfXqNCFDp96oY9lhNENGURWidoue12g2MC2DPXuGAZ9INEGj3uDKpSsk4lFc19lIRmRQKBSxDJPlpeUWHfPCZbo6c6iqiue5TIxPEYmGKZbW0Q29pTkoafheQL1SQ0Cg0XD465++xvBgJ8XiOomNewoR5uYWUVSF/FoBbSMbrSgJGEaIcDjM5NXrIARk0klESUJRVUYH++jv6+TchUt0tOc4/tFZQiEDwzRoNhpYpoqqKExMTpPNpQAfSfTJZrNMTsyi6jLDQ100nYB33j1FJGQTi9kEgUc0GkZRZNq7sqyv55EEAcsw6etqY39nhCOjPTw52sFXDg9zafICb8+v87OTx7hQ8fErRQbacpw9f45MMoUgBHiui9NsICkhEAOujk9SLjXJtieRFQ1FkVBlkeLaOqF4GN93W7RUyyaTzeA0a0iihKyoJBNJZmdv8uzTR7BDEolEmHMXL/PtH7zKP/1f/gf6+3vwPJdz587RP9RFcb2MYRrgCziux8kTpwgZJolki2lgmQaZdBLX90AUWVvJo4oK1XqVaCxKPJnCdwPK5QqJdAJV1SiWiqi6CsA7E9d4ti3G6soqbe0ZDDtMsEHT2/dbv40VMhC2mKm2Anc7te09fHd2EuzYa3HLPn/P3VZ2b6ee6yFL4gZA/Wx9tEBV62iBl5aIeAs831rQb4qR3w74bnnYbssx8Ejs1nazuM3J3vzL55U8Zat10KMFd4/Wdgru7v3f3eDu7nO63cbB/cfx2Za1wg7A1w5b2mIcOxvbg0/kF+Duc7BfFrh7iO2Gh2tvq88f0rZKwHLv3ssDhrNVu9z7QtsEZA/z2toula7vB3eAP0EQEIWAPYf28tJr7/Grh/egHOjhsT0dHBpoo1lrIEkKgVvCqdcJ6XH8AEqldfbs3YPjNJAVCVmWCXwfHxFBFPGDANdpIvg+tWKVUmGNdDrBkcO70EPaRjZJA7cJiiayXiwQ0kPE0xGy2Ri6IlKvlhFEDUGEM+fOc+ToPlQ1hKrpmLaBGWrtsouShus3QGjF1am6iarpSIKI2/QoV8rImoJh6iiiyYs/fZP2tgxqSEYUA1y3jiTJGIbFxfMTLCzP0D/YC4HU2p0MPKxQiHAkjCSLiKpKo1re8P6J6IbW8voloiBJmHaYarmCGIAgujiBi6yaGHoCXfdRZA8/cNBVESEQKKwUSbdlMUyNPXsHkDUZUZaoVsrUqmVcx2NgoI/nHtvLpTPT/Pmx6/zebz1OtVRDEKAZgB0ymZ2Z5dSJsxRXK3Tl2jh76QpXJ64Sj4a4OVvi2Lvn+fLzj3Fjepam08TQDBRNJNuWQlF1HFcmkYoiihJXLk3x1hsnSFgWkXic/sFuDh8c4sb1G8TNKFokzO69o/hOwKlT50lnkszNLjI5OUsynqRWbaLICvl8ifXCOslknDfefpeB3hzhmE3f7iF6utu5cmmcD05cZnion8OH97C4OE9+uUGpIrJr9yiKpoDoErJ03EAAUSCajDG/sMjeg7tZWylghlQOHByh0XD4k//3BZ48tI/+rjZ6h7tpa0ty7vwFNFXhiSf2o6gqTdcnHG5lSxwc7UCQQZACvvzlo2iGQjIeIRKy0SSZhekp9u0dJptLYNgmqm6yXiqjSCLTU9PEk0k0y0IPyei2haaHkCQVwYXrUzNYpsUH753k6JEDnDhxing4ztilq2QyKcKxKLoZQpJbweMvv/Q2Q0OD1Gou771/irZMlqDp8dbrH1CqVRgY7CWWjBOI0HAcFmYWmJmeJQh8ovE4PhISPrIkEk/FETfS7JcLZb77o5d4+unHWjFhssbq4hJOoyXl8cd/8R2efuowI7v6kGSFkBVCVhSabh1FlUkm0viBwOnTF+jubEORJMqlIgTwl9/+EQf39SGIAmureVaX19AUhcsXz9Hb10V3TyeKodHb18knpz6mu6MdUVIoFsp0dXcQCoexLB0vcOkf6OPs2THGxy8zPNjD2Pgk7bksvV0dnDr1CR3tOQgEJEVrvbdkEd0M4TgeoiJTqxWIRCMoqo0oy7heg/7ebg4PJvmdX32Ko31JunpSBLrP61cv88L4Da4trzN9aprDj+1idXkJTTTQFZMb07OkEwlefPElPjh+irZkO+FIisCtUa+7aKZNPGpTqxSxojae6yEIAdVKicHRAayYTTKVQVZ0zl+4zN/++nOUiwXK5SJWOExnVxeC77C4OI8si+TzZX74o9c5sm8PS8vLzMzexLRMKvUKqiljGiZLNxdIxhNMT89gR+IQSLzz5vv0dbfRnkthRlqJhmRJRFVakgcnbt5kRJUIBJFUrg1xA8r9Xx9e5hu/8XUEBLxgEy7cOu6Yqx7KM3FrSm2leL9/XUG4tRl5P9sqaclW470fBvkswGOn4E7a6PSzeAdvXyPc7re7c8F/b7s7lyUQtjkeUPPT9jdXOMKW1+H28g9jW12/zfbvGKlw7/l91LTMndiml/rOpCFbAM/bnpO72VO3leLea3s7VfPua34bGBTu3UTYHM9dPovPtGz+RZPL3G13e+tu9yZub1+Au78R+6V57n4ZnXxG2ypGb+evzm3avV9fj9A2H6w7M6P56LqOEs3wxz9/g+f3tCMIAoqsIEkygtCixd2cnWdpOU8qk0JVFQRRRt6gi1RrFURZol6toEgSYuATeB7lYgFFlVEVEcPUaDoOiqYiCiKyrFCtVKhVa5TLJZYWCsTiLUqhphg4DQ/NMhGA/oFuatUahqnRaNao1yqoqoEkqni+g6pIiIKIouisra7xV997kXQ8Sn6twPLSCslMsqWPIopMX59hZLQfWVUQAw1VMSgVKziOS3d3J7lcikbTIQgCZEnGcT0M26ZaL+M0auiqiG6aLaDQbOD7oKoamiDiOy6CJG3ExlRw6w4b0xf1hsviyhzlUolqtUIyGWXq2nX6BwdwvCZB4KEoCvV6k7WVIul0Ak1XsSMtT0WxVObU6Qvs6w7xf//0EntyOhcujXHg4AEEX2B8/DpHDu3hzIVL1Js1fM/j6ME9eK5PMhNlfmmevbv6icdjGIbB2XOTRMIhrl+/wczNOXp7OpBkiXq1Tn9fD8lEhHqzwdzKCulcmkAVSHdmUEIaiXiUUrGIj0/YNtA0hf/nD3/Af/Gbz7G2mmf/wd289voHdHZm0XWNtbU8+/fvwnM87IhNIEooksRQfzdHD+xi8uoU589dxPMaZFJpBveOEoigGmor3klTCOk6AgFes4kVMlBlkXgyQdg2kRWZwIcTKxF++6lBHN9DUVWq5TrxWBxVkghHLSzLplwqY9k2COB5HoZhUS42WJydw9ANLl4ca3loTYOFlVVEWUYzDALfxXWb/OB7bzI2do1MJklHZwelYolmtY6hGzRdlyuXxjBMg472TqrVCp+cuYBtGZw+dwWBgMGhPt5850P27R3BMHSW5hc49fF5HjtygMp6hfc/PEEsFubnrx/Dc+u0tSW5PDHDyFA/AgGyJKEqKvFkmGgiiqJIxGIRKsUSCFJLpiEdp15vIIgiiUScdDJCMp2kXq8hCvCzF95CQODy2Bjf+LVn0HUFQRQpFPKEI1Ecx23JYXgNnKaLokgMDvbSqFVRFIVCoUSz2WCgr5v2jjRCEBCLhmk0mnR05ujsat/IWiyiyDKSJNKRy6DrBq7jYxgaVtjEDtusLC+zupKn0Wi2PE/r6/QP9NKWzaCoKgvzCwwO9KKqKgEikiRRKpbQbQMJCUkQqRTLG15JHd938b0mleo6umEhCHD58hh2yMIyQxSLNQ7v6eUrB3s4vLeTxfoKf3b8ElWnwcG+HvSQhqZJqBooikg6FUM3NS5cOk9fbxeSLKEoEkLQJBA8BEFtJXdCoLBWIJqMo6gKsihRKZcZHhogFolSrrbOXTQWodGoMXXtGhE7SjyWRNctxq5cY+/eYQICNFWlrb2Njo526rUqsiRTKlWwLItMNsvs3CKCJBMyQ+ghg4bjcH1iEtM0yRfWCSdiCJLIhavjqCsLDI8OIqsqQRDw4eQ0/+Cf/a+35oQdzh0PC+5u1+Xaru52i70HUUa3K/dZbafg7lF0ufNz/1l4QL+obQIUYdvz+7Bj2+n12xJA/U2Au420nXe2vo1Hc4uYxfuU3LLeg9rfyh6Vp+3eeMBf3B7eT/MFuPsbsS/A3X3A3Q5lGrZtd4vPbpcxeCT0hy3AXasPn1Qqw5uvv8Gh3giRSIRavYEoSgQBuM1WlrhMpg1RFgiEAFGUWy89QUBRFPzAw3c9dF1nauIaogCGqeN7LuVyEYIASVFQdRMBgZXlVRRFwQ5byJLMD370KkeO7KNRb0IAthXGxyOfzyOJApFIBEEMUFUVRVWolpvcmJnHCMn4XoAkyqwXiui6xg9feBOJgEQ8QkdnDlmTyecLWIZJey7TygCqyCzMrvGnf/ZdjhzazfzCEpm2JAitLIbF9SKKpmJZNm7gE3gOmqbgNmt4gYTvuXiug6woSIKCKooU1vJohomoSGiaTuD6NBo1dN3EMEOEIjqJeAJDk6lWKnR0dbG2msfHQ1U1VFXnP/zZdzlyaB+TE1PIsgSBz7vvn6Cnp5M9uwfp6WknFjR591qJd6+u8vRQhpMnzjLQ38XkxDS7d/cSChnsGhlqeVnKVaqNCgf3D3P+4jiKrPLRyfOUyw7rxSLxqM2B/SPIisyxYydIp5Lk83mazSayotDZ3obTbLYyO5bKCKLAyuIS8UQMTVfY3Incv2uAE6cu0NvTwcmPzyHLEqN7hoEAOxrGirY8mgtLy6TSKVynyauvvc/K0hLdHTkCrwmCQ66tAzuRQJQFFEXGD3wEScSpNHjjzXdJJ+OUSyXGxibJZLJ4no+mqciyQk8uRTJqIysyb775PqOjI1y6NM716VnmFxcYGOhFURQUpRU36jhNJEHG0ENU14u8c+w4jz1+kHS2JfBs2TZ6qAUeZVlCUWT279lLo9Hg8vg1Dh7cw42ZmyzNzfHe8VP09/fQ1t5Go9Hk29/+KcsrK3z1K0/x0cmzPPvUUc5fusLk1DRf/crTzM0t8sKLr3H16hRPHj1EEMDM9CzJZITJ69P8w9/7r+jr6+KTM+eQZZWh4X7ya3k0TcVxmgiSj4jI2JUJerq7OHXyEy5eucZzzz+FpukIgtCi/DoNMtk0y0vLyLK0oVG5wshwH7t2DVBrVAlZBvV6K+bUdRyaTRffCwhHQkiSzNzsPMlUFFmWOfXxWYqlCm3ZDPFElPm5m7R3teO6Lt09XSwtLJJItoTpdV2nUml5uXVNRRAk5ucWybSlgQA/8PFcH8uyCbyARDxGWyaFruu88upbzMzMMjTYjyxJ1Ot1VE3F931czyMQAsYvj7OyvEJbOoPjOmi6TrNRR5IEKqVKy7PXbGCYOm+/9SGJaIyXXn2P3buHWsmQhICB/h6+dmSQ0cEs/+dfHyOoFEiGdUIhnXg8RiabQTd0MtkkmmYCAbIk0HBqeL5L4Cp8+/s/Ir9aYKCvn3qzRqPewPNcNE1l/uZcS2R8YYlv/fCn7B0ZxDA0PvnkDF2dXThNl8mr0zz+xGOUy0VyHTmSyQSKoiAEAmZIp1avE4vGEGWFb37nexw6fIhUKsHZcxc5eHAPsqaQSiawwzaReHTDc+kSWlvhWqXC3v4u3KAlTv0fx+Z47vlnb80JO5w7vgB3D/rkUfW1Re9fgLvNEW3T8uezahQFYQvq8jbgbiOOVBQeHE96x28PBHfBBtK8t83/lMHdVrTTB4zkgSW+AHefg/3SaJlseMLuExN3P1rjo7Jtb8etErBssT2x4xf3Vn182uxGX7d72j4DVfP2YW7++ymNAL+1wy4pnDp5gi69SjwWpukJyKqK13Tw3AA7HGkttAWBeqOJqii4rocgQKNRR5UVZFnF9wNURcWy7VY8T7PB2soapmmRLxSxI0nK60UESUDTZAzDpFgo87WvPU2lWqZUrlIp13CbDqqhtDxXqkSlXEHTDErFMoqqoGoab7/9Ibt39eE6AcuLayQTCQCOHtmLrkisrKzRN9BDIASYpkmltE6zWSMcDlOqVPmrv3qZ5dUia2trvPPBxxw5MIRmmAiCSMgOo6garuvhuU0C30dAQJRkVE1viQYLAp7nIYoyK3M3uTp5jd6BfvwgQAgEHNfHDClUihU0zcbHw/UlnEaN0noBRZGRFBMQ0DSNlZU1nnj8IJZtEomGAYgl4/T1dVMqlZiamiTXkSWVyJI24elDffyTf/U9ntvbzkB/N9dv3ODy+A3GJ2YRvFaCh717Rkins6zli4CAH/gsLK3yu7/7DTy3yeT1G3S255ibW0YS4OPTl3jyqYMkM2luzi9gKio/++nbZKIRTn10jqGBXqywBQSsLK9iWRaVSpWzZ8f59V97HkkSsUIGe/aM4Pk+ZshoZSSsVdENc0OIu44oSPR0d3Dl6hgD3Z0Yhkx3X45ktq2lTygKOI6DLCkEPqyv5unt6aJYLPHJ6cvUGw6ZTBLTNPnuD15h/74RREQIZJYWVujr7kQxFaywydj4FF/76tPIsohTd7h44SonTpxhdKQP33OoVSvML6xQKJY4eGgfnuvx7rEPac9lEXyYGJvA83wMoxUflW1P0d2dJWRZzN1YYvfuIer1Ol3d3YgIzE3PceTIQR5/6iCWrSNLCj19vei6zBNPHKZYLFGrVFsxo7oCArzz3kkUReGxxw6RXysQS0TRDJ2+gR4G+vsJPB9VVfj9f/3HDPV3E7Y1ZFFncX6Neq1BMh3h8KHD1Ko1ZEWmVquhqAqSElCtlQnbIWrVKo16jT27d6GoMtPTU/z5t37EYG8P0XiUi+evkM5k8DxYWS6gaQqNmkO2rY1yqYggCpRLZUaGRlldXUPAJ5XO8O57HzE4OMBbb33IymqBXGc79Xq9paUXMiisreL5DvVak2g0iiRJzExfx/dc6rUmiqzy4fFTdHSkicSiLC0u0tnRTmdHG5VyFafZgI3NM8/3uXxpnK72LJqicOHCGEOjg3iuh4jA2uoKrpZ6QgAAIABJREFUZ89cZmz8BtlEknqtSjwep6+/D0XV6O1rp9Gos7iwSCIRo7yeJ1+o43k+Xz3ST1dvmn/zxlmOTU7xREcOzxVpNBpIigDIiEJAuVhEUjQkWUdTVQ7u30uuLcuLr/ycA4f2omoKnuu2xOQNHUGWqNXqdKQylErrqKqAaRikUhk0zWBiaoqOriyReJRmo8H09Aw/f+1t4mG7RTVVNFTDpFKtcOTIwRbFXFPp7+uh1qjw4fHjDAwPtha/QdDiP7k+K/MLVE2dgUyCYGOJWoimGN01cmtO2OHcsd2ar0X3vzNe5/bpcKu6O6Fo/acD7u61R9HlHTTLLRKIbE/B3G7l8IuPrpVcJUCStl5rfNY4v+2u3x3JU7Zd9wlbHA9ntyiWW+u0bR7b1b99iLeShQTbDOfWeG8/f7fO44O+y53nZPMZun38tz9zd3+HVrmt2/9Fk8vc3x72Gn0B7v5G7JcO7u7jCRNv85T9oh6znYzj87TNOLg7Mw3dv9etEqTs1LYOwG3xrGVJ5uj+PSxcOIaq6RiRZMsjJoAfSK04F0nAC1rgTUBAlqUNLniA67kIkk6xWPkUILk+iASkU2lc1+fMmXGi8SSKIlCrVohEbaqV5oYnpUbDcWg06kxOXCcZixKKWMiKjO/6BIGPJBroho7runhuk5GRfny3ie+L/PVPXqOnO4fnOoTCNqlkkpChEbItRKVF31pbXSKZjG3s/Ivs3dPPM08fZrC/m69++SlUXaZebyIrEoIo0HQcnKZDdb3QknUwrZaMQBDQqFeR5FYmskbDRQiaROMxrHCEWqWO23QQDI3V5UWS8QT1koOqq7i+TEgVsU0DAgEkHVlu6UwpqoRp6CwvL6DIGuVKhe//+GWOHj5AKBTCMCWi/z977xlk13neef5OzjeHzo3OyIEACVKkqCw5z3rstWenXLOh5sPsbNV89e6HrZmP41nXltfj9axnHWTPyJYlmUqUSFEURUqECIJEBpEbQDc6AJ1uDifvhwOQDaABNkhwZM/yQZ3C7XPfdO45977v/33+z/9JZzj0+nEcx2BifICprMMfvvQOKdXlwK4xMukSqixx4sQZdu8cZXrmGkOD47z15llOnp7mC5//BAODZb793Zd54oldjI0McvrUJSYnp0g5Jgf270LWVIIwRDc01JzNrj1TKJrMtp2TdAKXwA3QdRPHSTN3fZ5mq8N3XjxMXynNm2+dYnx8hCDwUS2dKI6ZnZ2l3W5h2ylkWaS6toLvBeiGwch4L5IgceHSJUYmhwlFhWa1SbfV4T/8v1/H0hQalTpBCMsrFUZGR8jnsxSLeVIZhzgSuDw9y7fPeEyWJEQsLl+6wujYIJHgYTgak2OThIGHoRu06g0UzeLSpavs2TuBrAhUa8sMjIyxY+c2Ws02b715nE8+fZCzx06gKgqDQwOomsmZMxe5sXCVvuESTtqhWmmQtXM03Qb9w/34rseJt04w0j/Aqz97i2IhjWHryJLG4sISxXKGo8dOYpsmJ068w7Hj7/C5Lz1LvphnYmKELWNbWFpY4drsAkOD/UxPz2A5Nlcvz1Ct1sjlsowN9bJlZJhjb75Nda3N8eMXSWfTjEwOcezIGaavzHD23EW63S49PUUiwafT6SQCHZaFpigA1OpraJrKJ554AtNw0A2Fck8vUSTg2DYv/fB1tgz2sXyzysy1uUR8Q4xoNlrkciWIIzy/iyLrGLqJbaWoVpoEfsTQ6CCZdJput43X7aBpEmEUIYky8ws3CAKPUk8J3VA5fPgEI1tG6e8rY5g6kiRj2xZxnCRZt2wLyzLxXBfE5Ht57dp1Xn35EAce38v45BheFOBYNkHgoWsGveVhUnaO//zlrzE6Mkgq5aCYBoquE8VtUukUK8trmIbJqZPv8O///Nt85tmDCEicPXOZ3/jcE+wfthAshf/tb37Izr4ybxw6zEBvP5qmoSsakmISCypet0G30+bFH/2I/+aXv4SsqiwuLJJyHFRVobK2hqTIFIpF8vki/f1losgjX8wBIitLKxw5eZypiWEkWeMHP/wx46Mj2LrG/NwCl69eJZfLoOo6iqoSAoQ+kiBQr1RQZdi+fYouEbVaDdswWbxynaWFm2zdvYfTiwtM9eQRiPm9N87xL/7lP79zTtjk3PHAqebWZuP9YnY2qruZ6fq/dnD3Qfrd3Ag+/OiSGKyEbvxhRN7utg9z/+4Edx/OkpjQDydEs5FYSPIHG3j7br1xu+6tfx9sm/7O/tf3fWfM622gvL7cR72i/bD26MDdw0sdfWz/RSwmkeu/n0VRRLzueFR9vhdG/OG+BpttQxSFe44HevPW1XsUFsUicSwQRD6i7fCfjtRo1lr4jRUkTQNZR9Mhjj1USUQmot2oghARRSExCSVSkhSqq1dpN1p8++uvIKIgKzGCZNB2XQxbY/u2IYoZA9s0KZeKuB0PRZRYvL7I9188gq5a5DMF5uZWsNMZatUatdUqxAKmbiPJMXEc3voFi5EVEd3SCKMu/+x/+HVSmQzf+8HrNCs3qdQrOIUcrt8FrwuRTCbTw1qlTafjU69UMCwDO22gWyqxGOG5AaoaQuzRbtbQdQXD0LEzRTrNFq16lTjyiDoimpQijCSQBDx3lUgzkEyTMAqIwg5h0IbAo7dvmEiUUB0Jz+0Sxy6hItMWRDrEqJqAqEK76yIh0q5XMOly9uQr6EqF3/q1z4HnIQYdWtXr3Jg9w1NP9DMy3kOEQN/QMP/Llx7n5ILC7375BNWVKk8d3Mdv/vbnyJVz7HtsD0EUEkkxv/XbX6TRabG8usKv/NLnkSKZE0fe4cC+nRx68w1uLC+wtrJE7PpIcYxpmeiShCQK6IZOs9nm2qXrSJKIF3q03AZiHNFXyPK7/+qf0nG7LFWqKIaMmbYQAQmZm4sV8tkCc/OLXLl6nVSmhKrIdBo1bFml3qjR8iJ8X8d3Y65duU4un2f/rq3oik637aMZMtt2jCPKAjPXrxMTEhAh6BF927fwu7/zJD39I9gZjf2P76LTcVlarCEEKmIYsLy4RrvhsrJax+12abdc4kin2xZJp8o4poEsCIhhSL1eo+u77D6wGztn4IYhbjukXllieGwUrxPjNn2atTqR5HFleo61mzVMw+Li9HVCRWBkoIdOo0FjZZWvffXbyICpWyzOr1Iq9/LZzz0DEkxfvEh1tcp3n38ZhJi+iTz/6Dc+i6ZIzFybIQxcBnoz5NMWfjegt3+QdqfL+QuL9Pf3MLVtkJHRfhTFYGZ+Bl2XEISY8ZFhIh+8dhvbTKNIDggGSCrLq2vkS73Y2QxW1sQVOkTI1FZuMnf1EgsL12l3myiqw5vHTjM+OYogKZw5NUPfwDCx6BLio+smN27M0zeQQ9FCpnYM8+QnH6Oz1ubyO1f4gz/4S7yujygoCILBmVMX6CmVyWSzhKJErRHQcj06fpsbq8sgS0TEIIbEdOh0KnQ6VbpuF8PM8PpPfoYqx+zZuZXf+Z9+CwQJ3w3QFY1u10tk5DWJUBDZMtbLP/7vPku+L4UXtRGjkNgPMG55greMjqDbOv2DBYbLabKOReh2OHb0BJ16jRdeeoMoCvlHu9NMPFbmOwsrRJGPqKpUul08t4UcuyiqjiSrfPaZZ5i5OovvelimxdpqjRNH3+Fb3/kp7WYXSZKQtBhJVwkFBdcXkHWNvpEB/vvf+SeomkFtdZkvfvoZFElElmT27t2LrhoYukmn0UCIAwhc3HqDwHNJ5TOomSwdBCRRIZ0uEsUCxV6b+eWriJqIIYIUg4jAwSefIIy549j0PBHde7w7J73rhXuYOelOYQlJuPeI43gdaLx/uQfZ+g3gCO45PmrbqM9HM46NRFc+7KrlPUs2j2+rdG42+9/7mywK7x0CyPdp+MEezI2ESZK/kzXU/cpwT3mIH/hsP8hE8b3jvXHfvgPrV5IbXB8b0T0fNN57vZV3971+TOuv7/a55NrizW2s3IOM4gccD25no3G+e1X3fDwPbv9hxGk/9tw9hP2X9Nzdtg2/Go/wx2bTff6c7VH8bD84viGhQrzy0o95dmc/YRgQIEMc065Xcd3EA2DZFqqmEoZxIgMtgCgmwiqyqGI7Ok5KxbQNTN2m1WkTxgFraxVKvT3cvLl8C5vFxFFIq9Xm+Rde43OffQoICEOPyfEhNF2jXmvjpG00TUEQI7pdj/m5ecIgQJIVVEUFBCqVOqZpEngBohBTKGTI5rPIsoyiKEiiSBAGTF++zNDwMIEfYacyVCuV5LqjGFmWCcMIt9tFQCaOReJIolqpYdsGiiwS+CGGnebmzcv4YQtF0yGSsM0iiiqhazqtRh0n5aCoCopmJmILgogYgySJiFLieWw2WuiaQRyLiFKMrhuEoU/gdem06xTzBpajEMYulcoV2t15DKOMplk0mj7tbohpOcShRy5vcWCyl3/yC0/wb/7mZ4znY3w/ifWbm11ibnGJVrvDju0TzF2fJ5/PcejQMVZXVvHCENPQsB2TnnIBWZZZq1Q59MZRhob6IYwRbi0OZ2fmaDZaDI0MIooilbUK3U6Xaq2OYVrkclk+8dRjSLKE7/vMz83TbruYpkE67fDaT99iz+7trK6uoKoqVsqm1WjR7nTZOjWJZdt0u10c20RVNcqlAtV6nfGJESRZQtd1EATK5SLZTAZVVonDkOcOr3FgrEy32ebGjVVkSebihStkshme+/ZLKBKMT4whKzKCILGweIMnn9qHbqg0GzUy2QxeEBCFIS++8Apf+uJnsW2TymqFG0s3cZwUM1fmyaYtllfXaLVavPzK6+zevYNrV68zMFgiDDyOHj/J/n3bSadTHH77BKWeHIZtEMcCU9umOPfOWXbu3MrRo6coFbNMjA1T6smjqCqP7d8NhCzO3UASkvjHz3z2GUzLorpW5dL0VSqVGrZlMnd9gX17thIJEbqmcPT4KbZsGaCQybKyusqnP3UQ09IwTAk/gAvnLlPqKRLHIa12HdvU8D0XIY4RBLAMgziClaUVBFHk0BvH+PVf+wUiQqqVKqVSCcO0SWdUlpduks44GKbNd777Mo8f2INu6ERxhKIotFsd/uzPv8bk5BC/8IVP4qQdOt0Os7NLXL++wOjYEJqpI8qgAOfOXmCgr4/FuZtoik4ch7jdLqoiYVs2qqLRCTp4XkSpJ4+qW6i6jSAGdFsd/uKvvsGundsJOi4CETERpmFy/p0zDG8ZTdQ/ZZkwjui0W5imgihKdF2XWqVBPltg986tVCtVCqUCe3Zvw/d9TCNRjx2fHKHVbPDbXzzI2/NXefHENE9PTSAQU69Wcf0utmljOQ6rK1VSqSyOncZzfVKpFE8/fQBdUVAkkTiMaFRqZLNZFE1lceEGlmUhSWLy3DsGnu9TrdR448gJZmcWcH2fr3/nBxx8bC+6YSApKkhiInYlSsiihBgJCfVdU1i6Mc2Zk+f45MFPEasyXz97mWeHSgCMf+kXP+QMcqfdXpi932JxY+fInQv2BylexjyaWKDNhHM8as/dR8Mnup99NCuXd1lUj6Kt9SEm8S0I9NCeuztavLNMHK/zVN3fM7eRt+t+739wu7uRR0dN/CD2MOS2h1POvH+59xNUedjPOY4/pmV+JPb3Btw9Arv9rG02hu2BJIj3EVS5DcwS9ck7dyJv2weJpbs7tcF6iudG5x5kt3depy9fY8AKEfBJFcq0Gk2EOMZJOeiGTqfdodvpoOo6oiQSRzHtdhsQkCQNQYzQdDGJJ5M1YjFGUTR0w0CWFWzHZHW5hqarSU6tQp7RkX76BvtQVAFJSmggp985h2k6OI5Ft9tGVkQkWcHtuqiqhiwpSKJKFAmYhoWiqqytrZFKWaRSaWRRpF6tICBQqdQwTA1NU7l2bZ5MJlHSjOIIw0wWf7KqQixg2zZra1UsK0UQxqiqThgmNEvHSeMHMZJgoesp/vzLX2XPjnE6fpXYF1EUEU2XqVarxMgoqsFbR47R21MGIqI44oUXX6e/r0wun0MWZZrNNmHgIsoyhq4jigLdbgsxruIHAbnsOLJcoN2SSKdyKJqD4eTIZHN0uz62lShqarpKEHj0qD49PQP80UtX+OWD4wiiRLGQ4fjJ8+zaOUkhX6BarXPi5AWeeXo/uXyGuYVFBvp6+PFPjzA2MUIqbTM+tgVFFhEjgQvnLrG0tMK2bRN854XXmJocRZEkLN0klU3TO9CLquqYlkllrcJ3vvsjxoYHWV2rcOr0Zfbt3UGlskYxnyKXzZBKO8zPL+J6AU7KwfVDzpy9SKlUQFVVJFmk1WphmAaOY3Pp0hXSGYeF+UV+dvgE2YyDJIk0q3X+zVdO8q//2eeprlYoFvPIqoZu6JiaRrmvhx27pjA0BUmW+Xf/558iCDFPPXWA82fP09uXp9lqoKo63/nuS2ybGuett07SaNYpFHMoso5uSVi2haHZnD17nscP7iOTzbBj2xSe69I/2E8qbZPNZSkV8ywuLJDLZ5iYnCCTS1NZqzK5dQpFlbhw/jL79u9my9AQrVYDy7GJ4whdM1hZXsa0NRwrQxzFVKp1bEtDksBOZ1i8uUwYBfzsjeM8/fRBzl84T29vmVQmzezMPJPjI9TrDXbt3ko6bbG0soggxJhGhkIxg6IIBIGLLEvU11bJZFO0mm1kSSEMIwQxJpXJ4qTSZBwHQ9fRTBVZkvjD/+crLMwvsu+xqSSGUJYJ/IhCvsDRt08yMNBDt9PFsCxkVWHPzkmclImiKciSRBiG5ApFhm8JrwhCRBhHVFeWObB/L7VKg27H5WvfeImnP7kf0zBAiCGCRqNFKpdGUTVMS0MUNQQkIKBWrfDsJw/S9UL+5D98hcnJQUzLgFBAUwVcP6F/+76HrqkYpsna0jJIAqIskUnnCFwQFeh2u6TSTgJSVRnDVBHEGMPQQYDp6WuMD/aSltr85duX2VcokM3nURSBSrVOt+vxje/9kE88cYDTp87yxpET7Nq5netzV1mcnyOTSfO3z32bLYPDXJueQbd0stkMoigSBAGiJN3K7WlgGCbf/P4rfObpp5i5PsfTj+9jeHQI1/WJohDTNmm3O0RBxMLsAqqiYlk6kd9levoUe3c/gaTYiKrAoauzPDNY5CsnLrPn6U88xOzy/rZZFbyN0incHSMkrZNiv11u88qDmxzvBuf+/wfuNscpup3APKFm3qIZ3qdKQrlOkro/DIXz/eLakrYT6qIoCkQbeoeFdf/f69naTCzdfcHd+4iibJQo/A7QSOLVfu/cnbTM9xdduVXnHq/le6/u9/E9fBLzDfp96Kf3g3wr7qzznmdu477jOEJRtI/B3aO2/5rA3W27DYQ+DLjb9DdI4L4U0s2O4+468N7kdycH/N5zm7G1SosepYEsBEi6jWmaaKoMgOu6qJqKJMlIsoLv+YmSoCLjuS6amiRHVlUNz/MRxCQ+0u34BF6Apmn8yZ/+J44dO89TB/ei6gqV1TVSqRSSouK5HQACL2JsbIRUKg0kyeajMEwECkwD0zDpdn1q1QY3FleQJRHf928BOwtVN6nXKsRhhG4YaLrB0s1lcvkcmqoShiGvvX6YuflFentKWJZ5K1cVtNsNbMfmzSPHOPLWKXbv3gZChCTESLJEFAvIso4QCxw7dpKDT+wmpIvfjTBtC9dtYloOiqIRRgJ/9uVvUKtWGOgrASEnTl1kx/ZxWs0Gmq5iGBaiENJue4hCshAOfJduu4JuptH0XhBNolDk3Lmz9A700+q4iJLEqZOnMVSVN988Rrlcwut6DA4NYtkWX9g/zu994xgDWYktQz3s2TnJzMwc7VaXXC6LKomUeos4GQfL0jlx4iwHDz6WJI4XYmRZorpWwfdCZq4vsO+xnciqwuT4ENVKDcs0eenlnzK8pR9RlnC7LoEfIAhwY3EZU1fI5rPs3rWNS5euMjo6hKYqXL58Fc9z2TI6gu3YhGEEMZTKRa5emyWXzaBpMpquEwR+4iGs1tA1jZ7eMm63Q7GYKAOuVmpUai1mL15iYnKUIHRRNI16tYpuaOi2QRgEqKpKt93h0uVr/Le/+au06i16+0u4fpt6tYppJKI95VKJ0aEBTEMnW8ixtrRGqTeHIArMzSxRrVbZMjbE228fp6+3l3qziW3bEEV02l2OvHWcXCZLqVRCkkT8rsfMtetU16o4jsWVq7NMT88wOjqC7VhcuniJb3zzJUxNY2RkC37oQShgmiY9fSVsx8B12yiqSX9/H729RV557QiffvZJ6o0mumYgCCLjoyMcOXyCbdvHqdfrqJpCvVZH03V8P8L3u/iBd8vTo2LZWpLKRNWQ1CTOjTgkjAWajTZxGBN6PlbaQTcMPvPsExw4sAddV4jjiHanTRxBNpvhq1/7Pp/85AFESUBWbr3famDaFp1OG8MwaLZayLKMJAq0mi0s2yESRDRFJoxjMtkMlUqVgwd3c+iNo4yODOF22xw9epLJyQkazRaaptNq1ek0XVaX6/zgR68yvqUPJ2UTI/CpZ55AVkQiInQ9RaVaJZ3JcvbcWdrNJplclvnZRXK5PKqmsba6SrvV5e0jJymUMpR6SoRRhKppRFGEqiaJwEVRAEHkzJmLlItFesolnpwq80evnWbbrZQaoqigqipPHHiMOAoplvJcmZ6lWa+zfeckxBFOykaVZfKFAm8dO8nE1CjE0Ol2CMMQSZZp1luYloWsqGwdGyGVcdizeyeDwwNEUZjEJMoSEHF1+gq5fI58sZCkXpBEOq02XrdF39A4SBKIMa9fmeGZwSLfv3qDZ9epZP487EGxd7eZI+vB3aO2j8Hd5u3utYX4Ht/wnnK3Q0TieOPk4x/GhHXPw50xd+8PUDftEbwPuLsz9+Dm6737+p4xCOte3QZtDwvu7nl302P76O2D3Ps767zfPRMEAVlRPwZ3j9o+Bnf3aWOT5Yjj+zPA/56Au4GRMf6vP/sG/WqLnoFhJEmh1aghCCKiKKKqMlEYIamJMEMc3Y5/U4hjn5sLDc6cnGZgsB/XWyX2Rf7t7/0pA+UiIjHbp4bZsXUbnXYbO2UiyyKtZhNZTbw+oiiiSCq+FxHhE/g+1WqdTCZPGPuIooQka0iiQqPR4i/+8rsEvsuevTtAiKhUKyiKjqUptBt1/u5bL7J9xw5MwyaKYjK5NCsry2zfPsLWqW2k02m6nS5+EBD4AXHsEoURpmmw77FdiSKmH6PIiahMo1kFucvK6gLbRrcQ+jGmVUhoV5GP53dQNAMEBSEWGdsyyNTUKJmMQ6fTYv+B/UhSjGXprKwsI0si3XaXdLrAyRPnOHv2EuVCHkWwQDJQTAc3ahCIdSw9hZ3OImsaogh9fWXqax3Onr/KsaPnqTdaHHrjBFuGBvGDgD1b0mimyZ/84CqPj9moqsbps5cT8JJO0ep2kRUJ27bJpWyyxTxBHKJqCp7rMj87j51KU+4topk6SALVZgNTMbh6eQbP8xgeGyKWBCorVeZmFygU8mzfOkGn3UFSJHTNwDANFhYWyWbsJIfcLS+uIIogykk6CVGiXEryEa5VVhElkSiMkBWF+flFQj+kVC6Qz2UA8DyfP/jeFf7Vb30Wy7bJ5tIsr9zEsgwcx6TTaSOrElevXWH55irFUpGDBx/j5o2bvPaTw6iywNBIL7Zj85WvPM+nP/MJmo06hm7wvRdfZdvWcU6dOI/lSKiaSjZb5NjbJ9m2fYyBgQF0TWfu+jyXL1/l2rUFhgYHGBnZwks/fB1dVbENnYsXppmamECVRK7PzDI42M/S0hrj4yPUqhW++8Ir7JzaxsLiKhMTo1i2SW1lFd3UEBSBKPaoVVdJZUt4gUcQeNQrdc6fn2Zq6xRhmMQnHnr9GD3FAqfPn2HXrh3Uqg0Ov3mSiYlJFF2k222gqAqGbuN50OzUQZBQdJMICUGUadRWiFH40SuHGB3qZ/ryVV49dJQnD+7D813CwKVRb2MYFq1mg0wmxcLCPJ//9KdQFIlatQpCkqNN1RRiQNM1QEDTdbpeA01VMU2HGBHfF/ADPwFalVXKvXk0U6W31IPnuWQyKQxdRxIl2i0X2zRoNaucPnWOl3/4JnEsMTiYQ1VEJFVGkmREBURVo9WMiIIYJ22QzToMDPXjuzEIMt/51stMbhsjm0sTBB6qrJArZhBEAUmWIYpYvHEDy04hyzJz1xcIgoiJiQlkUSTwPCorq+wczPIf3zhPrxdRLBfRTZ1QCAm9DpqmMzk2geOksSydbtAhlcuiGwZd1+ftU2fYvWtroiZqWyiyDKKAaaYRpST9R6NeZbWyzH/+2rcY6itjWBqyKiNK4DbrhFFIOpcmUgREKZlXlherjAyPEqsigZj4N1+/MsNTvRkGn/0cuULu4SaDR2wfg7uP2h4luIvuYCPdD9xBki90rVLFMk2i+OG8d+9nt4FjGL3nFttIHXIj+zDgLtmIf3Abm6NzChu+ToROok3csY/B3d3lP6ZlfgT28wB3kHh/3u9pvU2NfNin+mEpHx/28RXY+Ho2O46NaJa3/95IAerhPo4YVZZ57dWf8ontg6iKhCzLCKKGpGpEcUwYRyAJCGIyCYdhxOzVBVKpDKIko2gCnXaNcjlLFAi0Oy6/8MVnKJRzGJaBZlgEbg1ZkpBQWV1ZQZIENE0iVSwjazpi1KXbrpAt9yHKErqloWgq8e35JY6IIo/FhTm67hojQ1vo7e2j3fKxUilUIeT67CLHjl/gySce59//8ZfpLRWxbRNBBiflgCggyyKCAO+8cx5iASfloOkqgqCwtlJjfu4GA/19BH5EvdlClBRAxbHSpJw8ppOi5bqYpkaj2cByUuhGim67hShGiKKA7RiIkoSk6EiKSRj5xAjEQrKo1gwLVbOYvjSL5WQYn5ggnS8SKSAqOrqh4XZcZFGj0+iQTptEkYsoKvh+iJXSGRwY5MbyKlOTEzz7qX1J/J9h8Mbhk4wOj/CZA4N4aPzFS2f40jPbKZcKSKpAF6jpAAAgAElEQVRGt71GtXIDRRFAUVm5vsz8wg0KhQILc0v8+JVj7Nk/ieFoCIR0223iTohuarzwo8N84QufwnIs3I6LKqr09pVRNI2lpRWctMPRwyeYGB9GlWUMXWNucZlcqYgkKUjibWl7F8KQ2PeZm5mjVMzjxzGWbSIpCmEU0j/QSyqfxfV8ms0mXtfjxKnzHJzqp5DLcfXSVaYvTWPIEj0Dg8REaLpGpbpKuVwkkzWxTYdOu4Mm6cgqrKxVGOwfwu2G7Nw+QbPZoVZtkO/JsXXHJIqm0zNYoLLWJp3KE3ht0imZXLqMG9TwApfr11Y4dOhtfu0XnyWMPKIopK+vSP9gH5cuXaPck0MUXJqNNZaXlhiZ2IZlqBi6iCIG9OQdCuUy3WaDLcN9xEJMKmvR6XYI3JA4FtA1ndBrEQcupmEyONBLb2+ORrXCzOx1VtfWeObpPfQO5igVc4iShCwraKpKIV9AEgNUu0Dc7jJ/7Ro9/QNEUYSm6WiKRKtZQVUFDCuF3/TxXZf+0X6yPVmuX7vJ+MQg9XqFdDaNYVp0O10cJ4XrBqiqjmHLeIGLYVkgCHieRxwbPP/dH7B1Yoxmq4FmmKiKRSzcDpEX+OrfPM+hV9/kqaf2J96oWMQQVUJiHNOCUKBS6fLm0bNMjo8h3gI/hXye/ft38sQTu3GDGMOyiUKXTr2LaRnIos43v/4S//FvvsmXnj2IKMUIYoxm6KiGzqGfnKS3T8O2DGQhxdFjpzHtPLZjU11dIQojfvTy65iGQxh2KeTzrCwt09ObIoolrlyZ5e2T5xgZ6eNXntnGv/671/jC1BSdVgdZEIiFDks358kVczRbNex0CjNlEUYBgeuSzqTYu3c3jcpNHCtFba2Obuj4vovbaeF7XYQopt1ok7LSLCyu8sSBx9B1NVnnESEZFnYqje/6tCsNTN1CDAPm52fp6e8DQeRW7mVevzJDXonZ+YUvIgrcc2w0PUibLPewthF97fb8lMRfCXfIKDxKFUxIAKQovCdYJgARwh39blhvXfn36t0r+7DRcfsC1/f7wT/Lu0dx9wf0sB/Y/b1fd6xHhCS2/naM3N2HIIooqnIr/634brnN3r/wPu3GvNfn+lX/g+i96+1uWuIdBKtb4G19bNkdNM5bbd+mN260PLuD5rmu3kbjuH3jhXXeukRSReQ9cZX7Haxb193pv4RHQcF8FHb3k/2gm7/+2u4cbByv/7bdXTY59zG4+wjs5wXuNgPahLtni49qLI+gzodJ3fDgnap7R/ew3YiCxOHDh/nUniEW5xewLYOuFyJJErIs4fteQr+MYkBEkhKZ85TjEMYhqqJQKhcQRAFFlrEsLdmhEmO63Tau2yGTzVCvN5FVCcNW0S2dRr2D5aSQRAlZEKhW6wRhQoXUNJ3KagVV0pAkBVFMBAXyhSK7926jWCoyM3OdhflZ+vsLNNt1svkcO3ZuIyTk2Wf3U1lb5at/9z327NqOdkvhDpIE8Y16E9sx+fpzL7Bz+wSKqmI7Nv39fURRROSGvPTDH5PPpKms1jhx8hTlUh5VVfDcLr4fICsJNcv3XSRZQpJkmvUahmEgySIxCdXxlj8VAZBlmVazhWmqeL6P57qkUiYxAZpmoCoagR8iyyq6apLO5eh0OgS+hxBHKJKAKIuIksjWraPkC4m3wTB1giCkr6eEaRmIsUyr3oZmhbYb8b//5U9wLB9Hkui2oL9vkDD0KPSUKZTyyf1Mp3jssW23Jr8YUUomoaPHziLGMWPDA6wsrXLx0lXymTSiKPLOmQucOn2B02cusnvnFOWeAh3XxXIsZucX6OkrUqtUMHSNKA7xXBdV0lm9ucr12UV6B/qIEFB1lXq9gaapuJ0ucRyjSiqBF2BZJqmMw9ePtfjSU9uQZIXjJ85y8MkD5EtFgjDEME0kWcK2HQRB5Nhbpwn8gNmZWaavXOHxJ/cz0NfLaz95g8mJUQzT5Ac//DHbt4/RbNSwUzZRFKAIEIchV6ZnyJcKpHNZfvrqW0xs3ZKAv3IfUejSaNRQZJnvv/QaW4YHkGSFK1dmmNo6hoDE1atLPHnwKd44fITJqXF0y0ZQdDKFEtlslv7+HmZmrtPtdtE1E1GQuHZllnanSUzIzRsrlEplVpZXabc6FIoFnv/+a3z62ae5eXOV3t4ylm3idl2e+/aLDA/2cejwUbZtHafVaBLEIrahMHvtGqW+flRFpdvtggCddpsgCBNl4iihIhmmRiqVYni4n5XlJfr6evG8iNXlFTrdDrKscGX6GuWeMnNzcxTyeRRFRRIENM0AZOZn5xkc7ENVDaJYRFEkAs8lDEICL6BcLHHwwC483+dvv/E8O7ZO4HsupmNCHCCIoJk6x0+e4uvPvcTObcOEQZI+o9PqoOkipmUT+AE35paTZ63bQtZUpqYm+Nwz+/CDNp7vJoIvYUSr2WTP7u3kSxaKoiCKGuMTw0iyiKoIWLbOhfPnObB/D/mePHbGQEAmmytRq1eRJYVyT5mpqQkMM9ns+tWnd/Hll37G9TPnkQWJnp4ylpkmjiVWllYQZRFNtZGQEePE46yqKinboV5rsLBwM6GCxomgT6PeQFaVJK5Yltn32C78wEVWRDyvS7vdRjWMRJxJlJLfS0Xm7OnTTExOIKnquyD6Nri7UOvy6ftQMjeaHjabguDD2HvCF/efUR81uNtwHJvznWxQb3MmCuI98/KHA3cf5v0P3u/77T0nG6XiHeuNh09xsMnRbPR8PmwjcaJxcDu28P3a3awP4L7FhNvtCHecWA/MHrTBHxPdlyb68wFzd9uH3WjYvH0M7j4C+3mAuyi694HeyEu3GXAniCJhGCHLSWzIB8kVB7f2EERxQ2GUO8rcr+wteubD9P/uPsf6H09RuEVnebfZTe3g3F1vfS9RDJ94+knE+jzTly6SsnTsVIog9JElkejWQlAQZAIvYHHhBuWeIoIY3wp6DlFkiTgKUWSZSnWNSqVCTESz2USRZTzPp1DO03Fb5PJZlpdX6O3po9PsYOgqqqKSTqcRZRFZkiAGzwtYml9C0zS++/zLbN06mcweQqJCadkavT15IES1dERZJYpBNXRkVaavp8zObePIkoKsaohIRKFHGIY4jkMcJ+qfPT0lRBF8twvIXL54DTGO2LZtNKFlNppEBPT1lxHlmDD0se0MJ46dTXa55QjLchBikW67gyzLCUVQFul0miiySuD7yIpKHMVIokQQdEml0/iej20btNstzr1zmW9++yX6esqk0xlUVSGKQVEUGrUkEbIsCYRxItQTRQGqJtFutmnUaqQcG1WVURSBv/u7H1DI55maHKWUT/Prn9rDxfklnvvZEoeOnuPzj2+j7daJpUQIJ44jJEkkiEIEDxRdwXO9RHzDD7lw4Qqdrsfs7DI9hQwzM/O89MphQj9k3+5JVlerLC+vUq3VkGWJ6avXyBdyEIVk0mkkSWLm2nUMQ0eMJeZnF8lmM1y7Pk//UB+B72MaFp1WB0VRiKKI0yfO4bldCqU8v/+taf7Xf/p0oq7ZabN77w5kRUWSNRRVIQh8FDlJ5B1HIdlMHlEQmNo6gaaJdLs+umGQy2Z44Qc/ZnxsmMnxERzHRpQiGs0GmqpRWV4ik85SKpcRZQkvCJg+P4edkkmn05w9c5mJsQHMlINmGDx+4DHarS5zswuYpoamqlQqTY4eu8DI+CjFvM2Fi5fJ5vP4YeIxWFtaZvrKDKquMjQ0gO/7PPetF4gjePzAXtxOh5WlOvVai2sz84yPj7K8tMK2qQlEUaa/vxcARZHQdY12u8X4+ChbhvpQVAlZFFmrNjly+DBTk6PIpokQi0iSSAwYhoEoybSbDWRdJ/B9HMeisrqCZVtksmlkRUYUJF4/dIRcNkMmm0FWJFRVxU7ZSFLye+q6PoEfoGo6g31lVpeX8YMQUVIh8hAlAcMwiMKQr/z18xSLWS5evMLFS7Ps2j7BjeUVzr5zgWIxh+u7xFHE1olRxoYHWKus0D/Qh+/7NJst8oUUICOJMi+++BPGRvrRTY2u6xK4EX7QQdIF0pksUQTNepNUysFJp4mFANf1UBSbIOwQugl46rQa9Pb1JbvkCsRRgBAnAi5R7KGrOnEMjVqdRqOB73sIQky1Xefzu/cTRCKSIHHxwjSWaZPOZrEdk1bdhShm9eYSAqDpOiuLKwSBwLnzlwl8n1TaQZIE2u02xWKibmnZNqKcLJw1LYkBbDWbpLJZwiAkCkMsw6TdbFGrVukfHkrmlVvuBJEE3P2L//mfY9vWHb/0t+eju/gjyfywIbh70ApyfYUHkR83twqNby+8H3JqjjdaD9zn/XfPbaJd4Y7XAtH9XDnvU/dh+tx8a/fz4t1p7yXZvl+7D2rj/a91o3YfFtxtJICyWY/cg69vIxPuGfeDwN1GXuf1wEy8j9fudru3PYF3939Hqo67BPKSPuJ3YxnvF7Tz0YG7zT1b79/Goy3/Mbj7COznAe42CtLdCMhtBtzF67jjt3cOPzC4ezdG4P5l1o/tjonn3fE8fP93x9XdDfg2Yw+sFyUCJv/2//4qn9s7SKNWwbAdZEl+d9LttDtEscDi4k0mpsYSel0Y4LmJ0IckCni+x43FRQrFArqu0+m4OI6DIAikUika9SpxFBCGASnHxusGNBt1RFGgVq1QqawRRRGyrPLT19+kXChSrVTRdZXVtTVGxocJgoRGpms6cRTd8trYtNttolCg3e4ShSHNWj0BiH6AYRkJnTSOcLsdNM3A9VwURWXLlqFE3S/wkRQRWTaYn79JPpfizNmzjI4NU+rtIZO2MC2Der0CMSiKRcpJk8mmUbVkNx1BYvbKLJZlIQgC9XqDSqWKrul0u100RaHVbKFrauLZjEUuX7yKKEAY+vT197J9aoJU2kFWEnDVbNbQNR1FUei0Wzgph3q9iaFbCIKEIstIkoQoiPi+Sxh6VCoVHn/8MTJph+uzs1TWqqTTDmk95gt7x+lPGbx8aoYXDp/jk/tGqaxWSNkOiiLjei5vHDrB6NgQzWYDRVHJptP0D5QoFgoUi1muzSywb+92fM9lx7YxhrcMsrqyxo5tEywuLnH0xDmeOriXTDrFlenrqIqC202AYqfjohk6pVKBSqWKpifez2ajxcWL0ziOxeuHjjE00Ee5t4iTsvh3z13if/z0KF63S6te5ew75yiXS5w5fZZisQxChCCI+L6XePw0HbfrkUrZAFimwYlT5xgaHABifM9j6eYKpq7huh5fe+55Htu7B98POX/+Apbt8Oabx+jr62Fl6SYyGum8iWZoKJJOp9Wgb3gwySEUxkn8XybDO2fPMzTUh6KrnL90ldHRYa5cucS+fbv52c/epre3BFHE7//+n/P00/tIpRxuLtxEkmKqlRpjI8NoqoZhmly9Nke92eaxfbsxzQQcpbNZvvOdlwg8n5HxIfzARRRFisU8kixRq9VIpW2kKOLStXkmRgZIp9P4yFw4ewHHcdB0jWqlgiCALImYdoooCpFliZMnTtHfP4AogB/4EAsMDw+QSqUQRJGTx09z9vwltgwP0Gw0MSwbSVEgjlFUGVWR0Q01SVESxridFpalIyAQ+AFvHD4JImTTaX7rN36J1dUK9WaDGwsrTG0dx3YshEhkeWmFsYkxsvkUkiximhapVIqZ6Stousn05Wvs272dRr2BZZkIosTqcg2REN02AInKao1MJovX9Xnl1Tfo6ytgGBa1ahdFk2jXWlimjud5BH6IaafRVBnf92nVXERBRJQC4lggiiJ8z6fRrGPZJmtrNbKmxkLQJK9a6LqKrmvYTgpDS+jauqYR+C6e2yGMokTkR9I58vYJ+vv6yGRS9PSV8D2XUqFIFMd02l0URUGQROauz2OYNs1Gk0wmB5KIKAhIkozXdVleXmF4ywCiJBELAvE6CuDrV2b45V/50v3nkztnBuCDeO4evUfpg4C7u+tvxh4W3CV/C8QfwpPz0XnuHlDzQxGbPli/DwvuHolH7kPYg6iXG4HA9wOGD7J3r3ndZ3u3hsLt1+/3LP/98Nzdzz4Gd/8g7B86uIuiCEmS3lWs/IcE7jZKPrk+p8vD2IPAnSQJEMPPfvYGn9szQKO6RqPtYhpJOgO366EoKq4b0Gw0cRwbQYxvedCSBMqdVpN6rUa5XIRYJgxjDMPE90Js26GxViHwXNxuE1M38LsesioR+B6amuxel3uKhFFEFMYM9PdhmQ7FQoZOu8mOXVMIkkAsxEhBsqssSzKxKBMhcnP+JqpsYGomf/zHf83WyTGWbq7S19976+bFxLGHoVsEgY9hmAiCSOD7XLo4jWXraLqKiEqhkKfdbVDqKeBHPpppYug6ECKrAqZlc2N+lZlri7z0w9fYtXsMUVIIg5jL52d45/wltm2bQtNUMpkMYRjyh3/8VxQyNsVSkTgWuHnjBqKocPbcNPse24sky+i6imkZqKpCtbKKZVmYmpxcJxKCIiOpCpJkEIXgez5XrkxzY/4GhUIWt9vGMDR0Q8NzkxhAQ1cxDANiKOT7kWQP160w3p/l80/uR1AsZDXNq0cu89evzTC7VEVp11hZXaGnr4xumIQB3FxdolJrEMfJwn9+4QZBECKKcPT4O2iKjOd6HD95kc98cj+5dJrDbx5nz65d3Ly5wje++SrZtE1//wBoEWurq6Rsi0zKBiIs2yGXyWAYBkODfVyfncfKOjx3+Ab/8lcfZ35mjkIuRzZt0N9bol6vISJw5Mhp+vt7qdXqXLl8hbm5efKFbOKlimL+4I/+nKeffJxqpcqx46fJpB0M06Cnp0Ct2iGXy7Fn93biWERTddL5LJadolwuYuoKbrvByeNX6Hh1crksRCLHjh3l/OUZhgb6aDc7CILI955/mc9/7hl+/JNDjI0Ps3vvNr7yt9/kF7/0aWRJplmrktJVLF1lZbXKrn3b0QydI28cY8fuESpraywvNVhYWMGxHLK5PO+8c4nA90mnLRRNQ1FFjh0/wy/90mfoui2CoIth2jRqDfL5DEHo0XU7dJs1hicmsDSdn/zkMKX+LXRbTSDGsi2IQ0zLQpJi6q0kxYnbbrFleBBFtYnwkWSBKHKJY5kwTKjX83Pz9PeVKZSKaLpOGIS3nk1YWV2k06ol8vwxIAgEfhdRFJifW0AQRMa2DCEpCoog4pgWsiKRLxU5ffIS+x7bCaJIfa2OEAvYKQuEiHq1iu/7eJ5PsVCkVmtSrdaZuz5HtxvS19/HN557AV016bklAuR2QlpNj9CLqFXr7Nm3B1EU8L2Y7333p5TLaS6fv8LY2JZbsVcS3/zWS/SXCrxz+hwz04sIUYQkdjCsFI16g3qtycjoMKIksrJcwzQNxob7OLMyD9U6tmOxdHM5ue4wxElpuF4b4gBV1dANi0a1xdzcDXbu2oGiKQhCjCSCH4b4noehG1QqNTTdwDITMSRNM5BlFcT3PFvNRpOLFy8zMjp8KwH87ZiVJFbsQrPF44/vv+9c8DG420Rb614ngiHihxJe+Rjc3WmPBty9B5c+qG38yCTbJI8c3N0K2txIH+EOcMf7X9HH4G5j+xjcPYT9XNQybz3oAgm9cb1/PF53Pr7tI3+Aieu2YATuBY2bGg/Jz0gYRvcEZwvcm3sO7qWDbATu1gulbJZeefcXYb2gyu1jo7rr8wfd/b4YJ9e3a/cuTK9Kpx0RBw1MwyCWLQRJodVsc+StY3S6HUrFPFEQEEeJx0RWVCRFwbDsRDQkjnG9LlEUoBsac3Mz2JaKqZvEoYxpGtQbDVwvJFvIJ0l6RQUEkSCM0XQbQZBpd1sIik8YR8iKiRgLuJ0OsqohKwoIAnEUEYY+mXwGVVGAiH17t2E6Fvg+hplQNGMhJhZFiBP5drfdRCDC0GUK5R5kUQVk1irLyDJkskkMl++F6IrO6soKN2+s4FhZiGT+jz/4M37zH/8SvT15UpkUAgJh4GOnLHbsnCImRpJlgiDkxuIar/7keJIuQJHJpVP09PdRXakyMtiPrquouoAfgyAJdDotLCtJoh7GKqEIoRgR+zF/9ZffYnxLH2Hs4wcu+UIvi9ev4dgWRiqFqil0201i38NtN3Hbdfw4JJPPghj/f+y9aZAd15mm9+S+3v3e2vcFVSgUVoLg3qQoaWR1j6VWtMd2TIQd/tHhCf+YsMMR7nCMx78cMR3t7h5H2JZb3T29adQcrZQoiRIpkiJBkNgBEiCJjVhrQe11b909d//IKqAAFAoABUqyhx8iUUBl5jnnnpt5znnP933vSxhBS1sXumWj6SquG5BK2fS253hu5wBWAFcWSuyfEPnoWo2Tl6s8OmyTNGwufXyV4lKRVMJkdnaJJ5/cTedwD0gR3R0dTF6b5Uv/5Bmq1TqnP/yY0eEBBClA02S2jw3SdBxMXUOSZJrVJrlclqbnI0gSTtOLvZ+IiIIYh2VemKBYl9jR1x7rGCo6TuChqjJuvY7jBPQNjvA3f/Ntvvj5pzl69BSlYoWR4SEEUaZabmBqBq3teUzTZtu2rTiOg6LE9PS6rjM5MYXruuiawuuvv0k+10p1ucLklUmuXLnG1OwCu3b00dPdy89+/hZR5PPUs09wfWKWkZERlpaKRFFEX18PyWyKeq1BW3sboe8xPNBNownXLk/S3pHitbePcebsNF/8wpMUl2e4duUSpXKDwaFBLl2aor+7g7FtWzj23kmOHT/FP//nv48ghIiyiBBF+E2PsbEhJFXCcZvIkoquGyiqwNLyIoZhkUoWkC2VeqWOF0hcnZhhoK+Dl1/5BU8+tRdEUESZwAuIUNAUjVq5QiKZiXNSxZBKuYauJwCV2so0iirheNDZ3UUynWRxZg7XcbASNs1mHd3UEP2IMBRWxcZVEOJwTKfpks0XUHUVQQrp7GpDkmXe3H+QjvY8liGSzRoYZsyeqkgypq7h4RF4AufOXuHMmQtsGx9BUhQSSZtCIUNXbyctHS2UyxUa9SpjW/uQRNB1jcCPyOfyXL5yHkH2yBZakaUIp1FheKQHRU/Q3logwEeSJS6ev8wrrx1lz44tFEsVtu0cpaOnnQAZTdcwTQNRgiiUeeFbPyVfSBEEAaZhYSsSf/rjo+gLFVaKJTo7WvDcOq7rYxo2um4hiQogsrxcYni0F92UqKyUmZtZJJnK4bgrIESIooGRNolCkGSJiNgj6noub/7iALIkYSVNVBESuoadzd6Yj8TV48/eeof/4X/8lzfG+402I9dIRsRVMCUKGxNcSMKdZCQbHQ9jnXkL/f4D3re5cPWd59bavdYHmwWVrm/bvfphs0X5rdu8D3LcnwkCsQyRINwk/Fir+55f0P3Vez9hkLc/Q3c71rft9tDHBwuz/BV2A7gdoN36RN+WVXNHuzYK1bz9d+vLv/m93OyJjX53ay/d/IzhOibPG++LuPF677fHNvp+bv/e7rzmRpj2anrTZ+DuU7DfFKHKDVsH6NZszYv263qq1/Lk7jbxiJucW7ONwN3DaP79Eqpsxqa5NpzpusZf/N13eG7vKIHrMn19jnQ6SxgJzF6fZ3CwB0kQKLQUQIjQdR1REHE9jygMbryI9UoV0zJuEIpksxkW5mdQVJUrVyZX4+UlDEunVFxBVhRESaJRjzWyREFmemqaltYCggCeF9Csu6hanP/iud5qGKJHs+lgWRZhKLC8WMJzAubmlqhUGyRTJqoea1i9/95p2goFPC+ACGRVA9aSwQXqdQcQ8FyHIAjRTQ1J0mg6LrKs8PbbR+jq7MTQTZaXSiRMi/6BnjgMThSo12pIkkIyYbJSKsWU8KIAkkjCTlDIJBFFgT27x7l8ZQJRkfnFqweoVet0dLTiBl6cFyWKGLpOrVpF1bRVopb4G5JFmZZcmlyuDUlWkGQVVdVoKyTxAh9EAadZR9UVDM2INfqCEFnVKZXLhH5Ao9nAsiwURY2JWIwEAIsLi/huwMLCMl0dBa6fO8N//998hb4WiwPvXebl90sMdZiUlpeZmprDcTza2nNksllsy8JveBw6fBrXbVKtNejtaWdxcZnJ6Rmy2RRLiyWGhgY4dvwD2toKEAq88eZh5uYXGRrq5zvfe5U39h9nsK+DubkFfnCqSV/O5ivP7mVhfol0JoPvB1iJOMS2XF6hs7uXf/z2y/zBV77I1NQM1yamefrJPWSyWU6dOsX+t48zvm0Lre0thIFPs9ngtTfeZtfOcTzf4ePzl7Ftk4RtYpomL7+yn53bt1Kv1jj38WWefPpRBgb7WJhbIJXOsGVokNa2ArIs0tfXCwgsLxU5f+EKhUKOiJC2tpYbrKCe48aafmFErV5CFmWuTy/w5DOPsrLKRmlbBrqscuL4ByRMg5ZCDlVW6Ohs4+TJ03R0tpLLZlheLpLLpCmVy9ipJK7jIkSx59z3A2w7ia4ZzM8tEuEjCjKGbtLe3oJhGOzaOQaiGL/rQUgEaLqM4zgcOXKS/v4+IqBeryKK0qo8iYypS3iuj6RoqJqG06yvCo6D7/tYCYt6rc57Jz5iaGgIUZRAgKbTpF6t8uKPX2V8bARFUQiCgHq9Qi6f4c0DB9n3yLaYYEk38cMQQZQIvADH8Th05D0OvHuSR/aMs33HKO+9dwrLMKhW4pDHMAwQJIEg8NiypR/LMvE9F1VXqVcb6IaOnbAwLRNVMxCFEFGECImlpRXKxSL5fAbP95FkkeeffRzT0hkcHkAU45w3cdUj5vt+/M4nkly9OsGu3VtRZBlFVbATCc5NV3h+ZJDevh7CMCCXzyGIIosLiwiCQL3eYOLaJD/5xQGe/Z0nqVfqVMs1/EaAasmYhkXoSmiaheNXCMOYeElV5dUcP8hlsiRSNrIs8uorr7F3z56Ywfg2UeSDk9M8/fQTm3qxNpwzNrju0yLH2MwetmbaZnZjHt7o3EOu684Ynodrwup6eaMcrYe1TPrVPIG/+fI3q3N9vfdD/LP+3s08fL/643xzc+JOILrxZv1vl91PB2HWNwMAACAASURBVNx5TTyurW4uCQKSLH8G7h62/SbBnXDbT4glBX5dLJk32vErvKG3e+fWl7e++WseuAf9SPfy+K2Ve/s968+tSaxLwCuvvc0zu/oIfYlSsUQ+a6LIKlYqja7J5PKxB0iShRhkSXLMQieJq2XGhChhEOI4TXRdjxnfahXCMODNd46iKjpBINColym05JEliUajSSpp4wU+H5w6y7nzl2grZNANC103UDUVwzTwvZA//tO/ZHigi0QiuZr7F+EFNWxb5/DhI/zsl2/zuecfJZXPoWoqxYVF6tU6+UwGBJFfvnmQs+cu0tXZAZJCFES4jsf//ud/y0dnLzA+Nozveei6ge/56LpONmPQ0pZFU2Xm52cZ3z7CSqlMcblIJpsEJAREIs/F9RxkTQFRQFAEhEAglbQYHh4gWt1ibe1o5aWfvEUURYyODqEaGpEXosgKoiCgGasgZqWE5zaRgOXlMoXWViI8HLeBbqhU68sIISSTSRAFNFWiuLiE6/iASCCIZHI5JAFUTSMKI7wgIAoiLl+aIAhFDEPn7775fTrbW+np6SaTTSAJ0NPTSSZp0duW5untvVy8OMGfvXSS4b4WVmp1hMCHICAMIpyGQ3GlQmdHnkTCYmZunkcf3cXVKxPUqnV6ujpxHZfi8gptHW1UVirYhh5rGQFTkwv8Z1/7IomEze//z3/LHzw9xjN7dyIIIsuLyywtLdHSWsBxHTzPQ1E1ghA0VUGIQFVV9u7dydz8AkHgoWsG/X09XLp8lXPnLqDJEh+eOc/O8ZFYf7BeZ3ZmnuPvfcie3dupViqcPXsZopDB4X4iIaKnt4dKqUpPfy9Xr0wzNT1Lb28HTr2GKMmcO3OOrq4OIiISyQSKJHL69Ef85d98h6ce20U6k0GI4Pz5S2wbH2T2+hxf/tLnCYWIRNLCsiyWl5dxKg5nzl2irS2PqRtUK1WWVyo8+uhuXNdF0zQSCYvpyQlS2VTsFZZkqpUaH35wgVQihSDEbLLNZg0rkUSWYq2+F779ItvHR5EVmUatEXvcBQFRFqjWyiiywvDwEIIgEfohmibxzoHDWIZOKpNmbuY6gihh2jae52BaOpKs8MJ3fkQqYZHJpFBkhUbNJZfPEAYBgsjqtRampsVkS0Q4TQchUJm5vsjszBJ7H30UzxWpVmvMzsyTzWYRFRlJkUjYKTyvyeLSIl1d7QSeT3tHG4quMjExia5rOL5HIpXEdZtIskgQBjQaTVQ1zuMURRFVUZEkGSH0VplrBcorNUQRfvbKW0hAS2uBTC5FrdFEkiRUVWF5cYko9NENG0kE12mg6xojowNUqxUs2+Dg4WP09nTw5HgP/3DsDAOGTjqToV5vIMsS9VoNXdex7Zjh83eefwIBj0jwCdwGjXqV3qE+VpZWcJohoS+ip0SKSyuk0knq9RpRFIusm7aJIkn4TYdcLkcilVxFX9GNXW6AR7/2FdRVPdK7mYBAEIWIMRqI54RbZ4h4LH+IYY73LGM1Zk0UxIdQ2uZ2h3TQrWe5HSLdTw7UvWzjPtqszAcLORTFTbyGD2mZtHlE0X2Xcte+fDjl35+teSFvIUi5Qe5y51psI6/lRu29vaw7mTEf9Dm6u4frphfv3h7VO0q9r2bc6dFde08fWE5MiMeqjT2NN6UQ1tb3t79zn4G7T8F+G8DdLb97sHiD37ht5kW7nSjlbtf/KraZZ2/tXBDF7KRiJJDJZRGaCyTtBELoUZy/RCaXJhQVBAHqtSq6rlNv1FYHFYk18VNRjHMbnUYDwzQRhJgGHCKSqQySLLF1tJ9EIkEymSCVNImiiDAIicKAMIxZOTs7OunpbMdxmhiWRRDEQuG1agURkX2P7MQwdGbnFkgmk/GAIEWIkYhtWTz/3FNohkHgxlTjmq7R3tGGKMVMhUnb5IOPPmbb2BZOnjhNFEak0hkunL/ESrXOFz7/JIqio6jK6mfy+fpffBffC2hr7eAv//r7vPzyQZ58YoxsPoMoCQhinHP3J3/+D/T2dpGwEyiKiBB5NOs1kukEjtckmUqSzKURCHj+c0/S09mKpIpEosfV81McOXKCweF+XMe58f2Ui2UiX0TVbP7kz/6G0YEWKst1mnWXXDZPs94EISZ0KS4XyeayzM7OYZgWZjJNrVrBazbxg5DAD/C8gKWlFVrbOmg0fRK2zchgD9PTMxw8dDIWqv78s7z++lsEnksmm0DVTVpa8vynT25n19gYo4NDHDlxnlfON5lbqlBbnMHzfYYGOomiEMs0mJyaZtvoMB9fnMBzXD746BKDPV1Eakghm2F6eobBwR7Of3yZ7duGMU2Nf/XNw3z/T/4lr/zsNfp7uxAluD5znd7edhBCPvrwAoZlkkyn8TyfbC7N0SOnOXHyA2QJOjvb+MGPXmXXzq20tbejKjK/PHCEbaMjDPb3US5XeXP/Ybo6O4gin8np6zz6yC5kWWVkeABZimjv6SSZTuK5AU7dYam4QnG5TE93J06jiSAEVCo1Go0GbR1t/PTlN3h0704+OHUGRZb5g699GUkUWZib5+Tp8ywsVRgZG6K0tMKli5Noqk9xvsiRQyeZnlpk27Yt9PV3UehoodFosri0zK49O5iemmF2fp5MJoXneVy9cikmD1ku0tbeiSKqmJbKlcuTtLW3gBDihXVsM8fk5ASyDPv27SEKIvzQxzJMZqdn0EwDWZFRJAXHcSiXV9B1hXcPvkvCMhgY6COTTlOrVPnow/NsGRnCDz2azRqqoiKIMju3byWdSsX/j0BRPQQxIhLCWFxcllfBQ0hLSwu+H9BsOngNh0Ihzdj4MC///A1+8vIBDp/4kIRt4TZdWjtbERUFVQ5o78jQ09OOqhrkW9qQpVjGIZVO4jkumVwLUSTieT4RcPLkB/T1DBIEIX7gEUYuge8S+CHNRpV6tYphGHgB5HIZ2got5HJZKpUyvl9H0zOEgQBhROAFBJ6PpusIooid0JHkOEXAD31EUaCzo5XySoVsPsujox38xdsf8GR3JwsLS9gJi4OHj9HW2sLC/CLZbIbvv/gTBnu6qVZqpHNZUpksAhrV+hJ2QkMQJbwwQohEVFXjxIn3GRgYxGm4NL0GuqpAEJFrayXk9pAvgT9+fT9f+OLn7j0nIBBxq0j1xp67Xx+4uwkofz3g7s6ab5xd9/fG138Se3Bw9yDXbL5Y/21bJj2M/vzV2xD/3CyH7l45d79q+fdZEvf7hj18cLfRfZ9so2OjtKC1stYDurvZZ+DuU7DPwN2vZv+fAHfEE7kUQUtrK//4vZfYt7UX363jVBcJkNATaULfR5JlgjBAURQkSUKS1zToYpBHBJoa59wIAiiKTKVcJgrj/JFavYZl2biugyhGpDNpgsBHlGSWlpap1eoQCXieT66QxXFjxrmIAE3X0XUTRVF445fvcvbcJbZv38qLP/w5XR3teG6IphoEvoCi6ghRSKNej8VWifA8j2wqia7r7Nmzg0qlQqVc5b1TZ9gyNIDveVy6NsW+R8bRDR2n6dB0mriuy7WL83R3dJFMpnn0kT08umcHyayB6zTRDY3AC4ki2LN7J8lkkpmZGXRDxneauL6HrqssLi5i2DaIAlHoI4syqqHRaNZQdBnBERgc7MO2bVzfjZnwwniHXRIUgkikUqlSKS4xO1Nmx/Zt+G7I0WMnaG9rY+r6DMlE7OlUJAHNMnH9EE1VUWQRUVZIJJO8996HvPraYXZtH+Nv//5FyuUiPd3t9PT2MD42Sn9fFx9fuExnZzuv7X+X7ePDNB2PRqNBPl9AEAQs0+TaxARf2ruF5/Zu55enr3KhYvHToxfxlqeQRIFMOsHc3AL5XIbh4UFkSWRqeo6h0V4kBAqFLPVmnUwhy1/98jqWZdNGhd7udoYGe2jvaOPtdw7x3HNPIUogiALtXV1x+K8QoekGqqwy0N/H3MwcTzyxF1kSicIgZnRF5MT7H/LcU3txmx7ZfA7TNMikkmQyaUxT44nH9zI7M8fk5HUqlRpd3W00PZeDh06gKSqFXB7Dsnjltbf54MPzBH6Trs4WcoUWZFlC03VUSSQMQjRZ5pXX32XrSD+aqpDJZsjmC5x8/yzj24dQRIlMKotpwqlT53nqsce4dHGS9o4WDEsn21ZAFGD6+hyNepPzFy6zZbgf3dBJJJNkUibpbBbDNCESOXT4BDt3jpHNxgBFkCIUGS59PI2my6SzKWKmyoBKtYwsSxCCnUrcYFdUFSUWj5dFTFMnmUzSbMRet3K5Qmd7K0EQEknxbq0syQRBTDKxFuIpALop8e7BI/T19yJKMSvsuTPn6OzoQJAkJEnCtEwqxWV0W6bRqPLI3h1UKlUWFko8/8xjTF+fpbu3A0TQZBBlUGQZUVIRIhEEn/1vH6Kzo5UIUA0Lf1VvkjAimbCQJB3LMpienIiZbBWZa9emaSlkaFRryKrK+++fpb+/94a3WzdUpq9PcuH8DL193QS+v0oiIxNEMemJ49RpVBsoqoIgiNiWjShJ6LrOz372Ggnb4pntPfzpL47yn2wbo16r0d/XG/eZLCPLMl0t3aRSKdKZDM2mFzOV+pBIKxSLi7S2doEokc1mCYKQru4uoigkCsCwVALXo1Iqo1tGvKEm3gRC56Ym2PdPf490JnXvOeEzcLdBzTfOrvt74+s/iX0G7m7af6zg7va8vPssacOcvo3s1wHubnrxHvCuDcDdDU8pwj1L/QzcfQr2mwR3a7lut3zp92YcuaetlXcvzbmbIZUba5Hc0baN6trAxf8wwN1GRCobHZu1CeK+CMNY7y0SYz2fRLqFFGXsZJJSpYws68iiiKyYq6LLRgzoZO0Gk160Gh4UBgGRIBMRxwn4fkij0SCdyQAipmHhuS7Vag0rYRNGAp4fsLBQpL29A8uwuHr1Ot/67s/o7+0gl8lhGBZO00U3dFyvgaRqDAx0Mz4+jCILFDIWc9fnaO9s591Dxxgc6SISHaTQRRBlFNXAC0IkTQMxwgt9ZFVGFKG7r4OtI0OoqszgUB9P7NuNrGiAQxhGyKKEKMhcvXYdQYa5hRkKrQkKrTaCBLIi47sBrtNEliV+8tJr6JrKwcPv0zfQTbaQww9EFmaK/PQnb7JtZBhF0xAIaTpNZEnEsi1kUcWwdUIhYGlpnlw2T73q8Bdff4HJqVl27xnn5MnjPLJ7lI8vLdD0HYLI5+LVSzzz+X0sLS/Q3toCkYgfCciqQOAHiAgEXohuJGg2KizMLzA42McTT+xGkAUee2QbA/3dvPDtn3Dw8ElkAb79g9f46lf/CaZtMjo8iGGkcFwX27IJiZAViUgUeOnHb7FluI8f//wt/tv/6msMZTX2jHaxXGxycFrkvatV6qVJvvSFJ5mcW2ZqcoZ8S5p8psCpy3P80f/9Mh/NS/zFd9/kq+Pd9Lfm8Dyfvv4u7IQOkkJra4FzZy5y6vR5Ctk8zWaT65OzqJKKLCqcP/cxuXyWUqlEX183CAKyJLEwN0OhkEVXJYrLJVpa25iamOaF7/6UhcVlms0G/YMDVGtVBEmku6+XZCrNm2/tZ3zLGIvXl1A1hXxXFkVUSNkGI6MDjO/YyrETH9DW3oqq6Vy5eIV0OkkqaZNIJ9i7dxzT1tBNBddr0qw3effIUYZ6OojECEUT8DyRgaEB7FSCoS29NJ0GogjTEzPYVpI33zzK73x+L0IoUC6tMLK1k4ZTR9OzXPj4Cu3dnchSRH1lkUQ6hSqLCGGApsq4vkc6Y5PP5ygtF7FMEwhI2FnCKMSwFURBgjBkfnYOO5EAQSKKJEzLRlYMDFun3qyRSmdZXF4i15InDEJESVrLf0AQBBRZIQhDJFkmEhXa2luRJQWn4VJZqnJtYorvvPQ6Tz7xCJEA1ZUlrEySf/tvf8C1ySl6u1rIpVI8/tgWdAPOnJ9keKgPp17GMBPUyhUkUUbVDVzf5+39x8knW+ju7qJaryAQIEYhjWosiRAEIY1GBVmVkWSJWrWOrhscPHCSrp4e7FQWWdbo7eqgUa8AEboZ4nlNCtl+OnpakGQQpYi52Tkmrs2Tz6Wolhs4jYBEyqZaqaDqJpKkEkUiR498wPPPPcf+/UewdJHx/izLV+ewdJNKOQ57vXplgpWVCoX2PMdPnkDXVdKZBIuLszQqRYIQUuks0eqYGkY+oiQiSgIRIYqmEPoRTqPO4WNHGR3fjijKqyFS8Xj+18dO8dXf/z1WCfnuTWghCBsSXKy3mEn0tnujaDUfZv11D8PiUqIIJPGTAbyNSGHW8gbXz4nBah7/5p99/SGslnXnvHq//b0WeLaezGbzfrv7cne9Nlz82TZfrK+dv9vxoEupNY67+7/+9sb95sHdZgQp66/Z7Po1u9kfETc2B9Z9N6sl3Di3USpNFAkbHHcP+7xXOs79gDdJ4Aah0trx4O/y+rBNcYPf3XpE0U1P3YMAxc/A3adgv0lwtwaoPq2h4HbAttF5YJUoZG1iE265937b9rDB3cPY/brBRCRLMTBbzX/K5bP8m//nP/DkeDcJO8Xc7CzLiwukW9qQFZUYt4WIgojjNmOBeSKiMKJaraIbJkQh1UoFSZIwNI25+QWSqQRus4nTaJLP51AUhWajjigKmKaK06yzUi6zvLxCMmkwPNxHubiCrmmYtkGjUUeRZUpLKywtLKEqMamIZSfJteQQJRkRME0d33XRNYOlxRIffHCBtrY2ZDkeVBoNB0O3CIIATTMIAz/WihMhCkNUTYYoRNN1ZEVGkmVaWws4zSbH3/uQraMDuK6DZdvUqnVM00SWZSYmJnnkkZ1k81n27duJrIgIYqzbl0ol2TLUi2bo8WI4Cm7JH42iCMf10DQNz3XRNZ3r0zM88/QTvLX/MMmkzs7d2/B8lyhUuXJ1mrGxESYmphkc7CKdiTW9DMuK84Y0JSaPQcCybSIidNPEMExEKc6vkgQBp+kQRdDR3sJgfzfDw4MUS0XGtg7SbDYwLJNatc6Jk6cptOSYm5nFMA0EBKorZR57/BEe27cbx3Ho6OpgZnKKtnyW0sQl/vV/958jCRKLTYV//+qHbNu6hamSxze++xoDvf08PdLBU1s7+Z/+8J8xMNCLqsp8dPZjBge6kCQJRdP4xr97gWee2svo6DCe6yIIMQujaZnIiszBQycY6O/mwLvHmJycYmiwn3wuy+T0FJ7rc/j4ezz2+KOUS1UuXblGR3uBptPkS198lrm5BWZm5kilEviuz4n3TrNjfBTX8bhydYKIiM7udpYWiiwtLbFldIhatUzCtkhlspSKRQ4ePsHj+/byf379H3jmqb04jsPy0jKiJKGqGqVileefe4rzFy4wNrYVBKiu1FlcLGLbNtOTM7xz6CTZTIYPPrzAzp1jlCsrDPT1MnF1ml07hrh27SLVikMilSFXyCGKAoHnkc9lYyZZISbSWXu21gS5dF1HliVKxSKGqROGHq7r0qg3sOwkiizFZEarq7ylxSUEIaJSWUEQBFRVw07YhGGEIstEYQBEREE8fjhOk6mp6ViA3o7F0GVJolat8Xff+iHPPv0ITz62h0QyzlsTCdAMk662dqauT7B9fAvZbAHHr5Mv5Bgd3orbbELoo6o6oe+j6wbLxVIs7o1AOpkijDzS2RRhEKEoMrpuIAgCuqZjaCqCEFFcWiaTTqFpGu1teayESdNtUFoukU6nWFqcQ5YU6tUVXvj2S0xfLTK8rY9qtcLVS1fo6uzggw/O8e7hkwz293Lk2PsMD/Xxf33j78mnsxiGTqNeY2r6Oj1dXWQzCURRpKuzjf/y3/wlHZFIX28PpdIKHR0dFFryNJsOb7xzmMce2cPC3CKF1lYIQwxTx/f9mG0YEQhvhiohUCqWUFSDIAjZtm2MKApxQx9p3dhxdPo6Tz/z5EMlN9lo4SUKYuy1XR9A81DqilZrFFaJbD5pCbfag0s8bGTCr1zW2q13z/V7gNYI6//9EPIBH7AhUXS33KnN74miiKbjIEviHRsEvw22GbjbzG4yO64POdywhs1qv7/K7tPu55F4mO/G3f6/No6t39T4JPYZuPsU7DcalrnuQXgYj/7ag3tjn+EuD9qax+4G4Uh488717uUHqvseu0APCu5uTdK9razVn/fyTK7RZAdBeEe9c/NzbG23kESNpGVTrRRRVBVZ06g3G4iCROS5yKqKALiehyBImIaJQBjLIOixZy8MIkRZQNMNPM/B9VyazSahH6CpCpqm4vsOQeAhAMmkzc4dW5FVEd9xMUydarVCrVrHsiwkISSRSBKFEZVyjTMfXSTfkmXm+gLpdBpdVUkkbBRVR5RUDh5+jx+//CZPPb4TRdVRVQ2IcwQFQUSRYwHsarWMrivIskAYidSqVVzHQZYlTEunUMiy95HtaJrBN//xJRynQX9/H/VanH+YziTRTANRFJi4NsnS4iKJhIksxAyCkiLTbNSxTZMoDFBVjVqlujroxZISoijTqMX5dgnbBkHmkT3b0HQZyzYJo5Du3lZGtnSRTKlsGemlXm1QrzcwbAtEgWq1jCzLBKv7xvIqnXpIHB43N7uApsg0anV02+bQ4RMMDvTFhCvAxMQUmVQCz/eYm53nwLvH+fznn+H4iffp7elCN1SCIERVVAqtBVZWVnhr/2Gq1SqZVIqe3h72PbqLtw8cxgl86uUKf/hffJnu9jxzk1f4F//116iXiuzZs4d8a45yeRnPC3j1F2+xb+8Ozl24RD6Xpbhc5HPPPoGqa0iSiKzJuI7Hh2fOceDdY4yNDcdyKGFEOpkgDEPeefcYhXyG7r5OrESCnp5OJEnh2LHTVCpVRkcG2bZ1GISIxcUyCJBImKQyaXLZNGfPXiT0PUqlFeaXi4zvGOfShYtksxkURUJRFY6ffJ+enm6mJmfYvm2UwA/Zs2sbp09/RE9vLy///E1M3eTixQkOHzuFqat0dLYThRFzc/PUqw4Li0UUSeT67DyPPbqH6elZOtrz5PJpGvUVSsUa42MjmCacOXuObVt3Ecrxi7+ytMw77x5ldOsIiwsLCEJAGHpcvTJJodCGacReHVGS8PwAK5HCcassLxUxdIN0JkuxuIRt2zG4B5rNJqZtxwBM19A1nePHTqOrCiIRruvSbDRWXSsxgNQ1HU1VsRM2C3Ozq/mvErKs8OyzjyMR4XouhmlSXSmhyCIRAqlkil27t6BqCrJsIUpQrdbQZIupiWvkc0lCQeDyxWuoqoqdSlCurpBOpZmdmuc7L77MI4/s4MyHl2LtKMEnDEPCMKRWLTNxbYru7i6aTZfzZy/y0dkzJFI2tm2zf/8hUnYC21K4Pr2I49R5+snHaM23YWV0ZEnGtmwajQZbhnoxDZN8vsC2sRFESWDbyCA9fb3Mzc2hKDKtbTlUTcPzXBIpCyKJZ7eP8p0z13h2YIhUOk0YBuimjiSpbB/bChG89sYBOlrb8aMARVPxwiBmGo0EBDEOaWd1Q9EwTUIvwA9ClFWmUnE1nAngj994m//lX/9RPKbf3/TxiU1gg0XwQyl5tZQwvOEl+4Ql3GIbL2Bv9yjcy+4EdzcicjYt5+Y5cQMQ9kn7bb235t7hf3db49y8br0ncHMP300Qc3ud95ZJWM2vEmIm2N+2UFHYvE83t1v7QxRv7d/119yrjE9m0epa9cG8sfcGd+tXzBv9Trjtjpukeg9j02G9fQbuPgX7jUshrNrDeEzudyi/PSdtIw/bg9q9XrZPmnO3Gbi7l2dyfRm3h4/uHNvO33/re+zY0o4ginhuxOLV06SzGTTdwHE8NEVBEAQ834vzXoh3dqu1EpIk0Ww4KIqKJEpIuoosiTQaTRKJBLqhERFSrTVxXB/TTiPJGqos4HkhsqxQrVSo16oocgzCgiAgmUjSDBpoqobTbGAbBq+/sZ9COsuPf/ImF85fYd+Te4jEiCgKCMKQ/t4uvvD5x1Hkm33SqFVjwhSASCBCpFGvx+LJUUQUSWirUgRhFCDLItVKBd8PQBA4cewsn/vc41iWiWEalFeWSSZt/BCiUODFH77G2wfeZ9+e7ZSKRaykhSiLGKZJ5Pp4rku9XkdazdsJggBEiTCCX77xLtNT03S0FzASBqquoGk69ZpDve4iygGWbd/IeWzWHFKZDIIixgx/msbywkLMkCmLeG6dwHcQQmFVFDtNEImYyRRhFJBK2liJJJIsceDdoywt1Bge6qdSrvOP33mF9pZWevo6GBkdJAzitpuWiaYbzM3Ok8llOXbyNI/t28V3X3yVwPd4481D/NPf+yK5fJZCoUA6naTpNOjoiPXFCi3tgIAki6hanAtWq9UY376V2Zl5unu6yKSTlIpF7IRNJEQsF4s0a01WVspsHRlianKaHbu2o2sauq7S29vN9vFRTn9wBjGCE8dPk02m+P73f85Xv/Il8tkMl65cY3Cglzd++Q7bt22jVqvT1dVKFAXYCZtMOkcum8I0Vc5fvMro6Aidna1MTEyQy+coLi8yOjLEwkKJ/oF+fvHaW+iqxi/fOsiWkX4UWaFSaSBLCgMDAyRsA98P6evv5erlKywsldizZzul4hJzi0s8tm8X3/nBT3nudx5lYmqaqalpdu3cTltPgenpOWwzx/deepWxsREUU8Gt1XnppV/wu1/6PJKqYlo61coyge8xPLoVPxCprSzieR6CpKCoehyqKmokEhlEUQE8gtBBFhUUTWeltIKdTIEQIUsQhgFzs3Psf/skg/1dZLPZmJbf9dB0DdcLUFWVKAgxDIPySpnFuQUMPYEsG3hhvBDUVA0zmUIQZUQlFu1u1uqoqkEQNZEVhddfO0ZbPsX+/e8yOrqVTCGJpAmEAQhhrN4myqBqCq7jcvr0Rb74/BOIksTH56b4+S/eobsrgySL2HYSSVHI5QpUKnV8T+DytevUqy7j4+MoqkZnR9uqvqJLKtNCriVDtb6CqstossnPX36LX751jN27t2MkTSLf5zvff5m+nnYSaYNGo4YgRliWia7rABafCQAAIABJREFUOE0Pw7K5dOkKiaRJGMXanvsGO/ja//Z/8OVt28m15HAchyD0SaWSnDt3nq0jIxRaWzBsCzNho+s6kighAI7rQBQhiKxqP0J54TrNZoNEKh3nqKwuQqeX5vnqv/jDG2P5rwPc3W4PFdythn1+uuDuQe2Teu5u3vBw2rFBDTdcgtyx3t4M3H0Soo8b0UobgJ/7BUSiKBKs6uP+ttqDg7s773/we3+1Fe7dGNE3s/t/Ju+2cXHr2vEWJvuHbJ+Bu0/B/n8F7tYevns8+f/Rgbt1x1r9cigwvVBisFWO815UnaA6w8x8kXSugB+AIkksLi2TTqfjRYnjoKoqqibhu6tMcwiUV6oomkQENGp1iOI8naWlJTTNQDctnKZHFAqUS0skk2nCCAxTx3Mc8oUcjXqT5WKJXC5PuV4mlUzieS5iGDHQ00mzGZDNphgb20I6n8YLHARAlhXCwEdTZSqVEs2mhyTHDHuKLOE4TQQkRElEN3Q818V1PQRkLl+6xNFj79Helmfm+iyiJNDS0o6qquzePY5pGQRBwNLCApomEwQ+rh8hSQojw4M0GzW2j2/FMFQUTY11qYCZyWkUTeW733+ZzvYWBMAwDCIBPMdnpVjh/MXLZNIJbFunUq5gmDZuM+AfvvVDHt+3k8CH8koNRdKQVZl6vY6oSrjNJlEUkk2lUFUFUYgIQh/bMmnUmiwvlbBtG82wCIIIx2mQTmdihkE/IJ1KcGD/KfY9Os6xE++zb+9Odu/ahWmpSJKE57lxKJ8oUq81eenl19k+PkIum+Lrf/1tfveLzzCyZYhtW4d55dW32L5jG4ZhUKlUEYSQMIq4dOljstkWatUm9XotXlgrOqapY+g62UwGRVE5evQYnZ1taHocbqiqKj/7+Zuk0ylGRrdg2xa2bcce3GqVn/7sl4xuGWB4ZAjLMDl/7hL9fb1cvjTBnkd2UC5X2DI8EC+0fZfWtg6uX5+ht6+TAwcO0dbWyszUHLlcimwuw5YtA6yUa+i6TK6QR9dUFEVGM3REUUVRFXRVpau7E9s06R/spbhUYmzrCCdOfEhvbxe2bdDW0crC3DyLS0uMbBlkYWGeM+c/Rtdkrs/MMjTQTUdHO7lMCkmSYnbF1iT5XCvnPrrK7zyzl/nFJRLZBMWFZc6dv8z4ti04nrsqdh+hqiqVShVVswj9Oql0hjACQZRwgwBFUHAcj1qtCmKA5zkQikhSLGNSr8chz04jzkUr5FsY3zaGpsmEQbyhYVlmPK4IIkTgey5xHkXIieOnGB3ZiuuG/OjHr9LenkPVdPwgJBLj575Zr8ekJ6JMJAZ4nocsWbTkknx09jxOM6DQnqXh1lBkjQtnL9PZ2YGqywSBRyqVpbOtk+//8KeMjg4xOrqFc+cuMrq1l46ONsIwIiAiEiQ03UCSNQYG+xno6UG3DIIw4uC7hwg9l3xrC5piIEgBqibRdByCJiSsBLt2j2OYBg2vTtqyGB7qJZ1NUa6USGdS1Os1SqUy//CtH9LZ1kY2l6WrqxPNUJmZmSEIfK5dm+WffelpBltjz76qKpRXVtDUmLk3mU7FAEYSCYOAIPDxHAfDMJEVCYSYSCGMAsrlCk5the6+PiJBRIxW83cE+PqhEzz77NM3xvLPwN2t9h8LuBPW/Yl+q8GdwM3crN9O+wzc3VH6XX93i9f3RizBw7fPwN2nYL8t4A7iXZ8HfWuE1XsiuOEnX1/CRt68213K9yIo2czWQjzvZRuFam6mfbeRft3tdntY62bBI9FqW9csECOGRoY4/94x8ukEgiSgKlmq1Rq+0yCfzxHKBoYqE4YhkijhNJuoikqEgCgrhJEAkoRuGTRrDVRdwzA1mrUGTsOj0NpG5DmUlpYptLVQqdYotLSwsLSApMRepmQ2ief5+E2XlpYcs7PTpBIGgRcR+GAm05jJJJXaCr297SSTOitLS2TtBJ4TISkykhoTP+iyhqJpqIqKpmlARK1a4+vf+A8M9XeTTtkgRhCFKIqCaaY5dOgUu3eN09LWiqjIREQIkoAoRkgK6IbGx+ev8sMfvYGmKLS2FDAMDUWV8Nw66VwCSTeo1aqYukbghlyfXqC0WGd2oUS+kCaXz+A5dRRNJfAc2tpb2fvIbhRZ5xt//QIjQwNIgoCiKzz++C4iIvyGz9XLV9E0AcvKcODtw2SSJpZpoco6PiGCpOC4EdVKA8dx0S0bVUlw9PBpXnjhR8zPXuXooTO0t+ZRVRXD0EAIuXJ5kkcf20qhkObs+Yv0dffRcEqYpsHUxHUsO4Hvh5w8foqx0T6SySRnP7rMH3zld2nrbMGyLayEyeTMFF1dHVw8fxEFmZdffoPBwR5aWlr4i796gaSl09PTSRhEfO+7P0dVFEqlEslskv0HD/H8888RIjA7M4csSRiaQU9bC4Yq0dKS5d13j9LR1kG9UWZyYpqhwT6uXJ1E1zQiAUxdp62thT37dnLqvQ85dOQ9toz00mg2uHhxmumZ64yODOAHDiMjW1AkBVUWuHptkpAIzTDQdQW37iAIIY1GDUUzuXJ5llxLCkWIKC8v84MfvYKialy+dpEto0OUisvksikOHzlBKp3hr77xA373y3so5NOYRhpZEimvlJmfX2bP+DYOHj5Fvdbg+MkPeeLJfVy9NklXVxfVSoXzFy9wbWqO6evzTE/MsmvHDgb6ulANFTNh0Kg3MbQkoQembRMKIZqRwA+iWIYkigg8Dy+sISk+tq3iNxyiQEAzVZp1B8MwMHQVSYSmJ2NaSfwwIsTHMpNEiBw8eIyWQgtCJCIqKrKsxGOrIKBoOkNbhggJcZw6Vy9fY2FuiYsfX+bHP32dPduG8d0m2WyOSqXO9PR1sukckqiQThk0HYcdO3eQSidRNQlF0WhUPQQxQFUlgmbExNUZ7ISGZujs2jOOaVrMTs8wtm0AAjh0+Dg9PZ3UV0KOHjlGa2sGVY0IA4dIDokIEQTo7eshlc2iiC7LiyWOHDlDe2s3hmVw+cok33vx52wd6uOb//5F9u7ejaorJFMpjh4+QWu+Fd+NUA2TdCrP2OgQ2UIaxPhzi0JI0rY5cvAUyVSSsa0DzDizXDh/jf6uLmRJ58A7B2MtQMFDUUHSDSQBZFFAUhRCUWB2egLLMCAImL8+TXHxOoNjO1cpGaIbA/mfv/UO/+p//aM7xvINnDgPzaINjpsqVXfWKwhCnGclb669t97dFP9LvIMU5ZarVyfF9XPc7eQQdxNhv/M64Y7j9s8j3FbXba1e+7TcbaZda0sUxSylURSthnTepY2bhDneTqhyezvE287danHb1ofw3a9F0c0N6LsRfdy7jPjn/ZJ5fFLSj/V99OA5hZ8c2K3d/wBXP5RrbpKy3H/9G73Lt9qdb0HsnVsfdrnZyvLh2Wfg7lOw3yZwdz9et83uufv+w6dnv8ogsZk370GB5vo46Ci6c0q6Wz3f+OaPeXp7DzGlt0LgeTSaDoZp4vsBkiRCCH7g4fuxRELTaSCv0p+v7cAGQYBhmAiCRGVlBd9zsBMxnbhlJ1YnPZGF2SkURYTQA3xcJ0BExLB06o0mqirjuw08xyPyQ0LfR5YEUhkDTYu9dKapszA/T4iAJAkIkcBbbxymq7MPw9KRJGlVf08kCELESMRxXAqFAqIoQxTn4MmSwJ5HtoIQIisyE1cnaO9oJ1gljhAIaNSaqKrJ0aNnWVwss3WsH9uONf6y+Ry+GxGFse5bGARIkgwIXLo8xRe+8BQtrVkkUUQQ4v6SJAnDNJBlCddpMjYyjO8FvP72AbZtG0DTFVRJpVIsEYUBk5PXaevM0dKawTBMmo3mKlFNGd91MDSD0HcRBQiFmK1KURV27hhhaEs/Pb2t5PJZFFUFBJp1l8ce28GVK5fIZBMkkzatbTkMW8MLPGzTYnriOi+++CoJK8vgQF8sA6BLtHe0UCqtMD01RTJpMzTYx9LCIseOn2L3np00m3XaWvPohsFje/fgOj6t7S006lVct05vbxcdXR384hfvMNg7gO/F1PMtLS2UiiUWFhZ5+acHiEQBSY5QVYXSSolU2qKtvUAmmyaVsrFsi7NnL9DT2cns3DyZXAYBienrswwP95BKJ+jv70GWRRzXIZ1OUywWEQTQNJVEwqJWq1IqLdPe3oJoaCiqiijI1FYqTFy6RjKn4rsSf/d3L/P4vp1EYp0vPPc0xWIRWdZp6+zk0NEP6GjN8cRj2zlx/DQTUwssLZfRRImto8Ps2rGVv/3mP/L7X/09Wgo5DN2k6Xpk0xkymSSyqlKvVmhrK7Bz5xjdvZ0QwuVL17h8ZYae3j5EycFx6himQb1eR9c1BCHCdVwioji0WBKxzDSiIFEul1E1HctOsDC/xMpKjVQqzcpKEU1TkYiQhJBGrYKhqnhundLyEr19XczOzeJ6DoZlsVIqYZoWwmo+kR/E77xuaAz293Pq1DkG+rvp7milf6CXIAhR1Bi8t3e0gyBQqVQwTHM130zk4DtHGOztJfQCQgIKhTTBai5dW3sr9bpHGAUoikQUeRiWTCpt03QdRrYMYxg2gq4yOTlJR0cbumJQr9RR9TgvWBIFFElBFEQqNQ/Pg5PHP0CIQvA9Cq059j0aax7mc2mKy0vIkoIsK3R2dFAslskXChRXliiVyrR3tQMBkhiPqeWVCslkmmwmRUdnC4IY0qyWeeNKkW2pPK++up/hwQF0PZa2QJRiT0bg4jRqSIKAJMkkE0lkSWV5fgnDNGnr6IyJctbZq++/zxO/+2Xyhdym4/6vI7VpM29eHJ6rEobBPeas2+akdWF7dwNp8XWf9gy+eV3327+35+v9v+y9V5BcV5rn97vep8/y3sA7erJpm21mYnc7dkMrrR7kdqUXPSkmFIqQQqEd6WFHEzIb2lnFqEM7MzvT0957Nn03m6YBEiQIR8K7qgLKp8+8/urhFoACkCgUQbKb3eIfkYGsvCfPOffmveec//m+7/+li+nb930j61HXU960Je7ur1c35e+7xWatRndr8byB+P42HoIPjbv/XbptdHyU+Dhi6D4oPiV3HwM+SeQuSboPhwnpDSiKa7nWbvwScOOjI5Baqe4sR5ziekqE7g/Q1eNdB/+uDVzb17zliLTOWrcRuduoPzdDFMVUeGLtS1e/0W2X9ea2du/Zhbd8EV1VECQJWZYQEoFGvUk2n0sXkUmazy5JktSFThTxPT8lTgJIooLnd1I1S1FEVUTiMMB1fexMFj9ILQxxGFDIFTl16hzFQgldM6nXauRyObzAJ47S3E5JHJDLFojjGF3XaTbrVFaXMXQd103FSEzbxjBsOu0Wpmlw7twlyqUyuqnQ6XQQxHQh1em0GR8fp1DMoSppnGCtVuOv/+67PPzQXpIkJgwCKtUa/f19xFFEp9VG0zUC30ORFZpNlx3bp7k0M8dDD+5NBUdCH0mU+c53niGJfArFLKIoEIYhimrQ318kjFpIYuoW1m63UVSNZqOBIEAcRYRRiJCIZHMOu3ZuQVVlYhKiIMR3XVZXKuzcvZMg9tE0DVG4+gwkCEKAIAi8f+x0GtenGciqSr1ap6e3h+WVCpqmMTDYgx8EnD93iU6rTblcJgg8+gf7kCSRy3OXyWQziKqM2+4QhyHVSo2FhSU++/QTfPd7PyfjmAwN9RIT8pOfvYSmyfT3p3ngbNNg+7Yp4gSGhvrJZDJcuDDDseOn2L1nJ88//zLbtk/RN1BGUzVmLs0xOTHB4NAgzWYdURBQNZUgCPj295/BNizeOXKCL37hUUzToLe/D01VWFhYxO14rK5UyWQcSAS8jkuhkOelX73Gjm3buHLlCsViBsdxiJOYlZUqIyNDiKLA17/9YwZ7S7z2xluMjQ7R29cLSUQchwiKRhzF/PKl15kaH6WQc6g2KxSKfaiKwuLSMk89+SBxFPH2O0cYG58gikWOHDnBkaPH6C071OsdHn3sM9gZC9syWZif58LFCzx0/x4WFissLCyya/cOZmYuM7+0zPBIP0ePHGPXnp3IsoimqWRyOc6eOsdzL75OuVygVMrTqC1iGGYqXGJYEEGz2UQQwLQswigijmO8jkcY+unmSBQjCRKGbvKb/YfoLRdSpVhilheXkSQJyzTx/YDK6jLlnhKIIvlikTAOCcMQx3EQBPB9nziJEEWBymqNRr2JbVvs3LEVRVYol4u4rku1UmV+fpGB4QFkObX2I6biDJKkEMcRE+PDdFod/vLLX+OBB/eiaipxFKFoBpIo8e/+5jsQh4xNjCAICWHoo6hy6sooa7TbbWq1Ojt2TGMYGnEUEfgRqiGlGyiiRK1aRVEUgigmn88xMTpELusACZ7vc/nyIiuVKrlchrm5y4wMDWKaBs888zJLKyuMT44RRR7FUpk4SRBFWFpYwLKMtfyADogCS0vLyJJILp9jx0CWf/urd/ni9DSjE6PkC3n8KMTO5UjiCImEWq2Obpg0m01UTWd+do5atUqhXMJ0HG5e0n7n2En+6X/4j+849nebfq6mM1iv/vxhsBHXuLqZeOd2rvd0bdZbW1TeZlP2Y15sbjat0Acld+sF2QTx6sK8+7rhdqSkm6DKekvc1al+85dnncVH4LbOdVcJ9++C3K3fkL75TumG9dfok40PZvVKFTlvLH+jFe1ukVyrf/29tJFr728Tn5K7jwGfJHIHt7/NUqndeNO3YZJ8gCStN+yK3Z7AbZ7c3f5BvNqnO5G7jfrTtUyXSrpOyjcVMwyDH7/8NjuH0sTHqqohCBL1apVMxiIII3RDp93uoGkqvucRhSGappLESapml6RxX5KkEAURAiGVygqWZSEqKoIk47VbqIpETLr7HyYxoixjKCptt0O2kENRZCI/BEGg2XSJExFBEgijiNB1ERIR1/W4NLOAZTnImoEiJawsXmZkpI9CuUSS+ERRgKJIxEmIaelUVlbI5TPEaxsDnufSaYaMjg0gyxKyrGLbJp1WE1mRsUyTMAoQIgCR5aUVxiYH2b1vCgERz2vSbNQBmfNn5pEVgdGRwdT6I6fxNIZpEoUu1dVlMpkcgmzQaTXRDR1ZlllcXKRYLqCqUioc4zhIkkIYxrS9NqIEfYN9NNsesxfn+cpXf8q9e/fxzLMvMzTch51zkBUdtxNSLvchqxqx53H0yDEG+/s4e/YSraZHrpTFNG2KxSySJNCsVwmCBE0zAZGBwUESIoKOi2WmBDFbyHLPfbs5cvgIxUIWx7HoHyiiqhJT4xNrZEFgaWEBw1DShatlsrSwjO+6LCyuoqsG7bbLxZlLDA32oBkmmp6KVFw4d4lGtcHAcB+BH2BZFq7nsW3LOFEU8aV/+BSiLCOrBjMXF7kyN8fg4BCV1ToDAwOcP3+JOIk5+PYRBvrKSLJIJpPn4NtHePTR+2i7LSorq/T193Du3AWKhTJbpsY4feYMTz71WS5dnCMKY0qlEotXFpB1DU0xOHb0BFNTIyQEvPnWaaa2jdE3WGR5eZmDb7yPH/vc/8D9nD11jhdeeJUvPP0Zesoakuwz2DfK2Quz9I8UUTWBcl+ZUm+Z8xcvMTk5hECEospUKlVeef1tHnpoH9lsBlVXieMARZV4++BRLl9e4D/+Z/+IkbE+VF2kurxKqbeHdifEcwMUUcePOqnFKwqQ5NR6rkgx7U4DSVFRVBtBVEjihNCPGBwaxLR1hCRB0VU8L0AQJVTNwm83cTseMQKaYaFqBoHvIQppbsw4CpEliSiWefb5X7Fz+zSaJtFu13jn7ROUykV+s/8d9uzZmRLfiSFkRaXjtpEVhaXFZUxVR1Nk6vUaK6s1tkxPYNkZdMNCECSef+41FhdXeeKxe9m+fQsL8wsksYAgCanKpqYRRgFREpHPWIRhm1arjuu7qLqO12khiiKKrKTEMooxNIWV5SUMy+Tvvv59gihmanKIbCHPz597nX27tzLYX0RVZd5/7wRjE8P09RcplPLIsoAsKSRJhOu2MTSV+bkFdM2m43o4WYtTJy6iKloab6tKbBvJ8vcHT/LIyACaraMYKjEJopTGkiYJGLaNYlrIQkyrXqGYz5LJZ4kkGWHdwPy/vvgKf/o//w93HPfh9uQjnTc2R+7WL6w3ivHeTLsbtHJrvWtk4ne/tLw97sZydxXxJjdnN0K3r98Yc7fZioA1Qrhx5NTmwkzuhI/GcvdJvjM+HqSENb7NffPhrbLd75nf/XX+lNx9DPh9IHfrY/E2ext+kIDtbrt3V9+tj1O7IbnpTekUblAVEq5LI99ud/CGfDjrRr30wU4TvW7Wcrfe4hnFadqDOI675hO62tb6fu/es4t/9X9/ncd3DyMIrCnnhcRBjGKo6LpGGIbIoozX8dAMG0QVQZBJSOXP49BDUTRkScbzPRRNA8BzO7QbDYIopN3xMEyLMHCJ4xjTtElEBSeTxfdCJFFGEEX8jgtJgCiEGLpCu9Gkp7+XRsPFtrNcWbiClVHImAaXryziFEqIokxtdQlBllM3qjhGkWWWF5co9Pbi+T6KJiHJIIgJO3dPAzGariEqElEYARJRmCCJKs26RyQkJALk8g7VyhKGptBuuARehIBCHHnsvXeSkcnJNAYv8Ak8jySIEAURQRRAlIkTlYMHTjLQ14PvJezff4iR4V5kWSQKEiw7Q5IIxHGAIMRUa3WKpR4SQURTdQLf5XOfezRNMk1M32Avfscj8H0K5TytdhPNUIlikeGxYdqdNqNjY7z11hFUSQUiOh0XQ7ew7QJvHPwNE1MTyHqMpCSEkcH83BK6YSMKIpqmEYUBpqHzy9cO4PltduyawPVa+C2Jw++eQlN1slkT0zRRVAVJlNh/4F0cJ8PE1Bg9JQfbkonDgLHJKXw/SF1SLZ1cKUOUeMxfWmV4okxzsYqjW4h5iaKTIZtzCP2AAwfe5MSpk4wMjqNrOu8cOoJh6CiazvjEGFu2TbO0tMoLvzrAcP8gnt8hV4zRTYlcdpDIE8g4Gf7u77/Jg/ftYeuWLawsVshnCxw7dpqjx99nzz3b8bwmSQxX5hZ48eVXuf++rWzbMQGRzs9+9jM+/7mHuTxXR5dFgqBJoZgnk3WYW5hh144tONkS2WIW21AQk5j5mUWatRaqYuB7CaqmoukWYZQwMjbOY489RGVxnsj30RWdRrWGoev05PJcuDTH8MgonY6PbTlkcxa1Wo1SqZdT75+id6AXTZYxDAVZThCFhEa1hm4VUQ0HWVaJvTb11SUUQ6SnpwdVVQmCNmHko8kWmmUjqTJh1EKVS3zvhy9x/4O7CaIOrtuEKEKWdURRQRQlFhcXMG2bsZFBbNvCCyJkRWNsdAjLMujtL6FqKpNbJkjiCE3XSUgIggDHzjB36TJ+FJAvFmi1OmSyOUQ5II58oiBgYnyMWqXOO28dY7WyxMjYIE4hg5SoNBttcoUMCEmq0Os2MTSHhSs1LCuHEIsouoEgpm6gqmoxf6XGytICTs7BMDUcU2HnlnG++d1nePbZN/jc4w8wMFBkcXkW28lR7uknXyiRyWn4YYfW8iKdtkeSCEiKhq6J6XmZBsVSAddt0VPK4DgaumFw6eIc+WyWzz+8nf/j2QM8MTmGgEC9UsNaE51RVZ1EEIjDhPriOebnlxid3AqCBEk6ziRAEoc89Z//J13jZe4cQ5NCWospuxr7xdr7a54cN63epXVzVroBdiMp3Gy7N8fmrS93ff5bZ6FJAISuC/xuCcu7vTZy6dwIm61/s+j2XWnNKimJ66/v7evolrKga1ubInfrf4m1d7exkt7yTeHuYtnWo9vvcvU6CNwaM3mDovetPbr7jnyM2JxExO29uG48dvV1NUfgrRv/V613V/My31rn9ePd1p63xtB9WGvgR4dPyd3HgN8HcnenuLqPsx+3s+ptZM37oOj6AN/kunknXO9vsuaiJH4gd5dHPvMwQm02PQ7YjkOjXsf3XTQ1dYcMwgDTslK54yBYSwCeutZEkY9A2q6mqWs5rhQMw8DOOJCsJcgNI+IkpNxTol5tpKIWhsHK8grZjE21UsXJZNYIoookK/h+iOd7lMplVFVbs3gpEIFmmli2haooLC8tkS+kypCpsE6CrMjIioYkCciSTBCklqJO28V1fWRZodVscv7cLK1mi3K5DCTpeRgKoiyQxAlRFBIGEYZh4QcBrU6bcrlAGIaIsoyQxFRWVzh/boaXXz7Azh1b1xJPG0iSzPPPvcEDD+yi1WzyzjvH6O3JYxo6lpMmJU8RI8mpEmASJwR+gCwqOFkbz/MAiffeP011tUpvXxkvCDENk067w6F3j1Mq5DBNHd3QEYBSvkCpXCQMfSRRIo5inIzDyFg/sqQBPp7rcvL4eXp7ykRhiKRIrK6uIAoily5eZnpyjFIhR76QpVFvcOzoWXRdRZYEBoZ6WF1ZZXb2MoZhMTw8xHsnzjA03MfK8hKZjMPCwhKCIHDhwgx9vWXmZi+jqSqB55NzChi2QNBuIMsil1eWyWfyNOoNnIyDosgUc1mef+kA9+7bxvBQL32D/WmesCRGkSWyuQyPfeZ+dEPn3cNHuOeenbRbHgf2H+WN19+hp5Sn1W4wONhHrVrDD0IuXpplYnyYe+7dSRC42FkLIZEo5vJ02i22bZ8gSuDVlw9x5uJ5fLeN2wZZTtA0if7BIWzHYWCgROD6OJkszz77ClMTo7z++lv09hQ4fPQEk5NjLK+sYlvmGrG1aNRrOBkb09BRNA1ZUdF1lUajjuNkWV6t0tvXyy9feY2t02O0OzVUVcNtd+jp7cF1PcLIZ2V5iSAICPwAx3HoeAGdTppCRFFENFUmQUAUZVy3jSQL1Bt1dN0EUUSURFqNBkkk88xzv2TvnkmCMMB2MsiyjCgovPjiq+SyDrZjEwQh+w+8Q/9AL4qioqgqqqymJC4MOX/+IuWeMoJI6l4tiIiijCTLFAppLrhLF2bo6enn8OHj9PaVsGyLaqXGa6++xaGjJ/kX//yfMTDUk8ZvSTK4R/IgAAAgAElEQVRzly5TKOZJiHFdn2qlwfzcZeJYoFAocP7cBaI4JJOzUVU5jTtNBA4ceJeJ0R5EWUTTdQrFAnGU0FsucuTYKQr5DINDvfT1FwkCgXOnLzA0Mojrtde8B3xsJ4fruly6OIMsCTiZDPVai8X5ZQAURaJebSApMsVSKVXLFUAWA3586DQPjY2klhJRSNUxSd3S3XabamWJqeltSLJGvH59lcT8+cuv8eRTj/FhsH50X+8+efNndD2W3PLZ3bTbrZ1bP72eG22jUhvhbsndb8Ob74Oe12Yv+ebJ3YfDR03uNt3uLZ98MgjIzfhgBHijcxBu8/7m9tLB4sbwmuskbTMifJ9UfEruPgZ8Su427sfdkLuNYvS6YX0bV2PyBLhrcpckpIThNq6a3WqUJIl/9W+/zhN7RwHww5AgCPCb7ZTIaQqmYxMlqapgGHooqgRJhOe1ry30JDm1FsYJtJodFFUDRBRVS+X+fR/d0PB8n2yugCRLhGEIQuouKQgCQZSKg8QIyKqOk83jh+010YGE1aUKlplheWURUZYxbZsw9HFsk3bbQ1NVXM9fs/iC13ExdINGvQYkrCwto2kmkiAhICGJKt/53rNcmV9m374deJ6LaarE+EDqyhlHArpu8L//67/i808/Qr6QI0kgDBIgJE4CkjihXOrlrbfeZ+eOKQwrVexsNFq8sf8YD9y/jdXVCgMDZQYG+wiCNDl1EickxIgytDtNxFBg6coqp0+c48t/9XU++9kHiKMYzw356U9f49h7F5GlgPGxEQzDRBQlRkdHkCSQ5IQw8hFFMC0DQRBQFJnKSoVMNkOn46IpAoQSi/Pz+K7H+++dp7evwNe//RMefmAvK4srxHHCm28dpVwoks3msSyLfKHIq6+/iSAnbNs+wcrqCqZhk8/nkRWFWr3Jj3/+EoP9RUaGhmg10jx/vf19ECasLK9y9Mj79JWL5HMZdMVCVtt06udRlZBW28BxHF586TV2796BrhuUSiXKxQxB4HH6zGlGxobQdIXl+UVMQ6PdbPKDH/2cyckh7r1vLwcPnGRxocFnHr2HibFhfvLMizz80F4uX5nn1OlLjI/3Mzo6yI9++hxjY/0IYozndjANm5lLsxw6fJLDh08xPDTIxOQou3dsZcf2HSDAhZkZ7n9gD7pmc+TdI/T0FpElDcNwaDY7HDn8Pk8/9TiFQgbb0XnxlVd57PH7mZtZ5vDRE0xPjyFIsLw0j5XJcPDgYVZXa2QLOSzHJkZieHSImJjLMxcoOCpu6GMaBo1GgyiOMAwDWVTI5LJIsoSTydJsdJAVsG2LOIloNmqomoIkG4ShT8dto2kyiiLRanbQdRMBAb/j4XYafOlLn8UwdUzTSQWOBAVV01lZXmH/m4fYvWs7nudRKhVQlTQn4+zMDIaeuhhLkkS5twzA678+gIiALEprKTJqGIaGKAkYhokqG8iyyhv7D5HP2liWwdjIII89ej+xFNJutTAMiwunr/Dz519iqL8H3/dRFZuvfPWnaIpKxs4QxzFDI73YjoYsizQadRRVxXU9JsaHibw2TjaLHye4Xkir7VMq5RnsL7Nz13ZM20o3rNyQuSvzlEolEiLCMEQQRDTdoLZSQRQSarUWumbxzLOvUSzkGRoZodmoEQO1WhPTcYiiGE3VGOkvcuj0HCfOz7B7ZAgUCVGEWm0VIo/Fy5fI9wxjZfKpAJIICDEg8Ocv/Zp/uUl3zM3MBfApubsdfpvk7sZ4so0W75ur9/eV3G1WGORTcne79m4ldzd4jt2hlU8yPiV3HwM+aeQO1gjIepv3hyB2tzNC36mu9eQuVUvbmNxdPRLHyQfeQbldULcgCNeEYdYjjm+Npbj611X3j/Wjzg1926BfT3328WsET5YVdFPHazWJoohsNkuSxDTrDRzHTtUvJYl6o45lWoRhqojXatYREFFkDdVQU5GRKECUJPzAQ1ZUBAHqtQamZeOHPp7n4WQcVEVBNw2CICSby9Bpt1J3PlFCM2ziKKTdbqFrqdXAyZp4nofrdvDcDookohs2R4++z/DwIJIo02q1+et//x12bBlDFAQkERzLQlVlBEHk+z94hu/94AX+5L/5z9i3bwdJEl8P9BcFAi9AVTVq1SrVao179+zGzhgEgceZUxfIZsqIYoyqKJiWSSKI3PfAHg4fOs7AQC9+4GFaFvfftxdNEygUswhCTCZToNMJCAIf3wuIEwFZktA0A0FUeOONd3Acm/6+DEMj/YgIJAicO3+B/+I//RIjo73ohka9VuPihYtkMja6nsYKRmFIo95IXU7FhFajzbe+9yxbJkfIFxyazRrtZki1UqGnt8TSwiqTkyMM9hYpFAtks1m8jktff5ne3j5qtTpJFHHq5Fm+8MWnMDQJTdeYv7JCf18fX/6rb2DpGgODfXz+84+h6wqSoHDivbO89ptDqKrI9NZpCsX8mttvSk7arSqWU6CyeJZmo8rI1L0ICExPTVCr1Dh39gKXLs3y3snznDx1ntGhfk6duUCxUOTff+V7PPTAPczNzXNlfolde7Zx7vQFxsdH0A2NV1/7Ddt2bOHee3bg5CwuXrxMGCVUq0sMDw+xbcskqiKjaSqrizVEQaZeb/D5LzzJxZk57tl3Dz/86Q+5d999nD09i6JF7Nmzg1azxYVzVzhy7Dh9vRkKhQI//MmzPPHEI2ybHufAgYOYpkG5v5fhoQHsjIXf8Tl7/gKWpeO5LvVGk8B3GR0dQhZFFEXEsnQkAfzQR1YktkyPk8QB2VyearVOrdKiVmuiawaGZSOI0HE7gIBh2jQbdXw/RFH1NGG2rBAGHmHkISsSbjvEMDLohkkYxHidDu8fOUy11kBTZQxTJ4lBVTVIIEkC+gZKTE+NYTup2m2hUEDTNJIkwTRNDh86ysnTZxkdG74m9NNT6OX//evv8vBDe7Ask//tX3+Ze3bv5NTJM+RymZQI9hSZmhrHMDSqq1XOnrnEq68fZPv2SURRRNdN3j9xlrGRXrZsm0rdO3NZHn74Hvp7y/T19xKEIc88+wKTE8NIigyJQqvh8vwLryOJAp12i3JfP4Iko6gKpmFw7NhxfvTzl9FUmcHBfhRZ4yc/exFdV+kbKGFaJrKioErQqLUo9pTIZDP4rockiJw6fZFWx8XQFQaHB7AzGXw/QFE1NN1EkiVqlSoP7x7nnt0j/OiVd9k1OABxgtdu4Xs+siRT7O+7FhMukCAICX/+4t0Ru2TNjXL9S+xC5DZyNbxhLukyDyVdXDW7YTPkrluYQrc56Q+J3HVzOdysC2Y33Fr+Tq52dzp+c7kUHzW521C4pqugSjf8NunLxi6Vt16frqaJtVfSpVy3Yzd9u8ua8E4iQL+P+JTcfQz4xJK7D+v0fQd0I0g39wG4NgnfTO6ukagu5T/Kh66bMEy3yXAzLd5JZEZIYGCgH7cyh6mrCIKAoSusrlZSAhJGOI5DlICialRWVskXisiSktYrxERhgKxohFFCs1VFN3VIIvwgjRHTVZ2EGNtxEEQZhHQxEscRqqIQxSFJFCOJYJpGKh8uy0TIxHGIqkgEbockitbieEqpm2SzRRT6yJrF6moV27LQNI1qpcbEyAD5fBZZlFheWkIWRerNBqqiMjk+ypOPP4hmSgS+h+d2CIIA3TCJ4wRF1YjCEEWRcDI2YSSgqdJabJHJ4kKNudkZnIzN0tIyrXYbTdN4/dV38L0mtmOmMUaSTBy5uG4bXdeJIoHTJ8/yre8/wxv7j/Dk44+gaCpJkuAHPhcuXGHHjq1MTg+iKGkag9TdNGB4uA/dVJHkVJymp6eEqitpbsAoQlbka+fuBz5Hj57kj7/4JIVyEc9roygiqpahd6BnjQDE5PMZoijkZ8+8zPTUJNlsFtdrsbpaY+7KAlu2TFCpVtF1nXwhh6rpnD4zg6mpvPPue+zYOkmpp0gSRyiKSuAGfOvbv8AwdSYnhrEzFogJmWwm7WscoqgCcaQhxQ06nRZmdpBW08XzPA4feS/9faYmOPj2cf7BF59kaLCfI8dOsW3bNPvfPMz2rRMMjw5j6hrNRodSuUDbbTAw1MOhd9/D9zxm5+bo7S1jWzZJDFNTQ8zOzCMKIqZlUavWCb2ExaVl8oUcuqEzMTm2JpHvY2g5Xn7pAE5GolAs8L0f/YKBcj/5vMnISB+zs/Pcd/8+3n33GP19ZULf58KlKyRJTF9/HwC2bbCyssT09CS5QoH+gQEc2yCJQmRJxjBVwsAj8FwkWaLVbq0tBGOSWMAwLHTd5Gvf+hlPPv4IoizjuW2MtaTjgR/h2Da6YdJotDBNi6XFZSQ5QVFkJElGU21EQSEMI+IoRpYEBvtL9PQOUKlUkSWBarWG7aTW9XanQRC4iKJAFEVomkEUhek4QsLszCzbtm9lbHQ4jUsWUhIwc2GeleUV9u3ZRpzELMzPMzI4wonTZxCJyWZtRCld5HqdDidPnmXPnr1snd5Cq15bu6d1CsUiQ4MDBEEAYoxhmtSqVULfZ/7KIoVCgempUQQx3QDTdRtRVDh+/DRH3zvD0599FFGRieIYWZSIo4ienjKzc3M8/uhDKIrKyy+/weeffpRSqUCSRKiGRhzB8pVZnGweAREkiVwuQ+D7DA8N0Gi12LN3O81mA1lK1W0tK1VnjeMI3TCQ5VRZuG/A4au/fIeC55HJZNA0g3yxCJKAuC7R86+OHOGf/3d/sokRvOuofssn3cjdRtjIqgcQx1G6mdclhvuGeu7Ys+74Qyd33drtNg1/UI+f6/io1hs3k/q7r+mjdctcj98Fodlsmx9FuS5ru2tkTlxLEv+Hh0/J3ceATxq5u0a6bjOyROtSHNxN0vOr2LS747UA4M2X3yyuBr6u37W6+ZyuDvbd9txuJqgCIEoyV9NF3Byue8dzEKBYKvBv/vp7PLl3NG1LVDBUhchtcuniBQYGB/CSCFFKUHURWYJWs4UqiSRxSCIkiLKKqmk0KjUkQYRERJFVdFUnEAQ0VSeJIjqtOpaVulj5ro+sykRRjNuo4roebsdDVFTaHZecbTNz/hK2nUE3DeYWFjA1ieWlFXLZHJIoYOkSHbeNJPkYmknohyRCG10zSZKAOPaoVFqUyr3opkHoBwhJjJTEeH4D29ao1VdQNBFJUQgCn1qlSrVaxc5k0nNabiJIMXbGRlI1Tp66yP63DrJr2zZsO0fG1nE7FcrFfgrlPD19vYRxjCzJtOt1ZElFkg3OnLrIt3/wIv/lv/hHeIHP9h1bCGOXVruBpshMjA8iywm27QAqoiQiyVAs5jFth9CPEIBGaxlJFiARiEnWLAk6rVaHXCFP7MLoll7sbB4RGU1MaHTqLF1pMjczQ7NZZ3B4CFlVMHSVcjGDnXMIIp9XX32HwcFetmyd4uSpM0xMTvCb199gemoKt+0xNjbKK6++zn/0T/8h5XIPQegjJDGenzAzM8tDj+xj757tqJqGIMnpcjaJCTs+YSfEyGRRlIha08XOlXlr/xu89NJhxkYGGR3uo1TOIYohYiwiiRKGYWJqOoQxE+MjlHtzuG4LTTeZm7nE3OV5RkYG0Q2T6S3jiAL09JTQdJMkShgeHWbpygqlcgnbSa+hpplYWYfKSoUzpy5Qq9UYGhlkefECpUIJyzE5euJ9tmzZSiGnsWP6Xva/+zxPPP7HLMw3GR8ZodMKuXz5Mu3WPOUenaPHzjM9PUUcCyi6jihL9A32YloW3/r6z2hWPEZHSszOztLTnycGggiEOCaOPUQkJCWDaMjE7YCImJCY++7biSDEGIpC4HeIwg6CkOB12hCBLIkoqsxqZQVZEVPxFE0nDhM8v8X8/CymneGNVw8y0D/IL3+5n4GhMs1mi/MXrzA5NUUU+xDHBH6I42SIiYmTCEmU1qx6ArIkks/bdOohq8uLmBkVRZEIwhAnk2NpdYEdu7YQJTH79u1DMwRK5ezaPQKuGyMECYqmIogCmiWh2wpvvXmEucsrvHvofbZtHUfXNDqtNkffPU5/XwldVzl/psI3v/dz9u2dIpO1WVmtYeoKQeBhWTqTE0Ps2jGFqooQxUSeT7NWJ/RdBEVm145tEMOV2XlUSaF/tIQoCWRsh/mZOXRVwSmVUBSJMPTw2k3iwKXTbqLoGlu2jBPEPqos4XkuumEgSulmj1+dJ4ohFiUEWUFTVXYP5/nzn7/G7p48pb5+IklERrzBYvPNoyd5YpNxdlelFm4WRVmPZN2/60N7NwJ13b9vIwGRNA3RxsQOPoQYSZIKiN3QprC5192iW13d+ny3SbYBruliCAII3CCmcnUqXpfB6Grh2xC/6+VuTGtwS6tr/3e1m3I1bYWIcMu/m78hcvfXaEOsxaJGcZro/eb7ppuoz8bn192ydvtjt+nUpspvpr71ZW5ehd3pleJ2oih/qNgsubvzKPQpfm/xUexc3EySfldI4jjNT3cXEEjdRdf/DRCv7a5f/exuzvNP/5f/kT/72qtpHxEwLAtV1ygWi3huG11zkEQdrx0T+CK6nqVWq1OvNdLFZBSTxAm5fDZd2IsCzWaTIAwRBdZi9kIMwyQMXEhiDMug3eogyyqmnVrdbMemUqkQxwlzc5cp9/Zwee4ykiwzNTmBoqhoqs7S0hJRFLG6WsN2LErlVL3PtHRkWUI3UldQy7Ho7ysTxyGilC5+Go0mP/jJ8yzNNzl86Ay6liGTKZPEIqZuYBpp3JeQQLvRxLAN4iSh2WzSajaJwpDx4X40TWP20gzttksURjiOybuHjxHHEYHXIYoCRFGk0+7QqNUp95T44ucexjJt/uhzTxLHMaqqoKgyzVozzXcTx8RRtOYiKhLFIZZlAWnyakEUcTI5PD9EkiQUWU6ti4GHYRr4vkcma6DIGkEQgQCrlcsksc/k1ChRHDMxNYlhGMzNzqOoGj29PYRhhCBINJpNyj1FZEXiN2+9y+LiAp998gk8z0eURBqNGiMjgxx48x1WVlf5/g9+QRiGzF9eIJvNcODNQ6ysVjAMnSsz8/z61wcgEfjxz16g3N9LFEb4fkA2k2V1tcHjjz9Btd4kl8+iGfq1tAkPPXIfpXIO27Eo9+RptBqsVlYBcDIZMpkMC0ur3LN3J0mS4Lod3jt+glw+i5Nx+NGPf8FqpUIUhViOxdFj76OqKr7vc/L9U/h+mtdty/Qk+/btotmoY9s5ZmcXEEWZ/+Af/zGapnDo0GHCMGSlUoMELl6cpdZcJFs0ePGVg4yNbmdlKeCPvvgUFy9exgtCojgmglQ9Vkj4J//kC5R7ciwvrxCGAQgiYRCuifYk6IZBs9UmAaIwZHFhicCPUBQF23IwTYsY8DwPXTNRFY1zZ2dotTtrz5eIZduoqka70yaKEvwgxHVDevsGEUWF6alxDr59iM8+/SiiINDT28MDD9xPGAYoioogCddEXgzDRFMNDMPAdV2iKCIMo1RdVhA4ffYCq8urrCyvoMgKkijwR194AkkSMA0NWRKvxQDrhkYum4qr/MX/87fEUcT4+Ci6ptNsNHn88YfpKRc5fuIcnVabIPBZXllh/8FjNBot5heWmNgyTF9fnn/5539Jvd5gdbnK//kXf8N7x0/S6bjIioqqqCQxJDG0mk3yhTy27SAKAp12m7/9++8xe3me6W1T1KrVNAl3EnPi1Fmq1RqNWp0wCFldqWKYJnEC5d5eqpU6C/NLiEJqXRVFAVlWAJAkmWyxjGaaqfs3EPoeJBF/9l99kW+fmeW7B95EumlE/iBpD/7QkMaH/zZsaJ88dMvRJorpa/OV/HYskB85BAijaMMCgiBtcPwPGZ+U1eknE59a7j4APmmWu/WWqm5IZWDXBebexeQgdLGYbVj+A7dw97j5nG53PQRRRJKkNFkw1y1+axt618rc7TV68qnH+Xdf+S737RgBQUDTZKqVCseOHsN2CliWhabrxAggSOi6gqqrNGoNJFElDtd2CCUJIQFN01A1FQBZklA1jXqzgWnKtFoNJElBlXUatSbtVhMnmyGJkzUVPIEojCiWi3Q6HdqNFnEUQSISRPE1BU9ZVEAQ8H2P0I+JwpiVygKKotBsNSBJUFSJOA5ot5vYtkMYJrz0y7e4f9+9DA0NU6vWaDYa5HN5VhYWOXvmPKVCAVmSaTVbGE4GSRbRdY3Yj1mZX+LhR+6nVqtyaXaO3p482UKBOIoYHu5BVUWiOECWJdx2m1w+z/JKhWPvneLRxx6ARMRtd3AyGhAiiqBrBpIkpYqGrRaKmgqHQIyuGwiJgOd7iIgIiQyJuJZ6IUmTcgtpAl3XbRN4TWTNRhR0xNijVjtOoVBkZaXF4OgQSZKgKRZzs3PYts3qcoWvfuMZpiYmePihlOgkQsLYaD/l3jIvPPcaQ4N9aLqC57cZGhom9AOK+QIPPbSP48ffo6+vF13XWFxa5tTp80xPjvDcz17lgfv2EIYBDz3yAIIkEwQetWoFRTGwrRzVVZehoV5KPUUEEiRFxsk4eJ7LgbfeYWS0n6PHjrNjxxbGJyc4f/4ClmGhqCrnz88wvXUSTdMRBImfPvMyR46dYOe2abZsmaTVbDM3c4XBoT5y2Qz7Dxykt6dEb38PhmmzOL/E337th+zdM4HhKFRXQl7+1VtsnR7nmWdfYveuLXztO9/l8c98BkMDQy1TLOsIaoAoyzz99JPEoUS7FeLHIc889wb79u5kbm6eXDlL4AckSYxEDIlPub8XSZauqWS6bY+FhWW8wOOtg8coFsqcOf0evcU+BFla28wREeIEz+3wje/8mJ5iGV1z+O73X+Kee7dhWvY1t2BZktEsAyQZSdZYuLLKkeNnmBwfJQwDJqdGSYSAJIbl5RW+/Fff4qEH9xITk8R+mgg8CFFVG0FQCPw2qmrg+wHNRhNNN/C9gIszc3RaHr29vYhIyKJAnARougwJuG4HVdGQJJFOx2VxYYk4Ttg6NUKxVODSxVkuz17mRz99mb27t/HWwaNMT44wMTlGSIyqqTz6mQcxbAc7l8frVNm1c4o//vwTLM5XqVdb3LdvO4ODA0iSRLPZ4sKFSxRKRVzXR1F1kjjhzYOHGertxbYsDMPgyHuneejRexGAxaVFwsBnsL+fMIhwMhaBH6CoKpIsMzu7xPJynWqtw/jEOLIik0QR4lqMbBDFqcUBCUEQ0xQnfof6yiKIMoVSkSf2jrJj6wDYMQcvnuUrbxzj1XMX+Z/+9L+/IRbrjvPD1XnhA47nG+U2+11ZBK7bNIRPhLtZt2v6YcRerl/W9M2N0/CtlqLrUvVd2uzaaIIo3MwG7+zyd7v11S1CO5soAx/cgioIAl6QxtJ3M1OGcYgsS7e50BtZ8zZbfsPefcjjtysj3OF4it9nxcsPg0/dMj8GfNLIXbdcczdgLaebsPb+jvWtIz3Xq0i3zeI4uSUf3O0N5d0/69rmBmXuaJRfJx4jcD0/0S1IEpI47vq99WVud40ErrrbSNfcONd/LggCC0tVJksyAgKxIFIslclkbCrLs8RhE0mOkMQYhAhRVBAEAdtyWJhb4pvf/ClTk6Np3QJryYVDSOLUChXFKKpKu9VC0w1IBERZRpIVDEtHEAQuXZzBsS1WV1awc7lU9t22kCWRyvIKgqhjOhbtThtRkLk8t4ztGGvzhUgSx+imgKoa5PIFdM1CUWQ8z8X3fIREoON2eODBvWQdAXAxHREno+F6TZJYotXuYDkWlm0hyRJ+x+eHP/wFjmli6CqFYobvfv8F9u7ZwvT0GKury2SzeRq1Bkkc0Wo3EEUJt+Ni2yYIqUVhanqSv/qbb3Jg/yGWVpbYunWMTtulWW8jSxJJIqCoqVVAFCREIaGyuoxjO8RJgq5puB0PRbEQEHG9Dlfl5+MYJFEmSQRUVUUQRWRBJok8hKhOu94mW+wnkUU830WVdArlDO8ff49yuYRlmpRKRWrVCj29vei6gWmZVFZWWVpaobevzC9/9Qb33ruPhSvzKIqCZTnUahVGRocQZYkf//R5nn76M+zdsx1ZUZi/ssjWbaOcOXuWsfFhAj9g4coirttJpeQVjYXFVcbGh/B9j1de289Afx+LC8sUigW27dhGq9nm5KlzDA0NsLhwhcnJLXhummS7WM6zML/Mm2+9y+jwIK16k+mpEcbGRhAQUVSV5198jd27pshkM7z8yhs8cP9ekjimVmvSaTfZu2uKRrNOrpAjmy+RdUxe/uVr6JrCyGAfvzm4n6cee5ByuYwqGywsXaCnOEG10sJ2dKKgSaFk4YcxV+YWGBns571j7xMFLsePn6a/3INmaJw8fRrd0NFNE8e2aFSb2E6WWq2ZphZBpL9viN7e7JqYSYTl6PidFn6ngaja7N69nVK5SCzAE088hCiLaQJzScHtuNRrDSzLQhJFPNfFc13KpTyOo5OIqXqtIIvIooChm+zeuZVMNoPruUR+RByDbWeJ4hhJkllavIKmGZCIvPGbt8k5Drqtsf/AURwrw3PPvc7wYB+OY1OtVmg3m1imhecGNOpNZEnCyZg42Sy6pmLYOl7HJZfL8+tfv8UD+3bR01vGNCyGBvtw3RampRCFPoHrY2Uc4ijC86qYlkOr0eFv/vZHdDouL/7qTR595F6qlTr5fA7HtgjCmOWlVb76jZ+wb98uDhw4zNTUEPNXFpFkhfGRQSRBRpKhp6eA7Zi0my6SoKTkLI6pVxtYjoOkqPxfX/4GV+ZX2LlzGsvWkUQJ3TAAIc0tGiXImkIS+rRqVVaWl7Asi2y5hyhJyd/VzcTBcp7H94zw6tEZnnjysXRuujbvCcRJgrBu0X6jaMrdWWsk4bqb1/W4L/G2C8nfxgLz5tx3H0ebV90QN0K0FuvWjWh0JS5CWrSbKMr6182ulLdUctPM3r2babnubWxEIrqvVq5+ZUM33Wvnfqs74EdF7mQp3bDq6uYp3o7Y3VDLuld3F9Rbj90tMdugtHg1bdXtyFu31WD6d7ccyf9/xafk7mPAJ43crXGVk8YAACAASURBVMdHcqsnac6ym610V1Ut04HzDoRyA3SLm9soMPqT8vhGVwMArqlDrvnjc73fW7Zt4c/+4qs8sWcUBJE4SeX140aDer3OubOXUlIWSyiGidvpEAYBfifk+Rf2MzY2wNDIAACSJK6RsDT3lijLJImIoaqIooIiyyTErCwtoqoqcRRhGDqSmF5jy3GAhEsXLmEaBu+/f5pLc8sMjfSSzWeQZYWf//zXDAwUURSJdqtDJpclTlx0zSGJRTRNJwh8RFEg8CMSBArFArIsYRgqEBPFMXESI4sasqpT6ildS9cgSCJnT5zD7XQYHRnildd/w9jYIO++e4bPPLKP1eoqmUwGUZQIvJDTZ84yPjmGbTkkCTSbTRJA001kRWV25jJPPXY/jz56H6qmIAgytp1BktJkwnEUp+RMEKlWKoiigCSlCddlVUWWVX703ZeZnB5B12XazTaKonJ5dj5VILUzqJJOIqZuf2IS4zXqiBI4+QHagYeiSGki7UaFsdFhVEXh5JmLBGHIwsIiff19iKJElCS8/sbb3LN7K8VSkcmJMQRRRNc0cvk8qqbxzqEjWJaObhjs3LkFVdWuLUKWV1YZHutndHyIVr3O2TPnyBeLLC4uMjDcR0J6b0VRyOylWbZMT7GwuET/QB+eH2DoBqdOnWXrtmkEBHr7SwiJgucFvPDiK+zas4NMNsPluXkcy2b7tinKvQUS4Gvf+CH79uykVMzz/Z/8gsG+Eg8/cA+VSiWVqa/X0VWFyakJLNtac6EUuDw3yyMP3cvQYD+iCHv3TGIYJoEfcvrEIi1viZ/86FccOX6CndunOH7kJPVKky3bJ7l4bgZdlTly5ATDgz3s2LYFSdZQNI2+gT4Mw0BRVUgSZEnh1IkzTG/bimXrnDs3w/DQELouEAYhnu/SatdRZAFZEJBUC4gRpbVEunFCLAqEUbj23JhcOHeBTMbh2JFjFIs5dF0hjgOC0CeTyaXPuCjSrFTWnosIw9RRVBlV1pAUdY1gJERxiG3pxDFEYYIiKbzy6gGmt44xPDiIphiQJKyurFKvN5ieHieKIxr1JqZpc+LEaWzbIiGm02pj26lrcb3a4NjxEzzy4H0MDg7Q8ToYusGVKwvoukoub+K2WyRhzMpyBcu20Q2RwI/RVIM9u7azdcso99+7C1mW+Dd/+VWefPw+4jhC0y1kRUWWRaYmx5mcHEEzVebnFxgdHaFeaeC2OyiqhKYr1OtVDr1zgiNHT9HXlydfyONkMzSbbXRTY+vUKF/60udRFQlNk3jv2AkKxQKiKCHJMqIkIggJSejhuW0qlSqj01uJ47XNrCS+tqAWgB++coj/+k/+2+sD8jpyl9wSb7Rx7Nxm0FVkZYPFpOt5a5ty0sepa3YNH+fi9o7S+xuonHQnd5vr6we9bt2q3Fzagxtq2Vyxa/Xenrh1J4C34m7I3Ub1/X/svemTH8mZ3/fJzLrrd199d6NxNs7hHOTwmNnh7nIvW7ZCCtsRtkIO/QHye7+y31jhCEuWLHEd1m6sLK0sLrlLLskhuSTnImc49wHMgRkAA2AGZ+Po83fXXeUX1Q00gAbQGM5Q5C6+iBxgflWVVZVVlZnffJ7n+2yxlk+w/dMnd2RsMtfb5D3aEEN3sxjffdwnd58J/jaRu9uGxK4rfa31lGmar4JuzA9yJ/XM23UT1yxm2a0rXjd/vJut39xuvelesNH18l5EZpRS11dy15YY1zsg4NpvT3z1t/j6n/+IR/eMrK36StxaA4BKuUKhWMYt1/EGfTQFCwsXsSzBww/vZNuOGViTDI6iGNcpECUhw94qWRKgaRIvXEbIhCzTCYIEx3FRQtHrD0kT0HSbYqlCv7OMbRUpFSogBNVGiVazhSYVWZoxHPRpNAuMTkxgu0UMyyZOU5I4JyBxEgA+3XafoedhakUyMpI4Ig49giAhExIpFJZp43tDsmGPNAoxTJfAD4iDAKl57Noxi+PYjI5W0M2QAw8cxDBNlFJoUufM6bO89vp7HNi/h9XlDu+9c5yL55eY3TlLkuQxYY5rMTs7TrniMhwOME2T4XCArkvaqz3KlRJxFNHtttE0HcctopsOumkQxj4kAik0Pjp1hl27pkiTEKtQIU4iKrUSuqVjGDbeYAVUMSeJBAx780hlolstgiRCihSVJWiGTUZu/Rkfa1EpuUzNjrO4sECv36NcLrNjdhqnVCJJI37+wotMjLfQLB2lS4SC8ckxojjB0BPIFP3OkA/eP0mjXoUY/GGIa5fIiDl77iNOfrTAw488QJpl+H5EEis0Bc1Wi3a7x5XLi4yOjhF6HlJmnDt3lqefeZXRVpNjR49TK5X4+PTHvPfeKR5+8CBeb8CLr77Jnt3TSBNSciGIqVYDhWR0rEWtUWd0vIluSZQUvH34KHv2bqNcK3Phwjyt1hi9rs+V+fPs2LMLw3HoDHrUWzVKhRFSNEDiuJLZbTt58NF9VIpFRlujlMom23aO026vMDU1ztXFRR5//AtMz4xz+dJlvOGANEpoL7fRTR1DNwjDmExK6q0GYQJK1xgba5BlEf1OgF0qMeyHOIaDoRkc/+AoWeJhWS6GXSADomCIqVloAoRI6Pf66LqOYZQpFBwMyyYMYyzLxbRtgjBCKQ1SgW1pZCRouiSKfQLPw3Rc/EGbxauXMC0L03EhzZVcNV3hFhy2b5ulvXqFaqNMrVHl7Nnz7JiZZaU9j8hSysUKVy4vQCp4/fAHkGWMNJuU3Crf/eunOXhwJ7btcnn+KqZV4GcvvMqOHTv40z/7Jl/73cf4l//Xn/PAAzuoNer0hwNM22Aw6GHYZXwvIk3BdS1MUxEnAYZh8JUvPYTrurRXVzlz+hST401ajTKhN6Dfa1NpVqlUy0RhyPd/9BSjjQr1kRphnGBZLs2ROqVyHmMrVUoSB1iGzdWFZaanx0mSkCSNiKKMVqOSr9obBikpS1evcvK943lamASmdmwnTZNrs3KxweQigB+8do4nnvjKDWPQzd4a6wuGSshrY0q2Vse1fHQI1JrMwLowxmbYKLIihLwrW1BKIYXckuXrVmw22t0eN6hOf8qTXiEESXar2MtGQnJtvJZroiFraiVS3mi9um753BoluT4Mr4Uo3GVoXnfLvFFkZX3b9X+vb7/R7fNmS9Vd2nFt941tsrGedUtmujZ+p5vE961bLtO7tO+d7ncrLXlNl4Zb73LTm7rDHp8+Nr7rN1+luGFOdR+3x31y9xngbxO5u9NxG2PP1pWpNuaou5ME8ScZ2j5pHfd8rvVrvsc4xBvudbPkohvqePRLX+Ab3/ouB3fkVrgMmSs2BgHDwQAlUnQ9X9kvlYo4bplCsUIcxfR6fQQCy7a5dPEShVIRrz/MpdVTSZqkmIYLGaRxhNJzyV/TMvO4vE6HJE2w3GKeMLhUJBO5C6dt2eiGTpolFAouzWaTwO8hRYZEYOkGve4ATZNEUUSapnm8TJpx6vQ5/uYnz/LwwwdxXJvhMMAwjTURlzZCQBJHhFFMnETYtkmWJeimhWWXWF7p4BYcgihP76DrkiDwQWT0el1eeOkdvvLlh4iTEF1pNBt1DEvh2DZP/uhp9s7tYnlhiUazTpatS9bLXJZeF/R7A9I0oVgsk5IwHPZQmkmWZBi6QZTESKXYuWdnnqTaNnnj5cMsLl5lcnwMc93lVbP4xS/eYHJqBCkiOp2raLqL1ErohoauaYRegOkUCKOQKAiQCNyCw+XLl0nihNHxMQIvwDBM0jTB9zySKKLZbBAGGbpu0O/30XVJoWBz4dwS585c4uixU8xMj/Lam0d47PFH+OCDk7z82mGmJyfYvXsXHxw/zaDfZWp6govnL/Htv/4JB/fvJI5iut0Bbxw+SrnoMjLSpNfr0Wo2aDVqbN85y/jUaJ7UXgp27NzG1//k/2XX9knm9mynUq0Shym2U2B5YQW/H/Djp16gVi3z8akLjI21SJMMzTQpV0p0u11sy6ZUrtDvDfjek09zcG6K+UtXaDTq2IaOpWs8+8yrlItFrsxf5czZC3Q7XSrVKoVCiT/9079ibKyOkoowTCgVqoyPT3D8xClK5QKartNqNSi4OsuLC5RqBQxD4Q19pNRQUkdXoCSsLC5g6Iojb73D2MQ4SRLT73WxbQtI6bZXmJieIFMKP/TRDDNXGxR5ioJSqYxlOWQkuAUrTzNimERhhCYlcRhgWwa97jIJkvn5qzSaLYZDn0K5hBQwHA6pNepkIndvNgyNXneVbqdNGATUGg2yNMW0HAQwPT1Gv9Nm3/59lMoV/vUf/0cWFlfZPjvFoQcOMDExQhR5pGnE3n3b6Xa7BH5AtVbl1TcOs7raZWy0ydvvHmff3HaqFQepEsrlCsVCBSlM+r2AMPbQNQPHcfAGA+I4wHGKLFxd4qdPvcCB/duJ0oDx8SmUYXD06DF0w6RcraAbBmmSoSQ8/OB+CgUTyzLJkghN0xBZSrVSxjRtlpeX6fWGWLZDtV4nCALIUoIgwHUKCM1EahpCZnkcZZoQeBG269BoNUHeXhRCAMuxw759c3fso68blDazdFwnd5spHd4JW5ls/nKuYvd2zA02j8/CNXOT3zaNpRPX5wJSChBy0zvZalvfSM5y18o7k7tbj7t528btd26qX/653TWv4R2ud6vWvK205dafwS//7mxFFfb251wndPfdLO8V98ndZ4C/q+RuYwD3fXJ3Z3IHEGEhvCVcO5e1F4DrOgyHA4b9HlIzcVyLIAgR0kDXLZQmMXQDTdfo9fr84EfP8sChfWRxjJQaTqGIpozcaipz4RHPG+ANQ2zHzdXodJ1ioUAYRRTLJZTK3Tdtx0VTgqtXF9byxqV5jjeVwVocZbfT42fPv8L4+AhKE+i6WlvxL3Dq5MeUSg6VUgHHdej3PcrlEkKA5w9zspmmREmMpmlYdu7S6RQqSKlz4cLFPMeaa5HECYN+H6UEnuchBHzlS5/H8wdYpk5rpEWxWKQ/7DIc9Hn4wQcwdBPDMOh02qznsAHQdZ0sy6hWqui6DpkkzkIc10VXBlmaoWkKIQVBEEIGuqnh+z7Li8uMjbawHRtdKdorq1y9tMTpM+fZtXOCKBoShUMydHSjgqYrep02hm6hdI32aptiqUi+sJ+v2FZrdV566XV279xJliZEUci77xzj6sIy27dN0W4P+MlPfsbeuR2YtonnDTh/domDh/Yxu30G1zVpd1aZnBxZUyyUDAc+lWqFXbu3MTk5hmmYGIbOgw/spVgq8xff/D57ds3ypS89wp/9+V8xf3Geud3befe9Ezz08ANoSqIMhWlZSCVBSBYWLnFw/2663R5TM9P8hz//axauLHLxwmVmJif4whceRCjJ5QtXSeKE8xcusWPnLE7RxdA1NN1A13ScgsPO7TNcmT/Lzl27CKOYLE64fPEStXqTDz88w9tvH+PMuYssLa2wa88sWSJwLZvTH5/FNk0EgpdePszf/PgFDEPj6LFTuI6JY5vYjoGuS6SmiOMQMoEQGk9+/ym2bxtldXmJYrGIRFAqFihWquiaTqlcBJGr0KZRQKFSJl6ztKaZJAn8tfhhQcEt4/lhnjQ99Ol2OpiWw8UL89RrVZI4RJDge338KGV8YoIUsGybFIHIUqSSGKaFVFouoGIYGKaG1CSmZTEceJw6dY40TSlXS/Q6HaanJwmjhOWlVb746ENoSnDq9DnmL19m585t6LpC0wTLSwvohkmlViOJE2amJti9awbTNllYWOLAgTl27ZihWq8Q+CHeMODEiTM8++wrPPX8L/jabz9OGsd878mfsnf3dkzbznPdmTonPvyQbTNjLK/20TSNaq2K7drU6nUgjz+MIx/D1AiCIasrnbVFoYAwCNA1DWVYdNpduBb3KtA0Rbu9QrFYQtdN0PIcnbqmSKOAyxfnqdTqtMZGyNZc3bMbzSvX+15g31d+7+7ugpv01b8qcnejBeJe8ZtP7tbjEX+V5O4OIfJ3JHcbLX03WvPuFffJXZqmxGlMnMR57N9dcf2c11wv+eRfzt9V3Cd3nwF+ncldupbTbqu40we1kfTImz7AjFs7snv9QG8wxm+I8Vsf5G9H+G4u94qN5E6s/X1t2yZqmWITN4FNV5k2HgOMT4zxnZ+8xtxEASUhI1/ZLJZKXL40Txz4OK6J5RbQdJMMwbDfQWn6mqKX4NDBvWiaxHEslC5JM4FkTbAlC9E1HU03iJMEy8pFVTRNkaQpum7mgiwyWxtUJL7Xp1wtoxtmLgyDQFfaWjxhbkk7fuoUhw4cYHV1lULBxQ9iHNtlpFVlcnyEYqmA53mMjI7SaXdyl5ssA1KQJtVanePHjmEZudJnhsbqygrnz19kamqMfm+AhiTwI6rVWh4fVnAwdYN6o0yaxXx8+iNKpRLFci4i4bou/e6ALMvVBOv1Op7vYRg6YRShpEm/N8DzfITMQEqUZiBR9LttTFORJhmh72GZBsP+gPffO8Hcvlkcx8EwTDRdoZu5sMr22QkCv0+jWccLIkrlGkmkkUQRuq7whhkJCa7rkqUx/e4qbsFG1yzeeP0tHNOiNdLCG3oYhmB6YobVpQ6GpqhUK3z/R88xOz1G6HsMBkO++8Of8cRvPYxmCDISts1u48L5CxRLZaZnpmmNjrCwsIhbMHBslyNvvsOJE6f53EP7GfQCzp+/wKNffISTH36I7w/5L//odzBNm+07ZknThEuX53EdhyiIMAyTN15/m9//3ceoN5prSaUL7N+7k6uXr7C8vMqlS5cplhw++PAkT3z1S9TrNdqdLstLi2SZT5ZIDN3k+PETlEolnIIDkYfSTU58eAbbcmg2W5QrJUZbTS5emOcf/6O/xwOHdiMNhZSKRr3J5ESLn73wKmMjDWamJhkbq3Po4G7SMGb/vr2YpsnTzzzP9PQUumbgewHvvvsBM9OTVKoulYrL8lJOtp97/jU+99BBhFAoTSBkSobAcoo0mmNkmkYUx2jKIIuh32vjOCZZBoEfc/jwUUDhOMaaK2KUW4njmPn5eSqVMnEcU6nWkRL84TDvQwSkoYdUOr3eEMM0cV0H3w9J4hjHcYjCBNspYOgGjVYD1gQ/Th47Qb3Z4o233mH/gT1Ekc/c3u2MjTZxHZfLl65SLpdRSsfzfHRdw7SMPD+iBN0wePmldyi6Nq1WiTQVudtqBuPjY2zfPsEjD85hWzbD3pDRVo04iohTn1K5zMhIk0a9huM4FIoOWZZSqZRyy30Y0F1tU6mU8P0BcRKjmzq16girq23aq13K1Sq6buIFIf/2332HVrPB0tIStXoVw9QplUvoeq5Oa1o6aRzj91eZv3CRcrVKfXSE5FoIQE68sk069X/17dd47PGv3PBbuuZWf6Ob3FpXfFNZj4XM++atETuxQVDlehd/p3xiW8Xmo1iWpVuu9z83ubveLmJt4Xe9fXN/w1ti6m8hUtexmUvl9Ta5swjLVqx66/Ws/71eJ2I9V+Cn4464fj7B7a/tTmT0TuRuY1v+upE7pWkEQYhpmFvaX0q1+fzpPu4J98ndZ4BfZ3KXZVtPHn43bCQ5W123/GXOtTFdw+3I3aeBmy13d9u25U5ok/oefOgBImeEf/5vv8ljh2ZIMkmCYHR0hCwe0ut1SQGl2zlxEwlJkubqb+SxfUJlRKFHliWEcYSSGlJKer02y0ttLMvFdmySNOXUyVMUSwWU0hAZDPptLFMjiSOyOEMZsHhlEcM0kVKg6yZKd9B0E0jpDno8+qUHEami3+thOxZKKJIkQ8oUyzRZWVlFCEkUxhiWiWNbKKXwhh52sYZAkQY+I60RVts9HNvh0sV5DuzbiW2bnD97gatXVrEtmziKMe1cLEVJwdLyIpIMqRTFUgkp07X3QfD1/+cb7Nk+w+hEi16vx6X5K2RZQr1Wxx/CT556jm3bJoAQ062TxJDECa6jce7cR7hmgdgP+OHfPE29VGHH9u3YFZNv/OWT7N27G6EgziIUgosXzzE9PQlIkljHdEziUPKv/s2f8bmDe7HsMqmIMU2d0B9iGArf9wm9mOnpaS5euMSrrx7h4P45ur1VTp28wNvvnODQwZ1kIuGP/uBxfN9nYmISxy7w2BMPgohYXLpCpVojilLqjSZPPfUiy0ttXnzpNYRKMVTGz37+CocO7s/dACsuL7/6Nr/z24/TXl1memaKXTtnsG2LZ597mWFvSK1eot6oEAx85s9f4Yc/eAYlFYEfU6/XMAwD3dAQKmNmcowHDu1hdKRGuV5i34E9ZCpj6A2Z3T4DSchos0IUS6Sm0Wo2CAKf1ZUV2u0VCuUqk1PbWFnp8u3v/ASBT6vVRAlYWblCteYSkWDqFpqm8+JLr+JYOhPjTQ6/8z6Tk6PU60WMVOPFF16jWqvRGh2j2hpBpGBbDtu2TdHrrVKrleh0+zRHxrDdMnv27yFKYzShSNOATOSTyp889Qvm5zu5gqtr4/U9bGWiGem1PJPDfsDPn3+Di2eX+PwXH2R1ZZliyWEw6CGkwHYcgjDGtBz8YR9dU3jDAZah55OyNCIRKnfVDUMkoKSJEII0zYjjjCQSICJM2+SZZ1+gVCjSqDU5/uFJHvn8QY6+/y47d28nSUMs28YyLdJI8c2/+CG9zgC3aFIoOOiaxmDQp1IpEUYJX3r084yOtvC8DpruYBoW77z3Ho1mkSj2sG2bYqHEpfnLjI60sG0DZaYkcYJTcLl08SquW+Dq5Ys0GlXSJOLou+9Sr1UwLUUUhfhBiOu66IZDEGXops13vv8UrutQrTdI4pgvffFRZmcnmZwaR9PydCzrApZSKkgTkihg4dIFKvUG5foImciJwXp/B9xC7tq9AYce/wMKhcKN3e3WeuW1/TaqG2+RQG3a72/isXHPuN2xWyeNvw7kbuN+Nwus3XxN1/fb5Fx3eZB3ur17JXfX/z9b8wD47OLM7lUc5jfVcpekSa7keUuKiRw3K1zet899OrifxPzvGKS8N3eTO2E9WfjGT/HaSuiGcvO2zVZSt3Kua1bBtX/fax33cq5Pmgj95jo2ltvBdR3+6f/0T/nec0fQRIYmIMkEteYUrl1jsNxn0FtGqQAhFaZhE3ghb75+lMjP8IcBSIVuWBiaSRDGxElK2S3RbBQRygN0NCGplgqQxKRpTEyMUyjQXctxZxoZulagNTqau0cZBlIpfK+N0nIL2/j4LLqsYFo2Y5PbMK0KQlPEhHhBTBx4EIfomkLpOmEY4vkhUukYlkN76Ty99lWee+EdTpw8h1t0cN0Krx85zqUrSwQ+1CqjPP3zF0hSn4sXz0LqMegs0ukt57n/bItao4bSIPSHaErg9T1ELOi0B/h+D7KILIlwXZcwDFhZWmS10ybwhthWmSzsYoiAxSuXSTKJ45axHR1Uxt//r38X3QHbFaRhwoUL88gsJktSLK2ILBjsOfQQqBIZDoah0+0nnD59Fl3a6GYBaaWoRCKSFMsx0ISGynTsYgUw8UPBf/vf/D0MS6fUaDCzc5LWeJVCuYYSDp22h+2YpCLljcNvg8zod0MMigzaQ/rdVRIkf/CHX2RyssrVi23Gq1Uct8z01DiWY7BnbicpGgcP7OLHP/4pzz//EmEYYLpFLpy/QLu7wtTMGFKaXDy/glEoMrNrO7/7tcc5d/4KDz68jygOWVnpcPrUedJMolsOKJ1MU5w+/TFxGCIigYhTzp4+g+cnvHf0LHHo0RteJZIeYZzRXl2h1bKx7QLIgGFfMTqeMTXRgsxn94FZduzbC1YR16jy0ktvIWXCb//Ol/mdrz2Opht43RgNi/eOHKM5UWPuwCxJlnD16gJpFNH32hw/fhxBQpQO6UcBVsEBFeP5y/Q6Vwi9Lu3lRYIoBqWRJCnDTpckTahWKiihcIsFMh10s4hZKIOmUa+5/I///e/z3/3j3yOOQxynyIUzVyjYNeYvdAED1y0ihMQwLLIUHNcCCb4f4q9ZC7PUZ9BZRIoQCOn12yRZCNLDdH3KlSKxD8eOns+JdSFl+/ZxbFtnbu9uLMskiRNM08WPAvykz9f+6Es8/rUvomlGriobRaRpzNAbUnAdOr0F4tRDaSWOHjnGoNfjkUf2YzsurdEZFi50OX70GNWKjVnQsEsultnCLbjEScRPn36dF19+jbGRCQZeRpxZlKtj9LseSmqsLi8hsgjSmM7SMgvzC5w6fpp/8j/8Q/bO7UCSIGWG40iSKGTY9xmGQ2KRkQqB7w2JwgHnPj7J6VMn2bZrL8Vak0wKZAakebzvOmR2Y/H8iNHRkS31y5sLc904imSb/BEb/ighUUKSZem1cq0uIW87if1lcS/1phtKkt2+bIY77Z9kGckmrOR2OfXWVa7T9PoxSQZxmm16HWl6vYgsL0pcL5vj5plG/kTvRp7yBCl50WReric9F9eu55fD3cnKxvu7U7nTc0kR14oSt5abkW5SNscnma3deO9SqA2xsmu/SXWt5PRiY7mPXyXuW+7uAb/Olrt1fGZWr3us+9O4jl/lOs+WLXf3uCxnOzY/fu41Ll6aZ//2ibwKAZZtoRkaq0ttLNNESYHveRw/dhJNabz25hH27dtJp72KaZpEUYKma8RRyLA/xHYKhEGKUHleN9dxCOMEXTfyPE1IfM8nTRKyLEMqHaVpGEYukqKUjjIMsgw0JZACBt02uqUjlSSJM4IgQtNMigWXbqeDkDIfFLOULEkwDQ0p8vyHjXqNXnfI2GiLKApxXRNdN9g7N0OtXsT3PaQUHDqQpwdwHAvLNEnTGKVMCoUS7fYqtm1gGLl1UACaqbFn1wTbZscwLYPBYMjU9BRXL1+l025z4sNznD5zhrld26g3agwGHfqDIbVKjSd/8DTnzs2zfdtukliwutqh2awTRgFCaDzx2KN0O7lYhSYlmmYhhUJTgl4/J766YXDy5Ef8g3/w+5iWzsrqIh+fOkO5WkRKQb/bRwLtbhvXdTl79hwfnjjN9tkZ4iTGNAz2x4eJDAAAIABJREFU7dvF5YuX+U/fepJ6rcjoWBOlG7RaTTIhMDWTZ599kX179+AUXLzhAKWlLC+uMFJvsNpdYvfeOSqVMppm5PGMroOu6+zYPsOunbNYtsXQ91lZWGXPrp2MjbWIk5B6o0KaJlyev0Sh6PKFzz/A0aNHabYaNFstup0elqPj2DaaJtE1A9d10A0DQYQQ0Gg1qTXqfHzqAt//9itsm5miVmnx/LOHef/9ExzYf4je8BK6rDM6XuCj01fYsX2KIIy4fGWRerOObdlkaUKjXgIk3jBkaWEV2zDZNjPDMz97CWnA5SuXmZ6ZJE0zLsxfoli0KRZswiDJrdRZSLVSh1RDCp04gpVFjzTRabTKIPJ8hUpKJsZazMxOoRsCb9gljvM8f1EUkSRxnvi+18PzfMrVGsvLy7iuw/MvvMIzz7/M9MQ4lqWIk5C33nqX6akdfPObP2BubgemYeJ5AYbuoqSOkgZpAlcuL1EsVTANEykUaZphGBZRmKDpOiON3G0xSSJ03cCwLAa9PnmuRgOpNI69f5zDR44yt3sHoe9Tq1fQNMXqyiqVWp6OJApjkjTEcUzSJGVpeRHHNXLrn2OvmcF0/uNf/ZCx0TpSgK4kcQz9QYeFhWU6nSFf/vIhBAme51EsORi6JAiGeTtaJkJK4iimVK5y+cpVGo0yShO4rkMQeBimRXu1zbe/+yM0ARPjDSQpceDTaa8ShSFBELFj106Qefzr+iLh3fD1773FE1997NYueJN9b7YobRUbrXnX6/gE3htbPNuni9vXd68JxTdzlxNyE3q1ts8GTnfHeLJf5tpubfqttd9mHkzr9d9OVfPecfuD18/xaVrkblffZ2d/vBPEhr9vLPddLj973HfL/Azwm0LuxB1i17aKjM1TBWxMdH7rp319RW+zDja5w7Zb7mHDNWzlXqTSblhp3SrW4+qyNL01SflmAf5C3LbcbnT7ymNfZHrXAf75n36bxw9OkwlBJiSGaeDaLvPn5xn22zRbDUZGmzRHG+zbtxMhBKapg4DAj9ZyTHU4//FFgiChWmsgJISev+YeoZEk0O/2OX/uIprSKJTLuZy7phOGQU7c0jSfeGasCatIAn9IGPr4vg8in3xHSUKxUCQTGUJpIDTcopvH/oQRnu+zutLJc/bFCWmaUa2WaY3UKRQc+v0euplPFv0woFgsUCwWGQ4G2I7DxYsXqVbLJLGk1+tRXIv9GQx6GLrBcDgkiQPi1GMw6BAGMa6bx8lZlsmVy1d479jH/JN/9F/RHKkTxwnlUpUoCDBNg/HRFlNTkyxeafO9J5/l1EdnWVy8yt69u1G6SeAHWI5NuVzMLZrSJAqG9Ac9TNNAaRpx6NNs1HEKbh77GEeUCgXcYgEpFbZlYug6drFIe3UV1zE5sG8vmmFyZf4yjmvQba9w5J0PeOShOebmdnH6o3MUS2X+w//3HfbP7eFf/Is/ZW7XNsqlIlJqvHn4XcbHajRbTYqFKi+/9RZjIyOUy2XOn7vAxOQkC1cWefrp5ykVHaQmMG2bt986yvTUJCNjI/Q6XYbeAMexSNOUMAhI04Ras8HCpUvUqlVefuVNHnzwEL43IMtyMp0kCd3VHrpmkIkAx3WIw4j2SpfDbx8jIyGOOrz73vtUygX+8L94FNtsIPRVTFklpsfstr1cujRPrV7PlRXJCH0fw9QxTANvGCKQPPPcy7x9+DhT02McemAPBx6YY2bbOK5bQErJ2Eid0dEGg26PlaUelXqD4bBHlgkMU6BpkjgJkTKhVHHpDfuYhp5bhITEsCzSJETTIY4jwiBXi+ysdLBtE3/Yo1xr4JbKpGlKmuTvV7Ne5bEvP4LtOlSqRUzLotlskqERRxFSCuIkwXZcfvyj59i9eye+F7C01OHrf/JX/NZjD+EPfYZDn+9+72n27pljZXmJQsElDEMuzV+m2Wxy7tx5LNOkVM7VKTWlCIKQqelJts9OEgYBpmXSbbfRdI1iqUS/28cwTHq9Dq5r5t4DWcrI2AhKkziugyY1Fq5coTE+zhc//yBJnFKr5iRfSAtESK1WY8f2WXQzw3YdwnCIWotxkppiabFNo9Wk0+6glIGUBvVWhXKtQhyFDLwhtuNAJjAsnT27tjEy1kSXKVcvXUYpicgy6o06teYYYi3O95qb3l365X/2jZf4X/7X/3ktxvhGt8VN+941bE4S1mOns1t+2yz5NJv99kthK0ujm42mm/nJ3PrbprFpm5zhXonAOpm4G7m7UzzZneq927XdLIKyfl93i8Pb7N7XY/82ttXNidNvFxt4R1xLgbHxusVtr2MzbLXpNvPNutOx9x4nKq4dd6djNsbO3e47vI/PDvfJ3WeA3xhy9ynFrm1GWO4Wj7cxF9G9bLvTNWzlXnJC+wnI3YZlx5vruOfO6g4jnGmZPPHVx/nfvv4NHj84nf8oRU7AikX63VWWl1eo1nPXyHZ7BUM3GAz7aLqObTuEUYCmdEZHWjiui1KKIArI0mQtiXeeYPnI4fc4/M4xhsMh22anEEqiazpKk3jDPDm6UjqGVLx/9H2q9SpSKWzXxbJthNDw/YBypUQYh2iaQjMtkiShWHTJMoHtuNiuS61eJ4hiyqUCge8jlcR1bIIwpD8YEgY+fhBQcAtYlk3oBSQbyIaUAs8PsQydwPdJkgTHdlhZbSNlnvum1Wzm1pW1Sbg3GNLv9ZmZmebwkePs3j2FrmuEQYA/zPOSDb0Bmp4TizjK6PY6/MHXvoJhKJQUdLoDzp+7kOeVk1melytKCMIhpXKROI7RDQdDSTqdPoVyCYBhP5fZD4IQy7LX1BVNgjC3Zpw8eYoXfvEm05MjvPnWe4yNVigWC+zavYtjx47TqFdpr/QZHRtl/76dKE3nwNwsvU4Xx7awLJt6rb6mHuqgaQ6z20aJwgTHdfjp079ganIMx3EouQ5jE6OYroWhm/zgB8/xwKE5pJTYtsXzz7/CSKtBoZC3faFUIs1gamKUMx+fZXxsDNPU0U3FubNnqFTKLFxZRNMMnn7mJfbMzZCluSBQoVBibKTBo18+xPhEhc89sJ9t22YwbBDCYjhcwnXLLC0toxkWpq6xvLxKvVGn22lTKpV56aXXqFTKFItlhBDs3bsLx7JxizZpllKqFPC8IY5jY+gWtm0gRMabrx/hmZ+/yee/8BDFikPkx3j+EEM3cjKiwPMGlMtVsjQlDiOUkviRjyBDSoFlWnzr2z9k767dOIUCb77xJrouKVfruUUpS9A0DchQUhJHEUrXMExtLeF5hltwcF2DUqVAuVIBFKQRjmvjug5CQr/bIY58JicnMEyTcqGAaZrUm3WUUli2xcuvvsWhQwdwXQvbdZFCMBgM6Pc9sjQmDAJs2+aHP36WBw7uQ6osT+0gJB9/dBa3UEDXdZIkxg98NE0nExLTtLhyeYEozAWLMvIcbJ1Ol5HRFmmWIYWOkAm+HxB4EeWaTRDEXL18lUq5SL8/xLRs3njrKDtmpxFS5lZcqZFlCWmSpzgxTRspNYZDjygMclEnUsLARwC261Ku1hBKIxNqTVRqQ197lx7dtxrs2rUjjz++hwnqnax6bGKR+zRI0N3x2Vr/NmuaT+O+NgqFXP/tVnJ3r/ikFqi7vQJ3sphtFvt3bf8NhO9ekb+bt1zphv9upY6t4d6f6b3GiV7/Tq4fc9869+uG++TuM8B9crcFcneb3++27U7X8LeB3K0nfn/88a/wv3/9L3js0MyaBS+XEB+uLqKbOisrKzgFl0KxkLtElgpEYchg6GOaBsVCgW57FU0XpOQWOUPXOH3qY6IwwbJdWvUa42Mj1GpVmiNNlK7nsS0iQ6nczUrXLfrLi7RaDYZ+Hq8lNB2JRppmOAUHqVI8r4fjlogzMG2HJArxggjdtPD8iFRKut0+pi7p9weUKwUWF5dQmkJTBqZtYlkWhmYQhbnsuaZpuAUXz/NYXl5mfHyETrvNYOhj6CbFQpkw9igUXKRQueKglad7yFIQUqwlDhbs2zeHZRt8/PEZms06plbhj//v/8QXH92PaWn43pD5+Xm2b5+k2+syPT1JoVDi6sIy3/ub5zh0YA+WqeUvZhLi+7lFIooSlHQIh0NKtTopEiXyFMhCJHkspG7R73YIfJ/3j15kanqU0dEmrmXQ6/YZHxkhzXw0Q6JpJpMTDdxCkXq9yfJyG8u2OX/2HDMzY7SaFY4ceY+3jrzHxOjUmmtrieeefY2JqVFK5TJpmrG4uMTc3E4G/SGWoaNbBkkWY1s2I7UaTkEniSOk1KhUqvQ6Hi+/9CatZpMjR95nbHyc3uoSWZpHHBVLRbI0odms4XtDrl5dplatkcYpTsHGdVwMw0AqQZbF6I6NbRlEUYbUHLw4xjRg6UqHcj3FNsaRlkcSacxfvEKp5FKtlMiylInJaZIkw3Us2p0VvGGf0ckZ/vI7P+SrTzxKMBiCSlFKkkQxSsGg36FernHi5Hn27tsLWcTLL79J7Fs0m6NEYe46WyqVQElkJkjCCARcWVygXqnT7/XwhwEFy6VaaWDZJkXHolYvIjQToRnomiQKI5IkQSmJbuhITdLvdwGwrQKZCgjCAY7rEAT5YkqtYqKbedxdEAXs3DXN6GidLEuxHItSuUipUmY4HLC4uEixWMwtv04BpeWELMsgiVN+9NNnmZkaJ45ilCbZsW0KKXLrZJxkKKlRLpWxLAulTLxBH8dxsSybOBVcubxAt+MxPjJOFMasLF3CNG0q1SpJBso0Cf0IwwIQFIslhl6HLDMYG2kgAU03SVBMjY8hlULXdQYDD00zsGyLMIoxdIsslfh+TGd1ldGxFv1+Nyd/WYppO7ilKplQIDUysUGJWFybIt62r1ztD3jg8T/I++D75O6udf3tJXc32nk/K3J3Xezj3p9Tlm42T/jbQ+5yUZQbLaSf7vt8H/eK++TuM8BvArkD4JrE9CfvgcVaPZvVfW37J8TGWu/aYW3xXrIsveZiuRVXyY31rxO79U7tk7oY3M5VIdvgViSk4Inffpx/9vVv8FsHp9fcTzOKlSZpOOTyxctoGJSLdVZXl1BmRBANcKxcmTIIfJRuIYSJriyElhD4AaOtEf76+8/w3M9f49yFCxw6tJdqpYymJCQpcRYipcyTQCuFFCBUnk7AsS2yNEGkCVmy1gZSkiExTIc4jZBIZJoSRcM1y4KFYeiILMXQNZLAIwh8ut0+cZTgOA5JEmLogk5nmSyN8T0P07ARImEw6JKlGbVKE4TAKRQ4d+4C4xPjIEHEQe5eadloukGn0yMOPXzPY9DxOXn8DJZuo9sBaRKhhEGpWGR+/iIr3UW2zYygaTpRmHD16goHD84RRz6lYgF/OKAxWuFz+3fgugb9QY9qpcy775yh3ekz0qqRpiFS+sRpwoljZ6hXGpBlaHqKN/AoFIq02200CQtXr/L2+x+yY/s0tlMgJWV253YK1TLVRgPDdElShWHZuRVDwp/9u29hK8Vrb7/HI488hNR1qtUyDz/yAK+88TYnPzyLqRTFso3jOrz+2hGmJkcZGamjKYHv9XEKZXRl8c6bJxgfG0OqDGkIkizBch1KlSKVWpFKrUahZPH2O+9z8ujH1JtjZGikMqRYLaEMG9+P+eCDjxj2QqZnp0lFTKMyilQ6QZC7IpqWgRAxWWYQxxlKF9imIpOCwy+9xXirgWUrQiqYtsHo+AhpFmOaBlmWohs6QqVkIoZQcOL904yNVpjbvYNStYzQFF5/gGk6eJ5HhkQ3HDRdceDgDi6cPQOZYmpikkariFsw0c08sD9Lc2Ghbn8Rwy6imTamlQt2WLZFHMeMT4zgB300y8BxCxhGgV57mX57GSUFpq6TJAnDoZe/v5nALVhEUcZg6KGbKRlgWYW1HJKCNA0xDItetweZoFqu4Pf7pCjiJMM0LeIoIAzge997hn27dxNHMa5tk6WCTnsJwxT0+n1eeeUDDh3cQ73VymNndcXKyiqmZfPuW+/QqFdJZIbpWBiajlK5MsXi0hK2snnhhVc59uEJPv/5fays5sq4hmHy2mtv0l5eplx06AyuoAmNt15/h1LRRWomloJL85dASeIkJkkiHEvi+x5pmn+bKQJNCZIsQxkmQkmWFxexpI/ne5imSZJJitUqhu2wvsK/RgXyXv2aMSBPe3BzWd/8L7/9xg2xdjf3xWu1bS7ktWEWenM/fjs3zlvq+KVwq6Xjdri3Ifr2dd3sWphln/y+lMjJkRRcs7AmG+pLs7xs3G+9bHaO9f2UFNdEbzYbX7Ob/i8fM+UN97zxkHWXSiXWTpxla/Vvfl9C3uqKuVn73ewKertyjfheO9/1570uMrPZM9js+m5ux9u1Ze7WLLb8TO88j9nsPV23zMm1PHTyNvvcx39O3Cd3nwF+U8jduvXulyF3vyps1lXIDSSNLNuyFfKXEUD5LF0Nsk2u4YmvPs7/8Sff5uHdIxiaQiiF7Vi0RpusdPr0+n2iYIipF3HtKmiKXqdLqVRCrcXIoVJAEfsxSwurVMolHn7kEONjDY4dP8m2bZN4a66SSmlomkGWCQI/Zjjwse1chW+9jaSUhJGPEBAnIUpXpGlMGqXoyiQjwzItTNNh6AWQgdJMlGYw7IXohoOuGYxPjWMYJr7vMfSHFIsFwjAmTSWarghDH6UEpp3nxxEKLFPDcSyKJZeVlWV0w0LpBoHvU3AsFBkpoGk6tq1TrbpILcWyLYQAJXSUVJimzr69O6iWS/R7fWzLxHFNev0OhqkwTA3d0AnW3E59P5+c6roiifO4zTiOcmEVTcf3A55/8U327tmFpstcyTMUfOfJpzj04EGSNKLeqrN3bg+6rpGRceHcRcqVEp7XxzAkcRyh6zpCCOIkQiHxhwMeeeRzkCWMjjWAPHH8cDBg+85tbJ8ZZ3SsyU+feZ79B3ejS0WlUuLb3/0xUxOj1Op1jh8/he/5vPHWu6RxSKVSJkPy4ouHadUbZMCrr77FgYNzKAV753YyPt7imWdfoNUsI0VKpVrKSashmZ2dIYkyTpz4iJ27d/LDHz7NsN/nvaPHOHnqI3bt3E6WrRPmRSxLQzckSaIoWi6d7iK1Zg2h2fj9DhKwHJc4g4vzVzAtE9008f2QI4c/QArJyTPn+eDYKSbHRzAtiWm6KKUTxwnf+qu/4eGHPofQNAzTQWmKar1Ec7SBpkkgJUlCpNRI4oQoGmJYEiVNslSglCCNQVMKzx+iG1oeq1asXFtxNw2NIPBxC0XCICTLQDd0TNMCAYNBB9sukiYJRbtE6MfITECWkCYhkBKGAZ1Ol2q1Qpwk9LsdllfaNJqNXO4/jRDK53MP7SYMe2SEIEL+zR9/g4c/N0elVuXSxStMT04yMtokTVN8f4jv+Vy8eImJyXEatTqarqMbOrquE/ghYejR6fawTZswEDz5o59TKLg8+MA+LMuiUCwjhc7pU+fRdJ0f/eQXPPbYF7F1m0ajRrFUJEoiIi/AtCwMw6RQLJKmKVEqsW0X3dAwdQNJRoqgvbyCnsUYKkNXKZqus7rapd5o4haK12a7t1NZvBME12Pt7tif3nPNv0ps7b7zoS3b8v6/Ktz82ITYXIV7q9a3a3F7dxlf14+9/t7c2UJ53Up3I3m/LcSNx912t3vcb11jYKv4tEVWPjmuX8j6fEtuKPfx64v75O4zwG8KuQM+FbfMLZ+L68In67jTuW9YB9rM2rZx361a4GDzJbbNzn8TeVw/z1aQrS3p3QsZXH8WN697Pfb4l/mzv3yan711ii8dmCITAqUbFCtl4jRBpDGOWSIOU6QmsW0bISRRHCFlRhh6+F6K67isrrT51l8/xehIjbm929k2PYHt2miawDRNyFJ0TSOOMgIv4t//++9imDAxMYbUtGv30+91SLLkmutjFIeYug2kCCno9YZohoGmaWiamQtRpBm2XeD//Nd/zs4d0wShj+d5gETXNYqlMkmaMTIyTqe7TJJmOI5LRkaSRGvWggQ/8NENnSxNKJSrrCyv5sIYpo4/HGJYNkpTJElEKhJ0XZAkCWma0u8N+fHTP2fXjgm8fo8syxVJlQTbNTFMhaaBYVh0Ol3CMKBWr6JrikLB4fSpUyxc7dAaafDMz1/k4QcPopRGoVhi39wuojhAiAxvOKQ/CNi/fw7dNLEMnTRNsWwX3/fpdjp858mf8vmHD+EWLNIkIssSAs+nsOZimwYxjWYVq2DTGm2ilCKJIyzDwLR0/NCnWHAJPI+vPPYISheUSyUG/T47d2yDDI4fP8X+fXsIg4BTH5/h93/vt3jl1bc4d+4Kf/SHv8sbb7yDbZnUqxUsx8iTzZomtm0wOTnCK28cxrEsSNI1C44kiRM+Pn2B9z44za6ds8zNbadUcllcXuGrT3yZj06f5ec/e5Ndu7bx1ptHmJoaY2lhCd1wOH3yHJWahWkbeMMAxzLw/QDDtBCayuX8RYbSNKTUmRgdYWZmktlds+zZtYOFq5dZWbpCrT7C+XMXOXLkfaQUzG6bQmgKpWm4BRupCaI4glSgNEWcxJw8cRrbcVBktFeX0DUb07Q4d/ZjarU6QpAn1AYc10bXbZIkzXOxrYkOhEGIEJLFxSXq9fqaAFGPKApw7ALe0OfF519ncmyc1ZUVHNsgiUIs26Ld7tJsNckyQZqkaAqaoyMoTSMMA/zhANvJv+NuZ4DrlgiCmO3T41TqRYbDIc/+/DWOHPmIgwd2cvXyVerNBkopGq0mUeiztLSKZpikSYSmsaZmG5ClYNtF2qt9Hnn4II899gX4/9l78yC7juzM75eZd7/37bVXoQoLAZAAuLPZbKpbknta0kiWRxOytYwVVshrTDjs8KKZmJHGdsw/dig8GiksR0w4JI00klotjdSbWluzW81mcyeb+w5iI3ag1vfqvXf3e9N/3CqgABSAAgl2N6fxMS4I3CUzb773MvPkOef7BBRliakqEXHTNJmYmORjD9xFlsDy8iLd5RWUkpSlIPADvMAnzwtMywYhMGwXpQyUUCwvLNLv9fAbNV575RX27pxkYf4cpoK4EEzNbMMwTfTarv9WxsaNEgTr+PV//zT/4n//Z9cfT7c47t5cXMtr8X69Gu9nhr749ushcxenucpY3KDbfsWzUoprMkZeS9Puavdd2bIr77vEW7rJvKwvXNukkA3X1o/1PLn1B9cjZK5mmJRXXw5sWsf1cNEIvLHPXWyIDrpmO7ZY3uWf5/WwTrKilPG+I5Ru4buLW8bdh4CPknEH39k9wfXB9Ubr3vLgchO9kJfUeYPG3Q3fz+aT2To+9uADLCws8YWvv8gn754FROWBcio2x3C1h+9ZhFHFNtgfDomjCK0FzUYb1/MRWpNnKYYBDz18H4ZRkS0IoUnTBNAVs2BWkKcln/3jL7FrxzbuvX8fZVliGApdVuGvjutgO+6FEBDTNCnSHC0KSl3g+cFFo3xNpLQsS8Iw4tOf/gTNVh3X8zBti3qtjue7rCx3sS2bxcVl2iNNfK/G6upwTcjcxnN90iwjz3IMZZBECUJIbMemKAss0yRJc4ZRhOvYJElMUeQsLizRaNQQwPlzS7x7+Bh3HdgDAjqdEYo8o9frYjs2aZaiDMWwH3PsvVOVEHSS0u/3sW0Tz/MYn5jgrbfe4Y69O7Eti35/FcuyQECWppVHx7IRQuN5HkophNZkaYZUBkVR0GjUeejj9xEOh5imQpcFylCVpyVLicOI3/v9P2ffvt14tQDTUKAr78/S4hJFniGkgakMnnrqOWq1AMuxefvNd3n2+Ze59547KUuYn18iyzJmtk3yiY/fy2uvvcmOuTlOnTzPjh2zNJsBy0tLuJ6NXw8wlUmSpPS6y9iex759ezl9+hxPP/cq9959O9I0yfOSetDgwP69vHf8OMeOHWPPntvYsWOWKIqZmppkcaHLysoSD9x3J+EwZLU3pNHp8NW//Raf/OQ9CCF46cW3yfKcyanJatOn0KRJgs4T0iTDlAZJGKGLDJTB4088w1137ef8/HnGJ6awLYNts1PMbpvCMFUVWkyJkpKyKMmyHF0Klpaq3MH+6pCTJ84TD0O8wKJeb9Pr9bBdiVIVn3uaVqQotu1QlBBFEdFwSByHFxZqg/6Q8fFRsqzg/Nlz+L6F41qUhSCJE8q8AF3iujZKCVZWujieg+u6IASnj59ibHy82nRJM1zPxTQNLMtECxPbdvG9GrbjIqi8hqdOnySKEm7btYt9t99Os9Wg2+vx/PMvsX1uG4ZhkEZD2mMTWLaN59n0e12yrEBQ5Rs6js8f/vGXuf++/Rw9epSR0Ra2a1MUOYNBxBe++Ah337UHyzZZXR3yZ1/8a+YX5nnggXt5440jPP3Ms9x5YB9JklBoXYVbC4kuC6Q0sGwL23FRhmR8pEWRRfSjiPbYKPX2WLVgXNdq2+K4uFnO3bdeOb6p9MEV4+mWarjZuN525XcKG8PnqjMXpxdxndZc2xsGN260bfW+m2XMrGPTfMD1hM6bUP5W67/RZcl6VNXN64+tGJcXvzNKVSGX32se41vYOm4Zdx8Cbhl316jrlnF3jUf0hfCNKl7/0mfv2Hc7o602j37rSfbtnEICCoHt18mjMxx/7xCjnUkynSOFoFZrYVsBWitynRBFIUWesmPnFIYpkVKhDEWvu0Kz1SDPM8JBj3JNJL4eeNx15368wCGJIyzbQkhFkiQYhkUcZViWjaFMsrxAlCl5HlGWBSUKITRaaLQuKMoCpMB2JFrnCFHJUpiWgxSCsiwodKW/V6s1CcMBlh3g2gGGaVGWBXFYMU86jodhmJSlJo3DKs/L9TBsD60MAs+h1+8jhUG93uLw4ZOMjtQxTRPP8YnCiPHxBlma8eorbzExMYJlK/rDis1PSQMlLc7PdxkbaZCmCa1WkySOiKKIdqfD5NQofuDgB26lCYiqvJ+OTZpWRmca9SiKjDTJScOUaBhj+zaGWbEtmoZBlmfMn1mi1W4SDmPzMiVoAAAgAElEQVTypKQ37DE2MsKubVOgFMquNAfLssD3fQLfJU5iwMSxHbbPzbK80qM/CNk+N4NlKEbHxrBsmxdfeoO9e3Zg2QZCasYnxpHS4PXX36bVqDE20ebo0cPs3DGDYbq88fpBylwzNTNGqQwcz6fTGWVyYgI/cDlx4iyWabOy2KMkZ/uuGXzXwfM8oJIxeeetQ7z77lEmJ9ts3zGLkhZvvHaUZsfh4w8+QJGnpGnKzOQczYkxlpe7WIYiTyOiQR/PUdiWxUsvvMrZkyeYnhwlSSK++JeP8olP3Mfo5BinTx7Htkz8wMO0TA4fOkSnFdBdXiKNU04dP8doZxSkwWOPPc0dd+yl2WyzvDTgwP59uI5Bt9uj1WmR5j2EqHJxbctlZbmP59QpKbAsh5WlFXzfJUliPL9Gr9fD82sYqvKSO66k210iHMS4to9hSVzfYWxmmn6vT6PVIgyHJGmKaRi02p3KqLQlWVEyHA5xbAchNChNkoRIBWkyBAqkEIyMtJicnuK5515hdGQCZcAXv/wIbx18j+3bxqnXa5gGKNslTTJWFucrFlFpVWGupkU0TPnEw/fgeDYTk2MsLJ7DdioPuNaaO/fvxvNdlCHor0bcd9cu7rvnAHkuePfgGd54+222TY3RGR1BAMMwRGpNOBhSlII4y5GGTZ7G6DwBSkamt2E4NYqiCpeuFqyw5bDEy+77t3/1PL/8z/7p1sbTLd11s/G9Ydxtxux4gRhkTZfuauGeVY7fpdf+QzLuWAt13ayu/3CNu+t77zaSolxKInMLH0XcMu4+BHwUjTvxAYlVtloPl4Ue6suvc70QzItP6wsZ8xezmtefvSnvsknY5oUQlA2Z1NfK4bskzOSyUE19WTb2xgH9aoPq6MQYM7vu4F//7hf41DqTJuDVR2mPbGM4CAnDAQJNlkVVuJ+oDCvLkgR1jyJPq2RsWTH9Oa5DiUaXBVEIvZVVDCXojI7gBB5ZGuI6HkKalKKkJKs8eY6JJkeWJWQ5vUGPRmOUPINnnnqBsZEmhpAMBwOE1hWhSqkrshZpkGYZjm2jhaIUEqEsCl2C1JR51T+9XreSX3A9pGnTWw7xPIEmw3IbmKZX5RgpQX9lQJHkKFll8zfbDcJoyOhYG9etpBlqjRrTU+NYposhDUwlCGoBKAsKRVkWZFkf05KMj7URjoehJOFgQByG1BstykxjOwZa54RRiJAmlBl5qnn15XdQQlGWGYa0sEybF194me27tuN6DqbBGitjhGWaPPbo0wgNK90uge9z8NBR5ibneOSrT9AeH2V8vEMWhwzCAXUvYOncIuEgwXZquIGFUJIoHjI62uHdtw8yMTHNyGSHYdRHk7NrxyRFCa7r8ebrBxkZ7RCFIS+8/CbjEyMYpsO27dtwAp846nPwzcPsnNvGmXPzjIy0SeIhvusgdMH8uUWyPEaKkvGpUU6eOElnpINfcyi14Ojh46RxwutvvsmP/r0fwK3VcYI6/XDAztsm+fKXH+Wee2/H8zwGg5C8iHE9hzSJcRyXJM1pttogDQbDmLKEA/cdICsL6vWAj33sbopM8m9/+0/4zKcfoNcd8Gef/wb33befsbEGZV4RAL3z9lGWlxOmt01SlCGz2yaxLBNEyRNPPYlQgvHpCdI8wrZM8szAoPJCocC0DFCSIgnJ0pBCp2gkjutTlBl5VnmrHcdipbuEY/sYRoDv1vmDP/oi93/sbkzTRKLJiwzXdYiGQ1qtFnlZokyrkiXQOa7j4Lo2/X6fJE0pkhJKSRpnlIXA8wKUaZCXeeUxdyy++fgzfOux5/jv//F/wUMPHKDTbmKYBlmeo/MSQ0r+7hvPMje3E10KXN9gGPd55tlXmZ4cI0tC8jShSG2++rdPELg1XNdEmZCVSbX4pUdndAJpuAhpsH3XOD/wAx+j2a6T5TEIcGwfaToEjRpaZwx6PUylSLOI1ugYdtAEsebtp8p7EvqycPvrHWLD3zU8+BM/d8l4uD5Wbkae8t3Fxre4iGqBfbNy6NZzoDdjKtxw11p1cs2wvkj0vHkbqqnr0muXE6NsJE+5Vn9vRhayGTYzArdax7WwGXGMkFDqzUlVbvb35trhm5tdqBq11Xy2a7d343dQroWGcuHf69c2I0W5FYr50cdWjTv5YTfkFr4/UTEzrh3KQCrju92k73m02k3+j3/5q/zp06c4cX5pbUKviEfao5Ve2XAwYGlxkTSJcEwDRUGaRETRkEIX5EWGZVkYUmEaVa6aRhOGGSdOnKfIwfcCdClIk4Q8q0ghpNbYlo1lOUihSJOULEvQoqDdHiXPc0Dz0EP3YbsOUinqjTqO55JlWRV2mFQLSMuyKNZIIYqixFASx3FI4qTyBAlodto4jkMUxYDkG48+y4njZzAMm+EgJkkK+v0EjQUo8nzdI2gThzEgqDcbCCFJ4ow4ScnynDQrMCyLbq9HmmUAFIRkeYTnNVnthVVukSEoipSg5uL5LpqCvEhZ7fUAjW0ZaJ1RUmJYkl27tlFruLiejec5gGbfHXs5e/Ys0pB0V1axLYdWu013ucv84jKdkYCZ2RGUUfCxh+5Cyao1L778BkJKpJD4bp3lxS6Li8s8+eyLGKZi0B9Q5PkFgorde3YBGbZt4bg2SRJRlBlSVB7FbbMzKKlYWlrhv/ql/5Rvv/gar73+FoZpYCgD0zB48GP3Ik2Drz/6JEkcEvaHLC8tUavV6HV7jI2O0my1yPOMPbfvxDA0CwvLKKk4eeoM9XrAj//432MYDpicHsd1DdqdFsPBgJ//uX9IrzvgS1/6Km+/c4TO6ASrvVVq9RpJmiKlIs9zijwnqNXYtWcXpjIodEkYpRw+dBTbtfjv/tufJ44jJqdG+dmf+XEQgizNOHriLHathuPZPPjgXZRliuN5NNotkJI4TfnJ/+RH2TY1idCaWlAjzXJcz8V2PaRpIKWxlncjUJaF6/k0G006zTau5eJ7AfVmAJQgJZ3OCMq0SdMUTckv/uc/hWVZmKZNUZbkWb7GileQ5Qm2VRl10pAM+oNKU05KTNvE84JKt9CxcByHQ+8eZXFhhaIoKbKC/mCA4zg8cO9+SlFgWQrHsyjKDK1z4jhhaXGZJI4ZhiFRFCINTZZC4I/wYz/2Q0ipSLNsTavS4cjJ0whRhUs3Gg2CWg3HcZDCJBxGAHzhi39dhT07gigZUJQ5g+EAJChdEA/6DAer1FsB9VaN0fHxK0IAbwa+8sTLN62s/xBQ6XveWoDfKMrqp/t9ifW1lpLiwnEL39/4Pv0p3MLNRJV/VR1SGZi2gxASpdZyN3TJun6cLstLjnXoUl84NsPl929W/1bbea3yN77L5dcube+V58prtFFKueXl0C/84j/ihZP5hRCboizBENSbLRqtFsowWFpaYv7sWcqkRAkPXXoYsoapaugiJ00i4niI5zm4tsXUbIu9eyexnJJCD9FENJptkixByZwo7FMmKUoIpJAow8ZybaQJcVywtLiCaZjkeYaQiqLU5IWm1ALTdvB8D8/zQcOgP0CXmqLMMVSVFySEwvNrIBSW7aJUZQC6no8yJL1+yHK3T78fEtTb1Fs2WubkRYztwdvvvnahvoWlHloLet0Bw0GIUIo0zSph9VqDheUee27fS14UmKZBq+3TaNYQ2mR0ZBLLtNFFhmUqBv1VLNfGcj26vRVM02R1pYekROfDSmtPaVqdgDSNcV2H559/kV6vixe41OsBRZEzP7+CMgzCMEQZkgfvP8Dc3G1QWjhOnTJX/PXXvsaP/OgP8JlPP8z5c+dwPZdskKCkQZxmfPwT96IpcB2Hc2fPEUcRq/0+7dEORRnR6y7j+3Xq9SaddoswjFk4P0+WphRFwV8/8i0WF+b5xV/4h5w/t8AzT32baBixOL8ISrC4tMQ/+tmfwjFsan7AF7/0CHEYcvd9d2ObLl/9m8eIhzH9Xo+yyKnXG/T7QyzLpt6sI4VmcnqMIg9ZWjpLkgzxgzq+53D29DleP3icA3fdTT9MaXfaKFWxf/7VX3+NPC8wLBMpRCU0Xpa4rss7bx1i7+17KfKcXneFPE/J8gTTVnSXupw9vcQwKUgLze79u7B9BbJEKolUEoSu9OJcG0PA0rnzZGnFelmUghzISygKePvNQ8RhipQWGklZaHorKxRZtTFgmgZ+zSMchiycXyLJcmzHJs8TTp44SlFUxCtSmpVguoZ6o0YcVb+1KAoJh30azTYCSZrk2KaHYViVXmWWUpaaXj/EdX3iuI/n+9SCJo16k85Ig8B3ybJkLZ/OJI5CbNvjqedeIE5ifuY/+wn8wMF2DSzLR2iD8/OncPyALCuJogi35vG//I+/yLbtE1i2xXAQ01vuUZaaRjBKEDQ5cugoP/KZh7FtG10aREMQOqBRG0MKi978ObqLC9iWQ1CrI01BiQa5rjuqEZe4TbjS3ttCOlB3EOGO7/2IehMuekSqYX/r7yDluhHHFceWaxfrNX43/Jl6ra03XveNvueN4CrT7wfEVvyL1/ZDbuZ5fb/tuPT7culGwPeOh/sWvtu4FZZ5A/hIhmV+ByQRNk7MVfhbxvLKCo5lXtCPu4DL2nJRRHyzkrfW7o1C5NfEFqiwPoicAlx9er/Rz2H/gX188esv4smYZs2jBKSyULZDu92ujKgw5sThNys2QdPA8x1MQyOlot/rVR60LCVJEyzLpRb4eJ5LluUYpkWelRiGYNhfIRwOaDYaVTimNChRKKmIohgl5RohBfzm//NZfuBT96EFVU5eloIQJHFMmqUM+n2a7RZpkmCYVa5WnmWARAiFVOrCqkRIRVmWKFNw285ZWu0atWaNojRI0xDbcvH9eqVD16ojhMULL7zGzh1z+LUaQkr6/QGNZhMhJHGS4AZN8rzAsQxqgU+32yNLHHorAwyrIImrhXUSJ1iWVUX+CgOkRVHGmJZFzfcospgsGYCosbraRYhKRNowXALfxg880izDDzxOnTjFSy+/w9Gjxxkf7eD6HlNTE/zBH3wRqQTHT5xmenoGy8gZGx/DdFxcx8ZQBgtnT7K8usye/bdhu27VV0VJq9XEcV1M26bQBZahsew6AoMTx0+v5d9NMBwOcV2XM6fPcGD/HjqdOgvzC7x3/Aw75rYxMTHK/NlzTGybptVuYypFd3GJI4eO8alPfpzTp88S1Gt88xtPcO78Encf2E8cFXz1q08wOztN4PtMTIxTFClR1Me2PAbRgHqrSZHDb/z6HzI10WT3Hbfxg596ENOuhNW7S4t4nodl2ezevRPLsoGCLM2Io5i8yIjCkEbdRwuBwOK3f+dP+fR/9CBJkmFZHitLIX/39edYOL/AfXfvZWVlHsN0sWybMs3od3ucOX0OQxqcOn6K9kiToBEQDSOiQUQWFijL5PyZ87i2SxblPP2tF1hcXGL73DbSPMGvByBgdbWP51pkeYrn1HFcj97KIlJohKAyTKXNo998itFOg4WFRTzPJxwOsN0Ay3Iqr7hfZ9jv4TgeQil6vS5oMA2bLCsqQXhR/e6CukMUpqAV3W6P9kiDuw/cxa/9699mcX6RvXtuw/drKMNkx9w0pmXi+y6mKZmfX8K2JXkRE/g1ilTw9ltvMzc3jRKVJAgixTIdHMdDGSYLi0sMejm/8Vu/z9//0U+RFymmbfLewWPMTE1iGWCoguXlk2glmZiawbT9NRZMsbZBVzFcXkHJsNnAt4U0tf/3yy/xX/7Xv7j5eMn34iL15hihN5KfuFW8n2n+cgfPjRRRfSfgWu+xqQPpfearbRUfXljmjX1e+mJ+yVp45NZL2DSw80Jqx/tv0y189HErLPMWvitYDw0YHRkhLwrKIv9uN+kCPmo7Wj/zsz/NZ//uLRZ7A4Bq5xyJMi1GxyfZvmMHkxMNCh2TZH1W+4us9pfp9/vUm00EGtO2Kp2vMGfQjxgOUhYXVhkOUqRSGEbFzDkzM00cRpw+c4okrUIl4zhhMIiwbYtOp4NpWfxP/8MvkcYpShmU6Ir5T0oc2+b4eyep1WvoskQZRmVLlxplrGnp6YuC7kVRrLHsVdTdQS2g2aqvacIZGMrDtmvkuaTZHGN8bJrlpRXeOHiMLM958snneOnF1/ADH8us2C7zvACtabaarKx0L+jXZTF88S8eZXl5Htd3KLXGNC2yNEMpRVnC6TPnGfT7JHFClqakWUacRBS5plar0+2uYlk2URjjr9HGu65DkqQ4rsud+2/ngfvu4vU33iEIfIoi5xd+4afYu3c7D3zsAGWZcse+2+murCDQ2E4lfD0+2sKyJUWRVcyQpslTT30bKST9fh+o+kjrSlMpjnO+/nfPcOb0OYqi4Plvv8qJE6eYmppkbvssiJKyKHjogXsIhyGD/pB33j1CHMe88sprvHfsPR795tM4jsOZM2fZNjON67rcc/c+fv7n/gGWZfPNx57lZ3/2H7Awv0ieFfzJn/4FAM1WYy3Mr0UcxcRRwi//z/8NE1NjhMPqOxqnMXEUVSyPayGZ6/myy4srGIaBBr70F1+l3qgjBAS+h2kZ3LFnJ0uLywihCIcxtmmTRDkPP3g3WRxTCypjUUrFM089TxAEbJ/bRpkXHDiwD9tzyIucLM1Y7Q148onn6K8O+PyXHmFpfpFmo0ESp2yfmaYsShzHIS9zhCFpt1ssLS9hKEmapvRX+9hWxXRZlGUVAoyg2+1Tb7ZwHIfVXhfPDxj2h5iGXeV/IqjV6qRpFabcaLawbQfTdDAMk//7N/8/nn/xFWzHZDAYsrCwyLPPvVjJguQZg/6Qf/7L/xgpFVmW88STz1MUBYPBENu2OXf2HIsLS9TrDYoywTRBI6CEY8dOsXB+idMnTvPaK69z+NBhLMtmOBwC0Om0yLOSn/vpvw/AyPgoAsEd+3ZgWoIwXOGdd17FNBLGJ6cuEKWsLyDLDdnUVZ71Bxvf/q/PPsmv/Oo/+WCF3MItfI/iouj4zdsQ+Eg6uG/hu4JbnrsbwEfNcwfcdL276+nSwfqCQFdU8ZcTj1zZwLUtvK2maF/ZlkvKugbWxTq3KqazZY/gensua9cVOnrvg1rrh374U3zuK4+zb6aOIatk8bLUIARSKYLWBKIQrC50kVmOZRgUDLANm3W7uigjDFNhOxZSiUrzSxcoU7K62qdW7zAMUwokrudQljlSlETDPp1Om6LMWVlewbIMfuO3fo9PPXw/tmlQ5AlFliAxOXtymd//oy/xYz/yScrSIEljLMvBUCZCKoaDAZZtonRJpCVSCsKF91jtLeDVphCGQAtQpovWBWWZgwTDNCnQaCHxfZ/77t2P5wcUmUGrOU6z5TPoJ8RJhue7FKKgPxwwOj6JVA5xXHJ2/gz/8U/+CKbprvXd+qFwPY8yz/ncn3yJuZltTE6MkadD4ijEMkyU59JdWWVqeoY0jRAqI4ki/MAjjkMMqXnrzbeI+13mdu6gM9LGtgy63S6+5xDGEY1mE2WZJEn1HrZtk+c5XhCQF+A4AcNBgu/VKAvB3t1zzJ9fwLZdtC4pdY5SDkoZJGHI0aMneeD+BxBaMDkxxrHjJ3Eci3rdJy80C4s9ts3N8nePPk27WefBh+7Hth3GxkYwHIt7776Hw0eP8+bBo/SHw0r7TRq89PJrTE6NcfjYMW6/fRdeoFDKYmJiHD/wUabECWyGgxDbcsiznCga8OarR2g1a6RJiNDgWA5pnKOExjRykmGfxfPnsSyfNMrorQyoeS6NWo2g0arYUZOIXbvnIC8oS4ijBK/e4NziAvv3T1NvBKyu9kiiIfFgyMGDx7jjjp0oo9KGRJpAgTJsbNejMzqKYRtMTI4zOdahPdLCchS3799Be7TJar+L6wYIWRGDoBVIhTSqfNUnnniGO/bfRRYPybMEadhokXPP3XcwWOlz+NBJjhw7w9zMOFrnIIpK9qEsybMCrRSW41JkGUapyZVmOIh4+ulX+Omf/BHCcJWg5lD3RkjiIWOjDQQ2bmAxGHS5/4E7oYROq8ny8jJPPPkie/fsIagFHD50lE67htCKfjescvzKnO1zk0xOj+N4DkeOnmB0pINpOri+j7IspDLWpDUktqewTAPTkCTDlKOH3sCvWcxuvw3bn6kWpEJe+K1cnEeqsb0EtLzI9LExOvPyAbEUoNeO9fsF8PLRJT7x8Mcv3r7JnLIZGcuHvUF3KQXFep2bxZiut+R6M6xASbnByyU2MCd/0NZu6KsLf9Vr4fVc91gnN1nn3agIcq5+rPeCXPsM5XXq2Yw8RYk1768QoEGgb5oBxGV1bfW91g99SSkb+/j6n/HG40Lo8tqZ9c9+85XOuhF48ZzcdJ212XEL32+4xZb5IeCjaNzBzR0CPlBuxE2Ow7iiLdcpX2t9Q8bujRp3m7brgxh3a7j/gfv4tX/zpzx8YOYC29a6vhxC4AcBtVpAFMfEac5g0EeXEnQlfl3kKXleEicxWZphmiau52GYFgCWZSKlwLQMDMNEKQspFI4TsLiwhGlrfN8jjhNu37OTRjMAoTl86DC+F6CUwec+9xU+8+kHaHUaSGGAKC8IjOdZVomWa00SD5GWgxSa3uJ5xiZmEMpFKg26rMJXtKg8PkiGgyGaHEMJVvtD0CW27TA6Pk6r3cC2TYSoiFZM0ySOM9rtDuEwQpcFnu8yMTmFEAKlBGkcV9IPwiAchgzDEMd1GB9rMTU9jeNaDAYrlEVOGPbojG1DCkV/tY/neURhSDiI1hbxFUFIWRbU/YDO2Cie72AYksFglTAMGR3dRlEIBsMVfM9HCsny0jJJlGE7DieOnqHZ6uD5NbK0YHFxCV2mNFsdzpw+i1CVxITluETDuBKfLUviKOalV19n7+27cD2HmdkZiqKgKDMmJsdBw/3376PdaZAXKRKNkoIsSnBdj8mpcXbtmmP3np3Yjo3n++RZxqOPPcXH77+bLE05e+4kzWYbtOD3//Dz3LF3J47jkCUprudjmRa24zA1OcnC4gJ5UeWtub6PLgsQmqWFRVzHJYxiTp6YZ2RkFMNSbN8xxWDYp9ZoImWlB/jI1x7jzrvvYnV1wDcff465bTOMjrZoj9QrL7NpUG80QcDOndMsd5ep1WsoZVQsnXmMZTvkmeb8uUXyTNBs1VleWqbVbmJalai4Ydg4rkeeZxRFSlnkGIaNadnV76ssOX3qNI4b0GoGKMNAWSZSQJ6mvPLimzz73Js8+MDdfOvx55iZmiCo1en3VynygjRNOXPmDJ12CyUkve4qhmXh2A4PPXgPRZ4yPTtV5cVGmrHxFo5nM+hH+HUP17E5efwkvlfJKNTqPnv37OZf/ebvMj7a4sCBfZVmn+NhmDb1WoOg0cD1fbI8wzBN+v0he/buQWtR5cgWGZoC03YxDBCUWEKwPL/IiVNHmZqaoj0yiZAW5ZbG+HUjTVx+9op/XLpMrk7+2uee4p//yi+/r/HwwzbuNnv7a88a11/4S7E5Xf0Hmk7X/tisjBtlZazmxq0/t9V2b/ZZbaxjvU9u7hb0hvpv8L2ukjH3fmq+ooyrr52q8xsNulu4havhlnH3IeCjatzB1ocnqYwL5CdwpaduIy6n/N/U67XxvpuMK6QHNrvnMi/aDQ2bW8jRu1a71v8uNhhk6+0oy6tILVwFP/TDn+LXf/vzFOmA7VOjF8IbhZBoBNI0qTVb1JotXMdFl4LlpS5ZklBmBbV6HddxGYQheZZjuQ660BR5TknBoL9KliakqcYybZI0x7Ic8qzAcRVCKAzDoNlqgigoi4KRkTGkqkgfPvHx+xkZbWI7BnmuKXSGaVqYpoVSCqUM0CBlCdIgjyJatQDlNkFXIWnz8+dwXAdJlYOVxCm/8i9/k/vv3UWt7uK6wVoYqECXGUk6JE1yXvj265w+vcDs3PYqdG6lh+M4aFESxRF+UOO9o8cZDIakeYrWmsXFHtIwaLVb5HmKZZkMhwlZltFoePR6PRzHQhk+8TDCsmyKLKMscwSSV159i507tlMUlYafV6uRr2mApXlGrR6ALvncH3+VlaUek5NNbMuuvNlIHnnkWzRqdR59/JvcvneWNA1xA4XjGRRFiev6WJZFksQEnstgGDIYDmk06hhKcPjIUXbummNschTPNwnDIUIaOJbJ6ZNn6HSaHHznLWo1l3qzSZYknD9zltdefYM33z7Ebbu3gyEwTBNVQphF1Jt1dm6fuUAS0xlroQyTIPCIo5i9t+9FITh+7AS2bWO5LlpAWeQEQcXSWGs0QJaQZywuLKG15LkXXmPv3t10RkYJ6jV83yHJhtiuYmmhR1CrIYRgdts0wrSwPY/ZmUkadR/ynKwosBwPhKQoCsIopNbwqdU9er0VsjRHFyX1Zo0kTvjN3/oDJkdH6a4MmJocIY5jBqurLC0s8nuf/Tx37rsD27awbYMkDbFMk2QY8W9+53PcftsOsiRkcmKE0dFRdJmTpCkYijQcIpGceO8Uc3PTTM9M8vIrBzl46AS37dyBoOTPvvAV7rv/XiZG23SXF1k4v8C/++xfoIsC33eo1V28wCVJM7Ik5NiRs0hVYpmK/mqI69ucO7NAmqS0OgErKwtYjo1tu5w5fZYTJ8+yf/8ehtEy9brHMFwlzRPeffc0jueQFTmWY9EZaTMYDPH8AMNQhIM+q91l7KCGKGPyeMCpY8exLYe5PVN4wQha2GgkggIt5DVW8JeOZ5XfZf2/K6HFxicFv/uXz/G/btC0u9HF7HfSuCu1rurbtI1b9Z5cadit69WtT12X7wdupU/EJs1aZ1jeao9ebFb1LtcjWbzR0MBNc8euKE98iJ/ppe91iRbvJi9yeX9sfeV0JZfApeumar7eTN5CCHnDv4Fb+P7FLePuQ8BH1bgry3LLA76Q8lLj7lqDztpAWZQlUogqz2ot9PJGwiXfN7ZgfK176252eOq1cN2Bem038UYH9E9+6mH++AtfZ7xp0akHACit0ZJKVLyqHdPxcXyfWiNgcWGRUguWFxYoNUhDUnakh2kAACAASURBVGs2KIXAEAZSSQxD4LgWeZFg2x5lWeLYFkVeaXBZVqUlJ6VkOOxjKBulTLJEEMcZtmWDVpS6ZHllhbOnF5mYmiAcDpBSkibJmudMoTApSoFrmwxXlxGuj9RQFim9bpdGo05ZlAipUErywL13MDExWnWbUKAFQgqSbIgX2MhSoIQBJRx+9wjTUyOVJ8YykcrEtBziKMb3fYTQtNtNSl0Q1D0M02A4DLFsF60ljU4dgSCJMspCYls+/f4A07Q5e+Z8xUwmBJ3OKI8/+RzTU5M4jl1R5Hs14sEA27bprQ5xgxpnT53n2y+9xPLKElOjY9QbNaIwJMtTVroLjI832X/HTkzTxPE8lKxkH7TQWKaDlIqXX3yVHTu2keYlb755kKnJcZSEHTu28dabh5iZGkWSEw1Dlhb6GIbJNx59hr27dxGFAzzPJo5yvKCG5bps2z6LLAvGJ8fBqoyl3sISj3ztMXbtnKVWr2E4Jl7Nx7UD8iwny1JGxzpIAU9881mOnzjDnj23oWUlZh+FfYJ6g+FwSEkBsmC4soIuwTQ99h/YV4UdyZyDB98lqNfWJDQKXNdf/1EAgpMnjuM5Fr7n88orb3Lk6AkUgrpf5/FvPkvgObQ7TZJUoAwTNNiWQgJ5AcowuGv/bYyOtRkbb7Ewf5rHnngG13Z55+B77Nu7l9ntE1i2CQjQkizNkbpkfHSCWi2gFji4jsHpE4ewlImSEmVY2F4dqUympyeZnp1EGJoDd+1m28wEo2MjGFJiG4KxqWn6K4vYpqTVbNFud0iThInxFrZrkmQJpukQhudpNUbwfJ/V1QHPPf8WtZpPpzPOv/ujL3HPnbsI6h7DQQYa9u/fw9LyPNtnJxDKAKmwbQ/bcZEYaF3QateIhj20LnB8G8uyiaMUoaEW1ElXV+jOn2J54Sx79u/HaY8jtEspBVrkIEokEn29senC9fV5ZeOflw13G07+5bde5id+7pfwXGdDUd+7xt1FA/aDzB5XPnt5UMglXSA+eLTN+zNJrkKA8gGwuedua/fdTGxW53dC7PxiuVXJm0tc3DLsbmHruGXcfQj4qBp31Y7R1sTM349xp1RFmLExp+47YdxtJeNBbpL/9mHjwzLuAH7whz7JkTMD+ounGWkGSK3Xclmq61KINSOoRCpBu91CAJ7rsry8TJJllQaXUighGQwGGJYkTRNMywQtSeIYISRLS0uVFICwQFIZaVKTpTnhMObNNw/z+S98nTsP3Mbv/s6fY5qC3bt3kqaaIHArshJdEVdA5WEVwkCjGa72MI2SVChEKVASWp0mK8sr2JZNWYJt23iuR5Xjo8nSFISsQhNlSRQNiFYjnnv+Vfbu2cX58wt0e4vMzs3Q7a4S1JtrotKaLMtotpoYhmBleYV6I6DICxzHRSoTiVrzSJasdlcJ/ICRsQmkEqz2VpmdnWU4HFIUGXmh2T47g+c65EXBmTPn+eaTL3L77rmKRKNdeU1qQZ1dOyf59A8/xEsvvsPM7BSHDx1jemac2blJPM9CSpOgVmdxoYvj1pDSIs1jDGlgmRYvv/w6u3bO4tUbdNpNDh08RK3m02g2OfT2ERoNDyk1AsXpk/O0Wk3mZqd57FvP8M7hw9x37wFsy0dZJkoZ9IYDpsbGsRyLOIsRAsKVPoPBkKmJMSzHphQarUskJi+/9BpxGHL02Htsn9vGxMg4b71ziPvuv5NCFwglqhyatfxFZUiyPKJdb3D40HtYjo9pW0glKcqE6ekpDMMizzKiKMJcE/6WUqKUolZzKYsS07KY2TbN4SPvsTi/xOL8EgcO7OPs2bPMzk6TFhLbMsnSBEMJ4jDCrTXQZclgMKDZrBOnEa6t2Lt7F6Oj47SaTfbdsQ9plZw5fZp6vb72XTJI4yG1eov584v85V//DSOtGhMTTbKkwLZckqygH0YURQFoTp86SVAP6PVWGBubQCAo8hTXsfCCOkUWIXRBr9tnbucupicnKUVJWWYYpoUWCl306PdSpJDYls2uHXsI6j6u63Lb9jn8wGRpaZGx8Sls26HUJTPTowzDAY3GGIayq80V2yXwXQLfQ+uMJIlxXAfTMigLiMOIP/mTrzC3bYq436XMInbdth3puJTKQZRQigJEJb8itLrEINt8jJNrERrrhsnWjLu/ev4Un/nRT19hQN0IvjvG3c0qcb3c6v+bGXdizdP3QZw5t4y769f5nTTupJQIebUN9lvG3S1sHbeMuw8BH1Xjriy3vu+40bBbO3H1Y+M9VxZ0Vc/apoQjVzmn10IYN4uZvzxoYrMyrtWO62E9sfmGn92kr/TGcFW9+ftsFTOzMxw+O+APvvwtPnn3HFwWFCXYELIpJK4fYPs1mrUAkwyylDSMCOp1XN8FoTANC60FZaGpNWqk2RClTBAC2zEqz6cUGKaNY9sgNOMTHR5++F6kNHjhtZepNzy2zU7R6vgsLJxFa5soirFMizSNKPIUaZQUeVKRTyiPk0dO0hixyDJNkSv8WgOlDLSO0GQVdYMyqrBQZRCGqxgKFC6OXccyLFruEF0ucuc999EeH8OwLDzfJYoGVRiMKbAcCw0kWY4fBBQJnJ0/i2m7RENNLTB5/PFXmJ6ZxPU90gLeeus9bDfg6LHzFCVMzU5z5NgxRGHzt488Q5ppFhYW2LlrO49/89vcc+c9uDWLfn+FZmuEIskwTRulbJ799luMtpucOHUW07Zod8bIc8iLAXmusSyHQW+VRrOGFIoXvv0S7XaD/Xfuw7BtyAsMYaCRjI6NE4YDnv/269z3sbvQUuC4AX/4h3/Jxz5+gHa7w+Gjx3n44w9hmh6mX3m4tNZIAQffOUa73URRMOh2OXb8PPfdu7ti61QulUcLjrxziAMH9hFHCfv372NxcYkv/dXf8DM/85O8/MqrzMxMkyUpzz35EknYZ2ysRZkXGMqntxIyMjrDSy+/wI4d02gtCMNKPFtKUYV1mjaGAf3VHi+//Aq9pWWmZsYIwz5Q4JgO7WaL3bfvZueeOUoR4wc2eaGxHUG/38N2LLKsJMlynMDClDbPPP4SvZUe22ansFyPL3/lUd544yjhMMK2JLVaUGkySokyKrkWwzB4/vnXOHXyHHffdRfjEzOUwiQvhliuRCkHw8jRRUI6HNJpN1ESXM9FSYmQmpICy3UYLPeQCqShcD2X4aCP2/AwlI1lupR5SZkOAA/Pr+EHNRzXwnIKhBB0V1bwag6m4+HXWihDI5VNUUCSZrQ7nSrnVheYlsH58+exXAstNUUpMZSDUg7aMMiihCQM2Tk3hpY5tbrHxPadaNOnFNWmi5BrRhoKkJUxdt0hbz2X+LKQsitjzhC6IrT4V//+WX71X/yTipjjKqH+W4HY4rE5Ccr1sZHl8EbZDtfDLa83Zay/9tXCHK/eLZuFC148t56HV25CZLLZocSlhCLvF1rDReL/i4dc672NxCubk6xci9zkxrBZWcVaeO3GY9ONiAt/u9HOuJKGp9pYlhd+I+Kq39RbuIWt45Zx9yHgo2rc3UhC8XcCm3n1pFQXd0nXDUytyYtyjd3x6kbixjJAb87K+UHa+gE8futPXsix+wBllaW+YC/ObJvG9wOOH3mbmbH2VZ+RawayRiKVwrJMlpeXWVqcZ9ifZ3nhLIPBKnEUYioXw3XprfapBQ0Mw0RoTVlmlHmBaZhoDdGwjxZUeWhlwWuvvMntt+3gzgP7SMIYy3RYmu/y7edfZ6TVwvV8TMvGMC2SOMZQJsow8X0Pv1bDtiy6y11Mw7zAKleWEtOwkYak1BlSaYpcI6XEMBVKlayszIMQpEmfs/PnmNy2o3puTb9OKFWFgsqSNIoQZUG02seQCsep4fguftAkiTSvv/Yqc3M7GKwOMU2HJCmYmdlGOIxwLJsnnn6BqYkxZmbmMAzFE8++gGUpPvOZH2QwGOJ7Bq1OkyxNqdcD0jgCJTCUQEnNN77xFJ946C7m5qYZHR+hLEsMIatwwiTn9MnTrCwt897RY4yMjjE9PY1hWCRxglKKfreHlAbvvHOY0fEOnu9y7z13kqQJhmGwtLCCZzm88uo73LZ7J51WwOTMCHkWoQtNGicYUjFcHfD4Ey8xOztFrV6F4M7NTdMfruJ5HhpBnpYcPniMZq3J8ePHuX3fbvIyotaw2L1jF2jNmbPnmJyaRBmSsfFJCiFwgzpC2nz1kceYm50miXOEKBgOB0xOThKGKUeOHKfZ9IG8Eipf7dLrDmg2Wrz77kmmJqcRovK2rnRXUErwwgsvMj09gW06RIOMr33tKXbdNoPWUK83UVJh2Ra2aXHivRO89OobPPTxewgaDbSGXTtmydKIT33qQZI4Ik5ijh8/yfj4GFEcI5VidXmV5eUVOu0at+/bjmEJLFOSZSFCCNK8QNkBeaYpS0laFDh+HdBIaVCJlqeUZYHnBuRFiZSKoqg860IJ0AXDQQ8lKz1Qy3QQGOhSMOiHGKaNaUrSNMbxXIbhANep9PEMw0RIcFyXUusqdG9tHA18H1mUiFJjSIOy1CwvdQlMj+X5EyBC+uGQ7bftwQhaaBQ5oho/P6CL6Erdrc3ugf/zj5/kV/+3f/odnYfefyjl5YbTtbFu0N1IsMr774abG9Z3Mz1118qvuyQHf4vteL8z5VbLupnG3WbslrfMt1v4MHDLuPsQ8FE17i4QenyX23EBG4lXLsgZbNhT2zAzKnmpQbS+4ybWaMcvuaY/OHHLxqfFWluvNzFspcb3s0O9bsxdII7ZUJGUgunpScz6JH/+5b/l3r0z1ymt2pFXUuH5PvWaj2lKsizDcV2EFoxMTFHkJY7pglagJXlWooyqDbosWe2t4vouSio0AkMpxsfHabXqmKbJ6TNnqdcCgiCg3+3T6bQu5DvmRUUXb5oWp06eRilVGWpS4bouplmxGZqmiRCKPM9RhkFeJBR5jmW6pGlGEsXkeVrR8wuXei1gpbdKe2Qaw3IoiqLaLZbrUhwllmlTFCVCU7FlSot+v4eQJgvnljlx+gTnzi0wOTlJvd4EDYN+n6NHT7JtdoZvPPYMe3ZuRyNoNJs8cM9+btu9naNHjtHutNm5a5YkjknijHAwwHZMhCxwHElZZNx7514My8SyDUqtERrOnTkHGvzAp9loMDLSAa0ZDEPanRb9fh/f9zh18jRJHKERvPDSm9x//50gNGWRY1om/z977xkk15Xdef6ed+mrsrz3VUCh4A0BEiCpVndLY6RZzYQ2dmNjdz5sTChidz7MRuxE7M7uF4V2YrQxoxlpW5pWz7TU6qaabJqm6W56A1qQcIQHCkChCuV9evPcfsgqoFDIKhTYAJvNrj/jRYEv77v35svMc9//nnP+p2jbSKJMvLKS5uZGRFEkELIQsEkkF5mbSeC6LrIoEgoGEUURTS+pixaLNq7jYlgGU5MzBIIBPA/+5gcvsHf3dn726tvs2b2Nop0hlUwQsqKYloXnuoQjoVJhd1VHRCSVygACIyOjOIUCJ09eYHJmkv37dqCqGlOTMzS3Ni49DPs4roOm6zhFD0mS6OnuQZJVRkZGefbFX7Bv7w40TaOmpmIp7NHHCgbp6+3A9R1CoSCe55fqaXol2xEMWAQDBnUN9fiCiO/6FIp5OrvayGTSqKpKMpHmuz94nscf21vKVxNEApZObW0N8aoKJAkkCaanp9FUGVGSESWVou0zfGOUv3/mFQ7s3wWiiOfYiKKM68E773xAU1Mt6WSaysoqEERUTcVzXTTNQFEk8vlsSXE1W0BVVE6cPIOmGeimjqqpKLKE5/ooqoooKbiui6Fb+HhL3jXI5bKoilpSy2WJWPiwMDePACwuzBMImvz0+depqDRRFIGWjnZ8QcYXZAQBREEs2dElQZR1DNeKgzKsZC0fyG1854Vj/Mt/9S9RZPm+7eAvox64sZXgXv6/DYxTJqhlJeF7kCqZ/tLtXqYOy8Wxl1699REt37NS4ImPKJZX67xfcrcsSLL6MxHu8rQttSvXR7kw1TKf1hcl52v3tWrOlDycd5DyO169++xqLAukfIWerjbxNccmuXsI+HUld8u4Yz9yIzXfvgSUXbjvMaflh5KHPfdftbm+nY9xN7lbPhcMBRjYs48/+Yun2N/XUCLDZSDi4SPgIoKiopsWih5FkBWymSS+DwoCdmYSr5hFllVkRUZQRBRRJZfLIcsiouSiKuottc5iwV4KTbPJZdJ8fOwEdr5ANpPj409OEApoyJKIbhlIioSdd/m3/+93+Z1vPV4qvSDJFPMuguBTKGTRVBU8kcErV4lXVVIo5FENE0XRSgRP1RFFFd8TkWUd2/awHZ/5xQTx6jps2ymVKXDc27mmoozrCyVRGFlBFGWy2SxWyECQJQzDYm5ujF07+5FlmdfeOMrM7CznLl5gbibLvn3bcWybzo5OTp+8wrVrIwTDITRNJZ/3icWqkdWSymg4FCeVyGAYEsWMjapqTE5MEa2sJJ1cRFiq3aerGi++/AaaYSKrArqlgSggSTL5XI5CIUdFLMLwjSECps7Fy9ewzADnLlxlW38P4GEX80iyTD7vkFhI8uabH9LZ1UQwZCFKkFhMYFoWsqoiyRJmwGJsfILG5kYmxiaYmVzkL//zc1THK7l45QZbtm7BdvIoksiBvdsYGZqgob6aVDpLTW0NuhkAv1Rf8a+//2O2D/SiaipFu8Dc7CKfn7xAZ3sz7a31xGIxOjraOXf+PP1bu0viKmqJVAoIS+UPQJR1AoEgrushyyKO5zM+PsHjRw5gmgHyeYd0Yh5NVREQSKcWEGWXQCAEiEuhngJTk9P4rkuxkCMaCyNIIqKi4jk+kizgODl830HTNCrjcfp724lEI4iSiOe7+F4WUZCwizaw7D12CQXD2AUHzbCQJAVDU9FlmeaWJoqFAqpWypt0bIfrQzeIRSOEwmGSiSyaVvKy5QtZVNVCwMdxbKKRGLlMkWIhRTQWIVZZiazKeLiInoTrlXIYk8k0jl2qF+rh4Lo2nudj6Bb5Qh4BgVwui6ZpeIKIFQjg2BkkP8/k2BDRukp6t2wlEIqDICNIMpJfCp4TuIfHbq14wbJN1273/NvH2Xvkm9TV1d6z7YPGeqvD+qTxl5/jvbx4v9RtuEXu7tGI2+SyFBFzd6v7JXfr3beNe8fKkbuNtdsINtqXKCzXH7xz83itXu7yzN3htf5VPy1s4jcFm+TuIeDrRO5u56HdjhWXJHkpfPBLnNR6uXwrmy39FVZe90WHhLJ5fMJSft2tfdslwy+KJVVBSZLuWAg2guVwzJUhlcvHvR507iroWyZPZbn/xw4/ynunrvPUzz7msW1N5Xpbyn0ofeI+AoIkopsBIhU1WKEYc8kUdm4Bu5DDtW1E1aRQdHEFD8V3cB0bVyqVKZCVUiFuWZHxPBfHBdUw6e7tpqq2ilg8Rn//FmobagnHQkuiOwKGqXLo4C4EsSTEY9tFFL2U//S3P3yOhoZaDEunoqIC285hmCqeI+LkXUS/5H16/rmXOHvmAt2drWimjOs5VNXUIcoyiixwY2iI6po4nueWdq5dwPVwXY98LoXnFVCtKIIokMmkcN0iVfEGFEnANAMcP36Wxw/vo7ujlWOff0gxUeTMiUHmF6a5Nn6BfNJFEn1EXJKJGQYHL/HmW6fxXY8XXnyNz08Nsm3rdhzRIbmYJJ8tUFVTh2GGyGVy6IbC9NQE1VUx2lvasUyTbCaHIKgEwxVIagbDMNF1k2OfnqEyVkFnXzeGobFj+xYkUWR2apYrl28Si4SRZJ/rQzd47MghPL9IKpngP//101weGqNnay9H3z1GT3cXxaKDFQgu5U5K6IZMNp/iyW88QlNTEF2TEH2D6akFXNcnUltFKpNhMZHAK7qIrsdzL/+ULd1bmJtMIroSVZVRFE3i2pWrdHW2Mj0xzdjNSera60HxGBjoQZZEvv/Dp/j04yt0tLSSSmb40//wPR59ZDeSVPq9yVIphBEvQVt7E6Jk8NMXfkFfVwuCYjG/kCYciqJbFqKqMTkyhijKSIrK/NwcLU11yJJGNlPEtDxcO43ogKhIJBcXCAVDKLLJ4kIRzdBBkJBkgWIxhSC5JBMLWAELWZZZmE9gWQFE2cX28iwsJsALsLA4R2U8Tl1DA7Oz84QjIa4ODqGpCpIk0FRfS2IhwacfXqayMoZl6riCg24aUPSwbR+nKJBN23z8yed09W5d+hxUBFHAFXTeeu1NWlsbSyVKHJcf/PAFampjmGYpR7G0MZFBkySyRRtBUlBliWSuiCpJFOaGmZobI1JdT3tHb8l1I5ZC3UUfPNEBQcLzlx9MHZYVTwShVISkZCn8W1ZDWIqmuKW4vDqvjttkY2Xh5hfeOckf/PP/hZra6iWbde8QztUol58liMI6OWXl8uTW88iVe+2X3zS8V6r38qorCrfu8Iaw7EBd+r87+hJW/OezrBJdesX3V465do5duftdvt3dOWzlUO4zuv0OVpKqMoW8uX2P7s7BW/uOLX8PvKWQ4/Xm5q16H+W+D7dz5+4md/fj4d3EJh4ENsndQ8CvO7mD26Tl9qpz2zDZjoPtesjSV89YPWgTWi4PcbU3cJnILXup7pfYLY+z1q7pg9jFXtlvW3srh488yh//+VPs66lDlsS1L1wBSZIAME0T0RMpFj0Si/Nk8yk8L49lGDiOh26YaIaOIMi3rhNlCVGUkJdk6UWptAgmFhJIkljy/rF0Hp9sNl06JwikEyk0XcPHRxBEervbSiGauoEkyxTyORD9knevWCjl+PkebW1N9G/ro1DIEwqFSuqDfmmhdopFKuJx7KKD4zg4jou0dP8lSQQfNN0AQcZzi4iAJMjMTM4yNjrKu0c/pb6uBkkSOH3mPNVVVewc2MapU+f5nW8f5sr1ETrbmmlqrKO6popoNER1dRWuD50dzWRzWS4NjlIs5tm2o4d0chFNV9ANjUQigRW0mJ+bwzRCzM4meOa51+nuaiGRTBEIBtE0jXRqgXSqgGt7NDU2UrQdzICFIiuIlML/amqraG5s5qlnXmTr1i4CARMrYGHoKpZl0t7WyKHD+xHw6G5v46kfv8jAtj4ACvkif/pn3+fJx/fT19eFLIskE3PMzyewrDBXLl3jk88+Z9v2XuxCkfb2Fl5+5S2qYlEaGmsIBWPMzc4zPjGB42RRVJV0Oo1lmtTW11AZj2K7DrIkIgklJcuaeCWffHqeRx7ZxSuvvMVAfztt7aX8Rd/zsYs2phXAtbO4josvKAwOXqd/azeSohCNRBAFn1IUms/QtVFe/NnbTM/MsnP7FrLZJIWCjSiISLKL6zgkE3l8UUJRZDwPikUHWVb50z/7DtOTU3R2NmMaOtNTk1iWie+WHgp1vaT0WijkKRSKBAMhbo7MUF9Xz9zcHKap8pff+xE7t20lFAry4suvUV1ZiWmWCpDrusUrr73D4NXrbNvWjSSKZDN5fM/nzbc+oKW5gXAoiOfZaIqIbmi3HsQ7O5qX8utKD6W7d/UTDFu4jlN6UPVBEmXyuSz/5Qcv0NvVjiwIKIpIIZdlZmaKpo4mohW1gHzLaAo+OI6Lpir4fimc+pY9WyJp5bxBK8+tZ6/uLIgAf/LDD/ijf/W/lTbGvOVwwfu3d2W9QWvY0+WZ3PnvjXm4vmwsE6ZbURlfoI/la8Qy78FneW1YTQXX9xqWm8eDV7csN4G1vXlf7B6VSPr9f+dKlLIUbrlZUHwTXz1skruHgF93crfsrRJF6bZoSZnFe63Qvl8lHnQY6UbI3XJ9wOX7dr+Fx5fH+bLI3TIOH3mUM8OLPPXKezyypfGefXhL6p2SJGGEogQiFciSx8zEMBVhg1xijkBFNXmnJNpgO0WKxQKSdDtf0l/2hPoenudhWhap9ByWaSGIQomc6RKqoiMrCgIgyRKKoiIIpVw4TTMxDAPfFXHcIqau47o2yeQ8gZCBJGslAud5mAGTom3j2i7JxUWW961fe/UoLU3NFHLFkqS7BxMT44QjQQqFAppqUMyDnc8yeXOSq5evEzAMMok0SB4tTU1EI2Fqa6sBj3xaoqWtllwxwVvvH6e1tp29+/rQTZ3JqVksM0isMk5DayOGqTI/P8/8YpLf/sZjRGJhAgEd2y4yNj5GvKYaz3UxAyGmxlMcfe8sTx7ZxztHP+bIkQOcPHUSRRHI5xyqqxswrTDXr91EUTWsoIHveWTSGURBoKW5kV/8/D1aWxqoratC0WRUTSKVSiAKPiIemi6jqjLZbB5FhIp4BcePn0RCY2Zqjoa6KioqoqSTiwSDMYKBCPgiV65cp7Kigtr6KMFgoJSjp8h8fOwsA9u3EAiGeOrpl/j2tw4SrwpjhaPEYhEikSCqLlLIp8lnCgQsC39JWMQyTLo7W7kyeJ0D+3fS2dnKW++8T1t7MwtzCwQjYRzHJp1IYAZCeL7AwLZuZqenCUYCiKKHnU8jSD75XJZ4rIH29hYmJqapqAygayKJVJrv/pdnaWmuQlVVqmsaEEWVQt5mZGSCH//kF/R0tbFrezMH9m8nn8njex7xiko8H3TDJLGYQBQk5ubmSS7YuI6PppksLiT46L1zVFZEkeUMguejYPLRsVMcPz3Ik4f3UywUiEQjaEETXZOZX0gysLWHxdkZdMtianKadz48zpEjBxBFkYsXLyGLLpaplDzYsoLteXj4SIqC63mohobv5FFVi1MnzlHIFYjH4ySzWX7ryCFmxidRBJF8aoJstkD7tp0Iionri4iIt8z7z155jV+8/h5be9owdR1BlvA899bvZm2R9vsjd4l0jn//zDH+z//rX99q77klYvpFxFR+GXK3MeXKX19yt3xRufu6Se6+GLm7JYzCpk9uE19NbJK7h4Bfd3J3O6yGWyuev2rxlsRS0N6XNqcyKlNlV+MyMS53eiDvnPU992tvhROtGqNcm1V/1+xz6e/KEMwy3S4lty+HzXwxkrc8xlqoq6vl4KGDnLw+zw9eN9BELAAAIABJREFUfJdDW9cmebeCZHwfzy/g4aObEWqqW0kmHFw7hSrZ+MUsRbtETkSpVJcsl8tSyGfB98nnMriuiygKeK6LJIFjgyiqyLJMwU7jOgA+r776Ns3NjVy5PIiqqMiSXAon8jxujoxiGAqKpiHLOpqqI4kl70uhUCCdTBEMBEphso7P7Ow8uqpTKBS4OjhMU2MdR98/hiRAKBTECkSXxFXA9SCxmCYQ1Er9SgrvvPMxHR0N3Byb5Oq1m1y8dJ2mxhouX7nKzZFJrt8c5pu/8ySzM3M4tsPI+CS9PV3UNdRx9doQN4ZvUlsXRxB8UosJ9u0awDQMXMFBFiCbK1Lf0EKx4OE4PpYZIBQO09hYjaqKHNg/QKGYJ1pRUn6cmUlQWVlNKpXlzXc+Yn5hjp6edkRBYGx0gq39vVw4f4m6ump6+7p58+0PaWttQZIFXMcDr1TX0HGKJBYWGBwcRlFk6uqq0VWV8bFJ9u7ext899RJtLY289/6n1FZXoRsmY2MjjI5PsmfXdoIhi1w2Sy6bIxAwqYxHqG2owfddmptrqIzHUFQdUS6FLUmixOJiAkmSEfFJJBIYlomoqEiKSiho0NTUwN8//TK9PW20tTaTy+WprIqXPKiygKroSIqCqinYdh7D0JAkiXwuQyoxjyLJeJ7IC8+9zqWrQxzYvwtVldFUGc1S8V2J/v5uECCTzqMZKolEirr6OnZs78EwZTRdQhDEpdBim6vXhpbCYkUqKiooFAqEwiF+9NTPqKuuIpvJY5km7394ikhERzdlduzYSTab5+VXj/LPfu+3iEaDFIpZZmYmqKqJE4vF6OvtQZYFJMUjm81T31TPnt39KKqCoio0NjcSjgaYmhwnGgkjSQqiKGEXS0Qvl84iyzKO7SCJGtXxKgTRRlUhHIoiCQ6Cb5NILRKvi1NZXYeLhO+7iIJ829YDfb1d5NIphgeHeO2Nd9ja14EiKyBKtwRV1s3j2oDte+X9U+z45h9y5PHH7rBpoih9YZXM22Ivtx+3V5OW2+MIq6NFS338CsjdvQRV7iJM95jGsnZYWdGWNTx3q0mwKNzzY/ySyN0yVlKou3tcPez9jlm2jt2KG3JbdGZ1mOUmNvHVxSa5ewj4dSd3wO3wmCUjJwrCXYvhl0ruyq02G/TOrefJ26iJfpCm/DZJuke7O0I8v1jox0YdmHV1tTz62CH++M+fYldXDaosrT+3UhAlviAhyqDoCtl0isnhS8xOTxCprEGzQji2DQIloQtBRFd1NE3HcWzkJVEQzdRxbNBUfYlceXguKIpCR0cLrutiF4tUxqpwXbdUr0uVkSWBUCSI6woIvsxnn55GECQ810bTdPK5PO+88wGnTp2loaYaUZQJhUOcv3AF13Ho7GzD0BWCQYvnXniVtpZOXvzpqyTTC1TF45w8eY7G5hpOnDjLydMX+eY3HiUYNLAdl0MH9xMKmFTXxIlEAuzY3oXt+dTU1tLV2c746A0k2WDw6hC+79LR0YJp6VhmgEIuSyFfYHJ8hu6uDgQFBA8mJ2ZQVYun/v7n1NfV4LhFNEPBsFSyqTSxygiTU5OEwxF8JELhEEPXRrg2NMyTTxwkFDQAH0VRuHz5Kq7rEAoEicZCDN+4ydYtfYiihG7oFItFdFXjrbfeI2CZjI9NcOzURX77G4+CIODYNo2N9Zw+fZahG+Ps2bmVibFZrKBOrCKCpkm0tDTiui65bJ7r124wOjpOT28H4WiQop1HkiWCQZOL5y9j512C0dBSkV6JZCLN4OAwsViQSDRC0XEwLQtfgHQyiSCIVMcrCQQsTp06S1tHKwJQKORIJBYJB0siJ4uJOVRVwbYLKJJGJp3GMBQkSUWSNVRJ4ZGDe5iamqJQyBM0TTRLpqmxDc9zsO0ClhWmaOfRNJ1sJksoZDG3MI2m6YiiQj5fRJJFKuJRQsEwlmWRy+XIFwoEAxZNjXW88PKbPH7kAIahIykeO3f3IwoSoqwiiGCZGguJRRobasjn0kvfX4VsuhRGnEonUAyJUChKJp1BVlRuCf1IKo6dQ5FFJEmmUHAQRBlpqUA4vsCPfvQCB/bvppD3cOwCsuqA7yAic+HMaSTJp7GtCUkzABlR8BBwAOkOcifJCs1NjXz20Qlsp8DZ8+fZvnMbIN0O3fyC1vBPfvgBp4fm+R//6H994KUOVjyK3/Xayofy9TbJfhXkbnnjbk0iep/kbj1RlrXI3errNhKQ8+WTu42/+iDGXJk7t/z9uZ85bWITv2pskruHgK8DuQNuSdMv/d9dR9li4A9vMiwn6y+jbOLyWt68FShXcHylqS4b4rO6y/ubPcBdYil3zun2w8etMe5Y8O8MV1rZ13qkT1w3NOluHD7yKB+eGcYSMli6tk7LZY9maR6iJBOKhhifHCUU0SB7Azs3h1dMYmqVyLJBzi0iCCLFYhFN0xCkkvfBDMaYn51DNxQEr0AuncIMhfF8D9uxMUwTQRRQLYliwaWioopCwUZRZVKJNIoiMTczge1mqa+vJJ+1OXHyLEEjiAz0dXfgeh51DfWkEynGRqfYvr12qWyCRa6QorG5gdTCIoGATm93F5cuXubS5WsomkRvZxMffvIJAUsnEq8mFDAxDI2J8QnGJ6YIB8N8dvI8rY2NXLl4DcHzWUwm2LN3B1u2diNKHsFwkMRiAs9xOHnyIpYZwjRVKiojFNIp3n//FK1trWTzGfq39+D5AoOXryJJeWRFJZsWsB2Pq1dHOHvmGg11DQQsi6PvfUY4EKS1pQHLVEslImST559/l3y+SHV1HFUTqKis5MKFK8zNzRIJGyhGmFQmTX1tJcV8ikxqkSOPH8RQdURKZQN8T+Lt946xfaCH60Oj/Dd/8G2efuEltvZ1IMsqqVSKsfFx/uapn/NPf//bnDt3kfr6OKqpoqAgSR7ZdIGqeCOBiIKiKfiui4jP9NQ0P3vtHQ4d2k82V0RVTf7jf/xb9u/ZgaJoyJKEpkoIooZhBpibmMUnS6QihChL2MUsrltEkTTyGYfvfu95Ll69Tk08jqmqmKZJoVjA8ZNEo0G+9zc/Jp8p0N3VzSsvfUghn6K6pgJF1gERVQsjKRKGURJFSsxlmJ6YorKyEllQyGdsZBSQffLFLIViEcsK47gColugo7MVWVbIZbK8+PIrHDq4G9UKUChk8d083W1dPPOTn7N/z3bCkRCRaARBEolGK/iz//R94rEYrS2tpNLJUpkJ10GSRFzHRpBUEGVM02B46BpBw0UxIjh+BlGSEEWTrs528l6W7/7Vs9y4Nsy2LfX4TprE3CKuKNHS1QWKzjJJK5mEpQ2cZRETBFzPxRdgLpng5vQ8//O/+J8QRfWW5+e+iJ3vc31shu/+7DRHPx/h3/zf/5r9B/aVXipzbFS4o9yxXnDcnd65ZYJ3+5y3TmWc9UM27ycGZC2sH9h313v17z7W9j4uR9iU+vd8f1kT5y5xk9t93C0gVg6ri3+vRQjFpTBbcVUI40aOjS5b5WjXxvq6u2Vpc/HOKKHyPW5iE19tbJK7h4CvC7mDe5ixe0l9PQTc03u1gbmUI4H3Mtfrvb5Rc7/e1MqVMVg9+koit7LdRtQ07+cjam1r5fTVaV5882P29t6rLt5teL5ATVUc1/Gxiy6pTAIQkST9lgCFoqgszM+jGwaqooIgMjo6Tk1dNbZtI8kytm0jy0pJAGVJZKFUq8tHllXy2QKLCwlyuQyV8QoEQUDVNcLhKLphUiw4VMerSsW2fRdVkYhVxkkmkpw7d4UdO7aymJqnkPMJR6uwAjqarHDhwlVqquNomsqJ0+cRJZHDRw6haiqpxQUOHzkIosDIjRGKhSKiKNHUWM9b736M49g8cmAvQ9dHCIcD6LrM8ZMXqK+rYnBwqCSNr2vMzyxwY3icfXt3ks/nOX7iFDVVlSRTWaqrq9B0hVA0girLVEZC2HaWgBXk2KcXKBYKvPvRZ6W8TtclGDAIh0Il1UTXAWyKjoOu6QQtk737dnDt2jWqquMYpsnJk+fYvXsbmlGqjTYzOY1laghCqY5TtLIaTdVYmF9A0RWSyTQIPm1tzYzcHKe1pZm9e7eVimVLMrpuUizaXL06ykB/D/39fSXRG6lEAubnZpmbW2R2Ooksu+TzhZIgiV/Kr+pobcC0dGy7gKZruG6euroa8vkUqdQCmiYj6zLgcOzY52zb3snk5AShUAjHLuK5PjMzc8SrqqividPcXE80EkJVZAr5PIIgc+XKVSbGZzB0nW88fojBq0NMTs3x2GN7OX3qc0zDwDAsREnG82wymTSu6/Puu8eIRILEq6rwgP/0nR9w4MAufN9HM/SSqJAol5RggWQqg6wonDh5hj/8Z/+AbCaHohng+YwOj+PYHo89uqdUe05XsW2b8fEJRFGhraWRispoqeSHLOE4NgglUZ9SiQ4Jz3NKZUo8F12VQAmQL2RJLBawTAtZETBUiYP7d9LX08Lg4CWSiST1zS1U1zcgijI+5YWTylmPhsY6Hjv0CK7jIgobE1xaxmwizcdnBvnxu1e4MLLA//Fv/ncOHzm0zmglPCzPTznys/FwzA2P8iA6+WIjl30vd68Z4INw75l+mQXk18MXJXcb7+s28V0+NoVRNvF1wUbJnfBFFAB/U1Es5L82N2s9U/cg9i3vF4K4/oOG73nrvr7ch+95a87/fj134tKcvHuMXSqgXB7i0pNNuTaSKOAuFV++PZZ/17VrjXn7+vvH9NQMn73+DN9+ZNs924qihOu6ACiSzOSNC5iGQjo9y82RYVoaW9GjLaWC4w6oqs6Zzy/Q3FJPJBZFVhQ8QWB+foGAXspzUjUV3wNZlnF9B8/xyWdyqKrKz3/xNr/7j57E9wVEpCX59xySAPlsHkGAF156iT/4vW8yOZNElRVqamuwbQcHh3Nnr9NcX8/pz4/T29VNOBzm1Ofn8fE5dGg3uqaRTOdIJRM0NNbg+UU83wVXxS7a3Lw5jmVZhMNh5mbnkSSZCxcHGRjoYXxilL6+fjRD4yfPvkwkbLF75zZc10WRda5cucbuPf0I+Fy+dIVzF6/zrW8cZm5+gcrqMCIyODbzi5Mc/fAUddWtDGzvQZQEbNtl9OYksagBlIrDD4/cIBDUsB2IRiPYtouua9wcuUlbZweyrCBJEomFRUKRIJOj40RiUW6M3KSjqx1JURi5Okohm6auNo4e0nGd0sNOJp0lsZAgXl3F2+8c41vfepzXX3+Pq9dv8kf/4r9HkCReePZn5DJZ9u7tx5egp7udkeFrnDt/g0cPHkGSc+hWGFWRwHdw7CL5fI5EIk9NTRXJZApN03j7nQ958rf24Lo2wYCJh0g2l0fXgszNjSLio8o6hhXAcz1s2+XkybPs27eHfMGmkC9w6eIl+no7l3LwAMEhXhUjnU6hKDpP/+Q1du/sQ9NLYiEtbc1oporv+oAErk8ymcYKm+CX6g1OT01TzBeZGJujf6AT1y2WavcVbD796FP2HzxEMpXilVfe5g/+yZPk80Xi1XU88/TPaWqoY1t/Jx42xWKBWDyGbdvksllEUcYKlMRoJEnE80GSRaYmppZqJGoUCy6SKoPvoggeN65eorGjEwEJERPHzyBIBez5LHMLU4xOTDCwbR/BiipcPBzXQxIlREHEw737h3vnThEAdrGAompIoljWJk0vJEikc1wdmeTGTA5HNGhubqJ/Wz/tHS3Lna0cpMy5O1FOfNl9ACvpyiVj2USXO1ce6837V7EC3o3y72/5c7u9Zvi+ty65K+3T+kgPieDcd3mgDbbbyNZDub5Ecf3Ug01s4tcZqqZv6Ie86bm7D/ymeO7KBSk89KLnK7yFt7xYK7PIN9TFnRka97OUCSv+LqtiLouerNfe8/w7cj9WH8thlqvbrO77lkLXHWEj671Xyva7+ljr1lkBi5aeAf6f7zzN7Owsva21a49F8VZepotHKFyNrEVJJlNIksTMzDUcV8D3bRzbJhSJUltfiyyKqKqKXSggyyKGriBL6tIDCri2g6TIJRVLXUUUBSRRoqmxiWwmSzqR5uOPj4PrcebMeebm5vA9nxMnzrG9vw8QqW2oJxqL4bg+qVSWqakpfBeGR0ZpbqqhubmV1998n4FtPSwmklimUfqO+R6qrqFoGpl0BsvUAZnBwWtMTc9RLBaprKxganKaUCTC7Mwc/f29vP/hJ0jILC4kqa4seRcbGxoYHh5hfHya3bu2I8ki6VSKSCzGju19vPX2+zTUNfCLt9/l7NmrGJpGNpfl2GeDjI7NcWD/AJ7rcvPmOI7jkkwm+ejjz+nr6eDc+UvU11WRzrpUVVWQzqTAd2lqbiGVziJKAoil2pSSrBMIGKRTGTRDJxSN4bgeFZEIgu/h+z4nPz9LbU01nucSXgqRVWSFQsEml8vj+z7xeAzf84iETTpaGxi6cYNdO/pxXZdIOEQiucj5C9fJZR2mpseoro6Rz2axiza6ZvDssz+nu2MLAgp/8f89hSyKvPfB5+zYPoBbLOVgIpTy5/LZLNFYiEKhgCpbjNyYJJXMcvrzS2zp7eHDj46zrb+XF376Kol0nv6tPRRyOd7/4Aw7d28lm02TTKZwih43Ryfp6+3CMAwEQURTRZAgly0gCjL5fJ5wJEg6mVvyQM6jqwrDwze5MjhEXW2UQNDEsR1URaGqsgLdspicmKG7o4Wi62OYJt/5qx+QSmU5d3EIw1Coq6vkwqVLNLc0kc3YfPbZBTq72lmYnyMYDlMsuiiaxNzMLBXxSsSl8DBRlPB8n4XZeTLpHE7Ro5hLEwho+LYLfp5Pj33EzGyG5o5Wunu3IKoWoijjwQrPm1/e2JVRF3nr2AVOXBrhs4tjvHtmhLdODvP+mRE+uTjGqaF5rk8X+O0/+O/oGtjL3kcOsv/AHnp6u4nFIqwfDPfle+7KBZisF3TiLxVwZ6n0yhdbIb48rPX+ludzW+hr/XLfpa/AUvXCVeGeDwL3WzLgQXjuluvTrXwzt3PoNr10m/j6YjMs8yHgN4XclW2/bES/BE/vgxjrvt/fin9vRMFS2GDb2+FCwqrzq8JHhfuTM1ir37XalYMkyxw+8ihHPznDq59cXqP4OQjLlZSWdn+9JZIXjcYJBytIJhLohkomm8GwLAKhCI7rMj05TWJxEUFwGbk+xOLcNFYoiiiUapspiorr2Ni2jec54PtkMzluDk+wOLdAIGCRTqewiwVOn73EE0/sQxBEWpqacIoexz47S3dvG5KicOLE51TF47z/wUd0tDSTSifRDIV4dR2WrnL0g8944sgBrl0fYmRkjIpYgGi8Ah8ByzJRJImhoRFsxyWZzBCNRFiYXyQcDnL8+Blqa6o4e/4iTxzZD76EFbC4MXyTxYUkLS2NRCIhXnvjI+bm5lBlkVAkhCjKFAt5xscnSafyPPLYHq5dG2X3jm3MzM0Rj8f53W89zvM/fZW9e3cwfGOMjvZWpqdnaayvJRKJcP78ZRrrq7k5Okc4bDE5OUEgEGByYgbN1DEtnampKWKVlXgepFNpwtEIgWAA3/cQfA/XdnBtF8d1kWWV2toaFEUjny/wd0+9yK6dA8zMztHb20EqlSIYtPjgo+P097fhuy79W3uYnZ2jvrEOURIIhQN8duIsLY3NuH6BxuZqFEVheGiUi5eu8s3fepK//eFPqKuJsmtnN71b2tm/dwuWFSQQMJFlgVw+i6IpyIJEOpPEME1k1eBnLx/F9yGRzIDv097WSiwWpr2tmXAoxOTEFL7rcPLUVXbs6AbB58rla/z0pQ9wXZfW5kZeeOkNHjmwEyug4wsCATNMoVBEUSQyqQWefuZ1rl0dZktPB5qmEg5abN3aQSCgUSwWMQ0TRVZKZScklVAkDL7PX/z1M+zfvY366ij79g6gmwqHDu5HUqCuvhrXBUFQuHh+iFgsyMVLV7FMnULBQVLFW14XRZFLgjWZNJlMnlAkgqZqqLJMJrmAXUwyNzvDlctX6exopb23H80IIkpayVOxxK+WS3X7ZUzAzHySk5du8ItjVzk/USRBkBnboLqllyd+5x+yY98BDhw6yOEjhzh85BCHHj3Ivv172bV7xzrW5F5bguXx8AQ57g8b3Thb4+oHPp8vhtvzuCMscyN4CMTui+BBkLtb+XNl69F9Bd7kJjbxkLBJ7h4Cvk7kbrl220bFU/xfIgdveYxlQnNP0/sFx1rpcfxlHh42uvgvh8esW/+pzMNE6bo7cwKWC6WXE1RZLdiy0mO3kfdyr9y83Xt3cfjIo6TkGH/63WfZ1b1aVXNpnoJ4q3SGKAj4AgiKQkVdK7qs4jgSsqwxMz1NJBxEliSiNVUUPZ94dR3JhSxnz12irrZ6KVxNQkDAKfrMTC5g6gGmJ2aJRSKkcnmyuTxvvHuMx584QG93By+/eJS+3laeeu45nnj8UTq62slmEnznr35IwNAJBUyCoQC1tTW8/94J2ltaOPreR1wbvkJbSw2hUJDPzw6SyhQJRSyqqqpQJJnUYorTJy7S3dtNLBblxvBNJEkglc7g+wKaoiGJEjXxSt47+jGGqSIrMm3tzSTSWSRZYmFugSeeOERbazMIPoVcAdv3MXSNtvYmZqZncG2bvXv6yRdz1NTVkMtmqK2KU1Ndia5rnDl3kXA4wMBAL7lclutDN7gxOkl7ayvd2zu4fnmEN187jmVY9A30IosykgyS6KPIMq7j8ebr72CZErFwnNGRG0RjBrYtoysyoWCQxVSai2cvEwmGKLpFDj26F0FTMTQdx83T3t1MJBanp6cZAQHXLyCpHmZAxfMdPDdLNp9j777tyJKILpnUVFWTXEyxmErS2FyPrwjs2dPP2fMXqKiM8fdPv8RAfx/JXJH/8JffZ9++bTiuiyiK2J7M8I05ikWBSKVBS2sdPVvb6ehupqaujlA0xt/+8L9SVRWjva0TfJ+rQyP8o3/6OKZp4bgeLc3N9PY08dFH5+nra2Jg2wCu6+OSRhEU8D0GLw+iygrhUIyKsExTQyWqLqNYMmY0DJ6ILAfwXJlMOo2qKYyOTTIyPIwiCQRDVokMqgovvfw24ZDBzh2lEFDX9SgWPRAkPM/n1TeOcujgHupqq7g5Mo7rFonEYmiajIBHMVdAFhV8V+Dl196mq6cNWS6VC0jPDjE2OkFDSxsdW7YRiFYhSDIIIt6S28Vf8ZPM5AucuHiDv3vjAscHZxhJgFzZQuv2A7Ru2cXeRw6yY+d2WttaaWisJ15VeU+bscqCcLdVLRvbsfTXXyr1cvuVO8VDfNb2MwkbOiShvPDH6mO1ySt3XTmzKK0QCynlwTolW3dXjuLdoZ0bH+Pebe6FleV0NuKR8/y7hVweZEnbDUedlL/6rsNfdQiiBIK4dCx7pMsdm9jE1xeb5O4h4OtE7nx/uQyCcOfJNfBLmcxVZO3rYn436j1b67rVuEshdJ32D2rMldA0jcNHHkWLt/HHf/4Uh7Y2bkjUBUDRTEKRKLbjYGoq1wYHMYUiC/OzVMTC2K6PEYqgyxKRWARRFEkmEhRyeVKpDB9/cpKKaIihoZucOHmehUSCvXsHyKRTjNwco7+/l0QixZYtXaUaXYqOY9tIosi+vdvpaG+mMh4jEgmVcvwcF8916Ops5cKVa8zPp2hraWJoeIL/9g//MRcuDVJVFcexHW4MDdPYWLeUB1VAEkVMw6ShrobPz1wkkUjT0ljH5MwMkbBFJpvn489Ok0gkKRZtBgb6CVoWr73xDt3dbaSTGWZn52msq0dWRFzPo76pntraOkBiZnqesdFJenp7uHZ1CCtgEYmEaWisJRQK8uyzP+fTExfY3t+HqmgYukFFdZRUIo3nunzy2RmOHN6DJMvksllUTUMUJXzX5SfPvcYj+wd4++0Pqa+tJBjUSqIirs/5C1cQRJlQUCccDYLoEgwFyGQyBMwQsiwydnOMmckEVdVxZFFBVTQUxcBzwHUlpienAQlRlNBUBc+xse080YoYkUiEUDiCIqtks1kEX6CyspKTJy9QHa8gHglRHw+hKBKBQATfF9A1jetXRxgeHqOrs52ha2NEIjEUWURRJHzPpX9rF4VikWeff5UtvV1UVsSYnR4nk0kQDhpk0guEQwYtrS3EKgLkMjbXrg3T2dWKKApkMxnq6qtZWJilUMyyOJ+mta0d1TAQkCjkCgheFs2QkTUJWZfwBR9DNYhEIrz6xnv0dHcwPjlLNpOlsb6aqupKhm+OYRdtVEVFlERMy6JQyHP5ynW6OpopFgu0drQQq4gt1eT0SC4m+PCjzzh56gJbt/Sxpa8DVXaRsLlw5iRmMERHby+hWBxfUkuCKat+vMfOXeMHr18g3rmTxq17aerdzuEjh3jk4H76t22hqir+UMLTRFHA87wyJIc7xrpXkfEyosZ39bHuPDb4tlYPsVEP4sp2rlfKa/RZJk/lBl8RGvgFxlirzf1iLaXNla/fax5fBtZPdFh97vaxKYqyiU1skruHgt9ocrf2inzvsVb39YV6+erhoZA77t5//LLI3UocPvIoZ4YX+d6zb7G/r35JevtuiEs7qJ5PKQQuGGRhfpbZmVncbBJBgIWFBcLRSnTLQlUlJElkWRDgjbeO8vIvPqCQy7OwkCCRTNHX1crxzy/S2lhHb18HVZUxdF0jZAXxfJdCPsfly9dJJTNEYxEEAXK5fEkIw7a5cP4yAwP9vP3Oh4xOTNDf14Gh62RyBcDn6PvHGZ+eZfeOLWiaxt8/8xLJRIJYLMK7Rz9m9+7tWJaJbhh0dbUzNjaJoWnYjk1DfRVbtvQQDhj09naiaxrnz1/k3LnLHHpkB599dpqh4THyuSK+5/HcS6/S1FhNLF5JJpljfHSCaCyKqigYpsXlS4PU1ldjGAYTk1NUxivoaG3F1FVS6SwDA/08/9M3qG+ooKW1herqOOlMkmjYJBiOMDsziyxJ5LI5HMdhW28X4UiA1uYmYhVBxsZuYtsu4XAF7x09xvyqs98sAAAgAElEQVT8Io8+tod8PgNL3t+33vyA9rY2HKfIX373x+zetQNFFlBkyOZSOE4pJ1KWZQJmkEw+X8odA2RZIhQJks/lOXXyHFev3qC6qhrHsXn6+VcZ2NrNwNZuLl6+SnZxjoBlUFVTiSip2LaLKHhUVVUzMT7J1MQUE5MLSIKAoSt4nl0iZ9ksvu/z+ZlLbNvSi23bXB28SSqRpK6ulmIuj2M7RCriZLNJPvjgNPHKCqprK5mZnsQyTbK5NOFwAMe1+fnPPiYWDVNZHUdAoJgr4No5FhczqLrBYjJTqqcnSEiSxCuvvsfO7X382V89zejoJPFYCNM0yOZyvPvBCXbu2IqkyMiKAgJs7+/jR0//lG39PaiqUgodE2Vy2QxWIMCLL71JU0M9jY2NZNKLqLLL5NgotTUV1Ld2oAWjJaEkQcT3b3vMTl68waejDr/9T/6Qw0cOUbWmF+7heDCWowvuRXDWI3clM7LW6189crds99bfmvxqkLs7Zllmffh1I3eiuLp0wSY2sYlNcvcQ8HUid3fkta0TBnkrpHIDapXwxRepe5nujaTw+5SvdfewcD+LzsrQyjV6uyv0cnV5hJXiKeV7uC0Gs9ZcNyK2soya2hoOH3mUkYTPX/7oF9ycmKK/o/6ONrfz+8XlCRAMhgiFQhiage0UsEydfC5NIBhEXFEPz8ejvraKQi7Prh1bUBWFVDpNKpWhqbEaVZFQZJFg0MJ1HL77X5+lu6sF1/Pp6GwlFDLxPZGJiUlMUwc88vkcH31ymq6OVlKpJHt3b+Xy5WEuXBrGMDR2DGxh377tbNvaBwLMz83z5OMH6O1tJ5svUhmLEolEKBYLvP32h1y8PEg0EuLi5WuAy0efnsCzi/T0dHD+/GWuD4/S09lOS0sTN0ZusGVLF3gSmqLTu7WLpsZqBB8K+SKBoEUmm0XXNRzH4b2jn/DEEwdxXRdV1255f3zfY25ugT17dvDe0Y+ZmpnnyOF9eL6PJIv0dLfgFHOIssb4+Aw1NTVcvDhIfX01MzMLFApZIqEwJz77lNqaKJVVNdgeTE3PcuTwXpBErGCQfD6Prmp88skZejqbyecz7N+zgz/+t9/j8ce2ky8mkWSfTCaJIAikkmlkQUGUZRRF4bXX3kH04cTpizQ1NuC7LjVVlUh4aJZeqgmnluq4WYZGW2sTn508RX1DNYoio+sKicQ8rlMkFg3S2dlBNBzlrXc/Yt++AVRFRhIlbNshEAiyf+92ksk0sYo4ozdSzM4vUldbjaKoFAoeo6MzBMMaQzfGME2TmpoYnldA13XGxibQNYNgMIKETN9AH6l0ksTsHIokYQUq+Xd/9jf0dnbwJ//u7/jwg3M8/vhOZEWlub6GeHWcU59fJmiZeJ7Po4/tJ14d5/Klawxs6yv9ngQfUfCRJJldO7ZgmDqiVLJHvi+g6zqjwzc59Mhe+np6KBYTuMU0o6PDyIpGfUsHrqjdInbLv7APTl3mlROT/P7/8M/p7esp+1stEa/lax7Wg/Dq8MyV57jlkVst23/nPNe3gRvB/ZK75XmVAlqFO64vv67cfdYvS5jvPlee3N0dvineWn79Ff0vn/PK2PC7+yg389th/tx1lMODJHe+7+P5/nKG9trtys+EkldX3CRzm9jEOtgkdw8BXydyt4x7mdAvS0jli5jysnuo98gd3Ahc10VR1CV1tQeDjU5JEm/neqy+diMiLxsRg7nfOUVjUR47fIhtew4gxJr54z9/irAhUFMRvtVGXPF44gkSim4gGhFUTWZhfo6AIZNNJ5FUi0QigWmaeJ7L4mKC/q1bOXHiDJcuDzE/n2BrbydtLfW0t7fgui6zszOEwkG6u9qQZZl4VRxFkRAEsIs+gYBBOBJE1WQM06SrsxXP9bl2bQjT1Lg5MsOObT3U1VYzMzdHJp1lYTFFLpslVhFlanKSudlpPj1+jrGxSZob6/nRMy9zcN9OApZBMpVh50Af+/buYGFhFtM0iMcrmJtb4Njx8wyPjKGpGkee2IckwgcfnCYQCDI0OkwoaPLz196lKhpF0USsgIFh6kRjYTRF4saNmzQ1N5YERbSS5yeXTZHJZBAlga6uNnbt3koxV0QxNArFHAIus1NTRCurefa5V2lpbqC1rZlcLs2xT8/Q0d6ApqhUxAIkE/MoeohcwaGnt4t0cobz54eorq3me9//MVt6urk6OAp+lkBAZ3R0in/8u0+gqD5OUUOVTRTZIp+Bt984QUdXLdlcDk3T6OnpQZd14vEa8rkCr77+Dr3dzSSTcyiGSiGfRTc0MukE4UgAT5Do6+8ll0/hew6eU0CSFKyAgePkABddt6iujKAopQfU6clZJiamsCxj6fMNMD+X5KNjp6mo0ensqWd4dJD3P/mYwYtzHHx0gNqaOE1N9ZiWQj6fIpvJIUsmVy7fxCmKzC/OU9dQhWaqXDp7jpnJSRK5DN/4xh6CYY1De7dSWaFTU1vH/Nw8//47P2RgSxc11XGGbozx+//wGyi6BoLAwJY+RElGkkUEwadoF5AlBVmWKdrFUrFsfARRoZDPlWr5OR4njp8ln5uiUEixbfsOwpW1FDERhFJJA9H3uDg0yvd+9jmHvvV7fPPbv3XP3+nt3/2X+WC80mPHfW0erdfXerhfcrfscRSWxrgjWOUes7i1wbaxIe/huVvbw3dnHuJ6edwPONT2AX9VSnl8GyN3KzcrRUH8ytTh28QmvsrYJHcPAb+J5G71tt/qPdvVuCX9v0IMZCNkY7nd/Zj3cm03UnPH87xbyejlREtKwiZe2d3Pjb6Xtbxva2E5n8WnROzuuM/C7bIK97pHa83v/2fvzYPruu47z885565vX7CDAEkA3DeJkqyN2iw7dmzH6c5k6WTSmZlOZZZ0JpnpVE9N9XRN1VQmaVcn7a50dXvSY6eTcRw7sWwr0e7IsiVZtBaLWiiK+06QxI4HvP1uZ/54AAmADyAgkrEjv6/qFcR3zz333PPuOfd8z+/3+/7m23S9WL75F+5K7X3kow/Ss2k33/nhCb76zKvs2pjHsa25BkBjcdLI62VKGB0ZwzRsTCuGYcVx4jGEYTRUEccnECjeeOM9Iq159KF7ePe9o6zrayebz2E6Mc6cHcW04sQSEjfuoEyJYRkIQ+HELAzLuCJ4UJkt8sTfPkN/bwfZjk7cZI433jrIdGGSvk6H2/bsYmxihu6eLPm2HFEYYdox/uaJl/nMZx4l4aa5cHaMbDLF4MZ+xienef/wSQY29hCPuxSmCmzcuIH3Dp/gjrvu4O6795JIJshk4pw7ewkwSSbjJJJxzl+8xJ7d27ltzw6CMCSVTREGAW48jkaQyaZJ5+I4MYd64CGEIPB98OtkMimEAGko4gkXaZvIKGJ6fJp4PMlfP/kCMSOGbVscOX6SzZsGqFbrvPLKAXbv3MXXvvYd9t6xlVKlQLWq6OrtpFavoEyHx7/5MoPr+3jlBz/knrt2s2PHFg68/R47d+5ibGSaIAz54RvvsXnHekxLUamWef3Au9iuSRRAIpFgdrrIzEyBk2dOMzw8wnsHT/GJTzyCbRsk0gqvYvHUUy+yc/sgbtxCKlCmRalUJpFMEovF8D0P240TSpNqPSTmOggCJicnsa0YpVKFw0eOEbdM+tatJ9ABga5w+tQ57n/wNtpzKZKpFNl0O0Mbt7Bz7yYShosMponCErOzAefOnObU8Vn6+3NUawXCusOO2zehdUhttkBPTxflSo10PE0+FyfwfJLJLOViFdOVtOXzrOtqo7uni5df/CHJuMvOnRtQClzbQhtVKuUqtu0wn6BcmQ6GCJCRx+jly8TiGV58cT+5fJZ0LkUy5RK3QrxQs2XbblAukTCQYl7mAp7Zf5C7P/trPPzRh8hmMyuM+GbjfqX4paZnr/JzbfnFlpbFn8YccqMz+kLMCYjM2dauJwyylFQ1whAWl2kmxNI07rkJvWsIr8yRd670CEv7Yf64nCsvBYRzUv76ytGVXSqbY7HFdLm7X+68+fu/HkJ9rRDLcp95wZ+lYih6bvtPX3lmlvZTCy20sBq0yN0twE8kuWtSfsVlwpKX4lqsSDeD3K32WldevKskX1euuQaFyusRqcVt0lfOXW4H80ZcVZpZ/1aK5VupvfNlBocGePChffzxl77FS++e4+6tPRhqQWye1liWhW0ZVKt1HMfFVArfr1Mulbh0aZS2zm4uDY+we9dW1vd18djfPs/DD93F4OZ+bNuiVi2zYWMvsZhNPBmjXCxjmMaCRZomDHykofB9Hz9qLDI2bOgnnU7h2ibbtg4ysL6Hs2fPkUpl8APNk8++QCLmUpiZJZVMMlOY4f2jR9myeRDPq7Fl60bOXThPGGrK5TKlYomuznZ+8Po77Nq9i5OnzjG4aT1joyMMbdqAbRqEYSM/mjINJienuPsje4gn44RhSDaX4sjhU2SzOQzDQEeaC+cuYrsGQRBiGiZhGPHGG2+xZesgkYhwYjEM20JIgWmYoOGxbzzN7t3biLk2He3tOLbFxg195HMZhBAcPHSCbTs2IaXF5NQIQmr6Ngzh+QHF2QpRLeDdg0fI55L87Gc/hjINqtUag4N92LbNmTPDnDh1hguXRtm7awuGMrk0PMrePbuoV6s898IrXLo0wn333cHly5fo7Ohg5+4tfONvnuezn3kUKSRBEPH4Ey+wZ9dW4gmHcqnMbLFIIpEi0pooDKlXayjDxDAspFRYpgVRiEBhWy7Vqke1XOPVH77L/fduxo3H8XwL36+RTMRxDQd0gGubzM5MYzsGNa9IaWaamdkxpotTdHR1I3CIx5McPnaUHbu2Ek/G+ZtvfZs7bttB1atT90M6urt588B7uDGH46fO0tu3kXQmx/DwMJZl0te3Dh1F7Ny5jR07NmPaJqXZIkIpDMNganKaVCqNVJJatYJhOyA01WqVXL6L06cv0dPRQb49Tb02y/C5M0xPTdC3fgOGZSGliRYCNHzua/t57cgI/+y3fmfZONfrYzlyt5byy5VbQlxWmJNupuVuXoFzucutJtbtRqxUzePmrq2w+Rvs6tx+bX03QmzmbJFirX29NnL3wfxgFlqRxXVDClpooYXVoUXubgFa5I7rpk6Yf+3PW5mklKuypv19krsPQr4Wnruadi0lwNer3zDmVfGWJ3fzfblaa+hC3ApyN1/ugQfv56GHH+BzX/grjp69zB1b1s0fReuQWCyBkorJySmk1szOzpLOpmjr7CRCYQo4ceoMypCs6+1k965tIDW+7xOGPrZtImWEVAau62KYBlJK6jUPpSSWZROGPpZtEwpFf/86Aj9g9NIoqUyCUrFCvi1HuTTLE8+8zMDABh68/y5KpRK2ZXH85BkefOAjTE1NsXv3NlLpOIcOH6Var7N162YMQxGPOZwfvsQjD93D8PAYU4UZpID+9T0UpqeYni4wOLCRd957HwHU6nWGNm2kUilTq1WJxVw6OzsRQhL4AcowOH9+mHjCJpvLE4URlu3Q1d2JUmCYFsiGNRIpiMJGeoUoDDlz7jx333cnlXKFt999n7vuuo2x8XHSmQztbVnyHXmq5Tq3791OIuniJlJoDbZl893v/IBHP3YP/RvWYdkWtmPz7ruHaG/P4ns+R46cpFr3+IWf+yQx1+Hs6Qt0dnQwW5jh8JFj/MJ/9SlGRkfYsWsbaCgUZsjmUrRlU+Rzeeq1Op7nsWF9Hz29HTzx7PPs2b2NdCaNabn4vs/E2AR/8bUn2LtnJ0IqyqUyRBEIePHF10nEE/zd8/vZtWsr++6/i3J5BLSJlAmUajxTjrKpVkpUKiWyuTSO4+C4LiIy6OjM4Xk+b711goGhLQxfvMyu3VvxvDoREd/77htsGlhHKp0klcvgBxFf+aun+NQnH6FSruG6cf78Lx7no4/cSyqVnPN3FrzzziE6OnKgQCoDtKBSLdPV3TM3LkN8z0PZNhBh2zZRJBifKJBNxkkkbE6fOo5pSrZt24JhJ5DKaFhuhOAP/vIV1q/v4zd/679f09huMkJX+d1qjl3FwgX6qiTvbyK5uyL7z7XWN2iRux9XcnfFskvLRtdCCzcDLXJ3C/BhJHdrdYdspq5p2g5aR4tI3FWSoBeRvVXVe4vQzDVxHiu5KN4Mxa6F9Tdzfbya+24xyV14xTCMrlU4XYCV+rlZ+2UT98uVBQ8abVwuSP+hhx/gznvvQ+TW8+++9E1eeus0uaTJf376IMcvTZNJx2lPJREyIvTquK6LMm3icYd0OkEymcCNOViWgeXYOG4MJaFcLBCP2UjDJYwa+dHq9Tq+5zXi7nwPw1Aceu8Q7V0dOK6NXw1IZ5KYlollmpiGQde6Hk6cPEcmleKll18jFnNQUrKut4NatUoqmUETYjkGg0Mb6V+/niOHT3Lo/ePcd+9dDAz0U63W0FKQTMY4fOQkw8OXsQyDRCJGMpWku7uD7u4uBJp8W45avUK+LU+5XEJJie3YGKZCCUFXdweO6+B5Hq7rEkURhmGCDgn8AMM0mZ0pYihFoTDLX3zlce64bQebNw8Qas2LL77Cxz62DykFTz79XXbv3k57R5ap6XHGRifp6sxTnC3ghx6hjgjCgFMnz9HRmSCVTRGEDVn7nnVdCELiiQRt+Ta2bx/i9Tfeon99L7bl8sUvPcbDH72HjQPdxJMxOjpy+F6dbCZLcbZIIpPGsixe/v5rZLNpCjMlOns7cGMOO3ZsZnZmlnQ2S3G2hFfzGLk0QVCPOHr0DIODG5BRwNjIGG1tnVwYvsjmzYNsWN+N79cwLKiUZoknslRrIX/71LPs2rGTl777PdZvXEcml6HuhWhpEnqCWlUxOTmLZSepzEIqneHEifc5dvwCqXiGjo4kt+/ZSiqbwPOr+H5IpVzhwoXzbN8yxLp163j2uRcxTYNdu7ZTrsxQnC0glcns7CztXe04roVhWuzff4Bnn9/Pru2D1L0asZjLubPnScXTV9zugnqV7s4cyjQ4e/oEGzb00tndSyRdIqk4eHKYLz17iIf/8a/w0MP72HPbrgWjeTXL4WZlxJJjq6ljMW7G3HdzY+5WbsetIndXBU+atWju7/XiDMXVclfbtvR3+eD0R1/JYr/6Dm9svK7uaquON1z0zMxbWVt0roUWbiZa5O4W4MNI7tZqMWtG7hrxVSZSKqIovPacBdf5UWIlYZKbkW5gNddeWO/1UiLAtda/lYLO19rP8+XXhtXVfd/99/LRh++lbXAP+x55mI/cu4/BbbfxzOunefJ7r3Dv1l6IIsJQoywDy7IwTBM35hKLuyAbMXyGEpgKqpUKphNvxMhZJlEUNoibZWLZJrVajZ7ebiLto0NNsVBharqAm4wjQk25XOHr33qaZDLJpctj+J7H5OQ0I2PjbB5az/7X3qBSDlFK0NHVjucFCNOmu7ODiYlJ+nq7GB6+RCzuUverdHS0sWvnDi5fGGXn9u1IIyIej3P+3DCxWIxsNsPYxCiu6yJlwy1pcnKceMJFSE21WsYwFZ5XRxkGYRgShRGGYVAvlRBAGITYpoVtuViOzY7NA/zNE89z2+7teL7Htq0DJBJJ6p5PRz7L9158lc1DvdTrZTLJNN/7zosMbezFMAXKMonFY2zbvpV0zqVULPL220fo6uqkWq2QSLhMTU2Ty+UI/ICjx0+Qy6eoVAMuj07Qv74TX1cxlYEQglrNY6ZQJJvL4sSTOK5NImFj2Qa963qoVEoYpokyZCM3mmwkek8kErzzzmEeffhBEvE4sbhDcXqaZCKOsly++tjj7Nm5hXK5SCrjgIzIp9sRwiQSHuXSDL09g5TL42zYuJ665yMMF4wYI5eO892X3mBgqJtMJkZ7Po+SJm4s4MDrp3n37bMkkjC0YwOzxWkmxsZxTbehkJqyMJSBFJJLly4Thj6Dg0M4rsCNxzANm46uTqQShGFAGGpmZ0pIJJs3rceN2RQKU7R3dPDG/ndo78gxOzNDW1uSwvhFijWfnt52YrEkKAcvUvybv/w+v/jrv8lDDz0wN6yuF9G82vHYbPZYWx3zc8iNWFxu1dzSDD8Ky91Ccreags0tdzcDa7+xKwRsFWWv11YpFxK5ZqS1hRZauFlokbtbgA87uZt3uWz2Vp63KzUjdwBB4OP7HkrKayIz9NLzroMo0teQmNUsMBYKmTT7zO8sNivXDCsLqlwbOH/F/WbBZ/5a0FDCXCqyMv/d4usutqbOu2OuNt5vLVibqt3ydcsr97HQRGkgBag5iXg/itixbRMD6zr53Jce55E7+vB1nTCUWDEXwzZxXIt6uYxpKcKwRqR9gshEGnGUZRBFEdGcimm9Xsc0DdCSaqVCMpVqEEbPI5aMkcikQRooKajWPKRWJGNJJsdm8Pw6pVKNO/fu5NXXDrJ5aJCOfBvdXW0cP3aCVDLOzGSBKCqzfmMXdszGMgTF6Rn6BgYRQhKLOziOolqvYJpJkJILFy4TBIJkKsPF85fI5Tqpluo4MZfp0Sksw8AyFUqZKGkjpEIIH9+r4rgWXq2OFgam46AMkzAKGRsbw68GxJNJevu6SebSCKmolWvMzMwSj8UwLINcJkm6PU09nCWf7WPrUJ7pwjGyXUNIYSNQRAHUahGWmeArX36avXu2k8nFCKqC82cv4bg2bjLJps1bOHPyHBsG+uhoS9HT200ylkJIG4mDjkyOHTvHwNAA05cnSMVjVMuzWKZBKpXk8OETdHZ24vtgmC6nTl3gxPGzDG4YYmCwD6EMbDvOxMgEb759mM7OLkqlWU5fPE1v53q+8c0X2bWri1QiwchYiWwuy+iFC7iWTRj52I6DFwQ4roupbEYvjJLP5Dh06CS9PRtw41nK9RrK8Igii6pX5dzIBe65+zayyRilUplULkMy10aAJJ5KsX//u/R0dbNxSz8792xFU8e0oFCYxjRieIHAMmyq5Qrjly+Tz8bZs3sHhelpUqkMUkhq9Sr9Q5uJxU2ScZMzx48Q1QPyff04sQRfeOKHPPfDM7hdA/zqP/0lhNAglpK6pZ/lvr8656x2nC4es8xZWBbnE1sUM72qmhajMedd9URoBoVALvk0Fy1pLnqyVMgk4lqRlauYt74tFvUI9fUJ35U+ofmvcs29C9ACtBBzf5uX1dd8eyN073rPSOPTUH++eh2txTX3H+qrIihCSqIlL4elueeaCenc2JZACy20sBJa5O4W4ENP7uZf6sus9pcjd1KquUXC2mLmVmpTM3K3mvNWwlrFU1aqY7lX9tIj82kN5u9pKblr5ho5f52FO8OriVv8oLgZVV+JF1wmT9H85kGoBR09vfzURx/kd3//S3xszyChVyeVSlCpVgiCEK0ltVoFwzCQShFPJBrkVjU2HqqVCq7rYjkOtUq1kdtQCKrlCpbpoCwHrTVSCfx6lXKxio4ivvbYU+iozvjkBF2deaQQHHj3GP19nfzw7cOUy1Vee/Mddu/ZTC6Xw7YdpJS4sSQ6kti2S1APiaXjCODUiVP09a8jlUpSq1c58PZbZDJJ1m9Yx6Xhi3R0tlGr15FSNNI15FIgwQ99pGVT9zxMpQh8D9O0CAONZTkYRmOhG4Y+QeCjlOTAgUMMDKyn7tVJJVMINM//3YsceOcw7x48wndfeo19992J5Zgkk0n8mkboOpOT46TzGwCIwhCIUIbBH37+i+zcuoG+vi6UbWA5FulcCtOSmMrAq9UItSabzZDJZYiikFKphBQS3w+xbJNsPonvl5kqlJgpztDW1YbtOJTLFZ77u1ewlOK/fPlb7Lv/DlzHIZtMAQYvvvwy3Z3tfPnLj7N5Sz+d7RkqtTKJhMP9995PabbKS99/m40b8mTSeY4dP0NbPovneWSyOVKpNLl8Fq0jfD9gemqWZ559mWRMUZgpMjE+yRNPfYfOthS5XJ633z7CnXtv5/577iDmusTcHI6TolaFdw4cp79vHUJKOvJtRJEmlkigERimjRASx3aRwubdA2/z7jvvsX3HFtx4jGQmi5TguA4zhQLxhItlmFRmpnBMwcili3h+iJ1p5/95+jCvH7vM//Ivf5eHHt5HX9/ifJGLR8rCvx8Eqzv36hBdvnwz5d/r4ep8ssJmUJNjzePaVnXJJmSpGRZYzuY2om5FKoCl11odubsRrLau+dZdJWUrpWTQWrcSibfQwo8ZWuTuFuDDSO6uIWsrELtFZfTCHcAI9NJMPYvPXctr4YO+RObj0RZa6RbezlIL3vViJa7WoRsWyUXtWh25m692YZct/f9rcZUMCinRUXRL90BvBrlTspGn6LrWVSmIIokybW7btpPf/8Jf0ZWxsKVPJpPEMBXCMIm5DrbropSB73l4fh0hG+TRMA2UNPB9D8dyQAiUMhuCKlEjZ1K1XMaQknqtiu9FHDz4PqNj41SrZWxbglbccfsOKpUKo6OT/Ne//FkK07OEUUhHRxYN5HI5LNtGC4lSBgLBoYMnyLUliSdiTIyP0daepVIpk0wn2LCxB8uSOI5NW3ueYqlIPBbHti2QmjD0sGwLqazGyloKXMehOFtBo5BCYZomF4eHSSSTFKamSGWyuI7Dhg0buHjhIqlkgigIIdJ0dXawd+9O7ti7i7v27uSLf/Z17v3IHfh+yOjlUf6/r3yDT3z8Y1RqjWco1CG2ZVD3Ih64706eevYFtmzaQC6fJ0QjlYGUEedOnWF8bJzX3zrE9u2bqddr2I6NkAIdBo3E3GhSqTgTE6P09K1nfHKCfHserQW2m6C7rY0gCDly/DT3fGQPlmMSdxP8wef+X3bs6MM0Jffcs5fXD7zF7bfvJN+WIYp8xi6VyOUyDF8+x9ahrTixGIODAxiGSSyRQggDAM+rU6vVQQss0+HOO/YSEdDV0YltmXz8o/cTj1uMT0xTrfo8/fRLdHe18eZbB9k4sA4hIp585ll2bBvkpZf2k8vlKM2WeOKp7xBzHbp7eiACQ5loJFGoyWdSJOMxHNfFdmNEOkIpiVev4QXTZUwAACAASURBVLgOgR8QhSGW8HjzwDv09vbyxMEx3jxb4l/963/J/fvuXcVIWutIX5u1pDGF6bnUK8t7OTSbK1fdopXiz+Zw68jdaiez5uTmRrFaO+ra27sS1kburlA8cXUTtVkydfmB1VpbaKGFW4UWubsF+DCSu4W4VQTi72u/78rrcol17Jpya4y50/paN9HVkruFda1m0bMQV8RTbqHVDtZefTNyvOrlhY5oZH6S5Dva2L1pkHTPIJ//8pN8+42j/OD9C9y3Yx223bCaRBENQZAwwDJtlDIol4pz7rURhjIIwpAoipBS4fseoFFC8uYP3+a9g8fo7Gjj4HtHqdc8pGgs1JVQ1H0Pr+4xMjZNpVzCqwfMlIpEOmT79s0gBNIwCImQUnLsyAm2bBogkY0Dmnw+CzRSJUyOT5LNpZkpzJBOZ/H9gMD3icXjGKYiinwMU+LV6piGje97CASEEQffOcJjj3+b++7ei9YRpmVx5NBRurq7UdKgUqlimAbxmIuSkjfffAfHNIkn4yBEw4pp22zs7yEei3H+3CVybWm2b9pIMpFBWg7/8U/+nC1DG3AcGylNwiBgz44hXMdGKIO3Dxyiq7OD0K+TSCZJJpNs274Fy7Iol0vYjo1UkiisMz01w8T4FJlMtpHKQEiOHT/BunXd6EhQKVeJOS5PPfs9/skvfopEKoHn1fFrASOXR3ngwdtJJeO4bowTJ8+BDujp7UEqyaVzUxw6/D5SBex7YF9DMRQBGrxA85/+81eIAg/HMunt7WFkZJRsto3ZQom2znYqlTrjE1Os6+smm02Ty2fYv/8Anh/wgzfe49GH7iKTTxKGdTYN9TM+OsYzz3+fV994n5/+5P3s2bWVXHtb474Miec13M0r5RJnzw7T3dPJ2OgYqXQS3/OJiK64B1uGQb1W4+SpE7w7FpLedD8/8/O/wL0P3M0aoprXNhjXiPlpbPE8tPw1b5aI1FL8qC138///oyd3NwNrtdw1xpQQC5WZG2RXLON50UILLfx4oEXubgFa5O7Hq97lrvNjSe4WfP7Bk7smMSirhSnqhEg0EoQmmY2jZYyN3Unuu3MjD92/l5MTdf7siTdwjZDR8WkyCYt0Jo0QkjCMsEwTPwhQUjWIRDxGFGnCIEQYIUJC6IeUZqq8+eZRStVZhi+PsnVwI4XJCh35PONTBRCQTMWp1z201uhIEBFi24oN69cRjycRqhGYI5SkLZ8BHSFUI37FMk3CMODQe0fYtmM7pt0gOmhJuVhmbGKSVDJJFEWYpqBanKFWqUMo+MGrb9Ld1UYYRnR2dnP3XXsbVj0pmZ0u8ed/+SQP3n83QkjePnCII8eP093ZTrlYZMumQb77vVdo72hjbHSCVDoJWnPw0BGyqQyuEyfXnmRidBJDuQSRR39vN51dnShlIVXDjVoJTSaToe5FjJ6f4OL5S6zf0I8wFIZlIYRsCNa4DkpJ/MAnCBuqoqlUljdeO8jEaIGeng7OnT1Pf986yrNlzpwapqenmy1bBsjls0glUEowPTHL7t078Pwy8bjTSP3Q0Y0bi4GQOI6LpVzGJ4Z58KHbsZ0sQmrKs0WkMqj5EX/3nVfpyKfYvGWQH/zgdQYHN3D+/GUOHT6FskwKMxVOnDjHwOAGLMfEr1fo6+/hnYNH+NV/8ilMEywryfR0kWQ8QTqV5ZF993HXR3bQlk8hpCaMNBEadDjXdkm5UuDxp/Zz+96dtLXnqZWKxBwTrWRDDMhQTI6O8Xt/+X36997Pz/7yf0N7dy+hVIRCo1rkbhFa5O7Hi9w1krcDC+b2Flpo4ccPLXJ3C/BhJ3cw54pxA2Ri/szV1tNMPGVpnMdal0XLCaXMi5csFUhpvNOWl/5uvsBZGr5/Nf/c9dp71YKnr4ilzMc2XKOqqRe+kK+fUuKDoNm9N/tIsXwOvkX1sfziIIxUY2GBbiwmpMJxXfLt3YSR4v3DJ0jYBvvu2Uu2s4/BO+7l1eOTfOWpV1FRjfW97UQCDGlgKpN6WMMwTbTWmIbJ5MQ4QgjGRiY5eOgku3Zs5sTJcwgtyeczuAmL4ZFxAMrVOqahmCzMkkzFMS2D7o48wxfH+chdtxHJud81jDCkwFAKYQimxgskEnGKszMNF8SeXgzTJCRCmSZKCxzbJeY4IBQawVRhhnxbJydPnyeVTTG4aT2VagXLFPi+j2EpDMsgIiSqV9g8mEJSIxbL0Luxm/7uTtyYC4bJe4eOU61oTpw8xeXL45w7N0xvTye5TIbTZ4+QyyRQkcHk5Gm6OjciLYVjW428fo6NkhohBcpQaCEIwzq5jiTr1ncyMTFBLB7DMhuqmPVaHT1nFSUC3/OwbQeNpn9DPydOnsZUkq8+9m0e2Hc7tmPS09uBNAW24xAFEV6tSuDV+eMvfJ199+0inUrwzW88z+ZNQ3ztsWd46eVX6e/pYOTyKN3ruonF43heRBDWiUJNrTSF79epVeoMbehi2+b1jI9X+d6Lb/H++6dJxG22DK1j5OIITz71ApoAv1bBsWxq5SKpdJ6jx86ze/d24nGHb37rKTYNbsC0XRLZBNKSOI6J74co0+Zb33qGNw+8x+ahfrx6gG3Z2JbJA/dt58K5M+Tz7TjxBFoaOFLz+T/7Ft96+TC5oe385v/6PzKwaRtKKaQEyUrEbn6kLBRnmnOP09ECsYql5VfePmomenE1brdRpiGfP19++TG/2pi7Zq1a7KmweDtIz8mnLPw0E09phlDPn3NV/KMZlkperZY8zqexuHqNZrN9808zLL8NuODfV8RObtb8fm0dDeGchot54xm5oqgzJwDTonQttPDjjtWSO3ErhRo+bPDqtQ99Z8m5GK8PioXkTkfRdSMKokg3SNeS7662Ryz7Yl6K+XILz18IJQXhkmNrqf96iCJ9pb55rFRvw5VQXvk7X8fSti1EOHeNv0/Mt221z8V8HzdrZ7O+kVIhtSby6hSmJrl88SIiqFOpVOjs7UEYBuv61hHIGH/4h/8eEdX5Fz+/DwH4kU+92lj4x9wYfuAhpeCFF/Zz7Mg5tm0d4OLFUfzAJ4w0I6OT3L5nC17dI9Jg2ya5TIa33z2CH4bcvmMTgwN99G3sJ1IaUwrCKJyzYlnUq1WOHDnJ5q1DmKaBabqAwAs8Inxq1SrpeJqDbx8iCOFrj73A7XsG+blf+GlsyyQIfOpeHaUEjm2jowAhLKamCkhD4bo2tcIUQTBOGAYEvo0ddyhXavT0baJWE3z9sad49KG7aG/L8Nobb9HRlme2WGLLlkFGRy8R+CGbh7Zy7PibFCZN7nn4Dp5++nm2bhmgrb2NdCaOQGCaJhowDEVhegYpBY4bo1QsIqUgFo+DBj8IkAJM06ReCzAtizAKQUO9VkOgcBwLIRvPtO97ODEbHQkCT1MtzWKYCjeRIgwCirPTJGNJQg01H/7tH/0n7r1rO498dB+1asTw8DDxpE1/Xy+TEwXWdeepewF/8qff5Gc//SAdHRlMO0utUuHy5RFKxRlirs26/l583+f48VMMDW0kHo9Tnp0m39nLydPD6DAkihrtzWTSpHJplKUpTE+STiXQYWODplyu4rguluEyOVnAMCSpTBzf85BSoUNBKu5y6uIoX3jydR64Zy+/+As/i+EmCbUiWPXIEkv+AjTGWIPcySXHVppZrh5bbn6Ioohmi/6V5pPVzmVihTLN5+Nrv1OrnNbCFSfrBfPn0nYs+pdY9prhonjyOW+MGyA+zSLXls6kWl/9pvG73yjmLHJN4uZW+5u20EILP36wbGdVk1HLcrcG/CRY7pYqZC01f2mutco1fUHMvxSvc71mL80bVedaaAFbuCt9dZGhF5Wdt4itRRFu0fXmPs0ERVayYs1fa6mVcOG9Lz13NaIlK2HeUrjcjvxSd0sB15hBl/7eS5+Htf52oY7QAgKtiKUyWPE89VKRet0nrJZ58dln2LV5CJVIc/99H+Hee+9kVub5oy9+g+++dYYT50boz7r4vg9aEY8lGB+d4MzZSzz8wEc4cuwkSkomp2bIZ9NsGurnzbeOUK3WCaMIP/CJx12y6QRjY5Nks2naO/Io08A2Dc6fO09be47ZQgHLMujq6cKxTWZnSxx+/yT5XBtKgQ59LKXQWjMyOsZrr73Hr/3qP+bw4VPs3LWFs2fO0NHR0ciVFvg4rkOtViPwNV/7+lNcGB7httt2EjMlhenTiKiKSUilOIEQNYhM0tl2du7eQjJtMTtboKOzjZOnz/G9/Qe49+695HIpZmfKOE4cPyixZ/edPPb4M9x3z+1YlkVXTztKQRAE+H4dy7IolooYpo1hmNi2xUxhlm8//xJbtwwhZYPUhmGIUpKxkUIj/UI8hmEILMe4ks9OCxBSYZgmnlfBNE1GL0/w/AuvsGf3dkzXAgGXL47h+QGWbXHu/GU+/shdlMoVUskEQQD5fIZ8WwZlGNSqNU6dPkN3dzd3fmQvqXSMMKjjxpOYlmL4wjA9PR2sX99PYXaaUqnIlm1DBKHHxYuX6OzqbbiZGpKLF87TnstSmClhWRbpbJJyaXrut3MwTRfLcrHtGKZlNdRdg4h0Oo0yBK4dx3VcglqJ/+NLz2HYDj/3y5/lvoceRJgxtDbRKLRoNiM2tW0tW27x+FlK8pphZU8DwfKOFMuVX+olsNwdLNxUu958vpLy70p7Vo32N+pvfva13y6t7nouk1fc8Jd8d6OWtNVY7m62ImVDwbpliWuhhQ8bWpa7W4CfBMsdLN7tW2qtmSd3C7+/3kvzR9FpURPrUbMd5JthBVtNDR+0D5ar+2b26Vp74Gb/3nJueRgxb80EKSQ6CJken+DcydMIrQmVR9yRjI9e4p59P4WTyFANQoSWjF4a5d987g+JJ+JUqhWyjsFndm2kWvXY//obSCXIZdOg4fylUXZsGQAg0hEnT11ASskjD9zFq6+/w/ZtA9z1kduIpxv50Ly6R1d3N0HgM1OYwbZc3JhNFAWMj0+RjCdwEy6GDrl86RKW61KYKdLe1snlSxOUymV2792OEBKtwzmLnIdUCte2KZcaVsQnn/4OP/MzjxKTgsnpQxgyxDJT1P2Q+sRl7GQOM9mONGMkkx1gCLyaR6XiMTVRIJ1O8+L+v+OjDz2A0haj48cZ2vgRCqUSFy8OMzDYj2FIIh2gdcNiJ6WgVqtjKndOLXPOFRONEAZoTb1W4+X9P+TjH3uQeq3KV772N/T2tPPpTz3aWGyLxlwgpAmRwPM8osjHMkxAMDM1QVdPJ7UgQAqDC2cvMzoywo4dm/mTL32Tz/70fcwUCgxuGqRQqPDYt57lN37951CGIh5PUJgaJZXNEoQGlmUwOTaGkJBJp5kYn8QyLVKpJAERhlJUKhVisRie56FDieWa2LZJeXaWsYtjXBydZO8dezlx8hQ792xtJJKnYXmUSuB7dUrFWVLpDJ4XEIYhyXSMN954h5eOTrDvwdvY9/FPYZkJwqCOlja+ljSoXUjYdFHdzLa1gsVswaGGC+VSrN1yB6ufAwXXegk0m1MX3lW0Sq+CaBkPgJUsdwKI5shdc8tdk/taet0mZy0sM0+Gwpu8JlqN5e5G0JxQt5QuW2jhw4jVWu5a5G4NaJG7Dwe5W7oAmXcNhQ/W1n9I5K6Z66hY4fdezbWjKEItrGONbTIQIDQhmjAMMExFrRaipMJWBkJHzBZKHD30KqmYojw7STlwEMphxx13U696pFMZJkfHseMGSikK4xX2v/I6L7z0IuNn3uahHUP0revi5KkL3H3Xbl559S3uu/s2XnzlTXLZFLZl4nk+2VSCPbu3cvLsOX7mH30CqQyEFEShxvPqOI5DveIDIdKICIMIpUykkoS1MlMTU2Ta8giliEJgTrrfshVhGKEMk3qtgm1baB010jZUAyzbIdIRhqkYPXMe05lgemqEfL4fOxbHu3iaYuiTaO+jWpc4ZhvKVaTSWSrlOn/0+T8jnYjzz3/7Z/FqAaaKcXn0KOs6dzJbqXHkyGHuuHM3pinxgzphGDb63rRQUqBkjDNnztLb092wmNWqhIGgMD1LLO5i2za1apVk2iUMQ6IwJBaLIZUBsuFCKKSiXq1z8OARLl68yMc++iDPPfcCHe1J7rpzD2Y8RqlYg9DAtgyC0CcIBI4lsC2T6ZkZkoksk5MTjE+MYts2Q5sGkaJGpCVB1LAgyijEchX1mo9pGkR+44mz47EGMSuXMQ0Dw7Q4dews6wd7MQzB2KUREk4MDBvHjfPNx5/jF3/p0yA0SggiHVKcLZDKpChMT5NM5DBNm3/79R9QKs/w6I4+9j28j/SmIbzQoRwKkkJT1wrTsiGoo3RAKFSTp3xt5G6hN10U3Ti5m5/jlrqlL1e+Gblb6Q5a5G553Gpy17zPW+SuhRY+jGiRu1uAnxRyJ2gs+KObnF9trZ23NP7sg2DhomalGLCVCGqzZdRKS7TrLd/mF1iGoRbF3S3FauIfl16r2W57swXajeBmD4KF/bzwnpcuRP1ikWppmlOH3iKZzhBpqFVDhBVRqZfp7R0g27dpLt8YTJ0f5ezx0/zRH/8H1g9tZHRyHD/w2ZszyKfjTM0UQTf6Z/vWAfLZHLfdthPDkiTTCaamJkmm41QrIYZh4tVrFAqTpOKpRqLrOfc7wzSItCYIvEYMHQ1rl6NcMDSmbaOFhQwiIh0yMTVKR1c3dS/ENAxmpotkMhmkDCmXCnjVMrXSGLapqVZmsd0UUnt4kUMy000QBJRLs7R1rcNxE0TaoFSqoEwLHYW8deBd9uzZDkRYlsXJk6cZHGpYKgvTBUI/oFgq09Geb+Rsc2wQAiUV58+ew7It2jvaqdUaKSaGhy9x6NAxPvvZT6BlgEDNLbRDDJOGO6LWSA1RGGEZFjPFKVwniZAGQvpMToySyeWo1zwMZeN5IVEEqaRNGEVUy2WEIYm0j2XFKM2WSaYSBIFHKpXBq9eol2pIS6FsC2WYhL4mjCKk1PhBFb/uk4ineO+dIxw/eZaf/7lPYFgxgqiRqkBHmr/86hN88mP3k8knqVbLxNwcYRDx7LMv8PAjdxJLuBjKwDAs/s8vfhvfq/PovjtozyUYuOMBctnMnAW28YwG0cJYqZVG19qOLZ6rGtdYPBUsPkfKa0dlc1J4La4Xc9eMuF2NlV46P61MZdYazt08Jq5ZyevPSk3pjhRXNjrWau1aLWlbXTmx4O+199Is9q+Vh66FFn7y0Iq5uwX4SYi5gzlyNxcb8aP02p9XZ1yo0BhFUUO2Xq9OVWw+GfjC2LKVYgoXYjnnquX3zFlV/fP3dKWPl4lDWWsahPm4moX90iym7scN18S9zCfU1Q0RnPn+0kJg2w62Y3NhZAyhLNrae7BNRVdnNyIMcWMOMdfCskySiRRPP/Ms//x/+i3Wdfeyc8sOXn15P4XA4gcnziBtg/t2bcKrB4xPTLNpoI+jx0/Q3dUOAmaKRcLIw7JtohD+rz/4Ap/4+IMo0ch/V5ydwZzLx1evVnAdByElylRI08RxbEbHGoTSjcWRQmCYDVdIw3AxDQuvDo6rEPiE1SL1UpkwqpFKpvF8wWShRDyVRJkuWsVJt3eTTOcwbIt61efihYskknFSyTi1WoV4IkF/f2+j/xAowyCXy6IMRRAEJFNJYvE4jz3+HIMb+4nF42hgtjCLbVvE4jE8zycKAyzHpVQq0ruui+df2M+rr73FnXduxzDMeZE9NBFSCKqVCoahQEAYhjiOjdaCi+cv4bgGyVQK3w/QEVi2Q6VS43P/7kvce+cOhARlmsSSCVzHQWtNIpHCtExM00AKSRg21FUbfaEIAg8lJVJKpJAopVBKIIXJoUNHeeD+u8hkkkS60ec6CqjWarTlsnR2thOEPrMzBSzL5ot/+ld8+tOPEI87mErwlede44lXT/OPPnEffX1dPPLow2zcvhvbjRFGEdGC1Cia1cZKXTv3rJT3cnF9V8dD81Gz2I3zyllN3Tmvd63FmI+jW6qSOz+vXn82ZFGZtaddWam2taFZy/wgmItPWztRWo09dfXl5p6nZd5rDaXLxUqoLbTQwk8eWjF3twA/KZY7uGq9uxHlzKWY77yFFqaVLGdrxXK7zEvLXK9tS79bzXUX/buJm+NaXR+vh9Wq0kkpFrmdwrV9v9r6f/SYVxSNkDoENFMTBRKmwZkTxwhrRd4/eYS+jRtJt/UwMLiD/+1f/O/k0zl++Zd+hd/7v3+fDRs3sX5dH9/f/13KlQrFYpHx4jRRGPL7v/Fp7rpjN6ZjN0iDofC9EsqwMJRNreI1crLN6SFGaHzfa5CVwgyJdAov8JGGgVQSv1LGcV3CKEIpgQ4jfD/AMh2EaFiSlBUyNXmW4swErpQUJou09awj17YR5cSJIp8gnEVgI5RFJFSjF7RG1z3qXo1icZrR0VFqtQoDA0M4toVlOWC4REgkEfVaDd8POHr0BLt2b6c0WySRTCKVxFAG506fpXtdD5VimWw+SxSG1H2f+afbMBqxbMoA03AQGJw8eYKhzRvxPQ/TNDCshqupEhJQBH7IO28dZOu2QRLJOEgDx7a4fGmMdCaN5/kE5RKpfBaUoB74yAikknMiPRFSGlwevkQ6myGRTiLQRBomxy+RyXRQq3m89OKrPPjQPUgFhmHh1z0KU5P09LYTRAamJZmamiQeT6AjA8NUoAOEiJiZLGBaFmcuj/PV7x3jd//n3+Cddw6wZesmBvq6MVN5ImlS1yZWE6GUxVakhSQmurIgh7VbhRbOZaujDKulFVexGm+I68+HK1vulnPBXC1uteXuRlq36vrm1lgLCXKoF5cUK7ry3pzY8BZaaOEfPlpumbcALXJ3Y2iRu8Xf3QjW0l8fFnIndUgkFCESpUNEFBIKkLoh/HH6+BGSjsuxEydIZrLgQ8yNIU1NMpHkS//lL/i1X/nvGBmd4Ld/+7cxTZOOjjby+Xamp6d4+JMPcOj9I/zer/8UluNSr9WJuQ6eXyWKAhwnhtYGQoSN3XMpCaOwIQTje/heQDyWIPQbOcp8AgxlAZooqiMkeHUPy7CwTYHnVagVL2JZKaq1gAiF7VgkUu1gGCjDIAwjiDRSSCKhEUSgGyI04bwQTVDHti3OnT3D+IVTuJbBpk1b0XaWeqBxXRetNWEUEoaNj+O6BL4PUhKGAV65hmmZVCtV/CAgn8shFIxcHqGnt4davY6OQnToY9sJokjgez6JZLyh+Bn4OHEXjSDSGu0HoDVnz55DCMmGjesblrzhy6zf2Ifn+cRiDpVyEdO0GnFvUjEzUyKVTqBMOHb4BL19fcRtm6rnkcgkG2Nbw8XzF8jl2/C9AN+rEk+5IEzQAqIQyzIolacwrTS+X8WNu0hhUCnXcBIxZgszZBIx9r97lLfOlrhnZzfZto1YsSTJ9hztHe0oI0EQhY2xK0A1GRXNyJ3WjSxuUkjE3LgTNxAD1ZwgtcjdYlz7ZRCGGOoqafpxJncLa5vfCGgRuhZaaGEpWm6ZtwA/KW6ZcNU180YSmq9U91oTlK+2XhbUvVKZ69XxQa575d+Lpe6W/e5mQzT5zF9u4cLiVvT93wcUIZGQaAyUiBBERFIQaUmkBZ3dnSQTabq6esnmc9SrNbQfMDJ5keGLF6lV6/z1Xz+G49rkc22k0mmEgLvvvoetW7fwyc88ykMPPsDv/P4XOHhmmkfv3IwhJUoJlNGIizSUSblcxHHchgui1iglUUri2A5owbHDJ1DSIJVLE/h6LnEwCKlx3RhSKMbHLhH4VfzyDG4sT60iMewksWQaw3apR3U0EQKBitTcQk8DjThYqTWBEHOqlo2d/0QyTkz5jFweRkSCci0ikUpfic0pzhYxDRPDspBCEEYRaE0Uhnz960/S19NJLp8jFnOp1mpYtkksHkNr3bjnmIsUGimMK4mQ33rzbb7y1Se5/767qNXqKKWo1T1OHDlGV1c78USM9ra2BikzTL71+HNs2zpEFIYNV2ShKRRm8Dwfx3aIJZNUKxWmpydYt64P07SpV6qYlkmkJDoKEQLSqQxezScWi2M5JrVqEWU4DRIcBVQqJRzXRFkxZmemMU2TMAyxLJsgCPj8Nw9wbjqkd30/cRc2dGXYeef9tHd0E0tlCdFo2chhKASopukNmhMepdRVF7q5/9Y6s1xxh1wmHnd19a1cZjWufatwfF/2jEb6DLVs6oPV4EbcMiOtUYa6csJq3ShXi7XWt8hdfknJ+fG0yG0XPsCT00ILLXyY0XLLvAX4SbHcNVNUvNVYnYbc1bKrVWa7Hm7GPc5b5ZpZ5FY6dquw4gLjOuWaWVIXWlr/vtDsmsupnS48poVGIDHQKC0YOXeRYqnE2PgU2XSGA2+9y549e4jqZc5cuMCdd99FtrMNoRQCAxlFTE2PkMrk8ITgK3/+F6yLedx32xYSjokQIVpLjh09zOahAZQVByFBhIBARxqBQApJICJkqCHSRISEQYlysUjk+1y6MExHPo8wFMl0BjsWx4ql8IMAMZejqmEBWgnXHjWigMgv8t6br4MRZ13fBuxUB9JQKGUgRKN9vl+nVi8ThhHxRIaZyRmyuQymKfF8H7RAGaph1at7mJaJkopIB8g5F7JIa4SW1Gp1fK9hmYwn4lQqFYS2kLKR0DyRTON7IY5tMT7WcMn8/B//Kb/yi5+hb30HQRACkovDI7R35YjFHIozM2Ty7dT8ANMwiMKAIAgQOqJcLJJMpSjPVrEdh4nxCVKZGDrQ2DGXSEco02oI3UgTEWnePXqa77xzkf/2l3+Bb3/zC6wfGKJv41Y279yLUAa4SQwpF/XotRaia5+7ZkImzX4hccWl+Ga9QlZTz9rG60qqmQ3xlA+G1SYxb4a1Jza/8f5dq1BKtCgH6PxmniSaU8NtHlPZss610EILa0fLLfMWoEXubh1a5O760KzOXfbDS+4a99xMJW5+AWkaBn7gN75DYxgGph9x8OAhAj8EFKZp41iS7+9/BcO0eOjRkCVDvwAAFvpJREFUR0jns5RHxjl36j18r8D27Vsoe3V6+rdTnKnzx//xS2gd8a//6T7KpTEKhWl6+9cTihgIA3SE1kHDmhh62LaDX/OoV4sNpcfQx6FIFAkqNUWubQOGHUM6jQTwDWt2hFKScJVCGE1/Qa0whMavVajWA4qlCjHXoDwxTFtnB6Q6EZFqiKFoj1q1gqVsEKpBonRApVLFNCyEvCoc4vs+ymikdQjDECkkUimmJgtYrks8Hifw6ximSRj6PPfk9xnY2Mvgpn5MSxGGIeXZKv/+C1/mX/3u/4Dnefzpl7/B7/7OP6NWq6CUxLJMaoHGMBRhvYZpO2ipGvGFkUboiFKxSDwRQ2IQRoLz54ZJp5Jkcgk0DUtZqENM02SmXOFP/vZtNg+s5/9v795+JDnvMo4/b1X1cWYPs7Ner73Zgw+73o3tyElkxZgYEgUFYZIoWJwkpAhFuYgQAkVwwX+QAMoN3HBSkJAsEMoVCgFBQFGI5QAxDo5R4qzXu7bXXu9hZneme6ZPVfVyUV0z1T3V1dUzPafa70eyd9VTXV19mN566n3f3+9jTz+u69fe0ntX39STTz2p4488pnavJFUOqNW1qpuOPNcZGGXKCnfrn8vkRmlVDvv3NFnhbvIplbsZ7iatYky409pta/cl1AHYBMLdNrhbwl3SNP8JSlvXNvyzrJ+Pag0w6ZsyzUCXJnmMaeFueP1dHNqkwefibDIYpk2UylpTuJl1htOQPK5RBk8Msz5BEbc/4hVNq4sqEdZkFNpQNjTqdUPV6hV1e121VtuyRmp3O2o0mnLbHR2qG719+VUdPHRAb117V+87/aBu3ljSQw+fV6OxrD/5868p9Lv6nWfP68ixY6ofOq5QjspuWc2FW7px4z3N1MvqdNrqtFZ1YLakxvKynHJFB+uz6vqBetbVSifQuQsXJKfUf162f7Jolb8ByehXz9hQMkZBGOjOtau6+pNX5YeBHvjAk5qbP9GvOttVc7mhev2APK8sY6TF2zdVr8+qUq7JOFaN5YbqMzPqdNoyinrByUqt1ZYOHT6inu/r3Xev6/4T96lWr6rb6ajnd/Wtb76oO0vLevYXntGRowdkjBSGbhTOZmbluI4uXrykhx86LWOsSuWS/F5XPVOSsVbWb8vKyMqoVKoq8H2Ffk/1el0rjYYq1bpaq12FoVW5Wlal4srvhbp07aae/7dX9fFnntaF959V5+2XdeXaDZ06/6jcSlXnHv2ArFOXZGRsYtKbidfLRVMBQ5t8H+KLDFtZteWsBaVpyBoxXP+6yLfmLquxedo65rTts0b2ktNKR08zTbdd4S5uZZFW6GbStXQDTPRdk7w06rpermMCgHEId9uAcLc1hLv+z/t/xs8nGe7SHoNwNzlHiTUuJpS10Qm7I0fGOOqGoRz1T9qs1cKtRXV7vho3r+udyxf14Q9+SC9+7/t68OEHNDc3r9XWkg4crMqUOuoutfX8339Di4tL+oNf/2n1elEIMpIqlWgUr9frqTwzI88NFMho/thpGcftX9m3CsNodClZV8EO/Tnexi2NAlm5khxZ+bLWl2dLcoxVc/m2Lv74R5qt1HX8/uPqhoGq9bq8ykHdubOkI/NH1GzeUbVWV6VcU6PR1kqzoXuO3aNmoyk/CFSrudGoZC8qIR+GVpcvvq5z588qCHsKw1BB4Ms1Vb3240s6dfq0HDeQ60hepSLf76lcKkeVRjsdddoNtVY7mjtyRJ5bVs/1VCmVtHL7lhzHyC2VVfKqunH9uq5efUdnH35AszM1XVtq6k//4m81c3BO5vApPfb+c/rwE4/qffcf1cL1q7p587puXb+mA/WynvrZn5Mze4+MV1c7cKJZtLLyZOX0e3mG/eCyXeEuDM1aBc1p2F/hbnCkr+jhLvrDJG6iHx2A6SDcbYO7NdxtV9XMeP9ZP087njzbp03rm2ZQzQp30xIOPTOTI+gEiXVpeadgJiUDn5nwKvvwfqfxy5I33GWdeOa3Me7GU64ajYaWl5cVBIHai0sqlUoql8pqrjT1/N99XYGRPveJC3rwffdqpdlUfXZG5Uplw+7j1mCrrdWouIrTry6p7M/nNIN4ybF6750rCpZuaHHhpqr1A7rvwkfluK4CP1C57Gi11ZDr1eV3uipXPJnQ14sv/Jc++OEPqlqryXVdOcZVt9uR63lRc/TAV61WleO6MqEjxzH68h//mX77i7+hTqerY8fn5ZQ8WceouXhbvW5Pc/NzUujou69cUrlkVLId9UKrf3l1UZJRGPiqeI4++fGPaebwEYVeVQ889LDUa2rx+juaPzQrL2zqpe99V83WskKvpmc++Rkdmj+unnVVSj2x3sw0yMFAFf9aJL8G0t6jvEEr+9jGS68qufVvvKz1rWnb5fnOCUa0d8hbGTNtu2mex6R/441+LWkmDmCnEO62AeFuOgh3+Uwa7pJrYgh3mzF6bDm00SRBK6OKohYI8RQzxzHqWatet6c//MpX9Ykn7tNPPf7wxuefCHedbkeVSmXtSn/YX3c3yZFt9pk68nX1rSvyl27o9YsXVa7NaO7IMT1y/oLc2kGFpbIko9C38hyp0WxKYahKuSxHVm+8flnzR+d1eO6grJW8UkmdVlu1el2tVkuhkb7y/Avye75cz1WlXNbqakvVeiX6TFnJk9GvPfdZLXe66nYDXXrjss6ePaVDs3VdeOwx3VjuysiqvbKsucMHdef2bR09PKuw3ZQUanHhjv7pm/8gEway3YY+86lPaubekzp6/IR8pywrTz3ryE0dhyHc5TVpuBtn/4e7jQ/O+jkAO4Vwtw0Id9NBuMtn0nAXFz5I62NHuMtjdISKgtzgSWlya2sl13VkbLTm76/+8q/Va97S53/xSb353oIePHHPQLgLbCi3X53RMUbBDoY7ySgIe3L8lkq1uoJ2W9/71tflOCUFZlYfeupp1WZmFQSScTz5ga/3bizo7dsthX6gRnNVoaSXrzTUanfkOEYlr6Rf+eVfUiirmXpdhw4eluu5KpdKkqRSqax2a1kLCwuamz+moOPoa1/7GzWat/XgAw/quec+rbZ/RzIHVZ+p6/e+9CX9/u/+lk6fPKFm447qtbLeuvS/evfN/1PQbak+f0HlalXzR4/qofPn1e35cmaO9nubOYrXMAbhJN8Y2Qh3kaxwN67Yyn4Pd4zSAdhNhLttcDeGu9hOXpvMWpu3VyTD3VolvMDfsJ3jemu3Gyda72U3NLBNNxzuXOPK2lA2DDPX8g2/bvGUv+S6xeFpgMMV8bJCxKTV8kaZXln4nWYT/49viZpWp2y25t2339U/fuObunHjpiRptlbSZ585p5PH5rZwFJuxHr//+YUfqNXpaaUbqNn2denKdS3fek+3b99Q4FT0pS9+TnOHD+vxJ56QUyrL1I6q3eup7HnyPFc9P+j3M3MUBqFCa9VqtaOCJ61VlStVrTSbmpmdlb+6osBva6ZeUscvycrVgXBJ77x7TWfOnNJL//MfOnPmUS0u3NKlH/1QJ0+e1H/+90t6+MScjt17XPc98picg0dVnT0sY0uScSTHUTcIZY2jsgJJVsZG4cExRmkfsbT1amFqCBx9v6xrHsnz/zzhLq0i7KSmHe6mc7FkcF9Jac9zGuFuoJfcJs9tBo+MUAdg7yDcbQPC3c6YNNzF68zcnSzVP1TxcpTtCndZISx5QhYHNqPB13V4NJZwl99aCfTEKxPKbmgKbYZOrt2UfQWS/ujLX1Wn21277dknT+qJR06vvWejXmEraWGpqQO1isrlaITsG995WbP1qmZqZUnSv758bcP9Tpy4X47jqFqtqlqt6LnnPq2uNXJlVHGNTNBW2FvR1dd/rDfeuKTXXntNCno6c+aMakfu15XLV/SRj3xED509q8XFBRkrtVotWRtqaWlJx47fJ2sc9bpddTsd1Wdm1Ov5Wrh2XfNzVb34wre00OioVJ1V5841tVZ6OnfunN66+oY+9atfULu1qqobqidXD5y9oHKtLhv0FJhS1LfORCPKcan5QFayUtlE02Zls8ucEO7ymOYltuT3RdwSYu+Gu2Tn9PVXgXAHYPcR7rYB4Q6xvOFuXCuEzZq0z13WSdUoaVNbp2nnwl0UkaJKfVmPOel0vXHbD/88/xTBlZUVffvfv6OP/szTevmlH+iVV17V0tKyJOnxxx/VrVu3tLCwqG63p89/4Td1584dLd5aUKPR1LOf+vkxj5vvdU++VIHf081bC1q+/ANZa/X9778k13W1uroi49/RuXPntbLc0is//KGefPIpvfnWG5qp13T8vvt0+fIV9XpdHbr/tObm79H8sfs1e/CojHF17+lT8tySKuUotP3k4iWdOnVSlXJZrttvlp5yMSG7d9rG19nzXPm+L8/z+k3Th0PV9D6LeUNg2nGmXwAYfWzxV0mecDot+V+3vK9ptD/XbP09SJ7PpHQdzbwvo3MA9jrC3TYg3CG238LdZtbBEe6k3Qp3kxn3Om4u3A3fzw98zTjRKHQYhuq0OypVSgqDhsLAqnr4XnVu31alPiuFbfl+INd1ZUMrp+RJCuT7oYxXk7Ul9QJfxvPkOK5kFG3nRA3PjTGJCxJ5w93gNqPE9yXcbbe9HO4ojAJg/8kb7uiuCdwF7tqrEtiC5KfGyHM9rVpPkpHjSqVDh9XtdaXSQbmup8VWR5WZYwodV4FqUlkqeZ56vq9yuaSg21CpWpEfRJVlPK8ia30ZYxQEvirVijrtnqSoAEuQsoY1S1o5/lgQhv1RO3/EFshv8HOxHxHkABQZI3cTuJtH7qT9+s/4dKWNuuUZuRu7334xjrzr8fI2c9/smE1SnlGNUVX14qqdaXsYHkHZ7TV4UZNpo61XNoxHCaP3KHt0ZSsjd3lraKY/bmgHlhflUjbrgSt+ftZE6/2MiceYwtQ1Sh1bkkx/dMqafhP5wc9xcmpcOLQONL5tfdvRYS6Wtg51+z9vmxsZlSYfucva13RCWNo+pv26bX3kLu08Jv5kmbXG4ky7BLC/MXIHYFfFJ+Z5p3YmC+IE+7TYStEFiX8y7NrJuBNNq1RUpdLKyKTGFEWVLI2Ra0IZKbWaZRY3pdgFEEsWVFn/qHBZEsDdhXCHXNIaY5tEkY60Coz7QVZNuEnXxm1lLV3aiN0klTUH7rfpo8hr4xq2tJGRZEAbHCWxG0ZokvdL/n1nRvPiSnuTvn8bR8ystTImXmsVP4e8+5jUpCMpg3VTB/N2vuMYrF6YeHwrJced0o7I7d/HMUZRS3hFDQJHcBKVXocZx5H6VWPz1HUcdXEh7guZjx3odxg3sR/mJQNoxvNLqwQZ5DyStGMbNlhVMus4sl65ST+f40aRN4pGzNN/99Jeo/TPfXR/xxDkAIBwh02Lg1wc/MacxW6ruJT/pPbrqUDcYHx3jn9vTKPEpPbrp31/Sf5ekDW208aLQQAA0bwFm7d+1dwqDO0uT5Pa3KMbx5lK9cq7yXqIJtztJ5wA7xQrDYwpYjs4jln7b5KVsgBQdIzcIZe0E8P4FneXw5HVxh5Fa6uBxhxbnmmk49oYDLc7mGZYzJqa6QxNg81zcjPJpKlwxGjo+jS29EccX6Z+/P02H0Q2FoCIp94NTv/KKhSx+YIq62t+klMgt/u0M9/+16cQTj51bswE5sz7rU9f3NyIb+o7Ff+u5dg+/rymTcEMJirqk2ylMbqtxnAz+80Y1aYhmo06rlDKxvcqrcl3trzFekbdb8xWQ9NVrQ1HDHNunLKd9pyJ0QCwjnCHfc9J6SU3jYa0YcYJ5E4I+6XgGVncmvgEPrmuJ23NH4C9hdFmAJgcrRAmcLe3QojtleIpk4aeMJ5EmrwSvsnHTHvu29WwfG1f/VE8G4aZx5ElbVQjb9PnNGkjHtMohjL5PjZul17wYrtPFgdf4fGN07fz8dePYzdYG8p106tmxtKK6cRGTf4dHrHe8Lhjjit9BDOPSV7bZPGVSfaRv5XFZPvI2i66bXC0MOt7ZTMjvxv3YW0om9iX53IRCwCy0AoBwLZLCy7TCDPT2cf+qtxaNHu3rxijQWl28iJEPNXcyE5lGisAYB3hDsAWZK3N2cpJ29b3sZkm3Zie4Qbke8XOttnYT3bu9TDGkeuYtaq/AIDpIdxhIskSEXmnBg5vFxdAmWRK4TSmN8Zd+tLqelpJnucp8P3MfWRNx5yGrCmda1e7E69d/PfNlO2I3gezVjhlk/VGc96283a/ifFOFFPZqqxpgOMKdwwanlo5buJgmGNKcNqRjfseybPH/L3tJgmDyQsSw9NxdzJIZlWzzXtblrzbb3wnku+31eTTygEA4xHuAEWnIb7v7/lT8e2wfvIaTqUQDe4Oe3UELHlRhPCweyZZRwkAmB7CHSYS/6OcbKA97mQq7cp61tX31HYDxlEY+JmjZHlP5NL2kFmCYNLnl7L9tCteDjyGtl5kIq2dRCwuIZ92srZ9RVPylXjfeNtko01ZxzX62LIMHlsyMO9MCJr0OY9oS2HtwJTWaVQt3FgYJXuf8ZS9UVslv0fi/Q/flmXc++w48W39VgppR2LW77c2GjiwWdb0Yjv0Z/7t3P46tbggWjiFz/2GR7Xj18MNt1gY23pmKkcGAMhCuAOU3k4BEau9u34K+URhLd9Jv+MY2SCU42RXutz2uqP9YJw/rDny/SC1N+NOiB83KMAvSp5gJ60XzaFlAQDsHbRCmACtEDaa6OTL9WRtqF6vp3K5stbHbdiko1zTDGRpj513/5O2h5j29LE8xQk2U8R8uFz97k/Dy1vqfbSVVksHZuoDzbVjWxuhTB9BGRWO8+x3+u0UojGu5H5HPeesUdvkdqP2sRXTbFQwvj3C+LVo40buYoPhLs/IXVLWvILRLVzSf+unMNqaOD/IOzoHANgetELAnmWMoyAo3vo2Rv32j4Mz9f40up34FNqBfl67Lwp2Roy4INvg6B2fFQDYD7gEhx1XLpcUBIEct1jXFnZ7PAv5BWGofr2+bX8sa+0eGO1cFwc74zj9uo7AKGbtP8cxXAwAgH2AaZkAAAAAUACM3AEAAABAARDuAAAAAKAACHcAAAAAUACEOwAAAAAoAMIdAAAAABQA4Q4AAAAACoBwBwAAAAAFQLgDAAAAgAIg3AEAAABAARDuAAAAAKAACHcAAAAAUACEOwAAAAAoAMIdAAAAABQA4Q4AAAAACoBwBwAAAAAFQLgDAAAAgAIg3AEAAABAARDuAAAAAKAACHcAAAAAUACEOwAAAAAoAMIdAAAAABQA4Q4AAAAACoBwBwAAAAAFQLgDAAAAgAIg3AEAAABAARDuAAAAAKAACHcAAAAAUACEOwAAAAAoAMIdAAAAABQA4Q4AAAAACoBwBwAAAAAFQLgDAAAAgAIg3AEAAABAARDuAAAAAKAACHcAAAAAUACEOwAAAAAoAMIdAAAAABQA4Q4AAAAACoBwBwAAAAAFQLgDAAAAgAIg3AEAAABAARDuAAAAAKAACHcAAAAAUACEOwAAAAAoAMIdAAAAABQA4Q4AAAAACoBwBwAAAAAFQLgDAAAAgAIg3AEAAABAARDuAAAAAKAACHcAAAAAUACEOwAAAAAoAMIdAAAAABQA4Q4AAAAACoBwBwAAAAAFQLgDAAAAgAIg3AEAAABAARDuAAAAAKAACHcAAAAAUACEOwAAAAAoAMIdAAAAABQA4Q4AAAAACoBwBwAAAAAFQLgDAAAAgAIg3AEAAABAARDuAAAAAKAACHcAAAAAUACEOwAAAAAoAMIdAAAAABQA4Q4AAAAACoBwBwAAAAAFQLgDAAAAgAIg3AEAAABAARDuAAAAAKAACHcAAAAAUACEOwAAAAAoAMIdAAAAABQA4Q4AAAAACuD/AetrEvmJkUe6AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image = skimage.io.imread(image_list[2])\n", - "fig = plt.figure(figsize=(15,15))\n", - "plt.axis('off')\n", - "plt.imshow(image)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAJrCAYAAABDUGpCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3Xm0JNld2PnvjYjcM9++1L539VrV6tbSEkhoQWAJSRiMPYxtDJ6xgTmAPRiMDfYYxDEWMgzGGDADEtgz4wNoQ4MkNgkhtSQa9b53V1fX0rW/V2/NfYu4d/7ILXKLl/neq3pVqd9Hp1VVmZERNyIjI+4v7u/eq4wxCCGEEEIIIYS4vVk7XQAhhBBCCCGEEFsnwZ0QQgghhBBCjAAJ7oQQQgghhBBiBEhwJ4QQQgghhBAjQII7IYQQQgghhBgBEtwJIYQQQgghxAiQ4E4IIYQQQgghRoAEd0IIIYQQQggxAiS4E0IIIYQQQogRIMGdEEIIIYQQQowACe6EEEIIIYQQYgRIcCeEEEIIIYQQI0CCOyGEEEIIIYQYARLcCSGEEEIIIcQIkOBOCCGEEEIIIUaABHdCCCGEEEIIMQIkuBNCCCGEEEKIESDBnRBCCCGEEEKMAAnuhBBCCCGEEGIESHAnhBBCCCGEECNAgjshhBBCCCGEGAES3AkhhBBCCCHECJDgTgghhBBCCCFGgAR3QgghhBBCCDECJLgTQgghhBBCiBEgwZ0QQgghhBBCjAAJ7oQQQgghhBBiBEhwJ4QQQgghhBAjQII7IYQQQgghhBgBEtwJIYQQQgghxAiQ4E4IIYQQQgghRoAEd0IIIYQQQggxAiS4E0IIIYQQQogRIMGdEEIIIYQQQowACe6EEEIIIYQQYgRIcCeEEEIIIYQQI0CCOyGEEEIIIYQYARLcCSGEEEIIIcQIkOBOCCGEEEIIIUaABHdCCCGEEEIIMQIkuBNCCCGEEEKIESDBnRBCCCGEEEKMAAnuhBBCCCGEEGIESHAnhBBCCCGEECNAgjshhBBCCCGEGAES3AkhhBBCCCHECJDgTgghhBBCCCFGgAR3QgghhBBCCDECJLgTQgghhBBCiBEgwZ0QQgghhBBCjAAJ7oQQQgghhBBiBEhwJ4QQQgghhBAjQII7IYQQQgghhBgBEtwJIYQQQgghxAiQ4E4IIYQQQgghRoAEd0IIIYQQQggxAiS4E0IIIYQQQogRIMGdEEIIIYQQQowACe6EEEIIIYQQYgRIcCeEEEIIIYQQI0CCOyGEEEIIIYQYARLcCSGEEEIIIcQIkOBOCCGEEEIIIUaABHdCCCGEEEIIMQIkuBNCCCGEEEKIESDBnRBCCCGEEEKMAAnuhBBCCCGEEGIESHAnhBBCCCGEECNAgjshhBBCCCGEGAES3AkhhBBCCCHECJDgTgghhBBCCCFGgAR3QgghhBBCCDECJLgTQgghhBBCiBEgwZ0QQgghhBBCjAAJ7oQQQgghhBBiBEhwJ4QQQgghhBAjQII7IYQQQgghhBgBEtwJIYQQQgghxAiQ4E4IIYQQQgghRoAEd0IIIYQQQggxAiS4E0IIIYQQQogRIMGdEEIIIYQQQowACe6EEEIIIYQQYgRIcCeEEEIIIYQQI0CCOyGEEEIIIYQYARLcCSGEEEIIIcQIkOBOCCGEEEIIIUaABHdCCCGEEEIIMQIkuBNCCCGEEEKIESDBnRBCCCGEEEKMAGenC3C7q5RLZqfL4Ke1BhR2x+vG9C+mUqprOV3/d2D0rzbedW0Mlm/9tY20/q07tqHb1tl4x7SVTXWuD7B8H9MAyr/PCgUYrXFsu++xGGifG/zlNODVt9FPY526tnjXskZrsFqvKsDyLaWDVr5pvVZa2y+r4xDVtq/q7/X/3j36f0dBjDEoZdH6rn3HInBVqvn5xjnf+h5VsywG03x9UJZV+9Y8zxvyk1vXefyCfr8Ntm03y9rr+Pdax7DfU+f6NvN523feNc6Xxvr8ZRpkn4e11XUP+/lBv4fOZYcpn/9zjXO2ZdizXgghxK0gHIlu+gYtwZ24ZRlTq5hspQJ6M+gNArteOgM8ZVkYbqnnBLc9XT+e9tDfjhjErf67/EbhDwQ7H0TYtnxHQgjxjUaCuxEX1NrVb1lUq+Vvq0/PG612PVvwCG4l6yzzIPvQaBnDV+5Gq92GZd1wCd922o5LRyuL1qiOJ+i679K9GVRbq+Yw3+PgNv5uW9szQy7v20pg2Ruta0Hl6b9d/9fQ+Q03jp1njL9RtCdLqY7vdHsopTb1G9rMZzbTwujfjm1ZQx+Dxm/a0/0fxGzXuTvosQxqXRu2RWyzrZNQa0nVPa47Qevb7tZKrbXv+PszIRSWpdC63lK/0Q9ECCHEbUOCuxHSuFH3MkwFSxuD3ViuWbfvXnez2mLoqjy3VWkaKXaD1Ft86XibbXBphSMdK2gEXArf/my2UqM6/vS9Y1k9A7xOtVRMK7AErePYOIb1Nj//hzqP6wa71FmBVEoFfzdKQcC5Ncg2ApbsvcnAj/jTV/sfCH96rt5grb2Ck14V815lNBgUquee3IjUws3YKC3bGLNhYNdI+WscF2MMXsdngrbTeM/zpTS3nidtX3BxqxzzxnHSWvdIl+y2reVupAb4fiv+9SvA81rnt+fV7w+N1OseLX6Nn8MAuyKEEGIHSXA3cnq3dg36xNv4Azta/Z36VcGNqVVtrQ0ijOAQxr9cix42amn7vGpvLfPVSNpimU3Wpxr706/6v1FgV1vJoEfFv+eKzqTO7epl06vExhg87WKrzl6cg9tUxT2gP2d7Odv7iPrf92j2tsSY/n33LMvaMJDrXUbwPLdWce+oSN/Ken0fNzPFctAYZpBr1yAthcP2N1Zt17/NHRf/5yoVl2g0vKnPbjXga4RsG71uqP3kGqew5/oCwfqTu1aAKv34hBDiVibB3YixLIXnec1WKw+wGTItc2AKpdrbLFRwNLgtBk2V6lcV2UqFaZBBVzpTQPsFeputTptac5SvTKqtTP7j0/a0Xqm2Pwc9DsMEdr0qyDcmpbRB9XgI0F2ezr8rpTDaoCy1ucCutkZse/NB780QlJo47PfReZw2m3Lq5z9+jRTCYYO5hmE+t92DywQZJLDbSvpnT5tYlVH1Zyqq/fPNFtfmYD3dQ0JZHYNBwQ29BQghhAggwd2I0bo+6qBpDCZRC/Bu3Bd9Y27hQdVt/6iKQmyGMabZIiE2b6ujT+7ESKSi29ADQpn2K7RuG8630dInvy8hhNgJEtyNKK26n6R2MtRTFIP6U9XzdBSNx7r+9wzGeChltfW/A2h02fBPR9AsT0CF0KMxJH631vD8wRVJ3THupPK1bBljOoap9C3ZmVbX573aIBK6uc7axnx9tWwLbejTC8u/Dx0ptAFVrF4jaTaOY+e0Bf4WAP9IkY3vyN9yow1gzIbjffrrbp3ba63ftPo5+tY5/FiiwXTHNBSNFrjGq4OGC71aNXsto3pMz1FrYdrZymtnm6F/vwcJtrbaonojpyrotf5eLdLDBpc7tc8bbfeWGXl0gGLUzvvOltDu5Zr9+Dq+I9u2m0nz8ohOCCG2n3SNFlvSLxD7RqZ7DDDzjcLz3A2CWnGrsG37lksrvVUGQxHbpzPVVmuNpw3ekIM0CSGEGIy03I0Qq9l/KDiyaE15AGBtMEl04Jo23oZPv6kN2ltQ/MFi5/KDbafWF7D1r0ZLU3P7avOVyFpLXXvrnz9BqTZKphpg0IitR3+draIasJXCGN3c16D0Vt08LlbvR+9DslA4NylYaLaEoG5qemWv80Ybg21Zt11gsvm+hreOoAnB/a1l293vczOTmTeCnH6tj9uxnZ3WnY8QLGiEZz9J8RRCiMFJcDdCajfK3jfBtlQ1f2Wio9JgdayhrVLRGSQZmiNrdlZU2rdn6mmavW/k/mHq/aFBUHpd871GamJXGONPR9T1yndjS30qCgEjNPZ6T/uCK4vafvgHTwkaW659VND2IveqlPZKr2yNCtla3sPUljXt7wHYzTTCxiAk/fdXB9Sler03SJpcUMA/3HyMvdLCWqO8NtNPN1xTN//ImY0yWX3SLxvnoNUYZdb3nm4f86aZ2tk6Bv1bvFXbVAH+dGawaZ3HN0LndAc7YZDpFAI/X1uw52e2ayCVoJTe5nnT41zyv77R4DD+eQe3cwTNzRokcNvwfdW6BvlZvn3qdd1vpHg2tFqcuyaLkbwBIcQ3PAnuRKCeIz02Ao7GfG63Sn8R8Q2tkea1mZY8/4iAN+J8braSbmUlBjz0Dc2lb42IePv+phXdI3ne7BYwY0zfAPlGnWM3mmL4lrkbpX3kzgYZyEUIIUCCuxHTfeutpej5R5cc8sbXL+2pI7Drrqy0P0cNHup76zfjoMqbXQ9Qe81ftZXKntUx7cMgle5erXnNFriOFjv/MdM9tjFI24p/PzsGst/sGbHhdm4G/5neOSDQLVEBNY2qcI1qTHXePE7dH2mdn/2OYa/5JGu2MuakpRRe/be8XVOmbMc0CVvRazAWP//52u+9zX6+1zqGDeZqgx0Ftzj6l+2a5uMGHfvt/F31SsffqFU6+DpTe62V6ukbBKsj4JNWPiHEKJPgTgytEdiJ7dXqbyhVjq1ojJ4ZuExjNM+bHAUGteC1UlOHXCcKRyncTaZrevJbHhk3IrDbzodAzXU2Rri9gQ8A/IFiY6qG1m+sdq2VVj4hxChSt0tH7VtVpVy6dQ6gbg5E7+trNdzNq7PPHfRvdRu0taBzna3PtZfRGI3jG1AlaP2dw3a0jcbWXGV3P77aVvXwLU0DDHvf2XeuoW3qgICpFzr7svU67oP0TbOMv99ZwBP/el/BG0H7tm1QWF2D2LT3fOxVzlr4ZehsE1XK11piLDTdx6nxL21Mq4V1EBs0+9kdk2x4vr5+wb+HzgBq50eZHaQf1yCtWLeToN/9ZlufgyZI7zzGtm0P1J9xmO/Dv/ww+7elQNDULl/DhkYbtWC2Tz1ST7Ns67va3sK3nbMk+lvOJegTQuy0cCS66QuRtNyNAEWtv5Hd9Wov/YK+/rXajW7ItVE6t6fCty2j2qngNNBB1+2vDPk/4xlzU6rmvcrpf62Zqtljd5rpn/70sWawVGO0hl59KrdJa+Ads6nBOPtNqdA2QEZrZj0U3cHcUIFdYyVDsLdynm7SdqWdBg5cwiaO3TbqtY/b0SrV6/oSlHLZ7zXVcY71a/3sXLd/0vZh0z+hnoKs2t/zD9wyyLqHTU/vtcygUzwOe65uHPxtHBhvNkhvLa9pfE39uhtI8CeEuJXt/ONjcUuwNl3J7z9wwCDbbGy31TdQDMpSw82nN8r1kS3vmkGyYX12MrDr52a3GN7oQU8a/fX69dvrJRTufh7rDxhvFkupW/IcudGM0Rij0br1nxBC3GokLXOLboW0zN6tZp2v9e9CbveqGiu1qZEwB2l566yKDDr9QYNlKZRuDdQC/pTG9oEsoCMtslNAmmQj1jTGDP6oeoNt6Pp6LIKnGxhG5/71W29XqwCqPi/ezTmFvU1GT4r6udjjAYT/QX5jvxuVzs20cPX6TGcqZvCnGymprX9DY4CMVmtkoxVq49aowaZMANqmTdiqtpYpy2ob4dHfwjH41BXD6/VdNF67kYPmDNrq1csgvyXX9eoPtrZnD5RSzRY9pVTPlrxegtIzN5qmISgVNaicvk90vtt33YHr96WHup530+bZDKJ6BL66fqGyrX75CEII0W4raZnSVCJua8qyUPUWwFbro9pCS+SNZSu1I6l825Q1e0u7nVoTtMGXUNqt8Z40KI6efL6wqek6gjTWFzQFwygIGtH1VgjsGjyt2/5r/JK9b4QLsRBix0mfu5HV65l35/sBN5qOVoVBO/J3F6PW6lIbmHB7KjRatwaxaHbm6rn99tbKYfti3IgWrZ1qKa8NaNJRlu0sj6oFLNsVUncN7+4L1tta8XxfcWdv0s2ebVttFapNaN8+RExtdM7W4DKNL6Pf4W+28A1QvtZx2r6AoW0ajj4t+Dc6bTGo17Dq+Y/6S5vst9vv+hAUUARP8dLb+Hhq6LJsNPhN50Ttg5RpK1kZN2yqhXrLY+dcgP2mltBGd91XNtXnbhM/+n7HIXi7Bs/r7B/ZurZJXz4hxHaQtMwtupXSMrfjueUw6TlBn9+Oz/VL0QwawKXz5lh7it0e5PnTGP0pjEHpjUGpnbXlWsHyxsvWlrc6jnXvdEpV748YFLw2BAyQ0aPC10jH3eq8ZYMeJ39apgIs1ECjenZqDAyjtcaynPprNEeLbbZiBKyj15EzUHuoYWrpUw1aDVa2tvOK9pY5pUyttU57rX6mzVFEfRV32gPknby4bJR61zZqaZ/PAJjGCbLVeuuAFfDG/HDDtuJuNVjdyUnT+2130H3qV07/Id/qQ4+gsrR/Z/26FLR3IfCMpnF13+jh45YZbsjUDRsd01rqteoZ9LXf1YQQo0bSMoXYScYMNIrb5lY9fL/H/uuqVca1ub3TNP31HG1M22TPtzpl9RgKX3IvBzPgzyDsOISdnU1KGWaQlJ1yK5XxzJmzQwWOtYFNghKbt9eNnpMvmGkbwKXxn6clzVMI0Zu03G3R7dhyF/S0vd8w/4M+GQ0MRDpTKXusp3fLXXfaWeNJZmPfG615wdMybL7lruegM81yNlLszIbLDrq9mqDEtKD3/cv419X+WuBAM0PotU+a7idHbftXX87qeK81ybcJbP1onwCh/rfGIDuNfwekOAW1eSrAVlYzYB+25a41oIp/K7qt3G1TUmC1LamgNcnzIBseoEnFP+jGsPqnK/ZvuWtP4WtvmVQ9/hzIVpuONrDRICKDLtP4+41OWx3URq2Inen3G9UJNjP3Yb/5/Xof1/4td3Tcn/zZHZsZ5OVWEHTMOwdNGmBtQHsGi7TwCXF7knnuxG3B1G/uw1Z6Gmlsg8yl16pA3LyKlYUCf1B5m1QqdlItjbJ7nr1WncRiK9WRW6NaPSBjcA04AcFoYDivNg4mNhvYic1RSt2wufpuhub5doMDanFjtAfS3QGfEGK0ScvdFu1ky52CtrQMy/cUNGi6gc185z0rjr6nio2sxIH6fKh6ZTNo3YDp0TrXY9NArcWxsUxnENjY92H3O2gy457l7bPPte+ivVXPGBMwFcJ2dE7a2Ha13Pn1bJlU3YOt6Prrw/QNak7ajmqeP8Z3TjTStHoO/tHx765dN41ymvqIpq2Wu7YyBDxJt3wtVI12uj6bwfja7hrHoNVHzL9dq/m55v9rD2XZPSZ59w06U/9T0T2xe1dhNkn5tth1pPzXhq6pEHrMXwG12UaUf3iM7odBzcm861tuvnMDgpDgFpXuMgW5lVryOrXti+8hQNAh9V8bNwpY+x2r7TgeQdePYbc1bJ/JoGWGCeKd9obJNoO2TA7Twtd+LkrgJ8StSvrcCSFG3kaTtluBoxrW/rSVha16XPZuUt1G0V0ZHHQKh608iNvSZ9n+lK5acKs6XxxqJFtjzG3TXdGyrG0vqOH2ST3s5Nj2jo5aHMQecEqFzj6LQaOq3koagaep9xU3RuN5Hp43yCyzQojbgQR3t7HGM+xaC0P9adwQk+wOezMapgN+4LpN6/1BnnBaVvtoYVqbWm3d/5//Pf+GMEOVu62YPT7X+VrrJulbru3m2V79DC6LotUTaSsVmsG+05tWGTHdF5pGxXSz27c7ojxLdbRjdRy+VndP3XvwG1P7iKVULSHUt4x/6Z7fdw8W/S+uqqOsvSrpjeDHfyY0jpWy7I5lWsv22i8LVfufUmDg5VOv1H4nAYfe+P5zLIuXX3qZawuLuK7bPFbGGFxt0NR+dxbgeRq36jUH7XG9Vru1bgZj7S05zX1X7dtuDh5RX5fnec3XOj+vaQ2so43pm8I9yC9rkOuSbVmUKpUN1uTbrgk+3sNqtKr1/P0MeOno2fKkev41uCz133Gv6QpU17WwpnlebPBb8rcM9vpvo9azQcvv3wf/+eW/T/Xbv873hrmm+ct/M4PYfmVvG7ClHvB1D+bS//clhLg1SJ+721jtAttxY6n/2e/Zo7/S0vizc6CLXpXS4Btw93LDDsnda7lmpkn9Pf9zRf/fbUthd6azbHCj9KhNKL7Z/nGtCml9Hb51mY6BA/qlP1rNVahmmeqv+LcUUIp+x3SwfWpOTTBAXaRzmH+rz7EbbBqIxibr/z9kgGeoHyt/SqY27c81uhuFgP7Ta6DqHzF05fz6fw/+snYPiNP6XdVSFvvvl4VpnSdWbeMG6lMl2Cita/P52TYYU5vXr5mSCEYpvHqYZNciLYxloespmxYG27JwPbe+RQdtqpx76TWe/uoXuePYnXjKxlFec95AZcCxLcqlCrZt4VYN5UKJXDoDecPS6iLXX13gE5/8GN/27nczPzvD0soqv/O7v8cP/KMf5it/+nGeeOZpdh0/wX/6lQ9Trq4TjcQIhUKsr2XJpPN8/otf4kf+2Q/heFBRGmPKROMJtFYY18O4Lpl0jngsiql4LCxd5dh9d5HNu4SURQkPx7KxQ1CtVAiHbMCgtIOxqngqjE0VZdkYrerTTThguXiehYXXPJbG0HYOKX906T8xUHQmuittcPqE7yowJbW/4M/5U1St4OvWAJvcat+/Xg+9Otfbd/2NyLTP+owxWJbVN03S8zSOU7vDWUp1pwT7DHJtGWSAmOaDlSECxsFZzWuX55scBsBuS/VuX6ft+/eNnLa+e19qX6Dn+Y9HbRl/twh7gClphBA3hvS526Kd7HPXr2/ZRjq/80GCO7/mBb1ZmaVHS8ngwV2/vhGdn+1XMbct1bV9z1eoXgHHVoM7f3ldzxsqzajXOhpl6jZ8cFfrY7WpovTVdgyVqm1jyHX072M4nM7RF2uv9elXNvTKwQ7ovzLIaKf+4C6o0tUW3FFvidMeFgrbstDA2uoak1OTvHb+PAcPHEBZVjO4M9Rm/FOehzKg7drvwLIULrU+g40Jkh1cNDamYHApE4/Hya1mKGRyXLx0nQMH51hdv87aQpFCscD0zDSFQp4jhw5TrVRZvHqZXfsn+dKXvsZDb3wH1YrLqecfZXJmjkgsxsf/6DO8482v57EnnuL4iQd44L67iCdsXj19no997OPMzM5ycN9BvuXtbycxFudzn/4Un/zM5/jwL/6f7NkzRzwZ5rHHnuQX/8OH+LEf+VFMtcpTjz3F0WN7ecNbTlCteFxazPILH/4Vfup//ykuXzzL448+wXvf/wH+++/9Hm9521v4lre/jX0HjnHsrkN4Hly6dJXdu/dQpMLB/fMoDEbZzQcBRtUDN6u9gtr8flTrNdURbNmWhTYGD9N1HtyM4G6r9+3O4G675uXbMGhsNkMPt87mxzta+4fpszuMfsHdZj/ffJ32XVdKtc/d1xHctfXj7SiCf57UrV5bex3H4HOhkWVSX7ZRXtW5jPTnE2KzttLnToK7Ldqp4K4W2LXfKXsFd/1a0trW1Rbc1W4/QRX3xu3HtnzrG6IS08sgN8+gHgF2K++ultJV+wdwYwYOaZbJGDzPC5xXq9e0AD2X63kMOmtDw9aOei3fb539bccxHKYCEpSy2Su4a9j0WWhqp7Ci/Yl4p4GnsjA9mifoHoDEaN0d3CkLpRTZbI5kIl5b3hjKpTJupUJqYhyjahO5ow3VYoXnnnmGk294gGg4XHvgYFotDblsnvMvvMT41ByFtWVMIoWXWWPh2gJ3HL+L3/ivH+Wf/9j/RiweJreexwmF0Z5LOr9GMjGBTYg//dNP8r1/77s4d+41fvmX/jP/4sd/kg996N/yb37255mb28Vff+2vsZTF3PweXNfjgdfdTa6Q4ctf/Bty2Ry7ds+xb/8ePM/l5//LbxCLhPmApTCrOY4c3cu5TBo1NcN7Z6cJORaXrl9nIp5koVrEq5Q4MjHF1aUM5xeWSEWjvPnBoyyk81gVj2Q8Tq5QRGnNwy+e58TxfUxHE7x05hLH9u/iV199lQfnpzlVKvGPjx9hPZPj/3n5DOVwFMexueZ6HJuYpGJD3tN4BsaSSd76zW/j//vcZ9gzN8f9J0/y3d/9tynmihy54whPP/U08VSSu+67q8eImMMFd60zpXsgndYyrQc2wwSMtzrdSIfcYLl+96/OaRxuJYPUrZRSWMY07xGta0h7cKeUhddxB2wPCm9yNcS0p4EPPqBL+3ckgZ8Q/Ulwt4MkuLv1g7vGHzeig2mjctFzXjff33cquOucDzB4nQHrucnBXavvYbdeldtNNAh0reBWCe5CtoPnedi2hefpWnql67K6us709BRYqhbcGQ+0Qnmar3zlq5x43UmuXLnCl770Zb73u/9nFq5dw7IsxsbGSBLli1/+K6rFa7zjO/4BCxdOMT0/QwkbmxDRSAzLcnCrGWzLxtMekbjN2kqZuZk9lMvX+ewffppv/bZ3sbq6xPLKMnfedxfJ8UkuXb5C5vp13vb2d/Mnf/YFPveXX6BQLXHt+nVyuTw/cudxZqol5qfGmI3HSCVTLF5fYDw1wXJ6jUQ0TrXiopRNoVSiUq2wZ36K1FSKSrlMMV/m7Plr7JqdZXwihqlWwXFw7BAhJ0w4FCabXcIzcOHyMkcP7iYRj7O6msEYQzKZ4vLFa4ylQszt2s2VKws4to1l27iuplAoMTM9gbY8otEoruuhFLz08hXuOLqHiakk1XKVxesrxGNRbNsiOZZA2Ra2Y2FFHJ5fTvPk4hL/5MSd/PXCMiuZNH+6lCHnehw6eIjzF14DYM+uPfzQD/9TTpy8F4ALr13kwKEDXcFd52igWrtYllW/3oxOhbhz/ruNRie9kcHddgeJg4yi2QjuvPq8lu3Dv45OcNfv2DYe4lmWDP8gRCcJ7nbQTgd3lmUNNYn5Rt934zY7WDAC/SrgVo8KSL+hnAedLDxQr3Vv9dz237C2uUKlVPd0FYO1sm1F/+OxUcVm0L50N13A99KzyH0Pp64nOZquc7BfQNedJlVftVKkM1nGx1J9+342fl+e1ph6xcZStYEmrFbvL0w9rdKrp4taCrRWKCyqlRLVUoVMrojnevziz32Qn/zxn8Bzq2RLHh/9z/+RN73tAd7y1u9h+eprXFu6yr13zDO7/x7yuQJaw0c+8ruq+mPvAAAgAElEQVT88Pd/gHBqgtdefg4Ph7GxeV597SLJ8Qj33nEHbrlMSXvMz03gWSEuXbrMeCzEJz7+Sf7u9/wQ69llfum3fpNiqcxHHryLeCJKdj1HNBojnc4xMT2B9iosr6T52tNneccb7iIWsVFojLKpVj2+8uQrvOXEcU6dv8SD9x6jUM4zlkoRCduUi2UKZZdwKIyrK8RiMUJ2iGdOneGuI/uxjMIO2XiuxgmFyGSypDNZMIaxsTEcpbhwdZF9e6eIxqLksiXQ4IQsbCwq5QpffOYVdk/Z3H/8DmwrwiNPvcJD9x/FsS1C0RilYpW19RyObVGqljm4fxfag3KlwiNfP8Pb334f8VQEJ+JgMLilKp6n8dzagBSnz1zkda87jmVbtT5/KM6trXF0apLGoEsfPXuZL12+znd953eysrLCj//Ej/U4YzZo1aY+uNCQ177Oynm/ADIoyPKXr/FaeyBjAir5qm25/u+1b79XGmhQauFOte71+z46g9vOa49r/Om47eton/poZ+txQQ8cglqy29+r/b3WTxaklU98o5PgbgftVHDneV79gt/67oOCu81+z0HBXvucXx0X4iE216/yPNCNuKOju9G67w09qELQe903LrgDf0vdVlMvG4I/V+uD1e+94ErQjQ/uVED5+h8Xf7k8ar+BWitqnwqPr0GtvW1NNysVQS1ygwR3bZ/tfqlZEFMP4hph5cKly+zetZtssUQinkBZimtXFpmcnKBcKvOed7+HT33yk3hulTNnX2XP3CzRcJTPfvbP+Dvf/XewQjbZTIYP/tzP8+M/8S/Yv3sX5y88z75d9/DE049y6OAe9u4/QNF1cctlvvD5z/OB976PQiFNvrhOIbPM/NweHBXl4a/8FR/7/d/lJ/7lzzAzu4szrzyP5VX44z95mMj8fu4vZ3nPrmnGxuap4uFVK5QrmsnJMVTI4Jar6KrH6mqayZlJMutZQqEwZy4tcHjvPFMTCbRXpaodzl+8yp1H93F9aZWZ6Yn68VGEQyEKpTLhkE2hWCCRSGA0KMsik86glIPjgPaqxGIxnJDD0vI68USCx184xevvPsYLZy7xphN3kEnnMZZmfHycp557lXQuzzvefAKtNdcWl9g7P4fn5ckXy4ScKGPJJEYpioUi4XgUtE2hUMTzPJ55+TW++YE7qXpVwk4IV2vsSIiQrTh/9iKHjx3hhRfPcmD3HNpoJiZSVMpVLFuhbBsnZKM9j1K5SCQc5fkXz3PPXYdwIg6O41AoFBmfHq+dI6bzt9jdIvzfz1/hCxev8a9+6ifJZbN867d9a9+zrp9WJbtxrezfKjbovaRXcNe5jta1ebDgzr/uzvUEtfptdE/wv3YjbLSdxvt2c5n6Q522a1j7Pvjnb92pB2y1Bw1W8Pg+A/clra3PoHBsy5dtEnS+tUbSHjwPRYjbw1aCO/uDH/zgNhblG4/nuR/cie22nt76Kro3Yjv1P3smDLa92PFEbpht+Bb2f26Y4I6AlrpeQ1gPJGD/toPpKsdG/25+sud7rbStvlsceN+7jlnAstsT99aeTAcHd93/9r9jK6sZTNV7pHWvyeq3X/WRJ+ujU/r1Oz8797vnb6Tz31qDqQ0l3khFMgpMVZNZWiOfzlDMlrlw5hy5tRx/8N/+B1OJcTIr63z/P/x+IuEojmVx6MA+NBqU4u57T+BEwii7wn/73Y/w/ve9h/vuO0nZ1fz5n32aieQUr5w9Q2HpIlfOn0WpML/z27/HH33mCzz+zCne9S1vYu/MHDOTu1knTGJ8loXVdWb3HeWl89c5/fkv8bZCmV2lIt959DjTiyvMhQ17Z6fJFtM8+/xFjh/dw+PPnGHvrimcMCjloLWHW6kwNjFJxAmTHIsyPh7nyefPsHv3HPHxcbyq5tzFq8xNpyhXKhQrRYzxKJcrgEc8lUQph1g4ikazfD1NNBohGrb5q79+EYxm9/wElgrx5Isvs3/vNLFYkv3zM2SyeS4vr7F7eoyV9RxzM1PYymJ9LcOuqRSWsigUKszNTrG4sIpRCZQKE3EsIiGbYrVMNBJB2WGuL65SrpaYn59mbnKCrz15injUwQ45vHD6IjPTUyxeXSGfLTE+NUalXMFWFrFElEKxxDMvnyMVixGPRSnmC2ijsS2wlc3s1BSXLi3ghByUgUg4TLVUoVwogzaEbLtjpIr2M+11kym+59Aedl15jQPLC7z8Z5/jR3/9I1QrLifvP9HjrOzWuow20v03P7x/v8/0WkVrGRWw3MZZIEHl6/XesMtvp6D1Wx3LBAUq/vv9TmbqbnS82t/uXLZXS24tYBvsGYJ/mgx6PAwR4vZlO87Pb/az0nK3RTvVcud6usfogK2idA6zP+j33K+lYScy4oPS3jpTGv2tll1TG9+ifVQ6v5vup6+dT+w7XxtWwDnQ2UdMBad/1T5i6k+Yb8RPoDsNqaWtWtP8c6OUn6CytrcktLciBrXWta+j8QRZ0Wh1MaqeKqc9qKfjraymUaUsU9NzZNbz/NZv/BZHDx3i+NFjzM/PsV5YJ5mYZOHaEv/Hv/u3/Nqv/RphJ8SZs+e57/77MVS4vnSNucldXDp7itmZ3WgnhvJyeJU0qckJLp47zeKla0zP7+au++7lhaeeJesW+Z2P/j4/+IP/kMnULuKROH/4x3/E06df4YGJBPvDYb5r/26ef/EiJ08eAK1wixauKqIUTE9Nk05nyOaK7Jqbw/XKhEIOXtWjUChQqVSIxcMk4lFKZZdILIrthCikyyTHk1Rdt9bPrVIkn8ujPUhNjIHxwLi8ePoCF66ked+776dS1lSqVaKREOFIGM/zyGQyvPzqIm84eSeZTJrJyXGy2QLj4ykqVZd4PEy5XMSgWbmeZc+eOVxcCrkyloJ4MoFxoVDKEo+H0drm83/zFO988EE0LhcuLXD38UMY45LLF0iNxbHsCKVcjtMXFpibGCMaDTM5M8Erpy4xOZYgEgnhRGyKxQJTEykqxQrReILVtTSWBU40RCIS4/riCguraXbPTZGIRqi4monpSVaX1/jaE6fYPTnO/r2zzO0aw6uCHbKoVF1sZaMUROJh7JiDqRoMBttpXfHy+QKJZKxx1tfOxfp5qgz8xdnz/P6Vdd4wO86j19d473vewz/5wf+l/4m8CYNmBAy2rqD08cGvf4MObNOVpWBZlIplwpHQtqV1Bqe9B7dMNXT2BW6/Bw5+zAYf/KRTa5RWBW2ZLdvTD9Q/v2DHNd60X/WD+j77ec3gsbsGI2me4lYnaZk7SIK7G0eCOwnueruxwZ1lWfXfV31rHamfjdL1LjMYVSuLMrX1WqqeKmoUj3z5EY4eOEypkiUUjnD27FnuPnyIlfV1JmbnscJhVlbX+Omf+Al+9cMf5sVzl3j66Wd473vew6/+2n/il37pwxgP/v4/+D4+/Asf5tiRvbx26QyHjxziteef5eXn/5iTJ97Onv0P8tWvPsKl5eu88zvey//167/OucUl1LUrHDp6nH86PsHMZIrx8QSf/svH+e73vAnLVoBmbSWP7RjCoQiuq0kkYxSKeSKhKKGIQ3o9RzQSw9VFQk6Ecsklm0sTi0aJhsMkkklK5Synzl5hPJ5ibFzXgkDPrQ0SU4V81mI9v45WNvFIjL179nDm/CXuvOMg6dwK42Nj5NJF4vHaACagOH/uKpNTYyQScZTRFIpFnFCIsxcXGEtF2bt7Bs91sZwID3/1OR685xCpiSjRZJx8OkssGsOyQ5RLJS5fWyQVjWI7mnhigkw2j2PD7PwUWmsWF1aYm59laXGd2dkJlO3gVSq1aU8iDqbi8chTL4Nl86YH7gTjUinkWV/Lkpqc5MUzF3Bsize9/gTFXJ5yscyrFxeZGU+yf88sTjSMpwynT19iz9Q0S8tr7N4zS8UtM5ZMUqyWGUslyaRzJBIJLpy/TChmM5ZMsbKe5fDhffUpHRRWSBGKOCjlr2T3T5n3++TVZd6YCPGzz57lwMGD/PKvfLjvskFGKbgzpjZHJNT6xAYtuz0kuKvZ/uAu6GGcDOIibnUS3O2gmx3cKfw3nH7Bnerqf9cMIOr/7nVZc+v9+BpzbPVyMy+HQX2aau/5b3wtt0JwVyxXiERCmB7fRT+t/e0V1Pnf652WOYhe/doa87JRHyVVY3rnUPVd5+Dpnlv5TDN4aku9aa/E9uvjsxVWY3tKUcgXCIUcLGURDoXwtIcxhmwmx2QkxsuvvsId996Ftm20UZQyeUq5ApZRfPg//jLf+z/9fWZnZrl6+SJHjhxEWQasEJ4pY0yVxFiUzNUVXnjhRe48ehwTiqO1JpFMsrJ0ncWFqxw9doSr1y5z7/GDlFyL5198nmsXzrG0lmFicpKldIXHn3qCbDrDmydS/N19u9k1O0kxX6VQLDI+mSIaivDquQvMz46DtllNZ9i3dx5Pu+iqQlMAHSKeCuNVQhQKOcYmEqysrTOWTHDl6gr79s3hVj0+++UnePcb7+O50+e559h+jDHM75rh8qVrREJhpifGsR3F1auLzM1MYMKKxcU06WyOWMgm5ISYmZrksRdP84Z77gLLI5ctkSuVOXxoL+VyGce2KRZKWI4iGo3z2FMv88YTR1AhGxUOo6se5VKFaCSCZ1wuvrbIuauLvP7kMWamJzCeh8Yis54mmy0Tj0Q4c+EyU5NR5qdnAQu3WiYxniASiVLOFrEiIR579mVef/JOisUik2NJ1tYzjE+nqBZrU1OUKxVW0zmOH9uLcV20q9FYXL52nZnpcYplzdzcOGuraa5cXef66jqhMLzu7iOEwyFsFa6dV+U8ythEIg6lSpmx8TGqZZcLF6+RzhU5cedBHMdCWxYY0FoTCoea6WjKAs9zMdRSsxOpWkueseiao6/1u+n9AOXfP/4iJ977Pt75rncwv2tuqN9Kv0GzhlvHzQ3uWssHP8jaaJkGS9XmAR3cYMGdZdrvysH97PzXx3r6d3Mfet0/BilD62Fkv+CuVz/Nwc+BRv+7zlpGoz9ia93bEdz1K6d/+9K6J3aSBHc7aCda7noNptIyfHHagqbO94ZeW13bYCQwaDAy6FDz3RMHt968Uee0p3V9pLvtCXIHmf+ub2Wi9pi+Vq6Bt1hbvtV5XzXLAbX+YI39GyZ29Adq7a1cg1eINm/QdQ9+Tlh0TtJem4y81k9OsXrtIhMz00QjKfLFItFImHyhiGWHyWYXmZ7ZRZUwplxl8dRpXFexcPk0n/r05/npn/k3rGfWUV6OX/nQh/h3P/OjrC6eIRFzKLiLFN0EpYJFyfWYnNmHZZZxdYRoKskTT79K2J7izMULfPnrjxAJx5h0LOZWVjk4Nsnfe/1JotEQuXyJqakJ0mtZKp7H5Nwk6eUlEvEUUEVFo1RLJZKJOPlCiRCKL/zNk3z7N7+JfDZNYiyJRqEIsb6+TrFQJBJKMDYRIZPJMzs7yee/9hRvvOcOsqUiE2MThBXYERuFx/L1VaKRKOF4hEgkRr6YxbYV8WicYqFKPBGh6laxHRsr5JBdzWIoUSloknELjKZU1vzZk6d55wP3kM8XmBpPEomECIdsVlfTPPrCOb79LXcTjlsoFccr5zBOjJAVw4SqFAtlwlaUkBPFClkYU8UyFpncGk8+f54H7zlGyPHwKlWurqxy+PBeFhfyzM1MoBxYX8+SSsaIRsLgeRgnilWxyeirxKL7+cIXHuU93/5GsisrxCaSKCdMKb2GE4+xdDXN9GyKqxcXSU1NkIpGuLZ0Be1FmZxKUc4XmJmaYGFllfGJJCHbopAvgnF4bWGR++45gkeVsB3GLXnks0Vm945TzOYJJ1LoMthhVRvEplAmNhZFmRCrq2tE41Gi4UgtoHNAo4jEQqjGQybHopAuEItHMI6qX0fqZ7nvp6SBj1+8Tmb3Pn70x/9Zs5Wj38Alw1bkNxo0ZeBBr7bRdgV3vfhbibTuvMsGtbL6Ayg6ytD9Xqdeo2xuC1N/PNAsS78HztBezoDsCq3QtFpN/VkZ3S13/qC3ff+GHVym1RpZv4dR25u2qYx8D17t5tQ19e3VB36RQFBsNwnudpAEd31IcLchCe62rr2lLuhobi248+r7qJUBo1HGgLJxLAvPaLTWVNYqeMrDuB7Z9XXy+Qy5TJ79Bw9hqyrptTR/87W/5MiR3SRSY2grydF77+a1xQJToTCnXnyM+fm7yZTy/PZH/yurKyv8xr13ol0XyzJkslnCkRhPvHiWt77+TqKxOIV8gUQsTLlcQWMolStMTqRwojGya2lsW+GZ2kTfyg5xfXEJ2w4znoxiOxbKtqmUK0TDYVwPlpdXmJ6folwsoz3FFx99lvd+ywNgNE4ozNWrS0xOpFhaWSMVj3Pm8jXCtsO+3buYnBnHthS66mJbNmvpdcbHx3HLZQqlIuPjKUr5KqvZLHv3zGI5inw2SywWZz27TiI+SThss7q6RiyewNEetu1QLGuuLCxz7NgeCvk8jm2BsclkckzNJHErNqVChkvXl7h0fY3SeoVve9s9eKaE9jxSiV0ox8Gg8KoZnnjxNA/ccwStNEZbxGIJbDtCJp0mNZZkPZ1hLJWoffWerqXZ4vDq2VPcuf8OSjrHpYUljt9xGEtF0eUKFc/FoYyxwzhOBGMbtFY4dq1VEUo8+fQFxpJRpicTpMZT5HMVZuenyOfyPPrUS7zloZPYSrG0uIxt28zMTfP4M69wz52HsYyHE3JwwmEcC8qeixNysC1FYb1EYsImny4TTyVBe6yvZUiOp/CqHq5bm0MQpchl8sQTMUKOQ7FUwq16JBJREjNj2JbV+pWoxsQgxtfyZ8iUyyzlcjySrfAXF64C8J3vfz8/8L9+f9fvMYgEd21r95ei73ujHtw10j6792/ngrvOeM1/TjbyXfyBnwR4YjtJcLeDdiK4011pmb2K0Pu9XjepQYZwHzqYucnBXXOz21gp6D+M/c1LT+015HenYYO7hsYx7JWq2zjWg1Rq2gIs/w1Sdb/vt3F/vt7vD57S2f0baFRgOydObjws8TyXleVVds/P+VKZW2lJrlfBssNUMnmef/YZYvEYyXiiNr/a4ipj83O89NRjjMUT7Dt6HDtkWF04T2HxVXJ5CMeSPPDgSV48k0U5KQ7fe5xi5hqPfe1v+PX/+/fYF03yofuOEY2GyKTzJCaSnL90hX3zU4BNOBzFthyuLCyTzReIx8Ic2DNLsVBkbCJFuVRGa4OnHV56+Tz3nzhKJB7G6CpWyKZcKLO6lmduOkXVrRJLRMmk84TsMPl8hWq1yNzuabyqS8gJsbpewBhDpVJkenoCpaBUqpBMxtGmFgjncjmwHD795cf4W286ycNff4H3fetDRGMO51+7SiQUZv+BWbTWXLi4wIF9u1lcWCM5FiYWCxMORalUC6AdbAseeeoFXn/iThRQKJSZnJzga0+8wEMP3k21VMGyFflsieXVPLv3pJhIjVEsVzC6isbi6tIK+/fMErLCgE2lmua50+d548m7SGcqxGIRIpEwCotKsYIV8iiU8oSsCJH6JOblYoUr15a5666DaO1RKVTwTJlzr66iIiXu2LeLSqUMVpiVtQK79kxju2UyBU3YiTE2GaZQcvE8jfYgllC89MJV7r7rIIV8AeXYXL26zJ13HQbjsbac5uGnT/H+d76Rl0+f5+jBvQDk8gVmZiZ5+NHniEWjPPTAXRjjoY1FJGJTymfJrC8Rcizi8RhVEyEetSmVyigVIpRMgTEU81Vi0ShGN37PtZ+HW6k2+zCHIyGMNlSqVcbGE5QKFeywTSgWqn1mg9TG73v4Sd7/vu/gH9cDvcBf5oDz6u20rQZznYFcbV7azQV3/rTIWtnoeq830/Gn6vHe5lLku9cTXIatBneN9/xTRHTODbjZOf/aH3KbtuA1qE7R6tRgAu7XvvqWBIBiQBLc7aDbLbjr1c9Cgrs+Zenxmqkfe/smdcYe1eDO0xrHdrrK5F/nRoM0bDyYS/dvoOq65HJ5JifGu7bV+NMyoCyr+V1XKh4VzyWfzWFrj6sLa8wmkqwuL6KUYmZ6imKpjPIqWKkU0zGbj//+x/ndT/45v/lr/579k5pcuUiuMsmv/84nyBTXWbp+BdfV/M7r7uDsxUXCdoj1cp651AyH909Tdl2WV7KkQg6RmMPY5DjGQClfIJ8v8/UXXuNd33Qvr7x6kdedPI5SipXrK1xaWOLwvl24xgUNc7tnyZdLRGwbYxlMVePiEFIedkiRL5aoljzCdoivPHqKu45Mc/jwXixjWFxaRRPh8uVVTt57iPOXLzI3M0EymUAp8HDQFQ8nZKhWXMLRMIVsERtFoaqJRG0c28YKhTC4RKJhKuUqxUyJF16+yOFDM+zet5tqsUK5lOGRZ87y0Ovu5sLFRU6cPMby8hKJWBRddalWXVJjYziOBcZQzlcJxxMUSquk4hFK2iJkGSw7ivEsbMtjLb1GyLaJjc1QzBSxbU0spnBdjwuXrnPk0D4846I9g3GBkCEUCqM9MNpw6fIi87umiCYimGIVg1Nr0bVsFhZWmJ6K8dkvP8Z3v/sh0oU8+bUM05N7eOm1V9k7HSYciTE3v59coUKxlOGrT5zl3jsOcuzAboqFCpGoTa5YJBmPklnLEI8lKVUrxMdi5LI5JsaSoDVrq2nGJycoVj0cyxAKRzl16gL3Hd/L6Vdf4dCxQyidxA5VUdUC1xavEQ7ZxGJjhCI2mUyBWCTOSkaze88cS4vLzMxNs55eZ2Zmikq5imPZVKsubtWtBXleBaUcrEgI40AoXJuDT7X9rnr/1NZLJQB+7NEX+Nf/+qd445ve0L24BHc+wwV3rXV7Xe/1JsHdIDYb3PmX6dfntO1hugzkIgYkwd0OutnBna5P0t2rYmvRStXbtu35/zHA9TzostUriGikOjZeGySAGySdcSuaaYq+sKlzWBSjddfAM8Pue9cyA/2Me92Y29/zl9R/+7eaLVH1T9f3YZDyef4tD3gedKZlDtJXZ1tTOI3BUgpVT6t00VhY5FfWGZudqP1UTG0+PKMNytNk19Nk1pZZWlxnMpXErRb5zd/6KD/90z/Da2de4vAdr6NQXuUHvv9f8bGPfYSK0ZRKBQqr61xczlPKLHP3HXso5zP8yn/5DUy1SsYJ821z03zfgT2gQijLYun6EuFwiFgkihOyWV/NYIXA4LJr127WVzNkMgUuXV/h+IE9hByLcMwmHI5QyJfJZPJEIiHGp5IoLB57/BUeuP8YX3/mNIfmpzhwYBYPRcixWVpcJjWRwrYtFhfTxEIOs/vm0J6mnM0TTUZJZ/J8+fHn+MC73gKewsZQcYvYdqSWzmjKPPH0Ka5nyrz7mx8kHrapelWikTDZTB7LrpVNKVXvg+KhvQqetojHIliWQyaTAQza2KSSEYrlKhEnxsunz3D38cNcvbbEnj0zfOnRZ3joxJ0oZYgnEpQrVWwFdshGWYalpTRfffw03/rQSb7+4su8+f47mBhLoj1NxTXEohFQUCqX0Z5HOl3ErZbYt283pWKJSDRCIVfCsiEai3Dt2hpPnDrPQycO41g2rusxv2cWZRTLSysk4zGgSigco+JqorEI6bU1QiFFNltlZmaKzFqGhaUV9u6Zwbad2sAvTogLFy4yloqRL5Y4f3WNI/vncasu87MzrK8XicUckuMJQuEwbtWlUipx8fISdxydw6tWyecLhEMO2A6xRIJCrowdiWE8w/MvnadUqnDP8QPYjo0xBiccxsYjEXdAGR5/7hUO7NnD9MQk+WwGxwnhRKJU3ArJWALLschnc5TdCuNjE/WHHBqDxlIhiqUSEcfG9TzssFMbcMt2CEec2muhUL0FqZEz6Pv51f/8Rw8/xSc++TEsFZQL0fjJGm7msF39Jji/IdejG6pW3karUFf86GNZFp5XuzPciN2zLLtehtadtFuvYK8x2NfGhfJP4N7Q6z6z6cndTSs9s/bP7u00Fw04V/zvbXxOSeueaCfB3Q7aieCupruS3/kECzboA6FqE9WaoDuBf9sBlfpmcNbns1af90xAcNdYf+etfuh0SUU9hSxY9/PU/sHdQNvdYFtd+3VDgzsTGCxDd9Dd0AhiG+93PhlVqPb+egS33A1yo9vMaJq6Wb+sffb8ufMcPXwYy7aolKq4RhOPR9CFKp5SKMsik86RS+fIZtYIK0U8EqZQdsjkcuzeN0vVzYCOoywL2ysTDsOVywvs3TfL08+f5ujBPfzhp/+E//GJT/HPTxznTXPTHEhFuL68zvyueexwlEpFo7RLLlckHo/xlcef54G7jxIKhbGVzee++jhvfeA4e+bHKeSyRMem8SoVri8t8+zLVzlx1wEmJ5JEQhauMcRiMSqlKtcWl9m/f471tRznL1/n+OG9rKczzM9O8eIrr3Fo/xyxWBgnbGPbYYzRnD59henxKFNzE2itUUbhKYVjW4SjEUqlEm7ZJewolPJwPSjkPFKpcU6dO8/c9AQzU2PoSgXXsvnzrz7N+77lQVbX0rx25TqH9+7i4pUlHnzwHixV4crVJWYmJ3ns6dO89c0nWVtb4+mXz/HOb3oAoz3Ws2lSyQTa0xjt4VZdouFo7QxSilA0TDqdoVjME4vFUcqiUqkSdiLkC3mmZ8YJh0OsLK+yeH2Zu+88hmU7XL6yyMR4gmgsgm1bVEolMoUSM1PTuFUXlMFSBm0M+WyFh59+ife+/SE+/Wd/zdsfPM7YZIpCocQjz73CB771LehqmUK+SrFYIp6Ikl0rUKoW2L17jnyhTNiuZURcvb7GzNQE4UiITC7H2UuLvO1NJyiXKmSyOSbHExQKBWzHYWFhhXPXFnnzyTtYTaeZHhvj+tIKxarHnpkpSuUKs9OTaKMplytkyml02WZqehLbctBa8eXHnuedbzlZ61OnFX/6yKN80313gYFkIk6xUiWRjOIouL64gmVbTE9OYIccLEtRqbhYSuF6JSKRBMZSlCslYpEYVn0ieoYQzYkAACAASURBVCyF0QajPbQ2VEsul68tsn/fHLYTwdUe2nOJxiJEYhHskA3GYKxGO77ikcUVvkSUX/jQz234O96pVrxewcFWHz71a8Hbfh0Pen0BVnAZgvrKDa4VVJrmuhpBZNAh898aGsu1r6u3jUag7j+9UHNrBLY2dtQXhhl1M2i5jbJNetXXbNvuW9qg3C1x+9tKcGd/8IMf3MaifOPxPPeDN3N7rR9/93duDXmB1lAbGGLQbQesfqOLTK+LkwU4Ti3Vqfn5gIyfZjkCytiziKr2mY2OTvd6/emGweHbsL/AXuUZrE4TtFArJdK/nY0+2fOMUopisUTIcbCUaitvd0hZazH239wU/fen9m3XKn5BN8RhK1K2bWFZtcDRoBhLpbBtG08bXLc2yIfRhiuvXeTalUUqxQqlXJk/+IOP8c43HKlNrG2FiFh5Dh7cSzGfJmRbfOozn+Ujv/cRvvLwF/l/P/Ep/tbSZda/9gUOXV/Aee5JUmfPclfZ4d3HdhN3aq2EE1PT2OE4noZKMU80EQNqk0/v3zdLqVji4Sdf4ODeeY7unmJiZoJ8ocC1hWVsZeOEbMYmUkzEHHbvnycUCaE9zbVry4yNJTBGMz03hdGacChEPB4jHHKYmkiAbRONOExNpNAGwpE4Bo3necQjccYmUqynM4TCYVA28WiYXDqLY9tUChUqlSqxeJKlpQy25fDi2YvsnpuikCuza24azytT1S5L19c4d2WZY3unGZ9MMj2ZIpVKAJpkIsFzL5/m+B2HsG3Fwf27cN0qTtjiysIKRw7tRbtVLNsGY/OJL/wND9x7jEQygRWywTKEQ2FOvXKBmalpbGxi8Rh/+dfPcM/xAyxdX2d+1ziOY1MuV4knEiTjMXL5EuFIhK8/e4r77j5Se7DjaoqlMqlUCs+4hMMOlYqH57lUXZdy2eX+e4+ilcWzp84TC9vs2zuLbSuOHdyD57lk0gVeOn2R9XSeybEEr5y7Tq5cZP++OcbHU2SyaapuhQP79/DapWukElEm58bZv7s2lYCnPRKJGNWqR8gJEYkmiEajZLNlDh3YQzIRQVkOM9MzvLawxp75WeLJFFY4SlUr4qkUE5OzJBMR0ulsfbAHm91z00TDYZZXVxkfi7NvehIsi4sLS0RCFhMTSaKxGOVClViyNq2GNvDCSxeZnIgBimdfOsd4KkW5XCUacdBuFdfVpNfzfOXx59m/d5Zq1SXk2JSLZSzbIpmIYdsWrucSj4Zxq5XafI6eoVKqYLSpZWWo2iATB1Jx3poM8fk/+H1++y++ynPPPs83v/Ut/X75Q/3ut0uv603na0M/cGpm2tzcfWoMLmWMGaAMWy9bKwhurU/r7ml3gtdBfR2mXs/p/9lBH6b2v6duXK62x6hBdZ/6Q/JBbOY80AZMfRqMxrFp/Vc75rdPC7MYhu04P7/Zz0rL3RbtbMtde7V8kPnUhv6+2/rOtV9Aej0H3KgFr5deo1JB9xOxXqN6drYY+cvQazsAVr95lAbYvyA3K5lIwwb3po3CuF5vDRL+DqlPy13jTdWxbPNpq9bYdm3KXmPA6fik/ymqMQpbqVrLrG1qaYbRGMa2yBc1V04/g1fRPP7YKd71LXfyg//yZwmHkxSKecJO7cmypSy+Y98Ub08lmU0l0a4HplYhsm0LOxLHcUJcvbpExNFMz82jjYUyLpZtY4yiWnExWlOuVIhEQ5RLFb746Iu8/51voFLMEU+OUyqV8FwPYyAciXDq1AUmJlJMz4yBMaQmEpRKZSLhCJ6x+PhnHuZvf9vrSSTj5NLZWgqtbREKhfFcTT5bYHwqjlIOa8t5MC4z81NU3SoYcCzFwuIa0zPTXF1YYHZ6DBsHO2yzeG2NLz//Aif2H+beBw5QyZTAKLRVxrZihByLc+eu8v+z994xlmX5fd/nhJtfqvcqd3VXp9nJO7s7YfOSu+QSJgkGYSXZBmHJFv8QIMu2TEsWYBoGaAiQDRgwbMAG+IcJiaZXpCkaXIbNaTbM7ISe2D0z3dM5V3755nv8x31VXVVdVV09MzuzlPo3uD31bjjnvHvvO+d8z+/7+/5mJibIiDECarVaSWM1GdIy5LHBmII0yQnDlErFRWvNS6+f45EPzTGMY8aadZJhyHCYMdaqUxQ58TDEaEEWl/ncQHJzYY1mvYJX9UjSMm0BJmEwjPn2s6f4lc99HMeTFCajKCBPcyzLQmlJrztAK4HtBawsr6KkJAg8LMvCsjVJaui3V1BaIoUGLfF8nzwpWF3p4Do2z71+hk987DiWKu+tsgVFViCV4vSZixw/Pk8l8CmynMuXb6KVYu7wBJkBJRRJEhOFXYgkQbNOQYZl2bQXV3j25Dl+6XNPYfIUEKVnqzBcv7HKzMw4SRShlYXUkOcFvd4QrSXfffYUv/aLH+c7z75IxQl46qMP0O6s0qhXkcqi1+1Trfl0ewOarSZhr4/taIyRGKlRtuTaxSsEbhVTCCBmbGqcHMnyjWXqVZckzkhGlMzVlTZhMmSiVaHbTej3EuoNn0pQiu2MjVXp9/t4gYulLfq9IdqzWVvs0u4PeeDBw+RJjlYWhpzlxRXGJ1vkBoQqFywsS4MGYQRxmhLmGf/4uVP8rd/8TX7rP/mP77gKJ4ShMKV3vrT3N35pv5Podwvo3j0tdL9xfNvtburbz9LhnerbT/k7lb37McV+PHd3Z7fn2N3Z9hIP2+2Zrr/Pm0dEs+3eCvb3pu+cK7e0e1TPv3l2z3P3AdrPhufudo/Ne2bbZ+Cb27LH6XfTnd9p/FrvDHckJO4wiO5WnBQCuac09J2/357tvMvz36ltWhzdxd5pS3464G63g9ufZzgMEUIiRSk6kCYZjnX7ksUWDC4ExShubnFhBRvFn/zRl3Ech3OnzvFPf/d3ufzC83ivP88jSzf4jC34zZkJvjQ/x98+MsvfOTbP3z46z8PVOvVqA6EclOuiXR/b9YmSnDgqcP0Az/UIqjXiOENbFnlR5mQaDgYM+n1OvHmW+dlJlFZ879nX+KVPfwy34oESCKkYDEIQUGtUMaag3e3TajS4fO0mc3Olh0drRVEYijzDFjA9N4FQmkF7yNnzVzg4PV6mGVjp0mhUSZKEgpzesE+z1SSKU86ev854sw5GYFk2r546j29b1GoBcRphOS4rqx0++uAhJsYa2L6FyGF1tU1Q9fnWj17l0IEmlcAhzwvqjYAsz8jSCEsLojCmyAzasoiTlCzLsZSFZWmEkExPNomTmMB30ZZFlhW8duYSzbEqlqcxBqr1Cp5fgtnVtQ7fO3GSuucxNlYlywq0pYnjMin5RKOG7ztIJel0e1AIHLf8rLSiKAocLXjulTd54Og8tu3x1e+fYLo5hut6rK2s4FcqIBVaKFzfwxjByuIaL7x5loc+dJgrNxc5enAGyypTQ/ieg2W5fP1HL/K5px5EWzbdTg+lJNWqT71Vo93pEtg+aR4jpUCQ4FgWSmuktojiFC0KjszNEg4T/KCMbczyAt/38AObTrfDwmIbLS2yNGU4CEmTlLFWE9/RDAYR11faPPngMbzAxqsECCOwLKeMExVw/eoijbEGBQVFKnjr7ctMToxhihytJVevLRJGIfVqjaBaZTDoU6162K7DG6cvc2R+FqUkV64v8KHjh0AI8iyn0x3SrLto2yZMBoDgOz84w5H5CbTWZFlOEg+ZnhpHCInru6wur6FE+UzqY5XSc5obtFJkSczywhKWkEipkQgC2+JL87M8FPVYfvq7/Kf/6/+JY7tcuniJ4/cdu73XuI2F8X57xO7GE/XeecTeZSk/pXNv2e1pGt5LuzNbZbNtYa68B3TK7bXcDWt4g6UiSm/qbt7hvYscsVz2UV+xEee+Qyn3vHt/4+ye5+4DtPfLcyeAvDDsuZo1ys21H+73/iu+3XO3n5i3/XjWNsrZxWt3W7zDJhB7W3zcyKO5OX5vV9vBc7cu676lXdvK3/491tuS73Fso/xt+/JNYiZ3a/vz3G1/T+7wzLfHGNxlm3a6P+ZOK8TG0F5rU6/XEJQ51hzbZmysQRynSCnRltoS71cAMiu4euUqE5OThEnCyy+/yosvnuDlnzzH0cGANIyYOzrHbx05xHDYQSpFkhrqtQoYiLMU2/UxZADYtkOeGZAFaZoTD2IsrXAci35vgBEGv15BFDlLN9cYG6+RxRl5arBtTZ5nDKOYoOJjWzZCSm7cXKIauAyGIZNTU6wurXHq3GU+9bEHWVhcZXpqHGUryAuEVBSjO55mKeFgSL0WkEQZWVHgVysUmSEa9BDkFFLh+QHCFKRZjut5iBEdNY1SvvaDF/jVn38CgWB5tUuaG2ammvR6QyoNjyLLyTOwXEEaGlISqm6FNIkQGsJ+iuUKtLJQ2AhliJMUYwqKIqffi2g1m2h3pPxXCLIkZXlthWajilSKPKf0qOY5Siu6nYheL2JmdoKsCMmzlKBSRylDkqQM+yFjzTqdtQGu5/Lt517l8089yuunz/HEo/ejJCRZjtaaG9eWmZufZnlplRffOscvfeYJlheWCCpVlBBYTikukmU5lqXLvkE5RMOQaDAgqAeEwwTbsuj1+kxMtlhZXsPzfYKKTTwYkMY5QaNBGuc4bk5aCC5fucl4o0a1WkFgOH/5Gp21lOPHJwmCCpg+JAXC8UkTKExBOIy4sdhmbnYSzzYIrXnxtbM8et8cxkgsW1MguXJ5iZffvsgXP/lhPM9lOBgyMd1gdbmN47h868cv85kn7qdWqRGnIVpaZXJ5z2LQT5BKM+gPuHB5iSc/eh/9wQCBRFuSzlpIreay1l9gdnKGmzfaHJidxHIcojAjTWMqNZ80i0exmRJBTo4g6raRto3veURhgmVZ5cJGnpPlGY40rPWGZHlBNfBwHJszZ65RrwdUag6u47K00KZWq2C5LqJIWFruMD4+Qa/fK9UjTcHEVBNta4wSCAMnl1YYZob/7fQl/vTf/ptNCoPvWSbWUR/1zuDMfifK+425e+8FXN47z912dcedhVLEbefvLaiyc3tKNVGzbf9d0vM3/b27cubdjZHvheduTzN7CLggRsJge9dxp7bt1M7tuWHvefd+tuyeoMoHaO8nLXOrUubeNMztndrdiq3sRwL4boHfut0GADflh9mrE90t2boB2CLMYt7ZUtvo+xQb33kbWNk0QO8EWLcDuPXPahMlYz+qmXvZiHm/ZWluJ8GSHQfpbeftNU3aUTRllwnIZmBdFAV6m4ro+jnr98wUBaIoyIUiLcBWBWfeOs3999/PjWs3OTR/CGMS3njzFA8+9DB5L+Xa1RtobfPb/+V/wazjcjUc8MUD05hz1/itzz1Ft7PGZMsnCgcMh0O05aJsmyCooiwbUwAiZXFpmapfx9YKpcuJJYBQGgqDLCQIWFtdRRpYXGhz9MGD9AZDKq5Lkqal2IxRuL5T0sOM2fgpDJMBg55hfLKKkJAmBSs3Vzh4eI5ed8Crb17AUpqPfuQ+cjK0kAhZ0vG0FDz38ms89fhHwcQkYYQULoNBSLVeBVMwTPpUa+NQQJandNodahUHSyvyQpDlhquXljj+wDxpNmDQjXB0hTAcIp2Cen2s9HZSoB2L4TDEExaD/gBEii19LAeyLCRNFZbvoKViaWGJty7cYLJRp9mo0Wo1UI4ijiOSJGZ1KeTgkRmiqIckQxgLy7ZLxcVBB7fik6QpYZhQr9cpsqL0cJERA1pJhp0+ynI5feYyD9x/GGUZ8jgljmOCRoVeu49frfCDF17i809+BMvRZJFh+XqP5uwYkhSlDGlWUAiBSRVplHPt5gJH7zuAtCDPDNpAlAxI47JX/OoPX+QLTz1KteYAAs/ziMOUKE74wQuv88s/9xFwNSYfAUbbIg0NghTb88t3OZdYVsKNq4s0J8dZuNllYrzJy6+/SbNR5ciRQ+RJqUKpbYFUBrKM85cWODQ7x/LCCm9cvcYTDx8lDFO67R7jU2OMj9dZWVymO0iZm52k3e8gjeLUW1e5/8gBtK1ojNWIo4xur0s36nH4wEEWbq7w0pkLfOHJRzl5+iKtsYBWq0q1ErCytIJnW4Rpn2oloNcf0KqM4VYD+r0+WkBhWQz6BZ4rR4sIZdxfkiWkw5A4T6mO17ClgzAFy4srNCoBWZqitct3nznFJ548jtaKXrvPMy+9zaeefBDPlnz9hyf53FOPMDXbIEsyBIpBb4hfcbF8jaVtxPrgNhJz+b0XT/Ev/uD/KlNhUHpEpNja9+1rzNqxt7t7e6cgzBiD3jahzjG7pEjYf5nb27N5vL8d4OwX+G09drdt3Ctx+62xZCcAd3tU995mdvxYinq9Ey4Rty927oN1upNC9L6r2+udLUrP977OHdnmVD53a5vnLQBG3mJOrde8DsDvgcGfrt0Ddx+g3QN364X9+wzutg5QO60xb9/37yq4A1MmSt4UZJ7nOZ1Ol2ZzbOOaixfOMX3wEErbaDKyrMCx7JEXVJCjkBj+yT/+Hd4+e5Z/MNfii0fnKYRBJZI4G4zEUzJMDmudDoE/wWDQ58bSKu12xGc//QhxkuBXA6QUFGnBa6+f5f775nA8hySM6XX6tDs9Gs06tYpfth9DZjLSOOW5k2d4+PARZmYm6LV7+BWfLE9xXRupFHGUkCYpUgh++JM3+fQn70MYB9dXpFlevsRZwSCMeeX0BUDw85/6KFLC0vIK9WoAJkPZTnmv0pRhHFELKhgs0nhYTpJEOcnuDNtMtKZI4xypBLZtkWYZUgmkEaR5xtWri8zNTTHoRVSqHqurK/R6CXOHxnFcjygcUBRQqVZJ05zrV68zGMTMH5zEcaqkSUSU9tHYBHUXg6TIcv782z/h0489gDEwPj5GmiVIKdBK8RfffYZf/8XP0un2mJgYo9fuYzmKt89d4+GHjtPv9qlWA1ZX2zi2y4uvn+YzTz6KkoZUgMkLuu0OY40GN26uUKl4CAmubWMMKFvz1W+8xK988ZOYIicKu3gVByEtep0ELXOQkOYpVT9AOzZraz0uXriO7zvMzIxTrVXITUKRFChLUGQ2Z89e5PixOZSlicIhSiuUVFhWmdC73x9gWQLbL73LRV6wstzm0vWbHD88Ra1ep8hy/uqbJ/jlX3gIE+cYy+ab33+dzzz5EH6gsRyL4SDk3IXrHD44ReD7JGlCJXARSmOAzmqbWr1Ov9/HtpxygUSZciHEgOVYdDo9Aj/A5BkLC21s26Jer3Dpyg0OHzzA1374Ap//1MNUK1UWb6yhtKRW9zE5DKMh1XqVIi+IBsNRCothGbeoJMZkLK51mWzV6Xb7KGOoVALWuqsEQRXH8ZBal8qdPcNrZ9/ms594lFzAoB/heh6FMXz76Rf5+MPHqFarpFmOZUvyLKXTHTA1M0uvvYJt21y/scrBQ5MMByGVwEcIQZ4XJGmGXwuwnDKecr3rXh9qfvtHrxBlOX/8//4RtqXvgTveR3BXcgv33c69wN3O9e227+7A3dY5xE8f3O3Xq7dndT+D4G6jvi2AdTvgvwfufpp2D9x9gPZ+g7vNP669wd1W2+ncd/3s9xBb2Y+ty+0LtUlCf5/gbuOcUcdjRvFPo8a8I3BXvGPKz1Zw906pPnvRODfvH33jfeWP20w5uS0p/B5tMbdq2bEdG+etDyCijCtYXlqhNd5CCEEUhtiOw+rKKrV6Da01xhRIpcGkZeqCXNJZuMp/87v/ksvXrvBr89N4nRUen5zgUKNRruj7HlmeYdmKosh54bVrPPGRefzAJwoTRKFYWWlz4MgMhShbnsd5mResF2JZmmtXb9AaqwOCTrdLteLjuhZrqx1ajRqrnT4Xry9x4doyR2ameOzRY0glMIXge8++xKcff4jeYEgaZswcaJLlZQ6ysbE6BkGeGSQWwkqJBymFydDK4RvPvMqHj88xPdVCAIN+CUq9wMWyXaLhAM+1Mcqi1+1RrwUUKWCBURmycMjTlDAMMbnguyee56kHHqRer+HYDkmS4VfdUZxUSpQk+K6LMYKvfesEv/yLHyVJ+5jCwq94CCEpc5gJ4jAGY1CWhTEFwkj+/Gsv8Su/+BG+8+Lz/OLjj6MdBUgGgyGWbeH5peqnyQuEkkgM0TAGMgZRzktvXODnP/4RpBYYkyIMGCmRQmFyw4+fP0l/EPLRR45T8TR+pUpBTpamXL6yyLHDc0gpSdKYYRhTq1dJkwJyg7JhOBjgen5J+QSkVmjbYtjtE1QCrl1bZKxWwfZthv0hgeeSJClpklNr1CiIQdjE0ZConyGkpNGqEccJ0SCi3x8wMzvBxUvXODg3TW5yHMchTWMsyyJNU4rCINBoWxMNI7RUvPHmFR55eIYsSjDKxnF9jDCsLa/RmmxSFBlaKhaXVmm1mly/ukgQWHiVAKUEeRbjugGFyQn7EY7voURBnoERGsuGXnfIX37vJT7/sQd47ewFHjpyiMnxcdY6q4SDhMnpMbIiK4FhAW+9fZVHHjrMws1VlnsdPvzgMQb9Ib7n8+Lrp3ni0ftIkoSV1S6BU+F7L7/Br//CE2hpyI1mOOzSmhyns7iG1uXEXqIoMNxYvslkvU4WD8kyST/K6Qz7VCtVxscCHNsnDEN830ZamqIAJS2EMqwur1FxXYZRxsJKm+P3HeT7P36VJx+5n6woqFUr5EVOlMS0ppqlGMU2Kn350fD7uc9/9V//53v0ZGwRs1jvz+4U5XSn8rb0gTsuru1ud5t0+07l7wRwN9eRma09/dbLb40hSt5iMpT77vxd9krIvROg207ZXL98r7QHd7at4+/etMx3GKaw421YX5C+BX72poFub+8e1W9+pvugZd7dwsbethu428tKORizBQDeA37v3u4JqnyA9n4KqmyXB94Lemz/Ob7fYiv7sXWBk83Yay9MtlMNYvSfMWYklvLO23Z7J7bf7ySQiC1XC0bAZxfVNLODTPRO3f+e66r7SiNw65y9ytq1nI1tl7puRdIjBHieN6Jn5riuuwERA9/HCFHS/xCsLi7w8gsn+L3f+5d85f/5N/x6N+R3f+5JDhlDwwiOHzqMEYpKs4FwPPx6AyMcLLfK3OwUb569wsTEJNKx6fYjWlNNFLIEKoXE1hZpGlGkBW+fvoxr2bx5+TwHphusrvaR5ORFTlZkJHnKS6cv8sjxIzz8wIc4MF9nrb1KGkV019o8/NAx8izDcjUV32d5ZRXHsakGLs+89AZz01OEYYLl2BRFwnd/9DqHD0yhtObo/AF++NJb5FmCMIaT5y/RqPhICUpokjhCagchJIP+kGG/j1+3MbmgSEt1TKXK+5nnkjCOmWjUaTQbdHpDrt5YZLxZYdDr4VU9LNspk5BLzeGDLdI0BiPxA5ckTktaaS5L72ieIpSg1wlRGlZXOzz+2AMYk2Brw+T4BNqxiKMYjcH2HKIwwrJLsROlNEkcozRYTimrf+zgDApDLiVKQpbGaHLa7S6OY5MkKU8+ej9BvUocDQgqNYo8o9vuc+n6KnOz03ztuy/SrAe0xmpIS3Pxwg0C18Ov+NhK4QYBuTAoqTl77gqBY7O02qUSBFQDF0M+UsZUKFmm8rDdMs9fNCwFZbq9HrVqhSDwykUmKbCkLtVKHQvPc7AsjbYVQihMxkgQQaKkKvOIjcCtZWs8z8N2StBrpERKiZEFOhdYtoWhBMmW1igtCCo+ihI4KiUhNyR5xmAwoFqtjKi+GZaleeW1s0zPjCOlYrZV55WTF/n8Jx9jOIi4eHGRmZk6l64vMtGs4nseQpZxjOONMYSQVIMKjUpAv9fB0mXb5uem+cb3T7Cw2OHDD9zHmbNXeeyBeYKKS5rEnL90iYanSaKMN88uMDXVwhSCq9eW8WyPF09f5PjcIbxGQKefkRWSTBiaviLwHX7wwhk8p8CyFVpput2IJAmJkpSK6xLGMd/48UmaY1WazTozYxMsr3aYmG6yvLBKYQxB4JVy78Ig1dYRbB2iPSEzvvz/fYVnTl/gyacev0NfWI455cf99e1ZVi4AbD77ToDnjoBoW913Ox3fT7+/uY6C7eBwy6db7RLitjHw3XzX/YCQW+kP9qxmn3b7QuQOLbjL0kbl7AHuNkZaIfZ4lu9iMQFxR9GV91Is5Z08ipKyKTbGe7iVrgHEvXQN79DuCap8gPaz6rnbj/2sPPvdqAy7Jd3efk0phmI2DWjm3fSlu9Iyd7MN79VoGVJs27+T2Mody9zUxRrEDgPW3nSk9ZiU9f1CiLvy3N3Wnm3ZZgsMJiuwjeDS4jWkEsxMz6KLlKS/Snthib/+6lepVT0Ozh9k4UaHStXl6JFD/OEff41D7TZ/6+AEq2tdxppNlpc6VD0by1OkuY0UOVJJsjQjTROCSoBBcPHSNSSC+cOzSCnorPZwXJsiL9DaQkhBNIy4cPE6XmBzYGqSy1duMDPdYnF5lZnpFuSwtNIjNSk3V9p8+onHyLOEQXeItsAoG9+16HUHXL2xTKXqU6t5KCSe5/KtH77Cpz/2IG5gIUU5eRdSUKQxV6+vMdaooSg4f/kG9993iCTNsJSFlIpev48fOJx68zIHZyeo1ar0ez1qYwFCKkwBwuRkoxQNJk9xKpXR4CjJkpS3377I8fuOIu2CYSfDdQtMJrB9GyMFJjVIW5PF6Sg5uMGrOERxwpULN5k9MEGl6mMwRHFUgo9c0et2qDbGWLy+QK3uEQQO7ZUuWSGoVCrYrkWeZBiZk5kMWWgczyMOQxzHZdhP6Pd7VOseCFi82Wbu4CRxnGJrjbIUWZohtSE3giIO8apjJIMhSZpRGauTRlHpRRQSoUwp658Z9Eg1NR6EaN9BCoUwBd975lWmx8ep11wOzE2SRim9/hDH0QRVn35vwNJSG0trahWfoFFn2B9QCVzyLAOliMKIaq1CliVYlk00DInjEG25FFlRKp4WBqQkDiMCz0ZYNllagq88N8RxhBYZ7ZVVKmMtbMstPVcVlyhMcByXLMmJ4gjXtbBdmzRN8rA47wAAIABJREFUkEIRD2OMKfArPnlekOU5Skhyk4GBU6cv8fCHjqM0xGFMnKRoS1OtBYRhhEbRD4c0mlVMVpAVGWBQwsIYuHT1OscOHyKKB2jlcvbcVQ4dGqfTHWJrjWPbKJkjpc0PXz7F5556hIWbi8y0ZohFB1kE2I5Fu93B913WVvpcvr7Mow/NY1suOQMUHmmeorQkTxNWV7oMwpy5Ay38ik0UpeRxjvIMX//OKX7u4w9hWRrX0uRJxFvnrnD86BHyIgclMRkYmVKrNUeLEAqpNbZbCvyU+Vm3JoT+Bz96hX/6z/8ZH3v8sdGevfrdYqPvfK+Tppe5/d5d8vLNFPjtQOj2pT9z23dYnxsIITe8STt5+O7Qim2ftwOzTcBwHx68vc7BmC1ew/fe9prrvEPq5q7l7Nf258G7TfTk3YbT7NN20hDYK9XVbfOSbWA73zJn2cTWuufh29Xuee4+QHu/PHclbWEb3/l9qPduEnS+U9ttbN2t1pKaaLact05duOPF+2nPtkI2TyG2e+MkbMSX3cZI3zxA7+HFk6yvfG2v/1Yr7oZGtE6R2FLGaFVxyzai4qx/3qmGjXZLufH/JIlwhCRLY06ePMn90zO8/MxP6N5c4C/+1R/i+nWCqWkee+IJ5u/7MK3x+/iTr3yDv/r2D/mPoh5P2IqJvMCv+iRZim3beL5LkmRcub5IvdLAciVRFNPt9qk3GyNPU069XmGsUSVPMtbWumRxxmtvncfkGZ7jcvb8VZZX1jh+eIaFpTavv3WBB47N4ngWSZZSq/p4jotQFo6tadYCJIJev0e1FnDmwrWS6ra2RqNRoTFWpRYEeJ5NfxCBFDxw32GKIqdeK2X7EYYsSylSw49OnGF+toWUgjfOXeP4kYMl+FMGpSW24wCSqu9z5vw1+r0hM9PNMsZIKTCSbqfPwtIaL71xnvm5iY3no5REkFH1dQmC03wU25Ty3ItnOXRwgpWVNr7v0lnr4nkuWiksrUjSlK//8CU+/KF5pFOSttI4Hk2SDY5lISUYIdHSIKWhyCFNU1qtOtqS9Pt9clPg2A6WsjCF4C+++jwP3j+HUuW7YtsWIHAsm3qtQrfT49zVm7RaYyhtYYxEU+abU0JT5AVxFOP4LkhBUeSkSVKmORCaIsvKv1X5npYgT4w8mSmzUy0mp5tUAps8NziOg8ng1TfP0aoH+L5DJahg2RZ+xef0W5fo9YZUg4AXT57hwMwEru+Sp3np3StAGE0awfMvv83xI7NkWYbSmixJiMMIL/BKGq4ufxOlV6m8Z0kSUqD53jOv8/D9RxlEA4KgSjJM+dYzL3L88IFRh1cKhWAkWZ4zCEO8wKcwBV7FJeoVuK5Dp92n6vmcv3wDaQS1egXXU7iuXcZgF4ZoEOIGHsrSkCeEUUkVba/1+avvv8KDR+ewbRfyHAGMjQUMhyGtZoPX37xEPahheSVd9/CBaTzHpVavIXWK41YxRc7Kaptms44xYFk2B2ZbLCytkUYRhTGMNX3yGIaDkMD3cVwLz/FJ8xylBI7jUBQSYeU8fN99CAoc10VbGtuxCXyL1bU+SWEYm6xz9txV4iRCG41f8TCZYdgdcvXSEs1mHdQILGx0c4LfODTNxJXz/P3/5f/gS3/3S7v0aLd6SbPR67678W19jNw8Vt7yWry7MrfuuzNAWb9ObpLdL3Zoxzsb07fWAeUz2I93b3tcYJlfVLAew/duoIiUYlTHndq+2/Ze2d2Wtb/6b903s2st68/kvVywX2/deiiI3OHY+jbyz215xutzlo35xbbfCNwCofcSs+9s78Zzdw/cvUt7v8DdTr/Z9wvc/bTtbsHdTt3XTxPcbQZebFu1vAUyd6hw87kbD7DsKjevXJlbIcu7tunuYkRuP3u3/DrFHqCzbNytu5EXBQKIOm2WL1/lxWee5dChA3TaQ5rjUwhp8cDHPkmjNcePn3mW//5f/M9856vf4FdXrvApX/AbszPkeYGSmhdffZu56XEuXLpGq1ZFWaU3Q+qCSuCNPHGqpHkaSTRMWFlYoRr45YR2GPPNH73KA4fneOnN81QCGyUNSgoOzU7y3MtnODDTwrVtGvUaKys9xltNBv0QUxT49SpRPKQSOFiWIqh45BSEYYrveVQrLsaUXpRhb0hRFFRqVaQoysm0axMlIYaCojCcfOsiFd/i4PQkgjJZ84HJFkorpJIIKUnTlF43REmbKA5ptWpUApeFm2t4fknNjOMUx9HUawH1ik+9NYbUFv1+mdjasSUry2sEfgUprXKw1AVrqwMmx+vYroUSAsexeevMBeoVnzzNUEpTsR3Gx2soKUjiDMtySBODKRLSOEVZajQxzEslQjT9YYTt2mRpiqSgUgsocsGViwu0phocnW+itF3G39maohC8cfoy09MttC2wLIuJVgPHsjnx0mkuXSpz+iVRQpgUWI5GK4kUgiTJcWwLy7LASKQuk5AbDEVRgqGsyMmSHMxIMECCtqxS1AbFIBxgOZrDh2eJ4xTLsigwOK6D0oqpiSaOpfnmMy/zxc89gWUp0iSjMAVSaIQspzNrq13OXb3BA8cPoF0XkEhT4Acene6ATnuAbWukgsFwiOt7aKnIkxwvqHFs/gBZmpLFGW+8cYlqNeDh+w8hEHzjhyc4cmCGPMv5+tMn6A1Djh8/yDe/9xLH52fBGPI0J8tT8tzwnWdO8YXPfQTf90izmCRJMEZgMsMbpy8zM9Oi3ws5feYKnufheg6Oa2NZmorjIBUIJK++fY6JsTpaOxS5II1jXMfm2y+c5L75WYzIieMIhSGKBGnWIR8KkBJj4OrVJerVGjmwvLqGbdvE9JgZnyeMoxFc0liuh+XaKFVgO5IojOn2IqJeitI5lvbI84TT56/SGmswHIYox+K1M+c5dnCWbmfAgckJHE8R1KogDUVuWFpaI/AsPEcTDsMSjI9ml5t7vN+YnyF85gf86z/9M6YfeYxarbpTx7apn3z34O79sL2ruQW8YG9a5ubz7rIF77ic7eBuI4ziPQAkm+l/H6z9dOrfTx7fn+Y7uMcM57Zz2AHcbdqxo+0cQ2q2Ab9/PwHfPVrmB2jvFy1zPwHH6x4g2FtQxbBNyXGnd2B91Y/dA6y3ip/sEa9m7hCcvOn4ftSmCgPiNkBS5o0zxox6ms1Ab1vbzC7HtqHMYo9PO0udjIpZP7aZkrNHcMEGbXPzLTNmS+e4mQ6xG/1hs61TQksxi9vLWy+zjDeSKDbTJgSmnOKhpCZOBFYa8vRf/jlraRcjxvj0Jz9JpVYljiJOvXWaP/hXf8jfb3h8dGaa0rNSoLVkZWmV5kQToUq1yjzNsFyLOInp9wZMTLTIc8NgMKASBCwtrDAxOU4cdbEcH5EJsqKg1+lx5sJVjh+awfLAsyp0ugNWO6tMT09hckO7s4wf+PiBTzLM8D2XLIckjdG2yzd/8iK/9vmPYdsVvvLVF/jizz1Id63P7MwsNxavoqXDWKvBlWs3OTg3RZpkWJZCWQpQ5GlKe20Nz/NBa2pVhzBMEEIRhSmddhvXthFK0WzWSOMUlEKo0ep1NqJPGcGlq1eZnmzi2JpeP8K1JV7g8a1nXuGXPvMERWEY9IYICUHVJ4piLNvGljmrS0tUmg0s28cYQzaipOZxhFQSS7t0ux3SNCMIfGzXQRhDlMRgMpxahWG7g5YuP3nhLJ/97IcwRlHkCWgXVSRkaYzluKSZwHFtwl4X7XpoLQkHA4o8R9seg35MYywAZOllKyRxmKJrBikVaWzI0xDfr1AUOTcXF5mdnWVlcY1L1xZoVhscvm+WaDig2w5pTY3Raa8iUbhegOs5XLpwjYrn4fo2jmOBUBgEShqEhCQr6ZHCgFGGIslIkwLHcRDCsLLcpdYIsGxrQ6xFK82wF+G6NkYqtLYwCAaDNlqCVh7tTo/mWIXBMMKyJAKF7Tj0u0OKNMcbCxBpinZdhFSsLiwQhl1mDsxz9doiwzDmvsMHefn10zz26HHiOKHIc2xXYVDYjqbXGWI7Fo5T5u+7urjCk48/ShIO6PeGOI7L8lKbyZlx1lY6rK51eejh40RhiO87CAE5Am0MizeXcCoapTS25TAcRtijeEBTGLrdPiaXJHHCqUuX+NzHH6ff7bG8ssbkRJ0iz5FKobXCrzrEgwFSeSze7BCnCW9cusbH7j+CY9t4fuk1i80Qu6jR7q0y1Zri6s0lqoGHZRmU55T58YYJWllILTjxymkeun8ez7F55fWzPPTAYYqiVDgtlMXVcxe5vHCTQ9NNKtUKwdg4SkjOX7zCoZk5ClmK66RpjuXY+DUHIUWZOiHf3IfeWpL7radP8OUv/yGO49zWT27pM3lvpudCCNJRapO7AT/ltZtbAyDfEfjZMc57S/qBdQ/j7eff3paNUnesa539ASUF8/a8eOVsRErBrQgGueXYu7P9wI+fbSup6Ds/s3V11e102L1otju9Mzmj9AZ3+T7tS+FbjDzEm9qxPmW9E+tye7jI5nQS68d2S62klbp1X7bP2MT74f746do9WuYHaB+k5+72c0qiyU6Bvdtf883Hd3x7bvNMre/evDKzqbw7DAR7nas2Dyz7eJWFACXKXGqbrtzqudsC7vZom9hlP9s9hHuA1+3HC3P7A9tHEPwWJcxtdWwlZmxvye5ew8IUIOSO1E7BaBAQpSBMUYAQijwrkGZIPhjyO//wHzHuBWBy6q1pjjz8GEfnD6OU4nf+2/+Ov/7zr/D3sgG/PNFgtl4BDHESY1uKIjf4lQAwo4mjvJUoPisIfJ/hIMKyNJbUDAdDXKf0PD1/4gy1SsCZs5eYnR0nyzImmlXiLCnzowmLn7z2Fh9//H6klLiuxURrHM8ty2y2mvSHQy5eWaRSDWj3OnzqsUdYXeohdcGhAy1OnLjAardPTsTM9Cyvv3WRZtWlMIZ6vYpSkvZaj3MXr9FqlcqdzVaNtbUe9UaVqD/AdWw67S7G5ExMNiiKnKDqk+UZUZzg2BZKC1SRIS1JIQos36JZrXL52g0ajSqWZaOVxHJtjhycIc9zet0B33z2FR69/zBKSVaW21gKtOvh1uoUUUQWZ/zkxJtYyDImUEvSPCHPE4oip9GsEUYRQoIRBstxGA6GWNohS3Mc1+LgXAvIGfRjVlfWaI5VWVnt4NVqIBRJGGGKEjwaQ5kqQJTvoWc7hGH5zL7/k1eZnmggleIr33me+w8fxrYttJYIpVCWVYp71EoQ4fkOY7UKY61qSTmVFlpKwiiiGlT5xtOvcd+xWaSQXLx0g6npJgU5lqXQdknNxOQIpdC2w/JCm7fOXGHuwAx5nmHbDkIoVlfbVCslLXM4CLFtF8uyyZKcOMx45pW3mJtuooUhToYM2ilrKwPGJ6q4gQ+mnKy+cvICM5MtLEdRmBQhwB7J9cs8pygK4qyg2WqSZhk/euktZKGYmh7j4KFppJbYtsa2NEIqlLLpdQaceO0c8wdmwEB9vE6z6iONosglvW4IQvLi6+c5NNuiUvHwXBvXL4Fhu9PFsS2SMEIojbJt0rSgWq9z9doiUzOTxFGG7Xqcu3CNVrPOt597hcceOs6Rg7OQpQyGEdqyqFY9tKVxPQcpJGmSAZLO2pA0yylMwdRYncZYjeW1DtPTkwz6IWG/wNI2V24sURQprq157pXznLm4wvH5KTCgNUTxkCxNmJ0YJ01SkiTl0MGZUaoJRRiHANRqPoNBQbNZJ/A8vv/sS0zXfMaqY9i+4MbSEvWqjzE5llPmx1td7OK5LsqSG548pNhYt/vS4Vk48Rz//H//fapT0xw8dHD3vnjXI3dnah90xR3r3yegunM5e403t5e7M7Njf22R24Dh9rKk2AxIttb33joX/maCu8IY5B5ARIo7P6sN6uSdxHyk2HkSsYftBzqno/F9s40cs3e03WZSm0VkbmvyyJW3wYoyZoMBtb7x7wC4u+e5+wDtZ8lzt1UCeK9jW3+uO3nuNnKUbYkE25RqgDt57uSWvzaABHfIX7cjTrl9xeo2L9QWDxzc0XMnRhoJ+/DclQnKd/bclStIGxWxfp+KPL/rwd1sCLLcogxt8diNVqvuxnNXYG7FRZhbx8Sm1VZTFKgiw9KaN197jUuXL3HfkcP0ejmVegOv4uHYPv1hl7zI+PKX/y3/UPQpRnEdf/KXP+JL/8EnsV2bPM0o8gLHdwh7JXWqKAqiOKFSDcjDdANQhsOYfjhkfLzB4o0VpIS52QniOCYrCrrDCJEJbq6sMtVq0GhUGQ6G+HUfJRyuXbtBpeYTuDZSagZhyFijVn4nLSHL+dGzp5iebCKE4fDBSQaDAbV6gziKieMEISR+xccUBYNhSKXqkMY5eZajbQvHsVlYWKbRqLO8tMrkVItnT7zBZ556pIy/8j3W2l1qjQrJMMbzPaRSrK51uHRtgQeOHUSIHGFAaT1auZYoKRgOI9yqDwiUMORF+ZZF/SF5XlJR6o0AKSVSKdI0RStVxjUFPr1+Fy0d3MAnToa4o2TtQgGm9JzlGNgQaYEb1xY4cHASIyy6a21MkSAtiaXcUtbfldTHxhBCkGU5FAVxGKO1gxO45GmGlAYpodcL0ZYq6ZC9CMvVuJ5PmuRoS2HbgjCMoDBYjkJpRRYXSCUJh8ORcqNNIcvfojJlqgO/EjAMI4JGhag9IBrGjE2Nkccpqysdkizh4OFZijQjL0AojSDH5AXSluSpIRymvPbGeT7xxINcvnSdo8cO0l7r4Pkurm/Tbff58fOn+cJnPoLt6RIgFTYvvPwG4y2fo4dnGSYZtpYlU0AIPN9lOIjwPIeiyInCFMd1yMKIuMiQUuJYNmmW43ouCMp8f7ZGqfKZay3JC7h0YYHnT5/lVz/3JK7rIDBoVxP1hnztR6/w+Sce4+kXT/ILn/4wYOiu9fADlyzPqY/5ZKlBCcmwH+JXAgpTkBY52ti8evIMDz90CMfTXLu6TKNW5aU3zvO5TzzKcDjE9Wyk0CTDkkr59ImT/NJnH8d2rDJW03cZdPssrLU5NjdHlsFfP/0Cv/HFTwCGU2cucuzQHG+fu8wwzGmMWYT9gsPzY9SqVfLMsNJuMzs7ThTGWJbmxs1ljJFMT01geZo0jMkyQxgOqdV9pJBEYcrZyzdoVWp4FY96zePs25eYO9BCSEGlUiVOCxZvrBBFCYePHUSIlDwXaKvMwZemKbVm7dYQMBor1rv2oij4ez94mT/7sz+5q755S9/KaEgRO+xf75P30ffv5HmRcrtw2jsDQTt74tb3bWbjiD3ae6cFzVu2p1jKjhlfbx17Z2kQ/uZ763a22+/5bsJ5e6dAurt3Jgf0O8iNt5n5U8A7ehy3Cb1t8QTscR1sjTPcNs8rtjTm9ob9TRByuee5+wDt/fLc3XqJd3/Wt1YudniRt/wtRtu2IFkhKErWGOuytmrj3FvnC7O1Fbc8hWJjk2Z9AXWkrAgYITDi1rH1rRjtN0JsqW/LCs42bv5mJSYBJTVnvWMTjGJnzC63S2z7d7SJrQ0To1qK0T0bZXJhS6EjGmgZQ1ce257mYF2MBNbbtcMqqZSbqt66YlVuWykPW7/NDqB0tGymcjmizZRi7ALIhQRlkQqJyGNunr7C09/8OmfOvs38g48xOTOPMg5OVWP7Hv/D//g/8X//yZf5wvXzNM+8yZO6fD+EkAgjmJ1oYAqDFKXoxzPPnmZqokE8THjuxFuYNGWiWae3PGQQDoBSIr0wgm89fYpDB5rkRUIlCMhMQS4KBt0OEqg26jTrPuEg4Sevnuah++bpdCKWl9tUgwoVz+Xtc9dpjTWIo4g4SRGiTKydZzmHZmd49dR5Dk63iOOMoFZBuRaSAiUNb759hZnJKRYWl1lZHmBLqDfrKKVQSrN4c4Xp2RZSQ22swV9/6wW+8KnHWFtt49WqhIOIQXdIY6yOpSziOEE7Gi0EL506y+HpCdI0RSiLPC/I8wKpDEkm8Crl93r+xBu0mh62pbCVTWEMeWFo1GrIkYJckpdgU0iBkJIsM7z26nmeO/0Gjxw/gpAZpgBEmQxZGOh3B7x99gpSKarVgHa7z8WLSzTrYwwGIeev3OTIsXls5RAOEk6ePs/xIwfRlk2R5cTDkKwoGA5iTJHjOYo0ioniHO35uLr0tjqug7LA9ezSk+dbxMMIDFhaILMMbamStjNKIWArRdgbYtUtLGmR9Ie4ngZtYXkOSgnQGgH4nkcWZRsCJq5lY/sOCzeWef2Ni0y2WixcXyEILPphH8dxsbXg0IFxwihiYrpVek1zg+O4SGHIspxWrcpKe41K4BIOEyzHw9aSyck6Uiosx0JbNr5tkRU2J146xZEjUxTGxiQRSRzz7InTHD02h+t5JWWzPxzl1/NJ8piFpRWKPKfX71Nv+Bhy+r0hSytdPvXEQ/QHIbZtYaTBJCm5KXjwQ/PYloPJUyq+g+s72I6FF7i4ngVWCZS1UtiOxcLNZZrjTZRWvPLqWzzx+AM4roXMDZbnUGtUOXb0AEJIpATbVkRhiLIkSMmHDk6TGlCmYDCIcDyfPNG89uZljh6ZxpWKZs0jqAWgLBwpCOMBc3NTHJirU6tUmZxsUB+rceLVc8wfnaYSeKytdrEsCyHBdjQaXSZhN4aCDK0UQRCQJQVvvn2NqZkx3n77GjMzDerVUgm0MxwyNd0g6qesrXVYXltlcrpKa6JGnsJwOMAPfKQwxHmGFjZpmGOEQRmQmxKhM+rHv3R4lqf/9I/5Z7//r/m7/+Hfuav56MYIvMNFO5Vzp7QF5bapfLNpANpYLDQ7etv2si3jz20iFutl3S5wUR7fDAY3b7vbVkGM7Rsbar8bbRptt4Ti9gKXO83279ymvW3zXGo/IPZWvdKUC6Yb86Etgi67z9HWhV9un8+sP+fdWrpVDE1sWxTYucy9rWA0zxttCm6xfcTWY3veZVm+v+u/sVuzoP1v223L27/LRXmRI+S6IvjO87ytl5jbto0Xc90LCKUQEWKjSGEKhCnnNuXNf38B4T1BlQ/QPsg8d7vb3uBu16u20Dlvgae7u25rC3Yqc3vrzOY4vs3796pzW1mbf3PFxmCy+9X72y022rHbMLBdYGXzvo1SNvHcdxvs302g8HZwt7n2QuajfYJs1K05Aqw8x0lD/uKP/oC5yTFW233m73uERr2FZXLipMd/9o/+CYeee4bfvv8ovzE7jioKhCohYnuti5KSixevMz09XsZiDSPWljoIK8WzbRYW1/jwg0d568IVMIYfvPgmH354njhJGYYRrmPz4PGD5HmKpS20tkmiFL/isbraY3yiSYHB9cv8ba5lUWuU6pCLK2tcX1qhUalwcWGBI/NTFEVBteaTZTmDQUQUxXznmVd5/OGjvPb2BR69/zAIg9aKcBiipGCi2WQYplSqLmEacvrMdSZbdRYWVnn51DmOz8+RpBFal8qOxw7OIIQpY7wUBL5PUPUJowjLtRBScvLkOcbqVY4dOkClVkHbmnAQ4wd+GY+T5qyutKnXfFzXoVkLcD3NcBCV4jFxzPOvn8HXmkqjQpKkKCGwdLkAYIoCJRWCnPuPzhAOMrSloYA4jkEarl5focihOwyp1gLWlrvUGlWatYAojNBSkGYp460avf6AxniDZqNOOAi5cn2BWiUoUzd0I5pjDRzHYnWtjW1ZaNtCWYrV5TW8wEEqCwqDKUBrC8t2sDUgDFGa8caZK9QbFdIkQwqBQtLt9vAqPvEwRaJZXV7BUgLbdRGiZBNoWXrWO50B333uJFNjNQTg2KX4DgU0ahVWVrs8f/Ic080arfEWnc4A17GI4gQvCMAIzP/P3pvG2HVkeX6/iLj7fft7mS/3TJIiKVJSqdbeqj3lXtztwWyFHvd0e/1i2DMYt2cG6DEMtP1lPPBgbI9tuIEBvMAwbI9hT8Pu6aWquqskVZWqVCptpEhKlLgvSTL37e3vruEPN5P5MvNlMqlSlcqwTuIi77sRNyJu3LgR58Q5538SuHnzAWO1MmEYkmpNoVSgXCoipSSKU1557QKfe/EZTMvAdGwQiiRJaTS2UJbGFiZ+wQIZ0250KZVLOIZJvugjlcrMxaWBY1vcuHWf0bEq5VIRY1u41gkIYWAaJmiNaUuK+Tz/x9e+z9xYlU67R6FYIIpjXn7tXXKuQ6VSwPUcBGDZFkop4m7C6tImSZhi2Q75nJ+hd0rB6EgJ0zZAiOw9iWzfP47jDMTCyBgi27IwHQelslAIhmUhBGxsbZEveDx4tIRlSUYqJZqdLn7eRQpFp9mlUMploTR0BnTiei6NzTaGoahXq9lmVprFvLSsDAXWNE0eLSxhGhLLNjJtpqFoNJosra2zvLHBVH2CuZkR3G0UzRu35xHbJqKu5dJotJmbntzWWAb8+SuXeOGF2e3NjgRDmgid8H+/9D0qdo4kiYmCCHtbi5rNlRnNFIv8xokJ/v5/99/ztZdf5S/95b84fHIdIl98lJn6+PP7Ufk+mnD3UfN93OAVw9bI44kih4kAP3KLnvJ6libY9ywHTEyPt8bvCtlP187BXx/1HR0wbhpM21fkUTU8Td6PQvvL39XSyWyd+BjHaKozE9lU76pHMpPibcFai0+Fu/8/0ScZCuEgHb6bdVzr492P/kcT7uTAjuD+NM0+O/1jCnfDoHTFkNw7foKZdmloiw95kOEX9pjb7DsYsvP5uI3D0DIfz02D2rzj24YPn8wFDGgLB/tNi2zXN02ibGdKJ/zw26+yfO8BC4ttXvy5n2elFRFpm0KhysLSAn/vP/pdvro2z2+dmiUvrcz0rB/g+M52DKqUW3cfYqlMe+C6Dkka02n3ifoBrqeolop4roNpZch2E+NVnpkdR1mSJE5wXQchskDaaapZW29x/8EqlXKRRGuifoDtuSglCMMYrSWXr92jlPcolX1qlQKz03VazTajtQKebxOEMY5rMv9oiVqxhOtb1Ap5TENx5sQkcRzQ7fawLSfbmdOaVIOf9zGabrAZAAAgAElEQVRtxdLKCp997hzKkHzr9Uv86i98jmarTbVWAg06jpGmiWkbKKVot9toLVhZ3kAIjRYC2zIp5j3euXI9M+VzXKSED288QMpsZ/X+o2VOn5yBNCKKUpQhMU0T07TpdnoUCzlKnkuxlMNw7IzRvXWPciFPr9vN0CW1IF/KoXVEIVfCdKztMSlJkphiuUQcJczMjGFaJt/47iXCoEevHzBSLXPtzgPOn55hc72J7VgImWmBuu0ehYKHZVtIZfKN715kdqyGYalMILCtzJwlTXF8LwvyrDIBIkk0l9+/xWilTGNzHWWaOL6HY9tIKXBdG4Wg0+oglMSwLb71yiXKvk19rEIQBpimTdDLAr7rJCbo97HsDBCkWsxz++4j3rpykzOnpgh7AZ7v88OL1zl/cpxqpYRp2oS9AMfJxm0KxGGIEiavvHmZ05MjmJaF6VggIGj3eff9W8xMjhKGHeojFcI4IUWzudbk229d5sXnTyPilA/eX6JSydNutvjw1iK1SoHaSIXmVotL79+iWizw6NESlUoJoVOkqTBNC52kmKbJy69dopLL0+33EQhKpRxSSKZHyhQKPt/eRq3sdrrMTI4yOVbFNA1u33nISK1MmmrCbkTQb2dmrpYgCPu4rsfFy9fI52y8gkeSZMgiGsFrP7zCidk6SkriKMGyDOIwIYk1wlBIKQjDiNfeeI8Ts+Pkch5xFFApFxir11CGieU4IDRSw+ryBrZjEYQBIFAi00g3Wy18z+Vrr7zN3FSdty5eo5DzMJSxbY6sMZWmUPBI05SVlU2UlCilKJcLmGgWFxsUyg6WZWWbc2gq5QLFYh6daqI4ApnQ7XVptpqcnK6gjAyJ9v78Ir7tIFTC+ZNTOI6PYRmYpkkcJRiW8XiqHNwY/NWpOr8+UuAP/sWf8MF6g+eeP/9Yj/J4GfwRBbuj5+69dNBVe/DCx89Y7g9psBOTblALtN/U77gChRQiY5QH3SkeW9dkjPJwTVOmGRsuLB3O4+wv4+C9gyT25dlfx35+azfPfoFiZzNZa416DPBxsN59iqIh7Rl2HHyGHd5KSEmis/X96dC0P5pwNxTw5UcU7lL28oqHlb9/nGQC9sf7Rez0456+2OYmUz3gz7fvPcpt38A0Pf63cVz6VLj7BOmnCVDlKDpKfBDbE/vHqbkbhGIeJvgN7o58FM3d3lay5yvfY7z5MQt3++nINg4R7nb6euf6004Gw/IrMpPWx/05mB8DI02wVcKbX/8autenUKoyceIMpfoIzc4G5VKJsNXhb/39v8uvBRv8zWdnUUIhpYHnuyCS7UVLQKLp9wPqtQr5nMed+wtUKwVMQ9JtBeQLNisrHdI48xcTSmKbijCMKJXKLCyuUCoWWV1rkC/lMyRHqeh0uuRzHg+X19A6oVrwWN9sk4QxSRKjo5Q0SZgYr5EmCWmqUcogiiOKpTxCSAzTwLAkvmtDKtEywTRN/LyHkJJu0CdfzJFqg9Xldcrl3LbGRRCFEVE3xsmZWJbB+dMzmQ9fOc/G2lYWhFzoTChA02n2INV4fp5XXr/K3EQN33dIogjDNhkfLVMtFWluNbAsA7RgfGIU27Z448p1Ts9OAQmG6wAprWaXS+/fxjQVOtF02h2qoyWUEqRRQs5zaTW79PshqYYPbz5kYqIOaYSUil4SIElZW23w0utXeOHZE4gkRUkIw4Dnzs5hmwZzU1O0uh3ev/WAU9PjrK03qI1Uefm1C1Q9G4HCsRVREqNMxbmTU/zRS28wUsjx6NE6pXKRZqPD9998j6qf443L15itj2L7FsqQTI2NkMYxWkiSNAPSsUwFOjMblcIg0UkWikGZnDszizAklufQbva5P7+MoQwWllapjVTpdwMMw+Q7b16l3+uz1ejy63/hixhWFhD9nSs3+OILZ7lx7xGzEzWkKUnilM3NBvliDpSBkgn37i7w+edPEKUxnucRRwlR2MdxbYq+hzRgbHQEIQ2ElqATLENyZmYMw7QJuz2CJGJsrMTL371MrVxmamaUbqfLy69f4ec+exbPdcnlPC5cus6pUxM4nksSpXzztQucOTHFdL2K41osLK/imBau6/L2xWuMjZbp9tucmB7H8y2UAte1M8FZC5ZW1qlWSximyeLCKmPTdWzbwTFtojBGGIL6SAklE967fo+yn6Pb7GFaFmXfx3FMgqBHGGhe+cFlirbLg4drmCYkQYBt23Q6bSqVMkKAZRhoTKRUdNs9Xnr1EmdOTmLaJpZt8PDRCrZloKTi0cN1Vjc2mJvNQGFOzdVpttvcuLuAqQxKhTxhGOHnc2idECca0/YwhYllWQghuHPvEeVCiZmTo0g0QT/k1bev8MK5U5nG0rXQaYYyWiyXsG0b33Xo9nt4TgYAFXQCSvUClmkhlYHhqcw8Hk3Q64OSj2MkMoQpPJf3ONvd5G/+N/+UselpJqcmP3ZR6kcFWBHio4G0HF1+Vl6apoeiLw7bvDxu2fuFweOgOg7eu/3rWPUd0oqPkGe4ULVDh4PTfRztHUb7hLuB2nYsBf+/KtwNgqYMo6MA9j5u4W671KE/9c6Px+Nyj8PMY4H+p0m4+xRQ5UekTxZQ5bhmmsejDKp4bz3DQVqyPHuBUI4Wf9RAO3fK0Xpnl3B3ujzMeTjReqigubPzMyj9PilowaF0VMiEIfUeRgcQRhFDFoAh1R8QiLOFMdVHP8NufSkCQZxqRApCh/zZP//fWVxc5Oy583z9pQv83n/ye0iZEkYh/+7f+h1mTcl/9sUXHm+FhWGIbVmkic4APAzFnflHEGlGahV+ePkGBcfG9gw+99wpRKIJk5goioijlLX1LQq+x4PFDabH63znnav8a3/xZ+n1uty6t8hnnjuVtTgV3Jlf4O7CEl/5wmexLJOr1+4wNT6K5znoJML0LJqtHqaS5At5giDmzYsf8pmzc8Rxwrdev8IXzk9x+tQsiwurTM5M0Go2WFnfYLRcxvNcUiUxTYvWRgMv5yKUIokg6Ldxcg4ry2uUC3k215vcvr/Kl7/8AkmcaSWiKOHSB7f4wgvn6PV6+L5Lvxfy7bcu86u/8HlsW6G2femkSvnaS2/yL33xPAurm5w9dQKlBEJqkjgmDsD0zMxhPUnp9nsUCx5Br4OwbNIQpDJ5OL9MvV7CNAWGY5OECe9/eIfnzp9haXGF8ckRRJoQ9UO+8fpF/tIvfYl+v4/Sgly5TLvRpNfpUSgXUYbKfAmkREiI+gnr6w3KeQvlOhimidSSZqODTmNc3yIOYpI0pVDMc+WDW5w5OcPK0jqVUgE35xMGPeIk4evfucBX/9VfJIlCtE5x8l7mCyIkCQJlAHFEY7NFoVImCVIWHi0yNVlDm4r5O0ucmB3nD7/1Bn/5l76ERmNYCiEz4VYITa/X460rN3jh1AnyuRwoCIIed+4tMzc5yo279zl3aiZDtVQmxCGWa5MECatr6xSKPn7BJ2j3MGyDNJW0Oy1ee+MWn31+inqtQhRHKMvCNS2COGFrY4vaSJF+r4fj5xEiJQoT0jBkdbVDfbwIiSbd3lBR2xvsja0OtfEKSRqjoxghTG7ffsj0ZBXbsYEUwzLQqaDT6LK6tsZYvY7tOXzvjct8+WdfJI1DojhBoOn3Q4q1EkoKeq0Omky7G3T7WH6GLJpq0ArCdhfLcoiiAMfz6Lb7pAlYlkPQa2HZLtdvzXNydgTb87h+fZ7nzpzg4vs3ePHFUwgpkSlEUcyd+w85NTfJ2kqTfhjS7kQsrm3yhedPkS949Hp9cgU/m3eSlNZWE9e1cXPutumnAjStVodUa3K+RxRFmKaBNMA0bXrdPivLGzi2je0I2lsR+YpPvuDR6bSQWhCnmRE5QmJZNrbvkfRjUgKSRHDz9gNGKz5jY2NsbG5iq0xLnAQx3WADx8kT9ENs18dwXUQqeHh/kWI1R3Wi8ngaTuIk+062J91MW5etJ//emx/wMz/zJf7Dv/sfHDH7Pj3tauOy+V4NzO6x3tWc7czpO6SP4nR/DLR/Sd+PdLl/G/FpaDcUwuBKetDGR0q5jyfZL0ANa8OwNXZ/2i5QyUGgtyPFjSekP/09Gd+1F/t72LXh5T6J9msot+87gqc4CvDuQOn7TFKFEI95tZQMCf0oGeO4foLD+C0lxB6e7QDw3uBNBwD/Pj5Kt+vdUVrsnO+k7bfMEk+B4vkpoMonSD8Jzd3RaFIf34Q/7Bs70kxyMO2AcLdPwNEDH93ONbGjWRuuuTusrv21HF3zU/TQIZq7w+o9frHiWMYkh+9hPWFfLs0AOFIU3X5Me3mTl772NZLmKjOTc/zcl3+V8blnOX/+ef7Tf/AP+IN//gf8y/PX+TfOzPGV8RFSrel2+tiWiU4hTVLCfkCaJGid0u30KHgenudy58ESZ0/UcSwLQyqUEsRJtuvbanepj9YolgpUywWUIZgaLdFud/F9l/GxEQzTQEhJc6tJrVLimbkpTNcmCvvUahU2N9sE/YhiyQchsEybZrNJzvdobrV45tQ0Sgg6nT7nTk1TG6kSRgGdXoDtaHw3T3O9h+UY9IN+JihoyeLSBvlCLgO0SWIMJel1Q3zPAZ2QK7hMjFSI4pR2s4vjuHTbfWxlEYcRfs7D8mySKMKzDWq1Er1ON3PqlpoojDh/5iQaqNcqSJkxcUmsSeOUIOyTppkWawepNEliTNthc71FLp+ZHrZa3cwUJNVE/axfbdukWPLI5XyWFtZ5tLjGyGiF586cACExDJAqZWlxg3w+R66QI+rGLC6skPNtgl4PwzIIo4Cc54E0MB2TNIohjplfWmZ8fJReN8D2Mn+nt979kHOnZknTlDQF23Zot7tYjkUURpyem+b963cYH63waDGDp+912giR0um0cUyLfqdDsVTIgFmSmNWNJq9euM6Z6WnevXqbkyfqnJmdAjSO79Btd7e1ll1cz0bHkqWVTU4/M4WyBGkS4ft5auUSjudSKxWQSqFMC8OSdFodon5Mq9lFCEG5UiBNEsIowbQMkkTj+g6n5qZwXZN2M+bSe3fodNrU61WETDFNRacVkC8WCaMQMGg1+riuy9LCOtWaj9aCVCdcunqLuZk6H3xwj1Ihj+1ZJHHIwvw6xUoe1zVxDZMg6KOloNeLslh7poFh2rgFB6UkectmdWmdKE65euM+1WIWLsLPeTQ22szfXaE+XiaJIgA21puE/ZDNzRamaZFGGtvJwjKkcTYl3Ln3iDeuXOezLzxDEIaMVksIIwsE32h0sv4p+OTzLkEvRJrQ6/Z5+4M7zE2MIbQmn3cYqRY5fXoGx7XodNoUS3mkgiSOWVpapVzJEyUxQkne/eA2d+8us7a+xcmTkyRBuq1hjbAdk831DoYpMAxFPufTaLSwLYP7D9bp92PSOMayFFIJkJlfINrAskw21jbwPId3L9+k6OYpFfNUyjmSVOJ5DkEQ8YN3b+BZLsKEUqlIEEWsrTfwbItet0O+kMeyLQxjO1i9zkIW7Ndg7IA4/NXJEarNNf7P/+eP2EgFp8+c3jPtDrLMh7HvQw0LhwhNjyEzDmjJ9vw6fA34MZA4wBDvWpxkjR586qfUHGl9LKZ+L1DJE3M/RZo4qIE79vr/Ud7DEbyEPphnx0T2R9MEHaaR3P21E0LhOJq7J4maj/MLsQ1C92Qt73Gfb9jbl9uquwMmmztl/ngtmh/TID+rB64d2KrQ6QDAUNbru2BDwxv4qVnmJ0g/CeHu8Dnwxz/ZDxfustXvse33ELNM2LGxl7t3DPXBG25ysJ8OBSIZSH9s7rjvODY9hXC3U/bOs0gOfsxPa3Z5mAgnjkgDSGONZ0juXnmbh9cuYRge586fJ1+rEguLBMHv/O3fQV97j78zU+evTdeJ+iGOaWXx7eKExmYLx3aQUrK+usX12/cp53x83yXo9SkV8ySp5szJSZK4z1i9jqEM4jgGQRb42POwXZcgCDEtSRz2ieKIQjGH7blIlflRxFGE63sYyqTd6tBsNcgXigipuHztFneWlinnPIqFHIuP1qhUc/R7Aa7r0Gy2eePSdWqlAn7O48H8Ao6rGKmVaaz2CcKARCZUqxXSWCBT0DqmXC5s+ykIlKGQAr75/XeZGi0TxxGO7RLFEZ7vkyQR3W6Pix/eZmykTLmWxa8zpCSOYyrlwvZuv8SyFSkJSpm0uz0s06HdauE4NnGY+SI5rkk/7JF3HIJ+SJImpHGEY0iEaeJ7PtIEqTIYf9dVeEWf2/cWcFyLkdEyQbfH5nqTYqnA2GSVOE1QKlsoLMuisdWgXh+h0+llqI2tFrZtEsUJlVqFJMrCE9y9s8Ta8ga1kTLNZptcMU+5UiCOE15/4wNmT9QRSKqFPKZpsLnZIBWCCx/e5sT0BOsbW7x68QOeP3uS0VoB0zSIgxjTcvnDl3/IZ86cyIA8lIVhmrS7fSzTJIojqpUy/Xaf6akqE/UKtmuxudFEkwW8N5VB1I/xfAdpKEzTYHpyBKUk/V6IZZoIJKurqyRpgmFKXM+m2W7jOja2afDN197l7DNz3H+wRDHnEgYBzXYXx3OwHCcTgJKUVCd8+OFDykWX2ekapu3Q2mpRKBayWISOhY5iWhtt2p02uaJDzrUxLAHCwDQlkxOjdDs9JsbLLK9s0mp0KZfLXLxygxOnJtlaaxKlMbmCux1A3SGJEsIg4MLFG4yUcrTbHYqVIq7voJRgdqqO7Vr4jpP5y5KSzzvYjgtIrt24z8zUCJ12l9F6FYTG8bafK87855SUjI1VeWZuDGUa2JZBmiYIw8SxDLrtHmuNDg9XN6kUczQabZZXmkRhwpdePEcYxrx+4Trnz81huTaNzS3ENhCR3rYO6LQCioUilpOZQQppMVqrYZkxs9NjrK81KFR9vvG9C5yYmEQIE9c1aXXaWCrz4cvlPKIkYKJe54N788RxzOTYCKbhYTs2YZjwp9+5QDXvopMEP+8wOVri8o079LsRvueiETQbLaRUBHGXmckpLEuRhGAYFqtr63iuwlISL+8DijhIkOY2Kt6+RWJwr1EgKDk2X6gUObG5ym/9F7/Pb/3Wbx5YA/bce+jcPnA+ZJ05qKcblveT1dztEe4e/3yycLfXf+6pWnCEb9qTrh2Wtvv7JyfcHUsk2vtriEnr8es6/Jl3fj/m3Ya07lCzTI7P0wzye3uuD/CM+91Tjir7KOFuWB0HbvoxfjqD7R46yo98zuz/rln0rsCnNRim+alw90nRT0K429292k/Ht/HOWNGBmHOHpO0cep96GQ4O3KP943YHsGTvR3ugrn3lDFozZ/+39zXFTsiEwfNtfzO9r5Q9c9z+2Wpf+qFrw5P7dfAN7Bz7QzkMJu5Mp8P+Bt/N/lwyzUzVNDGJToiJUAKSvub73/oTrrz9OnOnz1OZOYeyfb75ysv8w3/8T1i6eIGffXCTX6kW+WytjE5SXn7tMiemJjBskwRNr9Xl+p0HuJZBHPYRpIyUK1h2Zrji5/L0e33anQ754jb6YzvgG995m9mxGvlSniiO0Qm02x3evHSL2YlRHFsjpZEhFqYJCAMdZ5OYVNDvBBiGhV90SdOYVqvF7OQYo8UytdESKwtLKCUpV0v0wxDH8/mzV67wy7/wPL7vk8YpQqaURyr0u32UpUg0jFSrxNtM7sLCBrmcAzKG1GBrs40hJa3NFuWCy9U7Dzl3+hmiNMWyMpAN23ZwXIfp8Rr5ootSkuZWi82NLE6aVJK19U3yhTzo7M0JDTrSXPvwAZOTNZZXV7l87S7PnprJECYNk1SIzMcwzUyxoiQh6AVI26LfaKOERCqBZViksaY+WsbZFpZXVrbwbBfDMjFsA2VIdJKFe9AiCxafJimmadBqdCmOFNGpwRuXrzE9USKTwSXFUi4LTyAFQb8PaUyv28dUFtMTNVIdYpqK+w+XqVaL3LjxCAODuelR0jihMlLi2VMTmAaYSiCUpNMNKJXz1Is5fN+lsdHGMk1SrXFtJ9NsBin37i/w4gunSKMEDE2agutkZq2O53LrXhZoWxiZ/6TWKZ1WhzQC0zBRlkm73aVYLOLmPUzTIAlCXnvnNmMjeaJYc/7ZGdZWN9FJhJSSREsWVzaYGikTx5q33/iA63fnmRkfwfMVpYLP4vI6I/USlu/QbvQRMiJNDNI4xMvlUBaYjoVBwp17KxQrVQwDkijByWX+nMowmH+0gqE1p89MILTA9WzWVwJK1QL9fp+Fh8tYpuTtKzf4ypc/AzpCKYnt2bS7XbqdiJzvkcQxwrJZebRMEmu8fIE4CkhJebiwxsTYOE7exfIN0AkmCp0KiBNu37xLtVpEGiZKGUgtSEVCisCQkkQnlColbt1YYHFzixfOnsDzXbYaLe4vrjM1VmNrfYM4Tcj7Jisr61TLFUxTYihFvxujMECk3J1/QKVWJOhGdBtdLr57jRdeOI3lmPiOTa8b8ezcFG9d+pCZyRHu3F1gcmKc771xhZFijnw1T9CPMAzB+EiFibFREFkMzq+//A6TozWeOz2JTlNKeZ8oibAcn6LvMzFWAlLmHy7RaARMTIxQKbgIkfLg4RrFYok0CagUCqQxKCtlY71JLucSpwGtzR6O45CSPDYR3GW3BrfSdheH35gb5z/+/f+BX/3qXz0Q1+0Ag3zkKrJ34dkBY9LiIChDdj5cgDpq9T+KURZCP7aa2Z9vkBdIj1gg9y+rgyabw+LS7tAOcMvONYUeygcMafUhTzrYkONYOO322mM+Q+wVaHaEKqkz/udg244rKeiB5z0YCuHxxvgwiymxE3Zpb3l76999N7t9frw27j77dniqgXGQPfPuMUip2Ntne/kw9hw79w4T3JLBNuw7ho7nfUfWP9vc4YH+1I9vEvIg7sJHwTo4DqWD43xA6bEDuDLsyFyTNEpkKMZ6X28YpvWpcPdJ0U8HoMqTB+rhTsDDtWWPNVIfWbjbpaOm5Sfdu1vC0dcO5BBHpB77u3464e6wtKG7S0Pz73jPHUzVAlIkaEUaShxp87/9T/8MQpO333mDv/Gbv400XIIg5q//9m/z98yUf+fZk3ypWkIiM4j9bh8hJCem6tybXyDve0hDEXR7jNUqvPLmFebGR0lTTaFcoNlo0+8HFMp5LMfCcSyUZdFp9Qn6ES8+/wy2YyKkzjQDQjL/cIVi3sexDKI4xPNzrCxvIYTA9m2iXsBbl68zPVEnjjVXr99nbLSSoQqmGse2WFxaRQKj9Qq2a6OlQElBmiScOTHGn377bWpFj0LRxzQVrm9jSLmtpbDodwOEANs1sC0bQ6ksYLkUbGxssb7VYHGpwfhYmZPTdSxTsrq6iWkamIZiYWEFKSSOZ2dvRUM+n2P+4TL3Hq4xUi5SKhdpbLUwjAzmPYkipJJsbDWpVPIUCi5zU+MoS4HITF2VlIRBkPmFSRNlG1mMOKEzYAypUJZNt5OZJcZRjELS7wdUahnYhe1bJLEm6kQkacjS8iokYCgjE3aSBNd3SdKQTqvP7EQdpRTIlCiMCXsxSgr8gpeVZ5s0mh1KlczcsNfro6TJ/fkVLNPk1DMzxP2QNIn44eWbnD87A2iCfkA/iEgSyBVzIOD1dz9keryOl/MwrUw4yyyqNC//4BLT9RqFYg7TUgRhH8dx6PVibMtESUG1lGlEkyTNmGedEicpF967Sb1WYWtrk3zeyxbEbGUk7HV49vwJHNfBkILGZoNKtURtpITj2OTLeSrlAlKBMAzytgWpxnFsCqUC/+KVt/gLP/sCsdb0u308x0MaGqUyCP8bN+aRZOa+lqHodvu4vofUMa1mG8c20RpMQzEzNYplGri+QxTGgKBYyBMnPdI4wHN8bMfhxMwYQqWYjoNpmXTaXYJ+n3KxwGvvvMeJuSmkEniujWWZfP3Vtzl7YgalJNPTdTaWt4jjBNu0CdoRUiRsbLZptNqMVkqsbjYoFPK88fb7zMyUSGLBN1++zNREGdezePRghXPnTnH+1ASgaTaaVEt5Lly7y7mTE9uIrCb1eo12q4eUWfxKgcA0TRqNJr7vUSkXIEmwbRvTNpk7MUar3cL3HeIwwvU8LMdiemIE08o0d91Oh2dPz2z74EmkELSbbXKFPO99cIdC3uPB/BIzY1VGamWkEqytbaCBUrVMEPQzkCGdopOUcqmIY1ogNKlOkFLh2i5KKXpBG6FAKOj2Y7YaXdI428yo1sqEQbgdvkTsm3XFnnl3cGPuV6ZGCd74Pv/XtXt89nMvHrIqPHmu35M+IClJuRc0JTsdvso8aV09Tn37S3iaNX3YGnsUeMrgtcebx8es7yjaAbg4mmHfn3Z4XiEyJGvBYRqZY/AFOsVQauD38P7YSRt2TevDzDKH9+vevE83Mnbew5OQu4+v3eSAYLinnCPqOE7LnzTOjkr7cQh2sHdjZnDcHFXfoEnn4O8d+lS4+wTpJ+Nzd5i183Gm951JdPiuX5Z2eMmDk/Huh709gAdmpaM++sdn+2axHTCUjzqpD9IBON2fAuHu8e7MQOJRu5QaAYfA6WoEIk4Iez2+961vsLJ4lzPPzjE2UWNu9izLW21+53d/l68u3eUXbY+RWoVut5dpUKKED6/fw1AK0zKIo4hiziHsx4Rhn26vz9pGg+dPz5DLeSgp6IcRCkW/H5Av+qyvb5HP+6Ro3nvvDkJITFNiexmzDBJESqVUYn2rxcR4lXa7hWFYRGGKZSoMS3Hz5gNefP4MhmVgWQYKjWlI/vSlt5idqNLr9hiv18jlfaIkod/vgZB02j1sy6DTa3FqZpwkTYmjmO+++T61vIcQCkNlJndxGNPrdLFzNv1ewHfffJ96uci9xUVOnZjCNhXVSolSJUcSx3R7meleuVggTvrkC3nu3V9kZKSSDVkhUEpSyuepFQuA4J13r+F5NjnPRQhI4xTTsxgdKWFYBu12D9d3CYOIJMm0EaaEKEmQhsXV968zVskTdboYloVhOyDVNjx8JsgmScLmeoNyrYhUIguQbplIIei1e4aVM00AACAASURBVChTMDJSwfHcbfNnjTJNwn6PMIjJ5Txc30NriaHSDFxCKt69doPpqXGUkrTbbaIgwbIVpuNgKAPHtqmPVnB9B6nAdWxINdViLhMckxjbtnj36h1WV5tMT4+wurxKNV+gUMxj2Io4jBBSYxgmSMnJmUleu/ABS6vrjNcrhGHIxfdu8mBhDaU1rmPR3Gpjmmb2nRiKOI4xTYUpJN98/RLPn5lGoHn90vucnJlAC0Ec9OgHIZZh0Gl2MwRUQyINBRKiIEAgt2MFSlzfptHoMr+wRn2kzMmJUYSCza02hVyOP/qzH/LM3AimZROFEdVaEd+1uX9/Ed/3KFULRGGA0BplKNJUI5WJJqHX62GZFonWLC2vUygWSOI+ppUhsvZ7EamGazfvUa+XkNKk0+oiJXieh1SS2ekx4iRGie0ySnnGyzkuX73LeL2EkJJGc5P6ZAVlZgAzyjAxHTsTNBGUKiWQMDNVh9TCsBQzsyVMwyZNNI5j8dIPLvDM7DiddgfLzjZBzp2axnJMBBrHcUmSBM/1ee3Se5yanqLfD/BzLhubW7iuQ6/bxzBMfvDOVcZGywiZYts2aQqtVhPTtNhc36LT7pAkKSkJ+XwWqqHXCbLwBCnkcj5hkCClxjQM8gULyzAzc9wgpFgskCt6REEIWhPFcdbPccrla3c4MTtBnMZYRhao3jQsvvHqO9y5v8F4tcL6eptKsUyh4LG2vkU5nyPREcrI/DBNy9ydp7eFuP1z+OAVJSXPh21++7/8ff7GgJnm/rlfa52tu+JJmrRBAWU/+MIxbMsOU3ccQlk7snL3CxbHCUX0uCVHrbGP64FBTd6Or10GlJKhmR5p0naAslyp3tVSHU8TMyjM7pwPr1FvC3ZyQAukn/CsB2oTe83rdsDqBq/t9s/hZRzVzidwHcCOSewTm3s0mvqgVuyA7mmHDlbyUYW7o0IjDLZp//kw09/9pp/77/04aVAzuxM6YVgcvnTQXWnfs34q3P0U0U/G525w9t4V1vTAefY56z3nA9l3pzaxJ/Xx/cdqx86J2P2dqegPri477XjSXtph/nqwu4t5QN0+2IidXz+iZvOj3jco3A1zTh7Ms3Ouh6ZkpYjteFJCa2KRkqCQacrKzXm+9of/I6Mll9Nnvkh1ZBbHrfCP/qv/llvf+BO+svGQ3zwxQZxEbGy1aLQ7jIyW0ElKHCeM1av0eiFhGAIpaRKBEFiWQbVaJElSbNfAdRxWVjfwXIdyucjVm/NUigWiICSKQmzTZqSao1TI4/kecRwhlYmQCsPIYtotr28yOVZDmQLbthECGs0WhVKRWq2AFjoLIq4EhoIgjPj8Z05j2wZhFGNaNhpNHCd4roNhWDS3Oly7Pc/oSIVczsMyDfL5PM+emsT3HYRUfP+dqzjCzJhER7G81KJWK3Lm1AR+zmNycpQkDjFV5oOkpGR5dYtischb79/ANx0c10CaJqMjFXSiuXXjPiMjRaRSvPKDS5ycrpOmMbPTo1QrZQxTZdD/2VROkiQIJPP3VyiXi5CCuW2iGAURUkhQEkta+KVitgjoBK3JzBW1RqrMd8qUBlqB7doE3R5hL8BQBvceLFAfr2HZPgiVabLSlOs3HlCtlYiCENdzs49CKPpBD1MJUgxWl5eZmaxjGAY6TfE9m3yxiEoVGJL2VgsEdLodBAlBJ8B2LP74pXf4wuee2QbDaeE4JiXfY2a6jlQphhBIodjabHLt1n1Gq2V6vR5apzQbHTzX4/bdBb7ys5/FdmwMZTBdr1Mr5gijCCEk+XyOOElot3s4rk2300EIKFeKnDs5g+s76CRlololSRLSJCHn59CpIokCkIIgirFNkziMMAxNksRYKgMK+vDGXRzH5NbdZc6fmmVzq0EQBpQKHoVcgU47ZLSUo1TJEfVjlJG9C2kZlIo5lCG3BRqDdquL67t88weX8KVLseTx7dcv88zsFEkaUSyVUEKQCIijFI3GcTPt6vjEaLbop3GmuetG+HkfIQVpkiJ0Qhj0KZZKbG00yOd85peXeebEDK+9eYWSV8DzPdbXt3BdC4xMW9XebOIVsnZmu8iSbrdLc6vHwwdrVKsFQBGEMSemRjFtiwcLy9RqZZQyuPdwkVzOw7BMTCsTrtc2NpgardDYbJLP50AIcrlM4yi0QbPToeD6NLbaVEoF0gS++epFzsxOkaQptm3guRauZ2PbLkkaI4DV1U1836PT6bKyukbQjxgdHcGwwPNcDNtEC8HaxhZKmLTbHSxTkSRZqIbGZoe1tTYzk1Vc1yLoZSEdLMem2e5QLjqcnBwhX7CxbQM/59Hr94kijecXMG1BqgU3bt4nb0ssL/NpHNxsfNLs/xtzk8Rvvs7/euUGn//C54bO+Rljf7TP2Y6GSAixZ70We86e0JpDwE+GZh3IOwj2lXEGYt8adbBE8ZT17a17h8HWoHdNAw9yJfvL3JumRNZyPWzBPboFQ8s70Eax1/xw76A4rMLDGzPM/HKQRzrYmiGj8IiBKQ+8x+2seu8I2k3XB+4/0IIh5rWDfnrD39nhZe7ngw6jnbt2+KnBYy8fe3z6cQl0h9F+jdz+tJ3LO0Lgj0Nzd3xMzk/pp4Kkzg6x73zn9+C51Luaoj2kB9KP2DXaPzAf+8nt3Cc0O4hZat8xbEIZZm9+4PmkeHwMadXjI0s/7IM9bHfpsPTDjifTYP8O7euB6wfShNhzCCRaaCIBiTJRgaRzf4Hv/OnrNDpN/spf+7cpjp4kFJrvvPodrv3nv8fvVW3+9vOn6He7tJstTMtiemKaolMg7ibcu7PIo8U1kiTBUZIoCjFtC2XalMuZIBCGEeVSHp0mPLi/guP4uJ7D6voan//MWUyVBbQuV6v0tk07O+2ATjsz4RMiE6Z6vT4IePHcHAhotiOiMMVxLEbqZXScEAQBhlL4uRy2ZdHrBygl6XS6dNo9SqUiyjQRAhzLJE2g2+nQbLf54otnUUJy6fJN0jghTWJ6/T5JKgj6AT/z4jkufzBPu9uhUMrzYGkJw8pMDaWS6G3TSNM2yRXyKNNgZnYMyxZ84dxpoigBLVFIlhdXiOOYU89MIaQkiiN+7Ze+QLPVJggjDMsiThLCMAIlkWam5RRkMfNOnZyg2WigSdja3GJ9bYt33ruFYWYolVIAWpPGAWE/IOoHmSYh1nQ6PaIo5k9eeRvfc4mDCNdzsFwLZShmp8ZRUqBJSNOIJAxptZqcPj2JkgLbdXnt7SsA9Lt9XN+i38vy1WolcgU/MxnS0O9H9Hs92t1WNm8YEmkYFApF/vBb7/De9Xk2N5r8lV/+PFJAEkYIJFEEhVIR0zPp9SP8UpEkTVhc2WRtvYMQikIhh+u5zD9cpdfr8pWfO0+30+TipWskccLq+gb5Sp7JmTFKpQK9TkicaF6/dJ04TLj64TxhP2JtbQPHM9naaGKaJleu3SUOI5I4JBXwrR9c5J2rt2m1e0ig2055/70HRKHGsvJgKIK4z/mzs+RyPo1+h1zBZu7kBHMnJ2m1+9y/94ivf/ttTCcL9r2+sUkUJiSR4M6NJXqdDp1Wl7v3lwh6CaVyCYlgolzGyyu0jPjln/sMjfY6f/6di8RBxB9847soGRCGXS5eubsNMqMIw5AwzITRNNVcunqLJIq5dvMecZyAVFi2TRJHSEPRCyN+8YsvcP3mPX7+8+cZn6mCSBgZreB6Hmob6MQrehimQKcJOk2AFMezKVZ8CnkbwzQIgpBbdx4QJynCgNOnJpFCkyQpE6M1iFMswyQMIzrtPs+cnGK0XmZsrIzrZVq5xYU1wjAgSmM2G1vkCjYnTo6TpjELCyv8K1/+HI1mG8uy6HS6SCl598oNer2ARrNFEAbUqiVu33lEpVJmYqLO5HSdC1evAinNzR4Lj9YxTIul1S1cx+LR4jpSmhi2izIt5pdW6PT6KJW9r+u3H5GmKXGUgoaJkRGu3n1IqsH3fbRI8f3Mx7bZaCIxSeKUOI7Z2mpx64Ob9BuNTCg+lg5pd334N3ur/Ou//W/RbLb2Te+HrWND1of9a+r2McjYHtWUfUvJcBoqse2vTx9e32Dej0wDpYtd9VvKXp7kKPh9yJji9JDwSB8vbfMbZO9JDeULDn9Dh/Mye2s46jl2eKrBNijEnr7az7kcyYfxdH29v63DysnadzT/lA4cR9HjPEMavld7vJeHPA4wy8cp5KV622hpCEkhhmrtdtIOo/14FD8Kfaq5+xHpx625y8Ig7A6Gx46aWh8YxPudmYcN/CfFHBl2bf/1XRU9j9u2M98f5+NJtM4WIQ7uVgyDht0xZ9jfhsFrR9V6mEbtk6A9O2v7GiRSTSQUSqYYQvLSH/8zPrzwKqfOnmd0doo4LZBi8L/8nX+fv+5K7FTgujY6SXBzHkqZ9Ds9vvWDS8xOlLnw/gcksSCfc4GEdqOH5ztsbLW4cW8R37EpFfMIKdlqtCiV8nz/zeucOjGOYUikynwP/vjbb7K11WFuZgzTMomDiDTVmamkbYNM6XWDDLHQtknilGarw1tXbtNqtfEdE2/bDFSnKVubTUg0WoLne3iejWVm6Hh/9PKbPHd6Bq1AScWD+4s4jmJ8fJRGs4Vf8Kjkc8RRlKFeGoqtjTa+65ASU83nWN7coFwqcHK6ThhmoBh//u23OTk9ilASYWSmqVJJpJQsLK0iUsnEZB1lGFx49xpzsxNIUyFNxerKJvm8j9Ypnmtx594SI7UKjWabrUYT33dJ0xTbdOh2ejieBRL8vIuUAtNQFMolxip5+r2AVMP7N+9TznsZ5L9QhEFM0IuYn19mZLSE5zmcPTkDOtn2d1J02j2UktsMkdhG2Mrip1m2RT/ooZRCComJwLYNbNshSQNcxweR0u31kcogijIhbWuzjWM7RFGC7doIBKnQCKGYGRmhWimQy/toEq5evUe1XCBMEvKlfCac6ISwn4HX2LZNqZDDd0wqIyWSKCQMUx4srGb+aJbCdU1Mw8B1HVzHIYxDoiAgjROu3pjnzUu3qBVzzE6Psbi4xkilRGW0QJKEvHnhBiOVIm9cucVUvYJSGaKmb5nMTY2Ry2VhHJqNBsubW0xNVVBCIkyDfreLMiRRGHJqZhzHs4jTmDiKQcNmo8UXP3OafMEDoSmV8ugE4kjz3R9eY7OzxpmTs/jbwC/1sRqmYVAs+uQLBZIoRWgL2zaZm5hAk/L8mTmiHly8coef+fyzxHG4rSG3t2P5GcRhyInZcRYerTI2VsN2zSxcCJnGxzQMPNdGSMjnfQxDkkpNmmqUUsRJilQm/aCPaRv0OgGmYSJVZvamJCjDwHUzM8fvvHGJF86eIF/06PR6GYgPmiCIefRonW63Tz7vYpomK6ubuI6J0Ek2ZmJNkiRUKyVSUjzfoVIu4ecd4ihCC3jwaJVyKcf12w8plXwc16bfDZgYqxMnCYW8h6EMVtcaVCtF4ijCcVyEgvF65h/caYVcvf2AydEaOd9DSsFIrYShJK++9SEnZ8dwTYXn2riuDVLQ6QaMjBZoNTq0tvr0eiGWoSgVfZI0pr8dOiKJszZcunGHE5NjjNaq5MsFqvkc/U6Xdr+H6zig5OP16eAMfvD8q9N11KV3+G6jz8lTJ7M5fsgaPYz2mEIeyHq8VetgFUPuE7t592tlht03yGcMr+OjtDOrd1iA8kH07Yy/OEortHvn04X/E/v+P91dx69vm7fRu8d+evzeh2ptdjmFjyJLD9UYHROx9GkEo6PMCo/EeZDDgtQfHBP7x6l83K/68abGYe076jmG8cbHJSEESRLv0bbtaN92NHGD155U1lF51KdmmZ8c/biFu6Ns4p/GkfQ4g/e4A3yYClnsSzuKdtTSw4S7YW0ZNic9jXB3hDXDJ0bDhDu0IBWKzqNH/M//5B/yK7/+azz7M18hl6/wtT/9M/7Rf/2P+eriLZ7NFbAdi/kHS9RGSqSpJsUgjTXtZoeT06MsrWzwpc+fY7RaIJ/LodOUuw/WuLu4ysmZMU7PTeD4NivL67z6xnU+8/xp2u02Y+Uyvm9gWDa9Xg/XdRgt5nju2TniOCJNYpI4QkiIkxjXsWm1e1y//ZC842Yx70SGbnj17n2+eP4UhXyeVquL53tESUSlUsK0zQytM9X02p0MRMT3eP7ZOZIoIAxjUq2pjVUzIZMMTUrqBKEU0hCkaGzH4YdvXcN3LIplB9/NMVorIgyD1dVGFrOvG3Biqo6QmX9NGmksx8xegBTk8j6PHiySzzkoQ2EaCtMyeen1d5muj9DcauFZNlE/YnVjAxKJbVnYholjmSRJQrfdI+iFGeiMIWk1OziuQ6/dA+DPX32HiZEiWqfcm1/h7OlZ/JybmeKlAtOwcF2XcqWIMiTz84ukcYrtK8Ig4uK7t4jiZNuENsEwFCCIwhjTcZFSIbd99tI0wTIEtmOzsrhJsZSj2e5gGYIoFlmsL1NhKJM7t5cypvniVc6dmeXihev4XqaNvX9vgWq1iJd3QUlytoflmERRD8+1Mk2ljhEpIBVREGI7FuXtUBFJHCOVxdTkSBYsWhksPFqjWiti2zYffHCH+lgd04B2p8XszARzEzVmJkdZWVnnhfMnuPzhbeq1CoalcJWBm3O4eneen//Cc9i2xcbaJmP1Co7nbMfkSykWfYqFArarSKIUKTWGaWA7DmmcoKSBaZuEUYCUkrCfUC7nsEyHP/jm9zgxOYqSim6vi5dzOHtmnKmRMUzHwvZsxsarpDpBpymWrQjCiDRNuX93CcuRWJ6JbRoIw0CZkpmpOlJkQn6cJI9jrF2+cgvfz9rtug6eZxDHAUkYoSybOIwxDUUYhBiWwrBMOu0OMs3QWaMoQIoUpQyU3EafVTZ//PIbPHdmjl63jzIkhmXR2myhTMGZkzME/T7/L3tvHmPZld/3fc5297fUXtXVe7O5zqrdliwJkqEgcGDDkixHQeA4cGLZRuz8EyBCEmRx4iS2EziRY8cGgiRG7MSAN2kk2dJYs0lDznDnkOxms0k2e99qr7fd9Zz8cV5VvaquLjbJoUcw+Gs89Kt3zz333HvPvee3fH/fn3UNoQ793B0VNLZGCc3Ll9/jyfNLIDyhkcCilUCFkYfsNQ137qySZS0aB1JpiqKgrmqMDllcnMUYzbGFaUwU+ChlUbO6ssUozz0hTuO4c2+DhcUOJtAorRnmI1ylGA17TM9Oszg/jVSecXRzY5s0Ctnc7PHq5Zs8fXaJKInIOr6WZlXW5IOCrB0inODa7fucPrvIhfeucf7MMs4KAmXI0gScZarbYjgsCbUvkK60oBEBYRwz7K0T6AAVBYhDtfjDjbsdObl6hz/1N/4OP/fzP7ur3P2+Me4OaXuUcRcnMXVd7f723THuHr7fUcbAUUf7aMbdh5OPatwdJUcbdx+mp0P2+RgRqo8T9XpU425/oGFsuE0wi+61208wtA/q+QHG3cPko+jGkzKZM3ewn4P38ONGCj817r6H8r0y7oSUNDiElFjHOOPn48mH9fZMUuZ6liW3h7g4oq+DBS4lIMZJ1pNY5cMidrvH3oEcuAdffhb20/KOe90FT4g92l4xsc9HfQwPHu9R+hGAts148ZeUVrB24x6//g//HreuvMmP/+GfYnrxHHnf8u//uV/iP52N+eNLx+j3+iRZAEIyNdXGVbWvNQdsbWyytbXNzEyHVhpTjIbIwBDGAYPRiIX5Do+fXsZog7WAs7TbGcuLU6yvbxJHIW+88x7Hjs1hhMLWFQhodVvY0mIMICRRmlGOCtI4QliBCQ1NVSOk4Oatu8xOtzFG8ZnHTzMcDoiTAGUitBG+6LRQDDb7vHbxMnOdNgJBFIXgHOtr61jXkEQpuJqNlRG//c1XOTk/g5SCIA4AydXr9+lmLRCShXGB72efvcTsTEacRfS2h0xPTfPlb77MZ585T+McTe3z4aQSVEVJMarRSjMajJhfmEFIQVmWRGGIFo6nnziNCgJaWYwVlqQVEccpG9s9iiJnbXWLr714gWceP02aJbz79i3iLCSKQ2gcUknCOMAEIak2dKe7BGHAsYUZBoMhoYmxzjIaeVr2WzfvUVcNSgg67Yw08xGeKA5opykrK1uEgSc8kVLz8qtvMt3x9ehW764RRWa82Al0FNJUNUmWUDeCMNAUZc2vf/lV5tKAui4xgWZuvgvO8viZBXSomJ1qk6YJUiraWcZgOCJJY8rRiGymhdaCOIlpxs+91iF5XnD79hrTM1M8/8pFTh1fwinBvXtrBEpT1BXK+PxOGkeaJThbM7vYom5KtDK8dekW21s9ZmYytJFkWYoQgm4nG5PCCLJ2gjQBn3/yHIO1FcAijfBGRF5y9/Yqw0FBa6pDGHumOiEldZWjdYQFNtYGjIqSOI3RyngIZBQglSQfDXj67EmEUoRJQF02oBrKovTXcfwyGmz3MQKkFqAEWhuqqmZhaZYwTjz0OAwYDXJ+61++xlNPnsTaiqosUVKxvTbCBIr5+Q5SCpI0RhvFcFAQJyFGB7z37k3KvOKF1y4jasfsbJder09gIr7y7Ku+tMD1O6RJQhyFWIEvLt4onjw5hwxDQmUY5QUvvPQ2M+0uYRaAVbx54X0WF7rcv7eBo6Hd6hAGAUoKzp9YoKkqVKhYX9nwz3cUYkuHdRWhiXj3yk263Zj1lR51VdLfzCmrgk67TT4YUeQ5UWIohgOCICJKYoxxdLsZrpE0zjK30CUckwP1t3skUYClJM26lEXBjWur3Lu3QZoYyrxkMBowGI04MTdNYAyBCehtDHz+ptZcuHydxekpwiig3dKIquTYsQW0DnnxO29zbG4WobwjJy8qZrsZ2/0h33jtAqeWFmnqknL8HK7cW6EzNQ3ysNjdIevaTkRsHG35YycW+Ce/+ut85qf+MFrIIyNQsD+naC9i4z++bAEf+HkwEjcZmXDj98Jh8EHvOHMIer0hURTgxpl3ddUcON+JcXFwoXvU1fPg+U1skf5kdvSZHaif2FErJtpOrrcfTR7c8TB4ozjQ8iiOgL1+H21QB/U1IScNm72jHNXbLoEHXg9RBxBaD0NrHdRZ5NjhdJjYXT3qwcLvB0saHHV+k3BDO3FDd4y6B/W9CaNunLc6WRZrN/9v55wPS9LbuR+POE8+yBljHRN5uXvPjhofY2f4k6QwD+vTj1+MjcXDj/lxjDvx0YpLfio7Uhb5J3oB7S6o1wML1cS2ZuJ3APkx7+UkDONR5sVRL5G96J7bi9DtFcM5/FkTgmaHInmcj/IwUXh452EGreVAkuqBc9nnCZp0Hn3Ey7eLDz/Y50PaSrzSOWgskRTosuL/+JX/hfNPPMH3/8gfZFSDko5/7z/88/yVJ05yrNtlsD3i3v0NpqfadKYy6rLm4jtXeOLscfr9kiQNiQJFXuQ0tcOYgChNuHv3PnEU0mqlNHVDVdUM+zkvX7jCD37+DEFgsLWj1W6xtT2kO9UCHM+9eIE/+EOfQerxgmNrtno9sjhBRwZX+4V/MChwtkIrhTa+LABCMRqVpO2EMi8QTvCPvvQtPv/kcaanMhCOzlSLIAgRUnh4pHBUpeWbL7zJXLfN1vaQ7//8WW7dWUNJWF6cxyLI64okSQBQUjDY3KKSvjizkY56TFKBAqkiBhtb1GXNV154g8dPLPLMU2cREvKiIopjhr0hQaSRAvp9nx+klCEIfPSqLEuM1mxv930+YGAoRrk3utKApmrIixKtFFIZqrLABNoTY4yZL4XwUEohJba2rN1bozvb9b+7GoulLBoC44kh2rMtnIXr1+5y4tg8eZ4TpyFlXvm57fz9LYqKO/dWOXVsnnt3V1g+tUhVeUN/9d42g+GA+bkurW6bfDRCCIkUksY2hEHGS6+/wRc+fwItMpS046iSpL+Vc+X6HU4tz9OZaiOUr8NjrZ+3zvpzy4vClxUIQ95+5waPnTtBXRfkoxFpkiCURJmIKi9pbEFZVWitiZOAalSgjEEHMbZpKEZDoiiirCrCMMBZgXU12mjqxjIcDQl1gAlDVu6t0p2ZxijJaDggTWIa56jKiroGYxS2qQgCjW0c0miUUjjr6PX6ZK2EpqkxxrC91UcgSdIEKxW2ahC2pip9LqfEcOP+bV++QGu0VBTDIXHWpq4qtFZY56ibGucalJYoFO+8e4PHHztFg0MKyer9DdIkwYSKxpYEOmOUD4jCmC999dv8Wz/5AzgFxTCn3U4ZFb5YeJ4PiVODK0FoAI2wFU3j51Oc+ehwXdf+eascypaUVnP9vZucPLsAQvHaG2/zQ9/3JMOBJ+WJkgDbQF36+SKk4pXX3+YzTxzHhBIpA6TUvHnhCk+eP863XnqbP/jDjxFFKVXRkI9qsq6irGoG2zVBJDA64tKlq5RVzec/ew6jBVev3qVqLMvH5wiN4uLb13n6yccYDUdcuHyFp8+fIkljimGNDiRCSm7euElRNCzOz5K1QlZW+2RZzOraJgrB3NwUq2ubdFptojRibW2ddurvaRgHKAX9rR55Jeh0EqSQXL12l9nZDmEU8aXfeYmf+dHPcW9lnSg0zHRSkIo4TQjjgLJpWLl5kxPnz4yVzcnF4cGFYtfAcHstduQrd9f4o//DX9td1z6siEfE5D24Xu+tjA9CIQ9v5zUJe+g2JSWN3dvmfUh7/bmPaGUddX6T6+jeGvsxFuqxPKw4+KPmntnvUuRuUpdzHMxF2xvMI43rIZflKONucoiKh+t89kC7SWkejFVNtH24NLvf9vTXD5b9baWASVPbHZXM97HyRL1Y53bz5XxNO7k7KjU+xk6tu8l2+/fZ27ZzbybbHJQgTj+y++LTyN3HlE8+cjdhvEm5b47uefo48O2jya6n4QgvzmHtj9rWNPZQjPMhO+wee88oe/ixd8oJHDaCyejfwTE98NvDD/HIctCreFSfO5BUcCR1wUvPPsfN69f58Z/+GY6dfZKmgf/mL/93TP/e7/CnTx9jdqoNUmGrinYnIW2lpWUJ5gAAIABJREFUFEXNlSs3OXN8jqyTsr094MU3L3Hu5DLaRERJQn8wwNYNrVZGFAWEYUh/e0iSJFy/eZ+TS3PMH5sBqTBBwMXLV+m0E8IkQAIGR7vboqkrettbNJXj9159i6fOnKQsG09bHwSYKERJSdrKdvNDpZIIJRhsbKGNBiF5+vHjRJHh6vV7nH/8DELC5uYGdVVhtKIpLLaxHJuf4t7KKqOq5MTiHGEYMjs/zdrqJu++f4vL125x9vgC2kg21tZodaZp8iFxEtDr90nTDKk1DkudV7TbCU7C04+fZnHBQ72UVijtGRR1IJFGUFfekIhjHwkQSnrFo/blB0KjwQqk8YXDg1BjEYxGBWEQIIVEGcU//8qLnFpc4LlX3yIJtI82ak8cY8KA7Y0eL7/xHnEYMDWd0dvcwugQE4Rsbgz48jff5PSxGbSUvHP1BlOdhNXVLdqdFKU83DMINSYwNGW1yxTanep447GpUUoRxgGzMx0aCyaKUFrz3Atvcf7xEyhtGOUDTh9fIjQJ16/dot1uYZEEoaQqHRffvcFnnzqDMgqEY9gfECgNUnLt6m362z2yLCQyGoljdrELOAJjuPzuTaIoImsnNFWJAKIkxNNoa8pRRVXlxElCY71RNBwMKeuGuq53axqWZQMORnnhSTEsBGGAwiKFz7dbW9mmrhxBEuBcTZSkXL50nTSLidOUjdUeSTulLgt6m0OEBKUUVVX7uoixz1W9e3ed51+/SCI1N2+vcmJ5iVdff59B0ef8uRMEUYAb07c3tsFEntwmH4xobIM2BmN82Y+6aei0W6yvbxFEhu3NPkkcYSJJEIdgNU40KAUCybGZKSw1URzx7EsXOXFsFh3AjWv3WF6cZTQcEsYR1lmCMGAw2ESikUKwsb1JMarJ4gCkQkjFrZt3CMOUG9dWWF6eQ0jJ8cUZlLTeADUaKTWb69u8/tb7tLKIMNXMz0wRRRFRnDAcDdneHvDK2zeIjOXksUXCWGNrybMvX2B2OkaiwGkkGidrlJLMzrSJAkOrk1AWNd12ShpH/plsBO12TFWVvHP5Jp//zHniLMYBWlukVDTWMTc3xcxslyDSbG32uXFrBa1gfmaa9fVttvsDrt9ZpZtmfOfi+7x/6z5rm5ssznZorEUbQ1FUGGUQwjPQfuOVi3z+yTNcuHSNp8+eoNVNmOm22NzYJkwitJGU5YjNzQ2yLEU5x53r1+jMze1G5Pbe7PujMw9GefbanWslvPUvfpPhqcfoTnU/9NryqKiuB9e2yfX2yD0PfNvJEzwaByT2dnign8PG9vDfH77IT+61s8buRG8+OtrNH/PQSMoj9vBdh2Xu9PvA/v5zMBfxw+SIPayd272B42N8YNudMe9v8+DdmzC+jhjXo8UlH943ME7tmdx6xPWZ1M8+xPXbf7z9OuwO0yzsROrYjSQ+dJ9Dxvdpzt3vU/kkjbv9ZCo+grIv5855dcnDIw/sy9GsPIfJ5KQ76gF4lHa7kMtDimJawT44qZATdUEce6RccgdisH9/KYWvB7fvgHuYioPG3Q68YzdkzsHl+ePJ3oty729fdHwPECpwYB3WwdAFFFub/J9/96/yfT/y48wfOw9VQX9znf/gP/qL/E/nl5kOQ4wxCKFASpSUSKHobw8JteGF1y+xNNdGWWgax/HlWWwDspKsb60zPdNhOMiJkgipJUVR7eZ4Xb1xj+lORtyO6G8MSNKEOIzJWi2ss1SuptvpUJc5ymhMkqKl4fTCDE2V89J33mN1s8/ywhx2WFHXtX+xSYUYE7FIKRGyQWuNEgolA6SsOHnmGDdu3KLbyWhnGaM8JwwDkJJGeIja4sIsi3NdhBREcUBVOdJ2xurGJj/6Q89Q1RV1VZJkLXANQaLJRyXtdmcXruGkpK4cUguU8PWsLAbrGkb9IdI6CDRSKaSVbK9v0Wq1PcxYa8pRibMOY0IIlE+Kt2MSEwvGaKjh/r11kiSmsRYTaE4tLxKlAaeWF8iyDK09Q2GcxrgGyqJkrb9JXVe0s5C8qMlaCYNezrUbd/jpn/gi2kissxxfWsBimZrpIISkyAuydsb66hbOQhJHbGxs0uq0eP3CFeamWhRVhQkDJJLG1r7GGtDf7JEmAWnmCzzjKkajkmFeM93NKOuKumhQ2mBtw/L8NFXdoJWApqEBRr0RQihm5qdot2PqqqEsQRhFUzpMqLDUdDsJaRJQ5AW1tVSDAaia0XDI1sY2W72cmdkWroZnX3qDxekZAhkRmBCpLEGsyEcl33r+CkZKZue6VJXP3VKhRlo1hr1qTFARE0CkoWnYXO1x4uS8dyo4D2lFSA8pzELi1MM9hfRKU1PWaK0IA8nZ48eYmmkxOz3Fa69d4fjxGRbmPUukMwJRCYqhh2gKB7ZxlGVNkka4GpoiR6maMIpQSqKNJySKkxipA5Q2VHmDrRucq7DOIpWkbnxZjlFvxNJ0i1a7Q1mWvPjmFR5//BQ6ilBaoASgNNpEqCBgY72HsJKqqZFGMRoOMcrQaWco6dgaDUgiQ683QisQUnvGySCkAdZW7/H0E6dQWhLsFAYHiqpGSUeSRDx2Yp7OVIt2O6MYVChlOXF8yUcgqakri7XVmOgHD9dutVlf2UQGDm0Mqys9Lly6RlXUvHTxCk+dPcW71+5x8tQcAkddVFR17R1FxlDkBdY21LWj1e4yN9sliyIq5731URjwzo27nD9zjHZmOLE8w+lTi9gKjAmpbY1S8I3XLvDEmWWqqmF5tkUQRbx3/TbTWUQca4SURHFCHAb0BwOmpjqEJsaYABkYBr0toiZEtGPkblzl4Qrww9yG03FE9vYb1J/9AmFgcA8oqQ+HXrqJKuqHLcc7USjp9ooaHMTFPKDn7vvhII5N7kLfPnh9PGj0Pprs9P1w48736cTOZ+8QQnywYTeJJrLO54YrORnJHOsmB2CYu/BDcXQ86buV4/cAgvCBrV4eVqrqo+Zz7ehUD9ODDup0k+k3B2GYu8zth8BVH7XOnRJiV4c9+DnqujgcYmLeH4QmW+F2548cJ/JMOmoO+7cbMhlfA+vEGHu2MwEnr48b/703rl2d9ghj8jCD72F/f2rcfQ/lkzTujmRYmpBDIQYT+WuPKh/XG/SobZzYe8HstN35vu/8HhLBE37VO/DjRP8HxiAO/v6Bo/9wskMg/fBzdljha14FQnL1O8/z0nPf5Od+4RcJgiluXL/D8y+8yP/1t/8W/+sXnsIEhlFekqYp9+6sEpkApcclIgSsrq1z/vQSVdWQxglBbLC1Z0mUuiFOY9bXNtnuDZnqZmxvbfPsKxeYn2oRhgHHj83Taqf8+tee5wc++wR5WfDm5SukkeFLX3uJx08ve9IUIRBSI4Tit772bZ554gw6Mhw7Nsex5Wmkcmz2tojimN/4vW/zxKnjlGW1u3CYIMDWljv3VolCQxCH1I2j020jpcJaiNIY5zwLXxCGnnWvacjLhiiOkVpz6/odOp2MhbkpVlfWaLUzX2dLeOUZ5zDGMMqHmEBTVTVaagLlI3LWCv7xbz1LSwdsbG0z1Wn7guChQUpJlRfEWYI0Gucs//A3fpdnzp+kzAuG45wz6xz/7Mvf4jNPngaLp2C3ls50i7KqfH2tjS0CramqkqapCAJDU1cEoeHu/VWUVPzG11/iC4+fZmlh1pdkSBNU4O/d3GyXK9eu08oSnIPR0BO0NLWPauwoHGmWeFZS2xCEBq0M050uw1Ef4SRRFFOVFUqJ3YK8cZaSpTHOWqTSKCUIo4itzQHtTsTW5jYzs1NY5wgCw/Ubdzl+fMkvmM6Rj0qqsmZUFFRVSRSHCGAw9GUmoiig3+vRNI449qQZtgGtDZfeueHznwJDEkekUcwwLwnDmPNnjtPrDXj5wjssz8+MjTJBXQnOPTZHlCh6gwGtdur9y0py++Y9tFFIJRAKgjG7oRKgpPaG0LjWmwk8rb82Eq0U/e0R1Zgpta5qbt6+T7fdpixL4jgmz3Oa2rKwMEOUBkRJTFU5imJEnfvomtQapTw8NYojqqrk6tXbzM1PUdcVQoT+qXfgGodD0e/llMUIhCVOI7AOqRRV2bC+scXMTJu0lVEWBVtbfYIw4Jknz3rK96amKj30FwTWNh4GLB1JGtFKO0Rh5K+7cxR5Tl3VzM/P8Nwrb/HY6WWUtmgd8rsvvIFqGgyQZTFV3RCGIavr6964iUIPFaosQRhiQo0QgmE/J2slbG5uc/f+GmmSoISmvz1ECEmSxoAgGEfq1ze2mJrO0Erzrdfe4qmzJ0jSiM88fYq6Kphf6CLwqI58VGKtIIhChHTUua/7OBwVbKxsM8pHvHvtNnOzU6SZv7YnFqdJkgitFFXlmWo3Nzd57o23mW21CI1haWaaKA49ZFwJwjCik8REQUDa9iRP//z3XuHM0gzTc102NreQ0s8LHYW022227m/QmmmBAyeOUFcPGHfe2JtQ2iR89Td/i9+9coMvHqiJ98iRtYe024ki+JXmsO37/26sPcLxKw759t2XDzbuvgvHEGLMNHy4PnLwl4NG2ydt3D2qPGod4keVnbzBh86AQxBPO/IwEOZhuYiPatwdFYT4IB32YDmEnbH4fSdQb494DYU4YHwd7F8cPpcOjvegcXfY+A7+dtjvnxp330P55I27AzjjD7fzh5J9D/EjlEx41Ly8g2IZk6e4nWPtbZs8P+sOP40xC+6BA01sF4y9o2OM84GF74O8khb/cD5qCQXHB5WZcL4otZL85v/3D1ieyvjM53+Qu6tDIh3zp37pz/CXIvg3Ty2htEZK6Q2dumE0HGG0JB8WXL1+h04npWpqulMdvvqt1zmxNIsKDf2tAZaGKA0wWmOMYm52mmF/RF01nDw2SxQHSOULJd9fXePpMyfRsUEKRxoHdLstHj+9RFWUZFnCcFQRGIPAcXp5Dm0MCIFtJEYq6tJx/fo6CwtTnFma81E66W9Q3VQ4K1FKEgSGMPbslEJplFQIJ/h/f/0bPH7qGGEUMOoPiJKIpqoJA43UAeCTpIWzaKPp9QZ0WjFC+wo+dWnpbw1RRo5z5RR1VTPsjwi0Zn19nXxQkY9KjIKzp47T7iTcunWf7lQH1zi0VhRFjokihBA0Rc7nnn6Mu7dXiMIArRVB6KM/Tz9+isH2gMEgJ0pCqqraZZ6UWjLsDUnThDA0NLbh+rV7dFotdOCJHExg+Mzjp4hC7WF8OsBix2P3zIpRogkDA07sGlpKaTY3ev46hv46WuspgEwYMOrlfOuFi5w6uUBgAu7cXiFrJQgJckz4IbXPP1tbWWd9dZN2t0Nd1yRxiLPWsx0aRW1ryrxibrbLC69e5NjCLIP+kGBszHW7Lb756gVOHltCKSjKklY7YzgcjolS4Nr790izlKLw7KrLx+ZxQpCPcoRtyIuKVrvFu1duksUhL124zI//0GcRSuCcwJiAd6/cpJXFmCDk2ZcucWppiTAJEM5HTcNII2QDGJwWSOmoiwZpFODJbMqyIB/lJFnsDca6xllIW6n3QjcN7VYLHZixc8azvNqmoa5L1Dh3MggCFI4oNF7BV4piNPTXrfbQ0SxLCOKQxjpMECKln5NNaXnhtbeJA8P8/BR1WWFChVS+bIGS2ufYjYZIpQiMIW2laGPo97fBNtCAxOIQ5P0RQRixvrrBtZt3mJ/tUtRDhIKiGGEtPPfqGyzOTpG2Uhanp6nLgqQVUxY1ywszhIEmHhNnJGmGc4LOVIftrQH5oOD+3TWE0Dz7ygWW52dxjSPJYsqqImu1aLUSlFJoo1FIZKAJ4gAtJEVZIhVMz01RDEZIAScW55iaaXniJVcTjp0qQagp85Jbd1Z49+pdprMEYyTvX7lDXVfko5y5uSnanYSZ2SkCo8hHBVkroypqBILrN+8zPzfD9mafNIuYyjK/tjSWr7x4geNz08RxgAwUq6u+RIoY59DiYG4qY9AfEobGv+uEpMpLkjTFOkGYhFx77zIzs3MT2eMPymHr0T7jTsCZLOGfvfwdfvqP/dH9TcVhEbAHYyqH6ZR7Dsw9R6YAqqbBGDOO7O21/WBI2idv3O03tj5+LtRk1ObQrQ9DIB34+5Mx7h6lx6P3EQ8pW/Fx+DJ27sGHhSg+7BrtN+78LNzR5Q4ruzGJyno0+Obhcijl0a5xtyePbCA/cH7iwLXa23awALk/9oPP6aOg4Q47ByEESpuPbNx9WsT8U/lXLkLsKKefkIzhO79fRCDI0Fz6xgt839OPYZY/x5eff5u7qxv8hV/6M/w/P/J5wtiQ5yXDYU5Z1gx7A776zZdQGlQkuHtnk0G/4qvPvc50d4rf/vqr/Nj3PUWcGX77a98h62qmZzO0ySjygjjxEYWvvniBUdHQmZ7CBN4LL7VgeXkebbxHucgr2lkHbQzONmRZwMZKn6vX76GMpCj6mCQiH44YbPfo9e+zvXGPjbUVji/NIJUgDANMYDCh5tK7V8dGiWM4HJGmCQLFyr1VhLXURUFTlvzsT/0QRkkG232CKADnENIr3ffu3Of+nfvYuqY7O00Qx7Q6bYIk9bDccfB2bW17rMRYhj1LU0hCFbKxtkV3ZoogiHj/6m2eOXcME0iEtJw5dwwdBrzz7nUEoIxEObhz4x6y8dC0xaU54iQmzdLxfJIUZUEUR8zOTjEa5qRRRN4fUo0KmrLmvVv3cFLRIDEmYHlxgY21HlXR4KwiHxQganQsfNkCpVFGYa3CIakbS5wkWOuj7mkWUFUNSilarYxbt+6zcn+dum54/uWLvs5cY8lHJbExjHoVX3n2VWanMh9Z2nGiWEtd5D7XMIi5v7pF4xyj4QglHVoZfveFS9y5s0qcRMRJSN3UnD9zjH/6O79LbzgALFknYzgcsDTVBaEAS5qFNI1FSU1VVp4ISTRs93o0tqKuK+7cv8nmxjrlcMSwN6A13cK6muWlNkJIfuKHv4CQEMYhYRJRNzWnz8wTZyGOms8/dZwwEQwGQz+3s5gwMOSDARrDdq+HHV8nacY1iMDDfdmJfNUopVld2RxHQqWPUgH93oggDHYNZmU0tatQDlxTIyiRDsqioChGPjpWlkgtcc4bf0GoyfOCKMmwtsFhKauSxjX8xI9+gaXlWb757Tdotz3E1jrHt1+5RF3WvhZjGoEAqRXDUY61EMeGfDRCCSjyHBD0+wO2Vvu00hZnTyz7SKUICYOUJOpQ1xV/6Ac/5/uSUJS5d3M1EqUsUWLIptuMnCOMY0Z5gRNQFY5i1HD3zjrHFhZodxN+5id+mH/0L749djRYb+wKwWiQ09iK3mALISytTkxjK6yriJKYINA0WLSSbG/36Q8GDAZ9rHVIqcA67t32eYOB0Zw+scgPft8TtDst8n7B4+dPMr8wRZoFaAO97R7aaJ/vWAu2Nwbcvr3OhbeugRAURcH0XIqWIe9fX0EpSZgYfuDJszjr3yd5XtLOYpq6BgGtVNNOA0KpOXHsGG9cvEZZNkRhQm+7oB4NGWxvQBIzncUMtwZI1zzkDX+IPKCV+gXpv/rCef7Ez//ix1tQHkG08rnBh8mj5NP9Plo+/7UR53xd0k/lXw9RQqI+4Fn6XsqnkbuPKZ9E5M5Twu6tDoo9PPIk5nnSa/JBHoF9eHKxPydsx6txdPTpuyc7i8ckznonf9COPUAOz0Akd9odCPvvnO1ulG0CG72T0yB2/35wrT2IdxfsReoeuL5HnMvkq3ontw8kQnjIkbOCr//aP+a5r36ZH/mpnyHsHqe3tsov/dk/zV8IHH94fgaEQqLRUhAYQ1N5uN3xhVkEEi00cRLSabVYXuoSRzEKx8LCFE0jOLE0hQCMCtBKoAPDcDDCNo4nzy8TBJr19S1arZj+9pAoSbzRlST0ewPCJOLO3RVaaYLWmrwoSaKAdhYRRCFKGWzZ8JVnX6MVxKRZTNae4v0bKzz/5ns8/dhxT7zhGoQTzM5O05SOV996lzOnj1OVFRsb2zz3whUeO7fkYZSBwTrPHWqCgNGgj5QB167fYXauQxhEdKfbONcgBJRlThAa6rKiLAtfwFwqklAx6OfUleVfPvcq507N8861GxxfXuT61dtEseE771/nc888Tl1XmCCkqixKORYWZgCJEgZLzZ07G8zMTXvvmxTcubNClqU0rvFU+cORZ9GU0DQNViqEcjhnUSZgvttl2B/S3+xTFBU60Ny+t8o71+5w+vgs62vbvHX5OsuLCzjANr5AeX9zm1CHlEWFkI61+2u02y3yYY0yHo472Or5gtFZjJSSmU6Hq+/f4fdeeoMvfu4Mx08uMMwHWAdzC7NYW3kjRsgxgYxitD1gerbFsRNLDPpDXyBaQJ6PeObJ08Rp6KOzuDETmeT00iLBGDYaRgHra32mux3SNKDIS7CWqq7RSjEY5Lz59jVOHV/itQvvs7Y+4MypZeJWQrfTIUoSdBSix7TWaTtDSJ+7pbWmKi1f/vpLtKOYLAvJ+zlJmqCURGlNNSrI0ojBYIQ2AUEQIRRoEVBUJWEcsXJ3nSAwOGtpnCWIQkb9AXGrhbWO7uwUwlkG/Zym9nXUgkj5Ui7SR+Xu3LxPO+sQpAFX3r3DpfdusnTyGCqM2NrqE0e+JqGPRCt6wxxbNaRJzKA3GBchlzRVQytL6G8PCJOQ6XZMGBmkVOTDnMcfO0FR5dRVhbDeuLe2RgoJleW9926zfHwJoSVBGIFSqLHj4OsvfIcnHjuNVBoHNE1Fb6tHmrYYDIYMRgWtzJeaCFNDEMXgHFIbymFJFnh4Y11YqqJEarBlzexcFxE6mqqgrmuefGwJaSRaeSiqlD7PxtaSrY0+2XSGQCKlAalRAqpKoLXEYekPcgQKJwRpK8YEvn7g3FyLqrEYHfHeOzf5+gsXWZ6dIuvEKGn41gsXyQeWC5duo6RkarqFw1IUQ9IswlJz6tQ8M9NdtNFsbvZ58fXL/NgPfZZWO0UqX3bl/Rt3uXz1FktzXeLERx+TNGAwKrDWswvHcUASGW7dW2FhtgNC8E++8jxz3ZSpdhsVZKzcvU17dubAaiAOfMZry2TUbrxpL1ol+OOnlvjFv/43+YVf+HnfREyuNmN69d2UBXdoNOCgHFzbxcRnMm9vb6V7SD9HRCcPtoTJsT2qOegz+tR47T8Y7fmoZuXRpC0PGcmBa7Z/xwe3P0rphYcxce6M5eC2SQTTuIe9AUxEYx8m+/p8xEv3UfgYdo/lxuQhh6CnDup1k/shxD79ag/99aAutttGCqTbn4M3Qa2AmDyo8E6LSR12bywHQ2m+Ezcxhx869Q5/xPdt283PG+uejv0kOB9HPk7k7lPj7mPKJ2Hc7TFkit16bjsT1k3AGXYmUHPEC2W3z4nNk2Fyj9f/3shhiaT7Q+n75TDjbvJ/caCdA/QhWPBDx8KDr9WdhOPDauA1zqEO5DVOvpgsEBrF9Utv8C9/9Uv8qT/75xmpCFdb/tx//Jf4e3/gB4hiH+3S2vDya5eZasUMBkNaacLW1hZhFPLV597g9IlFhsMRb168xrmzC1SV5XdfucQTp48hjebLz77G0+eOU1Y1RVURRQGbG9sYo9nuD2m1UlrtBFtbmtqxvr7N9OwUxWBAnCagFFmWkA9HhFHAdm+AtY4ojlBasrmxTWQ0504u0VhLK4vp90Yszc/y2SdP09gaW1uUVlRVhZKG/nafmU6LOI483C0wvP3+TZ46fwJrxxTBRqEDT1MfGU3dOJQUGOV/L4sCpSVNZalsM2apDDw8bdj4PK+tPmka0ev3efqJk5hAsjg/TV1Zpqc7BIHh6SdOYy28efEKWimSOMKO+6vKyhfmLnOu3brL/PQsFos2ilaWoZRhNBgSBgYTBFx53zNLBnGIEDvJ4J5Extb+uS2rmunZKbRWdLsZJ5cXqcsCKRwLszMoqT3xjJTUNbz42mWKUUkYBERRTJIE4+LbEqRgOBgRBgG/861XOHdikSLPKYualy+8zx/5ye/HUjHMB0zNdGllCcaEVKOcIPC11jY2tsmSBCkc7165RbcdIZzj2nvXmc5iVBAyGOYo5Wd5WZRoKT1EraoJo5Aw9FGP3372FT57/jRCCqqyQWIRSqK1JoxCsjTh/uomTz12kpW1TU6dWkDiyyg4V1NVQ7QJUUpSVRVl4eGgzjmEFXRT7zwIggCpjGc3FZKtjQF2zHzYamdgoakbf42cQ4eKMi/p9UakWUwYR+B8LmxdVuPyGBLbOO9x1YoXXrlEpxUjx8ajVIpiVDA9091VqmdmuiwvzoPyam8Sx/64yhuoSilMZAijkN7GNp12Sm3xfSrFW2+9y8LiHFIrojik3xsShAFVVWNd6aG/JsSEIVp6ZlLrBP1NX3MszXyNP2cdSulxPSrB0kLXO4JqhwoM+Sjnm69c5OTSLEYblJSEsY/Eh1GEVBoE1BZu3bpLK4tBaO7fW+f9W3c5ttCh1W0jcLix0aV1MD62j0IqqbCNpa4rJIK0lXoCptJHRoUDZ92YIRfKPKfb7tLbzLl+bYWpKe88cs6itWQ4LGiqhjSKeOaJk7z85mVOHp9nbWONYwtTJGlAGCmWF2dRRpLnBe12m3xU0dsuGPRypBaEUYitGqz1hurd++tcunKDThLz5ru3+OJTZ0kSD1EcjgqiIMAYTZEXjIqcditDa8V0t40dQ1CfPHeSLI3HxFAaV1Uk7cRDHY5cRfaIGXxu+MTWiUXkZ08d49/+a7/CL/zJP3HAONq/0jy6biiOMCwe7POhRGhHaANHpygcMdDJHZ13T0uxRyP/ceVhDul9iv4h5/qwEkmHlXR6VPmw7Z1zhxh4MHk9H6XHo1JIDm7b5574kOM9aBgeZcDsz13bf6/dQ1JuONDmyLjYrv46Po4DIQ/PsTyYNzc59o8C6fXj2z+39ucR7j/cYc+mcx/8fH9q3H0P5ZM17h50GLiJ2TCZS/ZhjLsdOUg48q9aJsfcjPHL7Du//XKYcXeY7LRTQuzWFvkgcYe8Gnf+socloB9daBErAAAgAElEQVRhNAqgEQJZ5/ytv/pX+OX/9m8wqhXf+NrX+Z//8n/J//6Dn8U2jiiM2N70hYCjSBHHAUJKwsiw0esThwlGKN6/eZtTy0u8evEacSyYmZmhHQV0ui0s8Nip49y/u8rUdJuondAUFaEx1E1Np9uhrEYopWgaTwiR5x4GtrKySRKHGKUY9Ae0Oi2cc8RxxOZmnzgJ0UpSNzVVaVlZ22J6boaiyGl3Wz530kh6W33SVuI9Z0YBHnqVxiG97f44/wgWpjJancRHNrRCSkFjLc5BOcxRxtDqtKjKGmsdYRQy6A/Hdblir6A7hxKaZ7/1BkkomJ6dQWhFq5shMWMsPxRFgQwiX2fO1eTDEa0so9tOUdL7j7UZGw9K0e/3WZhu0eBQgJCWIs955/JNrt29x8lj89S1pdvOqKsKWzXoQCF2qsFKD9tTSvHNV3dILMAEmjKvCBN/3kEUoLTG2Zredh+jAk6dXEQKeP6Ntzm7vAQSBI66LlA64NuvvcWJxXnOnVzCRON8PaN55a0rnFtewBhNlIQUg5IoMjR1Q5RECCnRgcZojdaCIh+wuLRAVYxQSjM9PU2R15g4IAhDtNGMhjlRFFAUJaNhweWrN33eXW9EEChOzM0Qj43jIDTUlS8/UJY5SgiUdEgsaRYzP9dFG9hY26JuHEJYynzkWSPLEm00RgcoLZFCoJUhSSLCOKRxjl4vJ04C8mHBb37lNb7wufMYrSjrCiUEZd4wGuXEqUFKgQlCWlnK/dVNspaPSupAo4OIpi4YjkZEYcCgt00YGpaPzREl4Zjt0ZOVBIGhrkoczjsWmgqlJcI5hr0ht2/eR6NANLvvZoVnrI3TiLLIPfzKWnAN83PTCK2wOJrKQ0MvrK0SBwGtwHBne8hmVfHSyjr/xatv8xt317jYG/BYK2KoBHPtFkJJXOOoy9qXUJCGONUI6Z8dqTU4yxPnToGsveNES4pySNNAFIXgasrClx2Z6rZwTYUygTcgk4AoMNSNx3FooajqCttYwkSDY0xM4bBNg5SC4WhAEGuq3BIYX4w8DP07R6qx0qr9OzIIDPOLXYQb59gIRaADlNGUZUGrHYMQHF+aZzAYIhpJU1vefO8qP/DFJ3FC8e2XLnLq2BJ1U1CMKkbDAqkkSRIQhoakHZPGIUkSMT8/w+Jsl26njUEwPdNlOByQ5yVhYNBGU9aOOAiI4ojRcESaJRhluHNvDVtUhHFIb2uE1DAcVKRRwOr6Gq12+5HWE79EHG2o/ezpJX7xr/9v/MKf/LmJ1eajG3fgnQ0PKqsfps+jzbeHG3gfMNB9CrXcXU8/SZzQwxgKH6X9h9nv48re/dpndh3y7eFylJF1WO+T+30YOejsPmr/B4yZD3UkL0cbd/vnspDK12D9oPv4IU75w8ybI427h/T1qXH3+1g+GeMOdqaKdTt0rv6zC1Vkf/j5oByEYe5Q1u7GBCdmlZ944/04AO/4bp/chEx6ynagl5Mh+Afay0lP3GHx+XE73O6/D/I3TvQ+Vsj2PCw7ex0GYdgfsXNY9jxIAnC149mvfJU/8jP/Bv/jr/wd/tbf/dv82WKTP/rEOaRU3Lm7Qho6tA6wVtIUJVkW8Y3nL3JmaYkqL9Ba8srF9/hDP/wZ6qbh9PEFyqKiO5XQbscIIVFCUfSHjPKCKNUYFVAUnvCjqS2BUeAkUmkCFTAscrqzGXVesbK6zexMm3yY09saEBrFsNdnOMh55+pdFhZbjIZD2pknXSiLkrqp6U51GQ4Lbt5eQwqDNhITG1wDa3dXGfaGvH75fRbmFjwpSGhAOpIso8pzbFX74t/DnP7WkJU7m6TtyPdhLU1ZEyQhvY0+WbdFlY8YDQYIZzFaUVvH7FyLbrfDYJAThor+Vg/pQr70lW9y/uQCt+9soXZgQ1IileLdK3eYnu5iKRlue5inEJKqbjA6JMhitNC+qLnRaKWZn+uwvLxAVZX0N7e5fXeN6XabZ1+8yPx0lyDy0ZFhb0QYRgSR4cT8lJ+/QtI0Da9ffI+F+WnyYcHmep+NlW1P8iEFv/rlF3j73Zs8cX6Jx8+cwDlJMRrR2MrXDqxrlua6/OY3XuTs8QWayvrcJS354jNnyUtfDDyKU3ANGxtbBGHIb3ztJZ554iSucdy5tUK3m6KDgLp2rK72MEYz2CrZ7G9j64YwjHBYtFb0N3OkgJcvvc1nzz+G1j63oCpHtFoJvV4fLbwC/vwb79BJU3q9HCE8I6EJDDdv3aWdtNBhSJolnhjIBMRpC4cgiEOGoxzHEIlX8lfvbRHEMUIqqjLnzs37BDpEh4bPPnUM1zikgtGoxFofKY7TCCckOMtwkCOFIM0ypICmrv2zqzRSjevQDQYkUx3QCjVWiOqioilyaEZIEWJdSaANQgfUNSijUVqDbciiFBWMPLPmcEiYxQhp+OWXLvBbN1f5+9fucGFji7939S7fXtnkH165zjutWd6fWuCpf+dP85WtHl/8uZ/nP/n7/5j3Okv8g4vv8q6OeWtU8JM//hPcvnGVjcYyPHGOhZ/8UU797L/Lf/3r/5zgR3+a//yffok/8eQppBLjHM0SLUNwFToMGPa2CSMftdTGEAQRQRhim9rXMAyS8QvL1xPUQYjWkiSLdiNwSeqvv0kipFJYB01dYYIAqUKENNRFRaADhLAoW1IUIwJjePGVSywuLfjx2dobyEqiTExpR6RRTFUVVFU1juL6uo1RoJBaU9VDaARb2wOEgsfPnUJIQ29jnfPnTnNvZYU0StCBZGoqJWulvPXODba3tmnqCm0CRv2CpqlIOr5upHTQ7aQoYQhCQxT5khS/881XmJuao6prlPRGaRD5SGirk2JMQJSG5KMRWZYglOTGzWssHltgj+XxiHVlEionYH8R5T1D7genEn7z/Tt8/gufe2B3MbFuCx500O4vk+CNpp3ySft0WbH/sz+KMEmI/wiK7L5ve5/9aSI7JC7j9VdMYFqs24cW+ujkJHuykw6x8znMiDgYlftgpX2c0rHraN/bz471sx3Stu+KAegepP7fga5+FPHROq877tymffBS9t/tSX3xYWezw7K6bz8mCnbz4DEmP5PpRYd+hCePmQxgHOyjsXZ/ea3dCyZ2Q4G7+pvcm/M7ZzVJMHRYxG6SZOYw47Sxlp1SITvIuZ1+vA57ON/Dzpz37NX+mRM8eLGbAzBVbT417r5n8snk3PkJtLs+HBHNepg8jNVo71nY32B3wk825uEP+ndDPqxnDXGUQXuUl+gRz+Lgy+GoppO9OxC28QQXQCwC/u///j/jx/7Aj/ELf/GX+atn5vj5k0s4BNY6bA1NVTMYVTSNYzQYkCYBDRWPnVlmlA9IWzFBHHLyuK/Z1e/16M50iGODEop79zZod1KEsoxGQ2bnp6iaCokvxJ3nOXGc0BsMiKOIYpDz1pVbLCzMjF9Sjk47pt8fEIWJL2Ye+chha6rNdLdNkiZEcYJUirIuSRJfmNqWFWVecPnqLa5cv8UzT54DW6GEIwxD0nbCuTPHGY2GrK2v0+6kBJGmtzVACoFSml6v5OXX32VpYZrL129y9uwJbO0hKptbfdI0QQqBMb6geNLKCKNonMMDcZIw6hWU5QBl/HbroDfYZqabYrRkdmEW8KQjwnml4/devsAzT53FGMWgPyIfVfzal1/kmSfOYusam48QUo0jnZamqsAolAkZ9ApOHJ+naRqOL87x/OuXmGolNLYhikJ0ICnriiDUCCHHD2vD8uIcSM98KaXDupowDonTmKk44tzJJV5+8126ScLVa3dZXp7x0RJjEEoihWRpZoqvvfAGJxfnKOuawBg219bRShCFAbgGHWiiwEcGW2FEmoZs97c4dnyG0chHOhCSty7fYHGhw2A44MTJaZTykS+BoL+5xXcuvc/iwixzU9MkcYgykstXrjM3PwtC8mtfe+n/Z+9NYzTL7vO+31nu/q61V3V19T7ds5AzpLiJpKzFkuPElmjLkiJHdhQ4kA0ksPMhcb4ENhzETgwoSiwrdgALhmxLAWQ7ZGRZpsihRA2Hw5nhbD3TM93T0/u+Vdf6bnc9Jx/OW9W1Tw05EgGDB3jR/d733HPPvXXvPf/l+T8PRw5ME8cRE2MNPN/VjNZqCXmWEwQ+ymq++dpZjh+ZpKwKKls53Tcnh4YenpfneRQD976q15r0e13C0EMAjcjj4rVbTE+NYquC0liX6WnW0Z6PqSq0coyseAHKV4hAYQcDtF9QVSVV6aGlYdDrIa3Fr9WwUiKMxVYVQin8KED7Hr20RxTGrs4RyW9duM7v3rjDD0+OgjFILErBr713jf/ttbf5+krKU7/wS7xuLH/4wgsU2qMQktWy4j87fpSjUcj/8IOf51Ca8cNT4/jnz3Gs1yG6fY+ffPwJPluL+HOzM3wyifiZk4/xEc/nL558jJ9+/CQ/WGsy0+mQn36bu0sP6Vy+xvn5eT76l3+R/OOn+O/+xZeQgy7/8Pwt/vRkG98P8AOfaljHuaYSUuSOIVR6CpNnaE9TGvCimLyfD8mIHGw6CAOKvHTv2SETqDXgae3+Zp5jD1We04LMMoNQAikDTKWZOzRLUbiglJASJSKycoWin6KMwY9iF3ATEIYJly/fxJSW9kibonL6gS+9cp4jc3MuKBQ6tMGFyzeZnhwHAZ1VB8NOs5wwDKmFPkp5TExP8dpb5xlp1BgZS5AeZL2UWrNGaQwri50hm6t7cydaoZVmYXGRZrPG6+cu0kpiarWI6zfuEfohWIjqMYM0xwt8kjAijMINa+dezt0uC8aWQGQzCHky7+B9+nPvO8x2R2j39fP9llOxj3PYK+Oz45j7OLbakLWDD8e52+1Sb+qzF0xvl1HFsJ/aMOZa6YjA1V0LqT5AdvX9jsi607D273fadrPzth5vvf8+bL6dNIsFjgdi3THdY8rvx1hprUW8j4SXk4CR+4NSbjrcxmdl9/HfFwG3ITCy1Yl7v30fhYR2v9hbz+r7zt33sP1xwTLXXiyPaJJd20ovu+sYezh3WyNOGx/ZP07nbo27a68xtz0gG76bDZPby7nbXi6+0+t/h1kMXy4be619jDGwMeK4aXiLkKBMhTKW//DbX+STn/g4/+Cf/ga/8sRRosCnNCWg+OJXX+KxuWlu3HrA6GiT27fnkQJGRhoUZUm3N6DZSFhe7lKv19Ce4vmXz/DY0VmssGRphq0sS0sdqqrEWEMcR2g/cGQf1kcqy2CQIq0kiHz6Ayd+PdJuUGY5pigIQ0eBr7RC+z5h4hjvyqLEDwPHeDfMfKwsrRInMYN+hh8GWFw2bqQe067FeJ5ACUG33yfwfcqixFooy4KRdsMxYBYVSS2h3+mjg4B3zl1lrF3jwOw4EyNNVlc6dJe7RFHInQfztJtN0jyHymKFpcic7p6UkiwtCEKfmzfuMj07Tp4V+EHE8sISJ4/OEoQhQRyRZbkjXlGKK9dvc+jQFMcOTTN/b4EgDKnKklffeY9nHjuI1oooCuj3u3i+T54blJRUVYnyfG7duMNLp88zUg8JA0dE89jxOWqNmDzNePPcZSbaTXToI6QG455Ra0EqJ29hSlcnKKVAagefevBwiXev3eSHP/M0vu/RatcxVcV7F28yNT0CuKyjNTA3OU5ZloRhQBhHhIGHVAohFMobEmsUDmL45W++zuNHD3H5+i2aSURVWcI4pCgrDs3OkOUp7XaDyjghc60U1lie/dab/NjnfoDKVNRrCVk2QHt6WH+o6PcGDPoZs9MT+J6rNcyLgjjWdHsdiiqjKFK+feYSP/Spp8jSAcpTxGFIZV1msMhyBOD7PmVZEYQxWguQCq2FIxVRkn6vR6vVxPN8hIAgrOP7ASgnzyGEoCxyPK2gqlidn0dLSWVL8rwa1vapYaDDMUNKk2PSDFvkVEVOkef0VztIAXHUpLPa5xdfeIXZJxK+enmBW72cS/UR/q9Xz/Ct1PIb597jb378k/zEoRP81888Q+PeLU5Vkp88fJCfOnKSn/voU/z08RMc9TRPHZxl0K0YHx+jLAouX7zM6NgolXD1eMJaVjorRGGEKQVe5LO8sEQYRighePjwIVEQ81gj4Vgc8vNPniK5eYvrr5zhW3fu8TCpsbjc4Zd+9Vf43duL/L3fe5YOgmdadRenEgJhJVjwAo0xFcpz98vZc5c4e/Eahw9OIyWYygWevMAxzzpyF8O5c9e5e2+ekVYdU7l8wKDXdX8P3yfPHXFTGAeg3XvFGAtCDmHxFUVhqDVjjHFQbCUVvW7G+GiN8fFRnn3+DY4dOsDiwxVOHDvIrZvzTM+MUuQ5SRgw2m7xxWdf4okTc0RBOJyj5cH9RUfu1KyBsXSXU6LAxxqBUiGmMmSFc2C/+uIbPHniEL1ejzDyaNZrXL89z9zBCTqdLiePzvHVb73OaCOhnsT8wUtnOHV8Fu0p1NpHKPrdHkHkD9elD+Dcbeq+yawGAf/f1bs8+dQTew7zYTl3m/vubfzvGeDcWLu/+Zc99tpMLf9hwDK3X5YdrIO1gO2WbMv7zRO2n83adufsiPUee9X1bUJK7ZQxYj2X48beEvj+wLV8bLfzts7lgzp3u7V1m/R9dt7JudvoLO0Eb9zQ89GxttRE7lo/uoNzJ9Yymbu0XaGt1g7J+x7Zh2vO3cbj70Wo82j8PxnnTvxJsCP+x9zyLP1QL6AxBmM3Ptybh5ff5dE2Oj5rt6nZstbslh00ez24+5jX+rG3jLPTvkIIdieetmyL72x4O5nhq20dLjD8zQ7lF8QOESiJS7lv/H39+gz33bqfNc4BKDEINO+++Apvv/x1vvSN1xBS8s8+/REHH1OKyrp5VWmJLSoG/T4eFZk11NsNR5YgBP1+SlSLnTiwNXiBwlaCuBEzSHuEYUh3pYfvafq9nOZIi6pKkdLHWIMXSDAKLSWLiwvUG3VW7ndoTzRBQ7fTI0lcjUue5yggKyCuJaS9LlhHlqCjBtZUKE+yvLiC7/lESYgQkmeffZXZmTYnHpt1kXvhuWyBlUhZkuWgAguli7xbDEoLil6GjiMW5pdZXljhyJFplPYQSrP0YAU/1MRJQJEXvPnuFZ554iSlGRD4kSNUKDPMas5r567wuU89wXJnlVa9gRf49HoDbty4zWPHZ+kPcs6fv8eJY9PUWo45L+3khEmA0lAWJWla4mkNgO95WM9S5QZbGUxlOf3mJT796cepTEqWGZJaOISTwb/76uv8J5/7GGEgCOOIvHSOf7+3QlJvYq3EmpILl67z5KmjdFc6XLv1gLnZKaI4orvSRWgn5p5XJbIyDjKZF6TdLiqKkNLBAW9cu8OhQ3PM31+kKgqmD4xx//4Cnvbwa5p6nCAQrHZ71OsNeisLRFHkiDCkx+XLNzg2N81St8Noq4YKIrrdjLihUPjkZUpveZUoDPm9Z9/iM88cY2KqTTUk4iirAVrGnD93jXojJklCXj97kR/4yClqtZCi6HPl4jwnHp8mCMMh8spR3tvKUOQZSgv63T5RECI8H1SJkoKyMnheSJVb0l4PL4wIA59s0EeFIfkgpSwkjRGfbGDwQp/KdLBGUmWGsBayOL+AJyXN8RFsoeisPqRea1AUBYWx+HFIMbC8+vo5PvGxY0S12pB4I+Nf3Znn6zfu89HDY/ytP/80v/ylV7g2n3L5nUv8wi/+HN969VV+8ws/NSzsF1hROSIII53TO7x/SuNE5pV2MiNlWiClcqzHuWFleYn+YIWx8VFq9Rq3b99jfKSFjUJ8IlAlKJ+s2yGo1aiMxZocUSlMVVHkKdGQRObcmQuceuI4g76rByuKkkargcAd73/66pd5KDX/+Fd/hb/zd/5ndJyg7lzh7z3zJCpQDAYlkR9hygKjQQjN/M15muN1Bp0ejVYNFXpOhD7PHamNUFQYlHZaelL4TmYhLbhx5SHjk21qzRBTuppCz9dYUWKspBpmCysLWngsPOgwMtrASkt/dYUgCkAryjTH5IKs7FGVgk6nz2qny2PHpkEFhJEjd3nzzUs8eeoQt+7e48jhg6R5jzissby4xIPlBY4emqXILIsLq7TH63jKQ2DIS8Xly9e5ducexw5MkCQRqys5x09MoIMAKkOeZQRhzKC3wvVry4yMxozPTaKExlYWgaGzsETUjojrzd0JIXZaJzelwXZeu/7q82/w/37xt7fsuAez5YY1T4i9FuDd3JS9x9x67E1Gq/0gjtmjcbZnDHeCq+4w8ha7ZKMtspftUW1xvDY6OMMk7i5Azp2mIPbsK4RYn8teggdr51FtGUvggqQb5/l+bScSmK1tbS5y03e72fuxm/sMJ7R+jbb99h227xbCuiesdvgMrF+LTc/HBud6j7/OXs7d1j5r5UR2Q599nZ99tP9WfiY73GCGFz6Mou/4gn0/c/ddtg87c2d3EEbc2L7bTNqOr9Jdsnzb9v0Agco9j72P471fVG+vzN1GCIX7vjFqszMfmGD3yJYF2OnB3fBwi8pSDVLa7TY3T7/JP/zEk1RV5V4AaqjrZ617QRrDoJ9ipWVscpRup4cpDH4SOCPSWOI4Is1S6o0a3dU+QegMyaqokGhOv32Rw4eHQtKDHK00ZenEvoWQZIOMIPDIsoI//NZbHD44CQKiKATAVAbP83nv4jUmJkfAWrSSeL6Hr0OEJ8DCynIXiSSMAwaDPukgpRYGFKZictzVkYkhYYqQlsGgz8pSDy9QKAUGJ/KspNO0MsYQBD5j4228wGd1tY/n+/ybL7/A3MQIjXYdqST10LEmrnZWSWoRy4sr1FsNOg87jE+0CeOYRquJwA4FkX0mJsZdFqmeMDE+xtLSAkEU0O+mLC6skCQhQgpM6e7l9y5dZ7TZoNPpEYQ+WCjKjDTNOHf5No8fn6PIC8Ih7f3rb10g9nwWFjs8duIQXqQQEl587W2KQcZIsw4W3j1/lUBrhHWkHEkzYXW5S72WIKzlKy++wdOnjrmayCAgHaRIqej1etSTiPcu3WZycow8zQkDj6IoeffSTaYn2kOoquegj9I5qlVREMcheVZw684dGvUa1lg8XxN6Hsa4rOnvf+N1Jpstfuerr/HksTlsIXjp5XMcO3oA7XvMTo4iJST1kP4gXWc2xEp8X9BoNmk0Yo7MTbrscD+jMgXNWs0JpD9cIgrd8ayAMs/RnhrqJxo830cHPgKNKSxKB2hpXYZYgvIsg8EKDx8+pNmuIbWDbvYHq44UhCFM10qsEBgBybAeVHs+q50l4igB5aEDHy/wh1FeSdrpcCkd8BsPH3L0Y5O0n5zi008fIPElf3jmNpdXQyodsbqywu/+V3+VT9YjfuaJp1zdk1QOdmQNZVFhjeWVN97iwPQk16/fIkkSpFBg3LMrkRR5RXely2//7h/R6/f5yJOnsMZS9rrU44A7N66ysnAb34vJjCHQHnmeoX0faSsG/ZTAX2MVzfG8ACkE45NjLnsbhfiBj5KS7uqQ9VZYnmk2+IVPfAxx7ixfOf0af+fv/m1+9i//lxRPHuE//0f/ip87coCiWuXqjfNMjIyxstQhigKieojveVy7fpfRsTZIOWQR9QAoiwKwVMaglcvuCSFot+soTzhHd5j5E8LV6SGky6oKQVEaLDlJLcSKaj0wVhQVZW7AGpTWCGGJ6iHNeoPXz13h4XKHlZU+UajJsozpiXHiuiNKGvQHxHEEWDrdHlOjc2R9wyDr0WxHBF7IoJfztRdOMzczAcZwcGoULSVTk+O0x2J6XSdyP+gPiJMIKxRB6OMFkvboqCN9SXPOvnuZ8ZEGFkHSiLFS777m7QlN2X2jJwzFxAxT01MbF5l9Dba3TflBrIYtkd6Nv+wz47e9bTeMd1n19z+zfWaattoCG+cxNAc+QNubWXxTLeGeo+zcRyA+MBRzL5bMtbYVXrsXZHNrsmsne/G7aR8WQc3Ozt3uG9auk7u++4B07vPYH7i0aMu8tu2y7ji6r9+HZX4P2x+Hc7cxlb617bR1Pw/4+vjDf+WG/fbjbMF2524nWIYQYpt0wNr3NQdHbAErv//xti84W/cxw5iaMWaYOn9Ep7LW2wJDTvb1zyYowA7UtrstDmvb1sa8e+UKV69c5X/5tf+b//0TT22CnnSHjI/fePEtJkcbPJxfdNmzoSZdlhVoIZGBwhsSeawsL5PUYrCSy9duMzHewvcce2TazxlpNIjrPqurXXzl44caU7r6mldOv8Ps9AQIBwV84uRhBmnmNNKEJO2nGGPRfkAzibHGsUuGYUBZuohiVRVgIfQ98jRHKenqAH3HaDk60iTrZ9RrCUVpOH3mIvXEERY0Gg1XwyVAGpwumVSUlSNt0J5GKEVVWd585yKNOODxwzM0GgmXr97CUx4ICEKPOI4Y9FICL0AHGlEUXL/3kK998yxPnpyjzDMszskB8HwX4b99+z7vXL3KqRNHwDHo02zXEQJePX2ew3PT+No5SZ2O0y47f/E6vqcJAx/h9Bo4fe4yMxNjfOPFt/j0x54kjALG2jWCQLO4vILve0yNtWk1YhYeOvmKlU6XsXaTO/cWqNVigtBjpN3E9zWdbo+nnziGrSwXLl2n3agjsUiteP7VMxwYbzM+PoZUmjjQLlZclUxPtMmyin4vY2l1laXlFVq1xNURYTBl5eqmPFdXp30fYSvCwDlWeV5xYHySKPR58uQkSsOVK7eZma4ThjFKKzxfEYQeRZ4RxTFFXhFE2kFqE6fDd/nqDbSA1d6AWlyj0Uwcq2IQIIAoicC6eq016G8xlLgYpDnK0ywvL5LEHkWZQyUxpsAPfYSQSKtpt9pUhYOzKunjewppFO9euMLo2BiyqliZv0ctDki7fWI/wOA0B7UXUJmKbp7zN189S3Ag5tTnjjH5A4eYfXyaH/nILC+8e4+//6+/TfvU5/iN3/k6P3bkEH/9yCF+/OBBvvDYY2SDFDGUTRBDmnJjSgQSJQVCwsGZA0ghSeKYsqh4eH+RF14+zbFklnUAACAASURBVIljhynLkt//wxdo1WpYY5iZHKfZauLFNSqrEEHE2NQ02qQI5RPGEaa0VHnm4LVliT+8j4USCC2hsk5ug5LlpWWEcPe6ktq9x7CUZUmj2cZUIKziR2YOEl69TnH2Er/2j/8JY08/wef/1n/PP/j1/4e/dOIkZVXQTwuu3bzDxEQbKT1azRqiKhlkGZ5WdPsDtO+DKcnS3DGjDrIh+YhBCsPKSpc7d+cJtOD6jfuMjTdJBzlKe9jKOHbeWkwxqOh1+6wu9QkDTac7IIrjofSJ+ygFKvDQWnP04DQHJkaZX1xmemqEbjel3khAQllkLvDV7Q3fmRJ0ivIsjXqdMndogX4nY2qszXuXb3JwZhwpFS+8+R4PVxY5ODVC4IUgLKsrHd65dANPaqqiBGWIohisxdMek1NjIEApD2ErvDBw65/g0Wd91dhoQO7DCB2uLSebDX7rS/+ez/+FL2xaY3YeYCvxg9302+ZJ7W4ZuGzDJlWyTdPaHfb2wZ07y8Yykz2uz06AUMGutXp7+7VimwG+n2yXXQdK7n4ct/4/0jRz+212HTYDNzePs7ZtzWZRQmyCHO6n7XCl3Jg7zGXr942exdo810hTto7/4bhk29v7OkRrNtYW+a6dmt0VQLvlHL7Lk9kKI916xPfP4G3Yf5d3wdp5Kq2/79x9r9ofj3O3+02/01YXkdjn+BvG+SCZNNg9c7fVudvqaK59Xxcj/8DHe58IE4+yc057bmvaffjb2n83vAM2Q032vva7tqri13/tV/nSl7/GP/9TP4AwFmMMZeEcGc8P6K0MGIkTjCzxtabRarK61CVO4iHjH5iiIi9KysrBIavKgBE06zVWVlcIg4iqKqnXaywsreAHilZrBN+DxaVFwijA8zwizyOMI7SvKbOCr798BqxzVpIkckazUghfUgxy3jpzlbnZKe7cmScMQ1QgsKVAK0mns0oQely8fNdlo4Ri6eEyV2/cZXxiFC8M6Cz3CKRHEARIWZAOSrzAo8ol3U4f7Tnqe2MFgfawWJSvkVi0NbSbCWE7YXlxlUgHiMJSH6mzurpKEAYMOgUvv/4ehw+PU6ZdJienGXR7eL6L/gdhMIQ19inzgkEv5/KVu3z2408OHwyL7/mYytLv9zhyeBqEJPA0ZV7SbNXprC4z2mpRqzXQysPTgjgJmJ0eQ2vJ8WOzCCGxWmJMSeRp7t5cdAyQcQhK0mzWUYHH+GQbP9C0Wg1HIDPUVbMWXjnzLvXQyU9MTY8OM1YKY+DE4Rke3F+gNdoEJRh0VlF+gKcEfqDJc8N/+OZbfPZjp6glEb/zB6/x+GNzeKHHoD/MtFGhtEeeF1AWdFY7KC2pNWu8dvoSWdmn3WjjByGj7TZRXbn5CYGpKpct8hQCp/tWVClRGFEVFRbD+GiLd87dYGG+z8tvXeXk4WmqqiJuhkjfsUqWBjztkw4ygiBAaX8oKaDQgYcoBGVW4XkBSgUIrZG+R1UJRyKjJUJZ+tmy096zGRJLo13DWEmZDpCBRscJwovodAv+xzPn+MqDFT7/Zw5Tm4uIDrf4sScPcOLgFEIKup1Vfvl33uKffuUMZ28u8Nc/9lF+1Iv56cdO8ZH2CH4UgHC1kMIoBt0C7Q0NCykwZQFIF6DCIFDrENQwcqQkt+884OihA0glODJ3gEazzvhInZmZCbTWaC2R1kEwyxJUcxybVyw/vEu9NY4qBhSVxY8TpMU5T0piJZiqpKpKPD+gVovRnsfqUocgCDASNAJZGW7fukmr3SDNM8I4pEShIo9npuf4bHOMV772NZ6bv0n/SJt/fPo2P31olpFGghdEDuxeFXi6wpSGtN+j3qphkKwuLlGvJwjtoxRDwpUSk1m++vzbfPpjJ8nLlINzc5RVjjHOaRDAmXOXGGk1kdpgKGmO1Bis5g4OaStefOMt5mYmsKakLCp6nT5aKhYXFqlsxoHZCaI44fLluxiTE4aaIPAQQgzh0jmeCOgsVZy/cJsgFESxR5nn1Oo16u06oVIIKbj3YJGnHz/Kwdk2nowRymBNRRyGHDwwTb3dwsfy4rcvYMmIgnBYZ+wWECXgzs07NJo1kGqXBWEvl2CnTY82fGZmnP/il3+Nn10XON9r/O1Bz92dpd3bbhm5Dy8b+Ghu+3MSdx57Y83WvjN336Ehv2av7NlnzdbZo9tWR26nbWsO9ndDoLK17ctF3OLErc3lw5zH+0/h/Z27/fff3bnbz+b9tj1r6oaz2I9zt+Nctuz3fefue9g+TOfOGDskU3HYazuE8TmK2GH2S7CZbla4iIUDHz26Mbb2E+vHMJsgjxbn9OwnQrM15rZGQSzYHilaP96G46y9CLeqGBjh6tFcFlGsz3nzkUGuEc1sms2jCNvaPLZHL9eJgR9NZq1tyOJt3baRcGbra0NSUWEpi5L7Fy/wa//yX/OvfviTSGupWBMmdfTUWT/ly994jYl2jXcu32R6YgRfK9I0o55EPHywgKckiIpeL6VWS5C+Qkufrz//JrcXHnB8dgZjDGEcgfB4591rHD8yw/z9h4RJhCcDBr0UYwrqjRp3bs+TxBFaGsYaTcbGR2k2HFtdVVUorRDWiYWPNGsIyRDaWeH7Gs9zos9qqEUWaMVz3z7HY8enuXlrgQNTkwSBR16k3Lx5n/HRFnlZENcbSE9hbYEpK6R2UM8wiel3M4q04MKVG9TjgDIrKKsKz1coqQmjmForIawHWFOSZykP7i4yOt5iaryBMIagFrPaKXm4sszjJ+cI45g8LxDCYITA90Pm55c4dGCKfLBK0mywtNDB05rXT18g8kOSRgSldQyOoQ/aMZB2Oz3KEtJBByGhNiQREVIM7w+DLSun82ZhbLyJEG4cz/coy4rBoEdvtUfaz0mSmM5Sh7AWU5UZq8tdJkaaWAz1egMrBH/0wpuM1htkWZ8oDLl3f4mRdoO0312ns+9lGVUJCw9XSWIPTwpa7Tqnjh/k7HuXGWu1KHNBUVYURUU2KGg0m2RZyWo/pTU5yu0b9zl1fJp2s4bvh9x/8ADPF5Q5+FFAUWRIIanKgrTfQ6oKQYUWHv3eACEtCg/f19QSn5npNh85dYC87CMweEGMKUoGgw5RlKA88LWP1MbB9CqD53kMegOSekRZWIJaSGEKFIYyzxEYTFWhpOTBnbu0WmMoqVhc7BHVErJ+xvXLN/j3vZx/82CeuacmeKBL0kbFX/kzH+ULP3icyA+RfgJSopTHz//df8lLNwtevZlx8cZdfvOn/jw/89RTzDWa5IOUxfklXn/jLHNTM4CgKnOMNS7wUguQSExVUuQVv/v7zzM3M01cr1FVBbdv3ebd89c4cGAKqRTzDxc4MDvjyDekwpSWrz73baYmJvB8xdLiEs8+/zJFmiOMcc+n7xHW6iAMUsZ0VxfR9Ll49hyjk+MI5WDWSir8MHRsu4WTMoiGchoSSVmUdPt92mMTKO30B73AG9KpC7QfYPIBRycn+MKRExxILTebI5wNIt678B7PjLfJixSlFYOsoDRQazVgWDcXJglFmqNthdSKPCsIw5AKeOLkHPfvPSSKawhRUlUFVggkFUVRMjHWoioy/CDh9JmLzE6OY0XlkAbAkdkZysJw6/Y8o2NtytzS62e0R9p0OhmNRp2yLKglIWOjbe4/WMDpXbpnM88zlPR58PABJ44f4N6DRRr1BlqH9PoDfE+T1EOU8nj1nUscPjCGpxyyQGtXq1iWFZ7n8fY7Fwi1z9yhMUZaLa7euEc2SKnXYzCQ5TllOsBiCeJ4l1VyLZy522q6dX3a3P7ioRnejVpMTU0Ol6XhGid2li14RNe/nYBt84q9k9C53NBPsCZj4JJIW+e5l5Ww0QIYyh2sj/Uou7jV6H00H7FB0mCHNdduP6uN9sM2m2j4kVtsjTW74n0J6RBb7extbQ3auXnj5s9GG20tU7PNvhFOwOHDdKrc1d6cy9opD7l2R6399dSHOIf9NiEE1QansmLtLrKPhDrEZiKcR4yYjySvNmaZhRBbPGq75SbY8Nnoa+2RGdzPeexLamPTYySHrwuHEBFbPur7sMzvXfswnbs1fbs17PX6K3sXOMJaE0Juyp7t1G/t68YC0LX2QQtld4oR7hYz2bZ9h/nbLQ/X9ibWx9ovvnzPrftEPmysvdt+fkNKlzznz/3cL/ClP/tDCCu4dX1Y81RBnhUOUhh4jNYiJIKnTh0hTkLu3n1IrVbn8vU73Li/wLEjs2il8HXkWOCikLwoOHZkhiMHJ4kSDcLVIJVlyaA/oNWqEScheW54/cwljh49iFQaU1a8/NYFjh2eAaHwQ48o8ukPulhrCcIQKT3KQUHW75PlOTdvzhNFIZ4vkVow6GXowEPLIdue73Hq+EHA0mondLod/MAjiiOiUFNrOhrx3332JU4cOojynAHo6rYs3U4PP/DxA49aLaLerKGVR6NeQ3oSg+Tcu1cYbdcdNMsP0Nqn3qihw5A8d1kLoTRBFHLn3l0m2k2kUpRFQeD7VLbEloLeasbS6hKjIy20754NP/QdIcnMOGAp8hwpFV/8Dy9xdHqGOFHcvvOAyckJau2IsqgIfY+qqPj6i29xaHqMLB0QxCF5lpNmOVp7XLp6i7FWnaznMpRVVZFEIc+98jaPHTvoNOKUwAs8zpy7zMGZSbTnc+6963z77Hv80NMnkb5PvZHQ7fSYnBzn5TfP0Ygjzly4ytRYm7gWIhGsrKxw8thBev2M967cZm56jEYtotfLOHvpJm+8e5mTR2ewBuJ6HU9psjTj9194hU88dZLKGrIsQyuPVquOreDF185x6OABTFUiqBBK4gUeoRdz984ijVYTKSWDLMMYUFqhtERrn7LMqDebDNIC5bvsnwCUDFlZfIhWClPmFAWEcYhU4HkaJTQL84v4oSORkUq6mi1bsbi4SNrvE8c+YVzj4YNFvnh/gV959zrZZIv5YgFbDnh6psbJwzMcOzJDq93AGoXBZbCNsPy3/+wFxOiTvH3pOl8YH+dvPPMR/sLJoygkg+6AIi/wpMFWJUePHuLhwjKhr9CeoCozJznieXz1D58nlopur8+hmUmSJEJLhVCSWlJnamYSU5UoKTl2dI60PwAJq8sdvvnya/zI5z9BUotcgMMPCZWmUauzuLzK5QvXWVnuMDo+itKaXJbEUYIyAYFf8uDmVUIvQAYhWX+A9j3sMNAnpSIdDFhdWcVX4AcxQeJg11maEoQBpqpc3S8VVVHihyHWuvq3yI/5TKvFJ+OEf/jGW/y7W/f5S4dn6PcG1OoJWdZHK1dHWFlB1i84/95NxkZHMdJiDGRZ+YhVV7rQoqe10yM1AmsN5y9eoxZHCC25f2eJU4/NAa7WtNsZcO/+AjfvzDMzNUGjXgNrCRIPrSS+p+l1ekgtCYbyGL1Bn5GRBkp5XLpyF1sZmo0afuihkAghGWm3MAa6nQ5h4PFwfhFrLW+du0Ijihgfa1HkOb1uztmL1xltxYSRI4uaGBshDBUWQ1GWTE9Og7WEoYexJX4Q0VvtM7qud7fr6rG/RWaXdv6llzj64z+x43q0V3v/OW11sDb337z77mOtBYh7vT6+77F1hdwVebQFErmxBm+rHbLPPMwH4gLYfyZvf87dB2m79xf7yhR+0Lb9+m0ff6ud9ifv2j26l3YStt9NPuGRc7fDtrW2U7p0+5e9x/gA7TupvyvK0jH/PpinlsTb9vtunLvvs2V+l+3DZMs0Q7ZGueUxtNj1G3W/jJVb++3FKLWWXdNK0usNiMJg1z4fRtvM2rQhqrWh7cROtNM57MwEtdUJ3Dx7+z4nsxOb5rbjGoGg4gs/9Zf4zc88jfACrAAlLGnP0dG/cfo9HjsyS7ff4d7DZQ5OjtIaa4OtMJUlCELOX7xKFAYcPDhJmhV0V/u8+e4VPv7kEcYnRlhYWmZ0bMTR8heC02fO8fRHj6K8kNs37jFzYJS0k9LpDHiwuMLjTxzm7s0HTM9MMMgGJLUES4Wx4CvFvfsPGR0dcWEhKjoPV2mOjZMWBZ52UMxXXjvPpz75uLtqxiAM4GvKQc57F64TBAEnThxwjH1Sk6YZjVaN7kqPuFajKjI6g2VG2+MALC6sMDE1zvzteWrtBrdvPWB8pIX2PebnFzlwcIIqy0mLirgRg4J0uUvSqCOUARx81PMd3PDh/WXqrZB6o86g23OU+oUhG1heeucMTx47wFirzZmztzl0sMXk5BjdQUZZ5bQaDd588yLHjk1jTIWnfc68c5VPfPyE00LzPcIgoJ+mjnxGQJGVBL5Hf+C0A7M0IwgDpHI6YiB5+9xlPvrEEYxxAu1SehRVSdyMyHsDtOdTpTlSaQgCiv6AqB6zutBxOnHaRSkD3welWVnq8uxLr/OTP/JJolpCZ3mFpBbRH+QuA1qUJLU6v/fNb/Pz/+nnSdOcl944z+HZMQ5MT9DrdfCkE+9ujDTJspQiyx3Lapria0kQOCf/D547zcGZUU6cnEUqTb/Thcpw984SE5NOg0wIQRKGDPKUWhLSH+TE9YSqsFhbESQJ0lgsGVkGWepIPpT2ENJQFgYqwSunz/PE8YOEoaQCAs9HBSHWVJiqRCL47bfP82YQ8n/+tT9Ft9cnTmL6PZfZBEllLKZKCaMYg6A0ht7iCo1mg//mn7/EkUMHWb18ib//p3+cXm8VU0k85SK0Sku+/Acvc2h6kuNHJomiiJXVPn/w4mv86Keeod1ukufZMILroqmBr8mygm7aI45ipPDwI587N+4xOtEijGsUeYFSjvRIBoqsl6GVRnqSPM0xw0zTcy+8wo/9qR904tnaEQz5nnLspF7AIO8T1H3yfkkUSJbu3aIRaCpd49b9eY4cPw7CMUBiKtJ04DJIlaAyJV7gUxQFUijkUIPLUiGsM+zTrODB3XmKNKMScOLEEXqdLr1+yq9fOMu81NQW7/PXZ2dJaiH9Xkq71ebCpSs8/vghdOjTXekjhURrD+0Jup0+nufhex7feu1tTh2dZXR0BCsM2vNZWeqQ1By0UStJNkhd7V5aUBbV8LlOqTVqIAw3rtxntdfn9MXr/NnPfoxWu44QhvkHy7xz6RY/+tmPIqSgLCqiwNVYgiNzAoHn+3S7fVrtJmfPXebxx46xsrKErwOu3bjH0cPTFGXK7TuLzM1OIGSJEBrPC7h0+S5TE3WiOOLmrYeMjbdoD6VaGs0aWWVZuXuHsBbQmpjeZXXY1arcod8uvwv4K8+9zhe/9K/3lQ3Yasc96rrxGNsXUGseGclu/EeL4xpz5l5rs2W4lIhHte57NWstSql1W+dR6NTpyW1sj9iy3ZiKnSUM9mMT7cbUvXVuW9vumcbvvO0mhSAR25zf76aZ4cCPtIE3z3snK8fssn19vGHbeud+GEya68cRrI++dk9sfQbWuCn2frw2em0b7EmkyxTu8NsHaR8GOYy14pFu3w5/c+/7bJnfu/bhZu7cH3ctWrGjRgqujGgrtFGwGZ6wte10h2wiVBGufkRrNcwdbukDTg5g41w2fN/ppbfbq34dgrk+t50iSgLMo2LvjQQwgs3zAhDDCzLkGt0y4vbMnZBymLrfYYYboZrD87JbiViU5h/9yv/BD529xJHHjyAMVHnO0sKSY1OrKsbHRhCeRy0JGRlpcOHKPdpNn3t3lnnj3cscnGoThh5T06OUVUmchAS1gIPTE/R7Ke9evM7B6XGqMnPH9aDRSPCURirJe1du0IxD6iMtlBaMtZu8efoi/bJkYmKUMAkQUnD75jzGQFyPiYfU+WWe0e8MqDUaXLp0E1NVQ40omJ4cpZIgrcRkBb3uKoEfcv69Gzz11DEasYfyFEEUITxFFGgECik0KlB4gSIKE+7emqffTWnU62RpyfJKj3oS0KjXeO6ls8xOt6g3Y7QfILRH2k15993LTI23kULyR988w+z0CEp7KE+DFORFQavVRAUSIRV37y7gaUGFBHKOH56jVm/gR4qp6TbNkSZ5XuD5GrRAa0U7ibh7b56pA1NILZiarOPrABWEQx2dkihJqEqLrzWXr98hG5TcvrdI3Q/4o2+/RT30eOvNa8zNtVld6bLa7TI53kaFAViLKQvieoyHYZDmSBxhTmVLROUgYFKC1JaiKKg1ahRljilzhBcQhB4nj8zgRxEVhiiJhnVOllargecLPFHw+NHD/NGLZwk9xeNHZxifGEN5AVHggxR42uPGlXskjZg//OZbnDw6hzDG6d5FEUVRkGUpJ48fZmlxkSiK3bUq+ozMTBCEodMdm53i3oP7tFujVJVADrUNPU/i+Zoy67G8vIynNEGg8YLIZTJNiUBhSoNEMjHapDbaQFpBnqUobVi6/5B/cv4G15qKZz5/lGc+9Tg/+tQEiw+7DPoZURK5rC1r4rUZ1ZAq2poSKQyL3R7/67+/zHPPP8evfuJT/PDcAbJBHyrQ2mKpsKaiMiVzE2OMtRtIX2MqS2ULnjpxFCEqjKkQAvI8RwgIYp+iMlhhwEjKTOKFltXlPlHkI6WTz9Dax1Ql3c4ScZggfR/pSygFD+7NkySJI98ZHaUqK37v2W8yd2CSr/zRt/A1jI21QYLneQgr8X0N+IRhSF5mvPjtVzl66AhlnqH9gKqsWFpcotFqI3DzDQIfKxyiwJqStD/A8x1RjbE4Mfm8JKlFtEcbNGp1B0vEUm82+NzBOX5kYoJfP3+Rub/4c1xM2hyZv0+tHdNsJgRRSL+bcuPGA8ZHWzz3rbeZGh3lm6+f5cThKZCG2alJADxPUmQWREESJyCLIQTSZe1efeMiB6bHeOXNd1FGcvXmfWam2lSVq6Mdbbf5yGOHyMoBURwhpaSWxIw3E8oiw5RQZoJ+bxWpFVlaIoXHcy++w8RIE6UEWnncf7CEp6DWCOl0ekxOjoK0dDsDeoOM8dEmGEG3mxIGjlwlrsWUeUa9njjInAElIU9THtxfZGJ8hPsPHjAyPr7D6sbO8JQNK9vO/9/e7acPz+B9+gfXYZJssws2HnIrwYr7WLt9OpvgloIt03j023aI2tpxN8ItH/1/v00OSYq2nr+jBXqE0Fkrw5BDaPHGtpets2nMtT7bznM7ZJMt13BXErUdHY2dr8HGY6zNdY2IZeudsDcX5/5axUYiuS3ZpB2soh3tvC2fjfba2hhbZ7p1HwtYMZSz2vC32lomtFPbyLUgh3bd+jOwdtuu338bYZhbLOKNRvKGtibv8GiuezPUf7dtVwKYjWRGa3boFsNe6e/DMr9n7Y/TuVtrW5273e7BDypVYHf9cRdK360O3IbvSoj1er61PaVUm6N8aw7SlhPY9aW25lhZ6+BIG6a7G9zTrvfY8UzXv67Pcx8Rsp2cwN/65/+CH3zndU4dO0gQBoDBVPDFZ19nYX6F6YmWc8Kl5SvPvcHRuUnGxmoUhSM1uXTzPqeOHSDPS1dHN5y3lGJo2FnGx9vEjRgLlHmFVsoRMyhFmWbUwoDA1yhPIyV0Ol3m5iaZGB9FKcUwkUCSRPi+RvmadJCCtQRxiDCGbm/A2GgbgGarTpEXaM8ZNFmWI5VylPKVYXSkQZENCOKIwSADLNbY9Vq9e3fnWXq4jCkqolqNLC948+JVpseaRIGk3qyxtLRMnIRMjY/y777xKh85cZAyzZDW8o1Xz/CZTzwJSqOkYGykSZyEKC2H9w6Oat4KyjwlDDzStKKWRHhBSL83IExqLMwvgzEoLRn0UjqrPaLQw9eSPK/w44iFByuMjo5y9/Y8tVpCURZUxuD5itNvXWV8rI1UFkTFWKOJryTW5PQGBf2s4KknjjF7cAIjDXGUMD0zTq/bJ4xCpBRYDHmeIaUmH1T0OilBGCOswNOavCgci6qnh/IUAqyhqkq01pRVhR/5zN9edjV+VUnW75PEIStLy67mKq7T7accmGgyNdZCRwEPHy7hK0tp3P1y+p1LlIWhyEo+/pHjCCXJs5Qw8kGA9hRJHPH62xeYnhghDH1KU2LKAs8PKYuckXYNQ0V3dcDXXnyTpx8/RjnUNBv0M6IoprIC34+4fO0uzUYDqQ1ZmiOsxBQ5aZoitcIPfRiS66jI56+9dB59dIJf+qkTfObJw5SVRWiLEhFB4BEnCdp3Ga4sK8iynCiq42uBKTL+1j/5CnNPfJxf/u3n+RuNNn/7J36cigqkwPd9bt6+z9hYA2OdKLet3ILa6w+QWoKSRFFEtz/AWoX2fAxyKK+gKIoSqXysqVhYWqbdbLHSWaLIK5JaTBxHVFVOUeZIBUnkJBtKY50VYV1dV6fTQ/uaWrOOHwWcODaHpxTjrQYzs9NYoCqrdfkUW1iEKuh0U+JknOOnjuMlmthvkaWrBJFP3GjQzzKEtWjtRMrFEB4phSSKQ4qiesRcqxwhTOAFlGVBVZYM0pykXkNgkMLBZn/65AnGbt/lt86c5t/euMPPHHJSGdYaEIZmq8aXn3udH/nU04RxyMzECINeThjHeL5HVZUIIbly9Q7tdjKE8OZo7RzNLC2YmZ5CaZieaFNvxsxMj6A9J/uQ1GKMrdCepFaPKUuDNbC0uIwQDsL7/Btvc+qxWZQOEELSXemw0l/hxJFZ3nj7Mgcmxzl34SpPPXEcay1JLUQKhe8pBv0BvU7K0WMHqMqcIKnz7uVrHJhy0Ou8KKklEdduPSAQgiDwQIIfB3gqBCu49+A+UzO7ZO72tBH3aUAOu3mf/uyu++4fQvmdzeH9jd39G8NrwV+tFFVVbYOGPnL4to++0zy+U6KUncb/TsfcOq/d2BN3Gn9r5uvDcu6220W7O3cb57ff3NUHmuMeTv/+nbv9H26/OF67i334J+3crR96o129pev3nbvvYfvjdO42Ro82RijMmnO/Jbr0QZ27rRGltcLsjcGOTTGbPV5m2yMf2yEUu0bDdnkKN5474Az2DXVwG528zcXD7+/cbSNR2atthIhKd+Tw3/4mCYrm9BiiYj3j+dHHjzA7PU6RptjK8uy3TvPRlZ5UPgAAIABJREFUx+YYGWlx78E8b5+/ybFD0zx+fJZbt+/THm0O9aQUg+7AsUwWBX7gDSm+h2XmEvK0oDKgoxChNXEtQfg+/U4PJDRadUDhDetgwAmva88tnqYyyMo6RlGpwBjiJMJYR2piKkNRlCwvdkEIklrE1Wt38KSPEE6zzdiSNK2o1xN6vT5RFJL2nZ5ZHAUUec7YpIORau1xbG6aIPQR2v3ty7REa48gCnjqxBxSCvK8oCorjh6ZcZpTnS6DfkGjlaA8Sb/bw1rnRN6/u0CWloSRpsgL6q0mVZkilEIqp7f14MECpirxPU0UuUyhtQYBpIMMqRWNmkZ5gn7Wx5qK5cUeQRjieQpbWpJ6gqlKep0uQSNBBz5pmZNECZ1uD1uUfPudd5mdHOHOrQXa7QZhHHH/7gJh6IOwTh5ASMo8Z5DmpIOcG7fvMz5WxwyvfZGXYK2Da1pD4GssCmsEVVnRWemgPFdnGfoeVVlSmopavUG/l1KrRyBgaWmV105fJdSayYlxpJKUVcnB6UnyQc7L5y7x5PFZrFBoJfCCAGshL0owlsmxNkHgM+h3sUrjAZ1Ojq81VZXh+wGDtMtHTh3CmILLN28y0mwSJxF5luPFkkE6YGysiRhioTzPIy9ylFTESURZpAhb8rXLF0g+O4sYyfjJH5jgEyfnKMsAqXz3HJWG+/cWePX1sxw+dGCooSg4/dpZ3j53icX5Jf7B77xOePQznLl4jZ+NmvzY2ATLqx1GR5oYwNPSSW2ce4+pqWmCMCIII6TQxI0mxgr8MCBKamg/JIhC4qSO1B5BEBImNZT0CJMaWodOWzAKkcojSlxmVEqXfVxecpBZUzpIblHmBGFEmedUldOki5LY1Z8KR2gkpUQZF7QK4xDlOwdSCPesMoS4SaHA8xBWUGaa1e4NavVRjLVUQwkKrKXf7WMqg/a9YfBqiKyQzqEr8gKhpLvPgG6nSxj6+EEA1gXmer0+SinKokJKzU8cOMBPNKAqinUWPSEUaZrz+LHDaM/V50ohuHDlFq1aHSNKrDU8/8o5njxxCKlBosiKFN8LuXfboQiWl1eJYo8vf/MVDk1OgDD0uilJEpNnBULimDNXM4LIx/M0YRjQz1LCMOTooWmUJ7BG0lntMsgyFjsrzExN4CFptRrEUcBb564wOz3qpC2My8QPBn3+f/bePMiy677v+5xz7rnr2/r1Nt3Ts89gBiAIgqskSqKolZIcKaKskLLkclSuuJQ4lT9c5aRS+iNVcbnKVanEdpWdqrjkxJIrqtiyGUmkKFIUBBIgQRALsc0AAwyAATA9e/f08ta7npM/zuueXt709ACgmT/wm+qa994999xzt3N+6/f76jtXmJ9rI4XAWMvURNOlHicJYRRSZDnNekK9GWOFBSnorQ/wfIjrEZ21JSZnD7i1a1d0YHfEwEUr3Ip1+/MeMtr8D/75/8Ev/8bndy5Drsm2dLL337i7vf/O9mPCIYzL3rkdgtiIPNpNx6rd0mbj3Ow2I0+O0Rc2gTXu6QzGy7s17nbqMXuBcIwz7qzdbl5YBJ5U21MF362MGdvtsYw37ipbsZ0OYzSuMc74ezHutgKdbP5mb9/3nVlYG63MprEF1hrH/bvDABtXtrNf405svom3R7qtnx+QjNWfR1lkt3/b/h59YNz9EOU/ReRuVztuG3fbfr9H4278ftuNOzH6935MpneSu00YarQAw+6i450v6EaP3KHVuK/3IkII/tZv/h1+qVmnFoWYyIcc+r0+QRSAdMZTOkgRCI7PH2ByqsnaWpepdoND09Os99Yp8py5+Rk8rTEbEcqyGhmpFiVgZWXdoYcJp0QFWuNHAaYqsXnO1775HU7MH0AIhfIUCElVWtbX1l3Kn4J0kNMfuqJ3ZSXFMOOtt65gkcRRwHCYEtUiglAjpWA4KOh2hviRR1kUTDQaSKsJayHDNCWvCloTLSyWwNeYquLFl99kqt3CDzxqjTq+r1hZWsZTPn/+6NPcd3zBGV8IMBJPa/7y8WeZbMRIKVhbH5ClOc12nbXlFfJhSqefk9Qd4XoQOr43LCRxxNVrK5SmGIGxKKBCeh7WlFghaDVrRL4iiFykwFbViIy4QAqB5yt6nT4WSXuijRKSJ559lXoY0mo1abbrfPO7zxNISbNec+TuSvPEky9z6vhBpttNOusdTh+bJ0kiAhWhpMAKR2JtjCGKAqx1WF9FntKeaqM8nyxLSbMhSRwTBCFlaZASEAJjXfQEqXnuuQscnptFqYIoCfCDgCwtEErghyE6jFFF6c5lmDI1M8XsVA0hLWHsYypXITEc5DQaDR66/whra+t8+ZEXOX3sAIyIv4ui4pmz55mfnSSJY3ctfZ9ASS5fXmFyqoUxJVr71GtNQOD7ATNTU3i+iwIKCaYAT2i0F2BLV9uGBB0okD7//Pxb/LMXzmPaFT/3Mw9RCyPIU5rJLP/Pl77NRz9+P/3hGqEOMbml1+9x5swJpJIOEVIKZAX/6vFXWczq/P3f/kX+4F//Ef/005/GlxIVBNRil1IqlSSMQjxPc3j+IHFzgkE/R4cR2veppCKIY7SnkUojhMJYh82WZyXfefp5jh4+RJqtO2L1dIjWEYM0xfNDpFaEvuOXy/KMyA9BCXztU+UVZZVjkVhjQW045Rzi5YgZC2Hh6uWr1Os1VKBBKOwoalvkOSIIEIXAUuFFFpOlVKRoGkhf41DWLIy4I+MkdpQalbv2eZY7vjYhKfKcYMTLtnprjfW1dWYOTNFZXyeKItK0QFhBd73L+moHrODpF85z+tQxfv7f/hH/5YdPEgQ+qys9ojCm0xmQ1GN6gy5h7ONpxfRkG9/38UOFH2gOTEwR1yKksvi+A2rqdVNeeWORUycOU2u4yOyZo4cwhcUPfdZWejSbDTrrffr9IWVhuPjWDQ7Mtd3kayxx3SeMIvK8xNMKiSVJQnQcsnBgGlNannjxPHNTDRr1OuvrXYypaE42MblhfW0dYw0njy9QmoJ33r5BEvlUpkIHAUYIDJJa6Lj98N18VeUVEkmt3sBYybDbozk1edu427VQ7P6+uc7dg3H3C4dmuHbgCM1WY1enP+jI3e3999Peqct7gbXs50K5TB33eS9D54dp3L3bY9y5f5d2qjZRmd+97ALSu4th5vAO7nClN1MF351xN24MO/vZbebv1uTkHYzVXb/t07jbdChsfv/hGHcbh95ujG8PlHxg3P0Q5f0w7hwnkNiXceeKZMUIanq7iD3+9pLbbUaoTewENr677HxB77R94yhb/92tn43ia7XFw2E2M8E3M/QZd7Yb6Xw7T8baPfKsNxO8x20S1L7/FNNVQa3VAiNYW1snTXNH3Bz7VFnB6nKX3jClfaBFZ61Lq52Q5TlxI2G9O6TZqhEmIVVRuMMpQVWUnD17CQlMTDRI4hBjS6Q0CM8jzzKHJKkkg0HGmRMnkVKS56kjPQY83+OV829R5oYkibl6eYlmvUaa5lhjef2taxw+fBAlIUwcemVZlKSpq4kJQh9Pe6yt9mlNNHn+7AWOHDpAaQq6nb4DUlACq9wiXGYVE40aylP0+n20ElgUgR/xzttXOTLXJtACKRWrywN6/XUCX3Py2CEwklojwPckjz93nkMj4BhPB7Qn6+gwpMoLrl5epj/ICAJn3LbbNXzls3qrS6/XoVFvsb7SpVFrUlUZpgA/jsDkSKkZDnKksghhee31RULljDiB5I2Ll/GDgANTLaYmGlhP8vbFReYn26x1e0xPt1CeZOWWQ/qTEtY6PWYPTOE3EgzgRx7psI+vBZ72uLR4nVa9ztqtDr1un2azgfQ88iIlijRJ5LjdhOfQJN9++yqNeuyiC0KwutTFGEOjFeEHHsoPXFRGSbIsx5SGssgxRvOdZ85x8sg8Tz/3CrEf0p6oUZqSMPC5ePE6a2t9nn7ldY7OzVJr1Hjw9EFuLa06VMiqJIpDZibqhHFCv9ejNBpfGfr9lJkDUyhfoUYRp7TIMZXFDzRGWIbDoUMZVE4xqWyFRCH9HIGgzDL+u6fP8rM/fZhPP1jn7/zMGT5y4jBCQ1JvYPF59sU3+OxnP07oK7AaoQVFlbK+NsRUOUktJB/26a6u8M2lkC/86ud46vlzfK5Q/Mr9D5AWJUEtJh9mNNsTSD9AhzFIH6l9ZOBR5hVKOidJhXE0BUVF2k/R2nN1INYhZ1ZlSaQ1zWZtxI0oCYIYKyukEmitUWjQCkf4ZkF5OChzi8UgVAC2JM9yTFWhPYf0aI1xNCRKURSWbz7+LNPtJt1uHypYX1tHRyFB6NNdXgcBfuAjKgl+iBIaqS1CGkxukdKgvAArSoT2MEU+Qix10Q8d+pgyx1pFmZcUaYYnJXEcoj1FXjgAG2kFK8tLTE1P4GmN9kNmJut4WvHF+z/K333sSX71wCx//u1nmJ9p0mwkvHTuTQIRoH0PX7uUzaLM0Nrj8ts3mWgnXLu6TJoWznEkNFWRcfjgARYXr1MWBVHo89K5N0mHOUGgiWLN40+f5ej8Ab5/7nXmpyc5deoQWZFRloa1Tpc4jrl25SYCCOIIbEVZGYphxtL1WwRxwImj8/hak5dDJtsttAZPGgbdlKfOvs5DDxwHYbl06SZJGOFpnyAI6K73ePvSFVpJwrkLbzF/aA5hLcNBhkVghURphRSCQa9L2Kih1JZVeOySsSVyNfoTu9ru7ZX93X/1h3zxi78xpt1G33c2g3bW340zpvar1G6LFFq3Rm706WrvbruE727Y7W6jGFE+jSJbRohdS/dOeP97NVS3ys46sB+EbDvGhq20Q++RQoy9YjtlZ4RrnGz0I7lNU7XxeeO6SdhSQnO7t52YCpvZYoht+Afbzm8r7oIxaM/bdMTvHttunW9rSzOmnZJ3cJ5sGePYzjYuxhgxo6dIitvG1K6+NvvcoUVvaVJZwc2by9RqNXaBCe2sa93S/9YaTffT9kj/1nF8YNz9EOX9MO6EELc57oQc67HaeCDslhsvt+y/dZI2vLspb+urvvF5M+1xx4u/8dtGvvBdJ6fR/mLHfhvnsfV4mx6cjbSAkcgt57fXm7xtXGK8N0wqdU/XSFqJUYKvfPnP+bmy59DufN+lz6WGznqfA/NTTteTkk6n65D2gpA4DpBKcetWjzjUtCZcKmaRZwx6A5RUFGVBECU0GxHtyQalMagwcJEFpVEoHv/uWRbm5jBItB/y+BMvMDtRJ6onVJXB0x7Xr97g1IlDxFHIM8+/zoc/dBypFFIogrpLoWu1G4SRh1uUXSxBexJPStI0wwpDGLmna+7AJEoL/vzRpzl94jBxHDMYpgRxAFVFWRTUmgnXri0xPTOJ0hLrQWXcIi2F4MqNW8wdnKFKS9ozLhVq2E+5eu0W9XpIkVtmJupMTDbQoUcQRyhp6K50ee3CFU6emKdWi5Hao9fr42sfKTTfffYVTh6dww80fuBz5e0l0tIZzsN+ih/H/PkjTzM/PUEUxphKMNGqIT0L0kXY2q06ZV7xzNnXqUcR15eWOHroAH6gUVKQJI5bTCnleNzyjEargQ40WlRUwwHD3jpUORUK5WsmJpoUWYbvSerNBsM0p9frc+GNKxyYaRFGmsq4iLTn+/haEUUhVeXq5JSS1JKAMPS5tdJBWrcYlWVFHMWYSnHp0jKDXpc3Fq/z0P1HmJ6qM9FuYqwBqRDKp1mvMzPbZHoipt6IyXOHOOr7rj6rwqA97SJznkAqie/7FEUPz5PoIKSsSqdojeq5XD0oWAmBF4EwSDQrvR7nugO+tLrIwz9ylPhEA/9Yg4Nc5+iJQ7xz6RJekLjomVfHCIEOSubnD+D7jsutqgwSh6hYiyPOv3KWXmHpTz9IcuAg//Evvsln+wU/OTlJa2ISKyVhUkf6EX4YUY6mC6U8hGS0gDvOOaUUVkBR5JR5QZEXhGGEwCKkUySkcunPrYkJEAqEmyeKskBKD629TQWnKguEUEgvQMcxfhiRpyVlacnTAX7gMxxmXL+xxNREy13vqkIpjRTOsMqyAYcPL7C2ss5fP/E0V64tc2RuFu37RFHgauVc4BJrc9auX0YKhZCaqhwyzHpoLwHpgRFIpSlMBlI4oBllENKjKgxaKXTkUpeDMCQdZtRqNbJhxuXFq7RabbSv6Xf71Goxvu+DkChP8LOz8/yzl8/zuQeOMJVEVEXJ02ff4tSJOWq1iF5vQJGX5GmF5wmUVFgraTTrRLFPmg7xA8ebaYVheqpNXAvASlqNiKWVZVqNBnEScezQPGk2pFaLSJJwxDFpCEJNPalRlhlKCALfxxs9uxiP58+9wen7DuOH2kWLbYUtFdbCI995iYNTLaIo4PTJBQb9PkhNe6JBo5FQq9V5+fxF5manWF3tMtWuMTvVxhQGi4cfhm4+8CWvvfIOM9MNbtxYYnJ22t2jjeVorDd1nPNwy/+7Lb1dbX/x4DTxp39y73Z7yK7yhju0uZuRtytSuO2HDYX13ScW7tRn7mQi7M9dvbP9fvZ7r3KX67elhbWjeUdsGN67K8H22v/diGWkG92pPOYuz4cF2KG7bTwDYtTmToada3P367NtvMbcyce+vx62fDVbnPm3S3l2BB1G49/u9L9znxJBLUlGndk7v/f7NU7HyAfG3Q9R3q+0zI2cczEmIret3RjjbpvcgyduX+Pa/LAbDVPtEeHa3dF28JWtfHs7lwixZZ+tsp0HZQ83zU70qjtBHN9DCoS0gkpafu/3/ic+ZUomJltYlEOhywvyMnMgAFKTDlKu3Vjm5PFDLF6+ie8rwigkiRNsVYCUWCzd9Q6Br+n1BgSRzwvPXeTw4Vmk72p5tMDx0PWHeEnEzEQN5RmsLVFSEXmaRqvG0lIHKRXeSMl7883LUJUsTE1hRImpDG+9fY3JVuS455TnanOwFGWO73tYBZWQmMKChRfPvc1se5qoFpMXOWeOHSHNcob9Ia+eX2R+boq0yInikKqwtJpNvvvUy9x4a4X52RZlOuTi5RvMTE0y2W4htaSz0iFu1FhdWePipWs8cOo4F965xIHZGaSwCA/KqqKsSl69sMjBA9MM8oJ+f8DUzARZmiJsBXj8x699m089fJSJiTpZMeS5l1/jzKmTCFFiypI4Dims4b7jC67GyTN4nuSV85d45IkLfOJjp1BKkGUplS25vtTh+JGDzM60KMqCazduMdGqIyQUWUZSS/jyY09z/8nDSOWMhevXrtOcnAAVEtQmsKZEaY21YEyJ8CQuyctgBLzyxhUmG47g21qJNRWlsTz2vZc5cWTeGZ3C4CmPIPLpdPpMTk1S5jm+r0fk8BXDPGVyqkFeFdTjmEajjg588qJEeT5eGI2iSFBmBUkSIT3jiOtH75EOPIqidNyG0tLp9AjqdWQAihilfBDG0TpoRV45eg9PKcAibMVvfvMpvEOTnHg4pH16nom5kJ/66EFCf4p+XjqHxuJFgiBidvYwQW2KUsZQDemn60R6Aqk80mGOVBJblmSDPtIainzI//jH52hPH+OZF87zra98k//hw5+iXp8iSSbIywqUc4l7SiOVmwOEEc64sQZjLFJIrBSjWlnH16i1JkpiV3cWhaMpwiKE566RGDnZRpaV9JSr/VCWLMsQUriooJAIAdJAVVRcunSNqoR6M2Y4HBAHPpPtBp6nwMrR/fEocsvb71zipYtvct+RI7RaTQaDLkJIjizM8Nj3nmVpaZWDB+eQnjeCJ9f4jSaeBAKNsAFBHGGEpEg7mHyAFQbpxWAEF85fpBYn9HsdoiSiMO5+OD5BiUW49FFTUa8lIBVSGaQwpMMhUaPF0rUlsCkKyc+dOs0/fOZ5Pn/8EGU6pNfLOXFyjiLPefKFVzhz4hi97hBBRRiFLF5eotEMnPGvRki6no8xGWVZjJRZge8rWg1XD5lmQ5SUxI2EJIkI4xCB4MWX3mDh4CR5lpEOy1HdtQUN1y+vYCtBEEpqzQbSU1Aa+qtd0rJE+ZZjh9tQ1hikKRUVcS1EewG9/gDfV5Q2p1GLqSc1Zmen0VqTDStef+saM7PN0ZoqkdJj9mCbLE+pckNzsrXl2bnTOriHcbdXmy2btFL8yVvX+dCDD+xnqdrdxT7W6P212TGwMVGe9yJ347nbv+w07v5Tyb0dawMdVGwxkH6Q4lTM90jlsFO32mns7SH3nNJpLfKeEFXubIhtjc7d6bnaum0/xt2+t/2QjLsPeO7eo7xfPHfGOD+ClHL02clGVGuc3OnebU3x3Ox/hwV1N//aOF6YXZwxW2Rnf+8HL95GAoYxBiEV3ra+dx5h6wi2cPWYig22lNuFq1u3b+2jYru4BFUhFcYIDJbf+eLf5h8fOUCr7epAhsOUoihp1Gtkwxw/cOTdT73wKj/20QdGhpMgH+Z4UYC0lizP8ZSis9Ilqcd4gUc2yDj/5iKLV1b5lc99AhBUVUEQ+BhrUMpzhr1x0OvZMCeIA8qqpLeaUpicmelJrly+SXuyTRQHDiGwKrFWUJYVWgqUL+n0ezTbEwiD4z7zPTrrPcIwQXqCshwQhQmDboaOfKwU2NKQDYYYa7l0ZYnjx+aoNSLyooDSUtkKT/kufSMQKOFjTQlYhv0UYy2+8hjmKfVGg9XlHt99/jyf+eQDNFoxVkBvvcNEq8Vap48VhiSMee651/nYwyfc+AON8hS3llZJ6jFaeQzSLkGUoIQi75csr92iNVGj0axTArYouXVzlXotJq7H5GkBwPp6lzDUrK33mGg20aEaOd8E0pNIoUYpswbhKYSUdFdToshzXGJZjhEVvtYM+kPH8xVrskGGVppOZ4AKJEEYoqTn0Cc97YyFkVNk2B9gywwvqPH0S6/wE594EGNdObmUHqYyCKXIRmiintb0h33qjYTXXrtMOkj56MfOYKxBIDZh/KvccO36EnMzM7z42ms8eP9RrAEdOLAW7YUU5ZBvPPoin/n0KbRUaO1qstKsT602RSmHkEusrfi9515n1VQMK8Pv/OyD/I1PHGVt7RZaGBA5cTLJMO0R6hrGt2hbZ5D2qbI1fF9SlSCCCYSsUMbDqApbClAKUY3oB6jodjtEQcRgMOT3/sNZfvEnPs4f/8nX+Wef/Xmmp6eorOJPv/otfulzn6Kz0mdqZgrkKFpgLMJ3180a6wB0RsiRZV6itaYocmcQ4aa1YpChfc9dc2tBgbAKrOOMk55CWCjz3NEPVIUDRTGCjfyIqqyoisIBpHgeeZqhfMWNq1dptetUWUEUBhgrEH6IlJKqNJSFQ4MsMkuns8pfP/YCv/6rn3XplL5keXkVKRVzhw6QFSnCCPzAd06DzNJJl2hNHMQIF+3cmO+NtQy7OUWWI1RJvdkiTVNq9ZjKVGSDgjCKwVYUeU6aZtSSOn/9re/x0TOnuL6yxP0P3kc2LHn62Rf5xEfPkDQaYKHf6/FfPfIN/q9PPoSnHfBKZ73HzGybGzeXaDRjBt2c515+k5/6sYcQnuDJZ17lI6ePoAPQOmB9rcf5i4ucOrLA5GSM8HyEFyBtRZ4X+J6HETlVKhikPVrNScqyIC+Hbt0SHk88f47PfuphqqoCK/F8zfKNm+55GDkfTJHx7776Hb7wuc8gpWWQ9RDWp96KuXRxiZX1dU6dWEBIiKKYssq5tdqh3Wxx88YyzXoDoaBIU4IoIKwlLoSqPPrLq5jK0pqb3FionGykLe5alsXtH8ct5nfg49oq//WzF/iDP/zX23vdg5/LbunzdruRc/Rdaiw70zK3Rzi28tZtFynFFl67ezrixsG2fB/n1L2Tm3jcePZz8uP6uVs7J+5cb8eEjN2IvN82gHYDzbn6WTVGbxsnZoxOdi+ykxt462/7Fbvlfiop99QJ73Wbxd7W+XY+41ueazNKrdyP7BVRlEgq4yhYNt6/O2E87Fe27b+rEHJn+iYg3LOidijSOozftSX+QeTuPcr7G7nbMMxu//5uQvH7gQ6+W5+bQxjjgBj3mrybKXS/spHOucn/N/YIuydkYwxSqtvrqhhzBtu62d2ncCEBR0KM4dbyKsdWloiTeJQCpgjDgNWVdbT26A8ceIkEZmYmRvdSMhzk/NUTLzDZimm1GpjK8Oi3z3Ls6CxhHGBtxdTkBAvTbZJG6Lyi1lCN0uFAoJSi1+ny/Lk3mJ2awljJMy9cYGbS1YUtr6yxut7njXeuEGvF6toar128xlNnL3D/sUN0uz1qjcQtINY9c3/xrac5c+IQnufxZ488zdKtVWYmmkgp6Q3XCAKfty7eoN2o4UcBYRI6mgBcvnhVVBgrnRGaG7QWTuGUHsZkVFVFEIYUWUVVFbSm6qSDIdZYTh6dx/ddNGH52i3CwKc0FUk9AVuRpQWT7TpxFKC0ojKGbrdHqxWjPFd/VqS5ey5sRVjzERjiwGe4PqA0Fc+9+Canjh1Gax+pBEJadKTASPqDAa1GDc9z5Ohh6AMWX/t85ZEnuXT1BkfmpkEKTFkS1TxHRl6UCCmwpeDcqxc5fvwQQkq30BrwlEJKifAMoR+QDQaokWGqPMfVVlUlEkXg+wzSkkNzM/hB4IzsQGBtzveff4NGLXAGvRGcPf8mJ47OUVQlM7OTzEw0sECeZ67GKCsxtkQpQZJEdPodDh6cJIo1nnbopVmaARXa8wiUZGpqEms1nc6QsBby1Tcv809eW+SyFnz2lz4ECzV++UcX+M8+Oc9v/uRDHJ1WmKqiXptkdXWVqZkjCKW5+taLNNvHSSuDFgZJlyhqIzUonYAMSLOMy4s3mRxxvSklUcLnxvXrhKEijHx+5198k7A9z2pvyOesz28++BHqrSaoERrth4+jpCZp1UEKyjTHFAYdKJRylAlKSfK8GNVDCZSnKYoS7Qds8giZ0QIsXRRLSIcWK0cOIJdB4d59z/PJsww/ChBAXhSYqtqccpR29ZPKUyjfoyorarUYgSAblFhrWVnrEPmaIhsSRrGLWPa7XLp0jTevXuUXfvozmKLg7NnXaLcaTE61CaNdTmUaAAAgAElEQVRoZLiDr32wBmMqvMB39CTWMOz1XRDFFEhbYlFEcYin3fXUOnDRRSnASIqsRCIxpuLJp57n2NGDIATT7Qma7Qa1OKa33iMIfY4cPkgURZRVibXg+z5/49BhfuvRx/nCsQU6613SrCCuJdSbNfdOVJaFAzOEkU9VVZx7/W2OzE8RhBpjK5T0OTQ7T1zzkYpNkJmiSCkLV1MslUBYhR8qhJVkeY+kHpClGZ7nMTc54d6hsuLFcxdZW+9y4MAk1hiKLENKSafT5yNnjvHW4hWeeOkcR2YmSJIGRVVi8Ti8MIPneSiluHljmSQJ6Y1QeWdmp1DS48KFK9TqIUm9NlLSJUoKlm4sc+DI3HgbbqzczYt/dy//v7vwNl/44n+xfa/NxJRxkROxq917jQ3titwxbk3dfYxxzuZ9HvEu351CvPf5vZtz3u8+u9sVZekQf+1tLeV2BuP4fjfLU/ZpSNi7Py577z9m33u+OzvKZfbSCe91m+t+I3viTntuv7Z3k73OrzIuqCK2dL87gndvIqXccj/3EeET7pg7z/eDtMwforx/xp1LSBzH9SJ2tbudBjHub2z/92jcbRx320QiGKUI7fahbfiqxr20O+v1xu0/TowxIOTm/nsZd9aMrBVrt02mxlZsJLoKIXbncY8x7oRUCCG3FApbrLSIouTf/J9/yI/6giSps7baIYpDwKK1oy6oygKtPaLQpyxLPO2IkouiYqoeMjXbBmMZDlMCLQhDTRD69Lt9LBDHMYaCMjeEvuNU8v2AqqowI460+ZlJVjs90mHOuTeu8ZEHjhKEPq2JBukw4/TJw2jfoz3Z4tDBWR6476DjTfN9ysrxc1W5wQ997ju6sJkitTA3wbEjcwghSfspsR/i6YDHnn0ZXwmHrjkY8lff+T6edXxzYRjxzuI1bi6tgIXA96iqiqeeeo2jx2YwlUVrn+5an/MXF2nVQqgMVVkShpqyclQA9VYLqRylRFmV2Nzy+sUrPH3uIodmW4RxMCJA9rFlSZ5mxLUab7+1hFJQq8VUpsD3NUIqtB/xlb96mp/42IMIVfHo089ydH6etdUOYHnxlTc5cmgWT3lYA1meY4xB+5LhMOe+owscmZ9xNTUGtO+zvraOUh6ep1hf79CoBySx7+onywqEcuMTIKQgSzPefusqWrln19cuGldkOYuXbvK9sxdYmJ0iqceUVYHWEjvyZZaFQQlJoBxqqe8rJiYSymJD0fZ45fwbTLUbLqXRGIqyJEpCyrwkLyoazTq+H2KNxhqFKRkVvJd4UvNX3TX+l5cu8u9feo6P/8KDtB+Y5oEHD/MbnznKj56cx5BBVYExlFah/QRrFdoXFGWfKG6QDtZQQtJqh1x541WU6JL2+ugwoMRHevXRqyUIfEWr5SIx333iBaanJ/EU1BsJQsK/ebbLb3/+58m++yK/cegwrdYkSbOO1Jq8NPjaI8tLLLfBlcTIoDKmQODAX4rSRdjkqGC9Kg1f/vqj3Hf8KBUWigphRsqUcfDjwo6ifljyPEVrf1SfAiiBUh5VVTgjXnp4vkJKdzyHhCmpqoqqrNBKoXyfd96+zGtvvcPCgRmqKkcHPnGtRlGZUX2f5Nnnz/PJh+/nq19/glMnF7ixvEIU+fR7PV5/420wFl9rOmtdh0apFbnJ8FTMMO8Thw2sNWjfx1hHtN3r9YiSECsc/clwMHT8icJjZXmVOAkpy5yDcwccb6RQmCojLx0kuic1L559lYMHZ8mLHC9QlFnFNx79LvOzM/zWhx/E9NcIopB6TfMX33qKkwuzWHJ830cHHv1+jzKrODo/Ta0WjehXJJ4PKqwQVUlhCsoigyJ3yo2pKPPUObOsoCgyF/W2FVpppPUwGLTvIYTADzSL127wsYfPUJUFfuAjhSUbZtTrdf7frz/JR+8/zofvOwnSsr6S8dyrr3HfsYMMekPyNOevn3yJldUeRw4eIPRDhr2MsirRocfkZJMgCej1BpRFiR8ErC+vMDnZHKXG7mdRva283dkDuoe2Pmrz68fm8X7kx7f3vKfRsNW4E2O+37tsBWfZvW0rOfnu/d6fDLHxxx0n2wii9+xv3N8482dcu11HHXH73m6/9R7t1N1un4OAkQN7P+mt76dxt5W8/I7tRxRU27AcNs5FyjsbaGP63tD9No4rx7SxiE3Dbjcdhtj+6X0w7jaek63G4kb7Tb12n+/MZs3e9iNw5687zmfHSJX2PzDufljyfqFl3ukp3TmNGDGCXGd8auWduOV2EN/vW3bus20sWx5Ehdj20m7DtBJy136bL8yYwWxcjU3kLCE3Jxe7rdXW89yoARylWtrRcTdmQildBGRj19GfkG5fV8YhcRDj29tUxiJkiGdyiu4yDyIo0iG1EZBJWVouvXOFiWbMIE15/uybzM608EMfz9co7Y3Q4EYE16UlikMaI7LeMAqIkoTAD0EZpPCQUlCUFYuLN4gin7SfMuwNqE8klFQkQUSeF3z8YyfodTuOz87TtCacsv/MC6+xcHAaU2agPHxfMegPiOIQawWerymLAqUERZ5RFjk68FxUQEn82CMduun8gdMH0VYS1er4ic/pYwskcUytXudLX3uCT3zkBEmsac+0sSMFe3a2iSlLPK0pcmdYvvD8Wxw5coBnzr1BM6pTm2gQJBH9TopUEh1qhsOMKIjJ85KF+SnmWw3qEw2wlu5636WVJQlPvnSBiTDhtUuXOTzfYjhMkT54UmMrMF7JqUMLfOfZl7nv5BGOHpqjt7JGrenQ8w4fnOcvH3uWUHvUWzWUFNRqNSwlVZWT5SVREnPj+i1WV9ZpNesEcYTWclOZ19pDjNAFhYFi0MMIUCN0RE8JZqZbRLU6nufxp998hpOHDtLt9EjCmIfuP8lgkJP2Byjl6sFMaen3B/ieJAwUYT0mTSssOJANBXmRYo2lHis85SGVh/AcKM6g08f3Paqix7eWVllfXeJ/feMSaxPw0I+eIDwRY+Zi9LEpHvzQJL/00AK/9GNHODo3S1laklqdfNChs75ElEwQ+pY0HRLXmww7twiiCKykygrKMsXLr7NyYxFlDFJLahPzeMkUZeWhtY8S0kWfHcIJ0pYYa+msr/PYd15gfqbNtZV1/ulfvs1LL1/g44srPHT0fmrtNjoKybIC5QXOs6rA8zRCOt6/r37929x34ohDb8WlTQtZjuYiyfXLNwmDCCklD5w+5hxEViFMSVmkrN/qumgx1gGwGEueZo47DlenV1Vu4rQjygphRy5WY6myDKk8KpOP+Jgk33riKdqNFn7sEQeKk6eOU5U5i9euMdWeRCqwtiIfFnzjsSf5xIcfoFlvcurEQaIwpNcbcvnGEsu31vjUJz/iuCsFnD13gcDX1Oo1FBIrnTHqa0V3bQUdJQgEnnZRdDVK6x32ujSaLcq84taNW9RqTYK6AhRYQ9ZPER6EcYhWPspT+JHi+s2bzM/N841Hvs1ss0aY1JluT/LKqxeYnmzz+xcv8vr3n+fBUwvctzDniNxNTpUZkC5Nden6Kp5nEaIkCBTpoIMWAipDWVVoJV2EvswJfd+lrKcZeQ6XL1/j5s1lkkThByE68MnKgqpK8Tzpau+kZmqijjE5pqjodwuG/ZS3r1wnS3M+/MBhrDUMhwNqUUS/P+DwwRlKU3JzZY3Fd1aZbMc8eOowfuwzzDJqyQih1nN/Uip87RP4mrTXQ3kQNetYFOIeFlMruL0W7WUEbvu+fX38B//77/PLn/+13W32ZXhsNc7sqK70joO5w/5bzIJdDmWxzajZ+veDLf0Zf+5bz3V/fYzrc+fn/Y7nDlvGGG6bKIt2hyk5tu1uXW7rtnsZ4UZrgytasdyOAO/CIxVyUyfb3CZuPwMu6nTn67zRZisK+9Zyo3E5WIIN/fYO0Y57vC17g/TcVvY2Hfqb29xIN+ojN1DaHVjXOGfDOON808IfGchbTmCHYm42j+X+PP1B5O6HJu+HcbfX3LfzGd7adD+4VO8nuMpO2T6WcX6HzVGMfQ/3RGdi+4uyO/S/+0gblBJbYuru4sot0T8pt13wO0fxbotSClNZPAtxGKPPv4IfhVSVAQOXL99kfm6KtbUOYRTTShLa07cL8YtiBFpCCVrywrnXmG61+PJj3+fE4TmEhTwdIrWkLCs8z6ffGTgeJwlhrJAoXr6wyMH5OVaXOkRxQBQ7nrpGs472FGVeYMocpT0oKpTweerF1zi2cABhIIwDsix3UQ9bIX2JFB6VqZCeT5wkrC2vEmoX/bp6dYk8Kwh8H+VJ1te6RFGAQPDMi6/hS0fa7vs+gdYo5TngvqJE+97mYm/KiufOXuAXfv5hvvSV52nGAfedmqcoKyTw3NnXeXPxKr6EiYkmCMfVZbWkEpJnn3+ZE8cW8MKQx559meMLMxyYahMEIcePzlCWln6/oN2awmKwosSWrj7p+OGD/N9f+RbH52dQwMpqD2ssy7dW+NiDp7HG0ppoYKWlP1xHDh1f4NtXrjPVbhBFmunZKQZZhh8GdJYHeIElzwqu3bhJoDRKCHq9HlUlSeoR6bCPUoLKWHw/2CRl/tDp43S7XZqNGqXJufDmJbKsYna6SW/QIwp9R7zeaOAFIV4QOv4jTxLFIWVVOY6vrMLXPlGjjrHw8vIq37t0hT94/R3mPn6AhR85jT4ywQMfnmfisM9nzszy6Y8toFRIboZoL6AojaPVEAo/9Ol2BjSbDVb6S9RqU9RqTYSnkFaSppWLACJBKOcoAYreTUzVwyhLc+4YOmxQlj6Bn+B5EqU8yrLE2hKkpCoLV7akNJU1fOWly3zttS7/+W//PSYaIV+UNdqTEzTbbcdLmGWEYeSK9oVBCOXmEiGoypIz9x1zROJ5jtaeS52zUBTFSBNxdA3PfP9Fji4sYErDl77yCMcPL/DoE88y1WqQZUOSeoIwhuUb6wyHQ4LQZ21lnSAIWHzrCs1mE2sryqJ0TiQpQVoqU22m1yrpInlHFuYJogCJxFO+Q9n0A2qhHgGYWKI4odcbcmThAJPtFkhLGGnOvfIGaZ4x225yeGGexavXOHBgBk97zEy2aTTrKM/bVKwkhkGvS1JvQQVKegjp0hUd+qglTCIEUOYZtVrCn33tMY4dmsGWECc1lPK4+OYirYkaQgjKqqAscw4fPYJUkvtOHUXakrIqWbyyyIdOH+XRJ5/h0wdmeUVLPjHZIit7KFHiGY0UAj9wHH+1JKaiQnmC4TAnrMWgFFmREfsRN64vUU9iR01hSoZphvY1UU1TT3ymJ5oEQYQdIZwOen1qjSbdTp/As2TDDmE9wVSWL3/r+9x/8ii1RowAGs06VJIwDOn3Uox1tXUIge97NOOQWhwx1a5Ra9URQqI9Dx1oPE9SFpWb34V2YE8UdLsd2vMHsUjELnS8fciGrbZv4277z78wP7MrendPh79LhO/u+2/d5wenV9yb7DWO/Y7x/TmXO0Uu9zzy1gjeHX7f67cNqTZQMO/t8FhjNmv51R2icHv1ei9gPVtN7X2oXXu8K+9e7nZ7dht3OwewPR11f+LamXH77Pi6EzP1vRh3HwCqvEd5PwBVtgKo7JSdgCpbIT/UHn2Oi+Ddadu7lWojjVGIXWAr2z05YsfLvGNsd3mD7ajYeHvx7fZv1lSb9XGbICmjaN3tQvcxE+YWC3k7uMp2UdJj2O2zdO065//F/8an5g9gLeRphudphv0By8ur5IVleqpJoxUhPY9BPyWKHeR6v98l0AF6RItgpaXbHTLZbuKHkiiJqEqBqQyXLl+jFkbMzE2ytrqK9gLqzRpXL98kDgOQFa3JFsNhhrA5gZ+AEHi+oKoMwliyFMqqII5ciqgKNEII0oFDpfNDxZXLq8zMtsmKnFoSITDkwwokDPoZly4vcfLYIXrDDvVaDSkkZgTOIXDw/FjXZ61Vw1rL0tUlpmYnKKwhikLKrBwBPFg8LyFPh3haUVUVFy5e4uGHzlAUJXmRumhoaRFVTllVSKVdcbUSSOlz7doKM1MNbt68xWS7SRD5ZKkhSzOazRrCd0iJq0sdlDIsL/dotRo0WzVMllJUkigJqaqSs6+8xcMPnWTQ7xIlCZaKpSsrTM+2EZ5GSEueDZFCY4EiL1BC4kcKUwk8LRj2Ml67sMjpM0cY9g2Npk9Z5uR5Sa2eIJXCVgaLwSDxPMmw18fzFHluSGo11tfWqTcjrDUopcEUZLkjtJZKU1QF2TDj9aLij9+8Qrcy/NpnTvFzHz2E72kUhjztga0o8fCjBCqBLVOKsofWdTw/w5QJ0i/odgqCsIbnlaS9HC+Q+H6dqsgc2mKVI2RKr38LkQ/JK4mnLEljgWE6cF5/CdVwCaUjUC2krjuOQ1lQ2gotYtJRFOzv/8u/JAxDLi93wFqyIudv//qv8os/81N0eiXLN29w7UtfIswkP/mZj4P1RlGzAiVdqrP0BEJ6IyASTVVUvP7Gm5w8cQyspMh7hEmNxbcXOXz0EFIIiqqkzEs85VEWpeMrXF6hPTWDMZZhv0tjskFZVXhCkg9Lrt24TprmnDh+jF5njYvvXGP+wAyzB6fJ0oIwDBASut0OjYkJTJmTDh3qKM61gPQsRX+IjgIEgaNfyPpQZlRGECYNhKdcJoGVLoKuJbYUlEVOlhXEScLNmzc5cHAWhKBIU/wwRCmXMp4XOb528cpKRoiqpLICU7qaPkfyrV26bp4hhWQwSHnjwiJn7j/K9548yyc/8SBRPebcS+dpteocPDjP1WtXOXxkjrIQWFvi+ZqzL77KwvwMnW6Hmak2aZYSBwHWFvzON/6K3//kaaoSFi/f5EMPnKI3cE4uJRRFmaE8V+unhKuBzvIMQUCn12d6qkVZVQSxTzp091vrGulwDSkNlTDk/SHK8xygTCXRYUSeZdg8xY8dx2ZVKYyxDPp9l9YtJN/7/qt8+iOnWFpd5b7Tx8mHOUGkydIhWvtkaYm1Bj+JERsZuIEm7ffx/YALb1zivlNHEKag2+nSmp3GCs8ZdttXH+4WJdoM2t2xyZb1WdgtKZ/b19EvTx/lC39re+3dvcpWYJQN4JWxdfo7kRF3jGWcjKv/c+nMat/gF/cm+43Ovds+79lc2mO/He7pzdRRF7m7k7N+43pWI2ohsWX/Ddk0HN4H3a66g34mx2wbN8476Z7jwF+2qlzj8tfkHqBB71b2BFcZjfV2m613xW6WTcDd9daN/syeJIpm+3G5fQ2FkIRR9K7fmg8id+9R/v8eudvs5wcQwbsdINsy4Yw/+l38a/t7SfaM3G3Nsd8RuduooRtPiXDnLrdKoFy64dpql8cfe4yPNZuuRivyXeTLCsq85PKNVY4enkV5gqIoHAF0JfmzR77HQ2eOkvZXyfIueDA7PU0UhnhKE8QhxhhuXL+FUJa5A1MkcUKRVXz98RdYWe3QbIQM05SZqQn8MHAKL4JQGtJhiY4iCmvwhGV5eZlaLWJldR1hS8fV5WmUEnTXeyRJyNKNJV56eZGjh2cRwmBMwerqOvVWk1tLazx//k0evv8U/e6Q9nSDsigZDFK++eRZhv0B9STk28+dI+/n+Erxp489xUNnTjBcH9Dvp0T1CE97eFKSpxkUChVa+sMhr1xY5OBMm3oUID2NDjykdAZUvzfAr7ewQqJ1AL5D9Qz8kCRKuHjxEsePzSM1lJllZbXPW5evMdkO8fwQhEet5iOx1OIa9WYdIS39bgc/CRn0hmTDkvn5WTwfqnLI6q0engy4dPMyzVpCkEQM+0OSWgIW8mGGrSzSK9Hacd8VxhCEETeur9KebPL4069y69YtsqGLdpZlQRAnCGMZpCl+4FOVJdZUmErwyFMvcvLIPEESO+NvlCPcS3OGSvJvF5f4l+ff5m9+4SGCExMcPDXJz378MJ//ifs4c3gCJQXZMOPGzSWarSZFJYhjn35nCc8LkcJgBXh+i6zog/URNiUIa+SFwVQZYRiP0FgDymLA2q03yPqL9Ndu0WjMYUWM8BqEYQLlAGEyhE0RNiOpH6IQiqA+QVl0+cf//nn+6NELfPX5ZV5dVfz0F3+XG0zzm1/8LU4/8HEuvnqB//6//W/4jV/7OQ4dmOXKlUWMifiH/+gf8SvTh/n4Rx/Ci0YAJwhHyC0ESkmGwwHaD907JSWDfk4choDkP/zJozz84RMM05zJiQkMhrIokEqBsKhAg1R4vgKTE0QJ167eYHqmjfU0BtCeRnqGiXaDyckpiqwiqQUcWpjHD3y+9NVHeeP1K5w+eRRrIQwDjHAgOl/5+mM8cObEiC8PhNB4wtWFGWFQWkFlGHS7aO2R5YYgChBIHv/OMxxemCcdDNFKkRUpL7/2Fq16nYmpCdLUEYObshg5OzzSYca1a9dJIo2WllJqhC1RnmJ1ZYUwijaNQFMUCE+igwipPW5eX2Nubpqjhw+htaI3HHB4YY725BSvnn+ThYUDDIdDvvbIdzg45UjNg7BOvV4j8DVBHDMcdmi2mpSUfH5hir/51cf4uw9+hFYjQQU+eFAaEBhXf9dz75EXx6SpJUrq+GFIs9UkK0qCMARP4+kApSOsHqU8y5ALr9ziyJE5/LCGsR6BLzDCQwfJiKfQGU6OnkQTBJqkFjvOvPlZavWAei2kAoIwoN/r4nng6dChz/aHxI2EYXeA53lUAgLtDMV6PWHQWWF5aZmDxw5RCY2yGzXbWxYOIZxBtsf6tZO8eVyLrR/HtTVVxcN/73f36GN/sl0VuLNxd7v9vUX8draXcgNZc/9j3L/8oCOI77b//e13p8jduDYbpSzj2o2NCr1L2akGeeI2OMheptbdAGPGjnsncfquffce67uR/ZzDfiJ3+9Fb7dg+xrTYPO6WayHeW1rmB5G79yjvLxXCe5OtkbydXrdx3pRN+Ox9vkD7gd3d8GuUZTUi4XWYc5UxW6gI9pZNP+gIblft2G8vKgRrzLZonPtt+/c7Rus2q2l3n6jSHktXb1IOMp75J/8zH5loU2slbrSl5eaNFQdd71kmJloEYUBlKoIwYNgZoMOAW8urTE9PUGQDqrKgFIJGrYa1AuFprLUM1jtoP0BHAcbAxYuXOHZkDik1Ji8RUpKVJY9/90V+8kfOjGqgDFhDVVqk9tFKkWZdBr2UxWu3WFvPEQp+9EdOE/oeq0urGAs6CPnqo8/zuR//CL1eH4Cba6t86MxRlpbXWV8fcuzoHOtrq0zPzGCxaF9z/qWLXF1d4ad//GOcPfsmeVly5r4jnHv1LT58+hBvvn2TZhKycHiasswpjKHRaNJZWSdKErqdHlESoP8/9t47TLPkru/9VNXJb+4009M9eXd20uaklVYraQUKVwJhEFzJBuwHYzAGrkkGbMIj5AsmWHAxIgdjsEnmgi4SQhLKq91ltbNBG2cnx57O/eYTq+r+cXpyz+zsSgv43v09z4R+T6h6T59zqr71+/6+X9fBcVwKneNQClIAq0I0HtpqPvXgk7zpnpuwVhMEIaawKEeVhcvaYK0hTXJQmiiqkGcFSZZTq1fReYqgFCQpTIHn+vzZXz/I2++9lUbDX/U0K5+DB7+4n3vu2kNhcqQo694Cr4KQBVoXPPr4EW7YuomR8QghFFI6HHjhONPT60nThJGxJlmm8T0HISVZkmCMxvf9VapfSFHkZY1XUSAcDxDYvM8fnV7mU6cXGKk6fNf/dis3TDdxlEMyjPEqIVYbpFNaYagipdOP0UVOa6RFUVi0AdcrZfuxFmsL5k4+izQpXm0ztVaVeGUWP6ziV9YxN3uSiQ2bKLIcW2QokdNePF2aQzfX4zoVhIJudxlhcnw/oLA+Ya1RAi4pMAJ+80OP8PEnjzM1Nc2P/cgPMTY+SRCGpMUQBxDSJYlTTN5h2I3ptweEfsiRY4eZmBxly7Yd/M+/+AjvMhAPh1TrlXN1r5YcU2isdFCeizClXYGwUORFqfOSp+RFjuv5PPfcQW69dS/SERibA6WwgaJcDZVCkmUpjivQuSjN6awq7ToEeH5YTtCFIM9yXM8Fo8kyjecpPvqpz3Lbzj2sdLps2jhJpV4t/fMMxN0eXhQi3TLDW6QJnlfSl7Elo6AocnpL8zx/+DhbNm5lfN0oybDPE8++wGvvuI00SwijCsPugIcee4bFpR7vevt9IAzKLWs8pVTowpAmHbxKg7zfoTLSxOKuLv4biizFD8rFh36/BIye75Wg2AriYbJaA1NmAXzfp0By4tgJrDFsmp5Ea40XVjDkpSei42IpyNIU1/NpLy0S1UPCICJLYubmllgXFCAt7ZVlatUajuNhVdlnQ+kZKEW54LU4v8K6ybFSJMqUCqWO6zB7ap6R8QZFUuC4AuWURup5XuCHLlpTWmfIHCkDdJGCVuR5guu6qNADrUsmvuOU3xGBNgaJoMiLMkvrOHzqc0/yhtfciB+WKrrZsPQvVKFHlpTPqTWGhdlZ1m2cxgqFsGa1du7sAHXJkuYaC4WXZezWOm7NTNHltUY/dmSRD/zSz18wXF1AEbskO6DP7bN2zduV5gUX73NpLuVaZ9prZTZfubh0XnKt85mXFy/35OW1tPZCMHPxDSPtWZDGK33JXlJc7XpeeO2vZqdwqc3DWhnAUgAPxOq8z1HqokzZVzqulsG7UlzIELuWKDN3l7YjL9h+aZLiPIUTIIhevhXCq+Duy4xXmpb5UuJaaJov6oF3WZwfbBQCbW2pDGfMS8ocwuX+Kld7bO0qGLRrgMIyZX0BtcRohHTXaOns9ovPXYonnB3+rnLVLqA5GCxH9x9ipD7Cr/6HH+F7d24DJRDWsjy3Qr+fUK1GhJFLmmW0RhqsrPSoN+qsLCwzOtbi6LHTTG9cj6N8XjhwhD03b6Izv4gjwGs28bwQa1itmSlXPAf9GN/zKXRC4DusLHdpjoxRJBkag1+JEELQX+nw0L7neO0te6g0alhynn76MJPjLWrNOkIIgoqLTjRSKJbaHcYmWrzwwlGSpGDz1CTD4ZDjro8AACAASURBVJDRsTor3Q5h4K6uXtcQlDQwx3NAQjEo8AK/LCu2hmf2H+Pmm3aAgJXFDv1Onw1T4yRZQbXmI4QlTTKyLKfTGfDIU0e4/zV7aY7UAFvStuKMeJhRaVQZ9GNOHD/D5OQYzdEGAouQtqTYuR62sMzNLVKphLi+4sF9z3PL7k24jk+lEuG4iuWlNlHkc/LkIlu2TGNsjutIssTwzLPH2L1nGiklrqM4PTPP+olxEBY/cEhTSxD6zJxYQnmWWjNk9uQKzXqd+liEtRapFEVuyPOM0Cvrw3RuscJSqUcMhxlZnlOJAnRe4FYihC1pnn94coHdN09w382bS+AmXYa9HlHdATwEClMUpEmKH3pYJCvtFSqVABdLUgiyYZ/qSAury4x1msaEbil9v9I9Sm9+hVYdRNggSxw80cMNHJxwPUJFaC0Z9Ofx3JQ8dWm0JtCFQ384g9USuSqLa5WH60cEQUSSpzx+eJa/PSz43u/7bvz4JEL4BLUWg6GhNT5KlhssCl+W9OI4zjn0wj4mJycZdDo4joODojI2SW1sjPe855/yO299O0qVsvSsqgYjQJgCEKTa4kchNsvptrv4ns9fffIzTLTq3HHLXhy39I90fLekixYaqwxKuujE8skHHuBt978RbQxa5HhOSF7EHNh/jL17dgClSNW5F8WqjHWeZSjlkBYFvnRK8aRcc+L4aTZtmUL5Dp6jyPOiXIBSAq11OSkx5ydz2hiUEmSDAVmakeUa5fjUGyHWCHRRygwMkj5hpcLjjz3Hjbt38YVH9nH/6+/G9VwK0tW6MB9hDBqHwfIiQaOGlE4pDCUhHw6JqhXyojRxx0Cv16HVapHlKVYLPvfgPm7adR2VSgXX9XjgoUe5795by/cPltm5OV544SSdYY+7b9vF6PgoSlqs1qVYkbEkeZdGdQxtEorc8v4HH+In9m4hzzOqjRbGKqzOSkq966KNocgyPN9HWIWR5YtZUE5mtTEk/RiUJIyqFKbAYFHKJR9mBKGLNCU1Py8GuE5YgtmifE9KJTBGoIQFYTBQ0jADnyzNcGSZXfNW6ylr1VoJFhXoLMF1Q6yGbqdHrR5gTc78wiKTm6eRjosVclX7YFWUSwrEZQPnBePqlTatCe6uEgLmBwN+cN8B/uef//Elw9PLB3fXEpf6411EHb1K2cfZ7/Xy/e1eWlwd3JXP4LmfXpH04YtTMF/s+LPlN3r1uqprAN9wbSD9yw0jLgWl5+PSa3+1RfyLfPXOraOvxdUs55ilAIp50Xv4y70GLwfkXWtcCO7OUz7FBdvtJX2QF/wN3qvg7h8u/v8I7qAEX5dm1F4sXiq4+9xnv8DBg4dI05Tnnt9PlmWstFf4kx95J4Mk46nDMzx6uM1Dz5/iv/zyLzI1vWE122cRFxD8vxLgTmM4c+wUNjG872d/lg/s2IgRBqylyHIeeux5Nq0fZXrDKFEUURQG1/P54r7nueOOG9DGksYJySBhdKJOp9On3qiTFxYpLSbp0et0aK2fQmuJzi1CGMKKS3upS701AjZHSofTpxZ58EvP8677b8MKSxBUyNME5ZRmog88/Byvu3MXRWrQeYzxJPVmjWGvy/LCgNNzbe6+aw9zs4usW9+kyC3xICOqBOcUNf/sbx7g7a/dg+/71EdHWV5epN4YAavoLC5RqVTpDwdEVZ/uYofMaCbWjyKUw/FDp5gYHeXpF04yMVFl+/ZJlpfa1JtVXCdg2I05eWqBzVvHUMqU1EunrGUZ9PoYrak2m1BAv9ddnaxmSKFwXBdjy1q/IPSRwPJCh6DicPjQHO3egGYtZP1Yi4ce38/b7n8N0herEulDwCCFi1QuYMu6sMBHOC5KQpGmSM8QDxJcJyQrYgI/QkkP6SpMlpGlGa6rKApb+o0phQUcR5AnKcLAHx+b4WPzbXZMNvjJb7wF4Xrlk2RLSf9+L0G6gDFI5SOlh1A5OhMI1+Ioh3gYkwwWqbfWo5QDRmOxpFbh6gwV+CRxiu9IrMkRqmBl4QB1fwJNitAemUyJnAi3OUXcTXCChKQ9S55nKNXCdUYY6iUCr4ZNIDWCarPKc7PL/PSfPsab7nsj3/zed5N1niftLlFZt5OJzTdidMqgO0tYnUagcawlJ8EYB2N9AjFgYWEZ1w144LMP8cY33ItOBxQmx2+uo7/SI6xoxF9/qqwz1HCe6GLLrJtb1j+5SmGEoNQBsgz6AyrVChKLVZIkywmc0qS8MAXWGCq1FtZmWIbYROL44WoTGrQgywarXmoheW7xwjI7WE5MVjO31Vppjk5Blsb0hj1GR0bZf/QkU41x/MjH6KysO8TiuWXW1thSaEkISaELpFOeUycFg0EHtOGRxw/w5vtvx3UDuu0++w8e5pY9N9FLehRJytPPHUFIwetecxu9To9KJaAwOUIUeEGICip4QtMbJPhhiLCCbrtPJSoFgawFXVi0zgkij/bikOZY45x5upAWoy0IybDdIc6HTIxPkeY5cdan6voIVCmGo3OEC4XVOI6Lcj2kVhRFStJtg/KpNMd555/+KR96672l7YMrEagyCxq4JGlK4IVYu/relRJhDVkc43sOhVDorMANvPKdmidIbZBGMMj76DzBQTDMLNUqJIOCVGscoBJUyHWGqNRxpSBNNVGlQpGXnqPDOEHICo4yJL0VsnSIXxnBagc3UBRpQqEl9WpY3qNFRmokSJcss1hjGAxixkdbZLmmNd7CCVzEJY7DFy3CXxXcnf/Pbx48gUlT2lqzFOdcP9rgyFKHmbxg+9Zt/Nwv/J9lNgPLpYUYr4K7Mv6/BO4uO8s/AnCnuaA28JJ4FdydD3l+6Wft7S8B3J1lrYXV6qvg7h8q/jHRMtcu5l3jvPYl1OtdOGJdtTD05cWv/upvcscdd/CfP/ABCm346W99DZUwYH2rtqpIdoV6vktMQi2ln9XihjcztXF9uTKMwNoyU6WtQgqLsQnSuhgp8I0lo6SOCmvOFXyvBfy0sSyenqWz2GF0egPu730Qg0CnOQvziwSBT71RRbkODz7yFK+76yYACmMIA5duu0tQKWvQBII8zXB8B6PLh125Emk1aZrQWRry6JcOs3PHFNuun8bq0mrCWEncWyGo187RmaR0sFaTDgcUhaFSb6KzlDTNWFkaMLlxDIWm2+0hsQjlohyXbruPUZqRRqtsW1i0Bsf1aC+tIIRLr9tnetM4iAKQDAcFUTVAIFlZ7CCV5OipGW7as500yUsPOM9h9tQswzRl06ZphM0AjeOHKNclTzOKIgNTmiIjSsnfIs956vmD7Llha+kZ6LlonSNFqYKo8xwpBUVR8NHPPMZbXn8bUSVEa8vhF04w3+ty554beGr/Ufbu3orrCnqdISOjjbLGzRiyvFSt9MKIPM342Ocf48133UQQOgjhIhyJtXlJgTWlaHESJ/ieg7GlkbkfhWXtkzUIDFmmkUryn599AeP4/MB776QaVdCmQDmWZDAs64OiAEuKLQKsSJGUWVCdDUvqnlvSPYs8x/cUuYZk2KdarZcKqr4BHa7Wo+X0OkuEfkC3cwxXRBiRkMcpnuvg10cQwpCmBVGthRvUsJQG7TpNybM2SoQMhn1cx6AzDVIRNcf5lQe6fNd3fwf1Ro3CGASS3so87cVjeEmGjiTrN7+GlfYRVJpTba7HCyPiNEcpF6M1w2RA4FfIh0OOHThAqwpeVOfoyVmu27ED3/Pp9zr8ym/8Hv9hx65yaiMgz1K8wCMZJqsy9KUqobGCj37qQb7mLa9HSoEuLHGaEIQeUkqMtqVCLGBXBX6MBKUENjfls+IJpBXkNgPj4rgCo1nV5y5BzuzpeaIopNGq8Yuf/wzPtzsMbPls7N65m127t7O01KbfHTI5vYGvfcdbOHn4MN/0bf+KH/63/46PfuJv+NX772WkOYExBqM1i2eWGRkfQSnBJz79IF6gCKXPjbu2lbYjrktRGJRUPPP8QaYm1+OFqjTOXvX2+8LD+7jnNbcx6Pc5dfwM1+3YjuutWjAYg+sHaG0xhUY6DiYeYL2ApNvGDSt4TkCv18fzPZSEJB6AlNQqAdpCmuSEVZ9kkCOA5ZVlWo0qQkoe/OJT3LprG82xKo5bwdiUPE1J4oRqcxQrJI5yy3etMGQzR0jTjGq9gs5XVU6lQAoHHIOxCiyIwiCkQa963RXJAOVAnhTkKcyvLNKoVJldaHN6JebG7VsYXz/CqeOzbNu+EaSg3WmzsLDC5LpRKoHPwvwywyRmudNm28YNHDxxhunxUawQuNLiuhLPCzkzt8LxhWXCMKTpR6ybHCXuFmiRsXnjBrIsR3keJ47N4LiCh58+xOtu3EmW5xw8OUNvOGTv9o08f+Qk992xh0JYJjesB+WuqjXr8nqsTnQ/fnqejywN2HXDDpZXVjhzZhatNb1Bn9vfvZ3OaYPRXZaPD2nPxXzTu7+Bxx57gp/+mffheu65OpxLBUnsBeOxuITedeG2S5cvzVVEKi4+56Vbz0+iBVzAT4W15xwvPqdZ24D9KxdnwYdenSxfCMgvF4xZK66ctbrS/leOlzfHu1o5zKUL8y9l31eifbgy8H8xCuf5Rf/S4/XCS3nud3XBzLUU5rNXBncXGQKe3yYQaGvWEE95ZeKsgOBZTYhz39Pai2rsTp2eYfP0hov6FESvgrt/sHjlwd1agG3tKFfKroHv/vcM7ubnF/m1X/stDh14jt/4nrfgu4q80LiOuqyHFy1+vhRwZ0uKJNbyV8cqfP2731VuN4qCmGFfU61VsDbHUS7GFszPrTA+MVpSerCo1dFzLXBX6JQvfuFh9u66kRzLw9//g7SkS3+QcN2WCaLII6pGtDs90JJ6vYIbnKWKWrIkIy80QeCTZRlRJSLJM3w34OD+47iOZGpqkkKnRJVSfVMphfIC5mbbjLQiXN9HmozcSNI4xvU8hoOUWquB45beX0o6CJOR55qTJxbYuHEDnluqZiopSDNNGFT44qP72b1nGs9z0brA9TwQCuU6JSWw38fxAiyCNCuoRg69fpt6tQGOhzExSjkkQ4EfSExh+OQXnuStb76dQbdUg1xa6jE+3kA55bqks5pZ7HUHuK5TSi9bix/45FmB4yqyNMPzXYpc0+8PaTTrpWeXKSiKFKkESoX02z2whmqrgclLRdQ47lGtVNC6hEBxkXHi1Dw7tm/BGIPjSrI4wXUVeC4mKycnw/7wnBJiWHVWa648hACtDYPeCpVqhDEGK3yCKOR3D51gyTF839fdhjCaMPJR0iGJE5RSq2qYMUJIet0BjVYDrEZKrzTJ9nz6vR7G5CgEjZFRtClXKPudJaqtMaQAoyXCFmjTxlqJskOW5s4wGPRwjaVR99GFZXFlhQ3TOymkIR6soFQVPxqjOjKJlaXDkBACWxg6y4v43hCbp5Bb/uXvPMG//tZv4C1f/y+w0qHQGa5rSOOYamsdw8GQAlh54UGMr1m34T68EJbnjnDixEn27rkV4TVY6R2hXh3HZFUyM+Twc8/TqISM1CNm5pYYndhAY2SMXq/LwvwZvv/f/wR/8NZ34PkBWud4vlpdrFjNlucpGEOWG7wwxOrSqDrPNDOn5pjeXNY7+r6PdDzyLOOBBx9l766tjK1bhxKKz37+Yd742rsY5n0cV4DxWJhvs25DE11YXKekHxd5wQce38ezi0sEQcB9G9bx9JNP8bp77uar1q2nXmti7PmaPITF8zySwRDhluDFGvjjA/v5m4OHkFLwb/fuJnTghvWbkMrhr/7ms7z29r0M+zEbN06iXI/52TnGJ0ZRjsMTjz/LhvXrGR1vIZUEazDaUOQZcTKk0Wxy6PAJxidaCCzVag3leGiTo4Sg0AbH9Uh7XdxqHUcXLCz1SOKYTq/HdTds5fix42zZOI1ULlLaUvgoCFlaXOGRJ57m3rtupNGqkgwTokqAEIrBoIdBU6s2GcQrVIKQwggcFYEjVrOEBcYa/vmH/orfuGs3YRiivNIvcPW1TLd9GlXkyKCC0ilxkiAEdPoDGuEYruviBw3ciiBPC+bnVwj9CrnNGG3WMaKss3z4yQNsGB9n3WiTYdZj/fQEWZyT9XOKomBkpMGBQyfYtnUaIWB2bglJQqtVLnR8/NOPs3n9CLkpGGvVcXzJ0WPL7Nm9ibBSIenFuL4gjWMKK2jUaxS5BaHRWdmG1sW5+u4DR46zrtFi/eQoM3HMz892edMb38BnP/cAWZFRH3fZdOskm25vvqzx8xO/9DT//t/9GHv23HDR56+CuxeP/xXA3Yv14381cHf+Plm95q+Cu7Ldq4C7s5nRs2YUr4K7fwTxSoK7i2kNX6kXYFlkfs0UgJcJ7uZm5/nA+36En/zWN+G7L16AutZwsGZrq4DvXF9Xx5fTh0+U9TY65w8/+TRf843fxNz8LMOBQjqaT//tQ+zZvZcvPf0kUa3C1i1TvOdbvoteOmTrDddTSFBcXCx7IZ3TYjlx4Ci1Sh0tJd/53d/DB3dupShKD6gg9HA9B9dzcZSk34/x/QDX8yjy0lvOWIvRejUrZZBSsDDfJopCjDZEtYi/+ttHuP/u3QShQ5GmdLsDmq1mSWOSEg+LcEPSZEhUCfnCw8+y0O3xNW99DViDEoL5uUXGRls8++wJ2sM+e6/fSHOkyaFDJ2nWIyqVgDgt8N1ygmctHDxyhr03biPJEoQW9HpDBnHM+vFRDh6ZYe/ebfS7HWqVAJRHEg+RUuH4HlbnOFIinABTZAjHZdgf4CsPvxKQpmmZIBFl3ZzrKjzfZRinBGFAXmj+bt9zvOGeW0iTBK01SiqWFjuMTTTAguc59Ht96vWIJLYcO3GGzVvHsRaiSkQ2TEozakpKXBBViIcxUim8IEBgsbb0p3OUIM0LPKcEcPMLSzz29FHe9Jqb8UKx6mdW1uMZa+m2ezyY5fzZsTPsmWryQ+++izD0sYUhzxKkI0sAassi8E6nTbNRo9AFCAedp6Upsgpod2ZpNdeR6Zw8SahUamRJjOc5GAG5sRTDIbk2KFvg1xoIrXF9B20DHN1DD5ZoLy/iVUp6GqpgYalg09Qk7fYctUYNJxqn0thQSrejAYXBkvWH5FkHYwq+9Vce4Pf+y/vAqRE1xqi3xjBFm/mZ0wyXl/BcheuD40ekqUMYeKy0j7PjxreRScPsiecZG6kgiwDCEbJ8gOv4mEIRJ0OUNSzPzWKKmGpzFOGGhLUa+dASx0P+9f/x3fz3d74DKRwef/wZbr5lJxZT+kqacvDNkgTH85HKwRQZWmtc10MKyIuszIRbiRVgjSUexGhbUGu0kAKydEiapURBDZMlyCBA4LDSWaASVHju9Ak+dmaOr9m0lZ0bJjFGoxxFkiT4fohy1WpGTGEKW2YKrUYKkEKRJCmeH1AUBX/8F5/g7W94HaPjFfK84IWZU/ynZ57BWosjJL/71ndidIzj+OWilZKgc3RuMMrFZjGHDp9k+9ZNWATDwYAkTdgwuQ7hKYQVaJ1hpcIkcVlj5gd4vsOgvUSl1SKOY6Qu0MJHGc3jT+3n7jtuodftUyBoNiLyLMH1AwyW558/xNT4Oh556mled/utPPrUE9x3922srCwRRQG1WgurVOkxV6mRmS6OCCiEg6s8hBHE8ZDhcEi/N6SxrsmXjh/i9RvGMAiENZw6dpR1YzXilRUqtVINEzyePzzDzuuuBxS4BqNzTs8ss35iBEd5vHDoJDdcv5E4zggdv3yedMJnHnuOe27ajTWGQ8dn2Dy1jizJGJts4nke8bCs9QtCB+X5JWUdnzwt+PS+J7lt91as1ow2K/QGGdWqx9zpHhPrm1gtSbUhHXaJwoDZhTZjrSbRan0vsvQ8FQjyzHL/n/8lb3jtvTzw2c+yfVOdmZUe9/7gXezdc10pW39OBe/apglX2ksAaWY5/pcx//Gnf3L10/MT3VcG3F28sGwvmIqcB3dn4yLS3RXPfy1xLaDr2oAZl11QuwYYePngcq1l5yvxca+0/4vHlwvuzlkp/D1kDldbXP334gNfzArhwk+vBO7OzkGlUhijL2rj7BT6XIb7CuDustZeBANZc3GZz0uOS9VjL2z3RdT/XgV3/4DxytTcnf99zszMMzm5fvVFe/bP2nE1CKVZnZisARbXOu5alDQvfFjf91P/ieeef4564PCz3/Z6GqF/ld6s0d4an4lz9/mqDYK1WKER0kEaSxFn5HHMJz/3d9x1903Umk3OnJ5hpBXxLz74Gf7le76Ova+/l2LR5YO/8nPMzM7xHd/5vTz04Kd565vfyP4nHmb6hut5y7vfS4HGudIVFALf9Th84DC+46GznMeeeo7X7X+U3nKfqBJh0aRxTH20hSFDSZfjR2d49vAJ3vamexBWECdDfN8jTzR+5KzS3koqme+7oCRpnLG82GEwGHDdjq3EaY5U5XaTGwZxzl9/bh/f+NbXsrTUoTlaxVMORgmwZYbQ80vlzT//yCN8wzvuREmXzlIPaw2LS102b9nAMy8c5pabdzN78iT1eg0lJY6vyExB5JUiLZ3lAYtLK4Shy+SGdSANg3hIpRqhhGTYGRB4HoNVE2nHdaBIWWmnNMdaHDx0lM3TE/iBB1aV39V1wOb0Ol2azRZGC7QuEBT0BwmNZqPMwopSFVFKSZYMMAaCMKI/iKk2QopC47kuSZxg85yoEtGLYypRhWSQcNb5olLz0NowHOaEUYS0kAwSCpOjHEXg1+j127iOJKpXyQqNi2Wh12e82eD9zxzl7p113vH6mxFSUCQa14Uk6+G7Ed1ul3q9Tr8/oNYYod9pY4WgUqtQFHmpmigs2ioEKcmwIAyqWGkAjY4HCFci8EF6qGxIooc4wsGogHzxOeJ4gHZ81k1vY/HEUXyRU1iLUg7GOkgPpKzQ6SziCvAqdfyRrQSVBkJohFVYLEYXvP8PPs+RxT4/+G++nV0330ljZIwMi7AaXXRIZ18gHsDMckx9bISsn+DJHIaHCaKQzDbYeMtXUwiHheNPkbXbbNy+h9wGOMJBigRt+uTuOmaPPEutXkOkfU7Ntdm+cwdGahwTsjJ7HO+TD5TXgrLG0GBXhV8tygFHuGRZjLEa3w9ZXl6h1RxBqoJCC7I4IaoG2EJjHY9+t0e1VgVb0qGlW2aMhbVQZCwvL1ELXRAeb/y93+eB7/p2jJU4ysdkGU4YgbDlgk1h8F0HXWikKxG5IPcU2BRVZAhC0izl1Mw8GzauL98cq2q1xtpVqjMIaQFJb6XL//3pz/MxkfOuXTv5pztuILc5cb9Ps9miMAKdD0gTg9aCx/c9zT2vvwPfd9FZgTaWw0ePsX37ZoJaSLyc4AjIbYIbVBAOxN02jeYonZUl0lhSaUVgNY7nkfRjHn/qGd5w791kWboqACPRucSKrDSXN4b+MAXp4rkpcTyg4rdwaxEmE2AKpNIIL8QYuTrpMRRxWgouhT7Dfsovfukx3n/LNoSJibt9hoOc3jAnCBQnF1fYPDXJgYPzhKHDzXt30F7uUx+t0ut06LdjKkHEIO0xMd7k4X0HmRirlYqdxrJ522YOHD7CDTdspMgLkjijUq2iHIe0P2T/oePctHMrX3r+ELfevJO5mQUmRlucWVzm6RdO8aZ7bsaPHIbdHlG1QTxMWVhcYGUpAeCGnZPk2rI4u0ylUtZpDpOEyfXjLPcH/NRTB+h7PlJ5bFw/xXHnOPd/4y6wGk3Bw599nOu2jBFVHK67YQ9aODjCou3ZUU5wKQBYSxFwzfFw9d/Zg20WHrb8+E/+KPV6bbUm6Suf/boaYDy/z5rLxJf8e21x1Tq+S9hGFwIVdS77cXkGpzh7rnPZk1cuS7h29vJyoHM2W3lZJusau3b2OCHEBb7H9qJta4W5pHtr1cC92DmuFGVfrvSdz2bu1j7x5Xe/QQp5ESa6GhB/JTDM5SIol7dxufmJwSIu8xu8NHPHJedeq92z8eWAu1d97r7MeGV87srfp+u6Jc0Pge87L3qeq1EtS/rihYWp5++Zqx53lVtLAO9738/w67/+G/zSP7+Dr3/tdbzjrm34rvMVyTNaobHCYkVZu4FQCGEwueazn3+A4aBHnA65YedmwOGL+55hOBgy6A3Y1fJoFxsYbW7hxPEjvOvrvoZ3vPMdbNm8md/8zV/jrW97O9fvvYXf+eCvk2nBzr27r+wTIwQ6yTl88DDjo+sIgwqNVsShz32S+ZOz1KOQF46eoBL6FIUuqZFWkqcZ2zatKyW2XYmSFikUf/nJhxmrRVQjrzS1jhOkq+gudak2qoRRSGOkCsCTTx9kpFbBdZ1SyEMpxhrlz1EUIVVZv+f6Xqmu6PtIqZifXeSOW3aQDhOkLOmWUsH4+AgIwYYNo5gCiizF81ykFKVaXqEAS5JkfOqRp7hl11aq9YiZmTlq9YgwCpAWilyXKoCuy8e/8DjXb5kGSsNO13E4PTPL1q0b8YKAOE6BUrJcSQchFBQarTXJMMF1JcpRJZ3RdUmSBKMNjuNgjEZYh067z3AYU6uF9LtDKpWQIi+YnVmhWokYDIa4rodyXISVHDlyGpMqPNfHGokfBaWhc5qhC82xk7OMj7fKbGggS0n4ouDn9p/guns2sPG2zcipGm+6fRM7Nk2R5QmOo0jTFVzPw2iFVCCFJM9zgjBEG00Y+gSBx6DXJfA9+t2YwTCmEji0F5apBYK4fQpHKrrtDlFQJ273sCYBD7rdWarNFnhNVk4+iwolWaEZH9/Iwtw8Ou2U9FTPJc4TEBIhDVmqKbIYhKJSb1FtrQck/TTlzz5/gH3tBnu/6t3csGsP73rnO5jefh0qDCkoM2Sm0AgKFo/tR0rF+m27GJvayrrJKVrjY+iiNFaXfpPa+DQaS2/uGBumt2G9OsNhlzD0mZs7SRz3CIMaWWeJ9tIirh8wMjJFEFUYxjFZYfnwR/+WO6sNpBDI1QL8oigNx621aF3wzHMHUEpSqzcwq3YPSin2v3CQaiXAcRVSqlLpMs8Iaq5CEgAAIABJREFUPJe430coUXrh9YY4ygEMQjm4vo/vVEiLhO94/Wux2l0FkoJev4dUBm0ykrhPtRpgUKurroLM9BBFgi9DtPXoDweEUUToOvhRAMbwuYceZWlphSxOUKtqm54fIKzA8xymR0f55ltv4eaJcd7zoQ/x4SNHqWYJ28bWl+qrWUEQhXi+y8TIKEmWnqNxf+jjn+a+196JGzhYATorODM3R1AJ8P0AqQRSCuJ+Fyk1Sys9vNBBUbIEPMej4kUcPHiC4ydmGB8ZAwkLs8s8/fxBtmzeQKEL0jTj0LHjTIyM4Qc+c3NLRKHHoD+k3+8RRh5IH6NzQCMdF+k4ZR9chasU901OMHfqOEcOzTDaHGFmocvJxS5bp6aZnt7I8ePz7NmxlVazikDiei7KkbTbPZI0o1YPUcrlzOwyS8Mu101vRGBZt75Fvx0T+T4uLgdfmKEZuqwsdOgvdwkqPt1en6cOHmHv9s2cOT3HSLOGsYYz80vEWcrGdWPMzi2gtcVxFI6vqFQcOr0+qUkZG6shUDy6tMwPP/oEX8jg48tdPrnS49MrPRq3r+fub97GutvHOKMPcv/bd/PFR/YjHAfP9dm79waGhaGz1CMetGk26mjplePZWRBylezO1aapZ4+qjgasuznkhfZj/NKP/RY37bmV1kjrWofVa44r0TIv3ueVA0uXnnst6ASlkAWUIMFett/FU/C/P3B3tc/Kflz2fa6xa+eIsOJC79/yPXU2W7wmCLrkI3GFbS/nCpXfR6wBeM6f8UrnXRM2CbHG/fdK//4u7MHF7a39XF7+HJfXwK7Jjbvsfl7rd3TJz47r/dS19HfN3r2aufvy4pXI3F30K1ldBRDCnqstu1LIq6xurJ2SL/c7m69a6164Uubud3/799kbzHH7DdPlsZf25Yq9vDwuOvbC72AFWZKztLBIFPokyZCFhQVG6i06nZiTZ5ZotWosL/XQZIw2IrK8YP26EWYX5zk51+ZwOs6O3Xfyhre/FZslHHzqSY4cPcyws0Q0vokHP/Vx8rTH+3/+59m892Y04KxhvTCcP0mSamZn23zko5/kvd/yHv78L/6Cf9ZfIPBchHLAGvqdLk4QYgvoD/rUaiFWCMKoXNUGycz8PNu3TpcXV5QDUL/fpxoG5FrjBQHSUQhjMbku14OUoLvcJQpDDJAkKUma0xypQG7xIg9jLK7jgFQIAcYWfOQTD/O2N9xFmmWElYC5M0vUq1U63S5FZpCOYmy0hue7xMOMR57Yz+vvupFub4DBMDJax1GKLCmBhHLKRYbZM4v0hkN27thS+vspSZpmBEFAUSQ4UpBrg+8H9HsJtXpEoS2njp/hmUOnGW1U2b1jEsdVuK4LlABP6wLllpNuYwzWWFYW+rSaFfqDPkoJqs06SZwSRgH99oBKNUC6DlI6GAOP7nuO227agRGr8vGey3AY47mlt97Z6A36/Oj+E7z/W29jJKyWIFiCzgd0OjnVRgPXkwgrEcpSGI1DQJZlKDdHKb9UtZKSfq9PtVpFWLMq9hFRZAXLSytMrBstiZFSEq/MMHvqAOs3Xk/UGKWwAYU15AvHmZuZJ3JAOBmyEHzpyBnuuvNekjzh8MwMH913iKWeodYc4eYt4/zOx5/m9MnjfN3b76PIJRPNlE0bRrjn3nuYvPHt1FtTWJGibECZI9ZgDZ1egpRQrQQl3cSWansCzcnn9xFVXKKRKQZZRL1VRwqLMhpjM7AuuA6ZjumeOoJXncR3PY4eO8y2Ldcz7PeQIke6HoP5Mzz99AFuvGUPc4t9brhxL1aWoh3f+N5v40+//utXyQjlM68LQ5IkVOohRlvay13qjRqOo0CWvoZCyFI0pEjRxpDnmjAKMcIBu7ryWaSl0Miq4qgflbWjCIEjFXmRo5QiT0uKcJIM8SshJtEoVSpeDvo9gnqEMJayGkIhbEq336VSbyBsWavqKEUc90ulNC3wKhWkNRhTemPmaYIX+MTDFC/0EVYzP3Oa5ugIgR8xiFM+WvX40P/zYX7vbe/A8z0GvT7Hjp5kYnSUkfEmRoCyCoNGW40uLA88+EXe9ubXkxU5juuUdhtBgNUSSOktDfirTz/A//51b+cTn3uIW2/YwezyHDfduIs8TxkMhvQ7MZPr1zEcDokiB+V59LodarUIo12WlleY3DDGoDfE872SHisFWgtWlhYJPAevVsd1vLI+sIhZmp/HUw6/8+QzvN13GRsfoTHWoNfpUq9VsFKyuLDE3Gyb3bu2sLTUodVo4HqKP/nw53nP170BnZY2IjNnltg8tQGtDYePnaBei2i0AsCy//BJKl6VDVPjKMfS6QxZNzrOM/sPs2Vqglo1AuD46VmOzs5z63XbsMJQaIPnuDi+z5EjJ5iYaPELJxZouZInl7vcd9ddLHfadNttWm8IcEcjosCl021Tq7r0eppms8LCyhCRrDA1vR4jPJq1GgsrXebbAzaua/HEEwfZvt5lZW6Wie2buW77NnLrIM5BkQvHP3PB/8/+fWVgs1b0upo73K/mrrvvuHxwfZnz4WvJ3J3fdy3o9fKmRmtmaezFX+RCmqu6yhc8O+/5ylExL4yXco4L+395lu2lZO7Ofl9r7QXzs4vncmuFvugne3H7V8ncrZURvRIwuRohV9qr1Mdd1OD5M17aztVU3/++4mx2ba3M3dkQa9yrl9bcXUsbr2bu/gHjlcncnQ8hRKn6Zs96u13lBXvBMZe1cZUjXmrm7pd//Af4V2+YZmqsflnbV+rTS404Tlg8M4MpEuJem2F/hZNHTtLpdjl0YolmzSMn5+jMLDt3bMRVik6ngy4KfL/G6Og4x07Mstgb8PBjz/FV7/xadJawdWqCP/rDP2DPtiluvnEPr/mq+8h78zz/+GMcXexy0803XdZnIQRp5xTrN07iOA533nUnStW46+7b+Y//7X9wR+jTGwwxxuA64Ecuge9Tq1aQUhFGAUopkmHG33z+cW6/cTtSChbnByAkge8ShR6pLkrT636MtHLV68aW5rxKUK1U6SzHPPjYc+zdvRXP9/BDj2yYIl2HOE7wPZdDR09SC6tIKdm6cZIsy2k26mRFwWe++CzrG6Xv3cGTZ9iz63ryNC1FU+oeW6ZaWK04fnqejZsmODM7T+B7iFUaoBAC5bv4rouvHKQRDLMYKcEPPTC2NIv2PKQtlQt916XTbuNHdSLf5fTcIrfdtJOoFuB4alVcZMDBoydZt25slVJpMab0wKtWwzIL4iiiIKAQENYisizDc8Bag3Q9siJH55rpqQnSJKEwGZ4bIikpo0pJ/tvxGX55/1Emb1rH9a/ZyLteswtJSftTsnwlF4MloqjO7NwSUa2Cq8qsp5KS/mCRMIooMgGy5P4DpRGz8tB5Xtpg+AHCdQl8j3jYxbM57eWTODYjFA5zM30OHzlF5Pn83eefwy16jG/cwDf9xsN86oTkVz55gGPLdRYb4/zynzzAnW/+HlLd4h3f8C0cPLrI1LY7eWL/s0xt2MjM0hyRbXNgNiVdnmO7P8e0PcHRfR9j8ZlP8N//6MP8wq/+Pof/7iP89v/4CN/0nneW9XSiXECwohS9SJOESn2MubkTKBRjY5NYCa7rlP5mjo9BldYdNqNRbeL5VUQypNIcY2muww/9wI/yT/7JNzDMEgadPj/ywz/BV7/1dWzYuAkrNEudRcbrEe+ME7IkRa7eU2magRQEYSmuoqSD73k8+uiXGB2p4vkWKT2Qil5viOsHSOmgVrOOJs9xpcBR4pwirJC2tCUQsjRV15rcxkjj8beffIjrr58iGcQlpdgLEEqTZKWZNVLjKY8sGbKytIA2BW6jRRjUMUONUmCMQXkeSpTG2PMLy1QbDYQjzhV+WJtjjeWBv3uCdeNj+J6iWY/wwxBtLMpzOHLwAAvtJd72kz/MP/uZn+c9e25iYt0YnlQIJUAJrLZlbafjoLRgvFEvfeeExPdKZdHcQI4lTbsoDBvG6oTVGtOT6zh05Bi33HgTeabx3IBqtYYjJMbkVGoe/W4f1w+IKgFFmhJUK6VFiBAEQRUrVUk5RaGkwJMuruNR3v4SnSV0V5YYG22hKk1ubE3Qp03Vc0EXxMM+Tz51gumpSULHZ3y8ies59Np9lFI8+exBRuo1JiYanDw8R6K7rB9v8plP7cfxNXGSMzEyQqedIIXD5qlpnnvhNKO1KkkcM1JrsjDfYbTRZHZumYXFDv0swVUugXKZmp7k+aMncJs1fvv4GX70o5/g2OgEyY6b+fwTD5OELq0bQtLt88it0Njl0hl0qdWrHD92mrHRiC0bWvSHKVNjdfJc02g2qEQhynN56In9DJZXuHHnFkye4VcD6qMtajWBHZxhebGD9SKCIFxjTLyEjrjWqv+LjJe+r1hyj/Gz3/frvPvdX3/+uC+jVuhaMnfn930laKGXjcRr7nc5XD4fl2ZgrnzulxMv9Rwvkom8VlrmhcDhEnD3YuytK7Z/lczdWtfqStfvxTLP13TdL+zLFfb/+8rgrRUXZ0uvtOXK1+xaen72TK9m7v4B45Wpubv45wtXpvRFn0NelKvHcPENf2mm7uXwqOHiFZ3v/jffx/vevYfW6qro5T09H1cjKKy1ricRYA1Jf8hTTzzD5GSLRmMcKyxplrD/uYM4Enbv2YUXVTAGur0OC3OLfOnp4+y6fgowrJtoceT4GZY7Ca4jGW2EjE2M8Iljkre87Z088uhjHN6/H1do7rzlRh7Y9zTCZNR9iRd6VCameO+3fyfVWnROWctYzef++iPc9do3Y6zkkS98invuu5/ecMC+v9vHzs99itGxOhqNUmW9m+d7CKfMJhRZirCQxjn7jxxn57Zp3CBg8UybnIKJ9aN8+BNf5N5br6PWqHPk6El2XrcRx3PBkSAU3eU2tWqFE8fmSXXC+tERrLE0xpooJRiu0hIdV7E4v0IyTGk1I3JbUKvX0IXF8XwQpehIOclzKYxGCkE8jAmjAK0N2mikkWR5gu8HxIOc+kilVIdzSsPkhbkFWs06c3PLjIy08AMHnWmkAwhBURiMKfBcn6PHzrDS63L7LTeSxW3yVOJ6CjdwUK4iTwqsLdUBHUeipCA3hv6gT6PRIB7EeK6HFRbXVxSJRihVgtkg4MknDnFyaYl33X9nWV+XJkRRyDBJeaIz4LeOnGKqFfIDb9tGs9Wi0RzD2pQ8z5FSkWUpYRjRbXepN+sIUT5xZ7dba4iHfaxQVKOIpaUFxifGQbpYbYiHQ6QrCUNFkdiSQqwqDAdtsrhPc3QMCXQWF3jiSy9w62238sGPPcu+w0ts27iJ7/+e7+ETH/kTThw/zfd8/4+XkvVKMHP6JA98YR/vfu/X8q3f/l3812/fzmIvYcP4CIN+TBBJ4p4mT48gNEhpsEISVhvUx7dhhQJysA5C2HMrnZ9+psM7vvcXLn44LXhScmZ2hqI/h9IxWkX4UQXX9zCFpDY+iZJuma0UBTNH97Nu804W5pcYaY6w75Gn+OX/6xf53d/5NfKsoLc8i7aWuD/Hlt33kBtN4Fqk8On+1z8iCFyMMOSJRkqL6yryvLSWsMZitKHXbVOv1Thxcp5NW6dwXQ+LxujSpLw0lLMUWYZQEqUCrASsxhQGRzlkWYzrR4CmKAqEcMiTDM93KNIER4FwfLICpNA8vu+F/5e9Nw+SNDnLPH/u/t1xR+R9VGXWXX13q3UxOlpIgkFIXFLrwFgEAwtolsFgd1ljdjFsBcPsGMMOM8ACsza2O7MDaDkEmhE6EJJaakmtVnf1XdV1n1mVlXdEZJzf5b5/fJFVmVlZ1dXVWtM/crO0jMjwz93jy8/d38ff531eXveGu8EkWBY062sUSiOkSYjt2aQCpMlk7yVZTrmw2yWJInLFPHEaY1suq4t1kIZSqUCaJug0IY4TitUyqTHIgdeexNDv9VkNW/y7cxf5x+/6Xla+9CXee+Bu/FyOx772FM31Jv/47W9BWhqUjaUYfD+HKM1Sazz17Is8eP8hckEOKWFlZZFyqUBqbNIkRmhzDfCmiSZXKGN0xNylFY6dfplH/tHDBG6eMO4iHRejs4TwnV5CsZgjU3sVWI6LMTJjkyCJeg0WFhbpdODg4X001tbJBQE//fnP8McPHgKTcOTYSd784AOE/R6pzpRG5xeWEQhSrdk9NcqVq8tMTYziBjbN+iI2BVKjSY2h1e4CMDJUQLkeGMPS1QVW1roM1UrYjk3guziuw8snzzM7PUYcav7m9Ck+VW9z7swJ/sdf+hU+8an/QmE4x11vmmS1EVK7PyBOU64utfmBtz9Ap9dDCoWtNEkSk+qUejum3mgzOeSx3kuYGKlx/sIiIyMFtIaXXr7MfffsxWDwVIyWeQJX8fKFBR4+MMLpMycp+jHtRp/8yAzDk1MZG8dsUOt2IqZt7Jli0+vbIW1CY7HHN/+v0/zZn/8npLwxHm+7R+52yxaxFeDWif3gtXrutrYkEDcznrd1fUtVxltY1rfy6t3My7W10dt1k766+3KrPH6bvXiwdeyvnM945//Z7diK10Vabl5uJ+/yrdreXO86o0pvsXm317+dfrQxW0JwNj8j28Hxlti77Qh8h3m0U2ye3Naqvtbeze/Bxpi87yYx/86V1wruNvJpbS1my0vJ9smULSLSZISOnU5rXo1E7i3HN2jniT/7N7xh/+gNn78iuBuoW26/RpCFnxoMKpX0Oi3On7tA4NgUy3m8IODc6SUuzC/gOgolDMVCgQMH92A7HlIIlheXsB3Jk0de5KH7DuC5DosLy5yfW+TAvhl818X3XNIk80z9xt8eJS8S3v/oB2iuNonDmLe8852sLi3y+c9+mslKQLFaJrJ9Hv3ZjyEsde3b6HqTywtrVIaHCMMl0jSHX8iR9EJ+/7/5KO+dnsR2Fa7jMDU1RkofjEQaF2FtxHoZ4jijjAW5HGlscPIunXaPZ144yevvPYQXOKRJTKo1jpslyhXSot/pkJqEfFAkTRO67R5hP6JUK2OShNPnLnH4wCyLS6sU8gGu62YJtoUhimOiKM4onQIwmrgX4rkOqTBgJHEU4XoeUpKJsng+oPmHrz3DI298HbZj6PWymDnbVfR6XVzHRqciS+idJpman9BEYYjn+QNKMeg4RQkFtsPa8hLPvHCBd7/jIfr9Lrm8TxxrkALLtkniZBAjJFG2ZH29jWs7uJ6PkAKtE4yySaMIgck8L9LHC2wQgm6nx794+Qwmb/GT33sPd88OIySsry2RxiF+Lofjl9BpiJLXc4x1+x0KhQJhpHFcSa/Tw3dttI6wnCJR2EFKjVA5lIJWc518ocCF85eZ3jWJUIZeu45jF1hammNycgbQRFGXi6uaj/zWnzJSHefh+x6kVM3zcz//MX72oz9DvlxmpbnGULXM3NWrlIsVGs01fusHhvA8G9eyGZ+uokSObmcNxMDgM4KgUOTShStMTwYY3adZX8b3HaRlU6jOImwXSDIq5bZt+KN/dIK//Ks/3TIp0zAmjDSBHbM69yLrjTqO42G5Fl5QZKUt2bf/bpTjok1CY+k8yq9hWxZpalNfXcW2YoTogwkQUZtEQ4qgVBnDdh2E0PzWb/0u/8PuWZQSWI6VCXMAcRjheE42FpNiBoJpQisSDUpqBIIkHaQisDySJAODSRwipMSyFEJYGJMgjCGJNWnaJ0oSgnyONEpwXJ8oSrAdm363i2WB0IbjJ69y9717SCI4d/ECM7unBoI0CZYToJOERmMdpKI6VEbrlIFPMFNEtbNk62nUQ8eSZqPNyOQIcRxj2zZGp3Q7XXKFHNpolGWRpilxP8qoySJLKfCRT3+aP/6Df8Mv//Kv8h9/4D1Yjku/3cUYjespDFnsIUaQphqlNBhBvxdiuQrXdel2e7iex9rSVaoTk0gdk4QJBk0c9vF9D2HlSHULk3qQaoxK6KyH+IHCC/IkGoTtIY3OmCPGZN/ZtgGD0Sm9Zh1hBMoJQDkoW9BYqlNfadBUCWphjoP7dg2UZzMV3m88f5zve8tDHHn+JPcemkWnWdqTMIpZWGkwPFJkerLIS8/PMzUxjBs4nDx7hfsP7xsopNrUG2vEcYRSNjk/YHmliWNbjIxUeNenPsu+6T1MjYzy7u9/B//+P/85UdTldf/tLqrVIS7Nr6K1xnNtcoHN2FCNJ148z6F9U1y6eIXZXeMMFQMe++pzvPORB7i0VOfk8Uvs3zPE1cUGnUizf+8ueq0GzVaf5cUWtYka9x2c5dT5OQ7v3UUYh5ydW+bQnjHml5dZu3CZXSOCFMHk4TdhWYJUp7hKkRizBR7cZCe99ulNfBnb3md1P/XxZ/jkJ/9ia83bBHc32oabLQ2zY0zUTm28Wi/LtwPc3ZQeuMNQdhJy2Q6WdgJ3179bxrB55Q7vzAi7Fbi7HQrlTtddH9sOYORVDHM7LXRz2Q7ubgdraBgwlnauL2SW1mIzOLsV5fY7De7kILxoS50d+rmhHcBo/ZqSmH+Xlvkay2ulZZptXPKsiC1/2+zONlxfVMQOV15rd/uCd4tA21uVT3/6c8w2n2Kqln9V112f8zuRUAzSCGQKUbvP3IWzXL26wJ7ZKRzfwy+WcP0iOo7Zv3+G8fEavmtz/ORFCnmPQj5ACoNjOxw9eoZ9sxPEkaZaK6GUYGJiGExKFEXYjsvKepdcPsf733YXf/XMPO9429uRnsf03r289PwRoiRheHyCqyttHji8l+ee/ApveOT7Uc4gEF4bOkuXsb0cygtIdErg5fH8jC74f37uC/zQRI1qrUi1VkabBB0JWs0Wnp8lQNcmxXVclOXRanWwXItGo0Eu8LFtm2re59TZq9jC4AY2tuOgLEUcxUgkTz5znJHhIsIolK1QUiKVwvYcLEtRrZbodHuUK0Us2yYd0MFefPEcz584T6fbZffEKO1uD9f38CxFu9HCDXJoLbBdO4vTG3ju4jCi1+lzYHaKKOrhuHaW6kEqwjDL9eR5HitLDdIkwqQaNx+gVCbOEnYjLpy/ggRyOQ+pLBQGP3A5eGCG1ET0eyFqoBAaeAHaGGzHoh+GxP2EfjehVC6QmpROq0ej0cLzvYyGZ1KkkNi2zadWF/nNZ0/yjaXLvO9Dr+edb9rDux+apVqwkXbmgfA9H8v1kJaLVF42TpXFb6VaY1kOkGA7Pv12E0u6RFFMnMZIx0NKG4khjRMSo3GCHCQdcnkfRUqvuYQ0XVy7xMULF3nx3AK/8Edf5s+/co53/uBPMz6xi9MXzvGlr3yR9XaP7oWn+YnXWzz6PWO8dZfkLXss3rrb4UcfqPDGSYv9+yYZGxuiWs3T6XXw/TxJFGNSwfmLi7i2RXOtR74gCbuKbtymWKjQ7/XIBQGW4yOkPdiAMpGczeUzzy7x/g+8/9r7LFWHprW+hlusUhiaJNYu7TCm014m7tUp5vOsraxQqtWYm7+AivsYaZHzfRIjyXk5FucXKJWKRJFhfW2VTjekNjmLKwSOZbNSrzP/95/jvslJLFsihELKzAv1l5/6Iof372FxYRHPc5FKYUkrW/OEzlK4CImUAyEVYwaHHzqjYQpBEvfQYY8k6mCSHmnUw7UEENFqrJOELRQaRIoQOrNklEMUaoaGh+mHmRBOqVogTWIcx8NgIYQk7PbI+QGFfA6NJklCbMvFiCSjBlsWKQpbWdiugxc4g1hpgRQSo8H1PHSaZkwFpRAyo1w6jk2n0yMIAn5k717UiTN87tJF3vMrP89Hf+8PeUe1TLlSAMuhvV7HUjZCKZrr6yhpEcYxtudkYDNz9mMyvyIqDbH9PGGqcZwAYQytTpsTp87jWz6ub5PEGse1MKkg1jEYiet5A2XuzLRurbfxPA8tJCLt0KuvcuTYWfbtPYARFnESoTScOHUWx3XYv3ua//XoyzxSLmJJi7//+tPsm9lFznFYWVljuFLi9PkrTE+MZh7RJKFczDExNUqz1WB2ajcraw0uXVnB8ywmxmt88/njVPI+wgjCfsLuPVOcPHWBP7wyz5cSi7f9/MeoVmr8l899ltEP1KjnrxAN9bnre3cxNTZKmKQMV4ssrrSolHPkPJuFhRWmxqqE/T61okc+F3D20hJGKtZaPfZNj7FUb4AW3H1oN8r3GanUsJRGKIVXyHN1vs6x43O88fV38+XHnuSuwzMkSUQp51Iq5BiZmMZ4eZZXO6wvLTM2WgWZxeBtF/24yU566/1+RyIYHHpkgifOPM7Jr1zivvvvu9mWfJtluwfwduq/enC3k51yo4V0nYa4k1DITrBU7FD3Zv1vf31TCuM1KfubNfza6YM3wPZNgGr7ZzuJytx43a3HdsO9vi2Rlh28nTu2fosywE83FbYje+bktrG8WsrtDXF8W4dwQ92t9W9+qLC5/tbrbv0s7zhGMjvfdu6clvldcPcay52Du2y50foVTsAGD/P1JI7cNE/dtsu2/Lza8vjXnuC//t//jo88VL5lG9f6GJw+blaB2rLAblBQhEZEKZfOnWe9vkYYhpTLFSqVChpJHAvqy3VOHj3D1aUVJidGkVLR6XaIooihSoGnjzzH4sI6jUaLdrdHtZzD933OnLuEsrL4KJ0YTCqpjYxQLgakYYxtK6btLv/bJ/6Bn/zwR/D9AMcvc+L0BfYdOMy+vYcoDY3zmc9+AdVbZ//rXp8lvxYKr1Di/PFnyA9N4Cgb6SgUBkioFnymlhYQQuB6mVfJaCiWcvTDDo6bA+OgRcqXvvQ85WIOgaE2FqABIWxMajE+UcXLu7iekyVdlRbKsul1euyamsD3gyy3izFEvRQhbRxXZTQF28FxXVZX1rGlyDwBUlItlzi0d4LJXWOsXl3NkmlLaDcbmXFtuazX2+gkO5lfXVmjkM8RJhG5gp+lbXBypHGISTVzc4usNNYZrlaIwpB2p4OlFK7nEHa7WLYPCNzAJ+cXePzIUcYqZfycjzYpSEPUN0hhMEYgpYMSNs3GMsgUrTW+n+epp04+6quDAAAgAElEQVRRyNn4OQ9LWQgEQhvSJCaJNc+vtvjnL5ygss/jfe88zA/cP82YbxgdG8a2rUGsSYoygjSJkMoQRxrfzUNqSIkRpMRRiGVZKGkIwwhLOoSJJlcsYNkeWDGOdujFbaRtZ15jbei0OqT9Bn6uRISH7eexEHz49x/n+z/yq/TsUb74jW8yVS3w+ONf5JfeCj/0wBA/eN8YDw0b7t/lMDM9jrIlrudQq1VIk5h+P2JkOM+FuQWEMYRhjGfbHHn2BENDJRAphXxAP4zZtXuUCxeWSLUhjW2W19p0Wg2KlSJevoZB7Xi6CHBltc+b3/U+4PpJrQEc36fT6eC7HkGpTKE6TALouE/JHaPdXSNsSwp2SOLnCPJTxGGHpcvnSfoa187xu7/zb5kamaQ8pLCkTTlwkI5NH4NyXO6rt5DKyWhegzyLRhvuPjxDEicZOIx7mKiL0QloiRKKNI0QliCKExwro8QKA2iBjmN03ELFEUZFmMQQhwlGx8Q6QqMRCmzLQacJab+HSFPCTg9bSpSwsH2JFDYYsBRIS5EmOvPIGY1tZQAkTUKk5UIi6IfrOCpbCZRUSClAQhJGYFkkSYzl2AgpaTbWkUpmBylITJKi4wRlC9qtdSxrQxRI4/k53j06zLce/xY//LGfpPaW7+ETn/4sh0sFbDvg6vwS5XKZ+bkFQDFULXLx3AVs38FzXYzJaEy265PKmH6zg+8HGJN5LD0vRznwWG/1sKTEqIQ0NQS5PMp2cXyfNNUIo+lHXYhjvHxAYimOP/0sgR8QGc3s9F66vR5JEiGThPmry0xOjFOtVnn8yac5kfQYqTexleDg7DQvHDvDof0zKEdz7NxFDs5M8eLJc+Rdh6WVOquNFhOjQ5gUkJpCpUQ5FzA+XMUISSkH1VqZJAZch0e/9AT/5F//Ht86fpxTay9xUV+k/Aab/d87RqPe5u7D+9m3e4JvHTnOwf2TXLi8SJQKXFuyvNJg38w45XKRSj5Pt9/h5YtthisBaWowaY98sUKqU64urHHvPQeJophOL+H4uYu4NkyM1Oj2I8bHyoyMlDh7cR6hbITtMVat0u60cWTCet/gOi5uvoCV9Jg/fYao3yNXriJJMWJjLxXb9u7thuXmWtt34s3vrtd1XAljLf7y//073nj3m3EchxsthEG74kZvh7nWpxmsErei1Mlt77eOS5qtPe4Etm7l4THb7spOsWobbevrNa6N+lZenQ2DfCfhEK0z7zVCXOvv+ne9PbrsLa0xcx2Abr8v26+QIpPlETt5tm7ew7XPpLiR4Lv5/3LDdduA1MbPziIwm+4vDLhZGfXYCLL4biEGr7f9DC7fiCkUQiDk4JYPfrIbIwb6OjsDztsSbdlc34CSAm0GwPFmd/CVjGqz6cOdp+0r/wwuTAcpy74L7r6D5c7B3fUH8JUOtm4VMPztLkeOPMfwlS8zZTV4+MD4q+95k4fx2vNqQBjB2WMnWb58mUazRa1SolypkqLwcj6ryw2uXl7h4qXzHL5rL2NTE7hC88zzx+h1O8zPz9PuJoChUPBZ7XZ485sfYPeucZYXl9FGMjk5QblUQmBjtKA2UkEqg7JspJB0ej0mp8Z47wPTnDt+hLGDr8cQceTIkzzwwD3YvsJxFQ++/gEarSbPf/NpHnzdg0Qyiwf78uc+xaF770eIjGK0tLREIZcjcFx+8RN/w4f3TpMkKXbeJUmh3e4TFEo01xpYnkbhMDM9TKmUx3FcrNQjibINKyXGAhSSJExI4yxmKOpFLC+sMDRWot/r02p2sWyB4w/yyhmNSWKEMfQ7fc6dv4wShnzeJ+pHKNeQhBFSOnzz2WPsmh5FGIMlFUmSeUI+8+VnCLt9JseHMEYTFDxs2yHqhywt1fnGs8eZ3T2OZTuUayXyvovt2Li+Q+B7BMUiGoEf5Ij6EVJIpATbNsyM1RDAyycvUqtWMULjug79sI1BkiaSc2evkC/4eK6P4/rEUcLoSB7fd1C2jWUrBIJ/8tRL7L0nz763HGZd1/mF972e6aEqnudjO4rpqQkcxybVWX48ISCOU4zRWLaNEApEMkhnEJDEMWmS4rge585colAIMGgEMXHUxVYuaRwhHR8TdejXl3H8Eq3mGml3jUa3zx88vsJCPMTQ/rfwl0+e58P3asbiU8w4C3zozVN83z1l3jjjUioXCXIexUKAbSnW6uusr3eoDpVRCFaX69RXW0xODBOFmpFalSTN8qXZtkWvG3L05St4TuYNcj2LucvLjI5UmF+oY9mK9VaH3VNVLMtkuc+kTZZCRLLdAHnD/jKXmaVcLl2b40pJhJB4rjuYu4ZeP6JcHMW3y/TidbqmRSmXp9e9SLW8G9sSLF89yaVLLc6cvcJafZ2//ptP8o63vRkjUuIo5YlvHmX37H6EtPjvf/bniE5cYbxawXYEQqksJkGDUhZrKw3SVJMv5LFsH2W5SFshrMwgSeIsRrTfa2NZmijs0Os2SfqtjM5sYtIwoR+2kDIGnSKMQWqNTGLifgcpNBpIdYRUKf2wi5AJvfY6jjKZ11uCMhIls2dPxz1SDV9+4gh7D+wdGFYCx/ZAQtiPEEKSsZwzj6MCLOnQWW+hTUKQ85BSgZSkSQxCD4CeAhRekMWSCZV5NB1Hsq82QnVphfTFE/zRS0f55MmTfOjee/E9F0tJpBSsN5vkywHVkQq2cgaUTYijGCVVBo5tTZoYIEUPPPPCigmKAUHgoaSH6wVkqTXUNY9jHEZYloMd5EnDDmuXzjA0PIzGIZevIaTA9myEkKyvd6kOFXjquaPU15rs37OLUjfiLYdnKZbzuLbD6HCZKOnT6yTMTIwT9RNqxSLVoRJjY0MM18ooR5JEWVwwQtLr90nihG6vxy+fvsL54ij3ffAn+N2vfpWh9xRZck5RutvhTe++j6FdHr1QsLSyyl37d6OUYmGtyej4JF95/AVGxyo019vsmR5huFbmwpUVut0Iz4oo+jlGawWOnr6CY9sEQY5Gq8lLL5zj/vv389yxi0hLMzZUJZ/zqJUq1FtZao/L86tMjtdItcYAM6MF6uttXM+nHacUfBulFDkvYK6rmZ6ZZGnuPJ7Vxw9GQe7s59hMRNz86kbvzM3fbbQxNOtzvPE0f/K//xnvffcP3mr73lIyT8mO1Xcc8a08J9s/efXp+cSN7ewA7rKR7HD1Lb1CNwcKaoAuBphi545vMd7bKVv+Z7cAd69VTETsAO5u1eItxVNuAe4gy61sDIP9WNxSPHCjbLF3b9W+2Pl5fbX3RwNpqsGkGfC8A2/zTmO7s5JdKEWW1kLZ9nfB3XeqvFZwlxWzw9+uf/RapnKr08HzvMxY2/bAbnfhnzlznoO9Z6+NZPsIb7kgbBytbMzeDdqoMUTdHqeOnybwPcrVAlLaRGFIc71DqVLi0oXLKCkZGx2m3+/T6fXJ5fM4rs/s3hlGJ8d56fgFwjBmz8w4w7Uqi4vLjAxXMqqaMaRaE/iZ5PnS4hoT02MDIypFm0xm3fNdemFErVpmuBRw7uhT/M5//gzv/+EfQkrFk0ee5aGHX0+5NsTMwUN4JuJvP/Vfue/hN9Du9RnLSwqVGvVOn2a9zcL8AuNjo8T9iIfvuYvypXPYrk1ntQWp4YWjZ5geGWat2aSQz2FZWTydkJIvfO0Ie2ZqrDaatJs9nn3mLLN7RrBsC60Na/Umge/x1PMnGCplQKffD6kNlbAdhzCKcWyLfq+fJQEXEp2kjI8NERQCmq02uXyOTj1FYLA8xdToCI5rgzGsLDfx/YDz5y/xxvv3s2vXMEIITp25zNBwFaUU3W6PWrXC1FiNv3vsKWYnhhEyo8dtxBFFcYJSEiWz2KkL5+cplwrU601ADLx6LkO1Co6TeVXDfoztWli2z4svneXli3M89MABHM9jdaVOsZwjCmNyeZ+ffOJFXui2eecP3McEXfbtniRX9CkWs7hCy7azU/aBZ1hrTa/Xy3LNtTsEQW7wPKZYyqHXSQn8ckZdMwbXdUnTlKHhgaFq2di2RRxHWJaL7SiEsWnU5+l1FjlypsHP/P4XKO6+H8Zfx9997ou8bqjDA8VLPDgWUsu79NttlpfrtDtdqtUS7VaHcqVAp72OpSy+9fRZ8nmHYt7Hdi3iJKFSLdELQ6TMTiNPn77Mnr2TuEHApYvzHDo4Q+DbJKmmXC7i2DbtTp+x0RorK010CmOjJYaHAsJ+F9vzQboD0YsbaZkAH/8Pj/GeH/z+wSm3YbPXIIsEFthOBuRty2L+3AVc32Nk/C7y5RKNVgdpO3iux9WlFqfPnuWR7307H/7wj7G6PEelXAMk+w7fkykvkvLObkitVCRfyOM4dgYelCLqhYDA8TIFWK3TAatBZPGcUqJTg2NbWEpgSYckjEjDEMeSaJPSbnVQKkGJlLifCYikuk+ahoCh1++jsFlaWsK2M6VQgcJWNtqkWEJgKej3+3i2na15aUqcRKRa4/oB46Mj2K6LNGBISOIElMRxHKSQJFGEbQmMkGidsHB1mSsLi0xOjCPkICZDKAQZcNEGlFLZs2sMQoISGV0zjvpImdEsHdvhfXtn+Yf5ef78xRf4kX37EAIcx2Jxvo4f+Lh+nqgfEkcxjmMThTGOK1lZqeM5LiaJsd0s9s8kKZ6Xw7IDkj5IS2KEQFqSOE3QcZKxFlyHJEroNNaYvzLP7Ox+lFtESoMhJuyF1FdW0ElKqVLBsR2mJ8axleTsxcu8+YF7uXDyJPkgoNfvo9OUbi8kTQzFYo4Lc1dJ4oQgcHnm6Gl2TYyCLUhCzaVLS1QqeRzH4p+9fI57fvwnOH/+IpM/VuSJxSc4+NZhWr0Otq04dfIi05MjaBNhjKLTbTM+VOHM/ApJnDAzNoSxNEOVAnumxkh0RDEIePHEZe7aO0uvv8qJ803GRzKV4UopIE41+3ePM7N7gnqzy2jFZ3SkQhhpnnvmNJcX61ydX+Xh+/bQaLc4deIyhXKOw3umCFyL0xeXsB2bsB+R812klLi2xXDgEEcpp84s4xSrrC3PIxybwPVAbAduG2DmRlCz9fXN2Tzb9/Lp+yr85j/9fT70oUdvrCtuTvG83XKn4G5zzNTN27jxPtwoSCNuW9rk9ssA5PFqAemtoObONeHW4O7Vlp3u5w3hY5vqvlJbGyXzAN7ozspEfLL/wIY5aAzbgN3N3VfX/KGbHB/XvHDb6WDfhqJ1cv15MSY7pPs2grudqZq3bmPDNre+C+6+c+XOwV0m9b75iZcDQHRtsdrASa9hfJZlbaEjbAZ0mxf9X//13+SHd3du2Za44ff1aAFpMhRqhBjQFQQkmrXlFeYvXmZkuEJhqEqUpLTWe3QG4hyf/9Kz3L1/grPnLzM1PcbI2BgvHTtLMe+xdPUqzzx7lInhCmncZ6RWJAgCXjp+jnsP7aHZaLHe6jA8XENakiDwcTybSrmAGIg1iCRLgu55PmlqiKIYSynm5uYZLgU8tHeI/+WP/5Jf/Nh/x9jkLmzLpdeNUI5Pr73OwcN341kO+UKZfnuR+aUrjAzvJsgFvPTiixy+6zC+79BuN7nwmc+TRAlBMYcd2OzaPYLlSRxlo4SFEGBZNtoYDu7dRZJK1uotJqdGGKr55MpFDJJGfZ3aUBljDOVC7hrYwmTjV0ohjCSKIvwgwHIyiptUgstXF1DSojpczXJKLS1TrZZJU4XrW3Q7HVzX5h++9iKBbTEzM06SxChLMTe3yMF9u+n0O7iOM8g1l+C6Nof27MKkKco22I6D0RptDK6bxSUKIWivtxgdrtHr9ckXAhwvwHJthCWJ0hTLMqTaIFEoJdGpoFDMM1bJUxkq0e10KOQ9on6fn3v2NG98+ywffOMMb7lrDM+zqA0VKJYLCJn1KwbG8WNf/SZ7ZqeveQyVzECBZWUgAQxSZXQ3RESns4rj5en2WwSeC8YlSUKUZRHGEZYKSMM2wsTEUchTx47yG391hkd/6tf43JGzrDW7vG5Mc0id5/WTFhNFie+7PPPsaeavLNGsr5MveExNj5LGKS8du8T01AhB4FNfa2Jbin17JsnlfFqtNrWh4sDo1xSKObqdHoHvkMs7CGmRz/ksLa5y8uwVZnaPEfZjLs2tMDs7ztJynatLde65e5aoH+K7mjDsIC0H1y8M1pGNs/6t5f/50lk+9KEPbKLEiC1zfOMqg0HLhNbCcRzHIEsj9Nev4JZHwMphjMPk5Ch7ZneDiLEcRbi+zHqrg+cFSMAr5vnIT/40PzI7g1/I4bhOtlaQieAopbh4cY7qcBllCYTMNnkpJXIQmySEptPqYktJp10HE+M4hjDuEkcJz734EpPDZVITcurUFZRycGxDEhp6keAbz5/A93OcOHuZkUoR10mRZB48k6ZI2yGOQ5TIRIAyaq9GKhDKQkpnkCdRQ5qpwdquhbQswn6EVAopJe3GGp7vYpRNvpSjOlTO8lZmC2SmBopGSQdjDImOsyTkQhF2elhupgyr0xRhyIRDhCCME947s4uvzc3xiZMn+cChQ3Q76/g5n3wxQElJGqc4rgIEQhmkFCjLZmF+BSU1tmsR9vrZfe/3COOE1BjEIHl8HPVxXZtGs0kQ5LGU4uL5M8T9iJGxUdbb4BUs0JrTJ84zPFxBSQiCgGajxZlTF/EClyDvM1KrcerMOS7NXcS1FMPDZY6euoBAMjk1AsIwPj6ENilpqpmZHsUYk+WD7IT83uWrfLbVZX12HxfMGdQ9Hfa8qUQvzJR9LdtGCcNwucjYWAkhJcZocp6L40oCx6eQL6BNSs63KOUdCrmAONGkSZoxJozgyuXLDI0Us2dZx4zViiAEruNwZaXNkRfPoSzDrvEKcZzQj1N2TQ+zvFzndQ/uY7nepNloc/99eykX8zz93GlCYxgp+YS9PnGSUioWkVLQ6fZ47tRlinkbX/WoBAm2ldDr9lleaeL5Pp7tXNunr6khcuMcvtnx8A2enh328sOPTPDbv/iHfPCDH9jSrtgELjcM90wd97o/5UaDfgeS6HYwsSFMsa2mEbdHnzM7frOble1A5k7A6o2gZaO11xC0+Io9buply+vNP7fT+04yfZvLzQ7qX2282uY7tGG3mkwY4po9u3kv2alIbn63tw9Hb1A64RqV+YbRvNLjtK1NYzSIzffgTsHdzn28mrY25v1GeS2pEL4L7l5juVNwJxgsasJcf7ivebu2Peyv4UHbmGB6wxUvrve/Ud7/gR/n3/7Uw8hN1JCd5ofZNGExWX6s6/UFG/QvHUVcOHWGuQvnSaJO5mGTCmPAUzZSQG24RqFUploqcuLkBZI0ZWi4jO8H1FfXWW+u0m6H3Ht4LydOn6dWLdJuddA6ZXp6lFKlQqlcwmhNsVRAWoqw17/GsE91ilKSI0deYnrXRCZcYCA/SOA9PFxFSslwOc8PPjhNUjmIH/g8+80nqRTzaFIsL0+pXGb+0kXazauUa5PEscf6eiaZf+DQPlKdMn/1CiOjozz75JM8ODGEbVmYRCCMpN+NCHL+QIJ9wN3XNkePnmF4uEghn9EDi+VCltstSRHSXLvHvufQ7YY8/8IFAt9jbm4FYQSFUkAcJyhbcuXyIrZSpGlKqeTjugFSSjqtdXzXw3Ztnn7xGFNj1ax9Ibnr4CzVcpFEaKQSGG2o1soIOZCVFxZX59col4t0ez0sIfjyt55ndmKIfj9Gpxqjs6TYOgFlWQiTLe/GGBzHApHlaGy32gR+llpCKBupBK16K1N8zLuZzLqQWErwz548Sm5fhV/7wBvwbYsnnz7Ggb3TpEYT+BltzLYV/TAGkxmu+/ZM0um2cV2fKOri2DZCWoT9EMu2MCYbq5TQqLeo1kYwJsHzcsTdDpbr0u+uZVQ4Kw9Wl5dPHufn/uQbfPnFs3zu+WV66+v8+N099uea3FsJedPdI1RqOXK+RRSlfPUbx3nkrfcyVClQLhdI0hTfczhzZo6D+yZZXFzFd20cx+Lq4jI6zWZ3EkaUKn7mxUk17WaLYyeuMlQrsrS8SnW4RKoNvh/gOjLLr1Us8PhTJ5ieKGM5invu3sfaaoNzl65SyadIkWDZRWw3T5b6Yuet9YdfP0Jv6EE8N0sMLW7YLLP32QmtwugU1/LJD08TJH1cr0SqU2yVoFOJ57mZmIttEzZDnnv+BB//+L/mA4/+KDJX4EMIol7IV75xhNldU9iWQlk2Lx09wfHT53jwwXtQMlsNDQaFJIyiQXL5jMro+i79XhbH1G7WScIOadzFSvuMDtey9YccQanKyNg0llfhK8+d4e677mFm9wz5fI5QCGrFHElKZj2IGJNGiESDTklSja0USRqSJjFRHCNNitGgLIWyJVqqQcoGMSAtSCzLBgTS9+l1WngyRQgbicwokcoQJyG2kBADUmUHEkiUyNQyz545x9DIMN31Fq7rIy2FdCx0mOIEPkLHvHtmlr85eZovXjzP+/bvIZfPI21Ft93OFEg9iEONVAadKL7x5PNMT4xSKBcRliLq9SHVuEER389jey6WsAj7PbzAw6BZmGuQRhE6WYW4zwsvL7Br1yS5wGJhbhnHdZncNc7lucvYjsPjTz3D7olJ5uYvs7hap1apYEnFyHCNkoqxlU2qBRMjVZI4pTwAUCAyr2ycsLq2jm1L/qdnT/JcUObAvffQvX+R0Qcc7np4D2cuzTNaq+A5NjnPxRhDmGjmV5tUS3lsS/HFr7zAoQPTOI7Dt549yWo3ROgUx7bIBS4GQ73dp+g5SKW4dGWRvZMBzW4WE1TJB1xarFMpl7AEKKW5/8AkqU4o5nyanYRascBzL53i0MFdXLi8mAFBz+XK/Aq7JoZ44bmLNFpdygWXZrvP5NQkT79wkheePYeXsyHsUspbKFuC41MojlMqDVEqVTh19gLr3Q5CGAI3UwC+GXDb8tpstiG2XrO5/ubDm4NvH+e3f+n/4NFHN+XFE9e9XteM8m3qghutbPaPbQUmN6dx7gTubq9sN+NvM55K3KkXbysw2QqA//8Hd1vu/zbkczu9G24UHtne13Yb85p4zK2uuwW423gGpRAZDXP797jJWLeDuy19ieuvxWZP4eDvW1Qzt6hR3PANuekNFOLaAaiQN6YVu+2yuYtt93PH6jv8fQMgb1Ch1XfB3Xeu3Cm4y3LbZcvOrSbhrcpGUOttTfZtlTbe/uj7P8xf/Np7twC7jc9vOE3ZPMbr/nIkg0mnUxrLy5w6cRJPQa1aItEptucRRZq8n2NleYV+2CfI5xEYPDtThFxYXKVY8nnppTMYneK7gkYzpFYrkSQx+XxAdajC6Ogwnu8Qxlmetn4YUipnRmYQBDSa65QrJSwryzc3NjaMUJJ+N+TYy2fI+z6e72CMJooS1tfXqZRLfP3Ln+UfnjrBzPg4uyYnsoTBjsPK8jJJEnPu5FMUcxP88R/9OT/y6PvQaUKv3x/EZuTptlv8q7/4G95VyqNsxaVLSxw7cYndk2MIKVlvNul2u3i+R6fZx3EkxVKWiNv3HaIwwvYydUNhyBI0W4pnXjrBzPQEjz//MmPDBSbGK1RrZYwWeIFNmiZUKmWUJbEcC8tx6LZ72JaN59oIDMpS1MoFwjDCtV20hm6nRxjHKJWpjipL0e1mFF5bOSQJtFsdvvHcCar5HLm8x97JMRCCKNYUinm0TrFtmzTRnD07x1CtmtEM4xijs+TXWmuUpa4HSUuLNE6wrYwe6jg27W4bSyquzrr82D/ax0jewnVdrl5dZGxiCCnJ1AaFIIqjgeS9hRQKRAo68yAry8K2JGEckaYGz3fRWqNTjWVbhGFEqVxGp4ZWu4WrbFqNVezAJWmHGB3xC3/yJf7jF8/wzbM93nGgys9+zxg/9NAQH333IRCG9UaHoaESjmdlSppS4jg2B/ZO0u22sJTN2XPzFIoenU6X6elRzpydo1LOZzn8LMHocJljxy8zMVYFneI4Co2gXm9RrRSoVIqEYUSlksfzPYQQnDk7z+hIlWIxx9zcVQ7vGyGXs/F9n2MvX6TT6TE7XaXdWkYpg5+vodwARHptY92+Tigp0ONvGnhBbzTSNuZ4nGZtLC9doZSz0E6BuXPHcd0CwpZ01lfwvBKtViNTM01ToMXQcJF3v/utjO7awyd++19yT6WGMRLfsiiVilw8fwnXdZiaGmd293TmzTUmU8MUiiRKeeHoCcbHRkBA2Fyj12nhyIQ0TOh0Y7qtLp6yuLBQZ26ty3LTMDo0RS/S1Nd7fPXrL/PIm9+AZ1vkPBfbLeJ5eSxpExTHeeKZlxmp1dCpRoddYp156ozug7FQQmEpC5OGGeSUZOkAlELIbJ5mNoggTVNAoDt1VK4IGHqtJkIabM9CCAtbuWBi4qiDcmzCqIvlSKJ+P4tpLRcRQmJLRaoNQmViLpbtkKYJxiRYjseP7tvPp+cu8cWz53jP3r0IJXAGVNI4jrCwCPsdlAPTUzWUAmX7RGGfXBDg5fJI20ObTNRLxxohwXIVmpRyMUAnEa36Op7nM1wbYb3ZpxU2aKy2kYDlOJSLRdI05cCeWZI4YXS4gGt5VCoVXjh6nLHRYRbby5Qdn9JQjiTtk8+71NfauLbNufOXyecCXj57kX+11uTRj/8G//4Tf0X5PXmmXucyOzmEshSphnIpx2qzQ851M68mBt/zCHwXgyIMe+QKPpcW1vA9n10TVUarJYQwFIOAXtTDcxzmFlbxPBvbkkwOV/C9LN6wki/QaIcs1xtcXVxjZrxCakLiJKUQ5EhNwrdemkPaCiU0/TCiVilQKeUQQrB7apjP/t2RLGbZd9ACogRsz2Fxbpnv/76HWKk3mZ4ooyS4uRyFUpVObLBclakw+y4TQ1WW1xosDVgXWkgkKSC3AK+tU3WTIbxtj79VOMWBt43xm//0D/jQhz5wrZ0BOfIa7e4aE2cHeCkw1zx7mz/PIjRuNOfvBNxla9P2FWxwMPDKl98BsOOmbW8XXLk+vtdebtbKzWy3O2nrFe9VNV0AACAASURBVK/bYuO9uvqvRDu8Fbjbsf4OtMzturJbwd1WcHozKqSQN6ptSilA3NwWf6U2b1a2p13Y3NZOZftn3wV338Fyp+Du+vogbvpwv1J5NadS2xeIVrPF6tf/Ez/1rnvusPfBGIAkjLly6QJzZ89jGUOlFFAeGiZfqmDZAUpZeK7H0aNneOboaRr1BleX6oTdHu1GHWkLpiaGePn0BQ7t28VQpYgSmkarjdEaYwSNRoupXRMkqSHIFVBS4LouSZLges5AXATyhVwWnG4Gk3WgZJcmCRPjIzQbDRzXpt8PsR2by3PzBJ5HIDSffOxJdk3N8Njff544CZnat49atUyQy7FnYohnnnmavYf2MLV7b5ZvJU2xLIvV5VU8x+XSxYu8yc7+JyPDNcoFH2nBn37mcWZGhzGJJsiXgJAg72G7Lsq26Pb6BLnMK9Vtd9EpOLbL4sIy+/ZMg4DxaoXnTp/j8N5ppFJ867ljjFbLOANKmLCzPHFCKtIo5q8//00O75vh6eeOIzSMjAxh24ovfv15ZibHkRYsrzQpBB4YhbRtXHfg7ZI233r+ONPjo4xWC4xN1LA8F9txaDY7nLuUJUf2gsyzgNBUSgVQNt1OC8/zePrFk+yeHqfTaiNldpIXdlvYtkMapiwtLRMEDmmc8NWFRQ5830FqpRKtVofR8RHiSHPsxCnuPrwH1/VQlocQCmUpkjhhba1BLp9Hmxgpspg/bTIbw2iNclwwCcrKYhjTJKPmAgOQHdBYu4JO+nz++RX+5V8f4fkrPVyR8PFHJ/jIWyZ4w+EqxbJLLlcEHWJZgmIhx/kL84xPjGWAUllYtkJaBiVg/uoaM7vHKZby+F6OF188w+7pERaX1tHaUCwWkNIijnvkcx6N5hqjY0NIyyKOE9rtLsVikdV6kySNcaSg2+mjU8HFuSUmxms4liRNQzxHEhSKGQARBj8QxOE6WYylj+3mMrUxbr5OfPR//g988IPv3xncMUgeqyRKSs6ffI6ofoXS0BjVnMXFpTpBcRStLXQSks/nkZZECnj52DEmRsdYb9T5+V/55/z6ww+ThDH11XWKpRy2Y1GplLA9e0B1HGyyIsvd1h8I84wOD2PZCqRApwn9fsIXHn+CoarLC2dPUx0aYq3R4PDdD7Nrdi+ze/YQRglKeZw+e4G3vfleLDsDjbbn0u/1eO65E3Q7HYanxpCpw8LKOqcuL1ErVzjy8mmGylVEEiOEwZASx2G2SSuB0Ck6jkh6HUgTLOWgMZkHbmDgplrjSkWUphTyBRr1JuvNFp6T0TCVbaM2aM8DQOjYLjrVSCtLjaA8mR3S2BJ0CpZCYAg7EZbrIrThh2f38Fijye8/9hg/8dDr0JHmk5/+CvtmJjGpRglNq90h8F20EXiej+MoEiMy4K+yGFWpBEkKSgkwKa16A0tKXN8nKJQ5fnqByV0jrC6ss+fAbirlIq7j8PLRkzh2loolSRLCfkSS9Fhb7+K7Hrt2jTO/uMDXz59lJh8QeA5e4NHvJSwt1RkdHcJzbH7n5AXOTU7zsZ/5aR7r/S2H3j7K5GiNlfUuruXQC3tk3FioFXNcXatz9uwFemGPcqHAuctXWW30qBUdltfWWV5pUamUsthMYcj5LpcWV+mHEb5rM1ytcGmhwUitQrvbQwuF0TC/2iDwfWYnh6kUA9KoRzcyJKlibnGNoYpDPudTK+cZH64wNVIl8ByuLtdxbEUxCDh4cIrVVpsDsyNYluLgzCRJHHHX/im+9s1jFCs5JkaGKRbyOHaWZqNUcLGEIk0Nrp/RRiuFHO1OlzjqkssX2AyLdgQdbDZyX3nP3lwOPTLBl498gTcfeGQQt5yxOwxgBq8BBvbvVsqg1oOD4e0G7M597wTuxLVQjp3N/1tRMr89sGrnlm8G7m7nb3fW487lTsDdHY9hC+h5ZSm/V/PdXy24y9rf3sYrg7sd2xkIulw/KNipr5uP5E7/xxse1Dst3wV338Hy7QR3N+Oe7/RgbXjsBLfObbJRNuRzo37Ib/7qL/OuiS45z7n98Q7Gmk0hkdEydczVc5dZXVzAz+cJW3Wqo6P4lWHarT5C2JkCn1TMX1rk0L0HuGvvXhxbEKcpJ05f4p67ZxBSsby8RrnoUq3ViOOEQiHH2MgwUkGlWmR6ehplK3zfA6P5u89+jf17d2E7NsJECOEgVHZ6qZOEJA6zSaUFcxcuY3RKEscUCgHnzl+m0+lw5swFbGXRanU5dvwS37N/mEK8yJNX+/8fe28ebVl21/d99t5nvvO97755qFdzVc9qDag1IQmsEEAIgQwoASLCFHCybNYC44CJA8Z2MMkyxtghDGYKWIAMAmsAJNHqVs/dqqquruqqV/Mb6s13Hs6888d5r+aqbgkCJEu/WqfevWfc59x9zvl99/f3+/74uvd/E+2rW0RC0B/4eMpj4expZqZHGZ+ZIwwTBIJ2q0Gh6LC10ebf/G//B6Zn8dBYnVSnhHFMoZDnvv0zoFNG6hWEVHTaXcqlPLGGF196lanREdJUE4UBuUKO1naLbrfD9MwEQRRgmg5KaA7OzSKNzBmcnhjjC8+fZKScI45j3HyeQW+YhZVFMUf3zYLSPHv8Ag8f2Y/lSK6uNbnv4GwmKS8VtWoZyzYJwxDDUJmggszk8+dmRzGlwHGsjH01FZBm48cJnL+4wtRkAaUtEGTgJIlIUo2Sgr1zUwx3wryUaYGQKNvB7/ew8h55z8Z0TX5x8yrf821vQ5mKrY0NRupluv02nmszNzNKnGZ3h6EShE6RwkQZknzeJU1SRFYxgiiOgIhud4Bleiip6W9fxfSKJIGPtCx04iMtB5IBfr/Bd/2bz/FHz17hB9+V5zvfPc+7Dnq8Zd7j6S+cY2Z8nDSF0A+QIhPjicKA7UaXyYkxOu0OXs7bqVKlMQxFv+czNjbKyZOXsE2TjbUG240ulVoOQwmuXs2+j45WqFQKODmHQr7A2toyja0uQRgzPTtOHIZ0O33QgkKhwOLyKqP1MqV8gVarTblWJIoF/UGCEpIrixuMjtYwTTBlTLfbwPE83EIFjUKQ3uL8Xf/3gTeN4sy/6wb3SZMK0EIjhUJJGPgDEq0YyVfRRpd46NGhy3R9imY7wLY0rU4X2y1DokjQGEJSrY7xQz/6k/zhB78lKyVgWZQrJWzHptlskSt415LvtYAoCoiiGNOyME2TVApMc6fNysA0LXLFEocPHSFfrDM5Nke5Nk59ch7LdojCjGEUIkUmglLFYm2jQ32khjQNNq5u8srZBY4enGdmbhrXcSlXi+Q9j6OHDoGEifE5iuURNjpD8q5FGkckkZ/VixMpWidEQYzQCUkSEychQb+NTiMgA0im5yDIwi1TKbCMHK5rZHl3SqLTTJVUKEEQhFiWQ0qWaxaGEaZtkQYayxUoYYGRkMYZS2jYWYiqRqMMg8dKBZw3vIFPPfsMj83NcnB2FruSw1IWeAaGtjAMg8EwwDVs/GSAZRfx+wOkJGP2hcBwBFGjQbu1QaU2hZQWV1fXefqFV3jnO95MHCb0hz2iIOHMwkWSKCCKIxYXN7m0vMpIrUKhmKdSKSB1RG10lCRIGB2r8+8++xk++MD9/NGfP8O+iREajS4/s9Vhc2qOj6+ssdhqkhwZUnkgREmBkArLNLAMyUarR62YY3m7x3NPvcLefaOUC0VG63VK+RxxGtPp++yfGwdhosyUBw/u4+SrpxhEGXBSSmFbHkEckfOy55lnKTzLwLEtDMvm+MIypoS8A6ZpEyeaSwtnmZyeouC5SCUp5z2a3YjjpxeZGi8RhgndQZ+5iRpxImgPIop5m9FKmUurHSbqeerlHEEssnIShmR6cpSi55JqgWlaIDKAjYZhGGAaBn4YI6RBuVTCVoqlpSVKlcr1lIg73Me35unfLshxJ5mW6+aVLF5ef5rtUwl79+5l11XOHPwUgSa5wQ/QaZKlH2gBOlOJFTvCZZbIyuooIa9F9ez+S3dbupM7Bbt+j76Ntbi+VdZ+nabXHHBxm5t/5+tyLxP3+HfTxbzb9ruhgnconn3jUe7Mtd5eFuLu7Xx96/11WSqu51q/XvJgl2jY9UXvNN3NboVUencvYtc73h1RuB4qu+vP3rhsN/Vod5I35jfd2ABxvc1Z9FvWmzQg7hEDm7VKXL8uO+tm98idQeNXwN3/h+2vE9zdCaTdOm8X1N04T9/w9143Y6vV5jd/7sf4kW997M5tes1G7zyahaDfH7J67hIxA+qj41l9pjikMlKn1xli7ohaDHyfVGvW17ao1Ep0W32CcIgpFUcP7ePJp1/FtkJyOQ+JyeLiGuWCR78/JAgj9u3bQxwnhFGI5bikSabOOD05SRTH5Ao5xK4HqLPHS+CH2I5DkiS0Wj2qlTJhEDEcDHnp+ALrmw02ttoM/ZB83qHbH5LPuYCmUi4wV0j5s+fPsvfAfvYdPYhpGbSabXKOwYljX8QrlkmFi21ZmLbF6toqe/bMMDo2ykeffZH3lFyiIKRcymWS+paN49okiSYI+xQKHnGckuqEsbEKXs5BmQpLWWg0pqlwHIc4EUiVQqqJ0WxutKjUygwHIZZtsGdqglajh2l7pHGEFAlpEuHm80RpjGXa3H9oljSOSYh5dWGFqfEaSRzx6S8cQ4aCciVHksYM+z6e5xInEcpUxL5Pb9ig0+3hWnmELem1e1iGxVajxZHDc2BYJKQ7/VcTDIKd+nuCVMfoNCYKQizLJI5itJZYUrKyvInnWlyZs/jGrzpIGGRqiIY0kMrAclySJGE4DHA8jzSJEcCnP/MUBw7sIQp8dJrSbrVwPJtUR6RxhGUVEDIm1QGmlc+CmEyXbmubfL7A9toVLFvyP/6Hp/mdzy/wi//tLO9/wzilUp0giAnCFMfLUa/muXhplbPnFtm3d5IoAWVmuY/FcoGtzRalUoHFK0vkHJuLF69ikIWOQcraxjYkKdVynpFaHrTGtk0qpRy+HzD0M5arPxzS7QyoVEcoV8qsrjep16skcYySktpImatXtxFkIc4gOHt+GSlTCjmXbndw7cV25twytVqOTMI+Y65My8Q0bbRWN0dU3/CEkEIQ1h/FsCwEECIQSBQGOklYX7mE397Aby3hDzp0uiGbrVXqI3WEXcdSGVtYrU2hZKY6iQ4Bze999D/zkwcOEAYRhimI4xjDMPCjiHLFo7m9geMUMqcv0RjKYHuzBWhsJ8tHS9I0EyrRkCSaJEkZ9n2kBC/nZcIrMmPmfN/HNAx6rT7ogH53wLGT55gcrfDMiyfYPz/DgYP7sW0LJTWDfhfTsbAdkzgMUI6ZMbG2TX20zvLVTVodMCyPbqePUkAaIUVEmkZIEkwFQmcy2kkcksYBkT/IBjMsGyH8LBNEJteAaxQlKGWQpmCaJhqdFUX3faTQmEqQSIFOIYkiRCJQpkUUhdd8GSEkOtHYjse//cSf8lP//B/xmx/9GI9OlInDGFNKPvOXxyh4eTqdDvWxOigTZSTEvS5p0iPs99FxwLDXIe216faHvPDqZfbM7qHT6FLIF9g7N0Vjq4EQAkMqpBDMTE2Qz3tsNlrUR0Z4+OGjOI5Fr9kiXy6gDAvTdTBNCIOAyV4XUwo+KxI+Jx1eQnHfR0Zx96bsefMIB94+xeRs6dp1WFxrESfZ26iUc7iyusGesRrV0QppqnEsgzgJ2Gp0qJaLLK01qVcLbLY61MsuW52Q+ek6ZdckRWJZNqtbG3iOSc72WNroUXAtdnQfEALOnl/mgUOzFDyb9e0WntXBzeW4sDqkmPOoFBw6gwFj1Rzj9RJB6IMWjFSKNLpDNrabOJagXMjR7veplV2Kns0wTHjp5Us8cmSOctHDtU2a7ayPC5FiKIEQCj+MKOVy+EHEn3ziOY4cmiGMYuIkq9VoGCamdfNg7J0GbG6YccvHW5i1W975u98/8TtPsLm8xSOPPHxN2VnKrLSQ0BILwXOf+yQrFy4xOTGNUopep4PlGCQ6zRxqwyTd2bHQKal4LZh1Z7sG69Idr+dGTYCdunN3ZNLucbSbxGDSlGsyjjdMu+zOawmxvL6yCncHin8TQO3LsS8rDFRcH0L4Uu12vkzf9vFu6Uc31S28LR9Q3+F3uJ7Xdqc275Ilgts2u4Hg2F0kbmnDV8Dd/6/sSwV3aapvAnZwvXPfaWTmTkDuhvD6a/O4Yb07daUnPv8F5jsv8MZDM19Kc28yvUPTry+tsHDyVQaDbWbmD6OFwaA/JAqHJFoRB5oLF1c4dXqRs+eWeHVhkXAYcujoXtJIY9oK1zYI44C5PWMUXIuhP6BULDE9M0qpUsLL5yiVcrxy6sKOAxRTLuQxLZM4FZg5JwtPi0JMI2PtDClpbjUoFwsEwZDVq+tsbTR48YunKRZc1re2sS3F9GSdsdEas9PjmIZgZmqMcjHPxuY2QkC70cYebnF2uc199x0l8QNEocizf/k5JmsV9j9wP9/5Xd/P3/vav4dlWZTLI/T6AT/90z/Lh775Wznkt8nny3z68y+wZ2oEpbLEeMMyMaXCkBZ+EOB5OZRpkgAiFfS6bYSSDHohSZzS2GxRrRdASpobHZ45do6De8dwXReNJkkCbMfEcWwsQyINE8P2CIZD0jhGaUGz2SOfL2BYinazR7WUw/Mcpmo13JyBH/rYlgVSoKSg3+tBqhGGgSRjUrXSOJaFZZsYlslIvQgkmNhIGeEPw+ylSMr2dodTFxbZNz+DkBAlKVJlxdi1TpCkuHmPj0VdHjuUqeN1Wj3yxRymZaIMA41ECI3juAgpsvplUcqBA/MEoY9p2ixeWWV6ZoI4yaSX0RohU8IgIZcrEQyH9LqbCGViSUi14MyFVf7hb7zMP37fKN/8SJ0kNtja9tGpRidJxtQFEafOLvKGhw+Rcwx0EjMMI2zbzB7SKhPO0CmY0qHT9TPWzLYxlEEuZ+FaCiUVsU6wXJNSMYfj2VjKYGOrxezsGI1Gk5GRMo5l8sorV/AcqFVd/P4Qr5BDCpBS0Wr1UVLx6vklpicr9Hp9SsU8+XyJC5dWMAxJtVIkCGJWrraZGKuRJjGeKxEiIUlBmfZtI+I32i//xsd47L1fTwpIUravXmZr+VXS7gpxrwlpRBx16PcXqY7cT75m4ekxDNvGdS3SnIeRmqQJaB0x8DucOn2Or+0MSNIYHcdYtkEYRPR7A3I5N1M1LBRJohDDMGg2GpimwZlzl5icGMv6d5ipuIJAaE1KghBgmIphf4CUkijadUAhDUOaW1sZw6VMTp64Qnnc4MD8HvbumaPdblIsulnpEClwc3kQgiSJsS0LZRoMez4XLyyBllTyBXpByNJam4nxaeycS5zGIDNeLo5jomiITFNIY9IkAGJ0DGEwIIkGoBSG4ZJojZIG0WCIl3MQaZgNWoiM4VAIpGUigCjwCYMmlrSI0wGWkUMoSZJkTn4aaF764nFq5TxKakZEinNwgiNHSnz/f/w4i9stHvLgwP6DmIbENTSRPyDoN9naWMG2cyRCYEiHtfUG1eoIEodcrYYILM5dOksmoZOpT3qeh5KK4WCAaVmcPH2aqYkxhn7A/vkZTMtgc2sbqUzyeY/FK+usr29Sq1Y4efIcz6iYoz/8P/Gxz32eh75vD9OP5njqhQWCJKZS9Dh7eYlapcYn//I4e2cn8SPNiy+epTpSZGVjC9u2MJXGslwuLq5Tr3hoHVHL52gPfUZrIxiGAJ0SpRFSOGidEqcx1UKBta0mrq2QIqGQsyl6Np7jMggiTMPAUjA5VsOPYqIkptEZUPBsYmExPzmJHwaZ4qaTJ02hM0wo5/I4tuLZly8yNlJhvF6i4Dj0/JhSwSVv23QGIWEUMj1RIk7AjyL6/oBizqOU91CGySCMMJXBMIwZBhGmUtx3eJYkTRkGEf1gSM4SrG40qdWqN92394Qet4C7u7E/t36ff3QEc2ZIrjWKiiNOHz/FsWdP8FM//s8oG4rnnvhLapUSY6MTfPz3f4/O0lke/8+/yfPPPMeZL77Imx88yp/98Uc5OD+LMmy0NNBpgrqWy/f67dr5XSsefsMzTMi7hg2+BiS7/umekVI3ytLcZU9fEri7V0v+7ti9auDdK9/s/zVwx/X93ulyfzngjnuAu2sKn9fO9ebzvrllrw3uXis/7za2+is5d3937EsFdxmNn5UOuPawFdc7ya0dIdldZ3f7G5btsnq3Rrzfyt79+q/9Fv/1VOd6cuqtbbpXe3WKlnqHgo5orG3S2m5Rqzu4bokUhWVaPPn4S0xOTVIbq+OUPHKuw+HD89TKeQqewzAMKRdc2p0WhkhJEwhiuHThArbjMD01jWVnhXkH/pBz51cZGSvj5V1qtYzVKJc8Ll64iud6uJbMBEIclyCKMNIwCxUxDXq9AVJINjdbCKDd6RP5A+b3TNIZDDhwcB+241Iq5OkNh2xttykVCzRbAXv3zDA1Mcr2Zos/+MKLPHzoCKFWGP0tkv4Wm1urPP7sC/zET/8rTAMKOYfGepPUj3nrmx/g3W9/hD/4+Kc4lPeYn5nCMD20TrMwKDSYJqkAy3GIhxFSa3rtDo5t8fLJKxRzHpYtKRSyGmigCIKYfMFl/75xDNMildkvFoUhRsFm0G+QkKKEiUoUT774ReanZzBtl82NTbYaTTzPY2KsznDoI6RkGPnoVFGtFjCMrBiyZdhsb7Yp1Uso00aaFugUIp/ITzh/bpm8l0cYBlHo4w/6EAss2yZJE4RpUa4WmaoX6DR7WLkiWmtC38dSEPhDzJzDjx57hX/ybW8likOQimK5ROj3s9BQdkMdMpYg8H2EUFn5A8dAKkGv22V8fIRut41h20hlooVEapC5AiKK0FLSvnoZ2zC4uDHkH/zKU3i24IffMYKhYbRe5qXjC+yfH+XsuSXm56fYXN+m3R7uCMWkjE+UEErjFQokETz++Ckmx8qcObPM6FiVl46d5+r2FrZysU0LYSSYyiQYZCqLw4HPiVOLzM+PgzQQhsHISJk4TbCkQaPRIdUhxaJDpVplOOxRyleISBGWyelTl3EcldX0My1My8O2HfKeywtfPINEcuDgHOsbbUq5HAcOTXP6zAqGCcN+O1P7kwaWUwBx91ClN+wrsGzsR6WS1rmzxHEDwTrt9R6RWWHq8FfhjkxSG3+AQdDC0imVSoFB0EWQcHVpicbGZaRrE4bw5Gef4S0rKyRhiGk6mKYiibNRcsNQBIMetlOAVCKkgZZg2hZJrBmr1+j3OjtFzDOmYpfJFEoSBQGGlHSbAxzXBp2QpiGkkCYJuWIBy3RI0gQ3r5gaG8N1czuDKzZRP8Z2PYgi/DABFZMm0O8PsZOUjc0tJsZmMFyBwGD56irnr67z0H1HcAwHL1cG5fH0i8cYnziAIUMMmT1V0ySGNOGJZ46zb24KkSYMuxGu55IKhTIkIvSJgwH9bp807uHYZYZBCxVLhGWBBqVMpHIRlpOpt4kAHSm0TJGpRuuYQXcL2wwg1EyWC4g3vhUvV+er3/EgTrnKiX6Hf/HpT9En5lCxRJymuMVRLl1ZJecVKI9MoFE898Jp9sxNI0ybJ59+kf37Zyh4eVY3Wng5k8sXV6kUJGcuXeXSlUX2zM8S+yFCC6rlIlvrLYbDPjJRCGK8Qo5eGPBzZ1/mPy0sMPK2r+LFC5cZ3L/I0fdMYpspSmTPWdcxWd9usWeyzl88eYrpMYf19TbT9TK9QZ/52Ulq1VFcyyfVMSePn+Gho3sJY5DSzkS1HJvHj11kZnwEx7EQCEqOZG2rQX1klFjHuK4LiaaQL5KmCYqIQaiRWtLu+9iWgcDkM0+8zH0Hp0FY1EolLCfPCy8vMFEvYpmCi0trlIo5nn/5CoNIk8/ZTI1V6fR6OKbJMIqz+z8M6Q46PP/yIg8f2YMQMYYhiZKE0VIJLbLahkM/IElSlIBLK9ucX9rEdSDvmBhKAxHHFzaZnZrFkiGmW8CQ93aid6PK7gTkXo8lQK/j86u/9muc+uR/odVocGjfA9y3bz//56/9ex57+1fz+ONP8uef+3O+74d/gMYw5q3v+Xr2HHmA+x8+yuXLV4iGmt/77V/l0iuXWHz1OXRs4+bzWDmTRFvZgNNOSLChdwLabng+XQ/h3A1M2HG4tb5pknfY5sbtMt9IQKpvCGvaZQMTpFQ3AxZxfblgtwzF7c/M657ba0OZe5E2fxfBXTbAl7Xteujj7Xabr7rzG8kbpluvjmInb/OWZbenJd3eezW7hdD1NZwvdvv6ziTF7v71NWB35/p4Oxvu9IlMsC2bdvendxfq6+uhr1+TLBrjeht2OvG1L6mQu61A3nIJE32thXcIXxU3/BVfqXP3t2lfTljmTkm4a3YvZL97M9xxP7vb3/L9xnkA0+0XcG3zrse410NG745ipZqXnj5Gr9ukWLQxLY9ysUjfj6nVKhRLLqVKCdMwiIMIN+fS7/cxTYPp6UnOX1xmY6vJxcU1pIRud8jp86vs3zvB1MQoyjA4duIse/fOoAyDkXqVXN4jSRKklIyPj9Hr9SgUi9iORaKTLPQyzZbHaYoGojBCSUEYRmxvtVi4sMLc1Ah75sYRAiqlEvliAdtyWF5aYWp6grzn8uTTXyTnuZRKOdbXt9i/b4r3PDjHUxfbvOMdb+f3Pvp/87u/9Wt8+Fvez/mFs7zz3e/C8WzWtxqURuogYWNjleXVFX7mtz/Kt85NkSu4KDMTo5CmibItCH363S5pGHDy7CK1WhHbs0FIRiplbMciTmLiOMH1XAzTwDYNUsC0zEy5L43QgOU6EAc4RokkTQnCIf1Bm0N795AmmhePnaFaLZLPeyRJTKHosba2yWajxfT0OEImmJYgToKs1ouWdDt9CqUC/WaH5146zZ7pcSzbYhAOKJdzOHmTVqNFuVjBsm20TIiCFDeXyelLqdA6xfU8PvHZ5zg8P4WXd0m1xDRsvvvpk/z6P/w6wjDGcT2SJHsVW7bLcOij04Q0DrNyHZB3GwAAIABJREFUBkJjKIVhSBDgD4eYhoHteKRpiqnANC38YR9Dgt8b4DiSqNfHMEy8cpFf+tQ51OASP/jeOeZKiqEfMjZRodnpcuTIHtycS7fXZ+HiVR68fx+WbXLpygYzU3UWVzapVcoIkTFEliVpdzo4tmJpeZ00Urz9scNcuLRGzjMp1bK6cpeurLK53UWZFvv3TaEMRTQMuHxlle2tNrVKkYtX1hBSMD5ZxXVzbG20qVRyBIHGcSy2Npq0trscvW8v6Eyo5cryJntmR3n2hTPsnRvDsQ2E0Jy/vEqj2aVcdjiwfxZTgkx7WZ6bW8Rwizts/93v9B/4Z7/F+976IN3gAkmiGHYvYSqT8fkHwPDwHAOCLmkSguFhuCU0JsOhz+zkBIV8jSCK+NVf/U2+08lylJSQKKXo9/uZammqsR0byzBItAaZMhz4mJZCCcXSlascf+VVHjhyiDjOhBqSOMU0JYE/JE01hiGIwpiLV65QKuRR0mBzo0GhWCAKg6wMgx/ywomTHNi3h0IhjzDJyhkohe0qwjggGHax3AKGYRGGGlKBaacgNZadozvo0txoMjMxTt62eebUScaqZYaBj+WYBKHJy68uceTIPqTIcgbTNMY0BHPTo6QixrAtlGIn1DoHGJlX67jY+TJxHBInEjvvEYcJ0aBDFMdgZWUWskEODSIlCjsIJEniI6SJazukWuN6FaRtkd73IJVyjbVWxEOPvoMjD7+Jb/nQ1/HAY29DPXA/v/n8s3y+0ePnP/5Rng9jPn5ugVI04IG5WZIkA0CVUoFiqcji0gpLjVVKeYcH7juI0CkTM7NUci5nL13h4IF5lpbXKRQLFIp5uv0uL6yv8B/OvsJvnT7NR/7FP+OLx16m2W8z/k7F3DtL5FybKErp+wGmaaKkgWfZhAnYhs3URIm9M6NUKhXOnDvP/n3jlPImZy9cZnJ0hlQrnHwedMKzL5xlaqrGleU1Rkpljj17nqmJjOXr9X1yOZdqOU8SJwwDn5dfvYTWGs/zkELx4okLzE7XkSScvbDInqkpTl1eYXqyRDFv0R5E2EZKFCXkci62oej7PtOjVdaaQza2OoyUXc5dXmWz0aGUdzh2/DxewWV5vYnrmHhOjpmJUQwSms1tHLdAmqa4tkGSkj3fHQvHNOj5Ic3OgFq5yGi1xEazQz7ngRCM1cpYhqTf77DW6FCvlF7znf16lt/N1psdNjdbzB6t8we/8iI//y9/gbNXjmG6Pf777/kHjI7VOXr0KEcO308hX2bv3jnCKEAIiT/os93o8Ka3vJ1Ual55+RyYCftLIU+/8BKFsb1UbIWOQ6ShSJFooUiFJEXsaIFet7v5M9dX0DexKXf1g25k6K6NcN/Btb5rztyd572ea3xP1uZ1bP83bbemAN0tzee287pD6O2t4E5yfWd3Anf3MinlTeqZr8dubuO92LN77uXu+7zHCd/IIt4K7u6eLXr7Tv8q4E68ngKSX7G7Wxj4X9IFTNMUyJJp/6qWstNx7rCvdOfvT/3kT/O/fNO+m5bpW/7evatpkgQGzSYnjp9gpFpmbn6azUaLkUqNMI6x3RzdTpfAj3juxdMkccojDxxgdKKGa9v4w4CtrW0Wzi8yNz3K5nYTLWBqfIxyfRQRDcgX8mig1xuSyzuZY2cITMtCqSyca3urydhYjW6vg2s5rG5ss2fPDI3tbXzfp1DIkcYJjm2wvLxGFKYEQUSlXKTV6zM1NUqxUODzjx9jEA6ZmhhlfmYcP4pYWlpDqUzwZGOtQ7vj89BDezFMi6efO8ln1k1+4id/FNHb4A9+41c4+tCbedNjb6Y4e5TuMCQZDigWK3zyTz/O7Mw0L73wIv/V2hL5Qh6pJH/0Z8/yzjceYXSiymAQ4eVcojALsdpc3wSdknc9Pv3ECSId84GveQuGadDt9nGdTI1OWSahH6IMhaE03W4fx3UwlSBKIpoNn1qlShxGmJ6BFII0SYjjlMuLV9k7P4VQkmHfx3UtpJI0t7sIbeK5BsqCwSCgUC7hD4Y4jkUaZ3kNKIFAcf7MJfbvn8VwDbqdPpZl0Gi0KZUqmLZi0O9SyBeJdCZTTiQQUqOlQJkmkZ/wVLTIe776UaRh7gxypCgJCwtL7Ns/i2nKHcl3gdYpQmvCaICTK0Gq6Ta3yZUqmQpqGpHEgijqUSgU8SMbEawwDA3+0W8f463zeR6tDyl4Hq5rYTs2QRBTqeZptbuUy0UajRau65CmKWfPXuXokSmiIGVjs4UfhCglOXBwBsPMQtSUMEi1T5ykbK30CdIW9ZFRgkCTpCn5gkevN8C2LGzLodlqUyxaLF7ZBAQHD8yyvr7N2laTvfOT5AqZkuHZk0vYTsLs3B7azTbLy5sUCi7FostffH6Bx944x/R0jV7XJwhj1jfazM+PMej5hFFAEMeM10c4dWaJZqfDw/sMcnkPp1THLY8h761JBmlCc+zdCLvI5OyDtJuXsa0i1o6Qg0p9hp0tlJGnFYCdczFJMG0PM2gyTEy+/cP/Hb/9gQ+QYmQOnDT42J98km/5hq/FH/oEYYjnuQR9H9O2GA76aMDzXCzbodseYJsKw1BESYJGYyiLleUVJiZqGLaFlAmNzT65Yn4nVNCnUCyASEGnxIkmSmKiMKJcKdLr9bEMl06rTbVaQiNZuHCeudEijc6QaiXHyuoGl1cu845H3wQy4fgrl5maqNPu94jRzNSnaTRavHzuHG975D48R6Lo4wchhaK3U04gQScxhpRoLZFWnlQ4EDs0e20m58dJoggdRERCYkoT03boDloU8xUS7YNyCJptdNDGzOUwDIdBv4dlgJ2v0m31yVXLmZphIoiSIcOB5nfPnOAj/+s/5/HHn+Cdb7wfN5djZe0qjmux0Q7Zt+8gSkm+5u3v5Qd/8Pv4wN//RkojZc6cPM3LJ57nzY++mT//7NN8+rOfZc/sLAsXL2Iryfc8+DDvnp5ge2ODf3fmDHklOLm4wtjYKJsoDh/YR7lQ4PipE1y4vMwbvuYIb/rADBq4vLJFvVLk0uIVDu+fY2Fpi4JtMFIuggClDFY3m0ihmahVePb4ee4/PIdpClzT49zyJkur27z7TYdp9hooadDubDNSrmLZDpZhcOrcRSZnpvDsjOHttXqUy2Wee3mBmXqO6clJTp1fZmKsTNFx+cwzp/jatz+I1AlhCn7QpeDlOHFum2JOMjteYX27yexYjTSJ2O4nCBSmAf3hgHI+z1MnLjE7OcrsaAGExdXtJiXPIghjNhtNioUSfuDz7NPn+bZveSuSGJnG9GMT25IgNJZpIIBhEGKZBmjN7/3hM+w9Ms3e6RFsU5F3LcI4Igojcm4Ohc+ZhYs8+NADJFnlRPSXrbN9t7c9PHf8PIOtJm99y30MBttc/VODZ584xh/+7u9z/JUnOXh4ljgUOFaJP/74H/Lt3/EhTr5ynEceeZhON2ZsYopXz7xCoSiQSQEpO1Sn9uFvLtBfWUdUZ+j2+5x49VWq9VEunl7gHV/9LhKteePb3kay4x8pmZ1h1q4sLJvX6avqG3LzRJp+ectuOd7uMrGTi5dlAlxv3+6yu9mdQN6X6gOmr73Kl94jhMiUgL/U7e65y+xck1vmqxs+J3eYfycscut10ztX4U5CNnf7nn25B7iT9zj+rqLAnURzxC2DETf8QOmNoZW3rrdzwOvl0O7YKgAc1/2yxwC+wtz9Fe1Lz7nb6QFCXGN8bw21vPXXvFsy6e626R0+a+DD3/Hd/MJH3pQd7oZtdu3OYRtZCEMWySAgivni88eolnNM7pkETIJAk6YpsYY4CjGU4C8++xJj9TKtdp+3vPkBtja2GAx8Nje2iMKAo4dniaOAkWqFUiFHznMpl4pZHpYykNLA9lxajRauk6noNVtdbNsGNO1On1K5QJzGO2Fzin6nxzPPn+K+Q3tZXlzEMg2SRLO0skp/p2bb/L69lMsF3JzH9maTZrPL+HiOrc0+rXaTOIpYXFyiXquQJAmVcgnPc2h1OlTKRY6fXOTr3zDOR598lanRKuOTs1TH51nf3GR8cpZU2pg6ghTyhkvQiaiPlilevMgTL77Cvplpthst7j84R7vRIF9w2V7fwrNNoihi2B9SrZZQUjI7NcrR/TNYroMUmiiIaDb7DIY+ruMQhTGmrVjb2KJU9DCkYjCMMZTD+Qsr5DyLVAcMBgG2YxD5CUrCC2cWmB0bZeHcCtVqCX/oIwU4rkMcxnR6HXKeizJsrq5sZrUFNZnSqdAMhn6mxKgEvUGfK5c3GJusYBgG7a0+m5tNfH+Al3M4duIcMzPjWU9KJWurm8RhhGMbGKbB+CPjOI6HFhplZJAjjiIq1QpCZqEMYRxjmZm4ShRHuJZHiiRNEizLQiMIggjDdkmjAC+Xo9vpYQrNL/3+n/Gv/uQUP/KYzRv31mg2+0xP1pCGwHUz5bznXzrLWLWCjhOEzAQXpFJMjFUZDAZYtrlTnsKhXCpiGApDKdIk4czCZUbHaqRa0ut0kEKSJhKpFI2tFsV8nuFgiKEEFy5cZXSkRBD4TM1OQgrNVoexsQqjo2XW1jYplQsYhsI2DDrdAe1uj+mZUZqtLkpJVlcbHJiv0+33Ga2XGQxDwihGKYNKpcIrpy6TpClJDKurLR64fw8ra5tMj5cZDrtESUIuX8qk5LmzRECaQBT6/A//+yf49g+8i63OKsWJaQw3K2qfxgGrVy4jnRxa2Di2TRh0MBmytb2G6+b40H/zvfzO+7+R3biWNEmRSrJ3ZhqhJHGQMTZSmhhSYdk2oR+TK3goBfFO6GW4M6qPThgGQwwhWb66Ri7vZcxVGpH38hiOg1IyK4cSRTsjuwmmZWAaNk7ezWrRxWDIgMhvEvhNup0GzdZVqgUD9ADJgLyrmB4ro5M+od9lpGzhOQklU1PNKYx0iKki9kyV8ewEJYYIwDQVWbpdhE5S0hSkMkmEAaaL7Vgo16M8UgYtSVOF4Tko00GHIZ32NoKENE4xlCbu+ySxwCmU0aZNq+tTqFYRpk2SQKu9hZsvQ6Lpd/qYjoWUip9//nne9ea382P/+Cd5eeEyLx47xbvf815M1yRNhqSh4BOf+gTv+9p3800f/FaeeOIJ9s9PUR+ZoL3VYH5mnFK1wvd/7w/wwJFDfPhb3899B2Z42we/kV/4zCeZeO97+ebv+Tb+9a//Np1U0whCSg9aTD6cozW6yeF31njrN8yTm4jo9hNMZVHK5Tm9cIW5yTEgxnMy5uqVUxdod9qMVIpUyh5KpSSJD4bLaKXA4vIG9aqFTjM10vpIJrhz/Ow6aZQg6BGnKUIaFPMeIoxpdTrkHI8oDbEtk4lalU4v4PT5JQ7vneLMhWU8xyWXtwiTgCgNSBNBzjFAmFQKLkppEp0yUqrid1cJteTp5xc4uHcOSwkWzl/ETyVH904RRJpWt4cfBvQGPuPVEkKmDIOYaimPZRk8cv8UKDh1aZVquYofhQzCkKdeWGBuqkaz20epzEFNU83RI3O8cvoSpBHlvIdnm/T6Pi++sIBdKFLO5fAcgevlSa/dw38d3M/1fWkNJ05c5NGH5jh+apF6bZwnXzrOL//Mv2Zr7QyXFi8zNz/L5OQUUTRkbs8USglmZvbQH/bZ3Fhjc32VQtHFNSQ6TnFyOYw0Qjp5zIn7GDSvUq3PkM877J+bYqw8wUitRMHx+NQn/guLF19h/96DYBqZ/yGyEiCK9DUYj1vPaDe47WbLIlT0DnMnbtvuuk90i9e146zLa0zhDcBvR5jlxiLbd+b7bj3evdDdHT2z17Qvp0fcGhr45faqa76nuJbVdte23XStbwFVN/qwt2Pi273Wu7Kjd71gr8Ux3rimuG2Ta8e7vXPtrsBuMK/Y+X7TGe8SxTv7unNOX7bzr4Rl/i3alwruro8A7EQ23xh2eQewB/egxm9YDtdHdgTw4e/4Ln7rR973ul4Dt94umowR1EnK2VOnqFXyjE5n+WOmUrSaTWojNaJQEw8HXLy8RLPt8953v5lDB+bY3NxidHKcXLlMsVTm8aeO88D9e+kNhhx7+QoT41VKpQKpzmqP2Y5NnCQIJXAcB2koDNPENM0daf8IL+8x6GeAzVAK180KL8/PTmFZJhcurnB5cZWFhUvoVDMxMc7s3DTpDuKN/ZjhoE+pYNLpdoiihKHfI0kTjh6ex/U8mq02axtbFPIunXaPYtHlDY8coVrJs78UEbgjrG9ssu/g4axUgBKERg5IEIbD8vI6P/5PfoK3PPYmzAsLHJwZx3IMmq0WhbyHk3MhzVTw3Hxu5yVDdv6pJpczkRIMQ5EkKU7eZXWlwcsLFzlyYDrLO9KCx584RcUtYbsmQsYgBMWCixRQLJWIA02nNSRFMBj6WT6KZeFaDpZpghTYrsOLL51hc6vNntlJ1je2QEK1VqLXa+O6Dr4f8MefeY4HD+/HHwwytsSUjNTLCJkVeHYsk5GRPJapKJQK1MslLNMgDiOkZZDzHNI4RUjFj508yQffuR8wkUqRJtDcbqKkxLRVFvcOGFISRyGWmeXybW1tImWKaSn8YIDAwDQMhE5RpsAPNKlO+e5ffJwf+8AM7zsywcTkJJapEELz7EsLSKEYDmJyXoF6rUZ/0MUwBcpQpAKkFiwvr5EkKZVKleMvX+Tw/mkMU3Hx8mUqFZdh0GNyfJJEa6IooloucuHSOrVqEd8fMj5eptHsst3oMTMzThpHnD67zNzMOMKQWJbFmYUrGApsU+CHEeVqhdD3OXd+lfpIhTPnlhmrF6mPVtCpJopSKhWHvXsnabQGlEpF/CBCSYltGaysb6GE5MjBOYIo4eLlqzz2poP4YYRtJqATHNtCWTk01/NHbtSC8/sdkqDPixcaPHR4kiTS2E4Vyy0ghKSxvUE+7+HliiSxRklNu72Fm6/jmibf9uEf5He+6f1IpQgCH6UESpkImWLZNlIoTEMihUESpQwDH6FilCmwLY8wjPB9H8txcPJ5pKFIkqy+Vi7nMTJSwXJN4jhTGIzjGMs2SeKI0PczFUuhUaaFlgppCoxYkvpdwnibcNgjDTsIIlxTUil4Wf6bFiihMA0XQRYm5lgllGGAtkEZSNNGGAZYJtI0EaaFslykVqRaYVguyrYRykKZHikm56+sMTm1hxSBZTogdmXcASRpGOEPe7hODjdfYn29TT5XIowSDNNiaWmFcqWE5zg7ToAEITGE4E8//SRlzyZOEwxpYRgWI295C3/wR39KvlTl1Vee53u/53tZvbrO+NgYcRghyPM//8Q/JQmv8p53v4eRsUkSobl4fpH9+w+ycvUStdEKhfIoW5trvHLiOQ7fdx+f/tRf8pHv+S7+4y//X+yfH+f+I0doHFjjXR86yv4HJzHyiqvbPtP1On4Us7LewbYtYg2Ok4GvIBL0gz4b232m6zWkqTkwP0Gj52NaJnnXI9UGcexz4coKY2M1Li6tMTs5hiYlSTSOZXP60jojFYepkTLl4gjDyGTga46fOI9lQTHnsLzepVJwMQ3JymaLNxyZp9lpc2jPJO2hZrPVp1qqkXMKOEZKqDUbjSFxHFEp5LMw+UqBYehjuhX27p0ljFoYErSEk5cC6iUHwzQZKzusrLeolYoMwxDHMrFth5xjMQxCLiyuMjZS5eWTF6hU8qRpSq3ocnDPGAADP6Sc91BK0Wo38FyP5dUthGEyOlIhiDR5L8fkuEt3MCRKg51C7DGmZe68t/+6wN11Z1ULjSmh78eM1Uvc/6Z5/uRXv8Ab7j/KzMwkcWqwsb5G4PfJF0vk8nlOv3oKmYaYFszNTlOtj5FzXJ56+ilG6tN0h10qxSoIm1bnArY9QqFcxB+kjExPsXR1jdWNLuXCCOWiwU//05/lTV/1KEV3B8juNFHsJjm9DgbvzgPXtw5uv/7wuOso4w4Q8yZxlxv/v9nUDQ6/uLGRd5r+BsGd4KZ0sS+7V+nbGnAr63Z9urnk/S37uaktN5/1TrbbTWFndw99veWk7nZt73HCN+b1XZ93Z3B3k3bGDb/1reUhrp27EIgbQd61s72+46+Au79Fe73g7rpK5u3yvbeOaNxqr3Wz3ZqG+p9+9/f5iW+Yv2nb1wPyrq0hJDqOeeGZ5xn2WoxPjGLYHmmqabc6xFFMFCVsb7VoNLsYpknox8zvmcoAm+tw5tQZVpeWWVtd5ZEHD3Hx4hKmZdPsBRzYO4lhGfT7fdwdSepup4fr2giVFarWAmxDsbq6QaVSxjAUlmEglaLb6hKHKY1GC8exeOGlU1mh83aPPbNjHDp8gHp9lMFgSLfXZfnKBsWCR7/foddr0WpFzM3WGa1XAM2V5Q1qpRKXl65QrZTY2GwwPjpCGMecvXCZWqlAzjb48V/6GF//de+jUHD5hZ/7Wb76Pe8lMguYKssbMCT8/Q99kMnJcc589tPM1soYhmS8XkUjSYGlS6tUq2VSrRFIrq5uUsjnsBybIBhmwg6uncnAJwkkgo3tBlNjJeIo5tWzV3jLo0cJAp9Go8fFC5vM7hnF930MI3s8mK7EMCT5ioftOAQDnzTRPPX8aS5dXWfP9BgIQaWQgTLTNDn2yiXOX9ngyIFZIj/BdhVKSY4e2IMhDUzb5MKlJeoj1SwPUil0oomGIdICy8pq2UmlOHHyLIWch+XZpInmjz/zHA8f3c9XvbWKTjW2U8D3h1iWzeXLS0xMjpHEIUGQ1XlCAFKhkwStBDknj5QmSSwAA8sySOMEJQV+r0sY+nzfLz3Ov//wOP4w4szpDbT2uXBpjW5vyPxsnULeJiUinzPZ2tpmenYMiebq6haObbF4ZYPZ6THiKGLQCyjkbK4srTFaK+I4HpbtkM+X2dpqZWG0hTw6DnAcg4WLyxRyOSojRdbWG+RzOUzDIIgiDu6d5fyFJZSCfM5mY6PB5aUGnqMYGxtF64Rup8/s9ASClAP7Juh0h5TKBRaX1lDKxrYV65ttisU8m+vbVCtF2u0+tmMwNz3KYOhjWYoLl9cxlGBqqkKz4+PaCq0jDJkipYcwLLS4XnUqe3ZoBr0mcTjkjXtz/NuPX+SNb3iQXj9idHwcKcGyTPwwJIkTTNPBtlUGtlKDH/rID/0/7L1ntGVXfeX7W2vncHK4uXKuUklICCiBZERum2ALk9oJGxtjY7uN/Uw39AOH0W/w2m4/j2673cYBMLYxT2Qw2SIICZWkUkmqoFLVrXBzvvfksPP7sG9V3UpC2H6D/sAa44yqe3ZYO5695p7zPyd/82OvSeteowglRVr4nod60UglTlKHSamwtLDMsRPnGB0eRlVVAs9HUfU0M1DT0pw3TSVJwDAUfD9EVTU+eOwJvjM5wejrfoT5XIEPPvBdHqrXOKsLPnv+PHtf+zJ++2Of5B8eP4YfxWylTrO2wOEjJ/H6IdViEU2zkJqamgWpJkKqSFUSo6IaVhqpouigSgzTJSBBqKlZj66lbqiaqhGFScocGjoRkihWUikqJkJaDA2PIBSDJIE49Gh3+ik7TEwSJ3jdHoZjpvl+UiFbyOJ5ffo9DxBksm7KUCeCVrOdRsF4AVKobNsygmnq6IaObpi87/gpHjvyKO/45Z/nDfe8gU2bx9i6dRNHjjyGY+axrRyf+uzneOWPvoKcYVAdrJIbrBIkKu16C1WXVEbHyGdc/Cji/PgZBkplcuUSxfwIquUxXChQzBc5fmqCgVtMdE2SEBGEMZWCgZQJnb5HPudQzKUSe02XzK3U0TQdyxBEiUbOMQljn7nFVbKZAu1uG1VROT4+Q9YtUW+HJEnCpqECfhCRdx0anS71Vg+paXitBsWizlq7Ry7joMiQ7VuGyWVNWl2fx45OYbkGnW6HkYEC33n4JNVygYnZBbZvLmHqCoam8PkvPcKmzUVMw0KVCrahsFTrYBkG5ydmKGUkGcel0Wjg6EXCSGBbCitLy1w4N8/WLUM02k0efmQSzVLRVIWsZaOqGhPzy4xUCoSxJJ+x2b6lShKHOKaBqsDU/BLZjIupawiROhT7Xpd6JySbcTk3sUy5XOCr3ziOYioUMi4XZtZA6qgEOLaDUNX1Z/2/FbhL1yURJJGPa9uUizmWVlbo9AM+9cEvs3frXvYfvI3KwBD5jMHZc2cZGh5henKatdoaQ5Us7V6LVtcj5xY5/NB3MHSVSrVMp9PkkcOHKZUHGdhUZWF2jebaCu/+rffy8lfdzeJig3f95m8TKlm2bRvhjfe8mfu/801mz51n9+7thJC+tOHyQPjZSjSvbs8W3KVZkhtn3jiCugaJXXEkbzTfNdLH63QfXyr9SyduBAbX3c5rHBy5YrkrxpbiYq7btdOuzUX8/tu14O7Ga5QbJ10ivC6yV5eP2SW4c3Hahp1Ny5IuZzxea0h4/Z1KnVZvNO1KJu3KvbjaROZ6+3rxcXd54sVNllJcAnTAdaM8rj7PPwR3P8D2bMHd5YvymcHdv6RtvCDe85/ez6+9qHDNup9tH0mSgJAszc+zPDvN7t27UHUdReoYpkkcRpSKeWZmljg/Mc/UXB0v9MlaFpalk8tlUTQFW9cZquZxHAvTtFhaXGFkpMru3Tvo9bu4jo3v98lmMwQBOI7D6kqNTMYlCEIAWmtr2E5atxYGHosLS+iGga5okCisra1xfmIaXVPxex4vvuu5FMoFCuUSQRjz7Qee4OD+XUxOTxIFHguL80hCVlY98gWDubk6jm1RKpVot5tkXJ3hoSqO7dBu92m1PHbt3Ey30ydOVIpJny89NsGuoQKHH/gmm7Zuo7RpNyL20WXM2sI05YJFRMAfffkbvGa4QrvZxXBsVhcb3Hf4SW6/dReqlkpNAi8kjmIyeZcw9DENA9Oy8Po+AoUkibAsG1tTyJfyKIpGtVJC01VMSyeTs8kXbBRFZ3F+Gde1CfyQXqdN4HWQwkA1DBzbZHWlzsGDOxko5hAIJicXGByuki+5qLpky9ggO7cNIaTkuw8/xaZNFVRdSyMCkgghBJW7To4sAAAgAElEQVRKmXarz+EjTzFUKTExOU+t1qZcWS/yVzWkTF30TNNg/Ow0lqJyy54tPDQ9xYEXHuDC5AJRAJatEgY+hUIOoaTMhGVZSFXFX88D87pdpKYRBX5a56CqSClBSjqdLpqi8NC5Ju//+BH+7lf3o0qLTN5kcLhMxnEwDY0wjOh0+kRxzMhQiV4vQFUUhKKyulJHUzVURWdkpMzp8SnCOGZwqEC+kCHrpoYvjxw9z2A1HXBOTMyyvNCgkHWJ4wjT1CkXs0ihoxk2uibpdHpkMw75QpanT00wUMljmSqKQprT1gsp5Aws08EPPNrtPp7nY5kaCRHtjk8u55CxDUQsyLgG3W6X85NLbNk0wFqtwczcGps2lXjw4dOU8i6qBsWiw9BAibPn5hioVGg1u2QcAykhCH102+Vq+3DfC1CSEMO2yRUG+bMvPs0b3/CTbNm5l9XVGeYmn0ZBpZCt0Ol1UaRC3+sRBh5/+Bv/Bx94yctpdzsYhgmQMqFxjG7o9Hs9dENHSAGKAJFg6hpbt20ijkHRJAl9giBGKEoKCiQE3S5+EOB5HX7pG98m87zbue+xo6wFHm/992Vce41XvWwbh55f5s67Rrj7riHK5S4vv3uMI4+c5bsnT9AueWz6kW3898OTfGdliWNxzEdPjPP5qQX254t8a7nB/nKVRFFRVBfdyoBQiSKJYZloeg5F00jQMCwXVTVAaGi6TSI0FNUkihU03SEIFIJAYrlZTMdFiISjj5+knHcJvB6ZXB6BpN1YRRGpg1+MgojgU1/6Bvt37UCVgvHzFxisVjDMNNxaSFB1DSGhVWvz0JHjDA8VcawMc7Pz/OYjD/E77/qPqJqObSWsLNWZmVzmkUcf5oV3Po+R4SGOHHmC5x+6mfe893fYs/du3v8H7+dnfuZNTI7PoMYBYdLDtlwcI893H36EWw48h+OPP82JpybYd3ArYSAY2ryF5bUm//ipz1O6ScGPQtYaNVzHwZAxilQ5dXaOXq9Hr9tifrlFtZij3+/iGBqe38FQdWqtNhlHJ+Ma5JwMy4tzOJaBbdksN7vUak22D7u4jsPE7CK5TAZVUZieXeGWPVuZn5ujUs1hWw6JkChKgogjwjimVCgxMJCn1WkzUi3R8yN2bBlifrHGnu3D+BEcf3qKpbU21cE8eVem8l5FECUhC6sdhsoFdmwpY+gaQhpomsbDx84zNlQmjENWV9scPDBMN4gZKhYYGaswWs2wML/M0mojzXeL05zSqdkFyqVsWjsWJ8j1l5aWmYL6KI5ptLvomoZl2Hzr8Gl2bhskCEN0VWH3jiEazTbD1RzlvEOiKLiGghfFmKZxzRjiX9ou8vcygdMTc1hagmVaKIqCbaRutka3gOpbzCws42SyDJTTDNFmu8vI6Egqt9Y0RsYGaK2tUK97fONrX2L/3l1UB8sUSgUylkOhMsiH/vFT7Nq8B0cPeMUrXombK/KRD3+Md/zKL/KKl7+KKKrzwP2H2bJ3Bznb5MTjR9m1cy+o2pUszv/P4O6a+qtncbxvzNml7dmAu8tSRHHp72dqCayrAq7s/Xp+CjFX7/+G9fxvAu7g6m28qtZt4yXAlSDq2nviBgDuGZi7Z76vnh3jd/V2XToXF8/Rhn34Ibj737g9W3AnrygAvfI2/7cEdy/Oza2v80pN+ffs42KWDJD4MefOjDO2KY8f6hRLVaQU+N0ugoggChkfn6NWb7JpuMzgYJnduzfTanaZnVnGMnSmZ2ZJRMLcwhJDQyV008DNZDB0iWGYSFXDMG2kql+ivg3TJJEQen2kVDAsE6/voSnpANzv+6iKyvkL02SyLocfO0kUhqhKwpZNg/hBhJvJEMeSo088xa4dg/R7TSzDoNVsMLfQ4PbnHiKT1RgdHaHXqeH1+2RcE0URDFeH6XV94jgiJmJ0uMJX7z/Bjh2jjF+4wNYtgyx3fNycy879txO1Qwa3b0Yk0O2skc1keN97/5AdWzZz2+3Pw3/oUVq1LrqpkSQJ56aW2L19BFVNLf2jJCCbz+L1fbx2B91JzWlWFpsEYR/D0JESLFsn8CJUReGJY2coZjN4PQ9dU6mvNdFUE9uy6Pc8vvHwMZ5z003YdpbQDwjDPnEU42Ycjhw7zdziGlu2DGEYkihI7foVoRAToakKURCwc+dIyiqsD0ou1lCdHb9ANmOzc9swuq6Qyzooakwmn+Pir3SSkGbVxTH5rIPtppl8v3dmmn93y2ZAoTpYQaoSVdNQ1JQh7Hc6qLqO73koJKmsUwUFFd0wSZKQfq+DaRr0uz6GovKfP/Jt7r3/JB/86V0Efkyr2yXwE1RF0ul0mF9aBTTWGi12b95Eu9fFsDRqtSannprBtlOJaqVaIRExtmXQ7QYYuoEUCVMzi+iajiQhl3FoNRu4jsbIYAXDMnn06Gk2bx1Gt8yUTYxidC21PT9xco5yKUelmiMKfRIhMS07NXGp1SkV8+i2Tq/jUyoUcFwTqasomo7X6+E4Bq1GHdOymF9aZGxkgMGBYTRDZWp6jq1bq+iGwdx0iyDuk8+VUBWFbD5DZaBIvxfgZnQS0nD7MCKVsRpOKskUQBLRaTZRFRXdcUkUwT+faPGLv/hWluen0C2XMFKoDA7ihT0iYaDoGoZt8Bf/+b/wm88/ROB7OE6WVn0NTdXS2AqhQOyhayb9wIdEoCQJiqKSaAbEIbouiUWCJDW6EUjiMCTwPEzb4he+9jWeCGJeeHuRN//kGPe8bjev+7F9PHj/cTRVoet3MEwwbIdP3fsAO3eUcPSAlxwyePNPbOX2O0bJDtjc8+o9vOENt/Dyl2/izW96DqZh86f3nSQpRPR23MzHjp/hcKvPXx4+jK9IvjB+hhdv20Xb76IpJoqaMmiKbqd1i1JB103CMEE3baTQ0Cyb82cnKRXzhETEEVyYnGHz6AiWlSWI2vS7IZqtI1BRlDQvEgEH9uwgidK6x0LeRVM1/ChMGew4tXyPo5gwSBgezCOFRtdr8+sPPsCf/z9/xmc+93lcTaIoOsePn+avP/in7N61lUTCwMhmPvI3H+XmnWP82m//OntvOcirX/1aVBSGB8tUhgtoSoajjz2Gmx+gtjrH6OggxVKVvc/ZRhKqnDx5FkO1KVbzVAaqrFpLKGqMY5UQUjI1t0K97dHq+KzUegwNlCjlLRSZ4FoWqgpCqizXmgxXc0ShZLXWRjdUMtn8+m9cSOj7DFRLRFGCoibkshk6/RBdNaiUXQQJfhLj6gkrTY+MnWNmYRXbMkmEIIhCHMtmZnGZfNZhdqlJLqOSyzj0PR/VMMlZOtJ0GMxb62Br3bwp9qkWi9z30El2banioxJHAUGcoOCTdV0eevwsh27ZhKlZiAR0U2e51iSOExzXZPNImYylUMlr9AMYquTTfREqX7v/BDu3jnBhdgnX0iGOePDw0+zbsQUpoNnr0fUj8lmLLYMVhITF5RoDlTxRHJF1DUSSkDEN5lbrFPPZS+z7jeJNNrZnmvfiSCRKoNP1qORy1DtdsqZKIBQ0RWJlJbdU9nD65DF2bBkgCLsECLbu3MnS4gID5SLNVsj46dMMFDeTaB1ue+4hCuUREiHorcyw2vQoOi5aElBfrfOf3/eHvOWtP8eJk0/y8Y9+hnte+1oS2WbT2A7CWDJa3YpVLGFi8fnPfpqbbrs5lUuvQ5RYxJdLma4yywiFgkxASSBQImKRXPpIEkg0JAmJSDmfWEgiqaBc5aqZyHUZ6PcAdhe5pgRBEkfXjO+uPtYbl7yC/buiK3HNHFcP/C+yb+IqIHGJKeLKysGN31/N8G2UScak3hDfb/j21eBOrksO0/iAK7f/ihq/i9rES3WS6UduALkbs+RikuuflkvFfut7cknzeL0N3dCeYTevYeoEXIxJuMbIZV0yKsWVfV8d0XAxQ0EIQXTVsVC4Mk5C+aFb5g+ufT9umVGUegSlN//lxf61zpkx8L/+7IP8/HMdVOXyBbfxDdDF/92oq4vzJ4GgVVtkeWWRkaEtLCwtU6qUIUmYmpxhYnoBz4t44QtuJlfIcfb0OaqVCraboVGvcfypcUaHS5SLDpMXptmxfRs9PyKbL2CaJufPT7Bt52b6fQ9rHbyZtkmr1WFiYpa9e7ehCMmF81NsGhui2+3T7fZxHIdOq8O5CzPUGx2SKECqgoP7d1IsZJiYWWLf3u3UazU6XY9Gs4upKSRxwtzcNLYpqAxWuTC1xFClyGqtztBgmXKpwNTUPLqhE0QBum4xNjbK0lKN06fPMDq6mUzWYbBaxvNDjj75FP/w2Cwf+MAfsXDuBHsO3c7yWp9CpQpJjCoVaiuL9Dpd3v7r7+YTL34eQlVAJPiBh2E4SBGTxIJ+p49mqKi6RugFqIaOEAkrCw2yWYcv/POj/Pirnk8YBUihAwm9Xo9M1k5BmVTXj6MGSISiIKRCTIympgYa0bo9vBSSxfk1JArdfp/Tk9Ps3z3K8PAAvufj+2EqNYzjVHapKtRrDXRNxTR1/CBASVQeP3GBwUqWXN4hV3BQNUm35aErKvOzy9j5DPlcjuMnxtm5axQpBaqm8onuIm+865bU2TRrE4URtZUaQyMD+J6HULS0tomQfqeNZTt0Oh0c18Hz0hDxOBJ0Ox6GFvFbf3uUCzOz/OXP7caxTcIoZGp2DUjYPFohjiKeOHaBO+64mVp9iWymkEZoBCFnxycplLJEQcgjRy+wY0sFyzHJ5zKcuzDPgX3bCEKPdqtDrdZlx84Rwiii0+5iWiaqIpmfX0bVVAaqJVqtNvl8FsOy8PttlpeWqQ5UaXf62I7DqROT7N69mdXVejoYdEw8PyCfs0iSkInJGlnXoVB0qdVr5At5lPXj1m60kTJheaXJU+PzZF2dA7u3cPixs2zfUWagOEgUd1AUm3a3ialbzC/UGRvNo+sq7eYCruHT9z00s0BhcCsJEpKEJEqIw4hOZwmhmGRzJU7P1hi9661oukG2PES90cSxXdrtDvmMCyQc/+P/ybaBATTVotttYTo2kpgoTgj8GM3Q04dYIonjNCja8/xLLwpAEPoepmUTJxAGIRMXpvn7iXEqtxzkzJkT/MX/eDVB3yOJE1Q9dUNU1BQEhaGHIkFRYpIoZG5mkbzVQxoxCTkMK08iVRTVoVlrpUy3YyCkltb9Rek9Efj+ulTGQIjLVmd/+hePcesBhz/60yPceegQb/25N/MXH/wrjh4/SRjF3DY4wO/c8aJLspo4jIijCEVVCcOAOAFDUfHCNpHXx3JSkKxbNpHv0aq1yJXzRGFEu9VBVVV0Q0v1PDEopo6ipvl7UZgQRwnHZi/wJ8dO8scf+G/84+c+z9t/9hd45y/9DO95969z/NQcn/3CZ1lZbHDw5n3cfvtBXvaKV+A6Rd7znvdxz+teyu4D+5GKTqlcoLa6jFCgvVrHtvJ8+tOf5Cfe8kZmJi6we/cOLMMg8ht8+b5Hee1rXsX83Aztbpd+GHFMv4+zF+Y589QML7prP7rposqQVqsBcUIiLILIZ6CYYWG1TTmfodFuYuhpxMT5yWXq9R7PPbiLbz9ykjuftwsIaLYDbFPF1FS6fvoSzzJM+l7IzNICmqLTajUYHcpQyBRo9yM0TcP3+pi6gRd6COHy8LHTHLp5O57v4TguXS+i53lkbQclbFHzoGApRCicnZpl19Yxej0f17FpdFr4XpfB6jDEMUEY0fc6PHl6hhfcso8kinhqYpYdwwWa3T5CGpw5P8ftN+1kpdHC1BPyWZu1ZkjWydDt9xAixjI05LoSo9Xro6kqpqbzuS89ytCmEkIkLE4t8ZKX3IKpGyzXmnT7PkOVPI6p4vketumgyYQzs4vs2Dyy/jzfOKh/FqYQ1503nRZFsLLWwlT6xFKj2exjWgqzc6tsGavyMuN1bBrZgh/2WFlZppC3kIpJsx3R9mKWFya5MHmBwId2q85X//mfKW2vEDUjpAFOzkJzDZbOLfHq997K+QdrnPjWeTRUDu67ibe99WcR0iOKEjJuiY/9w7385V9/nM/e9xmmjj2Kq6rc/rKXItZDyULSwXKC4NKtKxJIBKEIU8daoSCJkUKSkKSMaRiAZN2sS6TPyTiCOEQIFaEoEMfrdV/P7CGZxOl4Tq47aSbrMsI4TmvMN86jpJko120Xl74elXY9h8wbsW9XblucHqsb9scV65dX/Z3EMcoNlr9Ri6/aoKvHtfENwKK8gQ+oEIIwDFAV7dJ6kyRJ3T2vWlfq+HnV9oobHPCrnTNvNN/32a4Q3j7TOjf0/0yOogDaD90yf3Dt+zFUua6dKv965m5yYoq7CwtIeSWQu/rVxg372QDwlxbmIAopFMo02l2EADeT5eFHj7O8UiOXyfDiH3k+Uk04d3oK09aoDFbxen00XbKwtEzGdClVy7iWjdRUcuUcs7ML2JZBsZRDWXce1HUNTVOJopAojMnlMhw7dorBwcH0BxfB6kqNJ46fo1lvMjJcZHZ+kSQJGRwqYpg627aPIVSVSqVEt9dnZnaRQi5Lrd6g02mxvLKAbqjs2rUVN5Oj78esLi+m+W2mRafTpVIp4vU91tYaVEpFFhYWGR2pYhoqxJKe1+fkU6fZsnmIQjHL61+0h0/ff4rRqkVu0ybyuVGIFVQhqdfmsHNDZEybbqvDc7Vo3SFVYBgWcRQRhD5xkPDFfz7C5tEKuq3Taffpdn00VePBh04xu7zEoVt3oesaURjxjQeOMzZURjNUpCKRiiCJ0pBqzVaJk4R2o41ppG8lxfq10G130XQ1BSC5DEIkaLrC8ECBcrlMFCX0ez4kkEQxq6t1ToxPMDY2hKYqOLZJFIaEfprltXnrMPliFtMy8PsBvV6AkALdMsjkHAzLJI5iigUXRVcxTIMojintH6KccwnDLgkJhmFh2ia9Xg/d1An8Dqqm0ml2sE2bOPKRQkIcomkGnXYLKcAyNf7rF86yyWrzqk0+lXIxlXiGAYvLbXZsHcbzAiSCfFbHtGxMS0Og0+10ePChk+w7sAWFBE0z2Lq5gu2qLC42cGyLfj+gOlBCioTVtSYzszXyWYt83kURKo16k0zGYnC4ShiETE0tUspn6HkeiibRFIlpGAhlfcAuJcPDZcIwpFZrMDJSRdUE7UaHwA/JVQt4vTb9boQUCeMTk9RWWowMlmm22zSabfKFPOVKicZanV1bR1lcbRHFAbmcidcLKVcyGHZqTPL4sfMc2LOJM+MzrKx5VIoutZUFvH4T08rh5AfwOm167TqR38Lv1zF0nSQGVZWcmV5i3133EAqdjhdhahq2YxMnCefOXuB//u4HeN3Bmwj9EM3QCL0ITdcJghhFuShL09LfniQNII/8LqppEYZByv7HIa16HceyECJGioTfefRh9t02wm/+2j5ecfdmNE1F1Sw0M63B1HSDKAqRqo6qayiaiUh8vMYMrt7DR0VoFTR7EBIDRTNQFImigG7bSEWSIFGQxHE66JbSTJ0yZIIUqRRcCHjOLSU2bSqzfVTywhcUKJfq3H6by/ETi6yt9Vju9RiXKi9465t56x//CSsri/zJsWMMaSpbS1VIfOqrU2jSRFo2quoS00cV2nrtHBimyvRaDUdV+cbSLI3VJY53W/zfDz/MJ888zd89fozPj5/joUadcMdWNt95iNsP3MKmrVt5waGb6TT61NdWuPW5+/j2A49x+Lvf5Rd+4e184jP38s37v8WRhx6mtdbiV975Dj79uU9y4dwkB/fsotduUx4u0+t3WV5dpVQZ5PZDzyPBY9/eA6wtL9FqLvHRj/wdm/e/AMtSGBvKEkUwPDLII/PfodYKGRrO4YUBD353nHLJJp+xmFtuM7/UIJ9zeer0BNWKi6GaNDoep06cY3R0lFLeJp/PYJpQLuZ4+LHTbN88zGKtRxyGOI6JZZjMLa9hGipSJGTdLMWMSyHrIHUDiUTEgkbHI44iev0EKWMcR8MPIhotjzBKcwejMKKaz6LoKkncx3LyNNo+R46e5uDeEYSiY6o69U6XiekVQKeYS+NJ5hYXWVrqMjRQ4KEHn2RstMxwtUyj3WJ8osauLQW2jpVTBUWrhapAZl363Ox0yNom9Y5Hq+vT7bZRVQ3XNglCiZAJp8dnCaXOHTdvZ9fOKn0/QFPTZ6KQ4Pk+ftjDtS1a3YAoDGh2+5QK2fXn+bMbOTzTfGKds1lrdREx1NoBPT9ksJgnjiJGBkuoqsrzNt3Fl7/0dYaGR7n33s/wwJEn+NC9/y/HGyf4xJOfpVeextrRwdyWoG3rsPXOIfYcGmbboSK77yiz6TlZRvco7LhrJ92+R0vWuOklm9n3ks1k90pOtR5jKj7PvX9/H/d9+UG++fVv82cf/F8sPH2WtdU1PvTRj/LC5x+i1+9jue6GwczlGiaEJE4SDClQe02+/al/4MSRB8gbCU8fPUzF0Rg//EUWzp1k4qkJTNGhnHOI45heJNGkTIHaxSDi64ARsaFaTVxhpAIXqZormLv1sZV8BqAkrvnP5T82QoSL7Nr1JJfXrFOIa+bfyNhducUbNnfD8t/vuPRq5u56xNr1tvrqurqN9W4Xj+XGMfPV4+cgTN2Sn0luecXXz1Bz969p4gY7/0y1gDeqx7tITSqq+kNZ5g+qfb/g7uJJvkhZ/2uvq5Mnn2Zr4/DGTp6VlGDjNqVXlIJIBF6rngIDmRbt1xt1RBLTbDRptxNWax1279qElCrFgSLNWotMzsWwXfqex9OnJxkZLJHLF5manqZSLSGkQcbS8fp9dCeHqkk8zyMKQlinqXXVwOsG5G2dVnONKBKcevo8A5UStqnR7/eYmVuknDMplVwq+SqWaVEqFanVGizOLSBIaDVbOK6NAiR+H9PUyDsulmOwuFqnXKoQh1063VRSs7S4Rq8fkM1m6XZarNXqDA0P0O506XQ8hJJQW+tQyhVYWltieGSMJNEYcep0lc1UrDpBZhuqTKjNniNszKGbg9RWV9i3eyvRow8jNBNF1YAEVVE5fXKKwaEye3eNYpgG3WYX13V4/IlxfN9jeDjPzQd24HUCOo0eays19uwc4enT0wwOFJFqgt/3CfyYXi+Vb140Xx0fnyOXddB0fZ31UDj65GmGBioIXUUogljEmI6O7/s8eOQkKoJiMc8jj58m4xjs27UZiInCCN8PiKII1VTQdJUg7OH1OsRRhKGZaKqOqqcBo1EUE/kRx58cJ+MYaJZG2O8Tej7v+soxfuKFOzBMB0Uqaf5dkqSmFkJDKBpSREgidE2j1e1CHBEREXmgJT5CJrz6v3yB547pvHAsZuf2Ac6fn2FocBDPF4yfm6RWazA2WmFieoHhgTKx6NPpNHji+Bl6PY/tW8q02xFTs4uMjqT1TZPTS+zbv5Nuq03gRSA8NE1QyGcYHR5A0yMWl+rohpZa8ktJp9mm1lijWMgjpUa/5zM+voCl24Rewsz0CoVinjjwiOI+mq6yMLdIqZjj9Pk5er0O+byLbTg06isUi1kSIRgZrqAbAjdjppJlEkxN0mm1mZ5bpVzJYtsGkR9TrZSZnV1iemaF4YESUQybRiqs1tosLnfo9/q0Oz4rvTY5u0e+uJfIXybw24R+P5UHq2Z6feqQRAFDeZte7ib8CFw7RxRBFPlEccDv/cff5/966d1pzppMhSOKLhFKgqJohEGIvi43RAoCv42MQqJQIlWQUkHRLXrdNoViGb/X4Ke/9HUG73w+A6UlfvpNO/H7PQK/lS5LSBInEHtEQRMZhyRRggwFcX+e1vIkIuoDEW5hF9IuoRsqqpJKZIUiiUlQpSAO40vyY0V1SIRPHEZpWLhIiIMEIVPDkzgWSEUwOjaYupJqBqpu8JIf2cabX7+fH33ZGHe/uIwuzvL61x3gO+MrzMzWeHRpka9OnkYZFnxitsWHjzzO0dlZjgr40KNHaY0OsJTP8qlTp/j67ByHa3W+U1vhm0+f4amex+Nz8yiqylvu2ctwSeU/vPP5vPENe7nppgy/8e4P8yvv+HmkITn/1BnaDZ/yoM13HzjFt++/j49//GMcPXKSuYnzPO+2W/iDD7yXQjXH297xTt79nvdy6IUvoddZQtMVsq6Lbdmg+UQ9G99f4Zff9jaeODbJS19yN0tL96MZZXbvGKEyugVP8WjWumi6xXj/BJEfsHm0QKPRJVuuMlzKcvTYaYp5l8FqkYxtgSIp5Fz8MKKczzA8XEagIBSJlDGBHxLGgrGRCnEcUcm75FyXOImIwxDXsZEXqVpFZ2ZhjYylIxWbMFHw4wTHMtP4C00h69qEkcJAIYuqJqimSsZ06HgdNAWIQ0Ji/CDk24+e59abR7EsB0lEkEgMXWewnKPVWcO2TAzdxNQ16p1Vwlhn2/YhHNthrdOj5DocPzvPzrESU/N1ElWjVHSIwwBVQqsb0Gx1sU0N19TIOwY5V0VoKkIIarUlHEvn/NQKu3ZvIiEiDj28OOYb3zrN9m1VFBmjqZJKoUIQhri2QrfdJhGSXDbL967GeuZ2uUYrotXu0Gp3eeThp1leblKtuNiWRDcsBCG16T63Db8KTYv57d99P/lXa2y6PcPuuzZRGjOp5kOGRsYQQtDzeui6oOdH6wZoCf3QIw59Gs02qhpiWyaFfBF9nclvtdewzDTuZmCvzel4icKozfFvnOTVP/bv0HSVbqfD3u0jzM8tUB3bSSJCJH1UBHrSQxUqnY5Pokq+/ld/zsf++o9R5CR/9w9f54mHH2bizAke+saXqa3OMHnmHPOTj+EvnOQrH/8Qxx/4Mp25I3jtOpWCA5ZDIE3idSCXoKLEISJJUrARp/mrUlx0RBSXJNRXf64ES1ePyVJRpBAQi5T5SyOo4DLkuRKURev1dc9mdHcRhiYb/r74XUwKtuJLPO71+/teLRaX1yOEQCY3Bp/XB3cJ4qI95kZ94saN5VpAd7GHOBGoct2HdKMMU1zs8KJEc8NSlwbeyQ139LrGKuvoNQX0V0pA4/Wzey+yfSgAACAASURBVHk7L/cdJetGOesy342knhRiw3UEySVgkBDFEZqm/xDc/aDavxTc/Vu8LOh0Ojjnv4quKpfXD98XsNtY5Dl59hyGBqpmIFUN3/PQhIVpOtTXuhRyBoMDeRKRrJurBExOzLK8vEY+ZzM1McnmsTKe1+fYyXPs2jmG54eYloWupfbmumUTJzESMM00d6zZbKV1TlLge33iJEktsE2dM+cusLS8QhD6KKqgWi1SKVXIlUt0vR5xFOE4NkkcYxg6uqHRaDRZWFgk8FPjh227dzA7W2d0eJDp2QsQx1QrRaJYMjoyQJREzMzNU60U2b1rB2fPT+A6DiNDw0xMz5KQsLTUIZuzcB0XTRMoSsxv/fdPcPvBMfJDBxDEOG6BxND5pV98Jx/7+4/yute+hl/523txLswS9XwGqoVUyx4nCCU1n2i3uykzEieMjVTJ5zPki1kQAlVVefLpc+zbs4W+57Fl6yi6pSMVEInkWw+dYHighOWkQG5+bo1ms8/gUJG11TqQIIWknM+hKCqGrVFfqxP5IbqSuu3lXZuh4RL1tSZjI1U0ReL7PoZlkMQxYRBiuzYiUVGkhqYaSFVF03SEIjl3fppyJU8YRKnLaRzj9TxyhQymbZDECbbtEA7l2D+WX1elJ4SBjyLSoHUpBCQxUgqiOCYIYxzbRgiJF4T43S5LCzP82Wce4sJCi1+/ewhVsfC9BEVVWVpaIw5DxkZK7Ng2ytT0IlJIllfaDA4NUVvts2/3DlQlJptx6XS8tHxKQK/vkXFt5maWWas1qVSLLK22GR2tcmFyjjiJaNQCHNvFMMxUCihi6vUGqmIghKRRbxJEPkniE0Y98iULL/AxdZ1Hj55lbHgQTVfJOQ69vsfI2CCOrfPEyQvkshaKkhoWZbMZGvUGwyMlgjDAcW3azQamqaLpJhnXwjINbNsiDEKm51axTZ39uzeztFpn/PwszVabsdEScZSwbUsV4gjbDikVsjjZKn7QQ0onlS/FoOoqnheg6zqqbvGVkz43v+THURWJqgpMS0cKhbf81Nv5m1e/Nn0wCUESi9QQJY4hSV0wDUNHVdW0XtP36He7GJaVvtgQqRRKVVQUReFNn/085TvvYNsWwU/8RJXdO8tYbg7DctAtB0UzLtW1pXJ2QZxEJITEIgSZIESCaqROnqppkiQqmtDpdZtouoaQksAPECJ1vgt8H1WThEECxKiaQUJAQoyQMUQaX/nSd9m+cwuKlsqaVV0FGdMLmuimRRSraHoGTbOJwi79zgLP25twz6sGefOP72HrYMjLX3crr3rlTpRYoS98fvFnt/Mzb7mNWw4a7Nmtctedg2wZCSgXuvzqO16EGs7zzl++k7e84QCvf91ebjowzO3PHaFUzgKS8acnOPl0nde++jX0+zGWBaXyALoZc/Dgc3nwwe/yxjf9JB/60N/wcz/977Edg1x+gA9/+BO8+U1v4fAjD3Do0O3kCkWcXIFYKEzOzNJdWyAhy5HjD/D+9/xXdu0fpVIqEfk+O/fspe8HFMpF5i5M8o8f+UduPXgrf/+hL7Ln+UNEsF5fqdLodDiwc4yllRpDlSpCgbmFZYYHijx27BxjQxUUKVhtdDg7s0K1kGO10SaKBFEMhqYRxzH/9OXD7Nk1AlKSCBUplXSAI1WKOZeu30dXFBZW1ii4Jsv1OuV8nk4/YnZpjayr0e17XJhZYbBcJIp8LNPEMlQMLc3OMzSDTcMDtFoNBop5oqiLplqQgB/45DI2mpR0vADX1CjkbBTFJOcagMDzejz5+Bkqg2VKRZtiPocA6s0OngdrjRaubROEIZMzSxw9Mk6r36dYyCClhqEbWIZBEMHAYIFK3iFj6URxwn33PcVL7r4ZQYRtamiqiqooSClYqjWpZh1qHZ98LsO/GbhLJJ1+QM522LJ5kLMTyxzYPYplaCRAGAasrnU5991pToTf4bbXb6Gcz6CpKt1+RL3VJefaqJpKEgesrtawnQyu5RCECbqq02oHCKlhmhaO5RALSc/zMVRJnICuSfp+hK6a9AOPdi9k/y2DbD2U55++cj+nHz/LO97+qzTWZpieeoqsKSgPjDI1NYftFqjFFlEIE08+zF/8/jtp9CbYfdNdbNr+Mt72y79Bve2RzZd5+StfTdfz+fwXvspttx7ElxpzyzXuuOP5zEyeYvLMOc6feopqdYBcJo9BgkKCTFIR6KXjdj0F1g3Km54Z3F1ez0WAden8XMUHXu7mWkO+ZzzPXHulXPruCqLp+v19r3aFEcs6SPn+wN336O97gLsN+O86K7oxk/a92jPFK1xv2vXqHzdO27jOKxSbV8+/YWKSJD8Edz/I9mzB3ZX1dv82JsbTX/8rKjnn8hfPlrFbf6Mk1k1ehJCEfoTXaaLrKpabJY5T8NXrt1laWUprkDptOr0eJ566gGloxH7Ihel52u0uqyvLLC4vkc9YaKrG2GiVfDGH67qcPn2WdrdLLp9fBwARqqrS7XYRJNTXmjiOydLyEs12F9fJcOzkGVrtHqYpGRkqUszl2LVzO6quoao6x06doVIu4HserWYbQ9ep1eo02511VgJ6/R67d22nUKmQcXP0el3arTrtTg/XsXDcLBcuXCAIAvbs3kG312V6dpZGowVJzPjZCRCSUjHDwkIT3VI5e3aeiekpkjjk9S/Yxy//t0/wljf+5PpbFw0viXnpnXdyxx13sG3rVj7zxa/wOy+8hVIhh9/30E0V3/dQNRVVV7Esi6nJOZZWapSKGRRNSZ8TiSCKIkZHKyiahq5pSE0SxxFhGBFFCbu2j2JaOsefOkun1WewWmF4uIyU8O2jxxirVrAdiziJeeLUWarFDEkUc35ikfsfeZpK3sVy1LSuzrYxLJ0wDDAtnSBI/43iGM/z0Q0Fz+8SJzHquvwuiiNyOQdVKqnsLYZ+t8PQ6ACKotDv9dOXADEcvGOEKIrxen4aHRHHNJvtFBBoCnEUEkUJhmHQarcQCWiGgSoiLDfLP51osKYM87aDCTu2V+gFfQYHiywutykXHHq9HtVqkamZNHeuUsozMJKh02qvswAKuqGzVmtRrRZZWq7huhauk4IHVUlQFEGpWsR1LB57/Cw337QDy9aZnplnYCCHbkoWZlcJogjXtRk/u4BhKMRJSN/z2L97L2uNJpquE4YJQRiwc/sm2q0+yTqYQAgMQ8XzQnZsHcF2TObm1jh2YpqsY7C4WKM0kEMzdPxuD01Nga/lWOimSbvZodvpo2kqY2NDnLswRzZj02z32btzhHarx/JynYnpFZIkpt9tkzF7lIpjaX6XnsHOFRGApmsEYYyuG+i6RZRI/uDTF3jNa36UVqNOnES02x3e9dv/J3/1ileRAL7nAakc2A+6KFIjSQS2Y6BrGsk6yx8HPpadSSMtpESQgr5Oq8mvffObZAsF3v2unRzYP0AYxkhpoKgaXt9D0XRU1UBV7bTYX1HSAHDVQdUtAj/CsEskiYFhldGdIRQtS7/Xot9bQch1Z704TLMOpYLEJwq7qFr6xj2OPCQaK3NLuJYDEUglZMvmIXRdoddp4vdbKFKkkS1CI+438Dqz+N0Zeq3z9BvzxH7E/KqHkCqmW0FzK5h2HlA4sL/CrQerGEYa/C4VhSAI0TSN5cVVXvDCWxFCsO/ATqLQxzAM4jBCIPD6PeJIIKRCsZznlS8e4bNfOMeBAzfxxa98kt27D1JvrXHvvV/kpXe/lN/7vd/l9//gP2EaOjt2bMdx8pw4OcFHPvxB3vWuX6FSKhICvh8gVZVyqUxt+QJf+/pjvOnnfpRHHjxFdTTP/PQKikhBdaBY0O9AINl/4FZ+6e2/Sm21x447K2i6jiIE/X6fSi5Dp++Ry9gYuk6YxKlMSgianT6VQg4pJYah0fECas1O+qLFcTk7NU+lkMHQBYZrYWgaYZQywIoUBGFAs+PRD8L0XosSClmbTr9POe8QRAJT1zl+epLtYzm6fsRItUzge6w0PGaWe5yfWqaSM2n32ggpOXVuhoytYRga7XYH2zaJoghNUVBEqkCYmF3EMiRhHGLpDgkhUkoeOXwcJ5vFsXWyGQcpYKXeYmpmhaFqgXMTS6iaxLFSF91dOzehGQYJEtvQiKKAIAJFKrQ6XcpZGwQYukU76CNETLWQgrc4VrhYBWVoGv1ej24Qf9/g7ooB8FWt0/JZaXRodHoUsw75goVrGfT9ANsyEQi++T9OETyvzt79QyQIup5HksDSWo1Ou4ebK9LpdXBMlYFSgW8+cBrd0jhxagrbzWDoMWHkk83oRImGIgSaTNkMTVVJpERTVU5NrJB1FLrdPmMDeWJiytss8gcMpsKn6J6P2DpWYvLUozz0tS+wOj/L+GPfpHv0Y3zxb/+c5ZkpXnT3Kzn0I/fwsU9+mbt/9OV88zvHGRnbxp59N9Fo9zh8+HHe8773MbJlH3ppiD0HnsuTx0+yb/d2So5BvzHH4fs+h21K3Pwg0srjEaNePIIbQdx6GPozOXcmkP7+XGdcJsXlAf9FcHe1hO/q+rhr3BW/B9i73pYll76/PPXK+s1n9xHiyvVfZDFvpEi7stRtwz5ejyW7drbr7siNpJDAJTZt47Tv12X2GR04r/PtM4G7i5fKdQW668vFSXLF5aT+ENz94Nqzj0K48m3Pvxbc/Ydf+nnecNe+f9nC1/yACHpdjzBKA4J7XoCuaXRbbbK5Eppi8Mij49x2+15yWZdtmwY5dfIM56YWKJazaKrE0EzGRgbZvHkTxWI5ZXwyDq1Ok7GRAUzLRjMM0jtSIFIEg24YaQGygHarTblSptfxaLSaJJFCseDiOha6ZpHLl7CzFo8/eYqxYso2SSnp9fssLiywvLREGKSua5l8hn0H9rC4uEro9bkwcQaBpFIaIp938X2PXK5Iv+dRLpc5Mz5BoZihWi0ThzHVcomhoTxrtTYAhaLL1i0jjJ9dQtcVnnPLbjKZAj9+e5G3/d5fc8/rfoza/BwFVxJEYNsWjdUmP/9TP0X45CMkQJyEKKpCq9XCcRy+9dATjA1WyBeyBJ5PQoxtpw/7dqPLtw8/wc6tI0QxEISp42ocQwK6pZMQ0/M6WKpDxnEJAg9VS2ueRspFXNcmjENQoFrKopkWiqry/7H33sGW5Fed5+dn0uf1z9xn61W9ct3VrXayCAkhBAIJGQYhh8SwsGIws7E72o1gDDO7wzAziJllYAwwKy07SEgxSAtCMC2QAaklte9q39XdVV31yj1vr0tv9o981V3daolWi4GIDZ2IG/Fe3rw3M2/mvXm+53zP9zs53ubYoRls1yDJYizTQShNXmRIJVFaYjtWRW2TopIGFyZKa7S0yNOQ0bACTWVekiRV4vPQI6eZmWpXaltZgaREGgalgGxcI4TFF//iXhYXZymE4OQDp5ibn9kfkpcUeVUpVSpH2w5RMCLYW2Nvc5P//IVTvOfIiCwRzB2YIM1yPK9BmWZMjtfpDUZMTo2RJimUJZZpsryyS8trcO7cKitrW5x8aIkbbjiMKHMmJztcvLROo+5xaWWTyYkajm3ywIPnWTw0xmgQ4Tomvu/QajbJUs3ly7tsbPRJ0ozu1AQzUw0Ms8T3HZaXe5i2Zm6+jakVp8+scPjwHKfPnmdyvM7F5S08z8e0NGE4YLiXcv7iGmEQ0B2vcWllm6luh0fOLHPi2kOUQpGMQpyaRxRF2JbJzs4elmFybmkdx7Notpssr2zSadVpdZqEo5iNzT7TU2O0mzajIObwgQ6eFeE3psiKEMOaRNkCQ0uSJMd1fZK8REkTUeZ85t51Xv9dN9KdncO2K9PyNw4HlGWOUpV9QZ7laG0glURISRxFaK1I44RBb0CjWcf0PECR5RnarDzf3v8nf8JWd4yli5f42P/1VqJwiKHs6uYuC/I8xjI1wbCP1hIlTSgTsiRGoEAE+yAc0iLGNEVFnVLV98Jyahh2B9O0yLME25IEw12UVMSjHSQxSRxQpCl52icLhrhmgSVyimzEKLhEkQcMez1ME4pkRJmD57UoxJDRKELpGoI6WTmO48/w0U/dz6XL0N8bcPzEAl6jRhwGlUG6ITBNjWEYFGXOaNCrAHCRMTnRIUkD8iwnjkJqTZczTywxOTVJHEXceefjHDy8yMb6OkURkgYJ/88n/oLvevV3ceMtN7F0doN+b8Abf+Bt/O5HPsLLXnYLr3ndTZg4jI232Nrb5KabXsLf+8BPIKVg0IvJkz62IbGUYPXyRSYWWtx/13mOHe1wzQ2HKcsxfuWff4hXvGqWf/2vfpu3/tj7KYMh7bFJbv3Lr/C//uI/4qMf/xgv/aFZ8lwQhwF5UfDVrzzCxNQYhhYESYjruLimh1KCJCuwTBMoyMuETqOOZxsoXeC7DnOTLdI8RkrJgw+dY2tvwMJUA4SgKHJUmaEsh7rjkKUJtu0yjGIcyyTJi/3iSsn8bIcyyzFNFylLgqhHp2lQ9y0OzzQpCwFU/pyGNpieaFBg4Dk1gmSEbVmVt1lZECc5E506YTgCCUpaKCWQQmLVWmz0Rrz0xAHOLq1Tcw1c12Z+Zoo87zM/06Xhe0RxRJaXnHzkPEcPzlD3TYZBn7zMcGyLME7Y3O7T9H3COMF2TKbHXVynMmHXSmEoE6VKBmFEHGdoisoewqzEtb6lW/7zLCspiYOUhx48TXeqSVEm+LZiEIxo+DZruwPqjkP9hMOh+XFMLRkECb5jorWi5ii6YzVOXdrm7Pl15mfH6Qcxhw5MUfcdPN/iwQeXWDx8gDQricMcaZTEcYASkqTQFHmGaVkMRiOWNwPisM/RhRlGYUicm9xx8jTHD00zDEYs22v81/90Bz/70z/PNd/7Bo7c8lpueuVNfOQTn2ZpO2P66C2cXdlCOwUKj9WzG/zqb/waX/val8jTIb5n8vY3/QhboxF26wB3334nR49cz6VLG4zSAn+qTdhfZcIriDbv52u3fpKzjz5O25fUJw+9iETrCgiSz1tzf1bj7xucpWd17Z7n/ZUQ+/nTt5dRvph2wzcCd98oviG4+2bb/it36xuDu/JvENx94/W//rx9M3D3jGdftfg74O5vMV4IuLvSqhbPkH2frla8mPilX/pl/tWPv/RFvfZKlPC0P8ru5i5hfxcpC2zHo98b4tcrL6HRYMTJR57gpTcdYbTXY3Nji6IomZmapjtZp+77dCfGaDR8Zmam2Nraw/M8wjhESIHv1ys6lqkrsQUlSdMUQ2qyLK+S/zyjt7uHFAajYUiaxkgKTCNnujtGnBa4rg8KLNOi7vu0Oi71ZpNef8jOzh6ths34eA3TEBiGQW+vhypL9nZ2iJOc4TCgUfdZ31zFq9VIsoI0ShCGief7TE1NksQ5URzSGWtgSEUchWxurNFs1Rkfd1lbX+Pa47O02y6u7aINRRhmvPt7ruFD/+njjM0cZWxmGomFSEy0mWLYNV7xwV9kdnPEwZkJtKlwPBeEYHF+hizLKCmpt2q4nkNJQVGUSAXHDs9XFLeyIAoytFV1fpIkhbzywDIMuxJ+KSvPMs/3UEqitUabCopKRSpLc4okwRCCCxeWabbrGIbBmaeW6TQbDIcBUggcxyIKIsqsREpJFCQsX9qmVvMQArI0xdjvOJYl1dyWLAiDgNmpKZSp9ytqkgtLmwz6Axp1l2zCxLINfNfA9R3ieMixw4dQOkcIUMogiULW1tbRUqNMB8u0UG6DD3zkPn79nbP4vsf09BgUii/85SNsb29y4sQ8e/0BrmsjtKJe9ytLAsskDmMefXKJdstl4cAUhxa6nD59Ea0Erl/nnpNnaNZtDh+e5eKlbZRhsbg4xcbGHocOTSPIKYqcwSjEshS+a7C6ucV118wTRyGeb2BYFo89foE0i5ifmwKg3w8xDU2jUSdPC049cZnrrjvMuaXL7Gzt0Z2YxDbBtTXT05OsrPVoNCrxCC0E3elxyiLDsDTDvSGmYZIVVQdvfX0P3/dY39im0/I4dGialdVNzi2tYlkG2lLc/9A5xsfqWLbD+JhNFPax63WKTBBGPVyvThKPUFoglKLIwbIMpFKc7jX4gTe/FcutkUVDbvu3v8nhsUniKCZLC5IwQRsVZVsriShLwlGAZZn8+ZfuYBSENOuNfVGIkrKAu598nHPXHufgbMJPve8QP/6eVyCVJs9KTNukFJCnKVJcUXzdp9tUpW20kiRRgGn6IFTVuY5zlOUhpIasoKSy9sjTIWkSYZomSZqjTZcwDLD8STY3Yppj05hOHbSH4fpot0mu62B5GM442mzhNcbY3R3QnDiAtj12tnbo96DemiDNSpxaDaVNllc2WDq3yZHDbdptg6nZBZRp8eiDjzI53aXIUu786t1kaYZfa+J6PmEQcPddjzEzP8/e1g6GYbCxvoPn1jCUxrBNlJYcOjSLYRrYtsZUGr/V5g3fd5hRf4LzDz/MwSOLtMYmcKyCu+95iAuXzjM/e5jO/CR7mwm/8e/+JZ/81OeYXVjg9JnT/OzP/U+89g2vZL57hCTdwKu3yUKH1liLP/jEH3Ds6CJ7e0Pe9ENvYDRI+KE3/xBJNKA+0SEpYGF2Bs8U3HzDS9hUT3B2pU+n1SDOBdefOIBtGaS5QEtNGKUURU5vsMr0WJ2i0BjaIsliTNPENjSm6ZImCacvrtILMzr1GjMzTRbmJpHKRctKgfTPbjvFwkwdEFimR14kCCEwDUWS5hRZjmWoykZRCdS+HUdRlNhmDSUMCgQoTVlmuLZFDuSFwcrWHlJmFKmgKFNKLO68/wnmZ8cphMS1fe578AKHD3SJ4ogoHVUdmHREu1XH92sMohhBiqUKlLJJ04CSAksJ3FqTaw+NUwiBEDmGEriWy94w5OHHljgwM45jlRULJi/JimreOE6zfQCrQZa4poUUkv4oxPcdlFbfUjL+fGtqrdna6lEUKYsHJ5lo14mShJrrIAQMRiFtv8a9D5/h0NwklCVKmyRJimObFWW21ARRxpGpBvPdOruDHWquR5pGxGlGza0xOdXEViWf+/OT1Md8TNNBCcEwCACF5xqMRiFlCa5VsDg3Rbnvq6opObE4RV4kaK2pmZLJm1zOywt86IO/x3t++NX89j//CV7zgz/HocUTXHfiJsKgoBxsct+dn+UP/ugP+N9+/BoO1HNe/ZKDLJ25j3/8K7/GyXtPcvnUw7zhB1/LmbPLvO71b2ds+hBpf8iFU/chZYztdfmzL5/iNW/+u3zso5/hk7/xD/i+73s90qkxyrbQZo2stIjFvljKvrx9WRaVZco+i0qWoJ+eqSopKfc7dvtdGp6hMz778cwZfq5dwdVg4Zm88luLZ7bxV1tpXB1Xe+pV5fnnwruvG5e7yoj9qk7hVZuUzzn4ZwhoL6SA8cwbXZkfFFcBpatS7m8/vv4kPftxNbX1qgN8QeDu6U1UM3mSyljh27FC+A64+zbjhYC7oiivap9f4d2+OM78PXffx7uv+QbSsc/zeL64smUlJJQQjxIc1yFJc0zLxrZtlFLsbu1SFCUnThxFScXZc5fZ7Q2Ym52i1x9x4eIqSZoxMzXxNFXYdh1Go4gkSmi2GuT7vi9lUSKlokCSxjHsq0cFwxGWqVld2cR2XB567AzTUx1W19dZmJ2lVqtTlILxyXF2tnewLIMgCHA9h6WlS8Rhwu5en5qvEKLcnx+ysC2DwXBAveGy2wuYne4ShCGO6zDV7aJNmzTL6HbH2d3t0R8MOLh4BK0FYTDEsWuEYUCzVcO2baI4Z35unihMWN8YUGQwHMR4rsNeb5cfePkxPvGVU7zqVa9ACs365TWipAdS8b53voeJ80/g1RykluRFThiGDPYqWqJhVL534XAIJShVCZQkcQIIygIsyyIMRhRZxhduf5Cjh2YpC5BaQVmwvLrO+HibYBgSBCFpkmIYGkTlJ5dnJZYhSOKUsU4bw7EpUYx3mgSj6ji1VBQFlahBWaK1JklTxifGOPXYWURR4vkOWZ4hhGJrY4dazSdOYhzXqWh3w0ElsmIYNFtNPN+hKHLCSRfPNvBqHloblegFMUIYpGlRAbJ9qleSpniWye76Crbr8pE/uZNbugYT4w36gxG7OwMOH5pm6eIm3cl6RXtzbISEoiyq5KcoK/XHsyt0J5oMhgGuZ7K5vceRI/Nsbu1xcG6SB08tMT09zvb2HgsL0xWIyXJ83ybPUzY2tmh1Ojz2xBLdbodm02Nza5c8KzANl2iUk2dw9PABLMdEigr4mlpweXmTRt1jvNNEmZqxdo2aZ7N0/jK7e7torbn3/jN0WnXazcpyYmp6loK0MgPPStIkRmmFZdpsbvaQStNq1nD3q+cgMJRAm4KNzQEzUx5Kauq+xWAYo3XB6voas7OLjEbD6vM3bIJRbz8pUZimVd0WRcl//NNHed+Pv4skLnjne/8uH3zFy6Gszo1QAtO2MLQmy7KnMw2tJco0mOtOsTA/g2lVkuJJlPITn72VmVd/F296fchNN05RSkiTgLJIiIM+WSaQAgxTIeV+8iAFSmvyLKu4WyikrEDPaDjCMC0s26EscyhL4qgCnFJSmdIbGqjmuUzTxjBNQOF6DkppirxSsK06j3o/MauEPsqirI7X0gipKypNltMfpgThgHrDp0Syub5NEER87+tvYW62RavVxPFdECaWzrAclzLPmDvQZXKqC2i21reJooRDh+e5/75T7OzscujwQZYvr7O0tEIUpUxOjVVKop5Df3sX17WJohGmbSKF4Nf//Re5fkZTmziA4TWQQvLyl92MEpKbb3kpX/z8rfwfv/SrCFHw4f/yMU4++ABv+zs/zAd+5mfY29siHRX0dy/QrHXYHcJn//zPeNf73oXtCvK45MxT5zly/Dri0SZRGPFffvf3OHrNMaQoGfSG1L06j+zdwXhrnI29Pu2az2c/fx9HD8+SZCl7/RFBkjDebmAZPqM4o+YKBlGPvWHG3jDAt439bqbAtizmxlrc89CTHJztumTijwAAIABJREFU0hv2ce0aZREQpQlHDi1SFgk7wwzftbn3oVNMjLUAwShMUKJyisqLopoDLCs3KWu/W6yVZG8YYFmCpUur1H0Px7ZIspLHnrzA4vwYF1b7jDdttDJY29nlwPQYaZ5jac3M9CS9UdUxNhQ4jluJYI2GoBQr61skaUKJoO76JGmEUCZpEuDYFlkSkBQQxiN822KnP8JzLeZnJonTvLJYCQJ810EqA4qMYZyytLLNeL0CWlme4ZqVHU2t5lXMl28zY11Z36ZT9ymKnLKEYRTjOTZSWmitcWyDsxfWqPkO7WaNXpBweXUTxwTLNMgLMCSEUYASgrxU1H0TpMZUOTu9kKXlLbpjLQxRMjU3QXesiVBVV3IwSmjVavSGPRAQxzE1z8M0NEEYYGpBnBWUZUFZQpplGLJkt9+j0ahz/HULfP7krVy8/QxvfPNP8vipJymAudkZ/t/f/w1e+ZIGJw62eek1HqWl+LXf+iLf970H+aFXz7A96HP04Dy3ffku3vLDbyVKS7z2OE89dj9tb8Ro7xKW4/Oy730PornA0RNHmZ5d4L7bb+czH/0PFMPzTHQ6NEybPFhBCANJZT1QEZKeoWsKIZ+mZFazdVfpHHzTAv8+TY9nQN1zTchfbFTsn29M57zyvHrODB3sC8pcvZfPOoZnX5XP0D+/Pp7FHNv/88XZsl0Nop7NjnuxwPfFx18HuHv2a78D7v4W44WAu+qafQ64e5Hb6933KTp190W++jmRl1xcukSexiwvrzI3N01e5GhtMhqMqNU8vFoNIQWG1lhas7G1i1KCLMuZGGvTGWtiOxZplLG5uYtlWzTbDUzDRMgSbejKe62o/GayHEwtEVohpcQQirNnLzA+1uLU6SU8T3Hh0hpSGDg1G9tx6YyN0dvbpbfXIwgCRqOA9kSXTrPJoLdHo+VWNEHfI0kKDGVSb/ikRU6r02Y0iAiiCEoYH+9UAi6Oi+uZ9HZ2aDY8wiBkFEXsbA2YnZ5jmAR4fg1kTq3W4MnHL9Dv9Vg6f56X3Xw9W9vblKXm839xkoPz49RbDV5xyOfB5Yzp7izvfsd7eeWrrmNmdo40GfBP/uhPecv8OFLBsB/QaDTwXRulFVIrBJAmGYZlooyqkmsYJhtru5xbWmNqpoPtVcz/xdlpsiLFckxGo4A0ShifaCGEwHVdHN/CtE2CMESbFX3OMDWYBtowAUleFgilkEogyoK93V36e0Mc20GblZdQURYY2kAqzaXL68zPd9GGJM9zdnd6eF4lemJaFqNBiO3ZFGmG1BpU9XplSJTWnOztofIIQ0uUVoACGSOxUKJEaaMChqbGr3mEYUQaDnj5z/8W//dPv4JmwyEMY+YOTGFamlJAt9tAAb29AaahMGQFkrWp6fcHpHFCu+kzMdZGGwrHNSnLHNuy8Oo2hqFoNRwsx8JQAsc1kMqgvzfk1BMX6XbHMUwLIQRzB6YIwpBGo4FlSJIko9n2CYYRSZJxZmmVMBpx+fIO01Nj7O716E6OYRgmFy+t0+l49PYG9PZ9zeZmZ7BdG0PDWMeh3wtYWdtjEI7ojjdIk5T1tU1sWxOEMaMgoSxkZdcQRxQF1Go+W1u7xGlMveawvLbD8cVDOK7J6XNrnDg+jyal5ihsr02Wxyil0YZAyZI8E5imR15e8WLS5O0bOHH9DWhD8vYoRWsJVdMQpRVRGO8XC3KUaZLnxdNlWKU1cVjZDCAV7/9vt4KAf/m/v2yfPlcgtMbUEqkqkRhzX4AlTROk1AhZvbcUoIwK4KVxQJ7FKMuCUmKYFnEUYWhRJfCmRZ5W3UOlHbI0oshLbMcjz0oM00QqjVISoarfIak0Upr7NN6UPAnJ8wzTdCiLnHA0xLA9hJCkScbjj59j/kAHy7ExTZdazYEypcgjPN/nrrseYXauTRoKLNvepwTlhMEAITRf/PzdeJ5LmiWkaciRY4ehKPF8nzCMWDxykAfuf4yJiRYPnnySmYUuH/+9z3Hs+Dxu3aMoBEUactvtT3CgZVGbOYJhuvzT/+XnueVVN3HiumswTMXM1CTENn/nx97OucuX+dAv/zPe/tbvx3UMfN/n7//cB/mpn/8Aiajxz3/5H/Oy66/n8LFr8VsNyijh7LlzTM7O0qm5xGHOo488xSf+6x/ylh/+YbQWNBoO9659Fd9r7Mt3Z9QaPr7rEaQp3WYdy6rm2RASyzQoy5K9QUDTrzHWrKEkDAdbmLaHYZg8cuYis1MTXF7fY3qsRk5CHOd4jkuchUhp4VlVN8+0JIZSmNpkfavPWKtWCQ9ou1LcRSCFIkwzRmEEZBRlgWdbLK/ukZcKx3awTYOLK1scnhtnaqzD42eeYqLTZmysQZ7l2LZJFCeUUrI7CGjVfLQw0FIQZ9Cq17Ethe9aDIYBs5Nj5NLAMBQlivW9EXleMNrbpNloYJgWUhTkRY5tG0ihUELhO1Z1DcQjtFSU8QitDabHO6RhH8ep8aWvPMLy+i4zky20rgon3y64s6RCKYVjWWitKKHqtpc5veEISknNkUy062RliedadOo+hsxJixLTtFFSYJoGpdR88cv38/i5PY4dmoE8xFQKz7XwLEGUVOdSCDj5yFmeOHWJa44sYFgGlumwuTek7lfztFJJHNvCUJK8LLEMg94oQmuLLCtwbAfT8kiSHTa3lkg7Pg987hw/9o530G63eO/73s0Ni+OcOGxzYWWbg+0m1CIOzB3j2imbmuxTdzz+wyduZ2LiAKMwZmt3i7HxCTodSdp/gjIaYLotXv7Gn+Df/ObHWZzucNu9p/m+730TL335K3n8rqfIeqvcf8dnuO1P/5y7Pv+HDHa3aU3OYHu1Z33OYl8NsfqbZ4G7bx5XAZT9JX8dwK56o+cRhHme53madlmtp3XFvnqe3Xz6nxd6Ve7beSPEM+DuxcX/v8Ddc+M74O5vMV4ouKtq7PvSp895XlzxVvkGceVC+ZEffTc/++abvumA9AsJQSU/29vexlQZFy88ybFrr2V3d4Dj2GRZNS8npWRtdYN6rUGYhPj1BttbW1VVLVcYGoJRAELy1Pmn6LRb1OsNCgqkrKrjoiwrE0pZKdZpURmPFkmMLBUPPHSasXaLopQsLS1Rr9Uo0gytTFpjdSYnOvT6fZRUNJs+q2tbdMfHCcMB/e0ecRjS7niYUlJISbc7wdr6FuOdJlorLl9c48ixg9T2zbCTJKXZqpHEEWlWEoUBly6v0eo0Wb98mdnZKe5/5EkkCsc1UFKTFxKZR0iZsHholjBJieKc8YkmnY5Ho+UjSklZKP7y9tu58ZXfzatf+3IWDx/B9xz6e9sEYcCRUZ88KSvAJSFKYkzLZGV5A79Wo5QloigRQpGnKWkc4tc95hamgAyRVX5fhmeQZxnRMMJ2bSzPJS8z8ixj1B9i2mZFdRSara0ttIA4SpAahv0hhtY8+MhTJKMYx6jMdeutOoZloI2K0pklGaZhkqc5cRwz3e0SBGFlbqoUlJVAiTYVWZpg2RZCaopSkMYJUggMxwQEWRiz4Sdce3QR0kr8JssL0ijHMBWloBLZUZVVQxRJlDJ40z/5BI2xLi+bEkx0G5xf6mOqhGarjuNVnQzbsbj/5Bkcw8CpWZAVpGGMV3dxGw0ee/QSCwtdRtEIpaHV8tje6JGnJbajuXhpgzIF09BoZaCk5NKlbUajkFazRppBMgpZWdlkcrJDloV4fg0pJdoy2N3uUXNtDi5M4zgGU5NtTt5/hu7kGFvbPUxTs7E5ZGZmgjyN2VwP8Oo2ZVliupqm3+Heh84wf2CWoiixlKQ9VqMoYOn8FmNjTbTyUdrm/IVlVtc2cW2bTqvF6toG8wszbGztMTbWYGFumi/c9hBTkx6LhxfIYjh9+jTd+fHqPMQj3FqLKO4jpYsybCpPYEGaRJy+vMsb/4d/SEnMT/303+eti0dB55SpAq58nxOypKIzK6lIorgS15CqskhQCqk0v7O2wqXlZf7w999FGg8Ig6DqqIrqtytJEpAKabjkeYxtNfbpWFAUCUJqBBKpDJRhIqRGawshIE1TLNsAKgCRJCGG5ZLEKXkao7SxDxYNKDVFEVNkKVmekmcJWRxQZBlCCqTIKctKfdOQFkKUpHmJXatRZjnRaITXqGEYGWPj05SFQIiCYDTCchSe54NUTM+MI6WFYSpWLq3uq8JKbK9GWUr6gwHHrlmg3WlRq9dRWhCFCXfc8SCe79DpNLn2ugOcvOshXv09t6CVw80vO0RRJNVvdi6IIvjuV06zujvH1NxhhCj5/h98A0kScfH8ee742tc4tPgS/v1v/wYPPfII7/iRt3N44QjtsRYyiTF1xLvf9VMMgh6DvRFzU13GxyfQUkAxojfoc2BugfXL65Qi56tfvZf3vu993Hj9jZim4kMf+je87nU/yJ1Ld+F5CkSJVhKlFKNwSNuTZJRYZtV9j5OY3X5IzbHRWmKbmjCMWd7o0WjUKqP3KMZ3HRq+z3Zvj2bDRUtJKQR5ITANi2EYYdtWNcOrBFJqHjp9kcPz40ilKKXm0ScvUXNNylLw0JlLLEy2q/2jKpIFYc7EmE+7MUZJTlGUzHbbKC3Ji7JSaTXN6l6t5H5GZiCUpO5UHpJa5mRFzqnTK9U1Z9s4jottSgwSRkGILCDLoR9nPHLqMlIGTE8cAAW7vT2kKIkGe9RqPkmeoYlBVFY/WS6fzgXCKKoKcUJTazTojlksL+8wMdVBokjFC08Sr1byy8ucUX9AkIQVq0ZptgdDXNNGCwl5TI5iGMQoJbAtk+EowNaKc6vb1P0mvmOQpTHDMMAwNGlacGC2xYHZBlJqDENhmjVcVyGFyV6YIWRBkoTMddvMz7UYRiNMZbK6tUW7VUdrhWHaaCFY2dzBslzCKMIy9j+PJCfOQGAz6F+mDFfIRgnjiy8hm5Isuots7uzx4Ff/G2/7/jYayYmDNmXDoilibvvqBWrjNo4T4dkW3/OKm0H7HD1+nJMPPsjCzAR/+fnP8+QDdzE966Cseb54/w4//z9+gHpniizPmJ2bojU5z/T8EeypcfzuzcweuY6j19xIsH2a+778OaZmr8NtuhSyRANCqH2rgGdMB54RJPkmWdxVFMWrGwJXd9Lk8yx71nn/Bh26q7ttV9YpyuJpdtkVH7hy35fhyrpFUT6HhvncY3jh4K76dbzKwP1ZO14dVfE0ZfRqzuYzqxVX0y7FM8d1he5K5fhbFdr+RjDe82/kSs7/zPG+8Ph2wN23uq3vxH+HyIuCvHh+quWV+MpXbueT//Atf63b3Vjf4Pz5JeYOHUMqE22YBEGMZVnEQciFC8vccd/DbGys45guZZHjOg4bWz2kyHniqYvMz3VRWjLdnWZ6totXc7BtC6TAdh3OnV8mL3LU/qxdUeQgcgajEeub67iuZhSMKIqMVruB51iMjzcxbc3s/DRSK8baTXrbOyw9dZGF+WmiNOHChUtsbm8QxgOKIiVKQpQoCcKIubkpzpw7XyVzZUZZSvKsZGNrh+7EODs7fcIwYWcnIE5jPNekLCSu12Rre8CxxXnKIiYJAvIoIhwOmDt0kN4oZRSB1jUsy2Jra7ei3mQZg8EecTTkJ19/PV/7xK9z/Jpr2NlbJ876NFseb3vTG7BNh3seeBJDGeRpiWk5ZHnJ1OwUCMFjj1zk4oUNiqKoqpp2ZQ9BWZCnJaUQFEXJ3tYQx/a5/f4neOihswy29lClwZmn1vCaLeQ+5384CHnw0cvkGSgtMbWL41kUMqHheZCXUIr9BFRjWy6jYcRwMMK0NMPBiOWVzX2qW0X9s1wT7VrU2j62b4GoPM6EqJQ8tTb49BfuZm9nAHmCKHKEVDy6Eu/T9yyCMEZpE9OphFxKUZnHxqMeo93LDLeX+NSXH+XTv/g6/uO7F1g8NEXNr+F4AtOyefixc1BKXLeiSL38FccwXI0UYFqalZUNVi+ukcd9brlxgf5ej5WL27hmjUE/YWp2ikF/QBLEtHwH0xD4Da8S5lCCI0dnODDXoV53qPk2j51ZxrVNdjd3qip3UeD5NqIsGYUhjU6D4XDEpQsbjPoBpqVodOrMz0+yvLKJEAWrl1d4ammF6ak2E2N1pIBHHrhEnAy48cQBhCjoD4fUGzZFIUiznGOH5+j3Isoy46t3PUiaJdx0/SEaDRfDEqRFQRAGTI63SUY5QpXcfOM0NX+M7Y1tdvZOszDv4jjtqitsmATD3UqoQar972SCEAWm6fArf7wGlPT7Ie+cm6UoM7IkB1GSZ1QiKqaDtl2KAvIswnY0ZZnum/QKtqOAX378cV7+0pxPfuydSMPEsn1cv4nWDhSaJMkwTLvyO8xj4nBImucVZTstAQtRavIspyyLitZdlpRlRjiqBE+gUpNNohDbMqtunJSVb11pYDs1hChBREgpyPLKpByhkKZHkgmKwqDILUyrhtYWw+GQOE7QuvL8FEri1nzKomBmpvL23NnaZdQf4tUaOI5Pml3pTkuC4YA0jenOTSMNcOoee5s9wkHAiWsOsbWxy/bWDkVRUBTgOBbHjs8TRzGGqckyzatfcwtKZyRJn3AU4npNpHAopMXZs+fJkoh/8e8+jBAla+uXGQVDhj3J+GSd177mLfzA9/8Ao+GAn/17P0tZlniuxnPrOH6TYWZz6twlcqkwnTqHjx3n+puPM4w38LwOE+OH+OjHPoXjekx2p3jb299Mf3CZX/iFX8D1XM5fvEQwClk7GSBEVYCJ04T17T1Mw0Cr6hxcmctxbRvLlBRlzvLaFrff8wRJXjLRaiCVQ1YqHjh9mdvuOEVRZlx7aBbLqMSbtLS4sLrN+nYf29BkaYyQlTCFbZo4lkWcZgigPwxpt2vkWUmS5IiiZHtvD60kKI2pDRq+S5ZnhFEEZcYwCLj1s3dQFCVJGmObGkE1E14WEKcpUCKyAFGGGCaMsoIokxw+NI/t1qkZLo8+eZk4E8TYNGstRklOnMUcnvTwPI+Fg9eRyoQyL2g32tT8Jq32OEkGZSnZ2IsoS0UwCtAi5xN//DC5sHFdF9MU5HnM5vYuF1aG9PvB0+Ic32riVhkkC6KgIIhyylJgaIOiEFjKJE5CRmGfIC3IEdz3wFPUPZ/V7R6dZoNBmHB4ZgLbkgzCkF6Ys7YT0B8MkUVAzbZRQmFrkyAYUmQJa+vrBMGIk/edwtYGtuFhW9X88HijiVIQRyVfveNJ0qRkEMScW9lkfXPEY0tbOLZBuT+AVVJy+sIySma0nIwoiBibOsgwjPBqCbfufYoP/oMP8jM/eQvHO3VmJks2ggZpkNOpjfGudxxgqlbg2nXcFlxcHfF7n/gKn/mze3jpK74bCHjLW9/N+Ngc7cYEvd6Q73nD93Hu4nlKU3FgfhZTS1YuX0DpkpmZWZT0OXt6E926lrH5t7N4/Di3/t7/zMnP/D66F6NEQSHEfpHhm+d3/z1CSIn6JubpV4e8YuD+NxVljvo2EFdR8rwKpN+JZ+I7nbtvM/6qzl3Vxi6fEVB5nlLLlY5eQTVke+VLdnVV5N5P/xbH5yefLg48l9v83GVXv/fXL68sEHpbW/iOpjMxSzAMKMsC27aqDooQLJ2/xMtvvp7llVXuvfcUWguWV7cY7zSwlODgwjRRFNJut+iMTzIYjtBace99j9Lu1NHaoNVqPq2mp5RkY20d3/fIcxgMRsxMTaCU4P4HHqcUJROd5v6syiy1mk8wDBj0+gTBiPGJDusb2/T6I+ZnJsn3hVeyLKPd9lHKYDSMsJ0aaVrJtW9ujpid61IUGWWR4TqVkl4pSh57co3uZAPPNVGqEgJpNGo89MjjuFZFDzS0wnZcRmHCNccW0Uri+h71Rp2z5y6xtbPL4sEDjEZ9Op0aaIti2OPXP/z7fNdrvqdKKIYjpiYneOdv/i4/dfwglmOilUArzfraFoaSQMnsbJeab2MYBkma7V8v1cVy5z2n6LTrJGnC3fc/QTAMOHH8IHMz40TxEK01k5Nt+oMehra478EnOPn4BVq2S1kWGEpWxuZ5QRKldKfHSZIYz7W5++QTrKxuMdau43g2SlXUS0Ob2KZNkQvW17aqjlIK0lAoKdna3EaUOZblEscxhmmQpwXHF6ZxfZckTaAUGJbJPZc2edlLZigo6PVHXL60SrNeQypJURQkSYrnOAyHfWq1Dvc/8iBjrmZuvothVUlIu21y9sI2jq1J04yls6vs7fXozkxSb9S4867HME1Nq91g+fI2rZaPtix838NQFW3jwUfP0x2rUeQlw1FCre5z4dI6rVYNwzAqlUNTYyrJxYsbxHHKgfkxkjgjTXJc3wPk0x2kiW6HKI72hX4ciqxgZmaSra1tal5V6KjXrMrqoSjY3OhT8yTDUcz8bBttmmxv7bG+1ecl1x/CNA3yEk6dOk/Drzwh4yTCNjW9fsTq2i5nltaYn+lwxz1nOH50Gttxuby8DVLj+w2CMGZrc5PDB2r0enuYbpsijzBNo6qHKosoSJFKVTTbLKcsCv7o3i3e/tY386lPfoa3T3UJgiG25VcecPumvUmcVJ3nskQIA6VMpKwsED75yMO89hc/yPmzX+FH3n4dWlfelkoK0jglyzIMy8K0bMLhENM0CYMQ0zHIM1HRRXXVLRciJ88rSf04DLHsCkyXZYFX80iSpKr+ioJw2EMZJkrKaqauLCmyEqUkcTRCGxZCSrTSxEGAYdkYpoVWAqmrSm+aZjiOTZLE5FlBEsXkebFf0a4qzXmas7W1Qb3hoPdp54ZhkKUFSldUast2yNK8olBLzd13PMrRaw+QxDFf+osHOHPmMu12jVa7zcqlZXZ2+nQn2zTbLbI05w8+/qdcd+MRTMsiGqUUOaRpzB//8Vf57tfeQJbmvOMtR1HOMQzDQRY2fs2h1ezwh5/6NO96z7v50pdv40d/9Ee588670MTc9+CTKCVpjY8zPTVLMFjlvrseYfHoArbjEEYB4xNT/M5//jjvfe+7cOuK7Y0Nbr31cyRxwsLBY1x//XGiKGG6O8OX/vzLdG+uIaRkMBzSqtcxtCBOIhzbrWj7eVl1cRSMwpCnnlrllbdcj2ubDIIQw7BIkpS5yTad8er1/TDAUBqQaCVxbAPP0Vxa26bIU2zLoh8EuLbNRKtJSUEQp7Q8h4eeuMD81AT3P36eaw5P49qKLM+xTYeSkjTLcSxFkuRIErISThw/gJKKvEixDYM7H3gSy7bY6fdpeA5r231cqzK+t4zqWjeV4KkLyxyY6lRede1aRcWUmjLLUIbmyaUVmn6dgzMNLNOlJGYUBChtUpQQZWmVG+QFQZhhaYMgHFL3fXppym6vR7dTI0lCbNPAcS1838WvWdQaPurpO/sLJ+oJIEsTer1KsdXQEsuySJMEx1ZYSpDmGWme49o2B2bHKcqCZs2vGAWmAWVBmlXFDyklYZwz1mwgBPRGm1gGlbedIQminFbDxbEdFhemWLq8ShSHOI7FU+dWaTXqhEmEZxccWZxluzckyRVnl1bxPItG3aOkrLxVDYssS1mYncZQkp2t85imQ6+saPmUmlbNRHUjjOWUs6unmVu4hnsfG3DyvrNMH97la/e7PHRmjxOLPoPeHkkkcJoJr3zVjTj2ONGgzZdv+xxjXkyZrCJUk8VbfhDPru4hniEZ9LbZ3Nriw7/zYf7iK19gtxcSDHp0Z13+2b/4VQ4duInpznEeevizrK7ciWdM4HZalKWklCZiH+B962J6z173mQ7gM52yb9TB+yuvkH3GWCmu6gNe6fjt25lcCQnVvOdVy6pO2f4xfdNM9Jkoin2rFK7kuM/dy6s6lc/9rK7kv8+ziWc6ds+s/LQh+99i5+7r1noB5/7K/OF3aJl/i/FXgbun6ctP05i//sQWQjxdoRL7Ldyrh25/5EffzT9972ueXv+57/ANAdxVy69eR5QlhVCsL1/AbdQxTQcpqzmcJI3Z6w342h0PcMOJI9QaLSYmxvFrFvfc+wRTk20uLG8ilGJvd0S3O8Hm1g62rSpKSpwzMTmB59soCVBiOnb1ZZQKr94gLyCPK2n/3f6APMnpdJrMTHdZ29im2WzSatYY9PtIJVnf2GT+wBy9/hBRSmxLcenyJWZnxtnd2ybPMzzbZxTukWQZrbrPYLRHe2wcyow4CbANE891ycuSRqOFaSsOHVlAFTlb23ukSUSSRPiNBhOTE0ThgI2NbZp1n8EowHRsgmBEGAZorfn0Z+/ijW94FTNTHaJohOW4xMEQo9ag5Zu85toZ3OFl3v+Pfpt3vuFVhHHKpbUt2heXGe+4Ff1GSPxaJUSiDUmcRyyf26TergbztTYRQiNlSdO3qLcajIYBB6bbTIw18Wo+yhIkowzD0Gxv9kjDAsdz6Y61WZxtoU3J/NwElmOirAIlTfJUVt0GIdje6OM5FkcXZ1BaUwqB1JXRdJFL7rzvMXzXQhRQb9arWbq4IMsSTEOBUKhSUpBQlhlJGBElIY5roSyNVCYAD1+8wE03H0ArTRjFTE1PYhmSQW8Xw5RkWYmyXWy3wc5OjwknpNmqgIVTs1CWDaWg23ap+S6ddp3VrQFHFme4++4nmOmOMdZu8sDDS0xPduhOjXP+/DbjEw2kEhiORZpmHJzr8pWvPoZh23iOhetYSC3ZWh9x991PcWihXQmGCEm77WPqkjjJSbOimkkhZXuzX3n4qcrLThkaKdS+4b1mZWWH3qBPo1nH82usb65z8fIGRam45sQCeQ7DQYDn2aSloL83wnUrsGDZFkIXTIyP8bW7HqfIDGa7kzi2gxQGrqvJyowsLTh6eAzfa7C5vsfl5TW6Ex2eeHwJS2W0mk22t9aZnFuArKyojkJiaBOUieV4SKkpimr+TGnN/C1vY/HYDL/6K/8nbzl8FNOwKMlJ45QiTZDaQciCKBxVZvZKkWQJZZHw4396KxejEe94q+L666cReUTQu4RhuKBMtKwofMV+0lAUOdJQaMNAoKDIiaMIRE6SjABF10WhAAAgAElEQVSzGupXiqJISZOIUihMq5qJk6JSaDVMG8upI0SBkCVFaRAOemiVIZSBMmvkWQyIan+TANM0SOMUqUrSdFSJHpBTYKOVokwzNtZ2aY2NUxQFlq0Y9UaE0YipuUm0aVBmOVmaI7WJUoqvffk+4jjn5MknOHZsCikUURAxN9umLBOEKLn+huMcWpxhbW2DZqsCeNOzHepNlziMkCLh+HWLGKZLMOpz7skdLly4zHjXZmaqS54m1Fs1TFPzkx/4t7z//T9BLxiSBQOCNGfm4Dy9rYDP/cmt3HzDTSwcWuDYS45gapcwTJg/0GE42OELn72Nd73zHWzsrtP0W1w6f45W2+KWm4/h2i6mrGG5BtffcBNjEx2OX3OcIhd85MMfxfebjIYD6scVu70tmrUaZ86vkqFoN1uVqAkKLavfEoFBXubMz7UgL8nzhM2tTZr1MdZ2t3FsA991KfKSpq1RWhHHMYKSe+47xeREm8lxF8duMoxCPNtiGKQoaTKKShq+CUIyM+mjlGJhegLLNFBakKYFhukwCoYoKTm/2qPbaaO1wU4v5f57n+Tg3BSPnVlivN2mO96i7jk4tsvF1V2a9RplnrO0vEO7Uef/Y++9g3VJ7/rOzxM695vf9+Rzbjg3zNwJmlEa5WTLIFTYJQRrkimx60X+Y4taFpYyC8ZAGQq7MMGssWG9sGAkLUoICQlJIMFoNBpJo9HkmTs3h3NPjm/ot/Ozf/S5Ye4kCbSLa0vPqffe0306vW/32/18n983aDLSOGVrd0in1cRYEiSIIidLYlzPZbs/pF4LcTwLxxL77p4OyrKwtMM4TiizBImhLEtaNY9RHPHYY0vUGppD83XmJmo8c+oCUtkUZYHnulhE9PvbTLS7FEjY/6RfqN3ohCiEhDJnbXObsNFElDmhbyGFRVZW8RBpUTIcDnFshzJPsC0b19Zs7I5ZXd8kdA2W5SFU5dyZJjGT7QZpbugnhsCvI5SHbTt86FNPsHh4miQvyE0FRoKaS+hBNI6Zm+qQG4HWHgLB9mDIU6dWWV3bJvQUxw5P0WwEuJbmzIUrdJshrm2IM4NvFchsl0IGBH6Xhu9z5dI6G1nJhXNbLL424y8+kvKOV7jcvuhx9/EQk9u0wxpTPZeGm9Gs9wi9gtPnOzz44GmOHD7G7bc1Scsdli8uMTNlsbIa0z78avpbW5w+fZ7Z+Q6jRPMrv/RLvPrgOrd3JBdOPsyMs8wv/pv/SigUP/je/5EkNbzqDa+hXX8j7/uj3+Bz7/sNsvWzxMunUTqg0e6Ro5EmpaRycDWI/e/KC5/N5zu3zyfP+WZ1edfA076E5sbMuZvbjY6dV90czbXpCmy+1DVJafavyaug63mO+EYm5vPjvudtzwW2lR7cCBDm+amd1YLV/KI0FVPqb9meRRP9OwK9q+fg2+Du77F9w+Buf/rmk1k8z7ybi+Nvm9jDtfU3dVxmf+cv5sa0eeUSjXoNx/GRwsIIies4jEYRZy8ss7q2xeHFOaRW+L7P2vIy2hJM9hpMdhssLs5gTMnM9CSu73Hx4jKT0xNYjgXCUBYFUqpqdGffUKWyz1eY/YfJRK9T2YFvbGNMWWXVFZUWQMpKxBuGIUor6o0Qy7LwA4fQ96p9lDmu6+J4Lmkqmex12NxaY3JyCmMMYeizurIGJse2BH5os7q8Ry10GewOGI5GdDstms16VWG0XWrNBkEQcunCxSp00vbwLJ8iLwhrPmmRcOTQIcAwGkWUucHzNcPBNn5tAi0K4jjBcSy+743HyXu3UBQFBxenObbXx3EskiSt7K/z/Frgt+14uC7YjoswkuFwiB8GlEWOHwQUpcGve2RpQp6W1c1WC7RSSF3RKmqNOkqCUAIhJZ7jYFkWRVFiMoGQhiyNOX16mW6vzV9/7QnuvP0QtmdhORZSQJHl++dii+PHFghrLs1ugzLP0UqhLQepBUVR4ocBQiiSJEYrm53dAc1Oo8rEU5J0nLG9vsObbz3IsAau5xGGYbUdXdHZlFXZlwspybOcn3/fl3jNnEenWUcYwaDfx7ZdHn/yAp7rUG/4GEomp7uYImFhfpp773+MXjfgluMLnDm3zNlza5w4MY9S1aNnfXWbTrdFWRQ4tuTQ4gyjwYjN7T4XLm0yP9vGdiSer3E9D6018TjC9RyGw6SiEmobP3BotduEtRDb90AqLEsRjSOSuKQWBPT7Q6YmW+xs79Cs27iOdy3EulEPcK3KpRJhqsGGMOT85TUWFiZAGNZXN6mHdaZ7bWp1yfbOJmFoMTHRJE9T5me6tJohm1u7dNptRqMIU5ZcWVonGqccPzbHk0+f5vB8C9cPGA2G+L5DiUI5lWOkUpJoNMJ2HAD+9z8/xXe9+4fY7e/wA04NJSR7u3t4bkVX9IOArEyIhjG1sIGhACRKW/zKF+5l4vBhfv1X7qnMVgqD7TqURQbS26/GmUonGicorbFsq3qQlgXjaFzRFMMa2rIwZYllW2ityZIU260c/KRQmLIyaSqLHMfzqqohhjga7g+GSDBFldeoLOIoxXJUZf4hRXU9mMr1sywFppRIrSmKDKVt8izD9VziaExYd6v1jAAp0XYVjl6ZJIBUFTVUSoXv2szMTnLk+AGEMFVmo9KUeUEUjSmLgvG44P3v/zydTo35AzNgcrI0YW9nhOPs097DkCRJcTyXMJAMRyPmFg5x+plzBIFLEPoo26PXlgz7HrOTPbZ3dhkMI3q9Hv/pd36PdDzm4MGD/Oy//gUW5g/wr/7Vz/Pe976H3sQsAsndd95GkgyJkphBf8DUVJeHvvoks/Mz7O3uMBwN+fBHPsbi4SMgUnoTPUbRkFe96m62ttb5rnd+B7/ygd/l1a+4FS2h02rSadRI8hRhFFLAOIlRylSB5LKqDtu2S14aGo2KBmtpQehVLs1bgxH9aEwYhERJzsrWHnNzEwSeT1Ealrf61AMb26qeC8ubu3TrPlLA+nYfANeSnF1apduqk5c5jmVTlAZLV9TQiVaDtZ1dsiJhM8q4dGmF47fM8fjDJzl0aL4yZrEUcVpps8dpSiv0mZ7oIIQkLwrSUjPVazGMYp48dZFG6FOYCsREUU6a5zQCGyGqSm6cFTi2TbmvVXYtha1VxRJAEGcZvuNQSOh16ji2Q5IWzE51sbSmH6U0az6B61AYQ+CH+1WWF1fe3wgVhBCsbe4QOHalKywqd9m90RhPS4bjDEvZuK5LVhgC18VxXMZ5SuD5aMthnBV4Vko/GiBNirYkWWkYjyMUJZiMZF+LXqt7tGourqVIkgzH1iip0EoS+gHjNCfNiurZpAS2ZbEwO8Hy6ha3H5+vnvuWwlGKWugRJwn1INgf2IlJRuvsDgy59Fnb3CZTHmefOcfxaUGtYXPL623mI0lYr+E5PfJcMhxYPPnUM9x2bI5xmjBOR5R1m8ZEi1e/7h/hOpNMT09iCUOrnpEXBa1Dr+LL9z7AmdOnOX78Fj7/+b9mc+0cb31Nnbmu4PCxaeamNW96Q49Xv2qS//Unf43Hlp6mXX8VtfYSb3jtm/F7tzB/aJHlS6f4nd/4ZcbDAfVmm0Znhhx5jWaLebGsuuef/60Ad9dXfAmTlRc4khtrdd/Qvq/tZ/8afUkMJF508vmO5VmLXy2S3Ljic7ZRzVhbXaNWC1/qgF6wPdtJ9FtTxfs2uPt7bN8YuBPXRkRutnuVcFO443MHM+yNk9xYe/tGDFWul7y5ts6Nv5cliCzF8uv7VUNVaQ3SlL29PmHg7R98QS30SeOMy5eXsG2LyV6L0+cuEkURzWaDc+ev4LserufieNWDTEtVUZVKkKKiS2VpThrHZFlGksRkacru9m41QiEFy6tbaFWwMD9Db7KH69ho7fLkk+dxHE1RpKytbbG1vU2eZqRpymA4JIlTxlnB3m5KmsZMTHY5e+4y0WhAu93Ed33SLKI32cVISTw2JPGQMovxggDfc0nzknrNI88L9vZG7O6OmJ+dBCloNBtoGROnGXEi6HVn2dndB6Obu3iOS5zmeI7CD0IMCm3bCCmI45jf/sOPccfdr+LAoTl47ElWlzcJXJdRnFVGAVKitSLPykrsn8P6yjb1ZlBdL6aimGZJDBi0ZVUVDyGhLLGcqhr2pYdOMtFuY1kCpSXjKOXrj5/hwtIaMxNtPnfvYxw+OIm0JM+cWaFe8zhxbA7Xq8xQirwgGSdsbuzgBx5B4GO7GmMK8rzAFCXbW322t3cJAgfHtdnZ2MUNAoSEUT+mVgsxwlzPYiorO2tKgTzUwrU0SZqipCKOI7a3twiCBlmaVx0gIfjsQ6d591sWUY5hY2dAPQgZDce0WzVs20aqkqzMUVJSFinxOOXwoVksq3J87LSbdNs1Hn7sLN22j+NYhLWQne1dVte2sC1NPBrTnWhRa4QszE0QjSN290a0WyEnz1xhsttA6Sp3TSsLKST1Rsg4SrFsxclTl2h3WpjckCUxge9SbzQ4e3YZIQ1bO0OkhCIf47ohQeCzdGWTul91aISlK8MIJTh1dpUgdJiYaCP2XebKXLB0eZ08K2k0muz1x5w6dZlaLSTPSx56/AxHDk0xiipDo3GUYtuKZqPGqQtXODjrUqv5xLmBMiPJClw/RLseCgshKgMerSwQgt/4iyXe9Pp7+MSff467HRchKgBEWZBnKdpxMaYg8EPSJKfKYyz5zfvu5Wd++zd44z1b2I5TaeOKEqkthHawXY88z8jSMQKD63kURcUeyJIUgcR2PSzHvj4IJCV5nuybq1wdFBJIJfYHXqvojLIoUZYGUzmkmlJQFhlaa5CqMgOKRtX72L/zmdLs35dKVpbWsB0fy3Eo8ko3aFnOvsurgP04kLIEsw8Mzf7odjwaIZVC7mu0bNsCUSC1QKA5e+YycZzS7rbZ3Nih3W3j+yFbG5tcPL/GwnwPx9dIafGJP7ufE7cdYRyNKYoC1/dIkxTXFUxOTrK6usvikXmC0CdLE6S2OHiwh6WPE3gO5y5dwnc8Rv0h//h7/glvfsObyHP4gR95Dz/5Ez/F+9//x/zyr/4Cb3vr23FsiziOGA37dKZ7BJ7PpUtnObp4F2fOPEOr3QRjeP0b3sjJp5/h0KF5ovGYIs/wAofZuR7t7hTjxnmU0ozjCExlXJDnOecurdJr1bEtm6Soolwcy0bryizEtmyGcQaiwNYVlVZKQ+Ba1MM6WV6gLUXN9wj380CjOKcZ+thKVzo7IagHHqM4ZmVzl4XJDksbA/Iio92oolayXFKaksFoiJQCYwTDcUq36WNp2NqOuPPYDNJk3HrrIUCS5iVplqKVRgrBZLuBZQmG44RhUmBJxTA1BI6iHyU4WuC5Lht7Iybabc5cWuHAVIfSlDjK4YMf+RKvvOswUpQIqar8tzRlfWdMlpdVNmBZMIpjGvWAwPUpy4LQD8kL2B0ltBpNLq+s4zgOO6OUei3c7xi/uD5KXOsrGOJxgms5WFqSZzGD0QhLW4SBg8Lw6NNLZCi6dZePfOwrzM638VzNIK7u06Hn4rsuGoHvhTxzfoV66KMkuLam5mr6owjXdrBtm3bNRymDpRRxWlS01aJku5+irIp2rSUkaQxS8ZWHz9Dr1Jmf6dAIKkfjbP+5IfftR6I4wXFs8mxIMtoiV220EzDZCnF9j7XTF3jZrTZLSxu0Wx4f/eSY1x33SPI+Qke0uw0WF+vEwwxtWSgluP9Lhk9/5usIu4YVgiRkGA/YWF5mbiKjPnUn0ajkne/6x+xu9enWLT720ffRqtU40PFpNT3G8ZCGcLBUyWteeYDXdmeQ3MtP/vz/xWce3mB3d8xdd9/DocUjfOfb/wFff/ArrJw/ye7mKgcW5klRCKmwxIv16qr5V6MQri71fGsI+FuFmr94LMP1Zm56XaM98tLg7mrB4cb9vfQ+KzLr1aVuzrJ7zvZf4Ijljd+X/VWv5Qzuz6jVwhfcfvmihZJnL3fjNl+qVQyuG4GnuCE27dvg7u+1faOVuxe7FT8H3N3w+4/+6Hv57lcdfM5f/y4UYrlfE8/SAqvWwfEsKA0bq2ukaUKtUWN2ehLPsXn0kXP4tmZzfQPbc7nllkUeffIML7vjGKsrfZbXtrjzjorCFcUxYTOkyHNsbYO0iKJRdVPOC8o8w3MdxnGMH3oEvksaVwCkUQsYRWNG4xjXs2k3Q1bXt2jUW1jaIstTktGIOErIkoRarUYQeIRBFabdqDexXWh1WsSZIYljAs9idX2DVrNHrVHDDRsgA2qBw1Z/B8e2WF/fYXV9i95EjyLP2NzcQuQlrmWRFiVFEpFGA9KkhufV2djdpEi3MUYT1EImp6YY9vusrIx45uQ5Oh0L1+8gkOSlIUsy3njLLO/+qV/nbW98M0tf+xqTjocQgisrG9z/yNMcOzC7T4Us8dwaCFAahBQ4vkORlWxvbGFLiW255EVF41RS8sRT57EVSCRzvQkeefgsCwcnieMIjUQYyYGZSQb9EXe+fBGlHMDi0OEJAleTpSnxMOeL9z/BgblJxuOM1a1dWvU6585fYWKiQzKOcZSNQaEszeREkySJoKiChi2pQZQ4nlvlDHoWCChMgXYqDZQXBnx5Z43JhocALMtGSYPvu2CqSlKaZKRJhhlcYuPiZboNh8D2+OwXTiIpaYQue3t9mq0GynLACAaDCKU0tqN4+NFzTPZajOMxm9vbzE5OU6u7jJMRtmMR1Gp4js3ayg5zM1OUwpCkY5I4otlo0e20eerkZW6/7SCjwQAhQWoL17MZJ2OC0GdvZ0AY2EgBUX/EM09fRAuJ5VgkaUSv22Judoo4GTMz1ePyxV0mZlt87atPcPjgLI7rsLHVp9mqURhIoxjP97EdjR+6CCDNk8oKPvCoBQrt2Dx56gLHFmdYXR/RHyRMTzXptGqE9QBLaxr1Glt7MVdWdji00MVSMdpxUW6A71nU6g0s20aUBdEoR4gUqSRSaIQUdE68gyOLB/kPv/N7vPPAwQogYdjd3KQsS+wgxGSKvMiwHImWDj/0iT/jtje9liPzTxLWQuS+g6YpcqBEawdMUQEnDJZtVVlQpUBrVYWNe/Uqd65IECKjyEu05VYDXKZAaX3NvGMw2MW2HdI0rsBDkiCoBpGQJXlq0LqqWBfGYGmFrfcd00qDVJI8K9mP9ySse9iuBVR6VGFKpFRVzIIrkdKr8jiFQFm6orPnFbhwHA/LdjHIqiIoKxfNLI+xtM+Tj53h4sV1Fo8sYExJrV4nzwvm57rcefcirqsZDsY88ehZ7nnNHXiB4snHzjEzN8l4HOH7AWdOrtLutnA9+OgHP88dLzuGMSVaQRonCOd2xqXkwKF5iqzgV3/5V3nHd38X73/f+7lw8Qo/+wu/xC3HDrG5ucMP/+APUmtqLFvjqID+zpha22Pp8mUOLExjWQG9XpvV5U0OHTpGmm/R6UyhZcBP//TPUg9rHL/1OMPhkLpb52Of+Qj1yUp7K2T1v2Vpam51Ps4tb9OoN5DKRirDII7wLEUUjakHHlIVCKP43ANPcGC2S5knSKUxeYZSoFXluOnoyrJ/nBRs9lM2tvdohAFZXhJ6Ds1mnQJD4NX48pef5PDBaZIM/uqB0yzOt7lwaZnJXpM8Vzz42DlsV6OkYKLbxfM0llvdI9e2BwgpqngaJbGVojAle6NdwsCvqm1KUKQZeR5z31fPMRwN8QMX13EJHJd2w8F1bAQSaQxzh3r4rmR7ZwOkRZbH7A1HPPTwZQ4fnMa1LZQUGEryosSxXcoyJs8L7v/6WSYmp1nd7hPYkla9gREK17X2zVHk81Pa2LfbvwrujGE0ilnZ6vP4Y2dZPNAh8BxsyyXNEtIiZ3pygoe+fhrFgLvuOl4ZJVkK2woQlOR5zDAakZuUUgjCwMLVgiIvyI0kKSTNsAlCIVRVJc3KnBJo1mokeYYlJR/988eZP9DFsTVlmaOVQUibIAiwVWV6tNvvU/MtbNuuBhuznHpQDRApXTnjrl24yF7qc2B+miJLiAbb7IxyJrs5nYaPUIb5OxS/89trvP3l81XnuXAQZASeVTmsYvPIUw9w7PgB/HqPu+9+PWE94NCxw3z4Dz/IXYuStb2AYy+7hyRUhErypx/4fe559V2cuniWV9/ew63lFCInkX3QB9DZMmpii69+oc+7vvNOJrjA/OxtFEbx+MUBNBe5647bqbFFuvkYX773fu685/UYbQMvzrKqzuuNUy88yG++QSDyrWg37uWbq9xdBXcvvnia5Vj6OmtNiuvREs/Z9Its5/nA3fXP88YiyPNXMPMiR0n14gf7Att88RXMsxl2Qjxr+tvg7u+xvRi4E1wVRl4fZ3u+0Qpx04sblv2umf7+lHnW8jfO+aa/xgbG/QFFbiiydL/jY9GZbIPJCGt1ihLue+BRjDIMR0N6vQ6TU13iKObs+SUOLUwxNTVJp+lS5CmOFxAEdmXxH6XkhQFT4LmVvbShCg0uSonruly6uESjEZLmCUcPHcAUOVdWd2iGTpXV5teohx7nz63Q6QaMRyMmZqeo+Q5Qsr2bkJUZV67soi2LVrvJqF+J0q9cWaHb7dBsdxGqovENozESl9X1s9TCOnkhaLc7bG9tYNKMZrfLYHdAbgRJUTl6Tk/3KrEwgrXtJVwrpDtRo9Xt4nsBaysrNGouWVZQr7nMzvdQZY4TuBilkEJQJGPcsMErZ0NWyjr/8c8/y3cf7FGUJds7e7zu5bcxiiK8wGYwiBgOI+JxQi2ssbe7hy1dxnGKV3PRrsvH/+orrKxuc3B+mo3VLaI4xVEOXhhiB5qDB6YZRwM810Zom1rdxeQl2lEoJIP+iJXVDTrtBnmSIbVA2YpOM9h3gfSYmW6DLGl1athWZa5TlIbhKML3HYSWGFONODqeRZxmKElVzRA2KyvbtJs1lDFkWYHtupg84/efOMt3vuaWim6XpUilKEuBsKzq2t/XfrWdiNHYEKcxQehz7PgcnU6L7e0BnU6dNB3hWAFZliFMibY1WVqQJwXjcYIBBsMxllWSJ5UoX9kaIarOv7YUg2GEZWskitXlHSam22hbMjvXIxoOWVnd4cKldRbmJzH7VaDVK5s0WyHDUUyr1cDxNdMzE6yu7TAcjZmY6u47NMJ4lFaB13mJ49gMRylT023SJGF1ZYuJqR6DvRFxlNJo+KRJTqMZYGTG6vIO3U6LvCh5+pll2s2Qdr2G63r0Ok3OX1zl6JF5HnnkDJQlaZZTGhiORkx269i2psz3aDUb5PGYPE2JxyXaD4njgs3tAa4XYtk2pcn50BfP830/8l4G22t88i/v4/tuP0Gel2SjiLDeZGd3hBYGy6sokGVp+F8+91lO3HY7/9M/n6XZqoEoEVS6SKkEQiqkyTBU4eRVWLimRKJkRVvUlosxgiwbVjRsPEoTo6RT6dS0W9HhsoQkjtBK4VggtUOeFvi+x97OFp5vYUqLsgChJGkyxtIKITVZVlQAQ5aYMkewX2FTkCU5yTijzMdYtgVmX/OsBEpaCFMy6u9WeY9WRfksjUBrC6HtqlqVjSiNQWnN+vJFArfNf/3jz/LWt97KnXccxghFmZdkWYahsvRX2sUIqntczcW2AGNwXJsnHz9Hq93AthWTM136u3vYjsfUZJdHHznJ/IEew0EV9+C6d2LygqVnHmJzd8QPveef8/EPfZ7JySnuf+Be3vmO7+buO2/lT//sz3nm7Gne9rY3kexKhuMl5g4fRpqAMh8QJ5qnH38GP1T8yQc+wcHDE9iuixvUKfOYY8eOMj3bwbYd6vUuSRnxe7/5AYaNmKnJif1qZkW5F7o6v56l6Q+2cLSq7o+OwhjJ9nDExZVd6l6I1gVHFmYZxwNOXdik16pTGEGa52SloSgMju1SmBxZCtIsYXswotes89Djp5mf6rCxvcPG9h6OLThwcAbfdbFtTRAqNneGJEnO7EQXRE63FbCzO6o0psKQphWVamkjxrMtVtbXqe8PFu6Nxqxt7mKEy25/iGspxqnhC/c9yi3HF8FkHD96iF7LQwqbQbRD4Ias7WzxpS+fYW6+x2c//SDHjs0jpGZtY4crazG9VpMr63vMTYaYMkVZHloqTp3fZqLlkRvB9u6ARs0l8DQ7O0MadRdtKWzX2jec4QWBXdUfuAoGBBeWN2m3G9R9j7xMCWo2ZWljq5L1jWUaNY+itJifb9OodQg8QVoUeLZLmY/RQvKlrzzF0cMz5GUJBjzXpywzBqOSL3zxFDNzXaQyUETYlkeeRTx1ZhNLS4bjFIlCmJQji5M0ay5CGM4vbzDd6zEej2g3QgpTUhQJBothbICYetCs3oXU7I0TQi8k3btIEPrMzC6wPcgwSOqNOjrfwtV91tZztB/i6ZyDr7Z56NMjZhdyPOljuxaldigpSJKct52Y43TUZjTIOHbrK/jMJz9OK2wRRRcJivMUeUhw4Bj6Sp9P/eVfcdfdd3FheYt87ySvvM1jHOdYtuEX/91TtGstWq2AXiNkbqFLVkQcPRiyu/YM//fHPs3Lbz3C4pE2X7vvKXIdsJy0sOQen/rwH/P6N7yL0q16iddiEp6ng3jNX+1GBtf+8+bqq+S6b8PNkQnmWu3v+h6uB6R/Y4ROhbjGsKnWu77Fq9t74S2ZilIsBGrfiEWYG97g82jihLyeh/dSHd2rfesbAdbVn2tRFPuVMcN1Y5vqL8+Oebj2KV3zvpCYG6IV9pWDVJXF69NXdYc3HurNFddnzRf7r6vL3ESP/XYUwv9P24c++NEX/bu4doF9c82UhksXLrK+eoV0PMS2FFcuXSAdjUkzSJKUJx5/GscSvOKOI7TrAZsbW3heQLfb4/bjR9DKxvUcPD8gKwqi8ZC9vSHjKCEIfLbXtrlycaWi7JgSLRRaKExRUGQJ05Md8jQjzwpG0YB2p4FlGTzHIs9Sdrc3iUZ9Wq2QoBZiex6D/oiNrQG2U7lpWUowM92h065z8eIVDh46yPmLy8zNTjIaDnNd/CkAACAASURBVEjiiHbDp0hzRoOILBkxN7nA9tYKezsbbG1t0Zvo0u3ZjHa2GccxzWadZrNOXuSsb2xRFCX9aIwWJYEPly+usLm6Q1mUJGmGZTvYrsvWTlVV8GtthnublEVKaQx+o8mXHvgaJ25d5Ld+578wfWC+6vwqwXSvSxSNabRqRKMqV+jBr57j6TNLlKbAcx3SLMXzKpc2W0ve8ZZX8bpXnODDn/obupMtbjlxkGa7jrIqXVGRF/ihj2Xb2I6mMDlBza3Cp21BWHNZXJyrtH7aVGB8nNBs1BEqJYq3GOz0q3xCqcjynOFojOUobEehbcH22ipPPnUKiUQKG9v1EMrGcj2UMkxMNkEa9vaqjrERAmE7nN3KSNMSYxSW5ZDlRWXJX+Rsbm6SpjllBj/xu19mOIpZPDSP7frYto3jaObnJ6ooiN2Ev/nCI9z/wJNsbO2RZTlaK8LQ4fGTl+h2Whw/eoAkNmxuDVha2kSgKipfaWg267RadaIo5itfP8nhw7MsX1khjiLKPGE4HFHmGd1WwNb6Bmk0QknDzFSbOEoQJexs7SJLyagfceDgNDOzHYSlUa6D0Iqp6Q5FkTO/MAEmR2sbrR12dyJ8z0PJ8hoIcmouswuTGKpswoX5aQAuXlplGMVgIM1zyqIAkeP5kjPnLvHyu24hCDweevQ8Fy+uMTfTZnqqS+AJHKcymqgeZoJau7MfAmwxPd3EdRVFnlLkGR9/ZESU5XitKV4506vAsDGUoiBJU8LAxXNt0nGKZTn8+F/+JbNHj/NT//Mi4yiiyAryLAOTUJoEIUvGwz7jKMaUKXmWI5W6pi/Nc0OaVJb0SgmUtiuHTLXvzmZKylJQZDFFkZPEoK06lhtQCItSKLRrE8cRlhaMB3sIVWLZAkEOaIrc7JsVZBRZTLlfPVSiioQQ0sLxPVzPw1BiyoJ4PK4o5VqR5SlSCcJ6DT+oA5BlKaYsMKbKxjPGYNsOal9wMjEzg5CS7/3eN2HZlcPrF7/wNdI0I0tTLMtCWRqlNJb2KE3Jhz5yH0GzjV+vE9ZDXvma2wnqHpbtkWcQ1hosL60T1hT3vOY2lNAoLcmSlK2tTYbDAVfWRwipKMyYt779Dt7+jtfxa//+3/KDP/huFo8d57f/w2+xtbGK5Rg6vQADjIYl//2P/g/02jNobaO8MTkZP/bef4HlWoxGOxQmZmd3jWRc8BM/8S8RWAij0UJjcsndty8CJY6lKcqcjb09+sOENBNcWtujV/eJ4hjLchimgqQ0PPjwCsfmeyilMEaQFyVnl9Y4cfQgCAVKsrmXcPLsCr7jsjMYVfrPccz9X3ycWw7O8LGPP8Dhg9MoJei1GtTDEEdrQq8C7kkyZqpZ4/DMJI7nAwKtXXwvZG5mGsfxcR2XS6ublIVkey9ifXuPWw4d4JOffYIkyVjfGTM7NUun7rEw2UVrjaMlJ+48gFQlB2bbfPyTX0cri6XNXbSyKjq80nzH216Osmze9a43YIoETxsOzU0TxWPWt/f4R2+6jcB3UMpBoBBKc+fxg0jtkSFQlkOj3uTc8iYnDk3RadYZJ+lzA6RfouVZwWy7gdx3S771yAKB69MfRWyPYqygTZQqHn7yAp4Gzykpspi65yO1QsqMgoTXvPYu/uijD+EqC9fSgALlsznMeNtb796vuksuru4RxwlFmVGWlT7w8/c+g9YK13bxXYssH/LoycvM9uZI0hhLQZ4XaEvTCOs8cXKJcZKhlUuRxzhasrEz4IEHTmPymCwdY3lNdkYJzZpLmud8/r6TXDlzmdLY+DWHrZUd0qwCBLV/ULC63UG7CcV4j7CmGCUFP/er97IrR7zu6BQbF1ZpL87wfd//PSzeeoTve88P49dqBGqLr9z7N+xsL/ND/+zdTM8d4Pz5JZqyC1GTL36lz71POPzMj7+GubkIFRTE0Taevct81xC6Oa+/+yC/9GMHuf+vPsz3/8D/Bl6bg7cs0vCmecPb/zu8POYD//kXscqqKnSV6nhjK42hfJEc5P8W2o0A71vZ9P4g+f9X7YUqg1JUES//b7Uq6udb+wl+u3L3d2wvXbmrfv/boOj3/d5v85Y757+5lV7ie2CMYW97B5NX1MhGZ4IiztneWMb3NIbKWevipRVec8/LqTcapEnGxvaIcxeWeeSxU0xPttja3qHX7VAKwXg8xnYUnh9gWS6O41DvBNQbNaJRVNGxlASpyYsqoFhpiyKHvd1hZbMsFbYSXFrZplYLmJ7sMoxjZmbnKcuMvd0dBJIDhw6xvLRClqV4riBLc2xLMjPT5alTF2i3Q6QUBLUGvV6HzY0tGs06ZWkoidneyAgCH4ShM9EljlI6vTmi8S5FodjY3EMgmJmaYGNjB6U1o3HE4oGjLK1eQokaeVmys73L1GSPnX5ErdEgcCuw4jfbRP0+Qa2JQBP1Bxw5dgBjCu6Zq/PWd7+HH//DD/Kuw/N8+avPcPz4PEWZY1kuCsHUdMD8VI+yNEhd4tg+QijSNEYIcGxNYQpuPTJPGsd4nku2byqDyfna104yOz9BkReUAixlkeUJZVkQ+B6DYcyZM0tsbfUpkpJ6o0ZRGJavbPKVRy9w54lbUI5itNfHdV1GgxjLshnsRTSaIXmZAYK5+SmiaICySpbOb5CNC+rNgNOnL1Cv19BaY1s2Ullsre0QDyN+4I6jOAsBWRJz5vQpJjo14iQiHo+wpWR3d0C72+YPvniRH3/nCc6cv0RYr/PgQ08xO91kZXmDJM4ZDgxCZqRJyYlbF3A9l63NXeo1jyOLM6yv7xCNEqamu2ASLq9uMjc9yflzl3AcjeN5rFzZwHFtjh2ZZ211i9MXNjh8eBZtKephnUuX1jl4cAZlafywhtSKwXBMvRESJSlZXuzbyCeMhhGeVxnNCKEZ9YfEowi/4XP69Dl8V1Nv1BgPIhAFU7MdJJKgFpCXCZqi2obvkpcFQkjOnVvi+NFD5EnCKE4YjmLqNZ9Tp5c4uDDN/NwUcVzwzOkrnDg2g5KSk2eW2NocUPPHNJoNxkmB7Ti4rotRDkpqjBQkUeX4WuYG27I5HU/x9n/4FsgSLv7VfZyY7BDHMbYXYsqCeqNGZsBxNf/s439GXBT81r99LbbtYNkVeDRopFJQlsTjlNCv8alPfpX5mRq251EUJUpXAFtSYLseynKq/DIhSZMErW2KIt3P5HPJ0zFZVpmLIKtxU6k1eTKmzDNspwpit906RkjGo6gCjJZCa00yzrAdrxoM3q8c5nmK0s7+yGhKWYLWlV7M9UMwhixLKzOUsjJnSeIRlmNXDp+iGkBBlgz3BtU1MN5FikqTiFQoWVb6PCxcx6LZqioQUiuEFEBCmaf0tzd4+d237gPwjHiUMNgdYulKzzjsDyjKnN5kD9u1EFJhuG4288ijfVZXlnntm9/AzMw8RQaDfh/XDir9s5/za//+d7ntluPceeIoR4/fxubqOrMHa6yvDfn+H/4ehnt7PPb013nlq15LsznLaJRR75S4KmQUG+LhmAMH53n39343aRpTGsOv/MK/5lf/zc9xOn56vzozBlPptVuhz5kr2wShQ+gFOI6DlBUtahAljOIxB+YmMUaAqAZ6aqGDBCwl2BsM8G2Xhak2yxubBK6iyMF1XbYGQ+anu9x520FCz2Fte4+HnzhPKSymenWE0KRpyac+9SDNTp3N7U0Oz80wiPpYuiSJx7iWJM1iXMdBiJxGLeDRp5e4+9ZJtvsDnLDBZNdnqhOyubuD52hOX1rHcz0sbZjsdBHSINDcdmKWtIyYardQusAgGCUpgecwioaErk1uSpASISx836JZD9DaJk5L0jzHdgRxnJFlQ0ozxtYWrZrP9t6AhZkOO3u7eH5A4NhkZYmtvzFjNSEEaxt7jMcJlDmjOMFxbXb7Q9qtJsP+Lr7nkJSKU09cYGqyohiPkozBMKEshuSljTGG4XDAK+9YQGqLvIhwFJRFQbteJ89TQl8yGo744n1nuPP2o5gyYmF6BkTGy26bY5QkbOz0qdd8+sOMeuDwwBe+jnJtOp0O5y6v4lqCcQbnzi5x7Og0rmNDabiysUng2tx1+xGSaI083mOkDjMYDvF9m9C3oX+Jw8dcAs/GcwqaLQXSQCEo5Zjf/6PT+EWHxQXNcFQZar3p1fOV9jaJ+a2PfJk7fZvDL3sFm7slKpjg9Nfuw7FWePM/+Zco3yeKEz73Nw/xnh/5Xj7zwKfpNPvcdnyWW+cs8tjQrtdQeY31nSGuFlVF1NQY50NWVn0GSZ833LPAH/zBh1BOl7e+9Q1sbA553ZvfxtK5z/HUA09x4tWvo5QSfVOZ57lsrxsrdzd3/54bj3B9O9xQ2bpJ3nODBu7m13P2cIOz51U4orjex7263+eDKqYskUKghHxh0HbD7L8N4Lm5gves/d9IWb7pGCWC61Hz17cFVzV3z+7F37z+s9Z7nvk3v1vDs2mgN36u36Zl/jfQvjHNndkv5d4gRhWV/W2J2TcReC6f903d3W/psRqgLGDl8pVKs2W52K6LZemKHick2rJI0pyd7QGPPnUWkyQcODBDtx2ytrpGs+kyNdXh9PkVet0GSxeW6bbqjKIYW7sUecE47mO7AaUQKKkokwTlWORFzs7GBkGtzpOPPMNoENFo1mk2XJ5+6ixGKMZxzrEjB7C0ZHllm067UTnkyZKtjV2SJMFgaNRDLl7aQgpFFEUUZcHURBPP8zl3bhlMzMZan3GWsrW5QqcVkMQ5Wgocr3K729se4NiCJIlpNNtk+w/9qckplpbXOX78CEIo8hSSaITvebS7NYZRzIGDU9TbHTwvAARe6HB5aYW1K+vMTHfIR0M292IcCyzLJU1zhIJ/8cu/z4/96I8gHnuYXisk8CtqWuXmV32pXb8KgUcoKqJFjlQOW5s7ZGmOFpqV5Q2azQZ5lrO50a8Cw0VBq94EUTkKnjt1hUbdRxhJWAvZ2xvT36syAkfjQWXA0emgLIXnaY4fmacEtKUxpjKsQJR4geb+B59iqhuglcvuxghtSWzHJuqn5AKkJXAcRbvdQNmaoqyobFAyjEZMTHYgi1ELNZCSMAyIkxTHDRHYDPoJ7VZIUeR8+dQqb7klIPACzl88Sxqn1HyPeqNOo13HsSS1ICRPK4phu9uk3gzIixJhwJaSp5++wtRUE8dxiKKkipwoDCY3LC9vUQu9yhV0333x2C3zSAVL56/g+QEIw9nzqxw6uECRb0Mh8Gs1iqLAtjS+o3nwq6c4dHiasBFy5uQyNc9GyBzXc7n3C0+QR2mVU1ZW+wnrHjv9IUoKClPRRYd7A86cX+bIkTmKoqAoJaNBn26jx5VLK9Tqgka9ged7xFFMFBX0ug1GwwG7u0Pm57pcXt5kdqZHt9Xm8MI05y98nbn5RfJkhJAGtxaQFxXFRaLRlkscpyirqqZ9+XzJrYcnQdn82p98mO+YO0hYqyP3Hz1ZXmBpxT/9yJ9SGvjIH/9THMsjTnMsx0dp65p+Bgy2JRiPUxYPdbH9gP7OHpZdafiUluTxuKL6FjlKVxqiLI2xLEkyjnA8q6JCOgFSCIwpq2y8aIilLYqyRKsqZFzKyhAmGcdYjibPMmzbI4pGWK5FkSdIJMrSldGAyRgNxkjlIISNlBU9yHZDCrKKMprvv5cyoSxN5ShqrH1gl6A1IBxcX5GlBsep7VtoK0Aw6vcxJJhC4deapMmQWsMFBFpqhv0htuej/QAKg7Il2d4Yr14ZeEilGO3tVbRyqVGOjSgy8tLwlS8+wfSkR5rkfPQT53nj2/4hw50NbBnw0z/1c5gyIy9KpqanKHLDrcfuIkt3mF44QJnF+IGPFA5a5+z1N1EWHF28HSMlF049wuWLy9iehRpGCAxBu8Xli2e4dH6V//P/+C8cP77A69/0NkZxn1//mQ9w/C2zaO3gaAspcsZJQa/doRG45EWJkgpLax4/fZ56vcbC1AQAZZmipGEUJ9TcOvd97TSLcz0s28XSGgPUwxClnYoB4bgcmG2ztd0HBblJuXhpmVqtQacV4IiCOIvQyufM2TPcdecRmo0mf/E3D6Fdm8l2m688fpGFmUmEBFsLAj8gLwUL0y32ooKs0Oz0h0y1K4fhKm/R0G3W8B2LtZ0RWkn0fqahQeDZLpiCaJzgOD6WtBgMd6nXQgwGqTRZYbC1wnMstLR536ceZnunz8JUBy1tnjp3hcNzEyjlQpGxN4xo1QNsrXFdC1Ma8rzEsiy0VM+imz2beCb3+xwFWZLjOpooGdNs1DFliikK/KCOQBCEDlr5mDJmfqGD6/nkRUkmHKIop9uskWaKstylVW8ipGC7PyQaxiCv6lhzLFuB0ASOw/Fb5qpBj3GK5yiiJKEoMizl8GefeZJbj05R9x0efvoyx28/yqULK0z2Qma6dUCQpwm3nTiI4zrESYqSmnatMjzLkaQ7z7DTLxDuNFO9Gmmasr3dxzZbeF7ldJrmCZalydIqdkUpn6Mvr/PJD67xztfP4TgSk4wYlhN84hNPcGRRETbuxF/s0O4d45mnvo5MBmASXLPHn/zRR7njre9AFj5Ll87x8le+mo988JP0nJDFCYWsO6TRLpY2eF5Ba2KSuu9REPORT59G1w9zoDPkxKFp5rpj/HCSLz24yhf++i84ceIgdjhBze1x7vE/ZfHoW1EtGyt3QL0YqBE3/ft8op6rtD9zjfp3NQ7gal9UcZ0yeEPK3XPonFdjD65RJq9SCcWzDVVubMULmLpcd6+8Yfomaumzmrnp/X0TRbxng63qR+3TK5+9Q3Nt+ZuT8p69nZvtZAxSXF3n2YjcXCN7Xl//5rWf7/OR+5/HVRqq0t8Gd39v7aXA3bVRhBf4rl79u5SSGxf6rd/8j7xqwf1WHioA8WiMozSB72FpG2Mkg8EufhBiWzZbW316vQ7NZkCj7nLk+NHKFc7S9HcHWLpiWq9vDNGqZHqqwxNPPUOjUaNWC3n40ZP0JtoINK5jU5aGaJTiei4CSbPZQqiMZrtGo+FTlBmXL67Q6zZptmpsbWyytbOHZdm0WyG7/T6dbpvt7SGtZkiS5NRrIUoZlq5cwbLB8yyUVEipSbICrez9rLWQmbkJTCEoS3AcC8fVZGlFqRRScnnpIq1Wi0tLq9R8i7AWsLm5Q+gHLK2sYWvwPRcnqPH/sPemwZrld33f57+c/TnP/tx96dt790xLmhmNNFqRNCICBYRloBIWg0uFi0qcuIzLFeMCUykCTqXAxnYCZTtOgABxwAIEjBYktDLSjEaj2af37tvdd1+ee++znv2cvDi3Z3paMyMB5VKqot+r7uc59yzP2X7Ld3FcFyHBtUseSX5YuI+HI4aDMb5XQQrFpz7/GHOzLu1OC6k84niEJCVPQmZ0xHbm8WfrO3zfYpskzYjDmM2NHWp1H8MsbRJMbTDqh7iuQzhOMF0Tr+bhVByUljieBVIiDYM8zWnUqtxcW2diYpJH/uIxji9MUauXfJCr11eY6NRxvArj0ZgwDDmyOIvv1kizhGjUI40TpNI8/tQLzE22GPTH3FzdZnZ2gl5vwL1njpfTFcNiMByDFJiGwtSi5D34HlmeYDgmyjDRQnLlygoTnSau6yBQICWP97u0XY3WBo5XTkqi0Rhl2fQPUi5dWuaL1/f4obfPEgcxM5Ntlo4u4jouN5c3uH5tnckZnyefv8KxYxM4tllK1osCKQrCIODGzXXGUYxfd/FrPutbu1imJkkiTEvR6TSwbQfHNRmFQxqtErqrlKLaaCCkoFZzEeQ8/ew12g0HIVTJy0pjRqMAbdrU65ru/gGea3PlygZSKxqNGsvX13njueNoUxEnYNo2M7NT9A5K4+44zfD9Crtbe1iWwWS7VdpQKIM4yjFVwdb2QSkoYfpYjiIYxyzf6GLbCsPQXLuxQbtRR6kCz7F4/sVVhCptLpqNHKVs0jhGKYMoKVDaO7TEiADF3t4+jWYNwzD4jU9c4CN/76fQ2uSTH/1PfPjcacK45GNKWQr3/P0vPcrJYzX+/a//rdIPMc+JwzGmIQ/VVHPyPCNN0pKTJgqkLl/GWhtEYYiUpZUBSiKlQhm3+72lv1CapCilyTIwDY8sLxU9DcOghNaZKKURUh1aDZhkKeRpXgqj5FlZrOUptuuhpCbPFXDbGkGgTRepNOPBgDxNUVox6B8cJvMmaZqSZwnjYQ/LdlBagxAk4ZicAm3aoG3yJCQKxihVWinkecZoMMJ2LLRjYxp1NtZu4FcrQIFh2BjKZDTYJRz32d0O8KtN/vQPPsvcQp2nv/YMn/ncs9z/5nuhyPAbHf7wDz6PZUrqVY/xOCBNIo6fmkMIjdY2n/r0Dd7z7rcz2Wmzu7vJ/Q/cwz/6mX/Ks889w3c//N6SX7nd5Rd/8ef4kZ/40ZJ3SEYYZMSBotZo4XoWBSl73Yhf+5Vf4Xs+8LcxXQOrVkVKg0//6SM88shnOHfuDTz33AscO3qSo6fmKDKDzfUuxmKGqQ3GYYxnu2iZkiYRu70hSpUqwFAw1W5gaMXlm5v4nomhFXkBnmOzvLHFudPzZEXGaBzw6BMXWV7dYWG2Q1bk7OyNsLUiilIaNRctNbbhsHUQl420HKqeg9aCg0HEuXsXUNJmu7fH2eOzNHyPcZQy1a4SpSFVzyJOM9Th++LRx5/j7PE5GhWLVt1hHKQUwiRNSm/L3igkSgq+/NhFJibruLbJE89dZWaiUlIOtCTLstKewxRk5LimW3odRimuaZGkEVJk9McBD5yZ5cR8k41uj49+6llmJxwm2036o4SiSPBdF60Vw3FIlhUoWdAbj3GsUuzl1TLc26mlLFL6B/vEaY4hFY5lI9EMgogry5tMtGolFzktSBKBa5nYpkUYJwRRhlIFFcvgK1+9xMRMjVqlxtWbXSxjhGXW8d0O56/eotXwEaJAiQxbCcJMEIUBw9GQVq1KAXi2Xaqhipw3nJ1Hy5RhEHJsYQrX0hyZm8DQ0BsG7PZClLKwTV32NQvJXu+ANIcwSbENwd7OBtppUK/XShErbfHEV89T0V3qTY88A8ssObpg8+LT63RmPLQW2I7DH/3pBg8cNTCUS5wWIBU1O2VlPeL4/BkuLw9oNaqYBizMn+DGpT9nbqaF23wze/v7vOvd7+Ta8lVafovzV5+iPukx7mdUnZy8gCxPcSojgj5kScaZexbw0i6JswSuQdbfJRcWH/vzz/Pzv/JvKSiYnpunWmuzt/M01y9f4NwD7yc2BK8v3fGtVTgv0dle+qvDKRS8tP5XgyG+3qTp7g9fa0++maiLvF2aitea8b3GFv6axd1Lfy5u8+Lu3Be404L9lZt7/Q2+cl2vNq+7+/NX7svdcftcvDS5+05x9+2Lb1bcAd8UK6/uFlgRgmtXr3NP+/Yj++WOyau3N7553N6DNAy4cesWUJr4RnGAKDSW65U4e9JDgmfBXveA8SjGq3iYtsmgN2Aw6DMej5mcnKTfKyXxFxZmSt8eKVlcnMG2XcbjAClyTNMoVdDyDKVEKXogNUpbXL+2TqfZAVJ2d/a5enMdyzRI0xyBZDQsRSp6wwHVapUiT1GGSe9gQK/XZ3F+ik6nzvLyCn7FAxRexcUyTSQJjuViOhKBotcfo5UmTjKCMMUyNEpmuG6peNloNBkPA4bDAb5fkuoXjixy+cKzgEYqye5ul4prI0mwTIOKXyVHYJkWjm2SJBHVqs/c7BSua2OIAuX4Zae/EJimTatV5fqFZ3jv9/0IxaULGAU4rk3Nr4CAYByWtghxQjAK+NzXnqVdLQUrDMciz3IO9vZLVTahSKIUxza5fPkWR4/NglBYhaDZaVCogiRO6bTqZFnO/n4fv+aw3d2nUa1x9eYyrmezfG0X1/J4/MULPHjP8VKxUGniMKXZrDEcBighsGyDPFdcuL7MiWMLSEMxDg55UVGC4zoEQQnDTZOUet0nz1PSNAHAMDS/fWmNd98ze+i1pigKGA5GpElGs91gNBwRpSlvmLcZDgOyrODFiyvEUYjjaI4fmyIMCqZaDZrNFsPBiCvLa8xMt0nCqEwMBJw6uYjjuAig1ageTi77RGFMd3+IoRW2beI4dmmqnZU2CnGWoJWk3+thOzYHvRG+Z3DzVpc4STENRa1WI45TPM9hPI6oV2toKfB9mywpyR5hlLCxuY9paWZnO+RpSl5kuJ5Do1ljPBxz69YWtmsxGI6wLYU2NLdWNtEKbNNmfbPL5EyNnZ1dfM9kdqZJs1EjTXNaDZ96o8qFi1fxHIO5uQn2D0IsQ1IUB7huDSklGQbVZoderw+H3I2iyInjFCkVW1tdPnt5yN/+8H/J1sp5Th87zj/740/xxCDgUy+8wO9cuMjx7/tefOcKP/2Rtx7+fUGR52izTBH6BwfYrkeWlLyyJM3IsgLDskjjGNt1sWwLigIpJVIZjIcjLMMAoSiKQ9lzWaqxIrKX7AyC0QjLsUmzjCIv/RfHwwHaFEBGFPQxzdIvKhgN0VoilUlRlKqZSkmyLKXIkpIHmx0aQAuQ0kQZAq/ikOcZcRhiWjZSKRzLJCvEYTF5qIipS5hxyQtMMW2HLE3LqZ0Ax3EIgzHaNJAovIpDyeEveXZZEZMmGbbjk6QFbsXF1AUzR6ZZOrrIsWOzfOXR52i3a1BktJo+U1MdtKnIsoxKxWc8HqK0QxgmvOe7/i5bWyu4FZf97oDJyRl+/O/8PT7wgfdgmJof+5GP8MM//IO86b4zTM3O4Bg+rmfR7/VJYkWjVSHOQq5fu8Xk9Axvf+sD+NUWhitKsZssp91u8ua3PMSJU0c4efIop06dYX1jFUP5vOUtD/DbX/qPdJoegyAEJEncgyKm02xhaJMgioCCYRBim5pm1SfPM7YPelTdCqMgpFF1SLIcKUtxpna7gTY1U+0aeVEQxwm2Jbi6skXVr3Dh+jpNv4I2JIaEesXlqeevsDDbwVAGaRbS7SfkWUTFddnY7XH5xg6nj0wB+U6BtQAAIABJREFUOYYuz2kYZfz555/lwQdO8uTzVykk1CsOnuuQpoLPfPIxTp9doOJYuLaFMAV7gxHPv3CdB950AteQhFFcXsOHkC3TUGQZZHmIEjlb+7tUHI2SmoPhiIbvMQrH9IdDGr7H2ZPzHJlpkGQJFdukyBNGYWkibhgaRWkDABZ7ozH1ivfq7/einMkUSUh/f4dWs023N2Rz94CJZpV+EFOrOlS9ssFSIAiimDSL0VoxCiJsS7O5s8/1a7d48MEzGBoGwRjL8kiziDzPsR1NraLo7vcRlCIoYZRScSxEnjIKE1zbIs9z0jQlyTLyIiXLwVA5pmlhKcE4CEjzgr3+CMcyieKMT3/+RY4uNTFlTphkFHn5bLUMg93uBkWUINw2w3CMadhcW9thoqWZmSwbTDtb+3gVG0tbJFlEe9rBUDZKQXM2YzTMed/pGk7FIom3mF+q4zsCUanSGza55w0PsrJyg2q9iem0uHXxM8y1K3SO3suNW/tMz01R8yt0Gm36cYvf+r+/yKSvadZKoSTTMBiPBXnhYzqCJBoj85Sg2OaPPtYlCreYm5kphdP0PA+9+Y0EQZ8XX7xCvV7hwpN/zrmzb0M1mi8Jk7x6gfQ3K+6+GUXotTJMAa+r7H47cl5rv8tiSH4D/PB1xIGEfOW6/gqp76tBM++EpL782avN625v7psUd3kBRV7egMWdMNZvXtzd3sdy6fJXV/KVv93fpLj7jqDK/0fjS3/xiVf8/68rnvLKKDjY7zE3PQ25gcgU8Tin6tdI0px+v0cchximwnFtGrUaX/zyeT71mcf58qNPc3l5g5PHFplo1dnaOcD3HIQo+OqTz5UTpiAkGAfEUYLrlFL3UTQ+TAJzwvEIqRUFKblIOXlmgcHggGazSrNZ48SRBdyKh2WZ1H2XiusDgla7iWmbVPySwzG/MEe72cYwTDa3djlx/Fj5CwlFEmfEUYSlJcPBHnu7W+RFwkSnjev6KGVSoMmygu2NVVqtDpsbe1xfXmNyYhKlNLalsCzBcDDi2NIcFddhZfka0XgIeYYQGYKYwbBPvzcsceRkOG4pmf/ks5fQuk4R5yAz0rRAaofdgxDH9/j+97wVbn2ZX31xmSIr1QcxFcPhuPTLKiBNEjoTdb73XQ/QnmyghUAU0N/r4VkmhtYl3EwoxsMxZ88slbAzWXpuff7Lzx+q8qWMxuNSvCDNcBybpYVplq+vYqYujutx+g1L2FWHd9x3D5ZlIIFPf/lppibajIcBWisMy2Q8ClBa8saTi/zZZx8jijPMiotlKmpVH9Ow8exSxt6wTSzHICtStCmQsoA05dnrWyjDLGEblIVCqzPB6q01rt24xNKJeZ578Qo3lzdQSuDVq7iWgW1pTFsyioak8YC1jVU+/pkvoqTm+NIcRSZKiGwu6TSbbG0fcOvGBqs3N4nDmDzNMbTJkcV5an6FRqtOgURpGyEshqNSVbLI4tJE2i6nT/e98RhSQBimFJnEcksvHNtUXL6ySc2vc/3aGpPTLSxb0+v32dreJUtTjh+ZpdPyUTLDtDW2rZGqIElC6o0q7VaFas1neqqO45ooLXA9E9MyeOHCTR687yx+rcZka5Erl/ZIsxSv4lLkBb3+mIPePp4rmZr0efrFq2xuDqjVGrhOhf3ekEIoXM8niHIajfK+MrSN0opWu4HWmk6nTZ4L9nbX0XmXatvmn//iP+IjP/khfuM3/x2igLc+uM1P/MTbcdzSy7K8hwuGwzGjUUC11QRRirjkWUpeFFiWC8LEdg59D5UubQzCiCzOcB2XcBSQxBFwaI2hzUOvOcmgv42UknqzUUIutYlSBVLmWLaJVD5CuFhWDSlsRoMhjuccTgDLKWCSREThCCFLuLmSElmUNg1XrtxkNAqRQpHnGUkSYxjluckzKHJVKqkdFrNCl80USYEsCpRhMRyEmI6DlIo4DAnDMZZtUcQxeTHGtFyKQlMUij/+6GcIRgO06WEYNSbn2kgjZ/7INEEUEyYZpmVw9p7jbG51GfW6ZGnM+fNXQWps1yUYBLheg35vyI0baxRFRsMvk33brvK//evfxNSKick2aZ7w27/9fxHGIfff90a2NjcY9guCUflcmZ5psrJ6DVFIHnv0KQxLsLWzimlJXM/As1wMw8St+8zOTdHrb2GYGYYlmZ46QpaBXVEcbUzg2oqaV3rW5XmKIiXLSqNq1yp9PKueS5qmPHdxGa0ki5NtorhUU+4N+4yGpfCKadm0az7H5ybJ84L17gHthsc4GXNiaZIozTky00aKjFrFwHc05Cnj/QFFLljZ6lIAL1xeoVOvYSqTS1e2mJqY5NbWPloZDEbxoeqpwnZtbqzv8bb7ztKq1RgEEXGW0B+Nee/D58iLjP3hgIKMY/MTPHjmKB98zwNUbIs8L9Da5GOf+BpSGhimRZoX7O6P0MImiiUzrWnGgWAYpCRpQZRkVKs+Nd9jOBoyHg8Io4gsC4jTIVJI6pVSCXgURCRZRBiFJKmkVnFfU9VQHibBV64t06xYDMZjtBIcnZ1ir9djulXF9yyGoz5JVi6fpiFSFAzGQ5pVB0MLtreHPHDfSXJSyApcK0dpQFf5+tdvESUhWtvMtqcQRYbvufh+ld6gR7/f4+uPvkCYlA0yANcy0UJhGgYCiVKKte1dap6F7zp89StXyfKCqXaN7/meN+GYijgeU/NM6hUHpTRhnCHziCML82Q4LE5NoAzFRLvGzo3rmIbENBUzs9MIIRlEAaDQhVP6+SKhEJx4p42kSjB2aNQm8G2PPLZJqPCr/+sngJB7zp5laekUE7MLnDp1P7rQfOxjv8HZe07zlS8/Sn94QJxf5D0f/H7e88GPEGdbACipSJKUL39lg1//rU+Q2QUFHpEBRxvzvO97TrB4+p38+n/4DO982xt58rGvYmnFi888wYP33cfapkFBxO//H/8Gnf1N87z/f8W3U3Amy7Nvy3a/lfjO5O5vGN9scvfNFa6Kl0bUd8ZMdI3Jhv86f3c31vpwZPEaGOw8L0hGMfvdbWzLACUolEm91SoJ4nkKaUSahmXXuygT+sW5KgYS3zPoj3pU3CrPPL/Cg/cdoVGbRkiJVAW2bROMx3RaTbKC0ouuXkVro+STKQGihEZleVFOKwvQpiKKYrSWpHEJy6v6DpWKjTY1zWadg24fz/PY2trHq7hoJVi+sYplGvT2DkjSFNOyyqMtytdftTHJIEjJ0pyK69Lvdxn0d9EqQwqDm6urzM3MsbK6iu977B30GAZjdnf32Ns7KKeLJDieT5pl2I7HKAzIi4KpmWniTOJaBjtbW9SaNUZhgmnYjAdjTiw12NpaxWs12Fu7hl+bAi3xHAPLtHj8sed4y5tO8juPXuE/vHCJ75/oYJmKJM3p7vdoNBtIqZFak+UFaRrjujbheERRgO24jEZhKXmfJ9hVG7RACkkehVSbFY4uzJFFCY5nYzsWiIJPf/lZ2jUPr+JimIrOVJ00TjENg0FviKEsvvjEi8zPT3P66CympTENhaU0SMFwGGM7FoXImZtoYqgCSwsMyy6bAoZJf3+AVXEQCLIUiiwjHIdYtkMhFXGacP9986RZiVcP4xCEpN1qc+3aGjeX1/niWsaH3jRBvz9md6eH60g6Uy0O9hKKLEVok4lOGzJNp+XiVytcX17BMkxQGsu18FyT4TBk6cgsBRn7B/vMzkzSHwxoT7RI04ynnrnM7HSLx594gZMn5pBSoIVi0OthWhZaSeIw4vqNHY4encBxFK5lMBiGWK7PrdU18iwnDDPyPD20O5gs7SOAcRhjGArLAm2UBXk0DglHIbmELCvYWNujM1EpJawLycbqDrVqlcWFSfqDPqs3N6lWKzTbBqbl8snPfZWqZzI/N83V6yuYls9eL+bk8VnmZmusr1+l5ldRUpUTJGXx9FM3mJmdRGmDjfU1avUqg/4Q2zVAJvzuF67ydz78Ibzm/Sg7pd2YI8sMVm78Hn//v31H+YSSJlKXhuFZEqMtA9t2SJMIU1tEYYC2bLIixDBc8jwiDvokcYZp2aRZSpplGKaN1BIlIM2K0gDcNin98OLS/FxYCFX6zsVJHyVNxsNtLKdOmhbl8+lwamCYJmGUYpoGaSZQuhR2yZIYQ5uARitZwqhz0JZbCi45Fq5nE0chluUglQYkeV5OHIVW5EVMEkcUefIS/6ogR4iCMAhLqLmQ5Hl5jIUQGJZ1yJ/WL4nIGKZiYX4Sy/F5/rmL1JsVyAts0yAvCp5/6iIzM1N84s++yFveei+e53DQj+lMNplbmCFPIUtzNje7WJYkCgLmFqb5hz/zv/M7v/OfiOIRb3voXShdMD03w/pqlx/6wR/hR3/yB7EcxdqNVarVSX7u536WnIilo0dIM0HNr/LFL/wlH/zgd6OKgunZeXrDfaIoxrZNrl25xsTEHMrQFEoQRimDYYSpBHbNQQmLf/M//ianvmsGIQTaKFDaxXJKcZM0TcnyjP4oJMtzHMtmolnjS09eKb03w5AoSUt4baHxbIMkKuG7WgmkKDCV5uN/8Rxz0y38ioutE2zL4ObWDr5rYRouvXHA8eNTDMYJrZqHbTocm+8QJCk3N7d5yxuO0qhIXNtAKcVOb0DNc4nSiJNHpmlVbfIixndshkGK79pUbEXFNSjyFMuAre4OFVuR5wVCFkBOLjRaKk4dn0EIGAcRcZzSqDpkec6lW9tIpan7Nkka4jk24zDBkIJxlNGo1XjyqStMTjR48ulbTHaafPLTzzG30MYyS8GJIBYUWDiWRdW37wKB3fF+B5JgiEXEAJ96pRRuWd3p0qi6pcBPnhImeWldoSVplmBbFlGUUXEcijxmZsqnN0ipuh6WqdjrR1QcC0MJzpycwVAF6ztD4iyiWvHJMkmSF6xsHDA91WF+aY48i4jTFMPQIDWWoQniGGWYjMYh7brP3mDMYBxx9OgE9apLQY5tFkjKJlyYCdIMpChI0gFidAuceXb3egRpjGs6/NHHX+BN5zzqriBOSl7ufj9j5VqXSq2B7fkoUgqZkmQ2o9jgKx/v8p63dDjo9xnt7pLakpaV8+nHD3jwrfeRZQG7u1s8++xzHD/7IKvPPEK7qdleX+Gh7/o+0IqttZi5+Tb33LvIH/7peYqsz8SUjc7AmHO5/8wSjA5otefY2NjFrrhY+Q6Ouc2Z+x5iaWqPlReWuXDrgDNn7wdl4DQ6+KbFE3/5Z9x77q14k3O8bI1wl7H2q6V5r0B23bnYHazMO/h3BX+9UcGrZ5cvX4O3UV9Q2ibcnssVeQ6HEzsh5G370NeZmd2OQ4ba6wDWXs8M/dXXfhcsU7w85bubyfp6IUWJDimni4fmqS/BUV/eskK+xFl87XWWwNC7IbLfgWV+G+NbNTG/45NvWOa2Zc2dF2k7WL5zCb7VMe83IqbLizYOIm5dX6HTqeN6PkmWU6nWMS2b/LCzvrW5RZaleJ6H0gZf//oLVFyXKIrpdOpMTXewbZu9vS7Nmo3hKgSK0SDFtgTVqk+GgCJne3sb13MpcsFed78UqSjKmznPM0CQxjlamURhCUXcWN/i7NmTbG2VXevp6QnW1jaZnOqAEFy6fIOFuWmWr9+k06yRFeXUy7VLD6ogLDlqFIK9/QMmO01arQbBOEdLkyTNicKEoyeO4LoWSTpiNIxod2oMBxHLt7Y5d88ZDK0IBgeMwwjLVgxGY+IoptmoYVkWBwd9RqMIpUySJMOzHZxKhbzIuXxxmaWlGUxlkmQKUQgMC4QqifdhFLG0NE+eZXz4Lcc4v6O4eeMW5zplQWebNkoplCro7fd58fJNpiY6SKVQ2ir5j7IUxrl46SaNmo3lehRpQjgek6QZT56/xPbmAb3hkMlOhziMGY8C7j21xO7OAVEQUa/7PPLFr3Lu9FHyIsdyFHE05tTSLHGW4Nh2+bAxFHGWEoxivvrcZeYmGlBkpWm1UIRRUqpEalGKWdh2+SAvIM0TsjSj4nkIpQjHY55Z2+SBNx9FmSZpHKMRHOz36R30ObZ0hJ3dPX7/C1/jBx6Ypd6wuXVrn6s3tllabGFoTZ7HxHHO9eVt3vTG41xdXmY4CJmdmuDa9Q06nTq9gx7jwZg0zdjc6jIcjZmebiOlRgjF5cs36UzWS2uFLGNmusn2zj6ua7G3d8D+wYAwTBiPYpr1Os1WnRcv3eTY0Rn297ZptOpk5Ey2KtTrDTY2uhw9OkWt4ROGEesbe+Q5dCYaZFmCaZmleXchCMIEpU3yLCcYh4xGAROTTbRpE8c5nuPS3etz0BvSH4wYD1PabYc8layub2KZFkuLs3R39zh2dBrbdEiSnIpvMR4HBKMu7c4EhchBGlT8GvOLUyVJWxY4lsYwXSyVMOj3yLKcn/4nv4xhVYj1iO31HX7mf/if+K8/bDK7OEGR5SglKfIMIQ5fXEJQ5BAFIZVqhSiIMSyDLM3IsgilLKQUGKaJlBZpGqKVdfi8TFCH3mfaUAgKguGoFENJS95nnh2++AuNNhTkBlKC0ia3HYW0UQo0ZUnOfveA5eu3aLdqhy/bhN3tdZQG0zEAq/SuMzRRGJClKY5rUxQppm0TjMZow4D8tmJn6XOphVk2p4TxUu+sKArS+LCoDMYURX6YUx0apUtNdFiglHxBiyROME2LIAiYnZ/Bsk3iOEQqE5A0GiXX9vjxOUbDEX6tws0bG1T90qrh4oVrtNpNPvfZJ1ldXeG+B97E8rWb3FrR/MIv/Dzn7r2PKEwYDvu0pzs4jsf0zBy7u7sszEyAZfHTP/UP+Nmf/ce8733vRUvFL/3SL/Ge9zxMxXU56O0z0W4RxBGmY2NZDlmcUavWONjvI6VNkkR4FZc0SSmymGC4C8pgZWUN73hGludIUSr5UhisbB+wsrnDZLNGveKxPxjjOeV1MT/dJk0jojik6jp4loln2yBKT9VxnNAfRViGiWkobq3v8IbTi5ClmNony8EyLQZBQZxkLF+/SbvtEyV5qSacZUhRdtWbh8Ik5BlJkuJYNlXPJcsKxKGcxCc/8WXecO9JtvaHHPT6VD0bU0vGcYqlLLQ0MbWDVjZCZKhD2LVpWdza6uJZJv1xgGO6PPKJJzh3dgmlJPv9EMe2MZRGCMmlG7u4jkXVsyiKHMs0UZaiWfVZOjKJkorZ+QkMLbHMUl00yUZIkROnIZ7rvSKJfYX5cpGxfPlFqq0JDCVBKtIkxjQUWkkMrUmzHNe2sHUp/CPylDzX+J7D/nCEbblokWHbDkqbjMMRzapPUYBr22zvH2AZkudfXOPYkSkso3zX27ZHrVLhqWcvsTg7RUaBY1sopYjTFJELLMtgfzDAtZwSMaEMPNckz2PCKCGMSjEzJSSjKMaxHHZ6Y+q+Rdy7SRjmKG8aJQsa9SpFkaHliL2VkEZ7fGhPkmEYOZ2pOo4FeZGVDYYiZ3s74Or5bbqrgned9UqEjM5JmWTQX+PrF01+/Cd/mMmpeQxtcPrkKV64vM7e6rPce7ZNMdhBem0+++g13vG2NyO1otcfkoQJv/eHn+NrT13n3fc1aes2lhpimj7juIdhlPDhKBrjShuhLMLuATNzM/zG732WJ776LG9/xzv56tcfZ2Nrj3tOLfGx3/o13vehH6YwHUqCyst53KspZN6VTb52ZviKr7714u61lTPvWv/h5u9WfryzMC041Ji4XafeeT3fpdKZvwpvLz/01PxW427lzBISKl6RUb8eLPP1ohQVumMfCxBSHm7nzny+/P72v16d21euT91e1WHhoAzzO8Xdtyv+6sXdN8Yr8cfw+GNPMCP3XmUJXvWCf/21ltHd3qdIYuIswvWbmLZbKsmJgjwpyHNBq91GFBKpTdyqR7NeYXd3yNRME8OW1OpzWA70epucPn4vrlVhZ2eLWs1i0O9zc22b2blpyBM67UluLG8ipWRiokOWl6IJZW6ooIDRcFSKnDgmu90uC/PTRHFCmkRMTtQ4f3EZ17XZ3Tug1WjgOU550yC4tXIT17UZjod0dzYwLINevw/kbHe7TLTq9Hr7eL6LUzHZ2t2m02njeg67O2MO9gNazTqF0Diuyfz8ElkQ0JnsMBiN8VwLrWG/t8fs9AKmYbN8cx0pFFGYcLC7RfdgRJIKdrf2qdWraNugUa+BSEmTLq7v49oN9nZvYEpNLjWWbb3U6RmN91je2iOePs7JYMjnHn2RFy5sMDdZxzI1jm2jpaY50SCNM37/kS8z02lQ8SsoJQiiIcE4x7MtRv0hz1y8ydGjSzR8m2NHFmk1fNZXtmi26qR5gaEVn/rLpzk+N4Xn2xydbhMEIYZWKC3xLI/V5W0QBrZjsrK6hec6aKNMqk8szSJVgSUlg35IGMPu3hCv6qDN0vRZGUbJaRGCQubkSUGRl4m1IeEN7TrZlIPUJgrB9toO1Vqd8Tjg609fxtCaF3uSH3vXPK6ry4SGhMXFJhQF3d4ug17C4vwUly7fZG5miijJuXZzk7nZNrVGFcNUjMcB/f6ARr3O1PQ0yzc2yymkbXPx8gqNmoNlWyVvMBzT3e6hUFy7usuxo3NcubHJ0SMzFAWYlsYyTCzTYTSIsF0fIRRKWiiVggjZ2hrwzAuXOHNigUuXVmg0POIkwvc9TMNhY2MHbZSCPdpSpFHO/l6fqu/geCaWYyGFIBwHNGo1Ll9bRUvNxtY+raZibTVgcWGKtfUBnuews7uLoR12D3ZY2dxGFTaeA3OTCsO2yNIQrRQFoJRgNBqXnMjRAG1YpONdomDEv/tCn3Nve4j+jqRRneF/+Zf/iu3dLv/VD95LnqWkcYjKU8ajMVmRl+dZlMmqZZWqqFEU43hVpDBQWiCEDUKRphHaOCxyDos7KXJKJSJF0B9guGUxZzpVpFH6fiklQKQU6Zg46pWQSJ2hpUkchmhDIVWJCJDawLZsmi0fJVKQEqUcqn45PSpyTZqNXlI4NC2NEpo4joAMZVgUeWkvkBYpQhgoUTDu76BVRpr0ociQ2j4UCTgs8FKwbQ8hFHmelj5ICPIspchzhFSleE4cc+XyMo1mjT/56Bc4d+4EGyurpdKgVWFzbYP2RJNgPOYTf/oFTp0u1QJ9RyOIyLOEiU4Dw7Y4fnyek6ePQSEwDMW7v+vvIjX8z7/8L/jAB76bvb0dFCFkGf/sn/48P/1TH2Gne5P6ZJsP/8AP8g//wX/Pu9/1XrRhcu+9Z/iVX/mXWFaVcASdI3MMegfYumBt+QqmXeMXf/GXeeKJr/Ou73oYy9JIXeA4LnkasXL9PBMzi9x79gzPdh/DdWwkJldWNmn6VfI8odOsIGRBlmdYhiRJAgzLIonBtQrCOMU2DYbjkEJkaCWJ4oyd/T6Lk5M8/txVDgZ9HnzjElIKgvGQ7V6PggTLFARhzFefucGD5+YxbYOK7bDb61NxSuERIUsV4ihJ0NrlU597hmMLE/T6A25tDsjzhHrFYG5hkiAqecbzE3WCMGKcRLiWSyESClEwDCMc2yYMyymkZZTTRS0EQpm4XgVLpJw+Mc/zV1Z5/som3b0RQmZUKwab3RGXr+5y7uQcSRqWKANASkWSJQiRHia9BYaGg0FA069hKI1jOZjaQhv6VYu7oijKyfhgE+m1cDTkQhMEY5o1n7yQRGkC5CilMFXOMEiwDRPH9hiMR/iew/JWD9v0MA0BlDzYLM8JohTbMsvnuISZ6SaQE8UjtIaCEkoZJQmXbx2wOFVFS1F2IPMETIs4jvENRZCFHAwjHnnkKc6cXmQ0HtL0a8RpimWVzWApNFdWu2zsDJlsVRDDVcLCwqhMUHVtvnZxDc9xuXXxMifP+JhSEscSUxslBF4pyDKCMMEwK0iZUfcNpicN5s5avLk5g5SS1b0D/v2/vcDpUyf4zFPXeP97H+YPfv+PeehtD/HxR/6IpVP3U6HPYPciu/09jrzhXdz/th/mo7/7H1k4skSUBBw9MsMP/eR/wx/+5h/z/rdZoGKw9rGMeYrYIFUjDKkwtUeapNzsbjBZn2ZU9PnMVzb58R//aSq+x8PvfSf7gWR6Zob+1nnWb17l3gffSSw1+q5y4PXzv/88xd23Et/I8bvj88O4PZmSr7LKu7fzaqIsxR3r+KvESyOPO4qt4hu+/auHkvKlKV/5Dri9nTuX+sZjePV4ubh7af3fKe6+ffHNfe7KUylvT5aFIM+Ll0bWr3aZ/p+/+Tu880TtGwbscLsLcThUF8Vda3itngBl0aZMXjh/nXrFRYhS5dFQJkIJRJ6QpqXZ8PbWCoawGAURSgqeeu48k60JbNfh2uVbOI7H5PwkKVCvN7Bti/5gzJnTJ1BKsbm9R71dp9mqIcgJwwAtS5jO1uYOtVoFQckrKzk2Bvv7PVzPZX19FVFoNrd7CKEospxOp0WlViMYjYmzkvOmtMnC4gKWtpiZnWZ/d5+siDlyZB7LKL29DMeh1emwemuNTmeajc1tar6DVgVh0GN3p48yJNE4JM0LsjwniSOmJpsYpoHSmudfuIXrVNnY3uDUqeNs7XRp1CvEScTCwjQbW9vYTskrWV/fpjPZRkqF47YRGAidYzktojDEMk2EMsiSgt3dPRq1Dg+caPIbf/IYn+4e8FOnl3jooRPkWYqSmjQfYypZWmVQsLvVY2FmAtPR5ElBu+nj+z5RkuFUPBbnJyENMAyLLE3uENBIGQzGVDyPc6cWsSyDMAyxKxWkMNjv7kNeoC0FRsH2xh7Ndo1+f4BtGhRZimlYKA15liINhzTN2Nvfo9OpQpajtUEwHJGlKco0ydIUrewymS8ylGGSFxKhFOZSHdKMIo+R2qLb3ceveiwuTON7Np97cY2/9dAsUZKxvdVlcWGaLBNo2yLPy27xE09dYWqizdRsjf3dfXa7PS5e2+H4kUmKXFCtV7l0cYdCRtR9i6rnc+nKLdptH9ex0VriOBa9vT7djQNmF6YJxhFTs20sx8RQEss0SfOSp2g5FlJL1tcPIM/wKyZoCVJ8PIEeAAAgAElEQVRiWzaVisWpY0dY39jBc03iJKHdrJElGU8/e4V77jlCEo3I05ydnSG726Uvn1+1sZwKCEWRw1NPXaXiGxxbmmNtY5djR2bK+22qzic/+xQTHRslCo4uzZETc2tljziEqSmfPA0gHyAwMJRBlsUgMrI4wfMbpHGMYZgk4z2iIKTWnOALm23uPXMvftvj5uoaW1vL3Ly1wYe+9whupV5KvkuBUGAoSZamFAXl/Zzk5EmKZZUcvCQconU5paQoYZBKa4QwyfIUbSpKT7sEZWjGo5QsSnF9j6JIkGQkSVQqbaqyGNPaQanSPBvAMM2y05qL0oQ9iSHPESJBWxWE0mRxQBzH5EWOtjRamaRJiFSaOAgOPehAG6UasRCQpRlCFmhlk6cJ2hCkmY02XMajAKlKQXApD02cixyhCvIsLqd0eYKpFVEQYZkahCTLCrI4p9GoIEXG8ROzpf9ekjMa9DAtm3qzxQvPvMjCwhSn7jmG5djkWYHhuhRphuV4SNMiSzN6+wdUqhVWbq7ypUdvcGT+BL5t8dZ3PEguLGy/iik90BEPvf27+fin/4T3v/+/oLfdRxWKM2dP86/+9a/x8MMPk2fwwQ99DxOTTU6eWcJxNEmaYns+lVqbX/jZX6A5Mc9gb5eHP/AwUkriJME0DZTl05icBQmOLfgX/+R3OfmuWYqiwDElYRpRq5aep6ZSdHsD/EoVx7LJ05w4DomiiG4volmr8fnHnmdmqoFrlsqNg1FAu15hql1jsztgqlVHK4EyXRqVciIkpYXnOiTJiE67gWVY5IDv2CX3Oi/QKicY9XAdmyw36e7vMTfdOJykZ7TrdfbHIRdu7TPdcKm4JhkSJRVr2/svQUMtbWObFlvdLp7jYRmKIAzIMkWShWiVYwiFkDlCFsy0G5gy5o1nlphqNjCVJkjhLffOEEYhf/Sp51mYa6FFSiHyUrwnSVGGgVYmeVbguw4pGf1RhGHIQz9GXU4eDqcPZR4gkWRsXXmK2sQsUVpgmw55IUnTnDgOMEyBqSVhnGAoQVKosrgUKeMoZq9fCkw1fRtRGKTpiDzrIYWNoSVaOzx9cY21tW2mpzulHYxWaGUQxhmWVYpSNfw689MNEBkogzCjPOc5KGnSPeiilY1rWVSbHo2Kh21bFLKEaHuWQZYnHIwjJlsTLE5VCXtXCPp7TC7cj5aCME6Ybvk8+djzPHR/i2sXLjIzbdPdT9nvFdTrpWBUgQRlA2lZYFKKsSlT0L8QMd1ySYqcd9y/RK3ucfVqj4e/+/3UOp2yULd89nevU7UEInyBRq3F9UvnmXrTe5iYm2E8jtnf7XH+4gXiYJ+3vPPt5Ps3yYsumg5ChcTZkGZjEsOplc/+MMFt7+OmM+x0R1i6xsWbXb74l5/myOwihtHnycee5P0/8H4++9H/hwfe/QHsSu0bipk7vddeEty/DSu8AzOZCw4tt24Xdq8EVL5WiZTfhm4e2nXdOSf7Bg+8O2wMXt7Gy9noyyYDJUxTikNbhbsmVHce1+2Qd23rzmngy6u945hep+Z75TSQl5AYQrzymF6r8Hr1fXmlpUJ+x28hilf+1nftzTfCP/PicKpYvGJ/vwPL/DbGt1rc3TmdG/QHGJbF3aXZ7fjKVx7n7Uf9u4q723FbfPXl7sPr92DK74JRhCig5tvEyZjd3S3qNZ/ewYAkjinyjKLIcWwPJcFzqqRpSr1ms7q2Qa/fw7Ms0jTiyNI8QpllbqsVQmmWr95AKYnrWKWYijL4xKe+wvREi+7uPs1GDaUVruciDjscSiviOC53My9I4wTbrAAKzzWBlDAKWJifJogTVtc2OXJ0sYTz6ZK/NhqMybKMRrNCrz+k6vsMhiGTE5NsbW8zHPZQQlGvV0vz1uGY9fVN/IpLGKccWVpk+cYahiro7u1hWSZxlLK+0YVccuz4IkLA3Nwsg36ZSETBCMcuu7V5VnB1eZ1jxxY4GAyYm5tFqLKLnxYFSZqjteJLX/karm1Q9cvjt22HR//yKRxH82PvvY8/e+I6W1nEWyYapRKhYaBNRZ6VXa7tnR7nr69xz8kFBvs9LlxcozPdZLi3xyNfepqG5+F5DqZhEicphiEJhkP8hk8wConTFFmU/Mad3T2kBNKMLz35AveePV7KIxsaQ2s++/h57jk5S6NRZTgYc+HaLdqt+uFpKtDaKIVWlMKrupimZjwMsB2XF87foN2uYZqKKIiRSpbm1sBw2Mf1HH7/0hXOHZngoNcjGhdEUUKzVeeJr53HNk2mqian5i26ez0uXLnFzFSVOElYXdllemqSWs2l7jsoqfA8F9+vcOzoHKeXZuj3BiglkEqw2x1R8TWNps9wGDA73eb5F29w7OgcIi9YW99mcqqDW3EZj8acv7TC0WNzbKxt4jgWbsUmCkOELLh6fZV2o4Si7nQPSNLS3kNrjVYKIQriOKTZqrOz02e3O6TdrhEnCceOzR7ehiVf7Nnnb9BuVQii0pPJsCSGabK10WV+pkOzU2NzY4dWs8b6Rpet7QOaDZ/56RYCwfR0Cyj5XLvdAefuOUKj7pdG6lqgTJ/BKMH3HdI4giJi0OtR5BFxFOBW6yRpAcrggR/47zC0hjznl//5r/Kz//iD/OiPvAvLDPl/2XvzYMmyu77zc7a75/72qvdqr65eqtXakFq0VhCg1SwyHrwwHnvA47Ajxsx4whAOAoZgMAwMJjweG4TRBNgeBzAGYRA0CCF1S2q1Wupu9V5V3V1d+6u35553P/PHeV29lRaDI/BE6ERk1Ku8J+89mXnz3vM9v+9S5Dl+6DkjsFoyHU+IkgZ1DbPpDMgxvkeWlVirSGcTpJIURcp0PCWKI5fdVxRIJaiKimw2I4oTsPU+ZXGKH4UIJSgLV1nQRmHrfZAn3A3UWqfbFdKdw5PBmLLM8CMfqQ1KeSAkeTbGCxKK0n0+Tn9Xu6oHCj/wKPJ83/yjIp3OCKJo3wWzpK5qlPb3KdAarMX3PbSOkRJGwz5S1ijhiFJ1WaBMwLC/R5QkaONjawkoHn34Kea7LYTAjVM50BvGAZ1egxfOX6XZSNjb6zO/2EVKyLMUoZyDspAuq6veF+0/9pWzXLu6we2nj/GrH/si3//X/hYXrn2FJDrIP/uZX+TipYs88NAZ3vDmu+jELY4e6tGaW+bTn3yQE8dv50d//B/xy7/6y4zGA37pX/wiC/PzHFpbRUhJv7/HoN9n2O+Tpxn/5ld/lV/85z/HBz78HQxHu+TZmDgOOHvmGeZ6i0wnI7I0BVtx7eoW5nDOOM1oJIHLfkMihDNNUspVuRASIWuqOieOmjSTBkVdc3htnlaYsDMcU9U5z17cY3Wxi+cp5jqO5p2mOU89v04YwHia89ylTebabaLIkETBjYkbCB549CzS08RBgBQaqQxKW9ZW2hilmOVOV/fCtS0Wuk2efuoFunMt1ncHLPTa1FXJcq+NVAJNjVGSp5+7QKfV4NL1MfOtBG8/3w1R4ylFnhcYZegPB2gt6TUS+pOc//h7X6RWlo3NbbrtCK0Ud5xaIwmNc5DWBt9oZyikNFJIAmOoa0BIRy+tKkC6YG9eNgm29f4kEIaTjG53HiUlo/GQ/rgkiQKev7xN3PDwPJ/Aj9gaZmRZReyXCGvIS0E7iZCioqhSIEKKEmtzBE2UUtS2YGm+SaMR0oxd9mRV13jaYJHsDMc89sw6c11N6LtJ9vXdEa24CbWgP+hz76ee4HWnb3FGYFJhjOHzX3yao4cOMJwM0QqMaZBXgsJa2kmAESn1ZJ1h5hN1DjEYjZBK8vAj5xCTIQuLML+SoIUijBWdjoGqAly2YmWduZigQguoaouRlk99Zszbb5/n7BPrLC21uLJ3hf94b8ZHPvJBpI559uzzLC7Oo5OA20/fxWTzSTqdiKIW3Hf/o5y6480IoWg0Wtxyywni2Ica/v1v/ApvvvMkyhRQasgFlS2pUJRVxTgfs5f6qGKGH/pgcwoxx4//+E9is5JuN+Tuez5AoXw6ccFHf/4n+fbv/DA6agEvAYyXZoIvm+WJ1wK2mzlDvnZm+Nr2UoVvv8r2VffwylF8teO9WNt6+ThvdvBvtEL4qlfd9M+v1r66A+lL2296lJu+5lUVuVcM5T/zGPtVyhsfz/4f3wR3f4nt69My9yt3L/that/bj7u9efu//tUv8713H39Vj5v3vlnd7mbPZdOMMAzp9/dot5osLi04wb/SdOa6zGYpnuchpCHPZvsAA/IC9vampEXFtetbYCuGgyEL83Pu5k5FnmY888wFbjt1hOl4CLZASsWtp44ShgFxHJLlGYPhCCmFs0UXDty5SZcgnaWOsmY0k8mUzZ0dosCj1UjY2BqwuLRMu5Ng/MD1T2cYY7hyeZ3pbEK72+Da+g51VWM8zZWr10hiQ5IEbG/vESUh01lGEETMz7c5d+4cyyvLTCczRpMZ7WaCkJo4jJhOUyaTlDTNiWLNYDChzktnRDGekjQi4rhBo9Wh2enQaMT4gc/i8iI3VmVETVGUSBTKBOxsDzh14ijj8Q5pNiaKAjqdxOVimZB09zrRHW/lzjpHC0E2nVHbGik8Ll5dJ/YjXn/ncZSW5FXJucvXOHlkkTAKGY3GzLKclaUeaZahlKasS4ynydKCKIjxfI8k8TGeppHESKl55sxlXn/7UXb7AxqNGFvV2MrSbQQOvPg+vmfotVoILfECH5AIKSnzglangZCS556/zPJSm6oUzKYzegstsjRH1BblGYqqREuJ5xnSNON/f+g83/PW42R5zv33P8nJ40tsbu1w+o5b+Mpjz/D4tR3ecqpHFCXEPjx95iKHDy4yN99xzpRLPULPMJ3MmMwyeotdZ9LhKfIyJ4oDLl28xoGDXRbne1QFbG7tUVfWOXz6Ln+rLi3ZLOOBL5/h1lvWWOg12dkb0IwiFx2xMwIEfhDQaTaZjFN2d4YcOrzkYgqW5ynLAiUdADGeT57lJHHA/HyHB758ljtPH8XaCiUFyvO5em2bhV6TXq9Jr9cmCANH4y1dPIHv+UynEza2+tR1jdECWws2t/so6QLFwzBgc2vA1Ws7nDp5iIuXr9Nselxf3yEKJGEjoSoypysSMJvN8EODRRBEMRZndPB/fOIa3/FdH0QoQ+gZfuPf/yb/3X/7XmosP/nT/4lve+dR6tpSVyXaKDwvRihJZR2N0XgBCI2UBq3dXNcYj7qAKImZjiZ4foBS1i3o1JZ0moEQpLMJ/r6RynQ6cwY20mX9gSSdFk6jay3KAJRI5Sb6UimCKMQLnLumrSxItypcZDOM51wzlbTYKkcoSZZOkUo6g580Q2m3cOKHLgZBSLcSK3ATV2sFUmpqWyGVc8ME8Dzfaf8EpLMZQdTY15G4PD+BRCpBns5YO7SC9gy1ddVOWwp2tnddJh8CTyv+7FMP8Za3vd7RPWtnBiOkIJ9O8aOELE2ZTUaMhzMe/PzTvPNdbyBLM372X/wx3/Wd72Nx5QTW1tx12+0szSUsLx9Cm5nL3WJMEM7zD/7BjxAllr/zQz/MyoEDxEmD93zbt9Ob6wBQViV1ntPrdJBCEkchH/rwX8MTJXld4GnBeDCiETV55MuPEccRc70uoecTBB3e+LrX8cVrn6MZxzg4V6NETZZlzgLfKJRwWWA7/TGNMGSYFmz3h8Q+GFkwSSuMdt/9LM+JQ0Ne5ISBJi0t2JKFXkJZyP3rdUS7EeyH/jrdjJLurjrXadJKIjytOL++Q6/doKgVSuDGphVpmtJuJPzhJx/hve+6E89olroJdTpA+SFZmVPWJaEJsAIajYjRpGR1sYUVUNSO7ox1RiV1lZMWBYnvJA5aGx49ewmk4C2vO063tR9toJ1jblUVeFpSVDBOM6x0WsGynjEcj4EaK6HIi31wrFFa3ajawT4LCIG1NXGc0J8UBH5AM0n4xB89yokTB4hCg28cgJylGb1mQlmX+J6rpl+8tkNWZIS+wTeSP/izcxxZ7ZBmMy6uT3jiyec4cKCLkpLI18xyN5eZzlLGWY1FEWjF4dUFclvhK80XHjrP8SNrlFUF1CSBZvngMte2dhhNM546cxnja5BQ1BVLnZiqFmyPcr7w5bPccXyFuh4xHVxhNp0SdI9SV4IoMAzHM4bjCYy2WFqWGCNQwmUMBma/okWNk31rrK1xSLly+Zi1YLxb8IaFBklzDo2k2Wzx7PNw4rbDHDlxkvn5ea5dfIETp0/zR3/wcVbb28zSCltmzPkVS6fehdE+Fy9eY355mS/c9xmkknzs//l93nP6KFF3xjPnMr742CaHVjQoj3Z3nsfOZvziP3+I93/HApXdQxDzsd/+Aoduu50HvvAFTp5aI4jnufdPPs3db72L5598lD+79+O8/UN//cb3/WI17GYW/6+ubP35wd0rK05fC9y9svIlb5QeXnzdq49xM3D3Uhb016efvlb797XBXVlVblHpVaDpq7+fV1bnXknnfE3vV/zvzwPunD/BfmVTyhtbvwnu/itoX7NyZ0HYV0cmfv38iY985HvoP/dlfPO1oyxfdiRePJ1e82Paf1gkWZpx7do6nU6bWVo4hzcpkUhm0ylxHKO1oSrd5cMPI4xUVHXNG95wB5curXPl2h5LS3N8+dEzXLu6TTbZpa5yWr0mnu/j+yH9wRghNH5o9svgGisqmq0GWEmaZ2jlISSUVY5SAVEcgaxQ2idpNFnoxpx59jmqStJqtoijgAcfeoIjh9ZIZxOuXN2mKmo63RbXr1/DKIPnee7G3+5QFDXNZovxJKXZTBBWYusJg92U0XBGoxHTbHS4dmWdhaUlGq0GjUYLISEMfQI/RHsSKkEUhVRUdHsdpFFEzQZB2CSdTSnrit5cD08rqrJASiir/cwupahthZaK5ZV5hFFY6xEEHnu7OyTzc/h+xGhvyIFOwj2nWvzqpYr7zp7jnqV55wwoLAsLHaJGTD5Jufe+R7n9lmMcOjDn3DLLkoWFLgeXFijyHONrJNaFPGuDFoKirJDaILWirmtqW2GUoddNCAKPwNfYqmY2tdQ2o9dJCMOEx596ntA3TIclQexAeFFmbG70aXcaSAVZljLXTlBKY6UkCiQmdqHfQlZoz2WDZdMMZIXxIn7v8hYffstRZuOU4XBAGIXML8yRjsYcO3aIX//DB7nntjm0MXi6opHEblXe1khliRsJ/b0xO3sjDq7EWFEihd53rswwWuF5iiRucOnKdfqDEYuLHaS0xLFPq9PkzLlLSCmYm2uz1HNRIEkrYf3yOllRUlQF7XbCXn9C3AgJ44jJZMj8/ByXL22yszOh24sJIx9ERVkUbK7vESc+QRwxHo85cXQRS43xXbxFrQStVoMg8jFaMRkOmc0K4kaMpw2XL2+gJWRZQa/TxhjDaDJhcb5Hmpacv7qB7ysaScgzZ69y9NA8Fy5fJ8tr6lziyW28Vpd0miGtxsQNhPaJwhgTNPHDFlKHbjJsa/7NfTv8lQ9/BA2cP3+Jo4ctx249QV2XfPu730BV9JHKAZeqrlDSMptkBEGCFJYsS8lnM8DR0WxZUuQ1Okyo8wlBFIJQICQIkBKkBt/X1FagjEHokjhpUWY5StSsX36MJFkmz3PCKNzPv7PUdYEQrtpRpCXKSJfH6HmuUl4518UsdTQ5REFdC4zw3UKH8VFSUaHwjLNqU54z+HCnlkVQkaUTvMDDWktdppRlhdA+AonWFiEVQmikLaktKG2QtkZrRwus6xqkROuAus6QymewM6TISkaDIZcurBOFAZ+//0n6g5Rv/867KfKUbFrwif/0Ge648xhCKPwoJM8qlDIOXDTbHDm8yO5eytmzz/H0s5Yf+GsfQNYxlfD44Afew//wD/9n9naeZW31IK12DEojreQH//rf4sCBNS5vj+lvX2V3/SK9+RU+f99v8jM/8eu8/4Nvp5YV46EmbklmswIvgGeeOku76SOkZpbOOPPsWd717rfjNyJqqxEyZNQ/j1SGX/yxf8fJdy0jBWhpEVaB9elPxnhGIoWhrPP9SAufz3zmMe46fRikxUhFbRWPPXuZo8tztBo+nvZRyuPy5oBzF69zcKGDkSC0R6vRpJMk9Id9wsDHUwZnjuLtB2Bbzl++Tq/VoJVEbOwOmaQZWhZoo0H6GKORGm47fhChnXlUns8oSmd0IxB4yiClcuDXWppxA6lrxrOUyDM88OXnOLK6gpVOJ2a0xzSvCAJX5VnpJNz/6GVWFgO6zSafuu9pjh1eoCqceUiJRkgPgeLMC9dY6CaousILGjxzpY+qoRn7ZNmUulJ4gXGT6Rusnf17fl2xu9PngS88zaFDi9iq4PiRRRpxxCjLaEYJvmcoypzxLMVIibIW3w9ptWNqahRQFoI7b1/BUiOsZG2lS9IKaUYhZVmS5xm2nDCcZPzOJy/wtrvWyLIJ7VaLioK6KBiNxhw9dtg5gk6nGKPI0imNyGejn3JgLsb4ilYScvjgAkppJqkg9g2iLJhr+yiRUqRDqrxPYWOSuWVECaNsghCG6bDPyZMeUVSiMFghMcJSANLWIHyubOd0ux3qqiDLcwIvQEjFZJxhOgFv7i5R0ufaxYIDRzzWDp5kefUUl65t0ptfpEQy2r7GymoXMbjCeLxLu9tkmloaq9/J1vYOB9eWeO7cU/TmWxxYPUi7cwRTbdCNNfMtze2nD2KqkiCssTphPsx591ubzKZT5hrLVGLAWtfjwS+8wA/9w7/L//vvPs7GxjU++IH389DjF+keXKYVaz778d/nne/9NmZSoVyI3Mvmd6/0dXw5TfM1zQpsXaNeBInipcer4dIrHl9X4+euoS83tRS8nN75Mpon+7q5F3u9bKivBm5ft5L36oHepEnpgF3NS6D4NV1fRqGshbPsevHxojEKvLiPl7YJ8co3/ErLw9cO6MUxvOItvAxIypeBuxfbX0Rz982cu/9q23/Z3A4vMGxubJAEirJMSZIQaihnJVmWEYUB08mU6XSIH0qKsqAqM/Iq4+iho5w/9wyvv/Mkr3/dCU6ePMZ3fcfbMJ4mCAKub+4yG+yxfvkqzz17HiEFu3tbDPp96qpASEhnFVXl9IZJ4hwhs7RACW+fqlNS5jVVUTCdTkizkgMLDrAM+n0GezvcdmqFzc11ymrG6duPcmB1kZ3dPWor6O9sMx0PaTcjnj/3HI3IMBrv0ukE+H5Mludc39xj5UAHYwKMVuwNB0jPZzSeIrXHdDKg04ywdcFwsMXq6kF2dgaURY1nQEpnBmGLmiqfIgXEYcB4NET7njOVUJET84t92lZVU9saIQVFXmKigLr2mevOU25tIsqCuNticbUHVvH37+4wUjl3/9vfZrKXkk1Kdjb65HmGHxs+8J7XI0TtIgkspLOM9fUttjZ3KIuK2WRGfzBFKI3yPIRWeL5xujihqIrSuaRVKQjF9u6Ih59+HqU1k+GQqrKkhWVvd8Sb7roVoS1PvnABz/gURYHWGqMNxnhgFZ4JKWooSvc+gzCA0r1vIQ1lXiJrN17jO2pbUeYoK+h25xmPc1ZWFphNZ+jApygLZn6Tne1tAk+TNFsEoU+n20IZTZyEzKYjWu2Q+fmYq9eHTEcl6TRHGcvcfIvdvRFB4LKiTp44zLFjq3ieT6fdpdvuYWvJnbcdY2dvxAsX14mbCXVZMptNOX7qKL7nMRqn7O6OSOIIJSWPP3EWEMwmKcPhiDgSnHniKumoIJ2WKD9ifqFDfzCgLGe02jF5UaL3KVYuWsPpeagt1sJokrG7O0DgqFfbuyMazYRGEhEnofvMtGZrp09/OOJtbzrFwlyXZjPh2JE54jhkZXmOu+48SrOpmaXgKQNUhLH7NwgShExQXkhRFOTpFCkVnu/zhrvuRAjLLBvQaCa8/wPvoEr7VHlKXlT8kx//E8q85kU9YJ65Ch4U+3mKHkEY7lcWQqSOHMWREh1EFHnJZLBLVVcUeUldg+eFzCYZWmmEtYBPVQqsI8DRXTwOUuBFxtE0pc9gb4LW+7EwosQLoSoLjFEUWeb0CsoANWHo8tQECZ6OKeqpq2BKSVXVaIkDdko5wwdryWYzhHR3Z20MdVXvR5F4+L5HlU0wRiKkdlmS1CDADwIH5rRmMh0h6gxRpy6A2DqDDFvWfO6zj9DsJCws9zh0dJlGO8FK8D344gMPo7TGDz3+6l//LoQQ5GnBcG+A1sqFomvFC8+fp9EOGY62+Ja3vMFRSieg1QylUn7qJ3+cKsv46Z/4P6mLiMcefQopBOvrV8nFJq1Wl4/961+g3U44fOJWsqwgTpb4mZ/7SaSf8b/91C9R1zVFkdJqt/GCiLvf8XaeO3+BZqdHo93l7m99B7OspBiP8EQO5RDpJZjA5563vgVbueBqkMyKnMoWGK2Ig4hrO3toGSCkwIqC9733jWRZzmiS0Z+6BZk33naY3fEugW8YTKfsjoasLba46+QKgR+QW49JWjKepuyORrQaCQLNk+fXKQqw9YBZPubRsxdZW55HK4lvlMsDTBKM8snyAihQQmCUxArJLM04f+U6Dz95mfNXMmwtMMpVEjb3+lgEvhc4mnBdYpSkFop73nyS0XSEoGY4m9IfT5mmFVlRYjQ8/exFmknIwd4cQgq++/1vYjgd40Uhs6JkOku5948e4IUr6yx0E7eAEiRcvnSBk12BMooL1wfU0qOWzmEa68Zlrb3h8vf8pXVSEfGmt5wmz3LSWcZjT11gZ+RCz6Us2Rv2yQpLXuob7I+sLJiMh8w3QzxP05/lVJXAVxo/0GxubtBLAkorqIXBD0KMN09uC37we+9gmo1JIp/JbEIgJJHv4wUB2mYYSjqtBCs1YRhxaWOXx758nnSWMd9K6DViyrygtjX33fcVdsZTtkZDNieKZy5nTNNtJJblpZPYUmICTZplNANJYIdcfHYLbODolrZAipoiD0lLQ1VbLjwxoK4FykuQ2kNKS5nP8CNJrxlQFAMWuy0OHTYMd3bZuE+1RlYAACAASURBVHqdrzz2IO12iKWi15vj2NHbWFy+lQcfvgBRhNfsgAo4e/ZphIRBf8Dq6hEOHzqFMQm/9Vu/w89/7E+pogWiKCASBezTkbc2LqNbS8SdJVqNJnU2oqubnD6hOby0wz/+x/+U7/3Bv0NRW9LJhEYsGQ8avPnuv0JYP8yv/8yPkEwzips5kXyzfbPdpH2zcvcXbF+TllnX/1n7evmizC/8xp/w9hOt13YSX2X14es1AZ12m0F/6PJzZilBECKUQkl3DSrL0jlQjqYkjQZ7O7sY30crxXPPnufi1eu88c13IbQmm01ZWujxwsWLFIVFSsXa6kG8wIUxtxpNzpy9QuCHpFlKq9kEC0FoSLMcIRw1TirBaDTA9w1KGcqiwA89fN9nc3OXxcV5xuMJC/NtpPDIMjC+T12ljEYTNjZ3edMb76AqS4IwZJblWGtpdxr4YUR3boHdvSHNZsTK8hp7/W06nTnOPvcsvbl5rLUEnnb0rLLEeD6DwZh2OyEvZlRVTqMZYIKE2kqn9QsCsmyK0D7a89DSVVillCAsSjpNkq1rpJSkaYpAUuQFRjt79yzP8P2Ki5cuOkdFHVPWFf3dPT70rbfxA+8+zf/yubN8z9Elkkboqm62oq5rAs8nLwpHPROCJIp46tlLHF5bQgBhGOD5hqIonDOhhbIouf+hJ+i2YsLAZzSe8chT57n91BFaUYjnG+IkwRhJEARsbu3ieU5Ldmx1dX810FJXEEcuyPralU063RaT8RgpnP11WZVIoaiq2rlRWsjT1FGKkIyGQ64EgnecXuPypWusHVzAeMZpI6RiY2OLnl5nbaEFdelMMbQijEJ833Dp8gZ7e0OyPOdFS/w4DNnY2iOKXeit1oYiL9jY2qWuKvZ2h0SBx2c++xgXLm3geRJfS8LQ48jRg1y5ep1ur4XRAqRHVVTMZhlB4KOV5vrmNiePHeDK9R3C0OPwoSV8X3PwwAp/9tlHueXEwf0fsCAvcpcP6Ad4vr8fFlxyfWOPQHvUVcW19S1euLCBFIq9vRErKz2M8dje7tNpNyjLArAMhxOUkozHGbffuso0TdnYHPDkMxdYWerQaMYIIZlNxkhZ4JuaOIkRlJRWIqUAYUjTEiErZ72uDWla8EMfPcPP/dxP4WmP8WiXv/+PfpQf+P63IRVoEyKU4cTxAxTpgDj2nLZQ+y6fSLpKV77/HQgBZZG5HDvfgHXXvXr/HBBKugpIVmFrgfY8lFa4ZVtHNZNCkOcZnh/BvlbLUTAlQeh0qmXp3AWxBiXr/QUEZ9qSpzlKCYRQaO3onqPhHkEcUeYVxnj7YCvdd7WsXaRIbR2DoXZXVSkF49EUzw/BVm6VWSlHmcsrlNJARZHllFV5g5Jp69pRWAEhDbbKKIsarQRHjqw4jbFURHHodIl5yek7DhMEPs1O232mtnb6qcGUKPZJpxlaK8o8ZWFpAeNJ2q0Wz527ihC7vP1tP8BTT9/P0tJhIq8kikM++MHv46d++n/lxC3HWV5ZwfMMdVnxI//jP+F7PvQu3vimN1JZj6ceP8tHP/qvWT10itUjyxxaPcbS8iIXL57HiB6VKPixH/2nrK4eYH5phThxeZ9ZXhBFCUhnNS9MArbirW++i89dvN8BHyswWpKXGVopru+OODjXISsq5I3cH8u581dZnusglWFvOCH0fZLQo6wtke9TlDlS1gRewCwtwQrOX97iytXrHF2bxyLI8oJ2EhMFhsl4SBwl+GHMeDIliTy2ByOWui3Wd/f4/Oee4PZbj7KxN8IoS5bnVFaRZTUL3ZgDi12SpMEz56+xNJdga9x+04ILV7eZ7zRACMfM2NdVlEWJ2TcRevyJ86A0S3Ntrm4P8Y3mjadPUKRDhPaZZTlJGOxfE2oC3+PokSU6zYgk8NDSUlUVrTgEKfE8TeApJJbA19TIferWS/d0gSAwEt8P2dnZppX4+EHA8soif/b5J12GJJbQM4R+yG/+x4cYpxNOHF5hNCtpRgF5WZJmKd1mDEJw9tnLzM136TYTAMraEno+Wab4zY8/wpvuOgrUCFHhBwFFUTIYb5Dmls994QLHjizx+JmLzPU6IJxbaTOJWTroAHde1mR5hZCarCw4fGSBXqtJVlZEcUS3ofDLa1QkyHCJvcEWURjhKUl/mDIbbbN6OMaogrzOuHzVp5kItrdTKiDwK9aOtJ1bc6UwskKQA4IKnyf/dIO3He4i1ApK5wjd5tz5gs9+cZtPfPrz/Pp/+E0+/ok/4Ld+93fZ2N5ipz/jjmMJRluqLGMgVllZXqIsKsIwYWd7x2llpeTggaN02zPmEyjyFBMYitIihCVM5shmI2zlmEuTcoynFIfXDvGf7n2Cu970Bt719nfw0Y/+Gu9//3fx2c8/xOb2Lp22oRjvcunZJzn1lrdT75fCvnZly9WpXt5H4q6z9YvbX+a+8o3MJ4UQVNw8l/mmI7hpN7E/lleP9ebH+y/VvnaQ2EvPvHrMX4vm+ur9WF4mw7rJUb5q5RCnsYaXaK43nv+mW+ZfXvua4O4byUF4eXdeAnfvfOc9ZJe+8sqLOdw4M/484E5KyaVLm8wmU/p7fXoLczQ6TeqiQElH36vrmiRJUNLDVxJpfGoyuu1FRqM+B1YPIqRib2eHTq/DgaUe41HKKK2Y63VRSrC5tUEQsB+cLGl3GhjP4/rGBq12xL6RI0pDVecoKRj0BzTiFkYKpJYIK2k0Wzz6+LOEgU9epMzPt2m2WxR1RugLiqLm+RfWOXbkIP3BgLyoOHx4jeFwSJhEXLm6x2BUsLTU5Oq1dUb9km4vwVrFaDTi0NphLrxwASMt0hiSuMELF9aZTTNanQaDQcp8t4dFEyRt/DDC1jVZlhIlMdoLkVKTTqY8/MiTdNoJnnG6Hakk1tbkeU7SbOzn1GmqPEf7NWVlEV4PVVcU0y1qWeMHiTOomOU0koTvev0aP/KpZ/ntx5/lfQfmUVoyHk7Z23GVlslkwrX1LeZ6XUQNdeXogXmWUeQO/JVVTVnVPP7Mc9z9LafRRjPLcqTVnDq+RlHkhKHH+UvX6Ha7TCdjvvjoU7zu9AnyrHBak37BlesbLC33mI0zyjp3Tk5Kks4ytHB1lzzNEEaTznLue+gJDi65zCUlACkRpaU/7BMca3JkuUejEWG04drVDaqiJGk12dza4lvvXGRrZ8x8t0FZFRjPY29vQBD4NJoxo/6UZqvBxUtbtFsRw+GEtUNLDIYzPM/pCofDIQdWFsmyjFa7wWw2o5n4vO6OY+RFRpY6itZoPGblwKJjD9qa4V5GnmakmbM+V0LR7SVsb+/S7bXo9FqMxlOU1Dx/4Rq3nlxGCMvG9R2Gg4yyLkmSyIUKV9W+VbIkCEOuXNygrkq6vSaLCz3m5np4wpK0Y6y1dDtNLly4jlYwy3KWluc5c+4yjSSiKHMOHOzRbiYcP3qQS5e2Mb7gsScvc+uJFfb2tohCi5CGLEtROiKKQoSUaM8jn03QxmU9aqO5uDWjMX+IufkeH/vYf+AXfvavAiVW+WR5jef59HotfvC//zV+4PtfR13X5GlBXRdYW7qgbwTDwRBjDEG8T79EMhsPmU1GeH4AylHJZpMUawX3fuKzHD91+AaVRSAoixQhwPMUVWXR0mIrUEbciE+ZTiYoU1FXGVVZkacpVVVSlZXLrBIaS4WtQQhDUezhB4qycBUHdw0U+6HGTttWFvkNsx8pFNlsSl1bgjDEGI+ymKK0wUqDlmBRjqJaFU5jZxztPJ+mhFGMVD5SeeTpDGMEWIlWJUIKytLy2KNnaDVCPM+jyEvCQJJlBVZIgsi/QQH63d+5n5PHlmi2Olhb4Yc+WTrF832qUrN+dYfPfmmDE6tvYv6AoMpjimybrzz+Jepa8r3f92HWDh3CDxPS2ZhWY4V3vvtu2mFNb/kAkxT+4Pf+kK3tdT78of+GIAqJY43vhyRxgx/6uz/KXd9ykr/5N36Q1YOLSG2wFi68cJHpLCVpzVELEEqR5wJrCwJP8/Hf/iS9IyHPX91x5iHSorXHeJrx2NPPMT/XxDceaVEiFSx323ieh9KarZ09kijBUz5FlVNWFXHoYQzUeEjACMFSr8PqShepoLLOvTf0fZS2FFmJlQG/+8ePcM/rj6K1xDOKLzx6hjtOrHDy+CqDcUkjjrFlhucZ/vSBp2jECd2mY5DM8hIpDFI6QNdpRQTGpxXHVHWJ0j5aWbb3dtHa58r1XRa7PUZpydpyl167DViSKCEyitpaPJHx+58+w9rqPEJAqA07gxG+b7AKfCVJs5zAk4xGI1QQU0iPbNqnGXmu4i012vPg5bqq/d/P9a0dzj1/ibXlFmlekDSbSCE5cGCRTiMmCQKsEFRVzW2n1jiyusyl69s8+uQlmp0G7UaIpKQqnFGZVppSehitmKY5wlZIagQlp060iUMXDaOMZm+c0kmaeDoGIVk92OZLZ9Y5ffIIl65t0E4ilNGMpimb20MqXLX0/s+fpTaaxW5IK4nJKks3itG6xlNjZLbNuGwzFT6hnSAImcymrG9M2LxwmeNHY8qyxgrFF59QHF7LaLUCwlCg8CjKGco08aXA1hlVVVBaydOPXub6QwEf+tYlfulffZJTp1c5c8Hy4OdyPvTO9/G229/Gu+/8Nm5buo3vvufDLCeHWTaL7F1t8hO/8ft897e2MYvvoNlqETdazKY5vmdptWM++9n7ePCzD3Hm6Qe5+/UHENJDagjDBFtVyFrRbET4YcD6xpB//quP8NbX3Yn2L3HbnW/kk596kF/56Md46z3v5twzz/KRv/FBtncGHL39PZhqk3OP34vfPsHi2rH9RbWvPwu8aXTGSxtvzCS/YXBXuLiZbySO4BsGd19lV/9/BHcu5urmYPlmnhgvthuf56s2fhPc/SW2m4G7ep929Y2emje1eQV++Md+gQ+99fhr+//nDxNwovN2MyGOAoLIUJeGosywZU6WFxg/QJuA4e42QZKwtb1Nsx0yGaW0Oi2MrAgCH+P5BEHIzvYW07QgDANkmVEWKZtb2wR+QhzF+EFAnDRIpzl5ltPqNLFIPKXZ2d4liSMEoKRPGDewdXHDNa+ua8oix9YlcRyQZzlKSdrtDk4dY4jiBrYsSWIfWzlHvu3tXdqtFoP+hMMHFwm049yvHVxmOtujqkr8ICaKIkb9XY6fOkaz1WE8GHLx8kUWF5qsrMyjpEc2m7LX32Vhac5l8nkaKbXT2QhJWWQYFSBVzeFDqxSV01flhZMa2doFwpZVhcQilEIbSZE7p0Bbwcb2gN78ClU2YTTaJvDaaN+5/F28cIm/+Z7b2J2k/N6uZa1KOdDr8ugTz7GyskCgBUUh8TwPa2vue/gZThw7SrMV4oe+C++1oJRmrtNkd3dEp9PA0wrjaeqywoQeszRncX6esioYjyccWFjACwy+7xwIpamZ67WYpRnPvXCJlZUljKfxtERpwXiWEyYJyveoqoKk0eDQypyjaEpnsCAk1CIliTuERxOSKGY6mREnCa1mkwe++Djz3SafPrPDLQcMc3NtqqJiMMxpd5yeUymnlep2mpw9d4WTx1dptWJ6nRY7O0OqvCaKDHVdMhnOqKqS4XBGHEeEoc/WzpDhZMziUpf16zsEgWF+voNj0ku2Nnfpzbc5++wFjh9bI27E+IFmuz9gaWmOrc09xoMRo9GU+bk2rX2t3H0PPMWJY8uMxxmNRojnewz2xsRR7Kpn+y6LFy5tohAkgcfuYEReZM6YJPRR+99VXZVsbvVZv77HwZUlFnpN1jd2SRKXeZjOSr70pWeZzmYcPrRMpxWhEFxb7xMGkvb8HFp6+HGLqgKpPKqiRhl3jmglENbyya/s8O3vfTd72+t86LuPgwQhPWwBoe9RFjMEFd//ffdw7x89wPETi+63ql3GXX97B+35RHGAVoa8cBTHqsjRRuP5EUpriixFYPepk5p2OyYMNFBiS/ajBAzgDElcZIEA5X5j6WwCWIzxAYFWGmkMyigXkq5r8tRR2Kglg51NgiRCSh8lJVUxpqyczXSWZUhtnDZWCaxwY7K1q7hXlQMdeZZiPI/aOi1VlU9ROsRa119Kg5Qu6kBSIZW+Afq0di6RUmvu/8zD7OyNWVpZwVYwvziPH4Uu89NahNZ05nr8wcc/w623nmAyHqE9xYnja0TN2Jn1GIUyTkuWZxl1ZVlcifjYvz3D7bcdxQrF8tISJT7zCwfZ3rmMLxf5gz/8bU7ffgK/0aZCcv+ffopbX/9WslywfnmdX/u/P8bBpZO88W13snX1Ik8/8RVO3nEHV6+9wPve834abQiNIs9rpHCmHQcPHOSRLz1Mt+nhBR51PkSrgMA3VEWJn0ZcEhdZnm9gtL5hSuMpyYHFDkYbrmwNUUoSB56rKhdOy9mKItJ8hpCSwPNAVC4rrdI88JVz+J6hrCr++L5HOHJ4GSEkvtb7NO+CSZoTNBooUXPrkUUeeOx55roNfGNYXeoxSwtqWxIHGmHh7MUt5tpNjq8tMtcOqBAuWNv36TY9As+wN06Z77Ypy4ow1FRlSZ7N8IzB90KMrSmtZH0wo5skXNkd8elPf4WqTInigO3BmHYjwAQRt59YYnNvikCgVIbWHkb7KGmZZgWhr5hlKa2kQZaXlEVJpC1nLuySNBIXIWPMK+79NRZbWbIiA2uZ77aJAw9blTfMaLSyZEWOp52piHXwilYj5sSRA1gyAt9jMC5QyqC1jx8IpE2ZZgVRGLnqcZFhPI3SIY8/v0mrEfPlh88QhQo/VBRl6fpVigNzMXk54pnn91henCP2LXlVsr494djBFp5WdHsxrVgx3+nuT4prp4OUKXJ2jdIa4tZBmlFEf2aRukZUJWcffZw77oioq4ok0lhVc2LVgQ1jBGVRUdmaQGtKBL7fwjJ2GtpKoKOAv/26E8RtyW2nF/iffv5J3rr4bgIbMBqXzC+uMJ6NWVpapLaOypkVJYGX8p7b7+Hckw10d0aWZ3z54Uc5dXyN3b2C3/2dP+Zv/60fZHcj44lzZ3nfO08hmCBUxXQ6ZVx6aLYp51eRWUie7XH1+phTd57gj//kPI1uk09/7nFuue0tvO+drwMdYKRhcXGJpNWl3Wqys7nJ4w/+Gd/67u+j9HzUTbR1r7HY58Xgbl5aUBMv1eteLVf7WoBKCAFK7rPHXmnu8mJswssfrxbDOe7OK4GdEC+K1V7WX7y07dUmK3/e9uLepRA3NHZCyNfULMWrHi/f/JptX+UYApx2T7xSz3izqp17zt4Adze0i/tjU+abhip/ae1m4O7Fk/Ivuu7w7m97L2bn7F9wL/tjwv0AjVZcvbJJEHi88MJ1jh07gPY8JtMZQRjiBT5FnqG8gCj0KaqKKPKpLVy9fIXJZEq33eS55y+hLVy8tMkzZy5w4vgqw/EUEHie4srVDY4cPoS1TmeXTlOyLGc4GOF7Ho1mgt13UNva3CFOIsoiByvQWrlV+bpme2ePza09Aj/E1pYoTvAC5+IIgnQ2Y2t3x9EATUA6SxlPRhw5ssbTZ86SJD693gEuXd7m7PMb3Hbb7VzfWKfRiMnzlNE4JUszBoNdVlYWKauaVrPtqphlRasdY7wIqdT+DaJkPHSW/oKaPMuRSqC02Z/41mipkXVBVVeUtURal2dg68p5SwhBXhQo5VGXLidIGp/ED8mzHfzQo64N3U4LhOANJxa553ibH/nEI3zq6jZ/5823oz3N5voWX3zyeZZbCa12iyefu8TxtSWshbqsKMsS7XtYaQmTiEazSVXVpJMpk+GU6WxGZWviJCKdZnz8kw8ymWScPLa2T8F0ixReYFwQsR8w123tU9k8FxhttKNjlhXGOOpev98nDA0IeSPLsMwKsiLjuf6EI6eX0VLv35gsQsPq6hKbG5v8yv3P85G7F8hSR41Ms5yLV66ytNijBqqqZmtrl04rJolCirJma7OPtTWdXot0NmM2mXH+hS08o9jpT4kiTdJKaCQh3W4La2uWV+aJYldhk1KQTTNqW2MCn/7ugCT28X3D9vbA6UTjgDg09HoLCGuJ44A0y7i6vsWtt6yxvT2i3WkihKK/NyKKQs6du+piOtotwjCm23IGLY8/eYWjawtoKdne7bOwNI+ta/q7A7rdDoPxgCyrMUKyvtFHKYnveyhluXhxg6KqOXXLQR5/+jKH19r4RjCe5nS6HsoUrjIuJFLBdDZGyIrA98myDKE0RVHzrm95I8ktb+Vnf/6XecfbjriJUT4hCGOm0wmz2czlt1WWez/1PN/y5kW0cnElfhAQxTHaGNJZhtQCrXyqylEPlXSUYGvdeVIVJV4QICQEgYc2BrBuoUQKqrpESmf2o41CKLUfZuzoi9bW1HUOKJTx92nGBaDdMo8JEftAsNmJXGzCfohynuVu4chajBcghXPyLYsKKX2QCkTtznPtHAmVUuxt7hKG8Q3qJqRUZeYiY+oapc3+LKlGmRALVE74xd7OOn7Q4sDBVRqJwXgaa0u00djaYozBBD7j/hipNLedPoaVjs5dl5YgDCiLHKPVPoWvACHY3tjGDx1N9f4HtvnuD7+XW2+7haee/BKHjtxOVoZ84fNf4F/+y4/x3d/7XhZXDmJrzdnHn+R1p19PURbsbo1QQlDWE/7w3nv54b/39whUTSuBpLNIScr8whJhq0tVl4jSxWsM+30CX7G41KUZxlRSU9chUBH4IVmWEviW57NnEdQMhhNCz7nrPnL2Cp1mk6oWLHVdpqGnEywVsyxHCc2la9fpNp1+M00nRL6hyJ1JzoGlDu3QJ80yjh9fZThN+cznnuLU8TXAopVx55ryELbG04pDBxb44z/9MrccP0hW5nhG4WnDNCswWrLUSdjY7dOIPGosSr/k7aekoihz5toBtZVYapftZjTCFgymKb7vk6YTNnYHPPH4RV44f5Xz59f53g+9haW5hAvXR4SBoT8ekUQ+WZ7STkLi0KO0NUYrBDV1VeIbD4kLIhciJ/BD+uOcwTglDGOacchmf492o/GKe3pVSa6sb5Fo8HxB6BvysqSqLMYT7Pb/P/beNFiy9C7v/L3b2XLPvJl3qXtv3Vt7Lyq1mtbW2iVGEgIkhBA7Yxg8ExMwwzjEMBBjPMMQtiM8xsxgwAwGDIZhjG0ERkhoQbvUi1rqrbqru2vp2uveunvuefZ3PpwsdXV1dasxJvRFb0RWVGaeNW/mOf/nfZ7/8/QRWMpumSSJi++drmJ0Tm4Fg0kE5Oz2e1QCzUNfOcXK/nnCJMQxLlL75HmOzWKSJCVMUpLEsra2Ta0kOLQyQzkoE8bFxIxF4BiH8Thnc3OLleV5aiVJlgsc7fH0qUtUKh6X13ZZmu/QqJRQUrA3HOE5hsk4Qtld0vE1pHcQ5VSRyjCJImq+g8j7zC7WkNmQStlFyZzJJMfTljgXhFmOJyy5LX7WmfAwxjCa9InDnItntti/UuWY2+JT9+3xkQ+P+B/f9/fwSx6VWpMnn36CQ0fvZDAc4bk+cZzQ7/dRxhANt3CkolwzDLeq/N5H/j0/8MEPEqUJWWZ59NGvcMftxzi0IPnKI5/i+NE2NXeBDz+wwfK+Dm3tc2G7jU/A3P672R09wZvfcBQprnDtsuLuOxTf/vrX8m8+/Nf0zQJvf9ObGIyHrG/uIJ2Ixx6/zIH9r2Lz4ldxjWD1+L2kSfyy2C0L00iZW1WFL6N2vMHoxL4otHnJLQBFTXwrxu9mI5V82kv6Unv5m7J6z3fkfHmMp5jWJ9/oeF+Qfzc1ZbmZFb3+ygtZRPH1z+XmbX8L3H0Tx4vJMv9LgDvPc/n5f/LrfPurVv6WW6KwFZ9+u6SUfPZLD7LXHdKe8ShXWzi+hzGFtKpaLU+Dc1PyOGc8HmCUQ63ZQAs4e+o01za2GI5DXv3ae1he6VBrNmnOtNna6nH24lWWOjUGgyG+6+C4LsZxOH/pKqurS3zxs4+xsrqAkBKLolIpFYeYpzz9zAVmWnVsnpDnmkq5zMHVRR4/+QxSpDx7/hrlcoU4HHPxwlXasy1aMzU8L+C++0/SblUQEiqlGhcurhVW/p0mSuXsm6vy9MnH6Y9jWs0aUTjB9wMG/RFSJFy6chWjfba3+8RJzHgc0WpVGYwS/JJHOIlQEqqVEkkSTS3uNWkaYYwhSyLicR/H8UmjMUIpUA42z0itRGs9/SNItHKwNsRVBXvhlUqEeYxONKO9c+R5inbKCC1BSRwpef89K3z7qw/wKyd3+b3Hn+E9dY9qIJlp+WjP5diBFT72mYeoeF7Rc+gV1uw2T4nDCCOLjEXHcVnf6OK6kmqjUoQCi5xG4LEwO0OpVljJp8kUIE5Zkfvuf4o0TpipV1BSMeyP2VjfwfNN0Vs1debUWuBoh95ggFJy6kYITuDys189zfe/8TCXL6xTLlV45LGnqDeq5IllPAp5zWGXRtlB5DlZEoLIqfglNta7DHsRlVIdZEqjXuHy5TUaM3W0hEk4wgtq+K5Dpeyz09tj30KJ5f37CCplEIVU1hhNlmZsru8gsTx24gz7lxZQrsFzDdvX9nBdReBrNjZ2qTWquI7Ccz2MdtnZ3cVayxNPXqDZrNBqVhAyp9H0cAKLkpqNjR55lmG0YG62SRyH9HZ7KGOZX55leWWe3e42m5t9jt15hGTSR+Q5eZqShBMajRraGDqzTYajAeNJiLUp4zCmXClhlGRtfYN733AnedojCodUKlW0THGdWZRbIY5yHNfDdQrgbaVGK0kyGfPf/ZsLvPeeJf7FH32af/QP34VxPLQuobRHv7tLUC5TKlWKQHoFr3/NYT74o7/FD3/wONoU4FApQ5KEGMdFqJxwMkSpHK0hTUMsEm0MSVz0uigti3xKR2Ft8TzPLFpK4niC0AYlDVmeglQIBFk2xvUClHSxFFETWS7I00JyLIVTyERzS5qOpyx5DtKilAEriMKQzBaAKplONCAkeVb0zwlrmYy6SAFGF26bt5hugwAAIABJREFUUVjILNcub1CtlTCOC7nBZgJjDIhC/moRRQ+iteTWIrWD0C6OF2AzixQT3KCM0oooHJJnGZ/42H3MzTZJs4Ras4oUlpOPnqBWcnj8xDm++pWz9Lo9Fpdmiu+QMYUENc3QyufypWuUy2UuXfZ4x1vfwk/+5E/xQ3//pyGNicddbj9+jLe+7duZmW3S3RVcPHeGpXabSWj517/7Kyzv288//Ec/yz/+p/8zW70JDz34KK88tspEBOxsJ5TdjN/+v/4FSraYX2ySuwFbF3dIwgTjKDbWr3HyzBqNRokLJ89Tb9dxtIcSMBxu8oe/9hFad7h4RjGJJuR5MYvdqlVA5Kxvb5FnsN2bUPKg5GviNGGnH9Nu1bFCc/8jz9KZqZMKWzCXaD77lSc5dGAfUmYILEcPLiAEPPnsVSZRzEy9xiRK2O32SPIYYxSvOLqPUZTgGJ/zVy+hlEueQ+ApwlRQr1aYJEUMhFEKCTxy4gzVqsZaxSSK+E+fPMndt6+SpBFZHnJlK6RZqRRyYOPQrNc4drDDymKVg4eW8F2NlDmNSoDF0mk0yDJwHcPGTo8Hv/I0Rw8dJM0tjlIIK5DGm8q5JEY65NblkVNrHFvdRzlQXNvu4bkBlZL3vFt6mkWUfB9jDOVSHaQmyVOMq8lzSS0oAYpBvIlRPo4yJPFVwkTx2FPnWV2cY9CLKHsarSUHDh/iq4+fZ99cg72xJUnGKDI81yFXHsp4+J7DbNtHSI3QZS5t7vLwl5/k4IE54jgkSxMubgw4uDJLOagipCyiCqyg3fFpVmp0mg36o5BJFBOnE3zXoTuc4Ko+8bhLNhkj6/sZx2HRczwOOfnUebTb5JH7zrC8rBAWkIbPf3GXQ6uaU2dTzjwVsry/YLkzm4GukoYujopQIqE54/HAvxrzpjskevBOXn38OApJksT09sZY69CcaVMulwnHQ8LxcBoPBcqO8aQGLEnq8trb3kR/LSMKxjz68CPcc88drC7v5/QTZ/nK4z1Erlk5YjlU01TKOwysz5n1mHbwDFGlzYGFd7N79iS+bNFZUvzJJ3d4/Nwu3/WW13Dyix/jyO13IWxMo1pmzp+lMd9mSJezTz7M1bMPctsbP4jrXp8g/cbj1jLKlw/ubigj/1bj5cg5pRDfcLn/HHB3w7O/wfK3Bnff6FhurP5vxdbdPF7sfL8F7r6J4+8S3AF0Flbo5Jsvqdd9OeNGelhYyaUL6xy/8wCeVyXwXZQQJGmKzVNs4ZhAmqbkNkVrF8fzkeQMhxOiDL7tNXfRqDVJkyJvTtoctGHS32X/fJvdYUS9USMoeVy8uEGlEuA6GoADR5bQWpFEMWdPn6PTaTPs9XECn2ajzGg4wferCFnYpj9x8hmSGLQyNBo+y/vm2d7tsrQ8i2sUg/6A7m6XZs1FK0G1ViZMUw4dWGE8GuI4Lt3+iGF/yNxMk8FwRLPV5MrlDYaDkJlOjdFoxNzsAqBQypCLhFrg4vge2nWIJiFZZqlUy8RpiEThBx6DQQ/P9QqZgi0cBd1SiSQaF7JIqREiIx33UdohjiOk0kUR6zhorRgNhjieQSufMI2pNReI04TuzhaedlDKQShFToqSOXcvOLxyucTD5Q7/9uQFvmNhnmE/RErL4dVZKqUSxmiS1JJlOXESEgQea2ublIOAh588W7BY9SqZLSSaaZzxiS8/xl23H0YZiU0zpNDESVp8l61kY3uPY8dWePrMeZr1UuGWGvj4vkueZpCDJcdxPOI4YTgoJJG5zaYRDZL3feA4SRxTa1aLsPjL2+zt7jE32+LixjZ3HSizubXHmVOXkFKjlUNvOGR1ZY4rVzepVH2yNGVnd8Ti/kW62z38SoVqpUQWRSAlmYXNjR1qVUU0KXpNrE0Y9hMctwjJLlerXHz2GtvbQxYX22RphBBQLpcJSkHhlqg0n//i0xxcbSO1QGhBd2eIFgqhJLPzLbCGq+tr1BpNBApJhs0zdnZHrO5f5Iv3P87SfINJnBSfl2OwWU6pFLCw0GFn/RpZbkE4CCFJ8owrl7bBwumzVzDG4eCBfWRpMQOf2QmeKVOujEmGCqEn2LxOnqxjHIVVbgFktcSmMYiin1STI4BJmPIXj+3yQ285xlfOX+Qd73gdSgniaII2Dlo4WDHGEoBIigBlIfj+73sj/b3N6UUkIZx0cRy3WCaFaDwqTIdyBagi/DzLikgQoxl293A8v5B+EmMziOMxQkukdtDGAQFZGqO1IM9jbF5klyVRguNqhoMJRlO40cpC/hiFMa7vI1RhOBEOCzdQJSVpVjCGFksSjnAcjUSQJilCaKzNQFiMVyaJoyJ/VBk+/tEvsbKyj8ZMFalysIpc5Wgli0gGZQnHY5SwX8/REsCw38d1DRqJFJpBt0sQOISjEGVcjFHkOUUhmUdU6xWyLCeJod6YoVKp0Wz63HbnKlo7JPEYpCK1Dn/2Hz7HnceXqVWqpOmAT/z1ZTqNBv/1j/0Q3a1NapUyo0yiNOxs9/izD/8l73r3PbQ6TaTjUmtVuOOVr8CrdLhy9Rpvet2r+cRffpGrl6/yne9/P72ty5w6cx6J4p3vfjOL+xfZ3dogGoz5rvd9D93+gDzMOX/mMg8/9RTvfNsbcEsZ1fY8cRphs5ggqPCZTz/I6usbuG4ZJQxKKhplH4FFG4ES0KhVaJYUQnuEaYSjAtr1EuM4xVOCfW0XrV20dFFW8OXHz/KGuw8TRoLNvT6zrcqUBdB88ctPcc/xQ/zpRx6kPVOnO0qwVuAbxcZer5CgG0mrWsXzXYQUDIYRjhGceOocO4Mx+zp1BJLBaI+Fzjy9UKKUouR63H5kgTAak6QhYZhhhYNQYOQEZcr8xV89xMxcDSRUXYcoGoE2hTGV4yCF4M8/8iCnz65z/tk1Fg/NMd+uk6QJiCKzUYqcJE0KRUeastObcPbUFfYv1XCMS73i0R0MqVXKz7unjyYpSgkcxdQoI2ESJjzy2CU67Squ4xLGEcJ6RVQPIFQNJS2dThOb5wRBisWASEmThKXFNuMowVUuTz7xBKvLB4mzEC1VERMiY4pbvY+WGb5RHDiyhCBn/doOpaDM5756iTuPdvjayXPMd+pk2QQLlIMSvdEQIQXjJEVrgx8EaAxagVY5Tj4hzYaM4jI1r8TaVo+K77K80GYw3mZ3Z0wuwHMctBmzuNBEqIx2y2F5vzvNpSyyL61USKMQTEgiizYpP3XvbfzMr57i7Xe+BrIij1YZhTWQJIrM+mijqNZqBKUKSkh832My3MYoQZyGdHsx5dY86+uXKeUtfus//jbf/7738s9//f/h0GKNy/1tlms9ZqtVfD/DMWWMdDn19FVW9s0T7l7BW7yX7mSNQA9JQ/jKybO8982vZLayx+9+9Bkef/w07//+76Uzt49PferPuba5R6e9wOtfdYy1s2dQytA5+qpCmvkNxi2Bw80aw6nRyi0h4PNMWV788UKe66aq9VZyTvi66+t1GaP8unz0hYzYjYLS62ZeLzZeLP5AyOvr2el+5HPnKK6/Vqz03DZujEiw01zUF+97lNPzELfgIG/82C35tNeaW/xNvpVz900df9fgbm5+luzqEzf+Pv5Ww1oY9AecPnOZIwcXmWnPgBDEaWG1nGcWmxVOdEppLDmu7xHHMaNxH4GgVq2B1MSx5cv3P8SRgwvYTLK93SMc9Wg2SiAVW5t7bG5tc+XKFov7WgR+mTwXnLtwqZBhTELKQTCVa7loXcix/JLP1tYmAsHubo/52Vma9SppHOP5hvEkZt/iPEoptja3qdWqdPcGeJ6hVvUQ0hC4HkkSc3X9Ktvbexw7doTMgtQOg/6Ifn/AXKdFd9DDdTyuXt6kWgsIw4hS4BL4Rb9ZklpKpTLlcoUg8AvJlyh658aTCc1mG2sFaVaEzRqj6O3t4ZWr5HlONuoxmsQYYYvcr6moWtpCkmqUxPMKeZjNLa7nk6NwvQA/0EiZMuqOMa4HtghERkYstttUdc5Wd8hvnLjM/f0d+tJwaRJytFzl0uVrDPpjKhUX4zqkcY7vlfjkAw/zxntuZ6ZV5WuPnmBhtkOaJjjGw1iLEDnlcjFbGUYhfuCyvbNHrVqjVgr46Ocf4o333IEX+GRZjuMarM0KM5c0nub7FZd6LyhcO7PM4nouv/nwM9z72gM4jsPTT51ibq5Ds1Xj2QsXmZuf4Wf+4H7efXu1mO3PEhaXZ6k0yogcNjZ2CHwP13Po98c89uQlDh+c5/SZS3Rmm7ieQWtFrzdkfX2H1ZVZqtU6QSngwa+dpN0q0Ww0sTZlb3eXoBTguZpOp8bjTz3L6v5F4jii1x1QqRSuoVIUwbme6/DEyYt0WnXyNCfLLY1GhSsb12hU61QrPnt7E6SSxJOYcslhfatLp92g3aowGI1pNptcubpJ4PlT0xeH3Z0u0uZUajWGwyFJkjAJY2Zm6jTqNbIsZa874uraNocPzaEcwaW1LYyyxGFOnvZJU4e93Qm+P8R1A5Lc4JfLDPrDov9LCkaTkGg8RkqNX65gc8nnn9rlp37m/WR5jmt0YRIiFXk+BiThJMb1goLt1Jo4nHD56ohaJUFRTLr0ugOCUoU8zxn0xlSbDSBDkiCEO71g5QhkkbloTHFjpDDaKOSGLjbPsWlctHMIQZalCIqJEtBYbBEAbUzx+xECJTV5XuTM5ZnFJgOskLi+j5YuaZpgXMV42Ju69AbEscW4DkmSoLTEWjsNHhc4rkOajkmTiCNHD6CVKXpf5XXXOZck3iG1Am1qhZOskvR29/CDgCSOKddqXC9VrFV86pP302mXKJWraBOglKbdbjI71+GRh59keWVf4WaLxXUdvJIpTIYcj+7eLo5T9Pf2u33aM03as22eePw0+w8skyaH2Ov2eeXdr+TZ049RD2qkUcbsYovJcMy9r349NhPEcYJF85lPfYRjt9/GaJTxa//3r/ITP/Z9nLq4zS/83M/iOymVcp1HT57mD//tH7E4v5/Vlf1IkeM5Pt/zfe/hbW99A6uHVnjFXXdy1/FDZHmIcSQq89BaI5Vh+9o293zbbVzJn2UcJaSp5DP3PckzZ9a58+gyaZZiVJEDGidxkYEpUrLUMpwMqJfLjCcRQtjCbMTmbO7uUqvVqZc8jJI0awYpPD7+xSc5dmCWbneHUtljaWmWRtVnvlWlXnZwjKJSKuEYRW80pOQFCKEgF3iOizYZrXqV2WaDNBtjjId2NKNY8PiJ01y5vMWR1Tn+6rOPMYpCDizO4zt+IQcUlpLrkZMzO9ukXW9wbbuP0Yokt3jGECWFzf/m3oCjR/axb6HKbbftY75VxaJwdQF0k8QyCEdIoZBo8jzj0RPnOXxkkYrv0B2OePCBp7jzjkNFfMcNo9sfUA0K2SJpH62qKKGY77ikVvHJz5zgwOo8uYUvP/Q0B1YWCWOI4iHVckCaRIxGQySaKB6BBdcY9no9Nra6rCw3OfHUJYKqR+DV0EoyGkeUShWkKnLsXEeR5jlZqjh/ZYelhRmOHJhHiJTT57ZYXmjiaD3NC7R4js/eMOTS+i7tRo3BZIKrNYFXuGeTjknTIcO4guuVqFeqPPDwMxxaXUBrRXdnE/KEwcY2tbaL7xaGNFkegRT0+rC5k1GrC2zuUCrN89gzV9jdBfZSjteqxOcPsrw8T66yIoA+yTn/9Gl2+3scveMeHFdz8cJ5NjY3SdKEaqWMkTHSWpDgBjX2hmM6rTaeF3CgushfPfQZ/qef/ima3gJnn70fK/b4yz9/iLe+YZWdfg9Lm/sev8Dddx1laWmeQWpozx9isHGWSpDxbXcuUApyUtXnPa+7m4998asM9yS+16RScbnrVa9mY2ODUqA4e+IhHn3kId7wPT+OEd8Y3L08lutWMORvsn4xXsT38kX+f+vxUmkPzwNi080VWXY3SCKnfXovZqLyAubt5sa6G5axN79xwzZe/qfy4kta7AukmDeOb4G7b+L4uwZ3AD/0oX/OB+499F9ke4Iin+nQwSUefOgES4vToGVd9IOEkwlGK2yeg82xOQxHwyLs2g8IfH9qHOIQ+C4ba+tTZgSa7RmeevJpLJZef8LyUodOp8biQocwKgKBL11a57bbD2K0olIpk2UpXuCjjCSaTKYxAzH1Rh2tJa7jcu3aNp5n6PX67PV7OMaj02kzGo5xXTPtTdFMJkXf4KXL62gJ4/GQo8eO0ajX2d7rMzs7W1juA2mUMpmENJsNNjZ7CCxBuUyjWafX65PECfVmAyGLojRJitwqrRW7uz0c1yFJUmxukUKSZRme75PGMY7nkwsB1iKlpFSuYdOUOI9xtEs6ZUOUKIwYiggM/fXsIiEkeabQ2kMqkGLEzu4mn/jrhzh6+DC+W0FKQ6VkeM3t87znrjm+7y138W2v2I+qGD706cf4D5cu898evw2pFNtbXZQuLOJXF9sUVu4pnWaJoFqiP+zj+wG1eoVS2QeKnL4wChkOxwR+gBSSUuBycLHNJIzQThGKHo4L58gkznA9TZbl056PopBP0wzjODxw6So/+N+8GSEkaZzSqJQLJznPQ9mcSqVBxx0yX3UpeS4Lix0QAjsFGpWyjzvt18qTlGajjLXFbLNxiqiELI8J/IBquYTruyjHZTQc4nsGoxQf++Rj3HZ0H6VSISvSRoO1NGsVHM8lzxJqlTJJGhc27wJazRrbW11W9s/yyc88yuJCk3ASUSr71Gplrl7eJs1C+oMx/X7KYDDh6VPXWFma5eTpC9SqAfMLHbIspdmo4nkua2tbBIHPF+57gnAcFtIzBa2ZBuVyGc91OH/xGrvdIcfv3M/iYgfX99ne3uXwyjK1mmVnJ2d1ZYb1axPitM9sy8Xx60xii5QC3w9Qsggf9z0fz/ORSnNxa8Dr77idX/mLh/nxH/t2HMcjzxLyPCviM9IJRldJ0zHGuGRZOr1wCCpVn1/+px/jbW9aJc9zSpUqUhqEFATlMnluSeMQJSAK069HQfS6Q/xyeRpIXjBnUmqyrAgXHw/6+CWHLBNkmcaYAKVdlCry+CajMVmeoJQkz4tJpzRJClZSFS6XNouwKIzjkWfZ9LgtjudiHJ84LCYehCzkuVIK4qhwBwzHQ6yQaO2SJBk2zXA9lzwr7Nqh6GHM8wzjeIBECluYiPjF/qQqMumU0kgKQ4zVgys47lROmmVY0sJgRkkW9s3x5IlTzMy0cF2D6zl8/K/u59jtK3z8o/dx9I79uG5AlqU4jqY50+axR57kVXffyec/9yBvePOPs295HqVzWq1Zfua//wc0Z+osLq/wu7/9O8i86EEzjuT3//jD/MG//g3e9ra3kaWCowcPsHb1DN//wz/E7//+H/DGN76ejc1rvP4tb+TM6bPc+9o3Uqr7DEZ9eoMRqwc6jCchu/0BrU6HcT+i2phHO3X+5Hd+k9nFOdxywGMPfY1X3nU3H/7oJ2kvlwnjEbcfnmN1f4s4iQBNnhWS2u4wxnd84iTk2lafZq1CkadoidOib3scTqh4Lp/54kmOHV5gFI5xTMFVNOoBjlHs9oc06lUefuQM9ZkGn/7UQxw9uo8ks3RH4BkDeY5xFcLmRQErLUb4BSua5DiORUqfMImQUnF4uUZzpk4uEu48tJ9mvVREzyiDlBlKwii2SGIcrRmMI6qBoVquMwgtF69uMt+uMwojSr6L5ygaZZc0T3Fdjy899EwR4C0E40lEpRQgpSJOEqxV7Jtr0qyWePbyJouzDXYHEfuX5uHrEw1FvIAjBYNhHys0FQ+2ehGnzq2xutTG1YZL17oszDUoGcuB5TbjKCZKcozI0FoTxylJ7vLJz55i30KLsl8hAxwj6fWHzHVmqNZrGGnxTUB/MsKZTtLsDscYKdBSkWRQDTxmOzMYY4oooGjC7iAGmzLbbLK+3cNi8YzL+bVNbltdoFn1mcQpjpYIm4LSZNGQcLRHubZElERIaWm3K0hlWVvfY3Y2YONil9vvruC5hemQFIXRU54Jkgy2Lndpz5axeFhRIY4Tkn7Exhdz1nYSXnfbm6eTSAqtCsfbemeORmc/J548ySQcs7L/ALOdWeIkpj/sMuiu4Rl3GhUT4JZrTEYjMpvTbDapZDVGcpvW0gyPfPYEp89P+NCH3oRIB6TW4ed/6c/40M+9Gp1tMBmO8Jp3cmVtCx2tQTrC5uC7DdAeF8/2yXRKr99FOYJDh+7kM5/+LL1elyeefopDB1fYOv1V3vC+vzftX37p8XX2agogcmuf93x6gXvR+vI/H9y9eJcZt1yueLxklN8LUsBvsbUX9L0VMs+bwd+ttlmwejcCxOvbeP5OrX1pEHrjsbwUuWqxL5i0uXF8C9x9E8fN4O66Uya8PJbtxajw6+9Z4H3f891w7eQtl/lG+3jB90oUZgNSaxbmZpiMJwSBw2A4JpqE5GmG1oooDIsvuLWI3KKkJM8kcVzcGPr9Pr2dLZb2zdGZX6Lb6/LoiZMc2D9HOEkolQs78f5wjzgq4gPKgUd7polyHLrdggV8+tSzdDqtaah5hHH19PMTSGHRRmO0AmU5f/4yxw6vUi4HXLm6gdES1/Po7vVwjCGOEy5cWqNeq7K7u43jOpRKNRzHodsfsbfbxVGSZy9cZTwaM5wUPWHlUonBYIjxXKQUVGoBO9td2p1WMSufFI6b5BlZmtBoNkmzDG2KfsIwnEyNIRIQEu26xJNRwdB4FZI4KtzO/EKepLQpZGVWFIHeRrN2ZZNqrUyWFRlfUucFx5HB1sY2rZk5jh5ZpL+3gbUjEBalXKQ0OE5QSAlUTqvu8INvvp0ffvNRnAN1fvmLj3FQaBplvzAOkOC6Do+fPMfy0j6kcXGUYTyKkKbIiLt88RpB4BIELlJqPK+EdiS7O3v4JZdSucz2zoC19S3a7TrD3hghJY5nEFiMNiRJhnYNWhp+/eQZfvBHXkcURdiscFXb3NihVquzs91jd3ePk5eu4aoBM1XJ5vYGg1FKOSjxuc8/QpZBuVT8DUejkPZMndzmXF3foVxyaHeajIYjLEUfjNYaJGytbVKpVimVXC5f2ubwgX1cvHKNRrXCeDim1x2yvrHHaBQihSIoBVxd26RULnpApdIIqSlVDL3ugDiOWJifYW9vxPmLG8zNtrh8dZuZZomF+ZnC1MDTtJpl2rMzlHzFaDSgVm9w+fIa9VqJQX/IeBxhXEWzVqLie3Rm27ieYTQcgxX0+0OSOOG2Y6sooxiPQx546Ax5lqBFRhBoSrUOTz59jjBV1EsTyr5B+3Vc1ydJCukvAqSSRf6aldg852f+8BwfuPcQf/GV83zg/a/HKEkcZnhuRrfXw/UqQCEry3M7nXXXJGmKVJJeN+T4K9qE46jILrSCNJ0UhgrWEk3iIshYC3KbAwrH9Yr8QyXJs6JHTkqJcQq3Q8dxUMYpetlETppMyJIpExplOK6LF5ipgxiFFNNzyfMEqTXaSBynjNGGLE2RsjB4KHp6JUIolFZIYbE2ASSD3gDXd5G6uLEq4yIo3AKNqxHCIqbB6HkuEEqipE+WxCiZTp01i0kdpZ0i409r8iwliSMcx0O7ptg/ojB4SFLyLCWKYrIMlpbniaOYq1eK70a7PYPruaysLCBEjuP6hexTZSilqNcqJGnMwmKHn/wffp3v/s53MwmH7PZzwknC+z74vTz5xHne/va34jrwi7/4i9z7hruYabb48R/9QVxH0B8qZhsBMUXMy//5q/+Kd73nXXR3t6k3XN7ypnvZWF+nvbSE5xuMyVAWrNVo10P7LtWKIRcRo0GPg6tLVFqNoq+u3sI4JX72p3+J295xAN81ZDkY5fDQ488y227gaMEoTAi8Gl87eYr5mSYlr8KpSxuMooRmzePspS2qJRcpFa7jcnBlFqmKCac4FaRZjOdKjHKZn23jex4ry7PEac6hQ3PkeYqQht1+l3rFwdHFvRSriJJCyjieDDAGpIhIcsmnHzjD6kIDX2syK3ng4bMc3D/P02fPYaVlpl7ksMVRSJqBMAZHKYaTkMBTCC14+txVZltlZhseSIXvOOQ2xzGa8STE8z2U9hmMJsw1a4RhzDNnrrAw1ybLM7SCBx4+zdZen8XZFr4r2e0OWL/a5cDBuUK8ZgumYbs/pOYayoGDMaY4JgVLCx2i2DIYjzm8f47d7h7thmYSW/IsZ9Db45FHz3NwdQFHSZzAcMexfUAKNsHzfKI4pt1o8leffITjtx9ke2+Hjc1tZpp+ce8SgsDzyKxlkqQEjk+ahSSZJUxisiyjN4y5cGGbowdmOH3hGouzDT75mRNkWcjxo8vEWQLAcDSmVQ8wRtIdbaPzHKNSNroezUYdhAGhkEpSCRxsFrO2NmJ5wdDvJbiug1AJ44li7dIuc7M+M3MB2IQMi1WaVs2hVQ953+E6V04vstCaQwiQGnIS4shy4dIV0jTl8LFX0my0kVawub1Bq9EgCkNIJ5R9l5ycKJWUKy2ENpjpo9ls8i//3e/wlne+g4UZxe/98e/zuuO3U3UHaO0z126xv1ZFJYXU3a212L//MIOtcyAmJCJgOBhibZ/esESzMcepczskicfb3/kOTp05g3EM3/kd7+HEqXNsnzvB/MHjdBZXpu6KU7ngS1SEN7NRL7cP7ZY9ZdMi9+b3bqw3XyjVtFOQdSPsu+G16w/7HCi7zmxZez2z74VA68ZlbzymAlddz52TPMdOypvWvXFr09eun5987thurqVfAO6mvU/2JhPT/AXO+TfygdMP4/o537TNb4G7b+K4GdzdOCvwcsDdS3n3XN+SUoq//wu/wne/9laxCC/zB3rTA1Hkojlak+cCqQxCppQqFXIhcBy3KJSdqR7edYnDPkJa9vZ2ETYhz4pZjqBcwQ98Br0us+0Go3FEuVTB90t4vqHWmAGpubS+zf7Vg+R5xrPnLrK0vI+5+U4xkw4FU5MXP85CNiWKxnXXweaWLM7Y2Nyl3y8cyBytMVoT+D4PfOUEhw9zc0g5AAAgAElEQVTvR4pCWtIfTThwcIXNzR12d3bYv7KIzTNkbgl8F+O6xGnG/sUFgpJHFEbsm2uiFWxcu8bi/CxWKNIswXFdgqDEV7/6JDbLqFSDgulwvKl8VTKaFOYBnl8uenySFG0cojhBiRyLRBmX0WiM4xgm4wlxnKK0REpJvVbHkhfnLovQZGEtaRJRqVWR2sUYrzCA6Y2wuUToDKM9hComFYSQ5HlhWz4YDJFS8467DzB7fJ58X43f+MJTvNJzmIxCZjstSp5LFCUYx/DvPv4FXnl4FSVl4RroaLA5ly5tEI0TavUyge8RxxlZkqOV4UuPPM3BxVm2d/ZozVQZh2NsBo4bcPXyJifCiN+5ssk/+onXk6QJSmqicIyZBsEPekMEgr1uj1i7lNNdVlb3I5RhdqbO7l6PY0cX6bTrlKsew9GYudkWjuvw7MU15toNeoMxwlqyNKNarzKZhFhylFLEYYg2hosXL1Gv1AjKhQRwa3OX0ShiYaFDq1GjUa/Q6484d2GNI4cW2drcQYgC2AgE4TiiWq+xuDRHTs7cQpulxQ5nzlygPVPFLwXkVnD1yhYgmJ2dYRKOqdXKNGsNEhtTLXuMxxOEkOzs9Yv+oL0+a+tdoihkbr6D67pIKTn77FWOHd3PfQ+cZHlphiiMOLAyTxIXcsI0LZz2pE1oz3YITIZf9UD4ONP8qTwHIRRCqMLQxsaIHB4+P6JkMmyzw72vPVoUJ8ZlZ+sy9VaLOI5xvcLkpGAJNAKJ0YV5yNFjSygxBlGY0/R296jWSyRJhhRTwKYU11kaQTFTrGRx11PTvEc57aWLwjGO55DG6dRtkmLCwnXp97bx/QAQWJEjckGepUXouE0YDXs4TpXJeIg2LnkWT8GWZDIeo7RT3GjzCIQkjSOSOMLzS0VYus2JRkPyLCGZjNCeh5TFNTzPE5IkIU0ilDJIkZGmE1xP09vdJajUEEKidDEZZYwhiafRFm6AuH7+QpHGEWAZj8ZUKmWk0hjHsLexTmOmRalcQRlNFmc4rkbpjDicsLs1wBiDzS3D3oBSqcx//JNPcPc9txNHK9xz13H2tq/RnFtka/0KrU6LX/qlf8z3fuC97Ozs8CM/8mPUay0G3R6jccy19XXqnUP8g5/+UT70v/+vRJOcpeWDNKoeOhGE45Cr65scuf04edQnTWLK1TLDQUKl0qBcctjduoRvWpx86nGqtQb19j4shniSs9cdEUcDPvKnf8bivXM06wFGKb7wwBMcObRIbzShP54w26gRJxGLnVn6k5jHnznD615xkFopwOaWfZ0KRuniu4tCq3xqtkMhf5fFNdMx+utdMFGUUPKLyTLHaCqBj+tI0twipJxmc0mubuwwGY9wHA9HG7DFPvbNNvnc579Ke66B0IKDiy2MEnRm6viegxQaqSRfvu8JGu029XKpaCdwPHZ7I3zXo1UvIYSlOxpT9n2woJVkY2/AlSubVGsllDDUq6BUBqR0Zkpc2RrQqARIAav7ZrFINnd7LM/NoETG+kaX+YU2WhsK1lgQhgmTaMxgEmGBzBZOlWcuXGOmXiHPIshjfEcSxiGVoI0xgkatxMxci8eeOEOt7pLlmmvbXaqlIsIljgqX20mc8YrbDvDYqYtcurDJPXcdZDgZUS1XAMFoPMZzDL7rYoUmSTK+euI8szNtLl/bQyvL8r46k9Dil3x64zHlWo3Z+Rl6o4RAZ9h4DZcthv110nQPTyRIVSMxAtKIyDq4rsFxBEZAmIEgp6R77O4NmZ83OKrIwpTKUm24WJtglCa3kOYK6VZw3Bof/Wdn+MCblqiZ1xVgSEnIQVmN0jm1aoOtnYjeaII2Eq0lflAmTsLCBTsZ4buKJIcwsQxHMbWZGQbdAVKC1IpXzN3J+vgSw+0BW5sRD3z+C7z19UuQJ9SrGTLI0LpBv6/wKobAW2LU3caoAZPRHn/6qQGJs8Ry+zSNmuBab5NPfelraGn43h/4IMtLK1w4e5p6q8Xb3/Z6PvWpv+Z1b/+OAsxMgc9L1ZzPgZ5byQBfuOZ1cuGlzE1eDrgrkl7FtAft+mMKo6ZA6Hm16fOOxT7vuF9QxD7vWJ5/PM/t57lYiAJMFbDyub498aKfyfN2eRPAeyFzd8Pf4Yb3XqCcveEchHjOpfcFp863wN03ddwI7vI8f957Lwfc3WqZ6z+qG8d73/9+7NoTxZPp1MAL132Z9Pl0faM1585eJIoSfKPZ3dsm8MtIKej1+2hHF4WJtYRRQuCWiGJLo9HCJhYvKBHHEcYROJ6h4vv0uiMskr29Ps+cOUet6nL+3BVmZ6rMzjTZ3ryGH5SoVitorbi2sYUU05/a9MepjZ7KrwqWMY4LuV2/N2A4DvG8QuZUqVbY2xvyhfue5MjBRaR0WFyc5+KFS1TKJcaTiPWNXdI4YzIZ43sOO90+iAzXc6iUani+zziK2NrdJc8SwklxnpVKCadUxTiGPM8ZjwbMzndYWFwAa4niGMcY8jQmTdNpwVgizVOkctBKoZRDkhWuhXle9DF6fmHfH/gBruchhC2Cm40my2wRDB6HCDEthI1bhKEKhc0zcgtBpYrrBxgN8TgEURTesqhMydJsWhTnaO3Q7/cxQvHqYzOUbmtjDrWIOj4/8P99jqMG9jXq3HXbQaSwkOeMRiOM66K0ol4rs76+QbNVZ/3qFqVyle3tHZIw5vD+Ocr1Cq1WjTzLAIvWPj/25UdpHyvzHd/xCl693ERrifE8HMeQZRlhHHP61EUqlTLlaolnnr7Er33+We5ddJlplHCNJUky8txy8pkLLMy1iaIYz3U5d/4aSlgWFzrY3FIpBzRbjanEF1zXQ2tFbtPCpEY7tJol8lRQrZaxWc5wPGZurs2XHzzJ4mKb3FoazQqz7TK725vMzc/i+870gi954snz5GlCrVkp2F2RI7VittMqGBxZsMz93TH1WhnPd3n08bM4RqA9jeMYHN/DdT363REL8x2efXaNNM05sDpLmiSUywFbG7tcurTFHbevcurMBY7fcZDdvS5hmHD56iYr+xfoDkJqtTLbm3t0ZtucPrvBXNvDSvja45dZmJshHI+n0QIZeZriGIUUGUIY3nH3bfzC//s1fvl/+z7K5QDIsDZCOQFSGFxTI8tzlHIRVhXM0bR4SJIU17j85m9/ide8uo2QAq2cwsnRcZDTXstwNEJKRRhOcD2fcDJAysItNg4T8iwnzy1aq6J3Lp1GIEgQcsoGZimlUpVRbw8pBUlqi3NxCumvUDlCaJR0USYjTSzaSITU2CxBq6LPT04jEYTUU2dLU+xLWIQ2SCfAuBWUU7ACUkmEzcCmCOlgTFHwOm6AkC6g8YIqIApAqwyCnCxL0U7hxojI2bi6QTwZYXyNYzy+cv8Jllb2cd+XHmN5eR87m7u4rkBqw5kzVxj2xwgsW5s7tGZm0Mr9ep+hlAaB4sK5c9z7xrsxruGrDw84fucRomhIbD3uufMYvZ11vus738W5M+fZ7Y7IRU6SSQ4cPYrxSxw9vApBmeX5Fu3FQ1QDl5V9FcI4xwuqvPOd30Wr1eS2Iyts765TqVSxQlEpu/zc//ILvOtd72Z7a5thL2F5ZRGtPbbWruA6hvFwyML8HNfW1/ju976Pz/7xg8zeVUErRaddpeI71Mplyn7AE6fPU6sG+K7L5778OP/Vm4/TG4ZEScbn73uCAyv7COOUJM0L1Yg2jOMExxjSLKTkewhU0a4IJElM4OnCjKpcBVEAwTiZFBEXjoeRYG2K7zjUyhWQCj014fnIZ5/m+JEOndkmRueU/DJKa/Z6Q6QpANWZS1eZqZU4eGCBMIxwtSVJInKrePrZDeaaVVzHAxQbu2NOPH2RdsvHaI3r+CjtUw5cJlGM65SxVuA6Pjv9nKVOg9zmpHmGzRMaVUW9ashtwjOnLnPn7YfIJUWfp7CcubjGQrOO1gJrDWGSUPZ8+qMI13U5e/EaC50KjhtgjMb1fASS3IZkeJRcSWumhVSGNBWsbeywb7bFOIo5dX6D2ZkGSjk8/tRpXNelVi967FrVMkIK8lwSJ+n0flWYg0mbk+bQqpXRRrFvpsZDDz3F/uU56pUyjjGMJyH7Z32aQcb2tWfJ4iF7ewl+4CPSEVm0R2wtvjdHo1QhE5Ld4YRJlOIowSTJqQQ+l85eIcorWBvhORmbWxGNWoksjbHCQ6ui8HbcCq4f8J9++Vl+6xeO8tP/7Elee+BOHLeIUUryHCEFxijSUICTM7+wSqsxx6XLF+jMziKFxNocR6QFYJYSr1RHuyWkYyj5AcNBD20UWR7zL//od7hzdYGPf+bf80/+j++l4rZplCWDSc4z585x6MAdbG/1KJddxnTY3QuxYkDJGlYXPZZmd2jliwjH5chSi9On1llb69PvjXH9KnkuOXfmWdY3r3Ht6fs58rq302g0yCxY1JSbem5I8dwrNxuZPD9+4IU9dzfyWkI+P0rhZonjC3vUbgoq5zkWrdj2TYDt+Vu/YT/P7e+FQ7zk0+vri1sBwRuevxgLKW5Cb/nXiZvi9VuCu+v/Ph+f3vI4b8VE3twt+K0Q82/iuBHc3azlfZlQ6wXjVhJdIeAnfv5XeN/1UPNbgLu/iaNmjkUJSatRL2bswpBqtcRkmDDq9am3GkitkFYwGg0JSmW2d7eoNauE4YRSxUMrl/sffAzXFWRpQpZkjIcTSr7HbrdLksQcObzCZJxTb9bY641odWYKdkErwjCiVq8iUP8/e28eLNl13/d9znL33vvt897sG2YADEhCpMhwEUnZpFZKVLRGJSWWk7hUcsquclKucjbLTiVVTiyXK5ZVUqxIkSInsmI5ErWRFAmKxEJiG4IDDDCD2ee9mTdv7+3u5+SP0zMDgABEKknxH56qrn7d9/Z993Wfd/v8ft/tXlfS6XIkdVVTFBlSKkbDCXlasLe3h9KCSZayO05ZXFggjBJm+j2SxOfci1fpdRJ2tncYjCYcP3aI/Sv7WFpcYHNzE6U8+v0e27t7DAYDNJqsKFhcmqPIalrNEIuiMmCsodHpsLe3R5IkCJETRAlS+mAsYeQzGo6dlsZW+F7oLiRy6vgnJQJHabv7yQigKgo8zwetHOJU12gtqSvjUABj8DxJWVVOW1QUaCWpTY2wJVWRYaVFqGBqkT4hLyxBEADueBKNVpqySpFS8tQT5zlydB/bG9u0ey3KIsVD8FMfeYh9p+a5pEp+4Y+fxUrJF9e3+MDSHDUCpEAYQyBdHMP6+i7rd3aYn+2SpRm9fodP3drkH529wNnJkHoGNsWQv/HxMxzd13UOk1YilEF5HlXhUBXfD5idmeH5r75EmeeceuAYn3gkYGdrTDoZEQWGyjjzjMXZNrt7OXEckecVk3HFTL+JqWquXF9nfrbHk195iaosSLOCVitxKKES7G2PSbOKMNTYWvDS+Svs7Y1YWZnFDxx9Mo5D1m7dIY58tBJEgWCU1gyHY5772iVW9i2yuNBFWoMfKupKIKShyEuEdjTezY0tPGmoS2g0EqdlyWtmZpqk+QBhAiprsUZw+/YOFy6sUVWWXrdBr99GYpyWsLbUlSEvcubnuly6cpsw8GgkCaaG4XBAEGhefnWVI4cWyUrJaJyz0FfEjYD9Bw7hSU2Z584509Quwy/PKLMC5UWE8Qy/9/glfu5vfA9VlVLXKWVV4HkNhLybLzlxVGIhEEgXSCtASB+AhZkQk98miCKMFS5KQzpNGtipk2FNGHkYoQg8jamNy66TAqnFvSgRrWOEVI5JYCxCKBfBIAzS89nb3nR6SqsJA488L5BaI1AI6a4ZVT3C0w1MXWOMy5uT2iHPlhohPRdkrhRYTVVlpOkYTI40GRJBXYyx1rlzVkXhikIVYq3ED3zyfBNjcpA1VtTYekp5rWunv6srLAKlfeoyx5/GKkTtECE0UvpUlSXLSjqtFlEU829//zMcOX6Qq5fXeODkYZS2zM7Pk6euaMyKjDAJKSsXet2dbTnaj5D88Z9d5zOf/QyPvuc76PT28eoLL/A//ONf5P0feB9R1OZX/9Vv8Mijj7Bv/zxWGrQnkTKn9mJmG02eP7/K4eUZnn/6Meb3HWZjlPE93/0x/r3vOM1zT32Gh77zQxR5xtbaDapsmxMnHqQ7t0zQ7JCEHoGo2Vq9xU/97I/zrnc9wtLSImWRkk0MiwsrXLt2lfiYYyJcW1un10ooakNZWQ4u9pnkkr3JJisrs0R+ky8+cwHte8zNJrQbHb526SbbW9vsX+qyOy4JA6fh9bVyjS7rZAJpVeJpTVaUU4dgyZ996SXu7A44vtLH932Qimw4ACyl1fzOH57lkVNLLr5CwLiK0XJCO24BBUr65KbG9x0qq6Qk8D18rRinGaN0giQjUJoXLq5y8ugBfE8idcrueI+ZdsjB5WWUMAgBn/r0c5w7v86pk4skvsvVQ+Sk+QRjICtL1rd3qU2N0h3iMMZYCFREu93k2toW3U6C5ykklsuXbzLfa3JrY5utnYwoVPi+z94oJS8qrly+zdHD+xAqYJwVGCWmsoocJWPGkzFax/zeHzzN6RML7JvvufchS9kbFyzOdvmjzz7Ph997nG4zYWVhZho/IpFKcGd3zNUbd1iac+hmVWaMi5x2EmIpGE1Svnz2Oo++4xjjdIvxpEYK6LZCzGiV4d51Wi0PHSwRdOaIkpjJeI/AjwlUgTZjtoZXMKpLp9VmkhvCwCfxLKO0QvX3s3HzBu1Wk2ZiiFuSuijwtUJoSVXVSCnZ2BojgoSdFyUff2+fBxrf7xrDxpk8PfPkRXoLTaqyhqDC5gY/alML6LSb7O3sMh6NCXyfKtsDW4BUKD8mTroI7RygQz+YwjqWY3OHWTkc8czTr2IGCs+r6TdhUghm+3PsbF5mPLhBu7GfpQffz3CSYdlERANC0SMUCdvBHloVNLTgxIPHefarm/zsz/2nxK0eWmm6jRkefc+7uH3+KdZNyMlTpxC4glW8ASYS4o3l3uu33V87fj1m9lb7vt32tyvuvo6OeP/BG4/2NtveYr9vdt832+ONxd1bopJvX9x93a/7Joq7N45vF3ffwvHa4k6Yr4eB/yrj7kf+2jlhge2tPR5ZUPfaGW8GrL/lP+drttlp16WuK8qqYndnhO8pPM8niCIqU5A0YupKIjVOxC4gCmKEtWTjIcPBEOUrjhxaodvpMRrucWv1BmEguXx9lUkGmzs7HD20wtfOnWcyKZibb2JrjfAE2vMpi5yNW+v0ZnruoikERT7B811uklQShEIISRQG9Hpd6tqwvLTE5UtXiaOA+fkZwshnkk7Yf2iOGzduMtvvsrg4y87ugMlkggU2NzY4eGCRosjY3BhT1zknTh5hOBhz6dJ1uu2EqnYUgLJylMpWq0Ucx9RlhVA+GMNwMEAp7bQUgY8xlrjRRnieC8IVFk9pUAKDYTLOkBhu3lgjHVf05noghNMGCY1SwukttKbMs+mH5OIYqqLm2edeYmVlabrIBqRGywBsjfIUXhii1BT1YEprVc49yvOdPmJxqU3gwd44p9logZVgKyaTMZ977CzvOHWEY7HhIx85zamjbYJDM3z6xXM8O9nm8eEOv3ppm6zv8Xd+/0859d3vonm8y2Q+Yukd+1jeH/Oj7zvEx999jIPzc9gSlpZ7FFVJVUqUlq5zLKDISrfYFpJLr17j+LEDBL5mZ3vIzRuXaDcDup0GG9uTqe7N4vse43HK7s4e/X6XbqeNDhTPvnCZ2W6Xoiw49dAhur0W67c26fXbbG/tESifLM3ptBvs7I6wFsLA4+ChfbzwtcusrCxg6pooDul0WozHE0ftkx4vnL0EtWL/4hyTyYjLV9dZWlmcFhOFyzC0BixUZe4Q2TCiO9djkpZ87cVrnDlzhEma0e20GOxNGA9SAi3wPMGhgzOY2rC1PWI43GNxsY2SAS+/ch2lzFQ3Z+i2E8Ig4dz5a1hbs7jQoywtc/0OQirSccHBQ31ssUXQbFJXksrkGKMcJRFLVVv8ICaKAv7p/32e950+xCrzvOPhRXzPx5q71E0XHVtVGb4fOETNuoJIKcdKsCZFK49mJ+D3fv8Cpx/ogK3RfoAStaNVegllNkZpzWRUEATO6EbpiKIsXTaeCpyJjKenehFXGAqmOjchqWqHIms/wA98lDSUZYkf+QihQNRkkz2khMBrMtjdJIwcQu6FoWMcGEOelfhBiJiShISs8Hwf7YVoz6PIc5QfoLzEmehIiQXKsppqsgwW7cxW8hJPeaSjsSskigIArUMm4xFhFFMXNV4QIbUgbiTk44wgCPE9QbsTEQWabr9NUUw49eBxhrvbnHzgMKPJmGYSMRgMWbu17iIMBGSjCdt3tunOzTLaG2NLyMYj9nbm+U9+7m9hjUB7OUko+Z5PfD+N/n60r/n8Zz/PY59+kg996Du5fGmN/+4f/Dd88IPfTdTIqMoeq1ceZ/+BE/zp577A7bVtTh7usbR4mEJOOHLyQxibkw822Lf/JH5rnpmFBTxfUleZC3IPYn7pn/0LThx7N7/0P/0yP/3TP4sfBHR6Tf7Vr/8aDz/wMJ9+7AkWDicEgU8SNbi2vkEzdu6aaZ5T4bE426WoUo7um6PXUvRaHTxdMtuNp1EtkIQ+WCgqR7OuKoesVnVOKw4wKL703EWO7J+nrlJCz/DQsQMoBdiKLC2I4gZKBwghOX1sHqUkSiryPGWh57MzMPz5X7zI0lKfKEqYDIecv7zO1vY2F67tcurQIkVVUtegPU0cOMZHt9OhEWmMKCiymihqoJXTiGENe6MML/L44LuPceX6LZA4DTnSNQKQWKuZ77WJggBP5qCgMhZrCnw/YWNnl3arQSMIQUhm+x32xkMW52bpdxJWb2/h+4IoVCzMdDh8cAlETZGXvPDSJRZnWlMNaoCpM3wtKaucM6cPYWXt0B1rKIqKpbk246zgzPEZ7uzscu7cFeYWeozyjFasyYuSxPdothLSvOD2xjYLvQa7acHuqOLy9W2W5jscWVmhFhPiqE9hQJoUM7pKjSRqzBE1VvCDJuPcUOY5SRSTZ7tIU5AZgTLO7EWoJrMNn9papPC4tbnDcLBLr5cw27YoVUFtsQJqa6kqy61bu3RaDc5fyIgafX7hQx/kl3/lEqcOHnLOztbZz/dmO8Sh7xhCpSCrIa+cZKOqaudQLeD6tfM0Yk3k+dTSkBeasNlj69YtfN+f6oclphIkUcwfPfUXjAZjLt68xDtP+6Sez8VX7nDqeIu67vPsC7d54GSP3v4Pk5ohYdlkfOdrVNnY0UGDFqPtXZqNFuev3OJPn7jCC8+/wslji6QTOHX6FL/1v/8m+eYFbl84y/u+7yfQ2rm4GlNPqX73141vHEpI7sYP3KM8/mUr1ilwYcTdKAN7j7IpXrMefW00Qg2v21dYMdVNC+yUnyYE2ClV7a7e7fVI2htu4u7p2Puvv4dFvmHN+7ri9TWYpX399jejZN5/fP93C+5m8E0LO/v6c6ux3GVZGvua6ARx9+ZeYpH3tslp9MJ9mub983HypG/TMr9l43W0TPv2GrpvdrzRY+gd73iY/+y/+qd8/NHDvJkV62uRuzdF/954byHPc0xROsvvaUFw+dJVrLHEYcB4OHCLFiOxZU5lnCtkEAhqI8jSHIBnn7+AUD5hHHPmzAN025L5/jyNJKbXDYiDAD/wiMI2lhqsc6vb2t5x3a/QZ29vi3Z7BvcPXpFNUsbjlLjRQCnJ9vZtoijE1JaNrW0acUAc+gRJxNXLqzRiZ329unqTVrOBUorxJOXKtescObhMWRouXl7j2NFDpFlKHCVUpcFUNc2WKyaSJKbVTgiCgKoq8IMApKOwGuNQRd/3MEZQlxVaO12iQyskZVlT1xZTC6rKUOQ5YeDT63VptVzmmzEuOsBd1ZzTqJAKi56arbgOnNaa5SVnEACSzz32ZQ4dWHEXEOw0lsEVhVp7WCHJysrl603fQ4tFK0lVG6LA58Irl+n1OoRJTBiFnDx+GCEFSkOcuPBypTVHDy9z4sACjxzZx09+1ykeXOnwt3/0ozx8eJ75XoNO4uEHPhiJUmJKxR1jbUFvdobACwlCZ+LhzDYUUE3DpSVFmvPCuQtIKfjVv7jMT370MFESMskylvbNIYUkz3PGk5Q7GyMOH1ngxo015uY7bNzZpNOMmJvr8MqFm4SBIokjet02eVE49CwrabQSdnb2aDUb7OwM8LTP6toGzWaDKPYJwgCtJXmecfHCGqEvGA32OHxghXY3QWlFEIQEvnBhtkI5JFYql4kmJVo7p8PdvTF1rVm7tclDp/ZxZ/0Oke8RRhE7eynW1iSNmJ29If25PsYW7FvqszDfZTgs2NjcZWlplk6nyaXLa4zGYzrThdvyUo/hcMLm9pBm031GnlZkhaGsJrSamlp1EFpj6xzfU9TGEoTOYCTPC8qq4le/sMNy10c29/HQw108T4A01CiU56OURklnMJJmGUHg6M9KeqTjHK0tSoaMhnu8+91n+KNPfZFTpxappiYBZZkjPR9Pq3tupGWeozwPYyq01vhBSJmPkDpwodK1C6pXSjjEvi5cVpg1eFNznKLIQYDvOzfLqijxgggviJHKmVaYqkAqRTVtzGANUioQknwyQqupw6XBORPm+VQz57LIiiwF4ea+EOqe+6W1EmFzTDGhNhI/jJxhj9LO8Ene1aUo0vEYP9QIIUnHI3xPE0QuoDrPCi69epW5+TmMsXz1+fMsLs2RJA2uXllldraPFQqpIA4lnheT5wVREnP5yg26zQZfeOwrnHzwCGHSoCyP8q9/+//gsT//Cz7yse8m3XqJy688h1SaTtvj0fc9yg//+I8ymYyZ6fYxRvLbv/M7nD52BiFShoOU/+23foulueOcfHAZpQTdXg+pPGo5JhtJZhdn0CqnqivyPGV7cxuMQNQ1OggY7w6xVvORj3yYZ597msWleXYHu3RbLY4fP8y/+d3/i1QdCFgAACAASURBVO6pmE6rwe4opZ10uHj9FgszbQIffK0JtI9CMM4KiromCQOscZlvSkmUVtzeGtNKFJN0jBJTyrt0pknGKqQSHFnu3WuqNuKI0BPUVlAbj6xU+J7A2hopDUJUQMhgXFKbnCSMSPOC5WVXUD/31YsszHcZjVJm52c5fWiFqh7jCYsRki988RzHjxwiCqeaM2OoqpogjFFSIOqcvHCL1ChK6HS7eNIy12tTmYovfOE8x48sUVQVgefz/HPnOXvuCs999QoPnz7G48+cZ3m+S1kXTPKCySRj38IsRVlyc2OXTiPGmprrtzcRwnJgcYa8MGgFRVUghAvxjkPFTC9BaY+6Kjn/0kXajRAdhvhK4SlBbWu0EmR5RisOEVoRaE1RjKiMACWZ6XVoxgF5adFKM8lzalOzsTXmzs6EpNUmCXwakYt40SieOX+VI/uWuXD5Cgd6lvHWq3hJn1LO4gct8tJQGktZlkjhEQUhO4MhniiQyqIFDMcljfYcmzt7TkNXOVOzdjNk89YtOi1JXecM9iYu57R25jWtVuKuN4FPcukhrl7d5btOfRBLjamKKZpl8KPpdQCFUIK12zusb+6wf/9BtjbvECchzWab0WhCpxlgyhzla5qtWYwKSOKE3Z1NvKjB3t4Okdas3lrn+LsO8+ijpxlP1pmdiVjo+zx0ZI403SVIQo4/cJA6T/nK8+t0F2dJgjbjnQtMckvcamHshG53iTTLmZlrokXM2a9eImh0uXrtJu98z3s5fuoUh/b12V59mf6hM/TmFqf1l31dcfdm47Xrw/slz1tHIbxujflGsOyumcubUBvfVGp2b/tr9n8bN8mvR8/eZuc3ee3XOWPeO5O/HI1882N+/XHun9v97faNb9S9/V///Fs5bt49728jd9/C8Xpaprv//6O4AzcZv++HPnlPe/d2KN1rfxbTk3vjZJZT3d3Fly+SZylhGDIcj1lYmCeKE7coA/woxtYlk+E62vfRQcRoMKbV6TjazbVVmu2Y0w+fIoybeH7A1UtrKF/QbDXxwwaDQcb6nTVaSUJVVuRFSZzE+L4mihv4YUAUhWAtpbEIgwto9X2k0lRVRSNKUEpz4+YajzxyimtXrtFuNwjjhBdfvsqJk0fZ2d5mdrbNuRdfYWV5kbW1derKgjBYa5md7zM7M0+nEzMYThCiJgg9hIRet8P6nU209vA8Hz8MyYuMsshcLtc0yy0INDsbu1ggacaOzqU1pnYXSakEUrpssCBwdstlUTGa7DnvvKmgVyGpTYXyp45gtqSuK7dwMRZT16RphhCgfcXBA8so5bpuwirXtRIGi0IphalKfO06QyAQCoR11FAhNVJrZmdmKPOCskzRvusE3w2Lp67xw2gaJGr5zOeeYW6my/r6OjP9Ll/+8ldZXlmkKguqOsf3AsrS8oef+iJHDi3zpafOcvjgMi+ev0a/18TYemp+4ZwTpTTsbo/57Oef4aHTxxjuDTh24iAHuikbN1eRQlDXlhfOXcPXkm6vRbPdYGHBfS69bovd3Ql7gzFJHNLqNpHA3EKf4XDI40+9xNJiD6U0WxvbeIEm8AP3ntWGNEvpdRvsDAYs719CSkGapYRxRLMRkU4KxiPnwGao8HyNH0Q0mzF5mnHxlWv4PiAkvudTVzkWi0EglOLKpXUOHuxjTMXWzpjtnTG7uyMm4wkrK7O8emWV4ycOoTxNEPgM9ibcubOHEB5+oFm7tUW/1yPPJwxGYw4fWkZIw+31bR44cZBzr1zj4P5ZirLi4pVbPHBiP7YekacjhlmApwVlCX4YU04KlJLkWUkjaRBEAf12n/ecXOa3H3uBj/31Mw6NFh6+lu5qYw1yipzdDRWvqgIhDFHsYzBY6001hor/8hd/n09+4jhVVRGEMUUxdhq02iKUc5zM0jF+6LR9QkiwGu3fnZNTjWhdoLUPBJRVBhjipENVuvgDL7jrgqnQOkBIi7CSuqyBGmtyl6FnIQidxb3AYoydataEM3CpjHPlxOn9xPRvtkxNX7yAqqzxPPcemLpCeSGBzMjHQ/xGB4tAC0mWjfA8H6k1ZeHQuaoqUYqpzsujqiusMU4HaC39md7UdClkdq5HlZeUtaPyJnFAjaTISqrSghWcf+kSSytL9Ge6/PZv/CE/8dPfOxX4W4LmMd753u/gox//mHMXrVOu3MgwZcpsr8n6jQsstCP+3Z99idPHjzFMa77n+9/LjVc2Wbv9MocOvp+PffyvcfLBFbTS7G4OmJmd4+b1CcPsEv32AlYoXvrqs0DAZJjz9/7uP+DSxVXm+g2ng9sb8fKFK5w9+xyf+KEf4MCBFaQUzM312Lizxu3VPeYfCdkZFfSabQLPsjDTAaAoa+IwQlAjTcml2zsszfQwtmRnmPHSJdesG2Yl3SRmOJmQRA0+/6VzHN6/4JCxaRPMWktZlORlSeCHTPIJ0pYYC7c3Bzzz7EscOjhPXlSEfkReOPfnTz9+geMH5nnp8ioHFvu0k4DA8+i3YsIoYL7fIssKuo2EUbZHVUs8z+P0AwcQoiYrqykKJFBISgO+8t33gScIPcWf/PHT3FjfY3bW0Sp9T3P8cA9LRRyEfPZLL/L+95zm2OEFzpxeoTQlhxbbjMYjxlnF1s4eo1HG/pVFlJCkVUUrDrG2RmlNv9lgko3R0mKpaSUNRpPSzc1pOLqSEWmWcmhlnkpKqjJ1FGshqCrnYCywaCnBGL78tesc2b8PY0qWF+Zdc6IsiEKXXRkGMUkYIRQc2DeLoKYoLdYanj17iaNHFpmdi9AIFtojNtbXoHEMFTVoJm3G6YRG6CGE4sbqTZbm59ga5TSbDUbbt/FUja+k+5/WTSZphfACdgYjlub7RGFAnqVcPXeT2cWAOAqBGqVBCIOSlro2nPvDiv/87/4UX/idlzi2fwUhalf+C+liUWrp2C1KMh5lbA5Kjhw+yUsXXuDkyTP4fkA2ydAoJBOoK7zAYzIcknRnqaxESo2pcpIwYfX2GvNzc/zS7/zPjLZu8uyzz/PJj7+bTphS1duE3izStwhV49FkZukh/FaLqozIxzcYTySvXr/J8cPLzjBqUtJtBTQDzQvnN3nvR3+QH/j+7+WPPvVvqUzNE5/7E6Jqg2OPfpjOzBIW8XXauLdbV75Wj3ev4PnLXvuGHd5ouPLmxZ1bhb5+vzeghm9RaH3982+O0L154Plbjb9acXfP2fINx3ntmd3XCMppcXl/u7wXs/Ca5/6SU/h2cfctHHeLO2Ms1tg3RdT+quM+PfP1PZWf+/v/Iz/4nqMOLZrSiF67/5se67UT2Tr7WQQMRyM8JVGiZHa2h+eFjMdjGs0GeVUTRgFCaZQUZMMBlS0JwyaWCiVgZ3OHqOFjTUG300GiOP+1K1hRUY12WN63hFE+/Zkuo0FGu5UwzDKUMmitCIKYnZ0NWo2E1et3mEzGdNsJVrsL53A4JgrdAq2eBkdoT0Bp2djYQkgo8pKTp4/zqT9+jIV+h9l+i7Wb19FewNLSAnHssTcYsby0SDbOuXLzBmu3NlmcnyUvLHc2tkmzlMl4jNaauBETxiGmsoRh6IKAa4vneQSBz2ScEviadrdDPdUclUXu9jOW3/uDT3P8yMp0waoRwlCbCs8P8X3t8uuEIs9c3lcxSd0XkhFcevUa7ZYzIhgOxoRhSF0ZBB7ScytHawApuHFjjVaziad9alMghURIn7qsSCcpEonUirIsWFu9TavVAJxmyPcDqvGY26vOoERKD6mciYhWinScceL4fqyoWFycwRhJu+MTRw2sUGgvpCprNtc3OXh4Hj/wOXhgiaQR8tRXvsaZh46Sjkb4YUxtJZu3bpO0O+RFxWynwaVL1zl27CDnr6xydM6ZDTz9/AUOLPfYt9BmZzejlbScxklauu0u1graM02sqZhdmGU0GWPyMXlqCHzJ4f0LvHJhFWrD7GyH1ZtbRFFAmrk8Kt/T1LYCa2g2WhRZie8JsmKXKGyxs7NHt9tEa8lgUIAV+D6kw5yk1SBIXNh8s9kkTXN0AAiNp3z8UNLvRQRJws7OkG47YmV5geurO7RaEUkrYHlpztH+HEeFpNkkUD67w10i3+nJVldvc/L0QVb2zVNXBj9w+rJLV66RRDF745Rup0mnlSCkIFRdwiQkanZ45iuvsH9lHqlcM8MIiKImabqL54V8+tyA3eGAL5y9yU/+6Aco8gm+7+iX2BqhfKo6RcuAyXgHYT08P0Qqj7JwBdhkMiSMIqCmFStOHO2glIdVOGqQCsALpnQdBVJRV3v4ug3GUBW7U11cgScFtpYoP8HamjrP8L0Az/OokVRlBnLafRUKWzttqtY+abaHF0TUtaEsc6qywPN9EIZivIu1Bu1HWOPQubLMMKbgnufVtGPsSjs3n21dUWQZfuA7DbEBJQSYmiovKI3LrMvLHC1dAVtVNVL7lLmLQ9FBBLamzEukcvo7Tyt2N50xzO72Hn/6qcc58/BB0sk262s7REnTZaD5Hl7kkU9yijylKGuiuCaKm5x51wkEgmeeOgdVRhCeRtqKyfoazd4yW5trHH3gXbQ6c/hxn5nFg1xeXeXd7303qIi52UXOf/UJ3vPB99DoLjMe3WFuocvm5jZrq7f54hdf5tSDR2h3JdmoptVaQsma/sIMUdgiasQgKn7ok9/LaHiFSy/d4sqrO/zEf/zDLC3M8/CZ0+gwRAuByS2hB+/76Hfz2JNPsrAcYEzOOCsZTCZcuHKdpdkZtJKUtWFc1OzrtRFSsZdZmnHE8lyXOPBoRDFSlkhr8bVkeWUGMZ0TSio3j5REChw1ri7d80KzvVejKHngxD4CL8BWGVjNzR3DxYuXabUCmpHHtbMXOHx8mcpU2Lpmc1DSbccI6RH6DRA1nicIwwZlDVJa8qJCeREIg1Rg0HieIUuHeJ4zCBmXNSdOrHBgqUUUxNzeqQg9iZYCRE1apOxfXuTa2iZznS47wz2wOdqLMDKkESZUKJ4+u8qpE/soSkNeWAbDAVpatoa1MwaiRvkxSdTAGIOvBUYYPKXwtMfWzpCnv3KBpaUltAxQSqC8gKw0xEELKwVSKyaTiigO2DcTYawlCX2sEEzygrvB68PJmMEow9Me19cHtOIGr1y5yVy/gx/67F9Zweg9Er+LyLcYb90knD1Ks9mkLEriUDvnXSUoq5pGq83eOMX3HXXX82oUE2okZVmQZ4JB6rMyF9OMNUrAaFKQpSlJxxL7hiTqkmY1UlqELNx6SMDPPLyfv/+Ln+c/+NiPTVG7ElRJLULKKkP5zpGbWmBMxvr6iHFm6fVmaMYJo/GYIAqJWjGiTJEmwwhFbT2MCFC1ZZyOMWWN32zSThLGk4zHzz/Bz//NH8OTiudffJkzBwt8P0LbGdTkIkUdkY03SVWbxszDzHRirl18hvmZiH5bU6sUSo+d7R2kDEBm/Mr/+Swz7cOcedcC6USwuLCfR86c5PaFJ9kcZpx894ec3OabWF++0fnxvgTszeA597Sw98ICuMtMtHfvhXPGvHfM6U1MM5+/Pnrh9SvWe0XZa3/f65mPU53sWxew5u7a9m3G3XgD3urvfYvhosHuEjTFa2in910V3uh++dpiTk4/n/tmNHcR07e+ae/btMxv2bhb3E0pwP+fFnd3x307Djd+6JM/zPpLT5JE/uvn5Vu6aH799BVCUNWGIAywxjnhKS9ARzGepyizFC3dxc9WBTevXqXR6uCFHloFLqzaWLIsJRsPUTrG83xevXSZ8WSXd7zzDDP7j5AXNa+ef5Gbq7doJDHbgyESSRLFnP3qRZQ7GcIwJI5DOr2Y3V2Xt6WEIAwD1y2ylrp0X+ij4YSXX7nJwQML5HnO8vI+BsMdDu6fJwh8xuOURiNhPJ4wHI0pCmeNv7e3h+crer0O3U5rSkMzbG5sQV2TFgXHjx1GaxfQLaXGmBopXRyF1oo8z/F9n6vX1ujP9BFKYq0LNPZ9H9/3OH38OJ/786c5dHAfWrvMrTu3N2i3m07wbGsQboGgtWRvMHSOhlI78X7oU9cGz9dcvXKdmdmuM1XwHO1MSGfv3e20XNFbV442es+gxaEGQRgCzkUzTmLqypCmJdnEWc7XCJrdDl4YU1YlUegxGo9QShJGzvktilrcuHbbOcHJEj/wGe5ukeUptrZ02k2kiPj0Z5/mwYeOURQ5D5w4QJbl+KHCIMBawijAFBPiRpMnnjjHdzz6EE9++Sz/6xfO8e6DCXvDXXzfY3trzMsX1zlxfJGqyokTn+HOiOHuhGargakrmlMbck9L4laDuNkCUfHyxZs8eOoIt+9s0e+32RuMGI1S4jikLCtQima7jaksngdPP/syczNd4kaHvHQxA1EcYSvLq1dusTjfYzSasLm9Q5qltNoJN6/cAWNodZqOkiokSLDGQpWjlKDdaRMmEUILEt/DVIZWs8329h5B5KGkpaxqMAXW5vT6szRaDYdcS4GaUpDqKmU4qrh5Y5fTp1bQSrG81KPRbJKmBV944hydJKHVbiM9aDeds+KN6xuEgSb0ArJ0iDU+z1/d5Ec+9E7+ye+fpTAlP/aj78Va0FJgUNSVoyvmWYoQmijUWOPQAJeVl2OmbqTOdMVw4sQyP/hjv8yP/8hJMO5L1ZqauiwQGARmSvPtYGWGMSXaayKUwvMDLBJjxtOAcs+hEcqZrUhp8bwYKZ1pQVlUCFlPHXwzl8dnmNJ+tdOvag0oTO00c1K5XDupNJPxGD8IMJVx3XoAK6hrsLbCTPVcnudNkaCCMPRJ0xQvak51ypq6rFHCUQGF1JiqwJRmGtEQUFU5IN21RUmuXlmj3ety584W3X6PKGnSnenxystX6M10mF1Y4C++8BxHju7n9o11Go2Ez3/2KWbn2nieJo4VYRCzdesGzXaXlQPLfOYzX+b2ZodjJ08SNFo88dTjPPP4q5x+52HiqMX21hael/Brv/K7PPvkk5x7/iyUOe945F38i1/5Tf74zz7HX/vwR3nu7Jf5L/7ef82zz1zgv/3Fv4Xn14z2Un77t/8ND545Tl4NicMWdzZXnY1+r0mrnbA0f4ojJxcwep25hcP0Wg2eePwJDh8/ws2LV9jc26E51+c3f/03ePJPn6dcKuh1Wzx77iqnjiwz12s7CntlyIuSwPdIi7F7T0VNVeTcWFsjSoJ7TT7P8zl/ZY35XhslBZ7S1MYitYdFMEhzlJeg0Dz+5AvM9ltkxYSl+S5aBfzJnz/H4tKMY2g0NElQc3hfnywbcuzUwWncRcBjz1yi20u4dOUGeV6wubPNYr+BkvD8uYs8/bU1ju6f49bWLgstQ5FLPJ2AKhzqq32EgCwvCbwQrTyywiAp6CY1WZaT1jFSKKStoMpJGjEvvnqVlcU+Wmo8HfD4s+fxA8H6+jaD7QEPP3gIkASeohX7VHVBr5mwN8lIGk08KRhnYwIfalMirMRUJZM0I0lCjh1ZZGuwg7UVg3FJM/GoTY6nzD3K9LmXr9PvN5HCGZwZIC9rwsCbfm8pPO3z+S++CL7HynwPISyNRsj5y7dY6LdIAo/I5gzuXEDKESI+TCOOKQqLEiFlOeSVC6tIGfDsM6+yvG+O0FMEvmJ9c5fYF1hTopRbxI9yxcGVw2wOBlicG25eWO6s3WJv4GFNTRKP8b0aT3tsbtVEocfn//kErdr80Lv/JkU+ocpHCCpEZcnSHE8H1GmOUhKD5frVDVaOrIAXsLy84qKMtGb1xhVkVRAHGkFNaWrnohu2ybMMLwiRUrK9vY2vNUmc8PkXHuPj3/UB/vk/+yX+4S+8l9/51EvM9RehV1LVMf/6D67xwDuOsLD/YT7z519CmIrYz0jCcmqmJlAYhHCRSr/2v3wF3V5g/3ITCs3MzH6e/OJn2Vr9Mg0GDEzAI+//GFj5OtrgXbDhGxlvm3n3dmjVG3aVb7P6/caRstdgfm+kZf4lxdsbkcRv7Dy+SQTvTcxj3vrY9xl909jo+6//Bhim3y7uvoXjPnJnwIr/V8Xd3QgEIe6Hm7tG89cfsewcwdu6+PrJ9DaT+s22yCmEf+PaKs04pqwqmu0Wu1tbTCYjojChLEoiX9NsdZBe6L6AUfhBgOf5REnMxuY2y8sr1LWl3Wpw/vxFjh05hNROf2Prmo3NHdqtmE47ZmFxkY2NPY4cOUCn36bRSJDK5WbleYmnPeTUbU4pRVEUjq4oNKYuuHz5OknsLPhfeuUiSwvzrK1t0O90nEvWxja+75NmE3rdJkp5pFlGGDprc6ZaCO35DPeGzM32sVYwN9tjZ2ePOImZpPkUjTVE8VSLJqdiYmMZDFJmZmeY5jgAuLy7yYgiy5mb7RNGPoPhLkVR8bnHnmdlXx/P8xkOh0RBQGUsdeX0JWEUIpXi2rWbaKVYW10njiNmZrvUxkU3IDyMnUZETLs/xtQuILmG1Zu36HbbiGkOlDPNMdRV5Tq6gTdFRhzSF3qCtdU1mkmIVpLtnT0aSZMXz73K4vKiK9B8TbPVxPM0YeQxGmbs7Q6ZW5inKmu2twYkSUi7GdBsNymrEb4vENKiPUejBUeDmYxHBGHE/FyP3a0dEJYz8yWTccGxo/tJ4pBup8nKsnO5u3HjNkIqtjf26M/1AYjjEGsMRZFT1yVaaYrCkGUT9i3Nc+XKGr1u6962lf2LnHvpCocP7uP6jXV6vTZJnGCtZXmpj3OiUfi+W4xLhHO7rArSNKfX69JpN8myEj21T7+zscvNm3fAKlrtBpsbG8RR5EJx6wohXAB6nueEkY9SktXVTZqNCFPVCOmiGpQ0KC90SERdMx6PUUpw9fodDhxawlSWySRjaXGGZ15wpkRR5DEYTtjaGfPuR46xfmebdAzNDgRhyCsXbiKEIIk1kacYjjdoNOf47z+1ysfftZ/PXxjwrgf7vPPRU/iex3i4R1VbgjB09MIoQljFaLRNHDVceLlUKOnsz9380y5DUGsuXrzF+75jliCKYUq1rMvCuaNWNUo7F7c0HeF7ARgXIzEejgCwpkZ5AXVlXEMpCB2anWaYukZpxXg0xA98pFLTiBTttF/KUX219jC1oSjGKOXc8OIkwfM1tq5crpznqNZl7pA5wBmiSHvPGMla14hw2XXOnCCYNjmM1YShj6lrdOADAiGV09xVE2pj8cIIAU6XOaWkLi7tQ0poNmO0pyjLmmefOY8SgsNHD7K3O2B+YYYrl2+yenODoycPceTIEs12TK/bIwgl6ShzzRER8O9+9zN8zyc+wNnnR8zPdGn1O1y/epsPf/CDaF8h8NAePP30U3ziB36Ed7zzIYIgwgrNP/5H/5Cf//m/zce/72N0uwnpZMyPfPLf51d++V/yH/3sTxCGEc8+/Tx/8bknSPOKd7zjjCvCrcH3A+IkwdSWvNgkCLosLhzHjzwmwxEPPXSa0WTCzGyLucVllJCceegUP/PTP8EtewHf81lZmHFNjakDZW0MWkk29ob0W32w0uXJSZ9Oq0XgRxihkaZCALOdJsZaPO0aD0q6LnlVlYS+RAgPU1W0Ow20Vsz1u4zzgq9euMEHHz3G9iin3YwpywlREFAY6HcajEvDOM2QQhCEHp0kpN0MuXV7hxNHFtFaIoSk3WrQareJA0gC5RDk3HL1zhb9dgMlnKX8YDwh8DxMXbI7GvOnn32esNklCiVOeVAAJYKS8y9fYnFpiaX5PmfP3+Da9Q32L88z02/RihWbW7vMzLVYmJsFYaYUtgpLxXNfu0RZlcz3O5jKaUal8tncS2k3WoyLknYjoaprAk/jaUkzDgiDyOlY7RTNkj5VrQijGGMNXhA6c7PaEHia8SQlDjx2hiMEmhNH92GmRjdlVbA7TDl6YIHaVkiTs3HnKaTogLeM8mNevnyDqijotJuk6ZDbN7a4eXkdjxSjFa1WQhyENJMQT/tsbu6QxBVVLWh3ZsnrEM9TCCHYHabcvLXLwf1z3LxwlX0H22yvb9NuRpR1StBIMFXO3/ngEvmdD6P8BEyNJ0Hamis3btLpdvC1RCuN0goLtFpdzp19gc3tgv2HDiIlNJIGrWabvMjIxltOWy6Uy/f1YpIoQYe+M9iJY6q6QAjJd37wIZ764uM89OBJFvsZ73z0QW7dzlloDokZMtNboRcXtBYfodVsEUcBZbZLXW2QTwbMzC4z2L3t6KNCcubEcT791PMcPHiM93/or9OameeRRx7k5bOPMd/IUa1FTj76XWDV6ywqvxna4V30SQhxLxbh/nNvvZK8X9y5LLs3BRb+Uprk9FjfgK7p7Y4jhJiaA701dfPNj3G32Hr7YviNf8c3W9y99vE3UtjBt4u7b+m4j9w5yFb9FUSad4d9i/t72425N3miOOLVYUg4vDZ133qrg96zBrr/nBD3HgshaDUSJqOUVqvJ7dt3yLOM+cUFvCDC9yWD3QH+NLxUAHXpFkx3v1j7c3MIhLtQGks7aeAHCj1d7EVJwtbmJhiBp5ybXVFUNFtNtOe68mVRkecZQXjXzKQkmObDeZ5GKUVd1mzvbtBMYmbnZ13gcF1T1QZPeXhBwGAwIk1ztraHTqeX+KwcPMDm9oCDhw7RaLZ44WuvcPjQCrfXt9BKUBQlo1GGNQVFVdPudAFBkoRYDEoqJtkEpZx7gtQB/dke4KyusQJT1Zi6Iox8LDVaaadNMxWhH/DQQ8fI85zJuCAKPTzfc25pVUWz2eDG9TUaSUyn3eCl85d46OEH8APPUUN8R/9SUjsE07gMOCWki2LAmcK0Ox3yvHQaEOV0VKNhyvqtO3SmuUhVVQEGYw1BmJA0G1jhob2AKIqpS4tAkjQjp+OrKzzPWeSnaUYUJZhaEoQhnh+40GbPEifOaEJ7EViNFD7peIj2Y2xlOPvCORaXFjC14eb1G8zNzfAf/svP8gNnenjaZzCcAJIoDvEjzbkXr/Lgg4eo6pqd3T2qyjAz12U0GjIZprS6zhZe1C77bzRMwVqGownLK/N4vpwiKRUrLYlNcwAAIABJREFUy3PkWUZZFnS7DTbv3KGqLHrqAosU3Ly+RhwEXHh1lZs3N1hY6DOeZOzs7OJ5PoO9lG6nw8bmHfbtm2EyzpiZ7bK2eptGFDJJc4JGyGBvhBKu4FZC4nkOpWq2fMIwZG11h7n5LsbUKCGR0sdUGaPhmDsbO2gpWVjsoTzN5UvrNJIIYwytVsipBw5ha0ue1czP950b7dFFwjhEqBpTG2ZmZtDKghkzGaYoT+L5MVc2Cz7w4GFmT7yLkydatLotV8iVY8K4hRUeVTGgSCeEURM9DYiu6ym1pK7ASuq6RGCIopAsr/nQ+0/z4z/z6/zYjzzo0FEBQeAxHk2mLqkKUw/wdUxV1lhbY40LIpdIlB8jcPMsCAPMXQcyIRFSobR0sQRYtBdjjHEsA6Uxtrz3Za60j5TO8Eh6ijydIIVCeSEW16Spq3qqQ3QUSiEFUsmp1hO0F1PXhUPoqhSEBnG3UaIoswyh5TSkXbhCT2lMneLHMQhHwwZDVZZ4vkc6yqf7CbI0JYwi9u2bZzyekMQBYP4f9t48yLLsru/8nOWu774t8+W+VGVtXb2rW40WxCYJkJAQFpsHBmMzBJ7RGEwgxsEYwsbYhMeBPYNhwAMGzACGMYuksQeEhCRaQqLVUu9LdXd1V3XtVblnvnzrXc+ZP86rVvUqCSLgH52KG5F1391e5n33/X7nu9FqN2k26xxaWwbhkMjN9U0CH8ajEbVGB6V8hNQksWZra5ezZ+D3fuvXecM9d/C+/+kn+NqvO0l7ep7P3PsgQSQ5cuIIlZA889TjvP7uW7FVjbu/6jZm56dBGPb3tvnVX/11vvU938b3ff9/x+b6Pn/5F5+jNTXN3XfdyVu+5huccYzJ8cOINE2pCqebrPIaw3Gfvf1NwsijUa9TlgajDAjQXsCgP8SPHb37se3PIZWlPyo5f3mduU4TY50LMxRYm6Ok4LFnzjM7HROEzv23qgo8YRmn40kOnPvdZHnJ6fNXqSchVZXje87IqkjHIAxxFCClJCsKtKoxN13jwpVrbO5nfPKTp7j71hW0X8NOchz9ICT2A6QE3xfEnqMEHl5q4wcethL0hjl+GPD0s5dYmG0QhgIrEkqTM9tySFxpnXYtUJI0H+FpSRTGrB5eotP20H6EFA00jjJ5aWvMyeNHGGcp4zzj8OIcy4vTfPbRZ5lqJUgpmZlq0pluEvg+plKcW9/BVxWeFsx1mrQbNQIFmwf7RH6NPK9Q0hnRREFIb1wSaEjzEmOdLi4tLfXIx1eKokqBiO2DgocfPcOxQzOuMTUVo9xNWCJACk1eZpx69ioLs1M8/tR5dgcpSRIxNx0QyxTTu8Bw7zJJ6y6u7o+Zmm5y8fImh5anuHh+m3PnLjLc2aMYpgSBx813tBkM3OSh0ooiT9naHxH5GmF7aKE4GJQ06h2kluSFoSwNvYMhURQyPaMIdU67pYEMITwefWSHKx8O+IOPXeMbbnsL0nOoq61cM3vl4jqtZhspwVjnfhpoTSbHTE3N0u4ss7u/D8bieZpRWpDUm8iyj1Lu2aT9kMootnZ2qcU1humY4WBAVeX8xz/8j7zrW9/K//Z//jKrao25+j3ke1N45TKfv6/g5z/6JN/1LStQa5HM3cpTD3+OlbllhoMNAjlCYsmzgigJCfwalTXUgl3i1jF++w/u4xvf9R50FFBkFRefe5TpeEA/F5x887eA9F5rfv9LGi9lid1YOhprX2a8ciNyZ1+oEK+veHEF+8UbvFfoeF5rlxf0SO7v8tryPPGqp7hxhy+3IX7Zupegc9fXvdq4TuJ8tUX9NZq7L66+/Mr4Moad3GBfYOF+OeM6R/lLHTfdfIIPnP6yT/OyoUOfsBZRGcPiygKzCwuUpSVPU86dv4TUCiUFxpSEYURcr1GWOWVlsGVJb/+A3Z0d8jwjrtdYXDtMtzsCkSMpWb90hYW5NotLqzRn5xn2+2xvbzPod5EYPvrx+wmDyFEhJgHmWIMxFQfdA6yFsqwQWpEkLhD1Op2y2x1w9txFllbmCMKAsjQMhhlvftPraTUabG3vc/7cJba299jf33cIgLBsbW6hpODsuQtO3J74DAZ9Dq0uOgMTTzEajTGmcI0Vimw8Js/GQElV5piqxBpLmmYo7Wgw6XiM7zuXxjxPsZQTRAZa7RbNVkQY+gz7w4nRgyAdj7h0eR2tnRPn6+48SVnkFEVOEvvs7ezi6QBrSgTVC82bMc69jMpR8YqsIgojhITxKKPIDRfOXWVlZYl+r4+t3KN5Z3ubJKlz0N11zHFT8dGP3seli9f44498mvmlDtgKieDShXWskRjr7P4rWzHdaSEFbG9uo5TE90OiKKbIC8pizDgdIRXUagmWivG4y52330Toa4bDATv7fYRS/NPvuIOFuSl6B0NmZ5o06zX2ugf4YcCdrzvGxuYeZVFx9MgiSS3gmdPn8HyPpBEzOOgz2B/xyBMXCSKf+cVprlzb4cTxFYbDAUIItnd2ePbsRYoiQ3uaWlynKj3isMHeXpfhICUOIzSShYUZugcDosDj9XefIIpijh89xMJck6QW0WhGPPnU86weXsJKydLSNE+dvkC9lrC3O6Se1JE2ItAtjIkoS0tRpGRZ5izZlcBUBVor8nLs7NyFxpqcvd0eZWFYXpjH04GzUreG+bkmaVbSPRgihcf+3gFxLWFz6wAlLctL85NwcAMmoswN9977CIPBgKLwGOWKOJlHaMmDZ/dJ0wF33X0Xa0eWqMUhVVWRpZN7vBghZUhZpi6DrnIZcr6vJm6tztwoHWVorbHWEMaxMzupKhAS33dmEpURCErScZ+qTMkzMaEvVxgc1chUOeNxD2EzrM0REqT2HUqoNEo5MxtrnWZOe6Er9n2PqOaiFJwDq3bUcWsQwnPUZuFPGlSPyjjtpFQuAFppRRDFDIapQxoRk4ZEIwUo5yuEF01yK5WjO5fFGOlJTOkCm6W0jPoHlFVBZV2odpYOyDN37/lBRJ5VRLWYMIopCqedK7KUMh9y8y3H+OAffcqZS6WOEnr+3EXnbFsaZucX6O13abQ6GKHIRj1GvV1mF2bo9Ub88cc/zv/xC/+e5eUF/vQjf8QtJ28m8APK8oCjR9ao1xOCWsjdr7+ZT9/7Z9SSITffdidxLaZej1ldPcJX3fNmTj15loceeJL6VMJv/N+/SaPZ4K433okfwM/+q3+D0j55lqOVhxCSoij5uX/7rzl35io/8j//FOvnzvNT/+Sf4ukAUcKHPvgRitIw7g/wwzq//Eu/zoUHe1SlYXN3l6W5Jgd9F2ovJg1yqN135eHlBXzloXC64nFacnVjmyBwcQpOW6cJdMkta220EEShc99135wa3wv4yMcewlc+gRb81gc/z7XtLY4fWmVmqsEPfM83THSXlsBzCKyucna7Xe69/xnKykf7CZ97+BLPPL9FkVf0BhmjcYlWirtvmyKJIv7bn58jzTO293oc9PruM5TlyKrA0wHtxhxS1TlzqUu/bxmNxjzy5LNs7Y8RykNqyexUg95ojySOKCvjGlVteN3JFZ587DmXoagCfC/CCstz55+kFY0oS8Mff/gUvtegrHwKo1mcnibNSz71mVMEnmY83saanI9++gxFZdk7GOOpkMpI/ugDn2evP2KQlniqQRRoFCMWl1qcPrdBnldUlUAJycc++SihH3F1twd43HJijcpIbr3lGDcdnmI6ssSVYufqadJSkMWH8OOQ1cVpnnhmg0Mr8/QGATWvz1xrh5tOhNzx+hqHjsBwsEeVX2O3u0NRGAZpyuyUa/yLvMRSEASGrb11rm1toqWkUY+547bDzM21Ob/f4LMP99zkiQBFBtfq/Mw/PMFPf9ePuBgXz6HoWmuMhTvuOkkYgudpPBlRBD6PP3mOwXZFf5AyGo1YWzvM7OwM2zvbGOPo+kJITOWeU8gKRMXMfIdef496Umem06FVb/P173gb//DHf5L3ve0HMeMRkgozCUs/efIo73/XD3H+wZv5/IMHDHfXmV27hT//iwdohAZfB+zu7NFKPMqBIRtvMu7tkmVTVMOS2ek6w/4FtBBcvbrJ3MI8pbSsLk7T7/WpxJdfc77S+KtVr26YG5bXROyEfYWFGzRwL9bjvfp4reixG47zwpt6pe2ua6q+lNN94Xqv12/Xx40/3ziub/fS7V9yha+4/HXGV5C7v+Z4Uc7dlwg/v3Q4KPwLf8xX+iMb62goL/3Q3XX36/jxn/sdvvnOhVc99ivxll+MtDvq3plzF5hfmEMpxag/QglJvVlHIByFRivKwlkJF2VOXI/xlMb3fIqi4KDbo9lsUmGJgxpnzj6NLQvScYEXSDqzi6hAYcuCuU6bjc0dao06J46usrOzS6OZYI3T6Tx/7hIznSkXfWCqyXWD53koqTCmIgwiHB2gYna2Q2VharrN8uIs554/T6OZcNAdsLI0h8AyM93i1KnTJJFPu92kNJY4CjCmIg4D1je30VrRajUQSuEHEUU6pKwmxipZRlILGQwHaO3R642cq6gUN3zgHT3ozJmzLK/OUq/XMMYQxxGj0RBPS8bDjHPnL9OZmSLLci5cvMpttxyfaI0kBwd99na7CCy2KmjU66R5hdbOuMVa84I26MqVdZLYo91pOl1UOUR6waQQcwhCe7rpAnlNSVEUJEkdjEFpQ3d/QJIk1MKALM+5+67jVGXF7u4eYehx8eI1ms0Gge9x330Ps7q8iLEGhGB/r0uzWWc4GiKl5qmnz7C0MEtZuQgJhUeFwZiUIKiRZSlJUmd5aZEf/Ne/yT9+z0mqsuLqxjaH1xb41F8+zrEj846iqn2ycU670cQLAurNhCwdE0cRSku2NvepRSH1et1FUwjD/Ow0o1H6AhI8GqccPbJIWbmmOIg8zp6/TL8/IIlCxuOMKAoZDcYEUUA6oWbFtYDRYMyZ569waX0Paywzs1Mk9ZAgivDDAIylKi1nzq5Ti12Yudbw8ONPszjfdCiUsSilGQxHLujW2kmWpI+0gp3dA8rcEEc1KmO5dGmbKPTJi9JFKOzts7s/4NDqLI+fusBwmBJHPtNTTaLIJwws3YN9TFXy+JPPMtVqcNAfcsstR8hzhR+6gHAhBCUtjnQUm2KJpWXXKCElgS9BKooiJYpaSKWQQr5w7XmWEgUBRVmCkNRqEUiXEVaVJd39fb79PV9FFJeYyZencwqzBGFAnqX4QUKZuQBwz3OOmUJZ8nyEFIIizyZ27e459IKVtzUYUzi7dDyEMOTZeEJlViCsM5QQkKYjPB1QFA49cbOnlYtamMQfgEBrTWUM3iSfyplzCKqqQIKjdurapBHXgJ0gg557Ngnn/IqtiOKIsiiwVjk0UVr8wKPILUIJPM9n0D9Ae8pFOmQZTz/5LJ3ZNlcurVOrxWxu7LK0ssgjDz/D7HQTISyj8ZhazekNi8Lpa6vS6Xu8IGJpeYknnrzGt7zzHZRlgdGSwE8oKs3sbA09MV7SqmJ3K2dp5iZ06LO11UNryWg0wPcDms0m84tzXLu6wS/+wi/yW7/zn4ijkL3dLpX1+eAH/yvvetc7GKUpSmnCIGR3t8vXfe3X8FM/+c/4tV/7DWqB4ZaTt9FuT6EUnLz9bsp8TM33EJXhTW96C//oB9/P137n3Uw1a6R5ifYUW3tDPvWZJ1hbmycMApTyiMOAUZohBFRWoJUkCX2UH5DnGQIXcj8cH5AXOVqHPPbcFdrNBK2cI/AwLbj1pkOcubpF6MFdtx2jXtN89oGnufXEKnmRIoG0LF6gtz/6+DMcXlpgaWGW0A+4urvF3bcdYqqV4GtH5fd97dBY6THODYeWp/F9Rbse8cRTLl7GlCVFkdMbly74vkgZDHp097scXp5ha+vAfZnLAiEr4jAhL8coEfPoE2eZn2tjjOXspU1ed9sxhLTc9+BZjq0tgICppM2FKzv0xwVHji0jKIlDgVIl49QQ+iGXt7rowGcqaeFpwX6vR6sR0xu5LLk4DLjpxCIGSxSEbO2N8T1Du+Ex1WyzsjDD+t6Q3YMe9Thkcb4D1hCHHvWohpSCp89dY246oBl4jHvXGKdPkdMhbB+ikUxx0O+RlyWNWo1ud5uD9QscXhF0miFSCLR0z/Fnn9wgmVljbm6eNM8ZjFIshnzcJdYjfD+isjWazWWC0OVSuuxbQT5MMdk6W9d2HeukPsVwXPBDtyzzj//3J/ia43chtI/wY4QpELZEmIrhIMfzA4Q1FCV84lOf58iJw9QDy7PnrjK7uIYf+owGQ6Y7HcbjMXEUUqQHSFtQGouwMWE4RWkFB/sHRFEEAt7/Kz/BW7/uTXzzkbexu3WBkzcdI/TlxMUScpvwuQceZO3oGq36zfzqb/8J3/0PvpdGPWG48xDtVoKvFXmRs29K/s2/e4jM1lk7khLVF9jfC3j+7D5Xd7a487bbOfv0fURqgzKTHL7t7fi1Oi+NLP9ydHcvlIMvaZWu59Rdf9Wte7Ve6YZm5/qaV6qLXwTwvfiaDTc4a37RS3/xlb76azesla/srHljqPgrRTu87JA37OckMi/WCpoJ085R/r9wrBe5Zb7k2l563r8OcveV5u6vOV5Ey+RLgZ5fPlzuyhe5j4XAvAon+J3f8s38yv97P/cs+y/f7xVomS8/hsQLAhbm5xj2hkgpKaoSIyCMnZagKkvSgWv4hv0+ZeoyZ9wspHJmBFKSjwZcuHCe/d0+V68MCCKfx589y+133IyUHtiMrY0dtje3WVlZpJzQc/I8I0nqpOMRo+GYldUVp7XxNaYyLvPI05jSkmYptiqQyqOsLFWZ4SmfBx89zXA4ZHZ2Cs8T9A56dPdG+KFmZXmJ0diJ15cXF7i2uYcKIs6f3+Dw6iLrV7fwwxrNeoIQAi90TnuUY6T2QbvZfYsmTtpI7SNw7l1VPsbYCqmVezBKS7sVEfgRVeUMN64XsV7YYGe7x+rhJZTWlLnl+TPrHF5bpjIur65Wi1lf32dxcQ7tax579AyHDq9SlSVVVRBFAXmakuYFU1NthKkojUIaRdobo8OQqizxfIm0Ci9QeNKSF2O6+/1JrlYLKSLWr+3RaEZEsU+jGZHUa/QOMuq1hDDy6My4gvPpp86yujRPo1mnqiqGgyGzcx2stYRhgFKaqakm585s0Gg6zcZguEsYtxj3c7JihBfX2by6xebVDbZHY+aDjGtX9+hMx6yvD7j15ApTnWmuXNlBlSXd/R5ZnrG/NyL0BMoKyqzi8tVNjh1bJS1y1q9uk6UZVWGJkoAgDHju2StooZmd64AVRGHMU6euMtXqUJWWWhSwuDRDVAt46LHnGOc5SRxRSyLiyKN70CeJI4q8RCmfo8eWyfOcRrOGyUf4vkdlLXmecvOJFTa390jqIUlcZzwc4vkeo1GFEB5RXMMPQg52uly4fJXp6Wk3kVgJklaD3c0Dokhz4dI6h1Y6E61iiJKCJPHY2unS74+4647jzHSaCCFZ39ihPRWztdlndn6BLIMjh1cIG5qFxXnOnt2gUdd8+N7HGPQGZP2Uxfk5Tj9+hUeu7HH76+ZQAqzwycYFnhehZIQRBmSMFAVFdoBQHr72GfR7DlUTkKaZ0zlmJUU+Iq7ViJMaWvSpioyJQz1C+hR5QRiEVKaa0CsVzvDEOl0aHkrHKOlhihLPk+T5GK0leTpECBj2DqjVGxSFszh3MQwCY93su4sfkGgdURYVUhdUxZiqclTNfDggiCLyonQB6eXYNZBYF8xuLZ4XIAUUpUEHClkJRn2n2zVlDhNtsrUT2qfAuYLiTJAqkxEEbjLCVJYg8jC2oiwzPF+7zLswoigsiytLCKlpT3fodJo0GyHNZp2llQUXq2JKfOkz6HXxgiYf+9gD3HTTKhfObSGFJKx5gKJRGxAmR6gqiZUhv/SL/xevf9PdWFOwcW2fX/h3v8StNx3Dr/so3ePzDzzObOcQv/t7/5lveOtbGAyGdGYTBsMNVldX+NhHHuQbv+nr+S//zwfZ3hzQmqnxvd/3vUjfMOzvsrO7ge8L2u0GzfoM3/5d38z27lnq7Wmm5hYohaBShqvnTqFrIV4U8qd/+F9YObLG6uoxrumLbO2O2D4YsDg1TRL5HFtbdiY+RYmQEqUg9EPyIkMpjbWgsHzqs49ybG0Zg8TKgs29irQIqMWSR5+4ilCS+ekmpaiIfdeQT7Vq5HmX3V5JWcK557e46dgSZy5uMD81hbUloyylspL2zBKe56G1wTKmEbhn3GY35eLlKzz8+BlOHF9A24JxPiYvJefXB8x3Iooi58jKPJ720UHiom+koSrB9zRT7Snm52epjGBhtk0YVkw1WqRZztlLe0w1ahwMU24+togQFcpLQPs0koTSlqwtNx0ijuLUqceZnW0hdcJnHrzInSeWEEIwHAseePoyi7MNTqy2URQYBkhZsTS7QD0JSKIArRVSGvYO9kEYlFZ0moKyAmN9tLYYKmI/xkoziVJwhWktUmRliVAls1MJO9uXqdJNhplG1+7E8xTKakoD3YF7NpaDLTrhPnMzJYIStJNQBMpgipLWXMjiyioGQSNyCHfoS9o1i827FKbEC2IKG2GlYDDIyNKcSCmEL0E22N/vcfxQCbbi3B/CBz5xmZ/6jvehhEL5ASpoU+YDTDZAmJLdXp9aLUIKSWVLVpdmaHmSnAYXN3ZYO34LUeBjS4EfhgTaoyxytACbD5HKZ787IDdQayQ063WqymCNZe32FdrdGfIiY29vn7wsaNQTHn7sYeYWloh0xuzUErVQEvgz3HTT3Tz/2bOcvfYwh9bAFmPKPGfYHzIbJdxyd42Th2dYP5jnF3/5j3jHu99L6vW59dZ7WL+ywWf+/AO88fVtbKapzdxO3Jl7ubW+/avUpK/Fb3yNZuclK16ThfYal+Rcv+XEJfm1DvKSA73Gtbxo7auBiTc0dy9e9yqHfBlocuPP9gVPiy+U4F+8uXvpeb/S3P0tDlOZn6kqh7u9hvLti44vdg8LXppL8uLxhjfcw/f82M/xnW85/pIdxYtvwldq9iaLFaCkotftk+cF9STBmAqtPMajPnGt5mb2pSKIIpAOcfQ8n8D32N3dodfrs7SwSBQnnH72eWc1n1o601PEtYB8lNHv7jI72ybPR1BlVAbCwAWPhklMFCcvZGdVVUlRFvh+iBEak6dYa6k1mk5HYwqeeOp5brvjBGHocXRthVNPPMPZ569w7OgqR44tc+3qOr6vkJ4mqbdYX79KOh4yPzfHdLvOhcuXWViYZnFhjtJWhLUIzw8xJieKG1RlQV5kYBSeH1KWzm45CF1GjpCOSuVrnyzLCXyPPM8JIt8ZwaDJ85wyLwiiACkseTaeaJcCGo2IIFBEtYQyz+ge9Jibn8XzBUoGtFp1rCgcWhnVKPISHYYEUUyZDsmrwqF+Cvw4on9wgJSQp2PqrQbWlFSlod8taU9FzM/PgpT4UUAcCcqqdBQ4IxmPUuqNGkJKitJRUrUX8NyZyxy/aRUL9A76tKdaXL28QeD5E4fDAs/3qdfdeze2IoqbFEVGGAWk45xaGCCE5ZErPb73q2fY3T1Aa83i4hwYQ3804NK1DaZaNa5c22VleY48y0FA0q7jBR7a08zMdxgNx5jC0JpqEoceV6/tIQGloDPT4NKVHTqzda5e3mR/74BjN7ncpql2nTxLGY5Srlze5Y5b14gDye5ej2bTxw9jPnbvkxw/voTScOHSBseOrYAxhKECLcizIWCwuUe/N8YLNItLc2xubbM4P8Xubg9hxQQht5R5jpIeM3MdjClJRymVLRkNxtRrwmkl0NSbEY8/fo3SjGnWIy5e3mLt0Cpzc020L9nZ63Lp0i5SSDwP2tNt1+wo2NvvUmYVezs7PPr4JY4fXSDUipuPr9Lrj5lbPsJHntnkc089x/f/928jGw/xfEUFYEv8QLpMJ2HdZIqOKPIUIQXaCzATNFZ7CmMKpHbFK1RkueVHf/wP+dZ3nXT5dlKTjsdUVe6awgkaaK3ThpZlSVmmRHGCqXoopamsJctSwonZjVQKL/Dwg5giKwhiRVm5YHIXPG4xpWvQht0DlOeBqNCeT2UcIoc1+H4IIsSYA5QAZExZFRN0UCMkZOMeSimk8BBCY4UhrCVgFUUF2biPwDqLeZshdAMhXL6hxGJNhRRQlTmep7DKw1iJxJKNc5J6k62NXTzPnyCFBVVZsnl1BwvEtQhbgdbuvX3og5/gnjffDliOHJtF+zA11XbukbZib+eApYUOzdab0I0E30QcP3kSPwoZHKScOvUkb/nqe4hCTVEWhGqa3/iVX+Md730noYpQQtKeb7Fx7QJ7F6/Q6yu+5mtvJgwa3HLbLRw6Nk+ofKSqGI8GtBuWdj1BVpJQh1zcu0x/64C5hcPkZcm3vvvb+Z7v/j5G/SG/9zsf4Gvf8jUoJTi0dgvNZoujR1b56NN/ymOPXeEb3njcObCKAt/3yfOCBx49zcJs2+mUq5ysyAi0wmLJK8ujT1zh5hMLSGG4eOUAJQ1z0wlbBzn7G7v4nvv9nL+yxXQ9QmsXw6F1SDuJ0Upy200rXNq8Rj1po7yK0kgeP32Vxx48g/Xg8qXLDNMx7VYbSHng8XPEcUSSNLn95ArWWIIg4U8//ii3nlxjfXuXuU7ywr1qpSDPx1RGEkcxZTEgLwqkFFjrYoM+9KFP01mYoxlHDNOcp06d45YTJ9AeeEoj0Dx1ocuZ009zaGWRshwipQ9CIaqKoBZSj2Nm2gmthqCVBECGtRVHVjsEWrKxvc9Uq+6+o72QPM/IR31G4xFhGFAaSSNpUo9qmCJzaKMRBGGMtYr9gwP+4KNPsDrXpJEESGloJM51WSnpYlK65/Fsj9S0aU2vUJgBUVzjYJRjzJBzF7aQ4wMWpgdOzmENlQBhFEKVXL0MYT2iKODccwPC1iz7/T7TjYhhaun2+2j20cKiREylmxS5oZmEjAunzU1zS6AtqhoylcCn/sMWvVliAAAgAElEQVQ+tx+r8133fD9B4LlazE8wgJYGYSss1r02IdpIJQmljxGG8XjI3Mws167tEkQRtThiZ2cbz/fp9g4Q1QBfSEpVsr29zfLKTS6/1ZgJYmP5+d/+Bd5+zzsQouD0mbOcPLZCqKA9PYevpTNd0gKrJDKsY01FXG/QMjP8s1/5bd75hhmCQGNsiowiTFFiTMhmt8+pM4K3vvv7efPdb+bqpee5sDvgR/7uTVw7dxq/uUJGzNKhEy/LuXsZa8tULxj/vXa1eb1ctDCx938tq0BrDEq8OCbhlRhjX/jPDctkDyEcVdta++rmKvZFZ3jFy/4CGvdSqueNJ3+Fdy1uiDcQTPJ+eckxvrC8lFV641Fv/I3JidHL9T3lDcsNJ3f46GQjIRxCrbT+SnP3tzWqqvqZ6zfi34SA8bW40N/9d7+Tn/hX/55vvPvIDTvcsMcXmcERAFJx6vEnWOo08WuOjre/v0+9Xkd4LsS0Kguy8cg1F5NGx1G8fLTS1Or1iS3xDm98w50cPbrKc6fPcOniebQQnDu/Sb3h3OzAsrs/ZHZhhnScUU6KP097FJMZ3DTNXeiwBWsgz5zJh8CSZxmbGzuEvmJhaRFjYKrVpJ7EbGxu0B/08PyImc40589fYTQYIKSmVm+SpxW9gx060w0Go4Jnn73K3OyUy7izFigxBvxJEHZeFIB1uXaFo4pK6fJIlFQIaygn+VSTfGaEcG6fYRRMPqyCylTU6wnK8x09Jg4pygqBC072/BDP8xiPBijhbKitmUQcFLkTg1cFQkn6/QG1pEkQhkilkVrR6/YwleT+z53m2PFVqsJppp4+dQ5EydT0LFmWYo0hjGIAlBSEkY/v+2Rpzu/+wSc4eniBRrPB1uYuSwuzYAUf/uhnuXRxh6rIef7CNWZm2uxt71KLfbSyWDS1euJofdoZ4kgtCUIPa5y99e9//C+5fblBZSzNZoylZGamTV4UKBSjYcXyYouDgwH7vTGL8226+11G4yFxzbkvKs/psp5//ipeIOgPxiyvzlGWFZ7nMzvb5OyZSxxbW2aq0ybNHPVPakVYC4jjGCUt4EwafM9HSIkf+KwsJehAoZViut0ELEVZMhiMCMOQwA8RQlJvRBRlxtz8NOsbGwRBMLGvj4hrEUGgGQ+G7GztMRyW+IFHGIVEYUC/P8TzNAiF1lAWll6vz80nj+JrRbc7ZG52mk9+5hTzs01AsL87IB1nHD++yrlLm0ShJstSdneHfOJTZ7j7rmPEccDMVEyjmdBq1pwpw0yLIGryix9+DCHh77z7HrQfkqWpy//zfYRQztAojhHC0b8935voXyq8IACBs4xXIdZosAXaC9Da53d+75N893fc7u61yTedUsqxANIUed30SUCWlY5OKV1+Zp7ljIcjGq02eVZQVcZ9brLU6eWkpCpzlNII4RC0LB3gBRFSeIRxglACpTVFXqCUo8kqJSjyEVVVkY4OKLMCoTw8X08cQBXpaEgQRIxHY3QQkGcZUkIxTlGeh5DOVQ9CpA5chqDRGJO5AsIymVhRgHQooJTucyo8vMDDYolqCZ+69wHWjixhSpyBRGFotxtYazjo9tBa8+gjp3jb299Er3fgCvQwAGuoqolTqQx47KHHGY5ypHcTg26Xfneb8+cvcmj1CEkUcvnSRQ4dXqbRbmK0T3uqwxve8HriRpN/8v7387ZveCtJYwpbSQ4fXuPUM0+zdvgoG5vrBGFIZ3oGGWs2rl3FY4ioGpRGEMUBuweb1OszfO7Tn8YPAlrtad79LX8HawXPnH6WN7/hDS66wI+JI58/+7OPs7J0jH/+vn/L9/3Y27EUKI0LBNfKFT1aUk+aeFpPJg8r0rzE9wKkUBw61Oba1j5CKuq1Jp++7xlKDEcWpzl/bZ9bTx7h1JnL7G/vsLg0g9S+Q3aVxWIQ0oIKqMU+zSjCmjG+Djm0NMOJE3OEvs/xtRVmpqeoKstDDz7N0eNrTLfbJGFFXuROo2oMi0tTRL7P7sGAvfV1ZubbWKsxY0MYCdKs4unn15nvLOCHAAZrfJRU3HLLKuNsRBwJIq/G6soSWdljOEiJogClJXPtOoeWZ4g88LTPZx54jqOHl+j2D4iCkHGe40tD7EkQ/oQ6XJLlijRN6bSbjNISKxSbe/DII2c4fmyRnX5Ou56ALbi2M8TXmkefuoD2NcoL8D2NtTm1qMXps+scXm6hvITeaEAY+Pi6hlIF+xunyLOCzuwJVFSnNxqjCHjq3A5HlhJOnenip+c4tqII/YKnn9pnbjHErzxKUaBURFYU1CJN4MPBQNGY6jDdiqmqikZcA1Miih2UlGSFJq7P0R+lxKGLW9rpDmklPtc2drhw6jKXH9rlX/39O4izt/HgA4+xsrzgaLxh05mSVAOKbECVOWddqW6g3gmDsRKD5srWJkeP30bSSEhHY7LxkMDzCH2fnc3niX1NRYXvN8lLQVxvoKVEaclP/eZP87P/4F+Qmoy0P2L96iWWFqapRwpBRehpLBaJwAqBF03j+TUOuntIkRJ1BTfdUSKEYxMc7A149JmM3/3AQxw7fJwz5wfMHVpiab5J72CArxWJvUwcFozTipW1W5laPjHxK7BfoLZzvaG70aLxS2/ursdrvWTty8dku5cy0P4qTLZXuhRn5sLLDF1eadvXPNBrbCdeATy5joS+wMx7SeP7au6ZL2o9/4psPuArzd3f5vibbu5eQNle5fWvfus3oXde2WVFvBTFe5UTLK0ssb3dJfQ1ozSl0YzRfojAsLu7S62eMM4KfOVRVilVCXmWMR4OMFXBoO9C0Hd2d5hfnAOhWVmcJe33MBZm5zoktRqDUYbnBTRbLcIoZDgcEwaha2YqgfIESrmMI2sN3d1tGs0mWguKIscaw+7OPul4xG133oaQimtXrqG1RHuKdJiipXOve+zxs0y1WzTbTeJaxENPnOb2W46zt3fAsD9iZ2ufN7/5Vra2t6glEdrzGY9zQj9gNOojUfiBxtgKzwtRWqG0drNN1pCNxjz40JMcPrzKOMsJoxAlNXu7XfIsQ3nWBZJaSeArhsM+o2GONRVlkWNKix+GlEVBEMVUZUngaz78p/dz6y2rWASep9nb3XMaqKzk2tUt2p0ZTJ6RpSlh6LG/t4uxkGUFd77uZscok5ZBr89olDI3N83DDz/L6uo8vlaUxs1AdfcPGKcZQeABFcfWltC+RClJa6pFluU8/dR51g4tsDjf4cKVdb7x7W90RbpWNFpNyqJilOakaUatnlAUucspRCClRzoac21/yM3t1AV2X9um3UzY3OwRhD5JLaLVTNjbPWA4GpIVhtWVRSBjNMjo7qe02m2UKJDKiZO3N3usrs2hpOXBR55DW0k6yqgnIXHks7m1R1JP2Nza5dlnrmKraqLF7DM1Xafb7VGVlrK0+L5PaUpqSWPiZqrwtGB9fZuZmRlnxW8NUnhk6RitIYwCKmtptVsutN5arq7vUhVOp7l3MGBuocNB/4DKVCS1hAvn1lla6jgzmlrChbPr7O0PQeRsbOwyP9/h0pVNWs2Y5cUWXuAakbgWszDf4sKlS9x+y2E8v86zZy6yvNRheWGag16fvf0eDzz+PDefWJxMQuT84n++l9tPnOQP7jvNW97wRqZbzq2y1WpS5WOUF5BnBWWZM+z3CKOAPB1jrCUIa66hkxKhJGVZYmwJonLPO+VRFRW337pCZ9qhGKPBwIWvC2cHX+Sp07hpj6pyjY6e5Eimo5Q8GxMnMaaCMPRQ0uU1SSnw/PCFIkxKb6LnAzVBNJBgbUk66iGF06ddd8C0xjrUEUsUJQ4N9JIJWufc7cIwAOXh+77LGNQSU5RUZYlUkiwtSEcp937ssxxeW2Bv6zJJLaQonMHMwf6mCz2vLFFcpyyZaP0qVBBTlinK01gDh4+skI4zsrSg3+sxPTvjJm18TRRFbG1scuKmo5w5c57Vw0v8tw99kltuOUI6HlFvTmErA8IwP9NgY6PLM6ctn/yzD/P2b/wmnn7mCWZmm/zA3/sO/sXP/kukCvnRH/vnfPu3vovNyxtoZVB+hKcs9UaL3b2Un/rJn+bI8eMsrUxTj6e57/6/YGlpmctXtlmYjWgk89Tb00RxjJSKwSil2ZxGq5CLZ55jeXWRuNbgs/c/wh/+4Yf47P338YP/w3ciPEF/0MdWkvs/dx9vfss9jHoDGicc9bYsLf1xxXA8oJlEtGoJgbZYU5DnY5Sq4fseYCbROzA33URJqMUec/NtPK05c/4Kb777BJWFRuxx5PACUkm0KPFsirE+palcE4kkr1K0DhFaUuSpywjF4smSAuecii05tLJEZQowGVC6eAbhT5r5gsDTbO7sc+vJNaq8AmuQvqQoXPk+P92km+1RFB61IEEpg7EFeVEgpKIW1BHSkJcpoR9P9KeFy7eUBaEMGA23GZWaW0+sgpCMsoLL69uszM+A8ims5tN/+STruyNazRb33f8U87MxWZHh+RGfvP8s5567yHvf/QasVrTrTaqypCwG1GsBRuQszE6RxIH7XGjPZb1WkssXrnB8rYMUFqxguq5Ji012Lj+JH88ykgvsDzNqYUzoa4QdcHw55v4Hz9EOtzix6hylDYa5jiarxtz3FwMWD4M0ilrsnJzLynDlYo/5Q6sIYdnu9hjnFYN+j1AO8JWiMgF7mdOrTrXqZFlGEgcoUdFp1rnczfn7q6v8y//0JO+466s4vLIKwoVKBfUOxoIps4kJkmMmTUB9lNCUpiDPBVu7e1y8ss9+t8vKoVW63S6d6RmuXLtEGMeEKseXApREqgihIwajAbXIsYt+4Ie/k/5GhS8VZCmm3KHTnnZyEgkVFmtKbGWoLJSyjqBif+sq6WiH40ePsj18lpkph7YG/jT3P7JLo9VhPNjn/LUB7/uRf8Qf/f4HeO7MGdJRjzuPhVg7wEMzyiWLJ16PmVShNzZ3L3OtlF+sUn2xhOcVMLJXri2vn+6G5cbMOfGSn7+kxu96c/WSFV9Kc/eq2X1/hebu+o43NneGF7+/FyN3N57vS2vuxA3/ro+v0DL/FkdVln+jzd318WrNne97fPihSxyvZ6+8wWvcaDc6yw4HI3Z391lYXQAjqaqSPM8BSxwn+EGA0AKLAmOwKGqNBspz+XJFXnD4yCGQGqkEVTZi2O8hpeLs+XWELNASNwOV1DAG+v0RSkq2t/eJk5Bz56/QbjWwtkIKhbHOka+sKrIso8gywHL12gHZaETke+zt9VhYXKTXc26VZW6YW5xl7cgKeVGwvLyAF4YEyjIcDdhc3yWshaRFSToc02olRHFEVQniKHLmMcUIrT209hBCUVXVJNOsmoSIG0DiaY8wjBl0xygxQimPWiNBYAiCGD8IGA76TsMnndbQTkw2drZ30cLn+bPrJPUAW41JxwOOH3dopEWTFzlRHFOUFc8/d4Vmo8lw1OfzDz7HieNrHHS71BKfetJBeyXCKqyqKPIRSa1GZ7rFqacu0G612NrYoTM/DdfpKVFALa6xvr4FSGpRRBh7SKnY3+3x4IOn+Kq7b8ZTUG+FHDq8QFmmSFFQbzYpy5KqEjz79PMsrS2TZxmBVzgXQwSmsoRRxG9+5PPcuaSYmZmmqixJHHL23DVmphNaU3VMKYkjEFKzMN/k8w+dphaGFGVJWVU06xFBrQYCijInCmJHeVMC8DhyZJHzF6/R6UyhA83WVo/pVoLSliPHl0jzlFoSUat5CCu5cHGb1UPLhDVFUaZ4OsQYy/7OHlVZoj2fei1BU3L58iVqtQTt+1y6cJV2M3GFvMlwaKLHeJQz6o9YXu5w4eIG/X5GZ7pBZ7pJFHqcPnOexcU2WM2l8/toDMKzzMw0mGpPMzc3Q5mVFHlKsxWhdYASinScoZXEi3w6c23yUcbnHzzDcFQwN5tw8fJljBEcWl1gbXUKU8FwkKF1xMAomlGdD97/DAe9Lj/8vvdMsv5Kl+mGc5sMgoCo1mA0GuIHIWFQoyoz+gdd4ijEolAKsmEXU5QoP3SmK3nG7FyL/+Un/ohv/sajaN81uUU6ABRBXKeqMmxVoaULK3fB4QY/dCi1ENo5ahpLZQyjwQGe30AISVUWeJ5Hnhd4XsgL01vWYCqHpodhTFlZkNLRv6TClAZnHVVihUYJQVUNqQoIwhpgMZXAlhNHO2HAWBdS7Ds9VRBF+HHEkWPL+IFHVEswskQKhZACTzpk2hUryhE1rXLh6bJEKeekKYTi6SfP0OsP6XSm2d3rMhyMaU21URqEtOxs9NlY36bT6bB+bYs3fvVtGGuIooQszdBacu/HP8fq4XkarQa7vRne+5538v7/9af5H3/4hzBVwNu//ts498zTVNWQ9/6978JTdd77zW/mm975LmYWptjZHtOZnmZxtcZ7vv3bmJmbJysKGq2IhaXDtOc6+LGlVmsgrOYTH/0orXab7nCTerJIVvTRyuA3myQNTRhMk2dDvvprXs973vMOAlXy+IP3srp8iIPBgHqjzuzcHCurS/z87/8KJ08e5bnLu5w9d5Gjh5bxPY/KllgrGOcpQRDiSZ9ikhc5GAyIg4jNnR7WVGSpwZMVSU0zv9Dh6QubLHQSAq25/4EnWZxr43se48I4dF8GgMaKAlAoIbm03iXPxyS1hHE2oBbW8CbmO2me8l8//Civu+0oNU9ghOeMuwQgSnZ2+gRBiBbQaMQYC6GvMCZFUeNPPvEItx6fR0tF4Cl2DvrUwoi9gy5JlBAEHv3BNoPxECEdk0Mg2e0OadRjisEeo/GAZmsapTSSAiskorC0Gg0E16M5JHGSMDPl0UhqzK90SGoB0oK0lpPHVphbmiKOIqzJkcK4SE+hSYsRvnL6NlTMuWs7GGNJ4oiqshw/NMM4ywk8D13XhMMNev3n6WcLTHdWSLMhcZQgqozYCzh9/irajFDFZdaWIpcVWmbO9ReFxKNWH5PEdUph0TLAVAXGCrr9GkFjCl+XxH7gHJaFwWQ7jqIoE1TQoB0rtrs9KiPY76Vor0ZedLn/PzzGo8/u8jPf86OY0hXVpsxRUpEXlqAeITKDSftI38OUhYvPEQHbW9v4rRhtSsCn28+543V3EQU14qjG1u4GyyurKDyscbWLEIZeDu2ZFfy4xqB3wG/8yW/zgT/+/zicrKCkz9Nnn+DYsWUYZXiB+v/Ze/Ng27K6zvOzhj3vM99zp3ffPL+XSZKQICQKaiEqCIIgatmWdmlVaHV0tZbdltj9h/1PdxFl0IZidWk1hV1BaZelVjfOQkICQiY5kHO+Id883Hk64z57XP3HOu/xMsmEpDui6YpgRZy49+69z95n2Hvf3299p+m9CoRykVUBbkgcNxj1emhHgsl45NGLLC3eR719EyNypN+kt7XMpz/7ON/7zn/Evv2H0Z7LwuE5Rrs9XnO8wWw0YNy7Qa58aguH6Sc5jc6eaTFnXoLW3VnovXxj9VXZz9enX97a7537kHfUj7comvLlfP5vu1Le6VD5jVBEMb2Pv7SBnLrT36kretHBXkkr+JLtbtE5LSn0JS9XTHWL8muK7luNXTlFFZUQt+mWt+md2EzPVx1s95Lx7ebuWzjK4v9b5O7WeOVTRXDs2BF++p//Ju9906GXWf3KF9ItZE8AtXrNXh4GRqMxcRyxubFJvdGwF7aUbK1tUm/UyfKcMPSpKoGUmsAN2Nlap7/bJ/BdTFFx4/oyTzx9lsWleZqNBjPdFs1GnSSxmqrheMJst8vyyhr79u/Bda2jpZS3nPsUvm9pfqur60gsbUwKxXPPX+Guu46wsbnLwsI8xlTkWUYUBviey+NPPs/iXIfhcMDm5gbz3S6bG9vMzs5y6eJ19u/fQ3emRb0Wsr65Q7PZBKnY7e0ghcD1PIb9odXVee600c2thkYIyrLE0Ro/CHj2mfNkxQjtCuq1FuMkQQmB5/uk6QQhbEYhBtKJdcccJzasXUjY7g3wfIHreri+zfXS2mGcJGjl8pkHH2dxocu+/YuEtZAwsuGvVVXRbjfI0ozKVESxZ01ehIdEs7G6i+vbjKju7Ay1mj8Nh4ed7V0mkxTHcQmjyBpJVAUCQZ4XRHFEHNcoshypNXmWEdfrhEGA47hkmQ1J9/3I5kRFNhPR8wIQ2lojT8OhV649z8nDixij0Eri+xrXFVQY6o2IZ5+7xkwnpqwEcSPE91327LExBQuzbUwJjz91nm6rycZ6j85MnVarxqVLy1y4ssXxo/uII4v2rKxu0G036A+G7O6O2N0eUI9DPNehNBVK2fByhCAZjijyknSSU5Ql9Xpkc/tclzwvmKQTlKOmGYjQatVIC1tACqnY2enjByFlVtFq1Xj+7EUOHVzk0uU1As9FSsPO7ohDh/Yhtcck6bO5s0u9rrl0eZ3ZTgsBXLq0zHicUKsHtwXlyytb9AdjGs0IsOdgkRVcuLLCW950mu2tIceOHCIOfV64cIOlpRmkdLl6dZV2u8b/8peX2O9rzg8s+vZjH/hORmMbQl4UOUpr6545/Z4838NRDmVlaW1+EEybH0mWJgSBb8/JcYLjWMpZURT87sc+xU/++L1IKcmyzDo+KtsEKaXQ2iHPrLkKpkIqNc1dtDl0t5ANW3wYXM8DUVoKMgbPC6fxIiWjwci6pE4z8ywN2B5LioyqyqhMhjE5jhfZ5lGKqRmKBgFSKTsJEfhopTBGTgs4Q5omuJ5FNLUjMVVOWYHWDlSglCBNMwSKylhEQEhBUaQUeU5ZlnhuYDV2lW0eu3Mdms0G//GP/pb777+Hdrth9bFTarAUgjC09GU/0DTbNYois9Rm6dDf3eX4yWPkWUFUq/Ozv/Dr/MxP/X2On7iHOIq4dOEyYQiup9i7fz+eW2PQH/KLv/JPGAy2Wb2xws//45/nv/uVf0aRDRkPhjzzxFl++zc/yvrKdV5/73fQ392hFgakeUE6KViYn8f1fVwX/v5P/Bwf+OB7EECzvUDo1BFK0ul2iAIfz/Po7/RxXY+Zuf3E9TqNZtNSb7OMdXeF0hS4Drzm+GEcLemNEqvblTDJMiZ5ReBqjDBgJOvbA4yAyPd56pkLuHGNZhxzbWWDmWYDqpxmLcBxfBbmZ1jbHiCFIvA8q380WI0fsL07ZDjOuHJtnW4nJgw8PEdZN1JjA8CNkZw6eQDHUVMESFi9KJBkGZ1Gfeo06TFME3zHJ00rylLiuJpDBxdwHckkzTh7eRnXcWjEIUIIe25JiacjAq/GFx67yNLcPHHk3f4MHC8gqySe65EVJY4bUBjDmfMXWJyLKE1KfzzAdSraNZ84iHnwoWc4fmCBoijICsFffeoZjhyeoV0PyYuUqiwoq5K8MLiOS5qn+G6IqUomkwGNyLH/QzBs9/rkRc7K5hZLCw1i3WB751lmuvfTbMRkFTZCJR3iBQ5lmWHGV5DVkG4nwJiCnZFkOALXdXG9HKUcGs06ZQUvPLlJuxsgdcJo6CPdGDeusTMc0q01yApD5Bkm/Ss42sY8KLfBxlafMI4RSlGv+UhG9MYel//jGr/+M7+AmZbTRpRIqSgM1Lp7KUpDlY8p8iEbWzsUxkU7hqoqKYscqSSiKNkd7rC6sc3JU69hbWOD4XDInsUFdna2yPIcV6WYosSYnHpnHxsbu9TiOr3dXfa9dp7vOfB2OjNtzjx7nsCJ2d2+wkx7Ftebsj2kNcSTANojSW1WsDCGKNAMh9t0W20+8gdf5K33hYhc4YczlKrGvsOn+f4ffBd5Lui0uiinRjFahuSSpTiLmM7i3Zw9v8WhEye/Ye0opMRU5YvQPSXlVIpia8hXHHc0KS9G6+54rjGWbv2q2YjfeMNXqndffIyXQnev8hh3NHevtPLlmuE7XTZvIZwv93rFHdTWb3Z8O+fu/yfj5exVv8kdUL3KTb/RF/eJf/9xfvvzW6RTbdhtY5VvMIMgpuuNMAT1kDAKiOKQZDxhdnYeRzsopSjKjDiOrHnG1PLVFnGSNMvww5BJlnH+3EVcRzM7v8B7f+Rd1OsxBsPN5XUuXLqOVi5+4NNuNSzlIgoR0ky1U85tCkGSJIxHI9IsZWFhjnarzc6Wzf8KQ4eV1XVmOjOAIMtTxuOUq9dW2NjaQJqKMs+RwuA5irNnLiAM7Gz36LRrXLqyetvifc/iHkbjAs8PqDdaVMJawndmOsSx1TB5nke91kIYSTYprAmDYRqSrFjcM0OrM8e//6PP4GhFhZ3NyrOUuBaRJEPAWLMKrYijkFa7Sb1V4+57jiBK+PQDXwEckIrhaERZ5Hzq0w/z9u9+I7V6iJEWMbKh113qjZjRcMhwNGA8qMhShcBlONikKCZ4gQAJe5Zm8UOXuBbSbNe4dm2ZmZnu1MXR4DoK13NQSiKlxvN8lBZ0Zxu0Z+q0Z2p0F2YwldVaVsLBCwL8IGJleY1Gs0GZFzz/7HnyFJ597jxJMkY7Dh/62Gf47tcdQnseruvgeQqhDQcO75siE4p7X3cCIxXXV7bIMpidb5EVFfv3LbK1PUBqxWJ3hqqU7F2cY2drm+XldebnO7zzHfdy/foKURwRRIKFmTaIkla7AUawtDjLzs6AYW/ExuouWxs75GnK9RsrNFstLl7a4Mz560RRSJ5mtyM4rlxZxvcCGq0W/d2+vU6UxJQZZWGQwqPZblPlJb7vkeUZ+5bm6O8Ouf+NJ9nc3mZjs8fCYperV25Q5RnXrvaZ7XTo7RYszlrX0Ws31/A8ycEjewjiGs1mC8dRbGztcuTwAn7o2sByI/CjiHtPL7KzvUW70+aLD53BGMNgmDAeJdP9bfHUMxd46JkXUI7kS488ZDO+prP+SIWaTlAobU1/pKqQQmEQlGVBkVdURiCVtlRDqchLAdKjVq+BsMWe7/v81m/8l+S5bRI9z6UqKybJhMloF1NZlF86kqoqSJMcU5U4rt3O8Vwb+p2kuL5PENfI8wQwuK6PQWMoUKrCcXzqjTpSKVzPt5OvyrGTJRhM5VMWDtkdv2IAACAASURBVI7TwNE1iiwjHfcAyNKSPE9s5l5pCIIAgX0P9mfFJBnj+R6mqhAC0tEAqZwpaigpCxvWXRY5yo9w3AgpXath9Fy0VgRhgMFQVXYirCozpCyRsuKnfuadIAqy1OZqPfDpR8kmJZ/624dotht4vkMQhvR7PesiqRV/9n8+QLPdZHN9gyeevMhkNOYtb3odpYy4fOEy/+q3Ps4v/tf/DQcOzbF0aB+D4ZjVi8/TbEQkaU4l63z4I7/NF778BfqjPkKHNJttlPL4wAd+nHe8/Z184hN/SLPWoqokybhEa/iB73s3AonjBnz84/+OOGoyGqRoZdjc6PGOd3w/VBWTLGM8HtKY3cPigVMM0pzS2M9ye2eHOI55+H89QyPymakHXFvdZJINUaIgzXLrBI0k8iKyopiCA4Y8L9kZpvzxJx/jtfecZLbu2DiHTPDU2ZvEQcDGdp+qtFEd+xdnicMAIRTJJCHL7DmR5YZmHLOxNUBph6qylHMpHIo05dLqDgYHLQS+lpQmY5wWaClZ2+6xsTPii18+T1kJHv7yszz8zCWEkXzhsbM8+vQlTAXGZDjakKQTamHMiQP7mG+3uL6+y+XV3jRkWjHIxqBK7n/9AfJyQJrmPH3umtWUSk1WCIZJgev4lAiuLm8w262jZUx/IHBkjbWtHKhIpxMiqxvbOFJSiwPe95778XXIF5+4xsUbPZtbWVUYIRDKoR41yQrB5x69QBS41ELrUFqUBZ/74iW2+yWvObyXcW/E+vW/RUZvICknLO9aHeogyejUGjz8uee4evEq3aak0wBTZWgliCJFGFvzlKJMKU3BJE3RSnDyvhCtwJQR0p1QaZ/AdVmaXWR1u4+rFePxiEboYkxBlgzwXIX2AwLXI/Z9Ij9AyjrNs7OMmj02NrdIkoKb12+idQBK4QYhuZE42mM03iZwfZr1FrXQxicpURHWGzz28FNox2Fc+tTqHXa2+8RRbTqhY3C1S7sVMx7sWESmLHHdkLnOLKIsuHj1Ah//xB9Qb9VwPZfmXEWtXtLtzvP4449RVaWduMoylBSUCErlEXoRYb1FvRGRj4ccO7wXZQp+9vveyz/58PP88V+c4+N//Ajv+eA/JjcJD3z2r9hev8mjX3yQJ7/4CZryOtIXjMsGi/tPkxWCfXuXXkVlONXg3fEToCjyO5ZXL3q8qD6U8vbjzm3B0uBvbV/Bi41R/jMY5utAJvB1qKRTJPPrvtdvwefwbeTu/+XI86/m3L1ChuGrGrdy7l4qFq1eZtmt8YqnyxQyf/P938HDFwfsdXuvko75YuhbOw7CwObGNoP+kDAMMfa/GMl4jBcEpJnVvnlBxOb6BqIqGI2GzO/bi+O4DAYJzWaDII7Y2d7hsUee4sTJowwGQ1xX47sOtWaDLCsYDsbWPrhR5+y5K3Q6daqqwpmaPijtTl+nQQrF5uYWVVkwO9skCq2jl+NqtFaMR2M8R9Nu1TlyeC9pUXDm4k2WFpeYXeiyublNs1FjOBzgex7DQUJRFFxf3uDwkYOURYYQCs9zmUwmFLk1NCjL0jpmVhXjUcYTT52hHodT1O4cg+GQvUtzTLKCy1eWObRvFj+I6A16BF5Af9DH8z2k0CihMFQUuaXEDccJrqut5bmrCCMXqSRRHPGVJ89w7z3HqTcD0nSMlA5aavq9AVJq/uZTD7N3aZZmK6YsShxPURRjPB3hBTGu5yOkIAgiG+lQVSAMeZ4ThFOdIzZywmaHSbI0xXUd1tc3cF2N0pK1FdvAySmldJKMkUIilcIPAgSS0WhAqxlT5BntVg2tJMZAO3mBxaU5Rr0RmxtrlGWBlA5bW0P2LjXZ7Q8JgoCtrV2OHFxk0B/S2x1y+coq8/MdhKgI44DBYEJ3rsPVazcoC4ERJWVZ0mxFhL7H8so6vueQJSV+4PHCpRvs2zeLlNCZaeF6Hhub2wS+T+C7VEXOeJRw8OAizXbMJMl58rnL7FuaR2tNu9kkGaV8+dFzHDiwwNbWjp0MKDPSJGU4TBBSc+XqCkWWE8chcS1kdW2bK9ducurUAbKihDJnbr6FdhRR5DFJR3i+4sZyn7nZBnNzLVqtJlIKhsMx585fZaZTp9OsW3TJUYyThGQ8oapKPO1QmYrVtR06nQatdszBQ/MoBaYynD2/bNFX0eC+o4tcSRtIDB/4kbcgESzfXKHRbk3zYw1KuRbBqyrGwxFeEKG0ts6raYISJePRiDCsIaSmqgpMZaaFQUUQ+rh6PJ2pVpRVQTJOiGo1qtKikEop0iTBDwKKIrPGTL5DMp7gBTGe72KRvJIit+YCRQGO9snzEVZkp7FelKWlBisAhdQCjLRF4WQEoiBNh2ipSZMJVWXwghCBwlQCsDl6UgiKokBKQ1FkOG6IVJ6NcJBT9zZrhYAQBqUkeVba+6O0y+2EtURIhaM0kFOWOWUpKLLCBqqXBdrR07s6JOOCP/vkQ7z/R9/O0089z1u/974pM2GTOI6nDpqSopBsbe4yMxNQi2P2H1xksLvFD7zjFI8+PuHgkQO8/Xu/jy8/9CB333WK0XjA7s4aC7PzJMWYIvf5hz/zX/G7//ZjNtfTCIJah6uXrlqzI89lbnGR173xjRjgl/7bX+Zd73w3gRfwXd/5ZrrzHS5duMQ//Ac/x2MPP8T3/+AP0utvkE0yfvqn/wE3btzkkYcf5/Spe+j1N1hdvkq92UAaTVH1aERzKC/nT/74kxx92wKmKBilCa1aSFFWRH7AVq/P+csrdNsNrq71qEU2RL5Vi5lMCl571yHOXr5B4FU42qEUgkNLXXYGY6LAJckyGpH9/1RWBVLK6e+AsUY3WVEwP1On2YgJA9+ik1mG67i06w2rJa1y+uMUzxFoLVndGrGyvsVoPGFlbcRdRxZJ8pK7jx4kdBW1OODIvq5F+QxMMmuMleU5SkhWtvpcurLKsUNLZHmFKQsKIxAoHn/uEkvzc2AM47SiFgVs7vRp10KrK1UOhUmZqdW5dmOLRr3O8sYWc+0a126uTTM/C+Zmu6xu9Wg0AsrKUJkUQ8a++Q6NmouaRnj4nk9eluR5ybXVHd5w10EKI5jkEPkxBsGJIws45Qr93g2KbINO+yA7eU6VQhAEjNMJNc/lyWcvcnR/SStM8UJjJ3yMpJKC2PEJPYU0IIyDxLI08iJHVgEVGRWGjTXNIHMQ2qOsDJ1GzHAyRBoD+bo12NEhwyqkHgbsDsZs98bEYcRf/6vHOTF7iIPlfg4dnCOq+URRjUqCLEuMdJBuDdIEV1UUaYrrSJS0jJTKCK6u9ul2agSh5LFHVogij2anS6fdJo5j1tdW0L6PqlJEPsYPfIo8pZ8YKgyuo/nYZ/93TtWOcPeJezh77jlEGXP13BPs27vI3MIijhZobfXbVVHg+Q3cqEMpBFppxrsryKpASmvy1BtmuP0GdEPuu//t9AcT7rvntTS7XfJswsWnP8mJ7i6NoI8XzeC3DqJ0xDhJKERCp3sIowwIDcLem26xFV8WlxJf1eh9NV90uk5O8YDqa2mYt+iZQlpK+p1N4NdSEQUv2vFLfv3aV/bVlRWv7BAP3yBC7NXW469muxdtY16y7GuNam5V0reorlYgcEtA+PLo58uNb9Myv4WjKF65uXu16N2dOXcvd5q/YhYGX8ssfulxDx7czwf+6f/Ej37n8Vsrv/pz+ijyYuq6deuI3IaZDRDXIjzXY21tnUazxtbGFmHgI7Um9H2GwzFVabh27QZ5mjE3N3PbZe/K1ZsUWcZMp8X16zfpdlpcvHyTfUsL1Go1Ll1dRikHx3VxtKLTblEUJZ2Zhi2ehKXFICRpNuXxC1swNZsxySTh7PlrTNIJzXadZqvBlcsrdFoNLl++juf7VEWKdl1OHDvM1nYfTMn1GxtUpaHIU2ZmmmAUFYYsL+jONBn2exhR4LkhZVkhpaGqcgyWzqAdB9f1aDVrBL5Hb3fI4mKXMFAoLXEczV2nD+FIB9cLcDyJEg5KS1zXJxklgKVi9nZsU+cFnjWfcBzieowfWFfGoijZv2/ROnamKclkQhgEnD9/hVo9pt/rs7y8zbGj+1FKsb6+Tb1RxxQ5V6+u4voaP3BRUluXT2P41Gcf4ujhAzQadetEKmB9bYtGvUFZGHZ3LKW2KEsajTrGQFFU1Gp1TGmDWQf9IZ5jHSLz0mo6HCVJkrGlL06DnofDCQLJTN0jnSQ898xVDh5okecghYPnana2bRH+3JlLnDh+gGeeO8++vbOEYcj8XIvhcICShjyf0O3OMBqMmUwy9uyfx5icXn9MNqnI8uK2S2QlCtbWehw7fmBaLGmeeOocrgP79i3i+q418NAG7TgMRyPajTaYkoMHF6mqgv5gSBD4GATNmo9SilotoiwqPD/GDyz10HU94tCjKkpq9YhKQK0WMDPTwPEi5JQGKqTNX8IIXMejrKDMK5QWBIHPqD+mqkqWVzc5cnAOPwzoDxLWN7bpznXQSuO6PsNhglQOge/ymb87x2tOH0FgKY9aVEwmGc+eWWZxrsXfnN1hKdDc/bYf5omnHkJXKceOH+Sv/+Jz3H3vaUyRMBwM8P2vBpQjJK7nUxQpSiqbJVjlRLU6ZWluU5+FEFO3TfB9ny/93WPs39+hMjavSDuKsqwsKjceTdF4QZFnOI5GaXsfsaZJJVAihKDISxzfoywsEuhoF4MNE5dSkpVDpI4RwkOJit7aRZQOAYNWCu24aMdHa480TQjjGlo7GDG2TZYWDAc9XC/EVJI8L/F9lyzNMMa6fJqysKYujnXYK6avxRibZSm11fEJITAG5NR4piwLsjwlL0qUkhR5iet65JMxWtlIB+14SFFy6cJ17r7rKN2ZOjeXd2k0W8zNzVCaIdk4I6oHjEcFcahpd9tgXIa7PYLQQyqHD3/kL/ixD76PLO/xjh94N//pP3yOX/uVD/HPf/W/R6sGFy49TRw0eOMb7qHVarO5doPPP/h59h84ShhM6HSaPPjpL3HqtUco8owHH/wCH3jvB2nO1BkPM6JI8+QTz0Gp+dCv/iJve9sbyQpBI4751Q/9D3zf27+HdrvF7/z2v+YNr/8OLpw/z8GlBZaXN4mjmEm6S6M2R172eORLTzP3+ga90ZDF7gyf/txTHDm0j8pA5FkGR284QKqAzZ1dWrUQLSVnXrjGkX2zzHbqeG6MEJJmHDDJMzr1Gq6jKIucylSM04SqEgg0X3j8Ahcv3mRuvoHvSlxHkGYZoeeiHM3/8ckvc+rwLJ7rY0zFxevrnLm4yvxcE99xsdrjiMVujXYj4MihRYTIOXtxGSewmq5GHJIXGWmR48gCpSTjNMF1AkBydXWH4ShldzCk3agRBy6KCkcJmvWQ0HPZ7g+Za3XYGgwojURrhaMVRVniux5IhZCGMHRo1j12h7t4rsDzXALfwXM92jUfRxuKQvPEc+eZn2njKJc/+7OHOH36CFlh9aRUBWUlmG3XAJv36Ls++fR/nMhWyCZ9ZuYOEsazVCqgqtT0HK94+isXqNJtmKywf59L6EvywuBpRVUVlELYeIWyQEo7gViYDENFWVUgchwlSJKCsBZw/Ogpmxk7ddgtqgmOKDHFmnXb1RE7E4dWHFILfepxhFKCveM9/NWDX+INR+6jP1im1WziVBVMUqTrkuTgR00ckTMYbCKqCik0k6LAcx2KssDIgm69gzAOuVNx/NS9tDptyiJDCsH21jb1ZptytIkpEpSjbZZm0Joylgzf9+77+ZO//EvuP/UmZudmOH/2LIcP7aEWOlMnTUFRWQfgcaXRYR0vrCOMTzLYwKRDlBKUBow0rK1vc+DEaf70oc9xdO8iJ08c56EvPsFnPvNn3H1kia57Dt8z6GAeJwipO20cMUBWQzq1eS5fuci+A68hNwZEzi17jleqRF9kvHJ72UuwgFu9zJ0LXxqp9ZKGRd3e9o7nfA1N8hVe2R2rzNesvwV3fLVivv0OXyq5e6XDfb3tXum1fL1lt//+2ubOOoPdmiD85t1Ev93cfQtHnue/DvZLeqW0+VczXvHie5XPfaVGzwA/9mMf4Kd/5V/y3jcdmT7hxRekRWv46ro7Tzhh35vWkrgWs7W5bWMRhKSsKoa7Q55+8jxrGxucPnWURrPBOEnp7w545tlz3FzZpChysjTh0tUVDu7dQ+Brer0BoyTF831mux1KUyKFzdrq9Xu4nkRrz2bI5QVC2FBLGwZe0NvtkaYZWVZMM8g8Zue7uI7Dpcs3mYwntJs18qLAelXBhYvX2btnjiefOkOjHtLttjFVSZLahsENfFqtGkrbwHTH0RgkWipcN4KpMYKjPNJ8gqstRciYisFgRDIesXf/wvTzsyifVA5aCZJkgNKezQ3UzlSgaz2Vnn76EjPdJhKDkJDnBY7rAMbqovKKdJLg+4FtDpRFGur1GlEUUW/E7FmcoSitgUm9WWcw6NPf6fPokxd4/b2n6PcHaK25cWOVsii4+/QRO6s0RWLHkwTf93AdB2OYFt56qhUBKZSdABCCoqgYDxI21rete6ljTWaUkggqtHaRWmOqAqUUnhfyU7/5N7zrng6jwZAw8Hjh6g1c7dFs1hmNRggUvcGII4eWQAhmWjGj4YTxOMH1bPOJAUfb1zcYDikr66ZXq8VEYQAFbO/06bTr+KGH0DAzM8P1a6sMhwm7O30ajYDubIsiL1COJitSxklCrd0kT3O2tvq0Og2ktKH1eW6NBZ4/c5l2K8b3A559/hJKQByHjEYJCIHjapSy2VxlUZJOUqJaDaUdEBVhEDAYjhn0Ezyt2NzqMx5ndLsdxqMx3U4LpRQXLt9geXmHkycOsLq6Sb3ZwBirAXS0gxSSdFIwGk0wprIumoGmVY8ZjkfUaiFVmbG51aPbafDs2VWajQY1R7B415tw1Rr3v+U1KEfypu+8DyWsm5xB2NzGqQulchwsiciQpTlhVEN7HsYItLKUNmMqO/GhJELZiZjzZ5/j0JF5pBCWpiwESnsIKaiqAq0lUtl4j6oobQ6e1JRZhhCW3l0Zg9aWrml1MfZ+ZDP9LGKs0GihKcbLDLfP2AkVr41SgiQZoh0XIR2MkYAtcsqqRAhlA8iNxPUChNC3dYHA7ZnoNEns5yGkDT2XIKXGGENVVChl77jpOEE7jr2Obt1apUYqS2U0VWFz+aScooIuQkjyLKfIE2bn2jz++FkOHtpHv79LVYyQyuo7Xdefmt6ENNsxeQ5bG7t8+aHnOHriAKPhmN/+3x7kJz/wPhw/pSwcPvKRf8mv/48fojkTodycRjyLH0o8X/OL//SX+MAHfxStXTrNFlvbqwR+xO989N/w1rffx0xnjiiKCYOYLB/x4Q//BlSG3//Y73Pw4CH2H9rD6sYNfvdf/z7Hjh7j3T/8TlzXIUnGvPd97wFR8u8+8R948vEn+IH3vIciHxOHXVbWLrG+tsNHf+vf0O9m3H10L0UpmJ/r0B8lnLu8TLPus90bUwtdHnviEmvL27RnaoySMfuX5snLlLIwPPb8dcoqp9OsoZUznXTKEZSWbux5KKn57CPnWF0e8D1vvcvqRl1LHRVY3aUxJToK2Netk+UFoyQj8DxmZ5oEnsKZ7jstUrIsw1US19WMJyl7F1v4jmI4KQk9e94rKfnrB56hM9u9fa/80z9/mL93/ykO7e2yp9vmuYs32drtk+UTZhrWBGaSZWR5iZKSx598gdmZCN9x6Y0mKCWm6LzBc6A/yugPM9q1Bo24binDeWHNg8ocISqU9KnFHs04piphYU+X0A/ojRIG45TltW1LOcZSrIWAG5s7NGOHyfAmm6sXCRpLGNmkFAYjXBQQuZJnnnqBUIzotA2LC9Y4pTKCmzcHNGoKIwSGAFeWaGU1XJUxONqlqhzGCQSeoiwditIjyzVXNye0mh22dnrEsUtVQJ5s4YoxRkjyQiPdhv3epGSUZvz1//wstUaXH339+xjuXuXA0iJSKNZ7u9zcTWlFITKwZkwiHyFFST7JcL1bkUOWQtcKaghVMMozNrcVi/v2UhnD7u4WRZ4x111gnCRUky0C35pESelgdJ04rvH4+a9w+g0neMv+t1IUBcl4h60bF1lYmMHRFdkktfcVUUEl+eIjF1CeT7PVYHdzjTByqCZ9yjxnfWMLqUMuXrpOGDd5291/j0cvPsVdp06xuXaF4/sVay98kW4rxas1CMNFsqLHZPsyyyvPMhgsM9nZ5sKFc9x979spZQWyRJivTV+2umZjf76a8TLN3Z06s5dFBKX86ja3Hy/a4pWP96LyU7ykrv1akxTx4j+/hePFn8+tUZkXr5PfhHTr283dt3AUU1rmyzV334rxSu3kj7z/R/j5D/0G7/qOI19deAd6d2eeycsNIUBKSVyL6PUGvPDCVZLhmFanxeLSHOPhgJnZGbRn6WNRHBNHLpvrO5w6vITUsLq2a62IgaKscB09NY/w8MOALCvpDwYsLi7i+TZ/zUzdHIWwGjAhBOlkQrNZBxRfevgZfF/jOS71ZsxzZy5w4vhB8jylHvts7/Zo1mNKY9je2mGm3aQ/GHDy2CF6vQE3l9cJA5eyKpmZnSWOAvLMFuZSaCaTlKKYUJYVXmApVabMQdnGbNgf4HkORVHQbNXI0jHa8zFVjlYOjheQJiPyfIzrhpgK1tcszXF9dQelBb4T0J5psb66hlaCMI4sV39KA/U8j+WbKzz59Hn2LM7h+lb8HkQhxgjK0iKKQeBZaqSSZOkYUcHla5vMzTQIggDlSKIoJAiCaVZYiue7jEdjAs+39uOyYjIZIJBo1yOdTFi5uUKz02JzY4sg8Kmmz11f32LPvj3ToHtFUeQUlQ2OrqqSPMtIxhPyquRdr1FEtYCHHnmOQweXiGKHRq1BXhT4ocNoNGB1Y5f9++bIs5Ig8siLijD2GAwmSKlYXt4hSXLq9Ygw8siyHM9x2dzo4WqH4WjIOEnpzLRAahylScYZvZ0+c3N18iKn1ajjBxHGJGjXQQiHuBZTZgVRGJCMUtbWdhDY5s4PPMoCtFSsre+CsbrEudk2mUkJooDnnr9I5AqCKMYPPJ5//hI3b25QFgVB4KFFRZZnaMdhNByTTcacv7TGwQNz3FxeZzLJmSQ5RZkxN9fEUZqqsteH63t4gf1ZFjkKw9nz19i7b5FknKBczWSc8fjjL3D06F48X+FocJ2Ifi9htz9EOQFBd579J9/CXffUoaxYOrBk89yyDOm4U3v4EUpohNJUVYmoSsAGggutMEWBlMpSZaTElCXDwdAizFJRlSWf+MO/47u/6zB5mlHkOXmaor1gquewM/nG2EZNCBCmpCwrtKepSoNUAUpa50ylNNqxbplMw6ItLVNMtWwlk8mIeqOLdDsUGIoci+4rza0ZARtr4FLkJdpRmBKKoiRNkunERYlSlnppUXqB5zrTQHbXFq1ljtIOZVGCgX5vhyDyUUKS55k1c5nymExVIaXVotgAW5sh6AYBBmEnewY9vDCiNTPLgYN72N3eYm6xSxQFSCmRysfVHslkiBfEjIZj/tOffIHX3bOH4ydPMB4N8EOP+Y7GDQ5QjEqiIOFdP/xDHDl+FKkkvX6fRm2O3uAmSsOpY3cR1uuUBXzhgc9w/fo2nXaHd//Qe/jY7/8Bp0+9xk7cScFgtMvnP/clLl24wBtffzdPPvUUM905jp48yd2nX0N3dpas6BMGMelkgjEFzU6d3/u9f8tP/MRPoD1BHAf87M/8Mm/+rmPsWzrF+37k3Tx15jHm9je5vNqjFgQ8fe4q33XvCcbpxGqpFLzm5F727p2lFsaUGPpJju9IeqOcp79ymTe+/gCDZIirreui62iysqIoFMsbW0Shz4E9XU4fX8BzJL5r4zp2+inNOGRnuEstCOh2OlRlilQa19HEgU8tCtBKMsknOI5ACM2Vm5u06jUbs6A8pDSYShCH1tVzYzehXWuwd/8ig3FOluXUAs1rT+1ld9hnmIx47OmrlKVh/54Z9sy1KSrB2WsrdJoNPK3RWjIz00JWGf1RyvJ6j30LNi4FKewkl+swySoe/PyzNFsxnUZEXpSUVYnnRBRViXZ8/EBSVoo/+tOHOHXqANeuXcNxHBr1Bv/Xp57nbW84xu5oQByENprBd5gM1yn6l5DBHHHrCGk6wtEBSmi2NlfZ2bzBjRdWuOe+OrVA4KgSKTRCZTTqdVAF61uwsVnSbUvywma9CmzeZFEK0kLiKIGQsLI24IXzBfe87iQ3Nwfs6TZBVTjCJdB9ZJVQ5SVJKkllnVrg4zoOVx7t8av/6J+xtzzElWtXmO20CZ0ChUQ5kuvXrjHbnaHWXrCTkL0NpDBoqUjzCVJqXMexLtdpTiElz555gSSv2LO4l7hWI4pqJOmIwPOoTEU13kA7mixNqIzCjbpIqdnc2uSBxz7PjOqwsbXJ0lybyK0IAjsx62hJaSp8L8IU1sNgz54lysLm3FZ5CkUCVUlc63Du/PMcvfut9Md92u0OX3z0cd71w29Fj84ghs/QjQpKN6RZX2Bl+SyyMES1Nso9xOc+/wJSjKh5IZ/+/Gd5w3d9P8Y4L0tqtBPLL87CezVF5TfjIyGl/Npe6/9Bc3frj/+cm7uXfgPfTJ/w7ebuWzjKovz1W1/kS7+0V2uu8s0YsFRi6s4qXmHGhBcjeHe60b7nfe/jx3/pX/D+txx7mQtPvGgfL90fCJAWPTt/9hK+1uz0+uzdvweDwEHx7HMXiHwHKTXD3i6OG5ClGdrRvHD1Gvv37OXA4VlWNrbwXQdPe7RmXBqNWSZZSRwGxHFIkmTkRYFWdvanrCpbzFFQlYbdnV2LQt1cZu/iDFeurnDi5H48J0Ari6AMByN2d3eRVUmjWSe7RXcMa9MMtQJDRaPuMz87gx/GlJkhzyYoZUiTMdrzpo1vReAKtrd3CYIIUxY4boiQDl7gk1clnutMUSXJ+lqPeOrUmRcZjh9gKoUpSy5cuEGjGaOVS380RglFsa0bJQAAIABJREFUsxUjNcS1mqWiYshyO9MopaQoCzbXh+zbO0er06AsU/JsQlVYHncyHuEHoaXPKIf+zi5x3CCM6yx0m8S1EEzJA5/+CnuX5tCORWrz3BbrBsHG5g55nhMFIZURXLl0HaqSWi0kDH2SpMT3IpQjGA1H1Jsx8wtttIIsSymKDNcJbDC7sRlhpkopioqf+50Hee9raziez3y3zvbWFrXQpbfbZ3llm3Gasmehy0y7RlXCZJxb5I2K0Sjj+rUN5vZ0mO02UaYiScZcvb6G6yhq9RqbG5toz2NlYxvf92jUa4yHI/qDMY6WdLptyqJgOExotesgc8pKk2cpRZZx/eo6zXqdzzz4DEcOzNPttrh6dRUwZEWB62iGyZiFxRlMaU1LpJK4KK5eWubUqcM4gQ9UPPzQGUBy332nuHZ9g9lOg8uXV2i125YWWBmyzHD86F6efvYSB/Y36c7M4nrWqCOdrOP7TbST0e52WF/ZZJJMqNcjdneGKMdlMhlTTSZcud5jMs6pxR7Xt9Y5fXKfDWwWHlJJ/vxTT7B3vs1gV/LRv3qIEyfv5fLFJzlx8jArN1cIfZ+11XW6Mw2EyShLyXCwgxRWGK+UZjwc2iBuY8N4pZYoBKPdXaoqwQtClJCkyQgBfOpTj/A9bz0y1bFNMFQ4WpFnGRiBlnqqb5NMJhMQvg0GB6TWCFFQFYWl41gAHK2sIydKT41Q8mmEA2jHIyukzbMrDZ7ngtSUpUAY22RJUYLrI0yOMWMwIGVFELQo8gTIAUFZCkuHy1OUMIyTAUJUIDRCqNtGAsrRBFEERqAcF6Wt0QrCRjOYqkCqkKpMyScTRsMhnm9NPgRW05qMRnhBjDEZRZFSazQwAno7Azw/RjuayWSC50eUeYbrBxw7vgcv8BHaR6icokg4efIAm8sl3UOvZbib4sWL5MOEwJNIv8Z27wJx8witOMZ1PQQJo8GAa9fXeP+PvZvCjPF8zVve/EbOPvsCe/fNMhqtU/cc3vLG+3nqzBl+8r/4WZDw5je/gZWby5w5e4kw1hSFJJ8IjJGUU+rpu9/9Q4S+T9Rs4mqHt739O6g32/RHG7Tn9vL7v/uHyCVDtxUhlCbJcuZaMTvDMVK7NOOAcupGOp6M8bQi8lwqIWjXIo4emWM4yWnHNb7y/EWW5uf58wefZn62Tlmm7OnOYKoKrQzasUZBQiqLFpeZDeT2a6ztDAi0IssmaMcny0oef+4iM02LSCkBO71tpPBtBIbvoZSkqnI+9+XzHD44Tz/NCX2Pduzz2NNnaDQiZhsRF29u4rmCZ84tk6SwvTPm0MEFwlCxZ7ZJMQ2VvnFzg/lOg14yoTIFoySh227zuYfOMRzlLC00cX0XCSghmaQpShXcc/oIeTXGYOngoswo0yFSRyAF27vbPPDp53ntfcdo1Bz+6C/PUqvZybuwHlILHIwpCIOICsO4d4XJ8BI6OIRyY/qDPnEcc+7CFnmxybOPr+Aqw+nTClcXlmGCpXEaA2WVIVEEHrQbhrK0319lwEaDlCihCL0KhWYwSVlZqTj5upNEcZ04tNfV2sYAsk3S4RrahcpIpD9HHLXZ7KUEvs+x6j7+xUc+yltPvZk4CDjz/NPMtZsYleGKiHarbhH5oIGrBXmyw/lz1wgaMY6aGl8IAVWOFJq8KPDCmOPH70O7kixLcbQmL0rySUlv4xqRU+G4GpNXJCJEBzFhGPI7f/F77O7s8p0n7qcsCy5cuEg+SWl0fEQpLXLmuDz42UeYX1yg1gpwnDnSvE8YtUl3V1FFSqKgyktWNiWHjh+mU19kc3OZY4uH+OUP/xo/cHJA6Pu4UYyRkmT7Cv2x5vlLPk880+eTnz1D98DrePbMTYzKWPAFk0TROXrU3m+mujvrBDx1ypyidrdcM28FnduGz1aNpjJTLd40cgDzsvo7u6MXtzA2rmOqRb5No3yZwvIb0SRv0zNfZh/TZbesIqrb1Mepvu3Ofd0Zk/DSY7zadS95VEJMjyfuVNQB0zqdl6OVvnxzdzsk/SXxEUp/u7n7lo1imnN3J3L3Ujrmq2nuXu0wL2ZMvvJ2r7DNB370/fzCr/0G73rjkZc+5Rsfe/q+OjMtGs0ajlKcO3OZhblZvNBjYXGOJ548x9Gje/GjkKoylEWO77m0Ww06nTmCZp1uM+LMuQts98bMdJsoYXVMk2zE+toW7XabIPQwVcp4OIQKiqzCiAohFFEUkKY5YRzx+FPniKOQXm/AytoOy6tbeI4k8B18z2G716PZbhFGMXNzs7xw6Sq7vRHGKA4dPMSjX3kG19EMhiPiep3KlMTNBq4XkucWmcmzlAobT5BlmQ0KFdlUqyandEHFaDRGCUGtEVGWJeNxguc5pGk6zc6zbopSWWrlA595Cmkqbi6vMTs3Y23UiwLXc3G0a7PNHAdTCWp1H8eRTIbW0r/Zak9RkIJr1zYwpsL3NVWV8Rd/+QhlXtBsNPjKExeQQFSrceyuAyAkf/7nX2DPfIfKCISQ/NEfP8iJo0tEYcB4nPOlh57l5IlDNFp1DNYwI3QdksnEFqkI64pohF3mBWyu7/A3DzzM8cOLlGWJKTN2e30azQZv2ldw+eI66XDMC1dWOH36CCXQmevi+T55UthcOldz4+YG29sj2o2A7e0Byzf7HD48S57nSKFwPZdRknFjbYeTxw/x7NMXOXl8H3GzSTEZ47sOgA3+RiKFpfV6vkez2QJsyHkUBqRJTpoVzC90KaqKfXsXuHpthZluizLLMcbQ6bS4enmZ2ZkWG1u75GnO3GyLoigYDEYcPLzEoD8knaSYouDQ4SXqNYUSFY1azJNPX8T3XG7c2GQ8GiOlYmFPl8uXb3Ls6BKjUUpU8/EjlyuX11ica+H5IVk2YtAf0Wg0CGsBWms8L2D55hq+p6nXY1aWB9x99yLD8YAjBw6hNDiONR0a7W4jTMXq5pCjR45xbX2D7dRw8EDAocP7uH5tBd93Wdq7hLplQOR7hLXm1HXSRh+4QUCWpfi+1X+WZUWeTxDCEEYxUjm3Iwgc1+Wjv/sAH3z/aUDi/t/svXewZOl5n/d85zv5dL739r198+SwszlhEYlIECBAAESgCJmkXCiDpCjLZdESiyq7LFFVli1aomzSYFE0AyCSMgMIgEhCIHYRFoNdbJqdmZ2c7p2bQ+eTv+M/vt7Z2WiApIqsMr6prpq+fbpPh9N93vf9ve/z8xws00OpXBdnhFbcpGVTKDCEiWmlozk6jaFHGfR7fRxXe1LFUYQQkmedh6UhR62ZjDwmNeFNWi6m5VAIgSEVKlfYtqOT6SjGMCS2ZWMYHtL0KEjBsDEsUyPJDWekZDsanmI6GIaue1u2hnvkWY4wxEiV1B6BCEZG7Xof0jBHcY4gS1NtgOx72nLCKDSoyTD18zXN0SyoJE9zVFFomxQFSTjAsW363Q5xFLO70yGNhniBS8EAUZT5g9//GkeOtviH//SP+MB73sPW2hpf+MLn+I2P/Qbvfu/7GHQ7PPS1R5mfbnHpynUuXFiiNb2HUrnOwuICn/rsX3LnPXcRJjlOWTIxPUGSQ1AZI8XAC3zuu/sgjYkmzYkxLl64QKlU5tCRo1SqPsNhzO/+7m9zyy2H8Usew7DPn3/y07zu9a8D06DIU1zPwXd8ypUGaa/Hpz/1n7nr7XtIk5AoSWiUXEyhKJdK5NoBnlxBL4y4urLF1m6f6xsd5iZrRFmEZ7t4tkmW50w3G8RJiuVI9rQm8FyLTj8mzRW73R6+bfPM+Wt0ukNK5RIlv0Re6GOp4roM4g62GWCZGjiilTLIlSIezQPv9gdY0sBzTAbDIZ6jZ4CHUUbN8/nWY2eo1cvsmW/pYpZSpJmiNRYwNdHg9MVljhyaY7wSUA4cNnZ36LT7BK5DvV7VrfYFlDybcuATJYqFuSZeYFMrB9iWPsbCKKFke/SjTaJYMVauIQ2DYgQXS7H47qlLTIzV8b0y+/ZM861HzxMEBocPznH+zDVaUxWCAK6udvB9h8BRDLaeIE9yarWDZFYVx3EJY0XJtbh27Srr565z7z0Bk80YU2rLFMs0MAxBpoqRSbeOfAxDjNqV9VxUUWggUJ7rVrRcFWTFkEFcYnVDsufgPGmaYxoGGzsdSnZByY4RSnsAJpnEDKZQmFQDyWd+5QT33nk37z72HpauXKDb6TCMh8w2KzAqVhaA4/k4bpNCDcjDHvXGhFbzDUGWZ1y+eIGxiRZRnjOMDK6v9iiPjeM69o3fKNcNcGxBHm7gerpVPFcCrzJFp90nCkPmjkxiJWXS/pA9i3s4f/67zM5M4kkwFSgpMNKCPfNzGEaB5dRwS+MIFMKWhN0tsjzCNXzCLKY5tYduN2R17TJTkzPEYZ/XHbydcvlxsjzGFAadrV224hnmDr2TO9/8X9FozjCz5zB33Hs/g0Rx5O6/x2OPP0JQnMIsWtSmpkBaGIUaZQ48X7Ur9O+qGCV+wCipEzclcTfP0xkvHa++RHL3Csi/73mp4v+LYckrpH03X8Rzk3ovePrPQlv0kVuMtnl2IzHa5rlY+tmpvxcG1y/KJdEx8wvfr1dS7l743H6Q3P0tLpVrnzsp5Q0bgReul1Lw/qqWCc8ldy/tyvHcrS+v7H3mc1/mR++Zf8mCif5Ov0RlBrhh8GgILNcmV0p7ybkuwhSASeC52K5AOi7hMGRios6Xv/Y4e+abXL64zPhYiUGvz8RYhYuX17U/3cYGjmXpwFQIyuUKqlCaoOf6WI6DOQIy2JYDAlxTsru1w+rqBiXf4dgte5ndM8383CTRcMjU5BhXlq5Tq5VZXlpjZrLJlStXWVxsYkmXUsmjWg24dHmFqYkq2+0dJicauJ5NnivtzaZSDEMSDYcUQOA5FFmmP7dCYpk2SRyTJDGObQN6yF1K/U75gc+g0yHw3ZG6pXRbpOsBUAosZlrjTDZr2I7E8Swcx9FJcZ5j2bo9zrIklu1QIHBLwaiQoIPHJMmYmp4iCHwKVdDr9Gl3+ux2+kxPNpiZn8BxTbzA1sGAEozV6zRbY7rNVAj2LbawTJtHvnuaE09f4u47DlBtlHRga7mEwwTTtnE8BwrFzlabsYkxDEMbtwsheOgbT/HuH30DUgqE7WKIgiCo8dtfOcetkzmtySb9QZ9D+xdYX9/hzNllZqYnKFcCZJGTqgKlFCefWeLo4UVM26Hb77KysU3Js+j0hkw0xwjjlEajzNxskzzNMEwNvpCmzfb6FlGUMjU1TrvXpezrdrbNrTb1RkUHDFHM5tY2ve6AUqmC67rsdtpkYU4SZ1RrAb3+gHIpQAAPPXySO28/wOmzVzmwf54sSej2BiilqDcqRFGM5/l02316nS71Ro2rV9axTIntOmxudDi4f4HdnS5xnBEELtvbHRzXotPpYpkuZ88sYTsm4xNT9Icp5WoZx5P4ZT03Ylpy1JIo2drcYW52AiUMAt/gkccucHDvAq5vjRLxAkOC7Xg0xmp86tsXqFoBS3nAzk7M148/wt//8DtZvb5GQYHnu3i+ry0JVI4lNQDFL5UxTJthGBKUSohRO6QhtUI17PVx/QAx8j20bIs0y/jg+1+LKQckSV+j5uUIoJLl2K6NOTISlpZJnqW65RNNjY2Hu5rq5wWgEoShAUJuUCLLFWQZhtS+cnmW6aBk9FuqPR5ykjjWxuHCRBg5cdjBtCRxNNT+eijyJEWpBMt0RxAXoaFOMkflI0Nzw0AgNSwo0b51hqHnfqRpYkihTe5Ni0JlUBSjxFroeUGVaUiMEKRJqud3sxzTdlBKIS2DaJhgOzZpkmJInWTGUcKf/clXOHBwniTNKVVqbKxvUavV8F2J6dioXNPq6lWbWr3C/Xe3cKwFVpav05yo8t73f5B2p8f0xDiLew9Bvk1rbpHmZJOvf/M49UaJD//U+5isL7Jv7xSNWgmpXNKkS55GkBd85Yt/ycZGm6O330GvvcHvf/zjfOADHwQkH/vYb7Fv/zyWtDi0/1Z+8Rd/iePHH+Xeu++jWq0w0Zxgp9vm6uULCAz8oEo8zHjm3AWSOCZYHDDIFLVyhZPnrrLT1jAfSxacubxGveZgSUHZd9g7M87MVIMo0r6lURIhRxYyUPDQt09xy8FpiqIgznICT3dvVEqeVtdtm+kJ7TeaporjT5xlz3QDigTHroLMydKU5Y0OudLH0oPHzxKmBZONKiU34C/+4lGmZ8apBAErW20Cz+brx8/QnGqwMN0ky3I63T7DRNAol7FMg7JnkWYF8zNN3aZXKGzLwpQ2jWodYUj6wwHnL11hdqpJdzhkuzOg5AbkKsNzJKcurjI/1UBRaHJkMWBlrcPc5AIFIVKYIy9Tk04o2NeqYBQZSVaQF4LHT67wmrsXKETB4X3zKAW73T4HFls0fEVv6xxp7iLdJmvdmMB1idIclQxR6Qbb169z6+0tSk4blXmsrKwz2Wyw2w4xba385EqNSPAKS0oKIFeglIFpWCBgu5MhLYdrVzZRssXpUwmH79pPNaiytLKOYUDJ97FFwsVnnqDRcIhThetWsYIZ4jRnY32NHz7wduRywPW1JfbvO8ja+nVMQ1EtSUQhMUxDe2N6VYRpUgy2sQwo0Eq8IQSGKqiOjaHynJOPnyTJU/YePEql0qDf75OkKZ4f0O/1KfIhJiGWaRLHMbYTILwywrBxXY/Dd81SrJgs7pnn3NkTeNKiVXcYpCbduMB3DB597AzTs+N6xtOpYXo+3W4Pr+Ty1BOP4QXjoLocf+w6E/NzOLZN3N+lVh/XXRTZgDMbS8xOL/Lgo+tMHngHiTnGTtehUvVRwuDf/9qv8v73/hi1Ro1w2KY5s8ClE2cpZJ9bX/1WEmVgFSmFkKMY77n0Qhfsn4tDC/XcLN5zMeCLWyFftP4LJXd/cwYCN8feL9zHc+2dz6aSz772ZxM/feZ4flfc95LcvZBADy+d3N3IBX6Q3P3dWWma/c+aJPWsJCz0jIbQg9vPHiQ3HOtHtxU3Cc03qgrP3nZT6+ULLzc3Xr7wthfJwi9z27vf/U4++sv/lh+9bx/w3MEajsy0X6pF8+b7p1mGNAxcx9PKSKY9otq7HTbWNykFDpbrYVgGpjSxyBn0YypVH8uCs+eWcGRArlJ8Dyoln0ylZGmOM0L2C8OkyLXfnWNbdDtdPNtB5SANaLe71BpVrq+u43s2gR/geR5xFGsIhqsJd7VqmeXVTUyZUynXyIuUNM7xXZssF1y9epW8yNm/bz+OH+D7Jf15pameI4tTHM/BdTx6vR6WY2DaNsIoEKaBkBrLnmU6KJRSk/eyOAQBlh/owfxEcfnyEp4j2dzaxDIFtmVTqQT0+0OSFFzHIlM5Ks8wTZvBoI9pStI0RilBlgjyvMDzbSgYmXDrqpwhC/qDIZVqjXq9zPxsiwsXlmlOVSlXKsRxRBSGGKLgm8efYGFuhjxXSFPiuC79Xpdy4HHv/bdQGSthSq1C5Lkizwtc3yXLM0QhcHydKF48f5V6vUZeZBw8sEiaZvS76yAKZFGggP/04Anects4cdhnfHwcQ0qeOHGJ++86wnDYxhQWYTRk2A+pVAL2LDTZ7XSolGxKQYlyxeLi+U0s29IU1izn4vmL9Do9+r0eE81Jdrt9qrUAPyhRqpYYRjGVShVh6qH+rZ0unmfjBi7LS+t0OzHzM5O4gUcYRZjCxHQtbFfieTb9zpAoTojilFLJwbIElbKLKQXKMLQhentAa2aWjc025UrAybOXMTKTRsPCdgL8sk+322f/oXlMKamPV6iUPWxLsrXZZmqyxnA4RAiD+flxVK5YWV2n2+tjKAPXKpHEuu0xV+nIusLkytIajbrH2dPLuIHLoX0tLl1ZYXOjx+rqDtNzzVEJMiUahvzZiYQPveEov/eNM/z3v/ALbGycY6pZZdCPuHZ1gzvuvg1TKMJooGfKlMAwbRBoFdl2RyAjKBQkcQqGiV+qao9nRga4I/w8BWTxDq7rk6UZWaYQJFiWnt9J4hDL9kBlGFKBaSGUTTRYwwsmNPREChCmJk+OvCMNARgGSZRgmQ55FiEYec2NCLp5kiFNiTQKDGkQhgmOXyHNchzXo1AFhnQ0DVM6FEWEINe2DoWBGkE5DOly/OGnWNwzB4ZAkeE4Hkrp07xW7TREKM+TEXhIagKfKkizRCsYhoHIE6QtyfNUA4mKnCQKicMQ2xWkaYIQDp/80wc5uH8WyxQcu+MQhnD4/Gcf5Oix/fhBCWlaJFGG67sYRsDK8hbXrq2x79AcrusjskUiZTBWm2RsrMJ43eDChcdJc4NePyPwS9iOz8LiNL1ejw998B8wMztFtVHFdSusrZxlsjVPnEi++KWv8Y4feSN79i2QK7Acg/17pjClwzAxGauWaLXq+L5HnCow4Eff9S4W9yzSmq1BUaCyIZ/+5Oe4/+7XI5weq8sdxip1DMPmdx76HPfefpBzV9a4Zd8001M1EII0h5Onr2E7PoMwoVkP2Oq2WV7vMl5zSNMcx7HohUPSJMWUJnsWWiNFVmBLn7WdPus7O4xXA6Rh4zgOa7shX/nyY9x7x15mWg1yYZAlXQpDQiHJDY3uL3LFM+fWWGtn3HWkQrWk7WmurewyNdMkTftsbHaYqI1x9vwSh/ZNYJmSz3/5SQzX4/FHzzExVafk+WS5PrPmeQJFzsaOLi50BinL61tUSy6WJalXJ1jebHPu8jprm13aYcggTFBKcHhxBmSBaegOhLXdDkFQ5sSFVc5dazPfqiINi16Ust3pUPYdTNMjTA3CNGdrc5N982PEyuHLX3+Kas3l8OIMmQK1/SRJUSY3WuyGIQuz4xgZrLWHhMkau9dy9h30SKItDMPFsBSVcgVDpZi2iWX5UGQYghFJWicJRaEoMIjjjDBK8DyH3W6OaeU0ahNcOreCPznG/tkxojTEcTxsy6HsSYa9CwSBxLb1ZzFMXHZDi0rZ4Gu/do3h5QH7FvdhmAaPfuc4k2MVZiZs7Fzw6LV1GuU6njSQ3hiWykmTLkU0RJGRKygMhZASU+lQfazZoB9KpmYOYzsGyyvXcV0TCTheiZ3r53BMgXRd8jQlNyuEiaDkVzEtm4Vb97N7uc3W9hKm8Kn7CUGpQp5EuBJQiolxTV5VpoOSVYRKyIRgeH2JRsnGdRRharA9VBw+cJAo7NPr9hibGKfII5Ik51//P3/CRz7yS5xZGnL7nbeShW0ac/dz+tRxZmYP4PiaRbCz3ufgoUXCBLauL7F1/RSzE/txW3WcxEWZvGg9JzCIG9dfrHs97x6ATlAKnlPVihuWCgWmNEdb/dVSM1UUo+Tw+SLIs1T559YLehhfcX/PvZ4Xv7pn/168xNbPXddP6LnLC/f+vATylS6vIOi8UKeUlv2D5O5va91shfDCdXOG/sqH+fej3r38ti9VOXi5e/3hH/8573tg3/P+ZlmmNuK1rRe1deq8UoAQmKMEsCj0iSeKYs6fu4bruiwtrzM3P0Vnt0/ge6wur7G2ts3s7CS2Y3Ll6hKWZVKpuTTH6zz2+CUNXtnuMN2aRheXBIYUPPrdkywuzpAmKYUqcAMP09ZV83AQkSQJg37IxvYu+w/MYzsuVy5f1+bWO10e+e4pLNPCdRxNs1OSclUbrwshSNKM4XAIhmB1bYc9i9OkSUoUJ5SrVSzLxDQtkiQmTTNcT0M8pJQILD1vI/Ws1KnTF5hpTUIBg/4Ax3GQoxkd09Ro9rLvIU2DcjnAsiyyPKe9u0sYJnz1oae5/bZ9WJaFadrEcYowDN22IySGAZcuXKVc8TUEwxAkucJyXfI0GZmK6vkXx3GxbJPGWAnbtpDSJM8LKARpmjPRqHPp4jJxHFIpl0YedTaVanmUPAuiKMayLZ568jTj43WkqaE23/7248zPzxJHMY1GGdM0Rv6DWjESysR1S9jSosjhjYctslzhBx7pKPhuTda5cOk6U60aqyu7nLl4nSOHF/QclYBarczK9Q06vQETEzUaYzXmFpp0dncIfBvLcphojuF5Lk89fYW9Cy1Urrh0eYmxRhnXsQmHIZ7v4fsuljTY2OxQDnwqFZ+ZuXF2drrat1Ap2u0etXpV0y7znM3NDrOzk6ysb3Fg/wJ5nlOuVDBHynJ1ZGYvZYEpBdEw5OC+earlgE6/Q63ewLYEhqGrKlma0G4PqNfLdDo9arUSnu/S7w1ojNV55uxVrUxRcPDAPKVSwJmzV7AdSVAukSQxvu/T3m7Tmqri2BobL6XJI4+dZ9BPueuuI0xO1kDoUtHS1Q2CoMQ//+2v8r77juB7kpUOLM5ZZEnOMIw5dGSRmdmWLlQY0Gv3SNIc3/cYDvuYpk2eZ9gjjzYkWulSo3qmoQl5aZpimhYqB1NaGKJHmiYjUqQJaPplEkcjqqSu9lMYOgECIEOanm59xMAwbPI8pig09EWra5pCGA2HmKb+dbVtrXxp+IkctfFokEmehtij41MIgzxRqGJEqzV08iothzRJkeLZCq4O/CYm6hhCP0/H0YbkhpQYUns6igIsa+RflT+rtDs3VMo0CrFdjzTONBzGskjjlDzTrWOu7yGEhZQ2YX/IoSMLSCG4dOEyw2HEZz/zTX78g29CGJo66vqSE0+cZGJyHGlCt91lbKxGUCrjuDYf/On/haMHD/GRj/w0H/7w3wNZMD4xzrlzV5lfXOTzn/08zeYEne4Otunw8Dcf4Q2vv4s4HPBL/8M/530feKeGRrkuhw7tx7Ud1tfWsRyL4XCIYwqyrODX/s/fZO/CPI2xKr/6b/4dP/TG1zPdatJsjtHrdRAU5Bl8+UtfpOyP84n/+Cfc/6o7+eqXj3Ps2DFQGWlrA9vS7dMaCpIwTHLq5YA981NcXN7g1n3TPHvKmWrUkYZBZxDhOh62abO206NeDkhVSpYpvvDVJ1FS0usPcG0NASqKHNsExzS49ZZFkjTFNCVRmlNxqxjSptOPcE1tTRAmKUHg8ZrbF8kygW0ZPPrv77JmAAAgAElEQVT4ed74hrvwbAvPNjn+jdMMKLjnjv2cvLDM1EQDzIL5qTp+2WFlfZdL19Z46okL3H5sDwW6IFdgUgk8Sq7JNx5+hrjIiJKMku9RDXwefvgcr33gCK1mnavXNxkOY8I0G1kW6PfBlga+54GQXLiwwtRkmW9/9wyzM01sy2Zre4vmWAXDgLJvsmduAss0cEzB0QMzWI7G84t4g/4wZbK1lzBNmBhrgrAwREa7vc3y+T7zizaCHuXAIo7ESKGO2A0NLCtFoL+TutNHFyqzPKcY6fC+a4/8TXMyZZNFEi+IibI6Xm2C7e02E2MNfL9EIQQqzxDpNqLIEOQoTCaaCwgZcOJzW/yHf/3vmA8OUg5KOI5Lc3yC9vY1ahUf13ZxPY+6ZxNLGy+ooYqIrY01BvFAQ8ZyMAoxmjHXnSL9Iaxt7eJVa3qeXApc18Y0LTa31rGLIZ5nYQCGdLCDBlGSIU04fuph7nrDXrYvtLFsyeb6GnMz1ZEnrzNq8dQdXRQFyrAoNcaRCKRhIvOOjiMEXL54lvte806GwwGB51Gvj9Pu9NjZ2qRcrnHvgXv5w699kV/4uf+W3qDHhXNX2R7s8NY3vJVao8pYvU61WmP//sOcOnOO8alZDCSVUsqpp57h2Kt/GGHFIF4iu3vZCPGVt3txKvXs3wttXQUv2uJ7XUIYqEK9ZBL0Uvt8uVv/Ztbz93HzU3qp3rbv6RFfsVvvB8nd35n1isndKAF6ccUBXrriIF7itpdqnnzpx/p+krv3v/+9qJWnX7Q307Ju9B+/cK8vqo+M2pT8wOXihWWeOXuF/jDCKAp8z+fqpWXOXljmda+7i15/QGt2iuWlZTzPY25+kiTOcG2PoOQyNz/NlSurlEoeru9w6vQ57rzzmG6HsG39nAyJKjKUUtoUuYDl6xsEnsvcQotub4hnW2xv7ZIkGTPTTTzHZXt7B8+zWdyzh91ul2ajThiFTLUmKPs+aZZSq1So1QI63T5j4+PkqqC9s43neUCB53pIaZIlOWmaYFqODlwLkIakWg5G7VyCcBgxCCMsy0RlGYYURHFMlmaUy4E+wRRgOxalUoDnudx552HUs0qAtBBCB49JnPH1bzxBoxrQnJrAtAwc1wUhcWwbpfS8SJImWLYGO2RZjpRg2YaeQ1AGcZQQBCU+/dlvUK8FHDq8l3LFZf36zgjRbiBNi93tDmEYUq6USJKE8Yk6jmtp0qCUzC9ME0UxAErlOugXgjiOcT0bYSgoQq5fvcgnH11nby3m4sXr1GpVer0+29sdbNtmdrbJ5uYm5VKFA/vmCcMhjudonzEB5ApTmiAUpukwDEMqZY9+r0eOyfrmLrVGnXAQAQppCCYmqtiWxfXr6/T6A6q1CsP+gK2tNtVSwNNPX2F+sUlhKFzH00mSY7OxuYtryRFq3yIcxvglH9uW+IFHvz9ka7tNtVYh7Iccf/wci3OTJMkA3/U4efoatbLN5lYHaUnK5QqpCrWnW4EOepRiZ6dNreZTrZcRIidPYW1zhwP7dWIoDYNwGHH12nWW1ra47dYD5CrXs1mYPH3yAp1OF9dxb8xtqqxgpjXGYDCgNlZBmgZGUVAUBtdXtpmZ3c9bHriVf/vHD3H3HfczNWfzxjffz959s0zPTY/AKYI4ijl14hyO71Cr13TiIg2k1P5VmqopYdQOLG+yQ5CmxBC6JUspxWOPPE2rFSBNg2F/iEDeoDtmWY7rubqVSwmktFH5ECE8CqEwDf040jBGSZqBZTsjYq4gzxOEoTCkTRRGWLa23dDJn/bBK1SOIQryNNHm64YOanQTZ44wNDDGNF3tWTeaK81zhSklRZ5p2wbbJs8y8qy4UaYtGEEC1Cg5HKkq0rQwhH4fTMvEcRwQBkkUIS2LKNQzeYbUD2RIk0LpYovreWRphuc71GoB5WqVcmBSb/jaYsOUrC5dZWFxDicok6cDyhUNsnn0O6eY39PkrmMtbjn6Nu67+1amZloM4wzTLVPyA0zTot8fUKt5lAKbL37uK9x52z1ImTExUectb34zpuXQ7vRwXJeNzTX+0c//Ez7wwR9HmIpSqUE0aOMFPrfcchuN0azYxnqHg4f2srW9xVSrRUHBE4+foDneYnJyinq5wcL8Pg4cnefw4Tv4rf/w61y+fInSQUhzxYkzV5iZrFEUOY7t6mKYEDxz/hr7Fqe0b6Zlcn2rw/EnLrK0ssOeuUlWd/p0OgNKnsSSNkvrO2CY3LJvlsmxgMBzuLC0zVSjSq4yikLh2C6iUBQC+sOEghRD5ohCz84+/PBpJltjNCo+T5+7RKlURaEoVyt4nvZgNaVgcnYMy3GolTxmmmM88vRFjuydYavdY35qnPmpcS5eXeOeuw8SxhnrO32iRDFeDUZQC9i/Z5rWeIOT56/TatZ4+vwSnm+xsd1mmKaUPYeNtV1aM2M0Kt5zykohuba+w+xEjSP7p3BsyaF9cwgEwjDwbW2ebtsOcRLpApRhkGUxjNpcTRHT3rqC4c/TTy2KIsG1bfI8J4yH7KzvMj2VUA4EV59ZZqJZw7FzCiMEZbN0tU+zWUblmSbSFqPWvoKRdRCYhsEgDHEsCQWkaUSplBLGM1y+sMnBY0cJPAfLlCR5zjBMKPKYItFtlFlWsLYrGWQOtuXwy+/9F7z7J/4+LW+Sxtg4u9tbnHr6mxzct6BbQUWBK0GYFsHEHFmSMuisYgqTwDARKLr9Id9+6jTzU00KA8JEcvLCVYTpcfDwQfJEJ3ZhGFIKAshCzHyA5XokUchmJyI3PGr1MSzp8PEH/5B3vf0d9JcS+r0eZ06cYf++Jr1uF8vW1ij6Atvb61QnZkkRJP0+rldie/MarusQhn0mJxfpx1CplEfzXpIsCynX6vpzq9TZ2miTmXDo0H5mZg9y8NA8JafGv/qVf8ab3vgWfvV//3Ve9drX8c0Hv8H0zDjCqvDU6dNcPvU17nvV2/DHK1C8UnL38st4nnL2nCZXFGqk2N2sWD2X3ImbOte+3/Vy93u+gve9JHd/tf3DcwbkLzdCVRQvVAHFC65zI5aGUVvnaJbx2dfy4vU3l9z9XaD3/2D9La0/fejJv/ZjjOjfvPb1d/GTH34b09MVcqX48kNPEicZP/KO12F7DlMzkxQCJhp16tUGvV2IIkVzusR4s0YYRUzPTDDoh2RpwaEDBygoiOJYzxw4FkWaIwUMugN830dKkzBKWN9s02t3qZS1ebQqFGtbW6ysb5JkCVkWEcdDkiSm2+/z2BNnGQ5ivvPI0+y0u5SDQAMq1ttMTrUwRIEsckqlgKIoiKKIwWBAEqejtkiPQbhDr7+LUpAkCV5gU5CxtrpCEPh85cEnSTNFGifkWUaapJQrI3T1yNT5xJMX6Oz2cF2bXMUIUob9HlkyZNDv0m7vYjsWRw4tUBgmpm2RF4J2J+RPP/l14uGQeARckKZWEbrdHrYzahnLlFZhVcHOdoc0SXj/e9/IzOwEtm2QpymPfvecVjaVQqUZ1VoFBaPA2SSJIwxD/5C1d9oaCuPZGAYMBzGO7WMY4DgOw4EmLoq8oFr2+fPHL1Ku2cxMlYkGQ+qNKuPjdYbDiDiKGW/UCIISx7/zDFmSoxJNVcuTnK3tDheurKFUgWVI2u0+StgE1TFqtRJzM012tneo1gMa41WEBNv1uXxtndbMFNPTLTrtLt3ekL17Z1FFzp137uFbD59k+com0pZcvbLC5YvLzE5PcH1lk0E/Ym11G0WBNCXVWpU0zxhrVplfmCTNYopC8MC9Rzh55iq7nZhON9ZKa54wNl6lXqsSDiMNH8gE7e0+w0FC4LvMzk5i2RYKxXAwoF6vMd0awxAG333yAs3mOL1+xPzsOG967S1obL5BlmUABEGJq0sdjj9ykd2tLpZdsL61y8UrK7Sm61pdMmBzYxtpSq6vb/P41Q0MWbAeFnzqs59hZ7uNlAaf+8xXNXmyUHR2d7Fsm4npSeYXF4jCENM0yZXGrEvTwPNdigQsw8ILykjbZWdjlTTuk8UDwmEfpRKEUTA25iBN7fnneg6m7eIFLqrI9Rya0nOaqkgQSKKwgyFdhJEBGRQJaTrUiaOUN4IklevrcTjEkBK/FFAASZRgoBh0t0FlJMMhWZYhbA/DKZHEfYoiRYgcaUrieIAhIR5GSCEwTAvbCzCMlDQZAga+V6EQeg7OlApRCFSSo5IMMgBBnup5veEgRKkCNfKJRkCaxKRJgmOZRL0ujmVgmQaW5eB4PmmWoYoEaQrWV7f5oz94iEG/hxCCaDhk78FFTWfMU5TKaDZnKZSGHghMCpUijIz77j9KoRIW943x3g98iPn5KdIsoVQb54kT53B9H0MavPY1r8VzJZ5rcezoLdRrdXJRI8wVvawHucd/+qNPsb3VpV6f5APv/xCqgP6gh8qBQqDynEqtxPXl6/zu7/4+vV6IEC7/7J/+j6jMYG15i35ngON4fOub3+bEycdZWGyxtHQRRcJP/uSP8rM/+1G++H88wYWldV51+0GeubSEKgrSLOPK2hbbvQFvfs0xikLRGYQoBWPVEqVqjR969R0UpLTqFTY3donTkJWtPmmiuHX/DF87/jRREmEIuG3/Il/45jMUwgHDYRglnFtapSigUS3Ri3JA8q3HrvGXD53n/vvvouoFhFGfI3sWcayYnV7MWKVCbxiRqYRcFQhDcG1lczQ6kHHfsT187VunUFi4js3l1U3e+MCtXFneoB8meK5Hs15nt7/LIycvMoxyrqyu86kvPMrRA4s89I2nWL6ySVDyOHpgjuZYlWqlxN5905Q8d3SW1b5sAoNqKSAdWd8UBSRpRpxmPPSdkxTCwHfLRInEtQIswyHJcvzAx3YchFBsbSxjelXSVBF4FufOb7Gxscywv8J3v/kMTiki7gpEscmRO1tYdoyBCcrBtm1uO1pDZRm5cnWB9UawrYjThFzlYFh4vkucKbLCoBp4GMpjaeksi8f2cn5plU6vTz8csr6+gWsWWCInLQxyDLo9aC3czVSzRf5olaKwOTS2yJFbjhKnEZ32FmMTTVxHaq89VWA6LgPhoNIco8ixc7BkzvGLW6y0B4zXarz53tsQQqFSkytX1rnj3vu55+5XY2QGRaG7efI0Y21tjWjYJyhXUdIFJEFlgkZjkt3tXTa21kizjFOnT3D+4mnOn3sE08ooioxyua6TbQEGEikkExPT2K6LY2oycD/s8cgTZ4miCEva5FlMrVZid2cL1/VwXI+xxiTDMKdRm6Lse7z9VW9lbqbFsNchlRH/5ld+i5/7uf+aO249zE986EO89a0/gulY3HJwipXLj9HtbvGO9/4j3vS21/Hlz34CmfgUKh9Z0vz/ad2cXn3/Syn1fflV/11aP1Du/prrlZS7G3N0L3lwvZQu9nKP8tztI6cnRKEf++b73TxjZxTP38PzZvBGf1s49gDm1tkX7frmXmLd6vcygJWbD3o9bsPePXNMTo1x8MAUpgnXriyRhCFXr15ne2uHeqOONAS2a+KX3BsAkSDw6PUHDIcJrucSDiOEEJTKJQwh2N1t47kuYRTil0pkWc7li9eQouCuuw7hej5fe+gEW1sdDh6YZ3Nzlz1zU2xvbaAKRaMxjuOYDHshMzNN+oMBUiiWr68yVq9SbzSwDBOvWiFNQizHRZo2Cq3G2ZahDXPTDCktbKeEaTiYhqDf7yKQnD+7xGAQYTsG9919C1ma4gUeWZaMKvYmlmmiVAqYjNUCTj1zjdZ8E9u2yXKFNE2yNMd2bEqlCpsb2/QHEVOtCYaDARcuXmV+rsXhQ/Ncv75Oc6qJtCxMyyTPQRgWp58+y+TkBN/5zkmqlTJxHFMu+9iORa/bw/U8hlFCtVyh3+9QrZT49OePM9aooLKMlZV1ZudbWo0p0Lhtw6Db7nPy1DmaEzU6uwOyPCUou4TDmGuXl6mUSzi+i2H62H6DT3/rDD9ytERQriKkVoLW1zaZbo0RpyHnLizzyGNnePMb78B29fD95tY2Zy5eo16p0KiV2d2NyLOEibE6WZJgWlqxWlvdpByU6Q0GPHz8FEVqMt2qUiq5dDs9dre6NKfG2d5qYwhtOG65Ngt7pthY36UaeFTKAbVGBcOSlH0LlWvLDUsaSEPQ63Qp+T6GIVAKLMems9vGkpIszTiwfwGVJ1hWQTiMEUbOmTOrTE402NrcRaUFjm0xjBIcx0YIhYEgCVMMaRPHMd1+TLfX5eD+GXZ2OszMTmHaWvURogBDf/+0Mis5fHCB85euAxLLlBzcu8Di3mndMohukaLIyJKC1bU2H/7hV+FYPl86ucKRw8dwzAEHDs5y7NZDLF9bYmy8jsLimw8+wuKeGW3pYVukWYo1qugLaQJS22+Q6x6BAhzfw3YcpOmQJiOASKH4mZ/9PX7iA7cihUmhCizLIs/UaJBfaXqetKGQDPttbDvAtAVxmCJtC9N0EYZFnkSYlm4NRWVIU5CnEpULhNCJtiElpvPsdyZASIMCY2Siq9VlywkIByHSsrEsEwMTIUwsxyTPE5IRpEMImzRT2K5DmqVII6dIM6RlUeQ5hlGA0FAiQwpUFmFaFnmejNpMC6QJg94GphlgWy55rqFMcRiBgGG/i+u6WJZHnibsbO1QqVR49etuw7I9Pv57X+Luu/br+WfTJU0gy8D1XC5duEy9XhnRSU1st4QQkmGU842vfId/8NOvZXrvG1laXqLil4h2YgqRkWeSd7z9x3j/hz+E640zNtnCdHUC2tndoTneIlMpjfo4U1Pj9HvbHLn1FnKVUa/XKKTBoNNmZXmZWq1GFEcUucm7f+ztREmbt/zQe0jzPpVajcNHj/Ir/+Jf8ejxR+kNFK969b1USjX+4OOfYLG1D6/u86k/+RxH3zRP4FlMjtVIMsWD3z7HxnqX24/swUBbtGRJiJX3iXOTPM9Y3dykUXOI05RSuUyjXKZeDfA9E9N0ePKxS6y3+0xPTYDKqVVcrm/ucG15g2oF5iYnSXOXX/+P3+HOQw2urLSZaVa4+84D2BZstLt8+9HLXFzdZXayQSUokauQ1c02SQau5XB1rUsUhjxz5irhGYs//t++zNLXrzCdLvLu299FchaSi5Lbanfx+Y99iUY4w2vm3sSf/+Z/xuxKFu6sc/rsEkeOzJNmGbcf2cOB/S0aVYfxSonHT13izNkV1jc63H3r/Gj2SLd393s9dnoDGpUKGzu7WNLlkacvcv7KKq+59xBlzyOOE6JwCEaGH+ixglwVqDSis3UakohKfRppl3VRoOWxubHO1Q3BnumCViMlSz0CF6QsMISpqbRKkYmUTDh886EtgqpDvSJJ8ozMMDAMsC1BkWmCrSoUeSFIM4FlQqc3ZHyyxfmVjDuPLLCyucvi9CQrW12q5RKdYYhplFDmJNWJfewOhpz++A7ve+e7+Plf/EX+4bt+jqdPnKS9u8Xa6lkWpps4lk7s8rQgtzyqYzNkSlFEW6g8xLIdphoBnqmL0EiTNM9YXtklKgTDMKVeayBNE2kZnHnmBI16je3VS4yPeQgK0jRkkHjUGpPkhfbCNTF58pmnmJ6YZMyewXMEtxya1v69WY4pLaIo1rP5QoFhgVPGykKGmYFbZMyO+8hRt0gYJnQiEyfwGfRCTLMA0yDwfQoKciFZXdvgjz7zR6xfOoU1fJD77inxwDGHZm2d1sQk/9dvfozDew7yma8+zPt+/CNMTozxh5/4He57/Tt5/EufYH7PISqTM9+TcbmBoRPU0b+b48PnkSLEjS1GrfogjOfGEf5LLjHiVrz8bOD3s26OeJ8/d/esBYRW3OB5UbV4wYUXz+EVPEf8lKNtblYBb7A4Rq/mRjYw2uavA1T5gXL3t7TymyoChqEPA2P0xbj58sJvSVEU31cl4ZWInJVKmQ/9r3/xUve68b80TZ/faMxNid9NB/YNuVyA6ViU62UW98+zd98c03Mtjh47yJ333MrMwjRZnmmT7rwgiTMQEsN0qNQqzC1MY5qSQoFpW1y/vkoB1BsNOp0etuOCgjRLqFQDoijl4sVlBn3d9nj/vbewvd1hz3yLLM+oVGuoQtPV2u0uGNCcbLLd6SFNhe975ErDUMrlKgCDYYcsz8iVIopSLFu3byVJTKVWotftYdo20hL0eh1tXeDY7Dswx9Fj+yhXfLI848TJc3oOR4DvBwwHCWurGxiGQTFS73q9iCxOyZIES5o4jlY5AIbDAd1uj8XFWcIwxLQsDuxfJIqGSAP27psnjiPyLCNLM3qdHqdOnGVhYZaiKLjzjmOYhm4Jy9KMC+eWOH9+mT/784colQI21je46+5bqFYr/Pi738DMTIssVxw7eoiiKFAqw/d9faxSMNEcZ9/eeSzLZrI1rtvxDBNTmszNtRBSe+SEYUKep/zMPQWWJdnaHGAgOHv6EpXAgSLHkiZxnHP/XQdYWV3jzNkrDIc9Wq1x7r3jMPMLU/i+w/59syAFtm2xu9tDZfozmZ5u4pc86rUy73zbfXT6Q7q9PufPXyNLUhxXkiQJAEHgcW15gyefOo8UMD83RhQOuHp1iV6vQ5KFFCi22z2iJMJ2NDE1HMY89cQ50hFAI8syxpp1pGOxb/803W6bSq1EUHKJs4z6WIOZ2TGuXluj0wlvFEVKZZ9zZ1fotgesrmyyubGjzex3OniugVKKoFLm8tI6eZ6xtroFYkRlFBLbcvA9n3q1DBS8+Yfu4tixvSwtb/PYk+fY2d7VrcpZQbvdRUqLK1fXuf+ew3ziK49x/PhTVCtVrl48z0/99Hv40ue/QbfTYf+BvRoPniaoAuIo4fSpsyP7gAiV5diWoQmKRY5SKdaz5uCGxvdnaY7KC/zA179rWYbrasS/nsWz9QxammFIB2E4GGZGlvbI8z5+UAahiIYhjusQD0PaO9tAhuPoZDFLtXIZDXewbA1nQJiYpo1AaEXP0kWULM1GqllIlqVYloeQEq+k51wpFOrZ6nWhK+y2rdtLhUBTGAuFYUCeZ0RRnyzVRMU8hSzV26lcz96CwHYcLFvT+sCkVJokTQaEw00MUyJNk6BSwXYcKrU6aZpTFPo9mZyaxHIkWZZy7co1fupnfgRpSkqlQIOVLJMsTciygubUFGmWkac5UloURYFt2/hBmeWVNtPzTf7xP/mfKESJOM557LHHKFUqfPrTf8Yf/8knNNVYChzbxnFdGo0ai3v2j4zAHeIoxXMDxsYnEGaOMCzSXGEBSRRz4NARnjl7CduSvPqBBxBC8sjx4xS5Ymt9k5//6M/T2+4yPjbOu97zY5x84jiXLl/CC3ze9NoH6PYi8jxjdmaGkufw9UdO0RkMGUYxb3ntAe68tYUwMr795CXiNNam4V4F27Q5tNDk2P55cmWyuTuAomC3F1IoOHd5FaUy3v/e1zDWKHPu8hJJHrO8vsVko8y+PS3qpRaqEERJl9fcPUa1FHBgfpKrV1fo9HtkqmCy0cA2DV53/0Fs2+KJs1dwbJuZiSpT9YDrm5uc/O2LlJ6s89FDH+W/e9dHec2tt/HgV7/Ev/yXv8wn/+IveNPb3s473/1uDh/aj+s63HPH7Xz+C5/nd37j3/O2u17DA+rNjJ2b4pE/PcvVK9u0BxFf+9bTgMnKVpvbjuyhNdtg36Fpoji9cc4tCt1yPNscwzQEzzyzgiXhgTsO8LbX3TZS7QWWJfA9g1LgkuYa6kaWYaTbmCJlfdtkd5Br6JAwOXPmJLubbbobS5TtjPMnl/BLfQqRaSuQIidXGdIAC4lIQx547RgTDUhSgSo8Tj+eMoxsoqjANl19HhACSxYEdo6goF512dzscM9th7iyskmeK7Y7fW39QUE5KLHdV7qDZnuTp//vZf7xf/MRZmZm8Gyb02dPMjs7TRYPmWq0WFu+jCgkCsnp8+eojE+T5QaSjDQMURhkWYRlKDzLQmIy6CcM+opOtMtwGN6I3g0p2e3scPj2+3D9GuVqAEqR5tH/y957R0ty3fedn3vrVuzq+HKYmTd5MBgMACIwgDmIlJkkihDFlVZaryQrWNHW0qZWgbJoS7J2fWyl9a6SJXOtYEqiTJGSCBAEIIIgQcQZYAImz7w0L3Xu6kr3+o/qNxiAAEmJ9tH6LH/n1Lx3aqq6q19X+IVvQAqXaKiJhkOgMJMfZhGR6PGK23cQ9ddZXbxEEmcYrAKqLjS2Y2FEXsC0HRdLKhbXNwgqY0jLQZOCAMtSJEnKFx/9Iu12i0oYsryyCEaxtdUGbTh1/CTPPPkId7/qzUxUn2WmYlMTmwRKU/UD7rxxmp/5p2/h+BP/kS8++jjf9V3/C+3mFu/4xrdx7vIGL7vjdTx+3x8js0HhsYhAUqiHvjBebN126C+Td4ptO4zr9n+xXPXF8tG/i2r89nt9ueP9WmL7dQvrh+0yqbA72162P9/1n1O/YCmE0MQ1iOpX+zn/tnn+i8XXJ3dfY3y5yd2X309f4xgUMNyXmI5tF02j71le2+fFeHzX7Xfd/vBSmkfwbe97L9/3wV/m7S/fd93/PXccxcTpq2jEmG0+igApEKboYfhBgHIUjueMGh8Cz7bIc0NYDjlz9jJGawa9IWHZQ1Akhp7vkGVDwlJQMGWSHOVKpDS0NpsYCYPegG4vwvNcJqcmmBoLSbKENInp9btIadHrpkyO18h1ThwPCcOAcqVOvdGg2+qwsdXCdWwmpyZZXFmkMT6Fq/xiapElnD93hamJWpGsZjFSipHICaRpjBcEwEhoQQqkhKif4LoeU1ONEXzGkKZFAmUrECIjSTLWNzd58tgiR4/uwRI53W53xHECSxVTPksWvmyWZfHE46eZnprA9ws7iCga0mq3Ccs10jTGtgQ7dkwXnnomwy+5SCUolQKuLF3lwIE9TEw0OHx4FwiDG7hoPTKmdhRSCMLQ5/Sz59BaE4aFcqgp3Gi5eH6Jx558lkOHFjCiSCyFkAijyXONX/IZDiJ8L2DQbTEbpnilMrbnsjEQZm0AACAASURBVHxlDc+1mds1y+LiVXw3oBSUqIQlrm608D2f6ekGl6+ssr7eo1ots7G5ydLyCrkuRFZWltdZWdnE82x0nuH5XtHdsix27JhBeQWHrhyWqE/UuHTpKmP1MuvrTWZnx9m5Y5qtzS36w4ggDPB9l8Z4HVvZhc9YbmHbAs91saTF8vJGAauLU4ZRRLVSIs8SPM8jRxD6fgHJM4L5+Rkc16dSLeA1+w7MoXWOJQye7zA2WcN2FdVKhWZzgOtZTEyNs7G2xY5dMzSbbRZ2zbK+3kTrnFo9JKcQFyk83STnz1xma7NDWPbQesjCzlna7R6nzi2zd/c0w+GAXOdUKz5hGPLFR59FWw6333iQB85scuTAIe58+TwXLy7zsjtuLiTc212CwGdufpZP/pf7ufHoflzXJUsTHMdma+Mq5XJAEme4fjExl4JikmYVipa93gDbKUR10izhP//Jw3zzO25A2RbDqI/lqJEBdAGrLPIAWUxnUkCkBY/UKGzHxpIWeZYTRxFaC1yvUGdVrgM4WLY7mswVpuaWFJAXPnKW7WErB+UURuZZYoGO0dkQy1K0NtbxSwGdVgvHdsBkJEmMUiWifrfgDWmNUhZ5PgSjcb0yw6iNF5TQeY6QGpMXoi0oB5MLEIYkjkacZQvlKJRtI4RNluVgIEvSkTeeLNR0DQirgK9aSuI6Fkncw/UdjCnO6+EgRtkOg0GbaqOG7bhkSYwceWxKYaF1n9tvP4ywJG9+7QL/+pc/xp13vYyb7rgJJSQ33XRjwYe1BLbyuHDuEmNjDVaWF7EtD+WA0Yo8M1RrZVrNTbY2lmlvxISBQ6fZot/tMDY9x+kLS5w49jRHbjrCZ+7/FAf2z3P65HkOHprjTW98Az/4gz9CL+rzPd/3j7j73a+hNj2N44Qc+8JjYOXs2rub3/zt36c3PuDOo/swQjNWKRXwew1hENLsJYzXPFzXJjU2p85dZmaygRQ2p85f5fSpJW45vIBSigcffpJbb1ygHw8IfIdmq8OeHTOUwzKTY3WOnbzE/MwkuTZsdVpordkxMUmaa0q+QylwUcrhC09fYNdMg7nJkHZviCUUTxy7wLAX89R/uMzm00M+8M0/ztvf9g0kUZ8rS5e55aYF7rzzdupT0/SjhFsOHyGJNY8+8kU+9KFf4Ld/57eYnC7TGCtxz6cf4lvf9z8xNTvNK267nVMPH2cineDxT55g4TUzrG50maiHlDzFnvkJZsbKGHJsZV97YEshQOaFb6rvkQMb7R7lwCcedMl1YTfiuNvPUUEybGLyLaLuJp4XEE4dpdfrY/KMLz5+jkjUkK0+R24JqZVTxsaqKFdiWT55loApoMa2UhgNlgKTp0gLXDsg1UM21ywsV1MOIM9Hyr6Gwj5bSArfa4ldXmCtHTM/OU6nP6BeDgl8D1cJrm52QEpc12LtZI+f+oc/QVDyiOMhVz+3xfzOOc49+wT1ksPC/CTTk9MUOrYpu/bcivRKCGGj++s0W10uXT7P9NgYidbXchohLXrDjOWNLcbHd7OwZwFGDRLXcTG5Jkt7kHcIHJ8kHWKpCqnUjE3OksQJ8SDiwqVLZHlKHi+yuRQx3qhjsiF+KWQbQrsNo80M5NoizQyeHZAJQ5Z0KOwANVkS4zo+i8uL5GmfE8+cxi+FnDp9mubaeTwRUS7BrvkJJEOOLV5CuTlTDUmtMsYw7SA0KCU4c6HLsZMX+chHfp/usM/JE89w5LbXcvLEMXqtK9z6itcjvBogsEyRq31JXvgCNNj1yd+L55vXj/WKBsOXK2BeKsf9WuJrB01e//7mun9fOIEUL7LlS/3v9kYj6DIvXji/VF6+HV8XVPl7jO3iTn6FYuv5w1pRjK+vdQdeeIJ/6Zj4eT4Yo8WY4pftwk8Iec1AF7FtuXDdibp96lyDaBbbvPM97+HuH/6X3P3qgy951LAN5xTXxszPO1kFz5vwPXePKAqDC2cuUqtUiaKYTrMDQhAnMY1GlfGJBuVqmWEc02kXXldKKaIoxg8CoijGdl2EKqSrbavoXG9ttUizlFa7zd49C2xsbVIpl4gGQ6QFciTh3upsUW+MUSpX8MOAq4urdFpNkjjFchw6zR5jkxPUG3X63Ra2WyROeZ4wOVkvrAz6fYwG23EZxjF5pglKZSzLLjzIRomW0QJhWQgJSZxhSQc1shvI8wTb8wqIn7J49LETvPMdryw4bRp8P6Df7+AoB2MMnXaPVqvH+HgdZUsC38WyLYRtgWXhOC6BX+Kpx09QDcoIqUiznGdPX2B2fhIhC5VOWynC0OfypSVq9QqeZ5OlKVmc43g2WSwwuQZZKF6OjY9RLpfIshR5zZRW0u10ufOOmzlz9hyOLbBth0cfOcn8rplRMqzZWu3Sbq1iBKxutigFPv1ej8XFVQ7euJfWZotKJQRhsdls0263UUKTJBkrK1uEpZDZ2Qk67TaNRg1LOszvmODYM2c5eGAnmc5obfXwbKdQMA0DlCV49PHjzExPsr6+RRwnSGOoVqtobQjDgOXl4ty4srROvVahWqvhuIosyegN1vBLFYKwRNRNKIU+GxttKuUSucnZOT/FxYtXGR+rYUxcKEg6LsnQcHlxGduFSrUohBcvXWHvnl1oIXECB43AdX0ee+wUM+N1ms0OM/PjuL5Dt9llYrxGroe0mwO6nQFh4BEELn4QYAkFUpKmA9J0iNGSpeUW5dCnFHhcOHeZcljCGMns9ARGQlgOEdIGkdHr9rhx3yGG8RBnx8vodSJ27fSIk5ilxVVmZqYplcpYUtLptDl18jx33HEjaZoQhiWyJMErVRHSK05QSWGfIYpp1LZsszXyNJJCEg8jvuPbX0Meb6GUg+X45OkAZZdQwhB11kE4hXF3liMtU0Abs4xh1AVh4bgeRufYtoul7IKbYtukaV7cV0whvZ5EXVzXJerFSCUQ0iONI3RusKTFpXNLpFmOY+dYyiGOYkqVMXKdFmqbQmMAx6kUvB1PIGVR6FvSIKSLkBZZNsSyPYQwZEkfS4JGgoBsGBWNNp0X/nZY5FmvKMiFwghdvJbJivumBoSFRuMGHmmiUbbNxtpVfD/AdQOyVIOtePDex5idncCyJfGgi+tAMuiD5fLFLzzNzNw0WmRIBFcXCwuBLzz8NL/xe/fxPe9/H8PmJl5gk+Yw6GzgKItHHnqCaqWB7Wqidky/n1Gp18mTAWtrmzx7+gw75meJe00uXThDvzOg0pjmzNlLXHz2IlGrzWtf9yaUrZmeGsPzq7iBz9jEFNLWvOOd7+ad73g3/+RHf4JbbrmVeiXkrd/4Dn7gxz7ADYcXiKJNfuU3fotv+d5XcmW9y3Sjxp//5ec4dGAvJ84t0Wy2OHpwJ6DoD1MskTM1MUaeS/7kk18gyTLeeNdhnjl3hdmJCSq1ErVKCdf1UdJivF4jzXMsmbOy1WTH9BRKaGJtePD+pzlyaDd/cf8T7Jyp8pf3PsXRIwsYnbJnbpLPPX6SUrnMZK1CexjTvrfDj73vR/m+7/5B3v4NdyG1QJVh//79HDk8T1hpIKXg1NMnuHz2LN/7Qz/OH3/0j/mpn/0ZvuPbv4lTZ55gz759pKnkxPGT/NWnPsPr3/IGkgxuveMOdu/axbd+83v4yC/8ES9/9wFC38FxnWsP3W1F0e3cIMtilARMgm3nlMsBvuPjWAKdNAnKteI8pUDQ5HHMsHkOzyvT6a+S6mm8UFJyS0jLYNIuebPFzoM5lVBw9kyLsOYBmlMnrhZNTUuDsDEjOwFr2+g6F5w7dxUsj717XRynsCyxEAUPX1ksr2iUA8ePr5OpMY6dSzh6cA+PPn2OPTsnsZWgG8XEcZ/xRoNy4PFnH3qcf/dT/ydBvU6/16RRriGHDZYuHKNa8/Acl/F6iBY5lpD4QRVRHkMIG7KYuLeJZ0GjUUePfC0tUSBllLJ48unjVMf2cvjI4aKxKSUIU6j8Gs2wtYQjQaBJs5xElBib2YXONBqDG3hUy1Uawubpi6e4dPwqN954EN8TXFxqcuqZ08zvnCZOMh585BgH9+1DOg5ag1Oq4/oucfsqUqcIwHY8lFLMT40x1aiTDDepV2tk0Tp7F+YpBTYV1wGR4Lkuv/2Jv8QXXW44sgsTt/BcjyRRRPkqlg5YXB5w8y038/CnH+ANb3kPx5/+HEeOvpL7PvGfmJvdSWX3UQIGJNIpsszrUFfXclDxguW6/O+awfnzEr/tnO85C4Pn5axfIb7W4u6l7BK+ck6+HS8N7bweolroMDPKrcGi8BveXp4Hx9zO0cVz67fz5esnctf2EYyeGfIa7QEElv11WObfe+SjDtFXG4LtpOhrD8uyRhChv3v8yZ/+Eb98z8pXtW2efykp98teRDnMTxU2AVrA9Nw0nW6PPMvZWN/ink9/nniYEIYhE5MTuJ5bCCaUSoWhchBgWRISSKOErc1mIeQhbKphhTyXbG00yTJNnuZUyhXW1ttkWrO8ugHYjI+NUw3LrK9usrHVZG1jE893WZjfQaI1ti0YpjHlWg2EQ6YFSBeMIk9TsG28coi0FaWwhFsqYdAMoz5ZNCAb9BHkCGVG9gMQhIos75NrPbJfgLjfw/NcpKV4/eteTmFzoOj1BhgMQVgGWRTpYVhienq86MDGCZVaFdf1kEKiRHFrsZTktjuP4oYeylV89BP3c+jwXqLBEKNz4jhCmwylBAt7ZkBotAHPL+EHPlJCc6vFaPRa+NplWXG7kpJhFBXNJyPYuXOWLB1yYP9+0lRjTM7Lbj9YyM7nRbf21LlzVCtV6tUxLJ1iWxbNZg9lO5jcwogBQaAQRuJYgs2tLcqhYveuMaSVUa+5PHXiBGLknVYpBxx/6jwzY3WePX2FiXqNiYkqZy+sEMUJSRyjdc6Nh3ZDnjI5VmFyssFms0+apBx7+jxSwIXFNSzLYma6QRgGaJ3Q7fSxVIDOXXRanDuN6Robm00a9QpbrS6VcoCRFjfetJ9HHn+WpcU2ra0hGAupBLMzU9SrNYaDIckwYsfOGdIsRuvCEzCOErIkY3K8yucfP0U0HNJudul3BiRpziAaksQ5/X5Mo16hXCkV0GMgyxNMmoAGxy0xPjnGvj0zbGx0ULZNpRJyZWmTWi1AixxbWQhj0DrFEZLJRoVde3ayY88OXv+q11Crhvzm7/4Fy8ubTM9MIC3JR373T+l0utx/3+c5eMMCUlqgi8aR43hkSWFpkGtDnmTY0kJJQTqM0FqPDLglSTIEY/D9MhfPbaGFIs8ydDLAVi4GQ7cf4VbGsJRE5/nIUkRicshSg+fXsd0AIwVGGiwLLCXxfI88z7Adj3gYk2UZUkjcICBNM9IsQ4jCf852HIyA4XDAzt1TTM1WCSqTKNfDciWIBNu2iqTKclBCYNIYnQ8RZiRbrnOyHKJ+B0sYHKWwLJthNERIdU0wR2s9OraYor9jyNKiuARDnqUYUyAM0iTFdgMs1yu21RqTW7heQJbkBEEF1wn52J9+BsuS2ELz8pffgOsqsjjivk+fwGgPZds0Ny7zilce5oFPfxbyvGjqCYt+t8ftty/w6P0/TiYEVEL+4KP3Ynl1JmYPEsV9XnHXrczsHGOrtUFtzGdipkyad+l129x997dw6Ib9eL6LsVPuesOr+NDPf5jxiTq333YLN996lIc//xA/+ZM/zdPHz7K1OeQb3/I/U6+XkFaEySo8c/wZfvhHfphf/dV/wxcee4J+lGJLn7IX0kszpB+ye2E32sDWVjGlnts5ycrVNQbtPrvnJkmyIYvr64ApYLI6JdMR3/wPbuf2o3sRQnDzwXmWN5eZbdT4+L3PcPLZs3TjAdISnL24wuLKJqePXwbgC8fP0ggV3/jWlyEtw1tfd5gLyy2+5R13IqTmseMXcJSDsh0+++AJ/voPT9L7eMIHf+C7maiPkyUZw3SAWxKIyHDumRNkg8Kvztghuw/ezm/+3sd47zvv5r6/+mtWL59Gq4hD++8i7lmsLp/k/e99Bz/zz/4Jp558kqi7wrC9yT//sf+N93/Td/Dhn/s5Xi3eygO//kwBGb5mF/JcTiGFwPNcEBa2XSEMxiCTpGkTIWIcr4yrBDodYjCI3LC8+gSu7xENrtJsDrHdEKE9bCW5uNLlwlWJbbXxbAcrt9m3t1ac70Jz5IY5cgR5niEpRMDa7QyDjZAS27GY3jVOtVYmo7Db0TonQ2OJjDzLGUQtPK/EkZumqJQ0ZdXliZNnObx/nlpYIopzpho1Jhtj6NSi9PQ+/vz//UNWL69BrKmFVf7Nv/9tNpsXOLJvmt3zE8zPNkhMjCUUmRTEwi48aaUhTWPWNrcKOKQUiNyghCLPcpI0Y5gZ7nj5Wzly+ChrayuEQQXXDZAU13Tx/EuRulDL7fYFjlNmfW2FzY01PMdFInF9h4mpaSzf4TMrn6VSUgR2wMLOSV7x6jsRxuAKxetefhvCUhihsGwXpTR5GuEqj832cJQ3aTQplguOJ7jhwF6maoqbD+2j5AkcVzLQEcp2wUg+/J0/zKtuu4GKSrC9Os0NB78kOPPEFLvmjqLDLTY6a7zn/Xdz34P3cterXsWzZy/y9ne9l7+572OI3jKpcJB/B8ifRBR52P9v4+8GH/37iq9P7r7G2J7c/W2/9G3j8+L3Yp3WZjTFfe4CKtYV669fii7FCKIJMJqmfeVuyYu0ZEbxmtfexWfPdNhht67b+rltt7sXliVfdP8Xvst25HmO5SpOnDzDzMwU0hIEgU8yjOl1C3W6Wr2K69rFg0lKNtabBGGIUhbddgfbViMjYAcv8Nna3AJRwMBmJutcWtygHPqj9yskxqvVkPXNJrMzk3Q7Pc6ePc/RI/vY3GyyZ2GOwaBPNEwISh5X19oYnTM1OQnGIGSONAZtcpI0xQtCskwXogmCkTQ75NqgXBtpK7QxCFPIrEsB7WaPqB/jeg7NZhvf93C9wqcuz5LCIwuLfr8oxLzAR1lF5zZNU2zbGvmMeURxzMMPH2Nh9w50lqJzQ5rpEUwmx7Ys2s0Wt91yCGVb2Mql227j+T5SFMV/rgXKVggJnW4HqWzypIeyPb7w2FOM1SoMugNKJY88Lwo9z/MLiI0oCmghU7I8pxwWxsrbsKHt825+fo48yYjjmJKf0m72SOKMAwd38+zZk5ScMpcur1KpFsId5XJAf5hxdaVDJSyjLJs8EczOTtLrdQlKPpeX1tm3bydCQrlSptPpcvDgArV6hTgaYDs2cVJI1xfXh6bb7lAOS4QlhytL6xw+uIOgUsJzbWzbYdAbog2cPL3I/I4xllc3aW72qFZ96rUaFy+usm/vHBcvr1Ite1y8uMKRGxY4fuIy42NVLl5eYWpmnNXVLarVKkk85OpKC2HZlEoh8SDCsmwuXFihudklSTOmp+sYY/CUXRiul0N6g4h4mKI19PoDwpLDxUvrVGs+Uhra7QFBEI46fzmrq5vsmJ/h3PklpicaVKslpubGEULTbnYJQ59Ou8mjT5ymlwry1KbbHfDnDz/Lu9/5dr7pW47Q3GoyMzfF5/7mUd79LW/l4392D2E54LY7buaeTz5Ap9sjLAc0m03K1TLdTptg9H1rndPvtzGmgGlKWahGFgVRhCGjMVYh7i/hBdvehj5S5tiWxqQxWV74PxWecP0R102hLEGaxggkOknJ85RoEKFshVIWQhZJZDyMkcomHkY4noe0bJRd+EdlWYI2RZfecUtobUGeoPN4dKzb/AfIkhyEhZEWaTpESZdcp9iugzYS1/fQuUAbC2lZpEkKRuP7AVIVE3udZYBFMoyxbAchFXmaoyyJ1inK8Qs5+lQXYi4ip9fr4Ad1Hrzvc0yMB3iBg2O7RIM+e3bPYClF1G0R1hswmr7fcOMC7a0OpXIJ1y8jhMPczhmiQaEqWh0b5757P8++Q7uw7ICf/1e/xM1H7uTwgQOMjwdsrqzjV+rYrkeORaU2SXP9KmG5juPaBL7Ne+9+H41GjWjYxfGn8II6733f+xhGAxxH4SgL33f5Rz/wPbRbW4VNwfIlXvuaN3HxwhIf+vmf4ru/+3u5++5vxoiUHQs3MjZeZu3qaV73mttw7BJKWNx772fYe9ckE2MBSknmJicpeZJao4KxJFmmqYc1Vrd6TNSKqaoUhr++/2mmJko8e2mN8XqDRjmgkwzZv6vBWK1CmgwIHIeZqXHCMKBar3H/A0/xplffwmc+8yh79+7m4596jN07Gvi+R5S08d2QiUaAEAYvd/mhO/8xr9x7J2995z8gCHwcp085rCJkxjC2EMqlVHYYG5/l2OMXsYwii7t813d+G3e8+naiJMILAsL6HINok2SwwVi1xu/9pz/k0OGb+f4f+hHe+213MzM7y5u/4U289g2v4uyZ80TDAd//Pd/D8KKiHSwhpBiJ/FyXC4wablIa4izBVhlBUMNIByMcdNzDcywSI1HGhnyNSv0I/eZJJqcPou0yAtAmwc4uMlnr0ml7zMz6SIYINEboAuorXY4du8TkZJnCTACUExQCY6OSxJEG11Zs9XJyOYZJYyxh6A9LLC/22bFQRY14Sq2WzYVVi3ojYGaixrkrqwjL4p5ffoY37H4br9n/Fk6eepbf/p3f4RV3HOXq4jm++IXP8omP/DonWsu85sjLsNLis1uWg3ZcXH8Sr9RAKIc86ZN0rlLzLVqdHraykSMpOyEkg0Sz2YrJrQKFEA2GVKpV0iSh2+tQqVS4+OyT1EoKS0mwfbxwJ5nKcbTP2FiNTqeNZSm6W1uceOph/sNf/SFvfuURbpy/ESTYlsRkKcra9tMzoFziXOIHIamwUZYgbl9F2TaB56CNLjjD0sLoUQ43soERpqC3CGMKf1EpkMrjYw88wytvDVEqx7L79NqCuf0J3fgyX3wQzp8/w8z4DPXaPF5oc+jILdQqkhMPfxxXSeoHXoknchB/y0Jte7AnrhcJvI7Cw/Pz2i/Z/QUTtu089b9VwaTNcyi4F6MjbVs6vFRZe/2kT157jeeO7ZqeyvbnebFj4DmBlGvbaDOC0H/1ObMeHcPXMrn7enH3NcaXVct8CR7dC0OKooi7fr+vRKgsktjrCJ0vit790mXbYw24ho/ehneCYNfCLvTSsRe8zgt/PnfSv5TQbHH5F1mUZRVSmpVKiM5yFq+sUh9rgJCMT00wNVXjxDNnaFSrKNsmSdLi4dvtE/UH2K7i8uIS1UoDAWysbSIknDu/RKvTo93uctPRA1RrZar1Gs+cOMve3XO0mh2UKkySK9USC7t28OyZi8xMTdNpR0RRRpbmTE1U2bljDhS4XoBUDoNBhG0V8EzLdlDkJHFMnucYIYvvVueFl5m0GXT7DKMhrueMlO4csATVsQbLl5aZGJ8kHbbJjYUayaKncYTO4M/+/CGO3LQXo1MGgwFnzlxkemq8EIRwPLQULF5a4Zabb6DX7rKxtkUpKCF0oXhnOy651pRKJbQuzgvbVtiOQ7vZwfU8mlstfN9GCAttBK7vYYui2BsOIw7s24Uhp1KvIKTFudPnuHBhkfkds/QGA9RomuiXvELpUAosWYiW5GjSLAOtubq8wrPnLoEQBG5KmmWUSj6tZotkmFMfq2PbNsMowQBpZqjWKszNz1AO/ULAB00yjGi2B/iBYmqiwaUr60zPjmNEUnwvliAa9lBK0m81WV5aI0s1KyubjDfKJHlEdXyCfr/H/PQEvW5MULLJTYbJQBtBtz1gfucEjleCzFCt1ei1+niugx8Uk1AhJb7vEPguSZKxY3cDSwnm5ycZxjl5mtLr9hn0YowU+K5LGg+w7bywwTCSqDfg0JG9nDp1mYlaFVsqkjzmmZMXqYUBri0oVyv0o0LBtFJ1CgU3FJZIcF2XJNEYBL3uANeT2MrgugovKCYOUimOPXmO2ZkpMJLdu2f5yF8+hUxtbji4wH/81CPs3bGbTz90P+QJYTkgDH1c12ZudoIw9JmenuLJp5/l8E17CcOQemOCdvsqgV8CoYnjIb5n43o+0g6uyZBLy8JxbFxlEw2KCdXjj51ifq42giynBexX2CAclO3R720iLIVlVbAsF6QovPREISRluT46i1CqMPqOh/E1U3RjivuLH/joEfdNZzlpkhS+cAIs6THodZAywpI+Qiq0BmVL8jxDa0On2aYUltEmx7EVeW7IdVqozyoX8gRpYrQWQIrvBaN7Zsaw20GqgkesLEU0aOJ6NnE/Ram8EF7BBqlQUmBZoph2jyDZQmp2LMwjpHXNa1AIhecFtJodjj95jHIlwPNDom6ClEP8Up2oH/NHH/ksO3dWCaslXK9MMhhiu5Idu2axREA86JANljh8w1vwG1NYIuPT936KvXtupL21SbXhs9lcpxEEtLYusrp4kfHxXeQ64syZM4yPzXDm7HnG6nW21i9Qr83yT//JBzl4cD8zOyZwhMv4rlnK1TIPffYefN/lAx/4AL/5f/9f/P7/8285eMMREg2/8OF/xR133MTr3/hmpKwwaC2xurTIfQ98npnbQwLXZ5ik5KaAprqOV/AgycEoHn3yLFneZ7IxjpCGqckqG80+x5+6xL69YygrJc1sXMdGWTa+ZxdPHaPY6sSUApexiSrKkhzcvwNLWezZOcbF85fYvWuWLIPUKEI/5IF/f4Kf/8f/skjGu01qYz6NqZ3YrqLd3cBxS0gREiV9wloDIy1c5bPZvEpQUQyGLQyajfUNJiYb+FJhGUhTQ7k6zpGjR6lVx3nta+9kanKS9Y01bF8xPTvGwSO7OHBwP8tLy9x84xH2lQ/xsb/4JJML9ec9XUeEDkAWTTBTiBtZQqIsgxY2UWYKtUrdR9ljSBGR9DY4ebHN1OQ0/Vxy5vQZ+maG449tsWt+SLkiEVaO1jbSEmTa4cSxdW44XEdZoFTI6vKQ9tBirNLH0sVzXaDReSGI9jefbbJzwcGzE3KhqFQFSmq00Ww2DVPjUC1rTl2G9atNLn10nR966w/yJx/7S+4omgC8rwAAIABJREFUvZK4ldFQE7z6Za/lno8+yId+7V8Q2jm/8MHX8OiTXW7fexQhNUIpjKVQlguuj5YSk2f026v4SpNpQxrHlEohCANoBlnOVsdghM/uAwdwXZ9Br49ju0hLEPViTNpBWhBIQaYjolSxutGiXK4RhAHxcMDG5haBH7C1foVmp82F3hKvuXGanWM3II1AX0evKSg0FrYT4rklhtEQJ6ww3FrDkyCskUm3KDwKt5uShTeyRhtTWD0lGqUkjuOQJik6NXgmYOe+JpkOGMSzPPG5R5mrT+CMhRzaU+HwwRpBuJ/PP/ZZDt94K3mmefrEMRissGvhBmb3344R6fM4Ys8VJV+hbb9NBdrOJ4W51izjusLqpQq5F4vr/2ZfS6H3wl0LNJEeDT5GpKIvc3zamOuKutFrsF3UFeueryT/pfHCLNxQ0K+2C9/iQM1LpefXFiEKSy/1dZ+7/2+GJeX/kB4Zv3PvqWu/X7twv4bQI1LpufOX8HyPyanxwhw4z8mzQphh796dIERhBC4KMYFChbKYtOzevQvLUWBBbaxGEATcfNMBWq0eaaZxHZs0KZTk9u6eZ2urTTkskWU5y1c3iOOUpZWrCCHo9rq0+x3qjZC5uXEcV5FkMRMTk6PuiiEsl8AqknslYWNjq4BW2TY6Lwq9bY5jPIwIAo9Ll5a4urKJ57ooKRFGkCcZY40KQlmE1XE8r+D0DIcZWWZIk5TveP9bAYPrutSqFQ4e2F34aymHOB4SD/rs2DVLr9ejMVZl58IsvX6XBz/7GEZLhlHMyvJVpCWQymBJWShcakOtVuXRx45Rq9fodLrkI3EHk+VsbTbp9yNKYQlhKVw/II5iNtfWOXhoHy9/xS0YoykFAc1WYdCNsBCi4F5keWGw7Vg2vU6PbrNLpRxy1ytvo9cfFJ+nViEoebQ7A1bXW/iBT6fbx/dcTpxeJPBdXMfmc488hRGaQRwxNl6m0xuwZ/c8rlNC55r52XF0kmFLBxB0O30838MvhfQGGdPTE7iOQ8n32Wr2GG80kAJmpscLYY9hzOXLq0SDhKtrmwwHA/q9PnkcE/W6CAGeb+H5miRNC9VJpZicbKBcl1K1RG2iTOgH+J5PvzfAVoqtVncE5dNMjDfo9Yd4QUieC/xyicmpBpnRmCxmz64JwkpAexBRrobcfHQfQkkc16PZ6jA/3yDLB9fO/9wUvK+lpQ2UXSjhTU83uHhpBYEs7A+kxfLSVdI44Y7bbyAaRFy4vESWSb54OeHgwTmUDc31q/zMz/40s9MN9u7bwczMNAdv2M+f/+m9PPTQE+zet5tOt8ugm7JrYRdZmmDbgsZ4A9ctpPv77TadVhOT52TpkFwXpt9pklyHKCiu+XanUzykpEDKwi9OG42lBFk+HL2mR5Z0gRS0vtZ4ElKOJp8uUqlrxZjtFAbljmMDhm67S5ZmJPEQy7JQjoPOs2LalufYtlVAIEWMMRlCCNKkaNAIIQhCh1wPi0LaKsRZtM5JoriAVAqLNBcYaYGwC/6EtBgMEhCSeDhESMmg36FcmUJKDz+0EQIc1y6EV0xGmsUA2E7Bv92G222LVUnpEPVTHnv0GfI8oz5e4RV3vZxqfZxkmPDkkydIY1hZWmV1dYXv+IdvKZRgtWR9ZYNeL2JtZQvPC1leWsbxfN7+7nfyfT/6syidMogT7nrD23AUjE+MFfYmVsFrLldr+EGZZmsL13XJc8M3veu9XD6/yHd++3cz6OdEUZcP/vMPcP+DD1Cr1bnn3k+ytXkVV8Ev/uIv8Za3vIlKZYwf/7GfJhUBJ8+dR3keP/nBD2IrRavZYjCI8crTzO3eR6vXJTcWzd6Qdj/BtmwwNiBp9yNcuxDVmputc2BhnoeeOIExinPLLQ7tmuM973oVJT9Aa4snnjnDZrvPmStrZJmFQNGNhiyvrbG6cpWVlVUcBd0oIk0TetGQ2blpQBF6Ab5jsfoJw6/+8r8jz3JmJyc5+rJbAEm3vYnIHOIoR2jNMG6T9iPMMMNXDqvr59i7bwe9zpB7PvU3/OD3/QiV8jhpDJYD7e4W41M1sHIqlZDWVpu11Tb9wYDJqUlce8TXNoUy7sLe3TieRRon/Mz/+rN87Oce+7LPVUvK6wyji3uG5zoEnkuSJgwG60idkGWKw4cOAQU39NbD+5gqr3HXXYqpGZfTx65g0jpYMVlqsC3D3sPjKKUQCOK0j1QxZ8+s0Ut8UuliRrlNbsB3LN745ilyPDImuHLhCo6tiiYGhlrDots0PPBrTR779YdZ/eh59k/sJ7oI7zj8Ks4sPsSlKyd59PN/TdReoxIm/MaP/2vcksOw26c5bIF4TqTEcTyUW8VWASY1mDylEobEcWGf5JbLREmMyQ1Guzzz5NMMBjHK9kiTnE6ny/zOHcRRD2UJqrUaG81NRD5E2oDl4wcNDhy4gXK5jM5ylOtRb0xw4eI5Li+ukkQWL5s7SuBrjBBok498OQthNSPAsh1yMoyVkeZDss56wb/zywhjyHM9Ep8x15R3h9EQS9pIIbGsgm8tBCRpgu95SGnYvWsnp84PcCRUgmfYeWODpy6v0V/XhKGi7M7ymQce4M1vex1r66tUq1V2zR8iSxK21lcKyx/zt6MRfT3+x4uvT+6+xvhKPndfTSfiv0cBKKV1rVC6PgSMjMfFNRjodh9Cjm7Yv/Zbf8C77ly4bo+vPq4HcV5bN6oQJycL/phyFBvrmxid02l1SBM9kud2yLOcbqdHu10kh+VyGSEFBok2KTrPCzVJabGxvkUUJ0xP1CmVAirlMsOoSN6iKKZSDuh0OkyMN0jTjLX1Fnt37+Dy0gqlko+Qkq1Wk82NJsq1CcMaSEGeJxRdKYmUBZ+oUimNYKlgqYKbg6UK02KTY4DJiXEsSzHs97FHcvqOYxNHPbwwZHOzjSRlONSUy2XskaeY1hm+7xLHMcM4xnVcsiyj1x8QeH7hkSYLzkW/1yc3OZVambn5KRYXr1KvVylXQrI8HU0AJO1Wp4DtWhbTU+MIwPUdLl9apt8d4HseYa2EbXtEgwGO6xbiErZNMoxxfZ8kjSi6XYp2s0N9rArIoiFqDJYUnDp1FqVsyuUyzY0m0TCi348Yn57CDJu0Wl1Onb6M69jcdvM+llc2sZXFhUtXmZsp+FcYw96983Q6PVyn8CLbloheWWnRGKuOIKo5i5fX6Ecx4+N1bLvgebiuizGGYZJQqYS4rstWs4PnWVy+soyt7OK7M4KwVKLXjXDtwgC33qhyZXGVpZUtbKUxppj01MYqZGnGYDAY8aqKh/fG1Sa+5+A6Fg9//hSuo5iarFIquWS5QCnB4pU1DBLbdhgOi+/Uswu4UBiWqNYqDKI+QgranT6u4xINE3zXIk8TpHLJtaG51aFcqdLrRVgWZGkh5HPq7BI6h4nJxkjYRF87n42OmByv8uBnT/HIps/3v+tOhMzZsncwPT/PVMOQphl79y9gWYper8OBgwuMT4zz6CNPcNerb8VxJMq26bR76CxG2T5C2ZTCgvyvbBvLdkiTeFRgygJ5MLIZkMriJ37yT3j/3UeJo+FzXec8RdnbCpc22hiifgfHUWRZUXBJZYOwkCID4SJEYRxtO8E1NV6jc5IkJggDQGPbNlE0wFI2oEciR4VgitZi5DWn0LlGuXYBM5aSNE5wPBdtiu6q1jH2SImzKAatUZNFIUfm6cq2kZYqjM/tomjN8xTHLZNmeWGQLm2UU1z/yvHIk6R4b8cubBriqLjedKGYrPMMTM65s8vs2DVNp7VFuVonNwXsU+cRE1MzrK2usXf/DgCyLC2m8KkmS2Om52aIhznLV5Y48fSZYhLuD+j2G7iuw7vefTfvfefrkJ5PaqDf3qQUllBKEZbH8VyXJEmZntrJu951N/f+1cfxgpBXv/H1VCqFX9ott9xMHMfsO7Af13NYOn+ZsNwAoXnrN7yZqakdeGFItVai7NeQgBdYlMKQLBV8+Jf+D9745jfyB3/8nwmPlJkbq7O6scmlK6vMTNaRApIkQ49g7d1BhG0rds9Nstoc0CiXOH76PFPjdZ45v8RENaRSKaO1Zn6iztJGh812l0uLK9y0f571jSY37t+J5ypcW2F0hue6eL7PQ4+d4tLSBsMHFD/9v3+AdJgR+CVOPPMk/+LDv8ib3/gmKiWHqBdTLvm0Wk0GnQH3fOpT7Nqxi09+8hMcvmEXrq0gt7jt5js4cstNVCtj/Mqv/lvuet0rqFQrbGw18UseynbQecLk1CRRPGB9bZ3JyTG0ySn5DbTWRNEAYUX0ekPG6jO8//3fyod+8Fc49PrZF3/WXvdsf266UCyeq4iGbTxpSJMMrzzB8nqbwPe4dPE0jnK48vQlGhN1xqd9hOoh9GgSKDWWysGMIHZCEwSKhbkSvgWWSNGZQSgLbUBKUNKmGk5hLEmt6iLIkcIgpc3x34l5341THDk8Q5Ds5Hvf9m3MlDxKli5UeUVGvVqh7DsErmF6vIGUKaprcdNNkoU5HyvfXdgRaYF0ymTCwpgc2xLkaUwe9xA6RQvBuWcv0WiMASnDXJCLCipwmZmbw7V9Llw4h+t7DKMBK2tLOLZLvVbCSnukZCyutKhP7CQ3glxnCC2xbZtmq8X05ATtfhuRbeJXFbfeIjHRQqEAbAzaZAU8ULlIx8cNxzDawgvqyHyI7YWgHCydIDHXLLG00QhpYSn72n0uSxJczx3d0xQgiJMhtgW/9onP8LZXztG8Oss9958iM3Dk4CRZEvHsuSbGm+PWO+5kYmKWC5cvsXj+MsON42y0Nrjlte9FSp4H+b0+A72G0XrRSdpz2Z14fpr3pefkNdrRS6/778phE7BtZfAclekrTxBfsPJ567/S0b44fu4FOpov+jZfemwGvj65+3r8t43f/b3fZKMz+IrbCfGlE+UXi+e0iMy1n9MzE0zPTaMsSRwVNzHbVViWRbVaYWZ6qvCxS4YYBJZS6DShFASQaS5dXOKpp8/T7QyYGG9gjOHq1fViMgVsNdv0+n2kZeH7Pr1+xP69O3ny2BmmJ6c4dOggg37Czvl5GvVxJsbHC3U7rVG2hZCSJOqD0RhREK57/eJvYlkWylIou4DPMcLGa5PjBw6VsSoaCMoltDA4QUCSxDiWQmeCUhCCECRp4YFiTEGid1yn4BipAloWeDZZnmFEwb0z5NiOhet4BYbbMhy8YTe2K4B8RGovbhJ+4Bdy7JaFUmrkVQdTU+PYqhC7SNKELNMEpRImz8iThDTThNU6UhWCIdISYKDZ6aGNIdfw8MNPkGcFyX7/vgUqtQppnjG3a46ZmSnyPGe12UXnOVIIur2YbjfivgefZGH3PJYlmZ+foFwpEZYCtraaRFFOtdbA90vEQ82jT16h3e0xPhbS7vXpxX2GcczefTtxbUW/F3H23CKPfPEYjq1otzpoEvySYhD1mZkdI00SZqYblMIS4xMNskSzvLjJMIoxSJJMc/yZS1RrVQ7um2OsUWdrM6JcLV+b/JTCAEzBf1DCpTE1BgjSYUIYOMxON2h2eli2hTEZjbGQ3XumabcjFi+v4UjJztkpgrDOWGOMCxdW6bQ6uMqGzDA5Vmd9o83c3Az9bk67WTQWPN9nfGIMLXImphtgLFy3sOB41R2H2Tk3yTAuoK2VcoltLS/Pt8nShDe87maMKSCTynJ5+R138BP/7APccefNI/85xec/9wjra02SYUI6HOLZNp4Ljm3heSU++V8ewhL2aEKlyYwsCk8jiUc8O62zIrmz1EhW3MaYvIDx5po0TUnirFDAtRXJcICUNmmSYkipjU0X/lSOjTZZAZ80jAoiiRxN1Iwpzl+d58TDwhMvyxKyLCPLUzzPKyYJWUa/18SYlCw1WLKEJXxMblCqMFi2rMK6xPNCLBmQp4YsK6aR25+jubmByRPi4QCpM9LhEFsZ0mEfnaRYdtFQ0DrH9cvE/5W994665KzvPD9PqHxzeHO/nbuVcwaBCDIYhEw047GNvWfHx7tj7+zszvp4vWPvcdq11wF78YAZjwMGGwNrwCQDMggDwhJIKLSkljp3v9399pvfm++t+OwfdTtJrSbMzvGcszw6V6dvVb1VT91bdesXviHaIE37eH4Nyy4RRwZtuQijcd0iSkMcDciyNLcqSePx5xASRy1cP+HmW3YDGYVSNRd5j2L2PfU0k5MB+558lrnZCZIEhLKo1Bt87tP/SLnqMjlbxxDT73UpBw6vefWteK7gh153I2eWHqJerfOVz38a34MwjbAsB18rjDAkxtDrhTzwDw8QRTE/8eM/zbe++SRZ2uNVr7qLYtml12uxsnKGn/mZn2U0DHnqiWcRqcWBpw+yuT5kNOxhVIf77n8Zb3rDK5ltVHjq4ac4deoUURihpOTEiRP8/M/+S1prK9x23U1sdjogMuanKly7e5r+aJMwHnDs1AqZkfRGQ2qVAvViCSkFU9WA/qjFrq1NfFchRUqUxmy2Q06cXMGYkKmaw0wj4M4bdiMFXLl3O0gFSLRWxHGIVrDRH3H3zbt47gNH+ZX/9Zf58F9/kE//3Wdpb7S5/oZr+J3f+91cZn7QY2VlgYMHn6VYKHLm5Aave9N9xBre9Pa3ITJNr9MnMxGlss2uvVsZDDf5d7/wb9jc6NPphDQa0yiVc8TDuIWw+szOzjIx0aDV6eD7PqNRjJKKJI7ZbC0zOzuTczeN4ZMf/whf+7+P8OjHjn1Pz/AETaU4TRSndActVlrrNCsFTGa4au9eYjnFYk+SEdLrKkiaGDKUNmRpBilkJkVLhZIKJSSjMMXYklhooji/T21bk6URWdoljNtoFJ1Fxed+b5PKM3V+xN1OmMT86p8foxLew1te/kqULajW66TpiB3z01x9xW4maz7b5reAiSALQQm2zu/g77+9xsyU5j2f/RBoBzeoY7nVXCHX5DDvJBrllisq96u8+tptWDpFCk1vGHP08DJzc7vRysdkCVdfdTWlUoVirYlXKFOrlhm013ILJ+lz3Q2vQGqBZTtIJUmSlG6nzUStRr+9zuljp9i9+wrWTi3z67/5CGdObpIlKUooQJFlOS8QaZNk5IJPSmL8GqMwob2+Rqb9c4rjWlu5hg6CTGag84KWEgppBCaDLM2IohjLtpHSQkUe7VHEb/zlB7jzZdO88Z4tZLaFxGZyWvGlB78CaZ32xgitBDt3zzE3M5sr95J73f3/qXuXq3j+F0wk/z8emfnPF1z8QefuP3N8vz53l9eXvCBdMiDVebuD72ZcaIr+IhPJc9fLBbYJZ2d0wbbv/ZO/4q4rZ85VHc4z7F5qxmO52PFFeR7lzJglwLls8Gwnz2QZQbmY07WNYDgcYem8wt7t9AiHIYUgyP2hBERRRrvVBqAQFHBdi41WhyiOmJ6epFgqcuDQUbZumyNNE9Y2O+zasY3nnj/G9GSTMIyo1yrMbJllaWWD0WjE8somT+1fZHa6irYttJXDI6SUKMcBA1oaEDlsMktzAnSSxCjLziXUrdyCQGubTqeD6xXI0pRhv8tXH3yaXbu2sLnR4fTiIhNTDTIBkCDI6PX62I6NySAchuzff4JqpcgoHKC0RtsOWRSBUYyGMc/tP065XAByGE44CpFS0m71kEZw4LljWJYmKPlkWUya5D4+qytrFIsFhqMRtUYFrRVKWmglMSQkaYZUFiYzPPnkfqZnmkjhIKUmzUKmJpt5Z0XAlrlpMpMidS7Vv7l8hpMnTuM6NmGYKxfuO3SSUWcZ27LYuWOW+flGbvyZJri2hZQ5wfjp/ce56oodROGIhYUzDIch1XoFx9E063UKgYXluvS7fWzHQioL21J4QcD66ia1UhGRKYJSEc+xsSwnD/STJO/61QIWjq+zvrnJ5ESdfm+IkLDearF7zzz1iTJRHGHSFCESCsUKGPKHcLvLM88eoei5WLbF4uLyeLuMbnfIzNwkURRDZtjc6FOultG2whjBgYMLTEz49Popq6sbSAUpAm2gNlVGCMnCiSVcx8Jx8nPqDwdMzTYxwOLiKgXPBSPQtkRIzebGOo5lE0URbsHHDzxWlzcYDSMe3XeEHdvnyLKcm4cRbJw8xrW7d2GI+fO/fxKTSXbsCti2Y47uZgcyWD6zRrfb5/ixU+y5cicHDpxgfts8AJkJqTcbeEEh5/jEQ4TIu3QmzQsSlu2eq96jNELl3ax7X3Mtnu7m6pCWHKsASkBhsgjLKZJlCXE4QmuXNI7yrqUwZMkQ2/E565cuhCSOhmSZxhEDomEb262RJiGSjDSKkdpCGINlOUg0UrlEcSvvjAvQjsaQfzcIQRLHGJMyGg1wPM2w38IrVEnTFKkkfhCgtEIJdY7PrJRFHCa5UEycd/kQCpOGRIMRflAgNeTdRpGr90WjXg73TPOg2bIdlG2TxgaIMVmMVB7CKhKOQgqlCloZDDJPcDOD55VxHIdSrc5HPvxFdmwvY1k2u8Y8spXlTYJihUceepIbbroC6dmkCMJBxHXXz/ILv/QB7rzjRkZCUSpUScKIQTSi3erj2D5ISWt9jZWlIV9/6GFuuOEqfui+13HVlVfTWl4gKJdwnRL33H0PUTJiutlAF1zcwKUxXUFbDqXSFK1OD2W5FCtFtKf52498jm9+6zFe+Zp7KBR9bFejUex/dj+zN3tgZN6xUAbPLSGVYKJRxZIptrZ59vBpJhslBmGPjW7GZKXEIDQcO70CmWHbzATFgk0QeCxvDOgPRiQpWCo3oxcIji2uo7XA1j4HFpaJ4oTJWplH3neCv/nQnzLod1g/vcYXvvAgt95xe35edkbUb+MUJymXagQlzUNfe4Jqo4iQUKuXkCqjs3GSmZl5okyx2duk1xswt2WelTNrTM1vY215hWrB59Azz/K3n/gMTz/5LLfecgeuZTMadGjUSrQ22tiBDWO/RmU1sNzCmNqUI0Xu/5H7+OFXv5H/49+8lz2vmEKMeU8ZCUaASPocXzhBo9yg31/DVRIhLVJg2N8gzaBcm2V9vU2WZpzZ2MSkGRN1jWMblpeGrK33aTby338jbDbWB5RLJeJshBA2QmQ4ds6LtaTAsSVkeYHP1oo4liA6fOP9MT//+ru579V7GYaGP/3AIu+48x288sobyEhxdC5oYoxh374nmJudxZhxkWE4wLW9nHeWGaI04tf/04dZOrqGO1Hhlr2vQdt5YcQvBMQmRglFPGxhshFaWiAyyHIEUpIJnth3gD3XXEOr1cKzbYajEVpJ2u02tuPgiBhpBwzXTmBZHqlVZmljA89xkWiSJMbRNpbrcWZpmUf+6VFuv3krSmQsh5v8wv98I197coEdk/M5gkdILC8gsz1cv8qgu4kblMgyzeqpI9SqdaS2cLXFKB6htIfJ8iJoNhbeJ05RWhHGw5y7n6ZIy8q/azKwLXaVd1Co7eP+V19HqeAzihVnTq/xe+97jnYyzY+9/Q1Up5qMRn0qxTLLK+vUSzYrp49y271vJMxspLjAAOCiLrAYv8Yx3AWaDJkwYxut8YsLuHri4g7VeY9mc9H7Fy67VPz5XY1z8etZotoLYtJLiKdc3IXLeXYXdczO3Vv5Z3Ahx07wAq7cCw74UqmyHgsfnjvu5bwAzQW9PsMPBFX+Ocf3n9xdblzwxYsXJ2jf8a/HkMsLzc/Pjpwb8533+Qfv+wA/evceXnTHvOSMz7fZzbllF66/xEvkcCjb9Xj0W0+xbW6W/mCAtjR+4JMkKY7rYtk22ZjfY9s2SZRw4NAx0iRlo9UjyzICzyXLMubnZ1haWmWi2UAIwxNP7eeaq7bR7vTwPY/V1RYHDh1l0O8yPdVAYJhslKjVq2iVcz2kzCGZmJyftrnZYjhK8AIfIQWjcIgak2RzCKGFlJovP/gIO3dsQekczomJ2LNna74/JalViiiZ/2gopUlT8P2AM4trFIolpEyZaFbRloNle0hl0+v08PwApGFhYZHRKKZaqzIKQz79mW8wVStTqpaxbZtPf/Yhrrt6N2mSYrk5T0rKlCiKcRwPpSW2lUM8M5PR7W3kHAGRd/w+9vGvsHfnPPueOcr8lklAjs2a86JAOBqiLZX/6ClJlmacPL7I+nqXwC/QbvWYnp5gcXGZTzx+ijffMY3nOSycWsL3NJbt4QceG60e3d6IUtGn2SjR7w85c6aNZVkUCi7GpBw8skSxYINMeOCBp9k21yQIbLrdTYolD21b2LZm0B9SKLl4gQtJwspam83OgGq9RrHgc/L0KRztUy0HSC1oNit4nkscR2xsdqjXKoTDiPWNNs3JBllsOPD8AsYYwmHEjvlJLMtiYWGJmck6JjOUigEIsCyL1GT4vku/26I+1SQOY04eX2I4SJiYKCOVoNkoUa6WSdOUYuDhBjarZ1pMTlbRFkRxQpIkbLR7VCvFnCtZKjHohzz/3HGUNLiej1+wybKUI0fOMOzFFMse6+stZmenmJubQIosvw8z+NinvsVz0QRvvH0vaWYYBTs59PxBTLrG7iu3s3RqianpaZI058Fde8MVHD2yQJLEzM5NIaRkamoCrSWWpcZctoRer4sgw9ISbbt5IclkOcTH5PwX0phed8TffOSL3HLzdgx5MKeU4KzQbs4R0sRRGyHJhVO0lUODnQBjFFmWIhB0W5sEnkdqoLdxFMsP0LpAlgmM0Nieh7JcjDAYkyGUREgbpQzG2CjtADDotbG0TZam2I6Tw3pNbnye+xbmtg5ZlqC1JE0NSmui0RClDeFoiNSQphEmzRBSjpUwk7F6pkYKA0iSJMF2HEhTtM4LFEkUk6UjsixGkJDGbWzPRegAITXaVijJGO5qMFlCvVHFcWxK1RIIuOKKGaIwxPWKjEa5/6fj5KbpW7ZMMBhE2I5DEvYoFlwMgtf/0Fb+23/9Xu67724KQREhHJRyKBY9Br0Iy/KZnpzk137lf+f+N7yCN77uTmy7zP5nn2XbzqswRpCkMdoGMDz19FEYDfj8p77I7/9f/4GWE3c7AAAgAElEQVT73ngnZxafp1Ga5i//9L2MBiHNUpm9113FW9/2BoSJyJIE17HQtsd//IsPMn97kVE0YqM1oOSVWGltIAS0+wknFjeol2oUCgFplhJ4ZcDQHQ2pFDSzzQrNWolWf4DveERxzGyzjO/ZBL5LZxARuC45PNFlYXGNZt2nUXYpFQK2bdzF//CzP0VqUiqVErPzTW5/2Y3Mzk6TjAzddofOoIPrJPT7LSxHMD+7m1JVUp+osL62SblQpVyfJhUCx3ZwtMu3HzvAsaPH2bV7G9HGBmCIyJjcvpVb7ryem667Gt9WIDWDYTsP3qUmS7top0iSugQFN1drvkTw97Z3vJPrJ+7iV//1HzJ7W4CW0G530MpQKlr0el2KRY9UBvkzV2qESVk+fZJCdZZqqYiyoVassbB4ionJGmGYUqjkti+bmxaer/F0huXkatDGWOzfd4L6bJU0ETz71ArlRhUlEwC+8qddKutlfvK2GfyVHfzwD93Bz/3GJ7l59p3Y8Sx7ZmYoFDw2WzHL66sUSt4YIQPNqSYmy8gExJnFgaefodZo4PoaKTSuU+TVt97Nja/dyhtf/Q7WF5McBi5yqkAUDSEdkQy7KJOLFGUmD80tZfPMwRMEvs/WbTsp1xoUiiUsrVldW6FQLBJ21umPhsSDEX61SSw8CqUGw8EQAXQ6fYKiT7/fY9Dvsbl8kquuqHH86CG2b9vFlNtgduYQ7//sPu7ecwOWWyAlRVlFjHFI4hCv2EAISb+9gl9qkGUJg14LJTKwfbTt0+pntPsG5SqefuoUlakCxlgMQ8HayhqNWoUoiUCANBItBF4As7Mb9IcRrucTRRHlahHjb6BY59WvuJsvfeNRbr39Dh55+DG2b93Lb//2bzJdyLjx7nuRThngPHXn3PWWNwYujNouvBLNS4aD4hyS60VrLgE5vGiZgdRkSClfOul5yX2JS/7zhdu/FCTzO8JOL974pY+dn8a5ZNCcWyZQLzrGixPbc3Pk4mP8ILn7Zxz/xZO77+evx0nd2eTpxdy777z/j330b3nH3XsQ4jvfcPkev8NNedn5wtRkk6WlFUqVIsrKOS5JkuC5effMkCddURihtSaOckl+YzIatSLFYgHfcxn0B4TDiKPHTzMaDTEio7XZQ0pwXQupwLEke3bOc2xhiWLBZaqZS+HXahXiOEaI3Ky83+3jOD6O46J1TJLEZGmSE5stJ+9UCoUZG0/OTk+idS57rqTF6uoKhUIwNhO3xiJJBst2z3EipcrFPpI4IY5jCiWfTrvDJz/9DRoVj69943Gq5QKIlImJJsViAc/NvYr27J6jUC6QmgSlJFfu3cZg0OdzX/o211y9nWjQP5dISimwLM1oFOaQOQye62PZLr3uAMvSXH31jrzrkCVMTDT5xN/9IxsbG+zcMU+WZVhW3rnMhSAMJjWcOb3Cjl1bWV5eY2qyjrYsTJrx0UdP8o47ZxBo0iSjUPAYDIYYk7G52WXnjll6vT4ray0OH1/mpht2oLWkWisTRSkT9YBCsYDjeuzYWufU0gbVSolqrYSRFmliyOKEbq/P1HQ1l8u3XGzXoVwpYpKIM6dX2TLXxPeLdHp9iiWfU4tLtNoD5uYmCHyXp/YdplEp0ZysolybaBDTnChTqVVYXF4nyxLK1SK1WpmjC4t0NgdkacLi0jqTk3Vsz8WyFcqMMJli8dQ6c1ummJ2t4xcsLNuGTIFIcT2fXquLcnO4zZETiyihsB2N7VjUaiWUVqyvtIjDmDjOqBQ9gqKHF3gk0QhpJCdOrnFkYZMr986ycHKZZrOG5Vg5jwIJQrK62uLzB/u8+ZbtpEnGX33xceZm5rnxlikKpRLPPXOQqekm1XqJubkZntt/mCSOmd0yzze+9k2mZ+u4jkW/30UqRWuzRbFURdtOblFRLIxl/+Ox2b0iHPRJkghLS4qlEu/7k6/x5jddCUKhZa5yiREIZZEmeZKjtYeSGqU1o9EI18kr2Wk6JE1ClFbECWjHRYqMJNzADaYwyhpDbSLiqAtYaAVxPCDNIEsypAIhbdJ0hFIOlu1iWYo4jpFKkCYJlu2QJBlSaKROxt06mzSBNBuilZULu6gcaWDbDlIqhBCEo1G+vbLQjkuSxGhhMGPrkSSJsdzc2iRLY2zXyb3g9ViN00i0XQQhkOQJcqe1TrFUIc1yno0QeXd+NAxZXd2kVCpSqpRJ4pTTJ8/QbNZzDrCQJFFu8q6UwgiRK9qqHNo6M6GpVK4Boxn0e5QqLounF1lYWCIaQHGiwP33v5mJ2gSHjxzhzOkNuv0OUWJz5NAp4niI7/scOnCC7VtqzM9M4JVneMe/uJ8gqFAoVflPf/5efupdP82urVdSqdYI15/l2IEnCTNBc3IOIQzLq5v8xV99hFvfsIvAVXiOxf7DJ5msFwk8l+ePraAEtPpDvvLgU+zdM8Hi6iYFz+HJZ46xfcskrd4o/8yVRqkM15Z0R32KXkCUJBQ8nzQTfGv/Qq586woKfokwjFj/ouatb7+fJB7iey5LZxYpFGcolAKUFCyeOsPqyhn2XnMDJopptVpUyjV++Zd+h3te+zJcq07gFxhFIcdPrlCtl1k9s4TnFpnZUmfr1jmqlTrojDRLCcOIxVOnIcoYdPtgafrtCNuy8fwChUKNXnsdyw1wfPeiIukLR0YGIuPH3/lm0gWHx/bvozbtI5TFKIUsjomSGNsqnQX9EEVtVLqJX2ywst6nVPDZf+AE8/MNKkEFZSnWWxmHD3Tpx4bRAJRl6A0VvV6M7QompxrEcc4Rq01N4FgGk8U8+B8GvOffXsXV220+8eAa//bX/pbrGvdw6667qNaqJEmCkDYGg7RdhMm5gHIsOiLG0EAtNCdPHGLnnr2UC0GuKqtt/EoTqRr8zoc+wm03zRBu1BHSkMbxGA0QI5IYk4SkUQYqQ2oHiWAYjmgPLTrdDkI61OtNjh87glSSlbVlpqdmwBjKk7OcOnYEKyhRK1dyjzrXRSlBoVCm1+9BYghHfdqtJRrlSSaadWytkFaGVzvDFx5e4p4rbyExCtuvkiBx/QK27SOQ9HpdbDv3Bhz2O5gkwfbKbKwtkSUxxxeOE6fQbExTb1apFOoIqTmzvI5j2/g+dDpDFhdOUiwXAIMQNp95/HGu2OJSLJZJ0oROt8WDX+jzqjtfzb6n97PtittpNqYIfJ84GfLDb3gT3/zih2lu20V9yy6E0GOUFeeSu4sV3sUF/x8vUYJLNQ0ul9x9N8NgvqNVQD7NSydjL5ro9z0us5MLc+BLbHuh0qi5YJsXJXfjty9M7i61zx8kd/+M43LJ3YUO9pfvk32XEM0XXXiX7Iedu/Eu9MRT45a/HD8+Ljzi2XmKsdqdkIpPffIzvOXOnfk+GC8/V7k43zo+B8e86GzM+Djn/7vsvIXAcW0sWzMahDiOy/raOuVKmX5/gJSSo4dPMOz30dpCCMlo1GP/wVNUyyVKlRKlcq6MubHRodcbsb7eRgjBYBDju5JSUMJ1PRaXVohz7BTSQLla5dDh49RrFUrlAtp2EMoiSSIcz6XXb+O6HlIY0syMpYoNUllInatpAsTxkCxNiSNYOr1EsRxQKpcRSo0VQckhi2qMdTcpo+GQJIkJw5hypUIQuMSRwXEdtsxWaU422DY/TVAIsGQ+pySMWF/fpFqrYjsOo3CIFIokDBEY/JLPlplqbrgqFULl8KTlxWW8wEcrTRjFDHsjXNdhNBqgtc3H/vZBrr1iO0rC2to6zYkGu3bOsXV+EiFSMpORZiNGYQ9LuwxGQ1qbHcqFAM/zQAjKtQL9fp92u8uJlVUmdJtub0DgubiuTZwleF4B33NYWVtHaYljC6YaFZASz7NotTcZjvoUS2WSUUSr1QVg4fQy27dN0e8PMAmYLMWyNKVyAVsb1tfauAUXpa08QU8TlIpZWR8gNdha0uv0MZlkarKB47t0NnpIJGutXh6whDFO4CKEQKuMickJlJNzpZSVYmtBvVHCYJjbMk0aRzz08D4Cx8YLyoSDEO3kVheb6zmE8viJZWqNAmrcvbVsxdqZFRzXZmpmAlvFCOGxuLhOpVRAScnJ0x1KNU2pVOQfv/YcW+ZqKEsgleaZZ09y001XccUVM6RpRKNexvZd0izBZBKlDP1+TODa/MfPPsFP3XsrURSxnE3wYz/xk2xsPs/y4hkq1RJra5toJfmHB77O/LY5tm7fgiUS1jd7PPfMMea25MUKvxAQhXlHKI4jyuUqghzOi8i7eiaNQQi0ZeciIlnGX/71V/mR1+8CEyGVxAiJlBZkY9EBdH4v6fye0jr30YrCMPev0wEQYVtF4iSk3zpBsbmNJMm5pHE8ABSWVSRNU6IoRWsfSwvScTEiTYakaUaWDjFZSJYyhnvmXT9jyG0KwhFCgskMUqq82y4FWQZxkqIQiHFxQ5gk5+H2WvhBmczkXQytFAhDEuedbiUlmZGk0QhMksNxpEIrm167heM6ZGlMr9VGKYlWNpbKAywlPcLRAEOG7Xk4roNj51Y2gow0HVKrVTGiRxZlCKl58vFnGESC5/YfYceuLRhyZds4GjE/3yAcHKbYuBmkJs00Iumzsdbj/X/yQYqOR7M5wcr6Cs889yzffuI5vvjAl/jU332S1776ZezZs4vjR0/w+7//u/zLd72LYSxYX+0ysWU2RzQYwTVX3cK7f//93Hb37QzijF//9T9h4XSP+9/yFjrdNnEcUa1U+cinPsaVL59GSBvLUlRLNggbZWmGo4hayWZusgmOYbrhUwrKuI7Fti0N0szm0WeOsG26gqMhTvOE27FcesMBgZsjOKIkpttrsWNugnKhiDEJX3/PYX79N/49rqPBxJgso1Qos3T6CP/40CNs27kDzzbUJxqEYYodBChLk6Twqte+EssuMGwv4xQa/OmffZhXvOIusjTl2PElPv7xz3PTrXeyurJOGg/Y2OgTlHwsx6VZbXL81Cm+9vVvUClUUJYmNRlra0scOvoclWqTYnkSpc4+G88He2ZcmD3bFQh7fbTQTNQa3LH7Bj7yhw8yd0sNSyc4fpWN1UMUgwpKSRKT4Tse8egUgjKJkPS7CdMTBYJCmaXVFtouomyP6oTHji0l2p0hvcgnjVMOrxUxcQvXcTm1GFKpKByVIIXh8Q+k/NbPbQcJf/dXDW694l5+5GWvpRQUeP7oAvVaE6ktHK+I0i6OW0JbJjfjFgpr7EmqHA+pPaqNKbRtgy7glqYRjp8rSqcRGxubvP7Nr+Kprx+i2ayhhGbQ62ApJ++yp0M++8hjzDcmsf2x4m6aMei22X3NzUw0Jhn2hzQm62xsbrJ9206UzK2INtbX2LJtJ8N+jzSKGI6GeK6bd/tFhiVyXtyjT36DXVsmCHybRx5/iomJOlF/QOQtcOSg5qbd16L8InEcoZWHUpL25jqW5eC4FiYVWJrcl1VbKAmW76GVplypMDM7RZYkWJZFnCV0uy0mGk0CP1fXdTyHQrmYIySkRgjB73zoQ9x3RyP/fQVcu8TenSF//rFvMnImmahtYWp2hlKtytEDz/CPX36APVtnSIarzN34KtRY+foitNUlmgBiLN0vpLgocst94c5z2V6YoKXmYtjmebhnTu/IY9Qc/Jirvp7d82XoPxfO73KhMRfbO1wEHzUv/MPzr0xwEew0F545/3rBbF707uwxz8bUjD+ni8/hbBT+4nN9Yaz8g+Tun3FcLrmTF3xR3yOw8iX+fbntLj/kC7Y1L7VOAELw13/9N7zj7r3nF1+q5X3ZmX33886FCQxKKtI4QUmJ6+aqdVLkZPhBb0ClXMw7dnHK6cUVer2IUjHgmmt3EwQBcRRT8ANKxQKtdofZ6QZSQLVSJCgEPPP8MXZsnwMhSJKUdrtH4LkkcUxmYGl5lamZSYSUubVCPBoHeTZRGJKlGa7r553DOJd/P9vJ0lqDActSeIVcBTMKY6IwxbYVw9EIz/MQIhc4icKYzkaP1kaPM6fXkEAmshw2KcD1nFytU2k+8amvcu31u5FSEZQCgiCHWyVJxqlTSzTrjdzsdGx4rG2F0gqpDGtLK1haUSgVkDo3jj5y5DjdTo9iKSAIPKIoZs/uLUiZoay8k3Tg4AkmJ5vse/o5KuWAzIClXJR0WTm1jMjgmWeOsH3bHI8/tZ96rcQojGg0qxSLPr/10Yf4+fuvo1mv4fkOTz5ziDg2TE7UGA2HzExP5Z+fgOZ0A9dRLC+v43s+tVqNQX90TkWsXq8wNztBmsZstjpICSsra/iBjesXabf7lCtVDAnra+uUij7aknhugG3btFp9As9ns9XDcSykEKyttegPRpRKPjt3zRInHYJigdEw4dixk6TJCFIoFB3coILAobM5pFR06feGFAsBi6c36fVCatUSUZhQb1Q4cXIJz7WpNepo2yYo+DiuB0iG/SiH+kmNZeVJt1IwHCZj2X6J0ookTigGAcbAltk6nW4PvxDgaIvnDx5nfq7J0WOnqU/WcxW+KObUwilqtRqYBK1t2u02j695/NirrqRQ8Pnj/+er3Pu6H6JSG1IIfJ547Fl27d5Kp9vn5Xffmndjx35A191wFVkWU61XqFQrrK+uUCiWiaIhUgqSJGY0GmBZLpBf83GU4DgenLUzEIbhIObWW6ZQljUW1rDGhRGDlrnWRQ57DNG2w6DbxvVcbMfN+Vhp7nkojERkXWzHQelaHgSbLIdBKk2v28Vxx/erMmRpXtSS42BEWTYCQ5amIDRZFl/QPci7nZlJ0dolSzPSLGLY7+K6PkmcYjkO/d4GruchpCLLJAjwCwEgUMpCiBziSQZSZ0Rh3hUMhyNMlsNOJZIsAySYLEJIOQ7+XEbDEUIJ0iyXSLcdG8Zd/jQ17H/6MNOzE6RJnHNhlebUwiquq7EdG2k5TE01KHoW5YJFoVggSQGTjL+zFKVS3vkT/yf/4h1vJY0jziysUm822Llrnn944Mtcc/UeFk4u8Afvfi+/9+7f4jWvvQepDHe/8laWl1bptkdce/UtNCYK/Lv/5X/EcR2uuuY6lAVrq0s89ujj3HH7Lfz9Fz7HzMw8hw8+z/U3XUexWqBaqyGMx2DQ5Y2vfTWn/qnLp/7s6zz/lTMo4dKxBxR9h8Dz8V0LrS2mm1WkMNg6/yzS1JCZlI1Wm/npGkLkAk9iLE7l2Aotc/VWx7aYm2wAMBiN+NxfPsYH/+D9tDbXCHyPVrvLYBgSJRmFgs+1N95Cp92hWiqSxX20VAwGHbTl4jo5P3BtbRNEQiIk11+9C2MUo9GIqakpbrr5eoQKKQYB/c6Ad/3Uf8/rXvPyXH3X0Xzik3/PT/7Eu0jClNqUlwtVCcWWuR14pRKWTjHSOVcmPQ9ZO99JESYmMwn9/jrDUQdLFXndva/kqso1/Pb/9EF23T1NwdaMYsGwv0gxaJKmFmn/BEurLWy/Sq1S49TSGpbj0mp1mKxV0EpSLvpEYcTERDm3zGgE7JzSlIshJw/2mZ538R3JV/9swFt3bCVNFX/8sRPsLb8Zy1G4ngMmRWiYqE3i2pokTclMmnN0hQBlIa0SmXRBBaTSARlguUWk5ZMJn+6wj2UrSCxSE+N6LnOlOWavKfArf/QHvGzPTZhkRGIMfhDQ77dhNGDXrh04OkVjYbKE1CieOnSUfneAbfusrCwjpGSiMYXWFp1Oh43WBsVSlXa3w2SjwShNqVXrHDl0kDgakRnBqVNnWF46Q82ByYkChoTZqe04rsGybNaW9vG+z32DN93+GlIdkAqboFCj128Tj/qkxKRpbmweJnlRq1wu51YI0RCRRlgmQSQDJDGKmCwZUPC98W9WhNY5CkCKHHHz8DefpN1ZY8e2nVy7KyIoBgyjCIzFw0c2WVl1aXc63P+mt6Jdj263z/a5OTYHfSqlAtNzW5nYeXOeZp29zC4Tp53rKV0CWmleEMtdmMi8eJ/igu0uXPrCWPG7TO6+w3ipvVwuNn0h7FRe9nAvXvlCStJZ0ZyL/uqi9z9I7v6rHd9rcneeSHrhli+sIJgXLL/UMJdZd/m5XDifC9edN1kUHD54hJfvKp2rWFyKovdSRz97gaZJmtsrvGjbF8/lbDDmeQ7a0iRpQhjGhMMRAIVCMBa6iHj66SOstXokCVxz9Q4QGeEoJMvgueePoaXIuUsmI0lSgsClUPS4Yu8OOp0B27fNIpXk2PEz9PpDkjShVitTKAbj7kSMUnl1xbY14XCE69pjxbUIg0EraywSAbbtkKYZSgoYJ2jGGOIkxvM9wmGIpS2SLGFh4TSu62DbNp6ncX2L5mSZUtXn4W/uo1YpIYAoCsnG0Kz5uam8i5DmvMMwHJHGKXGc0Wp3KAYFnnvuEIWij7IUlqXH0LaYYqmEELmQhNY5jyLwXGrVMo5rMwpHOI6HpRVhFOE4+XlOTDRpbbY5fOwku3ZtQSmLNM3otHscPHiCLE7ZOj9DajJa7Tbbts3ieT5xEnP69AoPPrvI226bZTAI6fcGzExVmZ6eYjjoUSj4RKMIL3Cw7fxzXlhYptmo4Pseh48uQGaoTVRRIjdaH/RzgRnfc7Ht3FRcjRU3FIqvPvQ0jqVo1ivjH+T8Ydrv9bAci0qtRqVSApML4JTKRTJSRuGI1ZU1KtUCUlukCZSLHo16hVOnN8ZdnhilFI4jAEWnO0QiWV5u0+4MsW3N9GyDVquFFpIg8FCWRRzGWFrx9DPHmZ6uM+j2SJOEar3KcBRiW7nU/oGDJ5mbm8QLPJaW1qlVA06ebBHHMWvrPSrV4tjgPcX39NhwO8s5iSb3kSsVC2Oo4JA4TChXCnz04UXectt2hJS89p0/z9987GPcfsdWHn9sHzffdh1xEjPoD3FdK+d5akWlVmPU71Nv1nA8DyUFRd9HaE0cDs/xR5VUY0U4clEQmQuPZJlBSEkchdxwwy7i4TJparBsJ4eJSwnCIksEZILMxAihSaKUOI5wXJckTnKhDZMr34rM0Nk4hleaJU3yeyyOR4ixkmexFGAyjesGKGkjSInjBGtsPSDIIdBgyDKBVBBHEWmajCvQVg5HFrn33Fk1TYnCkBufSykwSUwSx1iOM5YzU7l5ehiidA59TtM4v7Y9lzAc4rrOuXWYlCSJsV03V//NDIhcjU9bFlEU4voFtNb0u12kyhNH0JTLAUrCpz/5dYpFjeMqisUCQkVkRoDUxGGEF3hoS7O51sKyHSwr7/adLUC97f4rSLPtHD50iM21FgbD3quv5J++/jAT02U+9KG/4f1//AEcV3Ny4TQ33nAjJ08c48GvfJVPfeazbN+6ja3bt3HnHbdxyy238cEPfxTP0VRKRZq1Bs2JCrfcfiueV+KeV93Fl7/yJV712teQZob/7md+jmq9zPz8DHe/7OXcdvvt/NiPvpVbd13D3Vvu5Rf/1e9yJmmz94opMkxusZEKTi6v4bsuX3poH0bADbu3IpUiNbnhs1aa1VYHJQW21jmnHMDkggkmFfzSff8bBd/DsiWObWP7AcZIXC/gzJkzKMfPixMmxXUt4kTiFXzSBNZWNzh2bIH/5qf/FW99yzspFIrEgw7a9nngC1/m2uuuQcgEJcedaJHx1rf/ODptg0koNbawe/d2jh09jKUlq6urPPvss9xy801YlsJSGb31o7hBgzTNxnxtc/6hO07wTGojjMWp4yeZmZqh3+viOJIwGvCTb3s7O2vX8xfv+QxJCH4zxffLDGMD0TpSG+LEZ3mzjesG9Poh1YrPcJgjK1q9XMzM8QPa/Zj1ToLI1hiNXJrTFkuLbb74hy3qssdX9424/9of5Z5rbyczGYVCGYHKuzBSY5SPRDMKE1zHxbJyPqDleEgS4jRCaonjukCGERnDMMT3gnPPqLNwoTgMsRyLqd2Kz33hYe668i6ElAjLYTAYMui1cWyByqJzoYXQGpMpWi3odNvs3n0ltuNSKpURStJqbVIsBNTqEzieR8EvEIcjRlHImaUzNBsTFApVLOlz4PnHqVcS5ucnsVVOEcnSiHa/hRAuU3MnaPV3c+u1d1EsTuG4NsNhDvv2fQ/bcmltbmJbNr7lYGsYdFcJh2u5dUMWYtIhJonAGNIkRhhDFA7o9tpo28rjCnL7EyU187vmadSb7JreRm/4CJZWIAVZpnjk0XWefex57r33Kq678WYe+PIjlCt1pho15rbtYv/Tj7N/37e59TU/PKbcvDgefGHceank7lxn+fzac+/Or7t0dAjnk6bzSLALthDn95EZc06s5XsdL3VO8oUCJxdw8sy57cZlv0s1Nc4i2F5wgukF9KdzQjWcT+4uzT28+PgXdu6FED9I7v45x/ea3KmxL9R3J5JyueSO77Dupedy4XwutQ4heMUr7+Z9f/KX3LJn6vs6ev5Dfz5ZvFxyd5YbeGH/W9t5IB8UPLzAZXO9jZCCM4urXHnlLkajkHqtxNz8NI5rMRqGlMslTJLS6Q4IfI/+YIgQhlOLqxQLLmma4bg+/UGfOE0o+O4YAiUIAp/mRM4Zs2wblYuB0e21UVrS7ebQKUNGt9dHjJO6JM1J3lrnXl5SGSQWo9EQpQVxEhGHMUliEDKj2ajmBtVpQr8X43o+XlDAINm5fY5CsYSSAtezabe7WNo6J8/+pS99i3o1wPdtpNI89u3nuObavfn2joXvu4ThiEFvSBpHFAKf2BiUtPjMpx5i6/YJbMtCa43j2GQmw7IUURTz0DeeoF6vUCqXxwqgNlopdu2YQ2vJt5/Yz+RkHdezeeKJQ1yxayunl5aZ3zXP3HSTjc1NBoMRQVBiaWmdQdhnb9PG9z0ef/oIV14xxxNPHGN6qsRoFNHu9pAqZdgf0Gv3qNcahFFMu9OmWvFZW+1RKntIqbEszZNPH8YeB9mDfszCqdXcDzAe0WsP2DLbpFKt8czThxFkGCFRFkhhKJWLrK13yNIMx7FZW9vEcz1K1QJxOKRU8JDKIgPOnF6jXC5x+NhJduzYTmISRFATUs0AACAASURBVCyJIsGxk8vUGjVWV9uUS2UmmzXCcMS27VOkScj6RpdmrYLjOgyGQ0bDIVIYJuo10Dnf5MTCEhutHuViwOLiCgDbtkznHbskwws8HnnsWaqFKssrGySJYrPVodkMWF1r0emNKJULHD+5Qb2s6HeHpFnesQ1HfXzfxmSSzMAXHj7Km+68isOLa3ziK09x3333UamFzMxO4/kea2vr7Nm7m267xcrKOnNzM6SZgSzhW488jtCSSinviCvLIhpGuK6PUjoXH5KK1CSEowFiXJzJ/dcgCkM8PyBLN8fm4lmuNIogEwmYkDQd5qq00iJNU/ygQBwlCGGQklxcJE6wlSYcnMbx5zEyRKvcxFwKjWVbDPodhExJTUgcDZDKyhMwkwcRysq5dlE4wnU9lKVIkxTHsdBKIaSDkBBF/VySPgGp7HGSN7ZP0A5ZMiJOIizHQojc40sIgbYkRsBoOMDzHYyRKAXalpgsI46ifD9hPy9cZXnSkgsC9bEdF2MElq0xQkNmsGw5lmHPyFLQlkEg2LF9B+3WgFq9zsc/+hA33HwFxqRI5eTFJp0XPQ4dOMbc/BzGJPnvr5AIMob9Hp/67GHuuONWtsxN4/klfuu33829r3ktN99yFfNbdvKbv/FuPvzXf8Xff/4B3vWun2LQG/LUU/t4z3veTank8cu//Ju85a1vZjRK+aV//yvccMO1XHft1cRxRrHo8Gu/9hu86jWvw7YMO/fsQmjNYDjgFXfdycb6Gtdddz1ry6eY2boFTIzjCNJM8/bXv4433HQ/R76+yP6Fw0xtLbPWGhA4mn/69kGuv2YnvX6EkArfdfmHh59h15YmSik82yHNEmzLOlct//xXvk29XkI/1eT6q67A81yyNOHkwnGqzam8K2oEtUoZ7QZEUUg47LG8soJ2SyytrlIulFldXecXf/GX+KP3/BFf/eo3cVyfzeXTHD15ikcffZIbb7webSdkqUt7cx3f17iFEicOPkGjMcXCYp/Z2TLlSpGJyRqWLnLlVVeSmBHLKwsEWvLsYw/geDX8ci4EdqlnpMkSVtZOMwyXUXaUw3t7XZSyCVyHMO1zy5arue3WvYhTs3zk/V9iz90zmKhDlA4gC9AaJhuT9AYjLEtQcCySzLDRGdCslEmiLhXXYaLa4PNPSEpejy/83jF+dPc833h6jXt3vI633XMvZClGQJomaK0xIgUyDIbUdglKJQSG3qCNa3mQJQipIBxh4hiMyblIxiCModvqIEWMrS1AILTBki5CSmzbppMe59V3v4y4U0Q5fh6gI6kUApJsgEozpGUTZRGWEyAIqdeLRInDU/seY37rTjZbLdrdTdbXlqlUqqQmt1gajoZsbqySpSm1ehPt2CRmyMbmMqunD3Dtrh187WuPMbdlCstSLJ08hVtosr4Zc+PtGR//hyPcdfMb6XYWSeNc2Vo7dl4QjUP8IAARE4VrRIM2OkuRUZJ3aWUuaHY2kT996nhepBIG7ThjK6LsHBcuMxmMhggjMCbBLW8w0SjQH4xw7AI33GyYCCympif54gOPc9Nd9zIzM8vC0SPs23cAywxYPvkMd73+RxDSvkxy9+J3l0qwLu7cfe/J3aWOd+Hbs6ra3894qXN6Ybz7Ir/IC8ZlO3cvEiu8tBDSZef/olU/6Nz9VzOyLPvVC6VdLxwX4nzPLTNmvG2euF2yI3YR/jgfZ5WEzh/nUhfMZdrNF7wEnOPfSQSJyc7J2gopzwmwHD65zlX1cfVcvPT+83UXn4i8MFd7yc7kxfMefyIXnbnJHbMplHz8wGdmyyTrm5vccNNeJqcbeL7DkUPH2bptjrWVNaQSLJxaoVEvE45C0tSwbdsMjz1xkNmpBt1uD5NmeLZDEqesr7fYaPdxHItquYTjeUBukh4no7zTIyTa1rk4jcnwPRdlOXRaLYIg5/qJcdI+6vWxPAcjJVpqtLTotPsUCwWkFqxvtPIHn5EsnVnl/2XvvaPkuu47z8+998V6latzQjcaGWAABQaIIilKpCQqUtm0vF6Hsdf2jOwZ745mx5615bBeSY5ykDX22JJlW9ZII1lcK1KkFUiKBCNEAgRBxG6gu9Hd6FD55bt/vAIIgCBHkr3HM+fonvPOqe6uuu+96levfr/7+/4+3zgKcXPZXOiIZr1DFMcsLCzT39+HTlO+fO8+BmplNm8Zo1TJk0FSbEZG+lFS02x2mDl1hpWVVbxcjlpfhTCKUYbBwqlF8vkia2sNNk4MoXVWweh0WzhOD7VvWoyPDmVEwiRGiKyiYRgCIVLiKGJoqJ/11QbffvAZRoaLdIIuV161g8cfO9CTJSZImdlZTEwMY+k1pkf6abebbNo0TBBpqiWPZrONk8v8g1oNn0eeOEkpn6dUcUliTRSmWIaDZSuWl+u4jsXJkwv0VUsYhkmxVKTTCkjjTGbXbmUru8dOLjA2WqHWl1HAyqUiq0sN8gUPUEhSIj+jOA6P9rMwv0joh1SrZeI0wrQt5ubXsW1JrVal1l9FWQJTKqLQR6c+nuuwuLTG5IYh4qjLyVNLbNkywZHnTuF3YsYnRzl85DShH+DaNssrdfwgotZfRSQR3SBleKSfvKewbJNypczs7BJhFOAViygl0HGH6akNzJ9ZZNeOSfr6PQYHC3zn6cMkUULe81heWmXjhkG+fv9zbJycwLItHnn0GaY2jiClpNMJODmzyGxT8ZrrtvOVbz3J4Na9fPzjf8mmjSXGRoZIhKbaV+PJR/czMTmGkoI40nS7HWZPzTMxOZ7ZVjgOdi6j70mVER3b7Ram7RCGHULfxzRcojjMEuREYxgWCI2ScPjA01SrHhCjTInfDVBSIZWNEAZJLAjDrJ9PyGxVXKnsXhcEawhpIs08tjtEkmZ+e2kaYyiXKIxJ4hjHdWg32thOHtt2MwkYIFR2r41Cv0ezlJl0kuyaj6IEaZhEcYCUBoaVQ5P5TkmZmSTTA50gMhqm6NnLBEGMaVuQgtYCpSyUkfXXplGC3/EJgxjHKWIYNjoVmLZHHMUokZwHrkgpMQ2FSH3iWGMqnfVPChMpbFbOrOK6LlJq4sjHyVlU+woIKdm0ZQTLtgiDODOeNi2aK+vkPIfh8UGAzAOsE3DgqcMMDA1iuw7bNytufPnPcPvtb8ArGNx048uZ2jzK6Zmj7NqxiRv37uYdP3wHP/kTP4IWPhNTkxw+8gzlYh/v/fn38cu/8ovMzJzmK1/9FitLp/nff/G9JEl2Ly2Wi1Qr/YyO1jh28iijIxMIrfE8RbO+yjXXXM9ac51CsYzfCmm3OpiOxezMKu9+13v48Z/+cf7+M/ewd9se3n7jezj9cIOH73uEW990JUtrDR575Ai7d41jKUmhkMOxLYSQxKkmigUPPnmY6fEhUp1SLHjc+8GneNebX83Ahkk0Ruanakn8btgzoVcgbQQ+Ou5CLPmPv/Tr3HzjXkqFPDpVmErwQ+++k/6KyxUvu4J2cxXbdpiYmOLmm27mvnu+QV95hLve9Rbu+tEfo77eoNvqMDq5hZV6kyBYp1iqIM2MqlypejQaTVqNFapuQP3sDGWvjFkaQdle9l3//DcpIOh2fHSUkCQJxWIZqRyCVkylNojtuKSWhSNtEh3R3zdBbaDKu958G5X5Ftdtfw9/+RtfIGwvceyhADWu6SvnaXUDcjmLhaUVpkYHSLSm2fXx8mVmFhc48/kTlM60EEaNcedm7rzpdkaGxrAdxfp6k5yTQ0pJRISBItUKaZaw7CJJEiGEhW1ZmMql066ThA1Mr4rhODhenlRLDNMjTlMMW2IZNloaGHYOkWqiOCCOQpRhYoxY/MYH/5ybdl6PECntTgvHs4njGJX6aCkzU3NpoeMYgcna+ipD/WVq1QrrjQa1/iG8XIFarZ+zK4vMzsyiSAiaXfr6ywjT4pmD+5k/fpL68jKGaDMyUKLUX2V0uEbOMdF+glOpYNuKSi1PdWeFz3zpKW7cdgP5XIF2EGGYkjTOrF0MkZC01zn53DOIVOLZitiENE1otX00CqVS0kQjTCgUaiCzeMyQEtHrCU7TlFaYct++g4wN1PCKHjpJ+c1Pf5lrr47Y90SLuZVlpvrGaMWaZ46YhMqjWKkR+j75QomJyQ0M1jz6+yQT227OeAGXSe4uxv/D86QGQcLzfXMZCVIjRS/eOx8PnovndE8ZkVXAsnjznC3WJeHfhdsl85x7/ILt3HFlRJisX47nN6kvpj5kxyLpke2yZ52PT3vnfsH5SEGmDuDym7ykEifFBZ10vQeabKHy4vPrJb/ngBb6whj54vGD5O5fcERR9P7v2Z+DC+WZL56QXbYM/hL7yjTZLzrbRY8uvKAv1Bmfm19rzRVX7uJv732aK/ovnuPyzaUvtrcX/vTfe/alfzkvae09KhTzpCQoAWur6ygpWTi9jGWZnJqdZ2rDMMVCgbNr65lfWaNFIZ9jeGgAZUjW1pqUSkVW1tbpdrvk8y5bN2/ED3wKxTxJmhJHASnJ+ebXrBKXmayHQUgSR5TLVZIUrFwmj2vVm+SLeZCSKIiysrph4uWdrErmuBk2v9Xm7OIqSE3Oc7NeuoJH6AeYlombs6lUS2TONylbt23ANEwKBY92u5PRO00DTeYpZ9s26JSpqTHyhRzra3UKhTxxHFHr72Pfw9+hVitQrpR55LGnqVQKeLmsx0II0fsiBiEy0EsYhkSxxjQNkiQhCLLA88nvPMeunVNMbhzFVCqrmjTbFAt5lpdWqFaL5FyXOE7I0aDbDSiW8hlRUBo0O028Qhk353B2aZXx0SG2bBxlbn6ZcrmQSZKAKIywbeu8jK9WK4GA1dUG7WaHsYkBTs0tMj42yNp6k4KXY3F5nf6+AlLAwuIKURRRzOdJkoSjJ+apVWu4eZfV9XWUglLRw7Zt2u0OK2tN0hjOLK1RLRU48typTJanjKySJRK0jjAsg1ptgJnZeRzHRGjBmcVVcp7D0HAfjfUm/X0F+gbKKGnw9MFZapUCq2tNCoV877pJM2qiTmg2mlTKJZ5+dpZq0eXYidNUKgXCIGJxeZ2hoRorZ89SLOUpFTyOHFtiemqEKMiqF1ddvQGlBEHQZnKyD9XD/D914ASVSoHUGkQ263z76WO0VY3m+jq33LKdEydmiOKQQrHAmfkFDj87w4lj8xw9coyNmzaQL+S558sPcO31V7O2ukahWCAMfSzbod3KjJd1CsoQKGlkqH/b6p2b00tcMoLrT/7rT3DXO3dnx+mHOK5HnMQoI6smZZRTA8hAJlGUokkzs2+7gjJcoqhBFK5i2SV0qkmSiCTxsSyDJO0S+E28QgWhFJ1WA2U6CJEghYkmk3mnSUxPQ0p9bR3XdUiSmKDbxcnl6Ha6GEa2gBOGYSbTJAUEaZr0CLEZjTKJYyzHJY0DDNPq3SMS0iRGKgNlWNiug9/pYlkxWmRG6+euZ78TYNjWeTKv1gkaiUYSdAKibhsn55IkCflSiSiOM8KebQMW3XYDw5SYpsPimVXyeYvQ9zEME9tziMKYXlEAqTKaZ6GQz6i5QhIEMffef4QgSLnq6p2EgY9XHCD0BWmc45f+4we5YtfLiEPJ7/3Ox7jhlqsZGZzgT//4I/zsv/oJJqcmee+/eS9owa/+2vtQ0mLfw49SKHikEjZv3UEcB1TK/URhQpyEmJYg5xbANrBFysGnZknTkMGhAeprbR7d9wj/6dd/lS/d/SV+8q4fYnzrCI1WnT3br+CVe1/Lr/+7P2bPHZNolTAx0o+Qkn1PPEszjHlw37Ps3DrBl7++nyToMjRUwTEcHv27Y3zqLz7OxOQkyrRR0sLvdsnlXAylSLVAK5OP/MGfsG3LNJoEN1/gpr0vR6mUKBTMnziDZcbsf+JbDPZXcUs1yoUCzxw4wMj4KHEcUa1UyBeKvPOdb8H2PIROefDBB9m6dZpiOU+9vsbAwBCWYZCmCadmThCFISM1g8NPfpXp0SIn5jpUx7fiuN7Fca9UzBw7gqEj4lSTc3PYpoNSNkG7nUn3LZN6Yx2/0cJ1HerNOuXaIIbU9FcLPPXsk7znTS+j3Jrnda/YxGg0STjTx6NfeI5HvvAc9WdCSo1BDt5znHJ7lHJziF35nbzvF36clfWUnbkrWF+cZXxkDNuOmTk5RzcKKVfzWYAtMkKvND3a3RjT9Uh0imPlQQq0KUiVTa4wQJJk13Gr08E0bBJihFJYRg5lGERJQpxE2fdAFOLlM8rp0HQ/Uxs24cVlZJpiSCfzmdSKOOliINBxiDJNSDVxmiXCrqExlEEcJTzy8AMsLS0ShQlDA0OU+wfodFtUKgOcObuE32gx3Feg7GnGx0vkHBfLcjl04BnCOMVxCwRCIYXCcEs4Xj+i0s83H3yYm668iU67iWN5PZhGihKabmMOkXQpVyqYOQ2xzUPfeozJqVE0JqkWSElm0UKCEpn6wbTsjCRqGASRxrRMdOQzUixhWBn1WwCra3VuvKHCY48lxCns3FgjZwsOHV/m3m8+y7YdO/C8Il4uT3Wghog7HD+8n/FtL0eaPZk89Pze5GWjMXFBMqLPB369+PWCHtFLPewuXcy/SL/1/RXjXnBkF+5bn/9dLyW9TEKYHfmlJbdz04kXxLWX9hReOF7KYvxcTC2EvEz17/njPv+bFwmof5Dc/QuOf6oVQhBFGWXtMuN7Te7Sl0wYXyK5e4nju+rqK/jIZx9kz5jN8xflS7zgBXt74U//vWe/6LOyMmCvVJ99RF03R6VS4uBTx/F9n6PH5ygULGbn5tmxYxOTG8cJul1277kSKQXtdjfr/yFldfUsrWZMNwiQMqF/sIZhW1mAamakSct2UKaD5+TRaWYcblomOk3wuxGWm/lryR7uPVUaUoNOvUW33cJ0FJ1uF9vKDLi10DiGgWu7uHkb13UwbRuBxDDtHr5d4vsRjuXQbrdwHJtWq5MBJaTRk5D5xFGCbXukOqaQz6GU5BvffISRoWGiKMHLeaQyZmJiGNPQKFMxPT2OY7mcmVuiWC4CYJoSncasr5/NKpXSwXBtgiAzh7ZtD6E1hXyOoZF+GvU2q6tNkiBhZmaRoufhOjk67S6ua/LxLz/EK64aY+bUIqlOOT23ROCHDPYNECYN0jjGVjmefW6GvpqH5wnmFtbQOiHnWgiR0GoFDA71EQQRcRpn8lQpqJYL1FsNhgcrCKnI53O4eYdarUDBy/P1B55CIPFcm0NHFhkaLNFpd2k3u9iWQT6XrSZ3gy460aQabMuiVi1khLPViLGJMtW+MqRgSIVpwnqjjlcssLxUZ6CvhuvmOXFygZxrMb5hGI2m01yhUHQxHZs4Sdi0cYScZ1OrlVk+mxmgr6w2yReLBH4X1zFRlsPE2CCN9eyczJyD34kZGqpg2QrXlqQi670Kugm1ahnfD5idW2F0ZIhnD51iYGAA03TQRGgdMzrcz+m5eXZv38rQ0AD1pTVuu+vfUC2XiMJ5lBJs3r4J21bU11e54qod9A/UOHFiFsPIIBGBHzA6NszpUwsMjgygDIUArF7S7Xd9DNNFGipDtPcMydEaQykMQ+IHET9816vpNmYQIiO+6TRFSoM0iZDSIArbJHEmW9RoTNvK7AcMiyiu9wAtLrZdJBUpUtqZYbmwiWOJ5Xg9a4VMfpj1m6agY9I4wVRWb2E3JYnBtB3sHhhFGjaGmQGVHNsmbK0i0SjTyrzd4iYCC1CgYsJuiGG4SGEhlSAO2r1FEJuw2yKOQkzHyWiUIsV1HcAhDDS2lUOT9QbnvHxG1bM8LKWIgwgtTL7ypUcYGhnmm/c+wo6d4yRJTKtex7JMPvffvs7k1DD33fMQW7ZtQhmSJI6xHRdTaaIw6N2LUuJIM39qgXzeYe7UAvlCAYHkzMJZSpUiEPO/3LWXD/3hF3jFy69k/xNPMTjRTxx3cFybm2++Bb/T4eTMQW677SZWGiG/+Avv47/86e+yb9/X+MQnvsSHP/wBHnjg69xyy+383ac+y8T4EIOjRZRR5UMf+jBbtm4ljW1+//f/lL03XN9bxJJEQuOvrzK5cSNtf41Ws8sn//bzvP3tb0SbBr/7W7/Hnt01+oZ3gbBZW3qCZ48u87Krd3Hs/kU23VhGyKziNj5UpuiZXLl1lCDscsXmSTZMVMjZCr+R8H/80PswZJ4whDiNSGOwTZO1tRW0ZdFu1/Hri2yZ2kmtv4zj5Wh0fHTYoNlcROHwzrt+ip/+2Z+k1t+HbQ2iheLM/BLbt+1k//5DNBpN/vbvPs7oaD/lYh/zCysMDw5hKBgZG8Z2bCqVIlKYxGlKvV5naKAKxPj1GcxkiVMzZ0ithA0b96IviQWEVNiGIO8YzJ9ZplgoMjtzmmq1DzNv0+7USYJ1hOGyfnYFxzYpVkt0ghCkwezsKaarG1hNt7L7+tey/sTnODZ3mlfc9Aamhwa48/V38O63vZGH7v8673r7m1lba7JtyzTbtuxi5Qx86Nc+yuRAH9u3bUNZKToMqdQG6IYBObuARBDFAWmqMJwiluvhunmUka0Ah6mPSIxe1TxE6JQg9Cnkc/h+B0vlCaM2UdTFMF2UmcnwDS2AFGU5KGXxG3/0m7huymhhnChoo0xF1+/QarbIFypEfhehEyI0Ok7QpCglEEZmEeN31xgf6ccSMYunj6INycGH/pHpyUFmTj7NyROzjAzmsFQbz3GQQqC0AKWZm19m6/QYnVYHtzSOyFmEqSTVgjT9DruvfQWdJSiVK7S7dYQIiburiLBB1A4IUpVJwGMLLUOqYzXMWKONrP8v5+WwDZNUJ7Q7CY1WRM4xssqP1llvHgIMC+HQW1jMKpXbRqY5fHqBm66TNOZmGZ4aplu3eezwCQ7PrPNv/93PE8cBURzS1z/IRz7829x0w1V4Q9twemRoONfi+LyC6uLo7Plk5PKaq8vHnGkP0PX8vP/05O7iosjFk7xAUvmiO3mRs/j/IbnLksxL//rCOX+Q3P0POHScvP+7szu4/LhcYneuuf+i/Vwi57zcduHqxIXWB9mxPX9030tyB4Lrrr+Wzz90HNVeoFrIXf5Z4tJXXVpnf6m9fK+f9N7ZXLASM7FphKHRQfY/9RyD1RJRmN3kjx47RhDERL7PwUPH2LJlA2tr6/i+T5pollfaWKbJth3TVKpV0iSFNCUKM8pc6GeGw1rEdDpNHMfOMOtOETPnEAYBUsO99z7G2IY+DGGzslLnqaeOsGXbVPZcwyCKAhSSbqeDYZgsLi9T9DzSOCGO44wMSULY9TFMiR8EWeUszeiKtpvrAQJSDKsHwLAtkJqoGyCEIAwims02ff0V3ILD+tmzoA0sywSVEUgBoiigOlBBpxmePUnBdnIcOXqaoeEB7J63oKEMHnpoP4P9NZQhefbQUVxLEoYxYyOD+EGXkdE+Gs0mtm1Q7a+gbJf/5+6n2JZrMzpawXUsCp5Lrb/IgUMnGB4Y5eiRBdbr6wgjpVLu59TcEuVSnjjKCGQra22EUFQqBZ47dopmu0t/rYiQcOi5WaYmhllZXSefczkzv8zc/FmGh/pRPYz85i1TlEoFhIyoFKscP77Apo0j7Hv8MGMjNdqdTq+3MCVOEtrtLp1OQKvjMzBQoNXxEWikTJBGSrcdUMznaLcSZmfXSCMfdEoQJgyP9BEGPu12i2ptgE43II5SWo0OOc/B74asnm1QyBdIU4GXc4nDCMsxSOKE1ZUVcgWH1bWAdqfF/Kk63W5ApxNSKnloUqTK+lD6+nI4tkGj2WZqegypElxXIVWKUpmnlNAJYRqzttbmVz5/kmtHbBxLUJ6+jie/8wQvu3aIbifAdmxmTpxmcW6FTds24dgmx56bYXJ6BNd2iKKYTqeD7ZpUK2WkUFnAJC2isINhhiCyO4shDTQmSpmYpkkQZlWkNI4xTMk7fuTPeOedO5DSJEkj4jDANCRCOT2a3Tn4jJ3htdMUrROS2EIpkcmDkfjtdZTSCJEiZAYI0qnu9axkMJQUnd0/exARTXz+vimVON/Tl+oYreNM8pTEWQXEdjCsHFHYIfQbmGYOaVigA6QwSdIYw8xW24NuHcvOYdo5hI7QSCzbJUlShNYILSHJ4BG2adNqLWJYOaTMjNbR+nyfsd/28bsBu67ajGU5bNu1iRiN0mCYNu1WyMGDM+y+ZjP7nzjBlm2jvfNXSJmQakCYQEoagRAJlWqRdsvHNE2+ff9+pjePUSh6LM4v4jgu7/pfP82nP/kxPK/M1q1b+ern/5E/++hHufnlr+DggQMMDPWzbcdmPviB3+F1t70OxzbYuGUzUWrwhS9+idtfcxOWVWVtucnq6jpT0xsZGZ3kH7/0Ze543c0MVGs89OC9vONtb8PJ5REIGp0OSlhI5dForPPE4/tRQvCWt7wW6VikYcKPvOctrHTqfOZTd3Pj9TfgFSt8+6FHueNVt3PNnpcxlo7wR3d/ji2bK5hGjpmlFSqFAnGS4lg2YZySJgGL9/jc9spXstZcZr3R4q/+y5+x97q9PPfcUfr6+5Eo8rkCtpunWh0gTUPiKMRvdmithYxPbcU0JDfdfA0HDx5hy6ZdnDx1BNfQzM7OcPLUDHPzR7jqql2MDE+xadNOiANqZRetuzgFj5znEYcRpu2QRoK1+jL9Q4MYdok0mGN5cQl37GpkFLL1+h8nNS+IBXoVlbnZk0SdJla+gg66oDXl/j4+8TefZNOGjZTKHk6uiCUNTCeHUyyRSkWagkoFpUKNn/7ZX2Hnhpj+zbvo1g8xWEs5fniO1VbMYK1ANxWs1bskKy22v+w6dl15Na1mm7vvu5s373kL3WaDVhBQK3mgjPOLrIbUJEmIpVy+9dh+yn2TFDyLONFIw6bd6eJamaQ4aDdx3TKpjpEo4iirKktTgNbYVh6pDIJuG5XGiN5nWyQJSRTwth+9ka9941G2D+1ESYtUZ5X+fD5P0GpkfXi2S9yuo0yDNNYoQyKlgU4jRGqCEFQrfXieQ63iMj4+zbY9owAAIABJREFUim0bFPIuY8M1XFNiWzlirTNzdRKEFkxOTBAmKW6hhOXa2FaebquJ67gcbjYZGCyQj6tEYZdUSCyhCdt1lI5JVGZdYpsGoY7QqcLuAVCkMPA8D0Mpun4TQ9ogTJbry1SKBaQyshYZU6G0iUxj4iDl7PI6Xs5GGFm898df/Adef32F/uFRumEDu1Lgs58/ytlOwlvf8FbmzywzMjrBJ//mU9z51jtJ/A6LrTaj4xPn48ULJYXnNYXnIsULZIXyku2F1boLorpLZIviwmkv3MdLhH+XznvRnJeEwBfGuy+e2GWx6fPxb3Z+51qLLk2yLu0pvPRvuncql27qgvfohed08bm8lHrvB8ndv+BI4+T95x5/P8nd5cbz/+uXrsC91HghQOX7Te6ysX3Hdvq23cD7//TznFlew5YxtaJ3mWM+t4/vJWH73pdxLvXPyyRPgi3TY8yeWmDT9ASP73+W8ZF+vJxFp9Vh+ewqC3OLbNs0TRRGHD6xwMYNgzSabSYmhjOpo9b4XR/bsQmDAMNQoDWddpuc64LIQDF+q41SAtM0EdJgeGgQN2cTRym2LRkeqmHnXBKt0ZFmdaVOo9Ei55kZrbEnLQ3DEIEkjhLa7Q6O5fT8uVK0ULRbflYpabb4ytceYfP0ZNbj13vXgq6f/f8k2LZFpVKkXm9SLBdo1ltImeLk3F4fVHYTNy2LZrOZYfSTBCU0URBRqRZZX6/jul7PIF4TxSGB71OrlCl4DkHQJl8o8539h6hWSxx45jgT48PU+moYhsHi3BJTpSa7t46hDMWDjz7D1MQA7bbP5NQIfjdACM3YSD/zZ1ZYWW4Tpwlbt05Qb7QYGu5DCYFXcGm3O9kX78gITx04xshQBdsWrK51GBio0mp1OLvaYNP0KFEcsbK8zlq9w+BgjWefOcH4yDDLq6fpqxVYWGywa8cGukFIX38VP+pi2xbddoeZU0uUywWOzywCsGnreIby9kPWVup4BZcoyiwvJsaHKBRcFpfXmJwcI0lCgiBAKQPbsRBCY5kWqU6YP7NItVKh0w6wLUW+4LF8do16s03Jy+SMUQKWVNQbPhumBukfrBGGIVqn5HIOQmekyYMHT9LfX6ZRb7H/4AwD/RU8J0PsK8NESwlaoKTEkIpC0eOJEx2u2dDH5NQGfvL//D3abZ+3vPUGypUiCwuLTE5O0G61KVcKWI6NMjQbN03znScOEAQxa+sNNk5PkM/nEVL0YCI2AvA7HVKdEgQhftAFmckSkzTJ/JNURsxMkpSjz53hta/ZTthbMFFS0PU7PZmhQBkyI0oqg26nhTLNHtTHzEAs6B6RUiGViTJsmvWVHnhFAAnKVNknIoUkiklTTRiEmEYGLTFtiygMMS2FlJo0jdFJikCgTIswirAsG4TuUXZTDNNGSNULSrJkMYozKmISZ158OtV02w0Q2fHGcdj7UtfEoU+qYwzTIYpCLCsL2Jr1dfLFHFHQJPB9LDeHMCSL86fx8jmkyPrTHLfAylKd/U8e49prt+HlXbZuH8VxPYJuNwO5kKBTAIXWBv/w+W8wPj6E7bjYdg5lpIyNDWM5FkefneGjf/4glryW1956K+iUUj5Hu9lmebnBW+98Ew/ve5Qkkex/5Nvcd8/X6KsO8Ccf/Qi/8qv/iSRO+NAHf4df+Jmfw7Es/uYTf8td73k7e/bs5k8++mdceeVV7Ln+alzXxTJd/v5zf49p2BjKZHlljfWVJWrVKl/8whcYrhWZ3rKJofEREiUwZaZeCGKf0alNbNl2JZ0g4ad+5uf46R97L3/9ib/g5bfspa8vx+7aLo7WD9NNY4ZKNoYhcR2HRGu+fN/jLH2txR986P202jHKsGjWm9xyy808+MCTfPwvPsUdr309ze4CA4MDRLGg3T5LN2gTx4q/+otPs3n7TvY/8wxnl8+yZ89V2LaBH3aY2riBf7j7C2yc3szU9GZWV1e44oqrmDk5wwP3P0BteJQH9+1jdDKjGT791EEqlRrNZpNuq87w8HD2v4qbfOOrX2d0JI/fASNuUBqeJlQG6sIqSZqyvnqWkcE+lGmSpGlWARVw6ODTXHnFFcSRz9LCIvMLi4yMjiBUBmtzhE0atQm7y7zlddeiVYsw1AyOjRA3VjCsDocPL3Lo2Vn23vhKKtUBDh09xDV7ruHws88wtWEDv/X7f8jOwc3MnTzBwFCVUt7J4D1CoFQmPTQMCy1tRja9LOsr1CnKMgCBaVgooYDMhzFOUqTUGIZJHGXwlDBqo1NBt9kFCWkcIYSmG/hIw0ZIg9/6zO9y5+v38td//UVuuvLltBprOLly5isbxyhAGhZJqnC8MkHQxc2Z+K02Bw6dQAgoFvMZIMmIMU2bJx/fz9DwAIaSKCkwDAMldK+ft5ceSIWVy5FIhVYudrGGZefxu10KxTJCGLiDJo888QTD7jikATJsQNTBFClxmmAohWkYxFFmh5BB1xQCBUlMrDP5ehhqdCoQOqFSzvWSil6yoTW6J+sWykQLiWtbkEqkhJkzc+zZJRmfmKK+HrDekHz6i4+hzT7e+LrbqdZqPLzvMWq1PuKwTdheZcvu6zL7oMsqwS7RXX2fVbYXzHrRRN9fFe8i+MkLlGrf24GK89TMC2Ljl0zuXjDDi/7luwGxfDcE0B8kd/+C4/tN7l4qY784uXt+1qzRWvT00S987YUX+z8luXspmuetr7qFK/fewqGlmMdOB3zq7q9w69UbX3gO/wzJ3Yu+n5mRVu+l2ep3tjifadNFmunYhU5YWqzTaHWpVUs4lo0fxgRBByEEOcdirV7n6l2bKRQLRHHcsyhwiJOEOIxwXZPGWoNiscbp02co5AuZAWocEweZpCzVnPfccZ0cKI1tmaBTEp3gtwPiMKbWV8JyzJ6vXorWmTeWY1uEod+TGOYJ/ADLtPns5x+AGEbGB4mTmI0bJ3Bch26nw1fueZgtmyeQUmC7NoZxjoJp4+YcTMOkWClhmwbNRgvLtjITeMvC73Qz6ZzjItGcPnkSxzKxXRevkEf0sOrSkFTKBXIFF6UMnj10klot81ZrNdsU8wVGhgewczZLy2dpN9sUS3k2DCgazQZurkA+pyhX85yeW6WQzwAuOk1pd7rMLS6xY8s4/X0lVtcaDA31EUUxZ5ZWqZRcDMMk8COefuY4V+6cIggiTMPg1PwqQ4P92I5Fu50Zv4ZRjG1papUCzVaLkeEKx06colwukSt4uK5Cpwk5zyWJU5qNDl7P1D2MIgb7a7RaHfqqRVaWm1lSLSW1apUDz5xkbHyCNNUEvd5Lr+AShwlKpVi2xDId6vUm7U6HfN7DMiz6+ioIoTHMDPJjGYpSyWNkpI8jR+eYX1xnaHggs/0IE9bW1+irVVhfbzA+PsCT3zlB0bM5emyeTickjiOGhweIgxgn52A7Lk88cZyRoQF0kiLNjOKYhFkvZjOt8PIrJzBtk1VZ5F3veienT3+HTrvD+noDo4fHP350hsUzS6yuNZjePMXpU3PMnV7mTW99DadPzfHAN/ex44otmHbma5ckMZaVQwmFm/MwLQfDMBFAmiQIJTJcuUiw7Tx7r9+IodpkvmQhShgYlk3od7GdPBqNMkzCMMRxLZIelEWQkCSaTqtDzrOBBJ1qSDPIQBIlSKlIk5QoSjEMlfVG9ozsbdvuwYeypDeTdJs93LxCipQk7mYrvVoiDCPr9xECKR2kYWTHJrP3VacJhmHid7uYjpVVM5PMz05IdT4hRAha9XWcnEfY7WLZRQxTIHr987aV9Sd2u228QhUpTTqtddZWQ6oVD0GCTgWWW8D1ckxu6KdcLfTuiSmGCVEcYVoOgmyRQOvMrmPz1ilyntOTGEm0jogjQbcd8PPv+yYyrXDPvV/m5977szTaDbxikcWlJerrEWcWF9h91W42bdrGyeMHGBzZyPSunfzM//YT/OXHPsbw0CjXX7eXwaF+fv03f4t/9dM/xQPfepBr9uzm1bffQqVWJE3DrFc1UVy962q2bJ2i3mxwzz3f5NZXvhzbNBgb7Uc6Nl6+Ajg01wNIU/7DL/0Kt73+NRw5fJRypYhlmvzjP36TO+64lR3bNuGHXcr5EdabpwhnqwS1M5iWSYqm44copdi4YZhfvuv/IoojWkGESExKRS+rZpbLvOGNt4MKMEyDdrtNq7VOIV/o2XsY1CoDLC/Oc/U1u8jbJl/5yteZmBijVqtw8Okj7Ni6jS9++av810//N/besJdcLsfG6Sm+es+X2L//KEcOH+PVr74N0AwNDmffxcqkfnaWUrEPkKzM7afojDN/5jGMqEysPI4ePcqGjVt6iwlZJaTb6VIq2KwuLuC4Hq0gJE4S1leXuHbPVTTX67i2xUMPPsbk9CRJkpCkKbabyyoIaYRpCRIN3oateFFI6PXTv+kmmvMHGSprdu7azMriPDOnZhmdnmZseJiCl2N+7hTfePBh3nHrG1hZXGZwrIhryAxCIzNAlVAGnUjjlkcxbAvfb+CaNn4ElqHwO20inUCaouxcVilHkKYxqU4QUmJIF51qvGKOOGphSEALHLuMJEEqi/f81OsoeQ611g4cz8LznAy+FHay2okh0TpLHJVhYrplOqGgUB2jMDBKqTyMaSkcJ4+yKyjTYmh4CNOwSbXAdvPoVJJogWnlEMpB5YpIp4BhFxHCw3Zd/FYTw3AwzRypUDQ6LXbfZPHbv/9JXr37Zjqrc6RRB5KYNEnQKOIkwXJcglgTJNDqag4feY4jx+boHxxg7swKM7MzaGn3+pfBcOT5xE0KRRSB4Ri0OyGBhpmjx6n1VTEM0Klg28g0teF5Ts/Ps7zUYn5miU1TY9TbDm944+sJw5jhkVGmp6bpdht060uMbt2Bk8ufh4+8aOLFSyd33w1v4nKx7oUvu5xK7buZ85xa7dI5v1vbhAta7V70dd9dcnepSu2Fyd2FIesPkrv/SUYUx++/lIh5uXHOsf55mWRGLTwHJ7lw0/r5C0WcL1tnCYwmfdHK3sVNoxdvF16A58vJL3Lc382Ha8PkBnbu2sGr33AncvRKjJEr+dlf+zPmF07zwc89yVtfvpkf//C9/NdvHuIdr9h82Tleivv5kkfwoh+K7PyKlSKf/+L9pGnCy67aQpLGVColyuUSrm0zMzeHYUjOLDXJuRbHTy0wPT1OkmqkNAj8ENsxMSyDJI6zHqrIp1AuZDKqTguQmFJgGDYpiiQKMwS6kcFULMckDkMsQ2I4DoWyh9/poIXGMBwMw0L1gC1ISbfTJZfLs3p2Bdt2efbwSV7xiisYGCpmXlqhZmFxif6BGpZlsHnTGIZtIpSEBNIe8jxNzt00NKHvI4RCGRnlUClBq9nuESQzYAgpBH4EwiRNJZ/81H10mk0qlTy2a6OUQglB0I2ZmZlHaoHlSiamxpmbX2B2diYzk/eKNFrr3He0ydbBTErabnUwrSzhLBYKpLEmDEMOPjvL8toqu3fuotWps17vMDY2wvLyWUwlKReLmE5m3uz7AeNDVXJ5j5W1Bo7jUi0XUAJarQa2ZeO6ObrdLqVKmSCMqdYqdLo+SmpqA4OZXLXeplA0IRZIZbC+VqfbaWOYCsvMvMg6nZihIY98wSNJY0rFAo88cZhNk+PEYUCaanKFAkHQwW/HlMoWSaxZWm5klMpmF9OQFAsFfD+m1ehgOTaGZVAu5hAyRSuLxtoK+UKefL6Aa2XvsZYRA4P9JFpg2QLDNjBIee7oabZsmWDT5glK5XzPeDumVMkhlWBkpIZONX4QYrs2GUVd8vVvPMUjT51gz7ZxGt2AvW/+Mf7zn3+Mvpri2ut3s++BJxkY6KPbDpjcNMGhg8e59da9NBstjh2Z4VW334AUgk7HZ8PkGKZpkEYBaRrjOBbdTisLWpIEZZgkkU+aJji2RZrECJFJh1NiQPNjP/VXvO0tO5HKJAgDlLKQ0gAREPqZUW+ShCSxxuwlijpNQWhkjy6pdUa8FBlCDsM61zsnkRqkTAmDNqQCqbKKn5AGOtEgMxhKp9XAth3CMMU0HYQy0KlEmhZp3MmkpFYuS05Jel5rEWnaJo6SnqQzAm30JM1ZNVLITPYlTYmOIyy3TByGWYVDZiqDNI2yaqLpoEkwlUen08EwJZay6Ouv0ag3cdwSj+zbz/BILUtUY4GUCUbP6D5NLNIkwnLsbPVZZlRbZK9aGAcINHd/6Qh//ck5JiZuwstdza4t29kwPsrr3vh6pGGgHIdOfZ2+Qo56p8011+5kfn6NYk2x48qNDA4NMVQbAMfiuuuvpa+/QKu9QsEtcN21V1MsuExvmaLTbdPqNDi7ssL+Rw9RKfezuHCGxx5/lKWza/z6//1BHt//JO946xtZXDjDwOAwcRCyOH+GWqWCEvDgo/t4xxtvoewN8txzC5gIHtt3P7WSydYrdlKsDpKvlFmZm2doaANT2zfhNgZY5ChaJ9hWJgf8xu8d4pW33gRKUslnvmmtZhMhU4qFMpYlabZXcVSORGU9z3EcYZpFVlfWmdoyxPjEKEGzS63az+TGScIoQqD4yJ/+Cdddey21kUHuuO3VREmTh7/9JNu3bmX3NZu5bs/L2LtnK8VaqdeznVValFL49VPkvRLLkYW78m1KXoVDs19ldHAPXqHI8Og4dqk/k+f3ql1nZw6RcwV+uA46pVB0sJVFiiSxBCRtmq0OV111NSgT1+iQhG2SRNGsryGlRZwamJVxcknM0/vuw1MRnuOyHnbJqTr+6nHOLB7ngx/7BrvzN/Lpu+9mdW2Wa6+7hW9+89uM5gaxZEyxYGOoFEP1rAcwafkhlf4JIm1iGQqpFKnIKM0kGQwEIVBS9QBMJjrxM9l1nGafY5n1E8dRiJFkEuMwVghLQJrwO5/9Xd75tttYbTWJ1g2kzqr4QehjWA6pFhh2jk6rlalQDJM0SXDzRYQwsGSKUBnspd7qYntlnFwNYXmgPCy3gDBzCLeKk68SYZOaJsrw6Pg+tmmhMOj6AW6+gB+26IQhrqH44Kd+h3e+5z185tN3s2d8I6aOSNIYpEEaxjyx/2nsYg1Tx5xZaXFkZpaxiW2MbthKjGBkYgvVvjEwS8wtLrKyvEqpWMCzbDSQximpNNn/xEH6+qsoIVlbX2dqcgzTMoiiBGEolBTcf/AAN1w1SC5v0PITjh7r8O9/+ecp9E1SrVWZnzvNwFiVf/ibv+CK6Rz9k9fg5PMXhFTi0jDq0nzlssnIS0kLXyDZ1M9zK89JIS982YUglkSfS94uP2fvFZcL/y6Wf15uOx9bX/pIXHS+2R4uTnqzwsfzc1z4zBfG2D2qJs+f97mE9LtNQH+Q3P0Lju8WqPJSlbQXDnHxI3Hx757/yz9TvfyfYQjgTW96Pdfccgfv/qF3Yo1dydvffifvftfb+fe/+0luv2LwJV/7kuP5JZkXn+OCm4ySgu3bpjl29DQrqw06rS62bbNab9I3UGHzps2MjIyweGYNP+hSLRcwlKRcLuH7Pm7OQcrMNJQk6fXjuJimTb2+TrlUwu+2MommEgipMJTRo1iq87IyLSRIA53GWYXOdTGkhVIZvS8MA2zHyYh2UtLpdCgUC+gEatUyAK7j8K3797N9+wb6+it0Oi2EzEhQ3W4Hx7YBDalk5vgCEoP19VUcx8ZxbcJuB9uySJOsanGuZzDRMVpmSZjjuMzMztHXX+KaqzczOjaAkgrDMrMbMILQbzEyNkSxVCTn5lhbbVAqlZiYGOfU7ALjY0PUamV++3OPc8eOAk8+fYTNG4c5fnIe05CcPDlPznOYPb3EhvEBGs2A4YEKK2t1xsf6OH58gdHRGvm8x8KZZVzbYO70EhOjfRi2zepqnf5ahfsffoaRAY+c52B7eWzL4NnDJxkaqmJKg3u/8R0aa00822ZouI9jx2YJfJ8NG0YQMmVhYY00TYmiiIGBPoSWGe7fETz29HNs2zqG41o0Gx0ajS47tk7T9hs0202q/TXSOOL47DzVSgnLTAijlLOrbcrFHGmSUiwVMl+mRoNiOcfKSp1CPvN8CrpBJqmxDOx8HsdzCUOfRr1DtVqm3e7iOhamMgDI5z3ynkuxUgCVXddBN+SpQzNs2DBMp93OqkBJgqlUL8jP6FyDfVWkWSBvm0jLprTxBnZs38XUtMVTTz/L7j07UIZgZGyQ+bkzdNqZRcQXPv91Bof76OurMDszx4GnjtJpdRga6cOyMm/EdruF1pokDPByTrZKLSSWZZIkmiiOMS0LgMD3se08b7hjD4IWAolUmbG2EJL1swvkcgWCToBl5zAshyjsEkVdpDSQRmaOjJBo3UuUhEBg9FDSIWHQRBgWQihMy0X0voBNy0KK3u2jJ7V03GKvohVnC2ypIEmTzDdLGSAUIo1J44ggCJ+n40YphuECKquKqWxiZVg92qzIPPlMA3SKVJkUK04SlGERxylxFBIGCXEU8ewzRygULVwvq4YGQciBA8fI5Qxsx6RYLPQWmMxeIJCChnarRRJm7zVJyBP7HmOo508oyO4tUin++D/P8+67/jU333gtjmly92e/zH333sdjjz/Obbffju/7bBwexMm5BAIe3/cMW7ZuplQYJE0jyoVhHC8GneM7T++nvzZEay3itz/wx/zDF+7mU5/5NFfv3s3p2Vk+/Id/wKtffTuDw0OUC4P8wR98mGazw2tfcwvVWo1XvvJWfvg9d5GEHd773l/kTW9+A0kS0my2M8N6Uv7fT32aV73mNpbXW9x371c4M7/A2lqbd77jR/nc3V9iasMolhny8P33MzY6jBQJfdUin/jrv2dguoCSFoe+tsxHP/AnSCGRGLQ7CtN2EcqkVnUIYx+lNK1WHdtJsHI5DCO7RqIwIF/MYRoGZ5fWOXToAJ/6u78iVSE7dm7nAx/4bX7x3/4HhIJCoUCtWqWvr4+t23bwyL7HmZycxrYNukFAN4golfJ0Om0MqYiiCK9vmFZjgaq1zIFDD0HShw6L1IZGaDbbjG3ZQSpNhNDoGIJOl4WFeVor60SJgbL7iH2T+blD5PIOrjuBoSRJklKuFJGGQhgWZxZ80sSjkBfkCy6GaSKkpr6+zJadmyENmTm1n3q4lR1738x7fuGPuG3jnbxqy1WEaK7efh3ffvIAN7zqZTx76GH2bHo1MycOMzhSRGpFGAEqgVTgDW9CWEWMJCLRmiSKaXVaeLk8zVYL180TJzGm1TMrT3z+P/beNFqusz7z/e39vnuuuU7VmQcdzZJtybYsjG1wMAZDMFOYwcxJyNRZubdXQpLOvU2TTjqdQNJJuhtIICTQuWkCnUAcCGCwYzC28TxLlqzhSEfSmevUvOf3ftglW5YlIZLum75r8V+rPlTV3rt2Ve3hfd7n+T9Pt91CKQ3bLSBthzAIszzHJMGQRVr9JkKH1cUGhVKRN91yNZ5j4jkWq4d8/KCHLlKkbmCZNhoacZJiGAa2bRNFUXbuhTpB2CGMYxACP4zwPBdNZKBJmhrNziqWKfD9Pn4YYTt5pGESJwmWsBBekbi1RCfK3H1t286OE9ejG8UcWN7PVcOnePiBZUbtEuW8R5I4PP30fqrVMdbaLZ6ZazK55QpGhqcplSdRSqNULLOweAo0E1OaWFJgGS4zmzZyz/cfxiqX0WKFMHWSNGZ4tISuYkxpYLsmUteyvl1NR+nZRO5nbvsmN+4pYMgKdz3U5p59XfZcexPVagUNDdM0SZKYiu2zvHSQmd2vwHLs542fflBdLCA5//Jn9cudbz2ec30/F7j74T/3hZ9wsW+dzdxpp1ViZ9VzoO8c7/2AvblQ/Qjc/QvWxYI7TT2fS1OD6YVzBx+eC9y9YIvne+O8dSYjd2Ht8gtf+0HRDadfPd2Ye2bddNON3PLLv88bX7zxvOv+QKbuYk9YlTkgakKjkMvMX04urBHGEY5lcOjoCaKwx/p6kyjuk3MclKaYmp5g+dQy+VIeaRoE3Q6W7SF0nRSNXruFqacIFeL7PbxcHjWQyJrmQP5lSPwwgjhG1wVSCtI0xTCywbqmFO12gyjuIYQic2fPZjyTKMIyTR56aB86EAR9LEvSanUYHa5jOyZxHGFaZubWqVJMI5NaZhp+PZMnhj6Vagld1+l2M7OYIAgHLof6oDdRYBqZiYUChK5TrhQzlsmQSCmJghjHtQGNoOfj5RwOHz6OY5sIXXLomSNIKfCKBXSlyDRnimFzjVrRYsP0MGuNdZIk6wur1QoUinlqQyUef/IwW2Yn2H/4CFpqkPMcSkUPIeDAoeOMjdRAKcqVEsIQ6IZkfn6JhcUGV+zaTHN9Dc81uf+hgyRxzPh4hVzOIwoiNkwNk6QJjWaXZ46eZHaqThBG5PI50jTANm3iNIVUsbraodcPKZY9dAEbpupEYUoQRpRKmQV3p9ulWilh6Dpzc6vUhsuUynnSMCTorRNEilwuTxJG9Pp9DGngBxGmZaBrglzOy3LRen36/QDb83hq3yFGR+rEUYyUAst26XZ87rlvP6O1PKaVRWsIKXC9HEolaFpK1AtYWm5waG6V2Q117rr3SbZsnObUiRWSJMX1bOIoY8rmji5Qq4wwPT3JXQ8fYP9CwPTUFF6uS6fTZdPmWe668x4uuXQLjzz0FNt3biGX9+i0ukRRxNjEKP2+z87LtuF6LpVqGaHpWK6THR9+QC5n0W2vI6SBMCyU0khThe3YgEIpiMIY07KRQvL6t/wxb37DNoQc6Be0LL7FtBykIUhJBhcCha7ppEofBInrg3wiQRSGoBR+r4dpmlkWnZZJJ+MwQNc1lKaTppDEUZaLF6XoUiBEFvDNwHQliVMMMwsK1jX1rBsuJPh+D8f1skgHmYUM68LAMDPjEl1oJGmWTyWkIo0VUhd0Wk1MO4tZEHrWe3Tq5DKWZWc9hilYtkOpXESaFnGY5fYJQ1Apj/K97z3OhtkN/N1XvsOOS2cGQDgDxFEU4uZyGKYcDCZihoYKpMrg53/pb/mzzz/EH/16hI7YAAAgAElEQVTxP/K2W36DvXuvJFjrgpby1//9r7juxdfxD1//Nh/72Mf45V/5Fd73vvdy4thRvn//g0zPbmZ8bBxpaiycWmdtfYE///PPcvTwAp/6xKf5iZ/4CXrtHr/10d9k65bNlEqTvPe9P8U3bvsOb3vb63jdG16PNE2E1HjXO27hlTe9kkcffYhNG6cYGRuhVCljWCaGUOy5/Bpcz8LLWaDBxPg4Qups374NZZgUcnl2bJ7lxPw8r3/T6zE9k9mNm/n2P/wDm2bG2LJjJ4ZpIYRBvx/wqpe+kfueuRPTkby4cD2e67JwcgXb9HjLW97Iy156DYG/TpropCpCCAPLzGFIwXo762c2pYmmJ6yvrxL6MdVqmSgM2HvVVYxPjmPZFi/7sZdhOw6dbps/++SfcPnePQg94dFHHuZv//bLvGjP1ZgW5Mo1wqBPY22JUqFAp9Uml8uBtGksHKBx4LtUpm5kfXWJgpeno7r4fcXI7DYUWsYMBykkGqXhGpXKEPlyAVJFsVSgWi3QbPew3DxCS6hUq8SZBxhYLlGi+NKXvsiOTVM4eYNTiw2Crk+lNsLS0gq9TptcajNU1bnlg7/Kb7zjV0kiH6FnJj9r6x327r6O/+v3PsrevZeyfkiiiYhCTqArxaPff5KRqVGE5SKsSmbmk/qZ7BlBLp8jCiMc1yNJFVLopGlE0O9jGAbCMJGGjZBmds/UBf3AxzLtzHHa0On2fHw/AGWQH1dIkfCRD3+aqaEJbDtjtXShkaiEOI6wbBddZr1omYmTizYwMsl5JQxpYxpWJsOMUyLVIwxjXKeAaeQwpIvtZtFDaZpdPzVho9pLJHaRoqXjR9EgFqiPhmDfvkf4pZ/fwV/+9e38+BVvJJ/36Icx+545xlIrZGRshuHxWaY3bqLrBxw9dpDxqUmUlrLeWqNSLpLLVej2e5w4cZzhkTr9jsaGLVPce+fjzK+v0O/3GC4Xs95ilUmt9cHknQIQMpu0BTblJhnd0Gbu+ApPHEtoxgE/8Ya34jguvW4P13M5OX+SpHmQlZWj7Lrhnac9e8iYJvUCtdf52LhsmHXuEdu5mLxnnz9vlfP3uaFeQLK9YJsXUpf9oJaliwF3pz8vPZscPAe40/XTv8m5N3lecPcjWeb/3nXR4O6s589Zpf5/C+4u3Ot3/pP5QsucdxfPqDe/6Q387K9/jNfs3fRDr3txNSDYNQ2lgaal5PI56qND7NixiV6nx+HDJ9k4NUy3EzE6NEytWqbRbAIatmWQc2w0oZOkKeurDaxcnjhOsB0HYdn0elm/lbSzTDpNl1n4sZRoup4FhxsGSdgfnPADy3jLJAx8VBziunnCMMYy3OxyqukIITMjCgHDtTpSSkyZyc/iJOa2f3yQrZumshBpIfF9HyF1jh+dp5DPYVgZM2DbEi9nMDd3ilzOxXUdNF0iDEmcxgNZZgdDGih04iDJzB/0bOYpm/3PLmi3/v132LR5mjRNELpOp+tT8FxCP8h6+0ydUqVAmCRIBItLy5xYXONIM2S2ZmC7NuutDtPTk6ytdaiNVFlfWx+Exbs02z2qFROhObiuS8/vcXJxBU2DxeUmjmVj51y6A4e4YilPKe+BgoWVJVQaMjMxSopiaaVBHMe4rsPDTxxi16WbqNcr1IaKhP0epWIepQvanRau4yFNEy1VuK6HpmmcOLWEZWbGOf1eQqFUIIpiXMdCCFhvnKLdXkVIQX6oiqaBqWKiqIebK+KHKa31FpWKx6EjS5SKedabHfL5PEpLWW2skUSKoaEyvX6MrmKOHl1mYrxOv9Ph4KFT6EpnbLiAITVOnFzFkALLtoj8BMPUkbrOvd9/AmkYeJ6LaxtEfsJwvYIhLWzbQRgaSZwxzfc/fIgr91zF8tIq3z3cZmhklnvvvZc9e8d5+olnaKyusnPnRjSgWqtimha9XpeJyQmeOTDHxOQIvh8QJ4rvfPtBtu6YgTSl1W6Tz+dxLJs4DTBNAcJA003QNULfR9d0wtBHCJlNfChFqhJef/MVOFafKIqyYz5OkKaNQiNJ/UEMiCAKI8wBA6fr2QRKHIcZI5cqpNRBSwj8EGkYPGdZlhDHPXTpZKHiQiPod5DSGVz7DHSpCIMgM3DRBXGUDEKCk8xCPVWkKEzbRaVpBlyFQKn4WbmzUgmaDkKXCGEQxT0MaZAMjI6SJCVJY0zTptPpcGJ+hfpwjTSJOXJ4nvZ6Gyk07r77aQ4dmGdmpk5CjBApm7ZMoGmC7Ts2gooRUuD3AwxT0mkFfOGL3+M//vGDrDaGCPsT3HNfg0u338y1L97N629+Obe86+fwk4hep82n/+gTePkCb3j9j6OlMcePL7Nt21aanSZ33XMPwkj5+tdv49EHH+PJ/U+wYXaMsdFxjh0/wMtvuJrmqsNNr3o5Dz70CJs3b+S1N7+C7ds2cMXVuyhXLa6+Zhf/7t9+hJnpaerDw8RpSs5zeO3rfpzLLt3BN2/7Bpu3bKHV7uLlPKRQVCojWIaG40oWTi4QRiFJkpIvF1laa/Krv/BLvPWtb6ZUziEtRbvXoFyucevffpnv3P4trrjuenTTYWlpBdv2WFvt84l//+fsv/ME/+pDP4VtORzYf5gPf/jX+R9f+DRS72PIkFxhEiE0GivrxJHAND106aBUiI5A0yOkIch5ZZK0S6VU5fjcKdx8nlMnl+j3O3S6a9SGJ7jykl1Ix+b4/H62bt/EniuupDJUo9dpkugGxWIO1zVprK6Rpoo0TfGDkFrZYmX/A8SVPIY4gfKHGapfy9r6EYY3bBvcxxJUCK1GE7daREkDSyakvSaHTzxNNT+CLmwS2cU0JcvLa8SRwMu5JELHMOGK3dsgirA8ie0WyTsllLAwDBvHFNhjNX7qZ/4Dv/a2X0PXJImukaIwVEKr1cXOlbhscgf/7ba/40R4jCFVoJBzcB2D+lQdpSkcdwxDGkT9DqGKiYIAx83T7nWQuo4uzIzNi0OSsIvj5kiVQEmJECYqUQiN7P5qm8RpSpr6g3tfDiWziZ4tV43zsT/4NK/b81oK+UIm2x7EI2QZcSYqTQmTFDQNlcQIwyOI20T9iFZrGcOUhFFAGPSwrCySw7JsIpVNdKLrJLrCb68jZObOm3Tb6MUyNgl9I4+hYlAK27FIE8W+pdvYYO7jv/zdPC/dfAVInQMHT7DW87nqulfjenk0IbB0jbgfUCrXMG0by7JRsSLoBQjDIF8oUhseRcOgXBb0mhHCbDE+PM6RQ0sIxyRvCbq9HtIeZArGCSmZ2+bDDz7AUG2YcrnAQ3P7aJxMuPWbh/jEJ/6Y+bllDh09hOd5PP74E6wur7B27AES1eay698BaXpBsHMx48Ef6v0zwc8Zi11o/Hsm2LrYutCyPwy4Ay4K3D0HeM+9yR+Bu/+f1kXLMgesybM6ZFLgfAfi+cGdelaLrF2QTTvXez9o9uNclrbPZpSctR14vvHKxQRBvPaNb+Q9H/4D3nD17LPf7UKsXTaWUuc5CbSzHmfMBCn1PJUzGoyMDLHzko3kigWSOOtZMi3B8OgIo2OjeEWPQrlErxvgOBbFchkNHVNopMToukToEEcRhmGj6xpSwtrqaiaF0kWWgScFcQzSMAmCANs28fs+AELXQEhsxyFOTg8QNdI4odvr4BaKPPnIAYaqBYQhCfyIKEzZunkWwxLc+Z2HmZ4ew+/1sE0LwzBxvRyQIoSOpusEQUq71aVYKAxYjBTQMYTk9ju+z8Qg6mDx1KnMFGTQGxEOmENN0wj8Htu3TSNE9l8LQ2DbNlJKbNfBNA0WlhugNFYWlvFch/VGiy2bp9hQ7NBu9mm3uywstqhVC8RxgGPbHD++wspqg0oph0o0olBRLJlIXdJYbzI1MczoaA3T0FhttChXKzz+6NOM1mpIMwu47vsdxoZr5Itl1hodkihhfHSEI3NLjIxVEQJKxRxra2skSUK5OsTiUoN2q0MpV+aeB54mZ5sI06BSy7PaaDC7YRLbMUHT8HIWc0dOZWHPYYzQDY4cXWHH9q3EccL6WpM0gdW1VYqVUbrdIHPWjFMOHlpmejqLjRiu14jjBBWnJEGfBA3bdtE1Ra1e5eCRkxQLNl6xiC0l5ZKNaQvcYp4nnpinVs1jOybSUsSxYvHUKiP1QmbMUy5iGjqJUlSHShw+MketVqLn97Asl8ceP8LiSp/VRo/R8SGu2jHF5hdfz9T0OAun9nH5nsuYnJ6g2WxiWBZB32dlZQ1dSiYmqzz84H4mp0YZGxtB0xSNxjKbtszg+32qtSE0DYIowLJc0kRD002iMBusGIZE6Jm5ga479LtthDRBJSiV8pZ3fYY3vXYTUhokUY8o6GFYNkkiMGWWg2dYFpoUz15TpMgMfqSUCCmJYx/TdEjiCMPMet/QdVAC05CoJIsU0XTQSJFmBu6koRP2I6IgwDRltoqWEvg9QCBMkzjOTFp0IUiSLAw8jiNUkpk1JWmKpglIyT5Xy/YyiUJM02JubpFet091qMLywgKG6RJFISpJ2L/vKE8+Ocelu7bR6fhIQ/Gia3YTJzGLCws88GCD17z5j/jmHXNMjr+EmW2vI4wnEPokMVv51H/9Bj/5sx/lx29+NZds38H05BDDdRunNkmn06FWr5F21tCEhpfP871vfYO9L3kZIR3yjkWhVud3f++3edWN17N72ybmjizxvve/m/1PP4MQFlu3XArA+lqXSq3K9l0bMXMOmhbyzKFTdPpdnIpAw8CyTHrdlB+77noMU6NYymGYDhtnpnji0aeIgoTb7vgur371axAiIUkj8oUKjz30CHbOwLJtatUxDNPCD7pIU/C6l93A//j7r3HH7d9G0xwqQyPc+rV/YNdll3L9y2/gRde9jPe++0N849avcN3VVyEsi8VTh3nvB9/Fe97ydpqtFSBmaDjPT3/oPWA5dFd72F6BRMXomkWsIlK9T61c55H7HmVpcY2RmTGCdkTeLhBqCYbI0Wkvo6SFbejkvBwnji3xuc9+kcuvvI4kWSBOoJIfYnW1g25YnFxeoFwdxbZNVKporHepFvPkPAdhWOjCptM8zuLaYVTvMvrKYWrrVcwfeYI9111JLPNIlaIrOPjM09RHh1BxxMryIl6uQnNxCZc1ekFEqTZGc2kRHQfDTEFF2bHbXoIwwfXqWZi6yPJRkRpSZKygYRf5q8/9DTfteE1mx6+nJH4f4oh2t49XyLO2vo7jFcn3Pd7zgVdz8PFDNDoxY9U8tmEg3Dqa6WX3f03HtAtIU4KuY8isvw6V0FxZR8oUyykBRnaeBB2kNEmTjB9K4xChCXQU/X5IvxfiuPZAAg4f/6NP8e4b34+UJn7Yw7AcEhRJrLjt9m8wOTGFbTkYUpCmCXGaksQtTCOHptl4XpF+P8C0HJQSmJZE1wRxFBL4bUgSkjim3VjGsiw0TdBurSMNA11pdDtdCNskmo40HaIg5A//+mO8/2bFuz78HX7r3R8mSSM67YAnj62xd+91lAoermuTJEnGGDoWK6tLlItlgqBPEPQolMocPnKQTruNY9k4jsWx+RNUazWGapP4QZ+ZmWyi5/6HnqTdWUPgkGoK280jkpClxhqjIxuRIkLoBn/y9X/km9+5n5vf8nb66x2mN27gq7d+lav37uULX/gyi/NzjDldbnz923CHt6Np5x556dpF9oQpBq0Ap6XyZ2QmnKN/7fmU3Okx3jliFM7cxNn7cnr8exGUwLnWQ0GqPd9zQtdeuF/P7fHzX1SKZ1sDzjZwOfNrCDJQ98NKMpMz9ksB8kfg7l+u4jj+yLmllc+v0z13KrvyncHcnasuxNz983iu0yfTP2VW5uzlnifzvEiv0Df9xBt4cD5kVFs9Y91BnQnkns304wLg7uJK1wYabg2kKalUyzTWWqyvd3A9m8WFFUrlAprKLk/N9RaWKUFomdtcHKMjSdOEJI0Rukac+KRJgjWQCFmOg+8HmWxLaaCpzBGTbHAqtOxU77RaWJZB0PeRhiCJE0zTJPB9dCDn2hi2TQwUywUc18G0TYJ+xOTkCELqkCqiMCVfKhAkIQKNZquNbWehpGkCtmPR6bRBge9HGNKkXMqjD3IV84U8mm4ghSCO+6AyW/gHH3ic8bEaoGUZjKf/DiBNQoJuC7/boT48hG1pVIcc7nvgIIYp+ebjR7l00qXbjagNFamWHQ4eOcnsxmnW11qYtsbE+BS25+DlTY7PL1IdKhIEIf1+iNAFT+0/nrkQplCtFKgUHVYbTUI/pVTI0Vg7TLFUHzA1Css2sBybufklZmYmyDkmcdSl024wVB/hxIll6rUShqGz78AxatUC1UqB9WYf09QpFFzWGg0s08CQBk8fmGO0XqbZ7JBzbaIwZGJihGazSz5fII1SSsUi+UKOFA3TNonTBM+1yLkWQ9UKQspsJtwy0YWOaUksI5tlX1xaIwpDhocqKBTtZp9HHp1juXmCifFhlpcCyiXJ6FiVp/YdoZCzOXZ8iampMUzLoFotc3TuFIWCS324ShgEWIbENCRBFHFs7iSlQo7j/YjXvPwaHnn4aUaGa7S9rZSKBQ48dTdD9SqdbmfgHBrTbnfZtGVjFusBHD1yDMMQ1IaHEEJjeLiG5xW49+4HmJwYRakkcxtsZaYqwECWlT474EviFCkEKuljmC5h2MdxHV5yzVaKZYnf6yMMgRCZKUrWkzNwWozj7D48OI/CoIshBX6/hWHZmSsoaRblkWqgSYTMIkmSAdtmWOYgPuE5OXKaJihCbM8dnKMCv+9j2/ZAmpkZIql0MFlCBgh1PeujS9IUw7DQdB0hNCAljvyMGUyy5vliwaNYzoOukfNy6EJHCsnffeV+du3ezJ69O4njGMex6Pf73Pmdp3jnB/+Ct771V5gY38NPvf+nuf22r/PKl7+EoeFRDj51CM/MIUyNy/dcRRJlWXtCS1lfX6U+Okar2aJaLXNiYRHDsLDdPKGfYNkWQ5UaSarRbPS4+7v38oqXvYJt2y/he3ffx84r9vLt277GUN7jlve+E9MUfPe7d7Jt2yaKhUxO7Hk5JiZGmZqeoFwuYFkOSZAOGGLB7//hnzA+OUNpqIxuWPz2R3+XDRs3Mz45yatffSP79+/n7rvvY8uWLXS6XfQ0JV8sk8YaSSL4wl99gemZSSQaj91/Py++/nr6UYtLL93Ff/vcFxBIduzYQmPtJEnS4YaXvITXv/615ApF/vH227n++uuxpCAKE/7u1m9RLFWo1gusrC2iwgQhi7zjHR8gXy7zcz/zf3DNi66lVq6wHgS01tcYG5LkS1XanRZxquFaHlrs0+80KOSrSKnj+yFJEjE1PcmGjVOcOHmSaqmI4QmC0OfnPvRLeHYJqaf0OyHlSgHTtonikFgzwc4TRB1KpQlKtXGOPn0Pi0v3kXd8bHcJ3FlMJwdKcfL4UcbHRul1O4NJSkG322Z0vIJTqNHuRAhD0vO7uK6HlAlLyycplcYJ+k0M08QwHNrtNQ48+QDlcpG428AWitXlJZIowlysZNJ800TTbBIAISgNj2EZNnGi0VhbZfPGTfzOZz/FO1/7Nqoe6G4R9DzS8QiiILun6hpC6Kg4Hqg+NJJ+gjBSwlRhmB5JGhAEActLy7huDl0XPPDIvVRKJdANFAJdNxBC59vf/jq6LsnlcthSMj00hhRZj7kwBUI3UKSoOGbD7LYMvOoDUyEUpCmW4aF0SPERZgYUozBAU4ogDFBCIAwHIU0MaaIBnmOToKNLA8fJoykdXYAf+ZTKo/i+jy0EQWeeV1y7StRYZ1y+iepwlacOHKJQnWLL9l3kvRxhGNLr9wjDgCDKHLjL5QqBHxIGIWEY4vd9XM+jkC8+2yvohwHdbgfP8yiUSvhhQBQFmGYZJSISJXjm0Cna62vkKy5PPHmEYq3I8uo6h+dOcODQPG975xvJVescfvoZulHAza99Fb7f4ao9V1E0V0niOSa3XItTnzhvFtyFZJmnK1UMcjoH65wGOudg3f45dSGXzWfB4sVt6bm1ztrmhZwtFVmf9/PdPZ8P5s4F7s4EdT9Mi9PZo+gfgbt/wUqT5IcCd6f/vn8quHsum+OfVpnE6Dl55oXcjs67d+cChhcJ7gDGJ8YQ45fxgV/7Q/phws7pynNf8RwM4Q8N7k736A0ep39DpTNw0FOUKkXQNQo5jyRJSVWKHwY4no3tWERpgpQmrfUWjpND6AlBGOLmc6hIIUyHIApBz1wn2+0OhUKBMIoI/RBrYHQipKDbaYOK8aMIz7VBQRAEaEJDpWQ5OEmEZecwTY1+r4tlW7TWG6SJj2HoWI5LkoSgdL586z0USg5eziaNEtrtNpVqhfVmC12IzHWrlMcwBFJPcXJe1htoWVhW5s7Y7fUwbTPL+NF14kTR7gbU6jUsx84G00EGVrNoDYVuWOhK4RSKqFSycGKRNPTJF0ts2T7LRz53B1dPGfj9KHNONGFqZpJuP6LX6ZEEKSeWDlAu5Wi1YobrVR574iilco561UMNrO51XWd8tEyv2ydNdPKFPKWaQxApvFwJPfsXB+Hv0Gp18Twby9SxLIswgsNz69iWZHmlRbWSQ0pBzsvAr65BqZyj1e7Q7QZUykPMH1/AtS0q5UI2O5ykdLvBINBWga7QdcVyY40oDFhebmAZDo8+dpiJ0UomA865tFs9njlykmo5R+iHqFRjvdkhCkI0XTE6UuXpA6dorvfxgwgpJJoI2TA+wYmTDYZHS1QreTSNzJ47jji10GBktDr4zhEjo1XiKMJ2MmDV6/WxbBNDShxbI+/meOiRw1y5ezfdboeo3+e/3/YU+w8cpFyBxYUltmzbiOO4LCwskvNcHnrgcYTQKZfLzB09xsTUGJbt8tij+8h5Nu1mg63bt2MaBt1eG8PQMG2PKE6RA1lv4PcQZuYeawpJomlIyxl0dMT4fp9ypcjP/sLnufmmzegqQjez6IAkihE6REGAYZqEfh/iXuZkaHv0gxjX80jijJlPlcwkSjr0u22klsm4dKGTJgJNT5Fm5sgZRxG60DPnW8NCoUjShCSJM5mWEMRRnyROM3ZdqWd7WVMVZdIvlSANIzOSSVJ0DKIok1JrKnPkS2Ifv7uOZbsoTUMTkm67T7fTZeOmOtValVe84Q95w80fZnmliOVu5c47j/LJ//wJNE3j7W9/J5desp1XvOImjjw9z9yxU2zdNstf/sWfcNXVL0bYDt31NrEf4uUkXj6HH+gUXIO275MvlYmSlE996s/Ysmk7n/78Z5mqj7Gw3Odvv3IrH/rAWygUPdbaTcpDQ3zzK19hZsMkV197A1/72pfZsX0rnVaDSqnE6vIC640m0jTQNY/G2jof/9h/5aXX3UgY+Hzta19j7ugJ3vjq13HwwJOMjZYJ/A6vuOlVzGwcZ2llntpQlaFalW1btmPbORzX5a/+8nNUhyb41//6l3j7O97GzKYRpBWxvjDHzTe9mg9/5OO874Pvp9+N+Ys/+zSbZ8fYtHUjpXyVvFuluT7H0Og4iyvrmKQMjw7TWFwiV62y+4pLyBdzhCFougP+Kk41x1vefjPbLtvFe959C47UcAwdOXBBrNaqHHx6H2MbppGmw8d+82McPdHhssu3Im2T5kqTUqVEqZwn51l4eZNceRiRBqx1QkZGxrnmRVdx2c4tSF1QyNXo95t4Rkyv1aDZ6uAVyph6hGH6GMYU1e1Xsn331VTHrsKoX4rnFiBJsvO71yLnOqRJDCqm0z5FfWySbscn0G3Cfp9iwSDSEvKeRxSluFadKNGQWpT1reoSv99muKDjOA6qOEOqSaSKuOX9v8ANV9yIlBb9oA+aAJXiODnCWKfvd7EcF9uQWJ7FS3e/GBQYdiGTRUtJnKY4po0uzEze7/tI20XFEVLXeOiJxxiuj2ZAWUuQwkTTNSrlCo21VUzbYnJyCkMYRJEPqWJh4SSlYpmlpSU2b9qKNCT3fv9uNsxuQtMVKRpKU+hkfXW93jrSyNQrtqXR7XUADcvxUColSRRrKw00lWBII+ubFVq2ji6IAx+pCeI4QpeSWEES9dE1gziNiMIs1L5QrJIQY6g2J08e5gP//pf54Adr/Jv/ssKVWy5Fs+okMs/s5p0sLC4gdZ12q4Xj2HS7XdZXFykXS0RRSLvdorG+zNDQEK7jkKYQRgG6rmOaFoaUg+carfV1ypVhlpZX2LJlI1NTs1TKY4xv2ki5XMHvwslGQLk6zspSh22X7MRVOV78qhcxvXmW8ZEpXnT1S7n9W3ewZfNWvvrV2xkvruN5EZdc/X5i67lMxfMPo85NAGT3UO2scelZwO4HDNEuts7VjweQnmf/LrCl5zahPf+1M8Fd5pj+3Jj4NIg9Ddz0Mxa+WHB3vu/yI3D3v3mlSfqR8+XOnVnPUq2a9qyZCpw+aM6WGJ5dF3rv3KVpz49ZOL3uxcQcXPxnnAlCz7/dlAHRMnicFky+8Y2v57IX/xgf+vWP85q9G58P4jSNZ+m2F37w838RdfYMzrl/z+cI/czZyHFsNCnwCh7dZgfHdkjTGE1oGNLOvpOWIoQgVWQhyipz9iJNSaMYVIDr5HBcG98PSBOFM2AGNKETqxjbckiSBE2lmJZFHMXYrgsqGWQTJWiaGOT0SAzTRRcK180RRopcvkAUhKAJDGmwedMY1aEymsr6C4vF4sDOO8vgqtfrpHGcBcU6HnGcBXAnacq+Jw+Qz9k4nk0cZmAxjpNBhpdOLueiqYxZllJm7F2aolJF0O9iOB6aprO2skx9uIaTK2aAKgjZNRIQ+wF+GLJ54wRW3kYlCik0jh4/Rb5gMzYygu3kELpOEodMT9bw+z7dIMKybZZWGiRJQj6fwzQ03FyBhx7eR6fVGkg6y0jTIA4jup0+pUqeMIrwPAthSHQtBRVTKuYIo5D5k6uYhs7c8SW63YiJ8cxgJUkUpZKbgULLJIyy6IN+P6DXDTh1aoGNsxP0uhGOrUMasd70GQc6bzUAACAASURBVBupIYRkuF5DpTqH5k6QpAnD9ToLCy1KVZelpTaTk1WOHVvGNASm1HDzDo5dxO/7DA1ZWJZNEEVMT49QLuRx8h62bdNZ74HKTEgefuwZ4jBFGgb14RJPPXkYz3YzUC4hmzJKefCRp9m0cQqlxThWjjCKuPXxLjfu3c4DDz7F3NI6V73iLUzOjDN//Cmue+nlWJbFvffczyWXZtlRI2N1avU63/vu/biuzdbtW/jarbdTrhTRhGB8YgJd6HzmT/+aF117JVJatBtrWI5AadngTUgblCIKOsiBfFJDQ2lZb6phWOi64MYbLkVobaTtZmZAGqApkkRHEWMY2YSL6XhIw0LFEUIHXRhomp4ZGSUBcRwhdEkYxEjTzK5CaXZblcLMmLq0D5pGFETYjpvlYWlZNp5KU5SKSaIQDQ3TtgnCPqblYjk54iDAsi06rS6mY5MEAVJmkQdx5GNZBv1+BMpH6A7CcLBdh5MnVnEdm/W1Bvlcjv37F/g3v3U3b3nT/8meXS9CCsnXv/n37Ny0FdNMKJRddF3wqhtfxamFBbbs2MbG7aPs3HUFxw4fYXS4iKHb6EBlqEQ3buK5ZYQmiKIW0szjaDpRGiHtArt3bmLx+HE2ze7hT//0k1x37dVMT1Y5enweTbepD40wMV7nG3fcxYd+7ifp+302bdlJrlTmt3/nY/z4za+j2eows2mW3/zox5mol/jsZz5Lq9Pj6muu5dOf/BPe/p43s23zZv7jx3+HL/3NlwhSmJzaQK1WJEw0ipU6rUaXIAhxPYFhKU7ML7FptEouL3jX+95NnKzSXlvElRbPHGkwPDbBq19+DZ/6zOe46oo93HTjDcxMD/PXX/wyV734CoI4olp06AYJaWTy8z/9iyiRcu1Lr6G93kQ6RdBSHFviOh5RrGPaeXTDwTFNotDHdi3uve8+il4BJwfCKPCFv/wS11z3UvxePwNql+6g57cxpEWpUOLE/DxeziNVCWEEhm3R6a5TL+R5+sBBtmzdiqYCUk2w2ligNjKM0iUxgpznYerQbve488572bRtI6amoWPRH7BB/U6PbrdH3nNIYpO11SanFk8gZUp9YgeRH+I6LsePHmF4uEaiEpI4wZYlUqVorC/iWBZerkCvG+EOJhYPHbyDmc1bif0YYZgoXbI7vxsNjSjqAhpx6GM7Lgkakd/BKwyRqhTbtUElkCosJw+mg99rY5ouhmERJ3Em30tjwqiHiiJ6fR/Dchiu1zP5Gor548colsqkSUqn22Wt0SDv5Tl+9CjVoSGiKMu97HQ65FyPmZkZkjTCkAamYTE0UqPdaWGbp43BDIgFtuMi9MwgSdMEppkZPQW9LqgUdB3XcUgShS50fL+Prus8+tD9TIyP0+32SaIuiVJIy4Y0wTINIiUwTQmJj25aRLGPkfqEzWX+8O//lC/+7isJmwK3u4NY1Zic2UQ+59FsNhiuDWPZOgiNMArR4ojxmY1I0+TQ00+glIYpJaZpYOXzLJycZ7g+gm05KBSWbeM6Du1mk6HhzAF3qFolimK63T5hFGAbFqurbUYnZsjnXOpDFeojdXr9iA0bt+BWdDrNFntetJvjc4eYntrAd799B6eOPYodnWTyspcwPPsiNJEOZJQXN747/fyCxnrPKR8HdeHWoPR8HTcX3Bc1kGteeNkXmLro2rNjYf2sx5l1OiYsVQN2cuA6kx3PoKkzHgMQmKbqhSYr59if8z0/e70zHz/qufsXrDAMP/LPYdL+V9ULd+l//j5eLLg7G6OdPcOzstZiR1U9eyJlK6ln9c4v/CrnUFy/ANxdqM6i+lGZnXscsby8gv4sKNZBz8KHhaGTxMng2qIhpI7f6+Hlbfq9iHanQz6XJ0kUGilB4CPE4IKiFKlSSJH1ZukamUW05WR9PHGKkBKhZcuHYcJ6o4HneSRJgkoUrXaHXDHro5OmwByE91qWhS41+r0+QheQpGi6YG2tgWHKzAI5TYjiGMdyKJWK2G7GTOlCY/HUCkmaYFgSacgBU6fTaXey/qU4QSUZM9Hv+Ugh6DQ7PH3wKIVijsee2E8hX2C90aJWVKRJyubNUxyfX+SZw0uoVOPw4QXGRkvUR8aZmztJu9nFMrMeiU6nj7Qsojhlvdlh88ZxDEOg64IkSQmDkNnZMebml9m5bQPH5xfQVZJJxoouKoXQDzi1sIyOwcn5VWr1GlGSkndNRobrhHHK1ORI1osVhnS6fZI0xTQlpmGytLRGLufRXG/TbLXp9vps2TKBUnDs+CLj48PouoZhZq6n3a5PHCecmF8hjCN0TeFaJvlSkfVmg7GROmgaK6st+r1+Ft4rTZ45ephatcz+favMbKjTaLQ5eWqVU6eaLK00yHmC0ZESq6s9ntp/nD1XbOfU4gKX7tjA3NwiM5PjpGlKHMd4Xo4g6NNrd2isd5mYGEHTEqIwZnmlwWReMD61gfGRCnc9eYgnjjR581tfx/yxBymVi5QqZZ58bD+btm5E0zQMQ3L3d+9nbaVJqZKnXq+ycdMUmgb9fp/hkTppmrB9xyxRFGEaJqZj4Xd7OKZNlPqgTksxIUUNBl7aQLooSRSkZH05f/65e7h893AmU1fZtUQKYwBaBZqenee6lrGVoIiiFCH17DNQGIaJ3+/j5nJEUYAhn8vBS+IUXQff72GaLnEUDi4dGTMnhETITHJjGBkwTJLsvBdCI45CDCNzpRXSIFUKlSb0e70MBPZ80hRMyyTohzxzYI40yQZojbU2+UIB23H4mV+8jfe9/9d43c2vwjJNoiimWh1m9+5duI6HkJJqrc7i8hojtRojo6PkCwUMAWGsODZ3mO3btjI0PozpWcRaimOVUWkCBKytLuAUK2hSZ3ltDddw6HY7fOu2b5PPFbnuJXv4nd/5Pd77np/EMCUP3PcwnufR7jYIo+y8aLXb/MIv/Cvedcubec1rX0avv8rMzDaiyOflL7uBv/j8X/JzP//zXHftS/jed+/iissvZXrTNL12i7m5BT7++x9j1+XbKVULrC2sUCjmMlfCsIvtWgT9FM8tEKZ9Dh08iOlYFIs1DGniulVMc4ihkSGazTb7ntqHFHm2bduGaUsMV2Pj9h2E/SaOIThy8CRD5TLd9hKVIZttOy5nZLSOl88TpTpJEqKT0un0cFwXtBhNC1k6djw7ZpwCI9Mb8Ko5TEfQWukwMzNFrpSx5T/9kz/J7iuvolxx6bc7PPn4AUZGR1lbXqNcreJ4eRKlYRs6jdY6E7OzpINjxs2XqNZqBEEAmsI0TCzTpO9n5kK7du8iiILM+VUphK6jC4FhGDiujSENVo7u4//53J+xd+9eTDeHaTtEkZ/lf+YkrXaLTruNpSlOLJygVClg2RJTmKysruB6LrqAQKXUhrYRpTbCyBH2I97/gZ/l2p0vISUhCkKEMJBOnl6rAWEPzfEwRKaIsE0bTTromsxCyDVt4AKr0IRAKQ2pZ3EkQgjCMMZz85kbrS4AjThNKBRLg1D7BE0X1Op1EDqVahU/DOh3s8iTEyeP4eYsNHSSRBGrPp1uG6WBZdmgYizLQ0MQJ110adLtdglDHxVFmTRUSzGsrFcPXSI1SRyHWLZNt9sjl8szPjJGFIVYpoEmzGyyhhRNZ2A0BnEYIk0DKW1MPaHXOsHjh57kF9+dEvYUn/lSwuU7X8PQ5CTttRUq1SFyuTxBEHDs6FFsy0MXgp7fImitk0ZdHEMjjfu4lqDZWGF5aYl6fRQ/yI6NTqfNemON5eVFDCPradV1QRQFCMPCdlxs26Yf+JQKRVqdNkIXFAo5VlZXKJcrzJ+c5/DSE7zs+peAZrO42OCpQycZmxxhXD1NoSKY3PYqnJFJFCH6oLUBpbKxzguGWednmi4s2RxkjA6WOd96mfTzggO1i/q8i1n2Ytc/exR7Jiv3AnrlHIzd6frnxB+cWT8Cd/+ClcTJR/4p6/3PZNDOVRcD7k53tf2wssxz1YUO5vOBu3Tw3u4rdvHUqqCWLp6xkHbuk2kwOHsBy/e8Oscyz3v3hdu2bZt2q0W1OoRp29nMpC4yq3W0LHNL04njEMPMbm6h75OkIZpmkMvn8f2I+eOnuP3Oh9ixfRrDMGk225l5gyYQumRpaQUpswyuJE5J4nhwIYdup0ccJ9xz7+NMTw2jEgj8ENux6fsBupAZMAxDFk4tUioXmZ+bp1wpYZpZf5fl2BimQblcpN8NcPMuhszysqSuZ4NVUxIFAboUlMtlPM8hCEIcz80y+FKFacrsN9IzGbDSyKQuSyv0/Ygd2zbR7/tMTowRBAH/9q/uYu+0QxglnDi5SiHnsvPSjeRzHmEY4Fgm7U6fXM5iZKxGo9EiSRMKBQ8pJa7nUakU8YM+fd8HpdPqdjl2fIlavczU5BjddpeF5QZDZY8HHj3E7Mw4KFhda7JxdhLLsTCEpNf1KVXyzB9f4NCRRQyhc2TuFItLTWY3jJAvuHR7XSzTwvcjwigkChJa7S6dTp9NGycwTIsnnjpM0XMpFHJESUK/47O0uk635zM+VsdxTEbqRerVAn4YIUhQqott5XnmmeNUyzksy2S93eXkyXUu2TmD7brUR4ZYW1vj2PwKe3ZtwbVNpqZqpGlKq9nGsV2eOjDPSC3HkeNLVAoe/V7Io08dZuumUSxbogmBYQpc1+KhR4+wbesMSkWYIhso9qKYSmWEKIz4zDce5bf/wx+AoXjwwX9kanqMylCV1ZVVpjdM88iDjzA6OorruOx74iCzmyY5duQYGzbMMH/8JI8+/BQ7L9nCnXd8j/37DjM7O0O3kwW0G0bGkEkjy3tTStH3TxuWCMIwxLIyo5I0GQR+43PZ5Vt47Zv+E29+7Y6sx24wS9rvtzGNLMJEyMz4wLItojAzVEmSOIuQMLLePNvxiKMIIUBIid8PsqiFwXFrGMYgUw+SNB5sYxBOniagYvpdH9N2ydrZs77BMIgzuWac5WZlESE6aZr1Uvq9Hnd95zHGxoewXY8wCCgWc+hofPWr3+Ou+1bZsfNdXLF7N17eww98TFNQqVS55+4H+MhH/h2f+tRn+OLffIlb3vd+fv03PorUFJ/7/Odptdvcc/u32HvdXkzHpFKpsLa6wj333MPMzDQaJq3WMrZt4tkFjhx9huGRcQSCu+74Dkura7zypleydXaGcrXG1q2bsE2XT37yU7zpzW8ln7fR9Jjp6VlSFTI7u4FXvPJl6LpibW2FQqlAotn0ui1u/+Y3ufkNb+Xu793D+MgI373zDq7cswvdMNFUiOUY1OsVDMvGdl0MJUAPEcLCdYv8xq//39xww8uRUpKm/y97bx4myVnfeX7eeN+4I8+qyrqr77vVkrp1SyCDxCEbEOKQ8Jg1rJfxeMa7M/OY3cczZrzGGAZjjL1e32MvYBtjG2wOM9wYxCGEJYFad9/d1d11H3lnxh37R2S3uluNkGx5mD9464mnKisjIyIj4438Hd9D57sPHuK6a29GCkk/DAjiFNvzUJZBqVzlo3/1Sf71297KwuIKn/ns59m3fz+rC2ukhNi2RXVkI0pCpeoyMTPFN+//HjMbpjBMF2XodDotDKXh2C7rjUYOr/NDSuUK3V6A67qILKWxvkLgt5EYaKRkWoZlGtx47TW0w4hKycZSBu961/spFsr8v7/3e7z8ZS9nbm6eQrlK6PdwHYv1egvXslk8exqnWEIqSSYEtm5Qr9c5e/Y05UoF27ZB5MqvUul5QK0NimgD6LtuGIgkYv/111EqVdCEQrMUnWaT1dVFZNQkyDTGJ6YJm2uMTE3lSBGrQLPVxDANTFNneXkJxy1iGhV03cSPIyxDsF3tBKGRkSKFwjBtNC3D1HUs10XTcjEipXTiNB1oUMREsY+my9wTMsnnkNIlaOAHXVISDGWQAVEc0241cSwL3TDIsoHlycALNleglSTkhSCpSb770AOM1iaYnJzmv3/2Y2zesg2p6diWR7FYRlc6pLltSW6FkpBkMj/XaYJhmIRhgNRyf9kkzue3lBpBkIuZFYul3B4ljXMuryZAUzl/PvSJ04QoSrEti3ORkUhD+o1Fuistrn/JMSLf5Z0fuJeffPV/wPbKWLaBZZssr66ej+eCXkhtZJxOu06lYKMlTXT6CAJsV8PQEjzbZHV5HtNQiDSi3e5wZvYko6Oj2LaL67iEQZez83M4rotl5FSKJInxHIdDh5/Acwv5taRpGIZFEIaYpsXUzjEOPfYw4zMb6IcJs08+QHfhAa7cbdPoe2zc/0qMgo5KdUSuKJX//j5x24XLs0WIl3b1vl88mWbZBbSgZ9ngZbZ/4bZ/sCLmJZoQzzm5uxiFN8h9821w8TlIs8sLrMDT8fDl4vznE2v/KLn7IY7nqpb5bO3sHwTKPL/e86lenIN9XrSXiyfeC9nL+4HJ3TOO7eL/j47VeOt/+h0ObK5SdO1nvuiS7Z0/9mfvz1/wgqfP8IWvEIOnswzcoku/76PrBpoUSKXn3BsBSuVKkue4Orpu0OkExHGMaegkSYLjOHieC2nG6NgwWZblRqtS0Gv3aNSbVCoFpJRI3YA0ZXFxJcewZwmaBo31Nnuv2IHv9+gHIY5ro5Exf3aBUsmjvrpGsVjAsuxBt0MRBP2cNzj4JAI/4NBTJxgZHaLT8Tl29CTVain3C9MliCz3vnEcAj9Ay6DdbmO7Fv1+MPDo00gHIhJSydzQWUiU0HALBeI45tjRWdqNNmPjw/zhZ77NW27PeVwzG8Y4M7eCoWckSYIUgoOPz+K5OmNjVQK/j1fMYYhPHZpldaXF8PAQy8vLVKoF4ijA80qYtsHocAnbNpg7u8Kx4wvs3T1DEEZs3zJFGIRIJbEsE6kbpGlAs9nBsnTiKKBaKWEqjUajxYbp4YFZvUQ3darVIrpu8chjJ7ANRaFg01jvUvQ8ikWPr33zEfbu3ES5XGR5pY4mNSrlIuVycQARyu0obDuHV+m6QiQBugrp9jSWl+tMTQyzstZh646NjA2XWZhv4hVczpw5i2NZbN++kUNHZknSmGKpQKfbYqhSpdPrk2QRW7dNsmFqAtd1KJU8RoYcoiSk1ergFj2yNCUKI0aGCngFlyjMBUm6vR6/8YlD/PgN+zh8eJYvHm5wdnaOs6dP8OV7D7J1Q4liscCRQyfYuHGKpYVlDj11nFPH5yiWHUplj1MnzzA6PoLruszMjNLtdtizbzeHnzhOp9PFdkyK54LZLMnVZJWZJ2lCkBGTxBmakiRJrsp3LnGSmg6ayb+6+1aWF08zNFQhjiOUFOiGRZLkPDopJVJqpEmMHHTl4jDCtK3cXiHNtcWkyosnYRCgmzrdTgupaYRBNBBgIO9OK/18fSiO49wCRMncriGNybJcDj+OM7KUnG+mdAQZcZLSbTVwPI/6WgNBhh9kTE6NoimwLRPbNknTiA/84RP8yi//Op1ei2KhggZYlkm71eTYkWNcue8KXvWaV/Djd7yCF73oxSwtr/C6172WPbv2cdcb72T7ru3cdP2NoDRcz0VokrMnT1GwPUaHJ2h2ZxGaQ5p26NZTbNdASpPVhVW+98AjvOIVryBNM97xn3+RK/Zew8Ytk9TXV7n2xluwdMVDDz3I9bfcRLHo0O+1CKKYUtEDqVDSwO8GuEUPJXWKjkTqJvd98z7e/+vv4/prr+FLX/0KN910E2fOzLJ10ygI8uJVmvIXf/HXjE/W8IolPvE3n+e2227jyScfzw2+eytcf8v1zJ45werSCrWRGpalMbdwFMuukiFIkgyvpNClie14FKolnnrkEBtmNtBoNihURnjPe97NLbfeysp6m/1XX03B1knSDCkFtm3SajQxTR27WMBUOn43pOm3GRqbIfSbdBotDh98kq1bN3Dk6CkCH4oVZyCWE2EqQalQZXl+nltf+lK2bN/ONfuvZXlliW279iKkwDAVtmkShCGeW4QMpG5QX1/ALjkkUUypVGJoaIQ4yhEDumUg9YEpfQZJHJMC8yfPUCzlRYp6EGEVXJSSNNbWieIYTTMYHh0jDLpUhsfIkoz11RWiCGzTzdEPBFhukQwJaUKcKNI0oNGYo1wZYWXxNK0z/YFwicg9GIUgDDpohkmcCoJeF6V0/F4P0zaIwxhDGrSaTUzDJFddlkRRiFI6X/ny59m0YRtK6XQ6HXJrH5FbmegGSRQThVG+rTih1+tBEiPIER4aGlKDIEhptpuE/Ygbrr+JOA3RdQephWRaihA5FztOklzZOQiIU4lhmgihoRs2ppkr7QqhEGneTYzjCGWYSE2en/9xlpIm5GIyUkMTAkPXkdKALMu/76RCxAmpv0bSb2PVvonnwUPfW+Z7J4vs3/lSTEsjCRIScn9L17aJk2hgGL9Ae/0kWVjH0gdIg0wgEoHSJIgUr2DjmAIIUDJFV4pMKIaqo3R6PdbXltm6eTutVhNdU+hCsLQ0RyY0PMchjEN0qWOaJq12hyAIAY3PPPgP3HjdAQ4+dD+Lpx5n/dDnuGqbjTW1E8OZYmLnDqSyEJka3AsFWZpctnN32bhLaHmCxnPv5F04NO37ybg8PS63/Uv3cz5pujBOfJ5dwMurxXP+OyyPDS/pNF6yOzF44sKGwXON45+LVsePkrsf4niuyd25cdkKxIVSrAKe81X63Pb4Am/v8uPZbg3f76K/8H8ZcNfr7qS87TqSkV388vv+kJdeteGSDYmnIZnnorRn2+mlrz3/VPaMVYXIO4mmmUO9NCWJ+n0c10HqJkkSk2Qp/W4XUw1ELAyTlZV1SqW8E6RpGpZjMVIbzvk8ZAip0ev2CKNcRS0KAyzbJQwjkqSX+z/pkiDoIci7D2IABNd1A9t1CPzcqy0Mcuw9msB2HYQmMWwL08i7bXEYI1JBGEVMz0yglEQpgWUaefBlqPP+e7Zjo0mNY8dPMTw8lBuTHz1NbbxGEsVoSub+QX5AHCVYronUNJrN1vkKbL3ZQtM05udXeMX+KmXXzGFzuqRWK+fGzYaBaRpMTw4zPFIl6IccPbbA0FCFVqvDxg2jOI5JliUUvNzIdm29Tb3ZwnVsum2fNNUgg9poiWa7Sb3e4PDxs4yODeH7bWzbpdvpsbrWodP16fVCSgWPswsr+L0gV5kcrjI3v0YUJQyNVFlaWmNxaQ3TUBSKDu22n/OFopillXW2bxpnba2JJiXDw2WyVNBsdGi2OiwvN1hvthmqFFhZaRAEUc6DmJyk3+3RaMN4zaXn+6w3+zTrLQquSZKknJpdhkxSLrkcOjrL7l3TZGlGs9mjUrbpdkIyMrZvn+HE8bO4jo2mSRqtNotLDc6cXscyLAxdB3KPRMPUUSqHQn334cNMT43x9web3LJ1hHa7w7dnW+zbsw1LMzl46Cl+7m2vpDpcYeuOTSwvLZFlsP/AfpQhGJsYY/Pmzezcs4N/+OK3CAKfbds3UywXCcMA3w/YtmMjQdCnVC6TRAGQ0W7WsWyLXreLZRsYupVDHzWdjAwlEtrNOoZSpAQITaJpUKyM8dd/9Q327asRRcEAGplhWHngFvT7uRKnkCRRiCZzg3MxMPYWQpDEA36xlpsiG4aeK0oqfRC05Dy7MIzIstzKQOkGQpNkmUTTVH5PyBL63T6WaXIu1hFSkSYJSuoYhkacxLheEdMykULguhaBHyCExste+6e88mVv4XV3vTGHrUmDOAzRdQ2yhGZzHcex8bwiH/7zv6TdeYrbXraZDRtMSuUe3/rmJzl2/GHGaylv+pn/xJvf9JMEYQxojI7X8EpFgrBHqeBhWUPoUiNo9xkamyKMfBzPpNfvILUMxzW4/oZr+fl//595/Rtvp9dfoTY+xp/92Yf58pfu5SUveTmZ8KlVyzTbffyoSxz4REFMuVojbC0ilYtTKIHMuP6mW3jJS1/C1t1b+aPf/xDdTpebb34RKrV556+9j9tuv5UsanHl1dfhFstkWUZrrcVHPvLn/Ny//ddkSczw5CS6TKgULdI05rc+8HscuPoASmm063WiXgddwcjkFP/9U5/hphuvR+qCmZkxNHQMJWk01nnVa15FiuDQk08xOTkKWcbs7Gmq1SJpouH3AqSu0WuvE/X6GJpFfeUsD9z/BLWaS9RO2LBzJ0KZCN1lYmwKZSS4doUgbRF2QvTCCN2+j2lCsVhEKYOxqVGyrINMY6TQqffXcB0bMgPLLRO1mxQtA7+nWF1dw3GLSM3iF3/xv3DLjQdwigUQkkyALnI1Ymkoil6Rfr9JHMb0lpYoOxZhFOG4w2hpn1NHZ6mUCzS6OT/O73aojY0TRglpGpNmCXHYHfBOU+IwwDFdlLKxCjaPPfwI73rPB7hx540g8uRMqryjhqbyBBKBMnMYsqGbxGlKnAVI3cCyXU6eOkGlVOLosWMo3SJOE3Zt204UBfhhzjtXhjGA2roEYYBlW7mQnMgDWUPXUZZFu9lGA5586jFMy2H2zDGmJjai2/l6sydPMjI8TBwl6IYLKESmcfTIEYaqw8RphGXm95cMAQkoXdHqtLBsl8XFBbxCEakbhGFeNM3SmCCMchRA5CNICf0QyDlTcRwj1EB1U8SE3VXifp2F8Its3pCyuFjm3/7Wt/il/+WXkRI8r8B6cxVT5erTQRBgGRqNxaOYIqBSsCkVK0jDROgG0shVgYVSCKnQpDGwQQoxJdiGRGkJvfYq7fUzWE4RP47zDqxtEMcBjWadcqHE4vwcxUrOxat3WoyNjub8dFMye/xLDMtZZiqzjBRbXH3j1VijGylP3Ei3H1McHkfqVTQtQCAHodFzBxFmZIPi3cWveyGpSeeisx8Ir7xUr+KfCfHMkztBPFB6FpchG13YyTxn/MCFAoVcfBg/SLjwXzK5e6GgoT8aP2Bc+sFmg/Z0dl7y/7nk/P9zjn+K4ibkydS55cKhdMV7f/ePkdf8FPe87zN87ZGTPHJ8/uIe+fM7wIsefr8taIgce28arC6vEoYh7VZ7oLgFusz9nDrdDlKkpEmX7oTnsQAAIABJREFUjRvGSIWkWK6SilwGPiNBNyRqYJRMllKtlJEyx9F3u+2B2mEVKUxMZZHECmVYlMoFsjQXXnEci067hVSKLNNot/ts2rIJw8iNVDutDkmckKGhlCJLUnSl4bg5Gb7fz7tLlZEKuqGTJnGuRkmuAJllsGv3NpAahm2ya+82lMwrjb12jzhKcAsF/DAkSzM6nS6VShkpJV/62gNs3TzDho1T+IbJ9plR/vGhY9TX2/Q6feprTZaX1zhydJaFhRV83+fg4w8TZz2uunojcRpTrZS4/x+f4OHHT1CvN4iimDRNKXgeZc+h2+riFWx6/T7Law1W1xuM1qpYlsEVu2YwdAPPcQn7IUXPo1Bw2Tg9nvvfJSnVaolTZ9dwXYswSti6ZRLP0/nWtx+nUiqyceMo23dMUx0eoh/GCE3D8SyiKCZMMpbX2liG4uyZRZRS1OtNikWHbdsm2L1zA1kqCIIIyzQYHirz1W8cRGiSpZUmUZoiNEWz0TnfKVpdb6KkYHiowOpanb17NyI0k1K5hOvYpKnAslwMM+8wNep5AeHJJ09Q9Dx0Jbju2i0cOT2LYaeEfkyj3ib0I0jzbsC+PVvQDR2pDJqtDnuv2MGJkyd5y1vewuc+9zk+/Md/gjIM5s/Ok8YxE9OTLC4skZFw5KnjaEKwsrzMdx98mAPXX8HM5ml0yyROE0zTodvp0+/5uK7HRz/8cUQWkcQJXsEjiXxs28gLFykkSQIiIej3SDKNSnWUMIiRskQcaSSRhpZm3PWGl/DIwTMoZUIWo8ksF0UQYNkWcZyT4XTDRNfNpzk9UQSAruskg2s7r6GeMyfXyLKIXGE4v+fqhjOwR+D87TbNBiR6FJbjkQ14fquLC5ClA8K8oNVsI9CIwpg4yfBKNkoKfuptn+Sd732MT330z9F1ndDv8o/33c8v/9I7qa93edHNt7Oy1OB//4Vf4dd/890YzjHedM8eDlyzCSEhzRJA48duu5GXv/x6CsUC7/iF21lbu48/+P0/odHo5vcSJRHKYPbEOmv1edLAZW7hKN1uB1M3WFtZ48YXX8vMlmks16ZUHeFDH/kgnfY627dMEXU6xJnG3/zdRxkdNvBcF9/3GapWsbwqWuzj2AbdMIHUIIlDHn7gEd79q+/lNT/xaqamJ5Ay5j/+wr/nnntex9zcaT744Q+z54p92F6R1XoT6ehoaPTbAR/767/iN977bs6eOkQcNQiilDTROHH4FMO1Kf63t70NpMWHPvRJDh06TLU2ysjoKKbuMlKr0mqtYVoetp6hKYhJmZweZ3VtGU3C1VdfSc8PwSwwNTODH/Qgy7jzzjfSXO+TRD6tThu74NFrB6wsLpPGIbXRCp6noSuD0dEhpC5I05QkFSQRjE9uJBE+0tQwhKK+vIpX8uhHAbpu0en5HD9xAl0vIdOUsLdGomWcXjhEJ1imGzYZrg2zvr6GEBmbt2yi2+0Rp8kAJRLTaK5zavYEaZagGYrlhSX6rS7TG2u0uos0myeRah2nWOFv/vbjCBLGa8NoaYwuBatL85Qrw6RaRLFYpDS6lfpaHb/VplweIiYGmZJmIXv37aAYFFkYXM9kApEJoihCSomSOXQ5CiMQGqmmoSsd27SIwgBNSrZs20WaZezYsZNyqYwUOlGc4Dgeju0iNIXSdKSWd9d1pXLBDF0HYH19FaEJ/H6fYrHA8RNH2bv3KsqVCt1uk6nJUWqVcVzTY9fO3SRZB8vW6fttwrhPlPTYuXMLYdjB0AVq4IOZpQm+3xmIwLhkSUKpWObkqRMIIXJUh8y/i3XDgFTDMlyyRMOxLQwlybKU0O9jSgNTU6S9DoRdvnz4Y+zZMsqTZ03e/6F7eddbf41Wt025UmZpaYGKV8b3Q4rFIinQrq/gGJKiY6Prg85ot0XYbpF0mqS9FlG7TtxukPZahFmG6ZbQDDf368z62EZMreJS0tq4yTqyN4e/foakX2fzxCjzxx9lpKTRXDpG0Qwx/Hkapx8mXDlGb+EpHjo5z7btNYrVXUSBZOnUSdZnj9N87O8p6R3i3hoiTsmyf3ron2Z5gves8Kp/xtDEQI1zsK8LsVZPx8zPb1wYn36/bWRZhhQCU1fPaZvnOtXneNzPNza9XD7wQo4fde7+meP5du4uN17Aosf/0HGhpcI/5VZxuUs5O2cOPHjy7rvfwOb9L2Z87818+3ib//O3/oLt4wXGqsVLDyb/fdmTeXko7DP3nZEJgSYlpUKB+vo6SRgR+l1mT53GdW0QeZVOiozQ72GYJtKwcnK6MkjRiKKAVrOFZVnEcYogod3u5TLMAzNZNI1Gs45tSurrqxTKDlKz6Pc6CCGQStFpdyh4uS9Qt9PHcTyUrojCOP/CMvQci58mpElC2A/o9/ooQxGGPkJIDGWQitx8PVdJi2nUm9i2RRonJEk6gHcKECl+EJLFGZZhoHQDpMCwTUSWJ5D9bk4AF2nCxOQYnU6XX/rYg7zxhglGR0qsrbfxXIckhmarzeR4jWKxQKvRZnJ8Atv26Ac5z0CXGiNDJSzDYG5hnempUb7y9YfZvXOaZqPH0tI6tqdQMhcxGSp5OK7N6TOrjFSLnDy1TBylCCStVgtDSsgyZjaMIo2c41F0rTwQdx3SJMS0JKO1ap4IiIFhtpA063WKRZcwTKiWXLxSkdAPBsFgjSNHzzA1WSIIU2zbYHm5TqlSwnEsTswuYZiKXt9nx5ZxKkMjOLak3YnZvHmCickhQj/AcSympsZ48LuH2X/1FoSQ9DuCk6dn+fY/HieOA7rtiCgNqZQ9uu0A05A0m13SJCGOQdMslpc6bNg4yeFDpzlybJ5KyaFQcBEio9/3MU2T9/z1g7ztlddh2Tb/8NQad73qLjZtmMYrWSwsHcK1HY4eOcXYxDgbN07T6bQZHa+xtrqK7/e4Yt8u5ucXqdVG6PV6JEnM4adOsr7aRmiSSqVEqWxTKbmYtouumyRROLAaUOi6JCMlI8ZUikzq+EGMaXkImQukaCJGZBq6oRgeneHxRx5jdLxEEgdImX8uuRE5CE0jTnMxB1ADGGUuHpQm6YAPlyJlDsPUpEa/3x3wfrJBYqcjhBrYGcQILRtACgVxHCCVRRjGaEpDSA3b1MnQct/FLIeQ6YaB0HTSLCUOAt7w0x/j43/zF9xy403oSqArha4UI8PjXHXFAd71a7/B9KbNXHPA4d/93Gu57SUHkAoKxSLFcinnKyoFSLJU0Ot3MW2XiYkqrudy8y3bePHtP8U9b3otmmZhmUVs08QupqwtBpw49R2277kSIXRcp0Qv6NJqdnCcEv1+hFt2KbiCXrNJFNgcPTXHxEQZS+8RJorFuTk6XR9vaJKSmbC4tEBqmljS4ezcGUS/j20XGa6McO3+q7j/21/nxbfeijJgfHyEzVunuPnFN+X31Aw6vo9ru7TW2sRhxHvf+25uu/1m3IKFoZdorLXpdmOa7Q5zc/NUq6Ps2LaXrXu20+r2KVWGSBLoNteYmp5A0x06jQVsr0yn10WIjHK5QrNRB6DTDXCKZWK/jxAxWSK56657iMKY2sQQbrFIpgmk0MiUy5ad46wuryLoY5sFer0OhmFimBD4YBgajZUVLEdDpAlF02b29Dy/+wd/xIteeiu6UcRyHJyShdLLWFlCu7tCZihsNUmlPIpmVlCaj64kURKxbfNmxsdGMV2XKInJSImCkLFaDWnopKmgNlQm6Pr0kwp+IPDcEktnliiMTXPTzS8mS2PIopzPZpsYStLsRhSrFprQOTPfYaxawdINMs0mJAaR0m6cIcsk6ZyGbTsUy0VWl+sgRM4HLFfQhMy/czRJGAVIw8i7EnHufdput/PEaIAySsOIz37201TKFZSUuQ9gmvDAg99hYmyCNBlQF4w8sQuDPsVSGdKMJA6RQsM0bSzHox/02bZpF1JP6PurdLptPKdMGAkMqSGljqH0gaKtRBOKKExRRm4SHvp9XNsiShJ00yaNYjRNozo0nPNqk4wkjojjaNDtB0RCRm5enmW5FRGaQIiIxvoSWtrl8w9+kbe9QWehMcTBI302Ozewd+dOaqMjCKkQCayvrTI8Msrq2gqm7aCymG67jmEYIMAPfaI096DNNG3QDR0we4VA+l2SICDqd0mTlFQTSCkhzVCmQUIeO2hhnSztE8VdXEdiagm2qZMELQxLgQZRFKAMgweOPsYGp4FMG1THN1LZdBNf+NLXKeo+zbXj9BLJxIYDZJr2DKXIZ8ZDyT9JbOWFHBmcT/QuP8Rl/3zGWs/x+C6V6nu2dEs8j+0+13Hp9n4Ey/whjmdL7iQCbbBcToXn6WrCxcuzdcEkT8uk/stKsvzgIUTeoBbiQh+/Z46US+dd/j6zZ3Qsc5Jtlp6TWrn4VTMbprj77tczse8WvnOyyy/85p/hGjoPn1xnz4bqJYndMzuhl+uLXoSUFoJzPwhBsVTCKxbxCgVs06Tb6tDvdfMgVoJuqlzpUijCMMnFFhToUuE4LqChlE4ag2FaCKGxtrKG5xVJkoxSqcTi4iqdXoihmyjDwrZt0iQiTVME0G23MA0T3XZwCw7KUAiZw0ciPyJOE9IoIkmzPFGRMsfhN9vn9XvjLOe9JXGCUhLLskmTjDiJkEpndXEe3ZRoysRQKvfukvmX0bngF0Bokka9TbHkMTY5xiOPPEW54PH3Dx7l5Ts9Zk8vMj5WReqKvh8wP7/O8lqDmQ2jtNsdXNfLIVjNJobScQsFmo0OqystBBmddp8DV27jqcNzFFybpZUO46NDrK916PUjhoaKLC032LxxjDSFIEzwg4j1VofV9QZalvsUKtOkudoi6PWoTY3kVgd+zMmTZ9B1haaZzC+tMjY+yunZBUSWUfIc+r0eKystKtUyc3NLjI6WOHxiDlOXRHHI+NgIyyvrKE2yVm/Taq2gIaiWStRGqph6RhQL2u0uJ4+vEIYR4xNluq0+CRmVSoU4hsXFOtWKQrccHnroSXbtmCZLA1zHYGamTHW4SByFzJ5dxzQ1hodKuK5Lo9Gh4Ek2bxlGSY1/fOgImzZW2b5jCqHlFiu2bdLv9lhdj7jj5iuIooC/f+AYDx/8Ljff+hIOHjzGtdeP4ZVcXNfmK5//Ftu2b+DM6QU8r8jUzATVapUvfO7rzJ+eIwPu+8aj7NmzlYJjYTuK+lodz3NottpMbZgmTVNAkqQpQeijlMgFiaREypyfaCgTXQe/F6HrGloaA4pMAuTrVYcn+dQn72f3zjGyDEK/O1CcFbmwUZKiCR0hUuRAMCWJkrwrnZ2DVOVzNw/a8o5eEsckcZJ3E9JoANOKSAIfpef8PU1ThH4LqUmUMknjiE67j1I2QlPMnzlNtxNQLBVJE5/Dh5bxqnfxohuuxpAaH/zTD3LDddfT9Xtohs3b3vJmvnDf/bz2zl1cv3+MpcVFtmydQdcloR/m8GgBZLnHZBJFHD50lPp6ndpoFV3lSo9x2Odnfvp2fvqt/zf33PUGTp04zOjkOO12j+KQw6Zt+8lSjV57KZdub3dRmsDvdVlZnKc8XCVMNAyjiGEV2X9gL8q2MKxRNC2mtdpndGKSxvwsYZZiFqqU3GFW1o4zd7rJ1Tdex86rdnHtDdcCOlLz8LwCb/8P72Jppcl1L34JioSvfeWLOJVhdCGxbJuuH/CHf/rH3PHqV3P9dS/it37zj9g0PUl1qEy1VqbkGHzj3u/Q7rSpVC1KlTKmKQnCNmkQ8PUvfpmd27eTij5hAoXqEEokGHYZXRhE0RoZBVwhWVk4w8joEEkaIjUX0zAoVQzSTOPU0VO01upUx2bYtHWcLFUUyqOIgfx+p9XCdk3iKME2BZ1WEwBHQn2tSWZazGzaxo033Ey5aJJlKZ1WHV1oPP7gExilEkWvRNrp8cV7/4GNWzaj69BpNIhDiWPZBEGXs/PL1Go1siRFSQPDyu0v0gREKpCaRhQLfH8VKcG0HYZqo/RXTyL1CMO1CXotSsVhNOUQI9AVPPXYMYarE6RZm8B3aPnLgEITAsuQZInEMiT9tRTXqRKmPpapsEyHSsnj8LFjVMrVfA6LDNPQCbot0kygKR1N5pzmOA4RgFJyABvfiWFomIZNmvYRQmPLpm0opRGmAYZt0Gm3iII+ZCndTsC9997L1MQYcRJRrpSJ4xipJKaUdLo9bKdAoVih0+viGop+mqtIR0lEmiVkWXy+wy60HI5pmRaRyAudUdBH1xVh0BgIjAmUKcgS0GQu+CSFIEvT3CbILeZQbwG6adH3+xjCp9do8OO3nSa1ClRlk/d/6FH2bL0W2ysRRyma0nE9B8dz0U2HNA5JkpAUAdLOra6EpN5J0J0ybnkc3S6TKY/h2iZSYaObBSJhYLpllldXCcIYXeY8RSHA933SOCYKA+I05wD7nS5xlNLpBTTb62iaSeintFstdLNAq9XjaOMMjjKo7X4jwzM/RiyHufWVr+djf/FpZiZLfO/h+xgb30d5ZPj7Jm7nYyOhPeP5LM1RFdr3EWF5IcaFnLtnTZ5Ersp8PoTOnhlPXkz8GYxL17twF5cE1Zcanl84Lo15swuP5Tki8M51687FyOkA8npu+ZHP3Q9xPFtyd+GH/0IlYhdOqR92cscFykLPltwJnlbGPAecgqePP0svIZaeb09fus2nRWmmpia4++7Xs/P6W7nixlvRJvfxjt/5OJ/71kFedmBTHhCeW/9Zj+3ZktK8sp8JgW7ZeIUCSs+/OJNUADrr6x3KlRJoGqZhwSCBEwiEJgYdlxjbtPjEp77Kk4cWMVROYnYcF8uyOX7iLM1ml6GyQ7PVolAqkWS5WEoa57YIQ6M10PKJr2l5MNBptdCEwC0XBhygHCcuTYVtWTTXm+hSYeo6SZZhmRaalERJ3p0wLBMhNQzT4dATJxgbGaJRbyJ1hZCCMPCJg4B+p5sH7kFAHEY0Gk0c12ZsbASBoNw7jqUbjI5UWat38fs+IsswDcXmTRPEUUScxrjlAnNnl7AtkzhMOHT4dA7ViWJGh6vUamWWV5cJI59eP1fSHB2rUq4UaHe6KKnT64ZIXWN1rcX0dI0kzdi0YYw06pMlIfVml2LRY35lHcc06XZ8ipUSSZYQRTG+H5GRsXnTRA7FiiO8gkMURVSGiziOiUASBiGmoZiZHKFQcKjXO+gqDxDW1tv0ugG7dm7licNn6XQDCp5LvdnCK7iYlsHERJVy2UbTJceOnaFcLKJ0SbNVZ9u2MQI/4JHHT3DdNTt49NETXH3VdhzXwvY8NGHw2JPH2X/VVmzbJIwijp+aZ+uWSTIBtpMLDimh2LBhDF3XSXMDSbIkQdcVC13Fvm1TxGnCZx8+y+233sj+qw/w0Y98hPnFJa49sI0sTVhcmGfz5s2kaYyuSx49+DgjtWEmJmvMnTnLDTdeQ7Hk0un1mZwe58jh42zfuZV+v8/OXdsRIhc0QZMgtIFxuIbSLc6VoeKoh6ZJ+r0WluWBFKSpGIil5NYOSs9hw3v27uDf/PyHuem6DRRLOnEUI5VNp9VDN3IxgiiKOMeVUbqe+0QO5MyTQYU+iUIgD+KSOD3PY5VCEKe5FYImci6f3+ujSTVI/OXAM9IcqHDqBL6P63lUhqrc9+3T/NH/d4wD+25jbKhMHCYsnJrl3q99m807rqIwNMJbf+Zn2bxjAz/71hexsrjOykqTn3j1S/nUJ77Ert1b+eoXv8mhQ8fZtXtLbrsQRwgBw8NDTE6OkyZJHrikMYgMXSnuuedW/uPb38+b7nkN7XYf19FZODtH0SuQkqFkQhAlZAQo3eAv//Jvufnm20D06fdb6FnC448+iWkKXM9GCI1Oq0vk93nnr/0Gr73zTurNOqGfd+5B59d//QPUaqMQ+BRLHrGWUBktY8mIONbZtalGZcggS1M8d4gvf/5eNm2a4SN/+Zfs338V1113DTfffAMHv/swSmlMTU4yNFLj5Kk5HrzvCWpTBnv37uVLX3gQ1wwoWBZxEGIXCnzn/gdwvSLDExPYpk676xP6XfwwIOolhHGbJFMYnk25VOR737qfRBNUytWBb2VEnEQoqXF6dpaPffyL3HDTNWSpT7fXZm3hLBOT4zlSIg4J/BBpOdx6249z5e7dVIqjHJldYHrDNHEcYpkarU6bfmOFMI4x3QIzU+MYlo5h6GhJypade0iSDMMwkVqK38vtN8I452QWSsV8rpLPU4TA7weYhmJpcY4oiChXctVPy7bIsoR+t8H73vO77Ni2C2eogmEWyMIMLRUI22JscpowTlCWRpToLCydYWR0BpH2adUbVEtl1tbXWT+eoHQtn5tKJxUCpRsMVSusriwTBjGO7UDKeVXmMArzBDTNbXwEkCZ5wqWkwu/3CMKMQ0eO0uz2iOIYITJsp0DohwPhLwfDzJWcd+3ajZIKNA2EoNPp8NQjD1CqVpFKYCiDIMrVOKWee2M2G22kkDiOS5YmpHGK6xYRAwuGOMkVgkkzlldW0ZWBMmykbtILfCQyF/XSIM1ipDSJ4oG6ribo93sDHhmkcQ/iLt84/jfsnjExXIef/a8H+b/e8H/guEO5J51tYypJ6Hdptxp02m0KxQq27ZJkIJROgkbHT3ALNQzLRkiTIIoByZFjh/GKVUyngDIKnF1YYWrjLjoh1CY3E6SKpXqbYnkMwyoRCwPTrZAIE9MbptEJsCuTeOVxDLeKXRzHLo0SYTIytpnQjbj7p36G79z/Per1Jnv2X0G700OZw5RqLpuKgse+9x12X3dHfs/O0ouSvMuJq1zUwcvyOOyFTO4uFVB5Ns7dpeNi4ZVnTwS/z4Nnfe7Zk7vLbOr84+fX0TvXynh6f/lZ+FFy90McFyZ32jnZ+EFy8kIldxde5C9UcndZo8dL/v5Bk+vCC/kHTfULayeXJncXqwddsO9L3uD5yny+8jOO+faXvZRXvua1aJP70Cb28e4/+Qy/94lv8rffOsyppTY375646HjE+b++3zE/zYfMyecCaZhYrodVKGI5HuVKldX1daSWk7uzLEYpkziJaDZbOdQvjoiSmK3bptm5a5oNGyfQhKTX64KAmekJSmWPKEwol8sITcPv9TF1RRAEmJaD6ToXHFmOedcQSF0jizOiIGJ9vUFlqDQIeiW2azO3sESn2UFkAqFLlKGIwgDbsfKMW8tlo8vlcp4caFluHD3oBCrDxPEcDF0hEHnHzXVQho7f6+eqbs0FNk4Ns7C0hiE1zs6t0+4EVMoOa2u5l9vGzRNIqSgUPZI0wyt6GLokTTJCP8K0JcWiw3C1RJok1IbKjI1WaTTrLC2usHnLBKZrcvDwSabHhhkaLhOFPkvLeaLpeQ5rrT5btmyk3w+pjZUoDVfptbt0mh3KQxXKxRLVShnXswCJ3w+IwwTP8zg7t0q1WkY3LFZW1qmNVDg7v4xtGxw9tkB1qJDL4os8iapUPA49Nc/MVJVy0WZ5pcm2HRtYXakzVCsDKaZpEwQplVKBxcV1Wq0ujm1hWQ6u5dDthNiOydR0jVa7y/x8nfpam2LBpdcPGKsNoZTOmTPLVMpFSpU8ic8rqinVSgm0jCSLkErmkEzDIOj72HYVz9JZWVrl64fX+c437uMlt9zOynKdj/ztx3nLm1/G5z79FV716jv41jfuJ05yDt/MxilWlpcYm6yxffd2skxj9vhJ5k4vUKx6bNm+hc984ss4jo3t2Fi2mSfNvS5SYwCfynLxAJHPoTRJMAw794gzHIg7CGkCeUVdaALf72FaJkkKd975Ij72d4/zX9//D/yre/YjBJiWgRAJvt/Fdjw0TUcb+OiduxFlqSCJU/xeB9OyclK8yFC6kQusyNzkWOkmURihdJ04itBNIw9yyGXilVQkMQOzeB2pQRjBl75q8/M//6v89m+/j4mRAn4I0qyiGy5j4xu58w2v4ao9Fe553QEaq0vsvWILV+3fyZX7d3LyxAmuvX4vuqGzbfsmtu3cRJZkucKnsvnuAweZnB5HaAJNk3zlC99k0+YZpKZot3p02j7dboPt268m6PdRCmq1EUCiSUEYNAnjjFKxhlQWV1x5JbZr0W12sW0Hv9nj4PcO5QUeJP/lHb/K+PgkteEih46c5UtfvZdX/cQrGa5W+fu/+zQbNu7mQx/8IG9/+9s5MnuG8YkpZCZ44Nv3MzY2jlcsoCdn+f3f/xNe+/o3cfTIKbZtmqJQGWbvnl1YtkGaxniuw/BQlY0zM+imQRhlPP7EUUZrBmO1bbzpTW/mta9/OVdedRVCMzn48GEqw1Psv/IqdBPcqkFjtYFTKNHvtNFMQbU8wqc/9XH2XnUlUupITTA+MUoUpxRKLlmWsb5ax/Ncet0utZERXn7H7QRBjyzTCP2MydFx0iih1+4TCIXrFdCyjDf/5N1MTlYwnQpT2zbRbbbwiiaZiLDMAlEc4zkW9eV5UCB1QavRotPoUBotYVqKjJigH/CB3/x/uOOOV5ARU6uNM7+4gOW6REGA1DSCIEKTuTdfmoYUvCKnT5+gWinjBz5KaTR7CUeOz/PyO15EmvSprzcxCw6ZCXqasba0gGmAaRi012LSOKDfSnnzT76N73zrO0xNjrJlT41/8453cNv+H+PQE8exjDzBq681sG0D13UHRaQeWZagGzaddnOgSgtk+bzSZB7cZ2lGEIYYtomGxvT0BEOVYcrlIsrUc+6d1IhCn+XlRQrFan4fiBJOn14gy8AwTOrNJidPnWD7rr2kcTyw/XHQlCJOY9IkxnM9Dj7yXUbHJlASwjA/L3HUJ01SgjAmCro5tFTTkIYiTkJEmvPx5KDrn2Uppm7SDwNM0wQEca+Ve2TGCUoTxL11nnr4CV71ijamafEr/+04/+5F/ysrjQYHHzlGqVSm6Hq0uu38M0sSPC83kk/jGKkJur0uhUKZSnWYenMNQ5nYtke71WaoUqEyVMW0LZJMw9Rz3uLC4jwbNm+j1w9I0Zic2Ein08e0SxiWRzfJ6EdgelUY9AIHAAAgAElEQVQMuwyZYKW+jqE7uQ9ikiCEYH11lakdw2zZsx0pBLZuE/Q7jAx5PPbkIa66/i4SYXPwu59lanI37sj4+RjufEJ3mW7eRR28f4Hk7hlx4CWPn21cvM7/4OTukjhVPNs+fsA4n9Jdsr8fJXc/xJGm6TvPJSNpmg4gPtr5oONcVeIcRPPcz/NJzC41fjy3XPj8c8YUX0Isfb6vv2hb598TpCJ/n5m4zMLFDfJzXbwL35Pg4smRpSlC086bR55fcbBclOhd/o1y64+9mHvueSN33/N6brn9FWiTV5xfPvfwHE+saXzw45/n9gObB+/nUjDneZDm+f+KC38LAZrA9fKg27R0+r0+btHFsi0KxcJ5mGTuQWRgWSYIMG0Dr+hi2iaaylU2LcNieWkFy7KYnV0gSWJc16VQreYwXAFJFCPR6HT6WKZBs75GHMXYtoVX8AiCgDAIUIaeK3V2eoxOjIDMK/ZArrQ4OOmC/DzqKr9CozBGKcmnP/1NNkyPogYG6UEv4LFHj1IuVUiJECKj1/V5+29/jJ965V46rYB2zyeNQvZfs50oDnFMheMaVKse/b5Pa62H0hJmT89TX28RRSkbNkwSRSGubXJ2YY2hoSppDLpp0u/5aErD8Vws06a+3sKUiqmZMdIk4uzZOTZvHOfI0Xkc12HjpkmkYWA5dl5YkQLbNtAEzM0tY5oK3VKgoL5Sxyt5FEsFgijCdU38rk8cNhibGOPbDzzJnl2bWF9rMD4+TKfXY3J6AtPRKdi55P/4RA6XTNOMWq3AykqTWq1K5CcsL9dJ4xhTGjz8+CE2bRznzJk1xseGSVMI+23KwwWWF1aJwoRiscCjT5xk+9ZJTp9ZYnGxSankYNgmrq1IgzaNdkSx6NBptXn0kRNUKw5+EGBZFkpoBH6IoQvCIGF6ZgvtZodqdYg//+qj/Lc/+EM++Ym/Ytf2GeaW6/z4K/ezd99uzs7NMXd2gcpQiY2bpvnql+/j5ltvYG1lBct2gYTA73HlgasxzbyzdfDhJ7nhpqs5PTvL2Pg4Qd/nC5//Brv27sSy3bx7rCRxkvOEBBCFPp5bIIrCwT0xQRN5xT2MQmzbIwwjDF0ny2L2XTHJG+9+KUGgeM97v8RIBSrDOQ/SMG00EuI0zu+7UTpAVecCKqblQZoNupk6aRwR9mOUYYLQEDIXlJBK5vxVXZLEYW57IGQeyCpJEmd88lOP8Jp7fod77nw7O7ZP8ZqfuIOZiQ202gGdTsx1t9zKI089ydt+5iomRy3ecPftDFVLXHXgKs7OzhJGKfd+9X5ufemN2GaB7z30GPd+7QFmpscwzJTHDh6h2+uzd992pDKAjDSO2LFrO2HYBSE5c3qJkdEKe/duotMtUrAM2v1csr3bWELTFUq3c5/EtRV8P8F2S/hRn49+6K/RdZeJjeNs3rOD2lCVXmORPbum2XPVfuIwwDQtbr/jdirVAv8/e+8dZkdWnvv+aq1Ku2rn0FndCq04kibngYkMYYgeMAwm2ATbHA7BJtjHzz3n2Acbe0gHMNj3XMDYYAzGZAPDJAaGyUEjjSYoS63uVufunXflun/UlqbV0mjA4Msfl0/PftR7V9WqVbVrrf1963u/93U7Id//we2cd+5Wbnr963jvH7+Hm15zI5EPb3v723nTm2+i4QT09vURSpORNVsxUxar1gwRi5hvfO27PP7oY7gth3//0U+44MKLaLZq5EtZFAlSqPRUevnBLXeTLZq8693vZPPGLezfu59MxsTzPN742tfyxt99A3Y+l9QS6iau28RKFzFVk0Z7jvMuuAAllESBS626iJHSyVoWC3OzZDI640cPoOJQKvURRAGanmTwNKGSzWaZW5hmfnqKm974X3j969+EpsdESkTKyoGaoBv0oE2sJNqTmXQet+MhhIdM9ZDN52lV2whRJ5dZRajG6IbKwuwRUorJn/7Jh/jzD/05jXYLVTdBCajOTdDb09f97YhQ1Zg49sD3iEIbVJVCocL0+DhKECLNDLlchkuvuAivuQDSJJer4Lc8RByhaga6aRFKHVWxUWSI47jkijavfu0NnL19Pe2Oytve9H4yRsDFm6+k2JfDTFmoqiBtWwRRhBRJVi4MPXQzjVBCgsCHMETT9CQzHwXEUcjE5ASmmcJIJWyxilQI/QQuKRVBvVrnpz+9m9H1owhVYls5kALX9fCdOmpKkM3l0DQdy9J5/MmdbNu4jdD3qdXa6Cm6DLsREokf+Dxw/72sW78Owq62ndS7KJWYlGVDNxtoWzbECROp47ik02m8MEDVTRQkqBJDk7SbDaQUCbGYEiV1/rFH5NapqnfSP6Rz384612/8HYQKmiJYPVJEkwF2oZ+oHdP0WhRKg6j4LCzMsrhYJV8sI9UEait1QTadRzMMwsgnk80SRz6TExMUCxV0TTI7t0CpXCads5mZmSOXzWKaBo7bIW3bRLFAqBop3SCfy+E4LdJWGtM0cV2XTDbH1MQxLDtLJptDiJiLrtxGe2aBjow4vHeMQjlHo91my5YL+Pa3v0W5dx29lRF+8LXPcvHllxPZSeCtKCLJ2gl5iisVI7qibpAIvstnfNxfgcXL/l/pF55Ae6041wmilZWx3XFHUoGTWOg53X7JK0ruAIfHjpLL50/yXUV8yu7dhfUVnV/Z8EoG/JMcy1Pv24lkS3xysdJvau5+jRaGz4iYn07L7pQsXpyENmdaEVhpz51B++Xa+o8O0uXjJn6OJpZvPl1ge8rh3RWkk4K75fs/Z5fPfMYNG0bZvGUT17/sVYjB7bzh/R/jty4dfa5Gn8WSARnFMYZhPkevngkYo+6zcbx+CCmQmkQ3DXr6ymQLOXTTSARXFQURQ7vWJooTKQYhFJyOR75cII7Ac9yuDlGUQDelQiadQElN0zjtnVl+h6QU1JZqSCEYWdXHwvwClp0EhK7TYXCgF5SIdrOJEBKn7fKVHdO8bFseIRR6+4o02210TdButSiWMqRMA03VObB/huHhClJVyGWyVCrFZPXa8ZiYmiOOYXT9UAKNA6IIWq0OuXwOP/BptxNKfLVLdmGaBqoqmJ+rMjzcT7aYxXXchECjm2l1mw6GmYjrlso5TENLahU9l0w+i1AliBhd19ANHdMyCeMA33EZXj2IVHVUXUOTgnqzRalUoNNMpBZUKWm0E9F5EKTsFItLDXL5DJqmEvohQRiSSqWo1ZoMDlaolNOoqkIYhkxOTpPNlNGNEDtbQKgqlqGhaRrDq3oIw5Cp6UViPAqFDAsLCxwerzI0UMRK6VQqNnGssfOJI6weGeCJ3YcYXFUiCALm5hZI5yuYKRNi+NJtu3jTTTchhMrI6jXsePwx+npVisUMzWaTbeeeRblSQtU0ensrLCwskS+UadQ6xGFMX38/3/v2LVi2ha5rNOstdu04wOJCjfUbV2OnLUY3rIEuvMkPfTzPQdd0Aj8hOZGqmtTj6QKpQLPeSDJnoYehJbAtRVG6+oEaQkkkCuIo4KqrttI/OMojj0zx8b+9nRdfvxmI8b0wqetbJosQhT6+HyNVJYF7S5loOUqZOKkchyF1sxFCEgZBogGpaEkNlCL53nd3sePhFHufnufzf//3WKUMumVg2FncAL78T1/nvkce4trnD3LVZaNs3rqBteuGicIYP3CZmZpm/ca1qFKnv79EJm3R6XTYt+cQ+VKWtWtHkELBdT1GNySOMErMzLFp2k2Xubl5iqVCV4xZks6kEULwznf9Ba98+W9RW2rw9rf/Pje9/g3UGg3iCDLpDFY6h21bBKFPFAbc9uOf8aIXXMvU0YMoWg7bMPjrv/obXvs7b2FxaYkDew6hW2lGVq2j06qRzdtEcciOR3aTzlq85W2v528+/L9RhEa+nOaSi89DkxKntcD83AFc12DVyCqIIzRV0l/OUOrtY9P2c+jL6+x7+mnKvf0oWgrPqYISU68ucOnlVzAyVEHTEkKo2alF6o06//r1b3PzzR/izjtuY83aYSLfRUvnSWmS2HMQagrD0IiiCFWauN4itWqVXLbE4SN76evvIw4Tcpkoctm75xD//C9f5YrLr0HTNFynRaO5wNL0InYqzYuvfxGV/h5UKRBCx3U8DFUiNBOn00YhTbvZ5v/53P/N6OgAmrT50Y9/Qn9/loqdwunMoml5vNDB8zx0Q0fVbK576Q2EkYvXWiJnaTRaLfoHhvDCgIWpKQLfwWk1cFtN0lYWoaq0283EqQx9isVCokemuEwfmyVl5pg4epSMneN97/8zrrn2BXQ6NWZmJ8nnLISi0GxV6ektks2ncTseuUyGQqHIwNAw289ZjzOtcfe9d7N6eCDJXkcRqoQw8pNMmx/geQFKFBGEEa4bITQNVSrUFhf48Y9vZ25mlnXr1yOFJAiCBJKqiu74Eui6ztBAL0Hg0Wm1SBkGjtPBNExU3cTQU8RRIgMxvzjP2WdtJ4xi/JhEi1VJCIykSKDeQgjWr99KGAXMzy0kc79uI4UgjiKisKufqcQEgUfU1bZzXQczlejXBUEiFxFHIYQhpqHTajcBlUiQ1N0qERNPHOIlL23iRBZm8zrabQdNVxNJH1UyPzfPI48cZqExQaPuUin3M37sEANDa4ljBduyiAgxDYtYiQijGBHHzC/Mo6s6Uk2I0hYWF1FUiddxyWQyuG6HSqlCFxPLselp8vkCjVaTdCbN1PQk2UwaRQjm5+cJgohMJo3juBiaxPNc4jBmenaGWjiHYUg+/9XvUSz3cmxqllatydO7dvD8q67i8NFjrFq/mTiqgxvQN3IWjvDQUM9Qg6csK5VJ9jkzyckvZj9PomOlj3qivOc03UgWD59bQ+6ZtpL9crncKcec3vf8Odo94y4/vw/+m+Du12jLg7vTZcBWBnfH9/l5H+jTsRKt1Mpbue1Mr1+k/efsHySaUyeu59mPO+0CyxmPAJ4lsEu2PeOkJW+T98cnoVhRUE5wspx6t08ms4EbX50EeTf90UcYm23w1fvH+d5Dh9k1E/HZb93N4ek6X7xtFy+/ZP1pr045fpbjMfyzXNtJ92HFvY6VRFxVCPHMCo+iIOKY2WPTBJ5Lp+0QhrCwsECxmMey0jhtjzAMMVMm8/PzHDo4SS6XJgoigjDEMPRnDajjuEvnK5IJPGWlaNSb2JaJnbbwHJdWs00hn+PY1AyFfA7LSkGkkMnYfPOB/bz6oh4WF5cwTJVSuRdTMzlyZJ6Wk4ir53NZOi2HerONQozvB/hBwJHxWVRVsGHDCNVqE0WAqirMzy9SLOcYG5umVM5jmgYz04tkMzalYoHqUp35uRrFSp6snUIzzESMWkso8mOOUynHBEGYZEcVkTAeqhqqZqKIhEo/gdN06w2I0Q0D0zSRqoqUgnazhaEbFApZpmcWaDcd+gYqSCFI5wwymSyNRofZuSr9/aVuEK2wuNTAskx002Ds6DQLi02iwCGdttGMFPXqEkvVOr19ZZqNDgJotTvksmnuuX83m9avoq+vSKGYQ2gaOdtkbqFJTyXH9Mx8khVWVH724D42rOtj375J1q4bwAsjQs9D0UrdxLLkha9/F06nza13/BgrU0CT8PCOvVx04Tos22bHw0+Tzea4+64HWbt2mHw+T6NeY/djuzl04CjZfIZt2zcRBBGu16FYzDMzXaXSk6VcKSYwYD2pwTEMI3H0DRPfcdC60CMhFHTDoFFvIFWJnU6DotJuLiBUBd/vdNEPcaKzFYSEvoumJd9Zxw0ZGenjyuedhWb28prXf5Z9+5f4wY/28IJr1hAEHlKotBo1rHQWoUC71WbfvsP09PQgpEAVCYQRIIoiAj/kkYd2MzTUT7vZ4X3/7fv83RceQmUTf/uZr/O619yE73soMqDUV2FycoJCvsLr3vi7vOMPLufVN15CJq2TyaXp6e1hemqWdCbLv371++TzaYqVYiJgjMLepw8hpcL5F5xDLp/mlu/dwdnnbqNUqRBEAUEYEkfgOh4Kglwhh5QJTbtlmaAkNYr/8rW7eekNN/LJj32Uz/zt3xJLAyul4wchCgp+JJEyRsHF7Xhs2byZv/zLv+b666/jIx/5JKsGy+x+8kkue/51NBpV/vLPb8YLPQZ6++jrLzO7sEA6l+d73/kOhqly1uaNXHrZJXz+859n545dnHvuufQNDKIbBpVKmYHBUVRNpd1uYVopcrkshpnmtTe9mZt++4buONLprZSJ4oB2u8WqoSGWmk103+HI2CHUtMUD9z3AE088xu+++XcplDKcd/52TFVgSIVIEUhFQ6gKxCq1WhXTTNGot5mfn6O/f4hGvUWr2cIwbBqNJn7go0ro6R2mXK6QL+SJichkM8SRwve+932uf+nLyeVtlurTmJZNq9nC8dq8+w/fy2XPuxLLThF4IV/+ypf5wJ+8H02TpNM2oxu3YNsqmmpRbc4TRzrZjIamW2i6TazqqCIh8jGMFKpq0qgvIQybubl5esp9XQ3TNAiBikqrXU1YO3UTQUizViOVyeE0m8g4wsyWOLL/MbLZPM+/5lo0Q0PXNDKWzfTEUTKFEopQulqOMZpq8fIbXsZb3vpmBvt6sC2Xj3zx73nrb73thG7k0uIilmkShQFhFGGaViK5oShMT89w/333snnzlkRuoNNBU222bj0vIQvr+tUdxyGOY6IownM9FAUC30MVOulMjjD00HSzmyWTPLl7D2NjR2m12+SzBbJZG4TESKVwOg1+etddrBoZwfMDED6tdp0ojNB1lXy+iGka+B2Pu++9g0q5TMo0COOEYCkIAyzLQpESIVVczyUKYqRIUjCKAs16FUWq2OkscRQn2Xs/RFECdOnzp5+7HXVuM/29vWiqQRAmWniKAraVQS9EjE/M0Kg6TM2M0Wl3yGbyTE4eJZvNYtsGruOdIG+anBynUuxBqpJ2p4MmdXTDAgU6rQ4Lc7Pkclk01WCpusTksUnWr9vIwuICuVyWudlZ+nsHkvEvJAvzC2QyWVRN8MQTuyj1F5mdm+HRhx/l4//+d5w9FLPzoZ9y511P8eADd5LJ5HjRC15Is1NlcHCE8bFx1o5uYmJigice/jEbztqAke9HxjxLYEeStXvGS0GeJrv3y9iZfOLj0MfjCLjl2b1Ts3rKCZmG02X6TpcBTNp5xp8+pW+n668QJ/t3XZTeyZ8ta3+lWPrpgrtumyvtlwnulF+1tsL/38xzvTPewIRJ7lRBwZXabs9lK7OCP4+6/XO1tby9M+3zbKaQQDEAwhNXdJrjVny0knwlTKrVTmw9cVi04kBlGbh5pfTB8n2Vk7HLpw+ylJO6FpNU3Bz/OwkNTj5yZnqW737hk7z1+rNOvSiWE7gsry98dlu5LUahWW2gGRqGaSTwPdenVat29YFMUuksXiBRRczCwgJS6CwtLqEIhbXrhplfWCSTTuN7HqZuEhAhpSRlm6dMoEocJ9/a8Y5EEIcRYRAwNTFFoZgnW8jRaTs4rQ7tTpulWp3F+ToXX3ouczPTPHV0AtOd47xta5mYmiNr2xw5OouqSQr5FEEIKTOFLhMR6ZRtMDE1j6Hp9Pb1oKsKT+49hBKrbNwwhBAx9UYLIRTy2Syz3doZ20oxNjaFlU0hQzh8ZJItW4awc1miqBsECxJhakDEEVGc1MEGQYDnOti2Qcf1UBSJoaeSO65AFIQoQuB5HoZpdAXoJXEUsrS4hKEZ+J7H1GyN0XUDxCRQpLbbSDKjqkmn7eF6LpatE0cK01PzDA70Ik2NyA8IQ8HUsUlGRgY5sH8SqcS03GlWrz6L6mKdSqVIq13HNFI8/uQYF56/kVq1QSaX4cjYFLapkUqZHBmf4bzztxAFAWNHJhka7kXTBAtzSxTLJRzXQxMxS60stUaTdWtXUR+5lmKhl7e+7a288Q1vZXFxku/ccgef++zv8/QT+1FERLPR5prrrkSqKtVqjcd27OKKKy5k796DRAjWrVvD2OEj9A/00Gp1iGPJ/fc8xPkXbGF8fJrnXX0pcbe+JQloVIhc4jhCCo2O00RIDdNI03EapEwTPwJN0BUhlwg1GXlOp4Wua6Ao1KtLZPMlOh0XXVOJidB1ozv+VWIgijwatSpv+8O/ww9i3vuOi9n5xBLvfsdFLMzXyOTSCAHEMZ7rJRCoXI5bbj3K177zOAP9fXzi5r8EJalbjCOFxcVF6tUOo+t7CUKF8cNjvPu//SkffM8rqRTSXHj5Bdx120/JZCzOv/g8iGPm55eYGJ9i9649vOGNryRWBKqqcGxyGsvOMDU5wcz0NNe+8EoCL6LRcJAyJJ1L02o5aKqKrps8sWs369aPYqY0DEPnvnse4NLLL6TRaPGW3/8Mn/3k/+HY0SMsVufZdu62hLApZaAoYJoajushZMKrrIewVAtRDRUhOgReBz2VxgslbrvBZz/9ed77/j/C0Hwe3bGbvXv286Y3vRHXq5PNJvVETqvNsWPTdNoh/+O//y/+8WufQ4kFhiFRBRw7doyBoVUAdDoOCzNzZDMZrIxFFCt8+9++yXnbt7F6wyiqFIRxhJrK8MAdP+Kiiy8AXcXzQ1yngxQ6QZTU8kZ+iGWm6HgOhcoQjVYDUzMIA4FQHB5+cBfr1q5BEZIf/ehWrr/iGpzIw8pF2LYkCmyslMHcQp1cKYvnhhArqJrg8cef5KyzL0SXHmHUwEplQUhq1XkyelLrW+kfZvbYEUo9PWi6TqPVQdBA1fLoqoqvKGjSJWxH+G4LI5PHdyMUQ8Vp1tB1C82wk3HhLbJUb2PZWYhiFJnMN1Y6jd9skkpLVMWiVptnaW6ewYFBvCjEzhRZmJ+mUOmlXT2KbuQIUQlwqS949PVlcRodhGGiayZHj4zR01ehWu1w9NAhzjl/O7MTU1R6DH5294NUog1EsYISS+766R0877LnoekqbuCj6QZhECTjxA8QYYxqaJh2CrfVIoy6jLNxjJFK4buJnl0sJIQRrueyZ/9eNq4bTTLvUuAHDlY6T7O2RBBG1Op1jh49wDnnXpgQp6gCIZJ67jD0EaGGogYgNMIwYeiMQgXf66CnkkU5r+XRcdvohiRl6ijotNo1TMPC910M3e7OJyoihmZnCSkFqtQRmooiNXw3QOlKIsRBiCpjQmcJ3+swPT1HTymLqZuEgY9QtKRuPpLcd88DlPorlAoligWbdqOJ4wtm56eZW3JZt7rCwmKDjtvhkouv5P4H7mN4zQacToN8vsxTTz7O4NA6jk0fI/Q81q/fRG+lwMz0MdLZLL7rMTExyUK9SaVksG10E08eOMqBxjhL+6vcevCHnL/mPF58/iUsVRtkTZWB/gE+99Ov8fuv2MBZm6DdgO/ftp9NW7fwkc/cxjU3vJo/fNeNWGo/oeuy47Hd5DIZ9j32Q7Zu7eHCl74PqT+7tlt8wlmNk5rgZ8mY/bIW/YKxiEBJSO9O2HLPKwkMV7YpltXIRScdd9ye23MTSnJeccIFfcaXPD0qKl75wSmmKAphHJ8SJ+iW9R++07/J3P2Stjxzdzo7HiTFK16/qJ2J/OTnNSHEaYO2/2iQKFn+YJ/hqlak6k7VEolP1CguHx4riVXiLjxROZ7SO2lMnnSCk3CbysoOoJwyhk8cclI3Tu5nOm3zD1/9Ltdu6zuR7Vl+kadW6CXfv1DEabOUp1sn2v/0IXr7KrRbHZyOlwg1RxFRrFCtNchkc7RaDqHv43oulZ4ymaxFpaeE63jMzS5QyGcRSozvh/zg1vvoLReSujpdTWCuyyajKIxQhYCEoI8ojtB0DTudplat4zkeSwtL5EoFfN+nXCgwumENs5PTTDU8+swqcRTR01MmX8wThiGDgxVm56pIJWZ0dJiO42BbGulMhumZBUxTJ59Jkc5lIfSZnqmyaqjEvn3jzC82WLNmECKYX6xR6S0RxRFLc1WCMKRcyREGAVJCsZghIqHBFkI5EdgpJLpmipAIJdEOSrIgCVzD0C2i0MdxHFRNIxYChEgclQgUJTnW6bj4nsfYxBxDw300Gx0MM2Gyq1YbjB+dZ9WqQWq1OplsGk3VmZqa5Uc/3kUxl8I0TG6761FWD5UxdB3LNpmcnEWVKgMDFWwr4shkleHBQfbsmUARAYVCGcvWcR2HdCaNqikQhYwdnWNkVQ/T84uomiBlajy84zAjwz0oioLne6iKREqVux96gnPOPY9Kucixaov+s66gUW9y+SWX8J1vfIeMneGD730vjdYhtmzZgJ3JsGXLKLPT49RrLXwvZHTjenzf5+EHHqfT7lDpLZOxNXL5HGNHJlizbjVjRyZZvXqAzVs302k3MUwjmWOiiCj0UYSKokhcz4VIkjINwEWqKarzY+haipAIXTOo12sIRSClnqy0RxCEIZphdoNxo0sX3xVIJsbznC78WGKaNjf+1qW89revYs26DVx80WZiJY+RHuCb39jJzZ+4lS99bTe1eop//OdHufXHYzy04yhf/tznePlLX8zUsWNIkebTn/oMl156BV/4h39k4/p1/Mn/9Wf81c1/zf/876/iTa+/jnp1kYmJeQ7s3c/ohtX4QUSxlGVmJvleH3v0Sa5/0eX88N/vYm52liOHJ9m8eT2WZfDk7qe5+LLzE4p2TeWhhx5h9dq1KEJimBqqkDTqdZ7c/TQja1YlwsaKYHh4GKfTwrJtPvbpb3D9VVewevVqxsfHiGOPwcFh7LSd1OWGAZpqJUQ1SoTvdvjSl77Crp2PEgcun/rbv+OFL3wJR44coadUZMumjVQXF1A0eO+7P8DvvO71FLNZjLTJhz/8YS6+5BJ0VRLFAcMjg+x8bBfbt27Hsiw+/rH/zchQD+WeHlRNJ0Rh8sgE1eoSrVYDA53DhyfZvfspsukMPYP9jE9OUyoWcVoBPb39CKkShyGtVki5UkJqMYQ+WSvD4sISupYiX87jeB2kkCzOLRH5Kfbt2cnB/WOcd+FWFEVlZO1Gbv7M/+RFr3wpuXQFtx5S7O/B9ZYIwhDbznPDS9kJ0DUAACAASURBVF7JW9/+e4Shy+L0DF/5hy8yPDRAxi7i+z716iJuq00nFijCQTPTZDMGsisLI6QgDnXq9QUOH9yD22kRR4Jjk7NUBlYxNzdL6CXwcd1MWC993wElollrkM9ZmJpGdWERO5XCTKVRIkGnXUVoOoowMQzwAwUvBM0QRHFMEEbd9cwUmpZO2FxVieP5xLhoqoUqBXGokM1l8fw2uXyOKA4wTIPxmXmKvYMMDA/xif/z92zuX4Omp1izdi2e76GbZkLOJRLYoKIopCwTTTPQDI1Op4WuqqhWllhVQdUSqZFkNY1YCqIwQOqSvr4+BAksOoxCfN8nDMMuGy5k7SxL1RoDfQMEYYBpmChCEngJyytxjCJiFKHh+x6q1PADHy/wMXQdKVSEUHj0kZ1s3HwWC/NLRL6LkJBOF+h4LkIJCGIPL+wgYklCpqliWhmiKIH1yzhElTqa0IiCoCtXFSNij6xlQizx/UTT1fc99FjidxqsXb+KfCaNpcfkrBS5lE3KCOnvLTAylKcnbTPY10vGMrCEz0ClROQ06SmkCNwGubSOJlzSpqCvx8ZOCdz2HLG/SCmXQggHFJdCRmKaFiUz5r5dX+bSc3TuffQOPvMX13PhJo0LNvqMjNZJldqcf/Y0uvApFXSGCjbgctbWYXrKGhs2r+cr//IjvvPV23nZy19Jy2mwamQIz/dYv34rTz90K2vPugTdziQ+wUrmck4kpk5CjP1n2Jn84uPZuHjZe7p9erbjVu5/MqvmM1JcgmX+2orPTqeusDL8O3Ffnq0fK/49m51uy28yd79GO1PmTgHC45m7bjBwPJP3n22/TGbv+PHQHSDP8oyoy9L4IVEiKnzSAILTDVmxokAvUpbts2xbHCUrRdHxrJw43vJp+hMta1NJahpPlw080fayv58ZpCe3G5+hkDB8+J9XfKKcFOAqJ20583mPW0QCwXQcl06rTeBHWJk0mlSS+iJVIKXgwL6j5AtZyuU8UQxLSwtk0hnGxibZsHEtcRSysLBA2srQcTrYdpb7H9zJNdddjCIE3QiPwA9xOw4H9h5h06Z1NFstpCZJZyyEqiGV7qpdFFNrN9BiydzMPL2reqlOLfKOf7qff3znVmTsE8UKnh+gShBd2IbbCbp07glNfRBpmJqg1WyRSkmsXBGv2cbzYtI5i8mJWZaqDUbXDzE5PsvI6n60lEEYeASOx+JCnXwhi+/5eK4PUkGoknwxewL+J6XE6ySMan4YnYAJKoqC57lIKQAVVe1O36I70UcxQRiiaiqh7yc6ax2HtGXQcgNkl76/WW+SzWZ4es8YhVyWfN5G1UU3M6qixD5hFOH7IXGk0W41WFyqkbEzGKYk8CMe3zXGNddsZnGxRr5UYs9T41TKBVKWQrsVU+pNd5+/GAiJQ3A7XrKgoAp0Q6dRrSKkgapKhFBQVUGr0eJnDx6gvz/L+RdfDcDXf7qLV/3h/+Dfv/UtLr34SqJIJfJdJo9NsH/8AX7/rTew8/GnOHv7RpxOlTDUOXBgPNFhzFtkM1lqtTojqwc4eGA/60bXYZgWzWab7337TjZuXs3M9DzXv/AyNF3H8zyCMKC+VKNYLtNqOxTK+YQMQQlpd+ax7AphsIjvSNSUjVC6ouRKSOiDonoIVKS0EjhNFCbzaBwnNYtRhKYlGYQwCHEdB8vOdVHZIXEYJWu6iiBCEAdhl7I8i+N0ADhyeJyNG9fzyIOP8PXv7WL3U0c5enSMVauGueLiLbz0JeewODfDVddcim7azM7MUC6XOHzwCKVKL5Hvcu89j/Cil7+ARnWBUqXM3Mw8mq7z1BMH6B8oISXMTFeZn1vkRTdcTafdod1q09vfw1J1nkw+QxRo1Kp18kWbVq3F9PQ0q9esRtM07rj9bp5/1WXoho6ixLSaLZqNdWQKWT76v/6S17z2JsqDAxiqSjqTotGskrFKBIHLvXf/hIGBQdasGaZar/P0E3vYvGkbjuvQ9l0+8tGb+eiHPsxf3/xhPviB94NlY2o6qlB51395Lx/91F9jWyn8IGDPUztZs3oU07TRdY13v+dP+eP3/hFCCI4dG2dooB8zY5FKW7z7D/6Im17/Wi677GLUIOL2u37G1//t67z6FS9jsrrIeeedy/atW3ns0ccYHh4iV8hhpkze+c738MlPfwxF6ZDWUjRbLgcPHGLzlrOoNRYp9vYSxYLJsQlaDcHPfvZdXv2qm9DskHSmSBgZGHGHwFli7+M/ZnhVL7J8Ln7oEQUxMSl+cte9XHbpRZQraY4dOkxvXw+uFxDHKoah0XFaqLqKlimjahGHDh4hZ5lYlkm71cL3XPqHNhD5DRqNBaSRJ5POEoU+tUaNfDaDoUGjnQSGyRyfaC52mk1ct0G9XmPN6s34vs9HP/Fp3veBDxB15ugECrlSkUZ9CdvKQyxQhIcmVaIoYmFhEdvM027W8UOX/oEB0HRmp8fpKRXxA5+jR6apVErYaZ227zM7NcPIyDChSCDmT+96HE1VmX2wge8H2GkLLWUmC4hxjKklEgkKiZ+SCIV7KHECpW+3WmRzSX0gcUyj3sJxPXp6ysn8HnjdUgiJ67aRqoqm6rhuh4cfvp8rLruWvXv3oyiQsgyGh4fw/QDVSOZ4P4xIqSZBlNRWEoUsLMxTKBQTUXRNQyjguC5jY0dYv2EjntuBMEBIDUVVUVSN1kKNVDqFqkqkIvFjFyESMiWJgtOpY5oaYRjR6bSxbQvfc5CKitOaRYYRR48cYNXqkQSWGSugxMgwohVA6HTIFQrESkwYRwhUCKHVaJLNGwRhTKvTIpPJEkUxs7NzlMsl1GQZG1XV8YIASaK5p2gyCVTCkFiBSFGJY4277nuQzetG6K1k+MqDX+WGC/uZmJrk4YMhkzNNhgv9zHcW2D6wkcen9vOBV/wh7brHV+78N9ZvM3j7yy7g4OQ8n/mHH3Dzx77CbT95kFK5wlKryg0vewk/+Oat+NO3su3yl3Dhi18PiBOSMSd8kuhkTbtfZa3dSjttlm3F58vP/4tm+pa1fNp3p/XMT3O5x/1huQLOGXcJIqI4kdx5NvtFYq7fZO5+jXamzN3xzA2seAD+P7JfxQrLmdpYPtCOI6J/Hs2RUzJ3yslblzV6Ur3gGRPmyxvppuGUkz54dnsmuHu2LafajmM+7/2bL/KaKzaedt+Tg7vTt3O6zF3cra2xDIMY0HQdRUmgRAnLX4QmJdlcnqWlKoZuYBgSKST5fJ6ZqdlE7FyVtNsuacuk2eywYf0apCZwHAen7dBut7n3x4/idBw2bh4lDEMEYNkmuqknpCaQBD+qQhzEpCyTTD5LY6lFrr9EKq5RjDpYuTSe5yDjkKljCyws1MjaJqgC33cpl3KoegrLMpibX6JYKlCrN7HSaSxTo9Zo4PkB5VKeRrNNqZzDzlgIIZibXkBDI4wVcsU8M3NLmJqBkdLIldIQK5ipFHEcJVAghW4QLNFUrftUJrWYmqoipEDKBN6nCCUJ4AUETodWs4mudzOBUkVVFeLQx3XCRKsJydJSjUIxi6FrZHM6diaFbqhERMmELpKsoaYbBH4SrBeKGXQjhaFrTEzMocSCydkJpibBNBR6+zIcPHSM3t4MViqNKiM6LZdWs8nsRI0djx3i0OQCGTvF/v1TZNMpojBEEQF22kARsLC4xI7HJ3jhtefxxbvGueairUDMv/xkD9e/9FU41UVuv/0BvDBiZLVFLOBb37iDl770IkqlArf84B62nL0NXQ+5/55HeP7Vl1Eo5tnz1EFGRoaZmhxj9Zp1qKrBnqcPsG/PEa6+6gLSuSwjI/3oloXT9jAtC2kYWKk0vucSBx6ECqru4wUBUZzGbUyjmhXUlHGCOtf3E1iilCni2EeKNFEcoAhQlBBVUwgDkKpKs15H08yuAywxDRvfq9JuezgNh3p1iSd2PpXUJaVSPHz/YwwODfHIgzsp9+TRdT1htzUM1qwd4XmXbmHLaIn3vPNGfue1V7F96xDr169ldMMI7bbL+NFJegf60A2NfKHAsckpdj62l/MuOIu0pWKkEsizbVukLJOBoV6KpRK5fIHevh56eouk0hYKIapUmJ1dolAsMnl0jnRaRSgOKirpXI50xkDTDKQmWb1mDeNj4xQKWVAEmqax54lpMj095HRJ2s4RaTa6BMtKiItanQaNxjzlbA/f+fptLNWajI6u5aMf/TTDQ2sxLYs164a5/HmXcf/DT/Pmt76FXKmEYdlIPcLteFx4/hWUKgnraafTYf++A9zyg7vZvGk7X//6v7Lt7M20OjU2bFiLqeb5kz/9M9aOrqNULnLNlc9n85ZRPN+h1mjyB+96Nzd/4uMMDw/yjW98h/PPu5BiqQzhElZGp+23yBYyvOC6q1FVSdrOE2gCzUoRqSpmNkvGSnH/Aw8xODSElZZoQmXLtlUErkukRmhGCoSKJ2vU6jUqgxcT5zYTtR1S2Qpe2+fjn/gkv/e7v4euqyBipGnjxS7/9OV/Y/X6UcyMhaJpoAoWJ8eJsHnnm9/By191IykjgwgVZATSVnDaLrl0EdXIEhOj6sncHMcRbmceL4hRhI7v+UREic6adNANld6eEaK4Q71Z5eKLL0BIcCKNQjqLEi5RW1qkkMlRW1qg3VoiigRxFBNGURIsxG2yhRSu64FqYegpOk4zqSfMFRCqRBExupolkysSKxqthVlkHLMwNUd/uZf8WWW8WQVFJmyMmqYR+i4Qo6kGrWaLyWOTpNIZlDgkCmN0w+LgvoPYdgbZhW8+umMHURQnKIhmAilHqKhSouo6CgqO42BZFn29QygipFwuk81m0HWNJ57axUD/KhrNJqpU0A0ToagQB8SxIIo9TDOFQKXVaKPrOnEcMzU1yarBNQipd6F5Pik9SxR1UGMw0zZhFCW/u1qyMNKu1wmcBkHsQ9hBVUBRDVRVB0UnjlN0fBdNszANDSulgxIjhEx+V/wYRVfR1AhDF110QYymaOAnjMCakfgpAkHKMImVGENITEtDxDEIFUV2ywZUiaIm5FKe6zA9P4+dKyKJiX2XKHRYP9SDlTaRscrZ/ZtJK2uoFLdz0fC5PO+sc9k2tJ5KZpDtQ5u5cusFxGHIfY8/wVUXvogtA5uYO5bmzh0T7F1s8dNbdvKKV17M2WdfzG23382W7dvoHRilPvkQteoUZ112wwl/67itDOwSH+k/L7g7pdBlGcLodOf/j3jS4kTGblmbZ2rvDJd7vLzoOPv7cbBXzK8uCP4Nocqv0Y4Hd1H0TNbquCTC8kBu5fvT2XGM8H92UPbzHv9cbYgVAy0pyD0NADF+JgWepLxPLTB9Zvvy2rnjAWMygJQoQonj4yfrnrd73Emp85Vp8pMnCaXb9LJdl2858ToTDHZgcIDffu1r+ODHv8J5qzNYhs7Klk5ny8+wvN7vpO3HIQeAKhLoZCySPu/be4Se3jJhlAjvuh2XRqONnUkjheCuux9ldN0wnuuRyWURqoaZMpBa8iO07+lDlAoFIi+kXm+wbfsGIEKoCnbORtXU5Fnt9uG4HT1ylFK5AFJgp1M8+PQYV2/NEkZhUjuB5OChaYaHe8gXC5iWhWpIdDNFs+FwYO8Y4+MzEEcUimnS6RTNRosgSNjEslkNVcSUyz24YQdDTdFo1EiZKshklUxKhUzRZubYIrYNnuOTy2WJ4oT1cH5+gTiOUKWA7nhUjo+5LiQToSYZnShExHGXiFQgpIppWkRRiBIpiMjHcz2kYaJJLWFjFBGWleHY1BTFYgbDSiGl2hXJ7YqdCInT8dB0DYWI6elZSj1F2q02qZRJJmMxu7BIrdnhskvPSpy5com+3kyyEikS6IaQ4LsBlYFe1q7rRxLT199DFHv09CbMlplcjo4T0G518ByfTeuHmZ+b598e7/D8tTk0TeVzd+7hzW+8CaGmUKOYf/7nLzM15XL/ffdTLPZy650/5UUvvoS+vjzpdAZFEURRTBh4ZDIZWu02AwM9+L5DLqMjpI7UUqDE7Hx0H+s2rGJxsYpl2jx0/6OMrBlGxDFhGDA5MU3fQD9CU4kDBUKf0K9jF3tBkUBEp7mUBNyaSQyEcYwqTTrNBH7abNQJ/Jg4khAHqKqGogg8x0NKjShy8DsBhm3jOw6P7dzDxk0buOX2e9m8eTMiduitlLjj9nuYmFxgzxOH2X7uJjRNIwhCWq0Gd/34XjRdMriqH8tOkctncdwO9/7sQQaGBqjXmuSyFkKRxETUlhY55+zNjB+dIJ3NMT+7hKoKjJSeoAwUBSFiUASh7xBFAYoCuplC1QSFQhoiQaNRJ5PL8NM7H6SvfxAjZdJuNzBSBs1mEyk0nty9j6WFJfL5LN/85h3kcuv4qw99iksvOZuevgKWnWahOkkum2FpcZ58TifyJb/9ujfz1j94A32DZYrlLC++4cXU2y6Hxw4zMtLP4SMHGF3fTzaXpl6rY1qJo+y6DradZEA8N2T84ATfv+UuRtev45zzt3H++edR6e3h7z/9Bc4/ezvVZp2RkUG2bl3L2OF9FIt53vOeD3D/fY/yyle/nC0bN7F5w2ocZ5GrL7+MvlWrmJ0ZY2TTVjKGhmWmcUNB5DnIyAPdpjVfo91eoFIaZnr2MIaRZ2g40fxTVT2BsCo65VIJIVIcOjDG3qf2MjS8Hi0U1KvTpEsWiiqozczT9lxefN11oATsenwnX/zHLxP4KquHB7ENk8mJcW7+6Kd4yQ0vxxIKXpyMvZe94tV88I8+wHXXPg87b9IOY2w7z7vf/cesX7cBM2shdQ01dnEWJukEAsPMYmoGqAZRELA0N8PYoSMUCr0Yepo4VvDCDvOzNfr6BmnUZxG+i6rbxGqKTNqgWl0gm0szOT5JuaeM79RxqrPUGvNUSkV01SYOImr1eRzfQ8Y+tdk5hGaRyRWJ/AipCjoNh6jTQugABnY6T8evkUtZ7Dj4KJkoTRy4BEGIadncecctrBndhCIVSqUivtNGCNlFAcX09veiGTphHKNpGqvXDKPrKnEY0Ns/QBAFPPLogximRhyHNJtNcpk8sVRRVRVIkCeKkARByFD/CLNz06RSaQwpkkBZaMQExF4SAM1NT+N6DoVKGUVEKIQYUmLYaULfxY8cDNNKNAN1lTCGOPJBSqQmEUpIc2kRoUAQx2QzGZBawoQq1UTPVdMI8NCEQuiHSE1DN3UC30MqJEgOTSTQd1UDNFRpgIDZxSrT83OUSjliBAglgRqLmMCNupnQRB828l2iMJkLwsCDMCLqirHn7BxKHBITEUVwcP8+yv2DXfRRhCIlUlOJwwhUSRiBphtkrSKpFAQYxIpKf28FO6Wha8lv4KreEa7ZcgnfeuyHhB2fb3z3+/zX//pO7r/7Jzx6/0/otF2EcDn7yhcRKzpa5BIp8rQ+TxyFv1J9u5W2kvzvOAnKSX1Y9no2E6fHdp04Ho6TrsRd/+8Zf/HU8y1LzsRJ5nW5nFnC1fBMYKc8AwZ61tdx+SlFURIJMYUTr5WJgN8Ed79GOx7cHQ/eluvc/aJZuhPBx3/m6sgvGDye6RpWBnfPbief79Tp4edhD13mqMOyqOxMGcLTn//EeP4V3ObrX/gC7DXn844/+xg3XLTuWc54uj6d+fMYhSBIWPSOF7ErKFiWhZQqQRCSTtssLVWBhLW03e4wum4I0zSQqkoYBGiaiq5rxEpCzpI8lzA7u8jmbesRmkRPmWiG9ky28zTPhyRhlzRMk0iB933hHn7r4l50XWVyfJZsNo1pGkmhsSKpV+tIVRAFPkvVGoW8zexCnTWr+1GAifFZsnai8yd1STat0XF8hNCYmZnGTptIKbEzWXRTQ1MlExMzhK7HUrXDwEAJRQj8EISuoQiBbaXQdK07/qDT7DA3t0Tatrq1JAI/CBJxawFxFBBFSX3dcbarGAXPaaMKydiRaXbsPIwmoFarY1kmnuNimyk6bQfbtojjGNdx0XU9ccilJAxDFGJc16VYLDB+ZBrLtnnqqcNEUcDakT76+3JdxylAN2zuuedJRkb66XQciCVRGPGz+/egyoBC3qJUzgFwdHyGSilHu92hUWug6yq6YXJ0fJaBwQqmneJbj8xTChps3ryWe3aPcfVVV5PKmDy1azfbzt7KjTe+nJ7eCrfe9kP+5q8+jp2pE/gB+/YcxNA1Vg0PoRs6fhDw9O59rBoeZqla57EdR+gb6uPhex9i7fAamp1FhlcPUar08KUvfItrr78w+dFC59DBQwmMSgg6HQ/H8VGkitR0PNdHlRJi0HQL2Q2ePddFNwwiJUJqElUYRGHcvc8BUjVot1oYuspXvnQLW8/Z1NUKU/B9j4mxSQzTQtPg0ku34XsBd95+F/lyhQsv2s6G0UHWbVhLKmXys588QKVSwTBMtm7fSLGUA5GwU0aRiypj1qwbpd1sU6vVyGRtUpZNEASkMzaqppPPp6ku1Th86Cir144gu7VHURgmgagUaIaJbpqomk5Ewl7qeRFP7H6akXWrQBEYpk6xXODwwQlq1SaFQgGp6kgpGBjo6QpLS/7pK7t4xUtewnUvuprIb6NIyBYzlEo9+G7Axz7yMbafdymqkeLKq6+mf2g1gRvw3e/9gF2P7ePaF5xPpZwnDlVymTKaodJqtSnms8RCEAURmqqiSkHQcfj+t7/Dz+65hz/+4PvYum0TrWYdVVV46vEDvOWtr6Pl1Ni1Yy+FQpmdOx5n21nnAIIXXPcCLMvmC1/6Kje++iZ+eMv3KVWyGEqWv/irm9m4fh2FbJlQiRGKxuJslUcfvJetmzfQ7rQ5tO8oxVKWZtXj4OF9dJoRhZzN/NwECj6qEAQBzM5VSRsGH/jjDzA8MMS69aOEoc/42FH6+4dw222cVgvf93ntjW+gVOrhvPMvYtu2s3nssV1sWLeekZEhhoYGueL5V+E4Dq1alVypyKc/9en/l733jtbrLM+8f8/z7L7ffnpv6l2We5OxMb2EHtqkkWSSTDKTlS/fJEwSypeQSggkH+kQAgFMMcH2gA3GYGNbbiq2ZHXpqJzez3n7rvPHfo98VCxsQ8KatXi0Xp2j/e6uXe7rvq/7uphfnGXdmm7WbFiN46bwQx/N0NmxfTv7nn6GB+5/gC/e8SU+/S+f4/i+ac7unkQWTcYPzzJzssjCcJH6ZIQ/JVgarTJ9fI7RwxOMPD3Fs08c4p5/vYd2o5+7vvEtvvTZr/CVe+5kemoR23T5wh3/zute+0piTO7/zlMMbtpGJuWgaSZ+6Cc2IVIR1CukUi5xKEk3NSf0xmoJzyviOg4HDx7jve/6RV71qteSTmUYOTvD+3/3f/LLv/zz3PvYtxksDCKVThxBf+8gd93zNZRUHDvyLF093UBMqVjm2YMHCPyQQqGZarmIJGZpYYFUOoOTyTdAjaKQayYMIJ9vQkmJFwQEQZ04DhBx0juetDgL6p6HYxmJSIemQyN5EvghUgnCKMCxsg3/S1AyEbLQdBshBRNjoziujUTh15NrNwiS+09XGlGY9Lubhk0UxTimQd0P0HQLTWkEgYeuJ/2DYeijaCTXlIYXgJPKUq4soRsa0zNVju0/SmtnM5rQCCMPoUHNA5C4KQMRxQhNJMnYOEnKIhMauRA643MeQoFlaBDJpKdWiiShKGLiKLFkCaKIpqYWlqOqMAqSd7yS51TBBUmrj6EUcVRh/zNHmSst0tveTBzWkvhBSJ584iCtbVm2dmzl0KEJ3vWr72V6coydN1zP8KlZ1q9bw/ToCdZdcSXSzKOJkLjRbhNHIefZI8TPb15+OTXKlzpeKsfthSx3vgLnc0DtcvPDpVlYy8uubOu53Hl4Tgvw/FaeS63/J+DuxziWwd1KMLey8fT5wNHzAcCVF8XyPOdRE18irXPl9pRSF633paz7PxPcJRWt587HedOf53Ph9n9EeO6S4/U/9Sbu2zfK2WPPMNDe9LzzXWr7l5zWEALxvCBpkZOSUrHM0mIJ13UpV6pYlkE24xLHgkw2obpEUdygHib+X7qhN0548pIWUjI9M09HRxsxCdXynJAMF1QVG715AEiwXZtQAH7M1s4ahZRFHIR4nke5XEHXJU4mw8TIDGMTs3R2tDE1MYtrm1iOw+BgJ1EQEscxrW3NnB2ZopBLMTI6Q7lcp1aPyLguc7MjKGlRr3mcHZmgKZumWq1imhq5XKYhBa1RKldQguQliaBSLqMbOoHvIwGl62iaIohC6nUvycjq+rmXVHFxCcdNzh+Bj6YiJIqYgKX5JaamikxPl1m7qgOlSTQlsVM2UmlJj50UhEGIZVkgwGzYWCilJRXBhsjLoYMjDA610dHRROBFHDo8Rk9PM74Hh4+eptCUJpdOoSlBOmtDFLNUXGLtUDeZtItpGdQqdQ48O4xhanR1tmKYOqdOnKW1JU+xVOHMyCwpy8A0DNYP9FGwTdrbW/inb+3nfT/zXoJQ8PnPfB7dSnHs2BFaW3rZ/dRTjE2cZc/ux9m6bTXt7S089ujTOK6B67rsefIAs9NFDh86STpn09KSZv/TR7EdmyiqsnX7VgzDACHp6s6Rz7dz6OAxjh45iG05dHa1c+TwyYRypRs8s+8AfQO9REGMrmsIFJGkUS0EEQvK1SIijtBQ7H/6GO0d7USRj6ZLoiDGSaUIArjyqi2JCiExItaR0iSOQzp72kinU8xOTXLy2DhS6Rw7MkJfXxeOkyKMYjRd0j/Qy4FnDnL27Cht7W3YdorZyQkCPyCVyWI6LnEUoRuKzq5WhFJUqxVsx0mCnQiiOGRqcpatV2xhcmKacqlMoSVRmPTDAE03iYI6URQQBj6alnRp1Cse+UIGyzbRpIapGQRenSd2Pc26DWsRMkTTLKSMiKKQKIz4td/4O7Zu3sbS9Dyr1q3hyMFjrN+wjlK1jGE4KKmxdmgNxw6eIJ3SSLs6n/6nT/Pkk/v5+fe9k82bVzMyfIbVq1cxfvYMjmOTLzRT9+rYjsHkzAyFfB7fTM679gAAIABJREFU86nXPUQU0NHbxSvf8Dq8ap0g8MnkXPwg4FN//3f0DnXR1TvIH//hH/K+X/p5Hn/8CU4On+Lz/3YH1VqNL3/5S9jKZGR4mLe96RXE/hLdPe20d/bT1NTCRz70p7z6Ta/n0MGj3PWVe9h5y208/MijrNq0kbyT55lndiNx6O3rRJMxuWwK23aZn1jg3m/eR+9AN3bGolKt8arXvJb3/dIvsX3zFQwM9vLUnt2sX7MRESv+6IN/wm23vYorr7yOD3/4j1gqVdh5yy20d2Zpb2/DtAKOHh6mo6eXdDpN2rWIEFxz7dVs2bIOw/D47f/1Ee782t3c+fW7mTwyQ5PXRovWylBTL9v6t3Lt2hvYvnYrHV1dBGHSZ2zaDg13bKIoRNf1RNRKM0AICoUmVq9di6YbNKWbuG7rtWzu3sBQy1pY0ljTsopT+0eZP13h1JOn+ein/oyvfv2bfOFLX+Pw0RPcetsNVOoBXnEOy3ZIZZuoewGGFCzNTGBoLoatUIbJE0/u47ZbbyJXSJNO5RkcGMBNaXzibz/Na95yI2eeniebTxP6AatWraatrZW21jYiqTAti1Q6RWd3D/lcgTgKsXSNmh9gGjrfvf+bZPMd6CIBVZZlYjk2QZgkEnXdxDBthNSeUw5XIDWBkhrKtLCNRAjKq3tIGXD65GlsR+LVQtyMy8zsNLoykUoRBhHEAk0k9823vvXvDA4OUav41GoJO0LTFbVKkVgqdE2xWCw2epLnyOST/sTA9xL13SjC9wN0U0MzLOr1GoauoTSdIATTTBFhYZoxnf0dKM3Ai310ZRH6AY5t4roGSjeTRKEAiZYkZHQNRYQQMVJqnBk/RS6VwRACzTLOJYKklETLNaEobih7JlSdmAQIRw2GTBRHhGGAoRvExIRSgA/5thyFdIZYWUgRQKyIicm3FNCIcdI2C3OL1MckI4unufuur7Ppyms5efwgxeljtPf0UOham/QFnotfJSvtEYSQz2te/mIstF7o+I9sYDofVF2838vVuOgci+v5510G3HJFv+Jlz8VPwN3/HWMlLfOiCz+OERcAtEv14F0I9Jb/vUz1vBTN88WO5e1JKc+t71Ied5cCm5e6cVXjgfRcxuP85RQSSeI1t5zVEI2ydXyJzzKqOK8Mfp6OkTgHQiJeLEi7dLbl0t+8xCFg9ZrVDO54GW//jT/ibTeufclg8rkckThH0YSYxfki5XIFGYdksy6+V0dEEaVqjWrdx7J0dE2i2waaLlGaPPegDoMQKRVuyiGVdgnDgKVSkWwu06i2nE95CHwfpdSyfzq6phP4MQvTS/z6J+9iZ3+a4lwJ17Wo1qoEfkQcS2zLxLAU6ayFZepI3UDhY5ga5bLH5NQC5UqdKI6oex65fAbH0rF1jaZcmjioUav4WK6L73v09HRQq5YIo5hUpoAXldGVYmlhntj3cHP5hGJBjGGCQCGEIiZEKZO6VyWVcTEMkygI8WoeZ8+MJ2DYtIjCxCPJr1VZmpugtDSHm8o1ZMEjOpoyFCtVctkMQRBi2E5Cl9USzzSlFJVaDaUknldPAngpiYAgCNCUIJfSKNc9dM1i79PHWD3UwvR0GU0H03TIZwwEMYtLc5QX6pw+M0FHaztKB9O22bv3JJmMRX9/G4WmTJIlFwJEGss1MVVMSybF3FKNbJNDZ3MHLa0ZnnryEPX8ABPzp+hp7+Wm22/jwL6jbN+2kV27Huaaq69BSp1To2U2bmgmny/ghx5t7a0oJXly1z4271jP9qs38+z+EwwN9dDV1U0uJxk5NcFisUxbRztCQiqdIvB8BB7rN60mjnTOnB7j9PBZZifn6entZHFpida2FqrFElLTSNprIur1IjI2CGMfQ3cwNZPA90lnHR68/yEGhrrxgjqmbhGGUfJclAKvViWohex9ch+lUpH5xSLpdB6lDJxUhiOHDzExOkoq00SlWmJ8dArD1BEy5u6vfZt02qFarnDo4HHSWYeuni5My0QpgzCI0fSYKAzxPR9d19EN1binNQ4fPooUGrWKT1PB5ejhI6xe049Xq6EbNlJqSRJNSiBRFYyCiLGRKWZn5nh2/7N0dXcgSAyBDx08yJXXbOOZfXtpa+9kanKWfD6LEBLTchjaeBtXX3EjpfkzFJoGqNQX6Ohpo1yqYdsWWBZuJkshY/Lgdx9DRC4333wLV9+4FcdOEaOTttP83M+9j596+5txMjY1r4phakh0MqkaxaUaMYpYEygnhQqmiL06UzNTZFIOCzMlspkc3/7OLl5228txbJ3bX/tqjhw+zhve+GpSKXjN697Mnqf38cEP/T6VcsSajRvpWbcGp6ULKRVtbS246RSRr3B0m7Rrc92NV+EHNTo6u1lYHKVYKxPUQyYmzlBobyPf0sGXPncnXmWBzt4uBno6ibwY2ylw+tQp2ls6eeub3oinV1Fmmo2bdxCqkMe/+yAnTk/ylx/7BMePjPHffuOXePkrb8Z2bNL5DLE/y/5Hvs3glh1oMkLX4XNf/BIf+/jfcOSJYZxinmBOcNOWm7lx883s3HQTAx2DSF1PTKp9D0PpxHFEHIdINAxNwwsqaFIjDP2ELeCFSE0nFIkXYRgGWKZNGIYEUR1dGihDJOIieqJyGvgeKlJEIqazq52bNu/k1i03cv26a9nat52JY0vMnpjjTz7xV9SCiM9+7g6uu/IKvFqVMAIvigjDGCUlb37rG6gVF/n+dx8l19RJW8HmV3/9A/zBL3yAj/z/f84b3nsVf/A3f8INa2/i9MmjnB2ZoK2jnZmZadKZHJXyPCqqIrSk/3uptJQkeIRgYGgNmkjUX+t1D9/3kZpA1zRCz0NXiigMCPw6Ko6INR0R6wT1iCCoIyKPUOoIqRBRFRELCs1NxEiU0omjCNMwWFicJ5VKJUwWQ+eJpx6nua2d0Fe4ps3uPbvYtHkbYQSGphFEEXGUGJcrmSSilW4SlZeo14roto0MI4IgQEoN03Sp1WsIERPUvSRYj2MWF2YpVUoYdhrNSmHYzdh2E7qbBc1C6AZCSsIwec9G0iTS/IRlFEUEcfIOV0ja8y0oTbK0VEMjBF0hlGQ5sIniGKESPzuPRFxFCAlhlNA6wxCIUUIRhgFKSGLfJ1YCRwpioeN7XtL7LUBTGrbSkBKiIKaQb8HXdR5+dh9//IEPkG3L4DoFThzfy8bNO2jpHkLEHrF4fh+7H3Vy/HJtSMu9a5fSXfhhxsoWoZVxZaOC0Oihi1ds/7n9WTkEiSAOQiCkTBS7L4iV4zhGXBTHPocFfpCS5k/A3Y9xLIO7522gvGC6FOK8eeUFF0KyyHPA74ep1p2/G+dnFZ5vf1/otuQPuNGe87JrwLUX+VQQ5+64ldOW1/jDg7v/yCreO3/6rbz9v/8Jb71hzUta/lydUYCmkh6oOBakXIdsLpVQUywHzdBYmJunuSlDrVYnDCNSabehCNlY14rMW0JBiTAtEyEEhULuoibq5eHVA+IwTvyyYigv1ZibmiGKQv597wRbCiEjY7MMDnZQKlVpay+wsLhILpdhdHSSfC7N4uISpmUQeBViITg1Ms/atQNMzy7S2pzDtnRGx6Zpas4zPjlHuVqlXPWxbIfmlgKLi0Uy2TQiTugtQuosFefJpNIoXZHN5wgDn3q9jm4oZufmcGwrqQiFcQN8AUI2gm2Jrunk89nE5FhTKE1jz74jdHa0onSFblqMT8yRzriUikUmJ+fp62mmWK7Q2tEKhElvbOgThAldJgwDDMNIAHKDly9jmJ2Zx3VTzM+WyWVS1Gt1mppSpLMpfC8gjEIMQ8dJGSB0HMekXIro72/jwUcO4Ad1KuUajmMxOj5LFAb4fiJvThRhmzFKRXj1kNHxBVav7eLBp08xO16ks7ONzs4ca6+5hRt23ICTyvPFO+5g26Z1/OEffYS3vf3tXH/DdRw7eoR3vOOd/Mr/+D123rSBpqYmjhw5Tlt7C8XSEps2r8eyTQYGe6hXS4RhzNTEBCNn5lm7YeDc9Zb0HkiWlpZIZVMYuuLBB77Pa15/C6tWD+CHAWEQcXD/MdatX5UAVKkg0pAqESGIY48oCggiH0030G1Bb18nSpiYRpogqqOkhogFszNzWJbFzMw0uqnR29PJyOkzjI1MsDA3z8L8At19vXT1dtHTW6Cjq8DQql5My8UwNFpacnh+wM23XM/gqn4mJqfI5dJMT82w+8mnKRSyaJrWAJPJy9sybaJIMD05Q3dPF9+8+wG2bd/I9Mwsg6uGkEpDKoNjR07Q1taM79eIY4FUEkh6e3Rdw3ZMNm5ZR4xIRDeigNa2Fmp1n+aWJjLZHKOjo2gqRumS9/zMX/KLP/seTKljODb5QoH3//7v8obXvx7HdtFiiGMPU/g4rkVPby+HDh6iXF6kq7ubpcViUs2XikwmS3dfFyiJbVhIYVCulIiiGNdpRtMslJTEfoX5qXGasjkyze0EQUgsBAsLC0hdcsX2DZQrRQQO8/MlcpksuXyWfD7L9ddezx//8UcZPnOE97z7bYycPEpXcxNeUEVKiWWZDA4OYtmS2Zlx0mkbz6/Q1dXHn/3pR3n9G97M//76N3jZLbeRa2rCJOLo8WG+8NU7uXL7tczPzNHa0YKydOIo5vixYSrlIps3bWH3Y0+wZrCT2dlRhvoG0DWL9/7se7jhuu2s3zSEF/icPHGKTCpFtVpndLLM7334IzzywFNM7Z1lS88Oblh/HRuHNqIbOqZuEkWSU6dOU8gViKOAIAiIfZ+a72EYFko3qHl1dF3H8wM8z0MKk9m5WdLpFIauJ0wCVPLciHx0qShXKiiZ2HyUKxUcxyX06oRBgKYZCKUnlD1A01VSFSQmimBhYRHXtbl+43W0mh1s7dvGQ/d+n3Da4NOf/gxfuOdOnnhiD//8qc8hhcbv/P6HmRkpISYE3myVTruVXD7HLTt2MnUk5IZX7eDGN2zjj//+Y7z1FT9NEAQc2n+AA/sPsHHDFmI0RsZGyWXyyTul0feuGkGpbugcOnSQpdIinW2dSKmhKR2v7qHpOkHgN97bIVJIvvTVLzI1PcGatRsSGnsUJc9k3WyIXAk0qYii5H3lug5KJpUkw7AQwOGjB9i6eQex8uju6aVcLSMEeH6Im3IRSqNarfHgg9+gp2sAS9fQLZdYKZSmEwZB0ucsoF6vNAzck+d5UrmLcF2XVDqHa+fxaiGaLqnHEj9KTNml7hBLCyfdDJpDKp1H0x3C2EGYLooI23HwowDfjwhFEuxbVtLjSkONWiJQWnI24zBi/OwZ8rlWNKVTq5UaRQJ1rgdSKonnhYRxQCXW8PwY00jiMr3BEPBCjxiB0nXGRsc4NTlHPlfgmrVX8uF//gve/OY3MDkyQb04gjQsetdtRRFdHtz9B1TnLgfuLur7+5Fs9dJx5fJ3K+PLyx2vQJxjNyUx9WXme4njJ+Duxzgu63Mnkv/8S2UnzqO/nZv9Ysrhyunn+XZcwrNu5bQLKZ0vdFwO3L2YDMoyuBNCEIsXf0teDtytPGsXnbNL0E3/42DcpYcE3vH2t+A3reHd/89f8JYXCPKUpjg1fJZsLnOeaIxq0Cw1LRECURoYMmZuYhxDh1oQ0tzWipNykFKceyguP6QEDWpHHGJYZtK4rmvnaK4XjTjGrwfEEdSqHt954HHwfdramjl2dpKfvynPgePD3HjdepAaEoFlm7gpA12TZDMpgrqfqI6lUkxNTBDH0NfXjed5dLY3gYSlpTKuY1Kp1uju6SIKfHTTJNfaRlCv4NoGYQi6oaM1ZLUFHrphc3J4FK9eR1c6lVKFubkFTMMm8APiKMA0TDyvCnHUqOYlDfFBkNCFNF0DBIEf0NPdllRYlI5hOGTyWSJictk0zU0ZnJRNGEZJRbAhauPYBpZrnwOMCKhX6ygteQGXS2Wy2TQxktOnJ8ilU4yMTZDNuOx6/AinR2ZYKpdYt7YfIRUnT0zguga64eD5HuvX91EoZEg5NiOjs6xb04+IJa5rJ32UmqC0NEsq7SI1g3zBRSj43c8c4Ld/9rUJ4IojWjfdSLVU4a6vf5Gbbr4VXdXYvfsYV+3Ywf/3kQ/xrne9g999/+/T3d7HZ++4hx3bBli/YS1xHNHV04kAvv+dRygVS3j1Cs/sO0HfUBdSmRRyaR595CmqlTLHjw0TeD5nT4/SP9hLuRRw6NlRymWPBx/cxdXXbCeXS+PYOrGIeXrvIZqbW1iar3PfN+5lYGgwISZJMAwDP5CcODpLS1OBUnmCKK6TqE3qlCsVNCUYOTvC9PQcm7ZsRLcNOrvb6entxvcq9A308cSuvbS2txAEguamFg4dOM7Jk6dJZxyyuTyd3Z1Ecciz+w9hmSbHj52grb2VQj6LYZk8sWs3TU1N3Pnlb9PUlMa0XL7w2a9x+PARWpsKtHYU6Ozp4PTwKWzbQkiN79z3fVav7kPTJZouGqboieqekBKlCaI4AKEBCtuxEhqf6eCm05iWw/jYOP2DPTiuw9vf9Rf849/+E+X5GYQmaOnqZHZ6hDe/6e2J+bOMGB4+S61c5KmHH6Glo4277/oma9as59TwCb7y5Xt42c6bGT97hvf/3of47ff/v4kQkG4yOzWPplmUynMYdgteNSDyq1hmjE7Mpz73da7YsZ16qLBdF9PRQYb09vRQrdZw7RQ1P+JXfvlXOH1qmDWrB8jm0gRhwM6dt3DLrVdSqS3R3dlFuVSmWq7wuX/9AoVsAd0w+OdP/SM33nwtmVwKN5VCCJNbb7mdl932Gj72F3+O0iDWIv7mrz7JT73lDQg0tu+4krpXo7mthXoEUVhnYHCQj/3ln/Kq216LoUmCoEq97DExNsud//51rrlmB5/827/iC1/4Mm46xSf/6R/Y7G5i131P0Gr3c93qq7lq3Q6a8s0IAUEYJO9PKQn8CoalJ/5x9TKq0TeqlMR2HJJMvMQLPHTDIAwiHDfpzcymMgCJ4bamg5RIEYOIUErDNGw8308YFmGSfJOaQGkGcSxBCZSQhGHE9Mw0bjqdUBmlwLWSZb1qjVq9imbodLR1UvMqXLn5Sq5dfw1r29aTlxm29G7jNde9gu1rNmPYBrlMhmyugIhChJQ4jkHKzzB5dI5j08d5z6+/ld/8vV+jubOV22+4jdHxETTbQVeK8YlJapU6u3c/yejoafK5ArpUPPTQQywsLLBty3akDrquUS4XQfoEfszpM2dobetAScWZkdPccP1NDA6uYm5+hscf/R5dnb1YjovSTU6fPkXKdYmJkCKhc/p+DanUOd+5TMrFcTLs2rWL9Rs3YZoOxApDmiwszRMHdUzTQUQB3d39ieqlltBJy7UQr1rDdBws20m8TuMIQRKnCakSzBUGKKGIkYRRCUMTiDCA6gxBeQ49rOMVZxF+Ca88i4rqVCuJ5YVpJtYLmpmlHil0K4/UDaQG6VSOQOgoUycUglgp5pcWMUwniWyUIp3NIRRUa2UMw0roTVIShAFquQdfSDSlMz45h6F0bDPpcfb8MKGHKoGmTKI4RNNszo6Pk8u209zcyo6BbXSsb0VE8PB37+TmW28n2zmALmMuttJuxDXi0tN/0IhizqMsrhyXBU+XoX++VJAnG/SxS8XGiZWXbDDMLt2q9Nz2RaPQl8T4mpQJ8+xS8fMPgUh/Au5+jCMMww+uVMq81Ih58UImAOd4jCs+l/OfuxTt88WOc6brcULpeKnqnXHjzzkAe6HJ+POORun6UtW2F7wby8v/5wC75T1e/j1p0BUoTedtb38rBx+7n+as+wPXE0cxuVxmJa7jHFEyMRBCaRqantAdnUwWM53FTacb9K/l1uCVx7wC+DYMpi86kcuLxM9VkjVdY25uFl1Be2sGqRSlUpX3/e23uK5TsW51J+l0isAPqdUq6LoijiV1r8rC/BILS2VMy0YImJsrks1kKZfLOLbFE7sPEQQ+nZ1t6JrBmbOTzC/M0tacQ9cMalWfUrGIrhuEsaBeqyGVxvCpUdIpi5MnJ0m7Nu2tBSpVj7HxWdpam5ifL2Poycs/CaJF4msmBEpp5ywOkh6G5HwIKRg5O0rkJcAsigSVchXDNBFCAQIvjHBSKcbGpqmVa6Rch2KpSqEphxAk8xsmSgrm5xcIgwA3nU0o0KFHR3uemheQz6fw/YCh/k6kitmyYYgoChg+MU1PdzNx5DE3M4fl2mg61L0almlSKlWZny/R3dPCwsISqbTDwYOncNwUpuUwOjLB+OQsS4sVlkKXG7f0EschE3MVjL4riTSFDJcYGlpFNp2lq2cNBw/tZ3Con6uvuYrXvfJ2rr96O1dsexkPPPhtXEdQKpbJFQpMT0wzemYSN+PSN9BHW3sbpVKJublZqtWA62+4GjeToqevm2wuz8jZUeI4YHJykqFVnbgpi+nZMiOnhzF1mRg7Bz5dXZ14dZ+FxXnWb1zNN+7+LrVa0sPWVMjz7DMHGB89TVdPO0pzcZ08tUoJ3/fRDANNU+QLTWiajq4baIZGHAcUF8vkC1k0XaOzowUlYHRkgkJzlnQ2xVOP72PD5nUEgQeESKWhhKS9o51arUR3bydRGPHd+x7lVa97OWfOnGHnrddSKZcolSpcf9NVbNu+Hs/zOHTgGEOrB2hpy0Ickk6nGRrqJyLEcR1AIybEMBKatOdXUJpFHIeIBm0zZjmgUJw6eQqlDP79K/ezacsaHnpwL7/2X3+Xz//b57nuxmvxqh6eX0XTTe6++15aWtqRUpHKOmi6S2/fKqTS+f33f4RXvPxVbN68jr3PPE13Tw+aFvOa170R0zKI4pC6V2dmfI6xs5M8e/Bp1m7agCYFczNnKBfH0ZwCV167E93UkGIhUReOQybHhpkYL/HdB3axbv16oMyb3/RTXHfttVi2hjIzCBkThB5xpJidm8fJFUCzOfD0UfLZFkLfY8+BZ3n1K26npaWNM6fHMKXG3t176Oxs4XWv+ymUHjEydopCS4F//cwdbNywFtfKkMo6fP3ue1i1KvGJrNUWcaw0mzdtRjNt/uqvP0k+387jT+5lfHySX/rF93Hg0GG+8cD3+MXbf5nuTC87t96IFJLm5maIIpTUmJufw027RERYhoHSdeJINHpwJUJoEAbUPB/DSGjDcZR4u/oNYY5E6TEmjAN006QeeOimgWEYhGFESIBSinq12ng/JJWiSmUJJRSCmCBOBDlEgxaY0D9j0ukspXIJ3w+YnZ2jVEqepZ7nkXJTVL1a4lMXRWi6jq7pKE3Q19ePJCSKIgJCdN2gWCzjpFLYpsnDjzxANpthYWGGybFx4vmIAw8f4E23vJU1/ZsaYiUBu77/EIOrVtHW0kosYGZmimuvvA5D14lETF/fEKuG1hBEHrbhMD83h6kn4luWYVFoaiWIIsbGRnn6md2sHlqLH9SxbZP+/lUYtn1OMMR1HISIIRacPnWGQrbA5MQYUmqEUYzSNQKvjm2nqFZLNDc3E0Qerp1iYWEcEQlUg9Yoo5BYhiATUG5JSSwTJkrKNoAooWzGijAKk/ekSGwZoihACQ3fr+KVi0T1Il6wSOTX0ZWiXq+iGsJcihjP8zDiiJgaYd3jyL7HyWccRFAGv0IsReLZGS6/yy1Mw0WaLpl0M0o3Md0UCEWsFEgdIQ2UkQjeCCURsUgsfIgalcyYTMoiZSv8OKLuBYyNjZPL5pIKfBQlx6EcypUqI6OTCKUDMfP1SdrbW6jPnyDV2kFb/3o0wnPgLo7i85g9L1Xe/3JMq5ceX760kcTIz7HKkokrflziq+XIbmWEd+7bKGokbS6Ia8/bwZ9U7v6vHGEYfvCywG1FhiAMf3gp2ZXZhkv18f2wja0rl48uAHgvRgX03CzLlbMV2ZbLV9Oe/7vlw/rBx/mfW60TJNW6OIpRQlxkhplbdQXv+a0/f8EVvPOfEReA4iRdlMx34Tm45PlYmZm6APSv+DVuGEJHYaI8KDWNtOuyZ88BBnq7sZ0Mk5MzvHGLcy6DZ9s2lXKNXD5N3fOxbIszZyfo6GjjwMEzrB7qZGFhIZHuNxziCHRd0dKcxnHMRJXt+Ah9fW10d7YzfGaCoyfHaW1KY1kmh4+doVIuMTI2Tzrl0FRIoUkQUmHbFtVqsk3TNMjlMui6QNc1Dh8bo729mbEz0+QzJpXiHJYuE6PbBuVENsBytVJLehp0Qdi4zi3LpFIuYZqKWETEUYxpGiihSKdTLC4USWdcDFNHSjD0RCFz9OwMLS0FyqUaC/NF4ijEME1iAbZjJ9Q+28IPkqqm7ZjYtkahkGNiYppK1adcrdPT18bExDSu6SKl4sTwONuvWJU0+5uJL9XCQonQD0mnHRzbJOWkyOXS/Mldh3nXzk1Iqfj0fU/Ss3ojaSdHV98qjh4/QUtrL8WledZtWMdV11yN74ccO/IwxYWTDK5dy8xMxIYNeZRSOLbDkcPHyOXTmFaiNDc6Os7SQpHrrt/B4cMncVMm2XwGv15HCklxqUhfbzeFpiYKTU2cGj6LbVts3bKadC7H3n1H2bBxLcQRp4dPU2gqcP+9j3DFVeuxTI3pyRlOHDvJwGAXTU15pNLwPQ9BhJXOYhgGUmiohkAFRFimjucFEIXYlsXxY2f46pe/Tf9gN/v3HuLq66/izjvu4oorNrBp6zqCEKYmprEMhWlY1D2PyckJVq1ZTRCEhH5I30AXhmnhplxOnjhNe0crLW1t1KpVHrj3e6zfvK4hfx5jWhZhFHH08ElA0tLcjB/UkupwLIljBbFGQrM2GDl1lmy+gO/VMXSTM6fOoukGLS15pIhZtaqbSrlMR/uNhGGVG268gvHxOg/e9xAbV6/mIx/5I7Zs2sDC3AztLc3EQlCv+TQ157j3a1/EtVwe3vU4W7ZvpK+3l1y+iY72dv78o5+gv7efXD7LqRPDTE/NI0QiHuI4kqDiEXshlaUayrTIpF1OnjiGZaSolQ0mx8pksq18+atfZeuWbXR2tmHoGrbp8p53/SyKLznWAAAgAElEQVRve9s7eeLxXQz0dXL40FHuvfshHt/1GN+4++u89vZX8P2Hvk3/YD8dPa1s2rGDlK3x6U99mvf/3od42S07aWtvJ5vPU/dihAxpa2/H0FNcsXUrTS0ZiqUlHn7wId790+/mQx/4A179yp382n/7Td785reSzmbYt3s/O7Zfxf0P3M/6DWs4fOIoH/yDD3Nl+zW84abX8cwze8lmc4173CZsALvde59i7dp1KF0/B7j9wEdJQex7SC1KjNCjEBBo58SqEjEhpTTq9aTfVtMVIlbEoU8Y+SghIYoTqrHUkjgg8DFME8/3ElEr3WgklkBJlXjxxRFB4GOZJlII/MjHttMoqRgfG+HQs/tYtXoNuqYzOTVFOpdCREk/ahAGxFGcqBsbBrEXoGkWumVg6RaBH2LZFgvzc6xZsxbDsMnlmkhl8gwNriKTyeG4KaLQR1M63/3Ot7ju+huZmZlh777d5PPNrFm1ln37nkIqRRCHuG4K3dBQOsSRRNcFSmgslcvEwEPf+w4px6aru5vVQ+vQlI6SCk0pqtUylmVTq3tIJLqmqFdrBH4dzws4O3KWnr4BdN3E9xIg/eSjj9Ld10M2l8GyUoRRwDP79tDWUiDEJ5vOcWr4NNPjx8nlU7i2ifCqVHwfQ0VkMnm8+iJRBFGsiCIPSOx2/DDEr9cxNIlXqyKiEnpQQwR1wlAiZdSw3NGp12ropoHv15OKmkpEokwrRSqXRUlFFAdJVSjyCfwAQ9OQsUcY1KiV5xEyJKguASFxFBDHAZaVplQsk0pliZBYysRHYuomcRieU+aNGxwpqRmEUYiuBKZtouuSMEoiLqVpnDh+hqmFRTZv3UF3ZxcLS4ukWyTZQoH77/wsV+x8GYWOgQQUL1fuVgh/QKJWykuILy83+0tV2Lwki2y5ANKYolYI8K2MPZdT/8uxlVwOrYQ4L8RK8NrKQkPSPRevnLYcG18I7n5ExYWfgLsf4wjD8IMv5OIMwyQrdCG4+0FVP7Hi5/JnpcDKSkGWC5c7b93PQw19vu0vA9ZlH5aV23sh41Lg64UBz8uci0t8dSka5g/DcX4pYzmXk9zkidDMyqFpip237OS3/vCTvPbqVc+7nsuJvLygx8RKdctz8yd/+553Tq1PwDn65soDqJZrSdZYiEaAIWhqaiKIBIvzi3z0mwe4dX2WmfliooBpmMRCYhqKpaUyUiTm69PTCwwNdOLX68zOLdLSkkdpOlJIhIypVivUqh7T0wv09bYSE3HiRNKn19ycIpNNqDKOJUm7Bn393ViWgRAhfq1GOpunXKrhODblShVNCDzPx7Et6nWPfC5NuVTDdNKMT83j2CZj41OYhoFumkxPzuDVawipOHF8lN7udoQi8SeKIfQT5atSsUgY+pSLFWrVKqVilcmpedrbm0hnXAQx87Nz6JqiVq0TxwlYOHJ0hOaWNELEWLbN0mIxUcmLBaWlEqZhsLRUxrITVbVapc5SsUzfYDeF5jz1aol8Lsup4Sm8eoCuCXL5NGEQJFYUUfJa8j2f2bl5PM/H90Ic16TJMFi/pp96rc4/PnCS9777negGFMuQyWWZWygiYp+//4d/ZNP6LTzyyONcsfUa7vjSXRw6PMrr3/gG7vvWM9x882rCKOTQM0dJpV0GV/UzPj7NuvVDpDMuExPTGIZOvpAnDiNsx+bb9z5IveaRy6cJggDDMNF0xdTYFItLRebmF7n2hh0UFxZ5es8h1q8f5Mjhs3T35Tn87CjrN/bQN9BDT08ngR+yZ/cB+vu7UUqx65Hd9PR3EwY+Z06PJ3YVjSo2AsrFCqViGTflkG9qoqe7lVMnz9DW0cK+vQe47eXXUirOo3STxx/dx9btW9n9+D4y+Qzfvu9BvHqdgaFBHnrgMbq6O5kcHwch0HWd2dk5evo6iBEYusbqNQNomobrOuhGAuD2PrWf9RvXkc6k+d79DydedsRYrp6oporEMiOp3AQ4boqpySlc16VUXCKXzyJEEphbtsnPvO+v+el3vAld16h7HgER69Y2oymfW19+K7mMy8ZNaxkfG8F2U2SzBWp+FYsKQpP8l5//RcYnZ3EMi/f93M+wdu1GPvtvX+Q1r30tpmWhK40v3PF5nj14lJ237qQ0N4Nl2jy2ay9KZpkrzlAoZMkVCkils2f/fsYmx1i1dpAv/dsXSaUshgZXEccGYRBy0003YBomXZ0FiAP2PvU0jzz0OK+4/Vau2L6V++79FtdddwX9q3rJ5HIYlkvk1TA0g9/+n79Dc3s7//r5L3LV1dfxmc/8C6tX93P33fdQq8Y4lkuuYNHR1cK2TVv5+Mf/mt/4tV8hDOq0t/Tj2AYiDunuGURp8PR3D7ClaxsDhUHa7GT/W1tbGR4+QVdnV0KhFZIwDDg7MsKaNevQlCIMfJSUDa9FCXFEtVohDj0MzSJEYugaiBil9IblScJSEUIgdYnvBUnoJxKVU6PR2xUTN0TXEsXHRPkwBCmolCpopkIpA2RCD4viCE3qeHWfIG7EDmg8+cRjbFi/jqbmpDezXKni2Cl8r0wcC0zbQYhGolEldM/Z+UVGx8Zpac4zv1Dk8V27aG5twbZMikslNMMgBpRhUCwukElnkkRfFHLgwNNcedV1IJMqTmtrO3t2P87ZM2foGxjCdl3Onhnm4MFnyOebCYI6tmETEXP8xCmaCwnVtbenD8c0iFHc96276OsfZHFpEdNwEnXLWgXbTnHw0AFy2Ty6phPFMZlsjubW1nPiIl69jiYjKqUquaYCdkOZUyFIpwwi30coh+LSDJYlaM6niH0P/Bq1cplqZZqoXELEZWIl0HQL0IhF2KhoyaSvTUg00yYIQ4KwjFQhfhCy/+BZOjuazr2wtQZFUmkGSmrIOEBEijCoYSsJWnKd6Q0FZYiJiCAMicOQKBYEgUSPfaLAJ44aVdagjqYEUeQnlMbIJxI6XpAkDHRdIwhDNC1JLMaNa0sKHamSNgQRK8IgoRjPzS1R8gPa23twXJcwDFm9tQupmTz0zS/ztl/4BWIje17ljoZK97kw4YIA7AfpLryQ8aPo4bskgGsAtWW7A3le7Jn8PK/+8PxrP2/ei463UQBJqhnxeTHo8x3biynA/ATc/RjHZXvuVoxzQioX/Ke+ELpmFEXPgbznoWNeOMQl1v18813q6l65jUv19/3g8VJv2hcH7n60235pY+XWpBAXgTshwHUdXv+mN/G/PvEVbt3Q/ILXd7lpF88kEhDfwHhzM3PMTc5BFKErDSGTh/3c7DyO45y3UoFA1w0mxqYwjSQgqVQquBkXaQhOnTjD/z4wxbtv6SGVMiAMWFwq4qZtZmfmqVTqeDWP+x/aT3dHHkOXFEs+XV0tLC4uEHg1DFMxN7eI49hYpkV7e4GYkGNHR+nqaKJcLhOFARBRXCxj2SblaoBcptgoxfHhUdpaW5FS8uyhU+RzaUbHZ0k5NvPzi7gphyPHRunpbWduboZcJodpWihNx3JcqpUauWyKKABdN2hvy1Mpl1CGzfDwBC3NBUZHprBNi6WlpK9obHKG1rZmdKWzsFginbKZny9iKJ1isYJpGpw5PY3jGAiZVCYtW0PXFVIkILle8xgfn+HAwbNk04lPU63m8ehjJ8jnHfoHuhpy1wKBxKv7REGUAGMVcfTYKG2tTfiex73f2cP6Nb08e3CEgYEOnto3TMp1eGzvMV59+y14fh3bcnh2RuPaa68iCMsUF8qk0zq5rIvne9x4w80YhsMH/uBDHD12nHe882eolCQf/8Sf8d9//Tf4uV/5IO94202UyyU2bFzPqdNn2bh5I4uLC2QzaR7+3lO4aYvBVQPMTE7jZBz6B/rxfI+W1iZKpTIHDxxmaGiAju528oUc2WwawpDFpSI9Pd3opuDpPae59sb1ZNJNZLMmhw+dJAh8gsBn7eaNHD54jD1PHeT6ndeRcgz8WoXZ6UX2PHEAwzJoaWtHaTonjp2io6ODSnkxsezwfQpNWbKFDJu3bcS0rcREXDM4sP8YHZ1NOLZBe3sHGzYNJQqhmuSpx59lYKgL19VwUjlq1RqnT42Qy2hYTooHv/cYXb09fPWL38B1LTLZNKMj44yOzLD7if1s3baOju4O7JSLbjjEoaBcqiZiKpYBsc/sTBGlKbIZB6UEheZsoxdLUqvU+K3f+Vc++fGPU6/WOXp4GNNwePTxPaxa00GoCkxOT9De1UUoIJ/PY9ou9ZqPbZsY6TRD6zYQC43Wtg68ygJveeNraO1op+LVaW7K0d/fiWFIbrn95Zhmis7uLjKZPGjQPdBPJHX6B7qwHA1inYnRCXq62unqaiUOfdqaO1g11M3ifJGv3/UNVq3qZn5hiq6eDkrVGk4mR1tHPy9/5Y00txUQ0uLAs8Pc/upX4XtF/Gqdkg9aFPD3f/f3mHaawb5urty+jYW5Ga6/4VpKpUW2bt3O4cPDFLJ5ZuemGR2Zoqmtk3vu+Rb//C//wpve8ka++qVv8NG/+Ag7d97AX37sk3zsH/6GX3/7rzI8PExrSxu5bJ629nZqtRpNTa1YtkVMhK4ZiadYGOHYdtJPNj5G5AfYpp14vwmJbjkoTXHyxDDZXCGpmMRhIgBEUs0IwzBRRgVELM8lcD0vTJoTZIxpWsRxo39a1/DrdUzdBGUiRYyh29T9GppmghBomsHevftobm5K+noNk7nJCcbGhlmzfhOWm6ZeT0S0nnrqKQZ6OtENh7Ojo0xNTpDLZlAqSeW5uQxN+Txh6DM5Oc+OHVckNi5+wPTMDMXiEoVcFr9exnFTgGBpqYhtGhw6vJ/mlnbSmTQp10UIWL1qDUNDQwRxSHNzC7o0sG2X7o4uPK+G5doEcUhbWxfjYyPJ895xCGJ49OHvc9utr0Apieu4oBRCkyAUhozJ53JohkEoJBMTk2SyGYjD5FiimKef2UMsYoZWr8Y0HOLAp16apTw/j1ebp+Yl1E9Hj8mmLAK/mpi66xp7n9lDT9cQ9z2wl/7+LmRYR8kYiAjrMVI3iKVC0zQUglKljCEFUlaJ6z4yFrR2teHXywghG1VeAEmMori4RCjg2JFhRiZGWCwHtBSaEtGWGGIRIxoiTVqjQlz2Qh55Yg8DAwMJ7VKAUgp8LxFTiyPCKEQS8vD3H2V+YY729lYiogRAxM+996M4YqlaI4jB0CVzM5O4bpYgDlCazdj0Av39a9D15Fn4xDMPc8U1VzB7eh9br99JbF4C3K0IulbSMqP4pVMq/6PGxWqWnAf4zv/mpYG7ize6wvtPcBGAvOQaX8Q5+wm4+zGOy4G7ZVAmztV4LwGuLpy2ovqyEtCtNIm8WDDk0mMlcBNi2UzzgvlXlKLP3434ot8vf1GKCz4Xj4sB4oXLvJCqXvK5+LSt+A5Yab3wUsHeS6G4JhnG57YtRJL0XN67225/GX7zOt75m3/Kjes7yDjmZc/Cc/9ePrbniAIijs9NXaaRR/WQR7//BLrSqZU9EBGGoVOv11mcL1FcLFKre2RyaURE4wW1rPgEJ4+fJpdJkcqmsWwLgWBidBLHMvkvL2tGKkEqkyKVcfGCANu18Ks+o6MzuCmTq3asxXV0TMcmlbLwqh7FpRr5lkxi8Br4pB2LybEZDh4dozlro5TG6dOT5LJpctlMI5v5f9h78zBJ7rPO8xP3mXdmVVbWXV1Vfbdaakkty5ItWbZ8gWUZ27IZBmaBwWsOg8GwMDuAWRgG8Ai8yzID+8AyNtgeY2zZkg9ZknWfLbXU6vuoqq6u+668M+PeP6K6u7rVOuyFx/vs47eefCoyIn5xZWTke3zf79cllU4SCQKKJKCoKk67jRAFhKGMaegkbBnXic/v6KlzbNs2wOpqlY5ChqWFNVKpJMmUxfj4DGOTixSzaVZXyhiGRr3ZxLYMJs/NkynkCFyPbCZJs9lgcmKVqbklZCWusnSXOmnUWyRSCSzdQBRDTEPimQOnMfRYcDydSWGoBs8cOM7gYInyWpWlhTUaTRc7mcRptnFdh65igs7ONLPTq2QzFh35FKmEjus0qVZrBB7MTy2i2xZ2ykTVJURZpLOQY32twuJSmTffsAfHaXHs1DTbt/ajiAKZTIK/enia9998NYoS91VJXddSyBcwTItEQmPizAyCohA6DY4cPsrIli088dgTbN2+nQceeICf/Dcf5B8+/0W2jozywrNP8k9ff5Zf/ZX302qFhIGLrgYceuEwg1uG0AyJZMLk1Ikxevp7kPCQNZlCZydEEqah0j84gOu1qdWbJFNJdFPHtG0yhRyyJPPywePc9o5r8QOJB7/7KMVijmbTZXW1zrnJWfp7iywsrNPRmadUzBKGbZ564gjbdo3Q09PFSy+eZGCgB1ESOH38JFu2jaJZJmxAJednF/BdH1VTqVcqaKaOgMzkxCT9Az20Wg6+36ZWa5BM5Xjm8RfYuXsL5fUKtaqLbcnohsbTjx/h+jdfS+gFZDNJjh87jmnoDI/2QyQgijLVaoV3vfdttFsOlWqFVsNDEuCx7z3JwGDPhmBx7MSmEibf+85D9A4UUAwNUYjFlyVZ4RO//vfcfffdKEoSkTotJ+DvPv9trt/dhW3k0BSLRDaBH4AgqgiiRqW6gNuq4zRqKILKPfd+l8GhEb73ra9RbzaxUkl+61O/x3/8/d+kb6AXQRCoVKo45RrbtnXj+h5ufYW6U6FZbXLwyRfp7Svheku06gGFXA+C4BHhQSSSL2QodnfzR//ps/zSJz+B2/IY2jKIoImEQYQsqvzXv/wL+ntLFLp6ePbAc9z/rX/mLW+6GU0DTbH4N3d9hMOHx/j4x36J4eF+/LAda2kaNvXmGtlsgRPHz3D11dfwd3/3j5iWiiqbaFqCf/7Sf+d/v/s/USiVuO6Gayl09HDfvffy65/8HU6dOcF1w/vIpLM0G3U8P0Q1NCQBjh0/Tk9fP6phxM9MhDhh4DiIsoJhWui6TiSL+G6TIIwQJJFqpU7CTCBIcV+c5ztIkgJh3PskiHFQ53khY6dPkcvlIIwQhBBFN5AkFcdpIatx4CYEEZKiESEQtusomk6jUYYgQNaMuJcvjOjs6EASIiIJEGTMhMHg4Aj1cp3aeh3D0DENk1JXJ0Egs7q2TERIJlPAMnWCKCZjFDe2d/ClQ+zYuR3fdRFkEUlVMDWdXC5H03HQDRuRiFajRa1WwTQTBKFIqbs77i10WhimiazriIqIpetIooCdTJBKp3H8dtwH6Psoosrzzz+HJKlYhoqqWwgyDA0MxtIRQkhEQOgHBL6PEJeJAHBdn4ce+DYjIzswDQ1REDlx7Did3V309vdhqApOu4HfqiDgxfeFqaPqFulMAd9r4tTWkcTY39EtGz+I6OrsQpAFfKdCLp9D9l38CGisQyKNpplEhMiihO830USVUPJRXY+27yFIEVIUoKj6hrMfEYURASJPHDyEIJmouka1LbG45LF12xbOjk2QzXYiygFCEIAvIkoRbTfWqpMEGOztRiBCJCIIfCCIoX+CsCF/AL4XUOzsIJfObFSVA4Iw2kgYSHECPoQXXjqGLCikUhaNWgMjmUSVRBZrDfK5Lhq1JoEXYukaXz3wAPLSIuXaMje97yOEvkAoqJxvLNnca/dKFBZvyAe9dMy/biB4JR/qise3scIF/3CT7xgKwgXOhPOkKXCB+YBLwrzwInnhxs4uriic50o4v8NNFcYNP/iNSHr9KLj7IdprBXfRRkC2uYJ2OaTySjd8uGn55VDIN1Tl27zOpulL9reJxXNzrmHz9HnGMHHjdaXq3RupIv5LSDlcbq/cjXDplHDlZd/fPn7QcZe93zQdCTFM8667Pkhm+Dqk7j2U9R70gX18+Nf+hMGCRSmfvNJWN23k/INDuJA4EEKYPjuNJIr09pXQDRNFkUhm00iKiqrrtOoO6XQaTddZnF/GtA2iKIyp2jeydKVSJ5qhxU3bAgiiQCJp8+//5jE+eGMnghjfJZ7rkUwlUWSZarVOV1eWfCGNICk4rSaqFLFerjI+ucDoyBBBAIQxI6jnORB5caa/XiOZNOnoTKBqcly9aHsYlkaz0USVwPE8LDtBq+FiGjaGrjN5dhbTlPHDiHqjyZaBLsrlGrqmMjG5QGdHGtdpMTu3wpYtveSySUQgmTBRdAXf9/Edn0JHDkSBeqWJbuiYpkk6Z5DNWnSXCtTrbRw3hk0ausq5qXkyWQtRkil2FpFlEV2XkVUJx/fIpi2ajRbHT8yQTtmcnZ5joDfL1MwyPd0dJOwUC3NrpFIG8wux5p+uqSwu1UhlMrFAfbVNImUShg6iKKBqMsdOTmDoKqWuPBCxtLTGQF+OoyfPsn3bAKom88SZFm+/uhdVkzl0bIKrb38/miYThhGV9RVqdYeOrgKVtTqyolGvt3n/B+7k+NHTvOed72V8fJLOziL7r7+BU6cmyNgp/vpv/4mfuPNmJienMW2THVftBkRyhRyiKNLT100qk6RWq2OYNitLKxw6eIRqrUat2sB1HTRNRpJiaKKqykRhxJlTp9m9eweNZgPLshjdNoTnB3R1ddBqNDBti3zGpt1usnXbMAuz8xw6OMV1bxrlvq8/QqvZZsvwAFNTM5RKRXr6e5FFaFTXkBWJ0A9x3YDJswsMDQ/w9X96gKGRIVRNobevG1XTOPTiUTo686ytVzl1YpIto910lTroLOY5d24a3bDwfY83veUaTp4Y56nHDjJ1bo49V+8iYatkchkmxmZ46YXj+L7PyvIyybSJ63jousra2hp79u6ItbZkGUGUN2D0Elt3bkVRLQRRJYxgdmqGT//hfXzmT/+MwG8RSQKz587S0zPEw488ybtvv41cRwGUuE+MSMCptzj08mEWZqs0azXC0ANRZqB/gJPHz7Blyy5mFqa55rqr+cCHPki5vI7r+EiiRKPRQFUTqJrG4RdPImOQynVgmwZC1KKzJ0OzYuL5VdpumSgSUKUElpXBcdusLld4xztu5eVjJ3np+QNctXc3giQQhG00Weaqq7ahaTKaYdHbM8hPfvgjVFsVNMPgxMkz/MxP/wzf/c5DjE+MsW/fXiRBYm5mmmxGww8sQl/EMlP85m/+Nu951y289ZZb0QwdgTY33nQjZjLJo488ytBQN5lkgg/d+RO8dOQwD3zlft7xlrfjBw5EItPT8T2tKDLFYmcMdfMDAs/H9Tx8z0OWRQJAlmKpAklS8MOA+bk5EokEsiihagqyJNBqtQjDCFU1qNdjqRfP9fE9H9d1KPV04/sewUZlL/SdGIInCLG0hh/LGfi+Sxh6cd+fqqEoOrJiQBTiug6qosS9VbIMQvzM1ESBSnkdWVOQDQVZkqjVayiajKKqTE2do7urj8X5OXzfx9AtPNeN4aCSTGehyOHDL1IqlaiUKxv9dxELCwu8+OJz5AslXj50CEGS6OntodVqkc1mmZ49RzafQzfM2A8IfFr1BqIkI4hxACJEMQOoKCvMnJvB9T1GhofJ5TPU6g1UTWdhdpZEIkkYBIQBsY4dsY6voqkbLQFiXLXfuh1DFxEEnyjwSVg2kdeguT6P5DfBdwiCiPGJMTTTolItY1o2h44cQI5AFkJUTUWRFVptF0k2cH0f3w/wggg7mYmrqIQgazz91BMU0ga6niSSZEJBJPQcJNWgVl7Da7fQNTUWPo/iNhtJVnEDnxMnxxgevZbe/q1MTCyh2wmGRobo6Ojh0JFDnF1pkC/0cGZ8koX5VUzTQhUFDhw6SHf3IAI+shRtkKRskKdsBAEXAqsoRJIENF3Z8DFivWJNMYCIIIoJVvp7imTSNgiQsCw830WIBJ57+TiaapNIZih0dFKuVLjxx/bj1xcpdNpsuepGwkjcSPZf6q+dLyqE0ZX8rv8/2CYf+VV8tyt6sBszLwnuXrnJy99csNcjqBEE4UfB3Q/TXiu4u1Jm43WDoU1jLodGvm6wsSGavnlbr7Wv81jkVxw3Fyt94qbK3pWO641WEa9kP+i4eOyVjnrT1Gt8ua4IT/0+KqLf77FdHtxdPt80DURR5CN3fZDePTfx5194mBsGrcuP+gr7iclupk6fI3B9svksesIkDAExbkz3vZCTx8co5LLYiTgz6Xku6WwSRVFiEW9J2thDFB/fedrijX9+GOI1Ztjdl6NarqLqGq7jIgBTU3P09HZh2Aa+6xH4AZKqUa81EcU2+UIKSVFYXFgl8lqYiTSNRpNWs4Wm25iaRkCEoduEIai6xvJqmYQho6gKqqFj2ykaTYexs/N05FPMzS5T7MxgWRqyLGMYGuVKjdAHQ9eYW1xnaEs39UaLhGXw4stnyGcTG9nNEMs24upFNe7RajsOiYRNrVZHUVVOHp9iy2CRZrXGzPQcyVSSnp4ijUaTuaVVMmkTO5FAkkWOnjhDFEFHsQNNUnDaDsm0TbGYIZGyOT0+z/BQD4ELE5MLuO0Wiiah61pMIJG2UXVIpVMoqoIoh0yfW8X3AzKpBL4ff86GpqBpBqatI0kii/NlunuLlDpzNOoOU+eWufPW/URRSKVS44tPj7F3/35ECSwzjeu26OruZa1SRtdSfOHL/8T+G67n7OQE20YGeebZp7ju+qvZOtrPs889y9DgFu54353s2NHHo4+M80d3f45f/Pj7kESJsVOnSSYMDNtGVRUq62touh0zV0oy62tr7Nm7h0qlSiabxmm55At5JsYmmTgzSX9/iUw2DYKAblq47RYryyucGZ/h2EvHURWR3dfsYXVlBd3UmZ1bZursEm+9bR+yopLJJtENhWJXJ/2DvSAEyKKAH7QhkqlVGgiixCPfe5a3v/stSBKUSgVefOEwfX0lVpZXSKVS2Ambmek5tu0Ypqung1wuh6qr+H5Au+2QSidJZ1M0m200VWZ5cYlbbnsTyXSCRt1hZXmFp584yI/feQvdPZ2srlUYGBjCMHVOnjhBf38/UejFOldeTKbleT6SJMe6jQi02w6qKvPRn/kL/vIzd/PLv/jL3OMHcRoAACAASURBVHXXHSAaWJqKldC5Zv8uspkkgiQiqxah6+C1YxmQ1aVVtu/ewo6d21hbrXD8zBr3fe0eZmfGeOvtt5HP5UikLKq1CoV8iT/8oz/m9nfcTjqVIZQC1lcXePA79zM1M83cYpXe7l5UWeTUiTkyWQtZi5AVEUKNMIJWs4xpJfi1X/0U1++/il/6lU/yKx//OO1mnUQ2iSJr+E6E23ZRRBtB1hAknyhqIKsGgijT3dtD4AU8/vgz3HLLrezYOUogQSQqNB2B2ekparUKvX1FbrvtLZw+fYx7v3E/u3fvZG56itFd+/jt3/ljvvX1b7F1dIh0SiUMmiTyIg8+8zS37n1b3FMcRKQzOURJjOnYBQhcD6ftsra2iqxo8WfjekiiwtzcPJqqoWkqoqxgmxZey0MQRWr1OtNnx3n56AuMjGxHkkVEETzPgygmcvICDy/0Ywp9UUQUQFZjiYwYYhc/UGVVQSCK+7AkhSDwcJ0GrWaDKAJT1xEEgbHx0ySTWVzHw/McDMtAkCRkQaayVgYknnvuaXp6ewgJKRa7mZ2epavYRRQELC4sE0YBqUwGWZI5eeI420d3gChx6MUDpJNpnnz8cfoHBhgd3Y6iyCSSaYpdJRYXlzBNHU3TkFUFTVfw2g6xbqpItVqLndoohp3KqgFiTBaTz+exbRtBiEnYrISNrIikLBtJkREAWZXxfQ9ZEBCFiMBzECKPwGsjRB4CAW67jiyITIydYmlpBtvQcNpVZEVFUjXmV9awk1kkVWN9dZmUaZLUFdptB9PUsawEgqSzsFzh2Mlx3FDGsLIcP3WOqbkFzp4dp7/YgaCppBIJNElAVMWN5LqKJPsgqCiahCIGyJKA78f6pKIg0nJ82k7EUkOmp7sbQRDJdmTpLHTgthyWl5fZvucadm4d4oWDx7HSEmEUomoSmi7SUehGlmJyr+h8sl0UYgIvVcX1XQQEwtBHluU4WRAERFGELKvxb7Pr43pxP70oSniut4EQiBPzgqTEouayRTJZpO20CKMAw7BoWA3yho/nVxnafXM8RohigpHNfijnW3NePbj7/xI88/u3Hyy4Oy8ldTEAj1458JVvNo1/7WsmShKiLP8ouPth2ev13L0a+Ymw+YZ4lQ95s2bdlUzgskrdG/iCXR6oiaLwqoDizQ2z58fFTeGbWIjeQFXuiqQnb+RYL4M3XhLAvTImvmS9zSyTF5fF2zvPGvkvEchd6Tw33l2cv3mdTa9Xsze/+QbCwna+9pUvsaO/cxMgkwsPEAGRylqVdr2JYSeQFT2uDmwEaEIUIcoKvtem3ojFcl3XQ5Jkms02hhZrwsnKecKHy47tQoUXPvqn3+T3Prx9I9gXERAhlHDbLoHn0Wi2MAyD8vIqshSg6DqGZVOrtsjl8yBKBF4bUdSoVqqYhsZ6uU1ClyiXV5DEGIYiGRqSJJJUZZxwo0cVhdm5BWzdJPIDHKdNKp2k0WgxPbNKNp1kdn6FczNrGKZIMmli6Cr1WptU0iCVzZBKaNTKFRptj2whRxhESEKEKAYIeLRbbZaWY4Fu05LxnAaV9TKpTBovkinkU4RC3Dcxv7RIb6nIqdPTZFJJWs0WpWIBry0yPz9LobMDPwgRRR/T1ukvFTnwwgnshI1paNTqLUxdxTA0FuZWWFhYIZu1eebZ0/R2dcSkBV0pECImJ5cwDQ1dVzg7uUgyYaHrGuXVCpalMT23SkdHGkmBfCGFomZ54cXjjGwdwFBFMr17sc0E60vL2Pk8qwvT5PI9zI+fwLJUBgZ7sBI62XQn6Y4+6s0KhY4OZEXi6Imj3PTW/QiRyVe+8nXe/c5buf+Bw9z05iGmJhcodBQJo4BIlhCRqNcqlNeqTE7Oks2m0E2ddCZNo1Hm6ccP0Wg1yHfkGN4+wje/8RDtts/RwydQZYVqrcGzTx+ikEmwZ+9Wir1dtNs+pilTKORZWlym2Wxy5vRZtm8fIp20SWXTfP2r38E0dV547gjD24ZoVMo8+J1nOD02zY5dowwOdW8Iw1fRTZvOYgetZoNv3/sU2WyS5546yP4br+bEsVP09/XguhFOuwUC1Cp1it0lymsVHv3ec4yM9rNj9yiiqDB1dgZNlyn1dpO0dSbPLoIQ4TouTz3+IglLYtvOnTz75PP09ffFVR9V4v77HmBoSy9Oq42uiTiex1OPPslX7jnCf/nTv+Sfv/BVPvYLP4XrBDTqVRRVRpFEyqvLGFYKUVBpN3zQXJoVlyCE0lAXhCFL04v8H5/9Sw4+/yLFrgy1aki9MYGil+gs5lE1icb6PNe9eT+mbeNUy4yfmqSrMEDv9hLbRrfz5S/9Iw899D0GB7exZWc/TtAmkUki6zmmx85Qr7vMrrjYhsp3v/UNPvDBj/Lmt9/GN/7Hl+jtsLEyIaJRwGl7LMyt8Buf/M8cPXyAfVeNoFkZ/vq/fZ4bb7yeMBBYmDvNrtE3kUi5+H6TAJ1f/bVf5Kfu+ii/8xv/C3e+/w40QyUkYOz0BHd95E4sS8FOJvn93/1d6rVVdu8ZZcvQCPd8+1FufcdbSZk6k8fKjPaMIoaxblmj1Y6JMVpNWi2PxcUVqpUqpVIXnuei6zrnzp4lnUkTBB66aaPKsXh4q9qkVimTTiSpVit09/UxODRMGDn4TovI89AUg6XlJQQl/m1PGCaSYiCEIkHkEwSxtiYbEixRFDMqR5t+92PmRRlNN9EkjSNHj5ArFEjn8vhNl+X5BbJJE9cNCD2o1hpx9cdQ6O8fRBQkQkKiUMSwLBrtOoIkk8xlSaVSBO0mYRSRy+epVFYQRYWZ6SnajsP1+68mmU6DJKOIIs8+8whnzkyQTSWIhBDLjp85UQiNVkyaJUQiy4tLKKqBZhsEgUO97vLEkw8x1D8IonohcRwFMUmI5zSJQi+uZEYQ4hEFEUHkEokSiiLjumXE0EcMQ4LIJ3QDzpwcI5NM09uRhKhBwk4jyhG+2yZlGZiGhpnIEvktQrdOvb5OeX0NS7c5OTnJieMzJPIJstkuBgYGUTSbVCLHwOAA5TWXQodNu9VGJkDRFHzPwZRkBDuBLGoEvoukGIReg9B3EFEACV8IOPTiEbxIYnBoJ54fYFsJGs0miqKQzmQQRBHLTjB59hxbt26jkO5mfmmGpZUKoahRXmlgZfS4YkyA5As4QUQQtJElBUG4iJYKwwhZlBACEFSFiJAoDBAEAVkW46AkCpEkJRa694JYI9APCASJ556fYufureRyeURBRBIi6ukch+/9G95+18excoUNKOFFxNl5X+YCPHOTVt3lftMbSZi/UfuBfbLNclsIr+pkhVwZesmloy9Nyl+Yd/Hv/DzxsusUT4vxls9DNDdQULGf9dpFkvNwTUEUfxTc/TDt9YK7NwJbfL3g7tVudIE3Rshy+ZhXHM8bQE1eyGBctr9/DcjlhX2+VnXuNU/58krdK5f/a2SaXutz+n5NkiR23fgOPviJP+ZDN23l0nMXmJ1ZoFapY5o64xNTqLKEYWo4bgtR2MjieT71aotGo81jTxylu5TBti0C3+fw0dPYho4oi4RBgKIql58MAJ/8mwf561/YDhEEvofb9pibWyRwfRqNFp7voSoqzWaLlZUKqiLh+CG6ruI6LoZhEfo+9WqVZsvB0FRWVqvksimOnj5Hu9lifmGVdCaDpunMzyyxsLBO70AXnuOyVq5R6kwjCDKtlocsKywtrVMsZil25VleXicCBvs66SzkOfDiaXJZm7VKjVw2wezcMgnLwPd9uroKVCoNlpdWyXekOHpinK5iJ5OTy1TL6zRrdSwdSt29TE2vUKs6tNo+xc4ULx06Qy6bZEt/EUXRgYhU0sZO6CBEyKqMLAkb9OoSjuPGjJ6WST5rkkzZnDwzzehwF6ahYyUt7ISNqookUgn6e4qsrK5z7MQkEJHLZXCabU6OzVDqyvLswTPs3DEARBiWSa3eIGFayHJMzf4HXznF7dduo9CRwTQM/td/eIL3vvedWJZOKp3g2JHjrMwtcO+936FaWWXP7j3Iikyz0SSd68SydMZPvkyrJfCP//BFPvWpT9FutpEVhcNHj/Abv/6r7Nw2wuREm9/+g79i19YC3T0lymtlfNfn5PFxEskEwyMDpDPJGLrkBxQ6cvQN9RFGAY16g2atzrX7r2Fmapbung66Sh1YCZO+/m5WFlc4dWKM3v5uREnGMk1mpmZYWloh8D2aDRdRjFhdXSWfLzA00k9XVxf5QhZNV5BFkVMnz/K2229CkSVc10U3dAxV49lnDyKIEpoqsf/GfVTKFfbfuBdNU1lZWaFcLpNIplEUGUWRyeSy1CoVzpye4JbbbmLs9ASZTJKHH3ySarVBFEaUekoszC8hSTJhGLC8tEJ3X5HR7cPImkp/fy+aFou2+0HAyPAgkizxrfseYnCoj//7c/cTeqN84I53MjM7h6kpjGwf4LHHHqVUGqDd9kilMoSItNpNVtYWMW2RcrXG9Pg0/+3/+ltuffstzE6N85Uvfx3Pjfi1X/9l8gWbB7/7ODfdtJ9iVxcvvPASnYUuLEshmcrze7/7ad71rtspdnZhJr24GhgE7Nq5G13TWVpa5JprrkdTdTw3RJVFRATu/vPP0tlRpKc3z4//2O3IukI6k+BtN9+IqZuIioUqishRyH/4rd9m97U7+Lmf/TDFUhE/EsikUuSzKY4fP0G1Os8ffPozvPs976C3dxRD93n/+38MSbe4asdu8oU893/3frq6u7CtJF1dRZqtFk475G1vu5U77nwfI8Oj7Nx7DfuvexP/+Xd/j1JvgZHEbur1OuemJrDMBK1mC1mAmdlp5hfmqddqjAwP881v3sfS8gJbhkcwDQtFUbAsK66kKrGDPDk5QX9/L8889wTLK8t0l/pAiDB0g3qjxWOPPsjg8HCs7aZZhH5Au9VAURXaXgNds1AVBVmTEJBwnZgkw3EcEATq9TqmoSNIEpIg4PkBjzz6ANfsuxZRiiVpCNusVlaQdBnfj6UTvMAlEgLmZ+biCnMqwfMHn8KyEjz11PfYuWM3QiTyyKMPMjs7w8L8FNlcB5Ik88j3vk2pp5+R4a1kMlk816PVdoiIkBWJ0dHtDG8ZoVov02w72HaSSqWCZVrIkoqiKPiBR8ttYiUsNEWjUa6zvr7C3j1Xo8gioeDhuU0Ct4HjNAkjAXEjeBV0C1HR8QMf1/OxjDRh4OF7TWbOzeL5DoIUIQoKRG06ijkE2siSSBD6cWAYeIAUO8qiTNv10ZWYjbndbBGEPqlMktX1FkOju+gsdmNZKWRF4czpkwwODuH5DiM7dlNeX6HVCsikY5bRdrOOIgi0wwhRVgnDKKbUF4HARRLifnBN1anVm5hWBiuZwzQNvMDF0A1c10UQBQwjTqDapkWj2cA0bDKZDPVKFUMVyRaynDxynHQmiSorREHIsbEzrFaaFDKxzAqALGtEhIgyeKGLEAqwoWd4sfUnhsW+eOQ4ni8zNX2GVCaLKou0HY9K06G7t5f1yjr5fIE/+vKf8b733E5z/gTX3fZeJN288NMvCldGib1WMPd6638/9oP7Zq8Bmdpk0etioq405tX3eEX02+Z5wuXzXnv9C4Hkj4K7H64Fvv9p4JIIYnO17nK7Egzzcjs//nyf2+UB1YVq3fn5r/FlOL+tC1kYLr1Ro+jSW+38jXUluzyYDMPLFd0utdcLPDdXACG+Nheag6Po+wru4vXFKx69IFxaf/zXgo/+SwZ35+3Dd32Qn/nUn3LHm2KNvAhwHJdTpyboLOTwfQ/D1MlmswSBh++5KLLOxPgkCdtm6twcHR15du8cotVqYJkGALapk8qmKa+VMXSNdruNbuibT4ZvPDPGL74jD4JAq96i3WihaRpiBLatARH5XIYDB08zuqWbVtNB0w00Q8ZzfWRFJPR8GrUmuqlh2xaNRgvL0GOWwGwKSZTRFQXT0PDcNsmERanUieu5sXwCIbNzC2gbLHIRcGZiHj/wUWSRTCpJNp9hZbXM8kqZrcM92LZBvdEg8H36+rs3aPlVzs0s0t9TwDBUDh4eY++uLYCEbdksrFbZvWuUUJAQZZV8Psv8whpJU8N12mwf6UdWJWZnV1hZqZFOWeiGSBAGrKxWUVWJ8lqDdC5Bo9lmdaXOxOQi+ZyJYZhopoZtqGiqxqnTM7Qdh1Qq1kGSpJgu23U8RCSCKCSbS6JrCsvLFfr7OugpZrETFggRQRCiaQqKpFJeX8e0dP7si0/xU++6AU1VEAR4YrzGXR++k1ajSb1Wj1kVJZPrb7ieweFhDN3gn/7Hl3FbHp/57N3s3buTwd5uBoZGueeer3P6zBhf+MIXefObb+D2d97Gl770FUwjxVe/9g3ee/t7+PI9j5NPRWiyQLGrk3yhwPzsAisrq2i6zMy5OUxL4/BLR+np7+XlFw+zf/+++Lh1lWKxk4PPv8TS4iJDw0O88NwhBrf0UeqJ+0VFYHzsHJ7nM7J1CIGIjlKR1ZUygiDRWSqiaxqNRh3Pc5mcmKRerXHDzTdg2xaSJKHpOo889CSDQ310lYrkCzkURaRWqbO0tEw+nyWKIizLJJvLoesazz71PKoqYycsNENHEsG0LarlKpIkYhgG23Zup9TdyVOPPcPszCKe57FluJddV+3g+WdfprMrj24aMW27IuFvZNQD3yNCZHh0iI/82//Cb/zmr3L1rv3opky+sxMraWAnTPoHt5Cw0oR+gOO5OO02//yVRzn04jHe8pa3EOCRNFNce+21GAkDNRAodHTy7ve+l1azzdbtvbQaHu+7433YKZ2xU+P8/M/+Au//8B0IocQ1V+0DRUTRZI4dOUA6WUI3FDLpFINDgxQ7O0ilUnzq138LWTDozMTCyp/775/jox/6MXLdRQh9vDBk/OgxKuUVCsVu/v3Pf4ob9+1lZmaKfdfu5V0feAeppEm77SFpGr2lPCdPHGXn9l0Uezv58Ed+mlw+yYFnj1Evz7NeXiadz/LZu/9PrrlmL2Pj4+y7bh+qZvH3n/8c1++/nscfeYEgaKOpKt/4xgNs37kDz42ory6x+7r9LJxYwk5YhFGEYdisLC+RTiZxHZeVtRWuvnofE2dP0dvbj6prGIZJc+PZF3gep0+eJJvPI8syhVwWN/TpH9jC6uoKp0+dYsvoKAKxBuTA0Dbc0CGVTOG1Q5584mGGh7cSCRGyLCMS09VX6xUkQSMIfEQhJoeSJQl3Q/ycjb4zURTp7R9AlmSa7SaKJCEJCuVKg+6ePhRRQVV0vv2d79DXO8jS4hyKopBKJUgnSliGTcLKUCvXmZs9x3XXXkt3dw+JZJYDzz6BZdpct/9mVD2G4z/+6EN0dvUxMX6adDKFYdm0Wk2CIMCyUhx84QAD/UMoisLK6hKHDr3MwNAWBBFSqUwssh45iHKIqRsEgY8fBCiKheAHSAjohhUzhkbQajYRIp/AcfDbNUxNpe7UwA9QJIvJiRUmp6bo7h1k/OQpstk8S0vLuF4d206iKBqu10IMLxZEQmIkiabrNBoNAs8ll8/heAEBOv1DgxBKyKqMpupkMhkEUeDc1FmynQUUwWJhdR1FDFBVlWplHUk1kfHQrAQRUkywEoYQuASuCxL4boCkKswulSkWS4RhQK1WwfM8Cvk8i4sLaKqKqsfPqHQ6w+zcAulMitWVFXK5PE2nSa0Sks2nOHLiNKJsMtDXQ1daR5BVBCFO8vpR3Ccb+BKPP/Ui/d1FQMAPBUxDJ/D9jVYKgWw2S8bWyRQ64h5GWWS96qKYBradIYoiHNfj3e+/BWfpKKvlRa679Q4i6SI6LIYZvnp17o0itv417LX9sO83uDtfi7t021fkjXiVvUlvwCc8fy0vFGu4UqXvfBU/ugQ5Jf0ouPvhmef5n77QcLoRSL2WvRaRyuZ1Nv+/fNz56XBTAPlq27y8+nelvb6imserZyp+EL2711u2OUi89PrEL1E8X8befIyXFtAvh21eej7ny/SXF9v/5WzzF/Jyiy55XRkOcHEr8SvkIjvTBz74Ae47MMWg2URCoN1qUip1Ui7XUDQFtx3h+wGWbaFpGuX1WKtoenqO1bUKmXQC09JJJm0836O8XiaTTaHZJoosoqoqlVody7YQEJhfraGFs4wWRaINTbXADQiDiEqlQb3eIp1JoKgKZ8Zm2bltgJWVddbLTTLpJMmkhSRKTM/NYVsGpm0hqjJBKNJstygUM0xOL5CyLNKZBKvrDTJpC9fz0XSB1bUlbNsGUWF2eoGenhKLi+usrVdJ2TrDW3qwLR1D1/FDH6flsl6pk0homKZOpVKn2JGn1Wph2SaqprG0VKYjn0LVZCJBpFZzmZ1bpVjMceLkOXpKOc5OzpNMmGi6zv0Pv8BNN+5icXmZet3h7LkFuns6mZ5aJZdN0Gq3aTZrEIlYZgJZjgXNJVHGsnVW1mvs3N4LgKoYfO+RwxTyNuvrNUzdpNiZZmlxlWTS4tjxc3QW07iOi27ENP7ltQpBGDI83IsowvMvnsZre6TTFrIkcO+3D5BO6/T2l3A8h3e+5WYSukYYBLRbDgM3vJN8voN7vvpNdu+5GsXSCCKw0jbra0toik0qledLX/giv/xLP8+2rYNIRoLpyUluf+/tdJWK3PHjd3DP175Ks17lttvfjW0lGR8fp6+vi5Et/awuioyfWuJzX/oW77r9Gk4cGyNCZGV5nYkzU2zfPYqu6dSrFXbu2k4QBrGGVxBRq1XYvWcn7bZLrpCht68Hw5CxkxkevP9Jxs6c4aa37Gfy7DmshI2uGfT29yHLAlu3jXD0yAnSmTT1Wo1CZy7WOevpp1KNkxW+73Dm9Dm27hjh8MtHKPWU4m9fIDI+fo5qtc7Y6Qn6BnqJIpFv3fsI6ZzJjp07OHN6HFmOCHwPy0pQrlRRVY1CIUc2myHwQ06fOkWplOfqa3czNDyAqqmEIRw7OoaqSORyWVy3HZOACBIIAucmF/jo/3Q3t978QX7+Z/8ttWqbRMLG8WpoWgJFknDcNpKc4vTJY2RyKUxDZmVlicEtJd58816i0EdWNKJIJJu1eengs9TKLtfs34MTOnR3dtP2Kuzauw9B8amtN1Fkg/ffeQeREEIo89Wv3cv1b7oeP3AZO7aA027iySKGrtCslLn7z/+Ct73zFvZds4eOXAempmCnc9x085spdRdxfAnbsPl3P/3z7NmxjX3X7efM2Wmy+QJXXbWXlfUGV1+3jyB0MXWbtdUlFFWktl4H4oru2kqAoklUGys02zVefvkU1+7bz9z0Wa7bdx2yrrFr9x4abR8BmeHBER68/2GuvfoqDh95kW1bt/APn/881+y5iqnJCUoDnTz48FN06SVWV9eYmZmlXK6gahrZjgJr5TV27tzN2NgphoZGKHQW6OzsQlVVNE1FEiUiAVRZ58zESZJ2AkEWkCQVSZbJ53L09w8gKyqe7yIqErIsIMkqQhj3N4eigiSoLC6voqsWYeShKBKqrPLE448wNDRCEAQ8+fSj9Hb3oel6/Fu7AZOLIhCkuD8v8gM0TSckwrISSGKseSYpEtt37EBRJYrdJXL5Ap4X8MKBJ+nozGNZJrImkE5miQQP07Kp1ZpsHd2OosrIsoKsSIxNjDEyvINE0kKUJFzHY2Jiku7eXtpOG0XVGR0dIYxCdFNDVRXcICBhGkiygOd5yGKAJEioWpLAd5AlDRCQTCvu9/Zb1Nt1bDuN325hmTrVZpNEIkXb80EQEQIfXTMpNyv0Dw3QUezCMEwsS2V2foWJM2cZ3T5IFASMnTxONpcFQYYwxI9ARATCmKSLEIQIt9mkVmswOLobz22zuLAU92LPTSNv9PyJoohp6xiagaJr1Oo1Gq0mZ06Nkch2Yygege+j6BZEEkEYIBAwvzSPKAgYuhVroDbbJFJp/DAibafxXRfP8xBFEU3TmJgcJ5FIEoUh+XyOk2eOMzS0jXqrRehLDI32Uak26CjkyZgSkQiqLBMKAl4AoR8hyQKRH+D7AbmuTnRZxo9EJidOkUgmLgS6MUmSRBiGrK5VWV+rEokyy+tttozswDBtauUWx5svc9PNt7A69i0yvbvo3brnUj27TVNhtNHmIcTTApf5dFduRuP1/Kx/CXKWV5ViON9j8ip2aXAXozkjYRPJ5RXHXNleUbW77NQ3+7HnV7iS5/cK2wgyfxTc/RAtDMNPb4664WJF6rUCoNcLel5t/OZl3w/u+cL7Tf+v9BW80vtLbs3vI2vzRitdm3sRr3zOFytyF87n8tcPfDyb9xcvf+1jeeU1F17nYbL5Im6GBLyyk/LisoiNbW6c39ZtW5F7r+InP/kn3NBnxZIBIRiWQSploWgRkgzl8jq+C41mHU2TGBzs4+HHDjE63LfBTGhiGAYIoCgK0sY5aLqGpMr8x79/kHfvNeOnXSiwsriOImkEgYcky9QbTQxdp1xuUK02OTu1TL3RIpdJ4XoeQRhQqzawbZNsNo0kSZQrsSZcpVwnnUpwbmqBkZF+NF1hfm6ZzkIORJFUKku91qRcrhFGEb4Ppc4c9XoLw9AwNIV8LsvUzAIr61U6OjJopk5ERD6XZmFpjXwuDURksilEQcTzfcrlKj3dHfh+G0EUWF9rYuox5EYkFqbOZFMsr1Zpth2OHT9HX3eOfCGDrCiossTo1gEczyMMAjKZBAJgWBqyrKAaGrqhoNkGXjtAlnwKhSwIoKkavu/R051mbHyJnu4CqiqgmQrJtM2Z8SkMTSOXTVCrN8hmUuiKwNpaGds00IyY+Wywr4AkitTrDQQhxHNDhof7EEWBk3NVOlJpErbNzPQ8+Y485tD16IZBT3cRBJ+15RqSrGDoBpmOBKphI0gS73nfj9Hf1021Uub02BkaqzVGtg5jqAp/+L/9Md2lbkaGR0hl03z+7z/Hz/7cv6OrlKWrWECSUxw+cohf/tjHOXR4mb/8m3/m1Kkp3v3u67n6ut2ous7k+Dl6+7uBiCOHNXxbBQAAIABJREFUjtHT083RI6cpdXfQdhxMRWR6eppWyyOR0FiYnWfrthF27d7Gww89za492yl05EilEwhiRCpl02rV6SoVqVRqMQGFYZLKJvCCiMmzUxx6+QQjo4O0Wx65XJKe7hLLiysYusnhQ4fZddUOevq70VWFRCqFYeps3T6IbcfkGnNzC2wZ2YKqKpw+OU6pu5tUOkEY+ETAs0+/gKyq1Go1ukolBCHi4Qcfx2m5bN0+jKKKZHNZFE2l1WjiOg6NWpuXDgd84hOfQIoCGo0qmqpRqzZJJlPIasjs5DSu00CWbb553zeRBBE7mSCZTCGg0G452IkM7XYTSTWpVx1efPoAe665GsM2iZAR1BDDToOqgKTRbtb40Ic+yn3fvI+9V12Fphpcv/96DE1B1QwKnXn+5499jO9857t89CMfwrBNrr3uegwzjaIKHHn5ZY6fPMngUB/pfJq2F7A0PYFmWNz6ttvo6c3z2c/+FddcfT3LS4v0DXbxB7//e3zgJ95Ho95AVVV+4ec+xk9+6COYySzJdAZZlRkbm4gh3E2H4ZEhrtq5i/u//UDcbyyK2KaBqSt49Tpfv+/bfOZP/4SJ02f4iQ99gHwuz/r6Gtdft4/JqTn8tsdzzz3JI08+zQ1bbyCbyVCpVOjp6SeZTKAqMvlCgXarjSKrnDl9ipMnTzE4OBRXR2SBEAlBEtAUnd7ePiRBjMW9w5Ag8IiiCE3TEAQIAg9Flmm3mshSzGYZBgH5fJ6ZmSkGBgaQNQXP8xAQkGSJrlIXjuOiawadnUVUTbuAvBEFcD0XPwR5g4glCEMCRNqtJoau4nrtuO9KkhGI+958P0DY0NC0EwmiMOTAgYOMbhtF1TQee/RxDh8+xM4de9E0BV3XabfbrKys0dfbxxNPPIofuAz0DxFuwL1VUSCIAjRNQ5IEREnEcTwUWSGTL+A26yhS3BXkthvUq+t4ThtJEInEBq7XQvJcEGUUPUEURLiejyhA03ExDD3ur2vU0WSBVruJpkoEXoCqmERhyNz8LJlMAdtKgQi2LiBGkM3miSIPQZDwRInDx44j6za2ZSCJAu1mg9Bz8X2HTDaLZqVYWl5moH8IVdXIZDOsrK9h6jqGbqPpFrVGjfX1FbYMbWVmbpZSf5FcykIRIQwDREXHiyQQRXTNpFZfRwxDJAkUWSSZsHE8kWS6iEDA2voqnu8iyTKtdoueYheKrMS/HVFEJplB1zTOTU7Q1zeA63hMz0xz7twqyZzC4ZdnKHQnEQKoVqtUy2UiNY3nOeiahKlItFot1tdX6evrj5OvAkREqLKKEMqIQoSdTCAqFocOHsUPFHo6e1F0jc98/TP8zq/8Gp//27+hsfISd/zcf8CXDRTxlZJYgiBcSPQLYpxc39xfFqPHLk2yn0dGXRx5aUXsov/6/z64i/s6NxMIspHDFy5s+0r+WnTJgIsDzxMEXck2n+HmNS7hw9gsvxVd3N/FbbzBwA5iMhxB+BEs84dpnud9+ny1SdoEo3y9AEjcqPRdKeC4UgXwcrbMK31hXssEYvpeURQv3F6bwYqvNe78upvhopcHP29MC+9S23ydXuuaXb7sdUXVX+favNoxbiZaCYLgDQXgr3Jmr35sm662JAiXaZ1sDu647IOJ37zp2uuwevfwX//xHm7e1Uer2UQS1Y0Hk4Sm2fi+j2npZHMpBAS2DPUwMztPVykW/262WiQSNkQCYRTw2MtT/Pk9z/LWkYi37S5AFDEzvUSj1mJ+vszc7Conx6fIJk1ESWBtrY6qSFRrLdIJk85CCtPQaLcdZufXKBUzOG0Hw0wQhRG6pjI2Po9l6pw8M82eXVs4deosmXQKfcNhUnWF5ZUKqWQKVdaxUxaqrDB+dprOYgHHcanWGlimSiqdIJtOIIgxbKVWraFpCvlcmhOn/h/23jxMrru88/2cfalT+9bVe7e6pZYsWbK8SV7kFbwAxhgMIZDcJJcJTGbIJJkw5EKABBggGAhhCATIRiDAJTEGAjHGgDe8b9p3qfe9q6trP1Vnu3+clizLki0TzyT3eXif5zxqne33q6ruU+/3933f73cM09BoNm1EQWTX3uPoqkwQuKiKBIFANBajVq7R19uBJMIzu4+RSUdxXZf16/qZm19iaLCThbkilXId3/NxXIdWK0zyarUGpVKNdMZkYWkF0zTw/PDL++D+STIpjUq5ga7pSHKokOZ4LToLXRw/NoWihIlUs2mTz6ZIJuPUa01kSULTFVRFCpVARZEHfn4QAo9IREXTZCJWBBDCZE3TOHZsig9+f4bfuGELnu8TjUcRRTAHt+N5DsWlOTKZNEgan//857n2umso16o4no3dbiIpoWdUIEh0FQpMjU3TrC7zgfe/j8svu5I3vOl25pcWePCh+3jz7bfzgQ99gL7ePhBEohGTaFTlX3/4U177+luYmpwkmeigUo7wic98je2XDpDLpTiw/xCFzg5yhRyBAKPHpukf7MJx20yPTpLryOA4AhFLC3tSqnXu/8lj7Lh2O6XSCseOHMOKmui6QrPRQFVURMlH0wzmZxdIppK0nRau4xGNxRgeWYsoCSiyxpHDB5AlhWee2IPnuWw8fz2CJLJv70H27TqGYarYdhMrZuE54cp//0AvgiCxZ/c+Np5/Ho1GA0kCAYkf/eA+Cp1Z1o0Mk84kefC+x9FUkfUb1tFRyNOs18h15Dhy+Ai5XJr9+yf56Ce+z803vZ21I2uJRA2CIGBsdJw1Q2tpNKuomsITjz/FyIYNqIqGZZhs2bKFjs4OfM9nfGwMVdH52te/xXXXXo3TrHHvTx/iXe/6Pe6441Pousz0zBTpTJ5ieR7Rt0Ao4dkio6OH+LVffxs33ngzIyPn8Z07v8el2y5Ekj18YKW4xK+97W3cfutrqDVaiIoKmgyeiBXRMXWVtWtHMC0ZBFhZqUKrTbFSIZXJoCoSF269kOXlFb7wl1/i9bfexPWv3kEkouEJOoqscdsb3oiPiOs1qFYrGLqBlTD4x6/dyTf+4eu89qZX85EPf4Jt2y6i0NHJD3/0UyK6xvTkONlUhMF169m96xn+xx/+AYaZ4Ld+6x0MDY/gej79fQN8+5++y1VXXozUNJk5PkV//wC79jxDvValq7OLVqtNaWUFy4pQLC7RvbpgMTs3i2XFkJTQf9C2G3i2C4JAs2XjuS7NZoMg8DEMA891kWUJ12njtJo4jhsq2gkiruciCWBaFpIioqkq9UaDAAHNMJEkQBCZmZlGVVVEIQR9COA7Hu22g2aaCIDj+3h+uPhmGDq23cRzWuhGBKftICJTLldZKZdQ5LDEcmz8OENDw1QqdRLJOJ7nUsj3kU5nsCIWe/buZGpynKnJKeKxNIqqkMlkiEXjzM7Pks/nw7FqKyiyhqqFishzc7Nomo6iKBwbPUYyEQ/1IQQ/VILVNSBUZZQFC9cNwC4jazqBqBD4AaLo47susqIiBi6O3SQI/NDY3Q9oN4sEbhtEDUmWSaYy1KplAh80TWJm4iCJRAJBCs3jEQHXoZDtRlckNDMSAmXPC3vvZJnyyjKCarG0VCSVStNqtWg0G5i6ghTYCKKM54Dj2XR0dOB7YY/62JFJurtyeF4DWZZw2i6KbiCIEp7jk0rFwW0jyaHhuB+A5wmY0RTLpSKZdJZIJEKlukI+l6NSXma5uEA0lkLXDSrVMoHv0VnoxA98fKCvb5B0PovX0pgpzbE4V6Svq4CmSUTjFnsOTKBqIlZEA9dDVTV0w0SSAwgEXNcJeyYlCUEEu+0wMb3IoUOjrNl4AZu3XMDM7ASf+Ze/5Kt/+VeMHjmKXT5GPp1m6PKbECU9tIQ4S44T9vSFOcgJTZXn8q8XyfdOAVinxwmFyVDBejV3FF+arDh9fqfO81zPeU5s7/lxAryejQ08KXTCcyDveQv0pzJ2nKto4JnPO7Hvl8zdv2O4J3ruWFWHOkdW68S5p36w3qrM7SvZnHoifN9HXpW8f8G9X+S6U4+dDuBOfa2h9PPpDin/e+Kl2cPnv6IgCMJePkF4yTmezoy+8nEKcyec3uP40uDuwfseZHiwn67BdchLR4gn47TbDqLks1KqcHD/GKYpE0/GgfDBf/DgKJs2rUVSZAICdF2j1W5z60e+w5u3WaxMHectV/QTeD74AcWFFURJJJdLMT4xT09nivPWD2KYJsWlMotLVUxTY2mpytRMCUMXqVabCEB3IUOzaVNvtrAicXbvPYxpKCwt1Vk70kNvb56l4jJ9PR04jkuz5VCpVKnVW1iWhqYr1Kp1vECgXq2RzSRQNAXTDBnKuYUldE0laplhn5rdxjR0VkoVJEnGMnUSqThe4DM7s0Q0YjDQ34mmabhtH8fxKK2UyRcyoRS3qjA81IVumMRjIUtm6joRU8eKKCyvlCh0ZDEMg1giiq7JWJZJxDSQBA+76TIxMU9HPoWAgCZrWDGT+x/aT0cuhut56KbGzNQyEVMgkYwgIDE+Ok8mmWDf/nH2HhwjnYrTbNjICqtS3woLCxXWj3QzO7dCT1/o1dVqtRBFiWjUZGJ8jpn5Es8uiLx1xwbarkOj0eSuJ6dIdHdjGgapZI4jh44xMNTL8PAA5fIyqWgKUWjj2E0mj0+wZniQUrmBLsn0Dq8lFVW49LJtXLbjaiYmp+js76MrmyQStdix4wpyuQ5i0TgLC4uMbOhjoG8QX5S5/MpL6Ozq4JJLLuG7376TG25+OzOTNp/87DeJRWV+dt+zXHzJBg7vP0IqFcP3BTwPIvEYtWqTWDzGE4/vYnhkLYWuPLohEQQ+s9NLDA0P4/sOlZU6UxOz5AtZCET8wFuVCld46rGneeaJA2zYMMDC7CyHD02wactGRElicHgQwzSYGpvi7h88wLbtW+jtzWNaJhMT03R2dSLJ8kmPMUGUyeWzIIoYhsb05ASxWIo1Q4OUSsuMjU7SbrcZGl7Do48+zcbN65EVGSNiIMkSTzyxnx/9aJwbbnwLt7z2Zur1BoIs0nLbxGIxsrkO7rv355y/eQTbbhKxEgiCSLm4QiyiY7dcFhcXiMYsBAGSyQw9XYO85uYbue7qK9ly0aX8+m++HVUV8dw6ZlwlCHxqy7Mc379COlnGktKkCnlESeSu7/yIoTVD/PVX/oZfeesbQXQRRBErEsF1HCr1JQJfI5lI887/9H9z6xvfQLNepVnz+dKXvsrmCzaiaDoLs3WKJZv3/9Ef8bqbb2R+fgnT1Ni1cze+K5NIxRle20ejbqNFzXA1e9XXTTPEsKyx7SFIKl/722/xe//lt8llVK675Xbi6RieIDEzMcVFl15CMpvFyuTQVJPjR0c5sPcAd/7LXfz1332ZweEBHnviEbZt286TT+/j4fv/lVuueBNrBtesSsOrDAz0AzA2Nkq5WiGbyaIqCpp24vOMY0QiIbvUchACF7/dxgt8IrEokgiKoiLLocm8bduhKbkohfL9AWhaWAUR+C5C4GNYUQRRpm03MA0DVVFxXYe246DrOrIsETGtVZ80MWSHZA2v7RL4HiDiej4LczNEFYliqUQilqRu21hWnNJKGUmSGJ8co6e7B0kS8fHo6e2j1qjT1dmDZirYDZsDB/cgiCLd3V10FAqoisqBffu5YOsFoaeaJKNrGlbEQpIEFE1B1UwkUaW0soxmqERjMdRVsa1ULIZm6kiyTq1RBT/AD0CSNVQjgqQqYZ+0ZuK0anitGqph4LRcRMEPAZEPru9CECDJGrIM2FUkIUDWTNzAJ5BkooZOpVbB0GVS8QSKIiGKhMbxYoAYBMiSjyD4eE4LfA8v8FBkhVq9BoFEtrOffK4LTddotW0838etLxG0lwk8l3qrTTweR1Y0EAXGx8ewzAiW+VzFheC7CIKIpkdwPRff9Wk1KgReCPRBwvPa6JEUphXl2PHjNJs2nR2dlFdKqJpKfaWIIiuIqnaSaWs2GkRjFrKqoWkKjtdGlTS6urqJKDLzS4u0my3iMYtcOkVEFZEEQJTC0mxVOWl9FRAucsqSyvTcDNWqz/jcIr5gsHnLVqr1Gt989Nv81ac/w/jENCJlZkYf5jfe/VHahol2tkzlJBh6LgcRX5AS/WLg7nljCLwA1L2c3OtcWn9OjdMFVU6NM+vScxL6Pi8f5rSyzDPka79o/BLc/QeIE2WZL6cPDV4asZ9t/6liLWfady7g8Gy/dqdTzqeeK8BJcHSSwROEk3XPwRmufaXidKbwzGbq4QPu1EOnsp3B6oOQ1fs8J+YintxOPf+l2MEXMpXPremcWOU6UU4aMoIvFHsRXuQxcyZwJyGgCxLL01N0r1nHvffezXBnClmREEQJwzSIJUySqRj1eo2J8RkMXSeTjuN6LhPlOn/0dw/y8J5RCt4cl/fJHD8+w8a1PWiGzuTUFKqkEolZYd+SE5DLJvHxwBM5dnQSX3DpKiSJR1Uy2TiDazpZKVXJpuJ4fsBSsc70fJFcJkGrXqKnK4dhRjl2bAZR8FlYKCGIAk27TavlYRommqbgOy7pTJp6vUk8FWfs+DSphIlsmmiageO5VGt10pkEumkiqCqBFxqwi3LY8G5ZFp7rUalUMXQVXdU4NrbA1FQRVZURBIGl5RU68ilmppeYmVsmnYgRBAFHjk7jOj6u10bwfdqtNq7jYUUirJQqLCwsMTEzQ1dnnmajDYKMYZnEE3Ey2SSiIPPUE0ew2zaZdIx163rRLRPT1HDbHtVKhVQmjt0QGB+fZ+1IJ4g+lUqTmGXS25vFNHREQUeSBZaLKxw4Os2a/g6yuVjIFtgOy6Uqhq4zNVWkZ6CDvp4cdz4+x+2XD+H7IrIs8fF/epRfefPtSLqFj0s+H6dWKWMZUdpOA03Vabd8VFUPmUBFworqBJKGhEtgmshGFLvlsm/3HjpTCTLdnciaStv1uPtf/hXLiBC1oph6AkWFD/zJh7nm2mtJphKomsiv/urtPPDjH3HZdTu47ZbXkVA6+OmPH2N43Q4efvwgn/nsnfR0RBkfnSSdTlAo5BEFhZ3P7qSz0IHTbuI6AvFknCcf20MiHsVzfR568Am2X3kxsiJRLpVptT0SyQwrxUWyuSyXXH4B9VoVUVSxLINIJIKkCqiqiiAITE3Mse3yrThtm2PHJkhnsti2TSqVpNkKEy7P8xCFgGee3MPK0grpTBxN0VhaWOL7372HCy/awNz8EstLKwjAFVddgu8FOI6L5/q85e1/xnv/8CNcuv1SXK8alkirJp5j02yUkGUNLxAY7O/i8KFR7IZLV1cHj/z8MYaGR3jfBz7K4SMTXLhpDVq6gIaIr6kc2LOP//Lu/4SVybCyOEU6GSUQRUTJw/FlVCPGSs2lqzdFu+khCDaCFOfg/qNctv1iVuZn6Oou0L9uGBcF0a2ztLAEgsI3v/Z9ztt4Hoqu8JrX30LQatNoNrj3J/dz7XU30FFIs7gwTXFphqHBAdJJg8GBHvIdfXzizz5LLtvBgw/czzt/93dwRI1mYwVVUjF1MzTUtiK07Drz8wuk0llEP+Dw7sOMnHcen/7CFzB8gUw6QSKWo7uvk3qzgixJfOmLf8+6db1s2Xwew8OD3PC6G7jzW9+kt7OL87dewM/ueZq77vp/edPb30pWyeMFAbqhk0wk0UyDnz9wN4lUjo5cB6omo2kajutTXFxmcmqS7v4+JDEESJpmoBg6ogSSKFFrNFgsLpJKppFECV03WFpaxozoiJKCrKo0GnUUWcZx2ii6QaNaRVYkFFWh1WyjrNrTKIpO026GLH/gousqrVabIAjw7DayIeMFsH//AfKZOIYmIig6i4uLmFYERVIZG5tgdnaCjo4cpmGyZ+8exiemyOQ6KBfLlBZnQQqQDYvachnPDVg/sp5AFJmZHicVT7B+/Saq9TIRw+SeH/0QVTXQdT1MsAMRUZE4sP8Avtcmmc2Fz+p6Dbft4iPw2KOP09HRwXJxkWgsiapZyIqG33Zo1Iq4ThMzksIXAjzXRvRdJAlajkPgOciyhiD4iKKPbdsEvoAoB3hSgFtrYKZyNOp1HLtNIp3B80XsWikkk30XCREBHwQR3w8I/AA/8JgqFjH1CI1qCbvlUKo2mTx+iHSqgCgpSIqO53jIgo8kewiORyAbSEYciXBhPZVMMj52EN2MoIttTlBWntOk3faQjCiCIiJrcagv4HoiogQz01OYkTiyrpPKFiAIWCkuUalV+Omz97I2m2dxbpxoNEnEiiApKjErjhcEBIGH7znIksRicZF4PE2xUqVWt5maHieZziNLHrIa+txJgkyj7bK8tIwVj4AbICuhcI/dcjg6NsdyrcXmzRdz/vmbOXT4EH97/z/wt1/8Is8++RRjo4dR3BmWpw6w5TW/gYS8+n4+l2w8ZxUQnGSnBEBc3XdaEnP27cQp5wjUzlT9daYKtZeqWDt57OTMBTw4JUd9/jXSqrdfCFyfz/T5wimVp6ddKT53+9Xk+Qwv/mXGifEEMQS9vwR3/45xwgrh5aoHnY2qPhv7dya27Ez7znbv58XZAOCZ5nnKz95p5aJnbWh9heNsr/P0OB2QnX7d84DeOcz7XD38zuXYGT/vFxsbzrASJJDOpnCDCHt37ueOL32Ft16zIfxydX0mx2fIZjKrUtIBmXSKlYbL7vElpuan2VSQec0Faa49L4nvOdSqLS7cug4jbhIEArZdp9DVgaTI1KsV5uaXUWSRaMzgqWcOYUVVkgmDbEeKtuNgxS0sy4QgoFZrcvD4TCgdrQhELRNJEZEUBd3UicU0vJbH0ePzdHWkcB2PZ3aN0VsIhU+yhTDJXlxcQVdkdDP044vGTGRZpNWwiUQsBGQ816Nea9CqN1B1A8/1GB2bIZVIUipVSCYTKIqOrAromkytblMoJJBkkY5CNgRtUZUggGQqQYDM/MISAwMFZmeXMC2NVCaJYZm0nTaqJlGu2GzauI6lxTI794yzfn0X/3TXo4yPLzAxOU9fb5pUIsr0TJHOQpqAAN9z8H0XfIGoFUNURB5+9ACq6lMoJFEUiVw+QyIeRZIEVsoVTFPD8z0MXePxZ45RL1c4OjpLV1cHRsREwKHebBAxdTRN5fDRCW696mJMVcZ3A44fHWfTNbfR39+PJMlUVkrIoo8k6EiiTsSMYLcrLC4Uecdv/Q6//mu/iShKiCiIgcTS/ASaGcN3fNqtCghQazp0d3cjywJtu0V3Ty+lcpmFxTk++amPcfPrr6FZ9Pnkxz/F+Rs28dSjTxEx4gwMr6PZquDaEn/8gT/l1tvezMc+9kne//4/4LGfPs7IyDbO37Kd//qez7B/d4m//Ovv89gzo2zZ2MuTj+2lXqsSiRpcevmFTI1PoOkql2y7gGq1gq6HNh6JRHSV7dQwdCP8fTNMdFNHN1UC2rheG9e10U0Nu2nTqNdQVYWlYgkEgXUjQ6iqEopqeAGyKFJcKNLd10kymeDuHzxAgE93dzeaJtM30EvvQB+FQo5EPI5u6AS+z21v+TiFzFaOHtmPZUXp6elhfnaOVCqDKMq02x7pVJ5DBw6Rz+VwWjb79h7gAx/8ILfd9nrWrFmDHwTcdMMNLK94rF/bx3LV5Tduv52rrngVf/3FL3PllRdz6NhR+ru6+f3ffz/XXHsjgSyiSwqK56KqMZbmFojFImiGgutDLtvBn3/mr/jBD7/Pe977hwhCQOB7SGITXYvyu+/+H9x2+6202nVisQiGKlOuVHjs0Ye5YMvFvOc972H7touIxWIMDq1lanIaSQ7VbucWZimtLPCG217D9a+6moil4rcd4vEMEIp+KYqK4zisFNuMHR8nGjU5cvQ4b7z1Fn71197K33z179i1cxfnb97CgYMHiec78f0WpqKw/aKLaAoC8UQcwzKxGzKf/MQd3P6m1yPIPpalc8stN/Ghj32CV194fcgISdJqd4tHZ0cn2WwGQZRO9s0dO34U266xfv15aKqOEAgIYliiLkogySoEAbqqomsKJ3p4BEGg0WiEq/W+H4IGUaa8UoYAZmeXyKbTtJxWKA5lmvgEiJKM4zTwPBdFUfF9D9cNjakVRUYyDQQvQEEgn4mzvLxINJpk376DFAoZCOCZp59k/fqN+EHYd3fo0AGihsWFWy+itLyMKtYo9A0jCQZS22VucYbyyjL79+8il+thfm6anp4eZuZmiUcT1Op1tm69kKd3PsuGDRupV2vMTk6QyqZpNBqkkxkCP0AWZQQEypUK9XqVeDxBIpEI//7wV0WSACH0QI1EYqyU5xF9CdOI02g1kYQQO6iyjCgr2M0GiqRimHFUNYrjlBG9gGbLwRN03LaPLIXPwScef4JKtQK+Q9TU8BDwJBFdVvD8sCxWEaMcOnyQjlwBURFoNB0Wi8vYjkNP/yCO57GyXCIejdCwW4iBh6IIeIGIrEVo1uvImoYiyxQXFggQSFomsqoQiOHCqSiCpsfxfEB2CdBpunUe/vmzrB9Ziyg6SGIESYT/+a2Psf6CPNt29DOYmKOr8yDpnkVi2SkGNwzwzw/cTz7RTUDIZHueTxAIqz2FkM6kiZkWmp5g9+4DrDTLJFODTI5PE41bIAkkU2nctsdK3aNUqeGh0mhBwxYYXruFvQf280+P3MXA+R284/96K3f82Z8TSRg0Fg4wN/Y0F1+6je5N1yDih/2mwqm5x+mL0Cf+/cVyvZebI/5bc8rnL7iHcVqG/Lz/iS/Is56Ls5Ed4TgvGPkcZ3j2OGGi/kvm7j9AeK77JyfYoJdTynfi3DP13Z2ZmXohM3gmY/RTGbyzsnkvh/I+dazTj/0fAHYnx34JoHWmUs3T359T97+ceujnNwI/v0n4xa4709xOPfZywJ2ASECAB1hxhc41fSjFg3z4H37K1f0CBD6mFWH33qM8OV4jZywjenWEdol9z+7k6ov6+f49jzPUnyPkDCWyuRSB59NqtGiUbfygzdjYAq7tkEomePbZUWrVFplUjIWlKudt7MP3BZxWk0Q6hee4NGtjXorzAAAgAElEQVQ1ovEYvu8xNNiB53psOX+QZrOJrkVo1G0MXUP02iRSKar1OoND3ZgRnbXDPTSbNgE+peUymirj+wGJdBxRlJElnUqpwtJiCUMPxSkqlTKaorJn9yjZbJy5+WU0RaZt2yRSOnariWWZKKtf/tG4RS4bRzdCryBV0/C8UI48nogyN7fIw0/uY+umNSC4pFJJotEItWodSRTRdQ1V00mmLFotm0wmRmchRXFphYu39tPXUyARjYLvoZsqO3dOsrC4Qj5trS7BKQSBjCz7OI6PqRnU6lUIJFzH4+DBGYqlEjHLJB6P4PlNfF/ENA3O3zhAoSPNmqEuBAKOHpkkl0tTqzTZuWuCzq4E2VyKeCwLgKSqZPNpgo7zED2PcqWKQMDE0cNkCjlkSWFmbhxTj5PLd7B926W0nSYEDqZhUK8vcezIPiYml+nMFwicOrF0B5mOPO3mEuXFItGYRTydJJlJkskkufXWt1Crezy96xku3nYhF156ASObRlDkMkokwcJ0yHa++g2vJRqPcdHmzWTzGTasW0dP7wA/u/8hKqVldlx1FddedR2//mu3M9C/nY6u9Xz6jq+B0EO9rvHhT/4Njz3+NDfdsI1oPIrjuAiISJIMgYAoSbTsFseOj6KrPkIQsi+yIqGpFq4TlqGlMyliiRiartHX34sVtYCAej00fv7eXfcwtHYQWVHYu/sAiiKweetGsrkMS8UVqrU62VwaCKiWq/i+x2+98zMc2lsnsAOa9Rbvfd97+exnP8erX30DmXSeT/zZHfR295JMp/B9D1lo0qjOYMXyyLLGW9/6VgxTo96o4DgumqYxuK6fAzufIpnN0J2OcMdf/AW//du/QyOQ+NTHv8A1O65i955nGV63lpgm89OfPEg8kcfUfBRV4aEHn+H3f/9PefNb34QkSWzfdhFP79zLVdfsYHF+Gk2VmJ1aIpVKsmPHNnoGeyh0Zmk3q5SKC8TjGZLJBMlklje96VaS6RiGGcVxQFhV1my1W/T29bF2eC2maVCv14iYFm6jiKSFJWu2beP5LpYVQZRapDNJYtEoiXQHnl/nyquuJJ7J09Pfh6yY5LMWoltHIEA2ozR9DbvcIGGZqLKIL8B5IyNYkTgN2yWVzmCaJgW7j+Ojh+kodOJ7HrV6HU2PICmhj5yuK6HViCiSTCYoFLoxIybtVpPZuRkkSURTdVzHRVJVZFHAc0LhlFq1yuHDh8im85imiq4aPPLIfSSSOX78kx8iyRLZTA4rGj1ZJum1AwjC30PP8fFdD0mUkVQFp9VG1bTVnqNwa1Qb6LpGtVkjkckjyhrpRAxFMSkWy6xdO8K9P7mHoTXDRCMxrEiCaMIkYukoqoZqJJECj8OH95LO5UnEkqysVOjvHySVimIaKpKiMD07j4DPwvwSiUSC7p5ORARqtSqHjj5LPtMTCjJZBsuLi0xPTpFIppiYGae3tx/DNPBcH1nVWJqfQJFEHC/ANC3wRRaWlkBUMSIGzcYKou8hCOC4LpLg02qVUUQPfJuWU6Vtt0EUadk1TDOJ7YKuKKiWhqaotO0WxcVFYjGLeNzEdQKmpqaJmsYqW+IjSR65jgKaeMKbDuKWSVcqjuO1iMUSHDx8hEJ3D3arDa6P79UJnDaVeotYPEXDa9Oo1JAkgUq9gqWJaIqM6zmIkgh4uH4LTY3iugJoBoYX0Nefx3OaqKLA6NgR/uyuL/Ktr/4lvWv6eeDBxxGFKo5dQ1MNJLVOdfkom9d2Ujd1es/P8rWv3cn6vrUgCDSbLaZnp0gkEyDIJNNJ8p2dVMstEskMZjTO/gP7kOQEu/Yc5ODhBVLZPL6oEE3mWCnbHFgcw801ufXtN3HF9m1cfMlWGo0G11xzPe3SQUY6bNau60PKrCc/uBkpcPEIy4xP5iqn5SIn+tBemAGeOdc5G7N2LsTEme7/vLxotWLs3K55JcDd85m4//3gTnieSMsvwd2/Y7TaoaDKS9UJi6L4AiB3upjI6cIs5xonARyrdcCngT04MxA73QPv1DjJNJ849yxCKmeay9nGe7Fr/q1A8cS4kiS94H0+0wPi1JJWUTj3NakXA3wnevvOVD56ps8jtDsQzridrcYhrByQEQWIRhX8iUN8+u4j3Lghyt/ft4+2rPL6i6Ioosh99++nrzdHPhthz/5RLrt4BFM3CQJwnDZO20ZTDRzHQTUkTDOKLEksLZdZKtbp786iyiLziyvoBsRjJqapoigizXoFwQ9XayvlNkKggCdQXF7GafskkxEazQayqlKv2yQTJo22hySF9ykVKzSaNY4cnSdmWRwem6SQTxExDSrlGsWFCqouIYgC6VQKUZZQVYl600YRZQRRJJEw0TQZCNAUHUmSTtQ0UGs0MFcTAEEKjdoDF5xWGy2iUa/WkWWFaCxCNmVQq9gYusEDj+wmZulEohGCAKqlOpqpomraau+GhywJ+K7Hzt2joZhMRKHRrCEIBum4zoaRAR564gDNpk0yqlCu1FcBqsbE1AznjfRjmDqyItBqOUQiKqoabp7n4bY8ZEWmtLxMvdykXm/jeT5zsyVERSSbT9PXXeDxp4/hiDL5XDeCJCMKDh/4u3u55U1vQ41mMM0IphEhk+tEUaKsFBfIdXbTbjdAFCjXa2Q7OvAJ8IWAQJTpLGzgO9/5Dpdu34KsaOx8cj993R2omo9vS7gIuK2Ax+9/lEI+zdvf9itcc+UVxKIJLr5kExFTpbi0hKQZSEoUyzIoN2S8WpmUHmP88E4kVSASL6CaUXKxTq68ahsjW0cIJPjut75D3IwgKRIDQ+vpGyhgWUn27hpF9lV27LiRO7/xEP/Ph7/Cz376BIcOLXDJxYOIikTgeyTjUQQUFFUBRNpNHxSfwGvj2m2OHJrAdz1isSgz01OomoaiKiiaiqTIbNg0TKtps1yqMtDXh+O4RGMRxkanEQKYm1lEICzzfPLJw7zvg3fy8Q99iM2bNnHFFVdw8UVb+ea37+IDH/zvKKrE7l37uGDzFryGzcLsPLqVZs+eA0SVOqJf48iRUXLZAqbis7A4Ty6XQPAVfM/l83/1FV5z4434isHwmh4uvnQjx/Ye4VU3X08qF+V1t76OWCzGJz72UR566Flu/5XXsVScZnxijsNjM7z/Ix/EVAPa3gqVcpPrd2xBwCcSy/Nf3/0+tmzaSL4ji+M1iQQOe3Y/TTyZ5uCRCZLxOOlUlv/xnvdyzZWbUQWBRqnO5z/zvxgYHKbQk0GXRATVI5AUdNXCrdnYjfJqr52BL7joeti71Gw28D0X1UgxMx32mIqCRjbbidsCOZCRRB9o40fjNFwRwdO4+xt3Mz19iEI+FXqQGQZmROf33v27XHXZZRw/MsHRw4dIaxnyHXnarSZ2q0k0FkcWwHbaoehJQPi0FQRURcHx2wQ+yIpCIhpHFAUUOexb8vEIhJCx8jwHQzdptQNUQ0dVdHw8ensHUFWRznwXiWQCVZfRlAgIHo16laZto6sazWaTqbkpDEPHiETxfA9ZlBAlGV8QQxbV80CAxx5/lMGBYVzXWS35CnvkfVx+dt/dXLH9akRF5tj4UYLAI5nO4ns+e/fsZvr4YaIpk96+YWbn5rCbVSLRGB2FAnOzRWRFI2KaNGoVJEnBdR0iVoTxyVEkSSaVTrNmeC2SINJoNFBkFd8XOT56HFEWGBxcQ6NRwdA0ZqdnKS9XSGRSRJN5VEOnvrxEtVomFUtgWslVMCug6Tp220XTDFQ1RiBFEBWDIBDw3XCxLRBEJBxayMTjCQJBwq6Gc7CbTTo7OhClZvi+KZBJd4LgIkoygRDgu4DvIUgCgdtGlaWQcRWBQGVqYpJcRwzfbaGZcVTDAreFrIq4qLQDgYSi03BcVorLrJSWUAyDmKmiSApt0UMWRHzXQ9N1Wp6PruhIuoHdCvsFRVEgEjHIqwOM16ZoVOOMjCRQ9E5y5gJ/9b1D7BsTqFU9OtSFkCkmw+WvuoZ7Hv0JM7um6B7oJ5VOUa+UscywL14UZeKxBKVSEVlRWDO0jrHxKQaH1nH+1s34gcah3WP83WNf5/o3X8+lmy/i4kuG0Q0dwWmAKyKKOvf84ItES7toyVlihU1o8QSF3ACB4IYqu6eAuxMlii9WSfZSOdIrEWfKX1+sgu2FOfhzP4duiCc2nredKc/yghMqpKfN6XnjnLYJwSm3efls5Qlgfepr+CW4+3cMz/X+5FxZoHMFMWdT0XzJ61bBxanxYmDrxY6dvufUuf9byxVfifNPjxOCLpzhfX4xcHcuK0EvFSeBpSjineGzk1abnk+Nf8vrXZ05yWyGrZddTfXIgzx8aJZ3XpNiU38C14datUZfd5Z6vYmuywyv6SXwQRBFbNtGliR0PRQLcBwHQQho2Q5W1GJiag5dVTENibZjMzLSRSKeQNV0ZEXB9VxkRUZWNKrVFoHv4LptZBVcx6fQkUE3NOYWVpidK7N2uJ+Z6XmWyzUK+TS+56EZBgFu2OchwvJSHU0V2b3/OJ35OHMLZYaHekOD6vEZ8vkkPi6tVot43EIQIRLRqdVbJFMWi8VlMrnc6ntLqOKmSAR+gNNymJycJxY10HQNL/BQNZl220XVwp6T8Yl5FEXi/E1DCAGoqsIzzx5hdq5E/0CeVrO1KqzgUVpeIZmIk0zGkRUF3w/V9FqtFnv2j9LVmWR4uJtkwsSMqDQbbQxDw4zoRCMmZsSkWKwxNxf2JCqKhK6FfS9PPHsA14FkIoZpmkiyQCQRRdUkMmmTmZkVUskUTzy9l+3b1vLfv3GcYcMhm82A4PPzSZErrroCuzmPLLVYWZ4kFpVBsnBbdURVBc+hVquTSoVWD74roCoqgQeKHLBhwwi+FzA1McfGTUO0nBUOHxpjcHANSBLFpSLf/Ma3yBcyTE9Pc/XV15DN5RAliFpRPE9A02U8X+Z73/lnpkZHWTs8wO//wQd589tv56kn93DHpz7Na173Wj70px9mzdoBjhw8yPmbNlOcL3HXXd9nZMMmFEVi/fohbr7ptfzDV/+eH/zgTorLTa7dsZVLLrqca668iVe/6mb27V1g5845/uiPv8AN123m7h/cT71W49GfP0Mmm8GKxtFVk9JyFddx6O7r5tGHH6dcrtLd27XqUbgqCOV5CAEcPXScQnceKx5FlCRM0+D4sVEu3XYhn/rM11leSnHF5a/lyssvptDXRdtpMzO/gJVMIiDy+S/+BVs2bWFozTq+8893seWCDTz1zFP8/JHH6Onq5LyRdXjtElY8zdN7jxCJRlAVlZmpGWLxBOVKiRtvuh671aTRqDLYN4AgSPzjN7/DX//NV3nXu97BUnEWw9T4my9/jYsuvoItW8/HjFssLha57qorsGuLeD447RaWlUJRHOxWC0lWuOmmV7NSKiLLKrgyb7z1XbzzP/83GnWfli2Sy8dRZIX773+QvsE+jEiCcqXJD+/5MW980+tBAEvX+OGdd5LPdqCoCqLoIUUMTCNCaaGEoqu4jker1WJlpUI6kWLvvmP88If/wtCaNRhG6CH2h+/5I847r5/3v+9D4CXY+fM9fOUrX+L66y+ioxMmpit09/YSiAqxaIIH7/85W7dcQCqVpXdwiD/+nx/looFNRKwYqqxg6hEQQt86RZYRAj9Mpn0fVVXCBVBZolEPlVdZlVN3HAdZkmk26iiSRKm4SMtpo+kGiXicn91/D329vbTazbA0vGqj6uHvzoF9h4gnEhiGjigIWFaCWrlCo9mkr7cPCYknnnya8vIKiZiFKImhwJnv4TguiqzQ19uP5/oEgR8q7Dptjh07Ti6XY2jNekxdQ1ZVHn3kEcRAZGJylIGBQWy7iSwqmJEED93/KJ3dnSQTCQ4fPUK1UmOlXKJUWuLw4QPoqoVmKpSWixTyBY6PHmHd2g0oskSrZQMekYjF8ePH6Sh00NfbT71Wx9B0ND0UCwqBhkQiFaXRbNCwa2jROEY0ji9K2HYlVA/22miagoCDT2i0rck64IZ9ZqIYgl1Jxms3aDsCpVIZKxJH02Qc0aHZrDG/MM340UMEvkc8FiUQw2e6iBCKtBAgiALtlo2qGggCSHLYX6/qAbJq4gsmZiRDtVoN98seuiIjKjq6EcNpNdFNk1w2R73RYOzYQbq7O/C9FpKkIBLgeQ5N20Yz49h2myAAVVNQhIDA81EVhWxUJOnH0T2d2rwKdowjB2Uu6tvMusL5dBjDtOp9NEsRlo+VmD4whVCKcNDbz1vfcRsf+ouP0OX38NUHvs5Acgi73SRiRYjGYiTiKX70xM/YP3OQudIiX733a4xcOMzNb9nBUF8nBw4f48FnH+DRhx/H0i2KxUUmxx7GW3mYLWmP/MatrLtwO+PzywiKQbawFk8K8AXhZBXRKwHMXklwdy73PPuxX3weIcg6O7h76eF+sbF/Ce7+A8WpgipnijOtMLxU/KJ/HKeWZZ4spzxlHif2n2p+fq7j+b5/ki4+nYU6fQ6vBLA7GxA+6/4T2xmOn16aeipL+jyfktPnxbkB7ZNMHS98IJ2pzOEEu3cmFvCcFgpWt0DUEM0YfmsFpznLYLRNtdrAikaJxmIoUliWFokYiGIIdBBCZtcwdFzXQ9dlqtUapmHgei6RiImIT09PDjEISCYtFoolZElFFCUaDRunHa6aipJMcalCve4SjyXx3ADHdVkollAUhWwyxt5D4/R0pfD9gO6uDJIkMz27SDIVQ9VgdnYF3/do2y7JeIR8LsHsfJEN6wcpl8O+v0hEY3FpmUwmEdoZiKBqEp4Xrrwpho4V0ZmdKWKYOrOzi1QrtbB8r9VGFmWqlTrJdBxRkigvV4hGTTxXoFZtsLS4QqEjFfazaAqyJDI/u8Ta4X56enPhQ973whIqSWH3nmMk4xaKqvLwE3uJRjWmppbp7s7Q25dHECUe+vke+npzq1+cAkeOz5LLpWg0WximzqGDsyiKjKaJxONxDh2aJJmwSMQMolZ4b88LMEwF1/ORZAlJhLgV4ZFH9rHjyvNwvTZLdY328gIb1q9BFAXu3bvItddfjSRaaHKUaCRDuyViOzXsWgXTStKuryCJAq7n027ZfPnLX+b8jZuwTBO71SAIXGLxGKokMD11DCMaoatnOEyMJJFKrU5PTw+bt27kljfcyvTsLJl0hpbd5NjRCbKZTpxWFUk0WLemn1wiTiId5+rrbiRQPXK5Aer1Og/e9zPe9Z9/i3vv+Qk9hW7i8QRDg8NMT0yi6BrnbehD8CVed/Nr8Tyb7u4CN73mVu7+8ffZseM68EX+8Vvf5Atf+F/ccsPryCaSzMz6rFm7nY//+T+w9+AC3/jnB/nZfbv4ylf/lQce2kOjkeRTn/0GT++c4tEnJ/jEp7+O3YDffc/nmJ+aZX6uiNNqc/zYNMPr+njL2z/JN779IPfeu4venq30dl1AItLB0PAwH/non/CGN7wWXwQjEuHhRx7h4Ycf4k1vfAMDg330dPfSboYLJumODPmOTq7ZsZ181uL7P/gJI+tHSOY7MSNJkoks46NjDA2vZ25uilg8RrlSQRBAEAV++zd+B1XX+fZdd3PHJz9BMmmSSicZH53iRz96kHe88zcRFIGIYdCR62JuZpIf33MXW7ZcRiyawGk5CFrA7MwcqqQgEbBr915adgtV0XnT295Myymxc9cTbN68geLSIoIgccnFlxKLJ0MFV0nilje8jnJlCV2P8YXPfZa33P4W3vXu/8Yb33I75XKRaCrHp+74HOetP4+x8XG6unrQNINYNI7vNEkksih49PWv4cmnnqEjn+Pqq67EtU2OjR7lVTdtZuuWLq6+6lpwNTKxLJ4oEY2leO97/5jLL7mIoaE1DA6tQTM1FhcX+fq3/pGNXUPEE2kUSeb+B+4nnc4jiCAKARISfkDYWyqK4QJX0+bAgX10d3cT+OF3gaop4IMqqwQiGJqGrIUKl+VyieE165gYHSMRT7Nv3yGOHN3PyMgIkiizd/d+Ct0dKLLK1OQkkYjF3r27qNfrjE2Mk81lGBgYRNdlIqaOKEkhS8LpZW0ishIuuGmajqqoRMwI3/vudyl05IhYFoEHjt0ik8miKKFXYyqTwg/8sF8uF8fQTLp6ekgnU+hGhJ6eHrq7ejiwfz+C6NLd2YcgSSwXSySScRRVQZJkmnYVRdZoNtvIQpv5+Vli8TQ/vvdHrFs7go9PJBIhncrSsj10NcLBg3tpVBocP3KYpYU5ElaMmblFCh29tFousqQhSRqOI1Bv1DAMA9u2gZBhcxwfvLBsVZY12o6PG7SRZR3LjJLNdCJrOh15C1mSUCSFVtPGbjWRZBFJCKs3RFFCEqWTpZSSJBI4Ao4ncHR0ikJfF6IvUK03ME0d167TsKtYVpbFlUVEIbSmKHR0cvTIEdLpGIYqo8gKjhsAHpoi4bo+qqqCrOCtGtg7LRtRCGiJAogubrOIVy9hyDKirNMSVPBcFE2n2bJRJBHRaRE1DJA8LttwOfffeT+7pvbyzve9jTfefhtKykOKuTjKCsmeKN0burjwsouZnD1CtivD+PQsz+7ZyeyBeS7o307cNdnaeymdeoHPfetzbM3M0KkvkspFSQxdz9ihPSxPHyYu1XDsCr1rt9M6pcNOFMTnYZKXy9j9n4jT86MXz5d+gTx6lSAQn5e7CSdvdyqT+YKxXya4OxNhcsIw/kT8W8Cd8B/xA/z/U7Rb7QBCEHCm+EXKFF+JONu4Z9r/YgDnRHie9wJW8Gyv+ZWIlwvuziVOvM5T5/1S4M47BdSeLV7O+3CidPPFrjlRwnv6dafPTSTAB1Rc/vkrH+Z7P36ad1+mk+vIEk0X8FyQZQHf92g1faam50jEI8TiUVRVCfuWRBdRVPBcj1bLYXR0jnhUJ5UNe+40RaNSa2EYPpdesh7XdXHbLi27ScQwqNZaHJuY5vh4iUKHxYWb1mLFdFotnyef2k1XV4rungL4IlOTc6iaSqEzj6xI+F6NY8cW6e3OU6s3SabijI/NErVMEskYu/YcIZuyiMUSjE3OkstEmZ5bYuP6fsan51k3PESpVCSezuA0HZYXF0gmYyBI7DkwweYNfah66J3UarVQdRW7aeM22ixXmxQKefbuO8LQmgLm/8fee4ZJcpbn/r+3curc0z15dzZHbV4JBYSShRICCSQcj22OjY8j2AYDx9jAn2Ab4SjABoxJxv9jDEYkkWWFVVitNmhznLC7k1PnynU+9EheidVqBbbxuS6eL9PdU/XWOzVV1c/93s9z36bJ9MwchWIOWZI5cnCQU6enueH6LUxPTFOttxhY1Nn2okoS6tUGR44Ns3ZtD7IkIUsOYeQRxDA/W8dvBXT3FRGKzJnBUZYs7yWKY+IoxnM96jWXfD5DGFWRZYfjx87S2ZnFslV0TcUPIg4dGWHdysU0Wh6ZXIpGtYHrVwkCF0mkSSSJrkXrUVWJIIrRFJVww88glBA/TjBUGd9zIY6QRUJlcpqO7gGq44NUG03SuQKK0va5y2TbhvPNpoxQQmxHYXTkEKXccmIpTSOeQY1V7GyWJBaoCKZmxikUC3iuR6PaRDdUBk+c5b3v/TM+/Dfv4tvfe4IVS/v41Kf/iT9+91to1EKslM98zeTs4FkUFO77wieQjDzX3nwT6zYs5wPvfh/veucf8eFPfJz+7iyDJ8d4wxveSBA22Lv7EC+/6eUYcobZybO8+Xf/gL/9uw+j6RIP/duj3HjbTQQkqARASKPh4bUSCh1Fgtij2QrJOjqf/tRned1rX8/QiUEa9QaFcolHHttBX1+RP//gh9m4fivf++7X+IO3/iG33HY9shISJhp7du3hvi9/mdtuvpV1m9Zw+PBxejoXcfrsIXKZPOvWX8Lw0AgzlSpOymJ8bI44mGHDpq2oZpqDB0/gVc5QLMLabVdQrVkoukLSbDI5OEppoIu5qSqRqLJ48Qoq1QZCSOzevZuDTx3k8quvpNgzQD4bU5mfQ8Lk61//PnfccSs1d4ZCqcDn7v0U89Umq9av568/+hd85h8+w1vf8ge8//3vI110kBMJNWo/z792/zfZdukGsnkbJ99H0GrxiY9+hpuuu5XuJSaHDh6lt3cRf/C7v8UHPvA+DE0jlbaZrFUolZZTmRrB6epDUhT8ZgNHTQhDQSuSSeQAQ1JQFJkEwcjQCIu7LYZGZsllTb7xrcfYunULXd2d7HjkYdZf0s2Z03P096wn11lAQnBk/x5On3iEUJT453/6Ere/+k5UzeU1r72T+UYdWVOxkNl532E0VUcxVIgi9u8/SMrJ0VnOIasy+54+yMpVq0mn28q4YRRC3E7UZFUiDmOiOCSJY4SQUXQNgEaliet7FPIZwtDn6OGj9HQXcNJZkHUUJSIOBbJQqNYrZLNFkjim1aqTSAK/seAjGXo8+N2Hue1VtyMJH6FIyJpBFC94nYY+kIBICMMYVVVpNl1IZHRDptFskLKzTI+PkS3kMQyd08OD5HJFWr5LNltkZrLByeG9LOpZiSQkrJRKJp9icmyUR3Y8ye2vehVRHFCtVFBlgyeffIJNW7YgUMhkHGqNCpZp06hXMA2bb9z/DdYs6UCoDjv3H2HztstYtrgPTdcIPR9JVpmZmSSfKeD6VYRqoqoKge+RtJqYmQK1RhMp8tGdLEnsU5uv4Hoe5a5OKpV5sukcbnMOTbfAb1GvTWGlyszMuXR0FpiZnkbXFarVKkNHT7B18xIMRSakrWQsCYmYEBmVycmzdHR0IivKgu9gRBLHzE7NYmYzHD05xuo1W8jmswSRTOg1EM0JfMlH1fvQ0zq1mQZmykYWCUcP7MVUAvq7u6hHNY4dOMz6SzYhyZDEAtlIIRsZZMXEdeuYcoRbn4IogFjCjwQzDZe9Rw5ww/ZLCYOESLexDIPpybPkHAtJ9iGKaLZcZCuPrmYYOTtKR08fohHjxk1S6SxTZ0dRdI3RqQks26arWEK3HRTTRE3Ctkm8JNGsziMFM4RhC8ik0hcAACAASURBVBmJz+36Mi/f0IUjZ5isN4m1IrddvZLHd3yd3iVlNl3zRvTiYuRIJpIS5P+HwN1F5dXJDwnuzolo4TiSJCBeAMLPbPP88yPOeX8Rxz4fuIvFc3NSTTd+aODwE+buR4xnTMzPFxe6OS6GDXo+AHuxfrfnj3/ecsvzfH4+0ZVz7Q6eoaKfYfwuRuDkR40LiZX8sHG+eV/44ZA822v4QvFiZufPj4v5H577+3N7NZ/D7i307D3D463ZdAWvuvVmfv7d/8TN69PMT02QyWUJAhchFJIkxrbaZrqSApJQmBofx045JLGgNt/g6QODdBRTlMpFkhAqlTqyDGtX9TA5VWmb+EoCx3E4OzqNruv4vk9vbzeWLrNqaQ/DY7N0dxVxWzXiRKK/t5c9e0+RTescOzbFJZuWIyuCerWOHySUOgt4TRdFbRtUz1calEsFElp0lctks2k0XSafSVOrNli2pIuh4WlMzWBoaJxC3kZKYnRDQzcMrJSFIsvYhs6eA6ewLY3HnjxMT1cBRVWREsEjOw9xdmye+nyNdWsHsB2bMPYRAjTVxG25jJyZ4ZqrNyJEwkM7DrJx3QDHTpyl0fDZtfck6ZSOH3kU8jlU3cQPfCozTfYfGERVIF+0sGwdWRLYaQsRhnzngd2MjU1TLuUoFDPICkxP1alUqjTdgMVLu1F0BbfusnffSbZuWcn42XFM02iXEukyTx8YJuNk6F3cyf37xti8ehlClpGQOTJ8Fqv3EkYGR+nIOHgtD9uwcJseaTtDpVrB0tMY6RR2KkuUxBi2hWXlCBbYC6GYVKeGkJKIQqEfoek0A5fmfIU48Hh6zx56+/tpec22DYWkkqBw/5e/ybIVq0mnM2xat5YzY9Ms6e3g/vu/ya233wKSTy6fxW8p/N1HPklX0eaBHTuYq3r89pt+C0kKSWfy3PbKVzJ4/Agdvb1s37YdWbHo7Rvgf/7KG/j9d7ydfEbhyR07OH7iND/zs69rqypaGuu3bKDp1pFFwNDhUzy9/zB9PX389ht/jcmzwyxbtmJBMjzm+996kKsuvwzFVEmZNp/93Kf5hV/4Gcodi3A9j5mZKf70ng+xYds6DEtDVWQmRud44N8exDBMdu3ZwzU33EDf4l4kLebggRNs3raVRAqQtAQlCimWS+SKWbp7l/LLb3gDl23dytCJ41x+1ZXUPYUgkKg3psmlssgkfPuBb+JWmzj5HJpmMHr8acxSmzUuWRZPPrmTq2+8DE2GVhBy5PBRli4Z4PTJ45R785Q7y9QrNYqdRbp6elm6dDlrVq4mm8nw5K4neOzR3Vx/3cvRdQ2hgZ/4rF2zknQxj+9HGKrgzjt+jiVLl3HpFRv5jd/4Db77nYfYtmULV193M509vRhpi2qrQb7Qw9nhPZT7FyGrGiIKEJHf9mzTNUxdRRUKcSIIIw8hIpxUmrm5Fvf+9cdYs2Ydmzdt4+ixQwwMdFMopCh0LKWrp5/Pff7TbFy7kokzp/mLD/05v/brb6V3aQ+JyOP6LiuXr8W0TEzdZteOp1FMBX8qRlZlAtdjaHAIVdGIwohCR5GJiUl6u3vRVJUwDPF9F01vC6ZIUps5S6S2cmXgtz3NFLld0tesV3n8sZ30L+oDEdNV7kExDFRFRUgSkR+0n8eyTKVax1B1nj64m0KhxOEDhykWS+zdt5vF/Uvo7e0mlbJw/QAvCJGV9nH8IEASEEYCz4uRpARJSBiqge8FJHHM/FyFVMrG9euoksbU9Ayd3V3s3v0kSwdWECURDz/8PZYtW47jmMzMTCPLCZpmcPjQYa665hriMODxRx+mo7OH2ekZNmzciGqoGLpOnIRomoLn1jl68hT5YpF169YT4tDd28Mlay7BtjXcZhNZQBRGyLKEpmnU61V01aDVaqLJKhICzbb57re/RW9vN7t2PUEcQy6dbpuYSxLDQ0Ok7AxxAmEUIyRIkgj8CmGSkCt2ExJhagZBGJLLFkgkgRS3UBXRtnxRTZIwQogEWVFRNR0hCSQhEyYhLKh4ptMpoiRhYmyaXLETTdOJohgBuF4dTU6QFINmtU4qm2NifIxqpUZXVy/Hjw9SzFucHp3DC1r0lDsRQkcQISURlflZ5qoN8oUSQrGIIw+RyKBKjE9McejQEa7avLFdrqwITo8MISsBB48eo7ucQlWdhR5MFU2E+K0KlqkRuk0kTeD5AWGUgCJhmBb5QoFcNg9RSL06TxL6JGGD6swo9dkRDFyEqlFv+biRweDoHL/6pneQ6lpFJtPJK665mvu+cQDZyGLrAdODx+hddw3gIUnKi+Yn56tKeib2Pb2fUqn0o7WbXEQF07ntTS8O9F76XM61TDj3LCTJv3/WVtZNziOId24P3g/GC/UPPvO6zRSK57QJ/YS5+zGG23IveAIv5ka5UEiS9CyD9F8Zz15gCz9/HCzdf0WcD7jFcfycPjnBD9Zen7vtf9T8JSHO27P3YiGTtCWiE4iReP0dr+WProoYWLsGhYQ4bveTzM+3yBfShJGPppmAIAhDFASnTo6Szdpkcyk8P6TVdPE8nxOnxtmyaRmzszUyGQvLMpmdq1As5Bgfn6ZabTI1X2H5QCePPHGULZcswbJ08vkU9VqNU4NTrFm5lFqtjh/4pDM26WyGOImRBOzZc4RNG1fQrAfUG3XSaYezZ2fQtAjfBVWTyKZUUALm5j3m5iJWLS/hegHVWgvb1lBUjVwhB5IgDNveUnEo8IOEKAiJ4wTLMmi1WtQaTYqFbLssShIkSUyz0cBrhTSaLpmMRSqdxnNDvvrNndx0/SXYjs34+HR7BT9QaDWruC2X6bkGnZ05crk0kiQxNztHKm0iywmJkKlUWhTyWWYmZ3DSFrphIJK2WFIkII4CVFVHJAlhGDEzPUepVEBS29dkEifEcYIkCxDgNlqomoKsyCSJxNv+8Sjv/fkrkIRGZa7B73x2B5vWruXNv/smrLRDq9VEkiSiKEKJKszNeChGhVpdpau7myiKcRstMsUOFEmh0WyiOjZJHJFECZosGJ+eQFctquMTPLlnF3e//m4e3fkUmzZtQpESWi0XWVapVSpIpkYunaU2O0cql2Xk2AFqTQ/TyHDPh/6S2297Ff/4+c/xyU9+in27d7BizUZ+8Rd+kVtvexV9vf088thOJkbHuPuuu1i3cQ2mqfCVr9zHK195M6lUFlmK+PRnP8/119xCriOFkEBRZO6554P80i/8MumsQyIiDE0jkWWajQZSnOA2W0iyxtDIGVZfsoLhoyf553/+V9789ndg6TKN+Sqx5+KJBCfl0Gq2GDw1yMatG9FklQ998B5uvfl2hoeHuWTDJaTTaXSnDbg912dmokIm55DNWpw4cZyBRf188u8/SzaT49WvvZt6bZbAa/Dhv/kob/jlX6Kjq4wfhiiawG/F7HtqN4YuuGTTFn7/be/kL//s/cw3G+h6ioN7dmEqCasvWUIz7OTk8AlWL+sjjhMymQxxklCtz5DOZAmDEF3VCPxkYRU5oNUKePCBHSxetIjTwydJZ1Ns2LiWOIpAs1AUlcbEDIdODrJu/SpMy+Lv//4f+LnX/yLvf/+f8Mb/9XOUu3o5sH8fuVyGzs5OCvkiXuRiaBaJ5BH4MZKk0XIDoiBC0wV+4JK2C4RJG9xNjE9Tm5yh1N3De977Ad759j9uixBJYJkmxAH33nsvN77yJv73W/+QL3z5C8RKjJN1aM23+NKX7+NnfuYOavMz7XvbS/jMZz/DkaMj/Nadv8305Bi9PX1Ua1UmJiYQCA4ePsCVV1zN6eEhDhw/wcCiXrZu3kwcBVSrPrlcBt1Q2sJJ9Rq6phEnMYqqI8kSjUoVWY45c2acMIQVa5cTeT47dz1BJpVl1arVqKqKJKDRrNNq+ZiWhSxJaIrK6NgoXZ3dJEmCH3oIobSZryBA09vHDbyAY8cOs2L1WhRZ4Pt+W7BH1ak3GkyOj9Pf14+Q2/fqseNHyeWLBGHA0KkhSuUSc/M1IGLNmvXsfPIRbrj+ZqLIR9cNAj/ASjlMTkxgGRYiiZivNmh5LVpei5UrVxDHMYaq43ntHr9ly5YyOz+NJGnk8w6K0ImlhCRMiKMIL3DbZYlIDA6dYmDxUmZnZ8mmM+zZt4st27ajSCpR7HF6+CyZbA7bMIlFjK6bCBKCMECSBbX5Ko88+giL+xexqKsHWa8TBQpWpota08M2NQKvBUSMjgyTy6Sot6Yp5XIQxiQiJvADdMNAkgWNRp10OkfTc9n55D6W9BTp7O4mlmSGTs9S6OhGt1Kk0xlkImoTJ0FRsbID1L0mRAmWqXPy+AF0W6PTbj9vo9hHEjKHjx1nzfIVJATtMj0ljZbuwE80NFXg1SrEYRUCDyG1gWfshzRbLUzNJsFjthkxNjzG6jWLqDeaHDl4iG1XXEkYeiiKShLHaJJGlMT4vktzfg5ZVdB0EyQWvjtlVFkniGIMyyEUChNT82TSeRI0EiRmpsdY/LJuvLCJlrjMuxIrVq3DMRUak08ztPtrbHntm3FKS1HOSXAEgihp50DPjxdaHP9RcMQPM8b5xFZ+IH4I5i56kd9LkiCOFzQWLmK8F2oTgvP/DcnzXOJ/wtz9GCMMw3f9MPtdbAL/X8GSnS/E88Ddj4up+8+O8x332brqZ1ZYLrD/f2TZ7UsR3XnOHBZmqIgERSS85nU/jXf8exhGjKTYhFGM5wdksylarSaKqiCEhIhkItrS6ZoqU6s3mZyao6Mjz/x8lVw2xeLFndTrDWp1l0I+zczMPIVijn37TzCwqAvP81g+0E297rJ5w3KyGQcnbbcVOHWD7t5OJEWgmzKptE2r7jE1PYedapc3SiT4oU8cJ5wdn6K/r8zwyATZnE02myWTMfHDmEKhG9cNyGY1MoUCZ85OUC6kabo+2Wwa3w9QNB1JCIIgQtV07vva4/R2FTBMgzMj4xw5dpq9B0+zZlUfvuehmipxHGHoOr4bU6m0mJuvUCoVmJ6ap7szQzbroGoqQRBgWQaHD59B06GjlEWVZZ7cdxLLkCjkUyiahqbp7HrqJJ2lIpqiggA7baLqGoHfZgjm5qpYlookQXW+iqLouK06Tx8YYm66zny1iq7JnB6ewLQsQs9jaOgsHR15JEWAJJEksKGnh0wmw7Fjp5ifrXDJ9Xdz06tuIiJkbmaOdCaD67p4nkcum6XenKGzcwWqsNA1iYmJYebmRsnkyoRR0u61qdYJkghin/HBE5S7eskX8mQLObo7OzFNk1JXN7phMjk2giKp3P/1b7J+wyYM28F1PaRERjNtlETgBQkf+9gnuGzbVXznO9/llptvpNhRgLhBoaPME4/vJ4oili1bzA3XXcPipau576tf51N//zGuv/YmHMfhTz5wD2Nj86xZ1cemrZtI5QyEqqKqKgcPHeaKK69i5NQwn//Hz3P5ZZdRnZkhjEJC38NSNVL5HEkMtfkqxc4+MimDSnWGgf5FfOn/fJFtl23Gzqaw7DRve9sfcustt2JbDkKNCYOIq696BcPDg1x62aWks2kUVQYpWWAAZO644y7mK/Nc+rLtZNIpZE0n66Q5OzJKR6mXRx55iHXrViLFQJKgaRq6aaDKEpPjU3z7/m9x9ZVXkCkVuPzKKxkbHqSvv4skVHjbO/6IX/nN30C1S7TCEEeGM0MjlMolhCojFAXLNKjXakiyIA5iAj9CUWQOHtrDe97zPm675Q7KnTl6uwY4cvAIlmHzp39yD1dcdjkt38f1fN73vj/jta+7FVmG9evWkyQNVq9aQTqTAhI6OjpQVZ1croAbzKLZNokfUa+0iOIE3VRJZW0USZAkAlnWQAoYnziDaWQ48PQpvvHlL3Dp5du54eZb+fBff4hrr3kFU9PT7R642Of2O15Nd18P1/zUzWTzGQxVRsQhdtpk/brVuF7IU48d4K//6mOUSx1s3b6e7T1XEUQxKcsiCEMs06JYLICAtWvWYmgaxWKBJA65dPvL2kImur7Qhyza4lKq0jYiD0M0rd1bjBDoioqiGRQ7OkinbZSFHhzTypB1MkQJmIZBrTaPZRrousWpU6col7toNGvkczlanguAqmsksUDTNerVapupIkGWFILAJZ3OEEcRQkgYukEUhUiSoKOQBwGNeh07laFYKmM5afKFEv29/ZiOSbHYSW9vLyBYuWIViLYoSuQHJAlEUQtZaTOXxB52KkWxo4NioYisqMhKG2hKArq7uwl8H9u00TQdRMyxYydIpTMIIqI4ptFoEHjtsUulcvu5p8hIskSpVEI32grMvt9EUy0yuQyV+QqaoaHIEmEQIiSJaqWOqkocPz7Iyy69CjlloMUWkTeJ74GVstFUvW3pIhQKxRKj4xMMHR9k1cpl+G6zvawpKW0gIp7RFYhRhIJhG5Q6S+iSShi4hIlgcrpGoVhGxCGBqlIZO40shVSqAtuUkJCwLAvDtNi1Zz+mbOE4Alm0qxSK5T6SxEdXNIglhBTjN2oomoGQVBJZa5eGSgpBGCPiAD/0efSxPSxevRgpTnDSFsWshaRK6JpGb+9ihIghAdf1MEyLMIqQFIWEpO3ZadsomoEkqciqiZ8oGOlOjFSJ4bExOsp9JIlGNpPmzOkzmKZOOm3zp5+8hysvu4KRk4MsW7acWPiUy90MnhqncuYwqCY9i9c+Nw+hbXtwMUJzPy4BlovTKHjp414oy5WkZ3LhhfcXOeYP9AmeY8117uuFjZ+z7U8EVX6McbHg7vkX4n8kmHlu8+fF7/NC2z+jOslCSeaPwto9W9aZtMtNJNqUNpyfnv6vjhdWPhLP2iRc6LxeDBiTz5HhveDDY4GSlxAXZAvPNwc4t2wAfvMD/8S2XBXb1FFtE92ySJIYIcvE0YJlxIJUuazI6KZGoSNLoZgjSkIaVRchQkbHZjB0m6npOZy0SbGUZ/DUaZYtLSOEwLYthKTx5J4jrFhSJowThJDafSO1JuOjU9iGhiTLBIFLo+FjWwZxFKDpGoapk0lnkGWFSrXJrr0n6CpnMQ0D3VAZOztNJuOw/+ApSsUs1ZpLKp0inU6BpJKyDHTTIhYyqqwgkIjikMef3M/Lti4nlXE4efw0EjKFXIrNlyxmZrYGSczBA2fQFYGmw/ycS0dHms6uIvNT8/iBSybtsHffCF1deUyzLUozeHKUpUt7MC2bh3Yc4PprNpIrZKhV6gwOjXHi1Cjbtq5hanIW27HxWh5nTp+lUMgiozA2Ok3gt5XiPDciDlxODU/T21umu5wlmzPw/YDHdp2k1JHDNhV8P6DcXSYMI3zXQxEyc7UW9ZrEwcMn2LRlDWYmxbLLbuChB59g0+ZLyDgOrWYN05CJIhdFt7FSeaq1BrX5OeYqVTr7B8gUO5FEgoREHIXMT54kX+xAlkCKQyYnJ9F1ldmZWTK5LvwwRJYTJqfOUu5ajKIbrF63liQKOT00zO6dT7FqzWqqsxXMdJZYhNx022309vXw6te8hhMnRujq7WZ6NsTJ2LzylptYv3wtX/nKv5IrdfLX99zL/3rjr/I/fvEuJOALX/gi7/r/3k2xlEcIFyeVIvBCTMOk2ahjGRaKrLJ0xQCXbt+EFMnUqi679h5mxfKlaGpAs9li154TfPZTn+dll25FVXQGBpZAErF02WIsy6TValGvtrjpphvRDBlZk5g+c4ZEhBi2Q7HYyfe//wCd3Z0gEtwgQhIyb/qd3+b9f/xOrn3lDZi6IHSnGRo8RaGcw3c1PvyRD/L6u+/ic5///1m1eh0rVq1FyDKnR4ZxUhlMRePAkRNsvPIqoqCOaRp0dHYTeBFCi7jiqivRzRQ/e9cvsmHFWvqWFXnoWw+yas0avvfwAyxdsQQRxUiKxrHDR3jLW9/P3T99J0gwP9vkrp+9m2w5haPZqJpJw63xiU98kte8+pfpW1Jqs2Yk7Ny9k5tvvIWdO3YRNDw6+rrIFvKousm9f/63XHHlpThZBxSFysxpslYHhw+c5NTwWfoXdxH6Lq1Gu59MUWXCMKDZnKeQ7yCJFTRVpZDto2dJgcmZccbONtm2pYe0o6OaOQLPozbX4Fv3f51CXqajqxdZMwhbLSJJ4fEn9vK2t7+L73z1q6xYvZLLXraB2JvBnbE4cugA1UqNubl5XNfF1G327H6K3kUDKIZKs1Gjq9xBIkBSVELfJ44S4iRCliQURSde6CmXZYl27SHs3bsXyzJRFgSwFF0j9ALGxoYplUpIioyqyni+j2baNBt15ivzpDNZdF1HklU0TW1bK0QxQkQ0qvPYmdSzlROSImFaJqqiEwYhqqpQr9cWxF9kZEUmiD1MPcXpM2fYvXM/s9VxBo+N0d3XieOksdIOspB47LFHSEjI5XNMTEzz8EMPU5mfpau3D8uyMQwN3bSQNAtJJDQbNTRVRZY0qrU5dF0nCHyiOMBzWxi6SuhHZLOZtgCI1vade+qpJ+jq7kPXFTRdZ3pyBiedplaptMvVZAlFUVAUA8M0IYmwUmlkEjw/RjUMhCxhqCoHDx5g8+bthHHM3Mws6XSeWPjE9WmabkCl1kLXdCzLoNEK6OrupqNcxHd9Ks0Khmpw+vQo2XwGiQQhSwhk4ijE0mQUSSLwfVBU9u/bS7mzF9Ow0C0Hr1EhVbDQoggllUG3HJAEzVYLy9Dx3CZB5JJ1HGRFIwxcZBEjEkFCSBIlxFGAkAVRs0YrElhOipYbECYS6WwH9ZaLHyYsW7IEogghyyRRjKQZEITIqkIUeiwUZ2DqKqHfRAiIiYgTCZIIGQOBQFZVJMNCVWXcRoOxkVN0l4oMnTrEicO7iAWcPjNHMR2z59ARvvbYNzBkQcrMcuTEMK1GlXKxwL69O1mz9UrGhx5lydqrQFqw3ViwAHihXPWHEcyLk+QHxObOjYv5/EL58wuxidFCvpXQFlZ6IZuCc0sxZZ5rk/Dc0sznEi3ShcDjOfnz80s9LwgKfwLu/vvESwF3F3r/o8QzvXAvlQ18IcGSc1UkBT8aa9cGcv/etwcQ81xw9+OMC83hYmwSLubcnPsQeDFw95yxX3Tk84cQ8LrX3M7gzq9gGwleSyYOAqSwRRy2vXNkTUNfEA44V9VTVtoJhaqqVCs1erpK7HjyCNs3LeHBHfvp78qRzaQYOTNBGIa4ro+m6iwb6ODk8CidXSXiKKJWaeC5LpKQURQVwzSIY4jjhMnpOUrFIgcPDVGp1UindeIoIZOyKeQcRsfn6Osvk86kUFUZTdfIZe22J5kiISvtxMdzPU6PTmObMoqICBYWIepVl7SVYmKizpGTbSCaEFMopNF0hUzWxnIsSqUs9Vod27aYmJjHtnQ0TcbQLVzfR9UVMhmTJElQ1TZ7F/oBnu9j2SZEMDE5R7HDQZYT8vkcPV0dxAm4ro/nBhw8fIY4hs7OEocPDrF4oEwUe0hxzN4DI3R1lUiZKjMzVar1FoVigVwuxUBfiUcfO87qNW3j4EatxrHjZ+jqLPPwI4d4zzdnuHXTIpatWIRmqLzxIw/w6ltvZvGSRRiWhe8G1OtNDNMmCttKaEJIhKFPttSF41jUZqdIGSoRbUN1wzTwghBdN4ijGNeN6OrqJ/DBsrMoGjSbDWRZJpfL47oeiqyQJAnVSpWOcgfZrIOmyyhOmvmpOaoTE+S7y7SaTc6ePsNjjz2GLiR6urr5y3v+CllEPLZzFxs2bqBQTFEulxgeHuGDf/bnnB2b5ud+/hfQ7IRc0SadLeC7IR//+D8wMTrBU7v2sGnjJj78Nx+ht7fNlnzxS/exactqjhw9xPp1lzAxPkc2n0aWNZ7eu5tSqYP7vvIVNm3exMjwGXoXL8EwbSRJI7E1VEPh6//yJZb296MZGsdPHKe7p5963eXjH/8Y1157DXEc8eiDO+ksdnHZpu0kike+kGf/3sNkM51kc2Uk2acyP8+v/M83cvToCa675loGB4dIRIKqCj76dx9l+/at2KbJpZddhqRKBK5LyskQRQmVWY8Dh/exbsNqwsjnFS+/isMHn6ZU7iYMJd71rndxx513oms6mqFD2CCVLXLztS+nOj+JoUl05IpIyHjNObIOzE7tZ8fDu7np1a+nZ2Uar97AdVtomsKrrruVB/7tYbr6ehGmRRQ28L0GtqPxsi3bGB09RTFnowownSKJFKMagt6+MokI+dpXv8ymzeuRZK2tVKgomIZBEgvmZmf54D0f5IafupwDT5xi9uxpXn3nTzE3N42QbLxmxKMP7mDvrifZsnk5b/7Nt5PLZDCUhCRuYjlpTEPjp+++g9e89n/wF3/zEa57+dW88U1vYXF2MVu3bMY0dQ4fOUq+kEe3VCxHR04kFEVG0wy8IELVDNxGC1PReGrfUyzqW4SsqiBihkcG2/2IkkCgIMuCcrkDz/X46le/yOrV69uKwySkU2lkRUHRNCI/aC/8CAVV1ejIF5EIqTTqqIqKLEuEUdAu30RjcnoKJ5Vqs4MLS3hhECHLCpIiEQQ+jWYdVVVwWx6NVgtNN2i1XJxUlqPH9vGybZdi6RKqrqIqMq16g0cefIhMNkNvdzeWaeBksiwaGKBv0WIMTQcgTiIQCb7bQlU1FM2g2awgaNvijJ2dRDF0JEkmjGKsBUXl8clxstkMrXoLv9VkYGAptdo8mVwWEJimTui7QIxtGYSBj65qREFMs9Gi6TVJopDq7BSGbjI+PkoqlUI1NIqFQrs6IQxIpIiZmTksM4usJSRuhTD0MawME1PTFHOFdpljHHF8eISx0RqS6tBZTiPktoWJrlmEcbSg7i0IBdh2FhIodZapzs5TKnXRcH1s22778RESICGETq1WbV8HhoVlWJwZOcWR05N0lzpIkgBlwU8zkSAMJapND02TkEkQiU8StU3YDdPBjwSqqqFrOqoqCPwWhqoRL1huBEnM4YP7F0zrE+IoRlbaHq5CkoiimHqthoIAIVFpzJCEASMHj5K1baQ4RlZ9JAQnD+9jy9atNBoNZibPsLg/jybDrr4x4gAAIABJREFUFcsv46v3f5FX3nUXZ4aHufvuO/nX++6jkO3hiR378GqDbLziBoTSvkYkcZ5Osh8xT3u2veVHBHfP/92LtTwl5+RTz1Q7tpndF86znv/Xv5R87Tn7JQks5NjPH+Mn4O7/kXgxcPds4nwOW/VSQNj5xnuhY5y734WO8WINq8/M9/krFS8VQD47X/HMbdZeuzjfDfMfDfQuNFfpHJP4FztPF3OcFwuR/Pu6TXKBMc99WMQktCtDz1+vfcHj0V4GfPM9X+S6lSaGbtCoNwmCEElSiIXAcuxnHz7Pjk3y7M/5ag1NbrNG61YvJkliOjuymKZJs+WSzdhks2mGhyexDIOEkP7+TsIIJidmaDVdinmHXfsGsS2bHU8cJpNyaLQaGIbKmbPTLFvWS2cpT7VSwzRMwjDEMHX6+zpRFpIbzdBQVYWHHt9Pb3cBAEVWOXj4FI5l0ruocwGMKsQJqKpGrVojnUlx9sxZli4pk82kMHR9odTpGT9IgdtqksmkCYKQXCaDbqjIikS1UkHXDUzbRtNUhkbGiKMI27bQ1DY7+MhjB7l062pSaR3dUBeSCb1tfppI7VXvwGfZ0j4MQ8Y0TaIwZHZ2jlIpswCMVDo6cpw+PUk26xCGEW7LxXZsms0GSZRw5MRparU6/f2dpBwDRVGZnatw395x+tWE8YkJBhb3cMevvwtDk5BVGYSCLES7J02V2n6GmoaiqSiKQhy1aDVbaJqOpjuoqo4iC1yvSSRpxKGPZVqMTs7g2Da6bRMkMbOz4+i6jiyrjJ4dJ5PJ4noumqrh+TVs08RJ54hDCMKID33wQ1x99RUIVWL4VNuTy/M81qxZi51Ocf11N/Khe97Lm37vLaiqzt9++F5+5Y2/iixp3HbbLWzYvJ7egW6slImkSISxgipprFyyiqVLl7Jl0xb+6J3v4a2/9xZsU6OjlGfTtu1Yjs1AbzeyIvCiCFUR1Gotbr/9JpqtgKuuvALbNskVC4Rxm7GpNmrohkqjMs/qVcuAhGwhRxiGJIlMq+GxbftWMpkUmqYRBBFz8/MsWtRLrRVAEKDIEu963wfo6eoinTFRNZNDB09w7733cturbieddjAMFd3Q2LBhLZ3dZY4ePESh3EFIwszkFJlsjve/78/Y9eRO7nzdqxkeGiGVyjI7XWHVigFSuRS9fT289q47cRwdy9BJApcDu75LV+9SkBJyhQxHjx3nt37rLdxw/Y3YGQfPrfDggw+xcePlhLGEY6nIwuDsmTHe9e73cONP3cDK1ctwUg6moeI2WmQzWZqNKmYqTbmzwL898AC6omPncgRhgJOyabVaxGHCmjXriWOfeivAMk0SIWjWmkiyjKoo3PBT15FJa+iqjqSqvO33f59rrr+dhx9+jIcf+A6yZDA6Ps7ll19K3ZdZt2oVH/rQhyh2LcF3A/bu2UNvXw+mIfjp19/F1HQNO3a4YtNVCCHhtQJm52fIF4rYls3E1CStlociw8kTx1EVmTCO0AwVP3DpLPUwP1/FNHXiJCaTydJqNrEsGyFJ+L6HJEmossqq1evQDYODhw5y4thJ0qkCKdtBUgRxGNFquQght8u2JEEiYizTQoi2MIuqaUR+hKJpOI6DJMsLWaPA9dw2sBMykCCLNsupKiqypHL4yCF6uvvapX4opHMO+XQRJ2XjhzGKqqGpKplcns7OTpy0g6roSCTPLt4Fobdw38fAgqdZwoIQU4wma4xPjHHyxDGWLl+OqkiEQUAUtUFSR0cHQghUWeHI0YN09fRh2Tay1F7YCeOQJInQLIM4jtDVNhNar1fx/Ra5TAG3UccPE6yUg22YzM/NtvvkhEQcJxw/cZxF3W3hmnrdxXIslCQAIqIwwLFTbfEeSUKSJFKGQ8pWUdSE4/v30tXVQ5JE+JHH7OwMmXR2YUFZJQpjwihm7+6nsNIdZPPt0lFZVhFCpVGdJIwjLCePHwTYtk0SBugS2JaFiAVjE2fJ57PoqkKCIE5iZLldGi6kpN3DHYeQNAmDVrsEVzWJkwghVPbtPYhutEt+JSGB1O6ptlM5HDtFFAVIsrLwfRwD0oIYl4ksaex45BG6epfhGBpW3iJRQlpxxOSZETKZAuXOLnRFYnRkmCXLlhISkc+myZgWG7fKfOKfvs7ombNcdtl2Hn7oMYIoYeMlW2jMHqJ76SrMdAeSkM6bnV2IJbuYeLGc99wKrhcDeudu83wBlufn2s8Hd/+eE57TcvQ88CU98/lCXAy4ezFD9YsBd8/O7Sfg7r9PvNSeux8VxFzs/v9ZrNhLHffZi/2cz/4rwN2FxryoZtyLjIsDW+dsf5Hg7pmH7A9Vjw7ECdx519389ns/x82b7DagFSqJJJPNZX7wf/DMytbCS8ex0RQN0zCYmJzCdCySGDw3IF/IUK/X8fwQz4/IZzIIqb0qXKk2CP2AKEiYnpmhXCowNdOkkLXI5nLYjsLsbI1yKUelVmNuvkbKcWg0WkzPVJicmieXddi77wTjozOUSlmEJOjtLrQFSYTg6LFhussFUikHxVARQiaIYoQkI4BU2qRSmWNpXxrDNPG9GEUxqdUbbQN1wySK24bobf84hWq1zqmRsxTyDqmUgRAq//LlJ+jrLpBOGeTzWRSlXbqi6wZnxmdYOlCEhS92CYkwSnhy11FODU/iuk16egoIWUJVJYRoG2HPzVaRZYl8PovvRcxOz3Dk5BRBELBqeS9xGCCEwqO7DjE23eCq7cvo7ipQrTexbAuShI5ihuvWr+TSbetZuqyPuXoTs38zU2OjWCkD0Am8Goap0mo1kOWEesNldnaObCaLHDWo1ZvMzrfwIhlDk5iemiCTdQiETn1ukmwuj2Y7pNLtVfXR8VHKHTkUWUFWdEzLwfNdVFWlXquj6S6eH6HKDqAyeXaUW191K5VmhWwuSyaTwTRM+vr6ePDRR3HSDv/ypW9x47WXsnj5Sr7zze/QVSqx/bLt3H//NxmbOM3m7eswTIMggpYXEsXgN0M+/fefIu04HD16glKxxDve/r95/LGHufHmG5FUnSTR0eSYp/c/ycDK5bSqbduH0dNDrF9/CU88vpMvfPFfuPqaq5iencBJWyiKQIkSDE1DNhSaQQslkUhlUuQKJf7yrz7Mtde+AtuxmJ2Zpbyom7nqDKVykY9/4p/Z8W/fZcvWS7jtztfQVS6iahKqlOKhhx/lnX/4DirzNR7dsYNCR46urjIdHQWazSbZTBZJUhCyTC6X4+SJU2zetIUbb3g5TsYmlc5Tnff43Te/jauu2IKRaptwx0mAqcs063MYcsL0yD6KHYtQUzliIcgWytx8y6sxUzYtP4QkYtHirUxMTTM3PcVnPvFZgljm+99/kIHFy1i3bRWR7/Jrb/glHE0ll++lXO4gCgPmvZBde5/iysuvRNMtzLRJHAkkSaNZq2MaGQzTxvUapLP5Z9V94wV1AkmWGBo8RSmfx5OqlBet4NATB1m17lIeeuhBbrnxarZddTW79hzg8itfweYrL+ej997Lr73xd1i+bjMf+at7SZKYPbufIqU16OgsU/MSDn3/MEuX9xHFIZKQWbxkCaZl8+hjj9LXN0A2W0BTElKWgy7ZyIqBqhtouoGqKjz88IN0dXchywqyJCPLWhv6SAmqohKFYVt4Rgh0XaNSqbN562ae2PkoA0sHSJIE120xOjqK78c4jo2QFUIg8iP273+a/r5+6vU6I0MjCBmslNNW7XR9EALD0Gm2GrSaHo8/voP+viWoqkLLbTE0OMKxE8c4cfI4a9asJQ4TxqfOsOOhXegpg4nJOR7Z8RCrVq0mlWmDTc8P+fZ3v82ygYG275ofIKSEMGyfI5G0y2ZbrSaKLJHEMUksYRgqixcvwQtcdE1FkxXcwMO2HObm55FlmSD0KHaU0S27LfwRLpRgqm3W0o8jZEXBbzRRFQVVk5BlEATU67OU+/vxwojvfucr2IaDY1l893v30929iN27n2RRuYfp2TP09S0hCmFudgJTl4j8JrpuIusWk1NT5As5wljGsdNoep7ZqeN0dXWTRAmS0NAtk9nZqQW2NCGKvbYgjMhz8vQpKtU6fb39HD91gunJORwrxg997HQBy7SIohhFyESyQpAkjJw4iJ3upKOQRhEgaxpREqLJCrKIiUVMFCUoigZB21IjiDyiqIkkdBRNpdzbi4JGvV6nvXQbI0hQVJmhU4fJZToQUntxMogCFEUmCmM0odOghp3q4tDBvfT2l9AlhTgMUeUMumngpA2QQ6IooFjIITTBww8cYdHiTjQ1otx7mIefmOLqa6+nr7eXa6+9nq7uMnt27yKlzLL8ku0Y6Y4XrFL6z66wupjxf5g5nI+5+wFwx3mYu5cI7l5snhfL3P0E3P03i5fac/ejCpNczCrKD3szvhhT+MxrSYiF2uzzl3U+s+2/qyCdX172+XGuQuW5ca4dwMXGi5Vbnm+7Z5QvL1S2eqGxXnAb0bYtOHfL840dJ8nCY//883uh/Z4fQogFWeiEO+++i8/8n6+zbVURyzExTIOEdl3985V7n7/6JVSZuZkK83NNxibmSWKPVLrdSyLF4DZbmIZKOmdj2ja+65FyMkyMT+M4Oo1WzNIlvbhuk+Ur+tm95xjLlnZRKGaRJYX5So2h01M4psmpkTEG+oosHujC81rkMjbLVw7QarWIogTLSrVtJ6QYUwlpNus0XQ8nnUIIgSQrKMREoc/I0Cj5bBrNdEhkFcNQCIIasipIpVP4QRvg6YZFrVZHTiKSROORHYMMLCojZAVNkVm7ugvLUTFNE5KEycl5UqkUY2NjbNgwQBTAwSPDlEoFZFklSQT7Dgxy0/WbKOSzzM5VSaWMNgOp60RhQLGQ4eiJEfKFHI6jkc0VELFPsSOHYVsoqoznuSxb2kuz1mB6pkVXV4HR0SlStkmSRPz6507xxtu3I5S2Z+LvfWYnmzetR9U0DNNGEOG2fE6dGqRUKlOv1Wk16iT+HLOzVWQ9RS7voKkSlqnTmJ8hVyygaRayV0fWNaRERo4iouj/svfeYXad5bn3713v6rvX6U0zo5FkW82y5d6NC+ACNhAwSUgCFySkHM53zhc+Es5JIJ1AYggpHBLCoZ1QQ7NxAxtZ7pYtW7Zl1ZE0ve3ZffXvjzUSQpGMZUw4f/Do2pdmZpV3rV3e/TzvfT/3HRKhkE5n0aRBhBKrfKoKCzOzhJ5HMmFj22Uqi03S6RSHD41T6igQhQF///f/yMYzNvLEI89BFHDn977B1ZdfSkdnjpGRARKJNIcnx7n0yotZt24N3/j6V7jp5ht44smn2HjmWgQR09NTGJrCZ//hn/Fdh+3bH+F1r7ueP/wff8x7fus9vPbm63jt66/n2SceRROQzdtMzc0ytmYDnhOgyIhGtY1UJY3KOMPDI4wMjbBn7146OrrQVAO3rVBvVbA0ncCBSBg4zSq6YTJ+6ADrzxqhWOwgIiCdTlJdrNFb7gJFkFB1Xn/zTdx51z3sfuF5usrdfPAP/5TzztvIFZduZXLyAJlilnK5B90wSOQzBE7A7NQyuiKwUyaRqtOqLlMqZSl0lVGkzZ//2e2omsXdd93DNVdexobNZxE48LnPf51ztpyDokoMK4EThBw6NEO5vx8ild27XqBcLGLoCtWlJTQBqrR4ZucexsZGaLWb3PrmN9PT08GVV13GRRedh4YKkcJrX/c6Ch0lgihEqIJMNoutmhSyGVpeQCpX4vD+AxTzRRbmZrFyZXRbEOJgm0nAj4UlkCiRg5QRQkQUi0U8FxKJJMsLi1x97XW8+dY38vwLz3HNdTfyrne9h0984i+wbB1N+Fx48UUUOwpMTxwmn5JcduX1tJebbL3iWn7zne/nC1/5LL/9tvcShQpzs/MYhkYY+nzrm1/j6quvRaoCQ5cgJA898hCr165BahGaphAGAQEhPV09pJJJlhamMS0bISAKfRRNj31EI0BTMTSV+dkpOnt6iIKImZlp+nt7iRAYukGhWCCdsggCDxFFSARSKpRKpWN928VyEcMwCcIIEQWoUiLCEF2Paeu+5zG2epQg9AjCgGajRb1e4+KLL2ZkeATXcXn+2edIJ9Os33AGe3fvYbCvh/O2XkBlaZHAV9E0hYe3PcxFF1yMpqsINT53EAY8vP0hevp60HSVKJQ0Gk0ef3QH/f39fPOb3ySVLPH4jscZGx2l7XqgahhGPKclEkmkjBHF4LiWDc93kbpG23URoY+qqEipo6iSxaUq7abLxMRhFpdqdHR14zgBjXqT6tIyGzedg6KbjI6Ooas6vX397Du8m9HVZzA7P42qSkIlSTLXhVBU3NYSwnPxfRdFS9Ns1jFtE8dr0DuwnlAJ2f7YkxTzGYTQeGrnC6SSCYRmcPDgFHPzFVxXsvXc8zGtJLptks4m6Cl00GzNYpsqfqCCYrA4N03bcyGKcNouPQOjPPfME6iGTTJp4bo1VEUShhGOD4ZuxHYOBCvfnWHsQeu3wW3QajewrDShYpHKFNCtFEcmpunqHSAiJJ8vI0SEQIn78cI4X1AUQTtwMKSObWv09HShCQ0/8BBCoqoRkgCpyFgERQgkAhNYNdSFLsEPAj5336O8+61n8Ccf+Sw3v+EtWKkMZlIjm8/x7ON3sGpkE5nO/v9Q3L1UznoqlO1UeeHx2+MFZOVY8nHi7ic790/KNY///dgxRKyA6T+e851QlAnl6H3Gi+oREWLl8qIVxU1FEYgoLuiOte+dgkV3YignPI6PY/14KznbifGL4u7nGK8GcneqD8orQcmOJeYvs7h5OSFXGsqPHf8S13Y6tNOTXdepPsQ/q9Wj4wu5E5+XlyrywjA87YLzVHE6XPSXhRSesACwd7LOWHKeo1XcyyoQV6iddtIiYVuUS0Xq1RrpTAJVGlSWlnE9l2wuQbPVQigRC3M1dF0hn89gmDq2ZbFcrdPbG4uvlEs5ojCms0xNLtLXW2awv4SuaXR1ZlEkHDoyQzqZYXauQjqTjIvdwOeBHz7N6qEefMchmbJx/YjOng6EkLiuSxj4ELpUKst0dpUIQ4Hn+miGQbAiliCECkJBUSQ7n9lPqZRGkyoz00tMzS5g2gG5jIHr+Gimhut5uG2XF3YfoVwusFyp8cLuCeaXKqxa1UWr0aazs4CqqQR+QLtV54y1/YBkz75DFHIJNE3n8OE5bFtHCMHi4hIjq3oJI8nM5AKLlWVUCZquY9s2O5/Zx+xChXTCQtMk+VyKKArwXJcjkwv09Zb56mOzvPGi2KzY9zxueNfvk0gmuO+e+1g9OorvB6hSpbu7iyBwWVxcJFcsokmdXKmIoRs0GjWiiPhedQOBZHZqDq8VsrC8hJWUEHh4gYdu6jRbLRZmZgh9H8KIpaVFDh+ZYXDVIPOL8yxXZsgX0xw5cpDe/g4a9TaZTJqtW7eiEzE7N83a9WfQMzDExPhhFpfn6R8cIJUrUCikaLVauIFCV1cvhWKRDZs3AAGTk5OUOzt4+umdDPUO8YlP/CO3vPENlLt7eNOb38D2Bx/k37/2LVavHuGMzWuoLy8RSQVN1XAdH1VqJO0EhhFTcauLC/zJh/+K886/EBB0dnYQRT6+G/CZz36B4aFeUimTpeU6zz+7k46uToqlItmEjePWODJ+hFwmjxeGJCyIFI2Htm0jYdt8/JOfZP36jXR0FLjre/dx3fXXszh3gACPVCbPt791N3OzsxTLHTSWl1mcU/jCFz/F0Egvhl0kqi+RKpdotBVmxqd46qmneWjbg6iK5NLLziOdTvClL34NiWR41SC+32Z2ZorvfPMeMulBMvkUhIJCoYiUgvm5efKlHKEveNOtv0RPTyerR9dQWV5CkR5SmqRSFtXaIgf2HuZjf/NROjrKHDlyGKnYfPfO77H+rLNQbR3D1qgsLWEbNpZlEoQBiWRqpTesRui1WZxfZGLiUKygKCULCxPomkaz7rL9hw/RN9CL4zURKHzsr2/nox/7KF//2le5/MorePttb8cPG0hNUK0t02632L/3IF3dXYyODaAbCXbseJLJ2WmeenwXv3LZm2m02xiawfT0FLMzk0xNTXLmGZvJZDN4gYtlWUhV0tc3iK7r+EFs9jy3MIeqSBJJO1a/NEy2P7KNro5uNAlB+KNVdKnEtMGJqUkSiRTtdou+3j4gQgi5MpdGTE1N0Gw6WHbseQnKiiCKsoJixiiNkLHgkxSxYrHnuwghefTRh9A0jfHxcbo6ujBMnVK5SLPVYrlS4eD4AXo6eykUc6iGQaPp4vtNFhaX0DWVwxOHKHfm6e3pxTAlfuDjBPHCqogihofG8AMXgaTRjC0oenu7UXSVnt4eyuU8QeSRSmXRdB1FKLhtD/mjZiUiwQoaBlEYsLS0jKGbKAoIoSBX+m+JohjFRJBKZSiXy0hVx5AaC/PTrF+/ibbrsXPnk3R394ICuqbRUeoEFFKJDIcPT9DR2RH7AgaQKRRxawv4Th3XjymlpmFgajqRKlEUDSdU0aROpdokkS6Ty3eg6TptzyOTH0BaEsO02b17J71dQyw3q4hQQdW8FWRHopppknaStuNQq1fp6e7FC2LD9PFDk0RRRC6VZG5mBlNPceDgflLZDK1Gm6ceeZK+wX6EUFCUuNCKfAdDEzTrFTQNQhEhdYtEMoMfCEIRIoSk7bTi9xohKHHO5UeSSsVjYbFFs1HFNjSEELieQGoSEUYx3TaKcxHX9Xlix9N09fbhywgh4/fxtx7bzpXnDfKNu/fwlrf8CrVqHTthUquFHH5xG/nuProG1sQFxsrC/ckomi97Yfm4xf+jxVx03LYfQ8/iN9fLPv/pXAvHydL9OJ1T+TGELIx+pIB57IpW/nbUXzpcMTAXvHSOK1Zafl52+9JxP52sDecXxd3PMV6pFcLxcTrJ/U97zlcSx/eo/azjZ00BeKlxTwcJfbUtEE7n76d7vjPPOoO3/Ne/441bO4CXf+1HbWIMU2N+dp6ZqWX6Bnq4574dZFImtXoTVYNUOoFmaKiKhqJEtByHPXsmaDQa1GoNEqbG7NwChWKeRr3J1NQilmlRq9WoLNfIZFM89sQeRke6kGg0GhE9vSUeevR5BgfLzMzOMjbcw/4Dh6nXamTLnQjFwGmHaJog8H2EEGhSRzdslipNrESaKHQIQgWp6CzMVnlx7yTFYgrdVOgoFwgjF0UIysUihUKahKWRTuWQmsoDDz/NSH+RfS8eZHHZ5Zldh9i0fpiu7hz1Rh2JgiYlS8s1UukkAoEuJU889SJdXUUMQycIApLp2NcpmbSpVJbJ5VLs3XeYZsNjoL+bdNYmlTBJplPcd/9TDPSWKBVTNFsOnR0Fdj5zgOFVXdi2QU9fB67v8ebLz8VtOwhF4LTb0HkGhmEwunqQanUJRcL87CLpTJrFxUVKHSXcIMBt+fgKGFKlWquQyWSIkCAUapUaoRvy+7//YVaNjNLTU0YXPn6rCr5H0pDYSQvfb5FIGFiWRqZYJAgUlittusp9EGmoSpLJIwuYluQjH/lrLrzwfCRtuvrKRBJ0yyaV7qC3swztkCDhcudXH+Wzn/sSN95yHU4z7osKQp8/+sMP8ZqrryWTK5BO54k8n+XlFg8++AO+/u3vcvnlF+C3PO654wfc+NbbwBKkUyl0mUJTJaatoUgfEagsLU3GyLxicv3rbsVO52k22lSXFrjjji/T25vloouuJZ+x2fnsE/QPjtDTkyXwBaqaYHneIZHUSScTLC1USOfzTE0fQNNSDPT20N3Xw2tfexP33ns/5523lje84RbGDx6ge2gVmmZh6RY/uO9+3vEbv4xmWNzx7ft4ce+T3HLTrXR29xHgImWAi0pQi/id33k3xUKG//q+38XQJatW9SMUwX33beNtb72Jz3zmM5yxZj1SGMzOL9PRm2GgbxjD1HA9l/GD45Q6OliuLOH7EYaeYGikyJ3fu5drrrqOd73rPQyvGsFO6lSW5xkY6OXyK64knyszOryGQqnE+PhhOjvLuE6LdqPK4b37+Ye//TsuuPwSRBQxPT1NrpBH1wTNRpVyqYymKUSRQFN1dCOiWqvjtgLyxTLJxEpfm5XmnC1bQMDExBG2bj2HfDFBJpvgTbe8nbe+9Zf50Ic/zC+97RYU6bO8WMdIWoyO9rF63TCPPvYE5689H0NPYhqQzxXJ5Uvki11o5gpi54Kq6ew7sIdUOhX3REkFgcrTT+2kXChi2RZCqkSKZGBwmDAM0DQVqWgIBfzIR0aStuuSL5YhirjnnjsYHh5Dyri/NQxDQj/EtpJ873t3sG7dOkzTRJVa7C+5YhHgeQ5CkRBCs9LESuiECviBRFME/X1DpFJpOjtLtN0WiBV/yzBk4sg468/cwM7nnqLRcJBS4np1BgcG2LbtfsZWr6W3rxcRanzr699iYKQX20ry/PMvIgWEAVimvWKkPcnUxAS6ZmFbNq22TyqVQpWCUqmIVHVqtSrNepO77r6L0dHVuJ4T0w51A98LmJ2dwdA0EnaKVrMdC5CoJkSC0POozM1iGibSMFB0gygKUFWT8f376Ooss3/8IIcnjtDX3Y8SQRQFzM/NIWREFIXUajUmJo+QTSdRVQ3LMPEDhZ0v7qa/rxvZWiSUJqZusFipgBKCD4VyGd9t09E1QKvdJpnMkLLzGEkdXU9T7u5ERj5d3d3UGz520iJlpWm1FzA0jUplEWlmadRqJFIZFFXDaTdJ2RaFri4GSp3s37+PllOhq7sPRQYUy3n8toeuq3T1dqDIFdp0EEAUIkyTyA1QREjkNyCCEBU1At1UkcJC09NEAsJQoGoGfgihHyI1leX6MnrSoKPUgQhDFEXyyBNP0tnTi26o8UqEEn+fa5pJd2cnSuShqSZhEFNEp6fnUEUTjC56O7r5/j3fY93oCM8/exC1dYR1Z55FpnsYIeJCJlaXfOVgw/EAw6nZSuI//PhqF3fHo4g/tn/Ej+kNvFRmezz77MSS9KQRRYgdIywsAAAgAElEQVST+AOecvcfH+0Xxd3/TXG6xd2JtMUTaY8/6U37cvc5frwT6Y6ni679tMXdK72vV7sv7lRFmpTyJe0eflZo4um8DiebpE51vISYThdxDOq/9tprUKcf+bHjTiYh/KNJ+UcrVRERyXQC29KRQjI/X6W7t4QqJV4rQDNiwRDNsKjXGtimzeNPHWTL5mFMUyedSRKJCKftIDSFzq4Sc7ML7N0/zWBfmYmpeTLpBFPTy0xOLZJO6aSzNo1Gg2zaoN3wkWFAJmOSL+dQogiv3SaZMggiMFWd3S+OYxgGQijYthn3LDhtpmcr2LbO1PQcGzeO0HLaaKpJ222jqzqBH+K0HR567AVGhvs4eHCKrp5Ohge7aLYa9A900N/XzaEjswR+SKGQI5M0yRayqIaFZRg4zTZP7TxAuZxhdnaZjnIew9RQRIgUgigMVgRVPCxbkssUcFwH3dB44YVDdPSUURTQ1YhyKc38fI2ujjx79x9BKpKp6UXGjyww0Ffi0GyVWiUkk02joPIX/3Y/F77mRhwXDEPDspNIqZOyLZx2i+XlRfKZDI1aFVMT2OkSmqZhmRYyDHBbNQwzjZ2ysVM2l197JbopKXV0snf8MJlshqmJaQIlgZUsYKcS+JHA9VSUSKO2sMD9d9/F2Loxdu7cyW+88x2sXj3M2PAQuUwSRQnREjaK1HEcD8vQsU2V+YU5IsUkcFyGhvpRQo/uYpF8uYQbhVSrC7z25ptptlpU5hdJ2Qlu+7V38sE/+CBnn72B1aOjjI6uptzZybfu/CYXnH02S5NTFItZgqhBGEQYVoZ608OwEkgtyZGJWcqdXcxMLRB6Hk/teILu7kE2bFhPsVwiIOTAoQk6uvrwPBcvWHndwhZCi5ganyBXLKHYGnMzR+jqX4NKtCKeoHNg337+z5e+yA3X30jNafPe9/4eb7rhNXiOgx+FbNw4yp7nnqaQ7eBrX7sDIQVL1WXy+RymYdGs1ZC6zg8feJwLtq5n09lbyBa7ecc7f5t3/Oob+PQ/fZ6rrriS//OvX+Gtb72NTLmAmjDJpWx++7fexzXXXkq1tkQ2U+SZZ55n9dgQ6WSCF5/bgxCCTZvO5yN//RGufs3lXHTxBeSLCTTN5Lfe/T5+6a1vYuLIJIVSEYiYrcxx9pZNWLbF/t17yGU6iLDY9cJ+1q3pI1HoIZuziHyH2sI0gefiehrJbIlANJFSw4kS2IZFKmmDKhE4pFIpliqL+K5DGAZcd921pDMZLDtDreZy6SVXUCyVWLduHVJKUuk0Lz7zLAoRHV1dSCWBdshm/4HnKBfzSMMk8B1+cP99JCydpbllJifH6ezoQTUlqtDRpBIzADyXZsNhcFU/iZR9LFPzHReICKMIVdepNaooSmytEoSgCgG+R6TCmpE1RCsa6ULVkAI810E1dWamp1k1OIjvuaiGwYF9+zAME800IAgIQw+n3cb1AuykjSIUDh88hKoqOJ5DJELCCFKpLI1qAwVwXIfevkEioZBLZVmuNXjskYc4Z/16pG6xZs0apJQEImRueoH1m0ZJGEncUGKbCWxb0mxUUUSEpuo8+9wOzjnnXIyEGgt8qCFRFBAEEQiBokgM0wICXM8hk8ti24l4rnebaJrAafooMkZ27ISNquo4zeUV4TAVt93GsJN4QcDMxATFYhFEiJ1IEqJSLJRJ2UmefeYx1pxxJqCQTCZxnCapZAaEZGGxgqUbPP7k49SbLcqFPAODIxhWGsePCJ0lLMvAcwNMXSdSFILAJ5VO0GzWSWfysa2FJrGtNIoiWF6qoEoV0GNRLSKatUlUESGMFNJrUGtUSSTS6LqGCH1M0yKSOiqSe++/C8fzKBV7sA0NXRWxuNb2x+gb6EJVVEIR0m46qGrckRUFAZEAXdPxPZ8Ij8hrUK0skUzlCUKXttNE1U1ULUGtUYdIQ6gqYRDgtiGXswncNqZuEAlBqbOMqcaLmqpm4fkeEXH/YxTGtGgEuJ4DwI7xPTz61LMs1T1uvPkWxs5aR67Uweo1wzz3+H10rRqh0DuCEMopC7vTjePzlVj+P2YC/cgWgZdZLb3yUMSPhIuOwodHC9jj8yZF/Ii+edSy6ujjeFTvVJf7H/KwV4TciWM+esfHL4q7n2P8rE3MX8lxx+8jpST4KemD/xnI3Utd36uF5p3qPD/p/l4pPfKnva6ftM8p7wfYseMpiqUS8pgIiM5vfPBfef3m3E8c4+TnjQgDQavp0GrVMHRJoZSj5Tg0Gw65TJKpI9Okc7HJs20JFpealIpZWvU6c7MLHDg0R8o2IQiZnqlw1pmrqFabdJYLzMxVKJeyDA52o+mS5UqdgcEu/MDH1A2aLQdV10gkkwhpIDUVqUmkUGi12pQ7CiuTd4SqawR+gOf7pNNJgFhERpEoUsP1AlQp8PwA3dAJCRla1Q1RSDaX5KFHnqHZbJFIJNGNBM2GQ+B7HJicxtI0CoUUjWYDTYKmCpr1JlEYkctniaKQbCbNnXc9wfCqbp54ejcd5Uzcp6iozM9VsKwMUeTg+wHd3SWe332QQj7DwUMzzC9UGR3pp15vUCpmyeSSdPcU6e0roagKf/KNw7z1NZt5esdzHDo8xZw9wtZzzqZWqbM0N49pmsxMzlCpt0hmshTKZQIUFucmSefK+IGk3qijmRaRoqKaybg3hFgOvrdnAKfdJplMkklnkdIijCRRJDCMeOVeQUNE0GrWqC43WHfGWpLZNMV8nttuu42IuLcqm82QLeRYqlRIJdPUlhsYukll/jDNxiLtRoNkNkMUKBSyOUQUMDO7xB988IO85srLyNsZnn7iKb721a8xNjzK0uwSC0uLnH/xRRi6xu0f/wRf+cqX+bM//VM++D8+yNDoKpLJJIl8rJwnQ5e5IxO0mrNoikbgBCwsL1DMlxg/cJBdL+wim8uQzqVIZVIoamwCbK54GiZNmzBSUDUbhIvn1DAsnbbnooqIaq3G0sIU3/jMF/n47R8nkc6w+Zyt9Pf04YRtfv3X3katViVbLMb0YSdi1chaFpYqXHLJ+Rh6ms9/7ov8789/gTfd+mYMNaDp+aweHmHH049y0cWXMT4+zu/9zrtRpGDTlrPJ5nJs3riW7z/wA7p7ykjp8aE//nP+/h/+jnarQbnUAwL6+rpwPZfAD6hVlxkbW0erXeeWW27GdZv0D/aRsGx8N2TjpnNJp5KoqkGr4fDii/sYGR3E1HUMQ+PTn/o8Y2NrSaYzVGpVzjpjHbouqFVnMGyL8YMvksmkyOY7CP2QemMBJZIoukrgNyF08cMAQ0vGdMF2k2ajQTab4okdj9Hf38X4+H7+7StfY6BvlLnZSQYGekkmDCYnxllzRhd2ModUk/z2b/0ml268mGQqRyKRJvR92o5DOluiVCjRbLYZGBzkB99/gP7BfqQWoasm9UYTy9SpVJZJZ9MogLcimKKqKoqqokqFIAjQdX3FDktQq1axLJO26yClwv0/uJfh4VG8wEfV1Hi+VeK+IVVRyOWyCE0niiJefGEX2WwWRZWouo6mmUhVR9fV2E8uCCgWC+iaxDIswiCi1WgjhcQ0LYQiMCwD3w8gFOiqyQMP3c01V13Lvr0H4/lmhcbntV1m56Ypd3QSCsF377iTbCZFKpUgYcciIy3HZXh4DUHkHusRDqKIwA8IggAiH9fziBSBZWh0dvYgVQVVqjTqTVQ9VopUFI2W08R1PCzD4o7vfpu+7gEiJeDuu+5gZPVqgjAg8ALyuQKe76EIBSkljuPiBy6WbRH4EaZusuu5Z+jo6EJVdcbHx0mn0kxMHGSxssz551+ErkrqtSWkZoBQEYrBocMHKSRU3NYybgCZdA6pmfhhhGHYOK6DDIMY2FJUhKrHizyKSr22RDah0axOoOCTyuYJhIGMfIywBVFI25fYiQTtVgvfaeEHAUNDI3T39LE4Oc0LB/ZSaTXRlIg1q0ewNY0gjBeKVUVFUQVSUY99dwohYhEa4iLCTti0mxVC30PXLQ4fmQYhyGQz7Nk9wez0OF29A0xMTaKrKqqmrFB8VaSIiIIQFJXndu/BTmbQNY0oiAVtwigiCkOCKEQzTNb0juHIBlddez0jw2ewY8fzKJGCnRDsfPRORjdsINcZI3cvlVe80oh77MSxGutnMcbJ4sTeulOOK075y4+DIv9h60uMfdrF3cmP+UVx93OMV9Jzd6oX/nTtEo5H/06GBB4954lI3ule738WJfNkY/+k5+pkx5zOeV7O/Z24KoOIDc5P7EU8VbwaqOepULaThQL09PSgqsoxw3iAm99wE1/76jcY67Z+7NwnjnX8z8ceROiGhpCCZr3F87snCX2fjnIe3/dRNYV8MXdsAn9q5z4G+joxDR0pJYausdxs0VMusFSpIaRCd3cpbvAnNhPOF7LsPzSJnTDJZtLE7cYKphUblVerDZJJi3qjjZWIlTOrS0skM2k8L0DXFBBQrdYxLQPdtlCAF3Yforu3k1279qOrGocOTbF/3yQdhSy6YeC5PlKqhGGE2/bo7S1h6DpzczUeeWwvw0Md9PSU6OnMUioV8DwXXVcBlSDwMQydMAowDI10JkmtWqPebNPbXaKru4CmawhiUaBM1kYIlbbTIpGw0TSVQiGLqsYr3qMjfbRabTRNZ26+Srkjj6apKEKwf/8krzn7jPj5yaWx83kWZQFTUXj0oUf5249/nM3rN/Ht797BRRdfQBR6hKHPxKFDdJW7+e//3we5+MLzSJgSz/VoNFooQsHUDTzfxzAsJg5MUCzmmZo4jGVZqIaNYhiYlsL87CT5TI69e14km7OYnZxg1659aJYkn8tj2wlcx6FULpOwk2imhqrr2FaCpaVldM1CN0xsy8APQp548llKHSVUafCNr3+dVMLiwW3beee73kXSMvjOv3+H9evXc+V1V+OGIVdceiG6ETEzNcPc/CKve91r8RyHDRs28oZbb2BgcAA/CJHCxGnXqDXqdHb2EwifH/7wQdasW0cybSNQOXhwP/39PZy5cQNe4KIoklqtRqPRQJWSIPBYmp8kkUrR9kMSVpKUrbJcrZPKdGBKSTqTg6DFunVncukVV/DkM8/R0dGN71YZHhuJX+9iAYREEZJPf+ZzbNx8Dh/92MdYNzZGT28/qVSS173+ekqlAqYMUVSbbfffxxXXXcGDP9zB3/z1X3HjjVejG0mkDImEwu49z/Plf/smb3rLm/joX/4J73vf+/GDJoVSB61aiG4otJ069957L/19Q4RRC1Ua3Hrr2xCKSn9fP3Oz8wRBQDZf5F2/8ZvcesstfPz2T7K4sMzOnc/z4IPb+fAf/yn33vV9/ut//3/o7uvEMCWrhvuoLy9iqlBrNbHsNLoq8byQRLqIqggO7H+ObLaAYiRxGjVMQ0dRdYgiVKmz+/l93P63n6RQLLDp7A3U61U6OrrYcvYWavU63/j6v7H13E0IEVAoZqgu6dSaC2i2wx3f28amVZuxEwmIwPVczISN224yfuQQo6OrUXWFVYOjREqIrquISGCYNn7oYFk2qq4S+rF4lqIoCE0BERKFPp7bQtMNPM9DSollmrQ9B8O02L93D/sPHGT16AhClStoxApty/fJ5gv4vh8rRroOPd1xoW1a8Vzle3ERZVo6ihArCsbEtiWqRFV1pBKhaSpCEbHp+krB2W42afstNmzYiEBBKiqTM5M89PD9rFl9Jg/8cBtRIiAlSzRqVTacuQZDExw+chBdT8cFq5AoUtJymvECjaJQr9S54zvfYmzsLDTdJBIRqqpRqy7TrAfYloUfOqCEKEIlCEKkopJYsULwfY/BwUGee+5Zevt7OXz4CEOjq2nWGxCFqJrKUqXCUzueoL9/cAWdCNFVlVw6j++5ZLLp2C4ijCjkCyxXljANk9HRNShSsnv3MwwNDWMaJp7voRs6qUwJS0+D8HDaTcTKPNZYXqLteyhSYXFxlmQqheu2abZqeH4LS5NUKlM4boVCeYhUpowbKESoHDx8iFwqSbtdJwgVFGlSqdQoZAtINf5ic1yXhcoca9Zu5uC+w3ieRrkjveIhGBIEcZ+vVASe66ywgla81VaKpzAMCEMfqfgIEWBogsD1iPwAz6vR2VWkkM+jqCqpbJK0FauwhvHBLC3XUCKBZSXQNR3T0FBVhcD38P0gpgwrGrqioUbQbtYYGlvk2/fsZPOmrezcuYt777kThYBiQjB05gaShd74fRwGxwRzXq04mZjef0r7zSnSrv8w9onp3XH3/3KKuxMF+k7Mt0+kfx5/jqN9jad6zn9R3P0c49XouTsapypCXk4R97OIV2OM06VWnuzeTqfQ/VnE0VVcjv+f4z/UEVIox0H5p77nEwuonzj2yj6qUOKEQAgicfLm22OF4AoV4sTJNIoizjj/Gh6559/pLljHdhAr/4hCECG+H6Eox9tFKMcaojVNUirnKZeyFMt55heWCYkodObx/dgXyW/7FLJpEqZg//gEESG5UpbOjjJ+0MC2DBKWRb3e4LndB1g1mGdutk62kELVwDJ1VM04Ri2N7QpWvIV0HUNXcdoOKDqmrRL6grn5ClbCiH2IgoBas45pa0SeoFDM0GzV6eru5Dt37mD9mh6GB3sYn5hj53MHGezvwG+3mTw8w+JSnXQmiZVQcR2HDetHEBpMTy4yN1chn88gFAVdN5ifq+B6Po1mk0wmizR1tt2/i9HRLAQ6S4vL5AtZIiFQDZ0oELRbNarLS4SBy9zCMq6jsHfPIXL5DKl0gh9s38FQXyf3PfAMq4a6IWxTXa7htT0+vX2J11+6CaEIpCq57aPf5VduewejowOUCibnnXseSdvg/Esuob4wTq16kMhrkksW0RNpLjz/HKyEgTAsRBCxNDtDRz5HrdEgmYxRR6lkePKpJ1h35ro48VQjWtUKCc2k2NHL0mIF3UgS+CbJTIL+/hGefvopPvqnt3Pu5nO4/W//hsHeXgzDxVB0lhZmUOw0thnypU9/l6Eeg2YjQ9JOc/vHPsvZm0bJlrJceMl57Hp2D6WOTgb6u9m9+xDC8+nqKaCnLYxkloN7H6a2sIwWhNS8iExGp39oENNIQxThOm3279tHuZih0Zwmly/guRqe32b9+o2omkbkRszPT7Bu3Qi9fX0oCtx79wMMD63BTmhk0ikMXUOTEs+TTE7OUSx2ElCh3pQkU+VYWChfoDY3jZ0t4akB+Y4y685Yz//+3OfZsuksOrrS1Jp1oqiGadqEkWTL5rNoOg0uv/Z1pFMmkzPT3HPPg2hC0t2ZpjI/h1Es0NvZQb1eZWRklPPOu4Rf/dX3sHnjBrq7e9B0hXJXF5dcfgm+H7Jx81akGlIq5nl4+5MEYRI7o6PpKt09Y4RRlSB08byQN7/p9fzBBz7I0kKdG19/A1KXPL9rDw89/DA33nAdGzduZHjVSGyjcvPruf8Hj/Dxv7udSHExLIV6s4YgFgnJ5suk02Vm5qYolLpRtSQIlYnJ3XT3dNOOIpCC0HWpHX4KZ3YHIlVEKCGdnSWuvv56snmbZq2BracRmo3neTz33G6uOncT+UKOWqtFpdmEIMRvOXz3m/dx3fqbVuhnEbXqMqHnY1s2ipQ8+8zzKEosNGHosaWB50criEdc2IRhiKposCJ64XtOjAiFglqtjmUbCGGgamrccxwFeJ6PVBQKhSKrR1aj6rE5OWEIQUDgOvF8iUCRCr7r4zoOrl8jm83RaFTRVAMpNFRNwfOaqMIC6UOo8sef/zCPvPg423Y9wI79T/Lgru0shYu84ddfS6BPMLZlgJbicfblwyQ7TT7wlx/m2UP7eP+H3sHac87kvX/4+/zw6Z185JP/hdEtZf7unz/LudesZe35w3hGwAvVKS66ajMPPnEPjhmy6aI1/O7/+15+6b1vYXTrMD1re/j8d7/IPQ9/n/r0Ip/b/iVyiQJDvf1EhChCoqs6jt/i7rvupbPQgy4V2qGHbVssL80xODKC23Tp6hzk/bd/gEV3id6zMrw4+Txfu/db3HTpDTTrDXRd58D4fhJWgvnFWYrFEoZh4ochtq7iOh47dz1LV98AmYTN3Mw0/T197HruGbq7+1lcWiJpJxAixBURUtPRVIN9+/eQTCXR9BDda6D6TSwtRDFCpEJscaLCgfFxRsbOZGqqRqvtYyWSeGGIQKXY2YuWKBF4AhFWCMIAhEW6kGV2Zo4wiMjnCtSqdTo7u+gfHMQwVR7buYuZ6SU6S3kUBaIwBKEgVQ3h+USqYGZ+GVXGKtWaKgmCAGUF2XNaTTQZYpkKCiFSCVmuNfn+vdvpH+xEiUJEDHzhhwEJW4/Ru9BBM/XYwzFyCIUkCmLvxR88/hgdnd1EwsMPBD984m62Pz7HFVdeQ3dXD61aHS2cRbjTbLn6NoSqH01qXrXi7igF8/hQTsjTfpK65k8V4hSPEy/qKGXzJD1vL6e4e6mc7vhF+HiR/LhzR0d9j0+du/6iuPs5xqtZ3J0q/lNWOX7G477c3sLToR+e7j6vNIT40Qrt0TgRNTuep37UyuAn3cvp3NfJPPBO53zHb7v78UnWF2s/tj0ChCJYXqjRrrfRDQOiFZniMIQTXjPD0Gi32qhSUipnqVVrGLpOKKK4aTwMafs+mUyKYqHIxOE5olDguC5Ly02mpmsU8ll6ejpw3ZBiRw5FCgxNR0EiFIGqqiBCFEUwN7tILp9BUSWsGEsICRKNdrPN+MEpkkkTKSW6rgEgVZ2dzxxk2yMvsvHMPgLXpZhLsvfABJ4XMDDYTT5jkTBiWpaQgu7eTjQtprImknZ83yjsOzCJbcVy6/sOTmAaCtlsDjthkkjGhsUPPfQ852wepdly8L2A3t4iO5/dy779E/R1l9i7Z4JyOU+9GlIspdBVnfFDs4Rh7CtoGDqDvWWqyw3WjvWRTFtIxeLRJ/cwPNzNzsMhW8c6WVysYJoW216ocuPr3sjf3v4JLrr4YubnF/jnf/k0SJ01Z51JOl/EShRQzTSqqqJqktAPEEREYUC+WCIIQhCSqSMzNFtNunpKsbegCHEcj+XlZZLJFPMLC+zbd5hUxuauu+4h8ATTMxP81Uf+mssuvZy3//KtZPIJLr7sAnKFDIoWEIQalplG0xV27XqRcy68lKYPO57cjmY1uOo159HdNcDeAwdYXFhk8sgE519wNvlCBkWJF0qkplKrN+K+NMvm/R/4EBvPPp9Vo4N09nQD8Ol/+TSbNp2Jqit09ZR54cWd5DJ9JKwE1dohCqUeAj9EIFENjWSmgOuBokqajRaf//znWLNmjGw2ydzsLPPz8ySSMerUchwKhTzV5Xl8J34vZrNJWs0GYRjh+0Ao0VUNz21x/XVXks/nmJo5QiadQ5FgGAk8x0c3NAzDRAhwW21S6RTLi1U+9al/4LLLL8BIZnjyqd188iN/w+Zzt9DR0UWtWmN0bIyxsRFmZqdjepbUMAwdTVewbBPXaZFIJjhyaIoj43vp7y3y4vPP8p1vfoezztzAu9/9ezRbIeedt4WzN23lkosvJiJgbnaewaEhisUy/+1972fr1vPYtv1+ztmynmee3cW1115NvpAmmU3TatfJZrKYhs34+Avouo6m6xiWjqoo1Go1bNPEdWIqnmGl0YMQSzeYW2zQPbweLzDRtQRhqOB6LqoSEQYRQmgYhmB6apJSMYWVL4DUueGGN/COX/k1FDS++pVv8KV//xZXb7kax3Fw2y6HjxzE8XwMw8DQVYb6B4gIePqZpxlatZpWq0m75RCFIaalE4UhjtteQdoh8P0VdMkgiiIs06DdclZUH8N4sQtiDzxV4jouqh6jsFEYo2rKMTQmQlHksWJoealJMV/igfu3c2j8COVSNwcOvsA/3ftpLr9+M6s2DSJyDVZtXs3111zFLTfdyDkb13HZxVv45bffxuaNZ+H6deq1Ju1Wm+6efmanp1B1ncuvvIg3vvkannxsF93dvVx73ZW8612/hpANPFdy6aXnkskkWFiYZu3aMXp6OnBaVc7dejaLi/P8y79+hQ/90X8jV0rFyo12yMUXnsX1N17Oldefz9bNm/iff/YB3vKua3GMNp/4wj8xtXOew+NHuPyKq7BTkla7ycPbH6a/d4C/+OJfInIwtrEPx1jm9a+7lIGhTs7ecg53fuNh3njeDWRzWVAUokhh9+7nGV41yqOPbKNar1PIF/G8WKFY03QKuSLbt30fO5Whs6sL3TQpFks4roNpGsdo94oQqIqkUZ2lf3AUVbMJIpXITBLpafRkGc3IsXPniywu1kglczFtNQjJZuOePFVTUaVENwyiKMRzXcxErALrV2dRFZd2JMlm8wRR3IeYTJhEQmF6dgbXcThr3XoM3WZpqULkR2i6BiIA36fadtE1C8tQ0dTYTzFe91hRVSRunYkLjHhu9j0HxfdYM9qPKlyECPHdNq1mHUvTY+EfqaIoKoHfRgJEIU7bZ/f+ffR2dNJT6kAXcfFQb4U8u7jAB/7gD7jn7jvpH+gnV+4imU0wue9ptl51M9FRCumrWNydDDg7WfH0n5/fvvzc83RpmafbXnTU9/gXxd3/hRGG4f88FXXu+DgqqXo6NL6fBRp1uuf7acc/nXs41fNzMqrpqc7/co4/MX4Suhhzxo8b74RxlBXkK4riouNEXvnpFnQni6PFYxSFRD9hcnopXxohBJvO3siv/P4/cOOW8o+2A07LZ342VrB02h5J26JaWcY0DdqOiyYlECOHAKZpYK70hLgtF0EUo2xCoBsqpm1hJWwUGdNDNVVimAad3SU6u3K0nGVm5uYwdBn7MikK9VqLiSPzdHQViQhQBDE6Vm+RSiVptlocODBFR0cRt91CVTUOHphibKwfgYJmrHgxCUHgh1SqTS658CwW5udxXQ9dN8ikTAaGumLKk+/hex6LlTqFfJ4D+ydQZUQymY63hy4PPPAs5527lkIpTxRGDA30oGoaYQgPP/YsgwNduI7Prl0HWbOmTJ4JQuoAACAASURBVCKRQygujusyNNhHd0dxpa9GxfNaRJFGELhse/hFtmwcoFTI8fSu/aSSOpoaoxK6oaFIyQ9/+AyO67NqsItVxSLJZIK9e8fZ9dx+rn/7b/KlL36JX/7VX8VKWvhOmxtvej1f/vq3WLt2jFy+TKVSR6oSJRLEYIPP8sIs6UwOIQ0UTSfwA2wryaf+1/9ioK+HVruOptq4LR8FQSqbJVMocPjgYXr7u/nCF/6NB7dt58233sK552whYWWRhksQhTRbDoVikfn5ZVKpIoqEwG+TTpT4m499kPO3XEZnuRfPgbGxdTz2yGMUSmUMzWDj+vUoqoJUVXQ9Fq1JJDOkUxkCz+HBBx7hiquvoem0WDXSh6aa6LrKlnM28KE/+jOuuvIqDF2n2NFJq+3Sqi0iQoe5+RbpTI6//+Q/kU0J0oki737ne7n00gvJZrN0dZXQjJhibdk2hXyeZrNBZWGWwcE+wsjHbTUplTpx2g2q1XlUKQmFTWO5ScJWmJ6cJJlK0G420Swb05Q0q01arksykWV+YZ622yL0PPQoAEVF1TWGh0d54803YVkgVY2/+NCf8+73vIf+wSF2P7+bf/zUP3LrLTeTzWZYXFyiUlkiky2hqipzs9OkkhaZVJbDh8dZNbyadFZSLhcplMoMDPQR+BovvHCQC867gIkjh/H9iOGRIYTw2Ld3gnqtxqpVfdx84xu5+967+e537+Btt72NRCJJ70CRMHKZnVsiV8gghULb8SgU0isKnBbTM+PkCnmkImi0Wqgi/ox7kUC4EZGISJY6cSIbQ9HiBRtChNRoNasYukEykWZm8iDFfDfZnIVpJSAMue1tb12ZT1Q2b97A1PYp+vuGePSRh+jv6aWQy5Mr5nnooW0MDa1CagqGadJsNens7CKZSBB4IbquoUqNhx/aTn/PAFLViKKAKIowdJMgivA9lzAImTwyRT6bp9Vq4XsBmqbFNgDR0QJOQVFiqiRCQZEKruvieV481wnw/YiPfeej/Pr7buCMCzZx3mvXkO23OPuqM3jjTa+nlOtgsXKQjvIogahh6GkuveQy/svvvhcnkHz5y99g9egoSuRRLPfj+A6maWEaCo89+jRja1ejGh6dnauIwv+fvTePtqQqz/8/e9dcderM59yx79Bz03TT3dA0IPOMooCgKOIYjcSvMd9f1ERjoknM4ExcDokx0aXGCZUEECfUqCBCI83cND0Pd57PfE6Nvz/qNrQtNGBQ8l3Lt9dZ69yqOlX7Vtc9+332877PE2AaCqNTe/A7sDClsH/0F3gthbXrjiMIfPz6DF4QYbl5/us/v8VXvn4zf/GuP6K6MM9ddx1ksL8HKQSm0YuqhKRSNhedczb9A8splgpcctF5nPaiTXT0A7zgJady2y9+xhdu/TL37r+HP/mzSzn73BMZP9Qm7Hicfd4Z6IbGt2/9AZs3n8q2ex4ka6axUykURaHdajE5Nc6S/kG6unrp6eljz97dpB2XOPZQZFIen88XuP/+bfT09qGoKs12i8yip2mn06Hj1YgDDz/w6LQDEAY33XoLg4NLSVsmUoAiIBQh6azLkoE+TNtE02ykklTXGJpCvdHAMEz8oLNYNizx/RjpZJCGidKp4c2NEgsd181CLNENjSiGbDZPxs0Qxh3cjEMYwUMP3k8m34VrpwiDgKmZGq1mHdexF5+bZEFBSEkUBgnIC0OQibedpigQh6imhaJCGMaIOEJdnFfjKERRFaIwIEJlx8MPkskWQUYEMfQWSygiINQ0NF0niiL27tvL7dsf5dpXvIJ8oUStWqeQyVBfGMXWOiw/6XzgCeWQ5wrcPZ4XH7HtyBLNJ2PKfjdxdFmmWFzE/fX4TcHdM1ckT6jE34O7/4URhuFfH37/TEQ5nk3/1fPF2D1fY3g6Nu83AW6Hw1+sRf9Nrg+LJQaHPVt+zSyTxebdZPvR4O6pTNOfTTzBDMZPC+6eyb4rr7qSG264ieP6LBCwMFuhWfPx/ZBD4zOYmsG+/WOk0xatZhPDTJQoiWKEsghaEQhFQUrJrscOUCxlAUnQ8RkdnUxWOIlQdBXDNjB1lVa7QyLOApXZJoEfQ6AxOT1NJpPCTjmUSnkgWpwEBYqioUqJpmsoikKpUKLj+Zimjue1KRTzREIgY0HH99BNnXYzMVDu6i0hpeCh7XtYumwIx3GwDJVqZR7dNBFS5cFHDqBLBddNIWK4Y+sjDA/2ICRIVdCqN+nuLhIEgjhKFLSSFf5kItY1BcMwSJsKihlCbGKYMF9pcujQDIpUsEyNKPSQaky7HZBybZYvXUKzWSXwQ4aX9mBZKnHsYxgammbQaLTpKjqUCyn+6da95KTA8zusXbuC9938KK9+xWUgBEtXDFNtVvCbbQRwymlnUC5mIQTT1Ai8NrqWCMdEcYRj6tQbbaSq0eoETI2Nc801r+EjH/4Q6WwW27Lwfcmh/SOYpoZumnR8n2w6Q6fdYvmyFeRyRWzLplDO8y//8nnOOuc0TDNFpx3SaPjYdpZP/fNn2HLKCTzy8HaGevpZNWxz280/RM/APb+8hxUrlrF06XIMx0JTdW77/o8pl7upLlTYtu0RYiXks//6edasWMOnP/Vxdjy0natfcSW2Y/DLe39J2sly5y9+Tm9/ie/e/FOGhpYSeCGmW8ByPGYmRjBknnJfL+2WRxjErFiWJmhJyvkS+w/uYcWqlSwZ7CcMO+QKxSR5F4nYjiICLMtk+yOPkstkiCNoNKoUixn27t7PT+74JRuPX0ejNYFjWzhWlpSTIxAhRD5B2yeTz0MsMU0TyzETIY9mg7mFGlJVGT00wcTYCEL4dBULnPGCMxheM4SINFRF4Ytf+iKnn34qtpUil0tjpyw+/enPMzi4hN6+LlRNEng+fhBgmylUWzJfaWI5GcJY8pa3XIfrZBka7uO2H9zGlS99GXNzUzy68xH+4R8+ypuveyMQ0mhWGRuboLvcw8YNJ5HNpag3pgkCj3S+hGlq+H6QKB4GMY6TIQyhUEwEi+ZmFygU8qgyKeVFKgSBQqwECBmjqzqNah2pxQRhG9+L0NREpCcKY/xOh/e+9x+56MJzaUxMMDpyCDfvEoqIyy59MWMTU5xy3GkYmsWj27eTL+TRVAVVkwwNL0doGkiBEJK+rm5mZqYxTRNd11EUgefX6e3rRddVOkEDKVVarcRbTCpJuWQcxQgUJsYnmZudZW5uDsu22LZtK0uWDLF9+0MUi90JqyzF43OBIiX/8PUP0lQqnP7C9XStyvPKV16GohooIs3swji2oxD5LoEfoUkD3WkhohwLjTGU2OK1r30tMT6224UiDNIplx3bH6JQ7sVJmSxU5tm96yG+9IUbuPiSl+D5HeYr8+zft58vfu6LXPDCc/nLd/8dvYXjCdjPwpykXquRz+eRocdr3nAdJ596NksHh3j7u/+cxx66C0UYCCNkyaDLf930ZVKpEnbWRpECIWLe854PcvGFFyA1D9+vMdS3FMVUGBoe4JpXXskrL72QRjWgUFjJLd/5IZqi8+iOnWw6bQvFfC9v/5P/y7UXXIsXBOQyWTRNx7JMenr7CHyPjtdCKBr9PX3EUUzktZBCYa4yT7G7i/6ufh7Z/iClUheWZdFutZKFLz1RbY5DgaHZSDVFxwsZXrqMWm2GIIpod5ogIgxhImKFTidmarKKqgoiIjRdpdNuYlt24k0mIkQMceihawZx5KHoDoqdQxDSrk0iTZNqo45hJL3DC5UK1VoFN13C63ikDJtMVy/1WpuFuXka9VmkplLqzqMoSX7geW1UXYc4Sqpx4kXTbEUljBNxnuQ5DInbHQzFwItCYuKkL5yYKAqQIqbebJEp5ND0RKhlfq7Nwek5sk4KXQgi3yOWoOsuQ8cPUC4vYe+eg+x8bA9BY4Ha9C5KeYv+Dechk44+hFSe85zvqTLewyIrv/v41YsmS/JPrhL6P2Xunhm4+z1z978yDoO7Y0npw7MDd7/tnrpnWhZ5tIXCbxrPlyDL4RBCoCjySUHW0207cvvR7x/fxhOrUEnP26/XWv9PIyIxkU366f6H93ORily56UwYuROvE0CceKZ1Oh6OZVKvtTkwMoNj6bTaPq5lIqQkjGPajRaappLoCSSr85omaDcD/HYLP/AxdQ1V1alWFjB1gVQMvGaNifFRHMNgaqZGVznH1NQChqGj6hoSga6piwtpMX4nJJaC0GsnJTkpEz8IiP3W4oSooUqBUASh30E1LTRdhxh000Cq2uIEEtPTU0gMuIGHHjlAT0+ZZj0p0eruSpPOOIRhxMJCE13XsS2J32kxPjLD6tWDLMxXmZuvMTc7w8FDs+TyLoYWki9kUTST79y6jXUndBP4YJgqQpi06h4Z18RNqahm0uej6RaWbTA9M0s67aJpBlIqTE3Nk82l2bl7jPn5FrlMiru3PkKpWELVJP/0g4P86dWn0d3ThVQlL3rjO2h6IatWryQKWhgyIux49A4u40/+9J2cuGE9lutSnZuinLVBNei0Oxw6NIqTLTFfrZPOuEhVEIcdvMBj6fAyDEthobJANmUjtYiunhL1hQV+etttDKxYhhAqH/zAR3n7/30bt37ne/zFO9/Lpz/5UZpeBa/TxrQM8sUMM7OTrFrRgxLGZPLdzE0fwEkNctOP7mb3ow+xYd1JdNoN9h0ao1RMc+DAXlYuX8bs1CRDA0v40hc+x+aNp3PGWZuQaoYLXnQ+J59+Cn4E6XSOL3/xa0ihsXXr/SxMt9mw7jg2nbqJVrOOrfnMTc+h2japQhrDNKnXqyxdOkQQKeh2lhtv+TaXXvEiYhlDFFKvLGDZaaJAoqgRQVjBdUvMz9dYsmQQ07Xp+B6qrjMxOYujS05YdwKRDDBMC9tJMzIxjpt1+dF3f8TAwDCapWBpie2DbjrEAQlb0PLQDBNLtygWXUKvRhx6mG4GJ5dBM12qtUMYeopyaZivffVWBgcLvOfdf8MLLzmPkzZsxrEX/x7DiImRg3R3dbF3305ShosqBOMjB3Adg/NOv4jzzj+Lnr5ulg8u4+677+LP3v0u3vjGP+JV176SWn2K7u5uDu3dxQvOPoclA904Zoyd0gjCGMdJE3jzTI5OkUunCf0GsW5Rq8xh6oJm28fULVRFY3ZmBiedY25hHttWaVSnEnEHxcELYxoL4wRhhGGnoA2m5eADlWaN+rzPiZs3ks7l+eS/fY0VK5bR3dODL3Ved83L6ezQ0QyBlXJZuWpVor4oFGJi7tl6F8ViGU0qBIFPHAt0zVoUPIkQMhEr0VSdeqOJqdtEYYDp2CgIvDAg9gOqlQq3/fdtnHbaaaTTNt1dZUxDY0n/EEJI8qUCqoy5+6Ff8pnvfZatO+5ixp/kstdcyGUXXcDmk09BxJI4jgg9D6/Z5oWXnMeb/+A6NFXQ9mpYjo1QJXt2jlMq5anNt7n+ox/h3HNeQBRHLCzsYcXyIf7qr/6Wyy+/ClX6VOfHSeW6ca0cl1xxBm970/uwqDO88gw++Ym/Z2n3Ok54wXnc8MXPcdnrrub117yed/3l25ienaGnu5+FVotbbvkJL77kxQwuL2FoJs25Kt+66VYuufAMvGbE9R/7PNd/9BNc96a3EURV/LbGKVvOpFKfxjBVfnTbnTgpF11LKjICP+JNb3krL7/2VUhd8IItG/nb97+ft77lzdRrNVQ1Ynh4Od+78b8JQo9irgwyJkIwNjZCNpsFYmam52m0GmRyGYIwplZvMj09zS+33sOOnds5/bQzaDYb6JqGauhIGSMjH6EpKIoKQqNarTA7M4apSfLFrsTmRdHRVYOJ2Ylk/o0jTANs22B+dgFV1QmjEE1PSnKlUPF8D023COMIP/AJgxBVU5GmiyIlYWsWv1NDT3fTqNZI2zaGruOFIZ1GGyttc3DPLvr6Btm7fz+Tsy0Ge4sYaqK42wlifvHzexMrAyFAU0BKpqZmsAwbRUTEUYSq6YmMv6LghR4qMSKKEWKx9DcKEUJiGTqSGFVREJHANjQMw0DXEpDmRTGj41V2H9rD7Q88yOVXXM62Bx7kuHUriVSN5qF76V17AkMr1j4h979oFQCH++GePYt3pHH5sTKV32VJ5mEA97hy5xFxJGg7ejzyiNdTjfTpFu+PzrcjwWIu98QIfg/u/hfGYXB3OJlX5BM+Gs8EOBwrpEwU9p6sLPG5+KN4OhApj6LUn6vr/LbB67HGcax9vymr+gRzl8TzC2WfQSwO9Wuf/TxDp11DPL4V3/dIpR2KxRyapjK/UEHXkjLMqekqtpX49Ji6jio0iELGxiZwHYMIsG0bwzIZG5+nXC6wd88IQehhOyYxMbomURSDudkGXhCTzblIIPAD3HSKVrNNd1+RdquFqetUK2067Q6ptIPUFCzDwG97LMzMYzsWUpJMvFLie4naITIgjAKkUPC9kMnxOVzXIo6DRXU6jT17xnFth3TKYPfuMR54aC9rVg0QC4FQJOmMTbvdprunzPjYAqViF7t27mdJfxe2ZeOmHAaX9oAM6XQ0pKIyPzvD8uVZTCeLbprESHRVwbIUFA0MK8UD9x+gWHJpt5qJwEMkEqlqS6dea+I4FgJBIZdh38FRerrzDA31sPW+R5kLNc4d7GdyZpYlAz28/IO3cM1VV6DrFs1Wh4N7Rvjcv3+Z8y8+H6EoXHzJhbipFIqqYuoKrUaVWKoIBcrdJZqNBl3lIooU1CrzxFHIWWedieNYVCoztGp1Os0mB/eP8PM77mbLyadyx513Ucz3MD8zz2B/P//yz59k24M7+MTH/4lGc5au7iWknDxEkr9+3we44KwzERJS6SxSVTFSLpE02LhhI6VSF6tWL6PWmuGEDeuxHZ0oTJ7LYinHww8/xuDgclqNJrXaLH/9vg9y+eUX88XPf4E1K1fzkQ99lL94z5/T09vDyZtPwrQMavM1+ocGSGdc5mdm6esfIop0UqkClYWEPe10fOyUzcihA4xPjNJpBgz09uH5bfKFJXz/O9/juONXE0cxirAYPTBJq9XCMHW8eo3K/By6lGTSKQrFPLX6ArppE4QVpqcnUGMBQci2hx9m06aTEYpKoKhYThpN1dm36wAfv/5TZAtZli4bJFTUpO/HUFgyPADCJQg9vPYC+WwXCOjrK3HllRfT3dvFGads4NWv/2NOPnszmi6pzc8gfB87kwMhyReL+F7AD37wY265+XusXrkeVQm56mXXcMKGzaxcNsSB/fv5yPUfIZVOgQjJZh1qtTozsxN0L+nHdHQ0JSYUKkG46E0Wa+RyJTRLY3ZhglSqiGno6LpCGIRomk69XqdQyD9RghZZCE2h2fKSv+f5WYq5EqblokiduZkGd//iLlKGTjmXRXMt8tkCd/1sG5YKJ2w6AStlEHQW8D2JPxeg60bS++a10Q2Ntt9GyoiUk0KqCpquMT87TyqVQiogZMT2Rx5DKBLTsJienqJQKCAlj0vG12t1VAGKZhCRfJf09fWgaBqxFMRIgjDgpp/ezDdu/wZ/+r5rWbNpNa+85uVcdenFnHHW6VSrTfxGyP79u/j+bT9icGgZe3aO4rcVXvXKN3Djt25lxbrVuE4aEfi0FY+ZmRopQ3Lo4B1cedUf4PsdbNum0w4QUnDJJRewsFBB6hpuSqPTalMopeh4NptO2cAJG0/Fa89yxRWvYWBtEb9T4awzT+cNf/QOvvSpjyO0kPUb1nHf/fcwPHQil77kXPx4DkNPcd+D97NszfGccfoZdBQNI5Xmshe/mK2/uJNPXv8Rlq1cyTWveRNXXHERphljaC5f+PyNvPSKlxATEUYC07C57LLLsSwHy7TxOjVe+KLzcDMW6WwWXTcYGu7n7MtO5odbf4rt20BMxk3j2DaqolGvt0i7JtlMBikEimYgVYXunl4GhpeiCklfdy8zMzOkUlkIw6QtQSqEXkylWkFKaNSqpLNZHh3fSU++l71797Jjx4NIRaW33IuiqJi2g1QNgjAk7SZWGJZlQLwIqGTCXUVR4vvn+x0MIylZJxaoqRyansYxNOb3bkNRIjTbBcWgMps8V7VqhSVLVxEB3T29KKrENC3qjRZ7949Qzjn09/agKQJUDRlHhFHMwf17Kfb0IpBIGSMiCKNEzVVV1KT893CpZJQIscRRAlMSJi9Mej2l5K6t9zI2NsWS5cNIIdB1k3JpGakunzXrTyDyQ/xmne6SQWt2Ny944csRZvaIFhJ5xPvfLEc7sgXk6LLMo+NIgPeEB96R4PLJ9z3VtmNd5/HxPQu68Nncg6fKcYVILEcer7064pSJz/JTA+jfg7vnMY4uyzyS2v2fgrvDgOPZiIw8V8APnjtwd3T8roHdse7jkcc823M+/p7/t8Dd4bGvG+qm1aryd1++k4vXOSiKyszMHIgY29SQisBN2ezaO8341AIHD81SyNgoWoSia7jpFPGi1Ivv+0hFI+/qVKsVnJRFFMDYdIW+3jLVuSqeH9Pd3U292SabsfE6TUxLwXJMLEMHBUxD59C+EcYmFzB0MC0JocJ9D+7CMlW6uosIRUdoGkEUJT5Viyp4imagKgnz12rWyGVyVOZrVBZauK5LGIVksy4AmqHS21dmeLg7mRhVmSidEeOm02haAvQefnQvmbSNm3GQqsLs3AxWykDXTULRQVME1bkaju0QxRGqolKZW0AVOuMTcxTLWYJIcGjfGH29aXRNpb7QxkmlOHhwlAfv38tspUHgBbSaHeIQli/tTtT6YoEuVT75kxmuPut4Vq/sp1ZrUlx6Gv39y/n8f3yB1ctX0W4GnLLlDDJdGaLIpzKfALZaowlRgOsYNDuJt5TvdxYrXkOazTqWaaAZKsTQqNco5bM4ts2+3buIA8GKFWv56je+xUtfdjU3fPUbeM02Z51xKlHgs/fAJHOzkzQac5RKRTpeG9/32LlrByesPQHNVJmr1tCjBlLXMRTBfXf+nE2nbGB2rsrA4DD79x1CVQy+ccOtEOtkCxkGBgcolHOsXNrPLbd8hT97519Qb01x6lnn8LkvfYnXv/GN7Nn5KP/6mc/wne98l0qtiqnB8rVLIfbxvCo3/teNrFu/ARBomiQMY3bu3E0+lyOTs1l/wnpEJGi35xBaCNKip7uH6alxwijmrW95J+eefR65fAbDVFD0FPliD1K3MGyXB7bdTXdPHjCZ3H0H2UyWXM8KlFSBoeE+NC1FjCDWNYRUkIBtahQLeTadeDLtToQpFRQBzYU5vHoTHAfHtGhWm9TrdRTF5POf+yof+dAnecGZ5zA/sYuVx2/Aig1+uXUbGzefRK3dQTcNFqo1dF0n9ENaLY98psx3vvtjNm3YRK6Q4dwLzsI2I9Ycv4L9B/fih00s06HZrrB/7z7WrtuI0JLyWK/dIZUtYBgmqq5j2DGaZgEqhukmvnAiotVsomk61VoFy7SQUhL4bSYmH8O0NHwMHMdBRhGWqdHuNIhFyL4D+5mZbPF3f/M+lg70s2L5MJgmcexz87f+g5defg6qlaLTCXlw631c9/Z3ccFJ5wOJvLymaY+zloEf8dP//gnlriWkHBPbTtFs1fnRT77NimXrKJSy2LZNo1kjk85y++0/YaB/OBEVEgLLMKnOTmCaFq1Wi+XDS6lX5wl9SbPWpPu0Av3H5zn93I285MIXMTI6Siabo9FcYGF2DsdNo0iLN7z2D3nTG17N+g0bcQtFlvRlGRndTzrrsOnE4+nU5zB0C6HavPicP+DO22/jJVddyte+upVzzj6VOI7oeB6m4dBsVqlUp8lkCqQyRcb2P4ZpWoztvZee8hqsdBsZOKhWnaBh4dp1VM0mWyhx5TWvQmuN45PI5Pf39SPUJq26xNRKRKLGH77mD3nZ1VdgqVW8+hx+s4ppWLiZPLff+SgDfYO87PLL+cQnP8WlL34Rnt9h9+59fO+73+HkUzbziU98GkO36O3rJwoirr321WzetCUpy48lhpHl5v/8HkuXL6XVmWP1smGURop8vkCzuYBhmkQxTExNUi53IzWNTqfDzMQUu3c9xvT0JP19/Rw8sI9MOkU2lyEg6ZGLAn+xxzEglUpBDO1Gh07g8c27b+LO7Vs5deUWurt66e3pQbVNEDGtVovaQhVVDZGqIBIiUXcGEApBGCEAVdUWRbl0RCyI4hBNU4jaAbFuEEsVLZ0lbNUIalNIVcO0kv4807SYm5ogm07TbrXJ5Yuk3SLTs/OMTkziuhmEiBAIFFMQIVE0STZbJCLm3q3b6O7rI44kUmVxYT+pnvKDACkSJU6hqERRhOd1UNXEZieMI0BQLuQZWrqC0GsxcWiGdCmPbqUYXLucGIOv/seXWL2qn8bCHuL2LOvOuIxQGBz2z1ak8pznG0+XDz2eGz/Jz0+176m2PZMx/C7A3dHbj9RtiI867Fg9jr8Hd89jHF2WGR/uzTpScOOI/7yjVzWOZIyOFl15KlDydA/c8wHunolgzPPK2D2HiOvXmNSjXkce93z1TT7ZtRWeKC+QAE6KW7/07/zxn7yDq9/971x+UgnbMdF1DV03uHvrHnbumeL4NWXGJ2vomsL4RIWerjz33rsLwwjIpLPEJKpx9WoVqWnEQcjs7AJ9vQUOHZqiXMySKuSwTYsIH9e16HR83GwGzdDZseMgigK1WgsQ5EoFTFNhZHSW3r4ekNDTnU/KrrwApEIY+ChCRVU1Oh2fOIIwSjyiwihGNyz8ToOpqRqeH+K6NoaucduP7sV1TLL5FMQxoyNTZNIu8zNV6o06aTeDlDA/U+GRRw4y0FckjCIyWQdVCjTNQtc12p02qnC44877WLm8mx27ppicnKK7q8jExDy1aotsziWKIx5+cB+DA2U0TaFZb6NoiUnyvffvY/OmpQwPdZPPZx7/Dtm5e4wwjLBTNk7K4sqzTsFOGQRRyNUf+Q7NepuLLjqLNSuXkcmk8DsNrJSKaShMjI8BIXYmTRz7pDIZIkWnNjPL5PgBSrkytUab/l4lIgAAIABJREFUlJPH0A2a7QZ+K0BRdKJQ0PYDdNPBSGUZWLmUsdH9LOnpp3dgiK/866e56mVXgemy69A4e3Y8zBmnnEbf0pV47Vm6y11EfkwhW8LrNDj73It4yx+9icm5GiYC0zC558Ht9JaL5Ht6+dgH/pH+vj5StsXU5AibT1qHawV85Qs3smz1GtqazpYzzyYWPik7x96H72N2Yp6e0gBDq3pYt+44zjvnbGxVoe436e8ZADyac1VOPuVUUPREFEEIdBlQ7ulBERqf+cyXeMEpW9BtKJZ6adQ8dFWg6QGFQp65mSpXvPRKLNvi3e95N+eefx5x2CQIPDRF0ml1CKOAfLGbju9hOHnq1XFatXnazZh3vfPdbDnpRKrzc6RNlcrcGNXKTFLynHYw02malRnS6XTiq2fZZLt7iNsd6rU6mqaRSzvMVTw++6+fo6uY54xTNvDA9t2cc+7ZzE5P0uo06envp6e3m7mJWT72T5/mlNNO4bvfvJmF+QU+/LHrueQlL2L9xlVsPvlE5mZnSTmJQJLUJLqh02k0yOXLlLuXoNs2KVtHSIntunS8NpqmJL5kUieKI+hMs2PrD5k6uI29D/0cj4BiV5HQD5mfW8BOGWiWQc7ppd5YoNOs4Lfr1Gs1bNtZVAvUyTgZ7r/nEW79wTc556JzGVq+CkU1AYW+nn5SuQyPbt+Fbee59jXXcclxZ7Nq+SpmpmaIRUy90kI3kp6lwA9Ye/wG3JxDGPkQxbRbPhNjEyxftpIoitA0HV3XiCPo71uCpmtEj4suhTy0/WH6+4bRNMl37vwh7/7Ue/ibj/05ejliyfCSxAvSTGGmLdyMiyIy6LqCY2ao1iYYPbSbN77xTfiyxT13/Tcy1Lnha9/g/PNP4eCBA3zz69/mrPPPJ27M0mgucMb5Z7Dm+A189Us38La3vpqRQ1NYVsjM+EEyhQztdgfLdjEMg3ZrjlypjKZauIUe/KiDoaRptOpEkceBfRO4KRdElk5jioWxcf7uI58n5aTY/sA9/OL2uzjn7HMIozZu3gap8urXvBZCyQf/8VOcef45CE2i6THd3WUuu+JCSkWbtavWc8WVl1KvV1CEzjlnnc/mLcdRLPTiNyU3fP2/mJ2fIe1mWbVyIz//8Y8YOTiCEBHjY2OceNIGiEOue9Mf84dvvY6p3RU6nTaGkwEpgZiUkyIKQzRVQyoS0zDIZnPkC0VMy6TZaJHN5bj/wW309Q6CjPG8FiIOsew07ZZHvdGmkM9w6NBeDkyOcMLxx/HI/dvZsulUfnDbf7JsaDVjIyOk0xncTBrT1Gg3PaSiIBZzq5iYIAjQNXXRuy8gDHyEFGiaShQmrQciCpFCEisGtlMiFoLa7DjpXI75uQU6jQamZTAzN082l6fVrCJVg1qrSblQ5uHt2wm9Kv19PUSRBgQoQUSsamhS5eDBQ/T29aPEAQgFqam02j6CKFnAjCOkpkIYMr1Q5ZHtO+hb0kfoB1i6RYxAV1XanSY/33o/lVqDtge24fLQyE7iToWTNm+mkEvTmHuMvhWbKC1dh1AFIpYIKX8r+crTMXiH86ajbRKeLKc69jZJFMUgJDGLSt+PH5MswcfxEZ8/3EJzjLFH4ohyTpH0oh5trSAWX4jDcnrxr+WbR17jSHAnhHjSXr/D8Xtw9zzGYXD3TMRUniqO7s16OnB3rHiu+uTg2YG7YzGTUspnxVg+ZxGTmMHG8dN3wj6L+N8gdPN0EYa/Xs579PpQG0nGdjm4ZztvetPricbvRaAwdmgKTZM4lo6uCXq7cwR+SKmYYulQGeKYoaFusnkHIXXiOKLVbGHbJtsf3kvPUAk3ZbJ370EcyyCTTnyoYkXgdTpEQUQQhOi6SuR1mByfpNbyWblikMD3sSwTRUpMQ8M0daSasFgLCzUy2QxhlEzEM1PzieeUlERhxNatj9LTVWD00ARp10ExVGzHRJUK7WaHSqXG2MQCq1b28+iOA2Qck5RjIhSJ7ViEfkAURUxPzVEoZjENhVbbI5N1cWyTjucRR5KF+SqplMvcXJV9hyZZurSPrq4uKnMtunpsNE2h0WxQKqRpNQWa4pPJp9E0QRCFmI6Drqp0l7PExDipFJCwpKZtImTCh/70Zw/z9i9s4xXnnsTtP7uXJf29XHnde1lz3EryhTSKmhjECylx3BTzC3OUy904ThoRJ/cuCtqMjuzFzaQol1awc/cD5EtZRAwtr41t6sxOVxAyxknpWKpGFATMTEzhtT26upaQyxdod2pEQKvTodTVw3v+8q8YG91P22syPnqQF7/0KqZmqlhOhnS2gJ010RXByqFBenu7sAydhhexav0mFqYnicKQtWvXkrJd6vUGaTfH/v2jHNy/i7NPP59MJsvYxBjplMMPvv9dVqxcjiIN/v4f/p5Xvfpq9u7ZR6GQA3yWrR6iq9xPLpchlbKwHYPR8TGEACljbNVkZN92LEdj4tAE9269k00b1hEGAW4mh5SSlOPie4L5uSqm6fLGN76ZV7zypVxw4bkIESTeVbHO5GgV285hqC0UzSCVLTI33cHNlenqHcZOZTn5pBNRFMmN//ktTnjBWRi2i66ZhL5PoauHufkK5WKRyE8Mr1XDII5DhFAxTJ0YGD14kGyxREzIlVdcSld3H29/559x5dWvJF9Is3L1SuIoxGu3GB+b4IUvegmWbUAcc+LJJ/Lyl7+M9cevIZNNUW/UkVIyNT5BsVjGtNN0OiGlcp6pqWk6noebSrFQqeGkLAAUQyVWBJGIUWKFibH9TOy7i6Fulb6lywi8BtnSAFMTI+SyBaxMkQ4Sf26Gyvx2spkuHDdNrVpD102q1SrEBq1mi3qjyh23/4ILLriQCy66kGazyZ7dO7BsHd2QSDNLHEWU8ll+fMePufbS12EYGinXJgp9JqfG6Sr1EiOp1KqkXIfAbz2uQKobOv0Dg3Tai5YuxMSEi0qdieKw53nIRbXLTD7P9Tf+E69/x5WceeE5vP7aa7Ask9AP+coXvkDKssllMsxOTCG0pH+rE9Zo1ppkc3myuX5u/9n9DA33kbZ1yj1dpLISx+pmyZIhtpy2Ft1wEcRYToqOr9Ju1dmwYRnlXpdiuUy1soCqmGiGiu04eJ6PZVkQqcSRwHQk0zMTpNMZFuY6jI7MkHEM/KiCnenhGzfcytLBMsVylhWrVrN58yZWr13GSVs28N73fpZzz9+CVEI6DQfNbBO2A3bt2svw8DCGrlOr1snkutBNB83UaPoV0sUiVspFswwiGTExNsbs7DxhGHLqqVvo6iqzfPkwg4O9bDz5BNycy6rjV5Eplqi3aqRzWTZv2cwn//nzrC6vJgxDhEx4kyAMkUKh0/GoVKqJsIkqE6bYtBBS4DguN930XfoHBkinEyZSUzWkTOwoNEXhvm13k+su0d3dTX9ugOJQiZGFQ5wwtBGQ5IppVGmiSJ1qbR5Dt1A1PVGqVHSCMEIzdII4SCx/4pg4jhKRkiiZp1RVxw88QKCo6qL9hYLUTO7e9gCOHmJHAXYuT0CiopnYHMSJ0FY6Q9pN079kkHqzRhArPLZnP9lMBkSIqhjIwKevrxddV5CxQhgFSQnmYv6nLFanxFGMkAoZN4tmaliWjVBigsBDlSqBEMzP1XDzPaTSWfp6h4miiCWrh2l02ux85AH6CnDrt2/mpa97E6pdJo4VxKJi428zt3mmDN4zPf7Xzh/Fv5L//jq4e/LrHes3PhqIPQse7xmdE55cyOVw/B7cPY9xZM/dk/Xawa+WSkaLtdTH6kE7/POR/XZHM2PySXr7DjOE4oh9T8USHisOf5nwLPrQjmYrj973VNf5rQKl5/rUi9z6b23MR3L3/8OQ8tdPdDS4i4FiVzff/uZ/UJ8Zx1tyDpnWY2TTNqomcd0Uu/dMMDldYWKqRrXewA89pBRkMil0U0UIHUSMogpUVZLPZ1AUiaFrBGFAJp2iUm3RanlkMjaICFXVQSiEvk8UhOimzvLlw3gdj5mZeQKvg+1YOJZBGEeJrLWa9Nc99Mhe+nqKRBE8/NAh+geKqKqK7/mUi5mElZTJKvDP7nqA/p4CiqJw7317GR7qZcXyXnbtPsTa1ctwXAuhCpAQx1CvtfjFPY+xds0gj+06QH9/F07KYvujBzFNFddNEfhBUtopFabGJznppFVomg6RwLI0VE1gWQadjsf8Qp1MNothCDTDpt1uJfkDKhMT02iahqYrTE1VUFWJkDHNRpNiuYCuKuwYmeXkLWexsj9LvpDhL79yJy+6/HIyeRekhmYkwNd2EzEYRcbMTi+QzuTwWg3iKMDSdXK5PIaZQgiFYqmIH7RRVRtV1dm/7yA/v+PnrN+wntAPiYRCUn7nMDU5xfRMjR/95A4UfLacfip9gwN47ZCTTjyZP3n7W9mwYS0nrlvDN751K2efdRbXX389g0v6yDglfnb7LzjzjAuIBExNjGLaJpOTE1iWhS4jUpk8ilCZmpxhzdrjUG2bDaev5bYf/5AVx68ma1l899vf5/wLzkNoMZ4XcsVLr+SOn91Ou65QKvai6i4f+NAnuPjC81ioTjEzNYeqmfT19pN2U7QaTd77vr/l9NO3IFSDfL6L5SuG6envY2R0kmwuR6vZSFTLYoGTSqEokhNPPAFdc3hk+3b6+3qZm5tjbHSSZtPD7/h4dDBNk3ajhm1aeJHCD77/I1KGju3a1Os1LnnhxXSCGo5h4bVCFFWAULDTOSxDZW5mDsMwiKVIfB0NHYRA1TVmJyfId5XZtHE9kd/ASae5/KrL0QyVXCGDaWioUqHVaPD6N/whr3v962l5LQxdwXVdVBmhyJBICmqVCm42jYg75PI5wijxaKzMzVIolnAzWaSqYJoGCIEiRPLtEMWoUrJ/96NUqvN0lXNIJBMTk0RBh0L3cYwefIz+3n4kUK9MU52exHUdmh2VMAqxbZt0JovjOARexNzsHPl8ifXrl+F5Pv0DvUg1IudmMS0DwzGwjRRep42hq6zQ17Bn7x4eeGArgwPDEAtyuRxT0xUc18YyTeq1GpbtAGJR6dRD13TEomeXVBRiQuIQVEVBUVUE8JGvfpQtF65neFOGV13zWg4e2IOuplH1mFazg+dH9HUtY6B/Of/22S/z13/1D1zzmlehKqCqEjebRUqVubkqw0sHCIM2YVBHqJI777yHdRvWoygK8/NVhFQRms7s/DzFQjcDg92EQYtCvgsvEFRrM/T09iA1lSgK0TWDwA+ZnplGUxyarQqum0FVdKYn5ykVy6impFAsU602OO2009DUDrlCgUy2jGGqSFMj8H26e5eRztq0W3USI4qYdNpl44a1ZHJZFDXGTtnUqw3a9SqZXIGpuVHcVI5OJ8A0dFQjJp3K4GZcevt7KZdzhL5PGASMje3ns//2OS6++IVUFuqJ6rFp8OAD97Nu3Tqu/+S/cva6MxgfH6OQzxNEiSl8vdFgfm6Wgwf309XVhaIp/OxnP2ZoyVKarRqdTovZhTkmJiexTR3XSRNHCTDUtMRTcGjZUjTVQaDQXeqiHjQwNQENiW05uOkMUlG55eYb2bhxQ9K/pkAQ+BDHdNo+vhdg2SbxoqK2VCRxGCNloowsFQ1FJD1eURQR46GpGo12nRWrj0eRKm46ZmzkAFJqGLpJrdZAU3SarTpCUWi12lhminSmzNRshaCjMT01hmk5LNSaZFwTPw5oNj2kAiz2vglEIqISxyiKRhD6gCDwOjipFKqq0vFitv7yPlLpPPdvu49yz1J27dlLudxDoVREUSR1fYbjVhxPWB8jZY+w4rjTGVy/hUhaCBkj4kSk5bmyQXiyeCb9d89EiOWpz/+rxEbMkwu7/FrefETSdaTwSsLu/er5nqrt6uhzH+sXOBLcPd39/j24ex7jyJ67w8DtyeLJWLnFDb+6xHBEHKtnTzzJQxbHMeJpHpZnCtYOP3THAqpHHvt8K2L+riL+DcHdM/7McwDuxGJJghCL7xf/xUe9pIiIUDjp1FOpzE3i2ik+9PVtnLk8kYOfnJqnryePaarEcYwXeEgExx83iGlZhGGAokKtWsM0TSAGKVBjwdTkPJVKh2w2jZvNEMUxupqYFiuqgaImYhLNlkc6m0WVAt/zyObT1BtNDE2gCmj7IXGQNItruoptaWx/dATbMtA1nUzWodVuY1kmEQGmZaIbOrGAJaUsuq7z4zse5NyzN2HbiZFxNm0RESGkSqPZRDdVAj9gZGyaZYO9ZHIpurrLCCW5bz3dBXQtYchmZxbQDJU4hpSjMTW5wMjIDDseO8Dy5SWiMDFgd9MObjpNTABIms0OipQ4roOqmuQyDjExpmOQsi1M02BkZJJMxqVZazA/X+dHuwPe/OIT0Q0DVcRc+Lp30W7WAEkUKRgC6o1ZImIqlRYZN0XGzTI7X8PJWOi6ThRGTE/Mse/Afhaqo+RLQ3iex1133oMUBuW+IY5b1U+r3cC08lTbdRA6H/7wR7n4onOYnq7wsY9/hBeccgoDg4MEnuBt/+f/Y+2atYBHLp+mq1Skq1Dk/e9/P9e+8iq+d8u3cCyTSy8/j0iNqS0E7Nq5E13o5LI2t9/xC3q6ymiGwczoLO3Q4+tf/yZRS1JOt+jKeoQLHt/+/o8ZH59k3br1iBiq1RnCdpvhwWVI0SYIGkgl4PTTNuP5IVL16OrqQ7Vc/DBifmEBN5Ph9HPOxnJc/DgRzPjGjd9iaGgpQiZiP+l0hjj0sUyDarWCaWsYGlz+4pdy/jnnUywVKJV6sByN7t4i2byDB/itOtNjo6hqEzdT4F8+/mnOOvkEnGIX9/7yPgaXLqE+tgdLt5mcnuWxXTsZGBpCUySSGNNyCaMIVVUZGxnFdmzCUKAognQ6haZpKArYjo3uGJimTiwSVtfzPWZmpmm321z3lrdgaBr79+zhpm/fygnHryFl6+imQavdolgoMTayn+68xej4CKl0GiKf6kKVmdk5svksURhRr9aSMrQ4xm+1efCXW5kd30/G0enqHyZdGMIXLq0gRvPb2Jk++nuWs33HHehxjKnGuLkiulmkI0JcJ50I5cQR4+OjaIakXOrj0IEJbr7lBrZsORXiCFUBTTWZnhjHzeQZ23OAKO7w5re9nY3Dm+jp6mX79kdYvnwVnh8mYi6aQcfv8NAD2+jtHUDRdDSR2EIszE+SMtLc+t2bWLFiNdPT01iOg6IojE9M8IEbPsxb/+xqLr/iErp7epDSxmuGZN0c73jne7ng/HO55ppX8+prX4th+xgpnU1bNrJieR+Wkeehhx6ht7ePZrOKKhVSrkm1Po0UIflCEUVPse74LXT8GrEU1CoB+/cfQjUk5e4c737H2zjrjDP5rxu/x5rV61AUmXgrem0sKWi3Q+rNFq4hcByD977no7z4shfS8iM6LUmpO4OmaISK5PJLX8s111zFg9t+RndvD56v8773fogtp22m3mhwYO8o2bxAkRrpdJbJmd1k3C6iyIOozvTMDNX6NIo0sGyNN77+D3jZS19Op9WkmCvx2MOPEvmzWJpDvdHh2zd9l9VrVvHhD3yIW276Ht+68SZe9eqr2bTxRKIoIJvO8Z53/iVf/fINNGpNpFBpdzxW96whl80wPT2N11kEJppBHAUMDg2jGxq+32bFspXsePQRNEXF0nVWrlnFQP8AM1NTFLu6QQgsU2NiYhrTdGh3fEYO7aXVquP7Hdac1EsuWyKuqgRem0YrxDJ1Vq1eSQyoWuJLaOgGUgoajTqNepW0bRNEEUljW8LuqqqGqml4nRa6ZiJE4mjrewkgtC2LA/v2kCv24mPgaoBXIQjbOKkMQoG0m2auMoeUKpqm4gUe5VIX6XSKhtegUBzg3l8+TG9fLzt272VmuoUmIiIkum4ShRDEEXGc9A1HceKvqGkGzY6PjDyqdZ+RsVlmqzVOOe180pk03X2DFPJl2m2fhbkFykt7eOzh+3GVScand3Lu5dchzBwIkPEiKyl+cxuEKE7Az9NWqf1GZ3+mkVxbkYIoDI/SRTjMuj3Bvh2urEzyoScHlY/DUSEe9zNGQBgdkaoJgfi1pfNfjYgnjn/iGk+fr/8e3D2PcSyfuyPZtcPxpGzVMRoxn8nn5WLd7rHo3SM//2RS/08G2I7cdyy512fKCB5rTP9PxOIw/3/23jvKrrM8+/7tXk+v0zRV0oy6ZFly7x0bG4MB0z4nAZMQyEsCwSGEkAAJ35uQQHgdsCGGBAivIabZYAzuvVuusnodTdXMnH722fX742hsSZZlGZI431rcWrM065xn7/PsPec8576e+7qv678M3P0n3QaJV9DCEYBXmnW0l7ZIkOnqW8TDd9/FupWLKcUXYdd3YmgqptXuVduxewpZEpCQabVc6o0GyaSNcEC+WRAiPLdF4Hoouopu6OQyKRDbaoCmpTE7UyUWsxkdnSCRjBH4HpoqEngOTcdFM9pfuKlUnInJMQxNRTGMtgJlFCGIoGoyMVsjkbRJpO32fRUEWs0WhqnhtUI2PLWVjmKGSAgQFYX+/o62aXHYFmBo1FsghmiqzpNPbaGnK0cUCRSLaUzLRJDE9jXW6ui6xr7RaTZt3sezL+xiaDCHGbPw/YiHHt1Iwo4RhoAQkM8nUHWVKBJw3Rb1er3dv6ir6IaCKES4bgNFVHEcB8PUQRDZuWOUTDaBaRn4vs++sVl2lFzefc56SqUqqqEzNTmOOXAc9VoJQ9dRFZFqpUIUuZimSRRKtNwGd91+D6uPW0kYRczOTRKP2VRrTRb0FvHcCDuWQJNMTDnA1CPC0MHSU2zZMk6+mMBpOlT2V3n04cfoH1jAQP9CgqjKeeedT8spMzU5xsiSHgYWZ5ECg0wmgxeEKKbK2RdeQiyZxdSSDC/rQ9VMKnM+H/nw1Zx3/hncfsfDRDQ568zz+OOPf4ILLziPv//yVxAik99579sYHX+E7//H46xe+WYqzjaOP+kcVq9dyz/841c4fu0p+L6HHU/RbAV8/q//jkwmR29vL616k1QmiyCEeF7IDTd8jyWLFpKxNSozE8TMAn7LxTZMIlosWriIeDyOpli4LuzasQlNF2jUZlF0k//zT9dzwur1XHzJJfzqV3eSTMTpKGRp1GdwnTqtZpN0RyeKKGDEMuhGhgiFU05fh5mUUVST7u5BKuUaRswgkBQyuSLpZAqn2aRebYOCarPJ7GyJn/3kFtasWEOtUUWVFBzHQRTFttl2CI26g6yobTZHEFErl5idmaUVBnQu6KHmNNi/f4Kurk6WLl1J5LUwDJVWKFCvV7EMk1TSYrLskMp2IglQK03iRwrjU1NIsoQqSlRqFTLZTLvapch0dHeSTue5/957SWXyxJIZFMMike6mMldH0myUdCddvSOEnsLU9C7sRJZGYwLTLqLKGtVaFc9rEY8lkGSZ8bFJXC/kuWe28cgjD7F06WKiKMCOZfFbLUBjfHIL99zzDJetuAxNlxAFgeGRJVSq5bbZPBGqJqNqCtlMjgjwgxaiplCtNDAtE9lQGRhaSLW8n2/d8y1OvugEhk8YYmB5J2+97FJmZ+cQJJVQkAiQMA2QJDjj/LOZm9nH+656F35QJ5WII4htWng2neZfv/1Nzj37HCQZ5mZmiaIARW2LWlh2glK1gaKYeG4DRTFQJAVRCtANnUsuvJL3XfV2Tjn5DAJfwW1WKRY0Wq6LU3OwEmkqUy+iWDqiKqBEDWSzg1POWIoYBPhBnfJcjdE9z6ArBn6zytuveAt2TKWjs4PRsTlqc1WWDvYQj1tUZ2cppDP89V98lTe/6Wyu/co/sX7VJTz93EPkiz1M7p3FTmSIJVQsI8XWrVv4wAc+SKsFf/ChP+Kc846jp3MJkuRgmypuELJy5SrK5TlOOeVURFFl1ZrV3HPffXR1DmKaFtdccw2f/tvPceY5Z7Jy6QhbNz7Pf9z6S85bew5hCE3XI53JEIUhgeeSjMdBkhAiUBSVZr2BYZqk0hkUpc1MUFWdyclJurt6EESBZrWCZhjImsq2bZtJJjIUi11ECFzzT5/F0GV+dvsdrFi8lEw2gSBGL4G1ptOmSkaBD1GE02zg+i1MK0az4RCGYVvMiqitcBhFtJwGkUCb1hsJCIKC63sIAszsLfO1O65lZd9KNm3ZTmdfP6FfQ/YdqpUmgmrQbAQIhIR+QOD77QqQJJDJFrEMiyBySaTzeKFEvtDNVKUJkkbDFXj4gefRDIUQkz1j+6k0PWarEeVmwNi+/djJNLKRxI7nWTKyisCP0DSLudlZPC+kUa1wz3N3o0mTGPIMblDirb/zSbA6EUUQOWB3EAkH8tVfL+eY75k7lnGvJ0ReuzVofkwUtg3iwzBCOMBcmu/jC9vos93jxnxONL/p/eozFA6MlISX4aEfcYDd0B7BfJ5+0OGHq2UeTMo6GFQKR2BYHRy/BXdvYBwN3M0LJBw1sX8DgM1rATFJFF8xryNVDF9qgP0Nwd38ef+7hGJ+kziWBWw+3qhq5pH2gvwgPOpCEiKzeKib3VufZcXaU3hizGRmy0Pk0jaKrGDqKqNjsyRsq72DKYUkEzaKoqGqCrP759BkCUGS2D9VIQwh8Bx0U4HQw6nVaTgBURSRStq0mg0EAXRVY/PWPQShiCwK6IZGs9FAkkQCX8SKxdpUnNDHa7noertHLiKiXq+jqG0ZfE1T8H2YmSnT011g2469dHTlkUSx7VEUhIQINOpNVEVGNRRkRWZBTwHPazfK3373Bro7k8iSTBT4aJqKJCvMzpRZvLiXZ57by4qlXUiyhucG9HQWCAOf7u4czYZDJp05QIcNAfmAD5PATx8b5x9vHeWmR6d5bk+DL/5kE995YBeLO9N0pVRURWFiaoZ0JoGiymTSSerkGejKEoWgGQrv+cdbueDcCyh0deE2fR6850H6RhZhxhIEroeuiggS9A4uRhEDvFYNUYyQNRM/FNFliCSzvcOoKMxMjNJolIknYuwbnWHRokVMTE210rR1AAAgAElEQVQTV2Q8r4aqmkxM7efppzdy+x2/4Jwzz+Mv/+ILXHbJO8jnekjEs9xy68/RVIV4PMa999zH6Nh+ntvwLFHg07GgC6dZo5grMLx0EcWuIieffAYvbt7ER//oGj7zl3/Frbf+ElMVeeie26lWZ7jkLb/Lyaeto+FNEostYePT9zI02Mudd93L6WeeSblS5WMf+zTDS0bYun0TV155JbF4gk9+6i+48+67OX7tOsIw5LjlI7itBqVKCdOKEUgtyrVJgqCKJOmkEikkSeapx5/ksYceJJlMIKkKE2N76ezuozRXpbenk1AS+Ozn/oYP/eHV7NqxE1EOQRDIZArIsgRuk2bDgSgiFbcYG99Doa8bt9Wm1WmGjKAb1GslvEYF2zJp1OqkszkESaHVqJJKxNmycQeju8ZoeY229RUqrWYTWRJp1OtUSxUUWUaVFcqlMooiMzM7Q65QwDANbEOlWCigCCJOEBFPmLiBixGLv1TN8oMmoQiGqNIolfGFgN7BxXR0dWDHYximQSwRJ4ggaKcdIMiEksrw8EImx/aRzuXxUZCDFi0pRiqbR1JCokBlYnwjMTuNlTARApkwbPf/SXKI5wYYWpqG4yAKIp1dHQwPL2bd+nUkU2m+93+/T3/fQsb37iGZzvOB37uKS1e+h81bn0fR2hWnMAqwbZtmtUap1OSxxzcwMDBAs9lAUWT8IEBTDUb37SCd6OAfbvoiI+uXsObEZUyPT3PKWacjI/L44xv45g3f5PwL34wdT4AkomoyXquJQISsm8SNDJ///N+zZvV6JucmiNs6BC5GLMHKVSOU5irMzMyycNEiBFEi8EOiSEDSdRq1Jtf86SdZt3YlRO1NL1WW8TyBb3/7u7z/A+8hDCWefu4pli4bIRZP4rdcoqhBJGiEoY6mJhACA93oIMCn3pzDtNJUa3US8SK12gxeS0I3DGLxGK4foEgCZiyJIETkMjG2b9/GH3zoo7zz3e/jTRefykxplHXr19Bya/zkxz/jzAvOJopURnfNke+M02w45HJF/uxjn+I/brqFj378YyQzceZmPKKojigaVKpl/uMHP2T9+uO57dZfsmrNChYODzIyvIxYrAm4nHPOCSiaiWnqpJI2fb3dZJMpUlK76iaKAk7TQdN1FFVh964diGKbYjw9NdWm8JoGggSIEp7bIgoCOopFJibGUGSVH9/8U1avOY7Nm9vKnqqssGPHNhLxBEUpz/O7trB5YjvvOPtyhKjdn6cqGrv3jBKzbTRZwvNaKIqGJCv4no9pWpiazuT0FHYsfsD/LiD0PQzdwmk5CIJAy2mxefMWCsUCiiJRmSnxex8+j2ee2sPyJWv4xW0PsGh4ISIB9eZ+ErZB4LsHKJ0BYeBjmzaVShVRhOmpaeKJFLre7im0YwkyuW5isTTpTJ54LobTEskVupirVBlauALbavdpWvEkppVG02yaThPL0NtU+727qVSqRFFILh3jke13sW5IAzFi6QkXkugaIRLEQ3KZ19dP9so4ZmLS4W1CrzH+WDKol3vsRA62cph/LnrpOeGQx14ScuFgwPXyPCOEl/owD8l7D7uWtkpLdOh1HV5AOcK8BYDfgrv/uXEwuDu4giYKwn+Z+tBvGq8FOsR5Tt9rHBMeJvzyXx3/E+7l/4Q5vFYcCdx5QYh4FD+VABElavH8k4/St2g9C/oWYHSfyLdv+gXLOzWe3LCTuK2RiFtUag6JpEY6HSfwQRRlSrMVZmfLpNIpTDMOoUClPIvnupRKZdxmi3QhjW1Z1KtNZEmiPFdG1XRKZYe+/s52E3sU4LsuoiAxO9vEjtkgiNSr7R1d13FRVBXP89C1duP9Pfc+QyGbAFFi3/gMhWKGYkcKCZGZ/bMQBkiyhoDIL+58CkVt+6mJ8gHD4SBCVVW6OnJohogoyDz77CaIIizbQpYCwiBi6XA/iqLg+gIPPfI8fT1FTFNHkgS2btvHxFiVjs4k49P7uXeLx12jnfzwkXH+6M//X154ajOnrVtPrVrlHRe9l898/pP0rjoHseskpJ7T+cqPH2dCHuDv/u9D/PSJaa48cQBJlNAkEVkWGF52HKGawrYT7NszxbNPv8CydasQBRlDldmzZwepVIqKExC6dSRCmm4DSdWQVIOZ8VHMZAFVkvAUAVOXKeQ6KVVcfvKTmxhZPkAYWNx1203opkT/4EJK5TovvLiNL3zhr3j44UcZHumgs6vA9268kWq5RF9fHyMjw5RLczxy70NccsklDPV3IeOQzHVTmptmy8bnyHX0sHX7DhpViTvuvJPFi0b4yY9/xPYdO1g1NMDppy0m1zUIkomKzp/+8RdYc/wwEzueQhbgsrdewdjYPjoLRbZs3M6ykYW85a0XISrtZPHCiy5AFCWGhhayf2YKMagiyAKprl4kO4mETRhpxFMd+E6NsbExPNeDwGP1imUUO7sodvTg1B0SqSyLFw8QRQ5mMsY73vl2QsHDjufJ5FI4QYRlJ5jcu42g2QZdlfIkKVtj185dGLEkmmKjKDJj49tJZ3pQI5egOUOlViOX6wBRxA8FCFvcc9e95NMdbHpxK/c/dC97Rncwsmg5TrOOaVmEfkg6lSCI2mvwY488ysBgH02nRbaQQxAE5vZNELVcdm/bjpXNIUYho3v3YCcSbNu8mc5ikVq1zM4Xn2Ry514GFi0mlk8TRdKBrOYABf+lHwE5pP0dIPqUS1U8p0YykyMUVSSvimCnIfKpTe2hXi7R8Ldjqv2MTe2ikB6mXJlG100ct0YikUKMDLzAxY7HCIIAL6zjOC10zWbNcScyNrabZ599kt7+AW678wHOOf40Ojo7SdppkNpUucDz0HWBeCJFT38/kgyCD34Y8sLG50noGSaNZznj0vN489svIZ82sSyN4eXLQRRRVY2OQpEH7rufr1z7da54+xWEYogQycxOTZKIpQgiCShzwgkrSWct7FQWMWhB4CPpMaQo4t57H6Wvtx/DVGk2m+iG0e7xUxRURaM0PXdg06iFIiuoqsLPf3YPn/38x9FNActQsE0NUYvxxS9/kxNWj5DN2viBQosZnFYFVRNAFtGViIgk5YaDZaf56j9/l8GFfTz99HYsO4mdSiMqBrbq0fICZMMESeT+Bx7kmee38473vA83KvPOt3+EM854Cz1DWZqlFtmeFJIq8o1rb2TVmkHq9Qbbt+6gJz/EWeeex/DKhfzLdTeSTsfJdxpsf7FCsTvD8WtPggiWLFlGELggRiiKhSwESMTYsWWcrmIREYGW5zE+PcmuLXsxogQBELYaWJZNvd5EVlUa5RqxeAJZkYjHYrRaDmHoIUgRIgqTY3vJ5TO0XIcnnnyIzs4FDC0cQZIF8vkCe3fvIoo8Gs0akxPjNOoV3nrVWVTKFbJaEsO0ESWRar3c3jwToVwtoWkGoaggSzKGruM6TQRBQNMNwghkSUYUwA98ZmdnScYzBH6AoRukM2lEKUIU2j6ei08eIlQbSE2TkaX9CIqGKJnokkirNoUfuXi+RCIZQ5IkGg2H0G+rhZZKZfK5DiqlGexYgobjUpqaIhY3IQBVVskWO6nUS/T29uA6DkHDwWk5pNN5Is9l/+x+Ojs7qNXLeEFIOpUmk8nQbFaolyc4/3SJ+uwsp19wJcVF6xEUAwGfww3K5ymH/53x61TyXlltO5Z49Qs7+JlDwR0I8315R8j7jsRge93xW3D3PzcOBnfzcXj59Ug/zIOheeTPAVPGY1XHfLVevYMA1yGvd8iQowucHKnJ83Brh/lxryakcizWCEebw7FU8f67gda8HC5wwGBUOuj6DmnZPaY5zlsTzP/8Z8Hjw3emIjgqsJMlCaIQUVAZWbaGr3/5f7Nk1XpmZ+Z4euM+7nlqE8uKKoV8nNHJGQqZOLIC2VwaiLjr7kfoKNjE4iaGbRGJoOkyITqJlMXU/kkQJGq1KrIooRpm22MoDNA0GUvXEFURp9FCkVVEQUYzTcYmp8llk/gtn2qtjmUZyIpMs+mgqjqiIOK1fObmqgwO9bDhie0sWdzLr+5+gs5CHMPWEEWFp5/ZxbadE3R1pUnGdDryGQhbgIAoqSCI1EpVJsb2E09YOI5PsaNIOm2zfdskhWKGifFZXL9Nd9u2fQ8Tk2WatRqlSpVcIU13V45CMc7/+vaLLDz5fcRSg+RTKXo6FqBIGmeecwa6abNzdJrnN7/IaaeewMTUJIassHHrJi656AIWFAvEdJ0//dg17GqYiB1ruHdbhZ/ev51TzrmQfVP7sE2DZDLJjp3byWdSPPHoBrq6unDcJqZlUpudxFBjuJHaloCXZMQwwkpk+Np1N7D2xFVEzSaSqOCFIREBIkWef/YJujuSLBhYSf/QIH7QwjBMTj99HXY8xsDgAP39C1FUlbhts+7E4+ko5nnmySd4cfMurrzqXRiWRaVSJ13owq2VufnmX3HBJRfw+1d/gne/7QKioMTZZ52F6zisWN7FcStGuOiyS5ENlWJ2IYYuocsR1bm9rFq9lhd3TaFJFsmcgJYaIPJdHrz7Xs486UQS6RS+J6BoCqHk87Of3s7dd9/H9FSJBf2dqKqJX29iKiKhKCLLAZ7jIQgSkqSzb98UFadF76JBHLdBJAZMTExTKOZotlo4LR8RH891EBGJxw0qpSaB40LgkEh3YiVzeASkkhl8UcZKZInH25Qz13exzDilmRmseJp9ExW6e4aIJBkX0ATQYwZhY4bt2zbx/PadbNw8xvqVK/jYx/+Et13xdjZt3kgyZVMqzRAQocoilblp4sUuklaCZqXCls2byOTjqGYaQWgiETK5bzeZRByvOoemhTj7N3HzD27kuPWnsurkEwmNGJFoEEUBcOj3g3BgLZr/bhERGdu6nVZrlK7OYSIxgsAnanlsffo+mtNP0pHrI/AqePUyURBiZfsQlQjVFJBIIyohUaji+iUkSUNRZAQpxkd+96Ns37yVxUsHUEURRQrp6e1ioTiCLAk4bpWmGyABu3bvIpFMIch6m+LmOUiSwvU/+jr/8vNv8sWvfo6eJSammiGZTqGIEbX90/zhhz/ORRddiqZ6VFsuiXSC5cuHeetbLseO6dSbZQxdQVUEKnMTNKZ2k8wvoOU2EUQdvHYlUzdNQh+8sEnP4AJSKQXJF9GNBGEkIksihCpEESvXrCSRsNm0eZTugSGQYNnSxZimzfRUFbcVtFVLDZMTTlpPubSfSE/z7IYnyGSyVJtxpMYYZjxHs1FCNlQCUURzXQYWj/Dlz/457/vIR0jEDBr1GooiMbp3D/vHp8hms9R9l5t++HN2bt3JOWeeAl6D9//u7xCPmwiyzI9/chNnnHIKQhSw6rg1hEKVbKaLQrGDjoEOisUMYlRj8UAPAwv7abUihgazBILJL279FSPDQ8iKhC+JBJGHqUKtVue73/0ub7rkAgRFoV6vUp2b5fkNz9AxuAitpkMQoqoGstTufVVEEd2yCWnb2MiCxMTEBKIko8htE3lDU6mU66iGSujD6Ogutmx6kv6+hUiCSDyRZvOmLRTzXYiCSLVa5n/9709hixI9sUU0WlUS8RQCEi23haLqGJpJFPmEfogoCrTcFoZlHbDS0Q+kZD6B5yOLColECt9vV9K9IOCeO+4in+1AkhVCwedvvvYlrnrvldz7g0coFtvWPWGkolkxIgRUAZTIxQ3quM0GfsujFTkESBiGSaUyg2WZzM7OYls2EzOT9OQ7mKuU2bFrG6Zho2s69XrbKkjWVFquz9T+Car1Bq1GDb/lYhoxWo7D5L7dyLTwm7N8875vs2Qoz4oz30d60TqQZQ40FR4G7ub79F9fTjWf4wRBeFQz7vk4wI58KXV9PVU8ODaxFfGI52sf2W6pfPl3QWgLDLX7Becpnu2K3Tywk6UD3n/C/D5YdGiZ73VGKLS1G6JjyGF/C+7ewDhcUOXV/ljzjx68MyC8/A4/hNp4NGVNDjr+yC90aNXtFaOi6KU5vJrVwcGvf7iQy/zvR1PHPHjMf1W8URW0Q/ofXyEk89Jf95jOdST1yjcigqgtFBxFbW765PQMhhnn3771r+RSWU4+6UL+5PofcPHKPOVyE0WXaDRbFPNZHnlkK9mkT6Naplyp4jSrJBIxPD9EFGFqcorOXIqw5WGZFoqqohgqqqHjOC6mZbNj5yTJeBxRBM9vUa5WKJfqDA31EooRYgSGoeG0XBBEHnjweQb688zsn0PTFHLZGK1Wi67uIoIo0mw4VKsOqXScudkqU9MVTj5hCUSwdes+OjuyhGGbwiFJAqIYEQUQT8ZQVAlZBkVRCAlJJJM8/MBGWk7I9HSFXXsnadRbnH7KCmKmQfeCAoIQIYpwwzMp/vrzf8+X/+FrPHDfPVxwwfl858Z/p1KvMzyykGwuy+DAAIVcjpt/egtLly7lzz52DSedeDyNcg0pUvj6124gbsUZ6FvAj37wY1atXcbpJ59MLB5nrlxjaGgI3/MQgcVLh+nvH2BifJzOrgKu5yJEsGXjVnp6u5maHiWZSuG5Hvt27KRZqzA0sBBZEqlVW0iixsMPb+CkE9eSL2S56Ue3snRpH9///g8ZXryS73zn3zn9jNPavSZCBLKMIMsks2nKlQqxmEW+kKd/0SKe3bARL5omFkvws58+wtrj++nrG2Lv6F6uvuqduE6DVCHPbKNG0o4RuCH33HMfp552IT+55TYmJitous/m7TtZd8JJqIbGcWuX8+B9D5BIqqTsAv/w9//EupNPo2dkIc3qfh5/4mm6urvRdZ3VK1bS3VXk3HPPQjMUGk4Dy04iyzaiFOB7Pps2buOm732fO395O77rcerJJ/HVa69l3dq1KKJIrdmg2WySy+VAFKhVHRTJ4Mp3vo+3XnEln/7zv+Tyt1yKH7TYP7WPVrNOPpOj3mgiiBKSpFEpV5EkEUkUcFoulmEgRiHFjiLj45PUHYdMTGPHc0+xe+NjSJFLX/8gp595Gtd+7QZOP+Ukeos5vnXTHaxctpLq9AxPP/E4y1avpV6pUq/VUQ2LenmKmKUR+CGGmUKTIYjqVKfH2L1nF4uXLEW1E2hWjFTHACtPO59YoQ8fBUGIEAiOuibMk7RKpTIp28T3msTiRQLRZfvzT7Fv5yaKuThW3EaL9aPHF+PLLdKZIoKsUSntp96oYJtpypVJBMGg5dYRBGjUG4RCSOS2OOusUyh0Z7j6g3/CqSedzOf++kusGl7Fls1bMQyLMJCRJUikksiKjOd5bN7yAtf96gY+9Ge/y4UXn8d733klnudzw3U/4pQz1yIZAZKcxGsFXHTRhczsH2fblj309y/Cd11ipoZpKDitGqqitnsaZYkwEkjliszO7kRwkkiiBxI0mxX8qIWuaQhijNCtUxrbSMOtI5sKpm3je822rH9lDvCIAodMJomIxosbt5PKqIShwL7RCVSxjm7ZzMyWCFpVMpksoe+yYMEC/MY06UwvrcY0arwL328higqKrNJqTqDH4qxdOowczyGG8L3v3cjaFau5/MqPcPMt32H9mhO4/OLf4wt/9xn+5GMfJ5kw2berghGX+N6N36KvZyXr1g9j2Trl8iwIIvGUyuWXvYeLL3krD959O7lCAdGIkbRg6/YdxKwUqqhQDzxsI4amG0S+S8OptdUv6y28oMnIyArqTZfIj7j1F7dRKHaweOkSFhQz7HpuF6ZhtwGWorDhmSfa6p+yQtByaDVqqKrBvn2j5PMFHnvsYbq7e9pm4kggRCQTWTo6ulgysuIAMBEZG9+HYVh4XgtRgqGhRfTZCygOdhDMSohiRLNWZdvWZxnoWwiCfKBYHaLIMs1mA1mUGN2zG8Owefzxh+nq7jmQQwmIsowgiQShS8NpomgahXwBp9XAtm1UXeO4/jVMtfbRtOqofgwhajMKokhAUjSaLqi6gqWZILhAnebsfmJahNvcT8JSEMMmQujgew0KuRSuVyNmJbBMlUZlAkMTUeWI2ZkxDE1kZnqUbCZNOhMnGTMIvBrV8iS64pPLJgn8Brsnx7jm07/H8We/H7WQb/fiC/NaCodmH/OVqaPlVeFRCg9tZdFDnw+jQ9UqDwZcR6xLHHVFOnIcKYc9GgA8dA4v0zRfPu7AxF4qvkQvS7Ac3FT38gOvO15Wy/wtuPsfHYf33B2pfBuG4SsePyIH9zAkf7TKzxGrga8y7vCIOHplbb7qdzCwfDU+sSiKBxbLX69S93riWAVmfp1zvmYc2Kw5pEn2Va/1UED8qgviK1/iDYmX+OYCSIrC0PAId9/8I9508fmcevYpGEmdhQsWkWltp+V47J+psmZ5H7ff+SRO02Ggx0JTFRRFoVxxqVTbwE8SFYRIwPUC3MDFNEw838fQVcIwbKtahhH7J0vU6jUMXcWwLWzbQtdUIiIkQQJC7nvoOQYHehAQGejLE3guL2wcQ5IF3Jbf/jtKAYapkElZPP/iHgYHO7EsjZ7uNERQrdRRZYkduybo6Ey3v3xFCc/xqTca2IkYT294kVwmyZ69E9hxGUSJ7s4C8bjO4MIOhFCks5BmbHyazs4EqibRcD0+8q2tfPDqdxGL5ZFEjaHBHlYfv5qLL72EFatXsHf3TnL5HKXZOfaN7+Mt73oH8WyW++5/gLdccSlNx2d8bIZ3vOM9VN06t93xK9555bvpWpBn86YXiSKJpcuWQwSl2TmuvfafOP2MMxFlhfvuu5eBgQVoqoqmyOzZPU6xq4BlazhOgygEVRUxbI1MppN6vUE8luLSS67g/PMuJnR8dFtk3frjuf76G7jwgkv5q7/+DH/44avRDZuW49CsNzF1jXq5wuzkfvp6ewhFAVVVcH3o7s4TuAq7du6juzuDrvvkC50kU2nuffAp1qxczQ3fuJ61a5bjOC7/9s0b+Z2rrsKNGjzx1NOM76tw8ZvP5D3/z/tZsXY9uXSMUJHp7hsmFDxu/PZPeOLRB3ni0Ufp6cyRztjkC11MTu7HsmN87rNfYOXK1fz9F7/EuedejB82MWwN3YwhBC1mp2e5644HyXV08Psf/n26ejpx/BYnnXoKiqmyb3wfgwNDqJraVlpDwHcdLNum4TRYs2YNJ5+4Dt2AWn2KeLqAHU/h+SKNaqWtDImAIMpYtonne2iqyvT4PmZnZvFaDoV8nhDhgMBKJ6ahUK63GB/fQ+iW+aOrf58HHnuGCy+4hF/ddhuJZIzP/83fsGvPGLlinr6+PhRRolwOcRtzVEtVEolOxqb3sO2F51m8dBV2Ry9Dw8sIZQFN05BUm4i2Mq0YBW1C04HE9Wjr3nxCYxkGgZ6gWSuze9OLVGY20jOwlEI6wXSlRLqwhqq/F0s0mNq9kUTHEEgili4jyBFCpGHaCrJgUquXkSWIxRIIksYHf+eDfPSP/xeSJnPhxZdg6AqL4stRdA0xlJmZmURRFFRNQFF0vvzTr3DZVRew7vR1nHfm2UgKTIxOkcnF2LNnnLUnDJDJdxKEMqLiUylXsEyTqbFpoiii0FHAjskIYZPQFRjdM0E8nkVWQZRUNNMmEBRiVo5AahGE7fVJUVTq1SYCGoHXRDRiJJIFapUJGi0f0IkCqDd9NE3HMm1sJY7nNWg6dTo6iqiKAaKAaeoIjSlE3cKMxfAqk1ipIqoQUKo7GDELQUkwvuNZMplOJM0iCkOalQqhGyHpKTY9/Tg9ixbzlkuu4LN/+Qks2+Udbz+P33//R/jhzXfyux+6mpHhPiRB5Lrr/5mzz13Jpo3b+cLf/jORELF40QCJRJJGvUkq2U2tPsvll7+dv/jUNYRSjMGBTqKWx4MPPMxxa9djx0wq5SkMLSSfSrPhsUcwdRHFUBkfHaNRqmPGJHQ7SSKT4+vXXsf5519AR283sqahCDC7w0NQNXbs2EIsnqCnewGu22JqbJpde3fSPzhEEAWkUu2e5wW9fbhuC0lTEBFQVZWHH3uYvt4BxsZHQQiRRJWW40MUkM3l2LhxA67rIMsqDaHCY88+ji7EECKH1SvXIMgKgiAiyzJRFNB0Wm1bDEEmkcgAAf2DA4gCKLLC9PQkmqoQhj6CIKHIKrKsIwgh8USirakgQL1exZkQOePNx/O33/gHThw6iTBqERLhNGrE0ik8X0DUdNzIJpnpR43rIMooqkJIhOv7yEqbxULYolqrEAQtdE3BisfwfRfXqaLgE4YOhq4iiyFey6FWLWEYJlYijRZLYaeK2NluFpw2wMCy4wkUATUUD5jHHznEY2ghei1W1ZFoioeDqSN0/LwUv07+c/D5j1SxO/yxI13DkSRUXgJ3otTuyRPadNAwOriA85uBu2OxnfgtuHsD42Bwd7Q3/XwV7KVE+kgDj2KLcCQgdzRocTTAN7+LMi/4cqT5Hvz/fBzJ6uFw+4WDAaAkiscmKvNq13HQB/E/k6b5a4HBAzf08Ermoed6rTt/6BwO91SZp2keKY723GvFwUpNR37g5QijiEiAXDLN3l3b6enpQ7FSuE6L2MJz+Kt/u4V0OIshu9i2RDZlkrAN9s9VKXZ2s2BgkOc2jhJ58NzGnRRyaUbHZunp7WNmpka13kLTNRRZYXZ/idmZErlcgq6eIqqqUC7V2LF9nEJnmunJGWRBxnFdOosZVE2h2WjgtFw000QEUjEbw47xwsbtiGEV2zRQdIOB/g5+9asNdBUz1Osuo6MzpJIJJDGisyvTpmCIIvVaAz8IiIKAwI/I5ZM88/xOhhf3s/H5UQq5NM88u42IkFTa5sUXd5FOxSmVGshyg/FSQOyUT3DZpW8ilrTa9BhNAsHnzjvvxtQtrvvn63jHe64E1yeMIgYWD6JJEmOje7j8yiuwFIlUKs3jTzyFH0WMLO7h8Q3P0tndg+PU+JOPfYrjT1jP5NQY+UKOKPK4+LI3o6gq9docQ0N96FqM0swUumlSbVZIJzOoso3TcPC8Bk4g4HsNTC3JU48/yc9uvYU//+Sfks/FeOCR+ynmC0xNzHDRmy7DMAReeH4D61Qlaf8AACAASURBVNYex46de/jQB/+YdcevZ3Zmlo7OTvzIx47blKpVTMMgdFtoStv/bNHgIL4bEk/n2bl5E9+47gaufPdbKAdV1p16Jj/+4R0MDRQ546zzmatOUiym2LVzlHe97204Tp3ZqRne/a53YyUTSCEossiXvngd7//A1VxwyQV0DXYzsnwlODXGJ6fYvHWCfHeSfCJJIZXg7ntu54xzz0NVLaRIoFqaxbA0yjMTnLz+ODY+s5FUIk4ilySWTuO4Abu3bEFXAhLJAiICW7dtJVfIYOoGoqhy3HGrKM2Oo5ptumUm1QWKgShCaW6CZDZDteaQTCdw/TpRpCBLDSqz+5mYnCObK2DZFqKqo2k6QtTeDJvYtZNYJs+Kk84imR/gVzd/i4H+HqrTe0haLU48/gze9Z53cfGlZ5OIWezZswMv8Fi2Zhn57m5y3V1YSYtCsUjvwoVt1UEgDAJkUQZEQuazqZfFrw5fh466W09ESA05MGj5u+juOR49kWHDow8wsOQ4VCOFEjQY37eR4uA6RNFndv8klpWl2QjQNYXZ/RVMS0UQVFTdbgPcpsvVf/B7jE2O4rUcTNvg6g9/lJMXn4gQwg/uvYl7Nz+IkRN483vPQcvJHLd6BQs6UgSh1/Z4FFQ0vW1pUuwsEPoNJM1GlgSalXG2bhml2WowNDKA6Eski1ncVos/+/if0z2wkMVLhnF9F0kyEKS2+EkYiiCGKKJCo1bGDTwEQcD1feLxGJEIntNAtyw0PUc6lWTnlhfYvX0n/YsWUq5Mk0immRgdxUzlcP0mbn0a07Ipzc0Shj6ylcA0kuzduRefiFKlhGXmuP3WO+hZuAhdUYlnuojCKpEf8cIzL9C/IINo6jSqVQYWjSAJLS688HwKXZ1MTVaQbYtQULju+m/w1ksvozq9hc9+/u/45Cc+zsato+RyeS449wxOXL+MWDLJN677JumkRTyfoumEpBIZzjr7HO78xW0kE3GWrxqme3AhQuTywrPP0D04jOfKbNm2neUrlnPfAw8x1LeSRNbGTnZSbzV56P776czlSKZSDPR18uTjj+O4IIs+mya3oHsG6XSWKAhwnBaaZRO3LDq7ukCQ8MMQy4wR+iFh5KGoOqW5EpZlEwQh5dkpcpksc7UmhXSa7Tu3YVsmuUwW3VCYnJihd0E/8USSb93674xXp1jdN4IQ6qiaRjwZRxIEZvdPoRkWiiBy33130LOgn5bbwjTbVH9RlPB9nycee5z+gV5URcNxXGRRIvR9Nm/agqHrbWqq11bwhYi9GyeY8eYoRePktTyaYaDKOkLY9l9TVBtFlnCqM2ipHgwriR7LocfyWMkCRrKAEsugxnLE42mqlQqipBDLdKDocRQzQaLQg5XqwE4WMJI59GSBeK4LLZ7FsFMohg2SzD077+Kyy9+MKB4Q6RePTnsUD8prXm1NOKJQyH9ibnY4GDy0Knfk4yMOEvY76DFoU8rn87H5f0cqixxqFXUgrxNFIkFAZJ5uOk/dPDgfPQpSPUrMg7tjuSe/BXdvYByp5+5I8dKH5rUGvgat81jitca+VCJ/DU++Vxz3OsbPVzFfy8fjjYjftNL32uc6toXs8Ji/U0e6y0d77lji4FdTVJUwPDoty0rGGJ+cwq07JHQTI5Hgp/9xI3N7t7N41Yn87U2P8tbjcnhui2rdo9LwKeaL7Nw1weqVi9gzOkkuk2Bqf4VMJkat3kAQIkxTQ9PUlwBVzLba1ySECIKIZZtkc0lkScI0NUZHp8gXU2iaRq3a5O77X8DzPTqKWXZsH6Orq8CWrXvIZ+KIkk7d8TFsA1EU6cgl0E2d2bkypWqDBV05Wq0WsYSJLCuIooCiqGiaimEaeL6PZpj0dOUQRIFkwqbZcOjpKbJx4266Cim6ugtIkkAqbeK16txbXsq6k85AVDRCKSCMJFLpNI7j8dRTz7LmuBO44467OfucM9Bk+YBRswVRRL3eIBmP4ZbKeGHI0NLFZLsKGKrKYP8Avu+TSdm8973voq+vm2Qyybf+9V9ZtXJVW8ggEBkb3YOh6fyfL13LGWeeDchkcx2M7RljcnyKQkce3VDRtASqouLUfYaWL2bpsmWYtomsqSwdGUbTVWbnKpiWjOM4nLDuJGLJNMWeAsPLlvJv3/0OMUlm+bIl2NkEgRShyzr1Wq3twydL6LpBqVLnH7/0ZdatW8343l0sWjxCtdIkkUqzb88Ut/zkNoZ689z8o5+TTqaxYjHWrF7Hv3zjX1g6vIivfe16Mpksu3ZsZWBwkGuu+SSqonH++edTqZUZWTZCJEhIQkQQKHz1a99h8+bnEaUYd9xxOx//1MfYtGk7N37/e6xcPkw8YRPIOrFEHEm1GVmzAsMy+eXPbiWmKqiigBlLke3oxKk3cZwWHR0F7rzjTh5+8DGWr1iO45ZQ5RTJpEWtVsGwdcTQwHHqILaoVF1yxU4gwg88FFHGcVok02k6urrbnnQzM9jxOEEYoR8wK1dUhWSxA1HWufvO+7n48ssZXLwU12mQzcbRdYPOzgxWXKV3aJiunl56eheA0O7xEg8o3gnCy1R73/MQZfmg9eJglsOvt3YogoUkzrBt61b6B9YzM76NoYWLEPQYtfIktikyvX+GdLaA63m0miGirNCo1fA8n0w2Q6PRIDoghxBGEYEbcucdd1AsFMhkszzxxHOsz57Gv9z1dc646Cx+ePNNrF6xlHhMY926UxBEiUQsjxuCYcbYtW8nyUKC8txu4rE0fiChKO3KClFAs+VQLBYJAg/LNPjZz+5n4dAAvh+yYukaUtk8sYTF+MQOYokkU1PjSJKMiIrbrOC5Hq2mS4hAPJ5gYnyyTQ0VFRynhSwpSLJKrVaho1hEUw1q9QaFXJ7Qa2HYFpIk43stDMsg8AV0w8TUdRpNF89zyWQz5AsFLNtmbrpM34IF7N6zg3wujSqLNJoNJDWBGbNoNJpoBlSrNWwrRRDICJKDrhtsfnEH3Z19EMHb3vYmBNGh0DnEsuXLMOIGHYUObMsgk02yadOL/OLmu7jqA+8n19WFJOjoqkajUaEyN8mFF76JrgV5SqVxLD3LLT/9OUuXrkISZZqVfZi2gR5PUOzoQlNNJvfvJJ6Ioykx0skMmXSWsYndELksWTZCtdlk366dnHLqqfzg9pvoSw2gqhqS1K4mT01PMFuaIZvNoCoGzz/3HKIEjtPEsiwsw4QImo5Dz4Jeas0G2XwBARHTskmmU4RRQNOpks8W2L13N9P7p7nr2fvQdINTRk7E0Cxq1Rk0w0S37LbVBwJ+4DM0NMxDD91PX88AsiLRaDaRJIl6o07/gn4mp/cRjydAiBibGKNeb9I7MIRpmUgCqErbrkRRJEQZlnYt5we334RZEOmy+/DCEAhxnTpuy0HVZOrlGYxYnEO90YSDdu0jIlEhFk+h2XFAQRBkJEWDSAJRBiQQpHYl7CWQ0V4Fvn7b9Xzu859+xef4WMBde504tsrc0cb+JnG4qAlAFB7eI/jqc3i5Oeb1ze0QwqUwb18QvaLCNv96QRgdZInwOl7nt+Du/x9xrODumD4Eh485qJJ3LG+hoxWLD64nze/gHk6zPFppPgzDV6VyHu1D/2rVwTc6Xk9VEF7eITqWa39ZK+f1UUZfktg92hyO+Wwvh3BYpe5owO7grsGuBX08s+Ep7r/rNtatX8vXvvpV1i8f5pHH7qczbvO9p0qcNqCSTCUoFPJMTJSxTINSucbISB979s4wNNhJIhnD81oUi2mCIEDTdB574kUWdBeQVRVJkpiYnCUejzE7W6HleFSrNUzLIJVKIggSgtA2Mc9nLNKpdqN6V0eOEEjETGZmy6TTKfzAw45bSJGI67ZoNBwKxQyxmM7k5Ay790zT0ZnD933CMKJUqrLhme0M9ObRDJVGvYluaIiCQOCHVKp1LMPA9zy8wGV0dJZao0FnZ5YP/ttuPvOXf8XkZAkxdJmdqZGKZbnh+u+ycvkyhpcspre/l66uHjo7c9x3z72MT07R3bsA3/OpVaoETZef//yXDC5azJ69o2TSGbQDdNU/+8QneOcV7+Qzn/k0tmnz9IbnUDW1LbUtiUiiQr1eIZ6MMzS0CKdVQTEkVE1k66YdlCp1Pvf5z3H6aaeiaiZRGCKJIZ4X8fXrruekk0+GMMJ1miiqRDbZViaUBJWvX/8NVq9ZiarK6IbEeeecQyGXQ9EVBEmg0aghhQKqbhAQEgQeCBKKqnPmWWehqiILB/vY8PSz9PcuIJaKIYsqD9//MJu3PMs551zAc89v4Re/vI2B3iEWDQ7S09PBaaefSW93F5YmYthxzj33XLZt20EQhHgzc2x+5jmWDCxmbP9etm7bRasZ8p53X84tt/ycq979LgodeQqdHZx++slk/z/23jtOsrrM93+fHKpO5erc0xN6cg7MDAxhyILiIklWxDVh2HsNi3H1umtc9ppwFTGHRUTlgu4iiCAiInkGhjA5T/d0DpXDyfePmp5pmplhBr3q7/fy06/TVXXCN5yq7/c8z/f5PM+TSZDPj6FqJmNjw3i2j39oDM2b0000YlC3fVKZJhDAsW2q1QqJpEWtVuPMM9ahKBKOWycWSbN3707SmQy1sks0aiIIAbKqoxkmkqg15mpRoFTIYUaTjBVyiKJMJBohGrUa4d8VBc/3GRwcwLJ0ojELp+6x6cmNlMvj9A+NsnTFclrnraBpxiz0ZArZSiGKEqLcoAlLhyOsNWz+AY28S6J4ZDHtZJW7482HggsvvPAop515KTW7RLU4SsSK49o1DF2kbvskU834XkDNcWjKdOB7DiGgqSqSJGLbdWq2g+f5SJKIJuv8y79+kvPOO48gDGlpaefG79/Apz7xEeKZLJddciHLly3jP2+9g9PWrkHVBH77mz/w2c98lkte82oEUSDwPQjq/Oa+h+mevQhBUSjni41ATZEId95+B6eeegbFfIX3Xf/PvPPt1zA8NMBlV13D297+RjRVIhI1yOXzZDJJSoUKMSuJLrjUbY8gEElnMiiKQjbbRLlcpVgsETEj1GznUCTGxrfgeSH5XKGRl9AuIusqO57fju95pJqz5MeLCIKI70M0YpHLjxJPxMiPFTEiBlEzTj6XI2kZpJIWwyP91O2AqJVAkwN8x8GMJpEkgTCE5zZtwQurGIZJa0sLimhw76/uJp0yKVdziLKJJjvY9TqyrGDbNTY9vZFFi+azcMkaJB1yuQKi4GPXylgREyEMqPsj/PaBR2lvXkK1NEJrRyepTJpqKY+kqFixJE8+8RSmrmAYERIpHVHUsese+/buYWx0kCXLlnGwt5dCoUSmuY3qoZQkp52xio994dNk1SyDQ4M0pdNY8QQAo8MjqLpKW0cLktygy9uOg2EYh9lBgijieS7yoUgYDXol2E6AFTWQBIlYKkXMirPh2Y0km1OsmrWS/oMHmTd/PjErgR/67O/pIZVMISqN8lpaWhDEkFK5hqZpVCplbLtOxLRQNBlZUpFkAdMwiFkWYdDg3DiOzZ49exBFAVWXCUIRP/A5Y+HpfOcXP2L+6pkYtnVYQYhGooSIlIt5FE1HlJTG6DxsUT9iDWrIaIdSUgnhi7aQI+9frMAIfO+B7/L1r3/5uGN8Ko3xlbi2HM1F50+Fye2ZeC+KRwK+TN0mfPumXhO8jHo3lTn1knYwoSAe3ddQ/CNpmX9T7v7KMaHcTVAWXy7a5fGCrkzFBHXyRb5vh44db0gdr/SXo+Ycru/IwUZ9k9pwNGrmsba/Vpz0ZHaMa17Mv56gP73SVfIJasBR6jn02jjOMamVU3dPjkw1cexoLsFTvykhbERzmjZzBvMXLeDO227Dt2vs3LOTdCqCquosmzOdz//XM8xPCkzrbCNXqDA0XMA0NA70DBOJqCQSFvl8AVmREfDxvABN02nKJBFEAd3QgRBZltmzewhd14klYwih1zgmCDyzaReKJFCv1TBNFStm4Xs+vhvw5MZtdHU1s21HD60tKRLJGKEf4rkhhqERhh66rqLIMrIo05RJ8Myze+jsSCNLEkHgM7u7A8/3qFer6IZBGAY88thmalWbvv4cLU0WqUwCQRTZsqWPlqYYsWSE11x3A3okhqmrXHPV5Vxx5YVoqkhTNka6JUGtVsUwVDLZBGEIVjzGk09voHvuXHQZUqkk99/7O2KpZj71uc+xZ9duzl53BjWnRsTUOX3tGiKROKuWrsSKJEhmmjjrzNMIXbshXEZNdMNkX08/7dM6EUOV55/ZRrlUx4xG2Lp1Cx/7+EeQZYmQRooJI6Lzgff/M+96x7u48YtfYeH8RVz6ukt47SWvRdVNAl/h5q9/j5kzO2lvb+EH3/8hSxYuwLIsPvf5L3HeBecjhiGF0bFGUmK7SsQykSSVUGxEP1U1DbteoZgf53ePPMqZp69jz/7ttDQ1s33LLv7nB95Je0cHc+Z1k001kS9Vac5muOlr36R77jyKpRy33fZTfvnL3/DbB36P64acs/4cPMkl1pTEak6TasoQjyVYs2Yt77/+PbznHW9j49MbIWgI7MlUjHIpj10uEYYCuqLi1Gw+eP37WH3KKViJBIEo8da3voMlSxYiiwEjozmam1pw6lVmzpyG53vkc3nqtkOlViGRSaKbURTNYHSkH1XVcX0wVBkEiXq1Al4j4XO94mHooOsJREkkCD1kUSZwwXFtTCNCEHjseuEZmqfNIGrILFm2iLZp0/FFGUkIEfAQ8BEDj0birwYmFDf/0FwhAGO9B9j09CY6Z3QhCOKRIAaTyEgnI4tMXBUQQAiDfUO0tU5nZLyXVLaTeqWC7NuM50qoiomiRBjqG8KKJwgboRsIfZtSuYAbhERjCXQtyvhojnq1hhWN8prXXNRY+HHqxNMp1p26mlQ6Q7E0ypZnH8NQROYtXMWWzc/S1dXBrl17uOTic0nE4sStJAMHh4lZMfoHBpgzdw4Q4tRqbN26g2xTG4mEie8IWFaSs89aj65LyJrAO/7xHdTqRcZGBkjGI3i2h6IaRKwku7fv4xMf/wjnX/B3iJJMcTSHGYkSCD6a6CGrJr7noapag76pNhJee75PW0sTWiSOoQWoqoyi6HR0TqNer7F/9ygCLoriU6uopDMxyqUKN9xwE6vXLMWxA1RTJh7R6evrIQwDEok0991zH93d7ZhahJobEPogSTaZbDvJWOJQOqIAx6mTSiYJPJu2pjS+GKIqoKoGAnU03SSZzBJ6IY7oUhwv0NLUxK/uvRvXdYiYFrWKiyIlmTtnJp5fwbMdNMPAdeoUi+Ns33mAm756E1f+3etw3DqeFzA8MkK5XGTD4xuY2z0N16kQhFHu+dV9jI+OM2/efJrb25AVGceucMFZp/Fv3/kPXn3qaxkZGiCWSBH6IRIiO3bupinT3FDYajaO42DbDsVyiUgkQq1SYyLxuCSK7Ny5k1Qyw6ZnNqFqGqIgUrNtHNtl475NCLLIwpa5RCMWsXiCwcFh4laUdCaL49oMDI4TNaMYus7Wrdtpbe+AEDTt0DNJktF0nT27dpNONTEwMIRhRBACn6c2PsH06bOJRi0Cz6FSqRCLJpElqNVqnLfiXL596w+49B/O4Z6f/oaZM+fg+QGO24i4HAagqEbDejd1TX/Cxj0hhwmTM7EJL/qbjM/+6DN8/4ffOqKwhBNkwiNsrcnP+gnF6JUod38uTFXAjtbKqZa64PC+yUkTpkpFL174YtJZwqR3L7HMhVPPPtbBY9/PP5dyJ/w1C+D/X4BjOyEcsWy9HIIgQBLFP5pe96LrXyZwx4ki5Iil7bCZfpLSN9G/v1Zr3B+DlxsHJ3NvJSaU4MZ9Oj4B8uRxvCllwroXBhMOwSfW7qlT4NS7oQYhP7n5P9jfdwC7OEYqnSKfy+O6Lo/sGufmN85m4zN7mD4tQ2tzBtdzSCSjbHhmJyuXdyNKIqbRSDQuiiK5XBFVU7CiJkHg43sBvgv3Pfgsr7pwJZIYICliQ3gJDj2o/JBCvkS6KcGOHb309I5x3tnLGRgcYWAoh237TJ/WxJ59g6xaMYetW3ezeFEXnudSqdaJWXF0XcfzA4YGh2luybBj5wFmzWhHMyK4rod0KHG0YeoU8iV27+ln9er51OsNy5wQBGSak/zo8THe+c9f5cMf+gjXX/8+OjracL0aoqRQrzj4nks+N0ZbRzu7du6irb0TWVWoOw5mLIIznkeLapTzdd73vg/wlW98lXqlSFM6TdX1Gejr5dFHHubqa97Md276FqVyjSWrV3DR2esY7uvl6e3bOOecMxkZzNHZOZ2R0QEkAURJwjRN4skUlXK5Qf1MxIGQUqmC4wT09g4yd043b/6Ht3D11X/P0iVz+Mltt+Gi8L7/+Ta+9c1b+OVdd/PDH32b2fO6MU2NoaFBUskWHLtGxDIAKOTK2E7D0lmrh0iyT8yykCUVu+4gCDA+WqZeqdHWEcP1AiTRYGx8CEU2iURVVFnmwIFBapUKCUvhF/99P+ef82pU3efbP7iF669/H4LgMjo2Qt+BQdadtY677/kVV115JV//+jd4x3VvY/PmLcybPZ1t23eybMVKyuUygiZRyecxJBlJt3AcB1EUses5xsYKtHdOR5JVHLtOLBalVqsQoFLKl+k/uJeOzgyZlmkIAtTqZSJahP7+UVraOqjV68iygyzJyIpMbnQAxxfJZtPs2PIccxYuZmwwD0KZTKaLfH4c2y7S0tpEoZBrhHiPpPEDnc2P3Muqi67AkANsd/Lq89QFtKMwBA6N140P/ZrePQeYt+IU5i9fdoi+9Mc918PwkKgkhOSG+kikMgz2D9OUbUKQbHzXpVKpoKgWvT29NDU1EYmY+PhIgoooSNi1AqEY4AQhVjRDIV/kzW98Gx/76IdIJGN0zeigWCgQS1gIkornugi+wuuvuorvfuvLxONxQtlCxgfJo1arYEaT7N27j7lzFjA2Ok6mOUq5XKCQq+CUBd7/gffzs1/8DFEQUBUBx3GQJIm9W/t4bsuznHvheqKxCPVSjVjcolAuEDdN7FBEVHTqhRpB4DE6OsL0mS34togSUajaVZxyhVgiAwJUKxUikUbwHS8IUFWVwPHw1QiiV6Y0PkaiqZNyqYJbLfGb3z2A5zict/4imjpTeH6JcrVMftRGDlyaOtMYagbbD1FkiWKxSL1Wx7B0TDmGqtmUbJ+ImGC8MMBddz3J5Zedylve/Ha6urqp1of58pdvplarE4o+qXSGUjlHxIgT1Idx0fB9A0MUkUw4b/0VfOCD7+Pcc84C4K5f/pLXXnIJw6NjaHJIYbzCb357L6esXM2+vT0ALF2xmPaONu74P/+Hi1/1anp6tzGtawZN6ZkMDw8yOtRDLJmgeXo3pWIeWQzYu2s7qWwHqiJiqArlfIGhkX40I8bAUz56VGD7ju20d3SSiKeJRkweevh+Vi4/hW3btrN8+UokMaRSqxI1Ley6TRD6jUA3qo6kKIR+QK1WY2h4kBnTZ+L6DqVCieQSndIWF8MwKBRLqJrGgf27mL9oCZos4YQikhBQLhYwjQS2W0VVNMbHx0km44QEBGGIV3eIxuMA1G2bvTt3k8o209ycpV4vIEkGnuthmBq2U8fQDeq1OqZuUC5XaFkToVYp8LOvP8AVl1xOKT9GKHjE062EgoIXgkgjKnR4+CE82dtsyqK68OL9ANtrL/D6q6/gRZLZ4VXgBo4a7G/CfeYEFvH/EpgqaR5Xwg6PKHcTVx/u8+T589DcGhzu35FSp8pBkjjpPoSTjxwFk+fso8zXh1t1aKVNPAHZTNX0VyzU/81y90diwnJ3NCvbRJTMqSkFpp4z2So3eZt6fDJetGeCZvkn6E8YHuIYTzE/Te7fZJxItMwTzt33Z8ArbcvJ0StfTA8IJ9EJjlX2ybYpDEICP0CeslBw+PfzJ1qNmygv8EI+9fGPc/raNRSKeUCmWCxjxRI4jsTnfvYHLlyQoaUpQeCHRCIapXKFuXM7KZeqxBMxatU6juMiSTJBEGCaOs9t3k1rUxoBgfGxHKlklHgyjqJIeK5P4IMkSQgI5HMl/vDkDqZ3NpNMxujqaqGQL5FIWKSTcYZHc8yc0Uo+X+LAgSHmz+vEjOj4vocZidLTO0IqHadWreL5EImYJBIxRkbGCUOZu3/9NLNnNWPXbTRNQddlOjszBGHDyb5arnBwcJxyucKje0qsPf1VhGFApVImnU7iOiGmYbJndw/79/cye84sRoeHiMUifOmLX2FaRzc7d+2irS2LImg4no/rFrjg3PPItqQYGhymmiugmhYxy2LBokWEosiiBYvZuWcPF198EbmRcW7+1rc5++z1tLZlSKQyjI6MEbEMYokUsYRF/2AfsqggKxr33vMbXnh+G9u3bWV4aIyvff1mVq8+BYB7fnU37/+n95FKJcmk0lz1hr9nZGQ/69efw9VXX40Vi6CoEoHvomoKBD6iKFCt1fH9EFlRsaIme/fuw6uFDA32kU6lcO0APwBNU6mUXR595BFmzZ7BD37wfZYsWchHPvwJTll1GrquE4ou+3btY8e2rRRKg8yZuQhDTfDVm/43+YLPk088ze0/u4Oz159HoVAgk8nS0tbGZz/xSZYtXkghN8riRfPIj/eRyiSQZYG+gwPEYnHe8fZ3sXzhcr74la8zb243oixg18pkmpr5+Mf/lWUrVlCplIlaJqVKCVlT2bFrJ4l4HE1T0Q0D13ORJZVnnr6PBYvmUKuVCAWPaDSG7dgEQYhpmniuzfjoKFYiharpKKpCtVpBlSR0Q8WxHXxPQBB1NC2OpiSpOTV2b36a7sUrEQKXcJJ1burQFYQjlPkQAZEQCZ+tzz/LgR1buOzqN5Ht7DjGmBdewbzXeJ6IgcfWp39PqqmNWt3BqRbxvQpIIqEkYdcDWtvakRUFzw+xnQq6plGr1whQiEQjaKqKEAogwIH9Pdx5x+286S1vQVYVIpaFIIDt+SiyQr1W5KKL4U/7rwAAIABJREFULiKSaKZqe4ShhxVVkBSo22UMI0m6KUMYehhRjXK5RDQa5XvfuZW9ewa49NJLSTdbiHKAGMoUiiPIskw2k0XRFFo72ti+fRu1fJXe3iEe37CVrrY0uhWlUCzx8O8e5vlnt7Hm1MUMDvWgRhKEOFRLZUQlTq1awDAaixt2vYwsS9j1KoosgSDieR6qouO4NrIeRVU0TEOnvW0BLU0ZPH8My8oShCLVkkNX1ywsA3bt2UIs2oysGQSALKsYZgQ/tBkfshGlEogW//GFbzBv7mwefXwrK5Z3c9nlV3D++Rdy9lmnMTY+RjyTQYsmkMIQXddRZJ2Bvl4S6RZ+8INbWHPKSoqVIq+/6k3MmTubMHCplEpkMynGxsaQJBVdVdizcz+rTl1JKtXKZz/5Ga695moeeuwRtm7dxuVXXEk+l+P5Z5+gkC9yYM8YZsKgv7+XxYsXUapWKYyPETEMSsUyrZkWcrkxHBue2vA0ixat4Atf/gr/+Im38sF//Rivv/hqovEYkiSAEBI1LVLxFK1t7QwO9hEGHlYkQr1u88ILm0ilkuQKOVLpDKIgMDY2TtSKsX//HsZzOTY8tZFKpcijWzYxsmsPXV3dqLqKpmvs3r2bzmld9PUdJBFPNOY2VSEIQxynhiIp+L6PIkmIioIsy2iahuO5+L6P63k8+9wGli5Z1jhfVQARQnCdKqoWwXM9ioUSz2x8ilndMygPeHzj9u9x8ZXr6S8P8czzW5nV1oFbzhP4LhIhvl2lWi01yhMbI/zIKJyYA6ZECkfgx7+6lTdcfzmLFy88NDdMxks/TbbgcfizeHi+EYSX1vdKqZsniuOV/RJG0fFLOvy/IQMd48pJfW3QVCcdm6zcwqFceJMLOp5yN6kvx9GLQ+HEImXC32iZf1FMTYUAR34MEz5aLzKJTznnaJTLyThmnrujnPunUu5OJqCKcGRWePlz/krw51LuJvBy618nz3fniPX3KE7Gf4q7PXmBAQBJxBA0+vZso6dvkEymGdOMYkRjLF11FnNnL6RuzuCrd9xLtyUhihKu75BOJxgaGiORtBBFhcAP6ekdoKk5jSCIWKZGEAR4vo+VMClX66iGQb1eQxJEtmzZRzweYXgoRzqZZHpnlny+DGGIokiMjBTYsq0Xu+6QTJjIksiuvQOctmY+v31oO+mkRRAIlMs2xYJNMpVkeDhHLBZFkmTsmoOu62iaRltLhEhUQ5IbiXP/695NlAvVRi67UGD//oMsWjwbwoBTr/oooqgyd94cUskkjz76CPMXdDM4MECxmKdQKPHww4+wfMUiavUy01q6iEayzOiajuuVeeC++1m8fCXxWJSEpVCqVMim09jVOuNjZbKtTZgxiy989l9YNGcWp61exe7dO6jbkCtUuOC8M+kfOohTdzCMCKomU644GFENy9IZGxnnR7f8lItedQmPP7aBa990Ne0d07jg/IvYtGkD9VqVd77rnRi6hh8G3HvP3ciqwY4t+yDUcL0qmaY0oFCpNChY47kCphmj98AwESPB8FAfEStKzIpSHK/y5BOP0ZJtwXMCyrUxRCkklUowfWYTETPB3LmLGR/Nc9q6U4jFYsQTBr6ksvuFPYQeLF21nic3biSeVah7Em9664WcffYaZsycTT5f5tS1a/jABz/MsmXLeOLJzVx+5VX0Dw1hWhFqxXFMI0KtWqO9q4sAgbPOOJdf33M/6844FzOqEbNMqtUyoihjux6r16whmrCQVZlcfpxACOic1oWpm8TiMepOGdf1iVlJ2trn46EjKjqKYVDM56lV63ieQ8W20aWQ1tZW7ECkNNqPKrqInosQSeEjoelx+vqHiJgiu/e8gGKAFWtiYN8OuuYvQcI/RGc8MsaPNarVUGT/tp1se2YD3e0tLD7rQlxFRxD8Y3iZCBzLb+R4M4AEVHJ5KO5HsjIk0k0ogksNi4isUM+Ng+9jV0romohTq2BGDUJAliVErRGIAs9BEWVs3+GsM8/ilFXLsZLZQ6yCENv18ByZn9z6c/7tc//KW994Kfmix//6X//C5a8+AxSfQs4mGWtH0GRCUQDJp1TJY6gmoiAye9Ziumd2YkR0ZEUmHktRKA4TtTQ2bdjBhif/wJKliwnCkHg8SXPndNKpFNXRUebOm4EvSHhewNvech0Xnvcauqa3ETXT7NszTEQQuPnGLzJ9xlxkVURVVQACv4pj1/FchyDw0WMJJEGgUKgShh6hqCLKMju2bqVYOUBTto1spg1Jd5BkCcKQgDoePqnkCn75618xrTnBE4/+gY7WLLoiIolZfvjDr7F65Tncdddvue/XD/KGay9k7bq1bHpyC9/61rc4+5x1mGYzhi6h+i753gGi6TSFQp73v/9DvP71V+ELKstXrqJaLRIxdW754e2kkwl0VUSVJZKpRhCrXGEMK67hOHXGymWeeGwD1731Cn730E+54NVv4NR1p3PgQC9d3S20ti5m2sy5xNryWLE0ra1xdu7ZRnv7XJ7e+DyZVBsP/uYRZs2dQao9gRFv5Y6f3sk3v/lD/vcXvkDvwG7e+g9XM1zPc+9t9zNr9kxcp6FE7dqzE4KG5SyZydLbN0ChUGTu/PmYloFlWvT09BC1LPr7+xkdHaW/r5dVq9ZSruSZNn0ajl6mIzqDTCaDYRiMjo3T2tbOeGGcjo4OQEBRBAg8qrUq0VgCQZKQVAlZkxpWLVFhw1MbaOtoIwxDTNOgc+Y0FBF810VWTSRVoFIuMdjXR+hCxIjywIP3k25qJZNtQlE1FnctJWJnSGkZ7nn2Lt507Xp+9LuHMItZbMcjYghoikYYioiCfJhxc7Tx/KXbvshDz/2O93ziOs59zdkvUo5ezBoUkA4FXZq8TcaEbPpKRbSjJww/ORxvXnolyt3RP75UuTtSx5EdktCIYj6x56XGtZdX7g4VekyEwonLfH9T7v6CcF33k1P9y170xU1dbZlYBQF830eSJj3QD71OjdpzNExdS/hjBPoX0fpOUrmbUF4n7sFE0JWjbhzq/58hJ97RcDw67MsNtmMp50dDOGV7cTnhJKPoK//Wpq7AvaLrgwYP5MWrgcdYZABmL+lGESWuuOZaVq49mx0HBrju3f9IurmJpfPmsn3LFt54zTt495e+T4vqIHgChXyJjs4skiSy8antiAQEQcD+A0N0drZQKpcxzEYkzEjUIp6IIQlA4ON7HkIIYyNFHNdFlGBkNE82E6dWq+F7Ns9v7aNSdVizZi5WzKJaqWNZBrFYhO5ZbWze2kMqaRKPN/JFaYrC2FiOdMriiSd20NYSR5Rd9uztx657pJIWqiphRjQWL5yGqgqEnoMgu7S2ZAmDkFg8ita5jueef5w7bv9vbvrqd4GA2d2dhKHArp29PPyH3/PW696MoCjEU03IqkkibfHpz3ya17zm75jR3cHeA/v5za8eZO/BfhYvWsGPb7udUt2hszODXR+hd/9+Vq09hVo9pFJz2L17B+0dLTi+S0v7DOKpOJaVpl4q4taLFMsFarVR0olOTDPOqlXL8IIqy5bP4/P/fiNnnrGOanmcls5WFixc0vCnkn0EQWbBvOU8/OCDXHDhq6lUxpkzt5uLL7iQN137eqKWRYhINBpD10UiUbVB/ZPB9UBVTRAkbv/JLbz20iv42jdv5fz1p5EfPUg01YQk67iBj49HKIbc+ZOf8pWvfI91689g/9ZdJFuzxBIxMlGDL37+Bl51wav50S0/YuXytbS1zeCJxzfQ0dHJ3gM7uOLya0hlYlx8wRkUixXe855/4g3XvpFYLELNraJHU3iVHLWSzQ3/9nmu//B78GyXD33kn7nsqtfR3NxKverh+wLFfIlvfPUmzjnzLCq5MtlYFkVT8anj2zVMPYIqiTgI2K6DoSn4dg1FEHFsF68+RsTKYkZMhkfGUSWNaqmIICmouonj6+iKwcjQQSxLQwohZkXRtRTVcohupdi/bQPdi5YToDJZRJIFCRGxETfhkKXOFwME3+UPv7qHarGPtWefjdkyvUH1F0A4Tkimk50rJCHEReXg9ifxVZN4tg1FM5BlHTUokcuX0CJJzFiCUFJQVBMnCPBc6DlwkGQihez7DA/uJZFK4HsyxbH9uHaNwBNJRmI8t2kTkUiUW2+5haXzulk4bwHXvvGNeBgU8sO8+a1/z97eHuKp6fT2DpKIJ+jv6yOZiFCv1YhHMvTuO0ginsb16sRTKdygyObNW7GrMh3TmqjXAmRFZumylVhWjLHREcbGRjG0EEnUiKUbee/KdhVdVbnujW/CTMik2tqplfOkUhamZXHTN7/PtM4O5i+di6aY1OolIlYS11NJJJtAENBUnZHhYXRdJnCjBF6VZ595glNOOQUzmkY3VMLQRdUSVMoOsqwThDL7dvZhOyVOXbOGsZECkZhFpjmLG8h4QYXZ8xciGTqZaJSzz16LIkkYBrR2tHHmOWcSiUWoV4sM9A8jqxbxVAZJE3Hyg1x4znpKxQq+U6cyXmDntp2k0i2sPX0xkmhw0ze/hqCAFwa0tc/Eq+WIR7K8590fZFprFk1UWLp6OZFUgpbWFn5++y+QAo/mdAvJdIwg9Ag8k517DjBt2gyiapQdm5/jy1+8kcuuupJFqxZRy43zrus+zKzuLOefsZ4Fc+bQs28fQ329LFi1glTCYsHyGXz0Pz5Du9ZCNpVBkmXSmWbi8Ri1Wo1SsUhbaxuB7yOJMq4XkMqkqTt1RFGhtb2J2bPnU6qWaUl3EI/H6S/UCUp5REmhVq2zY/tm5nR3EzFM9u/fT0RXqNWqBIjoWpTQDwhDD1VRGBoaIR5LEAY+5UoJXVUZGxlBliVM1cB2PURJRpREZFEhPzJEPN3MWGEEVdPRdINsJotuKFSr5UbUT1Ei9DxOmbmS/MGAnz5wB9e843RWnjef6Mw037nzFn58/+10RrJksi0ECDy66Q/c+bs7+N3zv+OpXU+xfP1C3vtP7+bKqy47PK5f9PwOp4T2F8KXyCMTfvuNxeGJqJAnhqn1HSsYyZ8KwpTtZE4OEA/3VzjOiRPvJvv1TbxOKHeNPguH3x91Pj2WMnkIAQ2572Rkt7/53P0FUa/VX3IDj2dyPezTJoovUe5OBgLgTyrrj1XuJn7QU30HT9bX7kTNzSdaHvzpaJ3ipLx7L1ffVJyUcnfcc4JJ5/3lLJohIIQhB/b1MHNmFz4cd5Jv+PIF4Hns3bGDpkwLgaTjSDKK5xA4Lr7r0dc7wBNPPsmGZ59hhbabprjJ9GkZVE2hra25EW66UiZqmlTKZSIRg+GxMVKpFJIIjuuDqPDUxu0snd/Jtu0HWLpkLkNDY3RNb8dxG7ROQQTXtjnYN0Kt6jNrVhsHegbY+EIPS+e1M2tmG8KhBOi2Y2M7LvGYxT33Pc2cmc2M50tIosSKZTOwYib1uk8hX8GMKGiagmboBEHIeC5PIqYjijK+L0Do8+//tYdr3/F+ZsydT8/eUW6+6Vucd+5aFixagOfAb377GHfc8ROuu+5aLr38dUiqiuAGOI6LXa8jShKiArKuIrg+kmLguDVcr87w0ABNTa3EYgbj40VAwtAM7vmvX3HGGWfy7R/8gAtf9Soi0QhjfQPcfPPXWbhwDp/81CfYvm8vc+ZMJwxVBvuHEUTIZBIUSyVUSSckxK5VqPke0WgGSQqp1ookoyk++uFPsHTpIiJGjDPOXE0ykyQ/lsPz6rS0tzYoSqJMT+8eWlrbEFAYGOilWq0ybdps9uzajW3XWL58FQ//YQPrTlvMtm0v0NXVTTKbwnU8AGr1GsWxAhEjxeatTzM2XuKss9aiSgo3fO7zzJwxg3POPR8jalGvF6jbDu/9n+/nS1/6Mvffcz/nnb+eX/z3j/mn6z/EtW++jhtv/CLZthR2IY8eVanXQ1zPRwxFJMUEXaNwsI9ILIUWkamVSsRTSbZu3kxX12xyYzl0Q8BKGCBIyIqGpujIikrdrSD4NUqlMtnmVuq1CtViASsWJZ+rocsgm1FK5TypeBwxbOSYs4OAWsUhlU5TP9RvXdepVMu4voOqRTCjUQQ08geeI9G9DIXgRb65E08FPwiRZQkHkAKX+26/jdbmVlacvhZHMvBDFVk4cuWRKeePfa4LhKHI2P5nEQONRHMWxy2wb8fzNHUtB1EjGk9Syo0Qj1nUbRsBAVmOIIgOlVoRK5JFVgIc20EUNNywjioICJ7A81sfY9HiNTiuBCj4bgFFVVAUlUKxjm3X0Q2FRDKO7Yj85/e+w8wZXSxbcSrpdIxCMU8qkaVUGqZarWIYBq4ToKgCBw70sHDBEmzXoVqxiVgxhCBkeLiPSFQDIUBERlEi5PIjaBEdMxKlmC/T0tJCtVRlbKRIU2uKJx59mFNPX8fGDRtpa21FT2dImRGc0iBFx6WluRMQKJfHMc34YTFyqG8n6XQTubEy8UQK0TDRFZGhwV6S2SyqphEEHo5tU8pVMCMRJElCFVSKlRzVegVZjSIEHoYVQ5ZUCrlhUqk0Igb9fQPYrkvntHZEWaRaGEOWFbZv201zUzPZpmY03adcL4IXUi1X2L17P4l4ku7583E8m20v7GXegjkoqsjY6Cjf/tatXHHla5k5axYjQ6OYqoMkKWiRBIpmEuLh2h7jYz1kM1lu/vp3ueLKq1E0jXhKQ5cjVEtFjGQzbq1KGDoMD/TR2dbG4ECR5uZmxktj/PPHPsmyZSu4+vWXoagmhi7x3W/fzGsu+DvuvPserJEkS9YuY9+u3cyaNYvR3AjZTBOyKCMIYkMekGS2bn2O2bO6ETWD8fEhxEBBJGDnzl6Gh/q4+j3XcGDTTmKxBJ7r4Xk+guAQi8dxXJ/Qh7rTCO4zOj6OiIxlRdANncAPESWw7TqSIOK4LoqiIEkiYQBDw0MIokgqmQbRBz9EklVqVQdFUegf6KO5uZkw8NA0DQQIJaGxwBwE+K6H77pIssyjOx6lxWhBaKsjAKetWoCiyYyVXeYuW42EwOWXvwFJFPGDAF3SuP6qD6GqMj0HDvD9h37AnXfe1rDKTZIpAgDhBOeBQ753/39CMEmaEY9zG44mEU7IQtIhcbYh0x2fbvlyPncBDe++4CRomX/zufsLwvO8T07ddyKC//GSRZ4IDlvBDlNAX1ExQMOCeMQ8P8VsP8lH8DBH+Wh+dyfSl6lpBI5n5ZtSzx8ThOZwfcfpw4lcO7mMk7nmKEemvP75IQCEELWshnWZ4/9uG4ZGiUCUsOIx/nDvXUxrSVHIjxCxEviElO06rS2tLF68iJ/feSe+0cJPn+5lQSJgPFehozlNbjxPxNAJ/ICnntlNqVKlpSlJbnyMkYF+ioUSsZhJMhFFUVQ6OlrYu3cA3dAaypHj8MjjW5ne1UK5UiOVjKJrGuVyjb09Qyya28H0rlYe+P2zlAoVcsU87W3NVMs2sYTFvDkdtLSkac4maG9NUrdtisVKI2+R2MitFxLg1G1EUcI0DRw7xHdDNm/ZR2trlhvu3MI73/Z2UHV8V8RQNAb79nLmuevQTZOZM2byqvMvQBahXC4Tj8dZsWwZF194AYHv8e1vfpPpM2cRSjA+PAiiTzweZWxkjM7O6YwXckSiCRRdQ1ejuG6NeCzJ5ud38cu77+aiV19MtjnF1ud38da3v4mV61aDYtLbe4CWpjYIQ0rlCpVyEU3XGOjvp/9gP9NndNA/cJCOrhmYZoTA99mzZwdu0WbOnPmsO3Mde3bvZ1Z3FzfffBPf/vZ3OW3tqcQSFoouEXoqgS8gSRoiKqqkoSoyUSOOokJrVxeu6zGtJYMgQyyZYbS3HyudRFFlbNtuzBWSyqYNz+PUc5x+wavQRYdqucTadWczY/osPvDhj5AvVpje1QphyKlr13HjjV9h6cqVxNNxkuksz27axDXXXEPnjDZsp4ipGeRyYxBKpFIWvTu3cN+v72XOosWk4joICpIs8cLzO7n//t+yauVK0pk4ViLK8y9spq21E81KEtQdDh7cT6gFhLaHruoY8WYk4MCe/bS3tVDMF4nFo4i+gBs4xDIZ6o5HQEi1ZuPZZSJmAgEPD4+x4RxBAKHvYsoN6nCxkCf0BQK3gpZqRg1c/EMU6wmWw6Ehiu8H5Pv2s+Wpjay/6EJaZs7HkTQEATS84/rqvXKIyGFAX88+2md0ky9XCJw6M2fNQJFVXMfBUHUiloGsSPT0HCCeiCGLDf/YiGlh+w61moMZieAFLpoUUijVENUo7c1NNPJ3SSiKhiDJlMo5VM1AVCViiRiCIFIu11AUjc72ZlIpi2QyjSyHVGtlXMfBtX0ipoXr+MTjGSRRZXxsDFEOiSfSfPSjH2f+3AU8cN+jPPH4U5y1/gwGBwaJRGPYTpWYFUfTLL706RtYNG8eWsRA0y02PfkszR2tNGVbsOsera3tpNNZrKgKgUC5bmMaFru37yORSiFKIpVyFYRGPq6KXUDV42imScUpYOpRRMHH8xwEUWFwcJiIblKp1FFUAT/wUGQBMZSo1ooIEujRKFLgY0Wj9PT0ksk2UapU0HQDI2JQqRTRIxqC4FIplEGQSKWSfPozn2VaezOyFSWezDLQs4fm1mZSyTTPPfcsrR0daKqJpqk8/tjTdLR3cOUVr+c1F7+OFafMIPBCbv/Zz5nVPYdsa5bR/BjxRJq6a/PzO+5m89bdLF20iBkzushkWvjJz+6kszXDU49vp1x2kASXeNIAWSTe3Imsm5iWxpNPPY5lCbzp2mvwXQdZEvjyF7+IICisW3cW7/jHt3PDl/6dR3c9ztdu/QZr564ilcqgyAqyrPDcc5to7+ygXMmz+blNpNJpMtksEiKKIhExInihx7SOTm558lYEDOJCkn3792DFolgxi9HhYRKJOLKkgizjBQ0q8/at2xjPDdPU1IQghORzeUBAVWX27t1Jc0s75VqZwA/o7+snEU8RjVoMDA2iKzqSpOD7DmbERBBDDFPnkUceZrD/IG2tHaiKzEMP3kfEtJAlCUVROLD/AOlMC/V8nVxujEVdq0mKTVSGROxRiQ2/eQZ/VGJ8b5H1y9Zz5tIzWb9sPacvOR1JauSMjCcSrF+2nqEdoxitKrqmH55DwhNV7CZG/DHyyP2141h+geEk69zUROeTcbS71LDaTaWrHoOFd3ibzMw7SkqZifqOQo89Fv5Gy/wL4kSVO4Gj54o7FiXuZFImNMo5mVZPuVYUX6zETTo22dI4gYm2S+KhJLonWM9EPpKjOfYe9fxD92CC031cyucJKG0TAWHEQ/09FiaX90osq8dXABvfciOF4RGK5pGJ4dD+P4fiJwiIkvgS6vCxMRGaWaZjzkKeePAuFqU8vNRMAklB10L6B/pRDZW1p62hOZ3B0mIMe+1s2LIV0y3RPzROUyZO4LvMnNVJJttMT88Q06d1Yfsu2aYkZtTE1E2KuSq9Bw/SPbMdRZZwvYCHHt3BBWevIPRFNF0jP1ZheLhEJhNl1qwsmWwazwvJpKK8sLWHs05fjqop1OpVFFEhlysTieoossLoWOFQHjOf7TsPkm0yGyG1JRlJkXDqHqEn4tgVVNXEdsrEYnG2jMdRFI2u9ha2b9vOF7/0eT7xqX/BwSb0ZBQZyrUyru8xq3sBsiES1ANWnnoGowe2oOoGDz32JGtWrSadSSPIOqVSgaZsM/lckXQ6SxB4iIQI1Ah8mTe//V1Mm9nBZZdfyuzuWbz/Pdfz6BMP8oZr30gqlcTQNNrbmxkZ7iVhRfnFnfewZs1qZFEgFrf49A1f4sKLzmd4tIilR8DzUCQJu+ry3//1S9auW02h6PHjW7/POeecR3/fEIsWLaGppYW2tmZ69u0lEY9RKXvs3nOQW392C6qk0ZLsZOOTj3CgbxRDgZu+9mV03eTA7mFamjPs3HvwUHoCgcJ4ibo7hC5GQKzwo1vuorurhWq1zi/vvp/58+byg//8Lh/4p/eyeOEcxsaGUWSJW2+9lQ9efz2pRIy29k7iyThGxKKzq6sROEMOsKsablhElqOEgks83UxL6zQSZoQg9IgaKrVyBUmVWbv2THTT5Oc/+wkD+wcZGOhHlGxa0m0EAmSaWolKJooqMrR/B0JYBw+MaARBlRENA7tWR1NCQlGCQGsktRZVXC9ENUzy4wJDY2O0tbWjJ+MYEQOnZqNEI9TtCpYZoYZItrkZJfRxBBlR9AkcByd0MU0TKfAY793Lbd/5OrXyCKeuP5/QiBMeFlsEAo6Vm3Qqoen425EiGp9lQaE0uA81IuG4EtFIlAO9gwhiFMcVcR0JWTLo2fcCjm2DCxIKIRVCfFxXwDBEfM8h8BoW60qljqFlueeue5g1Zym1egVZFqlWa8iKgKQI1Kshpm5Qq+ewayWiZoKePQdobsmi6TqB5FHI5XFrLoO9I4zn6rR2xIjoaYrFIq7r8eTjG/jvu+5l6YoVvPbiV2PICnfcdRcf+MAHcT2fL//HjSxdsJZkKsnb3vJeLr3y7zht9XyieoTCuMqGjU+zaOlsTFMCXPbt66W1fTqu7xE6OTzHxzKSHBw4yLQZ0/FcH03X0DST0nA/kWiMhJnFDmxkERK61aA/exqqCJIWJxk1kQgQFI2PfejTXHzxqxpRhIsHSWfSeL6AGYkhGyKyKOGFddBNDDWF7XrYgk0om2iaiOBDPKJimAKIIlY0wdxFp2AZMnY5INk6A1EQCWtjJGSIJmbz4x/fyimrl/H00ztZunwuv7739/yP974NzVTwqhJ7dz/DkoUrcbwihtFK1RmjXi7S0dZO94w5BJ6P59UZy49w2plrKOdcZs+eSbmSo7V7Hl5jWQIxDHjowd/TmmmhqaOd/XsH+fUD93P2q84h1dxKvVRj95b9DI8M887/8V62vLCF115yAZdfdgG7D+7jU9+4gTalmdb2NnynRqVaIt3cTDyZIt3URLVaRZEVKrVqw9JW93jk0d+y/LS5zJ83g7SaobW9Bc9rMD4SmSwAe/duJz9WJGbF0HXcOOr+AAAgAElEQVSVzmltpJtaKBXGKeaqjI+PoZsaAjLpbBqCkN6eHiJmBE0xiccsAgIkWUEIPEZGh4lEE1SqRXwvYGR4jCWLlzGzezaSplKt1di3Yx9zZs8hDDx83yGezSBLMrFYkpiVRAx8dE3EEzyK+XHap8+kXChiRqMEh2iWMkGDZngoQNGRUSvwjRu/wfmXnXuI+he+7GL45AQLjSB6JyACHANHk8Um0Ei3IB7uw4lKNy9vLACYlOxlEoVSEATEQ0R1keNH/pyQw8JJ3KXwUFT7FzV0IljpRP8anHkOS7XhkbYcj70lSCeuRP9NufsL4mSUu6OFmX3RIJgUbfNkqYh/7IrtZIvi5LoPO+EKQsPCN6UPJ5Lbb2odR9p8/GumlvtK6piMCWWUk7Dc/b/0DXxpd4RjvP9/i5OtSRQFkGSmT59J38AI1UKReCqLGyik4lEcxyEet2hrbmbzC1sZyxV4/bXv4ju/fY4zpysMjRXpntVKrVKjWqlRr9fYvHUfrS1pRkbLFPI1UukoDzz4ArIkgBDgegHZbIbtO/tpb05QKBaRpADTUNn47D5SiSiqLjYicXohGzbt5MLzV/LwI5tRpJBEIsrQSIFa1WbrjgNs2LSHmKWTTsXZ3zvEqpXzyY3nMU2VRx/dQWtTnFq1Rk/vINlsnMCXSCcTeEHAMwMqb37Lm1AkiEYTvP6qv8d1akTMOF+58SamtXXQ2pxlelcLrg3vess/MHdWJ9O653LdW9/K+z/2aVavXIYVj1IplzD1KI7t4thVzKjGti3bSSbiSLJEKV+hWnG5+pqrWLZsAclEjEhE5dzz1nPJay7BsqKYhk61WkUIRbZv3Yapxeie081PfvYTOtraEEWJ1176Ovbv28WM6d1UihXCAOq2w/PPPs9jjz1OU0sLD//hYR64/z4O9vXy7ne/ix/+6BYuvfQSRFkkmYz/X/beO86vqs7/f95ePr1Ob8lkZtJ7ISSkAaEl0gREQGDtuup+LegqFnYtWHfXurpIERFZQUWkCdJrQiABQvqUTG+f+fR2y++PSeJkmITExZ//+H487sznfu6555x77+ec+36d17uQzRR5ZfvrGB6DNWvXUF0VJpE8SHV1I3fdeSd79+3inz/0YX5+0y3MmNFE2Srz1NNbePieW5k7ey7ReCO6EeSe/72bufNm0dXVx7p1p/LKth2cd94mbrnlZhYsXMScObP49re/w4oVy/F6fNx/3wOsWLGST3/6U7S0zaC2rh6/N0ggECSXzaLrOuVSHk0NIkglFN2kVLaoqqlDMTTymSTt7Z1Ytk0kWolVtvD5DGqqo/gDHhYtXomsagwPDqOaBiPDwxRzBcyQH38wiMcfIJnJoJoeypaI6QmSy2XI5/PkLDA0jWwmQygcIpUcQxIlfvSjn3LWORvo69iL41oUyzZefwBZllAkGcG1GW1/lRcef4RwJEQwFMJyJHr27KbjjZdp3/EGve1dpEfTnHfh5TQvWIikmVOP37eBrjsa3EGhUGKo5yCRSBWqbnDPb+9h4cKF44tPko3P7yWbTeE1/YCEz++hbBXweDxohkEqXSCfz5LJZA4lcR+PRun3+GlsagKhiKKKFHI2uayDphmkxtIYHoOO9i4i4TCqapJO5fF6ZFLpxDir7mp4PH5EUaSmLk4kFmMs0YfrCOzfd4D+gUFaZjSTzxdYuHA2ojBuXufzhdm27WX27HmNf/7nD5BMdROKaGx6x1m4YglsncRoEm/YoWQVCQS8qKpKMWtRUVnNBz74QS68+FxKtovu9VIoFYhH4vT19RAJh8AZVxD9fh+ZXJ5iycbw+REVFcGFQiGLIhsgOqSLafLZJJKoguhhzbq5qIqfUk7C4/EgiTqK7MN1FEoFcMoCihbALYp8+6s30jajnpGRHnQcgn6TYsnGkUQQoZgpcMMXbuD8S87H8Ajs2bUXK5cl6Dd5Y9dunnj6JcIVcebNm40giMyeNZfde7Zz2y2/4tJLLyYxOsZdv/otmzedR7SuHsvJ8cPv3YQiWtTWTGNkaJhIJMT3vvsdli5dwXXXfZ4N687A41X586N/5umnngPbpbmxFk2RyaXyeH1+brnpJpYsW0ZddS319bVohkqpaBMOeOk4sJdTV68gVhmhpqYSUZIJBSJU1lfy7osuY8G6xXz6W//KeaeeNx5dVZRQJJVEIoEkisiKgqbpiKKEphs888ZzJBI9FByLgT3DVMQrUDUVWZbAFRFwkUQR0+PjmWf+TGPjNERRRJZlFEnGY/ioqq7EdssYhkmpnEeVdUzDg6IpDCeG0PRx1wBVVxEcME0PiiqjSR462jtpaKjHdguACOI40EgkUgiySCgcRlUNZEnGcaBQKOL3+3CxcOwy2UwGTdXHTcRVjUIuh6qqiIKI4x5aAJ4AZg7L3JnzqWyLHtl/y0BuR43//9scMqXOO4HFEkUBZ0KH3hZwd6imI+WOq08dtwpgItPHuJnqlID3+O29ia2b6hpOwszuH+Du7yhTgbs3AZ5xmuZoyngq5m5CmTf9KA7VMZW8HTBgIoA5yuduUrRPQRCOYtCOtUIxOS3E5DYO7x9rm2pQHBdIHganU1zbRFDHhOs4EeD21wK7twK848cO1z2Rs2XCd2+/HBWs5wTKChP+TzxTFARQDQI105HtNHte204oEEaUZQr5PLKikM+NM15XXHkFn/v855le10j14s3c+ecXWDcnSnfPELGwn3KpTEN9DK83AI5A/8AYhWIev0/H79FQdairr6RUsimWSgjYSJJDvlDA6zWoqvATiYTp6x1BkRREUcDQJZLpNPFIkNraKiRRpLNzEJ9HZ1ZbLR5DQ5VFDEPD0FUCARNdNTlwoJdZrU24ro3pNZBlaXzV9cAwfQMjuK7Nae/6GF5PkEf+9Geap7fwiY9/kqeeeYrT153J/ff9jgvfsZnf3nU34XgATTdpqIA1Z2zEE46TGB5h2ar1hIIaqdQYiiLy+MO/574//JllK1azfccOFixYgKapWLZFb08PICMIAj6/D93QKZcLDAwdRFE1vD4T13WxyiUO7O9g+vR6xkaTVNZVsmTRIkRJ4YYbvsr8+a20tbbQd3CQ3bv388f77ue2W2/H4/Pz3AtbOO/ssxgZOcg3bryR01avQlZEzjxzA45goSgKxbKFJMhEon4isQiuK+MxVFRTwvSFWb5iMctXLGVgaIwf//jniEKJxqZGzjjrLBorS6TzI/zmN/ex8rTFzGidh+4xWblqGaPDPWzfvpcnn3wayy5y1VVXc83V/8SXv3wDg4PD3HzzrQyPJHl95y5UVebSyy/kksvewxnrVnHDl/+d5mnNyJKMIDt4vT5KVgZFUhgZGmBw4CAdB96gtqaRbDZPOp3lQ+//KJe8cxO6JpEYS+AicN8Df6a1bQ4Br4HH7+W555/Ho2n0dHegefykMylCoTCSC65V5sCunVRUV5EYHUaSVVzXQtdVSqUC0WgYUJkzdwaSLBCNRCgXUiiKiCgriIKEphgkk0NUtsynaf5yFH8EUZJ4+v67OdhxgJVr1lAzay6Nc+cSaqinrCoIiLiCjCQ4R94lk98X/xcFzXbsQ/P+eB2KBF173yBSEUXRDFpbWymXSiiKis/nI5EYQjVEVM2PbnrQDBNJVcASyOQyICqEgiG8Xj+pZBpDNzFMmUIpRSadQZIUXNdG1QxuvPG7GJLMT//7f1i8cDa1DVUM9I0QCkdBKKEoAoFAENsW0HWNro5+hgZGSaeGyaRKBEIBXNdG171UxOPc/dvfcu2115AaHWbnzjfw+v001Fax9cUXWb9uJWOJflSlkh/94A7mzlqApgq4iokjQH/HQarq6vB6fQCUc1l8Hi/Lli1BUV10w0+5UCafK6BJKoVCgngsTCFrI8llCpbIjldew9QddDOAWy5SzA0jyTq2a2OL4xYHEuMBWBwUDCVMItlFmSGy6SS6IZEvJhgZ62Z4sAevWcR2yuhyiLYZjQSDBlU1NSiKhCyZ4zn3AjEkCYqFImedtRFZh0IhRTxSAzZksin8gRi333Uv+/bspb2jg1/efidnbFhDPjfCFZddw/DQEKqo8eP//jGGN0BLayu73niV+37/KIYp8+c/PcqWF7ewZvVq5s2dhySKXLR5Mzf++9c5Z/O5NE6rZs1pa2moqEBwy9gOSLLJow89zMjgEKOjo1j5Eg8/dD81NdXEIhUM9Q/h88o0tzXhuBI/+uEPWbRoIYqqYga8uLJGOV9ibtM06hZV8fzuF/n13XdhOjqVFVXIooQoguu4vPTSVn700E+47rrrSCVz/NMHrmR4X4pwJEwylURApKvrAEG/H8sCF4e21lmkUik0VaNYLNDT3YNlgz/kRRBd8tkiz73wJLgywWAQQYI3duwiFIpimj4kQaF/oIc3du5EUTVMv0I8HuOVV7ZTFa9HlF1KpTKqotHT00VbaxuO7fDwgw8BAsGQH1VVxt21XJmR0TQVsRpkVSVfyCOLMrLgksukMQ0DRziURffN2A6AT/37dVxwweYj7+/jveXfzhRVx9d1mNCfcREnzWHOMfpyLDZw/PMkXfk44G6qOiYXOwyahUM74/PhRP12MnCbVPcU7b2pqZNkSP8B7v6OMhW4OywTI0gelsm54o43wN4EkN4C3E2luLuT9o/VzlH1HQOETsXuHf5+8jbx/MnfnYi8ldnkFF8ek5F70z2eAJQnXtNx6z8JEWHSDT9GfYfMCjgycRza/oYxjqbiBo81sU4sIxyF8ATG3ZXHDS00f4Cgz+DF5x6npn4GmtdHIZfH1Ly8uGUrt99+B41NjSxbtJw77/ols+cv5cu/eIJPnL+AYqGI5bgMjybp7BzGNBWap1ciIpPL54lGAoyOjTDQP0Q8FiESDRIJBRFEh33tQzQ11lIql3j19Q4cR8Dn1SmW8pimRjQSwDS9PPHUq1RWBPH7NJ58cSez2+oJBPxs39FOQ1McWZRw3DKDg2OMjuaoqQ0jqxKl0jijoMoCz2/Zz8plLQTDAfLh+ei6SrnoctdddyPLGrruoZhJsGfXq8ye2UpraxuhygoUj4os5VA9cSQ9wLzZbQT9KpIiYeg6mq5RW+lj+owFXHjRu1AUHVNTMUwDSZYwdRWnXOSyK67mondehmuVsO0SqqoTjsWQZHk8fLYkEQyYOEj4vEHSmRSKqtPd3cec2XOYPqOeXDaP3x8gOZrm9NM3kEinuOyyyxgZGcHr83DO2WeQz5fxBfx0H+xG17xkcjlkVUI3Pfz6V7fS2taMUxZ47pmtvPrq68ycOQebMpKqonlNfH4/Z559NosWLsFxHYIBg1zOy43f+invetf7CPhDPPX0Vpqa6nEpEfCHuefue/nQB99PTWUlN998KxvP2MgTjz/B0mUrePa551izdj0XXHAxF5x/LrIiMmfmLHRdYvaceTTPaMTrU9F0L6OJHoKhKLlMnsp4DJ9HIx4LI0gmoUiQXM6ms+MgG05fR7FcJJPKEQ6GmDlzJo6TwxcOk0yOMm/2TIqZAlW1MTyGSjaZQFQ1ysUiydEevKZL0B/G61HJFQrkC0VUxUCRHUYGEyBKZDIpyqUyZqiKfDaJXcxRKkMwHAJERoa78UfiyK5NoW8vO5//M7aT4/TN78L1hJCQsC0L2QUF95CJ7tFBAqYcr8dTYo4jiizhTngNOI7FzpeexAh4MX1RLCtPsZDDYxhYloNheFAUA8ctk8mkUHWdTKaEY+WRVBWvrtHd1YsoCQSCIbK5IqLgULZsDM2D3x9EknTKdpmVKxdTW1vF4sWLGB0bRvM4eHwBMtkcqiIgigqlvIuuG9i2y+OPP8KyRcv5/n98jwWLliHLBrlcmpe2vsQHP/B+PvaRj/Cl67/IhRdfjNfn49FHnmLmrGlse/l5zjhjLR0HOgkEAjzx9DNMb2nGbwawnTzf+NrXGRsp8b4PfIT3ve99yIrMSNcLpEaG+dfrvsCmC9+JLIkM9iV4x9nnc801V2D4DEr5At/95rc5bd16ZMXEKZaor48juhqZsRSWXcC2bQyfF8sRUWT90JgVsdwColTCcQWsnJ9YuJJiAVxHIRSIEApUIAoyAgGGEyNEK4Popkq+6CCpQQolB4/Hw2BHO7pXxtCimN4ikuDBlRQEV+JrX/sWa9etw7FK+D0Gjz76Ih/40HvZfMH5ZJMJampr6e8dxHFyRKIRlp+ylC9e/wXqq1v400O/I5u3+fAnPkApm+fqq9/PQP8o1Q1VWGULAZeqmiA+XzWuK3D3PffQ2duFi8OBAx3EK2r55Mc/zr9+9jP88Ic/5l2XX8qSZQvxeA1+d8/vWLx4OdFohJdf3kFVTQOzZ83hJz/+MUuXLkDTdKy8w12330o+P0pNYw0L5szBo5msv+h0fvPIXTQvaOAr//UFoo1BrvrgO/FqBkuWzuPRR59kzbq1JDqziLJIsVSiUCgSi4bGn+twAlUbD5CCO65wa5rG0FA/tdW1HOg4QDAQRhRkXtuxg7lzFmDoBiW7QGNTM2W7RMkqouoKrmXR0NjCG6/vJBKoQEBAkh0CQT+JscR4EDBBIRqMks6N8dTTj7H2tDMIhkOIkoNtFXFdF1WVMbw6NjaCKPP8c0/T2NCMI7rY5TKFXA7dMDmM7qYa4S/u2cL5558HnJga8bcAd8fS3Vz+4scmTCg72RXoLVpiIrt2dNtH61Ens5B9WJwJ5wkc3yLu+JZXE+s85Ip0+LpP4p7/A9z9HeV44O6wTHygh3/4E33vjjXAjmLFjrcy8hb7x/ruyLFjrI5MPDaxPxOPHa77/4JHjuUDN9k/8fD+8eRYvnhT9Xti+YmfJ7d70teDcNR2zFqO8Vz/1vFrJ69BvSWwm7gz4ehfbOdFVM2ksWkaHXt2E4rG0T0+vvHVG9l03iZmzppJbW0dnkCEkeFeNqw+jZmNM/jmr59hfp1CR3sfC+bNwLEdBgaTyJJAIOAlGBg3+ZIlieHhUYqFLOGghy3bupg+vYpYJMh9D2+huiLE7n39TGuoJBT2k87k2Lmrh7qaKPv39+G4Dj6fioPD4gXNpJJZLMuirbkOUZVQZQXHHjc39flMNM2gs72Xx555nY6uXmbNrCMxkkWWRBBspJo1uK5MMpFk/fr1/OK221izZh2Dif1cceXV6KafdLbII488zsjoGPUNLXzuM19k/fqN6B4fpWKOwd5eQsEwHfvaKRaLhOLVXHjhBQz197L7wB7mzZ6JIggomh9RELjm2ivwB7xAkVwhi98XpphLI7gusihRLBQRZBFXFHAdC4/Xx4c/8lFO37CeeGUFriPT0zOAPxjg5z+7iX0HDqAbOlXVlSxbtIQnnniCe+97gLVr1/HL239FMBCitqaGm2++hWXLFqPpOtVVIUyPnw++7+OcunI1za0tPPn0w8xqbaNsFxBsAUU2+PBHPsHGszawbcs25s5pZiyX4cwzT6eqKk4qMca99/2RYMBPfUM9o+k8G885E1F0qWmoZenypTS3zmD6jBYKpTynnLqYZcsXYXpN8uU8htckVhEmFq3illtvY3CoH1GGyuoaDM2HKLiYukZvbz/BeA2FkoBu6PT2dVNTM41169fx3vd9gNPWrOFHP/4h1dX1XPrOS5k7dxZVtQ30tB9gyzOPsnDxHMxQDAULRdUoFFJIikkwVgW6Qce+Djp7umie0YbH48PnCTEw0I7g6ugeGV/ASzAcQBJlDnbuJRKL4vVHGBtJ4vd7OXhgLzWVHh64+5f0DgyzfO1Gps9cgqtouI51eBkZVzgcuvzEckkdsarg6KBdbz0vHlocO7QnCS4DHftom7ecYslG0wWSiWEM3UOpWMAWBDLZHIaqUyjmKJaKeL0BRNlBM/wM9vVTWVkJokOhWMYw/YyMDhEOxshkC3i8Gvm8xWvbd/Hyy6/Q2taGKMns2tWBR6lkz/5+KipqGegeIhTw8Npru5EVAVwvhlkkFPCweu1SfvXL3/C5z93AZe++nIVL5nLuOWcTi4aZO3sWhVIZUSzT0jqdzGCZ1pZZGP4IoVg9I6N7WDhvDnfc/mNOPXUdruNyyvKlrF6znPPecQ5ev4ksilhOFlk2ufSSy0nls1hFl0suuJA7fvkTAvFqLFFB1XSWLl7M6OAwLzz/LHXNjVi2Q9mCa9/7Qa56z3tRTd94lFzXQpQkJElCkCTKlg1FCdtOY+o+Xt6+FUUWKJbyiIJLX98AvkCIrs5+PvvJT3P2xg2MjQ7iWBbFYhlFdtFUkWAkgitLJIbHGOh/nVCwDkkx0FSB5Svm4fUbICq0tM1k+ZIlaB6FnW/sZWxslJtuuo0F8+ewd8+rOGiU7BIXbT6LmsZGNp61ip72EZYsW4qEwzdu/A5z5s3G41cxDQ/d3d0UrDF++tNb+d1v/8A117yH6bNmEvT7qYpUcPnlV/KrX92CIArUVk8jXlNBsVyiXC5jGD5i8RjZrEUoVMGTjz3I3DnzCHnDRENBSuVRfvbfP+fyK69i4YrFiKLEtq3buelnt3PepnMZ6DnI7j17uf5LX2br9pepratj1pyFtO/bzelnnMF3vvstNl+7kcE9o3g9HkxDI5lIo2k6fp8PVVXp7esmHIrT09dFKjlGU2PTuMltRSWSrCBK0NQ0DUVWkSSJZDpBMVdGlVVkSaRYKODaAh1dHbTMaGbbji3UVNXgugKaYeDz+lBlhVdf3UZFPEQ6m0IUTFQN9u7bRywWQ9cNcCWy2Syi6yKIEqnUGNPqpuPYZZAELMseZxdLRVRNP5KbbfJr+cEXHuSySy8GJuoRb3rjj88VbwOwO5mFpKl0jmNaqh2zjvFAMhMR2F9ItaPrOAKqAPGQf9zUyuoEQHjk46E4D8LEUpPmzhMEd+6E/p1MGgT4B7j7u8qJgDuXo1m8yascx1Su/4+mNvDmYf1W8ia2cAqWa2L/HMc5mm4/AWA0ucyxyk4GlSd7LybxYVMem9jWVNT/5O1EAN/JJjE/ETmpSfQtwO3bKUcAoCgiKxq5sVH2791NXWMTe/bspmzbxOMRvv+jH3Du5gtYOHcW3/j3r+HzRVl1yils67T54QMvsygOHo9KQ30F/f0JwmE/Bzr62PFaJ7PnTCfs9zA0OIgquVTXVJFMp0mnczTWxlBkhVy2QCjk4cWt+zjYM4amKtTXjTNbsiSQSGWY1lSHKIio2nhwjYM93RzsTeHzqAwMJvH7PNz70DYCXo2unmFOXzuf+poQrusQDgWJxsKoqsCT+21+9IOfsXfPXpYsXkRdQz1PP/MkV179LnIFi6rqRtq7Bpg/fwGzZ7UyMDjEBee/ky998Su88MILrD19PQNdXciSRDAYIJPK8OK27dQ31LF40XyWLl9K+7596LLKhz/6KS64+CJMU6Gro52R0REqK+LkciWsYhZZkunY30EhnyMUiaIYkEkOoeteTl15CpFYhHwuRyZd4LHHn6CtrY1gIMjKlSvQVJU7fnE7jzzyBFu3buXKK6/ki1/8PJlMmuaWZqprKli8eCFl20GUQJIkJFlj0+YLKJYsKqJx6uoqsco2hcwoPl+Qjo4+RkdT1FTHaGpoYHiol6a2ZgL+ANlkioGePl7d+QqrVp4KjsTTL2yjpbUBWRG5+ee34Q/68XrHw8LfdfevWXXqcmynjAD0DAwQjYVBELAKFuvWr8I0Daqra0lnRvF4ghw82AXlAqpuoOomoqKxf99+dN3EY3ooFMf9xaZNa2Ld+rWYHh9XX/teqmqqcMolwl4/Po+BbMokx1Lks2k8Pj+D/T3EKuoYTSTxhUJUVFRSFa8Gt4wkSZSKNt6Ajt9fCWKZQiFLLp8klckSjYQp5PN4AiFUScZKj9LduZsn/nA7zS2trNx4EYLux7EFXNd+S3Oq48kRSwn+Ml8eLxAVMOW85jouA309+MNxdN0kn08Ri0QZHBgiFApjuS6qppNOJhEkUFQdVTdIpTMM9Q1SUV2HIomkMyn8wXG20ufTcWyQJQlLEPnlbb+gbUYrnfs6aZlZj2uBInn4zrdvZN2GNXz6sx9j8cLpuKh4vBrxeAWC4BIJiAz0DROoCBP0xlm//hw8Pj+p1CA+vxfBdbAtC830ks3lUVQJXbYJx0KkrSxoFiEjjiKarDt1NTt27UVVZURZIpPLEIr4UWQRSRYoij4cZHp7uqmuq2Wge5B3XnQhobCOoPsQZBHHLlMulTBVkb3t+5ne2oap6eRyaWbPmoXPG0DSPODalAs5JElnZLgPXdVxSgq/ufN2mqc3UMyVqWmsxXHB5/NjlV1kSUKQBCLhCrrb21mzZiWiKOE1/Zh+k8TIAK6VpYCG4CiYXgd/IMa+/R2EAx4ymRyqT2Ysk8HwBCmWHTyqwNNPPs/gwACz583m3E0bicXDtMyYSVV1FbpXorE2hjcS4sC+Hfz+t4/x81tuppxPsnLVGmbOakPVZLKZDNFIiMaGepKpLO+56ipC4QCSZnDP//6GttYZzFu4kNqGOM888xI7drzOrt27OG31qXh9PvbuaadccvjQBz7ML+/4NatXLuE73/lPdu3axazZLXhNhZq6JjTNQ7FkYVtFJFmlvmEG3/72jXzqM9dx771/YMXKFdz4tRupqqph377d9Pb285Of/IRvf/MG+gf7CNaZbHl4O6qmoio65ZJFrpDFY3gYGBqP0Nw/2MXMtjmIksLrb7xGNBIbT7dTKiJJoCo6hWIWQ9E42NNNJBqmXC4iChL5fAFFVgiEAjQ0NvLC888ybdoMREXCKpYRRQGPaSKIefzeGPFoJYoClZX1lMtlXNulUCzR199DMBjmQGc74YAfXdMQXAFXEFA1nZGxUfxeH+VSAUXXp5wl5IjAsmWLx8fwm97SU7+7Ydx656+JlnkijN3k8sfSo05EVzm8nCwIAsIhE6m/nHJsvUs8os6OB3c5JqEyqa6J5zmT00WcKLibgCpPJlUY/CPP3d9VpspzdzyZ/HAn55V72+UEgNHEC3hTdKKHlakAACAASURBVMwJ4G6y+eZUeeNOJCfeiebNm1zuZO/T5Cs+ntnqicqJ5MmTJrVsn2QrJ5Jn73gy1bP+W4zzoy01x1fTJMvikft+RyReyfS2eVi2w9DgAFtfeomls1aTK4zwheu/wAUXXMbevbvp3L+XoWSW3mQ3H18bY93iGVhlQLDJZIvYlkPZdhDcEgGvQCo5SnPbXFxJRJUUbNtFQOTJZ18nmUtz/tmreGNnJ5lcgf6RMc7ZsJzE2BiaJuIx/fT3DZPMpJk3s47R0UG8oTpKxRQHDozQ0zfCvDl1RCLB8ch1oylCoRDJsQE8RpCxdIrKmjgfv/l1fnrTLxnoGcVxbG697RbOPedMWltm8sf77mfWrNl86Wtf58c/+QFjQ13UzGimc3c7pqKAIhOtq6UwNoIsy5RLJcIek+/fdDtXX30VmuTw4AOP0tndybXvvZq9O/fR2NLGhZvO5r5770bzmGRyaUxzPGpiNpNFEFR0TUMUHURVRrAsCqUypUKBnp5ePB4vzz73ApvOOw/bdhAljfWr1/Knhx9meHCIaGUFjmuxd88uXFz8Ph+hUBhdl3j++ZdYtmIl0aoQ6XQGUZB47LHnuOlnN5EYSfLrX9+EKEl4JYmPfOJf+NH//IyS7ZBLJtEVjUBAwrEVhoYTCJLCT3/2P1x9+WVUVsUBEDUPgljkrjt+xfmbL8Kyi9z4zW9z7jmbaG6biSQ5PPP008ydu4hYNEShmGdkZJidr+1lwxmnUi5biIKKP6Jil2RESaCvv5eqeIxyuUDHgXamtcxGFCUG+nvZvn0/ixbOR1El7HKeYmacBf3Yv3yY7/zgezz/+BYWLV5G9fRqMolB+noOEqqoRjcMfJ4gg309xCoCCIKJVbYoFYbw+fzYlkYiN4DHqEWwM3R1H6C+oQoXA9ERyecLlEULoVSgffuLjCR6WH3mZrzROlzZh10ujvtjMJ6DzZky+9JfJyeUd3XSnCEKAq+9tJW2WTNJpjN4vTKZVBJsAVXREBQVSdEZ6uvB9OvohgdZ8ZBNDOMUC6i+KBI2uWKWYCRGsSSgKRaJRBqPaZLKqxhKgde2bWPR/EUks8Pk0gU6OnqY2drGaC5HdU0FmlBEUv1YTh7XVsgURiiOdRGNzKGoq1xy9iZGE3keevw+NHXcv/rZJ56hob6e+//0OMMDaT593b/gDYjksg5f/8bX+OSn/hm3ZHHjN7/PV7/2b1hOGUEUGB4eIB6Lkk5nkRUF1wVN08mODVPIpwnEarnl5tuwSvCB915JOpfEGw5QyqXJj6UwQxEyqTz3/eER3nPNpUiSTTZTRMDA4/Xgig6OW0QRZLp79hGP15AcEamo8SGIDsWijSAUKZYtdN3Lti3baJnRgG4a9HSO8vrObZy6egUCEj5fGFsATbDo7dyNGqvkuQe3M6PNT239UhQjR39XJ2VLpLqhllQyRSwW5+DBg/Qe2Ec40kRPXzet89qorIzw8tYthH2VNM2IUSgXsdJ51ECM3oOv8cB9L9Mwo44tTz/L6zv3ceZZGzlz4+lUVsRJJkZ57ZUd1DVO40B7Ny0tTURranjp+WdonVbHG3sPsGDxAgKBKJZVIJfPUiplyeUyeM0Avb2DNDZNp7O9i6q6KPlsmUg0hqy4uLZFf08/V191Lbf/4nZ0j4ykGTh48ColtmzfSXJkiFXLl7Bjx05u/8XtfONbX8QXbmTfrt34vCKWKFNbXcOVl7+bjC2w0D+H9evOxuPRyeRSqJpCOpmnpraCF17YQv/g4HiAGI+GcMiXb3BwEFXVUBQBwRIw/H7GUiMYhoGueiiVCrz2ynbqmqYhCxKKIqBrOq6oIKsi7fv3Ux2vRJBL2JaBIIOh6BRti1Qyga6rqKpOqVzC4/GQSKXwe/w4jnUoL56LKwpIioxdLJBODOMNRTE8viNg5DDo+dEff8h///S/xsf2kdE8tbYzcVZwXBdJEE8gxubR8teAu2OVPREdR5jYa8E9OhSFO1nv+otIwl+IhMN1TNWOMwncTTzvEHd3VPtHyTHyFv+lHycP7v6R5+7vKOVy+ctwErTypHLHY+5s235TmaOYtcM/zrcyDD4Bm+aJvoBH/QCnYLKOx7idiH/dERbzkAnkREZzqj5M9vU71j07fA1virI5RR9O6GkdWq2ZagKb2O83rXpP2k5UTjaa6PFMTv9atvNkRDwE6I66maJLW1sLpury+q4OGhobCUUi1NbXEQl4+M63v0s+V0SSRGrrKsjk04wOdzO7uZWa2Rv4zq+e5q5n32BJrYe+gQSmrmJbFpmshSRJaLqConjY1z6C36vS1TNMLB5i554uGqvjhIJe2rv6WLywGb/HwDQV/vTEK0xrrKJYGF9FbW8fQpFc9hwYJjGWRtd0Og4O0tpcyzNb9tIyLUq5ZLF39xCZTJq6+jilcgnDMBgdyvPM7gFWrT6DX991N/UNDfzxwYeQDZOnHv09Z28+l2AkTm00xPSmWnwVNSiSwG0//hlLly2hVMojCTbZsSx2zsVWFbxBLwsXzEUQoGy51NfU0VTbhIxLVUMtklXkkndfzv4dfyZW0UKukKWQHSWbTPFvX/omq1euQNPylEoihVIJj+4lk04hKDLBaATD76e1bTaSomBbAuW8xfz5C/n89deTSKWIREziNVEq65vwe310dfVgmB5UxUNFZYxXXnmB+poGFEckXy4Srwiy6cx1iLLBSF838xbNQfeN+9qJ2Az2d/CNb32PzedtJDeWx1I1vL4QP/ivH/LRD7+fnr5OOvcfRHRVPvaZT7LxzLN45ZVtpMdGSKQLXHT5u6ipjZFJjuLaEprs4frrP8+a9Ws5//x3smjxCpavWI6qaqiqQrFcoFgqoRnjvoylsQRjY2lCFXX4ItXjJmAeEwSFWNSPqkropsa+3bvY39FJ44xZnLn+HPbseY2ly07hle0vEwl7yRdLVFTVkBgZwe+PIIlpdK9JztJRZJfBwX58Hi/YZUrYiLhkkwcpIlBZU4/jqNiygm7IpNJj9Hftpn/vyyxbcwYzlq5D9VaAqHD4pT+e+uXkFay3kslzouM4R8Dc4TnkSOAscTw1Co7F6y/eT930NgS3xMBAP8FQCEESyaSG0QyZbKaAKGSQXR+Sq5FM9IIoIXsCaGIZVzGQFI1yuYAk2xQzwyimjACkU0MMdw/R3tFNVWM9Xm+IX//qfg4ceJ1Va1Zh+MM88cRTtDU3s6/3IJqgIJLj5Re38ZnPfBNB9xIMa1x1+aW8/0PvQ1EFJEVjaHiQuXNaMQyFGW0LOWVVK5nEMHf84iHSyVFWrlhOPFqNamqsO33luJmXLPPHe/9ILpkhO5alrjaOJBmsXLmB915xCao3yJnnXsQ7N53H+o0baKqvYfOmC7n2/VeTGksSiVZg+oOMDieIxyI0NtVSsFI8/fR22mbOwpVSfOjaD3LOO87Ctg1wXEYSvZieCjwBF8tysW2LQm6MZGqI0YFBypky//r/vsAFl11AtpijoqoOwc3h80Uw/X7yVgpZ1rERKYsGIX+UGTPinHX2O1m8bB1V1RFiFdUEQiEGBzrY/+ogW55/lBmz6tGNAI4A+Vyeb//bfzKjdTb72jvQJZfK2ka++uWv0jx7Hr3dgwwPZrj0stN4/pFtrN6wkUVLF7B42RwCAZM7fnkXFZU13PrL21i/bg0VFTFqG2L0dHTiMQz++NBDNNTVY5pB7rvvDwRDIT70/o9z5oazicRi7HzjNaa3Tmfj+gt4zxX/xAtbX+amW29izuxpyMUxFF8QwzC46qpruf6LN3DKKWswDA8ej8uuV1+hflodrW2zGeg/QEvbLNafcRb+UBBHdtD1EJdcfDXlfJYZzTPY9I53cMXll7Fo/RJ+d+fvmNk2czw3nQWqpuC4Nge7uli/9nS2v7KV2up6EmNJ8rk8W55/nkAwTCxWRTaXxhUE/D7f+JhxQNU0YrEQfn+AVCJN30AfkWgMSZLJppMEwxFkRQZRRzU0wKFYKiO4DrqujeexTCbx6l52736DxoZGRFHALpfpH+gn4PNSKhTAEcgVCtiWg9/nI5EYQTM8CBMYt/d9+sojnydbLgn8BaRMDtj4N7XumWglgIDtHj/N1/EYPOGoi5mQBgEBm2PrXeKhMsLEcoLwpm2yTdfh+zRu6j5Zd5/U4KGUChNNRF3XPVTv+Hcnawr7D7PMv6NY5XGzzBMdHFMFHpnq5TtZOZ8Mmo744R02jTwWAJwgx2KyjhdQZWJdh/POvV0s0GHToWMFYjmRVZ7J6SOmuoYTBXdTRvg8Rl+mCjRzPPlr/Pim+k1NNhud6vj/H2z8kRYmdcFCwkbEDERIdHay5flnaWlpoljM0Tc8ROOMZs7ZtIlwJMztt9/BJz99HRdcchmjvT1sOncTqixz0TsuYeegyD1PbeWUaQHicR+RqJ9XXu8mFPCDKDCtqYpSqUS55DIwkGDJwjZeee0AoyNplixsA1eit28Yj6kxf840NE3lxW27aayLMX16Da/v6iKbKzOtsZKR0RSGrlJRGSWVTtLRNcyM5hrS6Tx9I0M0NtZSLBRJpzJIkkSFnOW/H9jBa9ufYd261cyZvZD62mYiARN/KIQoy9TWVJPOpVB1mcG+XqLxKB6fnxu+8g3Wrt1IOjXEQ39+jGXLFyHYBXp7exno7SMei7Bn96v8/g8P0tDUgmaIJAYHMPw+ZCdFMN6CI4xH2kuMZLj3vvt5x/mbyefzqJoP3TRxShaDQ6NIoohtWSiSyGMPPMOzT2/lY//vo/R199LS0ko+X6BYyHPaaesIBkNIkkCxUOaGf7uBSy65hK9/4xs8/vjjXP6ud1MuFfjMZz7Hg/c/wKZzz0GSJWrrqtm+ey+LliyiXCiQSKQwTY2+/h42nX0Rn73uetafvpqh4RE8uocF8+ZiGAo7X32ZYLQSbzTGBZvPppDLMpZMceZZG6msjVCyCry+fQeRSJTdu/YRCIQYHhli3drTuOrKq6iqqETVZHa+/ga/+d/fEo1UUBGM0tN5AOwcqWQZnz+I47iU8nna9x+gt7uXcCgMlovjwNhwAk1RUFSDJ556lu7ODrrbO9EUiaaGesL+IJ6gF1EcD10uY5NNjmHqJqIEuBJWqYwkSziyAYqBqigM9PYSilaiqQaCICFYLiMjGQJika5tj7HinMsoemtwEZBOYqHvbRmzE+ZYYcJ7Y6oAWHa5yKtbnqRt3jKsIvh8QWRJR5F1vN4wg8OjBEMVJJIjZHM5ItEYwqFIkIookM5mQVbQNBVREigUi3gVP7arIUmQy1pUV0ZpntHMu664hnM2nsGsma2sOnUZiaEEW599lnw2Q3VdI6onQmI0R6SigtrqOGvWnA6iznPPvMyyVaspWmN07O0lHhfJpXI4lsbAwAh33nkPGzasQ5AVmme10DJ7GpU1VWRyBVxnPIBGJlOkkEnhuBZN05qobazHQWR4aICVK5dSUe9Dcr1cfP670X0F0tkx/N4gC+bNJV5Vi6oZqIqOXXYRRMjl8ji2jTcQQXRV9u7Zi98f4rIrLkPQZDr39SPYKTymjOYodB7YgqkIlK0Cps+LqVWg6V7CIR8bzjwVQ/NRLJTweFXi0TiO61Kyyxi6B7tcxrFtsC0UVUaVJdauXUdTcyO5dIKnnnqC2poqPFqEbdueZNM7ziaZKtBQ10AkEkJwbS679FIct8TsWa0M9vWx/bVdXHT+xaiGSUVMpr52GgcPdvNfP7idNWtOoaWlhb27diOINsuWLyeby7Jhw2osJ0NnRzuaZuILBAjHolRXVXPd5z6Lbohs2rwZQ/OxaPECbrn156xdcxq1tXV07N3Htde+h8ToEA///jd88UvXE62uQvdG2L1rL7FYhNGhURYunE9tUxywKBZLZLMW9fX1CLJNsKIeUVF5actL3P7z21m0ZBnpRJJzzl7HqlUrUBUT0+vnYHcn/oiX7/7sPziY7mZ5yxIkUeSNN3ZSXV1HPB6hp6eTvr4empqmU8xn0BWZ1hkz8AVCvPDCU7i4hMMhbMdGliUsq4wgK+OLM+Uy+VIeVVHx+nyMjg6RyWYJBQLj0Wglmb7ebvyeAMmxMWRZ5L4Hfk9TYzPBYBBZlqmsiOMKAmWnjHwo8jOCgyBIiIJIb28v4Vh8fCGwlCeXz+AzPYybJ0oUjTzBoP/Yc8D46H8TH3C8oGpvt7yV39mJHnMP/Tmimx2nzYl8mfuXXrxlXyeC4MntvblzE49N6Odb6GzHk3+Au7+jnCy4mywTmZ+TYV2mYpOOe/4JBG6ZKmDJZBDzdoOHE4mKOZXf21TXeiwfs4nDTQAURTkCaI9a2Zp87nHam9jHkzFHOJbvy1THJ+4fFlmScCY936mu+/C+dOj39ddOpsc85xjnCoej+rkQrq5gemsLzzzxNE898jhz5s1lelMjVVUVmLJE0KOx5aWtNE1vIlZdiaCIVNZUgarQ39/NjLbZ7EiY/OCP27l8TQP1dRFqayvw+gzy+SyqqoLrEo34eW3nAebPrTvkszeMJEkE/F7aOwdo7+ynf2CYOTPr0FSFkdFRCkWXBXOnUS6XGRgaw7GhpipCTaWf6uogqqZhGD4CPg2Px0BWVF7cdgBZcZk3dwY33PYYH//ge6mpqiUWi/GHP/yBh++/nzPOOYtgOEByNEMoFsdyLD7xoc9w1fveh6bpLJw3l67OA8yfP4slp55CdizJwa791NXWEgqGSCdTaJLEylWngeqSTo8RCwXwhQL0db2B5q3n7M3v4IrL30NldTWrVq3ijv+9k8WLl/Oz/7mZRUuWkhpNIogqHsOkt6Md0bH5+c/+C9vWaGieRnVlNdtfeZlrrr6agaEhbvr5LzjttHWkxwYIhsP4fH7q6utYvWol82bP4/HHnkQQylz9T++FooWpaXzuS1/ATiVYsfJ06ioryeQyfOyjH2fdujV4fSaRsMTpZ5yDrEmEImHsssP1X/wCrS1N1E2fTXV1DKwcQZ+HoaFRGqc3YzkCyXSScDhEzB9HVhV6egf4/vd/yLnnnoMqSvzqjjvpONDB3EVziYSj/P7397N61Vq+8pUvUVlZTzBYwdaXtxOLVfDg/Q/Q1NDAl770ZWbPnI0A+Ew/H/rgh7j4wospFooUSxbPvbCFKy6/mFi8mtHkMIFwAEfQGR0bpFwuUyoV0TwBdM3HSDKNZBpIyDiWg65pWLZDKjlGKT1KyJSRjBCypCAIEsMjoxzc/jgvPHU/6675JKIWxBScI/4ify95qzkrl8sw1teO6o1ieHRy2Sy5XJbR0RGy2TzekImiqwQDIYLhIKlMGsP0IwkumgyialAqW5iGRqlcJDk2RirRS7iiDlkUKBRAFApYlsvTz7zMa69uZf3600gmEqhenZrqKIKmoUYqcZIJolE/CAUymTKGR6OqMsJ/fOebnLHmVPJpl9ZZzfS37+TGr/8ns2bP4/6H7uHqy9+LpKo4gkMkYCK4JcqFEoqocPm7r2Hjxo1c854P8J7LLyIWj2J4dQRFpFCw0XUBwS3gD9Xzm7t+wbSGMKa/Ep83QvueHubMa0JSZUTRHY8WqsnIgojH78V1QZZkYpVh6htqGRgYANtheLATt5ChoqEeTTcQHQVNTWNGZ6JrXgrZPJrpw3EssvkMtl1CkQTu+c39zF+wgEwmT6GUoWyX0Y0A+dQYHl3F4zEZHh0iNZrCNDRkA3RRoq6uBp/HRJA0vP4k8UgDAjFS6RFUVcSmxGgqQdW0OjLlPKFgmH/5xGdpqGmksqYGJ59k984evv6tf+O73/s+t918Ex3t7Sycv5BgIIQgjftB+n1+UokCn/r0J3nPVf/Ettd2UFlZhTfgp7q2hsULF+O6FpIyvnBw1tln4fX6GUukqAyHyJeSyKrMvfc+zEWXvpNsLosMmN4gAb8Hj2EgyV56DnYiSGWCoSAdXQepr6lmJJHAb3oolrKohsD6s84hNZrhN7++k7Vrl2KVi1xzzQc579wLEVQbQ3I4/5zNnHvWmeSdYb7w/a+x+bTzUXQVt2wRCATp7u2hvr4B27bxeDzYroUgy4QCQUKRGPv27CYYCLF37y7CwSiuU8ZFoFyy8PoC6JrBrl27qKqoxLIcHLuMrIwHYNE1HRcHSbERRYmG6W2YusnI8BCOYyNKAi4iWDbZZI5UIoEnEETTDYaGBgkHfXi9XmRVRVY0DEkmMZrAME1ESaJ1edNxx/W4XjDFfABv6XN3MjEt36oPJ3J8Kn3meOWPjv0gMHGKm3hlgnhYZzs5cDe5vTcfeDO4E4S/BKkSTyK/3WH5B7j7O8phcDdRTkZZPryCKknSm9IkSBPYnqmCkEzJ5nE0GzbVQDlSnqNZu6nKTAZPE7/7W8vxwOixAtRMZN+OsPeH6zv0v1QuT2n7PNmEYWI/DpsyvckE8wTvxWTGdqo+H08O3/+h4RF8Xu9blj3SLic+mU5s53iT6XHrmnD3RFFCVBQaZjQzZ/ES3EKKl7e9wIF9u9i7dzuJ4QMUE+343VGisRDTW5rJIRKtb2DB7PnMW3oKi1acyiXnrsZsWEc5sJxPfPfXnLUgjKabCAh4fQaSIBGPB9F0D5Io4A0YvP5GB5lslnlz6ygUCzRPq8E0ddKp7PgqqeQwMpqifyCJpqpkc0V0Xcb0+FB0ifYD3YhCke6hQfxeE91Q0SSHisrxIC2v7BngiWf20jC9iXg8Sk11PaZmM232XNp39fH1f/8Uy05ZQzgcYv3pa8lkHPoO7mP7lueZ2zKLUskaZ26kIoFILdmhPNmsg+ILIxom3oCfXGIMoWSQdQpoHgNJiaNrIpvO3ghYJIaHME2N7p4+GqdN48EHHmblaSso5VL0dw0QDUR48I9/ZMcrWxkbTfP/sffecXaV1f7/e/d2epteUqal90poAZJA6KEKCBG99usVuZaLKCKIqKjoBUUQROkidukloQRCSUgIKWSSycxk+syZ09ve+/fHZDAJISQRv/7u6+Xn9TqvmX3Os5+99rP3fvZaz1rrs5adfDqP/O4Rpk+bgKrJ7GhrZWJzE2Mbx1JTW4OqeSm54DH9/O+Pvk9FWRjV48XweKmqKMPnD1A/vpayKj8NDfWogsDaV7Yz86gZ2LkSRx+/ENPnB0xsR2B4dyelQoEdW3cTjenI6JimyPrXN1JeHmbNmrXs2NZFe1s7yeE427a+Q/PYOn7/4IM8+czLpJJxNmxczxev+E+efPpxjlqwiEdXr+ZjKy/m4fsfpr+rhzdefpnTly3l2GXHMTTYT3VFBfUTG9FNjYDfpL+vi0tXXk40FCYYDbOjbScrzjkH0/KQSCR54snH+OTll7F9RysFcsxdOJ9dnd2UV5UT7+5FNzT8oUp6+zrQTR3d0JBcF9ctMjjUhSqDZnmxLA+OqCKaQbLZIpJukinZ6NlONm98lUlzjiFS2TjClyaK72ZvjM7BB5pbPgy8HxPxe7FvGzubRhJtotWNDPa34g+GUHU/gmjiC/jQNZN8LkfHju1kEmmCPj+KZDMcHyKdyaJrCopiIkkSu7Ztp76mBke2kESDkl3C8shomkImUWDxohP51g03suzkc9i6rY1weSU97R00NzWwYcNGXnrpORbOn4tdcrAxcG14Y+0aPnrROQQCPmSPjKhqqGKRKZMXEqqsY+LMyUhFF90qoYo+urt7UTQZwzS54oovc8H5HyE5mOPSS5cxnE3i948UDX/2idcZ31iHoehYukx/3KZ54jTa2rqoq65GFvLccMP1PPfUyxy7YDKD8SS+UJChgV5EVSdfhDtuu40FCxaD6FBwSniDYUxVxGNYhIM+BlJ9eK0ArTu3UFFTiSsYCFioFvRs3ogRDINm4JOzqKaH8Q1j+fmtP2fO1BYKpPF4qxno24bfW0ZJKODIIoYCV1xxFRdeeCmaIuOIRVLxYUqug+OkqChrZDg5TMnpRVRcDF8FmZLM9667lWVLliArIrLmpaN1G4tPOJ4HH3iQpjHN2DKsvPyzbF33FrlCmiVLl7Fp2zuMaxoHrsKPbv5fysujXPGFr3HrnXeQy9m89OQqpk1robe3i/ENLfg8XgTJBbFAKhln/br1JIaGyacKbN+xlVCZF91jsPjouTz95FNMmTaHrCDx1rrXKYvWsGr18/h9Jh7LTzhSQbHoUldZz+DQIMGgjihLCAIEPNXIchZFUulODTOhaQxDA51MnjqLUCyKVxfo3PomoViEl15/iw3rX+XT/7ESgi473+jAFwwhiDK6bhH0B+jp7UU1PMi6iShKe3QKl7Kqap5b/SxzZi/ExUEVHDLpBLgqb21cj8djsbtrB1VVtSA4bHp7A6bh54UXV9HY2EIhn0VTBWTZQz6XxtRH2C8Nw0CRNAb6+nEFgaHhQVRNxfRYuI6DYVp0de/GKZQQ3ZEabJKqYegGXd2diKJK+eTyPRWWhPekhxzsbX6ohtT/Cxz02CP0we+ekDBamlMYZSkfMeQEl3f/31/TG/nt7233Nr7cPZXWJWE0M+/vGuEoW+YoHGG/sE72/rh7xDxyrx3827j7l+LDMO7eN3drvzCa0e8O1tfe++793agBsX/M7/uFMr5fPx8kw4eJD/I0HqjNPsbo/v2N/hX357P8YIyO3Yd17kc6nl6PdUikLkcqyz9jUpclCVEUMH1+xjY00ThhIo0TpzL7qKM5+oSlNE2ZRbwnwdZN2+jfvRsyGeJD7Viqis80QY+SF8Bf4+eUc5dDZCFX/OgRNrYNMrlSQtN1tm3vIBoNIckjuUs11eWUxYKAQzQSRFV1RFHiT4++jmvbBP1ewmE/Xo9KtpAnEvTRsXuAYrFAPF4k6PWTTpfIpG2qqyMMDydJJDJEoxa2XULW/HRnZV599WWWLj2Bkl1i1oxZOJJMW2sH4bBBydUIBPysXr2KWCxCZU05U2bMRjY9rH31VQRZwxvyIQsqTz7+JM+sXoWxpzyBXcqTjMe5/GOXc+6F5+D3+3FLNrphkMnlCQSDDPUPLwiv2wAAIABJREFUgChSXlGBLMk0jB9HIBBARODaa75DXd1YqqvLSaUSiKrO21tbOevss1EkgQktLRx77LH88s47WXnJRTilPFs3b6K6PMRA3yDzFh7Nb+77NWPGjcHFpa6uAlGUSA4nGIwPUllZiWWFOeaYY4kPdOM6RSyPgmmZ7Nixg7ryEAMDw4Qrq5Akl0RygKaG6dx516+4/BOX4/MZpFIZvF4vW97ZzLy5M/B6vfR3dXPP3b9h/Lhmtm3bzhf/87944dkX6e8d5Lprv0Nf3yDnn38eqYF2amprKK+pwwqMMGhWlFXStbsH0xMgn8qydcs2fvPr+3jqiadYNGceu9p2EYkGkSUolooEgn5qa2r4+Mc/wWc/8xnCsQgCIqFgEMPQ6OnvQ5ElNEFD1Q1wReLxJKWSg2ZZFAolBofiqKqBqinoug64GJqOpEj0bniWlx59hNMv+TjemmYUUdyHOXnv+f2fZdyNhtIfLnp3t2HnkoTKq3FLOUBGlnR0U0dwXVRVwraLaIqOJEsoikw+V6BkOyiqSrFYpGi75HNZyqIRZFlE0XUKuRyqpjA8OIQgOBRyaXp7d3P04sUEfQFiYT/PPPM8b721nvnzZ1FWEWVCcyMXXnQpO3d2cP8vf0diMMWbb2/h9XWbaGppJhgOU8omkJUgpl9j9bOraKifxIsvPsI77+xCNeGnP7mTiS2N6IbKWxs3MK6qknENTUQqYhi6j0KhgCC6lJXFyDtFTI+H3oEuKmtqKBZz/ObuXzJ+fD1ef5TjFh/HpKlNxAcGyRUhEIjh0QwUQ6Knd5DayloEsYjtFNA0D7KoI2CTSCbJ5fKYHj+OLeH1+unt7sW2dUyvS3I4j1PKYfpCKKpCf1cHg6kCsmwwfvwEPKaHZCZNx64413zjq5yweAmGqSIA27fsolC0qaqKYXlU+gf6KaRLXPedHzJtxhRMK0A8mUG3vJieKOtfW8fG19fRNLYW05Do7+0mFokwdcoUtmzeyvHHHc9VV19Le1cXS5cch65LzJo7m+6ebhqbm9m5s5Wf/+xnnL78VH784x+xZOlJqLrI2DE1uDa0tr6DPxDkq1+9ilNPP41LL72cExefgu1q7GrvZuKk6dz8k1v4yEcvQlE0Nq1/m4amWfzizrtYfPxCdm7fyJQpzYiCSC6b5a9/+QMzZk3jvgfvZc78WezcsYmKyiiyrGC7Ao5b5CPnf5yWiWPRTI3xY+vwusMMDYtMnT4HSRbIZYfwBIO4gkBNRRkzZs7H6wshyRpjZozl+z+8iTGxGiLhELZrE45EiA8N4rO82MUcsiQjyQqUbCpilWzZ8jaapo54qL0e3li3EcM0qaioorK6lngigWWYBIIhAgEvTY3NdHS0ky8WsCwPq59/jurqWjRVQ5QkCsU8bW07SAwPU1FRic/rQVVUCoUC/X19OHaJivIoCCKJVBLL68FxbUrFAj7Lwxdv/RIrV16CKEgHfKYPdRb4Vxp2H3x8YZ9/9216ZHK/u/g/6hA4gO54sP0OhL87Y/aS7t/G3f8tHCgs82AXURwN9Rttu+fvoXhuPqjdCBPQvqGC7+vd20uevRWMvfMw9t/vUDxM7/f7B93Y+xuRowQD+ytCo4awuOcBdPbzhB3IuNvfE8cBtveRZb/tUWPqSJWvAxnuhzqe75HtEPP7DpaneLDv/xne2dEwUlcQcRAoOmALEq6g4Eg6JUnHV1NFTXMj4yY1E6qKURb1kctmeWHVavp2vMr6NS/RVNmAlBZJJNo584zlzFxwHNGZp/GtXz7DoDaOL93yJyZVGYR8FoosISJSKhXIFIusb0sjUSDhaIyvDfPgKwNc/6dtPLMtx+odBR7fnOTlTptHNwwRl8t4+p0UU5at5MYHnuGXT7Vy4sQydNlFFB003aDCI3HP05u46qqr8Xj94Drkcwp/+csfqYiUsWPXZk5auhyv18Ln9VIo5hEEledWPc+48XXgFqkbMwbN0KDgUjO2jqMXzUNXBPr7+3BdmzdfXcsxxy0gGIuimyOMiqZhkE6nSKVSqIqMPxggGivD4/ViWQZu0UYzTe67/2F6evqYPHkiP/jB9/j0F77EX//6GCvOOo2rrvoGsVgZN930I/7na1fxzJNPUVtTSXl5BIQ8dknktdff5MwzT6eyqora+jGkhuPkcxkef+w5yiJVlFVEydoKpUJ6xOjUVHZ37mJgYIitW7YTi3qxghU88+wzNLc0IGsCsuzF6/dSUVVJ6/ZtOLZL84RmmiY04Qv4SKVTrH3pFWLRCuYsWICsqPzhj3/mnR2tXHjBhYxvGIem6EyfNZVrr7qShYuO5bY7fkk8meK3v32IcWPG8cRjT5LoH8YuOUyeOgV/MMycmdP565/+TM/gAC0TGtANk1WrVvPdG79PS9NEzjvvfLp7+9jy9jYy6QwiJYaG+qmoqEFwHRRRRNQ1FFlF1/QRhk5JwGOYmIZO0XZIDCdwHJtMOoMquKx+9BFa33yZ405ZgV42lqKgoeAgjHoA9p53xfdnb/swcHhKhUuxWCQ5sJto2CRTcBjsG0JTDURZpqevB1USSSWHce0Smuqno6sd1VAZHi4QjUXJ5QoYloUkC+iqQlvbdkQBVNWgZOeQBNANHU2x6OnppVBMM3HSJF5YvYrKcg/lZRWUV1Xj9ftJDvbyxhub+NjKy2luaOakk2ZSOybKmSuWMXHKON7etJPyyloSg12Isg/DUKiprmB4II2meIgPwaw5c5g7Zxb+kAe75NDUOIGH7r+Pa679Fq6s89D9v2PxCceiazK5fAZ/wE/RdrF8HtLpJB7L4NhjjyKfz2AYYVyxhKy4VFRWo5tekvEEQslGNjQ03cN/fvYzrFhxKh7LIJXMoComjihgeLyUbBfTCmM7JTRNwS6JXPftG1h8/Hx0xcKVRWRFpre7m8rqekRBxNQtvnPdd2lsmkKkMsp/f+Fr3HXHT3BFFVUVKKTzhKPlzJ07HUUTsR0HnyeAKivkc0UmTGtGVnSuvOIqTll2CoMDA5TH/DSOayabG2DsmLFce+0NVFVXEwmHUDWFaDTCGeedy7j6Wop2Fn/MTyKToqauFkkU8Xk86LrI1EkTqSyrZv6iuXgMBVGWqKquorOzj4cf/B2f+vgnyBdKnLPifJ55ahUPP/JXWppaaN26mWnTW/j05z7PQ/f+lrPPOJP77/8j5557GoKQIhaKMRxPkhxO4fVYjG+oIRINMmPmLIYTafxBA0lSyBdcRFeku3cXK1acT1lZBFkVwNUpJnvIFbx84YorWH7qMvLZDJ5wOZlMDl2RcWUdWVa59KOX8cba17nk0ou4+d6fMr9l9kjIv+CiqQq72zsxLZNUOoOmGwz1DWAYOqFwCEVRGYonCIZCVJRX4/P5EUUBVVVwHYenn36MKVOmYjs2hXwe3dDx+wO8/Oqr1NeNwdBNisUikiKB65JJp4iVVeAKAm+sW4vX8hLwh9iwYR1NjU3Eh/vxeAKomoIgSeCURiKRJIkdA1s5Y/lpiOLfmTL3ebd/qLPKPw+HYtyN6HfCfie130L/3t8I77EE92n3bp/uB4/Tu7r1QeR03b/zHYrikXtC/10K4V+IbCa7xwsuvMdAORAO5Ik7kgu/t/FzuH29XymCA5U2OJTf9sahGneHIuvBxvOD5BEP4J07kGQHkuD9jLtDle3/z3g/o+9wPMSHiveMzLu0wnv/NrLQIeHi7DHDHVxKLsiCi4BDW2srqpumlO5GdvPYjknt2AkkkgXaOzqoqB+D3x8mEc9ieHQKjk3Blin09WEGfAhuib7BPkyPFwUJy+Nh05ub+P0f/oRu+bn4oo9y9z13s2jBHF5/9UU++cnPkSmWyOVyPPLwIzz5xGN883/+B9UjsXHDVh5//PcsqcyyajCMZkWZMnUOulziyafWcMkl5/D4Y4+y8vKPICkGXp+HK7/8Za6//vt8+YorOe+s05g+pRlUkWAgRG9PN13dwzRObgLbxjJ0+gb60E0FoQiCIpDJ2ciyitfrQZYVivkcoiSSTKYpFAr4fH4ESWKgp4evf+Ub3HrH7Vx84Uepqx3PCYuPoaGphrwj8vRTT7HkhMWIrsLtd9zBMYuOIZfPcv2NN3DqGafyhf/8DJIi8dUvX801V13Nr+66mzEN4+jp6UWRBE4+83hScZtMMkN5ZQgrGGKgp4dUokBPZytl5eWUV1ai6iqyKpLO2fhUic6uLiKxIPGBPAODfeiGh/IyHwIihQLc9au7uOzSi5A1hVy6iGV50EyFba3bqCivQERgd2cnHbs6mDBhEqql8PlPXMGiRYvYvbuDj69cCYpD9+4BYtEIjz/2KC+/vJbqmmpOP/MUZAGCsXKisSg7WneSTGb535/cysc+upJYJEJHTze3/eLnfO7TH6d6TD3RmJ/Bnk4eeOBRLrjwLKrrqtnd204oXAGuQF93F8GAj+HhXkzVh+G1kCyTRCpLwPLz+IM/p7w8xtTFZ2KLMooAklvEFuR3F9AOdT79R3G47xfXHZGpc+vrRD0CWaMMHYdMHgLhKEW3hJsu4lAkkYzjD1QjiCWKJRtD8+O6ORynRH9/D7oqYZgm+fyIpyKVTBMI+cgksyiGwUBvgcH+IV58aTUnLTmKc8+6gEd+fy+lXJJQrBlJl4j3D7G9tYOpU1tQjSKSbLL5rbepra6lVChyxhlnU1ZZxx2/+in2UJwf/PBWrrj6Kjq6WxnuKTJ+Qhm2XaSyPEYqmWOgN8mnPvUZbr315wTDIRTR5cqvfI1zzzmVOfPnkM7lGWxvI5FxGNc8DkNTUE0PAhKF9DCpVAa/34ckCgwlevH5Irz44hqaGscSK69EkAQc28Ypythk6evtpqZmDAVXQhBcCtkUuunHcYuATSaRI5dOYWkhSnYcjz9EKj2IxxPDFUR279iA1xNBliwKEgSCFomBYXL5AYq2TiwaJDkUJxSwKFDCcQ1eW7OBBUdPJ5NOIqki3Z1teD0hUokiVdWVGJZIT28nhayGIIpEomX8+U9/ZdnJyxgeaMcfCNLV2YMtF2jfsZujjjmBguMiyTau4yKJApd+5DJ+dstPadvZxqRJ00nnsxiqQl/fEF/40hf5zCc+hSKIjGsaj6iodHbsJBBUSQzkeX39a1xw0Tl0d7bTsbOHG7//I356y01g23iDCulMmmeefId5sydQWV3Frs6d6IZNrLKK4aE8H/vof/DwHx7Adhx0XadYcshk+nHyoCkSu3bv5sov38A9d9+GZWgIkkPJdVm+5Azu/M2dSEB5RQWuXKCnvQtZ0JAlg4KTxhf08+c/P8Z4pYVkKkEoGKJQsOnu6qG8soxSMU9Pdx9jx9STL+WxHYdsKsfmLW8yc9pcdrS1YpomVVVVJJNJXn/9ZZqaJlNWXklfXzemaeLxeNixYyexSBBFHlk0KpQKuC4oskw2N1I3L5VKYxg6O9p3UF83Fl0bMTiLeRtRAk3VwC2CrDHYn6bxJIvcYILGaXNxZRVRgL2rEO9f+uDDKGJ+YAg4rnPE/QuCgO28z/7uaJs9AZV7N3H340fgEPW7vf4XD8ZNcWjivxdHkGs3in+XQvgXwi7Z33wPqcRBbuoDEV8cCUYV8sPt60Asj3vnre2fc3W4rJB7y/JBuVuHkgt2KKGZe2OfHLz9iUc4PA/ewY51uHHpR8KWebjY+xjvd7z9r8v+1/3DhMS+OYzOPlv7Xo19YtMBSRjN3xMJhCL4gmX4wnUYoTokK8DTz6yms6MTKxjBcWxeWP0sO998mY2vPouT6WNCfQX9iSFEw8uurn40zcSje9EUnS3vbCdaHmLSxEl8/8bvMX3KNDZv3sj4hnHMP+YoUsMuK1euZNrU6TQ3N3POWedRLAkEAzGmzphEQ+NE6mYtp6a2jIbmiYRDUebMnsrJp5yEKotUVpdRU1+PZuoYpsEJixcjKwJnnL4cr9+HPxRB0UwQoLOjg4aWZgQgkUgxMDiEIMgMJ4YpL69B0QwEV0DTNdLpDLqh09m5A9tOo+q+d19Mtl1CN7ycvHw5iCKTJrRw2mmnUl1diWkZ/PBHN7NixekEQ1FWXnIZF15wIZMmtpDJZPnq17/I2rUvM3vWDEqZLEcvOopEPM7Gt95i165dvPH6q1x++aUEYuXkczaR8MiYy24Jn8+HrArUj6+nt2+IUDiI7eTYtGEToUiU/77ya5xxxknIkk7r9jbuvfchTlx2HKIg8ouf301z01iOOWYhhWIWO19E1Tw89+yzjB9fR1lZDEkQ+emPb+aE44+jsrYe0+shnUwzd/ZcBuP9nHHmclLZFG4Jtm3ZyZo1L7H01GU8//xLXH/dtRiqimZoKD4LXAfHKfLnv/yZr/z3laxceRnPPPsMi489honNzWiGSu2YMSP1qzSN5inTeWnNS/h9Jn/641+ZNnMOw/EBdE1ElBQyuSSmFSFTSGEoFnZqgM2vPcnuznYWn/sxEGVkYSTzwh3N4Bh9Pv/Jc8HeONw0AUEQeHnV43gNFclfwUBXO8FIObYzUgdKFp09OXcloEQuk0URJVRJoq+vA7vkoKkmyXgvkVCEeCKJx+PFMjWyto2umSRTKfp6BvD7PUydNpHv3vBdbrnlF3zu81ey9LST+M51P+GYRTOJ9ye47Wc/pSJWjao4WN4AkiwTCPr562OPMnv6UXgNC8ktsfJTX8IbivCjm27i/HMvYMKE8eBAb1cP4XAEx1UIBAKUV0T49vXfZvVLa7nrzjvp2d1LtLycGTOn4JCnakwjkWgZxWKWgM9HoVBCEER27dpBpCxKoVRAkiQe/dvj+L1hWqZMweP3kkokSMX7R0L/kJEVEdPQyaZyDPT2E/B5KRWLyLKKgIhrg2GYeP0eXl27lobGRgq2wHCqF58VoJAbwBsIk8nZfP0b36J5UhO6JGGYCprHS6K/D0GSefPtbbh2iXCkAlWSuOm717H45BNBFMiks3h0nVisjIDfQzI5jKz68Pk9ZJJxPP4gt932Uy679Hw2vLaecHkUVVXRTJ1QLIptS5RyBcIBA6c4kotUyGeZOWs2ZWUxTK9Je+dOTFPm+hu+gySKnHv+OZRHvVheFd1jcfHFF/GxSz+BpVvIisuMeXMoIOP1hRgY6uRjn7iMbCFOIBIgnxfp7hxk2rRaJF0lHh9g7Ng6BFdENy08pofjFi0kFPKhyBKdXZ14/SPfp1JxBLtAVd0Y5s6egSKpSLKGKLvkCyku/4/L8PoCuE6JdGoQj9fijw//kY62Du59+HfMmj6eSDjE5Mkt/G3NEyR2pdBUk77eXrZsfpMxY8fiOC47W3dgOw52aWSRZmCgn+7u3VTX1LN27cuUlVciCiKKohKJlrF16xYswyISK8N1XBRJxnVdPF4PgigiiiK5QpHnnnmKirJKNE3HsnSy2Rxtba00N7Yg7fH4u66LpmskEsMMDfWzadMmaqrrueHhG7j04vPJDnbz+O/uYeqchZSQkQT3gHrPoeTiHykc9711Mz+o/Yg8o9vvNTz30U9GnXDvUeaEfdgs308Ch31zEffpAvbUG/3gffdK9zvo5/08hoeCf4dl/gsxWucO3qsg/zO9O0eqGBzIM3Mgco/9CUs+aJX5UMNK998+9IT/Q8M+hCUHccUfUMa/dwKHGTb5Qeexf5jrPwN7G2p7H/dgMu3ffhSSJL3r4T1Sw891RsZxdM8jP/sR5dgWVZANVMOkqXkiTc0TCVdWEyqL0TSxheap8zCDIWRdo6urm662t8gleqmrDBIIhenc1c769euYPHUyesBLWVkZZ511Jp2duzjzrOV4AwHC5ZWsWfMq69e/zqQpk3ji6Sd4+um/8oMf3cCSpYvx6haaLhCORfjpLT/jnDNXcM89dzNxcsvIKuvOnaxd+yrTpk1D1TUy6RwuYBfS7GxrQzcMEBVWPfUMuWyO5gnNFEs2kiTj8Vi4Ltx66y9ZumQZrgCJ+BCFYgGnZCOIArIk4PWa6LqEIBhoqkapVMK2bXTLJJnOksvlqampIB7v55VXXuZXd/+Gz332s9ilIslEGlnV6OruYsasmaiaiqJJTJ8+jc7duwl6La7/9nW0NDUzYUIzJy1Zyqa33mbOvOnksg7PP/cCq1c9i9dQWPPCC1RUlpPKprEMi1isjHQqgdfnAcdGNXWWnngiggjZTJ5CocDJJy9DViVwBQzNP7ICrRvksjm8/gDZTIpJU5pY98YbBAIhSkUbv9dPOpkmEAzg2g6KrNDT3UOxVMDjNZElkW3v7GLevAVU11ZQWVPDkqUnsuall4lEysi5LqV8Eo/Xz+DgICeesJj2tlY8QT9tHZ2URSJYhs49Dz7CU088ycIF8xAVA8OnM3ZsHflcnlkzZmN4LVy3BHYBQRTRNQNRlLFVGzWf48lH7qF3oJWLP/UVHElHEtx3Fy32XnTaf2490nnhUHKPD/TbofTbuf0NIuEIgXA14WgVu3fvJhgKUSo45HNJVFlHVjR0WSSfz5DPpcllUkQrYiQTKbxeP7IwMicW3SKJRBxVN3EEEVXRUSWRcCjC0MAgv7jtVj7/+f/CH/DyysuvsmjJSTz71GpmTGni6b+twuvTqK6sJz7YiyQrfOuab3HyycvIpjL89qE/8IX/+gzhSJgLLr2U9o52rvzSl4hEwtjFOH27d9MwrpE7fvVrAt4QL764hkmTmzl1+WJOO+10zj3rTDKpJB+59KPICgz3tiF5Y1Aq4Tp5tmzaye72dt584xUaGhrIZLIIgoDpMWlumYRtC2zf+g66KuM6CtlsBt304DgiydQQ+VwWvzeIz2thlxwUVWM4HsfQVQb6+vB6vRQKOaqrKshmc+geH8ViEhyRXa1v4/fXYugaJ550PI7jcOcvbmfihBY8fg/5RJz+gUEKjsC0KZO57PJPcfbpy5k2aQya5aOQy2OZFqVcidt+fjsTWiZQKhSwPAFKxRKSriAqMtNmTKK7u5NIOEogFKNvoJ9g0Iek+lBljUxykF/87Meomp9o1IMsqexsbUWQweM1MCwNXIHjFh+L5dEJh4Ps7mgbmae8JgsXLOKO2+4iHAzTN9hKVc0YunsHCQWCFHIKmm5hWWFyhTiKFOA3v3qAqdPqCESriIQjdLS1I0saHsNDIZ9D86hs2rgNn89HoVQkm09QKhVHanPqFq2tO6mqLuekE07l5JOXoygwNNSNYahIsoqmqFimh5tuvpW//uVvfOqT/8E5F5+DKICs6TiIjG9s5L6/PsSchjmIokShlKeiqhpFVti2bRtj6scRCAZofWc7kWiUKVNnIggCdTVjkSSJQCBINpvB4/dRKpbQNRXdMLFth9bWd0YYRlMpLMtLvlhiy5YtVFRWEQwEQJR4e8tbtLXtYOy4RlRFoXX7dooFm3w+C9iYhoEgipSX1bP+zTeYe9wU6sfW0d/bj5DqpSiq+GMVo/YOLvuyZH7YOum7dTKFA7NxHgz7q2nv8kQcxIt2wEg5971s5wfCQXPlPiiabO+2B235dzjukY/3v427fyFc2/nm6CrskXqo/tU4mDHwYYXpHcpD+mHiSMZ8nz2OwFP5rw5xPtA5H5JMB5h83m8R4LDG1R2NjX938wgxwlIm4iDh7Im131N0VHAZKfwsIckqoUiUWFU1sapx1E+cSVkkjIDI5q3vUFkexu81MTwqkVgMRwDda1DXOAZZ03juueeYPnUCNXVVXHjRuXiDJqecegLLlp3MBReez86dOwhYCm3tWymrHoffH2Prpk1ccM5ZPPnc0+iqTENTEzNnzmL9+rcIhcNceeV/s3TpMtLJXlwXfIEwjijgVU2isSiqaWAYBo7rkN4ThiPJGoqk4PPrlByHQCCI5bFQNIl0Oo1dEhAcg5deXkNFZQWqqiFJIkM9Awz2DXLxhRdzySUX0da2jSlTJ3PKKacxODhINpviK1+7itNPP4N58+Zz34P3k06n+ctfHmfOnAUEA1Gy+TxHH3sC3/zWdcQqojQ2NvGjH/6EM89eiqoa7NjeyoY313DRxWcxbtJMVNVEEmQMj4YsaZimgevaKKqMoqrEBwZxHcjni/h8Pm6//XYmTpk74jWwLERZxh/0I0ojK919fbtBLBEMhJEUnbadu0glU1RXVrN161bCoTC33HIr8+ct4vkXXmTqpKn09w3S2z9EY3MTv33kfhobJ2B6NExd5/s33cyGt7aw9tnHad/VhSCb5NIZaupqMVSL004+g9vuvIveeILN23ZwyYXn8cc//J5ps+cx2LMLU9UJegN0drfhD0cZHkoSDgTp6+ulpqaO/r5+Ql4Pd99yLTUNDSy54AoEUcERRCT+btwdbNHvQwmB/oBokUOFKIo4rsvba59g2ow5DA7nMa0wlk+nmMtTzJXIZnJYPovh+AB5W8SyvFh+L1m7gKX7KNpFDF2mlC0xODiAQ5HKmioQVURFQxIkdBnig2n6+3oZP66essoYDhl8ngATJk3jG1dfS64wyCc/+XlE1aGuvoH68XWoksypy08hnUjz9LPP8D/f/B9k06YkOJR7FebMnMJ9D/6O4WSWMXW1+IJBMrksjq3gujJz5szA77cQXAd/MEBvVyuzpk9H9wcoFYuIqT4sr4ksyWSyaaprGpFxqCoPUhTAsjx4PB5SqTSCqmKYXnLJDNd842rOOudMvKaXzt2DBIMBSsU8Pq8Hxxbo72/DtvMYmoqAMFL/TwRZHhnvTGYIwRFQBQWfT0cSPbiyyn33/oHu7k5amsfi9fr5zrXfZsWKs+jp68Xr8VFZXYlQKhLxWyxZehq5Yh7FAFHQ0VSFjes3oOkxGhpaEFWVcCxGcrgXRA+/uOMupk6fDrh4vV5cR2bTus1EgkEURSAxMMRTjz/FzHlzaJ48gYbmKRg+GQeRiopaZElC11SKpSKt29rRdY1QJESp6OD3+Qj6A2i6l1i0jIDfx5gxMUQlj+EJs/Jjn2XpkpMwFRnsNDd+93omTZ5BItGHacrUlk/FKaZQVQV/KIxzNFNWAAAgAElEQVSkC+TSSVRZQjZ1NMng7c1b8PuD4DoUCw6BYBnxRJaA30uxmGbG1AVU1AQIBExCkQD5vAMiGLpB+45OxjZOwi7ZLDhqDv3DPUSCEYaGkxgeH7g2Ry2YxVe+dzVeWyccjKDqOoauU1tTR1d3Jxs2rmPihCl4/V6SqSSyLI+8p8SROJVCIU82naWuppaiU8KyTGRJQpV1+nv6eXvzJoLBMBICkqLR070Lv9/L4NAQY8eOIxouZ2f7Tjo6tjNp4nSSySSegAdNVcnmC/gCQZLpFJt732b5qUdj+cL0dXcx67ilILgMDQ7g84f3vIf/uXro3nlrH2afh8MT8B5f3ZEYd4cg06G23Xuffxt3/wdRLJa+OXrxDodM5GDhjvu/9EfbSJJ0xAQch/ry3z8c85/hcTpUz9I/goMZ2wdikNt760Ceyg9aZf9AopvDfLhHaHqFdz+HMkoHIp85GPYPzRw9x9Hz39u78H5hnAcNvx29j/lHDLs958be5PH7fj8aW++6IxkGjruHBtoFVAvZ8lNeU4PlD+DzB9jd1sE1X76GSRPqCYXCDA7kEEWBxqYWEEQ0QwFZxfLoiCQpiSaCqDHYs4VXnnsUJC+plIvsFnl93XoUw2LO3EVcd/PtnHL0NOIZh4ZxtYiayLITF9PetoOq+jHgypiqTmogwVNPPc3tdz3ECccvQhFcUskkguhScgpk42ny+SKKJiLKI3Tyw/396JqBYViomoFmaIypGwuugF0sUSrYxONDBMIRmlsmcv8DD7F02Ulsb30H14Vcukg2W0A3ZMaOqcVraTh2gd1d7ciyRlNzI+vXrydSFkQ1AkycNI2+3V2ossb5F53HcC5O2BOmrCLGggULMC0fNgrXfP1qnn/mGaZNnUgul0UxDQo2WKaJK0tYhoeiXWTXjnZ2vLMTTVLx+FWSyQKaqbJ9+2Zsx8bj8YAArigSjpSTSKf59jduZGLLRHx+D9GyCKWizXAqydLly3jo3gc5+5wVeAJ+FMukIlRJIVegpXk8oVCIVCqLoivsaNvGijNPY+bcWSTiORobavH5QxRyBba//Ramx6TkOLQ0t/DRy84mHA2ycN4i3nxtHfU1Y8nks2TtHNHyKvK5HJIio2gGgYCP9v4edKfIS4/8mMCYaZxw9scQXZvSHoJthwOECAkC+y8GfhgLZ4cbOfFejASOyqJAPp2F5Dt4QiGQdNKZPgr5PK4tIgoSudwQPp8PCRNFgcGhLiTRRRJVCvkEmiqhqz7yTg7NtNBUD7ripVQsIKkapfwwbklhuJjE4ynDtEqse30X9/76YVacdwq7dw3z9tuvcvTCY3BLEj+5+RaWnXoSN153A/MXzSOfk2ltfZ1jFy4CxSafytDf2YVkmEiqSsP4eiqrwlx7zY0sXDQPy7IIBEdCAtt3tfHymleIRSrZsmkztfVj8AXKcMUiugaOIKNoEURZJJlIkMu69PcPUlleR9vWNiJlEfp7esAu4tWjDA1tpbyshqWnnEARCRGBvzz8EOMaJqCrJoWSiyhJ6J4Api/IcDqDoQv88o67qR9TT6EYR9G86HoEQRUhUSCR2wmiSSmT4+W1rxONegiELSxT44xzLsfrUwjIfvI2CPpILu7O3T1s276LqqoaFNUCwUDRRCKxsRx3/HGcctp5PP30c0yaNhZNVhByGapr6wgFK3FtB003ueE7P2bRorlIioKs6FgeEd1QiARCfOfbN3L8sUdjl4oUbRBlkZLtUrQdbJJURELIsoBjO8i6gYTIr++5h6bJTTi2ze2330lNbT2b3nqToFnFySctJBKyOPPsi7n4kguYPGUs3//B/3LKCYvJJdJYkXJ6e7uJREK8tWEzwXAVdnKQbKKXTCFJWdhLf982rv3aT1ly0ky8HgNd09F0c4SV1vYydnw5sqzhIqOoOvliAU2SSfXvxhvwEQyHmTFjOrplsfHNTQj5NLHKOlwX8ukCfl+Q81aczLd//kMWTFiIqqisfn4VHq+f4cQQkydPRRJFirbDo3/7E/09XVRUV6OoKp0dnQiImB6D7e9sZ8e2bdglh23vbKG+vh5/yEehVCA+MEwiHaeyrArTNPH6vPj9fuJDwximQS6XZTgxTFVdHbKmIBRttmx9B9O0QHQwJJW1HWs55ZSl/OnhR5g1ex7pYg5dHyHe8gejICgIgruHrv/v7+PDNTdGvXMH+vx9FvkQDDx35D0/WnrgkD14+52RvZd8exti4v6fPXPyPoXOD6A3C/vt9x6x95ZzL3fkv427/6Mold5bCmF/HO6q6vt5Uf4RHK4M/0wv1P8rT+bB8vUOZtyNtjlQX0cyLtIeCvTDwej09q48h33Uw8ehhhQf7hh8WPl8B+vhg1VXQBRRNA1/NMySJcuwJZd4IkXRdnhjzRo0RUZTFPp7Egx0d5Lra2XN337La088QHboHaa2zGDKwlMZ3zyJQMxPTV0NcxbOpW78WERN5eQT5rBtw2qiYxpw3BKypuPzebA8Xtp2xvFaXvK5LA/89kGikRhnrTiLfCZOZ+d2RFHBcTTyOYGB/i7CsTC5Qp5CYoBg0I9q+ugfHEJRZEAgk8mQTg2RTMQplvK4lKgoqyedShAKmtiOTWVFOT5fjOF4kVXPP8qUyVN54L5HaGqaQHNTMx3tvfT1DrLspHnossqWjZtomTaReG8fF55/PhdfeiFjxtVimAY+b4if3fILJk1oQdUUJFnkxVUvceFF53Hy6ctRVZlkMoPrCPT39OL1GziOTDGXQ1ZlKior6e7qZe68efgCXtaueZ1CscDcebMoLy8nk8lQKBQoi5XR3dWF3+dj3JhxNDSOw+/3YFqjymqIYqnAtDlziA8NQalEsn+Am358E+XlFZSVxxhODLFu/WtUVZdx1FHz0QJhQpbGW+vW0D/YQ9EWCQfL6Wzv5e7f3Ee0PEI45qO+dhzpZI4bv/s9Tj/1NH77x0eYPmMavoCFompks1l8Xh/ZbAZBMbFK8OPrPsPSS69k8uyjcV0BwbFx9yoGvHeI0ej2yELEP27cHepzdaiLggIjC19bNm8hoiXJ5fN4y1uQRAHHEfD5/aSSSRRVoVQqIYgy+VyeSKQcAQVJkCiVipRsB9dxcLMZioUC3liEjJ0nGR9C02SSiSSlgo0nEOazn/wat9/6c559/lF++JOrOeG4M1n58ZX88KYf8LUvfxlRdOjs7EBWZebNnskZ51/IM6vW8slPr0TSTHRFZ+P6jQQDIULhCjrae1FlnR98/8eAwnHHHU3bjg5i5VHuu++3/PpXD+LzRvjBD37EJz7xKa76+jVITp6mlonYgGnopHNJcpkChu7n5ZfW8btHfk9TUwuPPvYYs2fPQJaVkfIiko6oOLzx2haqaiIoskI6lWZocJhQJMqmzW/h2kVECUwjgIiL4xaI92d5Z/tOjlp4FKqso8gaAtDd1UW+NICs1vHU05uoGRNm9szZSJLAmHFjyOXS/ODGmzlp6dH09WXQLREXm9bt22ka38zHLv0k5WW1XPet7zB/wRw0Q0AUVO654wEiERg/vozxNZPJ2QMUBBVfNEQ6GUfRRHw+L/PnzyKTznD99ddxzLFHMzQUp7KqGlGSWbBgPrKqsrtzNz6fH2yBdCJDajiFzxsDSUKz/DgoiIKCKolMmTIJ3fTyuU//F9+4+hp8AYux42q4+eY7OOOs5fT09TJ58mwk0SWVjNPW2s9v7rmfiy+7BMuSSA13MTjQxwP338P48Q34fAbJTIra8Q0UHIVoRS0nn3Y2huXHF4hguza2nWFX225WnH0+Z684DY9fJ51Js6O1ncryOhLDg9iuSMl1KRTi+LwWpYKDxwijmRKKbuHaNnYpRUEER1I5/9wz+f0df6Bt505KRaisqCYSCWMaOqVSiba2NkRRYNasuTzxxF+oqqwBAWLRGIqqomsmDg6FQolINIbX5yVfylEWLSMYCmE7BVRNJxKOsOq5Z6itHssrr6yhqakZf8CL3zIwNXUkFFOSGY73U1NdjQiks0mWnzuPQqnEzGkz+MY3bmDO3AWU8inKoxE6WncQjobJSy7SfibJ4b6RD3WW+sff9Xs7G0aSMg7Jg3cAtsxRHNTL9iFFPeyTqyfsq7v927j7P4gDGXcH8mbsrywfzAtyMBzuTXKgPvd+0e9dPH1vj83h4kgU+NFjf6iu/P2UpvcrpbA/BP4+GRwov/AfUcSORHV7P+NuNLdPFISRen3/QDjo/t7gA3lw99thH1n27mf//Q4UNvF+3r5Duf7v1+K9vrz3ayciuCOrgAgiKAKG5cXj9eLzWYxtGkcwGkY1VcIRH/5YCM0TprxmEvVNk2masgg5HEPSFEQ3zVD/bp58/Gn6unuIhMNkU0leeOwhZkwYgxIZg+XxIsoikiiSzWVJxPtQFBG75DChqQXJ0KkbU8Yd//sTSkWF4USSrp5uauqqGT+ulmDIQzAUI5HNEAgFyKWHMXUNbc+K7Ntvb6amuh5BkMhkCvh9AW767vcYVz+On/3sl5y94iN0tHcSK4vy2quvMmfmHF5Z+woLF81j9erVFAslJk5oIRqNML65EVlVqRtXj+6x2LFpHU0N41iweAmJxDDFQhrFFYjHkzQ0jmf16lVMmTqFSGUZxWya9NAQVigALmx4bR21VTVIGoAJTg5HHLlnwuEohqmTzqSoKK+msroSv98iPhTH67Uo5Ark0mmcUgm7ZBOJRHjppRcoK4/S2dGOKKqougmIJPoH6OruoqyyDF8kwNi6Sr7xzWs5YfHx/OKO37D6+ZfQFZOyWCWZZIJMEvoGhigMF/jmt25gbEMD8+ZN56iF85k8ZQrNLRPZ+OY2vvzlr2IaKk2NDfjDISZMbkbSZRRZxdB1XNchl8vx2nN/YM1T9/Lpb9+BxxdGEkYKk7uCvKd87Xvv/dFnZf97/h9dSNt7/3fDoziCd8WeTzgc5vXXX0IVSjjouIKG3+sjmU6gKBKqYjGcGCAUCpHNxynkSxQLBVwhy/BQGkXWEaQ8riIiKhK5dAZL1ZANBQ0HSbHweQIUKVFZXsmXrrycpUtPIeAvo6FhHM0TG7jw/Iu56qqrOH7xfG695edcfc3XUUSBT37mPzh96WmYhk02kcJ2VVRZ57lnVjE4HKe6qoLLVq7kW9d8kyVLF1O0UwTDPh64948Eg36+fcPXaWyqJRgup3ZMDWesOJ2KgMErr22mvKqOdCaOKGgUi3m2bHmL8XV1TJ8xGUcpseS0E/nutTcya/Ys7JI9Ut/M0Pnm1d9l+anHUcxm8QdC6Iafyuoyysqi6IaC12uRzw4juNDXFUfVdOYvmE4mF8d1JXBk0pkhBFehp/0tYpF6/uvK81kw4zi8QQtZkUgOp6iojjF/5ix6B3v49UOPcvdd9zJ74kw2bNpCOCqw/ORT2LBuA5/55CeIVIRxySEJGudcuJyZsxYwMJQnUuFn3fN/o6ZhOrI4QtSUz7jceONPWHjUfLLZJOdfcC4ILpLiIZHK0tG5C1mRUFWNV9esI2iYXPmlL1JeHiYajvCFz32F0087ka72TnTdoL8/h+VR2LmjFUX1IqGzavULTJ8xEVVTmDxpPiWngGYYZNJ5rvjiF1lx1tmcsvxEdF+QitoGtr65kfGTpqCbZSw8+kS62tsx/Ab/H3vnHSdXWfb97+kzc6bPzmzv2WTTE0J6BUKTGgKIFGkijwp2fXmkWRAUBBGxgAgiTVRAIVRB6SUkBEhCskl2k2zJbrZN76e8f2wCa9j08Pi+z4ff53OymTnnLqfdc//u63ddlysQZGAgTTaZRJYcGFYcU9YwLAvTMBEskWg8wehR4/H7dfz+ciwTWja2UFFRjsfrRvUEcTmcxPqj5LN5PG4XppnDFCT6BgbwexzIxSJIXhRVZvP7b3LieWdz0RWX0DxuHFvWbGbM2GYUZSgwyrvvrMAyTRqaRjO2aSz5fIFQqIRV779DRXU5iqzy+uuv0jSmkdJIKYViAadDp79vAM2h4vN5caouUqkUDQ2NiLJNJFJGLpelo6ODsqo6LBOef+5pTFugsXE0xYKFaYr87vG7mTFzFqFwiP7ebkJBiYaGMXS0b8bGpLo8zDOPPcKEw2ZgmkO2rJ2RJvctm9uw8UHYRwURB2vB+6ichYUk7JsAcmRyN/Tv/mY2PlQL0gDCQUTL/JTc/QcxnNztzwOxPz4Y+zMJ3h12N4EfLr0bqe39rf9g+zR834Gc7z4Rhb0cs+u5DE87cbAYSY474vnvsu1a3ubgJbO7EsN9kbKaB0HG9/TM7w/xOxBJyVAje9m542Kblo1tgSTLaG4XLn8JqBoI0tCKnKzh9pcwZeoUyqurhghLNk1q2yDbe98j2rWZQKAeTdYw7TSi5MDj8SK7bDSXxHe//X/44pe/QDwaw7CguraG+Qvn0bJuPTVVlQiSTqEggmBSEi7BskBUVDLZPEXDwqHrlFdVk0vnsEzo7egm1jvI9HmzQVRI5wd4+fmXeOXFF6ksr6C6vJyBdIKZ0w+jtDLAnAXzcHs9ZAoZqusrMa0suXwCXfegaipFw8Ho5vFossDtv7yVefNn8chjj3HcsfMpFjLU149iS9tWKirDCNKQNTQejeHxBCitKMXhkenpjiJIOVSHA8FQMQt53l2xirC/lDdfe5M7f3cn02dOwBMqAUFCc+koikoqnkJRnLy9fBXh8hLGNdWTTdqs3dDD8/94nKkTpxLtjyGrMj6vFxiKNF3Z2MRJp52MJ+Dj0UceIRIOsmj+HOKDA/R097Nh40baO7opiwTw+f08+tgTrHh3Lb+76256+vpRZY3G+lGk0ym++F8XUFEVwcynKC2vAEEZSqYsZ8gXClhJmVXP/YEzL/sBguIEhA/lwfY+LuXsq3R6J6R9lGjvabFjT++tbe94/AURJAnZ7SOdyhKpaEbRZRShQD6fwxMqI5nsQXf6KBYMTCuNx11GJl2kaCYQDHCXVKI6FCR0coaEz+tGtgqIooSZz6A4PGQLSRKxOA0N1SCopGPbkVxu6mrKkSWFWPd27v/jPXzmjJN5atnznHrKqbz0yotMGF/Kyy+9BkqYW+68jWMWLGDFW8tZs+Ztlpy5hPPOu4hH/vpXHvzTvcyaNw/d5UVRHEw4fAz19eU4KJLs3YbmLqW2Ueelf75Hw6RGVr23mknjx6GKCpJURNe9pBM5qhtrSGWj+H1unIqPidMmIQkyRnGAiqoKLFXltDOXINsqqu4ES2bJqWdy5tmnDYXgt4rIioAqimTiSbZu3UhZXS3IMqKkonu89Pd2Y2dN3nhzNQ0TZmCJeU46+hxUNY8hZglHKsgW0kTj/Ri2CKh4PXD+uWfjDYQYN64Jr1vnq1++kpNOOgVfQAVnGNUlo+VzDETz9PW20dG2jbKIg7IxM8nm8kiqRqwzimGaTJsxlf/+9neYN2c+uWyaaH+Cp596hVw+yZhx9Xi9fooFhdFj65B0lQlj6pkybgybN2/lrLM+RyKbpyykEc0UiHVvYbC/l4HtMX7241sZ3xhh9qzpeEMBBgf7CYZ1bLuAbZtc/X+uZsmJx5CI9eHwunnzrddYt+ZdmprHEfb5Wf7mvygPR3j8yUc5fNZUfO5SbNOJV/fw+msrqSlvYnv7NkzTIJsSEe3tOHxemsZUgpUjmsih6UX++5tXsWDWLOKFJGo+x7aOzQT8Ydx+L5YskE3E8Xj8PPn4kzSNGkdn5yC33Hgj8+fNwOnzsXrtOr71la/z3oa1jC4dxdtvv8GoUWPIZDLU1tZRUVmBImp0928nW8hhmjZ1dY1k02lkxUFtVS26y0k8mkAUVRKpFJlUAp/PDUg89eQT9A/0EgyWIIkKyXQC2zbQdQ/bujrBkqgf1YAlSLS2rCOVSmBZFlszm5k8YSp3/Oq3TJg4ioYxhzEw2E1DQwWaJpO1ZMrrG3BaeSxVwRZARESyhf3+EbX2c66xK8nbk7zy3yB8tO2Lxe7D/n3Y5s70SnyYt84SPtq3r75yhwwHMW//lNz9B7EvssyRsC9yzL19f7Dt7rqqDJ+sHHNf+rQTByJlPJj2hmMkcv1J+B1KO5Kx/89f8d1jb1LWAyXdu9a98/z35dw/Zgkc4btPAntrQxSGntOWDZuorammYsJkmsbNpq55EsnoNv5y3wNg5Olq246kCoTLSnFpLmbNmI0v5MPt1mkeO5ZIdTmyqjFu4jhcXjeybNHZuYVwiYeOjh6ig4N4vV5EWSIQ8A055SsS7e1drPlgLVvat7J9sJ8pU6eQSaVpbKpj9boWvvXtb/Hya69S39RAVXWEnvYOdG8Qh6aiOVS8HjerVr3HqIZGurt7cWpuZEWmp3s7f//735g5YwZz588GwWLs2AmYgoA3EKS1bTONTU1DP6GCiKZquF0qoqBimSCJCprLgSwpaLKHd1auIhIOsK2zm3AoQm19NfPmzSNSFqKjvQ+HU8OmiKLAQH8vkbIwXV3tjJk0jmQiiYVAKpfn2KMXsX79Bq6+5lrO+OwZeLwekokUiqKSS2bIp7K0tmzEtOGUE08kEYvx0ksvsmDhIu67/0HmzVtAT3cn77z7Hi6njiiKGJbBhRdcxPU3/Ji3Vq1g0VELGDthLIlUiqlTJpPL5YYs+WocJeulZ/1qlj3y31z63VsQnH5EYf8t8wfy3A5feT7Q8WJ/Fr5cTo3tW7ZQWVVJPJWimM+RTueRZJWebX1UV9cx2B/F5QySLyZwuWV8nlJ0rx9ZlhjYthlB0nDqOqJgYhpZBmI5ZFHB4fBSKBaQRBlJlhEQUBQVzeFCsEy6u7fgdPg4/+IvYEsKf/njXznp1JMIlUbIJlJ8sG4L997/ELfccjNtLetZtuwfZJN55sxfyCVf+CJFq8CYMQ1oTo1UOoEg2WRjeTDh69/8LkcffxK1DaUkYnnqG6vI5U28Li+6rrF+/Tvobg9OzYGiqeRyWbxeD/0DA9iWhNutD0UvbNtESaQMQZIo5gsoikZHZysINl+45GI0zcWrr7xOU9NoJFEml8ng83iora+jYNqossr2nh68Hg8b12+kNFzK966+lrvufIAzTl/Ck0/+g9q6CKFQhEIOgoEQTqcLryeAy+UkWOLFqTkQJBFJtFi/fh2aw80H6z6guraSgNeDKJs8+qfHmDV9Em6vwNiJ07BkgT/e+QCLFszGLuZ56/UVBEIBkukEF553Hk6fB1EV8AXDTJ4ylrLyCLruob83xtYtm2lt3YhXDxEMV9Le1UMyleKll/7FulWvsf79d2gcO4uqyjIsq8gzzz3J1dd8j0eXPcNnTjmRwf4Yoijhcrq55577mDNrLkccdRTjJ49H9+iUlFYwZ85cJk2egqIo3H//3Zxz3tkoqsSM2bNQNRfxWBxBsvnXC69w1OIFxOO9mAasfHc5DY3N+NwSqtNPPmPgUN2IsoY/4OC0JWcRjoTYurWd2ECchlFjuO222zl85gyyuSxBn49YMsmsWbNJJpOsXv0ORx29CL8/iGkKVFc30rOti8MPm8wfn3qABeMW4PV50HUHiCKyorBx0yZigwMokoRlFQkF/GRzmSG1jWUwGI9REi7jtVdfYlxzM52dnUiyjGnYbOvqYubMufj9PlRFxaXrFA0Dt+7G7/fz2qsv09DQgD8QpKy0DLfbR0fHVsZNq8MsZNG9HiZMPQxFEXBoGo898jgzp88im07jdjl56tGHGTP5sCFyI+wQaO7nMHSw484h8cfbpc7h+Cid0tDff/Oh+/DwT8ndp9hH7Cu525M1YneTyENqGhaEj5GUnRPs4bLMT9r/Y3dld8X+9mJ/0k7sjaDseg0O1Cq5pzZ2Shz+XyJ2I8lVd2JXWdlI+/e0ODGSpXJv576nAEXD6/qkSd7uIOzoQyQSxjQMJLmIgsR9t16LkHiTiJ4itn0lfjlJxegZqE43liDg83swbXuIHQogKwqiJCLLEogC2zZtJ9qXJZsxqaiJ4PV5UVUVVXMgiALbtnTx4L0PUF5RzpSpU3A4nAwk46iCRKQihNvjZdbMmfzpLw9zztmfJZlOkUulMQpp3n57DaGSAJKUJ9rXT9AXpmNLBw7VxdrV71NWVYuqCDTU1eN2e4jFogwOxPH7SpBUnWQiR0VlBSCQzeRIJVKsXr0Gh+rCKAi0bWzDoSnoTo1irkjbhk62tLcS9HpoGjWa22//DU2ja3G4vCAKXPfjG1i0YD6WmSOeiFFSGsHhdNIwahSCWWAwkcS0TWoqS/D6AgTDJXzmhBP58Y9/Qn1tPbru4dln/0HLe6upr6unLBxhdHMz0ViUklAATVOoqqlDlTVWvrOKaDLB17/2TUIBPy+88ALTZsygtqaGc88+h5NPO5Gx45tRZAWPz4dpmQz09ZOKx+jfVuClp69n1fKX+Mo3f0Pe6d8Rt/WA7cj79dwOJ3f7u4K+a3v7IsMWRZXVy5cjiylsZFzeEtxuL05Zwh8Ikc9nSaVjOB1+erd30N+/naC/jGwhS7GYJZ9OIakaTo8H08ji0mRUpx9ZdXPjdTdxxNGLiQ3GEASBZDLJ2ytbeHf5ciLBEkJhHUkLcuMtv2bu7MM455xzkDWDc889j9deXcfXv/k1Tj5xMZIoY1kG77+/DqfLzU0/+xnHHb8Y0zCwbRlZEcikUrh0Jx5XAFFW+Pvjz3LiSadh2oNocohtne0kEymefuopKstKaB5Th+bwYxhFikYOl8uDKIGiyAT8Yfq6tuPxuSmvqiMaS2Dk06x5bzWV1aPQdRVZVkjGYzidHmprazFNA1lRhqwxyQEEWUGRNYx8Ad3lRLDBLNh0bN3CFy79IpPGTcE0c1x99Y848+ylbN60mVQ8j9OhIUoyoigSTyTo255AFG00p0x/Xx+1DfWMGzeWqdMPY+OGVkpKHIiSxAN338/oxlGkc70Iko7D5caBgENVkUR46cVXqKytomFULS1rVqMH/Ji2QT5fxDLzaJqT1e+tRRQtmkc30thYjyBI3Hb7HU5X6fQAACAASURBVMxftABRgMXHHkVjdYTqqlK+96OfM3vW4Th0jcOnH0bBMHn4z09x7PEL8foCPPTQX5g+fQYVpRU4XDou11A6hmQuh8PhwzQFJFnGqTuYMX0mr7/6BuVVZURjcVrWt1FeXo7TpfH7O+9lypRxCFIelzvM6Im1qA43XVvaKWLj9wZ45OHHGdfcTCrVz0BfAk3XKA8F8ZaEWLbsOVyakymHTUNWVAQLbEyigwMEQiGCfg+vvPQKVZWN/Otfb2KLJkGfF5dbY9GC2by85hVaNmyisqQCSRIxiiblZeWUhkvxuN34/QFy+Qya5kCRRIyiQcEy8OgeqqtqEEVYtWoF4ydMQXe7qatroKO9nUwmg667MS0TgFw2T0fnJvw+Px6Pi02tbSiqzLPPPkO4pJSX33yWgWg/S5aeisPlJplMERtMsHHjZoL+EKFIBelMGpdDQHN4UR1OBFHakX9t38aNnYFU9hfiCO4Zw1MmHGrYu5yQMKzTh4zc7UF9NHKf7P8YufsfJ7Gf4lN8ik/xSWB//fgOFUzLQpRlBHQKgklPcgDbO5nDTvoeiy/4MXbNPPq6u+hs34ZtixRN88MfG1mWUGwbxbbZsr6VB353L6lsG0j9VNfqmKZJa+vmoeS3skQhb1BRVsaWTW20r2/lyb/8nUwqw1ELFlFeUcH27V1kUhnyyRQzJk3BJSv0bNnKhg/a0Z0qyUQ//3jmeQb7u1FUkeqqKupqyvnlL35OQ0MlhZyFbZvk8zm+/a3vojpUVEXj/fdaOP+MC8jHstzxi9/yzhtvk8vmESWZhvpRvPf2Br719e/Q0FDJG2++QD5rIAhFauv9HHnEUYTCJSTicS6//DIkCVpbW/F5/dx6yw/RVBBsmVCgDEXzMDCQIpHIs+WDFoxMAcEwKCb66YsO0t7ezmA0SmdHJ1dedQ2FvMGE8RMJV1USzyTJ2wbBkJ9UKoPH7aZ5dDMejxvNodHauomzzjqbH133I7Zt28bYsc0sPnIxhmHy+ptvcPMNNyAVirz03L/4/a/vRpAUQiUhjGKOzi0vYSYq+eq1dzGgy0hYKBgfm1D8b4FpwrQpM6iuCBL0+SkUbWxkYv39FI0s8UQPimaQymylsrKByvKxDMS2IBl5BFlA8YTwetyk03HyxRy9fd0gF8kW8yxdcgKCIHLX3ffi0nUMo8CV11xHOpEmOphge8cA6Sxs6WxH0wwsHTa0vM0VX/syZ5xxLv6Qk2x+O4KVZTAR58IvnMNVP/gav7vrF4RKdERBQxK8/Pi6myiNVNHTNUhKymAIJolYFK9HJ96Xp79vKz/98a+JlLn46mWXkkpkuOZ71yHY4hC5K+SQJHGHLB8KhSK333YbRiFHMlVg+cp38bhcNNbVYwsCmuKlrbWLULgMyy6QzsSwyFEsphAlZSgQkSRRyGURBZulpy5FAJLJDJMmTUTAZPKUKiZOrOGP99+D7g0wb94sKitKuPOOX7Fm3Ttk8lGMgsQNP74Dh9NPb08f5eW1IElIqoBT15i3aBGS04ltw1cvvYhXV7ZR0ziR5556GtIFps4Zi+iQkTQvTodKfV0N6XSKZU8twykpyKZN0OVB1wOkk0UmTGqmom5ooSSfj5LNdnP20sUMdm2lrq4Gw7TJawGiuTzvr30d3ePkg/XrEQQ3N/3sLoREmv6uNiTV5CuXfREEA4/XiUvXSPYPYBcMAt4A8USO3//hPgqGQTafw7QlDpu+AFnRcXtcTJt2GKIgs2lDJ9/5zrcxLUinTFweF/FEjFw+Q2l5FTY5MpkkkiyQSSXRNI3K6koUh5Mbb7gG1SlyxOL5nHrqaeTyBXK5AoN9gzsIfQFBsPD7y+juSnHWWRdwzNHH8PSzjxEpCxEKlVJeXsPXL7+cr1/9RX7z9B0oKCQGYryz8lXiqQSKw4GFgKq5sSyBYq5AW9tm/C4XkmBRNIrEUmkWH3McpmWSL+bJZNI4HU6y2SydXZ1gg6Y52Lp1M1VV1TSPGcu77y2nuqoGn9/PqaeewSOr/8a3r7qBcy64mESiH8Uu8sxTr+B0eJk8aQL+klI+aN1G1pLxhivo6+ohlUj+p4eWT/E/hE8tdweJA5Vl7gkjTU73xzI1Ekaygozkc/Wfwkg+f/tzrnua0I907XYNsjLSKvZI1s796c+u7e9u//7gYGSRe0rnsGvqi73JM/cHu/rVjdTuniALQ/JVYUe49o+Hu9l9u3sjfHsjgnuKNGjv8LX60EHAtsAWmbngBMobpyDIDgzLQaS0ikwhTTGTZf3Kt1GNHJrDh4WNLAggChiCwNoVL1Imx/CHw/i8PrCht2c7ZVW1aLqLTDaFw6mRzaWZv2gulfU1OD1OqmuqcDlVBqL9NI8Zw9r3V9G+tY+a+lokh0KoNEjzuCYUh5NwJMDcBfMZGEhRXV2HhYEtyBx93HEIosAf732Iww+fji/gZuyEGhRJwiwKpNMxlpx+BOFwJU1jqsnnVDa2taC7XETKgzz9xONc+sVLSWUGka0SEjkbBBOjYPL6q2/xox9dz6N//xubOzaTyVvMXzibbDbFB2tbqaysRFVltm7eitvlxDCyOHUXvoAPt9uJpjpRHF6SA70M9PQjWAInnHAsCxcuxCgY3HjjjSw9eSkej49v/58rsFBZufw13HoV77e+x4a1m7j9l7dz5JFHks9nceg6NbW1LD39TILBEjo72wGLU046AVlRqaypoKKqFM3pQpNteta9ysBghs9c/GUEVcUviBiIO57Gg8e+qAiGJ9e19+CLsq/t7a28LMnYkoUqOYhGY+gBlUIGBgc34fVWYZkyfk8JecPE5XSDYOFyuhBVFwNdXQTCZSSzacxCAdEwSCaSeDwRivk04Yog6UySBQvmk05m2bRpK6ceeyJ/e+wJZk2fyn1/foLaJg8nHH0yEn28+PRzXP61aznr9LP50bU/4DNHH4WESD6V4+7f3c+/XnyFcRMmEgpEQJCQZBOXbrFw4UJkWcTtcdLVth5N8DNr7nhEFAwjidvn5vjjj8Xh9GDaEolkgb8+9ixz5s8hEAyAKGKZCqZp4nCoiJLE4bOmkokncbldjGkaj2GJSJqMaWSQJJFIaTmmBYY1gCxoyKILRVCxBQtJVEgM9GLJQ5bFpad/DkGAstpqCgJs3NRNZ8cmyitr8PkdOFwqXVs7cDm9rF+/lc1rVjF9wVEUokmOWjIfBRlVUWnv2ILHKSGIFvm8gaq4KOZz6KrJQDpN3+AATaPGMW7CODSPhoALsxjlg3feZ/b82WTSKfr6BjnmMyextW0tv/n5nYwZNxrZytM/mGLluy1Et/XiDgXRXNDfladlQxeHLTgcJJFCOktvT4y6pmZOP+00gv5KLv/yNzn7zDNYOHcmTZNGU1JRgyVIDPT2orpcrFm7lkwsgeTx4PWXkMsbXPW1/+L8z59PfzROZThELhNjYKAT1eHilZfeoKQszE9vuIlSTxl3/OH3xKJR/nDnX5m/8HC8vjIcbhe5zACyLeD3eykvL6VnYAvhkmriyTyq5mDS+Klgp2hv3UwyXSQccVHMDVLIKax+7wPGTxxPJp/ElkVa3l1Ba88A555xDJloD5qzFMVl89yyJwiHQ+gOjZNPPJ5n3n6B5sqxlJSU4na6eeONVwiFImxqbcW0DWRZJhKJYNgWkjQUhMUyDIpFk0Q8waaNLdg2BIIBXLqTgD/Ac/98mqZRTVSUV6BoLrBlqmvqGOjvw+nUyeaybB98j4ZRlVSW6nS1t1NWPZqqyiB+v4vKslpWr3mbP//xbuqry3GFStAUi5bVQ+k/bGlIC7AnS9rOfTstcPutpuLjUswPAz7tYfzZV+ueZYMo7IjWNSxR0kh+xzu/21uS8g+d9Ha38dH+nakaRsKHc4YhH5I9t7kHfCrL/A/ikyB3I+FArRF7krbtLXfboYBhmkiS9LG295e4Dcf+kqV9aW8k0jI819vurtFI+/Yp7PghlLDuCcPv8Z4COIwkFR4Oy7I+HHAPdKHhQMiVIAg75I/28C8PWXu7Es+dnyVJ+lCmekDkHoN0tIe/3vt7Xn3qcZpqwpimwOgJk8mLIkUzh6S5EbGwLIlkzybyve9iJVsZjA4S8krE+tqQrRzJgS4KRQu37scykmzcuJpgsIZCIUNZJIxpm8QTMUrL6ygWi4RCYWwzQ1V1KYpDIZvLYWGie9wYJmhSEZcmYeTSFPMZrAL85PqfcsLxx1JVFcDv87B5Uzujx0wk2p9hzZoNzJk7B6eSJdabYt0H73PfPX/mhONmU1MZ4p/P/IucJXHl1T/kmOMWc9lXr2D9preI9WUYUz+FhtE1LFo0n7PP/ixHHLmI0WNGkYgnAHHIB8vpQpJFNNWBJEH/YD8ul4cVb76Dy6UTi/Xh9mp897vf54KLL8KyTL71zSt4//11/PpXd3DjT2+mtLaMfCbHvb/7PaPq6xhTX0LLmhbcusKcufM49vhjaG4eRaS8jMOmTcawDHSXkxdf+ReTJo9jxoypeMMluH1OFCmPZaToXPUaG955lZrDj2HmgoWIsrLj930oZ9ShwN7eoZ3P5KGQZe7a5p4DOlkUMgm2d6+komYSRjGJz1OCrEmkMincbi+a6iJvFNA0HcuGbD6LQ5IQJBWHJJNODlLI50CQKa+qwTCLFAsFREFG0WxsW0CWFFRFo7KmFEGwsMiydMmpePRSNqxbyco3VtLRl+Omn/wMpyfIrFkzuPxr3yCbL1BdV8m8OQuoqArQOHo0ZtHgzw//maqqOtyeALJq0d3Vza233IbX76R1fRcPPnwPJ55wCnqwBLGQwq17+Orl32Z042gipRE2tKxDQkLXVTo7thAKhrDNHIP93Xh0D9lslP5YEo9XZaC3n+5tXQS8IX512x3MOHwMEiKiaFEsFnFqHmzbAtHAyg6SymTwhcuQzSKaLJCKRbn1pp8zZ94cckmLbT1raR49GZfbiS2KbNjQjYrKhV84jxt+ciXzjziOvCiT2taFwy1RyBdQVIVgwM+KN9v43V2/Z/7CeViWwR/vuoeGqko02cnYsQ3ksimMQoH+nl6cfh9GTuTKK66jrb2NI44+io0tLTz6yF9YfPQJmEaBja1tjB3bRDGXI59JMXXGNGIDffjdNQhKAV9AJJ0o4nI4kcjT19lJNhOjvLqa6GCcpUuX8OAD91EaKcHl9PD3xx9n5syZWIbNb++8i6lTDuP9lasYN2oCv7jlJkpLvJx62pn88Z77US2ButoIvb0JKmrKMYwCZSUlKIqLI44+inCFhzmzp1NX18hZF5yExxFgzcoVuBUbr0dHd5cRiyfw+HVC/gBG0ebhBx7gkQfvo3nybJyeIC5vkG3bOqiurUNRnGhOJ08/+Qz19Q24vQESqQyz58xk6bnn0r3xJQRRp7apkYIRZ8yoSVx9zY/45S9+xWc/ezZlpQEqm0v5+vXfY2ykiZJQCQG/j0ikBF330b2tg0AwgKo5sO2hQF29fb10b+siEimluqqWjs4tRKODlEYqeOONl1m8+Dg2btpIPB7HFwzQ1rYZl0tFsG1WrlhBr6OLU0/5LFW1Y7jhptuYPXsBhVSeF/71Cr293dQ31CGLGm+9tpburi7mHjkHj8uPIhoYxSJOj/9j+en2RsT2leiJO3LU7TxmeGC4XaWawM6Mdv82Pu2Tf/BejxihzF7J3X7VBuzFIPEpufv/F/9T5O5QY/gL9EmSuxHTDhwCUnCwde5LHSNFthypzMFa9j5JHOg9PlhCvS917muZXUvtj+XuQI8Z/tzatv1h8Jt9rVdCwOV0MXXadGYfcQQep0ZnZw+DsUGSyUHy6Qx+X5hcJommyeQS3WzZtI6sYVJfX8fmrZsorwwTCPsxc1EcoslgvA9N9VNVMRZBLpJMJMnmsiiqRMDvw8ilcEgG3R1tNDU3ormc5PMFfAE/ikOhv3+QUCiMIAkgyfiCIXL5AqFIOTNnzyYaH8Dr9pCIxbnqqqs46ogj2LRpK263h+Vvv07T6CZExUswrHDs8cdy8y03MWPWdEaNmkwukyKbSpFKD/D1y77FKaeeyJ8eeIht29ZTVlnFVVdfydLTT8W2DNZ8sJaysipSyQwgIysyqqJw/30PsPaDNcybPxfLFhg1qhpVU0jE02iam/ETDqN/oB9Ei5NPOpHJk8bT3rGVopGnkM5x5dVXcuvtv8TnCTNj5gR+89t7+Nx5nycQ8NDR0Y7DoVE3qo5f/erXLJw/j2efe4Zzzj2LgN+LIFiYiShvv/JPHr33t5R6VGyni/lLzsMV8GMjfWinPVTEbl+fJdjF5+4gPXX3tpADQ898b9cgmUQ/giOAmY+SjBWwNRm/O4TDqTAY6yPe103Q56O9bRMSRSx7yLdIEQvI4tACieLQyeQLmGYet+4hXzDJpgvobp1kKoqkGNi2iwsvuIif3fxTUpmNqEqISKkDn1LO3AUzCXpE/CEfbq+fUCjCySedRLgswEMPPcysudNwOD0YxSLRaIwJ4ydz+Ve+wYyZE3F7/cybs4Dq6jC//c29/OSnP+C8cy6msjzE+2+/Sm3z4Zy+5DRuuflWmhobWHraKaiazfPP/ZMpE6Zz3x//RHVlBQICLqeHYiFHedUY+ru30d+b5m+P/Y2FC2Yzf94MNI8LUXZQxEaVZSRJBdsim0vg0Pw4NDfRgQT5Qh5FU0kkM0yfsZBbbv45M2dOo2XtNp554q943RIOVeSn1/2CaTOa+OKl/8UPv38To2sipAp5Kksrsd0uCpk4kiSSzeZx6zpz5k7DwsKyBNKZHHUNNWi6F0nTcDp1Lrjovzj7nAtBEcmkUixZcjyLP3McuVyOsrISjlw4j4FEPwFPgD/95TlOOXUxzy57gkmTJuDy+bjvnruZMKkJw9b4yqVfZ/6cxXz/musIeJxYDgeNY8YgCCqXX3YZoxobOPKIBRTyWSoqI9TUVuL26miqzkA0xrRp0/jD7+9l9vzDmD5zJhUV1cg+P/U1DZRHwgQqfWSSCZy6A5fTh6ypICr85eGHKQ1oOBx+ZMVPUUyguRz4/A4so0AiK5DK9xEIBRCQEJwKiVSKWbNnc9zxR+Hx6ui6k2IxRUNjE7YtYliAaFNfW45TdyCrCm6XQm/nFmzRINH2Ms/9ayNzFi3CFgycqovGhjouueQiVr3zNld8+xqCJREu+eL5PPjYg/RvHKQkEqa1dSORslL8Ph+WaWLaNpIkI4gSuu6mLFKGJEtgQ76QZ/zYiXR2dlFbV49TdxEKlODUHMiihd/jw7RNPtjUwotbX+IbX7mQF19cRVvLCs6/6ALcgRCP/X0ZF15wFppDZtOGDlRVZszoZo497mjcPg8r3l5FXU0p7656l7qGJpD2PDcbidzt3l/+38vtboTavYXwQBVJh3gOcgDkbo/1/wfJnfCflOL9b0Aum9vtBdwZQn847GGm7n3Bgcrw9nZfJUliZ96yg10JPpD2DwQHS1T2Vm6PE/2DuFb7ai37T2Jvz9lIz/LwsiNB2uWzuePvUDs2ov3xfcOxP/f7k7yW27b1UFVVAYycAxF2f/127bskSeQLBbZt3kA60YeQj5OOp8n2tGLLDhzhGkaNnUg82otiJkn0tpMY2IS/rBl/5RwE3YnqdmFlbXw+P4lkLz6fl/7eJOGyIIlYEl33kE4OkC4OEPSVYMYt5IAH21ZAUimk4xQLBQqFArrbTTqTwevzYZhFBIcHybKI9vYTDIXo7+9BVyU2bVhHeWMT/d1RIh4nWCnCjVMwDYM1azezZf1qjjh2Ma0bWhg/ZgxZ0+IPf3iA0kg5vQP9fOm/LsY2imzrbKeytpG+/k7Wru5i8cJZtPf2UFVXSTqWwOv3gplm+fOPUtE4GVl2446UgiIQ74kiKxoej4/OzVtYvXoto0aPJlIS5uXXXmfe3JlU15dTyOdpWd+C2+Nh9OjRoElYpoFpFFEUlUTSRMakkEmQF0RkK8mby/6G5JAZSGY599KvI2oOisbQvR5pgeGgsSMOyycxth8IPtYNw6avr5+q6kra1r2FYObxBgJILh+FXB6fN0B/fxS/30cqnUJTHaiqStEoYhQM+vt78fvd+IJl5NMZnKJJQfFRMAR+ecvP+OrXvowkywwODhAI+kmnc/hcHrJWjuT2GMl0mqq6alLpDAGviyuu+CE/+sG1mFIBbBXsIYF259Y2EG3Wrm5lyowpBAN+RDOPritsWLuOy77xfb55xXc4+ZgjSKXT3HHnbznvvPP4x/PLOP7oc/AEihQKaRyah3TW4lvfvIJwaQVnLT0D07B48c0VnHfhOTz2yMNMHz2astFV+P0lFHIGLzzzOkUjwVHHzsLr8WJJOvFoD4Ih4fD7EEVwqjLJWAxvMIhtmthmkWjnWgTZhaWU0tY+wPXf/z533HkLr72ymuf/8RzZdIwbfnwVhpmhtLqMnu0ZrEyCilFNWGae7q1bcLtcCJKbYNjND79/Hc89+w7Pv/QIhUKOoxadzJNPLcPj1TDMFJImkcsWuO3WX3HlldewuW0NdXXjkCUnhp1H0zRMyyCbTWAZNmY+zQsvvcoR8xcwEO1k7doE02aMR9cKhEIhnnn6eSJ+H9WV1Vxx9XWc8bnPs3HrZgY7NnP1Nd8hmrJweSRy2SwePcitt9zMl770RWLxfgKBAKZlkUwkcbpceANBklkRXRMRLJu1a9ficGqURiIITg3BtHn+2ec5bOponIqPYKmHnO2ltz3J9Td+icnNC7nkspOR7BC2YHDzTXdyyVc+h9ejocpurEKUnp5BAsEwulslnYnhcvnIF0UGurdSWlFOIp5Cd+ls7+/nxp/exs9v/RkDyQ5UKYJYSCGZJo6SEgTMId82xT303toipmmxtXULTWPGMxDvx+2WUGUPF1/6VTKZNFd//kpkUWHbtm28teI1Tj3pdEDg7ZVvcfikaSxb9jjHHP8ZVFXivfffZdKEw1j++sscPnsuyDKyYGPtUD/96KEbuP22W3A5ixgJjSuv/RGi4OC88z6LrIDL5aaiwkE6VaR1QyfFbIp33l3FRZdexOrlz9N8+HQGevoYM3YKnd1xapsbQbQQbZOd4TdEQfhwjrNzjjr880jzHxEB0zIQxF1/8XcOKh+V2bXOPWFf58i74qO6xY8L5w92LB8hSou5Y04//OytHY3sKUjdvkDVHAfc3U8tdweJPVnuRrTq7AieczCyxEMBURQxh0XJ/P8Bn7SUcXfHCYLwiVyr/9eu+0j9GW6x2t9J5a7D2q4rgcII+/bWn93hk7yWoiSjqcrQ/wXhY9v+yFRNaygpqyfoo7yiBl+wElkPEMuZLDrpTErrxuLwRwiXldGy5n0qR00kGk/TOGY8OdMiXFqPWVQw7RTbO3rALjLY30NFRYj4QAxBkjEAWRYpLRtDNJ7DU+ImlsigyhKaIKA4nDgcrqEcdbKKy+0eisIXS+D1BzGLBQRRoKu9E4csU8jEqK4MkkhEKS8twRAksiZ0bt1CdVUZRjZLVXUplgx19XUUsnk+aO2gs30LHW0b+NrlX6K/exsBn85zzzxNdXkVPdva0WSN+x55lLLKCmorKujq7EB2KyiKgCVY9PdnCIXKEWQFUbTw+0OkU1nefvsd1q1rYc0Ha4mURXjjrdeJlEWYPvtwVFVB0R2UVlYQjISwxB2Lp5JCERkzV+C6a6+lxGWxdd0LNFcGeeiuu9HKSznq5HM5bPZ8ZFkdstDZwidD7HbiAMndJ4FduyGKIm63C1EAp8tLKpHC4fBgoxCLx8AS8Hr8xBNxTMNEd7uJRaM4nW5y2TwBXxBRECgUDfp7eynm8ji9fjLZHC5NwV/iQhQkBFvBNiXO/tzFnHPOsRSKQ35MZ372DERJJBQuwTYNGhrGMDg4SGlYp5DNk06kGBzopay8hmLepK21k+t++AMuuvA88vkMDs3JP559lgvP/wKPPfYkCxYfyc9uuokpE8ZSGvTRMGYsq9esZ+PG9UQiNUiSQjoRY/y40cyddyTl5RU4HRqzF8xCUQQmTRyLx+1AEBU0WSEajaK7vPzkp9dx4onHoipOBNNCU5y89No7ZPMJ6mprwDKxLBPDFEml0rgcLnKIhMIV9G7bTn93F+lMgZraCmKxGGecsZRoPIrudmJZBuGyUjZs6ER3OFCcRTy6TjhSzsZNbZRVRMhmC2TSFj/44X+zZctGYtE0K5a/R2tbK4MDAwRDAfzBEKlkhrlz55LP5amqqkSSRfL5DLf/4mZmHD6ZYjaLWRCwJZuAz0t9YxMuhxcEi/vu+zvN4xpxe1RkyYnP50dzaATDYebMnc+zz79Ay7pVXHXldxEkE83lBEzy+TwOTebGn/yKY44+gWVPvcCUqRORVQ1Nc+LRPWzvjvPGG29SW1uGJA35oIUCJRTyAi7djSQIbG5roXnSJGTJRzYXx617WP/Bes4753M89NBDLDpqJvHBDIJcYOHCBRjJPE7djeRwIAkFvF4/siKRziSQ8QISkiKhez0gqAiyhiTr+P0ejjn2GMDGtsHjLEGw46RifXjCVRjmkAzVtAs4NCfLl7/LQF+G/t44d/zubhYeORvZqWLZAscdfRRnnr6Eb15/Bdu6tzN76gxGjx479L4LAk6HG1mTGN08DlGSkFQJ3SHhdCpEGpsopgukUikUWebh5x/mseVPMKGpnqlTJuP1hFj22BOEygKc89mLSKXjWHYWTRXxeCvJZAq88ubrjB03ntnzFnDrL2/n+BNOQlVDOCXYsqmFQj5PRW0NlvDvycyHSy53tdLtTo4pIGDbFsI+JBvfveVv98fuL4aJJEdU/RwoadxR5cc+2IC0q9Jpx8eDHd8/tdz9B1HIF2wA0zT3+0b+TxCr/bEajWSdGb7ysDurxYG0f6gg7SCpu2Ik37C9ySwP9b3Y13PfFx+YEeu37EM+QdzdStP+3nvbtj9mubOEIT9P0zQREBie5W5Xy93+yl3/TU6yS7kD8VOEj855d+/FkP2RgqMI3wAAIABJREFUf0slMlJduxsbbASwBWysYR4KArYgIwoWVjaKJeoYhRT5TJx4bJB0MktFRQ3JYpbySIh8zsThcJKIDyDZKpaZo3+gh6Auo6kOYpkCWUtEtkzC5bXIsoOcYZJOpghFSijm8gwODuJ0ONEc2tDks5BDUlV0t4t33lpOKjbAqLoqsvk84bIw2aJMz/Y4Hg0qKksoGDbFooEpKiiixobVLdiiRXVNJaZVZFPLeqYfPoOVb63g+ut/wkmnnMHq1as4+eSTCEYqqWmq5ZE/P8w7K9/jtl/+gkImi+bUOWPpEtxuP3fd9VtMO4eFxr333IdpWHzunLNZv2EdAgbTZ0zF5dERJYm+7YOEy0P/dp1lBIq5LIlYlGeXPUpDwyhqwm5eeOqP9PQlWPr5y6ieOB1bcCDYNpKwQ/g4LNHvR3fn0GCH4Q5Jkg7o3TrUEIRdz3DYmCRIbF33Hk0N9SSSaSzRRtc9DAzEcLlUNFWltbWV0rIyUulewpFStvd0o+DHEPK4nW40SyGvSqRzBppoIak2sujgjNM/x1//+ig///nv+cbXPouk+XBINqlUEofLSSyVxKlpnH7quTz00IPousWRR34Gt8vLNdd+D0F0MG58M1/58reYM20Gpy09hnBlkL/9/RlaWzs58aTjaahvJFtM4HV7ad+4GV1zEqyuANHCKFioDictH6zBIYmEAl4efPQfnHHaaZQEfby3YT1hv5+A30d71zaCXi/BoI98McuzT7/M5q0buPCi81Fkjd6+LkIllbg9HmwJivk8DlXENAyQZLKZNGY+jydcRjIaR1dVEtEo6azEW8tf5dhjj8CwZVRZppjP8uAD93PK6UvQ9TIuOf9czj33RI479jRat2yhojqMPxhiU0sH8ViCxroy3njtddauXc9ZnzsbS7AJhYM4HCqxeJbzPn8ejz32FwYHB3BqKmtWr6OkpJSvXvZV/vyXe/H5PcydfRwvvvIM0f5uIpW12DmBoh1F0SKYZEglB1m7uoPpMybT29dFabgcUZQxDJvOTRuoGlVDLB5FQMKrBygUixSKWfoHetEcTlLJLBWV1Ty57EnOPPMMLMtme+cgv7ztZq686goyxSR19Q3EBpM89ugy3ln+NhdfcgFllWEMBG649mauvOpSbNHFxvWvMW/O6WzpfA+Pt5RjFp/GK288Tjyawq24GYinqG2qxbQy9G+PU15ZiWnkkCyFdC6JKZoImGDJWKZMtC9NbWOEzs7NVFfV8Oe//o0j5x+DaHVCTsDwVPD6Ky9y7DFHIskiN/z4RiTZjccbIuRz0tQ8FtVl0NQ8AU0T2d7VjdsZxOly0dHVQk1VPWedfwnTGqezaNIinnv2WcRShfHBMZSWl+Fyu5CxyRXy3PDXW+nb3suC2TOIx3r54fU/IZ/L4HJoSNi89OoKWj9YxfGnnkZse5xRo6qIJQbxegJ8/rwv8Yd776avr4tAuJRTTj6Jxvp6bvzFL3nx6SeIhHQOO3waLZvaWHz8ceRFgSHb246AapaNtItcc2+Wu/3BvljuhpOvj477dyvgSMd8jLTZHx+tLUZOESDsUGftTPow0pKevTMN+s752h6G7U8td/8LYJrm9+GjwBXCLqv5O/ftiUwMLzt826u0cg+BPoa3sWuwiN1NdncXRXFPgTh2Lbsv/hyHEodasidJ0n7fh4Pt0+4iQ+3tPgniwYX8t60hXzJrGDEZfr9FQfiQuBxQ/btsw/u+6/6d2Fdn6n05fiS/0pF8CXeNiDn8PdlJ2nbdLMv6t7r3dK922z+GJtU7LflDGwhYgI0gD+W1k1UHmu7DV1JOVXUdnVu2kI0OIEtBbENEd3lQZQ+qbLPqracIhn1kbYlCMYtsZWh59zXqghrvv/kMjYcdSSGVwBkppZjJ4bIsUsUi/kAAWVYoCBYujxtFVbCBsspKahpHoQfC9A30sG5dK4pok0334HYqeIIVDPZHESwTj0sh2t/LP57/J0cfuwjTLqDIPro2t2OZQz5AK1aspHn8RC684BLq65t4b/VaXn7+Rc4480xOPPUEbNMgb+RxuDTaWjax9LQltG9tx6m4+PUdd3P0MQsYPaaa63/+E444agGz585EczlAEhEFG7dHw7IlEKBoFpAkkXzvVp574FZkh5fpU8bR2zdAvCCwcMnFzD/hLPxlNQjCkE+dKLAzHOVumdyhGNGG7v0nF8xq/9+jf/88vFuWKBJ0y7S3tyF6A2QHOsnn+/DqTkxhKJiKU9fwBtzYRZnEYA6XS0fRNARkbEseiqoZDuJyulA0HQvQFT8nnHAiqsdi4viJHH/MmVx0/sl0tC0HzU06l0MVUmxdv5nPnLiEcACypsKFF5/DORecQSDkp6KqEk2BpaedTGL7IE8s+xvTF0ymcWwZ8xacgMPeSNG2UHUPxUKRwb5BOju6SOTybN60me9f9d8cf9xnCIZKcPt8/P7e+zn56IVoLoOiFccXKOfccz7PPb+7m29cdjkIRTo62wj6gviDtYxuHkVJxD8kH/W7kSWZ7ds70D022zo68AUdKFKARLQXtyzgdHsRbZVEvMi3vv0djjz6SLx+leqacrxBHw8+9ABz58/FFkSq6suoqa5mwwebuOee+4j25HntrdVUNjaCLaDpDvwhB6mESUHI8/L/Ze+8w+yqqv7/Of3c3ubOnV6SySSTMukJpFICCSTU0LtEmgpB4FVpLwI2REURBX0pKggioEgvAhJKILRApKXX6XPn9n7O+f0xM8lkMpNMSBD8PXyf5z733nN2PWXvvfb6rrVeWMbcg+fhCga46aZbWDB/HqlUBKsQ59ijDsLMRSnx+RFsCuWVtdx1993c8ZsfYtcddLR0cOppR+DyhsjkCiRiSdo7mmlp7cTlsiGYYNPdhIrKwAK7zUYyGSGZSHHekm8S7YpQVV1BSUUlTs1NOp3h8ssuZ8qEyZx4/DmcdPypPPnYSwwb7ueGq29n3mHTKAq4+Nkvb+GqKy8mmUlR4ivjRz/9X6YdeAjjxgyjeeNq7r7r/zj/gm8R7mymtSNBqLwKb6mbmtrxpHMdKKKGLIn4fXZG1NXjcbvR3Q5QQMkWyKUL+Dxe/vfa7zNuzEQKQoQLL7iKE487lY7OZlw2FV2R0H0+WrZ9TCgQoG3LNjxuH1tamikvH46gCKx852MOnTcLTVX5dNVqaquHUTu8mo1b3ufkU87CZpcZNryafFYh1tWJZFhc+o1L8blFxo6spbVpI/msyDeXfg1Dz7KmuYW6+gqmHz6cilEuKkaWogQ1WpJbOfKwQznv/PMY3VjF0ccuRkbjmiuv55gjjibS1kn9+DrimTRTJk3A5Szj1Vdf5vFHH2LKhHHMnX0Q37zwQmbNmko+Hebyy87n+WdfR1Nz1A8vp70jS3HJMJacdz6l/lLGTphA0hJQ2EFB7z9v9zpBMXvWBINp8IaC3dnj7RiL9iwAdtNigT4eq3v9ZZo9xwTomUn79KVPGTvO9ax3xF5WHQzkKVPoU8eeZoEvg+buK+FuH9Er3PVFN6Vn58Xi7ibxvRG2+qK/EDlUfJ4C15eFZtQXe9OmgXZaPk/7QRj8Pu6p3fvjWu9OW/hZn699wd72aXfphyow99986a8FHMyW7rPagO4N+guVhmlSXBpCUhWyhRgFI8m7K98kngyzaf1bjBxzACWVk/AHQ3RF0wRD5ciaG0ewhGS8CyOXIWcq2Dx+sCQ2b9hAqLIc3aah6xqSIu/SX1EQsLAoDhRTVVWH1+3F6/V2x8HKGKiyQt7IEe4K4/EEmDJpKrmcyepPPsZh13n6ueepqKoG0UFpaR31Iyv4071/4pVXX6G5rYNoZyczZs+kYBXweJxYApimxYJFCyivqqK2fhg5M89jjz/OuUvOprq2ikVHH0VJaUn3FCtA9xQtYSCjAuRyhLes482XXyCbLTB70YkIpsXqTdsYMXY8w0eNRrXZd77WFqQyWWRF3mUXuO90vr9GuC/TWLlrU3YcULEwJDu5goCOhazbiKcyOJwBMtluO8ZMJkMum0MWRGRFRZElRFnGZrcjCAI2uw1JUzELJplkAsuS0bUsbyx/C0UMYdPznH3m12hpbqYkVIzDWYQs6SiKQsGEkspyYokIXqeHXC5FLp1AsCxMS8HIW2zZtJmiIh1kkeqacShSkC1rXsapFYHswWlXyGULODw+li1fwYwZswgWFTNieD1r166jqqqKZ556BrvdQUlRMbrdRTgSx6m5KCoqYt7h85B1DU3RESWBX/z8NvyBYi6+5Jscc+wi0qk0RiGLx+MhX4ihyA5czgCpTBfJaB6Py0FXVwS70006kyIc3sqJpyzC5hCQZRt2ux2jUGDsqHq6OjpxOnVU2SCTTeN0urnoG19n4cJ5vLriVU486ShsmoBD12lv2sprL75J4+RxTGycwLDhw1B1nb//9SEWLlqAaVm4fD4MS0SSnfzylrs4YNZsBApMmtxINp/GFEQsUSRXKNDZnuKcs5dw+2/u4Njjj+GvDz5EZ2eY8ePH097eSkdHBytXvkUuZ/Dww48xumE8zz+7jBt/ciMerx1Vgs7OKGvWrOHEExbjC/gYMaKBp55+gtdee52ZM6eyeVML761cwcj6euYcPItCNk9pWS3btrRy2BHzeOSRZxhWUcHEmdMpLa0k6C9DkHI8+dQzHH/8YjrbO7DLJjbdDoIXm12iftRITNPCptswzG57TKuQpSDESWWiHH/SccTi7XhcJSx//S2mThlHcWmAbZu2YVkK4ahBqMiDaQh873vXMm/eIVRUVtDRGcFXEuKMU8/kuMXHks3mMAsCkWiCxkmNjBg5jN/++g4OOfRgwuEwLpcTl9POlVd9h5/f8gvK6sYi2u3kRRszpk/CsgosW/Yyr772GoccOhOHHkRTZQQlx80/+yXHHHU8Z5xxDrKmECzyE/AX8Z1vn8X1113J62++yshxdeQLEh6nBysvYNN0Xl72IosWLURRdK7+32/zm9t/jd0hYnd62bi1ldlzFzByXDVNW5poa+skEu2iKBgkk81TXVmGx63BbiiVfamUe0Or/KwYSh07xs6+nBd2ymdt50f0ydfnd//y90zXHPp4/ZVw9/8B+gp3felZA2nLBvsMhoGEwr5avr2h8+xN/Ljduf4frOyhalD+U9jbRX8veil4Q9VYDlb+UPrbuys2EI1wKPn3hs7ZVxjZncZ3d/TGzwP7S9PbN99A12+wa9r7jvV9r3bbPrrf8/7eNPcnxB47x95nQ+oNZ9HdIAwLbE4nLmcQlydITe0IQqWVVFeNQPN5MUUw0PD4i5F0F77iChRXADOfZ8XLTzN64lQwBPKFHLUjarsDsIsiJgPf/+3tkBQUVeHlF18hGComZ0I6k+OTD1dRUlaKKIlEY0kee+xpwuEwmq5TVVPO8BGjKKus5rRTv8asWfMoDjoYMXIkc2fNZsOmbZxx6mms27iecZPGIEogKwq6XUOQRCRVwsDC5nBw3OKjUDRl+3XYIdh1t1GRJFRV4f1X32Dj6k9ob97GjGlTqKwfTVPSomXTZibMmIXN5QFR2nXqF0BR5N1O4ftrFBtIWz/QGD0YtXx/Y7fCnShgYKLKIGQzyE43ubyA3eUmm85imHl83gDZTA6nXScaC2MULERRIpVMYRjde+ayohGLdKKrMtm0SVf7WjTVzdJLr+eQuVO4/vobOO74xWRSadpbIvh9AS657DucdsbpmEYK3e5EU+zE4xFEUUBT7dz4w5sJFVXgdtu59urfsX7DVhYeO4vOyHry0SbKyieSLShYZoZs3iCSTFEQBF5+7kXuv/8BZs0+iFdfe41x4xqRFZW21nYikS78RUE8viDhlhYaGhooLg3h9rkw8hYut5MVK1YyZ+4BFBUFKAoUEwoFScbDFPJ5kukoquZEFhxk8zHcHh9tTc189Mk6QqXlmAWVjvYoxcVlhDtjgImiKMQTSYxsmueefY7htTVEI+243D4cDhcbN64hWOJl/JQJiIKAhEF7UwsSBp0tUSqrQzS3tSBKEh2trZxwwtHEYzGcbh+SzYEgSqiqk7HjJpPNpumKt6JrOnnDwGbXyeXzOO1+2lrDHHDgTEpKy6gbMYxDDp1HqLiYTDqLpumUV4aorq1k66ZWDj5oHj6fm8Pmzacj0oqqWaTiMWTVRm1tNT+/5RbGjG2gsXE0dSNq0FSdSRMncszxR/D2Wx8ydfIUZDt88sE6bv/9PTz59LPMXziP4qJK1v57FWX1VbhcXn5z6z1MndbA3Llz+PEPfsQBUybjcclkcyYr3lpPTW0xkiiTN0wURUVXdR558EF8QR9loRosU8EyVQTRTiEvMqWxAUPMI0kKQV+An918C7LdT5Fbp6MjwuITT8bu0HnhxRcYN3ESeSyKvAFGjhqNy+Pmmaee5dXlbzD7oLkYQp7D5s1D03Ti0QSiZKHbHBw+/wia21tZvfItuto247MrxBJxol1Rxk+cxOzZU6gZUcum9R0Ei32kMxGeefolZs6aQ2VlNQsXLqCzvYPiYDFCocC4MVNJJQX++dLrTJwyEdGSMPIF4tEIvoCH8ooKLvrGt/nFz27FphfxwJ//Tl3dGJCgM5zE5ZMZVTcW3aZgGGm6uqJMmDgBmyawbe2nFFVWgmUxkN1cX23bUAQvkc+u2etfX39IgogoCj0eNsWd0u2abyBq5a7pJFEYoh3e3gl3+0rJhK+Euy8UfYW73gXZ/oQg7Oy8oS/6O3QYKnYXmLm3zn11nf9FY1+Eu/+UtmqwVgz1Wu6tYNSferkvde8v9N/82NdyPu/8pmki9Ru09/fz0rtx0z+AdXfYbKHHB5jYE4DcxBIFLAEMUaQgaChICIKB0OMYwAJUJLxFlbj9ATq3fEghkaZQyOL22DEFZae6+6PX+RIYmBYMr6vB4VTRHDoOl52g34Zm96GoCjabk4bRjYxrHEaouJJ8rsCPr7sJn9vOpRdfRFvzFp5/4SVcdi/3/flBXntjOcteepF/vfIvzjjnNCRZRBBAFAVkumk0gmWwZeNGfEW+He2EfsKZQKR5M6tefxFLkBneMIoRE6dhOv0IoszbLz3KtLmHgwiiYCFg9OT94satvRmjPu/3cnfCXUcsQ/TTJ4g0r0crHoWZS6JKOpg57HYHkqRgFEQU2UY6FUVRBfI5q5fohabqNG1rxh8owqbJZDNxfH4npx13LpIMF3zrZLpaszz97BOccNqxOF1u3l7+OtXVlUybMxcjmUU2YgiCjbzkQLU7UO0uCqiEAsVc+d3vc/Y5pzL/mJmMGj0MTXXhc5UiqAGi2ShrP9lIcW0dmk0HI0NdbRkVJSGmTZvKxZd9m8suuZRvfesS7r7zLq644n8YObqKRx59lEBRkIrhlbR3tON02Im0teMJesnmk8yaPRNRNpg0aRq6bkPTRAQxi2Wq2DQ/qiNLKiGSzWXQVS/5dJLakWMRRIl/vfQiqUyMquoSLCGP2+UlHouDIKDqToaPHM1Tz77A2AmNqJKNbVta8AU8KJqTx554gdqyev58z/0ESj3Uj64jEc8R8DsJVZVhWRZBjxdZNLj/Lw9SXTcKCRFFMGhvWYPLJSKrNlwuDVXy4VBEtm7cgNvh5MVnXqdxcgPBoI+pUyfidHhYtuwVivxBbrr5ZoL+Kr5/w7UcsWBBt7Y230nBTFIwEgQ8OqaVxxRVLAEUm8aMAw9AlGXy2SRFATclJaUE/CXIaopX/rWK5//5HHPnHkxZqJoDZ01l8WknEE+1kU8bbPpkFW67SGmwmBUrVjJjzlRERA4/bC6b1/8bZ1EViirx2r9eprquBt1mQ1F1Uuk0G9Z+gGKp1IxqRLSS3PPHuyktDaJoEldedR2HHzSNy75zDUcvOo5wuJ3D5s+lpr6CfDJO1bBquuJRdLebhsYJyJJAPh1h0uTpRLriSIrE66+/RU3tMMY2jqOjqx2Xw9Zjm6qAKfDwQ09imCrB0mJGjRpDWVUFomIDU+Q3v7mLmQfO4Sc/vYGDDp2P2y/xyCN/ZWzDDKZPnUk02s6kqaPJJLO89NLLvPvOuyw64UgM08IyMlhmlJLKSlKpKKIMm9atR5AstjZ3kMdGJt3Ou++9z9PPPoOiGihCmqCvHJsm8cBfH6O+vhy/28b4hlGUV4RQdY3O1jBlw4cPKNjtOk4MQau2j8Ld7tBLoeytaX9AHHIxeyfc7Y8x+yvh7gvEQLTMXRwsWNZAs+cu2J1jBtM0dxLuehc3sGNhvCeBrW+6Xluj/se7m7t/BbvPY/G7u3N70pb+pzAUzeye8g/l/FD6NVSBfSctUR8M1a5sX+/1QBq4/v3b23s6FM3mYO9c/373/jZNc7sGb38/3/3tdbe3hR6BRhTodqQjIgg76hcQkEUBBKHHZkpAknp2OrEwsXD5QqiKQkf7FsJNTcSbO5EEhVwmjdfvJZdIoYgC6XgcM5dBMvK889orpMJhrJxJIhJBlRTeXrGSsopykBRUp4/O1mb8wSJ0pwPFLhPP5Pn7w48Ra2/hhFNOorjUR1NTMw1jxlFTWQlYdHa2UTViFKVFAc792mmUVZf38Fm6PybddhGmaeH3+UGUKZgmkiQiW92CX6FgkMvnefuV18kVMoTKSqkeMw67x40ogtQTb6OkcgSSLCEKYk/5vd9fDAT29Dzu+Bb6qij5fJgQvXYrOxNQu6GrIhvXfQqKhs3pwizkcXvcpJNZLDOMrmok0xkEBXS7jVRXlGzexO210RXuRLAsEskowaCHSGcLguZCyqQ5ZOHJXPHda5k5fQZXXn0tjzxwD5qugaVww49+xMQpE6koK0JVNfLIiKqAkY8hCHmiHWE8Licut4sjDzuEtWs3oCguaoePoK1jG26/jbbmZrIpi2uu+V9mzxqN1+lDt4GV96C7RTw+D9FIjMmTR/HvVRv42c9+AUISb6CUsWMasCkiTpePjZu24A+UsOLtD6gZMYJVK1bhDwQQJZVcNo1dF3nnrTfJ5wuEikNkcwaaUqC1rYvSUBmxzk1o3hBLv3UFc2ZOpbqmiBF1I4h2RlEVgWikCyzw+4o4aMZBnH/eOTSMHQ6igqzLSJaJ3VnM4mOP5hvnL8Eky5bmDQwfMQ1Jlbn3L39hzpzD6OhYi00NEstuQFYdpFImqqgQKvOTzsZx2B3oigeDDF1bNiIJCn996HGKgqX4A0H8RU4cLh8v/2sZlRWV/O7Xd3HHb37LKScdw4wDJtPZFeO++x7ktNNOxOkIYuSy+H0uctk8qs2BLNtJp1K4PA6MfAFZkDFzFjZVxZIkNJtCKt2J3e6jsbGBQ+fNwul2oippUtkkNpuXtR+u5ntXLOXIE07jRz+6lQmTG5h78IEsX/4ekqCgaS4CFbX84gc/ZOrM6TROmopm15AtgUIuh6CphMrKeOKxp6iuHIbTrzGqcRIObzGyqFBW7qdueD0HH3ow0Vg7ldUVIEAulcDtdCMIMvf84X4qQ2WoYp5MJond7sIyDC6//Armzj4EpydAe9NGRtZVs2lzC8WhMiyxwC9+fitup8KcOQcgGBmqKyqIpzK8v/JjysorkTCZPG08uXyag2cvAlEkleiiprqWO27/HdOmNeILehEFG9+//vssOmw2kydNIlReSiaXJhLtoKSkmICviFQijK7aePW1t+ns7GLkiDp8HjvPPPooZ555IicsPoHJU6diWsWsXvcR3oCHqopygoFSRMWOrIIhCuRNhaKiIj549z1Kqqu655TdjhM72+HttH7sk2a/jUs9hnFCz7i9fctIELe3pmfK2+7wZMdnT2Nk9+an2Ee6s/oZ6e1iYydYferZDVPqK+Huvx8DCXcDLiaHcKN3twjtdXCxvbjd5B8q+quN/1s8p+6LwLQvZe9v7C/hbn+iV/AfjMK4N235LIvQvaGj7i32tv17eh/h89f0DiQ07wudTxAEVGeQkqqRlA9rQPeXsmnjR+SSMbasWc3H77zJmvffZ/3HH5KLdSGbKT5+7zVUK046HeWd5S+RjW3Do+fJ5yzSaQNFc+ASJbq64mguF4ao4pBVioJFNE4Zz0erV1MzvJZEJoOnyEOhUODXt9/GD3/yA0zTZFzjaCZOnYSiSDstDIyeOVUQRSwswh2tuGwOLFMgXzDYvH4T/3ziGTq3NFNW4WfM+EnongCyLPXbhRaQ5J6NrP10X/YHhiLc9Tmyxzz73J4B2yGQNUQqK2vwBEIUBI1kqkAhn0exORGlLB2dUXRVJ5uLk0nncdptaDYnyVgWnz9ALB7G6VBxuXwkEmm8Xjfvv/k6Z55xIVVlVYRbW7nmuqsIlhTT3tZGe1uYhpGjGTGinrPOPJfFi4/CtExUWaFQMOjs6CRUXEo8nsThdAIRLr/8RqZMmYDXZ8duU9i8cSuvLnuDyZOmct+f/sxpp5+KzeYBweCdFZ9QWlZCVzjMAQdOwed3MXfOwWzZvJXXly9n5Mh62lvb8bg8bN68iYqKcrrCHYweO5KTTjyVLRvWUV4Vwh9wY7PZSMXS5DIGquLF5fGRzSaQBRmHJ4Akyqz9ZB3+YBBJlJg4uZG8mcRmd2K3ewANMy+xatVHuNw6p5x6GrImkMkmScXTIBSIdbXj9Ho47eSzMIUEul1h0viDcHpk0ukI8+YdioiJ1+tHEE001YZlKtz801v4YNUqDj/8CJKxBA7Nycp3PsLjd6GqCoIo89JLr3LIoYfSFQ5TWlZKR7iZhjH1RCLtTJo4hXGNYyktL8G0uuOonbfkfBLxOG+8/m63faxloukakuAGSyaZTCBk8xQK3SERcpZBzswgYtCxbSuyqpJOFjAKFq0tLbh8HqLhdhxuF6IMmWSUyROn8PhTy/jxT3/U7bXX7ScUKiGdCCNJBrpdp27YSPzFfgRTIpkOk07EScS6cHocdLZso2FMA9l8DpfDjm53AiKqDMX+cnI5C81uUhQIkEimWLd2A35fkGw+QzZTYPKkRrxFXhTdwz8eepzxDaNjgPd5AAAgAElEQVRBVDl8/qFccvHF/POFF1nytXPweX28vfIdRo8ejizLHHrYQdgdIqIskC9kCYfbue3Wuznm6EWEO9vwBfxsWr8Br9PPddf/gglj6nE63dg9bg6ZfziGIJJIpvD6iohEkhw073B0l4eNH6/C5XAjKTaCZcPJFwTsLifpLLy+7AUWHH4YXpeDfCbFuDETicbjPPfPZbz04nM88/Q/eWflW5xx0onEElF+e/tvqKgoZ/kbbxH0l/Kn+/7SrX1WHSiqjqqrQ1mqDjwn7uP4MyCs/vXtOicPrk0c2ljZV7jrX8gu/RQG/bMTvgzC3VehEPYR+Z5QCLD7h7vXHXqvDU3fN0ige/Fl9pzrX85OWroByu6bfjA7vIFcsvd3+d4/fV98ljAI29vXoyU0jG6H90NZsPbPP1iavQ0fMFj+fSljT235vN+xvVnsD4REMoXL6fhMTl0GqnN/YXdt39tnaE/YU8iP7eet7bPNTulaW9sIhYo/c/396/qsYUeGcg1E0QRLxcQEIQ/oWEahJ29hRxsQsEwLyzRRJBFLEBFFCzObIBUN09G8hXB7hLbWDrY1raa0vJaG0ZPoiibJJVMUVYaoqW9ExMAyJfJ5A1kzsUQZSeh2DqMIInm6751oWWRNq1v7aAGWhSRAPpUnHouRSCRpb29HkQXKa2tRNQXd4cDCQpS7d5wFSwRh52tnDeAS+8uA3b+324/2fO9q47m/tOV7goAAlogoGHywcjkTJhxA19aPkT1BVN2JaMkkIlE0BSS7nUS4A83uIh6P43S6yGZzZNJZQiEfOUPAzER5b8XHVI2ayLnnnsbPb74O0ZSpqmvgkw9WUl1TxLvvfsCsWXNIRFP4yhxEuhJ4vH5kUaZgmMiSyl8e+CtHH7eIeEcMfzDIxRddwQ9+fCW33PIr5sw4gtfeeIlgURGjx45i6gHjkSSNWGIzJaHRGKSRRZULL7iEpq1tPPzw/Xznu5fxk5/8EFFxsHndZh6470FOOeU0EvE46zeuZcqUCShKnkQkg7u4lL8+8ihnnX4qt/3qZo46aiFjxo8nHo8iiQJ2XcGQRCwDPnz339TW1eH2ejAARbEjKQapVJJ/r1qL36uw8q01HH/CfHKWhc0uYmRTqLKNRNYi0dUCqo1QURGpVIp4LE42m+bZp1/ggKkzee2NFSy54GT+ct9zLFg0HtEo5mtLzuG8JRcxfvxYwtEOqqpK8HncXP29Gzjza6czYkw9iY42nE43sXiMaKST6ppqUpk8qVQKh8OBrjuJRmNIosxHH35I46hGEC0i8XU47KVcuvQafvCDGykudRNLdCGJDm76yc+59rqrQDRJRrtwue0ko1k2bFzP5GmTadq6lZJQFds2t/LMP5/m7CVnkktFUG12Yokcopkn4PPQHs9CNkMmZfDysld45ukXKCmyc8nFF5I2FG788U+44cdX47P7cHs9xNo7Of7Y43jkycewYWI5nRTyIs3rP2XYqFFYIrRsXcsf7nqI7113I9lUK4lUhOLiUjrboxQHK/h4zadsWL2FRYvm0tG5iV//8o9MnDKdA2aNZvFRX+eRv9+Dy+0hawpcffnVnHrSqUw/eBJGvoAg6EAO05D496p/Uz9yNEuXXkrDsAZmzJrMjJkTyAgaaj7D1886nZvu/D1Oxc2tv7ydby+9iJb2dv7nO1fx3UuW0tUeZ93mj9ja1sWCww9l9JjxXHvNVXz3iit49923CYWClJT6cTg8qE43LS2tLF26lIcffoiWjetJZ+MES6rQhDzRmMB1P7mOJceciLvCw7Bhw0ilkqz6YA3h1lamz5iGt6yCeNdG1ny8gcMXHY+lCDu9/b2yT6+3zL4YKAzBvoVL2FmI6x+4wKJ3DSnumIsHxcA0U6t3bhUsBEFC2j61Wwg9eQYcU4Wdlu0DhkLYfkgQdhYaPyO+CoXwBcLs0dz1fRT6Elt66ZS95yVJ2mVbtpeis4udxQC/93SnB6No9i78ejUNfSmYvc4k+mojeilporB3jlsGa1Nfpyt9Fyd9qYVD7dNAFL39gf2h9etbxn/LxomqKgMe/yIFu72pf7BnfjAt1p7q2q2Qu4Mnt1M6p9MxpLYOBft6PfdsUyt100ssEywRLLOnS71Uk25apyj0OHbpsxllWQJIGordiytYQemwkVSPHseYCTOobxiDpEA43Iy3SCHSmSba3s6Gj/7N5tVrWffRGjo2txHr6sJAp6Mrg5EyEASZdCxBIZ2GXIFP3n2TN19+lnQ0ipCDDz9cRXPbBoaP7HZoUFM3DM1p73a1Lwo9MQf7jrqDUwy/TBjseew+3v+z8ybGzuNhr1Bvsrv+7gi70Xs7h3ZtZKuAIYjkC+Cyu9ElhScfuZPahgkIuQyComIKCplsDiNfIJXJ4nIGyZk5NE1Dt2lE4zF0VSURTVIwTOzuagTB5M67fse5S85DFl3EY1H8QQ9ezcWZ51zC8Seegt1ZIC+oBItKSbZ1kIt1YBkFWjvbmTp7JroidjtbkfOMaZxIUaCYO+64C5td4x9PPM5V136X8RPHUshLSIpJOp3H5/VTsBR+9as7uOzySzn11IUoisaBB84il8tgd2ocffRiTj7tLGqriykuDZLOZqgfPZp33lxNU2sEt8/OvAWHgFGgsrqK2pEj6dj8KZ7iMlIWeDwuCqKGIksEAnY83gCioGBZeURJwsorZPKdVFVU4fcVUVNXgaQIWKKEXYbOtm0oDjeCaUOzOdA1EREbsqThdnt55OFHefD+R6iqrOP4448lW8hR4hNxOr24Az5mH3AImzZsYsLkcVz0jcs4/dRTMMw8c2bN4mtnX8CiI+fidLkxCgKvLvuApZf+L2cvOQMlm0BRdPKWTHPnRlTFTSIcoyRkx+7QsdmdtLZ14S1SWHjcicianXS8DVN2ctNNv6SiporGhlpUyc4//vY448aN440V7zF5ykxEyULTXCQzbaQyrVSX1RONGBRXVJK3DES7F4eZ4u4/PMjkhkp03YW/qJzqumpGjBxLJNLKgoWL2Li+mXO/8TWKfD6y6TB3/vIeho8aw8jGRsq8fqIJg9///m5mzDqQbCaHgIbb7aJgZTh84RxMJOyqQCZnodsdSEq3tuqt199i/hGziUS7EE2F8hI/M2ZPJRqLcda5pyAIGpYgYnMYbGvq5PBFszHyEm+8+io33PB/TJpQhSIJdLZ3sPSbl3D1d69l1GgXjlIBl7MWVRO55eYfcsON30dSXTz77D8ZN2E0JaXVXP3taygucXPYMYfy/GMPseTCK/j03feoH1mJz+vkvj/exYLD5xIMOGmKQUPNcM5fcjIffPIpxx5zJIcdMpttm9fjLSpHd5fT1bGF6prhyLLOYXPmkTK3Ud8wA0WXcTpLcbsc/POFl5k2fSpOu4TbF2Ldhx+iaHa8we44od3Uyx3jgNV3zLJ2+tpBVBT2t73dzlTLblOEnqDpCDutrUXE7eEKBPqFK+rbqu0/BaQ+fRQEYftwu32cpA/1tM/cOFgnt4/Y0u7prUPFV7TMLxD5fP77u9jl9DnfKyDtztnKYA9B3+P9be56NX27c9U+YJk91KS+L8VAi+D+nvI+DwykWt/bfPsT/0lK5n8Dhno9hhJv8fOsf/eL5KGVN2Thrg++rML7nqiivX3Zk0OmIdGCe8Y3WdUxRQm7001pZS2BYA0llTWUVJZQUl1OeV0FwUofBSmJmE1iFFKY2TjvLX8KVcrRtvkj3n7ladLxDgwzw+Rpk3EGypHtdurGjqRq+HB0zY6ma92L489+eb40GOpzO0CKful7j+3eDmQwqueeYArdQqNqpHngztuomziWypoSwh8+TyA0ivb2DuxuGxYZEskIHq+DrnAYu9MBgkB7ezsOhxNZM0BUcbhcQB7dphMMlHLXnffx+vJXCQT81NRUYhRinP+tb6DoKk8/+SSq4uGb3/omRy6Yi+wqxhJlVFXCyqbRNb17fwIRSTIRZTjuuKMYNqySiy74OmedcjqypfHu+5/w6cefMrx2BHffcz9Bt51PPlrJ5vXrmTZ9OgIWDrdCMtOKUy9h8qQJvP/B20yeORtVl6kfXsG7y5che3xsWreBZx57lBlz5tLR3I7D5sTp8ZI3BXxFRZiZKKIgoWo6gmmiiBaGpBKPRnDoFgUz302dFBLEIglMDHRdRhC753hJktF1H7mcSkdHO5+u/oTqmmpUIUsulySZzzNu4iTOPvccQmUVfLr2E3RFwuX043IVkcmYuLwiPr8fCZH5B0/D49WRNI2MKTJ2TB3llaUIgoGqmfj8Hs47/+vEEzGaNm/hwb89yuTJ07A7bLzy0uvY7XYkSSSdaqdggMtVhE11oUhxouFtSHkPq1at5C/33k9FSTEHzpxMONxJNN6tuRvVMBZJhHBXBwhZZMHLtVf+HLfLxuQDJvCPf/yDsWPGgyhx3WVLCYRqGVlfj+KQiMdTWMSpKK3i0b//A7fLy913380xCw9FlmVUmwtLUskYKSYfMAGHy4lpppgz90CaW5qorqpEs8kkkjF8XldP6A4bRjaNqMgIpsDvb7+bmTPmUFoRwLDSaLqM7rBTXFYOkg1JcWLTdCTJhmkI5DJZRo+ayj+ff54Lz7uUM844hVPOWkhZSRldHXl+e/tv+P6N32PZ8qepqxuDzzUC0yiQzyaYP38+bW3t5HM5nE4XtbW1GAWTjrZ1LD7hCEKh4dzx6/t55vnHOXjeIfj8QQwxwcmnnIhRMLjt17/lhMWL2LJhLWdd8DUOPngebS0ddLYl8TpDqJLJwgXzuXDJ6Tz22HPc9n/34PP7qauvZeuWbdhsIhdf9D8cfNBcpk6diKzl+Ojj91EUJy6Hk3BXhPKaqgHHob7CnbmzuIRl9tm8H9KosjvsZlNue5us7YLXDlabMEjafujTwP4C7MBt+QwQ948JwFfC3RcI0zS/P5DGzejZNdjjAmnP5W8XtnayuROEXcvvEfj6a+F2SduzLdFXe9erwevvSXF/2hYNpLHr/T8U7KuWbigL3s8DA96rLwD7Uv9uabOfudSh1723wv9AmrzdabT2FPriyyTcDaaJ7Nvv/tr4/vkH6+/20Av9aKoD9b9bpujZ4jQtELv9eZqihCDKWIKIJZggOBBEG6rNSyBYhbt8GO5QBZ5QGSMnTsRTNoyy4Q2MmnQAJfWNlAwbi+wuxeNyoTvt3eWgABaIn58ntr7v6Wd53gbLN5DINdSNhkFS7FTvznYon4Nwh4WFgFHIU14a4t0nHqRm5AxMvYQNn75GZW0llqiRTmex2zUKhTyxaAKPxw+AqihkM1ko5Min8whCHlXXEASJivIqWlrauOzbl/LQw3/lgAOm8uQTTzNu8iQ6wmFGj2rkG+ddwh/uuxdZkrD7vIiSjCzKULDIGFlkxYak2TCNNIlEjHwhT7C4iGmTp3PPH/5A3YgRvLb8Hf72yF85+NBDWLtmPfMXzGPa9AmsW7eVYXVViJJEvpCjUMhh5qCstITS4hAlZeWE29uRJAm7TcMdcCKYMHvWgRSXFWNksjz++KNMnjIJm8vV/e6ZWVRZwzAFyOexKTICFoqisnnrViyxQCEvkzdShIqryGYL2Ow2ZFkhnUogqnZMSUe0THSbRGVlFW2t7Xz40ccEiopx2nSMXJZcroDdZqOqqhyHw0JQnWzd2kEmmeaC85cwZ+ZBeHxeUok4Xr+PrFFAUe2k0jH83hAOt4dtmzah2+3YbBo2h4uf3vwrLjj/G2zZvIVwa4Sllyzlgm9ehGZz0tHaxlVX3ois2JAVJw5dQJIEXIEgJSVBovEExxxzFHbdTSaTYszYsSiSna6uMA63QiqRpLmlnTNOP4d7/3gvt976K4457igax49FUkSMQppDZkyirHoEul3DtDyctHgJby5/g5rKKqZMnojP5+HY449EVR1EIjGy2Ry19fVocgG3XUTUbES7tuH0uAl3RSgO+shkoxhmClW1o6teOrvacdo1XA4PlmFx4IHTMfI5LEkkm0thiRKJVI5sNo9lGjg1BUESaW3pwOV20dHSxNXfvYFQyM+2La0sWDAP3aWiSxrpfIF5hx2CIELDmAa+dfF13H7rb7l46RkU0mnyloU/WEyssxW3x0sumef666/l5MWn4/eUc98Dd3DB0lOYceDBjJnUyMvLXmX8+Kmk0wWymRz1I0dQUTWM+++9l0lTJ2IYEslEhmUvv8I1V13L3IPncfT8w9nctAWbzUck0s6USWN46rFHCXe1May2kjNP/zq//e1tHDhrMm1tTQyvHUM2W2DjxmY0WSBUVYEsyQOOS90hCHZFryO2vuNS/3R9nbBYgxzvPmftcm6HhnCH2mwnrVrP2GdsTzc4erV/9JgL7S71DiuMvVRy7AdKJuybcLfvgRi+wn8MXymW/v/AFynkfVm1TV9h6JAkqWdS+mJh9KFrK4KBKpqIgolgmYjku0M3WCKCmEQUs4gUEDGwUcBBASd5FArIloFkmkiAjIlGAYeZRbBERAtEi+22EF/hPw8Bs9v+UnMRHD6aqhmzePXvvybb9i5+v0hXeCsg4HYFyeVMclkTr7eIrkgXyUScVCqF1+sh05VDwWL9J+8Ti6Vp2rYNRINtLZtYvPgELjj/PFqam/nLn58lHE5jszswTIvKihKwJNyuIEYuiaoKCIqG6gpg5A0MyyJXsHC7PNh0B5KgYBoWN/745wQrylFcMqtWreTOu+6gvDzEa6+/jClqZEyTRMZEkgRatrUiCQ7MvA2ELBvXb+L2397Je2+8gcfpwmH3ojtLCHrcNI4fy7qtm9i8cQ2mmeboo+aTycQwsgny2SzxdJZEMkk+m0XVNDKpJIVEHFlQqB4xDklScbnc2DQ3Rl4gncgjooOlYtcdWIJEOp8mlW0nkYgTDnfi8fgYf8AhKPYiCqksZiKGaJqcsvhENq9ZSzTSSkEoEAgFuPJ7/8MB0+eRTBbYsmUrsj1ER1cWM2uiGiZvv/Ued979AK0tXZSF6pEEG5Zp0tHRxrqN23B5vNx2229JRJI8/dTTpNMZvnHJZdj1Em779V3YdCcrP/wAWQnicJSSIoaliFx48YXIDpVCXuH5518mHk2x+PjTyRcMkskYkixTWTaKq66+lHBsLV8/93xuuOEnxJMJUpkIilKgrXUzTrfGlqYN2NwCDz/6B5acfzKr161kTGM9TpeKwyWQLgj88Mc3dY85BmginHPqyUQ6OlBVnaZtLXz00RrC4U7yRhpNlxCwMPLgdDhoamritWVvEOkKE4k0k8w2oah2BFHH7vDg0F0YmRxCIU60Yz2IBtU1ZUiSSU1VOaoqcvDcWdxx+69pb2vnJzf+H9FYDK9fpaW9hXA4jc9dy9amMM899wD5QgTMPIZpkc4ZeN0OPG4XXp+X/73mSj5ZtwJvQOSCc5ey7tMk1VXDef7Flzj6uEUUcjpnnH4RPn+IUGmIr3/zuyxd+h0UC1TFTkVlBWeddSqhUhfrt7bwu7v/yEN/e4JINEnLlrXY5QLHLzyCeYccxOaNG3ny8acIBoPdtHxT494/PYEgikycNIXSUCkPPPAABaOwX8aOPYUG2z/kxW4YpvklJuH/5/GV5m4fMZC3TNhBfxxs13untH2++1uK9KVQDZRPoNvbT98dBnp2MgqGsUtMLmCnGFqwQ7sHgy/+94dQsL+0VwO53h9Kuburf092Sp8FXwZtXX981vbIgtgTY21gzcmXsa/9MVSHI/0h9mqnBihv0Dyw/Xrta1DXgerdXd2D2dMOpf8D2gQPkKd/IHdT6HbAwnaqjIhpmT0u9uWegLPd18EUBIyeT7dI12NR0evuWhAwRRFLsLC2j2ef36bEYJre/ucH++yx/AHK21N7Bi5lYM1cd7N3PjdQ+/oX2/tYC9tpnX0L3VGtgIQEPXdPIFhUSd3I0Tz+93/gdgrYbC6yOQlNdyGKAg5fCaIkIBRECvksTU1rkeUcCDp2m0XONAiGyrE7nHz44Wr83iAb1n3Mppb1TJ04jSKnwB///A/u+9OfGD/cy7Enn4aq5ZFlFQsTMZ8kGW0nk00hqXZMI4NsZlj3QRP/ePJZJk5o5Jc/+SmLjlqIy6lzy82/YcbsmdQNr6K8xM8R8w8il88gixKPPPw4QXsRDz38INNmTMHu1IknEpx33iXc9NObUCyRx598FFExEWWdzWs2oNndVJeV4raV8eOf/ZL5iw4j2tmK12dDlAwkQcLukGhp2YpityHanETjXUiaDSOXRcnHCUe7UHUnkY6tBIJFpNIRstkCWdPArmlkYjFsih2nz4OiODCFPOTSSORRnBqCTQFT47jFJ+L1OxEli9YtzThtdhYuPJLSCjfFJT58Ph+KKuHyutAcTnICjB05Er/Hi2XkkL0KDpeTjes3oysWZ55xEul0lMWLj8Hl8WJ3yJx0wsnc/bs/cc8f/8i0aZP49NNVLD7mSARVYMWKFTTUj6VginS1xgj5A2Rznei6A6fTw0knH8XyF19mRP1oUDXsDhvZRJLKigqq6oZzyOGz6exK4NbtNG9cQ/mIGSx/+w38Ni+BgBdZlbDbPEydPoNsPo0o5BEti3gkwqwZU7nv/vuZMnUioqqwrSXC1CkHoekaF11wKRecfy7RaBrJsnA5bBiiTCIexabpaLqDVR9uY2zjOBSbiqb6sawkhXwWwbRo79zGS/98keqqOtylRciCRjzeRaFgYBZ0jj7uWDSbjUS2lYZx4/ju5Zczqr6Btuat/PLnv2LWjBn4vCoHzZlLcVkICxHdU8Yby5ZTV12J4HDRtmEdb7/zCiNGjmRM4yTSeYtrrr6OC88/g+efeZIFhx2AVUgTjSbR5RwBn43hoxo4bOYYHAEv8a4uHvjzH6moqkJQZJaceyavL3udb19+PhvWN/G3vz3EHb+7gxt//EscfidbN29i4vhGamuqGVE/is1bt2JXdRoahrFh9Sa+d+W3mT5zBtMnjEHS7SBpIFj9fD8IA4ZC6NXoDcTI6mv+01/z1zd97zlxwLGr+39fEyeL7nA59PyWekzDe7V7otBX09enF6YFloUgij3r6l2Zaju0kD3jo7BDU7g7bLd6/kpz9/83jCE6IhnMPnPw6bxfftPaySlLbx5V3lm13hubqz/6HhdFcRdPmfuCzxKeYag2Q72/+1LR+pYzUFsGo4bubfuGgoEW4f8NQlB/DNbe/vS+/2+1goKw/R3p+xkK8oaBZe0aD28wSmR/qvRna66w/Tnt39ahlrmnPvZ/B/qPU/03kPYHejWWfeNz7g/0v9aflZ65L/esr8Op/YF9fh8HmHgEwDRMCoKM6SrhrP/5MXmplKf+/jhG53uENz6DYMSRzTRiPklL63rsDp3KipEEAiMoFAzSqTw1NQ0kE0lURWN84zjuvvtOfn/nLVxx+VX8+c+P8n/3PMMPfvhdbv7Z9QRLJ/Lam58g23zkxDSikWHj5m0omg2nQ6Np6xpEJBTVS8XoIBdccD7/+tcbHHvGYorLK7jjzns57axTOWrhXFqa2lizbjN5y8Bh0xDJcfE3zsHUM5y7ZAltzW0o5AkFS3jm+UcQxBxlw6ooKatClXQcqklZTQin38OZZ59HR+darrz6Mt55azVtTSaiHCCVFBEkO4LkoKyyFruqk08n8XjLUGQ7oiiTNLMEAjYyqTBOXxGSJKNpOoosYZgxsvlOEJMYQgKrkEcUTCIdraRzEUyhwMerNrB5dReCZGDTLTLZLJbppKK6kqbWLfzr5VcIlVTgsBdxxulns2HtpyycP5+P/r2KVCyCJFmMHjcSm1OlfUsL8XCas8+5CEUPkszn+GjNFtpjEexeJ7LdyR//8gf85RqXfeebXPCtC1h0zDFkCga3/upWSkpKaWttI9qxEU2DcCRJKmlwxx13oGkit//mTgJlRSSSCZo2bAEhT8OY0aSTBoJosrVpG2ZE4K3nHsPmKuPRh56ksX4MZVWjiSdj/OynN6GqEitWvE5XNIFiL8ZSSvAUBdi8uZNX//UGyUgc0cxz1plHI1gt6JrMUUcfidvroCToRZdBRMEq6AiyhkGOTD7PEUfOwLTSyLJINL4FBBldcyBJKiWhKubMnktXpAuroJGKRlEEC7FQACnLq6++yN/+9hCyJIFl8c677yKJGhMmzKStOY7PE0KWbaQyEW64/keoko7drvPgg39ly+ZtWJZFcd1wpsyew5vvrCQeLeCyOThywSzMQpyZBx9KJKZw228fJp5IcOQRC1FlJ089/i8SeSd/uOvPuIJlHH/kUdgVDUXTuPV3dzBu/Eg+Wb2OYxcfzVlnf51cLkcmG0EyKlm0+HQMOUBTZ4xMIcNVV15Fa2srXreble+v4L7772X5G2/R3BLjvdfexCZaGP00eGa/lappWT1s+cF9SvRN2z9dX8+auztn9pgc9f3AwGuTobRFEMVdhJ/dmTBAt6C4pzFV7Cn7y4CvNHf7iME0d7B3WiUYqgXE3mFHgMc9L+z6tnN/Lsz21n6lt/69Xej0XUDviSPdv+yh2hTuScM5lLr+2yAIvdqn3kHuvxef5V7sNd+e3rVxtxvpznAU3aYNWP+AtmwD7H7uLQYKwD6UMvsyBfaq7h3UgZ6/ezf2DQV9y+qdwPvv5vZ1EPNZhaXP+30drPzPo97dae76pRxSWYIgIGNiACYivppGJk6awhN/f5hgaTVyIUEsL+ItKsftDJDJ5MjnsxhGHknO09q0iZLSMkTVRi6XRxRlamtHIAomnZ1p6oZVs27rarraM4wZNY6l37uAtq1hHKoLn9uJSBokHZfPh5lOUFRUhm6zEU3F0WylJBNNLF16KQWrmJGjavjdHXdz9rmno5Dh5ZfepH50A4pNpGnDVsJdbVRXVRAoC0FB5h9/fxhdy2BaAVav/pjamuFksbjv3gc57JB5hMNbKCkbTlc0ytFHHY7Ho+Nw23E4dF575SUaJ09CtamIkkkiVSCdTJGMx5AFi1g8gWjFy98AACAASURBVM2mIykGmhxCEWViXZ1oXjcyMqlUAkGQ0W1ejJyEw+YlnTBIp6JISCRTcRTZhk13EPAXI0kComTQ0dmM0+nnkouv58CZU6moqOXuex4inYxRHKjkqKOOpLyimFNOPhGbTUe3aVx0/sUUBUq55uprOPbYw3HYHUyZOh1fcRFmKkEqWmBYTRltbWuQkJAMhVhXF5pL54Dp0wmGSujs6CAUDBIKFeNyOlAkAafbTyaX5ZQTTuHyKy4hm8vQ2trJ2+/8m6OOXoDPpyOqMslolkQkSZ4czdvCfPDhCsaNHY8rVMzajz+lYVQ5XQmLjtYWDj10AS5ngGhHFwGPi1g0jCAW8AUCaLKHD957l42tHTSMHYfN7sOw7GSyMSZPnIRh5MjJEi6XwoZP3mfjmk8QLBBJoIgS993/MIl4hrLSMjRdQBLsWOb/Y++946Sqr///561zp8/s7M72Cixt6QKKIiAgTbBr7CaaHtNMNMZoTGyJicZoojGxxhZjSTQxESVq7IhYQBRR6bBs3+ntlt8fy67DMjO7S4l+fl9fj8d97Ox9v++73ff73HPe57zPgUQiQSqlEywOIEoiouJCkG1EEyku++nV1FZXs3z5sxx/7MlIgozb52Pb5k00ja+gtX07J514Ahs3buFX193AcScs4le/vJklSxfS1RVh6aJFPP/8szh9bvxeHxKQjmV49C+PMH7CCNxOGzu3toNp8Kc/3MZppxxDw6g64tEuPli/jpa2DiZPGkd1QKU70kZxWQWax8NT/17OycuWIukGLTtaqSgO4nRZ3PqHOzh+2Zk8/s97mTP7CLZs3EZtTQUZPc4ZZ5xFWWkZ9917H1/64tdY++47zJo9k8sv/wXLliwCUmge354OAvvRlR6dmFCQfOTS1OXT3vV/Llf+rCf3IGq5SrFypVqfbIBappmTLg7mO50PPdZzg85eEJ87VPkU0Svc5TSkyWIuCmngBqOdOxDIZYqZzbgW0sDkE34GEsL2YMjyOHnIbks2U5orREM+RluSpD00Dbny7fE+sv72vwYyecs3DpIo9jm0yTcG/xfRY2b3idlEn4lmLzP9KXRvf7Ucucx68wkkvc6MhKw1MNBmQK823hIENLstp5nJQO3b3/7lmof7YhI4KPrUZ7/yyTMHGrlMS7P7ZGbRjez3k8ub6/6YWebDYMroYypytKdfb/s/WbDM/m3I1aY9zTf7X4NHL0MnADbBBM3LIdOP5NHbb8WjhSgtr0BUi/h47RvUDKshEkshWzaKAj7SmQiK5iGSiGLE4qx89SXGTxrJ+2+v409/uIfb7vwjXz/ri1RWuWnv2MmC+ccydXITmsPE5pDJmFBaUollCri8PrZt34bT5cKhOUlHmhEFiRNOPJXH//EIM6dNZcGCubi9XtweO9UNQewOL++u2czNv7+FD999j+GjavC7fHR07mT2UYdTEixFFjUcdifRSISjZ87j7jt/j2XFCIcSPPn0fzh02hS8Pheaw08sHsXn9zJ67Hg0VUaUIGnGkQQZ0RKIRWIEAqVoDhfpTJhEIoHqcJPIJAETSRewRAObqpFOZ7BkG6lUklBnK7KQQnUVEQqHKQ6Wo6czRCNRnE6NZDqOy+PH5/GgWwZHHD6ZWCSMz+fC65WZMmUydqeIrqcwEPD4XLjcXubMXMKdd91JZa2fL5x+BqriRpYVAgE36UQYWdFwe7woqoTN7cJtd5CMhykuL0KUBFxuF4LQE0uyqqaCTCZOIhZC1YpJpLtwuN1MntBEWXkZNTXVzDzyCJYsOxosEUG0YegirW2tbNu1nYrKcjZs2MiiJcvApuBWHUiChC9o4ztfu4jjTliCw6nRvGsbXp+Hxx57hGH19QRLArR3deH1enj6mRX84OLv4fXZePO19RQHbPj8fkzT4L1161mx/DmmTpyK11eKv7wO09IxEdDsPlxykKIiB4GAjVdeeJlURqKsvIS3X1/D6pVvMG78GB57/J+MHTMKQzBQRJmu9k6mzJjBxg8/4qqf/oRlJy5j185mLvjWd5kzby7B0ho8fi+qJnPyF04g3NXOKaceQ6grSWvLRvx+P2PHTeQ/y5czbnQdquKiqDSAapMoKgrgL6nksp/9mmOXHoMBBEsrMNNJiop8VFWWo5gWrqIAK15+E6dgURzw0t7WzvbtLax88z2mTZtAoKyGxUvmcdIpJ3LM0mORJYFXX36NxhEjePzJfzF75qFIRpJXX32DmobhjBgzHI/XzfNPPcOWjzfztQu/hSwrvLvuAypqa3pI+24Brj996TN6zEHzBmNmWYhWWrs3lLPL6KWKvV4uBXq/4Xm8xvfWlxUmQRJ6tHDinp+sPfJ9Qhf3EEML0trs+58F4e7zIOb7ifTuIOb9z6D0R++7zmd+ebBhsWdw5oGCNvdHvsDKQ9Gw5Quanq8t/fMPFHS9/7P5+pWrzUMdj/7PGrvPN/Z6Se2tB3ITvv9L665/f2Rhz3luDMJc4WC3aX+fLyTcwSfn7rLn4mDnSaG1M1D7+uc/2BsFuWhYIdqVD4bRG2z2wLc311rNFuR6v9jZaf0d0Oxv7M6BUOj83uDmzuCFu+z6CtGe/V2jumH0CM5ZZcqY6MggWJCO8dRdl1JXXoPua2RU01i272rH4/KiWCZd3V1U19WSwI6JiGIYbNi0lY5IkmKbzPp1W3jiX3+jqKiaU087kaZJjT1nyTZ/gMvrx1tUhCTIpFIZwtE20nqIqvJGDMOitaWdyvIyDDNDZ1crLo8T2fLw9po1jB7XxP33PcG5Zx9PuHMniWiCsupGdmz8gIo6P4JYxLp31zD5kMmkUwku+dHPGdHYyLyjjkJVRdKZJBWV5bzz9loOm3kUiVScdDqO0+4mHOkGwOP2ksrEUBQVURYwTRlTNzB1HVM3sbs9NDdvoqy8jETcxLIySLKFIthJZuLIktoTnF11osoKLTu34fe60VxOdF1HFEUyKVBkQEoRCrVTFKgmGQ2h2BxYYgbLFLFMiYsvupTtW3dx6y23kkonKC0vwxJSpFIxJEEllUmzY8cWyivKUQSFTMbE1CU6O6Lccecf0ewq3/jW2bg9tahyG+FwCy5nDbLdTjKe2j0bJRRZQRLguf88y4cfbeXs807GptkwBRlREDEsAwERRbQwDQGQAINMJomqKXR2dBCNdFHkq0aSFaLdnax4+kXmLZiCRAlbtm1m4uQmkukwiVQSnz8IFmz44ENEVIqKvPiLXIRjnZhGgm9/7Wfc98AdfLz+TUqDtTzx+HLkIh/HHrOAE5Yt48prr2P6YROIxuKYhsCH734IQoYJE8aCBGldJJ1MIiPx8YYt+ANuymuC6IaBoqp0d4axkHjq708xedIEfL4Adz/yOOMbh3HkkYfz6msv8Zf7HuTmm69n48YN1A2rQFUd7GrZgdcdZPOWTVSU1+N0unjttReYefhhIIpEE3Fam1upq6kjZWYIh1JEE13UVJbjcLr48MNd/OoXV3DTTb/h19ffSsAZZ/GSr/DAw39k1owjaRo3jpdeW0WguAy3ZvDoP55m6TELiXSlWP7Mfzn1pOMY2VjHgiVzuP1Pd7Lxw00Eij1kTIPRoydiGBavvPoKfmcRf3nwfi679nLuuO1PRKNRrr7hOpB2Oz7JQYJyBTEfTNpgYFrQSwd7y8hVZm/QgVx+PD8x7cw6soOFibWXPwrL+iSIed89sul0j3CYj9b25RLFA7bh/XkQ808RfZo7obADFSHrb+/v3rz7vmc7ePQPpt4/Zl42xH4air20XFm/93Zjmx+FtF4DnUHqrX+PdvTb/en/fyEGK7uOfLtK/ccgn3avt4z+O1iFdqb2hentdyy4IPZVc5OvrGz0J9afVTF1qNqy3jw5GWP2jPk4FEZ5f5jqobZ/f0OW9Gopc7aFAvOvn1lmz8/9o1z9taWw5wZPrnNyvebn2c5kYE8ak/0OD5awXEgruG+xQ4em6c2mU4Od9wMRmOzx7IXV91cA2YY3UIy3qJpd2zYS7txEVVUVKQMsUpSUVRKNpBAVBU1SaN21hdKKGk478yuce+apBIMVlBQ50C2L62/4DQ8/8ghTp0/i3TffweP34fN5MUyLP9/7IBWl5dg0FRCRJIlAoJiUbtDd1YXTrtHZ2kpraydjx4/FxODQyYeQSHbxwfp30Q0Tl9dFaUmA5194laJAOZrDgawoyLLEETMPZ/LE8Zxx5ul8+evnotrseL0l2OwqoihjmDqazUY42gWmhMPhQpJBUeyIGMSibSiaF0WSUSQZVVFp2dWOZlNxOT2kEwkEdERFQdU8iKKBKMokkwk0zUYmlcDr9RJPp5HEnvfY0dmJiEA0EsZEx67ZSekWTk0BSUaURFKpDJIkc+TsmVz/y98waeJ0QqF2/MUeHA4FQYT/Pv8qdTW1iKi4XA4SyXbCkU7i8ThFfg/19SO49pprGDe+ifrhDSRjERLROG5vMcmkhc/vRc9kUG0yiUSKVCLN/fc9yPnnnYXH56W7sxPV4UQQQNd1MhmddCaNSQ+J0DM64XAEw9BRVRutzc1899sXs2jBYtradzL1kBk4nCqSKHP1tddwyCGTkCSBdEbH5faSTpuceca5nLh0KaXlARAE7IqMaWWYP38pTp8Nj9NDOmMyfHgj9Y3DSMXChLo6mLdgIZIiI4oOJFlB01LU1tWzffsuSkuDpFIJXE4Poe42KivLcDjtdIe7+OYFP+T4YxejKgqhSJjx46dy2x9+x9EL59AwbAwep43S8iKKi4t58smnmD5tOsGyUn768yu55677aWgYzssvvcrvbv4DoxrHcP/9DzBu/EgqysrYsXM7d951P3f+6X7C4W4aG4fh9fko8rrYtWk9mz76iGhKI9q5i0ceegDJHWRETSXTJzdx2Ky5lJYEsbAYVl/Lxo/fp9jn46ijj8JC4Z131nH22WfwyivP43DK1NaP4L8rnqaysoJxk6ayo3kHdlXiJ5dcyrTph/DEk0/z8UcbeOzRh5k57TDWv/ceR86ZjWrXYLembCC6M9i0wUDIoSkcapm5zDKtfgLjnt/7/jxTNt+7J5+Zk4bv3rw7UDzR52aZnyL6n7nL/phmmxjmmo6D+fD2Kob3ZYlkT7BsAQR6Jmg+pwf5GNw+YXS3FiPXdTA1OINiUnp/WD3ekPIuwn7lFtKu5Xqn/e//LzCUHbC85gL7gL0YOsHaHflq9//7VOqnhH1cTL1reF/7OtBuX6F696WeQum5Njf2qLOn4kHV10fjsjRmg2nHYNArqO1xL88GUc7nB8jbJ2wNkk4Uqie7vIEwuLqEftf+t6FQiftOx3qNmHrogaOoAlugmvLyIN0tH7Nq1RsMGzYau81FezKB11PMrh2bUGQFQQCnx8dZZ56NXVO59dZbOf+8L1FRYSeZMPjFL65E0GUqy2uJROP4AsWIgsibb7zNhvVbueeO+zlm8RxaWltwegLIgoluGmiKB7tWgs0uk05Ee0IydH5IKpmirLwORVJAiGAYIk//6wUOm30YqiaQyqTQbE7S6RjhUIRly5bg8nhxu7zouoHD7mTntq2sfuMtamtrMEwTr9dLLBomFg/jcvjp6mxHT8dRbG4ES6StvQ3IYHc4kG1Sjwc/Q8ewdBTJQTyWRrFBJpXB6XBiZBI4XHZMI0NGT+HSNFBUXC4nDoeGIIKlZzAyOl5vgGgsgqoqWKYDQTSIxkPoGZ0F8+bhcroxzRSaK0MqnUCWbNTVNPDk40/z3IsvM27SREq85fz8p9fzysuraW1pYdqM8Xztq99g6+bNlFf7MNMq27d1YQkGLc0dnHPmuUTDXXjcLv7y0F84cvZMaqqrsGkSLc1tFAfLiHaF0VNJjHSSj9d/TFlZMa27dnLc0mM567QzePHlVbzzznqeeeppXn5xNSeccDx+v4s777oHf1GAaLQLf3GAhQvm8tGGLdx2272UFZfhdrmwqQ6G1zYwfNwwbIrIls07iYRCZDIZgmVBEslu4rE0N970B+bOm4OASTwSZtGi+WiqTDQcIRlNkown8flEQt1hvL4iusNhQqEOJMXGzm3bScTDFAX9RCMxTjr+DEwzSULPUOTzYEgODCtFfV01GGkS8TCCqePw9Zisjhozio82bmHiITP40llfpKammhHDG3E6HYwbO5E77ryb737vAjZv2kygtJSJE6ZQ5A1w6uknYqGz+o03KfF5KfZ5KQl6uO2P9zFp3FgaR45gV2sHL/33deprQBZ8/P2Jhxg9tp5QrB1JlHnk4UeZfOg0wuEoh02bzK7mj5k0cSzbt+xi3ISpjBrZSCwR4qG/PszSJSfg9jiYfMgE7rnnHn74o0s4/riFmAiMGTUCj8tNUpeoa6jt2dzEHPR34WAh17GXvHmBXBTPskwEQdodhuGTr3ou4W5v0psVh68ve8//ZpYA+Fkwy/xcuNtPZAt3vaY2hUxj9hD4BrlDvi/zRNgdHqHPrrif8DUQ05PPrGdADWWeHes9AlgW0BTmupdrxzifw4jssBC9hKjgTgvkjRmWS2s48FmZ/Ue+Hf+hPJcrLV/5A5XZ+y4+Gce+xLzCzv9S6B0S9rFZQoG+DrWcg5m/EPIJALm0MbnOt+VrX6GNkc8acp3j7UX/dVFIc9+frolDmB//yw2wPdc9e/A6+7ojnnt/ZLegjAWWhaR58FZPZfSkmZh6O/ffcwvDy2sJR7dTWTcOm92JYckYhgWmQTQSwuNxU1JSxvYd2xleP5ZYtJuONp1vfvN8DEvgiSefYvLECezcuZnjj5/L0qXzaGttpayiAkmxYUn2nph1W7fitttx+FSam1u58HuXcNbZp+PwlCAJadKxHWzfsQ1BdvHyy28wa9aRWBikUwkQLC644CLmHzWP++67nUNnjiMUbkUUM8SjKUqKvUiKQEmwDMtUOf30czjtjNPQNCe6ZZExDDz+IKokk86kUFQRRBNVVTAMHQFQFBsOu4OMnmBn88fYFD+GnkASM8QTbSiKQEa3sNvchLo6QZIw9ARtnXGcbg+WZeFwuTFMEdnlxtAtZEQMI4PH5QELfCUByqsqCZYH8XlKsNv9JOIW27Y0U9dQTtPIehLdHWzZ2cbCRUuobRjGnXffyRfPPp5wKMSEiROIx6LccMNv2LhxIyXFQRrH1nDaaSczYXwjLqebmTNnI8sy761/F6fTRyYj89ora3n8X48wYfIkLGzceuvdTJ04ieKiIs454zySqTijRo1mw4aP+NIXz6Vx5EgmTR2H1+dl3tGLiCUijBg5AgvoaG3jPyuWc/HFF4KcRHNr3HXPHcybMx2HprH2nbVU1tSj6xmKg2UIgoigK3zwwfvc+ru7OfHE45A0E7vLgaI6SSQz2J0mgmTicXnYsX0HZcFSNm/ZTHFJMUW+UkRZweVScTpsWIKEy+klHo/jdjkQBItf/fI6hIzF9q3b2LW9hUwyRcPoYXR3hEmEwjz+r3+ycNECLD1DkcsGgsZVV1/J5Cljqasbxqo33mDatEPw+9ysXv0eo8aM6omdV1eJzaZgGBayqPLD71/Ga6+/x6ixY/jFtdfzg4t+RHc4zrHLljJh8iga6qfw3R9+i+OOOYnS0gpc3lI0RwXTD5nOihXPM7axnm3btmJ3uTEFiCYyvLv2bWw2B5MPmcTmjzagYOOp559n8oxDOHrWYr7yla9RWV7BsIYqRo8ZRaCkhN/89mbeXvUGs+bN2a29+3S/6xb5afbeebOUGWTTuh5Pmb3PCNm0sOAOGLvp5u7ShSxtpgAWIoIoHDDBDj4X7j5VZAt3veY2+cwJofAOa98+Qj9NkSSJQ1cZWLnnWH8Tp1xCT++9/jbJ/ZmBXBhUXL8cwkUuQa53PPvK2/2793xjznr6CXa56s1+P9mCXa/A2HtJu8+XZLch33vdFwxGyPqEAOV3AJHr+cEIoYWYzF4GrpBQ/L8k9PuqvT6YGEr/h8I872sd+1L2YNZq/3UxGKHvQAsw+6Ml7z1zJwhCn/molZVWaO0NZlMp11rsv4l2sNfKQDRk77SeFdU/bVA0aYB2SFLPZpApxUCUUG3lTD50Ae+ueZadm97E43GhOkpwOp2IooQoiWg2CY/bjSiJWLJGdUmQQMDOsi+cyx9+dyNHzp7F3LlzOPfM73DNNVfxlwcfJh1XaJowEofDg4hOImlgmGlcDgVRhFgyga+kElFUqKobQWdnjES0k4oSD053Kd6iIBMmNGFzmKSSBkXeYsJdnZx2+mkkE3GmTZuELProaA0TDNZy9x0P43JoiLJFSXE10XiCRQsXYLfbwDKxLAO73UYqHUcRNVKZCJpdQZU1ujrDiKKEaQpoikpGz2DoOn5fERYSpp7u0X4KAlgysViaWCKDXZMRZRHSEUR0BFPHZnMSjSax2Q1MU0GwdNp3NSOLKplUEstMIUgqmz7eQnFJANOKEE+GEMUMxWUuSkvKcbsdpFIprrzyek466ViKitxMmjAFM92NzWnnm9+5hBNOOJbJk8ezcPFCXn5pFbX1TXR3pLjuuhtxuf28+MJLeNxuRowYgSV2YpHE41VZsGARPm+A6375Sw49dBK/+c1NzJkzm0sv+xldkRilAT/xaAfDRzYSLC/mnbVv4/EEiSVa8Xi8uBw+MnoKv9dNRUUpkipSVlYNoo+Jkw7jpONO45yzz0YRdATJwBfwIIkyb6x8A0W1EwiW4vaUMGXaONLpBA6HCwQBzWYDK0MymcGm2vH4ixElBbfDiU0SaGntIGNYaDaZdCrBy6+sojhQSiwewu1wIJsSI0c3UV5ZyeQpk+js7KShvgE9k8Tp9dG+q4WacjdOt48LvnsRfoeD4pIS5s2fy48vuZSjZi/iiX8+xpfOPwNBFOgOxznrC6dxyiknYffYEJC58ue/wuFwcPS8uTjsToYNq2PW/MMIR1sYPbaGSGwHy598ieFjxhL0FzFnzkRiySiJVIpXXn+FprFjWLX6fYIlpdx5558YPbqJG397MyeeuJgxo0Zz1VXXoGd0jjvueNZv2MiRM49gy8aP+PFFF3PX7b+nOFjM8n88xsixTWheNyXFLo6acRiB8iCWIPWxVbni2uW6lw3TGrriL9dmWvb9Qui1LeoT5tgtHPZv4z6Q5lw002LfvvGF8Llw9ykiW7jrFcz6I/uFF4rBIXzyQJ+Q1Ht25EDZvg1WG1Xo7M1A5e/LBM81Lv0F3d62FWpXIRfw2W2UJGkv5xGFTMDyjdXBxoEiFvskWAzw3P9KuPssCnaFPmIHEgdbuBtMnlxzfiAHUgdjnezPWOy11vex3Hx0qj+yN4/29xzkwcPBsDr4ZM4oaEiWjC5kMKQYVQ3TGF07iX89/DccxaVIsoKh98RT1PUklmnhdDpJC+CWRf7y0B2s+XA7Xz/vXLbt2M4tt/2BSHQnjSNLmT//SCrLqokmIwiIJBMhbJKKrieQNBvheBq75uKDjVsZN74Rh9NHxhC5+Dvfp8Tv4447/8r8RYsQ5QSikkJT3GBpdLR1I6gp7DYnLoeL7lgbZZU+Uulu0nqUl557i5mzZpBOK9xz3+1MP3QKsmSRMVMkoiEsM40kGIiSHYMknZ3tiKKK0+GirbUdEJCVHkZXEjUsU0W26Wg2B7FwknBXEpvqxuX2IEg9hmMZPY1splCtNJFQJ15PgEQsQTSyHYfmRTBSKJLMxRf9hKVLjyGVDpNOGvz6F9cz49DpOJ0lqIobUbSBoWDpEEkn8ZYFmT3tcKKhNlx2hbffeIexY2px+3w0jpqMQ5MRRBNBELnv3r+w4JhZuN02jpo3A1mS2L69leGNw/n617/O6aedj54WicfSiLqFIqocfugkqmu9nHraOdjtCvOPXkDdiNE0b9vElIljiaZSbN66mWHDG7ApbmKxFtyuALfccjt2u0Ig4COT1knEMySSUexeG+lMjBOPX8TK1R8QDbVSXeEnkgpjmDo2TSMYLCUSjlNdXc9VV/+U4uJygiVBZEmgK9yO0+7E1EUMXSaeSZNOpXBoGm0tzciawpy5czn5hFPwe12UVlSjqRpdXW08u+I/mBkoq6xGcdqRVIW33n6bYFkJXTuaqWio54Ybb+DQMWW4/EGOO/lM7Iqdq39xObNnzWbEsCYu/ckV/OAH38bt1fB6fOzY2c6Rhx6K0+UgUF6EkbaYOGEaw4cP46G/3IEkS1TXBPlwQzexqM7whlG4nD6ahk8imtnOQ3c+zFFzF9DVkcbtLuOb37qIZSfPY/joydx08x8498zTefG5Fzjx2BMoLXMRDsfweouYOGESskPljbffoaN5F/UV5UyY3EQq3kXaMqmvLMcXLGPDRx8ycdwwHIrGqjXvUFPX0CeciYKY9+x9PnpqsW/C3b7iE+HuE71d9qb1J5XscxV71fdZEu4+95a5n+j1lgl7e3U8EDBNcy8N2lDQ17jd79nIoVkr5ClysH0ZqO+9Dl2y6x/qOOX09tl//mbvJOXpSzZjmj2+hVZCPu92ufpwIDzx7e+O/2CeH6zmrjdvXqKdI+3/BbpSaGx7dgoFLKtnLpj7OD6fthlMLhRat/0Dpn/W2p+L1g2mPwVplbX3lnR/4Vegh/buj1feA41CNKJPON0d3mUoz+bLK0siyYyJw4zw1AP3M2vxfAStEl1OoxsmuzZtp6ymgWhnmLXvrmHixIksmL+Ar37jQv542++oqKrk3vtuwqmVEo7s5JWX32TS5NGUV1Qiygq7Nn2Ew+PGkFVkTYN0jK72VmySk5iu4ZAyiLKI7PLgFS1MTOKZBKLiRLOJREIxfO4yMnIS0Uigp0xiqQR2zcnqlasYP74Bt72CFS+/wdQp4/jHv//N5ClTqK2rRBJ7XKzbNBuJRIJwd4xgaTGGmSaZTOCwu8hkDARBQRIN9EyPhjOW6CDWlcFTUoxD0YkmDDTNjgWEuiKEwt3UVJdjk2VCkTCZdBqfz09reyd2h44oupBsduxClPY2haeeeZoTTpuHQ3KxZfMWSkrKF9OxYgAAIABJREFUcPi9hDta8bjdJE0RG2kcdo1QykQgDYbAe+s+IhJOMmVyE5rPAek40bTMiqefREVg7qyj6Y63sWXTVpqaJtLV1UllVT0dra1kzCh6KoWvqBzDsnDZTJyuILFUBlFNARoYJqqS5MH7n+L999/hip9fypaN23BqDjzFThBUFDHG3x56m9phXqZMm0gyHUeRBUxD5fvfuZRrfnEJniIvN/7mbhYdOYnRE8YjqCp6MoJsc3P55Vdw8jGLcBYVc90vf8t3LvgBohzD63NjYqGbJls3beHVV9/hhRee568P3cdrr66hodFLdXU9b65aTXurxR9uvY2HH7kLmyYRj4eIJ2MYlorD7kXVFCxLwLIyRCJhbDYv9995N5MOPYSmEQ20t2wHxYE7UIoiWsiCxKaNH/Ctr3yb6mGjuerKy3hmxROcctqJaLKLjlAXgWCAjG4QaQvxwXsfMm7qFGwmxBMmoUgnLS2bueyya7jp5lu57Y5b+OKZp/PYAw9w6VWXI0gKO7buIhKLUldfQSjUhZV2Eg61snLlyyxavBRRMnn+hWfxO4KMHtXEoqWLuPe+2/j617/HD394CRZhjjhiFqVlZax/bz3PvPAqJx1/HBs/+oCmMaPJmAYXX/x97vrLX0E4cLztYNCfvhhZpCifBWTft7WAy8q8dEsowBPtJvO9xfcW0VufiXBAeX/43FvmpwrDMK7I1rIBfeY/2Yc/+5s2DZbpKWg2NJSG9qmOc9eRz/lAoXZm9ylXWb0mXX2mkP3KzFV2Ic1bTpPIAmZEg9XE5TI928PcoAAT1t9crRDT3nsuZ6D+9ddU5qt3sJqXfYGwW7rLfj6jG30mV/na+b8Q6galyeuf6SCo/wpqNYFsFyzWQRifgyn4D6bebBPs/jRwf8o/mOhrUxY96r/ms/uVbV6ZTSf2yLs7tEF/8+091keOeob6LeiPob7HfHX1vrd90u4P4RnL6gmboIs2Rowdxz/v/Q3Rtna8ARex7ig2mxdNc3DXXX/i6muuozRYzpVX/5TH//4PZhw6k8t/8sMeL4uym9bWZm6+6TZOOOVMMHTamrfg8flJ6yYeTxGZZBpVkZBFBZti58wzz2XkyDE0jBjO8iefpNjnpLMrxE+vuJZZhx3G+vc/IFhRjqlaCKZKLBHB4fIQCoVIxTPUVNWxdct2Nu3oQpRg5MhGGkeMxKYouB12LNPANCEaieGwOwABRVUQsDBMEyyZeCxOJpNGklTa2ttQVAlRlvH5HHS0tGK3e7AEA1EUMEwDl8uNrEhoNoVEIoLL7SBjCbhcdjQpQzRh4nC5MDMm4UQLggDTDpnGS8+/RjBYgSiJCJKBIIDHaae7M8Zxx5/NiScuQbHJJCIp3nn7TQJFARyaRmVlKZrdTlfnThRFQTIlRjY2MGZCE5Km4XE4kSQJ1aayatVrVFYF8Rd52fjxFp7+1/NUVzVw4UUXs2jhUWzbuoMfXnghSxbNp70tjN2hIck2XA4PS45ZQDqdJJlM8/S/n+Pe+x/m8Bmz2Lqxi9Kgi9qaIEamm0g8jUPzcvsdf2bS+Amk0xnKyioZM6YJt1/mj3/8G1WVVSRSYdq7ulmyZCktzduoDNbi93ooLfFTVCrxi2v+wOKFJ2BzmrgdAeYddRRHzZ7Lhg/f44ILLuSUU4/F6SjC4fIybEQ9Z3/pVAwrRiIZwzANJEkmHI3icfsIhbpwaCI2TWD7ts04VDvPPPscy5bOx2Z3YKQ1HnjgQSZMGInNKZI201RW1bDqrXeYPm0cMw47lLffXsOwYZVIioIkyBi6SLgrhE2RKCoq4rVVr1PTUIakCdg9DsJtHZx11ukMa6zn9ZWvc9S8uUwcN57m1maKiytY+epqNm7cyvMvPsfkMcOx2TW8JV7qh9WzY8dOdjW3UlNdj2i38c9/reDa636FIJiceMKxxOJhSkoCRJI6rW1dVNZUMXxkPV2hTtra2qiqrmbjxp0sOnouKT2Ow+3r+a7tXva9ppi5rj4amSfPvvAve1pcDPRJz8FfMoBFUoECe9j6T87a9ZBfq69/vbzogcTnZpmfIgzDuCLb2UT2y+1j5KEvPtBQP8gDMZCDRa/mLJ+Z1b7UP1A52WcQs51yFCq7kC119rm8XvT2q+/5rL/97bWFrP73FzCzx6WQueb+eNYTRTGnqWlf27P6PtA4KLKUc0c9V1n7BGHv99P/nONghNCDAcMcpMmwkOf3AcBA/e0V7vrm3IGtflBtgAHO+O6ncLcHrdttxv1Z1djmmrv5zqVmm6TvsfZz0fgs2p/93F5jm2NzaygCVS6nLjnrGQD9xyD7f0mS9pgvBb89+0RfBGTBRBQsTEljxPSjKA4Eefbhm3hr7Uaq65qQFZXGkbVEwzpnn3UW7Z3bGTV8FDt2tNFQHwRB5bxzLmDJMfNZtWotV1/xc6prahk3aSLReAyn0839f76fKROnEI6EsNs0YuEkkyeNZMqMw1BVqKss4rkVK7n8Zz/jZ1f+lOKqcoqKyrB0g/Zdm7CTweP2YOoSLo+TbZt38uADj3HNVdfi8XmYM3Usz/1nOcNHjOGtN9+kyO/FrtkRBInOjk4yGYNAwN9z7l0SMC0TUdCwaTa6OttwOv04XSrxZBRMBVGy0d2xDbvXTiaTobu7C6/HS1tbG16fE0NPs6t5Jx6vm5QlocmQbN+C4qvuOUMWjaM5SgEDGYn313xM7bAyVJsNj8vHrp3dJEJRvvmNb/DrX/8K1S5hdzq445bbaW7eQWtrG4dOP4R//OPv7NixC6/d4r0PPqKsro6u7lacqp1fX3MdLW2dNDY2YloZRjQ24nQ5CHUn+PL53+cLp5xAWWUFxx6/GJtNwe3SWDhvLtdd80v+/vd/c8+993DyF85ky8ZNhEJd+P1e1r+/gRNPOp6urjhfPP8cJk2YybBRMh+s3cCVP7mC9R93EgmnOOHERYyb2EBFZSUWJppTxOUJMGbccPxeL06vhtPtJZFMIQkWdo8Np8uNanOTjBnMP3ouH29ej8Phxedzomg9cQOffe4Zrvz5dcTjIZyaD8kOomoRjUWRZRuypCFJDhA0TDOF3W4nlYojWRKS1RPbcO3b71M/fDhV5R4ExY4oqDg0Cbtdwuktwq15SMUzzJs1jdqGBla+spaysgaSqQhvvbken9vL+rVr6Opsp25YDZIoUlRSjGrBurVrKPaX8cSjDxONd1FWVkxD3UiaW3dR5PdSUVvBujUb6eyI8OLLr6CqKnMXzmfDBxvoaO7A7w2wa9cuHnzwYU459QxcbvjLgw9RX1vHG6ve5Pbb7+I/T/8HQxeZMf1w/vXECkYMr6PEb8dl1+hqaSMVSeIt8dDSvJ2vf/kCzj7/i4iC2BPaYpC0Jl8+cRBawAMt3BUU7HI/UrBNe/BgQh4/EPuBz80yP0UkE0kLekxOdGPwZjZDVd/2TplCbyvXtOrNny/w90BpuTDYoOcD5T3QKmzYW1mTL00QBUwz92gOpc2DHdfBjMdgYVkWiiKj68aA7RxMfYN1mJJPKyPlMT88YLTlM3Do7kBrpfZ3bCRJGlSg8HwCzP7gYJkiD4RPy8wzJ52y9gwtkw/7EvS+UN05TdPJfwbSMIwBx8yyLEKhMD6fN2fagdIs5pvzpmnx6B9/w8lnfJWYZRLtDiMIAslkCq/Xy7q31lHZUA96nJUr3yEWTtAV7aRxRDWHHXokmzZvoMgXRLLaKautIRaNYRcktKJSIt3dxKIROlojlDdU4vP6SEUSRKNdSJqPgE8gmYRIOIxhZrA7HTg0lUQiDqbKe+vX8a2vf4eHHnoIt1fE6Q7w0Ya3KKsajsdfCRaoNplYPIJbc2EBhp4h3LkOT8kwkkkZp80GoohghskYAhZ2UqlkT+w52SLaHcLjL8ZAxLRsWHoCCQvLZkcwU2AI6Okw0VAET0kQyxTQRAVdsEilUtg1jV1bd+Dxe0kkdY6cPZsXXngdlwvAYMa0eSxfvpxMKsONN93EpZdeiMMtkkmZKC47ZsZEFEQUScBMJdmwcT0jGpuYP2sZc+bOYdasw2lqGovqVojHUyTiaVRBJNQZ44wvncvy55/kmb/9i/mLZ+Nwediw7gPGjhlLItbNunWv0ThyOu+9t45xTVM596yzufOeWwknOymvquSj91v52c9+itPlRhR1brjhegRBIJNJc8tv7+T73/kipiXw40uv4MZbbqGlYyOa6SeU6iYYUHDYi2neGUa2GSgqOBxemrfvxONV+NW1f+Tyqy4kmbDQnG4QLURLR8SGqojs2rmddWu3sGLFc/z8mm+j2Oy8tfo9AiVuiov9mJaCpqqYyW4SiTiJhIiOhOZyECwNkkgkMXSDN15/lYaKAOVVNXQnEjidbmyqRjKRYfk/nqdxVCWV1ZUoksXmjVtZt+4D5syZz8aNH1FZW4as2igOlBGPxUildWRJJhEN8+LLq3j1tdUcPX8So0YcQkmVj5UrN9G+9X1mTB9JUnRgk104XDKdbW2sXrmGo5ctpr05yY03/pzLLvkKhmHDV1aPqUfYtW07b65exX9fXsnSY46jecvHHD7rcIqK/aQydjwlHpLxKOlUnOJAMfFEEj2dIRLt4IM16+kIhznza+ejKAq6ZWJZPWHpsyHmE3x2p2XfkwQxZ+DxQvSiv/LEtEAUe2iI1C8AuZHFOIjZtKiA6eVQYFns3rjZ3SYxt9f1/cHnZpmfInRdvwL2nsgDYcg7rvuZp9BCGao55mAY08GY6R0MRq1QiXsId0KWS/9+GEqbc5lW5er7gTRbFAQBwyjslfRA1DeY8oHd8WL2ND/Mxj45legv0H0GhLtC//8vsT+C5oFod64y/lebhJ/GuOerc6ia030Zo8FusOQTwga77jTNhpQn+O7+jvmAdESAxtpyXvj7n6mfdARWKoyZ0UlG0lz8/Z8w/Yi5bNv+EV67gcfv4+bf3YxdczBlylQCxX6cbhmn24a/tAFFUdi58X2sVIJMOoPm9mB3eXG7JGLJJF2d7YRDbbz6wnoQFOyOBIgWTqcdQZRxOXysfutjDFMkGheoqqlm4eIlVNXWkTZEJEkmEUtQEhxBy6ZuNHsKiTRG3I6hCkiyjCXJOFWNSMJAs6soqkVGB0s3SKYNUpE0qiqR0aNYZgJTkLHZVEwjjY6BIhoY6TSGLoJgIFoiigKGKaJqMpgWhs5u75oiWCbuQCm///2tzJl5GCcuW0zLzs089tizTJw8hbPPPol7/vxnZMnOksXLKAp62Lz5Y1SbBoJCOBLC43Fw9x1/ZnTTMNxeP5mMwjGLl6GqCmveeYtZc2bR0tzJ2Wd9CcsQeOD++xndNIpDD53OsGENjB4/BlVWMZI6mzd2gRTF7RUoDw7DkkVq6iswLZPJk6YjyyKVlZW89uqbTJ16CPPmLWBYQy1nnv0F7JoN3dDBshg1ph6P286LL63ilNPP4zvf+S6zDp+KHrXx9HPLaWwczsuvvE7D8BoEyeKaa69m/vx5FAc8bN6yjQWLFvDuunX4fAH+/vg/GdM0BjMepas7hKVarHrtfeqHBzjyqPE4tDLaO3dRV1eHy+nFJssokohppjESUWRPAJvTg9fvQZYttm3dgixbpJIJhg8bi2pTaG3bRrC8GgFob+vA6XDxg+//iLPPORNFsRGNJZFllVGjR/LI3x7i/Xc3MHfeHGTVRiqeIhmN8NXzvsKCeQvY0dLO2HFjkG02fn/TjcyaNY83Vr3E9OmHc/kVV3DYkbOJxkQuueQHlBQHKS8t5/n/Psv4yZP52RVXsnjJfJxmG6G2zaQsiUhKwOnSSCSizD/6aBxeLzUNdZSUl3LXPXfTNHYKPr+brlArqbjO2jVrSaWSeH0umtvbmDBhHMGKKjZ8+CGVlZU9Ak0OzVl/4at/Wva9vI4FB8l39NYhCD2Clsjeab0t7LPoGljdNyRYZNHdg3AecX80d//b05H/j0AUxb4r173+k9o0zb5LyLqXjV475VwQyLHIRGGPsrPbkV1vKp3GMMy8bcrVxkL9lbI0Rvu7my+QXyPQv885x6DflQ3LtAo6Sen/Dvu/z+z+CYKQN63Qvf1Bb5255lihvgxWW1rIbHRvhrPHo5qQRdyyGUrDMPq0TIPGARDsDqQg0Hf26oCVuO/oXWPZ5oD5zpfmMuXrj6EKHbnm8lDm1mcdhdZLL43u28wbyDR9P8clm+5mawHzaU9zXdnfHTGLbvTek3abfObaoNyfNTQY083eYwv2knIOmT2b1575F6Jsw+Pz89Vvfp3zv3Ye3//eVxkxvJHqulGUlpZx6623cOlPfoTPb2f7ti1s39pMe2uEaFRHNKGkpATJ5cPmcJNOpZBFUFQJh8OP11uMZleYNW8UV1z5Y5JRJ6HuEJIik4hFsKwUkpCiprqUa66+gi+f92WqKsvo7mzlzFPPRpBtuH0+JFWmstpPJBQiFAqhadDR1oyeSSAJBtFECsMCQVHQzR5nHpZgw+HyUlQeQFQVXJ4SFFsAm1aKKLiIdGYwTYFMOkMy1o1gRhFFkXgiQSwaR7G7iIVDSAKYog2b3Y5uZHocrSRinP+lL5JIpiirquHFF1dyzlmnIgkm0UiML5//JZ74599QbRKWIFBZV4Pb70UUFQLFfrq62yktrSAaS4MkgSxy3LHHMuPwGThcbs455xzsmoPf3ngDMw+fyle/+hVq6yqZOnUc6VgKTVEwdYG7/3wv04+YRFVtPTa7m65wO6mMRSyRQnGoVNSWsrNtJ7IkUeorJp2Jk0nrjGgchiyJhCJhLAyisRBlleUIssDCJQtZuGQx0VAbbS07uP+RR5k6aTqWZKdp/ARaW3fgcri56ue/RhJt7Nq+jZJADQk9SbCkFIfTjSSqSJLC2nff58UXXkE0ZSZOGk9pRQWB0jIS6TiJWIa29lZ0QyeeMkgYJoKsodpdyJKLRUcvJdrVzdq33iURSXDJDy/FrmokknG6ExmKi0vp7OggkUiiKAqGZfKr669GN1J885vfIJ6MUlFdgQGcdPIXmDx5Km+/tYa/P/YEv77hBrrDYW686bcsf3o599xxB5s3vsuCeTOYOWsuzzz9HyaMG0Pz5vXMmHEYnd1hXv3vk6iKSnl5FbffcRc/+vEPCJYGufn313Pc8cdQM2kRVdOO43d33EW8fSvnnn8BR8ycy3/+8wIlJUGqamr48nlfJeAN4CtyYlgZVNmG31dMV1eIsvIgTred+tphbNuyEQmL6679BRgmIiDmIH2mZfVdudJ2U4bd/gf2tioZDL3ovXrL6yGLQg4eOb8J+oGAIPQ6nOrRIH7W8Lnmbj/Rq7nLRjZjlX0gv+/+bhMdQRD2YpIGOo+Rz+FILsHGyCFMZDNy8+YfzZlnnYUk5g/COxgNUP/2DJZZzLnYLKtn1eQpe4/n8/zO285+eXM5f8nlVKW/A4V8ms5cDHZv2sFAf6Z+sHNnMBhKmy0ELMHCwhqI1/2/iyxNosDgx2ewpmlDbcpQ32MuDdJg+1BIKNzj/MEQNi9yzdFCZ+AGastgMZgzs7loQvYZNyG7/b3bxj2Je5WVy+nU/qI/rRqoP5/sLPe0N/vbI4gi5KFdQ6IBBebUYPqeERTs/lK2vPs6Vgrsfj9fOOt0hjfUM76xFo87yF1//jsOpxevr4hwtIvK6jLKy8t4//1NqLKPFU89hd/nIFBeTBqVeCyN2+0i0tGJ3eVn9aq1dHV0MXrUGOyuYubMnkVG70RWi9HsdhBNkokQZqqFbc07WTJ/FsuOP5ZtW7ZQXV7KKy+tYOKkGbz40os0TWwiHt+KwxMkFk+jOeNgKph6CknSSaR1HC4fkighGCaq5sQwLEwsEnoMSVGxJA0TG5HwDgQytOzaSjojIJBBVgx0PYNhSNg1O6rNjimKaIpKS2s73eEYipRBsdmw2zWSoQ6cTg1B1Ni5I8yade8zafxwnn3mCZIJFV1PcfwJS8DS0Y0YNpud7lAIRVZY8cwKRo8YRVVdA3a7G5M0d95xD7/85ZW0tbUxYfx4Jk4ah8vtRZWhqKQYRVaQVQEjY/L2mx8gGWl++9ubmLdgLhUVThBsRGMpXC4ZVXVj11TMjI6qKbg9dlpbW2lv76a4pIh3Vr9LNNxGUVEFiViM9rY2mre3EywvQ7fSZEyTE449jrPOPBl3wM8hR8xmy6b3Kauuw27zEO2Kc86Z51FZXoGmSVRWVrPu3c3sbN7B5g0vU1vVhK6nKPb5eP2Nddx3//2Ul5ThdOk4baUYhk48boAuEygqxjDjaA43hgCypNK8s4VwRxI9o5NMxDns8MMp8nk5as4c/vvCSsrLSgiUlxDq6MLrLSKZTJBMJTCRqKwoZdPmjznl1JNRZRVRgBdfepExY8dTXVtGSVkJw4eNZvphs/AUuUEw+etfH+X0k09B1uxc9pMfcemPL+GPt93Oqaeegk0TGT6ikbQeZeqEERx/yimYGZUXX3qBIr8Ln8/Dtq0baW9r5c1XX6HC72bmkTOIpjJMnHAYlRWl3H3X3UyeeAiXXX4F5559LpXBUgQlA6KFmRFIxXWuvupaFi1ahM1uI9rRSXtrM3pS4G+PPcxJJ52EZrdhCL26sqHSZCEXqfwkdRB0p8ccc09LAxFhj5bscT5vj/IH2Uygx+Nmnmt3OX3hcQ4Cn/e5Q5VPEbmEu17kczDQ57ijwEd1oF32/ulijuwDOTg4//zzyOh6XnOc7HoGYob6n/Hqz0TlMg/Ku4hzmDjmgigK5AvWXgjZwl12PfnaV0hwzXbU0F9L0rvohSxnCAfDfK2Qo5NsDPZsXaEycpZbwG7+/1cQhibY7fHopzQehcxJc83vwZSRK61X4BkMcjlXGky9e5gC76Njo761P5i8OQRhISutz6tmgQ/7wVjve9RNbtrVi3wavuwzgHs4jcmiJUMxpd7fnXEJARGBusYx+IuKef6pv1JdGuCFF9cyfEIda1a/wpq1b7B69bts3PQRK55+iuOPO46WXW388rrreXr501x62UWUlpeQShl4nD48LpVEMonmcmCaUF5eQk1dNZKsYAoSAiYOzcnate8TLCnC49JIJ2I4nTLukmGUlZRBxscPvnchy45ZxtgJswkUOygtK8GmKXS2tOAvqsTr9WMZaRStCIfNgSmA3eEhEUngsqskEiFkRcMiQzweRhMN0HWMTAabIhONdhONJiivqMPtdKDICt3hBC5XELtDwzRMTBNURcESJBx2Jy6nHUWUkFWNVDyNqrjQDZNjFi7D7fISLHET8JVQVVPMO+s/ZuqhUwhFQ3h8flRBYNeODi66+EcsWbYMr+Zl6eLjaJo4FbdD6xGQvaW0t7fyve/+gA8/3sKatWtZsHABdqfGXx96nOHDRvHQXx+ita2Nk04+ActMMGXqZKqqqknEwmQMCywZQZcxLINkLMlzK56jrS1MdXU1Hp+bQEkQWVVY/cbb1A+r4oXn3uayn1zOU08+RVlpNbV19bjdXgxDYO3adQRKSrCw8atf3cwRh43n/PO/xsnHncpFF36Pu+68nZJiP7fffjtjJ06ksjpIXX2QhrpKfn/LAxy9cD7pVBxZkrnokm9TWVVOZ0uKp5f/l8amKjS7j3dWr8Ll8NPS/hGiqbBrWzN+t4bDJtPS1sbiZQupqK5Gtom8+uILeN0uGkePpTvUjqIKqJKTW26+h6mHHILX6yYcjaEoKs8++xyjRo3A7vYRTSRpGNaAKptE43FMUwfg+RXP8tSTTzBuQhMLFy/CX+Lj0b8/TVXNcCaMrWfKlKk888x/cThVRo8bT6Q7jstVhKhEsNuCvL5qJSNGNPLYo4/g83mxLIF77n2QMU1jeH3lq9RW1eN12XF7NJqamli75l2+/NXzKSr2UVNdhd1TyvYtm1EFkfa2dqZMmU5VbR3xZASvx0VpaRkvv7KSRUfPJdTdTW1Dw5DNED9xSFU432DoSC/dtbKErf6tsejhEbNptGnl5pUL1DT4pM+YcPe5Q5X9RK9DlVzoCT6+W3W8n+NcyElHL7Kn1v86ptKBchhSyISpVxsp7icj0Quj31gOpe1DMbXKt5vU147dJouS1HMgdyAnLb2M8f7ECRwIB9IBTC/+r9MaCxCsT0ye+0MUxYIOLPZVw/1ZRe8Gxu5/9nuuDOUs71DLHcxz++JgKpcjk71iZ+YxU8punyRJgx6/vUzoCwh2AzmH6h/HL1dcv757widxSvfKn2MeDEVrLdETJ8pCwJQEHFaSj9e9w4MPPMq3/j/2zjs8jurs2/f0ne2rVe/VvTewjQ2uuIGxMSWE5AsBAgk1JCGFEkiDQEihBEgCAUJvoYXeEopNNRjci2TLsqwuba8z3x+y7LW8klYugfd9+fnaS96dM6fNnOc8/fzwF6hmjMamdvxBP7quk5Wdxd133U1pSTl/+P0fuOT7l1BdVcVf/3o3pWVFXPbDC9G0BMEug6QZJGnIRCIR/AE/ZSWlGKJCW3MTFkVCtlqQJZFw0AdmErfDSv2udnSrnYCvCzPeyUcffcwnaxsYM2Y8S0+ajywmQM5n64Z1QJSho0eRTJoQT9IVCODOduHvCmGzyAhinGhSQlFkItEwNtlEUjSCwTiabiMcj2C1OkgmIdDRTCIhYLc5gDidnZ3YnTYcThvxsIEoSmzbto2KinLau3y4rA5+ff0NnLxsBaKoUFxSiCfLhhELEwrFsHkUItE40YhJR4eP4tJCnnniWY6dOYvWph0ouovbbv4tP7rsB1z8g2u49srLEeQIt97ydyZNOYqJk8dRXFhKW1uAO/7ye375q2t45MEnef31/+B2u7jxpl/T0lqHQ/Oi260kktDUtoPignJWvf0+u9p2c9Kyk+lobSMSDJPlzaWtvZHsbBeaZgPFxvPP/YvZx83A19aGrjuQJImmlh2cd+7FuN05jB8/lsUnLGTSUWOJJ5O0tQdo3LaJsVPGEg6YBAJtrF+3mf/8ZxWXff9yBCmJIQRx2B0kExb/AoDVAAAgAElEQVQC/l1kZ5eyubaW8tJsphw1kddfe4e3X1nJiLF5OBzFfLLmE3TNTk31MGrrP2bkyKN48ql/cerJJyCYSRYvOZHnXnieWDxOKBDhg3feZ9Gi44lLMVpb28lxO0gKGtFABJfHRigWRtMcRMMBOjraycnzIppxBMGOKNuIGp2o6Dz+2BOcfMpJhP1tyCi0tXeRMOMoupUCbzH33/8oNSPLmDB2HA119UiGQV5ZNgIudu1uxGIN8ew/P8QUwyxZMpeSomJCwQDhcATd5qJ+ey0lRXlsWLOJgopi7r77Li656Ae0tQeIx9vRVNjR2M6GzzezYNFsEvEYD937IJ2+ID+54go6unZhU90YQoRnn3uJYUOqaWpuxuHxsOSEpURJIGSYSCRdjF23YmoPnTGNXmUFejimHhqXmo3YRNjPHbJ3L5LsMQCkwDBMpMEkVEk5K69Hib3XPijs88rr7txXCVX+V6E/y11PHIORIXORDr0tef25KAlp7kv9fiRxuNzO+rUSMLBlczAYyHLXHwbTfm8Xqt7oHUMzUPKbTC0uvXEw4/ufLoAcbvRnuet5hzKxdP1vQA99S3U9P9LjO9j6M9YGM7gEU325l/ZmZAZaRYOxkvXMeX80pafPA7lr9iWA7WclTRHi+9qPUl0/Uz0WMh1XUgBBMJGEJLIZx4+OMzuPubNG8+BddyNKMXa1NPL55u3c8be7mHf8YmJxeOKxRzn33HMYPXIkZ599ITnZhfzsyh9gCkGad7Vy5x0P0NnRTs2wkby38gOGDR2Br8tPIBgkmYiTm5NNTJZImCBKKpJiob1hOwV52Vh0C7JDZ83Htcyetpijjx5FLGmhqDCPui2bQfGyacNqSsqyUax2YrEQgc5O3FkeBElAkVTi8SjhkB9FdSFLCppmQVQkwtE4FpubODKSaO6xOwgochybzUk8nkBSkrhcXlRNJpmMkIxBU2MjFZUVJJNJREVg/epPmL/geFzZGq+8+iY33HAj4yeMxdfRQm5+EYaUJB4OYkQh0BVCNg3GTZlIfV0d1VXFSIrG6BGVFBZlk59XxpDqahQFZh07D2QYO24YkiKhqTqLF88lnoiSk53P7FkzcDicVNdUY7NbiAUMOrs6EWQDR46VC879LjVVVSxetgjDBLvdiiyLOJzdST1UVcNicfPnW//K4uPnISHiC+7G7XGhW1ViiQ7OOft8iovKWbp0MXaHhigbhKMBBBGKSkoRdBBEFTMJQ4eNYuvWOoYOHcana1ZTUVFBOCggS2CaTVx49o849YyvE4kEOPPMb2DX3QytcvPiy/fyzutryc0u4Y+33MbTTz3HeeefhWK1MW7yBIKhGKrFwdIlSznxxJM4aelyHE47q975gKAvxObadYwZM4X2pkYUu4LdZtLc2oDD4UCSrcgSSJJA4+4G6OwgHpFAVIjLcZLREJMmTaVu63ZcXiumaaJLFhQzzp//dj+Tx08gnkywu7WZ0pIijFgMf1eQnAIL7a1RXLkurJpOfm41khxlxJhyIqEgkgyKKuIP+nC5ndRt24jLZseURcaMGcWPf3wVeYUlhEMtlJUX4vDkEG5rQLYI2LKymDhqDFarjdy8bMJRP/mFFVx1xeWsOHkFFqvG8GHDiYTCvPbq64ycMHZfYp8BkDZUxNwTzoGJaSS7FWFGdybO1OOYRGH/XBXCHuFvf7fM/WGmadM8BMtd99FG4gGX9h4x9iWz3H0l3B0i0gl3Pa4tqQk3erSzmWx0qS5HqZtoX0kT9m7y3Y2lZUD7c49M5+LU81uPtnagvg9GGEh3ZlOmAtteE3vP9wHv6Bs97qQD9T21v6mMbCYMVk+f+4tJ6X1WX+qz6j0vg5mrdP1I/WQSd/Rlx+GaiwHrSAkF7ats6no/4PZBWDH+J+O/JbwOpp2Byvblotj7erp1vt93s/slOaC9QQhZmSAdTUiHgepMpTO943HT0bZUJaUgCPs8DkRx70G+A737giCkzZ4rCuYePb2IiYiMgShAUrAxfvIUtrz3LwzRRl5OMd897xx27dyGJMaZP2cuk6dNRDJjuD0u6nc28OGHnzJ29Hju+9sd/Pjyy8jx5PP6q2+RTJq8++77bN1Sh8NuUlM9lG3bN2Oz2JCEBFaLBqaGIzePWLIDwZSJBRMMHTqMtq5O3F4P/3nrdYaNGsO2Tetx6xper4vcgjJiYQHVoiEqKpKmsnXjNvy+IN4cBwkz2C20ihqCICEi0tHZiiQmsUgKnR0thAIBVFlGRCcWCyHKMfyBIJrVSjwiQAJktbvueCIOpokgSeQVFGLVLYQiIUZU1vD+e+/zrW+fjdXppiPYjiSYyAkLv/39LcxbMJ9LLzoPkjpW3U4wmETVRF578w2qaoax6t2PKKkqIxJPcvnPrmXa9PGIEsRjsH7DFppb2/nxj67mvLO/yb///QZZbi+6VUK1mkSTEm+v/Ii33nmXmVOPZcGCZTQ0NlNSXIDFomEkZTSbQiISwWZzYJgicSPBus/XM2bcSEwxQU5uPsFwBMViwe3OJ5QIUDWsGN2iodvdyLpGKBxGlkUSMZGoP4rForDhs9VUVVVTXlFNxAiSk5tH0ozS2NiEy2unqyvG6V9fgRH1YRoJEkmDdl8XqqrgdFRhcbjJySth6eIFTJ80FptVQbFIiKZJOOBDUaCrtZkLLvgeHZ1dvPz8Y3S0+jlu9jyGD6thW+1Wbr359yxeeCImTiLRAIJhBaIIRgRNsZLlzsawO5DtKg0763Bb7IR87Vh1hSyPC1mS2d3cjkV3YnU6OX7ObJAEsrPtDK2pwW614HA5yMr30NKexJPlpbOlDkWTUPUYLpcdUVSJJyUESSOeMJGSScIdnZx11nepa2hj4fyF6LpCY1MzvmCMtWs3MXXKNBLhAFu3NpJICJQUFZEQrPzoJ99nyZIzsLtsvPz8W3z3wu9gser4OgLkF2Tj9rhIRgU6W5rJLinEFKQDslWmo1vpfjMB00juO+zc3MebmYLYHdPPnlhzBARRwtizH4uCiSh0C2yC2OPy2R2r053bYk8eAGFPDWZPVs0DP2bKHp/Sw94d3kfXeuKVj5BgB18Jd18o+kuocrBIFyTfn3DQgx5N+t7NOE0wfzpGYiDBsXeMR199Hkx8RioGqju1XG8Gq/ddZq/ygtB3kG3vMfbV/95C9kBl+rq+t7+CcMCzEWA/K0i6/qWOKRVpGc+eevoQJvsTZA/13e1u9svH5Pd3X0Zj3rMP9GflOJQ+/W/AF/Xc+3vvMl6bGQhJ6Wjrfvf1sd6OJA51zjOx8EFmiW36E+76K7Pvp1SGqxuiKFEwbDSxrjp21ddSUJCFNy8P3eFk5Xsfkp9XSDQJZsLkhBMWIYgG533nfFzZJQwZPpK1Wzbw9JP/JBwNMXv2LIbU1FBQUsCOHdvZWVtPaVkJmAlURcVMmESDIXSrE3/QxOdrRdUsKIpEZ1cbR089BsGMIokGucVVSJrczZgmDRRVIh6LIgmQnevGlWVHRMEwVHTNij/YRdKMIwoCulXtFnIFCVEWsVvtGCbE4lF0XcU0DRx2D/FEd6bhcLgDRbGhKCJJM0Ag2MxF51xGYVExecVFmEkrqgQLl8wlbsR5/70PKC+vwGlz4A/GaNi5gzGjhvPh6tXYrC5Wf/I5Gzet4+ijJzJp0hQsmp0hQ4ditalYLArHHXMsoa44iiiR5daJhgNoFo2W5jYmTZlMdVUJr770OnZ7ITfccCfHHTuVe/56J987/xwCPh9vvPISc+fMobOti3DEj9UqEfT7kHQHoiTQ1Lgdj0Pl3vseZM7s2aiKFcVqQdetBIMBRFlAViwYCYHdjbtZ+/k6ZJwYSRFFUXjongfwOLLwurx4cvMQBJGLLvoeXzv1NDpa2zBNAW9WFm+9+w6jxo4hHI+hOxxEo/DoY08yZsQo1m/ezX3/eIi1n37OiKoKiocVkVtSxNqNdURCcZqb2rn5T39mw4ZN1NQMobmphZqaKvILCnn73ZVMn34MDQ31rP54HaWF+eSXFhDwJcgv8AAakixiCCbBQIxQOEJLSztZHg92m05b627yC8ppa2+hua2eeKQLDAlkGy0dPmSLQVySsegWEvE49TvrcLh16uu34HEW8exTTzFpylE88dDD1FRWEwuHkAUTIxamo6WZzpZ27r//ETSLB48nl0gkRl5BGVZV5rXX/83CxQsYPaqCvLxcQuEI8ZiKze6iqKyMRCzMSSct5OGHnmD4yAo+X/sJedlegiE/dbXbefbZ55k8aQput52NG9ficXqwu10M5J/Qp/Knm0iQNPfEyfVYxEQxhQykKr/30YzU2tIr1VIa6fGepD8PjQN+6XtA/4W97ivh7gtEf26ZqRjMBmyaZneSk0G4B8G+pdUj0KSzxO29fhDa4kyQSaKDdIxZJhaw/TTApF92vRMN9CRd2dt2r36k1tnbYpaOmUlnVctEoNmvTDoBu887D2w/nTDRZ9sZMFupGCgJT6YYLMN5KBa4wbR3sO3sdbPvQ/s4UN0H3e4RgiJLGIeYv/mLFGoHI1z093um1/fSzx7Lfbp7070b9J2E6XBab/vqfybKmn2JDtL3KR3t6/m9txdGX31LV+bAtZv+fsMEyVTJKhlBbpaTp59+jjGjRuNv66S6uoxH77uf+p0N1FQPZcvW9eRkZ/H9y37EFVdczvBhQ5g5YwY11ZWMGjmSgoJcmpp3E47p5OTYkY0QuQWF+DrbkUQBRdGJYWJVNeKRTixWjUTCIB6LYnfpWKxuiHch6yqaIxdREggHfTjsduLxCEYiQTIRx+9LoFm6uc/OrgA2q4xBnKQhEY2GMEkQCgUwTbDqVsKRKKpqQVXBMGLdMVO6G0mSkCSIRjrQdCeRcISAP4zDkcPCJSeRl5dPS8Nuli5dwfLl8xFFic6OGC+/+jzjJkwkGUuy6sOPWHz8cWiawJTpM5g4cSQffbCar339BHQ76FYbsqISCLZhtagk4iHWrV1H7Y7tTJ0xBcmiYne6KcrL5eZbbufk007FlCVGjhzNs08+wbFHj6F65AjGVpdRWl6CzaLj97fjcbp59cX/MHToMBoa6vG68gj6OvZ4MWloVhfHTJ2F3amzaeN6zLDJzrodiCTIclqJJWWC/hi5OV4aGndw7rcvprFhFzNmTODYuTNxZ3vQrDqhsIkkmxx37FQevv8hPvr4Q159+T9MmTyeC8/5HkuXnIjL6SAWT1C7bTcffbCaYUOq8Tp1SorzUTSJsppKLJJOIBzmgvPO5ztnn8+VV/6SVas+5OdX/xK7y0ZXVyeqJGCxOTlmxjGomozN4aG8rITKihIsuov6HU3Ek0EwFKKRCJpVJRIzsLuceLNyiMeixGIR3B4bTc0+VItOfmExXf4Q3pwCHFYb9/39TqqqSnA5s2hpbgMhRJbbiyxY2Lm9HbvFQaevhaqho/n8s8089ezzHL9oEa3tHWzdto1x4ybRuLuTyUdNZfvO7eTnZ7N+7WdMmjodSYgybvRIHnjwcXJyCrFZNd5/fyWjx4zn+VdewJuTRd3GHdx111+YOf14PE4blVUVvPbqu7z88quc8bXTKC+tYtvWbcgaOCw6m9auo6KmCkFR+qUz+6/1fegW+rrPa+zmA7tj5WRRSgl5O5BG9CXc7aVlpD/LeG+Oz3T06Cvh7iv0oEe4G4wwMxDSbbKDYQ57hBrDMPdzEe0tRGUi5KUTfvobVyYWvN6CXDprVV9M9EBWxAMFR/aG5aZjIVLdLPsbQ89v6eazd5l0n71l6P9dSUUqY9YzLjFFsD1AwN1T1jDNvSnOu+vpJeCmPPfeR2AcLMPZex4GsjD3/vR23erv+fdVpj8mcqD1M5i11bveTNCjsOmrjkz6eDgxkGCXSCYHnbAnU7fzvpDJ+HuXyYTuHo453buWOVARk67+vo66SS2fTujLdP4ysaKlayMdes9n7/WbzvsjE2+LvlxZ0/evN1XrYcz2PG8RBEzszmyKS6p4983/YJElPDmF2Fxups2Ywftvvcm40Udx+VU/Z8jISqxSnFOWncZNN91ESclIBEnm0ccepKKyjHvuuYcJw4/CmZ+NVXeRiMYgabBj83asmoTPtwvVYmBGszAN0F06aBKiqBLwBbn8Z9czetRo7FYdX1c7DoeDYGcX7iw3XeEQiBK6mCAYaMPudSJKLlSLFVW1oopgJiAeM9BUFX8gjqpKyIqAGZZpafLhcWfR3N6Erul75kJF1gQSZgy7ruDzteHOsYEkE2z3M3bsdHIK7PiDHSxdupzbbrkRf2cnXo+HorJCRBJIIhiSgiGaDB1aQ25OMVabjeamJkRR4pY/3kN+YQn/fO59qvNLOG7h0ZiYGAkZwxARjQTHL1sOikAsHCQeCZOXl8Oo0WPRNRFbXhFxIG5YKK8Zgj+SpGrIOO669R/MWTyZXY1+EskYv/n1HyktGUpenpfb/nw3q956g9lz5yCLEXS7SnZhAW3+ELIRJtixi3iXQVmFk5OWn0FL+y527a6jongo8XgEUzBor6vngu9dwJITTuD7P/4BF3/vctatX8vMmTNRFYPcouLuZBexMO+veo/ly5bh94XJLdDweHJRJB1vto2uTh8FubmsWvk+i+ZPxOdLcNlPf0LDpq388le/5hvfOAOL1UI0HkSU3IiKSbgzAEKMres3UlJaRDQaw2Lpjrn0+XYRM1UWzF5IIhimvKyALFc2IiptHY3k5RegyyKdnW1IFhuqxcnV117Dj674IbrpI5a00767A1euB8Xi5IUX/sPf730Ct0OgekgNoOHrbGTR7BOwW5NoNp0zT7uYyVOm4snS0ewKQ4aN4I1XXmfe7Gk8+89nQNDIKynh2DnH8vzzz1JVWk1HWxdlpbmoogVFMhk9ZQwTJk7F7bSxvW4zgglTjjmGoyZPYOuWOiKGiagpxEJ+ZE2kZEgl61avoSgvH0MSQJSQkiJmykF43Qqk9PvJvr1P3KPMkPYpjVIoQncsL/vcMHsfU7CXOO/5Luyru8e5c1+ilgPb30uG9r/aN30zezzxj9ye/ZVw9wUiE8vdf1OjnSpQpJ690Z9gNlgGoL/fBoPem7+cYk0YiCEYTNv96YUHy4z2xZgdCfQWemD/MSR7zZ8oCiQSBrIkHVBPOtOguEcJkImQPxjIsnzQyo7DIYAdrvsOZ12SKO7NNHg46jvSOJiDtw/VpTcTDGrd/5fmti8lV6aWsNTfD2b+DnWc6faCgdZhJjQ4NRFLXxjs3hPHQHfoVI8chsPrpWn7Luw2GbdDIK96KIICwyoqGDd8BNPmLeDfr/+b6opCJhw1EdNIMGHcZNat3cK48aP5zS+vZd6CBciqlS5/gB/+5GpCcYXyqkrafWFsjmxqa7fQ6Qvw0INP07Y7TllFLr4uP598uoZFSxYgiTIup522tkZC0RiCIGOz2BGkEH6fn3hMxGZxE/a1EQl3EQ8HaO/wIakKVpsNENEtGu1d7YRCQXQ9gSlEiSdjWHQbra270Cwymi4hYAcDOjt243I76OyQCEUhJ8/L9rodDBlSRU5OPl8/4xu8+/ZKaqqru+MiDZG6bXXIsoKAyuOPPMP4sWPo6mjhmadfYMKECegWG9FIkvXrNmMkwgwbVYwnJxdVVkkmEwiiyRuvvMaNv/sdZcVllJSXY3E6yM7LA1FAVJLEYqApNh68629Ul1fz0rMv0dXaAaqPxvoEF118LhdefAHHz59DYVEODTt3cOJJxzNyRBUWm4VAKIjd6SKZTKIpGvEI5BaXgcNCUgKrZqGtpYMFCxfz9OOP8Lc7/8XChQux51k5+fSTCQd9nHXGGVisCjNnHMdl3/8ZghADUeX5F14mEY1w3LGL2bG9ju31GykoKsE0BfILC5BkDYtuY8Wpp3Ld9dfh0GIcNX4Ct95+O8EIlJYXkZOdhayI+Ds3k+Up5uJLLsNl9zJqXCV2u44hmeguO5oiUrt1G4XF5Vh1ne+e9x3GjqpBs7kIBANoukwsmiCRNAkHQqi6hlXVWf3uR5QUFFCQ7UZ0FJOMJ3FbY3S2+zEiMVw2O4sXzKeutoERI2tQrCKr3/+MWCTO+o0fUlhUzooVJyOKMQqKsgmEfDgdToYNraGjazfvrFzN1GlT8bjdfPbxRwyprGbN+k2s+mgNZaXFROMRQqEgiXiIgtw8nn7qWY6eNgVZNVm/fgu+zgB+fxearlNaXERpcR4333AHjz/xBPNnT2fL5o2s37Rlj+DJfsyKIAgDJhbsoQRSr+Qp6ejAAQ3sX/DA9kmla/1Z4wb8YS9SPeWOFL4S7r5AHKxbZiZWsEzRH5PQW+va+0y01DL9WUsOllnvjwnorYVPtSb0FW/WYz3r1UhaE7koCpiGuVcDtLf4IMeXyrQeMJ+9LF993Z9pO70tOP1ZM9Jd6znYM5WE9Vgve5O1vddT6jtY5jydFS6T/vZ3rS+LVqbC/ZGwhB1sfX3FG/TXzpdV8EuHw6EcGAyjn86tWeBAK+1gFUEHg3T0sz8lUF/eDZnOYW8r96Git4dBOprSW9F0uBR76frSg97Psbsz3UeNmIhIqoo3NwdFlXn91Vfx+0LkZLsoKSni/gcfpKGxkZXvvkd1VTUvvPga11zzc0aMGM6sOcfhyXIx9ahJXPrDn7Bk/jzsdiuRSIyTT/4aAkkKcgvAlLn66ju4446/YrdLnHLKLBxON3Z3DsfPmU08GSGZEBGEJOFIJ25vNqYh8cYrb1NRno/Lk4+JQCzsx0DAMOM4XS4sNhe61YYgSiiaBmYCt8dBKOgn5AuiW23YHQ4i0Sh2ux1BEEkmDeJJg66ODvJy8wn6Ixw3/RhWnHIaFk2hrLiIUDDM2s83kp+fTyJuoqgKsXiEu++4j7dXvcv4CRP4xRW/Zu68eeiaxrVXX8vo0ZMIBAM4nQ4+/fRzxo0ZxeoP3mHm8bMQTQlBlEkYMQTRpLS0kmOmTOaqK69h9tx52HQboUCQs886h+UrTuPkFafz1JNP8IMfXswtt9zOiy++zs7dDeQV5PD0P5+jqryIeQvmsWnTOkwhhtVqJ56M4rDq+PwR3DlZRKNRLJoF4iaComGxWlDVGDJ2BKCishxJNsjLchILG1RUlfPAIw8xdMgwVq56j/zCAubPn8+SJSewcNFCxo0axXMvvMymzZs57+xzePLJp4gnosyeMwtZ01FVhdrabdx6211MP2YGy08+iaLiPJJmhGTSwtr1n/Paa28z7egpiJKA22WnYdunVFZPYsSIUYwYWUnCNGmsb8SQZFZ/vpmPV65k7uyZNHf5iIYC6JrKZ5++h91VQMKIoWoSyQQIooSZMFj7+VpKy8tob20jFPST5XVidtYjKTpqbjGiGUPWVDzZbgTRJB6N4Qu1oSgqgmFFt2hMmFBDY2MXTrcbh8NBMmlQv72BrvYAn69dR2llGcNGjGXYsGFYdStX/Owq7r7vAS656CI2bdrA0uXLeOfdfzNp8mQa6jdRkF/EmAkT+OczT5PrycHp8SKJSRRZpapmCKqqsGHdpyxYdCJzjp+LLxBgaFU1n65Zw8hxY0gmjb1HO0FmglDPeu/JoDmwQWEAz4E9ljXT3GPp23vv/w3h7qtz7g4R4VD4sEzgQC9IfxrV/pjpvjDYM/COhHB3KBjoXKa9cSFp7k0exgQHmZyPl+lcZ2ItSTfedDhAcIMBhdCB+jdYpHtn07l8pSKTd+VIvVMHa8EeTP2CIOw9q/F/Ew71eRyyYEjf2/B/S0ju68Dww4lM3TEPtt6MrXL90J9Mz85L10668e3/W4+SrVtVZWCiCAKJuEGgvY1PPvmIosJC8nOLiMSj/Oyn1xIKxxg1YjzjJozhz7f/gauv+ikfvv8JC+fPIhCJYETCFJUUE4ubvP32B0RCXYweNRxZ0vhk8+c47A4mjx/Peed+h8f++Qjt/hBWVUezQiQEgWAXOXkOgmETu9XBow88xl1/+T3Pvf42igSBtgY0ezaSrCCIArFoFF3XSZoQ8AXo6txJSXEFpikR8vsR5e7YJavdQigqEg0HEQQDRTNQFIV4SCDsT+CwmTQ2t3LFFddidziZP28B6zdu4Ph586isGkI8GUaWE7z/zhrGTxmDJ9tLzAeCGiYWhL/c+ReSosyiBXNASNDe7mfk6EoUWcaVk4dkJIjHTVRV4b0P3+GJB57m+5ddiClqrN+wmeHVQ/jN9b/hh9+/hC319fh8AWqqSikszuf7P7yCDZ+vZ+ni+YweMZbb/vonHn3sUaKRIHa3k3giSjwQRJA0srKzQNIwzAiSaCHQ6cOqa9Q3tpDjdaJbDFp3x7DYVJqbGymryCURl+j0RckvKGbzum3YdLDoTgKxGMW5HhJmglAkhF110tzWwQ8u/xHX/+oacvK8xOJJNq3fxr33P8wf/vArJFlgwfyT+Oud97Bp6+dUVBRTVlVOoCuCmExy3a9vYfrMScw7/jg0VWDNh2/jdpXjLcpH1UxAQ1WsbNj4Gff+4xmCHU187/yzKKwoIRKOkJOdxa76HZxzzkU8/Mi9xJIRvN5CLrn0Mq7/xfXdB6ArEu3t7YCBJMo487y0tzajqhZsjm7Fw2uvvMQJS5YQD8dBkbCqLq679i+8/Mr9PPXs/WxYvx0zKbFxw0ZeeeN1br/lVlqam7n59lv57vnnsq12OyImn378CWMnTmbK5KP4xTXXsHz5SdTW7kC1ikyddhROXcbnDyFZdERJ4Kof/4qR40exdNl8NNHBy8+/SldXF9/41inceeedfP2sMxCwYlNlNqxdTTRpMmfp0n2ZT+hWgqc7jzPdPtj7TLtU7EcvzPQ0qmcvSL2cqoLv3Q1hACGxLyT3/O19lt7hxFfn3H2BSMT3We4OVaOZqTUi3W99WT4yqedg3fJM00SWpH6FhiPFWPXe+FPbEQUB+mFQ0o0z3fEMg9GiZ9LX3uXTacQzqWugcr11W+mcGdLVIKT0r/d8DCZOMJVB3O+57LGAZvpeHpnvgfgAACAASURBVEqZgfqXblyCIPQrJRxSuyltpbOe/0/H4RrPwdbT313/rbkejOLtUNo4UhZpQRD2vqcD0pgBFHqpZdLRt76EyIHG1x2301Nmn9JKUWRkq4WS8nKyPF78fj/ba7fR2NjElo2bWfvxO5z9rW/ytTPPYMfORlZ9upIJ46ez4ZN6GlpbuPjSHzJ20gQ6/W14c0u56OILmDFjFuPHTcDhsJObn82iE+YTCkUIdPn45NNPaW/djVW34nR7sVit3PzHW5g29SgK8zxcdOklxOIJmnbvxqJZaG9tQ1MttLS24PZ46erqQtdkTDNBtjcb0xTZUVePJ8eJIqts27oDi6YhCHFEBKKBEH5/d+IWu93JRx+twVuYRygaZf6CRSxeNIuuznacdgdjRo/hvO99l8KSEmyag+LSQuw2nV0Njdxz7z+QRRnd6iK/qJC8bC+7W3YycdIYttVuQ5cLsVoFEsZujIRENBJjy6ZaykvLWbR4CcF4mFdfeo2Z044mHo/jcjkZO34ExcVFjB41DNMweOBv99HR6aO1o5VbbrmJcZNGs2z5ciRFZtuWemq37ybbm0csGMDXEcLl9oBp0tzShK5YsVodmFISVdEQxQRtLR14vQ40VUNCpraujsULTiESExg3dgRej5ftO9bxx9/9mbFjxhMMtSGJCrfc+heOnn4MTreDJYsX4vF6aKxvQHe6MOMCt918G0sWL6Gzo5NRw0eze3cDWV4ned5CVEWntaWBM844k7FjJrL4xDkgi3S1d3HWORdz7JxZeLIc+PydeHOyWTD/BL597jcYN6yc6upSxk+cQDIW52c/u5qZM45Bkmzs3NnG+PHjcHldIAssXLCI559/hUQ8gcvlANnE48nmzG+ez6nLFpJIRJBkBVXT8fu7GDl8ONFwiHA4gqhaEA2T3Dw337ng22xc18o7q/5DPBJh2YqT2bR5K2s+/RhProfTvnEGzz7zDC6rnYryckaPHo3FJuNx2diwoZa/3/cwuqoyd+48snOz6GwP8vQzz2GzWSkrL2Xa9KlUV1djd3rRdY2C7Hw+/PA9svO8zJp/PIqcwIjF6PJ3YpEVnnvyWWYvXgyYKZ5T3f8yiVceyMMn5VtfJGgPLQMwDyhlsC88z4QBj3DoC192y91Xwt0hIlW460Hvl7O/DWugzWwwrjC9GdX+3AHTuTsOFuKe8436Y2qO1IufLsh/P/QnQJBZUoTDxZj1dYZWf2NIlwAnUwxUsuf6XjfXNO9q7/YzbntPXanvdSrD2FemwN7vd3+xSpmid1vpLAep6LH49rXWDiVhSI9bZiZuKUeKgc8EB9vuwfb1y+A5cjB978sq3Zdl+mDiEVNdvntb1g623wOhP/fh1LWRTCaRRDG98qiP/S8VvROy9Dem3nWla8s0TQSxW4suyBJWp53SkhJmzDyGhYsXMKSqENWikIgnSSRiBEI6q1Z9xMjRBUw9egannHIyObkuSkryuPLqXxKLxogbUarKSygoyEOQJWRNxcAgP7cIu0Vk+NAazvn2eRw3aw6yJFBdWYaZjOFx2Vm/cRemkSA/LwfVohMOR5AVAY/LhWEaSIJAIpEkFo9hxEUi4TDRWARZVFn72WYqKysxSVBftxG7ZiXQ6Ue12HE47LQ0t+ByuhHUbiHN5fEQDHYxfMRwqocMJRSO8NHqD/l0zRqWnbAMv6+Njz9ajSxK1AwpZf36Otramrjm2p9z6mnLGTWmBpvDQkV5GclYB1s3b6OmfBxNrU34fJ2MGjUKRdH47Y03cMxx0xleM5TarZv499v/xuXwkJuXi6prBILteL0eHr3vARYsPoFvnX02OTnZJCUDTZT48J1VFBUP5YLvfZdvffNM7G4XBQXFbPh8A4889AjHzppBa3M7oiBhmnE0q4WuDj8Wi4WuzjZ8XSGczixyc/NYccKplJQVUF6aR11tHSVlhdTUjKGoIAd3lou6bTvYsn4LWTlZmIbB0hOXMXH8FD779HMKikv41jf+H+WlxRQXlbJq5YeMGjGCUWOHkpefy69/81tmHTcLb56LGcdMp2FnPVNnTMEURAKdAZ597kWWLz8Jj9eJRZfZvGETK1YsQ1VFbLpEIhalrraWXTt3kZOdh82q4vG4CYYNvnfheXztzNMxEFFlhT/84QaWLllEJBbC4XYRCkc59fRT6GxrwG5zYZoCpiggiyJtbW24nU5kWcRit7J9Wx3eXJUtm7ayfWsnz7/wHGs/+4SFCxajWaxMnDAal8dNwpAoLy0iPzuHa35xLad/7XSefOIJho8cxYSJk9FkmVdef5WqygoaGnaQk51DQWEhRSWFIApEgp1gSvz7jZUU5Xnp8geYdPRkYtEg3oI8WluaUCXwerN55dU3GT1qDJIp4Mr2dCd2IyXXSQ8t6eEzUvlQs++zMtOiD6+fFKqS/rZe378S7r5CWvQl3PX3PdNrB1MutXymzPKhxFkN1L8vUmveH/6bwt3BPONDicnMVLjrL+HB4XgnemAYxt5Mkanlegh8JnGLfdWdSfl0cZp9jU/uR4A70glDvgzWvIO2nH0J+n6wOJS+DySMpBPKMkFfSp1MaO6RQmrMc8/f3kmdMsXBhBIMdF0y9zCN5h76LouYsojutDJi/AQKSkuRzCQNdbVMnVhNYX4RF/3wEmZNG08s7KMg10trUxPnnns2QyqrOPmkBUgmWG02dIeNpCBi0RWiwSSaEqN++y7OO++7XH75T5l//BycOTl0dHZhYODxlmFGw9idOoakoMgKVqtMyB8iFO/AatVRZBu7G9pxODSSCRNJUJAUCwUFhdTX12OzW7A6POg2G06XnURCoqFhJ06nE7vDxW1//BP52SWICNx66z24XDls2LSelrYmlixczKy5M/F6rGiyQuPOJgoL87FaobCwgqNnjGFITTXXX38TCxcuQFFlLJoNJIGKqip8wSBujxuLRUYQBN55+wMKvVnkl+QjyBKPP/YkJy5ezqqVH2G1OvAH2kGIYLM7GDNhLOMmT+amG//AdT//Bd8860wEQURRFZqau1h+4kIww9i8WUQSYQqL85k4cRyYBm5XFm3Nrfh97ei2LG68/mamHj2Nxl0NvPjSmySNOAWFHqKxGLnFOexs2IXHphOIBbjvwaeYMm4Et91+H3OPm0lxfg52j4vTTz+Dn/zkSlpaOjjxpAUomsgZZ5zKqacsRhYVtm7ehjfbSWlFJbFomBNPXIyiKWzfvoVsrwtNVVEUO7pNJz83i3nzZlNZWQ6CSCJuIBInOzeLeDTK9h1+djW2YwoKZRUVeHKyKa0qQbdbcOoiF154Lqoqc+N1f2T+wvlMHD+SeCyGIuo89OAjTBg7im21n5CVW4hmycJic7CzoZ683BwMI0EoEMBisaDoKiIibkchshpl3PhxvPbKW/zq2qsIhsLc8Ze/MGZENc27mnj95bd5/p+PMWf+fHbtaiAvN4/33v2Yht1tfPLZB5QUejj1a9/k6KmTqd2yGVXW0CwaDpcLq92KEId77/0HM489luaGJm78w83sbmljeHUNqizgduWAqCHJOkVFxQwdMZwP3n2X4upKFFXtdx2bvf6fCQ3oVVPftKGPar4S7r5CRkgmktf0p23vz+0kk5fiYDXpUq+MiYMJ7E9b3wCMbV/j/G8h1crUJ2O055PO9/tQrFV9IdVylMnZVuna7n30Qr+KAvZZJdOVSqdlT72GaR5wkPpg0V9yiXTo0dYd0J/DYMVKtSLubS+FQU2tu6fP6RI6pJY5nMhkfId7HR0K83wk7kt3/8E+94GysR1K3zIRRlLL9F7H+/5v7slQe2DsR+96M33n/psKtP7WChzocdAXPe7fcp+OPpv7zVm6sns9EhAQETHYF+8YTxgkDROry0VRdTVWVSAZ97N49rE48koJte/ilVdeIizZKSvMYuz44RimwWP3P8aVV17EsVOH0VS7jb/e9ldqqvOIhQxWffA+w0cNY/GyE0mKIoqkYlFdWHUIBnzYXXbiyTiRoJ+25hY0wUlHRydX//znzJt/AsFAEItNQBCTNO5qpKKiku212/HmKng82TTsquWhB55h6NhRaAm454GH2balgfyCPLzZdqZPn0lLazNnfO3rbKvdjsvh4vg5s8jLduG0uXnogceZMfMYQtE4L7/xOoXF5bS1hXnr7XeYNGkcv/rVb7j2l7/jsX8+xsjRIzjzm+fQvMuHkRSQJQnNIvLSi29x+Q+u4uKLLuT88y9h7WdrGTl0NA2NLUyfO4NgKECRx03l8ArcHisCMqKSYNumWrbX1vP3++4iEAggqyqazYbTodLYspvS6iri8TgqCvFYDEkRkIUYgmpFtFhw2yXiSQtX/+gKph81GbfLQVLKpaK6EAIRDIuE0+ohFk5y3+OPM278eGYfNxGLpnL0tGlYnTqiRSI3x8Xpp53CipNXMGncRBxujXC4E7vdTiQWI68oH5fHxW2334VgmFTUVBKIBkgYSd589S3GjB1LcVkpkiRgtcgIQgLDTNLQUI/NqoFgoisOwkkTq82OVXVw8cUXcMXVPyUhJnn8iWeIxuIUFORjlUMEwnFszhyOGjcWQ0pgYuL25PDbG37PpZd+t1thEtew292EEzEQInjsLhJJA4tqpbXVh2ZzYxEMkBUCgU5yc8sJhWPMXTAdS5adovwcFiyehyPLiShItLS0cuGll6BabJRXl1JWWcY7q97mzK+fyWefbaZmyDBee/FlXG6N0vIa7vzLPai6ydBhFaz5eCvlNQWMHD6ZG67/PQ3NrfzmuiuZecw4djXsYOOGet55902GVA8hHg3jdefQuKMFl1Pkow/WYXdoON12EoaBLOwL4Um15KXu04OnZYMX7kQBxJ6/PUzRXuao7/b3HYRj7v12MFmlB4OvEqp8gYiEI31O4JFK/NBfez1IFe4OR1B/PJE4IMV+KnosMH0lK/miNPupQf29A/wHg/7chjJxkzqUttPVkw6p7E7vnvQTSrb3eo9wdzjQk2gmk4QzmdQFmc9dqgtoD9Ldezj6diQwUKKJLxsOZW1n4m6YydjD0Siaqn7pEtUcODepYxm4r4MR7vpy8T4UL4DBIpM9r6/kCim1pPzdX4gzzd4KmxRF2J7/7l3RQqpwncajIJEkEYmiuVyQiGGaJqG4gN0qY5gGCCDGDNZ8vJLcLI1gezvFIyagqRZUTSURF2jfvZ0XH/0bx02bhFgyBY/Lw86d68kpKCMRh3jUxOl0Iyjga26npaOV4rJCZEFD03RiiQCNO5rIzc/DxCTQZaBYorTuDlFcls22zRtweMrIz1G56ZYHwRQJR7u49PvnocYNWltbuO/eezntlDNZs24jO5t2cs53/x8N23dQUVpG8+5W6up28uLLr3Dy8hVs2byNTZtXc8llF6JbbCSiQRTZQmtzF5s27SC/JI8/3fwHTj55OUIyQSRqMnXGUdjsCpvWbWb0+FE89fhzeJwOKioKcGfl8/ijLyCIViZNGU5hcR6CFAVDQNdtbNtaR0VNJS2NzeRme/l0/U6+c/a3+P3vrmPiuOHoDjsNu3bhcDjBFBBFFV9XFzn5DoK+IMlonPqdOxkzYRJLl1/AilPnc/ryFQQju1EEG4EuH5GESHa2g5bWZnJzilG0OD6fj4aGBtwuK7qmEwxGUBQLNpsVl8fKQw88xvwFC/AHwth0K7rVjiBJGGYMh8OCIYq0NLeTn5+LYSYRjTAtLS3YbDasVifvvP0uU6ZMxjRNFERa/X48Ti82KUmbL4w7O5vPP/2IsrJy/vX8q6w4bTlxQSARjZGMRFn7yRrGTJ6CSRQzaYAhI0tJ4vE4jz32DEVFbhYuWUYiEQUMFEWlsyNIS1Mbv/jlz7npphtwZjmRJStvvP4GQ6qq8Xd2kl+aj2CK6KpO464daKqOkVD4ZM1qsvNyGTd+BJ99tobRI8fw7LMvk59byMOPPoiYkPjlb65i45b1JGMiI0cN4Yl/Ps6YERP514sPg2FjyYlLUVSF3Jws2lpbCfo7cblzue6G6/jj72+kszPEw488zagRQ6mtW83iE04mkQgxcsIERIsNM5kYkC5A/wlV9q5ds5s2iP0Kd324ZfZDo8x+2QFzP5JtIBxx4e6rhCpfIPo7CuGLdFXqzdgeal/EPYdC9qD3IccmEA5HkeX0AuAXMRep7ni9mZ3BJgzpOVhzMNbLdNfS3Z8uNuxg3JaEXn/7ut5PJw9aiEiXHKYnnm8wdaazdu7rnnDAtb6en5RyiDscmCjmYPr238KRsJ6lm8fD1YdDiUVM7cuhWCkVWT7sNOZw1Nd/HUfOcyPTd+FwI13daWlDZrWlqb/vZESp9E+gdzK9/d8xU+imEaqqYJLEELrV+JoMoml2a/ZNQJEoKK1Ed+eTXVKDIGmIkhUDkaQgotldjDxqOlHNTbangNaW3SRiEeIJDbcni/sfvIfhw2owBAlZNsgrKKCrsxOLpmMCkgi/+uVNVFWWEwz68WZnE4l0oCg6omSQ7fUiKX6u/PlNNO9s5IOVK9EUmH70JOzuXLbV7mDeogUUVhRQUV7B+NFj+NsdtzPh6HlouoLTasOb62DevOPYWV9P9ZAKli47CYuq8+83PqBmWBGGIeFweqmt28CPfvwTrv35VdTUVOJ2yrS3t3Hltb9i3sKFOF12BFPg2WdfJS5aGD6immQswfBR47ny6h/wyMMPsmLFMnRL92HqTo8V0zBJGCaaKNO6czdvvP4vQoFOLrjgPDSbFVmTsNsciKLCuo2NPP7wY+R63eSVlZAMRwkGOskrKiUST3Df3+7k0ovOIuhP4nFb2LJhK7pqweNx8tBD9/OLX/+acROn0d7azI7tTfi6orz3zkpcrmzGjBuH1+tFlVVWvf0u27bWsbl2B3PmzMI0Depqt6E7HOTm5iAYScKBEIoooykKRjJBIODDm5VLIiqgW1Ty8/PRrVbCkQgOm45s0VFknWDzJiTdhqjpdDbtQldAkRwUlBdCPIAR6mLHlq0MGXMUwWAHgUAAwdRYsmgp06ZNobKinAnjJxEMNJKbV4giyvh9STo7fKgWCbtDYd5xc3DlF6CJBnHRSlVVGVZd5fyzzmf60bPILczlw/f+Q2lxPvGkgCgq/O6mG5k7Zy52p5W8vByamlv595tvceyxs3juX8/wzTNP54UXXmbNZ+sZPrKEzq52xo8bizvLSk1ZJW+9s4rTv3kal//khxiGRCIqsGrlSo6dPZO5sxeAkAQ5yfSZRzN0eCUlhZW0d+xi1ZtvMuO4WYRNAdEY+Jy7/VRfA5SlJ01LXzSyj9v7pX8DESYhhYYMVNdhwFeWuy8QqZY70zT3MpU9Aec9lqx02mhJkg6L5eC/oZlN1XYMJo4kE5emwSTPEEWRZDI5qDH2CHii0H32STr0Zdnp69pgE34cquVusBqivh2c+mYpBzoioscym8k44dCslANZ1Xpi+HrbQcwU62O/c2aa+43lSCap+LKg9xgHsppl7LJ9mOjYQDjSe5UiS8TjyUxkroxxqO/ToY453bMdjLX0UPrfe/310O1uy13P+9LdjsQ+pWCSdO/SXieufq71h/4sqH2VGajd9DBNg0hLO/UNO6moqQLTJKHGMYIx7FouW7dvIT/HQmebj9YuDVWLccH5P+FnV5/DmEnjkQUHyWAUu+Tjml/fyrLTvsGbrzzL9OMWcd99f+eqq37Kyy+/RGd7nEWLF2DRJTZva2DDhg0cP382brebjRvXUF05kuuu+y2nnXUmE8aNJRkPYRgBiEFzZxtu3U7UX4vdUUgwpuLIyiXQ2cU9991OtreAyUePoLhgBHa7k+31G6jf3kBpUQUIOt/+9rd49l//JBhoQ5BCYGQjINPZ2cITTz/EpT/6GR2+tRAGm7WUlqY2ZC2Jx62ytXYTEydMZHttK3aniyyvi1jMBF+US390Mb+6/jo++GgDZYUuQokow8qnsHXresrKy1n9+esMHzaNnTs/IxF3Mm7iOD754D08bg/3PPAgF112GX+/+zGeeupRJkycxIknLGTs2OHIcgybTeWl51eydNkJbK+rJ6+gFE03CQbbEEUrbU0NlFZUgSTT3tJFPBRl85YNTDtmCijdie99nT5cdg1fVxBTkHF5vAT9O4iGBC656Gpu+P2tZOfYsFkF4tEgSUkj6AsiEsHmLEGWE0TjMU5a8g1+9uMLGD1qBIIs4PN1oNusqKqOw2Yn7A/i9/ux2WwIupdQcDeK6SZpxkgmO8nJLSMuCsSDPpJGHIfDRjSaRBcVmlu6sHttdHXtQBEtrP5wI95sL0889gzfOPMM3lv5DnOPP5bOrhgOWzY2p8z777+JkLTx93v+wR9v/gWKZmdn/S40EohqnOZ2k2S8A0nI4rZb/4TbZeXEJYuoq6vjjbfe58dX/oT6bZsZMnwY2Xl5/PiCH/Cnv91K7bqNtLS1csz8OVjddkwhdaUPjAOsdykaGwP2s86Jva36fVju+l+8ffOk3e2l/tL95ct6FMKRtSn+H8eRigH5smC/mJIvsB+ZwjAP/7lTX+HIIJlM9n/dMA7pvEJBEJBEcb/P/+a1mg6HO57vfzriicMr2H2F/5uQJQlHfjalNdW0N7fR3NBEW10jseBOEokAeWWlhGIm2Tm52FSDnGwvTz59F1muUt564XmIR0FW2NUeYsvWnVSUVzF33hL+csfdfLZmIw899CRz5y6itb2N3910I59/to7x44cxf94MNItE4+564tEYddu24XE7+Mfdd/Cnm27CiEZpqq9Hs2gUFhWjqBoFZUPpCMTYuHUHf7rtdp5++ikuufT7nHHGaVSWlfKnP9zA7bfeTFlhPhMmTCK3MBeHSyYn340oitx73wN8+NFntLe1ctXVV/Lts8/i9BVfRzFV3PZKPI5KbHY73pwccvPysVkLGDlsKgJuohERtyuHzs5OWpobsDhV7rrnr4iywfTpk7Db7ZSU/3/2zjtOkqO8+9/q3JN3NofbyyfpJJ0iKGeQhBJIRAHCBgMGjPFrso0xBmNebIPJIokXY8AIJIEkCwRIiGBQTied4uW4aTZMnulU7x97czc7OzM7u7d3J+z76dMf3U53V1VXV1U/T/2esJoPf+L/8pfv+wssW+GYtWvBh2WDa0kmu/mr97yPlSuXs3zVcj784Q/z6U99ip/ddiNf+/JneOLh+ylms3Qk2oiGkwhh89RTz/PMU88ysKSTSNjE0FUi4QjpqQmWLh0kCHyEgE2bnsM0NR574jGKxTKGFkZXbLo6+/BdGB0dJxqLoSoKmkjS1bWUr3/jq3zmc//MW9/6djZv2gYoqIog2dZJKa+gKgGu6yF9yXe+cwOrVq2mvauTcDhMb38/ibYkyWQ7O3bsZmwki6aF+fKXb2DP9mfQ9QJlfwRfDGMIjVtvugVLgKorREIRVKETjU6bpvq+zwff+7doShsENqedfjYf+du/4/f3/oFwJIxQFVxX8Bfv+it+87tfkc6kuPTSizlq7Ur+7qMfZMeOnbzuddfy/KbNpNMZvHKE++/dQFfHCrZs2UwsFuNDH/wA5513Hle96lVoms7S3j6++x/fYcWK5ZQLRS54yUX84raf0t/Ty4P3P8Cz6zcgXcmRz82hwxGzzANEtVlmhaqt9vmp/L8eu7aQXdmKv0IzoexAzKRqUW8Ht55QuNhztlH/LDQyW/UxY0dZyobmiM0Cq9T2QbNd8OqyFhpxsbrEStCTfb/NYapZG4ylEas315hsxQyhlYA0rbzDegySqqqzzDBn29nvP1ed7qBunWJ/+tL5mOi+kDHfvm10rtU+qO2vFzoDeqjbdaD1LaYCXmv+erCDtdTeuy841Ix6p40oq31nZodYOlTzsd6ziga/NylFCMoBZHJ52hJJpiansHSFQm6SZOdSVLVAyQU71IYiXFAUTNulu3MZRy1fhhEK4QpIdHRy1pkXcPttt/DAo4/y0IOPcuZZZ3HPr37F5Vdczr9/+5t8+zvfZsOGZ1i2tJtIKMRLX/IyhK9wzllnsnLlKtauWcmFl1zAmhVr+O53vsfywaU8+tiTrD7qaMb2jLBl1x5MK8Gb3/IWujpjvPrqaxgfT7Nx49P09PQzPDLKssFlLFuxis9//vOsW7eOQqGAZVk89OATnHfeRQwODBJIH9O0iMVD4G8kPVXkqzdczw3f+hbnn/NS/uo9f80Zp5/G6MQuenp6yBfzmCEw9Qi+X6K9o52S54ImCQKfaCRBLp+nd2AF+UwBlSk6upcyMNjPpic28sa3/AUnrFtHsi3KcSevRdM1CrksF5x9Ltde+wqWDPTwh9/dz+tfcyXxeATX9RCKSbnkMLisj0jUwDQD8CVO2aejPYHnBQhFRdE0uro7ccoFzjzjDN729ndw+eWXoWkGgR8wMTYJQiUcmQ6YE7ITBAQIzeeKKy/h0ksu55//+TOcf/4ZqIZB4Cnc8M1vccrpx1HMFwmHoli2Rrlc5vEn1zM4OIBu2QSBhlAMXA80YXHf/Q9z5y/uZnTjTi654lLCiX68QkC+mKOvb4BSYYKx8RFCoQRIBUULKJbLSBxOOmEdt996J8N7Ujz73PO8730f4eVXX4lEsmzZMiw7xBVXXMHy5QPs2L6NkdQYK1etwbQtDKFz3Z+8mV/8/G4uvuA87nvgD7zhza/G98cZ2pPl9NNfTFsiwcTEGGY4zsUvuRinnOXSyy8mPTnFrTf/hHMuPB/LMCgGLq+4+mqefGw9Mgjo6O3ZK65MzysZ+EznrqwPuTc3ntwXzkRUmW/O9IGrfM33M3fzmrbTJdYsNdXrr6wp81Dkqz0SLfMwYobP3f5QXtN/BsE+ZW+xsM9I5BALoS8koahVAbTeddpeE7IZ5e/ty/kojgv1vZtvPRUEcnbUucoiV/17Pf/KVgTuheY6XCjqtbFR+yr+jhVUs6+z7pESUbWp0ixvHdRXdCspIv5Ylb3FUO7mW9dCTcNbMRGsV/4fA6r75oWgVeW1XAAAIABJREFU7C62kliNRma99aJlSlkJlLL/qC5xwfYgcmaZB7bjuNfkqqalLRmACoGQAtuyUE2deGc78Y4kofAAmzbtwpvaQW//Msq+ih4OYYdjpEbT6IZKKdDZtnMHCgGKsDFtlbVrlrJq5QqOPfZYVq5ayp+86fUkk3Fe+eprUPe6gBioTKZSvONtf86q5Sv50N/8DX29ffzTpz/JG//kzxifTHPRxRcRb4vT09vHhqeeYdv2nfTEk/zw+//JZz79ac4753S+870byWcdli5bwW13/p6j1x7P33/so7zs0it56SUXcvcv7ub440/ltlt/gi8Dtm7dSrlU4vENT3DVy6/ilFPXsWr5CooFncsuexV3/fy3XHDu2fz+97/nsitfwRuveyv/9V/34ro6P/jeTZx29hlEIjZuWcEpljANi0LJITOeIVsoYJs6PckY3R3t3H7H3Zx55osZG9nFz+6+lw9/5K9ZsrQdw7bxPBfDskhNTFDITidGv/feezn6qE4Glg6gh0KomkosojHQ34mmhwg8h1KhhBBQdvIIXcFxHQr5NIoqiSWiaKrO5VdcSRAUURSJrqtoRpj2zg7coIxpmKTzk5imjm5YgM/U5BSvfvWrUVWB4/kYhsmLXnw8qioo5kuoQsUyVUKxKIODS5BIXEei6wbFchGBztv/7M185CPv48qrLsPSJoglQ2RyWUJ2CD0Soa09iSIkBadMOBxDU1TKpRwSgaJ4JGIGK1cNEgpHiIXbefC+Bznu5GNASmQAvudj2QqqGhCNJlnSv4xizuFf//XfOPXFpxKOxtj43HMM9PXz/LM7WLZsBSIwWTKwnK9e/1VMy8Q0THo6ernttp8RaQthR8M89vB6Lr3kMn7wox9y5VVXEu1M8Pjjj5KMh8lO5liyajVS+BAE07rZvAOS1MgNVNac/UqfFPtDMYmadaaldaHBhJ+1GX4QzTErOBDl7ohZ5gFCUfYf+zf5KnsNAVTtM9S/v/EraHTuUAoKh8t0S0rZNDrngtgvUceRv4Z9OxRYSD0H8h72BZVh5ro2/z3pxUHlOWrH93z8ChUxO1JVK2t29b9nsKHzNPGsKI4HO1rWfDGX4tZQyT3AeV7NfM6nnOrrG91bLyjSocSBzLtDPT7m0//1rjtc631QdcxGixsFNUf9++e36tWKhq1CUUBVBYoAVREQKJhhnaPXreQDn7iekZE0WlAkN7qHcsGhq6MNDcHFL3kDOzalsFQVI1QgFtVRNJttm3Zyy6238tGPfoz2zm6kVCkVJM8/t40lS5YxuHIlz2zayFPPb+KvP/B3/PCW7/NP//IphoYn2P78Jr777RvYtX0jvl9EM+GUk4/ntNNPxXUk5ZJHOBrni1/6JqOpCXTT4D1/9QEGEn08/tDj3HjjjXziU5/ivnsf5SWXXICuuXz079/LE088jOdmOeuc09m8aed0/jXDRqp9rFi9Gs/NcuJJK+lb1sX7P/Butj77ODf98N9ZunQJTz/7MMetXcFfvP1P8WWR8ewuJoZ247oeiqbR3pmgkMuSzaY556UXEehR3vrWaxHS56jjjuZ73/ki0YhOR3snxUyJkBVDUW1S6SKdfZ2gqnzwbz/EUcespewFbNq0jeHdu4iGbPKFHKnUGLv37Gbz1k3YtomqhJBoxOIx4m0JpFAoljwmxkeJWgqx6DQ7tmPbDgzbwAmK+NJDKBoRO4qq6BTzRQgUYvEIjlcATadQyE/7dqsmgSuwbJN3v/sdlEolCAKKhRKu41PI5UmnJ5C+QyIR4oe3/CejqT2olqBrcCWGnmTHlh2USkUUx0WW8kyODLN06Sqk9PD8MmE7SjQS4j++cyOW3UYkEue+e+/HKbkMLu+gmM2gKyrr12/gve/7AE+uf5Kurnby+XGcQp4PvP+9XHP11XT39QI+559/DmgKY+OjZLJ5PvzRf+S/fnoba485itWrV3H/A/fz8U99gssuuwzpK+zZvpuLL3kZkXiMi86/EFUo3Pvr37FqcCmbn9vI/Q8+AAFIP9ibAkkig8buF7JugIQmK0XtJF3AfqAQM49qKDXHCx1HAqocIJxy41QIMzFzODQTJlsNSrGQiIoLRaPd58M1fuZixxrds1jh71th7lplJRqVvxiBKvY5JM9R71z1HKy0Ac0CzTQSjGvTWqiKMu91vJaxa/ZNaPTclaAuzXz/ap+v+u/KnDpQU8b5Buup16aFrDOwP+XKYo6NFwqDV+/dzKf+xVyHD/U624r5dav31QY/mmuszS5C1pxXqCe51aY7EKLe7J5dZtUds36p3V6sL4rOrKdegIV9TZESKXS2bdlGImIwOrSD/oG1FPKjjO5J0X/UEiZ2TvDlL36Di152FWvWdvL4I09jq1FefOZp/Nftt/OFL36Jn9zyYzr7bUaHRliyZAn3/PohTNPgxzf/jPFUjq9886Ps2jmCbSawLZVEWwJdE6TT6encaN29/P6/76WQ8wgCjyVL+li7dg2BYqKpCrt27eKen/6G6/70dbz5He9gYOkaXn/NFfz297/kNa97PZGIQS5TZnJykgcfeIjjjjuFT37q7/jhjT/k5pt+yurVy5mcGubiSy+g5EnSqVEi7hSpksH2nQU+8vH3cvON36ct1EXBc1EtBdVNY8djoJsUpwroqkQzDCanHC5+6aXc86s7CKTH7t07OXrlCnKZPJ4H2UIB3bB41WvfyPVfvYFlKxI89uiTPPLIk7znLZcTGBGEFkYJfIZGUywbXEq+kCMc1RgeGqG3Z5CxsSnQVOLxGJ5XxvN9TMPALzvs2rad7iV9WLZNsVAiHInh46CrCkKYjI2P0tXZya6dO1kyOMjUVHqvhZBPNBYl8BQcv0gunca2bQzTwLZsPF8h8H0UVSGdThONRPCRSN/DMAXpbBFFNQgLwTNPP8PjTzzGVVdegee4qIogZOls3jPE6lVrQNFZv34Dg4P9WKbJ5uee59f33MM117yG22/7KZdfcSmFgkM8HuNHN/+Is886k/HUOMiAVatX0JFIYoZDjI1Nksvn6O7qZtuObXiex/CecX58620cf8KJXPaSM/nVr37F2mOOwfF8PvdvX+K88y7g5S+/jDt/cSePPvoE73rXO/ntb3/DVddcye23/IQ3vfFN3HX33Zz0ohdxwlmnokoVFL8yHdA0re6smhvNo+6qjdIkNEmRMPvH2XM5AFQhkIeAuTuSCuEwwvcbp0KYifqmctVQFWVWdKCFMlQHAy8E06IKDoT9OtiC0ix/xAWygwv1z6tb9wKFtepyDka/NROaG/VVrYnXQnKb1d7RrIRGzz2XbyFUsZR7TT2rf6+wj5V/L7R3F+InV339XO+2GZtTURQP5tg4XFjovD2Qe14oWGjbGynk9aItNy6j2bn6it3esw3KafVZ6rDGNX/P0fK99dZR7qr/LSGZjGNFYnT0DWBYOpYd41s3/IhvfvNzfPVL3+DrX7mBbCHD0hUr0RSN3r4ePvrRf+Chhx/lJz/+CXfddRe33Xo7SwdXccuPb+eKSy6hqyPKOWedyhWXvxQjbNPb349uKuzcth3PcXnr2/4cVdHp6+7nG1//d+LhJB/5xMf54Ic+yGOPPsQtN/+QwWUr6OxK4vlFuvtiROImqwZWcv4Z5xCJSM485yy+8x+30N3dycc//o9cd911nPriU9n03FP8yZuuYWx0lHQmQ1tbnAcffBjTCHHfr+/j1DNehF/cRSo1TCzRzc0/vomXX/lKunu7+KdPfIplA70MDHYyMj6OaYdxywG57DiGbWNbcTY8+SxXX3MlqqaRaEuSGkmTLznohkl7u4UiJb+659dceeUreOS+h1l71FGccuLxJCIK45NT2OEYmYlxQvEkTlmCXyabKZLPlxkbGyOesEgkO8lkJ/ACh2I6hVMsYEeSJHuWYpkKmzduJj2VJplsJwhcAhmgSIHrO3i+QywWI5fNk0gmEEIhFApRLBYolz1s2wQhEKrAMAx8JJ4rccouDzz4EJGIRSQSR1F0XL9AaSpFrK0LXdFRVJNCvsCS/n7GhofACNHT20vZ9chlJ9F0g3AkjqZbJJNtFAtFwqEwF1z4Ep58Yj2XX3kpIcvmw3/zMc486wzWHnsMg4N9bN60nTvv/CUXXHAeP/3p7WzfsZMTTz6JT/7DJ7joogvp6unGCFk89diD/MU7/xwZ+Nx3339z/gUX8eNbbufFLzqTkuNy2RWXYJoG8Xg7r3nVa7jxxh9y0kmncvIZJ9Hb3s3DDz3OdX/2VpasWIKLi46BFPs3eBZu3dB8XjfMgTevpa3OesbeTfNDsL4fSYVwGNE6c7cwBIGcsRPYbIO8mW9HJYWAqqrzTiXQDI3GjxdILF3DmyPqYTPUCgO+H6Bp6rwEhWqoikKwN6jJQpmGxZovh0rwq2WB65kyVqcPWEwcMCO19756bWvEiM31m9rkQ9KoB+YaK80YvFY+XLUsYjUqUUMrClizvqw3ruf74WxlXlQzjodLgWklvH8zzGezYr5WAvs+/vv+ahUHxlRW/ExmlDhHIu+WWrWAtbbe/c0xPe5c18XUjJlnFhLSfGYLaNFbbu//awO+VKMZG7gflW92sNe0rPrvWmZPyOk1xPM8Uqkcwzt3MbxrFx//yEf42a/vIlBAaCr51AhqKI6q6ggnh23G2DOcIpSwCJshfvSjmznttDNZc9QaApnD1AIy2SLlQGCoNumxcWJxg0xBwbZDtHfGGRraQ6Itge/5ZNJpUFw6OruQvsTUDUpumbHUFKqr8Mt77uaVL7+UoclJBnvbyBV0fvazXzCVGeFtb38DQ5t2sWzVahRDZ2w0RTLZxkQqRbTNQtcMSuUpFD2BqZnoism2TdvRNBOhj6NrIQwNpLSwIjF0U2FyMsNkaoKOZDu33/4TLr30YlTFxA/AK2fQDBNVtxEihO+XQYFiPkt2aoKB/m4C2yBhx8ikRwmkg1eGts4+iiUXRQuwdJNsuoDvewi9SCw2QNkrIYREUxVUBGXHIRwOkUmP8cgDz3HeBedw192/4Nxzz8Epl4lGI/iKST4/RilToq2vB0VIysUCvucSjfbjekV8SqjogETIgFwmTchUEZrGVLZAorOfbK6IrQsMVUFqEOBDoCOyJXylxK6hYVSlj+9///O84dpr6e1soywUhnfsZsngcsJtbUyOjBHrSlIqFJFCx9I8MpPDhBODTIxO8OCDT3PaGScwNLSRiVSGM844jWx+gltv/hkvv/IVBIHgP793C9e88hWMTw7R3d3Gb+66h3zJY/ueMS675Fye2rCFV7z8alTV45abfoxu2mi6wTe+8RXe96EP86LTz+Qj7/9LPvbRf2RyNEO4M8Kak1ehiWn5KwjkvmmkqAJVrWbums/V6mBLYp9HbGOo+za36zH9sqqceVplKEo9Um/RcSQVwhHMQiW8++GCqakNFbv5skCV56godkfwvwMHmu6gGspBnA+L2c5aqKo6fbyAUjWoqorrui+Y9hzB/xxMTqUPdxMWBUEQzG8DUQh8oLMryTEnHMMFl17El77xFXzXZ9PTz6E4Pq5n8Zqrr2XH5p0MD2VZ/+RjRKIG7QmLZ59+issvv4ilS+MIMclzzz/Hc09v597fP4bvZQhZAUZYRWqSrp4YjjvF+vUPk2wL4zl5cukxOjqidCa7CBwPpEc2PUomO0UiHqWnJ87rXncF4bBg2WAP6fEUnp/nJRecwXv/z//ByZvcfNudSKEwNppCVSWqKuns7kJRNALfJGIPYBo2hmlSKhXo6+/A08q09ywn1jFIPNlBPBHBzY4zvPFR4sk2lq9eRTgW4bWvewPJji7smEW8w6ajt4+pbI5nNz7LhRe+FMOwicfCxNosOnsTpLMFNKkhvFGyk7sIyjmSHTbCMtBMG0ULkyvuIVfczfjUNjw/Q9mZYtuWZ7BMCdLdF8irVHawbINzzjuNQjHDuRefjxrSKUmXdClPanyEaDiGYakgBYEv0TQD07SZnNyJqYMlLBAKqqJRLBVJxOMo4Th6qI1EshOvkCURUpAoSD2MIi10wqTHs6iWTrHkMj6W5ktf+Ax/8uo3U8h5FDCIhno4as1JBK6kXM7T0dlBvpDHNA1s00CoGon2LrxSge9//ya+/MUvsvm5rfz6rt8xuGQFjz+6gbZ4B+edezqlcoYnNzzMSScfy2Q6xYrlS9E0g0iiizVHH0UuM8Kxx5yAaWi84Q2vZcfOXWiawn///reccupJ9PQNcOcdd/DuP38bf/qnf4bjONxz/z2sXrsKsS8HnYKiCBR17yH2Gz7LQCKPpKpaNBxh7g4QB5u5m43G/ngVP63qc/P1r1koDsRPppGytxDhsVldmqoesBC+aGaSLdazmAK0oij198X2MncHkoC8HpNyKHw/65lHVLe92h9vvq1pxUeoHqrn2HyYs7r31ETgbXjdIqEZ67lYWIw1qJkvXPVvjfxW611fr+xG87BVc9wDZe5ara9xOw6cuVts1P9GVEKiy30JzeXeROf1mLuFRituzpO3gsXvw2q/Pr9Svgj2BpxQCNyAci5HNlvm21//CldecQXbhsb4/r9/jysuexnXXH0R23dtJxyKkGxrRwoFOxZn+/PbyDtTTE4Mc+KJZ7B56x76BvuJ2Ca6YVAqlQjpJhue3MDE5BSRkE1f3yB2WCWXnyQRV/BlhEgkRnZyCNOOEbEsntu8h86EjR41UBUTpIXrFfBVQXdHD6NDKSIJhUxmEk3ESaWG6e0dQIoSubxP4PsYmoJbLtDd00+pXKRYSiNlgO/rJNu7CBSHAJPA9chMpbFMDTsSwnU8bCuMVJVps0lj2hJpaGiUWKyN7FSWXD5LR3cvqjtC2SmS7FjK0GiaaEcCcg7RWISiM47reygYKMLC910QkngswvDIEH0DAxQKZXw/QNd1stlREok427fuJJnsQNU1bMsGGSBMnclUFlP3EEY7lmmiqZCeGOdr13+Nt73tLcQTYTQrQSGfQ9MEU2NjtHX3YOkqpWKWqaksgTBIJmKUCgXC0RiKauK4OYRiUsoXcfJlSoUiZiJKV2eSndu3YBoJdKnw9W/cwFve+Q5Gd29i7SnrQELgeDjSR9UEdhCw/pntLOntxhSCycks//qFr/H+970XobgU8ll6env52U9/zoUvOZf3/OV7eOtb387K5cspyyKp4XFwNTZu2oFmSHL5DN/77g/5r1t/xPhkmn/+zL/x6ldfy69/fgdrj17DktXHMza6m1f+6SuQQkHHwK/yWK0OpCKU1tOaz4e5k0GwPyhfszVkAeviHwNzd0S5O0AceuXuwBHMikK0f/xIKfeZL1b+hvk52AeBRFWVWeeaCVHNypyvktBoTFcU3wMxS51PgIXasOCtot599czPGl0zF2qVglYE+kYCuaooeFX92VDIrhpTc5XZCDKQIBo/Z73AIgsJtlKNVtrXrD9n9W2VslYxk23FlHIh7VgIBDPNS18oYfxrsdDUC4tVZuvK3eJi7npnnn+hKHTVEELMCHYA4O+LLF39ex1z7Jqf/BmJEwSC/eNVqXr2WhuSZkpvbR/Wx+x+namkzQ+1ZpyVZ1dkVVxAAak9I2x8cD33/eY3vO6df01bexiheMggh6uYKJTZ+tSjrD75IvKZNNL3KE2l0aIRDMvEcDxEOEY553P2xVfR2xbiM5/5JB3dcZLJXlwnz//75tdZtWIFJ5x+Mo/dfz/nnn0Jmp0kEpIEgWDj81sxTJWVywcp+Q4F6RHVNDxPMj42Tkd7F547zdypuothdlAKHGRpJ8VJnUR7G4FuInWNLY89wuCKNZRdn2g8i5QRVC1BupAmGk7g+SXyw5swO5ZjyDIhw6Ds64yNbiGa7CRwJYIYhg3pzAiRcJh0Jk0kEsHzfDTVJJVKoWkqXV1djI2Mk+xMMjmZYjKXZdXy1ezZvo2+3ghlFKTUMM04xXIBRYBpmOTzGRTfx7YsHMdFahYh26KYy+I6JQoZj95lHbi+hq35jKeyJBJJhFoGIkyM7UB6kyR7TsAP8iiqJHBNfKVMOp3Gsi1M3URTVMYnxolGI7jZDLFkB1I1yBZdQqrEKRQQoSTF/BihUIz0VJapEY+nNz3JOWefgJsdRY93kYi14wZlFFRUqaDIEnfcdhNPbMnz5jddS1dXnOee3ciTG57nZZdcQj6X55Yf/IDLLr+MZ599lvZYjkhigNvu/B3v+dCHmBjdRWeyi4vOv5h3v/P9/PwXt/OZz/4j4+ndjO7JcNTxp5OfHOaOH/+Ayy69mi98+cskO8L87T9/inAkMm9FrjLeBRIVhaDhF3z2924m8+ejaXrDeprJUo3bJWaQKAcbRwKqHEa0HlDlhYPZ43fm+KkO7lAJ8tKqgKw1SaDeLAx7MyyWoFQRfg8keEUF8w33fqBlNwvSMt96WlGy6wm69d5rRemYqz31+nze5rlzLKj1FMyFBFvZB9la0vn5MD/TIaBn+tC1olS06kd2oKj4YC52uQcbB6ONB1Lm4eqz2dUeYDvqOfIdIISYmbR8uprW+PVGHnCVs4L9fV+dPW/22tO41NZe3eyLqkXN+X5f9gdnqmlL5RACISEcjbBy7Wpyvsv1X/0Gy5YP4rhlPvkPn+Tyy17O8PY9BK7k81/4CmedfjpPPb6eslOmt78fRRHceOMPCUVsujp7ef0bX8+1r72cju4kHe1duK5A1TROOfkUli9bTizexeqVRyElCFVh964dJBIJdu/azeDSATQFJlLjKLrK1HgK1/Ho7O4mPTmMYVkU8yWisTjDExsJ2QlKUxq5wm5US6NQKhEKR+nu6QRNwQjZqC5MTeQQAsqlDLbdxre+9V2OWbEU1Y7gFPPTicQl6KqJFQ3jOEV0w8T1CoRDIaQ0MTQDRdHw3IBEWxxFKAztGcYwDTo7ulD1aZmms81GFSqxtnbQdUJGG647rRDIwEXDJzM1jm2YSAS6plMuO5TKLoqqoGsKhq6haga6oaOoGlMTkyTbO8lk0pTKeSKmiWmblNwAwwyTyaYxTAsZCFRVJxqLYRg2AoFhGrhOmXh8Om9doVgmny+gGxqqkJRLDoYdoui4RKJJNMNGCI+TXnwCdiSErltYdozNm7YRjcQwLXN68GiCY084nhNOOhUZlMhmJxGKSk9fP9u3bWfJwABHH7WCRDLOh//mg7z6jW9k+cpjsI0wbTGLQqHEzh27Wbf2OI49fhV3/PTHnHvu2QihMNg3yHXXvZmjVq/gkcce5vgTT+bhx9fzb1/+N3Tbnp6LMzZ8596ArF4JlKYRMetM1BnfLonSgjLZsjVVVZ2HKsXNkYAqhxF/jMzdbCyMKahGM3buUAs6c5l4LqZZ2KHCYjB3rVzXiIVqpdxGaKW+eTF48xxT8wlqArMFs0Zta6Xt8+nP6vIalV09dlVFwa8TJKe2vsp1++qQch9zWCmnAr+GdVyM+dtK8JuF4mCYL8+n3kZYaIqIuSwD6m0GBHJ/xNgDZe4a6XKLES23UnZj5q62BfNj7mqhVn3XFp+5m3HH3vqq2zVf1LemUWosISTgIZECFE/svU/y/Ru+jxJI2mJx7rrrV6xcu4wrXvYyvHIRO5HE8wp0dia5977HWXvMMtLZgK7udsZSWxnoX45tJXjkwfUcf/I68tkM8WiY4aEUifY2bNskPTW+V+nxyabTtLXHCcoOqYkJzLYonW1JioUydiiMqhRxywqpsQylUoH+ZWsoF1KMpXbQP9gPUgVpUMg72LEoUubxPQWTMLouQHj4XolSEOGSi6/kzpu+gW/pdLZ34DoBTrnMVDpHW08CVZFIT6VQzBAOh/FdDd1Q943X0ZHdxBLxvUK+REVjYmocRIAuihhGBDvSga8F+BmPXCFLW2cSVUK5nJ4eC76FaukEUlIsFDDsEK7jYJs6+cwU4ViSsuNCEGAYYcZSw/T2dSMQlLITSFXDDEUo5PNIXxAKh9F0lVKxjG3bFAp5yqUSsUQUAZQdF1VCoVAAAZFYmGy+iEDDNgxKUuWd73g311//NYa2b6Jv2RLCsQhuscwTD6/nM5/9Ev/6L//E0hUDlMslAikxzRDjE6O0xeOoAvKFMopqkZ6YwjYNctkMxWKRyclJ1r3oJFLD44wPj5HPjLB0zTpGhobZumkjuj094s44/WxGhlOsf+QxlvQP8u3/+DYf+/jfY4ZinHXuOTy/+WlUU5ulms2XuRN1V6MK6n/3ZBDsXUWaM3ez7ptjfaswd4cyd+kR5u4w4o+RuZuNhTEFdUtaIDt3sFEb1vyPfVNjMZm7ZucWo59aqW++9Sw2c9rsirmY6Pn4/7RybbNosNVjVxFzR6wUVUrcjPYIMSs9Q6XM/YrC4szZVjYmFquOFwoWmiJCCNHUlLguq1v1+4EydxXmthVLgYWgotw1Zu4qVzW+f+Z9jVFdx+Izd7PvPxDmrlGZ1U0JxLTpqSpBlQIpfBDgS8nxp57E8WtXMZHOcMFlL+fotSvo6esh3h5nKuuQnRpheM9OTjn9fHSZp7NvAM+ZwLIixGOd7Ni+g5VruhGmjpQuQvVx3TG0cIhACixVYWjPCOGQBYqP7zmMDw8TiYbp6OnC9yWmYTK0Z4RyyaFYKOP6ZaJxjYLrkE2NsHrNSUxNusRj7QzvGaarsw2ERm5qN8WpLHZ3P65wKLpFCjmQSpmrrnolllrEsgTpnIMrFXJTU1gxHcUwENJACSwURaFQyiDwKZcLpMb2YIdN4okkpWIJpMS2LFRNJxIJIWWAGYvjBxrFXI5CehgoEE9EUFUN19dAUxG6gRBxJtIpFFUlEo/hev50nrPAxzJNsuUSYTOBCBx0K0EkGsIPHDKZIkYojK4bOMUifuASDcdBakxNjaAIj/TUGK6TxzBNJifTqJqGpqoIVQcJYVsnNbKTSKIDoRkUM+MYQuUVV1zOcxs2YLoqqqJiWwaT46OsXL2Ms888k67eDqZSQ2RGJ3hmw0ZMI0GyPY7vBviewhcfsBJ+AAAgAElEQVS/dD1nnnMGhXyODU8+wWc/+1Xuf+BhTjrpNH7589t48omnOeH4E0l2dvKev3w/5599Djff9APe8Pq3860b/oNzzjmfL37xy7S3JRns7mIqncGwTP7zuz9AV0x832XdKSdAjXo2X+Zu/90VDnv2HKmH6hRDi4UKc3covzVHmLvDiP8ZzN3CMNt3bz/2uxbNn2E6UCxWcJZmZR8MAXWhaMU3qBXzv4WwdtV1zIXDJYBXB11pFowkCKZTbVTGdT3mqhV2rfra+SSHb5XFnIupm+uaZqjlTOq9scq5gxGY6XCikW9oo2sbYTHHeWvmuI1ZqIVXXCl88YoTe0k5IQSK0mj8NOPQG5Qt94ldwPR892W9ZOitoZodDJqWIZAyqHrfzdo+V2MaXV9lYt5Cd/hMMxeCvcw+e5c+CYaikJ3K8Ot77mLdunXE4wm8cpZsPotlWeghm3JB0tHVTiGfRVdMhJAEgUculyae7KZcKqHpGgE+vg+aqgEqpXwBIQKKuRzhcJxYLEohn6FYKmBaGqYdJl8qIqSB53uEbBtdN0hP7cEwbIqFMqppIDyHwHHRIh145TzO3oTddixKKBxDei6T6SHaE8sRik+xlCE/MY4ejhKNJ5ga3cE999zHq659Hb4AFY1cLku5XEDTFSzdxA6HKRTy6IqBF3hoioJmmOTzBSLRCIVCgQDwXRfTUFBkwGR6nM72AYQQlIVDdmIU6UnQIyQTCQh8nFKOguPjekUMQ0dXI4QTNkHJw3fS5HNZkl19OIGG0MKM79pEd083vggAl8CTeI6KZRkEQpDNT6AInWg4jCtVVN3ELaZRhIrUI/iFAkINCBwb3S5RyBfJpMf42vX/j0984h/IZTPEonEefOARlixZRjQe5elnnuH0s88kPTZELDGdVzBEGc+zSGez/OKuezjvnJPwSwof/4dP87mvfZHtm55m1erVbNmymeNOPgGkZGx4jGI+R2dnD5//8uf4y3e9j5///E5Gx0Z42aWX8Zvf/J53f/BdqLqG3LtZ1aqX2sygKfNj7qp97lS1RUVMVm0+1rL2VetpMN2gPxrm7ohyd4D436zcNYPvHx6/nUbKjKaqiyqUzjev1mKh2sSugmY+Wgthl1rFwWTbFhNz5cBrhOpx0uz66lx0jdAscmO99jaLdluvfXO1sRr1FLi5lLlasbVi7lnPhLWiEB9Mc8xZbVzgxlHTsSH353+sfZZGgYNgpm/oYpt/19+kaa7caWrjtDSHGvvfT6O1ox6D12wTcbYguGXzFpavXDFDuZuPH2nryt18sNCC5qfc1WLW6BMgpY/wJJufeZ5tG59k3fEnoFkRYm3tCOHheQ6BdJGByVPP3E97exft8RVI4TK0cztqUEQ3DXqXrQTdAE1H9SSO4+J6PmHLIp2eIpAeQkgiloXj+UT3mm4GQUB6aopQKEShMIllhbFMGysWY2JkD50dnWx4bjttFuTyeVavXoXQLXYP7cYyDGLhCBNTedo72tkztIuunj50VaAoPn4gp3PniYDU2BCOrxKNRonH4wQByAA8X6KpgnIpj22HkIFPPl+g5GZxHJe2eJypqTSJRBJdN6f70SsC4JQ9hG1QSE+ioRDrGGBydDsSQUdXFyPDk2gGtLd3IH0dp7wb4cXRzAkee+jnrDvhYjSjF08vQgkUVUc1LHw3z+MPP8jJp5zGWGoXHb2rcZwyQVDGcxUiIRsBeBKcUgkjnIBSmf/7L5/lqstfS9+gTSQWImyHABgbSlEquXS0t5MaG6NYKGAlwliWRTQawSmUcDyfRHsUJSjxL5+4gZ17Rnnv+9+DHZV871v/zquvfi07hsY58ZSj2LplC8VCCcf3OPa449i8ZQsrV63ELzo8v/FZysWA1WuOIpNOMzqaIWwnOPXCE1BUQJUIIfelQ5h7xO8f6Opepq/+hltjs0wAVVVa2+CpapesnTHVyt3ef/6xKHdHzDIPEP8zzDIPBqZ3TSrHIa+9CSu1mMrYC8HXZz5mlgu9ZjFw+IJMLIw9bhYuv1kdzcpr9X3MJ0rqfNoA+8XM+Ri6zDKHq/Lzqv290pbagDG1ptEHY2NkvmNsrrEhmXvtOFRrTb26pn+b8des860wkYcK83s/8zUpnb4+0ZaYZq+aCGFN18yqfy9esNEDL2ghJUimRWDJtHAaCFACBTSVRFcnK446lqHUJLlsjtzEOGOjI+RzGZxyiWLJoadrOT3dPWQLe0DmsSNhdLuDkq8gCPCcPMLN4Qcahh1Gt0KUi3lCYRvP9wlHIwzt2sNUOkMi2UEmPYWuGyAlVsimPZkkNTZOJBKj6HnYlsV4KkX/stVYpkE00Y5u2jglDyldImGLkd1jJDrbKJWLRCJxVDtMMZ8G3wUrhOP6lAoZ2hJh3L3mmIEn8XxJoAQE0iNfzBOyLO64/XYsy2J8YpJELEFHspPxySna4wlcp4TQDIRmoEifyfQYpYJDLNlB2LQIfIkUOmHTo1AsECgqQeASi4eYmhpHCGXaJFOWCWSYgSWrGB8fYmpyC3HDxCMgNT5KOBqnVHKIxjuwQmGMkIHjlvBcsEwb13cInByTo7uwolG8YoaS4+K7RdL5FMcffwJ2REEIlUK2yNDwLjTVZsv2PSS7OpGqYNnqZcSSMUKWyejQMPFEgkKxxIb1z5BI9vPfv7uTp554lqte/nLsqMnyZQPcceutdHT0g6YDOtlcgf72Du762S+5++5fccEFFyCA3t5uCgWHb3zzBsrlIi996YVEYya33PgTBvp6iYRtVCGRLZhk1qLyjWngGNFg0Fc25ESL7H1rjHtlLThilvm/BEeYu8XB/h3uBrsxTczjaq+rh1ZZk7nQTKA+lHNpLgWgVeaummGBhQeAaLXNje6fb4CUhbzLZvnnqtmrCnzfnzVuDib7VK+d1WjEiNXeC/U5jwrb1ioqDF29MucyJa2813qM+VzpKeaT9mEhOQir62mWJ7GVd11v/M+11rSm5M8st940W6i/6mLD94MZqW8aYbq5FR64MVdc+zjNApxU2Cw/CECp36dzKvA1vx0c5m4mpuf4fiF035iredTq+psxd7XtbPYt8FwfVREIZb/vow+UiyW2b3yOoFDEL5R4bvsIL73kAlByuE4eXQuhGCEMO07ZcbEsm/TkJLZtMj40gWF4GLqP6xawInFi8V5QLHyvhFOWlMs5FKVMPN5JvujieEWcrEuuMEE0GkboFr70aUsk8XwXTQ9Ryo9SnJzEMBOEYga2ZjC0c4TE4CAjw6N093ShOA5jqTEAdE0j1t2Hrrr4ZR9PCVHO7Sakt6NbClNTWymUBEtXn4CUM9nsSv/4QYBXcijlCyADHMdFD4EiVeLRGNu3bmKgf4Bt27axctVK8m4RN1egLDOYeoyQHUegki9mMK02NN2kUHaxZYlA1XCCErrMUUxtxRCwaesujj31VUyVM0QiEYQwSU8Ok2gzKZU8TCuJ9D0EkuE9O2nr6cZSI4wMPUdn1wCTE2kSbWGy+REisaWkJ1Ls2TpCsruLJasHSWdzJOLxfc85MjKCrhrcefMd5NNpvveD/+S3f/gdD/7+fgbXrCM1sYXbb7+TtWuOQqHI0Mge3vSG6xhPpfCY4tGHnuPcsy6lXC5hhuKMT+5m/eNPcNppZ+Lj8cADD3Dttdfy0L0PYhlRXnTRi0kXUlh6ZI5ZMRuNfOaCvZFlq0Ou1CZA17T66bhakZvq1jndon1pSw4FjphlHkYcUe4WF/Vkoma5wI4od4dPuVsMs8yFKHcLjeA4X+Wumc9d5fzBwFzKa62y5ddRPhspKPNR7iqoFcNbUe4qSlM938S5lLvaN1trhtys3rnQinLXSDGuW54Qs9r3v0m5E0KQGp+gPdnWwrVwRLmbxuFU7ipdL6vWg/1ZBn2E77P+ocdYuqyfbVu3sW7dichA4iqCXL6AHUlQLhSwDQ3X91GFgucWiIQi5DNTmJZJrpAn0R5HSkmAxdjoJF3dSZz8OKlUlu7eARRDoZidxDQiqIqGMASu45DN5tANA8sMUy7k8MsuhWKBQnmKZKIN31HxhUc80YZtGBQDgaqoqJqCpmo4UjA2spN4JI7QQ5TyQ3QkllEWHjYSzbZwggBF1P+WS7lXeRACCHBcF8VX2L51Ez09bRRzU0QjUUpOGdcpEwolCRwXxYwilBzFvEOyrQPHz7N7906Wr1pNvlCiNDmCh0lH1wCl9BRFIbB0Bc0K0JQufC+H6zmEzDgIl4nxUcKRKELVGB0dJhGLEgnZ5IoBmtDIZifo7EiiqBa+E+AFZQzTwnUKFLIedjSKETHRdYPAD/bli5OBD0KBMjz24MOsPmYN3/v+D7jykpfwyEMPcca5F/LKa17LX77r3Vx04emUs2M8+dxWhBHjzFPX8dDDj2CaFv0DXSgSnt30DEcfdRThaDup1CRPPf0s69Ydx8iuYW666Sa+8PUvgq0S+K2uU/tX4ObKHVSTAUeUu5k4otwdII4od4uN+flCVaPWjK6eD0xtGQtNGN2o3pbvYTEMdepjPuZuCw3ZDs39jubbvvmYSS6WWYSy1zSwbjqBKn8rmB4nFSavgvkGQllsVASzVkdfRdGaZYqpiOkE8Q1QOe/P43mbKahz+SzUU64aYq+iVE8BnHlZYz/AoN77b4BGjCostrlOffOgRophs82b+fjfHixIQFMrSky9ftrfpvmkJqhO8i1pvKbU9kEgp3XBemtYtRJVSbVQ/93W2xKaD2aXqdS8m1aVu2YpIfbVVuf5ahEIQEoMXeepxx9m2eBSnn92G/F4G9HuJLqioCsKO3ftorOjCxQIWSEeffRhkvEe2tvDWGELVQRs37qJJUv6KBbLJOKdZLLj06ZtwiJkx0CXKMKDIALCJfBddNMkm80QjcYo5TIIabBhw1Mce+waVENQcn3KZZWIrbBt83ZWrFqOogmkhInJSUJhG13VgSLlnAOKQTymIkQSaU+HxVeFmPY7VBrPh4qyW4H0BemJcXRN4hSzlMplDMOgq6sTrzxKNjeJFh1AFkuYRhTP9fFlmajdTjafxw7HEHIEN9BQtChGADIoMjkyRrxToxzE8HEpFgq4jiCaiCJ9BddzsMJhLEOfNhOVPq4DsUQEzzco5sfJZ8uEQmECWWZibJzBFUvI5lwU3SISi+57zn3jSAgKjoOl63hFB7lXCdIUlcnhXUym8uSyRZYNDuKUpnBKWTQryvbdKT736S9x9Suv4MWnn0gum8cOTyvmGzc/y5KBAZySZMOGJxgbG+fkk0+kXM5y4eWXsntsjJ7ebnRN29cGqG8yXn2u2XXNfO5URWEuK9D5BscLJCiHKHl5BQei3B06z8AjOIKWEMx5KAp1j+noSBVhIJh24t3775lHg5qDYEECerVvYSsC3oH4wNTWVe+ovu5QoCJAziU0ttImRVFmCdqVslt9pmaJx6vbWUkoXlF49iVkh1mKXYVOqB4jlbbWGzeLFYK51retUqeyl/2a70iqx/bJQO4rq/qoPl9ddyuoVXxVZTpxcKP76/VWpV+r+3fW/BRi3zusPfa1f28wm+rfqq+ZK/roXG+ydlwujsO9qDn219WsDbVH9TyonaMH4hM93/um5xdMixwVpajeaAMVOeOYC8q+Uqf/I5Co7F+T6vWBwnS1jaLxVb4Utc85s7wDVZKnn12R+49m/Vrxmat3VLAo674QlF2Xlcedih5rp1DMoSkezsgoY9u2IvBJtCXIZHNsen4zQ0PDnLD2ZPq7uwiZEYqKRtor09HXTr5YwHMFjz7+a1RRIusJ7LYIE+k9eBOj6GaYkpvBCxzGRlMEZQdLU3ngD78jk5/E8TMcffRSDNsknc1j6zrxcIDjTCEpYpoa0hb4mkMoopFPjzO1bTu/+dkfuP2O37Fjzwibd2V4fusmnFIR3y+BEqCoYtZ3pbrvFKajO2pCTB+qpL0zSaytnWSsm5CRoCM5yFiqzFTexnUURDHA0CzGx4bJZsaRvk9AkXB7G+nMCNDOnm1j6Cjk1Qi5kku0q42iI9ENcMsBQqoM9veQaBsgFIoSi8eJGgLFA9NoAz2OYoYIPBtNuGzZvJ2OjiRlr0QklqDoO2h6EimV6WmmaEgUFMS+eYKUWPq0oqvZBrquoesaQhUk+5cQTkbpHuhn51BqOnl8UObzn/0qcVvjc9d/DN00mZr02T2ym+uv/zqvfd1rkIFHJBpHNQWr167mnPMv5Ytf/Qonn/0iFEtnYHAZuqbtT7UjAT+YEUGzcq6yzyiD6Q3W/d9iMc04CgU5K4PetFJXYe9a9W2vnduz5o8U+485Yne+0HCEuTtAHGHuXpioTtMwm0avb563WMzLXHMqqCwiCyh7vh/uudqyGMxdq0xhsx2yeiYS9epptV2Nrm3EYmiquo/BE9Q3dYTW/bEWajpar5zq8PwHojhUm2X6NSaa9d5ebevrma3OhYryq1YU7kaCaw2T1qys+fbBQu6pvrfajHS+0U4PN5rNywMxKV8ICzhzPjRhfZuYJja7trpE2cRME2aKaRXGr5rZCvZfOAMHg6Wtfobafm3VLLQVdrZl5m7f/SoCiY5k6/Mbkapg544ddCU7p4OZRKN09/RQLBZxFIVwOETZKeAN78K0VQqlMplMCUO3KJfG6Whrw/N0Ej1d7N49xC/v+DmveM1r6OruYnhohE/8/cd42WWXsXr1co4+ejVlaTKRGqa3p4tMrkAoEkNIn2eeegpbK1IslNE0E6esEiCxbJuVq1dRdBySXX2oljWtLAQ+QiikxqcTsWdyWWKxOPFYaEa/1PZlo/7UVI1sOs3U+CjtiSjC0qAokVqRkbE80WgM27KYnJoin5mkf9kqVAIC1cItZrB1hZzjYelQLhRQhEDTwwRCxXdzCOEymRb09feSL+bQ8THMEEJRyRYnUZQwmtQZG91O98ByAj9A1TQcp0zIcJkYy+I4DnooTHvPwL52K1UzpOnq5AeM7Enx5S98hWtecTlL+3oYHckynNpMvLuNTc/uYnjnKG9582twXBXHK+E4Dn4Auq4jhMLmTXs46aQ1RDvjBEIghYYi/P1M3N4+FVXs936WDmTg4QcSRd07ZoXKtHJX/T5mylDVZpmaqjIrrcEcqP5m73vfNakQVLW5S8Fi44hZ5mHEEeXujxH1Bb1Gfn2+7y/oY17PTNSbXrlQVbUlRmAhyk7dRaoBFhKev7YdBxut+BRWzs+laDb6kDcy2av+ezHRqN65lMJW/U9bUWYamj9WKWHNDOgaBXRZaIqGOe+Ts1MTtHRfk7pazRk4lw9dRQGvKIKHWrlrtCY0E/LnU+5cZbTC2teUXPP/fVfOyofVzOSwnqKyb2OmSrmbtYbUUe72t6DJOSHmnKMz6mlyXXVbGo3C+fr8zWApEdMhJ2ra0Ip55wwmeq+AGwiJKkEJJI88/BD9A73T3zTPI8g7hMM2zz//LHHylAMXacVIdi5l89Zn0VWNFUv62LlpK2tPOYWyojAxliGfncRzPeKJBJ3JJJlcDqeUp6e3G4wOTEPgewV8IVA0E8vQMU2DklRQhZgWuKWPFBAIgY9ERzDNt++3uJhmhCQKKtlcATtkoqn1Nxhr+7H2GieQqARMpYZQ/BKThRztVh9mrEzBsTANE5D4MkAXkm1btrDm6GPIeT5aUCab2kOys5eRsXH6+5YQOB4IjXwxjxAOkbCJH6hMZMtEwyF8r0Qmnaevr4tCeRJViaOrFrnMGL5qEzJNfBlgmCailGZ8fBzflSiGycCyFbiBJEBFwadcLiNQMExjnw/erDEUgNhrMTK8e5hf3Ppz1m9Yz3XXvZLuwT5sM8xD9z1ET2cbifZuhoeGePSxx7j6mlcxtGcUz5NomsqjDz3AORdcSLgtSnd/N0KRyMBHVTUc10fT9WmFTHpomj7ToibwZ0SqlYFEVfWmyl01pjcuF77pWk+5Q4imG0YHA0eUu8OII8rdHyPmp9zV+l+1iv/f3ptHyZKdhZ2/e2PLPStre2v361VL09pXBIzBf/iMsAEbDxwPnPHxYcYDHo8HDWgwPnhh8NFgHWA8PgOeOWZAgGxrBJbFHAMCHwlJSGhXtyQktZZWd7/ut9ReWblnbHf+yMyqqKjIrMxa3qtX/f36RL/3Im7ce+PGjcj47reN8wHEDP2YpvggEuFOhLskd1K4SwZA2Xd4+Od5F+721pQnzwER7s6WcJflg3eSwt00nCXhzjDSfgz2Ty3cmXBgAmcsjNLYJh5oXBS75uK779wwAmKUBYQKy1ZEKCJsLCsijiwcHWMiBbYmiEMcDXGssJQmiEKU0sPxilAKIqPQaEwUoyxFZGIsxWBxFHeYkywk1g4WAwFAxYZIs2vOG6V+Hyy135crybTC3a7doNK0Oh1sfDZXvkmptES+UKLVauK4Lr7fo1hZxI56bLe7lEplPEvR6XZQpSWsEIh9durr1BaK7Ow0mK9ewG/79IJVSssP0qk3CK0AR+XIWUWCfge37EBs09xZoeDm6QcBURCiLI2TK2OUT86r0W+1iJWPV5zDypVQkY/WFq1Wi3w+j9oX4Xbv18AYC6UDgn4Xmzy3nn2BOA554YVbLORKlGsVSss1IqUIOlsUcgWefvp5rly9wsZ6kw/88Qf5y3/5Lbznd/4tr3vDd7F0ZZnv/O434uRd+v0+BsOXPvlFduo7oAxv+p5vp1wqYlkDf7ws4Q6jcGybvZgsaldwz0KEO8lzd2wkz929iMnc1FDrP9p2jykwJu1ifYyHPHXqrL5zh/lVJI9NKps09xsx60diVp/vJMmPtsPaHycUJo9N8lE6CuPMT8e1O61GIL3vsHYShQ+aRib3jeoZ3s/kR1BS0DHGZPo2psdvNMfG3Z9RXaPzknWmy8cZ9ybZ3sivL3kNu+OR3g6Zr6NImqPyI3+Q0XkHFm5S/brTjLuerGdzGoEj6/zjPOeWZQ3fobstjVpg/wtRHXgza7NXKp13Lh6KXyPPyOQ93m3hkAWfWZj0DknuT4/TpPatSfcjcSg5DuktKx/faJ4b9n+TJt2IRttoHC0G6REG9epdwVNjBoKm2mtzz9dx0IBlDTy7BvkFB/6P1rBepYZ+vcpgTIxGMQqcYxj5Ou3rOZYZzAY9/D22tRo+h3og2KnBe2t3xqhBH/Won1qhh/8e1TO6P1lMsyCqEh8IhoGGKogMSitKXp5uEBKEfTzPo1S+QKvRIlcsYFSA69l0ul0azR5zpSrbq9+i02mxvHyZMDLk3YtoJ8R2yzi2C4QDTWShjKc9XC9H7Dr4nS6d9hbl3AKxC15+DjdXQdmKnOfx7DNPM1etECsbyynS7fRwtcaybZTW2J47HJvkMz24rNG9AoVlufSDPuVykcj3+dyff5L8XJGPf+KzBF3D//vu3+Kxl70CrSr8zD/6Od7yltdTKNksLC/wJ7//Qf7qD/xV/sk//nkW56o88uD9GK0pl8t8+iMfZ+PWKtWKxyc/9nGCxhaVXI36Tge74OHZDkZrlAkx8WD+2UPBTxl14PnOQo+mUcb9m/ZbYVBm8NDFDH7vDvx2njKS5+4uIpq7Fxd7vnwzrP4cwp0QirL6Motwd5x2TpMs4W7Squs435TTugfjhK7TbnesRipDuNv3Q5kSjPYtng7/PIq54rg+ZWndxmnVDtOG7frkqd2vuN1j6VE+bJaOSxuR9fQfFqnzrDCNJnrqRYJDzkszsBBI5hVLj+T492oygmRakzWwch/omyylB/dsWD6phbrTwl2aQ4W7MYdnTYWQdf9GkUEnMTpvkrNAnHoZJJ+OmGEbWZrUzCoPn1f7Ioeq/a+tceOZvNZphevdJqYV7hIYA7GJCfsdVq5/iwuX7iciIIoC4simmC9Sb2xRrZUxoQYN3U4bx9G4VsT6xjbFSg0vl8NSOXZaL5B3r7C+8hzXHr6f2Dg0+y2i7iDVhHELRIENcZed7R2WlxcJgwgsTRD4mDDEcRVaO2yu11lYrBFGEZ1Oh1y+SqFSGg69ydQWD0xX9xaWgygk6vl88s8/QdHL8Zo3vZEP/+lHed3rXk8+5xF3W7RaPWKtKOU9Pvbnn8Ioh2ee+hof/thH+ZG/9SO86tWvpDY/x9rGKpcffIDGZp3Gep3PP/lJXvWq1/Kf/uD9fO/3fj/rK+uUCmXWW9v8wN/6mzDMQ7hPy5rygRuHpRTjfO6m1d6Nyo7GxdIW5g4LdxItUxDuEFqr4TY+Ot+I09BmzaoZmFhejY9emNSMHOXD6E5p8Wbp3ySt3GHXeti9nrZfd0qzk440uRtxUqkD0T2jZDTKjB++kQZlRDrS5NgImErtWzxIR73MEjKS+7KiZY5j9AGwu7qaus60Niizv+x9co6LRprWM43KpiNxzkLWnDiNOTLNOJ6WJv5wM9WskZ0OpS20tkia7R4oc8j1mFTbA42X2t2ftqZIlz8OpxmDz5jBVaTfb+k5N7q+yfGkx8/LUfTR6fs1/YKIUmrsGKXv6T4N5ZS/X0lt/GFl03UqNfD1U1aBuaVFdhp92u0enXYbyzZ0+k0qlTJbGw06vTpKxziuhybPrVtrXL78AHFkQWyzsnIbv9/D1nnm52u0Wi3CwKfgVCGK6bQa4NvktE2v3cCKu8SRNwz0odDKpZCv4PdCbO1SrZTw+008K6bd2ML3+8RhOLyQwR9x6pkZ5P0EFERmEIgqV8jzite+mkuPPIjneHzPf/FmlhYLPPOtp/nDP/gQK2urXH/2Fv/Pr78bRYFXPv4GgrDBSx59lNe94TFarW1u3Vwl7nf58he/jOsW+Lmf/1956/f9dRaWL/Lyx19LoVLk6sNXeOjbXsbtZ27iKAtL27vv9aznV6e2EYflcj3Key0cjds9hAh3gnAkjpKiYWDysJuiYRjW9+DraTwn9dFljfkYHWeGdZigMvr7YSalJ02yjWMJToecNougMQ0n1u8jMEkYSfuiZPVqNAbJkrOkSciaEcnrH9VlDbfD+jIbBUUAACAASURBVD6LucxhIkQ0vK4sjSWpffu0nan7N+tiQDoX590wcYbZ7uOs9R6VWKndkP/a7N9UHO9t1iD8+6jsNO+fXeGNg8L1SLwb/XvfHB1j8jXJ5O+AqSbj36277SSudVIqhN3xyPjvkAEYaOGGmxn+N64NCzUoO7nWQxmZvI1SQEzKHrY79kZhYphBLpyK9G/XtC4Pib24dszOyhq23UHHFrYpUfDy6DCk09ymWNJY+Us0Oj5df4co7PHAtftYu3WL+WoRY/rMLy1ge0v4Vgu3vEAYx5ioizIB1fkFbK+ArTT13hpeyUM7UN94in5zjc3bt/Fsm25/jX6nSYzCx6fXj+iHilzJwbFi2o0Gze3mYN5HBnv4thsJeUlhb/RbEGGoLcxz+fIlunGf7UadD/3JB3Esl9973/u4fOka1597jkqhzG/9m1/nt971Lp56eocf+2//Dh/98Kf4Z//0F/nGU9+iNL/Elz/3eVSnxU/91NsI/YDr15/BczRX73uIn37bz7Hx3HUeuHY/q8/fxJAhUCmzt6WeWa3MMDF9vKu1O+5va4wiMmCUvuNau+MiPnfHRHzuhGlI++woNfBo0OMtck69P8kP4lnMVibtv1sfpcdl5PcBd+YaxvlH3Y12Yc9UJYrjod/FBC1H6sc/69gkwig6cO7IfDP5cTXyx8vq/zRmrVllJgWtUcNzMoMtjGkjSwic1SwPhkKVSgYGvztME9TnKIzPPTlbOwdKJz/Ij9DlWfNRnuy4DBf9piyd5Ve3V9OwzDSt7jNXHgm3+88f93wchWn6PfINnNTevj6pjH3HZJq6sn7rDANTxvW1VYrlPLatUDqm12sRRj2U5eC4ZfzWBtVynl4vIF9dpL61QaV2gdiyabcaEPYpFXLYGmxlsC2HCBdXF7h9e4VKuUSnu0O5tICJFeXyHBYK2/EwysHLefhdn7lKjdWtFSzbo1pZBBy0doiCPrbjYDsutmPz/HPPkXM9LM/Zd40mjmD3fqS0ZdqmVCzSbbaZqy1hoXjwwQfZ2FznzW9+A/OLNX7oh/86xaLHr/zyv0LbNt/xljeirIivfenL/LXv/z4K81XKxSp/+uEP8+CDD2C7inKlzJvf9HrybsyFC9eItaI6P78rpI2/N9PNiSO7mYzO19ax6jkq4nN3FxGfO+Hk2B8BMG02cxSy6hj5Qu22dcR3wGH9G/lA3WvvmGnGetoP4GlMgu40eijETWo7mdttRFYU0XEamVmFhKQgdpQopZP6m+zzpOPTfCBP+xF9FO3uUaOKJjlpX85Zc/aNm+97PncG9oc7mVTbwf5M4Xd21km/N0cJ1w9j2nx/kMr5NyniZ+q8dNkkI3+8Ud3jZqtSisjs+XRNnacwveAz6lPGnDbsJas+OHazLZFM8p3MWlxK9ycaLXYZ2F69Qbtd59Lliygcbq/e5OLl+/FDQ7+5QmxsXKeIV7RxtMU3vvE8Dz/yCGHYpdNs0u61mVuYJ+obqpUl+kGAZUfYVo7V1VV6/R2uXLpGzw/IFcuooE/X7+O4Ltq2UH7I9sYWpcU5lJ2DOGansU2xUGP79tPUFpbRTg63WMCxbDrNNk7Jw7Ecot14AuPHrt+L+OqTT/Btj76ED/3Zp/n6V77Ky1/2UlZWVnjs8cf54pee5NWvfBy/12V5+RrNdpNKucj6+hoXLiyiLI3tunz8Y5/mTW96AxBiWQ71ZpOXPPoAt57+CitrbX76536WTzzxBLa9/57sewOb5L+ZQhCcnSixMnEwX/LpIz53gnBPMt4TSGuNZVm724m0ljJRiOL4VINBRFF0eKF7lHtVQzkt0QmZn94pJvX3MB+MSZzFMbASJqvHuTbh7pJcyBBOjtjER16wPBqDtmI0c9VlLO0RhYY4tKjNX6bnhzg5BU4eN1fG1gq/sUJnZ4OH779CY3OVTqdNoVpj/uJV7FwZr7yAH2j6nSaRaeH7bS5fvo8rVx6g06lj2Yae36PV7hH4g9xxMTG2Z5irzWHrEv1eQEQfy4nYrm+Ry7n0uh1cy2Jrc5MwCMkXC2hlsbG5xWSP5AH5XI7XveENPPPs83zHd3wnr37VK8nlc+TyOZ78wpf4wB9/iM9+5gl+4Z/+M770lc/huha/+x9+n29+83mcQo7Pfeaz3H7mOm964xvY3NzE9TxyXpX/+/96Fy88t8JOs8M3nvkL/vADv49lZfhkm5j4pO1yp8DSKhFM797AvtsdEIQXL2kBYfxLa5pvgMHLZ7QyfljT2b4FWusjJ20/2MR+M8d7TYN3JzgNE7jD2skKmjIi/bE5aQ08K9dc2n9zWsbNxWTdk5j0kTyp/0nto2Ev4p+BfX50URQNwvmP+pusPxFR7TTYpyE1Zk9TkAhqMxqjo86lSTkep4lyOmJ/+6MyKhEpU6X+nMTBMnEqAt4kTd4kTjta7TTtGWOIY7M/KuQEJl1rWls2uTPJv04/gPvzDarMXysNhMOP75Embvp7lPZ7HLak1MgT8OAZ5mCU5ImmtqOE7DD0zzp4byYFV8lsb9ceMCYq5ikvXaLd3KFY1tjKY2P1OrWLlyiXF2m1GnieTbtnU6tdJopj7HyJQqmEiQMs1afR2iHqO9Sq8+RLReJ4kBsuCJrEkaFQLbO53mCuWqIVNZmfr9HttvBsm+22j10o4ekuxt/CBHnoawp2Hzu3iOu6tHpdiEPWN9bIeQVMrAhafbb725RqBRzPGzt8MQGg+b33f4D/4e/+GPX1df7F//FrvPt3fpuNlVsUCwXe/J3fxX98/5/QqId89EMf5B/85I+Rr9XQlsXffPQhiGOa2z1+5X//Zf6rH/xerl58iO9/6+txDLztbf+YX/0//zfmSjmUGfgDwp758OiPeJiiYD/DHcPbZp3Ioz2cI6i7ork7DmKWeUzELFM4y4y+wY4a4nwaRgLhLPUeFk58EuOCEMxyTePaOcq4JK8/XcdRI40e9ePTGDN1YvpJ7BPSyA73PymReLpPMNA4HWYOOqkvk5Kmp/uSZaaZZFeImRBAYf+nbPax0f5xGvBRv6Z5PmZJvj4tk8wqx82xtD9u2kdyelPNkRC650N5dM+tMXXvM+s7oapPkYPvYT2MNDnS/oxPKXAUBtlZU20m7sEswt1+xodqGdW5O6+GTYxN1L5X5b5UBjr1ACqV/Ts2lUnrbplk8KiT/XRTShGgoN+jubGGW7Bpd3pUKnO0Wy1qi5dotXYwQR+/38LNlVhdW+eBa/cT9vtoq0BoQpTfxCtdpNdr0e40WLj0IIHvE8V9bMfgd/oU8iWCIMKyIfD7EIfkPZdeYFMouIRxSKvZIucUUNpBWwGdrs9o8TfvuVhaEUYGE4PfD+j5PrFWLF9cmnCVEYQW7e0On/izj9JsBXzxC5/hscdewqte8Tp+893/jg/92Uf46f/xJ3n4ZQ/w2KtfSrVaZaBHSpojG/pdn5yXo7HTI1+IUBS48fxt/E5I9YLH0sXl3Vk28InXuxE8s0i/k05CuBuZZd4twe44Zpki3B0TEe6Es4wa/pgZY3Y/QEfmQCdlcnYU30AR7saTJdxNK+ydReFOq0E0tml8/Sb1ZZJwN1pRH/17GuFOD3Oi3QnhblKY/gNlJ3CSwt3ovqQZzaFkm0kh2EzdDxHu0ohwl93HYZX3vHDnG3BNTHt7g636BssXHiJQBuOvYdnL5DyH7c1VyiWPVreD67rEcYRLiLHzWHaeree+ytx9j+K4ORo7LSw7IPADisUqJgJlOXR7PfIFl3Zrh5znQRwR9Lvk5q4StLbpxyGl6jxRP0ZbDr1enTCIKJaKg2c7Clm59QKV6gKFXIGdZotCuYLBolDJjb3GKO4TdA3deo/I7xLZirjd5B3v+Je85OHH+ewXP89jr36cL3/hc/y7//BuYtdgYo1j9gt3MRqtDDEGYxTa6hKHeSxbDVzndEQUgTW8X8rS9Hp9bMcW4W5KRLg7JiLcCeeBeKwz9UEzqpM0JZwl6uFuj06g7VmFu5HmYhrTu0kO+dNwmBnrnfT3SwoARwl0Monk9SWTnc/aP2CfpmnaxOjjkqVPImvkR70+C/55WQLbNNeXFuAnmWLOqrk7SdJBNqYP1nHiXckgEexhAnvvh+QYHxRWD2NSgvN0wnHYE2umnaXjBL/0e00pvS9vXfqjOp4g0O+rJ1EunYT6sKi54xj1atQ/azjmo8Wm4zCoQ5O835HRWMSs3nyeuUqJIFYEPZ9SIeSZ67d55NFH2NquMzc/j+qH7LS2qNQWMLFFu7tDoZBjZ7tP3lX0/Ajd3aJ88RG0bdFq7lCplOjGBhWGtNZXWLzyCCaGKPJpddaoVi4RhRGbm5tcuLCM0SFrq7cIepr5+fLAvNMPKBTzPPvcbR595CVEYY9u38fNl+nsNCjOlXEKOQwKC4OFwidGx7D27HNUKnPcWt3gW89cx4oj3vGOX+T1r38jf/tv/zcsLtT4i69+lTd++5upLJWHi0ST71H69ywZxCQdbWC0hKq1SryPhvWkmokS/7YYmi2rg+bE+9pIVXIvC3fizSsIAlorrIzk7FkopTD3mHPxcTnt4DNnkaS297SJjhhV9cV4XyYRDbVsp40Ec3nxEhtIJnEPo3svwfNpYStAaZYuXmF15Rah36NcKrK6vsEjj97H7dvPM1etEQYW62vrLCwuslOvg9GY0CH0bSqlCvl8lWJ5nlyxQrtXp99vUciX6LRjco6DYzssLF9mp7FJt9uh3+8TxdDrdel0WxSLeaJ4INgtLS9QrVXI5Ys0mx1KlQqOk2NpaQE/bHBz9ZuDBOdxjJd3aW5uoE2EMiFrN26yvro2uNvGkPOKrNxeJZ/P8ZrXvpLVtVXe+c538qY3fjvPPPMcz9+4Sa6Yo3ahhtLqrgQ/ySIyBhPf6UA7dxd5OwuCAGSvr2mthltC6FMKyzqZV8dhSWOTZaYpexhjk5qaUUCN7PqP0vZRrSIOS7w6Oj5pO2r96TrSOeJG5oxjk4nP0G46Z9RR7u3ovDiOiaIoU6OU3HfcRPSG/c/JyETxOFo7rdSJCUoqQ3OXvOZx/YwSWrlx9zF5bDQO6cWgUT7PkxEwk6M9+Hs64fTRUYntuBy3ntP94NTDLWZ/GgMzyU82jhmlcU+TTO4O+6PRjuZfOiF2+tnPegeZON7bUmWPijHxPq3iXoLu4z9vgzmeMDU0oOKAyECsbfrdLibs0+20UbbH2so6F5Yvs13fptttMlercf256ywsLuKHHapzVfL5PLZnuLXxLLHu0Olvkc8VyHk5UAbXs9he36DVaBPh4nkWtmXI5/J4TgHH0TiORamcR2Fz6eKjEJUo5JZotNrUFpcHic19n16nSxxrrlx9iFKlhNYG11a87/d+l3a9Tn1jnZLnMlepYCtNc2eH+laTn/jxv8/CQg3Lhrd8+1vo9/r84i++g1arw//yD/8RO60mtj3d83DUZ3jayJUDU97h/R+9u8zAWHlcf5J9Gn3/3IuIWeYxEbNMQdgL3JLJXtizO9KXSdyJvHN38506Mpk6au6mSfWmsRLnTWWkN6U/5bSkr/Oo5sKzhqNPBnA5CVPMOx25ccSsJqqzmrHujo0xw2d/Gi9GkziW9Gw02cUnDdnEMhl2i0dm3LVkM+l+z2SWmTxvimPpmWri+EAYZrXv2NEWW0g/50kf4nQfknvM0OhODeJP7i4Q7P5+zNydTE1N0gf4JIkNWEREysa2bVpbq/SaW2gnB0pRrlwk6tXpdrdx5uYJmz063Q4Li4tsbm9TrS2ws72NrXosLj9MaKC1tU65UqPZqLOyeotr1+4DyyPoBVha0+nXma8t0G31CMMu2Dk8x6bf7xIEAeVqmVu3blIuz9HvxlTmyhQLJbqdFqBx3BJh0KWxvc7c4iK9fo+SXWRja53lSxdZu7mOnffAsTBRhBu7fPBDH+Ivffd3YbkWkR/xn//oj3jssdfxoY98mE88+Sn+/e/+WxxLoUbRfCeMc9YzkJwTu1aSw78kTTbTz1nWdI2NGQpzgyyNJo4H/VKJKKf7Ar3sPz8yd1e4E5+7u4gId4IwHftX2+7OC/NOJxUfFxjlNMnyXzsN4U4bs+s3FM3wgXwSvoSTgrPMKngdJ9dYlqCX5eN3Uv54swZCmhhQ5ZTNKkft7gX5Sea9zBaI9Mz5pCYIgPvaGudLzJhj00iPh/VpMqPxV4nrPc33Q9YsOKlgK1M/uxP8/+JRYvLhv619IqvJvBWTgk8lSb4PT0u4S/WMVrtFfeUm8wtVWs065fmLxN0GOcfGt6tEYZtup00ul8ezFX4ExnKxiLBCnyAcmrtqD9uycFyH5557jnyxwoXlRXq9LnYcsrFZpzy3RLFco9XeQJkYz3OIIk1kNI5loS2XKOjRam9Tm5vn+rPXufbQQ/hG43db5F2bW7dXuXL1MhEOEPLVrz7F1SuP0GnXufbANSzLolVvAYb3v+/9/JdvfSuFUpn//If/iUqxwKve8DpqVy4RYnDZ7zM5dpSmvAe7aXwYBWfKqnv/PkuRSMye8udMkPztsnZTLgz+jIzB0urYyz9HRXzuBEE48+yZeCq03v9xOY05YRbTnne3FrFGZh5Hvb6jMPJfS26TPnyO2i91RNOmsdEpZxijSbn6JpkfZpkdps0W0+erjC1ZX7p80nT1uCabWdc2jdlj+jqzzD6TfYvjSWEvBhzV+HBkNjsNyY+2bJMok9qSvUr3MLkynz6WNPlM392s8rMw+bzBHB8IsaPrzTJZHmd6elSTVJ3YjsKkPk377E5qf2TumdnGhHZn7cPpC3YABs9zKZdLuI5HuTxH0K2zvVPn5uomt64/Rxj2KRRzQESv1yXwB2acxu/S6fXJ5fNU5mrYloUf+BAbrly5jIuPNhEmNtRbXX7jt99NGBvCKMJvN9HKwmgbo/YiTfpBl3Znh3I5Tz/o8sIL14miEBNF2I4NeRcn7+IHPvWtDeI44OUve5S5aon5+QXanQ6+H5IvuGBiLlxcZOX2DXKuplyb5/mbz/ONp56i0+4cqqkbF016qnuXeGYg+Y7I/l3TaqDRs5Ta3abCGDAGfRcFu+Miwp0gCHeNUWAGy7L2hV+f+vwjnicI0xC/SAK2jHIQnnWmCfgkCHebKAqxLJtGc52NjTXCUJFzciwsXsTycpSLNvm8hzExURTi5HJ4hTKeDUFzg25g8LHphbCzs0MxX6DvD7R5xZzLTn2bIAwpLCzwd378v6PZ2iL2t1EYjInQykZpg+NCs7mF40C5XKbZbmJMxP3338fq6jpKaxSKnu/j5DxQil6jiW0Mcb+P32qhbU3gB/S6bXbqOzRaO1y5cpnqXJkg2OG+a/fx7W/8LtrNDvn8+DQKh6G1vqsuDecNeTsKgnCXiDHDbeTuP9DoHb6NVt4nBflIM+mH4ySCtYxrM2tF/k5xmu1FmN1tFu7mD/gsmrSscumAKied/uAw7YMemtweFvUtrYGclKcwjuPd4ChpsnRdk2fT4DlWxIzXsqmMY1nXMFil19pinCYt2x8mS5uX1YdxHP68JK0Qxtcx3XMXAbFSxGM0Y+mAUllzJFbTb7CnQbNQWKjd/3avj8nvjsHVGSx1tHxioze+Sfw36I3GGm5Kg9IMzftOxvIhqfUe9xylA8JkBYg5DKXtQW5IU6BcLNFrrdDXLiEax9aUKyWazQ7tpo+l88ShxtMaFceEymN+sQYx+N0m3XidRjvALeQpFudwSheIoj79foj2A64sLHLpwjLK0lhuHh+PVrvB+spN/F5IY6vJ1trzNJtN5ucuEfQ1jjPHRz/yIfzuFjpyKDtFjB+ytbGOV87T7PTY3GngFDXKQBy0iPs9gqAHBhrNBvlCgVs3Vnjve/49+eo8/+KX/xUEZiBUqOz34qSASJN8pkfnWWqw2XqQp9CYvXfcaC6OtrGaZmX2bclz0sfuZcTn7piIz50g3D1G36zTJNQ+TLg7DY6an+mkOG5C9ax6kvUdZdym7cesCdyPyjT1j8wa0z0/6YAqdyu4yoi0gKcYpleYWkuWNE+dxc9tEgmhQ4+r+zDSvjfH8anbq3NgejupL5P8AJNlBv+exgYh06dshsvICtoyEv53g2Ak6syck2YgcI0EpVFOscPm7ajt3fxzyfGJDUqr3Vx0ZuqMfIdzIPdjIqrsLDlMDyufPhZ0d3jyc5/jsZe9nHanSbFSJuj3qFZrbNd3CCNDIV9EEaGVT31rnZzr4tWu4mmP+vY65VqOnH2RZmeVfq+LYxewVYtYlYmiNoV8iXq9jevkiVREtVKh3W7jei4bq2vMz8/hWIpmyycMY4rFEpaVp9WuY+dCXMejvtWmUilhuxZRGNPr9ej1unheDlvl+Jmffjs/8Xd/nJe/4mGuX3+ecqXC0uISvt8njDTffPomJgx5zZtfg11wUMQzRySdORr17jgPn51Jp5u935Jpu2UGK14z9emkEZ87QRBelGRp68aZbqVD759Ue5M4yTQOs7Q3TV+m7dek+o5iGnc3BJfj+jxOyqd3kqaCx/VpmpVp6rUygrIcxyMti9MPOb6/xydl1jnQLE7yDZzcj6NwGu8SpTVK60yfuGztx/4oiMft016ExNOZA1l+qqN9s2jkZifPY694Nc32NlbYQftd4jBga7tOFMe0Gq2BZlpZ9PuGYmEe2y6SzxXxw5hyqcqNW9/EDzvYlkO1cgGUod/v4jiKcnGZZqNPFPqUKw6NZpN+awff90HnyBU8er0mjXoHNxfh5Q3d7jbYXWIdk8vX6PUNy8vL5HJ52u0WO/U6xVIJ1/Uolctoq8PPvP1tLC3kadbrXFxa4Omvf4365jort2/z9NNP89GPfoQLy0s8/fTTJzZy073v7s4i2L2AaO6OiWjuBOHeY7zGJcv0a289/cj50SZoZLKOHeW9fKyPqzus1ZwlLcK43HhZ9WSN4SRTn1m1ZVnBWLL2pcvv25da3c8ai5Mc82k0E3sRLfdH+cwOVTCJePecyY/KSWn1JrFXp5WqMxm3M0uoHKeNS0bzHJ03nRZxvKbQYm8OxLv3/WD5cVq942jy0lq8WTSA05KlKcyeGvEdCHSSavEY37/TPFdxFBH3A2489xcsXVogijWl0jyNVp+cozBG4bp5LMtmc+c6OWuRbrDGpdpF1ja2KFZrxH7EV776JK97/etYW92mVsmztrnG/MWLdDohnutRcPMEPZ+QGMu2aLfaWKZPp+ezcPEKYbeBiT06nS7VagU3l2NtbY1ur0upVMJxHYJOg2JljsDvYtseRrtEkUXeCVjb2qSzXufyA1fZWN8gDGIajSb33X8Rt7zAU199lmqxwstf8SiWqwniABtNHIYo2ybUYI8ZptnedcN3rRmY8ibn0UhzZ8zg2TzKb+heqgVzJnx6RXMnCIIwAweSL2uNrAIKd4JJWsCz1t69EGTlPCIBY+5tXMdhoN6EemMHN1ek2zLYqojvx+S8PM3WNq6nee76N4nDkE67hbZgvrbE5k4L280RhhF+GPHISx+j0+vhennC2DBXvYwKPIq5MvlckTAKMUTYlsXmxga5XA7XKxD5Abeff55OL6bdalIoePT6PbY2N9CW4sKFC+S8HLl8jjiO6ff7rK9t0Gq18HsdCkWXTrvL0qWLVK5exOQqLF66H60Vy7UKXb+D77eI/CaNxgZPfPbz/PNfeAeek+Pjf/xB/vC9/5E/eO/7MO3e3b4lLzpEc3dMRHMnCOcdzaRE7CcdVONucDf8EQ9r9yiMy9k3SeN3XN++SZq7ZJn0/lnyDZ4FH7yR/116/36SPnf7jyQ1pQcv52xp7kZM0uClWxn5Js7qD5jUyEWZJcyw3GStdZJ7VXNnKb07oNNq90/qHXIappl+HKACUGGPjbUVqrUalmPTC3xM5KO1Rc4tYGKbrZ1vYakqgd9l8eL9KBWzubbO4tIluv0GjmOBcXEsQ9DT+P4Glfn7ieMQE/dpNurMzS3Q8338Xp9Op8Py/Bytdhu3tEBja4VCIY9t2dhujkarTSGfIwpjcvkcN579BtWFJUr5PGiLTr+L5djYsUbnPRobW5Tml2g3W6zdvMnW2iqPfNtLKVar2LHF2q1VaouLKNvmd979Hq5emOdNr38t9z38EKE6PG/iNJYaJJKYj9PczUryvS+aO0EQhBcNcSJ6VpyxzYAxd9tHeyZOK6n7aTGu/nTev6xj48pO2uBgnrwsplkAOMv5GpNtJ/sQx/HewsfuvmyTzNP1qpqMSW1JRlE5kzm00vm0shgdj2IzTJY8iDc5q+/guH6NLT+N/+WUlc70Jps0iFO2Ma5ic+Bv0/XzOM/D6fraDcjZDk7O4/qNG8zNVel2mnQ7dUzQxHNL9P2QGM3W1ia2bTO/UGV++cIggq3RzM3XiGKfdquDa+ewlCYIY9ycTb7o0em06bbbA09OregHhlyugKUV5XKFCI1XKBCZCNezwbFo9/qEgc9cpYSyLCzPIwh9Lt93DdfNERno9ft02h3i2BDEASs3V2htbBMGAbY2LC8v8G2vfDXz8xf5uZ/9eYI+/MZvvou+3+ULX3iCv/c//fd87w/9ABcffpC+gnCKR2J3XifmmNnLfjjwyxz+Do/mySiP3UyPnFH7t/0HRw3P/NN+1hDN3TERzZ0gCGkOX70/Wyag434Hkn5Yx0UrRRTHJxbB8yyQJfxmaemymOXak6vad1KLlxWFduSfN9pnaT0mPcS9eW+TfnXJfYcRxwbrkKTHs0f53GOk4Zv1mTkpbVxSAxdD6hWW1UhGNMnUrmQalZHmJUuDs/c07Y+MmHweZh6XVLTM9P6TwAIipYn7bdZvPoNlO1QqVerbDarzixgrxmDTbfYJ+n2q1XlibaGtPrZlA6CUg9/vkfPyxH7ATmcHjMG2LNx8Ecdx2a5vY2mLnK0xKCzHpd1usFCbY21lk0KxwubGKnPL83iuTa/Zwo9A2TaW7ZCzFWur68zVFvFcj3zOww+7aD141vuRhRX63SYARQAAGQpJREFUdEMoFhzqm6sUnQKx63DrxgrVuRqW1uSKeZrNFpfvv3r0342EwBWn7o2963J3jHuUFugSKQ9MostK64Oy3x1GNHeCIAhniGQerOxtGO77HhBujur/Y4zZ9+EUZwgmdyqKqGVZJx9hcEy00Gk/aqaNVJrMbXZS1zDtvMvSSCb7oFOC3dnFcHhuugFJAWxUPivG5TTavYP1Hn+0Zol2m33saHMoTtanjl7PoK5BhtN9vUpdS/L6Bu+R/YtCJ/3uTGvyTjK4i+O6LCwsAIbtre1Be0Gbfsun22xRnffIz2la3ZuUSx1MbIiiiF6/RxjG+H4AxqfZ2aBaqTBXrZIv5An9Bs3GGpaJydsuvh/gui5aaYqFArdv3cJ1HX7pnb9EoVShub6Dg4NdqlCoVpmrlOk1t7FszfKFZQD8vk+j2cQPAlbXVun5Pu12a5ALs7uNH/jYhRpBaNDK48GHH6ZaydPoNFHaIvB96qvrRFHM8Rcx9z8zWZYCR655jCUG7KUEuZe5969AEAThHkRrvasBEU6XgZnTvSGGCGePPdPLPSytsDIExWyB32SWPc9MWhTSKPQZs144TcIwxPPmiENFbb4Kqke/36FarhAFAcY4FHIXKeWXCdoWWmv6fX+YKy6kWHZZ37xBr1/HDAOfBEFApaAx/RZFR1EueNiFMlv1HayoTxxGLF2+n0Ab/sHP/D1CelRLJfrdGKVyWLbN5sY6+ZzLC9dv4LoereYOjmuwHUUhX+Ti8v20221KxRIAn/3kxwj9ANvz2K5vExuHzfUdlPYolEpEcURtvkav1eHJL3yB2Nzjto33MGKWeUzELFMQhNMmW0Mw/cfRYUnexwUhmaSxywr5P+74NKQDmswScOQ0OKy9oyZwPyydw7RMSqtx3DKTmHZOTGaaa55tzqeXSbKDkwyYLY3B7H50g+Az5sB502v6RuXGp0IwE65hdIcU+00f9/aO68csyS+mHZPp6hsXEGNigI1Dys/CODPN5LGs49Mc00rhaPjCk0+wUKviORb5whytTovaQpV2p4XrlXBMxAvPf4NLD76aZmONgucRBuA4DprBnFbaw3EsWu0dysUqURQSRn2i2Mezc8QmQFNmde0ZLl16CBMrUF02btT5wpe/xoOPPsrFq5fwHIWlI/pBD8/x0Bq2NtcoVUvYVoko1NTrA1PNWzdf4NLlJUwUE2uX0I8wvSbF+WX6fhdLWVgYnn/2OebmK0RRQLcZ85JXPkZoYmIFU+v4J9hCxsoMzaYHfnYnsTyw3/x3UONZCKYCxzPLFOHumIhwJwjCaXMc4S4r11qa4wp3s7Q1Sx/OMrMIRbPk6jtqPw6LtJnuw1Gjg8J0EUInM+majyZcpH3S9nzNjv8JeJQE6/GJCXeDYC3TCK+j9nbdiIw588LdaMEjLdwdNf/jWRTuAEwcEkcxQbeN61ps13dQKMIwJIoDFhaW8Ps++YKm5xtcvUDoN+iFbfL5Al7Opdvp0e3uMF9bJgxcsEK01oRhRLO5Q95zCCOfbjumOl/g1vNr3P/A/WxtblIqlQm7DVZvPUd14SJ941BbWMDWA8Gs1Wnh+z28fBFjDHNzcwRBMOy9ot1uU85pIu0RhIrm1gbFconrz97gwsVFmhtrPPH5z/P9P/TDRLZHtZCnH0ZYrs3IvHKSqevu+E8wKIzV4FkYjPXRnuyJUWZR+3yK7zYi3N1FRLgTBOHuMOXqojGg1Ewf4KMPrmlXMNPJr8+7cDcam2mvcxpB6qih30d9iaJoYjjx5L7jBsoZNy9ORnOX1lpll02nHThrwl0WRwuoMgjLrlLnTi/cTdfGgEmBUU5ET5Kqy0wt3E27CHEW3yOxMRgUfr/HzvYWmhiFTy5XpN+PKOYsvFyO6zduc/XaFfrNmE5rnbnqHNia2AwCUfm+TzGXo9FoU8iVMY6FZbtEgUErC+hgOYrYd4np0+322Nxc5eLyA/hhgIkDTOyDVpSrCwR+TBSDa2tMHKK0IY4LoLvcuPEsFy/dRxz7PPvMC7z8Za+A3ibfemGFBx99nLDf5cnPfYqXPvJajOphXINXqDI3VyE2ESgHW6mEgDs5Sf30wh2AEuHuEM6G7lEQBEGYkay0DBnbMIWD1gzTMIyOjZzV9e6WdCzP0s6MC/mf9q+ZJBRaSmGhDuTtygoUMU3QiJPiNNs7zWswxhAPo5AeCAwwZl/y/k362DnsQzmO49RdNIntQG0TjmW2PqHswYiW0XCLlRpG2csKgzIbA2Fpcn8Vx4uCeTipa1UK1ECTN9pGgV92g7wYM2PgiayxGo3/wWM60fZ0n8FDzY1huBn0vgWPg/fpTj//p4lWCoMhnytSLMyhLU1t7hJRGGLpkEhZrG60uXb1Plqra7hujnJlAYjY6WzQ9VsEcUy+uIDf72OXaliOodtu4/faKPoY08Hg0ev02Ni4QRjG5HIFothDWRZb2xtYjk2j1ca2i6yv7bBT38H3O+w0V+g0bqGJ6YY7hJHh2rWXE4YWUah59JGX0O40WO/Bw489jldwWNlap1Zb5nfe9ZuAZmHhAnNzFUxssLWNJh4IeYkEFqOgNfs3RWwUevjfpLQZ2qjhBsQnH1TnPGHf7Q4IgiAId4497dreiuqdJIwibH02VkbvNU76Y8YYs/v5PgtRNNAH3esf3cJ4Dr4nhOMQdus0WwHN+g6uGxAVbcrlOfr9gGarRang0O93CK0cthOCgaAfUitfgyhEWRAGHfqhIe8ZwshQKOTp9fooM3BVazQ2WVwsYds2ru3Q6fe5du1+Go0WlWIJFWuuXn6AD//pRyhXq7z61Y8TmxhjKoSBT7fn45qQZn0Dd2GJ/k6dpStX6XS7RGGE6zq7Wq0HH3oAlMWF+x6gulBB20OzS0sRRTHqRRZA6KwhmjtBEIQXIXuh4dndLMsabFofWPkfaeemSY0wyTzvc5/5HH4QHCqopMNUZ4VJT/47zaQV/5PQCJxU/r9ZGNff44SGV2QLjcmk5ZPqjoaa3BNK0nAiteyv7+h1xsPk5Fn3eqQlMyTMIcfUM9DujZsvM/YvQys3a1qGaciub2jyyvheT6Pt3Fej2e+beBppDtKc9qLEwQTpinJlHst2Kc/V0JaDZdv0uiGdTpfaQhkTdLC1IVdbZKu+hrIMzVaT2ze+SaO5Sa/bxNEaN1/Ain2U5RAEIZ7n4ngunXYHx3WAwbu66/dQSvOJT36SYqmEpaC10+Dtb/tZnvraN3nNKx9HK+h12uTcPE6uiu15KMfBcjxa7R5zC4tsbW2xcnuFSqVKsVjYvaKBGSiEfkC73Qb07nVnCXaHRUdNa+wOt0k5nXuo1PkQi8Tn7piIz50gCPc2+z9CToJJck/yp3OSeDQpWmbaj2zWSJpZidRnSYZ8Kh+HyeALJ1/7sZmUfH6Ui2x/6PMsM7/DOK1gHkn/vWnOzT7vYICUeEa/1GyfttGHb/p5mFRzsqZZ5susSxLjIouOe44PJoE3mX8FEhehsNTeYsJgT7IFM/a2HeX5PW0OJELf7ZsiCiNWbl1ne3WVl7/yNWjtc/vWC1RLRcLYolC7j7CzhjIx3XabubkSlu0RBDEoF+0obl9/htryRQrFKusrtynmc/T8kEKxiG1Bp9UljCJq80u02j0srfj0xz/OjRdWedUrX8P9D1ym128CMeubG1y6/CD5YgkT+9heHsfWhGFAFEGv06RSrbK2vkF1oUaxWNy9LBNHdFt9CuXCoY+VibOFvoMnJt4zwx+SdN45E8cordFq9tyfB+ZH4p8RA+HupHxsj4sEVLmLiHAnCIIwnoMagDvzw3ma0fZGpknH096l20kIdxPCgd8tDhPuhkeO2cpJC3cnS/KjbzSvp/kQnKRVSxoop4OfTHssTbLsLCkispgm4uekMZhWo2ip9Ed3qs708VGxCcGK7vb3bfLtYCk1zJVo2NlpULAUsY7BxLR36swtVLl9c40LS9fQXkC/6+O4eeobtylX57DdHMp28LsdHNvCGIiMTRz0UCbAyVcIIp/IDyEGy47odLt4OY/NzZvMl6+hlMvG+hpbOxu8/OUvp7XTIooD/H6bS1ev0e6FKAWt9jaWhvnaRW7eeJ6Ll68SRDG5Yg7L1rtauzgMYQpLjjSjwCqDQDP775E1nLGHvVk144TFyRwU7vbqiDg7wVRAAqoIgiAIZ5ZhMAV9UPMxc00zmGxlBWU5CZOvUUCSkzfLPHsCHXBg7MaZcN7ZD2mTsR2lDGOOHW7OOTI/HJlEnoZp5C7HjLI6Kjcoe7Q+pq9vz6x78rxNlktvJ0GWeXXSlPuw4EynGbAleY0jwQ6gUi5y+/YGGyu3MVFEEEKzXmd+roxjGzrtJmEY0Gg0WFhawPd7xHFI4PfxXIfVtVXa7TZKa2zHor5dp9frc/vGKoVCnnp9Hc8t8aM//ONs3Ojx6Y9/heeeexZjIsI44CUveSlffOLLrK1tsrnR4OmnvsHq7RXq9R00IX6vjWM7REFEFEUYE2OMwXNdomhvDig9fURlGAh1kyJmwn7zTM2YJzuOD5hPTvMOSs6JLJRSZ/QtPDsi3AmCIAinxjQ+esKdZ5bQ8ndbA3KnOUtz1mAw5s77dwonzSCqrYkjYgPLFy/hdzuYGOaXruAV5zGOy8ZOHUWO2CiqlSKNepdSoYZj5cE4tNpt5ms1lDLUt7extCbwfdbXV7lw6SpKWXieTRQ2+cAH3k+/18fTc8SR5l//2m8Qh5q125v86r/+N1y9+iAf+eif8+ST1wm7Nt3tHXRsU3ArfOLPPsc73/GrRGHI5sYmc3NV1tbXcey9OIxKW5h4Vl3w9EQn5sv74kPMMo+JmGUKgiCcHOO1H0f/mU8HZDms7CQOzxE3nQ/jKDddmln9B6dFHTBr0yfezqQhHvhiZfudGTNaiTcHTFIP9vtIPZuijDmQO28WjmqaeFwjsOTcNhiU0kQT7uu07U3zyX5c7ZuKDwZLysKQNnFM+vGNN98cZz58WB7I5P5Zyo+rI4oNJg73HbO1zZOf/ixXr91PoejiuTFb9TqV8iU2155haWkJg8FSeZRlYaKIMIpQdh4/7NFs1LmwtEQURfR6vaFGysHLefh9n6DdxckViInZvv0NtL7M17/+dd7+Mz/Fww+9lHf+0q9QKNoEUY/trQ69bocHH7rGT/7E3+dt//PbuPbQA0RWTMHVYNnkynO4eY9Z0CjixPtwzxxTJfYNg/Tsjp3e/X+U0tsp1MAPT2tspcaa6o7j0PfdGYvifByzTEmFIAiCIJwZxgVwOAukc8Qdh3H13KkF1zu9sDsp+uLBv5800/l9npU5d9QE3sOTj932aZkpzuKneBJ9SQtis8z5cW0f5bnRCiI0SRE11IrL912k21zBcpYJ4hzlXAnHNFlcegClFEEY0u43ybkOnpdjZ3OL0twynU6HarWKHxs0mn4QUa6UIdLceuE2V65epdXcot9usLXV5JGHvo3YxNQuvon3vPd3UUpRrniAy3ve+//xu+95L29/+09z+fL9/JW3/jUefvSltLs7zM2VeeH6TapL85QX7GHQpDvzjBz3LTvo5tl4nu8GZ8PuQBAEQRASHPTRmS4NQxZnNR/bWe3XrMwQpzR776mMg0psabL88e79e3F+PIaOTlbKlEnbpPPT9WTtSx4bV7dSCtu2UNrGtp3BFhvyuTJ+lKNYqJDDJcRlo92kHwXEWqEcTblYoNvrUN+pU1ucx3E9cl4OFAR+BJZLtbZAu+sThG0uXK7R6+/g5isUi0vcd/k+6j1DZCzW1tdYuFhlu7GJ74e8cOM6T331L/gbP/h9fOWrT/Dnn/gwH/7YJ/jK175Bq9lkfeUFfu1Xf52tzfrAz3gGwU4rBWrPzy7L106nyms1iJGqGfnVZYy7PiypwmjMs/a9eJ4PMcs8JmKWKQiCcLaJ41EurVFi5oPrwqOV+lmiZY6ray8BdNK47RDTsylMv7JQ+8zQxreRNm88mYice9c+CnBwMBT+JIaanETx+MS+v6ZNFnCyH3xZWqmjmmUm7388ISLpaPx2zQAz6h/VFSc+cLPaNsag9GTTzt12ZzDL3HsG91DJcTksWmaCpLmeNaELk56jUfWjxzdZz/j0CuqA0JCILzKI4DilABFhsIyivV0n6u9gVB7jBIRtQ3VugWZrg3xZEWPh2mX8foTSPfxewNzCAr4fE4QxvU4b27WIQnByGj+MyIUtvv7UU1y57zGUVgRxg8riI6goxDIBTz/1TWpzizz97LOEUcwXv/wUcbfND/yNH2ZtextsG20CKvRQ5SrV2gVqV+bIOSmzTLVv0PYdSgtzsTGHBlNJk84VOJr7VsYC36SoqckyowWQdJTOgSR6tvRdEi1TEARBEO4AL6bVX0F4MXKaETTTFEolGu0euWIer7DA3NI8je63MKqPjqpEQUyjsYNtK7xcHr/fI/B9en6PYrFAvlAk5+bJ5XJo45KzC9hOiUdf8ibe+c7f4CN/+hc4+iJf+NRnaDc63Lxd56GXPsbC4gK5fIlPfOoztFs9fuRH/2tyBVharPEvf/mX8GyXfmxYuX6DJz79KZwZ7CRPM8jKcYlMTPQiCFAkwp0gCIJwrklrDJImnklTz8M0ZfEwcuQoFUJSa5esZ5ZUCelolFlmZUdh2vOmNUOblsF1Z6UfOHoY/t0aZorcefz2xl/D+HpV6u/H9ePbm0Xj2z1JYUQpdWS/vawAQXFsUIB1FxJDT5ovcbyntTuMPVPL8WW0ntU3cqC9U66N65XZab9Ar2VoNm+Sc+7Hsgr48SaeW8JxLLQV0esEzNdqxFFMv9vH77ewtEMcO/T7Hfx+QM622NrusrazxT//xX/I9/yVN2Hle6zcXuEjH/4zbt5eo9PtUW82WFy8yJNfeIrv/M6/xBef/BKOZYOKedkjL+Xzn3qCbqh573vfx9xckY9//OOHDdKuZk5pi9gYklN/5K83rWnnwXKTz5uUEiNZxtJ6V/N3RlxsTwUxyzwmfr/3kbvdB0EQBGEapl/PzPpQdWyL2Bxmipk8dnjkzGmCZ0z6nR5nlpk2MR1nljkpyt/h3wcHzTLHBy8xqX/v7ZvWLHMa06uD7JlzjT8+tsVUmWkjoardEtEhX5CHmWXGDGbtpHGxUn05jllmVh3jmDaB+0iwOzAzTtkscxJRqrnj12OwZpiXu2avWmFF8PlP/g6vfvxHqTc/SS8ssLx8DVuVCKOI0HSACBXn6fV2aDRbzC0t0+1sUy1dwRiHXrCBVpqCZQi0h8Ej8A2em8PQJjQWUb+LTUin3eaJLzzFu37795hfuMSVCwv86R/9Adceegm/8M5/gr/TZ/X2BhcevsznP/0ZfvBH3gq2i07PmNT1avYLZSY2WNbeO3d0bBrzzElCYJZZZhaHJbiPzSDYzYAzaZb53Uc9V4Q7QRAEQRAEQRCEc8DZElMFQRAEQRAEQRCEIyHCnSAIgiAIgiAIwjlAhDtBEARBEARBEIRzgAh3giAIgiAIgiAI5wAR7gRBEARBEARBEM4BItwJgiAIgiAIgiCcA0S4EwRBEARBEARBOAeIcCcIgiAIgiAIgnAOEOFOEARBEARBEAThHCDCnSAIgiAIgiAIwjlAhDtBEARBEARBEIRzgAh3giAIgiAIgiAI5wAR7gRBEARBEARBEM4BItwJgiAIgiAIgiCcA0S4EwRBEARBEARBOAeIcCcIgiAIgiAIgnAOEOFOEARBEARBEAThHCDCnSAIgiAIgiAIwjlAhDtBEARBEARBEIRzgAh3giAIgiAIgiAI5wAR7gRBEARBEARBEM4BItwJgiAIgiAIgiCcA0S4EwRBEARBEARBOAeIcCcIgiAIgiAIgnAOEOFOEARBEARBEAThHCDCnSAIgiAIgiAIwjlAhDtBEARBEARBEIRzgAh3giAIgiAIgiAI5wAR7gRBEARBEARBEM4BItwJgiAIgiAIgiCcA0S4EwRBEARBEARBOAeIcCcIgiAIgiAIgnAOEOFOEARBEARBEAThHCDCnSAIgiAIgiAIwjlAhDtBEARBEARBEIRzgAh3giAIgiAIgiAI5wAR7gRBEARBEARBEM4BItwJgiAIgiAIgiCcA0S4EwRBEARBEARBOAeIcCcIgiAIgiAIgnAOEOFOEARBEARBEAThHCDCnSAIgiAIgiAIwjlAhDtBEARBEARBEIRzgAh3giAIgiAIgiAI5wAR7gRBEARBEARBEM4BItwJgiAIgiAIgiCcA0S4EwRBEARBEARBOAeIcCcIgiAIgiAIgnAOEOFOEARBEARBEAThHCDCnSAIgiAIgiAIwjlAhDtBEARBEARBEIRzgAh3giAIgiAIgiAI5wAR7gRBEARBEARBEM4BItwJgiAIgiAIgiCcA0S4EwRBEARBEARBOAeIcCcIgiAIgiAIgnAOEOFOEARBEARBEAThHCDCnSAIgiAIgiAIwjlAhDtBEARBEARBEIRzgAh3giAIgiAIgiAI5wAR7gRBEARBEARBEM4BItwJgiAIgiAIgiCcA0S4EwRBEARBEARBOAeIcCcIgiAIgiAIgnAOEOFOEARBEARBEAThHPD/AztsTwPUJr1MAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image = skimage.io.imread(image_list[3])\n", - "fig = plt.figure(figsize=(15,15))\n", - "plt.axis('off')\n", - "plt.imshow(image)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Supplemenatry Figure 2: Region-specific masks for lateral and medial sagittal P14 GAD1 and VGAT groundtruth brain sections\n", - "# .\n", - "# ." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "image_id_list = [130,110,90,170]#np.random.choice(dataset.image_ids, 1)[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "original image shape: (1872, 2864, 3)\n", - "image shape: (384, 384, 3) min: 0.00000 max: 252.00000\n", - "image_meta shape: (17,) min: 0.00000 max: 2864.00000\n", - "class_ids shape: (6,) min: 1.00000 max: 8.00000\n", - "bbox shape: (6, 4) min: 20.00000 max: 347.00000\n", - "mask shape: (384, 384, 6) min: 0.00000 max: 255.00000\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Asfandyar\\AppData\\Roaming\\Python\\Python35\\site-packages\\scipy\\ndimage\\interpolation.py:616: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.\n", - " \"the returned array has changed.\", UserWarning)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACOMAAARZCAYAAACCU1YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3WlzI2ea7vcrM7ETIAnuZO2LVNpbUi/TM+fYDsfE2H5hh9/4fEp/AocjvI7nnOnpkboltdRSqfZiLVxBEvuS6RcPEkgkMoEEiSpR6v8vQl0kkPnkk2tVRF5935bneQIAAAAAAAAAAAAAAABwcfZPPQEAAAAAAAAAAAAAAADgl4IwDgAAAAAAAAAAAAAAADAnhHEAAAAAAAAAAAAAAACAOSGMAwAAAAAAAAAAAAAAAMwJYRwAAAAAAAAAAAAAAABgTgjjAAAAAAAAAAAAAAAAAHNCGAcAAAAAAAAAAAAAAACYE8I4AAAAAAAAAAAAAAAAwJwQxgEAAAAAAAAAAAAAAADmhDAOAAAAAAAAAAAAAAAAMCepn3oCkmRZlvdTzwEAABie51k/9Rz+lv2T/Z/4dxEAAJfE/+7+r/y76CfGv40AALg8+LfRT4t/FwEAcHkk+XcRlXEAAAAAAAAAAAAAAACAOSGMAwAAAAAAAAAAAAAAAMwJYRwAAAAAAAAAAAAAAABgTgjjAAAAAAAAAAAAAAAAAHNCGAcAAAAAAAAAAAAAAACYE8I4AAAAAAAAAAAAAAAAwJwQxgEAAAAAAAAAAAAAAADmhDAOAAAAAAAAAAAAAAAAMCeEcQAAAAAAAAAAAAAAAIA5IYwDAAAAAAAAAAAAAAAAzAlhHAAAAAAAAAAAAAAAAGBOCOMAAAAAAAAAAAAAAAAAc0IYBwAAAAAAAAAAAAAAAJgTwjgAAAAAAAAAAAAAAADAnBDGAQAAAAAAAAAAAAAAAOaEMA4AAAAAAAAAAAAAAAAwJ4RxAAAAAAAAAAAAAAAAgDkhjAMAAAAAAAAAAAAAAADMCWEcAAAAAAAAAAAAAAAAYE4I4wAAAAAAAAAAAAAAAABzQhgHAAAAAAAAAAAAAAAAmBPCOAAAAAAAAAAAAAAAAMCcEMYBAAAAAAAAAAAAAAAA5oQwDgAAAAAAAAAAAAAAADAnhHEAAAAAAAAAAAAAAACAOSGMAwAAAAAAAAAAAAAAAMwJYRwAAAAAAAAAAAAAAABgTgjjAAAAAAAAAAAAAAAAAHNCGAcAAAAAAAAAAAAAAACYE8I4AAAAAAAAAAAAAAAAwJwQxgEAAAAAAAAAAAAAAADmhDAOAAAAAAAAAAAAAAAAMCeEcQAAAAAAAAAAAAAAAIA5IYwDAAAAAAAAAAAAAAAAzAlhHAAAAAAAAAAAAAAAAGBOCOMAAAAAAAAAAAAAAAAAc0IYBwAAAAAAAAAAAAAAAJgTwjgAAAAAAAAAAAAAAADAnBDGAQAAAAAAAAAAAAAAAOaEMA4AAAAAAAAAAAAAAAAwJ4RxAAAAAAAAAAAAAAAAgDkhjAMAAAAAAAAAAAAAAADMCWEcAAAAAAAAAAAAAAAAYE4I4wAAAAAAAAAAAAAAAABzQhgHAAAAAAAAAAAAAAAAmBPCOAAAAAAAAAAAAAAAAMCcEMYBAAAAAAAAAAAAAAAA5oQwDgAAAAAAAAAAAAAAADAnhHEAAAAAAAAAAAAAAACAOSGMAwAAAAAAAAAAAAAAAMwJYRwAAAAAAAAAAAAAAABgTgjjAAAAAAAAAAAAAAAAAHNCGAcAAAAAAAAAAAAAAACYE8I4AAAAAAAAAAAAAAAAwJwQxgEAAAAAAAAAAAAAAADmhDAOAAAAAAAAAAAAAAAAMCeEcQAAAAAAAAAAAAAAAIA5IYwDAAAAAAAAAAAAAAAAzAlhHAAAAAAAAAAAAAAAAGBOCOMAAAAAAAAAAAAAAAAAc0IYBwAAAAAAAAAAAAAAAJgTwjgAAAAAAAAAAAAAAADAnBDGAQAAAAAAAAAAAAAAAOaEMA4AAAAAAAAAAAAAAAAwJ4RxAAAAAAAAAAAAAAAAgDkhjAMAAAAAAAAAAAAAAADMCWEcAAAAAAAAAAAAAAAAYE4I4wAAAAAAAAAAAAAAAABzQhgHAAAAAAAAAAAAAAAAmBPCOAAAAAAAAAAAAAAAAMCcEMYBAAAAAAAAAAAAAAAA5oQwDgAAAAAAAAAAAAAAADAnhHEAAAAAAAAAAAAAAACAOSGMAwAAAAAAAAAAAAAAAMwJYRwAAAAAAAAAAAAAAABgTgjjAAAAAAAAAAAAAAAAAHNCGAcAAAAAAAAAAAAAAACYE8I4AAAAAAAAAAAAAAAAwJwQxgEAAAAAAAAAAAAAAADmhDAOAAAAAAAAAAAAAAAAMCeEcQAAAAAAAAAAAAAAAIA5IYwDAAAAAAAAAAAAAAAAzEnqp56AJDWb7cjPPc+TJFmWNfgs+HNwmeD3/jKe5419HydqW1Fjz1N4W1H75n8WXjY8t7i5Jt3/87AsK3L8WY5T1DyDP89jP970sUi6v1HnKMmckl6HUdfQvCW5/yKvicBHrudJ55hmeNtx59WfQ/D78H0Uvt9HP/f6P7v9EYOZxajPFDEPM45l+cv524l6Jg3Hsix/28FlrP5//mde7HrDZUdm1l9mOM8k91j4GEaZej14/fMhbzCBSc/aqHOWiOcND0viVbzY69Xrb9qyrJFr11/WswLXjpd8n/z1RsacspvD8b3AjWRJnpX4GTLclje4DgJ/q8qTGcc+z40JAAAAAAAAAAAAYMylCOPEvXiNenEe9XPc8rMIjzdpO3H7EJ5H1Fhx60xabtI6cduMW2bSC/dZxc1l2n5EBSXC53bS+LMIBzPmLWre4c/jJN2/Sddm8LO4uczDpPFmOV+e543ESqK+j9te+DxOu/4iQxZTQmzjrNA2JyyZMFgWZTzIE7WMP45/LEbXjwvzDT/3EgX5gvNNcg1Pu+79EIoC5zYuKBl37ILjn0fU8Um0f66nbrerdDo9ts5g3YiwTiTLXPnmHggEdHSx/UqyzLTxB8u8uewmAAAAAAAAAAAA8DflUoRxosRVbgi/8I6rgHHe7U16UT0pKBBVjSfqJfW0UEOSl9ST5h+ez6TwwnlfUCcVDIjEVTeKOneu684tkDMpmDEP0wIhk5ZLer0mCSVEBXbiqsCc5z5JEvKZdO0Eq39MC+Ikmce0uZx3fDOmP64dsZ49CMME98QbFn7R6B4Gq9lYoTDPcPzRcxOuuuNpWJHHn4P5bDSgE7VNL7DMmwmkRT17ghVkpP4RHWRXzn8vxoZ/LGtw2jzPG6k84y83bd7BazS4fiqVGt0fS2PjT5vzYNz+n64/gDW6TPC5Hb7WZz1u42EsyfL8wI0nz/K3KdmWJXON0bkSAAAAAAAAAAAAmIdLF8aZJYgy74onSYIok6q9hMeY9FkczzOVGCQNqjEknXvcnGYx2zqeej0TEnAcZ+J4cSGKWSsQTZ1RTCjpbZgW1pplbrNWJEl634Qr6CQxqfVO3Gex8477/A0FhMLLnsd40Eka35Nh6GXSHKYdtyQViKLmMAwDRVfHeRPixh4LkXjeXCquTLp2w4GXeYYK36ZJc7Y0WyAn7rQPgl8j14879XkCAAAAAAAAAAAAIDn+b/AAAAAAAAAAAAAAAADAnFy6yjjTTGv/E2zLMag8EVjEm1AtYNY2OcF1J32ftMqAv1wqlRpbb17VLYLVLC4+phVbEWfaHAYjxLSjmqUyw09dxSGqDVTw9/NU6UjSpmvWMaNauyUZJ8n5SjrXuPXfZgWjKMmPpb9cuOVUeJnw/vjH3oqoWDLaXswff/T7qPZM4So4fquh6LHjhNvjJWmp5y83Tbhd1aySVt+RQs/5KfsdVWUnSeupWdpTTZ5A4IepVc2swdUwcv/4H8b11/LH98wY42P7FXKs/nSsfvszDT4BAAAAAAAAAAAAcD6XJozjuuYl8kUCDP448wubJPMmwyBRLa+SvgSPa400r5DPPFrgxB27857/eba7mue+nXdOFzkOk7Z93vnM0hoqaj4/dXBqmqjzPjpn/2dbo0EXK/R73Gd+i6n+EpYlz3MHy42f7/i2eJZlRxzP+HMd1RIu/HPUepM++6lDVFL/mS/JsoaF3s7bbvBtGeRoQrmtac/m0e/938PBrdA6skYuuuG41nAVyw+XuaFlAAAAAAAAAAAAAJzHpQnjJHkRPE1cACVpVYZ5BTneJL+CxaSXpf4+dLtd2bZ5QR2uqhFcbtIY4XWD3uQL27hzOWkeweoecePFjZ0kpDQp4OR/HzXeeQMsF/Gmr+N57lP43Pjjho/1RbaZ9J5JHlbzBlVEzPrms3HW4PuoijhmW+FxosIV4+Gq6HM8pZqNP6Q3+ln4GRl374VDXhcJrU27/5KEgYJVXmaqpmVpcFL8Kjr+6fQC/yvLmloNZ/Bc8Mfsz2c0ceN/bI1dDJYnucHrT6Pn1yxqmf8CJ2pa9R95Vr9GkzdczRtOxwrNodPtyO5/5qQuzT8NAAAAAAAAAAAAgJ+lX/Qbt3lUN7ksZgki+C+ybdv+yff/l3QOfkkmVTgJh5qSVmO6yByCFa387+K2OWso580Ek6ZXpBkX3boqejkvsIwJYrhukv2edky8fhWZtxsMm0fYct76BWEiT8N4BCr0fVz7rMBPfnOpqPpJgWyMH7NJKLhmgmUH7aym7ZGUcgL/HPjpTw8AAAAAAAAAAADws2ZPXwQAAAAAAAAAAAAAAABAEr+IyjjhVjZvo31SkmXeRHui4NjTxk2y3WnjRG0rbr/ilkvSfiZq3rNWz4hsURbRfmjScnG/T/o86WfnMVPrnYhWXOfR6XZ1dnoqt9uTJBVLJeXyuYmtuy5i0rGe1kptltZySe9dX/IKNJ6iK45EzetNlRzx77XJ857lfE07tv734efBtPsh6XMp6ue4ZYetnBK2G+wXjIlsxWUGmbRqzByjn4dWoJpN7PG3An+GphTd4iy4UmhyYy0JA88FBecTGi347I5cAgAAAAAAAAAAAEBSlyaMExea8L/zPE+dTkeZTGbku2ljziMoYI293JxtvbjQQNy+TgtUzBpCSDLX4JyivnsbIRR/Xdu2h8clMJx3gVM5y8v9N2nW/Zn1PCfdz+B1Fw5Q1apVPXn4SPVqXZJ0/dYN7VzdUSqVHrtPR+6N/uZcBcbuf+ZNeL0/rR1V8Pek92JcUGxaQC55iC54zCJnr2BIZzjWea49L2YbgSU8t78dZ8pI8dddklBNlFmXT/LcmHTdT7snPM8b2UcralH/WgreL9PW6S/jeaOtvtxhPCdyO8MOUVa/LdawhZU8ybMl/zqJun+jr0NrMO7I+XQjwjaBXlxTm5j507oEbcQAAAAAAAAAAACAn7NLEcaJCxCEX/z3er2x9eLCKkm2FRc8CQoHFaa9rJ80//C4SeYft0zSSjWTxo7ypl/CTqqCct6KOBeZS9yxm0eFmYvObVZR18S08cPXoed5qp1V9cN3f9XJyakkKbeQ1+b2phwnNfUcua4r2YFlogIDGj+uSfbXX37WyiqzfBZ97wWXGf4ed39bg0DDtFlG7b+p8hL8fbjN5OGj8PyCy8WFWaLugWnnZZ6hwKCowGG4Es+FWDHb0HikxguWpukHcQafy3wVN6PgWfPHHjmTw8HGpzi43pPtUnCd4Nim0o89mM/kPNhwnwAAAAAAAAAAAACc36UJ4yRprVIoFEYqtUQFCaLWDbpIsCL84nZS2GbSHOI+m7S98D4G93uWl9SzhpfelrjA0aSKKr5klUwmbzPq+Matc6HqPwmnOGuw5rzVTMK63a5OT091fHSsZrMpyQRs/GEnBcUir/OxIh2WXNdVr9dTKpUa+TxKkmpSs4gK18XNPTCLwM+2/GzG+LqTr52I2UTMywv8F7X90fUmjp7wmMaZdblglaWLPlPiKiDFje9JSQ+LP5B5tgSCNJbX3wdp8NyJC2COPJe88U2PXPd+OC2wD8H4jxWYvD9uuDJP1HNw8PdfzKG2BmWprGDJm8hl/a+tBM9bAAAAAAAAAAAAANPZP/UEAAAAAAAAAAAAAAAAgF+KS1EZJ66CQ5L2TOGqCeephDNrK6I3Uf1h2ufTKu8kqdgyzypB4THn2cpplko/Uedulqoy4XZUUyu9TGgnc9HrIaqF2izVji5S8cT/rNVqqdfuaGN1TW7/UCwtLclxnNjthj9zp1wTlmWNVcWJahc16bxOWzZuu+Hf4ypPBUYfVMIZrjd53OC8orY1bf6jy1mB7b293kGztBGz7dFM50VazoXXm9QmMLjOeaskjYw14e+bScciaduveZvUyivO9L8nghWaAAAAAAAAAAAAAJzXpQjjRDnPy/W4kMEs4Ywk20wS8DhvMCJpACG8bvT2wu1u4sMRb6pVVdzL4jcVaIr7fZZQjv/7pDBJVIuyi15ncUEDz3NlzqMfDLCnvvyf9kI+bruWZWmhVNSNd24rk8lKktbX15VynEGLqeAYlqdB65thq5v48SfvZ/wykwJqF209Fx5r9L4aPd6W5U4I//if2RpvN+XKssJdgvxjKQXvUzO2P1ZwO97IeqOFzeKLnI0ex/HvYlvEzRhSDK4bNdas60xbxud5nswRC7SDCiwa1Rpu0NopODcvuilecH2/ldXY9gdtr/r3hSYHiuLG9yfgWcOfJ52BqBDbefj75c3puQwAAAAAAAAAAAD8rbu0YZzzvAieFLxIEk44b5ghvO2kFWimhQ0mmfUFtxfxEjl+2eQvYqe9eI87j2/qZe+k66bX60lSZJUXX9JKSlHrzGOfJm/fm7qdaQGVaXPMZrNaXV9TaXlJ2XRGkrSwsBB7vU27T6PuLf93f7yoIExc2GieQa5pY5jNhOc//bk0aX/eZvAt+Plwbu7I70mfCeedd1So57whn0nbCEZWAjmWC445uOMSLStreoBspv0O5rEipjDtHp8UtAov758nL2YZAAAAAAAAAAAAALOJL6cAAAAAAAAAAAAAAAAAYCaXsjLOm/h/5U+rmnOebcZVIUk61nlbwIS3G6xsML7cxdvMhMefpTJJ1Lzm2TYsantxUqnUxG3Oo81U1LoXqQRi9XvueCMVWca3E2y7M22Ok+aTSqVUWlwcWca2TWbPc93IdcJzGLSrsvySHuFjOVrJxBdVVWRSK7Z5PCeiz1n452TtoMJtpKZVo/LHCm7btv3f/c/8e28+z8TLUPHkonOYtUqPFbHo4Br1gu2tIq61SS2lYuY2afvnOY2eJMsOtIULzzG07eE1bUuy+iuF711LngY3quRfq/4zfvZpAgAAAAAAAAAAAAi4FGGcuDZG5w4whEIq/s9x24obY5Y2UJM+m2TSvLrd7qCl0rR2MvNu/RIef9J2gz9HBSrOc0xmeeHe7XYH2/GDI5PaIs2jzdEswZ15nZfhdi62H1Fhq/D3/nGcdXzLskZCDUnmkaQl1aTlz3uvxn0/j7CIL+r+DoaqPM9Tr9cL3Cv2TNf+tDZx8xQVrAuKu2/n/Vya2qqsHwIbHOUZj+dYmz179vMx6zkIP0fPe00Hj83g+/4+JJnXZQhrAQAAAAAAAAAAAL8ElyKMEyXJy3P/xWKSCjXzesk475fd0+Z83pfbwYoq0vQwUpKXyFEv39/Ei/+R4Iw38kVk0MMPLAXnOCkE4b+wnhZwCo4T9V3SdUZDJcEKFdO7xJlKGpbkjS/ref5Ynjzr/B3nkgZV4o6F/70rz1Tw8YuK+P8TGYSKHn/SXOKutaQBg6jwWPR4/nrxx3R0/ajqP6PbjjrXZn+ldNoJriHJkjUsddQfZ/jzcB+8QeEWz/NDHHGViMyfSUJ74QpHwc+CQ1v9Zd5k+Cdo4nas4dT8gkyDpSeEvUbGtSyzz5Ylt9uTJPVcV6n08K9JW8NrfdJcR9jJru+4sSxFV/fxBa/pyGMWqKxkjZxUf6HA8mRxAAAAAAAAAAAAgLm4tGGcOFHBgLdVEWaelVUmbcsfd1pVnKkBGwVfUE8OJJxnX8YqSEQEYaaFlya1I/I8b9BCRlJsxZVZKxTNcg1Nm3+icMMcrs/oUJY/hwsPn2wOwY3K33YonaEk5yNZyCyuEst5qsbMcg7C6yVtx+YbXX76dRgd5Jm2XlxIzBuby6SwxiyShB6j7oe4Nneu645XcZkgrlpS7LxCaZPw825wvPyQU2B1/9lrO87oqYgsxJPs+TPrsQ9WUEqyXNSxt2ICjKPLmGM1teIQAAAAAAAAAAAAgMTOX04DAAAAAAAAAAAAAAAAwIhLVxlnUqWDuEomF61cMmndJJ8nGT/JPkWNl7Rt1Ni4oaIbURU+LlJ1JGqbcVUuzrM/gzknns3sZjlvceskvbaiqlxMaj0zLMHhqdVoyslk5NhO/xNvdBG/BpIn9XqmvU4qZW7tXq8n27H9SZg/XU/NZlOS5DhpOY6jRqMmScrnc7JTaUWVAAlWKRq0nvJb+/j7Yw1bLMWfam+0TdWgLVKyijJjo8VUBJlWnSRJ1abx7yP6NQXmETG7wJ+Wpu9XXIupqOeEHbqHzfLj9/VwDkku16hWRX77Jnne8PoL3e/BCjiTnif+967rjrSYG9+/6OpJUZ9FPWOG8+xXfhlpZdWfZ8zpj2vXNLjWZ7g+k0j6/A2f20TVvQLXhGcOhvk8+BixvJGqV2+q2hwAAAAAAAAAAADwt+LShXEmtV6a9tm0YMusJrUuihMX/ol78Z+0xdG0wFHcWOH159V+JMlL91laP0UFiy5D25TzXD9RL8mH+xLYn0ltxgYvz12dHle0tLY2CON02h31ej1lMhlJpt2PP75tm+BNs9lUKpUyrYD6n/m5jGazqWdPn0qSykvLymYzajZbkqSn9x+ouFjQ1Tt3ZFtme67nypIJT/jju16/xZAVODeeZIf23URQwuc7rn1Z8HwPj93geGm2tmCzXDvJr7nooFH497i2YlHLBQM0w22HeyNF3S/h4zDapmpaG7tziWhJFT43cSHB8LPaD4wFv49qVzf7FMf319xvod8vqSTPVP8713UH300KNg3ye5Y3FiQyGS5r7BgBAAAAAAAAAAAAOL9LEcZJ+rI46kV8ksoAb9OkOSSZ37RqHUHBl+3TqvhEVRyaJTgU9aI8yUv3qLHj+C+W/cBHcP4j6w8KffRDAG/gtJ8nyOC5wwokbq8n1zVVatLpjHrdnlLplCxvuIwlW64ViFR4wx/8qh6u52mxXJbjOHI9c3wc25LtpAbBCNtx5FiSG3jNblm2LNtW2nEG+9Kst5ROZ5TOZHT7zh2znKRWu6XVpUVJUnEhr2azbiqg9LfXabflOI7a7Zay2awkqdFsKpfLy7YsddptMw/bUTqdkuzh9dWo15XLZkNBAU+SG6iIM6wa5MWczHD4K/xd3PLTTLseg9eiP8fhn8HxvcB34TCNQssNxzJzHF1vfErRVX6iJVluWuAovhrPyFIJqkTF3UfTqmrNXrEoervh8d9ECOci1dfCIq9za/xM+FE927EHAa/Jz0H/+AaOQXAbobDmZfi7FAAAAAAAAAAAAPg5uxRhnPOYJbRymbytSi9RVSouu/Hgw+UT9+Ld8zz1el3zs+vJcZxBoKbV7kiSmmcNWX5AJ5+VY3s6OqzI9qvluK5s21Oz0VA+X5IknZ6dqdPtqdVoqNc2raTOKjWtrK+pUjk14zc7unFjS4vlsro9E6D50x//pI8/+5WqJxVVjiqSpG5POjo+0dVrW+q162abdladTkeZVL/ijSxtb2+oVd9VrWaq5eztH6pcXtTG9rrc/vie56nVbCqdSsnuB2263a5crye7X8HHktSq1dVrNJXKmRBPYWHBP2CBgIEV+vPNmPWZEX09WhE/x7WWCgcHJckd+zx63LgxR6/B8WsxuI9R20kSHJkcxnkTz7CLjDXPZ9zP6e+VwSyT7P7P568BAJjZ//biT+da77/f+XTOMwEAAAAAAAAAYOjypx8AAAAAAAAAAAAAAACAn4lLVxnHr/oQVYFk1goI82gfMs8WJP54QeEqE3FVGcKtpYLzmlStZdIxnFThIric53lT5510+3HbixdsjRX9/bDrSrCiSMQ588K/Bj7wPNOWqF/lxfM8WTJtovx9cHs99Xo92bYlu59ja9RrajRaOjmu6PSsasbqdpXL5+X0q8383//nv2pne0XPn7zSvXu3JUkb21tKWT09+O6xyqvLkqSzs1Ntbq2qVW+p2TDVdF68fKa1tRV1upaOT08kSVnPk1uvyerP9ez4RC+6db3OpFWrmeo5qa6lH//8lZ4/faZGoylJKhRzevb0hZz2O1pbXZUk/fjgBxVLWRWKpk3Vv//hD/rgg/e0sFCQ65r9/va7+1paWNBiuSgnk5YknVZrKhQKunb9igoFU8Xn8OhQy0tLajTMcVjfuaLyalmdTlvtftWgbrsj20kpk83KSZnHj2W7Ur+K0/AceyNddFw3/pqJqmYS1UbNb4MWXtdfPriuP4eIrcV+F/WYGL/+7cG6cbeBaQ8W345vUmu+uPt0+L2/zOh94nlu6Hmike+H442PPWtbveD64Y5J48+T8bZdce0K41rlRT2/RtYdbinRfoRd5O+HqGMY1bJrsA3/eMkafX4p6tjFbFNW5OMxyboA8Ladt+rNTzk2FXcAAAAAAAAAANIlCePEvSid9GI57oVs3PLhZYIv8OPCP3FjJDUt5CJpEBCYFpKJmnfcC/qoOfR6PVmWNdZ6Z5awTNQckqwzKTwwfYxgMCIY1ohb3z+eTuCz8FgmiON1e+p2TEgkncnKktSsNyRJ2UxGrU5nJDDQaTXUbXd1dnigVt2EXp493tXTZy9VLBbV7bYlSculBXWstNK2mcvt7VXV61WdHe6rc7YuSXp6eiLH6qh6cqblJTPXQtZV/awiz/VUr55Jkmy1lMk4ajarur5j1j06ONDB4aFWV5bMxNyOqicVyekqm81Jknp2Ws8ff6+trU05abPen//8he7dvaXVlWVZrmlTdfP6qk7PKrK6ZnuffnRXmWxatm2OiSQ1G1WVS2nZaur04Mgc31ROzx48VKd2JMvOS5I2N8tqyh0cr4Onz7T/9JlStqvS6pYkqXJU0dHJmW6/c1vFxUL/XKXUVU+5bE6lxX4bK8uEVtJIxS8GAAAgAElEQVRZE/7p9XpynJQ8b3oAJfz5pNZD0QERP7STNIxjybLGi4xFbXNaQM2yxoM6lmX199+ZuA2/Ld2kUIZ/PY8G2MLPH68/T1vh1MZokCc897jtxT0Dgm30vMBxHxkhcCyiw1QXaSvlBabsyYvrzHUh0wKLweMT1VpwJIgzcmFM3m7/UhrZR3PyBwMP5pD0ngKApN5kiOaym3XfCe8AAAAAAAAAwC/TpQjjTHqJO8m0AI3/knNa4CQYbplXZYAkY4XnkLRSzXleQEe9yI/bVpxpYahZx5tFuILG6JeBn/3qOIEqKN1uV26vp27LBG0c21Kr1VYqm5Fl96uzdDpyuz21+2Gcg5M9vXj6VNlsWo5llnm9+1ySlE+nddowy5VKOX3y/o6abVsPHjyTJGXWFlUuFnV0sCdJ2r6xo9e7Xf1X/+EzFUqmCs6DH+7r5LSqjY1NPX28K0mqNRrqNJt6973bWl03AZpuryNLKf31+4f63ecfm886DZ1UO8qb3I1ev3qpRq2pbDalrS0Telksl/TuO9uqHFe0vl2WJP3+H34ttRtqt+t68vCRJOmTzz5Wp1uUX3hmubikbD6lk5Oaeq4JKv3qo7uqHB3o8KCidMZs9Ob1Vd24uiTHcZQvmKo6nu3p2+8eaHPNzP3J46e6dvOmNjfX9LS/vf2Xe8rms3r+o6dMzhzXdDqrrpeSrY7SWfNZcXlNxWJRS6tFSZKdTstLebIsZxDaSKXT5352xC0XfR+OpBkiPkt2PySpHuV5phJMsDJN0kCbP1Yw4DL6/XDc6Eo0wW3YI8v7YbgkplX3mmTSMmZOpmrPpEDiRQM6QeEgTdLqM6Pznvzs7na66nRMJSzbtpTNZmWFQpOD7Q4GMj/HFAsL/OhJXqCKjtcfwxutDEb4BsBF/C0Hb+Yh7vgR0gEAAAAAAACAn7dLEcaJa6cU9SI0SZulC1VKmLDNaRUO4uYfXMevhGPb9vR2InN8qTzNtJfMUcd+UmuVqLGniT6f8eMOlvW/cqVepyfX7QzCOK7rqlmvyUmnlE6bSi/dXk+eK/VanmrVU0lS4+RIzUZT333zjSSp59pK2Sm5Xlfttgml5NKebty8ptevT5TKmrHWNlZVPXyhet3T4eGhJOnq1VWlHEc7VzbM9toNbV3Z1OnR6WA/llfLqjZq+uqrr7S9c8Xsi5WSm86rvLEj9avsrK2vqt7s6je/+VxraybIUyjmlM8X1GqaQNDjJ3vKFgq6e3tbuX5lnFypKLdRleNIp5WKJOno4ETXb1zXQjarvQPT8ur+X/6q/NKKlhdNq6la9UTN7oJOqzWtrJgQz95ZXSsrK0rXO5JnQgKHr/aUSju6evOqMv1UkOfa2lpfVipl9vHee3dlWZY63bYKC6Z6TjabVtqxVMillM70qxe5HS0u5XV83NQPf3kqSbp5x1I1e6qzfXNqswtFNds99VxPt+/cNOvlXKWzmUGLq+A1EXfvzNpaqb9W4Gc/5DVeCSe4/UmfJ6mYFf4ulUqN/D7t2djf4tj8xyvbDKvUhKvxWJYbWtaT51kj4/mVfEbHj96H4DLD8M/o8sHnY8Qoof0aHX/S8b2IJG3Qzj22LAVLFbk9T57rKaLQ0igvVPHGH8/rfynJs825Gpm7FVPvKaqKDgAEELh5+6KOOQEdAAAAAAAAAPj5mPbKDwAAAAAAAAAAAAAAAEBCl6IyTlSVlVmrR0QtF9XCZNJ4ca2i4irvTKqyEddWZnLlh/E5zas6zqRKDnGtXqK+P8/4SfcpyWfBdjq9Xk+2banTbEqS2rWmUrmCOt22Mv1KItXKqeq1po4ODrVQMNVfUumU9nZfaLGYV61eN585jp4/fyH1W1Jtbq3raH9P2YWilvp3yfbmpnq9tlLplLY3liRJ6UxWzY6jre0lVc92JEmL5bLKa2uqnp5Jkh78+FAfffSuikvFQZWaxVJBn336mZaXnimTMtdC1+0qm19QcSGn6pnZp3Qup5ViTs36qSRToafZbOrVq1fa2VyTJH3+6XvK5jNqN6ra2zfjL6WyOnx9rK+/+1ZOylSu+fjePdVbbS1lU9reNlV7zg5SavccvXzxWpK0sryol8+ea7lc1l+++lqS5HY9VY5tFYtF2SlTEWh/70Dv3L2tXs+S2zXn49GP91UuL2t//8js41JJxVJZC8WSCv3zl+pVlSmtqdft6P73DyVJpVJRhZNT5RYWtHNlW5L04uWuisVFpdcX+udd+vLL+1pdWdTSgtmfTCGn0uqSsoWSBqVEPLffxmjsUoq8nt4Ea1DsZPQZ4F/34efGrFVWoir/RK8fbj0V3O6w4lTSNljBfRv9bHIbpiT7Fl8dbbSl1rDN1ujz6U2d10kVv8bnOlsFMF8qnRoU/bEsS7Zjx7egGgwS/fempel/780yNwB/G6h68/NBtRwAAAAAAAAA+Pm4FGGcWV4YBl8oz9K2KmlAJ25bs847qm1KuN1MUuGXrud58XzR9lFvohXYODfis8B+u9Lp6ZmKJRPQaDbryjhp9VompNJutfTy2Wu92H2pzS0TNtl98L2sdEGdRlOb2+uSpNxCWsWFlE6O99Xr9cyW8wWtrBVlWaZ10mnlTDdubmt5dVWNfmDn5PhEpVJR+fyCTqstSVK2tKy256iwuKqPfr0qSaocHqjXaWl5aVGSdOvmLT1+8EA379wZ7OH3PzzRztUrarTq+vJPDyRJn332sbLZjJ4+ea5my2xzdbko16rr26//qsUlEwBaKBVlp1KqNk0rq8ODio4rRyqX8qrWzLyOjo917cqaPvvVp3r52vR6qjU70n5F+XxG5bI5hq16RS8fv9LSijleewcV3bh5XZm0rZRzq39WPBVyea2ulfXg0QtJUqFwXddvbqrX60oyx1B2WnY6NQjjHBwc6u//4xVZtuS2Tbio2WhoaSOl4+O6vP7jZ3VrUws5S7ad1qP7jyRJm8srSqd6qlePJUlOel3Xbl7V6mJKtaPnkqSz45S++eKVdq5ua+fqTTOv1S3ZjhQs+mU7tqyIvj/x16F/r/jrBK/LScXE3MC41iB4J0mO48Ru17R6Cofg/GdP9JaS3X+WLMtO8JyTFGpHZQz31fP8llXh58DsAY7oZ5FkWXag7ZV/PMJBm7cTFrHijnvM5pM+DyPbi9m20pnMcNvD9NFwLp45Iq5/XPz2VsG5et5oAzJ/PSv0mRlgkHLyPE+y+8/4Ke0KAfx8Ebj55QqfW8I5AAAAAAAAAHA5XIowjhQdfJlcoSHwMjOiokJ4rFlflk5aZ1pIJ1xNIRzKCX4X9XvUcuH9PU8YZpZ1kwaVki4/C881r5zD2+h0O8pkMur2wzetaluvD3Z11q828/jRMy0vrahcXlS7eipJcpun6rY7WizllU2bOdqeJyeX1tHpmQ72DiRJn//mUzUaw6hBvdnS/lFNrpfW2akZf2V9Tem0Ja/XUa1tghbFVlPXblyTbE92P7zw7V+/U6m0oM8/+9wMZlvynKzSqbTKa2WzL64nuZ7ev3dbG5tbZq7tuprVIx2dHEtdE6q5deuGMmlHH/36N9rfM9VrtrbWlErZOj0xlXdqtZp63Z5eH55qbcUEdo6Oa8pkC9q6tqE7d29Ikrq9nrK5vJyUJ9s2L/8LpbK2d7LK5E3Fm25pQa4c/Zd//aPkmf3Z3NnS2uaKnIyjbtMc1631kuonFcnrqbhi5n/t6oYJVfSrPq1vrqvTqcmySzqpmLn+5YdnShdX9fLFCzWbDbPfvZZsO69ez9XZqRk/7fTU7LS0uGQCVIu2o6s7phJQtVqTJGULi1rbWlDKsfTq6a6Z/8MfVSqX5dmLcvvX5NbNHeXzBXkRVWLifj+P8C0QDOBIppJTVChn8r1jjQU4/HWmVbqafK/72x7+Pu15Gx9K9JcZXd6fS3iu0c+36P3wKwoFxwquN21uSST9Oydqbm/XbPsYeUxiykbNM2wJ4PIggPO3iXAOAAAAAAAAAFwOlyKME1X5JerlbXC5WVpWve0Xi1EVe5K+vJ1U1Sc4VtJ5BNebZJa2VBcJBE1m5tBqNNRutVUoFWU75rNeu6fmaVWPHzxVt2nCOE7K0vFxRcV8XpL07rv9Si49T19/950kaSmb1Vn1TNtXt+SkzHKnpydKZwu6e/f2oC1SabmsZvPVoILLzSvLsizpcP+xdp+boEf15Lqu7OR0fHik53smoPPo4ff6H/+n/0GyLHVaJiTyd7/5WO1OT6lsWpJULKXUqWf08tkjFfstluzugR7cf6nuzWu6evuO2R8VdPTyhXLZRT14bKrZtDuecoWU1jaWtb5mgjaWLXVbbS0um2DPYqmkbqelVDatRtOck+WTE61srKvRaKlRN/u0WC6p3W6pkCrK6x/r5dVNZfMN1c/M/iyvbWj36VPt3LirYtYER7auXVMh76hTPxhU56n10vrui6+1UMzr87/blCQVFhflup6anVZ/v8uylFalUlHK6QdjNlfUblTUblS1WDTH54dvvtbV69fUdVPa2DHBnqXyov7y3QMVTHEhdepnsjp1HZ3U1O26/WVcZXM5lZaX5fXLf7x4+FedHH2vfHFNqbw5PvvPbC2Wl5UvFpTOmEee5QxbA0nBaz6qOlPQtO/90Ijbb0U3rHQTf8/YgftvfPxJrZ8mtfdL8syxRkqlhPejN3HdfnmVQBup4dynVQ3zlwk/28PTHa+KYyl8jC4axIl+9lkjf4yt4w2/8ivPBKvpxFXQGd/O9O88S8F6OAOD4xgMmYXnEN7MOVtpAfh5IHyDKP51QSgHAAAAAAAAAN6uST1XAAAAAAAAAAAAAAAAAMzgUlTGCQpWd0hS8SBcDWKe7UvinLcyTZLWMhfZXpK5zKOdS7B1VlRbr2lVFaa1u8lmsrJkqX1W02nlRJLUqjZ1tP9ara6lK9evS5Lq9Zr2Xr5SdtFUvHHUley0To+runXtmiSpUqnok7u31O129OTxY0nS6cmxCvmUbt++ooW8uQVax8/15Psf1Wqb1knrmzty0hkdn3Zk9Vs65bN1vXh5quXlZbW6Zrlarap2qyJ1XZ2emoownUZFx6dNWZ75fWEhp063p55nKdUv9bKSyymVXVWxkJHVbUuSmq2GThqe1neu6Dfb75p9sntqt1qqnb6WZCrcLBQXZTt5HR+YajbplNRuV+WkcjrYNxV1Hv74WCeVK+q1Otp79dIsl01pY6Osm7evKZsvmrnWq+p4jrILJbOPOUftVk3Xdxa1tGQ+63ZeqdfKycmktbxk2lnVGi3l82ndfe+2smlTqcRWS57XU6Hf8uq08kqWm1bXlVYXzViffPKRmp2unFRO9398KslU0HEyOTXrTa2vmLZUR0cV9VpncuwNSdKjh7va2F5Vebmos5qpjCSrLbfb0+FeS1babLPZziib25LjHSvjmsoup7uHqh9ktbR1Q62O+WyhXNLq+lq/es3gCjxXy6IoUeuObiv6PvC8cCchM6fwulHbix7PC1XRuXiLuqg5+3OIWj/8edSx8VcZrhv1rIyulhYeM+o5O+3YjJnh1PsVfhzrzWVbz/P3hlnxDUwGwKVBJRzMIni9UCUHAAAAAAAAAN68SxfGCbZAinu5G/dZ1DLhl7ZRL9vPG1CJWz9qm9PaT00LsszSRuo8gtuPe7Eftb/TjudYKxXXk+RoEAqwXMmz1Gy1VDk8kiRlbUtHe0eqnR7r1TPTIqq0tKbl1WUdPn+uSuVAktRtVHW090zLJdNOyet5Ojo6Vam0JK//YvzF7q7yaVfF5RW9emWCKrduXdXR4ZFca0G7u+aztdWylja3tbVzRZLUbjdVr55pbWNV259+IsmEKV683Nfmzpo2ru5IkpxUSumFBXWbXTU6JhzT8RzZ2QXlSiZYkltI69rdFe3v7SmdNvMqFFZ1uP9Iu8+PlC2YMNFRpaEbt64plV1Ur2MCOqfVtvb3XmtjpayuZ9o6ldKrajSa+uKLbyRJn3x8T/nSmnZ3D1WpmOO6Ut5So9HSles3tbxlgkl//e47ffDrf1CzVlWzbZY7POrp8PhIpzUTjPnt5x9oZ2dbzeah8v02VScnbcmrybM9OZaZw4PvH8hJW1pcKujVc7NuoVjU2vq6PvnVB5KkTCalTqulw+OKGl2zvebL53LttFrtntbWTBup8uqqVsqLaraactIm+LS0vKSrO79VvWGCNz/ef6Kbt6+p2+2o0TAhJ8/tyks76rquZKf723S1vLaibGFH+3t7kqTXr5/p6saiGkePdHxsjuvZni2n+64W1815tJ2Uut2uUhnnwvmF4H0w6R63LP+5YAe+8wMdyYN8wbHj5jKbqFBJsiBPlLjnY9T4w2PnB3SC4Uo38HPwc1uu647ML/L5FWrhNCnIOYllWZIluaGA47TWVKOCx3h8v6Y9Y83h8ma+VoNznLTu227tCCAZwjeYF1pXAQAAAAAAAMCbd+nCONL5q7j4QRLzYjY6DON5nrrdrtLp9NzmGTePaSGipC+CzxvEiVovyTbjK9dM3nZUYMB1PTVrNdWOjyVJTtpReX1TnbYJWZweV1Sv1vWXP/9Fa+VlSVI+Z6tSOVO709P/889/kCStra/qo48+ULtxpiffPJAkHZ80tX31tjpdc767Xkp//uax/v7vf6VM//ym0znlljaVzmf0/kcfSZJevNjVWc3VyWlbu89NsGdlZUm3b19XKrsgSfrqy4eyLEu9Xld3Crn+XM+0vJTTYiklWyuSpFazJvUstZquzo6qkqTtG1uqnFSVyZrby/Uc9VoN/Xj/oVaWTABl/eqOrt28Ls8bXq8r9bbSKVvdjlQ9M1Vw9g4Odfv6TR0c7sl/ff79/afa3Czrg1/91hzTbFZKO7Kydd28Y+b19VffqVRaVL5QltM24ZV//Kf/Tq9fH8ixncH1v3HlhqzsgQo1U+nn5X5VX//pG91595ZWr96QJG0uZSXHU7N5Jsc2x+KOs6h8PqUnzw5UOzPn8sOtZXmWo1bLBF7S2bTKK0ta2dhUtVqXJJ1UKsqmXNXrHa2tmmo5+3uvlcvYWt1YldszxyJtWzqp1lQum2Xe//Ad/fD9fTmplO69f0eS1Gj29M13j3RycqJ7796UJK2uldVuNVQ/O9P+q0NzXdollTbfU6Fgq2eb67B5+kKvfvxSB7vmWiqWrylbyKm0sionY6rs+MVokoY0Zq2YFTVsXAguKlgYtW6S50hcSPH8lYCGz5ZJz75EI42s5/88PsfhcuePTk0KCcUd60khxWnbia4I5I1cB0nH92SCOPM41m+qghyAiyN8gzctfI0RzgEAAAAAAACA+XlzfTUAAAAAAAAAAAAAAACAvzGXojLOLP+v/HlUh/CrgiSp9BJeN/jnpPXnUxlicouacGWD0QoL4xUPprXTmmXeg5YvkYv7lTKkdqutytGxMv1ttGotHXWP9PUXf5YkHR8daGNjQ+ViXtVj06aqU0jr2q3b+vd//Vfde+cdSdK7724onZJSa1uynS1J0pVeWkvLBT178lKSlLJsbW5tKbtQ1u4T0zrp89//TpmU1Ol29fDlQ0nSUmlRa+tlFRYcffrp+5KkdC6jo8OqcgsdSdLdd+6o2+6o3akrnelfL46rUnFRtuOoWTPVXyw7rU63p3a7qQePTUstO5fSB5+8r+pZq3+s2ioulvTZZx/p2cNnkqRXT58rfX1buWJZS+VVSVLm5FjH+690dNrV0qKp0HPz+rZ6luRksuo0TQWa5cVFLS+WVVgwVWoqlWOlbOnDD99Vu2kq6rhuR6VSWY+fPNe16+Z4La2W9fLVvl6+fK6TI1M15t7776lWrau8sihJ2tre0ulZXd2eq3/7t68kSesry1pdW1G92daduxuSpIXSoh4+eq7KaVPbO6YN1vLalrrtpnqueax8+cVf9OH7t7W0vKhszsx1ZWNLvU5Ty+t5Wa6pxpPJ55TO5NSqV9Vum+P/+MlL5XIp1aum2tD9+491+9ZtbW4vq3Ji2oEdHteVSjuq1WtqtsyxOTmpqVlrqdtrK581WcNaq62T4wOlnCUVVzbNNWZllFZDjnqSpHa9reO9PT367q/a2NqWJBVXVrS0sS7bsc9RNWbYbsnw72FvbJlpzD0ZvI8DI0RUbpnWziqufdZo1azR7QyfL+Gxw3ObV4WV4fEbrxxjBeY/+kyeNAdvSgWayHUCbRMHM0tQLScoenl35Pdp58yyrP5h7j+zvehtz9YqK3oMAD8tquHgp0T7KgAAAAAAAACYn0sRxknK8zz1eubluWVZsm177CXs+VutDMeY9N1Fx/e5rjto6TJpu+FtBlvWjM4lHLSZyzRjxR4nz5Prmu8O9/b09OFT5dIZLS8vSZJcr6cv//gv2lg14Q+3W9DXX30l25Y2yqaF005hXdWDJ1rK93R1y4Q/Tk6qKhVLyhdzqrfNi+yFhbxevTrU6uq6JOnoqCIrZcntunrnvXuSpOrJkbrpjDpdVx98+J4kKVco6PD1Kz159Eztlrmetq7vaHlpURnH7EY6bSldXJBnFeT1AxvLizk1W1W162k1+8EYT5JtOZLb1AfvX5EkXbm+I1uOOh0TBmk1TlQoFpQtLmphqShJajYtPXtRkaya7r2XlyT1erZKK+v67v5XOq3WJEnv3r0q10tpY31TT/oBo7WNFT3bfaWFvAm4FBayOqqcKJXN6PD4zBybcllPnr7U2kZZpZIZ//GDByotLuj/++cHKhVM+6c//Ouf9MlH78uR2XHLcnVtZ0NPHj/VQsEEgh48fKJ02tHyyoq6XRNCqhyeqX5yqlb9RI591RwLK6v9vdeSZR4rf/3hud59/yN99e0DNfrBpGJxQdduXNHiUl6dtjmuG9tLsp2Mdh8/0MmJaWd1uL+vj3/1geRkJEm/+4fPVavW5KRSWlgw7cxWNq7Ldhv69ON39Pr1viSpVjvTy5OaFpeL2tw010U601H9tKJW7VB2vw2Z2/V0dnKkW+/cNeu1OvrjFz/oypUtbWyZ+2r/+VM1m3VtXLsmJzV8VCYPY4zetxpcMf56lpIFcvzAS3wgb9Jn4flGPcPCz9HwsCacE24NZeY1r2fi6Nh+yCZ6GX8q/vfBMOKktkvnac0UFWKMbzk1vWVV1LYnnbORMc/xXE/aDhHAT4PwDS4jQjkAAAAAAAAAcHE/qzBOt9sdCeP4FW6C3sbLRtd1L7ytXq+nVCrZ4Y96mTq+bSvwAt2T57myLFtJXvaHq+pMXV6eZJnqDJ7/0lyeup2eTg6PVT89lST9+O13evLkpe6+e0+Zfsol7ThK2x0tFE0o5YcfH+rurR3t71Uk11TGSaXyevn8TNff+Vj1uqmecrpXk51zdPx8T7LNNjPZDfV60u6zF+b3fFa//d1v9PD7B3r42ARXPv30I9XOaiqvlZR2+teO25XnOdq5cVXPnphqNk8ePVHxw3taXlrs72NPkqt0Kq1uz1RrSWcz6nqOatWqanVTgWZlc1UP7r/QrZsbKq+Z8EcqW1Sv21K1apY5OT5Rq9XU7rMDvdcPBG1fK2n36Qutba6r2TTBm8cPn2p1tax337ktyzHHq15v6fD4QJ1mZzCPw8OKVlfKg9DTF3/6Rr/61a/Ubrb16sWL/jKnevHilT7/7GOtLK9IkpaKC8otZPWf/pf/We1+oOnp06fKZBxtXTNBokzK0vrmpp693JfXvyhu3bmtnpvW998/1Mq+qajTa7d15+51be8sanf3WJL0h3/5d7lWT2enJhD0+//w9zqrNdXtpHSlX51nc2tZZycn+r/+j/9XH3z8oSRpNZWT7XaUL5XkyoRv7r67oGyuoGbThHNc19bG+rK6HU8p25zHVrUix5HS6axOz8xy7967LVmumq2uclnzfLBsSy9fHOhod1/lVXMsXE+qnx6r2T+PSysr+vv/+HfK5fJKZcx9uba8rmplTy8f/aidm3ckSXY6Y8qPWF5EmCOqakz/J2/y82JyKC9u3GT39ngFrNEQ3yzBlNE0yJuuqOKFnn3j2x1+Px4gGqznV5Gx3tzfD1HnL/yZH75McqwTBXvOWQWHQA7w0yJ8g5+T4PVKMAcAAAAAAAAAZnNpwzhRLw09zxsJwkQt41ec8Ze5rKKCRJMEW8kk2S/bnnXfZ2gV5rrq9XpyZKnbPx8nhyc6OzrW62cvtL1lKpcslRz97nef69tvv9XB60eSpPXVsjY3FmXbJlhyfbukXEpaLK3qtGYq4xyd2urYJVXrdVUOTdDj3jvvqNPrye11VVgoSJKy2ZTcrjcIBG1d2ZJcT1tXtlRutwf71e02JC2oetZvLaWuSkt5ZbMZ/fDtX8y81ta0++KlsiYLomazrZRj6+XL15JlKtx88OE9LZQW1WhJZ7UTSVKx5arVbuvrb37Uu++ZKiubxbSanbaWVs1xePjwkfb3jnTr7jsqrZiWVLItrWysqlgq6sF90z7r5q0d2XZanmfr9MQEmjLZvNKpmq7dual6wwROiktFdRpNFfLmGvr973+rbqejL/79G3X77W9u3bmtjz/9SMVCVi93TRsvt9PV1s6Wdp/tKpczx/Dq1S09e7ark2MTsjmqNFSvVfTpp5+o0TBzqNda+i//+UstLed05aqpONSotbW7e6y91/tKZ8zxqVRO9Ovf/Vb5Ytbso+vquHKiF89fqNUwAZonTw916+aGNrYaOjk27abcblPbO5taWd1QLmP2sXLaULXa0B//7UtJUiqV0T/+03+tf/mXf1Z5Zc1cO9evqbSYVtp29OEHt8xhTaXkWbaePX2glX71pVR6QemMo2w+q0LBhJxevjzWteu3Va+bIFS9UVMml5e8jkp5c45cecovr+l075meff+dJOnKO+/JyWZkTUxC+O2ooqvZnE+wxVXyME5QdLDlPN5mW6Ootl5/G22VprVkTLo+gJ8eARz8ElAtBwAAAAAAAABmY//UEwAAAAAAAAAAAAAAAAB+KS5lZRy/Ao7Tb897DTUAACAASURBVNXjC7Z18lt+xK0f9XMSk9vFvF1xVXD81jPDb5JXTrBkDRaP2seozyxZMvVn+it2XdUrZ2rU6zp8fSBJevTdv+u999/X+mpOZ4cPJEnFxStqtltaWylq79UrSdLSyjvKLWS1v2cq3qQKKyosFHRwsKd2v0XRYj6t491HerVfUXnZVMvZcFL6w3/+QlsbK7I8U/3l7r07enD/gW69c9PM0+vp9PhMbbetk1NT8aRyfKb337+ug/19ffnH7yVJz3af6/f/8TO9/967KhQWJEn33rsnJ51Vp2XaYp3VWnJyaXmOo1e7Zu61WlOf/fpDldfKalTN/P/8xZ/1/kcf6c9ff6fnu3uSpPWtTdlOTqUlf+x3VTk8USqd0tNHTyRJ9+8/0JWrV7Sz7ero0LR1chxH2XxGy8srOq1WJUnbpU3de/+uHvzwUI5jKuFkslnVaw0tLpoKMbmFkr7/y7da21xVpr8/2VxG129dVeXoVKUl05ppIZ/WyWlV3//4UP/tP/43kqSV1WUtlsv69tsfzH5XqlpZWdYf/+1LnRyZ/cnl8tre2vz/2XvPJjuuBE3vSZ/X+3vLe1gSBD272T0zO6uJHa2kUCi0EQr9TsVGrDqkmB1p1GZ6utl0AEiY8v7WretNen04WYVC4RaqAILbIHGeD6yqrOPPuZnFyBfvy9zCDJmscPvJ5hQipYFlW7he7HI0P8va2horK8KlZmd3C7C4duMaenx01lZ32FJ8UHTyBTGukTOg2x9hmgrHR8KNp9XpoIYOH3xwR/zcGtBpd7l95x1MI7Yvinx0IwGKQuiJM+EMHUzbYH5xjsATnT64v0qlkmH5+jIKDgADB5wgonUsotH67Ta5fAZnNCRZmBRnbnKCciVLIlPk/pdfA1DfP+LWh+9hZ3NoWnw/Oo0fIuZF945xn9WzcUxX+Syfdck508pVoo1eMqbox4pYumgO4yKonndIu6DFy7o8Y1T0Ou7vlz1nzl+7ap/j78En31z8fDq/oqfucbwtXkISyZuHdMSR/Bz5ze6X0h1HIpFIJBKJRCKRSCQSiUQikUiuwBspxlEU5Tkhzsn1l4l3epUXrpfVuegF7FVegr9MucuuKYqCEp35/RXer4vy0TMvZp+2PX7eiiiEoiiEgSjTbDTpNY/QVQUDIV6xowb1nXs4QYZ0Tgg2LD3NF7//HbduLrOwkgBEjNDu9gGDoRBFVKoFIkXh6LjL7oGISvrbX31KJjmPYhcYxtFMtm2iqQGqrqDGx3Y48plfWCASCUj4jkur38M0VKYmhVBlMBhgJFOUq1CuCnGJZmksLs5i6BoffvoRALphMXJc3MAHYHZhBpQANfRo1UUklef6qKpKp3V8OtZb792lWivxt6Uyg44QdjijDkk7SxjviWlZZHMpyuUs2ztivSzTpNloc/PWCnc/vA1A46iJbZrUD+q4rpi3ZRtousb84hyPHq8D8OSrrwkCl1xejF3TDdL5PNkoIpmyxR61+gy6AyzLoFjOAdDttMkXi/zH/+kfCUMxT0VVUVQVyxSDrSxNs7V7SKVW4J13ROxWpzvk4cM1RqMBni/2LZlMUy4X2dvbIJ3LADBRLVKdmoRAiHO66QwH9RYLS3NoBKf70en0mFuYZm93F4DJWgVvFPLnP/4rzWMhopqemcFOmHi9EQD79UMq5SwoKkp8VgvFIkHgoegG7Z4Q8SRTKYJIo91sYVvinMzMV9CAfucYPZ7n7NwUruPS6whhT61WJQCmZ6dYfSwEU3uuSzqxAKqBlcyenrkvf/9nrt+9RXFi+vRMX6gQOcPFIpWz9xTx9Wy5p/WUZ8qdb+oi4d6z16Pn6r3onncV4c75++BZ0c7570X5s2WeLyd+hnH3JFFmnKHbmXlGPLMfJ4liytPu4IrCoov4McWaJ2txum6Aoqhx8NnJATlTflyS11nOPB4uSlc7fZa8RrGSRPI2IsU3krcFGVklkUgkEolEIpFIJBKJRCKRSCSX80aIccaJWi4Suox7yXuW51/qvrwLxKswTmwzzlXisnlddUzi+vm5XTz+Z510ohe2/Ww9UTzwXdr1PQDqG08g8tCtFMOhC0Bh5g67u8fs7e5SnRQvy9PdDaq1MvliEccTIo7vHz7CNmwihNiq3x9SLFQolcvMzs0A8PjhY+6+/y6ZYoFuqw6AYan8+tef4rg+6UwaAFVX0RQdNRQCl+Gwx8LSPK36IQnbEuPKZwlHA6LAZ2JSOLFMTpfQNQ3HcRj0xbh6vQOSaZu9rS0AwrlJHFfBNAyOjoXwZn5xDk3XsKOAG9euAdAdueiGxlGjxcYjUXfp2jwJW8MZCSHJN199y/x8BSM9SW1SzHFieprm0RGddpvaRBUAx7FoHDZJpjJcvy6EMOlsmsAbkkwnWFgQdWuVEr4P9UYsEvICJqoZ/EDnL3/5FoBkwkYhpFop4I7EHn395dck7DSLy7NUKmItfH/E/W/u4Y7EOszOTmOnkqTTBqoihG9+EDI7O8Hy8gy9WBzzzTdfsv5kk8nJGr/89ZJYi84xKDqZTFKMPZ0klcuTy6WJfCHQqdXKqKpBq9liekbMZzQcsP5ok8nJabI5IcZxHRctglRGjHNhMUWoahw3jsnnhbjI6LTQDYVkNkEpns/aw1USCRU7WWR/L3ZtWt/k5s05JqcnURVxNlUlIpWyWVqeEmd67wDbtHCdENM04zVUcQYjTCtgenYi/kSouKMBje0N+m2x/pWZeZK5NMoLU/9OPnOXfe5PPtcXu6ooyngXmHFin6u62fxYXCReHOcaM16AdLX7lKKcW6NXHOvLPC9+aL0XtfcsytP/vopz20tY40gRjkTyakgRjuRtRbrkSCQSiUQikUgkEolEIpFIJBLJxbwRYpyzvMgZ5qKXta+jz5O2XiWmKgiCZ+o/H6syXjT0sv2cH++zLglnbR/O9DPW+GbcxVNLBMIQAl84mWi6gj/os/3wS4atFgDJ4gy7B0001eNoT0Q4lctFSpUyuXKVYU8IKnRNozN00ZSA2qQQM6QyaXxniOsIcUan5xBFkM4kyaWFiKNfzKFaJu1G+zTOKpf3GQxGGLFzzMk6bG3tMjlVA8D1XG7crJJMpQlVIYzQDFBCFwhxR0K0U65k2drcxrZskgkR6+R5HoOhzs0774i2fY9M1sJMmPzP/+v/AECIycgNyGQyKLoQuBiJBMcHTVRVZ+WGEOgkUybD4ZBmU6xDFDok02mUMCT03dOxFooZFEUhiJ19vvnmOyIvwkq2KBZFPJd51GZuYRLfHZBOCXFMJp/nYO+Q+poQm1TKFVAsRs6AQVfEW2WTFu3jNs6gi+efxEjNkEwkCIMh974Rop10Os/8/BRffX0PgF63zWDg0G2r5HLCDabfbTE5VUY3IJ0WY7h+YxFDA2cUEMTtR0S47ginKYQ9CStFOp2mvn9IOi3EUY+frKJgMBiMcF3hzpMrZJicniSRsLnx7nUAtjb38D2PR989BmB+fopMpkKzNSDuDs2wyOSyBL6DGUfYTU9PYiUTbG/vcf97EUv23p1bTEyVSSQzp2fncP+QWq1Mpy3OlzNyQLUhDFFU8VnI5zO4wy4ba3UsS5wT1bIwLYuJiUmOD7bFmrW61KanKU5Px+PS8BwP1HFOXuPEMeMdbeLv4t8/VVSMd8p5/n449h4ZiXvC09avHp30Mi45Z+9vzwuCri48HC/UvKjPM9fGiZUuGf6rPk9epxDnpL2L1uJlnxana3ahy1Dc36l1zkt2IJG8xUgBjkQikC45EolEIpFIJBKJRCKRSCQSiUQynhdZOUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJJKX4I1zxnkRF0WbXBRdNc5RZxxXiYu6rP5JG2EYomnalepd1tc4h4SLIr3EWjzXwamLhPLU+GYsYRgC0Gu0aNaPaTSEg0glZ+IMOwydkF4k3FrczhB32KdWq5K+tiDqBwoJW8dMJPFcYV2iaiH5YoF2z8XOimumoaMpCVRFRAEdHByzf7jH9w8e8u/+7jMA7ITF4c4u2zuHTE0L1xtN1ymVcwwGLjs7Ii7rgw/vkM6kaHe6AOi6zbDfZ2trC90Ue7A4P8Gw36cyu8T0fBxRFHaZLCfpDiNW1x6JukaCWiJDryvccwxTI5UwGPQ91DhSy7BUDrZ3OD622d7eAGB5fpn64QGKbtFui3GkUgaqprO0JNbmV3/zSzQVRv0eu7vCSajfG/HeBzfxPQdnJNxsbt9cIfQhlUuyGzsO7e0fUCwVQAnJ5UU816Dfxh12SCXEGqq4OCO49+XXaPFGu67L/l6dmbkK5TjCaWvriFIxg2Ul6HXEPOsHh5TKRT7/1ScA+I5wmbGTCUxDzLtSWyIMYTTs4Md7GzgwPzdBFEW0W414HCrlUo4//0m47pRrEwwGI7a3trhxUzje5PN50pkshAr9noh52t3ZpNnocff9d+h1BwB0Wh2qlQrJTAaA1fV9QnQO9ut0ux0APvr4AzJ5MBJpAlfMRzVUAs9jemYawxBuPM2jAzrtLr5nsra6C8DhQZ1aNUeuUAbAcRwePdoim+J034ZDD93QaXe6dDrizEVhgGanyGYzZEqx21MySaveoBt/ZmbevYMCBEHEc8Y45xDxSpd/Ps/VGtPOVa9dpf0xPV7Q/lXi9V4t+ujigZ6s2bNje7k+Los7fBN46rZ2eoGTeb7suM8/K85yWUykRCJ5FumII5GMRzrkSCQSiUQikUgkEolEIpFIJBLJs/ykxDgXiVMueoE4LjLqfN2Tcj8EVX1qMHRVIc4JL3r5eekL0TAeP4j4maetEikKKBHKmWibcfUiFALfo3MkhBFbT76ndXRAu3sMQO72DfRElsOdbUxTiD8GI4XZmUlMK4kXx1l98advWLo+zfHWLisrKwBYtkEUDtjc3KVaywMQBCGhF6HHsUKGYaJEKgk7wddffQNAZWqRdDrBzTsFCoUSAJri4jpDilaejz+5A4BpqhAlMC2heAj9IYPeMYVimlwmjhVSwPVDAn9IIi3ELHg6YdjFCCJu3xKxVO1uhzAcEWCL9fIjtJHDoO8SRmJ/85pBrlTBG44o5YWIo9Hq0en0yWZ1Jmri2s7eHpVylfrBoWi73+P2jRsMBgHHx0JIUqqVsBJJgiDEtMW66pbN7uYe2lChVBAilFajw2//5XfMz01hXl8Qa6ZF5LMJXEfEQQ37fVrHDVzHoxvHVNUmSty4ucTUdAFVF+13OiM21zaYnpvCSoh5Fkoqx41jTEOciWQyxYMHT7hxYxGrJNZwc32DXDqN6wV0YsGRmbBIZQr0+z0S8frblonrjkjHa18qZYiCAaZp0OmLcbXaXdZW1+l2B/zd330uxlAu4HvQ7XbZ3xeClsWlOVQ8JqfE/g/6PbrtNlOTZVIrMwA4gx7NI5v+yEczxR4NWl38wCebTdM5FmfY8yM0JcnjR9/TiK8lbBPdTNGJRUnptM7UTI3joyP+9d+EmGh55QbfPXpCPpvlzt3bcT2bdqdL63CbYk2MQ7NsfMVgNBCxZPtPHjF97SaGYTI+Eu6E8FRU8vxH/eTTrD537YfcryLR6yvXf92RTGfbFfeokzmq4wWGQBSFF7XyUv39NXlxjBeAenrt7H/PyEZP610Wv3W+33HPyZOxSBGORDIeKcCRSK7Ob3a/lIIciUQikUgkEolEIpFIJBKJRCLhJybGOS+8OS9keVW3gLM//7UdE36oSw9AxIkjTvTcW/6zbXqjIe36AUe7WxxsrgJQnVnCMGwq1WUARp6N6o1oHzeZnZ8GwLITGJYNioJuCiFGrlRAQcFzPIZDIRLRDRPLtrh+Y4UgENfqjS65dJJcWgg2VlZmUVSdYjFBr3kk+gxG+K5KIZ8jjOtpmoWqeLiuixG73nj+ENtOoLgnL+ddeu0ho8AikxXjspJpJlJF/JGDaYt6kZHAypg8eHSPnV0hmPnlLz8kl0uzsSYcUMqVIpqqkUmnaXWEW4udSKCoKkMFmqstANa3Nvj0w4/407/9hV/9zS8AWJhfoNPqkq4IAVKr22XkdkkmDe68I4RKqg5rD+9z3BQOOQCR51Ct5Wg2Owx6QrxSKGSZnCzRbnXwfbEWISqHBx3W1rcBuHlzma3NHW7cvH4qDEulEwydIZqZRIuFT7NLM/z59/voukUUirZm5mpYpkUUuPH5gFs3lynXSvieuKYREKoKa2tbzM9PAVAsFQhVDcfRCQJxphx3iG2nMC3RXxA45HMZPvhokjAQjjrZdJL79yNKxQqZnBBHtTt9rKROpGaoToj2NTVk7ck2vbZYh5mpSSYmJuh0WzRbrXgMZbxAZW/7gEpFiJeO6g2arR7ZrEUmmRBnrt5hOFijXCmwcm0JgIffr/Lo4QaWJYRKdrLKzNQE2VyOJ4/W4jOQo3CUYbJcRomdoxqH+yRTKSxDI3CEsKqxH5HJ5ejEIpFBZ8jO6hOmV66fivOEm8sPu5+8ioDkdd/DzruovO775FXmeP4eefZZ8DK8ar3X0c7LOQcpZ5yTTkQ5Qmb5Wp4X8fjPP/8kEolACnEkkpdHCnIkEolEIpFIJBKJRCKRSCQSieQNEeOMi8m4rOyLRDnny1+lzXERVyfXFOWsu4zC8w4MEU+dL8b9fjw//IXnGYcI9Yz3RgTKc+4RChEKUeTTPhLuIIcbD9nfO2B+5RZ2SsQiaWaG4ahDIh2vcxRwsFdnfmEaKyHEDV9//YgPP7qNrpuks0JwcvP2IkrkUS6VUVRxrCzbIAwV+n2XyPcBMDUdXdfRLTF3w04QBRFaPo+lijLdgU/9uEMUhuTzQrTz4Ml9EukUrVab2qSIB8rnErhRl0ZDuPoEvkO93iIIVVxHOLjkstdB8fG8AMcTgpBHj59QLWUpVwrMzi8AMOj1UdDZ3xXOLP2ew+HRIR9+9AGBK9x/RoMhqhaRy6W4+4F4wTC/NAOhxvziAkYs7NjePGRt7RG1qV8DMD01SSqRpdXpkIhdcPb36rSafarVEsRr0271WN/cxLBTDIdCAHRtYQbdtvnqq3v4sSDk1u0b5AoZ7uaFq0+pWqI6WYHAI4z3PZFMk9OLeKFHP3bLSdgms/Oz6JrG0pJYQ3QLTdGIopNbgYqVTKJbFmYo3HOmbYMw0li+tkAqkxRHTI1QCHAGPcoVESUW+UO2traYiAU1QRCgaxaoIc5AiH9ajQYr15exzRAzJcQ46dAnYdto2oj9vd14b5MkUzb7e+KsfvvgC65fX2JxcZ5KuQJApVLB912yaQPDEONPJg32D3qYZgLXE+v6wScf0m0P+POf/swdX5yByVqN+uERCwvx2DE4PmryeH2dSrUcj99nNBjw9TcP+Ojj9wCYXVjEskxGzogwPk9rq6tMzy+iqeJMZ8pTDLsNDjbXmFxYjtf15H4y3tXlsnigZ6OYTr6qY0qeb/+p24yQcIBypouXcVU5O86Lrl1VEHK+naf36adzfL6rk/mGL/XMUC4YknLqG/biOn4YnH4/zvnsVe7j4+YvOHHEefrcEUXFWKOnW3npuE/bfqasgqKoPPvMunhcEsnbihTgSCQ/HBlbJZFIJBKJRCKRSCQSiUQikUjedsa9zZVIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCSvwBvhjAOXOy7AeJeby2JSXvQv/cdFcrzI5UH09cOcA847+ry2WJCzBhhx+2EYocZuHZ7rMOx0Odpbp93qA7B/MCSbrRL4IfsHwj3l3oPfohomlbJwvDEo4wYam1uHrFxbBGBpaQ5nFPD7L/7Aex8Ix5BqrYRmpnHdgKPdHQCSqTT7e/vcePcdiOKIqGiEYSj48c9qGOIMhhwe1gniqKRM0qLT6mJaFkpfOKpMzU6gGQae55HNCIee4dBjc3WTTFa4tYwclw8+fR9ds9B0sa6qoqIAjx6t8/33J/FDeW7dvkXo+zQaTQDSuRy93oCV29cBcEcD+v0Wm6vrtDpibYajOa7fWARcctUCANlCCm/kUq2V2FgXEVf/3//7L7x/d4VuR6yzaejopk6tWsJ1hwDMLkwRhiHrq2toiLXI5VPcuLmEbaf44s9fAbC1uc3KjSXuvv8u6mlWjUdtqgqxU04QaTjDPum0iaILfV0YBiiRh6XrGPmsqBaEZLNpPC9A1USMl2pouEMHVRP1DMNAjSIiNAI/jl3qu2TSNuXJ8lObDT8AVUHXQh5+/0SsazXHtZvLbG8Id5t0KkOr2SKdzeB5J+4/bTpdB4WI3QMxxzvvXCe7mGft3gNGA+E2c/36PMVCHjuRA6A36DK/OEO1VsKNnYr2dg8plVMk0glUQzgOTcwtsL17jIZKvSFcda7dXCJpR7x/9+kaqqpBsTLFo8dirJ7r0e32uH1rmdqMcPb50+9+h+/4LC7PY9uJ+PyqNBptDg4PmJ0WrjrlYoZhr02hKD4zuqGSyRXZePSQbEG4+KTzmefuX+Mi8c5GBgle7r5wldgoRVEIf0Ck0dl2XtTH+Tovcv95mftfFF3uJHTl6KjL1kFRxrrh/JiMm9vp96/4mJDxUxLJ1ZCOOBLJ60dGVkkkEolEIpFIJBKJRCKRSCSSt5U3QoyjqupY4ctVeZWYlHF9XNznZWKdq0dTXTTPi4RBZ1/Sn2mF8xEjCk8vhXHMiTMYcnywDUCveUTkh+hmGjshhCT5rEIuk6B1XEdRhdhgZq6EaRlMxFFQKiFWMkWjYWDZIjJKU1U8P+LmzRUSliVG5EccHTfI5bO4IyG8CIMBx8dtBv0Bbl9ESam6je8rDI8OAbB0jaNmjz/+4U/83d//CoB0Lolt7jEzVcZOp+K2YDQcML8wGcesQKtxSLaQIwhFfweHDd5VTKxkghAh2FAiFWc4YHf3iHRGxCJ9/qtfMhp6JKwEUSgWbW9nD0WBOx/fFf15HslECohQtoW4yDR12s0WdsrCVEWMlKHr6IZGp9PDGXQA+O/+w79nb2+X9fUNAGzLJpMzyeczuG4Y71HI1FQJRVXYj2PDatNFdCuLEsH160L4tL+zTxgpNDs9FuZnAEimbDx3hKabp/thmioRYn8B8FzCyCcKFVDVeO01coUc7eM2UWyKpak2lm2gxoKDMAhR1Ah30MWI9zZXLOL6LpE3wHfFeum6hqpo1CYnKFXEWmuGhqpEzMwIAYoXqnz9xQMWF2fJ5sS4JqcnaTY7lMs5UrGoStdUvr//AG/kkC8U4/YNVMOgWBb9TdSKqErEcNRnY/0AgKPDOtWJu0xMT9Pvi/1ot9r0+iNSS1NUJ4VYJggU9nbrZHIFWk2xRz1Do90bsb8r4tkIR3z0ySfs7+1RmagCcOvObVa/32Jubo6H338v9mhiAkVRyGRSJFPibO7t1kllsqjxOrujHnt7dfYP25Q2VsWeZe+crvF5QUsUnRXfjI+xGs+zZZ8X4jx/XxJ3huiVRR2XcZEY6CLB48txMt/ojIZGzFEhejai6ex9ekx3p2UV5RJBzvMRhhdxcfTU099fJBJ6+hzgzFf1zO/jr0+HdWnE2Mnvn+3zfNSZRCKRAhyJ5MdHCnIkEolEIpFIJBKJRCKRSCQSydvIGyHGgTfzX+yfvDx99p3q1V5inne9iaIIz/MwTSGgEO1ezWXi/O/HvRg+e23Q69OuH9E9bmLETinZ/CSH9SP2944pFYXbSOg7HDdGHDWOmZgQwgXTNsnn84Txi2DbMrBSEbu7e+zvCQHNwtI0x0ctZmamCIQOg3vfPGJrd49bt1eYm50GwHOH2KklGkfHJC0hREgnkrTax7SPjwCYnKhSLCS5895NEinhcKObOu9/chdN1+l2hMhiOHS4/+0DKtUSni86vX37GoqVxImFPpaVYGNji2u3bqJptphjMEDXND765A5qLOJRNIVet08qYZ8KJFLpFOVyAW8onFk6rWNMU+HrLx+euohcv3mN4/oRWk9F1cR+VEoVzESKXC5F6tY8AIadI18ucLAjnHL8YEQqkyEII/6v3/wTADdv3mR2bpLJyRq1iVjgYhooYYQfhnS6wlWnedyhVBkwVa2ihsIlKAgtdCsJSuwuRIBpKahmkq3YlaZazpLKpPA9D9T4Y66oKFpEgIqVFEIYVB1dUfEDMe9ICVAUk8ADKyHaN0yTSNXwnQg/HoOh2kCIZSvgCEejgRtiJZNoiiijKhG3bs6zv3VA4Ikytm0IIY8OKVuMK51JcnDYIPR9tEgIq9aerFGeLKGqYgzLy8uk0jpBoJDPCmFP/aBBhEo6YeCNxHTy+RzT00VK1SLxlFCViKnZGbLZApsbvwWg1WzyN7/+lOsrcwB8/Zdv0U0L1VRxA9GnppnMLUxiWxGzscBofW2N+cUVdMMiPoYUSzUePXnCcCj2rDY5QcqyufvxB/RbdQC6xy1ylSKgvFAEKIRmF91jzgsqxpQ4JxwZKyRRlGe0OFcVMJ4v9yL3mZcRRb4sVxXHvJ52L3f/uVxgc/lYnxV2vhrKBcKi58cmhTgSCUgRjkQikUgkEolEIpFIJBKJRCKRSCSSHxf18iISiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEonkKrwxzjhX4b+1e85lkVKXcT6a5cQV56r9Kopyxp3nfPzM0xgSJVIg8mgdNQD44l/+b5L5WWpTU5iG6LPdbtNtDzENlYPdLQB63Q79ns9wOKQXO7GkkhZ7yTSdTguAz37xEXbSoFTJkclkAFAV0DQRndLpCueao+NjZqfKpBMmvUEXgGF3wF++vMfdD28zMSWcdwhVDKNIoZAH4PDgiM1vV3n33SUsPZ53pPPtN/dZuX2TZNqO10Ljzp33CBUfNXaE6XVdevttpudEtNHM3DSjocvBfoMwEjqz0XDA/HwV09RxhWELx0dddnd3GQ06TMxMijmpOgoaX335tajX7/DxJx+QzqUJfOHW0mn32N+vMztfo9Maiul4DTJ5l2K5gG4b8e4oJBI6yEryVQAAIABJREFUk1MiDiyRsHBdH1SVv/nbzwDwvJCIiL29AyqVfDyGHKqm02p2yBWFE0ulVAMtIFcsEQXC/kXTDEZOgOOIPcvlUqDpjAYOUxNiLUxTQyXCtJMosbtMpKgoBMzOz0Ds7GNYCZxuGyshXIkUzSR0RiSnpwlDEQvkBgG6qdFpjzDiaCzD0AgCFW804vFjEeO1fGORduMYQxfrkMmlsNM5Au1YRCMBuUKW3mCIaSZJx05IkT9keWmG+/cfnzoV1Q+O6HQ7VEqluD+DUX/AQaONoYoxhJFDvV4nmTTI5TPxHg2Zm50hnyvjOuIcBmGI1x+QSpv84nOx/r//7R8w7TSuJ/Z2YmaWTqdL83jAzo5wF+q3Omzv7PPhp+8zPSdcj0IMFEIif8jmmvi8aXoCd+gQBWKOBzs7DAY+8zcM7GxWnLndPTKFApo+7h52PoLu/LXx7ivn3bde3O54fkis3/kIvRfFML0Kl8U+xVfjwi/n9zIu4umZ9p/LhXo6ppeNVDz/HHje5ewZn6LT7k8jq07GEfH0ovJ0cM84Ib1wJBKJRLrhSC5jXJSSPDevBxlVJZFIJBKJRCKRSCQSiUQikUjeNt4IMc7rfIH7Y3D+5emLxnrVubyozDjRz/PXFJQ4I2rY79I+OqJ7JKKfFm++j6GlcD0HLxICjuZRi+21J0xMlkilRERRrZLln/75C1auXaN+IOpev3WdZrPJ6voqAPWjNqVCmlQyRTIpRBaPHm0QeiHdTg87IcQy7767iG0ncBwXQhFJNDVXJZlUcQOFZluIdrzhkMDtU2/2TueTL2b49tsHfPbLjwEwNJ2FhSmaB/tUakKUsrO1iR/oFGpVGvv7AExOTjIxVcWyrHjxXQig2aiTiGOYtje2KBbTbG3uk0kL8QeqgeO6DAZDkrYdt7+FqhmUCiLCy6gV8byAhKVRnp0S1wydiVoVNTLQdLGuX339LZ9+egt/ZBLGEUuGkSCTtKiWhMim2WywsbpBuTZBMimEJF999S3v3b3NzMwUZhzXFEU+UaRQLKYJfTFWZzBgbX1XxFx5Yg3T6TK6FmKkhQBFt5MkDAM7IUQrAIE/InAdIneIpok+FVUl9F1GwyZGLL4xLQvdMjEt++SgEUQage/i+yLnSVdt/MAhkbIxTTFWVVUwdQ3fTpDKC+HWYODRbPSpTE0AMBoFRJHKtdvLhH6shFIMwkCl0+6RzwjhjetHRKHHO7dX0GKRUL6QRtd16geibdcZUayU0VSFYSyyKRXF+u7sNlhcnAWg09pl/+CAXn/IZFWIoUZ+QKlWBiU8XevF5Vl2dveItTisr66iaTq3bi2RikVnW2vbFHIJDHz2t7YByOYyJFIJnIFDGArBVyqXwh3l0WOxXeu4hWmn2d484tqtJbEfQZthp0OqkHvJ2KCn4oyn3z8r7jjPs/eKs/ej8WVfNfLppN3LxnPVti67d14mProsyu+q4zhbX+HHFRhx0svp9fBUoPN0fcfMJeJU4CaRSK6GFFS83fwQEchV6srzJZFIJBKJRCKRSCQSiUQikUgkkvO8EWKcH/oC98fmxe4TcPZl+uvUFCkIewTxavbENUbBD3ycfpf9xw8BaLUOKNeWMVInrigGRBGNvWNMTdTbXn9MqVykVKvSbvdOy717exHdStBuCxGHnbSZTU3SaXcASCdtjo6OqVTL1I+EE0sYauhaiG3pTE3l4nnr6FaKdqeHOxSiEc2wyWRS/OsfvuEwdu1pdzr8p//0P3KzWopnaYBm4AynGDpOXE+nNxgyGAYc1IXwIlfIc7B3SLN+wMq1BVHTStGo17n37aEYazrJzvYepqlTKghHElNXSCSSTM/OocbCpFypyOziJE5nyGH9GICZhTlUVWFw4vRzdMxXX33L3FwNwxCii1w+zaA/RDUNFieXAVhYWsDUXSLVQPGFCCkIA7756jtu3RJuKsOhTyphsL+9RSKVBmBlZR5VjRgO2xiW2LcgCPHcHpqmMOgJlcjefp25hQUUTSeVECIXRQVLjdBt0VbgjejsPKAwfQ0/Fr04nQatncegRqRLM/GBsvGcAYoSnAp7evurhFqCTFGUMUydwfE+I1clnRWCHS9qoqChRBqKKtZ10O9iJyzsVIbrN6+Lc3jcYmrWJJMWZykMQnw/xLR0Ai+Kzw5opkoinUYxxLWdzX3KxRzprEEYiDVsHnfwA4VU7J6jqCGlWpF8wcRzxD4e7PXwXIdsNsXmxqZYa6dPJpUllUwwcsQahqrC+uomy8tLbGwI15vf//ZPLC0uk4nFUb/61S/Y2dlBUwPMWKAVKRETc0vkSlUOD/bEHFsOx80uznBIrVYWfY5GTE5PY9pCAHZ42MIfdWk1Dk7bX1iZpbG/TzJ/Vozz8g5bl5V5sYDvpM8fLlr5MXjVeZ7n/P36ZeY4ru4PFeJcVWD0omviF6f/GSvEURTlvJ/S2YqX8HJuPxLJTwUpkHi7+Gu6rlzUtzyDz3KyHtIhRyKRSCSSvy4/9t8o8lkvkUgkEolEIpFIJII3QozzU0e8sD356fW/xFTO/Nf3fXbXH3O0uU6+KgQUM8sf4PoO+ztCMOCOYGKqTK2aYWtdiBSspEUmm6ZZPzodYUCW8sQU/eGITFqIBuyESb/TJxW7riSSCb744i+USkW+/EL8z/ryyiKz09PohkmIEDxEnoOqGWTSBmv7QuCytbPH7ESR2dkq9aM2ANdWFvHcEemaEOM8/PZrNDNPqVYlkRXikmF3hKGZ6EpAGIqXxLqV5Lg95PNf3yURi2MGgxGrD9fQ4lO832kwNT1LMp0gYQlBSK6YJpVKYCcsCIWTUBCGOEOH9Y2N03W9/+0DDMtgZkK44FSqOVLpa6TTqdO9rdfrpNI2x8cdqjXhymJaCbyhw6DTIZkUIo5hr0vgdfBPHIJmK7iDNGztokTCbcZxQ+zAplwp0m7FjjfZLIP+kEyxiG6LsZq2jZ20MQ2VKBQiFC8MwHMIPLGmkdsn9I4ZNNdwB6KtwHVIl6skirP02kKg8y//8mc+/fRD0tkEVkLstxsp+M6QXmNNnLLQJfRHhBjUt+MxZIokbIvQ8xkNm6Jc4BEZRcIgcerGk8+n0W0LfBFvpSoKqm7Qb9VxRmLebhBSKJTZ3tpkekaIi5avzzPo9/ED0BBuOZlsll63R6EgzkQ6U0WzTAIdDFXsf6Gksbd/gG2ZaLHoTDMKPHr4BFXNsbkh1qdUKbOyvEgylTgVGVSrZVQ1ot0TcWO9J4+5/c4tOp0+fhw39eknd/nnf/4jhXyeiSlxLh5884D93QM++8W7hJFYn3/+r39gZWmBalWIcyzDpFwrcut2iUzsjpRMpmnV+0RuALaY41XFOK/PmeXNEd5IznLRvowR01yq43o+8ur561ftXyL56SIFEG8Xb/LLnvNjk2dTIpFIJBLJf2v+Gn9/jOvzTf6bTSKRSCQSiUQikUh+LNS/9gAkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJJKfCz8JZ5zLXCFeR6TIVeuejRD5MaI8TqKpACJFxFMFXkTnqA7A4dYqvh8yijKsbRwB8NEvptE9A9sQ27mzsUanfcDy4iSlchWAXD5LMiXifPxQjHtzp87Kyiz5Yg4rrtvvDzBMDdc5iZpSmZisctw85s57NwGoVnIkEwad7oAvvvgegIX5KaZnErijAfOLcwDsbR+iqAZHRy1WVsQ4ZuaWKBSzKLoFwNzCLFaqSqDoHNcPANhY3WF6fpLF5SyRKtxmPF9hYXEGRdVo9YXTi61HlKo1en0RqbV4fYnGYZPG3hbJjHAkufnuTVzXZTgYoKlxVJIH97+5T3W6hqEJPVoYQj5n4/rCKUUzy+TSadZXN9F0NR7rJHub+wROn+2NjdPx9zp9vnvwPXMrYn3WHq9TqdbQ1fh8+D6Dvks6k6Ncy8V7awAhYQjOSDjo5IomuVKRdquLqQv3lGvX5lB0BfAJRyJerP74d5j00HThbqPYeZLFBRKZGaxcfI4iDUVPoRg6w+Pt+HRpfP31I7LFNLdv347PQEg6nWF9TcQ31aaqpDM5jg72ONxvAVCsjnjv/WWO603cOEpsolLB9UeE7Q4owh3JtNN4joMRr5cfBGhRgJZIoinifCm9AalkhlvvvUsYCGeZTreHYdkYpoGCcNUplHUiFNotMYZ0LkngOwS+T4Bw4hkMu0zPVEkmddyRqDdsN5molFlcmqPX+UqMw+1xcNggP3KZmhQON/lCjmDksLMvPlejQQdN0fj9b//EZx+J2K2+ojMzXeJwf58nj0VcWhRGzC9NoxgWD74VMXGffPY+07UijiPG0Gl3+Nff/5GPPvkENV6LRDKJbuo0j+qUZ6Z4WaLo9UTgnb9nvege9iZFWJ3lonGdv37V8V92Hz//bHidsVUnbT8/VuWF+z2ujvj5bKXnGzjb5kn1p8/P538nkfyUkI4jbw8/5X9VfTL2t/28/mb3y5/0PkokEolE8ibzpv6dcX5c8m8BiUQikUgkEolE8jbwRotxzopszv58vszreGl8Udtn+7+47lODoWcjq16eiOj0HWrgehwf7tI8rKMEoo9ktoAXeHSHbbY21gHIpFPs720TjISAZnq6Rqvdpd3u0R0KoUQ5nyFhp5iZXyDWO/Dw4RMG3QGJdJJEUohjEokkKD5T89MAGJbOjevz+F5Ap9cX8yVgd2efbC5HrGWhUMoRRRHNZo/ihFCEFEtFAm9ItpBl8doCAOlMgTAMCeIoo3RlniiEXrNDoyEED6VKBc20qTcjSmUhxkmlFExD5+uvvqQVl1tcnOP//C+/4X/73/8XADqtNs1Gg48/vsPurhBZNI6a2LbJvW8eUq6KaKxCNkc6nSXwIJUQ7demE+SzGdptEcMURmCn0lRKaRLpJADHjQ5BFDC/PI9mCiFMEAZ0+g6F8iT720Kgk03bKKpCOhcLb9AYjEYUCjmMWIQU+D6eFxCpBlMLQpwROg6aZlEqlVCiOP5LVYhCByWKaO8L4ZMy3IV0nkRVCGo0u4SVqaHqCUZx7NLqw032dveYX5ikcSREW4tLKyQSOroR0W0JAdN//j9+w+e//oTDg0MAhoM2S9dXqB8eMjkhYtBqMyV8L2Rn95hvvrwHwD/+978mCkNarQ7VCbE+iWSWMIwIPDF23/cItAAjmaSQFGWiYoHID/CDgFFfnNfDg2MmJktEisqwKwRHimGyt99iblqIuFRFBxV838FxxOex1+2TzU1y795jlpdnxXnKptl+uEatX+bmzWsAPLj/iI21J0z88penn+WcadFwBkxP10R/6jSKCrdvzlOdqABgWUnSqQRf/OkrEtkiADduzKERsfZkm6WVedFnOommQiqbAqBcK7HojigVcxiGOCf7OztMzU5wvLdLeUr0iapxUUTQs4KNk3vMSdmriVFOrp0Xf5z9Ou7+eXLtxxAbXsS4sb9M/2frv+q4r/p8ucoz56prOO73UQSqqnDyIIiikHF7Pr7t58U4ivL8OJ4fv/paxF4SyV+DN/Vlg+T18nN7WXN2PvIMSyQSiUQi+aH8FP+eODvmn9vfehKJRCKRSCQSiURywhstxnkTnBnOvlA9+X78S9BoTJ1x4z9rTfD0R1E6Iowihq02ALtrq2hKQDZbodURIgU/0IlCnzAIqVYKAHi9YzYeP+TjX/wCgGwmSaRAupAjVxYuIru7dfqjPXIZG8MQgpBCIc/IccgWCyQTopyiKgz6Ln/43Z8A+PXnH1EoFQgTEBvq4Ix87n+3ygcf3iGRFg409XqLarXGwX4TFeHq0ut2sRIm128s0eoIkUj7eJNipYaqiqPntlqYiRSuG+B7wiFmolZGN1S260esPRbuI7du3aDd6pLPZpmZFkKhve095udmcUYeAMVCge31bZ482UBRYveU7R0WFqbRtYhcLgNAq3FEiE/94IjtLeH08umvPmJrYwPHFUKSxWSCTuMALwrpN4RAp1wsMOq2aNaP8OOtTVgaw96IheU5NMpiW0OFvuujWUKc4QwcstkCmUyS0BUCFHQbHwUt9CEQ66WZGqZpEXhDUIL4kIQcr/+F+uoX5EpCJFJY+hVKooKeEj9rqgGKijca0usIoZLruCwuzlIu5xkNxJzCMGBxeZGh67L+UAiHVq4t8snHH+J5TtwWmOk0lUoZ2xJCJUUL2Nup09zbp1YVopSvv35E4+iId967RWw4ROBH+EGInUzE87GJwoBg5OG54vwatonnOehGknRW7Mf7H71DGIY43Q5GJivOtO8zUcsydEaAEFqlMmmePNkk8MXZCaKA3mCAmUzjiiNAKmlRLpb47t4TqlNifTZ3Drm+PAWhx9qTTQAyKZsAhZm5CQCax22ODhvMLMwRxuc3ihQUVSdXKFOLBTrra5vUagUq5SyHe0LAdBAGmIbBrXduAFCbqFEulyAM6Lb2xZnrusyvLOMO2vS7Yo/S+VwstLlcsKEoL3YrOX+fOlv3/PeX3VfPC3bOt/PDOWn3ckeacX2fdye7igjpIi4V1lzwu4tEOi8qc9aB5sWuN2Ovnh/YC373tJ2L1uZ8P0/LSUWO5KfBT/Flg+TVeBtezJyf49tyvqU7jkQikUgkP5yfy98NUpgjkUgkEolEIpFIfq68cWKcy14ony8bRRGqqp7WGecA8ENEPReLb57phZOXo6JsLK2JwrMtPfdCXYniWCpE/I3nDuk0G6x+9wSARCpDtTZDt9vBindqd2ufVMam3+2Qjx1bCqUMi4tTGLoQXaSyabwwYG9rj5k5ERlVyOa4/+19PvjwNkEcD1Qs5nj4/Tr5UhlFGHiw/nid27du8Pd/+2txQQ1oNJo0m8eUi0KI0T7usrgwx/5Bk0FfCAvyOZv1J4+JIoVeT4hq6o0B2XKC9ChgFMcI1Q+b2KkiTx4JkU23c8Q//Md/oFwrUiwLccb+/gGGarO0PM1/XRVrcdRoYmg6/W6PxZVlAHrNJqVCgT/84Y8A3H3vDoEXMLOwTCorBEdOr48zdFFUkyerqwCsLC2hNFuk7QSlqYl438BXTMp5Uc93R/zly++4+/4trKRYfMM28UKd5s42TiygKRYLzM7NYFoGo4GY98jxyZdrjAZCgJTMZNAUB9/3cHyx9palkkwp2Gbq9HyGoUsUOUAAWuy8M2zhj1pkp65TXvhQnIvcNK7r4zlCgRLpEYmkQegHVGKBVrGUR1XAcz1m5yYBGAx6dFtHmHYSXRVn5R/+/jMMW8VKibUf9voEfkAqZaFZ4lrojzAMk1ShQL8rhGKhorG5vs7yXIV+Jhnv5Qbff7fGZ58LUVgUDTATOXRdR9Vi8ZU7wh/1CEcjrIxwDvJ8Bd3SsZJJiMS6hv0Bx60epaIQe7leSIKQiakJEslS3FYbyzQolorsb+8AkFuokauUKZaL9GKXoMXlOa7dWAJ88uU4xytQcAY9TFN8/kzb4Pi4RTJpY2XT4gxEHooaceOd6yRjgZGPQqSBH/qUq8K1xws8iCJGQ+EclcgWiaKIkTMkmRD1ShPTEEYkCxUau0IQlMrdGeug8vx9LDontiE+sy8XmfciYcZV6l4lzumE8wLG50WNpyWvPO6rxhFe5P4z3oVmzNpz5r58LvnpReKdcX2cLX/W4ejlnkkXzfXFApqnz59nx/w0zuqk3tPnlxTjSN50fi4vGyQv5m1/AfOPU+/Lsy6RSCQSieRCfu5/J5zM723/m1AikUgkEolEIpH8PFAvLyKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUiuwhvnjANP3WjGuQeMcx64qN6lESRX5GXauKis73vouv6cu8VJ+Vb9gL31NQzdZKImnExGvo8zGtA8aqCoJ+0EbG5s0agfMD0VxyKpEfe/X8X3hFNKrVblqNGgN3Box7FFShCQsC3u3XtIpSLcYErlNIQeD769z6ef3QWgWMgS4aNowjnFc2H10RqlcgHTFrFFs9fKRKHP9s4Rti0cXKZmZ/n2m1X+7Y//ysyMGP+//w9/TyqbYGdznXxOuJkkkimSSZ1cQcQRaabBo/uPWFpexPGFk0OlWiUCQnfIysoKAKmMTehqTM1PoIZuvKoh7338Dp8lPgGgvrtHv1QgcHr0jkW8kR9EfPPVPSzLohQ7mWi6QnWqRMKyiFQRZ2XYBoVsgowt9sNOpVm5tkIURaRi5xd36DK7OEW3lMbSRL10xkK1LFAU7IzYD90aMewPaB63RJlsnt5gCP6Q0mS8Z0EAioIfDNF0sa6+60HgomsaqiocYhynR3npM6zCNARiT1RV5fCgzsP7wjUok83yyefvY5gmqq7HZ0JDRUE3vdMz+E+/+ScKOZNyuUCvL1xjArdHYdimXBXjMtSI7c0dwkCh03sS1/S4efM6+ew8nifGcNx2Odrf49sHj5maW4rH36ffGXG4twtAvztgY+ePzM7OMr8g1r5QncbQLXynhxfvt9Nv4A10EvkKQSDW30pZvHPnNn7cH4RoOuTzeXqDbnwm8iiKj6lozM0LByhNhVxGZWNti5lZEWdWqpZoNzsUCikmJ2tiRs6I0cjk8aPN+MyVMAyN+998y+13bgKws3dIo17nl7/+jGRSnIFrKxM0Gz1anQ7VinAOUhWFkafw/YMHALxzN0MYevR7Q5yRWOeZZJbWUZ1kKs/Wo78AMH3tFtrJfp25Z41zcHnWYSVCVdTnnFiuer971XviuFimi6KanndiGdcePOsoNp6XaXPcuK4ay3X689PBXVj2RfFYl/V1Pj7q9UaAje/zakhXHMmbyc/9X/5KnkX+C2jB2xJdJaOqJBKJRCJ5OX6ufxOMQ0ZXSSQSiUQikUgkkp8Db6QY54cIaM7WDcPwB714DsMATVN51kDoafzU+XiTs2UET+vppy/dn5byfI/m3jYAa9+v4ToON969y2gohCQHu3s0Oy1uXl8iioULzYNNpiaqlEtZfE+IUtyRx4cffUo+LwQDgT9kZmqKZC7DzvaeKOOOyOUTFEplTCOOXTIMkhmbZDJFrIGgXCqxt7dPOY4HGg0HXL++SDqTI4ynu766ge/5LK8s0ev1ALASNtduLDMcDbl+Yx4A01JRIpiZmcIZCVHF6uo65VoR2zw5egm63S6e67G7JUQcswtVNMNg6Hg0jhoATM2+i2Xq7O8esNUSkUQ3b10jUgKCQAhOsoUsE7MT9Fs91h9viNZTJh98cJMgCEhmxJzarS6uH2FoIYYdv+j3PQqFLIYSC150i3Q2wb/+7t/4/G+E2KfXHVGulCgW80ShiJtqHDeZmFtAI0LRhUBH1xRUBWbnZsR+eB7ZXAai1OnZ0AwdJYqIfA/fF4INzUqgEuF0DzGToi07XWPk+OiuhxKJsQ5GHe59dY/RUIz1nXdv4vs+pm2jxXuroBKGPlEQ0Dk+BKBWyVCuFOj2uqfCkYWleYj6WKo4c5quk0vpOG5IX2wtvV4fhQBFhUwxG++3x8cfv89//i//D4P4vFYqVX756xxmLNAqlUK2dvd58O333PtW9Pf5333OzHQNRU+fRhWZiQxup8HweIe+J0RI3YHD/PwcYbxe+7sNllYWxD6qccUoZNTzcIZN/PgM2HYa13XotDsEsVit2eqztbpN9oPbjAZiUsPBgDBU6LTEz6N+m3IpC0ER3UzE5+sWg4V5iEKcodijzY0tvv/uCXMrS4TxB8JxBniBRhCKeX/z1T001WD5+gxWMiXad3w2Hq7z0S8/xU6KuDen3yOZE7Fip/eMKA65O6OLGCv6IEKJOL2hRP/NdBRPI42i6GzUUfzbKIrj93hmXOPiA59G+r04eupl7+Gves9XzlS7bD3Pi2meEyVdsa2rxG29zLieHUMc36icjaHiOUHos5FVzz/bJJK/Jm/Ty4a3HfmC5cW8LeIciUQikUgkF/M2P/+lgFcikUgkEolEIpH8VHnjxDgvein7Mm3AeEeFq/ajKAqq+myKl2jn6o4L4wcnvgzaRzT39/BG4uVnrlDFdzu0jw/IFoSLyMz0JIoC331zH0MXY1E0g1Q6iTYIGapi+4oFk3ZveOpc4/sqSuRiaBrz80IQ0qgf8PD+YyanpxgOhQDh8aN93vvgHZIpiyerG/G8DaqVEoOecB/Z2ztg6do8qhHhOUKAEgYKk5NTgMLqQ+Gekk5nyBcyvHf3NqXKicBAIYrgYK9JyoonHoS4vR5TsWvJ+sb/z957PVlyHWh+v/Tmelu3vOtqjwYIECAJLMdwVzEbuyGFZkOhCOlPU4Te9KJQbCg0Ic3uzu7OcAw9ARIN0432pry7/t686Y4eTlZ1VXV1owESs03i/F66Kivz5HF58gLnu9+3TRJH7OzvM7MgHXXGk4De9gGm7RNnopc4SUiDhI2NbeqNzN0kjhEi5rDdBeD2Z/f4sx+9T7lR50peupbs7e4SRTH9wZiPfysFIY3mFM2pBrs7HRrTsq8HnV1iYVGtZtdtS4HH8soihZIU8eSLEMchumagW1J4IdIBIoY4iTAyRZNm6PiF0vEmehRPsDyb/kGb4XACQKVRRKQ6Ig2z7W8wkpRx/xCn0CKJ46zdJu2DPpZXxDYdACzT5jvvvkM4kQKUSRSRphphMCHo9+R1UcI4GGIZBj/58c8BuLDSpFKyyeeK5L57PWuTh2UIomgoxzZ1MEwT2xD4phSgVGeqiHiEafsEfTkvDMOi0z3k/feukqayrqbjIIQgzERippaytNAimGrRz+aTISAYBRy0u9h25qo014JcQjjYxEzkM1kvl0mTMfm8FMasrCxg2Ca6MNBNOUakoKExnozZ3NgHwHNHzM7WuXLtIocHbQByfp5Ll5fo9foUi1JMlCsU0Qy4XM4D8PTRU/b3u4RhSJrKfr1z5z7VaoVBb4zryHHb2t2jOT3NwlyLJ0+lyCmX8yn4Ns2GLPv+gw1W15ZwbId+T/brYa9NvlzCyXkUMgHOeDAkV6x8ZSHNqwg4vu7hvfnJAAAgAElEQVTfj855uTDmy91sTnIkVjlPkPOq9/1dOE80+fu8z1cXC50vTjpZr9+DoduZG569lxLbKF5fvs2bDN9G1KaKQqFQKBQKxctRn48lyilHoVAoFAqFQqFQ/CHy2ohxTgpnvqpLwosdar78fievez4CK3MWEEdyiaNNzNMinZNuEaAdO5gILX12SiqddrqHUiDQ3tzEcXJYnhyC9u4+piZIgh6DvnS4efzwIQXfRqQRg6Esv97KowOdww6NLHLn3t0HJEnKVCqdQIrzM5iWzSeffM7yohS9mJbF1Tcus3/QPhY43Hj7Gn6uiGGkzGbxSZaXI00Ew75sw/RsC1MTPLh9n0JNClc0Q+fhwwe0ZmbJ5aXzh26amJZFuVQ4jlPq9gL2dtZpHwypVqXoQbcs7t59RDiR58wuL/LoQQRpyiSQIo7d3R7DfodCMeG7WXyW4+bY3Nji7ffeRGTTdnd3l4cPHnD9+lUAlpYXGI4DXASuL9tYrpfxHYtcIaLfyxxoTJNUi2m2yhxmrjGFQhHdsNENObbbO3tYls6Vq6sYmfBmf2uHz2/dYXp2mivXVgFozdQIxgMe3n/KzKzsw1KtAkmE0KTLSxJNMNOQne0tHFfWy3dTdASHO4+IAylUcfNlSs0VDDPPr37+M9nuXInrN1bQdEFC5tpju3h+zMa6dBL6L//pv/Kv/rs/59LlBZJIikb+6R9+iaknXLu2RLMmx8h1LNJ4iC50en0pYOr026xdXEEcOZTEIUkYk6YpeuYS1Ovs4dopbrGG40vBSTAYkqQx060SmSaIX/zs18xOTxOHsg7lchHXzzMJe4Sh7PtywSEa99le32DpwhoAg24PP+dTaF5i0tsGYNRdZzA08Yr1bN4UiBIL0wAzcyBK0gTdNHEKJZYvyvm19XiTKIwpVusMQ/nM5HMOppXjcLfNQSbQuXfnNu9/8A6ud+TiU2Q0nDAOAsoVKfbZ2thmd3Ob1bV53EzoVioVKZXLkMZUqzJ67c4Xt7m4toRlyz7c3N1mdqFF57DLL38hI6ks2+bi1ctEkwlJLOd552CH+sw8pwR+CHiF9UwIIVejr7j2vUqU1fniFTi9zgEiPeVuc56qSCM9dvt5dul5a+jzbfh9CWaO1vaTa7wmsntp2qnqCyGfBO1EW8426zyx53Pvk+Nfn3cPer5+2rkinONjxx13+j0j+1AAJ94zZ+ognYq0kxZF51TnZLlH77yXVlmh+MZQGw3fLtQmikKhUCgUCsXLUZ+Pz0c55SgUCoVCoVAoFIo/FM7fEVUoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBRfmdfCGeesW8NZF4OTTgTnOdqc/fvR7yf/9lXrcJrfzSZACEEax+yubxIORwA4fglNM44jfjzXpTeIwND5+Oe/AmB9/Qnvv/8+WztdVlcXAahUKnR7QxJsel0ZgbO8soxl6ayvbwDQ6/Xx/Bz1eoP4KDLIcsgVfTY3tnDK0vnDsTR0LSIYjPGzWKckGrP+cIObN+8C8P77b6ORMjM/x/6BdHA52N/jnXffwvZ8WrMzAPzmo0+5fPUCed8mDKVVyuH+AcNRwNrVCySZW0ptSmdxaZ7OYUfeL4mZmqpSrFRwPekaky+V2N/N0e8PSRPp+jAJI1I0DJEQG3IOeL7NpcsXGQxlNNPW5g6VSplhGCBysg7Dbh/yeR4+fIKmy8ireqNGruDh+h5NabJCHMEnH39CL4thWl5ZZG5+ltEowMscklzf5fr1S+TKFSZj2R5dNwhDwThI6fZl+Z3uBvPzTUxLPl6GqYGuMz0/Q3aIsPeUwcEdSPPEcSDrGuTJ45PEEy5lbj+GaWLbPkmSEGRzx7Id1h89JBlLd5sfffAW8WCLvScjjCzOzDdDphplgn6P+QXpLjMaTzDcCp7nsejJ6C3TKVGpltCyyDPSiDRJCaOQcFs672x8cQctgb3P73Pjne/IemmCS2tL7O8eEMayL2ZnmlQrZdqHMjLKzzk0mlUqtQIikXO1N5xQLHisrMyxuyVdcH788cf86Y/+lObCLEZeuj3l/BKT9lP2H/1S9n2uSq62yM7mbeycrLvl1UDzMDAplqpyPBZniCYhQoCVjffO1ib1eplCwSWK5Xy6eu0ScRSRWHICDAcjTMsmXygc9+Hi8gyTSUSv18NxpIPOytIsW5v77AwD5hak69SNG9cYdDsMBnIc//t/82cYtsXBbgc/J+e06/l02n2C8ZhSXbax1zngPFeTF8XqneRVHG5eJRrq1a9/fi0V8qSv7mAjIBUpuv7lrjG/C+fV6/hdQfauOHY7+zpxU8/eO181Yuv0vbRznWherT7asZHSq9b/VaK6vom4MIXiy1Df+v32oL7F/Ltzsg//0J+do/qreaFQKBQKxWn+0N/x3zRn+0d9llAoFAqFQqFQKBSvI6+FGOe5Td6XRLN8lXK+abTj+4lnUSJCPIv8yQ6FoxF7GxtMggQNGV305M4DFpfmGQdyA//Xv/yIyWRCuehgZ7FIU40GX9y9y9LiAocHBwAcHBxQKOQYjMfML94AoFjMEScxy+6yrBcawWiA5zmYuhQbmJaJ5Thce/MKSTTOzhP0Oh0+/fgmb719JWuUhaZZkNVTaBYbOwPyeZ9qU4o6CqU8bs7BsGyiiRT7lEtF4mDMdrfL/XuPAHjnve8wNTvFwc4+9259Kts0O8303DKTiRRn7G6PKJULuK6Gpkthgi4SDC2GNDkW9qRhyPziDIYuI2YAxGEbXdfxczI6KZyE3P78CzzPxHUdAHK5HJqmMx4FeK7s11LRxXZNhv0xcSQFLoZuki8UmZuX4qJytcjB/j6ffvIFH3zwDgDddpepqTqu6x5Hl42GI3Z29rlyfZVgLMcyCjVsLw9C9nMS6RCO8XyHaCSFQ4ODJ7hOkULzKv2eFGT94pe3qM0uYOtQrZePZhlJGhEMB3z081/L8c4b1OolxokUDjVqOTY2emyu92i1pChldXkKw3IYBoJKVR6r58pYuTJMhnglOUdNuwhaejxXhZ6i6Rp5r4ZuyHir2tQiO5ubPP70HpeuDADwi1WGw5hxGOM4co5NTVUIJyleFhHm5XziOMJz8qxevgZA+7BHrztiMOjiejKObWp6li9uPcCyNWqtFgC2U8RuXcYuyt+T4FBGQ7VWSbPKplHIaDwgGIxIhlI4FEY6wiqhaR65QgWAIIjo9ydoIsJ3ZV013aHbHbC9uQfA0uo809MaJBrRRM6JVNOZmp7iwf0H/PLDzwBYnGsRJynFcoWf/VwKhS6srOA4Fl/cfSDnTtnHM4v0uh2KBRmflSuWmZqZxnVc9MyPbDQcIVKOHrVTHEshjsblBVFJZwUhp8rQXiYyOXMuJ+KQxHkCHHF83nMlnThH0yBNBSLNnmVDf17YoQm0cwSOJ88SHImBvp55m6adFrvIYyeEmtrpv51EnHP4PAHLS2Oqjo+dbeeriVxOj+fzbTl5/MXvvaO4xNPXPC+00U78e949FYpvFrXJ8O1BbZB8M5ztV/VMKRQKhULxh496n391lMBXoVAoFAqFQqFQvI68FmKcF/F1xTUv34T+aveSx1/mJCBO/yPkhnQYhnT3pUPI3uOHOLkSaaofi0Rml5YIwgArs0q5cnWNL27d47DT5/LFNQAKxTLtdoft3S2uXpHH8vkymg6ddg8NKYRJEhPPL+Lk5cZ/MgmIJgG//PmvyeelUGVtbRXT1Nja3KTRkMcsx2FjfZNWvcao0wbALNQoNaq88z0pQCmVC7QW5kmS+FiAAnk0DKIwYhJI95EgGGO5Te4/Wsc0ZT/tbm3S7fRpTTUIpHkKg/6E8ShgZe0iALqeYhgaO9t7aJosv1yp8fTxDqluMD3bkPUCRBKRYKBnG/RPHq/z4P5D/uTPvi+vq+dZmJ3m/r2HuL4UklTrde7efUytXqY1VckGSSeapGiaSRTJug6CPhcuzCMyQVCaaJRKVa5cvYjINvZbS/MQxyRpzJGjSa83xnNdPMfFtWS9dKOAYRoksRR+3P78C+Zm8vipQXfjcwDicIK3+D10t0ROk+NYKRe4c/s+l65dwLSloEXEKYPDXcLhHrNNOXcGgxF7WztYWX8NeiPm52d5tL6P7k8D4Bfz5AtVapoGIsjuOSAd67hekSSV44aWkor4WCRmGjmEGXPCMAShCxZWF/if5/4XEPK6Ua+LY6QsLUyxuy8FRrbjYTsahYKsp0hjdF1weLBPO3NxmmpNEU0mmLaLoUsR0sVLS9y7+4ThIMAb9LP6l7AsC8uXc9XJVxFxTJIExwINQzMxBj10P8BEtnE8WKdYyCMmbXJF6UDj5+foHnTY295AJPKeG5u7FMt55hZbWbsNup0+pmngeC4AdddCaAmW5VKplgBIUo3hMKDRcrl27XI2pwe0phv8+Y8+kB0WTUhTg2q1iZ0JbSKh0zs8ZMezmZ2fzcYjJE1TdOMcwclXXPpOrl9nXca+5MpnP6Xi+F9d17Pxf7ng46zgRJ4mSLN5oqOfnErP1fnLqvcyx7SXXHXudc/qe/L+X+4w9Kp8ubPa13XOOSrjpJPQs/fSi8t4/p4v7ruT5T5/nULxTaE2Gb49qE2Rfz5e1NfqeVMoFAqF4vVHva9/d17Wh+ozqUKhUCgUCoVCofjn5uvZDigUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFIrneK2dcc7jVWJZvk6ZmibOcRIQWdzJiWiS5xwozrgTaDqDbpf27i6DjnQMsZwST58eoKGjH7mNEOLaGpomo5MePHxErVZm7eIqURbhpEcpzWaVxZW36RweAlCqlnj88BGHeweUG9JdJkw0on4P3ZCFdw8HBMMRU40Glbp0g8nlLESasLu7T2umedQALMvh4eMt3qjKmKqtzT6NZo1aQ0ZSaUbCJBwTTdJjVxHP89g7PGAYRPQOOgA0mzVuf3aLmdlp+h0ZZdTrjDDQcXyP737/TQCiOMWxEuJQWuXohiAJNYb9Mf2hbHe91eLG21cIQ527t6STjOM4LK+2MGwHw5B2I6sXVmnW6xRLBQDWvAsUCgXK1RLBSDqsWJagUvbZ3N5lcVlGULV324g4Ynd/n3xJxkH5vs/u7gEbmzuyn0tlNA0eP37KzEwNgEtXcmAYaKZ17M7SmHZI4iGmCbqZO5okSHcO2V/zi2WK1Sni3hOisZwT+dnvce/+LoPefa5/R34z53v/4gM6+21M06a7tyv7Kxjw13/111xaWzie72GY4OVztJYuyb7xCpQKOWrLJmEkHUkc10A3TUzDIkmky47llknSmFTXSYWM/yIekyYplpk58YgINEGSxFimrL/tOmiaiaEbJKF0oClUW8RxQH//ACOVYxmOumiGwSiQZbu2jWWb5IsOB4fSeelgfwPTdKjWqhiZ41C322drZ5dqvYzjyeeh0+7QmpvDdmWUVRz1SaMUTQj0LMYtTifYtonhFOkdyrl/OPbIGz5J3CMYSGeqbq9PqdLCcEtgyrmz33nEzPw8RubiFARjwjBh97BLLoszy7s2G1t7JJrH7LR0aCqXS3z++YDxOGCqLl17kiTG8T30WM6JyUij1x3w9MkTbrwl3XOiKKbarFCq1Yhj6WhkGgZCJCD054xIzsZSfRXOur+89NxT12U/6BxHSR2tdwJBgpYtd6djk7TjUhKESBGafvyMyiVSRp89s1oScORwc7J+z63p2pnVOOE8xxbxXJ1AExqcjZRKT6zX57innUy2Emfc0M5zWzv786nrtfOirZ6PmxKCL3UHOh0j9eU8q9d5fXW+s9DLrlEovinUt37/+FHfPH69OG881HOoUCgUCsXrg3ovf/Oc18fqM6tCoVAoFAqFQqH4JvmDE+O8Cq8SO3JyU1LTnt+MfCbQORN3gji9gXymrHA85smdu9iOx+6+FIQ8fbJJoeBTyBfo97oAjIcDDFMjzYbgs89u8aMf/QlxGjO9uADAoD3E9T3SKIYkixUSIXNzszSn6ozHYwBu/uYm169dodORwpi9vQ6GCbVKkUajlrUqwrB0Vi8soelyo3wyiXH9PEsrq+RLUnzz+ecPGY0mtDufAjDdmqZSK2E7Hr4vY5eCSYBIUhzLORYABZMxtuNQqZTo96WoplDO0213MHSd3T0pjJhZmMPJ5fnwZx8BUK24zM3O8+TJOvVMABSMQtJoyN/+l5+ysDAHQLFcQNMdgsH4OC7LdlyaM1W0WIpGXBuicESSarQ7UiDi+TAzW2NzY4fOjhTadNodFlaWyRdsxllMVSJSLNOgNd3M6lXBclyq9TqlshTZuJ6H0AySNMY0s0gqUwcsDDM9FriMBz003UGLpYBKi9okY5MktWhc/FMA+mOd27dv8sEH7+H5UgjTOezx47/7B958Y41+Z0/211SBqxcW2dja4+IVKeyot1q0ewG1low7Mi1bzr9JyJNHDwFYXFnAM23SVJAkWbyYCbpuQyrQsbO5G4IQhJPgeI5jaGjoZKlFxKMQ0xBoWoKexap1DwegCYrVCnYWvXbzt59x7cZbRJGM3Xpy7wG1RompVom5uSwiDHC9HMNRRK4oRVQJGteurgHp8T0fP9nCKxSoHqnXUh1N0xFpiEiz2K04RNd0TDvPaCLn19LqIlGckkbg2HI8crkcpuMyCSOCUZD1zzzVSgndzPrGSHFimCvluXv7DgCPhhNWV1fZ3j3AdeQzY7sGV65e4qNf/RbHWpZj2R1yb3gX0zqKdNKJo4il5XmCkeyLIIyYWljFy/mEEzk30yQhiiLZp8caEe25NedFnLfOnRfD9DLOLwNAkKYQT+SzNR4O6B4e8sWtL+h2paAsjibMz85hWPL5sC2dJA2p1MpYmYgqn/MplItYnk+SyPE4Euqcrcfz9T29/grOi7XSTvTZyTVcO/5VXqed7ttX1Jy8WizWl5dxXNtj/dHLx+l5senvTyTzIhHr6XsqUY7im0VtNPzxozY1/jA4O07q2VQoFAqFQvFtQwl0FAqFQqFQKBQKxTfJH6UY51XIJDenjmhnjiDILCq+xF1Cg/F4BMCTO/dJogS/XmRmXgoeypUa9+8+5Be/+DXXr64BECOoN+o061KAkit4aAgKBR9dkxvgfsHGMA0GvR6tWenqohsGaCFpmHDnlhQNvPGd65TLBbpdKUg4ODjEcnTeemsN25ZCiShKEGnMsD/mcF9upk9iWN/aoJAvMr+2CsB3P/geOxvbzGUimHASksv7lMpVnjx+Kuuac/F8h3b7kOnMZScMI6Z9F9vRuHTtAgCJgKV0jmgS0+tnTiwbe8yvuFy7cU12cRzjlkpMTzcJQ3lOp92hUi7g5sskupyive6AQrHIoweP2N6RoqN3v3cDx4YoE9Ts7R/Qmm7S2T+g3ZaiJ9uuo1l5Fpbn8cvSySRfqePkPRIdNrbWAWg0p6jWCkSZcCVNU9I0xjQ1LFuKkMIoJk0jTNuUAikgSUIc1yYlJo3ktZ39DeLJhJwm6xknAzQNvPIyXkGKUiw/5H/8d/8a03EIJ7LdX3z2GTOtGsm4QyWfuayMA1au3mDlTYNcSdbfMj1qMxaQCbRSiJKQ9ccblDKXINvRgJROu8fOxhYAFy4tI0REksTEmYDpycMNeu0D+n0pGpmEE1ZXpyjk8hy2pdhr0OmysLxKb9ilUqlk49Fm8eIF9CQlSeTzkS9VGAVjqs0qAIViFdsGXRekBFl7InTToVot0m0fyGNByOLyFN2DDuOBdFXKeS5mkrDx+LG8Xz+gMd3CFDGOJ/vG9nKgJYg4oDUlRWciTYj7PXTbp93uZcdMNN3Fc20mYymEKRUqxIlG+0AK5lxHkAoT3TJwfCkkWbu4TByBoUlnJklCEAxAJNy6fV9eazv0ux3yeReAcrlIa66BSHRIpfDkyePHzK5cwPFc/IIs3/F84jDEzcRYJ/ldBCBfLkY8I/IQKSJ9JnwZDftsP1lnZ32H7e1tAD75+Cad7U12DtuUCnkAdg/aNKol6s15AJaWVyjmDPI5i/7eLdnGdMDU2ntcfO9fMhxIcZqfzxEEIYZu4vhyvvrlCrZlo2vGUQegIbKF+nR70jR9zrHmS9soJTlf0i+vUNTvyIuG5qyLzovH8DyBzpedq4Q1itcDtcn/7UFtXvzhosQ5CoVCoVD8t0G9c18vzo6H+nyrUCgUCoVCoVAovi5/EGKc5+M+zt+sPHIYOO/8I86LIkHIWJNTsSmZe4F26l7nb3qOR2PWv5BOMqQW5XodIcBxpIhjPBxzsL3F3FSZ4UAKBBrNJo1GgyCLayqWSxQLLo5loWf1tgyDJBpjmQ7r61JQUSj4CJFgWyatmWkASsU8pmmxuLwk22i4PH74gPEoJBhJ0UW326PeqOC4HpotN/9zpARRg2ajiXskNohiPv/8FjfevArA9EwdNIMkDrhz+7ZsYqrz1lvXqdRa3MlcRErFAotLTQQJk0xccv/WPfJ5j8ZUk4tXVgDY2W7z5OE6q5dXj8dDaCkXLi+RxLJ/UxGhiZjvvHmBw44U1cxMtyCJKZXLfH7nEQB3bj9AiIArN27IOpQKjEd9Op0BaSY2KZQ84khw8+bnvPe99wCYjLo0bRfLcZlfbAEwGgUEE5vdTKhUazSwDI1CIYeeRVKJVHDr01usrK1SKEjhhQYkaYKJwMieplqtyqSzzmDnAQBesYmfa2D71WODI3RNuh1pJiKRopdJMEaEATvDmOU1Oba1qVncfA3NtNGPM84EoJNVizQKEHFMrVZDZHNH1xzCYIxhaKSxFNqkcchoFDAaTCjXpCCkXq9Q9GN2dqVY5rNb63y39ga25ZAa8pzZhRnGQUQcJ0SZCMm0PfrdEZqI0ZHlLy5Oc3jQPRZClatNipWSjHoTsuHtgzZ+qQDRhEkoy7p9+y5vv/s2rflFhkNZj9JkjGm7BFlZ+XKZOIz5/NYd1q7KuTPe2aJSdCkU8qTZM7q316Ved9E1DTuLm3p4fx0nV6dSLmBWs2ipaEwUDWm3pYCtUS0SxjEF32ZtVYpLNEMH3WLZsjGzeKtee8STR5ug6SwuSIGcZWq4FxbY35VlmaaJjolf9EiyvKnL19cIem08z8J25brg+NItRuPl69qr/O1F55znNqM9W/lI05RgOODR7U/ZfCif5c37n7OzsU5nMGavl4nOgh7NisH7b1QZBXLNcvSU8eSAnS3phOVbHcqzefrd9LiNUdhj59Z/ZOPzf2KU6fEc3yIZDxGag1+Wzx9eiem5ObxiFqtXrJMkgvpUEz9z7XI9X8ZdnVjjZfue64VTMV/PnM+exYGdJ095YTTYqSit7J8zkVQvvf4U2gvqfHSrZw5Bz7+/znH/OVM9SM+cf6biL7jnyX/P/qxQ/K6ojYVvF2qj4o+Lk+P5TT/L/2nzt2r+KBQKheJbifq8/PpzNEbqs4pCoVAoFAqFQqH4quj/rSugUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVD8sfBaO+Oc/ab+WdebFznmnIwwedE3/J87qoEQp10FzrtShp3I8lMEcRjz9O5dLKsMgG2bpMCg18f3pduMTspkEtCoNRmOpfOHZRrYtkW3J2N59vYO0bUyaRQRJTkADnYOCaOQVLPZ23kCwA9+8B5xpJEKQZpK14o4DEnTkHuZY8zi8iK2nRKMA8pVGd9jTyKiJGU8HlFuyGgp1/UwnDyuYxNH0t0kiUPeeus6U60pAA47bXzXI5fzef+D7wMwCWI++ug3FIsFLqwsA+AVLFLNwrVdbv1WOujUymVMxyQMR7g56UgyGgV8+KufMD1dkv1gOViWjabBKIso0nWLNA2JRgOKnuzDXNEj6I+Iopg//RPpcJOEIXfuPSSdSGcO27JwXJvK1RqdzFEFAa5t8MMPvouXl45Acc5ic32TxaUZslQqklgQhQnNhozg8fKujMrRBEkWn6UbNotL8yRpjGFJp5Ruv4+fOGBEpJGMPIqCDrrjYxryHKe+iplrSteLbO4EI4Fte6RxxHgg46wMIyVfdtF1QbUhHUP8QhMhItp7bdzM6eXgYJ/9gx7X37guy7dMTFvHTUM6XdmHpqnh2hqabeEXZRSQ0CxyeRs3F2GZdtbXHgMt4Y23GwBcfes6mmEQTUJapVI2D3fptQ9YXl3myI7HzeXZ2d7DdXXSWLoE5Qoug3FInMi5VC4XMG0PRAq6nPfVRhXbcegf7pPPSeedC5fXMBwDYWgEk3E2bgZpMqFWlmUftMdM0pg3v3ONVMiyogmYtoNhWxhZZFejkUczLXrtLq4jy2/NzhEMuySGTpqNm62lmH6Oi5ekY5MmNAbDkHY3YBzIPpyensEtFnEJONiTkVqH+4dYpkGSRFiGvGe1WuWTTz5D12XZ83MzjIZ9DEs/jiA7OOjQnJ7HMKxjJxPdMEmS9Bz3muedSb5KbNXxunjkgfNcYpMgSWXdDzef8NP/8Fdsb+xjO3JORGmOg2HEzsZ95uvyFbGy5FOvWThexGAorxWjMdV5l4/v7Mk2bo+JVv6cxbV3iSM5RoP1vyHHNrvdCdWFHwJg2Q73vrjJ/u4GvVvSPWp3v8eNy3Pomnzebb+AQYqX86hNyzXm0tsfUJ2awy9V8HJyjdT1rI2a9kLvFyHEcVDVs2MvOvlEP71C/z53n5eO0/N/e5mL28m/ZW+0M+8kIWtx6v13XjlH5/5u8WcKxVdFfcP324X6lvAfP0djrJ5thUKhUCh+P6h36h8eJ8dMff5VKBQKhUKhUCgUr8JrJ8Y5tQF5YuPwpcKaE8e1MxEm8IJIESHO7MiKU3ulAnFi0/Xomuz6VCo4xv0B9z/7hOFgTK0q41VSrcSnH3/Gk4cPmZqSAgfP83jrratUayV2dtsAWI6F0HVsS24+VytF8r5LsVLGNGTEC4kgFTGuX6RZlyIRxzUpFAtgwGgsBSejQRc/V6JUrmbnuCwszREFEbYnBQl+ycfQTHL5PDf7WEoAACAASURBVFEkN9NNE3qdA9JSiXZHig08x6VaK7K3vw1AvdFie2OLv//7n/DmjctZfxoUCyXCMOLw4BCAaDdEMw1arSbVihR/dDsdmq0Glm0jhBQOFcsui4tziCySahIHBKMxB4dtyiXZh+Nxn631DWbm5ugPpTCCjXWmZ2aYatUIArnRv9vtcOXKZXI5eb+dnR0a/hRxGuL7sg91Q0MISJMY05Ij2esHbG+sMzdfxfOP+tUmjHQcT4o/DEPnYHcb23bxssgdAbiuQaFcIskEJ3nXwNAT4qhPNJB9ga6RTgJMX8br5CorCN2SyVSpbPdvfv0r1tYuUSmXIIvUunp5hX7vEMNycPJyLHXbJY41XH/CUQRNLpdD022EkHFBqdBI0hTT0kljKf7YXH/KyvIMURJRKEnhgmk7QIyINESmQhqPBuSLNQzrSDgWMwkTHj96yuLirOybnEnLbaKLEXZeCrkApmcask7ZY7SzuYHrutiunHOabdDpdfBc57hfBQapSNnd2adYln3fnGqhoUOSUCzmsjYJ2ZZMNNKYKhKF4HkmpimFXeVSEYHA0HSEMLM26mi6geNXaO/tyHowJpoIImHTnJKiuTDqUSyV2XggRW7FQo5Et/nlhx+xtiLbPeh1efL4CYZu0mzJsTSnGrT3tmk2y9Qa8vke9Acszi/S6UhR1Ycf3sQ0ba5eu0iUiYse3H1KGALJmLm1NVkvTSONYrmmHMcfaecqRc6XBp45Rwh0tBPimyPp12lRo9AE+xuy3R/+7f/LcChYvvoed7+4BcDm/Z+xVOnzvZUWriPniZamlCoWuhZjm/LYO9eKiCRhZ1fe5XHPJd9cwy8UCbpSIJd3U4K+ycReACGf09uffMonN3/DpZmEuZK8tmibDHqHGN6cHB93itXFeXrdfcYD+az9x//zf8d1PfxSnff/4n8AYPHiNQzbBqHJCKuMs5KTUxGEcPwiOBVnJbL3gna6hLP6lqP30tkR+XKhizgu9zxR6clyTgl7TqVkHb+NENrR++3ki+v5ej+L6XoVwdCrtkWheDlqY+HbhdqI+HbxzxldpVAoFAqFQvG6oqKrFAqFQqFQKBQKxavwWohxXuRm8yLxzcv+9uqOEqe2Nc8/4zwBUArdttx0//RnP6VYn6I+0yAc7AKQDAWWJlhZXCDIHFUGgxG2Y5GLcky3pOBk2A8YD4b0ulJQ02jW8HwT07Q52JfCmFq9xt7OHpomMLKRCoIYwxIYuk2jNQ/Ak/v36PcmLKzIjWzTskAX2Lk8k/EIAMeGcRhhOC7ttnSySKKEKIrw8zmePpKb8599+jnXr19leXkGgCjo8fjhA9777ltY9tF0MVnLu3i+zqAvBSGT0KXWatLe38XPxDHBZIKmpUwmMZOsncW8x/s//C7dntys77V7zMy2EGGIY0nhRaFQIpqE3Ln/lLULso2OpaEbBn7Ox3WkOGZvZ5fJpMfWlhTsGKaN7bqMh2N6WfnNZpVJGNIb9HFz0hnn5oc3yeU8uu2AejMTiWgemqXT70hBTb5YQtMNTFMDTYoPDMuAYISIvWMXFJ0xehgxCQ6xi9LNJhr3Ge59TP3SnwBSa2NoMaluEWZCosW5WTwnYjw4YGtDzp12p0OS6qxcuohlS0FLEgbsbO9RLPmMM1elSrVKIYrZ2ZHj2Go2mIRjbMdlakaKZZo0CMOYfq9LtSoFKHE0JBUGJjqaLsfStj1kU2TfJ2mM7bhcunqFzadPAXBzLrV6DUMzmEwy9yLNQFg+mgZpIus1CRLQYubmZD+gWwjPQtcMhn0pQsvlSqQkLF5YYpy5Qg26A1zPAwEbGxsAPH2yTqM1zeqqnIfdw0MePdlh5cIStiPHsTZVQwfC4QChZeNhGGw/3WFja5+lBSmWcUwLreqwtdnBy0RBo2RAPBkShnIVONzZp1ArM10v4rnS/cexLUqFMoNuj49+8WF2zxaOZRAnzxyy4jDkx3/3U0zLzeavQ7Vaot/p0KjL5/3KGxep1SuEoXb8zCMiwnGINK/J1pkv19ycy8vWzFNOLkIw7vf4x7/69wBsbfdYvvQWP/3JP7H94KcA/PCtIvMzVZ6ud6nV5Dws5S10w6Df6aBnDmKVssf2borpyHaXK3Us0yXVDLzsWZvEI8JIpzWzxGE23p3eIZX8hJXpPIYp6xbFOq5lEERbAHz+8D6f71fZHZhcf+MHADTm38YUI8aDQ/76//jfAFhaW+KtH/wrmqtXcVx5z2dr/mnHtG+Ks65tJ+vwIqHos9fS0bil2b/PX6udEQcdXSXPPV2PF9XvvPq+qB0vK0uh+DLUxvy3C7XxoPiLmbfUc69QKBQKxddAvT//eFBuOQqFQqFQKBQKheJlvBZiHDh/w/D3Va5AHG9aakc2FEJwHN3BCWuKzH1EQyNN01M7nkIIdtefsvdkE4B8sU651kQ3TYSQcVCffvgrbNOjWCriZxFIk0mMZZiMR318XwpVckWH0XDC/LyMg7Jsh8kkRKQaTuZmE0cQjCfUmib7+1L08vOff8Sf/PD72LZJEElHlV4/5PBwl+k5KVzQdYjCmH5/wN6W3Ny+cu0yh+0DDK3DzpYUf6RCxzR0fNvi2vVLAMzNtXj86Cm2Ix1KwjDkO+/dwLJdPvlExk+1mlNMgoCV6hx5TW7EO1HMeDhGaDqTQIqQFpYXEUnAnVv3EJGsf6s1zUR36fekY4hmOKRpypONPYpVGYtk2CmFcp7Djz9FrMg2GYaLSFL29vZJYim8sCyPfi/GyOKCGs0cJBG+75EvSteVyWhEEifMzrdIhBRZXLx+hWKhwKA/Io6l64ZhWcRxxP37j+U5l1eoNJqIJGSSCa0My8F2LOJoTBJLkZMYDwgm++RqaySZFUX70U/I12fQ3Xo2/iAmY1w3zYQvUKy4iDhmPJowGMk6+KUWB7v7PHn8lKnZmezaiN2dXTx/he6hjMFy7Ty6npBGR2KvLn6hgNA1oiy6zNRNTEunUikiAike21p/hFNbxrc9dCNrt6Fh6BZkjj26biGSCF03aM1KYY+maWi6ia4JHE+60qRpDFqMppkYhnTVWVpdJIomGEcOJYYunyYBcSQbLjQd3dDRNAsti/EyDZ3+oE+/3cPJHHquXr2I6djEmaAtly+xtOxTyOcQyDZG4wGW5RHFMboux1aImFIlj+Nax04ohikQIsHzzGNhlV+oI+IIN3vWNGHi+zbvvv8eDx88AiCYhOzstJmda6AZ8rooiqlVS4SYjLJoN9v1WF5dIQrlHLdcF9My6fYC6k3ZF9VCHtfP4fgOhi3baNk2w15XRihl/X+86h0vWNnB9MQ6dI5i58j965SLi5ARVUcOKkLA/v42H/7N/02vLUVnFy5/h49v3qS79Rv+7Z9KEVWpaJKmEQtLVfLu0byQTmGWaeLY8iamaeB6Og/Xpchm+cYipmVzsL1N3Ptc9n1/G9tdJMEljKRAbn9nmzfmczTrFp4nxy3N+kDX5f2WZ3PsHcR0xwH/9Ku/kWUVF7hy+S1WV9/APJBz+s6nv2Hr3k0Wrn6ft/7FXwBQm13Gcmz0o3Yfr+36iQ57rgtP9NuzPn5OtJKe8146MVTPNFXniaJO/pw+9/ezFTsWWKEdT4dT70VNvreO3d5eVOILhEIKxe8TtZnw7UJtMihOouKrFAqFQqH4aqh35h8vyi1HoVAoFAqFQqFQnEX/8lMUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFArFq/DaOON8ExzFbmjaCUeBVzTcEUKQpilJkmCaspvGwyF7G1vYnnS3sdwcu5u7NOdmGHSkU0qvO6ZSzSHQ6XZ7AHxx+x7T01N8990b+HnpLDIcjnmy/pjlpQUAojjGcSwm4YRbt+8BsLowxcLiFKmuHccbvfP2mziey2g0JJiEWV117t5/yDvf/x4AqYg5bHeYnmscx/JoukmtnGMwHPH4sYwCsnQNv5BnEk6IA+nqsbW1xzvfe4+DvW0A1h8+5fKbV9nb2iOXueWMe126g4B+o4JhSncT23Pobu/RqFe4f+8BAHt7W1y6tEI4SY7dGP7+H3+F73lcf/MaAO3DPQ51gaUb6NngbG7tYJsmnuthmjYAxXKJ8WCIlgp8TzqLOE6NySSkWpd9amopumGRJBFp1h7Ddgn7AYwFQebOU29U8LwC5WqFJJYOPYZhkitYXL52GYDdzQ08P0f3cAffPXpMBLrhYhg23Y2fAxAcrFOYvYadn6K3c0fWtTaPyF+i25Zj5tkxXr7Jrc/uMTMjY4sMLULDwDRNKjXpoJPLF5mZn+fJ46eEoXR/8QoF1i5dADTK5cyVRoTsPHlKpSndmMrlMpqpk4oULXOI0TULkcbYpoUw5LH5q++SJIJxr4tI5bg9eLjF6oV5DEuOj20VSXRBmqTHfa9pOgiIojGaYWdzDtClC1OauXyYloduGCSpdCoSugVJiK5rVBpVWZZI6He7GJaJlT1Xluth2D6lYplUyHbrhoHl2EyG8rl6cP8JYRxRrV3BzGKqRJISR2NSkfDpb6UTS6XmMTXVJA4T8vmjCDKBabs0WyVEIssfDXu09w4p1aQzlaFr9Lsj4qRHvSZdlfb3D5mZn8EyIxwra7emo+k6wWjAr//hMwAWF5eoN1sMh9IhhiQgl89TLAjG43F2nYZumTg5HU3I+dvvdvALuayPT8cDnY2t0k78De2Z24n2zDKFY45/FoB2/GvvYJcf/9W/Z3gwYu26jFD79NZn3Lr5Y/6nHzWZqsp5EkYpSQK1us0kkGtMFKU83RmzPOtBNr5hlGLpMNOScWArq0vkfBtDs+l2pfOO55mIQh3h+gx7ct0xtBHBZMSjrQnXLkg3rJxrIEREms3LNNEolwS6pfH9q/J+95/c5re/3MMwfsSF1Qty7pg/oHPwhF/++J/41T/8HQDX336X7/zwL5hZvQKAk/N5uRXOM7STjkTH3XnCVeYF1wkhjt2JXlSmLOf5Ek7HV51zhxPubNoJF5yvEil18txXiX9U7jmKr4L6Zu+3C/UtX8WLODk3vs66oOaWQqFQKBSKPxZUdJVCoVAoFAqFQqE44rUR43zVTcDzYjfOLSPbANXEy3NJjqJcTsaQ6LqOrutMRnJDff3+I2w7x2Aof2cYEMURnd1dugd7AMzNzuLn8+RyLoUsKgmRMjs3jZdz6BweyLLWd5mdnz7ejL/9+R0WF5t4Xp75ORkPlC+W0CwX4oS5uVkAoihB002qtRl6Pbnhvb15yHfffRcti+BBi7EtgzSKCEMpCJmYJv3+EM/P8eY73wHg3q27lEplhv0R7Sy2Znqmzs2PfsVUS8YkXX/zEkEUIkRKoSDFDeVqCWv3AFvX6GTXFcplinmXNJmwmEVLRZOEYDTmyo2LhJkoIY4Sms0ajbrchG/Wfb64s47n2uRysi96w4RqtcbSYsRgJKNtynGOrd19giAmTbuyrxfmqbcaiFiKbIQOmg626SJSKSwwHRfbNuketjGPlA1xQpqE6LrANLVsrE3CSR/PkX1YqdcwHA8vV8R1M1GKacEkRhAxyuaAmauSq60Sjg7Rs/ih/Oy73L2/x28++gkA/+4v/y2aaTG/0EREcjyE0BiPx0Sphe3LdnvFAo5jk8/l0LK4NNKU0SggGA6oVKUYx3I8ZpaXjgU7h70evmuSxhq+L8coZiJFXJGBlmTimGDEeDQg5/kkWRzQ3PLscYyTHJ8RSTTh/r11qjV5v2qjybg/IV/KH58HBuimfFyyWKooniDSFMOyZH9pkKKh67qMtUI+joNRiOvamDkZEfXJzTssLyzh5WxsTwptet0xk26HYiaomZqq4+VckjjAMLysfB2Eie06uK4cb8exSKOYfq+Hl4m27t59QLlcojVdJ8nEHp/fesRsq4ojq0qSpui6iWNZmHYmACvmaLe7lMsuxXpZjlEMxUoZJwi4di3r11SjVCmQxEE2ZgajQRfdMKnUpPiqVK0Sjgfki2UcW9ZhYhsYtpn1SybCecEydfb48flHa152XCM9FvIITZBECXdufgzAb372d1SKdQqLszxZl2K7T3/zS/7kjTwzDZMoltcNBgHz83mECDH1bNwM8F0doQmGgZybTzdHjAM4jKTQKpfPkYYBU3NNzLa8bjjWCdIyJT9PpSrPy/sus82Y+SkbJxOB6ZqGppkk2Tqsaxp5X8O0LSp5ObYX5jw+vT/itz/5K7aevAnAG2+8SaE2R6q56BPZpq17H3Hv5s+5/v6/AeDP/vJ/xS+Unq2PIBeLM/168ueTwhrtZHSU/mLhjZCBUs8fP/WuehYZ9gydl6pET8STiaN1Ae34Xifffyfrdd5c0rIrBedHaZ1XZ4XiZSghzrcLtZGgeFX+YuYttT4oFAqFQqFQIP+bSX2OVigUCoVCoVAovr28FmKckw4PL9oEfNHfT7oKvODC36luSRyzeV861eiaxSSF4ViKPxr1MhW7SK9zSL0hXUp+8YsPWV1boZarHjtIXL1+BV2HYDwkl5MCnblZm3zRx/Hkxv/K2hKddpcgHJLPyY1iP++g6Rq6ZhCMpWrgo99+ypvfuUSaQBLL8ofDIWtrqxzu7QIwO98iCALu3t6HbPO2NTPF/fuP6PUHXL/xBgCrawvkch4CnTCSm+d532VpdQUzu07XYRKM0U2Ngi/r5bo6M7NNJqMhpZJsz2G7y28+vMniwgxLa4vH9UpiwWhnj86+FCtduLCElysgNFl3L1fi8nUPQxPomVPKSrlKEkbMzdWx3Ux4YejMLS7QbR8SZ0IbxwoJhm0cVzoVmaZGHKVg6ZiZk8mo38W2bVzXwnGOBDo2up5gWB5JHMlxjsJMECDPyecsDJHi+TZBT/arEdrouks83MfS5Hj4BZ/x4QN0Xceprsq6aiZLSzM0a38u7+flESTEUUoSynaPhgPGo5BxrLO8ugRALm/T64+Znp/CcZ2jGUipnEdLI5zMEcZyHAQmk4l0XhJCMOgHPH20zfUb0g3Eti2ScIJOfCyOiUPI+WV0U0doUhDiORqaEMcSgjSRkoKFxSVGI1m+joFuRMRBmzDMREiGg+kXcL0CkClayFw3tKOypFNPmqbHwgGBoDU9RafTwbKlGKdQyJOKCWgOwUCKr5JJiJammIasZ75U4HD/AMdx0HQ5TwzDJIlCTFvnwuq8nHPjmMkkpN4sIpCuLq3pGiDY3dxBGPLa27fusbed57335P8Q0Q2NcRBRqdbY2JKijsX5FoftDVwnfyxUiaMUy7IRKeQLcjwmo4DJoEs5E0tpIs+wHzAJg2P3Ki9fxLZtTMfH8WS7w83H5IsFfh+6h1MuORlaqtM52OVv/5//C4CZxRV0p0YYTPi7v/3/AKjnDpifqWNZKdnUJ583IQlJ44QoEyfaRspMNUGgkcum5nTD4qe/jfnue+8DMNWaojrVJAl2SYN9eZKVR3cbYJiMs7nfH4bopkE+b6MbR41PEXDsQoZuEg1jNBL22nLO1csON1ZcavmAf/z4lwD81+1HrKyuUazOkZ+6CoBj32DU2eDmP/wHAHKFMj/413+JkwnVfpd+fdm7RuPZu+ikc82XlflVeHbd17z+RB2/ZhEKBaBEON9G1AaC4qvyuzrlKBQKhULxx8br+D78up/xXse2vM4opxyFQqFQKBQKheLby2shxoEv2eQ8+c3/l4h2joQ5X+db/UeOAievTAXsrj8lyKJyhpFBGEZUSnLTPYwSBt1DDve3ac20AGjUa0xGIwzdPHbQMU1BqVbCiGy8zPnj7t2b1OIKrZZ0wSkUC+R8n35nB9P0jxpEHCXEicDNHELefucGfs6n3+1gZw4blp6yufmQekM60gyGgsl4jK7pGFmskOm4TE9PE8fr3Ll9F4ClpRn+83/+O9bW1rh+Tca+HO63KdUa9HpSiOH6Jo6To5A3eZiJkmq1mGKxxMFBj/v37gPwzrs3+OBPv4dt6fiudHrZeLLBaDhk7eIq003piuH7HoeHfdrtDgAXLq7QH4xoNJrAUUSRjtAjbM9l4+kOAJMgYHZxDlMXJNn45isNtp8+ZXdPCjjq9RLFUgEQxGFfjtH4EMOo4fn+cZxSmsZopCThEN3ys2MRSWoeT4DJJCAVPXTDQrek2CeOO3j5Kv3NdYKO7EPHWyIYdPCLDTRTjpEOeI6P48jHS7ddRDqhfbBPEklxhmFEBEFMZxCQJnPymK5zuH9AsZCjkCkedMMkCkOErmFm5aUiQaQpuVx2P8NFBww9QdOy6DLNZhJEeJ6Nrst54uRqiDQhDmMGHdn/cRLRnJklDeV1aZKgYWFZglJFCswQCa7ro+kaviPn/mTQprt1j0M9//+z92ZNklznmeZzfPfw2Jfcl6rKWlFVxEZAIiVSK6luSTPWsu4/MH9o/kJfzZjNXMyYaWZ6pOm2FkWJoiQCIAFiqX3LfYnI2MP3MxfHMyurUACKEkWCwHlotEp4engc/87n7pl53nhfKg3l2uQFDgZZUQHI8gzDsMgyEIUTD1mKsAS1eh1ZiNUWl5YY9nvYUXzqQlWrVYmTBKOI2Jr1+4TTCVmeIwvVSFByVdxWLkhzUcxRiuf5GEJFzAFYpsPB/jH/+OP3WFpW5zTXqXPp4iWm07DoyzK1RpkoCun3VG2qpRKubeEELm5Rw3FvxOajLYKSS1iI8uIowjIERwfK9arfGxLNJpy7uE612ShKmBDU24zHIYiiN8Mp5WqtcFRRfFbU0addW+SzOxvFtjNEkxn/z//2v4Ol5sy0WgwHI+599A5rdXWOb92oUXJSwMG2VL0aVYM8y8nynDuPVPTWUsekU7fJ4LT+3b5kZ1zlZnu5OL5DEk5JBjuQq2vS8WpEQJymrK6p/T6pt+hPe0wTgV8IxWxTOROJQuRmCAOv5CHDKdNI1dktu+RJRhBY/MUfLgLw/r0xt269R+7v8Id//D+qcdgOfn2ZakNdo3//f/1nZA6//Sf/A37hREbhkiM4+3wRPB8k9bzYUxifL/58UczVme8CRuGO88yT5mn81JmJPh0XOfLMGJ9+Pz+bYKWOaZifH0OlTvjkzT7zPDWaz0P/4f3rg14o0PyyOOmlF90/dJ9pNBqNRvOr5/Oezb/I60/QvyO8PCe10j8DaTQajUaj0Wg0Xw+MX/cANBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDSarwpfCmecL/pU/me54Dz/9b/2k/1nXy9zycHmNoOjIUFVuddYSczjh4/Ze6gcF6qtJY4OD3jw4AHfDZT7xMrqCuVKQJrn+CXlupJlGVmcsr21Q6mISqkEASLPGQ+U80ScTGi023iOR6lUKcZjMhlPefjoMTdeU9FScRwjkHglj1moXD2uXL9MKXA4OlIOPrYpWJwv84//+HMOe2rbtdllkiTG9Us0vMKNwrb5/r/7I2Sen7pstOc6jMYzolC5UXSPEmxTQurRbhV1cA2EEBim4HoRi+SXPWzLwXJcRgPl/OG5FTY2zmM5JqalnEXyNCOXGa22qpfMEmbjMUmlgmUWzjUyxzAtjDRmOhkU4xhw4dIqQal+GrskDJv5lVX291SMlGULkmhGKkGg4qdcxyqijeSpEwtxgumVkXmKLOK4ZtMRUoBV1GE0GBE4OYaIMYN2cY4r5FmG7TepLKtPsFiOQ5YdUVm+ieGpc8rjEMOySCJVB0EJIWHt3ALTwmUpmkwJoymL9Q52EcUlMdi4vEGa5mCcuFfkBGUfP7ARhtLOCQnSMLEc5Z6TpiEIg2q1iukUUTx5iu/ZCEOQZmouk0hi2yaWZ1OzlFORIQyyNGV3+6CYM48PP/yQt99+A9dXY8jzHJknCNtFFA4xdqlJ1SkxmUyZDI6KvqshHJesqLNhmMgcTNMgy1SvmpZDGk0w3TJZolxwxuMRk1FCveZwf1M5LUVRyp27d7hy+TwAlUpAo9HikzuP6R+r6+9b33qd2Syi1WoSx2oef/LPH3L5yjpH+0dPnaNshzjKuHxplYV55WCVC8nOzi6Li/OqzFKwvblHLmAyUq4uYRjhV+sI04U0LeZtiGHYgKS7r8671Wnw8e27WLaax1q5xMbGVTAE5bKKcfPKNRCCctVjMlCuU6VaC9N2nnNnecE9TBTfP/3WiX/Li+93J8d4759/zNHuJhtXXgdU5N4Pf/BXLAW7XN9QvdOoWiSxRCLJT64Py8LyXIw04pWLhauOMMlkTO84xi/uHx/cCbnx+vfozCu3IWkadI/6yKO7+MV1leQlmu05DLfKOFX1cv0a24fbrC7Yp9FYwhN4liTL1HWbA1K4uEGJ69esYvyhcogxTAYT1U/lksHvfsPmv7/7hA/e+wcArr/yKrVWjVpxjZrme7zzV/8Zx8p560//EwCO437KSU1FSxlFWeVpLaVU9QEQ8ql+9alzzcs9d4R4Ojcvk1J1sq9hfHrnZ9xwChueXzT66kX7/0vjszQazVcP/Uldzb8FOrpKo9FoNJpfH7/M5/Dzr//XOu18HdHRVRqNRqPRaDQazdeDL4UYRy0onixovngx8LMEO2ejq168z2ctlD67/XRBttjcOzzk3kefYLtlytUaALY0uXDpIrNlJUrJYoNo2ufy5Yvcua0inFbXlilXKuztHOC5asHbNA0O9/v4gXMaSOMHPo1GFcdRC9tp5pIbBqNpwu07HwJw4dJF4iTCc2yGPRWBc+/uHS5cWKPuNxgXi/pBuY7r11haqRR1kIiswvWbNznYPywKmFGpVhGGwFYaBQ4OuiwuL9DvDUDUimM5GI5JtarGleWCWsXn8cNtNjeVYGN9Y5Xjoz7vvfsB3/t3v6tqY5gYpMTTmEePtwE47vZYWqljOT5pohbPHa+G708pFZFLtldi9VxAOBmpyCHALhbcMR0uv6LEPuNpjOn42JZAFnFTUqbkWUqnraKAMA3IMowswXGUEErgkOeJWkQX6j2lZZPnCTJ/2gWuVyIOx7z/7gcALC204kjKCwAAIABJREFUGc4c0mRCtleIM+KMeqdDp7PCZKTqGsUzwvExZOK0c/M0wXJQOWcAWUSWxAxHM/Z2egDUKg53bt/mj/78zylXvWL4NrmU7G0fPBVavXIZQ6bIdIZp2E8b9kzUjWGAYVhIx8FA1dBwSwhjRi4lVrHtYHeHeqsKwjo9VpqEmJZDs6l6J88yHEuAkEyKqDLX9UiznJLjnIpxclIQJpVGC5mrseZJxCwcYBbRX7g1uod7tOcXCgGLit0ShgkyOY1QW5yfo+SMGY2HLK+p+KFKtcw18xLVuhKDDPoDZpMZq8vzOKaqtCEsalWLLE9OI+Hu3X/ItVcuU6lU+PiTT1RdTYPr169x4eLyaX2m04y5BYMkyYr5t3B9hw8/+BivpEQ1W3uHpI8f4fol/ELkNNeukOc5D+/dYTpR9bl8ZQ3n2iVu3VZCoukk5f0PjilXyrzaUEIuIQxknpJLCCMlwKtUSiDEp2KR4FN3JyXAev7eJo2ne55EVuWCzdu3AfjJ3/6AazffxnSUIOhHP/wHms4x336jTiNQ7xOlcDyaUa0H5KnatnsYMjfvU7JjiunGlII4hrJvsXegrofYaHHp8iWmU3U+dc8kGu4hxk8IAqcYYguv0gAMDENtq1abfPhwysUlj3bj5B5pImWixDCAZVnkqWAaeZiy6Pssx7YSyr7Lk5GKVYuTkGvnW/yB5fI376hr1/M9LtnXSKTq6eb6t/CtH/LOf/1fqS2cA+D6b32b5xECBE+FOc9NQVFfiTAMpJBPH1WyePa8lChHfoEQ59noKCiitE4fj2efk+JzBTW/qDhVvUxHVWk+H/3H9a8+eiFA86tC95pGo9FoNL96/q1+nn9R9JL+3eHl0dFVGo1Go9FoNBrNV5cvjRjn6ZripxcXz7oXPM/Lf5L/8xcZhRDkUhJP1aL+gw/eY2XtAsK0iAphxHvvfohpOZSDwpEkCul2hywstFlZViKCznyL4XDCeDCmlxTCi1qZ6XTKyuoFKAQIpVJAHI5JCicIKUy2H22xsrxAu6NcS2y3wnA0olpvnI5//dx5Hj3cJL2zycUN5fJx7/ZHuPZ14kzVIssyAhvKZZ+SvwyA45nYbsD29j5PHjwCoNmsk0YzFhbnCCpKgDAdTZmNh1QCtZBdCwzCMGc8HnPh4goAQaVM97DLd777W1RK6nzCKMRyXRzH4+arr6hxxAl5njA6nlEqq1YThiBJMj558ACAm699gyyHOMywCicT0xakYcLxYHQ6a45tITOXVArSZHJ6rBNBB8DR4YBpGHNxY50sVW4whmkiJUiZkSdKxOP4ZaSEcDxleLwDwN1bn9BotClVVO1T6eCW6qSZg7CUQKB7uEdmJsyvdCidGNdkM8LeLcaDXYxhvxh/huWUTsfALCeX8MmHt4gidUb1yjLf+e5vUSq5ZJkal2EYCJGxsjp/xokjRcocKQVp4c6iLDZSyJUgIRcCQU4ejpgl6j395ipSCsJxD7sQQSwuLZDJCBOBjKbFHI3BCjAMdSzyjFdfvayETsU1F8aSne1tzp0Hr6z6wjQ8cpkymyW4rij6tQyGeXpNxtMBJcfBMExEXgw9l7h2QC5gFqnrKg4nNFplwt0ZQaCEPK7jEkWSPFe1N02TWqPMZJxw3FVuSVtbuywt1HFcl0H3GICN9RWEadJo12k1lcDswvkL7O0dUa1WCafqtce9AalwMVBinKDawPVLVMoO06m6JqNZRL2+zE/e+YCL33y9mPCYOx/e59LlJbJM1WcyDdk7GrB6/iIAZd8mihOCUkDJV/eKeDbC9crYtnkq0msvLBX+NuLTd72T/pIv/O4Z4eEZRQgwm4z42//yf6j5cFyEWaK7q4Rj+1vv8vqGREjjVGRT8Q1q1RJpkiIddQ94tBsykyMuLQhM0yiOnmAIiRApXdXmnNu4jmV7OHYx/7aNayf4FRCF8E1YDsIQ5ElMZ14JkzYubXD3VgXHNdjaUffbVEqubLjYRaNkSYTAYTzOsCzVE8PhDMecEc9SSiU1rlq5RMk3ubTqk2dKtPN3P/85thVw9YoS8jmlMkltAX/4Ph/+3V+qnrh+k1Kl+qyA89QBR5zW9fT5UvxjnFr5fNqZ7bOeRc8+u87O2ad56p7z7D5Snoh/ns63lC8W45wd1y8myBEIocU4ms9G/zH9q43+w79Go9FoNBrNV5tfxc/zL3J70b9HvDx/vfMz/XO5RqPRaDQajUbzFcP44l00Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBrNy/AlccZ5+un+s7FTp999QezGydef74xzJnLkxODgzAf/T6OpcokwDcLpmK0HTwBoLazhl8vkWUI4VW4N5UqF7lGP7p6KYVpfW6RWD2i3K7iecrtI4ohKucTS+jL376i4mOWVRaTMME0Hs6h4nk1J8xy/iMSRCJaXV7FdG9NQ77e3t49lmLi2QBaODJ98cgvDMCmX65RrysXlt7+9zGx0TFI4dfQOh9w/3Gfl3BqVagBAFmU4JY9GrYRc7ahtuUCmKePhkN2tLQDmFpawTYt3f6I+uXLp8hqLq6uc2zhHXMTYTKchfilgfrFNFI4AONg7YnFlhRRBXjjXWJaJlDlZnjKbnDgAWbhBiZXVVTUfWMTxjEF/Qpopy43mXId7dx5w5fo1evv76liBjWMZDPojJhMVi1OuVvBKJiVP1abkCfLcIE5THDso5jghiWcYloUwVPF3Hz7EC6psP95hFit3lkp9DsMqUSl5xbFLpImB7QuyuLB1yQX3bt9nYXmRehGflM6G2OU6ltsgHu6q90xNREOeuvaYbglLOFy6cpm93b2iTxJKlTJZEmPaqncMQyIwkTkIkZ22sMxhZ3sP01TOH41agyQNqZTV8Q0pEeRYpQZW4bQkEORZzE/+8V3qRQzWuQtrGDIljWNkrlx2ciRJ2IcTh6ZcYpgWhh2QpmoMk6mgWW9hCAmZ2pbnIXmeIYwchLJZEYbFqD+l1lYOKL5rcbi/jTXu4XhqPtI0w3Y8otkQo3A8cf0Kpm2xvLJMlhduQlLS7tSJQ/Xfg35Io13DdkyazRYAnh+QSxNDgO2qWmxcusjDew/otGok6pToHQ/pdnssrS5ju+o9vUDy4x+/w/f++DtFTw/JcolTKjM4Vj03vziP41u8+eYNSqUiti01mJtvYFsOC0tLAHTmOzTbHWaF25BleUSzlGF/wOOH6n5y8do1MGwmg0PqbXX9CcvlU6FUxc3q6X3qqS/Oya1OFv87a54ipCCTGfc/+ZgoVNffxavf5u6th7zz7o8A+J2rBjcuV7BMiTBVT1u2CWmGMC3s4pp5+/Uak+NDhJEjpZrvOBUcdTN81+Sf7yg3mzf/cI75uTpJcd4YFqaZYBgJVjE4S6YcH/UwhU2Wq3vFeBTRbHZ4tHXIN2+o+1+n6eOaqv/UoQym45Tbj3pcv9YstpWwzCmdFY9eVzk5lQPVfo5h0lJGSCxUUj766Kecv6Ccimb9lM09mA+a9DY/BqC7vUVw5dpn+KU9ra0QovjPM440xbz8S/hiJ7ezkYsn71g44Ihn++RpUtaZ5+JzPYF8dtvZMTzvmqO2a2ccjebriP70rUaj0Wg0Go3ml42OrtJoNBqNRqPRaDSaL6EY5ySm40WLluK5aJCT+KrPWlz8okiQ070ERJMZjz+6jWmrxWEnqJClCVGY4gdlAI57R7TqNR4dq9iXg8Njzp1fw/EC9vaOAFhfX8PzA+I04ubNGwB8/NFHvP7GdQzDOI28cmwb2/LITqKHyLAtj/t3HhFU1MJ/p9PGsiykTDBMJdj45luvMRnHjIdDSkWkj+XYlGpNSoXRUcn3WFho4bgOga+meDAcYUibeqPB7pYSCOwfDLl67SIISa2mFuIf3L/P3Hyb8xfPAVBv1ZGkmKbD9sNHAFy+fA7DdDFMi8lELYoH1Sa3bz0ACavrSmgzt7hIOJ3iexHCUnOTJgmP728zP6fELLt7R/S6e1y9dpX+UC3W265NteoynYw4d0HFbMVxiJQZtufhFxk7tUYdYWSncVCVWgXLPIY0Ij6N/3IY9PqM+gPCUI11OoP5JYNyxcGKlVBFSkAabD5SoqRmp81oMMCwHKpVtcrfWZqj1mzg+z5prOatv3WbIBD4lTr5yVxmQ6KwhyzmzLQDsjymXKuyWCyoO0aqotGSlEJ/gGkK8ixl68kOK2sqEszwTAQmc3Pz2I4SnHQPjvB9mzQpBDvCZNDvEZRL2G5xPlmCaXtcvLLOdE+Jwka7XUwkeSafisJkThbNMCzVc4btI1NI0jF5WsRUDUYY2REiP8LxGmqOvBpuUMPzSphFDNZ4MADLPBPtY9DqzJFMB0jUuCzbIo3GmEiEofo1NTNymZKnIQbuab86nseTbSVwOtw/xjLU6w+7Kv5tNhvhnF9FmlXa8yomznFMms2ALJMkiTr+zvYO1165ShSFVKrqWt4/PMb1y9y5/xiAmzeu4biC7v6Ig57qw6PekFdfvYplmty5/Yma2jQjTQyWFtv0h0qUMhqOmVucp+EqEVKWJNy/fZ84mtIoq3rduX2Hi5fWGR49pr12IkQ7uUOdvW89J0TkRbxIiCjYe/CA9/7mL/F9FV83Gg056O6SjNU5LrQ7yEwSJSlWcQ3lmUQYDjIHaao+94OUwHYwjZSsEG2ZhkGr7bK7H5Ggaljxy2R5huWqe2YcxcwG25SsFGEX/WRZ+GUPQzjEhc6q3qjjWh4Xz9doN8zTeRPk9Kfq/eoVi2og+c6bVfqxOlalbFH3fPI8oT9U17dlu1iGZBqGVCuqDz03JZoN2d58BEB7bp7FpXMw6BJP1b3vaOsBq5evPhM39aIaqzqfEW6e1l18ShD6MlGKJ8+ts9uefd3Z6Kkz25/fJsQzAqEXcyLi+Yzvfkr0yqkA6OXjHzVfB/QfzL+aaAGORqPRaDQaza+Or/PP1C+Krnp+u0ahf0bXaDQazVcFHb2o0Wg0T/mSiHE+azHyc14hJVmWYVnWmdc/K74RiM/Q44in3wfyOGbzzi2yLKPcVCKRaDLCsGz2dw/ozM8BUC2X2dvd5ajbBSBJYf2CAMOk3VYL2TkJk/GAYX+M76tF6tZcB8NysB0H01KLz6ZhEMUpva5a+DeMnHIlwfMkpaACwLA/ozNXx7RspCxENcd7OLaBYUpmkRKXmLbDZBzjFO48wrQ5ODzgYP+Ab/+ueuDNL68QJylxdEyeqNdd3FhhPOwTJyn1plpgX11ZIZWCwVAJjpqtKvEsYjAYsLSqFvlNy2Rzc4tz55ZodlRtLNehWqvS63ZxfDWOybjH5uNdAtdGmuq8W60m51bnqBTuJjkWcwt1/FIZt6TERTKJWF1qUKrUlHNHcU6WcLFdgzxTgqY0GiGxMIt9DMslSY85vP8JrQUl4pnObOJEEMcmtqPqurJQZzwYMBpO6R4OARiPRyRRzHYh/nj9rdfwXBfbEGw9eADA4uoyUTghTSL8ijrHzKgjjQmGaZLFypHEdl1EJuDE3SaLsKwS1bqL7ylRymzUJUky0jzFs0unbWk5Hivn1zGKno3jiHCSc3hwyHJR/3anTZJEiKKmQqomz3OJlCfJc5I8j1lYXuMoGqhaTx4QT3YIo4gkUdfMYDyj7JrkUgkZSoHHdDwDw8QrxD+VwMHIQ5L+gNjwinMsk1bXCNrnEO7JBZZRrVQ5uR7j2QjHLeFUWmSp6rkslxhOBdMyyXPlzmLKDGEYGG6JaKJcVh7cf8C58+eYn1MCl3g6I85yHj+5z/q5eTXWUoknmztMZw8ISkpMRm5w9eoynu9x3Lujah2O6R33MQxBvaHEMZZpYFuSjfNKGBPNxrh+g2azTBQrkY1hwtHhAUcHhwx6qk98v8TScoc4k5CqPrz14RbVZvN0uqfDAY8fbeI6DqvF8c1IksURlmVhGG5Rr8Jx6VM3KPmsSOQzRB7Ps/PoHqPhiPVrrwJw594Tbn30Pr/ziur7taU6pglbuxlRIVZbKVl0Bzmm16AVqP5KpvfIZYrI5enIwiQjjUxuPwzxamvqtStLmHb51M1m1N/FTI+xPRdZnGMYu5RyQU6GVYi2Dro9jkYxO4c5G6uqnw56CY4tOSwcbxxDUKuVcN0ylVz1QD4eYeYpBpIr59W99d7jKW7boVL2OOqq3slzQclzMC01+vZcleOjMbZj4LpqrIc7D4jjk3vmywtP1DPjF3OQEc8LrF7Cze2FPfGZ+z77bv86xHP/ar7u6D+QfzXRfwzRaDQajUaj0fw6eF6Yo3/f0Gg0Go3mq8GLnulakKPRaDSKL6UY53TrC2M0nn79aQeB55Q3UvA0eePsIqfaJytEKY9u/Zw8MyjVGiShWtAdDGZUahbNRp3tB/cBcAyo1kpcKW8A4DoWvgeNZpM0UtFJmTTI0oxKrUylXDhI1MqYwiaOItxCqGJaDkaaMpioaKbFxQ5JbpJkklLhxDMMB8qZIrNJirF6rkWjUabRrDEcKquJeDKj1++ysKjcQUqVMovLTaplCZkSFhzs7XGw38P1bYYztRC/2qiTHByQxQaHh2ocW5t3KJc89g+PAahXmyAT/vq//De+9yffVWOYbzG/OM/efpd2S43VNASubTCbDYmK2Jr5ToPz59eZTWf0u0dFzRM2n2yyUMzB3OI8mXCJo5AkVudoGIJKo41h+4jCSUZkEEdTFaF04iTjuFiGy3Siji0NhyyS5EaLJztKGNPbO6DZniOJU8YjdY7d7pB6vUKaSFotJVQIJzMM2+SN166qGvouUZhQ8n2CSh2A/Z19LAvyPMG01bZJlBC4KeG4jygilgyzhuXVEJYSH+QSRBZhWS5GsW1n75h6NUCIGbIQ6BiOX5y/cXrepjQYjXr85J/+mc7Cn6j6ezazKCMOlYtIrVam2mixs33EeKJEVOvrK2RJgl+u0Fh7o+idt5hODhn0jvn5+/cA+OT+z7ly5RytlopO2jk+5KfvvE+zXqZSUr2zPDclDR9TLpfw60p8NZtWyJIJSTTAqytxhlduIGSCQeG6IiS5zAmnMwxDuZtYlsAwJVmenMZ4iUyQCYHMJVmieufKKxcQ2IRFTNXlq5eUBCLPiGPVv+WyTbs9x2wWEgSFGMfMSeOMu7feZ3FezdH6uRUWltewbchSdU6vvvoqYZJSbagIpKDkE0URnmezs6Ocdzwnx/fLGEg2Ll4AoN8b8ODxLsvzLUpVdfw3V5eJw5DuoYqvu/PJbRA2b3/rbWx1ilRqHkkcUa4tnQqtcor70zPChxyQz2pxnhNdPC/uAMjznO3tPVYvvo5b9JiQKa0gZGNVjXM8jqiUBYGXERWRc7nMOepGZJ5Dra6uo+Nen7sP+rz1jToGRdSaERJlGYcDg1anEO3EIUkSU66pa2huPiBOBWYqSbLo9Bwl0FlYoLunerMceJQrJQ6Oj9neU72yuGgzHaVcPq+ONeiHZHlOltsEntonSzOMSCANg2im7hXVioHnC4TIiMPCCekwpVxZoFGMK44istmQipniryjHqfbCGv2jHu3FRQqToM9EJYcVAk5pFNFP+ekciWeyoV7g6PZ8CtkXv1txqJPIqhcLcZ6Pnype9XSPX1hP83JCWM3XB/2H8a8W+o8fGo1Go9FoNJovE2cX6PTvHhqNRqPR/Gahn90ajUbz8hhfvItGo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqN5Gb4kzjgv/jT+2U/pP++SA2CaJ5YG4nT/s7t92jnn9GjkErYfqvih/uGAoLVElhqYQkXH5DJh68ljWq029x9vAnBubZWVRoPNHRVltLa+ShDYjIcD4li5lFSqAUGzQpZEZJl63yf3NqnVa1RrHlmmHB1SbColhxvXXwHAsS3GkylxGJwqpPzAot8Lmc16zC8oB49SucQskmTRmFsfqhieN7/9W1xaaJBEKjZnb3ufKI5YP7dBOlPbSiWbWj3l1sf3eP21ywC4ZopEMjgeMjevYqPe/vabOKTMCtcVxzOw7CpvvPVNWnPKPSWNQnxH4M41cYrEHWGAZTpcuHgRqV7K8fGI3MjxfPfpFNs2S+fOE46VQ8lseIxpCWzLJitie2y3yiScUrFc4khl/xiWwDJM0jxHClWh46MjAj9g2j9Q9Wos4gR17HjM4RPlUjI4HtCeW6J/vMe9e8rhaGPjHEuLbcqVCnGsHDxms5Sg5DO3qGKMDvePwZAkaUY4VW4tURTh+xXl0CLVuNrtJrPjPaJRF9NTThymYwOSNEmLPgRhmORZeNrH9x9ucv3KBRwLZiPlxJKnFRzfJ4zkaeySYZi02g3+6PvfxS+dxBuZJFHOD//mhwD8/h/9Hq7rMJuNqVRV5NX+3j6727v4lYDLG+sASMPGry8T1FeoLSh3pzd/59s8uPWI7e3NYno6GMEcwfwSu9uqrueu3+DJoyd4hw8Z3flI9Y5r8NY3XyERGfFUjT+qLGD5LaJMueDUmi0cwyNPIw6P9lUfVgJajSq245Emyr3IFBZpErO7tUlZvZQwjimVqqSh6pNH+3tUygHloML/+8P/CsCf/tkf4fsu4SxGFjFYpZJLHA9IhY0s4r8WVtbY3dxk9fwyTqBcYvrbhxxsbXK8plxePLeDYUL/+JBvXDsHwIMH9/jggw+o+B6V11QMXSYlb7z+CnmWkhTWI7Mw5PGDLVbXlUPQxuUNptMY23dxnSKWzvbp7j5kaePy6bVw5u52+tXJPevs/U5K+YWOJf1ul+lgTGdxlbS4Fw26u9w47zLXKdyrzAzTTpC5YDhW94VlGXDufJV+FDCaKHevim9x5VyZnf0E31bv26pZ9CfQC8v82RtvAjC3vESaxhwf7gDQqDj0BiPqFYnM1PWRhjMcQzAeRZxYWs21mwSeR8Ut4RQRczLN6Q1iGnX1SGq0AnIhkKJGPFUxa44IEYaJlBLLKXqsYmEIwfFIst1XY622V3jt9d+j2lb3TJElNJ0DSmaMXVVzNO4+4kf/57usXv8W1976HQD8ck1dqy/ONjydq890t/kiVxnx4vn9oufc07G8TDTWi13mPvcVZ/rr5P21Q45G89VBO+JoNBqNRqPRaL6s6PiKp+g6aDQajebLzL/UCUc/6zUajeZLIsYR4lmDnhctSBrGZ5v4PCvAObP9ZNszh1P/MTg8YPPebQBsv8HukyeUgoDOwjwAy2vL7DzZ5rjXZXVFxT8FQcD9Bw+4eeM6AI5tkMRTkiRkNFHROcfdPksrCwhTUPJV/JDjWqR5hOVU6fWGaptlM0wyqkItRs9mIaPRhGZrjvu3HwJgWbC7e4wpMhxLLW5/fOsheRLRrDdZXFoqxmERTmMMwyqObWBhEE7GDAdqIbs136TVbrC41CQvcllu3d3i6itXqNUavPfe+4CKVFperNNqKdGC6Thkec58p4lTxCiZRgoIjo6GZIUoJQpjJWZZnud4NAJgb3/AaPiIt7/1GpZ7Ep2T0GzUmblqPh3Hw/FcJDnJVAkvPBJswyJNUkxTCXSyFJJ4Chgksdr28U8/ZG75HEh13jUzoxzYdLsDJjM1rnK1Sr+3TxzPqBVxU+VqHWFbRHFEUFFCBa88JI1D+n0lSJhOZ9SbPo8f7lLylTAmzQwmswnlSgXTOInPmhHNhgjDhULIJZHkeYZpe0XL5QhSFVdVxDX94R//AelsTBpPT5s2CUfEUcjWTpf1tZWid1zy3CAIaoi8EC4Y4JgWtUoVgB/+t7/j97/3XS5d3oBiPtJUsLC0QPeoi1lkJaWZxJA5URqxVwjKurs9SpU6O7vvAfDaawv8xX/8c2bTGY5VXHPC5bVvvk299Ab/31/9AIDDgw8ZHB+SHI2oz6nrI4tHYO7SG6jaONdew3UtHCun3VS9g+US9h+TCBu3oYQR0hQgBR/+7CMun1tWc1Qrg2FQrqr5yfMcy3XZfLJNparq+vDhJvv7XZI04xs3Lqme2+pzYWMd0wqJQyU48csOcZLQOzqiXK0V/Trm2tWLzKaqV3e3cg6Pxtx7cI/v//F3iz5psLw04803buB4SgjVWZpjf2ePZqvJ9qMtAO7du8e1K5eYFtFJOztd5ubm6R50WVxQsV7SgmprgVKlhixEZ58nsnhZMYTM1WvvvP8eZd/Esm2iSB3/6GCLV1+zsE11b/J9E0OYdDoGtaY6n3GY4ngWB4cxBztKrPb7b5WplF22949xGmreZjPJ7kEMZg2zeGqMpyGWIXCK+87B3hZxNEXWSuSxupZtERNGEVZ+iFGIJ73AJ88FDx93eeOCEr/lEuabDh8/VPPx2vVVhGHj1xZJx+p+mI5j0lRimwJMVZ/RJCbNBR/em3F7V4nh3v7Wt/ArJcoVdd1GvfuYRg/PcU9jzzK5RzSZ8dO/+UseffBjAK799vfZuPkGbqn8TDTUMzMhJKfJhydz8AVTdfJ9JRZ9saDmeXGOlJ8VGfVFgpxnxTifJ+R6fizPC8A0X2+01exvNvqPHBqNRqPRaDRfLv5k6TX9M/ZnoOOqNBqNRqP5cqGfxxqNRvPL5UshxnkRX7SA+KLv53mOEJ+1iHlmvyzj7ofv45fU4m1nZZ12HBFHMYcHhwAEA4gmU9I4pVqIHnzfpVKuYBRuDoaZ0dsbEaY55zZWAbh/7xFbm1t4gcfFi1cBqDU7zKYTBscD0kJIInPBBx/e4fd+/7cBiMOEaDpGVAMWl5UgaNw/JstCHN/no0+eAOC5kkvXrpFJg5///GMAltaXSLIpH/z0FgDzC/O0GxWklMwvqmMZholp21y4sKiEI8DCQgMhMlzP5dVXlcCoP5xysH+E7ysRxNxCkyzL2dneJShEELWaj2G6SmCSqIX+OArptOvkSUzZV4KTCxcWcZ0VXNdjbfW8qr3IsSwDYZ64ddgYlkEuod5oF3Obk0+n7G0+wkYJHOJ4iu+XmMxicks5XmSU2HmyR/dICZwq1RLXblxkNh5Tr6s56/cOMZ1yS6s8AAAgAElEQVQSrblVDvY/Kmodsr25y2Q0wXSV2GA0OGZhrkK9phbwTXL8oIxhHNMvBE1znRaLy20sC5JEiV6G4xn1uTWSuI8r1HnLrILh5hiFRZCUktywsWyb6VCJDT75+AHXblzBsORpDYVhEYYhy/M1jOK8ZSaIJkN6w9mp09LcwhJZHNFsFi4v/S5pEkHunwpCZtMJtXqFhfl58lyNYzQc47kOlm0w11G1TiYxeTrj27+t/vCxsrpKfzBCmCVuvvpG0b9VBv0x01nI73/vzwHYfHKTD27/jCuLKaN91ZsPnvS48Y2rtCtKYDHr3cOxLdxSFccvFfNtkVIiGnXxCrGPzHNM0+TVV68y6ioHncP9Cd54xuHRMQCLi0scbj/BNn1W15TTT1Aq88nHtxn0+zSrqvZvvPkanufRaDRYmFd9QpZxbmMVKSVxpGodlH2StIHvqp4ejYcIM2FtfY3NTSWy6R32aDWrRGHEg0fK/WVhvsEsjBGGwcqyqqFXMllcXESiRE+jWUS1UccyDSYzJf6olwJkLrFsF07FOAYv417yIhHHybbjI+Ve9Oijd1i//AZxkvHOez9Vc1kfc2G1wzhSY5iEKZ2GhWkaWMWtfzzNyP0WGxtlksljNR9YCGIWWh6+q8Z65/GEnaOc+bkNGh3lkOXYNrYNeapqmscjKmULwxBkxSlOwhDPEASVKlmurpk4yRBGhufkZMWO/eMc15d0KsX9PY2gPAeYpLMuAMNRwv7ekPOrAWYhxmnVLR7vJRwMHL7ze98B4OKlK0TTEeFAiYvs0U+w8gHdXok4UAKwV9/6M/JHB5gH24SF2Oev/5f/mZvf+j6/9x//J5zivoBUTjinzjFfOFufzecJXF7sjvP5vSHlS5jxfM4O2v1G8yL0L9u/2WgRjkaj0Wg0Go3mNxktWtJoNBqN5teHfgZrNBrNvw1fEjFOfubrz3bAgU8vWr7MguJZ5wIBDLvHhJMpyxsqrmk8GlMKfFwEQaDEGMeH+/zjP/0TK8trVC8qIUmWpVSrFcIi+skKApbW14EMy1ZiANcPaNTLGIbg3r17AFQqJXzPxi/Z9I+VI0mzM8do1CcuFsqTJCeXJkmUcJK+VW83uGLb9I66TAsHj8vXrlNvtIiiKa+9cQMAz/NIhzNWlpQLR73VYjIYkGepiogCotkUw7Ygg+6xWty2LEEUjnD9MtOZGr8hTCrlEqWyEhZMZzMs0+H1t17FLWKSZA55mtHsNDALx6I0tUnzFGHYCOMkMshGoBxfTpyNDNPEcGrkExX9lMZDXNclzXOMYqk7TnLCWYjnS/JcCaaC6hJSCsLBDtPCece0HCxPUCnELL7nEMcS23L4+CMlvOm0G+xv7VGv12l1lEjkYPeASqPObDqjHahFd6dewTBMxtOoOLaF59oYAgoNAVtbD1lY7ZCn0WnMT3dvl871c5BHhH01t16uItSEFxRdl0OWkRnOqQvU2uoStudjOBbxTLnxxNMJti3Is+x0m2nFyCwh8O1TC6jBwQ7IlNufKPHVzRtXOHjymLDao1w4GjmWZDYe4dg2lqXm9mh7j2q9TK3ZYNIvon8cC8c3MOtKHCWFpFTy+NGP3iPPlIjnyqVVwszAtnLmF1QNz52/QODbWGLKZNQHwC5v8uTePVbXCsemNGSYhLiNNSoddQ0hcgyzglevkqXqujdNA0RCs9XAtwuxmhQ4foVGS8WnHR8NGM9y7j+6zcYF5Z7juhZvv/0arWaVvHCI2d09oN1uUQksPF/1cJ5nCGAymuCg6hoEdfb2Y37yjhKu/PH3/4Bao4GBgUD10/x8B4OE8SQiLgQnjhfg+gn3bz9k46IS4G1cvMgsjPE91Us3v3GN426Paq2OKGqfJRGWY2NaNkIWIqQTxxR55p4nJFLmnxJ9nL3LnYg1slzy6MPiB2TT5qg3YTo8ZO/JBwB8/w0HzzdIitrMwuJ+KQwMQ9W52ZnH7VxFRtvcuFwI5MQMIXM6DYejvjpvQ5rMptBenKPeVD2QpTnlsk9SRO+NtwcIGSNTgTRULSrtNUrlAMu1Odw8ongh5ZLEjHxKgTqzsu9x98mE9bni5meCXdogSXrExb0vsGIW2xbv/PyA6+fVfeGwn/H3H7lceuVbrKwWcWxZTjTaJ9r+AQAlY0jmdBCN16g1LwIwGuWkuUWpvkBtXrlQDaOAD979GZfeuMPiObWf5fgY4mnNT2UyZwRS6hH0csKWl3lePd3nrIPS2f+fIAtBjhbVaDRfV7T4RqPRaDQajUbzVeBk8e/r+vPt1/W8NRqNRvPr51chwDn7HvqZp9Fovo58vvJFo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRvDRfEmecp5y43ZyN9DiNCHlu28n2k39P3FfO7vN8NEgu4fioS2v5ItWmilt590fvsb66iFfy+fCDnwOwtLjExYsXiaOUgyK6qtWqcvvuIxxXOW406zWuXLmEaZnkhYnB8lIHzzbp9fpkhZtGrVYlDiNs22RuTjl9eKUSb7z+OqKYgp/+7F0MAYNmg6XVhWL8cPfuHarlGm9+8yYA1Uab46MRg+GA84Uzh4FgfDxgaVk5PGAZuKbEKwdsb6nIHd8r0Z5rMR5PCEPlZOH7DlGYMwtHjIYq6mkaJrQ6VSp15X6RxDESg9FxnyxTbhfDwQTX96nWyliF+8voaEAahziOjeOo6J8sT8mzHNdzMUzlEJJnCVk4wnVUDTPLJ45mhFGGLGr46MEOpgmenWO5yiljsPWYySSkXgtwivk+3NtmcXWFYV9FGZnNJluPH7O0tsZcW7kEVSol/AUXwzBpe2rbk7v38Gwbs2wynSiHm/Pnl0mSGRSRTgf7R9iOge1IXEeNYe38FfxymTSZMempOCXfDHHLLQQ2sqTmVhgmVqmBFFYxPxKRTCE1cIp6NX0PRE6WJ9ieqpfAIE1T9vd2sYpzrFVNTMvEjEMKoxoe37vN0voacx0VxVUJLAzANhOyuHAcSjJkntEbTWl21Lg6LZ/JZMr4OMEpLpVRPOZv/+Gf+NbvqEgqT1YwTIubr6yzs636Pk5zNi5fwiblyZaKRZrr1Fhcv8p4OOTJrnIhal/4DuF4h97oAQA7H7/La69fYTweMR5OAFg6fxUpTHIMspkaq+N72JZN7noYdXVNTvs9xoNj8kIvuPn4EZZdotOo0Cncf7a29rl05RK1ekCWqut8PA6J4hTHM8lSdXyEhRA22ztdWjU1JwvNMs225OKlC6peacKwP+benTu8/vorAFQrAVEI8wsVFlcWTq+HWqXK3tYWP/vZhwBcuHSJwWjIhYuXADje3WduYQ7L9THswplqPKTankcYvxz9o5SSLIw43Fa17syvkwmH3UlC1VZOMoutDnmeUq+pMdQbDlmckOcZZuHYk5olsjRFxId4Znx6/CzNIU+wCicWy7YYRAZvrC8TDpXDTWN+kSyNGfeV05bIR5giRyYTZpGKJZsicUYRSZRhu6r3D/aesLd7xGI1w0bZTuUZzFVMgsLNyPQ7mG5A0n+fW7dVzy11bJpNh/PLZbYP1MXwk1sZN9/+Q1559W1mI3UfGPceM937B8qmcn/CLpPXblBuvIJbxE9tPd5kPBlQLVfIMlWL9YuvM5n0efcHf49XUWr9q6+9ysrGZewizuxs/Z9+/eK4qBc9t/4teNGz8pexr+brh7ai/c1Af4JIo9FoNBqNRvNV5a93fqajqjQajUaj+RWgn7UajUbzq+NLIsYxnlvcfHbx8mUXMz9rcVFIkEXASDgYsre1Q2thmcPtPQDm5jtYrg9CUC6r+BOZxpR9j73BIX4hoDk4GLAw12R1RcXk7O0fMJ1NmExnpKlayF5fW8TyfGqtnEZdiSVsy6E36RH1Iipltc0wLPzA48EDtZh+6fwK7/7kI+LpDLeITmrX69QrTVbOrYFUi89JElKuOtTrLciLCBm3RFCvQhGvEw1jvLLH0cEBUaQULgtzNe7dvU+lUmdjY7Wol+TJwyfs7ne5euMqAEu2QOSSNFUiFcdzydMUy4B+VwkqjvsD0rzLzddeIUsKYY9nMo5zhDAokpgwTQc7cFVMkKlaLU1iZJ4iMjUfpmEzm0Q8uL/DdKKOPxlMOH/pPHvb2wyGj4tZtHADj1qjQXdfiQFa7Q7NWkDUUeIMr1RGiIyjvV0O91VkVBgGuAMPy3FPU1+Cap0wjAiCEifaiMFwRKPdPM2k8j2XcJoic0GzowQijuNRDgKyKKYxt6hGlS7iBHNEo2OC9mpxjlPSJMEqBEdSZmSYGGQYIitqL0BmYHmIojePegeYhk2UgFkIvpxyne7+AVJK6g3VO6sXzuF4Ad/4Rk0dC0ksYTCYULdUn5jkCFPgewbxVIkS8jRjNgnxnBpJqsRXeTRkfr5zKvQhz5BSYoiUZkPFFt1/9Jh6vUq5ZJFlKsZre3uL1fULVOs+V15R4pVed8T5m2/y8K4SYsQ7E4a9TY4Hj7Gras6q9RqV9jqTwYA0VPPdXFwmTDKiMMex1XlHKaRphrDUBM3CiJLrc/XKOodHauy7OwcsLM5RqwY4juqvtfNL2K6DzCWF3oTZJOXenTssLLQIpzM1J3nGXKeKbaloo/FoiGlKRtMpd+9vAzDfKbO9s8Uskly9vFHMLbTaVb7xjVfYO1DxXPEsgjRBJurYuTSxPJ8kk5hFhFouJaVymRcinsb0nUYfvXjPp/sBo/4h05ESwlS8JaRM2Nvfo1JWNbNLDnEisd2iyQXc2xqTxhlXNpTYzrCrkI7I4wkyU9e8gcAwBHEG44m6vh9tJRxNywjTYTZVzZLt7hPOprhmkeM262KaOWmaYjuqB0zDQSDJs5xyWW0bejb1isOlNQfHVUKh2SykXnfAKhVjXycZPyEcbHHxvNrHMiCO4fHmlLs7SiBXWX6DtfXL5EmMIdS4ouNblOQ+ThEbltVuIuo3mEUpx90nAPzgb/47R91dKpUm7dY8AOvnr7C0vIJr29y/9wkAn/z0x9z45m/xu//+LwDwK+r58OyzJi8EOcYzM/evE+GcjaSSPBvlyJnt8EUGdy8zjpeNfNRoNL8etABHo9FoNBqN5jefk5/p9OKXRqPRaDSaXwf6ZxCNRqP59fAlEeM85eyC4OnC9AsWCX+RxUOJPF237O7tYZLjug7bmzsAOLbD7tYu7U6VubYSPNy9e59yEGCYxql7Sr1RIyi5eH6x8L+2hOkaJLMpuVAr/6btkWcSzw2QuXpTaVjUWk3u3HrA/XubALz+5k1qzTr1hhJUJGHI0vlVOlWDpSW1DavE6rlFOvNN9veVcCjtjYiyGENkp689fLxDq93CtNSCreOZ9A6PaLQatNpNAMLphONun/7x6NRZxDAF84vLeH4Jo1DQSJniliqn68DhbICBheF6jA+VwMV2XFYWlrFMh7gQ41iWSa1WwfMcTFvVR+YZWRZjmAZ5poQKaTRFGC6bj9SiuOuXERk4tkV/po5VbdSI4pQklQSBmo84ibAMk9sf3+LqjVeK40uOul1sV4kcltdWKVc8Rv0J3Z4SSjRabRYW2jy6e4/pTM1jo7OGbQsq9QaToXIRSeMY27ZIwkLM4pbwApdSxWc2Ug4rlcDEtmx2d7tYhYtIMj0miUbkMiIaqn5ygxam45/2X5bnGEjyZEaaKCGJYXggHGzX5sRWqdKoYUjBaDSiVFXzZnoljochflDBqyoBxVKpCnlCNFVilkzmuAgIPIShjmVYLjLPONjrsbujemf93Aqlag3TtQE1vslsQKXe4sFD5aBUrdYRIqfTaeIoDQStVoPRdMrc3DkWPdU7f/d3/0C7vUip7DA3r8RKlXqDd378TzzeVK5Bf/r9/8DmB/83S80dvJqq4eTwYyzPI6g0oaLmbTbax3bqOF4Z01KNV20vEE8nRKGas1duXuferfu4foXlxcIt6bjPzz+4RZoklKvqfD756DY3b9xgd2eTtfW2qqHpsLjcoVHzub2vhDZPHklWVhZJIzWPH73/ERsXVvndb7+NU9gG7e7scuHCRRD/P3tv2mXJcZ/5/SJyz7vfurVXV3f13mg2AIKCKHpGsuTj0SzHZ2y/mC/hL+CP43d+PZ5zPLbOjEeaTdKQIiiQIIEGuhu9VNdedfebe4RfRFb1ggYIUuQMRMTvFfoiMzKWf2beqnjqeRy6fSPIU1XJj370t3z33XfZ2lq9qMOouUOZzQDwHEUyG+F6MVUtcBGORrhffG5prdH6hdDi6zzTjJBLMT3ZuxAvSddFqID9wyNuL5n5kdJBqaIWiYCm4tJ6hMoljmdEL0FrGZU8oSxmCGnuW1XW94AjkI7pT6Y8Os02vUGPVv3cOTk6od9rMzv93LQlJkgpyVLQgblvN67cIslhNp0SRMZdpszh8GTGEy/HEeYZudTxcGWJ0zDzXOqAzx98wNGTU955yzjq7O7lCFlwPJXIthFH/eEf/wnNOGA2PqGaPjTzn35Kq+mRR+aYxvrvIf0+w2dP+bP/918BEHPMf38nJElOeHhgav8nR4/g9/+YXn+Lq9eNOHE+6vHxD/8Sr+7nP/yn/wKnFku+vlYvr+2XvZ++6p32q/ByOy9rbd503Tc5xL3cxpf92/Ltwv4w/s3DCnAsFovFYrFYLN9Wvi3uOPY7v8VisVh+W3wb3qMWi8Xy94VvnBjn6/KrbGZqoEyNo0dZSi5dvY0WsLJiNuuDIMRzXVS5uBDtrC0vMzw7YdBrM5oawcbScg/H8zk4PgNgsNQl9CK8IOBkYtxHDk9OWOq2Ua5DXrtwCDeh0WmRpxnNWoCwmMx5/uQ5SytGdNHqNHnrzmX8ILqIGjp+/pzBoMfe3iFZWotGMkGjFZCVLlKYTeGVVR/f80gTI86YjhN2dw9ZWuoiaqeXJC1IsoKbV9aQso55Oj7l8GjI2mqffGr677bbJPMZSS1K6bYitAQcQXfFiC46/QEuimR6hl8LRNJFju8EKJWjMuMGUlUV0vNQeYIuzuffYzZbgDZKj/HJkP5gCS9sIhzjnuK6LvPpjGarwWw6u1gjrSHLK06PzXGO6+K7Pl4tSJiMpkRRQKEqmg2z8T+fTjmRLq4fQx3PNZvntKIIXaXsHxiB0cpSiyqf49VuNlkyZ/X2NTw/4tED486jhEdRaubzGa4y/ep1V8nnI2R9HkBVVlAVuI4Zoy4zhIQymeA2jJgFKXFdD60KytpRJQoFjvQYDJZIUzOHDoJLV7ZIkvwiC8f1PYQWSK+OGqoUVBWu6yAdI8TQWlIWJYuswnVNnfSW1ymVxvFDnFppc+PeKqenZ7iBactFEgQOUSukv2bcfzqDVfIixQ1DnJmJAvqTP/wBbhiz/+wJ65tG7JEt5pwdn7AxqGO30idsb0lE4lLmRhCUTHuogz2WL3fw6sgupgWLxTMaqzepKiNMmc1m6GyOrEVcrUZMq9PG910WuTkm8CAMfT74yc/44z/5gTmu2WJ4csxSv00cm/al22J6eEwZSWYTs27j8QwpBEgz7q1LG7i+S3epjaiFF1e8TVzXAwH3P31g2m+1uHv3Ln4Q4PtmPZQWaKUv3IUW04RWt0mj3WZc12q700Ei0EK9yDTSxtXo5YyjLxNOvI7WMDp8jvCMMCZNUtqdDv244sqaWe9snuH6LqqOXnMkRJ5G+x5Km2tWukIXJyhdIhwzr+NRSRiAJx1asamn2XRGr9dD6AJRuzs1WzGVVhciJJWkhA2NEhFJbvrgzOZ4QYN+r4NTP1yLbIHWis21iLWBad9zFdOZYmnNiHGkp6gWE+5c7+DWArO1QcBHD1NOZj3+yf/6z8y8thsUWUKRzWB83/QrAicY4PbML7Wi1oA0rfibD36MyIxQ7J/+8QqdVsB8VvCdm2YudvemPPzpv+GH2Sr/45+a9rv9da585wd8+MP/bNruLfPe//CnSOG+4ltzvnZvWsc3iWNe5WVnm3Nhln6p5Re8qA3xBSHO69f9Mt4kIvplx1gslt8+9hfxFovFYrFYLBbLi6gqi8VisVgsXx8rvrFYLJZvLl+db2GxWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVi+Nt8YZ5w3xXt83ciWX+YEIIHh0TEARZ6jtaQoCma1481sOuX46IxHn37CW7dNtMne3hFlVaKFZLBsHGGGwyGqqpiOTNRQt9WkqhTCDYhD4waSLcZ4awPKNOfprokt2r56hTKviFsthDaOJ2k259rtHf7Lf/4bAH7v998hboY4YUSGcYvI0lPyTKGUIm7WjipNh2yxYG2th1vHUpVpTpGXPHlqrieFQDqSshLEdaTKoAfvfe8en/ziM9p942ZTliXtVowXePSXehezpStNnhl3nqJSoBwmwwlVaZxlsiyn0WjSbjfQxiQDXaWUQhB6MaqqHTBmQ4YHR0RxmyCsnXBGIx7+4j5ubByCHCkoq2M6/QH7h2aNbveXaDYa5MkYIVsAfP7oCYPBMjs7O4SxaUuVJULAg08+A+DGW7eZzTNOjs84PTUxVetrKxzu79Ed9Hn3ffOXNZ989DGUEWJe0WyaOJ1Wt0ev34M6MijtNanKBWEc0u6ZuVlaaZOkOWenI4rxIwD6bw1wXB/fi3GjOv4r6CAdl6Jc1HOqQAT4jRWEa5xYNBVVkaHylEob1yChBFmREnghvm9uzarM8RyJ0/A4t14Rrgeai2ixwHNQXsjZ2Zh2yzilNJotqirnrXu3KHNznpQKnRTkiynnKC04Oznhhz80dfjP/vRPCJsxcauFH5pxx+2CPM1QaH7ywc/NeVXB+3/wNiv9Arc0rkp+vsuNlUPK1Nwfh59M6HcF0gshMP2SXhMZdnBdH/K0rkON6wV4fkCZ1o5D/S6CNsnYtJ0lc5ptn5PjEz79zKz32vISl/t9bl7bZjE1DjprG+usr3bQKsd1TRRTkuW0u20c16HZMU5UoedwdHjClRuXAFhdvUalctA5ZWZq4PnuPkHg0ev3ODs+NX1NC1Y2XA4Pxqyu1JFKCjqtJl5gngGNjqIoQSPwYuOYFLUab3BIAfh6TjjwqoOJqkqOnj9COubZ1Oy2OT7YJ5kcEdUxepOipJzO6HXMvSYQaF2B0MjIuIL5vk+hK3b3ZrQ7pq+dXgRVSVUoivp+UE5Iu9clDGNUaT6L4ojpdI4fmZpm4SADF0cpPGlcieJGB9fzWSQpxwfGlWZ4dsRSs6Df9IljU8NCK4QXUWH6IGZPWF/RBBKqsnZeKkpOxg6t5cvELfNc01VFqxNTzTS5OqvH5LGQ6wQN4+y0SDKS8SHLYpe3v2fWv9fx0boiCjXnmtSd7Sa5mlEd7vKj//IfAXj/D/4hcdyit3QZgA/+/F+xdfUa61dvvVgP8bJLzQs3nF/Jve3CReerj3vxngSTJai/8P/eFPX4+jFf1raNqrJY/utj/+rXYrFYLBaLxWL5Iuffk+1f+lssFovF8uXY96TFYrF88/nGiHFe5mVBztc59iv+L6BRSjM8MXExngw5OjxGINjfN5+trQ3QZUar1ae7ZDa3gzCiLDP8KMD3zcbvfJERhAEbm2vmmCgmmackScHVa1cB2Nt9ymwyZzqa0qkjnPJ5hisEgoLtKzsATE5PqfKEazeuA1DVm6uSCtc1Y5eu5Ohwj8vXdxiOjHDhcP+AwaDL8dEZUhgBQhxEuH6Dy5eNsGBv/5gbN5cJAoF26jgaAe12i3vv3MOrP2t2O0gpGJ2eUmRGsOF6LlpAq2U22GezM7JMsroyIKtjsGZJxdnZkHavxWxmhBetRkAQNpmPT5jOjAjl5HDGRx99xNbmBt0lI3pZWt4gU5rNdSNkQLiURcH49Ix+z2yUd7pNNrZWeXx/gd80c3/16jWKIkdVBaoyZesGAbPxlKIWqZwd73NyeIhGcvmq2TwPAo9Ka+LI5+jARCVpVaFVSVlUjOu+bm6tMJ6kyDoSZ3VjGelIRkdDGqHZrHddwej0jMV8xsqSETNURYp2XfB8pG/EHwKJ0ILzTX7pNiirwrR9rl4SUKRnLA4+xusbAZgftRFElHlFnbyFKqagFI7jsRjt1acKhATHq0UWrot0HIR0Ea4RcglH4gpJszegqgUVWoOczVBlSZ6ZtUwLhSsdfvD975uaaDVQjsNolLC6YcRFWiqKxYh0esTZ7gempkuYbCR4asSoFt+odESspzhNUzt+Y4DrR2ivgxeY+Wq11miubiHdAF0YcZf0HIp0QZGl7D+tY8PWVnBdfREZ5bouG2vL7O2NuX33LgBr633SRcHnnz2kPzC1025FKK05PjhjsG5qxw9cPv3sMb1+m1bXHFckKUU54fkzM6e377TwPJ8iSxH1Gg1Ph3hBRK/fY+uyEXY0/IDeSo/jgxMmQxPZtXd4yu1bt5GY8bTbbaQbkcymFKW5bx3PfUPo0BefX1/2PHv5cyEEeZJQFCW95Q2zjrnir//6xzT9hNWlVTNnDRdZ+efKDfNM1ZJHTyds363rVym0KlldjkDUOVuUaCFYZBX3H5n7Y1FErPo+i9mEIjd1HrcCXCqy5AiA0FE4XhdZjHA9I5hz/QDHdYkkzGdGoHNyPMKXBZ1ug70DI75a6vnES0t4vqnpfPQJkWcEZ4s6Mm/3qOQkafK9P3yXOo2NqlIk8zkqPaiFNTDLItzBHVB15JMo+Hf/9v9jIx6ysRJfjFGicXyHtH72OY5PI5a8f7vJn/3IxJLNZ+/QiGMybfquS8G//j//D/7F//a/0+r3zxfnxdq8smq1OKb+3/q1SLKXVpeXwq5e+/yL7YFpRtSn6fPUM20+eFWw88t5kxDWinK+Xdgf2v/rYsU3FovFYrFYLBbLV/NtiKr6XR+fxWKxWH572N/lWSwWy98vvpFinL8Lr/51v9mcLIocp3bJcFyPs9MxnU4H3zeigWSRIKWm1fIoaoGAFpKz4ZT8eMzOVSOgaTXbOK6gUvWm72xGELh0O20caYQXq+ubaCZyWFsAACAASURBVCGQvR4PPjUbupe2L3F4eMLq6hpVLRxpdjsIoYibsu7DjDDwyfMFk6nZAI/jEOU5TEdTmg2zGRxe2eLJ589IkgwpzGbzoL/g4PQp3/vudwDjIvLRTw9457t3cV3jxKMrl7JURLFPWQsE8jzBkQ7S8yiVESDMR3OajZB6f5ru8iWKNEcLRdQyc9jsRZQqhXJK7Ncb/QgjlsGlUsYh5PT0CXlWMDqbkdcNBkHM8PiUUc+Ic4QTMJ9PabWb3HnrBgBpmpEmirDZIJmlF+s6Gs9Y31qj0TDtd3ttPjk7ZmXFCAumkzmD1RUarQ6+Y/o1n07o99vMZlO8Wizjug79QY/x2RTHMfOTZQXT2RGbW6Ytx3GYLzRPHjzFqV1qdp8e8eDThyRpQu89I3gQXoCsUhxihKrFNxK0UjhOUFdhiSNclKqgNNdTSlGkE/zuFaKuEVQorcjzlOPTIeubph+qLHG8CCl9Kt+4y+SLhEYzAEz9TodnBFFIJ3KpEiNmSasu0vVwPB9ZKxdcN0Q6DsOzCY+fGReRbrfHeF5y9+5tU3ONkLKCJBtRpEZsUs2e8uBn/5lPP7rPe3fMHHquZvT0P9BqeAhhRC+e5+I3LyODXr22EcIJEX6PqLtp1j/qIh0XLRTCN4qjeVJxsrvP7fXbRE0zxqKAIksp03k9XxqNYmk54tlz0/eV1QFFWXLtxg5xbGpCSONUs388J+4Zx6GoEVPmFb5w0LWblN+IUUrwH/7iLwEY9Lp0ug0cJ0AEZjybV3dIkwVlqVgdmDEdHU0YP3zK/v4RvVqMsTLo4AUghOkD0iGMQhaLxYX452UHnK8SPHyZO8nLn2utydI5SlUkaVLPfYDvKW6styhrZ6r7Pz/mzo02rmvqsKoKhONQVS6FKUOK2REqz3ClulCNVJUC7ZLkisNTM4d53mF5tUcYx2SZuSfD5jLFfMw0Mc8rUeVE5Rikj/RMnVSqoMxKXNej0TL9iP2MVCiSRUm7/sz1QipnQDY1a6vKDF0pXEeAMHXywSdnRIO7DAarhKFpXwoXreYkyTOENMep+Abd9RvEtUvUyfER4/kp1WTM9UtmjRZJQRT4hBEX94fWJdtbLYq0ZLNj3KOOnj1E4hG3zPq3lt/j0w//gp//1b/j/X/0zwFw6veIeFkI84UVrJ2J+KKw6mUxjtbipc/exIXy5uJ8/Yo7zourCyG/Uuz1pjos6sJw3d+5rwYWyzcC+wt3i8VisVgslm8vduPMYrFYLBbL3wX7XcJisVj+fvIN2XHTL20I/mrxHm/ixSajABTJfIEQtWOIFLx19yZ5kdFsmY3ZPE0osikijplNjFPDJ58+YDBYYWt7g/HIiBKKomJ7Z5PINxvIvtdlNBySZQV5HQWEBEdKnFDyne8aBw+hwRlLVKXIKrOR3Wy12N99jqqFPfv7u/yDP1rHEZL82GxIB0HA8/0jkmTK+z/4AwCePX7KndvbCMfl+XPjSOGKgmaoOTk20UxXdi6xup7TaDeoSrOZfnI25OnTXb7/B7/P08eH9TxpNi+t02jGiLoU4jBkniSM6tifqBFSqooo9JCeESkUyYiqTGm0+iSJGfd8OoGq4smzEcNTE+mzubVOmidsbl66cGkospQf/NF/xzw1/RqfjYnjJtPZHFnbwSxGExwvYHtng73Hz81x4wmdXpMiSzgYGyeWpdU+G5trfPILExnVbrfRZUqrucKjB5+bNXIlYRiglLoQOXUGy/RX1zg6OCYKzZgmkwWDQYNWq1n3M2P38yN2nz7j9j0jcnJcTafb5OThGc/qSLCtjUvoKsOJegjHiHE0GqRrlCGAI31UqdHabPgDCBS4PaJGj6o28CizFNeVbF3eQZ7fAq6PriqEUnheLThpOOC46Lr946MRq5uXaHZjnNysoy5LM4Ynh5w79GxdvoYbRggtSRJTh+++d4ntK1vUtwdCV7i6ZHW9x/j5jwBInv17wuSYW9uCODTtSy/CbwxABginVfc1xnFbiMAIx1ACt9nDj/sEYauuORfhhDiOS1WZGugvryEWBwz3HlLo6LwjhGGIG1Z1zU0AQbPd41ajjoeqcn70V3/D6uoSd9++ZcZdgUbSaDbJUiOsm89LpHTxPA/PD+v1ntLrtfmjP/wHpuaShP5yjyqvKFIzN8+fPOHgaMj7v/c2UgZ1twqmwyl3796k2amj41QJaIKoFiWFDZASx3VptOq54evFAH0dZxyNJp2PCAOXRi1CGg1HiCohdCtkXTzddogr3YvYOKXAdSVXr68gYyNmmY+OcQuF0C6qMIXoeUbAGPnuRc1pKVheWUeVisg3xXLw8AFZMWN1xQitisNPkUiSXKNDcy8bYV2FUuWFI9dsvmCt51MWIHRdeJ0+TvMyevYQgONhyuOnQ7bXIsYzc16m+3zvnbv0lwYUtUirlAX56QNUcgAt4160sv0PcYMGZ0fGCevpw89YDhesdVu0G6Z+80KgqpKiFBdmNUVRIlzJeJpzZcs8Bx6cHuLI6yyv1G5Dvsv6ztv8xf/zL1m/ehOAy7fvvW6J87X5YozUCyHp6+KtVwQ64iUJzpfW1Ll1jhECwQsXnVev+aIuz0U4f9d3sMVieYEV4FgsFovFYrFYLL8+/3jjXbv5aLFYLJZvLfYdaLFYLH//kf+tO2CxWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi8Visfyu8I1xxnkRrfHlES4v//8vbemV8zQgcKWL1sZho6o0nhsQejFeYNwu9p9NSZKSOI5oNo1jxK1b1wiCiCgMaMTG6SPLcnw/IvBl3RdNq9kER/DjH/8EgKtXd3CDgF6vCco4f3hBk5WNZRbzlOFwfD4SPN/n6Mi4yLhOgNCatEhYX+/XfRVI9xLNVkRVx4f4gYeWDlQpee0OUTg+ly9vcv++cYMZrA1YHfRRRYmo42KCMGFleQXpuGxuGSeL2XyG5/lUVYVWxhUjWSzo9fv4tfvPZx8/JI4a9Dua1rI5z427eKogy0tOT4wbz+HePhubAxbpgjw3bZUVvP8Hv0c6nZPW7Z88P6AoKrK8js9SOePhjKKo6PVMFIzruzQ6TUZnE1S9np1eh/29A3LHIcuN40kynRCEklYddVMWCkfCYjpk88olAI73Dzk7PcMNfaLaRWRpaYlOt4/GuYg3yuZz6Po06vVfZB54J1x/6xatOlJr7+ku/aUBa+sbhMK4EgVBgB/3QYaoeoyVKnED78LdRmuNpkQIjVNHIOX5gjTLqKoRblDH3OgCZAhSURTGQccVEi00GnHhmuH5AWVRIuvIpUtXtvD8Bqqs0Lq+pR2B5zXwQsVsZpyd8sWU2fFj/HjA9753z1zTFciqQiszp0UyIWgskY0eM9/996YPUtFd30ERsViYdWuGDaQTMZ0LhDQOMb12j6i9gj6PxfIbSOHgBgHUjkBKQVXlOI4DtZOQ43u4UYQUBb2Na9Szhuu65MbMiPn0CIHELXPSuYkQEtJl5+oVFAowNZAkGXmRI4SLX7ffbsU8evCQpV6bRh3tVSkTx7Rzc6eeU5/dJwcsZqf0BiY2bGN9nXla8Dc/+ik3blwHYDRJuPnWbSQFbu3k5PlNHM8/N0JCC8jyjGa3hXSdi/ForX8tx5HXn4VSw3R8jHAiqvMPhc/RyRnlaoFTR7TtXGoihOB0WEe9OQ6rKw20GKBqp5//688/5r3tgu31Bsnc1EC35+F4HtmkICtN/+O4gecHdJcC0tSMIVYVDS8inZjnjlMV6EpSFAIqc4ynFd1uG4VmeHYMwGR4wq1bgm7XB2nWI17aIs9njI7NMY0ANldipvOSJ3umzlu9K2xe2sIPBbKOHRQqo5g/xHNyZLQMQKkcZFkRROZeWCzOaDcl2qlwPNOvhusxmpQc7KUEdbrYIoXlLvz88ZS3rxpHo8WjZ8zmY0Zn5npR3OHad77PbHTAX/3ZvwRg48o1/CiGl9fWvHp+Tb7KPen199url/3isfrCFeereN216Zc5OFksll+OdcSxWCwWi8VisVgsb8L+rGCxWCyWr8K64VgsFsvvFt8QMc5vC7MJmcxnqNJsNGvtkqU50vdxPTP8VqfH8OiIsip4/HgXgNPTU5aXl9jYWKM/MJu8eZ5RlRVlHbciXYVwQDia9fW1+piCpMjpDwZUdSaIBmbjGZ8/eMJ4aiKW3n7nLlEQMuiZTd92e4N0NidXFVG3Y84TiqJU/PV//BHvvWcir7r9Jf7qP/6Y2zfXKUsjjGg3u0hXUdSCiiwtqNSUyWRCv2eEEo1Gk36vgxAFrmu28AcrS6TTEa4fo85LQXuMhmMaLSMaWd3YxPMcmg1popUAVEaa5hw8PmQ2M7FeQkvKUqIqjXTON4k1w7MJyysD1NBEb43Gc9aCkKVaeHN8dELgBwQBDE9OAFjZWCGdj9h/fEij3aznUJMmC0Cyuj4w3VACzw+4dmvLtH2WMjwdcXo65vLVdr32c3r9Hp2WT1rH8CymI/JOyNb2Jl5Q10ArwnX0hXgiVIp8PmewuopWZh3Hwxmbm2tUqsSvayBo9HCCHmiBqEUoDhV5lnGeOON6LmWZIrRTR6dBPh3yn/7s33L7/X/A5pbpv4tGVxWOEC828us4GkcKsjpaSiBYLHKilhEISN9DC1CVQjrn66gRQH8Qs7xi5pCqRHhLqLKiKo2gZXZ8QNBcQmozN07YIU2mTA8+wHWN2ESGGxTE+I0lnIYR1fhRC7RkZaWH1zLiMd/3UEWCG5n6lQiqcoZSBUVej7uEZtOnrBS6NFFoxWJK1FhCei1c1xxXaUGlNG5gxhgGHcajEYvFFCnyev1LVtfXiJsxRS3uOjjYY/PSJXr9DsORudeywzMGgw5hM0TU97yaVmzvrOGcr8ciZXWtT5a0SbI6Sq7d4taNa5ydjpF17edpzvBkhCMKhhNz3NJSlzRXLK+vmHUUJg4qbEbough+E6E/FwFGWjM9OUVpQVWae/nDjz9lNJvT6XaZ53XkkGMEKb2eGbPj+BSlRAVtzjVCf/jeZWKOCSNN4Js6kU6FkJKKktOJGXdnZZmsKHDdZTzfzHWeRBRZgl4YQV7ogC4L4jhCNo3YJ680aTLFcV2ojLIqKwuKQpPnJX5sruk1Vjl89CGPPzfxb+/ebtAIY0aznI8emvO6G+sI4YNSVKl57hTz58jigNJpQOOqGWfYYDGbcnxg2nr84BHvbfs0ogCnrq88yXE8yKocWUe7NSJJEDl8/60mrmtEQsvtCR988CF/+o9MBJbSGePxlKXN23z4V//azOHuEzZv3EFo/UZlzIsAxl+NX0e4JXhJVGOTpiy/BPuD/W8H+4t1i8VisVgsFstvgm97PNP52O33a4vFYrF8W/hdf+/bd7rFYvm28o0T45h9xFf/Kv/X2ZSszwStef7sgLh2JHEclzSdkc5mzGdGDDAZTQgcl06/z2hkRAqPHj2j1e7y+MlTFvXm/OXtS5SV4ujYiEZazRbjszNW1lfY2DKbtbPxGD8MUGXO558Zx4grN67x7MlzlpaXcH2zC14VBfNFhlvbMowmcza32mTjMZ9+9tCcd/UKzThke3sF1zebw8PhiMHqEl4YcXXJCG3SXHByOuL6NePyMRmfEcVNjvdPcCszl6PxmOs3L1OVPqfHximlVKc0GwGO38Bz6w38to+GC5HKUuAZZwUBqjAiiHSRkOUVs8mI/b1Dc9zqCofPD9jaXGF4Ztx/smTBfDrHRbF+eRuA07M5WTqjWYsigjgCFMurqzx9ajbPn3/+jE63hR/6qMqIDS5tr1HkCWcnEzgXjkgXRwrithF/NFrLNGOHvKguaubazcv4gc/J0QmHh7ULkesTRTGNZkxvpVevR8bwbESvni/HdXA9gSorzo7NeZ1ei7xMKbOcy5d7FyWG6yBdUIXpq9Ia1/GZTqZ1vyI8PwIlSGqXmp/99GM+fbjHOP+A/+mfGxFHWiU044DJeETUNCItISRSehT5giwz7UdhQBT7eI6piePjKZqEfrdFVc+X5/pUWuO5IUqZz6Qr0dpDCnEh5BKeospmJJMDAMbjBZ99fJ8rK3PanSUzX63LSO0SdlaQTljPT0BVpnhhiNa1JYwCN2hwrkIqywzXjdFoI8YAXJVBmVNpTTKt5yfyUL6DF8RkcyPsiNsbHBwe020aQVDQ6lCO5hzsH9Ftmz6sbSwzS1PG44J+17hXXdpcIggERaaIYiPkAc2VnS2Ojs5YnBjnlcO9fe62b7MozDOg2e4xnZwwPJuwsmbGvZjOePToiEuba/z0Zz8zcx+1WV7ug6jwI3PNKG7ipZlx+wHmkyFrl7aNLuNCGPHC8eu8Nl93I/kyzo87zxRMFhOqxYTe8voLFyIUzQg8R/HBz4wI6e7tNhseuLXLFWgq6aFlhN8wc3N500ElIVU+Y5Go+qiS0JegIUvNsy89OaMsFFkOrqyv6QqE8NCecQDThTIOZOWCLDF13li9RpomFKVm9+lR3dcF60shUeQTr92pz03peae0rpv13j9OkVogpGY0M8/uW1cuUxQpeRGQlaav85MHNMoROKtEffP8w4tBOTieV7c9pdV0aUZQVUZMNktKpPS4udOh1mNRFSVaV8RhSJabe2Z1qcEvdk/Ia2ey1c4ao/EUxwnxhenDg5/+DRvXboJ8NfVR6HNvmhc1cP7Zb0ooY+rnpeu+1LiuBWT6S65l3W8slt8s9hcKFovFYrFYLJYv49fdXPu2C3IsFovFYvldx77nLRaL5Xcf+csPsVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLF+Hb4Qzjn7pr/kFr/vivH7seQTSm//c/1W3CQ0CNjbXSBbGJcDzXEAwn8+5tHMZgPl4zMHuLs+e7LGybFxK3n33HsKFt995m+GpcXn47OHn3HnrFkFknDmGp0MarRaO71/ExQAcH59xqdnmyvUbAPz4hz9m58olWq2QdnMDgFIr9g+e8/a9twD46Gc/p9dr0u60GZ+ZSKezk1MGSx2u3brD3nPjQDOfjLl5/TKVhkePjPPOdLLg0vYGk7FxpNm8tI7SDleubpNnxvnj80dPWFvp4sUtnjx+DsBkOmdza41bd1fRtXuKcWKpyBZJPV8+VaVwfJfpyETDlBXMFxlFCd1lE+GVZTm6zDneVyDcuv8jllY6HOw+JS9rR4rZkDjwGR+b8UzGM4SAw71nDJZM3NHe7hStFXGzyfDIuBCNRi1c10epnPncOHF8+otPSbOctS0TEXbr7TsMnFV2P3/G2dQ4rGR5jut79HoDun0Tb9Xsd0EJHnz0C9zY6NGWlwdMZxnCNS4i5eKES5faFJXPyYFxxWjEIcOzOZ6Y4vrGlUjnCdLxydMUKY2rh+dHVLqi1THuI37QQDouRb5gOjG1JEWT9e1rnByO+It/8x8A+KM/+T3y0iFNU85NXTQKVUyRQnJ8bOpibX1AGEeUuXEqiuKYOi+Ns9r5ZWllHc/zKfM5Uph+VVWC4/lUVKjC3D9R1EH6HnHb1H3YPaFMxrjqKXjGkURGHfygjRc08GLj2KNKxWKkCKRPnpq1dRsNcCRSmrZdz0UhcBwJwqyZkBqkj1CasnY3mU7OaPRWENIlmZjalF4D33NQyhwjHY/BoEcj1Hi1m5QjBd12E9cLSBbGwaVSPnlZ0m43acamX4gWGk0QhkSxOXc6G7GYTzk5mZu2jkYUecH+/i5JPZ5kkTJY6iEDn5OhcfH5o+/cI4wEOA1kHVVWZCm9fouydl3xAwcv9Kmq6sIt52W+jiPJy8eIC1cd8+/ZaMj+w0/YuPfH+PUabWysMj9s0owdbt8wTlEffTLl81jyg3db9Xo4CEKKrKLMinodS6oywXUd8toBLC0qoiWHSlW4taPR6eiU548f0Ru0Weqb9qsiRQOLiYmRCn0XIQrS2YIU8yxyW1OiZhulCiYj44zTjSri0MPxmwRL5hmcHv0EqvxirMs9n6IsmIwhapqbYWV1mW67QTKfkk/Mc8HPnqN0RUIbb3EeoVaAFOztPTFrqxeEQRNEcfFyqSpJmldEIZycmvMC16XZcNDCQZTmwEbg4sk5J2fmvgriGN8L6S6v0V81bl/3f/YBf/BP/heiRuvFuulzR5wXkXNa6/rzF7z+Hvtl77fXMe+7rz7mZbe5X99lzmKxfBXWFcdisVgsFovF8tvi/Lvmt/kv53+XHILszw4Wi8ViOed35d1msVgslq/mGyHGeSWzQ38xwUO/QZ7zps3q1z8/DwmRjkeWGHFGUbhErSZLYp3F3GzESwmz6YzPPvuM+J17AGRZynp/FYFDu2dEImsbm7jSpVJmI7u31EOqlCIZMUuNaKAVN1hrNskWCWktEIh8h3anQdyIeFoLYZrdDvfu3cP3TH9v37mBHwTEccT2ZSPYcVyPPEmolEA4RiQSd5soJEJoJhMjjrl+fYeqqvjgg1+Y6zXbrKx1SKYZJ8dmE/nW3ds0u12yPOXKzqV63C4IwWR0RhAZwUYYeCghEPUmf6EKDp8fkCxSHGnKxfEc0kVGlpfEDdMvXWmCZszR0RHddrs+N6fZaSLlEk8ePQbg0uVN4naHvce7ALS7XU7Pzrj/6edcqcVR3UEf3xMgNWFk2t9/vodwJFIIVjZMJNhkOKbSU548NKKkZjvm6vUdos6caWLG3e93efb0OXHUYO+5iWIKdp+zvbPN2uYyg77pq+dU9DsBqjDCAj9s0l/1efb4gIMjI4JxpEuWJexsNfDDVj2HGQ6SLJvjRPX8CBDCRZ7H1gjBfDYGnRPUcWkb29vcf/A5ris52DfCpL3dfS5d3qbZCi+iuJQCz/HIswWbm0b45LoBrhtc7OpHsqIqC8pSc7hfR2r1+zg6Q2lNVQtahKqoiow0zfjJjz8G4N67d+l2Pap8XvfVYe3yTZJhiB8ZEURjcB2kw2Q0oumZ2vejBu2eg65yvHqNHM+lqipUYYQ3la4QUqArSVG37wcdNBKVjRGVESbl6RQ3jmm0l/EbZoxSFaAURWXELJ7n4QU+RSqQQtbT6iG0RmhNUMe4TcYnBMqHMKIeNkIKHOlw/5NPuHLZRBkd7p+iteRKHZ82m86Iwi6B517E+9z43j2ePX7Kk8ePWV0zQi6oSOcZSlTETRNT5XqgtSKvxVG9wSpC8EYhztfhdbHO+b/P48amw1NEEFEph7gWJq2srfCTyYxStXGpo902Q7ptSZ4ZsUlRSGQEUbdDlZsoK0+CkJI8X9DrmTmUSMqi5PR0QZKaMQ2WW9y+ex1JxaiOX4s7bYTOqULz/HWkQ5kvqIoI6ZsYt6DZJAgDHnzylKwWWv3+d2LChku0fAOVmbbU/BnoDMet+6AUeS44Hiq+893fByAKI0qlAEE+NkKbMN1FuS6t5evIOrYtiHzGowlFYmq1yhMoHSr9QgnT6wikEFRK4tQf6qqkyH1cV+HWQquTSQmo89uRpeU+ySJnNp+zvHUdgIc//XP2H3/GzlvfffEuEi+9n17KiXo9Mup18c2bhFovv99eahYtzo9/c/taX6SjvXK9169lBTrfXuwv9f9u2F+iWywWi8VisVi+Lr8JMcnL3z+/Td/h/2zvb+13b4vFYrH8TvFteo9bLBaL5RsjxnkzFyIcbdwFXnW9eem4r9hU1FpTqepio5wiB1HiIJnPjEDAE4JuZ4m33wkp613Xta1NHKGpdHVhSZGmKYv5mGYjqrslUdIjbMbkVe0E4fn4kc/PP/yY+dQIO3q9LrqC58+OyCuzQZxnBSdHZ+xcMcKYRsdHVRWT8YjewIh/skVKkhV0Gh06HSNAONzLybKUyWTC7dvXAIgin9OTM77zlnHiGQ9HCCqkqGg2jWikP+ijhMbxXKLa2efZs0PWNwcEvsStd3mLosIPA6hdPk4O9lnMM/aePqPTN/3a3z2k3YyQfsDSshGzBEHIeHhGr9cgz8xcd7sdDvfOuLyzxc51I7TxXY/pdM5g3YguhJSMRmMubW9S1oKN2GtxeDRieX2F5U0jvNl9tEtZlEgZ0OsbV5pikZC5klktShqdjtDX4PKNHRq1SGg8nBJGHoeHR8i63GezgkazgZQN/LBp6kKluI6mLM2aeX4XUeZQpri108tinrC85LJzbUDQqPswPyBLJnjxkhE3AVVRoFWBcMO6BgWe65Gn6cXcVJVkZ2eHn5x9RFrX5mRS8OHffsTbb79F5Sf1ehR0+30UgsPnRmC0efkSeZGiy9rdRCkc18f3Q65e2zT99wRFliG9kJMT4yLS77URSuN7EVevGRGKlAKlFJU0QgaNxm8NkFHM7OiBWdt8gvTblEqiqlokVJV4XkApNPtPHwPQbrWIGyG6FgdoIaCqs/DqeyibHVAUmjJbcK6W8YIeRV6QpTP82KxHNp3QjPsU9e0+nkxoRTFxd5N8du56lFAUgkZTsqjdkg4Ojnnr7i3yvGIyMYKTwPPwopjLly8zmZj7tNPt0YibeLXzy3A0omjE3P/sPu9/3/ySR+ULer0mZyen3Lt725zXaZIuEoKGdyGOccMGZQWuawRtQWjW/WXORRAviyG+PhqtYTYy4z54+hSvuc5iliGFuWfm8wlxrJnOS1Dm3r253ULrgiwz87yYZfS7bYKoSTU1Yrgym7N3MKfbkghTAgihAUW77RsnI6DfWyZZFCytbKDq53KZTHCcAoS517KiQKUVqnmHzuCqWVtprvHw/i/IZkZA04hC8Hoo7ZMf/gSAKplQFYr5ohbDuYLTMXy23+S7N1cBkDonm6UEnsIvPq37mlPQxHW6+I5ZyzxbELgVnjL3S1Eu0DrgyW5KkZu+b2/GpBmsrIasrhrRVJakPH02pd0OaLXMZKwPXLyHJft7+wCsrKzS6/VpNyMWQzPuySTlFz/8ay7dvIfrXUziF0SlF6v5miDmTe+1l/+ttX4h7LuoiF/usCTEy8d8sTev98FisXx97GaAxWKxWCwWi+VX5Tcphv+2ZSfw0wAAIABJREFUCnP+PmN/hrBYLBbLt/2dbQW2Fovl28o3RIyjLv7rxV/2Cy6iq4zBDWj9ypbil7kMXLRQC3hcz0FVRvCQZzmFCtAVFy4Mv/jwI6TjkiQL7r1z1xyXpwgh8BwPWbvXHB6cIqWm2zOuDxrJfDahyjOiyAh0gjAkCCKu7GxfOGxIKUmTBAQkU+OWo3NFv99mMjbuIJP5As9RzBcJzY4R0MynE7I0wZECrc1mbL/bw/ddnLbP8bERWXhry4yGI4rCbMI/f3rIO81rVK5Hnpm+S1GRp4r5bEqnY2JmrlzdoihTHNch7iwBUOYV88mIRd3PRVKyv3/AcDgljowTyNXrlwDFx7/4nFbbuKekaUG2SOn2W0zGdaSLaLKxdYk0TxF1dBVSUKQJydwISQbLazhuQKASZGTGPZlmOK7DeDhC1YKT1Y0VhsMJl64OjJAD8EIP13O4vGOEJc1mg+HplG5P0+m16n6lrK9vMhxNcV0zh08f7/Pw/udsba9T5HUcl1R4voOS55kygiQpePpsyOYlI5iaL2bc/c42/eUeSDPuvJScnR6ztLVEEJv5qXRJPi/Qham5UhWgNfPJMR/++EMzDe4SSZrQ7XaZ1aKwLE34yU9+QlVp3v/+e2ZMrSYocByIWqb9vMrx3RAnMOIPshwhHbRWNNpm3MJ1cYQgrzTTsWm/044JfI+yKlldN7FUQjhordH1/eE6LkprXH+JqG0+Wxx9RtDdpt3uXYi0yjQlTSd4XoDAiBl0VTKfjMgrc1+1WjGqTMmT+cUdLtUC5QR4YZcgMkIrrTV5WVGWFU4tqFCqQOsKzzPCljBskGcZrqMo6pqYz3L29w+5dvM6n9x/DMDGRh/pSKJQMJuatfzoZw8QQrO1tUYQnAsQKpJkwf1PHwKw+/yAO3eucvPGTVq1sxNC4Pseb929jTivCyp2945QWnPrzvX6o4qyUIT1+uC8Kpx4mTfFEr1ZCPFS1J6GxXTC/oOP6jYUhXLpNhtkmREhffLRz2hGgq3VGMcxs314OCbJNBvLRjQyWG7jN7vk8z0ojICtKHN29yY0rzYJXNOPLMuhUlSZJqgdYvYPhpRFwXxyhqrFPq7UlIsFRf0gTs7myMY1Witv4wXm/lBaMJ9lnB58ykYdG1YqF39wh2J2hJo8rYdZoSp94UCTZBU/fyhY2/nehbgpbAQk8ymnn/8V3ep5PTuahVhlKepT1TWstE/UaFDWIqFLqw1UKVnqeISeqS9BhaoUVWWe42CEaX7gkhcVUtSOTFIQ+4K958Z96wc/+O9I0wVFljLPzHmdtdv8+C//E7//T/5nBuubdfsv1vFVZzf5ivjmVxLBvGL69rKF3Iv358vOOeqld+irjZy76XzRUc6KciyWL8f+ssBisVgsFovF8k3EOl5aLBaLxfLNxr6jX2AFORaL5dvIl+8aWywWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsll+Jb4gzzm8HpYwLQLffYz4x7iCzWUJnqc9kOOb+hx8DUBQlT548YWtri7PxFIBbt67gOA5FnpPMjROLVpqVtQGziTlmOl8QRiECB1+cX7MkTxeEUZPD5yYKZrDcRkQ+VZURhsY9Y2/vMVvb64QN4yDR7rTI0oylvkeRGreLs+Mxk/mC5fWC3aemrZOTCZBz5+Y2W1vGsUWLkuWVHpPaAWXbW2djY5PRfIrWxo1CVSUayWSakKTGQSIOA5a3twnjBkkd9XR8eMRkOEHUOq0kS9nY2GB75yqT4RkAVQWj4ZRev4Ury3rgGRuXVjk7mZDmdZSRLDnY26fR9NG1e0oYxYSeh9M08zAdnTFY7iDdLj/+G+P8EQDTZMbq6gq9pYE5rxERpglHRycs6qihVqtNnufEoXGIGZ6NmY0XbF7dYGnZOMQ0Wl0+f/gx3X4XVZl5vXHjMgcHx5ydTllZN45AIoyRRYrrePUYM7zAI4x8hDDz9Xvvv0XYbOK32pS149Bw5uH7fc72D9AD49jiRAGOF1KmaT33oFVKevKQW7dMlBhel7PTIVJIzpNtdnf3CVyXvWeHnF2v45TaFVHDReUJvdoxqUSSpyVVZdoPHED6zEYThGNcXcKwRDouRZ7Rapkac/2AoipxHQdVO2HoqiQOI2bZvK7xAtf3jUNGZNxzKDTT08fEKscLzXxVSqPzCXlRMTw2ET55KyIIQubTWX1egyBqgeMStUzEmVAaLQSe7yKd8zgngcjNfOeZubccxyGdHhF0tkytxjHD2Zyo2yA9Mevx4d/+gnff/y5ZmpIvzDWXlq5SZDleECDrtbx+Y4cHDx6xv39Ms2kcrI4Oj7lz9w737z8C4Dt3btLstJhPZqiqfiyKCtfx0AqENPV7eHiG4/isry0R1O4vbhhRLYyD1VfxuvvI61FEX45Cl5rF6AiA6ckBg/W3CKIIt3Z6OT08xs9HLNIGjdi0/9nzBf1OjOvoizU7O8twHXCVcYSajRK+eztGiBJdnrtoGT+X0/GMRWnm66171+j1u7gSgkZdh2XF6ekx7aaJFjuZ3SJeeQ8n6IA2EV7TyZz/8pd/ziA45O3b5rjO+g2cakY++xxx7nJUap48Kwg80/dnBwnj/ApvXblCv2/Oyxdj8nREkH+O45l7OSlC6O4QtTpUpbkmVUa2UBycmJq+0/PBdfn4kwn3bpnxNAKXfuCCDBCYZ5gjBf1+iPR80voZfDBa8L2bLf7vvzZz/+jzz9i5ch3HdY1rFaDXL/Ps55/x/P59llc3zGdvlLl+dczixVGvxVa98u+vTqb6yna+znFf53jL7x7/eONd+xc6vwT7FzsWi8VisVgslt8Uv63v369/Z7Xf8S0Wi8Vi+W+PfR9/EeuOY7FYvm18M8Q4SnxlPIauc6rMPmEdXSXERSTHy3FVr24mmigO6Qo2dkx8yNHeCc8fP2N4eMxnn3wGwLXbN7jx1i2CMKSqo4Wm4ylCSpI0wa/VEtJzGE0T4sjEn3TbHZTW+L5HkZvzdFWSpQWLRU6emc+SZIGQisloxqSOf9q6chkvcNjd3QNgMFjCcX0m0ylqYsYwSzJazSZlXqBqMcDR4T6tRsTJ8YRe3yzf8/1D+ksdlleWTR/QDCdTNJpGwwhVnu8+59r16/S6TSZjI1xYuXSJ9tISKM3p7BCAdJFxfDpE1fvak9GYd967R6fbJvS9+rMzWu2IovBQyvSh2WqDdPFDj17fiDgcB1xXkGUVeR0tFYcB48mMRmT6FTfaCNclDEPWN1YBWEyn3Lp3h8VshK43ylWZoitFp91iNqrjucKA5XgZWQsSptMFVVmyv3uMrswm/8r6JpuXV0lTSOZm3LM84fR4iJQO+/tGULGx3sH3G2hhdtGF1Lie4OrNLf5/9t6ryZLkPNN8PLQ4WqSsFFWVVV1VXd1ogYYiCAIkjZwZ487amu3O1fyC/Rv7E/Z6r/duL9ZsybU1zJAEiQbA1rq6ZGp5tIoTei88Mqu6US0AkGALfy7auiLj+PFw/zwiT/p73rdUCIdMU0fkCek8xHGl6OXqM1cYDoZEwYzpeCTHZ6crxSCabMswUvJgSJrriEIgUipZ9DoZYRTy/HeeAeD137xJo72Ipgl+9cvXAHj5lZe45C+SCQdNk9c5GUxJ05jRUIqj1jfW0DGYTVNMS4pZtNxGiBBTB7eo1ywTaIZFkqTMZ4XoRdOI0hzbsIv6jYnjGEHMm69JsdrN29cotXwm3X00ZASZXmqThwGaSLm0viTf07DQNI1aU/7b9n3SYj1aRe2k85A0F6RxTFIIb4QwSLOUjBgtk2MWB13yNCQO5fy45VUq1TKQYTtSBLG8usR81KG5vMaVqzKqTBMCTWhEYUK3JyPgrl7ZIElTyFNqNTlvjfYCjYWWzLIDytUKs8mURqvGg4cykmhjfYUsS6lUKsxmct2++eY7/OlPfkKjUcbxpZjIsHSiMMfy5Bg+jSfjqD4tePh8UY4gnM/Zu//+RV91t84siMmyKf2+HMNwNuR7z1aZTiNKjhzrpbpOfzSl35f9sr2cmXGEZ4WMZnINPXowoFFN2VgyGU/kmimVNPI0IY4FuiFrf2NzjWrVJ0lDdEPW4XwyIJwPoSTX+/LN50gSizhOEUK29carrzLe/SU/uG3QXJV1rrkVBvvvs39wRsWX852mKeNpTKkl+zoKHJ557mUWlxeJiyguz3Nx0wOwhhc3fb+1xcLWS+iaje0V96f+IWE4RxRitVmYs3cUkAhB0RQlX0fTNAzHRUukMGkQ5wjDwdZS4uL+UbYFZR9+9rIUIP3LO//E+uYGcQJ5Km+SldoCfqnC3oMPeO5PfiLnSHvi0Xox7/zWM+vLxEOJXNZ1zvmzsHiyPUU388noxozfjqQSPC4xFU2lUHwZ1B8HFAqFQqFQKBT/2vwxBPFKnPPVQX2mUCgUim8f6rn7+ZyPj3pGKhSKbwNfDTEO/JYTwKd+SH6xqfiU133RZqKQThsAC6ttHNfkqGSzdk1u4M+DhHkY0R30WKjXAUjTjGGng2WZJIEUkpiazmQ4onciN28X2g00UyfLLHxfbloHkwG9wQTLMmkvSlHCLJiByLh7f5cXv/s8AIYmODo8pdeRggrb0JkGISW/xM62FANUKmVM0+bRox1WL0nHhe//ySvMZgHTfp/5gXQkCeOIs67g8hW5YfzowTbPXL+KbUtnFNn3BlGUYFo+G89ItxHb80EIsixlNi2EJP0hC+0FBoMBAHePTlg5bBBMJhfDPxkN8f0KfqlEpVEDoH/aI56NqFUd7t+Xgo3VtUVmszmO416Ib4RhUimbJJmc7zBJKTkOQoBXiAgcp0YYhZTLZYQh3/T99+5S8kqsXalfiGNmsym+43DwcA+AWqtNo12jXK/QPZZ9qNbqeI7H66/+iloxt65rsryyQC40OidSsFGv+RjaHO18N1vo6LpFa6HN+e61ppkIIYiTnOFQvs6ybar1Gt00Z1KMoV9fZTDq8/DOA3mOSJjN5piuzXsf/hyA556/hWubbG1t8vbr78o5sn2m0wjTgulU1tho0KXrWFiWTqVeCHk8k1GQsrS6WoypzdnREVEc45flNQpNYJomWZ7henLsD/cOEZpBe6GOJZcDvaOPyRwpJgBwTAPDscmSlEpF1pPnljBNg+5wn6W2HHvHLWPUF0njkCw7FxukaMLGLMRRSZKBpqGREwVSCJVFIZrpkmc5SZIU58UIDXynwmwqRSI5MbqeE46kSMxyF4jSHEGOWzixXN5YZjAc0znt8c5b7wHw4ovfIY4j1jbX2VxfLvqV4ToOZ50zLEuKPXqdPoZpUy/L6xlOA04ODqnUti5uJ4PhiF5nxJVrFg8/lsK9H3zvBSwjI02Ti/PiaM50cEZrRb7f00Q358ee5lbyeW4kWZaxc+dDJt1d4lg6TtnlBmmkMRoMef03UrQlkmMqnkfFg25PilDqJZ2FmoOGFI3c3Y3ZfMbEs6Z4QraVrBg82pmwvKDx8EC+buuSxyxI+Xh3gmXLe4VfLjEcdXEdmziUc6nbNo5fZTyXghrP0TBNk+5Zn0cfvw5AJX6f9S0Du7lJqsmxj3r3SKMRrpEQzGQhWqbGs1tl3rsn+7A/avKdhVWSNKXfl2tNzHPS4R1c02Key9q02i9gWD69TpdK4VQznWQ8uPcB3WO5/n606VOtGyw2dXxX9jVLI07OdNaqHmkiRZMP9iNcL2GzZZBmcnwqvo5uaLRrco58Y8Av//mfefbmcywvy/kOopAocxkMemTF67SnzunvL3q5qJFzEc+XaO1cAPZFZjdfxq1H8c1HueP8NuqPAQqFQqFQKBSKf0vOf9/8Y/0e/uTvt1/H3/3VZxaFQqFQfB1Qz6rfDeWSo1Aovg18JcQ4+ae1N+SfsBEQQiAuvt0vLs7KyJFGJucRG4////zfQoBAXBzVNY1aq061WbuINZmMJ3iuz3gy4ezgGIDpcMpZd0DVs/B9GW1iOCbVsk/kyGH78ON7bF2/RtUVpEW/gkijVK3TbJSZjqUQJstyytUSlzfWMLTC9WYyYxYkF04pJ0en5FpGrVG9iErqdvt0ej2WF9uc7BVuHVvXCIOAVrvFUSHG2dxc48H97QvRSLvVwNANkkxwdCTFDYiMqnDY3jnixaYUbAxOT2guLBFGId0zKV6Jo5DR4ZjpWDpuvPDCM9TqZeIk5/6dD2VbqcbYD6jWy5jnEVGDEY2mC5pOsyGFHaNhD8dxybMpkZCb7vWSz6A3IioinLyyx8nxMZVqhXK1KruaJ4TTGXFuoCPbtwyLXrfH5rVNaoVIZBallGtV6jMpljIMQRTMaV9bwzGla8lwMEbXBEsLPqYjj1mOQbVSJQN2tnfkWJ9VcU3Qi7wxkQtMt8486FBoGXD8FhlAnl2IMzaurOOVqpRKDpWSdHGJwpB5XKK1UoieRIxm2PQHfU6P/gWAX/bHPPedG6RpTH1BRji988aH1JpVnr/5PA/uSyFBr9Pnnbc+wLLgr//jT4t6DVlcXUbXZV+zNKberKAZDmkqx0LTNXIgSx+vmWrV5/CgQ5ZGtBelm0l97XkQGo+KuKbLmysIYZPGYy5vFI43pGRxzuWtLTSrmA+vRByExOEM35eCrIxErrXsPLosQ9ds0iSBc8EOJkksf14Yi7C3c8L65iJZmqEX8xYnDnk6IpzI+rXLHYK5iZYnVIrYLSoa/WHEw7t3eO72FYri5ODwiNZiC5FKkYVumATzMQcH+6yvSwHTW+/cYTydUK/KvguhsbjQJstTLLuoEy2lXvGYjSfMC5crx/MwXRdNNwgDeUxLNKq1BlrhXvV5QoYvL3KQ582DGbPhiCvP/YA7b78JgOtWyK2cXMRkgYxP+uFzLuWKTRCl7BxKUdjmok+pDMVw45V8HMfEdQ2Sgbw3LVUz2s/6iCzm9oac2yhJebSfsn1qsHFdum1V63VcKycDZoUDVEJOpdXGKNb2ZAZnp0d89NrfUUq3AWgt2/gLt1i9vMXsVPY/HHbxHA1nocTOvuycVYLhJOXDbfnvyzdu4pV9PM8mq0rB1OTwV/h0SDMNs/asHCV9gXHnBL/URCvGLEvm/Muvf8n1pby4npjTTsJKSyMtajOONYLURdM9kkQKvtaXTLb3xsx8+0I8pRs5WZpgFffk57fKvP7oDF03LubbNC0st0n37IQolPc10zKfIhLNQVz4tT0++iU0Oucirk+74QghyD4ju+qxqDXnaflWn3Tl+WSulnLLUXzbUX8EUCgUCoVCoVD8sXiaSObf+vfRP7YQSKFQKBSKbwPqufr7oQQ5CoXim472xacoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBSKL8NXwhnnqTzxxfxPfoP//NjT0qk+/e3/p4d5CARCCDRTapFqdemO4ecuQVm6s9z98AG//Odf8ec/+ymrrUUATg4P8Xwf25bOHDdvPUuSRozGc3Y/uAtAvV6l1WyRpCmVpmy3lKZMRyP8cpWD3bOiFwk3n79FGMQADLqndDpDBDpC+q/g+B6jYZ/xaMzaunQpGY2mTIZTLm2sotnSNUSYBrdfeAajcBUxhSDJU0adCaORdEq5fn0TXTfYXF9hOpERSPVmk3fffI1apUrnuAvAcBzg+S62J9uqVCuUyhWm04ClFekqMhsPWbu8zsnpgGAi3UFqNZ/l1RWGgwmlqpyH6ThjYbGN5ZiMB9JNI5zOONzfxXflGFqWhiYEQugYmmyrtdCi3x8znUWcHUr3n9WNJU4OTxkPhpydyGivhdVLOH6Val26fPQHXfbvPqJc0am3ZATZ/Qe7pGFEpVwjLeqoXq+RpTm+51D2pOvGh+9+BOkKly5vyOmJxwg0dN1AFPMdxxOEMNAtn63rmwAYhg15jqbl6LqsJ9d08EolqoXTjyYyHt19wL07D7hx4xoAS8srmLrGyso648LZ53YcY5oWw+GYZ25clzVZ9qg0akxGXR59/BEAr7+1zY9/9ie0G7LvaWZQ8i10M8Lx5HtGUcjezi5+uXIR0VatOFx/Zp00SYlSWWN5muH7PhubMnInTmMO7j+gXPGo1aQDURLLGjUN/WIthrOAPA5JE0gKBxpNAwTMZ+OifuuEwRjLLZEXUUBC5OjYxEmEYch+rW8sY1kGWZperK0sbZAGCaKwJcqiGc3mOpPhgOFQ1m+5WqK5WMextrALx54gTLm8uYJlmWRJ0dd5QjBLEBh0ili4jfUVTo+Oqa3JMcww2dnZwfV9Bn0Z0WYLl6VLG1i2S60h3YvSJGY2C8nsjDwvtIy6YGVNjp+8xscxVU+LrPo0T4uuOsdxHK6/+D26h7sX94p52CWNQt59921Wy4cAXFt3GcxyHm4PePa6jGuq2DpJljOZSjeY+TRAEyFpFJJzHhGWsXs8Y6mmoWmyr7snOb2hYHPjFj/56Y8AMHSBbjpM+x38qhyLIIhwXYvRUMZWnZwcce/N/48bS2esr0h3LLt9nfLKS8Tdt8lmcuyzBBJdIESKV5Y18Gg/YP8kJnIuA/D8Sy/jux4i1XCEXB9x+ghd1xglTSpluT4MyyHNLUajIaTSleaf/uHv8NIjXrgm+5BlCaNpTn8sCOeynur1Es999zskYYBI5ViYeYZjyfnoj+RYB1HOQt1kt4gmXKx7zCbH7O3vUiri0lzPx63WmZydEBaRhl65/FtPnk+4zXyOQdJn1cJnRpz9niY2j/vz5HP1t5+1im8PyvZdor6Jo1AoFAqFQqH49+KP/bvo1yW66uv8jfmva78VCoVC8eX5Kj9Dvy48bQzVM1ShUHxT+MqIcT5vE/CTm9sXr3jyjIvz8jz7cm8onmxBQJ4znUzYe7QNQL3W5D//5/8B3YDtIsrIdXyq9QanB7sAVJoNXNenPxqxuijjXCr1GkcHffZ3dnjm1jOy9VzncHefWqNBlslN3tlswrg/JC/6rukaWRZzdtZlNpMbv1s3rtK1DYSAg0MpvHEci6vXNjg9PEYXcvpsy8DUjYt4IMuxQTfJmHDlmhR/WK5GmqSUKmXsYhPZcGxcz2XUG2E5UgRRzg0sx8R1pEhhb3ufYWWEaQt29w4AeObqKpZj4dgWs5Hs18LSArpmUG+U2d2ZAhDNIzonh6xublEkghHORywuL7C7LccwjOesb65jEGKWZb+8UoUkFZSrOqsrUgh1enLE0tICYZRQK2K2ZpMxo2EPis309uIi0WyK5VYZDeTG/+D0jPl0xtSx0UyjmEebtcubbD/cZXVtpehHyqPtQ1Y3pIhHNz2SZIqGi1kIPTJDI88y8jjGsaRYKcsFWRZi6g5JLEVBQtPp986oFyIvNMHqSoP+lUX2D6TQw/N87t65x4OH27RbsnY0I2dtZZF/+fUb7O3K9zQMHVPXKdf8i/MMY5f//v/+A5WKnDPX96i36qwsNVlbl9eTZQm1iotpW5i2LV9n6cRRSpwIbE8ey6KAOBzj+nK+4zBhcdkAdPJCsCOyBDSdOMkp9EZE8xCNBN3QSDMptImiGF1YiCK+B03D0E2yLCUuspLyNMGydfI8RhT1q2kZeZaRJAlpqhVDZpHpdfQiEm426uJWVjAslzCW60OQYRkaeckjj6QQw7UN/HIdXddIo7hoK6XVqlKrOGi2vM6cgFq9yc6+rOlma5FqtUqY5DimXJON9hKm6aIJgV4IVSzXJRwMsWtlHFfG12mWg1Mu8/iO8vR72GeJLJ52PC/a0jQZu7R77w7luowWS1LB3//8LYKTf+HHP5GCkyCM2Nuf0KzbvPaBFEP95PkaQo8p+3I+brV8ytUFssmQpFiQcRwTzCKoOcyDc4EOnE11FjdXKHly/L2SRZbmGIZJlsn2HK/EbDrl/bdel2113+TlzYBWy8NryvtO4+pfMtj7BcngPqZeiPRy6JzFLDZNzCK2jwx2Tx3+43/5azkfzRa2mRNMOyQdGe1mRWdEWo249CKGL+8LYTAjI2HYG3JyKoVJ45O7/Owll7yY/8k8ZaVlcNSJub8rj/3lf3gRt7rI4PBtBPKYruVcWiiTxjF1X153syYIY3ERCZekGbaZs3+wz7UrV+Ux02Tt8gb3+3cvxGPnzxfBFwtbnoyeemrk1GcIup4Wb/VkW7kQ58mFF8/NTzbxZSPTFIpvD+pDvkKhUCgUCoXi28rXRZijUCgUCsVXCfXM/LfjjxXfqVAoFP/WfCXEOE86SHwe8pT8if+/+MlFO588/3PafMI0R2585zi2zeaVTQAG/RHj0Yj33nmXjXUp0AhmE2bTEkksxQdJnJBlOa1mA6sQPEzHE4RIWN9YZ1K40hwcndCoOji2xtr6JQCyLEVoJoOhFGeYOjz73LPESYrjSSFGfWEB3TAQQlyISxrNGsE8ZjaPSKLCkURYzKM5h3snAKyuLeF4Gp7nkhVDEkcCoWlYlonjSBFBNJtSKjeZDPZJi3HN0gTXrtBoFa4uZoptWiSx3KwGyIVO73TIdDSmWpFtlatljrfvU2vVLxxV9re3qVYW+eCt9/AL4cjCYpvTTv9C/NFoVBn0R2RJQHtZuoscHZySRDNKlTJuQwpQ1rw1uiddJqd9emfSxWd1Y51OZ0SzLc9pLTZZWVtiNplyuPMIkK5HvUy65pwLQtyyR7XRwPc1UqSIY/XyEqO+R4YUGli6TqabCE0jiScXRaPrZbIsJCtqTddsNMNEoKHlpqyLLKZW88izYmM+z/HKPt/93vcw3v5Y1slkTqNZpVTy6ffk9extH3HS6XD7uZuMx9NiDPew/RJbV9bod/sANBuLjEcPKPQhbN97yMN78IFnsVyMoe/73Lx9gwW/jFaIDaJ5zGg4pnt8glUIsi6trxPPAzRDjk2WRBgiIUsShC4FR5plkGYx5BqjQvDglpfQbZssyThPu7OsCkKkpJEU8aRJiG5oJEmEZRS3GlMnSmJst0IYyvVxdNihvdjE8R3SQgBkexUQOmEoBU5xOCaa98ko45VlzVkrr+mzAAAgAElEQVS2hdDriDTCqLbkuA4HxElOlmQkmez/nbsfcf3aJl6tyuDcVadkkccuWTFH5UqFR2f3qNY9rhbuRb7rMR705XrRChWSpnF03KNUa6Dbcp06no+h659UQvDb95/PE+R8loPObDrlzX/6OZ7XYjyStbqzvcOjO3/P3/zQxaS4B1gpz121EZpFvSrrMMsStg9DKo5ss73iYugRqW1j6LLvwoxZbVtomsAo5ihNMjR7jRvPPU+13pTHogRdN3A9lziV9RTOc+588AF5/w0AvnMlojPSmZrPsrD2AzkfvYfEg3sY5BfikZIHhqkznuZs78r5+HDX4OrzP2J5VTqAJVEAiSDsPkQM7xWjYZDWX8D1N8mFXKdJZtAbdMkFfPTWLwC4tRrRrjlMChccTQAZrC65rF27CYDX2mTWfUD3aA8ieZ6h5ZQ8QTAXuIVrU5Jk6GRcW5O1NA0ydJFRb5RwC0FbGI6pOjaGLsiyLykG/QyeWiN5/nvKZgTnz8vHYletEOR8fh0qvr2cf7j9tv0hQX2oVygUCoVCoVAoHvPp34+/bZ8PFAqFQqH4Mqjn4x+Hr7NDnkKhUMBXRIwjRP4pZxyBEJ/+Fv/ncf7a/Hd4DRdvIBDMpwGD3pDJWAovHN+kWlvFMk1Ojo4BqFTLoAlSQ27MTmYRK8sLuJ7HuTLCL3lcvbaB65V5+EC6v5T9Mo1mkzzPuHvnDgArq8usNGrkhtzsHvd69IdTGvUyeiA3/o/3j6mWTHTbJJJaCe5+9JBc1zE1gWvLTfcP3vuIS2vti2ufBQGu5zCfT3BcKbrQdRehGxydnJEVkVSuJdi5v0s4C9AM2f9SucR01KO5IB03zo5PuXnrFqPhjGeekU4/mgZ7O8fUGyWSwpXmcP+MPDfZOzhjeVm6Vly9ug7kVGo+rZa8ziRJMDTB1taW7JdlEcymjAfpRZTVzoNtVi+tEIUJ5boUWRiaRq1WIY5inCJ2adTvUy5V0FJ54fuP7nPz9m1O+z2MQjsxD2bSOWixxvF+p+iDYB6G1BtV0kKgYyFIrIyoEH+4pSamaRNNepBJEYTIU3TNIktjRCHiSLMIYepouo2mn8eEaeRkF/WV5xma6aAZ8Mr3X5Zze3jMbD7h/XfvXTghff+V75LpBo1Wm3v3fgPAYDKlNxxj2A6bWzJCq9N9yOXNdWYzWavthQbzICZKM97/QAoXVpcXOTw44Kd/8TMaC3IMtx/dZ31tnUsb6ySFEi2NM7JEI07PhVaQZQ7DcZ9Go3DPiRPSJGU0mfN//1//DYDrN67z8vdexDA1RCj7n4oQ3TTI80LckNug6ZCHJIVrk2E4GJpOEgeIog+Vmo3j2GjCIhfnwqEATRNYthTeJNOMNA6ptlcuxCAASRwRxRn7hw/kvBkZml3BtAy0QlARznPeeO19bNdmZUWK4bxmkzidYrlyDXmuge9VGA1GVMpSTJaR0xuMWFoqowtZUFmu0V6so5nmhSgvz5PfEuJ8Fk8TWzxVAFEoV/bvfcTp3iM2bizT78uIuzde/Vv+5hWTxVpGkUyHjoamGQhNY6lUiHGiOQYxs7ns+97BBK/RRTdAnIujEg3bMjg6TiiS49AdC820IM/xi/Wn5yHhPCKYJ+RFf3/9i5+z99HP+bMXZSd0s8LGjdtU114mi6XIcH72GkmUcjyMWGrq51eMEILOKOLVj2WtvPKDn3H5+m0cS/ZVaILJ6X2mh7/A14v68m/g1L9DkulkqVynWQa6MHjj9bdo2vK+tnXJpjdJCcJCaOXqCNOmvPI8dlMKKycn20yOPmTcndKoyTq3TMjyDNMUcv0CQtPQDY3+WLbVHSZEscba+ipWEeVXqrfIog6OZ2MVLloiBzTxOydIPdUlST4SP5NPuuE8eVyKTB/7LH2yfVHU9O/0zFQovoGoD/MKhUKhUCgUCsXn820V7f8hqM8ZCoVC8c1FPQ//+ChBjkKh+Dqj/Xt3QKFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKh+KbwlXDGgU/HTp0f+7K+Ak//av8XxV+d+xbkgNA1dNPC96WTTJImhHFMuVJi71ERD/PwPi+9/B0qZRmxlOaQaxqapjMdSVeXNE1IkpTjwy4ffihdcFzfYmVjiSxO0It4mHff/ohLa8tEMxnVE0YJQsw42hszHIyLfgnu9Lo8/52bDIsoI52M1eU6fqks3SuA46MO4/GIRqsBQL1W4/jwFNs28Arnj5wEyyrTajU4PjwFoD8MIE/J8oSyX5PXHYNbLjEaSdeVxYU2s+kUjYS0cIPxfJfRsMelzRUmg34x1jG1Vhtdq9M9lQ4eiysrDEcjLq0tMA+kk8Vw0CeczxkacrxWNtcJ5wGaptPvyWNLl5ap1H2iCDrHMnrLsU2SJMNzTSbnfVtewHAM7CIi7PTojGG/R2OhSlLEHcVpxqDboVEtUSlJx5PWyiqtmkEwT4hjWQPvvvM2i4tlrj37LABZLMdG0x1Efh7hFIOWo5kWRWIXYTKA0ANduuQAaEmM6XoXtRdFU5IoYjgKcS3Z10rZYhbCjWdvMRrKCDLHsPjw/buIFColWWNL7RaHhwc8uP+ASk1Gh2VpgtB1rj9zVf47Nzg57aOLBGdnR/ZrHjEPY37z67e48ewNAP7bz/8Rz/bZurrOC999Uc5Hb0Kz1SIKC4cg20SkkOPyzjt3AWg3KxhCw/Ut/Mq5a4ysddMyLiKcbLdCnkQXLjtZnpLHGZppk8ZyDaVZitAN0jBCK9ZtuVRCExlJGl1Ee1mGSS7A8uR6jMIaaZqSpemFlUeSZli2QygEk4FcH7ljsrK0Thpn9DuynrrdHlvXrjAZjylMlcjyCN9zSdLCISjLyJKc/aNTanW5jkaTgHpzgYePdlhakvFJpbKHoZnsPNrlxk05/o4j5/TL8lmRVOc/y/OctIige/+1f8CrLtHt9rn7oVTcb7VHrCy6GCY83JZrYblhUW265FlaRIdBludcWnK4d1+eUzJMNHJEbqIZZvGGGo5j0KinTOdycDpnKePhKf3ONrsfy7k1y1XKrsve7g7335WuTeX8If/zn1exfVkTJ+M2V1dfwjBtBruydnYenLLa1CGD0bS4yESwfxrwxn2Hay/8CIBnX/oBjisjsgC0ZEDa/RVVZ8okKdx5Ks8jLBsbi/lc3k/8is3Rzj7G6E1eviVdlE76IcE8oVyR89Jsl7DbW+j1G5xuyzG0wl1sI2epZWHb8rqH44TZLGQ4yzgbyvZfulkn0xLCwmVnNMlo1tq0G4sYuhyb0aDHfLhHubaIU4wF4ulmNp9+Jj2tFj7PPemzYs6eTv5EUNXjY+cdVI44is/jr1de+FZ8y0d9o0ahUCgUCoVCofjyfFs+JygUCoVC8Vmo56BCoVAofle+MmKcT/LH3SUUQDCekoTRRSzO4PSUSrVMGiUcHR0B0Ol2GY3GiFxuwqYIhkIQjMfUGnUAxqOYJM8JopAf/ekPAdBIcByLBLjx7DUAmq06cRyjCbn5PBwMsdo1JkGEX5EChF6/i2FAEk+5fVtu/Hc6YxzfYzAJcR25iXztmevk2fwieihLU3q9LpuXN8nitLjIiHGUMplFlEqy/aN+l0G/R7PVYlBERFXKZQbDMW4hqKjXqqRpTJokaLpsfzyYsr5xGZEnLC7JzefTbsrDj++xuNzCrxTRW+MZcZQznQbEkYwWOj7q0qh5zKdyZ97SM1wrozufY9vnOTkmGQ7VRonZTJ43GY3J85zFpSatFbk5b5tgOT5npzJ+ajaZ0OsYTIM5eSbH1bBMbr30AsG4TzyXfag3KqTZnEf39+icShFHe7nNdDZm0JNCokrVRxMGWRpj2jKyS2iQZzlkMUkqxzXPyuwfdLj7YJtmQ4o4Dnce8uOf/YjjQ9mWpunMg4B6rXIhsjFsj97pQ44OelQacj6EZ9DvDzANg+vPykiwSq3C0qUl7n5w9yIuzS/5xBl4tQUA9na3uffgPiuLDX7y4+8C8I+/+DVeuUoQzNl5dADA5sY1th/u8stfv832kRyzvUfb3Lx1k+99V25INtt1bNeDPGdxSbZvG+C6HsIQLK+sArCwskCt2SScjjFtKQpLsxRNNzDyQgxCiiYgx0Ez5XWTpkTzqYyrKjKW4jgmzmLQwPZkDWRxDHmG48nXRaMMkQ5l5JeQdS90nTzLcJtLbGzJ+YgmHdI4YTqNODzcB6DX71GrPc9Cq4LjFmIJEhqtKsOhbGtn+wi/ZNPIq0xnUogRzQMsw2B9fRnDkNc4C6aMJ1NMLcct20W5/uvfRjvHMuIuGk+p1Su88fYHbN/9ZwD+lx97jMZzfFew2JD3IsfN6XXnlP0coxBHkaXoImFjQ/bT9yzyLCTRSmhFnJIWGcRxwngGDw5kHFSOSc1LGO//hnsn7wNwv9cmDobMB9v8+HnZ3uaKy2EvoWTLe9NLf/U/ksQBk6N3iIYPZftZwmk3IcxMSmUpAPro0ZTd3gK3v/9Dtq7dAsCyNCrlCr2TbQDC419g0SMWLs2tnwKQ2JuYpk+nO8AqYrZ++YvXONp+ledXU8JUHltaKnFwFNBqy1qy6pu0Nn7M6fbrjE7uA9DwU4QQOK7GuWxG02A0jQninBtrsu4EOeNBRiRLgo92A9aufx/DNDh/fGpZQOfwPi/9yV+gF88P8ZmxZV+QOfVvxPk7fvGT9bFYR6H4pqOEOAqFQqFQKBQKxe+OEuQoFAqF4tuKev79+6KiqhQKxdeVr4QY50mngMff/P/DNwO/tLNODmQ5lm0yHklXmiRNicI5gpzV1RUAur0uumEQFC44bqlEqeRhmhb9QswSRxFra6tkcUoaSTeQhfVL7NzfxXU9dEtuSI/GU/TTHpOJdMZxXAcD0HWNPJfCAtuyWV5q4npVOh3pbhFMIyzLZmGxhS7kebqWkGagF2MWZxnNdg3bszk+kKKLhcUmnu8xmfWYTuWme5YbVKt1cgHNZlu2PxuTxxmOLkvj7OQYwzTxfZ+0ELPMo4xgPuett9/jJ38mBUeVmsfe7j7rrk84l+2bek4ap2wfHrK6dkn2Y3kJkUWEc+nEcv+jR1iWThLn6LoUcfiej2YaTEYjBv0hAGE4p73QIssFotgwFlicHHaYFeKJ1sISraUldh48Is3ksXLZJwxi5qFG0S36Hz3i2s2rXL91HaE/AMCyTK5s3SYYy/dz7BycHN0skRfiD8Ntk0YzRB6RC7npPg1CPr7zkIWlJm7h4uK7VfJMI0uku0m3P6fT6WFcc8jEAIDtRx8SzqZ0zzo8eCD7sNheJJzOGehD3n9LiiA0IyNJczavXmFjc032/6zL/fsPGQ1lX8+O+6xfWmF5tUmQSSHGT376U07Pevz9P/yKQVGv9VoD1zGp15e5f0++57Df5XC3zGu5rJ2rW+v0R0M8p8TqmnSDsR0XYRgYuk6lJK97ZWWRJI7I04xwJvuhmz6G7ZBe7PgbaLqJJiCJpKgqzQSeX2M+GyNMKeoQho6GRp7GxMUk6YaJaVrM57OirZw0GhNOBpRacj2maUqexsxnMVkm58gqLdA9OyOKYy6tLsu2NIM8SdFdD9OU50VhCE8IJhxLo9Eq02y3eO+dDwHYunYJ1/WIkxChF449lsv6RokkiRGiEL38nreqp7ud5AiRM+3LdVttLDKdxxztvM6f3pDrr1TKMAwd29I5F08kpJydTbAND8y8uMYM09SolM/tgAR5OsWqXCaZydo8OD5jOk85PIxYvyQFKJZusDp36A+nfHRf1o5lHvPylkmj4rLYljWg6wZ64zIL1/4SANN1iCZ7WJzgG/LeV67YTMY5zarFux/Lue3Hl/jun/05ru2TF25SuuEwnx5D5xeyreABYe5iLfwQqy4FO/E4IEkyHLfM3kMp9tm99wa311LW18u8e0e6dFWv+GysuVRbG/LfV/+CYHQI010a1WIoUo00zcmyHKO473iezvqKTxhmF/fps37E4VnC2UiKly5f/xHf/+lPGA1GzGfyntw9egjRgIXV1YvcR3Hh+/SJGZdubPlnPfMeu+I86Y4j8idK9QvUNE/VAD35fhdv+1gU9On6k/34/PdRfDv4pv6RXX1oVygUCoVCoVAo/jD+vT4rnP8u/1X/nKI+cygUCoVCoVAoFIpztC8+RaFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUHwZvhLOOE/ypd1spMdA8T3+4r/5U7wIivbEp+wrPn3uZDpF6DrjyeT8BFzLptfp4rjSCaJdb7B97wGlioy6Wd+6huO4zIKQsyMZSeSVfEajCaVSiTSVrg/T0YxOp4NpWqSxdIxwXYssToim0nmiXKnQWFhk0TFJYumA4Tg+SRIgKJw8ALNi02zVMQ2T8Vi6+JycHLO83CYMZFua6dCo1slSaLVkdJJuOeiWhe877J+eAhBMRkRxgq27RLFsv1ZvoyMYj6WTSbfX5dqtm5TLJYIiMsrKdaLTHgvtRXYe7gFw9ZkrXFpfp9asExXRWA/vPsBxLEq1BqOxdDixbBPL9ChVpPNElseITKO1tErnTEZGdU67XHt2i8SMLlyCDKtNGIRMRhPCWI6r54Pn+4jCuSaJE+5/fA/bMoil8Q6npx2C6ZSt65dJC8uWeTDDcl1ME1bXpdtMEiUIIXBLMpIqTXM03cLQNS7sKIROTkqWxWSFK4rjOSRRxt7OAWuXZQTZ8VmPvd1T2svr8nr6D9nYuMR4PGU0kPVlkTJPMlbXlgjvy7GpVl1eeOln6LZJryPHorXQZtAbkguN0UA60FiWQRQlbBdj7zgmSZpx7dozHBeRavMkptleYn3tEt55nBI6Vd9B0wTxJXlNJ6YNIruo6Z//t19SqVYJgxna69Ix5E9/9CNK5SoLC2U2N6UrTaVSJo1npFmIpsnbSBqNicVjV41pMMYKdRzPI5xKR6AMwf7eGZfWFkmK7B/DtNBMi1hAXtShaXgIoTHpy1q13RpEMUk0Jk3l+ojjiDSKmM8CbF+6EiWzERXfwnCqxLHsSLl6VfqACJNcKyKJDItgFuKVZZTR+tV1ojDh3gcfY1vyHL9UItM0wlhQa8sYOi1P0Ywc5lzcF/4QE5FP34cEgixL6R9ty7FxS9x56zX8cJv1ZVmbRychqwsGwnzsv5KnKZdXHTQ9u7BHsSwNTcvIUjmPcRhgxFPiTKBZ0vVId05IRof84LkaZ0O5aGaRoO4nLNRtWnX52qUFB9cEw9BAl7WvV7fYWP1TckOu5XDcJZs+YN67K2PGAN8zydOIDx7OeOuBHK//6b/8BxrtOsEkwC1i2ywxZvTgbzFTGS2WGCW06iuULv2QVMj2y80yea4xPOrw6qsysmuzGlCvWNi6zivPyjkyDA3NrlK+/BMAsnhG7+E/YgjpKgYQxTFJmhOGGXFhHOR5OlmYEaUaR3vyPn04cInNq2y9/KxsWy9hGiaaptE/ek+2P9pm5dJlKq2li2LIcw1E/ikHnKc7zjzpgvNUBOTkv396oxDy9Rd9EJ/68WOHnAu3J4XiG4r6hqpCoVAoFAqFQqFQKBQKheJ35avuyqZQKBSKry5fOTHOF/F4I1EgcgF5Ti7yi599elMzz/NPCHGetumZkRHHMY5hkudy81kTMAsmHOwfYxeRJa12m26vj1uVAhevUmU2mXKwe8DHH98HYHllGU3TaLarmJYDQJomNBtVhsMJpbIUDdRbVUq+T3xpFQBd5BiWRZhkREWkz/17u9QqPrqpkeVyk7R7NmI4HnN16yq6IY9Vq1U0w8aryH/nWcJ8MmE2S6jVpNigc9Kh2W4wn8/pdmSci21aGJpG96hHXIhedBPOTo+xXLnxf+3mTeYRpN0xs0AKScoln3KlRBRHpIkUT/R6I8Iw5KP3PuLqtRvFYGfYRo7j2RfCkdZCm/bSIuWq3DgfnJ0xmQSMhwOsQgRRa7eIo5j9nT38khzDMAzxSxXGkymDIhLMtbtsbl3Hq8hrJA0YDgckGni+fF2cJLSXVshyjXpTXpNhCwxdYzwM2L6/A4DvuwwHKWubcj7K1Qq60EnCObbbKOpEw3QqRPEUCnHU+x/sUCq7zOfaxWKaz2Pefv1drt+Q4pyHdx/RbFZ54aVb1JryunVd42DnmDRP8HyvqJ0l9nYP6Xa7JFEhaHpwwHPfeZYonHFyJIUpjmuzubnG/q4c01qrzulJlw8+uIfnFNFPOrgetNtlShX5np5jEacpYRjRKcawVC2xsXaJkxPZdpamvP3221y7tkUSSNHTeBxy2tlG6Bv0itp5vtognU8pVWqkiexrmpsgBFoRcVbyDYLxhBwduywjozQyFvUUTdcv1hqaTjSfgwChy7WWkKJlEX6tKduqVBH6JeJ5yPkS1nUT3dbxy6AVIpvRfIJm2CRRwtFBD4DZPGJtcx1Ng9lACti8UoXxNEYv4tJKpZDZdEYYZ8SxXEdZrhEORxiWjUCel2UZaaJhOQ6G+YffPj8dVZWTE80mHD6SUVm1lVvEo12ev2ZhFXFKG6sehpESJuAY8vXjQODZEEWgaXI+HEsjJyfXtGJsUqwwwYzG6L4UVdUXF0mCLpajMdiXApRWy6Be0xkPIxabUqlSKUkhmtBNMmNBHrv0PTTTIpzJWpoMdhDjO4RheBGhZwiN/ZOMVz8Q/Oyv/xqApbV1yCL0skEaF6K/g/8HO3xElMs4qLx6m9LyK2SZwC7J9aHlKcP+iLt37mEnUrSz1rIgz+j2U7KsiOzSSjz7vVfQDbkWBo/+Hi2NSPIcUdzn5nPBcCoI5gYnJ0U0mm1w0os5OtNorl4H4MaLL1CtLtJutyg6QefwHtPDD3Dm2wC4JR3dNGQNX5ABjyOn5FzLGZb/ffxMEk8IZHKePP88WkpcCGqeFkOVP6GtefLn+YUw6Ik2f/vlj1+rsqkUT+GbFFWlhDgKhUKhUCgUCsW/Hl+XyCiFQqFQKBTfHM5/71B/51MoFF8nvnZinAvynKeZCXzmhuLnGQ8IgYbgZO+ArZvPADDo93Ecm8WFMYeH0m1kOpuytNSk7MlN3mA6Ydzv0ah7vFQ4J3S6PYSWIYAkkpuzSRbi+yXiKMS25JDbps5sfEwYyrb8kotu2oz6Q+ZzKYJ4/70PEGjUaz6vvHwTAHOpjtAgnE+h2GS3LYtgMsBwpPPE2fEpfsklT2KSwiHGNC3yTENDRxPn064jtJxKtYJflUKVRquBa+ocHUpxhutYnB3ukGSCZksKIzzfoVSt01poMJ5KgU4wDslSge+X2X4ghUl5llGpLWBaguu3torXljBdn/lMjs1snpBlgtWNS+SJFBvohsZ4MsJxHOK5FL3MpgFRnDCfxxfuFkIT3PvoEaWi76apQZ4x6vVpFZvnzUaNpfVFxsMJUZgVfagQh1M03WJxabEojzlZEjGdSpeaVrtNmkOSpGjRsHg/CyFSEAa2J8f6uRcaHO0f8+o/vcHR0esALC9f4vTkkHfffgeAZ5+7TZyE7O4cEidyzloLdTIheO2Xb5AVAoHRZMLzL9xCvwfVwqlmb3+f37z6a2zHvXClsUyLQX/INJB9dUKf+3cfkScJ165vyrGwPUaTgObCAp2O7H9zsc2Dd97huy+/TFwIaA6PXKr1FtOJPGe5XUMDbt+4xj//6lcAnHQ6HB4c8atX3+CZZzYA2NraQORjEs/DNKWAQksTonCOsOTYzKOIo+MO1yo1OHfcEDmOZ5CTcp6Sl+UZaRwxn88vRFqm6TId9oDCtgTB6OwYQ3fQLTk2hmEQzkP6oyk6WXHdPpo+Zz4LyDN5jVkacOfDe9Rq1QunpW53yO7OLuub8npW15ZxfY/1y6uYlrxZTKdTmq0WURLR68nxqVTL5HFMs7l44SLy2KHr90OKJeT/x/MZH//mb8lCeQ/QhEmn1+FHV0wcR46F5WlkacKgl1GryteNpwnTqUajkqPr5+4/MBhDmsmbwHiWUItj4uEI37kkX6i5hJmHEBELDTmPugbzWUKUpNQbhZNMGJHrLra3glH7rhxrb50k7JClsg4/eP1VriyOGY8CwsIdqzcIuHdY4vs//ilra9IpajKe4LoGnaNHmPEDALz5HrPEgfJ3AFi++jMyUULXc6aFgGrQ7XF6csqHb/ycv3pZ1tjKksdkluO4GXFYuFUt3MZffYHRw58DMB/tkSQR46ng8FT2dfdY56gPmlXCctoA+KmF16rzp9/d5OpV+RyIoxi0nFpL3mMOHrxH9/5/R097oBVORQPBdO99OsP/gx//p/8KwI0XX8K0LX5X36QnBaWfJ475QjedT52rUHzbUR/QFQqFQqFQKBQKxR8D9dlDoVAovlko0alCoVAo/lC+gmKc85iMnPMt7qduJgoubAC+yPnmyZ3yTztRnL++0W4STOcEhUhkOhwTTedMZzHhXDonVKtlmq0FEHLjf9LvMZ8lmLagVisEIZbD4eEhZdfi7FSKeEqlBoPBkOW1JczCTSOcpwx6U3xf9mc4yBDDAF0HQ8g+3Lx1jflsRppkZEW/J5MpZII8TfG8QgSRZ0RxSBAUMVKGTqWxgCF09vYPZb8ETEXG3s4OOzsPAahU6ly+cpm9w0MqhtzVD2ZT/HKJ1XXZdpoJytUa/d6Qk8NjAMZjh4WlFLLoQtizvNrk7PQQ29ZYvCQFDvNpwGw2puE1qBWuNNE8JZqNiOPCISJOIM/ZebhDvSodMFoLTSr1Bo5bonNwAMDSpXXSJMK1uYgSC4OE0bBPEMjN+kqjSalUwfNKiMIxZDjsIPZjBqMAUbhuGJZBreKTJ1MWFmW/dLOCZfpMxrLt0TBAN0wm4ymLi9IZR2QRpmUiDJ+8EDh4tmA0mkEOnivbH496jEZ9LL1w9QlC0HTefucd7n3wsZwPR8d2HZplKNelICiYdLj7zpv45QaDkZzL5bUNypUGk/GIG7ek004QRPzj3/8Tx4WbzfVnUjzPoVSpYBhyPjpnXVbWV3l45xcSz9IAACAASURBVJjlRelk4jsWL7/0Inv7R7z5+lvyOscjgumEXrdX1EQZx3PodAZUSrIm7n18h0G/j9AErivFGZbrEISCyWiMbUthhGFamJaBXtS4o+VsXL4khTf5+boWxPGcPMuwitfFwZQ0zbAch1zIcY1mI4Jxn1ZRS2kYMB+PyLMBSXGPqDQWyOIYx7Z48PFdOdbzOSvLC8xnM9Yvy9dmJNz5cJsgipkVsXCbG8sstm9h+83iGrdZXKwjspRLq3K8RqMAyzYQGswCKQoLZzNsz8UsOY8jifjDECK/uB8N+x2O7r+OW6zt0WjEYJZyPMjwy/KcNInRdJPlNuwdSJGQ62qYho5tgWacC58yLFvGkwF4rkkQhNx58IAf/9XzACysbVDWTkiDHu1GsSYFhFHOeAqiEDnNgpxhbHPj6ktUlqXwMIvnkIZ4jhTe3LqiQ5hh103mc/meRycxVukyL714G7+IgHM9h0HvEH36HtpcCvdiwyIpvYS/8FwxKjYIQRBEHB+eAPDRxw/obP+G712bsbpcL85LmE4DTN1iceNFACqbrxDsv85wT4rh+p0Jx31466HO5jUpJFq7vcB1t0yj5eN5UoyTZjHBPKFaqxBM5D1lPumSRUMO3/87+XbRAHKBqNxmnss+XLm8SffsgEfv/5L/83//3wD4m//6v/LKX/4Vuml9Qo5z4ev2FAeb8+MC8cljn4hazD9x/Lec4H4v3c3jZ+3j569C8c1A/SFcoVAoFAqFQqFQKBQKhUKhUCgUCsW/F2rnTaFQKBQKhULx/7P3pj+WXHea3hP7cvc996Uyi7VxJyVKLalbPT3Tbc+MgcYANuaL/zX7gwHDgOGBB7A9aLvR6mXUkkiRLLH2IquysnK9efc99vCHE5m1sEhRgrrF7j7Pl2JG3og4yy9OsOq8930lEolEIpFIJBKJRCKRSCQSiUQikUgkvyO+hc44r0ZEufwDxW0okC+XqDV8FjPhgOG6BSbjMY5jsZlF2fiex2w8wswJBxfNtAjjBc3qEmlmdeC4GisrDSzXxXZEnE5zbYUgjZh7EUYW32JoFoZewLSF+0g4n9E+PaFSK2FZ4vqOsWD76gZ37z4gjoVDRTln4QcplmnheeKelq2jpzGThbj28nKL4/1HlOtrVMo5AGzLxHJt3GKeJIvvIVbodY+pN5ocHwkXn2qlQrlZZzYbApAmM5bWVyiW8gyGwq2l3qgxHU+wcxaP7wtHkkqtSr3msLRcYTw/H9aUOE5JYpVZ5iwShzGP7zyitSEilxIifC+kVCmSK5UBGM9CKrUig24fzRB6sfl8jmXaWI7CaCTGYjabMRiOuPrGVQC8qcckgo2tVdy8cHB5GoQsvJBczsK2xbgePT1lXjZYWmsRJkbWz4STkzb9Tg+Abm+MqprUGwVUXYzz8lKd0J8xm6f4c+GwUmutUCwUeee91+l3hbuM7Zpcf32H+SQU/Rn3MDWXeqWMn7n4rK40Wd+6ROwNuX3viZjbUhFVt2m0mhwcHgLwdz+5yVtvv85iPkW3hNNO7+iMnd1LzGZiPpIoolgsYpoWVi4v2qVojM7aXL60xs07nwNQLL3O8UmXyWxOISdcaRqNOrqu088cNsbjMY1GlZ9/9HOuXBLRYrXlJqNKmVt37tEbiH7HSYSmGlimiaqK+YiCKVGgouTE2EdpjKakKIlGnF0/imJU1SBOFxcxc1EcoWk2lmNcRD/53gJUnVFH1KWhpWi6QpqAbgjXlcD3ieMYz5tRKonn6HTucXzcZm11+eL6qaKytNzk7v0nuJaZ1aZGzi1lvi+gJCFKEqKbJlEWEZUv2qi6imk42DnxHGmaglvIoaq/Ox1jmj5zPyk3VljZfYv+WRb/Fmosr1/i4d4nXFoRz0cSxhCnJKi0h+K8VpKSr2kkaUwqyg5V1TBNBUUTA3F0GjKdhLxztYqti+dbUYvo+SpxOMObimfU82KqZRN3RSfN5qNUK1Gvv41dbDEfCkcmw3Uw7CrBRDwzBFPiJGU8Del1hcPR/QOT9//0fVB14lSMa/vokMmTvybHExRTuOWYrT/AKVzBdHJZu0wCL+Dp/hE/+9ufADAf7POv30lYW87R74k6dPMmhqFRbm1TWheuN4P9j+k9/nuGI9Gf01EFrXSVH/+3uzSXlrIxV7BsgzT18XzxGkySlHpNZzY8YHwgHKzi6WOiyMNLhYNSa/cPWa2sc3bSpmQ42bU0NrevUi7XeXjzbwH4yf/5P1OuV7jy/vdQFFGvCt88Xup5D5yve/cpikL6dQ5yqfjt87/76vvLOCvJqzl3l/mnZssrXXEkEolEIpFIJBKJRCKRSCQSiUQikfw++daJcVTOI1uUi03MlJQkidE07blPKjzbPBRb6l/eZPxy5NXF2cqzKJA0TVE0BTtncS+LEVpZaaFqkC84+IEQbMwWIZPZjJIpfu6OpxSKQmBhZpv8juWQonN02CZfEBvNZ+0zSvk8JCmDsRBjNFt5oiTi0RdPAKjXi9TrNeIkIl8SIh7TNJhNpzSX6oSxaL9mKNRrFlGQMppNL4aiVHJ4cPcTAHKWSi5fIg7mlKsiYkk1dVRdIRhMWN+8lLWrg6anDDsdrl6/BsCkPyKYzRj0ugA0Gi3aR202NxrYbj4bhwV2wWUy7OPmxYb0YDjFyRUYjgIMp5SN6xAvDHj8xSMsU5Ta9ffe5sZ7Lk+fisirwB+ysrIG6JydCuFF7M0xDZVGq4G/EPdMFY1+r4+h2cyzOC7LsbjxxnWKRXG/qTqlUqsThgmd0142NCq2beC6FrYjxDhsruHkbTTT5WBPxGB5ixn37u7x+pvXxfyvr3L7s4e4hRKFYjGrIg1FsyiWDHxDiA3SOELXFdonJ1x787WLqgujlEYrE0uZ29z85A5rlzZxXTEOubxDtzdBjaOLyJq1zQ26/Tm/+OgOly4JAdj3vvcep6cDdnZ2GPSF2KfT6VGt1dm+tH0xDou5x61bd4iy+KxSocigP2E4GNGoCyHB0fEJcRShRAHLq0IM1W6f0mis4Fhb56XE0nITbzFnPhXxbL3+kKXVVVTlDt5CKK2mM5+19WWSMLgQAySpQRL6pKkQe2m6hZqEpEmCootn19A0SBKsXIUkEm2NEoVO54z1rVWUVDzLlmXhj05JQlHj0zDEtCqYTh6S7MFNYgzLxHHzaLoQKlWbDbQ0JgwWRJ5QpbilErpm8YM/ajI8E3UdLKYoikoSB1mdl4jCGFWPyFVEPakaqJpBioKeicLSCBzXQXlFjNCvI0lE386FPOfrlao+E2joqsbM0+h0hdjEKuTRzQKTwKHTFvF11VaBOFZpD3yqRdHvIPQ4PZux1HDQxPKE78eM5gqmKa691jRIGiamEhD7Ylw1u4XhtEi9CVYm5jPNCEVLQNFINSEAwrmGnt8mWEw4X1dNq4VCxEWcYJqSJim/ujtjIJY5quvfpZwvEIUeXrZee+M+kT/Dz++i5rMaLlxGM3Oo2ZrfPT3m8PCE27/8CS1X1H3tUkSl5JJEMeWy6KSi6hRbr1G/8sfMMqHAcP9Djk4X3D0V8W9v//DPWV9fQdV0hv121keNNNHotQ9RPCEuWow7eLpHNG3jLURbnfIKCXV2L30HgCiFFJUElUkWZZV3C8zHcxJM1i9/AMDJ3sf8l//tf2J5e5dyrXleKBfCmvS5nKrnZV3n4idFUThXk12815SXIhmV88NfIdRJn/tt+uycZ/V63gYFaZInkUgkEolEIpFIJJJvM39xfPNbL7j/trdPIpFIJBKJRCKR/OPzrRPjwLl7wLMN6pT0K50ontuzfMWm+IXa5uvvhwJKiqoprG0tA1AolAi9gCRNSTIBzWy+oNsbYJhiA3w0mrDUaqLpOooqxDjTeUgchVTKZVRDDK+uWxBHoCSsrApnBpUUo1wgDDLBQM7GcXN0zrqcG9eQJnR6XaqVEnlXuI24lk6SJqCn1BtCaGPaNoam8v3vvSnOU3WsXIlH9++z8IU7xObOJeIk4vEX+wSBECC0WnX8dEohlzA4E5vUTqGEY+vs7OwAoJkGo36fIEyIs/GdDM5wrByLmcflq0LEE8YJi9mM+aiPNxSCjcVsTgJUGlUKZSEwap90qdXy1JsVAJLIRdNt9h/vo2mi47phMRwMCYIQzRDj6roa5VKJo4Oji83n2WTKxsYacZyJOqKIs7M2a+stFlMh2HEsA9txOTk5xdTFef58jrXZhLiAZYrrD/s91teWGPQyl4+kxmg05vDxY4oFITgyTB1DUyBNMGzh4KFqDpoxo9Wq85P/728A2N3Z4O69AzbWGgAsrbQolHL0u0PCzLUkTVNGoyGOY2HnM3ekVGU46mObKU++uA/A+x98B0U12Nvb54pzBYDLr+1wtH+I73nZdCusr68xHk/oZmITPU1otlp0O22GoxEA1998nY9+/gn9s1N++Ed/KPqka8znCybZZ0rFIk+fHmOZNkpB1Fwh73Lv/gMKjssiEyBEUYCCRhxHaJlTzeBsSJLoVGuik6qiQxpDoqKkmbAuSYhDjyiOCDwh9ikU67i5InHkYWXjqugppuPgFjIxVqLQPdqntLLJYiz6bRo6YQrFYo4wyjxu0oRgumDuBwxH4vrDWcDaah3NdoljsY5MRyZ+GHN8JMRYmmpQKBVIdRMnU7Pky3kWMw9d04ji7DnN59GM327ZfFmEc87zP6dpiu+HRJlwZ2Nlha3BBn/14Bb/9aaYWyWXYheWOGiH6Ijnu6DNeG3dIZ+PYCHG2vc8QtQL7VIhZ6JrCn6QoE+EwMUqX0YxKljFLUJfjGsSB6iqTkwesyRqTrWr6LqBabiEsbhnFHqE/oDz10hnArPhhLcvW3x4XzzLipPDLRQg9VEy9UismNhrf0Sl2rhwJrLsImEQMR4OADjdu8XRF3/He5egaGeuY47J3Av55N6QN64IgcvG1XfIr36XOPSZte+I9ocJHz+Aq9//gfjMxjKqrqOqCtWKqKfDBx9hhvsoXhdNFf2xghRVWaK49iNyzqo4lisxHQ2ZzcWa1ut36Z2dsP/4KWm2Dn3vD/4AUg1btwg0sZ54FJge3ubWL/6eH/7bPxdj8fXl8ZUkSfKSEPV3w3ndnb83/0Hd5ySSf2TkP4JLJBKJRCKRSCQSiUQikUgkEolEIvl9860Q47ywAZieOwO85Gbz0iahEOF8TTzHswuSkr6w4XhxjfT5Tyn0ux0OHz8C4PX3v0P/bIhpO5RrQizxfuMdlCTFypxxdMPGD3yeHhxRKgsHiZOTUxrNBq7jEGeqmlqtzHA4IY5hsCfih9ZXm3R7XbYvi81u4oQ4nLOy2iTKoqw6vQ5h4BFHOaZj4WQROwb5vI1TKKFc9EUliRPsTMiQKiqk0GgtYWbRTEqaoCk6xbyL7QoRj+976FYZRRNRQQD+wmPU8y5injaWmkyGY2aTBZqZuZuoOrZt4IQOh3v7AFx+8xqlUp7jxxP8TGA0Hc9xCzkGZ2esb20AsJj5RFFEpSLGaz6bkSQJS2trqLqY+5PDQ+J5SGOpgJ4JaM5OTgkWAaN+n3v3vwDgrbfeoFitUCqJDfbjwxM6Z23GozFhIq7l5vOYls7OaxsUshisxWTEfHQm3DkCsRFvmi7Vco6f/JUQ1Ki6xfJKk82NVfpnvWxsJmxfWiFVQNXEo6OaJrYeoxkG2zsiLstxDd59u0D76AkAtz+9Q7NVp5TPM88EKP3+mMloSuCFgBj72XjM4cExW1vb9DtClBCFAe2TY4hDTrPoqsl0Shgk1JvC+SPvGNiGxhs3rnHWFi4fe3tPaM09dF1nMhZCm267zZtvXQbljYv5bq2usvfwc9Rss388mbLz2hUOD08xAyHOaDTKoCns7R0ymopjJ8fHVAs5lDRhOBFChflkyMr6Kkqm/lBISeIERdUuXHDSNCFNU+aTGbadRUYpkEYLcqU6upW1o9tmOp0R+kJUVaovYzoGqm7i5MXYe9MFdqkqYngyR53QC1BUDbdQIMyEN2GUoNs2mq5Rb4kasC2F/UdHF8/Hytoqpmnx0S9vsjwUTkLX3rqOksRAynwknGqK5TLCReRcRvKb8aLgIXm2Hp0LDxUhBPTKYkxVJUJXNRynzuc9IaIzowLpREfTGtiqeNaGqcvf3+syWKhstMSxlaZJlKjYlhiv/QOPjVWLD+/32FoXa9iN5mU0u0IQelhlIcCLY48w1NCsFfSiEKWomo5TaqECSiRqII484jhGVcTz98s7C6pmRGXbwrbEGjYYHjCfvUWlViaJxbGV7cuomoaqqaRB5rQ0OMWbj/jwp38BgJue8QfXXHIFi+lc9PvekxHXL9V4+8Yata13AbDq1+kPpgye/B35RNSKH0Zgt9jZFc9jnCoEixlEM4KzXwBgTO9haAmJZqEXLgMQKUuU114nUXMXsWppFNHtjbj1iTgvWpyhRCOMJOB0KD7z//4/Hd5494fknSKFplhbv/tHf8Jf/acnPPzsY773p/9OzJthcC7Jef6Nlb7Cleb599SFECd98Z2nvEJjmipf/u8X3nNJmt38eTecbxJhJZFIJBKJRCKRSCQSieRVyC8DSCQSiUQikUgkkq9CZlNIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCS/I74Vzji/lue+7f+8C86vT9RIn0Vd/dqoKmi2lnjw2W1ARLy4xRJqCmksXDBiPBxHJwmEw8No0GUyhlyuiOuK6KpLO1uUS0WGwzHHJyICp1YvUaqU+fzhE57sHYj7qQbD3oC1deEyMR5OMEzo90ZEmVuLohoYhs1sEbK7I5xl4iTAyuWIE4jnwgkiQUVVNeJIuF2Ylk7sz8m5DqYrXCuSOGUxH6KlMU+fPAZA02xMy0EzHQzLyq4Vs7y2RK8jHFY+v3OfIAyp1qoomdtMtdlkOhlRqVUZdDoA/N1f/jX5Uom33n6TO7eFc41pWwReiKmbjPvCnaW1XEM1bB49fAiAiobrOhRKLq4lrl+v7tIfzom8KXa5KNpqOEw6AwqlAldvvCYmTVVQDR3NEHMbRT6WaaMqOrYt3CTcXB5D94ijANMUfTTqS7jlFv5izLAr3GZm85DXrl/lP/zH/17M7bDD4dM2umkym4k5GvbnJJsmig7neVMRc/q9U+ZzjU8//RUA3XaP3d1V3nn7BgDhoz1y+TxenBAl4rxyucyw38fNNZj0xBjuPzokDkIUVeG9D74DQKVeY2UWE4URcSTqotsZ4roOUSL6fdoZcPT0Vxi6jm6IGhj0B/R6A1ZWlimWRETY1qVtAm9OGMUkSRarNprQ6w+o1USklh/45PIWjmMxHglHoE5X5fS0TamQI5cXMW7HT9vcuHaDwJ9hZlFilY013EKeIHs+Et/LHK5ikqytWhKQKDpRlKCqYo6iIERVDcI4QEnFHAXzGYbloiKuFU7PMAyDKIrJlYVzTRj20FSNwWDIfCocVizDwHYNyrUGTknUThglqKpOsPBJUjGG+WKJ3Ws23cxJKE5CUsXg3fffgiySaj4a4xTyzEY9lKwdtisiy+DXOXJ9ma+Np8r+jKOIaD6i3zkVP6sO5WqD9z744GIs/EhnMBjh2jr1LP5tMB7y0S/+Kz+7N+LmQ1Gv/+4HJepljUpRzM/GmoKqpLx5pUy+VMr6DZpeQjMTIvLnHcNUHZJEw8hctJxiBU03mfcOLvqt6zaaaxB64tn+wx+9RtS/y3jos5S5F/UPHnD7Q43K8i6OI5y7otAnShWGJ/e4XBfn5o0pp12fN9fESDSrLrqmkBLjOKL925urFJprOEvXMPNr2YClfHHrQ0ZPP+PatnA5Gs8SmssbF+elKcxmc2wtFA45gG7XSd11zNwalQ3xnE7HE1IUFGJO9vcAODo6oL1/i8UwcwBbK5EkCputCpO5aOv//ldP+fTmr/gf/uP/yPbVSwCcnXXZ2LlB9/gQfyai3YxS9Ru8s77MhZuSwkVE329zDeCVWVnSDUfyzwn5jVSJRCKRSCQSieQfh784vvl7u/efrbz9e72/RCKRSCQSiUQikXxTvhVinBfjNtKX/gTSVETRKMo3jKb67bDzeVY3RVSLP/eotpaYDcd40yEAp8cntI/aF3FHpWqVwFvw+NEjdFNs/ObyeVJFxTDUC/HHcDCk0Wxy7douuUy0Y+ddti+tkyuIDWpV0ZjPZ9RbNbpnQpzx+PFTiuUST/efsL0pIolGoyl7e/tc3tlmb/8YgHpjGeLFhTij2aoTJSn+3GMwFhvza2stdE1h7vs4tp2Nq4E/9/niiy/Y2d0GoFaroRsxYSY2mU48VtaWCAKf+1k81GvXLhOGEE0XpNk8lCt1Ks0qxUqZzSySyvc8lBRm0wnDfj/rZ0y53qDREv2ZjCegJIw7T0lyohw1KwciHYgUIdjYvLzMdDqkfzYkb4h71lp5HMchCkUfbcei1x6QpjHlupijYjWHN5gwGoyprmwBIoYnReXu3X2KuUygYznMxiNmC3Gtfm/A7u4GhUKO2WSUjXOLKAxQDZM4yDb1TZPVtVUOjob8+E++D0CvPebzz7/gyYEQVLz9zmt89PF9FguwM4EAyZR33n2PIE4IIjHWO2tN4ijgyd4R97pivLr9IYcHT7FtB28uBCflUoF3v/s2dz57INrabaPoKkurq7iuqCfLdtja3uDp06csFkKA8uDu59i2xZUbl0mze7bqFRxT55Nf3QGgWi4xm81J05ggEuKP/tEJChG7l3apNuqAEDk9ffKUre0NhsdtMbd6ilUsXkR/lcp5kjAEXUdRxZwF4xDTtijWWviLLHpt4aPbJq7rEicikiiOFhQqDTStAsBieIDvz9GDgDSLO4pjj1RxaawuE2bXUlBQVYXZeEjgi2tNFjGlvImmqcxGi6yuZ+QLNoYl5iMBgiBA01I8T0RqLRY+caqQJDrFmhClKAoXC9bza9GL8VPPeJXQ4dkxhTQ9j+S7+CW2myPxxfy7pfeYDibsbm9SKIs2BNGM+Sxg/+kBVl6Iaq5vrlCqFLl76w5HT8Vcng1jNFXFNsQ4VCoWmglFzUDPCeGKVVwHo4iuKKDOs3FNMXQHtBx2SdxT01Qib4Sq6AT+PGt+SpJCEgkRXW1pG0+dYOrHnMTiOarmPdbdB0x6dznsiH62ahbd3oLtNYd8Fn2XdxR21y3O1SJeALHqUl9qouWEAGxp6Qap4qCoGnEmkAyDCZeWPDzNIM7WrMU8II2njIYi6i1XKFOr1xn22jhr/woAx3UxrDyKamBmwj11GjEfB/SHZxx88SkAR3u/4vs3XIqOWE+645huL0ZTYyaeqMONFYujfof+yR7BQoyNH8SkWEzHE5JzceVXvLNemP5XfEThWSTVy++/lPSZKjVNeb7cVJQspPFVkVXpC/e6uP4/wHtV8s8H+Q/eEolEIpFIJBKJRPIi8gsBEolEIpFIJBKJ5Ov4VohxXuQV39JXfls/gF9zp5c2NhVVYfOycDa49dEnVJeaFGsl4kRsus6DU66+cZ0kFpvbgecxiGNMy8HUxFAW83kGgxEF12b3cibsCQMsy2TYHzObZqKBNOHB0SmXdrazXqfkCzksUyGfF4KK3Z1Naq0GO7ubaLq4fqdzSGpoOOUaS6tiQ9p18wT+HMvJRDa6RqHgMBqMOHoinHhqVReSGF13SFOx+RzHMYqasLm1ia6JY93OGXFUIorE2Fg5lwQF13W4/NoVMQ7zBZZlcnxwip0JYxqrS3iLBSQRjivcWSxLo9/tgZJebPL6QcpkPMPPBCIJCZppYpSaBN5YtMub0esuCLyQeE8Ijl67vouqCmcUyxJCmNODBblSg1JVCAZKpQKnZpfxfMpqeSMb5wVJPKC1VCONvOwYjAdjpuMRrZoY/707D/n045v8yZ/9MQDTqcdkMmW+8Dg8FGKTOEnRjYSaXSVJk6yKVHKlOtfKK6SqONap9+iedYg8USef3XrM2kqVxtIqbkG4tRwddGit1omiEJTsWnHIr27eR1E13vtA/GV+dWsDyzI4eHLI8vImAJs7a+iWRpKKutR0g2ajiefPabe74jOXNljb3mQwGuIvFtm8zdnY2kAlgaytcRRRq5X50Y/eA8A089y+dR/DNPjzP//3YpxPuvzs73/G3FugDoUwyXZsLl+5gm7olCqiT4cHx8zmEffv3gdgZ2ed7d0rECeYuhA9WW6ZmJgwDiDJHFZcl4SYxWKGNxbX10wXzbLIF8XcusUW/mKG4xaZjITIIk1VBu021WXjwmVH1TTCMCJNVSYjIaLTrCJJpGFYJoWCuOdsusC0bPKJEN7ohoWimChpSLEk6tcwLcbjKaVygXJDiF5eUg5e8LzQIk1ToihCURS07Ll6NQqK8qJgR0Gj1FqhURcuNaOTJ+Srq0CKH4j6TZKYSqVEqVLCWwRZvxW2d69iWzmEtAg+/vwe//77ClYmeEkSUBIdXVdQNeHwo+oF4bejF1DCrB1JiJarouoOwUQ8k5phoqkqTq5y4a6imQZxMCeKM7GJu0Z+q4ravo0yF65gdcasb+ZQlJAbN7KxSExuYGI6Lp2xEEOFrk21Unjm0GXWSI0GhpZAKsQ+Vr5J4M9I0bFM0f7IDzDLm0SzY7SZcDna2TAZ3b/HZ78UgqPv/OhPCb2UJNHQHXFM0V1QdGaTMZ22WJPPTo+49cnPmI2e8PaGuOe1d21sC9JsPSSOqZUNFBJGmbCrWbA4GShMPQ/DE2KcVIFypczRXoqXCfxKQnn1JeHWVwm5npHySkubl3/10nsyzcSZrxL4PDv5ZaQYRyKRSCQSiUQikUgkEolEIpFIJBKJRCL5XfCtE+Ocb0y+sIH4nJPEC5FVqSK2E1/aIH9eZKMoSuYN8GVetQHqFsRmrW0b9I9PUA2TfkfE9VQaZSrVZ9FM3dMzNN1A13XaPeFkMQtC/Pkcr1xgbUtEqUThnNlkCGjUM0cYw9BIU5XDfSGWKdcK1Go55tM5ubzYDHCKaAAAIABJREFUkHZzLq7rQBiShGLj9/KVbXTDZNTtQSYSUlWIggWhl8UpjaYsr9YwDJvXXxeRTpaTIwgWODmT/r4QbJi2zWQ4ZDwcY9tCgLAIfAzTxso2xUuVEqZj4jr2xTRMRmP29/ZZXm0xGQrBgz+b0Vpd4eS4zaAnxBJbO1s0lpZoHx5jGKLUht1ToqiG44px9ucBtuOCqrMIxEb2dDRkNJ7gODlcW3yu2+1x9cYuy0sl7t8SEVexohD4Ifc+uwXA+sYyJDEF22UxENEwppLDtF1IE6ZTIbzQdJPPHx/y1jtvX8QPvfHmNT69mRCG4jMbG+vkXJs0nlOvC0FIpVrC9wO86ZxcTghQ0jgmiALSJEDXhDNHIRdz5comn3wo3DV03cBUEggXFLOIpe7JmEmvx8HBU25+eheA1a1Vbly7Shyn/Opj4T7w6cefsL6+yc7uxoXzURAs+PxBm25P1KXj5rFNk+Zyg7t3HmTj3GU+XSb0fC7tClFYt9/n5KTNg7sPCHxRK2+/fQPHtYhG4ue8a7K83CAFen0xt4N+j1KpyOHRCbouaqder+K6FvPFHDufuay4DnEYEWQipIMnR7RaqxwdHhBnbb/++nVQNRQFnGIxq0ODNI2ZjsYXIifTzYGqg6JmPzuYWc2UrCYAZ4eHBPMxcRRimEKIFgY+3nyCaTtUl9YBODk+Q1dUVBXMzMEqjCZEQYhdEHOrKiqGqWOYGmp2T1VTSAjJFdyvzcR7lfuNqqpf+fnnzszWu+eXuBg7X2Pr8lUA7t+5iWmtoaruRcSZpihYtkmSJtjZcxpEMVEckqoK115/HYDh8ITeYEa9EGaNUhgPY9bXipjFVQCi2Ee3HBbzEbYjXIi0OCLyZyTzEX7m/mLbBk65RqIppIqfjXWIZedJVTH2uqYRhTNyZpUbK2K98iZ93GIJRdW4GBHNRNMsDLNCMRK1YuoOqKCdj1saE0YJmqGTZoKpMEpJYlB0jVjNznNsVH0dTYkZPf2p6KY3YLWm8LTzEQD3/vYIvXIdK9+gURexXuPxED/QePz4HmcHT8R58Zg3thI2Lpn0sufBUHVCL0HTRV1WCgphpBKECVsrYuyPOhGtmo2SpvQ6QriXoJAr2PiezzgTjzXZfqXURVHS595RCjznhAPCrSYV5fKKc5WL4y+/5y4cm74iherVjjwyskoikUgkEolEIpFIJF/P78sx8/y+3xY3mm9LOyQSiUQikUgkEsm3l2+yYyyRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUi+Ad86Z5yv5OWkDmGJIywlviZZ41WuFV+HqoqLrW1v8cXtO2xdu8byhnC48TwfUuHIAghPlThiqVWnWCsDkMvnmQzHPNk/pLm6LK6pucThlEq5eBEHZTomqqISB8KpQTNi+t0hxVKNzqlwUjg+PeLatR0sUydNhSvIfDakM16Qz+fxfeF4EUZjTMNknsUR1ZpN3FwObzFllrnlqEpKrlyltawyzFx8VFVBIaZSqxDHmcuOpjEbD6k3W1k7HTRDIYxj5lMRD3V2ckaz2cDzvWdOI2FC77QDmoKWjU8SJ+SLOcytdZLsWJsUb+4xyNpQbzYZdLvEgUepJlxKhsMFhm6QyxfIzFPQEo9J5zH15W2umyLG67OPb3F22rmIAppNPExTx/d97t66A8CN6xuUakU6nSnHZ/cA2NneYHd7nSTxKZXF+OeLeT7Ifxci4YDx6ce/IolDiiWHYrku5t+PMU0DP0hw8qKufH/B0eePMF2XYlU0djIMsXM6mR8JehqwvLyCa2t8+EsR4RSkNts7qyytr/H9vDgvDCL6gwFJDKYpXDfu3n7IcmsFz/M4OROOTIVCjnffe4PxUEQIBX6MbuocPD3CssQjbdsWQRgxn3l4c1EXpmbQPjmlUilTbzZE4wyNRFFIY9Fvbz6nfdphMBpTLoqa296+RJzC0fEZmiFcUTRd5/at+6yutBiORLTU5uY6P//ZRzSWhXON47iEKbTWN8m8PTg8OuGsfcrrb13FaYjrh3OP6bhN7AVomdOLWyjiFsoo504pz9l4nDuAmJbJhJj5ZIibzxxuNBXdtFE0Az2z+1hdavJ0b59c3sW0RL0WSnnSJKKbxXp5/pzNrRX8ObT3xTetiuVlIsWmVK3ymwblfVNnnJcNdxRFhThBtUVd1moG/ugRbvU6SeYulCsWmU2mJHGAVcjcbHSV+TykWanhZe5e27tvcnT8MVe21OwzwpELu4Bqixg3XbcJFz00VSfhPLpsgaapWFYZw8oapsekmk3kT1AU4aKlmg6zeUgSijpUbYvQm2DYZcK5uFautIaRy6OolugbkKQKqgZhnGLoRtbxFN1wLuY29mcoqUmaKCjntTk9JYlGmLp54RKE4hClGnbjDeJUzK3ff0QxfML1gnDHSpMe7cFf4w01eh3h4qMQMxr4FIIFrRVxz3LBIJ8zKRQSFFV0/LTvM5qrXFnL1hgvQVFVOoMIUxeT5wUpg+GYOIopVcR7wHJyzGYjbENnPpt9fRkovOj+9nUf/bo4q5dfdb+mZF+4lsKFSxP85u9Nyb8c/mzl7d/bt2AlEolEIpFIJBLJ7x/59wGBdMWRSCQSieT3x18c35TvYolE8k+Gb40Y5/nNP/Hfyis2E19U5KTZ5vGrrnH+80Vk1TduifhkpdWgdNpkNppQrAoxhmHEqIpCLp8HoLG0wtO9x7g5Cx0RpWLpNmbTolApXWw0f/HoMa6loxkuC1+IGRIlIJcz0SsOAPPpiELOZTaf8fRQRFctLzdBNVAtizgUYplCqYyua4wnMwZZFFOtVsabq9SWqlkPApIoECIVTbTBcB3iKAVFudgw7pyeoQDVVp04EO0f9PqMJjNUvZeNccjK2gqnpx0CT3wmTRI0w0SPE/LlkrhWp8PB00MuX7uM44qNbFUzaJ+2iaOExpIQaJSrde7evEu/383mSCWKImzbpFgREU4f/OEKpwcHBGGMH2TxMNUWC29Gvz8jzUQW61vrDDrDZ+IfFFRVw7JzXLoixCaleglFVfACD9sUY5HEC3Juld5gRJKK9uumRqVSoH0i+q3qOm+/d4P5ZIpbEHN0794TarUq89mUBCGCqJSLVOp1iqUKi1C0NYx6KMDu9goA77z/OmdnXRaRSqSeAKCpMfV6lcPDJ0ym2TxWKrRPz9je2eHw6AiAja1tti6t8fHHn9FqiPF5//0rpIpGzhXtso2UUrXC7Vt3GY1EtJSbc6mUpzSXW0wysYyq68ymM3RdoVEX8/HTn/yc1lKZ3UvbAEynEyoVh2q1RK8jRGHewiNOoFiq0Dl7AoDvx5SrNuV6Ge1CLxOzuryMngmJTMtgPh7yf/+Xv8QyhAji+z/8gN1rVzAdl8VCxJItBj3mwwOiYEpl9Zrok+2QplxERj2vNDgXumhKgqZqTAadi2fNLVZRdIPI9y4eetUyWV5fw9A0xiMhAlOSmCRVsEyxBObsMkmooZkGhZKIcFosYjavbqJqvzsDsRfXqPQiSuj536uWRWVpV7TTO+Pg81/Q6x1hlC+LsXG20IwQzbAIF0IIUygXyOWLxKZDLnseFGuf9iSlNxKRToZhYqgphruNkRNrRRQFxIqBZlok2RqgWxaqJiLCNFWIUHTTJU1jIgU0XYh9VFVnEimEgRh7J2/gFEokik5OF2tMEoOGSuRHxEoWE6fpxBGkcYKSXT9V5iRhnzgUIps0HJN4MyKvz6J/KI4lc9IkQNW0C9GIpljorsNY3yQyhIAwt/tvKG0OmXeE+O6jn/8Sfz7mjdcs0MQ6SpyyXLf49PaE3Q2xnjuWBgp4fsr9R1MAdnby1OsaSSZWPOmmrC2pVIo6IMQ/9mROuz9l5oUUEP0pVWtEacxkvrio4effXi/WgXLxm+e1pelzAp2UNDv+3Psv/XL9PI8U1EgkEolEIpFIJBKJ5J8r8osCEolEIpFIJBKJ5J8C3woxzvObhi98W//isBDmpHzZHUO4Cjw75TkDDVJFXC997kzlG+5PaprO2vYmTx8+olhJLtqpmyaGLjZh22ddcq7D0uo6uiE2YcPAAxV0VbvYNtVNlZP2Gc3lpmgU4DoOhm6QZpvRSpojjmNUXaNcFkIP2zE5OxugEuDa4p7FYgHLLlAxXMJYnDtfxDRbeUol4bASBAFxGJCkKovMLUfTLRQidE3h+FBsbhfLdfKlEoG/4On+PgCT2QzXdak3hVhjNBhz/94e1UYVRRUb0qPRhLnnYxoaparY1K+36hgG2JZBFItBbrd7qCS4BYejp0Jc0lpaYmNrhcaS2KyvLa9w8HgfNJXjAyFCchyHKAwolisMOkI8EYQBcRyz/3CffEW4hhiGjqkl1JaWsraOKJZK5EtFLEuMjZ0TQqbA92ifCmeZ27fu8YMffMDtW7fZ2d0C4NobrxHHKYYm2r6xvkIcpiiKQWaAQd42+M//6f/ivfffxdSzTfe8y3A0x7IV/EgITgb9EZbp8vjzrM/Lyyyvr/OLn36ImooxfPP1qyQkvPXOW+ScJwDcu7PHWafH0kqTSiaYqlRqoJhUq1Ue3r8LwHfev4yi6zhuITvvHpPZlFqtwrVrrwHw+PEe3bMO+VKJ7kAIdHKlIq9d3iFVFe7fFQ49hmkAJnceiDZUymXiMGJjfYnDJ08BuHWrzdXrb5AEU/74h1cAsHJlKpUygR+g20J8k6YJ5WqBB5/vifHKFwg9n8l0gW+IfuuWSaVWIZiN8edCSBIHU0hDNEUlSTJ3liTBSJNnjiHKl8UFYRiSpimh55OdRpImpDGomkKcHdR1m7k3RFUS3JwQkihKgqE7xDPhHOUHAUXbIE5Shn0hQqouNTAck+cXmK8TP/w2nAsGz9e98aBD9/GHJJ6oVa/3gGoJ9OgJsSccVqYHh+hOkSh2US0hyKrUKpiGTaykLDwhvmnUm5yVWsSRuJaqpliWie7WUNXMkQYd23JRoogkc8HRTBsljgn8Kf5cCGiiJKZUKaJgkGYOPakCtXr+4jNpHKKZLroKCeJiSuiTKgqqoeDPhehMs3Ooacykv8d8+DhrxYwknLEYi890uz71mo5OjO8JAaNpGURJQqLoTKbimOelFHIqc28PPxWimutvvcVcr1NZ+x4A3/lvrjDvHqHNPyeYi7FQCLCUhOs7RVCy9V3R0DUV09TZuSzW21JegzglEmXCStNAU02KbkqUreWGZbC2usTKSoveQIh4SI558vgB3mKOv/CzsVZemOtnRfDs50ySI4Q7yrlAJ30mwXn51Jeul3zJHufL78RXXOYF4Srw9Q48kn/xyH/0lkgkEolEIpFI/mUi/x4gkUgkEolEIpFIJL8ZvzvLB4lEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJ5F843wpnnOf5da4T5x43X/vN/Yvfpb+Ri8XzLgOKArligdl8wHwiHBcM28Wbz/HOnRp0HZWEKAq5+elnABQKRXZ21omTmDgSjgvr6+ssNRvEcYiZxeLEcUIchWQmO+i6zsnZgM8f76EhXCum0wGqauPmHdLEy9oYU6rXUHWTYkE4sXS7fc5O+7h54YxjOjZhHBL7IW7mnmLoBsPhCDeXZ2V9C4CjJwdYjsa432fr0iYAk/GYIITxeJq1M8K0HIaDGUQiQmY0mbBSWqZcKmGZQs9l2TaWvcrorIOTE+M1HIwYTwZcubqDoYt+t09PqdXquLFwfnEMg2a1hKbrlCrCZef48ADDMhkN+jSy6K3pZIadL1Kq6synwunlabvP6uqKiOMCFF2j3Kjh5GyiUIyXqhqohkprqUE5i8GaTMZU6yWazSaDvnBnmfQn6IaC74s+Lrw5i8WYza1Neh0RLfXalS0028JxXdbXhRuPaqhsbLbQDAs9G5/WyhKJorO2ewmA//V/+T/413/6Y05Ohwz7ou33HuzjOiZxlDAYCCcWx9WpNessFimds2euOndu3UHXVP7tf/jvAMiXG/R7Z4SBcD1azKaoqkq1VmY2E84io1Gf09MzLr+2y+7umigyzaJYKvLpJ7do1MQclcpl/uavf8of//iH2VOg4pYqnJ6d8c533gTg4Okpk2GH5nKTo8MzAE57+3zngzdYWV/DmwrHFsc2KJeKF5FX9+4/4Pt/8ANuvPUGXzwSbjm2GnL68Ca2bZLGYTZv4BTreNMhw0Ph/jPtH3PprR/iB8LlJQoDcsWyeLSzZ7RYbzHqd0CJUc4jyJIEVVFFxFUWZ5UkIbbroKsqauYJols6SZygKmK8itUCnrdg2G4zm4g+Xvvue6AmLziXwG/mjvNN3UaSWLjLPL39U/Y//M/YbnZeGFAqxxRyEf78iTgWHKHGGuNZwlwXUWinukJz/TqWZaEaYlHZWKvz078JGc5EnYSHKivLBRpakThrl5krEXtzUlXFMMX6QewLh6FUpz8QzlQxCqphUyyWiBPRVt+bYmkqhinWIVUro+oGSTAnCkQ0Whz4oOoosQ++iIDzxo/xx5/TPz7Am4rnr1Y1UDUN4zx6MPHodAyCxGS2EFFyhXKRRZhw0p4ynoln3tET1mszCk5EyRa1Mt77KdNQY95dzvq4iVtaxlnaIg5HWRueEIxO6U86hKHoj2lpxEqKaqpUbCVrf0iaRqSq+PmgHaGoc7aWHO4+Fs/yST/mtSvfpVhpYudFTU9GQyq1KsVykXqreT7LvNod58XIqmf19evfdc/XoqIov7Vz08V7j2duPBKJRCKRSCQSiUQikcC3zxHnL45v8mcrb/9e7v37uq9EIpFIJBKJRCL5p8m3T4xzHqPxFXuBL0Ru8OXID3H+SxvgyW8myMnORFVV1ja26HWFWKKZz+NNZrh5EQ2zvLrE8cEBo+GISkVsGCuqipPPo6oQZPEkihJhWTpRlGCYIr4liAI0NcU0xEb2sNvnv/79RxiGxptvXAOgUCiz9/SQsumgKmKDfTRccHT8OY5rs50JaBrLFqqiECyyiJQ0IQgiLDt/4X3kewvCIGT/9BFqtrH86NFjbMfGdFzyodhELhVMEhw8bw6ANxthuw6L6ewi2+TGW68zm045Pe0yyTbrDUtneW2TVAEnJ/q4WVrGD5oomkKmD2DQH6Bp2sV4TSZjFFPDLRQwXTGu5WqZVNNJkgjTFZ9rlat02h00QyfOiiSfzxMn0UVM0vLGGtPpjMV8zvGThwBUm8sUSjUqlTpHh0LgUq+UcFyHjZ1tkkjM0WQ6p1wpYNtik39ttcbjp2d0ejP2vhCxXopusHt5g/bxGUEgYpccS4dMaGSZopONRkinFxP6QhBUbTTonHVoLjVwLTEhmqaDkjIeTSmURB8vX7nM4dEpy8vLFIvvifkeT2mfnbKytMS9W7fEXO7u4s0XJIkYh1K1xmI254uHjwgCcc/+YEihVMaybPIFIWi6efMuSRJhGTqPH4lYskKxx2Lm8+D+IwB2Lm+iaC6zRcBSphR7/fWr3P7sHg8f7NM7E2Pxx//q31AsFsg5LnFWd4vZAjBorQiBSGt9mTSK0S2blZYQQtmajz8+Y9QZoWW1X25dQndrGIp1IYwYdkd0Tk8vhAyTyRhNM3Fc56KmddOktrLBwd1P8WdCZKEpGpquk6QJUXatJAHb1PC9gChbG3RTAwWsghCgxElKHCxwbJudt97PPmPzcurPNxEpPC+OeJkXjz0TTox6QgD0xS//Et1aJiquizHtH5L07pM3Z+Sz5yoKZmiJRsXV8FUhCBmf3cOvNrCcErYtBHiz6RgrXdAqi3lcW8lhNy9hOKUL0YUSJaiqDroGiJoeDHp02iOmU5+VzQ3RpyAiTTRiVLwoixzTNDTd5CJcKQkJRidEYUQQiPVD0R1ir8288wA1FM9fGoVE/hBLDcnXsjgrNQUSkliIcQZjldsHDpevv8/ld4UozM45jIc91m6YF+tCvJhydPCYR48+RV2ImLs3d1IKDgRdUdN+dx+lVsczyhg5IdCxypexildolSbMJ2IMSwXwpwvSsE8wbwMidjBFRxHLAjnHoD30iVFwbT2bj5A09vGDACPLtMvlHR7ePaCQL1PIovxEMb1K7PLceywVNZEq6bMsqfTLIpnnI6wurpKm2Wdf5MV7nUc+8iwC7rxlz70rZUiV5Ndx/g/Q37Z/lJdIJBKJRCKRSCS/W+T/80skEolEIpFIJBLJb8+3Tozzm3DuAvC1Ljm/xfUE4rrVpSaPHzwGoL68TLFWvXCG6EYBSQIP7z/EtIWwoFKt4PsBxVKevT0heCgXHXTd4dHjPd565y1xrWaVxWyIZojN51RVMU2Tq1c22dgUG8b+AuIgIgpjVE308eS0j+dPuXptl3EmhGmtb5CkCbN+B4CZ38ey8niDIU7eBYRjyMLzSNHIF8SxfNFFVw0M07wQuORKNaazgHwxE084eVrLSwy6HYxMbOIW8kSex9bWOp6fCY7imP7pKWbOwfOFQ8W855Er5AnjlMVYOJDomk6aQJqKzzRaVXpnfSzDYDISLhmz+RxUlcbyEt22ECkk0YLRcIRhuOiGEO3oRkwcp0SZkGjc6TNZzKlUSqhqJlxIDW7fus87775BlDkVffjxr/jxj79Pr92hUqkAMOge4y98Ni8LV5dhr0/vdMioO8N2xNxadg7LztPv3r/Id3Nd4cyjKtqFkIA0wZtPSSPhSFJr1PjVrftcf/MtlpfEuI5HC3Zf26VcK7BYiPNytsmnn96mWqty954QLmxvrHLtjRtsbK7x+JGoQ8NxiaOUx4/viFqqVzk9OeWs3WX3NdH+d959kyRW+PyLPfYePxFj3axjWQZ512WSOR+1T/tcv3Gdh198AcDb77/DzU8/I0liilmdNBprRHHKymqTrW3hsrOxu0m1ViJNEk7bwvGk2x1h2g7bl3cAWFpuMp8O2fv8c473xbOw0rTIGR5ObolCS4jJNMui1x+hKyrlpcsAFJcMFtMZE0vURLneZD6eoqQphpMJODQNwzAxDINRJhKKvJDy0hqaphEGoi6efvGIZqvFyVGHWiOf1aGCYdkXJlq6buBPx5wdP+LG5g/4XfCycOeZkOKln1OF7uETcUyxqW7/iDAWHwoih1EvYT7bJ8yeGU1VcFybVC8xXgjhjUeNKHb4/9l7ry+7svvO73NyvPnWvRWBQkYjdWKLSaJmJI001njG9rIf/eQH/3V+kjXLozW0h5SGI1EdyGY3kYECUPFW1a2bTw5+2AfV6G50oqgRmtyftXoVcOuEHX5nn2rsb32/RZAxORDrwIcf/JKV+oyllhgvp7VMa/OPUZwmVA40WT5H0XxAoUir53ae0ez2WCwOUEohvLFcDcMwyLOcYC6ENrtPt7l6/SKmLq6VpjN0w0BzPIhETZTzQ+YHv6CMh6drXZ7Ds90Y8pS1ZbGmaCioisbBsVhbH5/0+JP/6X+lTAs0S7Tf8htYUYSuq2jPl3xdYXnjGs2l8/zHv/q/ANj++yf86A2XTrtSABYx8WSPLB9gmA8ACI8baO4Kbusy9fWrYqyjhIcP7nC4M+SmKE00XSfLUrJczNXKkkGUw/ZeRL8rxv72VspwnjM6GrG0sgTA+deusb/7lOkgwTSdasLVL3R2O62VF94/p7LQ8hNN2MtEOF/G52qQFwU7n2+DFOFIJBKJRCKRSCQSieQ5UojzaaQrjkQikUgkEolEIvmmvHJinC9yxPkcL7oAfIETRam8sOH9DdtRliUlJabtYNsiAufpw3u88Qff53hwDIDpuGS5guO5LPf7AGiqytbjJ7zxxk1qvnBv2Nvb5fyli9y8dQ212tw+3HmMaZuUleNNrebxH/7nf0eaxhhGtVVaZrz91jXQVJJM9KM5H3HhwlXGo4BmWwhJKCIMSkxHiCfmoylKEdFotynE7Rgc7tPutNh+/DGmsQaA5fioqsqF8xcJwkXVb52yiMiqCCHdMGi266g63H5fRHHZvsfS6hqD/QH1poibWkQLgtmclqKxuil2ske3H2IXGVmaEVbRXpZl4tddkkT0J4pibNfCsDXm1Sa/32jT7DSYjib0eqKP01GOqrQZ7J8wXwxP29bruyyq81AUkrTAr9nomnA86a6v0+7Wmc5GKKro09lzZ5jOQ06OhwSL6p6eQ1ooTCfCYSXJS4YnR0RhyJ//2x+J+bZsth5toaoWtbqY2yyeotW6lSgsrYpHp9v2WPs3QtQxD3Leeus6//Xv3sOvYsqODg/pLLWZjg+5/VEl9ur3UUqF6XjB00fPAHjvHz/gD3/0Q44OD/nOd4RbTq4UTIqM1ZUuALu7A05OxlimRr1ybRqPJozHE0xDxTSFaKDm1+h2O+zv7rAIhDjq0tVLDAYDGk1xjFqK2Kx2q0WrKRw9RvM5qgFvv/4Wo1ElmJovqDc80iSn3REChGanx/HRkPGJEInV6z6PHz8mHB3QcMXYaGQYdo3W+jl0R4xhPJ/QanWAkjQWIiHDNDE0heMDIUrSdBWv3WZ2fML2YzFeZ65cYri7TRwG6JYQ2bheDUqFPMtRVGFnsrqxSpHnrJ1fxbHE8xaHAcF8huOJfuumRhxGeDUP2/H4Mn4TAeAn5xQvGpKcrk+zkwPR/pqHZZsYpZB76fo6C9NHVW6QFsLBJYoWtM6eJc4supZoq24YqIrD3s4OD24LkdaS/YDrb1p4bVEn9Qt/AlYd1TRP47ryvMQwNDRNJ47E2Hv1Br5fx3NrlAinpSLLUU2LJFowGwunME2D2egAQxNz69RqZHlJEewy3XkXgGy2i65nKBSkqehrkRd0mgaqqpNULjvJPCdMCsYL8XycvfwmjUaLYDYhCcT9ZllCMHqKZeQklqgd3W7Q7DTRDZ2//Pf/AYC//fFf896vH/FHb4kxVrWCJCnptoBq/c2CY/JwTjLax10WAslpVqfV8tAjE7UQwqSdwxm2pZKG4ryWb3JpzeVwHJ++d1S7xvnNi7R7XbJcHFerN7h87QYP05C8iiBTyvLU+e1e7Y/HAAAgAElEQVSzIpkX6+kT0ZaogVKpvl9+2hnn6whyvs5x4l33FdGPEolEIpFIJBKJRCL5veHbIsL57+nYKYU4EolEIpFIJBKJ5DdB/epDJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSydfhlXPG+aa86FJx6gDwmd/w/7q/7/+ig8BpBJaqsnntMgB/+9d/zcVrN06PiaKY2WxGlhQoqrhLliUcHQwIFxfIU+GIsLm5iWXqkGencSe11goZGg/uPgLg3MVzWAZMJzEnlWtJ3ffQDJUkzKg1hfPHyvoyqqrTX25TVi4PcZyRhUPQhVtEs+ZRAmmaoVRWQ7alYxpw+fpFgolwwFhb7RNGCcfHR/hVnNV8PmNyMqbRqFf9KdEsB8uD9rKIz9J0lYO9p0yOF4yPhEtNd7lLkeWMjofkqYhKcuo+RZFTFDlW5UhS5glkKU5NXH94eEyv30Y1bJJEOKq0602CyYLh4ABtuQfAeBhg1WqcOb/OyaGI4dndOWB0opEdCmeOM+fP0qnX2H14h5UN0daDnT0aTY8sy1laEddyLJPRcMKNt29CIaJz5rM5O9v7HJ8I16O33rzG//jv/5SiLDgZi/mY7B+glgrNdh3XEQ40RTpBKXIU1SRORCzV8cEJw5MTrl4XdWMZOktLXf7sz/6Qw4OBmP+6y+NHj1nut2n1hKtSrVEjmE+4/eu7bGyKOKhZEPDxhx/z2rVrp6499+9vsZhPUaq2G7qB5zv4nsnzajcMi1qtzu7uLmnlPrLUW2Zr6ynNVp0Lly9WtXmGet0jrpyL7t9/QKvdYjaZ8uP//F8ACMIUwzQwNI31M6Ktvd4689mcH/+nv2UyEs4lzU6T/+c//Q1/+id/BkAYzFhb6aB1TdKpcPpBhUxtUqomiiKWH7fWJiszDMtGVUUNF1lBWfr4Vf2eHOyDotNc6mLYopamwyNMx2Lp7EWMyiHG9upASVmqOIZwtKIs2d5+Rr/fI6/GTFWFDjFJRL8LFOJoQavbRak0il/kgPObOIi87JxP1qsCRRFzVCQzDg+ecFTFNfVX1qh3eji+h2NXbY5TETKVFuhVEpOuqdy/95T7t99n1b4PwMVzJbbbwOx/D4BMbeM4Dpr6iQazTGN0VWM8PGb32R4AK+ubFHlJniXMZqKmfU+HPCXPc9bWV6t2LHhw51ecPbMMQDA5xlAj0tkDylDMt65kFGnJ9mFEsybGoFEzqHkFumqcroemoZDNFMYT8SxbXolGjuPqDAdiXYh2H9JQblPkJ5TOpmhD8wd4zYz54TFuFRX4zg//Df/f/z1mdyjWueW2TlYkaJp5Ov/kOQUR5BnTPeHi83jg4vXf4GScYKfiXArIM41GTbQzI2N0kmI7JsNj0db9oykXwxn9fpfpXJx3sLtNkefUmn107atfs5+NqSqBsmrr89pR+HQdfZXrTVmWX/jyK1+416eOP32FSpccydfjL1bf+Nb81qxEIpFIJBKJRCL5ar4tP9//zd4vpVuNRCKRSCQSiUQieeV55cQ4z2M8vnZc1QvnvPDJp7585flfsKH5fLOz1RUChEZnmd0nW6xuCLFJWZTMZ3OWOm30aoPbbraJ4pwgiDg+FqIRVV1C1TU8r47tiA3jLAko8oxep17dq2A+DzD0kkgV07KIMlxVw3N0lEp4k8Y5B+NDXNek0RAxQugKKjZOQ0RGxfOAk+EEzcrxa0Kk4Ng2umbQX24x1oWAZvrkCZalYlou40qgU280Me0YoxKbhIsFBzu71Nttzlw6D8DR3i7RdAqKwuqaEL2opkWaJuiqxqiKKdIVFc81ePzwEbomVAP9lT5Hx1PSvX0AfK/BfJGxCI55urUNwLOtPQyjJFyEDPbEGF64fIEwmHO4P6HbE5v/65smtVaNrXsPARgfjVhb73F0kFMoQrxk6irj4xHNbpfB/iEA7ZbHYjZmsr1DnAjRw7nz53n77et8+MuPAZiMxvSXl1BVhSAQggTPW6LRbKKREAbivPEwZqMOKPknZacpGJZHqYiYpHkwJ57P6PbbTCZCIPLTn/yc/nKPQtG5flOIdnZ3dnjre99lOgl5uiWimH70x3/Ewzt32H72lDgWkVoqCpapkaWi8Is85a03b2I5DjuVoOL2r39Ff6XPazeu87xhh4dHLIKACxfOolTz8ZOf/JTXb92kt9QR1+r12Np6RhREzGaiJhbBnB++/QOSKMauhDAoOXd+fZ/1tWU2z50BIFjMyLOUJ1tCYPbOOzeYz8bo2QQ9F9fSnTpGzScNZ6cihTjPGRyMWO530U0xZoqmoVCcCutU1WA+nuA2avgNIdhRVEgCncVsweJY1PSy10LVDPI0IkuEWCIYn7DWXwFFY3wijmvUfWzbRq3GQTUMDN2l1upSnEYB8RvxfN34unFWZVHQXbkAwOGjDxnsPOS9Dz4S7exdZmPzMu9877vMKzGW7XvkaUmWpcymIkZqOnzC9r138dNtrlwWz67bPIPbv4XR3Kz+3kM36hRFRhbOqnGFJJqxu3NIVog17Pj4GIYTuh2PYbWGhQuD5ZVlLK9BWUU4oaq0lnrotgXA+GCHYv4YRz2iLKKqcyr3Hk/46MGC770p1rq6b5CXJWVeoiLmO4kSgiAjiMQ6ZxYRSZajaw5mFWeWhceUwQjPKYniKr7MDEmjgCIvoBTiFc+xWVrd5O8+/BkA//v/0KdpqRS5eipg1A2VrAAKUHMR0Xemo+KsOgQnDdJMrBUrSxZZlqFVwrF5GJOXKvsHc+ZzsQakSU6cZUxHQ1p9IfhrtGp89Pc/ptHqoxl6NRTly15WUH7eoO7F95/CC5qaF04vy5Isy9D1L3iNq5Wg9OXf/VRTnt/vNEbr6748JRJeLUHO83bIf5SXSCQSiUQikUi+Ga/Kz/SvIvL/LyQSiUQikUgkEslvyishxvm6m9bPj/06n30a5UvdcT7nrPOZ62qa+P7569e49+EvuXj9OgCNdoMzm2dJkpB2R4gZjgbHLBYBi8WC9XXhbhIEAXu7A65ca5JWThzJfIFTa5BU1hYHO3sUeYFfr+M6wqVmcHCEWrp4XQfDFp/1Vg2ebW1z+94jzqyLa124dJ4nOzt4kWhnq+mhqzlJMCWuNmprDReKHMoMpyYEQWg6CgrRbMZkKDbd6zWPc+dWCWKxsT09GfHk/gPivORi5aaiajoXrl5iPl/Qq1xdDNsljlqkcczoRIgGZrMJV69dRjMtNEVs2I/GYxzHZzQUApcwzPDqLvVGjaIQ4ok8y3AdD6fjkefis5OTKe1ui/k0JJ6H1bxldHst4plw6hgNJyi6wcXrNxmNRBv29w8Yj2b84Ec/QK3EMb94/zZnNlZYXdvg8dYWAI5rAilnNzfEtU6mdLotLMuk1aoEU7qOpmRkeYHlCcHD4N6YVr+N7zsYlhjr1Y11ZtPgdIfb813iyQCKBv01MV5/8e/+FePJjDjOGOwKF5HjwQlZoeB7HmElALp75z5qWXLl2hXsyvmj3++gqCX7lVDJcx0Oj4bEaUaeC6GEaWns7u7ybHuHVkuItDY3z3L7zj1u3LjC/V/fFrVz/jJhmHIwEG1I04gLFy6QJhFPnj4F4MbNy7z++k0m4xH9Sog2n805ODzm5tVzBFMhtJmHI/78X3+P1y6J+VCCbQxbQycCowZAmUbEoy00zpKnon7zQiGeLUhqDlkixkw3LUzHRa2eXNf3OdrfQTcKWj1xfcuyKUsVdb6gqIQYeZYTxynxYo5bF0K0Z0+26K2s43k1JidTMT6agWWZGJ4Y0/lkDMS49fYn4gilclH5hpSnYp6XOZd8fq1SFIV6V/RJM1XOdI9Z/qFo153Hd3n4i4fsP9vi4hXx/HmeT5qmDPaekUzEHNXUY66tQ3tpBb9/CQB/5W1Mb4NCEaKRMlfAUsijOaol6pc8JY8m+K6GYrcAaHaWUIqScHqMqoj1SVOgEDYxxKGYN03V6Pb6GIoQ9vjGkHk64MO7B7x2WYjh9DKjVrd444rCcltcK4kzoqggTgLmgXi+N/oOnqvjiWWOo6MBjutxcjTE88Q8ZnGf6dCjUcvQctGGMjlBN64QZFMsTzynNUflxq1bPH58B4BpAEmQsohKIZoDDA1qNR3b1E9FV/FsxL1/eJ/zV88zfSbWhTzL0FT1tL4c28EyMuquQRBWDk2xiVYWBEGCMhb1lecxB9uPOXPhEkYlVvqm+pYX6+iz70fxvfLU4em3xVe/SyUSiUQikUgkEolE8ruEFOFIJBKJRCKRSCQSyT8fr4QYB16M6fjUly8/5yUKm5c56nyVzufL4mieO1wA9NdX+NW7f89kXEUzrfXJ0ozDg0O6lUMMisrDh4/48MMR/WUhvEiTlKV+j3Axw6icOHJUwiRh/0jEIiVxgmVbqJoGVeTV8dEhtrXMyWhMRxcbuoVSsrq2ShrF+JWQ4HB/D79ePxWNJEmCpqsYhYquiY14Xdcp0pQiy8krxxBNKQnDELXUaVaxVEYZMDoKGU6Es4Wmali2RziesnVXxN9sXrmM32zxZOsXHA5ERNHK2gqWbVGr11kyxY666XoMBiesrvQ5ORJuOWGYEIUxll2JAcqCwb4Qldx4Q0SAPX7wFNO1KdJUjAcwGo3x6z5hFKBU+89+zaFMM1r9LgC2a3Ow/YwzF86gVRFFKjqvv36ZJAkYnYi2Xr58gSiKaHQ63KyJcdVNk4f3H6BVopHxNGCxyFFUCCvxgeMphHHCcDhjY/MsAOfOb7K3c8iZzeVP+qSU2K4GqRhD160x0FwUpcQ2RH/Wz6xRG42ZTRec2RB14tgu6DaGafL4sRADlCj4vs+laxq+X7kqpSmGYdBpi37fu/2A46Mhk/GY2Uy4fJzdWGF7e492t8Pa6urpebZpcufXj09ddgAePnxMv4ogq9UM6vUGZ8+eoVc5EK2utNCNnJWza+SFeBYGewN+8P3vcPBsCzUWNXxuzefSxSZFJZSIFhPiQMFseJi2qK/5+JCPPnqP67cAS4iEGs0l+r0GqpJxsC+EPWmWsby2Qq1ejamqYzgeR3v7+A0hfLP9GparoZsaRdWuPI+w/TqOa6HqYqxv/cH3CYKQ2WTM2fPCxafISzRdJ62i5BaTEY12C1XV+Dqrz5cJCL8qPuhFiqJAVRSsSoBn15Ypgjt0O+Lvb7kW1+KCncMH/Pyn7wPQrltcPeOxpke0Nqvop1aH2sp1nKWbGG69uniOohfklQuO5tYpsxxNt0/jmoosQ9Es2j2LMBHPgkaBqikYhkuUjAHoL/cwNJOCAtsRz9b0ZEitbqDnYXW/IbqWsNxzT0fw6W6Ioqpc2PBJEvE8WKaO7mrousZ8XrWjUCizgqMTISa7s7vFrbd36HR75NVzlOYqhbFCGDw6bUM42yGYzYijFK8p1taiLPE8H0UT/fn4wYy1DrTqGka1LmhFhqpCWWanc+HYKue8BC0dYWpikdE1KEoYTcVx23tzzq3baKrCZC6EPftHAZffaaMoCnEo2jo62mcxneA32yiV01lZfsG76EXR10tccl5eSyUoJV9armUpxGzKy6/x0nel1OJIfkOe/6ao/Id8iUQikUgkEonk28Pvys/v/1xundIRRyKRSCSSVxcZWSmRSL4t/HZ/rV4ikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIvk95pVxxvlt8aJjxYsxH5/9/otOAV/kcPH8mOdH2rbN2tmLPH0komGu3rqBbps0um2CQDiNBOGC8xc2MF2Hmi8cKizLwnQc0jQjioTzR2upSTiP6HSFywd5humYLOYxWhUr47sexycjLnXOsb+7A0Ct0eLB/ce0GgaDQ+E2c+X6FcqiYDITDhiO7VPqFk+e7HKrLa6fpzlpWpAkIYYtYl/m0wVKUaI5BnEo3BkUzSWKYtJEtCFIAzyvRr3u06gJV4mdx/fpLq1Qq9XJq/iWdrtFFKXkOQQLMRadTpejw0PSvKSzItxf9nf2qdV8zlwQDiV5XvLgzkNszzt1B0mThDiO8RyXWhWp5bcaHB4e02i1Weo1xPWXuxiGxeED4SIznc3pLC+jaRb1mnBF+fX4NtduXsB1bBr1NgD379xjNhsxHo24cOUyAA1HZ6m/zmIhnC2OjoZQQEHMa6+JYxR03JrNdBrws5/+tJqPNlmSEczm6JoYC1W10FSFLBdjmEdj2u0O6CpkwkXkYHuP0XhBf3UFRROPoWlaNDtdpvMZb7/9RvWZSW9lhaPBgF++/xEA3/3ud0jT+LQ+dd0gDEMMw+D69auiVl2Lk0nAW2+9zs/+6z8AsFjM8H2PJJhTVM4o9+/d52Q0JgxEXb799hv8vz/+CecvbFBriPGaBwmKZmA7DqMT4ZTiuirh8CGEA5bPiDg2y/HJypKDA+GU0+01SGIFwzPJEa4lfttio/MhBI+wzAsAlEqHNJmSZwaddqP6TMXQilOnDt0yaLQ7BIbBYiHcfzTbwTBMWr1VRkPRrmi+wLAdNN2krPoYhAFHR8dYunH6melYaIZJGgmXqGA2ZfOqmOeXWY18dr34qli952vMZ9eeLzrucOcRAGq2QNF1qCLbbFfD93W6bZ2uL7STnbZCzXPBXMZfuiLGvn0Jf+Ua8WJMVM2lbbkoRYFhiOdK0z3icIqhaSSBcPcyG8vE85jhyYzlVeG0lCUBs0UEZcqlq8JVKU11tp4dc25z6bTtlu2TRUPU5LEY++kYQ4N++5NYp17f4mCQUJQllmWf9jnJcsKwpKxiyD66FzKep+yciD56vk4SLVgEM+zKzWZlZZmn81WOxk9Zt8RYFtkB0WyA5a7xPItQV8CydF47L9q+OL7PSsdnFgcUqRjXlq9zchKz1LHRKwclXS/xjRTNWmC1xT3TIKUocn55V8RPrXRstFKlSHMsXdwwzkoW8wWmM0dLRfsXJ7u4rkN/feNTc/2b8E2clj51Hp+vwVNeuJyMppJIJBKJRCKRSCSS3z9+V1xxJBKJRCL550S6QUskEonkn8orLcZ5qZjmq/YzFYWSrxbafO66X7JR/qK4Z3l9lUe3RVyTpuisbKwyOZkwHggBQhAkGJaHioqhCwFCFEYs5nOCICJJhFClVq+xs/WUXiVSUYqYNCrQNZPjwQAAz3fRDJPJeH7aJ1WBIk3wfY9GQ8T8xIsJs1mM3xLCm+PDA+qtNp1eB9PWqr6U1JpdonDGYiaEC41Gg9k85GBvgKqKzef9wwmGoTMaT8T9dA3DSNg8f46jwz0ADg6GTMcL1jfWWeqJDfyyyFnMZjx8+Jh2s1W138G1cubjCVX6DGmaYZrWc60BcZKyurLC6GjEQfBMnFcTIossSk9FI1kYsrLcIwxDbFeIiSzTYDQZc7CzLdq+d0gchVjnzuL6PgA3X7+OZbkkSYhWbZ4ncQ7o1HwX3xMxSHlekKYph/sHAOiUnDm/ilqmjIZCuDAZhyz1mzieS7sjxrrd6aMZGaahoKtVlFgRUxYZWVWshm5Tr5toukEwE5v6tVadM+fPURYKWSIG5+6d27h+g6s3rqMa4tzpZMZ4Muf6jauoVXTO3Tv3uHbzKtPxrOr3DrPpnNXVZUxT1Nzx0QmmaTAcDrEs0a69/T08t0YYRUyn4lzb9SizlM1VUUsUEd/7wTuYhkKcirGfL2bV3CWcHO6K2l88wbM0ll9/nXko2qV6TequwSwWbTgJQrrtLrWlBpOTqq3b91CUEjVfUIRirLOFR55maKaPZYj50HSH4fEIvyba0Gj5jA8HHB0eYTli2drUVOqtDppl0eqKOpwOR1iuj1MzyXNxrud6uJseeZ5iGOLcPCsp8pTFXLSr3m5i2EIs8jJ+UyHFl1KtOZPjbQ7u/BiAdHYfzzWJIvE8jkYL+ksemmFw8cYaALq3gt28iOF2sOs9AIpSJ55PKYrsVPSSpSGK2UY1RZ8V1UEzM5I4QKui5MokY3h4zNLyGkUhxGPD4ZjB4ZSrly8QRUL4FIcZJ8Mxa8sdNEvM73gyQC9m1HMhCpwMZ5TkeLbC8FhElaV5Sa9rkWewPxRCtEfbIcczhclcR9FFLFy9Xseud3n7HVGH62fOYrp16jWPsoogS4uMzspZCntEMP0AAFXLmB8/wO7XCOdiUXH9Jqbro5u16hjwvQLD1NEr4ZuhKzTqJaqmESdVTJSiQBxxMDqk13geHaWiqQpvviauZSpQlgllCaMqpipVbOrNHkvLqzQaon4/+MkvWT1zhuWzZ3hR+SKiqr6klp6rzz71OipPhUafvACVr5fl+Pzo6p4KfOr9KJH8tvnnsof/pkibWolEIpFIJBKJ5It5FX5m/23wvB/yZ3+JRCKRSH7/kO9/iUTybeGVEeN81nnipb/R/3X2w5UXDvwCgc2LX1+891c5ECiKwsrGGuPjEQDHh0d0ljqEwQJNF4KH3d0D1tZW0CjJMrE5HEURlm3T7bZQFeE2oioKq+trzCs3m87SElEYoJYFUSzEGXv7e9RqNVZXl6jXxCZvlqWYpoqp2Ti+2CA+Phqg6xZKKe7X7bfQTRvDWuJ4JK6/vLxCGASUWUG7Ei4omoY+GBIvAuzKxScKA7qrPaaTygHF8Wl2muw9e8rw8AiARr1BrV5DtyyGx0K0s7e7i2lYlGqOpgrBUTrfQ1UgjCbUbLGBb7UbOI06g8NDACZHQ/y6DxSAEAPomBRpxGIRUauvABAvpji+Q6ffRqk2/4c7Oxj+MpevC3cQTdc52DmiVmtwphLjLK90OT464WQ4ot8XwoV60+Py1ddRVJU4EmO982yPZrvJ2hkheMhRGewf8tprF7h3+xcAHB4M2Ly4Qb/fY3NDuG44rk2WpxRkKJqoKVW1SNMcwxFjqqk6ZVlQ5Dm6JsRRcZYShQF+zcOsRELf/+FN7t3d4/1/fJdW5Wi0sr6EaWrkRXYqtOksNciSiN1nQoTk13ziKEPTdPb39wG4efMWd+/eJ8tyukui32lWMJ9OmU5nvPHmredVTRRGKLYQUB2OQgr1hO9893UWlcNRvXkJ23aIpid4pRj7wlJpr9/CcOvs3BNOUerihDObPfor4n7DoylBlKJMM+pLwlHl53//PsW0xmUjI5qJ52jJGFDkBWmckiRC4GA3VsizjOmh6I/nn8NwXOqdHtMD4YRURCGqpqFQ0uqJe4aLgJODPXqWiaoIkZBl2uRFQVlkxLEQiRimQxIFhBMhtDpz5RKK8ttN7fsqsV9ZlsSzObf/7j8S74kaGy0g8XM6S0KUUiwsaN2iubyBWxM1oVk18lKBIsYwhZPQYnpCkYaouonbEW4s2eIEUEliIYLJy5hSKdE0HVUVtVQWGbV6DVQdRRUit0a7B4pGURQElVNUmhS0Wi2SJGA2Ep/5ro2jpiy2hRCxXs/Z3kuZznKKXPQ9LxTmCxhNI+5uifVpkvRYPnOWluazeVG4IzWbdYJZRFGK+Xd8H69RF89UJVCJ5gFevc580SCJxbWabR9FDVFN4/TZGh4OsGwHyxFr5t1BzODYZGVJQ9Wez02JbWlQFGjPHdAUhaTMONif0qzcw1QlJ8sKGp54VRZpzu5RwWCUYJhizXeaXRy/RhqmDOainvafPeHWD/4U07b5RDXz1Y5KLx77ySfP/YM+e+5XvxC/yhXn+TEvc4yTSCQSiUQikUgkEsnvFr8rIpz/HsgNPolEIpFIXl3ke1oikXybeCXEOF8YpfGc5yYAZYny4iZl9UflC/YPv+m24he543yqnZrC2lmx2X37Fx+h6yrHR0cYlSuKZZvEcYhr+SwWIi6m2WrhWC7zcEpWiQ3mg0NW11awKpGKZpj4OoyGI9pdIYzoL3cwDZ2a75HGlcAly7l4+SLk+WkP9/ePqNWaFIVo6/JKh3A+Jc9LpiMhlvH9Bqalo6g6k5Fo15P7j3A8h5wSXa2ECFqJ7br0+0I8ESwWoKigGhiO6OP65hq1RoMizdl+JtxsdF1lMh6x1Gui65XbTOkQxICisIiFI0yUhzx9dhuncjfx/DqDozGmquB7wtFjb++QRbDg3LnzFJWFTp4VFFmOY+no5jIAoekThDn728JhxfMaNFsqg4Mj0kyIbK5ePYfvuTx68Iz1jUqkkML7//gRvX6X1pIY6ywXEVpxIIQLURBybvMCFBlLPSGCcB2d9fV1avU6tVatqomULIiIowzDrMREuoWmm6d75UUSomgWqq4zmYqxNw2LMIwI5gGrG0Jw5HjgeSMW4RRKca3d7R0WwQxNVXntjRsAnLtylq07DxlVc9vqdjg+nHM4GJFV/f75z99laanPZDJnMhVjv3lhk+HRkEYY8fHtu2J+52N03WQzuij6nSy4cOlPyVMFz29XbTV58mgLK93BckS9NtZ+iGnWKBSFzfPnABgdHfHs6THLy0IY0/BsijJhsZgyEWXPfB5x7txbJOlj0kK0P54foqCgWQWlIhxJ0rmJrVk4dSFosl0fw3aoNwpMhKBmONil3lvGslx0Q7Sru7rC4dNtyFP0SoyR5SlpmqGoKrpeOaMYCs+ebeFW/bE9Id560Xnrn+aF89m1pERRSsoSilwMxtHOQ97/yU/48Gd/xY1LQvyxtTPn3LoHpRAqBYuCX330mH+18hroQngThhGm6aJqFlkihDGKqqBoNigqWShqLI5mqIpG+dzkRckpi5RccclLUSdaFuP6DoWiU2ZCuGdZBq1mkyzPcD3hoKN6OYphkadzVpeFmI/shOnBgGAu5lFDxTLBN0yGczF6x6OYu08CnhxqrKwK0dwf/OB7LC8vo+sJeSrGya3V8Pw6li3m7GjvKWlsY6g2SqWgaTc7pFmCaXnk5XNVDcTzbZzenCgSHfVrLppmsXnxOgAff/RrfvrBNn/x/Qau/dytSkFVCxTK0xdIWWSYasn1c8apS9DDnZiVromuiWPmcY7vGui6zs6BqMOl5hJhFFEqKq0qyi/Lci7eehNNe/EV+/mKKooCVX2JCOxTLzWlKsxvXpGlsLQoja4AACAASURBVOLhs/X4RVGNn414lEh+E14VdxyJRCKRSCQSiUQikD+fSyQSiUQikUgkEsm/DL9dKwiJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSieT3mFfCGeezvNq/lV9Sbwm3DtM2mU+mvP7WG0SJcHAxDIPjwwHt/hJFZbOx9fAhy/0eqmawCIXDTbPZ4NH9LSxLuMEs4oROy6HRbLBkCzeKRRDy3j++z9n1FZZXhHvKw9v3sR0T1zYwTOGm4Xl11jdWySvHjclkhl+rkSYZvY5oq1IUqKiMxmOabeF4cnx0zJtn36AoYTEX7Wo3G8RBiOuJa1uOxWg4xLENWkuXAKjXbTRNJynKUyeLEpXltVXSJKFUhIOO6dbRrRzLMYmnwonjeLSAUqHMlKqtU5JgxvLmJnku5r3XaxEGPo7nncrFLNtkf/eQLEuxLHGuZdmYpoVdxcXsHRxRq9fYPzjg5rpwxYgjmC5ikjhAqeqq3vB57733KJRrtJaEw42qFKiayt6hiJlZWevT7nbRdY1zF4TbxeNHT6nV67i+ThaLGK+iVNA0BRWNPBXtMnUdRTWYVRFkWTCj1myhaB7La8Jx6O7tJ5w9u4amKpRVPJfjO9x44yJFcfk0PuvO7cfkeYO8VBnsDQCoeR5rG+vYjqiTD395F11XCRYx9YZwT3n65CmW7eJ6Hm+88ZYYn/09jocj4jig0xFuP7pacvbs2dPYn7/8t3/G2YvnRT1ECzH4hctg6zZn1mo0114T4+U0KdKYvITjfdGup1u79Nf6aLpW1U4NTdc5vHOXxaFwT0nSjDBV8JsXOb77nui3nZElAe2+R1FUzkTRnNF0gu2LsXHrTRRFxTDN00i1LA1J4hjdMFHUauxtC8dWWEym6KYYnzRN0DQNRSmZjITjjIrCYjTk7NUf8E14MdLuaxz90j+nVWzU1gf/GeXo77m8UaKqop+dusqdxydcPSPavtG3SbId0pMPSBHOMqlaQ0FFNTTSSETH5ekcw7bJFnP2HwvXo8HuI3q9HlkknHI6y+soboM8X2BVkU6FkjFZjHE7NRxbfFYWClleMh1N6faqSDtVJYpjHLfFZCzm0rEXlOhopniN6IqBrhUEuUK3K9YPXdV4cpzRWzvL5qVrAKyfXSeJElS9juFU7SBDtzRGA+G05fk10jRgUSTo1RpQlAVxvCCfHqJW4295dfTpAHXxGK8n5jKYxziegl8XrkdXr9/g43/YI4xznKqtWZahqSWarpBXLjgKKkWWUBQKWTVdh8OAhm9Sd0Qj9gYxrmVg6CofPBLPR2ujJIsTFMfkyb37AJhOg6XVDb7KzUbTtC9535Wn7fpt+TQpKHyt0pVIJBKJRCKRSCQSybcW6YTzT0NGX0gkEolE8uoh388SieTbyishxvlsFJT48NORGYoCpaKc7ioqiiLSOz6zkflFG5tFISJM4jjGsiwURflUNMfzqKwvEwKJ4xXQxMbs9bdf5+f/5WfEccbG+U1x/TTizMVzlGmG44rom26vh25ZlFlOiWjH4OCANMnY3t4G4PLVK7h+HU03CUOxWW/bDmvrGxiWSRiIDfWV5Q5ZUdBsNrAqEUqz6WCYOno1nbc/fkij2ebhw6e89dYtABpOyWI2xPctFFX0sShTwjDAc02iubj+062nNFptev0qmsn3yXOF/Z1djKmIZZmNdZZXlxkNJ6cxNo7n4Pse45Nj9Gr3fDadEAUR65urPBsIcUkQgWfrjMZCqOJ6NqvrZ9AMC1UTgpBma5mjgyF5kdNsiGvtHA+JMwNDX+HkaL86rkVehsxnVezW4ydcu3UD27b51S9/DUBvqcP2zgE1r45XRR45dZ8f/fF3OT48xqxiZAxNpdVewvOEuEjTNYLFgkcPn6A+F2DoKoalYeg2ilpFIGUxZZkDIdMTIfQwegqqBnEk+pOEC7xWF1VVsW0h/rl0eR2lzDBNlzwVm/qqqmMYdfIyQ9OESOvW65fY2z1CNRzSVIgGPv7wY/74T/4Q3aiivh4+Y3Cwx9vvvEUUiWMePHjIeDwmipPTGBxNhUbNZ1IktJpCLFFzdfI85a13xA8yG2fX8DwXy/hkaYjDEzY3ezSXz6PZItaLIiXLUzTdpKhEVJ1OmyIvmI3E3LaWGlAa9JfXePfdX1X9uYlhavR6dX7x3scAlIOYKxs+SXCCpovYpdJSITMoskoooemomkYYxXgNISabT06YDo/IwoiyEuP49TpFsSAMjiirKCbDaWAYJobj4FRCtwcf/oL1y+fx66I/L3/qn0cDld9QhPPi+Z+PBzKrdWH1whWCnZ9S92wePBM14Lo6pl7imOI+00nCUldhPviALBRrRWps8nAbymzMG1fFtZJojlKU5FnI8bEY/6PDCf1al3Ihrn30ZA+vs4zfvopeq1XtMWjZGVmZEgSirbNJyM7egGtXL5JX42/7NYKTCVrdZDoT61OjtUpmPeODh+L5O7+q0Wl57B8F/OxdIRLCaNBee5tLly+gGaLmNBR832EynpzGnum6ioZBnj9fpxMmkwmtZo3x9Fi0wYgow6fo4TZmTTwfutvFbpTMj+9iWUIsqGg+0/EY2xRCn0uXr7H14AHv3n7M966JNnRakBcl4SwjqZ6rvFSoewZlmaOpQoD33esNyhKyQozN+TWP0TTleJyS600AfvDdd1hd2aDTb/IPzz4CYP3iVeqtjpDQfEXNfNF7R1HEc1vyFVKc05itkqIo0Sqh1em1FVAqYeiL1/lUJJUC1RfxPVUqdiQSiUQikUgkEonk24gU4kgkEolE8ttHxrL/yyKFOBKJ5NvMKyHGeZHTDUJF/Afit/nFh59sWJZlKT4vP3/+ywQ6zz9L0xTbtk8//+x5n9qgfFn7UHl+U8e1uXrzGlsPnpBXYp9Lr11hfHhCQUKWCfHKxtl1kiSjLHPSQrjXjMZjeks9est9ADqdJqppkMURZuX8Mh7PmE8n9C9u4rhC/OHEKYqmkkYzimrj2rZd5ouQVkuIFG68fhMo6XZbFJVbjmU55FmG5frohla1a4PpaEYYZ5yMhDOOompYpo6uic3o7SfbeK5Df6VLlgpxg2loHO3vUJYaeSo2013foywLyJXT46YnI/x6nWA2odEWogHVhrzUTzeoV9ZXCGchmpadTmWeKUTBmOnsiCIWgqOj4xG1eodwMcerC6HQfBHiWBaOK+bzwvkNdnd2ee3aFSxL9PHJ1g4lGTs7z3gjEs4cd+9vceHiBmfPnyGKoqouInyvj22JR+J4eEJZpNiOTq0SHK2f30QrC0py8lS0No5DVE1nukjZebYn5sixsFydVrsSrrR90jSmzI1TFw7LsihzjSJPUCpBkKIYlEpejY3YiLdcA7feYDyeYVQb5Cury8LlZSJEF/3lHo7tECcpv/rVhwBcvXyOm7du8eu7D/noYyGEabdamKaDYboElWjnX//oB0TxnI3z5wAwLFfs7SslZS5qogyOqPcvcXA0p68IYYdpmaiqwdHBEbNKyKUoCnc+vssffPc7ANy5fQ/X81hdadNuiflfTMdcvHqJVqvNH//5XwIw3HtCXA5wrRlpKARNpmrS9pfwuuK8PI2ZT1JQFFRdjH2yGOGtrlEoMD0QAq2Tgx10FWrNNslMOPYkeYBWX2HweJu9B5VI68w5Vs5d/JwQUOgaTiUJ4j+l/IYinBevUf3tdAkrT7+TzOfYjo1a5Jxf96oDCjZXPAyzehpKlcHRAtfJSSPRn6zYQzuOcZ2ScF/U5niWEYUFvSULu7rZ2RUF34pIteeONwu0+DHxcEwergNgd66iGzpFPEUzhVit1vBxJ1Mm4zn1ulh3FpMxnqOTRAv6q+L5UzXQlIRuSxxjGmI9CmYFWSnWBa9xnfNXb9DqtTCqNcXQFcYnY1RFPV3kLccmDWJ0U5ynqgp1T0VPnmCEldtMGmJoAVrdwmisAuD230LzTsgf/TdMDsWY1fo4pU4SVS5kLYt3vv9DfvI3+xxNRBvTPKXl65CXVEsAaV7S8FUUhHMOgKro5HnB4VDMxyLKcAyDJ/sJayuXqnHN6Sy3OBrscri7C8D/9n/8nxiWKYQwX1IlXyj+LJ8LwSq+tPyeiysLXnY55Ytu8YLwtXzxK99UdCaRfB75DxQSiUQikUgkEonk24bc6JNIJBKJ5NVDvp8lEsm3HfVfugESiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEsnvCq+EM87LYqqUL7cC+FzE1Bdd7/nfn0f11Kuooi+65mfjaF4eH/KJc0Z/Y5mTw0OC8RgQDjHPdp6xvLaCo1cuD5pG3XNQVB3NEJ91l3soQBwK95ytp9v0um3ixYL2ck+0teFy9cZFLNtlMRHuI4vZnPZSB8upUSDcG4bDEdP5DMcV7hqua5FnKX6tduqeU6QRXq1OXhSUsbinaTnMojmD/QMcXziQzOcZSZJjVTE5q2sdTo4XpGl4GlnjeR0Ws4jxZIzlCFeMJAM3jak1G9Tq4lonxycoukKwCFhUTiyO42HZHkks7Ch832c6GqMmJbWacMExjRhF1UijnOFQtL/dXcG0TBZBgBaL+Kd4McNeW8XxhQPNeq1BvrVFlpdk86S6n0Ot7lNzG8wXot+L0ZTBzi5Ffwm/iqWyXRvdhLCajyePtnnz7Zu8du0KyVy4tYTjMY5rkZUlSTWGD+9v4dsOd+8/5P33bot5q/0vXL1+DqWqOaXUMU2FoszRq5rI8wQ0lSKKMEwxb0WpUAKaolJW5xZFTn+5y8pqj9GhcN5pthscD0a4lnAEytOYGzevEMUxi0A418xmYwoFIGfz7AYAumERhTGb5zYoxTcZjmdcunwe3xcOK5qhgFqg6zA+FC4flt0kihQGgwPcyqHp8MFDVtf73L/3lKtXzldPQ8hs2iOaixijn//dz3n97Tc5u77Ea69dFvUVxHR6XVRFIQiEc8mDrSPOrFgoJCwq55IlbU6eK6TBEgCBYZKrOrVGG9MSY6ioFo5TQ7dsqFyoZsMTwtmYNI6ptcW5huMSBSMGz27j1kU/z954HUU1KJ57gYjb/pZ5ce1QoCxQyoIn9+8B8PEv36VvFewfL3CquCZTM7BsgyguqivkJDHMZzNUQ7hc7R3HvHGlhq6VDI7Ec/WPHx1y7XyHeayx1K5crQ5iRpOMpieccXaPRgRJwcWNnEXlGpQGY5z2OTS3h1oIpyW71qe31Ob+7Ue89Y5wkyoyBRSbOAgJZmKt67ZtNM3i7JoYU9I5QZBTqArDQMRgvX3tFq1+l7wU0VPiYiqqmqOrGmoVhxZOJ6TzMWl8IEYrmVCz5hTxgIYhztNMnRKNoigIRqINmvGQ5sZ3yMOQweN3RfvVDvX+RZSiiomLIjY2z7N+4RY7R8I5ajxNcTYNGp6O7YnxytLiE/e16kuW5ZQKuNUYWpbONCg4mBj80Ts3AFheO0OeF3z07n/j/GXhlrN5/bp4n3zOIenl77Uvi0f8asQ1NU2DbxAvdfqO46sjGiWSbxvyN2YkEolEIpFIJJLfL6Q7p0QikUgkv1vIf9+TSCS/K7wSYpwXOY2Lgs9FUD3//led+0XfAz4ltvms8Oazf/46m5OKorJ+/hxPHmwB0Oh2uPHGDeJFwOH+4ek1l/odbMeHKs6qyFMcx2M6ngLQanhEYYjfbPLg/lNxTDqn1TDwa31mcyFeycuSNEnJ8hTLFhv4S70+a5ub5JnYfFZQyJIYXXfIqpgqVTcxVIV4HvFceRDOI05ORliOyVJXRM/oKliWwWwmxA3T+QTXdtnZG1CrBDvPtp7hNxqUaHR7QvBg2xaGrlBrd0/7mCsKmqYzm46YBaJtruOjKAp1X4g6oiAkz3Ia/SZLKw0AkjQD7RBVSzEtsVFu2jbtVo1as8l0KoRJtgWqWnJ0fATA1tNdXn/rBq26z/azbTEWms5ksuD4+IQwEueNhlN6q12iOMMyhZhhbb3P48cHPHoo5vHypU1My2Q+XRDNJgDUOssoqoZpaFimEA41W12yKOQP/+j7+L4Yi6dPtrh68wqUWTX/NoppoBUZeSTmW8ljSt1EUziN9VJUXUSJWTYF1bxpBoVSYpgOtitED2UBw+OEaSVK8ustPN9lOptjmuKRXl1dZTSa0Gw1sW3RLsfxGJ2MUSjpLIm5vHT5HMPjEa5nVWOqkyYBZbLAcMV86LUeH//iHv2lPuFC1GG320bXNd566+pp3S2mMY6lM58K8VK31cAyDaIkRRHdIU9SRsMT6vU6pinmtt5qEqYZ62td2ktdUQOzp+RJeioAK7HI8hzbdUgrIZeiliRBgOP7tFbWq3qKmI0PiWYTiryKEoseE05HOH6by29+X4yFVwOU0yWmVD+JsuOT9J5/AmX1XyUaLKHMcxaLKR/+5K8AOHj0S9auN3BNk1ZNjIVjayhKwWwqBE27g4ROU+fMZo9pIoSEsdNlorlAzjARx52EMFrA7u0RP3pHjIXnQhykpI5e/d3E80QU13gsRFuHD9/jzPkT6r3L1FeEYCoNFyx125i3SsJATJzvqEzmKaNpQKsuhCmqAYrXA008y5PjGTkKYWLiukIgV6g609EUVSsx7f+fvffsjtzK0zx/sAEEwgfJoLfpnbzK91TNdE31dvfOTM/svlgz8wn23X6nPWf3nN6zbtb0nK2u7e4yrZJKSilTSp/0ZJDhHTywLy5IMVNMuXLZVff3QmIGgYuLe/8ACN6HzyMEZmFsoyQJ3vgYum0AvN4WeXOEHol+5UwFNUwxTO00xk1NIjw3ZDxJMA1Rv/3duxB72FOXKHSzSDN3C4VVgkT00wtB02LmZhr8/R0hAPsvf1inXFDRCE8jqTRNRVVV4jDmqCfO++AoZGMpx6AnrtFESXm0n1KZWaU2LSIGi8U8xwc79FsH/NW//w8AmJa4VpUzNfB5fDnx5wtIzxf8fFlxjXLSSxlNJfkDQL6kSyQSiUQikUgkkq+DfJeQSCQSieTlQD6TJRLJHxovnRgHXrwoeJ7jzdkFx5OvzxPZnNfG5y0+pun5bgHnfqYpPH30AIDqdBVN1ThuHpHLhCSqqpDGMXEYnjpgFNQ8o9EYUiF66fV6WDmbyXhy6lIyGARUGksYuRKD8QEAR4c71KanePxkn8tX1gBIIp9UUUgSsYB81Dyi0ZgmVRKsvJX1QSOJE/r9AUomxjHzNrXGPGoaM8wEJ6VyEV3TGA3ForWCxtzSAlESY+aEYKN28QIHO/uMRgMmQyEQcMd9iqU6lufhB0KccenqRQbdATOzy2gdIdDw/ZhCAdxELMyPRmPqszO43ojOoTjm1MIKl69fZTIenfbLKVRp7TcJ44SNa8J9InTHdNt9ikUxpmvLUywuTNNsHp0aXNy8eQ1NS4gT+J/+h/8ZgLydR9FUNje3WctcY8JY4Z2fvUuSJbeVKmWmGzOQJnSaQlTVd1Vm6kVqM3XQRO2sXVwmCUM0zabT/gcAhoNjfHeMqYtx1iwdJY2IwgA9J+Y29DV0zSAIPDrHYmyCKGF6qkii2JCIE4jjCaQpkW5iZeIYfzJkplHlYL8ljjcc8snH9wk8n1dfuyqOqeV49x9/xWQ8wrKE0CpJ4NYr12g2jyhkYijhVBSeOvZoukE8GTJqbVKavylqR7fQNGgfHeMFQixx89Ytjg47TNeLTEZCYNTu9PC9EMsUY3jlyhqbm1v4E5eLF8U497ttJgchs/OzGJmg6Xt/8i3CKEDXQ7TM7Wm4GxCGTdyxEGvEWpG5lWUUFMJIjH2hNo3v+rjDMfmicGKpzszSP95jEhwRHgvx1bB9RHlmg7m1yxQq9ayuMyHOyS3gzCX9dTUJ54sgxNdRFHK894RH7/6/lJRdAOqXqgR+gFPQAXGvGPs+B0cxUzVxa847CYfHMXa5TGSJ631xbQVNz5F38kwH4pq3Cws8+vg9nm57HPWEg9LKXJ6CDaqRpRGmCt1hzF6zz+yUGPvlRsr+1kN8d4iqiOsvX79KmPqo+ChCz0IYg6qCkwsoZm5YUTDBsmeJc1cA2Do+Yn0OdCJcVzjXHLV7bFxYxx30ScNMHOU3CQd7qP4TcrFwwilaIRCCpWfn45AqOmngk/hCcOSGCRhTJIUpIlsIYVQlxY8UVDeitvYGAN3tT3Bb98nlhbjImqqSpgqL65fRfiHEXs1WQMG2SFX9VMuSKoCqkihgi9smtYrCYAJqJnx8706f1LnCW29/myQTHQ6HHe5/9C5/8p/9JXMbF0QtnIiwFIWvIusSzxexyxe5w72I8wSnEolEIpFIJBKJRCKRSCQSiUQikbzMSCGORCL5Q+SlE+OcLIwqL1hDPP0+54tuEtLT1fSTJr7OkuYzMVhnGjgR6Zz9ulgq8Cc/+gEAQZDgjT0Mw8bNYnhmGlPEcYgfesQnEVG2RWWmRnVmKmvrEw52m9Q0lXwmoCmX5zH0HO5ogFMQi+eJorO/e8DW020WF8WCtGXoeK7LVKMGQN7RiUMfU7fIZQKa8XBIkib4roeVxVm1WweUSkUcS6PXEYv65WqdYe+Y/czVx7JNWs1jDE0nDoVQotvq0ev3ufXKTeLM1aXXGzDsDtCVmP5QiCBm52aZnZ9i++kWw74QbKiqwcxMFS0TCChxSBK4aEpEuyPacmoJtlMi8D28yUnUTBdFgXazRb0hYrzG/R66qqDpQhwws1ADFUhjKlUxFgd7+zhFk0q1wje+9bpov1ilMVujXi1RnxLj/+DBI954+1UmE7Hw//DeQw739vnP/82fYRcrAGzv7rG08AZhmEIs+hXHIaalEcQJFy8LUcJkMEMQhOSyGCmIiGONNIlJEiG60M0cgTdAMw3q08JFZG/7CNBI4hAlzdxHlKym04AoO+bOzj716QZ2LouyKtm89/4HrC8vUS4Ksc9wHHDh4jrdbpuHDx8DUKvVyOdXKJUKtFtC5DIYeXRabepTb4vzSS28YZOQHI8fCHehS1cv8vprV4h8l0z7QeT75AwIApfAFXPbOT5kPA4gFRsN+kMW5mZwRy12n4q5rTXmUFWD+3fuc9wWIqSVlQWKBZvZxTlGmfNOsXodbeKhJGI+bCMQcXNwKiQKggleMCClSqspRB1OwSFfLjFubTPsipgtRS8xf+ESjeULoIgxO703nFrjnBU/nFjjJF9JmXO+8EHsH8cxaRzidrcp5DIB3sDguNlltlHAD8WYOXmN2Smddjer+wAMy2S/o7J0eQOABBW332LSHRBkyU/1SpXaP/tTag8ekVPFvp3+iMP9DkdD0QfPV2h1xsxP5fj5++L6vnUpz/qyTcEeE7ffB2A83kEvLJMrzIJRzsbQwQx9DMslDsT1HcURSaCTr4uYsrXLHZLhJ6wv2bT74hyP97e5dPESlpPDcURt+od9/HGTqtlGT8X86rqNYjiQibFCzydOJiRhhGoIoZWnVfHTWaqLr5Lq4rMkHDMeH9F6vInqC5FTdabK6PBXFJbEdatoM8SxQqla5dZrbwLwk5/9J7xQZbqs0s0i7dbmbUxTIYpT7My1SSnoHLYDdlpiG9/Y4Orl11i7eBE7i65658f/B4vLy3znz/4Sw8j2U0Ti1dnnxXniz/OdcLLPleTZD5/d6jOOOF+m7Rdxch18QZMSyUuNfFmXSCQSiUQikUgkXxX5HiGRSCSSL4uMRPztIJ/FEonkDx31990BiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEonkD4WXzhnnLM87CaR86jIgzCs+GyV1bvTUr5nU8Uz7qejHWeI4RlGFS0KpVCQYB5DEVCqZM4OioucKRIF3Ghul23kUBUadY7FfsUg6C1EcUHAKAEzcgHsPnrK2tkaYiPb3Dw7ZuLTOytjlzp17AFy6tE6aBBg9sc3i0iqT8ZgUBVUV42EVLMaDEVMzJT66fR+A5mELU2tQVEIUhJvG48ebrCzPMz2VOd50u+xubRNFMavrwpnj0aMnLC3P0pid4ehI9N8LYipVjeHExzRFWQVxzPH+PrMzNWYaIh7o7p0HHB812bi0cXqOnjshimJsVThn7G5ukTNN5hcaLC6tAPD04UOCMKJULDDqC2eOQWdAGPjsZq4oEzdidX2ZtfVlhl0Rk2NaFnrOImfnuXrjGgDvv3+PSrVEqVjEn4i2yo5FszVgcWlWjOF8lf/4H39Cs9nBLgrnmo0Lebxxjx//zW3WN1YBWFmpo1kl/FEXJRURToHbYdDpUCotZfWRoBsWrj8hnQhHGsvWUJSYOIzQdOGmsbQyC6pKGISnjkZpkkASEfruqW/LytoKgeexuDIPQJJEzC026PcndDK3maPdLR5vtilVS1TKop4cO8fBXpM4DrEsMdaf3HvIX/z59ylWhNNI93CHsP2U4tx1rKKV9WECqsbOdhOnKJxSnj5+wvrKHJE/OK39jQsbQMrOtnAo6bQHzMzP0u/3aPfF2Ew14OjwgK3NTRZXFgCozzQYdbp0Wj167WwuiyWUpEI63ARANTqEgY9q5IgC4bqSs03sQgVSiLIoo7RYIPB8Rq6HXRdztHTxFvPrV1C0LHPpCzi9h3xNl5A0hSgM0Q0N9aQpVefhR3fpt/cpzYv5mJ02mC755Cydflf0fzKOqdUMVvKZi4wf8cnTgJ/+cp9/XheRbbNzcxAOiDo/JfLFvWg/rjOz/jbraxfJ57N4PE04VnX74lrWgAvXoN/tsNcXc3Rny2Oz6bI+m1IuBllfN6k4hzSWF0l1Md+JXsdzVTRVxalNZ+OUQOSjO6J2ZlZfZ/eRzu7O+1xaEWP9y0/epdvaYHp+Fd8VNWCXpzHNW6QjB3fwEABv6BLHY5JU9EE3bUZ+nlSrkCsvAuBGFjm7hm7VmYzFeCVRhKIY+Lkl4szVKmo2qRQLjPbeEeddfQ3drqHrJqtrwr1q0G5y78knxCvmSeIccaQSKQqDIbi+cKUZeSmbTR3NngNgrrZAvV6j32+x80j03bB0vv+v/x2mgZvanwAAIABJREFUZZ0+GdL004iq553UTr4WY3h+lNSXjVOUSF5Wftd/JST/gkYikUgkEolEIhHIv9r/csh3CIlEIpFIfn/I57BEIvlj4qUQ45xdkDwvnurT6IxPFyVTUhRVIUnTZ9bMv1CY8zVQzx7hucgqAE3XyRfEAvuwPyAKfeyCjWmJOChd1wkCH0XXSbOTifyQTueYfkuIJzRDgyTCcXKoYi0dx8wzE1TpHrfp9MVCfK1WxcyZWHaOYioEG/c/ucfNG1cxNGF01Do8FLEvWkqYxa102gMMXSFfKJAmIhKnWikzVzXQLYMLJSGW2W92ODpsMr8we3KSKKpBoWjTPj7O2mqztLTAz376DsWCOEdVgaPDY1RVp1oXIqRimlCuVpiMJzglERt1+foNjvb36bQ6YjhVFXc8onXc5+LlNQBG/RTDMjlqHqIhFvV1TaF93EfTUvwD0X/bNqlM1ShWSwCESczdu48g8QkjUdobaws8uncf5eI6xbqIpJqqFwi8MaaTR88J0UO1rtHrdxl2hVim3RpSr5fZ2XxAIS/m9uqtq4R+yoVLy5CIuZ+MQz65f5eZ2RoXLwpxiVsPiQ0T3xOiEatUJIl9bNtGUU3RV7crotYin1Q/Eb34JLFBvzegWs/iblAgDlE0gyiLBNM1k3whjx+EWX0Z2FZCmuboZhFCS6vLhIlCu+uSpmIscrYDioJlO+zuNAGYn52m0xuDIsY06m9SmlkmX20QZ7Wq6jkmQ5/b73/MrRtCRLU4W8X1fPZ2DyhkwpHByGV5cYYwEkKGWr1GHKU8fbpDHIv2r15dZXl5jrxt0B2KSKqf/ORnXL+4wXHrKWYmQrIL8HizS1ERY7hc8okmA3TTIj0Z+8GIKPSYjDvoujjHybBH92CbQqnI7Pot0ddL11E0DeXMzeVEGHF690gVhGov/drxdko2Xq2jJu/8/d/zp3/5F+iZAGj38WP+/sd/w1wNkpwQdrjRADU+xlYUSmXR/1KqE4UR40BE3Hmuhm34+F7Ek00hoCkWyhTKyxwdfsBsVVxHxbTH/ubPGfllGgtCBFatNZida1CbyWouCHAKDmmicP0VMa6uO2I4GNLuHPF+1r6RHHF1aUS5uEWSiNioJDYY+9Aa6diOiIlb21hGd2YIPRFTpuccFi+8iVOZI2r9CoDvWXuo7t/R3+vgJeIeUJ6ew3KmMaeWGHaFOGbca6NpEGSCmmKjzqTjkwQqZPfRetUkTBS63S5kNZagMR6q5IsVnKnvA+B3H9FrvY8jdmN0+AHTl36AZuhopog4u/rKd0jIsdfbomwJ4d4nW0NKtkmzF9Mein39qMSNV7/L3KK4HxYqZfzJgIe3f4qfiD781//df09lag6UM0FnKZwYzz0fp3hWlPM859Zeqjz/yZfivMjHF8VQvSgWUiJ5mZEv7RKJRCKRSCQSyR83Z98JvooASb5LSCQSiUTy+0E+gyUSyR8jL4UY5zy+rJBGUZSTlc+vtN/XJU3TzyyuxlGMqoqFV0PXUUhIkpR8XggLDNPEa7t02h0a00L00tzaZtDqMBwIkQ2qxlRjmqQ/YNTaA6Ayv8LRYZd6rUSUCTuGvT67mwfs7h9z6xWxkG1bBo5tnjqGGLqK6ZhMhmOOmy0A3OEA07YolMqUC2JxvtfrU65PEyl53ntXuDyUqlOgKKia2CZJNJrNJov6LK4nxBNzs9OkRCwtzQNisf7osIc/9ikUUzpHov/TdYdBPyLyxoxHYrtc3sC28xiGGJuRG7C/2yKfNxn2xFhopkW31aUxP43nCsGJYdmsXlxD1w12tneyyShi521MQ4hBCnmolIuM+z6tzm7W1zK2VeDB/R2ckmjf0Az6nSGz8ymqKkQPw36HmWKAagvhzcz8BV6zbhFFMd4kExvoJkkco6kKduYGctwZYhg6upqgpmL8dWVIvppHN8UYpmFAkiQYukmQCWhQTVIicnYRNCHGCZMRuqpgOyVcT/Sr4BRR9CoooCuZW07sEUcRWrZ0f/fDj7n9wV1+9KN/wdLqspi3OMVNNT788D9RqouaW1ldIkkjNFUl066QovEPf/tjvvmqEBItrcxhTV0lVXXGA3HeppHi+y7VSpFOV4g/8nYe09AJPZ9CQzil7OzsMqyW0BRxLbhegOtOuHp5nUIpU0YoGoHn4hSL3Hv4RJx3kFCbKnBwuIkVCyHXZOuQe/ef8L23RL+8UY/xoItuORi2EF+pmkYch6TBBKfeAGDz7i/xXI+1G2+yePGGOKSuQ3bdnlyzJwLAM3cOfl1ShDij12uxtDCLPxly1BLX30//5n+lbAxZnGkQI2rnyVaHqpUjZyan9w9dA98HJ3O3KToGKCn5vI+liWtoMBpSnZpDKV2mM3wfgJU5A1Prs9vsEmbuSJ1gCZQ14iQT43gxrYNNnGKJJBLiqOmFefLFCtXGIiurYry2t59y2PmQUntAtSr2Peq6TJUNHDXEYVv0/85T5hZmGbhizuavfBMzX2V29SZxVhODw3sEg8eMu//AeCzmzU83SJxlhqMipYoQueSKC3gTH1uYUFGpV9BybeIgwsjEOJrp4PkegTdhOBRisoP9Dnu7WzRmp7l6U/wgb1YuEwYJo5FwAHNyfYb7H2NUL9KYE/1qNTV++Od/xScff8w7P/+56IMREacJqVqgMS9cp65dv0StPkO5LK69cWeHnacfMjO/yNs//FfZGC7xfP28UGxzjhDn7L/Pc8l5kXjn80Q9EskfOvLFXSKRSCQSiUQieTHSHefFyHcJiUQikUh+t8hnr0Qi+WPnpRHjfCaS6gvWGE8W0xVF+cJtX9TueY4BX+QQ8PxiaULKuz/9OYWSWJBeXlvDsB2UKML3hZOJqqrYuRyL8/McHQp3mTRW2d7ZZ3pKrD5btkkQ+JhWgcaiiGYy7QrDyX1UXWE+c2aozc1wsLvHm29cwcgUFTnTQEkhjkTfoiih0zvik3uPeO21mwA05hscd3t8cu8R1YoQf+SNPqPhiDRXY3pGuHU0FubwxiMmI+GwMpmMUZUYJU1JQiEQmVteRTN1JkMXQxN9GA6HbFxZJfQnOEWx6O4GCbZlgpJj0BGOF07ZQdE0upmoI2c7zM5No5mKyNUBOkdHqKrJaDxhb2sfgGK5xNxUjcmox8KSEGh0Wz167S7trujrpSsrLC9Ocf/hNt/5k2+JcQ4D9gdjhr0ODx8+EttdWKM2M0WhVMQPhMBhdvkC8aSJl4ix0dSANFaxbJtUEQKdfr9LqVymUCli6UI8UW0s4RRs0iginHQ+rZNoyL0nYq4X5qYwTB3FCMkZQrARBj66ouB6YwwjzmorIggmmFYJ1Shkn0GchOimTedYCBDytkWaRqjZ/M8vLmDbBqatQSaEicIx8wtzfOd738C0hVhpqp4jSUyMXJ580Tmt4D/51hUaiyIKyCpO0x+MaTZbNA/E8QxFQ8Hnxs3L9DPx2Ee373L54hpaLk+3I867WquTsyx6cS/r1zRBnFIolygUhADFD3yS2Mf1klPHodW1WWaX5hmMhiiZa5NTrDI1U2FwLObMVlySFPwwRtOFoCmMPHK2hZUrQeagFIcwt/EK8xtXUTXjdAxBERFzp9Yjyknm3BmedSA53fTsNkqStfnsfUBRFJJsj3q1xsPN+/zi//qQclVc36a3ydV1h1IxJvDEuF65sg4+xGEHXRXnHfge7V7MwmwWZ2cYmFqCqcc8ebIFQGNhiVQxmV59jf6umO/e4EPKtRzXKwb++OTavcfR0wNSS7gZ5ewikT/BVVMcOxOAuQPSOCKITJJUtHXl+nWG3Tp7m7+iNRYWMduHEesNnTuPBthCl4Jl5RgMj1iZE+Kf9oMhVnUVszhHLi/qqzj3BursTazmJ4zufSRq4Pg99h+/R6VSYbgvYrB2O2XK9TnKpexa63axHQvT0NFt0VYUhhxu3efD2x/S7xwBUMgHzFRzbD/conUsPvv2d7+PU79EL4v284PH5MIjBjsdpje+DUCtWiRO4NKV6yzMZ4Ivb8JwHDA1PYWWuYyVSg6WbbL/8D0A9h7dZf317/Hmv/hL8oUTgdmndXOaoniew9uZD58pqbNfnz4Hz9ZiktXdp05OaeYIl6YpJ1loaZo+4+J2Urfp8wc5h6/yDJVIvgy/zV/+yxd4iUQikUgkEonk5efL/tz+dd8bvq4rjkQikUgkvw5S8Prlkb/Dk0gkEoH6++6ARCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUTyh8JL4YxzbjTHOds9H+fxa0V0pClJIo5yEhHzZfjMMdOUg+2n2Hnh/LG4skYchMRRRJzZEXTHE9I0Rdd19raEu4WSRFTLJQwji5AJEka9ATv7H/Odb38DgIHbwvUCkqTL6gXhljPca5GzDMrlIqF3ErHUptvtU6+LCJZipUSrc8z80izlqnCaME2TWgL+yCd0xX62Y+JFZbxRl+PMsadQdKhUyjx5JCKE4iRkdraBrutM1YTLR+iOUbUi/mSEn+m5nGKOxuIC/XaXYrmQte9gGia9TofxRLRfLlfo90fYjnCVCMOYOI4hVEgzZxzLMqnOzKFrKpOaiMaKSXj6ZIvIc1m6dBGASqWEomhk08ju3iFvvv0GqZojDISDSbc3YThyuXz5AjcdG4DRYICuQ6t5jDsKsvO2qNWL4Ik5y+WKuH7M5r0nkIo50rWEnKGjag5p5mQSeQFRzkBJQlxXuOwEgc6406HfFw4ucTBmbXUe03RQVOFI4k7GoJnYhsNATAeGVSSOugyPOoSul/WriB94VGtV8raosV63Ra83ptVqA/D66zeori2RqhZ+IByIgigmr06YmS6Sqln/cw6oOqpmUsjGzJ8cMt2oU5xZF7XUG7Pz9AlxFPLqDfGZN5mgKjAadDEzJ6Qrly9h53W6gxgtJ+atXrJxJxGmIbbZPzhC0Ux6gz6v37oujufF+GFCuZLnYlHEImmaQvOwheellEpifMaDDkuL83hFMc5eZ5PAG+C3ddKKGOfy9BT+eMjIHTEeCscebzBk4/UNjJxo5/NROO8W8qKoIODc7U++HwWiln7xf/41mqahJj73P/iF6KuZUsxbaGqIpYm+phSwa4uooQJ+L+tRRL2mEMfiugqiBCNnULBcNpvC+SWcdNF1A8sw8Ktijojy9AcfUCv6mKYYs9E4ods+pr4srpepRgNF0wENTRFzNhn36B0fopgGpbJw91LTPIVKjWj5DfJZbNvSKzqtvU2WzIheT7jl6IbC3cNdAsR55/QmC24Xp7KNOiPmNrUaqGaBwtI3WCmuimO2tul++C79dpOFhhgLfeTx8aMIVFHjupanXHVwCg4jL7s/xxNmi2PmrSNu3hJuT3lbhyRmqhjzaFu4aN356C6r66tourhfdToOltuhUKoxOhSxXnpuGsWaoja7hG2Je4WqVomiCN/3KWTls/vkF4z7LbpdEUH37X/177n06lvo+oueGc865JzUxul3M0e3FxbSeS0qCuc/EbP2vrCBZ/ty8gx7Pm5RIvmngPyLGolEIpFIJBKJ5J8G57kGnPfz/K/zM/5XdSaQ7xMSiUQikfxukM9ciUQi+ZSXQ4zz3FqggoLCpxEy6Wn0x7PLjl9WkHN+NJVy6guUisbEUc/Z9pnPzsaAAGmqUKtNEYVCPDHu94ijBCVNiMMspkpT0XWD3lELNRFCAnc0RlVOwnXAsCziJGW+0UDL4oemazbuaJr5uQbFolh8vnhxiXa7xLA3pFgVC9eKGzDTaBDHou3JyMVybLTJEC0V/UpiFcMwSVP45a/uAfDDH30TJSoSRWNm5xoAdFo9uq0OhSxqStd0UhKCMMA0RD7NdKOBNxlTLBZpt4UgpFapsvd0mzhOSGMxcP3ukCjwqdSrVOtiof+jD+6QL+ap18S/rbyBoghRRKt5KNqq1RmP+gwHQ+wsysgkZdTrkbNt7Cx2qTBVo98dUKxkEUi+S687pFat0O8LccPc3Az1aoX20QFWNuH3H21x88ZN7HyOqek6APu7e9y73yLOJrs+VWZhfpb6dJV33/kYgGqlzHA8Jl8qYWaL8Qc7hyxvrKEqCTMzM6IGVI3OUY+iI0QwtbKNQkqc6Ji6ECEpRki73cMbDjFtIRJyx00Cz8MuFDGzmJyf/ew2uqGzvrZALovrmZsv05ifZ74/JcYmp9A8OCSONXZ290TNpho3rtQpFBQGrhBnKGYe09AAhWA0ACCKQ4pTy0SREBs8eviQ2flp0hjiKM4KPWbYG6OoIkoLIOcUsPI5VlYLOJmwSiEGVPb3RTxULVIpFArEiUsYi/Z9z2PQm9DtdFAsMW8ba6uMBn10VcHI4rma+x1QWjzORGFX10y8sYtKxHx2LQxb+2iGTeiPmQzHoq3Xv00pE42dcFYAkfKsqOZ5QcJ5QhyUlBPJw7nfz2jti7EPvZDyjIXna5RnrwLgdbdoDfYo5kOsvJhbLR7jeg6WOYeC6H+KLuYnEv05OHIpFy3WFmDgiv3+4af/SJjozC0sUSqJsTe1K/QCeNp6RCUnYqN8FKpzyxRKosYN08Qu1RgPfJyKGCM/CinW5giDgHAixGMHg8c45QpKGmNmfS2XbHLaMsVBH/uGOCdFNfG8Mbvb4rw3dx+Sqi3WzSOSnf9PnI9mkyssoBYvMEGIBac3vsEla5nmzh22tsW1dWnJYr4ekCqivpzchMlkQM8L6bXFPWxuJsfKVA5zqYyuizun5w65/XGPhdk8jiniubYe/CPRpMPGlSyib/0tBofvkxBRm1kDoN9qMjp6SH/nHeJYjLVpOxTKBYaDHq1eC4DeMGX15nf5/n/1zwCoTE+jqupzz57PPoPOfv9riV/S0/88cwzl9AGWfnrck3Y5/5l4No1NOdPuybNMfD/99LBfto8Sye8I+fIukUgkEolEIpF8dU5+jn6ZojRepr5IJBKJRCL5zSJ/hyeRSCTn81KIcZ4nRQhjnlkwV84sqvPs1yec99nnHeOsO4HyvCLovH3S9Nn10Ww5M4oCukfClSFwPcIowtB1rIIQDaiqyqDX52B/H88TC8uVeo3Am+Bngh0ljlhcnEdRNTItC3nb4uKFNYIw4t69hwBcv3GFQinPsHVEmggxg2VZgIKVF6IOp1yjRkC/uQuqEEb0O310M8d0o45hCtuHVLUZjCcc7h6gZ24miqrheh6uKxxW5uYazC0t8ODuJ5Tm5wB48OgJ4WRCY3aWfEH0wTBzmFaO0WiEaoiF8qePt8nlTOIkxdSNbMR0DvcOWVhYACBJUzrNA0q1EusXrwBQrhRA1xm2O/Q7HQD295tUqzWiJEVXxVwZhkoSB4w9MYZRBMedHR4+fMi3v/WWmI/AJe/kmDgOuczB5dVb1zg8PGRq+gK5TNhj5R1ixcK2hPigWq2SRBFFp8qNG8LlY+K6/PLdd7mysYBuiPOJFYPIDzFMBUUTn+UKs3ibXUrlspjrqRq6oXHcGTCfiYtsK0+5GHO0f4QyFkKV2+/f5rXXXkUj4e5H90UNOA4L89PUqwXszK4jiSYkekreErWURilTsw2iOMKpiG18NyVWU3QdVCXOtgsJkhGjwyccHQvxR6gWsMdd8nkhHNq4cgXTiBi2OsSRGNc4huZxh+npOmEoxn5uuo6iqOhmDJl4TNNSQtdneWVRHC+FMIrRVIdcTtRJPp/QPu7y7vv3SDJ3ljiOWV1aRNM99vfEdZTLGcRJSK0iRGEpAY6Vx41SdEMIUKyCRprEjLtNDEt8Vp+fQ1HVZ67TZ4QRzwknvlh0kJKmyeducXLfqU0LQdu1b73Nw/f+Ds+3cGNxjr6v09wZsDCbsprPxEvxCG9ski9dRFNFDYT9TfJ2gmmKfpWKGgfNMQt1DdcX8/hgZ8Lf/uTHXLmwQqUqRDWGWWJlbZnC4grjgRC1dUd7zCxeoVTOhHV2nu4woOQUCWMxt43ZBhMvZjgY4o+FQMtRwTIi4vAYtbcDwLB1DEmEGasMOuI+o5jzjAOVUkH0YeU7/5zR8Ji99ns4qehDxRkSRXcZHt3n8a6ok9feuomlN1hbfxWntCqOqTUZbt/HCIWQqFJIqRQ1GonOlWUzm8cERRW37SQU9ydTU7h2ycFUFHIbYrsLSxrvfHyPD1xRBK+8/ipoDTrHH5DLPwVg9dU/Y/v2T0i8Loki7gFjd0jnOGQ8iSnUheDo2z/8DiuXLqPqZjbZafbYOPPsOCO2OXn+fNnn0ItQzvz3tD0FzvrgnFvTL3B6Ou1j9p/zXObSNEVRpQhH8nIhX+IlEolEIpFIJBLJr4t8r5BIJBKJ5LeLfNZKJBLJi3kpxDjK2YXz8+I9lNMPnvlrftLsW887ATzvRHDeuug5DgFnt03Ouhi8oJ0TQc/M3DzNrccAGKbOeDQhl7MIQ7F4ni/kaB8fcffOPaYz1w7LNNDUlOFYuDns7B6AolOtVyhkIo7R2CeJY1JFZdAVcS6D3ghNT6lO14lC4WTRbDY5bg2YmxfOLEZrzNbmEzRD5eIVIYK4/d5tbr1yg4JjUa0L0cDBwZhyrUq+4OBOhLDDNBQMQ8c0RR9s20JVVRaWl0kRooTLly/Qb7cZu2OCKBsb30XRVErFMp2mcJWo1Wp0ux3GY49ErN8TRS5TUxV8T5x3oVwlSFNMM0evJ9xs2q1jGvMzeEFAEIj2c6bF7u4eg+H4NCLKsiyq1QoP7gr3lDCGK7euMTX1TdJEbLO/3cTMmXx89wH5vBCq3Lhxhal6Hd1yiDOhxfR0GWsYcXBwAIDn+sxM1zEMg/klMa6BH2BY32L70RNmGmJ85itFytUqTiFPty2EBLl8gYkfYWQioQePtllbX8QyNHptEdfVPurjeyG1epl+R8ztt77zNitLdQJ/xNrGshifgkOpkqdaL0MWp5YmCcQucSDmTFFVFE0lCWKsTGjlOAaabqFqYNlC6BH7bcbdFu4koNIQDiHjkccH797GKQqByBuv3SSMPD54731WVoRgqlypkKYxQeBTrmVjEYwol6eF001/kNWKzebTHS5eXBX9VODBo01ee/UqSibYsZwCiytLmMUinif61R+O+Luf/ZLWUYuF+Xkxl37I8vIcS2tiHNz2Q0y7wMzcKmTiItNx0FSVnfsf0VgTUUxGzvpMoo+CItw/voTOQFzv2T9OhBVfsM/JfUbLRGhbd37BzuYBujMHmeCoUKrz4HEFTW2yNCuuWzXxcfIFvEGf/ki4Tk2GVSadfa5eFOIPNQ0oOya2EbKa5bFdWy3w0w96hINd7u+L2tfVHLvbT7n19neYnxdjUZu7gGloeL4Y51HPRdPzdNttajNCoDN2UzQzT2UqjzYlHHT8UY/JYIdgcoAViHpVlT5KmqKiUsruA8HgHq6rE+dEhN4ovQzWFFNrf0rv8BEAu51fkfodlmYNbohyIjn6ObFWBL1OOSfcnfTCNFff/CHeSFx/bm8Lt9fm4LDP6oKoHV03SVDpdFxsUzjo5B0DxzZJE2iciNUSeDNJ+B//9i4AV67dYnFlhWPvMcOOaL+1+4QgVEmVKmE2rlNr38UplXFKFeZWxfVh2jYKkCiffVZ8HifuOWd5kfDrs/43PPOwORHifGa/MyIaztnv5Jgnjjkv6sczItdfT0MkkTzD1/1LXPnyLpFIJBKJRCKR/Ob40fyr0pFGIpFIJJLfIC+j+9zvE/m7PIlEIvl81N93ByQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkkj8UXgpnnK/CF/kSfHHszBlOXADO2yVNSXnOKeMF1OfmcTOXD1SVfKGA7diYOeF2MRqNiMOUS5cvMh4IF5EkjVFTBcsUDhjFUoWR6zFrOxTKws0mjWMmIx+IuXJFuF24ro+p62iqx9aWiILJ5x0KTo68fRIFpVCqlOl0+qiK0Fu98sYtcobCaNDGzdx4zNwGhmUxtzjH08ebAMSkNA8PcZxC1laCkcuRpjGlrF/leh1DV0mPDPxgKM47SajXpugP+qjZHPS7XVZWltAMnYPDIwCG/SFxknKc/dtzPV559SZJEnC4Lxx1nFKFQafHsD8hDIUDhmnnWZ2awnMn2JYY15yVw3UD3JGIrJl4Hqaus7+3T70q+nrj+kXa3T7bO9v8+V/8SzFFuoZtmWiqwqAv9s2ZBk8fP+HUQCKF7a0Dpht1oqwABr02uq5z661XyGniHP/x3Y85ODikXCqd1sB47KFqUKkLV5dSsUgQujx5so87HmZlopKzLIpmAT8QTimXr11A110sp0ZlSjjQnJSzomqcOjkpCqlZwbZrAERhgKqoRNEIwxKOPaZlkkQxaTTE7Ym5jaIQo7jMOx9+yGT0SwBuvXKLm6/cQM0cXKLQxxuPWJhfoNcWTkVFp8DS8gqeF9PNXHzmlhrEqcLjJ9v8P//3jwH4t//Fv+bC1csYmnBOWb+0jhckvPOLd3nrG28CMD1Vx/V8fG/M+trKaQ0MxhHKdbjzwR0A5heXWF5dxFTF/KS9lCTwUJUUJatpXVHwJ0P8yYCpRma7co6+8HcVvBOFYv4Pdo7Z2m6xcGGeShYRhRIz25jGH7R4766o8yvrBcpqG6UwzUCcJrXGdSynyMQV8VC2rpOzQixbpVQScUphnPCDt4sM3QQ3yG7hYYIbHrFz+39n82NRO9MzS6TxkNQQtlRrc1NsHXVJE9h8KGppafUidh6iSKFQyiLBlAjDWWDQm+Cp4v6kBAp5fYzh2OhmFu0W+OTdNq4rXHCazSGFuW+hYlGbXQfgKDbZvPdzTP2IRk30NU1U4qhN4nY43hLz3ZiqMFGLeIqo32bXotfKsbSwzse74j63ujyDYxvodgdFFTFrpApJHBGGAUnmcKPrOrWyztq8uE+oakLgjkjChFxROPFouRI3f/BXOKUqaWYHY+YcVE15tmCU7DnwVQrhN0b63P/hi3ty3sNKRk9J/mkg/4pGIpFIJBKJRCL57fDH7I4j3zMkEolEIvmUjHMtAAAgAElEQVTtIJ+xEolE8uV46cQ4CicJUl+cl6EoCr/OUunnCXfUk0igL4gaSdOUSr2OaYiIlPF4QG1mnmG7ix+ImKKcZVGp1gjGHqklhBdxGGPYNk4+WzCmD8SQJiSRWNTXNBNNT0A1yGliu2Do8uD+Ay6sNbh0+ZLYVwF3MkHLooBQNK7PNJhMXCxbLKanSUzo+SjA1auXAQh1Fc8LUBUoZkIbzwsolyvYljif4+YxaZowNTNNryuERK7rY1k2pbKDmh3THY148nibIPBJInHeqaoS+D5mGqNlC+XVWo1Or08YZhFLaAy7fSbu+DR+qDFbo7nnk7dNYtF9rEKBvf1Dbrz6Ku5AxEG1jlsEITgFEbEUxDHdTouVlSWsnJgnI2cwtzDDf/sf/huiQIiQphtTDEcTBr0hT59uAnDxwgZr68v0+0Is8/77H1IuFpmdn2F/dx+AbrdLozGFUa+SxuJ8LMNkMmhTLZfQNDWby5S52QbDkWjLzhlYlskrr19jNJwAoOvw4bt3GHS7XL0mhAuFokkYp5imTZgJdFRVI/Qj4jTEdqysBlOiMCJVTsQGJoqmkC9VUQzxGWHIpPMYf7CLmpsGoNS4SorKd773FsOB6Ifn+gR+iII4no+4mnI5DaMqxD5HrT7L6+vkIwXXHWTzOEW353Ln7iNmGnMAjAY9lDRieUVETaUkDAc9isUKui4mMk5DUgXm5hfJZ4IvL4RSBUxdozGbRa3pCu1Wk/ff/TkA11bLLM2WMe1iFpIESZziuyG5YhW7UuYsZ6N30jTJrtvPXu/p2Ti6051Pvvlse8/v8zxRdr2T+DhOjpmZOk5BxNI1D/cp2DpB5PDBvT0A8o7GFVvFDLZYyIRbVkklrd9i0KoAsP34NlcXdRI8JpMo615EtaRTLGgkWRxbzsoRR3AtVni0I9p/tHVAr+ei6dm9rG2yfejRGahUykKg0957n2+9OUd3mGcyEPNWqjTIlxcoz11DRfTrcOseav8B9UmfYiXMxiSCOMRUxYyYcYfB0WNMy8HM5jZfrLF66ToP7/TwXLHf7HREGicYWoqaiHOK3A662sdWhfDGcWNKJRX8PKov9nt8f4fBKObVG1U8LxvqKMYPI0xVIwiyWEBbJYwVpktizlx3ROimGLqCYopxvfDq21jFAqB+GkOocFpbnx/XdPKUejYO8SznxUKdW2tfkbNtpCdPv7PRjs/0UhGn9ny84uc8Wz+NhpQCHsnvBvnSLpFIJBKJRCKRSCQSiUQikfzTQv5OTyKRSL48L50YJ01SsdB4dm38jINN+pk1wmc/OLuI+nnrqeeJas77/tlF/ZOvn19czdl51q6/AsAnt2/z1nerRGFMkp645SgUaiXiKMbIC0FF53AXbzxEVYUjyUKjRgTc/fBjNi5tABAGAUkSsHph/fTEI98jjAL2j7os5sXCsqGqBGGEloil5LxTQDc1bCyGAyEIqdar+IFLQkKpJpwt3Mhkd3OHYrGEqQlXnePeEbVKhcAXq92lcpGZ2Sn29w5Is5XqQrHA9Mw0BzsHhIkQIKysr6EoOr1OF6coFuInwxFpqjAYTIhjsaBenaqACoWCkY1dEdVQWZ5bYzQUbheDfhdVM0iUkNJUXZxjzmQ2STjaOyBJxLi2O31IoVoXopFEUQiCkE6ny86OEND4nseb33wbRUvJZ2NvmDruZMLhQZNXXr+RjWvEwWEb3RDChTffeo0omNBqt7FMIVy4dvM6lm3gT1xaR8I1plK2WV68ipFT0HUxrvt7QsDUORKiIW/QpVCqUCjmMQxx3p/cfYSVd7h+6wqmlYlGSCFOSeMYPdsuinz2D47odAa88sZNcZ7hiCQYk+pim9AbohsmkTfAn7TFebsjVM2gWL+IWapn9QphkJDEEfUZ8dmTh0/pdzoo2dXiLNRxXZfQj9Etcd5P7u/RGwZUymVMW9wyxpOQvGPywx99j/FY2LoYSiaiaQvBjqKpXLpyifv3H1CuCsFUGIZomsnHdz+ikol9lFQliCIuXFigkLm/3L//iO//4BvUp8Q2nzw6YGbZJ3LH5EqivlJVI04Sqo0ltEzsc3J/eObqVtLsA+WZj17I2XtIprn4PAGD2C5F1cTYFOyUNBzR3NtmYU2Io6ZnG3g9nUedIaYhnHHU1OS4HbOYGxCHolZCZ5pypYCTF4K5mfkNJoe/wox38QOxX+hFlOcUdFSiWFyUqpaQy5mMRgEXF0Rd6KmLufKpwsQwQ4o56E9SrqxnAp0kQHGPqCk6o6G4lhVbZ9I3CROFUkncY4r1DazGLEHrZwS+qDHLTCBNUbMBS9JAjINpEp3cP6pVNC1BsfZp9Z9kYxVTKypo+ZhaRfR1txkwU4NI6GkYT0JWFgzCYEB1SYxrGAW0ehFaGKBnY53EGtu7HuMwpd8T/f/BWzV0FYzs6eZHISQjwshkdu01QDhtkSqcNT5L008r5EWCmTRVsufAlxfVnCfMOcuXcXs7X8iTPivEOfNsAkiTry6o+fT5+sViWInk6yBf1CUSiUQikUgkkt8Pf4zuOPL9QyKRSCS/Tf4Yn60SiUQi+eq8NGKc8xa7P11YTD+b2PEb+MP9swuciqKQJMnp954X3Hy2T59+rakJ194QYpy/+esnbD16imFaNOaEI4lj52kftSjVSkwmk2xfgyj1yWVuKigqRcfCyjvYTuZ4Yqjk7DqqbqFm24VhQr0+y92PP6E2IxxJKoU8BwdHBKFYyb75yhUG3Q6jsYuaxcxEkU+cgmY4RNGJ64qKk8+jKgrdzBHGnXh0209xMuHKtVvXyJfydLsjjg6Fa4Wdz+N7PmbOwNJFXw0tJfBD0iSm3xVClbX1ZYaDIR99cJucJfqRLxaJgoh+V4zDbKGEYRgc7TcZj8Vn43Gf8TDg0tV14kjMiTfpkyQho6FHzilm464wM11jJ4uxaTSmqEyVmWk0GGZRXJ6Xw7YN/uHH77K8Kpw/KvUqugKXL21w9/Z9AHRDY3l5CTNbwb9z52MsK8e1m9dOa04zdVrNDs29PQZ90ddLVy8wnkQcPt1HzxQecZrglIp02kK0UN1YZvPpDtdeucHBflNsE8Y82X7A2to0SuZw0+/2MXQDlOBU2JMkCrOz01RrFTxXiA38yYR4vI8/zGLKHDBMh2BwSBwKQZOWm8K0q6g5A123s36pjHtD9nb2KJaFyOL4qEWjXsI2Rd8NQ0PNW3yydUBtviHm28lTqZYoFop89NHHAOxuNVlaaoCq0W5lIhE/4pU3X6XVEud9sH/IpatXaMzP4PpCQBUFIb3egI0L6ySZkCRnmdy5/QmbT+H4SOw7OzVHr9Vnb3MXgOF4Qqc/Itk/YKNyNeurybDXojrTQFE/T1yXOYSQPuP4ceIsAp+Kc1JSzm4hxBrKM/eiFwpzlCQbL4c4STjY32d2YS3rj8rsygYpIVoiro937mzx9o0ZFhoRvifm8uPbGjnrkNdeF/eTvG0xyG/g6AVs/x4ApcKAKA0x1BQ1O++UmDgOyFsqQSD6cWHZQAPSbBsVjUopJNFUOm1RJ+WqjaaGGHrK/s42AK43odHYJ4gcOv5cNj4hVj5HsbFC0BP3iiT1UVCJ0yjrK4zdAbE7wMyLa9QyFVyjwNT8Ise7ol8fPbzHN25Z7O+GVAsnblI6UQQ5W/R1umZAmmDkFFRVjLeWptTLKjkTosxRBz1hqpTiH8PCnKjpGIeRF9GYEXWPMSBVFrj03X/D+isiLk3VtGxezp/LFxnEPC/IfBFnBTTPtvvV3XFe1Mfn23jRM0vU/7OCoOednp7vryKjrSS/QeQvwCUSiUQikUgkkpeDk5/N5cKhRCKRSCQSiUQikfxuUH/fHZBIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSP5QeGmccc7j1EXgGVec7DOUcyKrno2xUjJHgCxp5jOc6w6gnGkn+eJoGtEjhXIWuVOq1lBVhWK5hOeKqJYkTrBsi163C0rmBGHkaLVbTGcxPKqSkMQJjcYMSdbbxmwDSPF9Hztzlrlw+QL/y1//b+T0iO2tHQCimRqj8ZilpSUAwtCn3+2h6DlcV7hYOPkcqe9jGhqtYxEjpJsxh80ml69c4ShzN+n3e/T7fdbXLwDgTkIMM6JYKFBYXwegUCgQRCF2Pk8UCpedRw+eUihWcJwCqib6P+gP8T2ftY0NTjKujg6bVGolNKUk2h96tJNjoiil2xOOIYtLDUzTJ45SihXhdnF0cEi3MwZDR0+EA1DRKXJ4eISqCWeZ0XBMsVxAMzTe/OYb2dgrfPjer0gUhXbm2PL4gcbOziGzCzN4gXCbqTtV3n3nfdY3lgG4ev1SFq+V0OmJ8Zqdm6F91KFUqVObngJgPPJ5790PGA2H2LZw4jByFq8tLlKp+VmdwKWLy4y6LUJf9L1arhDMTFAUFSsnYpfC4P9n772+JDsOM8/f9S69qSzvqy2cQJASJVHSSDPa0Z45Rw979mnP2df9F3d3dnRmKYkkSJDwQNvyLrPS+7x2H+JWdXV3NboBQrMgFb8HoDMzbty44e5DfPV9Y05Oz1harqGlbiBRFDMeTul22kSIOZDL5SguvsuslxfjP3hC6PfAzpOE/XQ+wWx4QhhEmMtFANrdKRkvw/LaKp9/JlxWZqMRufUqUSCcRrrtLhnXpVwtUyrNpf2cx3JsdE1n+5aYF198/gW2Y/CTn/4pczXhnjIeDWh32pQqol2KGtNsNKjNl/GyYhwH/S7mcEoml6FRFy5B2azFndubjGYBC0tiS5pOfHb3jlhfEtctrLzH3MoSk+nwyrUjSWA4HLJ2+x6XK/ym+KlLZxsl4crlKEljq5TLNRzHokx6xfXKlETluoXOTa4nCgrdi4YYf8OhVtZp9mckiRjvKAhpt9vYbg7dFnNnPD2ilFGIwhleGv81F4ZcdDucpRFn25vzHJ+NiOfyHLbEXuGoMf6wwe11Az2VU/YHIRM/xDYtPE+07bzlUy6aZEztqifKtk4Qq1zqMD1XwzBUDo4meHb69FELT5+RzDQ+++2nANzanqM3K5D1bCLEfNKVHoapEqbOOI4Vkon6jLp1nJxoa7c3YDwKWF7fZjoWbjxP9g1+83DM9rIF6TwvlXR0XUPTxOdsDuI4QVGeudDESYiiQqIaKKmL2f5JyO4Z5Ms1FF2Um6pLBOqMTBrFtvHO31Bb38HLF0F9E/2pwvNvjNdHNr3oePMmsWY33vk1jjnfylnnmd3Tc/XfdO1L71oZUyWRSCQSiUQikUgkEolEIpFIJJIXkC7YEolE8u34wYhxvk1sB8B1ic13if646f7XD0iTJHlJwPOqeBIFUNIYqaW1Vc6Pj1nf2WLUE4fP49GEeuOcxcUlLFvEP+mGgW0YjIZtAAxTJ/QnnOzto1mizMXZGY7tYjoOmYyILfIyWba3ltE0HT8VUFiWg2FZWKkYxPE8gklAtli8EvaYhs5koKBqKvm8uG44nrK6sU4UBMyl4pJht0exWMJxhcClcXGOk9nGMEzqZ2cAdLtdVjc2UQ2DcCDEPoPhjDDqY5gGZmIA0Or1CKOQTqePn8YU5XM5OvU2piWEJZlslkGUMAtmLCyKGKl+f4TneYxGIw739kUn6xq+HzFfXmDQEpE+cRTg2DbNCyGyydXmaTTaOLksbtpfjpvBME0c1+TuuyLe6Bc//xWT0ZiNzVWMiujrs9MzNja3GKXxVsuWRTabiFiwqogb03SNtfUVUOGifpH2vcXC4iLlcoZEEc80GQ9J/C7naX95ziaGPqXdaHJ2Ifrr7XfvsLa1hh/CJBVtuZ6HopkkisV5QwiTXMdAQWM6jckWxJhMpj7O2MfJCRHMNJoQDI4xM0WSSMy5CI041ogmXUYdEfWUza2gmToZzeH27S0ADp/s4vvhVXyW5zqc9RskmNTPRfu3b9+i0+pxcHrMu++/BUBteQ7HtLBcHd0QkURROGZ+aRnTFu3MF/MkUYSCTiuNLkviBNd1UBWNbrsHwFeffsVoNqNSLvLOu28DoGoqYW8f1RB1ZQs1dFNnbfn2lXBoNu5h2h7ZQgnlNfl1SZI8py94MZ5KUdWrK5/fB8R/Lpf9TSKKWIEkCPni1x+K8Rkl3Lr3FsGXe7TP9kRbQ4ViaY5E0anVhEjkyROPSZCgW+6VgK2Sn/HhJy0abfGMy3M/Y2NrGdvQeP8vlgGYNncZth8RKV0UxunzjAGDbs/HtcS2ricKpqoDQriiKAmKaqGpCtPZBIDOIGS+nGU4Mdm5JebT2YWPnt8mV/RYikT9zsIaxflFGqcXONU1UX/wNUrYRE1Fi1o0Jp+DkRKhpKLDRLHJZgymfky2IJ771voqT/ef8jAcsrMk9qww0bGNGCNVF3mehmYmRGGMmgpozpsBtqehjGPqLSGi22s4bG3fw5+OyDrimZzKJjt3P8DNCFFYvraAbppX4kzRFzfHSH07UiHXVaTVd3v/vOq98k3vtTeJyroq98KaeFUk5O/fHxKJRCKRSCQSiUQikfwwkAeFEolEIpFIJBKJ5IfAD0aM8yI3OVzAtQNKlFSQ8+pD0G9zuPiyM8AbtPGaC8LldUtra/z6n3/OyvoWXk64eoRxSKVUwbBMLg9wbcuiqyiol+4bMfiBT73eJJMVTinVuSq7+4eEYUSlItwoCsUc1UqFTDbHZ599DsBkNGVze43JUAhJ6ucBxUKeyWjIdJYKF4IA29AZ9Pt4nhA4uJ5DhM5sMkPRhHuGYZkQi0NwgCiJGU3GGIrKIBXenB7vMTeXozq/zEVduIHkCzkWlxYghlYzFarYJkvL89heh72n++KeGYfGeIqhiPo1IyEIpgwHQzqWaJdtWzQb5+RLZXo94fSSL+WZqxWIgoDxRDxT1nNptlr44iN+4DMcdJkNCowGQkSwsu6xtrZIrpBnPBaCoO1b2xSLZc7OzzFSocL2zgbnp3VqC0J4E4YBo/6Af/rv/zf/5R//AYBOY8Lnn3/N3bfeYjQSYoDd00PiKGSoTtFTEVXsT/j0108IUieb1Y1FkigmX6qyfks01rUTYtXF8lyGbeGCYmfyjMdjLs5bdLriu3wuy+nBCcPJlOpY3POiecF8bY53PxDCFax5uvVTcvEFipZNZ6eKZnuoyTOhmG45+LMJk/6IclE4EwXzRXrtNqYptoLJuMfG7XscHtaJI9HWTrdHt9cjV8hydCjcmLa21yFJGPX6xJdiDBOePH7CyvKS6MNEoX3RoVQu8vXnXwPQbDTZ3lqhOjeP7Yj+shyPpdUVLMtEVYWTzMXpE/KZkHzlFgBzqxvMwgAUAyt1ieo2zymWK6i6cU1dI8aT5JkDypVByDc6aT3bV64EPUkqY1Djb9xLlATQVG6/8wEATz4JcbyYnVsKB7tPAChmqyTxAM1wCQJR//JCnok/YTxJyGZF/1smLNRyVw4xs36DaZxBzWbxPDG25tI98tUqo+YT/JEQomVyXbLMOK/3OTsRc9/I2qimTpw6STV7MZ2Rz85WjUpVCGOmQYidX2S7lEO1xR6zvbqI4c4xDUIWDCHuSpIQRffIFlWCIJ07uoI6+AzTS8U+tIhmU0y9jT8V89fLLhL4AY6molSF2E7XElBCTk8OqbdE2+JEZRL4LFZTsaKmEMUq46mClTr7lMoFGp0Jnz0ac9oWfXjn3g6qW4PRF3jVDQDe/Zt/xC2Wnx+jVIjzZs41zyyUnhVLnZeUy33/+pxQX3oHvalY5qU7X7vuTVxybrrvsw+qeABF4dkCicWjJJDcsCDe1NlHIpFIJBKJRCKRSCR/uPxPi+/xf51+8v93MyQSiUQi+YNHvlMlEolE8jreJLNDIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRvAE/GGecN42a+jZxHtejN75tlNWryr/OXSFfKlGplDk+OKC29OzeuUwWXdfxJ8K9xrA0akuLNE4DUSaIUdQEw1AxU5eaJJiyMl+kurRKGAoHCcvSMU2PVrPNeCK+2761RrZYIIpEXW42x2QyIfbDK/eg3/3mE3a2V+kPumTGwmHD8zwODk/J5XNYpnAbKZRLxEGIqYuoqVngc7K3j+25LK+vAnD3/i1My8QPY6rVOQCOjg75+De/JeNlWVwRDhhJHHByesZoMGFpsSb6p1DkotWn3Rpc9dmgP0Y3VBzPE31jWvizgDiOqC2K+jMZl8b5OVGkM+iLPozCGAWNQuryMplMODo8wXFdbr91Px2wkPGoT+OsxWgsXD7u3tsmmy/S7/aESwdgmCorq8v0U/cfFBMvP8etW3cZpY40D7/ao1is8OSrhzx4IBxPxuMJa2uLjKYeBWGERByE5MobxIlwlqnXLyiXSvR7fYKZiKQq7KwzHE1IBhOOdk8A6PXHlIt5dN3kNHU3OT+pYzs2u0/3GPRF2yJ/Rjidki0KB6X5hSUWtn9KMDpBSeeAk6mgOzn6jafEcTrHkpjmRY/zk1Pu3dsEQNd1kjihnDovOe4SumEwGk+ZS78rlXLU5kqcnjZRUpsZPZ0fhmnSaNTT8VAplOYwbBE9dH5wgGk4qCq89bZwuAn9dVoXDT7/7EsarSYAc5USpWKJXM5mNBZRQ7aeoDs53Fw1fZ4cOQM008QPRB8mqk65tsj3RSI66VtfpyBirlZu3QYgVyyy98W/kMm2WKiKLbY/OMcxRwxHWeaWRV8QR/ziF/+MbcCOY6aVDdGiKbmcWC/jYY+94z26vZAfvbcNQKFSws646IUdjKJwg0kCn2jSIZ8c0u6Ief5ov0muXCWTEXVHgYWqOURWDiV1QiLMoc+vYxsupivmk6ZoNC96dFodMplc+owTzo/qFAs5Ksuiz5WoRvtUo3P+kXhuO8KI2oThGZ1T4XDTcyPsbB7H1BinEXCGXUS35kjUFr2pmNPWJKKYNYhCsbdOpxGaqZAoBs2u2OcarT5HF6BaK2xuC+ebWsGke/ghiytVPviH/x0Ar1gB5cW4seffA98Hr3sXvXiv69+9+A65qez1Or/pnfOqZxLfJ89N6SRJPX4U5aX4qm+qSyKRSCQSiUQikUgkEolEIpFIJP9+kRGQEolE8t34wYhxXhK9XPv4ptFRL8Z2KM/SRtKoju/WnlcdoN5UXjcN7r//Iz7+5S9ZWFxKy0NCQuBPsBxx4K1okMllIY3l6be6OGSJ4hg1Ed/N/AhTjZhMR9iOEKr4YUy2YJFPirzjibo6nTZxGHF8cgrA9pbHZDyj1+thu0IY8ScfvItjqiytLqOnYh/TtihUSjQbbdy0XKlWpVO/4PhQ1KVrGkuri+i6QRAKcYkfQK/fJQ5bXDREJJVpWczV5llaXabT7l5dqyg652f7TCZCQJHP51jfWKfdFG2wTZvWtIc/C2m3ReSV5+WI4ohipYRtVQAwbIdMsczDz76ENBap3W6xsrpGqVoC4NFXXzIejXGcLCfHQiCSoGJaWTzPZ2d7C4DmRZso6JJEMSenZwDczmepzFcpFIWiZjAYcnBwQqvVQktjnoaDMcEspN/rc7l0lpYWieKEab9HWoz6eRtFjfjxT34sxnEScrB3TL/XozwnxCWKYeJ4GvXDE+pp1JebdbhoX1CqzpPL5wERQVatljl0XIb9UTrbIiaTkIv/9qEY71vrLCzOk3V0LITgYRhfYAUTVFVDNVxxTxKURGVrZxs/jaB6/PgYz9EIU5Osw8MGGc/GsnSOT84BqNRqmKZBoZDDzYh5ouk6SRwShgH1U9F+3bDI5QvE6dIpVUqEfoBmKDQOzq/6XlcSmo162o+wsbLOeDTg4YNP6KfxXDtrDsVSCTRR2WjQxbQMsoaBqgkhUKfRYPXWjhjndEkq6XPctH9c30duiqx61XXwzWv/an9QxZzIVipUl+/Q0VTs3DwA1e4DxoM2s/GQ2UgISTJejurcEr1Bl2AqREiaYfD+/QVCW4jQer2AKFLY2lnj64ePALiTzOPMcpiGjc4gbXcG1SpjFlXWayLuzasO8MoFiMVam89ZhImD5uTRdbF32Gnk0pNHh2QyYp64lsXJ4T6jSYiTCnQsQ6HVmjDudUARbS2WinjlTSYDsYY0TcVMAqJuF3MmxGqYWcaDCCNfpDy3AMB40KU8v0yn3+PsVKzTVneAps64tSIir7Kuhuep7J+OOTgX8XK54jyLG5t4roGri/3E7zxgZXWJP/3H/4Pi/FI6WN8tohBeLda8/PrZu+BlU7kXxT/fJPz8pvZ9e8HNK7iMbOP5iZ8kSqrKuRb5eLlGvkO0lkQikUgkEolEIpFI/vCQsRoSiUQikXw/XIpU5HtVIpFIJDfxgxHjvESSfGsBjbjs2sHqDX/5/ypedDL4fZx01m7f4uz45MoJIluo0Ot08TI2SnowaloO0+mATFY4T/S7QzQibMdhNhbX+UFAEISEoUKmKMQThmmx+3iPfDHHwwdPAahWS0RRyPs/+QCAXrfHo0dP+OCDd2i32wDs7e6zvLxE2XBIVNGGIPBJ4hlLa4s0z4VLyenxMYaqkc8J0UUYKtRPT1ldW2cwFm4tjf4FbsbGH06vVBAZ16M8VyKb95imwgJdU1F1k9JcFVMX7hzhdIqigW4LQUW3P6LX65LLZ3BTwRGJQjbncX4mhCEA5Qr0Wi3xeypgevudOzx8dEgldd2p1uZ48vgJF90B8/NCWDDoTZlM+3z91VPKZSHamQYRZ3vH5LIZShUh9slkcpyfNjg7EeKAfq/L5uYauazL4eHJ5SBDEjM/X2WSOrj0ukN+9ON36XS6nJwci3HzA6Io4Ekqnsjns2xurWI5NvNLQpyRxBCGER/95nd0e0JkoykKqq5SLoNlpIf9qsLB/h66rtNuC6FKIZ9lMgkwU/XPaDDmyZOn1EoWtaJwwbFMjcTvk2g2aiQO5VWtwMHeLrqisrQixB5xFNFt95iviX5QVAU34+LmCoSBeO4oCtF1Fdd1sCwtLQdRGLF/WOcwFT698849qnMFkgwMzogAACAASURBVEA4CY1GE0xTp9HoosSiDUk4pt44Q4tDtteEMGnYPaI/6LFQdlnIOuljm5heDQzxOUigVK6gKhr1vYfiGR0VyxLz47uICG4STCRJcrVrPBMofHM9z/aOJO2viPFkymyqoqipEEqroJkRleoYPzgCwJ8F3N7MM+hNuOiIPhv7M27dFaIZgPPmkNu3VvEshbm8cMFx8x79kc6TvXNu3RbfffHZU4q5PKZlk0udcHKFLKaXJVLEHjOa6rheBttzOTs6FO0K+gRhgGVo1E92RftVk/bZOYZlMR2JOZfPOvizkGKxQsbLpe0H1bDJlIXIze+MMewIzdXI0E3LfI2q3iGY6WSKwmkpjjwKZYN33s+xuC7q98c9uq0muw0h7MpMDKy+ipNf4P68GOOFpRrjXoOg8xgScd3a3R9x76/+V8qrt58bqJvElG/CNzmipTW/ss4X7/kmIs7XteMSVVW/8ffXff+Ku1y7RpVCHIlEIpFIJBKJRCL5d4YU5EgkEolEIpFIJBLJvy0/WDGOgvL8H/S/eMioXP3nJa6iP76h/tdFf1wesL8k0FGUq9ve5JwBYFk267dv8+TTrwBwc0VUJSKYzEii9IA2SdB0CyV1qfFyGUwdvFyWdnog3e+0CHyfyXAIsRDjOK7NLDaIshk2ttcAKBQK2K6FpolDeMfxuHf/DpbjcHAkBBWbW5tkvAy26+CnYplwOsVQE+IwxDCFm0bzpMHK0gJBKtiZxhHlSpmp72Omwoe3/2STxlkdu1Sk2xFinwCFIBTCjua5cMsxTJMEcB2DckG4gfQHAx4/3GN5RYhSfFVlbX2TTN6mVBKuNNNZTCbvwWjI/JIQjeiaRRCckS96pF2IZtj89d/9DNsVbR92W/ztf/4HgiShUhX3G/SG9PsjTNOk1RROLGEQsra2yt7Tfarzotx5vc10MLxywclkCzTOWzx9+pS1NJ4rmMy4qDeY+j6joairXKkSxwGua7G5JaKfmo0O41GfuZoQCfW6fRIiivksX3z6BQDvvfcuu48f0uuMrhxJDg6OWVldZv/pU7JFIRx6+nhPxHVVq8zSiKsoiTEMBX/aT/umxvFpHSWeI47Ekl5bdkgUH9spEATCWcSwdN5+9y0+/s3HTCZiPpWqWTJWgclAjKNjKigKOJ7DdDpL2z9kMBpjqAmlNJYMxeRo7xjLMHj7bREJVi7msW2HOB2gas2gflIn4zq0z4XYZDIYsLxYJQrhuC5EPPl8hiSK2d8/YmdFjIfhFUBzePI4Fa5Mp/zsP+XxMjn6LTG/lm/dQU3lbS8KH250wXlB4HdjlFDyslPK64QPl2Xi1DkqnAXUd7/EMQOidN2iariFFYpuBlMseZxcjsmgTb2xxKgtnIOiWZsQA1UX7XQcnaPjNmvzDuNZWn8cEYQKq3MZ9ET069JilVjxODg4Z+oLIcy779xFp0ivJ0R0pqnQuahjDT12HwnnmpybUF1YgCSilro2ZbIee9GMQqkKqUtXszvEtIb0B1MqiXiAIIyIplNUTcTeBdoqcZJjEJvkcmIvUqcdQp4S+HB+IIRixdoqmYJJMNWIUocmZ7HGaG6BtW1RxnYdJsMOlhaSTEXfBM0DklGDatEjW/sTAObv/Izi0s5Lb4LfN27peQecbyfIfNPv37wNr56DL/LmZZXrCwOUmOS57yQSiUQikUgkEolEIpFIJBKJRPKm/DGLXGVElUQikXx3Xs7akEgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJN+JH6QzTsLzXgQ3/qV/AgnJS9EgN8WTvC6y5Ns4DyQkbxR/VVtY4OEnwgUl9n1UVefs/AJFFV0+v1DEy2qAcJ4ozVU43T+i1zhHTd1ZNNPFsjJAfGVYoJsGGiaDVotsMS/anyRMRxNOj84AUFXhXDHojxh2RATSoDNirlojTGLi9FFNy8JQwHAsRsNL9wyLbKGEYYvIqKTeIIwVGqcnFPLCAaPb6jKZzkgihbnFRQC+evCE1Y0V8vk8tpcB4OK8BUrCytoCs9SJ5eneIc3mBWtr4jrbNclmSxydHjE3L9xgqnM1vEKWYpRnlrr4jPpjmhcXlCpVFF3UFYQwHAwYpK4inpdF0XWaF108100HTCGKYybjgK+/fgDA3bfvUChmUBSFzz79EoCdW5vksxkKtogH+tef/yu3dtZ55737PHkqIn3qp3XGoyF3bu/wr78SkT4//tMPyGY9vvj8EYYlxm3n9i3iKOHrr0Xd29tbjMc+5+f7PE4dSVZWF3jw1UNUVaHdFvFbk8mYhXgBS1N58IVwVcpnPSzTwHFN4kT0/9HxOeVChiQS9/vNrz9icWmdw8MTNHUJgKznU86F6JaLqgtHo3DaQ9Ny3L1/9yqCadgfoKIQqMLJ5PTolNvFCqZlkS+I+2m6hh+ElBbmcDNiXkRBQKlcwrR1mg3R/l63hWWbaIZwKtJ1jcWlBc7PGzx8IhxuTODe8jpnB0fc3hZOQrriM1d0iZNlNE2sj1EAw6GP64jx2NzewDQtotmY0XAAQKZQTC1wXhNJdLn+Xxk99Oa8KtoKQNVF9Np00mLSP8bJ6Th26hCjhfiTLpG5Q6SJcv3ehEJ1m50lj3FXzOFHv/1/mUZZkkSUWV1bQdVc8oUMWUXU5Y96mEqClysxnYq+MA2Vh08OWF9bxM2JMdLw6bXqtFrCbWb/uMFCrYJjddHTPjNNm8Ojc25tb9FP49KarQmdzoxEGZBJ13KlVMI2PD763VPGE7Ems/k8m7c2ruYlSo5+cx8rmxCFaf2uhRH2Uf19JhMxTyJryiyMCCMdLRRuT07SRtG6hKkTD+MJntLFnwwxjTRmzS2Qu/sfMLNVBg3h+DVsnhNOx2hu7juP5+t+vym+6ZURZ99jXNqb1vu6SMXXRjcqCuKt++KbVyKRSCQSiUQikUgkf+xc/qX7H8tf8su/3JdIJBKJRCKRSCQ/JH4QYpzryRjPDg4VLhUD19M0bjxLTK79TnL1+fK6m44XXyfAedVvSnJ1I1CU9JbJ85lYChi2RW1ZCE76jQ6ZUpHKXBXHFeICw9AwdJPpeCiuCSNcz8NaWqLbEpFBqh5RrlQJwpjOhYjm6XWHqKpKkCRkS0UAppMpe3u7BEEa+eLYHB+fsby8gpt107oUup0evUGPlZVlAKLAJ1I11MBHUYWww7Jdzk72cbzcVR+2LpokisIsEIf6yWCA63js7j6mPBZRRuVSmYOn+3hehupcBYBGq0khn0VJVNyMeO7V9RWSJKTbExFLhVKZIA6IIxhPRF1e4GPNxIH/YCBEQsVyge1bm3RaXapzIsqo1+mhaTrnx8cAmI5HqVJiPJoQ+OJQP4pCxsMBq6sVGkLLwGg4Io7h9p11CmXxnIEfkJBcxQrV5qvUFhdRFPUq/ss2bVrtFl42w/17bwHw9Mk+h4aJpumMBkLMMOq36LSHuI7o+/pZHdfVWdvYZHVjXdRlmeTzeXzLp90T450kCc1GC1VV0FLBRqVWJYkmDHp9ej0xV+IwIgxi6qkIRlENTo9OyBcc3DSyq7iwgRY0mHQvCEPRl5qdIVMsoCkJv/3dp2JeqApPHtYJYyF4mIynbN+7T5woFIppZJRtUPCKqJrKbDJM2wpevoiqK+SK4dXc6fSG+FMxV0vVCq5jUZsr8xd//kF6vxDXsSmOx5BM0/YXUNUBia6T6CKqbL0yTxTGnBwdp+NfYjLuE/hTIE7vZxORoLxKrJB+9aq4n5v2gOTZtvPKfePFf0dRxMXJyVUEXTDpY6kRpqHgVLZF2dhndvIxhqGhOSK+bNI6pHP+iGAWo6jimWxTYzxJ6A57ANx/50fohkqvM8LNiu1a0bP4fkA0nBHMxHX5aoX8xYT93ROKRVHOVCPKC/OYiagr9ocoUY5CuUSpKOa97WXRG01UzaLZFH1tux5eMc/69iqE8VVfXFxEZLI2FyePRF/5NZqORr40f9VhfqjiefNMumI/cYwhYaCD0qfgiHkR9+voSUzsa+i+WPNJnGAnMWEg1q1iOhhOluryXfSciOOzvHU0O0OiTDl7+DEAs1nEbDrAdDMo14ze3lRg+Tqh5ou8iXDmRdR0b33lO+U1Ap5XiYEuf/umuMUXr0+SG+b1jV9KJBKJRCKRSCQSieTfE3/M0RoSiUQikfyPQr5PJRKJRPIiPwwxzo3ONzc5XNx8ePrc9df/mTwTzbzRPd+US7EPyc11A4qqUJ4Xh+5Hjx+RKXhEYcTZsRBQVOeq2LYJijioDWcBlmVgl0uEkTgAb9frTCZT4ihCVcV9NE0higIa9Ta5rBDjZPNQKVdxnNSZw5+ytbNNFMVsaKsAqIrGv/z8QzzXZq4qrlNVg2azTbGUJQqF0ObR1w9BSdi6tQVAJpPj7jvzJAmc7O8D0O10WFkrsrNzGz/wAbBNlYvmhNFoiNM302es0Dw/Z29XgUQINiq1ee68fZ9xX4g62u0muUKBO/e22NxeB+D8vE0mgZnv4+WE60a2kCOfz+E6TYapaOd4/xBFNxhMRd0bC0XiGBQ14TcffgjA2WmDxeUV3EyW1kUHgMlpHcc1qZaLkPZ1p90migLC9Hnu398m8CPq9QYH+8KFo9VqYjsuDx/soevCfch2LIbDHjs7OyiKEK+4uTJnF33GqZAojgNyhWXcjIdhGFezxMtmcF346ZIQbTWaTQxVp9/rXQmr+t0O/ixiMp7SaXYBKFVK2LrJ1pYYo6dP90nikNEwon4mBA9eocDOZo1Je/dqjoYx7O8foysqk7EQDulEbG8sYOhiK3BdD0ODo/1j1jdEu07rXdoXR9Tmaxh5L+2LBosrGRRFo1SdT58zJIljxopouz8eYukxmq4xvyTK1M8bRIpFYXEdM919okShfXJIGEc8eCLm2DuZEkurK1cuS82LJvNLJYbdGU4671Xd4jJp70Z3kGu6vlfxopBB/P/ZhYryvM7uOld7SBRzurfPbCRcalR1KnxGFJNpT6z3JGqTqb1Lq9HF7gshSTQ952Kk0B4aqJoQoSxWPer9iGpVOBwZtotKguPCdCLm02w0IYwCikUXwxXjoZKwvrnAtOZRqVQBePTgawYXh9jplFsqw6h/zt7TgO0t4UrUvagz6LZoNpscHgn3oqxnsbS4yK9+8QlKaqNVLtkoiYapRdx7fweAQavJV5//lmx5BYCV9U1M28VybezMAgCT/jFubgMl6uN3D0SvJhPCaITtKiSRWEeKnkHRbGxDiPZ0p0YQacxUh8lYlJn4HSb9XaprWyiKmBeFpdtkcuVXj80b8DoHtVcJuF687lX3jFOh23dxzbms902ufRMBksLrnXQkEolEIpFIJBKJRPLvE3mAKJFIJBKJ5EWk65xEIpH8fvwgxDjKa85NFRQhfLnuSnNJ8vyhYnztdyW+quBGXjxkfe6eb3CweemK82L1l89TqlYvb8RoMCCTzbG4Kg6ukzggJiaTEw4Vo8GIIAgIpiMqqbOMm8nRaV6gaSq2IxxPAh9mU4Vi3mPUF8KLcb+F4WawTXEwPx7PsOwZh4cH3L13R7RBhVu3N4nCKUkqvNFcl73DM2bBjI0NUW5js8doPLkqE0xmdP2Ar798TDaNKPIyWWbTCZPxhDAtpxcLWJbB8uoyQeqgY7ke00GfQj5zFc81Gw9Z2tygkYjBKebXiBSN07Nj1rdE39y6v4E/HmNOTJJUrGRbNn4Q0B2M6feF6GFxaYl2t0OYJtvols1ctQSKyu7TfQDuv32P6WSCkkTcf/c2AM32mP3dQzKuc+Wgc3J0xswPyHhC/PPwwS6KArpqkkkFDxf1C1zTwDd1smlkV/3slK2tDT788LdMJ0Lg8g//5X9GSRIWl+YAGI4mGJZOtuhy8PRUPHcxR7vdYa46T6NeB8Dxcqhqwkf/9DEbaxtpX9ucnZ0TRgErK0LclclmaDZ7+F1xv63tbfzZBEPXaHeEyOn0v/+czc3/DTu/zKjxUMzLKCLnGjjZRf7sz/4UgE8//ZQHj/fJekIEcWt7A38wpFQoXEUNPXnwmFzOZmNrlW5X1F8qVojjCCWEYSrssXQNx3FIolSM4wdEYYSqq+ip2KdYKvPgy89QNZO7b98CYNAfE+ketu3w/o+FC8qw2+LRZ5+ysSNEI3Ypx6jVRVMSKktCYKaoehq78/I6TeBq3Yskq5tdcS7X7vPuWspVmZfqvSaMuPy/Zhi895d/gZ/GN/Wa5xyEAxJlQOtMRJxlci6J42BbZwSDJgCdvo6i2Fi2g2KKKLHM/Ab5lQwoYr3bXobxsIduW1ykcWYHT45490/uY7oO7XTuFEp5NEOjVFkgTMT6K1cX8X2D5VSrokUP6Y1UHhzP2Hv0FADV1FisFdne3qTbFfWvLBRxHYNC3iGOhbAuTGA6G+M5GYJIzBXFyBJFfaol4WY0Hg6wTZ1csUCUtj8IA0q1MoXKPHsf/zMAcTgg8YeYhoqf9oVq2RhWAQyx1vLVNcb9IaPRkM13fySe+4sHzK3Pk6/VaM4Jd6+t936GpjnEXG726XhejaX48E07+XUxzYtj++Ir4LLMTWKdm5yXrv/+b8G3rlu59r66+kfy3O8SiUQikUgkEolEIvn3ixTkSCQSiUTy+yHfpRKJRCK5jvr6IhKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSieRN+EE447yO5LnsqWs/fIuUjSgSDiiq+kx/9H05FySvaIptC1eJ+dU1WudnZLJZlES0IyZB0QymsykAQTgjk82g6zqzNIbJy7qMhhats3McWzhn+MEMx8sSJ2Dq4q4HB0f0xhP+49//RwBMU+Xxw0dMJyFJGjPTOKujahrHx+domqiL3pTZeEwhs4hpialQqpaJLlrs7wtHj+3tHVrNC/Z299m5sw2AZavM/ACUhPNT4cxRbzTxci47rsuwIeKgZrMBhqGTyWXwI9HW46NDEgVKaZROHMV4dkKlehvbFG4azdMGuqFhmhaoIqLGn4VcnNU5OTzicP9YtO32NstrK3z9xQMAQj/gyaOnZAoef/4z4fwyHY15/PAJuXyBfF48t6p2MQ2VXC5PEqXzIVEY9idcLonT40MyrkexUOT0+ByAcjlPoqrs7j5hY0P0xe27t1hbW8OyHRrnopyiq1iWyqAr+gHNJJPNMuxOODkQbd99GJBxMvj+jMlIxA+dnzUwdI2dzY0rR47JaILj2OTy84xGIqZK0y0GgzGzqXCkqc3PEUcaxycnJIj+qs5VmAzHtDtD9FB850VDHNvGtFSm3R4Am5urFHNZfvPLXwGQc126Y59I0SmURBzUcNRD0xOm4ykKwnWl1+vz5a9+x08+eBvLEf3a646JohGmLlxKplPQtCwGIWrqcDSdTcjli7iuwmwgHI401WI6jVAIaJ6cAbC+uYbruRhp3cF0jFcs0W01KZXF3BHuJ69Yu8rLH28s+W2NRW6MpUtQVBXDFvO3tLiMZv0tp48/I6sIp5fF7fc5evIFluaSeMIxaa5YwLZyxLFPkOQB0Jw5LNcgCkUfDro9Wq06SaQw6It9QTNUiqUCk+kQN5NJG6ZjatAfjCnmhXNNZb5Gt22xdyJccKKpg6VN6A9G1GoiRqpcKeJlXUwvw1//3V8DsPvoMT//5SfMzc9xcLAHwPLiIvfv73C0d0QvnTuWZVHIeZyeNgBYW1vE9Vwumj3ml0TM1sLyBpZnkKAyHou9LlddwpgMGHYOMWzhMKUqGrrtYWSX08fxcEt5cvM6hYqoa7Q6xXVc6k8/Y2FLOHk5+RJhEtNvtbCzwmXMsW2CyYgk3Ts0Q39u3/9j41u/x25yxOHS9ef7a5dEIpFIJBKJRCKRSP4wuR5H8Yf0l/0yRkMikUgkPxQu30l/SO/Rm5DvVolEIvn9+YMQ41yiKKSxNDyLmHnhlF1BeS425JJvOoy9Hk1yee31yJJLvq1oR1FF+e37dzne/ZrJKIuRxtHESUgwnRBH4tD9YO+QYrnE/Pw8mi4OkRMSKrVFnjw9IkizmGzToNlssrd/wrtvCUFIqVphNZvj/FzEVjVbXVbWVphOpsymIjqn3bygNlej1xnS9IQIYtBvsbq2geM4NNtCOHJ4eITnePQ6fXFd65y333+bjZ11slkhGLhoNLEtk0FvwI9XFwHw8lnK1TJaHGOaLgC7u3ucndfJZD26AyE48YMES3eYjMVn2/WISCjO14hSwU736BRFSZhbXMA0DAAefvWIQbtDp91lGooYpCAM2X+yT6UiRCO6qTG6mGAYKsOBiFP65HefsrG+Tq83RE/rypfLPHq0h2XanJ4Icczdu3dAg2xeHOgXC1l+88tf0261GfSE6CVKMty+e4/V1TVmUyEsODw4ZW/3iNWVBfJF0T87d7Y4Oz1n4vsAvPXOLYqlMntPdlHTKVUulzg42GUy9VlfF9FMF60vaban/PjH77P7JI0RShIsU6ff65FL+38yDXEdh+VVIVyYjMYEYYJhOTQuROxPbzDiyy8ek3N0Il+IOMj3CMYdMtU7qKlwRJ30yFeqvP3+2wC4lkK+UsV0M5iuEEpsbG2ixDFRNCNO52GxUmR9bZFut8dyTghOYhNGw4SZL+acpSc0LybMVcuotthqNDVBN1Sy2TIHT4Xgy08gn88RhTPeefc+AGbGY9jvQSTafnGyi5ktoaCTL5Z4FQnJ1R5xyfV1/OK/r5e8Wt3X9gBR8FqZG2KKLtG0y2fUKc8t4mVy+IGYA8FkipfxmPaHKPY8AFPfJFINphOdfFlEPemmComClrYzimIWaovEJCytptFP0wHjYQ/L8whnoh1hGFGuVukPzlBNIQKcTQIGo4iLrqjLiDUWChYriw5RKo768KOP+ckHP6HZPCaTSSOjwhBNNTk7a/A3qUCnUiqgKgmeq9FpijirweCCQt6h74v96rzepGa4NC+auI5oQ8bzKM6tYdou9//qP4ln8iOmwz7F5TWUdF8+P9wHK08wFWIvQ/eZ+CPWN95H08S6XdrY5snHvyQa96m9J8R2oR9xcfiA06eP2PqTnwAw9MccPfiYTroWIq3Ij//u7ylWS8/eHy+N3pvxbOxfVoW+NtbwhnfKq8p9G14Vk/VtuX79m7RTIpFIJBKJRCKRSCR//MioDYlEIpFIvjvyPSqRSCSSH5wY59kBuPKy3YyiXJ2BXh0WJs8fRnIp0nnp0tcfmF7/7Xr55w4mlW9xkJuIg+Zsqcj999/j4PPfEomzZkpzZabjCX56+KwZBicnDc7OLnj3nXsAWLaFYer89Kc/ZjYRgpDmeR1FSbh35zaGJtpVKOSwHZfD1MFle+cWpXKB0WDAWepcc/etOwy6XW7d2sAPxBO4nsvFRRNbG1FYEsKedrvDb59+jGuKA/CTo1Ny2SxuxmbYF20Yj2cYlSJhHLG0spL2U4iSKHQ7A6ap0GZpeY5+r0e3MyBfEmID13I4aTSpVsTnKErQDZiMfZJItKtULqMbCobj8OmHvwPg4ZcPWViYI4kCnFRUUyoWOeif4qaOGIVCBktf4qNff8rJsXBYKeQy9IdjLhpNTEtcN56oZLMZHMfhzl0h/vjoo0+ozZcYDYWI5+OPP2V9c41MxqN+Lg71j46OePTwCQkxWzsbor9aHeI4oFKpEUZCeHH4aI+il+Hi5FT04eEprm3hTycM+kL0dNG4wA8iZtMZ5XnhlOLtH6BbDpatM0770HVdcrkiJ8dHaAUhxhkOJ/T6XdY2hYinUimw+2SfyXiCngpCtm5tYzsZYjUCU/S1na0SjurE/hSvIAQhX311gD875a23xZz78tMv2H38FeVqhWI5bVeuyHA05E9/+iMiXwihLNOikHOJE1DSBaFqCigqudTJRFUiVHsilm0iRDW2GlGrVYliiEMx91c319ENjW63y8mp6Ova3JSw32Q0FWMWTfu0en3e+4u/Q9PFd5ckyvPigRfX5/U1fNMav/xeSCySq31HRUm3nOeveZUg5+qTAigqdiZL3BcuMoePPmE2GmF6c1duMHZsY7oOo8GUbFYImhRNpXnRIklFT9VaDRQIZ2MsS+wnqu3R73SwFBM/Fmsy69kEwYxs1rkSTEVhjGWqLKYuNeO+iZUdMes/QUkFVJEfEPlT2q0WR0eirvXVRe6/9xaxP+GT334OwK3bW/jjEbHfY39fuOX86E+2GE0jBn0hTFtZX6VUKjIdjQgm4rsRPqZ7hyRRsGyxTg/2PuP00WfMb2zh5oSwKlNcJooSwtQpbDyLKC4uY9gOQSDm3OmjL4hnQ1be+xkzXzxj/dEviAYtyrU51FS0EwRT8EfkMkLoqBgx+5/9GvvHf4mdy6RD9PJb4sX58Gy8een7m8Q4rxLDfBsBjqIobySqedU8/j4EORKJRCKRSCQSiUQikVznD8EpR/7lvkQikUgk3x/yvSqRSCTfHz8MMc41dxslFeE8d9SpfBsFzPfPcwezNzREeXUIDgCqorCyc4+nDx7S6wpXCTebw/ZURv02AKtrq5zXLygVCjQaQpCQybpkczksx7xMa8LJekyDEfXzBjnbSMuZKMSsLtVEe8IZ9dM6aDrjqRCITMY+XrbIRavH4pIQWTSbHSxTx7FmGKkbT61Wgygi64mom/rZOQe7+ySJcuW4USiUaRyfYro2ZwUhOKlU8zTOGuw9PSSbSeO5lpbQDQPDshgOxEG/P52xd3hIPiecWIaDEZs76wTjEC0VF+WLBaaTIfWDEzpNEc20vrlJu9tlaW2D4+MjQLisLC3N4aRxYNF0gqrAn//lB8TiHJ5mq4WXybOxsYphXkZQnbK1s0WhVOQojeHJeBbzc1X++ee/BEBXdebm50mShGJZiAFKlQrtiw62o9HtCHchRVUplUtYrs3KnIj+GXR6fPnJb9BSZ6TT8wZJAp7tYaZxY7/88EMWFxaYjHpXLjulUpEPf/M7Oq02fhpVZpkm3U6PMExwXDEmu08PcD2Vi1PRDyEa7qjebQAAIABJREFUhWKFwI+on51fzbnqfA1/NqTXFDFCDx+fslDLMRme4pSEICSME3ZubeGnIhvd0PnZX/850XSGmxX3O2vNKJVKDAZTclk7nU8TVNXAc10uxQiGaVOuOIRpJFyUqHiejmaaRKlDTKQnDLo9bNvi1lsiaiiMpuiaQjFj0ZqJ8e53piyurDIeCYemQbvD8u33yJbLXJHqBp4TI/BsJV45XpEKctSXhQY3refLr5I0gE5R30xk8XyZhCRJ6DbEeAxaJ/iBSsFbRtWz6fUxhmmSK5hoqUOMPxmTy2eJ0rgxTYvRDQNV83j8tYhjq9UKaIbJ0f4hX3/1FQB//5//FpIYx3OIAzGfVE0hl3f54gsxT0xFYxZY3Lu9wEdfiXX73rtvc3x0RL5YoJgXQhXHdDjaP6JcdMmmop3/57/9C3/x53/K2tYOi4tCVONZU+jB8ZkQjhGNadTrlOfnyaV7QCbngqJSP9jn7OkjAILxBboaMx2M6dWFaK66/RZLSytXTjmjbhfdsgkmU/Y/E2ty3NonX1vj7OmXqKljkj8d4JUX6Axg9JUQ7qnhBfHsAi1ViYV+TDid8fC3v2AhjZebW928eT685AyjvCTIFP9UuZwo14f9uugrjuM3jsf6JhHMTSKhfyu+r+hGiUQikUgkEolEIpH8cXLT4dwPVaAjkUgkEskPgT+0yCopxJFIJJLvlzc7KZRIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCSv5QfijKO8FAXDdTeCJEGkxygkNxkIXDpZvBAf81LEFK/+y/83jRhRrgWcJDyLtrle6rKNyrXqTNfl7Z/+FR/+138CIA5nWG6ZTF44klzULyjnMxzs7WPawpFkYbGGYRgYpnnlNpIp5Bl0LlhbmaPf66bPomJanogJAoJghpMp0mhccGkR44+nPH20S61WwU4dblaWFjBdl0HzgA9/+REAs3FIpVLCcy1x3Sxg0O9TKJbZP9gH4ODggKWVVbTQpNUQMVjjQQfTsinmc/hpFtfXXzxmYXkR29T57BMRdzOdTNlYWb5yg0nigEFvyMnJOXfu3QJgMh4yHvRpN85xU4ce359QPztjOpqhG+I5m602imqiG8JFZKJphKGPnYT8+pfiflt3Nsl4JocHR3TawnFo5gdEcUyr1WPYuQCgVMiSzdi8++5dALq9MeP+kE63y2Q8AWA4HJHxXIg9bFe4Eg0GUwxNp1TI8fknwqUknAXkS1UyeREPNey2cSyLTqfN5198fjU3TMOgvLqKfuXGoVIuFEGNyWWLANimwWAwxA9mPHos+n9xZZEo8jHTuCMtjPjoo9+Qy3jE6dxrtZpMx0NWNhapFEUfnu7PGA4jpqMZ45lwS7ENh3q9xdrKIgC1+Rqff/o1lqGxubMlxsyPUcczdp/sUioV0/aHBBEsrs6jhul6i4DYZzISLkiHh4esrm+QK1auYpdUPUOvVyeKwLRSR6NgRujPSJKYuZqILdKtDDMfBm0xPqphsHr7PqqiXlqTPBdj98zHRLmyKonTNaOqaupq9c0oYhBeiAC6ea+AV7uHiO8V/NmEwy+Fq0vsz0CvoOs6USCcZHTThDggjBL6PbEeMhkTQ9XR0wcKZhPCMCKYTq8ivKq1IpqqUq4W+au/+LG4pxLjh1A/OWZpdSmt30AlYC6NQbN0jePDY5rdgI21KgD1dpfTizaVWpkkEXvR7t4+w+EML+NRKgknolqlw/xCjblaiZMD4VY0izI0Goc4rnDU6XR9LHfM/PIySSKeJ1cqE01neJkMO+//RFw37vPgV/+Vcf+cO3/2d6Lc3DKqpl31oeVlAYX26THRVETHFarzWF4R6KIbwp3HCosYdgZzOqWQr6bjUyBX3mA6Etdh5EBzCMdtvv7F/ymus/4X8gvzN0YaXh/by9ioZ6+ByzFXrxxxbnK1ubzu+u/fFJH2przqXjd9/qb34He5j0QikUgkEolEIpFIJDfx4l/Q/6H85b9EIpFIJP8j+UNwyJGuOBKJRPL988MQ43DzgeLVgSjXD0O/+dpXHXh+03VJktx4IPraQ0xFuYrAefbds7Y/d60C8yvLbNwVYo/z3ScUa0sEoTiAzmYzhOGMtbUFbFeIOFRVR1EgjhNiX8QiEU5xMlmmw6EQhgC2azObDjEtESE0nUY8ePIJnU6PleUVAAxTI44SDg/rRGmEk6ZCf3jA6lKVe/fvAXDw9IBcPktlLg9Aea5Ku9mhcX5KFAtxQ+AHtBoNqvdy5LJCUDGbRUSJzmhQvzpUn4wGnJ8co6kqpYKoz1lY4vGTB+SLQtRx69Y2CTHZbIZepwdArpjj4LDO/8fee73HkeVnmm/4SO+QmUggYQmQIIvlq7pVXWojtTSjR9qbnT9w7/bZvdudmUcr7ay0anW3VF3e0RZJEN4kkN6Fj704ARBkgVWsNlK19rx1UWRkxIkTx0Rc/D5+33Q8ZTAQRf3l5SZTx0NTVTxPiH22Hh9QLJfIZYUYwPVdKuUCw8GUw2MRD/TDd9/izpd3cKYuZhJnNdeYYXl5mTu3vmI8Fu0r6pQr166BLkRI0+kplZkyEQF2Ms5bu7vkC3l2d7f5+V/+BQAnnS4LzVliIrI50Y9T55SVKyuEsRDs9LpdDDPm2sYaxyciHsjzjpk6DisrC7z/4YcApO08igKZbI5yRYhSTo+O0XWNWn2GxryYS8/1uH37Np4jxqHZbLB+ZYV8ocyt23eStmyUyCdlZ0in08kzqrRbR4CNP+4CUK3n6XZ79Hpi7D/64EsyaYuvHm0TK1qyvrJ8tb3Jj378LmoiXzhpdzENHW80whuJ9b+1uY2Zslm5sgTAlatXMQwTzx2di57CyGA06FKqraKbIgJJMyyCICB0pyjJPQ3dJFJCvEToU6g2sTNCfHQZ5zvwwr57EUHBmbTuqbiqJ2q75wp4Lu7v5wn7eq19vLGIoUPLUZ5dIJW20XRhSKbqJr7voCo65bLY85qmEkYxYSSEMbEqxESxovDaG68CYNkWB/sHHLeOuPnSNQB01WAynpDO5jAMI3mMAFVNc+WKeOd47oh0tsLmozvkbBEbpvinrP/8LXqjiEebQqAVxRG1epH5+Qb7+2LeVpeW8UZTjg6PmEzEujtttzCsEhsrQrTVH44xTBPiCFTRfzObp3/aZuvuLaZ90ZbvuRi6zdy1l8nXF8VYqF9//wdeQBSEpCtCXDQdDmDcxTQNrKzYH76v4npjCsUMVk6Moe+MmTguhYYQIY06fSaOj2kWyBfFdfc/+Ec2/uQvKVTrxEr0nFl+0pcLM/+c48/n2W/S8743Z+d+k+Dm6zFaXz/veeKxb0MKcCQSiUQikUgkEolE8vvg37rYKAuHEolEIvlj4vsqypHfU4lEIvnD8L0R4zyLEl8olCtJCTTmvBZ6mRMNXF48/11KjN9U2Dx3vnmqjq8QR8IpJ34mBExVVVY2RPF86/49jnZ3yOSFSMUydFw3xrYt9vd2AJhMPW68tIZlpcjmZwAwrClBqKIT0+2Igro3dYnCCDVxSvniyy/wgpBr1zao1YRbhJ2yKVdyvPfeh5SqomjdnK+Rr5Q5PdljPRHjWJZKu9XGdUUxPZ2yKBRy3L09YDISjicv3bxBuTRDbX6WwBOuMflKGlWzGPVSfPC+EJdk8lmu3rjKdDwlCkTB27JTzMzUSCfOO932AM9zqM3Ncu/WPdFXy6ZYKdM6bp+LdlTDpjZb5/DggOOTNgBrV66SydhMpsJppLG4gKlZ7O9vUa2K5+52+nz66W0ymSzv/ulbYgwNg/Ggj2lCtyvEOGHkc3x4TL8j3IaOjk8wDINqtc57//q+eJ60hW2b1OtlshkheGj3QnK5DMfHHYYDIWiZjKZMJw7DoWhrMBgyWy8zGE1Yvybm33Uj1tevYJoGV66sAbC/vUehUMCPIiZT0a+d3T2uXVvHsoVgBUDXVJYWF9A0scAeb+0wGbuoqk6zWQcg8j1ax6dUZ7ukUkKkNXU0CpVZ4mCCpop5s9IqUViiVhfj9Wf/qcTu5iae5xAHYn1lrJg//9m7tHs9SolTytraGul8lvFwRBzGyfgv4fk+7Z7oexQ4LC4uoGkahtDdoIcKy6tp4ijEdYTAzM4V0TUL33UxDbEuxpMppUoZdyqEH9def5VvUuSdixWEhRZKLPbbRVQuuGYBKE/eHedb+dn9Lhr/5vfA+e+JI48fcbT1kM3PfnV+A93Mk05lQVPQ7ez5vTQ0nOmIdCIoI47QVYhDIUpSVIPT4xb1Zp3AdZNTdPK5DM3lt8jlEoFS5BCEPlYui50R75TtrW0ymSyZnOiXGipYlkq91kBXhbAun7UwNZ+j1gm2Jda0nS2SzWS5d+8hS8vLADiOR7WW4f79bXRNtLe928ZOuVQXhBinWCqhEjDtHbH2+hsAnB4ccnqwi6YoNBaESKu8uIadzWCY1iUCENH2eDDl9kcfUS9ncRNnnInjUZldREHFnYr3ies6GIZKFHj4E7GePM/B1IFQ7JdULkMY9tEsEzQxznrc472/+9949d2/YXZ1VYy19mS9PHGViZ7p4zcnO14maHkRccy3iWyeJ9559vzLhD8vwvPcdSQSiUQikUgkEolEIvltuVjU+74VHCUSiUQi+ffm+/KdlCIciUQi+cPyzZVFiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolE8sJ8b51xLkW54EbD8yM5XsQN4NnzLnMYuDRu6gXaOj92ybmFonClufryK3zx0ccsrQhXlFS6gpnKYOcKzMwKV4y9rcfohomigu8LlxJNtyjXGgwsG9cVx9zpmCAIGAwGgHB+mZtv0pib5fCgBUBpJsd8c4a//pufk0oL5wzH9/B9B111GR5tATCYKJwcn1CbnRP9zRcolGyKxRLToXCeSFsmxVIGy9QYD4T7hOuP0LURE9ejVE0iqDauoek6mqYxnQi3lCAMcRyHbOKMU6qUcBwX27bO45T29w959GiTzmDET37yDgCfffQJ6XSGwWiCpgkHj5iYk5PWuWGKN21w7+EjqqU8RMI549YXd2g0agRBSLcj+t9sznN0fMralSts3NgA4PDwEGfcZTQUYzhTLVEs5dF1jWISbZMN0qytrXJ6fEQ7idQiUplMnMTZSMxHLp+m2x1iGCIWq1QuUyxXaZ906XbEdbONOpZtctrqAKKvhVKaQmmGw6MTrl0T6yIOPHLZDOOJi+sIZ5TjoxamYWLbSaTWxKM/6FGtVsjlhfOHqkRUKjOk7BTORNzz4Z0vMQyDbDFH6AvHmWLJZdAPyOdF277vMddcZLZWod8X13muy+nxHpl8jvFYjGGxUuH0+JTJeIouliuabqDEKnqi8bv31RalfIHxeMzUFfNv2xlO2n0MTSWfFf2vGyk8L2IynRAlPlajqYuuKWimltyv/iQW7ilbrPgpx5wXjaZ7Jpjq6d/P9vKZa84Luot0jg4BuP3++5xs30aNh6TzwnFI00NCwFQMoihxXYk8As8jm8/hJu5ORGHyTGIMw8DHGY8ZdvuUqsIdq9c6ZTQ4pVqvEPpiXFUVYlSC6RgnicFqHR6STmVYXk9ipHoundNTSsUsShIl99GHjynYAaVCloWmcD2a+CGtw0Pi6TFZvQGAkVHRLIW1tVmc4anoazjLzNwaubywPYpiFTX0yZeLpPJiz5zs3yWTzdB85U1US+yHWBFDq/B1J7NhR7he7T14QLu1Sy5/HTcQ66Q2W2XQG5HLZYkisX7ttI437hFHPkHSWipVQNGi8zg+3TDIZFJMpxMyWfGMqj6DO73F/Y/fI1+eBSBTznytP9/VIeayb8qzcYgvEkP17L2fF4n2XWIZn4d0wZFIJBKJRCKRSCQSyR+a/zz32u/9X/3Lf8kvkUgkkv8o/Hu55MhvqUQikfzh+V6Icb5NYPMU6pPCoYiaUVCiJ+fHytPFxRcV5vw2v13WrxgRVSXEOE/ufR6Rk3gRrd28weaDB4zaJwDk8jl0NSaONQZ9EQd12jrFczwiTUWzUgBEUYBppVA1k1AkzeB6DiEhfiKUaM7V8IKY4+MWrVMhxmn0ZrEMmE59VM1L2hLRSKlUxM7jLwHY3j5ifWMDK4k2clwXXYspFbL02qLofnDYplKvo8bh+XMHQYASwWQ45PrGSwDkSzniWKPXG3J4cATA6soSM9UKqiKK6ZlClonjM5x41OZExNLy1StMR2M++ehz7t8V0VXLqys4wwnt9imvvP7a+VjPL9Sp1oRIwZ1OqMyUUFWNa9eFmMW2VYJIY745x0HSh//jv/53irkMqqqgKEKUoKoqxCa6Igr/rj+m2Zzjq3tbNOeEoKJ9eoznuaQzKQxNbJ3JxGPQ7zPsjXGnQtCiGxamqbDzeBsAyzY4Ojwlk89QqQihUuv4mMAPuHvnNpm8EGi98dZrbD16wMlpj9FArIFKKY+dSuEHMScnxwCUy2VKpRLbW48BCOOIn/3sJ9y/9xVxLMa1PFOh3R0SPnxEzk5ipGZLtLtDGo0q+3tiLKZTiMLJuagjdAMmE48w8omSnDXbsth8vMNMuYCfKGEK+TIp22LQn3J8KNZYoVSgWMpiJ2vnzR+8ie+7mKZNHItxTqctopaPnS7gJ9FlnU6bXL5ELlcGxKJuLtZoHeyzfO2mmB/DPI+bO3tfxMQkqVRfi6KLnznwNXFc/Mx7h0vEDkoSecXl76TzY7FCp3XI3/+v/wsAJ7tfUW/MUa7NECZxU2lLxbZtosDB8570cdjpMh2PyWWSKLGph+MGDEdJjJhhYJgaoecw6gmhWLfTpjE/m0R9icYMM42ChmUoxJE4tra2QuBO2bz/CAA/0mi3jllaqmMlQq7rG2vcvfOQSr1M4Avx1WK9ShhkePn6TUxTCGgm05hht8fC0iphRazXKH6AbkbYtp4MV4Trq9SXroAqji1uXENRFBRV41x6E4VMhyMUTUNJznNHPUbDAcFYRLvNzBSoz/+E6XTKMOmXN+5ipDKomkYUivXaG/iEkwkz9SKGJcR8ZjqHM2pzciLeh4VSCaffRlN1UjnRd8dxMdKzhKMudz78JwCuvfUOuVIV1Ohrc/2Es98uN5X7Xb8lzxOAvsh37EVFY5dd9+x9f9u2JBKJRCKRSCQSiUQieR5/CEGORCKRSCT/0XhWIPOH+HZKEY5EIpH82/G9EONc5KwI+FQx8ltqmN9UQBROF9983fN++10KknEcP9XvZ9uybIsf/PTH/OK//VcAyu4svckI1/eZKeXFSRs3GI1GWDpkkqK4our4nguxT5hYP/heRCabJ5cWhf8gDghjjVyxiJKIM4RwxqAwU2bQFUXq/d1DTEPHNPLYGdFWfS5LoVQjnxd9iEIPVYNYM5gmhf8onjJ1PCY+VGaE00QURewm4pDAE4XyOMgQhB6TyQTfEceGgxHZfAYV0deDw2NOjzpUqwV8307OmaKrMbauoyFEA5EXEMUBN2/e4IP3fyPaj+DV119GM0RbW48eo+s6y8uL6IZwz1lYXefzzz4j2o1RFLHcf/jD1xn3B9y+fY96XQhtXnnlBqHvEydjOpyafPrxF3TaHW6+fCYuKpPJGHhell67A4Bt+Ny7fZdcvkg6KwRTzYUF+t0Rna44Z2W5yWg4pd0bEUxHALRaLabjKW++9RqTxLnm+HCf+cYcmVSG7e29ZG49wtClUCiysbEOgOv4+H5IsSQcjgajCaPxiKnjMDsvXD4ajVlsy0KNpwyHyToJYe3aOqZp4iTCoft37rNxdYnDvV0Adg46zNYbvPebj2nUxRp469WrLK8s4btTzESLcPfzj5idm2PsRDz4Sgim8oUyP//LH2MkwrHADwmCEC906A/FWCh6lZmZGTqnPfb3DgBYXVugWm9gWRZhmDj0OBNU1aRUEwKtS91EUC51r7ns3GcFDgrKpd44F/f9iziTADjjER/8P3+P74hnXLvxMj5prly/Qj9ZJ850iDPsYqbSYv8CuhJgWSZCS3gm7ggJA49f/vrXALz52ms0ZkuoGowGSVuegmHnMOwUx5tC8DVTt5lOPRqNBuOR2N/utIudNs+dgwqFHKsr82iKQuQLR6tGo4KpqWzu7OGOhCvN2vWb3Kyto6kRmi32UWYcEcUhMSF+LOZ3ttmk1z5l0EqexzKZW1tjOhmTygvR2ZkDD8TginfR9v1bbH72a9JZk1JDuPYYRoowcsmkxB71HIv7X9xiYaVOLRHDBZGDqtrsbO2TTtbY5x99imWY7LWGVApiP1hmFz+c8jjZQ/3hkD9954eUZxtoWrKAlTZxqUytOU+nJc77/P/9Oxavv0n9ysq5GPEyx7Nv4kWdal5E9PKi6++bePa6533XXsQBTiKRSCQSiUQikUgkkt+Vs+KfFOVIJBKJRPJi/D7EOVJ8I5FIJP9+fO/EOGdEFwrlynPUOMqL1iUvRs98Ay/iDCDceF7wvhevU8668qT9mdkaV24K54+DzcfMLyyRzuQIAiF66XXbOGMTU9cw0zkA7LSB6wcYhkWlmsTKjPo40wlnde8wVhgMHaJIpT43D0A6l0WYucQoinAfaR0fsrQ4R3N1nlt/KwQViqrguFNu37kDwEs3rtNtd9jf2SVK+pXN2hhaSGNhnuO9fQA67Tbd7oDxaMxkLCJ3xuMpqqKgqwqLS00AzJRNGEbkkriuIIZavYimqTx4sAVAMV/g+sYqO9o2cSDGK1/IMbc0T71Rp1QVETi7Dx9QyChs3hN9T6VyXLm6QvvkCCcR/+SLZd56+zW+/PwOH3/0EQB/9dd/Qb87pNmcJyJxkqnPMOgM6Q+FKCWdSaPrGp1en1t3HgBw48Ya+UKF0XBKpiDmQxkr1OsGM7MNdrZ3AOh3+/hueO6CU5ub42DviEcPH3Lz5nUAFpqv022fEoYhq2siKmtn64DtrX1W11YIkpitwaBPpbLE4kKNQkk8d6fT5cHdB2Sywqlobr5KrTHLTG0WjbP4qRLOsI2iihgtMfMahq7TbXfpdITLyurqMraVp5uIZdZXK5h2htdevcHBnngeVBNn2kUj5Ivb9wF4+eYqJ8fHDCYuP/nxD8RpqsaoPwBViDM63TaVmTKlchk1WfePHm5jmDZRFFFJHFamE5fTkx5LV5povth3R3t71JsLGIkIDZ4vGBACAzFe8blNzpPz1ORFEV84Fj9fo/fkvDM9nRJ//X0QRTiJ6OWjX/6CYfuE1370VwBYqSyqYWClYmpp8Yxbj+4y6O0wOjIoJBFO4tkishmLwE8ENJMBnhPyX/6LaEuPQ4JYxc5m2Ln9EIA7t+/TXPgbfH/C3p5w1tINi9lmBdcd4wVCaGNlMqQyaTI5sSY+/vAj/vp/+jlxEHNyKua/kI0pljK8Xb9BOifEV6qeJvR9wjBGje3kmUKiOMSdTEgX8sm420zHPQjEfp8EMelcgUy++CSiCYUoigk8j8NHov+jfpu1195GNy10M5PMh0EcesSxeMf0T6fU6mUqMzPEgeh/5LgMh6d88MEXNBIRXXOxzi9+8R5zzSbDvhC6WZbOwwcPiRJh3Wgy4iMjRXHmkKtXhFjN0COi0CcmTbEqjinelPbeQ0a9FrNrNwAo1asoT7mtXe6I8135NlHNs6Kw39Wp5jJRjkQikUgkEolEIpFIJP9e/K4uObKoKJFIJJL/vyK/gRKJRPLHxe+nsiiRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUi+v844vy2XOgp8R1ecZ9t5uv3nO2q8SJ8uouk6N99+C4CTow5hrDN1AmxTaKSWlxbx3IBPPv7k3GUljjUMU0OzTIaaiJCx0jlC30FJehb6HrVaiZCQKHGVGA97aGpMEGoM+sK5ZP3KGvmcQRzFNJtzABi6wWjk0FxoiL8bOqahsLLcZDMUjhu+7xGjcLC7jTedAlDIZ+l2B9RmZ8lmRIRMq9UiiiCfz2EaYql1u0O6vTZz8+K5h+MJ+WIRy0xj7R4DoBIwHE8xdIsHD0T0VXN5iZJhsbW5w0ESb7T9+Ag9UyGdFg5BlmXw6MEejfkaThKp1TpuEYYhpVKJYi4NwMcffkw+k8XSYpavrADw+OEWH3/4CavLCwC40xGxYjI3W8OyRd/9aZ/OiYFuWrTbPQC+/OwLNjbWaR+1mKsLh40PP/yQxcV5lpeXRD+39jg62CeTSTOZiLHXtBHpbJogcPnXX/0LAKftAZlsGsMw0HWxFptzVU7afTR9gc2HwrUnX8ywvLqIpot+qYrG4eEx61dXaTTEWIwnLuVig8loRCojor6GnRHOeIRhWhzsH4p+ELC7d0ytJhxcCBVc16NYylDMXwPg0y8fMD9bI5tO0ZgVri6B55FLW+gqDBNXndlGE6IQMy3mv1haRDcNVFUjSUWiUCiwe3BArT7LxoaI/1J1SOXShGHIZChcVtB0SrUKL2zgcebEolzm/PEdo33O/3/2pyfXh2GIqqq4kzEf/+IfALj/6Se88+d/Qa44A4BuWUTBFN+doupi7Mv1ZaLA46S1R7kszksXckxHAzK5Ap22GKBssUZ9MUuURFkFYUw4GhE4Yz78NHGrWl/h5OiUmVqFYiWXdMyFIMSwU3QTt5yHD3d56foq1Rlxv5/96RsQRZyetvAc4Y4VpLP0+w4LC7O4jnhey/aJQ5/ID3FD4aqkagaqYhI4ProqjmmGgWmlGU/EXqg2r5Av18QAnr/vFPzpiOPtx3ie2JON5XViFDRNJ04coKIgINZ0NF04IRXyPn5soKk6sZ44G5kpgmjKlcUGxy2x5u7euUcqleFw/5Bhsu6uXrtKGOnEqrguQkfXVFI6HB2Id0y+mCeXtokjFd9JnIQKdWw7x6C1xZ33/hmAl//05xRr5Qvr6cUdZZ7nsva8GLWLvymK8tT1v4uTzcX7q6rU30okEolEIpFIJBKJ5PvBb+uOIx0BJBKJRCKRSCQSyR8Lf3RiHOVJjReS9KnzMuVRfDLoAAAgAElEQVQl9UpRxIy/tR5/Xvi82Fb89XPip8JuLjnpQj+UZ+NuLrmfbYsC8sYrr/CP/+2/Y2UK/Nlf/AQAz5kSxzHNpWXsTBYA3dJRFI1Yicgk4hI7ZdMf9yGJ6lHUGMvSaXWGpFOifUNVONhrg5Vh0BcRNXe++Ix33nkbxUoxnQgRRGWuju9MaR2Lgn69VsCwbJwwYnZeCHaGgx52Ok/KsqlXRVzMwe4+mbRFHMUc7B4kz2bxeHeb1dUl3KQQny/kmFucJZMX/eqOHY639wnciM5JWxyLI3zHIUajUhUipMlkQhxGnLZOz8c8nU2TSel8dV/E32zcuM7RziZTb8orr4iYmb2dQ7q9Loah8ZOfvQvA9s4eh4ct0mmbQRJt83h7n0I+z3xTiJD294/5zW8+Zr5ZZ2VRRH2NR1OGwwMczyWXFVE97/zoHaI4pHPSYv3GKgBrG9dwxwP29h8B4PsqM9US8/Nz53FNw94QXcsSxVCuCAHN/OIiuq6yt7fDQnMhWUMRhpFhPHZIp4X4SlVg7Hh0ui0ArlxZpT5bp5jL0u8JYYRlauxutxgPJ2QLYu04XsS//OsnbKwvsbIonrO5uMDxSYdSRYhsLEPBjRSqlfJ5ttrjnUP+r3/4JatLc2hiiXH33ibv/uhNdvfbvJxEjo1OdnmwdYAXiLy0jes3UDWNo1aLfE6IRk5PuqixSvu0zXAo+lCtz5CybTzXwXPHol/Lq+iGfT5el3FRwPCUcOYZxVyctKE+E1N1UeDwlBjiTLwQR1/b3We/7zy8z93PPwHgzXd+QqWxROgKYZqq6cSRSSafRTES8UMcoMSgLriYhjivXFkjyGdRCLASIYlhZwjcIa2WmMfHm/uUZ3KsX13k+lWxvvKFHI83txmOpxy3TgH4atjhr6o/A1Wj3xdjuLpUxTZBU4UgL18uMxw6nJ608cQhCgWLVNomigNACGGG3T7pTIo4iAmTd4pmxCiWgpkSEWMAkeej46OqYl3OzC8RK4g5S8Y28kPaeztocUylJuZbUWOIItAMiLxkzMSbVVPEJ0nRdDKZDIqm4AzFHg2DkKPTHr/5+BaWIgQ0uVyJ0WCMlUpz9doVAJaX5xkMBjzcFEK+javr3Lt3hzt3NObmRR9++KO3sTJZFE3DSgQqmqHhuR6xajI4FWK1j/7xn/jp//w3mHY6WQA8l+cJZl5EVPOsEPRF2v2m+3yX6y+LZ5QxVhKJRCKRSCQSiUQikUgkEolEIpFIJBLJ78b3Qozz3MKf8o1/BUVBUZ4IdBSUrxXZIRHsvLDDxoU/ql+/SPm6rObpe3HhZtHFwmZS7Lx4evSkaLq4usDGSxtomoKROMtEYYjrOtTrlXNHA13X8YMA0zTBEMXzk9MBBjrDoSjgK1GIO52AYhB5GQACLc1g4nC1uchcXThljAYDjo67zC+usryyCEAmm2Vr+4Cjwy0Arl9f4fjgiHarjaoKkUXatjB0mI4HDIdDAPYPTjk9OqDWmCNfEOKMKApoztUZjoYMhsLpY21tBcs0GA6E+Gc6mmIaNpE/4MbNDQAO9w8p18oYhsXRiSiKp9JpNEPlzT95i9FA3PNge49yziaXEst4d2eb6xvXMKw0O493AKg1akSEaKqGYQjRgDN2uPXlLbI/fJvVRNB09doq2XwOzbDFGKoGP/zRD9B1Bc8VLiLFUon+YEraTFMq55P5FoKswtpVul0hcqrXauxtj8lkawBsPXrEO++8TbGYot8RQozSygyfffY5hXKFYqEAQCFnMuhPODk9pZQIdAadDvVGnfF4gu9OkmUj1li+JMa5uTxPr9vD8z32doR7TrmU4aTdxTRtfF/030qbVMolFNUilxf9nzo+aTvFTFm0pSkekWJx584jTEu4utSrZVaX5lhbX6eQFePV784T+ipLCw1sU6yL8cTj0cNtZmt1AO7f/owQjWx2liur4ljKsugPhhh2itnExSeds5gMupweH2OlRPuFUiExWHna5eqbRAvJ0Uv0cYnLyDcI8p4STFxoimfECaqqEngeH//rr1i//ioAc6vXCNwRhin2o6HbaHYWz5vgT4UwRtN1FEUhXSxiJGvMnbSJwwgUhXTivhTHDpGm0joSIpvdnV3efusviRyHl169CYCteFg6PNw6YG5BiLbsxVl0PUMchVy7JtyeDnd3mUzGxEkaoWmnUeKQudkGYfKUmmFj6hoxMaYpntUdD/FcFc20wBPCG8fxsNWY0HcgeQ8osYfrhaQrog+ZQgVNUYmJz+dt0GnhOEMy6RxRJN4BMRqx60Dg4XSOxJhlM+h6FscVe1sz06iKiu84eInIKYoNvLHL8sIcm4/E/l5bKzLK5jk6PsIQ3eKo3WFxdZlOT7QVRhGn3RH5fIGTthD83b19n9I7b5JOa0ymTvKMEf5kRBTGFBPh0N7WNo++vMXVt4STl4r6lHvN2Zq5+P+Lv108/vsUuJzthWf3xGV//6Y2Lvbr4rnfdJ1EIpFIJBKJRCKRSCS/L76LO450xJFIJBKJRCKRSCR/bHwvxDjPEkURYRSdiyeeipk6TwtRhAhHUYiVby8cnolgnnfqeRHzrED5AnEkX4vDevLLU/cUkg3l6/e/UDQ1DIO1l27yD//n/87snHBiSWWKTKZjSsX8eZxL4PsEkwlO75RUSYg9Nl66zrh/SqojhAzOZEgQTjCMFJ12J+lLDxWVfq9HNivEPi+9tMGgN2LYHxIm7Ruax9VrazRnhWBn2BswGQzwPZdh4qhTb9QpVGYY9PpkE8eIhSUbdzplPOwzHYl7arpFqZjD7fv0u10ASqU3CSOf27fuAmBqOt1ul1w+zd6OaD+XsTANg/2DY1qJW0745ZdMx31u3LhBJ3HtGY6GFEpp/GQZLy+v0u91WVmvcXQsivybDzfJpjM8erxFvy/6VSxU+OmPf0I+n6PXE64b2VwO3wsoJI49o14P07YZuw6bD7cAqFTLNObnKefTWJYQOChait6gTyptM5dEON3+8iG9/pCFFeFk4o5HuNMpX+4e0EicOSJ3QrVeZ6ZaZmdLOHj0B31M3aI53zyPJctlMviBh+c6fPyxcGK5+corXLu6zt7uvhgbb4pt6Ww92sFIhBKDoUuhWKZeL5JNBDSabpLNpBmORjTmRaTWg0c7hH5EtZaco8LpaYu0raLpoq3Pv3xAxrbYWJ9jkLiu2OYsve6Qz7/4hB/9ySvJ3Bb4yz//AclSAkXDSs+gmhbdjhh7PwgpzDRYWV8gkxNCsTgOCf0Qx52y+pIQnKi6inC0uiAUUOLEmerMxerJXj03zFLEn5/d50Jkc0HIc2Z+c3ZlItZ5+rpEwKPEF/a3QvfkCA1Yuy6eO/Q9wjBCT2LjXLcPTkyEhqaevcN8VFUjX6mdi2MUIjzPAXSUJHJM0yAOQl55/SoAc4uz2NkyRB65rFgT/rDD4toKy1dXMS0xhtubmwxHAzQirJQ4Nr+8gG4YDDqnyRhApBh0+sfk8+Icw7B5/5MvefnmdWp14aCUyeaIYx2FENUWwiEVFQ2fIHLRTCHkcvqneJHO0rXXRd8NK5mzmFHy3hn3+uQKM+hWjjgR40SBSxRFqJqFHwihmDb1ie0IMyeEaX4Ys7v5mJlKic++EMKbhw8ek07nKRRsFpaF4Ei3Cry+Mc9kuEYruedMoYSuK7zxmlhLv/ngYxaa8zjTKa+/8aboQxSwt73F7GyD0+QdYMZTMvk0pcYi+UhYB+UKNq2tx+TKYm/PraygqirxhTUnls/lUYQX+S6inKfa5nJxzO8imJHCG4lEIpFIJBKJRCKR/DEhhTgSiUQikUgkEonkjxH137sDEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBLJfxS+l844qqqiquq5j8XTZhVPuwooz/7+DHH8tJvGt/LEAOO57X3XNuLnN/cEBWbm69QXrvDeL/4ZgOr8Eo1Glc70hNFIOJLUazN4rke2kCN0hdNEqVakNFsi20oiWD77mDgOUUOPIBQOD5lcmf6wx//4+3/g5ssvAbCxsUEQBnzwwYfoiQvRn//Fn5FOG0RJbFG7c8yD+/eZTD2KRXFsbr6BrsWMRwMGCFeJfCZLLptGVbJ4QSCOZTME3oClhXnqs3MAqFpEu9WjlbjbNOZmyOZt5hcXOdw/BmB1fZnBcMzcwhxaEsVVrRRwRlPu3nlEbSYHwPrGGrZlcHXtCgCT6QjDMul22kyGTjL2PuVymSCK+cE774rxuXMfTdd49HCT1dVlAI6PNwnjiMaccOfp9AesV0sc7B+exw+ZukXo++ztndLtCReOhaUldva3qZXyDI89ALK5MtV6FWci5swPHMIoZL7ZwE/GJp3Js7xapHVwwEJzCYBef0ClUmFv95BsRriPjBjTaw1YXJpjMrkhxqwxx+PNTXRTzJlh2cSqz3A8ppTETxWKGbK5LIYB02TteMGYQqVMJpclSiLSBt0BtZki3Z44Z9CfUC5lqFcKeJGIqZopF7lx/Rq+r7O5Jebtl7/8Z370zhusrq2dR5CZ2hRF0Tg9FU4svd6ItWsakZsiVxKRVNlCkf5ogjN1GCf9qjYqeH7IbHMJK2UlG+J5GzEmioX1ThgmriqahqKoya+/vyggLnkDxXHM0fYWSyvrxMm7KELFsNOEydxqsYaqa0T+lMAT+89zR9hWBiwbNXntOs4E0y4SR1MCT6ydw8MhxUKGYknEemXyVaI4QFNT572ZhgrpbBZ3PMT3xTqv1auEIcSxe97f9skhs/NNsjnheNPuTNncfEirPWZtcS55HpONqxtkUhbuWMyjqpoQ60Shg5q4/Vi6ymTsESkGaizGejp1qDavkE7eC2KkFDzXY/fe50n/M/iegeE5pHNibQYoRCic7J+iKMn+bi4w6rcheacdHrQwdZvJNEJJxmswGLBxfY255jydUxFB9U//9AvG4x4LjVnmmzPJuI659dlDrLR4T5imST5X4N7DR9imaMuyUvj+mJ29XU5aYs9vbKySzhaAGF0TrlCZTJ723i4PPxGW2fX5eVTb+i5flEv5Q0RXSSQSiUQikUgkEolE8sfImevN8+KqpCuORCKRSCQSiUQi+WPleynGOeNrwpeLdctYRMzEL6R0uXhZzJNkmguxNc8URc9iq87jqy7rzzPnPnvOZeXa5xVhFRQs3eDmG2/wf29uAtBcWkLVNHrtDs7UT/oPrh9ghzGmJQrGURgReAGeOwXAtrKYZo5ep0unJ4rWipFF1XR+/NOfEYai8O8HAa7nsbx6heGgB8BHH32GpkbMNkScUqWUp1ypEB/vMbcgCvi9/oTqaMzCQhUnEEvoeP8IRVEYjkeMhxMA9ve2qVayWJZNZXYBgMFgSKfdYX1dxMw0Fhe5f/cevf4QLxRihtHI4bTVI18sYGpinExDp+1MINb49ONHAKSKRTauX6VSqwIw3poyGo2ZrVfRdDHOw6HLrS/vMjNTI4pE+/VGlfnGLKZhoCVCmyhSMDST3W0RibO8usRk7OM6LilbRFeNJ1PSuRSmpbOyJMbnpHVE2rTwghgXIQY42O6goFCrib9fWVsDoH3SpVgUAoFOq4VhpykVihwcCRHS8eEhxVKetWvLTCdCIHB6tE+5kCeXTTGfREudtg6xTZO5BRFnZpg6X92/i0ZIuSIEDzMzJVAUdF3DQ6ydXveEXrfHbKOKaQrRy9LqIoN+hw8/+FJcVyowGvRRF+oUK6L/q6tNzLSJnU+xdkPEJ9nZPN2TA157fYPjgz0AfvneZxRzWZypWIemZXJ8cEymUCSTRKMNuxArMZoaY1rimGEYuH5AfXERhTNRzRnP5k1xLiSKorM9+uKihqf2p6LwlGLuG68T/5+OBrT291ldu06EEAMpkUJMSKLfIAw8FD2LlS7jTYVYTQkiQgKmkxGaJtZcHPqEvo+mG6iKWJuZTBrNNAmTOYujAE3TCSMIJmKPpjIpjo4OIArJF8R8q7qOaSnEQYRui2NoCqqmEipJBJ0e0Zyf5+qVDIcHIsZt4riUyzaaqmKnxF4ejSeYegyqgZ/sych3iaMIu1AhTgQzUawwM7/6RCAZR8SRwtGj+xAHycjpqKqFqpuEUfKOjCLaJ10++ehTfvDOWwCcnrSxzZCzjLOdx9s0m01Od49Rk/4vLjQxTYujg0NaJ0IMNz83w0y5yJe37uGE4jzbtrEUHW8sxF6N2VlGwwHrK/P0T1sAdEcuf/bn7zIaDJiOxXWlWhlFiXAnY1IZEQkWqDEzjSadU7Efj3f3mVtfQSG+8C5Xz/982Tfi0m/D71GE89u0+yKxWhKJRCKRSCQSiUQikUgkEolEIpFIJBKJ5Lfney3G+SZizgqhoFyoKcaX1CIVlPNzXrT+eFbUfNGi5aXnxF+XFFwszD7VdqILmGk0WFheBaB3esjy1ZfI5LMMOqIQrxkG5Zk0ztTl7m0hoFhaniObK5IvlQHY1g+YjieUqg3mVjcA2N3ZZjAa8voPXmV/TxTi88U8reNjrHSKtStNANwQ/vF//IL1q+K6WmOWxSsD3NEpK0tCDDKcxLiuy+nxMZ4vnsew0kw9n+lkTKkknDJm7Qq2bfDF7Tu8lggvllaalMpZJhNRrB8O+5RKBRYXZ2mdZADYPzrB1uHv/vZveesHPwSgfdohCBTiYEKuUADgzr0HHOwd8tLGejKmCjHQbp3w6qvXAfD9iA8/+AzLsjjaPwBgbqGBMx3jBSGlRCQSeDk8zyOTEw4uo/6YwXDE2rWrTCdCXDSZupx2+riTMS+9LNqPVI3GXJ3jwyN2d7bEPT2F2UaZk8SpyDAU0hmTmXr5fB16XkAYhvRH43NhzMLSKgcHJ2xcy9HtCLHByvo60/EY14/IJq43uVya0XjMzvYuALoBc/UGkaeeizPiKCLwA4ZOSJCIr+yMTUbL4fsKJ6fC4cZxx1y7us5MTQit+p0u8wvzBO6UrceifdfzyGTStI4n5ApifGzTIIrg6KjD3p54zjA2Kc9U8F0vmdsxztQhW7L44ouvAFi/dpXucER1rk4uK547DEMWryxj2uYTZ5vzDRNxTqwAKuqZ4EBVUBSFs/+euu4C5+8H5WmxwmV7NlYuaPue+ln85c7HH5NN5zBSJmri2hSFMZqexXfHSb8MIj9E1WMcR4g4Hn+1yfq1NQzDhkR4Y6QMVMMk8gMePtoHYHNzn8WlOV57+/WkLR/0FJHrolp20m+wTINCqY6qit56zoTRYIhuWFhZIWgq1OoEjsN0Is5pH/dYubYCmsH+kXgH6FYGXdOYTEZ4rhjrTKEiRFEaGKq457jbxjBtdDR2tu8AkMoVMGzjqfevPx3TOT4kW6om46mSyqTRk+cEMQelSpEf//SHZPPiXRGGAZpuMOp0AVhYbhJ4MZ989jkv37wJwPbOIQCj4ZDX3xLjMx6PmJ9voOs23Y5wZBqNXfojhxvXhXDM9yZ8dW+XUrlIty/EUdlCDncyJooVTCuZR9/FSNnkSjNME0ejMHRRTItcUbybtr66T2V+FjudfmZtPF8E811EL2ffBeWZY9/l2mfFOd92/WXnSKGORCKRSCQSiUQikUj+rfnPc699zR1HuuJIJBKJRCKRSCSSP2b+uMQ48RMRzne7Lv5avNXTP8eXOuP8vnlafKNcel8zZbD+8qsA3PviEwxDwcCklwgqPCdA12081yWTFkKSO1/eY2llld1d4epyeNgiZZs8uL9JpSrEE/l8gR/96Z9gpVLYidNL4IccHp2yuJph0BdF8NbRKW+8+Sq1urjOdcZkikXWXn6de/e3AVhYvkImW8JzfUbDbjJeGjuPHhHHMdqZ4EjJoBkW1doyd24Lt5+93WOuXFmk1RbX5UtFRqMp24/3yeRFwfsHf/Ia/mTK9uNdbFsINk6Ojrn60g1u3/qSXEG4ViwvzdNcWOL0RAhLZmfnSKdNbn/6KY8ePQZg/doarjMhk2kwGfUB+PWv3kNFJYgjZkpCbFAs5RmPXYJQuH7Evk99toaiKiyvLQLgeyGH+/sMhwajoXB/2T844uT4BBQ4OBBigWazxtLyGzze2j2f13/5l8/5wdsvMxkLYY+q20x7fSwdLF201Vy7wZe32+xs7+B7In4om01jWQb93gDXEQKBRrNBOl+gKsx52H60yfraMrl8GjVxZ+n3+7Q7HRQ1Q70uHG5UYibjIbqVYTQS66lWnUFVA7K2EHBk5yoQ+Uwch0xWuPhUbAMI6Z50mYzE+ByfHlOfa3DS7TPfFB05Ojyi3R1QTdx/mteX2N09pHXa5eoNIV4yUgYbi010VWE6Ec9drmYwDAPOnK64KJr5+r49+03T1PPfn92vlzmExBffA18Twz2JpHo6IEv0qdMS4pWt+7d4/e0fEvkh7kSsJztTxJ0MMXQx+GGs4fsuqD6dvXsAFDImuq4SBi6KIs4L/AAjDgkCh2pVzNFg6DHbnDsziEFTNCxTh3CKamWS66aUKjNEmLTawlWpXMzhTg+xs2VUPXHeCUL86QQ9ecs3lubptHsYKiwkc+Z6Po7rgqqe99/3IxQU1EAhUsQ6tPIFlDCgtf8Q1RRiuNrSdSGG5MwVRqV7uEvkj8lVrom+Th1iNFAMFFWsX001AZXQn2CYYt3psU2EQncg9vJxa5+rGy/x7o9/SjAVIqdmo8pXX33Fm2+9SjojxuLRVw+4uraAZVl8+tldAIrFEoap0R0KIVRG19ANE2c84uoN8W4djQZ8+dltpgEsLlTP18dkNEIjQkniuZyxg6qmiZNxiH2f6XCMnU5fEFaKdSKW0dNiy8t49rff5VvzrJAmiiJUVf1ObUvhjUQikUgkEolEIpFIvi9I8Y1EIpFIJBKJRCL5j4T67adIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCSSF+F764xzMW5K+YZ/uB/H8XmczPOcCC664vy+HAku7UfS/lnfn+13HF/09RGBPE85cyTXpfIiAmUymeD5PppmQOKm8dX9Tb749DOOjo8wTeEOUavVePx4l1u3biXXjTE0ndXVNbTE7aLRnCOby6IpCpWacOH49MOP2ds/oLnYpNcXTilT12d6fEA6Ldw1ms15phOPxSvX6HS+AGB3dw/d0LFTWYZjEa+zf3+Tubkmx61DtCT2ZXauiTNxyKZN6rPLALg+DMcuc03x98ePHqAqMaPRmHJJOKqEno/nR5QqJXxPOMn4vs/e9jbvvvsuRspOxuIBw1Gf9fWV8xE9OT5ieW2Ru/eEK817733KyUmLGJgpixivRq3Br//lX/nBn7yNmjhg3Lp9n8D3aSQuMhNnSoiKndJoHSQOKGaa2dky1VqF6Vg4xJQLRfL5LJWZImeGFNVqiV6vg6GJCQ2jkIXFeR493Obq2hUACtUZNr96gOP7RIroQ75c4eZLGqoScXwknIN810dVFXq9PsORcOfI51JgmNTnagDkClmGnR6NuTpR4qD0eGuP6kwRy7b5/JPPAbAsjavX1zFsk2GvBUDg9DFXFoiSRes4Pumszmy9xmg0BECLfKauTzaV5t5dEVH06stLpEslIqXOzqZwPdIMg+pMldaxcAgqlNLUZucw0hWWVhcA6HR7HB0couCyclW4p6iaJoJ+lJgn2VCJxU/87H6Nn2zn8+y557teXSR6EoJ17ijy5NLkt+hZRxOFMAi4+/57YuxtC0U1iKIQ4jCZowkQ4yXxXLpuoKezDFqPUBWxTvLlEr43Iopgd0/M7craIoHrEhFRKgu3p9eLBTRLJwyEi4yiKUwnA+IwQDuzuIkNAneCntKxLbF2zFSaSr2Olcrw+JGYj3Q+T/v4iIXZJFoslyf0fcbDEUqyNtPpNKPRmJPjFqtXlgEIAx9NVQhiH01PorEiFd9xccdDmldvJmMIgedh2uKcKA4JA590YRbjzJ2HCZqCGKsoeUeqKqqmoRs6zli415hWChSDYlnsv92dfQLHp14v0z4R1xVLWarjWabTgOFQ7MlGo8bWbouD/WNKM8LhZn1tlUajxt6eWId37z8mjDRqM1X2d8R7oVDI0BmOuPHSTZyBmI/DgxOWVpZQDQUlThx7jByuP8VKCTegYW+bQa9PqV7n7IX9xGwpfuqbcvGb8Czf9pvyzDfru0RVRYmt0jc583wbz/2WSiQSiUQikUgkEolEIpFIJBKJRCKRSCSSF+J7J8a5WIh8UjRULgmrufxaUdR/5vpviam6eP1vy4sWL8/kOEoS7vJUOE7SzVRKxEiFIRimQRBEpFJCoHPr1lf85v2PcB2HdEoUvLc3HzAaj5LYHqjPzmLbaWr1Gu/+5B1xrDGD4zh4noptigJ+JpPih++8TRgFNOfmzo/96le/wXWEsCCKYob9Lo9H43OxSad1ioJCNpumWhUF8PZpD8eZMlMpsXZtAwDP9eh2+2iKSrctxB+vv/02saIznYjomZXVZfb2DnB9n8FgBEBzeYn9nT0yqRSpXBaAfm8Ims7e3h6pJJ7ri09usbq2RCYrzjk4POTatVVOj1tcuyaEHl98+QXVapmFhSXaSZzV3v4+2XweQ9H45a/fByCdzvLaa6+iaUIE4h4cEMcqe7vHvP7GK0kfRozaA6IIPnj/AwBma3X29rdYX7uKaYh+PXz4iPF4yuKiEKB0uz2asxWOdOgl0TlBHBBGMeXKzBOBlqKjaRpRFKLpAQC729uopkW/M6BQKorn3DvASmewLLF9S6UsB4MhpqFjGOK6tavraAoM+iNcXwhCzFQOO53FtkyurAtRkBJHeG5Moj2gNFOic3LK0d4+ni/ayqdTDCcBpycnVGpivoe9KUeHt3BIkUqLtTk/N0/KtlhcFGvJ96FYrTK7vEgqiSDLxRGBH5DNFqnPi6ikJ7E6F0QIl2zF89++SZ131tKFvXzp3rxkr59Jgc73ZBzjex73Pn6fvUcPAHj1zdcxdBNF0887GQQ+MSqpJDppOuqQS6UxrTxTSwimNKtEFKHDoREAACAASURBVCqomkWhKEQ8IrYqwrSyhGEivlFiDMNE08VaIvIIvRGqoqFpYr97jNFNHVXTyOfFmlAVFc/xsDIK1aq4p5GyyFoaqiLGV1MU7JSClS7hjEREWETI1HF56aUNxonAjFgR0VaKgeMmffV6+EGIG6lkK3UA0qk0mmGcj3Xoe4yGQ+yMSZSIiXQ7je+5aP6U/4+993yuI8vPNJ/0efN6B+DCgwQNiiySZbralbpbLTOj0cyGNqSZjdlP+6ftl43dmNmICWlmtYqV1C1pRt3qsqwiWUUDgIS319v0++EkQBAEQLK6tFETe56IKvLmzTx58pi8H34v3zcMhUhENQwCb0QcxiiGWMNh6BPFIZmMeMa5hUnSaRtFgf1kbAxLY3pmhu2tDdafPgPAtE2CSKXdbjA2Jvq1s72NZSgEURKLpYc4mo1hGPiJIEg3beYvVXm2uozvi2e8VblM6Huoqs3ITcYnjFFUjgUuhqlzsLXJzOJlNC35+TxalucIPV8Qap4S4RwJeE6Lb05z+jftWEx2Rjzb0bHz4hcv+q26SCQkkUgkEolEIpFIJBKJRCKRSCQSiUQikUhen++cGOcIJT5bgnNWHf60i86x+wVJYfKcwuLpguhZvKp4eV7fz0PlbLHB8TUx2GlRiDdSKTRdJY6OTSW4dedd7n72Gf1+j72DFgCaqkIUMz4uivC377zPwuICmUwGJy2EEv3+gF/84u+59fYdDFMITlRN5+bNJZ4+W+PRYyE2cJwU//bf/SmeJ8Q4B4d71GqT7G4dUCgI0UsQlDBMg48++oSxinDdSKUcso6Krsbk05a4ZxxSrpZ4+mgFPxDtdbs9YmB3+xCA4WjE7Pw8X372Bct14VoxPjHO2tomTjpzPF5pJ0Uu42DZKb78UjgA9Yd9tja36HWFg0sUgxKGTIxVWN9YBmB/f5eJiQlWV1e5el0IdOrNNk4mjZPN8P3v/wiAzbVVPv/sExYuXQIgDAJcd0ir0cZJxD/9bpf8+BidTp9MVggvZuamyOUy5AtZJmpCDLC0NMfm1j6tpF+KbtLu9CiXy2xtCCehsbEqiqrj+R4L89Oi/75wvqnXe7RaQhixMD9LrMTUahOEiajG8z3yhSKKKoQLw4FLt91DVxU8T4ic7FSa4cijmM/z7jsib9t2Unz14BGlQhbHyQFQKuaFCCUS82NaOmPjVZy0Q38gxAzDTpt+tw8EBEd9MDIEQUSlmsNKibGwtZiUCa4vxF5BpLC7u0+xNoGbiK+U0KNUzjE1P4eaiMeO90KswgWyu+fiOvGHolycsveSUEE9IZY4z0TrxDkKCu5oyNrjRxRLYm9lyhMYps1g0MFIRESapjMa9fFHYl/FkXCSMZ0MKXeUtGuiWjbEkMuL8To4OCRfqOA4DsGok7RlCDea5J0TeiPCwEcxlOOxDz0fXTdQDRtVFfPWazfRjTSB55Jo7dCIGI5c7ESspppp9ChgNAxRVPHqt4yYasnBDz205CW0tXFAKpchl81iJQKjlGlT391kYnqWTlu8d5xMhkh5rmsa9nsMOy2cVBXPE2vHNE3CMCBSwErWXBxHWJpKHCl4I7EuYtXCtG3CkXDCmpwcJwxcVKA2nk/6oNIfDLh186f806+F29N+vU4mnaHb6aMmbkqPHi9z4/YSTlbs23w2xfrGNhgWWVO4+DjZPOlMhm7L4YMProq+WiaDbgfDHaBb4lorncEyDfp9sZdTmQwrX37K7OIiE7Pzou88F79cxFkCndOfj8Q0r/rNueheZwlwXoeL+ieRSCQSiUQikUgkEolEIpFIJBKJRCKRSN6Mi6vZEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJ5LX5zjjjnBfr8aacFRXyTdxtTrb3Jv153RiQi9o7ikrK5fM064csXLlOtyccNvrdLj/56Yd02l1WloWbzdb2FqNB/zjKqtNuEQUemhrTagrHjYmpca5fvQ5KSG2ylvQl4quvHnL37j3q9QYA6UyK6ZkZuh1xnePk2Nuto2oKQXDk6qPieQHf/8EHrK8LN5t+r00xW2JyfpEwecRnm7ukUgZh5JPNZUXfGk0erW6Ry4rPt27foNvtEUUh2azof73epDJWptUcsLL8FICNjQ12dg+4cfMtLs2K/m9v7/Lp3Xv88AcfAMJphChiduEyhi2cLW7dfIvJ2gS9/oBqSThzfO/77/Bf/+tvUPWYwBfOIleuLOAU7hxbphimgpNK8+4Hd+i0mgDs7zXY+eI+mUyG2SRi6fLCHN3qkLX1LQ5bwj0j65g4GYepKRHXtLm5h27prD9dY2x8AoC1ZxvMzk2ixAFraxvJfIRMz82QKxaYW5gVY3HYpNFoMBh0mUmixJrtAaNhzNqzNQCuL10hl8uw/GSFckk4FY3VyhQV6Pd67B8IF6LJ6Rr+aMTe7ohcTqynOPKJ4phqRYyNaaUYDDpkchWGoz0AitUK5VKOTqdOEIi4npSTZm19A0VzKBSjZN4aTM1MkUmcnarT0yhKzNhkjcPd7WRcDSbnZtEM49gN6nU9OE7uxdc9/yRnXXvWHgxCEVukKSrpbI7f+9P/ieaucIOJ4hGu2yUOwCwIxxbfHxEGEU5WuK7YTpowDoliHS1xDQrCEMsAlAhVEfFfth5i6CqhH6Dq4lrNtCCOicMguZ+PaTh4QUCQHFPiGFQVhQh3KKLdDF3HByzbIU7chfrdFr7vYYTic+AOUVQN1+0z6IsYpmq1Qso2CYOIKBJt3b37BZOzk7z37m2UULjxtJsuPgYTtZlj86IoilHV+Ngap727A0EftEkMWzx3GLjomo5qmniucL2xLAfdzBIEIxyrJPrme8ShTxSLtaQZDp4fEYQh3aFwz+mNhqQzeQJ0br17O3nGPjs7h9Tru0SRmDfXHfH5x59QLlVEv7o9VlZXaLT6/NEf/oG4n+fz+SefMhj0j2PVxieqqCrolkWuIJyQ/GBAs76Ppgm7IcPKkS+V2X+2iqaLn89yrYaifju61qPfj7Pip07++U3cbiQSiUQikUgkEolEIpFIJBKJRCKRSCQSyf93fGfEOK/DaSHLWVEzLxQf1aSo+Yp65FnFz99GwHNWX9+Eo/On5+d4urrMwtVrjE8KkcVP/uDHHO7t0jioc/X6FQC2d7f5v//iL9g/OABAN5YZjVws2+LHvyNimFqNJuVKiXQug5kShX/DsKhWyty59TaDoxghJWBjbZOx8SoAtmXRaXcolvIYKRE/lY9zdDs9Dg8PKBSFIOHmT35M2tEYeQGffHQPgCCMqNUWURY0ypUCAKqqUigWWF1ZAWBuboJe3yWbzzM1KYrnuVyWL774giDUuf2eKLobts27732PydoEmbQojLc6A2amZhiMhLBk6foi9XqDf/zHj5idmQHA931S6SzpbJaVlWcAzC5M870P7ogoHVH7J53LsfLkKdUx0YdSKcf+7h6RAutPhVjm0uVLKEqMqirouhBM3f3yHinbZvHKZeqtOgCdepuDgwadlhBwXF68zMZ6j3yhdCzQ2d7agijANE3Wl4WoZn5hljgKGSvn6bXEXPY6HeYvzbK1vkOjLeYo5aQYdAfH66Xd6VAslpmamcEyxBwpxCIaSokxLDHf5fEqd1IWgRcThUKEFAYhB/uHpJM1kcpqjFyXdDZHLoklC70R+wcdokjFSuJ7nEyRW+++i0aAnRbnGZkCKArVSbF2SuNldFWjWT8kVyod90FEQUXHopGTG/miffMmwoKz9u/Z8XHxif+Le0ZRIgjRVBRVwUxZuK4QqqiRh6Kq6JZFGAtxDKqCk8nhuf1kbEpEiXhG10SUmJ3P0NjeJIjA0oVoJF8aYzAasbr8jEtXL4t76gaKYeInbXl+iJ5NEfs90IXgQzczxKEHUYifRJtlCuMowwFhHLPy5BkAhuqTstKMEjFLv+uSSuexLAM32TMhAZZu0++2aRwIQd6PPvw+2WwaK22hRImwpz+kOD6Gmc5g29bRYKEAvSS2au/pfVTFQ9NN/FFbjGsYY5o2YeATJVF1oyjCiGyiICBMnlPRbEzbQjXEeHVbbVaX13n6dAMt+ZX6+qvH/OCDd1nf3CeVrNfFKwvoSsR4pYTni/nIODa5dIYgieIqVccZDT0qBZd//PU/irHRU7z37m2G3gjDOopVAzNbxnJSeEfCJ3TSTv44vswdjTBUl5X7n7F7IMRqv/snf4Z+hhjndUWcp9fq0eezYhTf5Lfk24xelEgkEolEIpFIJBKJRCKRSCQSiUQikUgkb8Z3QoxzUdEQzi5AxnH8QgH9Qs65/iKXgdcV6FzkYPAqZ55XiQvGpyb4/KMv2NvZYXJqCgBV0fG9EWqsYBhCEHLz9lvUqlV++YtfAnBwUGdzc4uM4/DkwSMA7GyayZkprpYLeK4oNBumSmVsgiiGgi+camzb5LDeJp0RootGvY7neuxsbZAvFgG4fGUed9nFsPIosRAWjAYdSsUq3e6QJ4/FPcvVEhMTH1AopHn2dB2A629dwbRT1JNCtm5YXLo0gaFb7O3sALC+tkGxPM701CRHMon333uXtGPjugOergpxTK/bw/cjVF2M7Z3bN1nf3GFleY1mUwhjpqYnsRwbU+XYnUdTNZoHhzSbHSplIb7Z7HVIOxaHh4mgSVPwg5Cp+RlSlnDsCYKY4WhEbWKMKBSCjer4OAcHDVZXn0IkBA4z07Ok8wWePHiQzEcDRdPJ5y1aXeGec+P2Egc7OzjpHPPzoq2pWokojuj1Brih2JoTUzUymTSXLs/TShx6iuUiayvr3LqzlCwkhVhRGJuocbC7m8xHl3arT22yQnlCuPjs7e7jD10cy+Lv/5sQJVxaWMD3IqJ9IcQoVMqUCkXiKMIyhTBCTzusPttBiRXaA9H/mavXKBgqke/ROBT9mpqfZjgcks0LcY43HLK+ucOlpWvky8WkrwgnldfQApwWIZzekye/+7YcQOI4xjCEOEOJxefAdem1xbgqERhWBjut4Q2Fu4yqKqiaioLYj2Hk4QceWgxmWqydbKmKppn0um1GAyFU6Xe7jHp7qJGPnoiookjBH3nHwhXDSjHq1FFNCzMlxtV3+6iqSuiH2Klccl2AoqkoMUxOCfelbn/EwfYWs/Pi8yDUGXY7oFnkC0IcpcUh7nBIOpuh024m4+mjpWyiSEVJBEdh2CD2TZFrePSOixViJaSxIRy6+vUNxhbeIoxijMTdK9IA3UALNTQlOXb0XowU0MT4NJuHlEqFI5Mdev0Bg6GP42Tp98WaGx+fxExn6PafkU3GNZ/LMuh2uX37Br/61afJfJh0+j6jhnBjunP7BsW3l2g2OizduAbA6rMN0pkMeT2Hk7h0dVpdFFyy+Rybm2K+p6emsVMp1ES0l7IdVDPNwp1bVJJ38sl1epLzfpfOOvdVYpvXFc+86rfmrN+8b3P/SCQSiUQikUgkEolEIpFIJBKJRCKRSCQSwXdCjHOSs4qFrywUHn0fJyYbx8Xi+Bw3jJeLm+dFg1xUOD27K+cXQ0+6HbzUjpLITk7oFDLZNAuLl/n4H/6Rf/EnfwxAKp0hk88ThRHxUYU48Ln1zm0KZeE+8zd//Use3PuaZrOBngh2Mpks62sbDAdDVDU5lnbodwYUqyVMXQgQHtx7wGjYxzSF08P+/iG5Qo5SZZ5BX7hYbG/t4XoenW6PxSvC0aNUqWClUtjWiD/7938KQPNgj5EXYGgqh3VR6O/3+9y9+wgjccBo1Fs8uPslwyBi1BXuI9eWLrHydJWnKyuUEwHQ1cVLaJrJ+rNl6g3Rj1wuw2Docv36VQB2d/aoH+wzPlbCTor1uUKeZrPOoNdjcmoaANsyiaOYdMahNjOWjE8KBY1+X/ShNjVDu91g2Onz5Rf3AYhiSNs6YRChJwtLicF3fZxsik7LS/pRR7cUphN3nl6nxVhtmnRKR08ELqZpkLINLMsiVxRigP5oRKFYwnVHZHPiuTVDoVmvk8/nyGaEG0j3cI848qjv74v5DwO6bohh2DQTMdHk5E1GI59eb4SqCxcdLfTpjYaoikKpINbK3v4elm5SKAjxVRSFmE6G0HOxMkL8oZo2U7MLGFqMH/nJ2g2pVKv0u33aTdF+dXycKPJZ+Uo4I41NznLjvdvHTkxwcn/DaUXOmW42ZziGnL7mPEHcaV5w0kocs5TjPpxoI/lrFMcEYUAYRFi2cIAyDV3svTA4juzSVeHzEwVCuGKlC0SGgu8PyVfHAbCdFKmsTSGsMGyLNbbx4GO6B9u4Sh7TEaKa0A8IApd+S0SLqRooqkY+Wz527AEFz/WIATWxjfGHQ6x0Fr/fQ0veC+ViHjWKiLzEiadcYn99nSePvuL6dbE2TStFrljBDyLGJ4Rox/cCht0hkQ/dhhC+5aolJhYW0U3rhSFUYuj1xH5UDZMojlDUmFgX56mooOgoWnz8mlYNndgfYVoWnisEbMVSDk03aB6KeLz/5y9/weTEFFvbe4yPCVew2Zka01MTbG3sUh4XYqL9wxYROve/WsW0xBheu1ImiD32doXo6eGDVS5du4w76mEaYq/lchl63SbpdIaNVeFMZZomc/NTaKaNNxLPvb25y9TsJIaZCImiiG7HYzqTZyJ5n3CBKw6cHZ34Kt5U4HPy+29ynUQikUgkEolEIpFIJBKJRCKRSCQSiUQi+XZ5uYookUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIvhHfOWecbxSXcdrU4iiS43WycC647zeN7jgvEuQ8twQ48QgKxNFxABc337nJxtoaf/2f/wqAn//xH2KnbPxUisAXTizNvV2yxRLjNeHCsfTWEtubu8RxjJ1KA+D5AZmcycrKKpWScJXY2drh5q0lRr0eUeJ4sb6xwZ1338OyxNKoTU1SrzfYXNukXBJuLf2hz8TMBLOGTTYnHGhMyyZWLHTLoOII94mUqdLujkjb+vMxUAwuzU3T7gjXCtu2CANot5o06uLYYeOAdrtLoVhie0NEV3351WP+7b/7H9k/aFGuToq+jRdYW9/m/v2vALh8+TJ+CIaiEHjCHeTzTz7D0DVy2Sw7WyJ6plLK4DgGM5evcpA4caSdFI7j8OknnwNQKFVQEe4UmirGQlUVusMRit5HU4QLilPIkS2kuH7zBnubIhZn/ek2O7sHTE2J+bAsG13XieOIVOISoxCxvbPP5cUsExMiKqvX7wIB7qiHk7jSNA7qdNtN8nkHy06u1XTa/YC7nwnHHl0BdIPJyQlKiTvScOQyHAa0Wi0OkxgpXVfRNBXPDajVxBgGYUC/06XREOOQP6jT624xMTlBIS3WjmnbpPNpYm9EtSja180UfhRSnaqSS2KpdrbWUDSTK7fuiLZKJVASo6oj86r4+dp+FWftl9PuOOc5aZ12CFEUBU5G2yE6dea+58X9apgm7sgV4zXsk0pnCf0AQ9eTsbDxh13CZN8O+x1UzUQzbUxb7CslcU/RdY1UVoxXpjxJt77J9PQM/lBEMXUPNqgf1hkmjjTlyQUmLt1EiRTiQDgQxaFCGMagmxwcJE5ItXECzyXwQxTl6J4RjqOhG8L1aNAfoqkKb91agkiM25Onm9SGPtWxKiNPuB6pqkoqY9NuHFKdmgVg/NJlDNMSsV2JAxAxGJrOtQ9+AkBr4TKbj74iDlVCRbQV+R52OkccP3cFixUV1x1haTqqkfwERRpRHGJY4pzFK1fY3dnDyaS4+0Dsb0NT2NjeYTgY4DjCqWbh8jidVhtNN3B94TgURzqrqxvUpqqi6XDEJx9/yuHhPrML8wBcvbJIuZDDcSzWN7fEM46VUBWDOAgZrwmXIE03MUwTPYnC8wY9PHdIFMXHDmOxcvaae2ldvcbvyXnnXBSp+Cb3eJ2oRYlEIpFIJBKJRCKRSCQSiUQikUgkEolE8tvznRPjvIr4jBr+WcdARMccFd3fRJhzxFnF1fNEO68Te3XhveC5YOG4DbAcnT/417/Pf/hf/zcA/st/+I/80Z/8CU4+Q1ILxndHaLpOOhFrLN24Sbkyzn/5T39OuyWK/L7v0u22eff992g2hDhj7tI8nj+CvoeZEqKaH3/4I3TdPI5lOdzbYXN9h267S9oRIoJs2qFUzJFKZwkCUXRfXl0hl82hENHtiuiZSrVEvblNqOh8+LMfAzAaBWxs7+LYIq5pOByyeP0qnc8+4nvfew+ATNbBGw4hhlZb9DWVStNvHPL+997hVx+JGCTTMnn79ttMJSIk007hBi5ff/WEbBJTNT09SeiPKJfyKMlCyeRyFMfKaAqkLSs5VmBre4dSRRTwV5efEkW+GAv9eUSNohkQ+bhJYtDDr5e5emWW9n6dVhI/VG8dMjddoTIuRDaHjRamZaAqwbFQTNcMxsYm8DwPJxR9cNJpgijC8xUePXyS9H+WuXIR4pjAF4IQtz8ia1uMVYQ4yvVdwCCTtpmeE/FDhmHQbHTJZQuQrJO0k8ZJp+gNhhQMEelz7/5jGgeHfPizD8XcWiEpU6PVaNJO4ocuLc4zVs2zttIgnRUiHiebwQsC1h89Yn9HCKYWrl9nfGYGLRGpiGeNEYqcI4Hc0VcnFDrKiaS5E0K2lyOqXjz3Il4Q5xxtrvikBOjV+1pRFAxdJ1IVHCd9fNwb9UB7LqoJ/SGe52ImIrQ49hn1h6SL47QaIm6qVKoSK6AoKsv3vwBg6+vfoMcDOrv68Zj5fojjOESBmNvl5Sd0hjFv3XoPRRdrOo58UlkHRVU5GmrTsgk8FY8BfphEibkBQRTj9cU7oL7fpFjMouoqg64Q9nzy64/5+b/8GQXXJwzF+lJV6PRGpMsVJhYXAdB183iMwlDEXqmaRqw8j8qyzAyHm+vkizU0O1nnZgriiDgMCSNxna5pxFHAoNskSvakqoCZcrBtMc4LszVG3hDLzNLvi35du7bA7s4uShzz6WcPAGi0OsxPzzAauSzMCQHNsNejWi3x9s3rALRabWpuwCM1JkyERN7I5eCgQbGcpVwWUXW2k0U3HXxvQCHvJGOhoGsafiJUCryYGBvTtjm9Ys573/9zi13eVORzWix61jEp0JFIJBKJRCKRSCQSiUQikUgkEolEIpFIfjv+uxPjnOa0EOalz8Qo8XO3i5McnXeecCaO41e2f7Kd09ee1c+zHDySjh5/Pl0QdbIOf/a//M8APPzsLl/86u+5dvs9siVRRB6ORkQRbK0LN40rVxZZvL5Au3XIp5/cBaDbDVi4vEihWMK0hwCsP10nX7yNZtns7uwBYOpQqoxRHhOiFFXV6fY8JmdmMSwDgMbBIc1Gk929OoeJM4dpmLTrPUZej1yunAyMxoP7j8hkTJbeEoXx+mGL9fUtbFsoRALX5ac//ylzc/NMTgqhx7DXpTg1zfr6Orc/+ECMgWVR337KoNuk2xEuLgf1Br1+h1xKiCDsQCPnpMimTCYnE1ca28TK50hns4RB4iTU7DA1XSMIXXb3hFuOYRoYSsxE8tx729souonn+kzPiiJ/4EdsrG9hWxa2I4RPG2s7bG1tg2pgJ25Cc7OzZDMWmi4ER7lslsePlqmW8qwPNgGoTUwRB0MsJ8XIFwKBg4098vkCiqIxO1MDYHtjjXTGZmysiuu6yVJR6A17pB0xH/Pj09y//4TVlacUysL1SEEliiI63Q5v3bgqjqkGm5u7HNQPuX37NgDvv/8Oq0+WWX36DIC3l+bxvTaT8wt0+kKA0G23UC0bO+XQGyaCDcPg8RefYZoxN7/3PgDZUhlhQBMdr/GX9sYJDc5z4uS6iwVzsdgkJ9R3L++Vo3u+/B642IvnIhGCqigUK2Jc9zfWMWwLy8kQBmIfRf6IdL5MmDx37EMYDGkcbuBvCgGKtmSQLeSI44jalBBMbT68S6Y6Q+j3ae09AyBXXUTTFOz0ZQD8QKVUKuB7Pnri0KSZGpqpCWcaw0geQMf3B0SKBpFY56PeAFVPEyVGNoap47lDLD2P54lzcuUcTipNv9PGTARs7U6b6uwCtbn5Y5HQyXGxEgFbHMfJe1V854cBrjugtb9OqSaeEc3A8yIIfRQlcZIJwTDTKGpMkKx9RVXQNJ3+QAj5RmHA7Ow0nXafsaoYe13XyRfyrKwuc+2qGJ+1p0+5MjPNZK1CFItnqs1MUalN00xEgbGvsbffoNcfsDQ7B8BXD74mm83SbWeZmZsXXdUUHty7RzqbYnp6Ssy9FuP7Lr4fJs88ot3a+M4EPJ77e/IttCeRSCQSiUQikUgkEolEIpFIJBKJRCKRSL453wkxThRFFwpczvqX/OKLI0eZo1gZXq64fwu1xXPv/y20ed7nkyhAOidcON79yY/YWV3h73/xd1y+fhOAyvg4lqmTzQpRSrvdoTBW4e07t5hNCs1ffnGPjfUtVv/275gYE0KVXD7Hwd4e129ep1QR8UPNehMrlWLz2RoAO1sH2IZO6+CQcjUPwFi1QqfTIowV5pP2C/kMvW6HIEzTaYvC9Se/+YTdvX1SlkG5UEz6WuXqlUV8b5Q8OKyubrC/vcNYVYiLNjZ3abWecO/eF6ysrAPw+3/wE1JpG9cd8O674rkb9S5OKkW2IFxe/uZvfslYdYz8WJUomSvHcag3GnT6Laykgj69cIkwigi8kHQiqtnZ3GZzZ5dLSbF+amYcP9T56KOPuLEkxCxb24e4rsvk1BWGI9H/UjENqsrykydMJNE2uqpRrIwx6gqnHMNQmZ2roWsqd+8KVx/btqiOlXEci3ZDCJoqlSKu71GupKkf1gHIZhyK5TKaYeAnTjXuYEAmZTGyhRDDHbnoBrRaASvLTwEo5nJ4Ycje7j7Xrok5Mmwdz3UJfBgMhJDE90YUS0U+/dtfAlAuZCgVs/TaDWxHzLdlWwSRiqLoBIkY58t7HzM2PcHinfcwjCNxRoSinKFSiEmyqjjT1uZMEYFQ0PHyhn45Yufb3JdnESuQLYv12zjYIwwjdFUjmZ90ggAAIABJREFUNsSeHIUhSjBiNOgnV5j4vkepNolhCYGL5/uomobveWQrYp3/+H/495h2itD3Wbv/GwDCYMTC7Q+O3WbG5hYZDgaMBgNSRuIigw3uCEVRiSMhAAp8D3c0IghijrRQiqrgDbtoyfwUqxUiPyCOYzJ5sd//8Pd/imnqdFotRl0hvlq88TaFsfHXG9fnWhwymQKLd37EqH3IMFmrw36PbHkCw0wTJ6qgOI7xvJBUJo2KWE++O0CJI3rtFgD9QQ/HtEjbGpmciNl6urpKyrZ4+8YSvi/6evvdd8iUxrDdAZ2eEOnFfsDK8iYb20L4Njc7RRRF3LzxNu2W2GshKpadYjjyaCb3HJ8sUcynMByH3R0ROZfN2uiaTZS4DTV214hDH1V//Z9O6TYjkUgkEolEIpFIJBKJRCKRSCQSiUQikfz/j+/Iv++XSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUj+++c74YxzXszT6ePxybCZmJddNuIYBeUF74w4jp+7cpy656scb047Gryps8Grzj/Zh7NirOB5Io+S2E8oqsLkwiV+x3L48//jPwJw/e07LFy9fGwC9PWDr7idepdKtQqRaKBSKrO7vU3aSRElbhrlchlF0djd3sHzhPNDu9mi8MMSR0FDvu+zs7WBpmr0B10AFq9dZ2yihp2yMAzhLGOokCtmCUIYPRFxWel0Fl0/ZGnpOq12W5xnW1y7tsDK8ioAqqIREZLL5/j1rz4GYHNrFyWOmZ6ewjFF/7vNJpVyGkWz6LYbAGytbbFwZZZ0RriP1CYmePp0jVHg8a//+F+J8YoC6gd75ApFqjXhCLS8vEwm6zA3M0u+WAHg/tp93OGIdkf0M5tPk0pbTE1NoakibiqfTbG1scrB/iGWLdxGrl27TKM9oFTIMzYhom0+/+xTiqUiYShiczo9j1zGodtts7AwC8D4WIVut4879CgWhQPNYDAkRKVopzE00Q/bMYkJUVDRNNEP3QpRdJMgFGOzt75NEER4gc/CZdF+tVrjy/v3CYOQRqOXtH/AzPQs6+sf0esIN5B8oYA78rlyScT+mLrFaBQSxwoPH34KwA9/9hMYBYSErH39JQDzS1eZW7qOqmkvxL297F6lEMcc78oXlvfRqfFZhjnC9uqF4+fEWJ3nMnV8/DVcti7cqzGMRsLBRbdtQm+I5/ZQj+ZDNfBHPXw3cX7RNa7eeR8zZeO73nH7MWAkEU8AdjqNoiioms7sze8BsLe2DICmJTpJTcGyLSLfY9gVzi+64aFoKnEMUSRcqCJ3QBCBpij4gdi9rf0DPD8mVxCxcVbkoxkOwbCDqovIKN8fEXg+xbEqE5euAZDKZF7bzcUfjXj45QMApuZnWbzzAb3DPVa+/Ejc07bxfR9FNSB578SRh6bGBCPvOD7QdyOMlE6lLPaCEke0D5psbu9hOsLxK5fPocYB5XKRX/3qMwDuvHed7qDL4dYz8mURc7e93+Dho0fH++rp01WCQKE/GFDMpQF4trpC/WCPD967QzQaADDsDkilLLwwIoqPpl7F7XcIIz8ZjzSX7vyAXLn0kmnTeS5N39QR56y1evrY6/yOndfGP4fjm0QikUgkEolEIpFIJBKJRCKRSCQSiUQiEXwnxDjwYmHwqMB4UREzJha10Of/e6mtI84UuZz4/DqimfP6/CZF/Zf6cCJDS1Gfi4zOFiE9R1UUKpMT/O4f/RyAv//rf2Du0gKlcgmAQavJ4fYu1dok/SQ6p1As8PatG/zib/+Orc0tABqNOpMz0wS+x1HWTC7t8PD+AwxTCA00VUPTdEzDJAjFObu7B5TKRT7/+GOcJMpocekaVspgc32X8THRj5m5SXRDZzRy2d8T8TBbWzv80R/9C3a3xedMxuHgsE6r3WFhpgZAtVri3v2vub60xN7OLgDLy2u4LVB1h8OD1vG49LsDwlCIIFJOmvFajYWFOSoVESsU+UMmxidIZ3Pk89nkuVvUDw4plwrohhDyTE1UqVavYKaEuKjd7BL5IbZlYyVRVrZtUC6VWF/fRjdERFQ2l6E6VmXj6TO6XdGvcrGEN+odj6mmgu+7BJ6LqgoRxGF9n729Q95/7z2CJL4nZdtsbm4T+iMKuWzyjBEp26bdbNDvC2GHYVusrm4x6CexSKrKcOjR7dTZfLoCwEe//pT3f/Ael6YniFUhANnd2aNSHbKwME0mLZ7bHbpsPH2GnURetVt1Zmdn8H2PmzeEOCOdy+J7LfxOizs/+RCAYnUc1KM9e2SwdbRO30wUII6J/54LBV5s6dsK+Dlvvx6LT4hfvFkMcRTTSmLDIh+IdRRNR7dFfJI/8nBHASNfXDg9O4WZToMSH68n4phIeVk8EccxYRxj2WI+Zq/eRFEgSAQ1/+0v/xNm2GPx3Z9gp0W01P7mJqE/Il0okUqJ62LNJPCGDIajY7+zQDcYq5Zpt8S6dDJFVFWl0dgn2d6UJuYpTc2TKRRRlZfn7/R8nXyHKYqCbpnMXrkk2nccUCKMdJrapbdEXzeeomkqcRzjB2L9RiGkbAvfHRzfyrRMFMUgjMU5xbEKmmrxT58/QNeE+M620oRegGF63Hn/DgBev8/G2hPGqg61mhDWNZsdbt58C00Tey2V0llf32GsWmQ4EKKaaqVIsVjh0fITLi/MJVMdYpk6mVSGKEolfQ3odga4gRjUqaWbzF5bwLTtl8bi2+Z12zwpnDrrt+5V7cr4LIlEIpFIJBKJRCKRSCQSiUQikUgkEonk2+c7IcY5LWp5qTioiPr4yXOiKEJV1TOcON78/ucVMF+3qHneeSeNPI7q3C8cO9nGsRbnZZuQ0yXZo7G4dP06AKuPn3D344+58a4oUKumQbPZYeQFTExNADA5U6Pb6bN/UOdwTxS3u90e+zt7mKbJ7/1LIewJfJf5ywusPhHONYV8iSiOcFI2G5s7gHDt+M2vP8E2TGqTQvTy0W8+YnpqjChWeXB/H4Af/fj7FItlBoM+UzPzAGxubvDVg1WOtEfXr1/hbfsWf/WXf83OjhDouK5LEAR0en3iZOBUVSNTLFEcn2B8URTK+60+oe+yuiL6urO9het6bG1qkHj7ZB2LarWK49jUD5oApFM2uWwKz/OIFSFCyZcK9HsDnq0nrj5OmkazzaDv4thCuVCpVKhWqjxeWWUnETTd/ewLxscqzC3MkCsmDiS2gzvoHItsdE3DSaewDIWJmnDvcH2PdsujP3CJEa4rPT9AM3QODlrEsdia4xNler0uw+Hw2L0ol3Mo5C1SpjjHtFIUi3lMFe7efQTA4tJl8pkC/W4TM5UICaYmGPQ7VCoFFFUcU7wB45U02cQ95aBeRzN0nEKOTEEIrXbXNolDnxvff4dUJntiISZOOPGRkCV64fMRZ2kKTu55ITYTrlfP99Tpi998Yx+/G8649ByTHTj5LohjUBViFLr1QwAsK4WikbhLCVeafrdBFEfcfP89ADTbEoKY+MR9FOEN5Ps+RiLkiuOYKIqIowiOjqGAoqAmzjjv/fB3efLgN2Qr4+QrYi/7QUh9ZxNdiei2RL+ae5vohoGiOJSSNZbOFgiGPbKFDADDbptuYx1V0VAMcazX2MXK5MkVi1wkonppTJO/q5pGvlR8Pq7E9FttzETsZVhp+u0WmXwRTRHiGE1XiFSVwPexHeFUE0QBg34dOycER8FwiGlEvPPOHR4+EM47s9MTPFld46DRpJ7MR8rUiAkolqZ5vCxchT79/EvK1Qq2LvpazGZYunoZ4pDtoXjHKBqUKxXm0hPHojPL0nBHPkHUwx0IFyJ3OETXM1ST9+j81UvoKRuFs11qjsfhHJecV43rm/zmnP7dOut+Z51z3j1eR8gjkUgkEolEIpFIJBKJRCKRSCQSiUQikUhej++EGOfVKC8V9FVVffks5XSuzanvuDj647zr3sRp4M2Kmcpz15ukav+CQOekYOGMoquiC5HIBx9+yF/87/8njV0hgjGsFJMzVdLZFHZaOHN4nsdoeEgum0FNhB6e5+H7Ps1mk1/+zd8CUCjksdNp2i0Rk2QaFnbGIZfLcrsqHG+GgwFzs9M4TopMVhTd33nnFl9//k88XH7GzIJwxVhb2+TJk0dcuXKZmZkFAC4tzPDZZ/exE1eRVMomiGJKpQJBIjbJ5tJ0eiNs0yS2RbF+dmEWy4loNtrkK0IQ8vDxY/xRQBh5ycBE3Lm9RLPRZWtzE4C5mUnKkyXC2MVK3F9sK41uGqxv7HPYEE4y795+Gy02yaaTSJxSASVWWF19dhxRpGoGe7t77O8e8MEH7wCg6xrFsSoxMTubewCUK0Vsu0ivIwr63YHLYOiTdWyGQxEZpaomWRvqB7vMJ84cmqYShj5BEOB5QsjT63TwvIhCpcaz1TUAWq0BmWwWIhGv02w2KZcLmHaaUlmIamrVCQxD7BN/IO6pazqFUplOq43ri7GOIp9ipUgmiesq1ibwBl1GwxHNQyFcKI+XmblyA914HrF0Fm/iICU+n96LFztYvTbPm36NU09F0Z3oz7Ffj6pSnZsG4GBjm5SeQjMMfHcEQK/dpFAtYWYzz+9/1P4L4qL4JTGLpmkvvMuO3jdH51XnFilOz6BqJkenTS1eYfryVRTi48g5d9hF0TW8oYeqH1njwMHWOq4r5t9Mm0yWb5MulrDTQmhlGCaqbrzeWJ16F77kKhQLIeH6k/sQJntGsTDtDO7AJY6FeEnTDXTDQLdSBEmUm4KOPxyh6WJMVRQ0y2JqqkKrIYQw//Dr33B5boaFuRm2MmIt7h80UIlI2TmUULyz3rm1RKU6xiCJxtN1AzuVYnf/kKEnxmumNk3WVJiZGqfbE/soDA2cbAk7bSVuYRAMRlx75w75xO1LM83jtfW6sVD/HFwUT3VRrNVZ++ksJzoZXSWRSCQSiUQikUgkEolEIpFIJBKJRCKR/Ha8rGiRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgk34jvhDPOWf8K/6U4pxiiOD52nXjBYeLEP/aPzoqG+gYRVOf1742uO3HqkdvFyWOJDc6pc9/AkSDpS75c4f0ff8BXn30NwAe/+1Nc16ff7RIpwgnCNHX8MKA2NcU/rX8EQLfbpn54SCFfYnJ8CgDd0Hl87zHFqoieSWdSpDJpioUCuiGWy+rDx8wvzFKsltnc3AYgGo5IZwq88877jNeqAFhqhDvsEyswcIcAFPMZfvST73OwL1x8wsBlNPSpVMZYfyacX4aDAUQx47Vx1pPYqC++uMfNy2OsrK4zfUm0ZZs6W5tbTM/UANg73KNcKfPs6TNuvn0TAM+LUHWNYTcgTFxE+gMPO1aJgoDFhXkABsMehXwB3RKOPZphsLW+SaVcojIunidXKHF42GBycoJMXjiLBH5Avzug0+my/ky48WhKSHGiyvikcFOJd/b5/NO7XLsyR7cl3GZ6w5BsPsd4bYKd3ToAU5Pj6JaDYUfQ6yWTbOGOOhj9ETMzMwB0mk0sO4tlCycWO+1AFPL27SW63T4AhqkwGvRRlejYQUlRFAI/IJ0voo2EA0kM2I6BnRIOR836IX7gUpudIV+9AoCTdjit2zvan2et1ovie84jjnnB1er0Na+772JFXKucOnYa5VRziqKIsKw4etHZBhWFmFJVuLO0dnYZdFtk9SJRINxflCjAc4MTbjwn3WOetxPHMYZhvPQsZzmbPD8nRjfMl89XRKSVooroJzsr4p2S5SuIIjTzElqybzXdQFE0FFX5xs4nF82L+E5lfGaOx5+Jd0y2UuXyW2+z+fgho75Y0046A5qOio+a9F/TDKxsmX43ceQyDbZ2DrCUmLGSeKjf+9kPiUOXYtEBRez5wHWpjs+yX68zPy8cpoaDIf2hy/i4cHvyvIBPP79PrChMTorrFELCeEi5nCdIHiGdKxB4AasPvsYLhDPO1Tu3KU2Ov+BeFL+G7dKbRD79NvFQr5rHi6KspBOORCKRSCQSiUQikUgkEolEIpFIJBKJRPLPx3dCjAMvFvCPis1HHBXORcH81ZFR36SwedZ1F8XunPf9eXEgZwkTTooEYl4WNrxugVRRVRbfvsnTJ08BcAcerWYLRVXRkmghJVZQVQ1N17l16xYAD1WNQb9DELosrywDcOnSJVRVZ2JciA8816exv4lxzaLfTmKX+gNM22L92Sb37j0A4MqleRbfus2z1VWKRRHpsrr8lMUrl/ns00+5cfMGAMN8GtPOMDE+BsDK42VGbkAYwsIlITZptVr4Q4/t9TWWH4oYKUyD8ofv44UmK8vPAKhNjJGxTRxLRHENugNWltdJO+ljUcpw6NFu1SlXigwGQsTT77lUKwWq1SKptBifMAxYW1+nOjYOwMbmNoHrkqlWMU0hhlhZXubevXu8c+f5WFuORTmfpVDIc2juALC9c4gbRszPCXHAk0fLFCsF7j5YZWlRiJ4Ur8/OXh1ilUxWRHHplkng9fFGI/YPGuKYbuJ5EYalMxyKOJ2YmM8//5LZuVkAbNsi8H3c/pDpGSEAGrpDVC1m1PXxQxEPZNpp3KFPsWSTc4R4w3Zseq0OrXYTgFw1T216BjNlvyh8i0Vo0wmZCQovxtucTok7K57qLMT1yoV792R806ti5S7iWKajxC9EWcWJ0C8MQ7REIHJSgKFq4lhtfoH1R48gVlFC0YCTzrK+8pjKrJjvykTtVDzVyb5dHD33vD/izzAKMLSXY6TOG4cX2lEV7Ez2+DljXm8+Lmr/ovuJMVRwchUmrwgx3PzSErpukSmUsB0hHvNGI3zPJ2Xp6FoiNFI0zFTm+B2oaypzszaBP0RPxl7VNFTTQSGiOin6NlEr0jhssHn/If22EPtkCllM00Y1xHthf3cD3dQZDjxcV7wXtrY3+eH330M3TIYtIYZb3nhG4A2JlRRX37kt+n/tykuRiBdFHp43Ni+M0SvaeNUeuKj9b9K/byoEkkgkEolEIpFIJBKJRCKRSCQSiUQikUgk5/OdEeMcFTxjJRGmnFEfVODYSeY8ThcrzxPFnD7+OoX+k9e/CkVRznTkOCkAEHqAowPPzz/r2S/qSxzHGKbFj3/+MwDazT6qBr43InB9ADbX1+n2OiwuLpJPXF18b8hgOGRjfYN+U4g/tA2DVCrFTFMIY1IpE0VX+OrLr/B94RZhmiZ7e49IZ7JcXbwEgG4YxIpCLp/lwVdC2JPPZshkLCaqY7hD4SISFnKYlo5piSL85Nw8e3t1Pv/kN/zO7/wYgFwxQ6fbJa0ZTE1PAlCaGKNULvD1/a/xgkD01ba4fOUqhw3R92KpTLFYZHezy+aGEMYUCgXSaZNsJoVtijU26I3wRi5pR8dICv3u0EfVLMLkGSsFm/r+kGb9kOFIiGAajQ7lcplM2mE3EfbUCiW6vTa5UplCRYiQBsMRo26LZj0rnnGyynDQZ7pWptsX13U7XVIpG3cwwLbENgxGXer1FqASh2LeFN3i4cP7XLt+g/ExIWDa2Nhh0B/SbnUBOPAa5AoZpqan0JMdnbUypLI5nJzL/r5w40k7FrlimU59h2F45BJkMVarUa4K9x/DMjhS4RwvX2E3Iw4k+0M9XqwnXFbiROry2iYbR9epr3CHeX7spXOSHXQksjl2wzrVhyNXqpfeD8n+OzpqaKdfiTGK+lxw5BTyZEsVQndA4It12DrYpFqbwU4LUVUcC6GPomjH8qWY8HynoFh9LpxI/q8kjlZRFL2WqOksMYcQUR03+nyMTszZee+713kfnu6XoigQxew+W+Hz//a3AKQsk5mrSxTGxjAtIXzTDI1+q8Ph5g6uIgQ0tmWhGDaGnbg4aSax34Yoxk/WqmbqOIbFsNPA88SxoQ+N3oilG9c42BNuWw8ffc2VS5dpHO6JPhgWE5Uilm1QSRy/fvDDd4h8l3qjRbUm3HJKM7PEcUx5aopcQZynatrrCZ8uGMuzrjs5R6/t+nTivIuENqfPO702XmevSSQSiUQikUgkEolEIpFIJBKJRCKRSCSS3w711adIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCSS1+E74Yxz5r/uT2Jwfpu24uh894HfJrrjVTEgx64Sr4jUguduFcdGI6ef4YLIkhf+HkOhWgEgXSiQyqbpt3vHIzg7O0O3V2f5q8+Zm18CYHp+jm5vyNbODvXEReLD3/2Q9Wfr/OIXvxDnTE+haTrbWztMToroqlQqhaqpBL7P1uYuAGEUUSjlKFTLbOwLh4rJmWny2RSWZeL5Qvf1+PFTfvijDzhsiMirJ18/IvZDZqanGbrCgcbQbUI/JjR0BsMRAFkvpNXo8ZPf/zkry2sA/Plf/AW1ao1u5xCAq9eWKI+VUXWNg13hBtNqtdAUk0HXRE/ih5QootXqkitkODhsJOMMuq6jHTs0KVQmKqiKQbvdBqA3cLF0ldBzGU9itmLVoN0Z0bz3NUlqEWPlLJlM+njuMpksuVyGXnfIbz6+C8C164toUUivN2CUOKyMPI3BMGR7Z5t+4iRULcWois3jlWf0h8K15+7de/zBH/6MahIltr9/QBz55PJpsrkcAL4fEAUhiqqSzYpjkd+n2z7ATqcpVcsA5MtlNNtGPbXMXtcB6tvkPNeOo+9OH4Nk/5y85IIt90rXK17tNNKtN+ke7qEbBmEg5qPT3uLd7/2MTK5wdMFL3TnpinNmP56f+ML5VuImc16f3iQq77xn+qbnnDlWCszfvEm7Kfbk4cEexbFxDNNBVcX5YRiSKxWJopiV+/cAyGTSGNYQXRP7L4r72JkssWkwGCSRc4MupqGjWQ6GIpyjcqpJ0zDI5wvcfygcuaamFqhWqqCKfVUqFnE9n0wuhaaIn7xhf4hq6lxbeovCWOIKZRhEytEUvNn6v8i96Ky1e/r9/c/lTHPefjrdP+mOI5FIJBKJRCKRSCQSiUQikUgkEolEIpF8u3wnxDgneR7R9Opi6FkFxBcKn0nxN+b1I0XeRIRwsuj92iKek4V65URx9oXOPf/juUjnxfbPiog5jtoxDTRDQTUidF0IULTQwhjqZJ0MTkbE6TiGwtTMBKapUyoIIcEf/5t/xd3P7vJ//ee/AqDT7uKkUtimgRKJaBjf9Tg8qDMcDOkPhYBm/vI8hmFg2BYTSVxTOm0TRRHDfo9UKgPA9euXefLgEYZhiD6kHNyoR3W8im47AHiDEZvr23TaLZJb8uXdB7zzwR10bYqtrS0AbixdZ25mjq0NIc4ZDH2eLD+j2+2STSKDbMehVCxiGCl8Vwhc7JQQOAwHI9bWNwCYnqqRzZqMRuIcy7SoHx6QSmXYqwsxjmYozNTmME2D/XodgGcbDzjY3adWG/t/2bvTJkuu+87vv5N3q33rWrob3Y3e0FgIYidAURTJ0VDWSFaII4/H8njCYcc88gOHX8i8DD/xhGVPjG3NWCONJNIMURruBEEARDeWRqPRe+171b3HD3K5JzNP5s1blQ0Uye8nguiqezNPnlzrQf74/+vmrTDQdPnCnF544QtqRW2xVlbXtbG9o0f372l7Mxzr3qd3tLKyqqtXLujtN3+e7HdzZFT7OzvqRUGyhunq1NyMmmPjCqIWShcunlej1dSpxTBQMz49oYmJMXW7XTWi8723va3DrtWDe3fVbIYHcemJM1p84oLaIyOyyXWXvibjayl3vxw1m2OsJOsMUBweKQsO+O61/uScz+LOV8rfk+4+GJnUv0H0LLHGCbpYdw7hZxsryzo82Fe3d6judthi6XBvQ6bZLzNmFUQz6OW66tmeKT0G/QX7xyvM2vVyx8AmsxouOjKo7VW2jVK8TqVxJY20x9Rqhu2m9re29e3/+9+o1RxRZ2RUkjS5sKRXvv5NTS/O6bnXvyRJWrt/Xw/vfJo8F9TbUc8aNUxTnah1VacTaG9nQ43WiEz0p6vZ7umJi2ekXk9feu35cLmRcbVaIzrcC++17sGeGt0DLd9d13TU6u3MpQuaWpjX2NSkjOkXiDPJvvrDX0V6vZ4aUcu7rCrrFwU6qy5/HL6g2OcRxgMAAAAAAAAAAAB+nZyIME72JWCVqjSS88KyoGpG/P2g14pl1TeGrRYwqOJO6oX6MSv/xJL9jL7rGWlucUGnFk5pd3tHkrS7u6/N1Yfa29vXwWFXkjQ1NamFpUW9+OrLmpuflSSdWppTo2HVVBjgGGm3tLe7q2ajqd3dsBrFzs66piYn9fDhI+3uhlUrZmYmdP/BA42PjenJJy9Jkm5/9KHe+skP1G619fwr4Uv3C5cv6ZOP7+n6jfclSU9fu6p2Z0w909TKg1VJ0uHujlqNhhqNhk6fCau/bG6v68zZJd26dVONZvjyvNnqyLQaun0nrMRjTUsmsJoYHU1e6u/u7Gh3d0+NRqA42TM61pasVaPR0NPXnpEkddqBtne21OmMSJL29/c1MjqlvYP9pALK3Oys9g962tnf1POvvCBJunPnvs49cU4ffHBd7dEwTNQ9DLT8aFN7e3Fg52Ptbe1q6eyCzpwJwwDj4yOamT6r6ZlTWjobHteemhofbWl+fl5BOxzLdve0+mBVZ6fndOHieUnSC6++pJHRlpqt8OX/RGtMjaCh/f19rTwMt7m9salTi/N67uXnNT4dVsYJGs0wbKAwfOJeO1Vfwvev2fqqaAwKHqS2X1IJJjVekA/ypMI92UpA4QKpilypYaPl93e3tbezrc7YuLbWPpEkjYwvaHRiIpdYGrRLw1QjGXSOyqp/HbUqWJX5dbvdZL0gqiplGg2dv3RZkvST7/4HTY5PaP7sk1qOKmYtnT0rI6OGjMYmw5De2MS4Fs4/oV43fDZ1Dw+1vbajw8MDLT8Iw3d3bvxAi+eeVXDYVacT3h+HewdqNRvqma6iGI+atqum3ZeNquCoadXqdLQwe0GnL1yUJI1MTcQnPdmXbBWjItnjYowpDOIMUnSMB1XZeVxhGUI4AAAAAAB22jL9AAAgAElEQVQAAAAAQD1ORBhHcl4EK6xO4b4sTwVsjjRmvnJE+FU0mpFk09VAhgnhDHq5XfpdyWbSNXOqBZQkJS2HrIw6UUBkZHRUBzuLuv7uLzU9Py1JWjy9pPnFBS09saiZU2EYp91p6/mXX9Cp2bDl1cMHy/oPf/4XChQkL5w3tjZ0eHhKmzubSRWcl154XucuXdLh4YF29sLWUnc/vav11Uf6wgsvqnsQvmTfWt/U1MyExpfDl/D7Xau7t+9qZmNLaxthpZE7tz/R4vyiNtY2tLocVrc4e/GcPr11W88+/4zu3QsDJw/vPdB7772vRhRKefRoWUtLC5qYmEyOxebGuj7e39bVSxfVaoaXu+l1tbt/KBP0tLoattlaXDil/YM9daNKPIcHh1pdWdPkxISWH61IkpaWzujG9esaHR3T9la4j3Nzs7r50ac63NvVmajdzZOXLmpza0e96Lysrq6roaY++uiuVtbCwNHVC0/q1KlJ/eD9H2psMqxKdPPmLV29clHLyyvqjISVfQ7Vkw0aev7FL2pjK1x3tNPUyEhHrXYYP9hc29CDO/d0eLijucXwvF159mW1Oh1JRnEuxdqeZAKn+kc+qOKrihOtnP696kv7koo4/aGGbAmUWdx9VlhPi6Hk+8D93KYL9iTLxnEl5/nRk+7f+liStP7wjnS4ou37N9XbD8/HyNRltTpjUqpOjfHcssYb5EjtW1L1puesZmSz7bjivXSeccoEE4u2UaSsnVJZJbHc+EaaeyIMjj3zpd/VzNKCpuYWdLAXhtqa7ZaCID4OcUUjo2a7k+xiT1bNkVE1m001R8L7+/2ffEf3br2r1//Jn6pnw+DP2oN72tvZUbs5rYm5M+G63a56h/tqHIZtqmZPn9bU7IyanVbqEIZn2hPu9ByTQX8byoJLw4Z7ytYnLAMAAAAAAAAAAAD8aggGLwIAAAAAAAAAAAAAAACgihNTGSeRtJUa3MbJ137GFlSQyVUeMOniHkWtcoZpoXUcRZUXhmkKlK1sEc43rLDRk9Xc2dP6x9/6I+3uhBUqdnd3dXDY1fziorq9w2i9QOOTUxqZWJckzfYkma5u3bql6emwes6h7enmrdtqtxpqjoRtndRqhlUsmg394mc/kSTd/OXPtLQwr6XLT6sbtcbqTIxp5dGq1lbDKji/fPu6RjsNtS5f0uhoJxyq0dTOzrb29vY0MRFW0JkaH9XOzr6WH67q9JklSdLB7p6M7enLb7wmSXr/xg3tHezo0HZ15fKFcHsjRuvrWzo46Gp9ZVmStHB6QU1r1Go2NTbWliTdu/dQs7NTstFxaDWMpqendPveQ3XtQXJ8z509o49ufqzrH3wgSZqfm9fu9paevHRFe3vbkqR33/2l1ta21GqHFT3mZue0t3uoX773jra2w4o67daILl+7qOW1Za1E8zp75rTGJiY1e2pOB1H7r1NLp7W+taOZ+WktnA2P/8c3ritodGSjtlsmMFo8t6DFs2fUbLXjKyBVGSpa0HvdDKq2cfxrPl/Z43HdR/HmfPete48bGe+zwq02I4VPoe31dX3w5j9Ikhq9Hc0tndbeVqDle+F1MTazpGajJZurdpVtW1V8nIsqFaWr7TizylZwUdz6rh7Z9mVF4tZUKUZqRc+FJ597Xr3wI7XjZ4UUVfvJrOZsLzBB0mpubjFsVff87/yBFs+e1ej0qWQ/p2dnw3MrJa3JbM+GKdP4WjP+Y9+zNiomVFz9xr12sstUNWj8x+lx/s0CAAAAAAAAAAAAUOzEhXHiljLW87K2SNJqxlpPyxqlOsaYKOKTapGi/EvL7EvYouXcz5Ptxi9ak43228e4bXFSc/W0iHE/S60XNVhxD9CgVllG4bx71urezduSpL29fTVaLV186pJGolCKbE+yPe1FoZGRzpievHBBn9y8qUeP7kmSNra21Gq39dIXX9RXfvt1SdL01LRuf/yx1leW9dE7P5MkvfbV39G5K8+p17O6vxy2err+7k29f/19fXzzpiRpYX5OZ86e0cbGpmZHwpZa24ddba880qd37uvylbDl1LXnntYH73+stdV1fXrnTrjuwpKuPHVVjXYY4jl74Zz2dg7U7R7q7v2wldX41Kx2dw/06NEjTY6HY21u7mlialx7ezvqdMLPdnZ6sgpko3DB2OioWgf7Wlvb0NKZc5KklfUtvX/9fT15bj5pQXWwv6urVy9pY3tbzaht1O1bn2j+1Iye++IXw/3ZXNfKyrrefldaWloMx28Heu/GR/raN76mf/jef5YkzS8saHRkVHPzs5qduyRJmpqdlQlauv/xp9pYC49ha+RQl79wUSOjYVCpMzqiRqOZuQbKX/LHIQrftWxlw1Bc3MWt5IW+NflNGd+iThu6ItmWUbkhhljPDd7YZO3s/dT/LNm/VKsnI2u7Wrn7iYL9DUlSQ1vaXevq4CDQYWNKknTl+Veitkvl8y8KYKTmGndtsplz6bTfivfHfULGISJj++fKJq34PCHD+F/jvwbc+aYn1p9B+qei82PUULrtVvgsyrfxspmQUfLsaoT/XnjmCwrUCM9PPJ0gHMc9u0EjSP1edN1UDcJkl8veD0cJu/jGTI2V659WfVtHbbcIAAAAAAAAAAAAoD4nLoyT8L9DLpd6ke4MVfhCcnClinDYwS833RftufCCW2Uh8wbaG7zxVOLxhn0888tyxzfGaHxiXJeeuyxJev/td7W1uaX/68/+XI1WOOa3/us/1uTMlLq9sJLNv/0//0w33n1Huzvbyev0sU5HzWZTIyMdPfOFZyVJ9z79VH/77/8fXX7qil777a9JknYOjba2D7S5uqzd3bCKyM9+8qbu37srE1VpaTZb6nWlyclprT18IElqyGj3sKvV5Yf6ZCQMCa2tb+jll59T0Gpoc31HkrS6uqrFM/N64nwYluke7umH//AT9fatPr75sSTpvfeua3JsROfPn9N0K9zm6MS4TKOh9uikdrf3JEkjnRH1bJhFkqS11S0ddg/05MUL+jAa6/y583r66au6cvmcfvrzG5KkN996S6fPXdLDlVUtLcxJkg56PW1ubeq96+Eyq8urOnv2tP7JH3wtCRbcvPGxtnc2tbK8oaevXgvPUdDU5WuXtb+/q7GJMCT06OEjbW9saHZhVpe/8IokaXxyQjYwMooDNcnZLr0Ghv1uoIKKIz656/4Imxs2VuAL0uUmYfPfuVGT7uGhttZWND4+KkkKTFPWNLS9s62zV1+VJE1OT4f5kJKqP2WBJt8xTI6XTVfwiiceDpUJr0T/TT4z6WpAqUdSMn551a9+oMlE8Z9e7jt3+/lj3l872XYSxHGqN0U3XtlztBE0UnuaLJ8EDt39q66oIpq7jToq2FSphtP/rp9ys+rl/q6VBuTK/hYNmN/jrtQDAAAAAAAAAAAA/KY4EWEcN3dTy/+Pf8D7xMdZK8CWpIjc7bovkVN8VT6KNmYqLJPRMEajUbDguVde0I13PtSf/+t/rXsPwiDMa1/+kqYmJ/S3/+k/SZK+8+2/1f7OtsZGR9XuhG1mOiMd7R/sanNjXb948y1J0rtv/kj3H9zX7/7RH+neg7Bd01s/f0uNRlMba6taPL0U77iuXLmoleWwDVO72Van09T49JjufhpWy7E9o7HxcbWbbU1PT0uSFhbmNb20qO3NDa2uhBV6ZmamtfLgkXoHYXCoZ7tqtEe08mBFTz/zjCRpdmpKmxsb2reHeum3vxRus9NWoEB/+e//RlevhhVoJmfGtbC4qAf3H0qSNpYf6eBgX5sPNrQ4vyBJmpuZ1P5BV/v7+5qdCav4XLtyWWubq7p4/pzanfB22t7Z1+72ttqdsHLKJ3fu6PS5J9TttvXcs09JkkbbU+p2e2o3GzJRlZqDoKdTSzNae7Simx9+GG5zcV5fePUljU6NK4hPeBBItqcgun56vfJKTf0PlQ+5Zbu3GZOqKBX+42l5FQ1UVunmV5UbqgmaTZ258qyuf/+WJGms3ZJVVxt7Ri9dCysfydeq6bOZaariV9Eyqd9y4Yy45Ep+2eTjgt9yH5U+d/NByUGVnPIhkqLaO/Hwn9212Ov1/C26BrBRkCqolHmpeF8DAAAAAAAAAAAAOHE+r7fIAAAAAAAAAAAAAAAAwK+dE1IZp18lJt3eKb1claoA1mmd41s6GT/sqTJwLO9AuYIN2QohtqCIg6eFlpz5KN8uxzfD7HGwiivt9IcySlfASLezCX8OgkCLZxY1OTur23fuSpK2NtfUO9jXj7//A0nSwe6e5hfO6Otf+x3NzM9Kkj549z398Ec/0KNHy3rrhz+RJG1srOl3//CfarQzrnfeCtd97913NDs7J2MCPYwqzoyOjmlxcVGtZlidx3YPZBodLd9f1ns3wnZQ6nU1PTur+cXTeua5p8Plel394Hs/1LPPPq0Lly6Ec9vb0Y331jQ7Ny9Jmp6a0ebGtq5dvaSlJ8JKPFMTo/qLv/grvfjyi5qcnooOmFVgjN747dc1Nh5W+xmfGle73UmOU6thdfPDT3S4u63Tp09LkprtQK12Q6OTUxrb3JUknTlj9dKXX9PPf/yWbt+8E441OqrTZ2b18ssvS5LmTy+o193X4tKSJibDSj9Xnh5Vs9XQqaV56TBs0XProw/0y7fe1sTMtF74cljFZ2JyPDln8dkMnLPcvwL814YrLn6SbW10lIoiVtEt66xq4s5HJv+ZqbAJdxlbcqtnxypbtqqy4zY1f0qzZ8LWbh/89Ls67O7p/PPf1Gh07ZSN6Tu2yWdReRTfsTHuzVywjILAeZ6ll09GKWxT5FbEyVTt8lROCp9wmTo5Nl7YRouWnGQbtaeKt55tcWWi1lvGWcHdjvzVf+LnnJFNVTRKzzNs1zVMJZuyFlDGmEpj5edjZEx8zmxqvOz46Zsh38LwOPtR1r7ts6wuBAAAAAAAAAAAAPw6OxFhnHSzkvxLZet5GRm/ZPa91C3dVvyC1NPax5VqI9V/l1o4Xrxsr9crncOg+flelPpe2JaOW/BCNfti3hhpanZS/9P/8j/rnTffkSSNjE3qwqUL+sbv/54k6d/97/9WX/mt39I/+uY3NDIWBmju3f5UjUZDq8uPdHcsbNfUGh3R9//hB/r2X39bn94OQykbm+taWVnV1NSM7t0Nwz6n5ua0svxIU1H7KSPp4Y339eDhA3Wa4ViHQVe/9bWva6zT0pVrYRup1UePdLC1p4nJUVkThlfsxIiCVkNrq6vh2AtzeuGVF/X+jQ81MhIGJeauzuilV1/W8v1HSRmoZrul2x9+qJHRCS2cDltQ9dRTd/9QsofhvIKWHt5blhToyUvno8+a+t7ffU+/dfG8pvfDOXzv776vzsiYpmfn9JMf/lyS9Af/5e9pdm5auzthK66rVy7qpz/5qSYmjO5H7cDOnz+th/ceqNUMdOf27XC/9w/1wuuv6dTpeQXNOKiRDzDE59C9F9zfK6kSdCu57ofdXlkA4LOQPUZFgT3fPI2VLr3whiRpYv4J3froQz314qsKAucA2fyzyffcymzMM4Pq+yDP8y+7L8aYY4QtbCYAk0lfDTOSzYc+TCrNZXK/J3Pw9jBMP8fcZFj+OXf8a23guRywTjxP6+5PMrd+C68674ujzhMAAAAAAAAAAADA8Z2QMI7JveN1f01V8nBeSCcv1J2FD3tdNRqN3GD997k2qRDibiTOPCSVPEy/EkkSbrHRcs6y1tp+ZRqFYZx4+1UrfWT3K/uZv4pEccWDok351mkEDb36+kt69UsvKV7ZGulf/qv/QZI0OTGlVqOjRqultdV1SdL9+8va3NrWwd6u3tsLK8R0Rka0vbWr8fExGRNeVlPT89o/2Nfq2roajXBWyx++r6XFJZmossTa2rqazZbOXbige59+KklqNsd0+amL6jSNRuOwT6ul5dU1vf3jn+t+FF45d/WS5mc72tvZkCStrqzosNfVrY9uantrU5LUbrc1MTquC69c0P7+niSp2z1QT1J7dER37t6XJM3OTqhhmtrZDvcnMA2Nz0xoaem01tdWJEkzc3O6eOG8lu/c1+Vr1yRJL73yiu58/IlefGNJl69dkSQtnZnXvfuP9Nf/8a8lSW985VX9s//2T/Th+x+o1WmHczjsavneHe3u7uva81+I1ltUo9XKX5sDAlq+0EW8nNSvWGJM+NJ/UJWa5Pt4fV8ITflrMHsP+ebiE88/FXhwthP+6967mf08wn2W/J6pECNvcMUoiK7fxXPnNX/2rIKg0a8qEz0TkspAVcMNNvxP6llXEs7JXQe+52Yu6JGWXDueqkrJMrb/Q5JHtNG2THqd1PZK5+y5Nk2/Qkx/sOz58Fz76nnnXSZXTawgyPQ4gynhNn1fuFWueo9t+wAAAAAAAAAAAAA+OycijOMzqAaDW4XCDSXkgjjhN/08TR2FB7ITc17sNoKGbK+4YkX+hXpacVuZ4jHcdeP5FVXP8bVwCV+Mp+c0cyps6fQv/tV/p1++dV13PvlEFy6EVWpOP3FWk+/PaWt9VdsbYUDHrq9qpDOiK+eu6cLFcLnXX/+ybn58U7s7u9qNQju3P7mthhpaXw8DNL2e0c1PPtHM2pi2t8KwzPlLpzQzNa7x8REFzZYkaWN5W+sP7+rNX95QoxOe44cPbmtv/Y6mpibCOey9oNnTl3S419XN929JksYnxvTCSy9oYmpMQTNcb393TxeuXNbu7r5u3fhQktQKAr337nVtrq1JksZGJxWYQIEO1e2Ft4lpBLr63FNae7iiZjMME3VGmrr6zFVdfuqSVle3JUmHB4dqNpr6+je+Kkm6dPWyTLOtg32rpgmP1w///hc6e+GivvyPvqz2aCc67vFVn74qgqgdUdl5zwZaUuc6G2DzVMXJVoyposq1WnWc7LaTiEpcBUhHv3er7lscqhu0XBCknzFGJh1SqSHPUaWyS5W5Fo4fB7SqzsNmAopV15OJLr9BwZdsFZ6+/vM9/r2w+JdnXL+qQRxf8K14fsOf+Lg9l1thbZgqUlXmNmi8gZXWAAAAAAAAAAAAAAwtGLwIAAAAAAAAAAAAAAAAgCpObGUct7WU81HyYRD0c0S9uMpDYFJVaqxTVWNQCQi3PVW8bhC14km1YrHpcZOqHu48oyomxpljUWsgt5pN8pnTqsXbIiiu1lBWiCFTEaGo0kH2WGXb2LQ7bT39xWfUbLf13ltvS5Iunj+jxje+rp2dXX1yK6xA0+31dPXqk/rn//JfaHZ+VpLUUKCLV8+rJ6tOZ1SS9PbPfqG///++p+WVR5KkZrOlhflTGhtr6Ysvh22eXn7tVc2cmtX1t9/V7k7YbuqtH/9UpxaX9E//x/9eM/NzkqTDvT394sc/1vU3fyRJeudn39fYB9f1ytf/SCsrYYWbTz+9q5sffaSXv/RiUtHEBA2tPlzV/sGhzp8/L0nqtDtqNttqt8IqNafmZ7TUWtLqyoouXnlCUnidtVttbe/uan09nNdT1y5rpNORDnvqhEV81Gw21WgEml9cCn8PAt146+e6e/uOLly8IEn6+u//vhafOK1mq1namsjXos13PrMVPLzrRG2Nstezy1orBWG1qeS7guvQ3a5vrOPI3lfx9T5MdZZYfD/6qmZl98s9F0VVRbKVduL7xVcYZVBVnqKqJqXVUEz0fS/fLqpKy674uVa0noynVZKJmoRZIzfDmdqEr0WWDaJKYZ4hU1lQG203Xq+/vnMVJK2e+uNHx91peVVW+cV77gZUgSm676pWwsmuU16VJ9+yrUjZtVlljnVX+QEAAAAAAAAAAADQd2LCOMm7VTeUkg2KKN0BxvfisEpbDlmnDc6QrPrtgtxAkK9tVtmcHjff9spe1GZfOLsvh9vthp55/inNL8xIkr7z19/R+Nqqnn/+WX3rv/pjSdLO3o7mFxY00mnr777zd5Kk3/nGV3Xm3JIePnioyckwjPPlr7yuy1ev6Ec/+rEk6eG9h/rut/9GU1NP6OqVJyVJrUZPP/3Pf68b71xXazRc7w//9J/ryctPqjPSUS+a297Org57XV146mlJ0trDe/ruX/2lPv7whl7/6tckSc9+8Tm1Wg11xtpafbgS7ZLR9taOOmOjakTtppqtQM88d03dgwNJ0i/fua75xbYOJC2vhOudOXNaB/sH2trc0/LK+5Kkl199UesbW9rc2tLFaP77+wfa3t7WJ7duSJJu32rowsXz+tJX39Dk7HT/eJeEAHwv7Ae9KPdde1Wl18uHGax3ucGO0v7K5/NYf9A95G0JVjJWUQjjqHPLBgCldJgo6n809Nh1cp8j7nWV3e98czbfGJ7fPUnLYZ61VY79oDZOg87hoFCke/2E/+QDOWV/04b92+ILJB11LAAAAAAAAAAAAAB+JyKMYwLrvAQMwxFhnYO4XI2zbEkgIX4pmntR2ctXy6ny4tdX8WPQu8qjvtgsqmLhCzPERSDKKpwMeplbOpfUslGFEiPNL81Lkr7133xLH394S7/48c+1srwqSVo4s6CHD+5remZGV5+6KklqNFva3t3R9OysDvcPo/G6Ms2uvvyV1yRJ/9v/+m+0tbmqq5e/ojOLU5KktdVHOrAN/Rd/8i2dvXhOkjQ2PpocgyD6d3R8VFeeeSo5KYeHz+jZV17S3/y/f6l/93/8mSTpm7/3TZmgqcPulK7/4rok6cKVy3rwYEVj47tqtcNbYHNlXffv3deZM2E1m2tPX5UCo8npGcUFVfb2d7W/d6gnr1zQ5va2JOng8EDSoVaXN/TWz34qSdra3tClK1f08hvhPp594gm1RjpJVQ/3uFY5B/E1fZRqGfH6qd8HDZMpTiJjBl/4A+ZSFspxq7RUCUeUzT/+zr03GibwVtQZFKKIj3nqPtNw1Ueq8I4Xz8tTucbdx+QZ2UtXuonn76tqFK6XH9ddr2ifrHq5ZStxKtfIFl3PFbsmWqcyTzyOzVQmMvlze9Tn4aCKM1XvTWOC6GTY5MCHc3fGUlAaFi0KoGY/y861vBoPAAAAAAAAAAAAgLqdiDCO5L5QjD+otnx6XVsYRqjS0sOnrPXPoOBDt9uVJG97HHd8yV/xp+h3Z2Vn3Xyzo0H7WPR92eeS1Gq1dOXaJT156aJWl8OqMQ/vPtLbP/2xHo5MJdVm2o2GRscntLPzSKYRrjs5OamJsXF98uFHkqRnLp9XW1/RU889raULYQunp185pen5U1IQJPtUdDm4FWZa7bZOLS7oj//0n+l7f/tdSdJf/ce/1NzcvK5evaqZubC91e72jqZnJtVqtnXrg9vhXDttTY7PaGN9S5LUaR/o4GBPW1tbSS5ib3dX62vr6na72tvdkSQtLz/SyOioJiYm9Mobr0qSzl++qPHJCSmqnGRM/9z0QykFO+RRVglnmO+rBieqBHqOqmwubtClru2527Ul4w6z3aJwRl0tfowxheG8YeZUpEoVnyqfV6sGU31HjlIlyBtKUfr+Os75qDKn4cdP13gbprJOlYpnua0N2SKtypgAAAAAAAAAAAAAylUsRQAAAAAAAAAAAAAAAABgkBNTGSdmgrg1VL/tiK9KxLBVFKq0o6nyXbZljVG+coGvPcowc61alSCut+IbOVvpY9hKB7lWX55tN1tGc4thtZm5hVldvPaktre2tbmyLkna393Xg3t3tbO9o92okky709HCwoKWnjgrSbr01FX94eyfaHR8XEHjeNkwa61MtI2v//4/liQ9/8qLevvNX+ijmx/p3p27kqRmo6lmq6lOp6Odnb1w3V5PQRDo8GA7WebwcF8HB7s6e/6iJGl9fV2dVluXn76m8anzkqQ3Fhd0amFBndGRpBJOkDnX7jVSd4WZKgZV3fC1sQrbOuWrNrnLSMXt1eLtDlNlJT5/4QfF45aN523H46mSUrn6lPKtnKruk3cZZzOB+m2w3MpgxrPNKvPyVdTxjRVWIOqlB7Gee8/9zNioW5mvSkv8HHKWz1YO6hmnck1PxthwvYJjW7mKU9LNy22DFY591MpnvmUGT8LkWnHFFXBMdFjCrmG9/Orqhi2spP4xd9tuGcl/F1bnO65UvwEAAAAAAAAAAAAenxMXxonlWspkXzLHL+9NurWN+3u/bZWvTZA5clDFx/dCt6w9Vd2Kwg11tCDxtuWRMuEJo85IW+1OS7OnppPlLveupN4jW9lUa6nwPBTPr8rL+dTyzpwlaX5xQV//vW+oa7taW16TJK2trGltdVW7OztqNMNb4LDb1fypeU1NjEqSxsanZIJAJuhpdGIy2k5PxhoFzUZ//oWzys/5KG14jqPKeXbvo+y6w7ZKqrr9ojZPVcbL3u/umHXM7XGy1kruc6dn+6GnJHlYEH46ynUTba8O4fEqb4fmfu17tiY/x6EeG/1SsL2jtlkbFLz0bSM7xyoBnXRrRRsGgpxDUfQ3J3vtBUE/xGRl+yHLZA72mFGc6h5XmzgAAAAAAAAAAADgN82JCOO4LyeT6gqm/woyDH3kKzd4q2B4QilG4Ytvd52yoEDp9zbzUjkz13Dl4vkVcatXpKrvJC96Tep7m1nHnXNZRRJ3Xv4qF/4QSdE4vuOd/CwjBTaqD+F8Fg4a/ZsPXrlBol6vl3zmvrQeViNoaO7UKUnS3KlT/SCRycwnV5rFfa0ehPMsCJIMCofUWRVnUKigyncDx3Iqc+SugaqVSwpCYt5l3SHj4E2mElXdyq7fKssfZ3txxaTUdVgQu/AeR+NcrgXTigNAyQYVPzey57hK9RcP0w8SxZtKR0c86yVjDXesfc+oftGYzDPLU4GmypjDBH7Sz9vclnIVbQqvHWv6S1knsNj/6NjqCDIBAAAAAAAAAAAAqO54fYEAAAAAAAAAAAAAAAAAJE5EZZx0a6n4037Lj8otijJVPpJxbX6MbDWQ7M/Zlji+ZZ3RUoUZTOFyR2T71SaKqgFV3d5x2lZVbeuVXc67tLNMYNKZsHi9Xq83cFu+772tjLnkf1QAACAASURBVHKFXXJ9zwq2YPzXiqfdWdG8itrTVFFWdadKO69BlS6KxgpbiZXP66hjV51b7njZ4vZydVYdKnPU81hhwwMX8R7P+LuyoeOlPM/B/pr5SjK9Xi+zfHbd+P7uz8LmSnYVXfvHO1/J9S7f/PzPbp9sW0Pf997tptqNxVtV6Xn03aPZ7l91XNO0mgIAAAAAAAAAAAA+fycijJNibNKWqv9ON3rp6fxXMpl2KBHbb+lkTfSy1XnRbNyuQ1G7lEHtltwOLdYdP5maTeYaf1f2EncQX8uq+LNkHGcZXyDEFyY6aoggbIdT/cVu9oXyUQI1VdeNl3PHeSxhCfkDKFVCKVWWKeILCxz3Jfug68JG13TZYazabspkwhjeMJhnd+L71GaXSy0b34dW2cuz7B4q2mZVRc8L7771e9ZFM+7fSanrwtserX/fee8p3zOm4LmVWsb2xy+7rYMg23LKo8KBfFz3Yzy2Vbzb8f2RPra+gMugz7Lb8IU8k1ZZJv7LZFLnK7yETS6c5AZw4gBPUZu+eH8yPcYAAAAAAAAAAAAAnHAnLoxjrVuhIf2SNHxh6Xzmew/sVJGxkvOSM/vyOV9BpKzKjvtZKozjbDf8xx+8qBpKyc0jma2bCKpWQWHYijd1KKo4VLZ8UVglCIJK1VfKwj91BFh818Uw49YRRjhOoGfQWN5rvWBd3/mtFDDzbC85LkXH0w3OOd+VHc9Bx6m/rvHeq2WhvKJlyuSeFba/U7l9lWRNHMLJb6/KflsVn5d+VSc3szMggFK6TaXCOMZEz7+y8XzzSdYf/vru2Z6swn6LSRGsTHCxbJtHCQr6wnFxSLO/uHH+FrlP8YLQVlk4zsbHpvhcuT8PW8Esux4AAAAAAAAAAACA4zsRYZxMpw7nU9/PQ45dR1WG7BBuvmfIl5j917IlnPHjV7Cpo2H9L7yPI127IT2HqoZtkXSUMX9VfdYvu48alJEqnvqj3lapiyseq+JgVbdpU/9EmxhcCWZYj6NNVjiwM/ek6ooT4lGYgTFuhZuCcTI/VOYGH/NjpB6Ayp9P4z3O2fCKd7pOQMvdUulc5QZWfPM9rlxJptT4tqdclaIiw/w9qvS3wjH8NXiEhzwAAAAAAAAAAACASoLPewIAAAAAAAAAAAAAAADAr4uTURnH9tt7mOT/pe+2oeo3nkr/v/89LWQ8xQGOUrMi1cKj10s+s9kBk/Yy6W0VtU6K90TGyNh0tYhkm3GbEVkFClvFxO1r4o1YJUUzcoqqL5S2ysp2B3L239ioAkZcrWKINk1VW1W5yxrPdqqqsryvHdhQ1Y2O2BbmqOK5lp1X39yy88t+7vveV13EV2HGOLdndnTfdRnfH94WQvFYQbp1lWfS/g1m5iVZWXcsW9AOzRacM2czuXooBddM0blJ5uV7VnmunaSNUfIMCCdh3So42X5Myt9D2e/j/RmKNZnyLDY6kc72nZOdqk6Tmka11lA288wPN1vegi/dvi9+bjjP2QHbHXwOTWaf448zlYKsPFs8Omsy19oR/oqVPz+N0n8si58vAAAAAAAAAAAAAIZ3IsI46VZPyZtnJ8CSWnTIocMXxgWvdJNtloVU0mEF532xp+VO/NLc+6LdxE2nlHt5a2XDF/Hu8vK/IM6GCuKgRlmgZNg2SekXwcUhj2Ff4FZdZ5ixB71Q94V8fI7aSiq7zewYZftRdZu+41F1rr7gVFl4pGxcXzglt7++ZTPZBeO552zP5jdwRFWOa5XjUXVbg7ZRFNoqDqqUNCmyVsYEkgrWLdnt/HE5Squigu3E2R3bcwJD1Ud0no5u9i8V0DrO5eG7h0rDKs7sjhVUqSXjkv6bGO5L+E3/qJQ9d/Ln2dpe6uujPM8BAAAAAAAAAAAA+J2IMI5J3uIqKkdhMt+HX1tvrYpiqaozuc/TL/694QCTrvZgbXH5A281kILqONG3YSWQZPtxcMitLlFQCcXGh2m4iiyloYEBQ/iCC1UqtVRdp/pL8vJ1q4RWBoVjsuumX4AXhzzKtlNUSahKZaHsdo8TGjLGpAuexNkwTz7DPRTZ6yOpdJNd113GWS9T8CT6MK7+YvvbyGRQBl2XuW26hVJKKscUnQdrbX8+FZ81RefdZp4vw+iHUnwPlvA/6cImNvk32ZZR7nEVh17KK73kZtHnLGeUeT4qvk6tE6SpeAyjzeUCXO75jBI6w14Tyfqe54T/3LlVY+xQF2H2WRFtLfmsqvS90D8wRvkbr7+VzAlP3dz9ayL+a5q9JAniAAAAAAAAAAAAAPU5EWGcz5L/hWPmra/DH+RJf1847oCiE9nKBcZIPdt/kZ2pFZGs45tplSogdVakKdvvbODBbbEUt+MaFIgJgqBw/EFzKht3mO+GrUbjfxFfHAApDgPkq/gUt5IaLpxjS6717BzyjNJtiep5eZ/so2fMsmCM73gPCiwdJcTkbmtYvkpCVeYybL0af7jEpHKNRc+OIlV32a1gFhf/ygZRjiJ37Zt+WGbg88ez2VS7wJLqRMMqu49T8z+W9N8C71+x0gpN/XF8LbwAAAAAAAAAAAAA1Cv4vCcAAAAAAAAAAAAAAAAA/Lo4GZVxTG/wItG/6doAcZWE4auo+OZgTKaigU1nlXxVXcpaNSWdTvIFbqKPTaYNS/RZz1OlxToLKV2NYdhqNq7jtIfyjemrEhEfN9/4bkWPogoyw87B/axof3q98JqLK/AcZbtF61Xdn+NUbjly5Y2oaEhcacYGUTUmTymRpMWUMVFpDSNre8mX2evO1/LKKhw7rsbh61pk4koq7n70ko0n62W7BZVVC6pyTLzVkDytso4q19qrqIJKYPLrZNp7pY6b095O7veZ6jjGSrZnM+cjHjPeQHzS+veB955xWx05o4XPTHd//Idt2NZqvvsn7NZUfl8ny5sBz7Z4f41NXXb9FoblVbRS114QrWONZx+t8/fN5G6ASs9ua5Ljn6oGFR9/Ffz9dPYxWcYahRncgn205HMBAAAAAAAAAACAOpyMMI7HoDYzw7QZMUVpGN+yqTY3/lYtZS1Jks8qba18Dr5tVA3eVJENjRxnfkXfDWq7VNe+FM2haP/cEI5rmLZU2e+rhIkGtdepGljIbneYoEMuTFBwn3lDFRXH748x3P7krp/M6tb6m+z49ue4rZKOclzLFB3nYVpRDdp2+nr3bG/IbWVDX0Xt3OLRi54pR7muj9PeyRfESd8z1eZRvr/HV/YMjrcTBwez64X/Kjmpx//bUN9+AQAAAAAAAAAAAL/pTkQYJ1cVQwqrPPR/Ufyi0HlVO7AiTvxyMqzO4f++aP1w3V606Xg7/mIC2SoOPc/r9WyowBiTqsIxqIpOXXIvpY1TkSdcoHhdZx/i4xDva7I/Hkd5Ee/7zhd2qVoRqEqoYJgX2UVhhaOM5Vt/2PV6srlz4KtC018p+sdTzUby3ZPW+V+5ILmW3M31718bbiA3T9/cc58VhITKqwwFSbhukHC7g++F3HrHCEEY61xPxh828gmcSilxdZ30M6WgTI1U+uxMKr2ES8SDKT+YSVeDSSosFT+PwxFt8sxJKv9En5ddl8lnmWvHWisj57kWhcBKq0cVVGPzVVgaXLlmuGoy2WdZfF1LSlVF8z3vvM8dNcLPek4yRwr30cqphqPoIPbC5aiCAwAAAAAAAAAAADw2JyKMU+kteWRQexJfxZxhKuO46/aDK3HVjihMMKBagrdtkeK2IsMHLtwATbLtIQMu8f64Yxhj1DtmZZphKsccZ/xBgauq49Q1t6O2iRq2eop7zuo6lkdZznftHHke4QDHropUFH6qUrmqbP3456AkBOELeJWN5ZtXkSrLGWOi8EXJ+qZ436sc+/Q11281VmWsbLWczJdhxtE3nBO4yVVLqnDsy+ZU9nn2uyrVtQZxw0dSP4hWx73syt6Tqbk+5nAnAAAAAAAAAAAAAD/+r/EAAAAAAAAAAAAAAABATU5EZZy4UoZUVGVBiv/v/dYa57Ow3YYxbtUOT5sRp03VMBUJ4ooIQdTSJB4+GcKa0k42/coPUSUIt0pEdh7O1LOtWVKtr0xq0dxc3d99+xPuR/94BdnlPFUgbFQRKEi1QInW1+DKNbnvjVtlw3jbAZVVo6hSnWXQMnVWpuj1emGLqAFVfNztDrNvhcs6uxDE/cbc7WTHii8c59j6Wll5WwRVrdZSsYKI25onsFHlJnd/4nslKK9I435XPK/qlZOstTJBv91R0fVZWf/BEx7+gqH6z4WCYbLFZZQ+hsk42bZONnuOzeBrNWpfZJyVrXoyRuGTNFnFpiYWnpv++tl5JRVibL7VmPs3IJplfl7xNnw1ejJttNzD4nsu2p7bDyv+3n3CpStS5dYbIH2dBs6I+Xsp1YotM0Z2/v7x5V/O14bKbSsWxPuo3IOgzucjAAAAAAAAAAAA8JvoRIRxJOc1amkIwXmRGLV8Sr9oTb83T9qcFPTq8LX3KH8JmY7BFL2iz45j5Lw8LRp/iHefVQImVQMhvvBHapzovzZcIbWMb51KLYEKvi9q7+P+HgT5F8y+bR/1ZXKVQE12udzL9QEtjap85g0QZM5V9jxmQxbeY2CVa5dWtWWRz7DjlI3tC5SVjTgocFX2fVFwKHcOTPVb0zteHFbLbCO7fPJZycZy921Qbb+SYIsTiClb3l0zve3y89sfpyDY4eZfKjAmffD7bZ+Gv+7i/XTnGI+fXr98P+NxfNsf9Fz2td46aou97HyKlvOPX7yPhHAAAAAAAAAAAACAepyIME4q6JEEaDIvn5Ov3Be+xvl5+DBA9oVqWTWZ7M/h73FURU7tHecFvOn/Hv6cfgmaq2IRL5IKrkQvWnu+HfDuVuG++MIf8edFL3RThzy7XmYOcRWfgUGW7JieF9RF4/j27aghEJ9cGKRiKGfY79zxq74Az16LyTmzkjXRNVYy3+R6HDhnkwrsDFXtRv6wRTZk4qsGkgpjqTi4dpTAgK8qlGepzBxtYRCnKMhT+F2q2pBNfs4+K7zrGRMFDTPhQd/2rfVW0UlWSOcJq987NgpGZRe3QWp/4g2mtqn0PV90nfium0GfFVWbkTLXU3Y/jfU8iPqf5Z6H8dytjSoE9TJhT888C0J67nyGqSY1aPz+/JwDbDMnXO6x6O8bIRwAAAAAAAAAAACgXp4+FgAAAAAAAAAAAAAAAACO4kRUxpFUWAUj/i4pupBUn4iLgPirhQy/+XwVg0pjRdUtcoUXslV3onIRRVUUov5B4VjOelXnW7bt+LOyfTpSZYSCtltuK5ZB2xvUKqjssypjDavKvIraQQ1bRWeYqjhZ+UofZRvub7/K8c62sYqXKd1+yfje9Wz6OvFt19fW57gG7ccwl1DReR90PWSruSTPB3cMxftdfQ7WUxWnaPmjMKmSN+6x8lRoKfxmwDaGvJeSaySzeFGFq/T+28xy7sz747jtsvrnxcraXvRZED0Kq+9tYZWrI7R9K6reFrZZs/kSZvGy6t932e1RKQcAAAAAAAAAAAA4nhMRxvG223A/97yoNEZOv5Nespj7UtvmeqrUq/9SXamtZgsOFb3YTLVbiV8uF7Tz6X/eX27Qi/fUXAcEe1JtU9zjZkwSEOp/HodwMsGG6DgkL3kL2k3ltlcQ7Oh2uwqCILVcWYClaoCqStin6AV3WUil7EV6lTBL2dy97bmcX912RmVy83cv4qJlfOGu5Ny7ARAbtczKj99fJr5+455J/e0ba1LXe3hO+qGUcNvVA0xB0J9j/54sC87Y9DLGxBtOzdPKKiiJmXjPrac1U9KCrux4x/9xQ18mv1x6HXf7Jv9MkYmOv5Tc7b4+Wbl+UJnQVlFrP3c1zzLp557/c3dfk0Vs/7v+dRj/13c/x3OIwjqVH5gmdX37JGOGG8vdd1WfU7kgXGqV/t6FY9n0uS04Z/3AW/y9fx6+c1lnyz8AAAAAAAAAAADgN9mJCOMM4n3hm4m/hMsp/e7UlL9QrUv6BeYQFQWcij9RiiUdCIleMocBmfw2k6ohqh5Cyc83/V08r5ww6RT+GE3Xu6tOlYqqVU3qrsIw6KVyURUK73U24LNhXmAPCuCUVaaoVEWnoFJRHXLhIuen4iBInnuLpirERIGTfmYnPq4mtWZxlZPyOfsvad99EG/LM+Hod6N8JZb89oYLNgwMp1UdKJ5fPKZvv2XTz53UcU4v2f/JOKEQlc41NZ2Sc2Qz3xct6auyk7s/yiaRVIYZ5u+AO77vZEvGDN/lcaiqX86fr/657B8N/3o2udbdynFllby8YVhCOQAAAAAAAAAAAMCx/EqEcUKZl6nG5N+TZ6u6OC8iP5+Xi/0qIkO9BjaZl+me98hHCbBUCXQkAYjHk+nIixNUngMUV8U5ySrX2giMbO/o12DV8+0GF3whhtoUZRuqbKxgXX+k7QSGApKKK/4gVSKbPIrvZefr+LvP6nbLK9vyEWeVLSZU4+jxYcwd7VSY0K2a4y6bLV+T/cEJNx5rlsdTGBsK00sV1o5+Mib3zK/6HKFNFQAAAAAAAAAAAHA8Jz/tAAAAAAAAAAAAAAAAAPyKOLGVcXJtkzztOGym9IG1Vtbk62sMap0zSJUmVP1qNu6ycRsQydp8uxDrzizT2qm/sXRVnVSVn+Qf//5VaYcSH0OT3b6v0Ien2oVNnabq1VuS7can1qTHL5rvIMdtGzVwnUx1E7ktf8rWi9bN7qOr7Pj5vgucdkTJdeXMs79/xvlvZl6Z81+0YK7FmTFK2qqllu+3Xgvvx4r7Y/KfpX/vt9+pXrVjQKuhCrL7Z2x872a2lNuf9P1u4uMW9K/PIDU/z/F1dsF6yueUtTVzP/e2z+r3Ays+NM7Ji3/KtnYLgiDVzKq/ncxYmapQZc+ZeOxsmzvrtCnztXFzZ+E9Gp6LMX2JGaf1VMENUfHSC4IgmaevglLhtR6tk6vyljzz3ZpRvvJS+So4VdsE+o45AAAAAAAAAAAAgKM5sWGctF4Y2pDSLyMrteAwsrbnDyIkS6j/VtZ5GW4Ut77qb8/djvG+lA+HCLMKZeGCAvHKyr9Id8epEiRxX+jGc4lf9Mb7059T5mW2O1dvCx4TZ4WGFh6b/ktvE7+4Tj7phwWyc60aQMiGR3zBJFfR8XS3Wbi9IB9oMEFmfEXtb2yvfA6etl1VXqb7wi1V1s9dSwPOp+9+q3JOfN8Ps152+SrjD1qvWsu24vWy10X2XnOTHnHro9Q9l87UpcfKZXuKr/UiZcGKfgiwvqDioAWGOd5F10nROPnlTWrj+Wdmtn9YvG58fx4/jJKEairMv+w7bxa1AvfZV3Y8fdf559PWEQAAAAAAAAAAAPj1cSLCOMZ52xgHQdIVYOJQSfpFZRAE+XE8v3e76gdcou+ylRTkCVyYzDqK5uS+hPeNZzzlT8qrfkSTsFYmyFfCKRyrygtTp2KKrypLPooTfZj5whfayAWR8sUbZGwm0BRVt+jPxfTDP+42S/ZtUDgmNSdPmKZKwKko5GXi+bnrJV8MmkyFYEyScOonNaq8zC/ap7JtpdY3/s8H8VX+cEMgZS/1U1WiBgQGjlKpo2heRXPwfVdWSSoXnMkGsrJDRlV2stVvcvs64GI6SsWoovV9lZG81ZIKuHFE3/JJiE6D79tBn2efvbltuJWgbPoRkjteqYeVu8M2Wd8dO7tPgxSFAL3LZp6XUvq4Dnuqy65pQjYAAAAAAAAAAADAZ+NEhHFsr5cK1sThnPRLxbgSS/4lrPt7alxPe5Bk/Iz4Za5vucHVH2zqBbq/bVQ814LKIOEGCzdRtp9VecMFvrFs5iV7hW3a6BiYuLJL/F9PoOk48/Udh6rhlLJQTlEVi6rzKlrOt52yOToLhv945u9bNxcY6FmZoB9uq6ostDLofiv7fNCxKAsQlH1eddvZcMSg7Q3cRia9ZmW9QYph5+oUxhpqvWEddf+Pch6KjnnV69LbZivzXWpengBb9e1Ecyt4TrufHSUg5t1mDeNU2g4AAAAAAAAAAACAz0wweBEAAAAAAAAAAAAAAAAAVZyIyjhy2hiFbYAyFTic5VKVQpSuUDCo8kn8WZX2He7yqZ/TK/X/cTrPJF2k3LFyFWky2086T9lcxRDf3Ky1qfYmRVLtZ+SpIuFbx518ZrvOYOmWRPIc83hBX+WabJeuAefkqFUoqrZqiffFd94HrZ9tz+OeS3cZawfXTClrDZS9rt3rPZmvSRbO3S++fTA2qnxU0qbKV1lmWFXOg7eqjad9krOTip4ClbZt3ZZE0b1c5R7KjmV8x9WZQmnlpJ7zPCnZdrpjW0G1osy9XfU5GF+Lqe0csThLlVZWuXVKKnQNus+LKhxlW9sNrmbmyaGmWlYNnsNRWWulILnhvMukz201vupuAAAAAAAAAAAAAD4fJyOMowEvkNV/KZ18FodAKrZeOs4LyoHrWml/f1+S1Gq3ZJQPdvTHKh8q127oMb9YrdpuxT3O7rGvaw51LBMvl53rUY7hMC106joOvu2XtV1yl4nbvLlLD9sOKF7ncV6DRftVeM96QgmP43iX6Xa7yfGtsu2yVluD1u+3hOuHQkrXibflWSQbMBs058d5XI/aSm4QN1RWFqisMsagz7Ljlq3je16mviudUW7g0rkMCsrVEWoEAAAAAAAAAAAAMJwTEcYZGRn7vKcAAAAiVNgBAAAAAAAAAAAAjs7TqwMAAAAAAAAAAAAAAADAURDGAQAAAAAAAAAAAAAAAGpCGAcAAAAAAAAAAAAAAACoCWEcAAAAAAAAAAAAAAAAoCaEcQAAAAAAAAAAAAAAAICaEMYBAAAAAAAAAAAAAAAAakIYBwAAAAAAAAAAAAAAAKgJYRwAAAAAAAAAAAAAAACgJoRxAAAAAAAAAAAAAAAAgJoQxgEAAAAAAAAAAAAAAABqQhgHAAAAAAAAAAAAAAAAqAlhHAAAAAAAAAAAAAAAAKAmhHEAAAAAAAAAAAAAAACAmhDGAQAAAAAAAAAAAAAAAGpCGAcAAAAAAAAAAAAAAACoCWEcAAAAAAAAAAAAAAAAoCaEcQAAAAAAAAAAAAAAAICaEMYBAAAAAAAAAAAAAAAAakIYBwAAAAAAAAAAAAAAAKgJYRwAAAAAAAAAAAAAAACgJoRxAAAAAAAAAAAAAAAAgJoQxgEAAAAAAAAAAAAAAABqQhgHAAAAAAAAAAAAAAAAqAlhHAAAAAAAAAAAAAAAAKAmhHEAAAAAAAAAAAAAAACAmhDGAQAAAAAAAAAAAAAAAGpCGAcAAAAAAAAAAAAAAACoCWEcAAAAAAAAAAAAAAAAoCaEcQAAAAAAAAAAAAAAAICaEMYBAAAAAAAAAAAAAAAAakIYBwAAAAAAAAAAAAAAAKgJYRwAAAAAAAAAAAAAAACgJoRxAAAAAAAAAAAAAAAAgJoQxgEAAAAAAAAAAAAAAABqQhgHAAAAAAAAAAAAAAAAqAlhHAAAAAAAAAAAAAAAAKAmhHEAAAAAAAAAAAAAAACAmhDGAQAAAAAAAAAAAAAAAGpCGAcAAAAAAAAAAAAAAACoCWEcAAAAAAAAAAAAAAAAoCaEcQAAAAAAAAAAAAAAAICaEMYBAAAAAAAAAAAAAAAAakIYBwAAAAAAAAAAAAAAAKgJYRwAAAAAAAAAAAAAAACgJoRxAAAAAAAAAAAAAAAAgJoQxgEAAAAAAAAAAAAAAABqQhgHAAAAAAAAAAAAAAAAqAlhHAAAAAAAAAAAAAAAAKAmhHEAAAAAAAAAAAAAAACAmhDGAQAAAAAAAAAAAAAAAGpCGAcAAAAAAAAAAAAAAACoCWEcAAAAAAAAAAAAAAAAoCaEcQAAAAAAAAAAAAAAAICaEMYBAAAAAAAAAAAAAAAAakIYBwAAAAAAAAAAAAAAAKgJYRwAAAAAAAAAAAAAAACgJoRxAAAAAAAAAAAAAAAAgJoQxgEAAAAAAAAAAAAAAABqQhgHAAAAAAAAAAAAAAAAqAlhHAAAAAAAAAAAAAAAAKAmhHEAAAAAAAAAAAAAAACAmhDGAQAAAAAAAAAAAAAAAGpCGAcAAAAAAAAAAAAAAACoCWEcAAAAAAAAAAAAAAAAoCaEcQAAAAAAAAAAAAAAAICaEMYBAAAAAAAAAAAAAAAAakIYBwAAAAAAAAAAAAAAAKgJYRwAAAAAAAAAAAAAAACgJoRxAAAAAAAAAAAAAAAAgJoQxgEAAAAAAAAAAAAAAABqQhgHAAAAAAAAAAAAAAAAqAlhHAAAAAAAAAAAAAAAAKAmhHEAAAAAAAAAAAAAAACAmhDGAQAAAAAAAAAAAAAAAGpCGAcAAAAAAAAAAAAAAACoCWEcAAAAAAAAAAAAAAAAoCaEcQAAAAAAAAAAAAAAAICaEMYBAAAAAAAAAAAAAAAAakIYBwAAAAAAAAAAAAAAAKgJYRwAAAAAAAAAAAAAAACgJoRxAAAAAAAAAAAAAAAAgJoQxgEAAAAAAAAAAAAAAABqQhgHAAAAAAAAAAAAAAAAqAlhHAAAAAAAAAAAAAAAAKAmxlr7ec8BAAAAAAAAAAAAAAAA+LVAZRwAAAAAAAAAAAAAAACgJoRxAAAAAAAAAAAAAAAAgJoQxgEAAAAAAAAAAAAAAABqQhgHAAAAAAAAAAAAAAAAqAlhHAAAAAAAAAAAAAAAAKAmhHEAAAAAAAAAAAAAAACAmhDGAQAAAAAAAAAAAAAAAGpCGAcAAAAAAAAAAAAAAACoCWEcAAAAAAAAAAAAAAAAoCaEcQAAAAAAAAAAAAAAAICaEMYBAAAAAAAAAAAAAAAAakIYBwAAAAAAAAAAAAAAAKgJYRwAAAAAAAAAAAAAAACgJoRxAAAAAAAAAAAAAAAAgJoQxgEAAAAAAAAAAAAAAABqQhgHAAAAAAAAAAAAAAAAqAlhHAAAAAAAAAAAAAAAAKAmhHEAAAAAAAAAAAAAAACAmhDGAQAAAAAAAAAAAAAAAGpCGAcAAAAAAAAACayvLAAAIABJREFUAAAAAACoCWEcAAAAAAAAAAAAAAAAoCaEcQAAAAAAAAAAAAAAAICaEMYBAAAAAAAAAAAAAAAAakIYBwAAAAAAAAAAAAAAAKgJYRwAAAAAAAAAAAAAAACgJoRxAAAAAAAAAAAAAAAAgJoQxgEAAAAAAAAAAAAAAABqQhgHAAAAAAAAAAAAAAAAqAlhHAAAAAAAAAAAAAAAAKAmhHEAAAAAAAAAAAAAAACAmhDGAQAAAAAAAAAAAAAAAGpCGAcAAAAAAAAAAAAAAACoCWEcAAAAAAAAAAAAAAAAoCaEcQAAAAAAAAAAAAAAAICaEMYBAAAAAAAAAAAAAAAAakIYBwAAAAAAAAAAAAAAAKgJYRwAAAD8/+zd7W0jy7WGUV5CUTAKJmF0BDfKGwFxk2AUDMP2j3GPORp9kNTbXbuq1gIODMyB55TYUvOjHu0CAAAAAAAgRIwDAAAAAAAAAAAhYhwAAAAAAAAAAAgR4wAAAAAAAAAAQIgYBwAAAAAAAAAAQsQ4AAAAAAAAAAAQIsYBAAAAAAAAAIAQMQ4AAAAAAAAAAISIcQAAAAAAAAAAIESMAwAAAAAAAAAAIWIcAAAAAAAAAAAIEeMAAAAAAAAAAECIGAcAAAAAAAAAAELEOAAAAAAAAAAAECLGAQAAAAAAAACAEDEOAAAAAAAAAACEiHEAAAAAAAAAACBEjAMAAAAAAAAAACFiHAAAAAAAAAAACBHjAAAAAAAAAABAiBgHAAAAAAAAAABCxDgAAAAAAAAAABAixgEAAAAAAAAAgBAxDgAAAAAAAAAAhIhxAAAAAAAAAAAgRIwDAAAAAAAAAAAhYhwAAAAAAAAAAAgR4wAAAAAAAAAAQIgYBwAAAAAAAAAAQsQ4AAAAAAAAAAAQIsYBAAAAAAAAAIAQMQ4AAAAAAAAAAISIcQAAAAAAAAAAIESMAwAAAAAAAAAAIWIcAAAAAAAAAAAIEeMAAAAAAAAAAECIGAcAAAAAAAAAAELEOAAAAAAAAAAAECLGAQAAAAAAAACAEDEOAAAAAAAAAACEiHEAAAAAAAAAACBEjAMAAAAAAAAAACFiHAAAAAAAAAAACBHjAAAAAAAAAABAiBgHAAAAAAAAAABCxDgAAAAAAAAAABAixgEAAAAAAAAAgBAxDgAAAAAAAAAAhIhxAAAAAAAAAAAgRIwDAAAAAAAAAAAhYhwAAAAAAAAAAAgR4wAAAAAAAAAAQIgYBwAAAAAAAAAAQsQ4AAAAAAAAAAAQIsYBAAAAAAAAAIAQMQ4AAAAAAAAAAISIcQAAAAAAAAAAIESMAwAAAAAAAAAAIWIcAAAAAAAAAAAIEeMAAAAAAAAAAECIGAcAAAAAAAAAAELEOAAAAAAAAAAAECLGAQAAAAAAAACAEDEOAAAAAAAAAACEiHEAAAAAAAAAACBEjAMAAAAAAAAAACFiHAAAAAAAAAAACBHjAAAAAAAAAABAiBgHAAAAAAAAAABCxDgAAAAAAAAAABAixgEAAAAAAAAAgJC31gs4HA6Hfxz/91+t1wAA/PL///y//2m9hpl5XQQAdXhd1J7XRgBQh9dGAACPMxkHAAAAAAAAAABCxDgAAAAAAAAAABAixgEAAAAAAAAAgBAxDgAAAAAAAAAAhIhxAAAAAAAAAAAgRIwDAAAAAAAAAAAhYhwAAAAAAAAAAAgR4wAAAAAAAAAAQIgYBwAAAAAAAAAAQsQ4AAAAAAAAAAAQIsYBAAAAAAAAAIAQMQ4AAAAAAAAAAISIcQAAAAAAAAAAIESMAwAAAAAAAAAAIWIcAAAAAAAAAAAIEeMAAAAAAAAAAECIGAcAAAAAAAAAAELEOAAAAAAAAAAAECLGAQAAAAAAAACAEDEOAAAAAAAAAACEiHEAAAAAAAAAACBEjAMAAAAAAAAAACFiHAAAAAAAAAAACBHjAAAAAAAAAABAiBgHAAAAAAAAAABCxDgAAAAAAAAAABAixgEAAAAAAAAAgBAxDgAAAAAAAAAAhIhxAAAAAAAAAAAgRIwDAAAAAAAAAAAhYhwAAAAAAAAAAAgR4wAAAAAAAAAAQIgYBwAAAAAAAAAAQsQ4AAAAAAAAAAAQIsYBAAAAAAAAAIAQMQ4AAAAAAAAAAISIcQAAAAAAAAAAIESMAwAAAAAAAAAAIWIcAAAAAAAAAAAIEeMAAAAAAAAAAECIGAcAAAAAAAAAAELEOAAAAAAAAAAAECLGAQAAAAAAAACAEDEOAAAAAAAAAACEiHEAAAAAAAAAACBEjAMAAAAAAAAAACFiHAAAAAAAAAAACBHjAAAAAAAAAABAiBgHAAAAAAAAAABCxDgAAAAAAAAAABAixgEAAAAAAAAAgBAxDgAAAAAAAAAAhIhxAAAAAAAAAAAgRIwDAAAAAAAAAAAhYhwAAAAAAAAAAAgR4wAAAAAAAAAAQIgYBwAAAAAAAAAAQsQ4AAAAAAAAAAAQIsYBAAAAAAAAAIAQMQ4AAAAAAAAAAISIcQAAAAAAAAAAIESMAwAAAAAAAAAAIWIcAAAAAAAAAAAIEeMAAAAAAAAAAECIGAcAAAAAAAAAAELEOAAAAAAAAAAAECLGAQAAAAAAAACAEDEOAAAAAAAAAACEiHEAAAAAAAAAACBEjAMAAAAAAAAAACFiHAAAAAAAAAAACBHjAAAAAAAAAABAiBgHAAAAAAAAAABCxDgAAAAAAAAAABAixgEAAAAAAAAAgBAxDgAAAAAAAAAAhIhxAAAAAAAAAAAgRIwDAAAAAAAAAAAhYhwAAAAAAAAAAAgR4wAAAAAAAAAAQIgYBwAAAAAAAAAAQsQ4AAAAAAAAAAAQIsYBAAAAAAAAAIAQMQ4AAAAAAAAAAISIcQAAAAAAAAAAIESMAwAAAAAAAAAAIWIcAAAAAAAAAAAIEeMAAAAAAAAAAECIGAcAAAAAAAAAAELEOAAAAAAAAAAAECLGAQAAAAAAAACAEDEOAAAAAAAAAACEiHEAAAAAAAAAACBEjAMAAAAAAAAAACFiHAAAAAAAAAAACBHjAAAAAAAAAABAiBgHAAAAAAAAAABCxDgAAAAAAAAAABAixgEAAAAAAAAAgBAxDgAAAAAAAAAAhIhxAAAAAAAAAAAgRIwDAAAAAAAAAAAhYhwAAAAAAAAAAAgR4wAAAAAAAAAAQIgYBwAAAAAAAAAAQsQ4AAAAAAAAAAAQIsYBAAAAAAAAAIAQMQ4AAAAAAAAAAISIcQAAAAAAAAAAIESMAwAAAAAAAAAAIWIcAAAAAAAAAAAIEeMAAAAAAAAAAECIGAcAAAAAAAAAAELEOAAAAAAAAAAAECLGAQAAAAAAAACAEDEOAAAAAAAAAACEiHEAAAAAAAAAACBEjAMAAAAAAAAAACFiHAAAAAAAAAAACBHjAAAAAAAAAABAiBgHAAAAAAAAAABCxDgAAAAAAAAAABAixgEAAAAAAAAAgBAxDgAAAAAAAAAAhIhxAAAAAAAAAAAgRIwDAAAAAAAAAAAhYhwAAAAAAAAAAAgR4wAAAAAAAAAAQIgYBwAAAAAAAAAAQsQ4AAAAAAAAAAAQIsYBAAAAAAAAAIAQMQ4AAAAAAAAAAISIcQAAAAAAAAAAIESMAwAAAAAAAAAAIWIcAAAAAAAAAAAIEeMAAAAAAAAAAECIGAcAAAAAAAAAAELEOAAAAAAAAAAAECLGAQAAAAAAAACAEDEOAAAAAAAAAACEiHEAAAAAAAAAACBEjAMAAAAAAAAAACFiHAAAAAAAAAAACBHjAAAAAAAAAABAiBgHAAAAAAAAAABCxDgAAAAAAAAAABAixgEAAAAAAAAAgBAxDgAAAAAAAAAAhIhxAAAAAAAAAAAgRIwDAAAAAAAAAAAhYhwAAAAAAAAAAAgR4wAAAAAAAAAAQIgYBwAAAACgqMvt2noJAAAAPEmMAwAAAAAAAAAAIWIcAAAAAICiltO59RIAAAB4khgHAAAAAKAIx1IBAAD0T4wDAAAAAFDA5XY1CQcAAGAAb60XAAAAAAAwq/tJOEIcAACAMZiMAwAAAAAAAAAAISbjAAAAAAA0sE7FMREHAABgLCbjAAAAAADsTIgDAAAwLpNxAAAAAAB2skY4AAAAjMtkHAAAAAAAAAAACDEZBwAAAABgYx9NxHFEFQAAwJjEOAAAAAAAG/nsWCohDgAAwLjEOAAAAPCFzzZRH2WzFWBepuEAAADMSYwDAAAA7/w0wAEAIQ4AAMC8jq0XAAAAAAAAAAAAozAZBwAAAP5ji4k4r/6dpicA9MdkNQAAAA4HMQ4AAACU2Ty9D3Du1yTMAajvu+cS93IAAIB5iHEAAACYUvUA5977P7ehC1DLV88p7tkAAADzEeMAAAAwnUohzitrMTUHoI4qzykAAADUcWy9AAAAAAAAAAAAGIXJOAAAAExltAkGpuQAtPHI84n7MgAAwJxMxgEAAGAalUKcV4+o+srldi31NQKMyr0WAACAr5iMAwAAwPCqbZpuPSlh/XpNZADIeub5xD0YAABgXmIcAAAAaGCPQEiUA5Dx7D3bfRcAAGBujqkCAAAAAAAAAIAQMQ4AAAAMrtoxXQA9efZoKlNxAAAAEOMAAAAwtEohyrpJ22JNlR4HgF64dwIAAPCKt9YLAAAAAPZxuV1NbAD4xqsBjvsrAAAAK5NxAAAAAAAAAAAgRIwDAADAsCodL1JlYsLldi31uABUYioOAAAACY6pAgAAgJ1UimAcWQXwyyv3ZvdPAAAAviLGAQAAYDiVopfKBDnA7B59vnCvBAAA4BliHAAAANiYTVyAWr6LcNy3AQAA+Ilj6wUAAAAAAAAAAMAoTMYBAABgKFWPqKq8LhMggBl8dh92DwQAACBNjAMAAACTWzeobUgDIxLhAAAAsDcxDgAAAMOoOn2mJyblACMQ4AAAANCSGAcAAIAhCHFes5zOvx+7+/+1YQ305qvnAfc0AAAA9nRsvQAAAAAAAAAAABiFyTgAAAAwoXVKhIlCQO8cSQUAAEA1YhwAAAC6Vj0mqbYZfL+erx679d9VWz/AR/cu9yoAAAAqEeMAAADAJB4NcQAqEd8AAADQGzEOAAAATGA5nV8KcC63q01vYHeOngIAAKBnx9YLAAAAAAAAAACAUZiMAwAAQLcctfSYn06SMB0H2INpOAAAAIxCjAMAAAAbaxUN3W9g/3QN6//fpjiQ9NW9yf0GAACAXolxAAAAYHDJGMiUHCDBFBwAAABGJsYBAACAAS2n82YTeQQ5wCtMwQEAAGAWx9YLAAAAAAAAAACAUZiMAwAAABvaajrNV0yYACpxJBUAAACzMRkHAAAABrR1BNQiMgL689G9YjmdhTgAAAAMzWQcAAAAACDmswAHAAAAZmEyDgAAAAAAAAAAhJiMAwAAAINYJ0/sdYTU+t8x8QJYmYoDAAAAYhxoygdUAAAAQO98vgEAAAB/EuNAMfcfYPngCgAAeNRyOu82Eee9y+3q/QtMSogDAAAAfxPjQGFGvgMAwOdahScVec8A7O2ze7D7EQAAABwOx9YLAAAAAAAAAACAUZiMAx1wdBUAAPAdk4KAPTiWCgAAAL4nxoHO+NALAACEJ/e8HwD24jMJAAAAeIxjqmAANiIAAGBuFd4TVFgDkHe5XX//854QBwAAAD5mMg4MwlFWAAAwl/V1vwgG2IoABwAAAF5jMg4AAAAAAAAAAISYjAMDMiUHAIBRmQLzi9f5wNZMxQEAAIDXiXFgcMIcAAAYi+OpgK0JcQAAAOBnxDgwkcvt6sMzAAC6JT75L48FsAURDgAAAGSIcWAyJuUAAEC/ltNZiANsQogDAAAAOcfWCwAAAAAAAAAAgFGIcaCh1r9h5jdqAQCgD8vpXH4qTuv3N0CWn2kAAAB4nWOqYHLvP8z3YRsAABVVjlC2Vj3CAfrnHgMAAABZJuNAY+tvuFbhAzgAAKqZ+TVqLyFOpfc0wHM+usf4mQYAAICfEeMAAAAAAAAAAECIY6qAv1xuV78FBwAAjfUwFcf7BuhX9fsLAAAA9EyMAwAAAAVV3ygX4kC/Pru/+LkGAACADDEOAAAAJVWPUWa2btjfXyOb+NAH91YAAADYnhgHiuhhBD0AADCv+9jmo/cu65+JcqAunzsAAADAPo6tFwAAAAAAAAAAAKMwGQcAAAD40ndTce6ZkAP1PDIRx88sAAAA5IhxAAAAKGndGHasShvvN+afvQ6X29XmPhTgHgoAAAD7E+MAAAAAh8Ph48kYP9nIF+QAAAAAMCMxDgAAAEzqs1DGJA0Yg59lRuEIRAAAoDfH1gsAAAAAAAAAAIBRmIwDAABASfcTHZbT2YSHDXhMAeiBiTgAAEBvTMaBQnywAAAAn/N6GQAAAADogck4wF9scgAAUM06weX+taqpLgAAAABARWIc4A9CHAAAKnt/dNX7PwPAfZFxXW5Xn10BAABdcEwVAAAAAAAAAACEmIwDAABAlz46uur9vwMAAAAA2JsYB/jNmF8AACp59Bgq4Q0AzMFnVwAAQC/EOIAPMgAAKElkAwAAAAD06Nh6AQAAAAAAAAAAMAoxDkzOVBwAAAAYy3I6e7/PsEzOAwAAeiDGgYn5YA4AgKpstAEAAAAAvXprvQBgfyIcAAAAAHrkcy0AAKAHJuPAZHxgAQBAdabijMP7D+iHey8AAADkiHEAAAAAAAAAACBEjAMT8VupAAD0wOtWAAAAAKBnYhyYhA0NAAAAAEZwuV0drQYAAJT21noBwHYEOAAAAACMxmdeAABAdSbjQGce/bDBhxIAAPTM61mAn3MvBQAAgDbEOAAAAAAAAAAAEOKYKihmOZ1/n3n96m+w+c03AABGsL6uXV8f0xfvSwAAAACYlRgHirnfaLjcrk9tQPiwGwCAEYlyAAAAAICeiHGguEc3HIQ4AACM7v41rzAHgJnc/8IWAAAA9R1bLwD406MfrCyn8x//AADATLwGBnjMM/fLy+0qdizINfmcxwYAAKhKjAMAAAAAAAAAACGOqYKCvhq/7zeAAQDgl+V09hvxBXnPApDx/jnOUVV/83gAAABViXGgOB8qAADA5wQ5AIzos+c2v7QFAADQB8dUAQAA0LXldLYZCfAJwWJ/nrlmri8AAEBNYhwAAAAAAAAAAAgR4wAAADAEE3La8/gD/IxJNwAAAGN4a70AAAAASLoPQmxqAjN79R54uV3FdTvyXAUAADAeMQ4AAADDWjeTbXRuz8Y91OGe1w/XCgAAYExiHAAAAIb3PhSx+QmMyv2tPtcIAABgfMfWCwAAAAAAAAAAgFGIcQAAAJiOI5WyPJ5Qg4krtV1u102u0VZ/bw9m/boBAID6HFMFAADAlBxd9XMiHKgjfQ+73K5+xgM8twAAAMxJjAMAAACHP8MSm6ffs0kPNbhf1eS6bGt9fD0XAQAAVYlxAAAA4J2PNvdsrP6XzU+owX2pltbXo+o0oy3CmYpfJwAAwL1j6wUAAAAAAAAAAMAoTMYBAACABzjG6hfTCKCGme9D1bgWX/O8AQAAzEiMAwAAAE96v7E4+kasjVSoYe97TdVjj6qoeO93zQAAAGoQ4wAAAMAPrRufFTdmX2UzF2oZ6f4yAtcDAACAr4hxAAAAIKTXKEd4A3X1dj+ZQfVrsq7PvR0AAKCdY+sFAAAAAAAAAADAKEzGAQAAgAmZmAB1VZ+8MjPXBgAAgEeIcQAAACBsOZ1LbtgKcKCuiveMw8GRR6uq1wcAAICaHFMFAAAAE5h9Ix2qutyuQg824fsKAACgHZNxAAAAYHBCHKhDINEf1wwAAIBnmYwDAAAAAAAAAAAhYhwAAADYwHI6N59IU2ENwBhMhwEAAIDHiXEAAAAAAD7Qe4TU+/oBAAB6JcYBAACAAZmIAwAAAABtiHEAAAAAAAAAACBEjAMAAACDMRUH2IIjj/rkugEAAOzvrfUCAAAAgJ8T4EAfltNZHMHu1u85zxUAAAD7EOMAAABAx2ysAnuaJeoQTAEAAPATYhwAAADoyOgb4ABs53K7eh4BAADYwbH1AgAAAAAAAAAAYBRiHAAAAOiEaQYwhuV07v7n2TFO/XLtAAAAtifGAQAAgA0lNtxH2LgH6MUMscoMXyMAAEBLYhwAAAAoTIQD4+r951vQ0bfL7eoaAgAAbESMAwAAABt7ZcPdNByA/c0Yp8z4NQMAAGxNjAMAAAAAAAAAACFvrRcAAAAAM7ifcvPZFAKTcGA+y+nc9WSSy+3q3jWA9XvQtQQAAMgQ4wAAAMDObHYCIxkl5Og5ikq5fwx6v54AAAAtOaYKAAAAABoaJXoQs4zF9QQAAHidyTgAAAAA0Nga5PQeQPR4bFXvj/mWPnpseru+AAAALZiMAwAAAAAAAAAAISbjAAAAAAAxPU3HMRXnee8fs16uNQAAwJ7EOAAAAABQxHI6DxGI3H8NVWONER7nCsQ5AAAAf3NMFQAAAACwmcvtWi58qbaekXhsAQAAxDgAAAAAAAAAABDjmCoAAAAAKGSUo6req3B01YiPa0UVrjUAAEBLYhwAAAAAYFfvo5itgw0RTjuX21WQAwAATEeMAwAAAADFrPHCLBHJFnHOLI9dDwQ5AADAbMQ4AAAAAFDUqEdWfeeVY45mfJx6sl4fUQ4AADCDY+sFAAAAAAAAAADAKEzGAQAAAADKMvFmLI6sAgAAZmAyDgAAAAAUJlxgNAIrAABgdGIcAAAAAAAAAAAIEeMAAAAAQHGm4zAa03EAAICRiXEAAAAAAAAAACBEjAMAAAAAAAAAACFiHAAAAADowHI6O66KoVxuV8dVAQAAQxLjAAAAAADQjCAHAAAYjRgHAAAAAAAAAABCxDgAAAAAAAAAABAixgEAAACAjiync+slAAAAAF8Q4wAAAAAAAAAAQIgYBwAAAAAAAAAAQsQ4AAAAAAAAAAAQIsYBAAAAAKCZ5XRuvQQAAIAoMQ4AAAAAdEa8wAiW09n3MgAAMCQxDgAAAAAAuxLhAAAAIxPjAAAAAECHxAz0yvcuAAAwOjEOAAAAAAAAAACEvLVeAAAAAAAAYzMNBwAAmInJOAAAAADQqeV0FjlQnu9RAABgNibjAAAAAEDnltP5cLldWy8DfhPgAAAAMzMZBwAAAAAGIH6gCt+LAADA7MQ4AAAAAAAAAAAQIsYBAAAAgEGYSEJLy+nsexAAAOBwOLy1XgAAAAAAkLPGEJfbtfFKmIUABwAA4E8m4wAAAADAgAQSbM0kHAAAgI+ZjAMAAAAAg1pOZxNyiBLfAAAAfM9kHAAAAAAAAAAACDEZBwAAAAAGtk4yMSGHnzARBwAA4HFiHAAAAACYgCOreJYABwAA4DWOqQIAAACASYgreMRyOvteAQAA+AExDgAAAAAAAAAAhDimCgAAAAAm4rgqPmISDgAAQI4YBwAAAAAms4YXopx5iW8AAAC2I8YBAAAAgEmZkjMXAQ4AAMA+xDgAAAAAMDFBztgEOAAAAPs7tl4AAAAAAAAAAACMQowDAAAAAJMzPWU8y+nsugIAADTimCoAAAAA4I9ww7FVfRLfAAAA1CDGAQAAAAD+sJzOgpxOCHAAAADqcUwVAAAAAPAXkUdtjqECAACoS4wDAAAAAAAAAAAhjqkCAAAAAD50P3nFsVXtmYQDAADQB5NxAAAAAIBvCUHacSQVAABAX0zGAQAAAAAeYlLOfsQ3AAAA/RLjAAAAAABPW2MRUU6WCAcAAKB/jqkCAAAAAAAAAIAQk3EAAAAAgJdVOLrqu2ky1af3mIYDAAAwFjEOAAAAABCxnM67hC/PxitVj9QS4QAAAIxJjAMAAAAAxKQn5SSDlQpRjgAHAABgfGIcAAAAAGATz8Yve4Uq6Sjns79PeAMAADCnY+sFAAAAAAAAAADAKEzGAQAAAAA2VXVCTHpdVb9OAAAA9mUyDgAAAAAAAAAAhIhxAAAAAAAAAAAgRIwDAAAAAAAAAAAhYhwAAAAAgH+3cwckAMAADMO4f9G7icLhJAomoAwAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIgq7+KIAAADSUlEQVSIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAiBgHAAAAAAAAAAAiYhwAAAAAAAAAAIiIcQAAAAAAAAAAICLGAQAAAAAAAACAyNn2egMAAAAAAAAAAHzBMw4AAAAAAAAAAETEOAAAAAAAAAAAEBHjAAAAAAAAAABARIwDAAAAAAAAAAARMQ4AAAAAAAAAAETEOAAAAAAAAAAAEBHjAAAAAAAAAABARIwDAAAAAAAAAAARMQ4AAAAAAAAAAETEOAAAAAAAAAAAEBHjAAAAAAAAAABARIwDAAAAAAAAAAARMQ4AAAAAAAAAAETEOAAAAAAAAAAAEBHjAAAAAAAAAABARIwDAAAAAAAAAAARMQ4AAAAAAAAAAETEOAAAAAAAAAAAEBHjAAAAAAAAAABARIwDAAAAAAAAAAARMQ4AAAAAAAAAAETEOAAAAAAAAAAAEBHjAAAAAAAAAABA5ALjFTsElru+VAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(\n", - " dataset, config, image_id_list[0], use_mini_mask=False)\n", - "\n", - "log(\"image\", image)\n", - "log(\"image_meta\", image_meta)\n", - "log(\"class_ids\", class_ids)\n", - "log(\"bbox\", bbox)\n", - "log(\"mask\", mask)\n", - "\n", - "display_images([image]+[mask[:,:,i] for i in range(min(mask.shape[-1], 7))])" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "original image shape: (1824, 2636, 3)\n", - "image shape: (384, 384, 3) min: 0.00000 max: 254.00000\n", - "image_meta shape: (17,) min: 0.00000 max: 2636.00000\n", - "class_ids shape: (5,) min: 1.00000 max: 8.00000\n", - "bbox shape: (5, 4) min: 27.00000 max: 360.00000\n", - "mask shape: (384, 384, 5) min: 0.00000 max: 255.00000\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Asfandyar\\AppData\\Roaming\\Python\\Python35\\site-packages\\scipy\\ndimage\\interpolation.py:616: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.\n", - " \"the returned array has changed.\", UserWarning)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACOMAAARZCAYAAACCU1YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3elz49iZ7/kfwF2kqF2pPfel9tXldrd9p7vj9vRE3HkzMTF/5byaNxPT0dEzt93LtV1lu5xVlbVkunJPpTJTu8SdwLw4JAWCAAFSUKWq/P1E+KYEHpxzcABCFfc8/TyW67oCAAAAAAAAAAAAAAAAcHr2654AAAAAAAAAAAAAAAAA8FNBMA4AAAAAAAAAAAAAAACQEIJxAAAAAAAAAAAAAAAAgIQQjAMAAAAAAAAAAAAAAAAkhGAcAAAAAAAAAAAAAAAAICEE4wAAAAAAAAAAAAAAAAAJIRgHAAAAAAAAAAAAAAAASAjBOAAAAAAAAAAAAAAAAEBCCMYBAAAAAAAAAAAAAAAAEkIwDgAAAAAAAAAAAAAAAJCQ9OuegCRZluW+7jkAAADDdV3rdc/hL9k/2P8H/10EAMA58c/O/8l/F71m/LcRAADnB/9t9Hrx30UAAJwfcf67iMw4AAAAAAAAAAAAAAAAQEIIxgEAAAAAAAAAAAAAAAASQjAOAAAAAAAAAAAAAAAAkBCCcQAAAAAAAAAAAAAAAICEEIwDAAAAAAAAAAAAAAAAJIRgHAAAAAAAAAAAAAAAACAhBOMAAAAAAAAAAAAAAAAACSEYBwAAAAAAAAAAAAAAAEgIwTgAAAAAAAAAAAAAAABAQgjGAQAAAAAAAAAAAAAAABJCMA4AAAAAAAAAAAAAAACQEIJxAAAAAAAAAAAAAAAAgIQQjAMAAAAAAAAAAAAAAAAkhGAcAAAAAAAAAAAAAAAAICEE4wAAAAAAAAAAAAAAAAAJIRgHAAAAAAAAAAAAAAAASAjBOAAAAAAAAAAAAAAAAEBCCMYBAAAAAAAAAAAAAAAAEkIwDgAAAAAAAAAAAAAAAJAQgnEAAAAAAAAAAAAAAACAhBCMAwAAAAAAAAAAAAAAACSEYBwAAAAAAAAAAAAAAAAgIQTjAAAAAAAAAAAAAAAAAAkhGAcAAAAAAAAAAAAAAABICME4AAAAAAAAAAAAAAAAQEIIxgEAAAAAAAAAAAAAAAASQjAOAAAAAAAAAAAAAAAAkBCCcQAAAAAAAAAAAAAAAICEEIwDAAAAAAAAAAAAAAAAJIRgHAAAAAAAAAAAAAAAACAhBOMAAAAAAAAAAAAAAAAACSEYBwAAAAAAAAAAAAAAAEgIwTgAAAAAAAAAAAAAAABAQgjGAQAAAAAAAAAAAAAAABJCMA4AAAAAAAAAAAAAAACQEIJxAAAAAAAAAAAAAAAAgIQQjAMAAAAAAAAAAAAAAAAkhGAcAAAAAAAAAAAAAAAAICEE4wAAAAAAAAAAAAAAAAAJIRgHAAAAAAAAAAAAAAAASAjBOAAAAAAAAAAAAAAAAEBCCMYBAAAAAAAAAAAAAAAAEkIwDgAAAAAAAAAAAAAAAJAQgnEAAAAAAAAAAAAAAACAhBCMAwAAAAAAAAAAAAAAACSEYBwAAAAAAAAAAAAAAAAgIQTjAAAAAAAAAAAAAAAAAAkhGAcAAAAAAAAAAAAAAABICME4AAAAAAAAAAAAAAAAQEIIxgEAAAAAAAAAAAAAAAASQjAOAAAAAAAAAAAAAAAAkBCCcQAAAAAAAAAAAAAAAICEEIwDAAAAAAAAAAAAAAAAJIRgHAAAAAAAAAAAAAAAACAhBOMAAAAAAAAAAAAAAAAACSEYBwAAAAAAAAAAAAAAAEgIwTgAAAAAAAAAAAAAAABAQgjGAQAAAAAAAAAAAAAAABJCMA4AAAAAAAAAAAAAAACQEIJxAAAAAAAAAAAAAAAAgIQQjAMAAAAAAAAAAAAAAAAkhGAcAAAAAAAAAAAAAAAAICEE4wAAAAAAAAAAAAAAAAAJIRgHAAAAAAAAAAAAAAAASAjBOAAAAAAAAAAAAAAAAEBCCMYBAAAAAAAAAAAAAAAAEkIwDgAAAAAAAAAAAAAAAJAQgnEAAAAAAAAAAAAAAACAhBCMAwAAAAAAAAAAAAAAACSEYBwAAAAAAAAAAAAAAAAgIQTjAAAAAAAAAAAAAAAAAAkhGAcAAAAAAAAAAAAAAABICME4AAAAAAAAAAAAAAAAQELSr3sCktRoNAKPW5YlSXJdd+CzoGOjcTv/kySr87/gMbrz8M8raB7B83ICej8ZvTuDqOO9/n3zkesOzNHttO0etzzHvcKO97WxLNNXwGfd87pjBbbxrMnAPE99H4Nm5O0zPN7MP5ewflzX6rX3z9eyum2Svo4hM+tM24ozpH1yjd72rvfSneCOvG1ijfUaBT1XvWOW55vunnwelxvw/Qp6FqLOiRqj22/YOL37Lsu8AnzDu64rK2X32juOI9u2B9p4x+m/ryfPsmXZA9cw8K4b4Tl0Q5Yizrl9c/D1Y7nB8xr8nloDY4WteVxBcwn7zD+XYXrv24B2vctyLfO55US/X107pC/PebbbadttN96aAAAAAAAAAAAAADDORTBO2Iavd7M0aHO122bYhnFS8wqaR9yxTIhKMvPqXXfM9gNrOMbG86jBUFHBAONufp/G2BvurqvuxnT/5v3oz8HwMcaf449lzLPkD0joeyeEtIsrKpAh7jnjtA8PtDABOY7jSJJs2wRc9IWh2YOBaFFBRN5xw967vWdHllx53ikB/cYdL6nzvOcn0SbsvND7EvC98reNegd6359S+H0M+nlwXlb/PfP97BlVtmVLnbHckAA9AAAAAAAAAAAAAPGci2CcuJuTcbJRhBnMshM/08WwDD1xxnZD8t5YMdqEH+mbYODnVuez3vlBQQVh5wW06WsbkJ3H/HNyL1Op1BllNQqeX2dikdl5ei39m9QBHVuW3UscY1mW5HYySHRbW65cKyzDR9zN/sHne1hWmpPfw+6U95Ab+OlJH8HZTsbxugKtguYheYINXFeuBgMYHLmep8UdO14u6P0QFsATlRkq8POQc1xrMBDDf51B5wVmmulLKBV8PUHn933bQmJyuhmzTh654ECfvrl2gnxcub4Orf7H3pLU7b/7lTzFveyN77ssy7sm5sWq7hujl22pM5fuOeY6fP0Gfkfs4ECmXi+2JFeW5XkUPPM46Vx9T7T33oQF73gvuO/cc/A9BgAAAAAAAAAAAH7MzkUwzihZDILaDtt8HlZiyrvpHJYJovt50PlxNyxPsqtE7RDHy6ATJzjIP7/Thr9EZR86TXaisACFqICG8HGig45iPHGeZ65/rn3ZkSL7iRrtNAEswwO4/If9AQbdz8Oe+7jP2Y9J6Pc3wUsMzz4yTmcaeHyCg2nivTfiBiyOdu9H+xbEaW3JMtcW0bgvULAzgOV2gni6fZ0yy07gmFFzC475DMm2Nthw4Nn0xz72hc50jrlWL/Ds5Fjc98vwIDEAAAAAAAAAAAAAoxmsfwEAAAAAAAAAAAAAAABgLOciM440/v8lvj/TRTfLjb9NXzaTGNkCvH2FZX2JytLTP4/kMg3Ey58zmsQyeZxTQTlk/M/EsBI/nUaBpb7CRwj7Paz7Ue/q8Cwn/ud3hCQqod0HPf+jfrd+KEElvwYSliTwRRqlfF1U1pmBY9bJP4GjDM3OEvxMD2SKibEGvbWMVVJweJks/8/hnYUc7KtaFTKXiJdk+CxDphF0H7vlqdQpGeXNyBNaSs7Xt+sGT7VTEs8/48Hn6WQEy+qfq7ckY2Q2M3XnQUYcAAAAAAAAAAAAIAnnIhgnaoN6tHJQpzOsrNWwoJ7hc3QVtDPshrQJCozpC/Xofu7rxz+Dvj3rwDE9n/tKWvWXSQk+KzDwaGATOVrg9Q4pLTMQbBXR/8A9VXBQQdh4vVaW1SlR45mnG7T6ru/fk/7jPstWrCWMX9JMkqesTcz743nOhq3XsHUcVkIuqk0cYe+NwOfXdU8CcyxLlns25Xii+hxpTG+wRURTy/KVZ1L3u+j5bvrP6S3NYKBZ8LtYvf6CLyPBckedQJWTsQNWIChgzOqfR1AQkGvpJHol6P0zLJAn6JpMFMzJN6wbRBUQaTMQ4Om9yT1O9A13JUu2593rSnJk2f3XHue7Ztu+6zof8XQAAAAAAAAAAADAj9a5CMaRorNLRGdjGDQswMffbpxN46BglLhjxu13HH2BMaftQyfrE2dep8naM3LmjGHz8NyH2HOPaNPNntP5zZzj+9z0ExxsEqf/pLLKxF2/wbkF58YI+o6EzXWc72rQZ3HWIk5/ff2MubyO40iSbDu4st+49y7oPP97Je66uAqbQ3+Q27C5BP3cf+7ge+EsnCpTV0jam8C5Wt4gtbMx7P7GaT/0M7f/uzv4zrdirOHJM/ZTz5AGAAAAAAAAAAAA/FCCd5YBAAAAAAAAAAAAAAAAjOzcZcYZVtYmbmYRf3YafwaHuGOMlg2k+5PT7c3XwlZYuaqBviI+96/VQPEh3/FhfQ8rsuQZUHa3RJOC16C7VmElx4JKZp3WsGfCf9+CsmIM3O+wgXxt4mRiGiWzxLBnP2g9T5u1wrIsOb3SRf0leay+YlaDz37UusYtS3VWGVWi5uIvPxSnVJnjOGq325LCM+NEXdM4WYS8/Yb23z3f6vTlDCvX1fnHdXulmYZ9p+OWiRtHEhnEQvuWpIASZN41tIIqQ8Xt/5RTjpPpzf93qHvce8yUJXM8J1pyHfUuzLLM3xtX7eh3htspd0VCHAAAAAAAAAAAACAR5yYYJ06AgeM4fWV1ogIBojY0o+YQFHgQvmndbRvUJrkdzqEBGQmUp+qKFaQSMq+wn73tTiNOUMpZjNfX99DnaLT+4wbXjBvs09W3mW/3l0I6TYmlqGAi72dhZcOSfk6SLPl1GomVnAvoKzBQK+DcsOC5sLHCAoC677mTMce7llHeC1Hl3rxlvMLe/0F9DDsvSUmULwua5yhl6ML+jp0cPwnAszxtAAAAAAAAAAAAAIzvXATjRGWV8Ge86R7z/tvtJ2zD0v9zVCaIuBuo3g3Nk2OWb8PZs5Ed1k/UcU8mi7DsNuME4USdEfR5735423Uz54Ssefe4pej7HSXOvUkkCKc7nu+Ymf+puz/pc8hzFzeQIq7euX2piga/M/4MU2GBC2HfMe943vPD2kZl3Rn1muNkeomTFafbLpPJ9LUbzLY10vSGCsvi5J1P79/ufbG787FOMhr15uT2/rEsS25/xE7v46Dgxd7j4nbfPOM/+3HuyahZorptg57RXnhkN1OMG/1MJfW3oT/b1MCnfZ+7sZ4dy/xd6Z3U6bkvTY/b97v372b/3ylb/UnarIEsWAAAAAAAAAAAAABO51wE40QJC7CJW6LI2zYoiCeqv6i+fJ8G9NO38zmW17ZVGpEFpq+pXuM8f0B/iVkjwgKoxsnWMayPOMfPg/5rDQqRe01ifAnjZBULlsx1DssW80MF2r3OZ2uskd2+f2SCc9y+IDBXrifwMywznNWNKAweppddbZxJAgAAAAAAAAAAAOiyX/cEAAAAAAAAAAAAAAAAgJ+Kc5EZJ6iElD97w0AJkoDSN97z/f0GOckc4Hoy5ow234BPB/o5KfEy5DzXjV3rplsOaiC7Qy+rQXApl1EMlJjyZ9NwXV+lo+ByRJF9R7Q76wwW465Rfwmr6HQkQdfyOjLsxCkPdZbj/VDiPodx3xXxxgsvb9Rd56BnYJzvZtiz5DruwDR8r4WREnWdxe07zXfaf+1RJb3MgJLc0d47SQoqqeX9fZCZcNDfPO/Ptm2rc2G981zX8Yzb6ykwSw4AAAAAAAAAAACAs3MugnG8gktrDG4+jxpEEB2YI8UpwxK+ge/6/vX249k87is0MtB5fw+WZTZTXXegbd869V/EqYJwBubVDbqJKlHkmXdQmRTvOVH34ocIwhk29sCxzr/996M7v+6/zsB5XkkEvQxb11HaBLWP+mzYPRnnusbpqzuHUa9xmDhzj7538UorhX0fTqO3Ft45dEsa+R9RyzIfOW7g9zms7/5O+loM+aw75NkGe8UZ03IHnx0pOMAzTjm2Ubie07rvjr7jA91anQ8tyXJO5un2N+zN2fF0Yvnuh2vut+XJf2f+zA25H30RWwAAAAAAAAAAAADGdS6DcYIyrAzbKPVzHKfXV9Q4nd4VFojjD2wJn4M3y07kFAPn4x/ztMFGQdcfllkiarO53W4rlUr12vq3bJPMOvE6MzdErc1pAgv8gSRRmZ2Cfg9r45//aQOagjLohBknu0ycgLGorCdxA4TC2owbGObPcpPEMx32XIwSVDXsOkeZV5LBM2cRiDNqn0EBXGFBOWF/Z0b5PoTOW4N/YYLGs0IDnwbfH0Fz7Z4f9G4O7jvonRLnigAAAAAAAAAAAACEOXfBOGEbrVFZDbrH4paBGcz6EG8jO2oOlpUaei3RW7jWyWaqq5PsCP5m3mAAM/DJR51gpL6yVxFBN3GCcqyTxnKt/m1duxtE5ekjbvDUsI3yH9Jps6QMW8Oozf1RxzurNQq7B8O+l6d1FpmQ4vYXp3RYWKBbUsFy/uuPEywXNrbjzbzlWoGZUEzilW72lOg+/eOezKW7BuMFqiRx37sJY6whU48KbvSvfWSAliVT+slTpK7b/1hBOt7zOll8XNeVZZ8csyy3c5EnfxsGgsJ65ahOgkxNG/9YdmBwkcnA0/3dFgAAAAAAAAAAAIDxseMGAAAAAAAAAAAAAAAAJORcZMYZNcuE9zyvONk8xsle4C8bM2yuSWTR0EARqOj5WZbVl/3GX+rL8rUPm99AuZLOMds+yabQax+jVFIcw9onUR7mtKKyBpk1S25up8kYEpS5qSsoE8uwkld+UVl64pTeispUNeqzM07JoqB5jXreafivcdicRnkOzHey70DfGyR4bU1+l9NmahqYh2/MqL7iXGffc+Yfy41+dsLGG/t+ds/zZAIb18kcPH1FTGtg3r7hT5NVq91uR7YBAAAAAAAAAAAAEO5cBOMECStL5f086LNhgSbDzgtrFzfAxz+mdxynWzYqwkk/ncCYIXu7rjmh71xv84FApZOGgeN652jb/QmTAqfh24g+bdGkUYIvht3DoDZhx043R++48YMTxhtrPHFKakmmvI3nl6Fr51/7Yd897zziGje4JiogKLL/bkUgK7jk0ajzGqVk2bD+R31uh5Zr6txpW1bfuyZk5G6PsccO7KXvnRYetBLnOrtBOK5nzt7rjVuGaljbOPxr3AuC8o4T0n3QO73/mfUEVLne75rvxMD5u77KhAFtuhNzpWH39nUEPQIAAAAAAAAAAAA/JeciGCcowCIsqCYqk8IoQRhnteHYned4/Ydtjge1TE4qlTJ9jrBJ7bruQFCO17gZj+JyHGcg8Kk7btBczsbZXd8w46xtaMCHt19PuzjBEcP6HXbOeeH6nl//7JLK2jVu+yTX6/U8qUb/dZwE5ozeUUgcyhBBf0/Ot5BAqJiXECu7VUDmnVEzFQEAAAAAAAAAAAAIdy6CceKIk6Fm2LlRm4vjlvMY1vdZbwCPVswqOb2SVv0Hx846cZqsI6ctDTOsXE1Y1pUky1F5x0naaZ+/qO9cnOf+rDf1g+Y4VqCS07kXdpLz9Yc5hbSKyPYU5zmJ9Vz2kqKcz8CUON+/uJE4sfpKkhudYSr01IFrCgsoDQ5iCso+NGyewX85CL4BAAAAAAAAAAAAkmRHNwEAAAAAAAAAAAAAAAAQx7nLjBOV0SJO9hV/5pSwslf+371tgvqPUyorbF6jZGJIMkdB1HoFfR6Wp8F/PCiDxw+dXyEoC0tQphH//fU+G95zw/r2/t7fT/Cc4tzvoGdz/Gwa47O8CT1C5nKazFFBfZ1lxpyx1qZ7jptk1qN4mYRO2sc7HrR+cTI8da/R9Rzr//5HZ0qJWtuwezt4Wvxnx//7ae7QaZ+7UZ5d13UHVtQKymzTd8gaeAYty+p8Sd2wk0w71+rr37WCnp3uTFzfF/9sSwoCAAAAAAAAAAAAf2nOTTBO3I3AOO2CNkv9QSfjbDwGBfXE6Svu5m1Y4EzQBnDcTeE4m+fjCgoASDrIwt/vsBJEw4KpRv39tHMdJVDFf2zUgJyg8YYFF0UFIZ0mSChq7LDfRwlsCzpn3LnGfZ+Mez+TNOz59l7zKAGLo4oK0PqpO1VZPGkgKinJ9+XJd3q888cp7wYAAAAAAAAAAAAg2LkJxhkmLPtJ9984m/LjBt8MCzgJy/oxwOn20/1fd4LOwFgm/4G3epgjRQRbxNl7DWvjRnze37g/mKM739MYNZBp/M1ix/PzyX2IzgXSL2zDOyqrUpA4QRNhY0Qdjwq8CQsCOMuMNWHGCcTxtxl33lH3IOh7Fyf7lWlzdmsZNI+gwLVh53v/dV0npKX/uR5+TYNjDr5hRgkktCyrLwlMQLKXwfPkmnO6bc84E1NX0Nz8x/wJbVy5JklNb36ejDWu7TtxtGxFvW6862dZAVmKzj5bFQAAAAAAAAAAAPCXxo5uAgAAAAAAAAAAAAAAACCOH0VmHG8WiDjlbbpGzaISNztG3BJHJ8etgZwG5rNkshHEzQ4U1DbsWJA4mVVGFbfsVJz7/LoyO/QyeCRU4iWpkln+clPNZlPZbLZvjLDMQ0lknfEaNQPNqIZlzxp3/mFrEOdee7NHefsbJSPMsHOGZecJu+5h2XRM1pU4WapO/5yHXZt/vU/93HmSzZwLZ/R6GiXDVlh2o8FMSedl0QAAAAAAAAAAAIAfp3MdjBO0IThuSZugc4ZtlA8L/hl9PLe3/+kp+hIaCBG4ZzskgKa3gXoyWq+fvrkGbLT6zwkdP2abUQ1by7AAi6Agg2j95VmSjtsJuo5ms9UbO5NJK2wFu3MJLDfV+SyqPI/ruqZHz4U5jqNqtarDvUNJ0vT0tJRx5VqWWq1WZ2xLqVRKjUZDkpS2bbmWJaftKJ1Omb41WoBLb6qd+A5vy+EBIacPBhglYOw0AQdxSuCN85yOOqeg9QobJ7rvoPP870g34Hkddl3xvmjDggTjlKbyj2m57rmIwfGXpRpbVL2rcfoZ0gclqwAAAAAAAAAAAIDTOdfBOHGd5f81f9CmZFgQTXgf0kB6BsvfJnpzP2peA595NridTrCG6z83ZraOcYQFLkVlCAnKKuL9bMzZJB6A0+s55DrT6e7Xy5I/80i9UlW77ahQnJBl9/fjOI62Hj+VJOULBc0szMlxXdXrdUlSLpcbWIdWs2kCFzpjWpbUqjV090+3VZyakSQtXFiU23bUqNdldQJtGq2W8hOF3uNYr9aUsm1Vq1WlO1l0LMtSqVRSo9GQ3TnPTqUGMu+0222l02nVqmaetm0pnbFl2yevmbD7N25mIf93f5RsOFFjJpHtaNR307jPd5KZmYaNcVZpZpL8rveC0rrPxCnmddbiXqNZ+eCsNqPr9kPADQAAAAAAAAAAAHBWznUwzrCN7LglX0YRt8zHeOP2b2SfxfyjJLZZ75rsKkHiBgV4gybiZhYJ6iNum9ex3v3DdQIDHEeSVDk+ViqVNmvpdtufrMXswrw5Ztu9z/L5fK83x3Fkdz6TTDBOKp1WyjPm93fvae3SRS0sL5uxbVtOoymn1VZhoiBJymSzkiWlOoE3tmXJsm2Vclm5rbYkqdFoyGm31W61lEqfvDLa7bYsy9Le3p4kqVAoKJVKa2/H/J7PZVWczMvKpoZntOoGeZhUTifLdc5jBX7wUj7e9QgYevyMOK/P6y4xdz6NVl9rIHvbYFHEsDM9J/kyX533Lx8AAAAAAAAAAABwztnRTQAAAAAAAAAAAAAAAADEce4y43gzmXj5j3mz5nR/HrVUyygZXLr9j1pOSpJcT0kQa8yiKf6zhiXJOMlu0P+zp8FJP921izFWr41lriLq+qNKAA07L06JqzgZb7xtAz8PPTN4XuO0NRVzOvPszGN6fjZ4Pp1nLNfJXBM2z1Qq1fd7oVjsH1/SytqqSuXJXhYjS5KdSSufKfXmcXJPO/1mMieddLLgpPM5WZJy6Ym+dUylUnJdV5OTk53mZk7Lq4uSpGajIcdx++5RtwxXq9Xq9WNLajcaypYmes+eaR6/lM5A6TjPr9YpEsMEZefyP1OnzTwTO2uTp81A7hPfGgfNM2iu0e/M8DdP97kej+u5xxEtA5qcvJMG538eMgEFzTke6+Rky/EctvoT2XTHUfDfwsFWAzP0/1HonEFGHAAAAAAAAAAAACAJ5yYYx7uBGlS6JG4po7gBOUHBPf7NzLBN3mEBHnE3guMEkJxmU9lS8FoMBC2MPUKwuGsf9HvQMzBqX91zz6LszbAAoah5jf/MjFaypneWbWlybkaWa8ntnuu6kiu1HafXnZ2y+8ppOW1Hrly5jivbE/DjOG21m21ZKbs3q3arpXq9bsptSXr5ckezs7NqNeqmb1sqlko6OjxUsVjqzMuWZMm2LaXTmc6YbVm5nCxZqlcOJUm1Wk25fFGZbK4zz5QJFPAG2Yx4j0cN1vOfO06/py3HFvQ+sqzOPXWD240SMHhWgStJBSqF9dvjhr/Lvb+f5t5HzSWq39O+i/reHUOGSvJvynkIaAIAAAAAAAAAAAB+zM5NMM6wIIVhmW9OE3gRFjAxbE5BojcuXfM/V3Jdz7V4Mh+EjdQLEhrSu/+zoVlnYhyPddUBgUthAUCjGrZxHOeenGbze5zMR4FBTwHtTJDLSU4P13VUqdR0eHAsSarVKlq+sKjd3X3VaiagxXEcXVheVCplq9EJcslkUrItW7ZlAmMOj45VniornUmp2Wqb81otua50sF/V55/fliRdv7ymvb0jfXfveznNpiTp1q3rWlxe1PPN55Kk8uSUSuUJOa2W2o65pnrD1fHhgdKyZXXeGNlMSi82tySnrWrdPMf/8i//n/7LL3+pzaebkqS1i6tqOY6WlmbkWllJUrVW1eLCgtLptsrTM5KkdCanaqWiyZkpZXNmgEy2oFajrXarJkmaKJUky1W77ajRMHPPZjNKp4NfYXGz4YwTNOJ/Lw3L5OQ/Z1TefnvXFJClZ+j53dPk60fR129ZJ5UMTZt4b4ro643/HbXlWed9jfJsAAAgAElEQVQY7V3zIjqZqusO3CP/z945J/IO65weFUDTm+/Jb72TA++t5X1/hGQEsnotOh/YJ4+M1Rmjr0vL817yzAMAkKh/evZ54PF/XHn/B54JAAAAAAAAAOCHcG6CcYLE2ewOy4LgNSxrQlg7/xyi5jmsVIq3RJHlyXQSp8RSUoEtvbkk0JfrulLQNWv8oANv/70xwsYes+9xypKFzeNkqoMb+E7T1cHBQS/IZmZ2WpXKoRoNR//+6/+UJN24dlXl8qRePn+hve09SdKdO1/q3Xfe1L27D1UqTUiSpmfK2l2+oFJ5Uq2mKe1UrdRUmp1RJmtKWdUO91SbmZJSKR0dmzGrh4fK53L64vYd/du//w9J0t/96m9055t7cmVpo1NK6mDruaxmU7svXkmS7m5/paWVZbluQ/NTppTWF18/kOu0NDGRVaFgstksry7Ldh0V8jk9e/pIkvTRe2/KaTa0sbFqrufLr7S4OKfZUkb37z+UJOXyaT2/f1/ZdEoXL1+UJJWmJrW/d6C97Um1HRP8cfv2HS0tLWl2wcxhaWVJmWxKExMF2RnTpt1uy3VdpdPpwcCwETMQhX0Pw/oKy0QzrP9xsz2dRZanuILm3G63Oz9Zsm174PNxAtqGnReUKS3o3DhZgOK8R0Z9x4SVMnPd6Hf8yDpjBE3x5G9f+N8xV+7AMWkwc9DrfOYA4LTCgl7Oq1HmS+AOAAAAAAAAAPx4DO6kAgAAAAAAAAAAAAAAABjLuc6M0+UtU9Xl9jIEDGY7CMtU4D8WNo6f4zi9z8PahM2h97n5tFdCpFfWKXQ28crfdHoNZfnanKYYSW/Nu/14rzHBEi+jlouJKnEWdz523/1R53a5ctxOzJrlmGwXbanZNCWjXm3tqjxZVL6YU71iSip9/tmfdOfLrzSRzUmSrl+7ooOjip4+fqI/3v5KkvT03mO9/947Wl1bVq5TliZ166ps19WFxWmtrS5IkvZ396VmQwc7L1TIm6w0taNDHR/ta3uvKklaXZyT3arJzk3oz/efSJIe3L2nm9cvq5y39b//b/9NkvT1l3f0wbs3VJqaUmHCZN75j//4rRbmp3X95huSpO+++04bqxeUymSVzqUkSW/euqQXm1uyMml99dWXkqRG09VMuSw309aVa2uSpOPDYz1++EwX10xmnGzGVctpKl/IambCZPVZXF/T48e7Oq7VlCubMlUHuy+1vbOr9ost3X/wQpJUqdZVPajo0f0HkqRieVJzU1NaXV/Twsq8JKkwkZMyabmplLpPcrPRUCaT67uvplRTvGxYcbLSRL0DgvqNegZHzfzkSn1fZssNyILV/Q70nRTYkzzf6t7v4dnIbM/Pw+cZXg4q7I3Uf95YGa18zXsjhfQ1LBvWaTJyBb6XYiScCXy+/Cd2L9IdvOcnWXBO2rp993mgc/X+Np2cFD1RADilH1sGm/Mg7pqRQQcAAAAAAAAAXr9zE4xzmtImw8pSJSEoGGik8/t+G7YpGjzuaQSN0rdZO0LpHMcfuNDfILF1jypHk1R//uNt11Wr1pQk1Sp1ua6UL2R1995Tc6x6pNmZOeXSKe2+MEEjr15ta3FpRbmMrWbNlIh6cOe2VubndOXaFUnS9svnytgZXbgwr//6d780x169UKWyr2ebjpYWTXDJ2sa6Hj15rq++vK31tf8qSUpnM7JTLeVzWVXrJigslcoqY9uqHW9Kkh4+PtTFixfV3D3WwnRZknQwU9bW9racxrGW8yVJptTT3sGuapVjpdIm0OavPn5T+Ymytra2JUnXrl1UeXpC1WpDd+/eN9f4Ykc3r2/IzhaVssx5//zP/6J/+Md/0PzKRVWOTWDS//3//L/64P0PlCmYYJj5hQXlcrYa1Zqs3HRn0dM6OKpocrKkzccmcChjp/Trf/1UP/vkLS3MmdJbtlXU9MyMJsvlznm2ZueXdbCzq720CQZ50aqqWJxQvlSUkzLHMqmMSiUplUnJts1c7ZStSqWiVrOpfCdAKp/Py7HOXzmeuCWvugWHrL5j0eclUTbJtkc7fzDASfLMPPK8JMqA+fsKWodxAviCxhhHZAkuWd0XdueY+cw/zf5+uj87fSWpggfpdna+vg8AfnwIsDkfou4DwToAAAAAAAAAcPbOTTBOV9xN0FE3TE+T7WCUTdYkMsOcNf/s4l5dnHU7q2sPyjg0LBPSqJyWoxebL7S9uSVJqh3VJMtSNmepVjeBHpubT3Vn54964+1bchxzrFywdPTqkXbqdRXy5uv01lvXZWcLyuRNYImsrDIpS61cVqUpEwyytDCpppOW0mnV6xVJUr1S1UTa1q033tafbn8nSbp0cUMvtl5odm5G04vrkqSXz57JTluanpk01912pHZduVxG1abJlnP1+jXtvHqhUmlBz56ZwKHZ6QnNz63o7r2natT2JUkTEzlNz82rXDZZd3L5ojKZjFKprGrHJgip2aipNFlQrlDW+x++K0laX19W2q0rbVvKp0zWm7/5+C1t7x6oUTcZb1ZXV9VoNvX1t4918+YlSVLGbmpuKqujypGcRt6sfSqta9fWdOXyRaU7QTXPnmxrsjyn2dmiJOlwf0d7Lzf16R9u6+effCxJSudsZaendbS7r61Nc422ndXq6gXVqhXtHZpMRZevX1LLdVSeKqtRb0iSstmMrFRqpMxQUU7z/IVl1BomrOVpv4Ojv1u95w7OZfCa+lKwnLlhAThR58SRRAhL0P33/mx3YnGG3pZuqrUY7+fzFoQG4MeDYJufhu59JCgHAAAAAAAAAM7OuQjGOe3GYNwSMKMKK380aiYe76d9eQtC5hXWPrSNL+NFYGkZ73newKQh8/CO1bfhbFmBG77dLEVJlXnx992bT6evZ8+eaXp6WsVisX+sGH10elKzYQJJNu9v6XBnV826+T2bzSiVsbS9+Uh2bkqSdHFjVXe++FKlyYwur1+UJN37+httXL2uycmCqlWTGWeyPKtara4n9x9Jku58fVdvvnFV9+9+LztnykMVMraOjyuanCrp6uUVSVK93tDTxw+1srah5SWTLafdaun44Fi1Sl7pTkaS+bkZKZVRrW4y0rTrx5qYyOrp1p5uf3FHkvT2rRvafbWlK1d/oULRBO0UJ/Jy5Wpne1eua9asVmupelxRsdPm/oOHujBT0vTsgi5dMvNaXp7T5osdOdrX4gUTaHNz5qK+u/dIlaNjtasmmGh+cVG11pamZ2fNeKWCXjx/pvWNOZUmzXXn8jktLadUqbSVSpnXz/RUUVOzE8rnU6pVzBpOTaW1+ey+ihOXO/ejoP29Q3388QcqFE1fk1Nl7e0cqHK8r5yJJZIjS/V6Ta3GkQrFbiDPgV5u7ajdamj14mrnzlvKF/KyOk+L47pKZdJKpVKJvS+CnvlWq6VUKjXQfqTgj6Dv+pDThwejhJ1odb7i3jmGvFvGymQVXl4pbK5hmX2GBep5jweVzPK3Hak0Vu/fbjmw4fOXBktodSYTeBsG5mh5Rx1sI8uVZfWXQuw7P+gc33zd3skB8wTwF4Fgm78s3vtNYA4AAAAAAAAAJMt+3RMAAAAAAAAAAAAAAAAAfirORWacOFkIgrIVxM1gEJUxoXs8TsaFUcqcDJtbEqWvRsk6E5YVYpwcIKMUmUmidI//WHf+s7Ozymaz4/QsyVKz3tK3t+9Jkj7/9A+6dWNN+XxJkvTo8UNdubKq+tG20m0zD3sio7/95QeS5Wpve1OSNDmZla2qLBWUz5myVLXKkZ5vbmtnd0eStLgwp3RuQh989K5ynfnuHxyofnyopZVl1Y5NaamWI22+eKWVi5d711WXrfWNDZXLZVUOdyVJGduWbVvK50zml7nVDblqy3n2SoW0WZvHD77R++++ob3dXf3+0z9JktY2ZrW2flUrq8uaLM92xmxrf+elymWTbeaNG5d1eHioZ08ea35xWZJUqVS1t3Oor7+9q7feui5JevvWuiYmcnr0eFP14wNJUn6iqE9+9oEcy+ncq7YyhYKWJieUy5lXTSpXUHl6UUeVTT19+lKSdGFlQfXdip48earS5LQkaXt7T0uLJeWyJlPR4XFKd7/9k7Z3j7W+ZjL25EslLUwVVJqelNN5lVkpW5KjTGFaL7dM6aqUm9LCwoxqtYYqhyaLzx/+xx90+dolTZbLkqTywpSK5ZKUk1K2iVF02o5s25ZlD49ZHJZNxf+OcRzTp/ezUUsnRWU5iZOhJyzrzDBnWX0vaD6D48efQNiaDluvJEskRt1TxzHfETvg2Qqazzjv0WFzOO+lFAH8MMiCAy//80CmHAAAAAAAAAA4nXMRjBNvIzjZzcOwAB1/m7AgoO55wza6+4N4Ou3jzM33e1jZKX/Jq16wTUCfjicQJ2rrf5yVDgtISKpMlX8sScrn88Gb6wFtbUlOp63jutp7+VJPvr6tB/dMME7lYE9qlJUpdtpUd7W32dT97+9r/aqpgVStTavRamthZUVt1wR6lKanNV2eUK3eULPaLXGV03GtpeOaGXvj4qxKuZSsbE7pTj2lQj6vyaItWzUddco8ffXVPd1445oWl+ZUb7S7V6DJqVm1m8e9UlJKm+uqvdiXJH333bauXFnX/PyiNh8/kSS9cWNJtu1qZqakDz98w5yWs9RsO2q2LZUzJgggL1uFlVUViiYIaffFS9VqjvYOm5oomSChxaULKk2Vdf3WJeXSZv6prHT324da3rikS5c3OnNtqNk6Vrtl1uHZ8z0tL80pk0qp7XRKMzUbOj7a10S+pdrBU0nS9uaEtp5v6ahly942Zar2th5rrrSu6pFZw73thtbWL2hp7ljNzmvr0cO7Wnz7sqqHLd1/ZIKjLl5cU23P0vOXR7rz7V1J0t/89V9pZX1Dx0dV5Qtm/teurejhwweanDTBOBOvypqdn9SF9RVlCiYwqdVsKpfLKmVZ5gscIk5QTfc59AePhZVeCuJ0yyHZVngpNs8H/u+caw228baNCvYxx09XUjDOXPyGvau7v7v9X/rIklFhZazG0TvPu/YhXXWv1wSNdcICfW3DSnR5x3B7C+j0Dep6Bu69jy0noD/7JLjKlSzb97fjlKUjAZxfBOAgru6zQlAOAAAAAAAAAIznXATjRAnK6jIsuCNO27CgkTjtRplLWD9x2no3iaOuIWhz+YfMfhB3/U7bp3ct2u22UqlUrHOb9baqhyZTzfbzJ9p/+UqOm9LN934hSar//vd6evczzV0wGWOODx1Zlqu94yNd72Rn+earz2S7TR3sPNPq8gVzXl16/qKm5aUZVVtmY/yg1tKtt2+cBGDkbFlORn++d1+5dCdgp1BWqVxUOuNoZdlk1CnkcsrlXNntI+Wy5ljaSuvg6FAZ50jNpgmOyWTakpPWXNFce6Z1oNrhY+0831HKqkuSJqcWlC/PqFZv6PB4T5K0PntB1WpL21svVMqZYJ+M3dbm5nOVSyYoZXu3olfbe3r+YlevXjwy85rIqZiXbr75hv74p68lSdeuX9Pa6qSs1isVc+bcJ0/3lMtK01NmDTPalVqW9rcPVJickyRVGk39269/r42LK/rgo3c6a9hSoTyj+alZWW2zPjcur6habSmXNkFCy6uS66b1/Ml9Varmun/+i1+qWMzo+YtjXX/r55Kkl5vfS82q0qpqfcGce7C7LcutybKy2tkygU+Xr6zp4vqUWq7pq9Fq6MG3X+rVs0eq1s19u7A8r4XVCyrNziqVyUmSUnbw8+YXN8gmKIgtzjlx2nY/c3ztLQ2+Y/z9hh2LyiYWNsc4wZajXPfAnCzPNSkkkCXimHcOcdbVH3Dj/9sw7O+E/9iw9er7O9A91rlGt2+ullw3IJNbWCBSUMRQd14OmXOAnwICb5AE73NEYA4AAAAAAAAAxHdugnHiBM4M3YxV+IZu3BIycUSVDgkeqy9tQ/wxzc5qt+PQHh1/P931CuwyZMxe5gXXt8HrCRjw9B868ziBSd5hQ9pYlq+d66jVbKnZdNSsNSRJ21svVJ6dVmlqSpKUyaYkmWxFjbpp06gcqVk91NMHD9SuNSVJhXJJjpuVnc4pnTZBFjdu3lLtYEp2xmRFmc82lMtI//jf/ldNFE3ppNL0S+0f1PTne9/q6rUrpv+DIz19/FTFnKXf/ufvJUl2tqgP3rmq6bIpI6XjY9VaDeUzbR0dmswvrVZN39/f07vvvC2nZQJEioWqMtm8GtVX2nxlglLS+bKqR1XNTqWVyZnVmpicUrshyTWBN+tXritVmFK+9EobV2pmXnVXD59uy2nU1Dg2a5FKp5ROWVrfmNfBjgnQmZud1vzCvPKTM525v9Ly2ozmn01ratocK04WJaep3MSkXNcE8Tx7vKkPPv5Amw8f90pEuW5b9+49061b5rrnZ5dVnJrRne9e6ma5W55rX/mJsmSXtbNtyls9ebap5bV1pW1L7U5JsEdPn2vz2bbszgOydnFZaxemVKtXZadN8E8qlVI6V1AqdaxczpyXK07r6pWP9OL5E80tmjUsTOb1/NlLLS1l1W6ZgKZ63VF2YlIp18yrlCmoWJxSq92QbeKgVKk0dO+r77S7u6Pli6uSpJvvvK9MIS/btXvPrhuQ3mVY6aquoPJ3Q9sHZF4ZaB+YKar7DvGeGyPYJKIsYFjAUVCbgcCVgWkHBMf0Dp1kv7HckKw2rueaLF8Gn5hZ11zXVe+B8wnKOOS/BleetXDN/1yrf76u1R8sNG42ni7bSnn6t0IS2thyO2WxTDCW/2+Kmai5V+ZIu90e7AbAuUXQDX4o//TscwJyAAAAAAAAACAm+3VPAAAAAAAAAAAAAAAAAPipODeZceIIy3rjL+fkbzdOCaqgdmH9RI1nzrcUnKsmnC+/w0jnjfz5KGW0Yn4WnA9oSEmak9Q7arfbajTqqh6aTC/NWlV7O3vKpfOqVg4lSfV6W5vfP9HFm9dNm/qBth5+o0KpqEa9k1kmM6FsytLU9LxyOZPp5euvv9HUdFHValP/+q//lyTpnbcu6/mzVzqumvPee/9tPX62qf2DmjbWuiWK0srncrq0cUmVmplsy81oYmJC23vHkpWRJP3yFx9rd3dH9baJdSvPrKqYzmhqoaFKzen05Why4Uj7Rw3du/etJOnC/LxuXJtVrjihm7MmQ0/baqtVlxzb1cGByaqTn5hWO1NT2s2b5crmVK/uq1rZ1+TkZHcFtViYVDaT0f4L06xea+vps22tb1zQ2qWLkqTt3SNZ6ZxcmQwxzUZK0wtzcrf2tbNjynql0tLS6rKq1baKnXJWE7m86s22sqWiak2zZovr68oVptSsmIw33333WB//bEY3blxU0zFrMTUzq1/93Ypyuazu//mpJKnWkA72DzU5WdDMrClx9e13T/Te++/qyRPT5t7dR2pUFlQqT2p+zpS8evjgqW7cvKyNjWXVqyb7z/rqouTWNT0zq2bTZEJKpVIqTx+q0WipNNXJAGSn1Ky3dFwxa3p08Ex//OIb/exnH2qyk9Eom0tranZFR5W2nj3cMovY+k8tLK5pfuOyUhlzvy339BlOTmtoFp6gqXmSokSe/5r18r54sncFObkka6TX7Vneu8BpBFaHii6ldfJ3xHusv8PAsmJ9bYY9DCezDSv/B+D8IBsOXhfKVgEAAAAAAABAPOcmGOeH3giOM16SG9QnAT3d36XgjdH+8fzlbrwlZM5yxU5z3VFb24Mbz65qxxU9/v6RJKlYLElt6dmTTbXaphRTMV/Qzu6+FheX1GqZ4I9csaRMNqdG9UiSVKseq+1mVJ6/JHXLsthpubKUSWe0t7ctScrabaVtV67d0tWLa5KkcrEgXZhWsbwoSdrZfaWD/Yos19H62pIk6eH9J1paW9bKxopyWfPV2X34TNVaS4ViWXOL5tx0oai5tJTqrMTExIwatSPVq23VK6ZM0tRUXrOlnJ7sbevh/eeSpEtXrqowNavDnS1NTKU7c51QI9VS5XhH6ZS57mb7WEeHdbmdtZmcXdKdO/f18sWWLm2YOUwUsnqx9UBXb15XoWiCS/aPanKcmnJpS/v7JqDJUV62bNUrJuipPDMvO13U+qWrenj/iSTp1V5DM/NNTeTTWl01/f/x919o5epFrV+5ombNXNNxtapCPqVq2wSpvPnOW9rZOVKpPKlUw9yPdD6t4uSUnm/t6OWumf+1q9c0Ozup48qeDo/NvTw+rKhyeKifffKeJOnx4znVqi397tPP9MnH75o29Zqy+azaTlPHR2YO6UxG7Qnp+LCqyWlTb8ppNTU7NaVnTze1culC55FrqNmQ0rbbuUe2fvmrv1Laamn3hQm82bh6RW67pemZaR0emmCi/e2WHn73n1pYe6Crb74hSSpNzSs/kZdl9Scai/oOJf3O81V1ihXJFxTwFzYv//Go8oEDn7neH2IGwHibuoPBLScl9PrDAPtKWYXNp/u5933UDXgJmV5oIOGQ/pPVi57qDuj5ub9lnDJi3Xbd4+c1IAv4S0fgDc4rylYBAAAAAAAAQLhzEYzj3TAcZzPQe85pN8C9G5dRGXFGcXJ9cVr7NpJddyB3QVAGGn/X0aE+4fzr4N/UDQtU8m98B2Z88PzsyFXtqKLbv/2DHnz3UJL0zkfvqdVqqFGrKZUyj2it1pTrtvT1N1/rZicTjtpVbT55otWNS5KkarWhl7tVLa029PL5S0lSpVrV4oUFHR8d6fM/fiVJmiqltNqe1eTMnLJ5kwHiYHdfX//5vv76Fyumr5qrVv1Aq+srarbNdWaLJZXKk8pmM0qnzFVcuX5NFy83ZKutuRkT9NKsV1WtVpXrZE7Z230l13FULE9pomgy0NSOj/S73/1B5alp/fwXH0qSLq7P6+7de5otl9RudYJXcm2lMq7kWppfMEFB+3u7+uKL7/XRJ293rrGuarWmGzdv6N7XdyRJl65e0sLSsorlkoqdbDn5alPTU3MqlIuqtEzQSyE9oXwur62nJvDmwsqU0pal2ZkpPX5s1rBUKqg4OS3HbWhucVmS9Oa7TaVcS9XKsbIpc01ffPGdLq6vaWFhXpJUzLp68eKVqvWmSiWTXag0NaV0LqPp6ZI+/uiaeU4cV416U7t7h5qdNms2t1CUm3K0tfVMklQuT6hy9EqffPKxapWKJOnWlYuyXFeZdF67O2b+mWxBq5OrOjp4ruNj0+7o6EC5tPR4c0eTC2b+83PTqhwfSpaZe712rHKhrlq1oYO9PUnS3S9ua2ZpVal0Vn++99icNz+jtz76uR58963+/KevzVpfvyh7dV3ZQnHg+Y4jKC4vMqDNH3jR/X/d/vdW2Pe918YdNV/XeCzX9+6NsUi9a/QG8YRlIfO/Z8KSBAX8nQkKdLTGyknmGb47Ldf3TrT6x46bbW3w825QjnQSoGNLTnjQlP/n153NCUA4gm/wY9J9XgnKAQAAAAAAAIB+dnQTAAAAAAAAAAAAAAAAAHGci8w4UryMNeNmvRkl244/c0BQJoGosixnmXHghyojElbKxPtz1D0JXQfXUavZlCQd7h3o1dOHKqSaevv9G5KkdmVLh3tH2tt+qbZj4sWmZ6f0/b3vlcnYevDNriTJlqXffXZbl69flSS98fYNTU9PqVGvqFjMS5IeP3ysiVxar3a2lU6bud5664by+ayePN3qZa+p1ixtXLqufGlCknT1xmWtLs9qcnpSe7vHkqTZuWllMo6Oj6qaX5iRJGXyKdUO67KtvCYnzVx/+9nn+vijt3W4ty9JarWkr+98oxu3rmt2xmSpefR0Ry/3qsqXFlTozCGbzepwv6I/332o//l/+XuzhtmSnt5/pE//4zf68H2TCWd+dUN2+oGKeXOenc3rk7/+WL/+75+pNDUrSVpZv6hUKqMHj7Z06dK6WcOFslr1phqNhip1k3nHrlVkp2xNz89JkorTU7JtyVJKa2smi0zWbuj44Fi1WkuptMkkdOHCqm7f/lbvfPiOGg1zL9/74D3Vq0397jefSpI++uhtra0s6MGTfVkps/aFmq1UxlVxoqjasSmVZWeysrNFTU4dyu6Ujbp164aajqtnz0x2nsULOX3//QNdu35F2bzJZjNRKkqWdLCzp1zBvMomy0Vlc3ntHlT0p9vfSJKWl2Y1NzOtjcuX1W7UO8+OZKsldTIvtRzJqVXVbja0f2ju98WNFdmWo1w2rf/yq7+WJDmqy2m7unL9LTWbpq/9vQM9efTvWlhdlSStXb0pO52JnVvFm4nFsq2+rDfjvE9676l4jU22rR/gvZLUezFOP5Zl+cpidX4aUqaqu9aJvr8ty5e5bDDbWlgpqbjlsMLKTHnLiMW5JkpUAa8X2XDwY0eGHAAAAAAAAADod26CcaJEBcBIkuM4sTdTgwJJ4vzu7T+ojFVwgIq3sJR3E9YZqK4iWbJcT8Iiy+n10N8q4JoCjsVtM2wbNk4gVNho5spdOa2GJKm2v6fnTx7piz98IUman55RLptSo9HU0sa0OS0zr0y2pGwuo08/Nf8f+1/de6jFuXmtrS/LSptgjH/977/R6sUbOjwwwRON46pKxTnt724rnTdBNbVGVa92d2XbKb3z/luSJDtlKZ2ZUK3iyOl8A65eu6KWHJU6JZ0ajapy6Sk1W45W1xckSY5rq1Y50ObTx5osmTnIsfRq90CliSnlOwEhV65clNNuKps1gSvZtHTt6obKkxkdVU3ppKebW3rv3bd0/8FTvfmGCSbKZPJ678N3tfnkieo1s16ZdEPNxkmAiCRNZC398lcfKV+cMtdjZ9WsHeva1Q3lcqYcVLE8pXbL1fz8nLKdtbDttJRJ6cXTV2o1Tf+7L3ZULF3Ui1cHkqTD/QOtbKyo5dRV7pTUSk9MqXpY1/7BgeY6QUiTszN6672M7n77Z+WyJijIbTV0XHOUzpjxsoVZWSlH87MplcumhFM6Ix3tHWt7d1eVSlWStL66pmI5rfXVC3rw4Kkk6dGT+6o3mqpUzTwvXmtbLvYAACAASURBVF7T//S3f6XK4ZHclFnXdDaler2urc1XWlo185LrqlE50P5BTe+/e7Nzb1dkW7aOjhsqd+5bvXqkWqMqV6aviYm87GxWn/3uS7335huSpLnZklxJn//2N5oomefi2vXLSqULKiyWVG+3zFNul3RY2dbO5+ZZPdx5pY3rtzQ5Ny/Zpn/LDf922t6XgOP2l6DrfPcsy5K3C8v3OvGWRYpiSif9OEsUxQks8a9B1JIEvduCSleNMoeTsftLa1my+oJmhv29cp2ToEdzUa68N9yyJFmeuYSUHIuaa19gT5yLApAognDwU/NPzz4nIAcAAAAAAAAA9CMJxvFuXIYFwEhSKpXq2ygdJYPNOMEm8YNUupuv/q3OoGNhXbjdQeNPMCG9YICYa9Rr57TUrNe0vfVUrx4/kCTV9vaUL1/Q0vKGJKk8VZZlZ/Vvv/6N5tdN8ISaR2o2GkpnS7p07U1J0p++/FKXrqzJtiy1O5vUH3/yM7lqqlS8JEn684PHWlnKaHq2JKsTKDG/tKR8vqDnm0/18PETSdK7b16VbWdULBe0v2uysxzXG9p8tqmVFRN4M1WaUCuVlppVOU0TNOIor3pDqrdryhfynWusq9Fo6tg6Uqk8L0maKOT1cndfjarJGNNubKlcLstppZXPFDptcpqZntbG324onzfXkytNKydHhYlsb15SS1OTeV25ekUrl69Lkh4+eqCNjXk1a0eSpKOjiiznWCm7rXbnrErN1e8/+6N+8VfvqdHJ4JJxpW++fiCr3VCpYIJSnr/c1vrVFW29MBlonEZTdq6gf/v3/9DijAn2+fmvPtTe7qGy2bTu3DHZZq5dv6G5+WnNzl3Ql50MNNmMrRtv3ZTTGc/OZJQrZDQz4+rRo+8lSRcW53X79nf64tvv9N77H0qStr/8Vr/81c+Uzud1+fo1s2bWfdmWpfn5kiRpenpCuXxJ+cKhLBPfIlst2ZmyLqw5mp41c200WnLl6NbNdbXrJoApn8vpqFLXb377mT750GwO1WpVFUtltRwT7NZsVjRZLuvv//5v1Tg2gUn3Hz5VrXKslaUZ7R2Ze7m/s69c/lhtOcplTYBRvVHR1OySnM79t9XQN59+qpVr/z977/UcSZKg+f1CZkakzgQyobUorVrO9qi73dnlcM/OaDQe+UbjP0jjwxmNRuPZ2t3O7s2OallaQGuk1hmSDx5AoVAAClXdPVM97b+2LgABdw93Dw/PB//wfcuMzQuhlRKJct6W79qtRDjGvO6e8u6Cu788YSgELy/7/6rU6Ghs543vPGeZ88ocfb20IOcdndTOdMs5KeaEU65Gb/fZcKYI6Z1akkgkb4sU4Ej+2jm5xqUwRyKRSCQSiUQikUgkEolEIpH8WHkvxDjnHQRfFClyVpnTv3sbsczL/9Xjdi9ywDl9z4vjTxTO8ix4rb9RX8400bhMzMjpKmeVOTkuceGVKJWj66/UvWgej0wZwhDXcei3WzQODgDYfPoQQzMYuA5mTAgXHNcnlyuQiglRSui6EMC15RlePBKijkxCx0qlcD1wIveUxbkpNN3E9zz6vnBLmZwawYzHONiviE5oBrGYhhHXcXp9AJ48eYKGBqgsLgsxSzyV5bDSpFZpsLu3B0BhZIjZpQVCR4h4PLdPPJGhU9/HVYVgY/dgQIjGsye7zM9MAGDG4oyODrG1U0c1hSNMEFQYGhrh0cMnACwvFcnl8gRej1pNRFdNT42SL6YxdBUtis/yvR6KqtIdOHzz4CkA9+5cJ1sY5ie/GMG2xBxqsQSBYtFqCtHLxlaFwO/iOip9Rwh0Bk5AJpPEG7gYlhWNyWUom2QwGNDvCoee2bkFbCvF2IiIpGq322xu7lHbr5G1hBDm0VeP2Tus89lnnzBjzIi+DgY8+PIhTuBz7fYVUbfR5OCgQqkk6rU7dVwvxsAdEI/aevJknSvXbhFLJMlGbjnF0WlUPcZv//VL0pk0ADPz0yQTKRrVMgC9jgNqG8MMWXkh3HMKQ2marSqjYwW0aO5jiovvORRLaVSEQGdra59mu00ykaDaFOtpd3eHOzfTxxtgdmQUp9/HiCk4qriaSKXJ52xSdopkZNq0vrlDt9MlnamRy4lIsHa/x+17t9F04RCkGwrp0gTVvW36kRPS3LXrqLounFF4O47dcc56o1+JYjq1n5x5o8h559QLf/l98vz996iv3zdn9jUMT4w3fOMcX/az4U3inHPbf+uHfOKbqO7JUbw0vwmiUgpwagzHSppXnW7CC1yZ4LQg6ChM64cpzJJI3nekCEfyY0Q65UgkEolEIpFIJBKJRCKRSCSSHyvqm4tIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCSSy/BeOONcltMuBWdFfJzlePAm5x1FEf+fLHJWDNZZ9/yuol1O+U18J22eeZ/TzkKv3fvtIkrcvnBnqe1us/3iGaFqQiiWlWkPYyfT7LxYQ+kIx5nZmUUqu1sURmYAaNcr9HttVMU79gzR4jb37z/i+fo+2bRwN/n1r39OtVLDSqeZyacA8L0ARVUZnxgBIJvL4PQH+H5wrDJbmJtje2ON4WKB2bkx0b6hkkjqFItDTM2IurnhLJYd5+lD4UgzNjqM5/p8/uUKP/3sNgDj0yZhEHC7OyCVjEdzpaOEHmnLQEG4roxPFOn2ejSbIu5I12dQVQ0tliaVFfFQvf06jx6+YGxihIQtHFVyWZsg8EinM9y+ewsAQzc42K8zMj6GGRPzurA8S+AH9AdiTmNWnPJunf3DFrlhEZVUOWxgWQYbe2VSlnCb2dna4Pqta8TsYarlGgDlwyrtdg81euiZTIr1rx7y0acf4vkimmn55lXu2TatRhnDEH3wXAfLSnJ9aQw0UXntaZf1lRXihoggW1/ZIplMEIvFqFaFe9GNGzc5ONhnZmacb776BoBGs8ONWwmKpVEqFRGXFQKqppArCPcZz/foddv4gz69rhj3wX6DZqNJLpdDN/zoeYCRSDHotmm3xNpsNgccHBzys599gh6LATA6NsT+9jbF4aKYZyUgMGAw8Kk3RETY5FSJWnmfcq2B64tndHBYI5/N0G63jp/vlSuL+AOH0BGOTc1uF9WMEUvkefZIuCPFE1lGp8bRDIPvhTD6503ONKdf+OP0u/OcYi7aN5U/ixPOpTjVzfP26PP29feG8KU72xGin6cHCHBefKAS1Tu22LmUg9uJqhKJ5DtEuuFIJNIdRyKRSCQSiUQikUgkEolEIpH8OHkvxDiXFc+cVe8iocxF7Z8qEQlxLhfncVHfzoq3IooUObrXu3BRVNa7tnXiwgWH+AqEUTRKGEV4RYe8nVabP/7XfwLACBTGphcxYjG2NtcA+Prr50xPjhM6IXML4wA8f/KArz7/nPEJIdgo5Avous7oxBhTCyIqqdtuMD23yPZenX6/A4BpmqTTSbp9hyDqvm7oeI5DuVIHoNV0KBWyxG2VIBJdjFspDvZ3SKVTtNsiwslOJFAUjbX1TZKREGZ4JE/gDxibGBZlkikG3R4TU2N0oqissWyGQFOZX5rEiIlOdFttrESW0cksgScEIWgBStgmXxAimNW1HUrDJfSYSSMScNhWktDrYZgptne2o/kcMD49gq6bxE3xan71xTeMT09hmirNZtR/K0WlUmVjYx+ApG0xOzcP2j6jozkx7rES+3sVGp0WdU/cU9VNEqkk9UaTRw9FJNi9D25RLdcYGy8BcHh4wMcff0AmmyAMheglnUnQqLd49PAZqirERLlsmvWNHaykyehIMWpfI5VOkU6JTKfFhXm+/Oprtrf2mZ4Rz9uyTBYX5ojFTJR7YozbG7v89r//gXL5kJ/+/KcAOAMXZ+AcL8u4FePwoMr21jZzM0JUtbm+x+z8JKlUnMdPXgAQDDosLIyj6RamKdbA4tIMi0szWHGVgSMEOkrgkUzESWVEVJYei6HrKfxKFT8UIqStrQNGR4YwrQH374v25xZm0BSfjbVNxsZEP8r7+/S7XYYiYY+dTtJ3fAwzxszyVQB21lYp72xw9YMPMG1xT5QQ5Q0RQvB2gr/LRPudLPf9aC8ujrN630Qw35Wg8p3vT3jiY+FkGNnLfp0dzXVU4jwxjXL2Z6LIrjoWn54p9pFIJN8aKcKRSF5FCnIkEolEIpFIJBKJRCKRSCQSyY+N90KMcxavObiccRipquorvzuqcxlBzuvX3ny/o+sX9e38g2Zx4KmcPGA9p+TpWlHDr97rpMPDqa9nlTm+12lhEq+Kn15zGhJHxYSouJ5w/nB6TRrlCtWdPXJJ4VyzvlMnXqtRHCmiRk4pBwcHjBaHaFQPadaFm00+k+HTTz9FM4Woo9PtkckO0W71SKUsAJKpJJrh8OFHt0nYwoHGD1wajQ5Pn69y594yAAnLRNMtuh0hnmi3+wz6+wwPZ/n8868B+MXf/oLPfv4zTFM7Fpfs7df48uuHfPbZJ+Qyol/b25sMDWVI2OLnwPPQVZXpmUnWV9YBsOIm+eIwqhan2+uLa5kC1fIew4aCoogxhYFGEChcuSaEGJ1On34vIJ+2sG0hbNrZPiAWNymXKzgDsY4fb68yMTuNpurE40kA0pkCmxuHHOxVSaSFyEXX9kmnU9y8eQ0At99h4ATMzelUysJZZn9vF8910RWFfEEIdJxEgtD3seIxPvt3QvRi6CrtVo9MxgbAjJUwdQs/8Oh0xfP+8ouHEDpk8wUsS/TLc/vML86QzKRBF/1PZ7P8zd+MUKs1AIhbBh99cpN//q+/Y2VlTfRdVdjbOeAnP79LKiXueeX6Ak+frDEzN4MeOe9sbW5Tt5NsrIu5/+DD6xi6SSZTYHOnDMBvfvs5//P/8mvUwGF0SAifqlWTVttHUTrkcmK+KoeH5ApDBJqOaoj5N2I6K2v7DI8IZyRFcfD6HnFTIQjEs/UVgyDwOThokE6L9qcnR/A9h4nxUZqRg0612qTZqNFpCeHY2MwoRixJu+0Qi0RhpbEJBp0Gm08eMjw5KeZraBjQuCzvKsg7ofMQX0Je23xO72EXCVQud/+TQsTvlzftyZe5/jZtX3T9XXnZlnJi6sQ3IWd8TkXCSIUTz0oJhXDyWOClRoKdk5Zv0cNXlFdkP0f3kkgk3w4pwJFILuboHZGiHIlEIpFIJBKJRCKRSCQSiUTyY+C9EeOcdJM5K47q9PeXjRt5swjn/Gun2z7v0PfP4vRwiYiuC8cVHbCf1dNX3HwAwgBFEYe9ASHVnV0O1l/Q6wiHFc/x6bR6lMsNrt37BICJiSS+71A7LIMjRC9aGNBotJiYKpGwxVKrexCLm/SFzgPXCWk06pRKJR4+Eu4j9VqbialxdEPDjsQ4uzs7mLEkP/mbj0hlhOhF0Qy8gc/i0hwAjtPnwf2n7B9UmZicAGBrbY35pQWCELwj55pQ4fqVeawYBIEQ8iQSSVRFZdAXLjjrq5tMzExhxoxjRx1Vn8BHwUrYEIj56fZ6EMTRdItOX4x70Gui6zHCyMInm8/w1RcPURQPJ3JmuXbjKrqp4fQHeG4UNxVXcBwXVTXxFSHSaLW77O3uk0rZGJGwQzMVQs9ja2sXgL2NFVTTZnFphlAV89zu9CiVSlSqNZIJ0ZZdGkZVA2zD4OhQ33H6BEqA44u5aTZdNGPAcLGImRTCpNuZNIHXQdUMyofChahy2OewXGZ4vEQYia/2dw+x4yeckzoJut0Wt+/eonwg6j199JyxsTEqh23mFgsA9AdddE1lqJCh1RQCl+Wry/Q6XUqjIqbKD0KePntCcTjP1LRw2fnbX6VJJTO4nsfunmj/T58/5O/+/mc0Gz0GfeEcNDSUQVE8GvUuGkKMo6kGw8U8/Z5YiDErSRAGNOo9RotCoGPGDAhVMtk0qVA8tzB0UVWNTm+AnYqESX5I4JnHwrFOq87zL+8zNjHB5KTo6+bGIWNTE8RMONwUTkieE5AvlVA09fh5XHY/eRthzlmeXBfFFr3J+eu19l/bI8/owxv2qm8jeDkSD72p7LvGC77Jce28+17Wpei1sq9rKS/VJyWqdNTUhZ9pIReKQf/SbkESyQ8NKcKRSN4O6ZIjkUgkEolEIpFIJBKJRCKRSH4MqH/pDkgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJH8tvDfOOCddBs5zFLiMQ8HpuJWz2ntbV4TLXHtDKxA5cpwfjMVrvz95r9PXlbPqn+F28TLxRLjinOuocNKYIVRx+iKqZ2f1ERuPn5ItFMkWhcuHbthsrm0wni7hucJZRldDdjc3Odzbp9UR7jIzcxPE4hqKqnJwUAFg4LikswWqB3sAJBImheECVjLG5LRwsymVPCzbRDdjxCM3GLffIT9SJGaoEIi5dH0fRQkIgiO3E1BRmZoex7KEe061VkFVHA4rLdbW1kRftTg3bsyjmxqPHj8HIJNJkc8Ps7V5AMD2ToX79x/zq//x7/j04xtiLg7qbG1vc3V5GlThNtPvOQyVSvR6XfZ2xBgDzcYdOAx6XQCuXltEVTQ0I0E8chyybYO4laDqOLQ7wnln5fkqxeESZZo8vf8UgPGxEQqFLANnwHoU9TRcHMJOJll9LpyEdrZ3mJiaoFGrs7AwDoBhxOi0e5QPa5RGhkW5rR1y2RSmYWJHkVd2PMXMbJzdzR0AdvfqpLNJiqMvA9VCr49laISKQhgIF5/d3T2mxkfYWN1iZlbELl29uczm2hqpnIh0evLwKZNTk+TyWSxLRJCFis/UzBjtao3BQKydMFDpdVxURac0KtxyXNeF0CeRTEY/BywvLxD4AV5XrM18LkOtXKbvhZhRrNfE1DghKo8fP+f2rSsArG1WMQyNQj5LpSZivMqHdQgVen3hxJPxTVrNPivruwwVhSPQ3qMdrt28zdBwmscPxToJfAVTV9ndrZJOGtEa61AsDZGO4sASnoOdiDNwYdAXjjrdVo9Os4Oey2Dawu3ncHuLQbfN6NwcSuRo9DauOCe/v4w72MlYosvvYafbPWs/DE6VPxl793pc1dEe9CY3m8s6jp1s76K6bxrzRW5Bp9s4z2XnZBtn9uFkVBivfw/hsbPU6W6I9l5GUoUox3FVovyRK85RmeBU3SPnOXgtljE49ZmgSJ2uRPImpBuORPLtkJFVEolEIpFIJBKJRCKRSCQSieSvnfdCjHPyIPUyMSgnr50+mD5PzHPefU9ymXpvEuecd4B8mYNeEEekxyKIMIQLDqxfExldoq9njdn1PLrtBgCNcoVercbB6gMAnG6Pmbu/QLOzNMplANIpl9LIEL4f0moJwUm7XmFkKIvn9EnkhNggDAL++IfP+Q//+GuSkVDh8ZNn9PbLjBRFmb7TxTBMkskE6bQQVASBR7PRZmdnl709IZ749NN79PtddrcPGRoSdTXdxDQ1YnERD1RvdDmsHDI6WmJoWAhCkqkJ/MBheChNPDYt2ncVoVtSNAJHxBTpioc3aFGtRTFMtTqJeJzG4S7WpBCbZLMZEaXUHqAbQiS0tXWIYZj0+n2erojYqImxcVBAjwmxxurKNoQahhIyviDaclyfFy/WePL4CXt7ot705AwbLx4zNVNicmIMgMODAxaXZ0imxpienhX99z0UNWA+aiuVSjA9O4k/6KALjRAx02SvuceVqwsoinG8PnZ3yqy82OH6rUUAxkaHcLwAK5pD3dQZGysQej3U4Kgtn1AxUDSTQhThZMefEwQDAtejcrAFQLc7IAx1SqNCeHP1+hKZQhLP9Tk8EM+xNFLEshM8ffQC9yg1LAyJWyZPnjxn6YoYYzpjk0hlMOJRXFe9RavZ4uCgxlAuAUBhJM39bzYYLo3gRsInQjjY26OQS6KoQpD1X/7L/8dwMcf1a9exE+K5xRM2+VyKoaIQ/1QOKnR6fVwvIB6LhD0TExzsH5JKxfnDH78B4D/+T7/GMAxSqQ6FvJizoVKJerUJvpgw3dCxtSTd/Qq75U2xNmtNEsk49VqN4aJ4FzKFMTaeP8C0LPKjQoimKJcXoYjyr4o/LtqL3iba6t0JXxGRnLffvcs++rb7+5vud1GZiz5n3vY+L6MCj/95J16fn9cjHd+Vd51XieTHiBThSCTfLVKUI5FIJBKJRCKRSCQSiUQikUj+WnkvxDinDxkv40ZzmUPeNx0+fx+Hj2e7PijHB9SvOCKoZzvfnOxtqChneFGczYXHvKESKX1CnIFwrqlXyhxu79Ks1Oi0agDETJtyucHE1BwADa/BxtoWuaJLvdoBoN9sYZhifPWqEK+svljho08+ZmZhgUFPlNvaqfGf/tf/RDJpUamK9gdeyEghwaNHjwGYmZ8jk7Zo1dskM8KRxPMVLNumVl2l2RBtqZpCKp7E80MePBSuMVeX5yBU8YMwKqMxXMxRKZeJW0Lp0XNcSqURVM0nnxPCi2qtgq4Z+P0+ViT2GC7lcAYD5qaE2GRubpL1tR22dmusbwgXn6FCmtmlBb784imeKgQnP/3sFlYsht4bcOW6uJbNpMnlUriecJF58OUjbt1ZwjSN42fZqtWpHR5QHB5ianIGANdTsPQ+tm2hKEJIkkrHiVkWuuLS94STzIOHq5i6xtUbCwCMjo+haiGqlkM9WmAqmHGdZNI8XnSZ1BiDQY9Wy+X3v/sDAL/8+cesb9XIZIUAxY7H2FxZZXF5ml5PzGG7UaPnQCKZpN8Xa2dpcZJUbghN1dA0sfLKBwekc8MEkXvOysYOicQCvX6far0JgJWwsUyT27dv0vOEw42pKPhFhcePn6PrYkvq93p02g1yw+KZqYpCcWSMwHOZiByUWq0O2WyGq8sL9COHm07Xp1qtk04lUVXRr3//q58TMwz+r//zP/PJT+4B8NnPP0VVNQZd4Ur0+NkOM7PD2LZOPerrtWsL1JsdDEPj409EPQWHZr1NvpAnEYmCvG4fRfHxQjFup9EjkU6SK+QBIXJL2nHidoxUJkPCFoKgRrNDtdYntbGOFo07O1wCTjhavUE4c9Z+993yaptn788XuedcTpx4ephvO5Zv4352Fm8S4bzJ1eestkTF6MtlqkaFTgo0XzajHHXk7Pucaue4mPjQiQyMwlfKvFJFCnMkkmOk+EYi+fPw/+58KQU5EolEIpFIJBKJRCKRSCQSieSvivdCjPNd/lX++/AX/hc50hxFxYgyf75++koAfkB5a5sn94XrTafZJJPOs7lToThSBKA4Nkau5KDpQgzSD018p8/hzg69KH5qt1ljZLRIrpAnH7nU9HoDDFNnfW2NjU3hoHP37g1iRoDntLAsIUC4++FtErZFbkzczzJVAhw2treYNmcAqOwfkM6kicc0rl0VghPfHYChMVwsYGjimhXX8byAXkcIdhIJi4XZcXodh7gthDFff/2YdrPN4tI0O9tCVNPptNnZ2mN0dJzRKRG9ZVpxeh0fQxGvhKZ4zM2XUNRZXEeILNLZDLFYnE8++4Bnz4XjSaNaIzE1QUrX0aPoqlqjAWmDXksIPWKWgZ0yUdFot4WgptPz0DSFTqdNsSQEQLoOB7tdApIMlYQ4ZnVtk0Qmj6uG9CL3l367y9SVWdpt8bPbdxgfH8F1ByiGHo2xg9t3CFIuuewQAIGnsr29STpr8PHIB+KemsXUVIInT58AcO3qHCEhQRAyGIhxY+bAq6PiELfFusgmE6yvb7G7X+PeByLGK5VO0et0qbeFMObazUV8d8DqyhYzU8LpJ5kyOdjfYXe7jBIJUKrlKnfu3WL56jxW1P6gOyCVsvnj7z8HYH93j3w6wd1714lHa0k34mysbuK5LapVEQf1m3/+DZOTo5RGssxOCZcdMz6B0+/zv/8f/xvNhpizvZ098oUMui5cg+YW59B0nRcrjwl9sc4XF+dIJwyMWJyrV8Ta/P0fv6CQGyaZSvL86bZYF5k0K2v79KPpSid0rCDk97/7hukZsb6GiwX29/exLBMvckwyNNCtBMn8OAebwh3JiJnYmTzq9+heEwTB9+yO8za8HmN1kpP7+bfp89uIZ867/5+L476+VGSdUeiCeq9xWgykRIKcN4umJJIfM1KEI5H8+ZGCHIlEIpFIJBKJRCKRSCQSiUTy14T6l+6ARCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUTy18J74YxzVtTKyb/y/7bOBKfb+q7aPd3eyZ/DMDzH0SE8/vou9w/D8Di25GKnB+Gs4DrC5aNRr9Mq12iVy8zMzQPg+yqrK9sUhkfI5YXDTbNZI26axw4iphqCpqDTQY0L7dZIcRbL1gkJ0GM2ANMzszx/scajxyvkMyK+x9ACrHSWgdvn4e++AGB2fgYdj6FcMuplQBBqXL2apBtFBqVyOXRN5eatq2i6uGe1UiEe0/GdEDshnEV0NU4srmD5DgCeG1KuNhkbLaJGOrOYrqJ4Pbx+k35XRGWtr+3ywUd3qVcaNJpiDhPWOGFo8tsv7gMwPlogk4kzMTMKgXBdUXQd1bRQDJedPdFWtjBEp9Ol0xngOCLWqZBPs7W5RT4nYreWrsxgWWl8z4NA9LVRa5HM5pheWODf/vX3AHz40W2anTZ918GO+l8sjdButEjmEhTyYq5/9suPUU2DL774RjyjMBTOO2FA6Is11XF93CAADPoD4cajqdBqO/zmX/7AaEk41fiDLrfuXiFuiq3AihuY8Ti9boDvi3ruoEexmEEnxtaOcBdKxCy2dstUKy2azciZyI6xu7PL1VtXAQj9AfVqF9frkcsKN5uYnWDl+Sa+GzCcO4rGGqNSrpHLpdjfFa5Kjx48YPnGMuOjop+FTJatjU2cQCMbF65HquszvziCYeqMTWcBmJoqks1lGBubYn9X9HVkfAQFHdtKsrYq3GxSmQl0xcIdiHVeGslTKXdIJS3Gx4SjTq/bo9NuMjYxge+JNTA3t4QZi5NLmXh9MW7D1Lhxc4EHD58DkL82RyyW4PrNBTTNiJ53nVQiganD2i69egAAIABJREFU9sa6WK+hRi6XwtDgoCMiux598QXXP/oQOyHG820MS76vGL7vox3x8+Ujud6W78MJ6J1jEN/g9nN87SiJipDTTZ1V7/XIrxNRVmd2UbrhSCRnIR1xJJK/LNIdRyKRSCQSiUQikUgkEolEIpH8tfDeiHFOHy6eFw/yJiHNnzNS5LxYkLMPmiOiaJDwVM6Ick75o+svE0tOHLBGF73AR1PVE6ewAU6/T6vaolURgoStx18yNHWD7MgkZjwOgO+6DA0XUEKfWCS0cbQkn//+cyqVAwBKpSFGhkuEQYCdEoKKZNpGMw3cfh8nijLa29kll8mwMDfF8vwkADHbwtB0nL5P6SiKSYuBotGLhDe2baPrKiH+8dxoSsDmxh7dbosPProJwFAhj+91wGuga0KMsb6xTzxuMTouYpgMXCrlQ8qHZaZmhYjj4598iBJ6oOnkc0IIE3ghuZxFIZdDs4TAZdBpsba2ytLSdDTGFO1WCzdQiTQXhH4LO61SPazw0Ye3ACgM5fnv//zf8NyApStLYl49l0xumGROiJKcvsf2+ja5QpZa9RCAdqdFPGFjmgYTE6MApNNJPvjwJuvrWzRb4qaFfIFnT1e588F11Oi5eW6I6nvcvr0MQLfZJG7HMM0kYSSgSasmh4eHuK5LUhfxWYqq0ut1yWdTTE6LmLDRkQJGzGJ4TMyXETPo913sRJJmFIPleC6GGcfpeaxtiPVUGC6ytDRLOpmgWW8CYJoplq8toIZiTbheSKV8yJWr86Cqx3MzNT3J4V6ZelQvnctxeFChXt5jbkHM//jYBN3GgFxBjPnxg1WuX7/C3vYO1XJdjAeIJ+Ns72wyNTkOwOLiPMWxEcIwpNsTQjS3P6DZ6hO3bBaviIiztRervHi6zs6uEOd8/OknvFjfwrLjNBuiXzs7ClPTY2xv7+I6QowTt20Kw2kCP8CICTHRF1/eZ/nqHPW6iOeqNwek0h62HWdjU7xHL56tsLy8SDabJJlIRuW6EAR0uj0cVwi5UvEYj/7wO65/8hkAlmUTKuq5+9p3KzL5rvbOy/Tp4niq41LvuJ+frveu8/Q29w9P3OIoASo887avi09P8lKMc/JzQOH0XB0JM19rPTxZBxQlOKOPymudex8iHiWSvxRSgCORvF8cvZNSlCORSCQSiUQikUgkEolEIpFIfsi8F2Kcs5xlTl7/rhxszvr+vDJncVZ/LqrziqhGEX427zyW4xPWl3PleUL04HseqmHQaAkxQGVrg9rOJmGoY1ppANLj1xkEGnHXo90RghA9btNuN+g066RTkUDHDxn0u8TjkfAmmaLWaGDFVXZXhGvJjevDGKpKu9UnlhD1+oMBlWqN23duks2Ke9brdWrbexRLBeqNKgDdXpfm8ya379wAQDPiuK7DoO9iWaKtWCzO/l4ZO2FTPhT3XHm+xtLyBE6vTavRAOCg6jI3v4CKOGxWrSQfffwRjWabmCHmRtUMFCOO4nuk8sNiKtU4u5sVxqanONzZAsBOZrlx7w6aIur1+30UdZj6YYVMPiMmPBAOPb7nUCwJAY1pmly5sohh6tiRyGLlxSqrqzt89OltQLjgjIwIgYimCVHKB598wKA/wOm32d7eBGBmdpJ4zGC4kKcRuc00m3WKY1l2NnYZeEKwYcXjTM+UCKPD+o2tQ8aKWeJJDcMUTizBoE2v3SAZyxD6QkiiKQky2RzXblhcWZ4RY9INvvjTV2RSQpQ0MTXB+vomV69eYXS0BIDjOHQ6Dul8jo8+vhGNW8Uw82iKiqp1o6Zi6IbCoC9cXtZWt5icHsO2U3iRexGhQyYbp9OOsbkhhDC5oWHu3L1Or908FiAUhtLUm10sW2xRIyND6LoKYUgYaQviySSV/QO++voB6bR4Ru1Gk/zQEFsbW/Q6QvBVOdBwPQU/8MjlhHCrWm3QbrVIp4Swq1Hd5criLO6gj2mo0dy3cd2Ap09XWF/fAeDjT26RsOPEEwk0XfQ1m7V5/nSDe3fEgVEsrtHv9XnxfIPxaSFM63XalIp5wlBnb0c872q5wtjsApbVJx4zAUhkU4QNjbX7XwMwd+sORkz08bvipGuXql4+qfAvodP4LgUib9PWeWKet+3LkYvZpctHfbyMeEhRhNzmMsKjl2WU1/RPr39O/XlFrRLJXxIpwpFI3m+kS45EIpFIJBKJRCKRSCQSiUQi+SFz+ZNYiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEciHvhTPOaS7rNnP62mWjSM4qf+RG8Lb3vgwKb4otOfqFQhj993ojr/aVMIQgcoQJYePJE548WQEgl8lTHFtGUTV6A+Fa0m63qdWa6Gj4nojvKW9u4rs+zx4+RdHFUiiWhpgYH6FYzAJQq9YZm5slbhkomnDvGDgOv/2Xf+Xq8hLVag2ARDLB+PgYiYSF64qoJNs2IejjOQ43bgtHlefP18hnhmk1hGtJPG7guh7tVvPYemNsapT5hTG8EDxHtJXJpvCcgEx6iHZLOL2MF1NkEyaBL+ZBi+lohksun2Rrc1dMViMgnbXJpGz++G/iL+BDL6DXC8gOj2Jn8gDE4klqtRb5yNXH9/p8/cXX3Lpzg0pZuPqYugWBzvT0LL4vXGoG/Q4jY0UUzaDfE33N5Ybodh1aDTHPe9sHlErjOI5PLnLZUdWA3Z09RsaKpJI5ALZ39rEsi06nQyYrXHY01cAwdcJApWAKh5R4zOSLzx/T7Ihnu7HyjL//1U/4p3/6N67eEFFZ168vMjM7y87WDolkCgAv6DIzO4puWii+cADSzBh37lxH0yJHHddhbmYK1/MwDXFtMHDZ2tpjOZ0klRL9Cvw+pmmgqAZjtnAJ0jQdz/eIRa5KM/PTHB7u02z2jsdtJ1P0Oi1GRvIiWk3MNp1WC9d16UTRUr2eSy6fRVNExFYymSCXz7C5vomiiLUaeDH67SZ3794kYQtXpUG3RadZxTATx+/roNen264zOT1BPHJfunp1Ec/3GCmJ542q8fjxBt1Wl9KYcFCamptm5fkmdz64SylyQjosHxCECum0TcoWz2NpaYnN7QOyBTHPjVoVXUswOlI6donK37uBGmq02wO2d8R6StkxOvU6xYJFKinm7OHDF0xMjaOLqWfl4X3mrl2P3HFe7gHn7VVv46pyxtWTLb12TVFO74Fv5fnyyk8vmzl77760g83riU7nl32L/ftt+nP8eYLy2rWosVeuvxbJ+NqUqlwu6ksUP2MVvNJweLIP4dnxVKf7/N3Gn0kk7w/SCUci+eEh3XEkEolEIpFIJBKJRCKRSCQSyQ+V90KM820jMd7m4PC8iKnz2rhMtMlpUc+FZZSLyxGGZ5/Dnuwr4AcB7WYTgJX7X+C5AbMzCwA8ffoc1wsZHx8lFsXfNBohWyur/O6f/5XxSGxQq5XxA4VY3Ga0JK4l0hZOz0MzhDggkczg+Q6+r6LrUUxSIsbdD++JaKkoAkmP2/iBwubmHrYlBBS+G5BM2/S6bfxADGpoeJh4zCQeF/36/e/+xNzcLMVi9njYqqJi2xYPv3lEviD6defuDYKgj6ZoZAtC2OEM+vT7AX1HCEvidgiGhes5lMYmRBk3QNdV+v0BnZYQeoxPlJgfKrG7c8DU/KyoG4vz8JvfksuKGKMrt64yOT1Lb+Dzr//tdwDMzk0wOT5Ov9cjGYllnIHDi9VN0vkCyUjo8fz5KtevL7G3uw/ArTs3CMI+jx4+4+qyeEabL9Z58NVzGvUGy9eEgEYlQNeh1+lgW0LokUxmcZ0OD+8/4cGDZwD8+h9/AYoLgRj33/39LxkdG+Uf/ocinisEOtVal/XVdTKpNM+eCpGWpmnELIvJ2QkUTbz6njPAdQN0TQiazHgc+m0G/SaGLuZZUXQWrsyjqS8P/jUjLhJvdAMiYU+oKAQo+JE4qtPpMDo2ysrKBo8fPQfg9gd3sKw07mBAOiOisWIxg6ePt/B9l9GJAgCBp+E5HZwo1qvS6DKzGGfx6jJ/+tM3AKS6LYZHssRiCXRDrJ6xiUl0Q2No1Mbpi9i2lRfb3F34EMd1qdVFRFsyYVPKlSAS+wShgqYaqJpJPif64PZ6jE8MgQJeFBF2/foVUqkMT58+ZHNNxGwVhwtsb25TKh69V01Wnq+ztLxAZfcAgEwuj2lp6KrLBx9eBWB3axtN1+h0WpgxMbPz89MYpkEyI0Q8zcNdtp89Y+raVRTFiJ7H+XvS9y2i+C5io04KH08KQX4IApDLxjgdjS/k1e38+xjjdxEtdRkxqkTyQ0aKcCSSHzZH77AU5UgkEolEIpFIJBKJRCKRSCSSHxLvhRjnbfi2B48nDxwvI6I5ff2sA8uL3HrgyL0g+vfCuiEo4ZlanOCVHwK6jRb7m0LsYSfzeIFOI3Kb2dzaZWl5EccZ0O0JccbKszXips615QmKE5MAdDvjNOoNtvYr9LtCUKHQJ5NNkY5EMFtb9zGtOM39KvGEEANYlk2j1WRjbZ+lBdHW0MgQtUaHIOjT7nQA6PUDMsPDxDQX14mEPKqKYRr02qKvc/OzjIyM4vTbGDH1eE78ADa29lF0IXAZKqYw4jaqohE4fdFWIke3e3jsXJO0LbR4BsfxiIx+CHt92l2flfVthkpFAGYXl0mkMlQO9qlGdWNmnJnJCeo1IeDY3d7nqy++5G///mdcv3UNgFa9SXF8BE3xIRTjcRwXVdfQVWi1hThqcXEOCKg1xRgz/RZjpRwf3LuD7whB0OrqFju7O0xOl9CFHoRGrc7E5CjptM2LF5sAzC8odJotnIHHL3/5qRi3Hefm9QV0S4hZ+p0etUqN4dIQaxt1sSbskEQqRtw2sRLCecf3PDbXN8nnU4SqeJZb67vML04fm2UMXKi1XEZKRQJPCK3a7TZ/+nwVd+Bw554QDo2OjaLqKu7AEa5GQHZoGMVQCTyxpuv1HulsjumZSdyBaEsNA5yBQ63apNcXczE1M8XkzDiKArVGA4DhYgHTdFEjN6Zbt5epVysQhNy+sxCtwwSmrtFsdEgkxFw0m01idgYlcGm2hFNRNp+n3qywv1dhZlaItB4/esrkVHg87vGJUaZmisTMGK2mWAMHO7ukc2m2tw+OXY5GRod48OARS4sztAti3L///ZcsLCwTj4s5zWRsUskk+4dVUpa4lg4HVCstyvsHGPEEALniON6gT7/vs7UpnncqlSCZKdBti3dodGKKWmWL6u4uQ2PiXRMuJ8olvVNe5+0EIaf3NuXEHnxOjVeENRftqy+lKqL8SXHky/uHJ/p72gHnPEecs/bpbyM2ec3N5g1uNyf7d6a28lWFziuFlCNB5olC0Yy/Xv9cqzVx75DwFWeec8sqR88havatXI8kkvcTKcCRSP76kC45EolEIpFIJBKJRCKRSCQSieSHxHshxvlr/Iv802M6b3THh7jHB7rnCYSEUGXQabP17AG13T2GJq4A4BkmCTU8diS5sryIrqlsbWzz9MljAK5dWyaTzWKaJu5AiFmKw0Ps71vsHuzz+PkTAJbn55iZHAPPAWBmbgbXD1ndeMHCgnCRGRpOU6vWmBwvoh2pXnyFzdVVrlxfwLKjKCPP4+uvHzM7N8M//+ZfALhx4xYzs+MYkWPPcCqNSo9vvv6G67duAhCLaaiKy9zcBHrk0KMbCZqVOnYyiR3FLq1vbOJ0+zh9MZ4g1Oi3uvi+i9MXQozt9W1CVWdmepKJybGoXw5BGJBKpSgWhQPN7u4Btp2g0RRtbW/uMT8/RSoRIx7FLjVDD8UfYCQz9KI51FSFXDbH5uYuvisEJ/MLs2xsbIEvnl/MMOk6HqYGG+trYu6LRWZmJ1mYn0HVRLlUNoGuaJRGhmi2hYiq3+uQSlncurVA3I7EN4M+uuEQeJEDTbONTwiax+T4cDRfJqVSEdfpYJhC/DEY9Oh2c+wctIXjC5C0TXRdwYwisAbdPkYUH6VoQiVUKBVYVjXWVjcoFEVckx6Lo2kaQahip0WkmaobhG4XXRVreHZ+msPDMgk7gWWJ5+0EPm4QMjRSpNMSc7i+ss79+0+YW1zg6E3xevtMTo2iRn1wu23+9IcvmZubYWhI3E8zYvT6ffKFPH4g5iubTeD6Krv7+3QicVqj2SaRsfnoJx/RiaK98pkUk5MjdLpineuaQr6Qp9XoEDNEX62kRS4/RCKV5ZsH4v0YHi1hxuN8/sVDZmaEsKc4lOdwd59kQtTL5VMoGCQzGRK26H8qmUQ3BgSBwsqLVQBMTSFfGOKwXGZrcx2Aubk5LKtPIxKvpVptMpkim8+foJtiHWaKI6gEHO0Jb+K7cE45r92zBC9vrve6gOWlOOfy7VzEX+Lz5PSYLj2G08UU4DVPnbMDqd4UZ6WgvJ2s5lUDN4nkB4cU4EgkEolEIpFIJBKJRCKRSCQSiUQieV+43GmuRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQieSPvhTPOt+Uyzg9vipK6LN+340J46gc/DAh9j8qWiLE53Nlh0OuyvVchXRQuHwPHx1NNWnURm9NtN9jZ9KhVK8xMjwOQTMTpD1wajRaEwlFl4HmkEwl+8snHPHj0DIAPPv2AhJ1ERcRWZW2bkICf/vJTNDVyYukOKIyUePTgBatruwB8+tECs7PjKIFK7aACQKaQ4/q1WZ48eMidGyLqaWp2BMIBCUssPT/os7+7h66ZxCwRSbW1tc3u1h7F4TyjkyMAGFYCpdHjT396wPSMcLhxHI/V9V3u3LkBgGolSYQKIS6uI/o/t7yEphtYycSx04s/6FJvtNB1A9UQziiu6xGLmTSiqKn97R1+/vOPiSWzpNIitiiTmqPZ7pG3Urh94YLj9nv0BjA5NYXTExFLg/6AwNe4dVc4/aQyNjubW2QyacqVGgCjkxNMz83g9rrUqiJaKl0YAi3AjMWYmhQON+WDGnvVDrPzRYieSTxuoGs6rvgRLR5nfGQY33Mx43a0dgLhVBMEaJHTjW5YmDGTqZECaCI+KVcsoBoaRky4rqCGDNkKRtwiDMTzNkKIxQwy2QSWLeqFiovrOegq6JHLkRIGqGYcTY1i4EKf0fEiuqbiOmK+DE0nsMHp9zAMsQYSyQSf/vQnPH30hLsffSiekT9AMRUCXzjEPHqwwvj4LEYshhPFYAWdNs1aG9/tk0yJtbO3W2Xguiihz9R0AYBnT9uEroM76OH3RfzT0rVrdNpdnj1bAeDm3esYhophhqw+3xbPI5fnT198w7VrV5ieFO9Rq1qm02wxPjnB6Li4trO7y+2byzQq1WgtKShKQMwyOKiK9eS5kEklaSgBB4dlAJK2zcbmFjduXOMnf3MXgGa7Sy6XQItccDrtGqqWpTgxw/rDBwAsmnESWRE9dhnOisZ7V+eZN9e93P54es8WLjvv1KVL8zZ791lRhufxbV18Tt7v1fZO9PfVFC8u511zXlTYadcdieSHj3TEkUh+PMioKolEIpFIJBKJRCKRSCQSiUTyQ+EHJcY56zD1dCzIeQeu30VUy7vHaYWcSKM6r3FxRBpCGB2ehkCvUWft0dcMOkKUkC+O0uppzC7eRlWEMKJeFmKWrW0hjJmaGGd/b4+nz1cxTSFAKRWrzM1Ns7dXZv/wAIBatcY//MMvAY3F+SkAdC2kWq3gOUKk0qzXuXptGVNX6beEKGX16SaqqpOy4xRzQjTgdvfxY2NU602cnihnpSxMQyGTzVAcSgOg4bGyto1lCdFINh3niy+fgWbSd4X4Q9WTfPH1c+7eWmJyWsQiKcDW/gGFQoZWU8QPJXNFCkMBblQv9AJcdOxUnpgllCqb65t8/eVDhodyLCwvAmAnkrSaZeaW5uh2hFiidrDL4vIV/t2vfgHA9vomqqqhGwZDRRHptL9Xo9vqUhzXMHQhQNkt7xMqGjtbW2RzYoyNWpW5pWkyGTFG3xugKQqqEjK3IOY5nc4Q9l00NUSJnqPTadMNwU7YVCPRThj6lEYy6LqOaQjBiec7+J5LIJYECSvGwX4F3/XoDUQ81/R0CdOIo5qJYxFVwooxrkPoDVAjUyzf8/AGLmFMNKaEIYQqoaLh9cU8K75Lt76KYeQIPDGmIHDolFdQdZtkQYzJaTVQ1AAznj8uo6gGIQZeFNmlayJeKh76WHYkxsknCf2ApG0Sj4l+aVoG12nTH/TEmp4ZIZFI0usOUAMxxkzKBt9iY32T0bGieEY7VTQjoFxpEYbiGT16vE4qnWB+cYFWXazN5y9WUVSDhaU5sX5dH1UNiZkx5uaEyMYLoVmtsr2+QTop1rmjmkzPTdPpeezv7wMw6A3QFJVuFIHlhy5WMk0ml2Aneie9hEmrp1GvtSiVhMCs1Wpx7dpVYvE4nic2iF67Sl2vkhsW43n2bJXR0RHmlpaI2UJctPboMUv37r0UUH1nvDkG6aTu5OVeeCKOLzxd5zxByFF7b451Uk5VfT3e6ux2L9qrL/P7t+WsOuElmnkt3io8qntSjHMUN3X0QXJRw6d/d7KdE99Hbfw1xkRKfhxIAY5E8uNFCnIkEolEIpFIJBKJRCKRSCQSyQ+BH4QY5+iw8KxD2JPXL3OgeNmylxH2nO7L+W29sVuoYYjvBTi+h6aKCoebW+yuPyMMbVIF4Qajx+LEzT57WzuEYSTQyWdptxskE0Iosbm+jm0nuH37Jr2ecCRRFUilk1jlQ64sClFKaWIEK6bhux6b68KtQ0OlWasyXCwBYFk6fuCgazpG5ICSzmXZ2tgkl7XJDU0CkEzoYFromkrgZgHwHIfQDxmdnWJvSwiAErkcxdFRNF0svYOtNfK5Avc+vs3D+48BGJ0Y5aMPrzIyOoEutET0W/uUxkYZyiVpNYRI5OnKHt3ugPnMrHgOPjx68JDpxTlSCdHXWNwimUkwNjGClRDihY2NDXzPZ9Br02kKccb1O7cwzBhq5CJjmjFWXmziDjw8T4g/BqFKu7KDMzNBtyNEIqXRIkowYGdtnVZTuK7c/eAKRkwjCPti7jUoDOfwfYd0Rgh2drb2KRXz+ARokUMMoYtpGMR0sCOxkhnTMU0D1wnRdSEw0jSDaqXNw0dPALi6NIfneqRzBdKaaMuwbNQwwA99UEQ9RTExTBPNNNFioh9Goofv9HEHYk41RaHfPUB1+zjtQwCaW/cx4j52bpZOQ6zNTqtJjDaxuEXoCmefQa+K5/houhCl6IaKbiawMsPE4xYATruMYqXwfA8jWucqKnosTk/r4niir/WDGv1uB9cR8zw7N4Wim7Q6e3gDsaazQDKTZGp2hlhcLJT5BYv9gwOmZ5Lo0RobHx8nnUnw4MFT8lmxNlv1Nj3XZ2FRrN/djTWmpifwUUnlRBk0g1/946/w3YB6Xbg9xeMpBp6K7wckEwnxvD+8TafdoeeJ93F6fJ5+d4ACLC+JtanrFtvbu3R7He7cvQrA6ot1Wt0O+wd17Kj/zVaXIIBMXgjA7t67i6JoPHv8Aj9yCcpndFbuf83inXscvSCRGdGlhSrfJa+39/2KO85ykblIqHnWZ8RFnxsXuf+8i6vQRZ8X533OhGH4ygfHZT/b3uXZfleucRLJnwspwpFIJPByL5CiHIlEIpFIJBKJRCKRSCQSiUTyvvLeiXHOdBc44+D0rIPUtxHJnFf2Iqedtz2gPBk3ctz+OWVDFDqtNp12k4PtDQCcdpd4cgiUGEHkbuC4Hq7roqvQ6wqhQs+JU66UmZ6ZB8AyQtIpi5XNAx4/XQfg7p2bqLpJIj6gMCyEGIrvETguRixBaWwCAD9Qyeay5IeEGMTtG3S6XXzHI1CFg8ufvvyGn35yF1MNIBDiCSuZ56DcxNQVEpZwYjFN6HVdzHgGVTuaQ5d0Ok4/ErPsbu+zcOMOoQJTM8Jh5aBS5qNPP0E3TAJfiER6LlR2N0mYE2xsC5FINmVTOdgljCxivMCn027zxe8/59OffARAOpXi6tI8+WKByAyGQb+HocHzB0/Y3hcipE8/+xjDTvLw/nMAMqkEge9Sr9XIZISQZGI4S1iaJQhCOg0hzsiXhum2PEYmJpiKHFUcd8D6i00WFoSgQtFMdNWg2emxsroj+tp3mV2YpVZps7cn3FNu3rlKGHgowFBJiKE002RnfZter8PUjHBUURUFO5VmdnEJgKGREkHoYllpXE84GilhiGHb6L5H4Arxiu/10GNpvG6V3p4Q8rRqO/hOm1RGtO2ECpqmENdTJHNiTWQKM4S6hufD1obo/9ZGl48++RDTCNF1sVZSpSGq1Rb/z3/+vwFYWFwikRowNhkjmRCuPu1Wi7jbI9QTqEq0/Sg+fugQt+KAWCjDJRPfjRGzxVo92DmkerhDrpCiWDpycVL56ovHmHGT5WVxzRvUsWybifEifvTOpVMGQRDjoFLBiIk1fOeju/zLb/5AuyHEWPOLS1TKFbK53PE60TQV27Y53DukVhHr0CjFGPRUtjf2ebEq1srcwhyTU2PE7CQAhwdlatUqqxsKs1NCRFfe32VsbJgbt65C5OwzOT1Ot9NB81X2IpedbDYDocre/h4Ai7kMQRhgmArTk/PRdA2o7W/QqFXIFkrRHL4uErmMUEXwbsILRRFtv9q88or48HxR4+VEI6frv7ZvK8d3fev9+TwRiud5x0Ku8+b0zPZOjvv/Z++9vuNIDnTPX/os76vgPehte7VRy4xG945GM3fm7tmz92X/wvuw5+zLzhmNZmTbqdWWTU+QAAhTKJR3Wen2IRIgCAIg2d2SKHX8HrpRWZGREZGRUXUYX31f+Oj/yqEyh+tQUfZvQQgEhCjqMdcNH/vf49cnchaLBIUnj8cjtzaUJ8t+24ItieSbIgU4EolEIpFIJBKJRCKRSCQSiUQikUj+2lD/0g2QSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUj+VnhhnHFO+iX+036lf5Jzwje9/rPEvjzzNY46GNXZa3d4ePsang/ptHAoIcaYAAAgAElEQVRUGVlDnGGAaZpYltBN3bp1h5vXrvPqK5dwI1eafm/I9OQ0qVTkZuP1KU9NEcsV96+ZTsRoN+ugWJEDCazcXWdmfgI8B8sU9fthiBL4KIhIp3a/h9PpUd2psbAknDkqhRSaqfNwu0qUrkO2kKbZaFIspNibVgoKQeCwsb7F+LhwXvF9BV0DI7KOsBMpPv3kCxqtXX72jz8FYCkzj2HE6Pa6GKZoRzKb4PzlLLu1Bp9++jkAb77xMmfPLJOJYoVCVKZnZ8jmMgShG42vLloShLgj4RwxPzeJEYvT7/WZXlwAQNc0Ws1d2k0Rp9VrKOhqQGUsS66cA2Bn4yH9zi6+0mZ2rhyNdYBp6OgmRKYrmJrK0vI0ii7G2dANArdLo9Hk4YZwlnn11cuATyKuEyKcfQb9EWE4whm67O7UAVg+u8Bw2KM/6KNETjKuG5JIJgg1EcV1++4aC/OTKGqIFt0PFZ8w8HG9IWYUg+WPfNprf6T24H0SyVLUfpdkcZ5EWcQpJQwTVU0RhkPCyKUmRAEF2o0O1cgh5qXXX8K0DLY3tqlurwAwszCFbcVYOnMJgMbOLp9/foef/uzHGJHTyNaui2kr9DqbLCzMAhBPxFAV0JSA0BeOSYqiYdgJVF24EmXLeRwnIJHK7Dt/rD5YR9cVbDvGYBDNp1iSsmHTdyARufGk0h6BB4GS4fqX18V8il9gYWGGZFrMnUZ9l2azi+cq5AtWNFf7BIpGp9XmxvVb4rzUS/ihSqGYxIqLMYuZGTzHYxhFwlmWST6X5vrN22QTYlKMRi43btZZPjVPzBZPZb8/4osv7pOImRQrYj7lsimcgUM6JdrQb9XQrSTpRIy1FeFyZVsG07Pz7K7dJx3Fbmm6mAvPi1jenj3m7+g6TnCLeYo72UlRWsJ159td209yVNtzYNN1/Zmu9ayRh4+5q3GEuw8hSnQPxO1Qnqj/WeKxREzV46/3znua883THIgkkr8U0hFH8pfmm0YgyTn8p+ffNj6VUVUSiUQikUgkEolEIpFIJBKJ5IXkhRHj7PEsm44HOUks86ybpU9rz1HXeh6USMygRNuuomKFMAhpbouIotU7t0jEUhixOJoponlsTUNTh4y8Eb2OEGzUtqvYtkY8YdMfCTFOLp3Esi3CQIhNDMVm6HiovsvuThuAZCJBuTJJYewSYSTimV+cpdnqE0/4WJbYzNd8n1w+w3DYj9oQosUUzp5dBlW04cKFBYLAY9jtcPrCEgBuf8T8/AyWrTHsC8HG+oMNSuMloM716/cAOHtmAUU10WIJAE6fP4t55z6XLp0hnxOiF1U12N6u0mo10CLBSSIRp1TOkEjE+Oef/51oWzzFl598Tn/oREOq0O90yRZS2AkhZhgOuti2Qr8/4pe/+A0Ab3zvHEk9Tn/g0dptANBqtNjd3eD06WUAfvnvH2DbOrlMHCtq67Vr91laGKfVbLL+QFxzZWWTV16/TDaTYGNtXdxbLSSfy7By864YG1dlfr5EvlDmh+8KUVIiaRH6AfdW7lAqCyFGo1Hlzu11TNOgWMgA4Ps+uVSciclJWk1xLxv1LouLs3h9EbHkO20IK7jeAC0Svfi+R+i6BE6XXl1EIDn1+wSBw/iptzESIj7JsNOASaiJuYNvEKoiRms06gHgBSZhGNLtdvbniWVbuI6DGbNptUVk161bDq++fpWrr10EYHd7F83Q+fzTL7j6ktgkSWeLrD24z7XPrrH6QMSNvfX9l0hnkoSqjqpF7XcdnF4dw4/mtKFRLKfRTQsjEqblShWckcvUZIWNrWr0LCQIvIB//+VveOO18wBMThZRdMgVMly8fBkAJfAp5ZO0Wy0AspkMvdYD0uk4frQsblarzC3OMjUzzk5ViKM0zWJzbY3K2CSDnnge3v/db5idnuLilXMA1HZ3adR7xKw4rhdE/c4ynU0SszVuXL8NwMgL6bSrTI6dpbEr4tI2t6r4oz4Xz50GQNctRs6IgADPFxFkrq9iJjKwtUmrLs7LjU2ihicHTu1HOh0odDhi6oizDr1+cr09ao08LlbwcPnHaj5GIHKiUPOb6SOfaOPh6530GfLE583BcVWIlDfsC22id44oqzw2yk8Tyhx37NENfhSPKNr5KAYL5dHbYXBM44/om0Tyl0CKGCR/Tv5UYo7j6pXz+9tFCnIkEolEIvnzc9L3Gfm5LJFIJBKJRCKRSCSCF0KMc3Bj8Vl+/Q9HbxY+i7vO8zo1PI9Dwkn1K4DvgTMcAqBpIRt3V2jVhJAhnasQi2dwvSGBK8qMRi7uyGXl9l3KpTwASwsTaPoMqUwWOy5EIpqqEYYBjWYTgHa7C6YOfoASubUEoQeqxud/vMbCtKir0elQ2+1y8eJZRs4o6ksAqonvC1eUYXeIaZoYlkGkiyCfyzB0XNJJC9UQF1hb20WlytzSBI1dIVyo1XZI5nKMj1fY2RVCklZrQKZQwHWFICifzBDP5NDwUSKxQc+BRqPJ0tIco0hw5Afw1bU7OEOHCxdPAeAFPhcun+Wr60L0Ui7lySQNPN/BsIRjyKDdAi0kxCOfF2KfRr3PjZsf0+s0UKIBsuM2b771PZJpIYT61/+zSHVjg3Q+y8TiHAA/KRfZWrnHYq5IiHBwqUy8wv2VNaYmx0kmU9G99YjH06SyQlBz++YqI3eAM4T5hUkAYlYKRdOIxZOk0+I8RTWYm1col0rohhh/RTews0UGTp9UWrjEFErCOcmOicf31Pl5UskcnuvgjUS79HgGZ3eFwfZXGGbUx9IyVnqC0EgR+ELQUm106NU3GZ+siLYbAaHn4Yzg04+FG0w2l8H1AyanKpQrUTlFxQ0CkqkEb37/9aj9KmE42n8eKpUCwbkFFEVFi9x5Wjst0pk0b//wLf7zl0IctVOdRlM0NFWhGwm5Ri5MTU8Q+ELw4rkdkukYYaCjROF66UyC6paGYerMTAmRU7/bwWfEa6+cQ4schxRVp9vpsrO9sf/MxBMxLNui2RCCJkuHYqVIq90hlUkCkIzH6NbrtDp9BiNRF6HHxSvLdFpDpmanABifyHP39gNWV1ejueozOz+FYc6AIh6aZr3Pzk6NUiGPaQoHq1Ilx+nFBSzbpFYTz0y7OyRuVxiOhBgursQYDUZ0+86+w1EunQB80qUxGhtCzJcvjROqR6cO7q9PyrcrsnhWcaIo97hgZ68Zz7reH3fsOIeb5+Eo8cvXZb8NhCjqEW0/2h/t2cdhX0lzXH+PvuYjLU70V3i4zxxRl0Tyl0GKFCR/Sl6UjaGj2iHn/jdDCnIkEolEIvnT8bzfU56lvPzclkgkEolEIpFIJN8FXggxzre1AXici8LXcdp5WnzK8zUMAsBzHQZt4cRSXb1P4Ou0umKT3/HqTEwl8EOF3/3m9wBsbG4xUc6ysLBMIisEAsNBD8sy6Q8HmLpoqxe4aKGGqQvRRSxuM+h1iNlx3n7z9ajhAYQByYROPCHEALqVpFAIuXbtJuNjIrbowYMHXLpykUFPuKJ88P6HvPa9l0hmk+iauF7g+5iqx/LyPM1OJOJRIZ22aew2uX93DRARTh+8/yU/+OFrbG8JB49SaZLPv7xHIRKqjJw+D1Y3yKQTnDk9B8DHH/2BcrmA6zgoqhAzJBIJHGdEo9lhqyrGsFTMoZgWp88JNxsNhVtf3SGTraCqwsElnS+iaTqe55NICrccz/U5d3aRMBhhxoVop1PfJZ3NPHLiSdtkvBy5UgkjJs7L6AarNxVSaYN6Q4hGbNVlfn4Sd+Ttu9I4o4CtW+sU8kI8MztdYGp6BlXR2d4RbjCt7ohcNs7C/CyeJyK1GvU6+WwSzwu5decOAEsL42zXOkxMVPZtTPwgwLYTJDPiemE4wvN9PLeP7wkhV9AcMHJ2iFXmMdNiXENFwcdi9c46ti365PohvU6HbluIVFK5NO1mj48+/pLLV8+IsbAt/uPf/oteq8memcYbb73BrRt3qDe6vPnOqwB06y0MU98XIQGUJifo9/p0W+Ke6bpDOp7nV7/9HeWKEBVtrVfptQfEExbOSDgOffr5Lf75f/wU2xb3wwsNYmaGwHVwHTE3LcPg7LnT6LqJ64j7MeyruCOP+eUl1le3ALj2+U3GJ8eIJe395/vf/u0/mZoaZ69DscQkaw9b1OstJsaFaKvZqDI5Oclo4LBTfQhANqWQKSRIZdN4kWAmkcuRSSf3x2Y4CnH6I1qtPrWqaINtx8nkstR2WkxOCkHWg9VVzPEKu1vb9CKHHtO2sez4vuip2+tjGCrZXJpktAYkU2kCN8BOp2ntivnk9PpY6QRKeMJaFx4Tlfct87ck6Pja0V2w74zzp+GA1c3Biz5xvScbEIbhn2UeSCRfBylGkHyb/LVt8EiBjkQikUgkkheFP8d3kOOu8df2HU4ikUgkEolEIpFITuJoKwWJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUTy3LwQzjiH+bqRUs9b/1E8rc6D7jvHRWUdPh4qKp47pLq+Sn1TOFlkskVU3WDgirqc4YBBv4877FPOCweMnarPex/+EdWwmfCEU4YzGFIspGi3uyiqiDLKF5P0Og75gnD0ULWAWDKOquoM+8JF5OHGNgvzU0yMFVh7uAHA0Ak5c2aec+eWwReOJLvpDL/85a85e3oBgNdfv0w2ZaOEAb4rHFwM0yLQTDbXNglD4Qdy++YdFEXjzLlFZheEU011t01nsE0QBIyNiRih3//+A0qVLMWXLgHQbDUxVZVuo0mvJ1x2Llw8xbA/ZKdaJVsQEU6GobO0NMOtW/d5/7cfAvDzf/k73F6PWCa9N9DU6k2SuzXSOXEefoCihni+z8TUOACWHmDFE1z7YpORK6KFrl49j6L67FmldNsO1z+7xlglT6kizgtdn0F7h7oHimaL++0HdIcDCsUspi2ccJq7NXZ2tpiaPAfA/PwUimGhBAGFnHCgseMJuj0HwwpZXxFRQ+NTeRQUfvfb90gkRTm0WYqFDJrvYMZEn0JCAm/AKHKDUQJA6+K26vieiF3CTJAsnCdEx3HEfDRjNoEf0O8NqZSFE5KdsFAmKyihuP/tbp/qdg0tcPnVL34JwN//6A3OL5eJx1KgiLr6jXWCYYvq5hqDrpgro14Htx9i6eI++r6KYpjcu73CzPy8mIcPa/w///sXvPX9Vzl9bg6AerXFaDDA90IyWTGH33rjZRrbNRxHtCtUXZZP6yhqiG6LZcsf9VFChVBPoNtiDuTKBsl0nNHI5eb1mwAsn5kjWyzgblVJxoXTzs/+4fuMPGg0hWNPLJUn8HZYXp5gM3pGZ2aWMMyA6fkxZhf+WbR1t0kQmth2DKLYqHa3T+jDvZV7ABTL4+Rzaey4QSpyY7p27Ta1eo/pidL+nE5lznD/wUM++fwWVuRqden8PMlkEt+NXJAcl16vx061w/mrFwHQNR3DjqGbCvF0FL22s8lY+hTKgSiqJ6KH9qKNlCfXwOPXvcNr5ZORSI/OPSpq8LhYpr3yz+LR8vg1D0dTHRUteFR81eEyT1wlOuc4h7VnIQjE+qGqauRAc2icj6j2uOiqo9nL93pU4aMIqxAIODgciqIQBkfcW+Xx+RGGJ38uSiR/DqQDiOTb4m/p19QH+yKfEYlEIpFIJH9qXoTvG4fb8Lf03U4ikUgkEolEIpF893jhxDjPIsQ5WPakTddHm9JP32R8lg3Yw+8fJwg6fDzwPLbv3KTbGpIrCFGKoqmMRg65nBARfPnZPUwNwtAlFwkSLl+6wPmz50jEE+xURcyTYceIZZJkSwXu3BZCElQV3TBxfXHNeDyJbujohkYYik3+pdPLaCpkzSSqJQQCQ8ejutOkmE9gRHFAZ88uUirEyeeFWCORsnBamzRqTTa3hXAhm8tRHp9iY6eL2xeCEC/QaTTrvFmsMPI8AJLJOAsLM2hGnCDaRP7pT16n3W7z4P46AGfOLNNp9NCNkI11IUrRjBjJlEmvO6BQKQPg+7D2YJ3p6UkWFoSww9AslJhCqyUER6Gvcv7iEqZtcefWXQBatRrnL53Htmxu37oPQLmYpVROkC/GiFli/E3bIAxDVF1spo+GAwa9AbXqNr/+9/8PgJhpoes6VswkkysAYMdT9AciSigIo35nUrz82hVUxOt2q4mV0jB1HTuVjWaFS6NZJ5vN0Os2RX/0EhoKr752iVwxKucFqLYBwRBVFfPPV0Kcfp1+W8yJTGmBUa9NEDrEcrPRPMniBlDd2iHworkYBMTTCS5cOUcYiQaGzpBBaxdDF20d9jwsrc/yXBbD2xXnDXejyC1nvw3BqMn8TI6R06e2cT+6Hwa7zQHpdCKa4wl0JWB2Oo+hiji2YjHDK69fYKySQY98uUpjBR4+WGV3t869e6Kus6eXGHkDBpGYbH5xBm80QtU1zLgQs6hGkmBYZ9hrY9qiP5quoxo6pqZw7oKYJ6ViHkPXmZjIEUZzU7GSVLeqZKLItlzG5OKFefwgYGNTjCsKeL6H47g0d0VM1edf3GdqZpL6lkm9Fgnr8gX6PZ/RSPRx0NnBKmfRVQMlKeofGy/SbvcplnIoihDRDYcupVyGH3z/Tb784qtoPolnZU+04QP5QhHNMNH3V+uAIPAh1EmmhHBva+0uY3MLoD1a0o8SqRx+79sWYBy1fn+d9fek9fiocif19fB1Tnp/r67nEXqeJOx5FkKeFO0cd43nbZco/0iwE7InOHokxjlY/6PrPPNlJJJvzIvwD/6Sv36+C5s0h/son50n2RuT78J8kEgkEonk2+JF/05xsH3yM14ikUgkEolEIpH8tfHCiXGeh6dtTB7niHDURu9JQhtVfZTm9SybocKfQCEcCVePnfU1us0eiUwRRRMb8dtbu3i+T7/bBqCUz3L79l0WF+fxo534ZDKBoWqM3ID5U0JYYBoWquJCqLG8vCQuqA5Zf3CbnCs25keWgWlZZLIp+pFY5rPPPuPiuUWSqSTppCiXScP9lRUULYUVEwKduBEnGTNQFNHn/nCElZ3Eaw8ZGxfnxeImQ8dlp7rD2dPCBefU+RyJdJxkzEQxRB8LuRTOwGPkOxim6FMqk6VRazEzK0Qjiupx595XqJpNNisELuMTZUw15MHKCqWxPACe62NZNrVqnep2FYC33nkNNIPrX3wGwOb6Jn/3D2+TSSXZ2RRlttY2SMVMcmOTGKqY7qm0zcb6A+xknFJZiH0UzwFVZ9gVzjKeN2BuYZ58zgZP3Mft7U0Gbsj86ddRItGDbhmkjDSDvoOqiz5qeoxP//AxlYkJAJxhl6/e+4J0Ksv5C6fE/R7LMz87h6oqpK4K8YphGiiqihl3CQPhLqMZJqgG/XabuBYJSWI2qgp2QoxXc+NLdDNLsriMF7U1RME042RzAaPIXcb3fGLxJEoIo4GYd06nRWd3m0Rc3P9+s0s6baGqKrNzov3d/oCtzTqV8RKGJkQvzsAhmUkwUYlhGMH+mGXiIcOOELMoeo9YOkvctnEGYlwzKZ03332NYXdIr7kb9dFifHIG2OT27dviHiXjlMtlSpGjEorJcOCg6iZ+JBLSLBvLTGObKl6/DkDgKoT4mHaGmbk5AHrtGp6roKgKziiMyg3Z3myQTu2JDzKksgnqu23OnBdOP747otnsce/OOuWKmPsXzs+TzaVxHJ9yJR+d67O5tkM8JspMzE6hqBo7WzskImeciYkxpiYNvvzyGulont+5e5+F2Rnm5ya4eOk8ADdv3KbfH/Dyy+L15sY22WyKZCZN4Edin96QmGLQHg4IIwFev+8xcgZY8dQB4cXjnjLHofA8TmMH18nHhS1HnS6ceoJD5+0dDx8FJSrHVACEh0WWB3olThPipYNCm2P7su8oc8y1jm3DgSrCx4/ttUc54tSAZ3DZCRXC/QuEoDx5zqPPLGX/nKMbeVCoBHtCnMfHZq+M8ui/e4Y7yoF2SCR/Bl70f/iX/HXwXd2U2eu3fI4kEolEIpF8Hf4av0NIYY5EIpFIJBKJRCL5a0N9ehGJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUTyLLwQzjgHf7n/rDEcx8WTPMt5J9X3vJEjR7YhDHF6XdZvfAFA4PpkKnP4oxGdtnAk+eD9D4jFLBZmpwHY2NhmMPIwrBjVbeEs4gcjTp85jUqAaoi4qX6nR7fTZqe2gWGI2zcxlWd+tkS30wcgZhmoqsKoP0CJYnksNeDB2gaarnPxgnCzcbo95qZKaGYKVXvU73q7gYG43icff8b8wiyBZqJF0i3d0Ekkdf7+v/+UW/dEVFZ3Y52L5YvodozQ24uNClhbW6XZc7l6RTh9GFac6YVxRtHU++jDz3jpynkMK0GzIWKwfvXL/+TCxXOcuXCKek0cu/blXS5cPEUqbZNLTwKws7NLbbfFwtIcAK+89hKWpdPvttjYEs44F1+9QrmSQ1ENeCDav73TRg0Des0Wo5KIgzJtk257gOcORaEgpFhKUiwX2IpiiyozS7jDDv1ul2RGRIm5rouqanzx5U0mpyoAlIsp5uYqGFYMAC1jEbPj9PojdEv0ezQaYJkGfqhj7cUuaRqe66KqCopui/kVjlCUEbFkisisCMUb4ocB/cY9UVdY4H//vx/xDz9NUiqLujzPR1cDYsk0iYw4cXujytq9+5TyJooi3HLwIR7T6fUH4n58/Dmvv3YGwzAfmYcoITu1OvF0ilG/FY19j8uXF9BQwI8cgVBIxjTu3REDPbswhdPxCEOdZkdcr1BI4fWaJJMFLEvMsZ3Nbd77/Zdcfvksi4vCAerOnVWmZ2eJxcU4+F5Is9kmmU3x4O4aABNTY5DKYybiaLZwpQkDB683xO238YjislQDO5HGDwM++eSP0dx0qZSyJNPivACF0PPxRiP80TDqtk/c1rh4cZGbN1cAKJWLxGIxdG3EHiNP46sbt5iLnITu3BqxOD/Bja9ucvqMcELa3HpAoVBkeqqMpgu3HN91+Pzzr0gmjH0nJMvQsNJxem3h/jNezuN7AYaqMxyI53vlwQYXr1xh6LjUdkXEWUjIoNPdn0uiA4+HHx10BNtfs8LwRA+Uo9xmnh4f9ajGR+v00fU+tnY+uYwedVhcZ7/5+5YuJ0Y5PXlMOdYd55njCvdMak6s5+s5zBx2bzvO5e2oc076vHrax+Xzfp5KJN+Ev8Zf4kpeHOQvoR8hHXIkEolEIpE8L38L3xsO90F+P5RIJBKJRCKRSCQvIi+EGOfgBuDBTciTNlcPCmeOK3fceWEYHhlVdZJQ5yge3/h8lF0y7PZYu34NdygECHaqjD9ycL0QP4qaMXWNfqeHO3IB0AybwO9x5/YtanURLeWORpw5d4ZWo4EdE5vspm3T6XZ4sHafhcU5ccyMMxr4tHtCeFMsx9E1FS9USESxQpcvn6PdGzAaOOzddtWw8X0fxxkR9qJ22TF++5vPeet1IZ557c03qO/UKE9WQBNt2F75CscNyBdjnD8rorK6zQb97oB21yGbFuKP9Y0qyUyKTDGJF0Ulrdy6SyEHZkKIWUzNoLnboTKTIl8W8T1zs1PELItOq0d1R4gScoUM/b6HqhsUJ8YBcPpDGvU1PvrDxwD86//8JwxLQ9EN5udnAEjGLDRNYzh0+OBDIcQoj+X43utX+PC9T8lkhGBj9tQSaV2BIA6AYXbp90c06l1WVzcAmJmdw9At7t/fYvlsBoB43CIIXS5fPrWfHGPFc5TG4/vCq0HPZWp2kpGrsPpgEwBvlKBQjuN5HvVdIRyy4ylStopqBhhmJBIZ+XjeAN1IEuzNsWGNoN8iVT4HQKOnUMjnSKYKqJYQeoz6A27f/JJEPM7k1BQAH3/4EQ/ufMW//PwtbDuKpeo7bGxuUSkXAWh1h3T6ARPTFRKZIBoLkx/NXULXdBrb2wDkx0fEcjm2t+sk7Ugo1u4QNyxCVYix+r0+u9tV4okk21UhJClXSuh2HHSNSH+CZgSMjedQVQUwRf25Apqi0B9E0VxKyMO1LfL9Ie2meGY8r8bcfAyfED+I6lJC7HgeZ9hlc+2uaL8aEEvnCHyV+UURQZVOmDSbLXqdXtRHDd2M43qgRkI0zxlwf2WVcmWaxXkhmqtubdBUFexEnPv3hBiqUpng3R+9g23rUbuGGEbI9968wvVrt6Kx6LEwO8vW9gaeK+7j2VNLtNpd/vDRJ7z77hsAFC/mUcKAdkusAWvrVXa2q7z8ygVSOfHMzC/Moakhrd06RhShF8tlcfo9sQztaUWeVLFwmAPFj+TkOL+99e/whZ5chx9LVQofxUs9qulxEclja/pjEVGRwOUYcc/JhI//ddw48WQK1MEye/KlJ3p9sJ0oUXTWyeMryh4er8fFPuLY8dFVhz8/j7zGgfE8/Hn51BgtieRPwN/CP/5L/rzIzZWnI0U5EolEIpFITuJv/TvCXv/k90aJRCKRSCQSiUTyIvFCiHEOctLG4FHuDIfdAw5v6B61YfltuQwcdU231+P+Zx9AaJAvCaFKQMDQ6REE4LpCgaAqCvG4zU5NiBu8IGRmapJPP/mMelsIF/7X//qfOL0m2xsbKKoGQL5Q5re//YB8NknMEsKFu/dWKOaSLCwLxxg91Oh0dkgXx3AjN412u4muqmQnCvsuHPVajVBRGToOk5PiXCtm8/Krr5LMxffbORiF6JqKkRAiheL4LNvVJoYew4gcdQIlpNWoc+PGCu+8fQEA07QwLJV8Mc0ffi+EMOvrD3nt1YtokRjk7MVzrN5bIdHpk8+nAbh89SKeP2L1/iZXLgpnEcM0UXWLVquBKbpNMpllYWGWXlcIF7787BovvXQJ1w258ZUQYiTiMcbH8wwHQ+amhHPJ8plpCuUCS6eXyJWEwCHwXdqNLkYkXtqpdun0eoyPlZmaXRT31nHJ5FLMZMcPbLwrhIGBoiqYMTFmrt+nUW/R6wmHlZm5WRTNx3MG/OpX7wOwOD/OOUlXX9UAACAASURBVPUsa2vrXL5wFgA7HUMNQ/ygT7cnRCKm4qKrFl4wQgmFCGXQr2PYeRRVCIlstc6phTE+eO99CiUhqpmcneKjj75ie3uN//v/+icxrqcqnJ/PYpkWezY7mhYwNTuNFQ3qW2+9zcT0GIlMDs0U91tVVbwgpFlrU54WYpbAHTJ0AxbPjaMh5pPnB6iazsTCaTHnWjW0ZptOo0anKxx16tVNFCNGoTzOcCAEWolUnlzBZeXuCuPjwl1oYWGKzY2HlCtjAEzNjaNqBtvbNbrRefVWl/HxKe7duU67I+bAxsYqP/rRD8iVxpmaKgPQ2lll1FpFT1coV/LR3IyhmTHazbqYX4ZFp+PQH/oomuh3rzckl8tjmBquI9ofmkkyhSzdzoALF8TcDH0PPZbCsIWLz6DTRNNU2u3B/tqwuDSPGdPp9x1WIjepqakpZuanKRRzpNNC3BWGI0aeRysS45i6Tjqbo7rVIJYUc7VYzKOpKqlkEsMU93HkdHGcAc/LtyPDeH43lf11nMfX78MoisIT3j1PudxR6/bXcVH7RuzpaZ5Z6LJvQwXsCU2D46s/Qlxz1GuJ5EXjb30DQPLtIjdSvh4Hx00+cxKJRCKRSOC79Z3gYF/l90mJRCKRSCQSiUTyl+aFE+Mc5CSnm4NimacJeL4Oz3LewfYErnDwWLt7Gz/QsONpVlZFtE0mmeDm7duAwWRFbKjHkzYTlQqxuBBBWPEku9UaI9djaWk2aoOLNxwwHPTIFYUoYXNji0Imx63bN6mMCeFFqVzE0ANCX4g1fELW15qcyU2gRrc4lUhg2QmMeBLLEqKBarVJIpGgXDIJonIrK/eZnp3GsoTQI/SGxFJJdhtd4iPR1i8+/iMvvf4q91dWWDolxBmFQpZBt0u5lGNzTTjJdPqwsDjJxnqVqWkhsjh9boHBMGCnIcQNs1Pj6EqIoemsrYjxKldKWIk4p88t0W52AFDNOL4/IvThg99/BsCrr15hYixDzDwDQL8/5Nb1ayydmuXyS8LZ5w8ffMaFCwsMByNqNSG8GJsskUjGOXdhASKBy/27K1QqFZJJIYookuDmr98nn81SisZZUy3a7Qbv//ZjsnkxFm+/8yaDdoue41CKiXENfB/D0EimhDgnVAJCP8AyNX7y96+I+5FKYsUSnL9wmnhKCJNUwyDwHAJPQVFExFUYtBkOG2iKghfNt3juFL2+y1cffQ7A/KkZOgOT37z3B155+TIAy6dm+MmPX2VncxJNE31UUIR9h6ph6KJ+z46TzJXpNIVoa3wuhhnXebCyxuySiIxSNQXPcdnaqpIpilgv3bBIxjRUVcdzRf2GquMHHkRxWul8hXRhDG8wxtSsEEJtPXhAq7XD2moN8cTA5OQ0Gw9rnD13ht0olqy2s0sqld6PDXMGA3RNQdNgcXkOgG67R7W2w/T8IoEvxmZ2cR7VsNmtbjG+IJ6jdOiwc+t32KksxdnXRZ90i1hCx0cIwGrVGslECqOr4UXRbulSmeRoyMZ2k/ExIeJJJAeoiothKgwcIUJKpmI4wzaDvhAJ7Wy3QPEwNZXxcSEIChSNwXDA+EQZz/WjnmsoQcD9u3cwDCG26/faTEyME7PF3DE1Hc3QmJwaI50TbkmDYZ/RYEQuk8YLxDU7LQc7YR6prvk2JSjfjqDlTyyKeabqI0+gY8o+Gbh1Qk3HudbAkW5Ez9a2o69z1A0+1uFG2A89NZpKIvlz8V3aAJB8M+SmybeHdMuRSCQSiUTyXf4e8G8bn8rvlhKJRCKRSCQSieQvivqXboBEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRPK3wgvtjPM09hwBTnLQOSme5Kgok5PeP7IOBUIvYG3lPgA7mxtMzCwSBCGqItxGQkLyuTybG5t8+eUaAPV6h9UHD/lv/+3HANgxm1ptB90yeenqRQBisRjYcSZmNe4/eAjAzPQ0qm5gJ2KMjQnXjXw+BaGL7wmXDDOV4czFC6iqB7ZwuBk0B3QGXUpWDN0SLhzjMxME7oiVOxtsbtUASKcTjE9OE7OiMTFjTExPMHBGqIqITZmZn2dnp0a5kicMxbHbtx5y/+4t3vnxu3wRObZYyRSe6/P7335ALiPaMb+4QLvTYzAUkTpz0xMYqRi6ZTA1K5xYDF1HjyKS2m3hjNPqdolZFmGgUCwLl51qtUo6m8KIHGn8Tp9sJkXg+2Qjt5nLl5ZJp3M8fHiPi1fEuFq2TeA5+KMB+3q0UMHUVfaiYWIxhXfeeYkb1x/geSIyavHUIukwyfLpJYY94eDiuSNiqRSeP+LzPwjHnuXTp0hl0uh6FOHlhSi6jWGpzC3MAaBqFmEQoqo+qiraEPg+hKAbNqorxmfY66AqHr7nYWZno/mkQwhffCXmXN8JeON7VzhzegrDEOMWej3wenz26adkMy8DkEwk0GM2sXQO0xYuKwkrQ6/noJnCDSaVS6KqMLu0tB+B5Acutq1z+ep5/NDfHy/fD0AJ0IzIESjwMXWbYK+MohAGAVvVFvm8cISaPpUgW3vIwAlQzQIAX372OafPniJXyBJPiCVpe7OOougUS8K5RlPFWJYr4+ALt5w/fvQpQeCytLxI4AuXmnxpkkG3Rb3VYdRvi/mUyFNcfp1+9TrNdRETlizOgx7DFbcW3wmJlzXmTy+gqZFL1PVb+J7H5HQFLRDj0/cCnMGA6k6DWEyMdTw2jqrrBCPRxq3NKql0gjBuUiiKPm7vNBgOHDbW1zh7TsRbDQZD1jeqzC2fYX1jF4DbX13nB++aKIFwG9JNldmxcTLFMlbkltPt9gh9h06rRhg5O/VbNXIFEYt3mOdxednjkdvLwbMOO7M8vv4ejks6eEw5UM2zO7WET5x7XJnH2rXnSrP38ihzmvDoiK79PoRP1HpsfUf18fELPY87TriXVHVM2x5v38HrP6ohOFAm5LDm9lgnnSPKSCTfFt/lX+NKnh35q+U/HT+duCKfQ4lEIpFIvkPIz/1HyNgqiUQikUgkEolE8pfkhRHjPMsG4bPWcbCuo47t8U2utX9NL+Dh7bv060KcUazM4PoaQTCiUBTRNjdvXmN6rIJOmYdbYsjn55ZwnQEfffgxAFeunkfXdRaWTuE4YoPdHrloqhBpTE0KAUo+n2FjawMjrpDMREIF0wY9gd/vR68tVCMgCHV6HXHM9UJufnUbZzSi178LQKGQwrIT3Li3xuTUJABXX77MyHEZDIQYxDB0AtdBC1WMaLbMzk/w+999TKFcoN4SYpnBoMfy8ik2NmqMRW0tVsqYMZ13330dDSGWWFnd5NLVl+lFIptep8/czByGCc5QiCwebrSpjBexYhaTUyKeywsCth9usLu9gxkXEUuJZIV43KTbE229dW+N+bkp/v0XH3B6WQhXDNOm02mzeHqO+q6Ixrrx4TVef+0iVizOcCQ2rmu1XdLJJJop2mlbNqlCHjOxjeeLMkEQoGoKcUsnHhNxTZ4/xPcN3n//Uy5dvRqdaxD4Hm60CR6GKornoePhu0IwpRsxwsABJSSMIpZCNSDwXQK3jdsTkVq4fbASWIVFNDUW3cuAbqdHLClezy7OoVkGCUPFdaL77XTQVZdLF06h7OmNQo94doxYugxa9DwQkEiaxGNhNHd0FJQoNkkIUBQVVNVACQIIhNBG003CMEBRDugGQh8/hOFAnKfqYNsW03PzKJFSwRt1yE7Mo+/u4EeKgnQ6xo0bt4gl42QyQiQ0NlHA0DWioUfVVJLJGJplEvpClHLxpfM8XF3nw48+4pWrZwFwhh7NeoN4OsFuTcyxzu5Dls6fI5ZdpHb3F6LCUQOjsIxtiFiymbkC3shhWOuimOJYPJ0GRUXTbUaDTjQ+GZIJk2yxiDtoimOGhW7FULri3jZbTRQF6s06iiJEYblsntHIZWcnwc0b98Tc1FW2q006vSG60Mfx2huv8Nm1W5w/Mx/NpTSoCr3uDl4UE9dqtKnvNgkChbPnLgFQHI/TbVepMM9h8cXeOhceUHA8WvvCJ1Q6ByMAj5Lw7Nd3wpr9tYSNTynztPX6YJ8UlAMtD58UXh4pszk6cuqJNj7X58Y3/4x57Nr7tZ4Q0bivT3oy1uo4caoU30j+lMiNAMlJyA0RiUQikUgkkm8X+f37eGRslUQikUgkEolEIvlz88KIcQ5v8B48dhzHbSA+yy/+jyrzvBuSQRCwuXKPVnWbZEaIM+6vblAoFCmUCrQaQqCjuCGjQY/Ad7l16yYAw5lJLp0/i+OJaw56PcbG8jRafdrtSNhTKNDr7pJIxlEiV5p2q04yHseKaRiG6IPvDem1eviuEPGMnCG2aeH5CrfvPACg09ohV0jRaTX4/NodAEqlPG++8xb/41//O5ouXD7cwZAP3/uIK1fORXX7fPXV57zx9pvE48LdZtTrcGp5GctOcfvWV4Bw1NENhQcrDzh/WTh0mAY4A4ed3RaFbAqAs2fO0qrvMjEdiWw8L3JZCRkNhRDGd7r85r9us3xmiaWFaQDUwCefT1PK53A90U/NtBgNewx7QgRx9eo5VL9LoVRB0YVbS7PZJvBGjE1WMEwxhi9dPYNqGKiGQmTEwuVLl2m2uqzeWwdgcXkK1YuztbHFy6+ceXTTNQPd1hkbF4Kjbm9Ev93nx3//E0aRm42uqow8UAIhili9/4ByuUAmncQ0RbsUb4hi2AROGz8ae9DQNRXfDRgOqwD0Wi2ys++gajYYYvwJHbY2dnj9deF4o2sKtZ0WJgPUQFi9DAY9nOGI6ekxzKRwpfFCFSuRxzDjhMqeUCgAAlxPjL3bG2LFbTQ1IAj3xDgWYRDguw5q1H4v8AkVn8APCSOrkCD0UUKV3/z6PQDm5mdYXJhC1zQU1YjuWRLUIenCOG4kTDr/0hWqGzVqWzskksloDntoCQ3fi1x2UNFME9Mw8RD3f355nsnpGVr1OtWqcHZKpvNcu/6AmKFiRo5JqaRFp93H1OKMFDEWnWHIeHIaVReCJs91URSd/rDH3WtfAjA5N83UdJ5Bd0SrI9qaiFt06h3SGYNESjzzhplk5AW0I2HamfNn2Nyosbg8S+iJMez1+uRyORbmJ0mlU9Hc7NPuXufO7dtcvSLmmMIQbzTanyed1i4jJ0axUsSwhfgukbIJlRSpdAI9LspZhgq9IWGoPKEV2V/zjjj2/DwpbHkWjnPNOW49Pqr8wddPlA/DfcudfaeaPVXKgfe+KYqiHGsxdNAxZ98lJwwfE/7slTmy7MG6DvcxjFxx9g4pQXSfD598UICjHiu02vv7ICeNuUTydZCbAJLjkBsgfxn2xl0+mxKJRCKR/G0iP+OfDSnIkUgkEolEIpFIJH9OXggxzsGNvzAM92N7nuaWc9yv/I9yZTi4AXnUxu/h4ycJfcIgiqNZuUNj4z7FyTP4UVzT1JxJvdaiVq3x4O5tADRdQTNN4hr8/B9/ul9/r+ega6KuZrNHKhenWCpS2xZCjHZzh83NbTL5EqoqBAir9x+STCaYnpx75KiCi22a3I2irFRCas0Wp5ZPYZjCTcNxNWbKFR4+fMjP/+lnAKQzFu5oyGjQo9UWYoPSeIVUOsHGhmhDpZLj/IWLqKrBfmyMYWFoLbq725Qzov56q01mqsib77xGGGlLRgOfX/3Hrzl99hzr60IUVCiXiBk6vY4QLqDqDHpDGvUmsZioq1gqMj2/hKH7eJFIpFZrsrG+wezsDJmsECCsP9wk9HzGZ4RgJwgN3v/VF8RiCbIpMbVnp+f56A/XCAKHpfPCPcWO2RCE+MMemiHEGIat0Vxts7AkHHVSqTiOO6A8XiSdLQJgxZMMHZdiJQPRfbNsjZidRDd1RpGjEUoM0xICFoBk3CYRN8SciqaVH45QQ4uR00YPRRvUUKXffUgwbFNbFYKp8ql30O0coaagsOdKoxFoKh998AkAC4tTbD3cJGX75FLCNWan0aDZc/nHf/k5himOaZpBQIBPQOA7ezMaJYBmQ7gS/ecvf8XPfvZjEskkim4+KoMWzQE9OhIJeRQVL4pHU1WdIPS5cvUCANXtXer1NsVCBlV9FDnkOw5Of4CREKIUgwGt1i6JWGz/eQhUqFUb/PFjEXn2gx+9DcDAdSHcGwcVy7JIpRL85o9fADA56bG8tEgqbdEdCGFSNp3nk0+uc/bUNNNnfwRAs7ZKGCg4nrhHzsDHNn2K5RwPVrcA2NzawDQU2q0OcwtiXjjDPp/9/iMuXzmLEVlFKZpD4Ln7EV79fpcLlxYIgZvXHkRzU6HdblMslYhHjkZB6DJwWrz88jmWF2fEUGsmcTuJNxL3o1hIEYRxbtxYYX5JlBl0R3z40acsnZrjwiUxp9XAw/eco2OVDqyjxwkxDnJStN9xdR889/D7R9X3rK8PfzaAgu/76Ho09t+e8cyxbTmOZ3VW269PEZqgb+TItjcunPzZGBXaL/NtOBNJJM+D3AiQgBTdvKjIyCqJRCKRSCTfdaQgRyKRSCQSiUQikfy5UJ9eRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikTwLL5wzzlGvjzr2rK44h88/zgXnaS48jwpDr9UE4OG9W0zOLKEYJn6vDcCo18bpdQgGCt2uiC3K5lPc+Oo28UyO86dLAPSdIYrisdtsieuiMjEzSTqhU8rOA7C+uUMul2B8oki/J1w+NGOHfClPbWebTC4XHbPpdjt4UR8mJybYqrdptftkokicYvEMmVwW13XZWF8V7cosY5sGPiq3rov4rHQuzdLyHJ98/BkA129c41//j3/GMA28KAbL9z0CNc4nn37OWFFE9WysblKqZPjs82uMj5UBUFWFhYVTzMxNMzM3DoBuajidDqORGOfq5jaarrNd3eblV84DYBg6uuJA4LH+cBeAbntAPJZEN3S0yBVjamKSe7dXGbS64rx4jFdfvYpuaGiaKDPs93nze5fodRx++1+/B+D7P3wbzwnptRoUS2LMVCtOsVIklYhipDQTK3S5dG4BTReate3VDZrtPjs7q7z+ve+J/mgh3baD5ipYcQuA+yt3iadLVCp5AEpjRTRNRdd0wsj1KQh1At+HUMcdCBcUt3MPp9fAG1bJTywAYBeWQFEIfYV6VcSXxVIJls8s0mkLd6G5mQlK2SS16iZuIPpz7tIFQj2BGcvsu4gEgYfv+sAjhxRV1fFDn3RWxEO9+6N3sGwbRdUII6eXwHNRDYPQh2bk2pTMpqnX6zj9Lpom+pRO57l3a4V8RTgJzS9MYlk2qBojty+uh4tmmej+I1coTU1w7uJ5Bu02viuckHZ36jgjj5lF4UjTbA5oNTa5eesmb78rxj6XT6MEIZZlMFYpAGCqDpoep98dkkqJuZ9MJVmcnyWdy2DERT/purjuiL4rYqRu31rh6qXTaJrG5ZcuRPfIp9MakEql99262vUGiXSSVrNFLKEBECoqYeiTSAknIcus0Gq2CJWQxVPiPlq2zdb6JlYszsZWY3/uJ+N51la3OHdmMZr7JkHGotUW7Wq2HEK/jxGG1Da3AUglM1y5eJ50LgH+nhuTiM0LeTwW6SDPvMZxcH09XPbZ1uGT11uibKbwUW3B3t/CqWg0HDIYONSquzR2RQTZ1sNt7ITJ/Pwi5TGxjtrxOFbMQlHU/ZaK6kMiAzOUqB3BgbYfmfD0WP+e373mqLipw1UrivJYuZAnx/jR+4cqfCxnTHnyGIejvx6dtxfZFUavIyO3J855eickEonk6chfGb/4SHcciUQikUj+tpCf6xKJRCKRSCQSiUTyYvJCiHEOEwTBY68PxqvscVykxknxUt8Go5HD/ZsiEiefL6BZSZxuG3coRASZdJrA09itbnL56mUAtqstdK2LZRgEiuiboqo0W10y6TQAuqEQBC79QUA82tTP5TLYiQSu5+J7QrCxvDSLHTe58cU2w+Ew6pzBg/UtXo7igYIg5PLF83x57SZLuQwAM3PTBL7C8ulF/CjeStFt1NBD00xiSSFcWLm9yth4ifHJKQCy+RLDfh9NtRlF0TmbG3VUdObmximPCcGJrtukEin6vSEjV4g4fN+l2Wzw5WcdXn5ZbMyEgQeqvi/0mF+cwvd9pmcnUNQgasNdpqfK6IZOZawCwPhYyMjzCAMHvEgEEfjMzk9wf3UDgBvvfcClM2eYWVyCQEQnVTerTM1USOaS++IlFBU7buG6MXRLCGhUwyBfsGnVRERRMp3ANGO4QYjni36HikYsliCdKe3vk6thQK/bw0zoJCKhRzJTQtVA8YRQwjQ0QlyCEFRVXA/PJ/Q9wmBE2Bdig0G3id97yLDvUDojxkvTLJRAYWOzxid/ELFUV16+RCab4NLFOdEdd4QbMxmbqmBHwqFYpsjte5tcv/lf/PDH7wCwU93l+vXrvPvD7xHpZ1BRRJSZKp6PcrmAqhj0uh2UUAjAzFiCMFAJPJ9uRxyLZ9K06g0erm2ysCDEY71Oj08+/hLVFJW/8sbLlEpFatUGM7NjANgJExUdQxnh9MS4xhJxdN0gnsnjRmO2ul4lnbRYPn8agHa9SyZnUyiU+MUvfgnAv/zLz4nHbdB0FpZFVJkfwNq9NZqtJhOTkwA83Kyxub7O2z94nSB6jvKlEvfvrTE5Lubv6aUFOu06KBqGKe5RMlciZifp9QYYhngmS2Nlktk0zVorEjZBaIfoukkwEqKw3Xqdza02UxPjNHbqYv5OTTA2M0W1WqO5KwR4w+GAcxeWsMyzxJJiHQgCFyOWoL8pxH03rt3iwrll+o7Lf/z6twD8w8/+nqnJCo3dFj1TLOHJVBxNN05c554lourb4qR2CEGIiut6NLfXAbj/xYfUGnWSiQkAmo0G733wEbVqjVxKCOQ2qnUxzprF4qy435cun8dOGVy8epniuFizdENFNxJEyWhHa274evFNe/36up8nT5x1lN7p4HvRtULlcGHl8UJHtPVRveGB4gfLn9QHKcqR/P/svWeTJMmd5vfz0JFaldbVXa17ekSPwgyABcA97nIlz4wvyG/Az8JXNOMnoJ3RSCPt9m7txO7eHnCLPQCDweie7p7WqnRlZaXOyBAefOFR1WK6R2FwGMz470V3VVSkh8ffPSKjyp98nq+OXgj4bqIFOBqNRqPRaDS/H/Tz91fjsG76OVaj0Wg0Go1Go9H8LvlGiHE+b0FUSokQ4sid4lmv+yILpJ93rKf/PHMVkLB+6zrjoVrQL8+fJolASoNhJsaJ4oidrS02t+4zCNW2iVqdZLpKrdGg1VauGLV6nVzeo9VU7ianz56h1+vSGwbYvhJ1lAoeD9bvUKpN4rlqqHKFAnGSUKuXWL+nHG5OnT1Oas3x7/7DP6i2Tp2iUi6wdvI0pWo96xekSYBp2chonNVLEkZjco7N8ePLADy4u8nf/s2/5sc/+TEAnXaLXKHEaDSguavEBlc/vsXUVJnT584cuU9cv3WTykSRxeUlROZuYdou4TjG93NHRg6m7ZITJpahnFLu3t5gOOxy/PgStqMW3f1CgTiJCUYBKUoYYdsW49jAdfJY2X5yHAIx3QMlbmjUJ4hlwnA0oFhW4qLlk6uk0qQ/HPHyKxezWgQYtqQxNUM0Vv0Iej3GieDqVVXTi69ewHAKmOGA/r5yQrpy5Q5nT6/iWoJuWwloqlNTzC/mEJbNeKiEKtWyh2GbR/M1JUHKlDSNkNkclXGESEJkmtBvK8cTy5CM4pjJ49/HsFX/kRGpcOj025w8o1xWarUS7739DtPTamwrpRxpEnKw38X18wAUrYCDgwGzc/OkWfE3HmwxWZ9hPIjI533VfCpIZHhkozEej0jTAMM0ufT+PTXncrB2ag3LEMzMq2OmRorvuJw6fZLGpHLCaTabLB6b4tyZ02p+OXlazRa727v4nq2uhckyrXaf6ckpTDPM2jIYjWJszz4SRw2GIcPhkFPnlPAqnzc5aEcsLs5w6oxyy0njACltwKRQUOct7DyGYXHCMUmlumb+zd/8HWkS0el0yPmq/wgbQ5gY2bXteC7BYEQwjvBySrQVjSIsy+TW7dvMLyyrWtfKePkChXKF3c2drIYQjEcYrhqzZvsem1u7FEpFlldVXwu1Kv3egF57hGmoc6pVi3S7LdbWjmFkLkG3bjxgfWOXWzduquOVq5iew8GdFn/xZ38KQL3m43o+mCGGpURCSRLhed5naju+Lj7rHvqk+87Rvqk8mvtJmnCwtc2v/u5vuPTWPwHgiJA4HJBYavxvPBjRPmgxXbY5ULdI6n6eVmfM7kGLYqJEPDfG1wj6LT749zb5hhJfLS7Pc/GP/pLJFTUPTdsFBMKyHpeyCDXtP306j7umCfH4tmed6xfhywmhshoe/vPU4zx5AuKJr9OnOxM9q09HxkC/61mk+baiFwK+m+gFjD9Mvg53nGeNvb4XaDQajUbz3wb9nvvb8/ebH+jnWY1Go9FoNBqNRvM74xshxoFPuw88Gh316GLio4Kcp0WgHG5/ss3frm+qvVG3x/76NpNzaoE9jiM27j+g3qhTyMQf1z/+mM5BG8NyaWauGPMzDdYWTgHw4PZdALbWt3AdD4QSenz00YdceOEcwfYAU6iIGmF71Go1IMYy1bm0Ox2KtQm8UoEzF84AEI7HTE00WF1RYo3JuVkKlTLLC4sMRkrw8Mkn15mcbODnDfbWlfvL3NICwTimtbd5JAaYXZhgbvEvcB0lnqhWKzxY38ZMI3KZUOK582dw8w6Oa7O3q/q/3+xgGha97oD33lERV3/04+9jGCZ7zSZLSyq6KhpH3Lu/QT5rf+PBOqvH5omjEeMsrskRYGLiFfPEmYvPQbvL3t4A1zUY9XMA1CcqxHHM0opyZun1ByytLGCkEYZUriWmAaNRQGf/gPJhjJBtQZqyu9ukmMV4Ofkiw4M2yeECu2kSjgcYQL6oXEtefPkFLMvg7376Nq++fF71YXYZZEwSDSFV/TeEwBDi6Ooa7FWyLwAAIABJREFU9oY4loGRmiRZv4j7GGmIAQQjVcNisUBj8U38yvJDXwphsPVgm8nJOoWc6n/7oEcSJxSyGKYoidnfb9PphIz2lLhoyfQJhkMWFqYPTW/wHJ+dzV36/Tavfu/lrD4GqZTILILsw7cvMxwNOXVqhd6BigirNZaw7CJEI8RhY0iEBYPBkIls0/TMFI16hWEWz/azn/0XXn75Ii9dPI9fVGKZJApxzRGDYUC+oOaTEBbvv/sxuXyOc8+rOf3KaxcZjEY4np+VQRLtHZAkAyZy6rxN0yKKU2QaIrLcnXDc59IHlzn/3BksS3VsaWmBUjFPpVLCcrOYKmGyuDyDkOq8LSHIF+eJRgOEo+p84/JVqrUaxVKdXE7NOUOdOsl4wO3bdwCYm5tnaqqIkb3uuQvP0dr/Fc3dbWayOKVrW03m5ia48NJpgky01e8O2N1tsbm+yeSsuj7cnMeJkyssLSqXl3/++S/odjqsrC4xO6tcoqKoTxxLHNdW9xAgHLUoTE1BKh4Nf8rq+4SrmHjE9yRNP0O889Xvn0/GVEkE464SIl5966f88h/+DYNBxNyqEsi5xQrN7au886tfAHB6wcKetXEsmzhW4kHb7HNzHFKfy9EfKuegne2AfHUW33MIOkog99Y/fsTV3/ycheNrABQLDRqLy5x87U+pTS8+1q9PI54a9fQ0kdGhwDAl/VT81OfxZEzi0wQ9RyNz6JDzZJyVUAP5rLe5NMukEsZDtzmBwWfKtZ5xLI3m89CLAN9N9KLFdwM9zhqNRqPRfPPQz9/fHL7IWOjnKY1Go9FoNBqN5ruL8fm7aDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0mi/CN8IZ50mHgiRJkFI+/DR/FlH1uGOBeOrrn+148NnH/CyiSDme3L36PqVKBcNWbh37mzuMxyGWaTLqK6cGQ0q2d/doNKqsHVcuDNu7HfL1SQa9NsWictjY2T1gcrJKqaza2tvdZ393B9MAkVksmLZDdXqWZNRl2FeuEr9+633e+NGPmZmb48qHl1VbW1v80U/e4Mf/4ocAOLkiOztNdrc3KFdqAJQqVSzHZf3BOqXMUWVjfYsH6xv0Ox0aEyq+5/mLF8gVilx67yPVB8B0PaLhiPpqGYCtnbvMl2ZJk4hqVbX1ymsv4Odsmrs71GqqLcOCWrVAKmPGsXL76XcHOJZHJTvea29UMExBfzDil2+9D8BoOOLFF05QruYZ9ZXTS6lap2UFSCnJ5ZXLSiwDhGEyHit3k/Z+j/mFAGGmyMy2whDgeh6OZZGkSntmWy5B0Gdzc5/FzGnJKrs4ps2ZU8fUmD3YYHKqjuP5OFn0k2f7JFHIX/35j8h56tIJ+rvYbh7LskmTzPXGEIhU0muqMesPRkzOThB097Fc1ZZpJIxHXWQyojIxo7Y5Ocx8hdQpkBm9YCCp1PKYjgdS1fDa1Wu8896HzGQxVXv7B+TyNfyCx8XMLQlDMLc0Ry7nH10rEkG+7PP8CxeO3FOCcZ80hptXbwFQqRaZmZ+mMTXB6/WKqo1rqzlpu5CqPhiGwdzyKlKmCPlwm+nlyGfXx5s/+gGWaeF6HoZQdd7eazMeDMibJl4WI2UYJqury4RRzMeXrgEQjoa0B30WlmbVmBk5VtfWSKKIVks5TgXhkIWFItE4wrBVW2kUMhyEyARMV533Sy9foD8IQFgkWV1JApAS01NOOUk4JsVgMAwp5ZUT0sqJU/Q6bTzTZXdjEwDXM5iYqmMagtdeV+5Co0GPve099vZvA3DuuTO89OpFRp02YTbvfc9EpBHJuI8plCtUpVFFCJPuwT4yUg5WBd9ne3ef5ZVlAP7kz/6YYi6LFMv6bntFTANa+21MW52jxwAvX+TTvjifHaf0NP+TLxJD9VnbnrwHyzhhZ+M2l//x/wbg5odvEdlzLJ5/g/0Ddd/8h//4M6LhA15ZU/fH88sFbBdMQ+Bl4yil4OQJyUe3BtzbU9vutUNcafHC+Rco2KpA+YkDtu5f585VFfXlO9e4deVtLv/mbb7/V/8LAHNrz5EvNzBM81ln+sS5Pe629qlapl8uIOzJ96wv+5pHedZ74ee97mn7iUe+1mg0mmehP9n77eF3NZZfRwTWVz2uRqPRaDQazVfl8PnlyWcK7USk0Wg0Go1Go9FovirfCDHOo4u3aZoipSSKYpJs5dwwBKZpYRgPu/tFFgu/qDDnWaQiBQl791UcTa99wPyxOUYDFcNz6eOPWVmawzBSNh9sAbC12+Sll16iVMrjZyKOducOd27eIRgFnDqxDMDyUpHhoM8oVBEscSq4+2CL7716kWFXxQPFnott+oRxyu27OwAkqWBvd4/WrmQY9AD4o3/xY2zzERGPMHBMgeWXkLESEo0GXRq1InOTJSKpllz/07//r5x+bo3nnnuN0Uj1w3Rs0jimWlNCDIGgVKkx7LcxbCWomFlYoN1uky/myRWVUGDt+DyO72AkeRpTKk7HNCSVokOzOSYIVPu+5+J5DqlUfd24t0E+b1Op1VldVaKUQj5HIZ/HssCtqygjz/c4fnwW2/VBKPGNMAQykpCoOhw/NotjWQyGIb6v5k4SBzj5On61yt37uwAcW1kgGEacPXcCI1O9CFvi+AlJNh6+X2Q4HpMv10gzQUUaRwhDkMu5R3U1LDBFQhiMMW03O+aIWEoslVpExcmRBC0sM8XLq7qmaR7HKTIabCMPo6vcIkniMOwMeO836hf91159GTfvY1gGIlHzX0jJytIiaabOsEyXtTMniOIEK4v/smwLYUiQ8kgIs3p8jiCYxDBNwjCrTyJIw4DJLE4JJLXJBrabw0iUUEEIiWEqvYFAtS9lClIiww6WqaKSZGqSkmBm8VCVSon19U2kTChbSvRSqxWgXsGxxZGABpkyNz/B5Y9vY1uqhkun5hGAOJSWGDbBoI1hWKRC7XPn1nWmJmrs7XUIQhX9NDk5y8LCLKaZYBzlBsXkciapjPngHSUysy2LVqvJSy+cBiBXamAiqNZqD+8zuSJmMMYKJYVG9ag+SSIRhk0qlYDG9W2m5uYoFFUfZBLh2tAOxzy4eReAk2dPqGsLwSdXrqv5emqJUrWAnzORsZoDBwd7fHzpGoWCundcu3abiy+do9MZ8O67Kv7tRz9+Az/nc+zkEqahzrG/s4dp26R8tvjm0zy6z5cXNT6NOAwZtFVk1HjYprW9zb2Pf8aDj98CYOW5H0DxNJ/cXOfuHXVvNcN7zE/AdF3NpWLJQ5gS23JxfDUeMhHE5pBaJaFaVXO6915E92Cd9z5ImWg0AJifmyc/8zwTZSXs8eyIfm+PdPiAn/6f/xsA+do0F37016ycf4VSXd2vhGED6WMRic9CCVeeiP96Sv2+itDm6DVCPvJz8enjZe1/7jilxlFU3bMjrQ7zqb7eiEfNdwP9h+nvDlrooNFoNBqNRvP7Rz9/f/38/eYHjz3r6hprNBqNRqPRaDSar4tvnBhHSkkYhozH4yMnCNM0cZzDfb6a+8DTfvZZC6VpmkKaEkUx23eU40W5MYXllTFjJf54+fVXGHTa7G5u8vOf/wqAhYVper0BN2/e4fkXlUtJMI7xcg71apl25gRRrvqUyg5eokQKExOCQt4iBlodtcgfcUCtAUIkLCwpx5bBSBIOAoIo4sWLrwHgF4v0Dnps31OCoLU1F9936HQH2JlwZaJWIE0ke7uDIxFHJGBleRnXsel0+gCEQYjhSNbvrwNw+vRxdjbXqdZKOJ4S3nQeNBl0eyQzE8hItX/v/gazc1O4uQJOTjmLJKM+CZKc7XL1wytZe0t4xTKmpcQH+aLP5ctXWDt+muWlOVV8kdLcV3VaXJk/GhMzkQx6fezMKcPz80RpSjBWwhhPegjLQ4jhoYkMrlchlQnVkk8xr8Q+Mk1IMXjnrV9z7txJAAqVPJ7vYdtKbHLtk5scdPvkC0XiQNXGdVwsx8CyPWS2n21biEQikjFhlAmrZIplSoRpZ/0skQybBOMWrQ1Vh1ypgmXaRO27hCPl9JKbfhnb8mn3Qg66ao59eOkG5XqJs2ePE2XuKUtL88xMz1IsKbXP9HKDXn/A+oNNanXlhDS/OItJimVajIbhUV/DMOHqlWvcv/NAzYvJCi9ePIPjq7b6B3vI8QHjZASZSMh1fZIULNtHptHReAwHfXzLQGQuREkaIQzrEdFAwuxsnTiOSVFzznZNmjv7lCpV/Kw+wWiMjCJu3LjBqbNKHNMfdNjbaVIonsnGMYfl2Ow1O1z5SLnnLCzPkxomwSggjDJ3HhGxMN/AtAVRrM57b7dLGIwxjBTPVWKPbrfD2smTeEXl9pSmATK1SBKJTNQ5GrZH3nf52T//jIvf+x4AjuORGhLbhChSYqVwlLD+4AFb6+qaWVldwcsXaUxNUc3chUzbQyIwMZjOhE+24WAYMExS7t5Sr11amOdP/nQaIdT5vPDCOXrdDsJwEFZ2uzYF/WFAtVYlTcJsPtWUe9IXcLX5PJnFb+MuNmzv8+5P/5Yb7/0UgGIOKuUqw/YdSpPKKcysnqHdS3j33Xc42LwEwF/9YBqBoJ6JcdychRAJ3aEgGWfnaNkMRglzkz67bTVGJxdtWkObexu7dOMOAO9vb9Ifp1w4fw6AiWqZ+uQ5Sv5pRgd3Adi9+z5v/9v/nfvvnePMm38OwOKFN3H84lENnqjKM8/5WbX5okKcL9TWM973vuhxPq/bQotwNBrNM9ACHM1XQS9gaTQajUbzu0G/x/5uOXz21XXWaDQajUaj0Wg0XxfG77sDGo1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBrNt4VvhDNOHCdHn9yPopjRaEQYRgjxUCuUpvIohumz+KKf7H/STeBpkR8pgs7eAUmi9i2UayRxxOb6puprGCKA7sEuz79wCoDxOOTatU9o1CeJMyeTY6vTOK5LGscYlnLTiKXE9fMYiXIfsUyLpdlJEiM5iu8ZDCIKFZNY2uTyykUkHgekvs3KsTk8V9Xn3o1beE6OhfkFAGzbYRgM6PWHFDzlNFEt+dy+v4mMY3xHnc8Pfvg6hmHxm7feZ3FJRbXIOCQxJb6jIl6CMKJcq2KJFGGoeKBypcj03BR+0UdmLjuhNFhf36G5u8vKMeWAMVnJY7gufrVIeazcZRJp8LN//CXPvXAegJmZOSKZ8P5vPuIH37+oCm9Z3LvzgDAeUq6quB6BQ2u/xeb2LsuLk2p8ki1sv8zMwjQAXs5CpimFcpV2ewhAf9Qln7cxDRPbUe4vcWywtbnD/OIixYZqazzqYYiYQCWQUS5XWVhY5PqVO4wCFT904bkTuLaPEBadVhYlFgsatSJpGjIaZHY8loPr5yBRfRh1Wwx7ByRhRHNLubosHTtFlHTo7NykvPp9AHLVJVJhMVMQ/EX9TwG4efMeC3NzJHGCTFX7uVIONxiQy6vaePk8W1t7TE5NIQ8tgaTEsE2SJD4aI1JJ3rNIxwELs2q8186uYbkOWSIcuWID07UxkKSHdwfDRggLKVPiRLVvGhamZSEcG5ldHzIeYxopiZnFWyGwLYc0ERzstwGoNWp4eQ9hCkSWnWPaBqbpcu7CWYZ9NU/KpTIXnjt/dI7NVpth0KdSqfDy6y+qvvouwWjI6rElEqnckcJxgHA8SBMMzGw4TKQ0qBRtCtW62mYfw7IMhn01tq4vCJMQ2/IQmYuPZRgEYYzt5o7cpO7evMPa6QWCcIyROftcuXyD4WjMzJy6/m7dfsD84jLbt+7w+vdeUTVMEgwRE8Zj/FzmQgLIJMX3chQLam7eu3OPO7fu88r31KexKvVpHMvFydn88YRy5ylWKzh2HsMQ7NxTDkeVRh0wScnGP2v/UUOVw9unOPrh0/ky91CRpoSZO9bW7au899P/j63bHzFZzTLaoiGEY0aBydx55eTV7gXsbmwy7Nzn5TO1rNYJizMFSsXsdTJFmILRMCDMUtyq0zYTXoE4jNlsKheqF880uLfe4dxyjk5f7bizP6Af2TS3lKNZHEzQqFcJkjwjdw2AxtkZwt136eze4p/+n/8DgJP3b/P8H/9P5KuTZOlfpEf1Sx/7/9H3j0djwZ78+sn3lKe52Dxeb0GaCjVIhxF66eMRWM86/sPtWR+OevwM55xH+/qpfmg0Xwz9idFvL9oRR6PRaDQajeabhX72/t3yZFSVRqPRaDQajUaj0XwdfCPEOEEwPhIMRFFIHMdImWBki/VCCCzLwjB+t0Y+n1qMTFN21+/jl9WCcYrLoNOiUlJCFcsqYZou165cY3JCRTO98MLzHLTa2I5NnEXnDPoHzC8vEY5CDtoHAPQHIctLU1imOqcoiTCMlPFwRLej9pmemeNgp8mV6zd57XW1qP/8q+d5562rzK24GLYS2ozDmFze4srVywAcO75C96DNzU+uc/HiBdVXz2FpdYlms0saZwIEbKq1CsfXVnnrV+8C8L0flvFzVU6fXQIgMVx2tvZ459Jllo8fB+DSBx9w7OQKS4tL7O6oaKyVhVna3RH37t0hjjPBhpcnjgLq9QrlghLy9Ht9phoVfEuNbTjqUqsWefMHL5NmC8yea/LSq+d5cH8bsrbiKMIyEswU4lAt/kss5GiI76hxi8M8H330PtNTNXa2sxpOTWEaJq1Oh5yvaj09PUulWmFydgLDUPMuDgKE5RJK1da7b1/izTfPs7gyheOoOnueiTBN4ijEyvrvuB5xNCC1chRratvO+k3yzjRxpOrc3NnnoLmHkCOmF1Vdo6CLW56jOJfHdavZ+QhSGWOYPsJU/VhZXSVXsEmT+EgPIEgxbRszE1qRxri2oFavcO/ufQD291tMTdcxhInrHUbQCIw04cSpJeTRQrwkHMZs7e4BsLu1yXMXXsDzHUQ2NzEM0iRh2B/RbCpRzdLSDJ7rAoJOR8UDGaZBqZyj11OCGtOy8HwHKWOCYJx13qBUrmIYBjITopmmhbAMpqYnCIYqtq1aLeF4Lv1BP5sTFpZdolwtQRY/tXFvkyCI8eY9hoMga17g511GvSHD7LW1WhkZV9nd3sH21X6m45MK46HIQdiYlgAhCIeZsCeN6LT2eHD/LquZwOzY8Vks0ySOOYqIOnFmiXAUQSZKuvrJTX7z7vtUGzVkNp9MIRCGiWGYhGNVi1R0kFJg4NLcVTUcDofMzE9jWEa2T0yxUcGxDVKpYuKE5SDSBBklJLG6Fkq1CSBTrXwGKn7v6aKQp3F4X37WvXc8Drj8i38A4JO3/gOeb7J0+jWQWdRe+wa2E+NV53BLKnLOSiI++OAjViZSXjmn7puWEPiecSTQkjLGdhxmpxyGA3WOewcj9ruS2arg5LKKk/LdhHqpwjiR3N9S4rda3qZW9rm5oa6/928ccG/9AdVqmUJJie9WVo6RK7/ExKLBwfpvAHj3Z/+aXrfJm//yf6VYm8jO8LOiDOXn7vNVUGGM4jHBlBL1PK0P6aeEOeJTAqKn9+/ritHSfDfRCwHfTvTig0aj0Wg0Go3mu4z+PUej0Wg0Go1Go9F83XwjxDhJkiClWkh+dPHXtpXzhO97uK7zO108fNLBAGDY7TAatJlfPQlAKm1Go/DIJaPb7XL92jVyeY/qhHLcODjoMhj28ZI8YawW3SuVEnEiuX9/6+gYE1OT+DmfJFRiE2EIhO0Q9kMObRmCUZvWzgHj0Zh+Ty3W+57P93/4GpZjA6o+x0+egDTl2rVPAHAsg8npCe7cu4Plqn1kGJAEIT//6c946YWzAKwcO0aSxHS6far1CgC1WgXHchmN1cL2jev3mZqoMTs3TSGnpsva8SXy+RyWETM1oV5nmZLdrQ0cw8XKnEWScEwiU5I4wTSU40W3HVGdbJDLK0FTEveQqUGxnMe0lBBDJiNiGbO0PEevq/oRxwn1qWmGo5TGtFooz+VL7G01MbN50uv0mJmoYds2C/Nq0f2g0wNDknN9arWy6qvjsrA8TyJj4kwk4jqWEktk9iE/+MnLlEpFTEJktuieyJg0jhgOAtJECQRs2wTTIk0Sbt/aAeCj925x6oxFparO8e79LklkYBoRC5mwZxwZVCsL7G5fOxLeCLeEYZoI0+f+gw0ALn10mb/8qz/FNFIG3XY2D1OSVBxJL9bv3MF3XKRMuH9vHYDZmUkQJhLJ3s7O0XnXamW8gkkSKwugXi8gSRKmJpTgzHMsPnz/A86/cB4/dyj2SUGY5HI+MzPKbSZKRjhWnhTB5sY2AIurC4ThgPZ+C4Bircb29i61apm5eSVmQQiEMEjTiCQZZzV0AQs/51GqZIITBLEck8srEZdhGKQIUiQic6Qp16tc+ee38QsWuVwhq82YYDTg+vV71OvqnAbrXcZhyKA3oJzNgXxqMhoE9DNnHM93QUKcRIxGmUArjqhMTPHf/fc/plRQDj0mCQYCy/GPnEvydoqV9ui0lYhnfn6R7WaTl158/qG7iXEosDBwHdUHKSVXL33Mysoq559XzlphJInGIWF2X7BMA8uENI4YjVVb/cEuM7MzRGFModpQ89cvkiJ5VHiRkj7ugPPI1486uBzt/RS1x+G2xxzDsq8H3QPe+rv/l/Ur/xWASrVO6C5TKszA+I46n7hHHBgkRpGxumTY39+n0+swM2NSyhyBkgR1T8uuBdOyMYSLJMFy1Tzc3eoDFsWCi+erfsdRgmGmbNwfUququbK10yPvhpycVTUsuBEf3upz/ZP75MvqfnXz9g1OnjiFc/Ys+dk3ACjLd1m//EuuL67ywk/+52zcTA7lMU+ry2PbPlVs8dCVisfdch5rR3DU/qFn0mNuN5860uN9eLIvn36fTB+R5Ty9Ne2Ko9F8t9EiHI1Go9FoNJpvLlog8oeNftbWaDQajUaj0Wi+23wjxDiGwVEklRAWpmkghMDLnD9c1/2du+I8SRxFbN68Rb0+SSLVsZu7O3QODihnC7qdbheSiFqjzvTMLACXPriEIKE4nyOWSrhgWzbFQh7HshlnAp1EShLhMI7U9yIds3n3NgiXkyeV+OfevQdEqcEb33+DQkGJDe7euc2xUhnX9RgHyn1iHI7x8gXOnz8NgGvC/Y0d6rUGwVDtEwz65AplXnvjFYjVAvHWxgaNyQZTM5PYtlqk7bS2cKYX8fLKrcV3WqSMmZooU8mEDMVCDsf3GQ7aJKESIOB7FEoTvPfhDepTSpg0M2cio5Reu4vrqUV30xF02j3GZeWIUSqVAZNxHNFqNQGQSUL3YBfTFOTLqh+9YUi1XmR+oYZlqWnb7zRxPZCpGp9StUxjwiAMJd2uckU5c/Y4Bwd9TAPcLP4rHgdK/JSmkEWJGSIllgGuqwQ0OT9PHI5I0hiZLWVbjgtxgikkgVSCkBtX7tIbjTlxapWP3/9QnaMQ7OzuM8ocUGYXV7l3f525pZMc9FTtbdtFCsGgvUMYKcGRX1sDYSPDMaVMCHN8dQkERCl0suitNE4YDAMW8moempbPzVv3eG1mnjfeUA5Knu9mMUUG5ZraL+gNSeOI1DCxbSV6qTaKJHGEEGquNlybYqmI41jE2dz0XJdURhiGg5uJu1IshJEiI0kiM1GNBc3NDcJQ1bmY92nvS6JgRFpUYhYZC3a2N5idnWEwUK/zfQM/52C51pF4xbI80kRgZJFXSisgSeVDN5sgCDANcAxx5FQkhU+nNeT2rTt88IEajzMnT3DQ6VCtVMjnD/uR8NF7HzPKXHDe/MGLGFgE/SH5gnJd2d9rcuXqJo1qifUHygGqUCwwNSWQSYLrqbaQkiBMaba6AEzNTLB4fIVK2UceXt+Oi0wFSEHrQO3XarXY3j6gVuviZa5NjuuThnDnroqf8go5aoU8IgHPVNeQ5drIOGDYPaDQUNdH+oig45AvkOr36N5PfJ+JYrL6qzFIgZThgRJ3vfXv/hU7969RaKjIubFVxfSq9AYh/T0V41ZMU2LhY+Um6baUW9Wg28MUYypFh8FQKXTyBQuZxuztKQFNqWhhl1MScmzuKRGa7Vq4JjjOQ3HMVlMyGEb0w4C6qcQ487N5HCs+6vsMLlNlm+eWbfa76ni/vLrBpY9Cin6B0+dUdFVxcoVW8zrrV95m7YWfqPrnC9heHp4qBBWPfynEQ9nLYw41D+v3NNHnozs+GUd1NBLp44KgT4upPkNQIx4Jqnoku+zRNp7aL43mGejFgG8HelFA821Dz2mNRqPRaDQajUaj0Wi+eXyRvyXq3+k1Gs23mf+2CheNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajeZbzDfCGcd1XZIkOfreMAwsyzpyNjj89P9nxagc8kWjrJ7tAqC2d1ttmtu7zC2vMchcVmzLolqrsb25C0CSRCwuzNLcb7F+W8WyPHfhDKbpIKOQJNM6bWxsMgrHVCslRrFyfsh7LtcufcT2lmrrpedPce/OBuMowXPVsJRyRVwnT2NqkvaBiv5ZWD7Gxs4+ntOn0VBONa1Wm+0r11maU+48660dhGEzO/swDqo/MLh96w4rq4v4vnrdr375X/GLBW5cuU2/1wNgdrFGtVolzpyKRqMeuXyV9QcPkKnq1+XLV1k7tcLkZJnYVm4UO7sHtHb32Nl+wGi4CsA4GLK7d6AcfJR1B/3hiGPHFyiUMqccz0fGCVaa0G6rc2zudomSkIXFaaqZG0+jYSOJGQwiXKle22sPKRYKhCPlbtLrBDheAUMIZuYWs3EOqdXLyCQiTZUrxngcIgDXcyFzBDJMHydNjyLIEA5BmCBEjHsYLTVs47oVBp0+v37rqtrNAMu1OGgP6LTUPMmXazi2fRRB1u0NKJUrGAb0eyoWqVEvMej22W82mcmpMRKpJE3Bsgzq08rxpDHbgMTg9o0HOELV3/UMPvr4Ek5JOd4sr64wNTVFIiXhWNXCL+RIwhFpHHKouQvCkCIFDAPS7HKTMuXOzdssrqwAYLkii4YSmKY670OHnWi4z6DtqZfdAAAgAElEQVS7CYCXr2N7FaSEtZPqtTIes98aMr2g5qFMYxYXFxCGQB7atIwjLEO16jhq7rT2W0w5FrZtEI6VU1Esh5iGjWEcXvsWaSqJopC9HeWwUi7leP6Vl7CS8dG4RVFKHMWcOLHK9WvXVb3yPlUZMzc3RZhFPd24fo1coXjkUrO9vcH03Dxb201KxSzCqz/EtSxarQ6LyzOqH1Ji2i5SBkSxGkuwSVODKFLn2O60ObM0i0glZPFsd+9sMBwOWVtbwM+rbTVRJoznwLRpNtXcqVdN3LzHiTOqpvlKAVKhnJykGlsDm+ZuF4ME3y3wZXksAulLRv8lMuHjX/0jAPvbGxx/6X8gkFkfpCCKEzXvlJkNbiqx8lPk5k4RDNX10Nr7iPGwz3BkIaVyaIqjiELJxLXUPtEo5n53TKE8SxCreWgypuAnCARJFhPnutBqxyzP+IgkzLY5OH6RQV85Se12upxZKjBRt9jZV+1/dHtAK05YWpyikrl0RcLFmMgjxtusX/6Fqo9hMXHseWrTi9n3gqcGR6WfdrVJn3CzeRZfZTw+6z3xi/K7jH3UaDTfXPQnjTQajUaj0Wj+cNCulBqNRqPRaP4Q+bLPMIf7679baTSabyPfCDGObdvYtn30/WFsxhfly+x7GBXyrJ+lKJXCQfOAcn2CKIZ7t+8DsHJsgShNibNoo9npKWQSsN3scPf+XQCmZidx3BTLsUilKu/7H13j9OllbAN6mRhDzM2wfPwEraYSFhz0Q5ZWV3BsiWGqPmxsbbN8/DhRFGHYagG/29nHBG7euMn9e6pm1Wqd8TDg12+/A0CtUeO558+DDNja2jusEn4+h8QiU0Nw5uxJhv0OOV9y9oyKxnKKVUhhMFAL/9V6hUKhwNLqMu+89T4AaydWqFTqGMI4TLxiNE7wPJu//rMfMbugFq69QolKnGAKm25biX0SYeP4ZYxMiDEe9REYWI7LwuI8AL32NY7NLXH//l0mMzGOkRdsbuwiUpPCtBKvTM9NYyIRpqpDGMX86pfvcuzYMjJR8UBhGCHjGMfzGPSV8CI1DPK+gyTBslRdExmTSItWU0XwTE5NUiiXae5sIceq78JMkY6k2eywujoHwNbGDnNLi+zv7JFkC+OdfkCh1+eFiyo2rLnT5erlT1hanmN2QYk6KhPTRMN9csUq0VgJMWQS4fhVEikwsoV9I5WMkwCRwqVLlwA4e/Y4r33vVSqTqg+2Y2PKmJ3tJu+9qx5aXn71IoV8jisfXeX0uTPqmNUyhmliCIE0omzOQ7nWAKmOl0YSYXmEwz5eQYkgkvGYaLiFTGLcTMglTJuD/T0Go4SJyWrWjzxzK7Pks4gtkYyJ4j6uXz665hzPwc/7dHp98plQzDJdEilBiKP4LMOA8bCPnYm9DMdGRpI4jOm1ldKjMVkmXywSdNskUrUfJ2PC8RDLNPmjn/xYzYF4xMY4oHWwQ31C9TXvOfzzr97hze+pWK/q5DzC8lg6tkwUqbnf6g2YmZuic9CmXM3moYzBsnAth/FIzac4DrBsk8VVNe8tz8EyDYJhH8tWtag36pTDHCnQmJoCIIrGzM7NEowDxkEmLsnZpFLiZVFZiBRhpPR6AV4WESZlDKYkCoYY9sMYqS/Dw3tgNu7p5ws8ZJpy/+oHXHnnbQBqM2v0xzZIdT+0TBfPtRFeSrqnBE0iSTkYmlitDrah7oeJHGEYCbWCzzCLqWqUbOIwxsjuv+1eQiGXQ7h18qVMmFY1SKMWUdTHstU9rOibiIakVnIyoQwYGKQmlEtq7px0CqQIRiPJXle1P05SCsUylmvS7ypBpB/uUsgJcqUySbAOwJ1L73Hl7X/gxKv/EoBjz7+Mlz+cz1nME5no5rGyPfs96cn3oMfjxNKHsVXp48Z1jx4zJVHvkxhPGS9x9P+hIOipsVaPvUSqw6aHc+CZ3dd8x9GLAX+Y6D9kaDQajUaj0fzhoZ+9NRqNRqPR/KHwdT23/P3mB/rvWBqN5lvHN0KMYxhfPS3rq3y6/7PcBFpb2wDcufxrTl94kygRLCyrRXZDmATBkDBzPLn2yQ2WF6eYmGjgzk0AKFccqcQDbnaY1169QN7Pce3aZU6cPAFAo1HC9Us8/8JZAIJRiDQEM/MLHDSbAEzbNSamq4yDmF//4pcAnDp7iunZScpln/ffV+4se7s3OHv2OC+9+pxqa9An6La5eeMeu7uqrfmlec4/d4JwFJEmyjFib2uHxuQEL762xrCnREHxOOLKrbvkMiHG4soSe7tNSgWfyUx0MTVdprnXpNftMgqVGmd2qoYcmbQ7Q46dzGf1Mqg2JhgPh/Q2lAjpow+vMj3ZwEjVAr7EpODbRMEI01Jig+XlefZ2dzh2+gxuPp/1a0itXqXT7JHE2eJ/IU8qDETm/GIkY1555RymaTAeHmR1DfDzZcJxzO6uEib5+TzFfB1hmBy6xqQypb23S/tQ6NFoMOr32H6wy8yCOu9yuY5MUsZxShRlLjtRgmHY2JbD0pISx1y9epNkskgxc9zYfLCHTFJuXL9LtaHmyfbWFjeuXEf2+hxfUH2QcYiUKSkSw8wuTWHQ2dvl+rXrvHDxJQDyvkkcx0ShEhzFscRxbSYm6nz/B68B0Ov1GdsGZy6cY3+3lY1HwtLKIsJ0ENmiu0jGTExWGQ/VnNjfazM5M4GQB/T3laDCtlwst4zlFpBG5laFAQO4dfs6UzPKCUeYJsVSCdNUAieRJqRpgoxD4kywkVg27YMe9UYZO3Mlqk/VgBTxiIAhTQWW7R1qA4jDEYZh4ro2vn/oVDTCKtukSDodJZjKFSu4nsd7732Mm1dijNmZOmJpGsuwyQyfmJiZ58JzksbkJAB7Oy3q9TKj4ZiJGeU4NDk1iZAxjUbx6HUyCTGwEIbB4e0zTgRREjM5rUQ2pm0RR2N8v0gzc/GJggDbNbAcn9GwA8DOxg7DIGZxcR7XycRE4RjD9EizA9q2TxJLDloDZmYbAHg5C8/36OyNsZ2HIsbfjvRzBRjjYY/3/vHfMjmnXHsKk6ewXJ/NB/dUv1wXL5ejVBBHLjVOrkwut4hwPZJQbRuMUgajgHqlwGRdtW1akEiBn4mxKvMppu0yNEzKtRoA+Yk6ceLy4JNfkyaqhlEw4tSJKraZIDNB1rDTwzQF/UDdmyoll047ZL+T0htmA2lP8T/+xV8wv7jI9q0PAShZLcr1HN1xxOY9JcC0KycJx2Pe+rv/C4Ar7/xnpubXKNWnqU8rYV11ep5cpYH5JV1tnrXti+hgvqgzjhCZVOhLvk9q1xzN09CLAX946D9eaH4f6HuFRqPRaDS/Pfr9VKPRaDQazTed39XzihbkaDSabxvfCDGOEOK3its45FmRVZ/fdopMBa3tPT7+xU8BqBUMTNNhGAyP4nRSmbKzs3Pk/BGGIabrkzeTI7ecK1euUauVWFxaPBJLhMMBcTBkdXmeSlEtnrdbLSo1A993sj5K3n3vMvvNPvWacsUoV4qIBDzL5sWLLwLQ749I0xBJwsKiWvy3jRqVkklrdwuA37xziddefZmZ2Ykj95GJ2UkSCZ1uD8dXgopy1SdXytFud9jf3s5qYREM+oQjJcSYma7S2d1kon6C5y4o9xzDsJmo25QKJkYmoBkHQzxXcGxtlWvX1EL28tIkfk4gEFQq6pxOHF9ERkN2t5T4IxhLZmYmGAdD9vvKkWR1aY6t7QSZJJA5ZZiWRS5fII4E+/tqId7AIUlj8kU1HlIm2H4eyxKITMzg+iGQ0u30qWUuO5ValXDUxbQcUpGNR7PF/u4O03NqgV2mknEiqTTqDAJVr3BvSCGfp1KrsLOphD226zDotRkOBng5JRxaWJjh2Ik1hKHajscxlUoRgSSJlJBrp33A9tY+FQfiLFpKhn3SeISw/YfmGGlCpV7le99/HUsoAVAcDEllxOZ95d7R3OtRrpU5ceY4pVIpm6tgOSaWZVHIqxghaYTINESkBhhJVjMB8QjLVNdIrVpGpAK/MImTRQFh+2TJUpCo/qcipVgt8tr3X8LKXJsEKSQpaapEEImE/giKJYM0VtfC1p0N3GIFL+djCDPbL8U0LaJ4/HBbEmPbDlEcZG2DgUCKhOlZNe97/R6j7Q18x6SWXTOxTClXCuR9B5HIrBaCickGcZwiMhuS7Z0m2xv3WTu1AEA+7yBTyWA4ohGreVLM+XTaHXJFF5ld34YwkGFAfzgkTtQg3bx5n+2dFn/yZ0poBZIkCtlrtugcqLl67+462zvb/Plf/xm57P7RmJqk1w3Y3tphbn4yO2+4cfUWSytK2JXz8xhGyvxCA9vK7kNIhv0+bi6HkYmjvuzd86FTyqNCyGe3kqaS67/5OaPRgMVzPwKg20vIOQ61uhIJVSpFoiTENQcIQ9U+THJYThnDtgmDLGbLNPG8AnsHksVpdY2YlkVrf0S9os7H8V32etAf7VJqqDkdBClrF1+m0+nTbd0FYGlhBsvqYRohhqHmZrleYTSSxINBdlY2jmexvh/w9k3V/oWXXqdaqeLYgsVJ5XAUNpsMBoIb6yGNE+phvzY1ixmM6PXUWMvggHuX3yZfLnDjN2pO50tlzrzxlyyfe/Homlel/GIxVc/k0DInVUI1gSDlCzjXHP7w8CbyiPWOeIZ7T5qKx7Z9He/HGo3m94f+g4VGo9FoNBqNRqPRaDQajebrRIuFNRqN5qvx1S1pNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQazWN8I5xxnsVD9wZx9P/TPrH/WMRHmn7piI0UCLpd3vpPf0utrFwrZk++SRTHhOMRSRwd7bgwO30UIbO/v8ftm7c4fWaN/X3l9GIYJo2JOolMibPXpaZFuVbCiIcEvQcA9EYuTr6EdxgzY6ZMzdTxbJuPL18DYPnECaq1GWI5olRQ+xXzDmF/l2KpgZ+bB6C/v8PmZpfqtHLmeP75C7iOCWmOfFG5fOSKeYRp8sknN+n3VKzQ8uoMpmEQRkNkqFwrbty+y/TcArdu3gTg9HPHmZ2fQ5gmUeZs0ek0qU5MUqhOEQTqHPvDkGJjCt8xsKRymhgO8hQrDYQQTM0qh57G1ARXP/yYyelpAOqTDtc+ecDq6iS5zCXIsj0WF2fwPB/bypw/LIM0SSgVPcoVLxsPgRAOlqn2GXQ6DIIBs3PTmIaaJ+M4wPKLlKsu8VhFUI1HIf1OGy9X4NZN5QiUxCamnaPVVu4aw3GHcDRk48EmnZ5ykSkVDdZOnsRxbKxMxhYMh9RqqzT3moTjJKt1FdcvcOvabQBaB/tcvvQJF148x6Cr+nDQavHiy+eJBneolPtqCvgVnFyOUW+AcJXLThjFmLZDrV5jcKD6utNsksvn8XwV6ROETR5cucrCyiLZJj58/xPSZMSLF89joFxdisU84aCDaY0Jg242X3MYnocQmbuNpSLB4qCPXVLxXKYwSaMQwzAws/gsCZipwLJNUqmKkcgxwjCO3GeCYMTBQZtypQyZe06lUsZyLQxSksxlB2ESJxGmYXHozCEMSZxER84tSRwpqx3LxLQz1yPPIR7H5PIFDFu5xhhhTErKK69f5N5dda3lugF111duLdk1uTBXY3rqdfwsygoixqMBs9NFxpkrlGVZ3Ln1gPMX1kiyWDJpJJiGSxinxJEa77nZBmAxzJxYcp7D/m6Tvd0me03loPTa919jf3eXoD/i/l0V63RsbQXTjvnFP/2SH/7kTVVry+K9Dz5iflVdo7EMjyLLYqmOZzsOMpaU6hM86m5yeH988v73RVxOhPhst5Xe/i7v/Jf/zPKJ0/T72TzP59h4cJ+8r5yXgiBiGAwo1CJy+ew6Gll4fg7Dy7OxvgnAYDgEw0PaFmTjFiQmxZKNlc1fYRqEUUqcJNRmlBOSFAVMr8j88iodsQtA0T+AeEicJJgic0KKExxDUi+Jo37t7qf88wdd5o+rqLfV5XkSGXCwfgOvp2KqRJIgC2dprC1TLKi5P+iNCcMx0lXuP+XZs8SxpFyq0W+r+LfO5q946z/+K1LDYfmMigo0hOBZrjhPjtGz368OHW74lGmR4Nlucp9u72n7PbmPjqXSPBv9qZc/HLQjjua7ip77Go1Go/m2oJ+9vz3o5xONRqPRfFv4fTyf6KgqjUbzbeIbIcb5KpEYT4ug+rIinEPiOOGT999h2Nxh5dhrAEgsOgdt3n33Q9bWTgDwwXsfcPL4KnGshDfLx+bY2WwiRMpoqCJLFuZnsSyb6zdu4WRRLSdOn2LQ75AIh3xOLSyXJyp0en1Cqfp8++Zdtna7vPHDNarTdQAs22Znd50kTkmlEgMM+kPmZ4pYTp5oqMQxqWGRK/hHsTwb69tYK0v0+mNMMxPQDAYUcjkW5ua5e/cOANW6Symfp9PuYDhqKrz25ivcu73Oa6+rWCzH9/CLJUzTorWnhCSu62HZFlE4wnWVMGZqssbu1j65XJmzL5zPxsZESsnu9g6epxbsc3mHY6fWaO3tq/a9CmefO06xWKUWKhFEFA4AgVcsILOoJBknQIjtuSoOCQiHbQw/R7uj+uVYKaW8SRwNIBMwmKZFPB5iCpPtDSUGuH5jn4PWBq//8E26PSUauH/3JsfWlqhXM3FAP8LzHMrlKolU420ZJvvNJpE0IRO4rKz8/+y96Y9lR3qn95w4+93X3NfKrJVkcSe72dKoLQsjaQRjbMuG7a824H/JgAF/tTEwDHgwkgdjS7I0UqupVi8ki8Uq1pZZWbln3pt3v2cPf4iTyWKxyGZ3S+4iGQ9QZNW958SNiPeNOBcZv/y9TVIZ82T3gNXVSwAcnZxSeLJHv6sO62v1Oq+9/irTMGQ4UoKNVILrClqVBZLBx6p90yWZTjCEKkkD4Hk+GCZpnGDmJcFA8MHPb7N6eROAt959g8l0ysN7j9i4sgpAo1XAMhzKZZ8k17wgwbQ8LOcz8YpleaREyDx3VAkrE1yP9KI0k0+WSTKZqPeATKqyVIaMITsXy0GWSPLKXxSKPqvrqxiGxDCUyqLULIOMkYZJmqo1Y2CDMBGmpNtRc1YsFTAtgcjFOKZpkaUppiEgX1elUgFZ9EjS7KKsmpGlWAaUK0VqTbWO7tx7RPZJwM1XbnByfKRiUqsyt7pGdi5wcUvEKUyCiI9+cR+At999g0xG9HsjSiXV/yQdEUYhn366xdnxKQDLK8uUyj4iF2hlSUwYjJmfbzJzvpYtyexCi0/vPKbXVfk6nRtS8F3+s//iT9SEAqYj+K//u/+SclWV3eoPxkBEo14jM1Qg4zAgSTKcQuWibNFvxleUp8r7tX37J/hOjF9dYRypORucdZmZneP0RM1DpV6m6taZju5h5/0qlmtYhRLC8pmbVQKjZmOHBw8/5bgruPdIrYfLaxVKvsn+sdqvCr5kqeUgvDJRqj5vOOhxcPfnyOiIoq3WskgGDEYBjm1h2fk4hEmSQpb34fbDMT+6FfHe7/0JyytrAJTKRcbDA3r7/8BaMy8n6CzgtN5hrbrAMF+7v/jph3z40T8gUyWYa7ZmmZ3fIIwzrl+9BoBbf4Owd5uf/9W/QWaq/ytXXsN2HTDMzzQ1v+bzSd0M8nNxek5bUuYvy8+9xNNi1S/JmHOBkC5PpdF889A/mNBoNBqNRqP59nD+3U6LcjQajUaj0fy20N9DNBqN5p+WF0KM86vwPBHO+d+llKRpimVZz73n2fvO6R/t8+nP/pZEunQG+b3emGq9wubmGsWyEpysba7z8w8/ZKadC0sKgplWmWCa4HpKpOCXHc46pyzO16jXlbuCTEKqlSqf3HtAcXURAGEIfvzjn3HjpcsAbF5dY+OqTalUxMqFJBgG//jjf6BzNiSTagzNep21S6uMRyGjoRIgdE97TIKQtXXlplIseTy6v4dhRayvK3FGpdYgnvYplD1uvv4qACcnR/R7YwqFEpaj+j/qjzjrDnALqq1WGFHwK4RJyMLyPABJFCBTqYQuUyXY6PdOac7OEIyGlErq3jTLuHPnHtWSzzTqq75VZtl/vM/yJSVcsc0EbJM4nTIZ9/PXoHO8i2FkuI4at+1UsD0fadkkuauLCcjEJpNK/VGs15gOOpx1zhhHuQIlE8y0iqRxQJIod5ZBv8v65gZn3SFhMATgpRsblColzDx30mnIzvYue3snNNs1NTdjk0q1QBRkRGrYNOpFRsMzXn71Jlv3lYjDQnJ6cky7rdw0ppMpCJNquczBsXL02H3yhI3Lq7i+hRkr96LpqItTqmM7BaSM8zzxQCYIkTGZqoP+YJpQKHrYuSjFsSWffLzNydEZzabq6/WXb2AKgRAGpqnmcNgf47lFLMPEyNQAkniKsG0kuatIFpEmEYblYJp2/lpCHE6JwgDTVSIRyHAcSwlyUHMdjEMlNMmditrzLRy3TJqlZHn7JhkGFkmaXtTIOz3aZzoNWFhapuDkDjfY7D7eY2lZOShZloMwbUAipfo8w7DIpKDf77O/pVyIrty4SjINiCZTRP6Z1aKLEA7jyZQU1X4YZcTTEV65ovplSJLUJg4klUohT52MzcvrhEGE66k5dLMGyBGbKzM8yt2khqMJlu1wsK+EPstLM8wvzrK9dYgQKp8qlRTbMbh24xK3bwV5PoU0/QJCZCS5EK1cbSItkzRL8nkwOD7uYAqTWl3tO5NxD7fgXjhCnfOs48pXCSs+e09+5XWDzh4Ae7f/hhtvf49J5iJD1f9Gs0WWZheOVsI28D2feDJieu4KVlzAdEsMh0PiRN1XLjssNMtk6ZSZGRUPQ5jcfjzGtVRfGiUL0xAEUYhdVq95XsLo6DYld4hpBHkc4bQbU7ATFubUPj2YCu7cO8NyVRw/3TV56/t/zOVrN0jymAkzpW4eIWohmdUAwGy8SZBadJ7s8+Mf/Q0Au1s/5Z0rHsuzaoxBfMTByT4ffzrkZG8bgI2rL7Ox8gqkJ/z9v/8/ADjYfsxrP/wjyuXa58QwwBdcceTX0ehciGzyi+UXneKMi2s+/5qU4nPtXIh6ngr7byQU0mg0vxW0CEej0Wg0Go1Go9FoNBqNRvObosU3Go1G88/LCy3G+aoDwueJcrIs4+zsjEYjP1x95rD6WbJMHdafHBxQr1SY27xJY1mJRLrHHTLf5dLGGnFeTidNJL2lNsuLSmQxHkWMZUCSDhjmJWrqMy3u3t/mrTdvXLibGKZBnKS0mzXSvL9JHFGvV9h5fKDuq9bxijb93uSilE4QxSwuLPHqGzN0j1WJItcrIITFZHjG44e7gHKbGY8iPE+JOtqz8On991lZmWN2fkb1QcaIQo0GRl5CBSplh62tHX7x8/cRpnKfePPmK5SLHvfvK3HD6KzPzMxjltc3kE4uskkgy2Jsy8J0z1NIkqUx1WoJw1SH4raZUK1WqJZ9EH4eN5tqs8bhgSohtLqygLBcDJlw52P1mQuryxiiiFuo4bmqr6ZwSNMEw5AXghmsNod7hxdik97JIZP+IXFWoNNR4ga/VEDOzHB02sN3VR/eeOcNgknEk+0ntPPSXquriwiRIc9LXo2nWHaJQmnE6roShLz/o1ssLM/g+ynDgYp3tXWZ5LRD93SfNC9bZDpKNFIoqs+zbUHn5IzDzoB+7vyyeXmTRqvF2d77FOvVfK6PqLoObqlBkouEkmiK4ZUJw4RuR7lzeL7Nq69d/+wwPYvY2FgGaXB8pMoizS7OgiVJ04xuR/W1WC5gezZZFpPEeQk4BKZjYefjTpIU4RZJghFGnoemW8YQgk5nRJyqfq2vzZPFUwyZEebj3ntyTLFSgnxdSZmSyYQsSzDIHXWSBMN0IIlIc0FQrVLCsV0OdvdZWFLxEBKazRaGULHNshhh2ghDIPNtK0kSpuMJvW6Pxoy6z3YdjCwjzTL83FGlXHKwbJ8wSNi8vKzGnSmBU5KXXrNcF98t8njrkJlZtX/sbj2m0WjQaDQwcz1DKhMKns/krMuTPbV227NrjMcJxfJ57oTKtQdJlLsLGcIiChKyNKRaUW45j3d2adSKhNOAbl/FqNRoYErJ4EzNs+N61OsFZXEiVftxEtGot/hlPLtHnot1zv982XXnIg8pJVu3f64+M05I5BxJAiJ3yxn2u/jFEpU8fy0L+qd7GL3dCwcl4VVJwpRatXAhOJomkp2jPv1RwlxdCb42VgyuLPuYpsod37MwTYGJiZRKsCMzMOUAOzsjzV2CzgYhni0QtsndHZWvUTDlybFkb6D6eePl3+PqtasYSJI0FxI5B2TpQ2SpSlx+GwC3dhXCiCgcUbeVCOn3/7hJvWzxeF+tvbUFn40leOt6lQ/uqvj/6P1DWo3/hlZ7nUvzawAcPPwJO80i1975Y0z73NHqn1/08mXtX8QW+VxTnaev0Wg0LzZahKN5UdE/vNNoNBqN5p+OP1x47VvzbH32++u3ZVwajUaj0XyT+SY8j8/7qH8WptFovumIX36JRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj+Tq8sM44z5bg+DpYlsXMzMxX3nfRriHpnXYAuP33f02tXqY5t3jhprN/cMzOzi5vvvEKwlDODDtbj5htt7FtVbJEGin94Zgb1zfZfqRcXZ7sHLC8vIptO3SPlXOCNC26/SnrK3V29/YBWN/Y4Obrr164p5DBNJjQOTmlUlVOE67tMBiMcVyPRlO5dQRBAEZKrVEk/lQ5TXS6I/b2ThkNVPmmhZUF/uRf/xHTfg8jL3djm0K5W2TgOHbefkqtWeZ733+dySQE4KQzJkozfue9dwA4Pe1SrleYBpKCVJ/nOAIpXOI4Io3VffVGjQyLBIuTPeXik6YR00lMuVyhd6IcYYzZJqVKiVJZuewEYcrk9Jhavcj6hiqp5ZdKFJdmsF2XMFSxnEzGlEs2aRKDrZx3psMxhzs7BJFyxFiYn0WYVfx6m972LQBM02Hn0WOK5RK9szPV1jhiPBhSq1WwcsuTOIjwCgaur3FMh00AACAASURBVEqLJckxwXRIHI6xXFUe6Obr11heWyScDGnOqPJGyIyjJ4cIt4hTULHsnJxQLpfJ8rnP4glpEnHaOWM6VM4csxg8uneX6OBjXv7+H6jrEhPTLJAlCWmq5jWODEyZIA2BW1RldywEUoIwVR7GYUZjpkGt1WJvV+XXnVt3efW1q2QYF/lqC4imU6IoZTpRfdvf3eb1t18ly9dMhiSLppiOQxIpZxkjjTEdl1KxxPGxct5J0hTDFMTRlCRWbTWaRXzfxslLWSXBmPFggu/5OJ7quzAFWRKBNBBC9QvDoda08MsF0ryUUf/kPoVqGyFyJxtpEE36OK6HIdw8dyIcz2F9fQEzL+2WpAnCMjk+6dE9USXBygWPrYf3OesFxGEPgM3NTYQUnB6rPWAaBizOz7K+tkAcqjzf2z2iWq2BDEkjlSdBENDrDWi2mly/fhWA+4/2MS2bu7c/BcAr+Lzx+lXmZxrcuqVe6zXK3P74HhuX17AtZU1ScE0m0wBhCbonal57ZwPeeuc1jFwnGYUR9VaJLOWiPFsSxTi+Wj/nfB3Hledf82UOOQZJOOLg4UcAlBqrjCYhSWZi5/uHKUJkMiWIVBwnwxGuMUWkfaLcVcl1fBzfJU4l01Dl02Q0wiCjWXd49YZyCWrVLSwzYTrJ8zBLkJaFgYFhqblI04CSF5NEEwzVFK2Gg4HLSTdi0FNxswyB6TTZuPIyAMsr63iuIE0jskw53sQn/4BjhgzkZUxnCYBpFODaBndu/y1X28qpaK5dQKZg5Q5NjuliWzGeJ3j3NbUHCGvI+z/6M977nT+mWlZ7mO3UufvTv6U6d5WlS1fyCX6+9tV45nH1bNkqwzC+eA1fdLKRGIDxVEg/K0d1EfunS1k93agUn3vm6rJVGs2Lh/4tII3m+ei1odFoNJpvK980d5wveyY/+1vtT1/3TRqfRqPRaDTfZPQzV6PRaH57vBBinKcP/r5MSPPs4eB5GZWn33veQeLz2jMMgyzJ+ORn6gHUP9ni+lt/ildtMZ2oA93Ny2uk0ZTxsMtoqkqnrK4sMuwe8nhbiWw2rl5mbWMVIVOu37gGwC9ufcp03GfjUhvfz0tECZuZBYc4OKNQVIfoMstwbZPpaAJAnAqq9RKON6DeViV3SFO2t55QOiwzM6MEIa7ncXLSoVotUKspgUMqLcrlCtNJXkplZZYkGDAz3yAYq9dsu0yaSZIkRqbqoLlQKrKy2iSe9rj/cBuATMTUK2U8Xx0cX71+iTjO+PjWbdZXlVClWm8jEwOZxriuOpA2LINgHCGsDMdW93aHMZc2VrFsi1IuOrIcB4OULFOn6WkUkyYhmawwiVRJn8P7d1nbuESpXMDOS14Znsmg1yfLJKdHqq8H+0cYgOP7eawNjk/H9D89OK+Sg2UL0iQjHk8IAyUaCSZDJfwwTA4P+wBEYUilXCbJyzCddgfYnsAvlOl11Xz5jsN0OsHzfXypxAbjcUAQJlSrPo2Gmp9aucLh0SFBqIQlAsnh4QGOa0CmltzG5gKD7gFzy4ukoYpRJk0mwxOqXhnbUYKW4+Nj+v0uV25colBQ8T49HDLT8CDL+9AfkJFiOAVabSVuWFxaQgrJ8eEpZi568Zp1Br0zeqcnNNuqzNG1l66SphlH+0qU4vkm7bkZsiRFWio3TVMghEl9pkmlpvqVRSPSaUQcDpCJWjMyCphMBEEuaMuyBLc8h8xc+j0lgvE8C2l4uJ5JnIt97t/7hMtX1jBNgTRVPlXnrxMPdi9KthlOAdsrI0yTLFcrTCYTLMvCsS0KBSUQEYZJkAbUqwWKBSWyKBcc5hZm6A+nuHaed0nC/t4B5XoNgGazhhASy7IhVf2/cmWNIA4whHkhVjKEpFDwCYKY+QW1vlvzC+ztHrO8qIQYzXaLgm+CafHaW0oQgpTML8zw4QefcHlTXbe6sortWkwnAQf5/NeaFfr9M8jUGG3PxMDEtm2iqcpDr1jCtHIh0z8hT++Vkoz7H/2EYKrWh2HNMu1PKVcrGPniKlTa9E46pJkSjhWrFU4ff4o/OsCy1ZrMYkizlGkUEYZqfbdbTRozdU66x4wnao0stkpkwqBcyeMoBPudCNeVlHNRyUzbQvaHxFmG7eRlsDCQEioFk3JF7RWDpM1bv/s2XkWVl/O8EnEQYskucvohAL4XEUQN3PZbJCLfY8jYfnSPzdYJm8tqv5VGShDDxqU879OUNLEQUuDlIXDtjLrZ42/+7u9o5Ht3Yi9iyYgP/ubPaMz9j2q+SlU+qy331XxdcZUuLaXRfLvRIgONRqPRaDQazYvO1xXXPPveHy68dnHvt+2AUH+P12g0Gs2LwLft+arRaDTfVF4YMc4v+438573/mxxGDntDHt1W7ilJFuEVKwhTUMiFHUJK7HKRMBrjldU0TQYj0qjApcoaAMcHJyyvlnA9G99VQonvv/c2aRpjGhLTUvcd7p9SqpY4fnJAvaUOiIulMtsPHuAWlRggMyS7TwZsbmwgc9sHQxhce2mNXnfIsHfuEBMyGo8pV8pYjjowJpHMz9UoVdWhMpml5kkaCKGEMTtbD/CrLWoVm3Cau+VYPsiM1DS4ck25NwSTjDAYUSzlh8+ZxC24vPrmy5Cq+2QWgbApFBukuWjAMCz8sgVpiJkfiruez7A/oTXfxjCUoCmTKXGc4PvnTikWi+UKmIIFoRyB6hUHYUA4npAkSgzgukW2721j2CWSWB3gFwseaRpjm2q+hFPEMSekyZhGvZ7fJ9h6uEeWZaxtrKg5DCYEoWRlvcFkrJwy+oMJKSaPc1HSzHwd06wzGJzA3q66bzShVHZ56723iBI1noODU4JEslyp0j1S7iae7zHTamLlooUogrfffptSqcjOrmrLtk2CMMKqFklDJXrBLjAd9ijXoguxxfxcnbkFB0OYVHI3IducwRQJSS72McwMMwPX9xCmike/32MyDkGmRIkS+0jRpFwtkKYtPvjFJwAsLi4yt7yE76uYFYoumbQQloEhrTwPTbI0IkkSSJWgYtzbIwlHpMkY08jzIjXAkKQyynPHQGYRiTvCyR2H+r0ho2nE+sYytqs+c/PqJpYjSOKMztGpmgtT0GjMkeVCH8sugUyY9A7xKrMANBpVRoMRaRIT5UKPKIhw7IRqtfyZc1A8YTIOsUTK+fYxHk/YfnLCtaLK83JZCXSEAMH5eCIs00YIF5moGNmWQDoghEW/p3Lz4dYh48mEqzfey7ueYlg2hmFSLKv2ozDg0uU1ZmZnGQ5UPPaeHLG0toBl2/wnf6DurdUajIIppqVEKZWKj2XbgGSaqLVcrPhgCL6ud8mzYsWnX8P4TB5y3p6UEE1G7N67i1+5BMD6ze8xHQwYTyOC3FXp5LBDuVqATLWQJgHNWoqMJLKYx2j+EkFsMjw6YH5B7X2PHm+TRrA8V6NZVy5HqQwQhoXIhVwyS8lCiTe3RqGk9rl09ASZTLEtiZH3OosSdo4Ctvdi/uGuWpPvfn+D5tw1prnDURhMmKlbjHY+QmRK9GRaZdzK61hzqxzsKQel3Z0nfPj+v+Nf/6CIZ6t+Jang0ZM+V64o8Zprm6SkPNkZs7io1uPVzSrL7Sl//pN9gpFy36o0FrCThJNH7/Ppj/8cgJs//FMs+/kiqs89954T2Gfdcs6D9rxnp5E3IC8ukl+88QsdkF/20RqN5reE/gG+RqPRaDQajeabwK970Pe0Y863VZSj0Wg0Gs1vA/081Wg0mheLF0KM82X8OqVXnvfv5wl2uqdnFArqoLw183280jxSSuLciWMynjAeTej3B7RbSkgwCaYMJwkLCwsAHB52+dGPfsLrb75McUmJeExDAg6mIXEddfBarVgYMsayC1h5uZ44CZlZmMXOS/qEYYjj2EwmI8ZTJSxYWFmgPmsSJymmo9qvFgo4BZfu6YBSWbVVKDikiaRYUmKWQb+HXyggZMzZqToc7vWGYNq0mvM4bn7QnIWqsImwCAJ1kH3W6SJsi3sPHwNQLtVI0zHlYhXbUP2S0qTcLBNFQyZ52aWHjw556dUbmCR4ZdUPO8k4nXZJ04QkF5xMpwFRlFGsKQcXGWdkSYplu8hc/DENJEf7j+mdDFjJBTRFP8E2wfYEoqjuLVeKCBO6x0rAsbu9RSYzmq0GpYqK2ezCLKZjs3X/AZ2Ouq7g+oyDkIPdfeZmVVv37j2i1xuztqncVDY31+j3hsTRnHJLAU5PBsRphG2bxLGaiyc7BxQrNaaDHkleYmk8mhBMYuozqg/NUo3JJMItlume5YKdgmB9qQaThyAKea7ayCwlDE4pVFR5JlM4ZDIhmMR89IEqeWRYBq++cvWiRJhfKpHFMelkgp3Pa6kkKRZ9HNcBzp1qgExSbdZ55703AeVM5DgGxbyvSRZiGAmGMHBysYzMDOJgyOO7d5D5GEvFBCObQjwijJQoJY7BMS2yWMV6EnlUZw3ScEwaK1cX16vQWFkGHGQu7nJsgbA8JCnNturHYNDn+LDD0opyGgmjIbblkUQBWarWaBZNKHgWtl+50Bs4piSJBRLjMxFKJihWSpTMClm+vrMs5Z13X8XL3YZsy2Y0mDAeDygV1LhPOx1OT/u88703SHJhVZZkCNNhNJwSx3mtJCPhrbdfQeSiJMtykBLG/RFP9lX5ustX1omihN0ne2xtbQNQK5ZojFt0Ts/onKncvH7jCtV6g5OOypNSeZFMSuI4YTRS7kLN+VYuuPjVhIjP3QsliOe0NO52cZiS5Q5NGAaJIai32kSRyoHTw2Na7TaWo0RC4/GARHpQqTHNhXXjUYBX8lhanGXQV/fF0xGteoNebwtDqnst0wIy5LmQSxosLVSQ5QrDgRq3PXyMKWNMyyRLVY+lYbC3N+X9WzHf+xf/CoDXXn+FJDWQeduFQp2zg7/DnG7jFZXzUmyv4rReJogMuqcqf+999Pd8/yWfuZaHyMWDnpuxuuTjGGqtmdLANiTzcw7nupqasDEzyaW5jNsfq7Je167bNFsN7Po6D372fwMwc+lVljZuXMQClEDqNy0J9cvv/zp58qwkS6PR/LbQIhyNRqPRaDQazXeJpw8MtShHo9FoNJpfj2/zs/M/7H+gf16m0Wi+0Yjfdgc0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNJpvCy+EM86vU2rqq0pUPV2249kSHlJKkJDEAatXrgOwsLqKU/Dy99T1vu9x1jkjSWKmE+X0YZgCxxIX5T9OOz3q5SKn+8dkkXJ0KFd9HLdEseSxt6/cLSrVMp/e/pQbr1zH9pTrxtlplyyDklRuGn/5F3/HjZevMTtbJQrU56VhRBylnBwe0mgphxDHLfCT93/O6vIyS2vKoUdmGRgQBsr1o1wpkKWQJhHjsXKVaDTnGPT6TGclhaLI5yLDMl0s04aRcuZoNovYro9xrMbYqFcwMgfTMjAM5RCTJC5pFJPEJrZ/Xk6pxu7jHVbW1xGGei2NzqhXbcgS/JIqxxVEfbyiZOfhAwA8t4QgwjCHDLtDAIa9EcE0IU0TOsfK2Werd0YUBrj+EL+gytZESZNCwefJkyMATFL8coUgmGLYag53n+yTRQnVcgXb8/P5SvFsE2HadE5zB5KSTxKlZJGaG9O2qTcrlKplHtzbBmBxqU6tWsZxfEaDST4/VeIkYzoeAcpNI5xOmVteZjmPj2NZPLz3mFpzllpdlbtZXb9CNHkCscDx6nnmGmA6mIaHMNXSTDNJOIkwRZFqVbmNNNoVTMvCdnKXpXRAmMRsf3yXzZeU84ZfLYBhIKMAKVQ8bt36hNnWPBkZ7ZmGuq5YRpIQ5SV9TMvBFC6ZjMjy2jiWaSNcn1Klyt/91fsAXN8sU3MDRuMuk6Fyvdk/mFCreXQ6ymmkVq8xHHWYX1i8KIOTRUNIU7zyLF5eIiqKY8b9KZVqCdtTfS2kDuPBGITKORmHCMujPLPBuYbQsh2iJGM8nFLMXaKkYTAJpqRRRrGUOw5ZBsE04vate7xyc1PlXaGAzFKM3GUnzTIsW2I5Prar8mTt0iozM2ek6RRhnpctipVTkplSrKm+zaUp7ZkZokDNw907WyzMz+PYMc2WytU4CshSwV/+P3/NW+++BcD68jzD4YTbt++zvqEcmRzXBgSttnI4Mk0TYVhMh328fK3Zrv9r+OJ8xudK/ZGHxpAXLYZBwO72ffzaLL2pGvdkHBFNIgbdXRxH5aZpG+zt7jDNnWtq/pjw+CcIGWK2VZmqMEwJ4yFZHJMlqv3N9WU+/uhDSm5Gkpc9S1KL3d0pa+ulfNyCFAPMMv/X//mXAPzeywPaTYckCS/qNp2NYJIYVOpt1tY3VFuJIA5GzC2pPVOGAYPup9SsiBCV95F7kywtctY95WG+F5XMYxZaJcIopFDMS7RlGa2qS5bPWZLANIrxXAukWu+mlJycBQgZMRnnDlC+j2V6WP4K+4/UbyU8uf23zK9evnDa+lVj9vzH3bOlxz6L7fn1X26co11wNL+cb/Nv1bxo6N/w0XyT+W3sFXrNaDQajea7wB8uvPad+k5+/pvv37VxazQajUbz66KflxqNRvPi80KIcZ6HlBIhxMXfvw7n4pvPHTY/7yTSgMZMG/P8UN+zMYVFGAYkkSpHcrB/jOOXqNgWfi4QMGVMdXaOJFMH+DdvXseyBcVilSw/mA0jycOHW6ytznP71h0A3nrzJdqtEtG4T5Io8c1Ht25x/epLTIZKBPHKK9dpzjQolhyiIMzbCtndfsxoOuHKrDpYjoKIK5fXabebVGtK4DIZTtg63MMuqH4Ku0iaGvhemZXNlwDodfv0h2cUXAvTUOPOLJM0SxFGip+X5jHdAnEqQHbVNTLAd00wXDodJYxpNjwMISGVRLEq3zO7vEYapQx6Y4KpGlOpYGPYDrZjY+RijGazShT0sIQ6dA+mGfu7BzQbLWotJUCwXJfsOCVJCjze2QPAd03CacRwktDORS8HOxNKxQJmnicr62s4Dhzt7XN62M3nwqRarTIcxwSnSjRQKvl4rkcUB3ntJqhWSmQZuHnpmdE4ZDwcUSj6lMtKNOJYJpV6nWA8ZRKoOK5eWiJOBe2FeY4eq0P9af8AUWzSqKoxSpGxsd7EQOLlYqydB/dIkjEbCy2yPL0tz0NmBplMyPIxZUnCqN9hEvZZvaRKdlmOiWVKkkgtXyEcTBHQalXodw5UiluLhLEgnoyYycuqtZozCEtSKvjEufjGL3ggbYYD9e/T7g5raytkmcQ08z4YCYblM796idUlFSMm9xiOMvqRzZ0Haj0YssAwa5IYKi9lYHDQHWLL+3hVJfYq1hYgi4mCDtGklQ+8wlk35WD/kIVl1ddqtcrc0lPbkyEJJ2d4tTZZHrM0Sjk9PWPSH7G8qu6LwzGHBx06J8dcu35Z9T+THBx0cR2P05OOmotWCsJEJkoMYloutiOwvQLkJYqiMMXzfCzDIJgq8dXRQZcojphGgq0tNdevv34NjAzHU8IVzzGJwjH15iyFqsi7nzGdxnz/vbeZm58DoFAqIhF0eye8VLwEQKVa4eNP7lPOxUXlyhpJapBGIbVcoCMNciHIF/e2p/e75+2bz+6H8rw9VN4BbN/5CCEcDAOsfK8TwiQIAjonxywtqxJqnu8TByGTWImvuifvU5JHeO1XcBtrag7jjDiMKFbKhGpb4/TkjG6vy8yKzXFHla5yLJtq08xXNogUnHIbp9Lid95UIrSK1cfIEs7OEkwrF+N0I378QY9rr97Eddx8zopEUYAhVU6H/Y+oiANkZmBWrgBgF6qQhQwGA2RwCEC7LvnwfocfvtFG5CIXYVoI0yRCCWjSzOTf/vVdvn+zwfqiEm0ZtmBzuYhnCz74qy0AHj7Y4uVXbtCaXWP/gcrzkyf3iacT7EqV7FcVoErjc+qrC6Gp8XQ7xuf+b1wY32V8EeNC0KTRaH67aEGBRqPRaDQajUbzGU8Lcs7//U1Cf7/XaDQazT8337Rno0aj0XzXeWHFOIZhXBy6/7ID5mfvex7P3lcolYgm6iDYdmwc2yKaGuw9UU4pjx49plQrM9tqUG8rIcy4e0oSBThO7vzilyhXPWScEgTqUP/jD+7wymtXqTWa3Hz1JgCOnTK3uMiwP8HOD0Z/53ffhUwyHowAWFldRooYy/bYerQDQLs/ZHZujvnFBaZjJQbodbrIJCaKU7qnp/nYDJaW25SL6gB/Ohlz/959rl25xE9/+hEASZIxvzCDlDFhqPqw9+SIw6MTfveHP0Dmzh9CGITTAUsrueuOjDFsn+l4jDDzObR9TOEgsil7D9Xhc/l6EeGYHB0fsbgwD4Dl+sRJjGk5IFMAojAgCg12HqkD8Ml0hDAs9veOqIyVGMC0DEpln4LvkabqM6UwmEyOGQ5GpLmAYholXL9xA2GqtuM4JphMQRrUmvlchKkSWEnJlWu5K4prEkQJDz7dRuQH15V6k2A6whBKLPPo7kN832U0GFHw1WufPtqhPhjR7QzoHqk8Wbu6yqg/4mBvnyQXbCAg6u7RKKu+1+oulVoR4frMzihhgV+oYFkOvaO7tIq52MspkUZTwtEJbmU2j4dDo9aiIg3u3LkLgOuX2Li8gusVAaUnspCUPItBR7kLffSzW1SaDZCCUkWJYx4/2COIxrz00jVas9V8JZhkSYyRz8PK0hpnZ0Ncx8QyVDycUgHL8shsh5e/9wfqM6fXeLz1gHTi8S//KyX4CsdjMmFzenKsrpGCfreDaLh8eOunau7tY1ZXL1FrNYmnKvdNv0bBa3LrH+/QmlHCBWHY+F4RKfL4Ox4ySiBNOFcvGTJmdqYJzcaF/cd4IHnyeIe1S6tM8/U9GQ6xTJNiqUi/p+anXKrxt3/39yzOK4HL7NwMrZkatmNc5Feve0RzZobMcLEc1f7s/Czdsx41t8DW1iP1mdMJZBlZpvJwaWmezukZSRjSOVNjLJYKuLbglZvXiYNpHrcQ1xV8/713MA21FR8edHj5lWvYdu7QZNpkqSCKEjzfz2P2mS/O5xy/nuGr3MOeR3dvH4CzkyOuvfYGP/+Ln9Pv52uLMpVqmbm5Obq5KK8100BkQ/zkEzUeuY9pOiRWg8lIzX0SBVQrZVzfxxBq3GQjqiUPz0oRiRL7OMLFKUg+uqfW1XLLZ75ZwjZCZmsqHuMzgzSNiMIYGaj9ysLi93/wKpdee5dCUb0WpyGWITi8r9ZLfPz/0i6mJHaDQKi9qVqdAZkyHRyz/fghAD/8ozoPnvSYRMmFANMwDKQA21NryMxs3nqlTbPuIaxzsSiYgGkL4liNx7YEpkxxnYx67hI0HTwhGg/wy9XP7Gq+JD5feI49c9nz4nouRD1/71lhqkajebHQP6TXaDQajUaj0Wiez7kgB7577kAajUaj0XwV+pmo0Wg03zzEL79Eo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRfB1eWGcceL7LzVc5QXydts7v83yXLFEOMeNej9C2efRgj08+Vm4Kl6+sY5oRAujm5Y2ebD2i1WjDVNVbOTsbUR4UcO0ClZpyrXjz7Zu4ngNScnKknCaSWplKwyNOQiq+Knnk+iWGnVPKeSmjR4/us/3kkFdv3uDylTUAHBuCIODsuEO7pZwZ2q02YqbOvQcPyY04ODzq8nu//wNEPsaC53BlYxWB4NVXVVmWD39xB9KEs9MBbjl3RZEZnmMTDLs4nnKSSbKIcrVJlp67d7hkKfjFIo6t2s+iEanlYAqDZrMBQJSkJEFCqVSjXFVtSUNiC0k87WM5yl3mcG+X08PehfNHGiYcDvq0q/WL0jDdzoDmTBuyENdVbhcpKZc21+l2e4yHKh7Ll9aYTkfEST4RwkRYHn7FJgjGANQadSxTMBwGPNlWbjyWbbJ+aYO5hSVMS31mlqqYgIpts16iOTtHoVYimai2LOc1xuMxXqHMdKLmx8gEe4938QsFbFeN+9HDR5iWzZtvX8/vE2A7pMmUNFWOIaXaEtsP9wj7AbWicqAxLBfDMIimI9KJch/Bq2EVqlgy4+r1qwAcHZ4wDWLKZZVztuOQRiZSCvyCem2mkTCzOEuxViPJ3TosK2S+3qA9U8fK5zWKY+IoVmXHAKSkfzaiNVOhUFOxNUwQhomJA2ZF5Wb9Na62XyYJU05PldvMzuEp166tUKkpd5v/6X/+Xyh7Td5490+JUDnXOXjAvfufcPSjX/Av/+B7AFTNFMuEH3zvJYSqekYwGVIoFpEyymPmI0VGKjOEmV+EhYFAOBbjsYrRzz74hFdev06pXObBHeVcMxoNeP3N1zEwCPLrHj7cYmlxgThUbkbVSoXJJCGYnjLK3aoWFpukWUoQTBCoHDMth0q1wGgY8957P1Ah8gTdTpdKpQ7AR7e2sB2DRnuGJFb9J/NwPY/+YMTHt+8D0KrXWb+8zIpwOD4+AqBQcnBdG8u28/skURgwmU6x8vwypFTOKoZxYZhy7mz0hcpDv8wdR0qQGeF0xNET5RBz/fU3gITpeEitrpxk7LJHmkaYpn3h0jLqdZGju1QslatGucAg9LGdWSolta9FUQIGHO4ekOSlnsaRh0XK5pLLwqzaF2wzZW8noOGpazzXRxTnCHuPyUJVci5NYmQmaTddHuyoef0PPx7z2jtv4NgCWzWFbdkYWUa9qGIdewOk5WFVX6NY3cjbdzg67nJ4uI9rqfVXLAkqJR8hbITI59+QgEkaqkE7pQIvX5khnIwZDNS6Go4CZpo+vmsgM5VPYTTlbDBEWhbl5hIApr3P3sOfUm7Ng22dBw6eLa0o1WvyKa2sYRg8/Ti8iKn8vJ726VhftCnFlzgnfeEljUbz/xPaFUfzbUL/Vp5Go9FoNJp/Ds6/Y5yXrNLfOTQajUbzXee7/Cx82jVPo9Fovmm80GKcpzk/TDw/YPxVSlc9zUUZDwFJXgbr8b0HXH39JnMLbUq5mGEyCZH4OI5FKOe2rAAAIABJREFUv6PK7pAmDM5OcfMD41a9gmFJev1Tjk/U4fDC/CzdzglzC20ub64BEMYRcTCm2x2RSnXv7LzPeBph5aVnPM+kVauz+/jJhRgnjiPOBhHbj3bod/oA1OsVlpab1Buz7D7ZVa9VfZJghHOuURAWjlfg0f1HzMyqMjzvvvsGZ90+P/vFp8zMKNHA5StrLK+vYZsxJycHABQLJexqRJKpxpI4xjASBp0ORTdPF6vA8VGfgmfT76uDeMfOiBNBEAwRhmpf4JCJBGF69LvqQH1wdkaaJNTa56WsImZWFhl0+mxvPVZzH6dUmy2mk4ByTYmXDnYPWXttHcvM2I+VEObS5go///HPsOxcpJClrG+ucdY9Y2drfD4Z1GeaSHnCaUcdXCepZPvhfRzPQuaH2ePxmJXNFdotVZLseP+ULI0YdTsUyuU8/CmT/pidxyfEkRLtXLl+hVqzzqDXY/2yitt4MqbX6dDPSxTVq00MYZMaCSsbShx1ejxie2uXsjOETAkX0niKY1eI4injjpqL6lIFy3FIU4ntqr4uLMwhHJs0z3thu2AIkAmur8rrVM0y4XREkoQUm2pMr7/zNlsPd5hMUg4fPQCgUPCJ45T5pRkATNugWi3iew6GUGssTRMyQMYJe7tKYFZvztCabSHMlEZb5fRyGOK4Bmms7ru8ukqjNYdMAjavXwNgZmmVB7drVIo/wTNUW0YMhiVI05StrT0ANl+5iefbcL7M5bmYLkPKz4R1pmWQZjFSKmFEvezjuyDjMRtXVgAYDcfEccR4EhKFSgy1vrlOvx/yj//4cwBapz1uf3yXH/7+uxSrqvwXpoNIAvaeHNBsqfkpVi1Mx6FYFdi5YGPQ6/Bn/+4v+MHvKnHR0nKbRrNOHE1ZXFFCjLNOj+2tXeq1Mo2mWpMz80sYlk97oUZrTomcXL+MwEamuUDLMJFpzNLyEsK08tcMJPJrlyF6noDx4u+ZBCSHjx8yPFYioXGzyPanDyi2LyNRoq3B2RlBnNHrdLh8bR2AaX+fajGlbKr1PjyZkHnLWIU5LFfNje16OF6RRPbJcoHc6ckB9XJCteDjuqofZ6OI2VkfP9/DMn+W8WCIOfoYI1ExqxQNkjhj1Iu5/UCJXhqL11jeuIHjeri54C8MAopOQNhXJfpcB1JvBVF5hdRW6+P0aIc0NqmUYHVe7cGWgJvXyhhAdp54hqHyzVCfl0aAjBFGxniscm4wzGg3BBXP5dWrSjTZPTvi3e+9i+9bDPPSWL1jl5/9xf9OsT7P0vV3LtoH4wvlqp6N67Ox/lXLT33d63VZK43mnx/9gwON5jdHryONRqPRfJc4f+59Vw/g9OGbRqPRaL7rfFe/A2g0Gs23hRdCjGN8iXvDV7ng/OauOYJqU7l1jHsHTHtrFP0KcagOWB3b4c7dR7QaLnGshBemIanXC7hFdeAaTKYUPYdqbZUHnyoXjkq1xpOjY3rDPi+/pAQIg+GELBN0Ox0++PA2ALNz87z00iaGoUKwuLSCkHu4dkyWKheO0VhyenzM5c0VZKIO5zNigjDGdhxu3nwJANvOcGyHx4+3AfBLNeIowXVcjg+UkCgIQhZXF1lcmaOkztc5POixtuGSJRLHUXMRZxHjYQ/Xb+STKsgkHBz3qZdz0YsF5VIRz7HZvJw76oRjTnoplVoTcX4onqaMOycEU8lZVzl/RKGk1+szyJ1lLASuX6BYKpGkau43Ni6BEGSp5GygXHBsS3C4s4tlZiytrAKQRjHVRpNRX4le7t29B4bEEIJzFcdwOAQJBztHLCwvAlCtVhgNB1iESFMdxK+WXIrlCo6l4uGXU3q9HkmcUAiU0Opg/xSbiKtX5hlNVTwcz8axLJbXVkgTJTZYWm5zcnxKkN8nEViuTzLqkk6Vi8zgbEirVeX4cEgoVUCKhiScdImTGDMXjWRphuU6iAyCoWr//oNHbFy5yoN7yslk8+oatuMSR9lnYjXbxcAkiUOioZofr1RkZWWBR48e82/+tz8D4OUba/znf/pHWHlOGLZJa65JlkRk2bmri9JsZAaMpypGFZlycLALWUZ7TokNKqUaJ0cdokj1/eSkz/fe+xeYlkMcKeFbvVbm8vWX2LkbsneqxGTZ3mOuvVzGcEMurc4CUCpXkYaJyB17onBCFkucgoXIY2tYLkkaIQwTOx/3xvocJ0c9mu02fkGJapp+mcePDzjZO1LKH6D12svUHZvNDSXYmY4CCoUCBin1ulrfyJQ0M6jXq5i5Y1LnZMLu4Yhmo0EwUQKN2XaL1157CSMXBHmugxAgEJiWEn8gTGzLwbZtFhaUGMd2JbYjkFnE0RMlQmrOLeEXfWSq5ksIi2g6pT7T+vyeJ88z/DNvnF/G0/vsZ1dnpDJl6+OfEvdVH5K1y4xHU6rtS0zy/bDkCEqZQaVawjRU7tesU+xol9RQOT2emsS1ZertJbxcsBhMQ+Iwwy8WGI2VoHAyOuPGms3L14qc6weD8ZRWy8QQSvgmyvOYhMTxAPvc4EVCAhz0Mm5tqdz83f90g7n5RbIkJZgk+ZAkvf42TqqEgrbjMzUq2EYZ21Kf2BnGxAScHneoeeq1R1sjrm4WsW3zwjbGMAQIQ/0BZBKRZWC6FotLSkTnnYbcutPl2kaVZlW1dbA3JIoCxoOIxqzKabn0Djv/8X/lo//4b5lZV65ZjldCIj6LraH+I42nQgvKLsd4+p+fRf9ZoeqzfJlo66vu+1Wd5zQazVejDw80Go1Go9FoNJpfn3NBzot+GKm/92s0Go3mn5IX/bmn0Wg0mq/HCyHGgV/i3vDU+18lwjk/bH76mizLvniPYWBIcHL3hmH/jGFvgFepUq3nJZwMWIvmOdh6hF9WB+rLa6tYQiLzg1m3WmQSxrieweWryi2iUCpzaeMS0XjC0aE6DN7eOaTR8FldW6XVVi4ljuMwOhvw8P42AO/84F2abQfHLONU1DVi/wBjtsXs6jIf/ly5PNSbVQzHoeAaFAtK9BJNuiSZzTRQ/SqWbfae7FGr2pQr6sC4PTuLVzDwHZfB4BSAzevLJHFIGIY4lrr38KCD7bi0Z9XcHB8e0mxWubq5SpqdHzTvUy3bCNMhy9R9wvGRWZdSyaffUeWg7t/dplr0ODw8pd1SpYvCIGR2YZmdR1sAnPaHLM3PUbAtirl4olQpgSkIHAc3U2KZQqPOyWmXeqNyfi7OcDChWquwmItswjBm0B/QOz3FcdR9putQLlmU6hUqdeU+kgQx+wcnGEmIRB3gX758ibNp56IEUhBE3Pn4PqVSkVlDCSOOT45oN6tUyhUGA+Xqcnp4wN7uIe3ZOaKCmrMrN68SxxMqlTyVTEGaSky7SLGkltzVlxa58/Et2rUZvLyvaRKSGQIDhyxS/YrHfUaYOIUiRl5Sq1zxAYNaVX3AJx/eZfPyGo7jI3NBk0hiTFNgYNI9UfG48+MnvPbqTerVMv/9//DfqvbjCGE6GOclcTKDo4MToumQhZW5vP82ZBJDwPUbl9VcxzH//s9/RKve4vs1JTYYDHr0el3mc/GB45YI44T+QY/jA9WHl165TqUxS2XhJYKhui7u/pRgvIdr2hiWEnbIcABOBfLSRpAihCCLI8LcKUVgkaQT4rTIJBdtGUg+unWPudk+G1dUX8vlIs1agWZ1jV63o+I7neIXi6xfXgZg9/EB29u71Eoub7zzqpqKLCQYj/nxjz/k9ddfBqDRbuAWWpQKHtMgF5R5Po1Wg9Mj5f5ku2OEAY939rlZVftJvVHjYDjm41sPuPXBHQD+8F/9AV6xghBcrNNkekYsItyCEgQZwkDIBCd37HoW42uIcL4KaRgEwx6942NaFTXXB9u3ac5dZzJJ+P/Ye68mS44zTfPx0CeOVnlSi8rKktAACZBssrutu613d+aqd3fMxvZubX/erO2YzZjtzG5PT8+0ogJJsACUVqnV0Sq0z4VHJgqFIggK6wZJfy5QyJNx4ni4fx5Rld+b7xvNVD0VqxWC8YBoPqFRU+IrT9pkU0kyU8IYr9rBbXQIZwPiQN0zHc+hUHLp90Lu31NuT8PRKdvvVcmyDC/XKm2ul5BC4jZVzbmdW4x3/wlbZmT5cyDDYPco5HwMpZJyKtq5ukMUhwgy0txNyDIFRSe+LJ3EtJFmhSRNqfrqAyutBkEQM5iktNpqf58NYxaHDq2mElJdzLAkuxSTfXS3y/XtIp4dIRM1LlOmrK0WmQcZlYJ6XzQ95JNP73H71uucHSshoudXufrG9zh//kN6e/cBWLz2zudFN+ojv8Bn0pvfnnONdsHRaP550D+Q12g0Go1Go9FofnNedMjRzUmNRqPR/D6jn3MajUbz+4Xxyw/RaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0X4WvjTPOrxuL8aITjpTylW46L55fyosYI4ntKpcEaUrmsxMqjdfYf6gcW7IsYTYfUyhVcycS6PeHmAY0WyrCyStUGMz6/Pv/5z+wvb0JQGtxkc5ii3K7wSef3AFgZbXKbDjn7LSP76s8oGarzvl5n/aScgeZjYdEc0m5YkKQR9TYDpWmC6lkc0PF6fzg+z/Bd0ssLjdIcmcGadfIBOzc2Mwv3KLRawAR1Zpy2HALHlmWkkZneJ5y4TBMi7t3HjLo9amUlctOmtmsrpcRuUPMeBphcE57qYMh1DHCcAhmMU4BLEPNYSotiqUycRDy/MEDAE6O+zReu8H29iZ3P1avWbZFrVqkXFUuOLbnk6UJxWqVaayuZ+/hEzKZUalXqFRVDNbB7hFXb10nCCc8ys/VXljCK9qEoYoLKpcqxFGIX61QraprtG2PZrvGPBjTO80ju8YTru2sc3R4RJooV4/xZMJ0PKe9oFyJJtMJ/d6IcrHAqKvcVIwswi/6TKcz9p8ql4+V9WUa9RIHe88plJULymvvvsnV6zvE4UitTxojjYT5PMAvqVqyDYurO21mZ4PLMRh2Bc9rMu4+wnihNi3LJQ4CjNwRZnWxihRTzrvK4cgUAstxkGQqzgYwjZg0CZFSkiUqYslIM8IwxLIcjFS9FoRz7n76gJ3rykUmTsb8p//419y+vcXS+ioAzx7uYRLT6nR4+EDFse3cusH/+r/9a9I4Jk3V+OuNCq4tMEy17/7iL77LeDrg7/7u+xTzmkuTjPe+8RaLC4sc51E7ew8r1NxjWm6dRCo7k1n/AGHbXNiGuJ6NsAz6p30quXuV6ZcwUp/haZ8nj1RNNCtNPnjvdQaDOYU8Lu3pkz3Ggx6r66v8/GfKkWRjZ42trS3OTpWbTRol3L59jUaneukc1TsfU/QdGq0mlqfOhTA5OjrhxrVNvDzeCBnSbtXYe74HQK2+hsRgbX2V/ecq+skvuBzs79PqLPDWN95R89VqMR3PSbKYxY7a32mWksRzwlDN6Xw2xTIllpNbyPBL7pVf0Tzl4gxSQv/kmLIvmM+V009o+pRLHilz0lS9Np0kuKZLq92m4KjHxqSfYswGmHmsnlHwEY6P6zU5OFARZK1GidH4lG5vyrMHKqJvrSloNVxKJRMLda/LMjCLTUqd99UYkjlm1gPLxMw1o2Es6Y8TPnmYEmbqvnB2eoLne/h+kShR50riGdl4nyLK1SeiQHP9bXBKpHH+WhQzG084PTlj0VevfXC7RK1qIkyI8z0jpEN/CKM4d8capqxMEpyypNtT+zGNDdothzSzsIbqOMcMiYIJlpng5RFwWZyQUGA4GnJw/ycAdK6+jfGiJFaC5OKZ9mWWOfKz737Jer/43INf7obz8vEajeY3Q7viaDQajUaj0Wh+W/wuxDT9c6HnQqPRaDS/r+jn2y/mRZc8jUaj+V3iayHG+VUafy83FS+iqV51rguhzhfOn4t27LzB/fYf/0/0j49xix4rV1VszWw0o77QIoxijLxhvP/4GQXbvNA70O0NON3bY31ji2dPVfO5VKlycnzKYqdFe1HFJz179JD33rmNWyhfNnlnQczOzeuEswkADx8+5fG9JyyvdrAKSrjQqJdo10v87Mcfsn+gok6++73vIQnpnZ1jmmr8cRJTKRewi7lYxrQ4OT3i2rUtnFyQsLd3QqvdYHl9iV5fxWc5joXr2LzxzusIoRrq80nE2voaaX7N9WaLsiuwbAfLVudaWV0hmA5xHI80F1QcPj8gDQNOd/f56KOP1VzUmuw/eUq5Vqe9rMQGdz/6MfVGhUouXJnMT9lYXyeRcPWmivo6evqc6WREEExxC0q8Uin72LaJiX8ZWxNGAbVmBT+P8Hn84BGW4xHHEWEu7JEiJJiNmM/G1Jp1AFynSZZk1CoVLhreQSiZTIaUy0rYs7i4xJXrIzbXGxzsq0iq67dvI6Tg/OyQrWsbAKxubTDuDjnv95lNVMTS8e5TWi0Xx3shXCaNOdp7wOraFQC8YhmTDJmZJMEkf22JYNZHJumlQEfGY7IswECQiotIMA8weePNa6qWJjGHe4c8efqEd957Q62taWObJuF8SqGo1ACvv76DISIcW+A4SszguRbzMOA4v8ZiqUBnsc3Vq9sglUrA83x+8A//yLWbCVe2VU07rgFxwN2PH3HnEyVw+ZPvfhMhEz784UfqfYUi29ur/O//5t/wsw+V+GCx08ErOCRphmPka+Q2ubvX5U3/iNpCWdX0fMCk2+PwVM3prTduIUhJhEmW12qWxgSzgGqtxPXr11FYCJGSyozxWM3rj374E3Z2rvOD799hdVkJjBoVn3A2o5zvGZlmDManLC5UL/fCysYGppkymqdEQR6NVSmTxDEH+ye02qqeDAF+0eed95XIxjIhmM5x/TLD7hCA/mTE2lob23FpNJQQLYnHjMYBS2urSkgFGGaGY/qMhuq6T/d32bl5jRdNzF4lMry8H14U3CuQIj8uy5QKB0jTCKdQwHJj7Kraf0Z5A9c1sZ0iVi6ssiyb+TRgMgkI5mqPMBlSzlIMW4mS0szBNgWzaIiX15xh+1TrBaLggGZFiV4arkuYRCCKl2OLkhDXqhCLXNw3ewRZiMjXGcA2Dd7YKdEbpZjjXBDpmhSLNk7Bury3zvunFLNzRB4vZ1pVZvOMdD7CyYVEniPYPT+CbE6r6l7OvSEMoiRh/1CJkFp1EFmG66i6/PMPlnHNOVEkqZaUcMz1PSQQTw1MW41/EESsCINSpUqvpwRfg8EYz6lTbaxw+Ej9o+rWfIxfqn9uyS7XV7z4qqEWkIv72gui04v1lb84tuxFweorox4vzvHyGDQaza+N/uGA5g+Bf4kfEuq9pdFoNBrNHy4Xf/f4y+W3tCBHo9FoNL936OeaRqPR/H7ytRDj/CJebCC+zJcJeF7llPPy8S+KdPxCkW4S8fjOz1nfVmKJ1uoyWRrxQosb2/GY98/p9lSj/OSoTyYFN25d571vvA2AYRlE8xmlcpHBWDV054EklTYIA1LVVH/2+IDu2Yh2uwnA1pV1rl/bJE3nnB2r5m2/O2Q+noKQvPHWbQBKZYuD/S5pll02lpMkwfVsPNV7Jk7n3H7tGgXX4vhEiXju3XvCtTRl5+YVirlrTBIkXLu6DpbEsvImeCVDWAKRO0gsLzVBWMg0IA7V9RSrTQolhyyKEKkSKZQ8i8NBQiosVjfUHArDxC9VGIzmyEy9d3Fljcl4SqGmGtlXtq4QhRG97gHk69YdzCkVy9RbFZ4/2gVgNBzRXlpgNpqwsqaEPX7J4ezkhEJRCUsMQ1CtV8Ao0Wi2AAiGffZ3jxj2poyHUwCu3bjONAhwHJsoUK/5vkut5mHm4oOC77K5tYZFyOqqEmh1Nq5yfHDMaHRGFCixzGgwB9tj5+ZV7t95CMDh4SmTYcLK5lV1LqdIEMRI6X/mxpRF+JUV4jhhPlJ/yYrHh4TzMWRge0pskIZjSGdIw0Hm4pUkmgEprr8AgOUJwizh6vVrlCpKNGAIQTgbY7sFRC5MEkiENAnDMeOJqrFCsUJnocX5iXL/SZOQd999Db9cZDRUYpZ/9+/+Pd/+1vtc2bmGJZTgIQrmyDiitdDhbUsJWob9Hg8//ZSN9SUAxpMEx7F4/OQBcZwAsLTaJkkTfvrTu5wcKgHbn/75n5CGW2TnPyTLHXsMc45jpqyuqLVO0hTHtin7BsaFUCBNePbkKeVqE89W+8qxEtIkotGokeR77drOBnE0w7UtkKpei16Dew8eUi6r2lnd3EBmGabpYjv5fJmSOJyz1GkgLCU4GQyGHO0dcXxwwp/+2bfIF5MkSZCRmq9nB2dc2VnHEDHrV9RchNMp9+89JpMmt27fAOD0/JTheM7a5haDgXJRqlSLmGZGKXdQqld8vJIS/VwKMeQXxRIX97NXig9fQEqJ4LP3D09PefSjv2E6krQaSqgUJjZhb8Sjh/eolsv5um1RKHkEU0kUqftfu1nBGLiX5+r2QhqNBN9OKLlqfxsiJYgjzs9PGAxUzb31psPyQgnTSC9FQZ7rYRcXiHNhWjrcRcaBumcKtY5ZJhn0Q7q9hDR37mp0lnF9nyyTOI46bhJ0mY7PcKtqDGahg+0WidKMyUSdv1KrY7sl2o0S2+tKjFOvGVhGQppIHh+oOvQLRdotF8NXdZKlMVmUIIwMr1jIrxHCIMQwPcquEnItlD0cK+P8/IxCQc3h8kqRJ08fU1/cJBooJ6doOsAvNX4r4hfBVxO2flWXHI1G8+uhhQIajUaj0Wg0Gs0fFvrfABqNRqP5TdFCHI1Go/n95WshxvlFv63/ZQKaVx33qgb1l3Hx/SiYI9OAo+eP2LquGuWjfp/u0TGO45HkwpRipUyKTalSAcAp+FRKJaQMGc8G6hivgOd7WK5Hq6FEL++//xYnp30WFgSDcyV62N5aJ01jhnmDutVuY7gCpM3qxlr+eROePtmjtbBAZ0kJL8aTGQXHptZsXMYBnR4fcXR4jGUp4YJlS06OT+ksVBkOlAvO67ev4JdLTPp95pFS7biOiefZ2K6JyOOmgjggmYxxc9egs16X87MhtZLFwopq1mdZisQgyRLCWe70M5tRKnm06tfZfa4inGaTGY5jM9o7YXlViRJK9RrPn+wiLSWKaLU6zKdDkiBCoBrZ9VYD33UIpgOKFdUEn0cpk2mA43mUbDX+k8NjWgsLWHnjXyYJxAFuwaNUVK4bR8/3CeYBURRSr9fzehEUfJdSqUwSq/PPxhOyJOVg70jVRCwJgoSC7xNESnhz9OMP2bm5w9Gu4NkTFT8UzCWFapHxaIJfUp/ZWepwfHTG9YqKvDIMA1POWVutYuTXKKQFwsCvLzHYuwtAEsxJwzG2W0NkSV6llqpTYWNbF44ZAtKMNFZz6Ng2N69v8+zxLlkep1OoVLAdjyQOmQ/zGCFS0hRcs4hpxvlcSMLpiGCmHFxs18N2CsTBFJnHoG1sbLJ9dR2ZxewfKXHXp5/e5/3vfJPltQ6FfD32np5zdtbl7XfUHlpadomiGWkA3/6uEq7UmhVODo+pV6rUy2p/VCoetrvJcf9DkrnaD7ZVIUnmpKaqrywWYIEwTWSmPk8Ss729huVVSfMIr8n5c5IoxDI9el0VS4aM6XUHXLm6zvJSO7/uiGq9TqOuYtwKjkVnpcWTB/fZubatXvOKkGUYQhDkcy1Mi5999DNu3r6FcRHlNpxgGCalkhJQLS47GKZHEMwYDZRwpezD1tUrRGHM/p6aw9F0zBvvvMF0OmHYU/NfrVaQwmDaU3VYai5gOm4eX3Sx/J/d1152PJHiBWMcqd506ZojUV8jyPI5nE7nnJwMaS6/RpDfF6J4yD99/5+4+/HPWFhQTkjfeN/k/e+8x/F8F89R4pXxOKKGvBQ9tZe2MAtl4lQSTNV1G2ZInMQ8fnbIwZm6xjiukaYppoBUqjoXhoPjVi4FTWk44tHukFrJppS77LiOIMVmFkY01tRebjQqICUGEr+Qi28aGWlikuTOTrPAp2K6JNGMRmNR1cl8TsGzGQzH9CbqfZ2WSSZsTDvmTz9o53VokEkD01THWKbFZNLjrBtQcNXYm80SrusiTYOCKhPieMbPP3nE7dffJk3za7Q9qtUKrpyQjtRczwdn1BaufD6A6hWPrcvnnvjcH5fuVS8cefm9y+flS8/NVz5rv/iRGg2g7d81Go1Go9FoNJqvE/rv5wodU6HRaDSa3xf0c12j0Wh+/3m5k6fRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wh+Tb4Wzji/rbiMr+qw8zKtziI/+ev/m7VrrzEeqTil2XDE+XEPIQTTmbI72LhyhTiOcWzliOHYDlIGZPGccJ7HNRUqpKng7KTL+dEeAO3FDq5rY5iwfmUrv2hJr99HWMpxoTeaYjoNyCRJoFwT0ixlZXWZUsnlwgvBdVx+/rM7bF7dplFVTizVWhlzHBCHF04pPvVajSQ1uf2mirc63N3j5x/do1I02djOx4DBPJjh+g0SqT7zdP+QjJStqzuAcgcplULcok+cu67YdoZEMukPePZMOf08un+X5cUGfqV1OVbHcxkMJ/gVH8dTTjvT0ZDFTp3pTM1z/7xLnGRkZHz80X0A3nznDXzfw3RqVCJ1TWF6wLA/pFQsUCopN5tCocC436e1qNxNMiyEgJOjU6JIrblpWHQWl+gsNeiezQAYDkYUPBcZw2yuXjs8PMKzDeZ5/NR40KPZXqC+uMDB3qGa+8zGNgwa7UUmY3XcfN5l0D9jY+cm1dzFp9UssLBygyhQTiCOW+N07xELK1cwHbVmWRKCANNxKLc3VA3sf4xhOZCFxIGKLXL9gnK/EFy6YGSZQMoIQxneIElJ0ox+/5RK1cmvGzBtHMfEK6g4HZllyCBkOhoqtxXg7PSMfq/HzjW13oYpmQy7/PAf7vPWu+q3jP7yz7/NdDpRNSrULePa9ZtUqnWyLOb8/ByAcsXnX/3rP8PIXURM28RzPapVieOqmrjz4UfMwylJJMniNF+PMf3BgMMHXZpuKm8pAAAgAElEQVQV5SKyXFpFphNKLeUS5Tk+AnCcIhJ1jOF4WHaCTAKyeJp/pstgMObo5IAsdxe6fu0GnYUJlpPx8LFybWq1a1y7cZ0nD1S0mGEb+K7D+sYGSDWuKJ4zmwX8zf//33ntrfcAWNva4Jvffp/2Qodx7nrz85/fJcskN26qWLJGq4Zj24TzlGdPngLQbJUp+jXuffKYQlnFermFIuPxlGazQrWiHFtM0yDNUqZ5Xa4uLyOMz2smX3U/u3BBefE7AgHi88cLlD1OFKj9Fw4HLF99F9t2OD05A+Dhg4ccPL2HiPo8f6qciTY2N5lPb1Cs1bDkhatSBqMEu1AFoB9BWVjYnoHnqppLMovdx08Z93q062pet9Z9TDshywyCPEKtWG5h2iXS+SN17jTgfJhimfLSiccUsHsSczoUbL6l4v2CWFKwXWQ8JYuUO9m8t0e5YJChnJciamA6CBHQ6ymnMMd2OT/rct6LODpWbjzX11s4HiSJJMv3VibV1hOO2tsiTTg8nlEuOVSqal3SLMSybGSWYRhqbQfjjMQOSJKLWDkomiZ+qUQwLDJX00r/9IClnQx5oYsVl/955Rq/7GHzKsebF52RhFAr/uJz8RfVj0aj+c3Rv52r0Wg0Go1Go9H883Hx92/tKqDRaDQazR8GF898/TM4jUbzu8TXQozzVbmIVoHfbvOwWC2zvPMW9c4qaaI+QxgWk3lE7+ycq9tKqBCGEZNpRJJHqTSbdWQKruezvKqa6UEYcHZ+hsgyJlPVtE4OT7n1+m0MQ2KYquk6GEwolqtMJ0pscry/x7OHT+n3jnn/m6rxnyYSr1ikNxhxcqiibTpLHV5/7TZYFp5fyq8gxYlSbFud23E8nj/bI8ngjYISCMRRyu3bN/F8sE217KZlIaRFlqakieo+VyoF3GKRKFJjPz87YW1rE7dYuRT7ROGMLEuYBRFpLoy4/dabTMcTwvmEMFRClaWVDo32AgKT+VyJJZ49fszOzevMpupcSRwQnQcUixWEpTrUB/v7OLZNtdnEtPIInHYd0zbwvQL1pmrEFysVTveeEA72AXC9ZRJgZXubad50n4wHpIlLZ3mJwwPVrF9rVhmOZpzuHVFv5jFFrsfG9hXCYJLPoUXB8zFFSqujYsniuUu/d4Jb9EGocZVdh82dLRaW60zOVO3EaULdL5Cl6uskTZmHCdJymU+UcMWwTKTpACallorwmnefEgYhURRiXERviRRIyWSEaapGv5GkpKmFYatjsizCMR0ajUWEUMc8uP+EQsHj6o0dTLeYj3+I7bhkmYWVC05KRQ/H6WDmdWlaFo4r2NzavBQ9RdGMk8NTJrMZ9+4/yq8JEO9zenzKjesq1ikJesRhwu7esZrTgsvm1hoFP+LsRIm2dp8f8/Z7t5GZ4OxE1fRwOGU8DTH9JY5Pfg7A8taINK4iMyUciFKJ67qQxiR5bJjpeEgs4niMYavrtj0Dv5TgeHB6qs4fRHN+9OOP8Esm21dvqbkII+bjAXZ+3WkUk8gEx3UwLbU/0lRieWWK9TZOwc9rzOGPvvsdSFPiSImtbt++yWQ6Is3UnonCACFSDNPk9Eyt92g848aNCosri6ysqfUuFEvMoxCEJMvFcAhJNJtg5XvZLqi1+2VcCBGF/Lxc42XhhVTqHA6fKxHS7r0f4javM5v0OTxQ63b30zus1cesXW/wtz9Rop2Tw+fMpwOcQhVb6b2ImYOAKI+pEqZLHAUUCmUmQyVACeOMw6MDDo/3+FcfqBivgicwDZtUwuGp2vM7y1sIYRJP1V62TcEHb1TzeK58jVKH0TzGLZRYWVZzKJOEOJgiDIktVV04coIhDMZz9T53qU4cR8hM4nn5I0/AQmeBd9/o8PYNJa6UpgCZIjDIUjVvg0GAaaU4rjommozY2iojZEqW50mNJxGVMmSpwXCoBFp//F6T+2c+9+4/5r1vvAlArV7n/LzPKHUplJcB+PRHf8v2W3+Cl0ecSSWh+gJfjGhUxwnx2Wsv/58U5CK+V8c3flnko0aj+dXRPwTQ/CHxL9Xw0vtMo9FoNBodVXWBjqrSaDQaze86+nmu0Wg0fxh8bcQ4X9YgfPmYF/my479qY9GwTNZ3buC5ZS6Su8J5yOnRKYWig2GqRvmzxw+wbJ9RXzlILHQWmAUxZ90uHaXFwfUtKmWPKE25uXhdjdvyOTo6Z6FdwS8q0UClUkSYgtXVBQAcC6bTGetrLcplJf44PDynWDeo+UXK5U0Aas02p/v7dE96tNvqvVkypdmsYZiqYRxGcxY7dZJMcNHjX1pZIAgSkCY/+eldAEpFmzdev0EwCzg9VU3kOJyy5BZIc/eLJIZMSubTMX/3376vztWs4bguwTxCpEk+XxHz+RzHNilV6+q6TYdgHtA9Pae5pAQ065trjIZDwqlqnCdJilv0EWnC0sYqAHvP9knilLPDY/ySEiMcHR+zvrlBmgjCSIksrmyvkoYHCNTnBYlPMJlgItnYVvPVClfZf/yYw90TrLx8puMJhmmBIZiPlEAHU4JpcHKs1vb1N2+TSoMwmNJoqMb/s0cPWV5tc/fTXWa5uCgNAlZ2KmSZ5PD4FICbi2+SpTMMqdY6nM7wyw2EMBC2n9ecjZQSIwMcJaqqb73JyeOfYQlBlqh5tZ0CllNECvOy2x4nczBS0tz5BWFjOAXaiyVGPbWOq6sdhHDJ0gQzd6rBrZCmCeWqRxQqkYXrWBT8wqX4ajYcUK2WWexUiEMlqDA9n2arQpMGGxtKmPbgwQOe3n3Keb/P0kIbgJ99+BHlUoEbt5QAbDYPSdOMou9x1lXiqOXVRQp+kfPDPYq5MOLw6ITNrXX8xbc5/viZqulgSOIsQD4PCTGWJUiDCeTXLbIycZjy/PE+7RW1RiJNcITEcQ06LVVzhYLPB9/+JuPxkDBQ19RqNvnxh5/w9tuvAeCVbEzDJolnpLnoL05Szk77fOdb73F+ppyKxt0hn3xyHyEs3nxLzUWxBF6hjldQ62haBnE8p38+5u23bufrDeVymUq1zv7+EQC9/oD3v/MNgiDE95X7C0AwnVCtK3GG8WuIDr/8HZIkzfjkR/8AwOD4hKa7iW063H+knKnS2ROu31igXpdsLqoaDmwPy6sxn84wCrkzThxhCBMMtUf9Uo1yvU4UxHhlJXKzoghBRMWbs77cUuMzDNIUTDPl6o4SpRRbGySTQ6KZEsO5loFpukgkx+fq8876M86GsHXtKmsbuaDJKRAnCcI0CYZq/OVihDBspFTnThMTkUGpWiPI6/7suMvHHz/i4fMRO2tqTy5nJiuLBpZjYudPxoPTGdgW675aD5FMsIRJloFA1Uml6mEYEikzNjbLAHiFiP/8w2cUy5sUCmoO+4Me08kM168wHSrnoGD4kPmoeynG+coouxt4QYzzshDrs69+jRrSTjkaza+EbgJoNBqNRqPRaDQajUaj0Wg0Go1Go3mZr40Y51VcOOFcNAZ/1QbhVxH4XBxnWxYnB88o1Vv5iyk3b12j2qwghBqHZa0wnadkiWoO7+8dEEcRjuuS62AY9qY4js1oOKPVUmKZ0SjAslxSYTDKo21sWzAaTy77pScn59y6dR2vUGA8Ug3peqMIcYDARibKQSKeT6jXS7Q6LbJcMINMyDKYT6b59Sa4tsX5cZduT7l33Lx1nf3nuyyurbC+rkQvRU/Q7Y6xbY84b1IvLXcwjBSnqIQFS1slXM8lmM2I82ip3VGf7Z0bEKeMz5V4ZZaYLC4v4PkutaYSxxhpwmA4JUkSZKrGatke1VqNsyPllBJFIZVmlUlvgOOrBnWr0yIKEkwEz5/vXqwSzx48ZmGpyZUdJYJIMig3Vnl47xkApSLs7+/j9wsUX1PihlF/yHQ8YTIasbS5AoBfrRHMQ4qex9KmmgvbcZjN5peCiv5ggjQsLMvk7EwJSU5PB0RRiGsXqDaVGGBja4XMSClXmly7dQMAx8mQscNopMQ55VqdarOO6bgY4sIBxcpjlCRG7v5i2CXcco2wd4hB7taBQZqBadmkmRIwCdPBtmzmEzUuYcRkaYTvVoh8dS6/6DAazvjHv7vDe998A1DCG9NxSVKPk13lQPLs2T5vv/s6+7mbjWVZlP0iZ70BxaJaDy+NOT/u01pcoFhRYoM0mdBsuLzz7jvEkXLZ2dxYptfrUywqcUatUWcyGGDbFr6vBEGlSpNiqUi2tEQSqJrY3NkgCYecn8xZ3Lqp5ic4xBQJWaJqzivUMAyBWawx66v4tygY4Pot1q9cxcj1RqOzU0a9AZVaE9NSNRAGU6qVMo8e3uf6TXX+p4+fsrG5dRm95sUpwnFIowTLVdYvSZQik4QnD5+yurGpjiu7XLm2xrg/YzJRwp5HD5/w5ps3LoURmcxIM5MffP8nfOObudjHL5EmCVmWEuYOU9euX6XgOYRhymyirjMrZMThHH95La96qdxsfgV+8f1ORVSd7T9jcvQEgKWrf4SwbJ48fMTR4zsA/Nl7LWp1E0M4mOYwP6cgDWLSKCSzVR1mcYhpCKJEzZcwCmRYxGmASNUxp2en/PjHd+iUJSVPLZLjmggkAgezoubVKXSIez/DNNQjSViCNMswTIOyKjke7sX0xxa33t1EyPw428DIUob7+5QiVRfCs0lSE9zVfFwGwWxElhTIcrFluehRLSW0GyaLiypma6lpYooMYUKW35g3r7QwvDpOLi6y5SFMBKZpYuSRbYYwSbMYy5GcHquaHk5SSp4kmI959Ejtte2r62S+IEwiqCmhkJg9Zdw7oba8c7lEF2Fjr46W+vxrLzrmfLFKBFLmNfTC+7+KqFU75Gg0Go1Go9FoNBqN5uvO18FRQAvzNRqNRvPr8HV4hmk0Go3mnwfjX3oAGo1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBrN7wtfW2ecX/Sb+b/sN/Yv3AJ+FQRg2Sbd46d01jYBSFMoFEvEccJZHl304NOHvPn225zHyhHDsB0KjkUQhkzGytliMp3jFX3OTk5ZXVHOOJN+D8sWGNIllcpFxLZ9+t0B3Z5ys8FI1WedHxLnjiFZFlNrVHAKBaw8N8U0DM56EwwxoZxHOFmOw2g842/++r8BsLa6QLtVp1rxOTzt5tcTUW1U8YtFTKlifiQpJ8cnLK6skok0f81BkuI4yu3CKdgIYDick4TK7aLVahCGAdMgQpjqOCsNMIVgPhjTPVTztbi6TGdtmUVMZlPlCJTFKePxBGko55daq4XrWkR+jC2UNqzdanH/0wcUCj5RrMa1uNSiUqnhV1ysPPZlOpljO1WWNq4A8PDj+1hOkZPjPuWqigKyrALT8ZxytQT5+Y929zFMgyzJCKcqfghZoNlsYuW188lHd1laaWNaDsd7B2oMKx32d/dpLSxgW+pc/bMz9nefY9vfplZX7hlJNGL/2QGrW8qZw3SLJONzRLmGkOp9aRJiOi4YNiLXxLlC4FdXkPMBTp6pZdklpIRMxi84RBkkaYhTVi5OWTKHLEOKmHpNudlkZBwcHDGZBFiOqhNsAykzPL/G6tYWAMVaFbdgs31FjXU6i/jpTz7BsAWNhrIk2VhfJ5hO+PCHe7z7/tsArCy3EcJkPg0Z9fMIqqUWC+06T58+B6BQbuGYAUmY8ix33nm2+wP+6q/+F7JMXMY11ds3SEyP036EGanaLKZz2qU5SaD2R+JHWJlNgsAtddQ8kJDMznBtC+GouS/Vmgy7XRzPRuTOOP2zLkGUcO3GDnfu3FNzbVvcuXP3MmZtc3uJnetXQEiyRNXc+WmXanMBjCGFwmduOfValelwxNGhuqaD/WMWF9u0F/I1cwUIj+W1ZSxHjeHo6JTnTw7ZurLKa28oByWvWEAaGZlMGXRVHTqugWNm2K5ax1+FX3pvFIL5ZMTdf/oPlJvKJapYrTHsD3lw9w5/9FYe17Tg0loqc3o8ZR6rPb+xs4RdcjBtj8lI7YeSkWBIgWGpsZq2SxTOqFWrnJ2q+Lf9pwck8ZRvv1XFtoN8IC6ZTBFmBcNR40jmI+R8hOteOEIlSJkhM/MilYyP7o1YWvsm61evU6wo963u+TmVYoFyxYOhuv5IWoRJkcRR8WluoUKW2Viee3kvLxU9Ts/OqJYcOnXl2GOZEZASR9AdqdcqVY+C3STO3dCSJMQgQ0iLJ0/Vmi2vFXFNkKkgCJTTkmMJtpZ9+uEUI7+39s/PKJbqDIcD/LKKUJsZNsGkd7lGgs+ypj7nkCNeWlspLv8UL3jiCAGXZXDxpyEvvxAShPoUjeYrc/Gbnvo3dr6I/i1YjeafB73XNBqNRqPRfBl/ufyW/veKRqPRaDQajUaj+VrytRDjvBi18eJrL8ZMveqYF7/3i/gqcRsSiek6lCpVyOOB+v0B1WoRzyuwuKwiRZJYcnJ6gucrkUK1XiFOQh4/uYuR51TdeP01xpM5jeqQQh71VG+mTGdzHNdHOqpZOxpP6Cy2WVxduRgEx4cHPHq4y40bSlyytLSI7Xn8/d/+A7WGEhtcu7HD4WGXzc1lpFCfub93gus4tJuq+fzo0XPW1hZxHJvXOkq44BRc7DCgf95ndV1FLM0nY+qNlMePnvL62yq+p1Iqk8oMy7poikuCaEa/P7qcrzBMGAzPETLFzYUxlmcTJBnSMFm5sgnA6ek5wrEwhE0hFw75FYvjg2PSTDWo426PRnuBRGYcHalYp0q5zNLKIpPJRAkkANu2mU5DrBDODk4A2NvfZ319nXqzocYVxHRWFljdWCIIVKzX3u4eUsT4pQVMQ421UvcolX2iCGSaR6FhMB2PmE1ULE+jVkNmCfN5ilfMRR39EZVqDQxBo6lq4MHdu/S6Ix7df4zpqAb+0mKDbi9kaUMJOAzbwjAt0jQCkecpSYkhLGSWEkVKqCQMG6vYwSqdQtzN3+tj2CYCA3mhSjAEjlMlSdUcGo6HTDNkmhBFShRmmQ7tdovWQgvDVHugd9Zn1B+zutbGz2N3HL9ANJ2yt6viwCxH0GiVuXJ1E9NSt4cskyxvLrGw3MZAzWu96mIYBtP5HMdTxxWLRWbzKdOhqpVyrUFrYQGZGuydKMHO1tUtHNfDtx1uvn4NgDSOsS2HWzeu8fyxuqaof0wcTTDn5/n6rJJmEmFyGfWVSQcpIUoyHDOPQbMkpVoVpOTxvU/VuWKB6/uUq3X8XOyxsLREGIZMRmpOd58fsrjYoVz2IRfoVOo1SiWXolfj6EgJh54+OeX9b71Oq91gcUmJUFbXt/hP/+//x1/8xXfU+/wqRia4des6B/tKuHL3zkOuXN1hbWPzMn5vOpkRhCHNVgm3lEdqTUbUlhcQhhJo/XZEE+osMs04vPtTHFviLN9WYxiFzKYj+t2HVNZUTXeHCRhzjs9n1CpKoFNwfeaTOUXfo15Wc2hEETKzMF21/xAS14IsSxiN1D6KZ8fcvpKyvlTh5w9VDdy6alEqmFjFJoWquv8F/U9JkwBQc28aFpaVkmXQG6vXnp0kbL5WVUIeQ81ho90gmk+R6TklX+23NHNIjBVayxvq3GGM5xZJ0wjPU9dzfNKlNxjyxobH8anaMxsrDobpMJ9HHByqPVmuFjDcNt1uHlX3/JztNY8kjWnn62+ZEAaSo7OQhbba30XfRViSv//pgH5P1U6WNonjjGKxhJuPtdhcIgjnn0VNfUmE1FcVmb783ITPnpEXwh2hDvzc+TUajUaj0Wg0Go1G87uBFsxrNBqNRvO7i35+/+b858Of6V/c0Wg0vzN8LcQ4LzcDXxbYvPj/r2pM/qrNxC+eQ2CaDo5TxHVVU7zZaSKzjDAIcHJXms2dTaIguHQe6J6ccnJyTqtVZ/OKEo2EwRTbsml1FsnS3OFGJoxGUxqt8NLx4vS0x9LSAuW82d3r9dh/fkC9XqZSyx1vXBthmMzjmJvLiwCYIuO1169x3u3il5TYp1oucnZ6zhtv38rHXsev1hn1x9Tb6vyGKSgVixwNe8ymE3XVtomwDAxhMZ8qtx/PNnAK1UvnmjROkInEskyKJdWsr9UrmJMAC3k5/sk4wTBMhGGSJMpNo1QscHZ4xPlpn4VlJQryCy6Fgo0oqPeN+33iYIolQJqqkW3bNpNgThSleHnTWlgmfqWI57uMcrFHpVImmIeMB+rr9e0VvILHwd4RrYZyjSmVfAyrzPXXbtA9USKe0WDESMLB7hGrG+vqXO0CnmcTzPMmfM1DAvEkRGaqTqqNMqVKg/1nT6lUVJ28+8F73Pv4EUW/yOGBEl7c+cnHvP+tdxkNlTuIY4a4xTqW5ZLlYhkpTNI0RWYxlqXmQmYxrmsjS02m58rBIxMWZgaIFGGo+TGESZR+Vs9ZGGIaAlOYSEsJjkhDFhdrYHrI3I3JcW18z6HbnRHla7S6toDIXLCUO4dftllcWsIQEmlcuPM4jAYjxqMJSyXl6CGlgWFZFAoFKhVVF9IQeF6BzqKa+3anhSBCmAZ//L1vAXB8cspwNKNet5jN1PxUyk1OT7vIZIpTUPvDM8tk0ZAsU+KfNJpjWQ7d8xGVoqqJvd0nbF65yng8peUr8YrIDMplD5kJVja2AfjRDz/Cn4eU/Arb20r8Ua0tkCYJo4HaC7Npn955j8locilyaiw0EKZDwS1RVdNFoTBkOOjhuh67z5WAqbO0SKPR5Py8n89NRrXawLJtytUKAO9/6z0GoynzOKZRUeKVw8MjfM8DadJaUC5aQ5FQbSy+8p72VcQYr74Xqte6B084fvYhpeYGqaHm+enjB3z/+/+d7RWLGztqrGkq6Y5ha7XO0wNVF01hMw9iPBusbJiPJ0aaLmbuSoTlK5FdmjDO7ycf3nnE995wSZOU29fVcZYhyaSNXVy6dHcKznoIokuBSCYyZJYxnqTcua8+r9XaYHNjh1a9gkzU+SejGeWSyyTYw3bU/XYyjUn9DuFMOfG4nkechojMpFhUe2139yEEPa6tV3DtLJ9gCVlCpWTz5mtqjZzqMsJbolRU+9ZdrTCczLn/fMior1yb/uQbHU66EfvHY6pltRcM38I2JGY65NN7HwHwV3/1f5ClJlEY4vrVfA4tsngGMheYGSavXGUpkPLF73xRoHrx9cVRxqXY5rM0ykx+5pKj0Wh+M/Q/+DV/qOgfGmo0Go1Go9FoNBqNRqPRaDQazVfD+OWHaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0mq/C18IZ52UuIqp+0/iMXxTvIV6K5xBIHM9FSkkUKseFYrVKOA8wjQIidxZBmGRpTJIoB4Y4CWkv1DHsAs/39gBoN+qYwiCMI/b3lGNLvVai0SzRO+tykEcxmUgatTK+r9xOfM/h5hs3+dv/8o9cuXkDAMNymA4n/PmffZcLOx7bMknSlGajhesqF5Td3iGW61GuK7eLrcImk8mYgidwrPzarQK+5bG24SJSZfPRPe9TLpXwyxVmk9zFJ5ux0CmS5J83H01ACKJgTLGoHHvSDFZWO4z789xpARwvxbVN/LJHlqrXhoMxlWoVS2aYlnqts7KEaWQIy8kXKQUTPMclm6oxzIMZs/mMZqPBeVfFNY2GA1zHYzLIqDWUO4ttGghM9neP8nM3cd0i7dYCIo8CqlbKRGkGAhxfjT8bTLExuPXWm4wGyp3l8d37CDOlVlMOJXbB49HHD9jc2cbPr9uwbSajPle218FR4zclNBp1gjCkXFFORewf4xeLxPk8ZNKi4JVJkxnk0WKG6yMlWJZDHEd5XTpgGLjlNuPzB+q94YTULiGyFMNQ21UKiZQSy85jsNIIiSCJI2YTVb+uIzDsEEOYkDtjlIo+Zc+mO5ximKouTANS16OZx5nVqw7BbEiWJhgXHhtSUquXCMKAC/2eJCVNTRzHYTRSbkLzMGSx3WRpVcW62a5JmjoYZASBmufmQov5JIY04emjQwCuXvMo+T5RVuQfv/9zAFrOlK2FMW5ZXU8yP8MwYD6KqFWVq0il0cS0LVrNOlmmaseQFlkSEacwGChnlEF/QKe9wfd/8E9c3b6u6tV16HSarF9Ets0Djo4O6J2MMPOIqHrLxjQd0jQiS7L8tSqlWo1oFl+6QjUaFb73vQ/49JN7AJRLkizLsGyTUkmN9aw3ZGt7A8cV2Ple2FhfQiLBMEgCNYeFcgXT/uJt+cX74atcwb4sri+aqTn86X/9jzi2QzD32Dt+CMCdOz8nmz3nyq0GZl7TT/dGjEcZvmtw0lPXfbNSY6FTJwsHiECdT2SAU8V0laMOjqOcvII53VO1tnFwRsmvUCoZOE4eTZcIDNfHrG4ShyqGTMYjMMRnpi1SIjCZjBNGE3Wfe+O1m7QX2gTzgKKvnKlcx2F2+jFeskuYKfeaWKxRqF7Byd23TNMgjSGKA4K5Gvv4/DHXNmzqFYmbz7dAIoQkzQwsR+1lu3KbKJpi5LFxriV5etblybMxt7fV+bMsRcqI999q8NnSSZr1Iq/vpPz1T/KIq7MzWu1l6q0mJ7vqeWEbUPCcC0OgX8mz5uV6uHxefknU1Yt84X0ajUaj0XwN0S5UGo1Go9FoNBqNRqP5fUA7zWo0Gs0fJl9LMQ68Orrqy77+Vb73haa1FNieh+MVmQ5VLEu102Y8HBLOIzxXNamTNCDLMryCEmesra/z7OkTLCLKRdUwFkbG4ycHbGwssbiiBA4GglSmnJ6ccvuWEgMkcUyWhRjmhcAioVwt8tqtbaq+OleWZcThHNNWjWKA+Syi3x8RJJKSr8Q3vf45N27sXIpsPEfgNurEyYwwFw6ZwgQMSmUfUtXIdkoVRDpjp7CKVVDN52g6Ik1nRIk6ZjqPaLSrOE6J7tkjADqdFvc/fU67vYLtqYb05rWrTAdjhGUwyyNq5rMpnucQZRInVk393vEB7aVFpiMlzphNQxzXIQimeI667lK5zHwyIowD2otqDgUp40mIaxsMet18PTLOT3p4nppDy3A4fPqM0XTkvJ8AACAASURBVDTg9utX1fkPZxQ8m+l4SjUX8cxnIePuKeePBsSRikG6/fot0jQjlerrgl9n7co2UmY4rjq/4brINGAyS+juqTG0F+p4RZeHDx7x6Sdqft586y38YoH2ohIp+K5LJsDyKohc4JIlM9I4JjGtXNUAYRDg15pkRhnLVesRjI+plJeQ2Qs9diEwDImM1TxngOn4hNMJh/f+Xo2/UKax9ToFy8e03PxtLtLIaC7UkPGFwMzGNjPaHTXWLE1Bgu15pLmYyDQsIGZxoUU/jwQzLcF41Gd9YwXbVoIyy1XCFSMXs6RhSiINJtOQ2VTVZmu5zIcf3qHdqlKtqNiiyeCcasUhGA1ZWGirdTvvI7MeoN6XJimWV2JxzSYKVWxRu9NBGBKZJsShWrdZr8f5yTFxZlFr1QH44IM3aDRb2AWfvacqqqzacFhaXub8TH19795zSuUC9+495dvvvwnA8cERBd8Fw+Dp8+eqzq9scbR/RrNaJs1FVFEcYRdcvKK67vF4TLVRJpqHHB4oscl/+a9/x//5f/1bZJYgMzX3liVIpcAUkslYCTZaq9uIy93+y0U4Xx5dJZEITneV8CaLznCb32MUZDx5ou5zZyeP+PatJpsrRdJA1eFWpwhLKY93IzJTxS4ViyUMCYYJs94xAGUHwkggMiUwy8I5wnIIg0gJy4C6J2lXHRzXIru4btvE9Ms4pWWC7l0AjHBAKjOyLAFgNApxPZcwyzjsqmvdemcF24VUZgSBOi4aH+Al9/DskGmgxuHWbuGVSlwIx2bTEbZfoewVOdx7DMDj+3f4n7/j4zmCLN9/MsmQJgjTwy5fzRfARk4+gUiJi2QWcnWjzEbHxMvFSxiC9UUHYaAmCEhlzHQek2YpSXQhKAuIZlNMKUlzgVytsYwwCi9EU0mQAiFeEuaIzz/TRB5Zlb1KZPPC6qsXjK8UcabRaL46Whyg0Wg0Go1Go9Fo9L8LNBqNRqPRaDQazS/jayvGeZHfxm/uf2nzWoCBQb3T4XRvF4CFMKJULmOI2aVThjAEQRAQBarxHwcTSkUPYcCgpwQCaRJQKBcJwpjpWDVhjw4O2LyyQhhEmP+DvTdvkuS4zzQfj/vIO7Pus6v6bjTukyJBkZKGI612bbRms2szH24/wdqarY1M10parkRqeAAggG400Oi77iOr8ozMuGP+8KhCAwLAJkVbgaQ/RrNGZcfh4f5zj2b5m++ry81az3eZjAb87L//HIA4SnnltZu8+NqrPH74CIDBYEgSFxiGYP3CUvkcOvV6g7bjkqdSDPDKyzexbZtxMCyfp8D1LIRhYZUOKEIryIVOgUaWnjmx6ATjlCQZUtHl5rZfr6PpJmYmN86tGZ0kzKlVDdozUswymWYsLq1gOQ6NVgeAYW9IGEwYDEeMx6PyGSs0Gk32xgH9U7n57/t1dp88ptCkgKNSrTMZHuO6LjnSySRNqlAY0l0mjcrzPAa9AX67zcKG7Ive8RDb8ahU5DNqlsCveniVKlG5WT+dBPjtWY72uzz8VI7to4cPeOOtF1i9OMuTx7sARFGMXbGpVeTzbD86wnFNGvUaRwdSsFF1XaLCpnt0xP6+FFlMgiHLy4toms61q5dlO/RCugiVwoIsScmKFNNrk+eyDtNwjG77aHYFcV6bU/IsIy90rPqyrLHhPpAjNM6FCggoihxK9x+hCfI0Rjd1KjUpFJuO++zcvU1tboOZeen2oxkJ6BpaUbC/fyzHqFonjycITfahX61x1B3SnqlhaKWzDxq6rpMmKY4thT2O5+L7VaIwJjxzShECp15HUIobCg3DsNCKCW5Fios+ev8jth/vADHP37wGwA//4R95++0XKQobvyLb3/YXsUSPQsg6FLoOmo2uaQy6adkNA3zfIQqHnPSk6Iw4xLYddh7tEIzGsoZtk3qzw+bFDRYX5wHodo/JkhinFKH1+kOOugdcurxIZ14KglzXRTcNxuOQ6URev3caUK/7eA2P+qwUqpAL0mTK5sUN2YRIgKbhOjbNlnyeV197BaFbRGGOdSYeM20MzSAa98imcu5apuzfX5WvchLL0pje3h0A5lduUFTajI9P2N2Tzkvz9YwrGz5ZAcOR7OuVRQPD8mg0R3ieXPsWF2bJixTLFDhO6caT5aQpFGVdunpBXuQIobG1I8VLC4sOMx0DTQNNk8+W54DeIJlOiIOd8lohhSjOhVy2ZROFsLWTsHH1eQBW1zbJ8oJoGhCWNebmuzjGBFIIEiko850VkjjHtEuRmOszHQ05OB3y43/6WwDWFhI6ddg5itndkWv3yrKNX6nTXr0EvnRMyib3CQdP6B7J8ZltG+zuBSwt+ghDtlUXUhg4nWQUQtaJYUDdFYyrgmkkPzs8PGBmYZmjbo8wkOKrYP8BsyuXP1PQ5ACFNELTvviuKoDPf/ZV77On/vicqOfpo79M8KVQfB0/WHxRfYNHoVAoFAqFQqH4BqH+jf4Zqi8UCoVC8U1GvaMUCoXi95ffCjHOv5Uvc9X5nMtE+WdzYY6DfemAcOvnP2PzxnM4rs14KDf1Dd1E10x2y1gkvQgZjUZUm3X296Q4I00Dbj73PHalSjCWQhJTMxj1h8ThiCQOAMgL2D/oMxrKaJUbL15DEzlxHFIr429EnnLv3hbrm+uEpQBod2ePg8MDLl+9juvIzW3XdhiMBtz+QMbkZGnCt99+DcPUzx1DHNcHTScNI7KsFHVoBfv7J1R8nXpLujzkWUZR5MSx7JXD/UNODrYwDJMLm5sA3Ll1n+PjIRevdKjWpSDhYP8hvZNTmu0WSy3peGIaFpNpiO251BtSlDAeB7RnZhmOZD80Ox2SaEg0zUjKTf2iGOA1qowGfdLSUScJM2zbJQ4TjFLIU5Ch6zAeSDFIOB0BKc12G6vciF9aniPNNJgkRBO56T4/3wHdQjNs1i5IAcX+k22ePO5zYWMNgGDQJ3NtijxjNJZjFEcRrZkmQswSTUtBE4L+SZfDg0Ou3bgBQKXqsr29xdxcC4Car2E5BnkSnhdbgU6WJhRaDGX8lNAM0iRB02xSIeONsmKHPAnRdIfiLFYmSymKHL38OcsSTNNEaDaFIft+9+iA4WTC6PYW3/3+dwEYTiNaM7N0Zpo021K4oJsWg3BMxZf3M02NlY11omhKNJYCBNvTSZIYTdfPo5myXAMyxsGEalXWwOHRCY49wS3dkkBnd2uXeqNKvSFdnPr1KuuX1nnjWy9hl2KGF19+EWFWqboWP3tHCkfMtMuVTp9KQ45tNO7T7d1lfnWJMJGirWohXZiOuylCk3XSbtVIwpzlYplPbkuhx51PPuHP/tzjwuYiuin77ORohOv6JKkUx731rVfxPIc8Cfj4tmzD8tIKi+uLPLz/kCtXL8m6mCb4VQdBQZrIetWFji4KstIhZjDqcXR4yuWLG+fzu9c/5fSkx9Ly/HnkXJwm6GYZAddeLGvABDLOZBNPx1B9GV8nMhTANBjRP5YuToW3QpH0eXx/h/DkIQDfeqlBuybQ9Jx6mbImtIw0nrK3P6JACrlOTnvMzTUYHe9gRFJIouspmmEThnI8TNvDrtTJgwFpKset6gFZTJpIRxwANAe7cZlkOiYLpEiPLKcQMeLslZQJHu1M+PHtmD//X6Voq9ZysHWNzLcZHD6Wx40+QlQT4txAuNLNJsoKXLLz+TINU5JM58P33mW5Jmv6pSs+J72UB49HrC7LtenxbsCFK4sst18gGkn3n+T0E3q9AbfvyT78w+YC7ZYPeUEUlUKxIkMnI0sFeVmHUaITjDMe7CdMcjk/Ks0Gjl+hY3ocBvI9Y+oj/GarlBY9JZYRz+p+9NV8lvj1VO0IcV5/T4txFArFs6O+/apQKBQKhUKhUCgUCoVCoVAoFAqF4lnQ/r0boFAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQ/K7wjXHG+VqHByHI8xwhxPnff12sxtcd83XnmabF0soKAFuffoptGyB0HEe6eqRJgmHo2K50kRn1RtiOQx7HXLog42/6/R6+75FkOcOhdIf4px/+iKvXb/DaGzcxSnOILIkwbYuXXnlJ3tsqQNikaUwwkW42J4OAq8/dQNcyPF+2YWZ+hvWNFbJU48kT6W6R57OYps6gLx0rXnjhMsFojN9oYNrS9SFOYyhSHj3cpepJ15j2TJuFuTZOxcOw5fWzaEpBThjLY/75H39ExTNpNNsEgYx5KjLwHIfJcEoX6RhxtHtElkfQan8Wu1SEOJZGOErJUzkmtlshTiKqVXm/rfv3CScRo2FAvSXdWaw6CDTqzTmmgXQliuIx1UaDLI4ZDaW7RRpFFGlMZ1ZGSx3tn8hoJEtn+6GMydENk8lkQnuuzfoV6ezjexXiJON0f49cyOccTwKKNGfrkXRTcSsunl9h0OsSx7Ltx/tHDPoDFlcv4PrSlcgwTWxToBsGUSKdMirktNs1Hj6UEViXNuawfZs0GqBrsnY03UKQQBqiO9KlJi9A1zSyIiOeZmVf68STHk51Ga2MHCvSlCzPEYbsQ0FGnkXoholZutIY3gJ//Zd/RTgOWFiQriuvvPUWhmtiGBa6JwtR1w3shQXyMvIqi6fkqUDLLbLS+eOw10XTBe1WldFARpAZdhXXEviede6+1O+eMtNqoBmyT3MKKtUGmgZJ6ewEGc2mi2mCJsoIpKUO5AXdkzGdMgotmWqMpw8pclGOo8b83BKmqbGwWEa2pRMmgx1SqkwH0oFmcWGWcHxMu+5y9ap8bssu0ERGmoSMRnH53DlpWjAN5Xm7O4dopDx/8wqvvv4aAB/d+hi34jPqjTh25dxybIvu0ZRWu3YeOVcgY+AmE+kQoxcFRpFy0t2j3WkCcNA94eCgy+LiLGcUWYZuWmS5oNGS6wcip+BXdyr5snUtLwpO95+QarImfK/Bwwe73Pv4x1xfl2N09aKDpuX0+hH1WtmE2OHoZMiDhwEXL66V55oIDSx9Itcq2VSEWaXVkuMR5VDxa3z8/m18IfvrworLvScTbl4xyMroO81podlVJvvv0+/KuDSTGN/Xz+PSolTws1sT3nj7f+bCRel4Y+ga3YMulpVh5HItcu2QAoOYOpovx9txPSzLIM1kzU2DmMmgy/vv/5T//Cdy3naaNkmWUW80cCw5jusX1qksv0YaHpD23wMgi4fUnYw3n5d1qetQ8QrStOAn78i2dzo2VzeqWI5gUq4Blp7xeAy3Hpv84dvfBuCVV16h3xsTjE6puPLdoJsubqXOmTVOIQrpXvPLxvuzgf/8+04IPiuFMqLwqRiqz7nCfY3rkoqtUigUCsU3AeVEpVAoFAqFQqFQKBSK33ZURJVCoVD8fvONEOP8q9ioL/wMv1qUxrNsJJ6Jez5/T2jOys3ywWmfvUePWdq4iGaW3ZQkFHlOMJJxR9V6k3qjQpZO2d+W4g/Hr5ELna3HW+TIjdkf/OkPqFYdHNtCKzfwIxGyu7PL8XEfgGvXNjg66FNr2KyuSkFQs5XTbFcwbY88TwCY83yG/T6ffHyXGzdldI6mG/RPu7z++qsAfPjhLbxqg4rfY6Hc/G91qoxGY0zDoN6UsSnDYUAchpiWQVhulNt+Dc3Qicv4mM2NFU6OB4RhjFeRwp6cGL/SodvtslZm21RqDrZdxTQ1wlLgMJgGCCE3xY+OpYDm0uVLxFHMURkH5teqpEJDdz28moxYas7MkqYxo+GYg30ZCZZMRgjdRBOCwzufAhBORni2TVI+T6VRw3NNRkFAsynbtXtwQpbltGZaPH4s71kInXqzTTAMMC0pCPFdl+5Rl8VlKSzI0oxhv080nXJ6Wm6cC+j3xwyCT1hZmQNgeW2RYX/C8y+9TBbLzf/hKGIuLhj2pCBheyehWr+MbnoYdhnhpBnEwSlFnqBlSVmTgixJ0AyL2oy8/tbth9i1IVYlhUzWjigEhm6Sp/I83fQo0pCiyDk8kGKZ/d1jLqyvoxcpW4/uAvDG229hWxpFEqJbbnnPlCRMCcaTssQTPv7wEzY2F6iUgqP9wyNs24VCIwxlneRRH6NeIYlDTk7kfLiwsYptG2Rlreq6RaNRJYkDDEOqDdbW50kywdaTfYq0FC4YJieHhxhGxvzCTDkecxx99JAoLvu+iNG0hAIbiMrrCyBneaFNNifFEkUWYVAwnQZk5Tpw6coF3vnZu1Qrr1FrSnGMsb5ErVYjjuQx/e6QD299yNLSAs05KYxZv7hKHOW02k3SVLZ/5WKTTz/6lE6rxumRrM1KvUGv18cpRVWW5dDvdQmnEQsrqwC8/OpLTIIAoWlsbUnB18JiGyMvMNwqhi37Gj6/fn3VuvcsosTJqE//8c8xrUr5jMeEkz6PHjzgxluyDi0ThAZ5lpMkZ6+DiHuPxwwSl5fW5FoUh0NiI8WKD9FyOb+zHJKkwCrXuTiKGPeOGfe757Vf81xaSzZFAXkm55phzZBFEfFoi509WTudho7jGgzHsnZ+9v6ExFzhxnPPMejJNbJRr1Gp+Yy6d6hm9+S1DEEQ6mTONaahA4DjTBCWRihLB9v1eO8n7/Gtm4KVRSlCEkWCLjQcy0S35LrmLLxMkSdEx78gDY5k/+YptmtjnfdzQUGBrmk8d13Wkq4LCmHwZKfPh/ekIGs41Xh4pHHl2lu88NIrsv8HY06PDhj3t9iYl6Kw+sp1vFrnPJ9K8JTQ5uyOX/I+PONzQhv4UhnXV9XI19WQiq5SfBU/WHxR/QJBofg9Rs1/hUKhUCgU30T+du99JeJVKBQKhUKhUCgU30i+EWKcL4pizv58lg3nfwtf3PQuigJRimUWNy+wdfdThqdHVBpSIFBoBXmasbAshRKGYXHv4wfUKx69EymC2Li4jkbB8kIVvyWFMDtbh1Q8nTyPQDvbDM64du0yFy7ITdlas06eG/i+TaHJYWk020BBMh1zeiIdaCzXI0tCLl/ZpN8LABiMAiaTMTdvyvtZvs/i4jyWpeN6cpNf00zSOGJ/+xHt1guyDZrOJITJ3hEbF9flcYaB0HIqvtzYvnjtKln2CRXXpTUjHWjm55eZTkL2drYY9aVoZ2Z2DnRBFEiBD4DnuTiOz6Dfx/Hkhn2WZWR5Sq204bBsk97JKXFUkNalQOBgd4dGu0OapZila8U0KOgdH2PoOqYj23Z6KrhyfZNRIDf05+Zn6Hd7mIZFHElHnTiJaLc7TEZT8kRu9IeTiKC/DXl+LnIKJmOWVpeo1aQ7j2mZCBOO9wvoSiHRYDLFdU2WF5cwTdmvjuMQewWD3jG6JT+b6bRAA8+SYz0YRqRRxPFRD9uTIphm0ydNMyzfPd98F5rOoDdkPB6zuC7dQHS3TTTuk7czROmeoQtTtlsrnVnyggIDkUdMo7jsi1me7PfpzM6RjLbL41I0vYpuuOS5HI80ykliePfnH8n63Zzl5ivPc+fWbTYvSKeR5aUZLNtG00zaHVljWZKhGwWWbZLmetkXNjkZeflABzt7NBoNTrqn56Iwr+6QBRFREGDq0iUoFxn37z3h+z94g+MjKbyYDAOm05w0lH0fhzHBKKBWNxDl/MiSCZZdQdfPhDmQJQnoFtNwyJNHUlDRaFVYu7CGV6syHcu68CoVhuMJt97/BIBKtcH6xat8em+H9vxiOSAGRTZhfmGO27eloClYX2JhaYkky2iVgqnu0Sn37+2wsirPe3Bvh1deucnsXJukdGepVOrUah7BZESlKsUxtuOTTgMMXeNpGcVXCSGedg/7qjWxELIeAPbu3yIYHFKdlY5Qg3GP0XjAYhPaDTmH8gzCJKXZtIlKB6iPt4b85HaM19nEdaXgZBxMsayI7pNHrM6c3ctmbu0amSnH0bR04jhj2O+xKruGRkXDtXQKxLnYx6+voeUT9GSMoxflufDpo4DtPVm/+6Nl3vr297BMi3a7Jdsw7KFrCebkYxxPCoKSKCXkAknRoNmWbXVdnzCM2d2SYqmjowP8/CPeesnHKkVheSFAg2E/xp+XIkY7T5l236GYHJ879BiayUk/YhyUz1O3mIY5NV+nXpXz/aQf8+jJmMf7cBzJzrH8Zf7Lf32LZruC50ux4GQ0pOEc4tpPMEUphstmiYIBllf/3NgLITibSEIIObBfIrUp+Lx45+n3pnjqmF8mrnn6WIVC8eWoX+4rFAqFQqFQKL6JKMG8QqFQKBQKhUKhUHxz+UaIcX6ZE87Z5vPnNhp/TaHOV25if+Fz23GYX1tn/+F96QqCjLEyhIZZiiyiaML6xiqGAE2Xm7xbT/aZnetQa3hkpeCh2a4wGI5JhM7cvBS02K6Bpif4Fbmha/kV1jYWuHPrLp/efQBAvVFncamDlmtEpc2DV/WpeD6n3THdIynQ8T2DzRsXcUuRyptvvIKu66RZjEAKJeIowqm1mJlf4fRUCocWV+YYDSOSVJCX8UlZHDLsHbO7fQDA2uYGi6tLBCeHaKJ0xCgEftWm0WwxnUrhTbPTwXJcjuMYq9zaTfIU3zKp1CvUSxGH7RhEJ8fUG2V8z+4+QTCiKAyOu10Arl6/SDAcMBmP0QyjvP4sR8eHvPTyTbJE3jNLJsTxAK+MDUuzmELT6e4dUi3dcuq1Or7vM+4Pz8U4jVqDra0dNAHzbbl5HsURw9Hw3LnIinXqrSaCgsUyuuz+3QdUPI/1CyukKWVfQLPp8cIrz1EI2dbeSY+jgy6XnpPORfVmjWgScO/OfXxpwkHlpZs4foOiEOSpFCAUQgcEApvHn94HQMssTHuGNBpjmlLAlGkxRQGiFKDkhAihkecRFy9L4cXWg3toJDh6xuyCVEZowqTICpJ8zKSMwfrZv/yUa9eeY9CTtdSob+B5FteubWLq0skkTwV5cZajI88zHQOKFARUKpXzv8szDbv8eX7JJ01iKRgoZFvDSYJt+SwtzSGQ1x+PTnnltZsUhY5WftafROj+AsOhnAtmc0g4GYNu0mjL6+t2jSwXDEcTxkNZEzPtKqCRZjEbm8vyXFNIZyfX4cGOfM7k4IRqo8YLLz0PQPfkhDAr2N/d5oP3bwGwtDzL8nyHd965xcmxrM1/+Lt/ZKHT4M4nD/jWt74FgGMVbFxYp1HW3NFBF9O2EIZBlshCGY9DqjUX163ieuVaIwTBeEh77rPoqq/jWd1K8kzW08mTD4nzJloka3rQn/LjH/2Ety9bzLRkrQpNcHIyxdAtPn4k14UfvhewsHyNP/zuH7CyIWs/CseIcBe3kWKUWXsJPrnWZDyV9zM0g2k8xa3obG9JEVJBhbzISdMYvy7XPoFDMrpHMAk5KAWFS/NtdCPj42157esvP0+92UI3DbqHhwDYekAyeIe6fkieyHrsRw1mLn+HwqiAJte/ooDxeMpwJIWC+5/+LX/xvSquk4CQfR9NC+JMo7r8PF57QY7R3rtoaZ8giDDMs7llsXcM04l8xlv3xuwcxszMNNhcl+f908/6eI1F6u0l/ve/+EMAJpOYesMjS1N2H0vBl5c8wc3v4vkFQSDnUX/wC04OD7n+5v8CQOfiC+iGJd91zzTan38XCiG+1h3nq2Ig+RJ3OoVCoVAoFAqFQqFQKBQKhUKhUPz6KMGsQqFQKLR/7wYoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBS/K3wjnHG+7Nv6X/bN/KfjWZ7VJeLrrvHLqNSrtBYWON59AsDs6iZCN9DOjC0cjTQakCYJcSydE0zL5sNbn7K6usDVG9cBmIxjLNOhXq0SjmUMTzweYpgOx6fSGcLxhlQrHtWKz2zplDEzN8vpUZfbd+7y4qvXANh+ssvyyjKj0YDZRek0MRqc0j/dxzKkE0icpyRRTJbZVJtlJI6tY4iCjWsbJFFp66JBUeRsP97C8aSrxOraAkc7T9jble2cX1qjUqsz6vXoBfLBHTvHdW1M12cylhFRTx5tM784z3A4pOLLexqGR17ouH6V/kC6bvR7AXEUo5VRQ5qhYxoOCMHK+hpAGaOUMBxOzo+bW5ijM98hzQoo5GfLq0vsbR+Sl2Vcr8X4tRpxErG/Le9nOw4zcx3CICVLpFvHvXv3qdWrNNst4kw6VBRpyrg34PS4J69VrzMJEuIoxG/ICJm19UWePHzCJAzYL/snnoy5+fxVdrYPzp9Rp2A0GlOtyz4Ng4AwHFEgWJiTTjx2pUkUjjEMG8MqXYkomAYT3n/vDpuXLsga0wSW3yYMumgN6byiiwIhTCgjtjQBQjMQuoltStcm37O4du0ik+kU05KuSkk4xrBsTMukUpGRYC+/9jK26fCn/+lP5ZiZBQKbMDxB2GY5jhY6BWCildFYCMiSGHSd095pWRce1WqFxw/2AFhaXmA6zZmGGQ8fbQFw7bnr3Ll9l7nFDkYZUwU2i6sNCvLzCKfp3YzcuEAxlOcZxNSqDpbnITLpglPoDhQpruMhcMq2QkiI5zscHsixvHjtonQOKlL2D2V0UTiJeWWhhWvL8bcNi8XZJkUyz/bOLgCLczPoukCIHIQ87g/eehNdpHieS5pIp6jG4jLvvHOLy4Ycs05nDsexyPOcYV868RiWS63qIvQChNRAikLDsH1st/K1riTnEXpfs+adH1MUhENZm8lol+r8SyTlHDo+PqZmh2DojCZyLqCB5fo8fBTSC+S689zzC1x/7jrNVpPJUMZ6GVqGmGzh2RGlYRLTuMDJwSp/1g2TLBzx8N4W843SYcoSiLzAsg2Myry8pakRB3t4rs7Gqhzv7iDl9mOL7/7gz2UtuR0aDQ/HEgSpXGOM6CNMHoOhEWfSWctuvwZmjSTJzlLbCMOQWx98wu07/wLAd64LbDuhyOGsC23Hodq+iTnzKuHxj2W/hwcUWkEUafzirlzPD3sQFzOsb64CcHrSZ3bVZ3l9Dd2VNfeD/+RTrVZw/TquK+dVnHYZjccUk10ahXRa0vJ90sJHq91AQ67dZh6RTvf46d/9HwBcOv0zLr78x1i2x9Oh/vBRkwAAIABJREFUUc/yxjoPsvpCLT3Tm1IIFVGleGZ+H23wVUSVQvH/L2rOKRQKhULxq/H7+G90hUKhUCgUv7+o3xsoFIrfJr4RYhz46g3oL/JlcVa/aqTGs54jNGjOzrL3UG6m9g92qM1egDJWKI6GnHZPGPTG9PtyA1y3DF54+Xn6J6ekoRQNtJp1LNdiGoYc70mBQBKHLKwu8NEd+X+WX375BfIiRxgwO9eS1yKi7utoZBzuS8HD0e4puuEwGY3ozMvN7YPdx/j+AsKRkVcHT7r0ToYEgzGvf/sN+TCaQRaN0HULoxQWZFlKGE1otarYZhlnNTrGq7isrMlorm73mCLTOD7uMb8oxRmeOcExq9iGiebLDWnbcRiPR7RbdaJQ9k8wmrCz/YROu03Fl9er1CqYnoPry2fUyEniO3RmZnDKDKcwjqEoyLOEWlVGM2lFjm4I/Eqd7t4RAFXbRdMFO1tS/OFaK0wnAcPTAWYpcFm7vopXrTMZT+l05Ab4NAwZDU5xXZujg2MAFhbazGRwciLHR7ME7bka05GGLh8bf67F7s4hh7td9rdlbNHGxXVyYZLFIZ2GbH+z06B/2sf15HjcvvWAG5eX+M73vsN4dFIOh41lpmjCIE/keBiuS63p8eD+bY6P5DOurF1gfq5DPDrCdaUoKLNraHqMIeT18yIjzxM0YWCVoipMiycPbnFhbZ12pRQFDY+x/RYPHx+zMN+Q99RMfvrj91hZk7V04dIaURSwtX3C0pIco85MlSQckWdTdFPeM0tTigL0NMErY9uESInDIWWyGJNpQJ5FLK8sEEykIKgoClbXZ6hWa1CKRHqnCSdHp1SqNo4r+3DQ71N1dTxPijXi6TH97mNORvtcLkVupm0gigJDE0xkF9IbDLCFQR4PaZaxUZpmkMQRSTBl88ISAKNhgMBAL8VLrbZPkgpOTpu88Zo8xtIiLMflpVdfpX8qx3tmtk4YZFSrIXm5FB3tnzA/0yRJpLBue2uPjYvLZHnG/IIUX2F4FEKX4p4yOi4Y9nBdk8LQztKTyn7818KcZxYfChieSDHR6XEPURc4dfmMndkWwvT58Ye7aFpbHq5r3L5/ytzKJldeeAmA+eWLVHyTeDohDOS4OU5GFnbxRXGu9dCNAt3S0PKzeCiN0ekITUTMt+Q9h0HGTMdG021yS/ZFHg0pkjGGIXBsWQP/7SdjUvM67TkZ7ebagqLIiMIxxehDeT/tIaZn0Oub5K03ZSPMBTB94smYLJLitDiM2N66zbVZOddurNfRNNk5mvwPjPom9vwrjPY+oBg8BEDLI967M+F0PIfdugnAy9dX8Co+Thmrd+mFmHQa0prp0D89LdtlUhQR1YrNaVfG+4nJPg19n2R6nyiXYzixr2FWn6MfJPgVv+xXj2g8g2HJ+fjxP/+fhNMJN974c+yzTLvfAOdRVr+xKyoUCoVCoVAoFAqFQvH7i9oEVCgUCoVCoVAoFM/CN0aM82/hfKPxGQQ2v8xh4gtXRtd1Zhek48XW3Q9pL2wwnspN3yjRmE5CkmTKzRduAFBpNpgGIZ9+co+5jtxgzYYawrJpt9u4vtwErzUNdE3geVI04vk21bpPa7ZDEkvHjX73hHv3tllYWmEykRv9rmeQRBMajSajvnStWF2Zx7A9sjNRRx6xMNfAWJrBLM1HsiRAaIIijwHpjOO4DVaWQixDYzqV98wLi5mVq9RG8trj0YiHD3ZxbJOqJdtgFyNOj1PiNKLIpbDguHtKZ66NYZgkuhyHKB7QbLhEUYjtShGHISyiqMCvyWOKLGF9c427dz6lVpfCG9u2ONg/Ym5hlpOu3FAf9U9oz85g6DaOJ4U9URgzM7fAqCsFNVk4wG/MMre8yHgkXWpOj0549513WVldp1ZugLcrLs6kSpIUBP0hAIELy2ubVGtyzHqDAb3+iHrVpyidP5rtedL0FyThlDe+/SoApqVh+yYrG6uYpVDF9kw+eP9DNFOeOBgOmWYXiIQgLR2UkskJmqGTIigyWU8kU7xKnf/yX/+CH/3opwA0mg7j8ZioX2Dr92SNLTyPZtjkqRxHoZnkeYJAoJlySrdn53jj1ZtkScTR4Q4Ac2sXyLOMo/09mjU5btMgwnFM0lQKx+LpAMv0eP6Va5hCHpPGI3TNgCJj57G8ll9xcCwbo+Li+LLI4iSlEDozM6U4A4HrVinSAK/hluNv4DouJ93++Tz0GzU+uv8phq4RhnLcPNvlnXff4+0XpAApnJ5QqyY0m220Uh2lGyaYNtPRMc3WUnnPKpPTbVw7x655ZU1H6AJ0x6M3luKS+eUFirwgzWV/WZbA9hyGwxGbG9Jhql6z+eDdj9A0m8HwpGxHxGl3yHAw5LU35S9e9ne2sE2dabkudE96CN3Acmx0LQdg69E2luWxsNhBlOKuMJxQbSyh5xqF+Ex086uKC+Gzta/IYdCVYhzL0bA9H6MUoLQ7bWaXNzgdhXz4uKzNYMDi4iXac5e4dEM+j+dXyeMxaRxQlO4/2fABYvQQagXkZ23NCMY90lLcZ7sOhZUwTTLcinzIRs1B5BqFZmK5UoyTDu4iipQcwXgs+yfSF3jj22+ysin7Pg+nHO/cpQhuUS3r3nJswqlOaN/AdRcA0IRNkea0OlX2j+T69MN//P94eXXItU053y1ToCHkHPGl+5bVvEly+gARfEQcy9p/905IoN2ksXKFxVXZjpW1JZI4krUGBKMhqeaQUyDKftU1gchjBnvvkJ1IcaWeHTPVHTJrGX1BvhvalQ0G/VP8qoNlyNqfDAaAhe5tAtC64PHkvf8H03a4/oZ0CTLKOY3gN6CmefoCX/IePBN//Vtvo/id5+wXz+rbtwqF4jeN2thSKBQKheLXQ/0bXaFQKBSKbw7qfaxQKBSKM74RYpwv23x++rMvi6c633x+SlzzLKKcp499FuedgoJqZw4A67FDFoUI5OazJgqWLqxhaOI8ukXTCuLpmIrrMB7JjewPbn3CtZs3GJycUC8dFlzXRIiU19+SbhSeW+PkZEizZWGWCprBOGVv/5hgNGZhUUbIbG5eY2trl0q1TsWXzh/37j9geaXJj374zwBc2rzEoD9i8/JFzNKmJE1BS0MM08WwpehlMjpASwbo/jzVMl7FtH2STJA78hnH+wecnvaYnW3x8LF0B7l4aQbH9dHNFkc72wDoBWTTnFhENGZlWytVmzyJmKaCM0WL0DREkbG/JeOHVtaWOJlMGQ0D/NIJIioieicnXL50AU2U7c9ikjjl7q2PWFiSLi5REtLqzNCYkUIM284QRUY0GTEdTcoBzFlb2yAYTWi1pbCjs7RE8uSQfq+P78l2La41qc22ODyUz/jg47s0WnXihQVmymipcBrw3f/wPcaDMQgpvLAMje17DwlDyJDXKgS88sZb3L37MQB//CdvM+xPOdrvUrXLOtM8oiDEckPO1BkCsC2L+cUV/uJ/k6KBOJpi6DppxyA4uiOvH56CtYAo60TkGWk4wrJdtDL6qd5owNoKw+4e+VRev9AcNC3m9ddvkJTuToae8NrrVzBMt6x4QZ7nmHpBGklhTBSckhcFeQbVMt7Kr/uMhwHxoKA0N2F364iD40Nee13+Asi0DIoCDMMlS2V/DfpdJqHgzif3ufn8VdmHlkWRx4RxQfdUOkzNzThsXrrKMJbjYcS7tBah2W6gCSngyDHQTAfD1MlLgYhmmhiWQ+rUmU7leEzCPuNBwIVLl1nf3JCfDUZ88M7HzM7JubC41MAQOjXPIU1l7WRpwfLaCns7Bzy8L91Tth7v8cqrL3JweED3WLZVGBatRgWhyX5eXF4APSfLUjTNLj+bO3fiSUvxlUhDLNviaenDlzmEPQufrX0gyvgyx7FJM4Gly5/X1+fQte8Sjqds7zwCYHPtKteuv8jy+irT4LM5Y2o5tYpBtytFYUw+wfenGG6VNJCiF9PRSIqCrBTshDkEozFNN6biyqIwNUF/HDHNWlxYkeKuZLpPUaRMwoKPHsl2/+mf/wXVxizZVIoAh71jotPbzJofoSGvH4wtQv9FPP8qtisdk6IoRSDYOxjw1//3/yX7Yvguq9c754IXTRTsH0d4jTmW5l8HII4D4t4tsumE3qjMt6q/yYWl6+jCYnZGrtNZFhFPBpz25FhrRQRZSDoYk4eyNqN0im+P0eIT8kLWQOZcoLbybTKaFGUNhFFIVsbsjcYyJiwIUkwdaqVwLBYtsGZ5/OH/y9rl1wCozS2V8VNPxVYVX1IXZdSUOD+m+Nzn8r8BCvm/878WT11CyXAUCoVCoVAoFAqFQqFQKBQKhULxzUN9gUehUPw2ov17N0ChUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCofhd4RvhjPMsLjVnxzxLhMsvc8g5c9P5Vy44Xzj+7GezjCgxTYNg2qc3kPFA1apHtVEnTxPIpVtHIUDXdVzXAE0e1+nUyfIpMzMtGudRTCb37z9icXG+bHPB3vYWo9M+S6vys3rF4Y03X+Fg54DtrX15nGYwt9AmzzLSXMar+J5NGo9pt6RbhONazMy1SJOIrSfS0WHQ6/PcjQ2EaRCOpaNDOB3jNtYI4wLLKfsiirDcCpPyecbjDNPUmJ1dwKtdBODex/dJwkek5My0pJtNkmkU6ERxhNk/AEAvQqLExK40ufOL27LPGhUWl2dxfdnWPDNoNhvcuHHlPGIpLzKWozZFHrC9JyN3bt58gTSaUG9WqbZl1Fc8DciT+Pxak8kQ04TO4hxRdlT2hUuageV6BGPZX5/cuYNrWCTxmElcOqq4C+zvnZDE0rHi+o3LOF6FKI3YfiSjmWqtChevXICiQMuli4jvNllcnuPR4y41W8YzDcYB//zDH/PSS5cA8HyfD35xh36vx3/4kz+Q46gLTFtGOZ3VYZomCN2iIIfyM9M00XQdYTQxPenQM+lvoZlNrIp03CgA3XTIshTLlG1IUo1qe4nCqOB2ZOROs72C7XtQGExG0i3l44+2ef31F0hzWauaaaGZFuGgz9YD+dxBMGRhscNJ94TFxdIlynTZ3bmP47o0G9JxaH1jnc5ci0KWDseHPaoVH1HkxGU96aZNe67Ft2fbOFV53mg4otnu0Go3eLMj479OuiP+5q/+ntdflK5HxuBjkuCUvtWj48soMU3k5EWO4TVIMjmOWTzBq8wwjWDnkYw3mplfpNEC3cjPXUNGwyEXLi7xySefArCwNEcYJkymY4pCPuPx8SlZbjK/OIf+gazNt99+kydPnlCtVohCWQP/8uOf8uLLLzOdyLnWnpmlPdsBgRxLwPLcs4EiDaWzjFdvg2GSkz9tevI5ftla9vTfCyFK4xN5bDIZYscBQsh+rtYcVtfmuXnzKpsXZL8eHU+YW5rHdkz0QtbAdDAED4bdn+Pld+W51QkIDbKM9CweLdNJ4gzbkWtAJgSj032mwZhpWEaXpRa+p+N4s0DpvJMM0ch4sptwkqwD0JlfplZ3OfN1SUYBWXaPwsyZiFX5jM1Xac8/R54Lym7FNG329/f56T/9HbN8CMB3/qhF1cvRKGPWsoStnsuFlTfRHDmHsu7fQ3TC7lHCYfQcAK/+wZ9RoJEXCaMTuYZ5NojgHs5QOiO5boGpJ+RJgCilrImmEQYFw3SZ3LkGgKZXaXhrnB736Z3INeydn/93jGzE4+0DTnsyHm9hcYM/+v73aLdXyrZWsIzXObz3V5w+kU5YtdklpEcbwL9+Z32Vm83XutwIgfiaMKpfJypN8fvJDxZf/J233VXfuFEoFAqFQqFQKBQKhUKhUCgUCoVC8evwjRDjwOc3Dn+VjcAvCnn+LTEbXzz37GfDkhvLmuWg6TlLa4sApFGEKHJ0TeNsmz8a9UniKZNpSKMuN8Hb7SYXVlbRLRPbKaNawgm2Y9MrY3lMs8HlS2sYThW7zP0RRUat6RBOpgyGcvO23qrS6MyhawXHB1JU8+jJNq++epmVVSm6cOwKDx/usrg4w/27nwBw7doVCs0giQLiWMa+dPs6S1WL3b0nLC7JaClD1yjCmOO9YwCyOKRS8Xjw4DGNthRBmIZNKkIW5ubPvZXMLMB2TcYTKAby+ppWsLS5yqDbo1NGPZlaii4MilKcsbezTaNZw/RMvIqM3RKAqWlsb2/zwg0paBkOThgNQ1Y2lomnMmIpGE5BE2hlRtj65hp7W4/RqHDzhRsAHB/uc3rcp9ZsQ16OpzCp1Su0ZmcRQo7Hkwc7UOQkE3ltu1Zh/2CfNImZm5XijL3tQ4os5erNS2hlJJFumFhek7X1CruPnwBQq1R4+9uvYjoy+ml3+4gXX7rB3/7NP/DwsRS4PPfiDQzLpcihyOU9NQw0IE4DCk2em+UC1zLpHvTwLClCCgaP8KMeRRnVU2Q5RVpQ5BGFI+NuhKZheC5Nv3ku9MjzkDQzyNKEiidrrDM7w89+dhvLkMKeF167jhAyTsmwSnHUWEfTNGZmZyiQQowszWi3W+RZQRjLsayaJoeHXT79REYgNRo1rl3fxHFMPK9slyjQipDReMruXrfs+8eE0wnrG4vUS0FZq9Ok1emQleIiU7PRtBzPcchS+UAWGZppI4SGZcg5mkUBucgxxJT1jXUATk5GLKwtkOU56VRGb+VFRrPV4LmbMiprEuf84p33eeHFKxi6vP79T7ep1hr0hwH/8X/6Y/mMvk8UR/RHwXlc2vf/6Dv8w9//M9//47cBaLYqkEMucvp9eb/OTAfDNBCiII5KMU619qUinH8lEhRSx/P0sV8U6Xx2Tv7Z+pFOiYM9hmUtFUmAblVZWlnDLJUkF7OU5kwDUeSkpRCtNT9Dlo6JizGWLuPqDB3yoqCIQ4Qhr6d7KxRCJxey75M45O79x5h6xHwp0rMNQaG7eK05ismebGIakyTw6ZOEa9dl/2dJiKHb6EZZX/oxabVF5i6h2xfkeFeWMZ0GeQ5hKWg62Nnhb/7yv3FlZo9X35BCxw8+6XN93aclpwu6N893/uQPMf1FRgc/ByDuP6FIcj68n7N4VUaXRWlBtWow7E/Yui+FXAu1hzTtLu2aU/ZuQRJrRIlNlMtaDbJZcnuO5uIamPK5fd9h2B9ysLPDnfd/JMdj+hHPXW6y2oh557Zs/+nRHfb311lbl2t3kqVoVhW/uczxnhSKraTfwzAMND6LmyrKqDbxDOZ2T1eTjLdSUVQKhUKh+GaixG8KhUKhUCgUCoVCofht53f9i2v/XqjfGSgUit9WvjFinC/yZaKar3LQeZpfxTnnWTlzbJlducLx0QELcs8Xw9DJsxyhCTStvGaRU6tWWF5ewjalYMOwLQpi4jhGlKKHPEsIBj3uP5aON6+//jLzyx1EIcjLZzBsn2gSECcRwURu3sZRwjQYY+mCelNu/L71B68iiimmJTfJ4wTiNCOKEp6/eROAMIoZjSa0m3UoN9Pt/g6Dk0PmZzsYumzX/sE+6ytLOJ78eRSEeJ6J6+g4ltz4LWwHzzcRQjAeyXYZmsDxbISm0W5K8YqwLXRbxzAEjboUY6RximV72K4UwXSjiN2dAxzfo8jl9Xe3t9CQG99+rdzwDnPas3UQgnqlFGjoJsF4TJFIEUEwCQjChI7vYHvymNmlJSzdYBol0hUGOD3scRgO8KttbF/2YRyGeLZNZsp2VRpVFpbafPD+HSplG4xulzgKiaKMPC3vqWm4tsFp94RCk+PW6TQxHYN3fyqdOiZRTC42mWkvUatJhcD21h4bF+aIkzGTsexD162iO1VM20VoZZ0UAk0zqdUqiFLA5PgrFAJyTbZVEwJSHcduUpRuILphkKQhhojQ9FJIoNvkhUFR6GjlHv5pd8inH9+jWSoXknTKteuXsTybmeUFAO7efcDiYg3fr5GmUjgUTqc4bgVTL7h39zEA9WYTNIMokxe/dvMmVR903eT99z4A4OLFdVqWTa3qo5WilyPbZqbdZmVpkSKV4o/esIupaWSpvFaqtRkHKXFvhJlI8cdypU6hF0TDHoYrJ6VAh0JgGA5xLIUwaBnv/OQ9br54Dd+Tgq/5xWWiIGB/Wzooteca1Bsex8c9rlyR4oyr164QRTHNTgfbluORJgF+xeaoe4RTlbUzb2m8/d23cF2nHMcaaZoiDJ3dnUNAuiNVqxUoUrJUjqNXkWI9eDYHnM+LKr4owpFPLzRBe+V5AD7kL/HRMMrxTxKN8WSIaZs023KO5tmUMJgQJhlzS0vlNTOIM4TuECbyXEPL0QyTJIdIl7VSaz5Hw18hDtPz69uWw3zNPh/brb2AuaU6pjCJB1uymVlIbyDoTWu8sbwJgGNZJMExuiPXWrt+map3nRybIpc1PRgOMCsRu0+6/OxHfwnA5dYB37l4zMU1F60UDtU9sGwDpyn/ca63X6TQHdJwlyefyDq08gm1mkY/cblS9kWRFUSTBJGHzLblPY3olAKb3rB0qnLn2DlKmV1/GdORAsYGDrZnEcYZk5F0//n4w9tsb33K4OBjvv+WrNeF5hyGDcHEpSwngkDnr/7hrzFMuTZtXFym0eigz24w7ElRW5FMEWbtS+viN41yxFH8Ovw+uOMoFAr1y0SFQqFQKH5bUP8+VygUCoVCoVAoFIpvDr/8a/UKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoXimfhGOuP8Ks41XxZR9Zv+dv9Za2qtFh/fukW9LR0RfN8nj1M0zSALpQuH12gz7B7iuca524FjWHSPj3j3vQ/4/g9k3E2jUWd1rWCtjNIRwiDPBCKJMMqoIc3IKGyT2U4TvXRBefRgm1Z/zGAwYH5BOjq0Wg1Oj08xTGm3UG00WFie5fjwhJWVNXk/z6SgoDcaUq+3AGh2Wmw/2aGew3Qqo6WKLCaJpxwfnwDSYcLza5h6Tl461+hk1GcbZGnKydlxVYswGBElECdlTBUpWW4SxglxIl0r4jilu3+IVsbRPH60B8LAc2xGvozs2rhyEVM3CMZjkky6C4WTKbaZ4MwsUWjSWWQaBuxs7bK+sQpA73hAu7mAV6uT5mUNFAUFJoae0p7pyHH0XcJJwDjIaZfRWCurGsGgS3zmWlKtc7j9iNW1FbqnPQCWlheZBAHkObvbp7L9W9u8+caLTMYDjk9llNja2iZCT7n5wjUA8gzu3tvi4GCHekO6qTRaHmkcopsVNE26zfwP9t7zyY7rTPP8pXfX27rlC54gCNCKokxL0x0T6pnY2YmJ6Niv+3ftp43Yr7uxHRsdO7vTPQq1Wmp104kg6GAIUyhvrjfpM/fDSYAQCBqZbVHU+X0gUbcy857znjfzAnWeeh7dcElCnyyN0XUx/kwxyHMVVcnYPxAuK0qUECd3aVdXimNA1RJS1UUtsoxUJUczTPIkfjwnAEVNUfScPBXHnTu3ygtXLpFlMQCzxZRKpUyaxkwngajNyhKO5xLHKW+/Jdx+VlZWsCwDfz7jwmURCRYECzQV/svf/CcAfvbTn7LcbXDxwjk8R/T0cDSj2qzjOC6NknBoai/VmIx9NN0gLCLIbrz3Ef2TPtdeFNdO7COmh7cYB/ssbQpnljRVQdXIs5gkmomeiDRsU0MxDMqFC5FX99jdHbP74ICtc1ZRh4TDg2PMIkrMsj3W1hyyNCVLxRgcVydXQNNUpmNxfzuOQqXsstTt8qtfvAXA5YtbDAcjxoUrynjqs7m1TKlUprci7lFdN1FVldHhNl5x/2mGAY/btPhDkSL05BPs60RZFVchVxScmojPam28TBzFNJpu8R46yXSApdqQp4/HVWs5jEcTJn3R53E0wVQTcnOLWSTOXSQhVc8jShVUSzgmRVkFZjMUU9xDSeIzmo6pKCG2KSLtKCtYtouqGSRZERGWKty6P8S2ugRRVIxtwXyKuL8Ay62S6SWyXGEyFvfVwcERD+9+xK33f8XlNXH/nV1VsHWHlPzxM/LKcz3sle+iVMT9p+geahoTDu7Qq8dFqRTyJKFhm6SF25NpqERxSBQrtDaviTmO2qiui5EKh6ByvctSfUiagusJt5o4CMlSuP7eR4QTEcV1eO86b1zJ6F4r4XmFW5WaQ5pTsTNeuCDO/flbJ0RxymyyKNajhIKGblVwvMLpLI0xeDpCsZjGU73xrL74qk/DZzrO/R5xjxKJRCKRSCQSiUQikUgkEolEIpH8oZARVRKJ5E+Zb4wY57cV0jzaQPwy4c4XXfOZG5ZPXetZ4zAci+euXiVJxXGqYWNrKWkUEWXitSwVIoiDwxM8T4gZ3HIZVVXY3FjBLYnII0XX8GpVckVs1AbTKccHx1QqHpYqzrMsk9k84vR0gu0IEce5C2dJsoSjkwEfvP8RAOcvbbKxtsKkfwrA9PQAr2SwutxDKeJibNsgCEJG/SnDE7EpXq46LPVaOF7psTij3a6SphFhJMQykR8yivuomoZuCDFOtWQzGYyxXJv2shC4kEYYuk6c5vRPRsVLPvVulySMyYsNb9cxaHQ7ZEW9DMPk3u1bTMcBcSFo8oMeR4Mx5VKZo30xp/FwRrdbZTw8IUuKdVV1TEfB98Vm/WIxw7TgZH/CfCFq2OvWiZKIYDpnb1tslC+vLmEbBif9XT58T8TWXH31ZVQlJ0pOAJhNhyyCBK9ucuWFC6KuE5933n4flSlHx2JTv9Wp8t//+y94/vkLnBwcAvDuO79mMJrxxg9eFuNMFbYf3Ge+8Pnghlizra1Vet0m5WqOZYrb0NBVJsMRtm2QKUJAkysJQRAxODyFou8UrUw02yUp6qU5NaIwZjE8pNYS65HlKYpukesZymMtjsbDhye4lsViJkRUG2c2QLUYFIKjPNfZvv+QTreBpj6KUzLRDIOTo2OyVIg4lnodLMfk7p2QTBXjr3d6uF4VtySEBq+89jpJtECxbFY2N0UNx0Om4zGmYaNqove9cpnd3RP8IKRaEaKHRrPGmTNraHrRJ94GM+5Qr2n4vhDeTCYjat0WZrWNqoj5iv8lAAAgAElEQVQxqEaKYaj4s4g0FgKHg70pRwcHWHqLh/eLHlhfo9ldIk3FHN/79XVee/UFFn7AYdFzXtmlXC5x88Ob7O2K+nz/h6+h6Rnz2ZhLF7dEVfUEr+Rw472boie6Dc6cWyPNEpa6bTEuNPIsRzUNyvW6WEeU31n08IXPPQUsR4g4nn/jf+CDn/2vTHZ/CYBZvYLnVQiCEF0X807THN0uUWvoBIEQ0bnlEmkc4zgbuIHofV3XUAixdQ2nLHosj3ym8zmxL+p83D9Ci6Zc2HSxbTE+yzbJzTZ5PCVPxPV9P+BszyQKj3n3bTG2SuOv8ecBZiFCs6Mp48EeO7sHjA8/AaBhH7JWDYhqc2qFkMs0LTS7jVPdQLXFuMLUJjNaqJGY42K0i67rxJh8ui3GutSKqbgWWx2fd3/xMwCqlf9Ms9PCNEy0Iq7OMj1yxSCPxfMwzTJ008UxVIZDcQ/dvvmA0eCY471f8/3LYt7f//cOH90esbZmU7Q5qqKSKxpqnmIU9/Ll8xXe/GSBoon+zdKUNE7RdZ2pX0QTRgHeo8Xl859lz44s+x2RIhyJRCKR/JGQP1iTSCQSiUQikUgkEolEIpFIJN82vjFinK/LV204PktE88zf/P9t3u/RqUqO7Tn0H+4AYFmFX0GaYrpCZDMZTgiDlO7KKnEhCAn8OXkGZ86tc3oiBBtLSz3IczJFiBtU3WA2PaZS9lCLjdkECOM5uqnjVEwAarUGSZJQr1UZFK405XoJTVcoVYUbRanskEYz5mGAgnAC0XWTcsUhjhUe3hPjPzpKaLeqlMMcu9jAtz0XJVZpNYVgIJ3NSJIFs7mKrotx5WmKbjucDvp0usJ9pFzrMBuPaLcqnBwLMUOrt8pkOqZWr5BmYjs5S1OCRchkJAQ7mpKzsb5GalQIp2MATncOKVerZGnCdCREEO1egyxJcEslopmoq2KYtFstsjgEoNmsM5wsGPRHNOtVAI73j6g0OwwWC5yqmFP/8BTTMlnbXOfDXwsxztHuAUurS1QRO+eRv2B1a5l6o4btCecPRQenZLC7P6bZXS3Ww+XC+U16y110VQh0FM2mvdRCU4R4aTwZcuX589iuy+7OHgA3P7xNrVnjxRc20U3hPpKRk6Qpimqi6sIRKIljSCEKc4zibrWdMlGQksdClKK4LQzTxc18skyIBnRVR1U1Meg8Ka6V8dH197lwZp21zWXRd5pGECy49eHHAHiOQbfbIs9TCj0CSZSRRCH1Rp1+XziSTCZzOiWT1TNbOLboTa/sUK2U2NnZBeDhw32q1Sp6f8r9u/fFHLOUWn2DJA7RCienpZVlPM9D1xWKabN5dp00jNA1MfYg9lE1k1K5hF0XzjIlzyGd+/hBhmEK4UW0mKDXqmRpSBIK4UXJNrh67Sy2ZeE9EsNlMaVyldFYCB7WVlbxPIf5PGAyEXNcBD6VWpNOr0e9KdxmTEsniiIuXLlCFIv3vHf7U0bDGReeOw/A6uYaum2T5xl58YhNk5D59BS3VkXRRb1ESuDnn0t/KF+vWm+Nl/76f+b9f/g/xJzzmDiMaTRqpInozSAIyKY+UbjANoUQStNyQj/G0FxGvrgnHcfBsT3SLGRaONUoOSh5ThiI++/+jXf5wbWcPElJip4z3BX05vNki4dQuOCYak61qvDa8xa7p8Jp6V/+r/vUG02aZXFevRzAbIQzmLDeFWPtLNUx7GU2rq5ilITjkFHqglEjy3T0wqFHiecoJI+ffXmeCGFaHrJ+TqyRkT5EUzK2luBoIHr/xq90Ll77S6aLiHohanPtmDRWGI5EHbySzfh0l9lwzM7uHQAWo3us1BJ+8MMKlbJYvVyJWOkoWKZwVgJYzOGTeyMuny+jq0X9I4XRMEEzxdcqJvOFj8b8cV11RUEhf1qG88w1/10EOX9oJznJnyePNtH/2/71P/JI/nBIYYBEIpFIJBKJRCKRSCQSieS34dv0s7FvCvJndBKJ5E+db4wY58nf7v+6m4PPcrx5lrvN069/3Ws+Pufx/xRsxyEpHDdUBVRFJyUnKFwMrl//GH864NXXrmCVxOa2Pw8pNToYtko6KdwOgoCHD3apVIU4YHl9iTPnz5JGCUkiNmFts0K1Vmdwso1lCTHL6emYw/0DOq0qx6fCxaW3voySJbg1IahJswir3MRtlRkPxCZyEAQYlkmlUuXqy8K5ZDYdoSgqaGDbYuNa1W3iKEApXFHssksUZAynE6zCnUc1LRazGUkUMOqL60+nMY16mdlowmgkHFtms4A0TEDRH8cuVcpl+senjIfivMHpIefPbXByfECrIYQ9UeyTk9LpdSlVRH2yOEbVyyymMcFCiF5KZZ1Gq8FoIEQpo/EJag6OqVLsfxMpGUky49zlcyzmoq5xnJCTo5PTbArRzu72Q4anu1i2mGOl0SAKfIK5QVq4wUzGU65euYxTruLPRQ+UK2U2NlzyNKdUFePvLrWZzxaEoRhno1lDnehUK02i4rXn/6fn0IyETDXRC0FWlmfUWktkSUCei6bTVIVMVTEMBX8mRE62t4JT7pKFw6Ix10HTMB2TLBZCJdwaSRqh68ZjMYCSa/zkP/wVcZpTJPqQ5RmqqvHKK1dE7yQRN977hM2NHuSiXotZyPHBkKXVDlvn1gCYBzGWU8J2VJLCVWk2DqnUPSpl0UtxOOOdN2+ytb7ExeeEi4xu2eiGwngasH1DCHSanS5e2cP1TBZTIVbb25tx/9NDVleE8ObsmotSsdEMg0/vCkHT+ctVPM8mjQOSpBBxNFukaYqCjlqIXjQThv0JB0cn/OBH3wPgzqe7rK6l7OweAxDOJmyutyl5NlNX9ESwmJGlPuWSyfs3hPAizzNmszGdbvY4ym00GLOYR/R6QrBz585d6q0q5bLHI1sU1dCJj8eojcZnsVNP5E/9xrPqazz+nuWGkuc5QrZRkCVkapnL3xexYR+99fd0Nl8iVXTefudtQDhfnZ4coispjZZw8VlZbmLYNmGUYCCeV6GvYlqQxSlHp6LvDENj+/YnpGPh9nSp1WelqwnXI7NwBKpdJaWKojVIDSGGU5UMPQnQNYVzq+I50ymPMIw5micEhU61ja6tsKnZqI54zXCXMdwmqqqjqmJtExKyxYjAH6A+uufnM8ajUwxF3GvNZh3cdQynTHVDrL+WbBAPb6Kle3zvqnhuLvwP2Llziw/uBhwOxfXb3RIrnSUOj8VaD8cT1pbg8oZBfU2Ii9rXXAxVw3ZEJB2AqsP6qkuuZGTFi0kKB8cxa92YDDG2nT0f27OJQ3GvzRYTTF0hJccpFQ5EReTebwhycvXxun+uB6S7jUQikUgkEolEIpH8WfOT5Rf/7DYD/9zmK5FIJBKJRCKRSP40UL/6EIlEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRPJ1+EY44zzphvPbuuI87QLwtLPO09//IueALzrvadcB3bRwa8KtYzGfYlkuqpKhIBwellea2GaP8dSn5IjMHd0wSbMEA4cwFO8RRhPa3RaGKZwzkjiDPEfTMrJcOCmEfoCqZKysdbBdca3pdMTGxgpH+4dcuvgcAP4i4t6d21x+7iwApg7xYkyW659FJ+kWxwcnPHy4S60mHCpW13vYbon+6QhDF+MPFj4ffXCbM+c2xHmaTjRWaTfLpFkRt7KIGU+HZFoJxRKuEqapoiopTsVh2RCuGIGfEcwDVFSqFXGcWymxv7dPnon3W11dwrJVmo0a+/v7AKxvbpCRMxyOqTVErY8PTnHLDv3TY9qdDgAzP6RU1VjZEpFR1anL4OiUtbUVJhPhXJPhUG/V0HSLLBcOOivtDmmWMuqPMVwRbZNrM/JcRS2ipZIkgwwW8znjvf2iFhqlikelWqLdEo4988UMTYlZhNHj/vn0zl0c28GwRPxUvW4TJDH/+LOfc+myWKNyrYKqzFGJUXRRmyiYY1kWuWGRp8J1YzaNyRSF1Y02i6EPgFevMT7xmI0PADAaF9A1Fz/wQREOMWQRChpZDuFC1CKJErxKGSXK+fTuQzH+2ZwXX76CYkRFvXKWem1Gwz67eyKuqVq1WOtcQtEU1tZXRL1w0FSLJE05PTkCYDye80L9MqYlavrd773Ka6++xOHBNnEsevr48AjH0cjyjK2zoseiOONg95QkDXn+sogRmk9vsrrSJi9iw+IkKnxBdOZTUYfdnT0uXDpHuWqTx6LPj/ZOCaMQ18lxC7cnz7C4ePks5y9fwihisHQ9Z+/hHu+8KWKSrl49QxilTGdzPv5YuOC88uqLoJgYZsrqsnApGQyOOToZkqcZ+wei/p3OEnm+eByB9b0LG+imgaIINy2ANA4xnCqOV//C58/X5YuOVZTCFefRtzUNx3FQS2cA2Nja4nTvnzk6VXhw45cA2GpCu5LQrCjMJuLEh8dQdjTCzBJxesBxHxLFYx4l3N8RbkKrzYiSPuI7z4s+dyxQ7BK6t4RdE9aRqdlA0xfkmQmdlwCwtJRgdIhGhF64EJXOVNCsNqYr7u0kyUjDAUk0RE2EO8/i+C3yLENJfUZT4STzcHfI1S2L/jjh6EjEZ53d1NnfS3F10RPazGMw96i1WnzyQMzx6nfeoL3xH0nmuyz6IqZqtrdHtxFwYc3Aj4rPIyaoyhhlQ3yd5SaLMGO/P+fFC8JhDF3j9oMFvZZNtST6Nc914iTFsi1yRO+XvZSXn7Ox9QzVEM47q8s22nsBhmkU14+pt9eYjE6JZqLPZ6fbVJvLoCiP++m3DZb6os/LL0K660gkEonk3wppNy2RSCQSieT35d/SCUj+3UUikUgkkn8b5GeuRCL5tvCNEOM8LYL5IkHO00KaZ20YfpkQ5+nXvire45lf5zmlmohNOd55QGXzImSQFpE+Z85sMRxN+defvsvr331VnJfM+eDGR7z2nZdBLeKaKi6mYREW8SQHu7tkOaxtLqNkYkN3b/eI3lIFx9bRiribZrXE9vYhaRoxGos4qJJnEwUpQVRESzkm/sxn996n9FaE8CYaz8mShBdfep7TI7GZnsQho9OIOzcf8MILFwE4OjyhUrbZ39kFYDyYUvZMaq0mtz4RIoVup8PVV17i4GhKuSqEJCurPfzZFDSVVAyDJIxoLy+hGzqaLlpt+/4uD7ePObMhBDu1Zo0wBj84ptYUggfT1gijlMBPeZQ9U6pWUfKE1lIdvVgXPY853DvicGcbgK3L5zGsBWGcFdIoiBIwTZv5dIHviwinvb0jDB2GxyPu3b0r6tppUamVSROxgW+ZDvWay2w65NdvvgPAxsULnLt0lu0H+1QqQnBSqToYuoW6CEkisZae69GoOWiWEINEMWRxznMX11nf6Ip+S0M02yNPFmhF5I6uJyRpiKoaqLo4dzg4YT6bUL1yFsMRooc0zbBMh/FgBMBidIDprbCYxthlIRDIYgVVzwGV/T2x3r/8x5/xN3/zP2K7FeoVca08mpMnyeMoHHINt+TRPzmlVkSEuWUTTYtJImg0xbrphkeS5/zil2+ztb4OwPraMnmeYXvivJwMJc/xg4C7dx4A0G7VsG0dJQvwHLG2YTTj1u2bfO97rzCZiTmFoU+tVGV7XwiC0vmA1aaOpum8/ob4S5hmeti2TU5GGAkxkapruKaH66goiRAzoGbYtoNpOmRFJNilK5fwZ3OaTTHWRrvJaDLHsQ1eeF6IV0hjPrh+k81zPZpdEUGlaQZ3Pn3Ixhsvc+n5cwDcvnmXQf+AOC761+qiaCpxHKEWcW+jox3KzTaabvCklCJ/hubhq2Kqnv18FK8lSUxexIZphkY82ef04a8BmB99CLM7mPOIn7wu1r9U0tGVDC1PyRQx1izNyLIMRdPIEyE4Wq6qzBcJiprz4ooYdJJqmEYNty562iotY1aW0MtLpLEQhSlZQpaEGKaH7oioMrIIRe2gaimaLp5rejYnDvaZDcQPz2bDYyxDB8VHicV9FQU+ui6EXEYi5rhUypjME3YPp5xZFs+iMMrp1lRsW8QEngwDWg1IZ3OWXTH27GDEaNFGd5dwuj8Q49em+MeHaM4DyrHoQ9KEySQkL2pTr+rYVsh0ZpEVz6EoVOgPYrpND90Qz7kgMhgOQ5aWrMfroao67RZkGewdiGfRYBBy0g9wPTH2PM04OdpHQSeYCRHdwd3r9M6/jlbErj3dC19HOPOsz70vE+hIMY7kd+XP0Q5fIpFIJBKJRCKRSCQSiUQikUgkEonkWXwjxDhPi2K+znGqqn7u2Kc3F5+1Ufms63+Z+Ofp91VUBa8uBC7a/gGhvyBJNfyF2Fz1XBvHMfnxj37Ar/71XQBevnqeZOHz/ru/xipcQ8ih2axjWWIzend7h9PTMe12A9sWm66Vkkv/dEazWaZfuHBUWx3OXthgPBixfzAGwNAU5vM5aSY2wMNQYzFPmU18RoWjjqabNNs9HNdmaUMIELLYJweanTbDkdh87i030TWFkxPhMrEYz3n3rXe5dOUCWeFmc3x8wiKosLTcJpiKeW8/2Mf2yiRRgD8tNrJznXw6ZOHPMU0xpygMqJUcNFPU4fhoRJJAMJ+zfkaIIHRTxXA1Aj9lMhKCo9OjE3rdOscHx9iGqFm57KFbNv0Tccz1f32fkutQrVVIYiHOCOdzbr7/Cd21FUJfjH++6LO61iXLUhrFWl547iz+PCcMxAZ4rVWnVDIxXYfXfyg269e21jAsl+7SOrO5qM+9u8f0lluYbpmjm3vi3FoNXUvJF8LR43DvlOGoz1Kv99h5ZzGfk6vgmAZpLN5TNyyyJCZPE3JV9Fyn2yCqeSi6hqJ7AKimgao7qIqoaTw7Ar3NeDD6bPztGqZeQs0yuj3hbvKdH/wVOQqKltFZFg4kjWaVD96/iRKLGm5dPEMSZmiawrBwH3FLFuQKpmmjGkI0kKQpDz/5lJWlJXYeCJed8ajOK+1rPJJCKaLNCeIcryrqXG12uPnhDUxDYcMUfVittnj55atMJhPqddEXrWYTzTIZDe8D4DNgpW5zdHBESxfHNDo9wjAjD05Qi2u1u02yPCcJfbJUjD+OQ06OBgyGMy5fvSx6H/AqNRxHCDb8IOH4aMxsNOLaNeHOMxxOebi7R2+1g5qLtbRch++/8Rq27Tw2oDlzZo3NzR6O6xXzFjO3LFu4FQGlWhPHK4nvFSfmT/z3D0GWpaRJgD8STk7jneuM969DOBTfz0HFYKmnoBUqoFzR0N0KWZJgmoVAK4/x/YgUHa9cOPtkGeWWjZKnaIXgxM890kzBKglxoqG7YFbIUpU8EvPOsymoOYvgGOXR8zQ+RQlnxGlIgnhmZdGMNEkfO4f5i4TYtlGUlDASAipVcXB1k8k0JCkSFnUzYx6Dqnmc+mJcN+8uuHKhyeCRs8zcotYw2D1ZUJgq0evF+MN9PnnnDteu7QBQq67RubTOZL5FHon7yMh3cbQj5mNxzHga4jkqZ9Z0tOIejdOEly6WqVR0smJchp7R7ZTI0oQ0FeM3NA1V1VBVqNcLceJ+hOs6kIt7udpooeQ5mgL+kajFdHBMGkeouvnZZ9ETn01Pi2u+iqc/F7/u56REIpFIJBKJRCKRSP50ePTb5FIsL5FIJBKJ5E8N6YojkUi+TXwjxDjw5e44XxbL8iTPEuh8VYzVk8d80abk06IcRRNlM2yP06MjKrUuZhEzgpoTRz6GbXF2U8QnVUolGs0WNz66xb/70V+I16pNdnYeUqqIjeyHO8fM/Zgkyjke9wEoVSo0ym2S2Ge/cAhxqw0MLWMwHBCHhUDAqnL2/BlKbhEF5ZVZzEKOJ0Muv3ShmEjG4OSELPToF8KbdreObbs4jkbJExvxhm4COWRirkEQcObsFs16g7IrxA3zxYI8S5nN5pSrImYm6o9IIx9FUQkDIcbwgwmuY1Eul6DYpNZUjTiE+UQIBNySRZqaqErOybGYt2Wb1DpN6q0KsS82xaO5z3BgUK92iCIhhNnZPaFUSVEUIc4hC3FdF9NxsD0hjNiPErIoIwoCpmNRQ03XmE3GtDttyjUh7OgfHVNt96jUhbtJ6Pu4LhydDFgUzhyzmY8fBpTLNd555x4AtWYb262ws72DVmQg9daXIQkwrEcOMSqKoXH/wUM21oQw5uf/+BZLvR5XXjiD5wkXHEVV0HSTNM2FcgKwPQ3LdlB0E724XpYr5KqLW10TdZ6doNsnLIIA3RS9qSoqaRqCBl5Z1KLdbHEynLDiOszGo+JaCecubNA/OizW38IwUwzTJk9FncslB1XTyclRC4cmRdOI4pjldodSWYxrd/eAKIh5/4aIfto6ew7Xtmm021SqwrFHy2MuX7lIEs548823ALh0+XlarQaTmcWkEFA0mw3qrQpLK8sADA/uoEWf0Kq3qdZFDXWrhqaZ+P6QaP5obetEYUAazYqAK9B0m1zRWPgBk6GY08HhCZph0WqJ/nVcj+XVHmPLxH3sQASvvf4i09mU+UyIJZIkQNV1WkqNQmPBbB7QbDTIs+KFHFQUFFUlz4TTkuG6mLZDruSPRTzkn/35WQ45PPE9BeWxAOOp74p1JGVyusPdN/+W/n1RV03RSBUXsyyi3jKjTOzPKWcxWnwi5m3FJOEA1TSICyGXpqkoWYqqaqT+o3gmiBUfVUmJg0fDH2CokIVCKBhqkKhl7Moyui3qqmQxLEaQjFAUcX9EiwGmnpFj4y/EKn348YRSrYOfCtHWfG5x3B+R5Ql58SwKo4ALZ+vcfzAlzsR6bK2XGM9SMsWgool5mo2YOycZx6enADSqKR/99C5XzrtcOy/uBZQMx025eL6EGolaxIMB6fhjDk51MkNc6/yly3hL3+Pkhqjp3ds3+e4LBovJBLcQ1jllC1VVSeGxg1mY5Jyczug1LJTCFUzRIE8UwiDFUIv7CJW15TamLmqjqir7eyc0qh7uo+dClpCmMQYZ+eNG+erPxC8T1HyRIOe3jbOSSCQSieT3Qf5wTSKRSCSSby/SNVMikUgkf27Izz2JRCKRPAv1jz0AiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEonk28I3xhnnt43a+H3f61nv82TkxyOeFYX16JBap028O6farFIkODEZDqmUSiiaibK2XFw4ZXm1R6/XZToVbjZxVOL0eMTxyQyA73z3dVIlRbdUtFS4JOhqhmEkaJrHlRevFufN+eU/vcnm+jrntoTzzsHRkHv3dlBYB0A1hpRsgx//xauYahF1MvZBBd0zccIiuko1UHJYX29jaMJVJ44jVN2g2hQOFdbuPp3lFQzbIhkIN5Vuq8n2/W30wMRyRBxU4M9JFlNqjTpnLm4B8OY/v0WrU0LTFXRNOFnM/YTO6gq79+4CUK6WcT2XWq3CtIi3Mk2NJIwwqmUmM1Ev07IYDPpsbjaIEzH+rQtn8TyP6Ui4nYSBhWZAHEUkmXCeWExGrG1sMTg+obcsXIhG45jpeI6mmvi+cGI5Pewzn0UsFceYlkeumHSWuiyttAEYDmbkUUq5qrC+vgLAw+0d8nMdPNfGD/KirjmGZaLoYgzHB4c4jstSp41mCLcLr1Sm3qqj2w5xLubj6A5pFKKqQC4cVVB1UjJ01SC3hHbu9LhPvAiwCneNNAtJFid0e+tYrnD6sSwXRVVQNJM0E+eNRgOazRq6WWI0Ek4y8+kpF597ju6SmGOWxti2RrPZRMmTon8NDN1Cty0087PYs5deuUqaJihFbFhvfQnTMthYF4491WqF6XjI6HTCxx98AMDZ82dodZewShovv/YKAHkSs5hM6fXajCeiD2998gkXlS1yXXx94/oNXr0QY5oqiiputjzPyJIQ02tCIPprOvVBSUS9EnFvxUmO55Q4OfqE1WXh/pIEMffvPaBcuiLmneUomkEUz7l/X0Rj1ep1ajUby9Tonz6KJdthZWWVOIhJMtH7lWqJ/mCAoYnaGFGKU9LJickiccx4PKRcvoxCzhe5mnwpjzK/niIrHJRO7l3nn//P/4XZeMTSpojZ8pYuMfVVksLBRdEcMgKGSYChi9qojkEcTqg4GouZcIix1Ig4TQinU2yj0GvqDrpdZzKfY7nCOShJc/I0gkQ4R5VLKaRj1GxKlBb9m6toXhlVNyAT72kYEKcOiXURrSkck/LOeVafv0qlIe6r+ThkMh6j6Tm6Kmo4mcRous7S+ZwkFvNWVZ1NXcfQQ1RT9IqSQxQlvFoS4/SDObdv3eRfrv+chwdijlfOlziz5lDyFJJQOBr1+ws6rTLBdEhSOAfFjSmU9llbEWu7ufUfyVSN/+d//3uuXBDPyDNVA5UBeeqTxOKemcxybu3MaFY19EdxVqHKvQczahUbvbhn7jycEUQunif6N0tTbMvEX4yxUxEdlxsGqqaQkz/uga/rgPN1eez6Jh1xJH8A5G/ASiTfLuT9LJFIJBKJ5HdF/ttAIpFIJBKJRCKR/LnzjRHjfIbyuTSWrxud8WSk1NPnPr76Fwhxvu57qYryOFLG9lyixYIkmKNbQgQR+xGG6hDMp1iW2GDNlRzTDCHxqW1tFO+TYNsO774nIn3KJYtLz19EV2LcphCEZHkRT6Nk5IU4I4lDesub5JqJaojN5qWeRZrlaJYNQLPRxNRVjk+G1GoibmURZnz44ce8rF7EdUWs0Gwyo1Yvo+smSSY2kQ1LR9UM/EhsUKdRRLTwqTUbnB6KDWoPhY31TRzHYTQRIgVVzZkPxrRbFeJE5NhcvHSeNE2p1KqExfWiwZDByQMqj+Kt4hRF8xkP53hFPFCcwMMHt6lUXwZFtKhXqTAcjJlMxtiuEAhsb29TK7nkxTGVkovl2OztHbJWiGWqNY8kGVOp2UzHYly7OwdsrK9yfHxEvdEqGkPFMAymc1EHJ/fhdMDu9jZb50XU18HOHpVamTRN6PTE+Cf9A0aDCc1WA1RRi3/4rz/lL370BvWmEAesrq4xm0yJjRnTiRAkaLpGZ6nGeDhkf0/U9X58EHgAACAASURBVNrLV4oe00gLdZeuKJBn+LMRhu09Hr+lpnQ7lWLoDqE/olJrYzhe0TsRKjoQC3EPsL7Rw9A10jSis9QUta7oBIsJhV6DKI5IwxDbUml1OoAQoJiWTjgw6fSWxPhTnyiKuXPrLldeFkIxw9RRUBkNx+IYU6fZbBDFKVdfEcKbtY1VojghCedUqmKOi+kQ1XJQDAMlF2KZ8+c3iYOYVBc3W5KkTCdzyr2M2WAfAKsU4ZXqpGny+F4wFBvLVtjbeQiBEHednMzpLrX57nevUq6JmnWX26ysdXj4cBeA6TzmtTdeRl/ucf3djwC4eWuXTq/Bg+19fvSDH4tan9dJwjmBH3BwIOKZ2p0mqm7zKC1te2eXs+fPYlk6SXEvOKYCigp5/jlNTZ7n8DWebU/JBIn8OSd33wHgn/72fyN3lnA3X4a6mKPV2MBMNXRN9HQUJsznCzSlhG2LdXQ9hzRViUKfWBWiGrNskEU56aRPVhbXCqMYBQ3NMYjyIoZuNkHTYhRTNM9JOCPyx1TJsBIRe2brIeZ8BqqKpj8SUcWQBajJDXRbPDdfuXiGTFkQB36x3hG6ApZhYBZ9X29XCeZjotBnPo+KcUWUyhW8UgU0MY40jlFUDdsRwjdjonL12uuUK22uv/s2AH/3yw/4yRsq5zcMRjMxrk/uhrRbdVwXVFU8S0mmxKNP0HS7qPoDfHoYVoly73lxiHKCmg5F7Fgxhno54Y0rFSzLJC/qlacZlZKGocFxX/TF3IcXrrxCoxA/pnGCoWUYhgK+eOabZhlN0/k6Iq7fRpgjI6kkEolEIpFIJBKJ5NvPH0sQ89/2r///Hkn56PpS8CORSCQSybcHGWktkUi+bXwjxDi/uYGo8Nmm41dvFgqnmq/vqvPkMV923rOOK77gkVrIMAwqrSVmowHVrhBeDEYDkrzG0cERW2eF8GY8HJPGIY5tkCE2xjUVLlzcYrNwtxmOBswnC2xHoVQ4PGRJjKLq5HFEFIqN8tnCp9FpkEQBNz+6BcBzz11gfb1FhhD/vP/eJywvd9jd22VjQ7xfpVrnje/9gNHJPkaxzxyFGWmaQKxju8V7ZjlxnHGyd1QUAshAyRRUVVz/9KRP4gekacDa2YsAhIGD4yaMhj5Jf1TM0UDXDCYzn509IVxY6TSpN5voltgoHw37JGlGp9fBsYuBaQr1Zh1NN6m2hFjmcHef5lKDcr1OFIqN7LX1LeLQp9kWG9nz0ZT9/SM6vR79YyEGME2X4TBBVUPqDSFyeq7SIs1Cau06YSQ2vC9duUTkL/BqQmQz6o949523CcMJz10RYpwLFy7yy3/6BVXPpNkR4+p2W7z95lssrayysXUGgIuXLjCezokS0Se2Y+E6JoHvcLgnhCSua6HkkEQpWS5uQyXXUA0VFAUlFa8laQoZPLh7n+7K2uO+iwIFRReiqlyzSBcDgv5dTKdw2FCr6KoGKKRpIbKwDUBlMfZ5cOceAGfPr6OikBWikTxT+PCDT6nVPVbWhNNSuVzBdqv0947551/8CwCdpSbfeeO7BGFMkj66H3QiP+LmR3cAeKNeBVJWCmchAFRIkhgVCBNxX3m1OobRIAin3L+3U8w7w9B1moXg6MXXXmCy8ysycixDzNFxy+Saiabo5LkQe1llkzSOmQwn2JqYU6VWZTA4YXm5zXhwDECc6qAYnLkgXJyOj4bMRn1CP6A/EK5Bk1mE6xpcOHf2sQBs8XDM22++y3/+L/+BreLenUx9HtzdY2VVzLPTW8K2DfIc1ELlZDhlvghFUZ7pevP4+8/4Xp5nfPTWP7Bz42cA1DZep3fmeYJ5SBQKNynDLPHJh7eoVUSdm80qzXYXRc1RsqC4knBewvIY9cV5uu1hmDpGSafe6wFwtHtAlgRUqnWS4v5rdzr48ymlihBCzac+cRQym43JNXF/LPwTCOaUSzpKLJxeHDMGIhR8spkQsOWLYzLlNkEuREJRXiGhjJqYLCbiWWG5E1RNZTIe4xTPq2azQZpBHAcYhSgviTMsIyEKCkFhmlAtV9na6LK6+p8A+PjGBtdv/wujWciVi2Jtzp/JCIKQ1a7L0589SuGCRObjZFN+8kYDuynccpLAI5nqGKoKhfBG0XTIY5I0Jnj0HNCh1bTJc40Pbota9KcWZ1WTuHgONZst0orLtL/PrHDt6p5dRdVMlPzzn4NPiku/Smj65Hye5FminH8LhzqJRCKR/Hkjf7gmkUgkEsm3nycFOd8GwYz8+4tEIpFIJBKJRCL5bflGiHE+T/4bcVBPCm5+p6s9df7TXz/axHzW+3zV+9Y7XW7/+l3K7S4AS8s9dMOkVCkTLoQLShbnTMcBJwcj0IR9xvraKn4Q8fHHQlBz9tx5FvM5k0lMKvaQcRwV4gRFNbALx5PIT9D0jNFkQndZvOc8Cjk9Pma3cPkIg4SSqXPx/AUOj/YA6C61OTjsM577rJzZFHVIT0ExIE9IYzHWxSLF8kqcnIrN4sFkTK4qaIZJEorN4dnUp1QyyWMVt4is+fTWNqahoZk66yvClWY07HPv1jblSoVeRzixVOoN+sfHqEV8j2Ga6JqOHwSkxab10f4+mg7oKsvrQtDklstEQch0MiAKhLhkvXOGRR6RJaJgqmGhopMmMbohNthtx2Yw2KXcaGJ64rVPb3zE5Rcu0+nWuHNTCEfuPtij2ijj1cQx8+kU3VC4t33Ezo6o4fnnzlNtVHn7rff48Y//4vF7ZrlGv98XYwbOXThPOA9ZLES9xqM+jYoHmk6zLgRBl5ZavH/9Y/onQ4KiFs8/t4mte6iqThoLhxjFsEjSCNcto+RC2LG+scK4PyAuzlPQIFPwpwPy/U9EnZevgt1EAXRdiAayLEFXVdJIod8fF9dKcD2X2ViIItI4IlcN0iR9LHAZDEZUGhXSNKHZFOuo6yVsx+Pa1Uvs398GoN3tkkYh65ti/RvNBrqi/0YwU5LmWJbFbDxhe1sItDbWO+zt3CWOQ9pLwo1nNBhRqbtUy6K/+scntJtdFFT8RBQ6niyoNRzIFYJgCIBFSq4abGyuEPrCcWgySnj/w/tkmNy9LeLR6s0W116+/FjkdnhwxOBYo9uqkBXxXN/7/issJiN0NePupzcBCMOU77x2kd3tT9kwhEjLcw3One3xi5//Spz3o7+ALEXTHTRdCEm+rqDw65JmGf5kiNcWrkTN1WtM51NOjwZEvljL23duMh0PubcQa72xVufezoQL59fJFVFXJU9AdVF1m6WeqH2pVMIPIwxNYXD8mSiv3iiTKQpWIZo7PBjgeRpRIuplOg5RklGqrTAYFEIVxcA0Icl0jMIZRytp5MmEaDYgiYQAqGQv0PIxXiqEUHqcE0Qamq+hFvFfs2MNTXfRVQ0lLly08g66WSVVPYYj0a+hn9BqlVBtca+pKhwenlCpuRgI0cvF5y5Sb5S5/fFHBB+K52a7YVCqGKRZ/Dha6tHcc0Wcp2gKB8c+cXbAudpDcX17hXyuoygqWSHG0Q0dt1JmPF7w7vuiN1+7VsexbWbziHkRabd57iJrm6vYtpjPdDwjVVPI5ySBED3VexdQNEO4pH02pN/pM/GL4hmf/vyTbjmS3xdpRy+RSCQSiUQikUie5A/9bwT5bw6JRCKRSL59SOGrRCL5NqL+sQcgkUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpF8W/hGOOP8ZrzGk5EZn/0W/5fFZjz9vafjp77K7eaLnCm+yrFCURQsz8WtVjnZfQDA8uYFxoMh/nzO3TvCMaTk6pRcB00t0R8I14q7n95jeW2F8xfPAzAeziiVXVY2VtANsSzzyYgoignDCM8TzgmO65ImCbdu75BlwmWnP+iztbnF8oqIeKmUPd7/9YeUmxUahROLbppUyx4lx0ErpjQajYnTmN7KMlkmXCWcskcShQS+cGYZ9gdUSg6Wo+NlIhap2V5C1XJOTw65/pb4LRTbNuiudBmfDrl/6zYAn356n2q9C3lGHAkHkoPtbdyyQ5IIB4nWSg+VnMlozLAvHCRK5TKG66JqKkkoxhWEPvPRGMvx6K2J6Jyde/eplsoECAeJUr1GNaqRBBFWEYNVaVRAW+XBvR2mQ3H9WqVEtVGlP5jQbItrWZpOEgdMR8JFpN1tUqmVqHZaHJ+INds4E3Fmc41weZnjU3Hc3/+/P+WHP/4+qytLZEVdLdtFiRP+69/9k+gTzeD7P3gN29JQdbG2Ow/36LY73L91H7dYI8N2ydIETclRVHGcP1vgLxa0l1oYhpjTbDTBUFO0wuXDDyYo6YJMd5n3+2K9rV0Mq4qqi1gcAEXVSNOMk+MD7twSTi/LvRYr622Oj08BmEyHrK60cGzQDKHV+873XsVwDVa3NM5dFG4886nPL37+C7773ZfxysIpRTM0TNvmxVeeF19rOjk5eQ66Isaw8H36J0N6yx1KNRFBdXx4TLPT5Fe/+BeUQh/4wgsXCaIZw4Hom529IeulMU59RJSKKDFFz8mBJE+hcHrJ0NA0A6/SYD4RcyrZOX/9kx9ClqEW49jb3cXUMoJYPCPOnzuDH2aE8z5/+ZevAmAaJeZVB0NXiQtXqPEwQtNSHM/EKwvHFkO3cBWNH/27HwLgVMrkOcxnQ+JY9KZu6Cg5PCNp6Gu7kDx5buyHhBH0tl4Q6zaa88GNDzjcuctiKJxegnBIu2Yym4uxK0mFkq2yfXuX4Vg4YRmGjWk3OB2l/NWPrwFwuO/ycHtEb22F1VURN6WqKhk6eRxyMhAxdGgqtlsmS0VNkzTEdkuoqspq9Zx4LYyBGMvxHkc4WVpKmmXM82PshujzMJ6gZWM8XTjlKJM9StYULZuhKmL8pYaCog5R8pxHN1s6u42qmmRhjh6K6xtmhWxcwkxFBFmY9zC9Jm7ZIViI93Nd2DrzPMtrZ/i///bvxLz7D+kPfF664uHZ4jhD1QizCLNwNFPIcT1I44RkLhyzzOYSmWWTp7PHz9aUDFXVKXk2r78qnKIsPSNPFU6GCe98KOp/9moTwzJYFA5Nap7RaDfI1AdkVdHTleZq8c5P9UPx+fT7utjkef5ZMKSMp5JIJBKJRCKRSCQSyR+QR+41P1l+8Q/mZiNdcSQSiUQikUgkEsmfCt8IMQ58XkDD57Yen33Oo3iNZ13j89f8TZ58/YviO75srACaqtLbWOfBxzcACBMfr1bBsEwuvyjEBqQhWZyR9U+Y74vonL3dfbrLKyiFoKLeKnN0eIxu6HiuEDeUa2Vm8xG2W+bo6BCAc2fPEoc+zWadlY0zABwcHGBZJo2GiLL64L0PuPLyS0DEg7s7AHRXlplNJ7Q7XVRDbCxvXThDFIzIsoQ0FuPI0xzDsjl3SVzbMhWW2jUW8ymzmdjsVlSVIAiZzRbUGkJI0qi5aFqGV/ZYTMRx3d4q9XoN3w/ICxGEV22gqQpHRXwWCpDnHO7t0e4WMTm1CpqucXJwhOIJAdCnn9yh2WqwtFylXBWvqeoK0+GEuBD2DEdTDN1gNhgxHY+LtcqwTIelbpvpqIjAUeBge48bv36fjY01AOIwoNWuEkeiDrqmc3DQ5/zzF/nwuogSe/utjzg9GdCoe5y/IOKz1jfWII356P2PqBYRTjsPd7l0+TyOJ9Zje2ef7Yf7DAenvPTKd0SdMw3DzbHMnBevirijLPNJg4hUVUS2DqBZZeLJnGA2Z5aIOUV+TJxllIrrO14LP5li2jXSIvYnTwKSxRFWZR2eiJ7J8hzbcXjhxZfE+noummWBKoQlo9GUSqmMZdXQCmVBlIaYik0YJY9jeGbzCYP+GBQVz3PEupVcIEXXRP/mpISBT+gHVGqiT9Ik49bHN9FUhXZP1KvRahOHAS+99Mrj+puGSb8/xLHFuK69fI3+nSGzqc/SWXEt0y2TpTGaphOn4rx4PCbRTUynymQhhFxlLcFxUqI8pdMRvbO2/gqKqlGtibGGYUCz4xL7NnEYFf2l4JbKxGHIzBdiiUq9TpIlLK12SRPxWhzHWJaK7Yged1yHLIlI4hhNNcXa/gE0Dr/5XIsplXSyXIzh1q2P+OD6v/Li5TqXvnMWgNu3t7l2yaZkiTpYuljPX73b540XGgB4jsfRyYz3b43ZufkzAE5nGmlmcnpwnZ276+LNdYutjTM0GmV0Q4hELKdEnBrMZkJwVK2WUZWQxWSIUcQuZYqKosDw6ICkiLNa2dhCM0zcqkGaivH7oU6jcY4oE1+n2oz57JCGl6Jp4vpKOmM+PsHWQxRd1Fr9/9h7zydLrvtM8znp8+b1rm7Zru5qD9MNwpGUNLKUNDEzEbsfdiLmn5yNjY2NkPaDViMaiR6mDdp3eXe9TZ/74WQVW2CjAQKUCAHn+UCibqU55pcngXveel8RIpIZTsnGK8vXWZZMyZI+2USufSJsopW/y2SwQqUpxXdauUgwn1DQCvzN//a/A/D4/kf87J//iTuPTmiW5Vi9d6vCcJLw+g1Zq7q2oFqy0HQPgRzXLDjEcj2CaY+z14gQOqCTZgnJmUpP00hTwSzSmGXy3XD50jqlgsl8LmtOt3RCf0Y0PsGry/WwUG0jyMh4tWD0ywppvmoMpEKhUCi+ufxbbXIp22mFQqFQKP59+TqIV/7+4INzQc7Zz78LL/77wx+6LwqFQqFQKH6/qO8JFArFN5mvjRjnjFdtLL7ooPPpfz7j0xuLn77O2e8/y03n8/itjcsswy1X0CwpSAiGPbz6CqZuIEwpEBCOR5oK9MmYcjF3AzFOidMEy5BiAMu2uHHzGrqhkyVy0zoMQiqlEimcO+MkaUiYRFzeuoBuS8HG2nqDk+MRlZq89pWrF2kttxBZTK3Zyhua0O60iZOQXHcDZGimjZ47rgBMRjPiKKTZlued7O6iaRajwZiNa3KTP5jNMA0TQ0vx6jUA/NGUJAwolAoYumyHYTtMRkMyBHHujCNck2FvQpZIUYdlmkBGZ3kFpyTHsFavMJn4GLrBYpG70lxY5fDwEH+xxGQoXXuOj04QIqNRkIKNYtnjySdPSNOM+VSKUly3iNspY1gWpiv7WSx6HO7u8/a7r9PtTQAwXZf5LMGUTeDZk6ccHB6ztbXCm29IYdI8jJiMxoSBzkLqA7j+xnUe3XlEHM44PJGOIeubq2QI/vwvvw9AvztAtwusrK1gabLftU4dTTe4evM6ushFTqTohkmWzBGZ7JOuRZRKRXTNYuZLMc7R0Qmtdgu3IkUpmdkhS+bEYYThSteYcDFnNjjAKLQRZn4tNMI04rQ34MrVTdlvQ7CYLLBN+TwU3CL93ohKqYyZu4OMByMM3ZRiACE/ay41uXR5E6EJTo9lu+aLhDha0G7J2kmzEF1YHB0eUyiV5PWLNn/+g/9EmqaEuevR3vYeh7v7bD9/Tpo747z55jU6nQ6VXMQTRDMKniDwp6SBdDjSSnWEYZOmMZYjRS9+OKDgtUHApYtSMDU53WVn+5DNrYvoucOJZlhkQuMsqS9LY4I4YX9vxHg8ysceNNulaBsEgXzmC4WMB588o9lpo+eOQ4YhBTn5Y0s4nzEcjpnMZqy2ZPsRSX4/OdcvkmUZ5zoLIRCfoan4zecZll3ENl0+/MVPAKhZI/7HDyoU7YDZTLquWGJBxdWxcjcmRIzQNK5dtil68oaeG1F0TVr1OtWifD4GoxjX05nNBd3BAQDPDxf8w//7EY3WOt/94/cBsD0b0yxSKsm1CQ0yzaBYrTOfyufKdj0sW8cgJQyl4OT0+JRas4mpJ1ia7JRTq2JoBlM/d8GptvFjHd808CpSCOMYgoXVZTzrU60183mbEoY+ghQLucboPAf/FC2V9yubc+b+z4iz64isfjaCRGGIZnrkSyu33nqLtdV1dnZ2+fjXvwDg73+8y1/9UYMHT7t5TaRcv1iANENHTriIZmh2GU0zSJIknyLB7uGMIIgZjGU7rmxWKHkOOiGeI8d6Np2RJClruSgwBeajY6JgRHVTuh5ZubCJF99Zr3jHvcgXEeoIkbvuZNm5BFaJcxQKhUKhUCgUCoVC8fvmTJADfK4o59ObckqAo1AoFArFNxMlxFEoFN90tD90AxQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUim8KXztnnDPnmVe525x99jJ3m88674s64bzMbeezjjlDRu6sAHC6/YByaxU/ishNH4hCnzTTITPorHQA2Li4hqGDk8fwzGcLNM2k2+3TbEg3DUMH3TZJw5ilZRlZIjQNP4Jyq4yZRxlpwsRzY7pHMgKrXK6ShCGD/imTiXSa2Lp8EWGYOI7LZCydZQzDpFgsMJ/N8HOXkiCEKF0QZ/KY+XSGv5hRcD3GXelI0l5tc7y7RxTERL602ZnOfOaTGZnQsU3ZLtMxcRIPQwjI441KpQrxIiTKXTJ2nu7SWanilYvU20tyDA8PqDTauGvt82ib8XjOysYa1Vadx/ceA2CbBrrOeX9GE59M18mIaa5Id5ZKo8FkPsaxdVxHfuYHPo1WlWKtwXgm3TRqzTbhbMpptyf72GqzsrqC0A0KJen0U7F0rHct7t59jJnH5AwGM66/9hrd7iHVhpyj/Z1tPvrwlNtvXQfg4tYyo9GEcrmFbhXOx3XUH7G8vM5kKp1YohhsywbTYJq7aVgW/OoXd9m8dJHmknQhEmlKGPokYT6PuonulomTAcX2FdnHwR5xFJIFcwwrj0tLM5IoYGW1habLunv04DGz2ZRGTcY3rXSWqNYKBH7AqC/rKclMJqMZj58+Z+tKfv1gQWelhW7Ahc1VADIE/syieyJdRHq9HrZtU2/WXrB1SaWrh0jRdfmZ7RhsXdlkqdNmls9HEmdohkGU281YlkUSpVhWTBjIWvK7XUynQKXWBJHXnOlgGKaMRcvkZ8JwsR2blBQzdwlKkwy0lDSV1x/1JyRxhmFobG5eyJ+FkN6gz1K7TpDkUV9kFIseSRIRBmdt05hMZvzjP/4LAH/913/D8cEpugW+L+ukWu6QwUuChnJ+BycSgSBNU0bdfZLeTwGodTRqjo7jGCSxHNc4DEgTjziPU7JtgzhOKdgWuQkOQmRYNtQNHS13bfJKCQVbp+imNBqy/fWax/VLGg+fnvLhT/8OgELlBm++/x2qZVn3nm1iO2Vmoz00XToVhWGC0EGzPIqedEcKg4Q0zUgzjSSW/U7iCMuOKZZlHcYpWI5LnAakeQTZaJ6RUMAqFdEKMqItjiuE4QzNiMCU51rGJSKtB6lc+0TwFCs7worvEO5Lx56s+BpOoUOMwNHlYLiuQxT5XKtcY6kj+/Tg/n1++vGv2FqWY7O8YkpvoyRAIMcmCgfEwQKRROj5mpyhkaQ6cRbjumY+FjEzMSdBcGVLxn9dunoDx9HQ8vmfjOecbt/ByybU164BoAk9j6j6PWSdvQoh/rX7jkLxFfmy9vNfF87arf46R6FQKBQKhUKh+P3x4n8fvBhb9UWO/0Oi/rtAoVAoFAqFQqFQfBm+dmKcV5Gm6StjN34rQorfFte8Kq7j0+KdT8dZvUqgU6rJ+JOjRwHTYZdCpUU0l2IJPUkxhEahYBHM5ca4pSecHJ/QXpLinFK5BEIwHk14/OgJAO+9exvdMDALNlkuShkNRniOg27pHOzsAbC3d4yhmzgFK29LjTQOCf2YpaVl2QbL5nD3gKXVJTRdbhjPRmNsq8qkP+XnP5WxLN/9k3cJggTLkvdLybBMF99fyDwe4NGdEcNul1K5xGxxAsDGxXX8ypRC0WM2kjE5jmUTBxGhP8e25blpmrCzd4ShyQ1qr1im35tQr5UQqcx+ijKdYa9PpVZikItjLMNBoFFv1Lh4TQpCdh/dQRCjaXJjvlot4l1Ypd8bYFpyrhrtJrOxwfC0j+F653Plei7zyQw7F8fsPnlCsezRWpKCoP7RPtkswyo4LBbHgBQXtRrL/PGfNoljGYNVrpTYf77D4wdPeettKTZod9psXSliCDnXUSSYjGNKNZskPatDsCyDQslhEUjRwIOHO1y/cRnD1nAKco6SOMNxSnxy/xHfq78DQMErsbt7xJm0o1kFTTfRhAa6yOcthQyyOCTNk5HSeMFiNmc8nHLhkhR8La8vM5+MMXKPLM91EMCvf/2I/kiKcf6P//HfCcOE5ZUVikUZq5alKYvFgpPDHu2OrH3bdRgNJvhzOf/HJ32uXb+C67mcCQniOBcsZBppHlV2eNTjjddvUG/CsCvrqVgt8uj+Hicn8mev5HDnJw/5wV+8wf6BbNcinnPp6hZx4mPqsl1OqU2WCZIsItdFYDgFVlaXyHRdinBkB0gjnTSVc5QlMYbQ0cwMryifo4pdoVxxmE7GuCXZR8MwuP2dN3AKBpktxRgffvAR9UYR25E3vHP3Y27dfg3bMfAnsq1uqcQr9RSv0EC8dM0SGbZj8saWrF+hpZiOhhAZhYKsgStbFRACPX9uF0HCaBwxXyTnfZwOUgwHymUdsrMoLgstzYAEK/+sURGkic/Gss4VS/bzn371c376/3V5+09+AIButomDObpZwjqL1QvmxGFAkiSYpvzMtA163S6GbmNYch2IogDHq5Bmsq1JFLFYJJAJTk+k+K7R7GCaLnEmCAP5/M2mAUJz8Zwi/YEUgZXLRXRvDcPIo6BGKwjrGCe6g+bLtdU/2ka0/wijchO7IJ+F6fCEYsnDcoq4tnyWXcfh//o/nxHNnwFw6/V1NM0kSxbk5YsWBcxnKa5jIHQ/n86EpQoYduFMJ0aawmgQcOd+H6shI//iMMBPDQxDitA8V2fMCV61QaWzlc/1bxfOy951L+OrvP8UCoVCoVAoFAqFQvHN4W9Wbn9thC1nfN3ao1AoFAqF4t8XJXZVKBTfBr42YpzP2/x72e8/LZZ52TlfZMPys67/6c9e5a5j5pvKaQbj4x2ccgNNzzeW0whN16g164QLKbwI/QW11jLHJ1JsEoRHNFpNyiWPg33pBKFbJoZh3gPrNgAAIABJREFUkSFwPFdePzHoHh2jixjbkZ+VyxWiKCbKnTp+9ZOf0el0WFpdYzqVThCLg2MarTqnpyMKnnRK+eij+9x44wq1ksNf/OUfA2DYLnu7BxhCnue4JdI0QWQak4H8LE2h2qzRaDUJczFDsFjQ7w/QdI3DQymgsBybYLGgudQi1/9gWSbXb17jcGcfgEq9TBQ6TPwU/6QPgGtaoAuePXzMeCjv2V5eIQH63RFJJDfi60vLzMZTojB3KHE95uMRjq0zm0hByPb0MZVSmSSJGfblWEexg2mYBNMFmik37FudDtPxECefR810iaOI2XRBKxebWKZJHC+wCx4nJ/L60WKB0G2qtRqmLQUOSRxTKnnoZwqXLGNpucZsOqdYkYIg2zHo9wacnHR58IkUG7z+1mtoZJjCYeLnm/pCZ2m5zdHRMfOZdMsxTA3bLeOWpNNPkk3QtBBN0wmnso9pOKXQuEgYzxG5KCiMIiq1Kq5X43hfCrnK9SJJsKBclK4iQRTy0Qd3CBYL3n7nXTkWhsGHP/mQSr3Fwf7Hct4qJWr1BtIrRj4HmqaxtNTg7p0jABrNNu3VDpZlE0ey7XEEfhyhWwa9vE7WOi0GvT7j8YTlpYq8FoL5dHg+j0cH+6ysVim4LsVKE4Cx72LaDhraueNMGAfoWsJpb0KtLAUV81lEHMcUy/a5AU2cRFKslLvG1Go1jo+7RFFIIxeKabqJoWsEYcrO/UcAbFy6QLVSIArh0QMp7DAMg97plPXVjbwODbyKhy404sDN676AyN2hXiQTUmYhXlxbPrVmfXqdy7KMcDGVDkCarLmHT0+5fqVKydM43pG101lxKJYsdE1ebz6a8ej5lLduVhB5H8u1jDRNyVKNTMT59TUyDYQwzl1pFmHG6SCmVDRoNqSo5uJFnatrC54++Hs5R7s32NjcYjYLuJIL5izHJZmGmJZgMpKCk4UfYZoWk1GP2VQKFkvlGuPhCCsXDh0dntAf9JlOB4hErgFrF9Y5OOxx6WITy5Bzu703odKokPgBUSrbunX5Mq3lzrn71nSR4HqbBEaFLP0QAEc8J+z+E0kwJa29AUh3JNs2GU99TFO2o9np8N3v/RE792Qb4lgg7BhBRq6hYzges7LRIInmiFTOU5olDIcp5arJ3JftOO762DqMFw7vXpKuN+g6VsHBK8sx1bIxJWtOffX9c5FQRpYb1rz8XfZ5Qhshf/nS330WX/S9qVAoFArF74L6kk2hUCgUCoVCoVAoFN9Uvo7CV4VCoVD84flaiHFe5Whzxss2Bz9PwPN5UVRflM/a7Hyx3SJXm3Su3GDv/ge0o5CD3QMA6q0mmiFdOOJEbsweHp5Qqlaot6WgYtzvo2kZjU4Lr5gLb+KAiT/DKZQQuTOC78/Y3dul0+7QaMkN6SgKGA7H5xvglUqJ2XTK3u4eBU+KPy5fuwJEZEKwmI8BuHX7qowP0jKZiQWYtkulVmYyWpzfT9c0bNtiOpTOE8ViAdu2mY5HNJdl++eTOetr6+zvbFOty03kOI6JgwDSmDiPzomSjFKtQhCE+SAK5rOIoOdjmfKYTDOlY0maEse5MEkDzysy6A4Qef5XrdUgRSdYyGsd7J5iW4K1S2sIIUU2B/sH1Kt14lTQO5YuJWlUZXVlmVE0wRR63ieL1qV1DvbzqK9Khcl4yt07T7iVO4EUCiWSeEytHlIuybF/etjFKXhcvrrFOBf7BEHC8emI976fbzhkCf1un6ePj9i6Ip2Q6rUqruuyt3fE7Xfkcf50QBA10YyEUe4uFEYJH35wnxs3r1Bv18/rzh1N0IQUd/S6cxwjwMxiELmQRFjE/gisAsZCjuFHv/yEtQtreEUXx8ljhBYaH35wn/fff12Osy5YW1uh0ayztrkOQJJqdAcj/Fjw5nekiKBer2EYJuPJGDQ5hggTw8nYuCgdPQxTwzYFYRiS5HFTtu2SmSlRHPAvP/ohAA8fPOXCxcu0lio061IYcbR/xPrmGt3eUNbq6xv43QPmfkKlruVj6GJaKaCRpGd1ojMbH1MqtdFyaxyvYBDHiZTsZLKtx4cDTk5OzwVt4/GUi1trrNSW2Xm+I+e7WOZof5dipcHGqnSYivyQDx49o15vnPdpdbVDkkSkuQXR0vIS6AbRYkG5KZ2W5Bh9sXXniwgTn3z0C/affcJGW9b5rdsrmJpGRsqFK1LQZJmCNJmfR0ZZrsm16w5P9oZUq3JsLq6WOBmGnHRnXM9ddiaTlGrZQIiM/f1ccaIbeLbGxqrHcCLHuuXpHHe73LooxX3/94/+keOdu6xuvM6jXOQUBhGFgk2j1SQIZb8cx2Ixn2LqFotcPGZqCffu3edg7xCAUlnjYP8EU4t5/Yqcs91795j7Gnu+S2dZRrYdP+uy/QA2lx0OTmVbt+/9E5PAYmPzYt7vZa7euEK1UqRQ+VMA0nAdffpTGP8Lw8FzAOzmn+F4NTzbQM/rZDqZUa3VeJDIPh4cj7my6SDI0HIXqmLZIIljnm7P2FiT662um7TaMb3hiP09KUKqt4rs7I5JtWUaLSko84olLNPE0OQxdnKEMD2aG++ez9ur6uDzBKlflM8TnioUXwX1RYRC8R8T9dwqFAqFQqFQKBQKhUKh+LdA/bGOQqH4NqH9oRugUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVB8U/haOOO8yJeJq/r0718VsfFZTgKvOu+z7vni5yKPEClV2miGw2LapeBZ+e9SIJNOHblzSb3V4vhgH9NyACjXatiWYNLr4RakQ0WapLieRxBEhHkElchi1i+s0zvu47jy+j/54c/prDQR2QUALAuWr1xgvogQpjwmEwmIDK9YRMTSSUYzHAzDot8bEYQDADY2XWbTOb2RdCQZT8d02k0Mw6G51Mp7m5KkKZPJjELu4nOwe4yWZTgFgygK8rZmrG1uIDTBkzyKyTBtzCbEoXSxsC2bcrlMHM4I8/Nq7TZZEnK8f8D6Zh79IwI8t4RRr5CkcqwX04nMzMpdUUwTCuU649EIf55HV9kOz5/v0O60KVeqeRssTo56PH38jJX1FQCqlVUODvo8f7oLwFKnRa1W5fZbN3AdOWeNZpV+d4TtFEgyqWOLIh/hC8JIp9WRrje7z7e5evUi4zzWK/QXxJnGydEu5aI8r1SqsXuwz+VrlyGUxwVpTJwK7n78CVksXVZMS6N32mU+63B6dAyAVy6ztNzAy+ukd3oEcYxXamHY8jN35Sbh5JCUlCyRc7u6UWdnZ5+tCw3STPbJ8zS+9/23sWz58/bzHR7df8T733sbL3f/SVKNP/urPyMjpVSW9TrqDfAqHpPRhEFPuqCsrYJpmzRyBx8y0HUdTYuJ47NnK8a0DMLZCDM5zcfrISIJqZTfZTqTdbEIZhhugSvXZE2fPP2AzaUyGCa6JufWX0QE9gLX9c5jeBajIwqVDosFHOVOSKcHu1y41MbII8lkvx1q1SqfPJLuVd3TAxqtGpquc3goz2svCUrlOv58QZI76MymPr3eCMsqsLzcPq+x6TThKD+v1mqSxSmRH1Bbyp1xsuy3UoayLIPf/vgzEPk6AmEa0dt/Sr1WxkTe09FcYmEwX8TEiThvlyF0zFTObXdqsrt3zI3rb+EUcvctC9JFQD/sEhly3j7Ze8r1iw6VMux1Ze20qimFgs50FjEdy+ftwprHYBySIJ/bpjfn7bd87j36MX/3z/Kz8VywstThxo2beHXp2FNv1Ol1e5we7rK7LZ1xioUx88mEyUzGVi38iGuXXC6ttbi8LusrSxIcz2QxTxiPRgDc/M9V0tQg8EO2D2S7NEOjXMh4fvSJ7PfxA/7h8Y9YXrvEO38inXEqtSuksUAL/gEneQ5AMPiQYXCTUrnFInfbqrRaVBpNVvNYqR//8u/YXF3FMkA35Hy4loA0YaXjkSS/eSfomkO9rFO9Lp+ZyTTj4DSi2VnCzWMHDd1CNzRMSzrx9B49pbb+HaqdS+fxb2cV8q/eNy9xa/v0++vspy/icXP2Xvy8yCuF4tvI3x98oP5aR6H4PaCeI4VCoVAoFAqFQqFQKBTq+wGFQvFt42shxnmZQObFjcWvsjH4sut+3v1+l2v9ZgNTnu+4DsVqk2m/S3tLRu7EUcrJ8QmubTPO44fGwxntVgvflz9bpsVsNOLh/XtcuXEdgEKhQJbO2d8/RBhSVFMte+zsHDGdTCnXpLik1W7z/e+9T70to1uSNEUXMD2dkGo+AKWKSxKnkMQsQrm53d8/xCuW6femNFry3Ol4zsFBjyTfwnVdl3ARMgoWVMtFAKIoorXUoVgs0+9KgUilXqHgGKBpzKdyI34+nRP5M9pLSxQ8KRIZDWeYlk0Uys1uAQihUSzZHB/L+KzJaEgW+mSpwMjjs6ZTH0+YPLx7//zcaq1OFMWsXlg9n5PJcIi/mFGrFfLrJ1iOg1NwMQxZ7gXHZTqeEvgLXEf2UzMFlXqZC8kmAN3TY7yiycVrl/HnUiAyGE/p97tU6iWePZNxOpZbYjoYs35pA9uVm+6eV0ITcPfOQwC2Ll3gn3/4zzRrJXbz6LJivcnrb97ANAy6h3K8Kq0OH/3yI7QEhG7mNQbVSp0PP7jDn/35nwCwVCyRphFhINu11FklCU4Igh62LTf53WKdOBgjNBuRxymtrCyzvHqRxWzBoweP5BzNdrh+/RJJIoUF7XYLSzfQ9YwwkOKGhw+fgUjpnQ753h+9B8C9Ow958+3XWF3v8OD+EwA+/OBj3nzrNl4uQptNZhweHrG+uXoeGaXrxnmc0+tvXpXj5WrEwYxP7v+M0eDwfAxdY4daTY7DtPcAltfRDIujQ1kn5UaRNI2J4sW5GCdNdRAmGjMqtbPIoA6aJojCOQjZDsuC0XjAm7eu5nVyg2rN4eGjnfP6KhULTKYhnU77vA7H0xlrq+usbbSxbVlPi/mch4+eMhjNZL9uv4bIQjTXRDfPltiMr6ZvyMjOZBVxhO64hPMygSwdLGdBTIRXKrEI5D1//uExS+0aqx1ZE0vLy9TbK5Trl4k0OUcHxwPqa0X+4qqH48jx+vOtBVmyQEuG/HFVimWSxQGTyQgjW9CxZD97/ZB2zcLIhSTvvaVRrQref9MgjuQxz3ZnjCdDfvi/nnB5XUY9zXyDZi3GszIathzrLE1YXrV464Z8bvvdOe/fLiAIqHhyzrIsI8tCLC/ByGQfHSsmikL8LOKtm7Kfe/shFS/j0nvV85F78GRKf/gJn/xYRu2J4lVuvPkW9aU/wx7+SH42/ZDhJKO4+d8o5ZMVZSCEgW7LsXFdHbIMITSyTD5XaaKTZD6WqQN5ZBsCRAS6OJ8jP05ZxBW2VlY5PZHjWq/rTKYh/UMpAlz0Rrz73rvn6/1Zv7/o++mLHPdZ5774/wqFQqFQKBQKhUKh+OZxtvml4ih/N9SmoUKhUCgUCoVCofiyfC3EOJ/Fl90Y/LRbwIs/f5UNy7Prffo+/6qdGhQqNU63H6AdHgFQrjap12pkWUohd0Rot1tE/hChyw3d7afPmQzGNNotfvLjXwDQWW5y+/abVGsNrHxTP01CmvUiN65vsr0thQu244AATZdtC8KIVNPY2d5j6+oWAIZuEoUhaazx9Mk2AJcubWDZFoPhhMPjEwBMt8DCX/DmrdcA+OjXd9je26dWr+EWmwBE45R7d+9RKVYIQ7npXilXyJIEkYGuyQ3pSqVMlsQc7p9QbsiN8ePDY+K4gsgT0oRuUCyViMKAzJBilkG3R71WI0gDTNPM21/Gn83pHp9QqcpN/fWtdSajEUkuNjFNG13XsYsVtPy8KO6yunmVwJ9TKssNddPQCAOfq9cuUipKt44kSpkMh1iWHOdqySEOffxFiGnIto66BzhOke3tU+zcgSZixuHRCRuX1onPREKNOocHp5C3azqdcus7b7K+uUocyp3549MepgaHu3vM57J+tm5c47Q74XD7kF9//EvZx7UVVlfXefzTJ0SpPC6OYwxTQ8/HazYZMRsOccWQ2UiKoxaTPvG8i2G46JUGAJZhEccRlm3TyV2Odnf2iKKY3BiH08N9iuUSfhBjzqVQrFarohsGFy9eQstXjFvvvE6lUmXUH1D25LiurLYwTI0olAIw27ZYXl0hSRKCXJFQKHhkmkAYReorsjZ1w2I66FOv90GTNVytJhD1zgVBlaJNQoPAT3n67DkA7yxtoAsdQzNBSNebhekznUdYukngS5eVQrFAtJigaxlCSJHDZDKVLjf3pCip3W5Qq62zutLC1KRYzStYjAcjnj3tU3ClS5BhpkShj7/wiTN5rUrVpV3T6CxflMdYJsFsRLFWJ8vFP+LzHL1eWJLESw/NOEsVzKII0ywxj4fc3ZXj+tpli1rDhiTg4UPplpNGARc7Dq4p6zAcz0goMLctJmN5w2E/o1SskWk6UX7fMDLQhYtulfAqNwAIFj1sQvR0QjCUYyaMbRxzBrnQqma4QIxjZmytykK5daVNnAp+/Umf2zflZ5NxRCoM4mCBY2X5PTVe37JJcpergmniuimeDUka50OgEacZpgZFOR082/VxbYFt5+IXYG3FIEsTQK5NGiYX13UubRRIEink2jn8gJ2HEdXv/QCjuA+Au/gFInvO6OgRxYacyyCKKRQd6nUpVjzUHDQdwjAhzF1wiq7O0+0pS+0CnivHNU5TTvshaSbo9+S60B8nPD9xeLexxMr6MgBJKCiXCxw9/jkAKxdfx6uvIcVbLxTFp95bZ++xl73rzt1tXlZGn8NXeTcqFAqFQqFQKBQKhUKhUCgUCoVC8VkogatCofg28rUV4/wuQpyzY882El+M2vgsB5zPiqt6Fa+K8Mhe2Pqs1BscPrV4eu8OADfffg9DM0jCOYYtBRRpGmLZHvN57kiy1KJ7cojt1nn9DRmJ4rgWUbzANHSCXMQRhhFeqYxlu5i5e4qmCRzXY7GQm9Y//OEvuXRxleWV9rmQJE0T4jhmb+eArS0Z/VRvNUiTmJWVDlEkN7JJY7a2NhgPZXSSP13QqtdoLbc42ZOuLk65yFK7RpZoJHkEThgLoihgNpmT5qKRweCUVnuJtY0LBLlA49q1q4wHQ+a+/Hl5fZ0ojgmjOSL9jbgpiBOWO0tYeZwOhDx7+IQ4gdaydMKJggCRppweyXZ11tcpN+uMB0NGPbkRb5oFgvmC54+e0G5K4U0UZWhaRrPdYunCOgBxFDHonTCdy3Ee9LtsXthgdPSUOG87i4BZ4vP48SFXXpeOKnomeOOd12ktt5hOpXhFaDG1Ro3Ni/Las/kcr1pCNwW2K4VEW6UyfjAnSTSSWI79o/sPScMFYTTHzsVXrXqZpXaV9ZUOWl5/i/kC3RQUStKpKCXmtLtgve0hIumWE85PwLCIRUowkwIEpzQDDJIsY+dAjlmcCXq9IZae5POYcHrapXfS5633v5/fL2Q87fPmrSZ6Lpap1CzIUgb9HuSRXbpw0bKQOJFjaFllCkWXJI7QdXlMEM7JhEWvN6HZkBFOs2nC6Y5PpVSmnjsajQddGrUypTOhx6qFYdkYVgmvLuffsC0M25OOM7lLSZLCZNhneaVJuSIVG8PTLp/cfcj1m1elexNQKLhsbCyzty/j2EbDCYf7R6xvrFPMBXO902OEbnDp8iZ7u1JYp2Mwno6YPvbp9/sAfPf7b1PwapSbUqymGQa64eAUKi+obL6ksDD/X5FCpsmfdKdAuaIxOI05HeaOQHFG5AfohuBCR45Zu2Zg6z5aJutr3O1SKptog11KmhRQldp1DDSy9CK6kQuOMh1D1xiPexRzNyndLCOEwDDaCFuOf6E9JRw+JAul+CeaHZH6Q5I0ZXNdXj/RdLa3h/ynt6oUXFljKw2HIIox9CL5I0+Uxlg6TOZnNe6zmAtcy0Tk4r4kTvjo3oirl0qUPbnu1Cpyjb9zd8C7b0nBjGOGcj2Oc5caQ8c2BUKLSPJ4to1lePL8Yx78usCFjTXZx+wOgpAkTBmP5HOkCUEUxZCeOSPBfJ4QhxF5khy2GWKYGqe9GGdZXj+LYTSOqVUdVlbkc3r3UZdW6wqmVcDP3cOEYRGP99Fiud62L/8XdMPInZ5+O3bqZVX0+xDQ/Jaw5ytfUaH41/zNym3117cKxbcY9WWbQqFQKBQKhUKhUCi+DajvwD4b9d2AQqH4tqL9oRugUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVB8U/jaOuO8jM9zsnlZdMerjvu8e3z6mC8ScSUAw3KotzusbeUxPKaFnmUEyYIU6fyhGUWiKGE4klE6qyslvvPuG+xsHzMejwC4fftNoijiww/vsrwi3RuSJOHg4TNev3WTC1ekw83GZocsS85dJq7fuMbSUpU0TsiyNG9XQsGzqVbKaHpu6YCG0HRq9QrpWb80HT2Fh588A+DqjSvoWkwSR+xMpUNMsVLEtQ3G4+DceWcxnVCsWvgLDSN3Stnc2EC3PbxygeGzHgD941Mm0wmnXekq4hbLrG+skqUxSe7O01ld5vSoS/dwl2JNul14xSperUaxoeGW5RgGUcJ8EeIUy+djMzk+IYlCllalK83R4SFPP3nEvTt3+dv/+pcA+GGAYRtkun4eHxSFMYZm4bqy7UZzlTAzmE1SRl3peNNZX2Z9bZWV9VW6A9nWD375IcIycEyLSk0674wmU3RdZ29fus/s7eyxdXkLTaSEkXRwKZaKFKt16q02jx78TI5Nd4LtCpqdZSpD6Wbz6MkOtWabK9cvMxzLz3w/oFB0WMqjuCqVNm5pH6yYKJjl8yjIRCYzjzLpSEKWoRkmZiZYasnoqmCecnp8TLstnUxWV1sM+iN+9cuHXL8l3TvW1tsMRi4nx4dc2LwAQJrGCGIc2+bwQEacrWysgmGQm+CQpiHEMVmSkOU1kUQZmu6z1KqRprKeakvLXDYLDHsjassyPivTSzgFmM6lQ0mhVMWwitiFAtpCPjOao2N7FnEcIvI6L3o2XrGEbhrntV+ulLh2/TKagDQvfcsyabXrkLtL7e0d4RQMwnBBEMrx+vGPfs36hU0KRQc/d3L6x//1K9566xZpmhL5cnwCP8A0HQan0iHG1GOiKKC+vIH4wo44+XGZXL+ihZzHOEshi9m7/zOcgqz76tIGwayPaReJNRn/djockxoaQhg067JPSawhshSRx24Viilh4ONaAhLZnyQ4gWCPcPSQ2JHRSZNkmXnisrlWQ8sdh9I0QzdN/HmEZcl4rjh1oPLmeYSeFZyyOP6QePoYhIxmMogoFwS6HSPysU6ziJ09n0Zdp1zMX0EpTP0MXcgJ2tqsMRrNiRINU8+dz7SEG1dcTJGS5m4/1SIIzeT9d1sYepCPpI7QjHMnqTQTJFmGKeDhI7m2rq2WubFl86OP79BauQRAxblINruLwx6iINdb263SO+lzeiLXrzgWRHFCteoi8ljALE0ol10ePx7TbsmxMc2UrY0SoPPBPfnc/uKTGX/yF5t4pTKuJ91y+t1d0tEd2ps3ZRtaa3yWL80Xea/BV3TKOYte/PJXUCgUCsU3APVXfAqFQqFQfLNRf7WvUCgUCoVCoVAoFP8+fC3EOL9rXNSrzv08wczZ8Z+OsHqZiOelcVSf0dYX76hpgsjvo1XkhqsOnPZ7aMB8notQShUQsLYpxQfz8TFepUZnOcEpyLiY/b0jas0ql69dplDIN3kNhzQT/MM//BP/9b/9rbyW65Bl8ncApuVCFmO5NsNeN294hFsss7+7R6cj44HqLR2Eji4gTGS/xsMxnmVhmVI8sb9/wFLbw7UF5ZoUvRQrVTQtRjcTwliet5jNcUsOWZIh8qrSLIv5fMr2kxnTsRQXWLZDZ2mJW2+9AcD29h77O9sIMupLHdmGfhfL0Cl12pBH89hWzHQ658r1yziObJttF7E0HfQzIVGKGZr4Yczzx0/k/Uyd1nKba2nCoCc34l3PotGqkabQH8h4mILnEEYRo7ydRcfGtT0qtToij0rqrK1SKFWIk4zDuzKCzDAFq50V9p89Jw7asv2zkGa9Se90AEC55LGYTBj0+6xekAIq07TY2z6gWq1xciKjkjQEaWqyutrh7kcfy3u2mywmcx4/ec7G1iYAGxsl7n/8GN+XY7N2YZnX33mH/v4joqkUKaTxBMMsYBguSSoFFePJGLfiIFLZF4D+8YBBr89iJgUuUTCjWCqzstZAs2Q0z97uEXEU47o2gT/P268jyHCLLmGYR/poKWSgabIORZaQxiFJlJAKeS0hMjSRoVk6i0mYz5tNZ6mD6xQJYikcMZwybrPJ/uM9AIaHPo2WRaFUxq1IIZGmmyRJiiYMphM5ho5rUqiUmI/HmLlYybQdHNdj98kutVyE5Lomk2lINY+yqlZL3L/3iFFphqbLZ61YLGEYBuVikUlxltecgU5MEPj8xV/+MQCe5+D7MaEhzxsPxxRrDYRI+SKBP1mWkSFFKFomiIM5j37+/8h5DGZ0T3c43n5MsSjb2mzXKbcvUK43uf26rAl98gl7hyFRMMa7IY/7+H6fN26UsFLZhsk4o9f3KV120HKBjmGmpOmMeDJDLORYT/owiwT3jzcotS4CUCkVKbc2uf/kiK1LUpBliowsjdC1PMqqsIGzXCb1LxGOH8i+zXZpVHwyzSBLZB8H0wTbEejCOF8/9g4CajWLgn02XgloGb/69QnvvCXnzNANLCPj2c4Uw5Zzu7XhgRA4uv4bIUmWATqj2dnPCb/4qM+VSxXaDTlHCz+iWNNYbwd8+MFdAL7zWomaVSGcP8Y/zePrqhqVSpHLl+U4PLxTYDQLMI2Uci4KzHQoFgzeeKOBlq8VGhmjRUQYCX55V64D7bWbvPbaa/S7fQRy/EV8gldxWbv6vhxD0yF7Sc286g35Vd6fv8UrohgVCoVCoVAoFAqFQqH4NqHiNBQKhUKh+Oqo96lCofi287UQ4/y+eZVDwGdtMv5KijF7AAAgAElEQVQ+Nx91XUfTdeJUCiO0LMUyXSzLouC5AKQiQxOCLD/Gbq6RxBm2vaBakxvGx7tPiQLBZBwQB1II01kp0WiWeOON1zjcl0Kb/f1dLl7cxM9dRIIg4uq1CySJ4PBQunVc2FgijjIKBQ/jzM1mNsG0bbBsDEOKJSqVEovxlIIn29BslcmyjH6vT7EkN/ltS8MPBZN5eO6KMRgeUSg7xHGCyO1HKrUqi/kOw16IZsjNc9t2CaKYw4MjAMrlCo5rkaQxaZy7+Agbw0kplDzS3N3EsjOuXb3Kwd4+S506AMPelFqzjmHKeZ7PY9IUti5v0s+dd/wgoliuYrs2s6kUbFTbTQqux8HOEa4n+xT4C5IUkkg6hmjlIkIYjHtDLFPOWe+oTxKBn6Rcvio35zeWy/S6Y4azMdqhFL2EScJ0OMT35XwsLbfpbKxRrtdoLknBzs7TbXqnQ2qVEhsb0pHk+HgfTbOZz3wWM3nuzNS5duMqW+ICtuvmfYqpeC7zkXTs6R4dU7CWyfQicSzn0TIqch60DB352bMH26xsFWi0amT5WNuOzcHhHlsXpUBrZXWZDI3vfvcdhCVr7uRwl97pMeWyS3upKWtcMxiOxpiOQ2Mpd7NJQ0g5FxNolo0wTKbjHlksRTylikuaRlLwkhv2JGmEUS6RTaY8eSgdmd5+7zaaYbK5Ke+38COazRaIjBRZS4bICMOQzARDk/f0RyeITGf3+Q4rG1I0Ylny+CCM2H4m3YqqdQ/ddJgv5BiWSh6WaXN8OmDr0iYAN25co1C0MEyd1pKsub/+m7+iWraYTmeUK17e/pB+v08jHxvHcai3l76UQ0noj+nufILfk2Ks44MDEq1OUriC1ZR1sgi3Kfk9kthAy0VOEz/BMgJaLYM4kgO73imgpxkPnkkh0caKRbVSwDQ1kvwZHQ4zNCPFslJsQ66Bq82UTNPYP/qE5OipHNdpidP9DvfuztjoSAco3XXJEsgiWauZJkiEiV68jFuQz8fB848oVrtoaY9kLp+/7d0eaDFLdReR37NWsam4Ggh5LZHplAoG16546LnVkhAaEFKvuecBi0mcYRg6SSbQzl9nGUIY/PKOXGM2Oh43rpYoeya6kLXwwcc9mu8UWe8IetNdAIzCD1gserhiwmR+DIDXuMhkMiU8ExKNA067MQZQroi8rRkQkaU2s7kUmJl6xr/8vM9eL8OovA7ASrFDwXMYDLv0DmXbXL3P5vf+lkJDzm2Wibz9n+PA9jvU1qvc3j59jBLhKBQKheL3jfrSTaFQKBQKhUKhUCgUim8n6jsBhUKh+AaIcV50tPm0u82Xie34fUR9ZEKQCZ0kjyRK9BjXMTAsA5GLBtIoJs0ywvAsLmbOuNdlPJlTqUlxw9rmBRlnIobouQCBLKXouQR+yM6u3NAtlUrcuXOXSlkKS773/e+im4Lu4TFhKMU+umFysLdLnMRU8zilOEqxbUG0WDDLI6gQAccHA6o16eqjaTalconJcIhj2QBMhn0M0yJYTLE06Q5x6coW7eUlDnaOSBaT87FstBuMBgckWb5J7RqIzGI+PnMy8QjDlCRLqXjSUeXJJ09Y6rSZTHyWchefQf8Er6izeWkZkKIUt6jheub5OKdRRhSnnJz0cNxcTFQtIjAYD2ZM8+gnyy5gWy66AVEohQonBz2cgkOjdRWA470jdnrbJGlCtS6FGGliUoxCTNMhMeQ9B3Mfq+hR0gTlkhyLcqPOdDRjf08KP/b3D7l0eYs5kOQClPXNVSqNOntPtmk05fUzYk4Oenz8wZ1zsUSa+VQrNnFc4vHjbQAa7RbD7ilrjhyvo51jbNtkebXJYCFrIovnaJqDZRTOnYM2Nos4RYtMgGHL8XE9mx/85z9Fy+s+DOdEvo+hm5wey/ipux/f4cbrN7h1+yZm7pbTPTnh3kcPuHzzOltXZMwPWoJuuEB8VqqQpZSrRZK84zop/qQLbkzBlTUdJXOyLKBWq/H2e+8AYJg6o9GEgivr0C6kZJqOEAKRx275Qch0NKNchNSXwrTh2Met6ly4fJXZXMYWzWcDCrZFe7XDxx/eA8ArGQzHIdO5dEsi1blx8xoXDB1NyOsPkoh/+ckvuXHjJpop+x0FPnqjRL1ugybbr+kaQjPo5TFV6xttbEc+Ky/jX4kjyMjSlOHRcznWP/mfHD77GLckxRmV9b/FtFw6jsMidz3SY4P+/g8ZZz3iTAqmnu7OubCc0fDgTOXUblgsFjFbl2SUlWMJTFMjWPgkZ9FlwsQwM2xHQ+SirePenLJncnHNJcvkKyLTMpLxPrcvG4jRPwMQLNoUyhskiXweCRckQsfQTcI8M28cVWksX0XXQtJIrguvlXo82xtjLRvoyHXBbfmk4RwS+Txm6OhpTMMLftMGXcO0atQ8/dwMiywDQyNJDCa5gK1gpkRRyPu3O3ktgWWkaJrBmVPRO283iKOQ/ijkzSuyxmbxmFhvkMYjTHKBjvYdLEsnycVrV6+/xs7xL1nfKBOGso+6ZpEmMF0kPHgi2+85RZxymyI1rr/2PQCWllep1KpoaR9bl89I5+J71FeunjvSQJq/ezLIo93Oa+WFd9IXiUx82Xmfd5wS4yj+LfmPaoWvvjRQfJv4j/iMKhQKhUKh+HL8R/33c4VCoVAovu6od6xCoVAoXkT7/EMUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFArFF+Fr54zzu/zF/8vO/TK/e5Gze5+144tEfLz0fqlAy50m0jhCkJIlAkzpSKJpgsloSiwNEjBIgIRWs4JblvE3Ao0oipn5Pnm6FZkwePjwOQcnh7z7jnQRieOYar3E+vqaPIaU6XiBV/B489ZNAKJwTve0T8ErMc/jrJ482ebWrRvs7R5zcroPwBtvvEZ7pU0USReOMJ4SBzPq7Rog2x6EglanA5rN7oGMc4mTIUXXYTaZ0F6SDj2nRyc02i02L19gMpauGIu5TzBfcPXGFQAmwwFCh4JXYtKX0VLVepXBdMLqxjqHh9JdhlTGby2v1NEN6VIxmcbousdsLF19xuMZtm0ynUxwHRkHJVKTNIvRhUm9IR2HRJyiZRmd5TaHe4cAlKtVNM1g4f/GIWhjc43uoEdnWTpsRHGEaVuMh2Pu3L0PwHJ7CdctcnHrCv5UuqwMBmN0w8QpynGoF8skQuPZsz1GE+kEMhx0KZar9AZjjHxsao02Xb3PcqvFeCBdaVy3yP17TzAtlxtvXAPg2bNt4kQwHMr76brBzs4eSyttMiHnSNd8ECFutcVsJN1yCsUKhaJLLCwMTerwvGKR+TQhziO1DMMgRJCkIRcvrQBQKv0pT5/vEsUBhiVdRBpLDf7oT98DTcOyrHzMAKGd13QSh2iaDkJgGPlSkyUUykuEiyFJusjPy9CEAVqGIPvNca5Az9u5v9ejs27h2A7/P3vv+WTZcebpPcfb6+8tb9sD3XAEAZI7s8OZ4axGK4Wklf5HfZQiFKtQaLRaKTTSGGIIEiRco9G2TJe53h+f+pCnCs1mA2h6DJjPh+6uW3ny5Ml8M7P65K9+L+KLOaQbJifHh2xtybRI1Y0qhm4iRIFe3nM51UnTlMFowfGxdK+JFnP6/TFXb1yT47i9hmVoiCJHaGVqNNum2WqDltJeaQBw9HjO48dPmQxHXLku79laaTGbz1jvyL6xXRdN13l+xblYU75YYwpyTWM5POL9/+t/lDGWGKzu/w1mKB2hxuMxxnJIMTao12UarFRvE6cuq+2EhSHj/LrxXe59+i9EUYLXl/e7sV8hTgSBbBZZViBEznCUE8WydTt7FogCTZjopWvMbBHjuhaa4VyOR0FOq67RIUNkBwB0Tz4ja2xT6dwCIHG3yEQOWYSOdG26vr+DEBl5FhPHcjzC9i1u1GbkhWA8kg5ZqxstDHLShWy85VfJ0wVkM0qTHQphYto1ijwmL2SQZUlMmqegzUkKOY+m04SDg0d8741yDdBiKDI0zaAorzOMAiF0vNDG0qWDkp6fMonWmI4jOi25rh1/9k/Utt5lfUuurXkW8x//519w/B8P+W/+Wn7m+wWTSYKuBTw+krG5IOQvf/RD3uhsYDly8bZsD9fWGRw8YO/NPwegvvUqOgLxEmmpnt+LfpcuNhcx+ez+p1AoFAqFQqFQKBQKhUKhUCgUCsVvgnKbVigUCsk3Rozz26SF+rI6Lg4Uf52DxefTVP0m7dIA1wvRyrp0y4YiA90iz+VhcJqlTKdjikyKDSqhTZpqjIZj1nSZ4sZ2XR58/oTd/R1EIcUx/eGIX3z4IT/627/iyRN5KH7w5IDbr12jeyYPsh3LolqvkhUFUZkyytDhldu3KYRGUJEH5dcMHcMC1/fY2dkFwHQttFyn1ZYH2b2TEfPZgm5/RLUu090s5xOG/T6u5/HaW28B8P4//T2LuUe16kMhw6rIl4z6ExqtKkEoD6TTFBr1KnFcil4MA8dxOHv6lL19KW6opSndsx6OoWPUZBqeaDknSwoGgzlb2zKFj1txSaLsMtWX5xiloEPnwX3ZNxubK2RRnyzTCGqy/bPpnG63T7PTorMmn9PxbXrdMUgdBhvbe+RCY3198zKFjOuazKYTgqBKqy3bMJ0tCWt1jg+PuEiBc3bapVKpopXT6xfvf8j5aY94OaeztinH7OCUGzdCdq5s4Tky3dHRwQlrG2tsb68RWDJO/v7/+4AsM9jbazCfLgC4/eoNDp6csL0j67Ish/v37zHoDTg9keO92tRxQwvd9jBKUYquaSSzLrrbYhqXacMMh8/vPmQxk+l1xqNz7ty+imnozOYyldHx8SlhtYrt2HR7UszSaTdwPBdNQLyU15qOj24WaJoUoc1nEUUWUa3a2I6M6TQpmEwiKpU2STIE4PDxIa00xLJsPEf2Ybw8w61soRlS3LC22cTQBGk0Ji9jJ09nZMmSVq2B6UrhU7JcYts2ha6jl9NeCnbOufvRPW5e3QHA90129vd4eijFWM7uCstlxONHR2ztypioNTrcvnMVXWRkZYy12y0ePnrM5taqjHWkvdj29haWIcv41SaalFjwLL+6lugUScT99/+O+VQG3srumywiwUcfSLFXPOsynU8whc5f/e2PZP1BDb11FZ27ZJFMvZYYLUbLDk8OH/DDd8r0TJ7DMtPoSb0LtdBmMplTafrUy5W/EAZCZDJNmVUKaK5paEIDXYOibLMm0NBkhAu5FtUroBVnpDNRxpKJbTbJEnEphMriGUU8ZDk+JJrJhph2Tq3mQhZxfF/G66LrsLHmU5RKrnxmQLJEMwpEmQ5MoJEKgcjjS/HKwZOI+WzKdLHkzi2Z7q0WCPKWwb3PpJDvyo6LaQKGSSrDHsPQKOKERuCSI58nHj5A2Ft49RtEU5nOzLaPmI1v4oVyHdq7foPv/+V/yd2ffcT/8n/LuXDtlV1Ojvvcuf063/2RFBkatkMYhCSFQavRkmMUL+gffUStsUFl5XoZEyB+yaBO41dUXPxmItXLTF6/1lUKheIC9cJAofjtUHNIoVAoFArFv2bUzzIKhUKh+G242EdUuiqFQqFQfGPEOC8jmHn2MPI3daz5de7xW9WhC5JkBoBfbUAGmm4zGko3E9/3MHSTzro8QC7yDJoNHDeRB+NAvz+i1WrQO+tTr0u3nFrN57/7D/8ex7UJAnlI/cqr+4BxKaiot0KKPGXYHVOpyOuOTg7QLYfAr1HkUhjjeDaWW6G1ZjLqSieWZBFjWg5xKtu5XMz59LNPMQyHtUQelFcDi0qjyWg4YdKTYob1ToM01YiWCzxfihRuvHKTjz66R9HLCXwpxhj3h0x0DcOQgg3b0eknfSzbvRSbdM+7jIdj9EInSuU9W6stKnWd2WRKvyfbljNkNltiabIfJqMp7fU2s+mURqNS3m9Ev3vK5vYWWXnQ71cqaAJmozFBXfbFYhqjFSnzqRQM2GaBF1aIogS9dGcpioJoumQxWUjhDzAfLjGNgslodCkcqYQVkihBaPK6aDHHsUwW85zZpAfA1f1dRBHTOxmQxtKZYzZb8vb3v8ugPyJOZRzqps50Nufg8IAsl4KN9soPWN9c5eDxcRkTVdbX1rFsh3pLOqrkRR/Ha2C5Hpop+z5JJjhOSJYbWGbpLqNpbO/vMR1JVyKKJbNpzmef3+Pt70vxUqft0lrdoHvWwyyvg4JcaOiGRVYqHAzLAWFQlGKN4bDH2toqmlEQp1KoksYFg/4Yx3XQDRknK6vbmIbg4MlD9m6UYgbdJp73ME0pEMmTMRmQRBNcu3p5PytospzOiEuhh7B84miK43kIwyzLZWxsrVKtvMt4KAVrn358n7W1DpWaHP/JJGOxOMEJA4JQzhmTlOkyJk1iVjekwGU5X1IJ6+imDVop3DMLKlWHNCsddVwXQcEXcogXO5loGozOTrn32SFOKF1Wjg8O+fH7n7AYH8n7LSZYhoZmBgwG35HjYTk01nZh9IhQL92Rqle49fpbHNyNCWoyNk/7BfXAwvfk+DuOjel4xNECy5HjOJ5mTCY5plGw3pH9ddZfIoRBo2YRuBeiRB3DNCny/FLdYbk6iBQtk2tHOvwHNGsdnOssCznehh1g2iG+LyimMsbSac79wxH7eyE1p3RkSnSiocaHd6W46M7NCrNJQqvjo5vGZX8VWYooMrRybm2vGqQNwWBoYBdy/TAKg4onWM7keBwdz+l0HCoVE9MuBZKaielIgY+uy/oDN+PB/Z9T6dymaUgBTU2b0R29j++/C0C8gNu3X2dzZZustOzZ2lljOl6g63bpIAZRHEmhWjTBtUu3mazA8AL2Xvs+puM/Ewg8x6/uQb/LPe5l+EPfT/Gng3oRoVB8c1HzUqFQKBQKhUKhUCgUCsXvAiVqVSgUii/4xohxLvg6kc2zzjVfJuD5o6fY0MD1XMZdefhspSnJIgI9I8+lUEHTPOI4Iy6FGI8ePCHwHE6Pj9hel+mUHjw5ZmNzi/F4xOqaTFHjOS6+ZxCnBfOpdC7Z3Goxmy8QuhxOgYnlWCTRMcNUCoI6Ky3CWg3DshicS0GCaYfk8RzH1Gg1S/eGaE5RzDAMKRJa31rBCwOmsyVa2fb9V26wnMecnHRZzOWhe7W9yWw4o14zL1PBHB2dsLLaQdNzxgMpGggCh7zIMUsxTpIkjIdzcqaEoRQNWKaN53mgCfJcCj2OHz6h0ghptFvMxrIu07TJ44QokYfw88WULXeVdqdJmsgY8HyfOMsYjubUjTI1k+VQFBBUQrJIPtOT+wcEgX/5PL2zc8J6iyLL2NqTbiqLeYzjOliOz+m9BwDkWc756Zj9mzfIS4cL39Q4eHxEUbrsXL+2RyV0aLR2OXsq3TQGvQGrq1WeHp2xVaYXq9Rq5DlMJlPuPZTOPq+/+RpPj065cmWPf/6nfwHg4b17DPuTS0HCydEJW7sbROmSnW3pluPaVTB1srzAcqR4ZTEcEqWCwQKqpUir2q5j286lAGxrd5uDR2fUgpB4UcZOp4Nh2Ji6wXgk3WxqtZAsS9CMjEqtVQa+IM+zy9RS+1d2EALQBaJ0hJpMemxsdBiNhoRVmT8pbNYoioLt/V0oU1dZfhs0HZHLdjmWi245eEV6mSoLoSHQyOIIw5DlDMdgPjunyH1sf6WMcwPX9Xn44D7Nioyxd959jX5vzHQmx3sZL0GkzKYp87EU6Bj1Gn7F46NfHFBtyvmAJkjTlLwQ5BfpskyfIh7jhVKIoevG16xBcl0rgCf37xJUt4hyKSh77ycfky3vcWenTOlUr9MILT68v+Dux9KtxbR8nE4FXVSomFLclebH7GxfY3R+xo9/fh+AtVbOW7cclomM8WZFoBtw0l3Srsm1Qzpy6SRxjqHJz9JU6owKoChTdhW5xmg8pxbaFEVejjaYpn7p2kWecvp0ilufYQcyprN0hZSc06MRbb901GkWFIWGyHNOSien/d0qhm3w+qtybA1dp9l2ME0Q5XqCVpAXGrrlQi7bYBomlmHjudFlOitNaNSqXAoYn56laIYlYyW7WHcEQdVD5AVGuW4GfkEWHfLkSZ3G69Lxazh7j5V2wWL8cwDsyjaW3aC9WkUzZf2WbdNoGFhmTJbI9FY2BWnUIxs8pWvI9Wrt2lusXrmOqZtcKJqUa41C8c1EvTBQKH471BxSKBQKheJfB3+78aYS5L4A9bOMQqFQKBQKhUKh+F2hf30RhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVC8TJ845xx4AtHnGddcF7Ei77/Zamsnq//d+We82V1ubUmg5NTAPI448H9J6ysrrC1vXZZZnN7jSiWqaU2N1cpsphkGWJYUiP19rtvgmagmzpx6Q4RmibLKKEQAsuU9z1/esoyTvnHf3oPgFs3rvHGm7cxHZtGQzp6hBUTISyyJCIMZYoU3w/QTB0wAOlI4nghuq6TCxka1UaN2WRJupjx9EimzqlWK6RZwdrmBrNpmTIqLeh2z1jpNDksXV0Mw2R9cxvHtzAMqyyX4FcDmg3pInLem3Fza5/5bMJkLF0y4ighCG38qkuSSucgoUG/2yfJEpoN6fSiCR3f9SjcC0ePmO5pHw2NtByTWqVBkSWE1QqVuuyLZRQhsozJOGM2kv3fbNfJ04RmU6a3cl2TsFZnOZkx6Ek3m9l0SqvVYXrax7elw0o1DPFrHmHok2XSxSeeL7l2fe/SkeT44BB3mXL34885PZEpfdY2V2jUmghcLF+6gXiuznwxZXW1gx9I140siRHrGUIIbr5yS7YtCIlPhjK1GZDnKUFo0G7UmZTppnpxQbQYsLsTYBSyXYUQFJqO65vM5tJNaLaMyZKCD3/+MQDf+95bpPGMSuhQr8k2aFbA3Xuf02w22NmR8ds/71EUBalICfyrsn4KdF27HGsB5FmBJsRFRicarRDLcmm7HZnqCdB1jbzICA2bIpfjbVoBaRGTF2W6Lt0EzcC0XYrSAqUocs7PelTCKrop76lpJmFjnzzL0ZBxoWEgREFnbYPusUzttX9lm0cHp7Rasu81PcTyA9quieX65WcGZ4c9rl+7iufI8dYNj83tAtO0cSzpsnL85BG+MWf31Xf4Mi7XKrRLN5QsmnJ4/0NWtu7w8S8+BGDa+5j/9q+bbG2UrkEVj3iZ0GzY/E//6TMArty8g+VtUCw3sAvpclU1ukTmLRrt3cs+u/f4MxynICukm9ErV2qEXkHFNXHL+J1NUgLXoOILRhPZX0UGupVimiaidHcqhGA+jan4Oifn0k2oUTcxDR1dl32fpDGhB6Y4wsxlG7qjCegt2p0WLjIOLcbYJuSZoLki55ttaYhM4Dhy7dM1QVGYCGFQlI49oKMbMmWWKAPq6cmSVsvEt21OT+V8qNd0PN9BK9NPbW1qgA4iR9dlGd20QDPRTYvRRK593WFEs1nl4cdP6E2uAbDe/D4YZ2xceUWOY1GwnNynSHMMXaaEm/UnRNGEesXCrWwAsJjNSJcpO3f+CjeU6d5sr4JpXGy52jN/fjUXe8zz++Dze8/zX/82O9wf3V1O8a3nm/wbuOq3YBUKhUKhUCgUCoVCoVAoFL8LvsnvwH4fqPdqCoVC8at848Q4LxLePHvI+LJprL7q+xcHmy9z4Pi8uOfZ6y6+93z7NA0s0yJdSKGKbeyysbFOtRZclitEQRxHGOWBcSFSHNtkda1FGsvDbsMwyQtot1pQpuFJk4TeuRQgNOtSlNLt9snzgjdevwNAe6WFJnIMncsD6fFwRp4JprMxu/t7AEwnE4RmMxkOaTVlXb7vga6jIU/h4/kY382p11wa1RsADAcjgtAjS3IcRwoq4jQjWswZj23KLDZs721gmTrT0YCt3e2yQ2E8HDHoS9FIHmWkvoXrOZTaCfwwxnFDvKDGYiEP8LMkZbOzRpQlaJoUEri+SxQt0YU8wA+rdVzPwnFsJmOZYune3bu0VzrEywX9E3kDy9WJJhOM9hrDUmjTy2NWt3dwLRcA060x6p6gGyZWWf/O7jbLZczaZocn96XgKDBCdN3CMAwO7kuhx3A4p9GqkpTinJXVJp7vsru/Rb1RA+DWnVsM+yPiJCHNpVhibX2L7f09zo77jCZSmJSmKaurK5yenbO6JtMube1soQuNSVlmOByyur5FpVrh8ecyfdb9Tx9w/doK6XRArkvhjemvoWsGjYbLfC7jqdcdsbe3zaAn6x4Phqyvt4nTnHkp2Pmn9/6Bo+Nj/vv/4T8wncjYHA3HbO2uElQrjEYjAHRTx/f9yzRGuq4jBMznEa4llxrD8sCwMU2NvOyfPInI8hjN9NE0u3ymMYZRIDR5nes5ZHmOYdhcTElN02i3GyBgsZQinsB0SOOEyXhGpSZFIqbpY1gW1WqFg3vymZI4Yn9/l//8d/9PGb8Fr9y6gWPr5LmMzTAM+M//5z/wb3/4A+YLWf/u3gaeG6CbcNqVKYl8z8fRBZYrY+eibc+vL/Iz7VIkdPz5x8TzhP5gwdOjhwB89w2Pa3suVin0MbQI3TNYsUxu7co5OR2eMZmsUSQGli4/88wxafIJ127colqT7Wh1Wnz+6QeMhzJO5rM5m20d19E5OpuXYwSBVyAy6LRkf1mOyWQSQesLAUiepDRbHrpRUAnkGC2WgtE4Z2tdPp8OhB4IkaAlT+VnaYfcquL5VexCzknSCNd1yHKDYU+ukbvtKpZrcrEIaIYOBSRZzqefy+t2dzzqFVeKaiy5BmRZTp7bJFmBH3rltQWF0DHKNG5oBpou+0TTZf2T8YKjkwWW4/Hjn8r4bbVbeLUddm6us769Jz9r+WT9JXEk417zN9C8HMudo5mlIM9pY01NFrMh0UWaNbfB7vXXCFsb6Bfi0jLl18vyZSLT58t83Z6nUCheHvXCQPGnyp/Si0GFQqFQKBS/zMXPwOrnAfX/AYVCoVAoFAqFQvG75xsnxnmW5x1ynv3sgmcdA17kIPCiA2Rp5nQAACAASURBVPEvq+tF5V/09ZcJhr4oVGA6Lm5VulsUxZJOu0ahcykksEwHEGRRKSJwfRaTHnm6wLDd8rocx7IpTBOzFL0YGKxtbfLB+x/SKN1lmo0Q04rZ3ZWuDKZlEy9mrKx0eP8n0vHkgw9+zt/8u79gZ3fjUixBAbphYmg6Zulm0usNcWyDoCLdQdorK2SNOo7fJ55Jp5dHB/fwKhvs7m9TmpTQPR/jVWv0ukMapXPNfD6l02lj2C7dnhScWLaF5/jkeelmYyyZDM6hMFjZlqf6vfMJZ6d9qtUGYVU6Z3Q21zk/Osa0HTJbHowPl3PmiwnVihS4FHmKY7o8fXJ06Tgx6HZptutU61UWE3mov5jE+IFP9/Qc35fuL+enYzzXp9eV4hzHMXEdk+Ewwvdk3yzmS1qrq/RPzwh9OXUc12QynLDSqREtpcBh0D8nTuY027JdtVqNSr2KEDq7ezsATKczHj1+wmtvvkavKx2UTNMjywRB6NHMpJsGeY3jx8fU6rUvYrFI2buyT28g2+pXXaazJbVGjWpN3nM2m9Dre9RrdXy/FMdgIIoYDQ3Pl/Ek8oIP3v+IVrMjr5sO+PiDT2iv1KiEThlfPr1+gGFaPL7/WI7HxipeGCI0i35fipDanRrd0yHtFelApNs6QuQYpoFZOsuAIEkzLMtEFDKeDNMimi5xfQ3DKUU7tkW0jOj1pKhj/8o2hmYgshwMKbIQQmAYOseHxzSarbJrUhzbpdE0MIwLoVuBEAWWZZKWXTgezwkCj9UNKUIaDqagZezs7VNexmi44Ps/eIez0z5XbsjxSPOMo6MTtvZ2WVuXLkF5EhOGNTTTvHjES351rRDk5aS5/9EvaG1e5979R4zPHgHwX3yng+U6FPmFQ4zBcLCg2XLZ3pR9ePfkmKJ4hcbmq8wffwpAw47w8w847w7Z2v6BjLtKQBD6DHoyvn7y01/wkw/71Ooe0SIt+7CgWSnY3Q0IqjImVhsu62su6DkiLx/GEDx5MqXTCQi8Usg1TLANQZbJDksLDcMQIKxLkVCrlhAbS9IiIJpKVxpLs3hwuODKrs9rr8hYMRyTOBW45VzrdjM8TyPwHTZWZbscKwPDgty6FPzt7LXQNDg5XTAuhWLTRcrmWoUglHVlWUqSxdiGwXRain1Mlw/vznlwPKfWkXPyzvXv4Yc1dN0mSeRc7p2PcOIpetEDwAvqZLpHNE+IMvmMjlvBb2+wcq2BW5Vrsu14aIZZOkKV4k2hIV6klREaz3vk/LFFNX/s+ysUf2jUS3eF4neHmk8KhUKhUCgUCoVCoVB8wZ+KO456H6BQKBQvRv9jN0ChUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCofi28I1wxnnZlFFfdu0FL3KteZG7zq9T34vq+CrnHQChGegGhO1dAKJxH2eliakLjNI9Q+gmpAa6flFPwng8YDyas7ktHW6SaAFFTqrpzLoydY5julRaLfIipduVbg3rm2283GDc7wPgugEnpyesra/y+uuvArC62qTRrOOHVQohHR0s20ETBdXKKlkqP1vMErxOjVxIFwvbqrAczxn0ImoN6T7SqDeoBCGLRUwUyXLjwQDyDNuxODk5B6DdrjOfxmztbjOby3Q00XzCuAA/kK5BumbgBh6z6ZzZXKbTcZ2AjXWf8/MBvfMT+dy2Q6VRR+TapYSs1Wmxbq8iUunMcXZ6xvn5kEotRC/T0WxvNYjmS2r1Cpoux2oxjnBtl8MnD3j9jTcAWLN36fZ62JYcW9vWyCLwA5c4kqlntNmCTPTon5yyvrUqn3scYRgmcQGr29IpJUpymu02IpNOHUdPDjBPLMbDMYOqdOJJ84I0TYmilJ3d/XLcTIb9CdFySbVMQTaZTHBCj7Di8PlnMgXV5laL816XYU/GxN7uLj9+719oNH5Ip3R6aa7UGYwWnHZdrl2VbjlW2CJLlyRxTHconT+WyxmOrXPwRPbzYt6nWqvSbFUv+6vZrLG+njOZDhn0ZUofJwwIA4cH9z7h2s2rZRDnDIZd/FA6O/UORmxstXAcG4GME5EmDLszbNejUjqxTCcRTw/PWFtPqa9IdyTf93Bdi1rZDxqQleNg6tIhRtd18jRBFAVFJtv68OERm5vr2DaIi0DRNNIsJssTWh0Zw+/988/Y2mzhmPK6rc1VoigjL8Au3Vn8SoAznXP12hbVelC2Q6PX6+NXq1y9vgnAfBxTbXTQn1kKvtRBC4hnsg+jaI7hBLj6lL94VzrvrK9bdPsJrbZ0ptJ0gWkbGLqOZ5duRsWEej3AtGosDNn3leIurmuwonfp9z4HoNq6TbXV5OrVLQBWVzc4Oz/j7sefUQ3k/Oj2R4xmBQfvTTjtyQe4c73C9SsV2jXtcn1C5HTaLq4Dpi2fa3/bx9BgEUuXnek0BU1nNo3Zv+KXY7VEM7rEaRVhy3YU2hG5MJlPM1ba8pmSvODp8YK9fdkPli2YLnNsJ6dek2XS3OLpeUGn4fLpA7nWpSns7IQYtsekdPs57+sMJ3PuPZCuSqYVoNs2ppkzlUsM+/s7hKsbvLlVpbMm1+mwVqES+kSzAdFUrq2Om0F2SmGW7YwjDKdFe/0Gbijbqlsu6Abar5GG6tk9Rf77651ovmzf+W1dbH7dPVKh+F3xTfmtIPVbO4o/Zb4Jc1ChUCgUCoVCoVAoFIpvO9+U92AKhUKh+MPzjRDj/CZCmWevfVYk86JDcKHBxS2+6tjy6w41v0qU80vlEGiawA+l4KT35FOcahvXshAXOWy0AsM00TJ52r1Ichw3JI1HTMZSuNJZXUOIHJEbmJY8DF7GMVU0vvvO2/R7Mk1RIXIWy5QPfvYRAFevXKW9ssL7P/kZN1+9CcD+task0ZwoitB0KV7RRIauaZi2gV72TGetg+c75JlM6VQUOXkyZjEfo5VClSiJsL2Q87NTTGS7ZvMZumFSb+p0VqRQZTbrYVoas+kIt0wHlSQaQVjFLdMkPbn3iCgt2NzexDGlCELogiITVKs+ji37xzAcprM5yTJBL9vRWV2he3bGdCyFJYcHZwSBz2iQsL0rD9hXNvaZTifo5Hhl6q0oSYlzQbVZwwk9ACqtNuPREK1IyvvZZExI4gzdkm1orDR4enzOytoKfl2m10mLLiI3uPuzjwkCKRLJsoJPP/qcN9+5DUCzveDBw0PSBPJCqgF0wyCOltz79FNef12Wc7w6mlYQzWaX9/QcF00TTKZLbty6BsBoPKcaeGQL2V/DwYA333qNWqOG48rnWVlZ4ec/+xjH1mm0ZF97dQ1D5OjZkk5dCnQ2N18lT2E2lX04GZxRCS3yQuOj938OQLW5Ti0M+PiDD6k35HP3zk8ZDQdcv7rHciFTrdmuwyuv3uHwsUy59Pj+IzbWm+gaiEIKFYRh4YcOGl98NptOMSwLw7KJl1JwU+QpthcAssxykWFZHrqhIcpY1QE0ne39/cv57c+m5HmK0GxEmRNI0wWmYTFZTKnVpIAiDCsEvkWrIwU13e6Ufv+Y87MuzbZMjZanOs1mhbDiIwxZl2HZ/Nu//gGO6xCXAjND1zEdKUC64MvWBqEJhn0pVisKC89xiZcjCKU4xjI9fD/Htpzya0ElNMGwqdblcj04P+O9937KlWuvEDZuyf4ZHWBqI7R0gBFL0dZivoJh10jLVHhhJcQPK1i2T57K+73upnz+yUOG4ymPDmQMPDw6588mBt+9bbK+YpXPaOK6OrYFopDPZto6hUjxyrnt+wVZIag3Mr7YWjREtuCDDz+i1pFinL1Wxht3WhRpyqIUUU2mOZtbFdBk3Puhyf1PFmjl+gJQaCa/+GhI4E2ZLGRc3Ls/YOcopVmvcHxcxnDk0GxVuPPGdXmd3sB1DEADTa7JaQKbu6tUalWiVPaPVmQsx8fo0T2CMi2VEeX41QAjkKKn2sp1LK+BH1QumooABAUa4jI2L8f7V3Yc+by/tIe8xPan0kYpFL8flBBHoVAoFAqFQqGQ/KkfEqr/GygUCoVC8Zuj9lGFQqH4cr4RYpwvc8b5WgearxHF/FJdenkwL75wI3gZd4EXte2ibFEUX3FvDb8iD34L3YQiQ+jW5dGsrgmyPCFO5KF4VujUak3sPR3DlmKZOI4pMo2j4yNuvi5FNYZpoRsFeZ7R7jTLduS4dsjb78gN7+4nn7C6vcJ33/0Oo+ECgCiKyVPBfDSj0QzLVgiiJMfTTIpEilD63T7rO1voujwEL7IC26+ysxPjVjoAhGGNzz97SKvZoBCy/e1Ok/FggmVpWKWDR8VoMB2MSMyEfn8IQJqmXL3uM+pL0YUXBIS6yenJU5z9HQBMw2A2H5GmGdtXpahmOV+ijyx6UZ9KrRRL5BnNZot6tSHrcgOEJliMx0ynUky0trmO6dr0T04IqqVDjO1gWzYr7XUWi6jsCo0siplOpGvJlat7iKLAL2IKQ46HYweEQYXJdM5UdhcbGy0MkUMhcBwpXBiPTtEN7VKkct6dcOuV25ydHCEyKRgIGxusrK+xttpiMb1wDbL56KPPKJIMrXR1Wd/aYG19g//tf/0/uFmKcSzbxvPty4P+yWhGGAakUSKVZwC6y61XbvDT93/KyroUoOzsW2Q56EaGZaTlcwscz8cuRTxBYNM/P+H48JhWR4qqzs+7rKxv8uqdW9Qbsq6nR4dsX71C77THT9+XL2v+zQ9/gKbD6rp059ENiygu8EOL2Uj2q2Y5eIGPbhiXYpzVjTVWNnWgQGQyngytAMSlyObJ4ycEfsj+lU3yXLZdM2w03WI+X1zOw+kswnF9wqqJhhyPXCQUeYGum/gVKXKpNmuEYUhYxsSHHx9SbdTY2FpDK9tlBhrTWQKGhV7GQFak2GYVBMQLObeCZhNpIfMSzihCcHZ8KOPJqzEazXn65Ambr8u2alpGraKjafIZ80LD9kyEyMnL2KkEBQcPP+HmK69SlPPUXflzxPQ/4YcC05Bin97kX8jcN8CRY7ayusNiNuF2o0kQBpex44brOI7B4UPpqPPp3Yc8eZriOwLNKIVcpk3gmehWRpGXwio9J01MDksRz86WhWmafPY4pVGX47G54ZFloDHnwYMjANbrDhVsbM9hOpTzr9dfsrYaIMq6Tc3jjVer5CLjFx92y+exeHIyk4s4sv2V1WvcP0tYLzoMI7mdrXVqbG7vsLMv1w7XazMadPF9l/FEiuFM3WA+n1CtVnANGXOD87v44iF1f05a7hdeZROjsk9tXTpoVZpr6GWfXMy/C4HlrwpvLrj4/OXcbF5G9Pllbja/jmjn6/ZXheLbino5oFD8flBzS6FQKBSKf/38qQtyFAqFQqH4fXLx/2a11yoUCsWfFt8IMc7L8mWCna87SNT4ZfOBL3WteMZV52UOJ/Uyh8uXlTUsecDeWN0GAULXv3AI0TQMXcPx3Ms2pdEcNBBlGilNCJ4enmNZHkb5BKZm8P6Pf8bmzhbrm1IsUeSCBw8fYJVl7rz+GmGlQZosOb/7EIDxdMTaapsojUlTeZjseA7nR2dofY3tLZliaXWtjUiXaI4ULeR5ghdWEVGPPJcH5+s76yRpTLLIOTqW6Y2azSq+H5BGMbohUxKlWY4beFRqFc5Oz8tyIZ5js1xIMc72/i6jwZAsjYjLz8J2hfreFtNpxP3PnwDS2ScfLWm1mjiuDFvbstEMg9MjeVhvGTa6Df3zCD2VbTh89Ajbsak1G0xKYdJiPqO+s8JCGNil48l4MCUrMq7euF5+fYZlVzF9naRMxXXw5JDueY/9vV0GMylAmC1CTJERZyl6KcZprzTIM42zE+mu4XkBs9mQaDGj3aqX/Vpw5cY+fmChl7PQ9aq89Z03iJdLTo5lih1ExnTSxzJgPByXYznhL370FxjlhU8eH1Bt1jg7PqWzIdM86aZJo73Kn//wL9nYluKYQuQUWkJe5BilUMUy6mR5wmQsxUtZmmCYNo8eHLC5LcUMx0fnuEHAo8Mzbt+WorAkLvBck3bT583vSGefWj1EiBTTku0q0oh8WZClNroj58rZaZ+dvTVAQ1xaiwjyOEPT8kvdQpJkxLOEoHQuunZjm2gRk6YZplkK6zQdkUek8ZwglOms9vc2sV2HQqRYhqw/iWJsx6FSr1y6utx85QbpbEiey7G9dm0HSLEsE+siJVGaYps5k8GAeSyvu3pzF8OELE2hTDkX1uu/ush8CSIvODk4AMA2awz7R4Qh3Loh249hIfIcCtn282HBYNDn6pUGm6Wo6r/6y5BPHuYcHhyyuyvHw1m9SpadINJf4HjymRp6l2H0KWbwHQAW8xF5ssRv1MGQ41+th7j+HmG9w9a2dH+x/fd575/f470PB+xuSzep/nLJzSs1jk8TtFKAt7tTxfM0tndkmThK6I0SdrdcXFfWTxYhUo03b9YgkPGkFQn37t/lyo5NI5Qip/rNgPky4ZNP5+U4arQbOk8O50yX8n4/+WjIcJKyv7tLvSZjevvKNX7QXqVW1SmXVrIsI4oKKlXZp0+PjshFiq7lZOV4mxaEnsV08Ag9k+MRFGc0wgzNsNEdWb9df43O3jt49basXPtNtsxf2n2e+/uPjxLiKP6UUGIBhUKhUCgUCoXiq1GCHIVCoVAofr982/Za9b5NoVAovhr9j90AhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoXi28I3zhnnWaebr3W80bRf+vt5LtN8oL3Qh+Cr0nQ8+70vK3fR1mfbrOs6Qohfctmp1JqMuufYrkuhXTjj5BiGi2bKr3VTB1PH8uzLtsbRAtNM0C0XXSvvK3LWNlbp9bpUKtKRYjbqc/T4IW+9/ZYsYrlkRYxhGOxflamfMpHjegGzWcyHP/8EgJs3X6FWrZAkEUUh0+JYlo7QTLKiTM3khGjkGI6LcdGGLCUrYDIbs7W9AcByscC2NSgMHFs+gWm51FttHNvB1I2y+TNG/fGly860f0oudNa3tklS6YwzmS5x/Sq6brC5uQXAeDhgY3MN0zLJU5n+ablMyUWM7Uknk2g5J1rENBotzNK1ZDadM59F2KaBbsk2dNbWWC4iMgzGo2U5buDbFv3TYwCq9YCT03P8sIZbuhcJUibjHnfvLmmvbsp7zmM0kWCaJkY5mw4fnTKdxuzsbQMQhAHD/jnr2zt4nnR6GZx1GY8HWO46SSzdOqbTc2qtGlv7WzRLB53JZIGmwe7+LpYn2//On72LaRocH5+WfZow6PXpnXZxPelI4jkOCBPNSOAizZZfpUgmiGwJpUNMlhT87Bcfc+c16Qikh1XmYwPX9fmH//fvAVhbqbG21kA35qxfpKDaWSVNpKPO9o58TsM2yLIcvYx7x3dwPIei0Cjy0iWqXiVLUs5OzwgrMt2YpqXYto0oNHo96XJUrdVI4hjPLV1qsgLPd0mzjEHpcNRZaZEuhxg6LGfyM0SB6zlkmaDQShcUwwA0NM0gTWTsgEa93WG5lPnGur1DAt/n8MkJzYZMXfXo4JQwcFlda1Kpy7k27I3otJtAgV+mRzMMC8RLpKgC4uWCcV8+Y6djEnopBzPIonJuBQa245BE0g3m+GmPJBWkSYHjl+tJYLKYDHly8DNcW7bVDy1M4xpaeoRfrimBFqPRYx7fByA3ruNV2xi6S5HJmDCtAguTaB5hlk5er9x5BVHEfPzzn3PvQZm+rjdiOk1469UG5oXpTRKj6wWWLu9nOGDqObarUZoSUeSQpjBfLGiG0vUGvWB310c3U4RIytHQMAW0GmXsmAaD4YxoUfDpPZlaKkkNNjc67O5fo92Rcbi2voofNCmyhKxcPzb2dojmMWlcOm3VG2TLEbPphJVy3nq+4On9DzC0MwJbukKFYY7phliVq9j1VwFo7LyB7VV41slGXP7zJRxltOdccYQm94WvuPRi73ip9IvP7D2/Toqqr6rvog0KxR+CP+RvAqnf0lEofn+o+aVQKBQKxbeLP8U0Gn/39AP1M41CoVAo/mB8G/ZatW8qFArFy/GNE+N8HV91WPisAObZsl9X7qvKfl2ZZwU5z7br2bJ+xWfUzciSCMtxywt1iqIgz8uDbMtCzGJsLyRNpTAGPWV7d580y4hmMkWRX21QrQc4lsXhg8cAVGoVvvP22zQ6LQAOHj5CZB1AXKb5SdIcwzCIFjPqNSki+OyzT3jttdsUhUAzZFoqoQnSzOQnP/4XAN568xWSNKJRX7t8njwVtComFHWCUIoBZvMJ88mMIi9od6Q4Y7GI6J/3abaamLoUFzx60mW2yOmsyDYslym1lVWy7IsURa7rMZ/GhJWQ2WRU3jRj2Dtnc3eNwpB9GEUJSZxcph4Cg3SZYpoWcSlwqdZr9O93WVvvkOfycN71bfq9Ccu4wCsFOmg5Yb3DoCfTacWpgW5a5FmEWaoPZtOE6zdfBcGlgKZ/fk69VkW3TOxScOT7PvNlzvGBFPasb29Sb9QRQHtNiggEMu1U93REvJBCkkq9QWu1RRxn3L8vU+d4rke7U+fm63dYTCcAmJbO6ck5J4cylVW9UWe5TFhZbTAaDgFoNDtMxjOixRL9cprbGIZLmozIYtmvui7Y2lrBKNN1abqBbgi+885r2I68bnurzfraGu1VLtMPDUdDqvU6rZUWOjKGs6SgKLRLsUKz00YXBZoQzKfyfkHVwzAsKrWAeCnFGaZtIYoC0zBpd8rUa0WO13YZ92Xf6KIgDOtMJmMODg5l/c0amhkSTSOixUDWH4TkeU4cxWh++dS2T5ZliDy7FIn4gY9uGmRzKQbZ2lxhOhniuQGPHj8p27/G2sYKrutQFLKcU9gYukEUZ5einV8n5ZBpmGxuS0FILqq45mP2duwv5h82RZHieLKhb7+xghA5mmYCMuYsW2d3r8Kjn8wYDGQMrEcb5IlO3djHFqOynEZo6miZjIlx1CURPkbVIkuHZdNtdCNgMZ1fpnByHJ/dvX0+/egBH96TaegmswV+6HIzhqcPZV9fvxLi+1/oSnQDsligZxq6Ldcw3dIJDEFYCSiEHEuRpyyWCaZvMp2V/WobuJ7G3pYctMkk5/gk5h9/1udsINv1+puv4Psb3Lh1BcuVQi7HdBBFjml7xJm8Z+9siK4JlgsZX2kKy3lKrVbHd6UIMJsfsrs6x9Q0RFbGvuEg3G1q+39DpSlFjLptowmBeHaMy39+sQeVYk/t+X1J5i77Yi/Q+HVi5WV40V72VXyZ2PU32Q8Vin9NqJcDCsWL+Ta8/FMoFAqFQvH749uWRkOhUCgUim8a/1r/X67etSkUCsXL840Q4zx7KPhVv5H/7EHib1L3RR1fJZx50T1/HV7URsu20TQBCNCkYEMTspyuySHIixQtz7G8Cnl5qJymCUUWY1smcSzFLG6a4RoaR8dnmH4AQJxmtD2DxVgewu/u73F8+JSDo2Pu3JYODw8ePiH0bbZ3OhSFvOfulV10PSObCJbloXil5mHoOm+/+zYAhpYjEOR5QV4KEmzLRSw/JwAsXTrXXL3S5OmRwdnTc56UYok0jpkMBsw7dWZTeTBeW9lAaBN29q4AcH52Ru/knDSZsb4j69I1QZpETGcCLwgBWMYRlsgwdYPJTLqbDAZ9OitrDPpSWPD5xx9y5do+tXqF2aI8dM8Lef6t61SbUgAkRIHr+cTJlNV1+VmeF8wmY4KKvJ/ruaxXa5w9PcNx7PI6QRTH7F+7znQk7zmbzhgOp9iOw7hsx+nJCQgLsxT6nJ128a9sEc+nnJ1IgU4YBDw9mrO7v8vTp1LwsLW/hmXCyeEphiXFGefnXXzfwXBsXE8KFc6fnjGdLWg0g3I8dAbDIde+911+8s//DMBoOGd1dZVaJWA2liKeZruGF7YQRUSRlMIIY8b66i55LmPi5HhAa62OGaX0en0ANjfqnJ+fsbK+higuBA/n9M+n3Li9h6HLa0WUc/jkAD+QArD17RVpIyI0ao2qbKtj0ev2aXdW+Pz4pBzHBe/+mzfRRIZXCp+ErpEJQa0h69YBy3Kp1TTeeL1axglkQqPfG3B0JEUp7777HbIkxbFt6VgDFEJIxx40tHJuxssFjufy+IEUPa2shHQ6m0xnUyxT9vPa+hqWY2PaNnEiBUeO65NkCUITGHZpEVMKLr4QbJQijBfYn5heiF9bL+OkxwcfnuCKBVEsx7KueZBDrkkxznIZkRUOfugjstnlc0OOawrMUghVCauYbsD5oyGFJvu/7k4RpLjIsR4sz8jpIJYu1oVji2awmE3xA50sl9dF8wXt1XX+/K/e5fTxewD8w3szTk7nJNkKN65LQdlJd0xxnnJlV7a9yDJ+9uGIG1fqrK9JwZwmDD57MKa9FlCvy/rTrGA2g8ATxPGFo5iGpVkY5finQmCaHsMpNBryftXKOpYVMJ8uWatJceBo0MdxbTzPodOUcTEZz5nPpszn8rkn0xmdlRUqVQOxPJIjtjhHd5cgcgxLttVwGnjrb1Pp7GEY9hdjqYlfcrj5YpT15z6B57cLIcQv+7L9BhqXr9uDnv/+V4lsvqo+JcBRfBtRLwYUit8/ap4pFAqFQvHtRglyFAqFQqH4/aP2W4VCofj28o0Q43wZz4tmXsYF4Kvca17075e557Pfez5l1YuEPc/Xq5smYb3BpNelEUhHB+mIU6CVh+6O42A2VlksZpfXOY6LLlJMQ78sF0dTDCug1a7y/gefAvC9P3sXxw358T/+FIA333mLre01qo0ajx9KkcJ7P36fa1e2uXZtn+65FFlEiwF5kfH0aY9XX78FwHga0e912b8inSEsy8cLPNI0ZnouRR2D/hlt16TdbjMv3U10I2NtrU60TJhPZVqZPEuIk4h60ydNpWggDBxEYjMaSOFKuogIAou13T1aZeqZk5MT0kxgWhl5IsUfYaXKvPeAfFkBTR6UX7l+jUH37NL95+qNG2imxmQ2u3TFCIIK12/fYLmIiZdSxDMZjdAMg3qnRX1Fptl6/Y4bewAAIABJREFU+ugBpqmziKTgyLQNTMNE6BaiTHm1d+0qn378IbNxj1HvTPZhqrF3bY/ZdMbTAymGqtfqVKs1ZjPZD2HNZzTo06g3mJUiHnJBo9NhNl+wtyVTUkXTESKsYeiCZCFdfKrVKien57RXOkzLVEy+a/Paa7cuRVuPHp2wurnBqD9kf1+KnD78+WdUKhVGgwHGWLajtdqGwCbNHEhkDFimgygytNJtSCNn2J3hmCb//r/+EQBHj485OjwjCJssI+nQNJ0uWV1r8PjxU1Y6bQBcz2F7b/ciKxZJlGLZNvPZkn5f3s/3fZIkoShyNE0KzBARSRTJNG7ldBuc9vjs7l1eefV2OR425yddxpMJzbZ0pGm2GhRFxtVrewShFIQYjoFhu2TJkjyX9WdZzunJKTvb26Sl+4sXBPiex61bNwAo8iWT0Rzf82nfkWKZaDHj7KxPs9VACHmd23SZTcY0Vzpoul72WVH+XfIVokFNE1Tq0sHq7sf3GU6X/O07DUYjWb6zYnLendJqSjFWFGmMZhH79QCj7FghNFbaATd2llSq0qWme3LC2k6HsL1L1ZaCsrT/v2MwRC/TSLmkjGYd/LCG6cr6bctFODp5luOVKc6KxKDeqLG+0ebokRS4uFaA0DNcT8P3ZTua9SpGPr+UpJz0cm7fXqPmGxjGhcgwR2gCioQ8nZf3NGm1Qx496bLaksKnQgienqS0mrKuKE55dLxgushorVbLGGiwe2UfS4//f/be7MmOIzH3+9V+qs6+9b5jB0iQ4M7ZZ6SYe2XZlu+DI/ziF0f4X7PDYVu6frF841pS2LI00lDDHQQBYut9O332U/vih6xuNoAGAVDkEDPKXwQC6OqqrKzMrMxG53e+j4Ip+nZ2bgrF1AlGQw52xVynaiaDwYD2lBDsFMtFClpE5h+hq+L9K1YzkjjF0FWSRPRckNgoqZ535PFTZbnC5gwntpN/fHcxUWfxTeveWWvS49eertuLOulIJH+oSHGARCKRSCQSiUTy3fGH+qn9F+X4+eT/JyQSiUTyQ/CHst7KdVIikUheDPXZp0gkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJJLn4aVxxjnr0/qPu9k87RP9cSxcK3T9ycc5vub0td90r2N7i+z4n9mT5zxe5lluOI/UARWnXONwc530uAxNgyQmieK8bOGgU3AqxKFwntA0HU1TScKIaCwcSZI0IlMNaq0S7//oOgBGQSFTMq5cPSe+VjN0zaDRdLAs4XjSbjcol23iJOaTjz4FoFwu43ker15/lVpduLMM+j0M3SDwRczTw3ubTE03KZVLuJ6oa6M9hWM30K0SgSscYpr1GUhV5jKdOI/U6vf6WKaCgo6VR2p54wmdoz7kzhlzC7P0+316gzGjnnAF2js8oFJ2UJUGk7FwiCmVSxQbqwz9lF7usnJ00EHVNExLuHxUykXKrSYH27t0x6L+M7OzxHHE/dt3WVlZAaBYLKHoJpauk0SiP+xyi27niJ3dQwB8v8ra+SqqrnHz408AuPHWW9RqDb744j7TU+J5SsUSu1uHLCzNMioJ56DOQYfl1UV8T3ydRBkzc3Pouk4Y5BFbRwNWLl0i8Cb0OiI6Zxxo6NYEp2jRzyOiVMvgwrWLjLodmg1hG5Khcu/OA4qO6Nt6o4KiqvQPD2m2RD+urs4RRT5JEuMNRb9t399g+eIaCSaGcRwtNCF0e2gl4VBi6Cq3bt/DUhJKJTGm/bFPliTs7x2yvCachK5dv0yWKXxx8w7DnnjOa69fQlMzVPXYwUUjSVJKJRvDFO45aQal4jQKMDUzk4/DKnt7+zRbUximcD3aPehSLbfQDDFOut0Rv/vtxzTaLRpt4SwT+D5pqmA7OrPzbTG+3IBx6LK/u8vy6iIAZsFmdqoNZPiBcIkZ9LqY8zMYdv7epkVahSJplpxEEg36QwxDp3fUYXpWlK9oGZahUCyXT4cTPfp3ln1DGlGGkok6LC8v88lHHzB2JyzMi/bPUo+HmxOMPK6p1dKp1W3h0pSKY8P+GF2NeOv1GT65eQDABzf/np/9/BfYFY2jSDjjpP48DWsEebRYrZAQhRv4ozJZJlyoSCDNNFAUvIkYm0mmkMQeWWYwOyfa8M5XWyTxgG7HpeaIeqgZOI5x4to1O6+jaQZaGp20harrXLnYRFN10nyODKIQsFAUjTB3Lzo88FicLaHn58SBwnASU683uXBOxNdNzzgUSwbVapsgEPNCpqhYegEfF/JoKUXVKZcKDHP3LbsQQLyLoY8o2KIt1DRGNzSSOCVFuJU5U2/SXL6OqumQ99ET60IGynEA2RnmR8+KUXwRZ5rHXdfOOvZ4LOJZsYxZlp3pmPNN8VYSye+T7/JTP/KTORLJt0PaYUskEolEInke5M8MEolEIpF8/7ysDjny924SiUTy7XgpxDhnbQo+LnD5pg3M4/iW09c/65rT5z1y7NT9lAwyntwIfVFSNaNQrlGttzjavA1Ae/EyWaaRxWLTN8oSdD1D1XSMghBKKJqBpqug+DARQhUljSH08Twf3xXXmrpJMPaJ841t0zKIkpjIjfB8EW3UalcxTJM4ijFtEfNzeNRnZrpBuVomS8WG+tFhh9Vza2T50Pg///p/4b23X+PylYuoaj5cVI27D/a4eKHG9KzYKFdUCKKY2zfvUSiIzfpSqcTSuTX2d/ug57E4tsnKmnMioBoNh+iahpplFJp1AGYMjSh0qdZrdPtC6GEXbfq9Ac12jTAUzx24HoEfEoS5oMkp4KQqquXglIUoZX93B8Mqsb13wKs3XhNtHXh0+y6T0YTAE6Kd8Tjk4KBDKxezzM7O404C0jCmVhXt5blDDEulVK0ymojrFIaMByNcd4Cfi5WKZZsk9qk0hQDFMg0Kjs0Xn39OsyGEJFNz86LOKCSqEE/oRoLnBVSrVcJY9GWjUsbSYafvUnBEPT7+lw9YW1vDzyO8XH/CZBziOAUOD0Rs0fbGNroOcSTinACq9RKlaglXifCE1geNEXES0t3q5vWpkKYZ23sH/Pinr4p+LIbEsY+qamSJeO7ewYCNzUPOXTiHoohxoaoau5sbJ6KI8WTC4tIUY3eE64rnWVhdAyUjI6XSEPUq15oEXoACxIkQhKxdWCUYu+iWGJfNdpU333oN13XpdDpiTMxPoWoWSZqS5pFd/U4P3wuJApdgLGLDDGsK1dAZ9EZEUS5miIWYJE2EqGM08Hhwb4uVlXkKJSHOWDl/DkVJSZIYpyjeSXc8xLQdNEM8I/koeF4UMsp5rNqBmoKq0+0nVKuiDU1D5Udvz3E81aRZjKopZFl6cpdqxcYbw6jfw87jpnZ2HnB4cIFG1mZ6XkTMbe0sUSwMcdgVfa27TNkDdnr38BF18HwPTSvilIqkaR5nZTv4Qcig12d7W1zrux6G5tEfTDg4EsKh6WlbzBKZ6FtD04nThCBIsXPBTpKBqulkikaW5PNyHBGFHjMzNk5B9G+l7mAbBr2+GF87eyM2t31K1QpWQbxHaGUgJY4iIpEmR+APGBwdoWQhdlHEWcWJShZomFYeH5ZFlEopVuaiEp8cSyMV1CZ2+10A6qvvYBbsvJWP15DTXx3/Sz2JpjrN84hZvs0a8k1ximcd/yZxjkTyx4z8hYBE8q/j22yuyfdOIpFIJJJ/e/xbEOT8p52P5c85EolEIvnBeZlEOXJdlEgkkm/PSyHGeZwTMwLl8eNPfur/9N+PHz+77CeFOo+4DZyocV601t9wr0xBU1KaC/NMbgmBQDBx0Q2Dm5/fAqDWarGytoiqmWRZ7vQDJGmMaRWwy8IVJfSGqLpK0awx8YQrjUpC4A3Qc4cYzdBIgphPP/qUy69cASBOEh7cvk+9Vub665cBWH+4QalURtVVdnaFO8u9u9s0mm0aDbGx/d/+d/8N7tjlo999xtKKcEWZa81SLNqouoJmik33wBuiWwVWL54j9IUwwtBVgsBjYXUJ1xWioM5hlySKqOROLOV6hUqtRudowP7mDgArqwuUa4tEcUS0JzbnO3sHmKZOHHvs7wv3mlF/iO1YvPq2cAgqWBabD7cpWCrliig/ii0cu8ClyxdIEZvzpVqNSq3BxvoWw1zsM+wPaLfqqLoQWdy7fRe75NDvdrl09RIA45HLaOQzOzfNzU+Eu9CFCysc7e8y3nJZWJ4FYKpVxJuM2OsKocfy0hxa7sLT6Yi6u36AMxozHozwQiFAmZmZJslUTMuiVBPCGwWFh3c3sR2dr27dBaBan8b1Qs4tiP5Yf3Cfr+7cI0lSGjUhJlKzmNEk4vyF8wzdEQC7O/u05udIohgrFyspUUKGxnAoxDj1Vo033nyFD3/r4+SilDTt4fcjhp0e9ZYQ0Fh2xtq5RUaDEYPhRFw71cIpVQkC0f9ffP4VGw93ufbqOaq5CCnLFJIkRNM1stxRRTFUTFVHSTO043dGzVAd68RJCiUjiiNufvYFb7z7hqhDoch45GIVTNLczaY9M0Ucw4P790jylzgD0HTCKKZWE89Ur1uolk5RFY43aTaiWnN5eH+dG++9I9pQU1BUiyiLUfM54mB3l/PXrj82xzx90jjtrKKgkCkaM2sXAQjijHrJ5LXr06h5W0RRzMEgPXGbmW/pqIZBCidiFojQ9ZBq1ULPxTiztYgkOMKpXMCyxTvZXlgkiWKS8CC/TkUN+xhen0kuYLOab5BmKWmWkuQCsNHYpdZs4XoZcT42FVUlCFM6vYgrF0X5miJcv6JcBBj4CU7JQT3lUKZkGVmSEiTg+eL9K1qwuxvgehOuXRTzTKakoCuMc9FWdwjTU00yq0EUizo06k0Cb4KiTBgPxJgLAh/TMDFMG5J8PUgiCnqCaeRuYt42VhaSBAGTRIgaTS1j4qVYjUu054XorFAoHlvfnFonnujS37vA5bSLzTPXr+csTyJ5GfnX/FJf/kJAIpFIJBKJRCL5/SEFORKJRCKR/P74oUU5cj2USCSSfx0vjRjneIMwyxTSNEPTHv2E//MIbo43LR/fsHyezccnrn0ONc5ZDj5Pu1eGgmlXqbWFYMOdTEgxmJoWIptCsZhfm6KreVSLmpKlCmkSE8W5E4uqYjlVotijVhOCE0VTqBTrhPmmdez7kMCVVy6j5BvjG+sbZKlCHMRUK0Lo0Ww10TWNLI1oNsSxC5fPo6kKvY4QDbm+x+r5ZXw3OHEH8SYulWoFTVNPnm84ynAsjYXFKbLc9cbzIoZDk8B1SWLRLs16nUq1zO7uNgBpmhElIatrS4yaQijhuy4FSyOMAjqHwsKlWq3hBSGKptJuCieZbueIYBjRPxACl6nZaVqNCt3DHcrVaVGvoYsXxKhqgbItXC+cosHgcJ2llVlu3VoHQLcKqIrK1LSI78nCkAf3N9AtlcOuEDNUynWqWQ2SlFpViEs21/co15pMxj5l0TxY9Bj6NnHuunPrs1usrA5ZmJ9mb3cPgCSKmSQTVF1jpi7quru1y3A0YbrdYGlBOA4d7O8zHg9YXLmAOxZ2IGGsUCpX6OQuOL4X8N5P3ycOQgZd0V7+eMRUuwFqduLCc//m52xv7BD6PhfOrwAQKRnBeJOtdSHGml1YwTLh6qvXGAyOhQsKO1v7DMcRzSkhcBhPJijAzGwb3RTjdTyeUG1UCTxRz1euXaXb6VEuNSjkApE0CdANizSFNBXCC40MRVHF17kIJU0SjEKRMBRlWZrK3OI0qK+fvG9hmPLJx59x4eIFimXxLmxs3EVVdMIwwsvdi8rVFCVLaTTK7O2JvqzVapQKNsdCGlVRGQwDRuMYFVGH0I9IlQRVM3BzZyqzYGMUTrviQKYci+6Ojyi5oPCUiELJo++yDC2P4ppdXWP5whLFYgczdwBK04jBcAC5g8vi3AyKYgIGWW4ApiQZhqmRZAlGIs6bnzH4x3/8hJnFi3h5/eIwQlGnsA0x52jpLsRj2vUUOxHv9yCOcKpFSGPsohD2JHHA4c4Ga6tteofiXSuWTJanWrz5Wg03d+SaTMbMzZQJ81i9Xs/HKRZwA48gEsdqVZs0S+kcTrh1W4ydn/14hnOrFdIsotcX/dvpxFy98vVytHs04eFOxJ//1z9mZe1C3jYp9XqTKEuoNrV8DFQIPY/W3AzDkShfj1xsfUKaR+gVjB6kHpoSkKRCFDgJTArtN5l95b/EruWRXUqKcL0BRTlej7JcY/VkKNk38Yg86/Sa8BQXuG/i2zqy/WvKk4IdyR8C8hcBEsl3z/P+gk++fxKJRCKRSE7/PPDHLsyRSCQSieRl4IcQw8r//0skEsm/HvXZp0gkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJJLn4aVxxjlGUUBVVYSnwNefzn8eB4Gvy3jx8x6/5qw4kKdd/zwuAoqigJJRbQkXlMnoJk5xAackYn9832N/74hWo4hmCWcLTTfQVZXAdVFV4QSRRBHuxIU0gjSPszIt4shFUYX7SBwnZGlGpVLEj8Q5qqqwen6ZJI7QLdHtS+cW2Nvs8J//+m/55a9/BcAXN2+xsjjDpWsimsnwDdIs4tr18yfxQ4d7B1TKJSaui6Yfu2JM0FSL3a0dirYov1avoGQem+vrLCwvAmCbJk7BYH5xSZzTaDDsH7C9vk527EgSJ4zHHgdb+/hj4UjSajdYOrdKqeQQR3lszewiH/32Y373jx8AsLY2RbXmoNtVLEe4fNR1nc5hl6WVeXz3KG8Li1ip8ODOBrdv3RNtsTBDmqncvyu+joIxl66ew6lWCSciEufD3/6OH//sRyRoeLe/En2fRhQKFguLM8zNCZej9a8+5/5Wh8X5mbwfGxx1B/juPlEkXEVevbFGksYMB0O83EFHL5jMlktkWYrvCpcPP/RpNOtsPtinWBbOQbWCQ5KkbG4IV5/pdo3pVpWD3f2TMWGXiui6ThB4NBzh/JGqKoZuMrXSYD93HCqXy2imzftvitiqSlmj1xuwubHNZCJcRCLfpVQs0pqqEASirkedLs1mjdFoyP/0P/9HAH7+s3d4/cZlgkg4EP3m7/+ey5fPk2UhKgUAut0h5RKkaYyRuzb1jkb0ukcsrCyh66LfUFMUJcUwcr1gBppmUm/UuHvnoWgvXeed99/if/9f/wrLEPcsVctcv36NQX+IkUeohUHIeDyiXq/SarcAsEwLRVHodEQ7WAWDkmNy7sI1ynVhcTQcjaiUyqRpTO9AOMnMr6yg5e/i6Qiq5yXj6yi8gl3gl3/6U3Y//EsOd4WLi100ubJaQjFF26SKRpYEZKpKbyzGToEIx8iIkozNrV5ehQzTCPnsw39gblXEts3NtjFLNSJvGYBgsI2lRhh6ioYY0yQDnMI840lIloo+CsOQ0PPYuLvF1sYuAP3uLivNMoOjMYuLon003ebugxFTLdH2s7MmSpawuePh51F177yuomQKrabJu2+KttfUFFQVVSnQaoh72lbEcKhxf1PU695mwms3LmMYDlmWO4VlEYmqkAYqxaoYr0l/RJqEDA+3SALxzhBtk8UdCEXfFkoBaRDgeylmeRWA5sWf0Fh6F6vUPHPufzyFLOO7dYp5UeeZ065tx9ef5Rb3rHKf5hz3tMhHieT3zfN+wkd+Kkci+X75txA9IZFIJBKJ5Lvjh47P+L44fh75/w+JRCKRvCz8vtZcufZJJBLJd8dLIcZ5dAPx643Qp0VRnf7e41FWTxPtPI9w5qzvPX7sRTYrT5+bpimgYORRSeVai9FwhF3ON5WjDEMBRTFRMI4vIklCFO1U7IluoKkKvuejaKL7Ai8kTAKiVAgXbLvCva/uc+XyKoYt4nuWl+aIwwjXc6mZQkwQeQHj8Yj+yEM1hAji7bduYFoqBVtskkdRyqg3plYv4RTEJrxp6Gxv7LKxvkEtj7za3tvEeuUVZmenIROCDVWJKZoe51ZbkIsqNu5/Ra3ZYm5NbIonWUq/P2Zp7RzkkTt3bt5mNJgwv7hALRcv6ZpKmmXs7O4yNSWOFcyERq1Ef1dE3ezt7lFtv4eqWSiKeEbF0FHI0FUVwxJ1LbfaqFZIbQKvvSae+4vPbtKcmqKeR3Hd/eIAVTukGmeMB/38fgVUTadQLNKcEUIb33WxdJ1+b8jDfKx0hxphkNDpDgGoNWrUGhUa58/x4L6Ig8qSEN0wmV+e5f7d7ZP6LyzOs7G5w+ycKN8uFRn1+8zMzeLnYqhu54B+b8TMdBuAUrHE+r11oig4ScTRVJXeUZdWu8HRnhB6XLp6mTRNSeMYXc9jkRSVamOF0TgXIU3ukmQXGQ9HvPeT98UzhjH7mxu02iU+/JcPxXmhyuz8NIHvsbIkhFaOpTM86mMURD/+6lc/Ik1g4/5D2lNCdHbz1gNWlhaZma4xGIrKHh72+Jd//g2/LpX59NObAKyuLbK0soSqiXcojVKSNKW7v8df/eVfAvAXf/HvabdnePXqVeyS6LeFxVlM02RhcY7RcJSXf0SlUkJRVLJM1C2MI9Qsw/fF16ap0ZptkqkZ2fH8k2UkScx4MCBJhBDGLhZFLFV2ak5Jj/99/JamKIpIJ3oy9k75WryjaEyvvoESu9z5zf8GQDHwMa0SxOJ+cTJGt22i2OefPxDCmEsLGquLNsQxa4vi/a45CXNthXubD/n8UyFg292e4eq116hWRExVql8j8f4ZJ/bRVNE2ZnoHt18nonLSNrph0Jyu0tkLmJ/PI9R2NpmbMVhZdjCMOH/uDF1JUfO4Ok3XIYWLq9WTaKYsy0hSFVNLMArimdIEMt0hTiLufiWi1kZuxme3x0SKEOy88dZPuXDpIkuryydlaZoOaYimpUz6QngzGQRE3gG4R1QK4pkM9YA0O0JVRQxa7IHizFBduUF9+UdirDZX0XQLyB4VuRz34SPTvsLJoHhBThej5H+ed816/Jwnyn4Bgerpa84q//Hvy5gqyQ/JN/1SQf4iQCL5/fE0QY58DyUSiUQikTyNP2ZRjvwZSCKRSCQvE9/nmivXPIlEIvlueSnEOGeTnQgLztqMfJHNyee9/izO2qg8676nz3+6Q0FGpoiN62p7nv7dL8l6HQA+/ewu5y+skqQhWibEOFmiEAUuuuVgWMIVhTQlSyO2NvYoVkoAlCsV9nd3WD63lJ/jsrRYw/cnpPn9dnc6PHy4zdK5OaamW3lRJtPtCn/xH/4MNXdUiaOIJFWIEyH8+O1vPqR7eMCf/1e/QrfEZvpHv/ucy69cpdMd0WoKQciDr3ZQM42FpdmT8rPYQ7NsaoaBboq6lko2ruuiq6Is3YBqvYaixtz85HMANu9tMD03TRQlJy44G/e2KTcb6JbK7o4QJUy1Kiyvzpy4fCxduEq50kDXVTxPCBImboSmGezu7rGyOifaYuOQ0HeZX5qn3xOCmYPdTYpFg3pLPM9Xn9+k2WpQrddZWBDCmO2tPWzbJAhdTF3Uv9SqkWbgej7j3ElmanaOQqmKkwt7kjRhYXWZ9Xv3sAqib9vzM3T2D/jko7ssL68AUDB1HKdEwTZJUiEwcpwi494AhYTjVDnLdGi1TFZWFwDoHB6hGiZl2+arL38HQGuqie+NuXPniJW1i6K/o4jN7S2GRzXskqjHtDNHlBTITFGH4dE9KtNNFlfniRLR9p6fEsYJBadEljvcFEs2SaZi6DZpLN6RJDPAUE+cl+pFhy9vfoXnejTrQjRy7fIalpkx6h/xN3/zT2IMmAaXrpwnjhMq5bzNohh30CFKRT39yYTOYZdJv8f/+D/89wDYtorrhzQaNTa3dwDY39li7dwSlUYNzxNijE8+/IRf/vJHuKM+nivGuR8FzC4u4ByLzsKA9nQTw1BPBBSlcpkkjugedZlbEe4yiqqQa3GecCr5Wnrx9LnpkbkCMMwCM5d+iukIodjhg3+icu4GSX6amqUomglakTe1TwHQjv5f4sSj23FpNkW7Tk/p6KpHq1Hgw5tCfLW1ech45HLtNfHD8+LiO4x3RmjJl1iZeD8KyQaT4TS+tkKxItpaUzUm4xFpqmAVhEtXq2Ex3dAYTSZ4I9GG8zMm8zMK6rE4J8k42A+oNIsUC2IMuF7CoO8xN+ectEsSpWSp+KPmzlq3HgbUlt7jleuirkedEbV6C8M0CXwPgDQO6R0dUS47lG1RVqiPcN0dSsUeeiyccEg8VN1Cd8Q8VGhdoDz3NqX2FVTLztv+WB71qFPM70OD8jyONi/icvO40PTx9ehpvKgwVSL5IZG/BJBIfhikQ45EIpFIJJJvwx+jKEcKciQSiUTyMvJdr7lyrZNIJJLvHvWHroBEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRPLHwkvrjPNt3QIed8f5LuI9Ho/GOquuZ51/5rm5O4RmmlSrVXq7mwDcuPEqKRFpmhJ4bn5yiq5bZJmKVRLOMmqmQJaycvUVQLizHO7soRsOSiZcJjJiTFNFNwqgCIebLPG5cnmN5lQd9dgTQgMlS3lw7z4zcyLKplhx0AwdVRXxTa+8dgVDvYRpWcSpcBqpNRq44zHv/eQ9hl3hRvFnf/FfEHg92u0WSSrqZdglUFUi3ycMhNPL2A3RC2XCUJyzef8ee3uHvPX+G5Qc4YqSZikf/+5Dms0m5UpF3LNep95soOopVh6zlaQKnYND2vMrAHhBwr1/+ZAsyXAc4ejhTSbY5Tora6skqYjPSpOMwcDn/oMPmJsVTjhvvvsGumXh+8INplSuMTM7RWNmmg9+8xEAc3PTaLrB3oM99nYOAXj/p+8xOBry0ebHLORxTQXbYjQcUMudixQSjnb2CP2U+UXh1uGOx2SpRrVcpVIXrijr6/eZswtcOneefr8HQKczouDYlCplopFwCHEnXRaWFhmN3ZP22t/ZxjIKNKuiLE0tEKVDSqUypi3a9XD/CMtyQFGwTfHqOwWLsRcRI9q5Ul9CUxVWV2eOk5LwfAVN1+h2hrz19nUAdja3GA8G1Bpmu/4bAAAgAElEQVRFrr9+HoBqtUixaJPlrkpBOMQPRszMNel2xDhpTrXRdBPLMvjJT98EoNvpcvOzL6iUbFaXRX8YRoF+94jDQ+HgYtk6qpLw+Rd3aE7lEV4Fm0rZIkkUSo5wuPFdjVuf3+NHP3sXXRHv2trKEuPhCFSFIPzaPSTwAsJQ9HetYuO5Pj3fY2Fl4aRdg4lLqWxTqYr2URT1LOOb50CEFD0xhWQZqm5Rmb4KwL3PP6UaKjQXronn6XeIwzH16StcbQp3nu6DOuHRb2hPHaAbws0m8Fz6I59qxeBHr4u2uLsR8LsvHzDuzQPQK9WwyzdQshA1+FK0s+KjeHfRnDZZKty3FNWi0W7ijyaQO2aVCiaaqpBEMfpxil4GrhfiOHkknAqaBiQBUSCu05SIRk0jCT0UVZynqQpRMGI4TFnfE8fe/Ml/YH7tEkYel1erT0DJMEwdFfEuZyTYdkBRj9ASMS5axX0UcwszSzHLot90q45VX6IyI9rQKs+imSVUtEe6LsvEAH9k/lYej6nK++2R6zKe7Mhnc1Jklj0xhJ7lYPM8MYtPK+tF1qfnqY9E8vtCfhJHInk5OP0pO/leSiQSiUQieRH+2Fz25M9DEolEInlZ+S7WXLnGSSQSyffDSyHGeSK+5TvcCHzeTcynCX2ejKJ5dv2eKvZRONnUzYD61DzjvoiU0fUMRdGBjMlYxC55oc/03BxRFJ/s/SZpiqZmFCuFk/osrswT++7J5nKWqVh2kcB3IRTmR5ub21QqHrV6iTgQoo4kjgiDEKdQxDDFBr7tFEgil88+FAv35SvnSaIMz4uwCmLj/MqVVT756BamU+Q41CdLQqZmZzF14+S8IPbJMgXT1tjcF9FSX9y8S3tqCssSm+6HB4fEaYaiaSSJ2MAfTVw830dVNPZ3D8QzLi1iF21Mx6TRFoIWwyyCYhHngopytUzk+gwHQxbOrwAwOOyg6QV2Nnc4d3kNgDjuU6pW+PLLrzh3TghonHKZ7fVdukdCBLO5vcni2jR2ucxrN8Smfhxm7G1tM784xbnLeWwRChsb2/zi3/0JJVuIBna2N3l4bx1NFV8XLJVSyUE3NO7cWc/b8Dx7u3tcuLSGUxciCMeuUqtW+fSTm1RzgU6xZOMU5yjWG4x9MVZGwzFpltDv9vLrbNzJmI47INcgoSsKBauIamgMR+I8fzJAURxa7RZjV4ij/ChjPPKxDSEc8mMPd3/AjDVGKzYAONh/iKZkjIdjOkdi7CwtTOFOfLxxTKksrm006pDFKFo+3BWFZrPJ4UGPS5fOATDxPMIAbNumYYgTTVNlMBhhWyrjgahrsdJkMkn48os7ALz/03exLAPNNOgcimi3en0Jz3U5Oprw4QefAPDuezeYmV0h9AOyNMrPKzMaufhBiJuLwubnZ/G9ADJxTr8XUW02mVuuk8XinDSOGA22qUytoGn5Q4lO58XzjBQeffuPDysoWYqZx2WtvvELbv/DX6FZdVH3mUW2b94i02wa83kbJjX6gxJ2OqCUi0c0w2ZhTgEtZuKJ+8y0FFYWY9y+iPDaQeHc2iqRWsNQhKLGNMBJAkZuB9WqidppKn4ER0dd7t29B8DRYRcvsGnVNQxLtEWahRT0jDgXxuiKRqNqEGchmzuiDRemC6hqAplCkop6haHGzn7Al/cVVq7+HICp+UWyNGIyEu9yq+GQZglB2MXIY+hG+zexwgP0WEE1j/tDpdpsU56/QXX+bVEPu4ym26jqo8vb4xKYs+fx43OUx/5+5MIzrnt+nmfkPEtUevw9KZqRSCQSye8L+Us5iUQikUgk34bHf4b4QxfnHNdf/mwkkUgkkpeN02vTi6y3ck2TSCSS75eXQozzNB4X0jxNUPO8IpnT5T6Py87TOH2/403Tx0U7z6qLCqiGztTyBQD2HqxTrdZJVbCLuTCmXMT3PNIko3/UByCNA5pTDTTT+rowTScOJ9zOhQuzM210XWXz4S5O2QbgnXevoygpihqyuf4QgFarQZIkaJrK7vYeAGHsc/niGkks6j8eedz58j6WaeEHYtP9zbevc+Pta9ilGrEr3Flu3/yCTAMNhZmZpmiHOEFTFRTVZGZeuJmUiw4PH26xtS6EJZVKiUrBYDzsE4ZiA39/b5tr116lPTXD1sP1/NgBQRRRazdRczcQy5rQ6xxQrgrhQgZU6jXCKGLUGwBQbdRB1SlWbLodcexg94B6q8Hi8hzFshDCpCjMLs9SKIr2as40KRVtdrZ2qeRuM41mi2Z7moO9XUplB4DD/Q6KprGz9RBVGAcRxQFH3T6twVDUYbGNbmj0ugMKjih/c32PJArR1Iw0FhdOtRtsb25RsB2adfFMpqkxnngkXgiBcPYpFCzuf7XF1kPhqqSqCZVak1LVZNgV7dosFjEMGzf0KRWFM46SRtiOjmmllGui/L29Dgf7Ha5duwKA72UcDgYUuvsYrhDGrK3O8fDeLmmWYRiivVwvJs0UDvYOqTVF+2RKiqarBHk/pmGGpqmsrC5wdCSccUYjj+mZNlmqoulijCWpQqs9hTeJufWFEH+0Z0diLM9NA+DYJlmW8Iufvn3Shp4fYdk28wtFVEX8wNjvDvD9gL29I5ZWhCNMuVzGKjj4YcxU/t5sb28zN9ui2RLCrjjLUNSULFPQDPH+JXEMiUqp2oBc6IbyPMl+z5qHHhXlZCgn5Tbnlli48hP2v/wMgGK5SWPxdfwgIkvF+ffvHzLVfBfLOsKyhXhFtRro3c+Jx5s8vCvESp2DlI5XplgVYql2dQbVrpClbdREOP2QjtEKBUp6hdxYC6dcIkpiVGKSKHfpIiBJSxiGyWgkxqE7jCiUDIZD0d+LczZoKSoJs/W8nbKQNAZF0whzq6XDXsqntzxK9Qs4VSGGyzId29QwE/HOpO4uShZiKy6Blwu0nJhQrZKYDmpROHmhFai1F2jOX0XRhRJNUXLvr8dNbp7Cydz9HMvHt3XFeeJe33D8aevTtxXevKizjkQikUgkEolEIpFIJN8X38WG3x+6oEcikUgkku+bs9bb0+unFOBIJBLJ74+XQozzPBuUZ33vrPiN53Wtebzs590kPet7z9o0PdNxB0ABuyTcKCr1Pu5oiFOrkiI2slXFoLvT4Te/+QBDFzvli6sLtOcWyEixLDu/oYaiqly5LoQGSRiSEhMnCWEu4MiSEMMqkWUJ1ZrYiNdNi/UHd7GdAqOx2NTXDR13NGFvRzjZNOo2169fwfdDgiCPRVIUyvU6KgaZKcqfX11j/cE6i4tzxHlMkaoV8N0h/niMoouhlikGjlPCtsUGvmpazC0tEoQwNTcHwE9+/D6D/pDDw322d7bFc68sM3Fddj7eZW5RbMSfO3+RUXdEtd46aVPTKTA9P4s3EXUNfY/9/S7VepVJHvOkGSajyYRzFy5w58u74rkLOpcurjHoCiFDwSniFEvopo2W6wr2d7coFBziJGXQFeIop1jisNPDsh2WlkT9+70jfvLzHzEzK+qZpiEH+wccHOzz3k9+BECv2+GoO2J3r0PnUNRhqj2FP3FpNGsUHXHTna0dDEPjq82D3DkJ7ILDoO+e3C+KfRTNZGZhjn/42/W8H8dMz5hcWbuAl4+BxeWrDPp97tx+yGtvvibaQlMxLY2xK4RWvaMhncOA3Y3PuHxFCKiUQkKUmrSbdcoVMeY0U6F7eMTnt27Tak4B8P6Pr6Ip1oluJcsi4iBCq1Ygd2IplVVsx+Hv/u43vPv+WwB0j/qYuorrxzxYFwKjextbvPvuG8xMC2FXFAW4foqlm6i5G4xVMCiWiqRJwPy8qMODu/dYrqyyvDqHlo8509RQ9YxSrcwoF0gZioY/9hgb4pxGu4mqpSRhgJpf1z/cxC7XMYyvp8mz5oOvj724Y9axm9WxZERTdFauvcWgJURIG3c+wy5ktBeuoOaWQ1euv8HwqIddraHnLlT12Yv01Bobu/+Zg5G4R+q0+PlP3qHTySOdZqZJ0wjdbJGG+Rygx5CZqIrGcCTeGcMKiRKP9a0dDjpCCHN1rYjnwnic0h8JBysdFZKAmalcBKNmJEmKroCqJPlTKQSeiMn75Laox29vRpiV87xx4VXKVdG/lm2RjreIx8LhSHWKGIUaJBmGKRya/MSj2Jhi5tIvUC0nv6eKqqonfXbcktmp/uFZYs78NEVRUNJjgdRTOLV2fN+uNN/kjPNN69JZwpuznl0KdCQSiUQikUgkEolE8ofI6RjNH+reEolEIpH8oSHXMIlEIvlheB6bB4lEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRPIcvBTOOI87ADzLEeeYNE0fufasT/ofHzvLxeCbHG3Ocj94miPCaceLb3IzOIvj8+vTM3jDe3juBKNQzL8Je3v7BEFEvSUcdC5evYKiq5BFRKFwegk8n4JdwLKFa0liOIRuj+XVOdLc6aHg1CAJCAKPTBX39CcJ1UqBOI4xdeHQUasW0DS4cmUVgOnpaaI4RlFTHuSxSJ9/eZuf/fynaHjcvv0VAOVqGcOy+fLLe7zz7qsAdA73KZVsesMJDx8+AMC0Cly5epXf/PPvxHPXGxx1uqytrrBwfkmcU64SdcYkhLSmhHNG0SmQRj7VYolC7gi0t7NFuVZhPJwAsLG+jVNyqLca1JqivdxBl/HYhSym0W4D0DJbDPojbt26Q26ywkyrjed7zC6KOhzsHOB7IU7Fgky8Jh/+7T/w1tuvsXx+mSwWbjNbm3tEUczUdA27INxf3ILD4kqdyVi4sHiTMcVikRtvXMdxRASSU5rn0pUL6JrO4aFwA/ns88957cZ15pfnCfNIMN8PGPZC/CBFQfS3qmr0eh2SRFR+amoK0zLo9QYUCqJtqtUKBauAaWrM5c+UJgpREvHOz95Hz6O+Njb2uHTxEkpu/9NqN6lXqiTRGMsSriv72w9J9TKN9gKHBwcAaKrBV19tUW+08XzhhLS7fUT36IjZ3OHIm0zodvqgaQShOGd5eR5Nz3j7ndfRDTEOL1xYpd8boI5cfvarH4v2KZepVhyURLiwbGzu8NvffkatUebf//oXABiOTRwlDAZDKmURlXX+4gU++PBTtIJBNY8XU1UFw7JIs/REfjg10ybwJ0SRqFccRcSej+OU8T3RznFsMrO8hKKkkD2pW3wet5LH54xHrzl7flBUjeqMeP+capP1W/9Cd3+TNBVlfPrBP6AXysyvvYeVjzlVMylPXaQxe4+fzF0HoFC5SBilVJvChcosFBl1DzDtFpEr3qs0GpCkCQf7e9j1C3lZKmmg0Zqq4o1EnNloMmLixzzcUZi4ok+uXSyjq2Doog2z1EAhEfMhYux4bsyntyd8fNtHMUVs2Lu/+iWNRoVqpU6WiWuttEPgfUytIeql16+SUiBwx6i6cPyyyyF2qY1ZroN67HqjAI+vGQookOXtqzyzH77uv8dXiR/CNeZ57vmiDm8veh/pliORSCQSiUQikUgkkpedH9IhRyKRSCQSiUQikUieh5dCjHMWZwlezhLPnBbCPO37j5fz+D2etvF41vWPi22+6d7Pihk5Xb5mWDSXV9j56lNUVWxk67bO2rkFLl65gJYLI3QdVFL8IIN8I5s0RVF0dENEz0ThkGJ9Cre3SxIK0UiahSiaToLOuCsEFc3pWdoz02i6gpZXNYlgZ3uPKBZlT7VrZGnK4eGIJBEnnb9wjoKpcbB3xNbmFgBXa5fY2t7jq9tf8PobQoxTrzU4PNonjCOqNbGpf+7cClEc8+orVwHY2NigWK0xNdcmcIUIolSpMrusoWQJe9sipqrb7eAUHY4OuzRmp/NjfQ72exx1u3m91iiXHAqmgTs8Om5pFpdncSoVyqUSAINuB8tQiYKQ+XlRlmko+H7C4b6IebJNA3fSJ0lLmIaI4Xn97ddRVI3e4QFGoQyA78c4toFumidRTGqmsL+zx/LaAgA39/aolBxqtQa2JcpKyaOuNJ2ZGREHtbq6QKYZRGFCJFJ+iCMF07ZpWkUOdkVbT0/P4vshg76IylJVBV1TqFQrfJGLS7pHPa69cgHLAkPP76lllEpVTE0hQwgqSuUyve6IWkMIHjStzIP1Tc6dX2FjMxfeRDpray3SdMJ0LrSJk4zrTgXSGHcixFB/93//fxweHnLVE3VYWV7i/NU50iTC9Ef5ONQIvRhV1fjod7fEmDi/yOz8FE6xwEze1nEcs7+1Tz/v27mlFRYXD6nVqgShqPtgdEi1Vsa2bTzfzftbRA2ZusHBgYhY6h72WFlbwZ2MUfP2r0+XyCLnREiURCl+kFCpaBztiXtW6i10yyLLUhRFzUt/upDja3FNRpYpoKjwhAjw9HlPR8lVYqZTZu3GzwiGA4YHQgxnaS5xohIFEQVTjLlMgSQNsaw67eU8gsyqs7Ozhdc7BMA2E2o1k2G/h62K6wxNp9tLiBKNRlGIAMeuSxJH9I48Do7yyKtEod2A2RmT6Skh+NrY63N5rXzyNJNRRLliggpeIOar2w9i0sIqM2sL3HjnXfFMlkm52iB2t+hv/i0AxZZCoVxCtcU8oRkOutEgTjWUXPg2Hk6otC6dxE6JhnpKrFR6qt0VJdfnpKdOOCWuOhbqoJzRM18Leh498s2CFYV8/Tjje88Tp3gW30Z4c9YaJpFIJBKJRCKRSCQSieTFkfEeEolEIpFIJBKJ5EV5acQ4p50LjoU3p4Uuxy44jzscPO3Y03iWQOabvj7rWJqmj5R7ltjnafU4fW4GFByH9sI59jcfHBeO45gYBZMs3zz2vQmDicunn3zF6jkh9lg9tyoEOaoor1Svk6Uppfo0gSccVjxvgpr5TAZD+j0hXEjUHqEfUavVMcyvh8LG+kPKFbEpfu/eBkurCxiGxuH+LgBXX10FYlrtKr/+sz8BQNNNekd9Ll/6NbmegtBLmJ5pEQYxNz+/m7cPHB31WFoRLhnzCy2K5SqDwZijXDwRRiHd3oD+UZ/pGeGUUanXKRYdVGUPyxZCgkJoEakppiHEAbs7h9TqdYb9Me0p4YqSRD26Bz5WsUQUCRFHFEUcdQ5o1EtkmVC96JqKrgkBEIDjVNA0nc5hFyNv19n5RQ739ynXy/T7QlxyeNCFLGJnZ4dyWYihSpUayyvzJzv4hUKJQqGIbhUwc+eavb1dth7uMDU7Ra87AOD6G1f57NMvMU2Dzp5o64PdQ+r1EpVSEV0VfTQajbBMi0q5lD9jyDgOmZqe4xe/+jkAR50DFN0g002CY2VPFmOaBmHgkiDa0CmW2N3cYmtTPM/CwiqWkqJnKU5BCHQe7oQU6yHO+IC5BdG57jjCNEy6/R6a4Yi+XFrkT379c27dug3A3/0//0QKXL12gasXlgH4T//X39Bo1lleXqY9JcZYo1lFVRWCKMQfC+FFtV4nU1SCVIz7OE2ZX5ylVm2gquLY5sYOBWuFQsEkTYT4Y3uvw6Url7AtEyMXqty5dZdiqUIQBFiOqGu5bIMGlbpwUNJQKFXK+O6IwAvE86zW83lIfaqY7izEu/38c8Gz0FSDLHbp7nwKwOrKHM3F6wRul3Em3JeqTgndqTF94b0ToVjo+RTUjEm6A4DbGaGbDrZTx7aFS1R0dB/TtLAdGxQxl6WxiaXrpFlMsyHG9P5+xMPNFC/wuHZZlH/3QcSl8yamIdyeyjqkJCSpxmd3RRv+7kubP/3zP6elmxRr4p0sOaDGt1H928zPi/KL1UVQv3azSYI+tt2mMXueJBHOPn50h2H3CLvSRNfMpzfYY9P21/3w+Hyez9m5e9iJ4uZxt7XvUczybYU5j5dxFmetjafPP2vNksIdiUQikUgkEolEIpH8ofHv5l6X7jgSiUQikUgkEonkpeSlEeM8a2Pwm4Q2Z7noPH78u9oYP+PmovzjL0/d63Q9nhDfPLHpqaAoUG608SdCGDE62qfebBPHPsdODuPRmGF/wDvvXBduLECSpmhJRqblzg9pAopKpptolhAfVKwibvcAp+JQLAsHjDCOKJaKrN/bwLZFWXML87z13htMBkLEU7AdXDeg1ijy45+9BUC1ViVJFDQtJYqF0CNLA954+wZZkhInwuGmYNkkWUKWxJy/JGJ39g8PaLamcIpClKIq5A4iQ764+SUAzWaT5nQd07SoVsXGf6Fg0Wq1aLdrTHzxnHrBpt87xM9dUc5fvILnuYShT60urjOMChsbDxh7AXEkBAKv3HgFozDAUDUSRbwCcaxgOyqvvP5K3s4TdFVlY32H1TUR8zQajFF1lQf31xkNxD0XF6awi0UOD7tEgRCSqFnG5voWipqLG5KUWr1KEKekebzOxPNYubhGFPgsry7lY0KnWqni2AXKtQYAvhtSbZboHvRwc6FKlKYMB2PGE/ekH6uVCm4QoqpCcDS/OEMGJEnGaCgcdIb9CVEQMrfUYjN3vanWG1iWxfSMEMbcvX2Pi+dncf0JtiPGxLXrF5mZn0VTdYIod+NREqxCiZmFWbr7wklmd3cbPwh47foVQDjj7Gzv0+kcMpwT9XrzrbcIo5DtjQ3OXboIgFOs4Ps+u9tdCoXcGSdKqFUbPFzfA+D/+I9/zY03X6c1pWMVxJhutqbpj1xMP6GUux7NzbVxJx63v7zL9MyUeMZmE1XRmV9s8nBduAsFnk+5UcbPhTfECZpl0js4ZGpBiNx0y3xqbN6jc0iG0Gwcz2H5tHDqsuz44GNTj/JY0cJNJXtkPkniGL1QojYr3KQa8yuY5Qa2Vz65TlUU0C003SQKxTOt371NvVZmakX0h9e9g2naGMU2YV8I3wJ0RpOASRAyZYs21FKVbqeHHxSoVIRz1MJcC9/bRMenURbvzK9+vIhpmri5E5Kmwc5BAijsHAkR3dvv32B2ZQ0lDQmPPgMg7G1iW1Cdew2zKtraH/cpFBtoWv4+Zhrd/Tu0lt/AzMVFptOgVK2hGTonDXmiozndaseinq/PEf112q3s6349Fncd99MTXkaPzd1fl/B0nva9F4mg+rY8Ht14egw/K0bxWW5xEolEIpFIJBKJRCKRvIx834Ic6YojkUgkEolEIpFIvg3qs0+RSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkz8NL44zzLL7NJ/bPcgP4XnjUJOMJjiO2Hrkkdyx43KlAUVXaC0t5sQn9zi6l+hSaKZxkWu0y5VoBDQvyiCyVBMUwUXObjTD0yVAwTAfNzrs4yvBCULIQwxLxQ07BRlMUrlw9j+9NAIjjENM0qVSF+4imKIy9jDgIqFaFc0aWpviRi2VaGJqIAvLjCWoG3iTFKuj5tRloBpphkHkiaqbdqmNZKuORcFjZ3drHsossLc/z2mvCwWN9fYv52Wn2OGBxUcTp7O12uPn5ZyytzJClIpJoaXmOzv4ezbZwzihVHPb3j2jUKkSBcOsoFKsUHJtBf0g9r/9HH3yKoeskcYqqqMedRBLr6Lp20h9RFLG0PI9TEk5CGw82WF5bot8bsbom6pXGIUfdI9Isw/OEU02hbjAZe4yGo7xsiMMAu1qj0jiO6ikSej63vrzNn/76T8Uz7h3Q7fZRVVjOI8gMJcKyS9z+YgPLEHVLw4zZ+VmU3GVH13Ssgi36RxEONFnkMhn5hLHG7JxwvSlXKxzuHZJlDtOzYgwM+yMU3WQ4EnFHb7x1Dd00GPYn3PxYOJm8euPa/8/eez1HliVmfr/rXfpEZiKR8IXyVV1tpzlLzsaSwRBXy93VhmIlPenPU2jfd8UIrSSamSHHte/qLm9hE0B6f60ezgUaXQ1UoXq6h0Xy/CImpvLiuHvOufc+nK+/j3G/x9xCnWQiYoUmoy4f/eZL5uslZjPhxHK4f0ir2ePihXo6pTGua1EsFRgMhRPLxasbHGxvkdlYYHNLxCdNp2MymQxeLouRZpx9+skXXL50keVF0ZaSJAx6fYa9LBnnyC3JYTIe8zc//zlXrlwA4NKldbI5k9FwQHNPOPZcvH6Z3c1dCnMlsjkxftOyCP2QcV84QI1HE0qVEmEckC0VeT1O+thw4t/fjqH7Pm+hBGGoY7g5Khs3AdKIJgU9dbKBbxx2EkVBS+dw48bbqKpCnMYwhXPLJFHIeLAHSrpXPRfP7dMZd+kciGg0r9DAMmyWlutMhgcAZLIeO81d+p0eb6UxVdU5k+FEQUO8h6JIZXvPZxDWufUnfwpA1jNg+BAj2iWefAVArvEh2dq7hBH4A+HQ5I8O0IHIErFhVraGP9qn23xEGIiZc0o1MuUKinpSQ3rCp+Zby5CcUkY5/rdwi4lRlG/rUX9fR5rXdZT50b9NL3De8f2hxyWRSCQSiUQikUgkEsmbinTFkUgkEolEIpFIJN+XN0aMc974jlddP+0Q8XUiqk4KeE6LCzl5TUTPAMnL+zxZ7zwCIUUTh+nlxXUUw2V42MRyhbjEsF0Mw0RRVCYDITaIEws7N0fkixijcBYwnYQ4GbA8IbpIdIXBJCLj2McH0EngE6ugqApRGKRtaQRRjJsRwo8kDNndalKbr9OeivYzpTK9zpBa3cQwRVu27hEEMR9/dIfrb60CkM87KHEMcUCtLiKDwmGLza1D4ki079k209mAzWdbfPqpEH+89/5Nnjx8jKYZ6KbYoqsXVvAyHp12D90SAqDWQZvSXI1cVogSojhkbX2JQXfM86cijqgex+iajqZpaJoYa6lUprm7iaEbLK8tAdDpDGi3J6i6l65PjKYq7O7tHwto4jCg2+ng+wF+KkDRVchl84wmM7LpXBeLGeJYIxK6GNrtLpVqmTBRIBHCBde1eXznEVnP5eH9h2Jecx4LjQrFUo5MVuwBUykRxhpz9QLBVKxRrTbPeDgBRESYpisMR33qCwWCNKlMMQo4GY3N55sMBqJermRw4dIyiq5zuCX2zse/+5habY5r10VklOHYPL73kHxW59K1i+IeTZvt3RaG7REFos/hYMx07PP00Q6lmhC4/G72CZwAACAASURBVG//+38miTUUhPDqt7/+mKePdykUcjQWRdxR6AfUG4sMRz7xlhArxX5EMJsx36jy1e3HAFy+dhHXsnlw7xkA/d6Q5ZUFchmPwaAHwP17D9jZbhIFMRlPrNudOw9YXVumXq8w6Is1mk7GFIp59puHTGYiQm00GGA7JoOuEIUZtk3/YJf5hfnj2KLzCytOe/7j75QREUjJN+lJCd9R6bwsOshQxb5PSE5kYZ2oC8RxQmf7CQCW5+IV6qjpPsHIoOrgkhB0heglUj3KxQEoHcZTIZbp7R5QnL/K0vICfiDWTWXKNS3k737Z5m9+3QTgz/94nm53QG1eCAWf7yTc37JxS2XG7W3R5WgLXT/ALjWoXPtfxf0YBazCAk4C+09FuThJ8P0BSfrMqIaHV1gmjqCyJPah6WZQFPXbc5SclD29KIb69ryKKLGT34If1xjuZfvnxe/AaWV/CDGpjJuSSCQSiUQikUgkEsm/FH7sqCqJRCKRSCQSiUQieV3eGDHOy3hRIHPa307+ftnh5cnyLzsQPfr3y4Q834zn2w4Yp/V5mqjntPGfbEHVNMrzC+iKyuHecwCyqoFuWyhaQrYgBC7T8ZggmEEo+thvtlA1nUwuC2HqlKKqrFxcRVchGAsXlHA2Ikp8kjjEToUks2lEvz9ET901SELW18vopk4YiGt3v3rMg3v3+E//y/+I5QghRhL4qBi88+5luu2WqBsn5DIujpMjToQgZNJ7QrlcJ1aFwGXQ62EFJhM/ojIn3GaSWCGby6EoCmEg6vnTiK3NXbK5DEGUikuKeeIgZq8p3DUuXb6AYZjs7T4iiYQYIvBDBv0e+WKOQkE4evQHI/K5Av1+n8FACEL29vYpZDP87h9+B0ChmGV5uc502Kd3KAQbtYUF/DDAdV3sVCQUhlPahz3m63Wau0JYgKJx4coGW0+EkCQIZoxHAybTiMlYCEmynouby5AMRxTyQhhRquT4+vZdllaW0BSxHradMBqN+PCP3qXVEnVn4xnj0YhcUdTTDRUGAw72O8SpmiGTyZAt5Mjks0SpWMwyMuiagqIopKY6/Mf/+T/Qbh2gpIKNOIkJIo3+KGE6Fvftuh5zpRyqEhElfrpGAcsrFQ5bbWxT7AvHNOn3x0xS0dYHP/1XBOFv+Lu//iWu+1MA2q0xumHQ7/RR0r0/9WOqi2VQFTKene7hNsVchmJJ7C/bMXi+uUW1WkFRxFjX1hosLjXQNJV8Kl7KF3KEYYBpmiSJGMf+zjaXrl6jOwhRFSHQGfb7ZHKL1Bcb4nevTRjN8ApiTl8PMZnKkT0NySnPdfqOgVSFcyQGSd8hyjfiHeUM/cRJeY/yQrkjPaCiKKAI0c7e43tsvF0hSp+FQfMp2fI8hltAz10WFXSTOIop5XcoJocA9McTuq2YSVDCy4l3jG2ZTAZZrl2/SHNrE4Av7k/xXI9nX4j+FHeZTCnh5tUS8+4jAExtjFv7ADWzSqQKt614MmQ27KBbHljimczlF5iODolTQWFn+ytUw2J+7TK2l//mPtP3Y5C+F0I/xPM8vqXPOVN/8qJbjnLq1VdxdvPJSZ+eU3nx76cJboRrz8u/Yz8WUrwjkUgkEolEIpFIJBKJQDriSCQSiUQikUgkkt+XN0KM86oDwCPRy3dcaThdoHOevl48/Dyrz5Ptny2gOT+vF7elgKqQq80TppFU+88fUV12ieJQOK0AhuUCCiEicieTdXj8ZJf68iIcpS7FMbquoqg6uisEDmgqWhQyGPSwUpcIzzUwbYPAF7FVtu6iqBqBH+L7Qsiw9eQe771/hWg243BPHMyPBkN0U2MwmBCksTLZvMd0Oqa5N2K+JgaiqAp2poBuCTeNyWjA5uMD3HyOlVURzzUY9ilXKwwGAz777C4AS0t1DNtmfmGOQVfcp23Z6JZBrTYHgKpq/OZXnzAe9lhL29I08DIOuqGztyccPbLFEofbLXa3nlGcE5FEl69dZjaaki+Kg3/LdNF1lUqlfrxWsyAgjiEMQ3rDcTr+mLnqHPMLNeJYCFVanT6GobK0tABApVKkddhl8+ETalUhbmg3DzFsi0QxiFWxtl4uw7XrGygK3P7ivpjXfg/T0MhkHYppfJLiOdQadbY3t9L2C0zGM2YTn0q1DEC3O8DJuriex9ZTET9kGSqZnIfrWli2WA/L1imXizx7LNxUksQgmPr4M4VSSQiC9nb3qc5X0DSFxDiqZ1Iul6kvLzIair3S7U+o1Mp88pFwOOr2Rrx16xprq0vEqVDs6y8fkcQB2azH5TRayjAVgjDg3tc7bD0X96RrOv1un3pdxFRdurLBzs4uf/V//T+89dY1ADYurpEoCf7MP0psYzQcU52fQzcM7j14zhGdTpfeYMhcqQRAuVbBsEyGHSHkmo4OWL1yEzWNXfs+fPNMJ+d6LyVJ8hJlx9nEcYyCIoQdqapKSS12kiTBzoh9Up5fAVVDScU4fhDQfHqf2tIG+ZoQ4wSzRQaJzfjw16i+ENG5dgDKPqaTxS0LcVKnNaBcX0PXTUxNXOtPfExrnlpV7JN61cVRDlDjB+RK4pnUcx+QaDl03UNRxOcm1mdMRz3CzgGWK9rySguM+j2iVGin2SUsN8dwNERPy2iaDoqCokAcpa5Qmna+eRaT9KPx+zb9pohgZDyVRCKRSCQSiUQikUgkUogjkUgkEolEIpFIfhh+3JwOiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEonkXxBvhDPO63AeB4HT3G+OOOmy8337Oa+7zWl/f11HHwVQVJXCfA2ASW+fzu5TCtV5NNtJ24yJAtB08dvOKKxdWGY2HRGGwhXjyaPHXL95A0WboaYSLNPxSIIQN9FRUmuRcDZEVRMc60TbccCo3yGORMUPP7yO4bjs7e7hOKLcg/vP0HWFS1fWaHWEg04Sx0xmY/zZiGAi6upOHRKVKBJxSvlSHkWHUqlINo2RenhvTBIlZNwMLVVE5+SKBbxskV//w2+4cf2GKHf3IbXaHLalp3M1IZ/PYugqmp66cAQhtVqNII7Z2hdtGaaLrutcvX6dfkfEVBWKRQ4O9gkD4bjheVnCKKTX7XDrvesAdDsjWgdtynNl3Ixw62jTJUkinj/dZjgRETsZz6bf7h3H5diOSmO1we7+IaYhnFfy2RqWZbIT7DLod8TcT8tkCy7hLCCXxobFgcnKagNVU8hkMgCMJhGTSYeLF9cB8IMJ7cM+maxNnOrrNE3FsizaB/tsXFoRbcURqmkSRJAEYv79ccB0PGa+JiLCDg57+LMJi0s1UMVcPH28R7GU4+7Xm1y9egWAWq1CoijECahpBJmpxkSzKY16Gp/mB9y9+5A//tmHx/t5eX2ZzuEen39yG0NX0rXN0FheZDwa4ftiXO98eJ2PP76NPxNuQ5PJlPn5KpVaDUMT7jx/9V//O2+9fZNqrUSvL9x5Ht5/jOuYlCoVbr4t9snBfgcv6+FmMjx5KOKTKvUSmqIyHYt6tcV1dDvD90W4aJ3UNn47vu44nihRTv5COQqfOocxylEslaaoxHFMlAREszT+bdRFU3TiYEKQOljNpjPMg8doaeRcZXGF1s4We08/or7+AQCWk8PPVJmNr6LbIpbMSobo/RYe+2AIJyFzoU4UBpQr17hy6ycADLr7qOoUv3sbACe+j+N56N4qZkE478SJjmlnCGcz1ETsp2n/EEV10A2LYCLGPx3oKIqC6QpnqsrqTZLU/UdVU1ctRSEhIUnAsq0TMx2j8HKHHPHOPvHOPcMB5qiFk39V+PY7P+G77+9XxVK9qtx3x/qPy5vi1CORSCQSiUQikUgkEsnrcORo83/vfPaPPBKJRCKRSCQSiUQi+SckxnmZAOasyKlXlT0P3+dQ8twRNa8xBlUTS7Vw4QrNx18zaDfJV4XIAjVBUVX0VOiRoKJpAe3WgNlMCERMQyMmQlM0jgyRNF0nSnRs1+LOF+JAnXjCxqV1wrSepiaEwQTbtlFID9P9EH8yYTLqUywIMU7GNvH9CH8SMlcWMViuq2MW56ktqAQTIXq5d+8prudTX2wAYLkOb717g157iKGJA/ZCuYiWQC6XwZ/OA9A5aNFq9ygVy1iWKLfQqBEnAa4txAeD1hYrq4uMBj5/97e/BOD6jas4ToZmc4/y3Fw6Xxozf4Sua5RLItYpk/Eolcs8fvRQtL1YJ1YUKvUyR1lfjmujafDo4UM2Lq+KsVZK9A92uXfvCfXGEgDjXkDnoIuTccU8ODqVepVyOc/epogC2vcPaCzN8fb710gQ448iH0XJo2k++aIQJnUHPaI4JIkNOh0h2snkiziOhWnbADT32/zmtx/xH/7jv6XfnwCgKwlxGGPaNuM0UsswTe599ZDV9TWiUKzll198AXHC9RtC2FOd86jXbxAGIdOpaGtpuUGpWiJTyBLGol44CbAdG01J8LJiPcJAYdAfksSzdONGXLpymftfP+TqdTFfw+mExfUldMtk64mIkTIti/FkRmOxxrNn4tpf/3+/4J3338X3xRh6vR7vfPgOB80D9neEqOrC+gWKpRKTSYQSiefJtlz2mx1yhSK2JeZnfX0dVRPSl8w7XjqHBbrt9rFYIleqfJ/EqGPOEv4d8UNqG8Ig4Mvf/oJcPoMeiOcq8ruodhlDGRGEQtCkRl12Hj2l2xV7bvXdf0+SuAT9bZqPhcjJyRbpbH9N4I8wY7G/vHwB1S4QjXvErd+JezHLuKaJFmsQiveMNTvEsUyUNM5Mz3xAomaJFY1M9SoA0+Ehtldm0u0wi/oA5GuXCWdDEgw0TU3LDTGdDMOBEAR195+TxAnT8ZTKsogzs2wHRf32PB/PcXL2N+LkOhyX+T4Tf0p7Z/3tn7qY5U0QBEkkEolEIpFIJBKJRPKPgYyokkgkEolEIpFIJD8Ub5wYRzhMKGdeO48o52UHob/vIemLQpvThDc/hKvOd+odOeqYDrULb7G/+YDOthDQlBZuoJkWceo2o+kK01nI/btPaLX3APjpT/+IaBZi6jqJIpY9DEIIZ4TRjPrKAgCWpqEoKkrqWrLf3KNUcEliOPJ52N3aRtMU1jc2jg/HNy7OY9sue4c9ZgNxqF+p5QmCAFVXGIyEqGI09ckVLbQjR5Bgyng4oLmzQ7FUBMBxbAa9Nrni0rGzT6/XwbJsNF3nd5+I/7rl0uV1lpfrhIEQFvh+QhDFDAcTlhaE2Gc6HtFoNNB0he3nOwCops5bb18n8EM0XQgLojgkk3G4ck04v2SyOVAjJpMANRXjtA9b+MGMRqPCQl04FX326V0qJZe1C+tk80Losb9zSOughTMR97w1mjIczqjOV7FdITaozc/hZRy2t/fI5YXwplorohIQqMGxwOX6jcu0Djoc7O8zTp13CoUR1WqB/d1dAAwl4l//7H0m4yH5fOrY0zrkYL9LvjTHr38hhEnvvPcWrm3w8M5dLl4W4pud7QOUWGU8FgKayXjCF59/zMryEsWSELPEwYDZ1McwE0ZDcU+W6RJEAQkx/kTsuygK8f0ZjiOcWDrtXdxsguckdA7Eff/9rz7m3/1Pf8FcrXi8nxIFwpnCaDTjvQ/eBeCXP/+Y4XDE4nL1eB0n4wH9wRAltYgxHYM4UXn+7DFXLq2KsSoR3d6A3d0WaKLclWsXCcKIQW8MhOl92mItL1wEQNF0hFznh+K7opEkSVA46aaSHPf47esvjEJJUBKI0/vefvqI/Se/hcYKhXS9Z/4INfRBnzEb7gOgxUParS6ZudQZScsw2H+MrgZMUkeg7uEhnmtg6gZxINqK1Sz5xrsoikZ350sAgtkz1CRHFIDpClFbrtIg0TM4BbGXTDvLbDzCn03obN0DIDu3hKYqhOEQUxPPR4zKZNTGtvLHzkSK7jC/8i5mSzyj+5sPiIIAEoPa4to3c5N8+zvwjZXNi25np6zkiXf1yb++ota3yygKHH2PjseQfKed09o+ix9K+HLat/M8/b7MwU0ikUgkEolEIpFIJJJ/ivzFwtuv7Y4jRTgSiUQikUgkEonkh0Z9dRGJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiURyHt4IZ5yT7jKvjnv5brmzYklOlv0x/kv/F916zhrjD+HGc+wikiQopkFleQPfF64ShzsPqNQvExEAoKk6ru2wdmGFJBGOJ5mMQ7/fRzMNTFNN29WY+n0sp8icZ6Xtx4RBhBYG6W+VwSggkymQRMKZ5cLFFYb9Ad3OIfmicLMxLYPBoEutmkc3hdvM9rNNTNtjfqGKlzp4vP+TMntbO0RpW2EwBUWj3RvRH4gYm+3n23iuw+3bd9i4sAzAdGoxN2cyDUJuvHUNgPlqmWDmoxhi7M2DmOF0i2zOo9fvAbBYWODe3Ts4notuiPt2PRvTNpmMJ4xHYhyt1pR8ziWTRktlCjlUJUJRJ7T2RCzSdDIjThQmM59+T8QDEUdMpyFJMOPO588AMAyD8WyCbglHHcuxKJdK+DOfSqUCQK1WpNncQ1NUCrk8AN1uH1MzyRbyaIZ4NKf+EEiYDIcMR2mcVeBjWzqeKyLCZrMJs0AjihLKNRG7Nb9YZ/vxM6IgYL4m+nQyWX75y4+5eXWJo+gtVUmIiNjbb4u2xj61eo7G2gK2Jdax3R4RBgkqsLcrIo/W17OousXBbpNH9++n11bY322xekE4sSwsrvD82Ta1+Rq2J1xRLl9ZJw4jTNtgebku+gxiPvrVR1SqJdqHwkEnn/PQVIW9nabYh7FGkowIA4W1dE+MRyOaO02m4yG6Jdx4Vtfmqc43aO62cNI+E3R8PyAIQgZp1Fd3d4vL77yDbqb7/vcKLjqL0yKVTvSTKKCoqaNJeun4XXH0bkkddBSYDIYA7N79JRsb6xjZMtX1nwDw7PO/pvf4v+N5Dn4g9nQcTfGHY9wbfwnAqP0EWx2i6A56Ip41P0nQ7DqoZbSwn/bt448PcOeuU7n8bwGY9B4SRQqKYeLl03i8SGUyaOEWRJScbnt4JZ1hv0tv5y4A3YNtdF0jimJ8XzyTcwtXUM0CiWqhu2mUW6ZIomtkqyLqzXQK7D78nEhR0QyxtoqqkqCgnOpfE5+Y2x83Yun4vf/NhTPLAK90UntVP0eON6+q94eIYJRIJBKJRCKRSCQSiUQikUgkEolEIpFIJOfjjRDjvM6h4MsONn9Mwc15x/VDRY68DCUBXbdZWLsBwObXv2bcfYY7J+JcVN0ANBYbNZRERDhtb+7y8OFT/uRPf4ZKJNpRNRJMUFSmIyFSMN0ST548pbEg4oGc/Bydw0Mm0zG1ag4A3coSRQokwVFCC2EY0B90cVwTEiHk6XV66MYM27Z4titEFbduXKFU8FA1IYyJsAn8MZlMBi8jxBOmYUASY+oKh4dCCBOFKtPZjCiK6BwKQYg/HuBmMiwuiwP8XGmMHcS4rnEcw+QHAe2DFhdKRZQ4XaNE4fNP7jGbjMhkUhHH6hp7Oy0uXBTigMlkymHzAM3QGfSFCKLdanHrg7d5+mSH27cfAFDIeTi2S+CHzDdE1NdsPGF5bY3DAzF2RVHJ5ByCcIrtiPZnswkLCxUMy2I8FO2PRwMy9UUSJSFMhVbhJKB92CYII+oNIV7x/Qn5Yo79ppgHQ1PJ5vIcHPQJoyCdw4jF9Rq97pT1SxfS9YYrNy7RH47Q2kL0srqxzmzq88WXXwGQ8bJUK1WC2QzdEuuxdvkymqFwuLt73Ofy8iJaoNFpd9jeEkKexvI6tYV6uv9gMOyzslrFUG3aXdHfo4ebaIaDoSusri2KtU2g0agzVykShUJIMlfK0esNuHxJCD/cjMfO5j69Xhs/3YcKOn4Us3phg15XCD10VScIIrxsliAS+/zwoEtzf5el5WWmQyGiqjaWyRWKxxFDqAokQs7x+k/wWSKQ095HLwhyXgiliqIIFBVN09PSqUwoiWk+EaInS5/glm4wGx0wOngMQDx8iEGLYBAei1fGg5Dq1f+BTEnM4YPPd6hWiox7Y2pVEY1mhQFxOEY3DRJNCLSSRGUyGhP4n5Mg1jKOE6zcPIbukoRixEEwQbezmHYGAM1wUZIEN1vC3njveApmkyGqrmPqYly67eAVS0RBQHf/ibjvYIgWKyQiDw/bdahffptHn/+azoF4d8wtLr9kDX6o925ypIB64zhbgHp0/Ycb9B/iOyaRSCQSiUQikUgkEsmPyetEVcmIKolEIpFIJBKJRPJj8EaIcc7iNIeZs9xoTrv2onDnxTZPc9Q5j6jmZX97XUHQed1zvvN3JUG3hbCj3LjE08/+GzVLOKXYxQaaqqOaFvVFIXjY237OyvI8se9zOBYiBcfVUFRgOsMwRN3En+I6FroptkZtYYFCsch42CERZ/XohoaLEMOEoXBrcTyXRmMeJUlAEQUvbKwQRAmO67G6INwzIt/noD0hNYPh44+/YnV5GX86ZeuZcJZxbJXnz3a5eusGlm2L2yWhZlfY3WkSh6KyZdnYTobdbXFY72Zz9Pdb5Mws2ayYr/F4wq33blGeq/DJR58CsLo6BwpULy/x8MFTADrdPrqR4GVFf9u7LXrtFktra2z7ov1KtYauKOiqySgV0FRLOXx/ws7OLt1UtGObBl42j+kI8YE/7mPZBs3nTeZqYs12NpusrS3iuCaOK/ZArz9hr3nI8nKdOI7T+9aoLszj5crkc2Jslm2gqhpREKZ7Q2F1fZ3m7udsPXsOwMpyjdZhj1w+j6qLtZyNJ9iGzjQOyaYOQDu7e1y6tM7Fi0KwEU6mqMR0WgM+/fQeAJlshnc+uInjubiWGMPjh49Zv7BEpVKiPxyl858hjkImUyEA6x60UQo5XC8inAkRzNtvX0G3XLrtjlAHAbPpENWyMFyH+SUhuDB1G8uxhDgF2N0+YNDvMR128SdCsPPlF3fo9Dqg6Fy4eAmApYUaKqCoOofNAwDmGzXyxXWURMGoC5egxsoi6OmGRgjcvj8vVj4S3JwQCirf7Uc8+gko3zzfmqbBCe+XBIiCkOdff8Tdf/g/xT2uzeMW6kSzLjtf/RUAvd2vMA2XXKWCmvbrh0OqK+8zHglR2HgS42ZyuK5OEqd7Bx0FBUPzUUivxQaqEYPpEodiLYNxmyDoYzkZ+uEWAJaTQTEyRP4EgGy5junk0HX9G2GPAobjfWd+DdNE0yKKFSEUQ1cIk+j4vqeDHopu4lg2g64Yf6WxKu7stNdv8o1jzlkuR2e9tU9eT5Qjl6Ijq6JTypzRzmmc/GYd9/eaAs/T2vnmu3EeAdjL+5YOORKJRCKRSCQSiUQi+ZeMFOJIJBKJRCKRSCSSH4s3QoxzVgTH6x5iviikOav8UX/nEfSc1sfLxnXWfZxV52WCoVdx1GK2PE9l9RaTQyGeMG0PzDJhNDouVa6UWVhcIo4Vul3hgqNpOq7nMh0Pj4UJiqaztLxIQpzeUIiqxexsHeAHQhhx+do6umtw0BqgIgQVdqISxyGKkqAooq6hBRiWSRRPGQ3HopxtkC8WMG3huHHrnbcY9cZcvXEZ0xZtqapOJlsgjhR2t/cB6A+6vPfe2ygk3P7iC1H3rRuoqk6uKMQ5rVaPbqeDmiRMR0IgYtkW5XqN7nBKoSyEGNNpgKZo7O40Wag3AIiSgOryAsOhEHp0Wl16vQH57pjmnhDjaEqMoqnc/+ordFXc42xWYTqeEc7GmJqY61zWw3EMGrUaAO29Z+i2zerGBqO+cIhZWqxi2yYzf4o/E23FxOQ8myRWUBUxP7oWE0cBc5UcZup4crgvxAmLS0JoZToaqhpz5eoqXk44ngy6Q0bDGfXFPFvPtwHwZwHzjSpqkjAeCXHMYr2GbhpsXBGiiNlwRBiBqoKTxmD98he/Ya7osrS6wIWLok9dVxgNfRzP5M/+/Cfp/EzoHLYJY/FaqVZqtNsdSnNVwlisfznjECURpg7PHz0FIAwTbt+5y7/7939GtyPG9fz5HrqhMVcuputoMt+okRvl2E8jtWzL5KcfvothOhzLOFSN+w+esrC0yMrqUrrPNXqtLko8YuXKVVHMtEkSsZ/P4rzP49nCiBN1X/FeOU1wCEAU8vzLv+XR7/4rGVU8t4aSZ9j8BLt4laojRG75pQ/JzS1hGjqtzY9E1eQz/PFzdFNExFUrJrt7PUqlPFlbiOjyRRtNt1AinzhJ460UH02zQPfQUgcrJdSJwjF6rGBnxZpkF95BN20mA+GW1G/vkimpmE6WOHW4iaMIzTBIgFlfrNuo30FJoHOwe/weCGcJXr5IsSHcvbYf30XTNYJwhmULJ6QkDak6ix9SVPJiBNX3bfs8wpvzfv9+KKT4RiKRSCQSiUQikUgk/1J4HXcciUQikUgkEolEIvmhUf+xByCRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikfxz4Y1wxvmxOMt95iwXgrMcA05zrzmr3svaeVm7R79f5uZzss7JsqquM3/hA1qmcDI5fPoppaW30OwiUZQ63GCgqAooMdlMBgBd11ExaB12mKtUAbAdiOPwOO0kjkPCMGQ2eESnL7Rbg4Uqhbk8hXIFfyyimTRNR1VDDg4PCH0RdzNfy6IZGoqWxbHEWGfjEfutbRYWhWtJNmfjT8Y4ro1uCXce28owGMy4/dFtrr91DYBe64BHdx5RqpVYaAg3m7n5BTRDxZ8FYh5UyOdyHDSbLC4KV5p8scDzx5s8e/IUL+sBUCyW8FybSRAynQmHkCj22dpuoqTzZZkmaxc3GA7GNOp1AMajAbpu8N4HNwlTl6Awgmq1QOB3aLfG6bxaFMsVwkBE/IymJuPxjF6rTSN1s9GUKVEQMh2HuDnh/LHgucRhgD8do2qi/XZrSmW+ShwGoIpFKZSL3L1zn0upC47pZAj9Ke3OCDsn7tHOONQXG8RRgJ66HB0MhzT0GrV6GU0Tj/5gMGYvjfkSc6hQq81hON5xDNr7P3mHjKcTRxGFgBjjFwAAIABJREFUgrgW+AGTyZTJeEJtQczPdDQhk8uTyYgx/PZXn3DzravoeoKTru1k7DMcDdB0E88T5TrdIZ7l0muPyeeFy9HFy2uEwZjxQKyPoZl4ORvP82ju7Yk1ckyiCDKmRRCKe3RsB9uymauWKVdKYqzTKa1xh+UrG1ium97p0XMhOPkkHkdEveQ5Pvmcn+aII1pRvjHEOaOp78YPHRX+Znz9fpuMo2GkqVrBZET/6c/ROzu4BfEsONkVZsMefb+Fqoh9oXsNxv09JpHYh5ZTYOfxPplMliB1Wbp/fxtFMbhysXTcoz81SJKY3f0mS0uiLcvLkQQJkT9Ds8S6KapCHIZwHLFlMBn00QwLfyIcjvYe3SFTrOIWKkyH4lrz0Rf4swmlhYsEodjnXr7IZDqkEIl3h2FYuLkixYu3UA3hnoOacHZO1audjOIX5vq0mMIfy43mRX64fuJXFzmj79/HlU0ikUgkEolEIpFIJJJ/DsiIKolEIpFIJBKJRPJj8saJcc6KgTq6ftoB6nlENC/WOe33WQe1rxtLdRan1Xvx2nkjcV5E1XXKDSFcGXVb7D/9hLm1P6bdmQCQzeVIkgRVUZkEIsJp0PcplspU5xtYlhDaJESAyngsBC79XodypcDi8gWuV1cBMHQDxdCBHKYhtpAS+ZBo2I6LLjRBxGEPzSiSKJDN2gD0en1KxSzDoRDxZBKFnc1tDnZb1Brl9B47dA473Hr/GqVyOR2Xz2cf36bT7VGqiGie+4+esrg4z6gvDvnrC1XGY5M7X37J5SvrAAxHE6IoIZiNWXvrMgAROkkcEYcB/VTssbRUB0Xny89FBNaNty4zCwIC3+dIC2DaNntbe9x85xI72yIqKgzGHLZjvHyJck0IjPb2W/hRxDAVH5iWQ787wDIVFE1EAY0HXUw7Qy7voZhiDtUwJjFMNE0lDMT8Z7Meh/v7eNkcpi6EC5quUSoW0LSjvaCg6Sa2Y9DrivUulYsMBhG3v3zApatiLp4836G5vUO1UsJyxU21DmfEkc9sJkQQlQUhymru7OF6FgC1aonReMjW5i7lohC42J7B/OI8z+7d5+nj5wBcuLxOGIUoqlCNLK0tYlgm49EI0xTij36/z+7OHsuLC8fjP2g+p5A1eHD3AYYtNk8h62JZMWEo5isMNfyZRrPZIUoFGwuNBqPRiCieMhikQihTZW4uj25ox89Kr9umWM3hpWN/GeeRSPw+ArzT2nopqoqh2wRmQrYgIpzG4yG2UyTs38OsLAMQRDBuP0OJphhp9JNq1Rn1tonS/eXOLXLp5iJhCNNUQFSsZjF1ldYowNBFud2tTXI5k1I5SxgKIQ9BH1M3iIHJUOyx6fQBuuVgWmKfJIlKFEyZDvsMuyK6yveHdA8mDDqbECtpvR5LVz4kW1xg0NoC4GD/GZWFS8xmYr3z1QWG3S6m7YJ2UqwkRE5H6iY1ifCDAE23jiOlzlqf7/ve/n04bX3PK8J8USBz1vfjZd+q03ixvaPvzh9KiCSRSCQSiUQikUgkEskfkiPBzcm4KinCkUgkEolEIpFIJH8I3jgxzuseCJ7nkPXFv591eH6yrZc56Jw8xHwd953XKfe9sMQh/MK1D9m6/znTUZ9CSQgQLNNAU1RiVcfLCmccTZnQaXUIIp9qXYgw4ihE13XiVPCgoKAbDqWlK+iaEFRoqgKaShKHGIpwGhkPAQ0y+QrRVAhtwmkbxVRRCZnG4lDftg0GQ58Hdx4AsLKxTqKA5Rj0BuKQf3ezycUrK2TzLlEsrlWqBW69d5Pm1h6zsTiwdw2DOAyZqxQBmPg+rVaLn/7xhziecPTo99vs7+7ykz/5GaWScF355c9/STQLKJZLaLq4J8+zGQ5GXL1xBYB8ocjHH32BbVhs7W4DUC4UWF6r8fTJDq4lHh3dNnA9l14/wbBEn9duLmBYOguLor/D/SG/+81nrF9YprogRE+2l8d2XZJYFUICIE6mKIlCFEXoTkGsqd8ln88SKzBJhQq5XJ7yfJHd3QMAFm2L6XhEca7EaCyEVtF0wv2v7rC3fwiKEPHcvHkFVVXo9/s4qatOuVZjMpnhzISYZTYN8FwY9Ebc/eoOALdu3aDZ7FCplBhPhXhp7E/o9WdMI7h8Q4jAshmT2nyN0UisWb1eY795gO8nRKlzzXy9zFy1zPPHW8SJuJ/LF1Zod8fYnsNXdzcBKBRz5Iolnjz+PF3HEdlChv7AZ6kh5qbf7VIolnG8PJol9rTjOtRXygRxyKDbE2tkaMwvX0VTtXO7ZMHZgo3TxBGnljvZ5inXzkI0ezSGiGA2JElCiks/ASCveIThjHH7GUEinj/byeI1rtPavYuiiveAW6ox9hWae0IUVq6ZmJ5Kc2+Ilu7fSqXAeNhD07PYrnhXbFyt0Rv2sGyXbnsfAMvM4ip9UCKiidgr08FDVHOO1ev/BoAgHhFNhoz6Wxia2NOzyQQtnhGGAYWSeMdsvP8X5MsLoICZEa5QYaywv/WUhdWrAGRLFZqbzwlmU3RPCLTUBIJJgGrq6KlAJ1FUFFU/FuJ8M4cv//2q6y+u07fe+WeUObWdU8SjJ6+/zI3nNNHMi22dJuxRVfVbv1/kLOGPdMWRSCQSiUQikUgkEsk/Z/5i4e1vCXIkEolEIpFIJBKJ5MfmjRPjnPeg+zS3gxfrveyA8WVOBOctc9T+68ZencWL9/Ta9dPjYdNyWdy4xb3PPsEcdQHIzjVot0bUF5dRVbHshmUSD6d0Wx1KpTkA9neaOI7N7MiZJZ9j5/kejpfD0MUhvG1b2E6GONKIIyH00B2PTz76HM/Wqc4LcUyczBPOVJRgwnDUAcDLuARBwsraAgC5nEcUhwQBhL4QZywsVsnl8hzs7WOaQliQLRTxPJe5uRLPN3fS+3RoH3b5+kshGHj3w1ss1OcYz0KGYzHWTN5mcWme1n4TFCEI+dd/+jOePXhMbWmF58+EM4flOuQLOaZ+Gg+1f8Dbt66xt7tPFAnxx8blt5hOeuSKKgc7YgyoGpeuX0ff2SaaCcFROB3R6cywTXGPge9z9cYl6rXckS6GRHVQNQs/mDKbijWyLJ0ojDFNkyQW869pEEURmmGRzQrhQhIHuE6GXFHcz3Q8IfQD3EyJYU8IL4bBEN+fEAcBwUx0+vjJU65cXueTz+/wbirYaLfaPHuyw7/6k1sAPHu+i61rzJUKVGvivnOlAtcKWfqtNgcDIfYpV+fwbAMDny8//RSAazdvUCprPH30GIBGo0atVmZn+4CPPxNlfpb7Y+qNMmsbyyhp7JahO+wdPmTW7bG81DiaILae7+Bl7PQ3eI7LoDvGcURM0u5Ok1yhwGQWU66J/evl8yjAYH+AYQuHnvmFZVTtG4HCSV7mPvK6nNd55Vx9KUdtaig49Htg5oUzjuaUMUyNWfnCcZSYk6vgzyYUFR1/tJ9WTqgtXGQy+QqAwG+TyS1Sr5skaXTV1I9pdyfMlWzGY7F38oUMXmIQ+6Nj0ZmmJ4TTIXESEKTPsqoqaIaJevSM2g2crM+os82gKfaAZfjkKmt4+Sq+L/arm60e3/tRXFr9wk0S5R79vmh7bn6BUqXKkzufU6qviP6IeXTna+aWV1i/eO1oNtF09Xu9a/9QnFcY9OLfz+sC92Pci3TJkUgkEolEIpFIJBLJP0ekI45EIpFIJBKJRCL5Q3L6CbVEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCJ5bd44Z5wXY6BO/v9JXhY39WJ7J1HV13dReLGtF50tTrZ53vH8GJEgSnJ0rwq6naW20ODZ7V8DkC2UMUybMAiYTUWMUOjPGI8mzCYBe7tNADTNYnv7gGFPOFRkchky+QJbm7u4loieyWQylKtFNMPASq8FYYxmaExnIbt7fQAmozHj8YirV5ZpdYUTR5RYqIZBuSJcVwxDwbFN5utlDENsR9POsPXsCd12i6WVVXHNsHFtm9FgwMalCwAcHnaZDMaUy6Kt259/RaVUYmXjAkEg4pR2dpoU8jlmkyF26vLhuhZLKw0UPaJaFnFNncNDcoU50iGgKz6GDvONebIF4UjjzyZsb25Rqy8yv7AMwMcff8nB4Yi1jcs8vv9E1DV1clqMoYk1Xlld4tHDB+hajJ+6/0TE6HqEqqrYrpjDJIlQtYSZP8O01XQ9FHw/YmvrKRsbwhlFBVRNwbRFxJalqWgaJElAkgj3EdOyuH7jGp9/fptyUcT8JGioqsHNa1fQ0p2y1JhndW2FJBL1rl5dpd2bEQdjjDSWzHYmKGpMJuPx0W8/ETss1ugqCcWywfVbF9P9F6NpGuuXxNwkYcz+Xotf/fI3VKtiDqN4xsOHz7l4cZ0odWcZj6fMpjGbm0+p1YWb0PZWk6XlFXI54YJz9/Z9XEdD1yKePhZRVhkvQyGfZRxEqLqRzk3C/uYWqhpRWhZ7R9EN+BEjeH5MV5ZEUSg0LnKweZuDra/TBrIsXryFV5xDM9IIJ9NCC2bEQUgUq2k/AXHcp764CkBn9yssXcXOzzH1hfPSp5/c59LldSzHIAxFvVazjan3MfWAJBbPchLEzGYhkR9AJOpa5WVKKzcwnGw6VlAVk+zcKpnCPADVMES3PZIkYToQbZmmTkLCN+FdoCkx9QuXSGIRj5eoGtXldfLlCoO+iBsbTQZsXL9Gtlx7raioV87xt97nb6YjzGnfjfNEMr7IeeITJRKJRCKRSCQSiUQikUgkEolEIpFIJBLJ788bI8Z58YD6tLimF699nwPE1xXvvKrM0b9fVu9lB6Qv3s9pkSbnv89v6qpKwlxjmXFHiGymozbFuQ3CwOe//B//BYB+Z0AuW8C2dRTEAXsYKJi2RbkkxBNu1qPb7mMbGoEvBC4P7u3T7ZXJ5YskkTg8n4zGmIpOs9Nmf3cXgE53SC6XJ18os7MrDuLjSOXBw4f8xV/+2XG9v/1/f8Ef/eyPmJsXEUX3H3xNqZBhaWUFPY3AmQw6FKplaotVwjRKyjBUgnKBMBS/P/3kM7xMhmGvx9KqEHVsPd/kwZ1N/vTP/w1+GiN154vbKGhcuNhAN8Uj8Ff/7e/44MP3iX0RwzQ/P8f21j6mafLrXwkBSqHoMb+wQHNn5zhmy7NVfv2Lv8f58z/BMI4O9X3KpRJxJOYrxmLtwhLhdEZzT6zH0toSUTgG1UBRrXTNDGI0dre3aTSqAOi6g5c1aSgGQSjm2tRU4hg6rRYAxWIWkohP/uG3zC/WxbhyDnsPmxiGQq8vxFf1hTKT8YRcNsckENfQFPb327T2RVu33r1K6E8wNIXSnIgbe/pki1o1B5isXRCCoFzWYzQc0trvY3tu2qdBGM8wDHE/j588w9RV/tN//kt6bRGd9PEnX1IoV1hcqKHrYr7arTaLS1WWlupsb4u9Uy7muf35R1y4sCp+VwqEQcjapTU2N8Uc7rcOWL+4wVKjjGoK4VC72UQhYn51HV23OOYVz9Xxc8g3T5GiKMRHQo1T6p4UcZz2PjpZ59xPsKKkFUUNVYHlSzfQtIjDZyJuys3AZDoiiqdolhBR2brBsNMkiSLcjIjsipOIKEoIQ/Fsl2or9Ftb9NtbWBmxtotVkyQICEMTQrH348kWvhKBZaBaJQCyc2t4pXmCQYtuupb5coNsuUKinJhHQFFUMMSeUAzxTlMAJy/6TJTvzkyMImza0tiqhAhF1bGzRZx84URxIZhJeLko5SxOW/NvFzj9PX5c65zv4+8TU3haG8f9nxJt9jKR6nnaPK3eeUWlEolEIpFIJBKJRCKRSCQSiUQikUgkEonk5bwRYpwXDxBPE6x8n0PCsw5eX3ZgeZZY5lX9nFbuVYeiLx7gn1b++x+KJqiaTr4qXEq6rSax7+PPEuZKQuhx+7OvyGTa3LhxjXKxDEAYRmi2iqHZAGimw6g35fGTTTzHTptWePbkKVH0iGJRHJSPBkOm/ozRZMpsLEQotq7TbO4z/vsBl65dBmBucYGFpTqGKu7V9Gze++Bttp/vkyRCUDHstfCsmGKxTpTefnc4wsll0XWLJ5uPACjk88TA0ydPAZhOJ8zCgFqpzIO7dwG4fO0CD9WEXqeN6QqB0bPn+zQWGowmEcU5ITb48MNbTP0RWVc8EoVSlu3dQ1xH4+13rwEwX6+w1xyw+WSTXE60ZZoe66vzHO41WdsQjj2ep3LQbDEajsWc7vXJZjM4jsF4KsQTmuGiGwZJHEEiHEniOEBVNRqLddRUHJUwQ000kmDG3uEAgMWVFTQgDIQ4p9+b4jgmjueRzWWPlp+dnV0yGY+/+eufA/D++z/h7Xeucu/uPVxPCFVyGxewDB0tXY8Hj56zWK3g5XLEqctOsZhD13W2tw6ZrwvBlOvZ5ItZTD3moCXG5XgFFNVEScS4DFPBNAwyeQ+UCgAXNgJQVVRNJUnL2ZbDaDjh3r0nLDVEuVrNpVC8gooYp5IEFPIe00nA3Fza1uUNxpFOXrfpHgqBiEJMY2MDzTC+JbA54jzOVCeFD+cRVfyQwgXR1tH/hLBF01QWN25QXdwAIJoGmNkscRBhueKZjOKQKAbNyR/PaxhGJEmAros9refmMd0qo/YWaioVKhQ8hr1dJkkOQxPXLLeMmclSmFvE9sTzrRo6qqZjOVm86lI6WEUIb9KxJiRC9HRiOk66zbzqVfrtd/T5BS1H5c6zti97J79KyHKeNn6fsmeN5azvwllObS/2/6Kbzsu+Vd93vBKJRCKRSCQSiUQikUgkEolEIpFIJBKJ5Nu8EWKcs1wqzioL5zsAP+/B66vcBr5PP0minLieHMcHndXPWS4ILx60vpZLjgL5moiLmY7HRMEEEoNhGhfjujY//em7XFi/QBAI8Ud/MKEyl0NRxNbwgwjHgGGvQ+gLt4vZbEqtVmZhcZ1MRghoDF2h0xvz/MlzmsMhANV6g17/LisriziOaO/+3adMhn2WFoR7x+pKGcuAuUqBTFa032jcIIkTTNtD04VQ5cmj53iZPIYR8fThFgC16gyIWV1dSsc1odfpoKzUGU/E/aiqztLqGrPZmHAg3GBKhQJhGPDx777knQ/eAYTAJZvziPw0lkeJmF+ooyYxjVUx1ihMmIt0Bo0KTx49FWOolTA0lXzOIUFEUAVxhsE0wLYzAMSjKaahkMm4XL8pBBWjQQdNVVE0Dctxj8dK7AsBjiHimTTTobm1BSgsLi+keyFBUWAljfDa2zvkk999xfr6Em5G9JmEE97+4CamqbF2QbjlDHszshmPt9+9gpHGG4VRSKmcp1jIA7C9s4XlmHQGE7rtLgDlUhkUg/n6HFYan/Xs6RM0wyaXsVBTN5F4OiU2FEjE3M/GM3K1HPvbe0yFPoRyucxBc5N+pwWKENp89Lsv0DWVbLZAriTEH7mszWQyon3QBqCYK+O4FpMZoIl6TiZPd6tJ+0BFFcOivrKCpuuvFBWcS2THkdOL8i1BTyIaeGX7J98xKqn71Sllvlv3RJReAlEw/f/Ze7PmSLL0TO/xPfY9EFgTSCCRyK2ysrbu6m7KOOKQnKGGN6MRx8Zo+gf6D/ojutCFbsZMpgvZXElUk8Zubl3s7mrW0pVVWbkAiX2LfQ9318WJAAKB2IBEdSXJ7zHrBsL9+DmfH18CZefN9+Vw7xV+R91fjhXEikSwgwH8rtDF0C3i2SV0oFo5BqDdbuK3PNqod48ZdHA1j1ByGa0rvjI0k9RcACccw+903ZI0A98KEo7Ghgs3ul8bmtabht571Aefs5p6e6Z2ielrovfP3wi3mvP50oa+K/v3D44/qm1vzHFCl2kiEqcVcg3eJ/39j/o8WM9g296QSih18Vb1fa1vf3+f3pBtgiAIgiAIgiAIgiAIgiAIgiAIgiBcF/37LkAQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQ/qXwVjjjTIoHGeZOMKr9VdwIJvU/rZvCMHT9PJ5l2viT/rF7P0c5Iow7zwsuQ4a6xMFIlNLxPsFIlI9/8hMA3vvgBywv5+h0WjS71iXLqwFMW+PkWDnEpII2Rwd5DEPj9SsVDxWNRikFAiwu+2RyKvKqXW+w9Wofz4NAULmz2JbJ0tIS0XicmVnl0LMaj/Pzv/wZpa5LTavlks3NoBkG5WIVgL2tE1zfxw6lSKWSAORmszSbLYqFMplutFR2NkMsHqbTzbIKhmM4tk671WF2LgfAycERzWYbxzFwwsrFZ3F5iVg0Qru1yFdfqjgrU4f1e6uUTg4AWLqzRG5hgfzBLnRdjdqtFsVCnqdPnxENq5iqeDJMKX9MqxnDsgwA8vkSAcchGVfuNlVTo1yqoFMnGFTb3I7F0ekpiXQUJxTuzkUb29TQNQewANh9/YLCYZHltTvoXfuXSrWGZVnUqmoOLQtMzWDr5RaJhIqpMnSIRiKcHh/RaKrYsGQ2RrlcAs2l3VG1bm1ts7GxRiCg4o5MawkPCIdCRMLKsScQCPOb33zGTCpKKqnOe35+DicUxHVd3FYLgNcvtwnXYjiWqj2azlEqN6hVO4Qiqv+ZuRzptI3rGXz62dcAvP/hh1TLFWKREPG0qn97a5tyMU+wOzfbBwXWN1ZoN5tYmroekWiQXC5Gq95g/u5ddd7GdI4408ZUjWszzTtr1OdxNVzYrmnodpDM3ApPP/l/1LbaIXdn5mm3fdpNNffhaBwnGML12vgFVVejViMQSxHqOi/ZgQCtRhO34xIKh7vbwuiWhXLvUq5EGuD500b0ga/5fR/OI6YmnedNM2rM4e5D01+7YdtG9T+tg9m0MYmD268SZXjugDN4/NXOXRAEQRAEQRAEQRAEQRAEQRAEQRCEq/NWiHGGRYUMftZ1o/dpbF9DF1L7utfOFij1gbbTCXKGxYdciLHRQKP32e9tYtga5zQLn8MiUXqfpzle79YbTaUp54/Br7N2fwWATsPFsnzaLY/0TBaAdrMB+MwvLQLQqhdpdxokEklOT1Vk0OFRHtsJAT6nx2qb73kcHRyRSMWJBFUEkud2mJnNMTs7eyb2qJVKLC/fYn1d1WDQotXuoLc77O0cApCcmSWbSVAv18FXIiHbdjg9LhMMB4nElLjACUC5VKRSLANwd2OFQDiAiU0+r+o62DskmUyx+XKb2Xl1jrn5OXa2d8HtoOMCsLR6lxcvd4iHlZCkeFIkErfJLs3TbijBQyhqYxmnZGYWefhAxU3FkyFa7haxZJJOd5E7GTXx0SkXiup6mTaJTIZ2+Zh8WUVsza49JJyIYVkmzXq9ez5ByqUy9XqTfFcUFAp0CAZMTNvHNFU80972SyKxBPW6ii2am8+ysDJH6bjAyfERAMurq2h0SKaTHB7mAYjF4zz/6gW5+QzNhhLoNBsurY4LXcGOZmhobRfHtrEc9cx5foNcZhbfa/Ly1R4A+zvbJDNp1jZWCNpKfBWNRTEtm4O9w+6cztLSAwSCOo2aEnd98+VvWVhZJJpM8N4HjwEoHJV5+sVT7ty7zcySEndpVoBmJ4BXU8Kb9XvrxLNxFu4kaXVj0I62XmLYIRbu3MY0eyKIPkEEl7lqvN2o1sPjm4YOeKGfUTKIkVX5KizLsIPcffe/B+Dbv/8/eP7r/5eTgyLJ3G0A3vnRHwDgtlo0KipeLBSOkZhdxO6Ko9BNghEfz23S6t47uqGhgqW0C8UZY+bwUs1jYqTOg/quRr/YaVyEYf97cNK7e9gY/cdNEtgMbr/KOYwae7D/fiZ9Lw62O98/Xjg0TmPV68vzvNGNBEEQBEEQBEEQBEEQBEEQBEEQBEGYyFshxpmEcgQZXEGcXsgymv59oxc6Jy2CDu32BhwG+usftwg9bP953aqNYdvEMjlO91+SCDjdbUE0zcVyImCcHUin08Yw1GKsbtrEU0lWjBDFghJUrK7cJp3Noesmu693AXBdj0gsyfbWNlr3torFQ8SCIV5v7RDtOrZYuk46laDQ7cvzfA4Odlm/u85Jvq22+ScEA0GcoEO1rIQ2B3sn1Oot1jZWWVxaAOD0+IRffvJrUqk0AJV6i0ePH3F6eES1K3DZePehctSplNjfPQEgFE4SDIaYm0tgh+5269ApFgqEIt25sQLolgNoeK129xxh89VLotEQ2fkMAMFAgHcSUf7mr/+S28sbAATm5/A1nVZLCYLi6Si+DvVqgOS8qlU3bNA83FaD4rGqq+NpmBbYVoBbK3MAtJpltp7vMutDu6lEKMvLOexghLYqi3KxQiqdJZ3OEnDU3FuORavmomvg2MpRp1SoEg6F0A2ddluJkGq1Kj//61/y3hM1D8l0gna7QbvtcnKqBkgmw1imxxefb7KyphyOHrz3BNsyCNpBjrv1t+otwqZFOBrsfu5g6jrRWBItq9yMavUtGrU2yaRBwHG6tbbY2tmlVK1w644SOa1trLJ+z6JcUMISQ+/gtjtobp3iqRL7RJIpMrPz6KbVu+3PhAY+w0UW/dumEWy8DWj4aL6PHVGip+z67/Hsk5/yD//fT/mP/8v/2m3UFVG4PlZEOdwYpoWmabgdda0NywANdNMkEAp1e9e7I6iR3rRSxe9uTnvXcKg4akqXmklc9/iruKENO6ZfLDTsHIeJNPuPG3YdVBP/Uv83UbsgCIIgCIIgCIIgCIIgCIIgCIIgCOfo33cBgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgvAvhbfSGWeYE8B5vMblf9U/Nm7k0i9cajNFRRf6HxcDomnge6rW0f4Ew10JxtV0VXcGz/MuxbbE0lnqxVMKR92opNXH4Ot0Gg1cXznhWI6NYem4beUsEwhG0AxYXl1A96sAbL7aJF/IYzo6+7sHZ+Olsxk836XdUMfW60Xankc4HKbZjUEq1RvM35pj88VLAJxghEx2hnarwsqKcl3BgGq1Qq0R5OWL1wA8fvKIdrPByeERsZSq9fiwSCab4+6GclMxLQ3D0ElkMkQzyh0kYNlsHR1jOxaRiHKlCQYN9vaU/aYZAAAgAElEQVROMYzM2bxubW4TcCyOTpQTy9zCOp7bhLZLqaRinkqFGmsb6+xvH6B5Kj7rcO8Iy9GZX1ylXFHRP8++/pY7G+u0utY1mueh6TbbW3ukZ94HQNc1Gs0a9WoD37ABSKbCGIaGZQaxHOUuUyy2Sc5kQNPwXb97TcJ4moZpKi1ds9lSUVJzc3z12ZcALC/PYZgW9Wodv6OO022NVCbG0VGeUEQ5o9x/cJfd7T3cprpmXitKx/XZ3HzF4i3lQJQ/KREM2Hz00Qabm/sARKIpbFvDtiPYjnI52n2dp91qkZ5Tc184yrO0cgs0nUpeRXatri1Rr9Vo1qvYAXXekViY9bvreGhnjlKa5mNYPqnZpLon3A7NZpPtZ89IL6i6UrOL6N3nrP/JfFNPj2Hvk2HxdBP7GehTG9h24X018KwOxlup8DtlX5W59RgrvkTZSxPP3bowphUI0NhR96vjOJgzMyqC6kJdOpqu9wobej7TnuMoxrmujNs3rN00dV3V5ei7ckSa9twGj7nOXPfG6p3K1fvQBn6fLvpQEARBEARBEARBEARBEARBEARBEITJvDVinEmLgJrmD3wevvB4qR/fR+N8oXbcKJPiTqaJYdG6i5pan7Cg/4jzBdQpF/SvsTjaP8ZZXRrohk5maYWtp0p4cbLzgsz8bZxwhGpVxUF5eBiGiecrMYjrdYgnUjQabZ4+UyKely82ubO2gt/xyM0pAU25VOFof59GvUUiGlZ9eR0c0wBfo1lvqW0+HB/lMW0VLfTsq28JOh6lSpFASEU/PX/xLX/87/+YYnEX21a3aLPd5OTggHKpTrmmhD3pdJJkKsY333wDwFwuS61UoVKvEQ4rsYmhe7heh8cfvE+lrGKemtU6nVaHer1FxFHtdF+j43Z4/OiROs7wODo6IJZIEk+pugJOnXw+TyqdolpWNeSPT0hl09zduEfhVMU1VRtVTNNgcWVJnXOnCZrO+x88wvW7opdOCA2T/HGJl6+UwOXHH7+L63povofXVuIVy/CYW5jB0DR8T4mQXE2jXm9QOlXn0+l0CDgmjXqVZ18/V9fbbVOpVLi9tkzH7YnJPJ59u025UOH23RUAsvMxovEw9YoSWr3e2WNucZ619fWz+/P1/isCQZ3iaYFUblnNlw6fffoVDx7eIdKd6/uPVjnYPQRXXbNCoUSiXMGxodNW1//4oM7Tr16wcX+NeESJcRotj2DAZOH2LZJdEVWrWaHVcNEMdZ94lVOOD7ZZWH+HRDbbvanBUzf6mZhlUNjSz7RihUkCOY1eEt0YwcnAsdqY8TVNG/lGGRakp+k6iUSKP/yf/mcM07ywT7ctnG5MVX5/m+TCCqbtnPflc+H1NXLcUbUO2db/btW0QenP9H1fh6tEUQ1GOvUEUoNzPE5ANE0t/cdMEg4NExGNiqQajj7kdj//nhrsX/06WGevf43uEyUIgiAIgiAIgiAIgiAIgiAIgiAIwhuivQ3/Er7T6fhDF72ndKMYXGQdR38/07gYqPa9NK9eu/MFy8HFzlGLw74/3nVg2KLspIXacY5Ag/Wc/e5r1CtKxPH6688wTJOl++/S6jrXtBtNNB+aLSWeaNbr7L3e4ze//i1/9Zc/BSCfPyU3k+DJkyfcfXAfgIWlFb74py8pnJ5i62rMYDhEtdGgUqmzfke51xQKRebmc8wuKkFFvdZE9+GXn/yazEym26ZMOhUnl0sRSyhhz3G+xt7rXW6vrhAIq23La4vUCsfUWuq8X73YZ2EhR6FQ5Nunynnn3jt3WFicoVJusvlyC4BEPEwgGOT0NM8HP3wPgGqlxsnxETM5JS7yOlV0H9qeQamihEoBy6JYrOG6TRynKxLRTAKWRqvpkp6ZAcD12xwdHZNNK1FENBYFTaPjtnj+9TMAMjNzWAGbSChEs6UcdLY3twk4QTLZKIGAckExzAjoOm67id91L9Jth3Kpyd/+/BNVlxOgXqvy8e99iNWde1/TONzbx3EcEklVV72S5+WLVyyvLKJpqn5MnXg8Ap4LQKPj4jfbWI6DE1LzXClWKJeKxGMhjk7UvVOrVDg5PKTRqLNyW4mO0pkMru/hu6rOSCxKvVKlXKtgWwF1z73ew7FM5peyxKJK8OXrFrruYBg6hq3O27ItdMOiUVH35dHO16xsPCQQTXDmjsU50wg8Rj2r/YxyYxk8ZtJoVxHj9Nr3t53UpltY30Ga6l8Hr61cm/ZfvSKSiBBP57rHa0PEGcPfSaNkh5PEOL02l4QpA+2vK8iZ9K4e1WbYe3RYrd6Qd/C4fibVNC3DBGC6Pk2K5OU2vffEcKebQfnRYB3n7W07cHOqKeHK/JH+Z9//H2eCIAiCIADwF97/KX8Xfc/I30aCIAiC8PYgfxt9v8jfRYIgCILw9jDN30VviTOOzvlyrXdlsUyPYfFWgwyLtRrW39miu9YfLjOteGcw1mr4AvSkRfGrLvxOmje13ccJKxFEbuUu+Z0t9p99TnJexd3oukX5tIDvK3HG3//sE372Vz9jZ2eHQv4YgEQiQaFQ4/PPnxEMRwFYu3OXxeVbzMykyZ8qV5d2u82779+jeFqk3VCiCtf1qFRrNLufTdOkeFJgZmaGeCpytq1cLFCrlllZvQ3AwnwG2zSIxaM0mioOqt1yOTw4odUVHwQdi2K+yOarLe7eU+KfZCKKqRvsb+/x2aefA/Bn/+V/oNFsK0eYelfscbjP/NIsnZYSm5yeFKiU63ieht+NpJpbnMV2Amxv7XJ7bQWAb799zfxijvxxnkBA1e/hcrB3gt+NfrItEzRwbIPbt7vzbDl4vo9lmfjdxfFINEG93qTe9Dk+OVTXKOcRsINoeOiW3b2QGobm8ejBhvqIzl//1d/w8ptn3L+vztswHBYWshQLNb76Up33bC5LMpHC83X2dlX/oaBJo9KkVlXnncok0DWfYDiE56m5MUyL11sHsDTLi69fqHPUddbXV2g36ySzKQAq5RqlYgW3re6dZF05BFWLNZqmEncFQzZes07x+ARbV+IrJxZAMw0My8J01DnqpkmjUKBSUhFYa++8343uuihwGbQFGXbvjxPIDbYZRn9sFEPEcMP6uO5/kfacfaY9/tI5eJyJB2vlPWonFWKJP1YNDL3rBjN9dYOSGr/foczv9Xex7YX33nmhF+o8cxa6opDlTeOz+msYrHHc/TDVu3hAHHUVxgkxR31PXa7RuxDlOKxO3++XWQ37zrlS2YIgCIIgCIIgCIIgCIIgCIIgCIIgjGCaf3ovCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCMIUvBXOOCMjRK7pLjDs+P5to+KfJtV21VibaSNvxo0/bv+o+Rl13oN9RNNJLMth6/O/o9PuOpckZ9nbPSAQUO45//jJrzk+PqHZbBIMhs768joutWqFo8N9AAwdNu6tcnxUIJNTsUi1cpXj/X0Wlpc46DqxrNxZYm5uDq/rNhOORGk1G8RTt0llkwBsvtrk5cuXhMNRDo8Latvr57zzznskM2l66S17u3tUanWisTgAC7cyHB3k2d3dJTerXFdmzRibr3bo+B4rd1YAOM4XSCYTBAnT6SgXl0q5SbnY4uToCIDCaYU7G2s4AQOjO55ph2g2j7l9e5VCQUVXvd46Yv3eOrnZGWzbAcDzPeqtFom4mkPd1HFbDVxC+Lp65CwniO+16bQb6KhopoWFGVzfx+1A8VQ5wtSrbdptHdu28LpOO1YggoeO3i0sHI7wox+/R6PW4LN/egqA68LdjQVCoRiZtJrXra1tbMvmH37xS/7dn/6hOu9SiVAkSKOmXHDKpRoz2QSa5rG7qZyQdMMjFHI4OTnF77k++S7xRIZG7ZRQWEVQHR0ck5uZxfVU7Nb+wT6NeoVENMHRoZrXWCrGwsoyhqZTrCqHo3QYAiGLTselXFbXOx6PUCnlmVtRTkKmE2C4k8dwF5BhcW7DuBBR5HlTPVOj9k07ziC+759HPHVdYyb12e/X1d9P/1ipzC12nv+KTkPdqz4+HdcnGE1O/W69OL6P3z/qFO/MoQ4x3fPVNO0sFuoq7/phbmija764fVrXtKvEN/bcgUbFXV3HyWeUU87Fd3svVkrra+Nd6GNwbPVx8v0qCIIgCIIgCIIgCIIgCIIgCIIgCMKb8VaIccBjXLDLNEKZSfvHtR0nkJlWgHNVrrv4PKqvUcKfYXE9/TjREEvv/JD84R4AxcNtFpdyVFpKIHJ7dYUvvvicjtshHlWRVJVKlVAohI/H7MI8AJF0Gtty8PxjojEV1xQIBbGDFq2Oz/zSotoWMIlEQgRCStjjaTrJdpZEMqJuA2B+fo6T1RXKpRLhqGp3fHJEIpPFNKFWVcKRaDjEzOwDtl/tAlDIH9Fs1jEtg2pZtSkUqrTbTRZuLZJIKVHKp7/6lPv31ikVC4TfUf3n8yWOjo85PTwB4M76LarVCsFQnEZDiUaMjkc8GaFRb+Oeqlinf/MHPyYa0Tg+2AVdzVk8niKTjoOvBEe6FUDXDXx0LFs9cvuvd7ACJqGQDb4Ss4RjJrrbAa3F0nKuew1NCsUyewenFI9PAXj4+D5uu4nVjXTaevkKz20DJrWaEsLEYxE03aDTbmEa3XgrzSCWiPH+B0/wO0p8VS5XsOwAv/r0NwB8/KP3MR2b11vHnHYFNPff3SAUivDf/u//hmGr+froyeOucKlNMq1iqtK5DGHHxvPUPFSeNwhH4uTm5jFMVUOhVMDzXIIBnflbS91zhEKxTDQaxLQsAHa3N1laWcYKqnvpOrFN14m5G2TcuNOIcC6MMyJ+qj8GS+tv3/e71ndsv3hH7yrTLkpmFPGFW7huk5PdLwFoVvJ4RpylBx9jGOal4/oDjAbrPKvOv9z+0rlyPjf9fV6FaYQz/T+Hia+uEnfY3++01/NSDUPquynBS68fz7soKgV/4nfb5e+0wWovcxNRYIIgCIIgCIIgCIIgCIIgCIIgCILwr5m3RIzTb6Bw2QGgx9AF6iGLp4PHDncI0MYuxPc7JHxfC5Pjxj5fjL3Yvrdv6v6BYDSKE1CCkEMdDne3Sc8uAxAKB9m4d4+tzU2srlDCtjv4QCqV4vHjd9WYfgdDt5ldnMMyVbty/pSgFadUrqDrqqbT0wKWbWLa6rMdCmIHbIKhEJWScvCwHYP3PnoXt6Oxv69EQvc2brG7vU0iHuTFi20AUsk4y+FgTwNDtdpmfmGBDz+EZkOJUtyOT6Pe5uuvnrKyqlxW/vjf/yG1aoV4IoBuqDlbWsxhB0P491VfjVKBdrOF12kTi8YAeP78FbruM7cwh+spMcvOzh6WOUMqnQBNqYmCoQi+5rP7+jUARydlgrbJ06df8/HHHwGQTAaxnBCF/AnRuHLUadWPcD2Hb5++YOP+eneuDdKpED5tGmV1okfHedrtNsGgumampZGZnycai+F6qoZqpczJ8RGZdOrMhej1613294+Yy6VYuZUG4MH9u3Q6HeZyykno7//2H1m9u8xMbol4OgtAIBTHxyKbm+O99x4DUK/VCIaDJDNZDFPVlXQSNEsVetZF4bDDwkIS3fSIxMLqPtEMdCtIIBoiFFPzahg64XYETXOplA4AyC3ME4knz+9VphfkXIWbEE1MI+CYVP9V3jHTti0dH1I83sGofw1AteKTubOCbhjnL9y+uoe61PSJatQ5Xu8qjHIBGyamuVTDEMa9nye962+C71+sotHzRzq/lNOco7jhCIIgCIIgCIIgCIIgCIIgCIIgCMLvgrdGjHMdbireqnfsOIeZHr+LRdhpHH0mCZAG200SHeiWci7J3bqDE0mw+1IJXhLxBMlUkt29fU7yKrbI1C1mZ2e5u3GXVEaJOqrlIp1Om3bbJRxQ7ikYFtFohFgqTqWknGoSqRSRWBDPVZFLhm6QTsfwaRHuOur4bpB2B/LHBU5PVGxRpVCi2tjm448/JBpV8U9Bu0O9ckilnAfgcPeUYCCIEwxRLKlYrL2n37KwsEC7fkq9VgUgnYlxfHTE7MIc8WRX8NFR9UTiSiDyD0+/4OWrA9buLPPxT34AQDKZ5fDggKODU+Jx5RLU8XyKpRLxxCy+qxx0WvU8pXKHzRcqwiuRTFLuqH31uhLxxOIBNHSikeTZ+riv22y92ic7M0Onpdq1mjVMyyKdiNHq1j+/NMvB3iGtphIc2YEITiiI5dh0ulFW+UIV3XMwTYNMVsV4vff+E559/Q0LizlMQwloDvYOSWTT5BYW1OejIqZhotEhFFSiqsLREYahHH/2D5Q7z/HxMQ/feYDut6kXVV2ep6H5PlbX9SidyhByIuzs7bO3q+bi0eP7zCzMofkevud2z9tD13yqlRrRqLoHkpkMyomla5d0A8/dJGHdsHfAuOfqpt4Fl1xd+kUpfW36a/IH9g+jWq3y6rO/YmFOPS+nh0Uy935v5Fxqer9AZ0QbRss5+o+6FI83QlzpD3w+G+cazmFv4ogzyDQirWlEoNO0m8QoEdS5y815v2qo8bFd5/2N9i2SCCtBEARBEARBEARBEARBEARBEARBeDP077sAQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQfiXwlvhjNPvRjEsfmkc07gpDItImeSA0/us6/rI/b1tw8adFI0yzoln2j4G+7uKi8OQFmpMQyeZyaIp0xJqxQrV8i0CgSA//cufAmA5Bo/efcDv/f6PCYRVxFIgGMLzPEIRnZ0tFS3lhOLEDJ2T4yL7e8pVJxwLoukxbMvpjudzuH9IKhVBt5QLioZG6aTEt189Y6Ybn2Q7AeYch5OTAk+//BaAhfkw72VnyGRVnNLc7CyBYIBarU3otoqkWlrwCQQtohHlYgPw7MtnbG8fc2vtFs26cuz57VcveOfJu/hdfdq7739Erf5rcrM5vK47i2XpxNNJjo/zxCIqdml2NsXe9j6+B5qh3IV0Q0fTSiTiyuWlWspj2SZrd+8QSyvXGEMP0OnUQNdxXeVwo3k+2VSYWGYGv1MDwEPDMEN4rTqzi/PdK6URiwQpdZRrkNtxsWyDrc3XxMLKBaXVqrC8OI8dCOC1lctOKhXn7p1V4vEkxbI672fPNtmwbeLdGKmPf/wBezs7BCybb75+rmrw4NZSjt3tbR69+wiAH/7wQzrtBpoPwZA6dvf1Hp9/+ZQf/UhFcQWDBugeS7dXWNu4q+YwGMDvNEAz8buxXo1SlUa9jBWMksrl1FxoGtoU4VSDe4c5xgxzmhrmfNLbNmzEUdFKV6HnENPfvzf4zlENL2wbfA9ccJQZjJHqexfNLa1wuHAfPahcmcIxk3a1PCIzy++Njo8Pvq7Os/+8B35eOK/e0QPnd9br4DkN9DEqlnCayMFhx43arg3OV7fmafuYNO5g7NbNOcwMd92Bwe/L8d8DZ72duej0+vYG+hUEQRAEQRAEQRAEQRAEQRAEQRAE4U14K8Q4MH10x5sKXEb1Ma2gZhoRzzB6fU2KyRlVy7j2vWOuKxK41K+uEc8pgcu6YZCYSXPn+IS768sARBIxotE4uYUFNL0DwOlhgWq1yvxChtmFOQAMw6JeOuFof5+/+9knAPzk93+MnsvSbHe6ozVwXQ9ft8+ijHIzM9SrNXLzs8RSKjZKN0yKpyVmsknSMyoaa2VtGSsY4/ilEo08++Yb1tZWqZSL2HbobF4+/OFDUpkQbluJXrY2D/H8XQzPo3R6AsDttdtUymUO91UNi4vz3H+wiudxtlgfCJt4uoN32MZ2lJioWW0yMzeDbtqgqXOqlSp89tkXfPjRBwB8/puvONo9YvbW0pm4q14pUmt0qFaqGLpaCE+lopQqdYrlTebm1Dn6motla/i6jmlaZ+ekhSN4XfHE3ldf4/serzb3+eD9xwAsLS7Q6bTR2208VymrbNMnEgmRPzkinVXxXHfurKL5Ll73evi+RiwWw/U6ZLrzHI2EMHSDbCZ3JnxqNSoUT04JhxaVqAiwbAPHDqN1I7AalSrJTIZwIonR3dZxXTzNB8+lXlHxYo1qlcRMlmg8Bfp09/6bMo2oY9z+YQK/KQceGvM0so+eeGSKCL1BdB0C6TvYIfWan8m0KB4fsuC2wbBGHqdEOKNPYSwDgqCriAnfZN+goLP/Z49R12zaWLJJbYbVMyz27HqxVaOjqgb7mmbKh0VfiRBHEARBEARBEARBEARBEARBEARBEG6Ot0aMcy2XCaYXrvTaeZ53aVvPVeaqIhi18Nlb+O3t84a6OfR+jhPMjDruKjXdBJrP2QnFMyliqQTlYplb6/Xu/g4HO68JhBwcJw5AONrB1zR0XztzegEPKxRi6fYS/+OsEujEU0ksR8PzVZt6uU6r2aDTadCuFgGoViIYtkHA4My55uuvv8HEZH19ibXbShASsl1q9QaFYgmAx++9h6Z5GIZBMV8GYHY+S6vZJH+ax+3OUSaX5on1gFqlxheffwWArluUy0XCYeXykklHiCXDfPP0BfNLiW4bn2gsyMbGLXRfCVx8V+OL3z7Htk3urqtzdHSdH3/8EVZUOeMk0mlSiTi2ZWEYSsTTqOfZfX3A7HySWEL1bwVCGPkqX33xAt1Qop2ZXBzf89BtBzQlaKnXapRKVWwnAMDG/XV++YsvyB/n2dvZVuc9O0O1UsM0TcIxdY2alQLRWBCzqaMb6tE/ONgnmbKYm1O1V2ptqrUG8USEaNctx3YCuO0O4bCBhrpuhfwRtVqLZrNNo6GcV7Z3Dnj/h+8RDFvd885gOQE81z0TBGmGhu95lE8O6XTvgbnVO9h2UD0fY+7LwTv8Ks/s0P6mFOVNFNH1jh0zxtlzPzjeQB/T1DhqrGHt1x+/i6Hp3X2QXqyBbgzpSwO/T6wyQo9zYVu/I86w/ePqHLH9Ursh78xpXc3G0uf6c6HG7j146Tyu+F0xzp2nv7/xDLqy9Yt6enMxrJ9Jd1Vv3+j7X4Q5giAIgiAIgiAIgiAIgiAIgiAIgvBmvDVinMF4j97v/YxyJxjmjjDY96QF3GEOBpPa9EeF9G/3PO9CvNWoMUeNc6PCmjdcXNU0Dc0wiCXjBCNKXFI4OkKjxvHWVyRmVBxUJJqk1axghiIYhhKJtJoNNALYjke4G59kOAbtdhPTVKKUttvg1dYuMaeKXvsGgMZpCyuyyBdPn9NpKxHHRz/4AQc7u7iaAV0RRyQ5jx3JcveBEljVqxVmsllefvuCvX0VlZXNJjk6KPKzn/2CJx8+ASCf36FRreM4NnfWbwNQrdZwAjrRiBLGdDoa0ZjDo0crNGrKwaXd9CkU6rze3uHxYxW71Gq02X19xPq9JQ4PVBSX57XJzabAU+d461aG/EmB/b1Dkl1HmlKxxOnxKblsEFx1r2humGqlwvPnr3i1uQnAf/rPf4JhB9A8A11X19AwDAr5AralRBWzs3MEQkHKpVf84hPlQPQf/vRPiMbjmKZBraZEVPVai998+ltMXePd998B4O7GKuht6IpzKtUylXIJQ1+gUa0AYFsa+C73H66h9567VIZESsOwLdyGOk9XswkGHWxTxXU5QYeO18bS7bP78ORgD+gQiceJppTzjm5al1xExjmUjHI+uQmGCYKuI9DptZnQ4FJE0qX30PgeJmIY5694HQiGIxckGCMFRD1nlzF9TxvD9F2IpkbV099+bATgtau5GtO4tE17H6l213NmuyrfxbMlCIIgCIIgCIIgCIIgCIIgCIIgCP+aGK4YEQRBEARBEARBEARBEARBEARBEARBEARBEAThyrwVzjjTugeMc77pbzep/1H/6r+//2Fj9jvh9PU+0L/6fVgc1qhz+y65if57fVhdJ5bM3CzheIxaPk+jolxj6sUtfLfB7NoH2KFI9ziParlMLJ1A686H5zZxnBDtdguASNjg44/WKe5/SSCo2jTLT3GiCbKzs3z9+T8B8KtffEIkHCEed9DMEAAvN09ZvRPn9cvXAOzv7/NH/+73SSTibNy7A0CxVKJUqnBndZFyQUVX4Xao1tt4zUMiEeXYk8om6XhQPT0FQF/J4romO3vHuE1V6/bWDoFQhHgiSaGozttxQjiBDuVCCduIqXmybQwzSPmkCsCrV1s0mk0evXMfr622zc3nmJvLgV/B9VT/rWaZTDrMf/qzP+boVLU73D/C63iYtkm11o32qrV4/s0zfvjDD9Q5FkskkklWVm/xzjvKscfzfU5OCgRCNtGImq9SpUmr1WbtwV0C3TiuT//xc1LJGIvLKqZqNpcimwrjex1MU13vRqWMYdtUq21OT1WUWDKb4ejwhEi4wfz8AgAzMxnabhvTUX17no6pQbVw2ksEIhyNEkkmMEyT3nN0do/6/rnvxxDXmO+CN4mLO3MsGdX5lM4xF/oY4kYztIfBfnuxS4NOO3Rj5wCvb9dZXZp2Hmo0Ra0X33wjoqz6+9G0qSOpJjExLmxC/SMd0r6DWqY5/vx3uBgtdbHvniOO70/+Trno5Ha1mqZ1OhIEQRAEQRAEQRAEQRAEQRAEQRAEYTJvhRhndPzTm+G6LoZhjNw/rUinv71qc3FJWq2Dj4/KGt/fPy80DYKREKFwiE5DRQ2VTw+p5g/ZffX8LKZKo44ditKoNtC7p9mq1fHdGp6nxCZuvYrnmQSDSerVJgCmU6dZOWJ15Q5B530APvvNU4KZAJX8KcmcEn84joGuGaysrQCQTiVoNTpEo3EqlQYAHd9nfn6OZCLM6YkS4zQaZfL5KrFgmufPXgBw/8Ead9bnqZaUkCQYMKjXa2y93GdtbQmAd3/wIfnTIrVSif2dguq/k2dj4w6br3b55pkS8rz73iNMO4gTVuKZaDzAfCiB5zZo1FTslmXbaL5Jp9XB11Ws0+b2PpFQmOxcgngy0621gqn7VEtVvvqnrwB48uETfvCjD6hVu/FT1QaZTI6XL17SaqgF+1q9SrVWJRyZxTDV9WjU6zx58i6madKoqtp03QQMTo9V7dlMFnDpuA3anZ6wzCiLSVIAACAASURBVCdgGrheg9x8DoBQJESn4xFwAjhBFVNlBUNELAPf7QDw+sULgrZBIBwgPjOjrq0d6LuThsTO9YRv/O6ihL43rvDs+/656G9kBB4X58ztdNB1fWT7y+X0Rf/1Pt/Au/im3nE30c/gffbPi/4r3C/eucibTNObxhoKgiAIgiAIgiAIgiAIgiAIgiAIgqB4K8Q4/QwTqEwjkum2vLCI2BPiDPY57Tqj53kDY2sXxjgX5owXEo0S3bzp4vLFOqZrPygW6n2+Ti2+BmZAiSuSc0vEcnO0ak28jhJjVIqHaFqHRvEIX1cikUqhRjyZwDCTAITnVwmEYtiBEO2GEsu0Oy6+BycHu9gh5eoyuzDP/GwGQ3d5tbmrjo2EmF3Iks2pvkzNZ2/vgKWleQIh5Xhz5+EdNDRq9Ra7u/sALC4t0Gx0qDY73H/8GADdb2M5DqFIond2BAM6D9+5y9OnrwD44MMM83MzfH16SqWsxERra7fRNINvvn5JOqvq0HQdzTTxajUACoVTZmbv0aq3CXaFMbpu8XrzENP08LqOF4lEFtvQcFsu2zvK7Sczk8SwHCLxKB//dz8EwLBsvFaFakEJjgwdNL/Dk/fuUcxXAKjV2iwuzhMIWfi+uh6Li7O0Wz6/+fWveHBfOejc3VjmxfOXHB+rWjstl9x8hoATxraVcKjlgYHBXDyB25sd36fVapHOpjC619atF6kV69Trqq/0TJJwIoVt2/QS8XzO3T0mMcmRZhzTOGS9SQ0Tjxs4dqKry3nDS6KYwRr8Ie45w2g2mli2hWUrsZfW62uCw9g09d403+V4FxyM3lrxY//10LrfUYOOa7+76/PPUSQqCIIgCIIgCIIgCIIgCIIgCIIgCG8Tb4UYZ1AcMk27/m3n/5r/sjhmsE/VBnqONqP6vxhN1e9GMEx8Mzlma7CON2WcSOA6+64qOtAGm2sahmERiJhn5xlOJs779pWMo1mrYjkhDKN76+nnYiDHSgHgoCKufFxa20qUsraWxbIiWKbOsqGcWBLpOJrv0gvCiaYiBKNhOu0OK+u3Vfe6RrvZpFqusLK6DMDh3hFLi/Ps7R3hu+pYOxTk+KDAr//xUwBWVpdYWVsjEHCYzSr3n4OdQ0IRm9z8LJVuZFS+cMx8LkUmHUfrir/C0QjttofXfbxm5pY5Pa1QKzdYu7MIgNt22d7ZwzR0tjZfAXD//h0KxSau12a1W+vmq33u3LuLZvlY3Ulv1ct0PINERrnnnJ4UOT7I0+mUyc2puKm/+Ke/JxQymAvkaLdUrVtbr5nPzfLk3XvYwXB3+g3WVm9RKLa6bbbI5FKYTgCt66jSKpZwfZdauYpmqGvbbjeYz8VwWwVqXvda+hrBaILEzDwAlm2pzX3/3/tx6UkYIi4YdUeOfYq6QpNJd/OgmOFMpNYX9XTVZ+LSIzFm32AdF5y1BvefF3mx/wHRziDBcOhCIb4Pp4fHhONRbMe5cOwlIQ7D3qQX0eBC7RfkJAP9DdY9yZWsf14mfSdM+14dWWt/f1foZ9r3+mTx42A1w/qbLFC9ie8ZccQRBEEQBEEQBEEQBEEQBEEQBEEQhJthuvwSQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAm8lY440xinPvBRZeFqzkCTOsCoPU5S1x04lHuOv3dDHN9mGb8QZeOq9Q3zOVj2uNHOVS8iUPC8LgbpfuynQCGadK7Vv2uHBfnQyeayqF33WaefvIXLK2/Syi+iBOOAlCrVnn2aovVu2vdo0wMA8qlCoGgiqnSTR3X9QiHIvzyE+V6k4xHwA5yWizz4le/BuC9996l0/aJhJULTr3S4fXLLU5O8uRPSgDMzEa5m13HdXUa3SimRCzOq61DVtdu8XrnSJXhtjnZOaHaUG1evdziwYPHHB7ssnRLudm0Gg3ikQDPnm3y4OFDQMVn/d1//b9IJKM8ekfFSH352xcEgiEWby1SLRdU/5067ZZPOK6chObm52g22xjmHIah5vn+wzukMjGcUJDaqYrUunV7leJJgXDYIRCOALC9dUCjViccV3P60ccf4tgauqbTbql4K88F32/Qqp2exXgFQkGiyRSGqWM53bnWTOWmcnb5x8e3DXITrhwXHa3Gc8EpZURs000+B9NE8E39zHPRuWZs331dxhJxdMu83G6Im9DU594d5ywGi8vvtmGuY4NjjZqLcY4vv+s4pd54Vxl3kovNpBjDm3IzmwaJpxIEQRAEQRAEQRAEQRAEQRAEQRCEm+GtEOOMWqwdJuoYtWiu2niXjrvc5/hFzGELoOe/9xaHz9t7/rnQ5LyJBnhTCwLG7RvVx7gF7v4F4ytH7bzhAu9g/Iqm9WJh1BzplnMWJTT+WEU4pgQnqdlF9l99ye0n8+hdwYkGWE4Qz+vV3qFebxAJR3n+bAuAYNjh+bcv+cFH77G+oaKrqpU6zWaDhcUFbi8vAHB4cMLXXz8llVZimd3dE+b1eZ5985JHD1cBuLuxTL3hU2s2ePhQxUhFow7fvtghEXeIRFQEVaV4iu96HO8dAnD/wX3i8SDvPtlAV9oi2p02PhqWbRKOKjHLzt4Bj+6vk5lN4Tiq4YcfPiEQsjg+OODbZ5sAzGSSrKzOEggrYUyzXsUK2ngu2EElsnn4zjuYpknH7WAHVUxVMBggHAxiOhZ+N4IqPZui0+oQiajYqkapgGUEqLdr6LqKmYrGQliBGLY1i+kE1HU07cuRSvhnIpEL15XJwoLzPi4e1799WKTTKEbFJF18NjQ0Te+28QZGv0Z028Dn/qP1vvM/kw5qGl7vXEYcN+4Z9oac1yQM27o4h0yOo7oKg/WOFFEO2ea6Lrp+2aztpgQiXp/opV849F0z6v4b3Ndtzfn3zMW5GCYem/Z5mMzFsSSuShAEQRAEQRAEQRAEQRAEQRAEQRDejLdCjDPKnWVw26Arzag2wxYnpxYDTNg/3PVlwB5nijG/C6eQm3C1GezrurWM63d6RyINvyuWuPXgR+S3X3Ky/ZLM/C0AUrksoXiYzedKeJPNZAgGbRqNBgf7BwDMzGa5s36bYCRAIq3EOJ7rU6+VCIeClPPK9aZarfDeh49ADwFQK58SCgdptly2t7cBmJubpVgocFoscWsx3S0yyu3bqzQrO5wW6wD89qtDUqkUTiCp2rg6u9vbtNptsjkl/qlU6qD5WJbN3/3tJwBs7xzykx+9Tyo7Q7Oh5mh3b587GyvMzOeYmVPHdlotNL8ImnKu0TWDo6MilXKJjY07aptuomkGhgGpdKpbh4tpmRwfHNFsNAGIhnVM6jRKRQBMQ8OyAsQiWfSAEujohhKtaJrOufxmjFtHn+Bh5HWd4PZxyeVFbRy6bxTTiEIu1fEdOoP0C3HOh7s4V4P1THLsuaoAY/Ad6WvamVjqu3jGe+/IUeKofoYJcfrbv6ko5ybPcRrGuf301zQNoxx5bup8xrnPCYIgCIIgCIIgCIIgCIIgCIIgCIJwdYavfgqCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCcGXeCmecSYyLp/I875IDzqArQ+/3cX1dvw7/giuONtwkZ2hfg3VdbdyLfdykq8HIaJkp3C0u1jLamWhaFx+t24dpWqQXV2h9+wU7L38LwNLqQzy3QziiYp4sx8C0LMKmxTtP7gLQabcJOFFAw/NcAAqFEtuvN9E8nWxWxVKt33/AzvZrXm5+owbulLi38Zh7D25z//491b9lUak22NiYw7JUXYeHJZ5+9ZTlpQWKeeU2Y1hBLMfB81oAtJt1drb2cIIBPv30rwD44MMnfP31c46PT1mYzwLwp3/6R8zPz1Go1Dg5OAbgwcP7BEJ215lGPa5O0KJeKmF2I6+McJC0qZNKxSlXa2qbpuG7EIlGaDWr6rxPT9ANg0a1eBab5AYDxGdmsbuRV4bloGGg+X3eN1ovwskbcn0GN2gjHXF6+30mx0jBcO+dwZinYYxzH7lwhOb3PauX46LGMSxOa9Jjf6nevtgtv7dvyAtk0BVsaF9XYNh8jIvDY0Kbs3qHXPtevNiQjqeKC7wuV3nHf1deOaPcbCYc1ff7uMrO74mbcUK7OF4vXlAQBEEQBEEQBEEQBEEQBEEQBEEQhOvxVotx+oUbg4uO4xY6b2qhepjIZWjflzZNF0E1GN8yru04biKealIf15/Ty/M3eB2njq0yLWbXH6BtPgNg87d/jxWZY/bWGgC+1wFMfFySycTZ6KfHZbZf51lcnAcgFHKYn5tnb+eQUFg9ApV6C0yDUl6JYDKpGPVGA9sK0em01Xivdvjbv/kHfv/f/Ji5roCmkK+x9XIbxw4TT0QB+OXPf8of/tufkJvpxkMZOqfFEvdmZnj0SLUpl8u4nkaj2WFheQWArdfbrG885MvfvqBebQDwm8++4L0PHhEM2vh+VwzjejQbNSwn3P3ocXR4iGXYBMM2AKYTJH98CG6HVm0HAM9rEUmukltaIBhUx2qWQW9h//x6+fgXVStMK1m4zl1y1eiycdt7EUzTPltTn9eQ98J1BH4Xp/X8HXZB3POG77TrvA+GncM0Y3qeNzRealAoOM27e1TE4JvWftV32qQ4xO8aTdO7414Wv13lCbuaUEfEN4IgCIIgCIIgCIIgCIIgCIIgCIJwk7x1YpxxLi/XXQDvbzfKYWac88x4RvlijD/2Jp1s3oRhdYy6Bt/HwnQ/GhqG4ZCdXwWgdnzI4avPyM7NAGBYYba2dpnJZaArXLEsg0DIoVAq4LnKGadSrpDP57EDJpatXHW0hofpw3/4kz8EoN5q8/r1Dusbt8/WxCORIH/wb3/EZ7/5mldb2wC0Wz7Lq+vMLc3x85//AoClxVusLN/GMtV4zXabmWyWr77d4vF7jwFYyaaxnDAPHj5k+c4tAO5sbGAFLO5uLFMuKjeb2cVZbMvgYPeQalegEwyG0Ts+wWBH1a5rRBydV98+Y35BOf0QihKNmoSTIbJLHwCg2xatlketVCQUNbpzquOPWIg/v94+b8ntOhWGYUx1rw5r4zP8yf2XJFW4SdcYbYgQ57pML6ASelfmu3onf9/vekEQBEEQBEEQBEEQBEEQBEEQBEH4585bI8aZxv1lWFTLNI4IwxwYRvV/lVrP3RMu7O312Nd3739XixS5qjvDJDeIacYf1+ZN3CZGt/HPIlF8fzrxk+koAc3ah79P5PmXbH2pRDBzdz9kbjZLvlCm3VbClbm5OTpui5nczJnby97uEQvzaaxgkO3tAwCSyQSpZIREWjnXxDUNXdMwTZNYXG1LpOM0GjXwbSqVIgCbW1t0Wh6xUIhOU8VURSNx2r7Oi6fPVV/ZOTAd3nnyiGxGOdKg+8RTSbIzKcqlMgDZbBJdh+zcDKm0EvLolkWjWuabp89Y37gDgG15lItHbOdfqc+RBOFYknvvrBONpbrbYpiODZwLHHygUDjhv/7v/xv/+c//HICF5dUL16T/GpxfFx+NCfFTfUwjSxsS9jay7bg2Z3KhaZ/d/roGxH3j+hl0dtGG7HsTH55pw4muwqhzuhDlN+LYq87rsGP7a/g+RTajrvOo74fB6ws3e01GxbKpuoYfM6wSlWg2el5vwilNEARBEARBEARBEARBEARBEARBEITrcXO2BoIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCILwr5y3xhlnmIvDNE4sNzHmqM/DavB9H/1CNMvkOKc3qf1KkTJ9Tg+D83kVh4pp29zEefXcV66Cpqn599GZXXtEIJ4G4PVXv8QKp0jlbmPY8e44GqGQjddu4LfqAGy+eMHMTJLqaYlGVW17cXzAvfvruN14K003SWaTWJaF191m2hYhI8btO7exHRXz9PDxAxr1CoZp8dEPVByUoUPH84hnlUvN0fEhiXiMpZVlHEfN7elJkVAoQD5/yuGBcudJpcK4novjhCmUSwCUyw1ysxFWlmfwaqqdEYuxsHaHSELFc1mBMLphdK9J9948m9eL85tOp0kmE/zml/8AwPyt293r3bseABp+95zVNq2340YY5tRyds9dMYZu2H1+nfi6SX1PctyaulZ/VCjY98/gXL61cXUj3tPjXI2medffZG3TOCwNq+3ie3q8C9w0tYyLX5zWFUoQBEEQBEEQBEEQBEEQBEEQBEEQhKvzVohxrivsuO7i4aAw5aIAqCv08AH8C4ulwxcxfSaFmCixwfXERVcVJUy7fRyjFuGvWtM4zvu/ekDPhfnXDBIziwBEY3H2XnzJwdaXhGJZAGbmlrEDATp2gGo5D6joqmq1RG5+kVRCiXa2Xj1HN3UqJSWCCUci2LaDaVoEwwEAXNelUirj68ZZ2Xu7x4RiIVKJGKlMEoD9/SOWY2EWlzIArLvwzbMXtFsdNE8deLBzRHY2w9zsPJlkTHXmNqjWfPyQT9BRYhjD86kVdsnOpkim5wCwQhHQ9Ev6GHUnqngrzQeGROJYpsF//C9/jmVZ3W2j5l27vL0rJpnEpDtu1P3Tv23s/TVGNDfx3h1Rh/ox3TM07TN1Ia6pW9ukWKjrcm1xyYioJn2YCIfvVrAxjfBn0nvpqsdc6qM37vnBvUKmGndU9FU/4+/R8+8TTTPO2p8/j8NFdtOivt+m+94SBEEQBEEQBEEQBEEQBEEQBEEQBOH6vBViHLjeIuukY0e57YxyI+h+6m4DJcYZ7dYzbNt1RTZv6kBxlbaDY02zeH1RuPDdLOJO69BwuT7V3gxEWLr/Mblaif3NbwDY/O0nBBybYCJHMKKcZN794DG+38ZHw1Xr3aysLqIbPqmsEvFobgfNtvA9n2LhRPVvmrRbbSrFMoGcapdMRUnPZLvr20pAMzs3S6vVwtSV0EfTfXK5FI1GFc1WA0ajNslkHMP08btFdFo+dGrUiiWC4QgA6dl5nGgQ3TTRfK03AVPPzeXPEE8kL7WZWghzA4wTI0wSTlzl3rgpx49Rz8cwJ6pp67wKk1zD3qRPTdOGSpCGusmoA67lQjRs7N44g9tGtR13/O+Scc/LTTmPDWs/at6mdeHpbRvV302ILAVBEARBEARBEARBEARBEARBEARBULw1Ypwe4xZaJy0WDi4o9i86Tr/I2IvnGb4IrGnaZT+BC32fCybO6hhR67Dah+0bxTRxI8Pmc1x0yXXGG+z/eiKI/pr73UrOto45thdb5YPmY4WjLD5QkVGzzSr14hGFw112X26qdppDJBpHx6JUU9e7VG2yfGsew+wO6mv47RbVYh1Na3c3WRztHxMNB9DoAJBIB9HxcF2YXVwCwNBc9veO2d5RsVLz8zOk0mlKp2XsriNNJhOnXi7huw1ct6mOcwJE00liiRRWINA9baM7NxpovXi08wipyQwXLo1z5jjfdTm2aBB9yLM12OqS1O2aQpxxx07D0PdA7x0BnFWunX/ShtR16T7vr29gvN5NPOlJuK64ZpqYrvPLqY2Myep3vXFdF9M0h17HYfNxVYa9n6aJAuvfN+7d/iaiEt/3J95jk8RZb8rw+b34DE5zjsO+C6G37fw57znv+L7Wd+wbnIAgCIIgCIIgCIIgCIIgCIIgCIIgCPz/7N1RruTIdSbgYN6qanW3xtLYkgcQ/DCzg9nEYFYwq5wVGN6El2AYGL/Ylm3JLanV3cl5YPJmMBhBBpnnVmVXfx9g33szyWAkk2QJiL/PuexvAgAAAAAAAAAA9Hi6yjh7bUtmPa1KWi05+io7tFvQ5CUwhjHdquAs59ZbI6G3Is2jrWH2xo2Yw6MVM9b1Q+baJEf2yyudpPT+i6/Sh//239Nf/PX/SD9894eUUkrf/Pu/pW9+9y/pm3//bfr+D1MLqp/98JK++/336f/9dqpc8336kH7zm1+lLz9cUhqn2+Qf/vGf0l/+1V+lX/7yF6+f/+Xy1XSdXVMarn+cDnoZ0vjtv6b376c2VX/63b+m7779Yxp/+D79x5//nFJK6euff50u736Wvv6vv0pf/vznt7l+mdKllo+7dJ6Hmvy67z2fxQid92L3tZT2K8U8su9WC7iIdlK913k5157WdGePu9meK6/+U7Tpq4348vKyOY/eZ/Sere+l97POfx9ttbcx+Pb7O/N41Pa85/9LKaVblbaxdh7nbdbP67xCTu25CQAAAAAAAMR4ijDO3kJq2cIkf63W3qkM6hxZJM3HOLJf2dondSwOl8frP9b0uctwTG2huWf8vfdiwj89C7/z6+Pt9EUsEN9DB+/ef51SSukXv/46/eLXf5Ou6ZrG76cWVN9/+8f0n//2z+nLP09/f/enP6Q//vYf0x+++Y/0xYevpjG++3369ve/S//8ny/p3bupjdR1/FN69+6r9PLykr790zcppZS+/Itfpb/+za/Tuy9uIZsPX6T/8uGX6Wdf/jy9vPsipZTSy7t306yGMVtev6QxXW/X7FsXrcrP7fnv9+j99bmoxZpqredqnvFs9bQAKz9zVCiwV/4sigoExTp/Ty0/x/05mJuCN7eWfONY/bruoZ3p66yHz1YN1VbH+9jfLQAAAAAAAHxuniKMUwY+ehcCe6sh5D9fQyvDsK5w0xhjNWZleve5zOGEfFF0WAWG5te3KszMc60Fg3oCNOXidTmH2muXamWW+rnuX7DNKzqkVI8j5AGqyrsHqq8s53avWlSesku6pPT+Fo55/0X68PUv7tfLOKQ0/pCu1z+n6zidk7+5fp/SOBbn6Pv08vIhDcPLPYf1WslmWaEiN1ZeH9M1+6y1c7T+3vbdgz3D4shDsc2x6jbLGa1/b22zO96DIYtaJazW+D2ftfmZ5mfI9Ed12zJesZpRNsbZz11+nrJKyuK5Wtu/Me6Q1tfZOI5pnBIei2P32nr+rObVCGCWx82fj3vzeSRgUqvEtvzOym/4kdpP8zjX7DiX4t+BevjyPkZK43jdPC/juKyaJYADAAAAAAAAcZ4ijJNSX/uYnsXW2qJprT1Mtg45LX8+WAFmr21WK8yyt9/lcmmO11p432rbVZtrLSy0Ff5pBYgi22eVxzkydq0VUFk5qBXcet0+jSkNlzRcvkgvw7Qo/jK+v1eeeA3efJVSuqZhsTi+Dk91BT92QzbbQZPqHp3b7s1vK6wTuYj/sSqdNKvWVFv6bI8xNLatRs7K62J/qof0BLV6znFtnGFYtt87Os6RwFFrm637qnWc6JBJK/BVyWd1PReX44yN1lMp5VfU1jncbiE4LOaWHzf/t+a5Kg4BAAAAAADAj89b98IBAAAAAAAAAICfjKeojLOswnD/L/frdSPyKgHL9ketai6LKjjj8mc+7LT9PZ80tfmozfjyOv44Xhvz3K8uUFbhaFVyqFWlKdtJtSpiRFTJ6K1SUa2k8douqz1GT8WeXE+bm97PsNxm2Vpscrm1nUq3Sy9vQ5bSMI4pTXVxXstiDItr9PZKcfhhWFcxmr7T8hoY07oFzsvuZ8mN91IYxTjz53zJ5tMxzm1ere/m6DW1HDe/rsv2Zrd9d0dvH7N13LmV1+TaNVZu/payDZbnotLKahiGlA61HGs7cv/XqtVUdkzXgLnVK7ycV6sI1jpm/rNWGau35d183Nbx1vdq67NO99/03nX1+nKslOZ7odVmr32c2cttm/ux2h/5sqjsAwAAAAAAADzmKcI4PWGP9WJoO6CyWmQdqr92zmvcXIjteb1cCO47bv21dphgPxix1Zqn3Gdr7FbrrK153TMJ63NZm/tWe658m73j5+MfaV8z5MGVfL/XfW9vPdhoaNleLP/7Y7d+mrepB6N6x4lqi3XfZqvlTrR7yOphRcu42ozPtk+qBUneonVZrSXUx2xf1BOY6b02y7F6z3253Zl2ect7aXldt1perffruw9a52z52vkQHQAAAAAAANDnKcI4UwWAZdWNlMrFzEvxX+2vFzSn6ivjqpLAsgrOXHlnvAdEUprK5wzDYuOhGaIZFz/HfHFzfmtYVuRJr3PaD8fUbFV12FpIrS3a74V48tf3Ayvr49TG7zlmOe9lUKU+jzMhp1Y1nnUwpnvoTnuL5OlWaak8cCNElV1g47Debvo8lf0q53UdCtgPkM3hofK1xbGy+yyfYStcsBkYe/BLqd0ny+vzwLWU/T5XkMlu/dVIWyOfCeXkVaeO6trvNqfr7ecPP/yQ3r9/f+gY8zzPqN2rR7c7G3Z6RKvKV266lPNQaT73dWhm69lXhhbrFYDy76D9vF8+Lz7+uQMAAAAAAIDPSb20CAAAAAAAAAAAcNhTVMZZVmq4pu3WNNedsbZbItXqVgxpSGNWEaR+3Py1+/hjGtKwqDYwTscY9sf5mGrtp/a2Ten4vM9U62jtE1nZolZJaH3MvjZk5+eVz6G1Tevc1XYor7taZZB63m7/OxrSMGxXJZqG2KviE9f66bWKzYP71/8+P8fV9XF6pOOOtNA7025s3vLl5eWBWZ6zV9Urf7322qeojFOz/g6yFnj1BmYppZSu1+ti//I52WrTVztu+7nS3Pvg9gAAAAAAAEDuKcI4Kc3teWbLBfxpEXJuv1G2phoXv7daAd23qYV5srYeq1e2lfGAeal10SqkMlhP65Wt9iS9LVm22lvl7x9ZoD+iNq+ewE5PeChisT3//L1Bpbqec9N3/tbnZ/2dTe/Xgi/Hxt/+LtpBgftY9/tpuN23w948xrHeymnr/Gcpu6MtkHriQLV7rnUNThmkznuh7JkX4Mg9dbqVVbpFRopQXm+Lq8XV2xmgWQ6x0a6s8ndkCDBC77Opfm7mn+tAZHntRzwf5/NwvV4/eWgUAAAAAAAAPhdPEca5B21SWlYNyBcTp6DNdnWLORiwtaCYjzlkv42LtzdHWARcpp3yOM9Uj6QdfNmzt11tQXYvTDJXUci3qwYNegMOG5U49uZfzqE11tmwTbl4XTs/rUDH+cXoY2GcIbvcV5GaaiWe9bU/DuW1HL2Q3h5vSOtA2JQPysM4t3O+TGbUz/HrWMtgW+335W6N77GY2LCz3CFJYwAAIABJREFU/X3T5bVZBkteA0HF3JvXcDl+dav25zta4aUW3Dh7H1VrMQ35M3OuDpYWry3mkOrXc606Ve9zr5zH3rYtW8+dtwql7I87Ztffek49IZzec1p7HvbsBwAAAAAAAOx7ijDOmYok64o494XrezGKt/2v/LfG713c3Fo4bVf/WW6/tWDfauFS/r210F079t4YrXmfbX911v2a2A8d9VQWCW9/M5cgqRxra16PWAVO0nZIZbH9xrj30NPrC2nKs4yr63wR4NgIGWzNqydctTfXPT2tsbbGebS11lH556rd1z3BvbeaVz6P2uste9VvaqGjo8eoHa/mbAWeylGqxzxSEag2l57KTj1UyAEAAAAAAIDHXD71BAAAAAAAAAAA4HPxFJVx+ky5oZ7WGvf/qn+uHpBXRpnzR9fD1TS2lCPsVSRoVS3Ye601bs/x8m233sv/nttbteZfG2NvTkeq+NTe3zsXZ9qB9VTcqFX1OVZ14vr621i0bkppbjQ1l8m5ZNtO78zHujS6PI2VVlbFVmkuxTMMy+/1vt99m6K/VFq2Y0tT+6e8+lGaK8DcPueQv3YfZf6s+eRr7YxSOn+ur/n1OU5HnP7uaX61M9/ObWrXV+2IY9YKaxiG5Qyz93o//dYzcjWv/PXs954nYvndtuZSa0fVU1mr9nq7Mk1+vT5W9Wer+s1elZ4e02e65q/cq0lln6N1PvLj1yp3Xa/Zc+ZQi7OUzUubKgAAAAAAAHjEU4RxHmmbsr0oegsQNNuEtNsqbamHWfaDJLXF+TJgsrfw3NOaas/WIm/PtrX3Wm1Wtj7fkWPV3u/9/K0WWrW/o1vUbJmDFvk52mvp1DRMQZ7ezzFf+9v3zrDYfjdEMYcDmsfcFtE6aat11dY1sNcGbvNYAW2fmuGPA2P0tjlr3g871/Zqn445PXq/tMJE87j34Mn9eT4Mx5/HEe/1Wl93eRgnf31737P/XtXGmv7eHQoAAAAAAADo9BRhnHEsFwur9SOq+5ZVY+rbrit8LLdfz+X+1n4AZLm4Wp3m7qLyVmCgVbWlJyxwtJpLz/G35rS3Xc9+e1rnqvbe0TDAW4RG5loni+s8L9oy3qumDLcqLuMwH2N8vabmw24dPb8H7uf/Ximq1A6q7R0p23++xjr2an0bPSGHasina9u+rWpzqpm+s/Xn3rIXdtn65OXx9o6zdX+Ur98LsnQENqbSKdvHb8z1aNBuzzqUOC4O+cjxep4rUXqepY8Hmq6V53/zTrxt89AhAQAAAAAA4CfvKcI4kzk0sg6Z5JU8ZrWwRd6643XUYSjCPtfNxdblfMauxe3b0aufp5xzLRxTzqMWatkKl/S2gtn6DOtz1reYXbZIaS0iR7V3OSN6Ab2/Osa4+Dmky6KaSrnVMjRzXb602PJIE6Hadb2vFt6qnv/ASkERVUfaauOWLdg6Ky2ldGsdduzoR/ZYbdt5vK17/tT9c2Kf6lV3st3YY0c95+3nutRTWa1/nOo7jb/j7l0AAAAAAABgqVyNBgAAAAAAAAAATnqSyjjnKwPsV3Dp6q5SzGXevq9lVJfhVnFhbjUUUHHhyFweOV6t4lBtm61qPFuttPaOnVL/Z61VFTqrVX2pY8/i76yB02vLqbG5/aqOReMzDcNl/dpijI9T+SLiWn7o3uoYu7SuUFX5DNnDY66E88gMe++DoTabj3Svf0zl+ahV56q3IUzVffLt8v2OXFtHK4odd6LSUKPiW/7+/FrrubJ8fb+tIQAAAAAAAPCYpwnjDJWQwpkF0PWCYtlqqmx/VS5ilj/357G7SDyHgca+pdhyobV2/K2F7PzvntZV5fat47XmWL62N1ZtvNr7tfNQtuPac3QhPsZtrq/f9i00M1zvYZnX1mnLFmzTy/m+6/N6fy3bZh7qvsFme7W9c7I+b/e2bc2xDpy/WlxpHMe0FRmofZerbbpnUDfkyb35WMOweCrMZ75sOdZ17DJwktb3yfJrHLJrZszfaAy/HZjbO3/lHBZP0iPf787zIg/KzO+v5vZAMKQVXKlt82j4Zu9Y9/ePPbu25tPz+epX5PK50RofAAAAAAAAeMyThHHOLwb2hi2OLlLXtMIN3QuslZIXZXBlL4jTe55qi99b89wK7dQqVGwtZPdWsGhtsxUi2Xq9JqLSQzmvvSpB923nkMp8DpcL8z3H3H4/W5BvbN57DveujVYI5+h9+0j1jciqHeX5m0NRrWt38SlvAZm967RnDq9XQ2usuTrP4vDD6dDRp6p+0lsBq2YvULgXTGx93rPVuraOs/U8z/c5+h1sVexpVQTKj3P2MwEAAAAAAADnPEkY51JUpjnf1qjnWPdxlhV0yvH7FlSHrMrJfdF0yNIRQ7nun8nHPrtwuhUS6qlyszV27e9a25R8HrXXeqrlnAlV9e7T0z5rr4JM7/dyKSud3HI518X+12zcsmXS8v2aqYJLtk3x8aZDDmnsbIvTHfIqj1Fb/C+qvCzez/7Ogyh7R5+DK7VgRu0Ttsbbvmdea94sXyk+07Da73HN8YYhXWvXb/k5KmM0r/n873z74vdxvLfnKrfNt19Emg6EfXruvTJsUrpX2Mmfo/UKTntqz7X+4F39Gbme93j7TJds/9o1uK4a1FOBpwyZTX9fUtp5DvSMDwAAAAAAAPS77G8CAAAAAAAAAAD0eIrKOI9UmThSuWA+1lxpIJtB176le3WddRWZcbw2KiMs57Eerz6HRyo9bB2jrP5ztCrPmTZFZ96r6a3mcPT1ck75uen5LurViFpbl9din3Ec06Wrndf5ChfLcceyW1JX1aUhpUWbpdeKK8U+PRWUyvPUqorT0lsRKj/Mx27bU37u/D6rVgCat91pDTePvXp9rz3ZxtzmscptjjjyPOi//+rj7LWMan2+Pdv3X/3fnyOXVes+2zsXRx8rquEAAAAAAABAnKcI40xtOsomKUt5G5Lp7/ti430Rsd2epFzgvlwuXQui+4uxZdub+fWhmPPQ2L7dgqVXqzVM67Wzrav25lALOh1ZqO4NBPWcu1qoYyuYtB+6Wv+e77vqNJNvOwzTtdr4WNdizPVctlu2jRvbRHgNgkx9ouZXu/cvW1Ot2h3d2kDttauax8hDSPfbrT+Mkm2x+r38esuWY/O41bDQxtyv+bXQuU/p9WhFAGZ+bXf//HrZuPYX1/vefMq2ZAfutbMBw43ZVH6/73fpeC7tBVzy774WDquHHctzsXwYTLvk99X83vbVsX/+9hq4bT83AQAAAAAAgPOeJIxTXwCtL9rOVQxqIy2rtdQXFPNt1hULFlt2LRaXi/hD8fP+3lBJZOyFQKIWRSPHaukd/2Mu9H7syia51+s3ZrTVK+tIxtud1+FWwWdM13P7385FGTwq3z+qFlsoQ2F9AY77a8Ow7t7XEzDb0l3dqidUc/jo7TE+1p349vf8ue/k7D69+45j+e9RLczWColtH2Pv382NWTXHfiQoBQAAAAAAANytV50BAAAAAAAAAIBTnqIyTsv6v87vaa+0rj6zbgNS7nuvlrPf2qY81jzOXmuTtKq40apWE9W+pdZep7XNsc/dN4+PVQGn93zttZ95eB63n0NzqFp1m+Yo20eqtowqW9/cRtqoENWcV3ntpPHtqqjces71fgPb1/pUfWSv0tVUVeTcdFtzKN//sbX6iayGcqbd0V67vfr82m3Tss5gaa/KTD6Hs+r7jov53z/fVsu0t75utp4HP65rFgAAAAAAAJ7VU4Rx8hBMa/F2GNZBmen1fBH08vpasVV+tNdj5mGaeZ9y4bQWLhnHZauS/fZW8yJsO0SQj9HTEie6hVWu9nnyc9FaMD+zAH/Go6GBR+e5DnXcwiTz62N9oX3Mv+M5KPD6/8pQ12W17es4t1ZR4zhvM6RhlQAadlojLYM75blY7TuMxTr9LfDSGL2lGp24BXHy422NXY8tzC3BhuKZUBx/cZ9d6tvl80j162Tx+hxoWx6oeuzVlVELFjXmvX6KnbM4ZvYcGYvnzjCdyOU8ijmcuQZWc0gpXa/TNX25zM/wvWdgGWopr4ohDYv7qnLNNZ698S2a5uPk99rqTC7m3jVqI2zZEyBtzVF3KgAAAAAAAIjxFGGclBoL3hsVMHqCFHPgpty0NW65EFse6/73ZbVfz1yOBla2FoXPBEn2qoW0xm2FjnqO1/N6eU7eZkH87ar2zPMd6lGT+/VTi1BUpjF9T8cqVUwfbRlIKKsete6xvXMxh4S26z+dF/1dv2aiOsbdrrqyPc7ree2eV/26aIX+8v1Wcwi6freeu+W1UQ9DLgM7tWfo1uebf79cLqtjvd5Xgffqo/+mPHbM4aFjdH0Xqf55ej/j/W0VcgAAAAAAAOARTxHG+fDhw6eeAgBw8xaBSAAAAAAAAPipuOxvAgAAAAAAAAAA9BDGAQAAAAAAAACAIMI4AAAAAAAAAAAQRBgHAAAAAAAAAACCCOMAAAAAAAAAAEAQYRwAAAAAAAAAAAgijAMAAAAAAAAAAEGEcQAAAAAAAAAAIIgwDgAAAAAAAAAABBHGAQAAAAAAAACAIMI4AAAAAAAAAAAQRBgHAAAAAAAAAACCCOMAAAAAAAAAAEAQYRwAAAAAAAAAAAgijAMAAAAAAAAAAEGEcQAAAAAAAAAAIIgwDgAAAAAAAAAABBHGAQAAAAAAAACAIMI4AAAAAAAAAAAQRBgHAAAAAAAAAACCCOMAAAAAAAAAAEAQYRwAAAAAAAAAAAgijAMAAAAAAAAAAEGEcQAAAAAAAAAAIIgwDgAAAAAAAAAABBHGAQAAAAAAAACAIMI4AAAAAAAAAAAQRBgHAAAAAAAAAACCCOMAAAAAAAAAAEAQYRwAAAAAAAAAAAgijAMAAAAAAAAAAEGEcQAAAAAAAAAAIIgwDgAAAAAAAAAABBHGAQAAAAAAAACAIMI4AAAAAAAAAAAQRBgHAAAAAAAAAACCCOMAAAAAAAAAAEAQYRwAAAAAAAAAAAgijAMAAAAAAAAAAEGEcQAAAAAAAAAAIIgwDgAAAAAAAAAABBHGAQAAAAAAAACAIMI4AAAAAAAAAAAQRBgHAAAAAAAAAACCCOMAAAAAAAAAAEAQYRwAAAAAAAAAAAgijAMAAAAAAAAAAEGEcQAAAAAAAAAAIIgwDgAAAAAAAAAABBHGAQAAAAAAAACAIMI4AAAAAAAAAAAQRBgHAAAAAAAAAACCCOMAAAAAAAAAAEAQYRwAAAAAAAAAAAgijAMAAAAAAAAAAEGEcQAAAAAAAAAAIIgwDgAAAAAAAAAABBHGAQAAAAAAAACAIMI4AAAAAAAAAAAQRBgHAAAAAAAAAACCCOMAAAAAAAAAAEAQYRwAAAAAAAAAAAgijAMAAAAAAAAAAEGEcQAAAAAAAAAAIIgwDgAAAAAAAAAABBHGAQAAAAAAAACAIMI4AAAAAAAAAAAQRBgHAAAAAAAAAACCCOMAAAAAAAAAAEAQYRwAAAAAAAAAAAgijAMAAAAAAAAAAEGEcQAAAAAAAAAAIIgwDgAAAAAAAAAABBHGAQAAAAAAAACAIMM4jp96DgAAAAAAAAAA8FlQGQcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACPLuU08gpZT+1+X/jJ96DgDA5O+u/3f41HP4KfO/iwDgefjfRQAAAACcoTIOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQBBhHAAAAAAAAAAACCKMAwAAAAAAAAAAQYRxAAAAAAAAAAAgiDAOAAAAAAAAAAAEEcYBAAAAAAAAAIAgwjgAAAAAAAAAABBEGAcAAAAAAAAAAIII4wAAAAAAAAAAQJB3n3oCAAAAb+Vv/+nvX3//37/5n59wJgAAAAAA/FSojAMAAAAAAAAAAEFUxgEAAD4reTWclFTEAQAAAADg4xLGAQAAPgtaUgEAAAAA8AyEcQAAgB+tsgpOSoI4AAAAAAB8WpdPPQEAAAAAAAAAAPhcCOMAAAA/SqriAAAAAADwjLSpAgAAfhRq4ZuUBHAAAAAAAHguwjgAAMDTaQVvSoI4AAAAAAA8G22qAACApyKIAwAAAADAj5kwDgAAAAAAAAAABNGmCgAA+OR6q+GkpCIOAAAAAADPTRgHAAD4ZI6EcFISxAEAAAAA4PkJ4wAAAB/V0QDOTBAHAAAAAIAfA2EcAADgzZwN3pQEcQAAAAAA+P/t3d1tG8kSgFEtwSgYBbNgzMyCUTCNvQ9Xox3TQ/GvZrqr+hxgcYEL2+oZyc2H/lydxa71AgAAAAAAAAAAoAqTcQAAgFBR03AAAAAAACAjMQ4Aqdwe8Lq2BKAPawU49nkAAAAAALIR4wDQRNShrTgHoK01p+DY0wEAAAAAyEiMA8Cm1r66RJwDsI2193P7NwAAAAAAWe1aLwAAAAAAAAAAAKowGQeA1a09PeGZr23CAkCclvs6AAAAAAD0TowDwGp6Oqydr0WYA/C6Lfd0+zQAAAAAAJmJcQBYRU8hzq3z9eKgF+BJIhwAAAAAAHjNrvUCAAAAAAAAAACgCpNxAAjT8zScW6bjANyXaT8HAAAAAIDeiHEACJHx4HZasygHoP0+bi8GAAAAAKAKMQ4Ab2t9cBvFlBxgZJF7+dJe+syfbw8GAAAAAKASMQ4Ab6kS4kwEOcBIIvbwZ/fM+a+r9tkBAAAAAABLdq0XAAAAAAAAAAAAVZiMAwDfTMcBqvtkMk3E/ng6HP9ag30XAAAAAIBqxDgAvMw1IwB5vLtnrxXJTEGOCAcAAAAAgKrEOAA8TYQDkEdvEc7WXwMAAAAAAFoR4wDAN4fDQBWvhjj2PwAAAAAAiLNrvQAAAAAAAAAAAKjCZBwAnjLiFVVLz2x6BNCrV/ZpexkAAAAAAKxHjAPAQ0Kc+/+/A22gJQEOAAAAAAD0R4wDAF//HVK/Gh6drxcH3EATj/YrexMAAAAAALQhxgHgVyNMxXk3xJkIcoAt3dur7EMAAAAAANCHXesFAAAAAAAAAABAFSbjALBopIk4X1+fP+/0+02mANawtEfZbwAAAAAAoE9iHACGFBnizLmyCogkwgFA1HlEAAAUv0lEQVQAAAAAgHzEOAD8pfJUnOkQe81nFOQAn7rdo+wpAAAAAACQhxgHgCGsNQnnHkEO8A6TcAAAAAAAIL9d6wUAAAAAAAAAAEAVJuMA8IeKV1RtPRUH4B3z/ck0HAAAAAAAyEuMA0Bp04F2iwhn+poO1YF7bvcm+wUAAAAAAOTnmioAflSbGtMyxAF4RIgDAAAAAAA1iXEAAAAAAAAAACCIa6oAKGc+XaKHqTjn68XEC+CHiTgAAAAAAFCbGAeALoKVNVR9LiAvIQ4AAAAAANQnxgGglNPh2GWEYzoOjG2+L9kLAAAAAACgNjEOwOB6DFfe5YAb6I1JOAAAAAAAMJ5d6wUAAAAAAAAAAEAVYhwASqk06QfIzVQcAAAAAAAYkxgHYGBVwpXT4fh1Ohy7f57e1wfEEeIAAAAAAMC49q0XAACfcMAN9GYe4tijAAAAAABgPGIcgEFVmtJS6VmAvOxFAAAAAADA15drqgAAAAAAAAAAIIwYB4C0XP8C9MweBQAAAAAAY3JNFcBgql2jku15pvU6pIdabvcif8cBAAAAAGBcJuMAkNLpcEwX4gA12YsAAAAAAIA5k3EABlLhwNi0CaAnS/uqfQoAAAAAAMZmMg4AAAAAAAAAAAQR4wCQUvYpP9nXDwAAAAAAACxzTRXAICrEH65+AXrheqr1na8X7xQAAAAAgJTEOACkMB3IVoiKAAAAAAAAgLpcUwUAAAAAAAAAAEHEOAADME0GII4rqrbj8wsAAAAAgIzEOACk4VAWYBwCJwAAAAAAstq3XgAA66kSr1Q8kK34TDCCKvsqAAAAAACwHjEOAN2aBysOwIFeiesAAAAAAIA511QBAAAAAAAAAEAQMQ4AXTIVBwAAAAAAAMjINVUAdGWKcAQ4QG+W9iVXVK1net/T/3rXAAAAAABkIcYBKCpbzGISDgAAAAAAAFCBGAeA5k6H4xABjqkOkNMI+xMAAAAAABBn13oBAAAAAAAAAABQhck4ADRXferENBHn9jlNyoG8/P0FAAAAAADuMRkHAFZyOhx/ruBaCo6qR0gAkeyZAAAAAABkYTIOAAS7NwlnyfRrTNmAPglA2vDeAQAAAADITIwDUJBDzG3dhjTvvP/z9SLIgST8XQUAAAAAAH7jmioAAAAAAAAAAAhiMg4APOHeJIzz9WISEUAQ+ykAAAAAABWIcQBgQcTVU69yVRUAAAAAAADkJ8YBgAWmMwBL+4Bgbj3P7LuiRQAAAAAAMti1XgAAAAAAAAAAAFQhxgEoyNQAAAAAAAAAgDZcUwVQ1OlwDLtqaYp7pj/vt9jn9mtGrgOAml75nHBVFQAAAAAAvRPjABR2G9G88nsm5+vlr9//zJ83/3PeWQcAAAAAAABARmIcgKKWJtQ882ujgpmlKTqm5Dxm4gMwGp8LAAAAAABUs2u9AAAAAAAAAAAAqMJkHICClqYMtJo8MP+6p8Nx8RosgAxMrerH0vQ1AAAAAADohRgHoJDew5Z7V1ct/RoAarPfAwAAAABQlRgHoIBsB5q303Lm7k05yPaMAAAAAAAAwJjEOADJZY9U7q3/UaST/bkB+Nz5enFVFQAAAAAA3dm1XgAAAAAAAAAAAFRhMg5AUtUnw9w+371JORXfw/RMpj0AVVXcuwEAAAAAYGIyDgApPHudFQAAAAAAAEBLJuMAkMa9aTmVp+QAVGOvBgAAAACgOpNxAEjr0VVWANQn7gEAAAAAoDdiHAAAAAAAAAAACCLGAUjIFID/eBcAedizAQAAAAAYgRgHgPTO18vPAW+Fq6pOh2OJ5wAAAAAAAIAR7VsvAACiTSGLCQwAfVh7P64UZAIAAAAAkJ/JOAAAAAAAAAAAEESMA5CMaS/3VXg3pjoAAAAAAABAbmIcAEqZBznCFoD2KoSSAAAAAADwCjEOAOWcrxeHv8DHBH2f23ovtvcDAAAAANADMQ4ApWU6TM+0VgAAAAAAAGCZGAcAAAAAAAAAAIKIcQCSMT3ledN1Jd4ZwLZcFwgAAAAAwMjEOACUNg9yeo5yel4bwCtaRzitvz4AAAAAAIhxAJJxyPi6+TsTvQCvmO8Z9l8AAAAAAOAZYhwAhjC/MkWQA7AOwRIAAAAAAIhxAAAAAAAAAAAgjBgHgKH0Nh3ndDh2sxaAT/Q0FaentQAAAAAAMB4xDgDDmQc5LUMYEQ7kI/IAAAAAAAAe2bdeAAC0MD9Qn6KYLQ/ZhTiQg/jmMe8IAAAAAAD+ZDIOAMPb6uqqaRKPEAeooucQ53y9dL0+AAAAAADqEuMAAAAAAAAAAEAQMQ5AMqaqrGM+HWeNd+z7BnWYtgIAAAAAAPxGjAMA3+YH7JHxjBAHchLd/M77AQAAAACAZfvWCwDgdafD0SHoSm6DnHffswAH8rK/1nK+XuzJAAAAAABsSowDkNT8YNHB8TrmB7jPvmMHvjCG+dV2I/K5AwAAAAAA97mmCgAAAAAAAAAAgohxAAoYdTLDFs7Xy8MrTk6H489/QG4mvtTk+woAAAAAwJZcUwVQxOlwdNi4MrEN1PbOHvoo1qvG5wwAAAAAADxmMg5AIaazALxHZFKf7zEAAAAAAFsR4wAAAAAAAAAAQBAxDkBBpuPEMW0IajtfLx9PTBll4soozwkAAAAAAJ8S4wAUJSAB+F1kXCJUySEivgIAAAAAgEf2rRcAwHrmQY7Dx9cJmqCmtfbD6c+tuHdU+ww5Xy8lv08AAAAAAPTBZByAQTh0fI33BfVsNRWlWrgCAAAAAAC8RowDAAAAAAAAAABBxDgAAzHt5bHT4eg9QUFbT6upNB2n0rPMVX0uAAAAAADaE+MAwDcRDtTUKrrIHntsda1XS9WfDwAAAACANsQ4AIMx+WWZdwI1tY4tsgYtGdf8rqzfIwAAAAAA+rVvvQAA2jgdjg4fvwlxoJYe97ZpTfabfvkeAQAAAAAQxWQcAAAAAAAAAAAIIsYBYFiu7IJ6epyKM9f7+r6+cqxxTa6tAgAAAADgU66pAmBIIhyoJVM8MV9rT3tRpne4hfP10tX3BwAAAACAPEzGARjYqIeMoz43VJR9ikkva+9lHb3xXgAAAAAAeIfJOAAMQYAD9VQJJabnaLVPVXmPazEhBwAAAACAV5mMAwAAAAAAAAAAQUzGAaA00wygnqqTXFpMyKn6LqPN35PPFQAAAAAAHhHjAFCOg1KoaZRwZItrkUZ5l2tofa0YAAAAAAD9E+MAUIaDUahrtHhkzeBjtHe5FlEOAAAAAAD37FovAAAAAAAAAAAAqjAZB4D0TCWAmkxwiZ++4p3G2+JaMQAAAAAAchHjAAws+6Gsw0+oK/v+FG3+Pt7d+7zT9biyCgAAAACAOTEOAKk46IQxnA5H8cgdr4Qf3uG23n3fPtsAAAAAAGoR4wAMKtsBrYNKgD9l28e579H30mcgAAAAAEAuu9YLAAAAAAAAAACAKkzGAaBLpgAArqqC/ztfLz4XAQAAAAASEeMADKaXg22HisAzpr2il70LWpn+Dvj8BAAAAADon2uqANjU6XB0kAi8zL4BAAAAAABkIcYBGEjryRIO04FP2EOg/Wc5AAAAAACPiXEAAAAAAAAAACCIGAeA1bmaCohiLwEAAAAAAHonxgFgVQ7OgWgCP0bnqioAAAAAgL6JcQBYjcNyYE32GAAAAAAAoEf71gsAYBtb/St6h+MAsL7z9eIzFwAAAACgUybjAAAAAAAAAABAEDEOAGH8C31ga/YdAAAAAACgN2IcAEI4EAdasf8wqvP1stk1lAAAAAAAPG/fegEA5OcgHGhtvg+JEwAAAAAAgJZMxgEAAAAAAAAAgCBiHADecjocf/4D6Il9idGYBgUAAAAA0BcxDsAAog/pHHQDvRMLAgAAAAAArYhxAAAoS5DDKEzHAQAAAADohxgHAAAAAAAAAACCiHEAAAAAAAAAACCIGAeAp50OR1e+AOnYtxiFq6oAAAAAAPogxgEYgINoAAAAAAAAgG2IcQAG8WmQI+gBMrOHMYrz9WJCDgAAAABAY/vWCwBgO6fD8ekDOgfXAJDX+XrxWQ4AAAAA0IjJOAAAAAAAAAAAEMRkHIDBzP+V/NKUHP+KHqhq2t9c4QMAAAAAAKxJjAMwMOENANTkMx4AAAAAoB0xDgAAQzEhh8pEOAAAAAAA7e1aLwAAAIDPCXEAAAAAAPogxgEAAAAAAAAAgCBiHAAAhmSKCJX4eQYAAAAA6IcYBwCAYZ0ORxED6fkZBgAAAADoy771AgAAAHidCAcAAAAAoE8m4wAAAAAAAAAAQBAxDgAAwzNhhGz8zAIAAAAA9EuMAwAAkIgQBwAAAACgb2IcAAD4EjiQg59TAAAAAID+7VsvAAAAgN+JcAAAAAAA8jAZBwAAAAAAAAAAgohxAADgm+kj9MjPJQAAAABALmIcAACYOR2O4ge64WcRAAAAACAfMQ4AACwQQdCSKAwAAAAAIK996wUAAECv5jHE+XppuBJGIcABAAAAAMjPZBwAAAAAAAAAAAgixgEAgCe4Noi1+fkCAAAAAKjBNVUAAPACV1cRSYADAAAAAFCPGAcAAN40hRSiHF4lwgEAAAAAqEuMAwAAHzIth2eJcAAAAAAA6tu1XgAAAAAAAAAAAFRhMg4AAARydRVLTMQBAAAAABiHGAcAAFbwSXwh5KlBgAMAAAAAMCYxDgAAdMZ0ndxEOAAAAAAAYxPjAABAp0Q5eQhwAAAAAACY7FovAAAAAAAAAAAAqhDjAABA50xd6dfpcPT9AQAAAADgD66pAgCABFxZ1YbQBgAAAACAV4lxAAAgEVHONkQ4AAAAAAC8yzVVAAAAAAAAAAAQxGQcAABI6HQ4mo4TzDQcAAAAAAAiiHEAACCpeTwizHmd+AYAAAAAgDWIcQAAoACTcn4nvAEAAAAAYCtiHAAAKMKkHNENAAAAAADt7VovAAAAAAAAAAAAqjAZBwAACpomxFSbkGPyDQAAAAAAvRPjAABAYZmurhLaAAAAAABQgRgHAAAGcS922SrSEdsAAAAAADACMQ4AAAzuNpL5JM4R3AAAAAAAMLpd6wUAAAAAAAAAAEAVJuMAAAB/WJpuczstxwQcAAAAAABYJsYBAAAeEt8AAAAAAMBzXFMFAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABBEjAMAAAAAAAAAAEHEOAAAAAAAAAAAEESMAwAAAAAAAAAAQcQ4AAAAAAAAAAAQRIwDAAAAAAAAAABBxDgAAAAAAAAAABDkn3///bf1GgAAAAAAAAAAoASTcQAAAAAAAAAAIIgYBwAAAAAAAAAAgohxAAAAAAAAAAAgiBgHAAAAAAAAAACCiHEAAAAAAAAAACCIGAcAAAAAAAAAAIKIcQAAAAAAAAAAIIgYBwAAAAAAAAAAgohxAAAAAAAAAAAgiBgHAAAAAAAAAACCiHEAAAAAAAAAACCIGAcAAAAAAAAAAIKIcQAAAAAAAAAAIIgYBwAAAAAAAAAAgohxAAAAAAAAAAAgiBgHAAAAAAAAAACCiHEAAAAAAAAAACCIGAcAAAAAAAAAAIKIcQAAAAAAAAAAIIgYBwAAAAAAAAAAgohxAAAAAAAAAAAgiBgHAAAAAAAAAACCiHEAAAAAAAAAACDI/wAECHxXTbRyOAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(\n", - " dataset, config, image_id_list[1], use_mini_mask=False)\n", - "\n", - "log(\"image\", image)\n", - "log(\"image_meta\", image_meta)\n", - "log(\"class_ids\", class_ids)\n", - "log(\"bbox\", bbox)\n", - "log(\"mask\", mask)\n", - "\n", - "display_images([image]+[mask[:,:,i] for i in range(min(mask.shape[-1], 7))])" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "original image shape: (2160, 3400, 3)\n", - "image shape: (384, 384, 3) min: 0.00000 max: 253.00000\n", - "image_meta shape: (17,) min: 0.00000 max: 3400.00000\n", - "class_ids shape: (7,) min: 1.00000 max: 8.00000\n", - "bbox shape: (7, 4) min: 19.00000 max: 356.00000\n", - "mask shape: (384, 384, 7) min: 0.00000 max: 255.00000\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Asfandyar\\AppData\\Roaming\\Python\\Python35\\site-packages\\scipy\\ndimage\\interpolation.py:616: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.\n", - " \"the returned array has changed.\", UserWarning)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACN4AAARCCAYAAAB2T63ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3emS5Mh57vnHEUtGRO5L7V3dTbWakihKokxH0jlnPo/NFcxVzhXIzgWMnRnZHC0Uxb23qq4ls3LP2AM+HxwOOABHRGT0wiL5/xmbmYEAHA7Hkm2Gp1831loBAAAAAAAAAAAAAAAAuJ/kd90BAAAAAAAAAAAAAAAA4PcRwRsAAAAAAAAAAAAAAABgAwRvAAAAAAAAAAAAAAAAgA0QvAEAAAAAAAAAAAAAAAA2QPAGAAAAAAAAAAAAAAAA2ADBGwAAAAAAAAAAAAAAAGADBG8AAAAAAAAAAAAAAACADRC8AQAAAAAAAAAAAAAAADZA8AYAAAAAAAAAAAAAAADYAMEbAAAAAAAAAAAAAAAAYAPt33UHJMkYY3/XfQAA4I+Ntdb8rvuAuv89+T/59yIAAL5n/yP9v/j3ovcU/24EAMD3j383ej/x70UAAHz/1v33IireAAAAAAAAAAAAAAAAABsgeAMAAAAAAAAAAAAAAABsgOANAAAAAAAAAAAAAAAAsAGCNwAAAAAAAAAAAAAAAMAGCN4AAAAAAAAAAAAAAAAAGyB4AwAAAAAAAAAAAAAAAGyA4A0AAAAAAAAAAAAAAACwAYI3AAAAAAAAAAAAAAAAwAYI3gAAAAAAAAAAAAAAAAAbIHgDAAAAAAAAAAAAAAAAbIDgDQAAAAAAAAAAAAAAALABgjcAAAAAAAAAAAAAAADABgjeAAAAAAAAAAAAAAAAABsgeAMAAAAAAAAAAAAAAABsgOANAAAAAAAAAAAAAAAAsAGCNwAAAAAAAAAAAAAAAMAGCN4AAAAAAAAAAAAAAAAAGyB4AwAAAAAAAAAAAAAAAGyA4A0AAAAAAAAAAAAAAACwAYI3AAAAAAAAAAAAAAAAwAYI3gAAAAAAAAAAAAAAAAAbIHgDAAAAAAAAAAAAAAAAbIDgDQAAAAAAAAAAAAAAALABgjcAAAAAAAAAAAAAAADABgjeAAAAAAAAAAAAAAAAABsgeAMAAAAAAAAAAAAAAABsgOANAAAAAAAAAAAAAAAAsAGCNwAAAAAAAAAAAAAAAMAGCN4AAAAAAAAAAAAAAAAAGyB4AwAAAAAAAAAAAAAAAGyA4A0AAAAAAAAAAAAAAACwAYI3AAAAAAAAAAAAAAAAwAYI3gAAAAAAAAAAAAAAAAAbIHgDAAAAAAAAAAAAAAAAbIDgDQAAAAAAAAAAAAAAALABgjcAAAAAAAAAAAAAAADABgjeAAAAAAAAAAAAAAAAABsgeAMAAAAAAAAAAAAAAABsgOANAAAAAAAAAAAAAAAAsAGCNwAAAAAAAAAAAAAAAMAGCN4AAAAAAAAAAAAAAAAAGyB4AwAAAAAAAAAAAAAAAGyA4A0AAAAAAAAAAAAAAACwAYI3AAAAAAAAAAAAAAAAwAYI3gAAAAAAAAAAAAAAAAAbIHgDAAAAAAAAAAAAAAAAbIDgDQAAAAAAAAAAAAAAALABgjcAAAAAAAAAAAAAAADABgjeAAAAAAAAAAAAAAAAABsgeAMAAAAAAAAAAAAAAABsgOANAAAAAAAAAAAAAAAAsAGCNwAAAAAAAAAAAAAAAMAGCN4AAAAAAAAAAAAAAAAAGyB4AwAAAAAAAAAAAAAAAGyA4A0AAAAAAAAAAAAAAACwAYI3AAAAAAAAAAAAAAAAwAYI3gAAAAAAAAAAAAAAAAAbIHgDAAAAAAAAAAAAAAAAbIDgDQAAAAAAAAAAAAAAALABgjcAAAAAAAAAAAAAAADABgjeAAAAAAAAAAAAAAAAABsgeAMAAAAAAAAAAAAAAABsgOANAAAAAAAAAAAAAAAAsAGCNwAAAAAAAAAAAAAAAMAGCN4AAAAAAAAAAAAAAAAAGyB4AwAAAAAAAAAAAAAAAGyA4A0AAAAAAAAAAAAAAACwAYI3AAAAAAAAAAAAAAAAwAYI3gAAAAAAAAAAAAAAAAAbIHgDAAAAAAAAAAAAAAAAbIDgDQAAAAAAAAAAAAAAALABgjcAAAAAAAAAAAAAAADABgjeAAAAAAAAAAAAAAAAABsgeAMAAAAAAAAAAAAAAABsgOANAAAAAAAAAAAAAAAAsAGCNwAAAAAAAAAAAAAAAMAGCN4AAAAAAAAAAAAAAAAAGyB4AwAAAAAAAAAAAAAAAGyA4A0AAAAAAAAAAAAAAACwAYI3AAAAAAAAAAAAAAAAwAYI3gAAAAAAAAAAAAAAAAAbIHgDAAAAAAAAAAAAAAAAbIDgDQAAAAAAAAAAAAAAALABgjcAAAAAAAAAAAAAAADABgjeAAAAAAAAAAAAAAAAABto/647IEmT6a2stflnY0zpc7i8iQlWt6a+fqy9db5btt6624WMzY4vcihNx71sf9YGy7OfiUmyfVit7qJfwVT6UD4f1bF36/kxju3EBH227n+pWy+Nrh+2Wx9nY317y8bJKmn540h8F6L7KLctpWkqm+XQjDHZjlS+sJb0OU39OSiO2+8lft6sW8cYJUlSWi/snx97v35Te7F7w1orq8p4WaskScpnYMVFkl8h2bjYrI11+H6Fxxt+Vzum8PvI/sNlRu681fpb2U/tOCL7D/saO4ZwvfBc+D6HxxlKwmtN5etCDf0P21V4TVTuQxPpS3iv5m37Zdbmy/wWtfPoz1O2PDoiic0Opvg29c+eanvGH29wXyQN12taPEtM0Ez1mlmHf+74sUlT486FiV8by9r3y9bdd3OnioOqt2Xds8YahaO+zr2+rM/RbgRfrfF4AwAAAAAAAAAAALACFW8AAAAAAAAAAAAAAACADbwXFW+k9aoJ+EoWseo4JlKbYZ0qOuG+71PBJtaXtbfN63XU+1qtehJW74jtz32VLffbqF7FY1U/6+3W+1evIBRfJ7ovE1SOiOxv2bbu3PoxiFQcKVrJqmaoqMphyseyWCzUarUqY5rmbed9UVE1Ix8P68Y2VgGj+DVSxSUirEyyqspR7Hjz6yQpqvTU2gkq1KzSVCWmsparnqLguvLXWsMuwrGIXUO1Y7PB3eHXLU5MUK3D1Kv5RPYrucovSZIE90f9GsyfIw2Vg0LVdX01mlj1mtSVpAo3jrZVO7/Z8eYVZBquFf+5WmkmfB6UrtNqJRsbPC0iFZfqd3lwOI3jki+pHFC1nWD8Zdx2+cZFX2L3Saw6VPmcZ1W2bPHcyM76ymfd96EYp+X7XudvTOy6jY0PAAAAAAAAAAAAgO/GexO8kSIvuCPTR0mRqYKMWTJ5UbztmPAl+KoXlt/ohWYlwBG2F5/SaXnfS+EblafUWRVKaA4uhH1pGo96wKR44Vvfl/UndOXJ8tsuH+P6NEEmzwLYVDKJUVJpotVq1fsld32Z/ILLpnwJXtzLuKhHOAzR68SkLkQgk0+/c1/V8Yy+VM8DZ05amcIo63JpuiJJstm9UpruKAxfhNv635PgvMUOyWQtLglXhMGqVddzUplSqQiQ2DAx4tqx5WBG09Q81trStE/hd43blk92tE3/e3mCIN9DlYJPfoouGwkf1foUBGf8esrGsNrnMHQTPgP81kUOJrgWsj5bla+3fGqz6nGE/bP182jC9vLQjO9L9VyWQyHGZn0oTUFVD9T4vrmAU/jsqdwfafZPqX9J7dkUth8L98TCj5uIh+JS2ew5ITUFnOL3SVPoqOlvR/EIq8dTVzxiAQAAAAAAAAAAAKzhvQje2MgLZUk+OeDXWlmF5Zvsf5N1Nql2c19NL4Wr6i9dyz/9OJbHrP6SeZ1+VJcXv8cDN8v6W32pHvYq72W54SwEE/RBsRfXNgs9NIctlh1Lmr3QD8cqf8e/qppEli1Ydt6WXbuxQFbYjquw4qqXhK/SfTWgpUVofGjH/x50OfxZqlCU/UzzykBBkCALV4S3ah5+skVSZ1mwIU3T2r6sgqCMCdcPw2VGJsmqm6gcIomN4aoqKf5zLNBgwgRXfoEW16v11W7ycFlxA0bPckNAyP+02TVuyitE+lYPkoTjKkmtpOhzcRul+Xjl5z6JNJbFQ8rdbR5jI6v6ARf3rzHFvW6Kzrh9aPW5qi4P+1UKHZlq/4rloWXPguIZ+s1mZHTdCsNHyo83XKkcBWwK7Cha3a1J+fhsds6bvgcAAAAAAAAAAACwifcieNMYUFij2st3MaVGkiSldsNqHdVlYT+ajiPc9r4VBkovqAP1cbFKkuVVG4ogSRhtWR3+WKOX2TYK2l6ydkOwpBAGr/zHyrKwWkTqAjZhS6sCQNVzGfbFVUdJwp64ihlZxKd4Id8wRrbyvSmq0+T7Spa8zDdF6KSp6o9JJBlX2cNLrQ+wBIGGLJkRraJj6usVIZciNJP3IZ+2p2nKs6J9ycgdov8iaawAFFZsKYI3qXy5onwYwwBDeK0F10l1yqWm+7foZ75pFmSqqASCZKwb8yBYVSTOguoiiZGxRrI2P+7SvbzkHjDGqOVPox/zSAWYJDFKknIoJj9OY/LnQThkTVVffJ9V3qQokBOG0GyaXR/Fc9IFjCrpHoWhyvBz5dov7bP+7Cr3tTpWsb8BthyUCrZcN3SSlLaP1aOpawqX+WeTr/hlgsEt1s2SQbGAV3knzd818fvw91OljwAAAAAAAAAAAAC+mW/2n/IDAAAAAAAAAAAAAAAAf6Tei4o3UnyKl9A6UyFV11tWoaZpP037XjXl06p9rJrmZtk0Wnm1nNJ+K9OolKon+Daqv8eqHKxz/PHlVW4M4tU0lrXfuF6a9S+o/OG3r1fuKdelKCp12KJaiK9KkhabpgrHOdy2XL3DTeFkSzvJty2Xe3HnIg2mjsmWlSr9+K+qv2djmAbb1sbFWtlFVqEkuDZSmyoxJq+mY/y+6w1EK67YNC0qhWRTJFlZ2bCsjtx1XhxbUaSjuE7dVEbhsBhj83FIKtd10z3hZ29KEuVTBeXrpUVfaoVvKveOvzer91HtfFTGJU1TNw7G1Mcg6GA4RZrJsow2LV1MpeNrqkhVm2ZJJm/HZuVawvXyayW1tXvUjZfvg/unfinlZXWKbVO3cXFnFVdnvr31/S0/YKzfcRr0JWveBiep6f6vTYsUGbvi97DakCrrZYdkyuPs7ks/IJJpLXtQhePir+d49bHi/snarlV/Uqlol7W++lFSWi+v3pNv7343SirtZVORVYaxXmmnefyWLQMAAAAAAAAAAABwP+9N8CYm9uKwOk3RqqmEYtvF2l6nD/d9kVl9Sb7uflb1sZwPCF6IB99Xp9dp2mdTmGhZKChcbvO33PH+lYMPzfstfc5DNkH7wUv/oAfFDitfl15Kl6Z2KW9SetFdCuDYyqZFOKE0XZC1KkVb6mknpWmaT4FUm1ZIZdFQV2R5HpIIP7vkThH6CNevtG8qv3vpIguT2MRNFWWC7/OAl/JwTxEyqgZCqtdlKXVQWq90rCY891mf0lRJ4kIPqU/jWB8aCUM7YTgmOKa0vNyHX4wxtampauNv/VRJPlyz+p6vHXOlL8vCG/5338fiera10E7WvWpDbsawJAzNSLY8b1spr5J/ZyWb5vNolfcTHk/keeq/rV57fgKqcFoufwksC4qEn9PUlpYZFYEzFzqKPMP8dVsLDZrSvdAUeKyex6ZnYKnPecyvelL85zBAE7n3/b7yz9l+q5fUimBjeBwAAAAAAAAAAAAAvnvvRfAmXtGlXglj2X/FX60cEa67OjiyWZ9Xbf/dvPg0WaWJcrKkHPLxv5erWYSBHK8pCFDdpxOrShRWngmr7yhYrx4QWD7uNvhhip/KXkbHti+nkYLFRYAjDAOFYYzqmPjAQxIJA0hSGgZWGoJLJlg/SZL1r4Xq9b101TBokF3zir+XL9USiQQ4imZMvr4LB4ThDblEk/8yX8/KmETl7sQDDeFYLAvEGVOEK/z5t0mxyGQHGr0Wqu2ouQLIsoBZ+X4KQhPKrnOfAYoEnXwoK6weY8N7bUW/FB5/tk8bbFc6Rl8SKO9rrDs2vz4kSWksQlTpQ6mf9aCOrwIjZTmoyvPFmODqCZJwNrXVzFTk/oifFx+U8/dgkrgdu8sh6GFS/pvin4flijJ1YeWypushtr6TZuNlVYRswpsiDOm4z6VAlHFNlIJQleerjAmLf+Viy3yAyu/W/7RLxx0AAAAAAAAAAADAfb0XwZt1AjDVihDLxIIUTeuta1ko6HdtneoGYbUQ/zMJqpYs2740fU1pHMza4+zqQFQqVwTnPXxBXm9ndeUeyQUbiroWdcsCH9X+5yGFar/CMMGStmL7rS6LhXWULffnyCRJHqaJTp+05Hj9utGqLrGgUuXYZMvBLGMkm1XgCK+J+lRdxRRM96nk1LSOH48kq+bijrcYi3WujVCSJGsGzsIhCkNAlRCLytdH+DnsXzV0E/bPVs6Habg2VLtG40GbmFLUxkSuGetDPPkeg3XDcTZ5EMdPTWZVVJ8pVfmyLjJUjEFWRqkSrImHJOsxsiRJsmu6EorxaajqcfqWbBFxiQ1XbP/hsnWulTBGExMG/2TKISCbVfUyedAw66l1QZno/oPMTrw/SzNGRV8AAAAAAAAAAAAAfCPJ6lUAAAAAAAAAAAAAAAAAVL0XFW/WrVCz7vexdb7ptFKb9GGT/cSm16qsVStWsqwYQ5qWKznUpoKpTJUUW6+oDhJWfihXsgh6Uzsm+allfHWPsPJDZAxiIxuduqj4spgeZklb4RQypXGu9NwE61ankjIqjiOselIdx9pxNS0zbhogv8DmdTPq09zk1VGC4w6Tc+uMW76utUoq1VlqV1q2v7z6Tj5u+cRHeT/D6cWq11jxvW285tapWpOmwXRCJs0q4dQrFVX3G+MrpwQbNlQIMbLG5tNKFZV2ytVnwn1mK+Q/8zsmvIb8suDn0oosRXeKqj/GV5CRJD/vVfbZxO+tUn9tNvbBjovxrW5tZGxRUcb4ykdB28ZISbvyHDfVZ0S2TMG+pNp1ZW39HpCKZ1Ht2WQkaxdBX5Lo89MUs3IF666uaBOvyFMWTnGY39PBmbVpMdA2O15TPAxljWSNlT+XxhbP3NrUaRv8+YlPRwUAAAAAAAAAAADgm3ovgjfS6nBL7OVjOE3Lui9OV+0j9n04bcx9rJq+pKoaQFg+/ZNfp9zH7Nton/3ML6tCDuELZEmlqYqq+4i0oDQt7zdRpS/huQxe9Defo/qyYhqbfPPoOrU2w2leihVdQCKc6qf6wj4cz3xKG99keVqkWuij8boqpgsq77fe7/tce+E0UEVbQVDGGDctV2mao2AV306lvTRNlSRJ1m753nPXVXgM5T67gITyQETR1/WDbTa1wVi5Y0rTeFhs2fjF7rGmc5VPyxU0ZyVZm8pmgaSm8EYaDkrQXiyYFIuZhMGx/Ho3RR9NON2SLa5JH92qhTViU1xV40b+Pqycy7yTfidS8UBREN6qPIeWPZv9atVpoyJr5h2oPtfC6a9s6jsdb8WHe1ZNObe0J5Hndzw02hi1y9ar/rJ6n6Xf7fK/D6X1K9fu+zRNIgAAAAAAAAAAAPCH4L0J3qzS9FL9m7xEXDfcUA+wLK+msaxvq/q7SeUFV/XC5pmB8H1/+aW2ycMeUhikiO+z+nK5fLwubGGspKQehAqDNVZZWKWynqva4AMAsWP0lS/i/bKVZeXelX+WllUDTtnObGSb6n7XCcD4cI4tFtS2TZJEJvGhjnINlMQY+eIY0UBRae1in7GqNb7yRhEsSbIfQZjKpFkAqhI2kguPVCvT2OClvw9++d+L9aS8Cot8NRAXWIlJ02K9qmp4zB+5Wx4JylSCEInvd9iXaNtFeKTcuaC9bL9FFahypZNKZ2pBnlrbYV+rx11ZP7/G8yopweHnY1+MS1M1q1xD4KXpOg/biY1VrZKUtaXQXqltW17PB87qyv2IVb6y1mTXb3ZtB9dhLEDX1Namy6vrxK5L92XkCWPSYFn4jxuiahUvKXjOhs1k92SqSBBKzdf4JpVzAAAAAAAAAAAAAJS9F8GbZYGGVRUG1mkv9pI4rM6wTsWMb6tKwLrhjdVthJ/r32e/1bZNkvL+00U2LUr4EndVWMCzWVWPtDzWiUmyKVOUJYB8UKDa0Upj2UIT/GaMr+JRWa0qe0Gd9zU7xiQYb18FZGXg6p7n2mQVZMLPbtqeUldK597aVLK+iEklvCCjcPqpvJ9h+/kxBZVLsnBJ+Tr3h1OENbLCH0WLkYCI/JRmkfFYFY4pbZ+t6q+7MLSjUiCgaKfafm1aqGB/sSBGcLTRPvvrYGXILdJONXzif2+8poJBWDdUZ9NUSavV2Od8rGRVj2UUbS3r3zr9CH+vBmhi7flgVRH6SxrXdf3PtosMdPn8VL+UFv5+y4bXX/9u23ropulvQP0Y6s//2N+K6vrhNs3nORaZC9sqpmtr3k75c654roTHV+/b2s9zAAAAAAAAAAAAABtJVq8CAAAAAAAAAAAAAAAAoOq9qHizrJrF/SoKLG+/qcJBrMLDqumkNq1as6yqzvptxJcV7fppcGxtm7Dii7VWxmbHn0WwSlOURM5LXqsk9dMp2Xw3xpi8+k1elaMozxHMixSsULSela4wQbeNrFLJSH6GIqN49Y586p/KtEhum+pYxasZlcbFT6dT21OkjlCtYo6rPJHmy01p3MNDdjvIKlMkvrlF0GZSTCPl+xnpR3i261VgKju1Nmu32plwbFM3hU9DdZtizIqeFNv6Y02DXqb5uuF6xXkqTxMUO47qNe33uXKKp4ZqJSufB9n5b3raLJuOqdTmim3zscyquCwWCyWtVnEsyi4Va2USk18nitwLsemVlvWturypKkya1qcIq69nShV5fPejFXdM8CzJ/q9cocZ/01BdKXxGBM8l/721sf6tVwmoaZxKz5QVYxz93obHVx1PW7203TFZK6tiOkATPi+CTfOpxsJ7kemkAAAAAAAAAAAAgO/FexG8qVoWrIlNI9UUnrnv/sKXpt90OqimfYTth1OxrLs/P8VIPZQg+Te35VBEIX/pHIZwjFVijExSm+tFxWxHtmGcqy+PgxfdtY5X+mfLy4r1gvaz4IbLBQWhjsqLZ6v4NRMLoBg3T0s0vWQrKxtTnsinuh8brFdsZou8SfiiXSqFQXxIKIzSWOu2qU4fVISAfJAoTDD5de573YZJKC8SBgi67QMNbtqotDgOqXJN+ilvmoJzea9LIZyiPX9xlI8v7HNxrMX0OuXpd8r7bQrdLJ1CKQi9rLq+mu7h0nZhGCISvvNhm6TVKq7t6no2CKEFx11VOuZKcKtJ0zRMTVMWNW0bPgfyKdMqz4ZqSK4eqvKfw+dNtm5SuUNscZylxbZ8/VSn6Av77a/n2LM1vn59fMr98Xd2KpOnGlffm7Hjiga3TLm5WgArfErkoRzVbvnq7H8AAAAAAAAAAAAA7u+9DN4ss+oF8jcJzVTDMeE+m9ZdZ1+rKm00tdV0rE2HX96+XmUlf4GefU6MkZJ6oEYqv9T1VWbCIIqVlJikFlSohVPCChD+BbD176aDvoWvlyvv0U1QwKSorKH8JXIY1VjGhQDqIQLr+x2ufN9rqDK2Ni0CIWH0oHyGfF98wMMFA1Jr8/0nQSCqGmuqV09qrsJRvwaLkE14/pddz2GYphzGsTImkarHY1fdH+HVVL3206X3eT3E49rx4QpfoSVWAWZZRa00TUuBOL9eredrPB9igT5/tNV2qtdGrD1/nYYVpqrhm9K+/DlNbXQcvFj4aNOqXDboYFMgKMkrPDXPdFj0oWlsfQjNSD5QkwdMjKq7Lip5xfe5zjmPtVffxv1jwzGw/vm0yd+l5vNW7c8q1rpn/rcdKgUAAAAAAAAAAAD+2P3eBW+aKll8l1Vrml5CN71YLq1jlVeMaVp32Uvx+nHUK0E09ccEwZjSy/TwZX1k/HxIpjolULai+9FylVmMLU9dZX0XK/0vvag2Nn9hHo5F48vj7OV1MQLZh2ooxRZhltK1UarmY8shH1uENUojWglJGOOOtd61SlWK0jgV42ezgcnXy6qfGFO/DlI/jnIBFBe+KVcUaX7pX1dUiwl/xq1TxSUMVwRLS9s196O6zfKQRtiv5iBasSxNg2BWvg+/bRGBSpIkq4JSLPPBomq76wST8mBa7BoOriX/bRg5igmr1eRtGOPCcsVe8x9pWqTUagGfxDT3bdm+G5YtC6fUz5m/jvx9kk2VFbn3m669pWEY45875b8F4X1V7VdM8fV6x97Udn4bRirQrLr3ZJPKOqZ23edj5cOLwQHU/jY2TdNlimAQAAAAAAAAAAAAgG+uueQAAAAAAAAAAAAAAAAAgEbvRcWb+0xrsqziRNjess+r2l41NVRsneh6axYVWFZNY3Wlhtg0QkXVj9j0VaXuVarR+HWa2y02js3aEqtMYoypTeFjs/lXqhWL/LrV9kpVdPJCH+VjS9OiykOp70VRE1fvxpQr46yeEslXkKg1V9tFqeJSqcpM/Rp341QU/wi/81NMWZs2VJipj1W1WkdxHuvbbzKdUD7dUeT8WmulbPqqNLWyNlWr1ZKyc278GPhzr3glkdL+/JjJ5vuNjn3lXldQXcR9V1S9CVt33/vtbH4tVG/t8hgXY7dWBaygf75aTb3wj1Wq6rVT5orxxJ85xib5gZikOKfL7t9lYx/bbmlFqkgb4XbuFPhqV1Ka3c6x/VSfA9VlTc8z96zz56mo/lTso175a11pmuYVeWLP6noVtuipKhUvarb8b88mVYtq40y1GwAAAAAAAAAAAOBb9V4EbzadEir2crHpJfE6IYNVLzWr+1jdwXwindpL19i0KquCCNk3a/bZqtpENVhUmiLKll9Mh+0mMrKpdaGJYEqW1FoXEMlfjPuIg1HiXyAb1UIpq/redF7959qLY6t8KptSrMhIxoYv603+Yrzo05JzboIpgWws+pItCWaIMUFcpAj3mOoWmVTVolPFeVB+vMuUv08rYSsfAiiCCH4fTSERP51Wmqayi7lsajSbziRJs9lYabqQJC0Wc7fHhV5aAAAgAElEQVR/m2g+W2g4nOjz3/5WknR0dKCzV2/08ScfabB/mPVTarVaMkmixXTq2khn6mxtqT8YqNXp5J3odLtKZfNryFqrVqst0y7GqjlA4YI25WvNh2+Kzy6kYYLry0RDN7F7vRouW3qOrK1MDyVZ4/YtZdenJJumwX3UHOor9SU1CqeTc+3luw2uXSNr3Bis94xZHthbNW1V/dmrvDPxaaykIhxV7M/vZ90g5KqpqeohnPB8rw60lINxSXR/xfXkWy3ChsYnFa0kk4WEbCW9aIJr1RYDVwuSVrsbu2bCh1dp1WISqmWPPwAAAAAAAAAAAADreS+CN/exqnrNutVtVq1XfXm7TrvVF/L3ebHd9DL/PqGkUjhljZBLUwWHavjGpkXFkXKAI3t5nb87TrJqMuWKMjKV6izBG+9VwZJlL9nL2/r+5m+8VQQNisopSWxcg83yI0msklaSL14sUtm0HAIwyo6jdAhGRvWxCvte3XH5EKvnLvZSf1X1kbTYV234gmBPdj5m85nGdyONbm50eXomSbq6Gmr/cKCt7kBfffG1JKndkh4+OpHVQvOFC+D0tvpKTEe3N7fa2XEhm4PDQ81mUm97T9cXN5KkVy9f6snjB+pv7+ju7k6S9OtffKYHD4+0t7ebJ0Y++83n+uFf/KnO3l5rsN1z+xi0lSSJjh8+lLKKLoPdHXV7vXq4ohjoxvHx4xBkXfLAUtN9UoytO7dJkkQqndQrR0XbCvdhbX5fVAM6Tc+cakgu5JrKvg+vv/jlWFoe3gbNoZVyH2Lho+p1uuo4wnBYU2jGHVvaeN3HnruxEFW9z/Hn66qg0bLjKvV/zQBdXLGPlX8PqqmxhmPbrB8AgPv6p6//ZaPt/o+nP/mWewIAAAAAAAAA+D68l8GbZS8Z15kqJB7MWN12TNO0Msv2HWklXONb2U9lr5W2Ysvs0nEJp4EKf7rf06b30yoiNkVPbOUlsK/C0coSOqlvr+E0xirzVM9bWHHCBXuyWjvVMI6V8vCKfHCiWJZvn7iAkdtHNoa2eHmdyEiJC+/kW1rlL7yLYhpp5MV/vEKSr4Rj/ACpqEpSygUZUzre0rEvGTcXDbJKUmm+mEiSprOZrs4udPrqtWZDV3lG7b56vUStVkcm6WbbTtRub+vmdqinz59JksajoRatrrrtltKZq3izNehrOrqS7Fidlqtac3N5ofO3b7S3M9D5u3eSpNHdSJ1+X+PRTPPU9e/HP/lrffnVC7V7PSXZGDz94LF2dvY0HC3U7WxJko6O9mUSaTwc6+riQpLU2eppkaZ69tFz9XcH2dDbbKxMNEBSDqZVAyvxUEf1nmyqwrI07OaDHpF1jfHTioWBrnJ/o23W2ilf97XwlrEyQRUcd5H750G2brK8ukx4/a0j9qxd9oxz92Za2Ta2zvK/AeXzU3+WxPdf72NT/2P7a2zPxI81r3Rj0spyI18Fyxh33mTj59k3bYyRTSp/ZUy96Wg/U1stugUACGwaoPm+9kdQBwAAAAAAAADeD7xyAwAAAAAAAAAAAAAAADbw3lS8iVWmiK3zzSrPrFfpprrON6mOE5t+pj4lSryCxjr7r1Vvqeyj2o/Y8nwKqHC/4TFklVPCaZvy6Zuszae0Mcbk9WBiUzmFVUistfGZbxr6GD3wSiEhP12Q36Uxbuqr8Pgkk1UYKfbnitYYmSSsspEqTdPouSxNP5YdWHm/qyunFFNRrbq2mqqQ2HLVlqySx3g4dlUsJF1fvNPw9lbtpK3Trz+TJB08/FB3NyNdX5zr0ZMP3aZJS71+W7PpNG9u92Cgm+srvX75RlsdN35bgx19/dNXevrwQIOdbUnS1Xlb6XioxSLVZDySJO1sd6XpUP/v//0/9cFTN/3UYjzSv//z/5JJpzo+dsvSvT1tm6luz97qbuL2fXtzo+3tHW21jU7PTiVJh0fbevfmXIN+T93BjiQpUaJ2O9EXv/lSJw+PJUmT8UTjuzu1u9LBiVu2c3Codrv8mItWD1ljCqNwvaYqKMWv2bktnfd6VRuTVUtqmposVBTQWd7voipMsLesed8Vfw1lF+yK/Rqli1QK7u3Ycy7cf9Ffs+KowmdY8XxZt/BX07lsmkZqnb8hsWfQOtOQrRau68sPNW9vwxMW9KNpO1NesdbHVecNAFD4vivdbGpZP6mGAwAAAAAAAADfn/cieLNq2hAp/oL129hXLGTT9DJ73barL6GbwjerXuTms5RUx6A6/Yri785rL6Ozd+2VWXYaXkabPMBRnuqo/mI89VPQmKw3RjLhtD5ZQCWcGiqffscHAYJQwaopdvxB+wmFbGQ9k00DZVW9hsrXkQselRsxxmbTTUVCQOHBG1OLFeTHEblc6iEnWxlTvz9bCwdVpYuFZpOJpllYZnh7q8u355rMjPp9N11UOh9qsHOgdrujgxMXspmMFxpPpnrw8JHOzs4lSUdHu/r6i3Pt7/X07s0bSdLu/rauLm7VTRYaj2aSpFbbanp3pf/1r6/0lz/6oSSp0+8pXaSaTiY6v7yWJG31T3QzGqvbTXR4sOv2cbCv4WiixWKmbtcd2+uvv9J0MtR8btVuu2mlboYT/evVpXYGfW3vH0iSrt6daTqa6qf/9h/6q7/+kdtvS5rbLb168UqDrex4barLy1sdHAz0q3//hSRp/8GxBjt9PXzyWN1evziHbmRL4ZTYtEb+vMXOZX2ZazPfSX4fVBJiaTysEw3oRK7dpWGN0lRK/hovQi3FVHKSkux68/uPtFyazkphX9YRhF+CYYnkSWp7LgUU/XNI7v5qCh7Vp/oK2yuWFavVAyhNf1+a/m7c6+9R+OD180DZJUXnrBQ917a81IUYI39PatdVtpiwDQD83gRrvgl/jARwAAAAAAAAAOC7914Eb6Tml7nrv+T9dvZ5n4oIq0I6TeGatfvXtLxaOCELa1RfBscr7axf7aF4P23zijCu8oVK1VZM9nv4/+FLX2ttfa9ZWsiuESaI9THkK2tkBUZU/7J4+e/PSXls6u3775PEN9NUeaYSBMjaW1a1qelzU4jAL08XC0nS+emZLt++1tnrt9rdc9VjRrcXanUG+uVnr7R/4Jb9+EcfKzEtLRYz/fznv5YkdRLp3elrHe31ZbJj++qzqR4/OdHr67e6G7kgT6s/0OnbK3308XPtGbffTrulo5/s69e/+VydXkeSNBlO9Pb0VJ/+8BM9+fCZJOnmdqhP//xY11dXmsmFYm5urrXVaevZD/5EZ6fvJEl/8mdP9erFb7Wzs+8q9Ug6abeUKNGr16+1uHQVbya31+psdXVz/lb/+a+uf9u7O9rb29Fuv60vf/1zSdLh8bFkW5pNUx0/fOLW2+7p8vRMP3/1Rh/+8JNsvRNXxSkSQKt+Xnb/+hCVtVZJcaG4H1lMxZbiLL66TbQWS/S+DRXVasoVqqrXUP255ENFNu+zyUJjxhb3oJGRtamMSRTesb7KSr6tjEwWxGsOILn9ZRtUQiD151CapqX7Mk3TfEyLYFLRRjUoUw3q+MxK4tdLiv0UIZzlz+7q8m9cLSYP25h6+jFfx5bCfLFLIXbsS3cbPM+tiYcCAeAP2R9DyGaZ8PgJ4QAAAAAAAADAd+O9Cd7EAi+xF6zfV1+q/fi2t296aV1uaK2d5dPKFO35MauEbyKv+xsrNxSFMNy5CfaXNRZsl1XRSINgiykqa9jUlqrc5MkDs04Nj2Z+aqiw0EjYLxf4KY45D0cEfBCgXAnDt2rv/6I9q7QT/eoe10H4Uj1dLHR9caHf/OcvJUlpavX8+XNND6TtbTfl093dWO12R3/+wz+RzQIS716/kdKZWi2rdHzhlt3cqrvV19QmSmZuvZ2dgfr9ga6mUz186sIz707P9PyDh0o009n5nSRpb39bz5480N7egdpJS5K0aM/0o7/4RIO9PV1eXEmSDvZ2dfr2Qtc3Q82m7phni1SdTkuzxULT2SI7Rinp7mu+MLodumWffPpY0/lCo1mqo4OBJGk+X2g8murJ02fa2XXLbi5v9YtffK5nT55osOMq2dzeDfXyxUsdHz3Qo6cuePPq69c6ODjUeDLRq89fSpKu313q2ccfqbPVXVoNZFkQqjoNWXEeK2VWgqolRSWlcIfZdkFYy7cdD/6E/XBtVdepXueN4Y1y95QvMOX18nvJ78eElXOqFaRWVIPJmyi3UX3OhwEiW9l2FWMSpak7ltT4UFHzM/z7m3opfNo1VNaRZBUEdFQel/p0deXfl/afQjcA/sD9sQds1kEIBwAAAAAAAAC+G0vmuQAAAAAAAAAAAAAAAADQ5L2peFOt/BH7LN2vIsE6U3E0VbWoVkGIVUUIlzf1a9kUWvetrhCfBsvmUy0Vfblfm9V+mqCyRdP6JpGrimOkML9l5Srr5Fv6qjY2rDphStVuaoIZalxbQVWdYMqXUp/lpszxSxLfRrCTfEqdSlWTorpGcdg2MhVMdTqcalv5fiLnNjpVTV5uxC1bzGeaj2eajMdaZNNKXZxfqdNKNJvMNLybSZJ6/Z5arZYOj7bV7vQkSZ1OR6O7W91dXWh34CrAJG2rwc6exqOhHj95LEk6Td5ob/9E40WqbTdblC6uLrSz29ODx38hk02H02m31B8MZJRK2T7u7kaazK0+/MEH6nbco+Pd2Zm2Bn29PT1Tu+2q4Oztbavb7ehZeiQ/K1Kn39F0nmoxn6vX72TjOdWjRycajsZ60Ovl42mVSElHw6kbg8V0psFgoOvbqbb3D9x63YHU3VK721LWFSVtq6cP9zUaXupXP3slServPVRrNtKiM5AxrjrQV59/oTevv9bf/rf/rk53y58gmcRWLnn/IQ2WL7/n82vcFhM4hddubTtbXJexKaTC6yVJYtOUVdeLTGIVVHMqdp3KV3oqbksjJSovcyV1XBWdoEKNtVYmSSpj4MvlmHDT2ghVp8My2brVSjv+Z6wq0bIp26zcFHFpubRQbd3mijs2OJZ6f9ZTrW5TtFdUKirWc98mpUpjtuEhWX2+3GfKLAD4Q0F1m2/OjyGVbwAAAAAAAADgm3tvgjfrviBcJ7BSDWY0BXCWBXPu+8JynSmDws/xaWTWazNcvioEEq4XhgfCtqrbVl+MlxvMfuRTRTWNXdFu0jKlKZh83qQpoBK8eXaBmuAN/vIxM8FsVjbfNraP8nH7F+3hMcSn6AnbS9O0tNy3FwvnhCEDPwbpfK6rqwtdvHktSbp4+1rdzkDtrYF62RRS0/Fcc801GOzoow9deGY6nWs8HmoyvNH1xZeSpOvzUx2enOjGprq9u5EkDfYPNRrPlLS62tndkST1d3a0vzfQ3LY0n00kSb3dvlqttrZ3eko6XUnSwYNjje9GOj871fWVm2pqNk81s0Y7g+18OqOjh081m0705NFDjUbX2bFZtdtdDe9GOjw5kiS1k0SDxULTeap+3wWD3p29U7s918nxic7Ozl2ftwc66Pd1eLinm2u331bLyLRb6mx1tJcFbz77/HPd3lxrf++xbscuoHPyYF/Du1u1uwN1526c3719rf6Th7q9HkrZ+Xr05JkSI/36X/9Nn/7NX0mSut0tqXZP+vNYua4qU0qFgbfqPRYP8FWutWzMYuGO4vdiOrmizfq1JjU9h8rthdPT5f3PVwyTN4Ukm14sTRfRqabi4ZT6faXKtsru1TClk0dVgnZ98G0VdwhGLa0fkosFee45w2BUmqZKU5uH0qTwXJs8GWgi+/LnoxYybBiDdUKBAPD7iqDNd+efvv4XwjcAAAAAAAAA8A29N8GbZZVhpEpFgxXVaKptLat4E6tyE68sc4++BsUOavVpllTViQnDHfHl/qWxLb2Q922W95f/1tgn/7nUn9SWqslIyipgKKtGU24nFsYpfV8qRBFsk70wL4IAvvyDySunFOVzbH4Y1rh/wnCPrMkqXsTCVrZSAaRccWTda636fexzvsxK6WKhyXAkSXr15ef6+sXXGo0mOjk6kSQdnTzXeGo12OlrNHLrXV5eaLvb0s3FuW4v3kmSknZbp+/eqdfrqNt2lWJOHj3QVr+j46N99dsudWK7e+oPtnR7N9TLFy8lSY+fnmg6lebpWPv7u5Kkg6NDWZtIdp6fz+vLW93d3ilpJXr42PXv0aMHuri81vbOQKev3kqSup2OZtOZWts9mfZAkvTu4lbb23sa7Ozr9I0L1MwXUrudaP/wQIPtLHjz7kaz2ULz2TAPJkwXRpdvT7WYLbSVVcEZjsaaz6Z6+sEzvXvnQkW9/o4++rCrrW5Lk8mtJGk8HOviaqLnHz/X6a9+K0naPzzQdGHVNnNdXbptjx8cq9Pp6vT0SuZnP5ck/fCvf6xESSmEUVwPUpoW4Rprbf7ZXxdu/XIVlWqFGn/PRsNmtWunfu1K9ZCNu1er12A5ONIULqsGOqzCAIjxe5BRJWQWOXa/36KlWLWbbBzLj6lixTTSv+DYbGqV+gpYprzpKnmVnoZ7ODw3q57/3qoQoGs7jSb4rH+O5ZW13PlxYUHfRHbOqudXxlXHqagGk2qVcYLnJQD8PiBs8/2h+g0AAAAAAAAAfDPvTfAmfNlZn/qj2bc5pUa5GkS9YsWqCjrL+risGk1T2/EqDE1BpG+hPEOw39JLeZ+JCYMEWSWQVWPg2ilCDNmRyAWGbPmdtJWbtSrfrc0X+7fF+bFaFSv6yjbhIoVtl8/hOhWDmqojxZZZG0SNgrZHd65iy4uvvlI6Xajbbuurz1wAZiHpww8/0mw2VdJyt+FoMtObV2/00fOHunzjgi13N3f6+vJcO9s7evDQVXuZTMba3mrp6OREL99cSpKOTUuL6Uwz29Jgy03ltHOwq9lkolkqffqjP5MknZ9d6vT0tZ4/f6Szd27b/mBP7XaiXq+t0fVt3r/hcKSD/X11e65/pt3VixevJaWapu4YF/OFjk4eaDSd6vDYVdV5d3ahn/30P/Xppx/r9m4sSTp88EDz6dwFL4yrUPPg4YFGdyOp3dPllevLZLpQu2V0fnkn03Lho5ax2u53NRyONB67ZYdHezp/e6qrmzs9++CRJGk6mejxkxP1e23t7u9JknYHfY3ubtUbbOv1l276qd3ttj74+GPt7h/o9Osz197xSz16/tyfwtI5robXqlO6NVWYWSe8t+4zJP588/dgOYDi77l4tatYX/w+svby+0thYZ8inBIsj98/RcAuDCXlX+VVrSIBwdoDIeiAkZRmS015H6vCMj6IVK12Vf070/TcXWbZ36BWqyW1aouDtn0b5Z9B60v37fdPdRsAv+8I2QAAAAAAAAAAfp/V/7N5AAAAAAAAAAAAAAAAACu9FxVvYtVFYtULmv6r/k3+a39fJWCdaUX8OrFpPKJTC+Wr1ber9qG6j3WqZJhgDivrpyMJKkMUu2uY9mhFP2pMqdGgaVt873tRGRM/tcxiUVTlaWUVXqw1pb4a444rKLQTVIII+51NnZMNtClNeFVeP3aOmivbrFfZIlbhIq/1YaTpaKRXX3yh4e1QknR+eqaTx08lm2gym0iSEpPo5vpWSWI1uXPVXhbzsea3ZxpddzQeusozt7fXanU6evL0ocZZlZnjx4dKWls6fPBAL7KKLcO7kToH+9o77OdxusvLkZJWqmcffKBWVnVjdHejra1DbfV7WmTjl3Ta2t/b1suvXunwxFXVOXt1qunoVtPBto73t916rZY++PCJxnc3Go/dtj/45GPZdK7R8Frdjjuv11e3+vt//Bv1+ls6OHaVZ64uxxrejjQe3Wmr91iSNNjeUbu9pdlirs8++0KS9I//8LdqdbvaPzrWfD6VJG33t7RQW5O7G/W33MEtFlb9wZZk55pM3JiaxLU5nUx1m43902cPNZ7NdHp+of29LUnSVjvV3d2t9vf31Ru4aa/efPlC27t72j08UHHf+PsqnJrMKElMZQq4+nRwTdWppPLURuH65fs2XvGrOtWU8VOx1e4TW9t/7NZ26yTZ7/IlfYpbO8mmbLNGsj6nmeYzIOWFcRJTqWbjDsMm/tiKZ4W15WMLp6jLl1Wr3Sjf3D0n0+CY/D6X3b42kWxa2kfeZngfN/4tqZcAavqbsA5rKteM8c90G66k6BhE9pGPYfUrE0wxJVu7CCqzWAHA94YKN+8nppwCAAAAAAAAgM28F8EbqR6QuM90Tuu+8KxOYdXUdvVFbHW9VfsLpzhy69Vfgsf6ts6yJuV27/82dZ3pVGohAFmZ4KW/Wy8tvdw1iZFdWCVJubiSm4qnPG1PcbzhvDmNPc6/rE79Ex5Tud+2tm3sxbafziqcisa3F+4vzGcMb24kSV/++nON7261u7+vvcMTSdL+/qEmo7G++O3n2t120zGl0xt98etf6nB/oIPdXUnS2XCoDz5+rm6vq6NsWq8PPnyi+SzVaDLS0yfP3O7SmdLjI/V2+vrbv/9bSdLobqy70a12t7qajd1L/U67pcFOX+ObM52dXUuSuv1tPX72TOl8IZvNgdPpdCRjtL3dVztL6Dx9cqL5bEe3w4X++Z//XZL0p3/yXLs7fW13Wvrlr19IkuazW719/U53d0NN7twYHB4eaLFIdXZ2KZvabAy2dbDX12R4p07LXQsvX7zW2empfvzjH+nv/8tfuXGZT9TuJvriy9c6f3cuSfrJT36swaCn3ZNDzeWCQalN9OVv7/To8VOZtptaK0nc9Tcej/Rf/9G1p1ZbvV5PJw8eaDq8kCRdn1/pZjjTxz/cVZKdxP5gV1/+6hf65C9/rK3BoHQtWFsOwoRTKFWvm2VT1IVWPd+sTdcKjRVhsHIf6lNklYOC8eeFUZpaJaV9FJkQP9OczYJuNpjjyvqwjrV5DM5aK7tIS/e+Mdm3YV/C/q94dhmTTYVVmmauvF30+WxTtzwxa4x9LFCj0jarpqpbxY9BOFa1ddYIha5U2pzpqAD87hC0+f3yT1//C+EbAAAAAAAAALiH9yZ4s07Vmabl676c3KQyzrJ24mGZ0qfG9TbZX7nlerWc4nP+W+mFcdNL4+oLeWttVkAiWy9oI9/WSDYtjjGXlPtqSn0tB2DyIg/ZV1blCgzhsDVVtMnbsal8hSG/RX3YbeVnvAqIr0bSWNEoWzadzXTz7lLD6xvdXF5Jkt68eaedvYHOzm90mPV6u9fV7dUbJelcn/3615Kkv/7LT3R5NdTRgxPd3t1Jkrq9nvrbPaXWaHvHVYqZzSY6ePRIe/OZ2h1XsaWVtNXp9TRbtPXq9ZeSpJ3tvp48e6jFzKjdnrnjsDONhmPt9BdazNw+dh48UDpP9Yv//KU+/vh5tt9EsjMlXavb22y93R2Nru/09cvX6nXdY2KxSHX67kbzyVTzxSIbg6k6W1093N3Vi69eSpJ29w/UbrVl7EhbfdfnpJXop//+C/X7XX164MIzh4cHGg9vNby71cHRQT72t7cjHZ8can+nJ0kajSay6Vz9hw90d3GZLzPttl69PXdVlSTt7u6o2zGyi7m6+27bm5s79be2td2Xzq2rjPNq/E7HJz0dHezJZKGQzlZL15dXunx3rsfb2/l5rlecKa6N8Hrwn8NrJ1ZZJfy+ej01fQ63r37293VYkafap1g1rWggLcuzpJX7wyRGRtX7TdWHXfalZLNj9PtLsxCR/z5JEnfO/HMlDe7LJRVk/O+Jyn0sglD1UFG43+qjKjxHywJJblk1vCfVn0rrKe2jeLhKxoeWmvvkz2Ptusw+JpFnXvGMrQevahVyAOBbRuAGAAAAAAAAAPDH4L0J3qwrVo2g+r20XgWXdfdxv+mowvfR8SlM7jMlyaq++WUuZFN9aVy8kFfDPhur+VhbDsz4oh/VgE/pPbTJ352XxiAxblqa1O8jde+Zk6QIBskHfcKAQPw8x4euHLTxFXTcefHTusSvDf8Cvhq4sWlYvcdqPl/o+vxCNxeucko6l0a3Yz148kCDx27KooPjA707u9DrV2/09vPfSJIeP3mkWTrWeHyrVstVZ7m9G+n66p2MfaiHD4/dfq1VyxhNRqlsywVbTJLo1Yuvtbd/oG7qQiKtJFW329XNxXleaef68lzbOx+p1z9Qr+f6MplPNRkvNEmtPvn0Y7fe7VyT8Z0ePz7Q7n4WijEdzecTLRZGd+ORJOm3n73QyfGBPv2zD9XJgjeddlfX1zf6n//xM/3Zn/2pJGlvb0+Hhx3N5zNt77lqPoOdvkaX17Iy6nayaic21SeffKDZQppNx26s9rfVSj7UV1+91LOnj1xf2qkOjg7U7nbzoW8lbY1GQw1vh7q5csf785//Vo8fH2s4XujDj55Iknq9rl6+fK2HD4/y6bZ6gy3NJlOZVlf9gQvU7Ozu6Fe/+kzP/+QH2tvfd/tot9Xt9TUc3RZXXXZdxKrHhFNFla+n4IL2wZPsukuUZNdTuK2yFJuRzZYnMtksQ6Ubaclzo/psKt+Y4RRpyyq1lCv5NO83DPnY0kIf8EnzJorgSxGASYP+lI4hFpgJ1wgq5KwzPVRTUGnZuj7Y0vJzs4X7jTx36/suqiM1cdv5KkCx/pRDkMXzq6i4tKztWF9dq/Vr4tsKowJAiLDNHwaq3gAAAAAAAADA+pLVqwAAAAAAAAAAAAAAAACoei8q3iybuilWtWDZZy9W0aFpvWWVEarTtayz7+rianv3rTKwtIpBXtUltr7y8hT5tFGKT4dTm4Ym30KxGZqKj6a8xGTVcZLKlDdWVokvfhLOb1LMhRUU6rDFomD8C2lWDKSo1LGsykeo2l5sGp6wjdGtqwDz4rPP1em0ZFPp/Pw2+z7V1fmlDo6PdHntquBMZgt99vP/lDTT3r6bLmo6m+jt67eaL6QHjx5Lkg6OjvQXO9u6urnT/qGrunJ1PdTJgwPtDdrqbrmqNYvpUEZ3Guz0NZu5KaTOL0eazy601Wrp8dMHkqR+vy9j2nr37p0O93fdtrOF7Hyhm9uRDg5cRZnj45lm04WGQ6vJzF0H7+PQJpoAACAASURBVE6/1oOHJ2olXe0O3LF3nj9WrzfQ9k5Pi/k8GxBpf39X//V/+weZbLwuzq+00+9osZhpLlclxKRb6nQ7Otjakoyr3JOYRJPJTDLSzu5J1txCvUFHH370JD9zk+lcr96+1Icf/kCnb99Ikp49Odbd7UjpYqK9fdfBjz96pqNHD3VxfqHDw0NJUnerrb29vqys5tlYdZKe7m4udDecaD535/LJBw80Gd9oOl3o5Yu3blwePdCrV2+1M9iqXQOLxUJJdvE23btpmspaVxVJctMtjUcjpWkqk7hxuTx9qxdffqWtbjeveXN5c6vjw0Nt7+yq13P77u0MtL29o36/r3bbbZu0ksbno6+05frrRtaY1c/S8BizNUpTNvnvmiqs2Nr0TTZ7HATTO+XfhPd09ksww5WvplWtPLNsWqWsx7LZdFjLND3nm75bVZUs/mwqHpQ2zb5riLYWj7vUH0ht7IuCY8WyNC8pplIVoerpXtV/Kt0A+C5Q6QYAAAAAAAAA8MfqvQjerJrGqeq+0zbdt/3qPqpthGGN2JRUy6Zz+SbCMEk5KON/1qckCdbKX9bGXjgHR1G8JM/fJ9siuFOaz0ky1uTr2extsjFJsCzof/6e2GRdCcJM1tSSPMbYyvQ3vs/BMSmckWf98xw9RypeoE/GY7358ktdnF9Kkl6/eqe/+/ufaDSaaas7kSSdnZ3p8GBPL774QudvX+XtPXl8qMHusS4uXRjn6QePtX/0QOPRlZ49fyZJursd62i3p1a7rfbABWW6U6PxNNX2TkudjpuSajFt6eTxsdKFlU1dX48fHOri7FKS1WwylSQ93D/Q9eWVdrZ76mfhEdNqazQcaji5k9pZe4u2Wh3p/PKNen0XTjk4PFCr1dVXX3ymvf0DSdLOXk+9rY4WaTGd0Gw2U3erq5297Xy/P/uPX+r5R8816LXU7bl92MVcrU5Lk/FE23vu2L766o0W07laRvr8868kSR/+4AO9eXuqy/NLPX3upova3t5XYlqaTmfyWQprjL5+/U5brVRPHrvQjpJEw5s7HR3ta3jnglCtZEu9wbZm85kmN246q96gpyRpaTab6OjIHZvmd3ry8FCJ5trZc0GerW5LJyf7Gl68VZqFZ0wWemklrdKUY7LSeDjR8PZOknR9daXJeKQXn7/Qr37jphd7cnKsXrej88trjSdDN/azue7upvro+VO9O7+SJL16+0addkcnJydaLNz9a1tGi0Wqbrut5x8/ddfQ8w90dHKs4wdHSrI0R9LuqNtplSJnYeCmGtgLr/U0TWWMyQNFbj33DCkH+WrpmrxNd7sG08L56d1iz4o06Jexwb1WjGllB+4Yk3rgyNhg2qQ1AjfVfoffxcI4SbRN/ywquleEHsvPIWNUHpeotAjQZOtZa7L2/VxewbMxbM2Y7J/Gw65uBgDfGcI2f9iYbgoAAAAAAAAA1vNeBG9i1WSWiVWP2SRcU20j1k4YpqlWUYmFae57LKuEL3vj7fqqC8XvYV+WKQVwqvtV8XI8fJFe3qacrsm/C16k21gYxkiJr1SRt9E0blaxl//1l+b3G/NqhR9JmmeVXd58+ZUmw6GGt0O1km1J0o//6qk67S2N7FzjLOih+Vg/+7df6e/+4W80ywIc/X5fewd7mi/mOjx2lVh6va7ubm402N5RunBhl5u7Kz3ee6q9g5YWWTAj0UR7+w9lZfTq1deSpJ3tfaVzq5uLKx0dDbL+zrW7vyelMw12XP+Gd3dKUyslRqbVkyTNxtdKkpZ2t/vqZPmKxWKuNGnr44+faavXyxbOZdO5nn/4UIt5Vsnm4lx7H3+o4XiqNy9fSpI+ev7UVXWZTnT6xoWK/vKv/lztltTZ6qrVco+Ty6sb9bZ6mkwX2slCIgcH+5qPhxqNJlrMXGin1Wpp/2BHv/3NV+p0XVjowcNUaWrV6xqNsrBQq93Vg+NDJWambrZep5Wo29/RbDrRZDbP9rGj6WimyXSs87Nzt21yof7urmY3C13d3EiSRjc3urq81vbxVEcHLsiz1e9ra6uj6btfSXLtGdOWTVNN7oYa3rmQzee//IWury71//3rLzUeuvP2g48+1NMnTzUeTvXwyAVlTt9daHd3W5N5W0+ePpck7W7v6f/553/RzXCht6fvJEkfP/9Qb8/OtdXbUa/jxv7ZBx/p5etT3V6e6fbC7fffTn+qi7NX+vNPPtKbC3f9Dadz/Ze/+4k+/fGPtLO7HV7cUkOFruoyH8ApM1IQQnNNRgKOwTPnPhXBZOvPhTzMGLnPS8/brAJPGAqsNR8GCtcMZfqfYeim/pz3z6L48RUByHhfQtG/E9m41J/3SX29Wnip+dhi/f02/0YB+ONE4AYAAAAAAAAAgMJ7EbxZ1zrVbe5r2TRTfp/VdatBnFVtxqrlNCl/5V8Kh+01TRcT7r+x+cZ+FRUzgg/+u2BZ/qI6eDdv8vI2WeGaSIUK2WBbfxhBNRursIJQ+HLbV/IJ22we32K7+DhXryFrrdI01fD6Rl/94peSpLvxXA8fP1S339ZP//1nkqQnDw91dHigu8sztVIXnnn+5FCPj/dk04UmbpG2tlLN5zOZZEtHRy4kcnt7p05voF6vo88+e5v1r/X/s/ceTa4saZreE1oAAQ2kziOvKl0tRtBmjNNGmnHHHRf8Y9zND+CGRjOSNqSR1rRZzHDaWlRXV9VVdfRJiYRWoSO48AASiUTmyXOrqufWtD+LexOOCPcvPCIcC3/P+xLHMbZlkhcb6/EiJM1ysiTizasTAI4f67RaNZyyQ64KIUq4CDDVBKPkcjUU8UlvXr8miWJ+8MVn+DMhMHnz9h15prC/3yEtHEcUVSFcLEiilHK5DECUZgRhjG3rLOZCTHJ0tE+aJVhGRrPZAEA3TOaLAEVV0dXl3KZoigZZTo6YBK/sous6Xr1K4guRiG0qnFzOWczn7O6LuK00CqmUXT799BjbKtxycpXpcIih69Tror4wCEjTCM1S0R0hPto53GU06GOYDo2KcLLxw4DJOKSz28Qui5ivNIvRDYVa1UPX8mL+fFzHwjQ1lGIJzBFuTeXWIVEh5Ll8+SUnb95y+volliP6M0wLfxFRqzSwOuI6ytUaX/32LY+PjphNhSDJn89YzBf4wZxgMQFAVXQatTJKHlOpinix+XzKYrFgMp3w63fCLcewSrx794pOZxfDMAEYj+a0O8csEpNPP/kUgCTL+ebLF/zl//sf+Yv/5l8B8NM//QmaZoh3a8N5ZlvM3XZxTsYmN96Z4hW9y93rOzmtKNxYuJQb65loz/J81X6fsGbThexWfRvr8c0+rqO7NtvXuY70epi4cZNsixvR0q1oVd5yopXN+6GgoN6Yo7vm/GPd4SQSieQ+pNhGIpFIJBKJRCKRSCQSiUQikUgkku2oHz5EIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRbPK9cLz52NiLhzrPPGTcbY42D6nxY8b8kKvOtmNvukmsvr2zttt9CkuZu1xf7uIuV4T1CJRb464dtZYydV3FZuzUmmtFlgk3h+J/G/dj2ZattW2fu832ZYTONleOnBwlF5qzJI549dW3ZFFCngi3F8euQQ6tepVGEeEzuDwn9ic4likcRQDdcRlO+mR5xvHRTnG9KYbt0usNqHrCncU0TBaLgMkk4eS8B8DPf/4jFvMEJQfdEsd1Ojv40zG25/Lk6RMALANGkymObTDsiXiiQW9ElCR8/sVT2m1PXFNyQPfqijie41U7ADx5esRoOCPLU5ZT6M/n6IaBW/PIchH55C/mnJ5ecbDXwnFFLYPBkL39fZLYxzCEA4xm6JRKNrppEfkiAkkDdFNnNl2QowFQLpdRVQMlS0iLWzKfzdk/3iWYTSnSp8izjDSBcsnhy6+E28vh4SHVRg1FVbi8HAHQ7tSo1SpoarZ6BdJUQVW0InpK1Debhrx985Zmo0StKtxyZguf6XRBFKZ0WmKuDo/2COdl3HId03UAMByLaD4hSxa8/OXfAPDVr76muf+E6u4zLk67xRxETCdT2u02JVc8G7/45a9xbJPhaMzlxbmouV0nyTVcX6fqiVr8MKJccpnNpiwWwqmoWS9xeLCLrUNYFy4403GferVKHPl0L6fFMwu/+LtvUDWbJ4/2xLPhOARBjKVZ/K//8/8izh32QFPZ3dnh+WfCGUcxzBvvGtzjxLIRPbXtfVv/dN+6uPn+FQdsteRavZtFjWrxkOR5jqJuus2sRdk90MXlPtef28fdjJS6+T1FP9v73qzprrVq89yPQVme90D3mk23Hxk5JZFIHop0uJFIJBKJRCKRSCQSiUQikUgkEonkYXwvhDfwsA3U32dMxkNiiO5qu08485DruF8wtNzEvTne+rmbY9wVu/LQKKy7jrlPlKRs+XC9KX19bn7jYOXGuTeFT9vuxx3Xtoyl2RI7sy1S5makVk6eZQxO3wEwuLri5P0Vzz77nFK5LQ5KFRazMefvL2gIrQam7vHu/RVPnj3GLYQUcZLilMvU6zV6XSHMGI0mPH58TL83wLKEMMN1LYaTBTt7bT777JGoI8vIs5hud0QYi/o//fw5pusRhxFKES8TJxmO46JrGuWqKKbkVUjiBE2DNBbimTRNabY69Po9ajUhJrF0g5LtMJn2mU2cYtwUt+wJgUUxgZ6nU6uZOFWHNAoB8Kc+4/4A07WxLBGZFUcJuaKg5jluEVPluCWyPEXVY04LccpOrlBWFJQ4w1+I+kzHwrQ0ktBiMRfRS+WSS5xmBH5IZ0eIScggCkNK1TZ2IOag1x1jWVCpViBPi3FtkqRE9/KKciGyiaOATz97Qm8wpF5rAdBqVInLLrOZTxwFAJxfnmOoKYvMWEVXoahEsynzWcBFIXZ59oM/pVavM5/NlsNyenrBsDek3arz/r14hrySjaaqjPpnOI4QZRmmwX67w2I2YzoTgq40zzD0nN3dNs8KUcyoe0aU5KhKwr/6N/9a1HfaRTMMsizjF7/4NQC2ZXJ8vI/jOKtamrUKl1dddg93ONwT1/v3f/0PZGmCZVp89RsRk/Zf/7d/Qa3RJFfVW+KQD4kw1t/jTeHcJnetP/lmRFR+TzSSKgQ3WbE2qCg3hsu4KcTZJnBZv64PCV8+5rub32/EQnH/2n9rPc3VQsx4M+5PWcvwy5UcyFAU9XptXc6dmq/Ny/a4rWXE3ypyTGT73ahTRk9JJJJNpNhGss5/t/+z/9wlSCQSiUQikUgkEolEIpFIJBLJHwXfG+HNXWy6Cdz1/ZL7Nlx/l3FviEk+0kVm87jvutn5obnYvPYPuQHdJTT6UL931XVnH3m+da/+rvO2iQFuXBPb/Shuu21kN8Q75DlJlDLuX3Hy6jUArZ1jPvmsikLMYi7OX4wGnL19TYzGwa4QNFTrHrVpSMnWUArlQ7xYEEYpsaNSrQgBx95emzyHJ08fgW4C8O7tKZ989gh/scA0bQCCKCYKA9o7bZTC3SPLQvyFj27aNDt1APqXfU5OLth7dEylLIQ8cRQQhgmmUyaKhNtLq1UHVWHQvSRNhGAl0TLQVRrtNll6PU+L2YwwzjBNIRKp1Fx2Dw7I0xjNFNexf2STZQm6qjHoDUR/SUqKyuMn+5TL4joyJUfNTRzL5fBgZ3UfZpMpURJRKhx0lFxDzTXiKCJJr+/T1XkXw7LY22sAEMU5J6dntPZVHEsUncQZ/f6c6WhMtbVbtMUYhkqp5BEt3WM6LSzbIuqeESyEeMbQy1x1uziOS7Ui5llNLHSnilPbxTCES0+ehkwGl7x+NwSluG8n57x69YqS7fD+RIiKTFvnyfMn6KpJrSYcaq6urqjUGjRrDn5QCJfCiLPzMx4/OqDebgLQvTwvHIVSUn8o5r7i0huIc85PLwCYTRfYtk2YJOwfCkFSxTFIyQn9EMctF/11iZOE87PTlXBpb7fN2cWQXLeYTcSz8W//p3/LP/8Xf8LP/tmfU6qJ52rpKLPJness+Q0Bx53v6raXc+01z7IMVVWFgORaOXdnLcqa8Gbr+vMBB53NzzcFi6yKvX38gw1lbtT70DUS8js8dcR3m+cqq1TI5XcfKO6enyMptpFIJJtIsY1EIpFIJBKJRCKRSCQSiUQikUgkvxvfG+HNx2wG3ics+X0LbtbZJkD5rjFZd/W3cfTW+jY3u+9yfdgmStqM17pLuLRt3PvG3hxDudGtctMaYgvbhE13CozyD247Q56j5ClpmhKHQsBx/uY9um5x8vaU1o4QiYRRimnp9K76TAYiBqrX69JsNLk8uyDwhVvJj3/4nOMnhyiAYQnBilfpcHV+huPaDAbCxcWpVHDKZWZBgmULp5hGs46qKIRxRJqIyg3dwHQq6LoKxab6oDdGN1RKnrXaONd0i8PjYxzXxtCK+6wblEopURDQvRSimDhNqVdKPHncIcnEcV//6jf82b/4M1TV5PT9GQC1ahndUNA0mC2EA4zlqyz8mCSOMArhjaEbmJbN6fsT6i0hinEsG91QyZKIMBDnDvpjDKuEV3FRdSHGCYOAZrtCtzskS4X4Q7VN3rw5IYoTjo6ESCTNUiqNGpqqMB5Niv6G7O910DUduyJEIpWWhns1gCxFLea+Uinx6rfvsGxr5fozn8+YLxaEgULJFXM/Hs/RDY3xqEfZEq4/KjG62+T9+0uePTsSNU8usJwKT59X+PU/fCvOnQx5//Y9u+02R8cH4tkjIc1UFFTqnhDe5KgYloGmZISheF4++eQJfpCQZxmmI8Q9jUaLwF/g1ZqEixkASZpRb5bZ2W/TvbgU11bPKJdtpvOIiifmdDoc0u2NsWyNvT0hPjo7O6V3NuTxk6fMZ9PieQ7xyi71eo3Lbq94FUx++ddf8eUvf8V//z/+DwDsHB6jKOp1bBEfcILJl/+5yY31Iyv6WTrSLF1X1vvZKk7JhdBlvYblmrZx7o16lv3dWfVda+u6eCXfsjQpW0Q3H17nHzKP10NsETiydLm5/nw9drbRentu4dpJaF0odd3hdmcwiUTyTxcpuJHch3S7kUgkEolEIpFIJBKJRCKRSCSSh7Pd9kAikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpHcy/fG8eYu7nNYuetf7T/kX/Tf5+yyLX7pofFO37W/7W4JSweY6xZVVW60bYvC2tbfphvOdSeF68OW8zZrVBWF62iWTPy15j6Tr52/Hi51y3lhs47Vtam3at28tuXc3Tgmz1FU4d4RFU4s/V6X6dWA8XhEvSKcSeJMpz8ZYpfKLGbCmYQsotfr4toW3371NQCW7dJu5nzy7ADLFi4paa7R2aujxAmZKl6bNEuxHBfVKOGUhCOFpluEfkCtViFLYgCSxCdIKjx+8ozu6QkAtmNjuB4vvn1BvS6cXQzToFR20bQM3xdOMU7JoeR5aGqCkolIItM0UHKTPEuoVsW19YdjcnTOL7ocHh0D0NnZJ00idFtld1+MkaQ5JyddPM+l7Jir+5NHEeVKjUUR26SkGZquEaUZ84loK+9aZHlMmoCiCkeZklenVLZR85zi9vGLv/2GTquK47roJTF/QQR5rmBqKqaWrO6lYWhEfki9KvqzrRazmY9XichVUd/rV2/pNJpAjqKJuc9JqDc8FvOI2aJwvAl6PHl8yLQ/5O/+TkSJ7e7vsbdXR1NCBv2RqLnWxnRcjo5KTAdXACxGQzLdYzab49jiQqajjKpXoeTa5Jm4l2GcEscJumZgFu47Tx7t4ochqprxw+Pj4jnQGE8uUVWFZkVEhEVxTknV8GcLNKOYrBRsU0UhRVu+y2pK6M9xrBJhKK6tVK3SyA1UJWZeuDBV6w2q1Rq6lvL6/KK4vwpRItyptGKuPK/EZOaTzRT+8v/4SwB+8ief86M//WcoqnYrU2nbGrttXVquHavjFPEsXR+rrB173fetyL4iDk5Rles1gPvX1OtKcshFJNXmMnNjzdvWpii33G7E+rKMmlpf2W6e/13imr57xNPG/eF23av+1w7Ns1t2Q6Jdut1IJP+kkS43kocg3W4kEolEIpFIJBKJRCKRSCQSieTj+N4Lb9ZZF5ksuUsU81DxzOYmpKqq20UqD6ztIe0Pbbv+7iFt+ZY25cZGcZ4X8SP5+sZ58f9bqSS3N+PXo00URb0VP3Vja15d+7S5AbzW531zfd8GsaIoZFm2PJA4CLl49ZKXL4Tgot7oUPYqJMmCMJgDECUqvh/yaK/Jxbv3AMTBnGFvQPXJEf/63/xLANLQx61UeH96TsMT4o8sg173ilZrnygSApjAD0hzmIxnKKoQk/R7FzTrTWa+j+NeCy5cx2Yxn+GUygCYtkEUBRwcHmAa4jU8O70iCmPabW81l5EfMp8vqFY8LFsrxvU5ed9F1eDx40MA2pqC70fM5gtMQ8zbaDQnUxIePX3C6UkXgFLZZmevSRTGOIUohjxFty0MQ8UtiWijJI7R1JxapYxlFgIdTScJI7I8A6UQwChwdnrJ/l4bvRB6tJp12jst5rMp/UFftHVMWjWbHJXhQNyPSsVl0J8SBDMOHRH9VfZsypUKWQZ+EZ80HS+oN9pcnp3QbnUAGAxHVGsl6q0q+0fL2LAAXdeotpq0d5ri3OkEfzJgOBriGkIos9/YQy85TLunfP31CwBc2yNNB7x89Q7XFffIsmxKpRTdsjAdEcHllA3OT09pt5uruC1Fr5AHIbbtUC6LMSbThFrNxS17XF0IcY/vJ3hli+PHB9Sbor/Td10s26BULbNYiHkx9DIlz+OqOyCciefKdWyyPOXw+GglatN1HUPTGXTfouufA/Dm7Tk7tSa9ywvevD0V1+GUePTokDhOSVJR3//z7/49Kgo//LN/hqJe/ww8ZG1aF9KtBICF4ObW+feIem60KaCo6moRWcZO5fntczfj8lbr0lLHo1wfvzonywpxzlrbXeIV8pXAcVnNbcHN7d+idYHOfb8196712xrz69Zta+36vNwQOW6up8vmNVFR9oAILYlE8l8GUnAjeQhScCORSCQSiUQikUgkEolEIpFIJN+NPyrhzTbu28TcFG6si0Q2HVQewu/bKWBbf8qaJiYvNnw/1ighX3ey2XCGEbqbG7vZN/rf6naxcq647SR0twPRh90VHuJosfy8vmmtIhx3wrkQKly8fUeaQJpEfPLZZwCkKbx+c0roT2g19wDonV4RBiF/8/+9pdloAKBrOqZTQlUVvIoQneRKhTiO+fSzZySREFeohsN4MOLk5JxWpwWAH6Z0L7rs7bSoVoXIplzW0QwTNYxWQpl2u4ZpqIwHY0xLOLu8enlGs1Gj1qyQZCkArmtgmja5YuEvhgAYpk215GDoGmlxnGkZlGyVaqPCYi7EKaqqYWg5P/zR59glIer49NM9wjji1cs3NGuizXVMVFLsksFsKpxsShWPNIsJAp8szYtxTTIULNumdzkQbZaNYepoqgqpED0lao6haqSZiqKLe26XHDJFQzcMXE2IdroXFyiqgQLYjhD8VCoq9UaZfi8mEvoSypUKYZAw6A14+eKNuJdJRqczxTRsdE2MYegqhmGh6wpZKk7WNA1ylWrFXCkTVNVFzX0WkxRM4Q6kmgaJ7zMeDnn89BMA/vav/p7pbEKOwnw2AaDTaeK4BmmaQ6Hxsh2Vo8MdUFU++UI8a/OZj2FotHc7xJFwqKnVQnJKzGchliWeq529KovpBLdSYllgpVrBKVnkqsXxk8cAjHo9epc9LEen3hBCo/FwzP5BE8vS8RfC8WY0neOVXUy7jGmLAjs7bTTDIc8aeF65mBedXm/M+cUlR48OADg4fMr/9b/93zglh6c/+Km4uDsWmqXA7UOCx00nm7uEknmxlqy3K6v14mZ/28Q865+zLGO52q3Oy4rV76Y6RdSVb3f1uu7yoS5qt93I1mvbtk7eEMh85KJ+37nbBD15noOqrFzJ4Pq3Jb82LrvrciUSyX8hSLGNRCKRSCQSiUQikUgkEolEIpFIJP84/NEIbz60Ublt8/Ehm5vrG6rrLiofipDaHPdjxtve78ZOaC5iVJYODB+qYfM6Viku25whNobMPiQo2hIf9UER0nLXO4eVauGO2q9rvjtKbD0eazKecHV2TpaIfi1DJVj08HMLuyyOmy0C2rUScyPj8v07AK4uBjRbDTzHYG9PCG9ms5jkckC9VmU6GgNQb3ewLYtM0dGKGvwgQdVM6mULUxPjNusOXumQF9+8pOw9K+qzGF4N2D/aRdNEbE6j02Q+HKNbOoOxEHXYjk2ve4GiZsSJGCOOUrLEx7IMdNNaXYe/GNLpdEiL6CpNV5jPZpiWBppwMNE1UFWDPPIpDHkoVao4WYxllbCtIsInjZnPAlSzxG++FrFXf/5nn6MqcHbSp92qiOv1IypVF11XaXZETFXo+8znMY5jE/hCkKSpGl69yng05Kov3G28SgXH1IkDg2pViGyqFQcUA1XTMUXJTCZzwjBCVXVMXSxFg14fw3Twqi4Hh0LgdHi8B4pBuAhQFCE+evT4EE3TiaMA3xcCrCCMqTfqqKrO+fs3Rc0LXFMjyUz2Dh4D8O7tOaOLVywCHUUVwqVOu4mh6aR5hiOmHtMw8KpVDMMgDMWkTqZzdnZatDpt7CKGbDyaYNku8/kU1xYnm3YJTdcol000ob/i3au3PP/sESXXpdcfrJ5rFY3hYEgSC9HOeNgnzRRqjoezjANTaqSRj2lAYopxDxp1VHxQ6liFU5FmTplNZliOjYa6upe2a/L0ySEoopjJeMxwlvJX//4/sH8k5sWuVLe6wCy5FRHFTXHNphPNnWujIqKh1uOf8lyImxR1c/3Ob8Tq3SnW29J22wBsm9vOcv28jrn7GGc1WBdzbi1tdf71mNvdcB4qIr3Pve3G/YBboiSJRPJPAym4kXwXpNuNRCKRSCQSiUQikUgkEolEIpF8d9T/3AVIJBKJRCKRSCQSUfQuEQAAIABJREFUiUQikUgkEolEIpFIJBKJRCKRSCR/jHxvHW+2uZ9sc0VZ8hC3mbvcEu5yD3hIvx8bGbLN+eCGm8G6MYRo+UCPSuHasHbGepLUzWLJyFdtCuIzrLvh5LeHvMf9J1duO+mI45YuN3fHSd0XmyKGVVanx4FwHDl795ZvvnzJ4+PjVbwTisJV9wq31uKXf/PXxbVpaLpO/+oKwxT6sh/94BM0TSGMEtTCUabZ8dBNC8VyUFVxXJKm5KrGYjbDq4h4ovM3L3jy6AhD18hV8doEixm2ofHpp4949/YcgCdPj7F0mI7G6GpcXInObDolyQ1qTeEoc/L2HFUxCWPY2akW/c3JUhXTMglnIk7I0FXev+1R9moYhnArCaOc3YN9RqMpXs0ojjMwDY0oyggj4QpzenaCpigMrkZ89vlTcW1JRpTmVCyVn/1UuPRkSUCaZOzstdF04bBy+uaEWqVEToyyfEZ0FTXWyRLQ1MK2Jk/xFzO8qkMQeQDstGtkeY5XKTPoj0TbXhPL0MjU6+dlOp3jug6tTp3FXDjoDPpj4mTE3uEe5ZpwJUrCDFUPGY1GVOs1MQehT5pmTKdzykWk0ng8BXWGY8R4JVFf2XJ58/aKzqMv8Gpi7kf9K3K9wt5hk//zf/93ADw6PqBWq5FmCbohHGVUVUEhRyElikQsV7NdZzL1cctT0iLiStdVXM8hDSOiUMx9EMSUSgZeo0a1uF7beYZpGFxdXjCeiP72D3fpXnQJwoD27k7x/MVEYUgQRHz1q28BOHjymDRLqLVKlAvHpTTNKFXb+IsxSrFw2JZOZBiEYUxWvFqTxZx6rUa5VObbb18CUHIddnd36F8N+e2v/gaAH/9Xf7FyxFmyLZ4PbkYnbftuk5tRcYqIflpfG/JircqW9jaFG83yy7X/Xa93BVleuOhs8jBnmYe4qd3ntvOh/h8yxn3f37reO8a59Tnf3p6vRRDeckGTSCR/tEiXG8nvgnS7kUgkEolEIpFIJBKJRCKRSCSS343vrfBGVdU7I02+K3dtFK9vCm/bYP1QDMh3qeMhm7gP4cP9XEc0be6y5nl+e2/6Y8raOPfmBv0Wkc6GmOkhc5pmKYOLLouRiGhSVJ0f/uALojCidzUEoGRrqBhoSUSzLmKRDE1EaNUqj5j7QsQymU6pNxqYlsXFuYj6+fSLZ8RRSBhE1BuV1RwMBmMc26DfFfFJ++0a48GQLGcl/ihXyui6QRik7OyLV2nuBzheGdtW6F6I6CrfT1GznCxPCBdCQPT46SMif4Hh2hhF9lIcGfjzBYqi489Ffa2dHTq7HdI0x7KEKEK3LH717a+pVCvohogYMsyUJFxgWBaDvpirq4s+uzsdnj0/xjBEfaqmcnY5wA8iGg0hbFkEc7Jco1wprSKuWq0yuqmj5SaDQQ+Afq/P8+fHlGo14kiIioLFgnAyIV5EHB52ACHumY6mdLtDlFyIREw9Z3d/lyTLGffFvLRbTXQ9R1X1leAjTnPiKGTQG1Bvi/pOzro8edxhp1NDLSKpTs976JpByXVJEyF2OTzqkKUh/csLKGKb5rMpX/zsz7G9OuFCPAeakrF/dMy4P+DJIyE+ajRL+IuA/YMd4kIzZpcc4jigXHZJi+vI84TjJ4e8f3tKxRNzEMcZydUVJa+yesZVJSPwI9wko38hntMsTWjWPUzDoN22iuc0Y+eghe+nGI4LwEHFYz6f0z8/oVEItXbbVQbDKd2LIa4r5qrWrDGeTHnxzTtAiICOjndwy2UOdIeTd+8BcMtlKtUKw8GEJ0+fiPvm+7R2O3zzzde8eSGi2Gqdrzh49gWaqt94t+8TPD5UoHh7ncpXgj4R87RtvSji9lgeByjLvpTbB28RmLAmPvlYwc1DjntotOG2dfrBUYhbkvo+5vdoKXBazSMft8xLJJLvP1J0I/ldkKIbiUQikUgkEolEIpFIJBKJRCL53fneCm+2iV+W/D5EMOsikfs2ZD8kbHnoxvO2czZa7zx+XS8jjC22b51uc6bYHGKzymXf6047KjeFQStXHG7PzXp/DxUTfdBBIhM7zbPhkOlkQjCP8efCIaTWrDKbTvmHv/271Yb0weEOhmvQ3Kmj9KcAVGtVUHV0Q2VWuMeYpkK1WkEBXE+4mvh+RL3ewI9S/MUcANe1qXgOSZJQLgmBhKqm5JoNeYztWkV/FnmWMh5P6A+Fs8vjp4dopGS5TqMlhCh5pvD+9QuqjSbtjnCFGY99wijHdDLyYvJfvT6hUaliuirGTAhqdNXg+NE+83lAvy9EQLpp8YMvnhHFMcFsBoDTquBUy8RxRBgKEUan02R3fwfLtgl8cZxhaTx7dkga56SFu8g4SMiyiKyv4HlC/FF2HYbDGZZtkxfOLmni8/L1Oz75wkHLhegkDHz8ABQloZSJtihMqVaqzKYx04kQ2eSKQRhH9HoTDG0pAjJIlBxL1VduPk+eHHJ60iWKYi4vzgBoNRokqUoQB0wL0U6rUUXXTcIwXt03gO75CVEw4/CgKebKbmFYHlkS8Zu//lsArGqLbHTFm9/+lqRQ2ehGFdO2mPsxlaqYgzgMqNQ84jClXi1EWZqOYers73dYzIRLj1M2KbsaGSaL4jm1bR3H1ZkMRrQK8Uy3NyEIEyzXJSnEQleXfTTTQdUU1MJsZj72mc0WPH7+fCUuQ1XZ2W/g+wmn74W7kmnpmKZBqezx5NmhuB/+BN9PWUzHaIoYY7fTxLR1Bt0uUSzu5WBwRRTOmQ37ZDtC4PTu62+Ig5Tjzz/HKARYK3esj1pzC5+aPC9ENWvfrIRJ6vUStq3rYolTNvQ0Sq6QZzn58uX/wJqz1QVm2bT293dZx28Xv62WazHncow4TjAMfWOsQlVEvqkfurVWfqyjzuY0KyhrUyAlOBLJHytSbCP5XZGCG4lEIpFIJBKJRCKRSCQSiUQi+f3xvRDeLIUYHxSO/IHG3RqhdI9DwYdirzb7uCtOadP5ZeuY6+dt+UZRrs+7T9BzYwxl2cN1mNWqxPzurdhtAqW75ukh9/C2wClnMZ1xdSGEBf5whh+ElCpVltFV4+4lL1+8RM1zPv/hJwAkuY5rq0ThYjXu5WUP07Zod5okoRBI1GotosBHt1wsVQgQFEPjajjC1AxKFSGQSPME3TTIiLHLIs5q3OviVaosFjMCX7iphIsAw8hI0wjbFq41WZLieg6LeYBXra7m9OjRI85Oz0hbok3XNCw7w7SEyw2AP12wsBxquYpuilfzqjdEJSGNY4JQCFt29mtomoWjwLwQ/IwHGfVOB0VRiCPhqtNut/GDkEXgYxdCCnKDOJqBYqEboubO/gFxEBCGPm/enAJwcNAgijOSeIofiuv9/CdfkCcwHw6wXSFOefPuBA2TeuOAwBf1ffP1W37ww8/wPAfPE+N6ZRvX1im7CnEi7mUcBWiGSrCYoKgi4ipXVKIkwJ+HHBwJ4ZJXsUlTFTIFxxLHLRYLbDvDLTvYlhCYvH59QhxOca2MXBf1HT5/jkLG269/QZyK4+wsx1/MePz0mFkhlKk3m0wnM+IkpFTeBaBctpjNxmga5JqYq/kspFQSQqWleCvLFYIgRFUD1EI9E8cZluUy6F9Rq4laTD0nTHJKhkaOqGU2T9ipmMRRzGxSCIgUINfJ4ozZVNQXhhGVWoXpaIRXLqKwULFtG02D8WBUzJXLZHRJtVqiURPX8erFO9y8yo//5Mckxb388jcviIKIH/7oC9xSuXg0HC4u+gz7/4HHnzwX70xnD90yb2TKrYc6KWt/LF/5D7m7XK+da5d764zbfBcR5HrbplBwq+DnjvG2uaE9VKSzPCdLC9GRett952af2+bvZtEfirS68f260Gjju9+nk5tEIvnHQQpuJL8PpOhGIpFIJBKJRCKRSCQSiUQikUh+v6gfPkQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFs8r1wvPnYf3V/y8Vgi5vCQ8e969hNF5r7oq/uqm+9n+9KDrecGT7OEWgjGkpRVrFS+fUX18cp1/+/dR1rwyqKQlZEQn0XVvdw6dyT5Zy9e8fw8hzTKqJ+MpUMDZKQYe8SAM8xMAydaqMJmjh3Pp6SUyaKAoq0HqazGS3bIgt9Ogf7AOiGThLr+H6Ibgh3G13L0DWdy8sB+6ZwEvHKFt9++5b9gxZLbdqb15ccHmV0u0NanZZoe/men/x4hzRVsG3xKi3mM7xKiSj0mU1ELa5XJUoSrFIFzRLuIhUrZtC7JPBnhL5w33n++WPCCLI4w3FFJJWZhMR+SLVVZVK4n6TxgkjJKFc83LqoJUsTyDOCIMQrC5eZ87MzDo4PydKc8UREcNVrHlmm0u/1UAoXF8vU8TyXUsleubNMpwEvX7yn02ngeaJmVVHpj8bUmx7ffPkKgL29feI0YzKaE6fieTAtkzzN8Souur68IzmX3TGLRUS1Jq5t0J/g1coYCZSLeCdF1dg7PMBxbaJAzEu/P8SyDOIkpl6vATAaTRgOx1xeXNAozq2WVHSvhOVUmcYiqmvuh6RBj3qrw9tzEbf18sVLyuUyk+EItyQcjeIkpVyrMR/3SWLhkBQGKm65SuDHVBrCqag0n9C7GNHpNEkz4VoTJSmZYrNYLKjX6wC8e3eCqqUEUcTJiRi33W7QH4yZTTUsW9RXKlvkKChKTrMt4rG++vIltWqZXm9EfyCipj77/DHn511a7RZ5Ed9kOg7vT85o1D3Uwo0miiLiVMOtVAkWwt1GMVxst8xgMMTRxT3KVag1PA4Pdzk/uyquN6TSbKDpOr/6T/8RgFqjjuo4tHaPyVLRX5YkqIZLpVahXLhEaUV00l1r383229/dWsfztfVoFQclnqNt3OgPUFTlplvYxtp33aFyK9rprr5vrrtKUU9267ib51yfkRXRbkmSoOubP735svLbzj1Kdj12rt5wh9scd2v961GFG/OcS8MbieSPAulyI5FIJBKJRCKRSCQSiUQikUgkEsn3m++F8GbJfZFPD43G+NiYqm3im7tiPO6Kjrpv7A8Je+6q5X5R0M0N3c14qJubsqtDljvea7FSiE3t9VqWbWt9Kqscme0b6evcFRt2V4xWEotYpN7pGYPLAagug5EQPuzs1OmdjYh9CBZCxdKs7fL80yeUqjVmMyFoiC77WJaLZjgouRBrPPv0OePxDCwXTROPeewHRHGAPwtAF/WUSjaGbvL006f0+0Kc8vLFCyqVCq9evGVvR8T/tNp16vUmXqWGVsQJfbX4Bj/U2T/aIS1ijLIiysuyTN6+egvA4+fPWfgBaZrRvbgAoN2qkWFiay6RJq438gPanTr9/gTbEiKgi4setgnlukGjJQQro16X9+/f8YMfPKNIXiIMcvzZHH8xYTIXkU97B4dYpoGiO1y9fAlAtVzGtFzCaES5KuZFVTWmswXVepV6o170F+G4Nu3dJpoqBDqhH+OWbOIYHj1/AgjRju9HRGHCwY44N0ti/CBiPlywt98GIEkVKrUKg8GEti6EI5VqCVXVieOILBHPge9H5IqCrpbQHXGcodeYz30mkwWtthAazaY+uqbhujqDIm5LVSPanV28xj5eEV01n405edelXG5BJp7Jp0+fMJ0MsN0qlYoQFTmug247+PMptZYQwMRRCjnEUbR6riwtx9Qz5vMIxxOCn8mwz3w0wHQctEJnZOg6o8GMvb02iiFq8WdTAj/CsiKyrOjPNoiCGapqEMVC2FKpuNQaHvPplJ/8/AcA5Ch0OipepYRVxJqNh2PKrk3ZKzMeizmollzqap3ZZMZsJp7das2jVqtwfhZx2hVCnv29NiXHpnt1RVQI6DQSVODbr19QLSLWFLuGbeucv3sNiXjGvYpHGI4YXl5hWMWzEQbUm3VyYOfwUMxpqYSqqOTcXk8/FJV089hbTbeO3xqflMP6yiiippTrthyEhul29NP6+nvfb8qHfgsURV39vRSh6bp27+/Y7WtaW08R16RsEVRuq2HbdW0cdGcdEonk+4EU3Uh+38iYKYlEIpFIJBKJRCKRSCQSiUQi+f3zvRLebOOD/5r/IzYwHyqwWX73++KG48Ad5d5V23Yxz1rfqz9ubhSvb9QuD1TZaAPIcnEuSweapduEgrIaqOiXD7sLbboQrX9ePzbLcq7OL5l2hZONaRq4pSqvXr8jSYQoIRhdECcJh4cdWo0OALrtkeUpSZLy7devAdjdaWBaCqPJgponnERsx8V2XTRdIQyFEEXJckynRrmi4vsLAMLIRzMNPM9E14R7x9W5QrXikkYxtUapmCaVRbhg0htT8kTb8dPHXHbHWI4tHHiAd2/eoeQ57b0DIcIBhsM+rWaD3tUVv/61EMB88fkzbNtkNpugF0KUyTyirpgsFgHFFPDo6SHD7hWmYeFH4jo0w+LRkyPiLOPtm3NAiCFc28QwbY4OhQBmPJoQRRalssb+4YE417bpXw2JowXViphTQ9MJowVf/ea3NBpiDnb3mvz8T35MFPqrZ/bqoketXiZKcmo1IVgxTBNFVVGz2crFQzVMLMvFMFQ0S7jv5AnoucH+wR5pLgQctaZHFOa8fnVKZ39X1GcldM+6JEGPzp6YU1XVyFIgSwkWQqTkOhaaFlGtVEkrhchmOCBXXOaLFMcRoiziOUlq8A9//2saxb2cjMYEQUwULzAMIRyJ4oz9so3jmsyLMfpXfY4PmziuymQwWD65XPXGRMmIzp6ouV622W89ItdVbEfU8vkXj5nOAgJ/RqNWKk61ME2NnZ02w35fzJ9hg5GjkVOuCDef0A/xKhUsQyUsxDPjiY+/mDKbmpQ8IcDq9wY8e/qYJMnRNHP13AeLMeWqh1aogBQUsiwlTnyOnx0BMB1NMG3otGsohbAqjjLOz87Z3Wny7p14rq76Q376s88IZiG+ePxo7lQYTrqg5uwVz4FrmaRRzGQ4ZHjRBUC3dA6fPKHW3kHVrlMN8/wugc2GG8vWNfhuQeT6AErhHLPSGC6Nc9baFAWuNTg3RZUfXv+vhYgPOSfPcxT1bhHMVmHiSkB0Xaii5Pfa1Kz3UyzjN35/bo2xZT4lEsn3Aym4kfwhkKIbiUQikUgkEolEIpFIJBKJRCL5w/C9F95ssk3oscm2jdB7Nza3tD/k+A9tzuYrl5ibbjGb526KVFZtec4H9lmXHTyovvzWH9cb0mtymq0b4A/fkN62oSyuf7n1HqUJ3ZNzTl6f8PhYCAE0Q+Ps5JJg0sd1hHjGdF0m3T6v33Zp7xTCG1MjSVJMy+TR4x0A7FKVRqtNJ1xgFSKWNNdByQjCkPMzIXJoNkrU3BJhmKzirHRDwzRtslwnyYTjyE/+5EfkWYpm6JycihiecrmBpqc4lSpq8dY8++SIPItJ4oz+pRBmHB0dMp8uIEupVYUAptNuY1gGzVaLn7tiXMvSyDOVREu4uhRuPu1OFSVLqTc8FFUIVgzdoLXTYO4HxIXwxnUtNM3g7Zt312KqVMGrVcmTmF5P9KcaBmGQwLRPoT3izZtTdDXlJz//KZYuBDA5GW7Z5dGjA2ZjcW6WZahqjm7ZQjUDPP3kGUkcsQhCdEc48vR7YxzbwHFd5jPhWqMqGbZtoGs6SrHE5KlPHKWoCkwn1+IZx9J5+slTNF2IP6aTKZ12lfk8JPRFtNY8CJhNpuimRZqJCym7OWEQksUQ+UJk49R20EseeZ4yHwjhyDff9NA0FdsyyJKl8Cxm72gPcm0ljqrXHRQ0FCyyQvVkWya6qdPtzogjUXNrp0NrB8oleyWAuzy/4tmnj9EtA0URApjZ6ALDdlH1EpPxfPU+PH3+iDCKsIuIq0qjjj8ZkqQ5cRgUR6ks/Ig0ZuVak+cJlWoNr+oSJ2LgRqOJqoOuW2RD4dbUu+yhahrzyQSzsEPSNJ1hf0gchrh2IYQqlwn8mMAPyXIhQrOdMm65ymy+wCgcl1RSFrOQvcNdBv0xAGHgU66UCWYzJqNBca5LHMSk6BiWuOdKFvHN3/89u48ec/TpJ6IWRUVRr0U469xa/7byMEHkrd+J9SV4ZYhzMzoKIM/yVRTWhyIDN5u2/26sX4/4O46S1b25VfdGRWLtzdei+YrK89vr7C13m1U0V3GWst4ukUi+r0jBjUQikUgkEolEIpFIJBKJRCKRSCR/fGzfAZVIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCT38kfnePMQtv7r/ztjm7b/8/+PcXi5q0/Rx3ZHnm1uPJttD3EmyLl2x/nQOCvznfX6FKVoW/aXrWJaHsJd7jibbhF5nuP7wtHj5NvfAhqPHx2t4lcuzi85efUNruNgO8L95PSsy/HRPmkaMxsJJ5ZWs0KcZOimwe5uC4DpaEjsW6CooIlzw9kC0zTonl5Sr4ponjgGRdPQLQW1qM+0y0ynC6JgglW4UJiuzTe/PaPdrFGtNQBIUo04Stk7qJHEwhmnf9Gj3qhgmi6hIa7DslxMyyHLcl6/fAtAhzZhnHF52SUs5uCTz59w+v6CSq1CtVq44NglNFXB81z8hRhjOp5hmirjqyG6IaKDNAVcz8G0LFptEXeUZRFhGJEnMcP+CADD0jk63iWMYvQkA+DT5/tEwZDJ4AqniJ9ScoU8A69aoVzMFUlI72rAcDim3hLOPbWKCqjMxlPKpWKu1AR/GjKdzFEKtyFN1ensttBNh3Ah3FQUMtIsZTwas3uwcz2uotE9v0QrNICXF1c0aiVURSVJwuL50ckUKJVt4ki0kYVYlk4ULEh08RygmZQdg/HZSy664rj3785pNSt0OnU0U8xz2bOoNerkikEUCFed2XiEZiSgpsSxcNWxbZvxeAJqjlcVsVdRmOPYDrZtkSTiuJLnMp/PmZ77qEXcVrWckyYBuumSidvG3F+AohEFEYYtalGyDBSFOIbupbhvWRrS7w9pd+qrqC5LKzGbzmjbTQjCopaYr758y6eff4ZdOBBF8QzbVIjDHMsV59qWSxIF2N4j/FA8B9MgYKfdwphbq2i3Qb+PYzuMRhFPnuyL+6vrzKdTrnpT1MKFaTbzqVYcclNdub5oqkKqa5y8fkelcHp69PgAzBJnr97QPRHvwic/+znNjnhmlyh3OHYt27ZF6C3Zto7e6ZazmUi1dt51/NT2+Lyt3d0RB7jdiea6TS0iwDbrVxTlDj+f/Ia7zmrNfwAySkoi+eNCut1I/lDIiCmJRCKRSCQSiUQikUgkEolEIvnD8r0Q3nysyOUhm463Ypa2fFYU5cGCnLvEMvfVJ+JAbh5/13jb+si3bsMqNzdh85xN4c59G8+KOGB1vIIYZznSXRu1d20ub7ueW9eXw2Qw4jd/+0sA2q0W3f4E07HJU3HsZDRGt3RSdK76Il7n+fPHtHdaZElEWBxX8lxO3p9iGhZxII5zXANV1UE1yHOxqR2GMeeXQ/qDGZWGEAKcn1zilixqrTpXZyJCajYPGY9HHOzvEsUieilJNeq1GqVSmelMxFQFiykVz8S0DOZzEeszXvjUGh4oCacnJwCYlkaeRsSxxg9/+gUAGRnd83N299urKUmzBK9ik8YZ5MvIp4g0UUjzDNerAGAlMXnic3DUYTgUUT9ZnuHPZ5iWzXgson4qFY8szQnDGNcToph2u0WSKiS5ilJ4W1lOBa9SJY4TwiJ/Kg5DHNdlNp3j1YTwJs0VOns76IZGEAlhhj8PyElotlugiHkeTxbUqyVKXoelbGCyiAmjDM3I0AqxUO9iSGunQT/LWcyX980lSxNa7QaTiRDodFpNdENFUTIspyz6u+hTbzaJ/Dn9fk/UlwTUqw5OubYSBhlmidHFC169HLH/VEQb/fN/2eTL37xANWx290Vc2WjYJ00SknhBFBbX5geoqkajUeGqiA0LUNg93CGKFuS5EKxcXvRwHZU8c7AdIZ7Z2d8njkNgwe5es6gvRtU0ZpM5s6mIwprPA7xyRpwmxGlazH3AdD5HQSUsoqYUFEpllzDwcUrifnz95Qt2Ox18P2YxE6Ksy26PwaDPzm6bevGM56lNFPr4YUg6FHM61yO++s0b6q06e3tC9GKbKqqq4jgWpinmud5uYWg6vh/i2OKnodluM7E1ZvMQRRFzUK+XyNMMr1LDsNRi3AhN1/n8s8dEkWg7fX+C43iM5wn7lRoAr3/9S9Qf5tTaO7AWOXXfung7um7b+vswgUmurK1dW/pf9pWvYpq217H9vPUab4qJ1tdpVVFu/P485CpuCnTUrYlb24RJH+KDMYYSieQfBSm4kUgkEolEIpFIJBKJRCKRSCQSieSPm++F8GbJtg3W9c+bQpmP3WTcHOuujd5NF4Lv0sd6X4ry4VofKuzZdFlQ1jZxPxrl9t95nm/d1F2v8y623Zc0S5leDXj/4kuaTbH5Xmk0mIQps/GELBQilmpFRVdraIZDrgjBQBiETGcLGq0ydib6TJOY1k4H3bLpdYVAwvaqTGcB00mPOBGCBkNXuTh5T7VaJSscaj797Jg8V7m66JEmos3354RRiKrluGXhGpKmMa22h5Jn7B4IsYyapYRRAmTUmqLNdiq4JQvyfCVUCIIAz7NQ9Yw8y4qpjdnb6xDH2bXYIEuwLIsXL8549PiR6M+2uDw7w7YsplNRn+NYzGc+zZaFH4hry7KQnb0O49GIQhODV3LJULBdC88TziR5pjEazfEqLkHhtKObDsPhlCQOKafifpyddzk+6uDPAkrlwolFM8lQaDTrzOZBcYMzcgxmU5+qZwMwGo5ptpvohsHZWRcAy3YYD67Q1ToZQnhTrXu8fXfBm1dveZLtF8+BAmlMo1UlKJxnUHOiKKHs2aSpmINSycKyMjI/oOQsHzYVy/X47dsRP6sLB53EHzLojVFsD9cpHHnqJX7quAyHE/qDwlEm0xj0xzRbVabTYPXspimMRz5e4fqTJhmz6YLRaMizZ3sATKcG9WaVetNjMhSCGlVRmI1GKErKaCA1UeaeAAAgAElEQVSEWm/fXOG4FsPBhGpFzJWmG/R7PUzbob0rxC7zRcxkNMcwLD79XDwHb16dYOgm716/JlcuxX3TTUqVMrpp8vbt1+LaLJtPPnnOoDcmLgRE88WCMM6IoojnT4Sj0bu3J4RRRKlUZj4V71uS5VhmxmQ6W923smtyeLjP/n4TzRTPkG4oVGs1Ts9+y7Onj4vJD8mUnIUf4Sji2i5Oe7RadU5PztjfEQKnXvecZiOiWnUpF0Iyw2hw+uoV0+mUgyfPxbxo6uoeLLlPjLmt7Q7Tr61sc+O6LaqBD4l57lt3r5vFb1aaJqSF2EpRFMjANM07a7rd39p85Hkh6vwYIVBxPVJoI5F8r5CCG8k/BtLtRiKRSCQSiUQikUgkEolEIpFI/vB8L4Q3d0VDZVl2K4Zk/diHCmTu4j63lvsiTe47V7SvWor2G2cW56+1rLQuCveqXu6oZXt9tzeiha/NhpNOvvy0rGC7085dm8w370FxDXnOqIg7GlyekwULvNoes7kQUuRZSsXUmI/H1BpV0aaCpQ6YBjGNmtjMr9c9Xr1+T6P5Q7KsiF6a+SgKVGoeai6EBafnXQ4Pdyl5JaYjMW7JtXn2yTM6uy2UTIgSZn7IZDSmVCnTbAjRiW1bTKcOf/Wf/p5qRcRKlUomB0d7VCoefigEIfPpHMipNavEhZCHLGbYm5Fm6irqx7YtVFXcx7QQ3ixmAV7NQ9cgL9xtZkFC92JEvVkjDKZFfyGO6zHsDVcCmEjTGY7mVGoVbFeMUS65TCZzdMPGq4g2VYPZeI6i5nhlIerI8gRNU+n351Tros33A5qdJtPRGKVwcSk5NpOxT6lkMR2LSC/DyJnOQtI0p9OqFPfIIIsjFsEC3xD3/ehoj+FgxE67TTAXgqlKqURjp02SpKRFHJNjl5lPpnz+xTN2OsIVJscgI0ZRDRoNUd+LFydoCjjuAZopRDtezSWLFpTKDq6VF9emgd3gZ396hF4IN7rvXuDHJnEaExRuPr3+iCxJsQwN2xZiElXRsVwD287xIrtoU1G0nFrTwy+ERp2dNov5HHO/vYrv2jvYwatVSMIFtXoRYZamuGUX3bBJI3FurVqiWq9RLlcgF7Vcdodouk7Fq2Lb4r4tpj6HB20uL/oM+8LRqNmoc3F+RqNRplIXc+UvEuLIZ9BdUCqVANjZaeCWPcplh96VcAKKk4x+f8jx8SG+LyKpLNtC0w00TadSE++boqTMRhM8r8Tejhij9v+z92Y/kmSLed8vTuyZEbln1l69zHTPcudyeDfTpCTLpGCDMEDZMmR4edSLAf8/hh9tATRgeIFtAbJowKsEiTZFipvunaWX6Z7q2rJyX2Jf/HCiqquqq7p75tIzTfH8HmaqIk/EWfNEAefr72s1cVwXoeXYNdm3OIqI0oTBVg+hy+//dB5jmxbLdYTry37cee8OyWpGt98lq75vdc9HaCVJEl0I3Z48esYPf/opi7MjfjE8BOCDX/0Zum1TllxEdYnyVVHMbbFSL98Rr352nevxfdorP7x0rDm/vSjKV+q4XvZqfa++F4QQV9pvGMaVvt3Wx5vFNdqNzmQ3RnFx2dWmcjhT4huF4ntHCW4U3xVKdKNQKBQKhUKhUCgUCoVCoVAoFN8N4s1FFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKxXXeCcebm9xlXhcrVZxH+PwSUVPn9bypLW+69/VRU9L55Go/bo9EOY+leh2vi6S6zXHhSh1cu/cGV5zrfSuKAl3Xr1y7cKO41oY0TRgdHPLs2XMAtrY2aQ42CdYJh18/BeDs8DllmjJerPlAl0vQazUoSoN2bU2QtwGo103u39smSzOWC+mm0mrXEYbFajbnbDyV7Sszkjik2WrR8KSryXQ2J1iHJHETXchxGZ1N2dnqUBgOT54eANDwG2iGzd/8zb/Gsorh8XwbHYPxaIplm7ItNQfT1knTjGAp22IYJq1Wg3C9wDWlc0pOyfD0jDDI8JqNqo4alBlZllw495S5RqtRw3ItDg+O5VhtbuC4JnXfw67cXrI4pt9pQFHg+9KFJCtS1usAQ5gUhXTQOTocE4Ypg80u04nsh2nr5AWAxngoI5B6/SZantLutklT6cQyX6wYnpzw3v19vFbllpOn5HnJ40cHOJaco8dfHfDg3jbtVo28ss2o+y1Mt0CYAtuuIpVMg7zMORtN2Lsj45O+evSYVrNBzfdZVOPnex5ZGqFrGZohY3d6vTYnR0OGJ2Msp6qjZrGajWVUVxUlZvkdek0Hy9CZDb8C4E/+5GsyHDY2usSV20scxfR6HeIo4uxMrpdGw8Fr9ZhPV0ShHAPLtmi2fdx6jSiU7VstF2iaRs33GJ5KxxvXzymyjKdffk2B3IeabZ80LkALaDbkHNl1D9Nx+eKPv2B3u3mxnpstn7KEF8/lnC8Xa3RDw7RdVpVj0HQywTR0fK9OrS7HxbRMdKERRwmWKecjCBPW4YQoWNPtSNea1XrFvTt71Dwbp5oP0CjyEsgZncpYKV2HdqdNlKQY1Xew1W6QloL1bMTZWDofOa5Jp9sBoTObSUeexWxO3W9S931c1zuvgkzYdLtNykKOaRgXrFZr/IZDlMo9otbwMG2brbv3Ofr8DwD4X373P2cZFJRmk09+9GMAtvd3KPICYei0u92qzQa6boD2qgvOm2KWXve5pmkX++BVt6/zOoobHWluc8G5jfM99Pr9l9vxpvePrF7u25fLnu/H5SXnsuuc79W/7HtToVD8cii3G8V3hXK7USgUCoVCoVAoFAqFQqFQKBSK7453QnhznW8ifrlNtPOmSKrXiVfeJlbp9e0+L6cBr7bv5WfVNU3e8+ZuXz2oBRDn18TLem8TLJ3fd+XaLVFbl++9fmB8Ua6U95/f8/yLXzA5PaXV3WJvbxeALIOTkzFhmFC35XO+/vqIfr9Lp9skq4QUjmtTOgMsscApZDlNN3F9g8OjIZYpBQjhKgQtwrJs7t7dByBNMxzXRtc14iitnudRlAbPnh6wsb0lh0gzCFNwTZNmdZhv6DqeZ+PUPOxKYKKR8vjpMXWvgV6JHJptD7ICsgijGo7ZdE5/q8t0vqTTlWKhJMppd7pYZkCRy74tJnNMo0uSaYSBvNbptCjrBWmm0e/LtpiWII2WdPpdJmcTAMbDMXmZcf/hA0xDzsfzR19jGg6tfhvbkeMyGs1xXJ35fIVTjXOv2WUyXWCYGr7frObSoCTH0M2Ludzb38L3LJbBGrN6XlnKw/uHH9zjs59/IcfAr5GkJesgvRCxDDYyDN1AK3QGm31Zh6mjlTmDfgOtGqve5gaf/fwXfNjwWFcCk3a7iW41mI7GlOW5sKqJaTgIQ6BRRSWZEGkFURJQ92UcWJBBEgYUwQzHlX3buXOXKIy4e2+bZrsSPa0DyqJEGC77TVnOMkoEYOigVfFJy8WCdr+JJgwaTRlDtl6OyHMT2/Pp9eQcReuA8XCC7RgIXcYsnRwO2dzsMjydogs5v3GUkCUhDx/s47fcqh8maZYQhgmtlowSs0yNnJTZdIVWSqHMD37wIcF6iW5YF+tZCI0wCNENE8+TUVN5ltJodziJQuaLycWYOjWL9TJiGZ9Hnc3Z2+0ShDGPv5SCM8oSoWmgabSqGLI8i4nTkizN6XblGCxmC6Ig4OTFMaYlDdLCIEAjY3iSE6xa1bqSe53ezhBVhNnO7oAwSNH1DNOSY1CzdcanZ/Q3m/zLP/4jAB4/n7C92SKcvOB//+//36q/OlkuSEv74rvquHU+/elP+Olf+xsXQq1zbooCvHlPfRkNJQu+3H/lrxqCqyIWXReX7r1a59X99eXeft6c84+vi2Rua/crrS2vCWmu5EQVF30okHN58X67qOvlvVq1X19psdLgKBTfGUpwo/iuUIIbhUKhUCgUCoVCoVAoFAqFQqH47nknhDfXDzBvdnHhtdfedIB5233Xr193e7mt/uufl5UA5fpB7OtERFdFOG/jRFBeOtB9ecB6ftfltlwXGN3kqKBp2hWHmzdz1SGnLEtOj08JV2sA1vMFpu0RRDlhLIUUk9GYs9MRRRJx7z0pxun3m5iGyVfPD1i1pbNGf7OL0EHYXU4OjgAIohX7exuUeUarEqfEQcijR4/Z2dnGrBw9hGHS1gW60DipnEnCIMRvNVkslyRfV+KeWg1dGASr1UU/6q4FlJwcvGC1lP3o9PtQanh1k4OvpTOJKQbSccMycetS+GBYNnleoAuN9SoEoFavY9ou0/EMvxJIGKbGarHk+fMhzU4l/rACoijHqzvUKiebcLkiDFIsN6bTlddKTWM5XyLyhDKXjW51N/B9lyKLiatx3toaEIVrdAF1T4o6kjhBKwrcukmRS6cd27Yvaa2qtWDo1H2fmqeRJrIfjlOn5nukScLOzgYAzaZPVhRousn+3iYAuiFYr0NeHM3oVK4rpydDHry/heM4jI6lIOTRk6e0Wi0m4ymjs5Fs8/YAENTrPkbl8DM8HbNartjebIImhQWrOMYwTdrtOrkux6XXaFOEQx4/O+XOAyl6avgN7r+3i2XbpKHs73KxRugGlmVSq8YlmC8oywKhGRdiJr/ukGcJSRxzLk1IEgPPr6EVKTVPti8IHKLxio0Nj6Byy0lzMC2LJA44PZb1arrNYOCji4K6K9dpkqaQF8wnc5od2eaa51LkFru7+xffQ9u2SKIlSbjkbCzdizY2+wjDQBOQVHPp2jbr9RLfr59LMPCaHoYosWybZ4+eyTmyLI5PZ4SrGT/60UMAvnp2TJ6lGIaOacr+WraNsEAUycXS0IWGaejs72+TZVIIRVHgug4lEwaDVrVebI6OhohSkBWyH9PRjIbvslgs6XSk0EvXS4LlkvVUoywyAP763/ptGq0WT758RPhYHkwL02Uw2KVea2LrsneLqOD/+L3/jcUi4Nd/6zfl+FXfxW/LxW54yb2mLF/ujbfed8157Bx57+vrvLw/v+79ceUzLil5zivRXj6Pa/v9re8CJbRRKL5zlOBG8V2iRDcKhUKhUCgUCoVCoVAoFAqFQvH98E4Ib247xLzO28RkvEmo87auNW8XJXX1vvPD05enmyVFUaBpgusnnpfLyTrPx+D10SjX+6FVrhVcE9DIttzs7HOT689Nz77ctyzLCZYBXkOKF/K8YD4a8fTnP2djaweAzb17lAiW8zmziXREcS0DvYzJKRlNpYhgd28L07Sot2t0uj0AhsMZXk0jTzPSRApltrb66IaF6zicnRxWI2rw/gcPaLcbjCrXFce1cV2HPC3Y3pFtWazm6IZBbzDAq0vhQ39jwGg4wvM87Jpc+vVWneHxCa1Ok3rVN13ofPDwDqVhEUdyDM5Ox5SGhaFr7O1JBx2tSBGaQau9wXIp25LGMUEQMpnO0CtRR8/v4dQ0Pqi7aJV70Hw0xnE9HMckjqR4xqnZnI1maMMRG9tS2NLqNCjSgiSNCatxmY8nNP0N8jwnL6Ubh+1oPP7yGN0wePDgniy3XhAGAX5rA8c7d7jJiOKU6fHowu1F6A4b/RZCNy9cf2zXo9RySi2/EAsdvDjl3p0t0qJEE3KNBGHC2ckZO1sdokgKM5qNGqOzCY1m68IZp24b1GyHul8nTeWgjs8m2LaLYQqqdCJGwzFbmx5ZkTOfnMlxpmC9DCmtOhvb0unE1uHwdIjrb6CLKpYrzVjOF5iWRbCUAiK/4eC4NgWCWRVNNp+taDZsNO2lkEwzdWzHJAxibEc+r9n2mY7nNBsNJvN5VdBgHcQcHSUX62p0ekqrWaPWqKGVRrVOQaNkNg+Zz1cAbGz1iKIAxzaYTqVArNfrMRmeICwHTZPzG6wNZpMlrm1gVPZKti2Iw5Q4TKCK2rMck3rDQ5QZceVuk8QFk/kUTeg0OtIdqNOpM59F1F0Lp4qG2tneYD6fU/dc1pUL09GLpzz8+B6ZSDFt+V0ovRqWZRJGMX/6xz+v+rGFU3O4176Lacj1t5gv2L+zyfOnByznUlgVBAnm/btsbm4xnUoBlmtb2I7DbD6n7su2+J7Hl58/5f/+vf+WjzflWK0TjUdfu6wTk/bGfQA29x7wW//Wb/Po8QH/3d//rwD4nb/7d+gMdt7iHVLe+LPcm7m6PWuvk9xUT7hB3CiFjfL5N8f+vVn1ctM77qrQU4pwpP7m7d5NF+W06lnFpftU7JRC8f8rSnSj+C5RohuFQqFQKBQKhUKhUCgUCoVCofj+EG8uolAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKK7zTjjewNu50rzOBeZ1LgFv4iaHl9c95/bnXm+fdslQoLxW5mp/tcq15tu09+X1y0+++ryyLNE4j6e6GuX1JuebIitZL9cYunERKzU8OkHLC9qdAUcn0r3Dsl2KNOb42dcXMUFhEOJ6HnXdoNOV8Tqe52OZNrZtgybrsEyB79cxbYu9O30A0tImSXK2dgcIIZ1s4jjm+OiYdq9H3W8AUKu5lCWMx2PaPRl31Ot0mJyNcWyLJJWOHqZlsF4vMUyTzbaMqImDkHa7jShjbNOW9eYphQbxaonQZBxOe7BJvW5Q5gV65UJSagWUgjiLsCynaovNfDLHr7sMtqUzTh6uKYSGbZgXY287Nkm0JtBL0kRGB+mWTa1uk2YpWVqtDy2n1fbIMFhPxnI+kjVJsKbQPEZjOfZbWx0GgxZJmrNeSWeh0dmcu3c2qXkOeVVHlsHx0TGtZptuX46z6ToUaUqpC2y3Xq0LgzxO0HLQhdTntVseRZZxdDjkwQfShUToJfWGh+341BrSVWc0nNJq1Xn86Cl5Ie/94MP3MWybPEtpNO8AMJ0ucWoGgpLVWjqd3H+wj20UlHmO3ZfrJUlShOFTmi7dnnRxWQyfUGtt4vt1hmdyXNIswXJbrBZTXEc645imjWk7DI/OSAu5Djr9NicvDjAdh3pdrqFW2yNLStbLBXkunVhmozPiKMGpeYSBXAc1V6PbMgnWCzxPujU9eLBHp9skCE2SSM5vo1lH03U2PJc4kH1rNGRMlmHluFVcVBwu6fVb+L6DZbsAPH/ynF6vI6OYdLkm/VYLjTlhlF6Mge1YoAnWQYZryzUJJtOsoN2ug6ZX4yKoNzziYEWWS2uhoijoD9pYps3hkRw/y61zNlrR8msYtqy3VXMp8wK/4XPn7l0AJtMpDX8HQ9dBl68QI4wQGuzf22a1kGvo6HCM7dRxXYeilGOaJTHD8ZD7d/oc6LK/OYJVuMa35mx35bxtb9ZI05QoCljF0mnnn/zhZ3j1GqZRQytlHf/kH/0j/s3f+Xdpdftc57orzfV3hBDicmH5/2txfK/jVQcxuL6Hn7uZvXpzFWV1HhdVlbq+H98USaWhUZYvn6sBZQFoL/f4y7v8K+9WjZfvgreOGVQoFG+LcrlRKBQKhUKhUCgUCoVCoVAoFAqF4q8e74zw5jrfRDgDrxfPvE1dl59zUzzT29V/U51XBTCaBkVRVrEkLw8/z+9/c7PLN4uUSnnsWl6Knypl7pQc14uWvX6M01Qe0udpjluzCZcrDh5/BUCr06XUIIxW6KWMDnr+6HNePHvB/r27NJoyqqbZ8gnjhGajQa3uVm2Brw+P2Nrssg6rjCGRY9VciiKn1OThexKmjIYTtndfRjm12g1M3eb3/+m/4Mc/+xgAy7FJw4inXx1wvxLy1Oo1lmFMkRcYpjxgT+IEv1FnuZzRaEihTJbnCApMQ6BX8Tq6BtPxgmbLw7TlV8TUEmzTozBLkkSKigzDJEtjKfiwZJtn0xmaEOzc2SFPZfTSYh6gWxZaGRJEUsBhWzqWYxDFObOZjEXqdU2idUAcw3r5CID9e3skUYzl2HiebF+RNckwsc0czxXVXJZs7vRJ05wokmO6vdOj0azz7PEzmk0pfOj2N3n44Qfouo12LjwQJplWYDs1slS2ryzAdD10K7sQYXjNBmmasLGpIXR5r+u4bDkuq/mcNJCirDTJKArBR598SBRJgcloNGdnfyAnv5Drt+Y6GKZNWSRYVR1CFKzXaxxTJ6siuJJcsLU7wHQ6nBweAxCuUxqdHnmh41eCltHwOX6jRp7BMpBxR2mWYRg6tutgVSKq6eiMMC7obbRotKTwxjJKgnXAbDLmeRWp1O00SfMSu+4xPJKxV2G45L3392m2mhTVNylYh7TbCWQ5rmtXazzHtnTmozleFfMVxyucmkkcp3gNr2rzEN9vkEQxRSbnzXFdQFAi8JtSYLJerrAdm6xYIAy5JrMSSBLKvCAKZVvWUYDn16j7DaKoivQantHrd2i1GqzWck36vk2WCYIwQVTimTRe4dhN4gTWkRRv9QZ9NF0jywJalVjNcSws0yRLA14cSeFXHET0Om0s20avvoNCGMRRRBSHGFUkVa3e4pNGl/XsgDiT5fIiIw2m/Os/7vLeZhXFNg9ZRDn391ss57LNv+3DP/6Df8jP/ubfwWoMZLnJCf/s9/4Bf+vf/4+wHDmm57F7198h18U3V3+/7TpvdR248Vm3EccJlmW+sehN+/N1fU/JDe+7S6+jV9t3VXypUCj+4lCiG8X3hYqZUigUCoVCoVAoFAqFQqFQKBSK75d3Unhz+cD0pn/9/zZ8m3/J/8vcI9sMV048X3G5qX7TLn/28hlCvLl/WqlRXip2PlaXx6aQyptK81O1r7pUUp6b0VwIc24bV8uSgoHS1BkfDnn0iy+o1+Xh+/B0xHA4ZDlfsrslnUmyNGV3b4tut8nJ2RCAht/ANAxqno9ACgtKodNo1kniFNuRQoV228cQMJrEHA0rF5d+g5prMDwZUlZCj57ZwTQNGp7L4fMTAGoPHeKsYGOzh2NbVet1+t0GGtrFuJZlRqfj02nVzrUf2K5NFGacnYzQmAMw2Ozi+RZxGDI8k9dqJgRBTHfQh2r8iqKkKODsZEQUSnHA3r19TKPk+PiUfq9fzRE4rgNCw3al+EMYFrPpiCyKiNcLAGYG9DYGxOsQw5ANTNOMMMwRRkrNlcKbF89nTBcxH320S1E1JlytMSyPJIW8al+/60KZsHv3DqUm51JYNrquUxagmdXXX2g4oho37aWQB2EghIluyHuLLMEwbXRNIIS8liYZ49GM+XRKtyvXRt2zCcOQJBXM5rJvzUYDU+houkFZObG4NYMsiXHqDlkuRTtJsCKLY5aLFbol29ff/RBEQRbOsI3KHcjv02jUCMOImlsJW8KQIouhTLEq5552t40wDfIczi7WpMf99/agLDiXoa3DnGdfHdPvdTj/vuq2RRomuFbJJz+8J+dosWYxGfHg4S45cu1ObBPdsBiNTrj/UDoBHR0c0e02MW2TpJTllsMlW1ttOh33wm1ld2+bJMlZTRekmXTksQwNr1knDhNGEymAMUTBYLPDvXv7aKJysily5rM1cVJycngIwMb2Dv2tHkWZka/k921ja4vjoyN29+/gSL0ZjmuxXoUEsxAh5Bh0ug3qdQfbtsgLuYiiYEWapJyejrErAdvXBy/Y3tvGNnTaDdlmZ9Dh5HTIfBHQH0hHnq+eDdneamJYBlo1VoUG6DpFUTDY2Adge3eL508amCsN35V9s3WTvNQZByZfHkgB1sfbBT+9F/Hn/+L3+eRHfx0Az29wdnTAP/uH/yN/42//B3KsLPtiDi+LGy843+9EtWdroF3bq6+75Vx+1vXnXXXVgcvvgJf3cgVdrxxvrr1yrgiFLl2/kPRU75lSuzALk9fe4tV4WYz0Td6lCoXi9SixjeL7RAluFAqFQqFQKBQKhUKhUCgUCoXi3eCdEd7cFAty0wHhZVHON3XFuek5b7r/28RVnTe5LF9GjdwkJLrpQPf1ldzepqI6KH+lfHn1Qnnp2tv2fXhwxMnBCfv37l64pCymM04OXrCzOSBJpRhiuYpoNnyGw8mF6MS2NXTb5c//9M/Y3dkAoNfv0u9vkKehtJcBdE2nwCQtIvZ3ZVyUZZucnUaE64TeRqsql7O9v00YZxyfyIicL794wmg84dNf/ZTFXAplsmyBZZpYpkF/IF1N0rzAdDyE0FjMJgCcHA/JU41uv4VhSgFHnhXUaja6yNjbkSICw7Apyhyhy7gmgHAdcnp4RLfTwKmijYIgQLMNHNu8EM94zRplmSJ0B1FFB8XhmjJNicOYdl/W4bkOqyghyxOsKvbK0EI0oSHO5w7Y3NzibDji8WdfsnvnrhxnxyRLYsIgotWqBD+6QLddDEp0XSou0mRNUYDQrUv6sJJSE5RlhmnKfmiVU1NR5C8XjGZQFAm6ZVysgyyUgpm9O/tURiyEQUSRZTT7Xdp9OZd5HJGlMZphkmeVeMa0mI7WmHrGejqu1otBzRWsCptYk042WQFFHHH41VOcWlM+rwzQpgW6IUgC+by9/W2anRZ5sqbSsLBcLLFti9V6Td2XbSnKgjwtiKMAUYmKFoslcZQym0a4TiUgavqkXs56OsG/K9dfLcsxjR5xvL5Y92dnU7b39vCajQvBSqNRJwxjPL9GFAfnA40w66wXc9JExk/VGk00TefwxQmbmzK6qtVs8uUvHtHb3ODZkyfVWltiu3UefPwBXuWqs1wsSXKgKJjP5Lrv9TtkSYZllJTVQg2igF63x3y2xDiPSSthuY7Ji5J2uxrnJMI0BXmaEFZCssPDIW6tTrfXoeHLNTTY7BFHcxy7hmnKRTQdjdBMi8VsQRxKB6fh6Rn9jkOZRwhTisbC5ZLTsxUdJ2Dn/vtyTWZyvdUdm+FMTly/V+OeZ3EyzfjJJ3I9e25BoxtzNP+KLz+XbX7/w09xOrt8/tnn7L7/hwC89yu/Ua3eVyMCNU1DOxfiFedRTdrVTfsGbtqjX732UnBzvh9LZ7NXHyt0Adol0eWb3gFX4qxub9ObuMn1R6FQfHuU6EbxfaJENwqFQqFQKBQKhUKhUCgUCoVC8e4gvu8GKBQKhUKhUCgUCoVCoVAoFAqFQnc9A5wAACAASURBVKFQKBQKhUKhUCgUfxl5ZxxvLnPbv+Q/v35TfMj1e65/9k3/Zf/blr+pLS9/Po+fKi6Ve13Uh/RpuPm6/F9JKaOOXmd2UL78uLgwcigRXLVeOI8okU285L5TlhR5xvDgawA++7PP8RpddE2QplVcVBLw/v1dlkGClkp3B9fzabUafPnkOaYjnUSc3KZXc/n0J7+Crstrhl4yPBuja4JazZWNMQqCMKTME3xfupogdAxTZ/fOJsuljNwp9RpxFDDot9GqNmdFShylJFFMGEunjo1uizhJsL0axbkLRQ5JnLBaLBlPZJxVo9GgMDKyJGB4NAUgyTX2dtrYrnfhnJIlAbbtkqUlxbmTyGKGECaLZUQUyzFIs5CDz4557+F7JJUbjGFZhEGMaYJeRWblRUaWQZKVPPqTzwD46JOH1Bs1TL+D48hxKYsE1zek004s610uQ9JCQ9N0bEf2zXJcysKhKVyCSDqx1Js9uVBEcT69CN1GA4QQFNVFw9DRhEGepYgqv6ZEgyKjLAqKKsfGMC00IRDCZb2QLi5aWTLoeUzna3xfupq4js3ZKCAbTqj70plkvQjptOuVk458XhDGGGZBGKxwLDkuwWpCnhbMI4vdfekyk67POD2Z4LU3mU3lOuj3fBbLFaYuODkdAbCztYllO8zXMfX6eeSYxmwyxTAM9MpdSWgGWZbg+7WL7+HW1gbNls/jL75CmNIhyUoyTEsHr0YSRXLe0pDZNMBAx6yiv46PxzxYzinKAre65rouum6QFzliJcfqq68OiMKIdruBW5dr3NQNTodDiiRhPpXrL4oCToczeoMNNjd6VS96HB+fkUUhZl1u27W6gxZmDE/OuHt3F4Bms8Uv/vwRhqlh29LdZr1O+OCDHXTTgCpy7OToiJrXIIky1qVcp+12k7zQiKOc0ypibXtvh/lkSrCc02rKvuk6lFlBHIZYtnxekhsM+g08F778Qu4bH350B6fuAQbDYxnz5TVsNjd9Th59SaTL9g02txiPZjhmyOlY7i91r8HXLxa8f98jqhx0dMPCdQx+7Qc1fu8PvqjW8w/ptbqI4j5f/PN/BsDG/of4rS6XuXAcuxzTx+3vDelU83pHmZv28dtiqc6dz17+XkJZVt+HS/ffUM/LGMOXDmrXLXS0215X2tVn3uQgp1Aovh3K7UbxfaLcbhQKhUKhUCgUCoVCoVAoFAqF4t3inRLeXBfLXD+8vH6oeVn0ctNnN8U73VTXTbxOyPO2z7gcPfKyfeLio8tRKK87AH1FYCS40rfr43HlUPZGQdANzbxUJk9SHv/ic6xKKPPxp58yHU0IVnNODo8ASJOQwcYmrEJ2d7YAqHku0WrFR84DXEfG4YRxRpRCw5ICFIA0jqHUWIUhli2vmabAdQx8r08USaGC07DZ3ByQpyG1gTxIF1rObDzDa9ZJiry61+Q3fuMnjEdjtjZkOUNoaEJQc3XSSjSxXoeMziaEUcz99+4D4DdcoigjjlNWoYw76g86uI02cbAGTYoDTMfi8edP2NobsKhEJ4KC3sBntYip16VQplZv0Om0WYcRSVINqi44Ph7S73c4OpQChLrnYVoO3UEHtybraDYcptMlXqPGyZFsy/sfPiCKVtg6CCHLbe12aAcuhmFSFHI9GaaBMGxsTcNN5biUGuhCpyhK9CpiSFgGmgZ5llHkslyea5RZgVYW5OfrqshA12VcVTUGaZpg2RZZnmKa8t4sWJPnOpZusJwtABgOx7SbTUbHQ4xK7LJaTmi1LDRcFnMplEnCOWenQ/bvbpBXg5XEOf3d9zHWGaaQ8zaZLPns8wN++rMWgy0pRJmMxni+D6Wg2xvIMbAFWRKzXizx/HY1LjZ2rcb4bIbflmIXTYApSqbTBZbT4Hyw8jSk022wXknxx4vxmL39DUzLpsyLas5ztjYaICAMZfuarSYvDsfs7O2yXsfVlBdMxhN6/S7rtYyVQst4cXCEpsFkLMUu23s9olCuJ9/3ANjZ3WJnd4MSgRNL4dLJixdsbLSxDEFRyrFfLSJ0kdNqlBiO3MpHZ0OGowk/+fGHCGSba25OXlpoZAhDzm8UZZh2ytHhiMPDAwB++9/5N1iNI1zXYf/OJgDrIEIXAt00L9bLaj4HTIJwhTDk+tu7u4koQrDaWNaZXBtZSaPlgwC3EmBZpiBYTCFZU+s3q3WVUyRLOj2L7b7cc0xLYNdsTFOwCmS9UZhiahG20PhgQ87R4ZN/yQ9++ltgmExO5Pp7/If/Jx/+2r+NVa8jxO2mbjdFFl6PPLx87fIe/U3EnOf3ncdPlWWJrosrYpzXcbVNcLM855a60S6qULFSCsUvjxLbKN4FlOhGoVAoFAqFQqFQKBQKhUKhUCjePd4Z4c1NIpvrB52XP7987SbRym2HjDc51LyO29xpylKKaMqyuHbtumvNdQeE8kIMI87b8oY23CQwuv7ZlfGpmqBdevitx7vF1eflacKLJ8+YnM3Y3JKCBq3MmU6XrKdnZJXbS8130C2bZkPg1u2L/j95/Jz9u/v4TXnQ3hQGCEiSlNODEwCyLKLX3yCOY4qq3Rkabs3jyedPsC3Zpq6mE4Yhhmni1aRAp8wT6r6DLnTaTSlUOD4dU3MddN3EdmQ52zaZzZbMpmvCUIo6fL9GzWsQJDPKynkmDFNsx8YydX7wyb1qFARnJyN0vaDmSQFHEkXUXBPPd8GQ9WbxCsPQ0U2bgyMpNnj4YBvDMPE9gyCUIgxXL9jc6EPJhSDJNk28mgFCYNsOIMVM/X6Hzz9/QhBLscHu/i5ZnqMV5YVoy7JtlqsQy7Jwa/JeXdcpygyh6RiV04kwbcqsoMhLDL0SysQxeRKh6xqaqL7+mgAKDNu+WCl5mpDnESU6eS77URYp2CYUGrol3U+E5ZEkGY5roBtSfLR/dw8hNOl6VH0/dNNltoiIVkMcU4orao7gwcNdNDLCQs5bnDjkmkueDnn2VIqP/M6Aj3/wEZPRgm5fNjlLctIkpdFwL8Quq3VOXkK738Ky5BjkeYppmDTaLbzKkef46IROu4npuBwdvZBDUJTcvy8dZtKubPN0bOE4Do6j84tffAVAq9XAylPQDRxbzuWv/OrHUMB8coYu5PiZtsXnn3/FD4RFo1qnPXQct8n4bEanEgENT0YkaUlJgVW5HOVlwdnpBMu0eP6VdI9pt30Gm33m8wQr0aqxirBMk8HmNl8+qgRxYcSv/Ws/JApXCEO2L80TRienDDY3KKvvb2/QJo4idnbatNtyXLI0odlqE8cx06kUsXj1OtRdCk0jTqTYxXFtNEos2+XsVDrjxLUQ27IIg5SHP3gIgKELnj59TllkDAbSvagwayTxgig3aFduV5aps7u/QxQ8olmXfRuPYj560MIwbOzKDWl0Osf2dL44kOsSYHT2giRe4zg11qbcc4QhCIOQk6MX7L7/oGqLXOvadQsYpADy8j6qne+d1zbN172TLnNbmaISCr5ObHPrJxf7vhRzaqX2Npod+b64/A4oSxDK5Uah+DYo0Y3i+0YJbhQKhUKhUCgUCoVCoVAoFAqF4t3lnRHe3MZN0R1v4w5zk1Dn+s9/kbx0QHjz82Wc06vX5cHu5QvATX299V7t1s/fRJbJQ/WT54cYpsPDjx5CKQ/po3VAsl7w5OnX/OinvwJAUWT82c8f86NPPyJaSkePUhPs7W3itX2ySnAxPTmm3e1wfDqh05AH/LNZyvHXB5yOZ3zSkqKEPIPVfIbn1+kOOgDSaUMrCaOE48NjAFzL5unj5/zsN35GoyXrCGPpPLK9PSCpnEnyPKdWs9GFS9mW4zI6G7O53afb8VispGAgM2w0kWMIsK06AGkaM58u2NwZoJVStJMXUGgammaia/JalAYI2giRY1ffpOloTlFqWJaBaTlV30rSrMQwBV5DOqws5ytaLZ8c0E1ZbjQc4/kLOh2PgS3HRdczHNdFGBZFcj7OGr1+H00X5Oe6L92qXH70iznNozVpOCGjRpnJOtBSDNMBCqjMQIq8gDIjWq7QtJdiHN0wyPMCqmfqQqNIMoQm0C6EDNL5xXY8DFFUt1os1jFPnxzw6a9+DIDn2bx4/oJ6XQpZ5L0aZVHw/MWEwZ4Ua3hmwmpxxuhshFZKMY5r21iWyWy6YDE/d8YJ0YuYIvUvHHnKUkaJtTpdhFmNQRBi2TolguWocmKJYtbLgCRJ2N2V4jLTNNAMjSzLWS+WVZtdVuuA2TRn0JdrUrrnTNnabuE15Vy+eH7Mer2iFCZ+s16Nac4HHz1kOJqRVGKXPC9oNByS0KC/KYU3Qpisg4g4CokqoVaaSJeZ1Spgo3J6ynLpICO0lCSRY99oNCiLgiTVL8Zg78Ed6l6NIIqwTHltOBxhCuhvdiirSfcbDdKs4O57G5yeyti1LJOCK8u0EJpss2XKeXJqTTQtrfpmkEYRk/GEjW3ZvmC9Ji8yojBhMpH3ng3PCMOYBw/3LtyuciDPIrT6NuLc/asomM5DBm2LutTOsE4SCmEh6m30qt7BhkualtzdhSiW934xzCmzjFargVnIudTTKYYIiabPePZz+T2/+9GPMU0pRLqR63vmW75vrt5yswD0/LphnL9utRu39beq4xu26ZX7Ne3bvB4Uir/SKMGNQqFQKBQKhUKhUCgUCoVCoVAoFIo3cXsOh0KhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCobiVd8rx5robzbdxp7nJCeBN8VLX77lc7nZngfMy58+WJgkvnW+u/nxBIQuWbzAsKMsSrdTQLrXnIsSqLC+cD8rrDjnnjeFVE4dz94XrrkBZlvL1l08AMAwHTZTkeUYeBwBMhkf4vsX+/X3yonLMaHZ4v94kTSI0W0bGGBa0+m3m0zknZ9JFo9f2ydKM/d0NplPpJBKGIf2NHh9++kPSNLrUwJxGq8t6vQbAqmmkwsCt6WRVkWgdsbGzQ1HmfPbzZwB88sP76CakeYGoXFfyDCbTJfV6Dbuyo+n1uoRRQs1x6FrS/WIyWaBhYgitilyCvIRWp4FpGqzm0mXm6PCQ7b0tnj/9mq1tGT/lWjZhEFGvO5SldKgJg4TVesX25gbB9BSAWqOB77vMpiviMJTj51ugFeiawXwpY31spw6U2K5Ps1mr5rwgz2I0wYW7jV33mE/nNBoeunEekQNFmaPlBbOzo4tlMJ9MOB1F3Lt3V86RbaMbBc2WJ2N3kPFdaZxiWi55LttX5CngAjplKl1m0jJH13NMt06RSXcWihLLMsmyEkMzL+q1TIOHD98nqOYyyxKKImU2T4kj6cTSbDjohsF7H37MOpad63k+q1VIGBWQyXE5OdEYnZ4x2OjT7UtHmWdPR+SWz3IV4jXktV6/R1mW5FlCUUWoaUJHFzrpcsbpsZwPjBqTxTF7O7tkVXzScj5H6BoNv029JvuhmQ4vDkdYlk2j5Vd9E9i2SRgkBIGMTkuigI1Bh+FwfBE1ZZk2Nc+g32kSRWG11uYsJyEb21tounSAOT48JgjWaEInWMu19of//DmuU6PZdDGruCjLNtANDcs2sKsoMde1mE9XmIZg747M4LItkywJqddrOFW59+7vomkltutdxK4JDTY3e1AkdHtyPS+Wa0oMkiwhmMvv6nI2Q5gmQhhYjnRNytKEeD1hHWT4iRxn36vx5NkQSsHOjmyLZQnCMKbdaWGZslyaFuhFgO1soFd7VxhG5GkKecFkUq2rEizDQhgN8lK6XR0OE+quTr9j8//8iWyfZm1Q9+pMJyOSuZzfdXrA//Rf/AFhYRGl1bra/n1+83f+Pbb27yHENb1pefEfiaZBWV7ZP297r9z0TrnscnP5/y/33VcqP3/iK8+6uc7bIxDf9C6Tv79dTJVC8Vcd5XTzrwZvG8/0rs+3iplSKBQKhUKhUCgUCoVCoVAoFIp3m3dKeHM9Hurbxmm87vnXD0pvi6S6icuClettq85qb3iGlMucXz6/Td5fCWQu3XL+c1mUoFXPO792eUwu6pefa+c/X+rn9f5ePwwugSxJODk4RFRCgNOTMc+/+orNfgvPkQfU89Ua0NEouXtvBwDdEEThmvl0hSbkYXmz3UMrS1zX5IP39wAI45wkSRFaTFHIQ/DBZo9Ot0ORp0ymUlyxXi147/33yNIUU8sBODqY0B/0KIuIllcd+rsmuoDVbITvV+IUYTAcTjA0nU5Pxv8I3YSioMhTxEUUkYZl6ZTkrBayXsuyKIqcJM2wDdm+YLkkiVOmkwW1KhZpa7NNre6xmKxIYinWqPkewSokXq8IAymuSHKTza0BnmvheTL6Ji9K4iDCrTu4dSlSytKUKMrwmhZmJQxKwoS80BiPlnieFFzkWUacxLS6PUQlcEJouL6PMG0o5NgXWUoSxkTRisODMQB37+9RmgmaltDqyGijIEioey5QXMQOHTw/4uD5Cz7++CHzhRR/7N3dpERD00q0Sqhg6Ta6aZEmK9JQirLi1QjDaREsI4Qhy7X6XYwCnj/5msloJPsbLykp2d1pIjS5Jg+PFuzfv0e90cJaDwFYLQOefjXiw4/uUFZCnuHxKVtbbRqtJsNjWa7b60NZYNsmo1MZJ1SzDeIoYh2kGJUgqVZ3Ma0az54cElWaDq9Rsr+/z3K6JCukEGWxWvHevV00LZfiOEArcpqNuhROteT4nZyMsO0ahgGWKcU4Wqlh2RYbWwNGpzLOyvN9ijik2WhyNpQitNFoTK/bpNV0wJBrtzvo46zrzMczbFuu8fv37+E4OllSgibXZN2vYZgCDYPFUvZ3eFpQFim6BUlUxcIFKzobW5giRzfld1oXK9y6T5mn2Jaco9ViRZYVMvbLkPU6lobrGORpRijkmrRdB00ziOOE9Uqu8cPjUwYtgaYZPHn0DICPP9qj6VlYloFlyfHrdBvomgAKsiq2zrQtVqsYb6NNvfpOT8cj4vkB9T2d4ZkstzmwQRgkSYKoYuvaTRNBgdDAtuXaaLXb+A0bXaSk6aqat5TtD3+NWWCRVXO5HJ/yP//u7/J3/97fY2NrF5CRbTe9Z8prwsXL++aVsrfEGt723rosAH1Z5vp75Abh5iV1ZVm9S7RblDPFpXfAeVTh5ZLX4wjfJABVKBSKvyz8ssKU2+5/FwQ5SnSjUCgUCoXiL4K3/bvm+t8e/+vRn6i/RxQKhUKhUCgUCoXiLXinhDeXue5S8yYRzptcbd6m3Nt8dvl3eYB6e5mX5a5c4OVh6/mB7kthjqiuFbc8S9OkW8FLv52XB6kvBTXngp6b3A64uLkocp589ogoSKjVpWuIVpYMug2SYAmOdMKo+w26/Q3KPGc0lMKHjc0ueQonJ1M+/OEDAEzLJoxCXL+DhnSyabouRamzWi6xbCkEiFYLouWE6Syit7UJgOvahKs18/mKPJeH745pMBmfcXR0zHotr3364w8xLYPJZMXmVq/qR4xl6NimYLWUh++L+ZIkyzk8OODefSkCKnWTdsNBaAbtgaw3z0sef/4YxzHwfSkE8H2fLCuwXYd19Ty/2UYYJTXfI0mkWMPTBbpukesmjboc+/F0iam7JGlCWUiBjmHWmK8CKEviymFle2eA0AR5lmBYclzStMC2DVpNgaiED3GaYDhNKZwozn1/BK5tkGUJeSzbZzk1JpM5XrPG/Qf3AZjOp9Rdk/pugxfPHwEwPB3zyQ8fEMcFSSbrbXW6hFGKXatTLqSTyHQWUPd9TFGQZykXC0cURLMx47lUsdTsGk8eH9JqNul029X8rljMVwy6Dhu9LQCCdQPDEBRJRM2X7kA7D+9gWjXi9Yjh8aGcD61Du9UiTwXHxyfVfLiYZoxh6+imFCTVanXKPMZteDQaLbkOyhLDNLHckqL6XghR8OTRc/70jz/jJ7/+EwDu3duWLitlzrgSBpm6hevaWKZOEklRUZHOieOctm1ydixdhFzDBlOj5uosKleYWr3OahnQHbSpO9vVFOmkcUJRwtaeFKu1ew2a7SardYAru4FFxmi9wHJqeA0prGq1G4TrNQ1fsFjLsT94ccYHH96lVq9jVGNgbPoIvcDSxcXa0HSDUtNZzqfSRQYIgxjLcRDCwXbkutIKi/kqwfHbTEZSqBWt13QHBn6jyXbdr+ZtTZwEOLUaXz16DsBkumJn+z77vfqFKEaY0N+wCcKEOJAuR57vMVvGGIaGJaSAjeSMbr9DYRsU1b1JElN3ZoRxRqct+1b3LEqrg9AFonIRqtcNyqIkSUpOp/Jx3ffu4rp1JsMxNWQ/5rGH1e/hFitOh3KOcuExWyz4H/7+f8l/8p/+ZwA0O93XusZoF/vzDULL8tzlTHtFkHmTwPO231/nUPNSoCMuXS9vFd1cbnP1SyUOUuoaheKb8i6ILRRv5rs4ALrp4Om7RB1yKRQKhUKh+Db8Mn+z3HTv9WvqbxSFQqFQKBQKhUKheJV3Rnhz3Sng/Pdv43pz02Hm65wI3tbp5ptGX5XXI0wuXdNe/iJdB85jpc4dC9AuYqVeFdBcupdLkSjFhTXOK4e/5yKhy9fGJyfMxjOEbpEX8oB6d3+D2WlBFDpYtjwEDxdrDp8/Z/fuHs1uVz5Pt9D1mPff372I1wmCAL/lEccp60qY0Wg5CB2KLKPuycP8hu8hdJ2WEV44mCThiv7WFkmSs6jELt2GTRinDAZ7WJX7znI6we17dDs+edXfxWxNreZgWRr/+P/6IzlOQufHP/0ELc9YraSQot5skGXyEHs5kvUKAZubbfJCXETzxFFEFMW0ui2mY3mYP5kXaBoMBm3KXDryREGEbpjEcYzvy765zQ4nh6f4vkVlusJweEoJJFnGeWhWFK7JM8HR8ZCdPSkCMi0D29LxGh41rxJh1HoILIpkhVYJLtA0smjFcDhmNpN9u3dvl8HWgHC1ZDL8GoA//aM/ZHezRQ6sAynCGJ9NaRhrTMdlMq5ir1pNdu7uIogYVEKoLMtYTscE65CzIyk6iZOM3bv7pHFMUM3RaZwSZSVFs8FsNpHP82yicEmZCZpNKegy9ZJgvUZzO/Q37lRjr5PFU9JoieHIeKKDJy/Y2Gzz9NFTvIZ0hZmMJnQHbcy8oFE5BgkNMAzKXKNA9iPXXHTDIAhXuLVKSCZK6p7D/r07UMp5Oz0dkqfg1iw2BlK8NZ8vmEyXbG1vUmvLOpJ1iK4voCgQlTVIvVFjPJpQs20a7UrwU5R0ul0M3SK7EMIl2DWPxXxK3ZNCI8uwsERCWBYXe5Hr17FmK1qdDs75Gl+m6IZBnASsprJv/V6XKM7xbAdXdo2iTNGB0WhCzZWiMWGYCKFjmA5RLO8NogQrjjFNmyJeVGt8zXJVopXTi+9vf6NHGKaMzw5wK5Gc1/SwTRuthF4lrNoYdHEsEFqIZso5mo1O+OrxEe+9v0uzcldCF3R6TUSZIjS57idff01pbYMwyDIpvHn8iz+n7xds9BwcW86RYRgUhkUejFjOpNAtilPCsKQUJrNMukm9199mPF2xXE5p6HKNN3d/Rgj88R/8U54+eSzHxXL5tV//LRaTIf/gv/mvAfjb/+F/TLPb57ow5cZ3UeUecyWA6lxDee218PaRhjcWu+FZxaUmihufdf3ahd7m3PmGy8LMS++Zb57mqFD8K48S3bzbfN+HPJfrV2tFoVAoFArFu8J3/XfJ5fq+77/PFAqFQqFQKBQKheJdQXzfDVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKP4y8s443lzndU43lyOhXlfum8ZUXb/vdfWe/37Tzy/L3+xqoGkamswpqS6c/++aywLSnUAIqY8qioKiqKJdxEvN1Hm58lIA1W1tAljNZU7LfDih0WwRJynL+RyAP/r9Z9y9u0PdczEc6WYRxAl5lHF6esb+vV0AdGGhCZ0oisiqeKL2oE8SJRiahluTDhymbbOYznBdE61ye9EoODo4oVZ3EVUETZKWLOZrgiBkdHImyyUeG3t7uK5BsJRuKi9Oppi2Q7PlkSSyb1Gh4bgueZbyk5/9EIC655GmGb2NHvWadIophWA0XHJ2cnIx9puDDpolODgcc2dPumgIchzL4PT4/2PvzX4kSRL0vp+Z+R13RN5ZWXefMz2nVrtckbuQdimChCASEqAXHdCTBP1RfCPAB0EiIELiAQogCS6Xq9nlXN0z011dd1VW3pFx+m2mB/PMyqrOqureGXK7p+wHTE2mp5vb4WbuMWNffN8B3b517zg5OGB7ZwdtBNrYsa+rAu1JPKmfRxYlbda21qnSU850bSsb60zHJ3Q6HYLGVWe5SJnN54xGPbLUOnW0khgvCDEIvLB1PieE0CDVuXOFNILaCwiiNmub1k1lOZszfXiHh5/fYT5vnGx6bUZb19DCY2R8AKL2LnmV8/CzJ8znNhJo9vMZNx5t4idtvv2D7zbnrSD8kL3JMZ/8yjrofPjBNU729hkO++xct/FJ+3tHrIQhnUGPJLZ9K7MJ66OAPE05evbYjpUJ2Hn/Q5bLGt04neh8zHx2RFa1OTqyTizLZcHpeIGuIW36MZ3OyPMla+trRJF1YknnKVEckE4mLGa27OraGspTTKcTgia+azKZs7d3wnA4YH3NujVNJ3OiOKTVSZDDoa03q6kqw2K25PDQRlyFfkJZ1UxPpqyuW3cbPwrZvLJJkZXs7z2z93dlgDGSPMsA69iS5yXT8T5r6yPqyjq2SBlQVwYpQQXNmq6h3+8TBB6qWdOdjkJ6gvv3j4mTxn2nyBlFfcYHBxhhz+v3OtRAq92iKu2YlkXNbDZhdW1A4lkXpjD0qbKCqiqQoV3TfqDYudrF1OX586fM5jy8/5j1tQHzuV3TUSzo9HpoXdPu2nV0cnhMujS0ukMOH9v7u7HeZWtnm3mmETN733qDNqZaQhCTN5FoR7v7+GvX6CaCJ4/s+O09/Bl//Y9CxtOClUETEaZ8qjpACU0Q2OeGrxR1WfLwUPLuB98HdXr0UwAAIABJREFUYG1jSJGlDL1nJG17j1o3v8uP/+KnRGaP//r37fgZXfKLez9i51t/yJNHTwD4h3//7/Pf/y//G+1e70Jk4IVn59lzWYjzZ/P50/RLvlNeHV8o3nSJCzyPixKvqPuL7zhb5uJRc8Fh7XmclsPhuIhzMPl68nX9FvVZu/5DzJuva58dDofD4XB8vfg6fH517jcOh8PhcDgcDofDYfnaCG/eJI65KLJ5XeTTxeu8/PMXI5u+eJ0vEyd1WTteLHdWr413alQxL/1VvLjreS7SeXWbLo0XOT/pi0W/ICjCUGQ5P/tz+z+Kb97+gMV8SZFlTI6tGOfZ7j5ra0NOa8No2AhHRkOiOKA2krqwIpHxdMwyXaAkrKxawYovBTX2P4cHVjyzFUY8fPSYK5tDvMBugj/eO+bk6JTNzVWGTXxNWZW02xF1rQkbcUUyGKICjyAKKVJ7rD/oUmsrYmg1kTtJEqPrAun5IDLAijWUp2i1QurabtzPTjO67ZDhh7fJFlZYEAQeB3tjWq2YPLdlu90WWb7k9GRCGJ4JVlZARZTFktCzyybs9tBaky8NUWjHRZocT8SoSKGNFUMoqfBWhhR5juc3fUs0nu/T68VIzx7TxiBlQNzpoBpBkg230VQa0omNx+oOVpEYTk9OeXj/AQCL46dsba7y3kcfcXRq27Kyvsrm5gpPHj9lbcNGSO28c5OyrBk82Wc+OQUgDiTPHtzlzqd3UU0kUNLpEiVDklaX737vfQB6iUccx4DED+wYXLm6RTqbkGUL/MCKgHSVUhpBUSt+9gsbU/V7f/AH+H5EHJWcPL0HwJ1PP6M12CZPJwSB39wPRdhqs7aeMG3EYH4gSJIeD+8+4ls/+BCA+WJBlhYIU3E6s/3d3A4JA4+bN7bZfWrnX5aWRFHM44dPWM6t+GPrygZJEhOFAbW2/V1ZaRMENhZtNLICjvlkSavVIc9TjHm+lhaTU7K0oNb2WBAKfC/g6PCYxdxGrCE1g36XvCjP76UXJIBGiOL8nld1zoP7z9jcHDJohEESje/5XNvZQjRz6HSWY4yh0+mhAiuAeXD/IQLBO+9dpyrt3D04sCIkrQXp0gp+5rMJ29sjKqM4OLD3fDadce1mTBD6VGXVzD+4cWOLRZqzsdWI0DzFYpkSeJKzp41UAf1hFwz0el0Ajo4WIDSr66vsHUya85Z0WjFFuqTMbCSan4zwwpDFLOWzj38KwHduVwSeIFvkVC07ryqjaa/2eHj/Y0Ru+7G6EnM4NuzOt/nogx3AitXqfMYgPOTJiW3LlVwQeJoffthmY2jnBlVOXY/5/P7PuP7ufwLAs8d3+cf/8B/w3/xP/zPR2cPkAmcxTOL8n5eOAfqS5zVc/h558f3z8t/OntcG0Qj2zIV/X/zN2GjCl+KwXmj7hYipLxy/EDloAHVpDxwOh+Ovnm/Kxs3f2vreb3TT65vSb4fD4XA4HH91fB0EN5fxz3Z/4j7LOBwOh8PhcDgcjreWr43w5k28ydnmdZuQrypz2bHXXevLOug8P+/swBev80IdLxa2ZXmNMEgITLMhL4RAviQiet3PT+59xmC0AoBSkrrWGK1pdBR8+OG7pMuUdrdPENoN/jD28TyJH0SgrUDCVzmtpM/hyZRf/PwzANqtLienJ3S7MVeuWKFHuZhRV4a793bZfWaFI9evrPOt733I3uNdxidWCNBpR4RJyErksbJqN8GjVptnT/agijDC1hu3EjrtgLpcops99SePd7l68zpVWXBybDf9V9dWCEMPTIXybT/yfEmazWnFIVHsN2MQcOXGNnle0OhzqGpo9Xt0c81ybjf9gzhgMh5TVSWyawVEDx8+YdBv0+50CEIrOqmrEkxOWQXUlXU/mYxPWN8ckuc506l1mRmtDGh1FH7SpkitWEMbDTJAKYXynm++63zM4e4R+42o4lvfGfHzn37M0/uPmE2tYOqHv/dDbtx+hzBpsXGeIKeRSjFc7Z8LW4TyCPyEKzdCJNa1RhjBysYWH/zwdyjm1rln/8kDnjy4w2DjGsOVTQDS+Sn9laRxZrF1KE/RG62y/+wxQthxEX6LOOwSEvGf/sEqAMP1FYypGR895ec/sfPl2d4Jf23zNrpW5/M+TVOCICTNKg6O7L2cnIz53vfXuPXBe+ztHdtxzlKu39qiKCRg18J0tmR9c5Xx0YSzR9vmVh8lDxkO32V/b9+2ZdSnLEs8JSgaQUheVmxcWcH3ArLUjnOUtPFQaFoIZfsrhKDdaZO0IUxtveliht9L6PY7CGXnWl3mdAZD6rKkzNPzvkVxRKeXIJVtX+0Z3v/oXTypqJsJrbVG6Zqk1SVLrUBstNrHGI0xNcqzUomt7S2KdEFVFARxp5m7JxT5gijaIF3YeofDHlIqfOXTaxycjFbM5yldqZmObX8FmjIv6HZa1M39eHDnLmlWsnNlnW4naM4TnB6f0OlEZEsr+ImikCDymJxOqHI7poGIWMzmxJ0+HrZvddCn12nz5N5DHn/2ZwD8tT9SBAFcv55wMrbrrSgEw7jL1sijWtp6Hz9OeXTS4/Z3f5/ecN2OaaHJTh4QiSXbN/7Q1lFVzKbHDOsFZ7KSMI5457rH/T/5Jcf79vl36/2P+NG//RO6/9f/yX/53/53ts1BCHxRpPkyl7mtven9cNn5LzvjwEXnsst47n7zpjpeLTYVb3yHORxvG1/XjYu3lW/iZs1vyv3mm9h3h8PhcDgc//H4JnxudeIbh8PhcDgcDofD8bbyjRHevI6XNxFftan4ZRxvXnW8+euF/36zuOesTnOhqDAX2neeDHVhE/eCs4ZQ0m7OmufXEsJ6oIgmlkZcstn7qvZPjg+ZHh6xdc06mDx7ssu9u4/49Je/4J1b1wG4srPBvYdPGK5vEDRqnKqsSZIWlanww6BpukCZitVRh5WB3cyXXkheLen3u4SJFc/MJnM8X7C1deU8fmpjcwNTl8Shz96eFeMMhz3quqbda+F5ViRSlymt2LcROZ4VdbQ7IUYb8lqjte3n3v4p6xsZ2mj8RpSgdYVSPnXtY2p73tpaG61rlPKtvQegwph0OaeoaoJGXDGbzgjDmDhJiGPb5uVywcnxEVIE+I1owg9jGz2lDdOpFSAcn8y4st0CEaAad5t218Zgeb7HYmFFNqfjBVWZsnmlJmjif8JkSI1GKYlu7qEuU0wN65ub9IdWxLL/+AGiSNnaXueDv/3HdqwMSN/H6JK6bjbzpcBTHkmrz94zK6ip6or1jTXG41O6XSvWUMqjPRyipKTMrAORikdMP/mMz+8+5r3QOolsb24hfY8oiVCeaMoqyqJmZXODKLJjJdUQqQKkULQ79n6k6YSjp7vcfXCCbAQ6K4MB+TKn3+8ihB3TxSLl0b3HrKz2WcysSKmsNF4UcHJ8SpFZddS169cxGqLYp92zDjVpVpJmFb/67DFXt62o6PQ0J271WS4zNq9YsUYY+wgJT58eskztfdvaXEGXOePpgulp44yzPaIoYbFYIJa2Le1WSOhXeGGPTs/eN51bF5EgDOk1Iq8s9RuXHIHn23EpKdC6os4101MrKqp1yerGBvPFnNNDG6fW7nXxfYOUHlLatZAuMhZZjjCGdnN/O70O7VZMZTQIO86jlVXSZZs8qxiM7Lr0g4giyxDCI27b9gVxzPHBhKODU1ZX7Two85SiyIiShGePbdxWkRbcvHWVJImYje1anS1LVtYGCF8y2rBjMJ9MCTyF1+nRbtv+YnKyHLojxeLYOh+trN7G8wTIimtrVoyjPIUQ2gp6po1b04akyAukqChrK3CKE0k4uMXW9lXmjahISqjmDwlXBtQ9KxDzopDxs12iOEOuWUGcpCZKfH7vu23++Z//hW2farO+dY0//Zf/ks0tOzd++Nf/Jka+GAOltUZKebnQ5g36lVcLNwVCyEtKfDlBzJvecZe9x85/N+Y8hOpVjj0Ox9vEN2Hz4m3ht2GD5tdxv/lt6L/D4XA4HI7/cHyTPreetdV9vnE4HA6Hw+FwOBxvE5ft/DkcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HI438FvhePPr8rIzwKvdcF48/6ukdbzgUCBoHAfMixe+cJ4xBi4xVDhzQjlzujH2ZIx5tdMNQJFmHD7dJ+qu8+ypda7YPzhm1G/xve+8y8qadXzoDnpsVDVhIBDK1n5wcMJiuWRlbZ2ycRwxpiIII37+k1+xtrYGQG/YZWNzDWpN2MRU6Z7g6ZM9FrM53b51U6kKw3R8wPHJjJu3tgAIk4R0WZJnJdMmvkYoQbfXYzad0G/inSSG2XRKpz+gyKw7xne++z6z2Zy41cYP7Xm9fp/l9JjlMiOMrPtOXhYMBl1qbZiMbcTVaC1iuSzwlGIysbE+GslisaCuC9qdjWa8S1ZWR0RhTF1Z15q93X26V7YxGqomVmr36SPW179Nu+1hmnupZUlVlnhhglLped9ULZBSEcS2fVrUSCEp8gxdpc39Viwzgy9yPvnxzwDwA8XOjat0+is83TsEoM4ybt3eIqs8itzeo36/g65KJqdjAv/MzWdBWeSsrgypGieR/f0DBsMhrVZMkFj3k9WdFoP1DZ48eMqzZ7aO7mgFowuCUCEbVyKBRPqGSHYRTfyZzifU5SnZ7BllZsfqzsOSn/zsPkEYs7nWRJ15AZ7vk7Ra7D+zDivtbpvJkznLZcbGtnUwGa2MGI8XGFNz9aqdp48f7HI0niKMOXcrEQgCP+DWrXc4PbbuMUVRoXXFletbFJkdU4MgTgKQcOP2dQDKNGX34S4IQ3+1cU7xfZ493aXTDSlL2zcpBcpvYURFldlYJPu7xgiJ0Xbsda2Rvo8XKEzjUKP8AJRiMRlT66Lpb4c8L+i0W9RNJNVsliKFoNRz6sJebz7PiGKfTjtkfGzjxYSoaXe61FVNtrAuPYdPnzDaXGcxnxK37NxN0yXHB8dsbm8isPO0zAs8pQni6Dy6SsmEIG5RFobjQ7s+/KiNkB51pTk+tK4/rX6HqiqYnRb0G7erstAUvkH5Na2WXYNKtEj6HkrWLGa2fYWqGIUCUxv80M6hxbKmFRp8z+Pd6/a5QaCoixQhIYytc1Q2Lmn1V4m7Map5vhw+ustaf4EMe8yyZv4tTkDk1CKg1HbetyKFQrFqfLYG1m1of+8xP/i9P0CR82/+yf8BwK1vfZ/+aAWMOn/4nj1XtdZfdL3hRb5szNTZdb9q5JN9N9k4KvHS2+FN17rsveYipxwOx9eFt/nb0G9z3x0Oh8PhcLyZb5LTzcu42CmHw+FwOBwOh8PxNvGNF96YS6KWXsXFjceXY6e+zLELtWJ3ZS+PnHq5KS+Lbmyxy0UyRjwX44gmo8qcC3SaaxkuaHZeLxKqKytO2XvwkDhK+OQXn9OK7EZ2J/FJkoDBSp9u24o/PF+zvTHg6HBCq2NFGHErQhvwouBc8FPmGqk8Rqsr5/FTZVERRhGVrlg0QoDpZM47772DF3hIYTfGx8enTCYL+v0W3YGNCSpyTavtMV+UhJFt/P7ePrqsGQw752Mo/YBWd0CZTfF922ajBXlRMlpRxE3EVVUWpHlF0umwmC3tYEiPsjIopTDCbvpXRUqZpnRWh5yeTgHodkLa3YS6hnxp+xG1WmgNSEF3NATgnSgADYtFSVVYgcl3vvNtJqdzkjiirGx/0wzCELrtmNCzZfN0SXtzi7i3ipTq/J5VRU5VpKgmskhXMD895uc/+fg8Mus//1t/yGw249nuLkFgY30GVzeZTucsF0tEU7ZI5wRRQJ4uabXtvbx2dQupPGanE54+OQbg+s1thNBgavKmHxiFFBVal1y7aoUoUmm8OMbo+jzqDKOhnFPrinr+zM65fIYuFxivTS6tKCurxrSTgDSvWd+ykVl1XVJqw+7TXeozgUQnIc9zOt2t83E5Ohoz7PcIwu55NFSn32WZFRhtOG4imlbX1zk4POTRvYfEjQAriGNWV9dB1xw0IqV8meP7gmK5ZD4+auZfQXcwoJUE5zFpy/mSVqeLFwgwVigThh10XSCEYj618yVIfMqypNttM2vmUFmXdPoJQnoY1QxVpTFlTbvXo93Om/MMBweHDIar9Ed2XNrdGulJ8qImX1ixi9Y13W4XJRSdvhUuRUlghSlhRN0Iv3qDAVEcUWRLjg/37Xzud1nbWkPXOaaJN/JDRaIlQegjvUbsojUSyXw+pdO3YxAEAcoUzCcL2l17Xr8XcnQ4o9NvnQuN6rogCtpMp3OSJpqsoiDwWlTze0SeFRUlwy5VXRBGbSZLG1PVSxZIKSlLjWjuuTI1QaQotOCTX502UzLGtAy6yAl8u37zYobfUZTaIwjtWpiczgn9kveuR/SHto5FCp6viOOSv/Y9KwD8J396j88/3+bK1hU+3/0lAP/6H/0D/s7/8L/ix63zR/TrYgmB589nXv0e+WLZV74CXstzsY658Or5Yszg6wRABnMeMSWNE9443m6+yZsYvy38Nm7EfNm4qd/GvjscDofD4fjN4j6vOhwOh8PhcDgcDsc3h6+F8Oayjc2v4gbwVb61f/FcY8wL9QghLnU1eFmEc+468Iqd0+fOOOc1XdjEBYwt/wU7mwtlrL7mkusbe5I5P//5OS/+bE/ef/gAgHSZsrlzle9//yP2nj4BYDkdY2rD42cn3Lp9FYBaC6SZMRi0ePTwIQD9bpduu0eZ5lR11VRQM5sdsrI2PHc6iVtt5pMJURSifLsJ3mmVKF+SL+Y0e+V0exG6XiOMBFnjWlNkBf1Rj3Q+YzK34grfl3i+suVTu3Hv6wpdG4QIqCrbFikV29urgEY1M1piGA6HlJVGSnu9VrdN4AnyokI3QoU0LUhaCYvZkiSywoKsKEm8ECU0YWAbfTpd8uj+I67duILvBU29HtI3tJVEl1agMx6PuX5zB98PYGnbHPViagxVnoO0DQy6I6JODykEaNuWxXLB6cmEJEkweSPMSBfsPrzPcpGfu7Ps7z5lfWubQT86nwd+AJWf0Ol1KUs7Lnc/f8Ro0GY22ccYK57pr2zz+Wf32bm2yq13rwDWzUcLj+n4lPGxFaf0+iOqqmJ9Y0RZ2vZ5QmGKBbqcUZaNe0w1x9SaWgCFdQyaLzRJ7yraG3Gwa91Z7t69z3A4ZLPfJe5aUUeZZQgjyExJ2ghMaq1Z31xj/9k+cWLnUBS32ds7JAgijk+sCOP9964S+prpdEZVWjHJ1tU1kk6HOIi58+ldAIarCcvlgvH4hGs37Bx/8ugpVVUTRRHNULFMNdP5IaO1EYm2CzOdT1HKR1cBUWTboiRURqC8iI7VjFFVmqwqEMLQ7ti5ofwEdElR5CDtMT+KMHWF8kLmMzsny6Jic3uDPC/PnxtBqEBKEJJgZEU2o3VFXVcsxhOCRuimmjH0wxg/sMeGm/Y+Lxb7pM2aGa2t4XmKqqiQNCogKfB7Q0xVnD90jPDIsowsTVk0a1AmJb/8+HNu3LpGr2/XwnQ6I24HxIEkbdZvt99GUxEnIcK3bfE8RTG9i6dKosQKoQqTI7wu7V5M1NkB4NGzX/DejYAn+0s6HXsvh4MSKcGPhqwM7Zw8nQmWxjpEpamdL6sd8MwC1Nq5ADD1Da3QEEcVWeO49OxAc+3mFiIIaZV2Dn14s+TB9BjhXyFZeReAn/7Zv+aDH/wO7/zg90HYsXr5PXGGMQakuPB+gJfFmGfP4cv4y7rNnL+H+GJ7LnXWufCTsOrNv5zqx+FwOH6DvO2ik7e9/w6Hw+FwON6ME904HA6Hw+FwOBwOxzeLr4Xw5jLRzcvHX/sN/i8p0nm1SOXVm5Cvdyx4UT3zPJLkRdcBIcRrXXDOZDTGvCzyuSROhFdt476EMZRlyaefPABg48pVZrMlEsnpxLpyFMuMsha0WiH3790DoNWKGQ17rK57bG3bGKi8BIKArMgRtRVhBFFIUWX04vg8qkYqj9HaGtPpCc8eW3HPaNhF1zWHBwdcu26jb6QfkS1OyDKNntgN9PWVPulsQRCG7AxHACznC3xPIoUV4VgU8/mcQb9LnttN//F4BmhW1kbWgQXIshQpJcqP6Hbb9r5US4zsUFYFym9cZgzE7ZiT4zl5bp1x4qSNrwRVkZKWdjO/OxiykaUYbcgy2+aqVOgqo9MLyBo3miCM0XWFluJcpCSVpKoEYadL2Ih7pFBoWaN1jSmtOMBUKUoK4ihkcmSjl37yF5/gByF/44/+Bp5v62j3uhRpSqgEBtvfWsNsnjEY9AgbN5p33rmOqRYIucnxkb3nw5VNbryzgx/45/NVCg+lfKIood227TO15uHDfXyZECrr9rIc76PzCVJGBF07N0Q0QHoRGg+hbVtUUeEHIY8fPOFw37rq3Lp1lTxNyfMS2biuKC/A1DWd3pBFasUVg35CHLeZTOcMetat5PBkwsNHT+gkCWHj1vTowSM++v63ONg/IG+itaIoJE8X5MWCdscKPXwFJ+MZZZaT2GnAe996D4nGmBpPNc4plSZbztBC0uo0AqwlFFXFytY6NGu61jVVWWCkjxc0kUqyxNQ189MZ3Z49phFIpfD94FwIZbTBoBBS0e6OOMNQ4fse8txFyAr1PCUwzRNaAMrzod/Bb8RgUvkI5aOkohlSdPM02byyhakaAZunwFT4cZe6WTNVXRIGYDyfurTn5WVJHCXIYYU0ts27jx6xsbVFrQOePrbOQl4YsDHoI1lSNmX7vSGeNNRaILStozy+w+T4Mb5XE3j2elX1CNl9D18G3PjgdwD42b/5nPWVgpVhwHRq51oeVQT1EqEkO1t2TBf3Sk6OD5DC0O83rjr+NcyzHyPMlDSzEVJxmHBwGvBwt2Rzw963tVFM4JdUdcjJxM7Tfktx+OlDuqs32L5+27Zl91P+7F/8I3be/y5Rq8Pz0b8cwUXR6Nm76PJzXxBfcnnE4VfhdQ5t59cSL79rXqrL6W8cbzFuI+OvjrdBdHKZ683b0G+Hw+FwOBy/GX6bPqu6uCmHw+FwOBwOh8PxtiDffIrD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+F4ma+F482vw+vcar4ML0dPvewccPl550cvbcfFc8WLBS536DlzQrgQSyLO/n2pe+YSy5vLxkAIybPHT+n2egB0Bl3y5ZL5bE6/bWNzMg8e7Z6wubnKtz76AICiqECXKC+i27GtePD4FJ3npMs50rduIBvbG2xtr1AVJWUTN5O0EmrjcXKSsbK+CkCcRAghiJM2p2MbfdPqKnprQ6LY52j/sOmpRNcVQinQjYNJCLPpgjhWBLF1P8mzksCHsspQntWNDQYdykpTZBV5YR0z4jhEiBKhBJPxvBmTglArWnFEnlmnjoPDMVc724xWB2htXTSWiyUIjQoiFlPb5rrIWVlfoygq8sw6ZvT6LQ4P53SIiQO7lMK4RRh5ZNmSpHFdUV5AEnSQSiFVE1+jC0ytkcYAdTN+baJYUGUpVeOq0+p2+OiH36Pb7z13NalLYr9DWVfNhADf82h3fZABhsZpxwe8DoOgRdJqXH/qmlIb4khhTN1MII2uUhA11fIpAFWWsrG2gqkypLT9EH4PvAGmluSldV3xhCTwFZ5SnNmzhNLj9GiM7weIpm+Hh1N2rmwQxTH9vp2TaVazmE7oj3pMpvYeZcscgYdQAYfHNqYqSTw+/OA2dZWTF3bspajx/BAvTLh607rHGKMpi4yj/WPC2M7xotL4vseVK5vows7TWhRUZYmnBIWx88VIhe8FlEVKXdqyo5UBRgTW7aYZfKEUGs3sZErVRHAl3S7tdguVF+gmpkr5HiiFPvsZqKuSujZIVeM1x3RdYuoSXdegz3LSFHWZIf0AU585mIDvCYIwRDf3TRuojGY6PqXXs3PXCFCeRxAqdOPmI7wAjMLo+iw9iciPENK675w57Si/wJQFmJJW2zoLvf/RuyymE4SAPLLnZXnBYnZMv9+hN7DzSikfdIosDzh+/CsATqcGkawTRQlM7tiK03+Hv9Em7KyyubVuj/3e3+Xh0/+Hd6+WJLEdg/kyQ6UlUbSCmdnIu43VgHuTlL2nh3T6Nq4siQfM5opATfA37DPC5CGt7pB264hObDt8eJqRL6bgDRgM7biMx5KrG5qT4wN6HTsn1668y+6DP+PZ/V9y/dvWkefsWXzuSMTFd4VpnttgxGX5gebSZ/7Lv381txv7Xnhe5jVlvxB19fIL5C8Xd+VwfJP5bfr28DeNt/mbzm9z3x0Oh8PhcHx53GdVh8PhcDgcDofD4fjm8rUU3lzcqHw5duqrbFC+SZTzqr+/LKIxxjT/ef25l15PCMTFCKk3tc28+PdL+ys4j6C6OE7mwobq4e4zdFWzdf2q/f3wkGGvy9FiRjabATBa6XF1x2fQ7zGf2pgWoXxa7RgtJLtPrSjGNzWd7oBFmhF5jWCgLJEiQSlBmtmoJF8L0sWEKPYpmtgmQY1UCm0kR4enAFS6ZuPKJidHp6RLW/bYnLK5uYqUkrq0Yhekh/J9lmmBEcV555NO14pjtD1WG0nSaVOlS8KwET7ImiBMQEjaHRsZI3xQysNTAWFg6x0NPbJliR/ULBdWjHO8d0Bv0GE46jFcGdg6ihzPs3E/praimOXsgFbssb93SpP+QzmbEyQREOFFVgzhR2EjvnoeQ1MZyd69T1ndWEWFVkSQLko8ahbjg/M8mvWtDcqyQpsKRSOkQFAbg+9HmCbOStcFSmqWp3ssZ/Omfad0eiM6KxvEiRVSFNmc0/ECnza+skKCWqfoMkOFHYRvRSxSGIRULPMC2QihwjjCVAWoDlHLChWqPKPKSpT/XGAiJWhKtNGsb9vrrW6s0m7FGCF58mgfgE8+/oT33r9Fp9+i3bRvOs14+vgRO9d38FWrub8Vo9UWi+mS0boVV+w+eMiDu/fYubaJbJQP03nBfJ6zc22H3SfPbPvKBf1Bj06vjZGNhMJA4Esx1VTOAAAgAElEQVTiVsJybufa6TRlOGgRqhjVCCykCkF5UOtz0YXWmiAOUFKTNeKtVtuDKidK2ugmNkwgEcKn1tW5kEwqQVkZ8iJHNQIsKRSaAs8POFPFmLoCGWKqEtmsNyEMlS5Bw3xh11a7DQKNHwQIv4mfwoD0EVrg+ReEIoDAIM+fJ4YyyzGmpi6aqDNTUeQVytPQRE0Fvg9JQF75rK5boUxdFgjPoLU+j2OSGExRsP/oEwpxxZZd2aauc1QU0Vu3z6HTR/8GtfwJtP+YVtfe360bt/l/P95hZXiPrZHtxy/uLtCtA7av3TxvcxzU6HSfpB1xZtaWVwad3Marf0xd2nVZlrBz6x3mx3fAO8vqKpBSgGoRt+xzI10ccWO14N/euUfrW98BYGP7Go+Pfsov/+Qfs3PzPQD8Vh9eiJRqRtCYlzQsX4wUfP4n8drfX8flUYriC9FVryzzQrO/XCyjw+Fw/KZ5G4Unb2OfHQ6Hw+Fw/NXz63wGccIfh8PhcDgcDofD4fjL87UU3rwstjnjy2wYvizYedW1L17zdcdeFOFcvMaLLgYX6/1COy/+rs92Sy+06VxIc0Hc0xgTXLaBKi7ZBBbiuTtOkWbsPd4jjCJOT/YAmM9OKCZj/u2f/Ijf+13r5NBbGRKlCxaLnDC2wodsuWQ4HBAlXdY2G2eIg2Mm05K6LJmWdtPa8yAMAxCSe59aNwvpSXxfcuPGDnt7VtzjBxXtVkgUC1ZX7Yb8/sGY5XxOXWtaLbv5LqWgKA3pYnbeliJdonyPuigoG6eOpNVGVzmmrlGedd/Ze3rAtq/wPJ9Hj3ab+yEYjPoYYwg8WzifF0RhTKlz9nePAFhbabP3eJ9OJ6bf7wPQHXTwAp+qzBHCuouYqiStJaHvE0d2XPJCgwxptQ1K2Tb7UYRAMp/PEIHt2yBqYaRGV8W5OGDv/icsZ0vk5jqziRVw3L1zj7ooWV/pcHRihVBr29t0ui10rTgz3CjKmtOTU3wliGPblnQ+5Xj/GY8+/4zjZ4/sVKtKwqjHO9/7Xa6/Z0UEXtBiY7OLrmb4UeNWInrUVU5da7CGMtRlSlmlhHGLurIijCLPkNIHCXk6buauj6hABiG6EZiU2QIpQ+KwQIqomZ8efhiilKSqrfPMd77/A46ODrjih/RX7NiHbUOtax4/2mPYuKncfPcW0/kSIXPryAT0Bj2KQlMbxdljLApq6jAgjj3e+fCanVcqpMgKyiIl6dg6dA1SQVUsrFMLsLoSoARoLakb8YzvJ5RFTl1mRN1RM+9DtNGYoqDTs9cTUoEnQBhUGDf1KnRVoKvifK0LI4iTkKosyPO0mfeSujIEoULKM5GIJJ3P8aQmbNpnEOhKI6Qgz+wYdDoeStUkSQKmuXFSYYzm6OiUdmLL+qG2VxA1SjXtk4Z0PiXwfbLFCQDt3gCMQZSHVEu7juanC54cJLRGVxj17fVqJLHv4cmKem7P02bJye5dDk8iNj+4BcC9O495dOf/Q/oJ/8Xf/nu23s4H5Lv/N0vzczrr37b3LWlz+9u/w49+dIc//qF9iG2thHSjKcKLEc06N/mCKj3hYPdz3v3w+7YtuoLOCnICs5PHto72B4zWtvn4s4QrK3a9JRI8kSP8DO3ZtTrPJOurEeIXJyzmUzsG7Yi1nQ/Zv/PveHbfOvdc+/bvYi555tp5ffFZb8UwFw+9+H54dbKjMRfeAbxGdPkluaysOX+NXHyn/HqOcQ7HNw23kfBXgxOgOBwOh8PhcLyZ39Rn1V/nOpd9bvt12+U+CzocDofD4XA4HI63ha+l8OYiF51fXhfX8WUccS7bOH3ZseZ1op0z7DmXHLd/fO4wcN6U54Kal4U6L9Z9ocxZppR4qd3GoC/rN1A2ooSDx09J2h3S+ZzewIoDhr0O/+qf/zN2treYTU+ba63h+SF+rOiPhvbYQJNXJVFZEId2egTba9TaMBol3L/3xB4LI4wAozW9gXU/2dvd59q1TTCGKzsbAFQalDEoXzGdWDGJRrCY5URxQLa07h0rKyMWy4zP7nzOqHGZ0ZXknfeuoNv+ebyTVUzUaC0wjYhpZ2eI7yuqumSjia+ZTqaMT05JohCVWAFMVaRktaYoaw4PjgHY3hqytrpCFApmcysWarXbxKHgdHxKY2rCaG1AIDR5OsMPrZgkjHtEnS7L2QzZbKrH7YS8SEnaLXp96waitcboHF3npGM7frPxMetXP8KIkLQRPmxtjlgsUsbjE8ZjKwTYuHKFqoKn9x9y7aaN76orQSiXHD36nKM9KyAaH+wzPT3i08/vEUorjirzitHGNZY6ZLixZcdldsz2tS18LyDPGpcjGYII0FVO3UQlaV0QBDF1VSP9JmrK1IBCCE1V2IHxQg+EjxTqfPJKGRAnmrpUBI1I6enjQ5JWi7X1LmFo59rusyMC3+BJQVaeub3ktNoJZTZn84qdQ3d+9ZDZ5IQPv/0BDx/cByBLC5BwsHvIUSNOuX77Cn4QMJ/MaIdWtJPnOdPTOXk6IwyCZgopirJEVwVlU2+epvSHHQI/IW+clIzRgMBTPrJxWCmWC+q6QnkC3bjCmLJGVzW+EajGZaYqS0xdIVGYc8GFpswKlsslcSMuK4ucqhSUWUHUsvNKSUUUSZQMqLQtGwYBptZgBK1WE6mkrfBrvlzQSmxZiaGuKzwhKJvJG/iSShs8LyCd27UfJxGtVoJSHr5v54bODihOPsakB6RF48jTvsHmtRVCr6LK7FxLjw84mJ2SL2cE0oqoWi0odA/V/xaHB/a8yf1/xhX/AYenNf/0f7fH/ujv/Y8Ug4+ojn/BItmxZXsRV65u8tM/v82vHvwcgNvXfXTeOGSZRhSYTXn3mmKy/4Ti9od2/MoSrbpUtUJpKzJcuf2fMTmRjNM+v3pk19GHNzyMqZF6SVrYdbnSD1FK852bip/99E8B+Oi7f51x0SFf+tz/6b8G4Mq7P0AG4avjod7wzvlyAhpzLogRvHj+m8p/6TouJGH9ZRzkHA6H46vgNlgcDofD4XA4vnlcJrL5W1vf+8riG/dZ0OFwOBwOh8PhcLyNvPor+A6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOBwOh+OVfO0db17+Rv6b3GhedrD5qnW9zj1A6y+647xY99k/5xe05YxBNjlBF4KreKF1ookAMc+dbC4YFLzQn8vbZzjZs44PQRAymUyZzTLqxijGo6Q3GBBELW7evg6AFJpaKuJIoZs4oTCKODmc0Y4D6sZtwwiBkjVGeKxtWteVVr9rg1GMod84uwwGbZJWTF1pqtq2taprDg6OSNMML4jOWxv2Ojx6uMfWtnU/CaIAoRQffus9gthGyxTpEhWGmDxjuZgDsH9wyPraCCEVZWojgcJugNaa5bJE+Y1TB5K1tSF5XjI5ts4ZrU6EpxRh0uLKji2rNZxOZqxujFjMrQtOsVgQbg1IF1OOTpbN6CpGox5Jd0jdOJ0IoC5LJqcpqllJ7V6Hbm+dul0hlR2/Op9Rzk84Os15+MDWoemxoRLG4yXDQdcWVj6jNcOsl7C2buvN85RsmbG6voqStm/z+Zj53h327vyIydS6mjzeS9ECDk9rVtrWhYRa4/s+q2srHOxbx5Eb775DsRhjVEHYsvFJQnqU+QJTlVSVjdaK4hbIgGo+RRtbhwwi6lIjqZAqbO6kwA8iynSM30RrGaHwggChNKK0bVnfWCHNcrK0psbWsbq6Quh5eFKwXNjopXv37rN1ZYWt69fIczt5+8Mei/mMH//kl4SBHYN333+Xsswx2hBFti2nR2N6ww7tToLQtuyzx7v4XsT65jqTaXMvdUagFElvgGnu5aO9fXrDPmWVoXx7PeEpPOlhtDqft3VdgPLx/OA8kqoqK4SoESKkyGwdGMDUSKUw+M04Q5bNOT2ZkuxYlxmqlCBIKMuCurBOO1lRUxmIE8miGZfSD4hbHvlyeb6OpAAjKjxPna8PpaxDD8JQlLZvQWXwAw+pPKIkbppXIVWAqTLKqY0mq+b3UaTMxQaFsONXj4/x5S6pUFTYemsxpHPtI9bjhMnBMzsnn/4rCmC4mvDZxz+ybZ7fY/16xJV1OFrsAzA9OWBt8yMm0zvkywPbX69Lu9fhb/5Xf4ef/Qt77ODggO0tjRTgxfaZI8wBK33Jw/tPyQs79kHQZpEV+NEObWPdbZbzY9KsYrB+E1NZN6korKjLAtQcKawb0nRRQ1Vw61qLH9/da+5vyrVr23xyfIv7H/85AO///j02rr/PZRhx0fDGfMEJ7cXYQn3h2CvioN7kXmMk1glNP8+O4nI3uLO6XkZcbKMxTn7reGtwMVP/8XDfcHY4HA6Hw+H47cJ9vnM4HA6Hw+FwOByON/O1Et58GVHNZUKc32RcxuuEPuI8poMvRD1dJri5eL0vRGZdTI86OxcrvnleuOlfI795cRP3xY3V8eEhi1O7ydwbbhAEEYMVSdBsoD+995j+YECpBaIRhEwXFUEQ0O+3z68jlQfGIPyQxXhhzzveY2N7k6qu6PWtSMQLInS1RCrJYGijprQUlMuU0+kcmk3m5XxBbzSi02uRtJpIqqe7oAuSOEQ1gqS6LlEC2u2IkxO7gb5/cEIQxvieIU5s3EwYxxTlksO9CXluN9+vhtcJg5o4iggiKw4olzVZVvLg7iNu3breDGjJfFEx8EvWmjir2XSKMSX7e0eMerZv7W5AGHkMN64gfBvH5CvB7uOHXL2+jRdZgYlSirwo2NpZx2silZQMsHesZPLs82asEk7HGb/4+V2K1F6v0oJHcUhhFB9+66Ydv0oDmlprqkY0cf/zx/SHq8RxhDFWAHL/3i7D3g6dmx3k1ApqDsvHRH7FrdkBVWbLttY32Ll5m9vv3aa3ZmN9ZsdPObz3I25/7w8xwgpM6gqkERg/JAobsZVRpPMpSiq80J5XZQs8zwd8VGCPaVNT1wVB3MHQxEWVNVlacO/uQ7xmU//atW2MrsmzJVHLCrVOjk/wpWH/2QFPnlrhw62bVxkM+xwcHvPpLz4F4PY71xkfT+ivtM/nS1VkHO7t44eKR6dWdPLuB++SzmeU2hD5dj6vr/ZYLmsWy5xO10Y0lbnE1DVZmlM0c+jKtSuga4QnUU10lRDSLkoBGCsWUp4EoTCmQvn28akRKOkDgqqw55VlQaudYIxuIrqAShNFbbZ3WnadAZoAIwRRq0OZN4IpDEkSog102nY+52nG7HhKXhkGw7g5NqMoIWlHCGXXh5EeVW2IoghiOwa11vimQgqPxcKKqKJWQjk/oJzeg3py3pas1MzGGZWw7fPDNcLVLYoKeu3k/HpRFJIuMrywWTODNfBiwqiNyqzI5r0rPr2eh6c0Stl6P/v0T+kM/i7x+vco9+z91e0dtI7o9AcUno0Xmy32ePxsSf/GKV5np2nLryi0oJfMGJ9YMd1g6FNWFZnu08GK2kSVEoQdtnZucOfHnwDwzmJBXWrK6Zz1Hdu3za0VTDlGE/DeDTt3x0eP2b76bdqjLdIj274nn/571q+9a5VTF7DPYMFLyVB/qWioV5Wx75rXXg6+INF8uY3Nz016IRfDrFzUlOMtwYlu/uPhNmUcDofD4XA4fjtwn+scDofD4XA4HA6H46vxtRLefBleFMKIL3XsTde5eOz1m6ZnfzNfEL5c2N58YQ/UGPPGtpyJcF52wOHMYedc8HNJvcaAgdl4Rm+w2pxfE4aGO58+gspu5m9trZDmOf3hKmXj1LH7ZJ/r17b45ce/Ymt7HYAgbtNpx+TLJcORFUjEkWBv7xDf91hrWdFJmc6I44RpumC5bMQGVcmDew9ZXV0hjqw4YHo6YXN7izBUCGXbPFwbIkXN6lr/3GFFeTHL+RQhNEkjYrl1fQdJhTE+VWmFPGESEZiETjtHN4KGp4922dlZQ8qKsmjcbdqKWnvcvn0ViXUSmc2XTGcZo9EGeWqPCekjpGH38RNWv3cbAOmFIBShX9EfWVeYk8NT+ivrCC9ASbtslB/QafeQno9pXFx0mVEXSzAa1bjCPLr3iPt397j/YJdez4oXikpyQ0iu7awzaYQjUatFFPtIzydt3Hy2tkb88mc/Z31jjcHIugP5QlPkGUU6o8qsaGK9NebB559CldMbbgNw84Nv853f/Rt01q6eu7PsfvZL1m98G7yIujoTeoAuc1SQUDfjLCWESQddFZi6EWUJn1oL4nYLXdnrldmCMGxDqJ7PU10TeB6B7+GfLxlB3EqQRcEnH//S9m1znXany+L0hE7b3vPRsM1sumBl0MO8e93Wked0uiFxmJA0Aiw/jtm5sc3R0YSda1ZEVRvDbJaDAB3a6/W6Xeb5lG6njZK2MUVR0e53SbMcVVpHmcALEJ5A+iFVM1aejKnrEk/46NLOl6osqcqcpNPG6DNx2RIpBX7Upm7WbFlU1FWFQKDrxiFJgq4LhAQhGselWgOSvMoYn1rB2XDYJV+cslyWBJGdL/PJnCLPyfMKrxHZdHoxgRJI6aGbdURt8D2P2mSowK7f8ckYYyI6XkXYsm4vQi/Jj35M0B5Rlfa8yeE+jx5MaK+9R6u72szTgtPJkjyd8/CBdfNJWhHbW6tIGbHIrKCmTg1xt8XxyYTjiRUA3ljxmSwKVnqSJLFj7x/e4eDZM/q9VWL/xwAoLyWKtljOJnTXrgKwOPgJ76woytk+weg9W2/SQpsFsZwxO7ZCrc2tbZJ4RDHexCsfA5DP7hMPf8jW9grHT62o7e6Tv+D9qz6mKKG2gkKvvUY+PqbKFgwiez/uf/4rtq5+m/WNDfYO7bjc//f/lFvf/X36G9c54/w5DKDPp/gbXdPgKzjdvCC6ueR6X1Bvii+8H1443f7h+ekv/eRwOBy/Lm5zxuFwOBwOh8PhcDgcDofD8dvOl/2Sn/v/yhyOt4+vjfDmy8RCvc7t5rKYjcvqeNWm51dpi73Ea5xxLi3zXCgjhHjBo+BFx5uXDl649qtitMZHxygpMY0jw3K+4LNf3uXB579gc+saAH4U0+oNyasC2Th6vP/huwhTs7U9om4yqU4nSxQ568M2snHLCaKA7mjI+OiUg327qT6dTLl+bYvx0ZS8ESXMJsc8ffyUwFN0GjHEcG2DIJAYA8f7Y6DZpzZw+GyX2+/b9tVljlKgpKQQqhkzgxfEHO4f4vn+hdH0CKMWnWbDW3gCrTW6gqK2G+h5oej2epS5Oe+bkZLtnW1mkzllI1SQStHtJBx4PieHMwDms5KyLBmuDJnPGjHEWo/AUyhPEjTiBakUAokwkqK0Zev5Q6rlKTIccXBgRR21FhweTVlf32DnqhU4lVrz2acPmCxSRiPrGrIWRoR+F9ntkDfOJGUxZzNs0+7GSGzftnc2OTjYIzv+DJnZmKD9+89oJavs3LzK1fe+Y8+7+Q5JJybLUk7H1g3k9ke/jxYxQsrzjXvPjygpMUbgBVboUeULhBLoukBSNcPu43seRb44T6fxlKSqS3xANvdNCkFdZVy/usn9e0+afpR0hgPq/5+9N2uy5EasND8Avt899oiMiFy5VbFYi6pUmunVZjHZzOv8gfl1895mYzM207JRt6RWd5VU+0ayimQukZGxx919BTAP8IhM5kImpaLEKuF7yQwPdzgcgDs8Ls49RyvCVpAkhGQ6W9LtjdiM2/PWhiTtoHXFYNhtt2Xs3d7j/GR8LeBYzGZsbK2zLiLi+GpsNExrTVVpWuMjLs7GGF0jjGa5bKOhdIOtC0SzJEvbHU0DNmIxn127NUVSYRvNweNDtnY227GWEIkGayytKRE//9n77O9vcHz0O95+xwk90liBabBSti5BUJUNF+MFvX5M1FoBySBAW4sQltHACT2saRACBqMuRTsO0gTStIs2AaYV/Fyez1Ah9Hs9ytLtJ7B0hyOkSmgq179JktDppghAmVYwNfmQMO1wcQnV7NCVdzFn9dafImVGXTtxyn/5y79gJZ1Tzo6pSye8yWuF7N7l+//uz9na3QBgWvZJOyPOT3KqpRO/CVNhrcQKxXTuGkvWFxw9/Dmjb/5bVOxEbcXkESLbIu1m3Nh1z4NPHkfMl5r5wQk317/j2sUajG6IZcXPf/5jAN7+5p8ACpGuUy/c2IiSY5ZVTtLtcfONNwH48V/+iJsbDdN5w8rQidVyuwYmQMmSnVX3PHh0mHN4+Al7+/c4GX4NgJPDv+KDv/sLvve//u/I4MoNSbzWnPUsnx0V+OL8ZLFXXmefFvp8Tvmv/L3b6ffqEOfxfNXxTjf/NPgPETwej8fj8Xj+uPDvdx6Px+PxeDxP8Z8xejye10V+/i4ej8fj8Xg8Ho/H4/F4PB6Px+PxeDwej8fj8Xg8Ho/neb4SjjdfxDngVe40L4ub+rzjrxwGnt//Zc467f/an53rzedV+7Ocd56W1p7vOm7qReecF8t56lpgjeHi6IjR+gamjbmRQlFWDaurA7a2nIuGCiIeP37CYj7n3lsuUilOIowxpFIRto4jH3/0MaNRn/G8oR8414u80AxXRuiq4q/+8r8BLnJnd2dEni+QgRtG3/yTb3P73j3SNGF86Zxxnhwds39rC90YwrbOp+Mxg36X1fURQehic2qtWc4Lhit9iulle15DGIXk84KtfeeOMT4/49GDY27e2mFlzTnFBIFzAVFBRNw4B5Pz8zH58Zj7Hz9ke9u5csxnU9IkoTfqo1q3lzxvqOuGN96+Qyd1dZFhiNZg65xBz7VLpECqiLjTRagrR54ArRtMs6C6/C0AxckPmJRDZCL54Q8+AmDQ72GMZTq+pNhydTk9OaFqKvZv7pNETv8mrOb89Iz1jRW299uIofEZRVlycnLJ+qZzEWqW9/nJf/5/qS4fUGlX55Wtt7nzznfY2LvLNHfuIqeXBbtZF9PMWBm49guzHkiJsVDOW2cSFWG0wZolunbOKUHcAdEQpdm1+47VC6yNwWoIW9eaICJKuhjT0LTORyqKEMLSFBVb2+68URRRFSWmnmNxEVe//tWHfO+771JXJRdn5+24shRFzdvvvkk3GwDw6OOPGQy6hGlM094Ug2GKNZYsDTk4eAzAdDKjLDRbNzY4O3NORRjJ3v4WwhgePXgCwP6dHaSUZN0+5fzUXZuIqSuDqSrSrmt7AdRNyWhtQNXGT3UHfWyt0I0mUG4M/at/+2cURUWc9YhTd6wCqrrC2Po6Ma7RNVVdEsbD65g0oy2hstRViW11kMu8odPpoo3h4sJdx3A4oqobsk7AdObuy96gz2yyQOoJrYkVnV4XgcXoBtOWV5YlnW5GU1ySnzinGCkbwt4upnrA47ZdTPYGgVZcHB3yo//yHwC4PXzMN24kSARx4vrcGM1//MGHTC+/Q6/vXImK2Zi4MyRJU9ZHLmbu/GLBzVsdBJazcd2OA5idH1BpS9C9C0DanBJICKOEja0tAN6nTxROCZOKoL3fqiBl0FkS7iZ8eHLsxsb9B9zYv0XZhFTWPQ96eoHNz8irNW7cdo43P/vBLnl1n92tGKNbJ6pa8/EDw1u7AXHq+uPdt1L+w1//kNFwA63ctZ3nXR79+r/y5vf/F0abLsYNXpw3PouXzTNu/rne46XHPLP3p3Z71jHtVdjP2OHz3Hc8nj8G/DdRvnz8N6E9Ho/H4/F4/vjw73gej8fj8Xg8T/GfMXo8ni/CV0J481k8Lzp5NuLj6v/Px368rpDn2eOfPe75czxfrvvn1ce87PyfVaenvxPPiG1ePO76/wJ0m3NzfHBEt7tCuWxIUrf6XhQlvSTgwVFFGLnF8jRNCWRDv9fj8sJFrXQ6GVVZMF9U3Oi7Revbt/cZX47RQmKsW/AuyyVVXhInGV//mhPtJElK2h1QVUcExi1al0XJ4nJCqCRr6+sADFdGlPkMjEULJ8zY2cyIwgBtk6eCIwFGG8plwaCN3EnTkoOHpy7C6LqdJdtbQ5bLgm6vFQJYizGWcjYlit22QAke3n/ExvqIJHGtOugO6fRSpBQ0pVt8H1/M6A76jFYGaO3q19QVYRgjooyqdNcWxD3myxlZP7iui6HG1kumj3+Eyj8AIIpS4vAGTy5idHt7raxvkXR6nJ+eodt4oiTNqE3AYrYkaQVEUdol6yiE0Kj2OgpiPnpwyN3djPnDvwHgB3/7N1ycTlnf3OPtd74HwO6b77G+exOJprNwkUDTiwmYgv7KDZqyjRiqKlQYgRBI6caLrg1h1EUIizGurWqdE4YBuqoIolYcVTbo/JIgyrC1GxuNbgBBlHUIIie4sLpBILDCELXHaltwdjilWC55500nuDjfGHN5eUFVmWuVwOp6n4vTC/76r37I3q4TYaRJxPn5GGuhqpwIaG40URQSB5b19TUAPvr4Afs3bpAlATpyY8g0hvF0SRInHDxyAp033rqFCAV1bWis208qxeHBKevrA4Rw7TKfzFkuZqysrZAv3Xl1UWCtQirF08FbEkhNFivKdr84iYjiCCsluo1oCgPF5sYQQUXlhhpYgUAShiF1u1EaS1XmaGOvhS1lXdMb9Dl7ckQcuzbF1ARSo7Uh6boxpIIYhMVagRJusI2GHbANTXGCUK6dk7X3mJ1+xOzkE0y87+6PtR2m0zl/9Rf/J9+9eQLAN99ICSN3nY29iiazxElAEGc07XNISYMMQowJOJu6e+bGKGA606yvCO7cdIK4Ihc8vFyC1cQdJ6xqzj5AKktZLjFtvF0thhTVjN5QY4wT7YTJGlVxRtqRrGSunSeXR9y59yZSSMraPZtofowsfkc4XENK11a33/kORw8OyCKNUK7OT5anbO3soIKH9PtuP6U0e6s5k/Ept2+72Ku/O1xncvRbHn/4E0abO+4crVjyRSEoCPnZcYavErs4MeeL88RLxaHwaWWN24D4DBM78ZIp6IvGZXk8fyj4P4i/fPyCjMfj8Xg8Hs8fH/4dz+PxeDwej+cp/jNGj8fzRflKC29eJop5dtuzvNxN4EXRzC3Gs1wAACAASURBVKvOc1WGtfYFscunBTe89Hefx/PX8bJtFvt0cdQ+633z3HXRiiqABx8dsL7eJ0kTmsotWs/OT+ikAcOVNcLEOXAYYVksNEEUsr3pXFcaXWMNDPodyuUcgLOzCVJJumlMVTghwHA0Qjcl1mh0u9i7trXO5eUlSZYwGrlF/3w+J+t1ubiYsJ05EYZSgEgolgXHR87VZG9vnfEkR+vmWhi0srGC6USEWYJo20MisLbm+OyctS3nnLK2tsZ8MWcxX2KFWyx37h4CrQV52Vy31Ztv7pN2OljjRCKX4zGm1tS6Qht3bFUZokCCMTSt8KEua06OzxmNhmR9J8wIY8V6dwNtoS6ciCUKJdXlL4jDChndduXpgHLRI41gOHTCAq1rNrY2yBc5vYFrlyiWLJYnjC/PkNLVL4wi1HAFq0t06ZxOeplku7/kZ//pP/Lw40/cdSzgvW//G3bufA2ROhecjf3bzCZzqnxG07rWjEZDgqR/NdrceZMMKwR1UTmRBiADiUVgG02ruyEMYiwQRJIid8IRKQVhZwQqQF6Vpzo0uqEpKoKwFe1UC6yVBGEIjetLXdUM+ilKhtdWHXGU0ssyzi8nzFoXF+Y53f6Qs5+8z8XJGQCb66ts765TVJb1ddcfVV2TLw2DrRXSbgeA//F/+NecXswZrvQ5PjxyY7yumY9nxEnCn/1rJ1LSWCaXC4rc8LB1e1lbG2AtJEmGaG/CrJMQKEWW9QmUayurNZYKGaXXD4SmgSjtEGcZTaWv27spJqgwuO5fGUSYpkFXDUk77vNFQaUlMglp2rZaFkvsQiNliAhk2x8RuqoQgSRvx9+yrNjcXGexWGKuRBhSgLEUeU4QOQGRsBrqgmp+Rnfr2wAEUcb86C/Iq4jd299w16YkP/ib/4v3dp7w3tvuuRGGgK0wSKLITRe6tty6dYvNrU2CVmRiUok2AabJGaRu20ovotOPQBqulEZlKShrRVVZFjMnqFH5BdXkjDDuE4Xuenv9NQJxgK40TeHGhg17LBeaIK7ZGrn9/u4nf887732XrNOhLrZdf1wmJOoCHVvK3J0362/y0wO4d0PR77h2TrsL8mCPOpeowD03jLbcuyn4aHzB6sp7AHT7G1TVI07u/wL93/3P1335gsiltaGx9tk55bMc1J4i23Z8fs56HUcaISQW49xzXjJpXJfx7DzjnW48Hs8/EL8Y4/F4PB6Px/Pl8Oc73/pnW9zx73gej8fj8Xg8n8aLbjwezz+Er7Tw5vMioF617VXHvkok8zJRzGeV9azgRkr56mOf2fSpMixXq7Pt757u+/kCIzDGUJZuQfnNt9/A2prp+RkPf+fijo4en5BmCZvbO9fOOOUyZ2//BlJamisHjk5M2kmoa8186oQ3k+mcu2/eQVpDmTsRgTUgZUinE3D73q67bmPI5zmmronCqwX5irTboagrmqZ1qZCWxXyBbhrK0m3TBIhA0UkVYSvWQDekSQAYRNumIojRjabbGxG3i/5lMWU5WzIc9Wla95OigaOjI6bjMXfv3QIgCkPSLMYazZPDVlyxtU3TaM4uLtne2QRgc3eNpm6o8hzdOvyEcchgFDBcXyfu9K86BmNqhLGY2rVVmZ8hZEC2/V3KyQEAy7Hib/76x8RJzK17zoEjVQZpDQ/v3+fk2IlJ0izm5p2bbG2vknWHAHQHXawBa8S1WIPiMao+5NbX/4TeztsABPEKb7x1jyhLMa07i0AjKQhFQdp14p6kN0IqgbHiWoRhTIMRwolt2rijpqnQbRskPSdsKasSYTVxp/+0P4RAqpjGNBA4B5NQSUy+pNYa0XV1tiiEABkmyDZWKrARZaWJYkEYu7okxhKEgq1sk8Vv7rflRXz020dUeUPVOp0Mhz3G4yl5UXNz37ngHD8+Ym1nh85whGnHuBGWxWRKEkDTuG2rqz32b+5DoFCtm0qjLToIOD05oNOKdoIoZtAJiZIA096MF2eXpGmHpqqur4MwxFhFVTZo7dovzmLqusE2JYhWZCNDgigBoajr1iGpyQlkTJxkWMx1m55fTOj1MgSuPKUCrBVYIQhUGz81n7OYjjFSXY+NjY0VqqohSRPCNq7MtMK8LEsRQZs/hSA/e0gy3CUb7gEwP/kV48sLOut/hghdebWG8fEH/Pt/lVJWrv2SKGQylyyKmhub7hxFZXl0WnGv3yFoXXXycY0NU6TU5FcuUaFBCINEIpS7fzuZYWejSxQFpH3X9qa+QUWAUDGLmROchWmGtQ3jqSFYOJFhLEJKHTK9LNndcsKl9w8nXJycktzssHAmViRiHVl9iGhysu4KADs7m9y5fZcnJ++T7gVtWzWYIOBsokgDV2ddN2wOI37z6BEnJ4euP8KU+wcB/d/+hPmFu3/76zvwnKjGXrvOiOsIqdedn67LeOnW16AVXn3KBOcZEeezv3tdQarH84eK/6P4y8MvyHg8Ho/H4/H88eHf8Twej8fj8Xg8Ho/n98Orcyk8Ho/H4/F4PB6Px+PxeDwej8fj8Xg8Ho/H4/F4PB7PK/lKOd687Nv3V9/O/6LRGJ/lcPPs+Z4t93WOeX7fz97fuR9Y8fJru44j4Ytd2+Xx2bWTTRAK5rMZBw+O+fh3HwGwvbdPknWZ5wVCOGeIKNYMRhlFXnJ87Bwk7r1zh2q5pCgKjHHlrawOoCkQUYes53RZ8+mCIJSoIMS2Lh9Hx2PiWCE7GZ989BiAt965h7WGtdVVpHKOHlpbyqpmbWOTqD3vcrYgigPCqMdlG5nV6YSEYYBSBtk66BRlxfr2DaazKbp1ZzFG0h/1WcxnTMbO4iKOQ27sbLG+vkrTuP0m0wlRvI1SkpUV53pRLRY0uiKKQnTp4nqCIEA3NbUMQLr+OD295Nabd4jS9Dk3JItpJtTjj902vaB/4z2askAELvJpni/4xnfeQ5oabVx5ZQN5XbGzdxPtmoVuL2G5qGkaRdZ3rjqX4znbW12MFTS6HS9Bwvr+NzDJNjw6AeDWrT1kFGKtxmrnfKSXp8QhBP09gsg53qAtVZFj1VX8EWAbgjDBaE1TtRE+QKM1YWgxpq1gUwMGYQ1x6pxJmqqmafu/WrpjRayIkoSmMWjtxpCKM4QxKBVRFnl7DoESAqtChHQxX0IaoihiOZ8SpXFbZ40RllpX3NzbAeDOvRvc/+QQISMePngAwGh1nUEn4uzJEW2XE0aSKFZMZwvuf/yw7bebFIVgY2f12vloc2ubTjfDWI1unGvS2dGU3xwf8857X2d710UW6arkfJoTbQ+xrbNQFCuUkiAs1dI5R02WOUdHZ9zY2+LizDmiSGnZ3FrDCsXBYxd71UlC0lSjgg607jYiShiOAqxpAOc8IzBM5zO2drcJArctSWPyvCIMouvIu7qqOHpyyerG6NqVaD5esLqxilTBdX8YUzM9P2Z1/y1nXwWU00O0DbFBB9m673zwiw9YSedI1WO6dP3W6SoGI0nPqHYvOBtrDk+hzBdEmaufNpoo6qD1JcOuaPsjQEqJFRZonXHyhgf3D1j/WkGcOHelnIooNCRpwnQ8A+D4+Ixe17C5aolVGx8X9IgjSyBBtffqIDbUdU2+zMkyN4aW0yVhfYnNLylx91a5zJkXIes9w3jSOikNJIN+jKg2SJr2WRII5rmgFy6ZjS8AWFvfoprfZXr+Sx788m8BePff/2/XMVJXoYBP5xL7qVjCl81dL49CFDw/FTwbg/g8L527PmcqudrPR015PJ4viv8mtMfj8Xg8Hs+Xz9U71z+Fi6N/v/N4PB6Px+N5Ee+m7fF4/jF8pYQ3z/P8wuQXWSx8VhTzrHjnWQHMyyKkXrb92d+97s/X5wOnbHi2SPFpsc1VBIhtY2Ker8NTgQ7UdcPF+RmD0Ub7W810tmBjZ5Wd/X8DQBinTC8vWVkbUbYL6ABlUdFYS3/oFqOLRY7VNYGCKOkCEGUx1sDs8pKycuKUX/3qA979xtuMZEoQONHE5o0tyvkcFUasba4DUNeaxWLBYj5jZ9dFOYVhwGh1AFjeftPF3CzmC8qyIAoF3cwJGoqy4fx8SZJGZN3MXa/VTC9nJGmAbIfq2dkx2ze2GI0G9NpYpOWyZJnnrK6tYGonpOgPMoJAY3VDkrg6F8IQkBFnkqzjztFojTENVdnQac+7sb1JGCWAxZhW1WGWNMsZujwn6rRt1bmDMbCYzclrt+3RoyO6/R537+3yi5++D8DD+4cMBiMGKwN0U7YdHBAkMR/fP2Cw6qKm1laHGKPdOJBORBAmq4i0R1Pn3LztYr6sDHn86JAkmBNbJw5QUY94eJumMQjaPjdQFAuyzgDTxjY1TY2uLUEQIttxVRQT4mwITUndCmXCJMMaTT6fokLXfkGYopuGIIzQumjbviDrhC72q42f0s0cXWvSjiZQrn9rW5B2EsIgoa7dObIkpG4M1khu3HDjZbEo2NpZpdvr8tMfuRecd79xk+5wRD6fUxSuzt2exliBtoLLyzEAt25vU5aGtJvy4KGLCbr7xht0MokuC1ZGrp3RDSjB9vbmdTTUr3/xa9Y3N4nCmHLp+mg6zknSlPlszoOHTvSUZQnD0SoXZ6fEseujTjcjQJEvcqZT1y5lsWBr+wZg2N1x90cSR8zmMxCK+cyJdupyiZSCxWx+He+UJjFKKXSjsa0p2fhszHDUBWuYTmftebuEkaJYLDG1E2DVTcNgpUsYhgjlri0IAvrr+6BL6tLFpM3PH5Gu3KYREUfHrv3e/9l/5Xu3JXmx5NaOuxcsGpRENJJWR0aUZPzpf/+nRNmAeu5EaPVyTjcKEQgWC9cGk5lldS1CmOZa0JUliv6gS6/Xub5eXS5QTU6VT4jayKdhuiQvatIkwbZxVrqu6aYKayHP2/FcW8p84YQ4bbRWXYWYukaZhrJ25aXdLmHa5fGTJe/cdsI0pTRYw2SZkCauraq6oqktW2uGv//oAzf+vv2n9Nf2mDz6HQ9/+f8B8Ob3/yeS7hBrn5rGCdpntVPkPLP187k+7NmNnyMEfX4uE0K8VlaV5Ol+X1T06fF8lfF/FH95+EUZj8fj8Xg8nn9a/nznW1/a+61/t/N4PB6Px+N5Ef/Zosfj+X3wlRTevFR08jmim8875vlv+n+Wu87r1O/q+OfL+ZS4x4LlJYIha7HPLng+L8x5Rf2MMUwuLomClI8//BCAOAzRyymq0+M3nxwAcHNvi7pp2Ag2aAK3CG6sJUwz8vEFs2nrdGJL6qrhyeNTVlrxh5KGG7duEiYxs5lbpN/Z2abXS1kuG+LkqqKKT+4fMloZsN0KCybjc6JQsb21jhJXC9ICpUJml+cI6Ra3wzAglBn5sqRoXHlZmhFGMaaxHB+461hdX2Nnd4MirzHtAvfaxjpSSfJlgW1a945ljgoUgRK0mgmiNMTUOXVlCVvhiApSmrpyTjStY4bQNVmvT3cQEsRObKCb2vWZMejGtYGwNbaaoKIe6cgJiHS5ZHl5wLKQ/O53zmEloObh/QMW8wWjkXPa0dqynBWYumFjywlMzi7GJEnI+tqQpnJCFNNkTCYTev0+Qdt8IumhggBVLrHG9eV88pD8+Nd0NldIVm+7HcMeWiukVFS1EyUEIkSpiLquEa3TSSgjiiInUAHauv5QYRdLQJhtcOVrUhdLmqpBSq7FVtYadF2jwvjaoSaKAow1EKSUpatfKCRNXdAEFoMTQ4RxCE1DVRcI6R47ZVVRVZpaa5pWSBGGijfevEWjBYP+AIDfffSEhw8fMBnPeeutewB867vv8uGvfsNgdY3jIzdebt3do99NSLKUd95x+62uDUmykChMCUTr2WI0FxeXlPmSUeuGdO/NN/i7H/6Y2XLB+pobz/lyyWi1x3xyjmzv4fksp5PmdHp9lrkTu4i8ZrTWIwwj9vY323aJWC4XnJ1e0rTuVDu728xmJYEKOfj4EQCzZU0QCLpZh0eHxwDs7W4xGqZUZcFq34nLJirm8OCcwbDPYMW1S1HUxFGCEIaqctc2GPSxRmKMRbSuOlYKwt4qtrhEt84u1XJJJW6SRTFPWiFPUB+wvxkwHAaYVplhhUJrRSAk44m7jl/9rub2nw5BWy5PXdsLmVHmBZenx/RSd2wagRQCg8C2935jDLmOqWpLL2ifxaFiOqvpBeb6WdmUOYN+QCgNSdIKuoyiFmCNQQVuDCnVMJvNSboDZq2YKe2vY89hOpmiVl15y7zijbfu8mDy3+g5jRzLRcNgE1S2iVBOqBXFGhlKtqqS4LdO1GbqiqpuWL35bWbHPwHg6JP3ufn17/Pso/36mf2a88inhTPwKo3N685LryNOtdaC/eIOch7PVx3/h/GXg1+U8Xg8Ho/H4/nn4/ftfuPf7Twej8fj8Xhejv9s0ePx/L74SgpvrhYQX/Vt/88Sz7zqmNeNkHoVrj6mLetpHZ8X/LwgxHlOVCNse7x4GgsiLFhjX+k90PrmMD47Yzmd0e312GjcAv8vf/IzqBbs3rtDb+AW6WUg2d/bZz5fEEVu0Xo6mVLrGcYINjec2GAyW7C2uUaUpHQzFyd0fHyCLpfM5hOizK1Q7+xuYI2hEk7AA9BUC27d2aFpDBdnzjHj8YNDvvHtt51LTCvqMHWOEYqmgbJ0i/7nlxPu3rtFFMZEmRMvNHVDUxScnV1y6/a+uw6hQCnS1PDgwX0AVtfWmE4nWKmIW0eP04spgbLUGrI2+kaJEknIfDpntOYcLurGoOKIAEtTXsXwKMAQ9VOixIlJrAkxtqbRECp3izTFlCAbkA5vYtrYq+nFCQ8/vuDJyYKzExcxNL6csL27x9HhMUnqzrt3a5/jxyecnp7z7ne/CcCDB49QUnLv7h3u33cijDTtgGkAi2mdTkw9wxSNE2sZJyxQ1KTDdaLBbZK+i0UqlxO00aggxFSuj2rRUFUuxqdp3PU6PZFFawttPJGSIYGKaXSNEu5Y0xQIGRKnCTJy7dKUJWEcUNc5QSueCeIYYUFoS9g6wJTLBaHKQIaoK/2VFVhjAINpI5XCJGY+nzCdLVhbc8KvotAIEZEmgjt3t9rxLzg5OeGt798iTdw4jeOQxjb87Ec/5a137rbjBWZVzWx+xhtv3AKgKnKWyzlrawIRXj3uLGmSEK4FmNbGxUrL7dt7bGys8uEHTkS1tdFB2oploVjbXHP9dv8RYRxjJTSVG7udTsJgNEAIQdC6KzVFhSVgOp0x7Ls6f/LRJ9y8dYPp5Zi8cEKjNEvBWuqmot9x42V1Y8BoZYXJZHYdndbpp5T5gsvLCy4u3JNidX2N0ahHWdfQioqCKCQvSkKdoKQ7Ns4iQGEBUzrR3XyRo4YpF+cTHnzknJlubdYsC8HACOSVKEakBFJSLpeIdmxMy4yiMFycnJIpJ9opRMh8XrC+ucJs6q5DyBotO1gzYz5vI+DmkvWtTYaj7rX7jqlKBlsD0mEPO7uKJlNsrASkqYTWNUnQUNSaYlmh1FVcmaAqGqytiKN2sIW4+1w2xKl7/iEFy2kHVMT9gzZq704flCJJYsqFGxthrEBAEEZ0YtdWQeActN7/9UdsWHds+hf/B+t7b9AZrHH1IL92OHsGNz+8eu55UQDz7L6vnhGubdKujnrN2MTraKxn5h6Px+N5GX5hxuPxeDwej+efn3/sIpB/p/N4PB6Px+N5OV5s4/F4vgzk5+/i8Xg8Ho/H4/F4PB6Px+PxeDwej8fj8Xg8Ho/H4/F4nucr5Xjz/Lf/XxaH8cpv8X9W5NNnnO91nHCexkq9WLdPx4V8ujxrWxcba5/6GHxGnMjLyhJCUJfOWePo4WNWNjc5PjqDNr7G1jmdwYimsbz95i0A6qpiNp4QxTFp17lPhFHAYjqnMxzQVC6PKU0ypLH0OjFpxzlIrNkBQSDZ3t1HBM4tYjkZU+QLlIqpcudIsSwatLE0ZUmauYim3Vu7OH8SQ906rFxcTFlbW+Hx4Tm9gXPQuf3GHdIsQUYRGHeOi7MjLII4CpBtIzVNTSAVurEM+84RJVCKRgYEcYQSzjXkjbdvUpclUkbEbQSSrguqsibudpkvnXPFYrakKGvu3N3B1i4WKc6GBFGMChR168gjVYDF0JQLrHHbwqRLMtjAYsgvXSyNNYKaLsKWZHHrejEacuPGGpNpRtw66KhQIgOL1jU//7GLqomTDts7G1hrGAycI0pVW5RUlGVJFDmXD2lqTDVFVzmErg2s7LC+u08YRlT57Hqsmdrw5OQY0TryrG9uEIYRWpfEaRujZTShVEBD3bquRJHCmAqkRF+lMZkQpKQ2Clm0EVJZB1OXNMsaFV1F/UQIoxG2wrZONp3egKpqaMqC4MqFxFpqKwjihDB82kerGyMuzufXbdXtBwgJdblkuXTj/ubtNfqr/5rpyRknJ6cA/PRHvyZLe4xGFd1e37VpHNLvdonSGIW7trzQPDk4ZLgyQBfVdZ2DQBFFAUeHp+2xCVEUYGXAW19/C4A6v6SoJUWtictZe6ylbkrOTif0u67fpBCoQCHVlasPVDUk3S79QZ88d+OvKEqeHJ6CbPj7H//MXW/W4d33vsba+jpjdenGeBBRVzUYfX0fRUFMr9dDqR7tKRBCcHZ2ysbuDWYXznUq7CfUukE3JZ2haxekIAgSyqambB1vojjExjGb/YS2KxmkClRI0UQkgRtDMjDIqEM1zTm7NO0YGnBj9wZpbCkeuvNGnTus7m7xt//pNyzO3Dn2d2KyMME0C1QbV1Y1DbOFREpFXblzNLUlUKCUQbcuQqZpeHRUMOx3sG1cmTU1ZS6YziQba25chdIQxgH5smQ5cQ46zE8ZJB2qIKFq489UGBInEbW21zFVs6Wll2sOH59Rj919/u13JJFsGPQUUdA6jV0es7V9h2L5NhcPnOvUkw9/ztnDD8neXf3UXPD8nOW28VI+ve+ro5+sfVl61VMrtddxh3t6jI+Z8vzx4b+d8vvHfzPa4/F4PB6P56vBn+986wu/7/p3OY/H4/F4PJ5X4z9L9Hg8XyZfKeHN6/A6i4YvE/C8TJjzKl62gOpipT79e3O1Av7McZ8+BrfWad3iPMCVBEfYZ8Q7zyyIPi++AZhduAX5OElZTBccPHrM+sjFSg3X1qitJomfxuZoozk6OuHO3T2C0IkhFvOCKE2JgpC6aLiqRJgmPHnwmBttLFIcZyhZYQk5Ojhw5ZUlVakRqmB9dQBA3eQo07C1ucNs4Ra8q+WCj353nzt39lnM3eJ7f9BHW8vOzip17Ra362JJEypMWdJoJ5Do9waYrmU46F1vE1IQKguhIU7aKJigIev0qbWlaRfulZTktaUsxig1cueoDUoFzBZL5u2CfCfL6KQhVV6RdJ0QJe5kqCBy7X4VO2QbDBaKc4icYCDpryGVYnHxhHrpFt+XS0MYRnS6IVnXxSKNL3POz8Ysi4rtG25bt9uhqTX7t/c4OjoB4MbeHkloaeqKTz55DMDqWsH+zRtIEXC9EK8tlggRdbDS1TmQNcYamrrBilaAECUYW2Caik7fCS50o6nynKTfxTSuTZNen7pskErSiV2fYwW6KZBK0TSuDYK4g9ENSgaEkWr7Q1EZiRQS3bZVscgxuiJKYkTg9lvOZpi6RkUxxrRxVgrCMHIjvb00pUK01mxsZOjStam0EfNFyXClS5S4HZta0+32uP/hA87OnQDm4mLGYNRjZ+8GVasWUiqgrmbUusAaN8b7K5u8/fW3Mcbyu5/93JVXGZK0Q7efkLQRa2EQcDGesbK1TdjmYxV5TBCEREnB4WMn0AnClJ//7EPeeucNQunOK9CUixnZYADStUGcSpQSbG6tUCzdObr9HJoGKxO+8x0XOWZ0w97eFsen55i2zuV0zHQsyLKM0yMXYVabhkhJxmeX9Af9ts8VBsH4fMz4zD0jOp0u2jb0hv1rtYaLwDPu59AJ3U4vFetrkRNIGXdvRWFM1kkQsma5cOOlN+qyLAXTWYO2bj+bjFhbHzK9OCAIXFsF/S3OL8ZMzk+50YpiOp0YaMDWBG10VVUJ9vZ3GI/nRNo9IwwheS5I+zHT+bgd9wU3tmJkqJCha796ec7B8YL97QSj2/FXNmShIs0ymqY9x0RgqpLuSoemFZzN5zlHh2csZgs2brn6zfKabjxgd3+NcOPIjT9xgpASIWDUd/s9OnzMxtYdBqMBs8kdAPLxEUcf/YK9r38fIZ4zjntGaCml5GVqy6fzy/PzkHhxHyufqj5FO6F8KsFKvELw89wchnihKtZrcDx/4Pg/lH//+IUaj8fj8Xg8nq8WV+9nV+++/n3N4/F4PB6P5/X55/z88P85/Kl/d/N4/oXxlRTevK4TzbP7vUxI83nimi9yfmPMpxxvXnq8fbVvgX3J4uvzZbysTGsMJ4/dovBwbZWm1qyNBojW7WX35g1OnpwyHi9QrWBABgH90Ygo7VyfVUnD0eExMgzoZq27SK9LUxk6nR5N66qTFxVKGGJ9iWlFGMtcE8chnU5KmLmFe73ISdIYQ4NsE8uiJOPW7VXCJKQeTwGYTE/Y299mZW2V8eUEgNPjc8IwIFCK8yMnaNi6sYuQhsPHx/QHbrF8scgZDbrkywX9gROJNFpyfnLC2fmMvf09d70qpswvKOry2onFNJKynBBHks72GgBFUdHUJdlwhTh1ghohLEbXGCuvhQoqiNGLC4K4R9Z3xyoVs5yeUkxO+PiRc9F4/xe/ZTjss74+oDd0Ipu1tQXLwoBVNK1byeHjYzSKs9MLslboIbAUteRyMiZtxQG7exuEicToGm1cf1TFBSJcwdoA3QqXgjBGigIpu8govRopCAGr66sEYdRuMyS9PmGoULHrt6YRIBTGGKRybVWVS6JQoLXFtoIaYyxSSKy15Es31sJEIaUgjGN0OzYarWmKGt1Iosy1XxiGLJY5RV6iQudWEq8MKauKQEqsdu0SBBFSBQxWRjRVK7yJIqJaYAxI4YQtDw6OMRaGqyvs39505UUB/9pKbwAAIABJREFUJ0cnCGuI2uuwCKQ0TC/O6Qxcv12cnDIa9QnSmNv37rn+ODgmXywJogHTCyfkSZKYu/fukEQKKZyga22UUTZQJiGb79wF4Px8ShRKkk5GU7t2UWGE0ZamXBK0/aF1w8XphG4nYnXdidUGTZeqWiK0oMrdvSDUgCCKGPb7TGdOILYoLcOVLvlsSa8ViOVlxXKRs7a5TrfvnKOEFcxnM5bLnMHqCuAEcfmyJo4jlFJtXzYIUxPGKU3j2nTYg6bMUWFGnrv+OFkWvHk7IIoDdOzuaWskxkYcnpRUrV7vnbdvU1UlgbJUxvWbFQHdNGU5nxBvt2IcBdRzrKkRwtXl/hPDrRtdRsMOFw8/ASDrrCHTIVo3LObuuZFGNctcg4pAtmO8OueNWwlCCI5P3XVIlTIY9JldTLCt05OpJmiZYKKbVK27V12VTC/PiENNWbu6jDoKUc/RdYxoXYlETwKaMBK8965zmHr//z7myeFjVjduMNzcBuDJRYf5+WOaqiCM23v6GZeyK4wxSPl66pbnp6vrssTz84IT0HymCFUIDM5xTTw3Kz0rtnmhaI/H8y8W/yGAx+PxeDwez1cb/77m8Xg8Ho/H8/n4L+p5PJ5/Tr6SwpurBcfXFd9cHfPsz89ve9l+ryr/VYKYq6KNsZ8q87rOr7qeZxc6P/eKntlXwHQy4bfv/xaAr72XUNY1+WLK+alzwvjW977J3r3bPPjoAWkbuWO0AUqml6cMVtavakGnk9Dt9Ygzt5B9cXzKYHWN0eqAxcQteD+4/4i10ZCVOKbM3aJ6Jw0YDPvMlzlVG9dTLJc0jSIKFeXCCUIeHBzy1lu3idPw+kpXVno0VYk19lq4NBr2WEznjNYGrG5sADC5OCfrSIqiBNwCeprEVI1gPNO0KUYcn5zQ7XYoi4Jy6UQTYSjpj7oMRMaTA+co08kysJK60USxG+aX43NGowEyCDh54vZbWVtBhRZQ1zFB87NPCKOU7vrudUROMTvj4vATLi9LfvLDD1w7Nzm9bkpvtMKTVhxVzs8I0lWqcsmdN507xmA0ZHz+S6aTORubTgCzMoyZzkqUDEhbEZAMQyeeamp04fpD2z7SSIJAEYSi7d8apVIInHDIITEExGlIU7n+UGGEDAJ0Yzg+dOOl1+sQJgnWWoKwdeowNZfnJZ3eANE6iSjhopFE3SBlK2ayOSoIUEIQhK07kAFdC6ywhG08Vl0assGAqsjRrSuRMdYJtDSYts5lVRFGESpKsPb65iJKI87PLhkN0/YcligSdHspeeukdPDgAW/dHvCjn3xAjduv1+/zn//y77l9d4+0146Xw0d0kjtYC7IVpmXdiIOHj9m9ucvWW07Ik+c1USyRAuZTJ4CJ0hhlNXWd8bgdV71ewNpGlywOkG2sWZIGTkwkLTJwbdAsNUoFWBFgrBtXcRQwmxq63Yzbd/dd/xLzwS8/JE1jorad5/MFK6sjhit9yjYqaTmbM54siOPoepxO5ktk+6yMlGvTxbxgtDKiLCuq1uUokAFpBk1++dQpZjHHqDnr2136vVaUNRFoYyhKQ+oug8YKorTHnVtD/uaHF+5690Ao5yplcQ1tZcZ8sWCUlayNWlGbkghrEUjmc6faCcMu3f4G1kCv0wr7JgWqrhEF5JNWZNgtSUJAhgSRq19Zz4gjhbHiegydzGPe6Q1RYUCkXKXTnqSYSKr5EkR7bynJcnLMvb2I1pjJRXBFITLscnreRs+hCeKGMJAMUjde7twIODw9YWX9BoPEbavXdpkcf0KxGBMlHa540SmNl/KqWKpny3j6+5fNU4LPnE2sRVwJfry4xvNHiP8D+veLX8TxeDwej8fj8Xg8Ho/H4/H8IeI/J/R4PF8l5Ofv4vF4PB6Px+PxeDwej8fj8Xg8Ho/H4/F4PB6Px+PxeJ7nK+F487z7zKvcaJ53CXj258+LmnrZsc/v9yoHHPd7gWmdJl5V5gtlt44DAgGv4d7THv1MOYLldMpo5KJlyrJ2ET6LBVa2sVJKopTFaMN06uJr1tdXWSwbhIJJG/mUhCFShSSdLrZ14LBCEMcJ+WJ6Xb9Bv4/WhsVkSn/g3CzSNObodEy+WNDvu23GGpK0D8Kw0kbpBJFCBRAGitGqi2mpq5qmqpBKXcdFQcrZ8ZiqstjWyqZuNEGQEQQh89ZBZ2WlSxQrqjJiPnfuNmkSEkWSt965S1m6GJkiX5KkKSqI6TvTH+5//JA4yVhdGzC+uGzPq4g6fco8Z7112jFGo2tDEFToauyuIw7pb95GKEU5dccuzw/Ieuv8+Me/IC+c68rG+iqrG5tU+Zzdmy5q6uHHFVZY5vOKhw8OAdCfPKTf7bGzG5N0XF9+9OCUUAbMZ1Pe+9a7AFTLBVkcs5w+IoxdmxoUggBtLLq93jiJkFEHbTRl4Zw6rNboxmLQREncbitxyVExjb4aU/DJRw/Yv7mLbqOwVBARxRIhFCpuXWvqmiCO3Pi6cs5oKtAGqxRY12/nJ5ekaUynEyNa15ogDLFYTJOj2nGqAkkYBSynU5qFc1IKk4woUOimRkk3JouiIEwykiRCtdYk6xurxLEgL2uS1LmfTCc5P/zROYFoWEycQ80Hv/oNs+mMMAzodl07b+/sE2cZiICqcOMq7fTY29/h+OAJFyfOCUgGMFobMVpZodt3DiZRmFDXJUdPLsiX7tjt7X02t0eURUXd9sfl6SX94RAIKRZubFxejFlb6xImGU3h6tcQknRStDHQxkAtZ3NOz8eEYcztOy46bZQoFvMZSiom40lbv4CdnVWEtDS1O2+3k1A3munlmLp1GzLakOdz4iRl0bazEAGWhJgA2zjXmpXNbcpkBSkk3b67V08OG6yJsNaiQ9cf06UhTTKSKKbfRlz1B32kEOimweAcZeIoZnE6ZdQ1LPP2WaIFQtYYazm7dOWlK7fZ2d9ASYPBtVWUjegNehjRcHp8AMCWqikbSy3XWLZRZwcPjtkYNpS1RLZuLyJaJ4i7aN1QlG1c2fKUZLiH6o4w2g38+TwnX1zQ22hvBJxTUZh0YB6wqFz7qRii0KKkJYhdH733Zp/6o5pYlSTtM3E+vcnl+V8yPTlksLoDwJXnmRDi6WP86t+XmNO8OH+Il7rgfGqbfdHp5tl9royjBOKlMVLXZbXPe/sZpjkej+dfBt7txuPxeDwej8fj8Xg8Ho/H4/lyuHLk8Z/BeTz/MvhKCG+e57MFMP8wXowAeSq2efZ8rxM/9SoBD4JPx3pYXpkGIp7T4rzqvHGcsv/m2wDopmE6maAbzf5NF1VTa0s5m7J/9yZRGx0UKsXmVoeDhwc8evgIgNu3dtCErKxU1LUTa0ymS4Q8pdcNiBM3FDY2RkxmcwaDPto6YUZR1MRKIrKM+5/cB2C0OmS00mM2nRO1Yo04jjBa0OiKpM2qiaKEs5MzFsWCXvcqbiZgsNKlritU2z5RpKjrhiCQdAMnfFAqQoUJ4+U5uztOKNNUDcdPDun113j44BMAsiwl7XRQgWRz0wlg7tzd4/R0RpymBJET/PRXIzZ21pBSohsXmdVML4jTIc3sMVa6Ovc230SqAGM041MnnplNLWcXpxwePGHQa+N1rGJyfkFZpHDhhEGDlVUGoxFpesLZ8SkAq5sb3NjbpKxqJjMnwnjz7Te4ODljc3uV1VUnsrGmppoeIOoJ8XDXNUyxJEz7VHmBsa5/Ky2Q1qCUwhpX5/l8gdUgaYiSVoRBgq4MWi9IEyciMEYzn86YT2fEpdtvPFkwWulTlzmFdqKOIHZ9UJUNs0snPkpbcU2nlxJI16bDYQ8ZBMhAUJZOSBFGKRaLkCFN4cRMxbQkSLoIGRJ3Vtx41pp8fk6YZpTF01gkU5XEseT4qBVCBSFKZYxWeyRt7FBjDPPJlMvxlLf33TYpIr7/Z9+h0oajo3M3Tkd9Hjw6ZjTqsbo6cnXJCx7Nx2gjuZi4frt7b584CtCmwpgrcUKJqSvW1jqMRm+2fS5oypLFsrgWrGxkMVGaoXVD07j263cTpDCYpqR0l0YWKaI45PjwiCx17Teb5cxmCzY3M/rDblu/nJOjYwajEVm3jSZb7SGkYj5eUJZu7EoDZZ6zd3MXuBIuNeRFiaBkMXNClIuzMcPRgNt7XUz1BIB8OqYzipEqZH3TxdHNHo0oG8mwZ9CtxnA6yYlGAUhN3biN2kisFVhdoAsXwaWExlrL4dElX/szV+cgkojaOsFf7AQvTZMRxzH5MseWblzVeo3ZdEGYhtjK3R8rGxIlNWHUR7fjKgotjZVMJobTC9dHo/VtImkRxqALV57UNeHwTRoRXj9/g1BCPSMI5fVzUkUZtekRxpKtu98D4LJ8yLo6IJQ1dStwGnQsXXXMxw+esLv3xnW/ZUXD/Pwx8CdccSWCeTpFiFcKNF+Hp/PUVWmvmHteOJCXRkw9f8w/Zk71eDx/+Pg/+D0ej8fj8Xg8Ho/H4/F4PH+o+Jgpj8fzVeMrJbz5POeZ5/f7MuvxeXV44Zh2SfRZQwIBYJ3Ihpde26vtEIQQWG0oi5rWtIFAyf+fvfd6suPIszQ/dw99tUidQEKQADWLVbXdI9qqx8Zmbdb2YR/2H93X7ZdZ0Ts909NV1aWpIAid6ubVoSN8HzzyAgRAFKvXZotk+fcAJOJGhHu4/yLCkH7uOXiu4OqNQzo9s+ivXIfzxYytdhfXc5pjJVLC4f6Aa9eMYEW4igf3n5HmlXF5AI6ue9R5ieM46Mu+qJpuW4HQKGkW0OfrKf1hnziOWS6NGMJzFUVRs5gvaLeNiKAscxarlLC1ixSNSCRdkxcV09mSwDOCFcftUBQZvhcgtBER/OHufYaDEev1mhIjCBmOh0ilOLqyR2PdwnyxZDAc8uzRE64cGMFA0O5SlCVuEFEkq2YMKgbDNp7j0Ns1+1VliXQc6tI48AD4UZsyPqGqctoDI3ZxPOPiURUZ1I3IQflMz4959/3bJJkRLk0nC7q9Nlo6RC0zVnG6Rsxg92CbUeP6k5cVP/+nn9PtjTi6dgBAlpWcnc+4des6WWGUGVHoUiwztOpTb1yTXKo8RgpF2STD1SWURYVyKpKlEY5kqzWO5+BHbbLUCJwc36fKlzi+T7tjrIDWiznXjq6CKEkS4+Jy/Pgpi9mEnZ0RomkjCCUgqYp0c2wQhfiBT13km4otK3Clpkhz8ti4K1VBhR/5OL5PXZlaK/KUKo5Rro9SzWNHOugyoiolumiEGUKjHJ8aFy3M2J+cTBj0M8bjHpVrauP0dMao3yNNS65cuwHAV3cfsn91G6Hkxp1KOIrFImZ3bwvRtBtEXca7ewShhxBmW6cb4QqJkGozv1mZEic5oe/R7jZOO9M5i1VFWZTM5uZ6R6MecZKRxzGeb/br9rvUVYLjh4QtI6wqiow6z0CX9AdmW7sT8m58A6kUv//NZ2aOVksGgx5pumKrEWUFURshJWVebR4XWZYz6EXUVcFJIzTqdrt0Oy0cL0AtzfxKqVjMl5RX+ujGBkW5FWHkc3G+4DJx8P5xwHsXSwLfwTemSRzuK2q3QrfaXNlfN9NWIV3FcNxncm7ufSdokyweMu4USGHGQEmPJFuTZJrZ0ozzzsEeaZzhOg5x0bj5BPtIV7Kezhm0L+83iecHBN0BSCMgarc1VQnDkcsXT83927m6i+v75HmBaERFQmnitMLtFeSpOfb40UOcakJVgtcyYyC9ISLooLKcnSvvAvDk8xPyNEOINeuscQarFDrOwElBm3u1NxyQrUPmx/eoG5WSdBSvPstfL7r5Nu+Y17q+Ub3gWnN53ufnv3QCunycf5Ob3OZd+8YeWCyWHypWcGOxWCwWi8VisVgsFovFYvk+Y0U3Fovlu8h3QnhzuRD4bcUu3+Q+8y9p92W+6XxCvOo+8NLJnm+/PIV+tR0hXoys+ua+azRVVZLECcfHJg5na9jj8999yvVbN2k1UTpSwmjQg7ri5KnZb7B7wPpiii4ToigCwFddOu0268WSsDQL44+PTzna3watWTbuGIvlknY7pK5KGgMYXN9nejFlOBpw/do1AMpyjSNydncGrBoBQhgZ15l4tSIImgiaqEW/0kStiFbLlFtVghQ+UkmozKL/rVtv4/k+ytFU9WVEV02exSSLNfmlBYcjKQo4urFP3YhiFrMVUbuN0AUVRnRS5hrlBeC4CMe0qyTUeU5d10hthB5VviCZPqB7+DFeZ7yZtxpNspySF2buTk6nnJ6eohyF25xvOOzRHQ04Pblg0TjZKCE4eXxG1D7nrVvXAVjPluzuH5KsE4rmfO22IvCEES51zRyVVQ7SxQvG5KVZ4NdVTZnnCFxct7kO30NJQRYvqRoXEgQoqZDKvdQokWc5Dx4+5fDqPu2uEXCcTVboOme8NWS9aCKffIduN8RznY07UJ6s8IIWjnQR3vNYs+V8QV0WhC3TZ6VASommpixNw+vJhG49IOy0CRvRTl0G1HmKcMJN/4SQ1ChcpagbQY1QPnVVUeYlW9vGGSeNYzSSqq64vHVCP+DZ0xOyJOb3v/5D0xdJlldELZfFwohEDg8PeP/9t8jzjF/+4rcAvP3Wdco8JReSyzyeMNQImVJk5hwAnW6HqF2ynK5YN5FPJycTRqMeZ+cLClNqgGAw6FJqePqViUq6ceMKSE0eL/GcJvpLKKp8zd5OnyS5jElLKcoSyoqDK/tNuxGr6TkXFwvyjpm36WRFVZX4bo0QRnTS7fh4ns/FNEbIJrKt0vTDiJqa3X0jOBuN+wihCFoeaWbEb76riFcTvKDNwZGJuPLaAyaLKe2OYDs09y9S4Mqayu/TDo2DUyHM/TxbeQT7f21qNytYL+aMBg5+aGqjrhPSEi4WOacrI0L7Vzfeoigl1KvN89HrHlHkGask4aRxiboxVLQjBxlska+Ma9dyWZPnGtdR+N2bZi5v3UI5CpHnuNWJ6XK4Te7tUqzW5JVp5Mvf/zMf3pBELecy5QvtDKhyTZmuWazNs7OuQCtNWWqipu6TNCdwU5LJHdrvfAhAcHjAef4OZ0/uU2bm3vedIZrXvZ9etT4z+3y7d9c3Oqy99PkbYw+/Yb8/VWBqsXwXsP+p/v+GFd1YLBaLxWKxWCwWi8VisVi+z3wffz/4d09/ZX8vZ7H8BSD/3B2wWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVi+j3wnHG++jWvN6xxxXoym+rbONy8f8/I53+QA8GZzgEtng42JxmvdBr7J7eaVvmjI4pRf/eIX3Lr9FgBVkdNqtTg7nSEbZ5K9naFxinE9vMA4L1RVSVXXSK+NaOwd8mRBvytB9JicTwG4dnSEK2uWqzV+YFxw9jsRYTtivYyJExO5Mxz1qMs2abzaXGOSVMTJEt9T5Imx/lDKwQ/bSKGpaRw4ipL5xQWt7oAyM04ifhSRZ2se379P79IRRfkE7Rau6yJL42RT6xpdQVYrzifGcaTf6zLoRwgBUhmXlE6/jaM8ZvM5gW/abXUjou4IoRycRl5WV5paV6Br6jJu5iMhGOwT9rcQUm7mry4KssWUNGsiri7mbO1sE4QRjeENe/s7nJ1M6HTbjMMRANk6p9vrIKTg0WMTfZNnJbduHzGZLphMjCtHkXfpdCIGoy7tjpnL+PT3COki3DayNmNf1SWOG1EUFUVqXHBCJwMqksVq43TS7nUQ0mE+X+A3OUFB4HLtxjW8wKEojcNKbxCh64DA9wl2zJxv7W+jyxlBq01ZmPpUjo/jOyhPbOR5dZ7SakeUZbGp1bpMUJ5Dlle4G9cahev6uJ5PXZs5z+KEMq/wVYmUTZSX1vhRizKLuXwUHT85J8sStrYGnD0zsWbtVouyrvnlP3+5iRdrdyNOT06p6orHT04B+PDjd+gP20gpiB+beyGNE+oyQyMZDYzriu97tHtdknVKsjbOOFWRoARo4RInpv6qLKPb9SiLmiwz2z7/7Avefus6QdRGNvVc5hmu66KUx3hkXHpcz2W1TFivM4bDxmJFCdaJoteJmJ6baKg4TojjmJ2dHerKtJGkEi9o0Rs5OM2h63VMVpZkCtKVqY3tnTbuuE2rFdLumLmcnM9J4hUIn6/u3gXg7ds3UEpDnVOVl3FlJauzB4yPfrqJXeuP91itv2RrGG0edqKsqJJjEvZYJ6Y2ju9+ycHRDZJ1RbdnnGeWs2O+/PQP/OiooGoebbIsCH0YdQM+fdbEbdUOUkM8O0M2tesoh26rz9PHT9numXgs35FI5SOcNuWqcdrJa3bGIQ+faQq3GecwQkoXWV+ghLmntXuEH/bQVMRnxskmnX5F76aDF1RMl+Z+G+5fpUYQT+7Q9819OfRXlLmkLDUdZS5kviy5feRR6hlPn9wDYLB1jXB0nYdf/u+cPjHjfHhrsHlHCNm8Z16MHXwJcZlFyOX74fXvsG/7fvsmJzj9wqEvn+W/d2yjxWL5bmG/VWOxWCwWi8VisVgsFovFYvm+8n10urFYLH9ZfCeEN5e8KIp5mTdt+7aLkq/b7+XYjW8deWUyRXhxz03C1Lfo/zctkha5WXw3IgbJrXfeJ02NaGI5nxB12+wfHuB5XrOfAgQXp+eb9qWuyeI14+0tpGiED+uUdQFZGZNlTUbOdEZeFAgBPZNAwzrT1GUK0qXbMov5ShQslnPW65ytLbPgnRclWtcoJRiMzaL6crEiyQoG/QgafVGta6JuDyElk5kROeSnE9rtkN2DI2QjdpESTo7P8D3oj3fMsVXF5HxBmpfsN7FDT5+d4jiSodshXptF+iAKKKua+cUSMRwAMNgZ4Xo+i/kMXZuxUlIilIBkQbp4aLY5PaLxEdIJni9KCyjiGacnE764YxbufS9ge2fEw6+eMBwbsdB0csFqvUAqH78R/DhujdYK1w9Yr8y8dXt9FsuUTrdLKzKL/llW4foOvUGXOjeCgTKb0h4cUWlNVTb3QiPoEmiyeAmAFzigPNAVqskDqyqzcB9EEVHLtJEmKUpIdK0pEjNWg16X1SojT1M6IyNEkcqjKgRCOkhhxD2OH1DkhYm0SqpmjgQUa2ocXLcRkjkuRVWjdYUfmnrxnYCqTCmylKqJ+ql1iRu0oY4pm22OH5HnOVWuUY6ZoyjykEqwXqf4obmOxWxFGi8Z9PusFibWbLg1ZmtrwMnTE9LUXNtiMWM66aEcRVWYPmtdM5+v2NndojvqNNMr6Hb73P3iN7SaWCRJzHS6YLi9R9XEfOWFz/npjMdPlqhGfHR0bR8tHOqq5vDKNgDxekkSZyRJSn/Ya66tjZdpFvOYNDbz67UCpKyJ1ylBaMRRvX6L/YMRSimUa2ro9OSc6WLOwZWreJ4ZZzfMKcsaz3FR+414Jk0o85zZZEJvYNodjXvMpnOEcHAaQc18esH+1SvkeYbfOwSgs3vO+jghTzJ0c3F7O2OCRZeqKlGN2urkPKPVXRLufsCVq+a+lGczEILhzjZ1EwuXFZrtXsJ41EY4JgavSs95elpwfFIT9g5MbYRtijyliGfozIxBB48sL3l6/z4HoZk3hEaEXYSoqGIjUkqz0uw3EYRNjBa1Jkky6mKJluZ8y3ofN83oD7tQm3vmym5JXmiUDJG+qYNKtDh/+N9Yn/2WrBGr/eGLBf/mk4BOp4WumueL7+K7cGWr5H/7b/8EwM/+4022D444u9vh2Ze/BuDw7Z9w+RbYCHDEN72fXo6euhTivJ7Xvuu+jWbmhfaFfjX0ykZNWSx/OVjRjcVisVgsFovFYrFYLBaLxWKxWCz//fhOCW/+JVwKZV63uPniYuWbxDmX+73ZWUCgdf38XxrQ324R82Uxj2njxX0v+/miq44kjZf0+m3C1IgSHj54QCuQhKFrRBDAahnjuAopXXzPHLyYrTg+njAcDXEb8UzbD5jNYxbHE9KVEQLkqc/xyTEfffzOZoH/4YOn9Ac99g93uby65WJO4LnUtd44mIRhiHIEs8UKKcwCdQ10ui2qosT1GkFIXhEFPqcnF6SNY0u3GxGFEWVVk8dGaKSkwHEc0ryiyp873ihXMXlyxvbYOGscXNmm1hJ0Rdrs5/keeZ6zvb9NfzAGwPVCEJpWu/N8rHVBXeak8y/QqmX6sncbN2yjNVzKqKoyYzU9RSqfwDML8uOdIbPZnKrKGDXio3gdc3Q45rPPnhBPjUBHuD7bu7tEUbhxslmvV3T7XaJWRBYbMY4fVXRaAa7nUazMsZRLKjyoa4R4vnKfpRnScXCavrjKpcwy/FaXurGzcJUiy3NzBbXfVBBIJcjSBHXpRiMEYeBT4zObGFHCcHsAukLgoRoXkizJcTyHeB0TL41garAzQqgCqd2NO5ByHXSVI4RsREJQVzllJSBOKXIj8vJbLo5yKVKPshG2KKdAFzXKFXi+6V9/2ObifMF8vmKxMnX12W8/4933btDphFSlqWddFjz86hGtdod+45rkeT5xvEZKxbNj42By5WifwdYQHEmyNHXf6rZYLJa0WyFRFDS1G3D7g5tGTNZYGq1Wa549m5GmOWEjlLn19g1mi5gsychy07/dvW2yNOHenbv8+Kcfm6ksciCn0/IR0jw3fvWLP7C3e8Bnn37Ohz/6EIDFfEqW1ezujymWRlTU6/XoD3uk6wRZm3GuioKo1WFxsUA5l/f+jF5/xNNnF3T6RnAmlUsYtnF9l6jbampDcH4+pdUKaYVmm+9H5KuvgJIoMuMXBCHLE4XWgiS7dO/SeCKG/Jiga4Q3/uQ+X/zud1y5+Q5BI7ZazBMO9zz6A4XAPCOOTwrakUNWFmhhxC7xao6kJgortLvd1IvCcWpCZ0bQCLpmi5xgZ4j0IsrCOPyEgY9UHoX22N8xxw7GPc6Oz6mmX+AqMx/eoEW70yWKAq7umbkcfLzNg6+OQWuGu/sAJHkO8T2ODgRJYcb5b/6HLbpRhZIOmMcLWzsVVVkzrEsGgWljuZhRVhrtbzM7OzbXUVcbF64/Jop5/p70YA4zAAAgAElEQVR5/h543fvnjULQy8cab3hvvfBc4/JcL5zu0pnHYrH8cLGCG4vFYrFYLBaLxWKxWCwWy/edH4Lbzd89/ZX9XZ3F8gPnOyW8+VO/ff/H3GneJMZ5XXvftHhpdnvpuCYa5Pk53hRR9Xxh1Oz/zc46XuBvfnZ8Hx2XBC2zLfQ8OiE8evCQ69evArBazRlvb1PVOVoYgc7ufhfXFSzjAuWZhfFkvabVitjeGrJqRA5BILl+668IfB/dLJa//6MudZGTxglPnhjxQtRqMRp2CUKF65s2phdrWpFPXdXQiDXGwxZSCU5OF4SBEVdQG1GFF/lM5yYuirXi+PScDz54mywxYoPJbM5oa5tIyU08VhnnuI7ED9RG5BC1QtCavCzod41goCwS7t15wK0P3sVvRc/HWdcIIRGXq+ACkosHlHlJd9/Ed7lh17hroNHaLL5nyylPHj7lH/7rXfYOzCL9Yp7gKMX2zg5ffmriZg53fJzRIXuHeySNo8zDB09QzgXJOqfSZkyVo7h2c0BNyZ0vn5p5VhAeHSBFRb4ykVRCSJywS56V6EacUtUFVVljEsouXXAUdVlR6xq3EYlUZQ1VjVCOidMC3NBDa42qFRvNmBI4vqLME3RpBA3JYo3jKhxXol1Tk64rSVcrlKMIO0asUSTneK6PRlE2Tie+76OlS17ojWOHkAo/UFRFgeM1WUkaal2hvIC6qfs8z1DKRQpNnhpxT10VhO2Ak+NTytrst16vuDifIaSk3zgaeaHHlRtX+ad/+CX9rhF1LKZzDg52CcKArX/zUwAc1yHPchAlZWP05BWaVhTSHXRQjVDCkR5lXnJ2csL2vhGYOELQ7XZ578MDnjy6MMOnXI6ODtCVpqwbAZHn0wl8Pv7kI8LGQefLL+7z6MFDPv7kI+K5ib2SGtbLBas4wWsEJsu85mI6oz/q4/vmXm11ApI4p9XrUmamjbPJgrf6I4ZbfaRj+uxHIVSavf1t4pUZPyerWK/X1LombDeOQWlKfzSmLHOUZ8bKCTv0Bz7JeknV1MbWzoDifASc0RhqsbfvoauKOn/GRXnLtKvg4e//E2EQID1zvf/1//4H/vU7NUXl4NaNuMyTKKHx29vceP89AIIwoCpK9OoM2bph5lwK8jwnXZxS980kbY08Wr0ddJ7iSDMG7bZPnAhO5m3e7xiHn5NnE1bTU3rFQ7RnXHCE3yXLUqqLFM4/B0w829Ghj/AUIjwy+63PCNQcakHomnumqDQ1EiqNdM1zV9c1wqkJ2yVN+aEcSZpVpJXPanbR1O4LwpvmXhWIV21mzFlf3vAK39p97TW8VkSqtXG9+RNNcywWi8VisVgsFovFYrFYLBaLxWL5c/FDEN1YLJa/DOSfuwMWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFsv3ke+U482fyp/qBvCy88y3dxTQJorohegq88OLu7wcH/XNfb100Pm6C87XPkQAdalJkxglG+ePPKVIcw6uHm7icDr9Ack6RiDIK+MW4TgDhqMBdz77gjw2cUK9QR/PdVivl7R6bQDydE2Vp9x58IjDK8bZ5fjklH6nhe85nE+mANwatBDKIU8SgtD0ud120HVFtxMQtY3rRRqnuL5Pp9slXhsHjuGgj1IC13VoR8ZB4s4X9xiOt6nKahOVNB6PaXVD8jhmcm5ccE5PJ7z/0TvcDDyqomj6nKEchVTuxuUjTRMOrhzSHfSp6ryZI8e4O9QVlbGLoUrOqbKn+P0jgt725cxuvCmqwjh1LCanxKnEUYLdXRMrtV6t6fRGOAqObh4C4EnN3XsnlGXGamkcb7qdDkWukW2QGLeXdq9FnCSs12seP3gAwNWjgyYuTCJF46zhDzBJXjXrZvyUCkz8kxB4TUwQCKJORF4USGkcNpQQ1HFMVZSbulSuS5qkCMfFE6YvVZkjhANS4TYOK44r0Uik4zbtg65K6rpE1QLZOBpF3R2ooShMRBRAkRd4nocip24caoJWQFlU1FLiOEbbV+ZrpIioJQRt41aSJTFZnuG5LlI00VXSw3HAcVzuff4VADffeouiSIla0SbqTEqFH4Ts7O5w5cg41GR5TqvboapKvvjcuBJ98NEHxPGKT3/+Ge+89zYAnXZEmhWcHM+43szl57//nFu33sbz3Y2LkCNqWu02i2WMbOKdgsClLjKE8tBNvdTKxwtd+oM285lxt9nb22Y87tPqtjZxWzu726RZzo0b1zg7PWkG2uXqtQN6vZAyM7Vb5TVnx+d4QcjFhbkHh8MWRVFSVSWeMP1L1intbot+v8W9u48ACKMAXQtcX3L22LThBQKkIs0LdDN+vdYhndanZG5F1jjejLd2UNffYrY6JQrNfEidoaRmMZ1yujaRaDdvvMvftu/yu4c/52TRN+dra8oqQfm7ZGsTvSSVR6UrzpZ93h8OLwsLXeckyxPS0rh2bfcE56dzFssUd9u06/gOhWghVic4jqk/x1PceVzR6W4zHDVxb2lOtTpGyBW1925Tk5osW3L301/jL38BwNFORZxkHBwd4fevACCS/5OgK9FCbVyi6qTk0VOB78LBjumLFpJK1JzMQLnmHlQqYD6NKbIYr2XqTzT3CTx/NQi+7jDzKs3T54+4s70pKvFy35f3eXmb1q9xuKm1ld9aLD9grHWtxWKxWCwWi8VisVgsFovF8t3Bxk1ZLD9svlPCm68vEn57Uc03L0pebv/meKmXefVz0Zz/6+d4pUXBJtKoruvnmzfHvtwXwZtir7SGLE3Y2h5tzvfTT25z99M7PPrqyUbs0up1WSQJOzvbpLERa5RVzTpOCdo9Dq82sTlSUdUFusxZN4KV+3fv887t67iqpkjNor+rPBw3xPfhJ5+80/SmYj5dsFwntNtNvFOlKdOMzqBP3Qh+aiS+F+G6kCUmxijPS1xX4AY+jm9WeD/4+F3KvOAPv/8C1cTm7B3uw3TK2cVqM1btTp+L6YJO5IMrN32RwsTBLJbmOoRy2b9yFUeCbMa3BoSUZrxLI5BIZ5/hRNt0d97BcbxmNprsFQHJ4tTsF6+YLzI63RazCyMCigKfMlvz+HTCdrprxkoK6rLC9wKqwIzfcpVz/OwJ0jmg2zFRP1evXeXsfEKeFXzyyUemXSFxPZ86X1M3ffaiIbWQCMfD9cOmliQoSVVUBE3Ml3IUVVkCiqrJCUpWc5QUBK0eeZY2YyVRCMq8pGyEI17YQlIhKkFdNe22WiSrBbPzM1q9zqb+BFDpGreJJqtriZAK11NklREaCalAShw/YJM1VdfoukBJkE1smHIUWmvqNCZXZj6CdheWFUWe4jcRTaIGpRRvv3uDVtsIg9KkRCN4+OAxo7GJE4rzkqrI6HbbdJrIsZu7IxylWM7XtFpGIJGnKeiKjz56Gy9oNXMuWS6W3Ltzz9QWsDPu8tX9B3R6rc1luJEPSGoB8yo258sylFIUcUF/ZHKHpFKUeUaaJKxmRpwyGG/T6fVJ05LBthGJhME+aEGWxuTxDIDPPn9CVpTs7A8RjTjKjSIG4x6e5zHebrKNKMjWS9IchDDz9tvf/IHdvT16/R77+0ZIJj2fk2en7O/tk2WPzbXt9lHKQwsHzzdjIAKJG0RU5QLV2W3mTVP5h9z5suKTd4zQTQhNVTtMJiv29k2kUjT+KdlqwvnxfU5m5v64fnTI4RWXVneb0wsjLkvSgnWi6I6vo5tosqrUeDJFi4x2f2zqL/Coq4pux6HS5pU0TzyGTofs4lN0aa7XcRUX8wwdtRHNc6PVlqhxRTmDyt0DoNsfcn52zuzkHrdG5tnUDiu63QinfxtyM0dVegLCiM5WK3MfZZVDp+3geQ55I1JSaOpK8+WjhHvPTL387MMend6YycN/ZOfq7U0dXL6LXvdOev176uuCzD8usLmUCT7/8/lnXxfabPqiv74PL7bxR9qzWCzfX+x/4C0Wi8VisVgsFovFYrFYLN93bMyUxWL5PvGdEt78S3mdM8DXhSyvF9tc7vOKk43512vP/8opX9DTXC58fv08+mt/f5Pw5+XtAmFcbeoa3TiJFLXDeHuMchdMjo0TRp5ljMdDpKg5O5sA4Ec+UOG5LrVZd2aVr1GOw/bOCOkZQUOdrWl3WrQPtonXRqzx85//hp/85CO613Y3Qpn1ekXQUvSGz0U28Trm/GRCL6nY2zfigLIsKIoYjcNXD58B8NbNK3h+i7wwbiYAjivI0gw/CDdOJ4uLKbsH2+we9JC6WQTPM6TjsJitGG0ZYUFeZFRlQZ4mDEbGbaPTG+B7HlKJjYilyHKKssZXCfOHvwRAeR7d3fdwvOBrFVGLmjpNWJ8bocLvfvuQx4/O+PDHPyJtXEh2D/ZRrGn1epw8OW3GOcQLPcoso9Ux4g/HL7n9/i2yvEA1c5rlOYNBj4vJlKQRCx1eP8LzJPH5l5S5EXWE7TFlVaHLCmgW/aUy86+fO9kURUGdpwgpUZ4RrPi+T55VZOv18/0o0HWNchyK5jr8VkBdFAggbJk6ELrECyIcR6MbkZeUkqDTJo8z6kbckyVLHMdBOhFSOU3/BFJVCFyKvGrmqEBrjVQC1Qh+hGxRZCXSC6E2wpsqj3Fdheu2yWIj5HF9HyTISrO9bYQZX9075WJ6wXqdsV4/AeCjn7zL1mjA/v4encbBabWOSVYxwlGELbPt0z98wd7eLq12iwf3HgLQH/ZxXZf3379Flpq+RKMefgqBH5Cl5l4IW2MuVk/YOdyh3TOClcnJjHZLorUmXps+Z1lK5EvOztbkhannk5MLhqMxUcvH8bxmTBVCgOt1qLvG9WdrVvD00TOWi5RWMx91VSO0w3qZMtw2AiwByLBDkidMGyeq0XBIN/J4cPcrPvrkvaaWJUdHh8wuztndNSKl1XJBty9oRSFhI2aSSuO0d1ne+S2+PDBjH0R0+1uc+FeZzY14ZntLIWTF9aMOQhr3LJk+pX/4Y/7Dv4Pf/9646iRM6YyvUQlBNzICovlFyenUITzo4vhmW55nyOwcKRz8yNwzWZpTVjWqWtLvm3umVC18r4vWc9aNC5PQORUh77z3DkVm5s11NIFaEoc7pFVTB8uYZD1nNX9K+1rjpORJhPTRKiKbfApAGudIKbnzuObhU1PjD56lOI5LryepEiM0un2zjdCaLx5p9o5uN/UscZRm1MrZ2jtq5si09U3imde9Z77p51cPfv73pVPbH9PMvOzqdvlu+vqb8U9zjbNYLN8PrOjGYrFYLBaLxWKxWCwWi8VisVgslv9/+c4Kb75tDNSrcRp/XHDz6n5vPlaIxo3gW6xRmnO8qMp5NYLqdW1f7skLwqFWJ2B2fs58bkQTWZyQl4LVas2N68ZFI+oNWMYlws3ZPzAL7UpoojDAD0LS1Ig6njybQA3jUYswNEKA3niLSjuUeWnih4Br168wGHaIk5TZxRwA33XIS01d10yaRf/xaMD2/hitFW4jLIjqAqEUaVxy6+2rm+t69vgJg/EIykZg0uoQdfu890GPi3MjFnr46JjtCoSskY4Zn3YUUNUVMvJ58sgILpQUlEXObL7gvQ8/AMDxPKQrqWpNVZlV+ixJmS/WDIMZojKCgfG1/xk/7PF1UZXp5friEadPTVzP/funhKHHarFmq3ErmUxm+E7J+SRGaCM+8vw+gpo0LqE0i+6+F1DkNXfvPuSd2zdN/xyH6emEyfk5RW4EA8WdihvXRlBkyEaQJJwQiUNRlvi+cZ7J0wzqGqTYCLCkdNCuT12C07ikaBmCkyNFZaKpgLKqkEoihEapxo2pqClKRZEmVLURjoRRgOuFCMpN9JeSDlJ5UIEbGrFGVWXoskBL+dzVyXOpgSrLuMysKfKUsNVGa6jLRoyTlkhZI4VD0WxTnoeUkGfF5ny6LkFG1GWKaiKGrt7cwztWOGqXIjf3QrKK6XYinLBF0ghlAt+jKAv6vRbPHhlx1GjYoyor7n3xiJomyqmqUZSNG5S53nWc8fkXX3L9rRvoRlRUixlRp42uS/LC9LmsC8L2EKkc4tjUc5HmyFYfx6uYzkytPXrwgNtvp+zu7zM9N/dRVRZs7WwjlMQNjHPK1s6ILMuYTpd02mZbso4pigzHURtRluc5ZEVJniZ0uo0LjnbJi5ha1MyaiKv1akWWlXS7PqOROV+aROjaQTneJjZMSIXfvUbo/4bp9CkAndE1srxEtN/hsweNSKkncB1QSiOEGYNq+Tnu9j6d/b/mbdeI1YqiJK06OOXFptaCwOPxSclf/Xh3E9+1tTWinHzGaRVCau6jsKuo6wohCtqRqTXVGZPnGWU+pSiN+06cKAoxoj8aGycoIJk9wc+m4F3Fj4zwxm85/Jf/43cMw4RBtxEayRq3dw3ph5SJqY0vHyxJUo9H833e//CvALjyYUAY+AxGPf7hPxvB3p3zU5bLGX/1t/8j7c7I1HNRk69OuboT0t82Tjsmtq55ftMgzLusrutXhDXm3y8KRS8FMi/uJZszN2cUTSvi2+VDvd5VTWwegd/mnWaxfNf4j/s/st90+Qas4MZisVgsFovFYrFYLBaLxfJD4If8+7/La7O/y7NYfnh8u9U7i8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovF8jW+s443b+J10VIv820dc148xze54Gw+32x8oR+bzzSv68nrIkEuz1dfRoC8uH8T6/Po/n32jq4QtVtcdkuN+nz52V0OruwSNM4QDx8+Js1Lbtw4YDwy25AedaVxHRDaBSBPY1zXJ2oFFIlxx4jXBf1+QFlJTp6ayJhBt03U7jKbTBhvmaifqixYPztlOs3xXFMy//zL3/KTn35Eq92ibBxMqlKQZTEXkwXdgYnmicKIVq+P5zq47e3N8Emh0RR02ma/mzeuEic5VZFSNiOyNeyQZgUKQdE49xRURFGbW++8Q7uJ6zk/nxDmOWE72kRXRZGHLxMWTz4lGr8LgBP1KasKx3FeiF+BIo3Jlmc8fjIDoDsY0o5CHE/hh6Z/jx7doz9o0+62cJW53rNnTxmMB0hRo6RpNy8Kzr96iCPqTZ0UeUFRlgyHY+rGLacua+oipkTihsbdRrhdZFFQVxk1Zt4cz6OsSnwpcV2zLV2nKM/B9SV14wbiCEFZFagg3DgQkRcoBa7nIBqnE7SgLktELVA8d9ABqKoKqcx+cZzgSokUFUWWNoUrEcpD1CWO00T4KIWQDklyTk3TrhSk6yUCidPEmilHkKUlrvPcBSdbJ7i+ixt4CMdcW11XlFkJyE1MlfIcrh/tUNU5z44XAPQHQ1zPJ0ligsaR5+J8yvRiSe92F+ma61gtM3p9hR8IBGa/+WzOsN+nqiRh27ik1NrlR5+8TxBEFIW5Xj8YkqY5x8dzlDRjleeZcTCpyo1zVOCPuDibcfrsDL8Zgv39XdZJRa01ZyfG1Wl7b8jp8TO8qMV4xzindDptrh7t4QUBTQkRRoLA90jTFM83UVNlWVJVJa7SrNZmDNZpSZ4V3L51g/nMbEviNf2Bj3QdplNTz7ouuThLkb6PbhqJWhHK69Pq7bE4MY43rdbbBME2RZ7xj/d2AZjMj2m3QFLT7ZsxrfMJ1fzXuOO/ZXhg9nMcj+PjU9p6jWruwSAQaCRaCySXNbYiW1/ghkPavW4z9hJ0RRSqjfOW272OEBV5ERP5pg7uPRF0tm/Q7XWYnpsou3LxmKHvkOgtoubZtJxOqeJ7fHA7JM/M/eZ4Iap3i2x6l6o0cW/bw5CH0xv8T//+f2Edm5p0pUJIgeMH/Nuf/czUn6yZTeekSUnSRLaVRUFY3iXc3sEJTA29KSrqZVe2b3o/GXe110UfvnQu61Rj+Qvn8tsgP+Rvvvyp2G/IWCwWi8VisVgsFovFYrFYLBaLxfLn4zsrvHmTaOZ1i5h/yvF/Cs8XSF9oU8BGDVM/F8+82qZ+pS9fEw01f+dZhkDgei5nj03Ey91/+k946t8y3r9BmZpIIC9yee/DmxTrJfOpia/ZHrdxHY8gCim1WRj3pERQo3XJ+ZlZ9N/b3+XJo2dUpeDZUxO1opyAMApI45jV2ghb3rp1g8n5FN91mTWL+WgodcX56Snvv/8OAO32bRylWMUpvV67adclnZzR6baYX5hjvW2PVhjh+R5laWKWZvMYQUmn5SMdo1Soc8XDhw/Y2QoIW0ZQU2QpvusxncwY7xjRzsVkwrOTC3avXqVqYpbCTgvPkwjERuQkXJf47CFVntLdettskwr58oK3rlhP7lOmE8bbJh4rEzGu4+O6AcfHx+Y6PEEQtPAcWCwuAAiiFqfPzpFK4DhmgX8w2qLbLXnwcEqWmTF1nQFZUbCcTUlTs+i/d+UKylGUCFy3UWtogXRdajRVZgQ1QpQ4voPjt9H6uWDL9wKqskBX5lrqOqcuC6QISFamXnRdUDuCLDHnAVBeCzBxXu6lYEAZIYHneejCtOs5GuU41KhNPJEUUOuaIs/wlBFXVLnG8QVeGFEVRjRW5CUoQUWNwGxTosYLfPK0oCpNn5UEpXx8P0Ao0788z0nXMVGrRaUvj21iqbTH3p6JT3J8D13m1EVJiunzfHKG40QcP53y8IGJJvvok/eIQodON2JyZoQod373KRftOa7nsb3VN9cbhFRaMdoegTbiiqIq0FXO5OSEt94ytdFphUYdUVcsp2Yu4/WKvCjxXUmTqMRqsWCZZIwGbX732zsAfOzdxpUV0+maTtcIaupKcnY+YX/LI29iyJTyWawVQpc8bebSQZPECa4LuonlihczOt0A39U0eimk49DqjFGOpMzM+dbrlK3dLdCaoqm/whMopYjGN/FP/y8zfmfH9LcPaLcjeiNzvfceP+TH70bMZjGdbmTakIJydR/tHyJ7H5s++wGH166QzzKK8vcAtKKErZEkzyvyorkOpRDdj3CcNWlzvUHQYXYxIwwUeRPZ5rr7qOyM05OEyGjfeHzu86O//RipHKLIiNWq1Slh1MLpX6XA1Mbk4imentHvOEympq6i8T55UVAsviIvzWD9+ks4ePcD0rTi8lVYVpoqK3GKFWVtjhXCJc+MeO786T0zBvFd9o4Eex/9r7i+GRe+/prY8GZB54siG/HS++zVmMI/xptEO3oTL/VCJNY3a4Uslu8FNnbKYrFYLBaLxWKxWCwWi8VisXwf+bunv7JfprNYfmB8Z4U38HpRzcvb3uQy8OIi5JuEON/2M/3iIqj++ucvuuZ8vU/6FbHNpQvO5QJ6HiecP3uCLmvu37kLgBcN+eX/80/0R3c4umEWwb0gJAxDhFAsHxvxx3DYwvdcsjTBUWYBuBIlNZK6rBltDQGQXkC77ZJmNbs7WwDE65giL1nFOdffugbAKk7ptiOULChyI2hYLHI6nQ7vv9/F9c2idbsbUeYZs8kCqYvm2l2OT6fsbPfZv3LYtJGB1MxOztneGQCQphl5EtNphTieWSyv1zO2xz0qDenaOPLM0oLDK1cYbI034+35AYeHEdQJjx4tAbh6tENdlMxnS7p9syA/e3qf1eNf0T/4GKcR8mxEOS/MT5nn5KtT5nFA7RghSr/vorVktVzRGLFw9doRF+dThJBUjdjFDwLGozaO8khzIyx4+Ogpw+GQ9z58j9ViCsC9OwW+5zKbXjAYGhehdsvD9T08d5+6ER85vkMSL8mSDNkoOJRwQCsc1+VyVd/1fLLlCv21+gM39FGug26EWlJJQFDV5UYP4KJxlCAtK8rCuHw4wqXKV0jpo1wzHzopKWuNlJK6ypvz+QgUjuNTFnnTbkGyXiEdhdP0WUqodYlyA6Q2bQgchJTUWlM2YrUobIGGeBXj+M2x1AShg9YFl0l4VV4gfR9BuakXKRRFVRJ1OswXRuDkBW2iyKcoCm7dugFAr9tiNVuRrlacPjsHYDzeYrlcMBx2qUz3GI5HTKdnXEwuiBem/g6P9oiGHXq9Dp7XuL3UGqEUZaWpm1EdbO0gHUmZlzx7aIRaB4d7zOcJRaHZPzBzniUxbrtDuyWImz63exHDKKOqfaTfbQpU4bccTp4dM5+bvrz//nX8pcT1BGkzv+M6oCg9Tk4XtLqmdh0v4O6drwgDj37XOPwMt/q4gUQpd1O7ulTMFgnt9jWC1j8CsC4uEPKQoBXSH5h79clnHmlaE7Y85gsjlOm1JboWLJ99ylbnlmlX9UnTNSLcQ4bXAEguZtRlSpwsqfWl0MNBeyOU7EFttmVpwvnxPT7YkYSDK2Yuu7uUp/cZj11Op82whHsMtoakcUKdGuGhzwlZeUBVOBSV6d/jr+4zHmguZhm7u+Y6wvEH5OvH1FXKI2OWw2DvY95+732qCppHMevFhOnxI2Q1JWqZ+3K5NvdcRx8TtL8y7fYLqqrDw9//Z5zIiALHV24jGvHMKzZnL/Hqe+35IZevixd32eyvm/eH2frGNiwWy18O9j/oFovFYrFYLBaLxWKxWCyWHwr2i3YWi+X7yndKePOyAOZ1opoXRTSXP78xkuNPaPP1Ap3Lba/27U1tPz/360Q9mvV0zq//4e8B+M1vfsf+qEV7uEd/aw+A6fkFi2XM8fEpX335BQB/8+//lu3r7+F5mu0dIyZxHYlyPPJKoxtHmUWaUdfQaSlQZvFdCvC8EC2qjdvBYjohiVcoUeE0jhmtVojrC9bThDg2kTtR6NDrRkgpmEyM4KfKS6o6Z39/iGicZwAOr+zT6rbJmmN/86vfcu3qHp1+l7o2Koft7SF5EiBdl6oRf3iOy8G1K5w9e4ZoFuT9YY+6rhGOIEvMtXUHY0oBfm+Lq41OwXEdhHJwXW/jUpGc/w4lKjpbNxHyRQcJQ91EesWTJ1RFTVZ1ideXAo6AdrvFo+WcVt+McxKn1HVGkfsMx0bMFERtLs5mdHsebiPMuP52h/lkQh6v6fSMm0oaZwgp6LZbzM6NMOPajV1qSqhLRN3d9ElXEqUUfmAcUYxLj4NyXbLUjEGtSwQ5uhYbx/Ql4VsAACAASURBVCBd19RVTZFm0IhdlBOSpwlBGJDERqRU5BkyaiFVjde0oasUSUZVhujKiKiU64ADSgrq2qiPtK7J1is0HlHHCGCqUuPUCukFSNVEQ2njwFKVmqq6jKkyjh5SCBqzHIo8QaLwomBTk47romvVzE8ThaVcNDW6hroRV8R5gVQO8TpGN3U1HPbp9o17im7GAAS//d0XRKHHYGjGWUnBcNzl6tUDLhpnprouOTzYIV5neMo8Fv2ojaPMmGnRuPQoSZmnZEnBohHotNoRi4slwlEU5aUgqWYxn5JnKZ/82IhTTo5PGY76hKEPjVitLhe47S3yUhHPzPl8P+Dp42PWqxUHhybKaT5dcfzslNvv38aNjMimrBziyZI4LrjzxR8A6A27PHlyTK3hZz/7qZk3HNJ1hnQ0deM2FEYmdq5G090xjlD14y/I47dxBOztHwBw79M+62xJ6NZcTM2Y9touZa159OAeftu45XSO/gOeP0TIFlXrppmj7De8fS3gF5/+M1ePjgDo9tp4QYs0jvFc3VzbKSQPCQOJbsSDZVGxOH+AqAR/uG/u6avv/AjP9ZA45IvHZj7KCwr9NlHkcvbAOHnF55/xr3/axtExIjDjJ7wh1dO/5+x4xRdPzP371o/f5+z0AiEVyeRLALzic7bUDD8U+KGpg5FTkyQ1RQWxbvrn3SAc3mT+7Cvu/Pq/ADDYvY7wfIR47rz14tP/RXHmq840xi7nm94nGzEOEoEGoV84uQAhTNzhi4JQaYU5lr8M/tJdb6zoxmKxWCwWi8VisVgsFovFYvl+Yl1vLJYfFvLP3QGLxWKxWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi+X7yHfG8eZNcU8v83LU1B9znnlxvze1af75+liqr0VO6cvQKb1xItBaP7cluPx08yEbx4x0teLB53/g53//9zy8a5xs3v3Rv+L2xx/wm998ysnEbDvY26LX7xO1Ozy4dx+AX/zit/xNf0SrN2S0twNAmRVcHJ8ynS1xL11wPG8T//TogclVuXJtFypN4DksG6cOL2rRGw2BiuXcxNe0Woq8rJCOj+cbhwtJyWq5Juq2GW5tba4wXq4pCoHrmTLyXA+pMlxHEQyM28tP//pjlrMFk4sldZPr0+51CFtdVquE1crkyNRa464yHj58xvUjc22TszPiMGQ07OL6xrknq2o836cqK+SlTY8u0VQI5ZBPvwLA12fkwsMJus/n7XLOgCI37jbJ7CHTRc35+WrjqnNxsWA4ajPYGrOcG4ef9Tphb2/EdLpm0mTfuH5OnsZ0+x3Ozi6asXfQSOaLNY5n3Gi6/TYnJxNa/T5Z4/Bz7+4DfvSjm1CtEY3zR1VkTS0rNM/HVIgatEY2TixSOVQKitWKOjVuIMrxWC9mdEdbG2ehJInxQw+hIApa5uqFosgz0Jo8TpqRSZGijaPkRoonlaKqBWVZoht3IP//Ze9NnyQ57jPNx93jzDuzKrOu7uobDaABELxFiRIpjjS7ml2ztTHbv3HnizQ7kmZNy1lKI1ESKZ4gAIIA+r677so7bvf94FHVDaABQmuzJgD0B2YwdGREuIf7zyPR5W+9bxihun2qIkMo64LjCY1SEqEUunbLEb4EoSizGb5XR4kZgaTEVBlFPQZ+pJiMJ/SV5iTTKwgjhPLJqyXUzyGUQFcVRoOgrqFOE2MEfiCZTuy8NVpt5smS6XRMUEdSlXlOkqQ0GwErK3Z9eJ6ku7qK0SX9fr1mQkOel9y8dY9r16wDjKk0FRo/CCjrLCKjDQKJFwSc3bZ1upiOuX/3Eetn1mjXUWK7jx5z5tw2RwfHp/FYF1+4RGU0QnM6Vsrr8+TJEUVZce+WjZnzggbNZki70+TocAzAT//lZ3z3T/7A1ue+PdaIY3RXU2YJm1u2L0eTI1555UUe3nsEdRtpIglDSewZ4pZ1OToeH9FotWk2m/irr9j6mz1hf3KfRnPE6sjeb+vil7l5/4ecGQoaDTtHiyXsHGoGHQ+5vGfbOLxDY31AuVjiRTZmrr16jnB2j/OLKXu79j2kgm0CH4pMU+S2dt/8+U/oRsfoMoTAjt/h0YJ7tw4pkpx7+zY+7sq3RuiqxJMp+ujnACxLj1kyRJWCH/3w7wF4aXhM5AUI2UQ2bORYcvAmVTrnxuOAravfBWB1dYDvCe7f+A0j9VMAVgYVfmOVMq9I8jrqzGsyEz1Ea5PVM3ZcpC/JMolsKR4/fh+A/Ud3WD//AiAx+oN5Ub897hCe544mTq8/OVFbbxxjHaSeuYN1jXrW3MvYY+ZDX41GPBOb+Om/dh0Oh8PhcDgcDofD4XA4HA6Hw+FwOBwOx8fwmRHewEejoT6tGOd5opvfdu0niWuejQJ59rOPiG+eEfwYngpvPnCtgeVkwttv/AyAn/34R9x79z02t7b56h/9zwA0m01+8P/8kJ29I8pa5PBk55Dvfuf3GB+PWVu3Ipb33v41jcjjD//sf6U6iSpBc/feDlEIR4d1vI5RrK4NOZqkbG3ZWBUlYf/gCCN8VgdWbNBqN1G+QIoIb2iFLelsQpoU+KHPbG6FGY1GRNRsUhYVRWY3y8PIp9lqYpAYY/usqxKt4d6dBwzWRvbaVgMvCOlVFQc7NmapKEpW1wbEDZ8wsn3J04wsWdDvdU6FCmsbTfZ29ijLNr2+FQx0fA/pexhjUHVmkalyqqpEUrA4uA/AdJrT2byAFzWfbi4LY+dJG4qZjaURQYukrDjcv4tfC2VWhkPKLEPG0O3Wwh0R8vZbN7lwaZswtAKEMGww0xm6KtndsfeLGw0whka7Sba04p4ynbN97hzzxZy1dbtxPx5PSBdzPFESCDt+XhBTFAVBFOJFdgysviUgnc3w6mioUhuE8JAyQHm2/qQUNNotTFUhhB2XdruJkBKtQUs7CFoYpPFZLudEsT0vjGMECqUkuh6soihtdFf5NLGmyFK8KERID1WfpzEIJSmKnPl8Xo9BTJ6meEFIUD8HQpElMwQlshbZaK2J2zHKC5D12CPAoJGehxH1tQbQhY0ME359nqQqSw6PZnQ7tobKYs7k4JDJeE5sh4rF7A7dVsz2hfPM5wvb7iIh7rTJ04LDWjA1XLdCnPWV7ql+Li9TPDyUp5C1eqHMS1TgEfoBRtsYrbjZYn19CLpgNLLCkV73Ivt7EzqdBqa+NitKpFQ8efyEbttGFuX5EUd7B2ye26JeRrRaMVevXSJNMo5qkdeLL71EluTcvnGPLDmJsyoYH09oNWI2t2yk0spam9k0obcyIIxsG5PZkqODY15+5UVUYBvp+X2EVJRlSRDa94uIRqQPbxL1zpPM7FxeunKJv3v7H2gGOcu5HZhus0Ur1ihPYIpa4HfjLV4YXKIq1Wn8WXPjm4jqiNX2ET/4wV8C8Af//j+ydWabJJkjaxFVPjtgtavoDSJkaGO0VpoBeiPmyeMFW5ub9thwQKk1Bw/v0ljaiDBv/fdZXXuZnYe7ZOPHdvzOGO49XHDm8jWI7HvITN5hnvpk3iZb52wUVqvTpkxntOVdhqu2zzJsMJ+WFMElFsLG/qm4hydLVNiCuk7TLAEMSsLhxI7p+7/6JWvnLiOEfEaQqT/y/fSsWPQ0QupjYhU/8pmgfp99WE1jxTkn61fU/3wcz8ZeORxfBH4X46acBa3D4XA4HA6Hw+FwOBwOh+OLxu/az/jAxU05HF8kPlPCm2c3AT/Jweb/r03Df5XrTu1wY04FMPZfH3gGY5hPx/zD9/+GN3/2SwCyvGTjwlX+8DvfIak30P/+b/+e1dEar71ylaPDQwDStOD2nZtsb58lis4DMB0vuHfjOq999R6t0TkAZouEc1fPYUqDKez9wtjHjwIaRiCldYVRQhEGIT/9l1/xyqvXAFhbX+Fo75jFYs76lt3cVl6A0QVpkjIa9uo+56A1eB5G2s3yoihJ5lPiRpPaDIR5XtHudeh2uuQLK0pQBqJmjECyuW37fOfGDX79i0dcfeUlqnqjOGpEHBweszocsJjZa5eLQ1aHfcI4IIha9Rxpa9lAdeoCoQGhJNl8l3RmhTdHB1Oaa96pCOVkkiSCIluwHFsXoazq4yuFHzS4cPmsHedZSrI4oNNtcTy24hk/KBisDFAKGg3rwDGfTDBS8O4775Ondux9P2Kw0mFtc8Tjh1YIsNLvoUzJ/PiYuGGf4+LlLYQ+Rvox0rMCCal80EuK0qBKez8ZxiB8hNKnjjxSCZQf1gKlWvRkNJ4fUeZL/IZ1txHiRJwkEL49r8hTvCCi2Wng1W40UgmqqkJJeepKhIYsWRKEAWVZu71UFSKTVFV1YqaCH/ooGSLQGF1PiJF4gU+ZpaTmxN2mQVlKjFFgrHhLCh/p+SSLBbXsBj8KqYoCPwgQwtZukczBlHgyJM3suFR5Qp5lhF6IrMfgjZ+/xfX379Af9HnlVSuukDKkrBYYrVnfGNbPpsnynDyrWFtv130u8aIG4UbEeGwdZbr9Ho1GC2NK8OxzBJ5PpXOElEzntt1mHLA6GpDnnK7pRjtESfteOD6w99vZPeDqy5eIfMHx0QSAMGoTxBFFXuLXwqrr799gNOqzTJZ0a5GcF2ywnC2ZTReky7SeogrpeXh+wP7eAQBxI6DZigkbLUQtgPG8nLPbZ0kWU7KsdgIymmazidYlXi2ECvuXWB3cQ5cLlNT1/TxG514myd7itVfs/aKGpNMO0MDBka1JigekB28Sr38dUQumRHAZim+xyY/406/PAJgf/oS3Hr7Lzu6Yxcz2+asXJly50ED5PbRaAUBlMzot2PNC2itWANNoxWSppspzJsa+S9b7X6HVbXLnVsLZoe3LaNSiLAtk8zJeZsV+y+SYX9+Bl17/Ns1W7f6kKxZ7bzFs7Z0KuuZZj6r3FWS4Sr8W2RzuH5EVJbGfk9Vjf+fmDZTy0CbAq8WDN6/f4bWDXQajTZ7leeKa54lMn3dMyo9Pg3zWyUaY+h4nf+aDn334fCe4cXwROfnL6e/iX84dDofD4XA4HA6Hw+FwOBwOh8PhcPzb8pkQ3nyS+8zzRDbPfvZxG4jPbmI+62TzvOMf1+bzrqkPPhMjdRJgdHLu043W6fER3/8//5y9R0/or1jnhc2NES+8+iXmkyN+8uMfAdDptPDJSGdjTGE3dncfPSYMIPQ9Ll86D8DaqE+WBOzcv8eV4bZtV/p4vqDVbbGc2s1toxOW8wUCgxTWyaYoKx4/esxXv/oSnV6vHiRDEAU0OhukqW13fjxjuL7KbDrjoN7MP3thm6ooWUznFLXDRVkW9AZWtDCdWnHK4dGU1mTK2XMb1AlIJMsJjWaE0RVleeLUIVjZWMcPIyJVO4kUOWfOrFFkJam0fWk1fBACqQJMLa4oygw/CFFKnTo6SOVTpHNm+3fZe2ydZ3Z2l2y85H1gB1oAWpcs966fjvMyMzx6uIPnKx48eAjAcKUPymM8OWawaoUAs8mcoihZLjLmU3ttVZVobWg122ydsc44RWXYebzD2tYarabd4NcIdvcOaLca3H/wAIB2UxA3ClBtirovXhCiTYmnJH5oN/2NkJRFjq4KZG09U1WGwDf4YUCZF/Wcg5QSKQPyWhyQG4OgotVb4WT/XhclSbYgaEbkhRUqRCpGGMlyniLqXXqtcyRQCHnqUBNEDUBCukBL++qoSk1ZpCjp0a9FIslihu8FiDAkCMP6OQTKk2ga+MqKWFQQki0WVEWFELaGdFXV4i9DUdnn8KMYjKFIDWVlz1NKIfwmceijq7rPleLocMK3/uBbrNYim8V0ymDQoSo1VR1dVeYFngRdLHj31zYq6cVrr+DVsV6dbt+OS9SwZjtanIrLKl2hvBipFP1e7b6jM0rl4wtzumYWC8l//vO/5M/+7E+Y1s5Rw+GQ3Sd7hKHHcH29rvuSRjNmenxIMrfPtrm5ya2bD+l1u3R6ds6Ha0MeZ495/PgxurDPG4YeeZ6TL1LabVsvrU4TjcKjIkvs/VrtgOlkQRRF6HodeX6F75cEUUBV2nEOGn2C1grj4xt01l+19VzGDDYu85O/e4cXLtgiWoskeJKyMmSlHVNPZSwevYFsXiHsWlcnoQKC1S9TLh+wVt4EQB7eZu9wxvm2z6QW9+SFQaoIr3cZEVvHoOTgfagMyxxWtrbq8zRSCrprZ8g71skrSRXTuzscPb5Bv2VfOlGgob1G2D+D3v0BAPsHKcf6Gr9/5WWOD+wcFckUv7pDZ2XAdGZFXt7o9zCmz8HeLr0VW0Ptls+TBw/Yf2eHyeFdAB7eu8c0D/iz/+V/4+VrLwBw6/2K4/19eqvrT7Ohnvs9ZA9/WvGNvc0zoh2eg/gkfxuHw/FFw/0GjMPhcDgcDofD4XA4HA6Hw/HF4eSXCd3P/RyOzzcf/+v0DofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6H42P5TDjefNJv+X9SIsa/Ni7jw+08ddM5vePHtiOe+Ug/63jzzDn2mOHg8SMA/vL/+HM8Jeg2G3zre38KQBhI3nvnfd75zXvI+qbLyQE79yd0en0GA+vkEEUexigO9o9YqZ0XGv0hGsn92/fZumjdWTorF/jhf/8X1oZ9rr5gXXCmxwXLZUKRpESRnWJhDIPhkLQwDHzrjpEuE26+f5vh2gg/sM44KI9CG+JmzEBalx7flygVYOgyPjwCoDsYsL+7T3/QwwjbRhAErKyNAIFUVtOVlRKERAUKigUAg2GPRiNGSnjwwMYxdZoRSinm84T9AxvDE/lwPM14+fURJyEqyTzhMDlm88wZxDMOMJODB2RHN5iN7bWtdpve6gZSqKfzrg2Lvfssx/chtC4a0/2MvChJlgkvvfKibSNNeOnVlzg+PCZuBKfj12i3aLUa7D628TWjjREP7j5BSUmrbZ1dnuxMufrSVVqNmFvvXgdgfWuLIi+5/u57TKbWZabXbiAGJSvtTQTWbcPoElMWGCMQ9ZgKoSirEpSP79XnFRVeFJIsluSZdbwJwoAgDCiUoFpYhxXpgyxTssUhpo6zKouSZqtNmRUo37YxG49RXkAYhhih6zptYsqCMisoqeOiggBjSqp8gvStw48W4MdNWx/a9sVTHlL4qECerigpJUoptDaEvq0NrTVSSoxn8OqYJSUVfhQhJShl+1dWBSCRviHU9tpK5zQbXaqiYJnYdrM85+yFbZIs4+c/eRuARuRjhET6tj8AD+484vylTXrDVfzQ1v3ukyOSdIeLV84QN+0xIat6XcOJz4gxBiVA53NEPaZIhTSaMA5Z27KxSO+9fYNud5UgDsmW1ukpTZasDAfEzQaLuXWn2ts/ptNporXHlRdtPJZQ1sGozDWHR9N6PjyOj47BgKkzg4SAdruF7/unDknjo2PKCjrdjo1lA1QQk5eKdDyl2+ucjnOynBH4HWRgaxclaY6uUlVvs1zatbpclmycOcvw7Iu88d4tADb6CZvrAVlmiCPbl/6gwWQ65s5P/pavfPd/B6AoUwQV/ujbpLmd3271DucrQ7epWSR1XSmB8Lt4vZcwtbvS8vgx48cHLBYxoxXrOlWVJUVW0OyskuvazaffY//JE1R+mwvbto3F0tDfeIl8vks137Xjsmzw0pe+Zh2VavunfHmbbtdjuTDMtR17s4zptBW9fo+9R3dtbTy8zq9/9QbXLig2t+y1r253+elbR+w+vsf2uYu2L90hrd76B79GjLERhHzYSe3jv48+KWbRaPH0vGfa+YRLnp7znMgph+OLyP+0+bqLm3I4HA6Hw+FwOBwOh8PhcDg+Z7if6dkxcK43Dsfnl8+E8OaEj4pZfvv5z9uk/Ljjz0dwslN6El31bD9EnR1ljMHwweMf7K/ND8mTJT/8m78B4Jc//ylnt8/xJ//+Twlju0l//Z13+dsf/AMvXrtCOhsDoFFIWmxsbVLWsTnNdpe8NKSHU9LECim63TZVUXHweMzunXcAuNQb8drr12g2Y7S01zbaPaJmizvv3ybL7LFWO0aaBdPpjHnbRiA1GyGrox7CGOI4rK9toaTPbDIjrGOCksyQJjm+hDiyG+NKCHxfEvgCpawgJM89hLTjEtTCm0F/wNHBEZ1Oiyo/6UubojQkyyX9Wmg0PTqg0oI4Dtk8Y6NqTFUSd7vcv/+E7fPnAMjSgnarCVQs62ieNEmIVML9J3scHR0D0OlHCCnhmXnSZU4yvYv0I2apfbbr79+k1+3QarZJarFBGEbMx8dUxZLZ1IoDDvb2GQ176Co8FTTMxkec3V4jiBrkuZ0jYXKiOGI5nxLVcz4Y9Hn0cMmZM1u83LcxRqt9D1k8wZQFXmDHL1smZElFEIen9ZsnCaIyeEFImdvn9QIbweX7Pn63UddjiS4qiqLEr+ctjCKqskky28NoK/5odGKKNLUCl6AWFSmJxIDUqFrMpKuSqqpQgULVIiCjNXmWgggJG7aGkB7a2Iioso6uktJHmxJKdVobJ6I0ITVFLRYS0iNdJgShj6gjkObTJU0DfuBxko8lT9ayFPj1mJZVDtLDmIIotm189euvIH3Fwf6Ym+9bkUj7wll6nRZFmqALK6jpdiLyvKSqpqdips0zq1SlJvAluszqMY0QSlMVCWlqj1Xa4CnACMrUimf8sIWQ9XXCjmlZFLxw+RzdTpuJntZ1miEVPHz0hNGqjeXyfMnKaIU8S7l9/T4Ai/mSCxe2mCymtOv1cbQ/IU8Lti9sc7hrazxJpqyvrHOwf0C7Y0UnaV7w8OEe39jaIIjs8966fhPP81kdrZyu8+UyASQzMaNTfwsoFRE01oniO4x3b9hna7+EyEu+9e3f5523WgC8eetNFpnh0rbPyqp9H2RZSqAkZwdTZGHFb5XoIIQC0SIcfQ2AqLuOit/Cq/Zotuyc7x1KZuY8DX8F5ds+t+IK3fTQXptWw/bZVxp8xWKRngqIkmTBGz/7KatiFyXqSLT+OVS0yvLB3zPetWt6ql9mazBg78keJq3FfvIxKuhz52HJ1iv2f2S9qMnhzi7X3/4X9u6+AcDLFw3/8Y89ms0AJe38hoHBVJp//M0d7t2/AMBotMa7b7yBeP1lVje36xqyMWtCCJ6NTbT/bXg2OOrk+Ie/fz4QM/Wpv9c+HoE4/S77H3E/h8PhcDgcDofD4XA4HA6Hw+FwOBz/Y3DiG4fj88tnRnjzYbGM/fOzn3/0mk90BniO+OZ5DjkfFto8777WncAKD04OfPReAlOV/N9//Vf88z/8EwBfeu0Vvvnd79HtdfnB9/8bADuP97h05TIPb75DkVghRb/XYW20wnK6hwyssCDyJHsHe7zyyouIepN0PJ4xO95BmpLb162wYHVtyPD816m0x97j3bp/sL+7z/p6n7AWdZTGUKRL/EBRFFZMIj3F5tY6Ugiqyj6bRJAmGbtPjlhZ7dljSrH7aI9WK+LEwyTJS27cfMCVqz69nt2Q96TmxnvXeeW1q3j1EJZlSpHn7O3t0evW53kBy3RJMlvS61kBR3+wwnyZ43uaw0MrSFpdXcFIRbfbRtrHYLg+wqBByFNhiy5T0smY6XhOWdqGg9AniJsYram0fd5qeYgsE0S0yXJcC1EaTaqqoNfr0B9aUYzRhnw5YTZdIJQ9b2W0yv7+LmoypajFTMkypdkasExSxkdWhNFuxuzv7NLttblw5TwAd+/e5Wh/QhT7eGEKgBqNyFNQXkCR2zaUrwhbLcI4RNSCFXJDVRT4oUdVCxqkaVAIBQJ8z/YlXSxQKgAkqnYNQQlMqdFaEvi1+4kwGOmjTYVfO94IKSnSDK01gW+vLfMlBoUfR1CPn5SKIIoRIqY6MREqlhTLBUEUIWo3GgRUVYkuNXlln9fzPYqqsoKevD4WNkBJPD8gXVrhUpHnpAuBp9qnrknGGKT0MZSU9VihFJOjQ/zAPxUQNfsDTJkyG09YqV1SNtbW2d19xIXL51DC3i9qSpZJQacdIGuxRlUWNJsNZBijS9tGmS1QfghGEdVCozIvqAqD9BReWAuDEGS5JstzsmwOwJkza0wmc+7d3eXKy7WTjSmZz5cIYwhqp50giDjYO2Y47HPxihVrHB/NkZ5guDYiSdN67CVB3KQ/HHC0b4U3jWab2SJBC0FR2mHxwwavfOkayjPUw8KFK1cIPIlS5em77f69JzRbEWvhiMXUilPisIEIOohwiMx/DMD8qEMQdllZjXjx2kt2/KKYt956g1sP5ly5YOvqzMhn0MrJl4eMd6xop3v+mwgEVZkSNq1Qpgwv02icIT26S+DZa4fDFgUxZaURxgqcFmnB/nFBmlYk9XpTvgAh8DwoC1sv773xj4jpz3np9YA9+9pgNHyBaHlAtTjgFzesIOkbf/pthBAsZwe0kl/a5x16jA8meO1Xmc7sOIdZwf7j9ymP3+dbr1nBz+ZGwNH+kkYkoHZ/EhiUNFTZmP0D2/Bo/SxPHjyk0w9Z3bBzeSrW/Mh31Yno5tnvkd/ueIPQ9jzz0e+2TyuiESfN2wupDbccji8UX2TXG/eXbofD4XA4HA6Hw+FwOBwOh+OLjRPfOByfTz4zwptnf9P/wwKcD3/+7GfP22x83rkff194Nkbmwzx77NmPayOcU6oi58d//7d8/z//Fy6esw4IZy+8QOwrfvbPP+b6++8D8Iff/hZPHtwh9A3nz9hYmjyD1bU1jvd3mc+sO0aWFXgy5Pj4iCiyO+hrmyOSaUjQFkTNZt1uRjp9TKN7hqhhN/MfPdjB90N6K/1Td5Zf/vxXrK0NWVtto2QtsvEUpqxIkvxU5CBNThCF9FfbTOrYpqgRsr41IF1m9LptABbzCSurA1qNBqIev/29I85sbyF0hQxtaSmpGAxCJtMpGity0EbTiBSh6jOrI3e6vR56PGc6z1gdWIFOGAUUuqDRbKJr0VNe5ggpkFJB7ZKymC+QeGSVZJlY0URvMCRuj5BSYbRVJaSLJwhhyHJ4eNdGdfm+R9xo0l3popTdJYowuwAAIABJREFUaDeyRKBYHa2i6zmWQtDt9ombTUxl71dpQZ4vmBzP0HVp+X4LIwz37j7k4guX6jmqWF3pIX2PzbPrAMQNhSpCpBdQZLbPftDA9wVUJWleu8eYirjZsnFLunYb8mN0VZHlFapTH/MCiqwg8AOoXVzKrCBfpkTNHllqRV4myQEPz/OtIxBgyhLlSSoDor5WESKMhuqpeKDKK7QpbPTVSbxY6GOEotLmVAxg0Agp8ZRE1MKvqioxRY5BYbBiCC/w8JQkWU5ptAenz2GqijRLCZW9n1IBSnpWQKXqGCihaXU6GM2pS49QEk1Ao9Umq92VHj96zObZEWlWEQb1c5Q5K8MBYSBRtUPNZDKmqULAIE9ET/iYSqI8KGvxkQpiqjK3NaXtGHihwvc1WQJlpuv5DZg+XDIbH1Omm7b+kgXHRwsajYB/+eefAfDya9dYzGdcf+8WL7/2AgDNVpPb128hjEfcsest8BXdbkaoDP3aLefurUeMRgLPD5gvrHCk3+/QbMa04oqyXjPHhzNa7Yg49oljO1bDUY/uap9knrBc2FprNFo0e13iwWVEYN9X1f7b5L0vs1z2adVztLEtaHW6KGl4cM/G6t19+w5n+xM213z8nj0mTIZSAcKPALtmdKXQIiZoX0B6dvx86eOXCbrMkML2pd0KEUPBZDnj4b2bAFx+4SqNZpN0mfDWz60bzeTuD3lh2wMpuPqlr9uxGr1K9uS/MVuUrJ7/PQCsXmuKGf+UQf8QgMU0IvF/j7UzL3CiqXzrF7/k+O6P+MqLhv1ayTNaaeFHhoePM05KY30UcmYzZv12derIU1UVaWI42js8fe+exkLxYUHNR4WbzzrinCCl/OD33AdNcv4/8a9zhHM4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HL8N+W/dAYfD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6H4/PIZ8bx5sOcuNZ80m/mf9rPPs4Bp/6UD7sPfNDlxpw6upycd+K+YoqCB/fuAvBPP/g+t975NSvdFq9/42sArG1sceM3v+Y3b/+a11+7BsD+g5vsPX7E5sYqflS7WbQDxkc7dDqdUyVUr9/l8aMj0vmSwwPr0DBY7dHsNEiXkrWz5wDwW02y40eEce/U+ePyC+cJfIWgYjqx0Tdnt7fp9zscHx7SblnHEV0VeL7PfC9Bl9YxY3VjgyLLKbKcVss6OcTNBkYrvK6PH1uHlSZt2q2EKIo4Pj4CwAtjOp0m2SJlfGydbAZrI3Z2Dul1YmZT67oSRasIcoq85PFj+2ydXp/+Sp8iS1F1UpIf+DTjJsv5krx2sllMlxhg8+xZqF16er2Q+W5FOxQM2tbBJIhihLLlXSxs/8p0TCn6HB9ntNvWMejJzh7T6QIpNF59/rvv3KbR8Ll8ZYt79218VzOOCKOILMtY1i49SniUZUHciLl7b8dWk5pw9cWLVHlEEFp7jNX1Fe68d4vRxoj5xDoaxV4LPwxBaDz/xBVGI5ShzBJMbaGjlaIsCxCSoK4XP2qhdUVVzk+Sb8gLKCuN51dUtSNP1GwiTEmapNRJYohKEDYilARdFNSFgK5KNIK8joGSQmJ0gRYSP7Rj6imPPK3wpCJLrTNJpQReGOF5HqdWHALQUOQFwUneUQmkBaDIk1ndriBqNJAIZF27Zanx45AgCChSO+ei4YHQKOWfPgcI/EBgDCQz68x0sLvPcG2Ng/0D0tQ+23B1BRWEjI8mtJq27m/dvM0lrdnaWkN6dfxUowFUlLlB1a4/WguEFBghkSfRWmgwFUUmUbWrU14kgCBsBNy6a91e+t0WV18+j+ddOo3+un3zNmlS0uyeYW1tCMDh7h7DtQEehkkdsdbqdGg0Gty68ZD1OmOtsdZjuLnK3s4+F67Ytd/rrbDz6CG9XoxXt9HptPB9n2UmOdzfAyAIG3ieot3uMj4e1/MrWIznBIHC962LkNEGo0ukHzPObcxcs7lHurzB/nybwZp16NreHiG2h6R5xWhjy4793iXe+Mn36fQWnFe2jWI+oYo6BI3Gaa15no+WPp4fnr5HhSkoDegSoq6Ne6O1QhAEbK3Bf/3HvwYgW+wTxi1277zLhdE+ANdejwhCj9bGK/iDr9p2l/ukkwdMixGXX/qSnaPckI9vMgyfUFV2TO/t9Fl7eRshFIuJvd/j6//MV1/IGa0oYs+Oy3xaUAlJs2FOXaLG05Tj4wphnqZILWdLPM/jnV/9nN/73vfs+HUG2GioDzuqidMIw0/iI1GIRj7zffSv45O/Bx2OLx5fxLgpZy/rcDgcDofD4XA4HA6Hw+Fw/G5w8rNN9zNBh+Pzw2dCeHMisPlt8RefZuPwXxs/9dsiqTAGo/UHNkCNsaKF//43f8Xf/PlfAFCmCa995Wu89rVvgLJig9/85n1+/dav+c4ffZsnd38DwM333+XM9kXanQZxHd0yn07ZvnAOUxm0thvUs8mCMFak2ZxHDxMAup0Iz5cky4rOah1TVRniZpPDnUc83rfXvvDSC/hhQJkl6Mr2WfkhWpcUecLBsRVmbMQNpJI02w2UquN/fInvB6SNmAf3HwPw8ssDlsuUxWRGtjiJVSk4f/EcoGFsN6PPbo2I4ia5FJTGHptOEnRVoY2g1bYRUo8f7zMa+Bgy+gMbm+MpSZJotDan8T+6gqIsKfOUd995B4ArV1/AaIERYLQVf4j8ENI9osgwWLHilP7meTw/oEyPKMY2Nkfgob0++3t3yWthS7vdJG42aTWbTKdWwDEcDfCUIUszBv06WmtR4gUwHU9JkgUArU6b/uqAXrdHmtm+lJWtj5XhCjfftRE53X6Pdq9Pt9cm8G2789khcVjgFcWpqCMvDFGjSSUNVW7n0lcSiU1xMrW4wmAoyxyEpCitOCVqRBSZpqxK/Ciu+2LAC4g7IVGtWNFlhRSGIod0YQUSjU4brQ1IiaiFLQYwKJQHWR2FleqE0A8QniT2bR0ICVVRgBGktSDJj0KqyqC8AFmf5ylJE4/p8ZSgFm95vqKsNMKLT2OqPD8CramK7PSY1lZMZBBPRTGVBq3BGIqijiErBFqXXLi4xe2btnZXh33m8wVJumBlaMUk5y+e53iSMFgpqNOnCAKPqsrx/YiytOtD+gFFkmKMFSKdPLCvPELPoL06Rsgo8iQjS1PWRysA3L/zgMD3UJ6hXa/zyy9eYX/vgEYjxPeswOTNN68Td7r0h6vsPLLijzQrmC9SlBLMp1Y4p5QkSRacu7iNqsUfYSMnKwoGqwNmYzv2R0VJlqd0ez3uPdirx95DKsk3vvU6/RXblyAMuXPnPnEUsrJi5yNJUoJWE08aXv2KFaxksz7ZzlvsTR4RBTYmbT6eowKPvChodZr1sEi+9cf/gVu/+CuubB/bmszuY8JXUMInr9fHcnqAVIIwisGztaGzKdlyQRDEzMe21gI1ICliojDj3329jq3zfsHhoeDiYMHlMw1bpyrC61yisfY9TGDfJen4XbK0Ig1fIE+S0zpl9iZaLtgtXwQg3voWpVagBT//p78F4KsvZJzdUHjC0OnYWisKjUERBoJlagvmaFywPgp4uJ8Ddq2WpqDVbZNOWzy8ad/3V7/ybdtPY56Ry4jfKrh5lk8TC/Vpo6NcxJTjd42Tv5R+0QQ4DofD4XA4HA6Hw+FwOBwOxxcF97O7T+b7j3/lxDcOx+eEz4Tw5inPbgp+vIDm9IxnRDYnopiP21h8Kpr5eOHOiThHa/20J6b+lzm12sDoijvvv8tP//GfubB9FoAwjrj60jVWNzZ579fvAfDO22/z+pdf52j/Cffv3gZge3udqBmgvJCidhcZDlqYwoAXgbSik6qa4AcxfhywnFunmMnxnK9848u8/+4tHt61woJBxyfe6hE32/SW1tmlGYcI6YH0afc7ALSNxJiKFRRpajejk2WJ1kvGx8ektbji/IUzBHFMEPh4nu3L0XhGp9Omo3yK3G6gT/an+JMpoQejNSs2EFRoSubL3IoigMPDQ5qtmKoylJV9jkYzppQ+ebakFVnLlmR6QK4Vx4cT1jdXAcgLSexnPNnZ5/Yd6zzTWT3D2nAFRcViat1FyskjksUBebpgtGGFBa12wPL4DunRdYq5HavKtNjPfCbThM2zZ+z9Om32D465e/ceZ+q57PZi+v0W81nG3oPrAJy7eJGqVKytdekMrOPI44f7pGnKhGP29w4AWF1bI00SZKx4cN/2b219k1bDI1SGwO7l8/D+E86fX8GPmpxsyYeepshzpPJRgT2mlIeQAg2YWpS1WBYEXoQfKKRvRRhVluEHHkbEiFo9I6TCVB7ZMsFTtmElFUYbpNRQu9EYIQgaERhDmds6CJstqiJFeYaTdWmkQvoeQghkLQKqigRTVmRVihdbh5AgCMhSjScNxtj5lUIggoBGu0FV1W45BSA0xmjKU0cUj7xYIqIWXmBfT1VZopTA88NaQQFUFUW+xFi/HAC2L5zjwd17xJFPq2UFIQf7h5w9t0m/28YPbZ8bsc+Z7U0QBuplrY0hDNtQ5bYdrIBKKokUkrI8OTGj1AbPkygl6mcLaicUQ5rVa3pznfEs5cnDB2xuWJHc1vYGo40RHqDrsWp3Yvb3jlgd9lgZDuoxUMwmY17/2kvcvf2wrskOm2eG6DJn94kVtgihUMpnNlsyX1gxWH9lBd+ElHmGrgVEg9Ues9mUvZ19BgMr+NHa4PuSJC04qB21hsMV0mVCqxnihVbEks9j4sEZ1uT7JMsf23FRFymqHkIE+HUNRZHG89ch2mA+s31ul3OiIKIqU4rCjsvs6BHtTpPJbAdRC288oQjiNgaF0LZevNY5Ohe+w5N3f4wnrSCuGWoGZxVx1EFj51I2z9E89x/ICg8WVrgk0h2SJGOeSK6OrLPQfHzMpFonE9vItl2//cEqXuhTZDO66gEAG6OKqtQIYVC121AYgFQGIzwage2fGvhIFbC1qfjhr94G4Nt/cpFOqwnlNgdP7DvnRW2wGsSnws8Tdyc7h7KutU/vRPPbnOCe3vvjXeN+2/elw+FwOBwOh8PhcDgcDofD4XA4HI7PBk5843B8PvhMCG+evzF48tnJn59uFD5v0/DDgpzntfH843zAycb+x0fvIYRA1y4kb/70p/z1X/wlEQXjid1Q/u7Xv8n61iazw31+8+s3Abj22kuUy2Me3rlFI7YODZUIabVaRKEiKWpnF69NtxuzWMzp9+2Gd5FVZJMxRZKwddZu3K+OtuiutFnfPkvUtPdr9DoIDWEUsHHGikmS6QFRb8T9B7v0utb9pNNqMJsuWcyXp5E789kxQgdIKoLAboI/fnTAxsaAsiwYbVgBTBQogjAky+dEjbrP2nDj+h0uXt6mtWLvly+m5GnBk0d7DGrBz9mzQ5ZJTn+0QlXH/7z99rusjXq0Wm3mE7vpH4YhRZIThgrl27L0vYg8TekP+qyt20ibcxfO0Wz5aDTKWGHBztGMfLIgCCXtnnXVEeUh6cEu2fyYcWrHz29sEEU+3d7g1IEjigYMRysYndNsWrFGnmvyvGJ8dITw7Dg3WyHoChUMqYztX6vdoiw0k/ERg9pJZLja5+j4mNbG1um8TSdj0nTO+XNrULuknLswIvA1lXkaYySlpswXKL9xKpQpyhzfDwjDEF359bEMJTVSgKiVI0YqEBKh9YlRDJgCrQ3GCKSy9ZwsM4QwYCrCRv28WUIUhjaiStdrocgwBgw+RlgxjhQSY0ogoKyFFLoC6YcoKdHanpelSzzPR3rh6Th7yqOsKrzQo1raY0YYpJAI6ZHX0VXaK9EGksWCRsuOvfQ8pAiQRmBO1rlU3Lr1iLX1deJaxKI8w+aZEUhFGNlnUwrC2Ge6WNJv2fOqqsIPPYRQlLX4bVaL20xVEYa2rspKI6SP8nwq7HllZlDKUJWgUyvCEKJA+AF5JZnPrKhNG4MuS9bXRqcRZlIYylIjwgBTi2KuXXsRgyDwFe+9dReAM9ubnLt8Dt9TXLi0bectK8jzFN8PTh15BBXb57bIsoLV2mknDBSzRYIuS6La+WieVKRZRdSIaNRrv6gMURiy9/ghm2dsnR4eHtMedJAqxGDXuR+3ODyqaHSvES+tmKQ8+jlV7hE1NxHVawAMhpuUumJtY4gQVsRiypQ8zQjCACXsWAVmh+mhJBAZRtgan2aKIFpBhRFha61uN6c5+irnwi75+Jbtczbh1p09rgy3CBpWUEO4hcZDVwnlwsa96WSHUMJqr01a11WWa7z+Ndq9DnHDjgHKZ/fxI2699QO+edkeCjzBvQcpQSSJPDvOaS7ZPt/GlEtE/Y1ZFj7To5xBp0ksbbt3b9/hlVdfxcgWd25Yt6uvfmdC1OrX8/VUJPphwejTuMPfIoQRn/I8TgyjPvn70jjdjeN3hM977JT7S7XD4XA4HA6Hw+FwOBwOh8Pxu40T3zgcn33kv3UHHA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOByOzyOfCceb53HiUPOs84w99nHxGM/+Nv/Hu96c8IHoKfP0mP2z+YATgQB0VXH9zTcA+K//6T+xu7/DH/3+lzl/5RoAQdzl7r1H/Ogf/4nRxgiA82fX+bu//guarQ7NlnWk2Lr4It2WZDk7ZKV24EjmE2bVGBG26KzUMUt5yf7BPsP1Tda3zgPQXRlhZBM/WrJ51jrA7D+6jyQibESnESZaBJTpnPPnNtCnEVmS+4/u0g4N89K6crQ6PYyuiMPKxkMB61sb+EFIQwiEtA4r44MDQCJ1SZlZrdZg0CfLUsqiZDm395PCZzmfM5tOaLWbJ81itGb34RP2d/cA6LQiDvePuHPrAa+9bsfPi0OOHj6iLFI6fesQEUrDkyf7GFNRYd1ysmRJFHWRYkmV2vs9uPuIVgCBMsSx7Z8sj6mKlLB1nkawCcB8sUQoj2YrxvPts+3vHxOEAd1OF1k7cOTZgrfeuMPKoE26tE4n+3tLpuNjvDAg8GwbvX6fxkoToyuSxJ536+Y9hFDE8YRLVy4AcPfWfcpKcP3de2yfsXO+MvDBV/hKnqQdIUxIECmEEeg6csePIjwVkCUJT8+UVKWh1OXpeV7UoMpzPCER9bMJaQgCRVUUBA3rHiO8mCJdkiULytJe22w0KIoC9NMYHF0WlGWBLj38MKprMkWIgLJckufWDaTZanCygLw6fgoE2lToqkLWcT1SSAQlUim8+n6mXBJEDfIsodGyTkW3bz2gzCuCSNDrtgGIYo9wuE5Rpsigfg4hAMFsPKHZsu4nWZajlIfWGlPZ/gVRTFFCp91kMbWuNrPpnEYUIaWiqCOk9vcOieMITwmKpXVhEsEAIXyyrCCs+0wJyAoqQVU7z+RJStw23Lx+i1Zs3VSGa0PiVsRiurSxXsB4PCUIY4SErI6k6vX6aK3Z3z1kpXZNipsNqrzEFJq8sG1MJ0v8QCBMxmClZ69d6TMbj9GVQdZWLHlWMB3vghEMh3YdGQythse9u0840Vqub64hVcDm1gZZ7Uq0srpC4McgAoSs5zQagvHQ/jZPjuwaVMk+nUZClf6G2W5dL7JDURV4XkxRuyYtju7RHSwQMkQn1i0nSw44OEzptKDfbda1tiAfH5DLmLu37wPwwksvQndEKVdQw4167DO2GinBoAXKjrPQGfliSpGmyPr9nucaLxDMd27SGpyt67RNo92i22uiK9u/48Md3vrRX/HymX16ndopS8DqiqSqFFG9ZoJCYyqNMZKq0nUNFRxPC9b7mvWOqdvdo5IefhgyntnzHtx8nyuvf/Mj31lPXW8+7Kz2jPMafCQqyhiNEPJTx019+P4Ox+8yn3fXG4fD4XA4HA6Hw+FwOBwOh8Pxu83Jzzed843D8dnkMyK8Oc3Gec6xp59ZMYz4SAyVPeej0VDPi6d6FmPA6GdaMvY25tl7a4PWmt/84mf88P/6L/Y85fHv/vh7XLx6gZU1G43y+MEub735BsO1FV5++QoAb//kH6iKhOHwAn7Lbqo3WwHjw0cgPeJawOF5gmVWEOglZWinJJ1PaLV7TI5TtN4F4Oy5bcLAZzDoky5mAHR7DRrtDlpEUAtq/KBJXiTIIMDz7AZ1lRec3+wz3r/HwbEVXNy9t8fKoM3G2eFprI+SVmAxPppTlHaj/db1W7z+5Vfwg5Dr798GYPv8GUYb6yTzhIcPrADm4sUt5vMZFy5s0e5Y0QRVTrqYETbaNOoopyxNKCrNxtYGYWQjbaaTGcvFnPMXtlCePSaFYWNzjQcPd3j12lUAgsDD8wRCC7Sxoo4XLq2xPLxFsdSn4yKlQngNZPMSAhujpbKIrKhYLmY8engAQBQHxJFiY2NEu2P7d3yUE8cBnZUO7b4VTO0+esTZi1vEccT8yEbLzGZLnjx4RLu3Sq9bi10QBGFEp9sgrSOV9vePGK0N6Y+6GDMGIEkKolafsigQ0s55WRUYqSjy8lRkY5KMSpXEcUReizWkgKrMkVLiB1YQIjFooSgpUVrUQ59jjCQIfIrE9kV6HggrJDsVKhQlUgiybIIMrADBMxVSghCGsm438HyqqgIUilp0spjjR020qCi1PeZJiZIB0vNOo5xKSjCGIikpyzp+Kg6RUhKG4akQBVNRVSVl4ZFntk7DUJAlC6RS4NXxTkry4qsvkiVLpKzPC0KKPAOtTyOGjo4mTBdLhisd8Gy9rG2M2Hm0ixaCtU0r6rh05SJC2PimorRzqXWBNsLGfNUCJ/uqUQjPw6tjfwwBy9mc0BOM1q0IKGw0kGjCRoxfr3PpZYRxjBIlzaatK+UrdAWdXo+lmACwXMzoNAyFUUSxjZ6bzXcolzO2zm2zXM7t+AUhyTLl6OCY+cyKii5fvUCz1WI2niI9W/f7u7s0Wg10UbCcLwBI04x2t0U07EFda2UFRufMJgWtWvQkvSYrG5fIMo2I1+2cixb39m8hRUVrVD9voMiXBbP5nFjZ+6XVjP5VQVXOILHrrd+s6EUFB+Oc/V37HEpJDidTNjeGNH07zrv3b5CuTGkNNvFiW5NVWRAHFcvpBOnZemn1++jSw2QZRti1sHvkE5tdzvbucnzwrp0jcZlmu8t8seTg4Q0A3v3lD9jujdlcDcHU9Qe0Ox1MtILfOgdAlon/l733fLYkuc/0nswse7y7/ra5bcZhMAABEMSSXC5D1K4ipAjpH5T5otBqYxWr0IZ2xaVEIyIAYeFnMMC49t3Xm+NP+Ux9yLq3u8cBXEpkg8znw0x3dZ1KU7+sinvzPe+L0IeI5ICLC9tnX8Lr10OKquIrr9vnxv/23fdoDu4Qxx0G67auPn7/fe68822E+nKRzKWQ7NOvqc+Ia4zk82KmLoU4L0VY6Vqc86nTX3o3Ol2Ow+FwOBwOh8PhcDgcDofD4XA4HA6Hw/G35hUR3nyWy43ELxPP/Kbf+n/JNafehTRX/zWf2ex84QQAzg4O+dlf/hnjcyuaGAw3ufnGm3SGI54+tg4N//G7f4lULb75u9/mk1/92H7u9JTNrU2ydEFv3W5aC50TBhFJnoGyG/ylLtF5ifEU04ndfEd5pKsxpezQ6nYACBstzo5PUYHHcN1u3Pv+EM8PyJIJEutao00Dz48pVhO8nhXU4EnKMqW9foPOhr3tpwdHDPoRQhhOT6zLR2V8trbX0UYzHs8A+NrX3sAInyQpuXP3JgBRI2K1TOj32owvxldT1h8MCH2J59t5TlYZw/U1gmaLZe0e0+606UnJaGuLMrMb2WmScevOLo1Gk6p2YvF8n8l0hkGwXFphQbPdpshWSEpWKyukyNKU1WKBMjmeLOvpU6jmDkf7Rzx8YuelrDRKSFqdmF49L7PJnG57wPhiiq5r6fjojEG/y2qyYDy17fYHXSbjBdkqp8xrx4zpOav5FKFCirrPhdaskoRmO2JVu+Dcun2DPFkxOTu92ulu3ezhh11MpclWtg2NJGoGKFEiameSEoGUkizLrxxWhPTxfB+BFSPYdsGPAhDqee0aD6UEVVWxWlrBRZFmVEVOWegrx5sojhFCocscT9i5EnGEqSQY/XwzXxdQFSg/IKgdaspkhik1SJCqFkz5Cq2hSPMr4Y0fhWgtSZMUv3bk0aUkNxlGGyptxRrdfofz0wnnpxfkaX3PW1sYXZEXFWG9ZjwVghSEUYQpbBuVrpCeh85LOl3bv0YrpJm1KJI5G2trdW1IlsuUxWrFzq51Q/J9D60NRZ6DCOs2YoqiJM9ydGnbEHh4YYQBdO1+UlWGNDfs3d5DefUjVQpm0xXaKPp9K8xodto8fvCInevXCHxbu1rnaKOYL2ZX89JpBJydnTObTti9YfsSSsgKzdnZmO0d66j1q5//gn6/hwBu7lkHrKP9E+IoIN4YcHZs17TnSS7OxoRhwKP7VjjnBz6tTpPJZEIQ2HbDRsxsPsfkOXHDjkP5ESqMYf4hHb8urP4eXqOLJz1adR2EjQZpXnC6/5Tehq3J7WtDhPJJp0+plg/t/FVL8hKGXQW1UKuoDM3Io91K8LDiwSoIMNUKmT+lNi/ClJqwMeRiZghjW8/JpCBqDggbXfzQrpk73/gT0qf/DqETxOx7ANx/78fkhcfFNOfujq37d/YyBp2QZmQQnh0HjU1k4xqzuUdxfAHAYBAgvA1MmTFcr983Ouf0pKDbixj07Hhvbwo+/uW7fON3/5Bez9ba0eMfsZpf0Oza5zV8vmObdXL7fFe2F/mi991v8h78IgGqw/GPid9G1xv37RWHw+FwOBwOh8PhcDgcDofD8SL/4eDn7veGDscryCslvHlRZPP875cbhZ91xXm+2Wh4+Wv9L3/Gbjjql65y5ZFjXt7gvIybujx2fnTMv/9f/hXTs5OrWKk33nmbTr/H4f4R/+Zf/1sA3nzjOnduXeeTX/6Yj97/BQB3bu8QxT4b1+6Ql3ZTOE9mNDpt0vOCdGGFLVr7aJEjPZ/5zApv+v0Os9kU7TVYpnaLK3zFAAAgAElEQVTT/+jgDOVBp9Xj/NRuCoe+R5IWVOkR1/Zu2uuVK6QMKVcTstrxRoYdZDSgrDTthnWGuHZjl5Pjffwso1fHO52enlEUteOKsRvUjXZMsipZLFfkhS0ZP5CYyqCNptG013tw7yHraz08L6bMrYDj7HzOeHLA62++RhzZ8wajIUoWoCSpscKCqCmBikoX5JUVJbSjiFa3wyotuX5z146tmIGBIlvhe1aYEQaa0zSjEUhU7SwhoyFe+zbF0RPGY3vea6/dotFqkmdL5lO7cT/aWGN9c8R8Oua8FipgDKs0o9NbZ6Np50UKjTEabQReaIVQzcaCIm2wnC2vhCP9YR9DiacCBiO72X7vw48YDoZQJTSadv6arRbCb6E8RZrajfs0z4mbEUWZXUVh+b5C6wKpFKYemxcEGG0dWSoj63rW5EkCysPzawGMpyjyFUVaUtQ15PkBWVESNlvEdV90VRKEAUkVgK7FTJkmiiOyZIGqY4y0MICEXCOVbRfpIZRGIwgC225V5kghWMznyNoZx2iNED7TizGdnnVxEVqjfIHWkvncroU0FWRpxtb2iLKy85IkK/rrIxS1+AdIk4oobqCUJC9qh5+qQCofrXyyohbtNJs0mpLVUuJ5l+tcsn19h6ODE5bjo/qej/CjJqbiynGpMpqqLNGlwq8/K5WkKkuiKGBZ1/h0OmNtbYgf+Fyc2XXZ7rURAqbjCY2mvV4gKkxZkCUFjYate0qNNhVFltFbsy4zRamRfkQYwuGzQ1tXozbXb+4yvpiSr+wcXLt5A6M1UeCTZrYvnU4LYwyVztA6u5qDk5MLlFJXjjz7Tw7Y3BxyenbGzo4VH3UHAZgSLw4xtShLK1DROtJ/jGf2AfjLf/cTeht3ee2t1wljW6fJfMX3/+rPublxxta6HVunv4MQiuTsPrp2IFosNR9+NOedt0a0GnbNrJYFvi84OZ4Q1JFeJZpOM4f5hxhjx+YZzZN7msGoj6gj70QQo6vrqOY18pVdl7neQHa/QXr2HgpbVzu9Ob2ODQ5sRbbGx3OJaozwe0NkwzrUSJ2yPP+Q+dE5nbiuF9+nEhEqHFH51rlMlRekZUK7KjG181a3YUgffUC6fIvrt98EYHY+4vxovxbeXLrMiOciGHH5jqrL8AvEpVcub3w5n36Hft6//eYxVQ7HP0wufyD9bRDguB+eHQ6Hw+FwOBwOh8PhcDgcDofD4fjtQP59d8DhcDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4fht5JVyvHnZ6ebKk+YLefmb+592xnnuIvDCB9Dm+dmfbuFFR4DToxMA/uV/+z/w13/xf/JH33mHjTqWptUZsppNuP/BL9ncsA4S73zj93n44Q/55Bc/YX3duifME+gMhzRbfWbPHgPQ6w1YzFasZnNG63sATCcLttY7VEIwGdfRS5miN1jjbFIwrKOmLs6Pefvrb+P7PpNTe71FWaFVh83N6yRJPW6Z43sFRZZz8pH9Rndr+yusrY1I05QnT44BuLYzQGuBDDzC2gXixt4eRZ6QJ0t2tu3YdKXxhabKE1TUrudPMJst6Mgu04mN4PKlYHw+ZzpdsL5p43AGvYj5ZMYnH9zjxk0bh1NWBrRhNZ8D1lnDlCV+s4Xn+5R1pJIxhjiOGA77TMe2DW0K1teaLManpBM7B1ma04gjKHO0sA4/XrSNDAeMdptsza1Tx7MnT+n1exhjWFsbAaA8KIqUJC1o9XoAbO7uMp9OUJ6g1bDXm88TqlJzfHzMcDiox6G5+9YtZuMZ89miPlawu7vGxdmEpHZEmY0vaIQeeZGTndlxbG94VGYXdIUf2GUYRAEYje+FGFM79wQKU1YYoylLW59eoG3xCrg0nlF+hC4LjFCYqnYrATzPRzZ81GUbQQBS4CmPMK5dV4jQuiRud67iooQuKfIlvq8oizrrR2t8P0YoUKruS7ONLjIQ8soh6dLJo9OOyWsnFolAm4Jet43BOp1gDFL6IDSDOgbq9PAMTylmizk723YdKQVS+BgMpa6LHIEwGoTEr11ShJAURYFUkjyzrjB5UdGMFc1Ol9n8coGUNJsNsrwkzex4216AqUrCOH7uimUqTGkI4whVO0cVaYrQhqIqqep59j1JWVRoo1nVkWh+4OMHijj2OTq0rjo39q6zubNF3Agw2n42XZygZYOyLCnq2LBWMyIIWry/v89gaB2Xer0RD+89xPc9ksS6x4zWRzRaMWfHp3iBjU5rNGLSLKeYZ/ihjbiazVZUusT3n0cNRXHA1u4GG5vrpKmdl8OnZwS+xg89Rut2nZ8c7rOxtU4Qb9FqnQHw9ZuHvP/xE76//zG7e9aJSuYzkuMfM3orvLqXfv9rpLMjzk4OiepC/dU9wcVqg18+9GmFdry3rgUYChpNn0DVLjjVFFVVZMs5s1lR165EV4rjwxOyzJ63tR5jJvtE0c+IhtYZwkS3Ud23iJu3mT/6IQC7wwuKSuL7Ei+2z6adGxuYakm5OGH+5CcAhF6CJGezD9Kzbj6mzNGmJM8SKmHn2Ytirl8zmConz+yc3rndRUXwg5//kN6afdYRDDg+uuD6ay+4sokXnGy4WgqffV+9wNV77gteiZ92sfki55tLpx0XOeVwvPqxU87txuFwOBwOh8PhcDgcDofD4XB8ES5uyuF49XilhDefFs28uDf46zYKn280ft5nzNV/r45o/TmbmHZDcrlY8t0/+3MAdjfX+ZM/+jbvvPM2G9fsZqpRkgcPD/jF+x/znd/7HQDe//H3ePbgAzY319isz0uSAt8LmExmNDt2Az1uKRABw/UhVTYGYND16fSalMmEhm8jgaanF1QmBt2kM6jjTZShKkH6grVNKwJ69MknDNa7IOD83F4vkBl+YHjw8RHtwAoBehu7GDMgCBS71zYAyLIU4QWEUYMitxvZplqgpKDVbRM17CbzYpkwm07Z2dm4uifHz/ZJs4pWO6ZXC1airYCqgk8+esiGsBvtge9x+7WbCC/k5NDG5oShB74kWa1Yreym/+bmJp7nc3R4wvauFVyURYXWFVEUEEQ2nghRoas5q+U5xrOCJK9haHVOEVoTNut7JH1W42eUeYv1DTt/w0GPx4+eMJ/M0LXgZ21jjXazydrG2lVcTxCFMDHMZ0vS1IpOsmRO5Oe0YsVlnbY6bbTwmcxXpCt730atFuenYy4uJniBFYSEjRZGSBqtNqZuw5RzyiKlLBSyjnJCSHRVUVX6KrbJk54VnFQFfmiFMmmSIoREBT5eLYAp8hQpJegCpayIqigKVBhR6ZKojhfTWtPpd8FAmds+K0/i+yFSKbJavVWUFcrz0HhIr6rvR06eZ4RxSJ5Z8YcQ4Pk+nvRIa9GJkBKjgNLgSSteqKqMqtSEcYTWlwIdRVHkzKYrpLR9OTm+oCxztne3aLWs+GM+P0frAgGoSzGENpR5hgpjpLLzZ8jRVYmSFe22V89VQRQ2KJKM/UePAGi0ezRbbdrtFkh7L9M0J2pEGF1QJLVYSAmKLEViEC27FrTwePToCbvXdhGousYjpucTpKfoDaygqyxzpFBI5ePVtTYZjzk9OWfQ79LutOzcB13ypEIAz55agdjW5iZxw2dt1KPTt3Fljx7vs31jh7OTMYW2c1VkBZkwjNY2ODs9tddrN2g2Is6Pzq8ixwYDj5MTn+Wq5PjkHgBf+dobTMZzut0GQR0BJ1YF5xcz2m2fXndZ3/MFZdHFD3qI+npbe3cZDfe5mB6gS9vnw2XGt95q0esH+J3X7D1XbSbHD4jjmJPD+nreDn/wn/0Oq+WS5czGcr338Xts9hJu3ugS2SaQWmGKBUVZ4cdW9PT+vZKk7JPkHmFg6/5oUXF2tuD3vrJiU9qIv2mV0Nt+k7DVo3/tWwB4vsCrMqr0kDy1z8nJw5/SCacYU1HUdf/wKGNrPebsIqfdtW34CnpdBQbiwD4PPBVRVBKhfELfnjdbwKDnc21dUlb2vL3btzl4+iG6LFHBpdBNWPHNC++qy/fWp4UynxbJiM8Jm/p1sVGX7Qjz2feoi5xyOBwOh8PhcDgcDofD4XA4HA6Hw+FwOP72vGLCG4sQv15oc8nlN/2/bAPxpWtd/VFgjH5pY9MAVVnw/b/6Hn/1Z38KwO99+3fY2LoGQYwK7a7w43sP+H+++13+yR9+h71du2n97sGP2Rh1UYFHtpoDsLaxiTaSdLVisG430INQkaxyPF/SH1jhiMlPMLkmbjQYbdrzJouKk+MT/OYa04V1U2mEAXmyQHkdu4sK9AYd8mRG4gmaTStUaDTX+OTdn3BysM9HZ9bd5nwG3/kXazRaMUUtuDg9u2DU76CzBRdntQho1CUIQubzFX5gRQ6thkezsQZCcH5qN8ulahCEKUmSktYijNFoQBQoPCEoaheNqjTMZ+fs3rqN1lao8N67H3Pnzg2qUtPtWgFCVeWEkc/29gbT+QyAKGrgq4CwEV656nS7EcVyTLZcErWtgEhmT5Ghwve6RIM79lhzjwe//Cn37k3pDa2Qp8g1y+WKtfURQWxLX0mFUpKqqEhXdhxFdsKyHv90YgUNw0GMCgI2+yNOz2z/QhqcHh7he4qVscIlrTVn5+dEcXSlHDMYLsYTPF/yxh0rmPK8MY12D6Mhq0U7WZbTajcpyorFwo633epSaY0fxVdOQLrKCeMmusqpavGHQKCEpCjTqxKXvm/db3QFtbjH8320EVR5garvrzCgtXVwKTLbl8p4JMslzVbjShTgBxGKAmqnGQApJJXWKJOjawcYaaDSJVJKtK5FLH6AktbWw/PV1VwZQuKG4OED616kMVy/eYPhqGMdgIBGa92uUc+nzO09klIivRCEwNQ2VtIPENmKqtR4gRVrNP0G4+mMIPTYvLZV3w+PTz5+wBtv3MFoe73pZMFsPGF9s4+5EupJojhASIGox1vkJUL4TCczmrUwSPo+nUEHtEbVYys1XJxfsLW1xnlhBUlR6HHn7g1msxWnJ+cAbGxt8PTxAzY31zg9to4ys3hOmof0+13ee9e6MWxtbxAGAb96/0OUZ/vSiiPms5y17TV6ffssabVjhBD0hh3uffTA1rjwuHVrjweffIyo3YaSRcpZeUSzdQtpu0yoShQluhQcn9oaH22s4weSsgrx2nft9RrbCPUjNuJD0sQ+myZzjQo7tDa/ite3wpvZ6WM+ePcnVOkc0fkaANdf22WZBMgwYuO6dZ45fPaQ/sjg+4KyFmX5UYMyWzFZCO49s32e623e/tq3WNvaJM9tUWbpkuaTR7x37wfktZCx3f4Qf2sEskfkWbecavwei/MnnJ/P6bVtG2cXJatWSJlXaG1rLSsEnzw2HFz4XMzsWri9E3P3RoUnS3rtWqAoSoSAPK8oU3u9Qc/DXMw5eDqmOXoKwPr6Js8eP2Z8dsJo27oDXQpv4EXhy4tuby9jXWo+e+ySl4Q5f0MhjXO+cfxj51V0vXHfUnE4HA6Hw+FwOBwOh8PhcDgcvwnO9cbheLV4JYU3z3l5c/Fv+uX8l6OrrEvGS9kez69u/6c17/74Pf7Xf/mvWOvYmBaqip0bd9nY3mSV2A3WH/7wR4xGfd58Y5s4/RkAb70+4HzRIakEnb6NWknzEo+Kze3RVYTP2cEhSZIyWlvD861oJ11ptKlQskQp2+ciT0lWKdPZM9Z3bwOwcXuP2WxFqUtaLStYabR7PL7/EC9sUBRW5KD8kMOjC7QW9DftJnhWhJw+/Bk7d96iEduxbW6tc346pttssX3dHjs9ekYUxPR7TYLaTUVrzeRiRtRusaodYNJ0QafbIUkSnjy1UTrrGyOWaclwawPlXzqdQKPVoChSmi073uYqJu50EElyJa7QeYbne6ggoFMrAWbTKaWXE8UKUVkhz4NffUy/lZHnGV5qhQrj/U9otxRx5waEVrh0djbndNIkSac0UyuuWCxyhv0eo43hVYzM6dER8SBmPp3S6VvnnpOTM9bW+yyXS8LaZWaxqGh12yyTjOXCCqs8z8ZrLbKc8wt7LAgjOu0WYbNBv3YqKj7MOTw8YHurT6tn+1cVmnSZEDVbTKaLus9jXn/rFkpAHDfqytR4nqTIM2Rds1J5SM9DZ+VVbJM2gAzR2rOiH2Axs+5FUhqKzLYhhY9UHoICP7LiFFNJyizBaE1YO7ukq5IwCBASPO9SKCOotAIJso64QvogDIvJIQJ7L6XXoKwM0q+jpIB0ucIPI4qyIKzb9Twf5RtKbRiMrKNRmRfMFnP8wKNf1xBIqAxB4KOFFVKUZYrRBV7YRtYOP1JJVNhEFwWBbx9tq9kC5ft0+wNkHXc0my3Yu7WLlArh2bkajDzm0zlSSLzQq1vVGC2RLwhvfN/nxq0dpudj6iaoDAgkfhBQVbZ/3U6fg2dnTCcTRpsbdZ81xmiqvKAqawHMaslw0CQv8qv4s3Yr5GIyo9vd4I2337I1lGcs52O++pU9ZrUgZLlYYIxhOp4S1+sojNs8e/KUVqf9PPLJU4Se4vrNXcI6lksDe3c2mc/n5Jld034Qsb69xWqV8fiBdaeKmw00iigM8eu1VeUKf/QdqCZ4tdjq7esGFXagkgjqORju0Wx/zFHa4dratfr+ambzE5rtDgLbl6i1SZLOSArJ0ZEd295rEiMUni+QvhU4/d43/4i41aPKK7I6bqvT6aGv3aEykp+//2cA/LNvp5TjDyiLJp60oiezfEI7ShC9iv0ju44+etYhCNsUeERNO/fHF3Nu3LzBP/3919k/sOIoQ8EPfvZ/8fb1Md22fT7rrESGEcKA59XRaVqT5xVfvR1wNrHPxCiSrG9uMj3dZ7hl3bhefI9p/bJT2+cJZ14Ux1xFVP0asc2Lx8SnnONeOt853jgcrxTuh2SHw+FwOBwOh8PhcDgcDofD8Zvifp/ocLxayF9/isPhcDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4fg0r6TjjTHP4zUuv9lvv5gveCEr6tdcw3zp319qrHYdePjBx/xP/91/z2o24e43/wkAr731VYJOhyDu8vOffh+Ao6Mj/vP/4g/5yf/9f/DGzTqnJVgjzxdkmUT27fUUHo1IQVVyemQdJPIsodGMwSSkuXWp8OIRs/On6LKg0bTOH5vrXRbTnOlszqNPPgag128hDQSNXdK8djqpCrZv3uTg2QFCWFeThx9/yHS+ZHdnh7B2Tjk9PuGnP/gRzXZMf9fGvsSxx/rGGlKA0dal4uxkCnrMYL1Ps1HH9fQ3Kc2KyXjO9T0b1zObLim1Znuwxs61TQDSZUqr22VyNsUPrVvJap4gfUWSpIwvbHzNzZu7mCqj2w7Qpo4sCloYKZCeuorSmV1M6A/7mDKj2bDuGOHuAG0y1qMu06MP7TFfsco0g0bvKs5qPpszGg2ZjJekpb0fO7sbrJKcycX48pbTbDZ59vQZuzeuQWVdNIa9FtKXtLttalMi0tWSdrtFo91E124leWGjmXSVs7UxqOf5lDuv3SFLUxaLOhZJeawWCQ8fpNx9+20A+oPXMCpAa/BV7TiibDSXlIKydiGpPAhDRZUnaM+6EhktMJUhCENqwxEkgrJIAH1lcSGAsBEghKI2e0HXsVLK95G1UUdeFmhd4oWNq6gkU07JqxylYvSlc5TQCKHQJkXXcyqDiHyVg2jYSCsgKwp838PzPMqyjp/yfYSnUJW6cntRsU+2SCizDGVsG6PNAZVWnJwc0enZ+iuzEiEVRiwQtQtWVQi0VCBWKM+e50ufs9Mxw2EXY2y7QilMVWEMrJbW/STwAyaTKb70UbWbj5QezVabykhE7bhUaWwsltHkq6W9nvTJ85RWN74aRxCFTMdLzk4P2d7qA3B8MqXKC6aTxZVrkpCC0+MlnW4b6Vl3qvnFjPF4zta19SunrJP9Q27d2aMoS4LQ3jglBUeHZ6xWCRsb1pnp4nRMkhScHp4T1i49YdRAFxpfKjq1a1ev18HzPKQf4gnb5yfPDnhw/5AyL1DKrlXpLRkMRizmGbu7dYwbFTqvmKYL1uuxVVVOq72NEYKqtHOqiwRdZYDEj+wzLF9O2bn5JoOdFvc+eQZAMn6KTs+ott5guGmfQ0YpZtOE9b5hbVgvOCo8UdFteMi6/rJCExrF0f4JUtXOR0VGb9CF3es8uG+dwX76y4/5jpdRVWvI2PY5naYMm4aD45IPD23k0+bdb/Ham7cIQp/ZwtbLN6OYPEnoDkcMNux5SVIgjeTw/r8nz23U3t61Fl6Zs1hpysqu1WakkAgGTR+/7t/58Qmddp+DJ/fZ++rv2vFinddsRCJfymfdbMSX/Nvnx049f4fWf3/p+l/evsPxj4FXIW7KfTPF4XA4HA6Hw+FwOBwOh8PhcPxNcL9TdDhePV5J4c3lBqEQnxXLWFHOZ8/9vGt8dsPR2LipF68HzMZTAP7N//yveXL/Y/75P/9jbt69C0B/Y41KCz58733uffARAN/65jc433/K/uMDwuAmAK2hIuxs4heGYmWvF4WK0rQ5Ozmm0bKb0RvX9xgfH5CscnpDu8GvhKLda6PTKQIbqyKlIAwFcbvNIrHXE0DUaDKdTKBrBTX9wYBKw43rW9QaB/TWGt/6p9/GVCDrjfbN8w0Wky2On+7z7NBulr/1rd/Hk7CcL0hSG+W0tX2N6fSA2Nf4ge1ftryg241IVinLqY1fOT0ak6UlzVCQrmoRwSLDCwNmsxndvo3CanWboBTzyYR23eflfIE2Ah17VFhRwoOHj3nn7ZtIKdClFaxsbA8Jm22yvMAUVvigFHiiRZlfIKsJAM1Oi7DTx2vukhf2XodRE6UK8nQOoW13f/+I8/Mpr79xi0HfijXCRpON3U2yVYrQtt3+2ojpZEpv2CPP7PydHRrSdIUXSFStxgllhZKSsihZq4U3uqrQVUagJOnSxk99+Mv32dnZQRuNX+cTSU9R6RKlGnjSbtJ3mjEn+4d0e62reCehIc9KPL9NVW/wa52BUeQ5BEEtVBCQJpow9MlWdbyOzpBeE11pdL1hr00BUlCVmrKOJqu0wQ9bVLpA2CYIGz2EmIMokJePCWUwdb0GdZyVkD6P7z3h5PiUd955055GhVQeZVmSJbaulBdhtKHIUoLQCs6qsqCoYLFY0agjrlr9PlIpOsM2ksvYNY3QFUKEqFpBJLIVaE1ZKZSy96gsCoaDPr6SVKWNLApjH10FHDx6wGDNiklUrOh3OyhPU+R2DnzPx1MKPHUlbRC6okgLZvOEKrPXm0yXDDfWaLdi7t97WI9NMhwOOT2+YNgLr+rAaI1SPmcnVqxx8+4eRkjOTiZ88uF9+1lZcf36FtPZkiS1C3j3xjXyPCPLc06P7dr/5Xvvo4uKdrfN669bgcn56ZiySGnEHfLC1m6eFESNiCIvqHJ7M7MkY16tSJMV62u2TkfDPg/uPcJTENb13Oq2efbkkKpKkcaOQ9JisNWh2WggxKVIyafUFVHcv4oXWy1nlNkUIRTpuX1O4rdoD7Y4+vCA+YkVD/7O7QmqWrAKDONTOy86PeH6ay2MTp7LSqqUNNNI5VPkdn0kq4xOz6CLMWb8U9vExpsI8U1anS6//wffAeCv/+0H5HlGXx4QjO4A8OiRT1okzNM2Qc8KarZ2d5BejAwbbHXs8+Do8AipfC7OJ7Q6dg7G5zM2dvfwgv+an/zF/2jnqlmgFAy6ARcrXc9VDkpSCfjZrw4A+ONdzWq5pFE/S6F+H31utNTL77Iverd9Gc/fnV8u0MEJbhyOl7j8IfXvWoDjfjh2OBwOh8PhcDgcDofD4XA4HL8p7veJDserzSsivPk8gY3B7g6++K1985lNRKut+c1ccKzRgHn+Z2PQuuJP//c/BSAKAv7ZH/wBe7fucnQ6BmBzd4/FbMrPfvITWrVwBJ3y8P4n3LxxEy+wrhKT0zN6o3XCILhy4IjjiMl4RbO7Tq9vBTVGF4zWYnRZXQmDpDSUlcJU2iotgKjdYzr9CCFCOk3r2vDsyTOu37xJlpa0GnbDW5gSWRV0em3G41psIAriRkiRZQjshm9/1CdutihWU5J6YzybPiHoXGO+WCCULYXuaMRsdgbAfGoddPIsYTxZEccxWWKFCrffepPH9x+xmi8IIiuy8QNBGEQUZcl7774PwOuv7eELn26/QxDaeVmMx6A8BJKjg+N67n3KQiA1mFrkEEYtzg+PiXzQ2rbbamiy/JR8doqKrYig1evgN9bx29cQid2kXyxOKHLF5tYOUtqaiRsxcSOm2+uT1G2k+RKlPEJf0uyuA3BxekayzPAlmLre/DhkOcmYjWdXTjbNZgTGEEQ+88WqnucR0/EJ7W6HMLBz+tW3X2O6yPCEoKxFBEZ4mCKn8hJQVpRVmAXJasbG1ibG1KKJLCMINVVZIGvHGyUCygo85VMVdhxC+RhtMFojZO0ipATSaLSpMJUdRxDFFEWJF0iKq3kO0LrAGI2uhTdFqQFF4CvKS3clUyD8ECli8vTS7cWwsTUi8CVl7RgkpaLKFwgvIGra2sAAuiCsXZQAikJzcXZOkq4YT6ygqzPsYpI5SkmkZ4UPnq9BQ1mkCGGPKd9DyIB8tSLJF/U4IrwgAAFJavsSNxuEYUhv0COM7ZqZj6c0ex2kCqjLnmQ+IWq1AXUlzhOAUoJm7DGt7Ile4BNHMWcnEzxpz0vThNVqwfrGiJMz25fbr91mbZjybP8QvxZRnR4dcXx4jjGCjc2Rrd1Wg0AJKl3RrNf02dkFVVWRZxm9nl37X//dd0jnKY8f7fPdv/xBPV7FxsaQNNW89qYVCl6cnzOdLBgOe+h6HMaU1rUnTynR9VrwiBqK4/0LdnbtPakqUGbFzvU+MrDPKyVD/MAniiS6tleSQoA2LOfH5HP7rChWJ3hxCxV1AXte1Nji/P6v8KsnfOstK5wb9No8euJRxUO6/SEAxw9WRIEg8BRS1jdESFptKJYwm50CsOfDYoNkvOYAACAASURBVDKh1Qjp+vZ5EKoPSJIbFHRpNG2fv/MHXydJ36M6esrWmhV+7e7tkJ/fQzW6/P43v1PPQZtkPieOOoi6z91+jzTJiCMfU9rP9ns9EBBeu8XF1/4rAN776M/YWSvodxRb63Zd5rnm/qM5Tw8LNrbfsfOiDVqG9DdGz7UuL6hHLw1qPk8wY0z9vjOST7/jPu1sY8TVP/CFCAHy0+/P3/Dd6XD8I+Hv0v3G/ZDscDgcDofD4XA4HA6Hw+Fw/P19Ke63Dff7RIfj1ecVEd58MZ9xrTGfFd98+t+/6BovOt5cHjs/POF7f/4fALg4v+C//Bd/Qqs34trtDmDFJO/+7FfocsXd194A4Ad/+Rc0ggCMwVwKZVoDur0BXqNJkdlr+3FMbCaIak66sIKLMLACglWSouRlX1YoFUI0pEyti0scdvDDJlqD8uxtWkxP+cXP52zs3mC9shv35+dz4tAnL2bEgd1AH48niOMTomaTxdxuHge+j0DT6g9ZzLcBeP+HP2Ln9pL1m7fwapFDspjRbPgMd+8wu7BiCD9vEcYJzUbjKpIKrel1G7TaHRYre6woUsZn5zSaTS7ObazU/rNTdnZHePhMz+wm/eH+AaPhABWEbIyssEBXFUmW0pIDzmoHIuFXrG2sgyk4eWYdQmSVI0UJxqDLS9sIjzJL8JuKxcqKSXwpODk/5/5HD9ncqt1oBn02dzeZjC9I07KeF0iWK/J8xd271kkkTUsWy5T5coWphQrpfAU6p9HpEtUComy1pDdao9ItjvdtlE6r3aTZ6jIc9qnqKKfJxZwsmxNFMae1oKvT75IkCcrzyWpnkiIv6HT7GKPxAns/qiqnzDJ8PyBfzeu6att4IFNebaSbqsD3BUpJRH0vgyhCC0GlNaZ2ERIKdCkoTImo66qqKipdIYWPULULEym6MgjhoQI7EKE9jDD4YYip7ZW0KYniiK2dTcqijtc5P8fzPNq9GFHVrjpIlOdbx5xaiKILTW/QZyRbLGvXpKP9A7av7bKcjAl820bQjKl0iajyK2GQEZJsuaDMMqJacGGkdRKSQhLFVvAjpUIEknYQkyZWHPWrD+7xtW9+nTKf49WOQWGjjfI8ZvMlWtvxtttNjPBQocRPbf+iyOPi/IzpdImsa+PNN9/gyZMDNrfXKeo5KLOMJC/YuraDr+w6X8yWVLrk6PCE115/DYDlasEsK9i7e5OTE1v3RZkx6DXp9gc0GzYGqtGA8zKlyjNatTtLkiacnU7o99q8/+4vAIgbHZRSJGlB1LKCEOkr2s0YXyrWNux6m54b9m7u0OsPWFuzAphnjw5pd3vIYEC6yurxanzPQ4gXnsUYimTKcvIAYWoXnKBJ0NlFF/Z5A7Ba7tNtF8TrE6LQrsGjZ+cs9R22NjY4eGzXdMNfIkVQi8eeP0s83wNlwNhjDx884dadO5TaY6Fet+2W95nPLhjt7l4J3Z7eb5MvA661PUif2PPiTfaPP+Lxs4TR3dpJqcqRMmY1nV9FmBlln0XzWcLy3H62O+iRFSGF8Xnrq98C4EkU8uTDv0A+Sdi7FtW1JvD8ggdnPv/NH/+OrXER4ksbafdlLjOX77Uve3/Bc7c3G1P1WYecv6mRzX+Kq47D8Q+d/7/FN+4HZIfD4XA4HA6Hw+FwOBwOh8Pxm+J+n+hw/PYg/7474HA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+Fw/DbyijjeXLrV1M4a4nnE1MuY+hv/X+4K8Pl/h+d5HJaqrPjx977P+al1dolij63rOyyXKTs3rwHw7k9+wfvv/og//MPf48Ev3wOgSObcfutNGq2YzsDGE4WNDuOLE+Is4+LCOpNs7u5QJgtWyyXDQe1qIiSB59PrdhDi0vFGYbQgzwpMac+LGykbaw3u3TtEruyxznCN1eKCSF0nXVlnifEk5/rOJqvlguls386f9DFVjhJgdO1MogVBs40SFbOlPfbB/QXXbi0wq0MqzzpreMJne+8ORoRoaaNvslLT6a0RKE2RWYeLBw+eMb045StfbdKoI3KUjCirinYjYLOO0jk+OmM4GtAfBOiyvr9exPl4ihQQNW18l/JjRmsDTo6PaXSs21AcN6l0SaPVYW3dOmaU86doA9niwsYKAV4QYwiZjM85O7yw9yMISJMZjWbEIrHuHd5qSbsdU+b5VQ2kaYEuVvQGXZ4+sg4XXhiwmC3p99sMN+z9PXiyTxQ1AJ98ZeOE/MhnNjmn2+3RblrXiyJNaTYCDp8eELdthFTcbLAmJZPJ+Cr2qkgTgkaLoNmmI6z+TQhJmZUcHR2wtb1p2whijApBSkLPtrGazfDCEuVJqqqsP6vwlSJbzWn07Jzm6QrpKYSQUN9fjESI2l2jtuQp0gTfjyjKAr9lHwlZkaP8kMqUmNoBxgs8tPEoiwLPr+tFKtIyQfkKX9ljSi0Jo5AwDK6itURZUuUZnh9euYuUZY6U1rSn27F9jiMPKSCImghxOTZpJYI6oKpdjoQUqCAgiBpIZedPVxVGgxY2dgpgfHGB0YZGM6IsbN3v7G5TJAs6vR661h4Kz0NT4XsSxOVjUdvniDF0e9ZBp9Pr8eD+E+bzOeu1W5MpSwbdNp4Ev2ndaPKsJElSPFEhaueZuNXh7luv0+s1mM6t+87aWo8nDw8wCHxl+9dutOh0O5wcX/DoExuztL6+zmSc0O33ier1poXkl+99xFfefoM8u4wmm3Dr9jXOzycs6viz9e01pCrQRpPXUXEXFwm6MkjlE8V1pJcHy2XGaDNAB7YvZ2fn9AYdVOmxSmxcVOTntHtd+p3vUCzts3Nx8gtmj+4TD9/E1LFwYTwijPusyhN0emRrzbRp9HZYTmc8/sQ+T7/zFY9VktMJvKv1EXgGqSQVhm99xdbGz+/9CrN3g7jVIltuAZBmn9CMUpLFgnlpay2vQs5OK3rdjE7dbrzxTa7fHLKqUg4OrDvVzTt3iFSByZdMlvZZHIYejUaDZWLQlV3n6f73KOUGVfNbGN8+/+6+/Q1E0GL//ru8+9cPABj0FE+PO3zj299EBXbtN5pN0ukT2oPBS3FSz99OLzu6vcjnxU99HsYYu6aMwbwQJSU+9Zo0NmvxpWu6qCmH4/N58Vsk/1+537hvpjgcDofD4XA4HA6Hw+FwOBxfzN9lDPyrjvtdosPx28krIrx5eQPQ/vnTm46f3SD8omiOL2nl+WeB+WTC7OKcW3dtbEnolfR6I4QKyQsrNvjpj3/GrdvXKfOK44OnAFzbu402JXleEDXsRvv54X2Wiwmd63v06+gWQYku5mxd2yJSVvyxnJ2gZQ+jM+KWjcjJlhdkmY+UJaaygprFdMnG1oiiyLk4s/FJy+kpa5t7CAHPnliRTX+4zif3ntBpN6nTcJiNz9GjFpUJrmKMmu0GLeFzdHbKZGo30NvdNkmmMJUmXR7YOWjfwI+7FGWOCq1gwCslrV6PZHbG/sFRPVeSGzevIf2INLeb9OPxgryo6HVbTKY2MmttfcBqldBshkjPihwasU8cd5HSIOvYoVYzpigKzo5OuLG3W98tQZEsaUQ+tR6J+Uow6EkWImU5sdFVvc1bCD/GJ2dRxwmdnp4RxQ0qM2Nrc8PO3zJFV4J2p0VVZxYF0YCTw2MG6yNO9x/aOe0P8MOYMFRXopO8qDCmZHOnz2puazJLlgjpkaUrvMCOoyxLilKwtbt1Fdu0//SIp0+fsntth2xpN/On45D2wMdojVJ2GSZJyse//AhParz62Ma1bbywQbJcImthWqvbowLKPL8SH4lKoI1Ghg2qygoQPD9CygqDQVdWFFOVOWWRAx5RbMUppVSUVYUfeBhj50UGEXlRIU2Bxn5W+h5VtgIE1AKEsjBIoalKQ57aOm13GoCgyEsbFwRobSjyAs/XqHpNe8KgIg9dKYI68kl6HlWeYiqNiu3YMAKlFH7okdVtVEWOEQakIsvs2vL9gCK368fzgrrWYqqqYjpekNeCq9Gog+dL8rzAr/tnkJjK4HkKU/dPa00YeCTJirKw86KrhN3NAVubG4ha1HZwcEKSrNjYGiJ9225RGJ48PuDtt29TZPa+nZ1P8AKPbn9It1evhUZInlU04xBvfVSPV3J6ckG316HTts+Xk5Nz8jzn5u1Njo/t2gqCgG/93tdptVrEUR0vFvqUZYGuDBvrw7quMoSRGCWZTu36mI0vuJgllFlCt2uFbsONEbNpwnw8Zm2rFhWZDK0zknnBwb4VAe1st2h1mgRBiyK11wtaO5iyC9UKUnueVgLh9/CaG6SJjVg7uigY7g1RnmY8PrH13GgQBgK0uZp7UxUYrZkuSp48sULGw2cLtu5csDa6ToWd5+lU0wou8OKSpK6NxSJBKsFw1CFP7GfDosCLeuyOnvH9j38KwPb2Dq0wImyVJKmNxjNZyaJYUVUlR4f2Oal0g43OIWHwPlL9LgDzmeHWG29xY+8Gp8f2OSQVfDNsMJ+lVIXti6TJajmm0exfCT+NMc8zo2o+Hal4ecz+/fn78Nd95ssQCCu++U/4rMPxj5m/7Q/87odkh8PhcDgcDofD4XA4HA6Hw/FFuN8fOhz/cHhlhDdWRPM3+8wXiW4+3/1GvCTd0cbwyfu/4L1fvM/tWzcA6LbbzOYz9t54k//43R8D0Ag1cbPP0f4TRrXDxfrGGqfHB2gZMz45BCDNMjZ375BnS1qt2mWmqmg3I+Ynj8g8uxEbRiFUK7SBdGk3o01V0R6skyYryKf1Z3OaUcXG2oA8txvZxThnuZiQPSk4PrDCm3Z/i+5wnXQ04NbdWwDsbm+QpAlJklEbk1CVBWfHRxweXnBxYcUfhwdHNLstehs30MJu3KtixcG9d5HxgP5wDYB+v81ymRJEfXZu2vMe3XtAN4yZjmf4vj22ttbl3Z9/wO7uGmkthmh3rLOPF7U5PbKOMpvb6xRZQbJKWNTOHxdnM8I4JPANeVEriLKC1WpFHHqk4w8BaEYNVvMzlPLRwgqDlvM5UbjE+Bt4ni3pIIgpCWk1m1fimW63xyrJ0FXBzq51lFllKVvbA5LVkryyYpIkqYijiCxd4Ss7tuFwSF4swAjihnXgMAjSZEmr1WG5tIKP+XJON1SkaUpRWAHMZHLBcDik1WvjSVuFZaHxlCRLc6SyxzwlGAy65FlGukrr2hAIaUAXpLWIoNEeUmQZylPI2p2lMhVhM8IYg7TDoEgzAl9SpEuClhVX+H6bPLHim0rX7UYtEBohuBI+CAGeJ5HCpyzteUoFyEhTVRVFLbYq0gm+H2K0d+Uk1Gy3KIqKxWxGp2+dP4QSRHFEkReI2tnFIACJ9ORzQU2VoVRE2Awpc1tD2qsQQiD9kLKe56DRAVOijUDWgXlCKsqiQKmAshbFCAlUhlYzJqvFTJoKXVUURU4QefXchxTFCql8zKUzlikosiVx1GBZ1IKV6RxFxiwRpLWIqtFq0u52+PiD+/i18KbZaVPkBceHJ2xuWgFMmSd0uxs0O89df0xZcu3mDvPZnMXCXk8gSdMSYebs3Ni+XAqcnJwzn2ccHVqXmeViwc29HYzRPHr4GIC7d29RlBV+4DOZ2mdJu9fj8PCA19/YozYgIowbDKVgbeMmycqOLc8zfF+xWCwYVFYENNq8xtH+AfPZnHufWOHhzs53qLIpK6NJzj+p60VRZAlxa4BsX7dj0xlVcoQwJXntNjRNJJye44sl28O6/kRFGMdQzMG3Aqwsq/BCRRwJvvn1HgBrG5L56ikb219ntbKCpFTvUaZTdJ6xuWNdcKZn+zw8EiRJxXJmHbDi3jF++wad5ITNthX8zKcHhNEeje4WcdP2L10m/L/sveezJcl9nvlklq9Tx59zbd/23eMwMyAMDSiJEVquKClCEfttY/eP3I3YT9qVoSARBIkh7GAwftpff+/x5StzP2TdOwZDYAiFQkMin4iJ6T5dVel+WSe6873vu8kVw9GY3dumf8tzD69boctj9OVbZn2Hr1LnPlGnS39orpOOWTvPjyhLM6fPP/o7bt7os16tUcK8jHujMV/u6PblaNSn9aLFV3bCub7/+jLrbmOx/K5c/eX3qwpw7F+WLRaLxWKxWCwWi8VisVgsFsuXYf/t0GL5p8vXRnjz1Z1rPnvY+NXuMWkxCqUUV+qeYpPyox/+Db9670P2psZ55v7DlxlOp8zPzvnBX38fgD/7F9/h/V+8S7Y6Zv+mEbYsl2sm21M265SyMf2RvhEbCC3A6DwIwgChNVUhKfPWlcPRSClRjcZ1orZ/AY4DdVlTN0boEcQunicZDz0aZQQ/l+fPmJ++IEpG9BJzQK3qDE9k6Kbg8cePAXj40gFpWlLXijaJiJOzc6IwYDge88kjI4BxXMkrrz5kk5ZMpibKyY9CYneJ62h007o2BF3iKAAZID0z3pdef5kyTcnOljjOVX6J5N7De0gn4ODmbcBE/Xz84ce8/OordNpYqUYJnjw+pKrg5m3T7rys6PgukZ8g2rIUZAxHfYQbEnaNEECoCq1dgqRPmZsDdBMJMyLsDji4YcQ4jz8+ZL1c8crr93j0sREMHB6ecffeTTarDWdtvJikZjTqs1wXxJ1uu24+rudxebG5rjChJUHU5fnTFyRdM47+oE/SCynKnFZvQbpeMRp2mV2u6HTN82ga0iolCEKqVkyy3qwZVSmX5zMmu2ZsnX4X9+QMx3UR0sxBmaU0Jbieix8ZIVRd1Ti+jyOMww6AlJK6LJCud+3OIqjZrCvCuIPTPq8pFW7gI1yXohWxBB0XKSVFXkFjBAhlVRNGEaAJgtYtp8kQQqIbqGtzLzJACReEQLRxVtIF0WhUo2haEZVqFF4cEHgBdeuSopqKRhg3G321aYQEFFWRo7Xpi1QCN4qpmxo/CNr1EJRlg+O61MVVdFhDVZSgUzoDs2eKvEFKiR84pG3kmNQCXIcw9tHaqHY26yV+EKC1om5dk9wgom4qpKhZrYwoJohD0mVBul4haAVESlKmGzrJwAjrgIvLS4ajhLjbY9kKanq9iOG4D6JhNTOimKMXp0ymIxRGpAZw/PwUgYNCkKfGdaXMCxYXS4a9hFdeuQPQOiVpgijED00BXizWXJ6dsrd/4zoC7mK2ZjqdEIYOT54YZ6vlfMGNG1s4Wl3v/TLPjctUpTg5MftjPG1IkgjVKO7cMSKgwFWoqmR1+hNE68KkmxzpODRVRNwz78lqdYwqniO0ojJTjx+OGE36fPTOh4wSs7tmy5Iw8XC9kHZ7cHFZsbfnEocuwjXXPbzj8MuPDvno/Z+ys/cQgLxwCMlBNxSFWY+61qAFWdpwY8/UgcoP8fv/AiF9Htww1/2HH/8V994ISLOS6diIe0bbA6LC4dmjJ0SJ2ef7tx4S6GPQXaraqNqq+c/Js5qy/yqN0wqrtMR1HE6ffcKB0QBxMLxAMOZXf/t97n3zTwBIBkMTAyUEQv66880XXW+MaPSrx05dIb6CuMdGTVks/zC++JfiLwpx7F+aLRaLxWKxWCwWi8VisVgslt+df8pxU/bfDi2Wf/rI/9kdsFgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFY/jHytXC8+Wo/df/3/fS+MBE5X/KML3vs1XWP3/8VW6Mh//v/8X/y4vHHACaGRbu8+4uf88qD2wD4MmA9O+L2gwfoVqdUlBWJHDOedhFtrk9TlWTpkjBwyHLjAlFsTugkMbpaoWrzmcJFqoq6KCkak/siRMPieIkbxDS+ccGpqzV+GOIHHca+afdO7nJyeIxW+bXTjuMFzM5O+OCDD3ntG68C8N4vjqjqAMeNcb3WOaXUnB4doZoSGuMQcufOTTSCXj8gDK+uK0wkUFWTFWZsfgTSkUjXwXESc12Rs7xY8Kt3PuCbbz4wfW4apIDLixmOuwQgCjy+8forNFpcu8x0woDeuM+g2+fRJ8Z9p1aa3mCI77ucnJl4mDwr2NqCdJNy8dFPABiOOoRxj6YCPzB9TnoT3HiCBo6OzL0vXlySJCEnhydUmXFnUU2JUjWj6ZRnT54DECcR4+1tqnJJ0boDzeZrJlsBdaU4Oz0HYDwaMOhvsVmXqLaGtFasVzme4xm3GEAISVmWeFJz0Y43jBJGkym6qdm00VqdboIXRASRhNZ1JfQc/ChiM7ukdM36Xl5cINyA7Z2d6y0gHWiaBi3q61gkhcCVLkJKRBsh5cQd3ECSri9RrXePUA2UCs9P0FexV2WJ1hUgkI7piyd8qiIFDcpp88qkoqkVUgjc1nmmzDfUdQVOfD0vRVrRNCVBGF9HLylXgtJo2VDXxtbEDwOKtCBvaoKOcXsJ/JC6yFFK4cdmLyCgKjTCKa7rOU1z6rKi4zlEHXOdUoICjedJPNe06zgKkNRVzuJybuql2yEvGgKvJorMOHxPUmYbpOfjt33J1ylZtqE7cAjbNorNmqqRaFyePjdxb9/+7i7PH19QFDViYepeaSjTlF4/RLcRZoPhCITm8aNHNKUptp39LcIwYLHMqSuzlpPtbZoqJww8otZBpxNHfOs7r+EGAWVba8+fPaeqara2p1Sleb/MLufX8WVaG8eqbHPJ/sFD/LjHjX3T7tOqwHEEl4sFI+dqmjXdJGS5qbk4N/soDnxqFC8OzxDCrG+URJSLE6r12fU70XVdcEKaMmVx+Lb5zAvRysMNfKLI1NBgEBKEEQd3H3Dy3uO23RKJACHxQtOZnW2B63mopkE4ZmyOdnCdhtOzM7b3X23b8FFZSZ6tGAXGkafbS/B9lzAAlHnXnZ3MmPRTZPcmSf0+AG/cWvH08d+g1ZvE4YGZBBVRNoqk36dq1wgZcHTsE4YOO3vbANTyNZrT91gfvYVs3aRqIrKmISw3bE6Nq85msaC/12O8vcXOrduA+V4Swvzi6jvqN8VHia+gjzVRjV9wy/mtd1kslv9e7E+pWCwWi8VisVgsFovFYrFYLJbfhv13RIvl94OvhfDmH8rnozg+/e8zV1z96afXKXPRemEiXp5++D6jyYQ0rfnOH34bgP5owq9++Q5v/e3f8r3vmc+efPALppOYyHMIYiM68VzI8xW+9GgqcwgexSFJp4Prapo2rsenpE4zirzE89qIkmwNyqMsc1zMYX5VpjhOTMcRNO3hu5a+iaNyK+I26ufGrR2kG3Bxckh6YcZRZ5q4P+DVlx5QF+ag/Ww2J072SLMX1+KKyWSHdDWj2xvxxrdeAWDvYI/p9pgoSXBcUwrSqRC6oWok+Wpl5qUXorVGU6Dbw3fX8UjziocPbtHtmXmJwgAtJEWpOTszIofVcsPufsKL52ccnZrInenQYXe/h3AU9x/eNnOgG4RuyLMKt1236WRErxtQFBmj7VvmutUn5E2Bbgqi/rhdWwUI1vMlZW6iecbTEctFSt0oBmMT0VQ1gsVsydZ2wI29LQDyIuPZo0O8wGHQNzFV62WBrmv8qINu++K4DkWaMeiFCGUO5LM0oywUq/QMxzexNMNBF991kaFPmrcRSBKqqiTu9tjaNe2uVwtUOScMY4LQrG+ZpwwGCZvFJdnGzJXrOWzdGLNJN/iu01a3JuwkCKFx6rKtIc1qndLtJ2hM/8rFiqDTxw9DHNEe3jsAHulqcR3bVDcNutFI6VA1RhTjOA7CDXE9l6aNcpLCw/MldV1RF0ZA5AhBpVyEqnHaWivLAiEF0lXkbU1q7eD5HlK6zGZmbJ6T4vgBjhdcSwuWsznL5YrhpI9s91EYhtQoEPIqCYsg8ImikKau28glaJqSThKjNNStqE06Lukqw/cd4q5ZXz9w+dEPf8HewT7375u6auqaslboYoNsE8KyMmedpnS6EefHZ+0cCCbbU8LYpz/uA3B+esI33rxPlmtOX5wA8OL5C3a2dgl8H8c1tfH86SkaxXg4QrpmxFEcopQgChRJK/g5v1xQ5BuioMNiXrXrIamqmqoqEa6JmeuPh/SSLsvZGUKatbx95wanx8dMxiNOjkyfu70Rvh+h8pROaNYo9EOOnh2ztT26jgPrj/q89+4TPDdgMGjFR8WasNvj1t198o1Z83yzwJESpKTVaRGObhMNDmiKjGJlRG1KV0ing8bFS8weDBxT20UpOZqZddudNowrh8DRiKt4MSkAjRSKRlftvOQcHxXsPfRQ7R6Ufo9YCPpbg0/HMUh49UHCoJcB5t6uX6BnP8cdvULtmf7tTlY4HPGf/+sJzff+HID9m7fx/ICt3cH1nM7PL8iqHOknNJjiqBuJiu8SbA3YrGZmDuIu2XyOlhXvfGwEhb7r8cmLjxj0nnLvjT81dT8w64doBTiA+a5q3/3tl9nV99wXBTW/CfEb1DatRu9z1+iv9liLxWKxWCwWi8VisVgsFovFYrFYLP9ArODGYvn94mshvPkqB4uf/Yn+zx5MftltWuvPOeBorRFA0yg+/qXJBvz5j38CdcYrb36H/tC4GLhOw/LyjIcvv8RmZQQcJ0dPuP/gIU2d0Ynag/HzGUEYEScdaFoBQtDFcyVCClDtIb2EPCsJYx+3deDQ9ZqmUTh+QtUeFIOPFAVNpfD9CQB5UbBcXJIkPaRnDoBdGu7em9KJQqryMQBpumF+foxQNUFkDnQX8zXnlx/jupLByDzvyePHTIcDzo9fGIcSYGvcp676NE2FxrhKSOEiXIeOJwj8du5dF5qKqkw5Pz0FYDCYMNmaIKoO0vPaOQjRSnN5dIpsnYD8jsdstuTs4oLJaAjAsB9BVeN5HrJ1+Hnv579iPO7he5LhyAh5gk6XanPB8fMjJoPWNWSyxeXJCclwShQbIYXb3SVfLXn0wQk3798xc7CUeJ5LllWs18aFJAh9trbGPHv8DN83gwujgKKsuLG1i3slTqGgKBVNXbJJjXCkrBr2HA8/DKjqq9rSxJEDqoPfMSIMVEMYR5yf5dduKlorPE/guVC3Qq3d7T6qWBIMxkjXzF/Y6eOuCrrdDqcnZp7v779KDKJr5AAAIABJREFU2Okwv1wThldCrYxGlaDlteOI4wriOMRxHKrWEcX1PcqqpM5TgsDMVRB3KIqCII5AO+2aK5q6oSnzayWAdjSuKxCqRrSOKEo3KKUQgBamz54f0WxyiqxEaVNDfmT6oari2t2myGoePz7ktTdewnHNOB49esxLr94liaPr+tOiIY5igjA2LiqAkB6uV1EWJXVthBllUTEYjSnyDY7btGMLqMqSfF3iD4xAQqIIQgkoRm1d1XnJndu3QIJujIDDDX2SwEMrhW4FEEIKtnbG1JVmszauSeNJF8eVrNcFvt+uW9xltSqJ4/Ba1bC3v09vPCRfZ9StWkjokt5gSF5VDFoHHel61FmN64IWpi+9fofNcsVqlZN0jWhntUyJooggcOiOx+2crihyRdP0ka0o6/EHn7Bc5uwf7JD0zJq//95HJElAuGeEewBxN2R3/yGbTU6xMfsjW+esVzmvf/MefmDqKkszgihGAd62EY25boFoJNIJ0aoVOCFpyjXl+pSgY66rikvK1RHCCXB8sx6B+ISL5Yb+cEw8MqKndz76KXEcsrMNge+0tVahlUYIFyG9dv4aXn44ZKVyfL8VWwUJTRXg4F07w0jp896HF4wTn27PjDcKa6iOgLusMe2m5S+4ddPle1rx9OlPAbg4P+eVV+9TZRG9gdnTnudy8+59Ls/OefbECGpuv3SHsglRzZC97ZtmvHVNNNxjs9qwI817t9NN+OC9j3jrV2+x93c/AODb//Lf4Tjyc995X1VY82XX/kPu/eI92vriWCwWi8VisVgsFovFYrFYLBaL5WvEX+x9k//38Gf/s7vx340V3Vgsv398rYU3nxXZfPb3v9EJoLW/kXxGoKM1Gs3l8TmPPngCwPH5hr3tATfu3CXpmgPWD371CSdHL/hnf/Y93n7rhwAMBz16wwnogqaNaJoMArzeDsv5GdNJK/7wXZpijuO5BK1ipUodtBboJgOnFTlIByUUYeSzUUaUIHDI8xKtJRcnJ+3zQrodl3yzIegawYAMhgSe4satKRpzmP/i+SHuKmc+nxFlZi6kEqiiQHT6XJwad4eyEpRFRlVUjNoDdE2FqgvKVXkdHeR4CednS0aTKY5nDv2FdJBArSSNNmMTXojnVmjRoGojGFCNoFEwGHWJO+3zRMQmy7ihNB9/+BEAB3sv4wcuCsnJ0bEZryMoyoY4CtrYI1ivNniqYLI1pE5NrM8m3VBpl5wu5dqMd5hUVNWawC0o1sZpJ135PH30lBt37nB8bNqYTKes1hnS8ei1jh6O66PEhq3dHS5OTDTUcNJDNw2+K7l751Y7fyXS8yiLFNEqUfqDLkcvTqmrismeERakacZstiLp9cmLrJ2DhrIo8Nwhu/tG5JWnc+oUdFbiOkbc48YhvudQI/FaQZLWGtf1UUqzuDTxP8PxgGyV4ochrtdGjgU+eV5R5dl1/JQfxkgFdZFT5KYvSBAIpBdTZqZdIRRuGNCU8lowhVTUeQGC61pzHEngx4BAtHurKjfUdU7S67FaGyebuswotcBzpHGawrjW3Lo5RTjQH7Zz/1QzP58TeD5B6+rU6SSkOsPznGtRXVPVSNdBakmxMS5MbtBhM7tEo0gzI37L0oCqLgiCGNr4H1U3CCFJ05Q4NLXrRTEHdw9QTX0tNFJ1hUDhBRFZOy9h4FPlNWVZ0e312trYQkoo1ktWrYjq9v17LBYpP/j+3/Da6y8DkIy6jLeG0Ajq0vQ5jkaEnZhENtR5G0klE7RSFGnTSo+gSBdMt8dkm/Q67igIPVzXZZPmLB89NjVZa6Tj43sC1Yp7btzc4fhkyeHRKVcOKk2jQCsTU5Wad9h43MX1XOJeFzBuNMcvzglDn/nsgrp1OVLSYzgCLQW1a9ZyMIyQvk93+xWy5ZG5TivKzQqvu4/rGQFMuviEYHQfz4+vY6qm20csn50ynDzg/kPjvHX55Jw0WyNwPxXP6JqmdtDI1tEKOkmfRx9m+ElJGLUxZEWE3pSs5hf47Tvn6HjGkyPBvf2GbmzaVUIghKK8eJvu9LsARN4Ctzrh7l5JII2D2P/9l0+4OL/k7p19glbcs3tjj6TbgXpB3or4Lg4lq8Jhb/8Wabu3HAdcCYtFimij4vzAY2t3jyx9g//y7/8TAHde/QO29m8jEF+QvXw1Ac21APVzbjm/LsD5opuN+PRSi8VisVgsFovFYrFYLBaLxWKxWCz/g7CiG4vl9xP52y+xWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsX+Rr4Xjz90VlfDEu6svu+7XPhUDoL8ZNCXSjOHz8iKdtVMjl5Snf/e7r9AdDLi6NY8Zf/ue/pNcNefdnP2NxaaJ+JuMeRZkjmoykNwLAc2POTw7B6+L6xo1GlWfQrHDcgGy5aFutcRwHLaApTXRVnq5xXIGuNog2mkc10PE9lGrodU0cUyV7OL6Drhfo6hwAP6poSoEfbTGZDgCI4oDzk3Ncd/6p80wxx+tFhHHAJjNOGNJxaKqSMl1z984BAEnHQZSXICWOe8Nc50mUhqIor6OSVKPQjSJdp3jXkVkVgpKqqblyasg3lzQKzi9W3LhpnpcVC8I4RinNdGenbcPn6eMXlLVD0y6RKwW+C64X0Em6130uNiXNeoGQpi+rTcX2rXvUKgHaLCwFvckB0p/w4bvGMSgtNuRljdaKnV3j6LGzu0u6ydmajlnMV21dNWjdsFqsqNvYoXKT4rsSLwpZzNu1dBTFZk5aGxcks5Yl0+0J63Vx7coR+D5N0FAUJbp1IRlMh0jHQXo+L14Y9x3PqRFNTa/rkLeuIV4VoUTMyfNTGnUVgRSgmpwo9jh5buqgzEouzi94+Rsvo2W7dxyJIxqkEyCd1u1FaZqmJgg7qNadRVUKISR1nuG6RndXVwovjPCDgPXCOHo0dYUjJUI6aIwLjuv6lHlGXZf4vok1axqBdF2KbI1uY6CE4+O6gk7SQbTxXUopvNCjLhuubDd6/QHD0RAQtFsBVdcEoUe+WeO1EWaN1lxeLJmMB4jWOSrwJWWuWS4yktaNxgtcemEX1/HIM7PfmrIkGfToJB1ke68AZN2w3KzxAjMO15E4jktd1TTtOBbnM6JkwLOnR2xtm3inn//0bfq9Ho4XcnF41s79Uw6fPefb332N8dS8I2azNS+evGA0HeE6rdNO6FMVS44f/ZIoMS5b8XCfsNOhURrZmDVaXK7QYk0UOmzW5rP5fMXd+3tMxkMWM+PMJCpB1O3ST3wuL8y6Rf0BtXYIQpfD56bWdvemlJVCqwpXmrl3QhPvJQDVllBv0Md1HLLNDKeNNXvv7fdZLzb8m//tX+H68npO/V6PqDfG8cz7b3H6Pp7notYZRWOcvPx4RG/rJVwv5OLZW2a8vREHk2cEfsn+3XsAbBZn/PVPf0Cal7x8z6yH1i6duKaqBardW55XELo1b797xPDAvJ+r9YqedugPR1Tte6jfi3hwK2F3WlCUxrlnk8Ow67GaHTIMPjRzNXmd5qIkZMZ0y4ztf/3jPp8cHfPh+xVvfvMbAKSFptvToDbEjpn7k6cL5quQ2fEZq5VxeopiD4XH4YszbtwwdTAaxvT7XbZ3t9msZgB88PbPme7f+py/zZd9v/Elf27iFdvvveu4qDbh7LcZ5nymiev2/uEpVRaLxWKxWCwWi8VisVgsFovFYrH8D+XKMeYfY+SUdbuxWH5/+VoLb34bnz2MvEIp1cbjfOZwUWvWizkvnj7iYmaiiEaDMUWpKaqKs1NzmJpnG/7oD9/kZ3/7V2xNJ+2zFZ6UaKeLbqcrraA3HBHEA0Q7g752yfKColxSV+agOAwDFBqJIkuN0GO9WhEEDm1qlWlDgyocvNDHC0y8U7aZkRYVUlfItl1XzWi0Q1kpSpOGg+e43LqzT9L1OW4P2ukM2RQVi8sLXN9EYVWbOcNxj1cf7DOIzSF9lYUEfhcv2sN122ijRiPqmtXsAl+0ApgwQWmF7zpo34gX8s0SQUlTNqSFmf/Do1MevnKPTtdhsTTCh6dPDomjABdF2MYieV7A9rSP9PvkbaTNZrGkPx7iuTCbmf5JofDUAk9mhF3Tv2opqDYr4tEYXZs5pQlRdYDr+3T75uBerTWdpEsnDnCUaWO5XBMGPufnM8LIiCGyNMN3KqpsSZEZsctquaKTdNi9MSUPjChrvd5Q1w1bkwmuY8ZRlhXUAs+TPP3ERGH5oUuv18fzNL2JEWu4vo+uanRTIluhTNKf4HtbRJ2YpjSfFdmasNNhZ3ebp89MRNhP3nqbremYnd0J81YUc3drm7xoWMzndBIjfPBqjReElGWNzqq2XQ/pOkYQ00ZISUciHZ+yzPGuPnN9pJQopXE8My9uGOA5LmWeX/tiSddBOAFFXaPauC3Xl9SVZrlYEyfR9fO0UmxWK5xWPON4Hlor6rq8nuftnR3KPCNNM/oDU6eShjBOUFqiryJ0dEOR1zS1RqhPxQZeGDHwAtKNWaOiKgmKkij0KDIT/zNv47nCJEE6n4qAqrpASA/nKgJONJR1g+t5hGErKup28AOHg9s3qVsBR7ra4AqBF4Rs7xpxRaeX8LOfLIjikKtXTpHlaK1Jul2K3GzWLC9IOgmzTYenJ0asMZlecHDLRzjiui+7Nw9YXZ6hHZf5YtbWmmK5qtmsLzhvx/TSKw9Zzpakub4WJB0+P6ITxywWKaOR6V+RZuzsbKObBtG+X5ACXWcoXZOlpl4uz+cMBj26yR4fPzICtps3D+j2e6Br4jaOrq5yXH8L6fl0prfNGrmScnVIXayvhUZalWzOfonSIa3eB4XPaPcm6fLnNN5rAIx37vKn/2rK22/9NxZrs6f3pxU39kM6kUSppu2zYm/H4/GJx7oVu3i6pChTqmyNNKVGU6/Z5A0XlxV7O+bdGYYgZUOvF+KU5j3pcAdn8gbFyV/TDcwavXRP0O/W/Nd3S3ZuP2jrpeHp8wuS5CaDXRM9FwVrfvzXP+LZez+i2zFzv1kqPn40Z9Bz+Olj0+f33j7gxsNvsT3dots374N3336HP/5f/jUijPhdlC+fRij+hj9rBaif+7O2qc9+/mXPsFgsFovFYrFYLBaLxWKxWCwWi+XrwF/sffMfjfjGCm4sFsvXQnjzVflShxt+3S3gU8GN+Z/Smg9+9hMcwfXB+CuvPuS119/EdXxWrYPEzs4uos7pRhXdxBym9gYHKJXRnRxAZcQkFycXdHoRW1tD6twc+ntuQFFUSFXgtwITVQuKzRqEgtoc3HdCiWoUVV4iHdMZ3w9QVQmuwnGNuGKz0ISBphNJirx1msgrvMADfXwt1oj6ezRNyf7NPQ5u3zTXKZdNqjl68QKpzYHyoB8QD8bsP/ijaxeSFy9meGxRzTaMnCt3G8lke0q5mdPUpn/55RlFntLgsJoZIcBoNADd4PgudSt86PZ6HB/NcB2Hfs8IKSbjLmVZ8eFHR7z00m2zjtKlkSGuI0g3pn+/evdj3njzJXqjAY8eGSeRW3e2EFWJoEa1riuN9pmdHuOGIa5v3IGEO0LJHnE/ZjQxoqd1donjSN55+z1GA3PdaDtmOh0wv7zk+VMjlEm6XbI0Z7U+pD8yzinT6YCyqqmzlHyzaNdSE0Q9NpsNw74ZW38QkaUNSMVgbO6t65q8yBn0u8wuzb390RDP9fE8B9c1dRCEHnVZ05QlShjFQKFjelIx3h6zWpmanO5scX4xZzTqcXCzXd+m4ebdfVbL1bUoId1kDKIRURyQrox4oaoUnnAp8w1+lFxtDvIsRdUlor3XC3yqssBx/WsZgATKMkNVJUEr7tHaPNNxAjzf1EtTFYBHEPrEHSPqKMsGHFBaIt3WtaasyfMSV3o02szBxdkpUigQPmVuxB80BUo7+FGElKZOHdfHD3yKsqKTmDZWyzVB4BFEIcu52TOO43KyWBIlMbfvmVpzXY+6VlRlhdP2RSnI04LDwzNu3tw166ZKZoucwaCLbIVamzQnCGOGo4RnT4wr0a3bB/h+hOcKfvrTX5j98eiQ6XSE64c8f2LqKkszOkmfRx8+4s5DI9bwXA9Uw/6dGzx/etqu25p0s+bHb/2Sb/3hm6ZOp32iTod1WqBa1dN0e4hWJX4n5vYt41g1v1zhCOgmXeaXpn8nx2fcu3+PbrdDEBgBTF0pzk7P2N4d0WzW7Qo7OFKjqMjaPdiJPDbrguEo4eadPTN/jqBIMxaXM3r9bVMbjkQKSblesjo37fpujet30TKiKcz7YLUoCYKSsBtfuxdFgxt40Qil/47N6U8BEOoWw9E23/nn/5bZhRHFPP7k+/ixxjlPCRNTa6OBy2ZTkMQaWgFbrzcmWPchimnar7PRaMLlRuG4Eq8VW7lS47guWjXUtZkDdfwD/OmfQOdVso1ZS13nVFXD7ti9nr8sLZBaECQ9Zhvj5tPd/RbbN2fs9s/Ynpp3U9kE/PGbfRazNUVt6vnZ02Pe/+UPCL/15xzcMi5g7719yOzsmOmN29euNVf8+nfcVxfmaK1/ZxGrxWKxWCwWi8VisVgsFovFYrFYLJbfDSu6sVgs8DUR3nzxsPGzv//sT/B/2WdXfPGzzz6vrmqWizW/fOdDPv74AwDu3r2JcBxcL2K9Nu4Y21tjjp4/od8JGLcOHLglUvhQLpHSiDqSbsBwPERSEnrmgLVIZzjSQciIMjPilDyfoZsa11Gg28gnKSiLCq0aisI4f+RpRuCBFBV5Zg7Bw3CbowtBHHlsD82YpFtTlg2yWaIac9hbzJ/iRD2UCsnWRhjU6fZZrDdMpj0C30TapOsSPznADTocvjCRRUGnR1YVeDQcP31s5g+f8daAPC/55JNPABhPBzSqJggjlgszV5t1yd6NHRwlWK3NYbQWDlHokGcVy4URIOSlYn9vyp//+Z9ei57KCk5PL7hx84BR6wrzxjffYDLtc3ExZ3fHOHUMB12yVYnvaVQb26TdPnWlEdIl6BkhwOz8kk4XGqfGD80Bf7/XYbXJGY97164wSsHp2Tmz+YLRxIhxsqwi6Y/o97p0+8axpWkainXOap3ih60Ti6xYZzlag2ptjlwvYrk8QamKeRtdtb2/zdZkwHq5Iekm7Vr6+L6PUgLhtYf0WcVHH3zAnQd3yQoztk4cUdYNjufS6Zp1G416aC0o8orewMSLFXlOXTcksQ+tiGq2yanLGj+K6LQCmHRTgFJ4QYzbCh/qGlxZ44QhRdGKXXSJGwbG1aXdP44A14+phUPd2is5XojjaFw3vBY+aFXjRRFpJsna2pWOwHVcykLhtc9zPZdso5CupGnMPkpXa6bbQ5R2mK9MXY0GCY4fgNYUualn1wmYbA2oipKqat2LVht2ertIz2U8MfXi+gHL1YqyLK+jq5BwdHhMp9OlNzTiKDdwiaKAG/vTa/eiBsmgF7NZLun3zNx3EsHR8QlxN76OqWpq8AOX508Puf/SywDMF3OGwz4g6A5NX/Likvff/5iXX7tPum4deYoKoTVaaILWcak/7uH6Pkk3JryKcqpqtJQMJ6Pr9V1eLOiPBkZ4p8xG8pyGuBOx2WQkHVO79x/cRemGXhLx+LHZg7qBoxcnrBZLbt3ZbufFJQp8pOzguGay/NBHaoHwNMePzTtiMgjpjXsMpn1ka4/ieBFNmZIuThCtsOX0osBxQuazjdlowPb2Nm7oEvbHiNbiK98syfOMeHQLVRr3seb4F1y+2KaSQ8ZbRqR0dvQq7330Lq5UvPrArNFiUXIxLzmdR+y1oqzVao6LQDYlTjBo60UAAWlW0E49vT6goKkFxxfmfbU11uizHyMGbxKOTexVdvkR02HOB88Omc2McK4Tx2zt7tAd9mgqs1dXiyVClUxHPlVpajcrCgZdj/7NLnUrvNme9Fn84CnvvP0z/vW//XdtXya885Mf8Wd7N68dsBDieu9df69paX79BS3N3ydA/W2imyt3m899l7b1ZbFYLBaLxWKxWCwWi8VisVgsFsvXkX9MrjcWi+X3G3vqZrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLBaLxWKx/A58LRxvvoj5aXwB/ObojE9/6F9/5jN9/d/V53mWo7TPcp3RibsAdJIhk50p58fn/PRnfwfAP/ujP2B1vEH6HuuNcWhwQo+6qvGKgtHI3DvseYh6jahdVBtbUuUrHEqk1BSt3YaUxpyirEqkMI4ZjqtxHDO8q/43jaCpTTzNVSSLkEsu5i5ZGTMdGtcVP5aopsHxfJzaOC8gBPn6gqZKCXs7AGxmR2x3I/xkTJFV7TgihpMpQsLu7gQAN/AQwuXDdz9mODDter6kqRsEmmHP9DnwFELG+L6H55vrcByqusL3A8rWBUI1JevVivFoyGhinDXmsw1BGHJ8fM7s0jgBzS+XfPMPXgJtonwAZvMZnqepipJ+z3yGaugNeyzPn1EpMwej3TtIWeI4gmx1CUDopnj+mLrKkdWJmSuW9OKAoihZp+V1/8Iwot9LmG6P2r5sUEKjmoyLU+NaM97eo5d4+GFI3kYgVaVGCoi6CZvUXOc5Df3hkMVyydZO27/JGKUr1uvc2MYAjucjhODyYs7OgVmjbLlBVVDXDlVp+ld6Daenhwz7URvhBJvNmqTXZTFfELZrvlxl1FXDZKtP3rrWnLw4xpEwmjrU+brdCw5FrmgUNOqqJh2apgENrmPWUjqglcJ1PKQ0Lkx1U+NKF4SkaSOpHCSu59HUCufq3iChKDM8x0Ho1rEDF8cNEbKirszzpHC4nG/o9SX9gXGeCQKfbi/GdQPSqwgkpQn9gKrKubL6cIOAqioIwxDVur30+z10VVI0Db5v3GO8wOel1x7gOu51rFRTB/i+j+NKNm0EV6Q7dCYDcMCRJsZIZyY2jY6ZD4C6zPjg3U9IBr1rRxmhal48XdEbJty8NQXgptjh2ZPnHB2e4LitG5Lr0EtiQs+naWvIlZCWNZ1OwN17Jnbo+PkZ88MTJuMJH75rHKb27tzCcx1+9bOfsL1norAksNkUTJOY0yPjRuN5DhqBEALfM+0uZpc40mW51AjMmk+3x/QHXZpGoZSZq6TbQXqCugbVunFt1ilnx5fs35qi2lqr6ppAKxzt4rV7VdUlVZ5yepKir5xnZhlNnfLJR0/Y3TPvF8cNGE4H6PmcuGPWPOpvI6UGVZBoMy9h55T+7Ijjk3Nku88fvv5NTp4PefrhL/i//qOJ5epHNUr22L/7gOm2eb9UyyeEMqZxJXkbjee7DfcfvMxP3/8rphPTZy1cNIqsyOnFps8fPUm5fweCzXsEQxPzFTgN2eVHvHpPcX74SwC6L3+PstiwmadEiXHKevsnP2H54uckLzfM58ZWZzIKCEIHx5VUjenLs+MVr7+yw/mP51SFccbpDbdotEQr0K30VWiN5vOuNUJcfQ/ymc/+fue3L7rGfZEvv+7XLrNYLBaLxWKxWCwWi8VisVgsFovla8XX2fXGxkxZLJYrvlbCm08jNkBrI7z58piN9jdamIND8euRVO3dABTrlPOTM/7ou9/hV10TR3J2ccF8tkApTdCKScLQwQ0caqVJ+iYmaLh7j2y95uTwCeuleV5/OIJGUWuPMmuFN2UJWqGLDXVtDryFlASuRHkhjgwBKIsUrRsEEtc1J/yulKimotNNEG2vZZPxxt0+WjT48qoND6UbpOuyTs3BeHfQx3UikuEWrtcejMc+jgSlBHlhBByOP0ELh7osqRszqUrVPH9+RtVUZKURIEy3hwgt8JMJ6405KPZ9j6xUlOsNW9tm/sJOBEh0U7O/ZwQIs9kFezcfcvz8iCQxIqX/79//N/74e3/A9vaEXtf07/adm/zwhz/DdxXf/varbbtT1ssVUlb4gblOypo6uySOPQrdadfyAlE8pakqwk4bIaVByCNm52fkl49MacQHdHs7OFnN5aU5GM+yDbpTMZ0OGG8ZcUDS73N2PKPMU5p2XsoiRciQ9TonSUxfHFkinJAsL9DKCAbi3oiqVMSd4DqWZn4xo9cL2dnbYb40Qo/Li0v6/R51XSMwa97p99i/c5NNnhHHpjb6gw5JHHN2fIzfCjiiKMQNfBYXNWfHh2ZsWtJJQrI0Z9nGi334wSes1xmveQGrhSnU6c4Yz3HwHQltu9KVKAV13eC20WkISV2UpOWGqI2p0kjQGqVBukZ0UlUlHq4R77TxOk2pjOBGaNLNlbCgi2pqwii8jnx68tFznj8/5MFL91jOjGAqCEPKsiDpxIh2o8fdDqqpULWCq7goNEHoU+UVfiv+CDtdNqtLtFbUbQzZ/GjGaDpCO5K6jaSSjuLgzk0EmqIVASmtaMqKw2fHjNqYKs9xmc9mnB5d0m9j5i4vVgzHfcaTHYQw97549hwcl939XarcjHedVghgazpAtDFkQvqouqI/6PLjt34BwOvfeo2k0yGMXcLQzGl/1KOuKtJNfpXQRLZKqTxJnlXXApi8KvG0x8X5KW5bG0WZs3yWMp6OrkVFz5+eMd0a0x8E3L5jYps8z0U6AqUU6aaNvco2zE9TpHApMlNDk0mfvRtTXN9nZ9vEbfmeNIInLVGtmETpBiUgjmOqdu7jpMtg2MUPAs7PjDDo2bMzlOMyHvXQzaLti8QPAlw/IOi9Yj7r3EbEjwg7HzA//QkAF+VtprsHuJ7LN1od3vnZkuFwzN6tu1TtO9ZRM/wo5Hy1pHbMO8eJXW7d2mU9f53/8tY7APzLP+7gUCGQxIlRu9y75SOEpMov0XMjsnG7D/CSkpu7x+SPjCDzb7+fMdjapduJ6MRnptae/5DX71QEfsONPdPu2UVGb+QAnlFZAbduBqhKM0xyTs6M8HCxzNi/sU+V5/jtfkP+uvmcRiOFbr8LP89vEtaA+T78+0Srn7uOX4+sslgsFovFYrFYLBaLxWKxWCwWi+XrxpXA5eskwLGiG4vF8lm+FsIbczgvPhXZCLiSzXzZT/V/enAEORh4AAAgAElEQVTYugR89llXohsNuj2cnZ2ccnp+QlEn3Lt3AEBRVKzXKZenlwShcYE4Ob2g0x2yWpxB61CTLuY0Tclg0MeTOQCeKFAIUCBa4xnH8fGDhCptuJrWui5oGo3juRRF2X6mkI5A4KBauwPV1ARRwNaNA85PzaF1udgQRjmaCmrTl1IVOFKS1zVamVHXZYrCRdUVjTYim6LOiDsdmkrguK2IJfCQQlNXBauFEQwMRgmdTsiNmzsUuRlbmlbkWUm3p8kr07/uqEOgcuabinRj2khKRVrU7Ozu0Bua8Q4nYy5nSw5uH1DXRqjwF//mzwgCQaPAaZ1JBIo/+u7rvPPL93jvV08AmGxtMej3WM5OWc7nAESRwKNG+gGBa/r3/OnbSAr2bu4xPzdOGLGvma9WKHfM8M4/B2B1eclqfc7FyQIRGnFFkoT0hiO8TpfFwggV6kqzXFwSJwmd2AiwsvWSuDtgMBoiRdX2JQEvwt2s8dy2Xg4PSfo9hHQZjY2jx2ZdkKUVKiwZjQdtuzEvnh9z48YOqlVXuA70h12kdBDCzLPvBZxfXhJ1OgSBWfOm0aSzOWmaUTStcKSGuirxXBfhmLl/8PIDdna3ePTJM9YLM3+npye89sarUNVUjak/z3VACOqqIeiY8VaVwvVc6lpRpEaE4ccxjTbCt8AzoiyEcYERUuG0tjDKBSkkPpqw3UdeFKBrTVEU1JUZb9ILuXf/Nt1eci0M8iNJ0o2os4ow9Nr1KFinOUWp2NrbMu2i0Y0worTWnWU5X3L47AUHdw7oRK2oLa3wPJemUVypWLSqcDwzT93IiF0aVSO1Ju50roUymyynbiSbtKLTuXKK2eK99z5iMFToxtTBvXv3CeIA3RSs2r3Q7fdw/AC0pj8wbWjH47azy2aVcnBgXGuaumG5XBDFY4rMCGC01iAdev0OaWFqfL2a4/kxYRTgtOK8rd0d8jxnvV6TdEy9jHemrOcZYeAiMHPw6jce4scBum4Iw9Z9J4h4/vgZOzd2rtWIruOTdFwEimG3tfjRgih0ccMOQeugo7RGSgcpxLXbUNMIqsohSiL8dp59P6SuM/KqwHGuarfi+//p+/zJn/4RZStSevnVhxwfHiFlyHBixD1xJybqPcB1YjzfCOfiy2OWRUWwvYuXtG453YykE1AUKc3aOFvt73fw/SGxKlBx0Lbb0N95yPem+/yH/8fM83/864+Z9hpef6VDvTZj8z1NKCVVBav1MQAD7UDyEh5wcMMI3TYf/Yzl6Uf8+L1TXrtn3qd/+NoAl4rLpWB/x8z93kGEcCQgEMLUs+9KLpcbnhxeMLrTiqiylNOn77NZvnYtvPmsUPQabWSY2vgafVovX4Gr78jPi28+901pPrG6G4vFYrFYLBaLxWKxWCwWi8Visfwj4usgwLGCG4vF8mV8LYQ3XB8qqt941ZXo5nNiHK35tbPI9ve1+jRCZXtnnx/98Id85ztvANAbTAjjiIuzC9z2oNgVksXlnE6nS5YakUORnSM9zXi6zcVpG6kkGkbDPkKWhH0jDsiXJygkjQjRYnPdkUa7SOHiB23skOMgdIlSgmJtDu5918V1NZv15to1ROOg2jFfx1RJiR8G1HWNq03/1vNzgqjLZn5Krcx1UeRSegFZ1lC2MUZJ2KMsNWHoMdk1DjW6rhgMI3SjSdpD65PTBY70qRvB8ZE5jO53OyyWBdOdCVqbNupKIZwCx4HzU+MCsd4UCF0R+1wf0g8HPYqi4uTFKevUCELu379Hkae89o2HzOdGAPPo46f037zPzo198swIELL1KcFkB11fcvniI9OXJKCsHNLZOe/84jEAN/dCRDAhnu6jpHErSYYe6Gd4+2PSuo3q8j0uzy5RdUMyMG45qBW+75CnFU5s6q/TiZBao5sarxVrBGHEarlmOB6zXJrD/LjbZ7XY4PkBfusKIwV4cUzST1jOjMNFnMTs3dilqhXZxaydU4emcfDDkKh1B9JCk/RCyqK6FvfMz87QSjCYTFivTF2dnpzi6AoZx8SBaffZyTNC36ET+XQTI/Q4P7tESAchIGp3el5kCOkSdQOKjZn7BknUGaIVNE3rvKGViaMSqo19Aj8IcYOIpkgRbZST53poBE2lUJTtrQ7oEukI3PYV0+12WM0L8qxkvTLuJ9PdEXVRIh1J3W7iF0+PGI1H9Id9mqqNaPI9lFJt9I6p+yDwuXv/NkoL6taJpTscEiRdVFVRtkK3oq4p85L14pzRdNyupY8WDp1u91rYMpstSDodyrK4vq5qFA9fvk2+zjg6MXsBatZLwSYv6faNIKSqV/8/e2/2JMt13/l9Tp7cM2uvrl5u3/0CIAgQ4AJJlGiN7ZAVksOzvPoP9LM9EbZDjpFjrJGGlDTSDCmBAglc4K59e6uuvSr3zOOHk91YeDmUPJoQ6DifBxKdN7PyLL9z6uF86/tlt1nT6/coSj0u2/mai7NLiqLAakUY3cEAC0GyySja2CEvChmOO1A3TA71vM2uLrk4n7HdFmw2utb80EFI6Pb7hEEbwSUFo/0+TZmT5q3Yr84Z9/co0gzHbVtcNYwOxnhBwHKu5/zy9JTucAgWbDda7LdLHQ4ciScEdltXqirY7Za4bowl241VVGRphkS7SLUX8QOPwHdu4vws+jTYSGkzaEVoZ+eXZFlJx4fFlZ5fIcY0TUNdj4n39N4k3E+w5k9ZL39MttR7bL4p8cUA10rwQ11D8fC3UEJiXf4l25VeW/3xBMuxyTPB29/5QK+Fkw7PH39MXtc8uq338f2xBGGjmor5TNdLtzdHZs9o/EN6Yy2o+c3OGemu4Ju3+zduZnWxpTv02OQVjdU6pjk2Ta2oGkG7hREEHlebnLT0mBzofqxWCVlyBsL6ktrmqw41orVz+6pvza9yu/nPXfslEh+DwWAwGAwGg8FgMBgMBoPBYDAYfq34p4qfMqIbg8Hwy/jFfAuDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8HwK/maON60qNb5huvf5asv/Wr/i3FTnyNAXYdOXbviAM3nriu2FyOky/PnT3jvO98EYH+yR6/TxXEsDlongnS3IU0Tul2PuNdvr23pdiKKysGW+v1pmuLee5t8c0HkaqcEy3UIghjbtsnW2hXBUoBTIoRFXbSRLLagKCzqpsFyWicbpyEvK/LzKeo6dsj1EKJ1vanrdlwkyXpLrQSidf4QStCUOyoKlgvtolF1PIZOiEQSBtr2IvRsLEtRVRWe1bpjqJy6ymkq7WYCcHy8T5pkWNLm/fffB2C93PH8+Tmu7zJfzAF4461HBLXFy6fPUUo7PtTA/sEBu7QgirWjTJ6XfPzxM5Rq2BsNAFgsEoosxbIFB4d67PcPJ9i2RV3vaMpVO1Y21DtsyyII9Fhl2Y5ifcYiD7n79g8A8GRCjUfdeFy+1M4knV7I4cMPKKuCKtfOQtL1kZRkRc7FK21Jce9en+1yi7Ia/NbdpjvssV4k5LsVna6OgvFDlzy3mU9nXFssWZaiN+zS6fbI09Y9ps4pqhrblWyWOlLJ8SP8Tsj6asXhoXZT2S2fMJ9D1OmxbF1wDu/cIohClotzBgPtGhKPxswXW/b3x5TPtUPIozcfkmxX7FYbluszAEajHrOrBePR8GYtRHGX05MzRntDbOvaccnGdj1sx6ZuXXqqoiRLU932TI+VH0TYrnaUsh09v6pWNAIa4VC1EUNNUaMESEfRlO26bGqQLpYCq21L7TgEfUEQ+gzG79+8d71Y4UQB240eq/FwiBQNUipk67BS5A1FvsNzBG7Qxl5ZFkVeYEnnxolFqYZst0ZaNpbU68jzfJLdFmG5WNfxWHVNUWScnVwRdXTdbzdbfNfj6GhCUek1PRgNEKLPfLpkk+i1VSsBqtYxVW1383RHU5dML2e0CU3kWc5w1GcxWzMY6kilwSAk2W5QqsJp+xHFAaqBV89fEnW1g87BrQme77K3l1NVeu27rkPsSoRlYwvdvmS3w/EV6+UG19WfNxwNKJMt29WK/lhHrF1dzHADB19WFIWuobOzC2xf4AURoo3R2js4QLoewhJcb7uWUNqVSCW4gXaOypOU3XpLXVdcXenaDTyHIAypq4bBnu5Hr9/l4NYeRV7jtVFiV7MV/eEAz5a8evECgG4/psjg/OycW3e160/ce4fI6RH2TikT7cjDRNI050jbwo2PARAyQlgS35ckmxNdL+WQKt2RbDLuPHwTgDsP7uJ2bvHq6af82Y+f6HeEG37nuwMmY0E30h1OtiXV5gXdUY7VeaTryg6p0mcsdxmjnq6r/VGIEoIoUrjtPl5WNScvd3S6EmHpfVfKkLjX5e6jIVUbGShFw2C4d+N0pWsXXmtQ8xq+HLf4Fa6/I1Fw7RDX3irafUuhblKnTNSUwWAwGAwGg8FgMBgMBoPBYDAYfl35ovvMf233G+N0YzAYfhVfL+FNexr4+ZHi608FvyrAEViI63uFQDX6YDHZaDFEup0Txx5/+C//FXmqo1uEbVHXNU1VsVzoQ/9+7OO5Lo2SNLU+3LZtB4WkzrZ0elqokGQOm/kFrgMiGAPQ7U7Yzc5wQofdRh9G245EAFnRIG091KopUY0iCAKUSm/6Y1lgWQLZRgylSQFFQd0oLKkPrS2rRNo2tito9Fk5Ta1QjcISDb7fHqw2FeenL3CjEUFHR7dsNkuEFxN1ejRtpJfjR8xeneEHHYpCtZ+X4tgOi+WastLinjAMePjoNtvN7ibaaLtaspjtiLo9qlJ/3mx6Qad3l+WsoC61YMALfOJORJ7tCGN9cH95sWJyOCJZbwlD/d5uP0CgmJ2cEoZtJFCnw/LqjHL9HJGf6n6sa5T7BnY4ojvUfbP9gHS9INmuqWrZzlHFNklIVzOaUotJnPiIRki6vYCq0PFY612F9LvsRR6OVbf1ssF2HOrK4eUzLWzp72UM9ybYjkPaijCqqqHMK6o8wY+67bMZSkmuzq9QymrHZc7BrQl+5CPQE5dvV9y9/yZlEzG/uATg5ZNTDm5N6HV7NyIv23FZzFNOX5zy059+BMDDOyOO7z0g7/d4+kSPy3qzRVoe0nMIff3ewIqRQqCahkbq+guCiCpLaaSDQs9bELrUVYGAz0UERUNVrbAE2J5us2X7WqBlK1RbGwrFbptSFwVNe8I/GIZU6ZrT8xm3Dg/0XHoQRRFpWuB5WsxUVxWOZxN1fPpDLULI0hxVFVhYWG1WkgUE0kM6FsLSfRMNFOkKx++yXG4BiMKAqBNRlyWijf+pygbHsRnsBVStgM2yJJYQTCZD7La/QinyPKGoaqYXWugx2ttDKfA8j9FI16TrO5Rlw9mrC/JU7xu9Xo/Vcs6t23fJUj1Wq3XCZNJh/2CPNNEiLyEdhPRQwqJIi/ZZm6pOiTseVa3H1HdcgsDBdyVZrj9vvUzxfAc/kARdLQosNzPmp1cIJG4rjrKlQDo+EYLlQu9/qIpu3MdybepaX7v34Ag/jPBchTe837YvwJICy7KhjRdDWVhCcnl+QTzQ661IU6q6QjQVVRtXllUes+mC4TDAdvRYvXr6Cks09MYT2nJhOOizmM/ZKYUf6DUzu9oyu1pzdOcQP9CCvZOnL3DjmFHvHaSt16rvOxTZkiZfY6H3IYQWTFb2bWJbr4/V+Rx/+F2klOSJXvtlU3H/zW/wxpsPSdo2/+hPf8Qf//lzPnhH8vajblsvBap2kcUlrHWMlozfYnD7A8LhHKtZt/WSQJ2wPwluvofqvGLQB9cVIHStVcWGxaJAVT1iX6/B/mDE+DjEC4Ob77Iv6mg+F5a+XmBzHbf4xX+7iWH8lTFS+rvx5tlfyGk0GAwGg8FgMBgMBoPBYDAYDAaD4dePa2HMP7YAxwhuDAbD35evmfDmGqV/iq/Ul84Ff0Fwc/N3/fmT17/qFwLVCkyqfEscxfzhP/8X/NW//1MA1sslca/HxfSKJNUHrKNhDKoiigOa1sVFiJLNLsO1GloTDSbjDstVghAxnt+KCBqoZZ8wdIj7+rA8XZ/heSAchR+0wpuqYLdaADW+p99RliVKWkjHuRHoOHUDwsZuLKpWxGJLG1sKmrq6Oam1bWiqnCwpbnRKTa2QVgHZHLun22eJEFSKUD1EO151VdLrdnFci+lci4XGoz62YxOEDtlSiwMW8xkIG991boQKs+mG1WbLx4+f893vvAfA7bv3qIuaOIopMj0G04sLbNnQ3x/QG2jnDy/w2azXCFEgpZ6jIrnAsn16h4/IEn24vbn4lNnZK5zqnDJZ6jbbd8DbJ447ZJtVe9+ULM85PNrD8/UB+nJ+yW61IU8qzk+0eGb/2IZ8DW5MEOqD+8XVmtVmxe1b+5y8+Fs99iTkYkzv4D69WI9fk2+YnjZ04ojPLSQEWZowHMTkrRjHj2PKsiaMJ3R7WkyyWqxxbId+N6ZMZwAEUReqEkWNaEUxnchns03pdOMbgUme7hh0I5SMeVe8q9t8/px8d4kluzx4eFvPryVYzrd0B10ef/QzAN77znsURUaa7MgyPefDsRZOxMKiad1ULC9ACEWe1Tiubkudl2RJTnfQo2xdUmxVU1FguZKmLTZb2py+fMne5ODGMagoKsosxxENm3aO4o7P9GLN1eUccb2OJkOGeyPKskKp9h2OpJEuRdWQrbX4I0tTijLh7v17qDYdT6mSTn+PsihxXaetq4CyyHBcn2v5nus7FIVCKIu6bJ1i0hWWE+H4DrId+9H+Hsl2g2P71K1K5PlnL+h0O2RZwXqp+4EFvh/x8NEtVLUPwONPnnHy4pww6OEFui29Xoe428X1Hex122GhsB3Ii5qTl1owFYUerp3SFCmuq92fqrwkiGLOTqb4Xis+skqefvaETtwhn2gBTLLbMZ70WW+yG5eeoiiwmoZawbNWNHb37i3KsqDIM47vaCHU8mqm9wEBi7mu3f5QYCGpmlpvaO07sqxmm9RcXT3Tc2TbJLuU8chntKdddTzfZ8+WFMmWk2evdN8iH9t1gZKz1okq6nQZjPaomorlbNmOqYOwalSZ07TvzUuLfLlisveAvNJuPrWsqFRDVeXUlV5HVA3bxOXJ4w37+2/pYZYXqOVf0NR7pKV2xslKi729HuCw39PCoH/2+xFnJy85P/kx8oluy3ggGA4VZ2dbJnvt+mg+xPL2sYO3cDv6HdQpZTajLFJkddZOb0Evbsevrb+yzFgvt2CN2SatEHS3wgvGCF7vWvO5oEahqEFZvyCy+WW8zsHm+pp6zeted81gMBgMBoPBYDAYDAaDwWAwGAyGX1f+sVxwjODGYDD8Q/maCm9ez1cPHL/49+fuN21MlYLtSjth2I5Pss349Oc/4+OffwzAu+9+g7jb4fjObZazi/ZDJHlRkycFvq8Po4PQx5cOQvisrj4DoK4lwvGIIv9GlJCsp9SVj7J87I6OS5kcfJPN5aeo6oLyWuQge2BXZNsZonVEqRoX13NBNLS3UZYWfiBBKoS8jshpqKoSRIMlr6fOwrYkZdNwrT8StsKyGpo6pd7pA+oiyymTJdW4xE115FMY9/DDLrtkS9W6wlxcLJhMhjRNzW6nhQ/DfkBZCoo8odO6bcT9DrflET/60d+wbCOV7tw9QDWKLC2wbH2i69gOvufjBi5Nreco8CVFWtHtBzRKi57K3QyURVZKyp0+pM92U+IoJlsqRHAEwODgmyyWCVLaCLsVOfRD/ELhuDGidQfKMglWSpnn4GrxTG84Jt04rFerG7HLeBThhQ5xJ2Ze6TkvVEX/aI8oCvEC/WyapFRlSadvkS61a9JwPKIbu+ySAnEdERZ5uJ5Dp9fFaYUonV4HpRpUXaJKu61JSbab4Q96NG0dbHcJSZqRbDeEnhYbuK4g7EQ4vkdd6rZE0Tvk2xnSbfAdPaadbkcLuBTsdnouN+stV1cLTk9O6fe1IGk+m9EJXaKOT9EKUYrFgjCKsW2BsHVbpLLwhEOlwGljjISwaOqKJq9JW+co13bZG+8DCqsVUZ2+eIkSFrYFJ0+eA3B095D/8KMP2d8fcvfeLQDqSpGmGbvVhiCK23copJQsF1s6/ai9JgnCPnVVY7VOQHVZICyLqgFb6DVY5AWOLSizDNUKFRzPwQsjynSHaKOm3LBHWSoaBFYbmZVlOUEYYClBg+6vlUgaJej1+3S6WkS1Xi+xpc1oNGA507Fr33znDcajHn4Q3Dj3pGnOcr6iNxzgtvU3n60Z9kPKsuT2ncO2DizsYEzf6dzEY22WOyIrZG9vRLrTe1hRFBwdHVCVFUWhhUGnp5f0B30Gg/gm+mu9WiFslyDwOTrSQp644xGGIbvNFtXo2hhNhtR1SbJNb4RGCIeqzlGqom7dgWazK5JdwZPHz7g413tJv68j9Tar4EYw5VoOdx7dJe6OkPa2nTcbrIblfM7luRa2HNke6/kCpRo8qd8RdkL6/QeoMqNuBUTCEjgyZHG1pE0MZLezePl0R5ML7tzRgpqrsw1xbOPHXZZtxF+edRmP+hTrx8RNu7eLI9ItOGGPbet4Mxjv4cd9fl5Z/Phnf6HnvHzF//jfjYk7Pla7765nK+pmy3h0RbHT68iObqFqwZPPTrk91mO6Xazp9h1Q8OSpro3ZqqIsPYb9LuuVXjNFsibqxjRNfSO+kdav1VexwWAwGAwGg8FgMBgMBoPBYDAYDF97fpl45nWCHCO0MRgM/6VY/9QNMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYfh35mv7MXrQZGA3X+UlCiNdGbFxfv0nMUNC0923X2tlA2jZ1VWHbDsOOdp84PL6DKiu6/T5Z6yARxjEKhyRLqa/0tcFgQJbM6e7dYzAeA3B+ckpZCyyV0tTaFcZSBZXoUeQ73I6OMmmkwo4OUFaA4+jPE6omzwriAVDlbaMthO2Q7lKk1Trj2DZ5URF4gqJ1pBBC0dSFjtBqHS4sS1JTIIREtvFEipKqyAHJdqldKryoIu74rKbP6Fra0aPT72FRUlc1TWt60dQ5V1dL9sYxh4e6H7bt4HsuVV3iOPodjh+T5ykP3rxLJ/D1O/yAplF89uQxg7F2xkk3Kx69/Tau5yLRL6mrnLgbU+dbELq/0o0oypqqWHM10w46vt8lkIIs2eEOdcRLWbso0TCdrjg60PNR1yVVrh1Nzl5pt5wiz3A9yWx6ya07Oo6pKAqybMPZ2QX7hzpyJwxt4m7Iarll/9F3AHj+6XNePL9gciCw9rUziSUt4m6EY7s38SxFUZOlO5wgwGnHvspybNmQZR6yjW2SlkQBStoIVzu75NlTgqiD4zrYtnbWWM43uJ5Dt9NhtdIOIWeXW976xgNsy2Ew0PNRVDUnyRZpO6SFroMIgR8EpGmK386HkBZRp8e9Rz5Npe9DFbhBSFkLmjaKTSkBUmAJi+tstyovsGxJmeSoNu7IC10uXp1RpBVp1sZAZQWb7RYJ3L2nx3Qx23I1mxFHAevVVVt/Eb7vk5U1q5V2Fup0In7+4SfcvX+P509OAIijgLzIGI4GN24go/0BQkhQFXWlHVYcz6PKC5QqsH3tLLScbYlCF8d1aFrHG89yKMuideBpburZ9W2SXQJtPXuuR1M3RL2YvHWxcgOPq8slUezdOFYppfADj+XVkuVC16njugSRTxh3bpyP4k6PuoHVcsHR8VF7n0WW5bx4+oKq1mv/zTfv4wUOFiVNY7fv9dluU6IwwtFDz+RgwKuXM+ZXC46O9cU33r7Her1iaHduot2khG6/h2hKOre0440lalRT6/2zLd66achSxcnLKYfH+r6yrHBdF1Wm2K3bCwryrMDC5s69ewBsl1OyNMMPAuq2rnbpBv/sEqUgjvX+EgRdtrsEx3NozYa4urwgDCOUUoSh7m+a1UhLYjuSeq1rIwx8GhTTi0vWK72Pf/r4nPliwTfefgS2jq3r9GIskXC4HyPRL7mawcnpgstpj2/c1fMxDj4mW3xGsbnFTumoLstyaOqK97/3Aft7+tpP/vLP+eF/esp/+xsuqr7eiyVR4KHIaNq4qCadImyfBxNB09ak69kIJGVVEfrtXPoR//YvlsSTkrBunZnKnCiIkJbzhagnxXU81Re/5355vKL6UvzUL3sOxI37k1AKUCjx+b3WL4m7MhgMBoPBYDAYDAaDwWAwGAwGg+H/rxh3G4PB8F+Dr6nwRiO4lt20f79GfPMLB5LXTyhwHR07tGsKwtBjvdmSZDruw3Ft8jzF90NUm2WSpDmO57PdbAgmOg6nqgXdwRHZdkHl6eG6/fARu82M6XRJ3bQH/K5DrdYURY1f6M9bqin9foxSPnWhD9otBfFgAE2XzVKLRKhy6rTEdV2KQrcvjDzqWmBZArvW73WcBguHsijIbw7aFUHokWY5ltCH4HUDnueTphlFUbT9qPGCENtSNG2kUlNXbLcJw8GAPNHvFdJhvDds79fjZyGRUmK7Dog29qpKcFyfu7f3ka06YJfkTE+eEUU2ga3f25kM8T2LMrmENlpG4VMlVzRlTVLoz4uCkM02I4zGLJdPAbj/aI9y95hGdsDRB+0vn7+kE/XIdhvWC32o3hn0GIw6XC2m2EKLe5RjkaVbDg+H+P51mZdUuY77adpD9e22wA8F+S7BD3VbDm7tsV6mdLoRcU9HB9mOBCyKLCNuI6RUXSBth27cYbPRIozpxYLb94+I4/AmqqZpFKrRwobZlT64r+sOIm9wFRSFng/HFsynC/KsRLq6bw8f3UcIQVWVN222hOLWrSGWHTGfaWHLbr2hUTqOzLF1bXzy0c/Y29+nNxywasVMnhfx9PGTdnHpemmUZL0uceya2XTZ3hcwPhgRhg7bjY4Omk1nXF7MiDtdthvdDyEsyjzhzhsPmbdCFOlYBJHHLtkRhHr8slzR6wcEriAItfitLHPCIESgODjUIiqkTaeJCeKAdNeKMOIAadXsNgleK+poqpo8Lc4+wzsAACAASURBVHE8D9mqOkb7el6lZSFbQU1VltA0uK5HlevPW28T+v2IvEixWhGahdDjhyTL9FqNwoAgCpjPVzdjRV2TblNUo5jOFgD0+x3iyMd1LVZL/Y7ddsqDN+7R6x8iWlGW4zicvXxOJ5ScnWrh0vRyi+P7COFit1FsYRBQFxV1VSNsLaJ68fgZ/eEY33duxG+DQY9Br0tZ1ThtP3abDavFhuGoS1m2wqq6wrIEm+2abl+Pc5VlNE3D8b0jqlyv1VdPnnJ8/x51bZO3AhNHWCzmW4b7Y0SrznNUTF4q+r2AptZrv3tvwHq1o9MLGO/tA+B6AjWHuixx2r24143ZbHIWywv2J634LarZJSscz8V1dbxYnad4sUvc7fMn//avANiuEzxfUlcF0tXv3eu7FIWLtF2us/Z6lsP0asFyvuEvV3rtP7h7zLff7WGXZ5y9/ETXweUHyGAP13ZuIuU++MFv89Mfe/zwxx/xu7+lxYNVXaPqnLwSOHY7pk1KWRZ4rodshXPKA9XkpLkiq9oIKQFVJYiigOFQi3vOXnyK50d8UfOiGvVa/7kviUq/wFdFN//566r9X9VGMYqbd79Gy2owGAwGg8FgMBgMBoPBYDAYDAaDwWAwGP6BfK2FN/D6g8SvugDA5wKdL/7/tUuFFDbTk6f8n3/0bzg81Iefj3/2mHuP7rO31+O997XTiUVO98HbXLz8iMXVMwCyXZe1H3FwOMEPWkeF02dYMqbbG7FaaUcZQYMrFULV+L4+BO9PjthcnbBcJsSxPkAP4g4imiCqDctX+pC+G0EQKopsi2W3B7ayxvU6FEWGF+kTWUtosYxUGa7K2zGoqBqBsByq1nkBIN3mlFWNbetny2TN4vyEuD/B2z4BYP58jh0fE3gN4z3tpiJsh91qTV3X9Ab64Fk1BetlzXy2Zrinr4U+NCpF2RFOo98hqdk/PCZJV6j2mm0Lss2UdD3F9bUIw/EqTl6tieOQblc7wFT5FktlWMLnm99sXWaalFmS4nffJPT15w37MZevXmC5EZtECwHGtyJsWVM++4xtpsdv79YR2/WC0d6EdSs6ydWOPFcEQYew29Xzm5Ysrpa4YUit9OettxW7rGBou9SlFiX4nstqucSyPYpMXwvCAM+xOXt5gh/oOd8/HBF3IizbpmmuXY4UjRI0Tc24dQKqMpeirJlebjk7neu2JAmjUR/LUkwmuk67nZBGgXAcbEu0c7tBqAaLCt/RNZnuUlzfw+91qA9ah5+qYLvNcR0PKVT77Iy9/Qme63J+pt9rWRZFUZAXFW7r0rNcnHI1u+Ktb9wljPRYnZ1cIhBE3QjQaytNEkZ7A6aXU95865H+PEcShAGzyxlBK1JC2tTljmyzomqdj6IopiwrhBCsNlr4tVpsiOOAZj7njTfvt9WsQEiiXg+ldI2XZYYbukgUjW4KjiOQwtJ7QCuma8oCIQWqKbA9PUdOA1LaxFH3ph9SSOqmBCWpcv2Oxq7pRjbd7gTZrqNsk9AIxWa1YTjWa+bO3Qnnry55/PFThiN9TUoLadfYnk/TtkVUiiiMSdKCO4/0mNrSYj1bYPsBUazFH9LxyNIcP7RQpR6ro+MJWVZTVxWb1U6vhWEfxwXp2vQ9Pc679YIgCpldzRmOtVgtz3OC0KPXG+C183t6NWM0GeM4kqKtKzEccf7qDOmF7FbbtjZKZpeXnLwoOZgMATjcH5LkNQpB3K7f3rCPtB0QcHmlxWBRYFMUFbfvHnNwS9fkZjljsyvoD/fIci1iOT87YbjXw/EtqtbJq8wS4q5PUTdEkRbjdOIOSZ5zdGtI2NF7iRf4WHmAqlKKVuwSdSL2DvaZXu1wPb3vPn5yzv7xfd751vcJ9h4D8OKnf8ZyMaRK36Qz0utNRC6/+z/8Pv/mf1vwn36iXZh+69shmxWs11vGw9YhKXR4/HTJWw8HN85WwrI4nxZ0fZvlSu/Pu11OXrsMxweslit9X11itfVkWV9Q27zGwUYIocv/C/92ff2rotPXoWhuxDXXDlIK9WVFq8FgMBgMBoPBYDAYDAaDwWAwGAwGg8Fg+C/iayu8EUK0v89Xv3j9NT/T/5IIR+m/404rrtiuGRwe8P3/5gdkqT4QffH8Ccd3b+MHAV57OPvzn/4d7773LY4fvs3zT34KQNNUCHIEgiTVh8JOOKFMlkzP5jhtDE807LNebVlsSwq0a8hylTAcRjgSdrvWUQaLTrePcHwO7urht2VJlSxwlLiJXgIJUiIcl7qNmipK2G1LurGDF7UxLbstZVlRNRXS1tcsJVCiQilF1cbm+IFHUyTMzl9Be9gbDhxmVz/HlQWnU33f/Qd3cR0HGQU3Tg6nL14hHZ8osrFFG5dSCBpVs7zasm5dV6RKuPvGW0S+Q5ZqcUqTrigqF9v2rtOxWMwSslSwv9+nbuNXkqyi0xsjgKTU7hie2NAZ3cLpHrJcaocQYbl0e128MKLVR7Bb7eiO+gjbR3GdmWUxiG1W8yWzuRYq3DqeoFRJUUvKWo/BLsk5O33F4cGAwUi7gcSRhx+4VHlGmekx2FQOTV3iuB5NqWtouy4oy4YwDIlCfajdGffxow51U2NL56aGEA2+79zE0iy3GXUjKIuabkeLFxZXCzbulsD3WC+0oKvfj2gasKW6Oaz34w7FbkuZF9RlKzBpJHVVk+wSvFALTLrBANff4HmSTr9dC7sC2/HJkwTX0W1u6oY4CuiPXC5eXQBw+95doOH8dIHtaoGY7bh0ex5CKXxP923Q28cPXbKixmrrryxL+q7DaNRBWfq+IAzZbaCpJX4r9Oh2I07PLqmurnAd3eYyS/HHfU5PXzKbauGIFDp07ujubcpSP2u5nhYtCMm1eCZLMywBUkpoBWwN4Do+dZljt25NcRC0kVE+itb1p1ZIyyFPt3huG8MjXVDaHSavdV3tdgXKEjx78pKjIx0hNb1c0Ot3sSybyYEW3vhhQFHVJLsSW+rPk5bA9yNm84R7D7QrzGeffMKDNx5huxZJKz568fQpnh8SBg7C1uNSNRWnLz7TYpdWxJemJV4YU6YVpdLPHt0+0vtBWZG3zlvSccCSxL0OVeuAFUVdXNtGColy9RxdXW2Yz7Ysl2fE7f4yHA0IY5fTV+f4Trtf2S5FU9PvRUhL739CNDz97BndXofb97Rb2Hq1ZbVYoWqQln52fnWB6/tI26Vu12oQxVycXnH0wbtU7X5w9nKO4zlUdYOQ+tleN0YmO1yvS92uwaSB3WpNHDT4oR4Xi7AVi1k3Xx91mfP446cMRl32j94A4K1/9ianH/7vXJ7+FU3v99pxtulMuvzO7/0B/8//8b8A8MY9xajrEAURqmn3oarm/q0QKRpE22bZuNgCnpxsmAy1EOq0LBFS4rgBr15qIU9R6Eg5hLiJmroWz3xJUPMFC5zXx0j9Pfg8weoLzjkmXspgMBgMBoPBYDAYDAaDwWAwGAwGg8Fg+MfkNeEWBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaD4VfxtXK8+YUIqS/8Wv/vi1KqdcqBomrjmOqGOAy4/+bbHB9rl4o//eP/izzbcnT7iLe+9U0APvzph8wXK+LQw3a0e0JdJ6AUL559jCV1FEwYhuxNejhRB8/X12hqpMwY9iyWFzrKqTt5wGJu4/sO23PtdpCvZ+TbM0QwxmqdP6Tl0OtMCPv75KuXeiyalKJssOodfhurUpU5juuiyh31dXyN5SMlUOU3DjWqbqCBumqwZNu8RlDXDYKCq5NPAXCWS8b7x2wvn9H1dJzL1bnL+GBEtUtQVeucEiksCUleodAfmO8SgiBAFAt8TztXDIcHFOmC7bK4mbb+5A5lmpFnW7zWkcINBIMRNKpmu9IOErbjUCmL0FN4QTv224arVUzXqbACHXMjsiu6owP80Lupl7IomF1Mmc12ZLme896gSzgcsZ2vqFtbiaQssfw+m8spSmjNWV5k7O3v0R/1KbLWlcgSDIcdaDx2O92+KJLkWY5tewhHu3xsFhuaqsG2JVmp56grXaTtoJqKqmpu+oaoEMIC1UZweQ6R71Lk9Y0jymwWsJgv2Uj7Jp6obk5wbIe436HTa+svihC2A0V9M6ZCuiznU4IwuHH9WS02TKdLkl3CweFEv9faIytzri6nHN+7q+vAsfmbv/5bcBzKXPe3rAp63R7PPn1Jkulrx3cO+OSTl0wm45s4tbjXJ88qsCxcV9eGZQkW8zlFusNunWyyrEJaMJsvKYvrOb/D8e1DZtMl5xfaNckWFkHkUOQlm5V2jnrwxkO2u4zdpnUKQUeuqcbCdiztcANIy6IoUlBKjznaZUZaEulHN7E+ClCNoqq1GwnoaUkWZ0gpsNt1JCyLs7MZcRQxm+r2ua7H3/z4I84vTonaOg2jiNHekKjb5XrDWi42SMtiu94yHOm1JcMYbN2u69q9c+eI2eWM0V6PVy/P9JiGAWVe4Qb+zTqylMNg1KWqyhuXGctq2G0yFssl+weTtg4koqqIOgMuL84BGA66pNuEum7w2vFTTUFVOFiuINlqFxyUZDK5xWz2MWmir10UV7x4fkq316Xb1/1wXMmg12O9XDEvdY3vsg1SSs5eTen1dJxalmeMJ3vkeY7fRsUFfkSeFwhRc+e+jp9arROapsbzXbKldldSSrtR9XtDVBvZBorf/e+/z97+Prulrg1kxm6bEsVdyrxq6wrCOOLe/SNE63I0GES8enVBVUo+/GvtZvat732T29/7n/HiP+Lxxz8EoHv8A7K8wnZd3nzvdwH48x//Md9/TxKFCqedv7IGPxQoVSMsXQdlVdLrOCS7AtWu315Hsn8w4WB/xG6z0U1uAu1C9JrvtubaFkx3F5T4UgLVF91uXud88/eJn2qf/nveZzAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYfhVfK+HNl+OiVBu70YpxbiKnmtc/d/3PSrT/LYjbCJ/py5c4jkOyW9O0ggslbC5OzwijPv09HQ/zmz/4HT758EP2xmPi4SEAvkyYnjwjHEzw2tGyWTOfZuR5SSfW7wjiPkHU4/jefZJb9wHYJjnJ6pxSeBw9eAeA9WrB2cU5k2PBw4cPAUi2S9bTExynT2fvXtsniZPOqHZz6qZo2+wTdQTZBpLdFgAnCLAlWIVFVenInbwskTS4nk3dDleaFti2wnFtklQfUDfrS852M8LOEOXoKKKk+gyKe6SFy/EtfZjvOIBq2MyniLwVelBSiAG+TAgC/RKVX1Gpiv7kIVczHe9U5ktWyxWWMyRb6Wu7zRY/DEmS8iYSKIwDNtuMJknpDPQB/zobsNqs6IxtRK375rkWtutiuy6inXNpe8ymL8my7Ebo0RmMEbaunOFQ9822QxzpEPk+oj14jnpjBj2PzXzG+uoFAKtUcOy/jWtZXE3negw8l/U6w5byZky7HZe8shCWRbrVfRNNQ9NU7LYJs6sFAPcf3sayJHVVUrZRU7btYNsuQpXkbbyYbTvcun2bk+cvWC1XbV11qOwKJ7fpKD32VVnjuDrKplgt2n70iboHFKViNtXXHF8Sxh5eYBN09JiGnS5xnWNJl81G19DR0QHf+NY7ZNmO+VQLGvq9AcvVhtt3j3ECXfhhECEaQZKlXF5eAmBJCxqFEoKm0f3wfY+LV6dkWcHtuzp2yJMKGhgPBySJHqvlao2oCqQN5yfPAHj46CGvTqaMRmPCKGzn1yHuOkgJeSuucByXuqmoyxLX03Ou2nvrskAJPT5CWlRlhePKGzGTUg1N3SBsl6rQQq18tyTfbRgdP0S0m0m2y4hCh5PnL3jxvBXFeAX7e0Ms64DBeKDnyPeQUlCWNULp9qW7HYvFkrt3DrguVFXlZMmWw4MxSumxWi0TyhpOT86J2ogwP44o8pwyLxGWftYNutx+cIsXLy7Y39MitO16Teza7B9MSHa6H01Ts91sGU32OTqatHMEaZqTbDa47Trv9Hw2q4Q0TVlMda0VRY3tO9i2wA/1+E0vpqxXCYtyzfEt/d6qSrm4SBl0QxZLLSYpSoc0rxCUvGwjlYb9CClCBIqq1LU2GHVYr9YoYTG9mOq690LW6y3bTcJqpe8Lw4BeL8bzbN5++0099l2P0Xgf1Sjmc93m7W7D/GoFasxkX+/jAkEUOewdjMkzvXd2Bz0Ojo8o8pws12N/8vQZd954h8k7/4q6/tcAXF59StP7Nrbjc3D3kb7v9JI/+uHf8oNvW9y/pfcNx3MRVk2S1wSyja3LSjbrjF4sKVuB3WcnFePJPa5mVyznei/pD8fYTivYbHm9YEbwywQy/xDBzPU+qW4+7svfs7RiSoPBYDAYDAaDwWAwGAwGg8FgMBgMBoPB8P+Nr43wRots1JeufenP9r+FJX5BoKP/WXz5ZqUIYi02cP2YMIo5Ei4/+asfA/CnP/xL3rp/zNHtu6D0ge1777/DbrnkJz/5MR/85vcA2K2WxOMSqiW3bu0DIK2Y89MVnf6AXlcLb7p7d1gtluyWFzhBD4Cr5y8ZDbukmynPPpsB8O4Hv4Pt2Ih6R77RLhq16BEO7tBQkGfX7iwVqAjHF6g8bbtVkRcJttvBqbXrRdNk1GWOZTkISytCXC9ANBVVkeK0LiSqsRCWoCxLxI3zh0KpinQzoyn0YXnVSD5bf4ISLrOP9bP9YYQbDSiLnMV2re8rCkpl09Q5Xit8CCOPwcE9+nu32Rvra7ttwdUi5979gKLQh+Dnr3Z0h30sVVHWrbCqachWMxpW9CbfBsByd4QdmzxXxJ22H6XNq5MTeoMxoa/L9+z0DOqCe48eULRuKlW2o6lt+sMRea7fW1UZs9MLgtDBlnqsAq+hSDPWV6fYtv68+WxBfzBnOB5xeOf2TfvCMERIF9W6UhRlQnd4QJUXBIGej6LI8YkJQx/ZCrqqqsSiQSgL19bj8umzpwz2+oimIsu1GOfl8+cM+n12m+2Ny0eZZ3T6Q4ajEWXr5pMlSxoEruewXOv+DtU5nhvgyADfd9v5CGnKCsexWbcOIf3hANcJgBWq0WN/dXHJq9Mp9+7fvhF6FEWGFDVuGNLt63r+k//73+E7DnlR8s13tCgh3W2xpI2Q1s1xfhD6vPH2I/LicyGK7Tqku4SwG7PZ6HoeDGJ8z2ExW/DBb3wXAM/3AIeGGtfR81GWJU4QoKocx9XXRFOgmoa6kTStEko6DlI2FElJkbVClKLAC0OKokLVui1SOiAtVF2Tb7ftewOCwCfZrIlaxxZFhWc3WFYFlh7ni1nGb7z1Dm+//w5263y0nC0o85Q8b5hd6fXhuDa3b09wAh8pW4caW3J58Rm3792mqvRobbc5ZVnQH3Som2sBlmQwHAAes0stTnHslP5kyPHxEXY7R2XuEgQBINkstRDKj/Zww5g0TXBb15/tcoMfhHS7Hcp2LRQleL6NLUEe6Pm1hE1NDU1JmuqadJwF/UHE/QcPuXtXC42Wy5IXHz2m17nLe+9rUcx2kzCdXhF1Dhi1gqTLyzVl3ZBnGUrpeZOuxeG9+/QHPdKtFs/UVYP77TcoixrLap2KPItOp0tZlAzGeh0d3JkgbS1yC0K9t3/66Uu6nQ5lKfm7D58C8O6338SyJIEf3Th00VR0uxGzZcFb77wFQJ5vOXv5hP3bD+nd/QEAi6t/zfz5j+ndev9GsPIbv/0b/PBPUv7yw7+lNVHj+CggDG2ev8i4f0vfaAvodgWrtcX5VI/fxy8cvv9wH0tIsp2ujXfffYSwHP01xeeCm2sxzeeims+FN1/lWpj6y3idkEd7wYmbvwwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGwz8OXxvhzVcPEr8qwrkW5qhfcl4orl0l9GkmSikc91oMkeA7EDiSOtduG9PzE7qe4OWTz26cOm7fv8e3v/dtFrMp//E//DUA3//t7zI5vMXy9EOO9luxS5VzfpJxfjJjFWhnCPt0Sp4W9Poh/ZF2y7lzvE9ZbGmCAUWhD8Z/+h//guF4j/VizXyuD/33bj3ACzv0R13mZ1oA0xkdIIWiKRwSoQ/GXZVji5y63NIN9cHudrVE+pBnK6iuI1kahGXh+gFlK3ZRqkIpQd001IUWKnieTZHXOC40rbNQ01TkqyWWVGwz/Y6FbjpSSsqyFQdIi6oB2wZLtPE1BxN6B4Lt/BS/E7bvDel3fRQNUlwLHyzyZIvjejfuE1EAQipcr3/jxBJ2JxxZGT//+QtGg/SmDbfu3EKKhiLX/eh2fPJcspyvGIy67TWPF6dTxuPRzfwWaYa0MrwwRDV6Ll+9fMlgMCQrSqxKXxsMukRxjFIVw552+ZjPryjKin4wAKlP3y3RhSbXopLWiaWeb4gHA6SU2G0sDVgoJWjqkrLQYxpEAVEcIC3rxsXl6GjCermh23EQrRNQWdaoWuE4FgItmPICHylt5os5k8keAFWRkpYVkWfheLofdV0xGPXJ0oKy0nXgOgIhbY6Oj7g806KO05cnHN/eJ+7FvDv5BgBZWvDpx1dEiJtYKdux2e52fOd773DURlf9/KPHpHnN/uEeH/7NRwB874Nv0evH2K7Lbq3HqlzNKIqK7kBx+lLHqU0vJA8f3cPxQi7Pl+28NWRFwuXlOe9/R7tEOa5DttmCKrH9uK1dH0SOazvkrfsTIkBVGVJCmaTtOEcoBY2SOK0QpVEVZV6h6gLRZrH19vawLMl2NWd68hyAw7sPmD2/ottxOT7SEXXZ2GI2X3F89xZNqedyMOriRzGNteagdYWxbYswiPnww084OBwDsLc/5v7DY6bTFa6rx9TzLcpKkSQJwz09l+vVGtdzqIot/aEWAdEohNDRWtu17luRVxRFSZokjA9G7edFWLJmvZzhdHX8WZGlOFIgbI+srTVpCbK0oNuNiePrtapYLNbs7Q/46EMdR/fd33yf4V6f1WxFutVRbNL2eP9774MSrDetY1CRE/c6hEFwI1ipqxTX6eCNYlZtpNz5i6ekSYrngh/ouaybipHnYSH52d99rPvh+kynK8LQZ/9Qj2kQBhRJyWK2wG1jvvYPD5hNL7FdiyDSnycsB2HVdAYRXfSzTZ2QZxlx7OK47b7Rv02Rr9ltlpRtnNrd9/4nLj79U6bPf0J3Twt0ol6fP/wXv88f/a8bXs0+A+D4jkdRKcYjG+npdXlxUVOW8Ph5xkdP9Hr77vf/AJTH5eWCXqzX9N1Hb2GJVgLzBbGN/g60bgRxv8rV5lfGSlniS/IaoQClUMJETBkMBoPBYDAYDAaDwWAwGAwGg8FgMBgM/5hY/9QNMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYfh352jjefJGvut1cI4SgUYrX/Vj/i88IIcASuL52Rdjbn7A6fUo0us1oTzt1/OZvfZ9ev8dqOUOeaoeQTq+PH0T83h/8Hn/+Zz8C4N/9+7/m4YP7vP32t7Ei7WLw5OOPuNpIqkayTfS1zfmnDPp77HaCxUo7etx9aNMbDJBehmr0fZMoYreZMdk/4ONPtLNG2J0jhMtnPzunNeWgM9B9WG8rykZP0537jyjTNcKyEWqj+21fUmRbfGnhetp9Z7PaUpUrbOtzZwPbdiiLDMcSCEfrreqmpCxrbMdCSH3NtR3CyKKpFdLSTiKqqVEN1KomCHQD06TCdiRpXjI+0E4dk3vvgIwQ9Yq6dY9xbJfuqEORZawXOmplNOwSdgKSTUncxoEtNwlSev8ve2/2rMlxn2c+mbVXffty9t4bDYIrSIoiJY4kS1aEI2bC4XDE/JNzMXfj0YwtK6zF1kbRIkWQIEAAvfdZvn2pvTLnIuscNCCAopYJwxH5XPRSp6oyK/OXVRf5nvdlNpuxeGpcNL7z3a8TRJLhqEccG1eO5WqNF/n4fkC6M1Y8SX+EXyqSbkNVGkeP+bKk1+ux2ezptXFgkoY4iOiMJziuud/F+UvKoqA/mbLbmTmqdns++ugJ9+7fZt2679S1xHMEjufSbV2O1osFWsFmPccNjHNKELisl3uCwMXz2hgt7bG4XKLqmrATtTU5YTlfIh1J1TqnTA8OePHsgihw2S2XbWF7SFlzenaAaswcCW1ik8bjAU4bd1QVPpvFmqaCdGfcOwJf4CcJYSRJZ+Y5mqpifj7Hi3q8966J5jk9SRiNu5RNjayNO1BVFkwPhijt0LSxSINOjDPssN+seNY690jXw3M0nusQBWa97TYbZlczjo4nuI6pFzeOGQwF2vGIEnNstdiS5SlHx8eI29O2JjWRUvSHD4haJxbpOfiRT7lXuG6rFXR8HEAjCTrG5ajMcqpKImWIlG3UlK5whIfneWh17RAikRL2+y2T1jHo2iUr6vToDc21Vx+9g2oqxtMJcc+swSJPCZOIpirYrrO2JjfcuX8LR/qs12ac0/2Oo2OHTuQhdNWumQyckN4Qnr5v1r6UmuVig3QdTm8bV50ik/iuT13mvHphXIn8QHLSOWW/WfDiI1P3vdGYPC2pigrHNfUXdwVB4OFIF93qKr2wB46DE0hUm1oX+D6DcR+tjBMWgFIVvV6C1g2djnHLeflijlKSk1sndDtOe78OTz96geP4RCOzthxXEwQCtMumHYMkjhmOpzRNxcXL9wE4ODpFei51WaKCtoakQOoKDfQHpt0kisEBz3OI4rCte4em2nN8dkjZRmZ5t09oasWLpx9x564Zv/VyxWDQxQs9msacl2UVZWXi9oRr7odQCO1QlBX9oamDdLehe/o9tPorstxEAVbxHcJoyDe/81v85//7wox9lDEYOjSNppOY+zVNxj7zeT7zOX1oogpPbt1nnzlku+ccjU09j07ugSPQn3J4E0L8oxKg/jmuNf+gW47FYrFYLBaLxWKxWCwWi8VisVgsFovFYvmV+UIKbz4PrTVSyI9FNkK9FtEhbs7RKBCwXRuhx6vnLxj1JyAE46ERenzr7be48+ht/q//8/8g25sIlTxLJaBbTQAAIABJREFU+favf4fesMdv/d73Abj/5kN+9IO/5Q/+wx/xpbcemGblhHtv3WYzP2fXtuH7EXm6o2rAC8wG66snP+fqPKLXn9AbmMgTx5HEvTN8V/Jr3/sNALazD3n19Oc8eustGm02y5fzBWGnw+RwzOz8BQBP3n+HTndMHMcEiYmWUWTEvQRdBTSlEeM0yiHdZNR1iSPN/ZSoka6RKniOGauyAM8TBIFL3sZK1Y1CClCNxmujkqRwkFKyz9TNXPT6Pm4QctAdcPvRNwBwgw5VXUN4TIMRQ1RNQJXWaFXTCFNu2g9Zr/fEgWSzXADgeR5R3GGfVRwPWsGFUBRIwjCgaIUeg1EfAaRpTtXWQVVWNEoQhB6eb/rsBwlNU7Bep1xdGqHC0fEJVRnz6sWSXs/MebfXJ08zNCaOCOD2vRP2aUGnN6DImpsx6I57lEXGbr5oR0GxWS0YDPr4UdAWqaLMM+JkgOe3y0s11NkGpQW7nemz7woQAkc4+K1AJ9vXeH7I5dUlcWieI89T4uiE7WZPHJs2Ot0u8/kS4Uhc12/ryqfRDkWlcISZp04U4Pkhm2xDFCVtHYS4geL50+ccHRmRw/HZqZk/CZ5r+uwOAspC885P3iVOzLX337hHELr87O/e5eJ8DcA+K7l194xffPCMsq0hPwiYTEcsVzs6rVgj6cS4vmC72jGZmtodjqe4foDWCq1Nn7frjOViSZjEHByaiCZV1pRZakQ37dLXjUYpTVPu0I1p1xEBRV2CVOYdAKha4cgaoV1UK7yRUqKVedYwidspUkghqKqaqBXyrK8EQdxFOAHdvhFMdWKH7XrOpomJW9FY3dR4vktZNixmRqxxdvsEP3A5vnWE30Z17dY73v/ZBziez2xmaigMAqQUTKdDZJvRdPv+PVazK4qypts1bYRRAFrhSI84aUVevsb1XOJujNvG6gmhaeqSpJvcvP88x8NxPRSaoo3a830fhwbpSHQbUdc0NWhJ02hkO9DdYZ+qCijyEuGYelnMVvT6XbKsoNc19fL0yY4g6PPy+YLByJy3S1O2yxlIh14rqAk7IXHSIQg93Ovor0aR7naUteJgasb+gw8vKNKUuw/v4wZG3JPutjiuQNEgZLuOApfpYZ+qPCJsxXlNrbi6uCTpDQgC07848fCVZL/NKTNTL65QXJxfMT46vRFMqSqnLBpOvvx7fPiD/whAvovReoJwPL71vd8H4I/+8D/wu9/xuH874ap9Hfzk/ZqnM4evf/u3GU7uAjCbLZmvttT5JV/+tX9j2g0i+BzxqEB8QgwjhEBhjrcnffZ1198/8YkfIIS4if76GMHHHfhHKH0sFovFYrFYLBaLxWKxWCwWi8VisVgsFstn8oUR3nyey83rXItsbv6PQGM2F5VSnz6bl0/PAVDKQbo+jtAMW4eLpBPw4x//gB/98AdM22P3si2TQcDJ7fv0W2ec0eSA3/rd3+bxBx9x+eIVAG4IDHq44QiZm03w/U4xmE7xyHjx3LhZTN94RG80YXG14Pnjx6aNB2dUNUS9PpE0wz86OEKLLh+99y5h3AegP+zh5jl7Nac/PgNg9vxDdHZOLfoUe7Pb60cB2W5N4HgozOZ2d9hF6Ia62FBkRmDiuB7Sqamr6sY1RKsaIWr2uwzHMX1xHIe8KACJaPsngcBxUSojbl1Iur0xo+MTCKdEEyNIWm4cZBgz3znUpXENWSzmCKn42ldOGU6M+Gi9XLFcrundOmY0aJ1xgohsv+Xs7BjdOoTsFy8Q0RSBZr01zxE3Ht1OH8erGPTNWOVlTeA5hEFAXV+7fHhU+4o4iCgz43rRNNAdDFjMFjz7aNE+W0WSBMSDqRENAVVeIJ2A3W5HrxVX5FlFloLjuEStu01vMKIuGqTn34yLJ0HqGtd1aRoj2lldXnBxsSBMeoxbUUeRF4S+w3o2Y7E2Yoher8d6tQBVE8ZGnLLebMnyms16hR+2QhQBSb9DmWfo1tHj8uWKNE3pDxOmh712DThURYr0XMLW5agsC5qmYDDoMBqbeok6CagakDStOGWzTpnPZxydTBkNjPBht11z/mJLXZXgBO21Lk8+fEKRbbn/xltm/KoK13c5OhnT6mnYpzv6fkIcB+y2Zvze/fmHHB+O6HX7DMfmedPsJVrXxJFPU5tnK7KUosgYHx6iMGMqdAXCrP26qdtxkYCiSPdG3AA0TYNsHFzh40hzP6RE6wrHcW90DG4r2Cry/EYoc/rm15g9e0KVF2TbVmAX+gymp2hVoRpz8fRwgOO6eNrl6OQYgPl8TacTIryAunVncRyP09t3CcOQZ4+NmO5wOqKqCoTj4sWmz3XdsF6luL7HcGzGXjWQ5zX7fUl/aNZREPpstgX7LCMKzToKY5+6EayWewYDU7tllpHuKjr9LkHrSpTuC4QrCQKf5sb9xEXrBulAd2TW1mabcXgwpH83uRGnHCZHbNZ7xocDVhvjrhRGMaODE1wvYr0y53mOhx+GhIGLI1shWVlQ12scZ4zXjp9wHHrDPvNXryh3Zpx73RjdjYGKV8+Mg9hgPEZKB6UqpGNqSDQ5oQ9Fpbk4N2u634sYjGLydEccD9p60fiehzsQPHtqXGtc2UOVGU2xR7RuUqPxIeiGulE8+q4Ryvz0z/6AIm+oFdx/4yEA7//ibf76pz/lZ+/NWKRGxJIz5N/9+3/P9OCQ999/DoCuCprtM77+za9w+tAIFEGglHFuuxHUfI7zjNYaIV8T4rTfvNeVO8Lc6J+koflVvrsWi8VisVgsFovFYrFYLBaLxWKxWCwWi+WX84UQ3nzW5t+nRTbXv9X/yeMSs9uo/p5LgNaaJGkjgWRFlc0QcR/fNxvPTtLl4f1bfOPrX+ZnbezLJlP84ufvcf7iFW9//18B4IUxB0e3ODg+5Py52bD92x/8N/7uh3/D5PCYUSvQ6Q2n9LoRy4tnRLFxA7l4ec5iPqc3PuPt7xoHndn5E5Ikosi21K2Ly/LVnu5wysntu6jW8ebq1XM6/S5bP6R88hMAsqKg1wk57Y2pSqNoiMKEpH/E4vIpwjWON2Hko8oBKo4JOkaUkG4WCJ0j8wL12vA1WuMF3s3YKREjPY8yL/Db+Kmy0hQNDA5v47cb2aOTO/SmZ1RyjBcacUC93hEgqauGMDRClDiuQYIbDchbp4mizOkOhuwzfeMUU2YN/eGEPC+YX5nN99Ew4cP3fsGg16XbMaXa7XYosgzPc9jvTW7ONi2ZHkzADaB1P1nN5tTaodKasGeEKIHvkG0X9AdddCvWiKIBq/WKrhOSZkYwEPdH6PUWRwpm8+XNOMdRQKMaemMjgKmzLX7oM5qMaNqIptliBfWcIE6oWvFRnlfceuMhu9UGt40EknFImea8PF/SNGYuN+sNvcTjKs+oWtHJwcEUIX3Wq5SjUzNPjVI4jkMQxdBGOQ2mA7pVh91mjRati0utkNJndv4CpxVbCSFxhGAyHeJ5rUsPZuM+221w/TbSa7GhqRVHx4ecvzSCs91uywe/eMb9+3d5eNeI1a4urtiHDk3dwXXNGgxCn3S7Z59mBG1tHRwdoXWFcD2Ozg4BGE4GvPezZ/zpH/8Zv/n9bwEwmQ7pDgaUacFyYerZ8QSoCo1CmWFGNylCChTCRCkBZZHjxSGOI3Gva7csaWqHoiwR2oi3vKCLIxTKETcxX9KR5NmeXr9HVRoxiSOM440XBqRL42TjBhGOF6CVQ9i5dlgpaWqF6zmMD40oJunGIGrSTQba1Jrr+gipWc0XPHx0x9TLxZzD4wm77Z7nj8045/uU9WbLd777LVzfzJHWFR++/5huJ7kRaQjp0+uHaKUpMrMW0n2JpHVUaqOmhHRxPZf9ek+ZmwH0fInjOAihUcr0TyojDirLmroytTvohwihjbDIM7WrGsizHCkltKKQTq9Pnu5RdUO/bwRdWZaB9JjNNiStc89ukTEa9anqAq2MWAgnRODSENCaNTEc9VjMd4RhdNOubgoaJVBNw00hIGhqwbAX47fuNpvNGt+P0bqmqc0NpSyRfoTnx0yPzDvbc30mRwKN5LK1rekPY3abLZv1ljff/joAh7dv8eLpUxz3mLKNsvud3/0Oq+VDXr04Z2IOcf/Nr+J7Aev1lu3MiIUCZ8t3f+f7vPGN7yDbWLhr2YzWHxvYSPmxAOf1GCghxCf0NMbR5tr9hpvztOBGhPpp9KcOCcGNw5TFYrFYLBaLxWKxWCwWi8VisVgsFovFYvnnI/9Hd8BisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYvmfkS+E481nudtcO9x83vmfcbS9mJsIGtczx2bnr0ju3UW4MXUbJyRcj6Tf43/7d/8r/7o0+qOD2w/40V/9Of/tP/+/pMYIg/uPHrFb75gcjbl1/wSAovgGYdhlv9/zN3/5FwBMjo756ttvc3T3TSplHBrWs+csrs7Z7jKiyLTh0qAECCSuNs4a4+NDhOOyXKdUuXGu0KqCpmG3mtHpGWcNN+mT7zZsNgVxp41ZygtWixWdXpcwGLbP5tJoia62hMKMaxTFZLs5qlkStLE6bqVx/QbXD/Ba0xunc0Lge6SbOXXr4iKlj987pH9wTNIzbhGKgLiXkNcBTmQuPjry0dJleTnH8427w627x9SqQdUFqjbPmyRd/NDFd0PSNgpLSBdUgx9GFG00z7Pnaw4PD8jzmvHIOKzkWc7VxSWHxwcEgRlTx++w2+xIuiEaM3F+6LOfbyiLLYOOiTGqypK8LDl/cYG8jvmaxuyykvPzK4aDNoZnu6MuG9yOINuZGCjHcej7PVSuqArjFqG0pNPpkmU5EnNsPB5Rlg2r+ZrlwrjlJJ2YzsDEWpWpcXHRjk9n2OH+w1uslisAnj+/oqolR8fHtCk8xElCkvhIR6JbNx+hatwgBA3b+UvT5wLGh4cEgcf86qqdN4e6qnBchzw3dV83iqbKCaOQ0dTUlRASpR1c30e0ET5103BwOGQ9e4kj/XbeeownI4IwYLE045J0B9x9dEKW7phdGteQTjKAZk8wjHHacV7OFwRhQFXVtGY0BL7DweEQrWuWrbPQ9PgAR0B/ENAuVZpGsFrkxrqjdY8psgLHcZCef+MOhBaIRiNd7yaex08Csu0OR9c41w4/paJWCkc2BJGZc6E1+T7FQTJ/+kOzPoIu49tfZbdZcm0vIp0QpSoTcVVe165E1TWCgP3OHAsCj806Y7tOOTg2LlGL2YK6cdhXBXFk3LgmJ6cMRx26gxq3jXv7yX9/h3sP7+C4DucvzfxOD8YMexFRt0eUmD5rpSizEtcHt43+apoKpV2GiWSzMe8S13cpixwpBFG7Vh0vQDWaRmiEMBMSxDFCaKpGMT06auu+QDcOy6sFYdg6LjmCo5MheVaZmDIgzQsWsxVNXXN0YtZqmqZUZYXrhvTHxgko7kSku4ztOiPfm/dBbzgkjjxcz2eftU4slaJWmqJRdEdt3FalaKoax/Vv3JXyNCWKA3zfZ7c166jfjamUpNeNAFMvjQZV1jhK00nMc6hGMdvmbNd77r9xzzyvGxKEKUfJFNnW/fFXfo+m+SOuzmcUhRn7RimSTp9v//odRDv2tZYsZiuWVxeMpqbP3/mdf8v4+BQhHWT73dK8/g0Tr/35Oeh/6ARurHNed8u5+fv6Z59xk8/7xlosFovFYrFYLBaLxWKxWCwWi8VisVgsll+dL4TwRn9q0/CzuN4g/LQgR3C9L/nxpmZ7V+KO2fDuT+/id44AF5w27mh7iesHJN0ezvocgOWr99ksZpyc3eHi1SUA+/WGb3z7bZJOQKdjNlPvPnrI4dkxm8WWyaERorx88YI//IP/yJfefMTXv2lic14+mzK/fMHi8pynj02c1f0HD6gLzfjghBcfvQfAxdX7nN25SxDG6FZtcPjwEf3xFE/C/NJEXOXpipqUj95/TBAb0cTJyQFaRrx6+pSyNEKZbi9menhIrhPKzAgaXGfI4PYdvNlj8q0RZnhJDy8e0DSafG9ilsZnbxH4Dr18R1mbDepXs4y412M4PSEamJigdJ8TJAlBo7m6MOMXRjFBGDGcTJBGv8F6vcGTisqJ0MJsZM8Xc45ODqhqBbSb4NWSIs+R3TvU0jxbr9OgFGy2GU4rDuj0upzevkXgC9ZLIywQ0qHT71EWmqYyFbBdr3CAPCso2zF1ZYBWkrg7wHPMBn9T5/iei+tCWYv22h1NXdAf9egOjMApiBOKqmIwHpK14qgyr4g7Pc4vVnjSHPODmEY7TKZddCvG2e129MsRnu+xa4U8g0lCUzdI12HaxhPtdynFvsNqucRpI5+qqqHIc0aTIUUrBhNpQSwlnhcj2qgp6g2bxSV+3MVr49T8wCXflXR7MWFoaiPd5RTSYbPZkPRNPSdejECC4zObmZg0IRykA34gibumL+fnc46ORgxHPTzPCEfm8wXpbg9aM5r02zlfIVB0uy4a064jNY4j6A7G5On1+O1pmpq7d4/467/6SbsW1pydnbFuCpL4WvDT5fjsAIHAc83zak/R1A2qqnDbMaibGsS1jZfTPu+O0PdxXEHVajre++nPEBImQ5/hoRHToRXL849genbzLqnyHbopUVVBnbfjgkL7MU2t8QMjuFBaIR2f/XaHF5ix32221FVFb9ChyE1sU5bWVFXFyfGEqjBj0O37zC+vSLOSo0MjWDm7dcq432FxdYXXRk0ppQiihPV6dxMb5rguRZHhhwmyVc5lq5K6yAiDDnEr0Fku1gSRTxD6qHZ0XN+lSrc4skdVmPXhBTV1pVmstzcfhuV8xsHBAZtNQdHGcsVRhzSvODk9QrTr3N97pNuck9NTFksjwBpNh7x6eYEjoGojmpSCumoQOBRtQc8vZ6iDMVdXK8I2eq7TSXB9n6yoQJtGHM+hbip8jxuxkB8lNM2WziCiOzQioM1qi6pzqjImK9v1Np6yXW/oDQbQisvKPKcsa5qipGpj/549eYnQGf3EIWrfsdFoyq2v/T7S+UMuz40QSnGCcDxW64xGVzdzvlu95ODsmO/97r81Y+qHpiblx+Zyr0tdrj9lRh/Tfr1ey4a6EdK0V6k2Tkro104TILT4pKym/bnWGnEdSSVFq8H5fFGrxWKxWCwWi8VisVgsFovFYrFYLBaLxWL5x/OFEN78qpuAn+uCo8Vru5maa/nNYNwD4P5XvsTs5RzX0aCMwGR9/i6D4y+1bgVmRz5wY+49uMPZ3fs3bi8/+ss/4cc/+AvWyxXRb34fgCjp0Ot0GAw7HJ0Zcc/84gHPnr7gFz/7GX/zl/8VgC9//Wvcf/MOP/7rH3P5xAgLzp++z8mDr7JPU04fPAJgdnHJ1asL/GTE4fExAG6YkAwmLF5+yGK5MeNU5bhhl9WzxxwlRqyRl5LHH71H4Em6sdlQdoNTZldrBuMh5d5sgu+znE2mOJzeIugZsYGQks7wmHS3w1sbMc5quacpN8TdEd2REdk8mnbwggDPcdCtFUvS6eLFPZp8z+TkDIAXT89x8i2HxxOEMudVTYmqGuJ+72a6wiikLnPyUuD7ps9hMkB4IUqHfOkrD82zzd5juanodDqUtbqZXdf3KdI9XmA22utGQ9MgHI0WpqQ9PwGhOOvfw2nFGrOLl3iuR6+f4LWOGUWR02hB4LvU7U626/mMp2P8KGLbikRCpUiSkNnFjGvLFq0Vep8yGsWErcNPVXtsdzlVUd8ItYRw8T2XqDfC88zzDgZdNusdlxcrvNaZyQ8jojimrkukb4Qtui6JohgtJMuZmUvHAUcq+pNDosSIXdgVuK5HmVeEUbustWCzbwjDmN7QCBrCIEM4sFmnqMbUOBJc16NKFXHSjmmtefzBU5CCpr5o5/c5vX4CSjCamjEYDhOK/YYgDDg6NSK0stIUaYZEEYRmXOoioywKpFhTtEIPx/URsiDLa8YTU89aKRoUeaW5fGza3Szf4Xu/9R1wHIrCiFj8yEfnBY2W7FPjMpN0Y6qyQjqC4tpJSSuqukZLH9UYZ5zRcEDRaBA1dWnut5xdEvcGxL0em5l5trgzZHF5iRQQdEz/miIjzQuC19yBVKnY7Tc8/ug5D9+4bfq82rJeXvHmlx9RtYqfw6Mx69Uax3XY71oh1HKJwmF2uUK3DjqB51GXOetdCW2dxvExi/maIAyRonWicgKipEODg+uY8zrdDnLgIqTANUNP8XJG0jXz6ohWcFYUCCGQDjTK3E8pKMsS3xG8/94zc222o6oakk4f0YrkqromDj1ePHlOFBtxj+sLhqOExXxG1Lr5ZFlKpzugynecPzeCFS8IyPd7dlnD4ZERGo2nXbJdRpYVxImp06vLOWEc0ukk7NatS5RUCDRxFN8oVrQqkNIhigLSnXm3S6mZXyypBjWTsVmDVVkzGI1w3QDVXtuIhribkKUlSpmaHPQi4u4BjnRYzo2g0Al9gmTEyVd+nyz7IwB+9qMf4IRDCIYUmamryxe/4M6dId/5X/5340hF+237jG+WcaKBj53aRCuuEfwydxuB+FhIc6My/QxLHHEtSX1NoKOvz7OiG4vFYrFYLBaLxWKxWCwWi8VisVgsFovlX5IvhPDm03w6LuPzfv7Jc66vATDRVdcuA2f3z5gcjXn6iyc8f99sAPcGD1nPr9D6xgCB0IfxaERRqRuXmU6nQ75P2ReaP//TPwHg5NZtjo+PcUIfxzEbrI4f8eVvfI3TW7e4eP4cgP/6x3/K0ckpDx4+InCNK8L7P/s7sp/8d4Trc/vBGwBk+zVxp4/jQFOa+BVXdlhdnbNfXFIXZkPZ8UJoau4/eguvFX88/eDnlEXGeHrnxsXl8uVTGjw8rybpm/gpNx6yWS5Yp5J8azaye/2I3WZPoxoqWsGFdpnefpv+eHzTxn67xw8ThKq5eGnGZbbYcHBwxOHR6EbQMB53qZoGIUBIMx/dpMvLl5eMhINuyy2MfRopmM3nJO1Ge9ybopUmXy/oTkw0VO0eMhhDo+rXXJEUda0I+1382Gyq75eXaBzWyy3z1n0niiKOzk7Y7jLCyDhXeH6AcD1U3VAo05dG+7h+hXQhXWc3pbTbbtlst9y+a0RFRdFQK4Ef+WyXxkVISgch4c7ZLTaty0ejYTCOafKapGNqo8wbZheXxnnmWpSw26FVw9HhkKY2z3ZxcUVWVNRacjI2gi5UClISeA5xK6jZbPb4URe0oGmdRIIoJAh9IjdGtZFU+31BnESURY3WbYxWticvK6Iowg9a9xitubycURf6JsJnu1qzXi44OjnGbUUbVZ4xOTqk3+tRtW3stjv6wwH7NOeD942rU6ffI/Qd0kJQ1kbYUjcQxh5KKS4vZqY2egOm4x5aX/uwgOd5ZGVB6EviYyPMuJrNuHg15163hx+a8XNdDyEldVnit4432pE4roOAG4GTUiCcADcIcWlFQBXMnjzFHUbGrQcYTA/xgwDVKDoHRvgVxwH71ZzdanYTtxVEEa4f0uR7so15DteLUEVON1Z4yojkDiaSw9EhQejhttFuRZ6jaVgvl9C6pKzXazqDAQ8f3ebn77wDwHQ65WA4JnE8qqpoa81lNB4gJYi2L6ppKIqKXhKj6jaGDI1EURYF85lZ537gU2Q50XhIEF679BTUdYgrBJ2uuV+6T1mtU/Ltnlu3jTgvTnzKrKQ/6lG3jjfPX7xkMhySpRV5bmrXD13G0xFxnJC2YrXR+JCLSxOvNZ229SxA9wd48yXdtq48x+dyM6Pf6zCfmfG7++A2YeDT7XdQ10YwSpn6lA6iFR+5riRKEhql2GzNe2gy7iE15HnKYmneiZPjE0DT6JqmfY6yTPEdF601VRvFJl2fpm7AhWdP5wA0TcOtN4e4QcSj7/0bAIZHZ6yXM+aLnMWVeee8+eX7vP393yOKe+jXrGw+9zuGcaq5/vf10U+7u33a4e3m379MsKp163DzyW+l1kZ/Yx1vLBaLxWKxWCwWi8VisVgsFovFYrFYLJZ/OeQ/fIrFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLBaLxWL5NF8Ix5vPjZD6FOY39vUnjt04oajrcyQIjUny+NgFJ0wC3vjqQ8aHEwCuXl1S7HsU+4wiNS4LrpI4joPve4wmxj3hN37nX7NevOLx8wvC0DhwxJ0ev3j3XQ6Ojkj6JoKm04nxw5Dj22f0Bib+Z7dP+eFf/AWe59Mfmtim6VlG4DRsV1csZsZRIel08H2fosxxfaOF2ixnaF3ie4Le0LSx3e7Z7zJG4wC3jWjqDEec9Xo8efzkJk6mEygc3yPbF+zT1gXi8Jjp6R10UxFFnbbPIaUKCEOfbXYJwNHZId3BkP2+IAqNU8c+V6z3F5weT5hMjYNOFEek+4zten5j19BIH61qpGjnAVCqJop8FvMNV62bxaCfMOhF3Ll3gpDmOYpSM7uckwQNTWXcJyZHR6xWW0KhybMVAPkuxREhNRUfPv4ZAONeh27XOBeFSde0MQhRquHk1gm7lbnWdxwaIXCjmGxrXDm6g4SgLGiamtOzUwB+9IMfIyjpdhOK1Dh19KbHNEohUEwOTKRSlqcMRiNmsw3pxriLdLtdsn3Gcrnj9n3jGpLnBZ1ul0o1xK29Upml5GVF1VRUpSleKUDVFWVeohszBkWl+PCDJ5zdOubugzsArJYpvV5C3EnYt44tqqnY7xs6Ax/ZthElIa7roLtweW5q7efvfMAbb94lCgN2G3Nt+nKGloJeJ6Zox17VDZ1uj/HBhP/0//wnAG6fneG4ktlsiZBmvfb7HbbrJd3+CIRx1ZFa43ghdVPjxcZtKJICz/W4eHXB0yevABiNMqLkHnVVEYbmVbRcrpDSYTiZoGrj9PTWW4/wXZemqgii1u1F15SFqTX32rJKCkTkU+bVTRyY47g4XkiZbZGOaSPwPR68cZ90u+Ldn7wLwK//9m+2mTwCt42eU1VJulnhB30cz1yrmxLqGj9MqCumz+3xAAAgAElEQVSzPsChO0joDwc0pelzU2+Rfp+6LnDavnhOynQcM5uXzK/MeUcnh2gliRKfW/fvA7C4muMHIY6juHrROnR1Y+J+h2K3uVkzWkNTlVRZhtc6AWlcyqqkKuubyCfXcwhDnyLdIlunHSEljvRQuqbJjctWndV0o5DJqEuem/PSrGC72eEFzo3bSlXW1GVJ0xRMxubdVDcZRZnR6yXMHpvYutB38B2XTArSwqyPwWiEdELuDnus2wi9d378U6TrUuQ1u41Zl+l2TZJMWC8uCWLzPnWkRElJmVcITJ2GgY/rapJORKfXxkoVDUm3wzAY3kSTrWeXFKEHaPzIvCe3qx2jyZDD44ObqKkoiPjgw6fcvX2EH5p3ydXFgpMHdRuNZupg+uAbTDU81JprSx4NSEea5MNPfc8+/Y3T6toR5+Ofwy//xl3//Dou6uNrPr6/fr1ZLdr7qesDr6Vetdd+simLxWKxWCwWi8VisVgsFovFYrFYLBaLxfJP4AshvLnm0xuOrx97fUPy9SiO1///yxFIx2FyaDaKx9MhTRvV8uqJicg5f/KCKp2TDMYEHSOUkdJh4Ph8dXTEYtFGNA2m/OWf/jGbTQquufZbv/Z1PB9wEzpDI9b45ne/Q12VXLx8RqdrNnEffOmrPP/oA7xoT9PGyOQ5+FGI0i6zKyOAcRwXPwjpD6Ysnz4GoMj2DIZTXD9mMTPnDYd9yrKh34vwQ799VA24+EHAi6fPAEj3Fb1uRLrf0G37J1yHOPJwpQPtRvBmuyfpDVmtNqie6fPB4ZAsz2kawT4zfd7uC46PD3FdQdOY2JfVaofnCnSjoNVC4PkmXqZpOBibDfTnz15QVSOSvKLbM8KMupbkZcV4ekDQCgZW8zmXrxZMJxHlftnOucdmu8L3Q3qxOa+parIdPP/oGZNDI4qJuz2kE5Dt9zht7FVnMKCqK168nDFqx6Cuava7HM9z0do8x2iccP5yx9nZKdt1ah4j2vHy6UuSfgenrbeD42OSXsJquSFpN/01gt12gxBweWHmqC4VSbdL4Ahku3GvFJRFDUIyn83a51Ccnp7wwS8+IGwjgQ6Op2z3NXVVsVubMTi5fUKRZ7iFg+vKtl2fqi5pqgJxvY6UxvFj0u2agyMjGnv2+CmqUaxXKbMrI5DodGP2u4yV76NaEUES+yhV4kjN93791wC4vFyy3aTMrmbcuXMLgCgOqKuMqsrotPVS5iWu54IQbBeLdpwrur0uVdnwpa+YiDUhHdAOi+WC1cyIo8IwJAhqmqbGcVrhiEyRuqIuctKdEYl0+x1c30eVBVlqxkXVDWF3iOuHuNqMsxHbCFy3b5RNQJ1nKKXojqbkTfsKVKClAjT7tREp+UGMG3SRUqIqIwgJwgAFCOniuG0bUuJ5gqrOcSMjTBO5BzJul6J5Ds9xkTKiq3asW9HT+cUl+/WG49MDPNcIeXqDPulmR3/UIzO6OaqiJIxjtAzYt2PgezWe7yOluFEeSilwHYETuYSJuZ9qBI3SaFz2e7N+Xc+haVJcp8EL2qipRYVQK8o6uhFovPfOT7n/4A5lWZPuTbvHx4eMJmP6eUnYCqGKzCXNCuq6odvrAfC3P/wJd+/c4vBkwm7birzSGpoNSS9ktTTioziJODg8YDbb0BRZW38hfhiRdLtUmblWa0FZugjh3QhgtBAI3SBlwGRs6k83Cuk64DjolannaNBjtVgwPZpCK8AayQDXdWjQ+F4rotINp6dn/Pxn73LQvksGxw/aWtU3Yk6N+e4IBOJmDWoE4hN5UL/s2/SJCKnPiaS6/u79Q9+4z49ltLFSFovFYrFYLBaLxWKxWCwWi8VisVgsFsv/33whhDe/yubkZ4lsrjclX9+Y1FrfOFcIrm1wAN0Kd1pNgsZsSmqtObh1BsBweoRuGoo8I82y9lKH4cEh6XZNXX4IwPzVU/rDMUo66NpsZP/ob/47X/vm1xiOXYLWfWIwGfObv/+7/OjP/5wf/PXfAPC1b/8ap/feYDULWV0aNwtVVxR5jisastTcryxKTu/c5tmH79I05tm6nZhst0SpmvHhEQBhHCCFJAgkvaERtjx+70PKegUqZHxkXFfOnz9lv4ajszukG7OBvt5ccTiJkW564/rz/s8/pN8dcPv+bWQ7WGVeEEURs8sZfmBKZjZfc3brFCH1jcYmDn1cTyB0Rd6KA6Qf4bgOg0EXIY2Y5MmzV4xHE9brNYnRqyApePDgmLqWpDuzIR9FAX7o8urZC+JW1BH4Id1OQFHmpK3by2azxRUu+6zkVtds+gsZsN+mFGXJrj1P4jKadLj/4B7X++zZboM/7FIrcFshxeTwgOF4QpwkbNZmXD74+QekecXJ2ZS0naP5bM5uu2U46FJWpta225Q4CRhOJlS1ObZZLmnKjEZDqox4SzpGFPL8yXNevjwH4P69+yitibvRjcNKGAX0x1Ouzq9oWjuLdLvn/MU5k4PhjYtLfzRgMOiQb7dI0TqiSAehK6QWuNqM6Ve/9pD1ck+aZhSFmSPhSFxX4gcOXtuuFA7DYZ/Z1YIiNecdnoxJOjGImrYJsn2OkD6uE7Jdm3G+deeYsijZLxf0R0boVpUZm9UWKQT7nVlb9x/cYjFbkUQBjAftWG05OT3GlQ55bkRPvu/z6tUrxodDHN9rx8+l2G9wXAendbzRSlFmGxzNx+KHfI/jOuD41Km5X5Hl5gTHYdAza7UsCoIoRghF3LpTbedX+L5nxli0ojbpGWGZFNDkbbsudSNRNTjBtQuOpmzAi0OEaI8Jl0YpwjDg+Mysy/V8xtnZMWESsmwdsCadMWVRolDce3C/bUOz35ZEHR9Vm+dwHJ8gDGlUTb43Yx94HlI0COFTl1U7Vg4IQRBKmtZdSQlJGMUs5ytCo31jMOqjVJ/1esOwb1xhfv03v01TNSiliYLWvSj22K03xHGM17r5EARESRetczqJGatO0kdpzWa1ZnJgnMYWszn7fU1RlCyuzPOenI3xfYnnaOLEuCa9eH6FEg7jg9GNw4/nhlRKo3SDkKbdpm5wfAcpJFFi+rzfbUm3a8Kkc/NOVOUGz3fRCIpWzaSUpsprAt9H1Gb8sixDa4/haEwYmXlbXMzo9vr0R+OPv0NGYkNr73VzzLwyPy5ArQRC6L8vrBHanKfNc3z6uwb8vW/bx7TXfnzFJ297fUyKv/fzT54DXH8jLRaLxWKxWCwWi8VisVgsFovFYrFYLBbLP5kvhPAG/uG4qc/bmPylv83/iWugaRR1aTZdN6sNVZ7j+j7D6RiAOJHXnbnZ1hSYDdr9NiZsHVaK/ZrJ0QnL+YxnT98H4N2f/IL1Ysbb3/wqh3ceANAfjvFch0df/zq1NpvRf/e3P+Bb3/waw+GYqHWo+ejdHzEYdnn18oJ7D+4CIKVPUyuCqIfT7pQqBWHs0AjN/GrWngf9XkJTZszPzYa89BwSH8r9jsViDcDx8QGdbsxqMaepzbTvd2vmr0qG4ymDVmxw7/5tqrqgKnZ4bhsdhKLYrxmPu1xcGmeS+/eOqao9jnBv9nWV1vh+CFLRGRjBxX6fURSK84s1dWWEAGVeUhR7tK6Zt5vvy+WGe7dPUdKjaWOWup0A33N5ttizM1oXhgMo0pyD4wOcwGy0u96a3XrOyckxg4ER3jSNpihKVosFYWw20KcHI/I0o3Zzity42zjSI88y4m6fZx8aYZWQDkenB6RpzpPHxtHI8wMefflLSEfguK2woNuhLAuKqmFxtWjrasfp7VMQEMVm/FTTo5NE7Pe7GxGQ64VkecHx6RFlW5PShXKfk3Q69IemJs9fXTKaKJIkpqlMn19cvODkdEKn2yPqdNr61ggkUXeIqs39slyh64paNeSV6XMQRYSFwg8CaON68rwiy0oOTg6ocyOKQUpUA5XK8do6lW5AnlUI7eK2govlcotGc3gYIto9/FfPz6nKhizPCdv+dZKY9WrN5dWaL3/9EQBVU+I4mqTTQTimxps64vFHT3jzS28aRykgCl1u3blFXtZ0+2Z+q6pEC4nSID0j6JJKU9UNui5pcjPO+X5J2BkjpYNuWreSqkDpGqUV0jfCjKqsCGMjcNm2TkCOK/A8H6VBeG2Uk5Tock++ucJrI9uUrqkLgdGCmMUgvQ6R9CgLharWbQ35KKXQUlAWRgg1GY9AKJJeB12b+V0sN0SBTxiE7CszBmme0g88VFWwatf0+GhCU2VUhWLbCsSiwKc36JEXBbqp2jlPwBG4Tojn6baNLdJ18X1FbcqA81evaOqSbqeLcK6jkDwuX1wShgHjiXHzcRwXpQvyrKBua1L6EheQroNoHX7uPLhDUVScP3/KZGqEVf3RmPX2ObUSnNwyjjL7zQ5f5hRljd/GStVlzWK+ZjDq4bZ9EVKgywLX826i2DQ12d5FygrfM3Uad2Jcz0U1Gtc1tVHXDr1el4tXM/rDblsvIF2XPN+iWpGcVpqyzrn78JT10tRQHDk8ef893nj77Zs2pJTGCYnXxZzt9+gTwpbXRDifiIySnzrvtSt+JSc3wWf++LUEq8+6vXHk0UZ1arFYLBaLxWKxWCwWi8VisVgsFovFYrFY/kWQ/6M7YLFYLBaLxWKxWCwWi8VisVgsFovFYrFYLBaLxWKx/M/IF8Lx5rOca37Zb/u/7gigP/Wb+584psUnrhG0TgPAernm/OVLHr316LX4kJubfMIRQEpBp98lSoyTQ7rtku92LK9ecO+uiYLJdwXPHn/In//ZX3H7+SsAHr71FgfHhwyGA37jt78LwMlxn5/++Kf4YcTJnTsAjE9L3n//x2TbDenGOGGMD4+QTkgYeIwPjfuJ8ASryxWdbucm5maflkwPx/hxzIsPfgGAG3fo9vtsr54Ttik386s5201KXVccHJn7DacHFHnKdrtnuzMRSHH/gNWmwPcr9tK04UlwfR8hJYeHxqVCuhKUBl1Rlcb1omkUtdJ4QpC3sT4ogee5pFnBaGAcQpI4wPcdfC9iuzfuLKNBnx/+8B280OX09KidNPA8l+FkTNRNbvriew5BFIIw177c7bi4mPPmm3epCmONIxyHMPSZHoxIuiYip2w8nj1/QtKNGA2M6wVOQJpmuL5PWRm3l+nRCd1+H0fsePDonpnfXLOYLRiPuzTmcZldXjIYjQF5Uy6jSZf1ek1RVfR6ps/LxZI8z1Gqodsx7S7mC/b7lE6vz7X+zdF7hqMe86s5u3Y+HMdlt0np9GKayjQyu7ig0w0IoginNM/rug5KV1RlhdvG8PiBz7OPXlKWTdsOBKFitVijdU1/aNxjbvX7rFcbQt9Bu6Z/ednw4QfPOL19gN+5jvqBXrfPcrFiOjX3mxweUeQZ86tLfN+sj32WMug6NKFku7oEoN+7S7ffo6oVoh2s/TZDColqFH5grp0exiRxwOXFgrh1mPJ9D0c0BH6M1q09CwrpaIr9mqjbbefcRWhBXdU40rzaHOlR5ylSgr4+5oIXdCnSjKps46JQCKGp6pK6PSadhKZWCAfK1iEp6XaRUdKWXru4mhLp+NR1jeu3jjduAELjaIVqXWGULnGkpCg1SWicWAQCx/Woi4ymMu0Ohz10o9gslyR982yO5+D6IUWa4bmmXVXX1EoRhjHTiXGY2qw35HmGxowDQBAr6qJABgGyjXsrs5ymKhFC4IdtnyW8eHnBJlqyS5cA3H1wjyBwUE1Dm+hFXlQkvR6qqlHKXFsWNbtihucFlLU5VuxT9vuUMI5v3hGe7xKHLrfunPF3P3oHgGy7oRsP2Kx2BLFZM01d0IkTmrLCjYzLjBYa1/dQTU2WmboPPB+pKxolyar2WBziBhoU1JV5R2jHx5HgSBNJBpAkIU3TUFWCH//4XQAePrzL9PQQKSRpat7F6b7g6eOnDA9PuXXvNtdcf1OuvWWEFK99m9qT2k+J0OJjN5o2+tD8+1d0b/sEAi0+9rT5xFXi4x5d31N8yoFHC/3pvCmLxWKxWCwWi8VisVgsFovFYrFYLBaLxfLP4AshvLnecHx9E/L678/ajPx07NSnxTef246UeIHZxL376AF3Ht6jrkpEK1TQWqOUQgpxs4G52+5QtaI/7CFdM1z9wYA4iSmqL1FXZhP32/0eGs1us+VJG1lUVwV++Bvg1hweGLHLnTfeBOHzJ//lv5AWRpzy4I23KIqc9eycfreNBApj/j/23uRLkiO/8/uY+e6xR2Tknlk7UFi6gW4OlwOHkuZJejNvDrrooKve0z85FEeax6FIik32CjSW2rdcI2MPD1/NdDDPqAJQBeANdcDBPofuLA9fzH5m5n6wL77fq9EVAp/nT2oxzqBNVaTEjV2q3MTIdFsNRufnBGFAp2c2rbP1mqvLNa12n52BEVesVjn5akVeOowuTEzV/tERWanoDPo0G+Za4QhOz8+YLZb8/BcfAeBLRbJeg3AQ2mxkX54v8NyAdqdB2KjjXMi4vJjQiFy0MOKAZiui023S7bbJ6s3yVtNHqwKlJFFUi2LWK6LY497dQ9zQiDqSdYbnSE5envLJv/kFAOvVCikFZVVBLcJotSOSRYz0fYLIiDXOzy/RWtFqRawT0+ZKFQwGfVq9JrrepE+zgqyAq6sZ85mp8+FNn8UypUhXdDumLQtZUKmKOG7wxR+NwGlr2GO1Snjx4oxhv1n3LaZSHpqKq5GJn2q0OhR5SlkWuIFRLzQ7HYT0EEJwfmHitnx/j17scnBzH329MS9dur0+QmqmUxMxNNzeIV1rpldLGnV8l1KKOA5MPNHCzCs/KOm0GpyeTkgTE0W0WAqqqiBuNvB8M0YPvnpMu91ESJezFy8BcH2PJFvhhg2865glrXnx6pR2p0WzbQQhRSWZTud4QUhei55cX+DHHZaTBVHTzKvl9BLXjdjd22VV54a12i2UFsyX801EWJqVKK3pDXqEtWosywuEqPCjaBOfpKoKKRWOA3lmjjmOj9AZXiVQZPV5BY7j4MWtTdRUnq1QsgDp4lyrqJQGAfPJGCFfC1E0Cq001yKHsiqRUoN2EbWQB99FK41SJWozbhIFoEqCWmQjZUBZFnieotJmHrhS4HouabbGDU00ma4ERVnhByG6MveL44iiFlnFtQgtDEOyrIKqolLmtzwvyLOSVjcmaph3SRgElI5DUZZMxiZGq91roktNmhUUmVkfxzcOcaRD4Du4rmmfUCWHN29T5DmOUwtWfIdsXXJ6csLhrUMzn/2A+TSg0h71EiQMWuzsbTGdrPjiM7Nmbt075vD4Fusk4eLEzPsP7h9RVAU3b99hdHFurm02gYTJaER/x8TgsZ5TlAV+4G/eV1oXeH6bLFujhFOvhQIhHajm6MqMUak1vuvR6XQ5q99/jdttoKDV8dmpxY3TyYyo1WQ+X7FbiwwZ5AyHA8psvfnWSCHRWiOl5DqY8M3v0Jvi0DfFOd/58y2xUt/85r0tNOrb/xa1VvR17BXi7eJVIa4FQN+Nv7JYLBaLxWKxWCwWi8VisVgsFovFYrFYLP9t/CSEN9Qb3debhm8KcX7MxuAPOt/U/37zmFPbHziug6odEJRSm2cXtaDB9XxevnjG9OqSveMjAPwgwPV99o6OOX36FIAwanHz7h1W8yv++e//DgDP9xhfjYmijK+uzGbv7Ts3ufX+TYTz7/iHv/uvAPzLr/6RD++/x8H+gF//0z+ZtlQTer2YLM0JamON8WhK0Ij58rPPCUIj9Di+c0g6Txi9fE63ZTbu+1tbXD5+QRBKHn1lnutIiOMGSkOtH+Lk6ZfMpkt2b9xgvTRuL1VlnEHufngA2tRAywZJsqIRV8hahDEchiwXC8aXc3r9WtyzXNNsNShyuLyamrYUmsGwh6oqwsh0JFkVpEVJ6Ps8e/ICgNlsSqfbIy0chn0jGGj1WuRpQbvbZjwx92uELtPxlCxLERjRRLsVIg/2abdbLOdGYNJuNmj1eiymE8raycYRGik1jnRwa/eidtch9H1zvyPjZjGZLMjSK6TQMDHX3nn/JmmyAgq2d/cAyLKMWCh8T1KbkCBdh3SVEoY+UtXCoEZA6pRIxydLanGKA61WhBaS4yNzv0YjYHR+Savdei0COtrFC0qUkhuhURA2yMuS5WKOH/XrfrTxHVgtE4rcCCkc3yVZrxlstchrx5HJ+ZiiKJiMx9y7f8+M5faAp09fcnDobdZHIw75sz/7lOk8Ic9N54TOERghTFI78nhxjB+4BEGbwjOCn2YjIMtSWg2XZtMIq6bTJYoMqVOoBSur1YpGs0me5MwrI8K4GM3Z3u7RiH0qZeZfs+Uxn6TkaY5bi4Ucz0FohVYCrUx/hXAQWlLkCbJ+p5RlQdjsoYocXQsz3KCJEBryjKI0dZHSOMgsJ1dErXa9ZhRKa1wveuN+Ja4jcbyAonZTcT1BWSmkdFHK1K8qNA8ePOLm4Q6t2rXGjJ9GS/AdU4MsSVBK4bgerdCISYqsIAgDI+i4XoNliVAloe9t2lzmGZ6UCEcwmZp52um20ELhSInvmfdBnq1A+DieS7tuiwCKqiSOBI5janpxNiJNEm7evIlTC2+0dEgWM/Jc02qZY1mRUpYaN/AQdT+UAM+P8YQgT1f1+CZE0ZBuL2ZWO/KMRzOuLmdI16GoxW8XJ8/ZPb5Dlmesa0GhTtakyznjyVP+u//pr8y89wMcqZCO3IiQEArEGrTCcWoxiZI4jqRwAsqi/pagUDg4nrsR2eRpgedJ0BW37h6Y9l1McQX0Og2C0LyHzl9NyNIc3/co0tpVJ6pFUlq/4WTzDveajbvMdbLjN4Wm70bwduENxjXqWjBan/ON+2ljqvNa+MPrtvHGt/FHu+xYLBaLxWKxWCwWi8VisVgsFovFYrFYLJZ38ZMQ3nw79eJdLgBvE9e89X7f45Lztpiq69+klJvzAz+oL4Sb927xx9/+jmxtomBuvncX3w9wHIfq2jHDCbj5/vssxyOSWsTy2e//wN/+zd/yy19+RNAwm/kvXpzS7XbY2unz7//jfwDgb/7TX/O73/6e4+Nj7n70JwCsl3OKdMlyMaHfNhvFL56fIhcJWrjkuRGiPH+co0pFEDUII/OMPKvYP9hHVYK9fbPRvl5McaKY2XhM1DSik0BENBoFy+kYpY34KIybVMohW85xhRF6zIslu/s7TGYpnmM2xuMAwkAynazIsjrCx3HpdTucvBqRpqYG6yTg97/9Izu7W/iuqW+a5ZQlvJqd4bnmuXHUoDvoEjWbrJZGwLG+mtFuRYxG53RrR5k8rWi3m1SloihN+3xf0Oq2CaIGCCNYCcMGV5cjktWKLKsFMK2I1XoGQjDY3jLDKzVZmlCpnCgO6rH3aB5us1ylG8eRfDWn1dkiW42gFvyMLi7pD95D6YTGtVjDc2m0HKTn0ZQ9MzckbO9tc3k52bgDJcsFWVqRpSl+vYkfxsYRRUrB5Mq45bi+ZDjsEzUadHpdAK6uxhweHlNkK2S9KS+1Ik0zgriJV0fzjC4mdLtdFvMVnmfGSIqKIAroDrq4vjlvMV9zcLDN2asTqKPYPv/jQ27fuUnciDfuJ+NRxmK54N79uyRJXVOnotNpUuRrZlem9nEYcHZyhZCSsq6f7zuUWcGrkwuaTeMiFEUBSgnSIiOsI7g8R1KWivlsSqcWdCmt8H2JqJLrhDVwfHRV4UaNTXQQSITj4Xg+2dq4A2mtUWWOcCRCmP4W6RqEwHFdRGn6KxyHZD6lTOdUrhHA4Ar8OEApjXtt40KBKkrKco1bK9hUWeK6Ho4bco2Umru3DnFdXQu2wHVdvCCkqArytI5xCwMcJ0TrCl0LtbTQZj1qsXFIqgq4uloghGJr2wi1iqJE+C4IRX+rnn9+yHI2Q3ouRR01JR3I0hWLZcrunolxK/KMZ0+ecnhjF1ULQrrdkCAKKCq1EWSs1wopFZPRmPXS9G82O+fO/ft0tSaphW66UgShT6U1zTrCrNVtUhSQ5RW37xpnnCzJmU4m+EHIrbsmpq8/aOD7MV998ZigdiQ7vxjxyS8/YPar33F5fgbA7ffu45TSfDCEGXOtJLOrNXHLw6/Vb8IxY4KSSMesj8APKAuF77tUZe2GVJS8eHVOs92gvzUEYLDt8eTRc9CvnYoc16Ws5shScFE7Qh3eu2PinrSJC7tGf1sAY1pkxC6bf2pEXfM3z/2uw9v3i07Fm99DodFC8Npf5/o++nXiYh13pd9wvLG6G4vFYrFYLBaLxWKxWCwWi8VisVgsFovlX4/84VMsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLBbLt/lJON58m++L4Pj2b2+LonpbzNT33ftNN5y3uer4gcf7H33E1cUFAM8ePaHZbrO1O9w4nVSVoCoyPN/lvQ8/AODhw2e8ePacTjPkvfu3ABinGVWZ0d8a0BsaR5T/+L/8Bx588YD//Nf/hcH2DgDvf/A+zUbIycvnjKeXADhBSOQrPD9guTTOM/PZDM91mY5ekWfGVaLIcw5v3sL1BFlm3GPcMKJSirIsyFamj74n6O/sIxyP+ZVxclgvxniNPaqiJKidTsIoAJ3jeQ5JHZXkOB6rJAGhadbxNW3HAwd6wwGNrjmWJwm7+/fRomQ5M/FEQguiUBAEfWTtXBHEMeenI5rNBqv5tUOIg+xIgiBgfGEcfjw/YGevj3Aki+WqHiXJcLuDVpp1alw+smzGi6fP2T/YZ/vAOISUaxNJk2X5JqpGKQ8lNJ4f8eThAwA6nTZbw49JU5gtjfPMxdmS7X3JoOfRMOY73PvgFs3Yo+zEiNptIwgCJlczRFawTk3tk9WK+WxBHIc4jqmpHzYZX75ivkjwA+OsUZU+eVHheNDrmoe0mzGB7+E5kqJ2Jdod9ljOFzQ7DfLM9CPPUrwgREhBsjCOPIvJkunVgiiOmE9NlJPjhZydXBJGAa7UmzqPJ1NG5xd4nmnfVn+AwEQDffTp+wDEjYjnT3L63RanJ8cdxUIAACAASURBVOcAtNoRUkCeZMS1Y1BelEjXYzgccHVp5m6r06TTbXN5OWI2NTVdzTXNZkSr2WI5N/2YLxcgK4Jol8XSuMIEvqQqcpQb4AemLtKR5FmClA5VWUdreT4UOTjuxsqjqgoqlSNFQFm7MPmBT1mVFFmOF5ooLC/wuXpxQhC1EfWclI5PWZRUVUWVl9dTzRiRiAApTa1QAiEdqqJC1A4r0nEIwgikRsranUUUlFWOkAFgjuXrDC9QOG5MnhX1HHcQwiFPM5DGZcYJHXqDIVejMaskr+s3ob/VJ2yEqDr2qioyGq02eZog67mmtKJSFbrSrJe1Q41w2T8+QmtBkdVRXdKhOzD1KHNT+/HZiKgR0O64eKFZ081eA40mDANUXas0KTh9eYrjNfA8Mw+iRoSQJVQVwjEaT4Wg0+/jug6zuRmPIs2YLzLyfM3Ojnknnp9WjC4vWSYJz5+audZodYlCH8/38a+dgFSGF4DWgiwt6vF1ydKcslTUqVzMJ0viOCRsxHX9QamC/mCIEiVJ7Uq0WiQ0m03C2Gd0adbM3v4e7W7Ek6+espya+gVxzPBgr55n11lT+jsmNUIYixkh5GbM4bvfmXfzY87TZkryptPNW+6xcbrR1urGYrFYLBaLxWKxWCwWi8VisVgsFovFYvn/kZ+k8Aa+K6h510bl2yKo3vztx9z/bdd/85ggbMbsRUcAKKUoioIiL5jPTbxOkSYIrVBliR+YWJo//Yu/IEn+msl4hCv2za1kxouHE5azGXfeN2IcLV1u3H2P/3Uw5LPf/jMAX//x9zTbPd6/f4/2x58A8OCrB5y/fIIfBVDHNq0WSwa9iOM7H3N5NTGtVQXz6RVZltMb9gGYj05otlo0wmATv5Is5qxzQRiGTGuxhqgKUrVgkWQMZB0hJUBXJe1GTBAYIYDQFWXp4wcebi060SiUcglDl9nMCGXCMCJZrXn27BVgxAuudDk86hPGzU0Ai1KS7e0tpqMruj0TrSWloshLhsM+eWbOiyKPbLUC6TCZGiHP0WFEnpWUSpPMzHhEjZCdnSGO67Cs43A810UiEDisFmbTX4uU4d4uoR+g6qifNC04Ox/TH3TxQyOEilttHClYrRVbtWBqnaR4QUCYlW/ElGm8wCFPU64uTVuSZMn9j96n2WoxuhiZ+jmSdq9DUSiENLVXuiTwfASCwxv79d1MZFAQaJSqRR2e5OjmLpPJnKqOWXIcyXg0YrC9R5EbAUJn0ObZo1McV9OsBWKe76G1olSCx49eAbB7sMPVZMndDz9iMDDnpVnGcjYHSiYjI0CQTsj+/gHjqymziemb70uiOERrzWRsxiNuluzu7uB4ik7fxDapEtbrNVmhGY/NeOzvdfBDB61d9g63AWh3Yooiw/UDsrURLsVhmxJhRDGyFtQUBa7bQLgClRvhSFmmSNfHwyGdm1o12wOqqsL1XNzAzOdKl1SVwglido+O62HTCJXhB02qWh9RVTkCByoB1+KZUuK4oEW1iXLyPZey1GgqqsKc52pNVWq0yvHq+CQpPVSljNis7ocjA1SlEEKzqOdpp9PADSIqV6CUmRth6KOrkm435uLczKGtYQelFOvVmrCOwpK6pChS/DBE67LuhwuUdLpNsrWZ9yenYxrNBtu7XRxprj2/uKLIS9NebZ7rBT4Kl3WSMagTuBaLFc3mHnlZ4Ptm3mfrCtcLTLzUtUhJ5PiBY+5Zi3HKQuM4glLl7O6ad1OZLpmfXDHc3eH5MyMADDyfFy/OuHXzBmVlxve3/+9vcH2PrWGbex/cM/1FI4SDqOPfzDMEjqsI4w6rRR1/tjUgy1LmswlxbDqyXGUErk/guTx7akSVWpV4vsPVeExeR9RVpWJrq4vvFhuPuC9/+xmXlxfc+uA94qi5efb1N+etAk9evyPeJXx5M27qu9FT3zr3jZ9MXOM3ZTdaKHirEAdei4AAnHc+w2KxWCwWi8VisVgsFovFYrFYLBaLxWKx/DA/KeHNtdjlzc3LHyvA+b5z3naf62Nvbmwqpfg+rsUVQkocx6EsCvLEiA3ydUIQhWaD2TEb7Tt7Xf7klz8n8ARnZycAvDq5JIoHvHj6mMA1G7uO36DZ6TPc2eGv/t3/DECynvPkwRP+y//1t3T6QwC2dw44uP0hnU4Tr95oP3vxnDydIByHbnfLHDs7IT29xPME0+kMgDJdka4zgjBE104dw16Ty8sZAsW1K0JSODg64/mzS7Z2jFNMv9egKkqkC7I0G9muH3F0+yaOlJtN+rIsKUrB+GpKGJoaNJtNnj89ZTFfcPuOES6laQ7CwXVdkpURV4yvZty6tY/vv56SfhCQZxXdrV1ePHkOQLvbZDFf0Gi12d4xdel2YnAkKs1pdcymunQ82t2AbL3cbKCfnF/S73dptGPOTo0Ty97egOXolCRoM5mbtmxvD9ne2cV1Bc8fPQLg4NZNHj14ws7uHuenRlSkVcnWXhvXD3j84Imp1aBLu9Nkvkp5+sy0+dNPP6Tbjbk6HzEe1cIb6ZDmJcNBm/X62sFkTaUqmq4AYcYoz9Z4gcdqtaKqRD03ShppxnqdkiWmzfNVRBDFvHr2kkoZ4U0YRgQNn5MXI5ot42RycXFOul5z89ZN+n0jGIgjj1YccnZ6Rlg7iYwuR7Q7HT765EOePDQ18P2I8WRCp91mMDTiKLRiNklw3Nfrw2PNelWhhUOt82A6vuLmnRsUacnPPvlgM5ZZURKEsvbsgLjRoKwCQt+lEXXMxULXwhK1cYURjgtVihCucbgBPKkp85RKOuCaY1JIpCypygKljKtOELXR2qE72Nqso9n5SxxXIDyJVKYGRVkgcY0gy7l2B9JoLXCkQ1nbqeRFhUQhEFCaMSpVbt4Tnguibot00KokzzM8N9zMIa2hKPLN/aazBFckFHlOq9c1/RUSrX3OT0+IGqbNURyjqoqyzFGFKbR0PaSQaC1B1OK8VUJZlPT2+qS1u9JWUfEPf/8v/Nmff0p/aOp8eLSLkA7nJxdUtfooaMREnqYMfHRp5lojCqiK0pS4Fve0200c4eGGkqwWflWrKTr3iOKQojC1XycrVFWxuzcgrwU6YbPJjbsxTx6/olXP0zwr6G/3efXilLAWLjl+gOtKXJeNu40nC5CCogqQ8vr7sQYpETpBuqIey5IoDPFdSVldi9U8okbEbL4ijsx4BH5EEDg0GhkPHzwD4PxkRKfp0e21UbXaZTI/4/kXvyefnfPen/y5qUu3Xz//Xa4z14Ka7zeceZso9K33vD6tNt0RfOs7J35YvGOxWCwWi8VisVgsFovFYrFYLBaLxWKxWP71/KSEN98XI/V9zjbvipX63ntjXCa0Fq+TON5wGnjz3t9+ttbGWUBIiZDXFzsEURddppS5ca6Q1Yobdz/g9NVz0spsbm8f73B04yZ/95//E48ePDXXKk17sEWz3WGwcwDA/t4B7U6PRqPJg69MBNLf/d9/TdBosjPcxamjW1rtNp1uj+29XZrtOvLp+VOgZDwabYRBstlFUzJfpqwWRoxzcSppd3tcPD3buHyEcQtXCCbjK6YTs5nf7m4R+C55vqLITCSL47toVVHhIutIKgfNYrlmOV9SXgs4zmfErRik4GpsBCs//+S+ESFoELmpn+dnlKUmWadEoXHQmc5zdF4gheDeBx8C4PsVq2YDqUE6tftJmXB1kYEQG4HJarkkz1PKvGRVC1t6vTaUJopoe8cIR4q8wPMbTKZzdveNy8xyNufV8xcgBX7UqPsxodPpINC0u8YVJk9T5rMpURCxt7cLQLpOWK1WnDx/xbR2iqlKjcIlbkfEbeNy9Ifffg6qIokCsjrqx/MdAunTGXRo1HlWjtvl2bMXdOKQVWbif+azlNlsyXKxpDcw5+mqQEkXzw8IauFXEPjc67Z5FficvDRCoyiKOD7eI2x00bXDTxBFHB7t8fLJKx7Vc+3jX3xAlmmuLscc3TCuMOvVCj+OcMnpdE1d8nxNWeYINHleu6QMhyxmC5SqWK3qNs9XTMZj2p0GeWXOOzsZk2bGDWi9MOcJp0SqEq1chG8EJlQFWlYUWXGtJUGVaxzPMy4iytQvSxOqIsfzXfKkdn/CJ4gaSDT6en1LSdRq0+r1NpFj5y8e0d85RuOhawGeFC5o4yZUXrvq6BI3aFIWOa5nGqOFQGvjwnMdP+UFPhoHXeYb1xpdKsqyQjsY9QVGjFPlGQIIa1HMxcUUx5EcHm+TrE370jSj0QjJ84ogNuNWaIUjJEpplLp2UwHHgbzIEV79b+mAqyjyFNc3zwjiiH/7P/wll2fnrNem9v3tIb1+l063jfTMxRevXpKWCe3+cPN+9P2IZJ3RbIWo69eiyggin7KqWNWuU64DAg/Hy6hULUgqctAlZZVvHKbyQuN6Prt7u0zqd8TXXzygryWudDd12b29y29+/Tmr5RxVmf4OtodI16PV1Jva+3GDSrlkqxWydgZLVitWGuI44vLcuNvs7vbI8yUOGY3WtWuXxg8Fl6MZ7ZYR4wx6Ma4Dq0zS3zbOTHeDkHw5pqoUD39nXMpuffhz2ls7RmLz5vdGaCMs06/H6Nu87dvz5vG3XnP9h77+v9fiHlEnSpk/vv3c1/FYQn+/2NRisVgsFovFYrFYLBaLxWKxWCwWi8Visfww794JtFgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLO/kJ+V4c83bojbejMx4M37j9d/1BWLz3/L/wFPqa78VxfE2V5032/DmMSkFOwfGDeTp109MPEtVoCvjFNPo7dGQIY1WxKD3EoBVBp/9y684vv0ejbZxwXn21ZecnI05PBpS1pExrufQ7Q04eu9D9m/fBeDO/Y8oqpLJaHZtmMFsMuHs1Yi//3/+kd6gB0ArCjm6dZvd47tUhXHqmI8vydIVo0UOXnvzjHXuE8Qey7lxxlktVyxWV2ztHLBcGbeNi4sJN+8eo4sVXu2QsJ5dkk9T/LhBFJt+SDRFkdPvd6nKoi6Ug6oKwtBjZ8e4RWgFOJqyqmg2jJuFKJssV2vCOETUcS7NZsTk/IxkXTLYM24+Gs06Sel0moxHYwDiOMDxGzRil6IwLhqVglbUgMhhPH4KQLsZkOdrpBOwTk3fptMZRaG5/d49VrXzR9zwCYIQjWI2XdUjLlmvEo5u7NOp439mkwJZVLTaIaORqXNRlKzXS6o8YWtg6lJVOVVV4vsB88XyegJx8+5tVosF15YVi8WK4xtHxFFIVVuJZMucNMmQCI5v3gDg7NVL5rOEne0+7b5py/b+NkIIFvMEXZm2TEZTHl6MiKIGy4Xpx/ZuDyE9VJlT1mYXjUaD0cUF3eEWfh3r47keQegxqTLWdbzTYpGSZgWHR31W9dzwPBcvCEmWJkII4OJkhO97KAG+Z8b36HifolRoIE3Mtc+fPuf+B7dZzBdQt2W43WOVV0xmS66emqiug4MdGoFA6RLM8FKhyXKHMBao67kmPbTUCDfC9YwTUJ5VyKCBFAKnXjTpOkNKH4RA1PFY6+Wc8+wR/f3bxkUHKMsCla+IWx2o6mFTEulo44ZTR1e5jgbpov0AKtOWLFkStfqUJcjanUqpCtcF7Uiq2qVHVRUSF9fzqFRS30/guC6u79H1zCta6Yoiz9ne28H3jTtLFPoUWYEqM/LaVUc6EV4Q4EmJKs27JIgilHIQGtZ1tFsUB3hBSLfXIq/XAkKSrVPm0xnN2tXJiyKG/SFKC+ZT844IQogjB60q3LotRTrDCR2qqqLXN9cKYVyxpHSgNM/YO9xBqRLJkrR06r5pAt9lOr7EFaYf3U6LsqzwA48oMnNofDXm1u2bvHzxElG7Xb16ecrnn33Jxx/c5eYt4zoVFBlBY4DrOZT5ejOflVLEjYh+/Z6cL1JQJdm6wKv7kWUrVB7S6bSYXBlnMNfv47g+jqsZXRhHHlcKLi+nHB7v4BZmXj35w685/uhTetv7r1OgxPe7tV3z7t+vrWt+HN8xyNHXTjjf/H3zuB9/a4vFYrFYLBaLxWKxWCwWi8VisVgsFovF8g5+EsKbd8U5ve28d/1bvz741ngO/e3jGtBvPw/4QTGOEIKyVMwmZiNbKIXQFUWe4cfXMUYZipKo0afdN6KORpbh/vxjvnz4hMMbRlAz/Le7PH/ygOOjI84vzwF48vVD9g9zfN8lahoBx0d/8kuEFEwuLlDabFpPrib4nsuHo4/IM7O5XaRrnj17zng0IkuM4EIrSavXIWrvc+/9ewAEnubkxUvy9ZogMs9IkgwnKmm0O3z99WMAWp0YKcFxQ1zHqWsiCGXMdJ6zmJkYo/l0StiIAEmdPgW6wnEke7t76Fq0s5gvmM0W5Nkav56BvucyW1VEcbwRrIwuLxkMh3C1IK/jmKJuC4HCcV2asdmQL4qKfJ0jpY+oh6rX65pIGuWwt79jah97rNce67TCcY3ApN1pMZ1MWM6u0I6JlhF1PM14NKPMjdKj0+vSaDYJGxFlbsQVVVXRaDaoyjV7B30ATl9VrJcFjuehpOlvmmScPHvFzt6AXi2U+ejn7xNFIYNBm6dPjCir2Wwyny/QukS4JmYpcCvqAB3Gl0ZoNL48xYu6hI0G10kxeV4wu5rzxWdf8vEnZl51+i0qDdJzOLplYrSCMMJzqMVCRkhx8uKcxXyC7zqbCCnf90zckNaoqhYGzWf0+n3CqInjmPFwXZfVKqHVahCFpn55lqO04Pz8AnkdxaY0rV6HMi8ZX5h+7B/sMxot6A22cAKz3lbLJa9eXuAHAcOemQe+AyiF4wjStVlvTtDk6y8ecuPWTZpNI5owWgyJEO5mPjtuTtTqkS8X5LUIzQ9i+js7IASOa6699clfcPL15+iqxPFMXJkfupSOA9IDYeaB9DzKvEQrsZnPjusQNmNkkZC+IUgqszVFkeLWcw2tUFIjcHHdeuILiaYC1EYVcXJyxvawy3rVIawj25LVirLUVEqTLJJNnaPQQ+uSIG7V7YvQCCSKNDXtUypBOpokz3Dq9btaZqSXE9qdLq5njkkBQlRs7/V58fQMgNH5BY3gNkEYbkRonhfhSMiynLhp2pwXPslsxmwyI4xM3wbDPn4YIKSLrueB9DQegvUyp90b1u1TOK5kZ3+XZGGEMp1Ol/lszmq5pKzFdIvJgrCh+Pmn72/iohazhJ9//BFplvLZH54BsLcXsXskiJotvNiMZeRFrJZLklVCXq/py8sZd+7dYDmbsaprCoJklRA1ItI65uvJk5f84pc/4/zyjItTM3fv3D1k7/gI7QZEgelbVRY8/vXfsff+p+zfNGsQ5/pF+MN8V6BzHQmlv/NdevPTJd74t/heJc1bBDg/KFC1WCwWi8VisVgsFovFYrFYLBaLxWKxWCw/xE9CePNjHAF+iCI3TgnT6YKtrc5mgxm+6Viz+dsob9g43/B2AdB1+759H4BkueSLP3wGwHavzXo1R1JtXGaSyXPi9rbZWPaD+lqBF5Z8/LNPyAuzMf7qxXOePzvh/HRKVItJRuef4TognZBGaw5Anm0hPI9mo8nl+QSA/cN9KqU4vn3Marms++bR3dnmxuEORe1Ccnk65ve/+y35asWXf/gcgNCPCOIAP+5y+dJsZAsk3d6QdZrT7BhRwvhqxmK+ptPrsFoa0UlBRBTGXHz1kq0t43DRbMc0Ol2CMObZIyPa6fe6xK2YMsuYTa4AmCUznjw94fhwQJUbkYvjuxwdbzGbJiQrs8G/M2zz8uUlpydXNNtG1DG/uiRbrVgtEt7/2X0AXjx9ynI5p9Xb5/zMCAb6WtFsNY04oh6v2TKnyAuUKultbQHw7OEZv/7Hf6BSJf/b//5/AOB5AUopwsCl9gKh1Y7xowZZlhFFpi67+3s8efSK2dUIUbuaDPo9esNtHj96Ra8WsTi+wPVd1qsVZZ7XYyQpXYcszTbOPYfHhzx79Ah9uE/YqEUTnsv27i55lpOlRpSQpSWOq3ny+CX7O0ZYQDlnPCtoNgIcaYQev/nVZ9x57xZ5CTu7RuRwdTnhyz88otNv0RsYsdB0dMHB0S7dfmuzbqJGxMnpFV989oidPeNUtLXToSoyktUSWTvFLBcJnu8zm45pNIz4ozfo8MXnDxhfXHJw49D0Q0l63RZzmSCkeUYYRChV8fLFM1od40KyXiWslgsCV7DVP67nqUD6bfJkxrXSKF+nvPfeLfy4gS6va6qpVI7QgqJI6+dq0uWMLFmgHSNmGmwPcXwPVamNG027v42+K8mSBFULPco0x49NG13HjHmpNK7vUmWZcXIBpPSRWuD5Mdo8giJPITdvmCIxAieERjgeriNQ10IKLRDSRQm5ea/cuLHHarHi6nLK3oERjQVxEydPybMCr2XWwnKV0R/2OH35jEqYMe9HDZLVjNU0pVKmb2GoEK6HwGVRu9bErYgwFLiu4NnjF/V5kna7R9ysCENzv0arwzrJCQKPTs+sc60qtIQgckDUyi/HpdWBZmsbt1bdlWXB+HLM9t72Zs3oCvKqwvNiKqXqGmjyHDwvRFMLFNsNJrM5jivo9IyQsdlp0ogjzl48ZTVP6mNdXp6esbO7g6rX1sVlQqkecnR8Ey+q3Xf0AlcKZrMVi6VZ1QeHe2TrNbPFGt+5Fm9JXE+wXszp98187g76SM9lf2eXo0PjqqPKnDCKkI4kz2qnIt8hbnd48M//lSwzc+jG+/e/8S0C3ioMffvvr91ufuiaa77x7RKyltW8KWj9pivOj72vxWKxWCwWi8VisVgsFovFYrFYLBaLxWJ5Nz8J4Q18U3zzfQKYd7nPSGk2EK9jSd4l5BFvZG1oodFK8+1Tf4zbjQCa7RZ//ld/DsDo1Sl5niNdlzQxcSR+2GG9uKTUAUVmRDF5rti9eYdOf2vznFvze9z54D5lUbJ/YIQKDx9/zXAwIPRjwjqOKYhinj54xMunS1xhhi5ZzEjykrvv39nEyPR3tvn40w+hVJR17JDrRQy2t5COZDYZ1dcmPH/2mNV8Rro24h4hHQ7CkFiu6PaMOCVZTvj1r37Phx+9h6g32oNGk2S5Zne3j6z7kRVweTHm8LhBu202vCsErif553/6gg/eNy4Qoa+5IxS+93rcHOkwvZrhuE3SOvpGiJzxaMpquUDWETSPvnjBcLjD4Y09FjMj0BFKsru3i64U7Vq4lGdr/MjFkx5eaDbVcTWnL5c4DiRLU6uLsyuKouTWjS0817QlWSekyRrHCRBGu8DF2QU3796i0WtvNu7PT88pszXrNOPePSMSqcoSISR37t3mesO71W0ghWSdFgjXtK/bDphMZmilGdTRN6A4un1MIw4ZX03ryRYw2GrTaISIlhFDuMFdpOOzJTS7u2aM0iwjya+IoyazWlxxePOI0cWYyfiKX/zpxwC8enFKVebs7g2Z1u4iWZEzXyxZLRPiVi0W8iIEgk4vYu9gdzPXur0eeQkXL43AKW5GjC4n5OsV9943bj7rrKDdavP86XOK2qno4OiIi/Nz2r0eSe1a8/TJMzzfI4o9Oi0jAuq02+zuDwmCgDAwtXJ8lyLPkX6ML828r5QmaDTw/ACtzPjm6wTXCwG5iTpzgiZKaYQTs3N0YObfxinotQuWQBO3u8ynK3Se1tcGOK5bX2/mn1qk4HqURbGJ8AkaDutkiet5uEHt+lNqpCtxXAdxPYlQFHlp2ln3zfdCKlVSKUhrwVm6TlmnObPZKS9fnADwi19+iK40jtCbMQrDiHI9I44Dovq5qiqR0sVxwauddp4/eY4feNy8c4yUZl0uJld0+22kJzmuI5rMGGeApKhFLN1ei2anBVLw6oVx4yqyktv39tESmrFpi6dSAj8izwsWdaxZp9+lF0aUZUFZzwMnbKJURVkUrBem9p1egC5zSpUzGxtxXrC7Q6vZQEUeQd23RjPC9QQ7Bwf0tszc9cMGjlMxGs2IatekSju0ekPW6wWzuYmLarW6IARb21t4vjkWRCHnr86I45CqdrHSaM7O5/Q6Ddo9E1eW5YqLswtUVuAIs/YbnTZ+o02+nOL5Rm1VlRq/2yCImrx8+BSA/mCb7vbWN9Qu33Ff410CmHeLUYUGfW3v9ea9N38K873cCEzNMSM0fUsklcVisVgsFovFYrFYLBaLxWKxWCwWi8Vi+W9G/vApFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLBaL5dv8JBxvvs/Z5rvOAPq1D4AWm99d12iImq0QdH39tSOA1mw0RuLNqKnXz3tXe97ZFq0RUtLbMY4j3WGfqqj44tf/wtWlcZQZbG0h/CHSb0Nh7jHY63Nw+zZlVeI4pvztfo/DWzdMLEj9jMN7txDU7d70A3rDLa4uR0wvjDOE67towHUditK40bx89AhImVzNafeMC4nEI4oDHDegXUfGRLFLr3eP+WJJIzZuFjtbEU4QURQ5ShiniWFvh4ePn/LgK8n9j94H4OTFKa4b0Go3ePTQxEpdXc042N/i5ZOSvX3jotHpdUAqfv7Jz3Cl6UcYebx88ZI8TYh8U4PDu/eYXY5wVMbnnz8EYDGfU5UV9z+4TZIYF5LdvS2W0znS2WO9Ni5CWZmTrhc0Wh2WiXHu8f0GjpTGAaJ2HHElNBpNkmRFlRtXju3tLjt7f8n+dkinbZxThvtbjE5HfPHZY/aP9gCoCsjTFD9wUKVpS5km9PptwsDHc0T9XB8vCgj3h1yeGleYMJCMrxZUpaQqzXOX8xlVlZGnFWHt0rNarblx+waTyZSojm26uhjTbAeUZcl6bVw5vNDFdQqk43E1Mf1dLZa40uH84ordOhoqdCRPRw8ZDnfIM1P7w5tHjE59zl5esHtkxkjoCs910OWcIjcuKes0ZZ2k/Js//1PWmXluVaWcXy3Z29syjkrAyxcn3Lt/G10K0sQ42azzgjRLuXHrmCA0biBZliMdh9D3aIRmzEfklJUibnReL08XOr0ey1WC8WhHdQAAIABJREFUrhN65ssUlScEkb9Zi1JKtIY8WVLVcWrSEUjMco/bxkVII1kna5rdLmHDxHJprUEKBBJV1Wtbwmw84urkMUFoat+SDoVTETdblLULTlmO8ZSH12hAHXGlygrPc0hX6cZxxJUCVUmkVlDHWbm+i3YqitLHdc3aSlMTvSWloNs3rj9ldkIUR+wdbkMdx6RUSZqs6PSu3ZGgSCcIp6K/vcd6bdoivQJdaYK4harb1xt0uLoc8/zB1+zfPDLHhn3A4cWjZ/Rqx6Wo2aUzaFDmGV79PlVaspguGe4O2dkz77rJeE6z1QShSOZmDQahoNSgqcjq6KWry5L+1haqqjg5MdF4e0cBDiVpUrGuXbZarSGOdKiUIohN7bO0oNkK8byQvJ5/WgjmszXtbg8pept50Oo2SVYZ89msHiOXMIp4/PVjDg/MecLxcV0HrTVb22ZNL5YLnjx+hCN9Oh3zTjw83GZ7C5argtHIrF+hBaiC3cNtuoPtui0el6MJw36PsjD9bbR7FFmK48ccHBsnoOloTHvQQzgOQrz+rhjXme93wfkhXt/ORCbyjc+TBuoor+/c9rXLm3W+sVgsFovFYrFYLBaLxWKxWCwWi8VisVj+9fwkhDfwXbHL246bH9/YNOTN8zYnvHnXzf+KzV/6G78hxPclerwzsupN8Y+5jYN0BXGzTbFlNna1E+D7Ps12g73jfQCanXa90e68jrkR4nXLvrEhKsyBN5rgui47+3vs7F3Hw2jTBaVZrkz8yqMHX6GKFb/79W+ZL8zGeLfd5979D+hv73B4w8RZdXt7lJVCeVP2lNnwHg5bPPj6CWUZcFCLTq6mMz78+EMObh7THXQAkK7DfDxD5SuOj02ET7vTodUI2dntMp6YuKO8KNjaMZvvyzpKx4+2+OgXn7KcTjg9M5vln//xKdtbbVwPdmoxU7sVk2UZk/GCvYN6w7twKJIZQsBgOAQg8H1UWaKUYtAbAHB2fkEcB6AFi4WZ5s1mhyJbUaYLzkcmyklLhRe2SYqIJ49PTQ12PbRwCEKPZR2bU1SKvtZMRlOSuREMuL7PdLqi3XIJYiNUEG6D549fkucpB4emfkUuuDi95Nb795jPzf08Ca12A/BYzMzGvdaCPM8psgpRRyrdvn8XVZb4nqCsTJtdFK4MiNtt8sKIEhaTjMliRZXnrBMz5kmS4wmf1XLJ3/yfXwGw1esghEu73Wa9NP3odpoEnsPVxRQlTZSOVArX0SSrFZcjM0a3bu8h3SvC2Ed4pr9BGKKrkv6gDwMjbPnyjw+oVEV/0CMIzLHZYkWr3abdaaMqM+9394zA4Y9/eMhf/vd/Yto32EIqTa8dk6RGOPKbX/2G+x/ew/M0VZ7UtfdIi5J1sqLVqwUrRYWqNK4jqdT1QlI0u13a/d4b74jrSDtY1rFcQko6nQ6j0KfV6dXPCBBSUmRrdFnV/Q2o8gwlPBxRmmuFA/jE3SZKm2NUFUK4lHmCqurYq8rBcTwI2UQ5uX5AWWhK5fKb330OwN3bRzhVhR+6rOr5gnBwwwjteGhdCyqkw3wJTaciCI14SxWKNE3xfA8wbXY9j3anSZ6uyJbmHRFuRUhHsrs75PGTa4HYgsPjXcqqpCrr6L5mTBR7KF2S1IKa4d4W0gtQZYYvy/q5IKWHEJpmXb/lbMXo5JJuP2Zr2wgAfRcEPsIpKap1fe0aJVwqIXF8o7YKYx+hCso8Y2amM1HksJzPcFxJHBlBlxaa8dWSstKUlVf310UIh4OjA+b1HEcu8d2c1XJKZ2DenacvTtgaDmnEEV9/ZcSDuixotCL2Dw8IfFODVZIxvjxnZ6e3+dCUVU6+WLL2XLy6zZUqKauSIivxHHPs4tVzsjzlzkcf4voerxE/OnLqB0U5dezUm99Dc/rref7te7+RuGixWCwWi8VisVgsFovFYrFYLBaLxWKxWP6V/GSEN28T23zjWP1f76PlZnvx+vd3iWNeo0EoQIC+TtdSfK/i5o1n/PD9DVJK7nz80WZjXFeqdjr4xh3NRqp8nfKlefvmqtaaqqooa3FFGEWvRUSbc41oB6m5/8kHAHzwyYeUec5f/o//nqdPHgHw/Okzuu0eX331NbOZcZ+4c/sOTx89xAtCbty7D8Afv/iKZ0+ecf+Dj7jWLhzcOODGnRv0Bj2kazaUj+/dpEhSsmTF1bkRrLhNDSKlWM/Y3jZCmeVsTpGnSFcRN2sXl9GcXr9F0B5wo2WEMvmXX/Lq5Ipbtw7x6w3qdA2LecJ4PEbW7kC9QZOt7W3S+ZK0b8QLzaZLVfqkSUJSCxoaoYvQJScnpwjHPHcxT/FDl/0b+7jODQCePnxAs9enO9ji7My4CM1mc9rtmOHeAZenpm8XZ684PNplPp4yvjLHjm7dxvMEQdRCC7ceowbdfhPXGxC3jEhpdH7GwdEhebIiqN1PyrLC9WL8IKRIjXhhPlsyn4xoNCNePDNiiCQrKNKMT3/xHtQ1uLq8JIg8pBTkayOUCcMm4NLfDsjqY8U6pdGK8MOAO/duA9BpxgRByOnZiLQwz12PRoRexc5Ol0bHiIX++MeHBIGLVCWhb0QdabImCl2KdcJ8ZgQh+4fbzCdjNBVR7Sizu7eDUBe4rot0jPgjT+f4/ZivvvwKt3YgKitQVYnjwDoxc3y1XCAcl2aryWRknKN+9tE9gmZMFDdQpmssp1MUklZ3gOsZl560FnYVZbFZs+l6SWdriB8ahxnDteAN/Mhce3U+wt/aojvcJ10aMU7QjJFIsnSFV9fAC1tkyylhI8ZxzLE8z1AIVJHgueZ+lapwwgCRC3QtzivyHCEcNBLXc+q5tuTrL54x3Onh1KIdVQmoFH/49QNu3DTjcXk2Igh9wiDk8tLM07KoCCKXSmmCel1m65I0y3Gkg1K1CEgpOv0B+UqSlqYul1894/Z7h0StLv1+LcaJAv4/9t7kSZLkztL71HYz37dYMzMil9oXoKqBRndPEzM9QwpHeKDI8M6/jcITb0OKkBeKULj1Mmw20GigUYUCKqsqt8hYfXe33Ux5UHOPJSMiA0AfSoT6lVRmhLmaqprqz8wP9vK9Z9+8pt226PSV+A0DECVxlLLZVwInWUKZRiDArSunmDRakiYh00moHGKqdlGU0CibpJXDVC2wKYSNE3hs19SeCENilAaGMJBVjVu2hTRsitiEQgm/kBYP9vcYDc8wKpcox7Lp9DqMzs5IYjVGapi0Wg5ZnpHGqq5EvSQvLNI4wzKUu9ff/99/Q7u3wU//7Z+BfKjq4OiY0JTkWcbRsVrnfq/D9s4OaZITVE5UmcxZzg5xHYN6Sx0zTEGelUgh12vfH3T5+qsvEUje+eGnVd29mfCoxJfykgWNuEYwcxOiUm3Kyjrq/JyrYtPLYpzLQlWNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRvOH8L0R3lzlLi8bb3Sj+QNiO24ae9XXbXFYF89R7VfuJ2++YL3a/23H3vjslutSY54LlizXZWvvAZsPVLTMT35agoR/k8aU1cv3+WxOb7tPnpd88+0rAD749EP+7Kd/Sn/Qp5RKNNFqtxCWeckdSAglTHBrAW5TCS6i2YQ0XBCF+dp1xa0FhMsF3XaH+WLl3lEwnU0YDDZwXSWyee+D9zk6OCSJE2xXiRf2njzC9V/j+Q7tnnLMmM3mmEg2vJTxoYqk2rz/gGWcMB0OcUz1ot11TfJkiee6eJU4oNFqk6YprlfD8dSca/UGaRQTLhPqTTXG7776mnv3OmDYxIma8zvv7iHI2drt0+6q/uI4pt70mU/HtLvq3OUyosBmOQ0ZjZVDiG0WdLpdbCsnUolFHJ9M8JcLwvmSyUQJC16/fo0f7NHuD+gNNgGYTkOKIufp06959FiJA2rBDmVR4tXctZtKbbvBb3/zFMd1WcyVkELIhEWY07BcOq06AP3BBpPJhNHZkMcPlbji3t47xNExWVwwnVeuJlt9bMulNEp2NpWDiWkYmKbE8xzsWBXCYrag0QyIwpSDV8fV9ZrEWcRktlSRRMD9B/sUMuOd959g2+qx8+LZaw4OvmFzc7COcvJquyxmC4RhMhhUQo88xjAk5QUhhen6yDxFlMVafJSnGaYJwrApqgipWrOHF9SueVao+8jzlfhjd/8+AkGDPrOxEvwIA4oyQxgGZa7GzYqSQpoUuaRcCezKnDIvMUz7QvxPSR4tcTyfJFHXVuQ5lm1S5jmGocafjRe0O23mswVposQallVS6zR5KB4wn6lzXcdBCIN6M8C01T1zeHCELMAQAttVDjBROGc+HtNsNrAMJcYx7ILpeEZ/o8t0XN2DSPJEcnZyvN6PRiNgMZsiEFiV24swXIRpUeT52t3LtEwkkiIriSrRWKPmUyQJcZTT7VRCrdTk/maPOEqwbLXOL14c0mgENLsb5JGqtdksxHZcHNdYC09m4zkg8X2HelNdWxxl2Jak1WlhuWoMKUvyNCFZnNdakZXkKaRxQautaiiKlRhpsUip11W7H//kM0ZnU45fHq7vy8JwePXyhOlwBrYa4/TklCJPyNKCEiVa3NxoY1oW//Srr/nxTz5fV5XjulBmyHLlSiR4/9OPWMwWLKdK0FVvK0HeG89y+eava/nMHaKhxEqEeQM3xTdqNBqNRqPRaDQajUaj0Wg0Go1Go9FoNJo/juuVIRqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajeZWvleON7dGOsnrXWKuO2ftPlOuImWMyk1gFTm1DpupbAXejHi6qc+Ln9/VueZtbjk3IYTAsiws6+3bdLG/y32vnCtMkBLHD9bHvEad/s4WIHn0wXsAmKaBEMalOCsJUK3leTKJXP/q+TUAXE/9XeQ549evAUiSkFqtwfD17/BaAwB2d3eJo5DlbIao4qfyvKBW9zg6OqFRRRYNT85wHQfLhHiq+tvZ3uV0uMRtdXGrZRmezlksEzY3NxGoqKksEyzmEf2aiSyVWwnFEtu0WC5CwqVy2xgNF1ieRXF6TJYrHdpvv/iSXuczuoMNHuzvAnB2eIjp1JjOIuoNNb9mp4PnuxhlStBQ13F6POHZ02fsP9zF9lW7VrtFmeUUZcYq8Wgw6NCo2QyHc3p9FbfleD6dlk8WF9SqSBvX9UGWNLsBVZoQpSkoSxU15TpqEWbjCb4fkMUZlqkatrsd4uMxpSwpMuVe9A9//zOW8xn1ekCro/YjilImE4PAd3mwv1XVi810MgOZ4/jKcUTIHClLTNOhSJSjUV5Cs1XHMCQGSTVul3cdj1//8kvGY9XO82zarQDXstfRS7I0WCwWPH6yh1u5HOVxRLtTxzRKiqrSCqnqT5QFLw+U40it7uN7guV8AYa9Xj/H88G0IVb729vexDAMFeNTxcxduj9WZS0kCAjqdWoN5ZKShDGmZeI4/tqRxzQMpGGSpktcXzmXGEiKPAUpKau5yCLFtGwwDLyqxqN5jiwlUpYUlSNKo11n/N0hEolZbbAUBsfHQ3Z2N3CsGQCHh2d0ejvkpaQo1XV4rkMcpSwWIV5QucIkMd1el2gRMZ+rter2+synI5JouY5K2n+yR1kKMCwOD1WsmWU77Ny/T1kUxKG6XtsDkefE4XK9zlEUYVk+Qc3G9ZxqzhJTGHR7bZpd5ShjLyMW8xlZKtauTq5rMh5OiRYZUZRW+1GQZTH393apNdUzxKz7nB0PESQ0Kkctz7VIoojTozG1lYNTv02tUWdWa/KbL34DwKeffUCex2R5wd6OqvHlImQ8nNBstzmq4uPqdQdhSMbTiPsP7qlr+y5kb/8+88kZvYG6LxfzCbVem7/+m5/x4598BoBfC8hOR+xubbCsYtJePHvGp5+8i20765i+PCspZYRfqzM8OgEgaDUxRFk5iF2uyYvfHlJcfMquj64/Oz8uUDFTF2OlBG/qasWF/zUajUaj0Wg0Go1Go9FoNBqNRqPRaDQazb8U3xvhjeQt8VBCvVxEXo11Ov/5zVPE1QPn40n1klJKcUl3c10/V48ZhnEn4cx1c/l94j7uKtC5aSz186UPbrwW2zZundf6+FqooH4RcCkiRQiwbJvutnqRbQgJlkG93ebV028BaPctbLeBn/oYlUiENCNoDOgMNnj+9XcA1OsNhMj5+//jf2bQV1FO7374PqZTY76MCaoIpMBOOTk+4YwMUUXadDpNGk2TMk8ZDVXEy8nJKR//4CMME8ZDJQTYf+8RJ69PGJ6d8NHHSnwUeH+KaZv4rsN8psQLWSY5OhyymIbs7auX+eZgkyJJyfKC3335DID5dMJ8NqXMt6FQ4orlbAGyJC+gLIrqchN838OyLIK6EhukacZoHPLo3S2ODk4B8Goutm3TajWJ5krEEic5lmmS5xAtlXghT0NsG45ej1jO1LWNpnOa9TpZErIoVSTQYNDBNkv29h9gVaKds5Mzjg/PeOeDd9R+oWLS0iSlERjITIlYiqLAtDyyNKZRCSTKImd0dkKt0aRT7ZHjCYRZ55NP3+Wb36l1abV8mp02URgyPFtW/WUE9Rovnz/nB599Uq1zSk0ElFlGWolnDBOyPEaIgGZTCS6++upb9h5s0qx7uJXoxPZ9bNdnNJrT7ilRjOU4FyLa1sE9F+7HVeGq/4Uw6O/uAPDl3/5vtAeb1Nu7a92fzHIl5CsleaoivUzTwjIdijKiKJOqX0Gaphh5hF2ts+fXyLIU07YZnqm6iqOYVrfJcrHg48eq/lS0lSRJob+5odbUdUnCJcnSIU/VpMMwpShyZChYTNWeW7aBzMAQBlmWV3NJcOwafs3Dru4PWYLtGASBSaupotOSMMUSkiwrODlR/TW7AbPhkGbTo9lVc/G9gDheEs4XLKr7Y7C9A6ZLFM5oddTaB7U60TLBceDefXXP5FlKmvuUuUGVBsb2bockjhmfTvADFe8ULkI6vTaGyDEsJe7JlgvmswjDkGSxWuckjpHCp9Pv8ulnnwJQb9YoigzXCwgrcY/jeTRbNRCSWk1FrC3nKZ1OB2Fa1FpqDd7/9H1Oj88YbHWwLbeqjYJXLw6xDJvJaKTmtznAc2ziomQ5Ucc+/OARfrNOvFwi5Co2zCVehAgzZfRSRZj5gUP/3n1Vg+sIKfHG8/5CkOGdpDI3f1+8XQyq0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wj+cL4Xwpv1v96/9BL8OkHN5ReQF180XhXjXOcyc/m4rNryRru7cJvbznVj/77939T+pr6vOvJcJ/RZHb/ps7eNrU5ajVGt56V+zgVUpmNeOs2r1dh99wmgxD6242AY544MUlZ+DaXkQXEfgOPnz5HYzCcplqnEGvPJnM5gE1PAwYtXAASOw947Tzg7PKNZOXo0GnVkaXB2cgJCjWPbFllecPTimHSpXpbv7D/ixXdfk2Ul87kaI14uKQ2H6fQVpyfqZXmv16OQGbv3+jTaygnDrwecvH5Bd2OLV7/6J7UGEnob2+R5yfxIOYls3ruPG3ikiyV5psQa4+GEbreF55tMhmqM5SKEUjA8PFnXv2mamAKS+QjDULdrreaThEssy8A01Av+OM8oS4tmp0lQU0KU45MRDz7e5fDgmFnlOPLoyT02tzYRpsGycv1ZRAWf/OiHdLpN0lz1d/TyOc2Gj20blEW+qghs2yGOQix75RwlaTQa2K5LXp0bhxG2Y+P6Adv3lYOOZUjSJIEywxCqnUlOzRW4nkerq/ZNlilpnCBEimEqhxXTMBAIyiylVjkG3X+wTbvTIc9ilgvlzvL81ZAn7z1hsNnBr1yTkALEZeGNlFWdIs5rUCghngC86tyN/ce8+vqfqbW2MWwlwijynHg2rhyOKhFVnGCaLkUBWbW/frNJsVgirRxSJf4wLJsiz0ijECoxU2ALpDAY9LYwKmerRZiwjBPqrSZpVgl5yoLT0xF5lkJVB6ZlMtjok+cpSVK5OhkWy9kc3/Vpt5vVtVlkUlA3oKyEQXlusZyHOGZOo61EVOPTGUgXy7bZ2ulX9VeSJW28wMQw1PoZNjT8FnlR8vd//fdqXbKCzQf32brXRVRrmucJ9YbPfL5gfDpRdeC4WL5Lnib0N5SzkBDg+i7d7R5ZqmojiRKQAsPIlNAJsGyPZqeLkDlmJYoZjSaMJ8d0Ok1qlYAtSjIsU+DX6hSJqo3JeMbGVp/T4xPyPKv2UvDi2SH7T+5Tq1eCn2WMYUKt1mE0HALQ396m0exiWQ5OJaL6za+/QEoL1/dpd5QYLIoz/DTHdkxEqdpleUpZ1ZkXqHr+5p9/RbPbxa3Vz43cqvK8+Bw+/7YrL7iPGXDJ2ebic/qqeLU87/gCl8b4Pb+PNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBrNm3wvhDdAZT2xspVYB2pceL8oz9OirhHlXBXg3CTKufrS8a3/8l+o15//Ug4BqzFvE+dc5K7jXhTbXDzvrtFX1/VzmzDn+j3ggsDhQnupkqrcdWTRDfOo/mj1lZPN9Og7sjzn4ZN3GA8PADj49isa7Qatbg/LUi/kx6MJSJPuYINwqYQP3z59yWIes7u3zdY9JUBYLhZYZkkrSJlXL+SnoyG2HGFa3vr1tFOrM58tOTme0GgppccyThiejhhsbhAmSrywODigSCVCWPiVIuTw1Sl/8mc/JI5iLFc5f8zmCzaDLt989Yz9h8oJ6N33nyBlQZqVnFXuIg8e3EcYJWfHp2Aql49osaDVbdBs9lWMEpAmEYZlMhouyCvnj9l4zGD3PmkaUlbr+tGnH5GmGdv3BoRh5fzhBliWjV/z+e7pcwDeee8ho9NjajUbs9KhbG4MECJDSAlSCUykYZBnEoRBUkURSVlguzYUGQfP1R4VWc7G7hbDkxGtllqDssgo0pxc2giUKMv3bIJag7LMmE6UK1G3VUeWGeFygazaRWFEKSWyWFCrK9HT43ceU5QFedHk9cExAPVGC8d1CKooMFV6SkwjSzVXdUxAKZBIDGNV4+rvoijWQo/dx++TpSXDk1c0e9uAcpKpNVqUpJhW5bQjBMIwMC1zPUaeLNXvFMjK+cjyajiehxvU8AK1fvFiTImB49qsFr8uHJqNBkkak2Xq3K9++y3NdodCGgxPhtVcS3Z2BgjDZnSqxFtZmuH5PrNpSFmN2+5Jtnb6mBJeHaiYpfl0SVGCYxaYjhK7pGmEZSpR3NFr5bi0DBc4XkCnv0maKcFKGEY0Wx627fOjP/1cXUeUES1jLFEgUf15gYNlWwSBQ14ocUqt5uE4JmUmSSs3Gt9vYlgmEK7X9OxsjBCSeDkljNS4WzvbmLbNbB5TZErI4wZNHtyvkUsQVYxgt9NkNllweHBCt6tqIfBtykLSatUxV+5epcAQBhiC6Uj1NxmOVSzUcMiDh0oAmGY545MhWzsbTGfKdWp2OmT/wQau36Ko3G0c12d4MmGw1SAvVR2YlkNQN0iTSLkvARQ5B9/8jv2Pf7AWM0H1/IQLvytxmHr+cqlOL3PTd8RtUYja8Uaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj+ZfCeHsTjUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Gc5XvheONkOfxLwBCGAi5ikZat4JrXFducnpZfb469sdEagghEcKgLMtrx784xl0dam6az3VuMytuiwi5zuHn6jlXj/2x8y3L8s3jsnK8WdvaVLFUsD6mhhQI5HWmDAihnE62H33A6ctn/MV//lf8+mf/AMDr508xTIve7j67D5QjRVaWzKczAt/DsVWHs7yk2a7x6tkzAlf1txgfcPDNklojIMnVXJ5/8RV7mzUOTxb84hdfqAkYNo8e7fL43UeMRsqNptNpEC9jzo5PMEw1hh8E7O3v4vgu/c0ddarhMBmHGBRkiXLf6Q8CTl6/hKKkShNiMl9gWzbhPOLBvnLBCeo+hhDYrscXv/5KXVsqaXZbhMsQ23aq9QHbkfiejdVUDiFb97rECUhh0yqUQ0iSZFimQZpmiOpWj8M5WZpS5H1sW61LreazmC8RFBS5curwvACkSVEmawcYw/IoColpWBRVZJFhW5QlSEru76k1KLIlCEm3G9BsK6eTUgpm4yl5mJBEYwDSwmBzu8/J4RHTceVg4riYIqM0TcKpchcZnbxGYGPYJSdnak1r7QFuUCfPM+p1FVPV6fVotBsYGOe1VkXKpUnBYq7OrTd8bNtiPg9ptlaRVOr+vRh/JgyT++99wIuvfsvkRMWG1dsdLNsCbMoqQsq0DTAMKDOKqq4oCkxTUJYlhqGeG8vJMZbrYdoeZuXWZAct0sWUcHyE5St3IMu1cL0A32+S5mqdn7y3j4WB6zm0O6rd6emM16+P6fVbvH6lHG+8wMMyHcbDEZ2BcgeyLQ/PtQgXGUGg1sqxTTqDGotxxGKZVlMO6fQ7yKJY11pRSFzXJoszylJWe+SAhOVkgqxcegwBSZyCb2NW+UnzSYTlmERhTrvbqcaFxWxBb2PAcqLi3ubTCYWEaDHGryt3qna7jiwLmq0m3b6KkLJ9F8fxMEyLo5fKIalWlwQ1B8M0yEsV5RQuF5hWSadXw3HVdUxHU1w/ZjKe0WioWCnP92n367w+OCE+VP0dvDij3ayzvb9/HnWWpyzmCwxL4Huqv8eP77OzPaBEcHx8osaNQ1zbxBAmrqvOTaJEfbeVMWblruS6Hq+efsfm/hNqzea63qiei+v6Oz+IuHzw4gnq8Opxe6GhEMYNz/eLUVU6akqj0Wg0Go1Go9FoNBqNRqPRaDQajUaj+WP5Xghv4Kqw42axyNWfrxOg3NT3dS8hr49ZKs9nUIIUYv1i/mLb62Kr3ibwuSh6udj2WhHLLXO9Ou51AqQ/RJB02xzuIgI6P76KDTv//WJcihJEcHmrV91Ub5GdIGDz0RNe/fYL9t/dA+C3X/4zr/72bzHN/4u//Kt/C8DGzmOSJCE3BUWuRATxckar3iTY6XH2WkUq+Z4NLJxQAAAgAElEQVTHMizJy5hSqtLvdJrUepu44QmnRzMAdu8NqNU7xElIu9Nez3n/QZPR1GA0VS/p8+MhvX6DZy+H7OxsANBuBchSYgiTKFoCcHw8o9HsIawFZ2dKyCNMA88NmI2mLJdKXBF9e8C9Bzucnp7RrQQrpuMSBD6O3yDNVDzR2ckplhBMpgvanUpI0e0xnYxZzmc0mupcvxbw7OkzijzF9lQUVqtVY3Nzg7PRhEePHwBgWRb9QQPXtTFQgoEiW4JpYFkWRVHFMKUpApOyTCrxCRRljiwLDKNAVBE+FGl1fYK8Eo4Iy6XVaRE0M4Shonm++vIl0fGQ4ekZpqMERNs7BkkUMzw+xHXUGKPRlJ3dXbr9GsuFEhUdvviO3ccf0en18etqjHqjhjAEpZSs9DMCAVJgWYKgigNL4ow4ynBc50JNrv6+UMslmKbF3ocfMjxS4oqjb7/BEhmtQR/L9avLjRGWAYaDYSvhUjRfYlkmlh2QF0rglCYRZRljZhIvUHMxjRw38JiNIoq5qo0skjiGCV6NsKqNwUaP8dmcKIoZj5RgxfV9To/PcB2X/tYmAGUR0e0NcBwbs1q/KE6QhqTRqmFWwrQ8zbFNh2bP5+j4a7X2u9s8++45W1vb/PYrJfx6971HbGy2sByP5TwEYDpbEDQ3kGQkS1WTtuvjWibIci2gXM7GmK5DnsH42QsAdnb7hIslpmkTLpQQajI+w/JciixTsXHA4ycPmE0LilKyta3ELnmRk6UpllmydU/db1kBWZZjC5esio9bLmK6gw6L18dMJ1FVV0qE1O23WVT3b5Qs6A66vFOvQ6lq8sH+Hr/82a9J04jjV89UXTWbFFKynM14/GQfgHa3z2y2IA6XuJbay3qthkQyOpvQqeLyEBmW45OnHsJVAqzeVp/ySPDsq6/44Mc/VnWgivVN8c2F6ERYxVFdeWZf/Fle+E1KJW40Vr+KN874l4pQ1Gg0Go1Go9FoNBqNRqPRaDQajUaj0Wj+/8z3RnjzJitVxt3+Rf5VwchVoc5K6HLbi8Z1HxcMW1Zv5FfOGbeNdxfRyk3tDMO4VsjztjFuG/e2+V499ra2V9u8tc9102tET0Ita3lBeLO+fnF+PdIAy/PYffdDlr/4OQDN9oAXz77FsUp+9f/+JwC2dw6wGwP2H+0RLZTzx+zkgMDdZffBHkVXObG8fP6K4WjE3v4m41MlIvj26S959N5/y87DHu1N5bASRjFHx0Pa7TaGoW4RWaYcHk0xnCb1unJJWc5TbNvA932aTeXK4VgGru8RRQuKyiHk6NUZSXrGwyf7lKUaNwhqHB+N2Nje4uClEgZ1Oh0OD4+p1Wu4lUvP5vYGni9IkoSyXDntNFjO54iy4PRkCEAcpsRJTrPeWLu4LMMMIQQbOw+YTpXLTBLHSCSmkBS5EgLMl0scS5CFS6jcbRzPoZRSiVZWJjBCgGECNdIorg4aai8pyXMlXhBWjbQQ2KZFnighVLZcIAwb269TqyvHlkcPJWdnE/Yfv8PwTO3b6+ffcXZ8RKPTIk6UiCXLJe1uQJ4VpEklXDNS2oMOnu/hBu75/K5FIITE85SoyHFMFouUcJniVOIUjDfrdC1UkNDfVsKWZqfN62++ZnJ6jECtn23bxMszTFPgNZTgwnJaJFGMbXtYnl91U4OyJGgOEEIJagpZUBQxZZ6RJao2bK/GZHhKsy8JKueU2XBIo94gigoaTbV+9YZHu+kRLjOi6tw0KUiSMxqNBlmu9mjQ7zMeTxifnFFUNeTYJnnmksQz3vvgoVrnNCHNctzAoj9Q11uveZRFSZamNBtqrRqNDqOTEa7nMJspEUtv4GGbKbbXYjRUNWm6Pq7tkEQh3/3uGQCtRo2vf/eMH3z6Hn6gBDVJVGM+Paa7uUmj0a/216LVr+rMsKstMkAIbKeJqK7XsXxMQyBlgV9XdWCaJnGYsLG7w9nhMQDhckmWRsRRgSGVeMsN2szHC9rdOpjVfU5Jt9fgy19+RbevRHc//PwDHj7coJRbRHFR9TdFSmi227yevQLg5OAV7V6bIKghpboXTNshTULS7NztSsqMVrfGaDhieqbWqjPor79zbhWKXvrpuu+yc6HORTe2q/2eC3qu6UKj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0fxefK+ENxdfDN720vBq+9ucYK5+fttLzTXycvvr3GNuEqFcbHuTS8/VOd0knrktduraad+x3U3939TPTS49t/V72/qeCxreXJ+yOG+3iv1xfI93PvsMANOAPJ3x61/9mqPXyoVkPotxgxN+8/O/o9dS5zQ7m9jWQ2bTJaPRKQBZFjKfTnnxXcx0rIQeruUSNBo0B03mU/Uy3/dswjAlT5K1eGaxLFiGJuHJKz75kx8C8OWXTynLr/jTn3zGZKxEO64DdQlplCGkEmYE9RpxkmAY5XoMx3KYDA+p1xxqdSXMmE3PGA1TxsMRrZ566b+1uw2lxLZAoBbH9E1sq06RzIjn6thwNGdzq0OWRoxOlajjd799xsZ2H8sx2a/cbf7551+wnH9Hp90it5QAgcIkzXOCXgtrrQ4okWnM6ekLvEr8YToeQsa4jR7CXEXpLJnPlvQHg5VmB0SOa1sUWUKeqfnJogCzoEgsorlyAupvNLFdh8V4wuxYOaK8ns1ptgI8z8V1g3UdpInBgw8/ptFRziVf/eJn5GmK9NxL6oF1za5T4c7v34t1rOKGxLnTDdezvjerUnU9l4cffUS8fMjhczXnJIwwbEmRh7z++ldqz5s9uluPEKa1lke4bkCWRmRpiFnFfBnCwWsEGHZAVImjsiylLAuycInlqHVuthrkWYnn2rieW12jJCskJSle5b4z6NYJkwjTliSJEn8sw4gsTXn67TM6rS4A27sbHByc0m7XKCu3l5PjEbu7HQLP5vF7KzckyFMJGLx4qUQsnVabxTyi2e0x2FT7K2ROUQjKOGFYuTptbm/gBy6u7+B5HwJgW4JPfvApQkiyVIl2fD/H9brIMmdW1cbGTgPDcAGL1VamSUxZJLilh1kJpSxKwjAjCpe02iq26dWrI2qeRy2waXWr+C5TkiYOnpMSh9P1XtqOSVnkVJ4zxLMF8TJk7+EuG1vKVWc2XeB5HkGjzlf/6R8BqHsmj999gmGZNKq4t9HZCMc2cTwbUQl5yiRV0VO+u44Xi+cZWZJhmhavvnkKQLvXBcNUAXzXiEbXAkaV2VeJdK6r2svfm0rkuL4x13+eR1NpxxuNRqPRaDQajUaj0Wg0Go1Go9FoNBqN5o/FeHsTjUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Gc5XvjePN211Sro9Cus715jp3mauuF2+ZzY19XR3rYrvbxrhLDNUfwl3cdW7iqqvQ28a5yZnntogsIQRlWV5qL4RAltePeXkfQcoSIUBK5Uix/8mP+C8dn4PDIw5evQTgnmniBxadVgpVxAt5wD///B/Z2B7QHyiXj26nhm1vEy1Ddj75BIAH7/+AJDOxhUlRTdOxbb747imNwGH3/h4ApTSIk4RPPv+cKFaOMsOzM/78z3+ExFiXzHg4QUiTIo+xqxijTtvAMBuUWcrJkXLaESUIKUmShEagHDNMWTK3Y/YfP8KrKfeOLIpIFjPGZyNqNeV04nkWptdCUOCqtB48YD45htLl+PAQgHC2oP54i4Pn31JkVeRTlkNpchgu2Xt4DwCjlLiOxWx0CKWacxAYSJmQRCGO0wAgno+wTYFhTkCo/SjiCCEF09Mj6m3lUCPLCCkFZZ5RVosqhIEhTJaLMa2m2g+MjNnoiOHRmP7mlrqOWgvDMnjx/DW1wAOg1uxy790P6G5tUxbKYcU2bbI8pyqOCzWzqulVPd3sNnW5lu/27FEWIuDVA/Y/+ACAJIyZTcZE0zFuXe1bNDnEcHyEaZBFyg1JmAZSCLI0pchX8xRAjmHZuA3lziLnY9K0YLmMsKpa8wpJVoAQNkblNrQMI+qNOpgpfuWgc3J0SG+wyXSywHaUrvLocEy4mPL5Dz9kOVd14Acenmti2SZlZTPV63UZno75+XdfsvdQub04tSa2DaXMKXLlkGR7DjudHUyjpF456AiRk6c5p8cTtiqnmDgKcWwDy7JV3QG1Wp2iKMjjCENU8U6iwBQCbAfbV05PhumQRjOEsBBStRNliOvVMSgxDVUbpSywzZLcFIxOlLPVRreJaZtEYchsqtxtvEDVsOO5hJG6j5I0ZjKasrm7yeoRFcY5r09mfPLD+zi2XZ1bJ0kzzg6PCXw1bp6lvHh+SLtTXztbzacLih0wLBeKyk2KDNv1EUlMWXn3FEWJ5frUnID5eALA6etDENDf3Ma07PNqW9foeb1cfQRLebGmr7jlYCCvOOMI7lb3Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go3mbnxvhDdwtxio30ekcp1A57Z+bhLM3DSfi0KU3ycGSggQhly/81xFL12Mcrouzuq2vm8a/6YYqbdxnZDpOlHNxb/vKuS5SaB0/TULpATHdddHHn7wMf/+P/wH/of/7r8H4OXhEEPkbL9bY29HCQHmmUfbe5+9R1s0WjUAstwhDCOKAgxHHettbFOWJbPRhE4lHMGw+fgHHxEuQ/pbmwDkEv7Nf/GfUa8HvHqhhC0/+PQHlNIkjha0u0owkDqCoO5ydDAlSVRsjut6gGAxOSNWugf233uP9ngLIQyOXqnIotPXYwSS4dmQ5EDF+mxvNehvdGh1mkwnKprHNCWmkxMEDlkWq3HznNHZGWGYU1Qih8FWnzwv8WwBjhL3kIUY5PgNH78S/Di2jeUYeJgcHRwB0Gy2kVLQarkYtlUtSx0DSRonxLESk/h+g1bdYj5bMh8vq2MBluMhRQZSXbDltsmznCwryTK1x8vJlFIa1Dtd4lQJFWaTUzY3O5idDYRUsVwff/4xg50tpIRX3z1X7WYzHrca67qBm0Vo192jQggQ8lzEIFdxUhfbnPdxsT/kpWZ4NQ+vtkPS6zEZKmFVnmZQFuR5SV7tB4WJYXsIIUmqCC4/CMiTFMutkycRAI1On/lkhCwFwlBrn6YplmVRlBG2qwQ1/UGbNC/p9buI6mEyGk6ZzRbYtsnTp2qt9h/tkaU2x0djjOqiSgGmYXF0dMi9fSXAardqtAcdCilZLlR/pplRq9eYjUZ0OgO1l7bD64Mjvvnt17z/iRIf7WwPKPIc27MJQ1WT7W6TIitIi5ygEr6kaUlRZJimiWkpsZApPEzbpiRYx8vJPMOwPYw8Q1bCINsygZKykGRVXWFYCCT1dmsd32UKAydwGZ1MKYtKIJZndLoBQrg4rhLPLJcR0XKBYwuWS9VfGoX84LP3MIRgeKqEPA/ffUwcLTEp6XXUdfzqn36D64wJvF0MQ91HpTRIkxhZRKy+Wi3boahUPWVVB6btUhYZjWZzvW9H3z5lvphj/sin1VHPEts+F+CsatAQvFGnAJKyypAyLxxT/4nyXPwGooqX0oIbjUaj0Wg0Go1Go9FoNBqNRqPRaDQajeZfiu+F8OY6EcZNx67y+znZ3D72bf3c9Nnb3F1uOlfKc+eBm0Qzf8x1XTfPm8YpimL9wvsm8VNZlhiGcavQ6K4ipOvOuTrX1WdXRRUKg3/17/49m7vKjeZ/+Y//kVdf/ZL/8X99yqcf7gLwX/03f4VhdXE8j3ihBBzCMdm8v8/hwYj5XIlE6icvWUwOcWsthKwDEHS2sFOoBR1MU43vVtYyQeCz//g+AI1WDd+1yfMMYapbKYtLLMciaDVgqmohiSLSrMR0AjYG6sV4q9emt9lHAq1+B4DuxjHj0Sm+W2Mxm6lLtQOyMsB0HHYf7agx8oxodEKBSVGqdVnMZtzf2ydchlQGHEynC45eHnN09Ix2W4kmfD/A92FrdxvLcav1huWiII4XWLY6Np5Bp90maNWhctGIwhREgeH4FGElsjJ8yjKj0QyIIyUMytMUISwlMjEqSx5yLNfBB+JQiXbSROAFXRbhhDBSezQNFzwZvIvrmuztPwCgf+8+0lDX2dmoxB+mjW07SgPzFrer1d9vE/apw3cVu523VY4j4Pku7Z7ay3S5RTQ7o9XaoijVvWVQkKY5wrER1bEkSjEMm/noDMtSx0oMavUmSZpQ3ZbkSU4pJFKWJNU6S8PAsgLiOMaq6m9je5MszSjykixRhTA5G1KWgv/n7/6Jn/z5pwA4jk0poddvk1SOPHngkYRLlvMJ46ly2tkttxCYRMuCzj0lWBkNh5wdnzIbLfnr//3vAPjpv/4zms0agR8wz1R/3z59TatZo97wefXyFQCmadIddKl32qThuNokiWH5eEGdMlfilKIoQRicnk1ptZSwxTAKRJYgLGtdQ0UaYxoGfreP76t2URhTFiXNTgOBEu0EdY8iF5gWCKHWxXUEvX4Hw/DJ8xEA/Y0uWbIkSUIcV92rr54dEPjQ6bV48VyJcTrdLr2uT3djg6ISkjUbNeIoJM/ayFIJyWrNJmW4gCLBqOouXCywLEESzmlV9XJ2GLO5u4fn+1jW3b6WL9W9AJBvPC/FVbeblZjsTiNoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNJq78L0Q3tyV60UYvx9XX9L/ITFLN8Ve3RYxdXnOyl1DrtsoxwIhWL1BvbaP68a9zWXm6jpdt35SyrWo5mrbi+1Wopu7rP1NLjvXrdV1EVnXuROtBE2GYWA7DiB5/1MVF/XwnXf4+osv+PnPfsn2joos2n3yEU7g43o1XE+JP4aHLxgfvSCanLH7SAkQGg2P3fc+wnZcuCA+EqUkCiOWC/WCv9XykEVGvJji1JUA4Z0PHpGlOYvpnPlUCWV6WwMcv4ZlJ5SV6MT0DZLFiG6jwdGRcpQ5en3Mvb1dDEPQ21Av33sbHZDvI4uSOIqqiwfX80CAWYkrzl4fY/ktovkCx1UuPY02RDEs5gl+XTlmOD6YZorttLm3p0RKlufQbNp4tY2120YcLUiyFGF4TKZq3KAs6PUCihLiRIli3FoDWSTkeQqmWgPDdJEFmDY0PLX2WZwhjIIknOA3lANREkUkSUQYS6JErfM7H31MVkJeCloDtQaf/8VnuLZDNJ/T29493/+qHhtN5TjSaDbO3Weu1Mrb7mlhiEuRPL/Xubfci2Up8SoXoUZ3gGlZDHZ31rlXEkmR50TzJZNTJfRIoxzHMfD8BlIqsUsa5xjCwPGaa5GIacbEYYJpSgxT1ZUoMywD6r7PtIpUKqVgsVhwNhzx/OV3AHz40V/xzbcv+elf/Su8QK19XuQ0mx7UA7JM7XmaJiRJSZ4Z7O72ASiymDS1EaJci9CyMKZeC7j3YAdZ3TONTpdwMSc8G3FvTznoHB6cUmvWqDVcHr33GIDR8SkGKTILyeLKwckQZElJKWLcKp5NyJKilJR5RBYq8YzheCRRhKQkWijRjm1klKUkjmP8KubLqdUpshjDsgkC5RpjmAZFkWIKY10z0XzC4fGcR49tVjlz0oBGo45h5MxmlZAsTxmdTNjcykmqe2EyGeHXNlmEKRZKLNTuN7FNQZ6GmLbaI1lKLNcnKwvmY/Usefr1c2bzCX/50z/HMJS4RxgGtutQqwfKDQ2u/S647ntICMHVchbqg+rnqr2QIO7upKbRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaO6G8fYmGo1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqN5irfC8cbKSWllBjGeQ7GbdFIK/6QiKbr3ALuGnP1RozHFQeXuzjC3BTRJDCQKjinOnbzuBfX5i7XetO4q34cx3njmJTyDRect/V38bO7xIRdncvV8a7O6WI/yuVBuUX49Tof/ejHfPj5n2Db5qUxhWGsTVG2H39Ab2ePb375j7iealdrtfFrDdVmVX5SuaIETRu/clgp85IsTVhMJmSV68Xs5BUFDsniCDNU7iLR1GHMOxRJRDxV7jbN/i7hckKaLkkS5d7x1a9/Q1Dz8XwXhLruIstwfR/Xc6g169VkUMVwcfmkYDZZUBSS3qCnxg19hBBYlkWWxQDcf3iPPIopDI/OYAOAVqtGKQtkKbFd5QayXAjqzTZJOGNzW7nW1Bp10rIgiXNcR7WTRY5pOhi2D9NUrcE0pN2pkWcZaaiO1ZpNwtkcRI00zqoxEpLM4ORkiizV2h98+y15UVLmJs22cunpdFo8/eJLnnz0MVjm+RJcicxZlZeKeXrzvrhYA+tauCUerfrtjc9XMVJXNgDDMMirWCTDMFTtXrAdCZcqrqgsz59rpmFimiaO69LqKScgWUoW8zmz4RRZiPX1YtgYJmRVjJHltLDyMWUpoaycZ3KIxyfUW23aPbV+cZiQxhGPHt2n0agBMJkv2L63TVamnL1QTjtFlnHvfp96a4swVm4vm1stbD+g023i+OqZYAiIwyXL+ZKzM+Wq0+i2EfMpz759RX9LOeNEYUhQ8+lutJClWpdGy6MsU/LCJY8rJyXfwQ3qJPEM01q5JlmYtgulIF6qCDjX97GEQX/7PovRoVrUtCAKl4TLgm5XudtYRowsDSQpWaSuzbINsqzECUziRI3rWS6W6bCch+Sl+tpLcwvTtDk+PqbdVE5FcZxQpAbRMiLP1L36/NtXFKKk1a1hWmpdHj25z+hswtOvnrIxaFTXFlCrN7Ecl2UYVRU1xXI8bNOm3lTX+/jJAw5emERhuHYvMoRJEhdVDV3+DlA/X66/6+4J9dzl8rFrfv5jHOM0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Gs2bfC+EN0IIDKBcCUwQNwpK7iLquCgeuXjO1XNXv98UjXSxr+u47bzr5n2xv+sjqm4WEgGUZXmniKmL/d4WT3XbeYZhXBpjNefrrvk6AdLb1ua6865rt2qzEuWsrumSCKhqJyxDKQWAoigQCEwuj2H7Pu98/qeURbEaAFm9yKa8MAZX5iMEtuvR29pex0D94v/8n3j0yZ8wePdjpidKCBCHEbX+AJnnNFotAEzToVV7yNko4Vc//xKAwDf4xd/+Dff39llESpwSL6cMdh6xeW9AraaEAKZlqiiyUqznnCQpvf4AjJKiUPFErW6bPA2pNbz19TpeQCgcOu14tSxkucQOaggJpqVu/83tXbI8ZTadYUslwvinn/+CwHcIgiaNhrqOvCgohYlhSJJEiSsGGz1Mx2M5OeP0ZKLmPArxAw9KEFUMj+c3MG2Th082mM6UcMlwbFwE4ekImam5HH4X8ui9dwmazQsRTas9lKxygmR5vZDstmOXBGwr4Q4XRW3XxZ/Bm/flmzWoYq/kuv6OXr1GlCH77xvn50sljFDnVica0Gg3MU2Dg+9eAmBZYJqwnEww7KA6ViKExLbddeRTnsaYoiRPUwzTBeDXv/6a7c0eUpr4NSW8adQsTo/HxFFCo1Wr5mJyNlpiWAuGp8cA9PptyAvKNMfwVX+WaSGlwXA0ZTJXe/nhRy1ePp8jDAPPVe2KLAHfpEgTbFvtZeDX+fKXX7Ox2SeOlKDm0Xt7TIevIY/AUOfajo9hFpi2j0F1XxoCIUws28R2lTglXBR49TaWnZPlSlxWGuD6LkJYmNUzIk8T8nSJIXLM6ivOtm3yNAIEs7Gq02bTY2uzy7MXB3iBErrV2z5pFCGFwK4EZ3vv7vPN777m1fPndNvVfgRtgnqNk+Mzothb79tiGTF/dcB8qeb3YH+Hds+mlDmOq8aIklNOTs7wAhtZRVyZbsB8MiRLc5xKEHcu+rom2kzI85S1C1FT63Sqcw3r+meB0vXISwKdEo1Go9FoNBqNRqPRaDQajUaj0Wg0Go1G88fxvRDerF+IV78LbhZg3IWLQpurx66OeccZcuE1J3C9kOdq39fOWcgLzirnghshropR7uYac5vjzdVz7uIidPUabjt2m8PIdedeJxq67vy7jH3tZ1JQ6UYwDfMNvYSUEsoSy7EBe3WwEtqAuCC8uG5/pZRgGLieetH+w3/9X2PZNpZt07v/0arV6krORR1SkMa7nEx/TW9TOcrsPNzDC2o8+fDd8/4pKQs1dl6JbEzbIolSTg/PiEIlXkijJbIs8TwXCiXaCRdLwukQWUTYjpqf49XBDBhstrAdJeRZzGds9HoENZ9oqUQ7buDhUxI0mkzOlGvI2ckveP7iFX/5079gNh8CENQsilLQataxbSWGeH0w5PDgiF63R5qu1i8jzyUYFit9U0PadLod7KAG5hyAVrvGfHSMzMc49iYAe++/j2lbajXWmoCLtXPZ6emqwK4sVz+zPnadMO+mzxDyQh3wBucOO9fXqKyut7+zQ7vdpChKTl8rx5Z2v4/ruZf6FigRhF+vs/fuEwDmkymTsyF5IvAqkU1ZljhBB1EWZInat7ywse2S+fSMoBIiPX73PmVacHh8hpRKKNNtbdDrdfn2m5e8PFAuTB9/8h4//4enfCl+y/b2NgCL+ZJWp4VhmYQLVWt5lvPi5StOT87Y3FRfF/NZRL/fZff+DqdHqr80DSkLh6gwmS/U/IajMwZbA7Z3N8hTdSyajIiXEWlSYlvKIYmmiUkN2zOxKgFRkRYURUaehDhOdcyDvCxwfYt4WVbzs2lvdMizjIOnL1S7PGH34RZlEVPkaox4loBhYZoWvYESwORRSJRExNMRS1v116zdJw4zyjzFtNSafvPNAWkU0utsUwpV9426w3Q0JY8mRDN1GWU8pb2/S+kmNOuVcE5IsmiGMAJErtbUt3Lu7XSp++ZapGSYgoZvEy1CHKf9Rl294fh1boyDeugJpBQr8yxAIqRYqRJZVdvaK2dd9jptUqPRaDQajUaj0Wg0Go1Go9FoNBqNRqP5Y/leCG/WL89vMX657uXjxRfvdxGYvE2kctPc1Iv/C6/a5c0imLtRCXkuzhl56W3qXd1+rhO03DryHWK1bjt+W38X9+IPifS6bt/uurfnn69/ujTOejzeXOZ3mBEAACAASURBVIObrvK6tV6JdAAcz78k9rh4TRe1GRJJmuc4toOwlIjgyQcfENR8EEpwA2AIA9O84iwkBSAI6gG9DRVPpAQBEtO0kJU6ZT46Y+ZaBLU6pr1yCJmzHE9Iw5wkVDFBw9cHCJnR331AliqViCwL3JqL6zu0+2qMvXfeodlu0qj75LkaY2dvm+UyodNtrsd9+ewV7XYbYVr89nfKsWWw0cd2WxQyZ3NLCY38eo3WoE+ZJ6SxcryJoyW97Xvce+dDrEpcYVRRYVdLb/V8uElEs1p7w1D78Yae5s4iuYs2I6s/Lqoc1h9c6mPlRrU69f7+HkIIjo+Oiar4pO7GBlJKsixbx7tlaUYYRTSbTezqWHfQx6v5LMZTJpUbTZImuF6ASY7tVhFNeUgWRwjhUlbxYq1WD9OymS0TtrYGau1dgeXAzn3AVut8fHjG559/gGEYhJV70fBsTLSM8f2AX/z8lwBsbW/w8NETtnfuk0RKMDUZj8jykr7tES6V+9P+4z1OTqZMpzPyRIlddu9t0uu1QORUaVaEaU7QbCPmCW6g5uL5AbVGmzSZQ6lqspAGbq2FGwSkibo2N5DYWYLlOKTRQvUXRSynQ6LZnNODEwDyUuDXff4/9u6sV3IzzRP7Q8Z29tyUm0pS7Yun2u6Z8TL2lQ34yoC/g+/9IQ0M4MHAnitjxtN7dy2tklSSUrmeJRbSFySDe0RkqAaTRv9+gCrPYZAvXy7Bc8F/Pc/jj5/UIarNTdy+fhOzk5OYpMWyz//695EsprG6exc3ZVjod3/9Mu7evY3pfBofPSsqPf3yp/fi83+8jdPpbfzDX/1FcT3ePo80ncQ///PnMS0rR92+exOT5F08+Ohqew7evPhtvLi+jS++uY2f/fKnERHxxRdfxMOHTyLL1/HqdXFOH96PWK3u4h/+4/8b/+X/8N9HRMRksvvP80jEsfNpd619vwMAAAAAAADvy//dHQAAAAAAAAAAjvBBVLyp7Gs71K1O0apksqu9U2P7brWcsfW6c8pjuFrLrmozQ5+1d1lVNamqbKRRVSBor5dt104GygJ1z9PQcQ2dn6qCy9i8u626xpY1W0eNjdWdy6Etqg5Zb/g6JGXLsvraJUlanL+8vW3Vn+U9iyHt1J3T2flZ/PgXP4mPnj+JiIjF6UlrrvW/STmPqldSHovTeZycLpqj18dULnnw/Hk8eP5xJJFEVo77IPKIPI8kSSMve3B9+svbePH1F/Hlb/425mXllDxPYrNZx/zkJM4uijY3/9W/+FV8/cWjmC4WMZsV5+f0ZBHr5SZWd8u4fPAgIiJ+8qtfxu2bN7FcryIrjzdNkvjZr34Sdzd3kW2Kaipf/uPv4uW3X8bzH3wc9z96FBERF/fuRTot2kq1zl1WHVn7vureu0OSiEiT3ZVxumNVnydJEpE3s4jFNmmaNqoatVvOFdu2f2+O+eTpk4inT7ZbJhExm81iU/bgur29jclk0vv+np1fxPnZeTx4/FFERLx5+Tru7pZx9+5dpGVeMpnOIp2cR5rfRkyKZav1MmIyiY8/fhbzedFObbqYxPQkiTw28ewHRRWc9d0yrq/fxM31Kl7/4ZuIiFiu7uLly9fxs5//ND797OOIiLi6uogk8nj18lVc3SvuwcurezGdzSImafzi1/9FRBQt0eazSXz8g6exOCkq9yzms5jMI5a3WVy/vSnnl8a9R6dx7+FHMS0r/GyWt5HHbczmk21rsiybxu3NdUSexGxaHMcmW0WWZ7FalW3UIiKdzGKymMXV4/OIv/ltse06ieXdbWyyiHVe3ONnJ5NYTM5iNklic1dUy3n4+DzO7z+Lx0/exIuvixZrDx6cx+piHtP5SZyeFH8e5+ldXF6cRJKv4pNPPyrnksRkksTd7W18d1NUt3n44KO4u7mN2enDWJWtv95e30aslrG+exv/1//5b4pzNZ3Huzfv4uuvv40Hj4vv0eTHP46Li1m8/ea7+N1f/XVERDz/8U/i5PSkd08lSVIUwmpWE0vKe7VR8SuvHiGd+zL5Ez7nAAAAAAAAgA8seNN1aFuofe2HmsGUfWOOtqNJIpov1g9p2XRwW6sk6b0cbX9e/1O8vE+ifumfb/8bChXtmtOudfaFoMbsuha7QkpjwamhYztkv8V23VBW1ttHnkczObFzH2matj4fu+Zj5/zs4izOL8/r5eX/1Mc2tNcs8jwiTaaNeScR+aYRvymXbtuhNcJq5f8m5dxnJyfx7LOfxLNPf7wNf6yXN/Huuxfx4ovfxIt//Mtirpf34249jXsPn8W0bF2Vb9K4uHcWq+Uqbt4U4YV0tog3b2/jxdcv4uzyKiIiLi9P4ub6bczmJ/Hym3+MiIj/+9/+2/if/9f/JZ7+8LN6vgPhmjp8lPfu1X33YJ7nkUTEerOOfF2sN5vNRkM4Y+3Pur8X67QDgM3NmvfZclmEMBaLkyha1CWtFbdHWS4/v7jozWu73ySJ+UkRvHj4dBFJksfdchVvXryMiIi3L24jjyTy5TIWZ2WIKptEkiexWMy2gbJNFjGbTmI6m8Xbt0Wbr6vzRaxWk3iVLWOSFvfBw/uPYn33MlY3b+LJ0yIQcnsX8ebtbfzrf/1v4n/8n/5VRERcXiRxtZjFfD6Lt++KFk0vP/86rt+9iat79+L0tPyzsnkXN283cftuGUkU611ezct2b5u4fl20P5tOI6bz00ini9jkxVzSyGK9XsZsdhpZ2X5qvZnEapXGfL6JNCmWTSYRd2+/i7OL+/HgUXEONut1zNO7mMQq0klx706mZ7G6eRPrfBKTkyJcdnovj3xyGVmaxllx68bi4l6cJmlsVlks716X1yKNh4+u4ub6NpbrMhmUFC2q/vj2NspTGnl6Fp988jymi/txkhb7fX76q3j36mW8XX0RWdme7ZsXb+L+vbOYpbcRq2Lj9d2reLtO4+xkFn/57/6PiIhY3d7Fz//5n2+/u2OK+yaJSOr7smqRWHzeuKdGWrYBAAAAAAAAx/sggjeHBDq6FWYOcWgYZ9c8thUG8mRnSZRd1WN2jVv+Vmd6mkVw0vJFatZeL69WKGVZdlAw5tCqMkN2BZeaQYbRSiKd/XXHO7ySzeGq87Jr3O4x7HLYOtWl2V1Naah6y+A9nqfFC/Wy6tF2cVkZJ2mFwaqfmgGhpKz6U62TRJIW/03KYMZ0No3F2WU8+uSHsborAhJvvvk8Xn/9x3j74nfxLi/CJOnsPCbT05jOT2OTTyIiIsuzmKSTePTwNO5WtxER8erb7+Ltm9fxwx/9NJ7/6KcREfG//e+/jrPLImSSbDvcFTdzN8hSzfZ9q0lVW3bvw13Xe9+9X13LfPu9rOrW9OcbkcRstthuV1zP+vM8r7/H+/c7tE4e8/k0Hj0rqtZ89OyjWC1Xcf36daxXq4iI2Kwj3ry+jpP5LCbTYr9ZRGTTSaSTWUQU1+jLr17Gw8f347N7D+PZ06IC0avvXsXPf/lZbNbr+PqPRRWcf/iHz+P6+jZ+/oufxouX1+V4s8iSdzGf3ERaVto5PVvE46cPWvf+cr2J9XIZm9XtNryVTE5itcojYhWzk7KKU5LE7fUmTs4WEVHca8vVOvIsjzxfbQNzkadxfu9eLG9v4va2qKAzm0UsFhcRySyefFZU37m5fhePnjyJNI3Iyrmkk1nMTycxmSwinZbndXMaWawjTU8ikmJ+6/Uq7m7fxWIasV4Xfx43m3VslqvII43FeXEPr29v4+JkEV9+dR3fflsEiNJYx9VJEq++/TZulkVA56vPv4mnTy7j7Pwq8ryo/vTuZhWbLIs8ZvHpp59GRMTlg4cxS5PIYxJPnxbrvf7um7i9frcNtDU1q9Zs75M8Iq+qd5X/M1gxLIlGjCyLiElvfAAAAAAAAOBwH0Tw5hB1AObw8M2hL9cr4xVg9u+j2n7X79VYyUgrnCRJOhUx8k7LqaTX8iqiqMQy2npnT5WZ9zmXY22fdgVS9gWcuu3CuutmWfccjI8zVr1kV3ussfXGqgANhYHa5z/ZXrtd8x2a59j1KIIqWSv8sVptYjqZ9jIg3TGG25AlUbWeKrapAyWTMiBx//mP48GzH0ee5ZGVVUiy9To2mzyyPNtek3evX8XdzW1k61Ws3xahjuliEX/2y38VDx9/FJNJfQxVJmM7nUb46pAWaN3l1Xepu27aqBDSvG5dzYDOULCsXtbeZug+G/uuF/dBs5rP/upRzTm3nmFJuy5WkqQxP1nE7ORxvTDLY7VaxruXr+ObL4tqQyeLkzg9P4/Ib+PyYlHOJIl3b97G5dV5LMqqOk+ez2K9ymKxOImTs9OIiDg/P49vv30VP/vlj+L1q3cREbHJNjFfzOL1dy9jcXIWEREPH98r4lT5JpK0DKwsb2KSTmOVTGN+Uow3XSxivd7EbHEe61UZDFpvIkuyWN6+itWyWHZzcxuLk0mkk0lMypTJav0uIrmK+WIWs0d1GCXbLGN1l8UmK67785/9szg9u4qXX/5+G3bZbNaxXGUxzdcxnxVVp+6WJ0XVqHwTv/v74lxdXc7j7u5dPPvB41iXbcfuPbwftze38eXf/ia+e1VUero4P423b6/jybOP435WzGU238QyP4n57CSePym+R/PJJGaLWXz++xcxXxT7nS8u4urBo7i9yWK5LOZ3/W4TF/cexu3bV3F6eVlco+lZTBbzwe/HIc/tXSHI+r7aOwwAAAAAAACwx+4eFgAAAAAAAAAAwKAPouJNnifl//N+dxujbgWbfVUjdv1+jMFqKWmjKkY+UK2kW1KgWicZqfJRVTWJZjWP8rgjicjTKOqp7GhP1NhvlrVbFHXXed/2Xa1DeY+qMENza85vsNLLdlmzgky/Us2+a7uv8tGuNlrdfR1S1aiqclLPb/hcj7XBGtx/pNt2U+t1Fm/fvI379+/vbP21U55GdS6zrGxJlcT2/my3D5tFRMR0Me89ME7OLyIijzxvnIfG7vOyTVp1F7a6aA1Ul9mnPqflt6DV+inZ/t6s6NGtMtW83sc8F+pr3qwalLbmV/zcrZiTdX5/z3s4a1dmyjv3WURx+WbzRTx4/CQWp0U1mi9+/3ncvXwTpyezWJatxBaLs7i8PI88S+P2+k1ERGzyJE7PzmKzutm2HLu8fxnT05NIp7M4uyiq1tzcrOLVqzfx93//+/iX/82/iIiIWZLGan0X2fouljffRUTEdDqP9Sbi/OpiW1VnvS4q3Nws38V6Vcx7uphF5OuYzJJYb4rzMJ2kMZvP4+7uLu7KZ8TF1Vm8/ua7mM7WMSsrM62zk7i7vovTe1fx45/9KiIiJvOTiMjj5PJe3N4UFWo2m1VEzGJ5exPz06LyTJomsYk0JunJtu3V/OwqHj//OFarVayzosLP3XoeJ1dX8Wf/3bP4zV//fbHs5i6+/uYmvv3uOj797AfFfieTuPfoKpJIttd+k97F2+9exnSyjN/89tuIiFit3sbPfv4sru9dRpYVFW/Ozk5iebeOm1Uep6fF9+363bvIN5vIZ3kkvfZm7XsjL+/vJG88T7ffjdaXrvNnSvYWAAAAAAAAvq8PInhTxkwGwyJDgZJDXpbv2+77B3H67WaqgEV3H93QUPU6tB0I6bYn6m87ZqilSD+kNNyW531CN0PHNhay6R57d72h61Ff/6EgS9+u0ElzX93WQ4cc59h63WtcL6u2jahedO+639437JTndZOxSTqJ+/fv71y32sfQfkeDRgMtlZrHNhiias4tr7fNsqxYvzz36/U6ZrNZ51wNtxcbCyS1lx/2/S32l2+DOvWy4XZjzeMcvkZ5Izgz/Hl3nLaqhdzutlPd78hQO7RWwKkxfnWkZ1dFy6Kf/vqXcXdzE6++eRHf/fGriIi4uJrFbL6I7757Hcub1xERcfXgUSTJJFabdaRpEf5YnM1jucpivVnFelmEcf7wuz/E1YOL+PWvfhKxKdqLXV9HLO/u4vxsFpNpESbJIo/F6SLyfBM318WyJE1jvUljOp3GfFodSxo316uYz89jkiwjImI6TWN5dxfTyTwiKfuV5Zu4uDqP1eo2Xr4o5pzMs/j0Jz+J83sPtt/z4tylcfHwYdz8YxGeuV2t4uzsPNa3k8g2xX5PL85itVxGnuXx9HnRruvVd+9inaUxmU5jOi+CRmmSxc2768giiwdPnkRExG//7g/x6U9+HPlmGU+fPoqIiG+/fRO/+bvP4+Pnz+L8yWV5TiNeffcyvnmdxJOPnxf7+OarWK+S+PSzH8Xbd9fFcUxO4+J8FifzLG6ur8vzsonf/NXfxM/+7NeRbs/VWN+97jciiyJUkze22B36AwAAAAAAAI7zQQRv0rR+yf+nsq/qSnfdiOGqJs0xWuMkVXWPZsWA4Qoa3QBGOvjSMynKVVTjNl7wb+eQ9c/RWIglTdNyzsnOdXdpVz057EVttY9dYZwxVWCj/j2NPM8iz7OdFXG6wZ7WOsUKxXqd7fbNuX8PVde6uk/yxn2Rbpd15zd07PsqAb1Pdaf3sStUMh42Gg/vFNVl9lc5mkwmB1fnGTs3w/NLG8v7379uRZzGJwNj9e/X4pi6VaN2hSB2Xae0N96ukNRh352BwF+9UblKHovTk3j8yfO4evQwIiJefPllvPruVSTZJs4vLiIiYjaZRp4tI52k8eZdEYBJ59O4urqMdJrESVlB58eTSazv3kXk6baSzfXbN5Ft0livJ5FHUT0mSZPIs4jVchOr5U1ERCxOT2O9ymOSprG8LUIxsbmL+fwkbt++idVqExERkzSLLLJYLE7j7q6Yy9s3WUzn85hMT+PySTHnZ599GrPZfKAiTB7T+TzOy/DRt394FetZFrP5YhvsSyON6fwilnc3cXtXLDs/P4npdB7zk0VcPpyWp3ETd++uI0mzmM6LY3v8+DJublfx+tVNnJXnb7mOuPf4aZzM59ugzOW9efz6v/5v4+/++u8jXxXnYBaP48uv3sUPPr0fF1f3IiLiyy++iKdPHkSa5nF2Vp6/6SJefPWH+IfJPH70q59GRFFFaPhZnMTbV9eRbYp76+rhRf0sStrrFcdUnQMBHAAAAAAAAPi+PojgTfEOsFvxpfys/HfX68Fu+573DSnsbnM0Nu4BbaVi4IV5kQQpQzbVOuWyaP5b72M7RpJEEu157AoLFf/WVT7a1ToO16waM1QtZaxyzT7d9erQTbWPfhuq9vhJa/3unPe1lhpbNh54GKoU026Ttqsl2th9tu9+zbKsF34aCmm8TxWLQ9osHRrEGbsnxqpMjVWC2jeXfuAnjyTJGxV5+uez/i5EdKvRtM/n+L77570I87QrAdWVpQ45nqHj6/48FBAbmtdo5Z5qWZ5EXlbZOTktqrg8+9EPY3l3Fy//+G0sb4uqNS++exmTJIvZyVlEFAGYzSaLfLOMWTKPSIrv4+W9y8jzi1gtl7G6K7Y9vTiL9TKLyWIeyabYdnlzHel0HpPZaaTTSTm/SZyd5rHevI3IikDN4vw08mwVy7ssNqti2Tq/iyybxPwkiclJ0Rrq4YP7cXHvKibT6bZsUp5lkWf5wOO4qPRy9eCjiIj47quvYnm3jPTkLJJJMb/Vahl5LGO1Xsb8pDgvDx5exvL2Nu5W61iuV8XxXszj5OIk8iyL25t1ec7TePnybVxeXMQffl+01jq9PI3V7auYTR7G65fFebm5uY1Hj+/F808+jlcvX0VExN/+/W/j6uIifvPbLyKPYryv/vCHuP7hp3Hz7iZ+9ouPIyIinUxjOknjH/6ffxePnz2NiIj7jx91DzSqg795dx1ffv5NRET82b1fRDIdayOVD/wEAAAAAAAAHGvszRwAAAAAAAAAALDDB1Hxpqp206ukUX20XatfHaSqxLKv2sz7VsEZqyLRWas1wX3tg4oFWVUvY7tt1bIokk61i265n7y9v0PnX4zXr8bxPuekqrqya5v3aUnV3KaaS7NFVmFfO6b63zRNWp83qwQ1W0ztmv/+Vljt9fI8bS0fOqbuuPuqmFTLmmOMte06ptLTvso43f0eWvXmEP0qM3n7ft8zv2L9ap4RRdWbLHa1fhpuFTU2v+bY9T77Y0a07836e5kk/SxjfYzFut37YagSUPX7IffL2OdV+6XqOZrn+XbaSRRtop599oOoCk29e/M6bt+9i9V6Hd+9+CoiIl69+CbuXV3F1YOy0kxEpLNFcS2ydcwmxfFm+STSRRab1V2kk1lERJxe3IvZbBK3N+/i7YuvIyLi5OJe5Mk0lte3Eeuius23f7yOzXoVp2dXcXb5oFzvPPIkjYsHD+LsvKhGk6ZJ5Fmn8lMkcXd3F9PpNCaTsqpOGpFHeazlc+HiwdPYrG8jzdeRbYpl0/lZTCbTmC+y2CRvymObxySbRH57G4tZcbKuX/8xTi4fRpqmkabziIhYnF3EL/7ZR7FZLqM8LfHq5es4P1/EF59/Hg8eFsexXq1itVzHJPJ4cP9+RERcXj6Mv/yrv4nHj+7FZlVU1fn0sx/Ek6cXsV6exGpVXJDFfBEX9+7H69fLSCfN6l5Vtae69V0SeTx+9jAePXlQnqv6Puw9f/K8/pPyns9rAAAAAAAAoO+DCN4k5UvhvBmy2XYPaf5vtf4BLZ1Glg2tMxQ22NXWp1xaT7RYKaJs51InNMqX6klj++ogG521ivfh1TbVP0XwpugW1Wxjszv40lW1b9p/PPuNtcM55HrsaytUjXPo3I693t9HPwiRlcuHw0yHBr+GWmnt2rZYP2ntd3vvRbNlV38f3bBONf/i9/Y2Yy2l9i3rHktzvWZbpnKvI8fbDKZVyyOq+7+923pZ83x0VaeluNe6AZj+8bf1W7q1t++H4obOX16mYKp9VYG25j7yPCnnUz8kdoWvut+t8WvSCPNFXp2wqDIaF/cu4+r+VWR5xJOPn0dExOsXL+L29i6+/frbyLOiLdLZ+UVMp9M4OT+NSdlCKo0kNutlZJtlLJfFiZ7Nk8hXebx5+S5W62L+199+G3dvXsfFgydx9ehZRERcLmaxOLuIk4uLmM8XxWTSJLJsHWkyibQKmAwcVpqmMZlMWoG9fJNHkqaRZ9k2gHJx7zK++eJtzGd51JmUPCazWWTLmzi/uIyIiM0yItvcxSbbRJ6eRETE/OJJbNabSCdJJNPyPkizWN2t4utvvomPPrqKiIg/fv0qHizPYzE7jU1W/Gl9+snzmMQqvvnq25jMigDRk6cPY7N6Fp989ln8h//wV8V+19O4uUvj5Xd3cXf3NiIifvijkzi7yGM6TWI6rf9UD9/jxb2QTquwVR7JtqBdHfzK8yySOn8V+YGhNAAAAAAAAGDcBxG82fVyuZsKGHvJvK+Ky3B4YTiIcEjVlqLGQL6deyTDL0SLIE5z32njBfzQXDsBnMYq7xtM6YZi3mf7XWNWYx065ti5PiTYsW/M7ra7rt2+8Muhx7HLUHWbfVVmhkJM3WXdwMVqtY7NZhOnpyet5WP72h2QGQ+rdOeyb6x9+22Hcerl3WpC7WX9KkdVWK+qfNOcX3PbOpTTD8YMzXNfQCzPm/PuhmDqudTz6N9X48Gq9nE2gzdjc+6PNXJM2dB9UQa4GuGLrHwuVYGaB08eR5Ik8fQHH8fd3V1ERHz5+8/jL//jX8Sjx8/i4aNH5c6yODk9iTybRJQBna++eBFpksXZyck2dPL8Rz+N+eki5ouzmC7m5fya52Y7+5ikk/Kn6mE4fP1ms1nked4KGSaRFKVvynM6nc0ijTwiT2KymGznnGWbmC3O4uUXRYWfk8Uibt7eRD6Zxmm1vzyLSGcRSR7v3ryIiIjLq8v4u7/+ffz7f/8X8es/+3lERDx58lF88+JFXF2m8ebrP0ZExGTyKO5fzWK2OIlJWR3o0cOH8e7Ndby9zuP04qOIiFicn0WWJXFzt4kf/uizYh+Xk5hN0rh6+DjmZ6fba9a/P/v3SBXO696jxYdpZJsqhfafNqwIAAAAAAAA/xR8EMGbrHo5mJUvFKN4x5rk7ZffvZf4VfGYfN8L/uGXi2PhjdE2PtuXlHlEpBF5Ekk6VP2iqjpQVJhotUdJyiop2WFBjtZ43yOYcsw+umO8b6Cj2ub7Bn7GtMMSwyGFfaGX7ljvJxkNR3Tn0w1CvU9IZmhus9k0ptNpJ3QxPp+hffTv/+a2h90Hw9+ZtKisMXDax4+3GT6pKsIMVbdp77c516GwWTvUV1fQ2VXZajggNjSXZjufTXSDDt157v8e1Oe+OI5ozLk/3/H7uphHtasqxDNU3av4pdkeqx1QKvJKSaSTNE7L8MePf/HzeP7JD+Ltq9fx9sXriIh4++Zd/PZv/y5uru/iszI48vyTT+L+4/sxm82iLjOTbFtgdUOG2/0155LkjfX76uPIYzKtxquq0tQDJpM0kiSLbLOJyIrj2GzWkW02MZ2dxPnFeURErJa38d0338TVo6tYr88iIop1JknEJIn7D4qgzPXbu5guZvHn//LX8fHHTyIi4t79q/j0Rz+IJIl486aoWnPz7lWs7iLm83nkZZDo9ZsXkebr+Py3v4/Xb19GRMTVxU9jdnIVHz+bxOXFRURE3K1uY7LKI0nnkZZttCq9727SXl7cZ5so2lE1K9/kEUlEOp00lgEAAAAAAADfR7p/FQAAAAAAAAAAoOuDqHhT6FeoGWsOU1eU2TPiQLWJQ9pJ7auQUrUySZJGG5TOfqoJ1j/W1XzGj2yfoopFkiZ7Dz6PvL9OEr3qEbtbEI1XPSmWVUdStzypWwEd1vpr6PNDK/wc1BLsPSv/7JpDUTmk+VmyXdZUtwnaLhmdx1jVlaF1+i2p8s76h1X26VchOu4cbffaO7a803qtag01dk91q9dU39X+fna3C+svGzo/Y23edlUf2lcQqa40tK86S7fCT739WMWd+udm5ZL2cTSvZb2P7ne9Xr/6vX+eu+e+XUWm2m5xehqLs9N49PxpsWyTxfL2NtZZFouTlg5/rgAAIABJREFUov3ZdDKtypbVx9aeQf8ktc5Jc96tI9n93Cr3k20i3l2/i4iI8/Pz2GTTWMynsdkU6y2XeVxcXkYymcQkLdpoZZPzmCzOY3F6GVlWrDhZzOP3v/syPv3sozg7L6rgfPPHF3F2cRmffPo0lrfL8hRNYr6YxKs3t3G3LuaXZZO4W0/j1cs3MS8r8jz75HHcu38el/cfxXRRLHv98k28fXsdl5dncbssxnt7vYlNdhNPf/SjxrWP4Ru9OvbG87dovZVFkkw666hyAwAAAAAAAH9KH0bwJhtooZL0X2F328g03w232w6V45VtnSIiIu+2oGl8tKe1T9GlJmvNJ4+ss87w2MU82i+ykyR5z1pDdZAn8ogkyeuDz8sWOklnPpG0XpYXC8sByuWbTRZJkkSaNl+Hp40WNfV5SNO0F5oogjfN/ZYtnzoBi+G2RuNhlOKFcXM/Q8GUZPsyumhr1G/lNBTU6AavdgWAmuuVZyHyPItm+6JumKS/Tb1teQSt4xpua9ZvlTQU0GmHK5KIyDohhaq9Ujvo0T/W7OCWXF3VcTS3TdOkaPOzbRlV7Tciz/rnvPgnaY1X3ALVuWq3YCqWNY+xfVxjIZZdQY+hQFD7/un+Oybr/F5dg+KzYrj+l7+5/yzLBu7d5jj1NvV9XM1909hHtX22DYn157rjuVWMXP7e3G/WWy/Pk5jMT2OaJNvrleV55Fl3ftWY9TOxaJEWrfWah520jmMk6BV53c0qkm3Q8bQMAUWexUc/+Li37aRs4XRycW+75eNPnkWSTLdj5HkeFw8fxcXF+TZk+Iv7j+NuuYrFfLYdM8uySCeTmJ4tt3NJIo80ncZyuYpJWpy36WxWjLvJI8uLcM9yuY4kmUSaJjEt20DleRZZlsXs5HR7AbZz6l63znmpz1P3Hu4+C75f6A4AAAAAAAD4QII3oy/8k+aP718xJClfcHer0myXVdVKkl37aFYFef9KAUn/ffnQWgNjN5c1gxljcxgKGAysm0dkWf1CuTh/aSTbF8Xt4EprD93gU1nFpFuwZKjS0FDApPlvM4wxXHmkfZx1VY/YbjekW9lld8CkX4GlHeBoh3mGqoo0ZjwwbjeAMHbvN0MJ/XtguGLL2H1x2D27O3TTPy/d71wR4KpuouZ56gbq2suaIav2eO0QxiGVqopt2/PcZ+hebeoGzobvs33Phv417AaGmoc1Wl1q4Nj6z7/6Xu2uV31e76P93Wt/F3fPuVq/WYUnz7OBa9Z+FmXbkGUe63UROplOp1GE2oafV82EZVKGB7uVtaqxi2V541w1gkHTWWtOzfBbFcDJo3rGppE2vqv35vPe1M6m04i0ETjLirmdny/qL3gZjJwtFp2/Q8UcJ+V6i7P6O5a3zv3wM/eQ6k/jH7fPAQAAAAAAAPD9fBDBm0reTyU0Pty9XfflcTKwbWtZkkcknUBIPlDhonyJmzdiOd3QR1fdCisfzGXU+2y8nC0rQVQVCKpXo0Vbq+rldtbLQORF2ZloVrep3oXnrRfUZXWDPNm+oB4KDBTncvh4mj8nSRJ5ZJFEXUlj6GX4oZVUhsJT7eo1aWvd4uVz1tjvcBWR5XIZ1UmbzaqX5/1WNcW+6go61XrtOYzPvT1e9fNQWaOhgFRv5r0AQ7NiSX1Ou6mn/jjNMaptu8sGt+xVWyn+rSoLNdfbWe2pM598m3YrQl5pmhaVQtLq3NffyXYVnZFgRm+fxX66FXEOqWg0ViVp6Jx1qw1Vz4TueW4/K+oKJPV+k+2cm/uotmmelyRp37fFOekeR/Vvs5pNWv7e/h7V+2vuO432+asDP/VjuTlG/bxM0/b1bofHumGXepx6/P790j4v6XbcfvitW12pff7qfdfXbfhvRXmcB2a3mjnI8giL/5rLy5WSxn2QRBJFcbDyOAZ32P9eZVn/ezV8z/ZHq85Vdf6LbceODAAAAAAAADjUezU8AgAAAAAAAAAACh9GxZskIs8a1SKq5YNVNzqbDvy//atlreosedXqJCuX1a1QttUpRtoDJeX/bIvNDLSeqavmtOcxNufWHpJi8DzPGwVtmhUg+u14mpt25xtVG61IGyUZyvY9jW3qtjSxrZhTtQPKB3bZrsxRVm3oHFd9nvPWdkOVUcbaWQ23neq2ymn/PFwtI2IymXaqPwxX5SjGbh700D3V3U//+rbvx6H7qT6Objup5rZjx1PNOaluyuYaO9tt1T9312+23BluO9SZych++lVG+uewWU0kj/EqM93tqn+HWlPtm1u3es7YOe7Oo3k+xuZUrze8//7vY/Pvz687193H3r4/olGJariaTPPx2n9O7juO7vpD90vzfthsqrn3q/mMbdutBJTnWaRpdS0bT8q8ugbVs72uElQ/75NI0+Y5qcduVdSqbtCkWeNs2ND9M7he3qyGE9svf/uvQN66XtupRNK8UNtzMtjmrvFQKY6iXXmnqpymvRQAAAAAAAD8aX0gwZskIi3CN8WvVUIkog6dpNF70dgaYv9L0HawoBgvSdLtC9tue59qWfH5SDOQ3kvjpA6xVK11BtYrWjVtJxbbN6RJ/Yq2auOUly2V6ve27UBKHQrZLinfvHZ7puSN0EY9/yRJG6GnvDVma39JfTzV2EOtqbIs375on0zSXriiGaTonpd9YZx63X4wJc/rwE+6fY+e9lrgdEMv3aDWcNgkYntVGuvVLZ9iYNvx4E21rB82GAtrRWu99wmiNdv6dNv37DJ0fPvWj4jINmVAIu1/3gxMDQVJuoG57ti7jAV4hoI2QyGw99Ffvx82GmpBVoXQ2mGr6vqMz31X66DuNS3WbY5XtLBrPuuKz6rv/cCzafvz9mhaIZbmf81lzXGyLNvOMU0n28/2Bbeacyjm3J5LMUY1saHjL/bZvX/6t1vz3m4EJ5NqvMMCKge1bxtZp/1Tdy7V742JN85xmhTntJhuK9oT22DkNsBU7/t973UAAAAAAABgtw8jeJPnjaoAtSRi+4I1b/zvroBEtXzsBWO/ykK9j9HXrO9VICBvvMMdrlxRLGhWbah+71dUSZJGSiQGjjlPIm9ULCkHKV/EZo2X1fUmVSglyyPSMnTTqtKS9K9Fd995bMqVhgIM+TbsUk0ly7JGJZRqmu0wztD1Wq1WMZvNRoNU5UgD2/eDAPV+m/MuAgqHVV1ph1CSJC9DE+PVaar9J0n1In+88spwxZl6rtVuht7td6u69OWdf4eDLdU1agZgmsuGvlvVsuZxZFkeaaS9ORUZgTrAMVStaih4051Td97dn5vjDVVx6Y6175kypL1NO/yx61r0g2URVSinGK/16Y4Z1IGU/rS786n20Q2s1PvoVpfq6n5/h0JS3fuwWWFs1zF1r8d4mKUZNqruye73pH8tu+G61mySpB3qySKSNNkxh/acD7l3xvY7NMf+ds2QZqNSzvZ5X90DdSApSao/Kf3vS95YlBx+uwMAAAAAAAAjPpDgTefXvFlxZVfgotZv/TJcwaRbrWSsnUg/xBGtig9D+2+FV0Y/q46p/8I2aZQIaQcv8s56rRIGUXSWaoy/DTENpJmq3UfEpFuSpPFZ851tXo7fj1B0W7dU63erb3SPaX8Qolo2m80GDqA7XmwDMM0AQNVqph2wqP7rbrt7H/Wx5p37KaKudtKa/cAYxTjdzweva2vb7n0ydC7bY47NpzpHzWoz1blK0zoos68aTXeO/eVJZFm72sauYEwz+NMNcwxXYjk8KHNodZtjxm6Pf9h+hvUrR/XHHL9PmuGoev/t8dvjFeGV4dDOrnux+rl4Xo0FbprL2lVuhr9oQ9sO2fXsH3quDG3XXL8ICPar8DRbH+4KUR1U7eaAbYcMVR7Ky0d6sa/235vms6IeJHY/FgAAAAAAAIDvbSgxAAAAAAAAAAAA7PFhVLwZMFZd4xCHVCh4r4oZZe+luiLN8Da7Wpw0999uddRu0xJJVq1YV/xp9gaJPJptqpIkKardJFk9ZtmOpFVjZ6zVSp4XrUqaLZAij0jqChxJOnLI3e0aVUua57lf9aI9r65DrklRTaXf+qaq1DKZTAaPt24r02zT020DlURE1prLUFuier/N6jBJ479mRYrqv37Fm24VprZiuyQaVXla1XqSxqJ0dIzuorHWVLuqhQxt02230/nw4GIb3YpVaVp/F5KBykrN6ibHtInaN4fq9975rPY7sP1Q+6r9c6q+XGPr7a6oMtTqaVfFr5GZt37uVk7pVX5JqmvemEcksdlsIk3TbfWd6t/h6kn9WSSNvkfVdzJpPXyqKlv9SjCt+bXG6O63vaxblWn4Ns5798KuijxDlZmSJImsMefuzOonT/tZ3/1b0X+OVJ9Xv2fbZUk+PEcAAAAAAADgT+uDCN6MhkIO3O6Q9braL26HAzPVsnpu+/c1FvbozGh0XttxImK9XsdsNu+3jEm6L2g7o29f9qaDx9SbSt5oc5M05994eZx0Qw5lIKJxWoZeODf3vWsuVauj7vUcWq/7Ir+5zWaziYjovPyv29wULXL6p6E+GTHwsru7Tvc+qF+Ej92T9T1ezTl663fDE50B6tBHa/3DWvQMzWff5/02Xf3vaRW6abYsStOBoMzIfsbul9bx592gQb3O0Lkau89ay0fm0zQUttr1zDk2KLh7DsW/+cA5qO/l4Xtg6Nw2n3v1PdjaevD6lltXqwx+h7pBm/re6H736311j6fdViw6nyeNoNn482UoyNYNP45ts+9v0a5Q5dA67WVVaKvfZrB8wA5u125BWDf9G/670g4pAQAAAAAAAP/pfRDBm26FhrF13qeSzV5JREQWed4v5zL6UnfP0NXL8TxrBDiSzsvUPB2dZ55X1WwK0+msUymmmkPjhW+S9/dRagZUdp6X8lxU6+0KMtTvdYvQTfNFcFEVaPhF91hVlLFgRH/Oxc+bzaYI/STJttJMFdpJkiTm83lnjM75a1WH6M6vCrYU67b336w0Ub0Ib56z4WMYO7b+8R2gCgdENO6L5ri7qqe0X9aPhcx2VY/ZGWhJIqp8QJ4PBQv6Y3TH6a9T31fVMTVDHUNjFVWAonEtR6r17AjP5PXF3EYZthV2BrcaNhYMamt8R5vbdubZ+iZsQyJRV09p5ZSGrl17lH2BxV44JalDY/3vRUQemyJQ0gnuRJKVz4hy7axfUae6Z4eyZs37Od8eaP87PDb3ru716J6XLBv+O7MrxDS0j13b5ln9tyTZbjNQBWc7Tn2P5FXQKh86h1nkzZDOyCVuLlcUBwAAAAAAAL6/DyJ4E3FYBY7uz2PhgEMCDVWliO5L6+Y4o9tG2d5pYL+96jTbz6ttd4cfur/3KoykxUvX7ZZlMqA72210YWdVhP7+qp/HAxLNMETj93Jhte2uNjPt6i/tYMRQNZsiTFEFL4arVfSPs6oUUVd+6FbU6M+nEZiKbpWO5vrV3MbO5XDApBmiGrqfq+M9zvBcxsbfVw1kaL3WWM1sRaf+UjlqMZtGWKi7j+bP/bBCM5QwfF901e2J2hVMhmyPffDT7Ur1ZHauNh6u2Rdm2h/M2SNJiiDFQNhj136b6zXn0j1fWZaVobbd0yhCg7ENBjbHjDSNtPzeZlUrvc73svt9224b7fGq50Zz1er3XbmqfX8/dj7vR57XuwKFY/vu/r5rv82QWWv7euud+909p+87AgAAAAAAAFBJ968CAAAAAAAAAAB0fRAVb7pVH8YqNXSrhjTXfW/58P/lf6wySaudUESvj0c9j2apjubn9cdjc2+eh+GKI8l23u1iHMm2/VCxi6I9S7cqTNkbajuJoepAg+c2b+63qhSSVScikrIVSp7kEWWboV3tXraVItJG1YtG+5huK5j1eh1pOtmO161QM3T+6tZRSaNFTue4OtsOnYf+vZgPVKmo25W1W1v1xxsbvzmPfdWHmssPqZ7RXJ6m6c5zd8jck6RV06RfPiMp779Grm9s7F2VgIbW6/6etFdqVFIat+/+PLRCyb6KMrtaHQ1uO1SyZefBJEW1q3x4te0xRv1M2GWoAkxVuapRoGZw/aQoM1RUn2lUpYo8bRXBaVfCGq84s69SUZJ0r8NQza9uBbLhsdrHtP208/lw27BD5z20733V2YaqniXVtU5GqmcNVW+rzv22qlBj2339EwEAAAAAAIC9PojgTdchAYLuskPaffS3L17YNl9wHtpyZKjdVGNW5Xq7X+J3j6MZumgdV1K9JE1bAZDqGIZDIp1WO9vN6mDQ8MvfZPuivtkeq6t1PjvthPKISMtlVWuo7jElSRLZJos0rVMx/ZfaxaiTybS1bX2u6rkkaUSaVO2fill0z2nRkuaw5iq7Ahn1GM0jboeZxkJjh+53G3io9jAQ1hhqtzXWxmlXmOd9wmvbe6s698XSzjGU1y7Jtx9V361ea54Dvr9Dx7sdq/H5oc+HQ58ZY6qYx67Qxa52WvvCPkPPgTF54/wO/dsdf9+ch65RXj4zmiGN0RZkefvYsoEg1Fjwqzu/sWDKUHCqO9/i93Ygp/5u9sdrzC6SbZas/YwdOi9Dgb3eshh+hg4Z+ztVt9gbmnfzOPPWdo2vamub/jMMAAAAAAAAONYHGbypDIUDxkINu+yqDrKrosjQGNufB0I3VdBmMDyzXan/8rMXRmjNoQ7K5HkWRZWLLG5vbyIiYrE43b6N7R1T3n0BnHWKarRDDPXy6m1tvv29eBndD2z0zkVSViHJ03Kd8UBEkqQx9OK3Wr142dwPEjSDNPU8iioYdRaoHcApl+4NPXT3NbZONV4508Z57d+nu+6xoRBBlmUHVcLoLttXQaO7flF15HCt8E+1aVqc987o1Ra9b0lS7Hw7XrXskNDMYLWZ6EUNtsu76x4btGlKylRRO9JxwDYHfHZoSK9rVwWjaMxz6Lk5tP/BsE/eCKykee/erdZphkA2myw22SZms0lsI1p7gkS7AmKtyi97zmlV2aW/WqeC2Has8edMtc3Y9dkbkkrK8M1A4GfX+Viv1zGZTCIibeyrGcBrzqMfyKyfCUPfkGrb0d0DAAAAAAAAB/qggzdDL2H3V4AYqdhwwLr7W8Y0SsDk0al6UzVLSurVtqGT5rJ6X4dVT2hUcamqW0QS6aS4dEla7HXsBXV7eTX53YGLfBssSLaHu2vdZt2TpLW8IYm6uk0+HBLJ8yJsU1V3GGyl0njZ3QzgJEWdndaL5KpqzFjAqDW9I4Io9Yv98fPfnXdznTHFy/Z6u12hsV3jNbftVdBpXK1952VnhZg8L+/B9rFt912Nk6aRZVlxC1fnOSmuWhVmGVWOl+V5M21Qf7Y9puH5j0amhs7p0P73BCTaU92/3r7Axfs863aN3fwu9gJQOwI3g/du0g29JEXQZjtwHdbbfs3zfPs83BWi2ncuhn7+fpWMuuGaOr5VPVcOCT3tDdw0dlc9J+q5tkMvQ2NNp9N6gM567eVDNXWSshNg0l57G8JJm0sBAAAAAACA7yHdvwoAAAAAAAAAAND1QVe8eZ/WOZWhijKHtqfaVYmiWYGiqLBStl7ptfFojLstSNCvyjDUsmloLlX7qmr46rjm88XBc69nV1SfqCqUNCuTNNsxFZ+1D2u8XVRnv93qQI1FzUPsVrXJ86LSTXuoeuyqYktVmaZY3siNJdUxDF/X5nhDLbOa/zbntauqzNiteWi1jEPW29f26pCqN8P3fz44Tne9se9g3eop37nOdrR276fW2HsrhjSr/lTXqjF+61qV1V2G5tNt/dVs0NPcV9LZplm5J6KuFzVcoapxbAOHPrReNdauCiq7qj/1D6E8p41zNXRexubfv6fq515nTwMVWOrqOukkiclkWlaSquffrSx10D0wcIz7ft/f1qqa8+7qNWPneV+Vqe22eR551v07cdj3bGy/7etUPfdaJXS2y+tHe+MZ36gYBQAAAAAAAHw/H2TwpnhpfMCLyCSL3gvH7jjVqge2Bdn1wjZJyqBHo3VK5N2iQXnj1XO+bUeVRPtl9iEvWsfaEw2FiPKoX24XgZTqJXgjLJRU+26P2TpP5cv05svx4rA7vVGi2t1IK6LqJW+el++Zk8g29X6yrAh/RHRf8vfPwVggJmmGnvLqmMdV5zzLst6Y79MaqhvUOaQVVPV7L/xxYABn7FgOWT40925XraG2a91gzGC4JpLIq69h3ViqF4Jq32PdMXZfuSzLiuBVJ+DVbaXTGr+xbtade/U96m63DRM15lUGWPKB9erh+m2ThvZXLR9qI3VIa6mqbdYhUYnW/Vgt6ywfuz9bbcmSKvjWPc95+fyt5t+4+s19Z8P3eDt81I8ojYWyjgnBdH+vF1VnczxU2J3LrudE8xoOPqO3y8a/u/uMBkOT4jiS6u9RnkdEFkmSRl5eu2TbGqz4DAAAAAAAAPjT+CCDN0lSvw49JJJw6AvRfQGH96l2MDpG50VuHnlR8aYzTOvldrxfxYPBl71J4813lXmJPNrv/8cCRfVL4WK+3fllw9sPvIyufy/XrQorRN6qcpPn5cv68vM0LV7u541Q01hFliRJWkGAer39L+W78x0LQgx53wo1zeNI07QVaNoVFBgKC+ybS7OyTbWPXSGF9jUbPpahSkBD21dj1EU0quvcCG+NVWcpPhwMonSPbWhuzRBVFZJJBrZvjV3ttznpxnENV3Dq23XPjAVHmuGv7vx2hTVatU06z4591V26YaruNs1tq+/9dlkyFLoZ2sf4Z3WFqojJZDLynUvK7/9wCKY750Mq3Ox63o3tY2z9Q/827HpGHBr+PESvqk4j7lks63+vuwFQAAAAAAAA4E/jgwjeLBan/7mnAAD/5PwpgkAAAAAAAADwT1m3TxIAAAAAAAAAAHAAwRsAAAAAAAAAADiC4A0AAAAAAAAAABxB8AYAAAAAAAAAAI4geAMAAAAAAAAAAEcQvAEAAAAAAAAAgCMI3gAAAAAAAAAAwBEEbwAAAAAAAAAA4AiCNwAAAAAAAAAAcATBGwAAAAAAAAAAOILgDQAAAAAAAAAAHEHwBgAAAAAAAAAAjiB4AwAAAAAAAAAARxC8AQAAAAAAAACAIwjeAAAAAAAAAADAEQRvAAAAAAAAAADgCII3AAAAAAAAAABwBMEbAAAAAAAAAAA4guANAAAAAAAAAAAcQfAGAAAAAAAAAACOIHgDAAAAAAAAAABHELwBAAAAAAAAAIAjCN4AAAAAAAAAAMARBG8AAAAAAAAAAOAIgjcAAAAAAAAAAHAEwRsAAAAAAAAAADiC4A0AAAAAAAAAABxB8AYAAAAAAAAAAI4geAMAAAAAAAAAAEcQvAEAAAAAAAAAgCMI3gAAAAAAAAAAwBEEbwAAAAAAAAAA4AiCNwAAAAAAAAAAcATBGwAAAAAAAAAAOILgDQAAAAAAAAAAHEHwBgAAAAAAAAAAjiB4AwAAAAAAAAAARxC8AQAAAAAAAACAIwjeAAAAAAAAAADAEQRvAAAAAAAAAADgCII3AAAAAAAAAABwBMEbAAAAAAAAAAA4guANAAAAAAAAAAAcQfAGAAAAAAAAAACOIHgDAAAAAAAAAABHELwBAAAAAAAAAIAjCN4AAAAAAAAAAMARBG8AAAAAAAAAAOAIgjcAAAAAAAAAAHAEwRsAAAAAAAAAADiC4A0AAAAAAAAAABxB8AYAAAAAAAAAAI4geAMAAAAAAAAAAEcQvAEAAAAAAAAAgCMI3gAAAAAAAAAAwBEEbwAAAAAAAAAA4AiCNwAAAAAAAAAAcATBGwAAAAAAAAAAOILgDQAAAAAAAAAAHEHwBgAAAAAAAAAAjiB4AwAAAAAAAAAARxC8AQAAAAAAAACAIwjeAAAAAAAAAADAEQRvAAAAAAAAAADgCII3AAAAAAAAAABwBMEbAAAAAAAAAAA4guANAAAAAAAAAAAcQfAGAAAAAAAAAACOIHgDAAAAAAAAAABHELwBAAAAAAAAAIAjCN4AAAAAAAAAAMARBG8AAAAAAAAAAOAIgjcAAAAAAAAAAHAEwRsAAAAAAAAAADiC4A0AAAAAAAAAABxB8AYAAAAAAAAAAI4geAMAAAAAAAAAAEcQvAEAAAAAAAAAgCMI3gAAAAAAAAAAwBEEbwAAAAAAAAAA4AiCNwAAAAAAAAAAcATBGwAAAAAAAAAAOILgDQAAAAAAAAAAHEHwBgAAAAAAAAAAjiB4AwAAAAAAAAAARxC8AQAAAAAAAACAIwjeAAAAAAAAAADAEZI8z/9zzwEAAAAAAAAAAP5/R8UbAAAAAAAAAAA4guANAAAAAAAAAAAcQfAGAAAAAAAAAACOIHgDAAAAAAAAAABHELwBAAAAAAAAAIAjCN4AAAAAAAAAAMARBG8AAAAAAAAAAOAIgjcAAAAAAAAAAHAEwRsAAAAAAAAAADiC4A0AAAAAAAAAABxB8AYAAAAAAAAAAI4geAMAAAAAAAAAAEcQvAEAAAAAAAAAgCMI3gAAAAAAAAAAwBEEbwAAAAAAAAAA4AiCNwAAAAAAAAAAcATBGwAAAAAAAAAAOILgDQAAAAAAAAAAHEHwBgAAAAAAAAAAjiB4AwAAAAAAAAAARxC8AQAAAAAAAACAIwjeAAAAAAAAAADAEQRvAAAAAAAAAADgCII3AAAAAAAAAABwBMEbAAAAAAAAAAA4guANAAAAAAAAAAAcQfAGAAAAAAAAAACOIHgDAAAAAAAAAABHELwBAAAAAAAAAIAjCN4AAAAAAAAAAMARBG8AAAAAAAAAAOAIgjcAAAAAAAAAAHAEwRsAAAAAAAAAADiC4A0AAAAAAAAAABxB8AYAAAAAAAAAAI4geAMAAAAAAAAAAEcQvAEAAAAAAAAAgCMI3gAAAAAAAAAAwBEEbwAAAAAAAAAA4AiCNwAAAAAAAAAAcATBGwAAAAAAAAAAOILgDQAAAAAAAAAAHEHwBgAAAAAAAAAAjiB4AwAAAAAAAAAARxC8AQAAAAAAAACAIwjeAAAAAAAAAACdjmN8AAAgAElEQVTAEQRvAAAAAAAAAADgCII3AAAAAAAAAABwBMEbAAAAAAAAAAA4guANAAAAAAAAAAAcQfAGAAAAAAAAAACOIHgDAAAAAAAAAABHELwBAAAAAAAAAIAjCN4AAAAAAAAAAMARBG8AAAAAAAAAAOAIgjcAAAAAAAAAAHAEwRsAAAAAAAAAADiC4A0AAAAAAAAAABxB8AYAAAAAAAAAAI4geAMAAAAAAAAAAEcQvAEAAAAAAAAAgCMI3gAAAAAAAAAAwBEEbwAAAAAAAAAA4AiCNwAAAAAAAAAAcATBGwAAAAAAAAAAOILgDQAAAAAAAAAAHEHwBgAAAAAAAAAAjiB4AwAAAAAAAAAARxC8AQAAAAAAAACAIwjeAAAAAAAAAADAEQRvAAAAAAAAAADg/2Pvbo/UaNozDOMtoiAKknARgaN0BJSTIArCsP1DNRJCsAsX3dMfcxxV+vO+erQN0s42M+fcExDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAENi3XsBut9v959d//V/rNQDA1vzP//73f7ReA/+yLwKA9dkX9cveCADWZ2/UJ/siAFjfq/siE28AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACAgvAEAAAAAAAAAgIDwBgAAAAAAAAAAAsIbAAAAAAAAAAAICG8AAAAAAAAAACCwb70AAAAA5nW+Xh7+76fDceWVAAAAAACUJ7wBAACgqGexzbu/555YBwAAAADojfAGAACAlySxTK2vL8IBAAAAAHrw1XoBAAAAAAAAAAAwIhNvAAAA+FbrSTeP3K/JBBwAAAAAoAXhDQAAAE/1GN08IsQBAAAAAFoQ3gAAAPCPUYKbZ4Q4AAAAAMAavlovAAAAgL6MHt08cr5epnxdAAAAAEBbwhsAAAAAAAAAAAgIbwAAAPht9qkws78+AAAAAGBdwhsAAAB2u912ohSPnQIAAAAAStm3XgAAAABtiVAAAAAAADIm3gAAAGzYlqObLb92AAAAAKAM4Q0AAAAAAAAAAASENwAAAGyWqTcAAAAAwCeENwAAABslOvnF+wAAAAAApIQ3AAAAGyQ2+dv5evGeAAAAAABvE94AAABsiMDke94bAAAAAOAdwhsAAAAAAAAAAAjsWy8AAAAAenI/9eZ0ODZaCQAAAADQO+ENAADARniMUub2fRPhAAAAAAC3hDcAAAAbILop49X3UaADAAAAANvw1XoBAAAAMJvz9SJ2AgAAAIANEN4AAAAAAAAAAEBAeAMAADA5k1faMfkGAAAAAOa2b70AAAAA6hB89OP27+J0ODZcCQAAAABQkok3AAAAsCJBFAAAAADMQ3gDAAAwIXFH3/z9AAAAAMAchDcAAAAAAAAAABAQ3gAAAEzGNJUx+HsCAAAAgPHtWy8AAACAcsQcAACM7tGe9nQ4NlgJAAD8THgDAAAwAcENAAAzu93vinAAAOiJ8AYAAGBwohsAAGbw6r5WhAMAQE++Wi8AAAAAAAAAAABGJLwBAAAYmGk343J3NgDA587Xiz0xAABNedQUAADAoFxgAABgFp/ubT1+CgCAVky8AQAAGIy7esfnYhAAQD32ygAArEl4AwAAAAAATEV8AwDAWoQ3AAAAAAAAAAAQEN4AAAAMxJ274/OYKQCAv9njAgAwMuENAADAIFyQAAAAAADoi/AGAABgAKIbAAB43e2UQXtpAABq2rdeAAAAAM+5SAAAAO+730efrxeP/AQAoAoTbwAAAAAAAAAAICC8AQAA6JRpNwAAzK70nvd0OD6dbGN/DQBADR41BQAAAAAATOGnuGb5/z12CgCAUky8AQAA6JC7cQEA4H2vBjX22wAAlCK8AQAA6IyLAAAA8J7lEVPv7KXtuwEAKEF4AwAAAAAAAAAAAeENAAAArGC5CxsAgH6YegMAwKf2rRcAAADAL076AwDA+pZ9uEgaAICEiTcAAAAdEN0AAEDufL18vKe2JwcAICG8AQAAAAAAhlVyUo34BgCAdwlvAAAAAAAAAAAgILwBAADoQMm7dAEAYEtMqQEAoCXhDQAAAAAAMLTT4VgsZhfyALRzvl4ch4Hh7FsvAAAAgF+WCwVOMAEAQFvLntxkSoD1nK8Xx11gSCbeAAAAdMZJJgAAAGBL3IQEjEx4AwAAAAAAAAAAAY+aAgAAgEpMLwIAWMfto6FKTk3w2BOA+jzeDxid8AYAAKBDpS8YUJ4TggAA33tlP2vfC7BNjv3ATIQ3AAAAnXIRoi9CGwCA59J9a439rqk3AH17dIx2nAVGJrwBAACAB5z0AwB4rHQsUzKUqRXJiG8AynCDETCjr9YLAAAAAAAAAACAEZl4AwAA0LHlrlp3hK3HncwAAP8abT/qsa0AfXFMBmYmvAEAABjALBcOkqhljdcttgEAeG60fWjNx03tdvaOAO8a7ecIwLuENwAAAIMYMb4pcVHi0Z9R8n1w4QQA4LnR9p+3ak2PrBX2AMxo5J8jAK8S3gAAAFDUGhch7r9GeiLPBRMAgL/d7qvW2iu5KAswF8d1YGu+Wi8AAAAAAAAAAABGJLwBAAAYSO8TWlqt73Q4/v4FAAC1py2Y5gDwmOMjsEUeNQUAADCYJS7p6WRWT8HL7Vp6eo8AAEZzvl52p8PRngqAl/h5AWyViTcAAADEep8yYxIOAAC1uMAM8Menx0THVGBkwhsAAIBBtY5JWn/9d422XgCAHqxxIbT2Ps0+EKCe8/UimgE2T3gDAAAAAAAAAAAB4Q0AAABvG/Wu4VHXDQCwhmcTC0bdQ60xhcGkB2DLSh//HE+BUe1bLwAAAIDc6XBc/cTUqBdeFqOvHwAAAFqrdS5i+XN9dgdGYuINAADA4JyMAgCghGf7yvP1sjsdjvadAOx2u3Um05h+A4zExBsAAABe4kILAMDcXOQE4Dtr/5xYwk+A3pl4AwAAAAAAAAAAAeENAADABGqP/neHGQDA3H6aYnC+XqpNHjBpB6B/LY7VzkUAoxDeQEM+UAIAAAAALS1BDQA84+cEwPeEN9DIsknxwRYAgJLcDQYAwKuclwTgJ61+Vji/AYxk33oBAAAA9M3JLgCAufQU3JwOx67WA8Avjs0ArzPxBgAAAAAAAAAAAsIbaOBRJawcBgCgFBNqAAB4xGPv6/G+AjNpeUw7HY7OawDD8agpWJEPXwAAAAAA61gu3DovC/A6x0yA95l4A51Q7wIAUJL9JQAAt0peSLXXBJhT6+jGzxdgVCbewEqebVZsIgAAAAAAxne+XpzvBYbUOrgBGJ2JNwAAAAAAAAAAEBDewAqUwgAAAABAKz2fn+x5bQBb0Mtx2MQwYGTCG2jIJgIAgJpOh6M9JwAARfVygfYnrfbBo7w/ALtdP8cs5y6A0e1bLwBm92zTYhMBAAAAAFBPLxeUAXrkGAlQjvAGAAAAAABY1XJjYo0Lv256BHiup+DG8RqYhUdNAQAAAAAAAABAwMQbqOS7YljBCwDAKOxdAQAAYA49TbsBmImJNwAAAJMTzwAAsBU1H2EFQDnOVQAzMfEGKnj2oc4mAgAAAAAAgLUJEgHqMfEGAAAAAACYRsuLy26+BHrUW3TjWAnMRngDAAAAAAAAAAAB4Q2sRL0LAAAAALRQ+tzk+Xr56M+sca70dDg6Bwtw53y9dDftBmBG+9YLgNnYwAAAAAAAfK/WeVTnZ2Fb7r/nBXh/OB4CrEd4AwAAAAAAvKWnC7q9XGjvZR0wu++OP59O5JpFT8foe/5+gBkJb2AFNhEAAAAAAL+UvCC8nHttfZHZOWCor/X3OQA889V6AQAAAAAAAAAAMCITbwAAAPjNnboAAHM6HY6mRbwg3Q8v7639NJSVHLe2/rgpx3qA9QlvAAAANuDZhZYtn4wEAGBspR8z9c7e+NnX3PoFfyhJQALAKIQ3UJALGQAAjMI+FQAAHvv0Yr/pN/CZEsHNFiM4oRJAO8IbAACAjdjaSUcAAP5WekJMK7f72hKvpdb7ssUL/5CqcVwSwfXF3wMws6/WCwAAAAAAAAAAgBGZeAMAAAAAAAN6Z0LETJMGakymAdrxPfg57yFAWybeAAAAAADAAM7Xy1+/3v1vFzNFOMCYbo9jtY9JohQAajPxBgp4tGnz4RUAAAAAKMFF43GdrxfniuHO7THN9wgAMxDeAAAAAABAZ8Q2wIweHdvWON7NHPj4eQHQnkdNAQAAAAAAAABAQHgDAAAAAACdOF8v1aYX3P7Zs05+APplMst2+ZkDzE54AwAAAAAAAFRRMyh8dx0AUIPwBj5kowYAAAAAlLLGVADnNIG19Ha86SUCKmWm1wIwMuENAAAAAAB0ZK1Hcnj0B1CTKASArRDeAAAAAAAAAABAQHgDFbhTBAAAAADomUkU6/Fes0W9/7vvfX0AjEV4AwAAAAAAnVnzcVNuJARKOV8vw0Qto6zzkZHeZz9jgC0Q3gAAAAAAQIdqRzGjXLQFxjDiMWXENQPQH+ENAAAAAAB0bI1pASYS1DXSdAqgb44lAP0R3gAAAAAAAAAAQGDfegEAAAAAAEB7p8NxqkkK91N8Znpt0JuRv7+WtY8w+Wvk9xlgZibeAAAAAABA52pdEL5/BNIIF55f9ei1Lb+AcmaJQXp/Hb2vD2DLhDcAAAAAALBxMwcqPV2s7mktwBjuI0IA+iO8gQpsgAAAAACA0tYIYe7Pbc4U3zyKi4DcjEFIb6+nt/UA8JjwBgAAAAAAAAAAAvvWC4DRnQ5HxTEAAAAAMLzz9TL9+c7ltS3TbmZ/vVCL75v6vMcA4zDxBgAAAAAA2O1227nQe/uInLUfO7WV9xhG1cP3aA9rAOB1Jt5AAcuHMhshAAAAAGB0vZzvXGMaze2f38vrhp5t5fvjfjrW2l8XgLEIb6CSVpsyAAAAAGBea8Yh34Uvaz2iac3X++icrovg8MtWvxeWR/Ct8XUAGJdHTQEAAAAAAAAAQMDEGwAAAAAA4KF00kOJiThrTZr47uu+O3HHBHRmtPVpLLWfcDD7+9vqWA6wJuENFLTWeFUAAAAAgE99ciH0u0dQ1bD2udfbr3U6HN96Xd+t08VnGFfJAMe1JIC5CG+gMiUvAAAAAFDauyFK6XOUt3/eo3WUuqhce9LEO2tYPFvLK6/Z+WJGIxD51yfHJe8nwJyENwAAAAAAMKk1Io+1QpJeJo73sAagvfvJWK/8PgDm9NV6AQAAAAAAAAAAMCITb6CwR3ddbGF86KNie/bXDAAAAAC9cU6uf1s4XwxbY6rN9xz3gNmZeAN87NmG8ny92GwCAAAAwEpmvqjpPCOsz/cdALzGxBsgZtMNAAAAAO3MHNrMzvQHAIB5mHgDK5kpUjHJBgAAAAD4Tq2oRKwCAEBvhDcAAAAAAAAAABDwqCngZabcAAAAAACvOh2OzinCgHzfAsB7TLyBCp6NOx35EU2jrhsAAAAAaKfko6FmO0c58vliAAD+EN5AAyN9mPLhDwAAAAD4xOlwLBrgADAe15uAmQlvoJERNhefrtEHagAAAABg4Vwh9G+EaxcA0BvhDQAAAAAAAAAABIQ3wEOqdgAAAACgtE+n3jhvCQBAb4Q30FCvHxJ7XRcAAAAAML7lEfUePfWL87EAAGPbt14AzGr50PjTh6bb/7/1B82SH/BavxYAAAAAoH+vnke9//3v/DcAAFCT8AY6cr5emgUrohsAAAAAoBXnFAEAGJVHTQEAAAAAAAAAQEB4A5W9e6fG+Xr5/WstRrICAAAAALRh2g+9cK0AADLCG1hB+sFpjQCn9J/vQyIAAAAAsAbnIgEA6MG+9QKAn93GMaU+TApuAAAAAIDRnQ5HUzoAAGhKeAMrKfUB8JMIp9YHUNENAAAAANDK7flJEQ4AAGvzqCkAAAAAAAAAAAiYeAMrWu68KHXXReu7N0y6AQAAAAB68uicZevzqAAAzE14Aw2M/txhwQ0AAAAAMIpXz2eOfM4WPuXfPwDkPGoKGhk1Xhl13QAAAAAA33HuE6A+kRcwIxNvoKHbD3K9bzR86AQAAAAAZjf6tHIAANZn4g0AAAAAAAAAAARMvIFOLBNlerqbwpQbAAAAAGBrTL0BAOAdwhvoTMvHTwltAAAAAAD6vFESAIA+CW+gY2tEOGIbAAAAAIDHTL8BAOAnwhsYxKuBzPIhUFADAAAAAPC5WvGNc7gAAHP4ar0AAAAAAAAAAAAYkYk3MBl3SQAAAAAAAADAOky8AQAAAAAA+EbpGx7dQAlsWY3H9wG0JLwBAAAAAAD4welwLBLMiG4AAOYivAEAAAAAAIANE4QBQE54AwAAAAAAAAAAgX3rBQAAAAAAAIximQxyvl7e/m8AAJiPiTcAAAAAAABvOh2Ov3/99PtgBP6tAkBGeAMAAAAAAPCBR8HCK1EO9Ma/WQB4n0dNAQAAAAAAfEiwwCxu/y2/80g1ANgqE28AAAAAAAAAACAgvAEAAAAAAAD+YZITAPxMeAMAAAAAAAA8JL6hBo8xA2YivAEAAAAAAACeOh2OAhwAeEJ4AwAAAAAAAPxIfAMA/xLeAAAAAAAAAABAQHgDAAAAAAAAvMTUGwD42771AgAAAAAAAIBxnA7H3fl6ab0MOiXOArZGeAMAAAAAAAC8ZYkrBDjsdmIbYNuENwAAAAAAAEDE9JvtEtsA/PLVegEAAAAAAAAAADAi4Q0AAAAAAAAQM/lkW06Ho79zgBvCGwAAAAAAAOAjQoz5CW4AHhPeAAAAAAAAAB8TZszL3yvAc8IbAAAAAAAAoBiRBgBbIrwBAAAAAAAAAICA8AYAAAAAAAAoytSbefi7BPie8AYAAAAAAAAoTrABwBbsWy8AAAAAAAAAmNNtfHO+Xor+eY+U+Br8IZ4C+JnwBgAAAAAAAKhuiTjejWPeiT8e/V4xDgA1edQUAAAAAAAAAAAETLwBAAAAAAAAVrP244tMwQGgJuENAAAAAAAAsCn3MU6JEEfgA7BNwhsAAAAAAABg096ZwvMopnn239cIfADoi/AGAAAAAAAA4EWfPCpLiAMwn6/WCwAAAAAAAAAAgBEJbwAAAAAAAAAaOB2OH03QAaA9j5oCAAAAAAAAaCiJbzymCqAPJt4AAAAAAAAAAEBAeAMAAAAAAAAwGI+oAuiD8AYAAAAAAAAAAALCGwAAAAAAAIABmXoD0J7wBgAAAAAAAAAAAsIbAAAAAAAAgEGZegPQlvAGAAAAAAAAYGCnw7FKgHO+Xor/mQCzEd4AAAAAAAAAAEBg33oBAAAAAAAAAHzu0dQbU2sA6jLxBgAAAAAAAGBSNR5BBcAfwhsAAAAAAACAiZ0OxyjAEe0A/MyjpgAAAAAAAAA2QEgDUJ6JNwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAP/fzh2UAAADMBBj/kV3Hu4zBomCCjgKAACB8AYAAAAAAAAAAALhDQAAAAAAAAAABMIbAAAAAAAAAAAIhDcAAAAAAAAAABAIbwAAAAAAAAAAIBDeAAAAAAAAAABAILwBAAAAAAAAAIBAeAMAAAAAAAAAAIHwBgAAAAAAAAAAAuENAAAAAAAAAAAEwhsAAAAAAAAAAAiENwAAAAAAAAAAEAhvAAAAAAAAAAAgEN4AAAAAAAAAAEAgvAEAAAAAAAAAgEB4AwAAAAAAAAAAgfAGAAAAAAAAAAAC4Q0AAAAAAAAAAATCGwAAAAAAAAAACIQ3AAAAAAAAAAAQCG8AAAAAAAAAACAQ3gAAAAAAAAAAQCC8AQAAAAAAAACAQHgDAAAAAAAAAACB8AYAAAAAAAAAAALhDQAAAAAAAAAABMIbAAAAAAAAAAAIhDcAAAAAAAAAABAIbwAAAAAAAAAAIBDeAAAAAAAAAABAILwBAAAAAAAAABYgEX8AAAKlSURBVIBAeAMAAAAAAAAAAIHwBgAAAAAAAAAAAuENAAAAAAAAAAAEwhsAAAAAAAAAAAiENwAAAAAAAAAAEAhvAAAAAAAAAAAgEN4AAAAAAAAAAEAgvAEAAAAAAAAAgEB4AwAAAAAAAAAAgfAGAAAAAAAAAAAC4Q0AAAAAAAAAAATCGwAAAAAAAAAACIQ3AAAAAAAAAAAQCG8AAAAAAAAAACAQ3gAAAAAAAAAAQCC8AQAAAAAAAACAQHgDAAAAAAAAAACB8AYAAAAAAAAAAALhDQAAAAAAAAAABMIbAAAAAAAAAAAIhDcAAAAAAAAAABAIbwAAAAAAAAAAIBDeAAAAAAAAAABAILwBAAAAAAAAAIBAeAMAAAAAAAAAAIHwBgAAAAAAAAAAAuENAAAAAAAAAAAEwhsAAAAAAAAAAAiENwAAAAAAAAAAEAhvAAAAAAAAAAAgEN4AAAAAAAAAAEAgvAEAAAAAAAAAgEB4AwAAAAAAAAAAgfAGAAAAAAAAAAAC4Q0AAAAAAAAAAATCGwAAAAAAAAAACM621xsAAAAAAAAAAOA7Hm8AAAAAAAAAACAQ3gAAAAAAAAAAQCC8AQAAAAAAAACAQHgDAAAAAAAAAACB8AYAAAAAAAAAAALhDQAAAAAAAAAABMIbAAAAAAAAAAAIhDcAAAAAAAAAABAIbwAAAAAAAAAAIBDeAAAAAAAAAABAILwBAAAAAAAAAIBAeAMAAAAAAAAAAIHwBgAAAAAAAAAAAuENAAAAAAAAAAAEwhsAAAAAAAAAAAiENwAAAAAAAAAAEAhvAAAAAAAAAAAgEN4AAAAAAAAAAEAgvAEAAAAAAAAAgEB4AwAAAAAAAAAAgfAGAAAAAAAAAAAC4Q0AAAAAAAAAAATCGwAAAAAAAAAACC5DDYLiU6d/bAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(\n", - " dataset, config, image_id_list[2], use_mini_mask=False)\n", - "\n", - "log(\"image\", image)\n", - "log(\"image_meta\", image_meta)\n", - "log(\"class_ids\", class_ids)\n", - "log(\"bbox\", bbox)\n", - "log(\"mask\", mask)\n", - "\n", - "display_images([image]+[mask[:,:,i] for i in range(min(mask.shape[-1], 7))])" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "original image shape: (2232, 3764, 3)\n", - "image shape: (384, 384, 3) min: 0.00000 max: 254.00000\n", - "image_meta shape: (17,) min: 0.00000 max: 3764.00000\n", - "class_ids shape: (7,) min: 1.00000 max: 8.00000\n", - "bbox shape: (7, 4) min: 17.00000 max: 341.00000\n", - "mask shape: (384, 384, 7) min: 0.00000 max: 255.00000\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Asfandyar\\AppData\\Roaming\\Python\\Python35\\site-packages\\scipy\\ndimage\\interpolation.py:616: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.\n", - " \"the returned array has changed.\", UserWarning)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACN4AAARCCAYAAAB2T63ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3VmT61h67vcH4Jgkk8mc91y1a+g+qpZUarUk2xf2ncOfwJ/yfAKF7xzhsB2Oo6NzpO5WTzXsMeeB8wj4YgHEtECC3LuqsqX/L7or9wYxLIAAsiLWU+/r+L4vAAAAAAAAAAAAAAAAAJtxf+oBAAAAAAAAAAAAAAAAAH+OCN4AAAAAAAAAAAAAAAAAWyB4AwAAAAAAAAAAAAAAAGyB4A0AAAAAAAAAAAAAAACwBYI3AAAAAAAAAAAAAAAAwBYI3gAAAAAAAAAAAAAAAABbIHgDAAAAAAAAAAAAAAAAbIHgDQAAAAAAAAAAAAAAALAFgjcAAAAAAAAAAAAAAADAFgjeAAAAAAAAAAAAAAAAAFso/9QDkCTHcfyfegwAAPxH4/u+81OPAVn/q/u/8+9FAAD8yP4P7z/z70UPFP9uBADAj49/N3qY+PciAAB+fEX/vYiKNwAAAAAAAAAAAAAAAMAWCN4AAAAAAAAAAAAAAAAAWyB4AwAAAAAAAAAAAAAAAGyB4A0AAAAAAAAAAAAAAACwBYI3AAAAAAAAAAAAAAAAwBYI3gAAAAAAAAAAAAAAAABbIHgDAAAAAAAAAAAAAAAAbIHgDQAAAAAAAAAAAAAAALAFgjcAAAAAAAAAAAAAAADAFgjeAAAAAAAAAAAAAAAAAFsgeAMAAAAAAAAAAAAAAABsgeANAAAAAAAAAAAAAAAAsAWCNwAAAAAAAAAAAAAAAMAWCN4AAAAAAAAAAAAAAAAAWyB4AwAAAAAAAAAAAAAAAGyB4A0AAAAAAAAAAAAAAACwBYI3AAAAAAAAAAAAAAAAwBYI3gAAAAAAAAAAAAAAAABbIHgDAAAAAAAAAAAAAAAAbIHgDQAAAAAAAAAAAAAAALAFgjcAAAAAAAAAAAAAAADAFgjeAAAAAAAAAAAAAAAAAFsgeAMAAAAAAAAAAAAAAABsgeANAAAAAAAAAAAAAAAAsAWCNwAAAAAAAAAAAAAAAMAWCN4AAAAAAAAAAAAAAAAAWyB4AwAAAAAAAAAAAAAAAGyB4A0AAAAAAAAAAAAAAACwBYI3AAAAAAAAAAAAAAAAwBYI3gAAAAAAAAAAAAAAAABbIHgDAAAAAAAAAAAAAAAAbIHgDQAAAAAAAAAAAAAAALAFgjcAAAAAAAAAAAAAAADAFgjeAAAAAAAAAAAAAAAAAFsgeAMAAAAAAAAAAAAAAABsgeANAAAAAAAAAAAAAAAAsAWCNwAAAAAAAAAAAAAAAMAWCN4AAAAAAAAAAAAAAAAAWyB4AwAAAAAAAAAAAAAAAGyB4A0AAAAAAAAAAAAAAACwBYI3AAAAAAAAAAAAAAAAwBYI3gAAAAAAAAAAAAAAAABbIHgDAAAAAAAAAAAAAAAAbIHgDQAAAAAAAAAAAAAAALAFgjcAAAAAAAAAAAAAAADAFgjeAAAAAAAAAAAAAAAAAFsgeAMAAAAAAAAAAAAAAABsgeANAAAAAAAAAAAAAAAAsAWCNwAAAAAAAAAAAAAAAMAWCN4AAAAAAAAAAAAAAAAAWyB4AwAAAAAAAAAAAAAAAGyB4A0AAAAAAAAAAAAAAACwBYI3AAAAAAAAAAAAAAAAwBYI3gAAAAAAAAAAAAAAAABbIHgDAAAAAAAAAAAAAAAAbIHgDQAAAAAAAAAAAAAAALAFgjcAAAAAAAAAAAAAAADAFgjeAAAAAAAAAAAAAAAAAFsgeAMAAAAAAAAAAAAAAABsgeANAAAAAAAAAAAAAAAAsAWCNwAAAAAAAAAAAAAAAMAWCN4AAAAAAAAAAAAAAAAAWyB4AwAAAAAAAAAAAAAAAGyB4A0AAAAAAAAAAAAAAACwBYI3AAAAAAAAAAAAAAAAwBYI3gAAAAAAAAAAAAAAAABbIHgDAAAAAAAAAAAAAAAAbIHgDQAAAAAAAAAAAAAAALAFgjcAAAAAAAAAAAAAAADAFgjeAAAAAAAAAAAAAAAAAFsgeAMAAAAAAAAAAAAAAABsgeANAAAAAAAAAAAAAAAAsAWCNwAAAAAAAAAAAAAAAMAWCN4AAAAAAAAAAAAAAAAAWyB4AwAAAAAAAAAAAAAAAGyB4A0AAAAAAAAAAAAAAACwBYI3AAAAAAAAAAAAAAAAwBYI3gAAAAAAAAAAAAAAAABbIHgDAAAAAAAAAAAAAAAAbIHgDQAAAAAAAAAAAAAAALAFgjcAAAAAAAAAAAAAAADAFgjeAAAAAAAAAAAAAAAAAFsgeAMAAAAAAAAAAAAAAABsgeANAAAAAAAAAAAAAAAAsAWCNwAAAAAAAAAAAAAAAMAWCN4AAAAAAAAAAAAAAAAAWyB4AwAAAAAAAAAAAAAAAGyB4A0AAAAAAAAAAAAAAACwBYI3AAAAAAAAAAAAAAAAwBYI3gAAAAAAAAAAAAAAAABbIHgDAAAAAAAAAAAAAAAAbIHgDQAAAAAAAAAAAAAAALAFgjcAAAAAAAAAAAAAAADAFgjeAAAAAAAAAAAAAAAAAFsgeAMAAAAAAAAAAAAAAABsofxTD0CSRqOJHMeR4ziJ5X56Rd+X7/vL9cI/Z9azcFL7ix/JTyw1a/q+Z5aEY/J9uW6UU/J9+1H91GdObLnt77bxpD+PX5fc48bG5zpO7nrxfaTHtEr8uofbbntu6e/ZNrbEshX7KqLI/REcXJLkuq65r3xfkrdmE9vZZke56vvI3PepdeP3e/h3s2zd2MLxrF4v2vf6HJ45rq/oqtq28bXiK04dczPxa5Dex6r7ymbd+tuMb530+Fetl37fmE0sz0fBcRZdz3Y/5t2j687D8iTI9z35iRewG6yYvE+d1HD9FYdyct557vL9nb+tHz+Q5+fuS1p93rbrVJTruoXe2bm/C5yiz/jmzwkAAAAAAAAAAACA1ah4AwAAAAAAAAAAAAAAAGzhQVS82UT8v9ZfVibI+S/4MxUE8ioZZCqKZPfj2PaXN8Zwu0Jrr2etgJKqWmPdTsmKE5tW8MhWWMlWywlWKLyvcH/hsnT1hVXVJlaNb1PW7ygxrsynytZNCjfLG3NwrVacTt7Yt6tKkRyfGdcm22fPN7+Kx+qqPuae+WGqxtiOtY1191r888z9v2V1k03u7+R3af6+4nX3g1lVkclWeSixrmwVr1xJvvzl+fn2FQuMKVldLFgW7tffrKpXfL9531O64kzheyD2aIb7TldvKzIu+7r51XnS50G1GwAAAAAAAAAAAODjexDBm7zJ0bWhkXCSNPZ5ItSxXC2YfIwt85WdhIyHLZzYvqPPs5OumVBMbFzhLLmfOq7tXHOvQXyMsVn3eAus5Zx1gTBOZqyrPg+v5ZqxxabPrUzHI2flucUnodPL81pnrWxZlTPm5XZhW6lwEjyz33g7pXBP2eBNeszRMP3YmIu11kpM+qeOHP88X/ou8xWe6roJ/txWPW78nJ3Uz+w+wmMUyZYUaaEW/9wW0srbb5FwS5F14iGJ+N8/JMBQfNu8pm3x77l4sCkvhLFtgM3eVC0SvmPj77/lFk78LHKCI5ad2+4BJ7gMy/MIty/4PSVbWkX3e5Fnxvb3+Lid5Islsb8PvYf8NW9e2/sUAAAAAAAAAAAAwMf3III3aelJ7uXy4KcTrZgbSohvGw9WxAMrWfFwRRRiWU5vprbZqJpH7Li20I2tAksYKLJVnCg6mZpXsSO+rKgwQBOOLT7O5eepZenledZVfok+D0MQ9vXjx/J9T47j2gMelgomsYPKt836W87E952CFUjyQzi2CkDWo6+dsM8PYuQ9U7ZxrOfHztnNCUVtV+lmXaWRImMsUpFl2/BMXuBuW0UrngRHT91rm4/Bds7bBjMS70bLvsIwYDquZpZn1wt2EOzQl+9EVWzCFa3vszBYln63u86Kpy7/rNL3xqbft/3Wj53Jh94/y4Do+mcaAAAAAAAAAAAAwA/vQQVv1rV9Sa+zrmJGoiKLrV3TyrEs/xTfKPFhuhVNkUBD0QlgJ6gQk6i2UXDsqVEHQ7aFRlaHcNJVdTax6YR38cnjqIrL+n261uPEx2ULDMTWzhw3vixqSRWfpDfrxlsCJe+l/KoteX9Ot6XJ90NMvsfvkaLXPVGcqZB0+OhjBgny3g1Fj2NrObXJtuvGYt9u1TXMvstWvv9+5FBG+n2VL3wWoxP1Y2ESOckQSzJUZwlXKXtcJ/2gF7RJMKvIdV63p02+KxNksv8+I4ADAAAAAAAAAAAA/PiyyQQAAAAAAAAAAAAAAAAAaz2oijfrqto4ylYCcRxnbTGDcLtMG6cVW0RjWRQac/jn9Ngz7YEs1SnC6jbhuNKfLdshWT63jWMppwqG7fjRJn7me7A25VpV4Sc+hJzxZoeav2bye3MtS6MxZVrWpI6R29Iqs172GL4fnne4xA3W8XL2GFZHCYe1pspSbMtV35F1/AUrXqz7PL2fZMu2cJ31eT3T+ad45Zp19+QmVrWdW3XMIuLXZdMqI6tahWXH6GzVrivdYu9DFT3H8LjRsxNUsgm2TT632XZ7cpSoV7NsYZVa0f6eS/01PP7a0y/ecq3Ivbzu3Vr0WFl+4mR8P3wPpht9rUdlHAAAAAAAAAAAAODjezDBmw260iTW9sN+LNm+Piu3jbfqSAdF4q08Ei1wlhs48jwv8bnkZ2aJ8ybabZOfnu/JiQV+EueW2s4WzAjHtRyr48hb00oqfpx4C508685j7fhWHHcbmYCQn/xO0yOIB5zW7Te6nZJNs2zBJMseErmfvNUy1zNnub2NkNniY4YsUkcIAkPr7qH45P/H+S7T98WqVkpFgw4f2r5q07ZDH7IPKR7+Wr+fvGuQFwJMr7uqTVXe8bcNVOWvqI1un+T4fHmeL8fdLlSyTcsxsyB/XLbvpHibMUv4LfG5Ui+V6G1nuzdswcoPee8CAAAAAAAAAAAASHoQwRsnHpxRkQnqcJJRiuoqLDcOPo6iNeGkZ7xSRyJsYtt3rNpLprJObNIzmkzNzhxvMrmZDt0sx53aTxgeSZyzH5xrMBZ3eb7Za5oXdrFWElpVoSO5cTTe9P59P7cew8cI3azaTywStVxvuSxV0SUzjZ0atP2a2Sb5w0o3vqL7NHnfxfeX3K+n9D0UH2Oc78fPLH+cq8JNq0I1ZszJ8EfyfKOrm9697wfRtS2CLquCM+uW26r0fGjgJs12PTd6zi3r5j9n9nGvC8qsClcUWbbufFa9Q3zfT5Rust676So2a76edaFBz/PkOm60n9h7vUiFl2Q1qmIVoSRzHolAZs56juPId8w7PhzLqvvAHphKX7TYu8J3Mhcx7x4gcAMAAAAAAAAAAAB8fA8ieLMJM3GYbH2TEEz62ybk86pIWKdaYxV08iZJk+1mslVIrPuOV7GJB3/C/cRasjhOEABKhylkqYpgWVaUrTJM/Gc6apFYlqoi4yg7cWw73pqp/eCHu35WPjXudHus9PjiyxPbZvaVrLzi+2aiO5kpst6AyrmjLOuFxzLfuee7mTBYftUkezgoXZEnrMzkutn2ULawRiTePssN1glG5io6+DK0EA8amG/YHkzK2rTiSp7481g0dLLNMbbdJrc1W06FmqLXL75tXhBp1bKi+46PrVCAL/inCdpE7ynrMXKCi2EFJNv+w7+7bvDcRMlI88+1p7g6CJNZOxUicnwTpvGjh3UZrll+p060blpifDlBsdzv31/d7o2ADQAAAAAAAAAAAPDjWT17BwAAAAAAAAAAAAAAAMDqQQRvlv91fqrlVHqdqAKLo2yDj6DqhrW9hrusIJHeX6aNk5Os3hFV83ASdT1sFURWtzMJKjdsWIkgrNiyaqtV1Q1s55j+s3X7guPMnPOK7zBx3CL7X7HKqlYtq9Yp0oqpeLWIdeuF31y6kklwP6W7x1i/BnvLINutFm8RFl4L13Wt96rtOEWWLwtBaVVdH3PORaq15N2f4TlsVr3JsVfB+pHkjTU8j3Utk7LLih87vI7ZqjmbV8Eq8hwV2o/ZWFLyXRv9M/ZudVxlnqecdnlp0XLbXbm+AlXR81t/DaPzjB81t6JY/HdKgapIK9/Xa99FAAAAAAAAAAAAAH4oD6rVVGbCN++zWFAnHjYI1oxNdEZtm7J7NT89b5Fox2NCCrbJ3jVRg1jg4UNaPjlBix9fwcR7wRYo3opJ/3Cd+Pq2P8fHYZv1T1/FsOVVdIXCaWRv5URyvD2WXfya29db17YnHH868LD8e6qdS3xvvh/FuqLjmHOzH9a2MIpLmX2E/3cT65j9Rfeu6Zjj2K9bbM+2Y24arsjcp/H7Yjm+xFNo1vXjz0jiylmWJY+XDobk3Z+bPjvmGKYlmOMkg3HxdnDR2SWf53XBGFtga9064bJ4q7tV69nOJ7rOXubzvHHart+m4Zl1Yy3yHTky7Z+cZcREkuPF2pMtd6jlEic4z+AF6Cv7vdhaT4Vhl9Seo23kF+pa5zhubkvCvDG4yydy2VwrNpZgR64Tezz82DWMj7HI+LLhG/NMBgEmN3mvAQAAAAAAAAAAAPjhPYjgTe4kbnxiXpbJb9knIpefJ7I66c/9zORy9NNXlEXwg/CBs5xOXVY0MDP9sW1NJZd4BCgMeTirqo4ElXAcpSdM07Vu8sMBruvKDwJEyxBQbOuik/6+78tdVhZKjjEZsYhPHEdhoWwVF3tlmrwwTZHxxT5JjEjSMoDkBGOObxNWlkgcPz7pH19/OUsfC20sN7IFglIBlfgs/3K/UfWbMPvjeX4iJLIM6SSqgySvrR/cu86KUFN0evmhhcwzF/8scfBUuMaJBauC1ZLFnJLPbd7x1oVxVp2X/dw8mec6s2qwfvF9FTl+UemA07qQz4ceLzhq7JmP9mkNoRUcR5HwTvrNEVb5iuUiFQWfgkVOcBf5iu5pR7GAXBQMyxvzNoHHdGDTbBs+m8X3kf6zE69mFX9A/OR6K5/FzPiUXDf+fnFSnwEAAAAAAAAAAAD4UT2I4E3INkEd+3Dt+nHZTEFUZSBvWfJnMqiybj4zPsEcFeRxUlPM2SCMUn9Pjs9+nLzWPLYqM+smy3MngR17eCLaLjqf5DGKTyDHj5vXUik9ttQnOcvt4lUx0luGoZzsvsMTtR0rfs3iy8xsux9WKVl+Z9nzs1Vmie85PopE8Z0Nzn1VWMF27GgMQeWPdDAmdfzsNfVNjiIWNlg1tjjP85b3y6ZBCtcNnz972ChZverjKhIIscl7Nrat+hMeM1mpKPlZuP/0+OJ/Tl/7/PBbdlm0qnkWnOU/FSXOlp/HxRMkiurGxO77VdeyaGAr+1kyWFb0sq+sLJTKqtmOu+77XX3tP849vG0bMQAAAAAAAAAAAACRFWVYAAAAAAAAAAAAAAAAAOR5MBVvilR4SNUgibXwsW8X1jdZ1giIr7ei9VK6+ov5f3J/1iP6vlnHjypr+LHPwm3Tx1xWxsm0rvJj1VKSLa4KtX2JV63ZtJqMpR2Um6mC42eKuEQVH5LtYX4Itoottpom1oo90YbyfV9ebsWSRWKr/OvupTeMjcUNxuopzLolWzNF55M+DyeoLmPuv1g1jYKXdFV1jbXVkHxlyi6ZNl3p7cyAEtc8Ncawkk3RCkxF7m/bc2Cr1LJp5Zyixy1SrWndmNdVgtqWE6vQlPt+LPhsrjw3SwWdqKWSKzm+4neM9T70peU9tKykFVYLy75D49WpVladyTnex2JrlRZfnh5P/H4JnwfbOFdVfnMcP/Wk5XPkyPV9eZYiPLbjAgAAAAAAAAAAANjOgwnerOP7YcuSrLzlts8TQZQgVBNv92ObGI9CMNn9Zo5laRW1brI9L0iTntQNQzeFFTxOEbb2PemWQMvlOdtuE/6IH2vd2PKCBImJ+2zaJTMOc7zseMNlyfZjRb6PKDKWzCWlQyPhuul7KFz2cdvM/GB827UrHk5ZxRZKsIVv0uE5W5u5Tax6ZvOeBdu2Ra9DdA6bj3PV9cgLKqX/vC6wZzlwJlToy4+epdjSgjuU7Q3rOI6c2Ku4aHAp2/Tv48hrGRi/fvm/U4rtM1ga+2e+1Fu6wHoP/F0CAAAAAAAAAAAA/Bl4EMGbIpUXnNTP9La2aUw/to7jZ+sEFKkCkxcaWVZdSE+8mpUT+0pPbheZ9F9XpaLIxHjRY23LVvlD6esVnn/Od7TVMZbL87czlYfcsJzGctu84FZizI59kj57LTcNEaT3awszZZdvdqzN+ctAUqxayfJTJ1bAKSdYEqwfu9SFn7XEGDZYL29ZXgDG9kx/LKtCNzZ548tuXzx4Ywsapd9N8fXyQoNFq6KsfreEz763DOQsH1ZHkpfNvy33m7iHsmN1luOJ7W/FeJ1oYc5Y7dt/6D2y6v5btdx+Xf3khVk1xtTzm8gGxlYPd0fsBgAAAAAAAAAAAPhwDyJ4k5YIV6xZ1w8rLdj2E60kBeGbeMmRdIWG8NjWiWZZJiltYZ41E7ybtpbJTq6m2pYoWXkjb5/5FUIyZ1B4fGHIaFUlkeUnOUGAaDsvc2z7eWXPSQor1KSm6J3kvZGoQhHtZLlseTzPk5+cuk6NteAkeOw8bG1jfN/LfBe+7ySq7TjLNk7R+Dxf8hZzeQtPjmuWuY6j+XSqxcJbzqrPJ2PNJ1Nd39xpd69tDrHwdX52pt12S3udA0nScDhS9/5ejZ2axqOhJKnRbMlxS6YiVKUkSeocHshxSnIlueVycK18ef5CritV683l+coJ2wslK3VEwQm74qGU1duvO8a6fWw6vrzt8iqdrA/ErQ/drD3X+DjDd2m85FL4TK6p0pMeu/1Q5g3pxJpDJavfJIcV398mAcF4oC++w9xgVWK3xQKPRarRbBoQy6s6VOx+iJcM8vNe0eGn8a3kx98lfvDecyS/2OMEAAAAAAAAAAAAoAB3/SoAAAAAAAAAAAAAAAAA0h5kxZtQkWo3y0olBapY2Oq8FKl+kTuOtVVcPk4jj5X7WVM9wVaNJltBxpfrloLPNhxbfKOt2rOEVSCyx06eR3x9Z1lhI1ovWZPIFPLIr95j6b5iuc72llNpxdvSZFvIJKo1+b48X/K9mebzuSRpMh7L8X3NJhONh1NJ0p/+9K1Gg778+UyVWlWSdLTXVO/+VvWdhqr1uiRpOuyrVHH1T//1N3r+/JkkabfZ1O31rfYPOrpvnEmSvvvuTL/9t9/pH/7+r/Xq+7eSpE9ePNFsPtd4PFOr2QxGO9X+wZHms7ncijnu2bsz7TR29PjpY9Vbe5Kk+Xyi3fauPDk6PDmWJHmeJzmu6o2d6Ho5xa/dJpVw0ss/pHXQpu3a0s/gukpWtqpU5iN7paVNWhhlKqv4fvIhC6t+hWONHbVwC7vwPCQ5coLKVckqR6mBZSqNbVphKLmCrBV2NpHXvsy2v22OseoeKl7pJ9yZllXGrNV3YoW6zHsu+1vPvC7zK3oBwL8H//jun3+S4/5vT/7mJzkuAAAAAAAAAOCn9SCCN+l4Q9RmJ+LFW5PY1l3Tnmp5DMu+Ey2ILBPW8aBGsHB5nI/dsSM+v5qZ5PV9eb4JyTiOreVS0rrQjfnc/N+2i3VtVexNsCxTuX5yIj4Km3ip8eYHf6J5fjfYgxdrLRW/g8IiTn4mHJA3dvv5eZZleWNLXtP0RHt07aPli+lMs/lM8+lEi7EJ2UynYy08aTaZajKdSJKur27UrNf0+vvXqpTMufneTKVKRTfnlyrVKpKk/lVVrWZd3ryn4cDs76bb08++fK6vv/5aTnBZfv+7b3Ty6JEOHp3KD8I9R0dH+uu/dFStNfQ3f//3ZtuzdxoOhqq39zSaTIJrNlOpXJXkauGZ63N8eqL3789Ven8mz3snSaqWpLtaVSqVNbq5MmN2HPW7A1XqdR2cPpIkuY40nS90eHqyDBA5jiPHdVSpZF9Ntuu8yXdTVPxdYmsZlN53XiuxVeMp2rIob1ybygsepv8cX38dz4tapbnLlkY57bS82PMQ5a7WKnJ9lq/C8HiuPYiyYg+xP2e/8w+1qm1XsaCWLznJ99HaIM+yI5UfXSB/sTym75eCP292LgDwU/upAjVFFR0fAR0AAAAAAAAA+PflQQRvrJPQK/6r/vQEvB/fx4r9K7UPe/UIe0WJTSbIbRPy27BXYvAkubGASjShnl0/Op94qOhjTyzHx2vbc/gdFZEdX3rSOgzoZCezkwGc7HcZX3c54R3uNLlGobHmVcqQTFCsf3stSZrPZirXmurddeUszOfd23uNxxO1mhUtgiTCeDiQ65Y0Hs80HQ0kSdVaVY4z1cF+S65r0jN3d121mnXp5FC7+4eSpFfffqe9+oHckqPJ2FTG+eTFiTxvIUee9o9PJUm/KLtaeL7q9YpGIzOW0XSi/miqvX1p0O9Kkkq1mhYq62c//0KXF+Y8vv/mle66Y0meHG8mSTp5/Ei9/kjDwZ2++NnnkqTFwpejqdxyXQs/qNwzGGnQ62l+76pSMRV5xpORms2mLl+/WYaozq9u1Nlr69nL52rsNiRJbslVoe/Szwl9yP685313q9bbpOpMbI3g5/pzMH9fHYhYVS3mY7178sYZ/nQcR67rWp/VvDFtcoyi1bvibPdBeOm3uR6rQle2dTb9HVFsTPE6RPn7ynDMP3x5iYpGJmTpKAwW/kC/CgBgKw89VPMxrTtXgjkAAAAAAAAA8OflQQRvlqVOVkzY5oVLwrDHqknRTSpFLAsG+GZiMgw7ZIccC27k7is5UV3EurVcx1mOLRxvuvpHdLxk+MRW0SdvAjhvn6vCCV5sHSfa0ZrYQcQeHPJTY46PdVVgxresnz1WOK1tKgzZ9rM5b+FpcH+n+yCwcnVxqXLZ0XiyUGevLUka9W51f3urnSfHuu+NJEnXZ+caDO6112lrPjWBlevbez1+8lSuN9JkZEIxcnc0Hjr69JOnmgaVcZ49f6Jed6Rao65eEJ55/uJIO609zdsTOTLr7e3V5bgl+d5Uk76pRrNbn+rRV5/IcaRef2yOMR+pXplocPtOu0ELqcVipssYoTiNAAAgAElEQVT3b1Wt72gQBIOaex15i5lKpbL+8MdXkqTTk321mjUtJn1V6jVJ0qB7LVeuZsOe/p//8/dm2WCmR48PtNusqLrTMts+eaZa2dfd2Tv170xAp9Zsqr2/r1K5tLzGxVv02MM4eW2EbFVuVu2zwAiUvJ/soZ3sey0cU/bY4brumgDOynZRqRHmWRU0chwntp8Nn5lYuqhouMYPXml+rNKObVxhEDM+vlXfaSrvuWLIq++f+DuySCst2/4y7+JltZr8cVn3LQUtuDwl45Dh77PFZjsEgI/oP1LAZlurrhGhHAAAAAAAAAB4eOypEgAAAAAAAAAAAAAAAAArPYiKN2EVh6IVUaIuS9meLKuqm9iW26oimB9BNQbPWx7DOr5lS5Ns9YJlNR7LWDZpS7LcNtpJVM/FcUylGes+V7fWsh7DUgHHVjEk7zzS36MfVjLKHDt5ZeJVfOLrZMcdVsFJH9vWWspfFlMKzsRyiLB6hpNab0WViuCj2Xymcqmkhe9rGrR3mo7Gmo4n6l18q7DWj7+Y6fKmp173Xo73RJK009iRU67q7Zv3urkzFW9ajbqev3ypd6/P1Ov2JEmnpyfyPUf19pFKDdNWatgfqr5T08XFlU5O9yVJg/Nr7R0ean+vqRfPTyRJ8/lEg35PlbI0nZmx7OzUdHl1p0q1puEkOCe3blpcTefq902lnafPXmjiVdU4eKL7O1Pd5utf/Y1KpbKurm50/ptbSdJ3373R82cnur680HhozqNceaz3V2M9Pm6qPzAtqebuntp7Dbk7bU3f3kmSavWyaju7ur7r61E9aHt1+1rTQUNutSo3aD81HM/VOTzQwaPH2j99Zr4hd3U7qCLLt2kft7nV931S+Aw4K9ZJ7il9hPh7IW9985eckjqrjhc+84re2Su+hqXM+8QPqtco+Q6xvV/in8vPqcCTezn9Ipcxc7xV1lVPy6tgVFRmu+XJFdmfqXCTXRZne88CwA+PKjcfT3gtqXwDAAAAAAAAAA/HgwjeeF4Q1tg0i2Jp5+EkPl7fYsre3ig+8e1H4ZtUAMe3BkosLVLMwuWYVrWF2TSYs9xXbB/RMZJtpmzHT7dGWddCJc7WVsU6xmB8yW3tbbDSE8XZ8WbbwSS/huREdfo6pEaVe17ROuYzz/O1mM00HvTlL8zk9XTu6ebyWoPeQLVa1WwxlyaTsUolR+3OgSTp4voPevf+Uv27GzUbTUnS5eW1yuWKWq2OZtd9SdLe/oEuLq919PSFjh6bVjCPn5yq3+2r1W7p7ta0kOp2x+pNpEpJuhuYsZw8eqybmzu9ef1On39uwim7rR1N5o5urrt6fGrCOIPRSNWdhr795rW+/NmXZsyLuVqNuvbKVd3d/UmStLO7p58fHmg8HJn7X1KztaNqrabxaKiv//ovgmvkajyeqFJr6osXz4IlZQ0GF/pjv6tudyhJOjzo6NmLp2rttnX62LS4enRyqr3DfX3/3SuNF8F3MC2pU6uqdztQ58CMub7jqlZv6fbsQsPuvSTp4PFT1ZttuaVS4oYoGrwr2g4oT94zm3x+0wGxeLAms8fYaYT7SIfT8sNuq8aXt67t3rfJXyd+3fO3zXs/xINDqwIrW4dYtEz4bJIvWr3PrQNY28oPAUbsocP8dT8sAAoAmyBw88OJX1tCOAAAAAAAAADw03oQwZt0WKLw2kHiIq/uSaKCgpS/XuYIUeDCFL9xguoOyUnKxMT9mrGmt0tM3JvBflAQwMZaHaLgRHuRsYTLPUvoKS5veTxoUzxo5AST6PFtJckNxh2u6cbGHQ8ymBElMw6Wa+R5Gg2HGnRN2OXy7FJazPTqD/+il198JUmqNtsa3N2pWi3p+2/fSJIq5Ypub2705OmhLs7OJEntnR1dup4++fSpFkH4wnFdlctluW5JX/3iZ5KkV9+f6fD4VLP5QkeHprrNd9+90+Xljfb2mvr05XNJ0pNnT7TTqKtaddVsmSBPr9vX0emXGo1G6t6bMZfrDc2HUx3stzWdmYo8O82Gmrt1dQ5PNOyZSjaj0UTa9SVnruPjveDqzSWVNZ9NTYkSSdVqWY5b0myx0OMnJhRTqpT0+vWFJouZzi9uzPVbOOrsH6rTbunuxlTGGY5GWizmuu/2dHJ6KkmazH0NRiMdHOyr1xsF5/tKf/vLn6tSc3R5eS1J8uZjvX/v6vDkVE2VJEnz169VqpS1f3KqnVbbjKVcydwvcesqq3yo7H6TQZuoklZ0n0YBCDdTPCtejctbM861ValiVbJs443v56OGS5wg+5LapRP7e3Zk68Wr3IT7ylS+WVVcKL7ajx6miY5rfe85yfdW/vi82M+SzMmWgm0Wy8/T73LCNgB+KIRsfjpUwQEAAAAAAACAn9aDCN74y3Y/8WUFJwjDdk4F2yjJEpZZBkg8T67r5oZV4hUaNhqjUvPOOdUdfqoJ4PQprKvK8/GOlwwJhMddXY0hrAxiq1SkTMuqbMUbP3O+vqT5bK5Z0C5q2O9pfN/VdDKWHDORXSn5cv2JKpWSRmPTo8nzLvVf/t//T198+aXurk3ApN2q6P7uWq1GSU+eP5Ik7bZ31T7e1/fffKc335uAzrMXzzUYTjSdjvT5iak88+XPv9BgONDkvie3bB7Nzv6uTh4dqlKta39/V5I0n880nS60U6+rXDIn0+501Ov2VW/UVa6YAMrNTVf1WlX7+x31g2DLcDRVuVrT/W1XrdaOWe96rN/8+lInjw61t98x175c0mI+VbVa09FRI1hW03d/+k63d12dPj42y9yy9vcaGvSHms7N9Tt59Eg7jbr22juazcaSpNtuT06posl4pmbDHLdVcjQYjLXb3tPrV+/MtWruarGo6OB4T/NzE7wZD33dXt7p8uI3ev7ipTnfo47Kpblm47fyZa7p/smhOidP5Loly/3x8Z+v/GpZoXjgRspLgeQ9b5sMd11Vr6JP7odcI9/3tVgsVC7Hf604RfOU1v3lhkbSL+PMxsG38QNnTPLCjR8z3FIsDJWuFpYfLvupfs8A+PNHsObh+8d3/0z4BgAAAAAAAAB+Au5PPQAAAAAAAAAAAAAAAADgz9GDqHgTNhtxVtRlKNoWxdZmKtFqJd0WyXGWLaQc1zV1AywVC5zYtp4KdTDJO5HNVleyjUx43ExXldT5pq+N7fpFlWXin4VtsOItb6I/Z663s+pbs48vbLeT3k/y87zKEauuX7rqgxNsn6x4Ex/LfLbQ7cW5etcX8mZzSdKg19NsOlWn09T9fV+SVC5LjZ2STh8/09wzVXXevLlWya3r6upG49G9JOnp089U2Wnp8aMjOaXovtptNnTy6ESOa5adPjmR55f0m3/5nZ5OTAWdfrevT15+op1GU3f3Zn9PHh+oWt/VeDJXMDxV6w199+03+vJnn8oPWst484WuL2+1u7er0dBUtxmNp5qMpiqVXbU7ppLNZDrXYi4N+0O5JfP4//GP3+v06ES//m+/19/+j38rSWq19zQdTzUZDsKiPxrdjTSZTPXk6YlqddPi6vrySqVyTZ29XTWePJYk9XoD/eGP3+oXX32uo5MjSdJ06qtaraharalcrUuSxpOxyvWWJrO5njx/Jkk6Pz/T5dW1OgcNHR4fSJKGg7Km07nq9UPdXF9KknZ3axrN52o9fqrmrqkENLjrajb+XsfPny/PbXknWJ6HTSp/xKs0+ZmeRtFnsS2UX+Em9W6Sk6jMYn3X5RwlHFy6SlTRc7N0gUrtOmrIt3wHyH5mjuOoXC4nxuJo+5Z36XOJ78NSNCvRviq5Ur54pa34cde11wvHYqtsk1fxZm07sA+SrPQVf2fHj0+rKQCboMLNnyfaTgEAAAAAAADAj++BBG+S4pOD8YlJW8undHuicN30/tKf2Y4RBTWilkWJyd5lm5PVgZb0MeytXqL4jiMnt3NKPPDj2GZTFbse6bCQ4yiakI1Pl6cnjW3b+cuAQNTayUnswvGLFUwqMrlt//7CcRRpteKl/u5oNBqrWq2oVIrG6fvSZDxW98q0Mbp4804VZ6hGa09ezYRJduTqn/+v/1u/+vu/083tQJK08KRGs6LddkXTiWmpdHxypJJbUrc/1ouXJ+aoblnz2UD33b72jw8lSdPFXN5Mau/ta3/fhEkqlbIuL65VqbgadE2459mzp3JLJdXqdT1qmPZOk8lQd3fXmozH2j9om21rHY3GQ/ly9frV2+C4jhqthkbDiRpBEGV3z9FoOJS/8DTumWO02k1NZ54Ojg703bevJElPnz1Ts16T73hq77YkSbPJRDfX9/I8R//2b/9qzvfwSKWSr/39I41G5hr4nq+Lswvt7+9pEXxHvX5XzXpNpVJZlappe1Wu1zSZzvTb3/5eh0fmGnzyyTO5cvXu7EyHx+b6/Q//0z9oMhro4uJGv//dN5Kkly+f6OTRiQb9kep1E9pZ+L7ubm6002yo1qhJkmqtjgZ3V7q7ONPB42fRnVDo/inOcfLancWX+TIFxdIBM1fJuEt++6kwkKjUmrYQji0oaG88ZBmtExtz6pleXjfHTyRbTPjIiYUlTehtXbBjm+BHuL7nBS0JXScbsrEeTNbLmwgGpQI06wJZRcbuuvb34qrfFakVgw/txy8cqrIEfQjdACiCwM2/D7SdAgAAAAAAAIAfz4MM3oTMpLAl+LJcIRvKMYvzJyat1ROWE5SyLIuHZsJtlVnfJprUTa+b3tA2vW4fu2uZTM2Xrv5ixrFq/NH1iW3pBNPqiYnszSZwwyo6y/1tGIQoWskjCgo4Wsznmsxn8hemVMxiMdfg5lbj0UiOW5UkNZot1RrH6t93df7utSRpPp1pf+9Iv/317/X1138hSbq77eri8lzHp491+sgEYJxyWcPJWO/Or9Q5MGGSR08fqXF7q0rVVS14uiaTuf71v/+b/vbvv1a7Y7bt3nc1nsz111//pcpBOGUyn+nuoq+dRkOz8UySNJuN1Wi2NBoPdXPXlSTttJr6q7/5S1WrNe22TVioWt/Rt3/6Xt7CU33H7O/m7l5ySnr09IlGAxMg8p2Srq+udHF2pXbHhGy63aF8x9F84WvU75n13JIqpZKu7+708sUTSdLTF5/q+uZG79+daf9wX5I0nUuVUkn1Wl3zuQnjPHl0qkrF0XyxkCNznb3FVJWyq08+faZebyhJ2m23VHLLev/+XK+++16SdHzc0WA0kRxXn3xiwjMHhx29/v6d7u/utdMywZtSuaxKtaru/bUmIzPmJ598qc7Rqe7P36hcNcdtH55Y75PtAwjZilDr1o8CbNnqMU4izJI/xq2el1RQschYs/uJPsoOoViQZN2youcWBlqsa1tK9/i+L9d6TsW++02rBxXZV3x/9nFEL+gwjpmuehbba+znh4WFAICwzb9PhG8AAAAAAAAA4MfxYII3iUZDYZAmb8LQWjlg+aHM5PgmE87xfSS3CpsXhS1Tkp9E7WSyk+vx9f1Y2MVehyKaks9WrkiMp/BkeliBIlkfIxl6iZ9DOBmcrdRhduHI96MKF6sqTqSnhrNVhOyVG6JlqyeRV7XVCZf1bm919e5M93c9ebOxJGn/cF/lak313T1NB6a902w+1R//26+1U/X09NkLSdLN7b1q9ZK+f3uuWbDrUqWiL3/2pfYODrWYmYDJfDzVkydPdHh4onLQVur2vqfpbK5uf65qfUeS1L0fq7N/rPFwpp262fb83a0kXweH+1LQFsktudo/Luv2uqdybREct6HmXlODyVxnr99Jkk5PTtTvDnV43FZtxwRRRqOxXr96o/3Ovs7PTDumyWSuzv6e7u+6ehts22g0VamUdHRyqD/+wVSU2anXNRr0ValWl+Geb799rU6nrSdPH6l7a5Z9/92fVK1U5c0mur24kSR98933cl3p1dv3+uXXX0mSLi/uNB4P9fKLT5Ztr96/OdOjJ491fLyv+cyc25s379Xp7KpULumLL59Lkqbjodqtug4OOjp7fyVJ6vfHev3mvV48P9Ynn5r15l5ZjuNoMhzomz+a0M5kXtLzl5/Jr+zo8q2p5rPTbKm601x7L62XDurZ79NkyCF8vtzgs/hyW8Wb1QGJMICxfFf4vlSwgkxmjUQQJLYoc018+7AKlJzxnexqm4RA/MT1khx/9bsnXD/83HU3D5zE2zFtG7jZfltTVSgcf+JOsp5KuLAkaaHNf+MB+I+OsM1/DIRvAAAAAAAAAOCHV6xXEAAAAAAAAAAAAAAAAICEB1PxJs7PqeKQt9xIVo5wnHgVGXvRBj/1c+WYpGWbp/AYpihPvOpKsgWN4zjyHT9RriBZccZZrrfqfMI/eYuF3FIpOa6wFZalEkxeBY3ocE5Ou5zU+MLzcaNKOE5QTcdauSZnb/HWKGH1m2hMq1tspVuDxSsaOb608Hz1ewNpblo0Xb9/pf5grtlc2m13JEnnl121W3UtFr4u372VJJUrruaTgWp7R6rXTYum58+fyPMWOjg+VL9rqr08efFU1Xpdi/lcV9em2kt7t6Vavapqraaba7PeqD9RtSrVqxXN5+bxuu+O1GjUNF/M5Qejnk6n2t2tyC2X9PbVe0nS8eNj1dyqund3moxNlZ7PvniuklvWYjLRz37++fIqjgcDLfYaugiq29zf9fTLX36lq8tbuWVz3M+/fKmS62in1dY8uC7VSlWVek3nZ5e6ur6VJP3iq79Qt3uvk9MT/eH3pgpOu9nUs6enKpccPXt+LEnq9sfa2amp2TjR1bm5Bi9fvtDrV2+1mIzV7fYlSQfH+6pUT9RqNdTrmvWOjg91d32vZqOqp89M+6f5fKZataLOwa6qFZMBHA9Hqtb2NB2NNOiZFlKdzp7+7u++1mQ80WhkKgYNR10NhhM9eXSgo8EoOMa+5pOhao1dOZ7ZX/f6XEfPPre2N9usKomtuo2b+Mz3bW+adAWc5DMab3O3qrVRVPzFV/zJcRwn//21bFkUVexaHiO1j2j3lnesr0IVbjKHz6tMI3uFs/S7xElfSyfxI/tBWA0sVflm7Thjx42ff/o62Cp0pfm+v+b31MqRyPGjCkOJ7yj2O8VL7d+MK3w3J9+rABBHhRsAAAAAAAAAAH4YDyJ4k56kzJu0zE5WR5PY6TBLYrsNx5FuXRRNyqbHkWw3Yw+8BC2zcsM3+SNMN7Rx3dUFipLXLTWJbTlENNmd+UTxNlo2YScwW5un9DFsn6cn2e3fpVnueZ7cUtCuR+ZajoYjDQdDSdJ8PFH//t5suzATzxcXPfmLhQ46DZV9EzqZDu51fneuZmtXrU5bknR8uCvHlRynIrdiHoder6fW7q7qO3V9+41pY/Tk2SONBgN1u30dPzJBlNl4JDmOLi9vdXx8ZMbnL+SWXM3nvuSZ8Ey17MmVNByMdBa0qTo83tfR6YmmM6lzcCBJajRbur2512w21f6+CQv17ntq7+6ps7er+cK0aLp4915OpSTPl8rlqiSp2Wyqc9DR7X1PzUZDknR319P+YVuOFioFbXcqVVf319eqlyv6u1/9tSTp6ORQvnekar0iX6aV097enmqVsu7ue2rv75vzqE80Gg3UbDVUrprj9rsDDfoDnT4+0fl7EwI6fnygVqOmYb8rxzFBsZefv9B9b6RKtaqFb85jPprrdnij+Wyufs98565T1mAw0rt3Z/rks2eSpM5+U7PZQr9990bTiWkRdnJypEfH+2p3Ohr2B5KkYa+vUmmkg1pdlZ1G8J335C/mckplpcMz2fBCkTZB0Xsm0aJJ2ecvj+245s+pIyVCKPb9OMGGRTImhVpSWQJBwWhWBoM2ErzYbC3jVoUQ/TB94sdb45n31IeMqci26bHlbbNd4CbYzvdiTf+S8cdEiDTz+0+xNVaHqNLvfEreAf9+EbJBXHg/0HIKAAAAAAAAAH4YDyJ4s0o4b2gqpITThF7wWTQlmajkEExEJyYd09Uuwi3ToZ/Y5+F2bqwiQyRdsSW+72jK1PHTE7FmzLaiEvHjp8cTHmRZHUL5zDpeEAyKC6sipJfHzy2sRhMPzJjrHq+0EK1vmyz3kiMPwjOlVLWe9Niy4w0min0pyGqo3+9r3B/q/vpKk5EJXGgxV2uvrVKppEWwj/vrC3Vvr3T8q7+SH9w33buefGeuvYNjNZpNSdJk5munUVetXlpW2CiXSvJ9T/d3PX32xReSpEqtrv5tX+VSSXc3prrNeDhU52BP7b22Li4ugjN3dHdxoa/+6itVggo6x88e6+byVs5irs6hCdSUyxVNp77evHqvRqMuSarXd9Tr9lQqVVUKqta8P7vQfXesxcIzQR9JxydH2uu09fbtO/meOd/OYVuT6UJHR0c6ODDn1h+MNZvONPCHajbNMTzPV7/X1Wg41eefPzXX5epcj54/1Xg8VO/WVKjpdHalsqtWuy7HNcfYadRUcj153kJBnkb1ekWnx23VKtLhYTP4+hdaeL4au231+2bMNzd32jvYU73iLisBtfdachxXN9f3ms5MoKZSrWk6nujlZ8+1u9sy32V3oMl4qkqprmbbHGOv3Va1WpNbKqveMCGg+cLXbDaX53nyPHOM6XiiYe9Ozc6RNTiSrYITv/fjsYRs5Zp45Sjz//i22SBP/H213DIROrFV1cm+w5bPoPLfG9knvBhTQceXnPAdmw0EbSPxGgwqA2WCeM7qcSbfpbH3lRNWmQmXbB/EWRf6zFYVK76/1dt6pqyNZdi+klV8zJ0Wf497wXfkLINu5v2fNx5n+U4vFtkC8OeCsA0AAAAAAAAAAD+NBx+8iST+m//EJ5lQjGNadqydJA0qRiQqC4StWwpPsGaiOrEJT/tEamFR6ih3LPYKHXnVdNLT9NlqG+Hkf/JY2Yny+PEtA8+sY0I3yeMnJ6XDn7Exeb7Go7Hk+bo/v5Ik/fE3/6RSuaLFYqHnn5qKKIPuRNeXF2rUq5pOTULn+bMTlT5/oWqzoZsrE5S57Y21t2vaLD0xm2o8cTRbLOT1HHXaNUnSq1fv9Oj0SKWSq2bLBFaGo6Hu7/qqlH212ruSpN1Hj/TuzWt17/s6PDIVb/b2d7XX2lG57Go0MGGS8/MrHRx0NB4PVa3uSJK8hSffG+ntmzf6/PNPzPhub7RTr8qpOyqXzbUZDaf6za9/py+/eKHDfVMZp1wtaTSZajKb6Txo+fS3v/qFRt2Bejc3qlfNtvWdHX3/zSu9/PyZ6vUgnDJfqNfrq9Vq6be/NW2lDo72dHF2oeOTfT16ZI7x6ttX+uzlE+00dpbhntFoJG861mKx0MX5tSSpVPLV7piqOpVaI/g+7lSqlNQ9P1eva6r+PH16rO7tvSaViuZBVaJ6zZGnsi4uL/X4SVBFaDpTZ7+tg4PdZWind9dTpezI0VzVoNJO97Yrz/e0N52q3TQBnVevX8ubjeV4czUPTDurZrOj2/M3anYOrPed3ap3zSZVTfJauVnWXFN9x3GcKAUTVuAqOIrN+EFbqnBcUUUV2/s0DKsVDrr4vgnGaFVNoM058Re5bJV7olZWRSrX5B9n88DNJnylTqTA/qN7Mh5EdZXfdupjXnkADwGBGxT1j+/+mao3AAAAAAAAAPADoNMEAAAAAAAAAAAAAAAAsIUHUfHGcZyc/wbfW7YJircWCS3bi4RVauJrpFtIBetkqjYE1XGW64RtnCytRWK1WMKDyNIdJtWbJZltsrWGsdY3SFXwSayX6v+Srq7gJ9qQpNtjJdtzRS1K4oezN67J+5aSwwz3GV43X36m3ZYf/M/XYj5fblwqleT7vsZ900JqMhrrzTffadDr6ujYVGL57Mufa7Jw9ev//ltN/nAmSSr5cw1GYz3/9JkGQZWUue/pxctj/f533+jmylRn+fzTE5XKVR0dd9Tc3ZckLeZT/frXv9Gjx6caj813Vd/ZUaXeUOugKd+fSZL6t0MdHR9qPOov21TN555efPqpfM/T/d29ucKzuQaDiQbDiU5OTNWVnWpJWszVve+rvduWJN3e3mo+W2i31dJgYKrCtPdaqlRqms8Xy2ovt7dX+uTFcy3mUrVeDq6er9vrK+02KnKOTfWds3fnau+1dPL0VI1dU3mme9eTW3Lkuq5mE3Od3bKrZqupzkFL+wdmLCenBxr2e1osFjo4NpV7dhpNVWtVDQcTjYKKQY7jqFotq7RYqNkwlXsur6601+7o8vJGz56ZsbQabS186fr6Rp22aa1VrZQ1mw7V6RyrXDPbvv7+WzmOqy8/e6Ja04zl7M2ZppOu/Jm02zDn6x5UJdfRbN7Q4YH53vyFp+nC13fffKeDjjnfN9+91i9+8VJOpazd4BrUGg1df/8neYu53FIleRdaq53Y2sklWyLZKuHYmXW3rX6yjfgZbdoWyawcPuvhTsJ3j70KS6ZVl+xXJnpPLvtBRW+osLqO7yfecdZ3a/Rx8vixd0y2rVVy3W3bUP2Qgppi8tf9ZnBsfymlPwj+ntfaz5e02GaYAB4IKtwAAAAAAAAAAPCwPIjgja310XL5ysnXeMuTpLzNMiGVWOsRk0FJtm5atntJbBeOK9l+JVwtvmo8hBJbkFjJtAVRYpJYYWsUJa9OXiOSRPAoCMBIfmKXjqIxLpfE1k2cX2avq0IKUcgnvJ7e8sDhAaPYju/7ms+mchxXpbK5BReLufz5THdXF7p5984s88tq1Cs6O5vKrZpwynza1/nbdzo7e69f/uqvJEmDwVhHp20tZnM5ZdOKqFXbUffuXoedtj59cSpJ8nxf33zzVp2DPZ2dvZck7dRr+k8//1LlqqtyzbSVWkxHkjxdnl1pp27CGs1GU42dinb3jvXurQn83Fx3dfr4VCXHUa9vxvf2zZmePTvR6eMDdbt9M77+UPO5p9l4ondvzLm5pZI6B4f6/ttXur4xbbQqtZKePn2kq/Nr/dN/+a+SpP/lf/4HOa6rfq+r3X0TTul3+9rd29H91b1efPJEkvSv//In1apSo76ni3fnZszNulRdf88AACAASURBVJ4/O5Y3H8vzzNUveY6ePz9Vqexop2aulSdfbrksxy3r7s6MeTGbq1xpqFZ1VC6ZCfxGs6pSqaLpZKRebxJ84yXd3t2pVqtqMjHfeatd1dXFvaq1unZ2gvBM1dXB0b4c19V4MpQk9boT/embN/rLrz5XqWuCRq1mTQcnbXmShsE1fX9+pc7+oaYzX+/OLiRJ48FQzd2mnj9/Ii1MUOurv3gu31/o7q6nzqE5j1KpLS9oO2d9rq0BNcWWhetk3zBhW7Zot9mWb8lWcE6QmQsDcLaWbtG7JBNqyQmMZCIXwTE9zwSHyqXS8r1mDePEEi7hNlGLJi94P+UEb7Si7ZWv4IUoa4gmCs2E60VhGz8I5i1fH6kzTVwL3wnOORi7nNygUJ50S6r0MWzLbPvIC/c4jr1VXzw4VGjEsXZZmwar7G0JAfw5IXCDj4F2UwAAAAAAAADw8T2Y4I2f+m/9w+Vrt0xVf5FWZnW2Ek1sxifp8ybOk3/Pbmu2dxwtzzg+2Zs9ZjYa4KYq/CwDOZZJ3+UE9DLvU2TCNhnEidZXIkQQjdUs83xfjtzU8Z1YiCiazPcdaT4a6L53J0kajSa6PrtQyfc0d0zYpb7TVL21q2r5UsNbE7iYL6TmbkOPS09VKpvKKY1WWaWyq9Onj3V/Z6qzDIdjnV/c6rPPPtXOjtmfp5KOjkYaTha6vDQVarr3d/rlL/9KN+c3ev7Zp5KkZquhXm+sarWiZttUcRkOhppWpUm3p+koqFCz21CzUVej2dB8boIon33+iZxSRZVqQ7OZCcD8y6//TX/zl/9JTz99rov3l5Kk3UZD/bsbffUXP5NTNoGBaq2h6WSqRqOiX/7yK0nS0fG+ure3evT4UM7CHGP/oK3FbKrm0yM5QXmPR6cddfZacnxfrV1zXXaaDWmx0HjUV6tplvW7Q1XqO6rWXHkyVXCu31+q1mypXFvIm5jAyngqXd++0m5rV5WyCYa1dnfklFxV6nUdNvYkSW/P73V9ea9arazW3uPgfnC0t/v/s/dmPZJcCZbeZ7uZ77vHHrkyk6xisVjVVT2N7tZ0A6NpCZJmgME8SYB+oATpQRg1NMJoRtPbqKtrJYvJLZOZGfvi+2q76eGae3h4eCxkFclk9/0AVnqYXbubXTMP1D1xjoOOgq4KZ41Oq8twOKXRrDDoDQGIfJ/vv/OI6cTD98TYtGaFGIPQD/Ei0W67G3B6ts/m5hqNZl2UMw0GvSHH+3s0KuIe2ZaGkS3RvNfESF11/OmQJA5QVPWSgGMmurlY2wkzd6qrz8dqUdptIobVgpErpRY+Lwp0ZkKSL+/SMis7E0zd/foLQcfiu0S5wXpmLq9bFjCyMFNCRSOOzepfUdMlHRTCueayiPF696CV77xLnbhZeHKbyOk2wc3i55v6ed21d72/N7v23FzHFREooMi0SYnkjUeKbSQSiUQikUgkEolEIpFIJBKJRCJ583kjhDeqypVN15WbpEubmspC2RlibzG5FF+VcHXTVoG5K8vyRvu1zgTzlJSL+KR5Hy/1Yd4zLre44G5zqf8L47vS8hKzMldtdS6KzH9U5j1Y3Iy+GN/l6KmL/l++VlHihc34xXHEqTPHbGISEiWGZGmMalprJGqeDnu0j18zHYXYTg6A0cSj2w+4/2CTMBCCEENXefX5xwz7fVxXiF3Wt9ap1SqYpoOfil00Lc+wN2AyHNJpdQGI4oh3332KH/hM02t7nRGWoVFpNOim5R49ecpg4NJt97Fs4UZTqVUYjHp0O30KRdG/YqkIic8wmFJN45jCICCbtQhCn8lUuK40m+vEccJ4Mp2LgN5++21ylRLjwYh+TwiNshmTw71D3vnBU/oD4QATBSHdTo9svkSpXE5vRohp2QxHPh8/+wyAd995gGlbjEYjTo+EW05/NOGdtx+Ry9vkLSE02t/bp7mxgaZpRIp41LMFi8OjNs21JqYpypXqTQYjn3KuSCl9JQRHJ+RzNt1Om3pTOAZFWLgTF9vRUVVxj7c2yhhGnSSOcdL4qdCLiKOEfMECVbQx6XQJgpBeb4yuC2chzbTJFYpksjHtlhhHoVxG0zRUK6HbEy44xWIW1/MplYsoabvueMywc8KDe+uYplh/fhDhhwrDw3PK5Xy6JKdE/pRBt4WWRk3pukEcJ0wmQzLZ3PyYqusoijp/RpNUXKOqwkOF2dEkScuo82OrRA/CLWa1AOPicLzy/JXyK1tYXW7eo4V30yxCT1lR7nKfb38XKgksp8fNy1+t8LK0aFb/VXMglt9+6iy2bt6XRfchZbGgGF/aKXXezmoB4cLraiU3iWBWiRYvu559OTea5WtRVq+H2wU6EXdZIbOZu9uqk0gk3wZSaCP5upFuNxKJRCKRSCQSiUQikUgkEolE8vtH/rm7RCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUTyFXgjHG9Wseov+5Nr3BMucYMzwHURIKtinm5yMVh0k5hfueieM6sv/Zwklx0Llt0LLrn73DGiZNXYFkaw0KX40vHF6JiL6JGl4ColgZVxMFwut0wa+5XE0YJLxcVcjHrC1eTwxUtixaLb91nPiCWYcRLKlSKD7oBeR7jRbG432NjcYDgYEwQissg0HU5Pu5ycfEouL5xTnr79hF5vQKGY4cGj+wAEkctkNKbVamOaInLHm/ro+SyGocwji+I4Yv/4hEI2y2ggnHEM0yfjZChXKrRaHQA2Npv0u2OSRCEIA1GfG/DqxSuq1SaNxtp8nL1WiyBS544yjbUGJ6cdQnfMu+89BqDb6XPe6fHsoxcUS8Kd5XQ0Io4CYsWcu8f0hy4qcHbaZntLOM+cnHTY2d2kVq+QyYrIp/HYxY8CFE2n3xfjKFVr5PIZkjhLoog5iCONrd083jTg+FiMzdQVbCeDoirYuQIA2XLAeOLy4NEWmbzon6ErRJEGMYSRcKPp9/pomkGShJykMVrlYgbb0fFjh85pGwB/OmZtc5PWeY9EDI2dnTVsx6Ld7vPhR5+mfS6gmwq6btFoVAGo1coMemOicMKw5wMwGg3RkjGmYjAcijVkFzdwjAwZAjonewBEk3Nap+d88un/Tjd1FsrlMlQqBaJYZ5xGndUqJQ5Pj8mX6pccb3RdJ1uo8IMf/wiAQqUoot5WuNmser8sPpe3xw8tx07dMX5o4cpV7z1l9j/JYh9W131THNPXRRiG6Lp26dhdo5rSjD3hzzV/r359fi439eu6GKiZW9jMJWrpqrTMxedL7bHkXrTiWuGxJrxsLof8JZdKLV8lPn+z91oikVyPdLqRfBNItxuJRCKRSCQSiUQikUgkEolEIvl6eCOEN1c2KtN/l7c41YXIlMVysCRsWdHGqg3M2bEr292L/ZmJbuL4UnDUPJBphYhmVV2Lda7cHF/a8F7u13XHVl9/MUOLGiBRLrl9Yz3duF4VO3N1PAsb3nFMEifEYYCipRvpmk7kThmenzDsngFQrDYIQgUnm6NzKo51Wi2mkyGGYVFLo5yiIML3fQbDCU4aCaSqGqVyESdjzGOCDg9OyRWyWI7Ds98+A2D3/g6+F2CYFtM0BkrVDYqVCnGi0R8KEUbGsnj01iPyWWfu/3Swd0SpUqLX7eNNhdCj2+7QOutSb9YoFDIA+LZPqxXihz6d0z4AJ0fHFAp5NrY3mLqi3TgOsQwVd+jNb41tm7z/47eJI5ViSdT38bM+29tNNu/do9cRgpDQ8ylUSzx55xGvXrwCwHByKIbFaDSmUBSimG5nQLmSIw4T+kMhimk2iiiKSqLGJLGXzp+BEieEoUfrXIhiHj3axXYMiAKmU3FtNmMQBD6BH5CkIpuYiDgK8aOEQVeIoyzLYjSckskobG0LYZCuW3juFH8yJolFbFiiqHTbXbK2Tie99vmzEzY2a6i6xZ/88Y8ByNk6k34fw9KJYjFZk+EQS08IwzHFVATUPWvT2FzHLG6gps9isVqlfbxH+/SEwwMRG/b2Ow+xJ9B1PZycEGoNJy5fvP6Men2NUjELwFlrgu9qDLpTkkSs3fF4jKqG4D1jcrov5uqH7+PkC1i2SS7ti5XJoqjq3cUi13IpKGrplIKSrBZSLIrk5kFMyuV3VcKyUOhCOLgoKFSue/kuXrnqXLxa1HhDLfNPy6Ib5n26KqQRbSy+n7lWcJPqAK9wXcTU5ba/hPhnuf6ld7miKKvrUhbez9dohWZ9XZ7zRQElxCiJBigXMVrEV6K77i7lkkgk3xRSbCP5ppCCG4lEIpFIJBKJRCKRSCQSiUQi+Xp5I4Q3s43K2zYFL0Qfl11cILmywbroPqEsCnaWlCjLW9ErHR+WN7xvENFc/vmqVOZWR4lFF5zlq29wzblajdhmTZKlDfgv4WZx143nOJrdD+GWE8Yhk9YJAON+izhMN9Z14c6CamAYCWeHB2gIYYamxWxsrTEYufi+ELv8zd/8HT/56U+492AL0xLilOFgxLg1plwuMpkMAcgX8mQzNtOpPxftfP7pS3RdQ9FVapUSAI21OioqKLCzvQnA6ckJjgVh4JOawpAocH56iqnr7N4T5YbDMTv3dwkCH80wAXD7A6q1MgcHJ2ysNdO58Dk76/L6b3/GxoY49vrFKyrVEsP+gOlIuNHYtsPh4TnlUg4rdcYJfBfLMolDj1JR2MKMBzFJlHB6djZ32jF0nX6/T+RPKeaFcGT73gaaFhHFKhuO6J9jmsRJTBxDHIj7rpsqiZJg6DrbO/X0voWMxhH5rImpz+69SqGQZdAfc3YiREDFcolsJsNgOGIwEvdI0VQcG3LZDHEohEYjd0oc+CgolMpCHBUGEXGk0O8NsCyhcFpfX2N9a4vAG/H5py8ByDzcIp/TCX2PfFaMo2AauN6U4UmXTMYCoLLxgFx9ncjto0UDAJ7/8lNcL8YPwTCEyObzZ6+Ik4D2+ZBeX4wjny/ROj1DS0I650a6/jTQDOp1m9aZEO1MJj7ZfJ58tsJ4IoRL//Cf/4YQnVzGQtPFOEplhyfv/Yjqxja6MXulXn1Wb+KykGJlgdWfWXLoWqrzopCQ38x1NYvikmShnjv0QVkUeCwIQxIlQVmpyoElmSTL78WrZS5+vtu77u7Hfx/cdF+XRZbXijOTBWmMsloWkygrZiVJEE5ms/Y1EmX2PRgv1HejfmpW260lJBLJ7xcptpF800jRjUQikUgkEolEIpFIJBKJRCKRfP28EcKb5Q3Su28Wzn1srlx9rcBlVQTVXTp5k+PEtTVetY+4LgLrohnlcg3XiGxu2lSeiW6uzsv1G9R3FQcsE3pTxgMhaPBcj0m/hZKo+EJPg5PJ4MYRg/4I3xeuMLbZQdMVQn+Cn4p21rc2cDIZSrWIXlsIavwAhhOPJA5Zq4kIJNsx0NrQafeo1csAVCs5PNdlMokwbSHWqNdrKDr0ehO6HdFutVakN5qi6SbVshAB7dxrousG52dd4kiM79lHn1GvVnjyZIfzMxGPFUUJTtYm8IYMe6LPpmkyGo5ot84pZoUA5vy0jWmZlIp5dncaAGj6GoPBkFp1F03X07G5bG40sEyNk0MhUnr33adousLJwSH5ouif5eQYjsb0Ox0sR4iPTk+7/GDzCVmngpkRx4gCYjQMyyBJhEBHKIlUVHywhBDFMMX8KLqBmopELNMiUcDQVQJfqI9UXcfSQ6q2RRiKtaFpMYNuB81UyRVEPQf7bQo5k43NNTxPOOMkro+mGozGYyp5MY5i0SROQjI5Bzd1EXrxYh+n08Z2TL73g7cAmI6HxHHC4eEBG+vi2u7ZKflikZ3H75GrrAPgTqfsf/YBYQB2VqyNgWtQbzTotTvgins5nEwwTJPmepN+uk4t26DeqLPWKM1MjnBD8EIo5hxS/RBJpJC1VSzL5uBUXDsYjnBdj/ff/z6KIkRAv/7VF5wdd1nfWeNHf/JfiXWaL65wnknrvfbZvZsI4pKrVrJaTHddG4ueOgoQRdGFQHGhwE3vl8VYq6/iCTN739wmqFksf/mz8lUT+e7Uxl3KLEYQfpW659deKKFWX7uyjsuiSiHSnL3vZ25livjOIlm0O2MWfzgfx629l0gkvw+k2EbybSFFNxKJRCKRSCQSiUQikUgkEolE8s2g3l5EIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRLPNGON7czKJ7zEwnJP4VsRoJyiwj6MZrYTHi5JJbwaKjwtK5WfwUK90OFp0IZt4B8aVIkSSJURSV270FktSI4Gqf5u0ujOQ2Lhx/ludgocWvEsWSXuO7HsPeOcN2B0UV82+YWQyrTBgp7H3xHICHj+7juWOi6RRDE9ee7B/TanepNxpkMiJS6Rc//y2b25s0GlUsWyzLP/7TPyQMI6JYZzSaAOBNp2xvb2GapxQKwmVmPJngez66YfPy1R4AjpPBNHTCwGUnjYvy/Yg4CgkDn3YayRL6HuVKhfFwxMlpW4xDSbi3u0an1SNOy718echGt8nmeoE4FnY+YRTz/NMXvP3OY1589goAVVfIZS2qlSyVegWA0+Mz9l4e8vDpA4w0y2k8nFCq1Iljn7ErYozMSUi1VqDazGBbelqfhT8dc//RY6zU3SbwP8E0NEzbIYkiAKLAo9cbU21W0BTxfCiaRbfdw8no2OmcxorCZDBiMvX44Be/AOD9n7xPqVpGUzRQRPRSGLiAjuOYxOmajIIAy4lwchns1OHHtHIcHR7S67vEkZiX0SgmCn1cP6axLfo8GnugJJTKFXRL3Mu19QamZaEqKpZtpOvLQk1cyqUSqi0cg8xSjmy1gmo78xiy7tHnqEaeOFE52BeuRMfHp7x+uY9pahRyIuIqSlRM3WA4mlBriHUwGA5pNtdAUefuH3EcUalk6fXGmI64b2s5nf5gzGg0xraFY5BpqPR6Az559imWLeYgCANUq8zhXpfR//l/iDn9039ObX0bVV3tdnU5dkj8d3FavAvu6kZy1e+LhbrTthJ1KbZOeKSo6mXt5WJ01E3MkpHmY1K4Nmbq8ntIFL7q4PJlSBZMXFa1uejrc0tNd3StWW7ry1x3XZurnN6WjW/ipSbEdQDL33niu/BybSox0ZVvP4WZL87XG8clkUik043k20G63EgkEolEIpFIJBKJRCKRSCQSyTfPGyO8WR1bsjoq6fJm4XWbrMqNG6PXnZv3YyGeY9beRbuzTddr4lwuRagst3M1fuqi7avjWN6gnf9846bv3aNb7kqSgDcZMzg/BOD8pEWxskau1EDTxCaw54f0Oj1QEtbXm6K/RHzwqw9I/JCd+7tpZTq6ajKZuETpZv36eoMkihgN+qxvrAEQRhFhEBInCeOJiDGyDIsg9FE1jW5XREhZtkkU6azvrKHrQkigawbZQgHfnWJYaXySqqFpOqPxBMsUMUGhFzCZ+OiGhaaLcqVKBcPOULIsTo6PAMgX8sQxHJ2OWNsQggtNUSiWK2imyc59IepQNQVNM4gBPY1yUlSN7Xv3iMMIFSFOyeVzmLZBGIQ8eLgl5i9QGU08DvYO2dgU87exvU6uWMbzQ0ivvXe/STZjoaoKUSiEN4aZoVTR0AwbVRMilijwsRwL3dIJAyHu8cOEdmtAGPq896P3RF9yeTTNAhLiNFZq6sa4Y5dqTWPQT+c5UyBGIwoiNFWMrZDPUnj6lNevDqg3awAMxl3ypTw7lRKKJsplyjZJGDEee2ksDjQ3GoyHI/I5le7Zqagvp6FZNtWtBqqZimfUEUoy5vzVC4YjMd4kNmh1JyjEvHz+EoByuYpm24yGA7rxSMyLqlKpVAnyJWYak8nE5fPPXnH/wSbEoi+mAv3+iEIhN5/TWrNGuRbhWAaHRyIObDia0Nws4Fg2rucCcHJ4wMcfPePewweEiHisv/53f8lP//zP2Xr8OBXereZCgLPi3MLnxdN3fX4vvTeW3yvJYq0X5+IoImZBkLMgTlyOwbvS2S+lQ/n9CD6ujdS6Y1+ujSSEJXHU7WKb5fLL51YJd77suzhJohXHQFGWI8eSC2HqQsGZsPT6byGJRPK7IIU2km8bKbqRSCQSiUQikUgkEolEIpFIJJJvhzdGeLNadLO4myv+Tv+q6GaVsGXxmvToio3OywKZyxum88/pNYuuDeJUfE37q4RBN/Vxsdx1XAh+kmTmjrHU5wXhUrLgCPFVmM9VLHwRfNdj0D7n7OiUIBAbv4VKAxIFz/XRUxeXXqfLz/76/2Pn3uZcvODYJlsbm7RabaIwAMC0TNa3Gph2jih1j8lkLIbDMWdnHRxHuKQoaoLvh9TqVRzbBOD1qwN0c431jXXOzoTTScbWODs7Y+9VwsnROQC1egVUaJ/18Hwh2tm9t0Em7xDFEb3+GIBs1uLs/JyMZdAfCLGGpWnsv3rF/Qc7FPIF0UY25tmzz3j4aJfpRJQrFm2ePN1hf/+IfCEPgOv6bG01UQhIEjG2eqNIpzumWisRBMKxZTyaMhhOWdtax9GECKh/cIpCwJO3H6Wb5hCGCQkJhwcH7OwIgU6uXEU3NJIowDDFvKDqmIZNp9UhlxPzp6tgmjqqanJwKuaqVCxg2BbVfJV8UZSbDvv4kxGqYaKkgotMLotl24SxwmQi7luhrOPYWfzplNR4hrPTPhubNe4/2lkIrlPwPZ9et0u5WhVr4+wMzTT5xd//hlw+n85fjvWNCooaU62LY6qqYeXXOD7rkYmFsMUfnJJYFsNJllZHuBLFkctgMEVVYmrrQqg16PapZss0mzVi1UjvpUKxVOD85Iw4EuMoF4s8ffs+jUYJMxVHjcZTiqUSuWyG46NjAF48/wJVUSmXijN9DnGcEMcKmqYQheL+RrGK64ecnJySyaZr127yn/7dX/Kv/+f/kWKtyU0kSUySXHaf+bLP72WXrWWByLLjzCLKXAiVRBGt42O86ZQ41Xf4QYDn+YCCadnpFTHlWhnLtsgWhNBIUW8TpFx9x94kVJmd/2quMkkqRrn92rsIX1Y5Fd10/RUnmxu+Z+7CVXegVW1eOXKlnLLiqPS7kUh+d6TY5s3gqwpO/jHdPym6kUgkEolEIpFIJBKJRCKRSCSSb483RnjDpTinVRFJM7HK8oZyTJKoCw4Hq4Qw8ZVj4vhVF4LFFme1XVQ920CFJA5JYlB1Y0Wfl8VCygoHhnip3FLfLp25XO5KTNbSxu5N3ObuINpO8KdTuifC3SZwAxLVJIw0Ui0OqqIRBD7hJMTzhIildd7Bc30KhRxKGmZydHiGomhksw7N9ToA/d6YieuhqBprDbFxr2kQBC7V6hbtthBXbO1uoRkRvf6E8Vi0sfvoASRwcnSM4wihQq/vUamtcXhwyu6ucJ6ZTl2IIlxvjOeJsZ2ftWiuNQiCkNbZGQDmRg1NgedfvKZcFOKPUrlIpVohDP15BFJWV3jy1n0M02AyFYIQz51QramcnXXw3AtR0WA0xB2NUdJorShK2NpZRzeseZSMqg5J0CFJGA3F2IajMcW8jTcdUawLwYqixmiKwr0H9+j1hgAUFY3pOMC2THRLiHaSKGbYG9Dv9CmWhFho0B+imwZeOKVULAGQyTo42SyaCkEqHNFMGzUB1/Pnz0omk0VRVQ5fH5KkEVJxFIAiXHZOj07T/ulEgYuugmqL+bPshGKlQL87QjPE/OULWXTD4PGT+9i2iBc7eP2KZ7/Z4/0fvw2pcEO3yyi6RbVS4OXHz8Tc56v4sYHr94nTJ2Mw8tAMg9B3cYciuspyHLL5IqPBiOZ6GQDHMcnm87TPT3CnQi1k2AFO1mI88clWxfw1mnVQVE6OTtjYEkIZ1/cp5AsYukKcuv7Ylk6pnCdjqvR7g/SJUSgUMhRyOU72D8Q6ffiQfqLzi7/6a/7sX/8bcc81jVVSh2VhxuKxRa59vhdFdwvvsItjqxxgVGbvz8ATbkivP/qAZ7/8OQevnpEk4r5lMjZ7e6eopo2dCm/qJQPLMtAti50nwjXp8Xs/odpogHrV3efqWK4Xr6wUP35F7iLc+SquM4v1361cLCyGkovvj/mLIO2eivj+i5Urp35nlr9JF5GONxLJV+cfk2Dju8bvU2DyFxs//EdxL6XoRiKRSCQSiUQikUgkEolEIpFIvl2uz0CRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgk1/LmON5cQQRjXI1tWlFSueTvkMYx3SWOY1WMx2X3idmRS+WUhCiKCIMQJ3X0WG1+sOzWs1jPKhecq2O9zaFGWXAKWnT9+eouDjGD8xbHe/uUKsJ1xckXePH8NflCjmwazfP6xQsAOq1ztneEy8xkPGV9q0mxWGL/8ERcm82TzToEYUQmlwPAzBQ4OznCMpV5NI87nTCZ+pTKBo+fPALgww8+5en3nuCQYJqaOPbLD1hbXycOA6JQ6MZMO4M7cen3u2QzxnwudKPA7laVl6+Eg87rl0foZhZ/OsZ1hWtNtV4jVwoZDkY8fmsXgP39U1w/YGOtTK8tnE7ypRyGYdHvj9jcFM49w36PRFEolwp88WIPgHfefRvikPNWhwcPt8Wkqiqd7oRyUUHTxThy+RxBEBN6Lvl0DoJGFd91KVbKGKY1v8+arqKhUk3nXlcVAk+4ecSpG83UDciXi9i2zih1Z8nkssSKymDQpbIhXHASVPa/eM3Og915PJCq6YTuENPU8F1RX6/TwgsUoiikXhduOYmiEoYhQeCTL4r6NM2k1x2SLebJpAvQDyI0P+L46IzmupiC6WjA2sYGO/c2aB2LKKeNZoH+AEjAzDVEX/QsQRBwuvccwxFuSL3+gCiGL158wdqaiJUqlS2iMCDQVfL54nyuNjfXOVLPCCPh3BMrOu12l43tHYx0/jrdHpORS7FcINFEVFevO6RYykECqibGsb29iWnqRFFEqZrOQRTjTUd4XozniTV0/8EGpmXSH0wZjIT7Tr8/5MHTdxm0D+meC3eg6lo6GXdgpVuLolz2+1qKVQZ4KQAAIABJREFUl1q+flZYUWbRc+K9BaBrBijguy6/+ev/G4Bf/93fky2vY+d3ePHpPwAQTU+wjYSMonJ2LlydEu8R7/7Rv0DXC5wdiGi345f/K3/4X/+3rD98tBjwd+07d5UTzW3uNNddt+r4V411uitf3innavTX8uXfRuyTjJqSSL4c/xicUb6rfJ2OLt9l1xvpdCORSCQSiUQikUgkEolEIpFIJG8Gb4TwJlmIShFciGgWY1guNpBXb7JevnYmyJmVuWkD9qpAZrHu+VFlJsZJ0A0TTTeWrl2ub3UfxZhWxWYtlCGNtIKVUTSr6r2p/evLiuPuZArA/vMvUKKAbLGGbopomSj02NhqcHJ0zrPnzwGolUucnLYoV8qYphAv5AolTk+OaZ13ODttAVAp5ag3Njg9G/Dik88BKFQrlEoFCqU8himEMuORSrlYwTSduehk98E6njtG1Q1KNREdVOvVSYBcPk+SxtpkszYHr4/Y2NhgbU2IYlqtLv3+BM0wyVeEaAI1YTAYks/YbGwIAcfLF/tkbJ0gConTHK3J2GNtXcy/YYtHpNcdYRga1UZ1Hg2Vy+dwPY9qvUoUibldX69iWiZ2JoNpiXkxDZNht4uixqDq6ZzHjAc97EwWXRXtVqolVFVFU0BVZ1FiIhIoCgKCQAg9VMtEMwxapyeUK6kARrVI4hjXD5iOhfijvNYkimI2t5qouuiL73msbdZRNdBSIUocx1i5EnEY0jnvARD6EbGqsLW7TeiLtREGEAcRne4QyxJxUc8++pRypcDBYYv7j3YAcBybYX/A5vbaXFzguh5xEhMFLtmiEGC9fN6iWa8SkiFJxL30Jj32Xr5CUx3CyE/XX8R4NMG2TUJfxCKVKhW8wGc60clmUuGS7/Pst59iWTpOTYjGosAniiKm0wArjeVqrm8wHgywDIVJGj9VKJcZDQd4vkehWgHAdnQcS2U6deciJSeTod+G8aTH+oYQ0liWxucv9xn0JwTTUTovH7K394qNtQ1++/OfAfDH//K/QTPMryQGmb2HlsU3s3NLRyC5iLILo4gkESKqi7IJk/6QUa/LwXPxXNa2noCR5b/8/f/Gj7ZFrNnD3TqGFuOYGkEs6vt/f3nG3/7VX/H+T/+cWm0DgOlkyMtnv8YpZCnV12YdWzmO2b/XiWVum4dlbhLB3CbAmfVjpXBpof679ON6lPRFflPo09fHskBrcTxxLKU3Esld+a4KM77rfFPCku+a+EYKbiQSiUQikUgkEolEIpFIJBKJ5M3ijRDexHGMqqrX+NkILjYLF8U0F2KVy5ujycJ5sf+7euM1WfhfEBuk12zgciGTmVV124bt7OfrN5ivinVmp5JEzMnisZsQ7dxe7jIKSRwz6LZpHR0B4E8D8uUK06mP5wqRgx/4tI6PMQyTrCPEOJ7vYZomCiGmJZaRY1tomk4mn5+LOnKFPFGSsLlZRtsVrib7e4cMhhFBAqEnRCJb21vkS3miKMYPhBiiWCwx6I1pn3cJA+HEYtkZPnn2CU/ffohuCDHJoD+lUC5gmDZ+KFw57j+5T+f4lL/9u19gpPP44x8/5eXLY5SkOBdlFUtFMpkMdi6DJYbGo8cbmIaOQoKZHvTcEZPxkDiJyeXyABi6wmAUkc1nefjkPgCmbRJ6Pi+f781FRQ8e7ZIt5ISgJr1JYZwwGrtY2Sy+L8abyRmYpkOchCSz9RB5oGqMhyP0tD4lgTjy0dUYyxYCGM20SBKdfM4h64hywWSIoui4gYuVEX3WTRNF09BNkySJ01UAqmqAmrC2K1x/psMxcRygqgpTT5SbjkYU8hauG/EyFWuMp1N0Q8NzI54/E6IsO5Nhe3cDRVWZPdU797Y42n9NuZQjmxVzen+3yniqoegWSSzu78vnn6KQ5eToiJNj4Zq0trZGGEasNRvzlRtGAQoKoe+TbwiRjWFXqDTrJGGIaYk5iCMflARNUyiWhTPO8UmP0PMZDn3sdE59d0JCRKVexckIgQ5RRBT6aJrK6XkXgHpNxQ8CQEWbC78cmrUqaqIwVoSjjJPLMx677O0f0G+/BmB7Z4vdd95DVbVLmrubhB2zc3Nnq5kA51JZiBOx7uMwxp1MieOITC4r1oamkyQxSZIQB6J/p4eHhGFIbb1JmIhnNevkODk5p+a0eeeJmNOMA74bodsKaiou+7M/yPHZ6zM++eVf8uM/+TfiHq3X8d0xH/31f+Cn/92/FfcjFdAtsvjOXCWKueuxVXN1E4vv4eX6rrv+JoHUKsHOhbCF+fO76ntpqaLZxWJJJKuknIuizOXvv7sLg1aLlq52SSKRXOW7JMj4x4QUl6xGzotEIpFIJBKJRCKRSCQSiUQikbx5vBHCG7gqUFkWklyNhFr892pdy7FN1zvDJCSoCyVvR0Hh6vb3NWVXuAxctL26dpg5niyX+d12SZc3in3fpXN8iu96ZLLC5aPbO2F6fM7pyTEf/ua3ALz7vcecn3fY3NkiU0rjf1o9DMciUyrQ7gp3jEazTjb/CNMwefhACFEODw7IZjPkMgZaKnLIZTPkiwV0U8fOCMeMOFE4er1PxrHxfCH00DWF1vk5vu+ztdUEIAiGbG7WOT1pkU0jmizbwbRMzo6PyeWF2CCbyxHG8MMfvsNHHwmRyFlnjJnJCWGQIu75cDgmRmPv1SueviWiofKlIkoiXHNC0RXqZYsol0NRTcZjIZT55NNX2LaDrmmUy0LYoiQJia6yubXG4YGIGAq9CYmpk+g2euq8FIcB6xs1DMtCSwVEiqqldajz/fipm6CZCbm8MxcfBeMRqBGlcnm+c54k4E97QoSRxk+NW885ef4BtZ13KTVSN5pik4iYOI6Zeaeomib8l1QFJRWTODmHMDAJ3SnlohD32JaJ746pNevUUkeZ/nBMu9UhUT0ePn4LgOeffYGmK0JgguiLgka1lCEKXVrHIvrLzhbJl2vousLnzz4W99zKM536dNptMrYQ6Ozv7bG+tYFm2owGwlHGdhwUJabeKNMbCAciJ/TY3Nnl4PUBuYJYG82NDTzXZzrsM0zLDQddHj15izj0OUoj0VRNZ3O9ybDfp9sS8UmZbBYlieh2xuiquCG+5zIYTECNKZTEWgvDgF6vz72dBidn4pUaxQlhqOFNxpQrQjD08c/+I+PJmCfv//SSKOU6cd6t0UtxwvnRMcevX5KEQiQXI9ybhv0B+ZJwQyrmMmQLRXKVGsbCWis1xPoxUnGZbtm4rkutbJHJpOWUiO44omFrc2Gabmjc39JZr6uctZ4B4EZPcQwbr3fG/rNfAnD/vX92baTU4nvoLq4ziz8rinKraGZ5DleVv+nar+pKlH5a+O66pX/L7/SFiDAuzUn8O/fxNtGTRCK5jBTbfHt8W8KSWbtv6r2XghuJRCKRSCS/D276XUf+viGRSCQSiUQikUgkXx319iISiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolkmTfC8Ub81f2yS01yQ0TU4nUX5S/+vc5l4KoTDqiX67kxtiS5tcgq54ZbnSsuuQ/E8zbEz7P/Lnp+xTtnyeFnVR8WxzDudwBoH53Q7k7Z3NkmSt1Uzk/PMUybYi7D1uYaALV6nSgBRU3I54STSL1SxvOmVNcaKIpwahkPRxiWiWnqJAMxjnK5RLfXo1DKzF1DwkTFsh2cTJYkdVjpnZ4RxyH5UhF1IBx0DMOgUMixsb1BHAhHj3zOIuusY5gmcTrE9vk5nXaLUrGQuqzAf/5Pf8v3vv8O3U6ftfV1AEzT4MHDdY6OWriucK1RE5/JAB49voeiC0ee337wgp2dNYqVMp4nypmZHKNBD8dx0NLopShR2N5pcnbWodsWc1qpN0jCCNPS+f4PngIQxx6T8ZRYVzk7Pgagud7EtGwU3cKdTgGwTANUFQWV6VDUN+z51NYqRHFA5ItYLk1T0FQRD5WI5CD8IERRLZIkodMWzi6Fwjbb71ZJ0IgRBeMkQNU0VFUhSaODiGOiKAQ1IU5jvlAUFFUhCCfopnDzUQnodbq8fnnI9paYUzvrYFoW7d6Aw0MxtlwuQ+QHBF6fcq0EQL/bonPewnc9mum6KjY2UTSVs1ef4mRFG0EM3VaH5toG/lSMo7G2TiaXYTAYkckJ25XJeML6xjqanuCk8UnNjTrZbJaMs0s3dWHqd/rEsYdhmLTbwi0niRPi0CWJQiqpa83B4RnFapk4VkhvOboZUSxmcbwEzRBrIwpDsvmcWHupy0xvMGBre42Neol8Xjwfmp4jiEL2Xr4ikxPOM0Zui8nQpX10QOPeg3ROlWtdYS6e/Itji8+1N3V58dGn/PbDj3nvPeE25Loeg2EHyykwHolnmiQALSSOzll/KNpt7m6DAv3WGZphpevPQjM0UOHkXKy1fM5geyNLkiTo4tEiSiL604Dd7TIHvxZ/KfcPvz7gv/9X/5Yws8nnv/kZAOWNbcqNrUvjus7J5za3m9vKr+Iubju/K6vf7crCy/qqU811JEB86Svtq/fzOgehZQcgiUSymjfV8eSfAm/CX1n/xcYP37g18CbMi0QikUgkku8ud/3dZrGc/P1DIpFIJBKJRCKRSL4cb4TwZjlWClZHg9xWx8LVs6OLJe5SyY2nV/dpVVt3Y7me1UIjZcVPq9q/rt7F4zGd0xP2PhJRMKVyhc3tHXRdJQrENY16geODU1qjAfVGDQDTtnjy9DET10UhAEDVLUatMevbOpOpC4CmQj5fxJ1OMCyxS99Y38LOmJAktM97oh9xSBgGtFod7DR+6uTwiMfvvEUcR4yHAwDiGDRdI4riebTXxx99jqrqfO8HT/FTwcrpaZdGo8Z4NKSaRiC9/fQJuYzFwDCo1kQ8VrGYIwg86rUs07EQ/ChqHlWBqRuiG+Jx2NpZJw59/PEEO5vGCQUxx8ctdncdsmkMzx/89AecHp9xftrlixf7APzwRyqVioOetVFVsemuajaFks1kOMTJib6oioai6URhwqvPX4l2H+xiGRok8Tx+ys5B6/QI27Z5lkZmvffD72M6eTRNJU6FN91WV8zdaMTZWQuAjc0GjbUqvhehp/PsDboYmSxxKlASK0hs0idxgq6LduMkRgl9dNPGHQsBzGQ0ZjIcsLO7QT6fA8AwLTI7WTa21lFSkUHO0VFQOTrpMN47AmC9mUWvFzk5OiNbFNFLmm6x9/mHxFhMUyFUNmvgZDLYjo1pib5YtonjZOj1+mRSgY5u6JimSr6Un8f1jHp9Et+n1x8xGgtRjK4plKslut0+dkaIYqr1Ep1WG01V0DQxD289uY+uQ9fz0HV1fm2+UKDdGVFJY5uG/RG97pDp1MVNhUGaruJPR/hhAT0Vb/nBlFhR2H38mKwjxnF8eMb2gwavP3mGoom1tra9y7WsiJ9aZDwac7B/RHOthp7mQOUdjeFkTK1R5WBfzH2hWEAzNBRdZZI+W4VKGQUFXdXnbxAnm0XVDBLVoFkTfVZVQElQdZOTc3FtreLw+EGeJPZ5sC7m6lefnjDs96nV15mkwq8Xf/O/sPm9P8PM11HSeTZMk9CfouoGuaJ4VlXty38NLb+Ll2MKr+M6UeSX/Z65u8BylTj0mtPL9SSAksYh3tC9u8SSXd8/iUSyzJsmuPinwpu2sfOmiG/etHmRSCQSiUTy3eF3/V1mdr38fUQikUgkEolEIpFI7sYbIbxZdnaYsWpj824bpMtimIRESfcwl8oli20rwn0iiVe7FFxte7Hnlx1nbr921aavQpLES3Vc9PBCdPPlRT6h79E+OsR3Peq77wBgKD7hdMjpwYjzsy4AhZzOkyf3SBQNXZ8tD41up0W5WmI46KfdijFNkzAI0FLXmrHrE4UdSpUSUSQUIZphQqKgaAa5vNjML1Ry7L864+zknEePhfDg/qP7JEnCeDgkXxAih253gD+ZcrC3z+a2cEnZ3t0ijgFF59XLPQDW1prEScjG5hof/vZTACrVCtVakfWNNXzXnc/fyfE5axt11rZEfeOhx+tXB1i2jlktpWNz8QKF13sHNNY2AAh8n2IhTxAEZLJC5BAEEd1Wl8dPdueiHduxQLeJo4DBSAgQMhkTVB2nmKeQCmpAIww8PNejUBQiFlWNOT8+p5C30TQxp4VSBSUJ6Q0DxlMhekK30VSdKPRQDSEmyZZyfPHxF0zGEzKOqK/aaKKbBooSEqZONpquk8QQeS5Ket/iJEFVDRQU4lTJo2oqiWZg2Tp+IsbhZCJU3cDO2BTL4h65U59uZ4AfeNy7L+5lFPsYhoWutXEMIbiIwogEFStTxDTF/HnTIVGkMRyNONw/EeNwbAb9MWESzZ2KWmdn5AtFioUCvivmIEbl+fPX1OpVdnbFPVIUBT+K6fUnHB+eiWNJgKZqTF2Pbk8ItYqlDM16Bd918SPhCtPrjfADH91yqKWuNbaTQbcdqpUiv/7lhwC89eQRxVKee/c3efXyIH0UInRDAVVnmopxTNtm2Gkx9RUePb4PQKmcZe+LPXzPRfvsJQDlWg0rk2MViVDizX5YUSJm9/4m3W6fk+NzADa21mg0y1RreQqFhwCEQYg/naKpDqdHp2Js2QyW7WBlMhTy4n7EcYiuwfEg4vhMjKNSNml3feoNjRdHMxcrBS1yIYowTXF/a3mf/mBApVYnkxfiMu/sF3zwH9tg1YkVIUhKFAXTNEiSkHJzG4BH7/6QQnUNRdMuvYtvYpXg5uLSm78nfhcByuK1d6onWSgz/7jQtyUbM0VRlr6nIkiSG9/41/VDCm0kkrvzJggs/qnyJm/kfJvimzd5XiQSiUQikbz5/D5/h5ECHIlEIpFIJBKJRCK5G2+E8CbdQp1vLs82Thc3UJc/w2Uxy90cDxY3TWeSlquuEtf7yVwV9Cxfe9sm6HUCHLHHvsrZ4LreLDspJCz3NiFhOhSRO62DA0w7i2o4BK4QG+jZPJN+i1///JdUKhUA1tbukyQxmVyO3370GQD1Rp1Gs0K73ePsTLjW7D4sYtgGfhCTzYqomv1ej62dDbwwoN1qp+NVgQjLtlFUUU5PoFwtUCg4mLbYkJ9MphwenPHW03uoaf8PDo4xdI3H9+8TJ0JwkcQKuVIBy7FZbzYB0EydMIQoUXn76SNxzLDwwxhdS9AzYpn3eyOIYTpxhUAGMC2Vt995gB/4vH59KMZ2b4dytUilVkVJBTD+1EPVFExDnd+R0WBIuVImDGMKJTO9lyqRF6CoCWp6rW5ZaJqBoqgQi7kPo5DDoxM2NjZQNRHro+sWxaJDlCgEYSpcCgPsfA0n7KNqQiBxsHdCvVFhMplQa4o2VEVB1VRKtRKKKsZ7fHxGpVzAtEx++bOfA/AHf/hT/NAnDCbkUoFJEroomo6qOpC6jxiqgWroJFHAZCwEK4P+kLVmHd12GE/E/eicd4mSkGazhmambjluRL/TZm2tPI8Ii6IANJ1ibZ3JRIz3/OgFqpZDRcdyRF++eLVHs1Hn/KTD2vomAI6t4mQdatUKrifa/eLFS2zbZDoa0ToVorFOp002m2M6ntJcK6drt0a5WmH/5R5W6jyz//IAVTXxJkMKpTTiygsxTJViMYtuzl6LKoEb0mp1adREfYahEJoahqmyvi6eGeIQFI1uf4qSxjZFccL9B1ucng/xA9HntY0mvufz7MPPGA7EHOx/+hn33/0Bmn71Vbws67t4hwgBTOhOyOezuEHCJ58IwdnDt+5RzxVJMDFT1yknY6DEMUdHbV7vCeFNoZRnbXsH3bSI01YmoyHNtXW++MghnxPrtFw0KRUSVEPlT/5U/J9sqntK5HXwfB/bStefYeC6Pvm8Q/9kmPbZwKi/j2lavN4TIqWJGxKjsd6sUIjEmH/+//x7CpUC3/tnf04mdcGZjfubiYb6XStdFNKsVHim5+YXgHL1u0KZlVGWjirM34mzubj9G+6ryDMlkn+aSNHNt8N3ZeNm1s9vcp18V+ZGIpFIJBLJm8XX/fvKvz/6tfw9RSKRSCQSiUQikUhuQL29iEQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIlnmjXC8gaUwpUR8TpJ4ZbTHbQ4IinLZfSZh9nnR3+aOUSS3ui1cHzF1UxzKMqqq3OiYc9HGxfxctH+1j3EU0z07YtIX7hNBpJC1bGLPxfOEg8l41GUyHPDw8X2MNAIpjgKOO1MaiY6hpU4Ykyk/33/F9toGjaZw+chmbXRN5eTghEpduIGUyhWmY498QWN7V7iVTMcBXhARDoY4eRFPhKFTqVU5OzrBsoXTiVUwabda9LoDqo2aOGbaTMcT+v0Bpaq41snaDM47ZCyDWrMhZiCK6Q8HqKpCLpcV7foiomh9o4rvC/eY1vk5pVIeJ5dhMhIuJL43pblexdItdtI4q36nRV9RqdfrTCYjAPL5PK9eHVLIZSmWRBuWZaDqOu3zc6o10b8kAV1XUFSNZLaqFQNv3MfOFVBTNxotDlir11GSkGpdRFwphFi5PO7E4/W+iEraNYpkcgaHh2e4qVOMpSd89KtfoSgJBiJOqNXqcH56ztbuNm4ardVYW8M0dDRNpb4uYn18P+ZXv/g1TsbhD37yruiLWQAlFmsqFvMSuCGqrkMckaZoMRqOqDXv0zrtsPd6H4B797YIQhXDVBgNRQxZHMa4nodjK7z49DkAuWyR5v2HOE6Wzpm41slUaZ/3aJ230QzhfPTu95/guR5RXMWxxLre3H6IH+scHx4zmYgIpJ3tJoqqEAQxTka4zNhjgziOKVWKZFIXJs/1OTtts7m7zngorj3VDc7P2mxt1bEsPV33LrlshkG3Q5i+FhUSypUy2/d3cMepi4tiokUqhp0jr6TXhj6t9pB6s0k254hnZuqiJCH3SmtMRuJ5ixIVRTP5oz/+EaM0si3wPPrtNpXUvekSS+++2fskitK4rSjGsk18z+Of//M/EnPqGIwGE/r9U0bjcXqPtslmTGpVBzTxXB4fnFJu1LEsm3xRrOeD/TblapNCZYdOV7hd5TMBTsZAUyNMK3XzoUjktdA0aHeEo5Ef5bn/cJfJZMyk/Vpc6zgYmQwf/+a/MDj9BQDlrMJpL+LjX1j89I//JQCZfJWjD76gf37CH/0P/5NYLyXxnll2Nfsy79Qvw12/W1azlBe1cGyxXiWVud7UhLJQ22Kty6O9zfFGut1IJHdDut18O3wX/1L6m4qd+i7OjUQikUgkkm+Xb/J3Whk7JZFIJBKJRCKRSCTX88YIbxJEXM7FT1ejk2bcZZP0kmAHkSuVKBcxUkqiLpyP55/Edvvlfs3O3MZsY3hVJNbs86rolC8Xp6Kk4pv4ypl5DUnM+cFrxqMJ+ZIQxRx8/hJdN4mjkCgSm+W9Tp/xcML69jr5nBDAeO4IJQmwbI2tezsATEZjfL+MkyvgZETcURSGtFt93MkQd6yn7eu0+wPKtadouhhvu32KnXEoFYuoiujzZDyB8YRMJsugKwQIumFSrdXo90aUU2GBZeuMRhGd9gDVmEU5ReQKecajEYO+EKJ8+snnOLZONpsjlxfChzCKsC2Dzz/fZ31NiBrK5SLVZpU4VvC8cTqOgMBz0S2HTF7EDpmmTRD4aDpk0/GiqKyv13n24Wds72wBkCvlMLSIew+2SFLzKMO0IQnRDAtnds81BSXJESU6yWxNaBqmqRIEU1RNRAJFnkeISacznG/OB75LGJhsNMtMOkcA2JrL00cN4tClc/RS9NnQsFQPW3UplkWfTWWMO/Uo2jUePNwF4PD1MT/80Q8Ig5heR4hJjk9OuP/wPvlCFlUVApg4AV03CX1/Hj+1vbtBEIRMJmMUVYzj+PAMJ+ugrDeYdESMUafTYzxxyZg1nFxRjEO10HWd3vkeraM9ANzIwfdCFFUhmxX3d/f+NnES43kR01Rk4/ox0+mQUjnHgyf3RH2uh2XbnJ6eM3uqS7U67dNjamtl8nkhJvGnPlGioCQJlinmuVIvEAUKtu3w4oXoy8MHW4wGA9ANrDQiLI4TVCXGDYVwDSCbNfBcj15ngJKu5+PDE2qNNVQlxjLSN0VkMBi6fP7ZC6ZT8bzt3tskl8sTxhp+INrImjrjXodKs8GVt8xC7J2iKOk7JGGaCogmowGO47DWrDFOxT2WqXN8dEyhkOPRw+10PZtEccR47DEdiXuu6RqDs2Pq2/fZeiji2Ua9fyCbz1Ndf8THn30IwP1NE4WYydAl0sWzqmbWebn/W3bWDGwjHUeuhKoo6JqKaYh5Np0qkWHQOfuCP3gg7u/UT/jR9wo8fzniV7/8vwDQi+/w/o9/wnB0zG/+5j8A8Id/8a/QDfvKu/Gugpvfd0TVjW2hLf6wJIxclJTO3tkrhJLXDGvZku6mcSVJQvwlBUlfQ/CWRPLGI8U23w5yc+Z25BxJJBKJRCK5K9/277QydkoikUgkEolEIpFIrvJGCG8u/qL/bhulq4Qrq89fPq6gkKyS1SiLm6PK5Q3vhV5dNLN68/Mubgxf5rqL48tXKPNjM1FPkiTEgQ9A6+CAyXBIvlKfe/w8fvSIyWRC96SFnzreDAZjGo0qYRjj+SEAhXIVJ19BUxOiVDCQdUzKlV3QNNyRcICZjH1URaVcb5Ip5AAY9rq8/f23UAB3Kto4Pjonk7XRdQ0rFeN8/vkej57co1AqEsfCjWZv75B6rYrreZyf9QD44vk+mq7RbnXIZIUwyA9CPvrw1+SzeYJQ9K/RrHF6coqi6BRKwnnGNgy2tzc4P++SK1jpZNlous7h/hmRJ1xhdu7tMJ6OsWIdzxdjKxULeJ7C6UmPMBRzWigV0TWN7733lDgWG+j7r/YAnUdPtkjC8fzeGHZO3Lv/n7337LEkO9D0nvARN653edNnlq+uajPNJjnkLMesVpqBzEoQJCwkrAB9kPRNf0C/QxAECIIE6KuwIyykHc1guFhqub1DO00221SXy0pvrjcRccPqw4k0lZ1VXWySM21mzYwGAAAgAElEQVTOA3RXZuSJc06ccyLiAue976vmgpo4QtNUBsPxmXDJsjXSNEY1TFRViBKiMMGyHZbXXJYSIe7Z3ztk5+EDDC0mCfoAjE5iHNfBcVymuQvObOyRKQofvP8hb70lXHCm3oD9oxl+bHL/rTcAqFRdyrUy2092mIyFCCOJAkhSkig+27gPghDDnBP4Po8f7gIw6HW5dm2dNEm4c+cmAHPPw/MCwrlPqSSuwy0uEIVzwjhm5domAE6xzOD4gCcPtzjsirXRaZvU6iVmsxm6KeYomEdMJj6qohDHydkaai20KBUdAk/MW5SkaEZEuVQ8czQqFhx0tU4QRPheP5+PjFq9waA/JknEXC606sznEZ98/IiPPhKOPNOJh1s00XUDxxF9abWbFFyLWc/ncE84EG1sLlKvl5mOplTqwpWl1qigqAbjwYAkF1cMx1OePd2lXncxjXp+bQlKKSPwp7nDEJRrNYb9LlmaoKjnj2NFUUBRnnuCZVlGFIYcPNsCwJ9OKdgWhqmys3MIQJr4jEdTlpc7RPkaj6M5vj/HsgyWlhoA2LZDEoREQUCtI0RZlvkz4jhkfX2Fo20xvyfDbVZtlePuDMsXTjYrt9dpNhoo2RBUMfZZmlAouOI+LYs1rhklpr4Q0cX5NRRdFV1PWV40cYri+fbTX73P4W6bztIyB9tCXPbzv/6/efNP/n1sp/AKLmBXCzHPxUq/HqfP01/3OX65P1f8Jf/7ZznrXPa84UzYp5BetD17xXavaCE/X1Vl2qTk68Xf9wbF15WvyqbM78L15qsyNhKJRCKRSP7u+KJ8ppXiG4lEIpFIJBKJRCJ5ni+G8Ea5KG/5rHLnvGhzVGycwnPCG0UIb862shXhbZNl2QVli3KuxTmvTIhvsuxsr/PX3cu9Ki7rVc973uEgQ1HUvB/nYp0syyCDk30hkEjjFLtYOxNjAOw83YIsZW19gdFQCEKGo4Bao87+/iELeYTUdDLDdR1UTcN2xAa6alsYlo0/m1FrNvJyO7Q6C8yDOQUnd6NJXVRV5fjwBCPPJ2rUCzTaDbrdLtWKcN/x/IBCoYTnhcwDIYZIk5SPPnhApVbG0EX/FE3BLtgMel128g35ldVlrl1bpVAoUKkKwc/uzgH379/m5GSAWxR9brVqpGlGsVykdyKcOjRVpeg6rC41SHPHI8sxyFKHySSgUBB9ns8DonCObmqomri2nd0ujWaNhU6VaJ7H68xj2ksNkkxDM0RfTKcMqKRxQBYLccVsPKNQdKjWy2dORUmSoOg64/6I3Vw0UXTLrG4WUTOVw30Rx/Tu97/P/burbD87JDeZwa1uUqi0qbVaFNobAATzlLnvkaUZpp2LP3afEPljFDSSWQ+AQqWMSkq1VmE6GQNQrpTZ3T1mfXMJMiGR8DyPaKTgTT1mIzF+t26vY1oFxuMJjivGuVguUJhOUJXkzDlqOJhSLpcp1tpYjhBMJYFP/+iYxY3bVBeESKlacQk8j9ZCi0KxmK/nDN+bYVrWmSjALZYJ5xHjJCMIxNjPZlMajRKVeoM4zt1eXBPTqDKehUxzV5jdZwcsLi+TpTFJJNx8Gu02B3snpKrG3Xt3AajVy/iBz+JCg97xAID+4TOSeImjoyHF3DkqjFICf0gaw6gvxkUxNRQijo+6KEoLgHanTfdkxPLqArYp2t3b72IYOjvb+wz6QhhUqVXYP+xyI04w89gr8Ui6QoqoKHjjEUYu6HIaDRRVpejouCUrr6/MbDLF0FN03Twbq4O9AzZvrGBZeaQckKUph7v7LG8K4Y1TMJnMTqg3Otx9U0RXvffeFouNiE7DQNGEkEfNZtQ61wm7P0ZXRQ9tQ2E87OMWLcgFRJ43xWk4FIoNyMR8FAs6um5QKemQCVHON+4U+P7f/pBS7T+hWBTuVL/40U/oH+/zrT/7T6kvrOSXrzz372V+s7io8zpeJfLvZf14cbnswv9fdv5piTT/TTmLrTuVgiqigvMzXiLEuUrY+duO6pJIvgx8UTYovm581TZjfpvim6/a2EgkEolEIvnd80X7TCvFNxKJRCKRSCQSiURyjvy6u0QikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolE8jn4QjjeCM4DpyC98lv6L4qYyi59eV85PXAWIZUBwrHmtAZVUQAVRcm4nCUl/sndCbJzlwVFOT32+R0VLnJWiwLKxV8ulEg5d19QhE2PODM7ryNJUnoH+8zzWJednUM6nTaaYrC3LZxTxr1jOktLaJjouoiHmYdzVF1nHkYouctMsVQkS2NQVB5/8hCA0XDGjVubtFtNnm4J55kwDJkMeoRhiKkLF5wkhtFgjK7r7O+fAFAouihKxubGKh98IGJ91tdXGA37PH28S61WBaDVadHuNMhSRbQPvPPN1zncOyCZN5nNhLuIqi6zvLqA4xSYDId5n11K5RLzOEY3TgcmJI4UbMfAy1OgLMPEcS2G4yla7gZimQb93pCTkxNu3b0FQL87Ioxillfb+dqBYqlMFEUEUw9VEf27cXuDLInpHvVYXl0SzaYZSRKSJil67vrjlgok8ZwsnXOqddMNC39wyMcf7uD5wknkxndv0usO2H3ylEZF9G9zrUF7cZFr996mUBIxWqquA3MUzaJkinLFVCFN6iiaceaqoxlVCpUdHn3wEb0jERNkmsvEtoldMLn7mnB78WZjfvmLBwwHAwoFR6wNb0q3P6LoOnSWOgCUy0UUMlZWOgy6whVmOp0xHg1YXW1TsMRYaSQkqY6q6nhj4bSz+2yP3cMJv7e4Sb1ZASCNQrYe76BpGoYmzjUMk8WVRSaTGb0TcW6tWsO2LTzPp7EgnGe0voZddBmNZmSRcMHRdRO74OBPJ5iGcIBZXu5wctSj3qiQaGI++oMxgR/SbtbZfiZcopZXFrEsmziKz5xiFpYX2NnaZzIc8+67PwFgaWmRVqPCYqdFPBNOO08+3OPWrdtYls1HH4o1fu3aGns7u8y8GZsby2JtkDD3A1r1EpXcocaxHSr1JqqqcTGK6DIK4Hs+B1tbaLkrkWVVyBTIiFlui/vIm05oNquQxfkzDmxLxTJVQj8g8MS9n2ZjHMfm8GT/zMVq5eab/Nu/+gsMu8niinCZ+emPOnz4aJvrazYHe8Kl57r9IXbzLWaRxWQs1kHFCbAsHZWUTHVFn7NDLEsnM2v0+h8D0GmWUZUUsgQ3d2ZyFlS+c2fO9uOfsHnvu2LsN9/E97b50T/7H3n7T/+pOPfavefdyS7x6z6XL8b0XXaDuXzsqjK/TjuX+3waN3V1PepZeXGucnbdp843KuqZA1tKipo7eGXq+Tvq6ghDlcvvGInk68AX7ZvBXwe+yt98Pr2232RdfZXHRyKRSCQSyW8X+VlWIpFIJBKJRCKRSL4cfCGEN4qinO5Enh75teOcrqrzPKDpfKvx0/Uqz/10ds4V+5HnUVPKc5u2n7uPF/r36TauLphLiM4PJSlHTx6RJHNQxIa3bTv0+yMMTSNFRDndef01LMthNpudxdxsbK5iWjr337hLEAjxh67B3u4hq5ubbKyvAfCL3geEvocf+HiTKQBJEuMstmmXbR492AIgRWdtc5lpf8J05gHQWlhAUxLG05DA8/Jzqzx59BQVkzQRIoIoCFheW8KbjpmO5/l1aDTaTcrVCvW6EJ10ewPmfoxlGZALKYK5R82osLm5gqqJDej+yQnFchnbcXBdEWOkqwqqbrK9fcjamhCTjIZTJuMpGxtr6JoQH7nFAjUdAi/EsHKBhKVAmuBNp5SqYpzjSKFUqVNqKgS+6PN4NKZaLxOFCZoi+pfk0WCqpmGaoi/BrIvpVnn9noVmivr29g5wHZNnjx/h18WxG3du0Fq/iW46kF9blqYoSgEly0ATMUZJHHJweMLiUhMyIa4o1WsMRmNe//YfEoyEYGr36R5NP2LoaeimiIFybZNWo8LJ0THbB6Lc8soSG6vLPHqyxZ37twGwbAOShDhJmE3z2CEyPnnwhKXFCpklRDvFaoNKo8N01OP9n38IQL3dYXOjgmlppIkQXERhTLvdZDqbESViRc8GY3TLpFAoEFfE2qiWbXrdLppTOptLy7I53D9BJaFSEu0OBwMmOwdMJgNKhZK4QTSTw4Njhv0yK/mcD4/7+GHK3J+eiZScgsa4H2AWikSJGOfuyYQwTFhYWkTL19rJSY9yucpgNKHTEYKV6zdvcnQ8oNc9wTKtvC9jsjRBIWH/4BiAm7c2CP2AXi/AzMdqZ2cfx9GufOBcfLZkacb2wyeMRyOMvA2zkLDz6BntVgHHFmIhfzbnpDdlXiyysNwGoFByuXHboXd0xN7+UT6/LTTDoNOukSViLouNDkttjTTpo1tNAL7zB3/C7od/jbn3jLbQS5GOd0gsl9rSHdT5j8X1jo949vQx9VYNbBEXpfs7GFrK6vp1ot0PxDElhSRFtyzUXADY7wdcW7YYe0/50btizr/7vX+HQuMOo52/4af//H8B4Fv/+L+htfkamapdIbt5ORfH8nJk1VXiF1VVrzzn8/Lc6+00LkpRebnw5aIYNT+SnQpnsjO1pghDPBXrJJ/R30/XKZF8lZGbFH8/fF1EJZ8ndurrMjYSiUQikUh+O3wZPs+e9lF+zpFIJBKJRCKRSCRfd74QwhuhS8gubAe+aDPydHMx/ez68joh3/RUQHmu3vPfLh/nBT05E7tkv13nGyXLXXsyzlx1TttWsvPryHLljQIkqRiDwcEBcZpQrCyc9VXLIp4922MWBHieEIR0jT6dpQ66rhNHQoxTLrsYukaapsSRcMsJvIhWu41hWOx2hQjDMDWaCwt8//s/5OaNdQD0zGY4GFOtFllbE24vO9tHkCQUCzpvvPUaAE8e7VKpmFRqdao1IZrY39tmOgv57rffJEzERnG5ZBPNPVBMTNMG4PiwxwcfPOat37vLNBf8aKrGdDbHtENGo9zxxi3g2DpxOEMzcgeYkoumQZbFzDw/L+cShRE3NlewHdHGz37yIWvrbXTTIMydU0rlAqPxhKePttm8Jpw/TL2IqkKp7KIbQjQxGE1wXDB0nSwT4xcnKagapqNyfCRcf4b9Y27fex3DsQmnEwBU3UVVdUxH5egwd48ZDDBTiyCY4TQ2AVhYv4lmWHgzH90Ut2uaJOimAVl6NpeGabC0JAQPiibGIE4znFKFeqNG6Io+//IXf0GaQaFUxNLEGHz4wSPcgsXe3snZnXV4fMybb77Gm2/exbFzwU+WoWoGupqwsCREJ7vPnrG51iJNYHdPXEdjcYVs0OfDX35Ewqmzi0UKREGINxVzOR1P6Sx3GIymaLFouV4vYjklxsMJtXo1v54MxSqiKwnpfHLWFyVLKJZdAl/MbxzFdHtDOgsNXFcIlw4P+5i2TZamGLkDUa1ZZ7pzgFsq0WgJgUmhYKMrKp4fUquJc7efblOrldg/6NLOXXo0XWU6GXHn/h3mc7FeBsdHdI+6GKaO6wox0+FBj0arTbNZgXw+Qj+k2xuyvLLI6ZNlf3efJFGJwuhM5HV6fReZTiYc7h3QWWwz94WF02A4QtEULNthOhPimVmYsby8wEl3fCbeUwyLLJpTrtSIUyHUqlbLTIKEqRdgHT0GYHL0FFMJ8Ifvg/E6AJvXVllo/xO+///+X6xPhAPWnc2YYO8Btc1vEeZuV7a5y97OD9hrt9nMnxGDSYV4+IA7r7/DR55wFtra+yFrCyFGoUCav36Kro6SxdzbMNg9Em386x8k/PGf/CmN9d9nuPtLAP7mX/wffPs//K9prd8B5fmUxMtCk1NR5NWuL+dj/CKByqs82192/qWSwrTmXP5Jlqko6iVBEBfeBeQiy9zkTM0u1XfhHxQtP+dq8dbL+phJEY7kK8yXYZPiq4jccLkaOS4SiUQikUi+6vzl/nvyM49EIpFIJBKJRCL5WvOFEN4Id4EL8VK5483zm5+neUwXhDGZKKeQCVHKWTlFaFXO4jmu/o7/5WPZhUiPK7Zpn3OluLyhe1VsycUyl90TPrWxe3kvNbdIyC52RlEggzRN6e6KCKkwmKMbLqpuMM8dZT75+AGmYVIqldFUsSE/6I2oVqsYduFM2JLEKYHvM5vMcYpCMJBEGU6xxPbTZ1i2WB71RgPI+P3vvk0xjyJSFR3PmzIbj3FyF5J5FLK/d4BjO7j50hoNB9Tqi8zDOeOpEKe02i1WHYc0y3BP6zMMIt9HURT6AyGuiOY+t26tYpkanicEJqalAjFJGHPqe1Fv1InDjMPDHm5RiCYWO00yNKIoZHdbuHzcvruJpmm4rkMUi5FWNWgvttE0lSx3ionimGK1xO276xi5C87Wo8ekisHqxjqZIkQiS8stNN0iCT1yTQflog1JjKrpVHPhiFtwQFUYHe1DKsbAdBtEMRweHuPn7jEKCe+//xGN9gob14XLzGgaUFagWCmcr5lUZTL1mU1m/PwnvwDgtdduYNs2YRTTXhTOLoNuH9N0GA8GVGtCOPLN732Pva1HFF0NyxHCkXv315hMIkzLRhWXy3A0YTbzWVxdQM93/ZVMIU5Tjg77mPm8tRtFLEOh0lygWBVuJZPxhK2HPXw/5eZdIcIoFS2ULMMbDjk47ALwbHufpfU1Gq0mSiLmN/QDZl6MZSh0T8S8bWxeo3itThZ7+Hm8kz8L2H66R6oqlHKRTaZAoVBgcbFNmooJ0ZQTlpYXUBQFTRdijf0nh8RhgOs4tBaEcGTUH2IVCky9ANs28nXaoNluoGoahiHOPemPMA2TaO6dxW0d7R9QKlfoLDRIc8cRVctY31jFMnWCPEpMUTKq1SKGrhCG4npPjvtsbCzxYjGhGPt+r8fRcZfV9UUCT5T1g5hqo8lwOCMOc/FRrHHcHdFs1RiOxFprOyqWVURVQ9qOk68hOD7eZ2W1yfZHPxJztHif5so36O8/Yd79WwCCcEJr9W3+g//sv+InP/xXAPzy8b/k2qKHefSAWvsmAEY4Rs+GbD16j+UNMedO4zbjh39F5nToXH8bgJ/84Ih58CE3VxMUXcyRXijhz2IsI+M7r4v+/e2jfR786sd0ltdx6zcAmPWe8sN/9r/yh//5f0djVdwfav5M/NSoXXq+XiWk+SzRzMue2SJ68LNFK+fvgvTcxSzLrni/cfasv9zT594B+e9KelGwI3zQUDLSs3eoKk5RLvq4gUJ6dsalaiWSrxRSdPP3w9dxo+VVXG++juMikUgkEonkN+fL+JlWim8kEolEIpFIJBLJ1xn1s4tIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCSSy3whHG+y3Nnl3EAgd6x5zqsmd7zJzrM4zh1muJgvxel3/p9v5OooEvHzuf4ovTJiJMtddZ7nsgvCi+JJXsV94WXnnEaUCF+DjOHRAfNAOGZohsuw30fTNYI8Umk48jCMhFudRczcimVpeYFCyUVRYBaIcoPhhLgbMhxMWFxezM8dY1oFBr0BSd6H/kmX5bUOrmWRm4YQJSGGaTEejlBz54pr15ZFxE6zjpY7hIgooJjDgx1WV0UkVbFosv10i/FgRCdvV5l5jMcTPG/GzdvXAeHsMxp7gEqaCTeVTLFZXuvw7OkeUe7yUY2raIbD0nL7zJUoTkLIdIbDGYN+H4CTwxK1epnmYgvyCK7rmysoCgTejEJROPeYmoGiJKiWwWg0BmAeZ1SqZUxTI4tE1M88SYijESrgVoS7DWZGkiRogG0LZyFd1Tja3cPSM0o1EQf17Nkh5XKZD375iHJBjNV87vHmW3dx64sUHOG6sr3TJZgZrGyunq3xZD7F0lOG/pilpRYAvd6QJBEuK/FpbFO7QRqnpEl6Nke19iKapuGNjjna2gOg1azRbnZYXm5C7tgynfr4QSRMpvLHhKqbZElMa7mDko9zGIxpdUpoWsb4RESTFStL3Lxd59nWNk4ecaWqCXEYMpp4Z3357vfeQVMiCo6GNxF9LjXqKFlGrzvCtnMXJiVDSSNUVadYq+XXu0sQzvm9t+/z+LFwf2q06pRdi9nUQ1XF+K1fW6fXH9KsV9h6IuKOZpMZ9WaVhaUOji3inaKCxXwe0K6X6fWFk83SyiIKGc128+xpUh3OmIymeLM5fiAcZW7fvolpaWw93WF5WczvYqdNGMwJ53NOjsX6W1tfJhxNSTPQNDEGrYUGbtH5lPPI6bMlicS6Tz0P11Txpx66JkrblknBVsmsIqZeyufI5enWMwzdJM1j3E4OD0mzBFSHOI/H0g2FctEh8QZUOncBiCmwu3tCwalSv/kPxblP/obx8UM0t8P9d/4BAO//JOFo8ANa1QGqIsagsvIaavYz+rsfsvPkHgDX79xh2nqD2f7PqGz8IQDf+IN/l49+ZqDv/oKCJZyAyrUEu9ygNx5RssW6enMj5enBrzjYjXntje8AoC3cZf+j7/OjP/+f+YN/8t+L+VjYJPdI41W57FL2WeUulr0YM/gqjjdn76fnKn7OPO358lee/3wY4qdOziMKsyy9dEwl+5STkniXnScaSs8byVePL+M3g7/MyG80X+16I8dFIpFIJBLJb4L8TCuRSCQSiUQikUgkXz6+EMIblAzS5wOhsiwD9cKRDEhP05bErqEQyXx6F1Mhy6M9Loh2OFXnnG6cftrs52UxUVcJbC5Hj1z++2dxOa7qheUu/DAb9PGGI7y56L9tBaDobH/yCaWyECosNGuoZoHeSZcgF+hs1uvMgznD4YBbr4l4GFVRyTJQjWNaHSHgqFYdTFtnabl91r9mvUoax/R7I3RTCBoWOk3iROWku0OxJKJ+dMuiubCAU7CJ803/JJxT7DSwDJVaVYgcLMvg2s11Qs/n2bNtAMqlEpqpMZ35aLpow1ChqoDlWCS58CaOIuIwxh8PWV5fE2NgG6RpBGRoiigXhRrebIJpWly7cQ2AxU4d3dTwJh5bj4UIY329he8HKOhnghWyiCydk6k6lVzoUWs00Q2bNJ2fjX1vMKJogV1qkp5lhaWE0y665eC4dXFIzYhDj6JbI02EUGFhoUUSTnn7res8fvAYgHZnic76JqZT5GBbiFgsU2c0mtGYesSxOFfJEgqORrWxQGt59XwNpRnxPGJvR4xptVald9yn1qxjF4QIyJvOcCtFSvUmbl1EesWBz2A4o9p0mOexSG7RpVhWCechp6k2dtFEw6BQ1Ajmoi9qMiOed5kFZd5/cALAyorG8soquqbhj0UbD3Z2MRQVy7LO1kumGKi6RRiFjGeiXcueUygXaS8uMB4KwYrrukzHHu+/9yuW18T19vp9VtdWsAuuEJXkN0i91WbQ7WOYJgClagnfDzg4PKGS3x+tVpPx0BPxdvm9F8cqhmmjmxqdJSGemU5m1OtlTCNF0UWfW50F3FKZWtVF0UUul2PpDIdjbMvEzmOvyODxJ48AhUazms9Rhm5YPHm4g2WLNaSg0O2NWLv9/KM4y4RAYtzv5es55Pa92xi2jo64jihSsB2Vk6MTzKpo9+j4iNW1JQqWyumTY2vrkCSKqDSKZPm9Fcdz6u0mJ88+wSoti/qCCX/55/8bpXKZb//RfwRAc+UdRlv/CkvTqNU2AXjzm9/j8HEBP/7XKMNHABitt7DrS5RPnvHkV38hxmpljeb6m4weD/H2RZxVY/NPuPetf8SvfqyS7P0NAPetkII1pVZvkMUiLk/XZjhmxrsfvs9774k+b2y+xtKd7zHZ+zk/+vP/CYA//qf/A3apwWdxVbzfi567L3ouv0hs81nP8exT7edCoSvipoAzUYyCeLUppGTKhfePIuQ0p28wJf+fgnLBwi4FMs5XwfOinjMd6qu9qiQSieRKpLjkauS4SCQSiUQi+bx8FQQ3Mm5KIpFIJBKJRCKRfF35QghvFAWxAX5BYXL6a3ZhExIysRF5Jo4Rx66u89OboMpzGp1zoU+WXd7pVJ47X8lPvkqMc1mo8+vwKo4JZ10F4jBkcHRAubaIHQuxweHeIU8fPqLoaGSpqO+wO6Lgxty6ucH20y0AAm/MoDfi4cMtvvMPKgA02lXSOGFxoUo4mwLguCZpFuF5HoVcrOEUdDw/YB6FVGplAObzOWCwutah1m4CMJl4hP6I0LH5xXvvA7DQrGObKrbtcnAghBmGptAdjGk1Kmiq2Co2CzaOpfP6G3cYDITYwDR0SBMK1Qr1mri2NM0Yjac4pTK6JoQP8yDCn80oll3ifAxULcPzfBTFo9USwgfPm2HENoZlsdARm/Wz6ZwHD7dp1ktsXhOOPJliEiUaajpnmrsI1ZsNUFI0w8QtidumUKqQRTN0yyKeC8EAaUypvkQURUShcMYJp32anUUCL8FShSBE01MGx2NMy2Tz7msA1Bo1MnTiKKSxIIRQSRQQBDZKGlIsFfOFA6QRrmWR5W5NWRzj+XMKjs369c2zpRPHEf3uELck5m13+5DNm2voqk63NwRgPBpz595N+r0+US7UqtZK6IaDousYau4iFAdkioWmceackmAwp85xd8xm3m6tVmPY75MmMbOpWFfvv/8BtXKNtfUlFlea+XUkHO4eUqqWSGMhvAnDkLA/xnFN7IKTz6+PaRncuHOLOBL9c4slptMJvd6A23eFkGxnax9/HuJWyii5AMufTdAVIE7OHHTK1TK1Rp00A9/PxUwKzCYemZLi5yKgOEkI5wHNhTon+0dizgsFNA3CMKJWFfVZtks4j2gvtLFypyLPi1haWUY3dQoFIYrZ3tmnUq1QKDpnisJ6zcWxNZI4hFxQc0oSx+w8fgpAv+dh2QqlkstknLsw+QGb15dotBuksZiP6bBPvVZFM1yyRBxbXe8QhhmH+0OKJTGmC50FZv0dTLdytoZGR494Y2WEokx4+uEPAej86X9Jbf336e/8nFSt5ONXovn7f8Tg4y5HJx8CsFLuU1j+NgvjAXpBiK3e//G/5K1v/SMKnd9j8uyvAIgGH1Ctv8Xm61OCohUAACAASURBVH/I33y/C8Bkvks1izC1OXpVCKuC0R4ZHt993eJHH34AwP6uzjvf/h6kb3D8QNT35Cf/D3f+6L9A1Qwuc9mh5pRXFTxexWWx5fPP/XNhzXkbQhBzuVyWvaztC/V8qv30QqkLwtL8+Nn7SLRypRPQufwULljfSCRfer4KmxRfJuRmyvPI8ZBIJBKJRPKbIj/PSiQSiUQikUgkEsmXmy+E8IZMzbcYz7+bL77pr3DBJOC8+Omm5kuqfH5TNBfyXNx8VU7jNhQU5dJG5+XN1cvtfpZDzW+53Om4jLsnWIUSCTF+LpSZe1O80RDHrGO5YuO+0ajRbNWwC86ZCMO2TdJUodVq0+uKKB3b0YmjmE8++oTF5Vx0gsvOzj6qolPMo5dq9TKqIqJLtrdFPFGlXGRhoUWl6hDPhVBBSyNanRaGYfLNb72VXxuoKgy6PfZ3D0U5XUdXFYb9EaXcUUbToFgqi9gsUwhqbNPACxTiMKJ3LDbpAz/ALRVpdzoEMyFsqdaqoOhops7gSAgkmp0OnZUO08mM2VSUq1Rd9raPUFUFJx8rXdExNJ0nT7ZZWBBOJ0VdRTcUdLVAIx8DhRSxPlQUVdw2mqqQZhZkKZYj6gumPaLQJ1UgzYU3eqHGPIaDg0NUxHU06zbzYM5oOEE1hBNQZ2WFZ4+3WFhs4OYim1S30dUQVUtJIiG4UFWLNJ6RxgPIhOAgDGf4oUGcJFQrYkzT2KfWqFKpCiEMgDedcri7T7Fcxp8JgcTicgu36FBwV0lTIejq9QaUXBtFVVEtIcAKPY9h7wCnYPPkkXAMajbruEULz5vx7FfPALh//xbTWYBlGTgFMS5/+AffZWd7j+FowjwU69myVQajKUmmkKZC/HF4cISiGyytLJwJfg4OuzTbTSxDZXdLrKHBcMy9XHBj5XFqq2uLWKbBYDTGztdQ4IcUqxW8IKZUFmNqFRzSNGV80ss9QSBJYkplh9nMx8zjpxolF81Q0U2bNBNjv7u7y/rGKh9/9IA7t2/ka1djaXWBKIrY2TnMr82m3qzy8METrt1YF/U1q8xmczqLbVxXtKHqGqPhhDCMKVx6Huxv7/Hgo4dijlbWWdtYIk0ionyOrt/apN89ptsb0WmKa1tdXWUymjKdjCk4Yt4yVaNULmFZKqPcgahgRYy7h7id+xzuHoixOvkJ1zcd+oOQ3r4Q1Hz8wfvcvfMajvVTbEeIOzIM/JnHx3tFakkuBIknWOVFmp1lNF24NW19+DH93ttUqlWM9jsATPd/iGGssLKxzrf++B8D8O5f/u/UaxFq7FOt5vd+dRXTOKQQRXz7dTFH/+cPfsHyynVarSa1jW8C8Kt3f8DK/e9Rbm9w+Y1wpZvMC5zJPktAeZVjzqfrS8+6cG62lp2HFF4U2yjPyV8u13pep5ILbE7jFZ+LPTw9puaOW9mn3l2XyXjeuUcGTUm+KshNir87pMBEIpFIJBKJ5IvJ5/2c9tv+LC0/L0okEolEIpFIJJKvK5/OW5JIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCSfyRfC8UY4CWTPOcAoZ84B51Ehl7/Af/Gb+1fVeTka6lKBS+2fctn54MUOApd/Pz0nSZKzv6t5lNKLnBau6vfF8hkQ+iLGaNQ7oFhuEoYxw9EsL58QJimVeoViWbiLGIaOqml4fsThrnCAWejUyRSo1asUXBE3Mx4FTEZjltfWieYiwkdVNXTTQklTer2RKDeZsrzaxnLtM4eQZ892aHfaoOj88hefAFCtFlleXYZ0Bnl8zWwaoGsqqqZx73XhEOI4DrPhiGDuE4TCLafsltG0lEq1RL8noqbGmUa70wBVxw+SvI0W83DGsycHVGu5KwwZ5VqZLNNoNMW4hV7EcDai1qqha+KYqRsUi2W8MMT3RAxPuWSweW2FzetrzHzRl8ZiG1VTyZIUSPKJSchQ0TWDuS/GfjaZUqmLGKssdyHJkpDZ8cfE8z6mKxx07No1bNPg+u1N+kcibiuc+4RhgGYXWcrdhtJ4yuJSEcu2yWIRcZXFEYpmQJaiarnzTJiiG3VULTqbt3kcoqtAGhEFYt6ioIeqGJhuk1pdxAQ1GxXCKCSJPG7eXANE7FWWBCiKSRLlEVJRgmlqZElMb1842YyGU/ypjx8qbO0JV5PltUVUVGq1IsHyIgDD8Zhmo857f/s+m9c3xJxbJq/dv04YZmj52nZci4VOk3kQnN0ztVqRWqOObpqMumIdxGnK1AuZez6aKhxRbt2+QRjFNBdqeDPRZ9UwUBSFRsXFy+dS0zR6Jz329/c4ORZuNL/3jfvYTkEYhJw+X8gwbYtyrcpxPkeFgsHObhdV0ykWxT3TWbzFdOLTWVzELYkIqcnUw3UtFCXDLYl7MPRDdMPk5t1bmGbuLqIoDHsjhoMBxZJYG6oC3eMTClWxjk7J0pTecZdrN4RjVbtZZdDr4c98gnm+NhabZJlCo15FtfLYKyVhGoSkicregbj3ozhleXWZGA3bFmto0j9AL62g6Tb94y0AFusBpZKFpkJuVMT2YA+0N7HcRdJQuCaV6hvMJgqzyKJpCsel2XSI4/XRClUKhWMAVtpzDg+e0l78DnpJrANv8gA72kFTlti4cR2Apw/fYWv/37BQjymPhfuOVrvGyDMoFaDZEHP+zq2Una1fUSp9E7su1u748DGPf/wvePPP/ltU3eRlvMxZ7Kpn8mc5kmWkzx9QzuOlzl8fF95RF5zVrna7OQ+IOq1IScXxi+v0vLT4OSUV78ZPveKy52Olrmrxc0QkSiRfNKTbzd8d8tvLEolEIpFIJL8bfpPPtH+69BZ/uf/e567j9PzfFPlZUSKRSCQSiUQikXzd+UIIbwDIzkU250Y86XMFLu8RngpqXrQx+tIIp4xcY3N54/HsD8/9flHIc7Htq9rUNO3F7V5x7ss3PzPGx2ID3XbLJIrBqD8mmQsxjmnqGIZOqVRGUcR01hsGnp8Q+D6dpRaQxz0d9VlaXeW0e4HnU23VmI4nHO6JDe9qs8yd127SOzpiMBCxNIahsb11yPFJl1pVxBjdvHuTgmsRhhF6LoaYBxEPP3rA6voidh7X4/tz4nCOVbAploVQQVMgKjjMvCm2JTbLNdNiMJhSb1RYXBaihHmUkUQ+qm5SrYpzkzginoesbXbIk4joHw8xDJPpNETXxNrp9oZE8znFsouqiXFJUpV6q4zjBXl0FIyGQ/yZx9rmBk5RjJVhOQSBTxpHdE+E2KDebhDNPYpFUMRuOJYRk4Q+mg5zX4hdYq/PfLJFOh9jOKI+4jmaaZOR4ufxWIe7uxRKNQqOiu+L2DBDswnmKYYRkERCUOP5AW65jq5rZ0tVN0Q0W5KmkM95udZg1B/imA7k8xErVUhD1CREN8U4K2mCrpgYtompi7FKkzlkGiigK6LdijNjtLfP0cmMWSDuh0KpRqHo4qoqldqdfAwMprOALFMJ8wippztPqf5+g9W1dYxc9DSdeSwutej3pzhFN1+7FiezLq2FGoau532J0DSDJM4IIiHGefDgCcvLK6RpgpqJsS+XXMIkAlKSNAYgCiIKBZNMgW4ep1apViiVy9y6U8ApiDWJopNlGW65hJKvDU1T0Eg5OOhSztc4aUK92UAzbOJECHkM06TeFOt+PBLzpuomqqYRRhmuK8Rgs8kxQRBgWSaKIuZDrKUMzRBrHaBop6wuN2k2G1wkSVKq1SqGJY5rWQTjGTu7+1TKQkQ19wMWFjtMpyGjobhXiyWLQtHFcRzqbXHu00fbGLpNZ6FIGon1NziIUK0y+wfHHO+KWKn1mylpnNHtB5RKQmhE2CcK5+jlNQb7H4u+lGYEvk+z3SEcijGdRyIKzXSbKN3HYo4c+MXHP2N14w7FolDyKMVrJJP30BbuEyVCBHT79W/w7l+8z+bSnL19MW+r7oxifYHMe4aaP46vrZjs/u1jtp6UWd0Q66++8Q0+/PkPWH3zExor90Qbnxnd9+vxWc/nVyn//HvqZfWlZ6LFDOWCROf8XZhd+ilDxCZe9U56UUuvEtcokUgkp8hNFIlEIpFIJJLfHb+p6OW3cf7Fz3u/Tn3yc6JEIpFIJBKJRCKRnPPFEd4894399CUFX42rRDIvEs5c3hAVx08dZ1RevlF6zovEOL8JwXTKdCI21SutJfq9Hgfbuyi52KBUq7O43EE3DY72haNHo1nBLZZIopAgyB1lahUefvIIt1JmsVMXdXsJaRShK3DtxgYAmqIwGg0pll3cfLN8OBgSpDHViku/L4QolqMTBnNIY1oLQqgQRTG+l6GbBqYhxAYLiwuE8yl+EGNqwh1D1zOsZpVavUK/LwQrhYKFbeuoSszRcd6GbUNmoycBaSLWhDfz0HQhfnnyUDixRElCY6GGbepnIpuSW8Jp1dB1zo51T/pYpobr2ij55nb3ZIiqqxSKJYzcDURVNQxDR9FV4eADJGmIplqQRYQT4faSzMckvjjHsIWYxG3ewCovkAQTMk2IFxTdIs1i4liIjgCGowkbN29QrVcIfCF2QdMoV13UNGUaiPl98OAZr72moykJ3kQ4nZQqFoqikZJimm6+UhQKro1p6yiZaKRYLJOlc9C0MxeN8WRMqVQiSVKwc9GJYZKGPt7wCG/wFIA4Cgkjnb3DBN0U66DZdqlUbNIsY29XrLW5H1JwipimhVXIxVFRyGzqc/3WJrohxtmb+iiaSavTwJsKhxrbsVhaXkAzNCYTsU5ty8bzAlJUgkCMy73X7nJ41OX27Y0z4ZIXhBQcQ8yVJa4jmnuoSoaq6WxcE+tZNzR2t/ZJ04h6U6z7yWiKZbso2hwldzTSdB1ShSAIMKbifhsPp3z8ySNWVjpsbK4DMBoMsIyUar3K08dbAKyudlCVU3ek3F3Jsjg6OKJWr0MaifFr1Qn8kMFwwuHeGIA7txZRNP35J0yW4U8mGOqcxw92Rf8UldW1Jd5++y5keZ8JGZzsYxeq1GpCAKMqCo5jEfo+49NxtgzCaI7t6AQjUZ9dXMSwTdJwymJROPyUXI3JOKVWK3AqfozCCXGUgOqgquIeNAwdvVbBdQsMDnOxXxXUaILqrrDXE+UKjsO11oS9p5/w9nf/gbg0d5Nx/1fYoy1C+xoAy6sbWI07fLLzY66tiPspCYfo9bfYPzqgVczFYCWV777h8tc/fZ9GS9yX1VqLrLDJB+9+n+/8x2LODct9oTvZRQHMxef1Z7nbvIxTAWAGZFecfrmNF7WjoKBk2gVnHOGypSif/QYSxjjZmWT1otONcuHfyw440u9G8mVHut38bpEbKRKJRCKRSCRfDy5+rn5VBxz5WVEikUgkEolEIpFInucLIbx5VcHKi5xiPuvci+VOfz51pfl02wqgPLdRe5788fn9AT5r0/VF5fsH2zjFUn4QioUSpqFSdMWxOAlpLrQolYtnsVYZKd5kRLc3oppHDBmGyR/80XexTRUvFxY8fPAYspT7r1+j1xeijoP9Y8K5z7037jAZClHM1tNnrKwuoYYZpVyMMx7OiDoRlgaNlmjDm86o1yyULMXPo378YAKkzPyYwYkQAjTbTZyCimnqZxFIiqqhZAmKorK4tJifO2fr8R6GqrBxS2zSW5bF3u4BjlMgSsUY3bh9g9nYI05TjNzZJc1C+oMJK+vLeWQUGFpGFIWcHPtkmRBDLC+3sR0DNPXMwcSwIixTJUMhTkSf4/kERVVJkowsFkKAYvM6dqnJuHdIEonxc2pLKFlG5E+ZDPbzuUxJE5/HH+8wn4oxXVvpUC4VUXWTTBVCil5vQr2mYps6Wib6cm2pTDjcIvJ6PH34UJy7WkPVHOJMwXZywYVmo1sFIsMiyWOvDMtF1R0SxcApCtGJWyqiaCppNCfxxbUZbpksi4lCH7f5GgC7z/bw5gqz8Ij5sCvmfDLmO3/wDvNgytQT41fxpxRKBebTCNMU91S5VKDkFojnAd0j4WCytLJIkiT0TiZYpnjsDE5OsEsliqZxFuWUpRq+76NoKpWaEHRNp1PW1hap1UpYeWzT02dHpFUXt9TGyZ1TjLLGZOhRrlchE8Kl0A8ouBa2W8GyhfBLxUFRQ+JgztG+cJNqLTSxbJM0iRiNxdgfHR6xttJhcW0FVRftjk56RNEcLzik5Ip2jw9P6JsGpqGj525SkR+gGSaKpqKbopyuGRRLJqqqEJfEvGlGgZ2dQ+or62iGkY9BxmzYJ45mVHLnGd8LydKYeRDTaBfzdaVyeDSghkFq5c8zvYCtpmi6hpHXt7TaIY1joskRcSruD9OtM5n4fPj+z7lXF2OlKialSu7YlStILNVj6k2plmy0TKzxKJhhOEUazQZHImWOLIU0HKMYFTpt8WxK5lPWFnT+zScfMRm9Ke6ZSpli5238k1/iXr8pysURb7z5DT569wG3dfHc8MYDKtWQTKsyzuOndBNqVZ17a/D0kx8D8M3v/Bm1zg0ePfi3dN77/wC48c1/D1XVPhXv99wz/RKX//bZz+jLvjO/Hqf9+XS0oIJyJgDN46wum7Dx/PVc3auX9RjSVDwTT98ZEolEchm5kSKRSCQSiUTy9eTUAecq8Y38jCiRSCQSiUQikUgkL0buukkkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJJ+DL4TjTSa+2v9q5T5n/YqinP334jqF2404dnr8vG8X3QlO3XMuuypc1e7nvo4sI5j5OEU7/z0hJWU2mTEdC9ealfUVTEsjDEM07Twe6+hoRLPdYD4XriY7z3ZoNWsEszG5UQwra8uE8zmDoY83FS4flpERh3B8cMKg1wNgdbWNoulYjsXMEzFQahYx7A1oL3UYHYuoGl3X0EoOullg1BcuKZqu4808CqbB0Avzcim6oeFNfZK8L2kacXw0oNlsYFlCD2ZbNrquoBs6KMKhIYoCqtUKhUKB19+8C4A3HWMYOgc7J1iWGKtWu4Vlm8ShT5KI+kq1KoOTHoE/o94SDjCFSgXNsEizDEUTzh9pMiecK3ieR7XeAGB2fEwSTnHKTQp1ETtkVzp4oxP8cQ8lv5XSOEQzbHSniDYU1xZHPrpVZHl5iSiqinLzgHAe0u2PqdTKADSbdUxTR1Eg9MXJex+/y9zrMp3MKLviOrYfHqPqFg+fHrPUFq4mqBr1SpFqrYSSu66YloOm6WSaS1y/DkCxeRNFcbAc6yxuS1VNorCH4VQZzcQ4//SXT4mjlLX1VeKScNDZ293nhz94l5u3btCoiesYT+dUGjGoKvPcQadYdAijkF4/JozEmJqmwcFBn08ePOHtd+6LdWAYKLpGHMZoeQyZF/hoSkIwTzg+FOvq2vUVJqMp3sxD14Vjy9pyB0WNmfsBR/uiXLvTouAWyNIIM4+fmoc6pm1imqaIRgNODo9pt5sMBmOKFXEdWZpxctRFVTWyTIzLxrV1VMPE0E0GXeHcU3CLbD0dYznuWXTV7vYxij+nWCziNoXbi2EV8KY+h/tHtFq1fJx1FFXlgw8+5p1vvi7GwFSp1CpwwY0rjiOGwzGmdh63laGSpFBvuJD372DvkJPjAZpmY8zFsR//9Oe88637NOplymXhTmU6BeazHv3jLoot1u54OGE4HsH0AdaCGKtnex7NhknJUYTTClB0FAxdR9MNklQ8X+aRj2o4WLbFeCbaTciIwwFZlmIXhCNPos4ADS3qMs0jwiq1GmpxmejkZ8y6WwBopTWWVxd51r7PQfdHopwb4872Wd64TnAk7gVNnZMmKYttg6cHwgXno48/5N6912mv3Ofdv/jnALi1Dks33iBT1CtjpV7Gi57t5+R1KBccb17RjeZTNV10QTt9xyiQ5eOsoJApCS96OV7lznNW58VjL+nDdDbDtpuf2VeJ5IuGjJj63SG/xSyRSCQSiUTyd8urRjv9XXLqeiORSCQSiUQikUgkklfnCyG84Tmhy+U/vXjb8FVjQV510/Wi4Oa8+KfPuyru6qo+nLb7IrHPq2zOmrZDpoppCsOYYfeY/YMDarU8ziWNOTmZMR48xXFELM3CcoeTw2MajQZafu6zJ59QtHWmswlOHrlj6A7eeMLJwZhWLkRRVJP9nQNMPaNWFxvolWoRwzRQVZNJX4hxUi2mXC0wHQ8xbaH0GI9nJGmEU0gol528f6BrBSyngKrnUT+qiO9KYp8nj/cA6Kwso+s6GaDl5cIgRFESFjqLRIGIoJlNPFJF5dnTbTqLLQDiKMIyDFZWFrBMEeFzeHiMrhtYZpXDAyECGg4nVGsuKxsbOKXS2RiH4ZwgmGPnYo048NFMHddWIBbxOqZbQHFdCrUV7JIQUkz6XSbdI4r1ZUxHiGdU3QRSFFXFKIgYremoj2a6hFGE5biizTTl6PAQTVMw86gu09BQNQOyjGJbxPCo7Yjuo0dQMIhUsW7GsylvvHkPa/Qj/Fxks9edsWpWmesx/lhcr6MfYmoBnU6DeSbGT9ctiu0bKIpGHIljk+GIMIzJEnj/lyLOStNtGvUCg5MTak0hPlpeWuDJ02dMfv4r7t67AUD3qI+iZJQqFdw8emk86rOzfUKp6FIonh6b4tgmd167QTgXMVWaBkkIlqGz9WwnX386JdemXC5hmksA2I5Flir4M58EccE7T59x741b6LrOypqIJgsTlV63T7Nd4VR9pKsZXhDy7PFTbt4SY1qqVMhUE8d2yZIonzeLcs3k4YNHOI5Y9wVXI4kiDvr98/tDUag3K5QrNXxfiIpm/oj79+6QJClKbiI2GgwJwpC1tWX2doVI5FqzztHuHs12+0z89v+z9yZNdlxpmt5zfHa/8xQzAjOQBMGpmMyaVNbW3VZV1m0qk2TSWjut9QP0W6SFltpo023WZaaW1ZBzkkkyyQQJAoEhJkTciLhxR5/djxbHIwiAIAmyqlQk8zxmHMLvcT/Td9w97nnj/Qzbo922MK3Pb8VlkZPnKZ/e3cao7hGXLl1kNJ4jCc7Xvldr4fghs+mIlQ01Vq+/doN60GB/74RLl9er6yXMjx6Ryib1au0Ly+CXv/g5/VrELFJ1tJsWlmUDBWWliNsfhvSQgI1hKSGPbQgsA+IkRaLWeZYtcJ0SZI5w1fiJ5JjdYUSvIfnkow8BqAU1arUAs75KPH2ojrUu4rguF67d5uDDjwG4eqEgnh3RGrxNaqv1QTZkeBTRaPq886paR//v+x+C4XH16lVKR8XBL/7v/52//l/+N2rt5W+cHvBF9/azeVfqmKcEmTz9nHiq3HPXe1GKqy88k54WypyLekqE+GIdz6epeq4BX6j3q/o4m06plrdGo/kDR2+saDQajUaj0WjO0O+GGo1Go9FoNJ/ztEhavydpNJqv4jshvFGbhC8+/rLnn/GyG61fuXn5knzd+WefPd++l69XYNg2Za6cOmanI3YfbRNGc9pttfnuex6WbRF4AiHUdE5PT7l+/SLNdp3HW9sA3HjlJq1OjeHxCaapRAmHOw9YWV5mfaOGXTnFjIZPuHB5nXarxmSm3DYODmYsLzc5OTpkeVUJTOazOZPjEWlZ0G6rjfE4nNFsDoiiEM9Xx7KsIMslyXRBOJsC0GwsE0cJSV5iu0ooM5nMWV3pgiyZTVS5LM+4dGmdLE3IS9W3brdOnmc4dpOD/X0ANi6skKcZXq3OmaIhjWPG4SmeZ/H5JnmGIMVrNIgiJbg4PDhifb2HSYmoXHVsz8eyDOLxkCRRY1XrruHW+88IJOqtLvVWH9M2vzDvQghKqY7PpiFRXOAGTWpNJdoZH58QhiGbF9dI4xCAh/cesrq5juu6xJV7jOc6WF6Tj+/c5b/9j38JwN72Q4qioNFdo9VT4qP2Wkk9EFjlMTuP7gOw1i3wGz7C7WI3lAjDCgbkuSCZnvDJh+8D8KvfbDFYXafbG3B6osbe8308y8LrtVleXQYgSRIMS/Bga5ud7QM1VpbN1tYOcXQXrxI9ea7BjevXEKaJVY2XMEwEBf1+m8VC9bdeD8gLg9OTCb1q99+v1zgeHiIW0bmTiEBAkeJ6AYswqtrnMJ3O8X2f8kzFYlp8evcebzffBJSoyHV9hocneK5LGKljpmNzOhpR5uVTAraU8WhGvVZTDjSAQYGQAlnC9mMlEFte7uP7AZZRMp2rsVpeGpAXJWk45Wik2jcaTbl8eY2T4SFZGlfXKwnqNbIi4fG2EuO8+up1jo+OaS8vn8dPmeUsLQ9AGCxmiyqoCpI4xPOXEKYa50Zb0h7XCKOEIFDrt9sfkOcSz7MwbTX2s8OPSTMTv9knXKi2HB3uUis+5dVXGriminvHtkiLHAxJnisBUZpbCAmO5yJM5TYUzaekuY8QBm4tqMrNebgbcq2/wHJVjBds0217dFom//DxrhoDy0YYBrnZoeYpsVWz1SBOU9qdHvdLdX/J0xG2myLTOYWpXInM7JDBwGU0SnBM1bfNXsKdOx9wcWON1tJlAE4+/Yi9O7/kxp/+Dd80m+KLRDLVBHzRCQ3OXaPOznn+nv9Vz6MXimOeFn8+5bb2dW39Mme1LxMCnR1fWVn58go0Gs0fDPoLA41Go9FoNBqNRqPRaDQajeaLfNecCTUazXeb74TwBp4V33xlCg1eLMh5fhPy5R1uXr7M122ivgxf149nC4PjWEyn2VkLWNtYpdUM2N9TriaHh4dMxwuu3LiIqFw+TMtSY1BmXLioXCB2dg44Pi7odDr4gdosX1m/hMxjEAn7+yqFlOW3KMuSNE3JK8HA6XiOLAv8wFfiFqBWr7O1tYsfuBhCuWg0Wz1KadLotplO1fVcz6NRt5lMQopCpSwajSbs7w7pD1o4jmpznkdEYUir2cSuBAMYdaQscHwXrxIbhPMFjhcwOT1iMVcihzQp2H8yZLBU4FjqekfDY5aWewS+S1YpOK4sX6NRrwEGQU05ZqysSmzbpIimzIYqpY1hClzfwzAdGj2VmseuXG5UOjI1b0rYIJASxLlLjerHzgAAIABJREFUhUAIAykkpqXqbbWb5IUgcEHIsBr7FVqtGotFSJYqkQ1lyvR4iO1YBA0l/qg36tQbdf79v/sLZCUM8mtNjoeHxLMhRvIYgMCDw0ePWOkZ/PGrao7wuoR5D3flDRq9C1XzTPYe3uf+3YckmRJSLK9cYn1zlaOjE2xPjfPu3j7+tUvUApvxSKVZKosSUQiavnee6ux0NGZpuc/J8ejccemdd26xstojSgrCWMWuX29xuL+N61oUqRJ0TWchjusxG09oVuItSwjCWczO8SF+TbXlZGjTCGw6PQeBiqHl1SVMx8V2HMxqzqUwuH7tMqOjE4JAnTtYMgkCn+OjEccnSpC0srbC4ZNjGs0GvX6VBsqyqLeUYGWncqhpNNQ4Wq5Fu9ar4tnlwaN9ZuMRb1SpzqQwSdOEertJ0FYCGs8/xLFNvF6bZiWSW8xTDg9PMDCJZhMAosmIWuAoQVd1P0jThCxJEQLiUMULssB3JFkyZ3+k1pZX83FcC9fO2ds+VOOyLoiTgjiOCUZbasplidu5SJpJphN17s/+6//Ff/hTh1rNpczUfBheEyc9RZaQVrecuPDw/AZRGJGEas4dD0AiTAejEuOUuaQVmMhsjrTU2EvA90wsIbBRqezyvEAKaK5cJXx0V43L+AC3uUKj0aDeUQKxR4e79Jo5S/1j9k+UuGXFNTFJMY2SrLqXrC/ZnEwn3L/3GTdvv67aV+vy5LNfc/Wdv8Iwz0RxXyHIFOXnn0vlbCOE/MJzSPC0+8zLCyifF8B82XlSyi+krXphc18gDvomaQ2feaZ9fXUajeYHjhbdaDQajUaj0WieRr8fajQajUaj0SheJLrRKTk1Gs1X8c3sADQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Gg3wHXG8kbL82lQZT7sEfBtHnOc/e9mUVF+eeuTlPn++vrIsKctCuRvkOQCm7SIECPMpHZRU5xRFSRAoRxl8i99/9IRsMWZ9fQmA0TQkSUPyOGIeq+stLffI0hQpBffvPQDA8wPqgc8iXFAWqk337t6l3QgwHRfXUy44k+mcJ3uHlEXKj165ps71bIJmk163SZ4pK4zFPGJjvU+aQ1i5chhCkqYGcjrGqVwvxqMZ/ZUefq3GYq4cdIQhuHTtEr7nIEvltvFkd8gijMmyhFq9UdXrUeYZpu1QlmU14AZCSoJ6gx8tqTRLw+EpeS6pN2sspsoFZ/XCOo1WQNBpYXh5NfaCvIA0nNDuqvQ1jlkCBrbnky5U+qTZ8THehZvUly5hB42zmX561s//XUqJLHLyPDv/yLQcMAzKQh2zbBfDNjAM4/wqjueQZy7x0Ql+la5n/dI6QhjkWU6SqHOTOMH3LFwzYeujdwGYLyZY5RxHTLnYV44erufirKxh1tbwmhsqrmorRIchdn2Dslrq46MhcQKvvfPHlKU6NwpjTFOwstzjs3vKQWdjfYXl1T6WaXKwfwSAbVscHZ3g+QGmrWIyS3OicMH62gp55UISRilxkjOdzM+dhX7x019x6fImruefp+Cy3YBwPqWQkslUOaIEzTpladDptTk9Ve4s24/32LywimE65+mTLMeh2aoThwmj4QkARVnSXWoz3B+dW5OYQtAfdCiynHkVpzuPdrhx8yqHw1MePFAppPqDLs2GwzSNuXJlE4CTkyN6/S5RlJJWFjDDwxHDg0Nee+NHxNUcuT4kSUaz1WI+Vq4w7aaLMAxqjRbjsUpJdXR4TLJIEIaFQI3BIkzAMJVLUtXmLIk5GZ1CWdJsq9RLrmOQZ4IHW/uklWPQtaubHD7Z5+K162CfrS2bskjxyhFGtQZLd5n5PCaJY37/3t8D8JObGXGYI3MDy1NzJE2bRztTlrouVZNZ2byB67mUZYpVpYWzvTqWKyATGFKtrckCPEdimSAql5k4k8zDnG7ToeGrco8fPOLNt15F4iCxqznKSeMESYHvq/VmRC5e4EA2pt6/CcDdT7ZY7+bME9hYVqm1WvWSsrS5OxxjV2nNWoNLZLMt8nCC7aq19dU8n+5JHXqZVE5fesXnHG6e/u+XPYM+99J68c9fVseXte+rzvunpFjUaDQ/HPRf52g0Go1Go9H86/NdSF+g3ws1Go1Go9FonuW78I6m0Wi+f3wnhDdn24tne4FftjF4dtwwjKr8N9s8fNEG5ctsQj7/+delsyoqQU2R56RJShxFjI6GAHz43rt4js/sdIhnqfP7q5sEnoNf87jwivplt9Zug4R6p8uTu+8D4DV6WJaF32qCVOmJHEvQXOrjuiZ5pU2ZjacqJZNtk1WCgdW1DicnQzw/wDDVGCyvrCDLHGRBq6WEKO1um6IoybKC6TypyvWpBTaOY2O7asPbcmyEYeGlEWnuVOMicByDLC3Yr8Qay2trSGlSFiWNjkrrY4mCRruOzDNKqTbzVzbWicKIOE6IQiUiOD6akiYLNi+tE0VKUDObzjBtm3arxmSshBkGJe1uD9NysN2qv80l3Fody/Vp+lU6nDIjGp9Qb9RAqNAvsox4cYItCmS6AGCweYvO2jVM20W+YOtblmp+o+mYZH5KND8ljpSow/dtDMtBCJClEqJkZYskTRgsLSHO0lQhcPwayxcvUyQq7dBw/xAvaNDu9BkOVeqg6ekOJzufMh09pt9QEzyfTrh4uU93aRW/oVIbua0N3PoqTmMFw1IpnxbzGVeu9SmFSVaJRITpcen6EqZlklcphuJoTlEKwjDk+lWVWqsoctK8wHJcViqRFzLDsE0O9g5ZGnQBuHx5k637j+j0uqSZap8Qgtks4uHWNpcuKRGLIUuSJOV4NCHwVAyF01OkNHB8j6wK3t++9zEUJaOTE65fV8Iv13JYWVvmycGQK9cuA9BqBiBLfv3L32KbVhVrA8g9Br0GDx7sA5BmBZYhEEZBv6/SRW1srGLZBhcurjI8VDE0Oj4m8NaoBQGzuZpL17VJoogszugvqzGIGxluzSEOQy5cqtKQOQaeu2A2nTE6UddrNHzcWpM4jsmrNVjmGbV6nd99eAfbVvew9YtrrK2tqvtJFRsHe4fIPKGQJtuPVD/8wOfmzUsswjkXLq2p9nk+frMDUrC6oVKJ2a5FMn5AJg2yUqXvKhcx88mM9371j6x5jwC4sFJjsogRBlieWvt5MseybIRpsfukWgu3L+EFHtEsxLGcqt4a0nSZj45JFip2e5ddWk2bQhSYlbAviaHTckizkoav5tdwTCzXQcgMwzhbgyF+0yeOIjK1ZKgLi8NRQb1fcOGi6puR3qJnPWRAAkUl+JlClhbEScxsotRCQa2JvchYTA7wOyrV3lfyhfxOoko59Xk8w8s/b75OBPN1zxzx1H9fpsYX1fdVz9CXaaNG813nbGNA/wL87dAbKxqNRqPRaDT/+vxrvcvqd0GNRqPRaDSaL/JN3s10uimNRvNlfEeEN2oT+mwv8GmBzMu4CnwTAc7zbgPf5i//zzc1haCsXD6kLMmzjIOH9xnuKxeNJzu7FIXBbBZSbyonh0d377C6vonj2BTVBvXOo30EObZZEIZqk37t6hVavQFZmuLV1LlO0ODKtTrDvR1ErsQpjgW1RosohVa7fdZCglrA7uM90lS1L44j1i5sEgQeWao2lKezOeEiowTSk1MAllaXWV8bcHoa0ukrt41Op46QEEcxtqNcKhzXJ0kThF3HMs/GIMfxfAoZ01tSIof93V0uX7lInklmoXI12VhfBmGTpiGjE+UQsrzawXEa2AuL/f1jAI6OTvF9jyiWeL5f1WsrQUyekCRq/HZ3DzAN8JyCwfo6AJYhMGwX03TO54gio97uU8rifFPd9h3yxYSCnN6VdwDwmn1My+JFoZHHEdPDhwCEixnCcChyG8NSriFhuCBeTLEtaA6U80y91aFhlMxnIfWGcgPBNXEcA9t1KTw1zsKqkyQx2w8/wctVDDWzh7SXQk59j3mkluuf/JvXCZrLeO1NrLqac9frIhBkuQSp+uuYOUiJ57eptC74dQ9TCMoCTKHasrK2RBjnnIymLK/WAUiimOnBMVmS8PDhLgC3XrlCnuasrS0xmSjBxfLaKr7vsljMOTMlmsgUiU29HhBX7iw3b91kf39IUaTMPTWXnuMyPj3C9/xzIUoSzjAMC4nBw0fb6txrF5iM5xR5hmmoStIoJMtKPNfAD4Iq1g5oNWr49Rr1uhJ0OZZBkpakScnHHysB2zs/eQPLqmOb0GmqebM8F8uzMDDP10Kr22N/Z49Wq4FjVfHS9LCsrnIzKiuXmTLAr9cxTIvJqRqX+SJisLJEnpZ0ump+m+0GP//Z+5QUPKli/Hfvf0y706TVH5wLCmv1BllUAoJ2R81vt98kaNTpZtBot6qxirh+4wpBo4VzJmY63SWJMqzGJslCrbcnTw757ONfEXCfW6+pe0k9MPA9DzDBVHMuihPWl1wWUUGYq3VuWT6z8YRwfIiIVd/KxQzTLoAcU6j71dHxglajjW15zCen1bkgMXi8FxElKtasNCFJQhp1H8tWx8pCsJjNkFKQJEr0FDQtlrsWjm1RpkoAaJgSIQpORjFZqhanZVrM4pJSeOeCQsMocayC2eED+puvq6A0v0VWRXl2jgTxrGjzq0Qt3xYhBIaUzxjwGELw9I1I8uVinC8Tlmo0Gs3T6C8FNBqNRqPRaP5w0O9+Go1Go9FoNF/kn0MAfXYN/b6l0Wie5jsivFG8bLqo58/5Jq4133Qj8kXXPTtWliXxXAlHjnZ32LrzEYvxmO09lbLo6GSKY5lc2twg8NQm8+tvvcNgeYBfa4JQG7vT8RjPs8nLEttRIoLtTz8jnv+SyWSOZ6tN/82bN1i9/DpRvIRRKEFDyxAs5guKXOAFtep6I05P57iux7WNysGkTNna2uGVV69S6S3IsoyHD3axbMGt126og6VkMg4JAhezUlKcHk9I05St+w945ZUrADSaHUbjGc1GnTRVbjRCQhbF7G0f4jaUuKLV6ZJlKe1ei2ZXtS+JYo6Ph6yu9GhUwofT4wlercl0ltBqK2ecwaCD4/qYlo0h1JjbtkmWF0ghcD3lwFGrB7QaNYJ6B8NQAgQpDMpSIsoMw1BzniYRZVlQFjmySgOVhUeYlklr7TUsX9WrYuTMb0KdW+QZyeyU8XAPWS0b6S6RZwWf3tui21VCo53HQx5sbfPKravcaijxxzwZMxg0aXXqUAlHDMtCFgVlkVBmSsBxtP0Zu/c/ptX26C+rNFpF8208v44fG6R55VS0sYFl15hHEb6jxllmCXlZcHR4SKNmVHPUwgw6lEXKmbjNEIKylMpdRSiBjmV7iChhMhlTlCsARFHC6OSEixeWaTbUmB4enGDYFpPJnMFA9dc0JF69RrfbQlSB9WT/CTs7e1y/dpF2T41pI3AIF2OixGO9roQeD+495OT4mNtvvMpsptZRr9djPg/p9zuUlbNQXpS4nkP34jp2JaCYz2NkWfKjWz/CdtQ4P/jsERgWcVaytK760ajXmE8mHB6VXLxyubpegZQ5eVrQ6iohSlaUhPOQbr/L+qYSTMVhxPJSm2a3h+MpIYqUAtsxmM8EVuX+lBclMk9I05xKS0KtHiCAKAwJK7emleUe169doN9rcnw8ruLZZuv+Lt3VNfxKXNbtdzg5jPBrTTarOsqiYDGbsrc/pNFSbX74YJtX37iJW6thVOMy2b+LcLvIUnJ8pFJw/eZn/4WfXF9wdbONVblsJXnJnc+m3LyxjGere06cpdx7OGWl7zNZqOvZjo/r+ZjNBou5rGLXxvY8jGlEp63W77UrDqYBeRoRV4KfKJY0aiY3rjR573eLat4WWIZFnuZEiZrf7lqbtDSYzxIWVRzkTg4YCMPEcJVw6Wg4pjMoKHKBZamBfrgfsT9psrF5hSyJq5h8RFC3mA/vMj5U4q3OmrpvfSGt1Lfk60Q4T3/2zZ458ryFUl3gW7XpRT+/sDadckrzPeev197Urjcvif4SQKPRaDQajea7w7d5h9XvcxqNRqPRaDSKp9+lvuodSX9vqNFo/v/mW9gAaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0mu+U4823Sf/0sm4Cz5eTlaHJt/U/KLOc/cePGD9RaXjuf3aXu3fu4piC/soaAJ9+/Am333yVC1eu0Ogoh5Bao4Xt2OxsPeLunY8ByLKcPMuYzmZIUbmpyIKLmxtsbq6yv/8EgIf/9Wf8h/9pleX1DbJYOUhsf3af4ckp/f4S84U6lqQF0+mCRbig0VP1Dvptjg+HpFlOWVbuMZZJq1XDMCT1mnLbGJ1O6S51MGTOeFK5T2QZ9brPG2/+iFqV1mc2j/FcC8sEaSvnmSSJ8Tyf7lIfx7GqYzmm4xIuIqzqmOPX6PYkaZacp66K4hwhSlzXxLTUMVMUzGdzkiRlZVU5p2Rxxs7jfdYurFOvqza32w3WLqzj+k0MU/WtSELyPMPxfYSh3DFst046PyEa71Ikaqz89irNpetYfueLMVKWLCbKNWR8eMBkMkeYDoeHRwB89Pt/pO75vPfeBwSBakuaJFy6tInr+BwcHKpYkSX1ukOzXec8UUyRI4RJPj8iDlUKn5o14pU3btNevgGmavPpySnNXp86gKHGRWCSRSGz8ZT5SNVhETLYvMaFy1cw7WpZCwEYSIrztDl5niKRGJhYlVtOUWR4jsGPblylyJULzmClT5GFYNi89votAI5OTpGGYBZGOH69mrcExzRAGpxW6ad2d3Z59fYt2t0ORaLcXhZScunKNQzboVFTDjX1oM6DrQcIIRgsqzUzn814/7cf0ajXeeOPXlPzYBg0Wk2ixZzTKnaDIKDZqpMmGbI6Zlk2tm1SazQII5WyKC9KZAmmaVKrKXeWXr+HH/jYrkNR5NVcS6J5yPHhkG5fpXeqNWv4NRth2Mj8rFwBQqWwKjJ1LE5SGo06plOex0G0CCkL6PT6nHx2H4AkSQiadfKsZDSaVdcT5EkO5ef3vOPhAa4l2d05oMyrNEuGTavbYGW5T5Ept6vX336NeqOBZVkUhSo3G0+hvkQYRrz7618B8NrmnFvXA4oCiiodWJJJAs+i1V07d1UR5PQ7Po5t4wdqjtq9BgY5SZJ+nt6phLKQxEnMYq7WkSFcTENSSEGzoeK0abtIKTEp8Xy1tspaQL3RYjw6Jk9UP8JFhF3r4Dg5snLZsh2Dre0FtzsCr3IbunltnXw8Is4lTpWa7NGByfrVt1gedPGyuyo2il0M02Oy9zGz8f8JwNv//f+K16pS8cl/uuvN0042L3oGfTuHtcqF6uy6CFTCMZ6aI/VP+a1b/iw6FZVG88NH/2W0RqPRaDQazfcX/S6n0Wg0Go1G8zkvcrD513a1+dv9D/Q7m0ajOec7IbxRm3/yC8ee3tz8upRSLyPaeXq/VXyNtueZ60iVckhW253RfMHuvc+4//u7HB4fA7CxeZVXXwu48+G7FIUSL/zN//A3bN64QVBvIQw11Ef7B3z6yWfcu3uX49EIgGtXrnM8POFkPGI2VsdqzS5eUKPT79Nuqs38Mvd4/OkHdPpLlFVnsiyj3elSbwSUlTjA93zanQaXLq/Sqs51nIBXX7vNfD7n3V+pB1Gv3+bC5XU8x6KsNrwXsxDDEJRZTq2pNt9z2yao1YkWIX5d9aPetEniBGFY55v0jVYDWea4foNkrkQYpuXz8UdbNGsea+vLauyJwDD55M5DXn31KgCjoxGuu0pQC/DrKpVOGi5Is5Kj44iV1T4AYRTS6fcpihzb8ap+9CilWU2qGgPbsbBcnzJfIIUSBlFIyGYk4y1aa0rU0Vq/hVml93qaIs+YHOwwP1XCm93DGSejhAdbD/j4IyWYiqKIjbUNirxkfHpataVLkWXMFwn9JdXm7qBFGMbUGnXsSqQEJenihCSaYaBEE27QxrQbZIsxZtCorjegiBck032KKiStYJnDIyXS8hwlgFnavIkbBICEUgkahGFSFiVCWJRSjYspDMqyRCAQlZDHNh0EFqaV8sH7qm/v/PGbBM0e+3v7LK2ofvT7XSbTGTduXGUxU/Mri4zJbM7odMwrr6kxPdw/xLFKkiQ5X2iWndNq+4wnM8JQtcUyLAb9LgjBRx+qem/euMLy0oA0TXn04BEAt2/fZDY+odlqsFgoIQ+ei2kY2EIQV2nXbNfAdmyOD494+HgHgB//5HUwLep1H99XY+/Xa4gyRyIwqvtGaRm4NQfbszEr0dMiTKDM8X0TWaWFyzKJaRkgBEWm1vl8tqBe9zg9mZ6vo5orMAwX0xKsbVRxLwQq61nJpYsqndVH73/M9qNtbr99G7+m4tB1TMq8oNutM5+q7u7sDukN2jRadcKxislWp4ZpWwjDgLys6igxbRMHg6avxuXiuo1hGAxPFjiumvNBx6PbCjDcNkWuUkOZpslS12K2yBGmWtNlJkmMVMVSlfpLGCZeEJCkKa6TVvHsYpgBdq1HUaWzChe7yCLHME3SXI2fZZqkaYYQEttXdRiWie1YxDHklRCqFtgUGaSpJKjWNAKSVDLoN/jonkoV11m5xYULqzD+gLp4AEBS5CRxk9BeIdy5B8AnP/9b3vjr/xFD2JzxrOhEVv+W1f9+tSDl6wQrLxLlPP1MeaEQFCW2kU+VF0LAc89BjUbzLDrd1Jejf+nXaDQajUaj+e7xsu+u+l1Oo9FoNBqNRqG/+9NoNN8XvhPCm+d5XnRzduzpz77u3G9aH3z5pmYhJXkUsfdgC4CjvX2icE6axMjKeuDR1if0uk0a7Ta3Xn8FgHp7QKe/ymI24WioXGv+y3/6z9SCGqvLfSanyjnlzu9+Rc216DQCWrUlVcfJmPv3PqPTafLa7RsApEnIg0/ucOHKDaRVOdmsr7O/9wTbyqnVlQhjeDSh1e3QajoYlYjgeDjk8PCU5dUBg0EXAL9Wp93tYhgwPRkDYFAwOZ3x6OEeP/mTNwBot1q4riSJJdsPtwFYXVvF8lzGRyNMR22gL68vUyYpizDGq8Qzp09G+DY0ms3z8Q1qPhLo9/qIase53a4RLkLaXg9ZCZeKoiAIfK5dvYRhnrlAFMxnKY1WHctTxxrNDqPjU0xSGr0BAHk8Q5QFRRph+WoM4tNdkDHLt/4Kr6UcVkzTeWre1X+zJOLowcdkhYFwlUvGZHbKL3/xS46Hx2xubAJwcHjAfD5nOjtlqa/qlWVOq92k3a7huEroUeQFZVEgKSlzVUcy2yNZHGG5PUy7qfpmJSAMshymB3sAlGlC0PApszleXQk43EabC36d4eGYWuUeYxoWMs+QZYZZuSYVskBIKMuSPM2q+TUQSCUwqEQIZVlSlAW2afD2269VY5/TbNcpyyUWc+UeE0YJD+8/YmNzg8VMOZ00Wm2mswiDko8/+BCAGzevsLbew/VcbF+JoxzLJFzEuKbFeKRi7d7dxxiGxPUdbr+hXHVm4wlvvPUKnu/xZH+o+mY5BA2B5dZYaXc5YzKZEfguhmlVsVEyGY+xDIde+3PxVqfTRooahnHmBISajyKtPEVAlGBaNkIm5/Hn2AaitJGyRFZxGscJQaOGISwcR5VbWeoiixLbFIwnShjkYOD4PmWZEzTUuoxnc0bHoyomlJikv7JEZ5CrWDkTAZkBH/7m99SbdQYDJXrauLCB7TgMd3fxigMADmd38NqbOF6DWkuVqzUCpsmCIOjS76pj0/mQwE9p1EyEeXbLl0hKTK/Pya4S8gy3x1zbbLEIS6ZqerFsE9P2CScHOI5TzYfFfDonnM2IY9WPKA6Jk5J2N6caPj68c8zV9TqTRcLOoRrny6su89kC2wTfrRyw3BqWbZEXkqJQaxXDZvOSjxu4lFRxWqTkUjJ8EoN7WY1L7wrZ6e9pFZ8RlirWIvctmss3qUkX4a0C8Ojjd9m89Q69zas8j3rWnP/Et/dB+2pBztc9Z9RxiTyr/yscdf6paKcbzQ8NLb75InqjRqPRaDQajeb7i36X02g0Go1Go1F8H77z0643Go3mjO+E8EbyRdebf8rG4IvEN0KIZ7dTX3D5F52Xpyk7W1v87r0PsAolXpgtIi5du8bWvfvsPnwIgOcbXL38p9x+62+wKyGK63ospnN+/o+/4N1fvQ/A7dvXKbKMzz7+gLRKdzTo9zENgetYSNTGsyUgL03SOOJgT6UTkqUgSiW/f/933HjrjwHw/Q7LKwLHFaSVA8fw4AmuXyNZ1FmEsWqf53Px4hpe4OK5l846rEQFhcSuNtUn4zmTachrr9/EUPYcbD/eYWNzjfk8wTBUud3tA+pNn6DmYVWpnMZHIxqtBmkSczaX/V6TleUOhmkRLs5ccAySOMN1oMiU24awbAzTwDAyylLVe7A/xLJMgnoDO1PHFlHOyckRqxfWzp1J7tz5lIsXL1FrN6CaI2GYGMLAwSNdKGGB6ZjUez/Cqg14OhrOIq+s5j6cTchLk0w0+bv//PcA/Pzn77K01OdHr9yg3W4BEKcRN6/fIFycIqVqy3w+pdvrkWcJ+7tKPFNkCa+8egXTtMkjNQbxfELQuYrhNCgqlxTDSjGQ+F6N5qBqm8wxLIey5NxNhaLAMEz8WkC9qUQdZZ4wmywYHo64dkMJgwxhURQ5QgpE1bdS5sg8PxdLqXodRJqTZQm1Kn1XlhckSYYsinMxxPDglP6gj5CwsakcW06Op7iOjedaXLl+pQork3AR4bs2osptVEhJOJ0yX8R0+yptWPd4QlALKMscy1biivULa6RxjOO6rKwqodHjhzv0lzosogkrK+pcxxK4jsnwcEizEtncvP0jQCLLksFKJWaSEkNIJCDPnIBMB9PxqrJGFS8QRylpmtKoK+cZ21SxXiIxqttCreaxmM3Z29mj1VL1DlaXkIWkKEp2dpTTTtL12PB9hOmcC5dGR8dISkSR4FZORdFiRi4lWZqeR6Rh2tTqbbrdDrWaasN8tkCWJQ13Rr5Q/Si9i2TfEuTbAAAgAElEQVSZRxKdUMTz6lxBNk/I7JKNq7cBePS7T1kfFNRrLqjukiQ5tmNimIJWU6XgspZbCEOQ5FBrKGGf47mUhcT3PcKZaotAYJlgey5ZtVZN08CxBZbXRFQOOrevtxCiJEyM80xa7XYdP7CxDMEiV/3IsgSjKHBsE9c9E5tIRJlCGZOl6j45OpnQcQsexhKrtQ5AUPdZ7EwI6zeQnor7oDHgdBxTq9n0V1WcHsyP2frdL+hsXMIw1SBIhNK2SMHnt32Dc8RZQiehLGnEF58p8M/oQiMEEnEu8kIKhCifub7keW+4b1ONgOo5o+U3Gs0PE/2Lvkaj0Wg0Gs33E/0ep9FoNBqNRvP9RItvNBoNPLPLqNFoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaF6W74Tjzb/En91/nWPO86msnj6vLCXhTLk23PvwQ37/3m9IC8lf/OVfAXDng/f59d//PwyWl/iLf/9vAcgLWLqwSb3VJZwph4vH+zvc+d1HPHywxdqqSpETTsY8erSFa6bUeiqNURB4CCHpD5YwhHIiGI1G7B2cMp2c4lTZV9ZXe7zz3/xbgsCn5ig3hlavwXQsGJ+OsKRykPBch3argeU61ITSVpmWiSRnPI45PZ0CKv1TNpmxstzHDZSbxfLKCuuXXJLFgqJQ3gobm0vE0ZxBv02SKled8emYMssI/CZZptLNxGGEaUocWzIaKZeZRr2GZZs4bp2TY1Wvd8HHcWxMyyKVKj1Mr18HWZJlGY+rdFaiTGi2OqRpSlmcOWtYvP2nf8J8NqOUqt4bN6/hOgJBfu4KI0yLcHpIGY2wfeV+0lq7hWH7VQA8FQsCsjhmfKRSGz2+/4D9JxO2d4dMRyodWKfTwnNd8rRgNlGxMToe8aR5wIWNZQ6GqlxW5LQ6dW7dvkWcJIBSt+VFTJmERDNVzutcojRMyjQCcbYMTYQhKLMQ061SSDkBMs8oi4Kyco8RMiNNUqajEc26U/VBILMIS6RkaViNn4WUJUJayCI/L2f5NQzDROaqfcISWLZFp1snS1Q5o5RsP3xMr9fBMitHnnJKv3+NWqOO66txDOchrUbAeHzKbKrqHR6e0O/XOR6OWVpR6Y66/TazRUqzEZyn4Hr9zVc4PZ0oZ6UqZ9siDMmjBXlRIirHJd938XwXx7HJchV/tuWQZQlZFiPKyr1HlsgypZSfO6x4rgPCRABCqrVQliUYYAoDWar+lpjYjoVpWxi2mo88jonjDM/3mM2V68rx8YiNzXWWVpfOg2h7+xDPsRgdj/Gq1FpRJoniFMNKiGYq7vf2DynLnLfevMXOjnJDGiwPOD6ZklduVQCtdhPDcUjTmJ0dlZZrdWONMh4RhwnN1bdVrJUGcRhhOTWEWzkLzR5jIUijMUtVSrRHW6+zN3yfXivCddSY1moWBhKZLrAtdYPxHeVMdDJOyCqXo3A+x3NdyiKnyM7GSuI4Nt1Bn2HlOhUvcowaGIZFXirXKccsCOOSRVhgCTXntu3h+AHx7JAsr25shYMnwTAEVQYusqyAsgSZ43jKgWiw1CEfPWKpDfuLUwCCjVXi3ltYjSajsZqjh+99xIOtz9i8eI0f3XoVgI3rf8TRw/eZHB3SWVmtRlp+7i7ztTxfTvLPZXTzfD3nzyUpVL1CfInNjTw/5/P/f/rYs8/Bz51zBJ/351+kExrNvwpnf1HyfbCf/ZdA/0WNRqPRaDQajUaj0Wg0Go3mh8L38Tu+szbr7+k0mj9cvhPCGyGkSv3zknuAT6f4eFF6qG9yjacpy5I4ihnu7nLnt+oG+bN/+AcWszFvvPUOn975BICdR1vcuHmNpY2LNNsqJYth21i2x/R0wicffgzAr3/9K3qDARcvbnJ8eADA7pMD6nUPx2nSrVLkUJb0llcJo5AoVOIF23EwSCCbE85VW5fWXqfW7OH5Lm61wZ+Gp3huQK1eZzRUwpEszYmiBWvdBqMkAmAw6BInJUmSU2RKcHH/swcEgY8hBc22SjeztNImywomoxGf3LkHwGtvXGVj8yJbW48wpRIIrK/18YIW0jSwHbXRnuUmRQGWadDrVqKiZoedx3u4bs7S+prqr8wJwxDTsBidqNRLnlUiTRchS1ottdGe5y7TWYjn+NTaSjxTFCAMSafXRFRCo6wwqvQxAmEY1bkxZTbDcFway9eqOfLOU0zJKm1MUZQsTo8YHxwwqYQj//CPvyVapEwXC/78z36srpdlPHq0i+vZeJ4Snfz4J28SRQnT2YJB1d/2lUtsXtzk3v1HtOpqjizHolEzmR/dw3JUP8o8BsPBtD3Od/BloUQ4ZYRlN6pDkhLY2z3AMVW5Xr+NaRqsba4hTNUfwxB4fsCKayPOhDylVIKlIsUwzpa6BAoQpsqvBJRFhixLLNtGmCrlUzmPaNR9PNdifDoDoNtfxrZsbMsmWqgUZklWUqvXCcOUyXhW1ZvgegOiRYQfKFHM44fbzGcxsuywUaVoAsnqSp9FmGJW6rLFdMxsGrLaaCJsp+pvh/39IW+89RrRQomeTMvGFyWbl69giEpUVMQYlk8aRizCqCpnYjsGCANRqtg1QAluHOdceCOEgSlLsijk4FD1o91pkyYZllng2GdjBdPxCL/W4PHW9vkYtDaWKYuc9Q2VHsvzXBAQzhfn03thYw0pC44OxziWGufj4zGz6ZzZrBo7IIoSwukUG4usErpNjp9QsxOC3vXzsd/f2WIyn7F+4Rq2v6T6YbUx5Qzb36RIVd9e/aMf89t/2MMydthcdjjrSF4UlEVyfi9M44y0EOw+iele7J+Ps+36RCdjiiqtVJbkLOYThk8OWe6q+T0dTRFmF2EGFLESxSRRxuEwxZAmwlJz7tVqIAs8W5C66pjpBJiWpcSOlZjOMgSmAMt2MaS6XwW1gDIxQcJvP7ur5tyyWSxCFrNTstk+ANdWCq68lvL+vV/yyFNx1e39KRkeR7tbtJdX1FhhIKXStZxx9jxRoq+zD6pUVE+JdIQwPn/uiG/2/PnyZ5ZKAXX2mSpnqAaKZ0u9mGptAyrKjecEpl+sU+pkU5ofIH+99ub38hfzfwr6l3mNRqPRaDSa7wdf9Z6q3+k0Go1Go9FoFH9o3+1pNJofDt8J4c3nGa+e2hgUz/747GbkP89f6X8u3FFuEaPhEQ/vfMqvf/pTPv7dbwHwPJ+G51Bmc5LxMQA3X3mVS1ev4XhqwxggDEO2PvmU3/z6XdJUbfq/9tabzE7HbN39GMdR5fq9Fu1OB2FaJIkSjnQHTbJCMpuMsR0lOkmzhKXlZbr9JfoDtVHsNjrsbW+ztr56vhndHKywWMzp9rt0OkrUMTpuIfMM07RZXR0AsJhHzMOCRt2n3VLigLW1FcJFQpolGKIOQCkN0izFcV3efvs1NU5GSZZkGLLArgQD88WCOBPYjkccR1WbJY1mgGlbTE7UWBlWDVFKpuMJSaTaXA9silLi+TZOpOZyMpnR7Lo0Oj1kJRI52NlleDyh3miwdkm5dyAMkClhGFOrKbFQmRUUWY5whBKvAPHRfYTl0tp4Fava4EdKJBIQ5xvO89Ehx9uP2Xky5he//j0Ah3tPWF1Zod/rcXJ0Up1asLa2wmy2wA9Uvd1Og/ufbVECl69cBmBpZYXxaEyeFixCJZC4cfkGIj6CooHdVPNBWVJmOSUpGJUgxHBAGFh+m7M1YZgGRQHLq31kJRwxLYvJeMZ0PmZ1TV2vKHMmkymdTouycoUxTBMhS4qywKwEOpblUMqcNJpiGpUIw3RAqnVlOUosZNgl+0+OkdLgeKScRFoNn/x0RF5mGIYSXBwdHlPkGUmS0O23qxhfIaj5RIsZe7uHVawtsbQsuPvJfYK6fTYdlLnADzxmlcNUu+FzIk8xLBiPlCjLtU2Wl7qUWUIWK5FX4eY4to0UJbJyU1FzL7BdFyNOz+O+2bKxbIvKTIq8LDAsCyHMz8dZGOR5Rl5AXNUhREmz6SMsmzhUsbu3e4DvX8DzJd2eiis/8Chzged57Gwr8Ue9USeoBRgCFpNFNcwOw6Mjlgd9Do9U3zBMmu2Azz69y41XbwLgeB6GZWNYPq9cV4Ka053fY9UuI4Hf/vLvALDnvybPU36zdYl/99/9zwA02leYHP0dnpXj+x1VzpG88uO/5O//0/9B989UbDiugaDES0MMU42fYZkcDxfUA5P1C6pexzEwLYFtJNQ76yqGfBspDPJwjC/UuIymMe2BjTQtymRSXU9S8wUlNv0VJbpzTEG8iCin25iuuuf4tTpxkpLkOXmk1lsaLUh9F9+pYbmVEM/rIEwbx0p5ZUOJ5CaTX3CpIWgPIK0cugJbMDyB//jnHX6ztQtAHIUM1q8w2ntA8fo7aj4sFyG+mG1RnDvMPCW0+UIxiUBWzynjmeNf5qb2NIZhfOlzTDyrBHru0/LsCnz+gCwrNyeBrIJcaYGeVRUJIdRx+YyGSKP5QfKHJL7RGzQajUaj0Wg033/0O51Go9FoNBrND4e/3f9Av99pNH+gfCeEN4LKZaD6+WxTUPCs4Oa8/HObkc///CInnOevI6XaIM3ShIPHDwA42D7gN798l5/97KfcuLoBQL3RJU5LBssbDNbVxvPSyjqe71DkBWmmNvjf+9k/8tOf/orLV67hN1VaqSc72+w/fkDNM6j5laPM2joGKcK0aTaUyKHTH3Cwu8fycpckVe07c9jodrvcekvdoE3TpN1pETQC0lSJAyQCighTFAhPiSGCep14MWdvb5+lfguA8WhKkmSQ+cwrQUitVuN0PCGNE+JIXc92bIYHR7iey6tvKCFAEs2ZzeY06/VzB5OslJyOpjSbBdMq9VJ3aQnLtkAY1NtKEJKlCaurPYqyTRSpzfJavU4UJcgsJkvVRnKj38WyTPJ0cZ6apz9oYXsB3V6PtHL+8AILIU3KNEQGynnGtEqEKcjm+6SROrcsUjqbb2I5wRfmvixz4rkqNxkecjzO+Lu//y3DoRKJvP3ma0ynM65dvUpZnrn5xOzuHVLzaywPlKCBMqbbaQHmuVijkAWz2Yig1qbVqlXj7DEdzQj6Fyvhj0r5ZFgmCHGeFkkYJk4QYJomQthV4GYYpYHjeJxttAsMbL9gqRHgeiqG4nBGmkkwLOTZBQ0LQYHluRiiqOKlRJYgi5IsU/Nm+y1MyyNPcmUpBAhT8ON33oSioNdR/Xj4aJ/P7j7kz//kBsOpunXs7uzj1xws04KqDieokyQxs9nivG9xkrG03GF9c404Vq4my0s9wsWCxWzEIlTnFlnKxcsXELbLk71Has4di9WNFcrSoNFW8WxZyuXoycGQ/kCtN/IQAw/T9mh3VLmiKBDCoMgSzEpgYpouZRaTpnOMSjhXluo+JIRBszpXWDZ5XmILk7Ryier1u3i1AM918QZKnFJKSZrm9AYDFpW4zDAN4iglCHwaTSXQabQaeL5PtIiYjFX8+Z5Pu9Pi5OToPGVbu1Xjx3/8Jvfu3iM8UcKRxaKk9Eq2P/ktxclPAXjjulr/R8f32Prw5wDc+KN/g7SXiJ/8BmNNuTWBS6PVYuXKn/GL36tyf3pbguHwZHePlYvXVT/ygrUli4d7n6c1W8wTDCzicEYiVRz4bk6WRthM6NVVmy8v1/G7LShz5tORirW8oNcy+eB+gdldqWLDx6AgDQ/wu8qJKo0iwkXM/vYjVptKtNPv2NiuwApWsX01H9G0yUkY4BsJNy5Va7koKYsSQ0iOTtW9+Oi0wHUkdV9yoaWEPNsPH3LrtnJMyipXMbPp8TwvdlGr1CovQHzLtE1fJrp5+rgQVI48Tz/fzlJcSUTltKPSyT3riiOpxDfPnlq1WSeY0vxh8EMX3+hf3jUajUaj0Wg0Go1Go9FoND80fijf52nxjUbzh8kX/9xfo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRfC3fDccbof4G/+yv8AWodBjPuQJ8WQqPZ10CxJe63TxPEoU8+N17fPTuuwDc/ewh0/GCfqdNu61cNDrdAf8fe+/5Xclxp2k+kf56B1x4oArlWTQiZbs1q+mdnbNz9swfO/Nl90yPdrvVPeqWRDl6FlkeBY/rXfqI+RCJW1VUsUXN7mxTpXh4DoG6yMyI/EVEXgDx4n03r96m025QaWjninqzSZ7HDM/P+O1vfgvAZ5/e4yf/698gkwXPHn8JwGI2olorU6kEtAqnDs9zsBCUyiWyTDs0TMYTuitNkiyms6rjohbTGeNZRLPdJvAvo2Bc/FIJKRWOq19LFyMqVZ88iwAdM5KkOZm0QJT48KP7AOxsrVMueSAc9q7uAHB4cEirVWcxX+B6+tyV1Q5RlBIEHlGk3TvGwynPnp4QRSlWEVm0vdNlMh6ytrFKrXAI6Z8NQJWxbBuZaceM4+NzSl7O5t5VPvlE1+XO7RtUKgGLRNBqX8bh2EzHI2q1OmGoHXmwKtRbDZqdBkcHBwBsXb2OZSW017aQhZ2DiGOycMDk6EPiwlWnvfcD/HKziFp5PmcUgmgypH+q3W0ePjrlV+9/iGO7bGzoCC7PFSgs3MAnnOsxunLtOpVmB5Sg2dZz497n95jOF7x59w0aRcxXnincoIHt2KwVMVCL3gF+Yw0cAfml7YR2qFCWjSgipIS0UElCmCc6dgqwLBuKKDTL0WOUxinlckk7XhTRMq7vsLWzhswhCYf6eLuJEmDJDFWMm0CBlLilOnkRiaakQGYZYC2dTlxhM43nuI5Dkl3GgS24duM6/d6Ys56uy2K+YLFYsLe3RhoXTkplD6E8ZvUQIfT1yiWXNFpQCnxqDV2r+XSGsmwy5RKU9P1OxkOazQpV3+PatZ1izBTlcokkWRCO9Jz0A49SKaDRbGIV0WTzeULmZXiBICrm0NnZiNW1DuVKiSTW9ytsge9rhx/PKqJ7iugflaW4jtYjqkzyycf3ePOdu9Rbesz3S2UuTi9IFyF2EV2lhI9C0WjX2Zba2UXmKWGUUy57y2eWV/JxwgXD0YhmTccsbWxtgpDcfeumdosCpMxxPZut9SbTIx15V2pcJU9j5PD3vKsNaij5ICwLZ9Xlwyf/DYDDRzusbeyTXRwRDe4BEHTeoVqp8Pb3f8hv/lHPjU8e/J671wWePcYtrRV1dommc8JFSBrrulRKHlk8xZIRpbK+t0azznSScX7wCaGt3W3eulGlHKyQz46w8nlxH5I0czjqebx1V0dNBWWHydkJi/4haXBTzw03xXFtBkcPeGu7iCGT4FdXcRtXkVnxPMCitvlDxPwJ2eJIr4V0gSVShA1xVrhT5YrNtRKWbVMp69pfDA6ZTq6SLBKmYx2DFzQKpyRxGd9UjKd6+ZnxdSzd04r4J+1Q8//OS0a/d+WXPSni0F7ERgjtevOSk5eQOllq2bxCWAKh7GWsnhKgyIv32a9e12Aw/Dlh/lrGYDAYDAaDwWAwGAwGg8Fg+HZjXG8Mhr88vhXCmz/YrFxqE/7lSKlvdC14SYhz+TFLU44ffsnw4oKzY70R+9EnX7BYzPn+u+9w887bANRbbdZ2d/BcgVvE0kSLKePBBZ9/+DEnR6cA/PgnP2E27PPFR7/FsvTG6ebWOlGckGU6/gnAFhlCKOJ4RrlyGUVUpdNpMLg4JSyil5SAte1ttvZ2cVx9307g0Wg3GF2c4no68sm1bVyvgZAuKteihHK5xMVJj6ASsLN/Tdcgj4mTlGYnwC+EPO3VDtPxjNbKGlkRpXN+2mM4HLG5vUpeCC7OexNW1zqoXBIV4op6rcagN+LBFw+o1coAtDqrVKpV8iyjNxoWx5Wp1gJ8z+b2bR1ddXbWx/Nsru7vMOqPAEhSiRcEDIcjvEDXxfN8HN8nXETUi7ge17MQMiDLE/JU9yVejEguPmI2OKPU1GKN2uqNYu/85TmTLKacPHnM4dGoGPOHPHz4lO7KKl5Rl0ePnrC2sUuep0SxrouUinF/yHy2wHcujaIsquUas8WCrJi0rWYdxxXUGzVUouOEFtNzGt2bZOEMq4g7klKCzLEcl7zIY3IcicoleRxjeUWUDjaO7enIpuK4NIoRtoPj2Uu5mu3WUTLDcW2cthY5oLJigz7F9vUYCSVJVUieJMtNfaVS0iTWYp9i019YNlJKojhlNNRipvk84dqtNVRSo1TLi3ZdoihiOkmYFSKlOPqCUinAcnzGIy3MmE4n3Lx5hdl8wXSqx63VqiKlZGWlTsnX9zuuuByf9Nm0nEI0BZ7r4HgOJAqZ6XisKHJASMqlhEFf1/nJ42P29vaYX1xQKWkBR7nskYQhw2Ef23aKOVlFkOK4DrnU681WKVIqXN/DKhQ1o/6E1dUuaRJhFdMoTWKiMOSs32f/hl5bSRSzWEQcHhwuRUWObXN6ekapFNAqhFrVmku92aCzmlIq1nR7pUWa59SaTS2yAqLFgiSJEIS4VR1551Q73Pv4t5TUIaWSPi7LFTZwPEholbXoJB7do3Rrn4R3SM5+Xcz5HqX6Bq26x3s//DEA7//dMybTMUrkrBZrJCg3GV2cUXYzwoWOfMqlRElFGk2prel7i+OYo4ND6m6f/S0d9/boVPHu3V2iwYdYxfUmc8lokmCVri3X73w4QaQDbCdYRkgpJZhPRsymI/JVPR5JZqFwyLKMPJ3qGlhzpBgRS4Gy9DPi84MZV7ca1L2cRr0QeQUuvmcxmKRUy3q9JUdDUqloNBokob4eSJSylsLPP+SFbKZ/gcu3pVfFIn79OV+Ns3rpq8X1lp+9oKixiqgpuWz3JVnhMkpRoHSI40tXVX9wMyZ0yvB6c/mD7etiUQtGdGMwGAwGg8HwumG+vzMYDAaDwWAwGAyG14NvhfDmm3DpdvNNHQW+6oJzSV64IgyOnzEfTbj3+X1WN/cAuLJzSqe7yo9+/EMadb1Z7pcrVKtlbM9ndK5dUg4ePuA37/8W1y3x1nvfBeDT373PdHhKvezTKhxgwjSl3mwhpKIcaCFAkimyNAQ7oFKIcWpVizSZIpXFrHBjmI4G7La2SaVkPNbCgo4X4HgBlcYqQUVvePtOjiDDchxUcZ+laoWrN3bxfJ88ywCYTMacHx6TJCmjob6ezCW7V7e5OBssXXVqjTrlqk9rpU2eaNFJu93i4uwMmWfs7G4A8PTpIWEYceP2PlGoa2q7DkkcE0YR45HeuPd8n9PjE9757h1a7UKU4DiMRlPiOMX1CueeLCMMIwa9IatrXQBWNjcYDsb4JR8KVxOV5zh+CUu6pJEWYcx7j2D8lPlsgVMu3GFct9h4fj4XZJ4xOj3k5GzCf/rP/wWA3Su77O1us7qyQhgWwpHQpuy7qDSjFAQAnB6dUC75nJ2ecXh4fDnJiMKEfs/CcwtxABblepm1jQ7zs3vF/boIW2Bb7nI8VBphexUU4Pp6LJWQZDLVx186XQhLzxcFFGIrJSzOjk/Y2NrE87UAQaoMmaRE8RTH131WlsB1XWyrApeiAMtFuApLZFiFmiTPcmyhtNgm04Iax3NpdjrEs5Ag0HVuNivINMOzgUCLj2zHoxQowkWMW1zP90scHJxgOy67e3q+KJlRqtSx/QqVUuHskkMWxUTzBe5qpxg3m15vxPbeHhWtFSKchcxmKWdHJ7ieXkdX9lsoGTEb97i40OO2vbmJ5wiOB0PWbu0DkOUplm1Tb9aRStd+Oo1QSuJ5Hq5/KYSCKMqIwpAg0K+dn/UYTRbMZ3M2NrUrzKDX4+nDp2xu75AXxiS5gsVsimXZ9HtacObaNteu7WE5PuTRsgYyt5hMxshCdCcmc1a6LYJyaSmk8EplgiQhHOQkQo9lyXf58pP3+fEthbB07R89mbHR9dne8BiP9cn3jj9ne/rvsK02qdDrzY3uEwoPZfnUWisAlFs3CKNf4zghaajFg8p2mSxy5qGkVDw+JUAWEgQCpXS74WLOyekZ0/6MO3v6Wbezs4vrWszGz0hiXedqxeGLp5L25k2qdf2sy9KYRe8RbnkNL9ADbNkuF/0+8+kpQTE3qhULYflYlk861m5X6cUvCGdj0jjD93UHb21m+F5Kv5+QprrdtY5PmmacnC1Y7xTiLadCtVohHByRJnq+oMTLH+FFy5iXP38FXxXaXL4/fd17z6vOfRVCPE+AFFKh/8u/cpR8rpkRguXlLgWmWChlYYscoS7FOBYgniuF+Ca+PgbD68F/2PzOayG+MZsyBoPBYDAYDH+evA7fixoMBoPBYDD8z+Z1/J7p8p7M7/UMhr8MvhXCm1cJal4VK/WnxHi8yuUmTWL6xzqiZDGdEtQ7WF6DJNVijbfefpu1zU12dq9gFyIH2w2QGUyGPX77i18A8E//+I/cfvM7eJ7Hh7/6OQDz4TGdTpN6e41JX29kNzur1KsB0XxOFE6KPiSUKiVW1musrGoXCDl/hlteYzwcLeN/kiRHZhkqT2l0ClGCDa7tkVoz8sIZZzrtU2vWcACZameSLJ4TVNsIYVEYejDqjzg9PaVSrbK7o4Ut5ZIPMqdW9Tk6ugBgZaVDp93EcRSJLIQUnkVQKnN2csZwoGNkPC9AKXBtl1lWtJvGhAmEUbSMrtq7ssGnsynDwZROIa4Yj8a0mjVckTCL9Lm98z7Xbl2j024xm+saxGHM8eExb3/nLVxfi3ssC2Seg5CEPR1dNT98HyV8sjwnjbVIJIkXlIKivkWU0+TimNl4yudfPKFa019rt1q06lWUFPgNLXKQ9Qr1ZgXbsUgWWjSRKb0h3ml3yIvop62dbeaTEVIJtra0M8mjR0+4Vt9HZRHkus9Bex8pJUqB7RTiGcvTohDLfWGeC2zHReUJuUyK+3VQeQpCILNLx6WIp49P6K6vo4q+KKnIhcTybLAur6aQUiKzcCnksVywLRtlq6WDDggkEpXEiMLVKUsTLMvFdm1KZS2QuH37GuPxlMenPcrl4j5kzunJKaVShY31djHHMza3t0DG1GtaVJTlEsfz+PjjD8gKgUkUIgAAACAASURBVMTb777NdB6yu7eNZem+uHmA69r0exeoYvIOe0Pa3S7KEksR2sVFj3K1TLm1yarQc+jhg0f4vsP+9StLdxvLknh+gO35hKGeV+cXE06Ojtnd7uJ6+rjOygpPn57w6cefc2VPuybF0YK1zU0uzgcUeim2dzZ4592AxWSGLMa3WquQJQm///2nvPGGzoFKs5Rqrcp8kSzP7T8b0FldZXNng/5pX1deCtI0x3ZcLrFtm6BUIk8jbEcLdOI4ouaHNCoO07mu1d5OjSAQWMKiXi9ckw4HHD97zN61W4iyFhTa+UfIpEdp5fZSnLJ/+y6TBx9ze1NAEeUUZw6dusXuusMi0+s8WYT4Yk6eRniW7qNlCxpl6G562IUIqL19g+H5MSIaL12YTnuS80WLH97Yx7aLCKl0SuC7yNpVHFfPoTBMGPbOuHvVZVGI3xq1GvXV75ClIdG5jgKUs3POzjOiKGV/R6/VSiAASdlTZJe2RChcS3J1y+eTB3rMZ/Iarm0xmU9xHO9y2qPdZJalRylRyPVegXrBGUfI4gL/shj0697Hvokrjm5SvBDCCIUUCp73BJRCYGvRz2VsltKPAfXykUvEpWjISG8Mf0H8OYtvzA/mBoPBYDAYDK8f5ns8g8FgMBgMhr8cTOyUwfCXgfXHDzEYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAxf5VvheKMRoIp4HSSg/iSHm6/y1XOllMxHA8KpjkCazxPOTnr0jh8T+Np54dbdN9i6uo8TBLiudmgYnF8wmy/4zc9/xmCk3VTe++73kemMzz78HfWqdk+oV0t4ns+gd86tO3eLW7KYT8cI20Jm2smhFAR0uptUg4R8caL7lqc42ZyT4zN6p+cAlOsreIGP7wckkXap8AMXqRRJmlEJ9NCFEzg9HrC1G2AVTg4CiKY9YlVmMdNuILbtcOfuDaJFyKx47eDJMWvbO6ysNNna6hZ9gdlsRrkSkOeFm0omScKE3d0dGk3tNDGdzGg0K5SrJcZjXdM0yilXS7TaVS6nluNaXL+xj01GvNBxTOWyR+C7pAoabR19M+iPGZxdsLq5Qa1RxMP4Fm++8waQspjqc6uNBrPpEBkOOHvyewCi4YAkd3H8Cl61iNfxAu3zoBThRMf/zAbnHJ5NuDjvs7Ki3VmCUsB0FOM4Ds0iIqzX6xOGCUFQwi6inDrNOuF8QalUJioiuLI8o91dA6WYFP176903aXfrRONneJWWrr3jASkSa+m+o3KJUBKEJEu144hlawcNKRXYei2kyQJLKizLIVPaYaVcLXH95j5YgiwtYnOExHF8nZlUyOlkliGVRKUzhK2dZ7AEeabbtuziQMsCpZCWJC+uZ1s2UqRIkVGuFGM+nrO+tYrj+YwnRfxUw+HJoyfYTsLhoZ677VaDcjXg2UGf9qquM47DwZMDru7vcXqs3ZVc22MxC5F5TpboOX749Jj9/T2yLOXJE70+bt+5gW0pOq2AQX+kx3K6AGExHC5ot3WM0dpGl4uzPmmcUBgBEYZzfD9hOptRqem54Xk2a5tdeoPp8jkxnyX0LgbEUchsrt1eLi4uWN/cYGd3g9FQz/HRcICUCc+Oz+m0da38UogjBHs7WzTrer402k0UCiEzXFePZZImTMZDglKJWl27CMVJTLO5jlL5MvJICEWep1iOA6k+N1xEyCzG8mySsa6VsCCLHOIkod3Qa393q8Sjw3ts7e5T7WgXprx/iK16IBVOMa881+fwHK6vK9JQr49SEBA5DuejjO6WdoSySAmHZ2Sqjm/reRCNJxw/fYIfRuxu6fXrVrrMTj/EWWTYjp5Xw7nD7p0f43sBearnbja8jxNU8Vq7pEWs2XgwZHp2n2u7gkzqc61yi9zpkF58SjLTDmJ5LKmXbTote+kihCWwLUG55CwTlBQ2qXJ58GzCl2d6PN77yXsIkRH4GdVmMSdfcoJZnqzH7ZVGMC9a49h/NIrqRb5J/NTXnPmVtl/896X7jlga98gXj/5q/9Tz14zTjcHw54P5SxiDwWAwGAwGg8FgMBgMBsPrzJ+rS/WfinG9MRhef74Vwhu9KakQL8RovCp+6tXn/eFG5h+ep4gWM8aDIZOx3lT/2U//b67evInrl/nBj/SDrlRrUKmVcF2PcKYjSo6fHfOLn/+Mer3KjZs3AZhPBwwvTmg3qpR8LdBZ29qm0WkTR7HO8wHKlYBB75Bme5VqXW/612pVXE9Qr/ssBs8AsCxBLhXzyRxcLZAISiVkHiNlCujrZekcECTzAYuF7l+z0cDJYtIkxi3qIBwXlWQEnqBXHOf7Pp3VOifPnpEmWjDguDbz6RzPs+i0dP/yHJLMxrYcJlMtrjg66dFs1pF5Srms+xfOF2RpSjifcvDkGIBKucz1O1eIQ0m/p4Uom9vr2ELi+z737j0G4NrNq/i+i1SQZnrMF/OQoOQhgUohWMnSBa7voxRUG1oIgKXw7JDh2S9JJ1roMRrOqTQ6dHbu0L3+YwBsv4ZQkKUh82FPX0+5nJ6N8T2f7e0tADY2V+l5Lt21DienAz1G9Qqe7ZJlip2ddQCePjkkDmOkylnMdV3aa6uMR1MEsL2nr7fSXUElF0x7B6xcea+Yj5kWgqh8uX8ulQTh4Fj2MhZJKQWWQ55kuI4+0HIcZA7CcrByrTbIVU6rXcImJ0u0aMfxHWSS43gBWRYvZ75AoJwSlu0V7SqEJbFtLeICHRclhI3tgCiig/I0ReUZjuVgB1qYNptMefbkECkF474Wa+xd3eJ/+Zt/w0//y98TJXrM0zjhrXe7fO9H79Lr6ZqmacrezjadbguvEPw8vH+fequBZSnmhXDJch1m8zndjXVu+Fok0u7WkTnkucRZ6BpM5gP6D54yGI15461bAJTKAesbHdI05+CZXltJHLO62uDhgyPeePMaAGurLVzf4+DRIVGs18dqt8NoMKRcKuloL2A+j5nNF7iey8aGFpg8fvQE1w/Yu7K3jNGq1sqMRxMOnh7S7+taTRYRnXaV+SxkVAj2ymWP1fU1Ht8/YGu7W4xPjmW7JFGEV6osx8xxHPxyjbSIlUpzRam+SpqeFzFHcHKesr1dwraeRwc1ag6yNyaLIyyKuLzKFUT4GXHUo9LQ87nTXaU/8wnjkHKkx0iUV/A9mytbVaSv518czRG2T2Pvr7hMcnIcG1uOePNGlUpTx8cFzT26nc+4GDtEse5LYu/x1rvfI1zEpFExN2YH1HZ+DLYFhRhnPDxDhk/xPItGRdeg1L1LHk64ePIBga2PW0SC+wcRK50yF0M9boEP+9slpHDI0+fvB3FscTCs884P/72ep1e2SKcH1GoBldZqUWeFWkZFXYpYQGDpT9QLYhehXoiXYvk1peQfFdJ83fvUHzsewCraU1yKUvPlV5ZBUoWA78VIKiXkCxIdcXlrXEpzVCFyVa+IoTIYXmf+nOOmDAaDwWAwGAx/nrzq+0+z4WIwGAwGg8Hwl4kR3xgMrzffCuENFJuNX9mg/DrxzR8T5Hz1vDRJOH30JZZTond2BsDu/j4//+lP+f6PfkSlpTejq80WtlCcn5zy61+9D8DJs6dcvX6dre1tPv3dLwC4OH5Gd62FxF1ultsWhLMpXrmCLCxHhsMpzUaTcrVBc1VvtPtuTrVSQmYz3ECfG81y0jBCAUmkRRPC8phOpmQSrEKYkWcK13PwvIDZQDt/ZPUm5XqTXCVYeSGoscB1y+RZzNVrm7oIUqGERZhIFoV4oV4NmMz6HD97wq3bNwBY217Ddz0uziaMRlpcsX9jnzyL8VwXJfW5O1ev8ujBYxaLnGvXtbNGkmr3nUolQFjPN5lrrSZpkrDa1eKFcLbAtmukUUJSuMcs5gvWttZxPBcp9KbwydE5O9eqWErqAgNZFNM/+JSLR58wLQQNtuPR7HRZ3f8etdW95RzIs5TB0SNOD7UwqD+WxPMIy7LxHF3TTz74jK3tLUb9PnkhSAo8m9lkihO7jEfa5cOyLKTMqFTruN5zlyNbCPq9Ad3NYjNfxUwvnhLUWzi+FmbIPMN2fLIsXm5zW7aNUhLXC8hy/arjuuR5hlCKLNV1dl2nML+RSxecaJFgWeD6TuGmA3myQOY5CossSYs5JMACr1RGXW7YSwnKQilFVohOLp0wVBbjBNo9RhbtW3aAKrbsG80S1XqVs5M+fqDFYM1mlcUi5p3v3OTjT+7putTrnJ30aMYZ9YoWTE1GQx49fMJsMaNSCHk2Njeo1Mu4XsDq2hoAnVUF2Bwdn7O1eSlOUdg2zGcRUmrhQLkcYCtFd3OdwNdjpKRiY2eHLz9/xHis54YlJOPxhNVum9FIu9Z0VprIPOPZ4RGzqRYupXFGEJRotpusruh1eX4xQAjFcDRBybSoh4tjQRC4PLj/FIBbb9xgPk8YDqe4rr63fAzz6Zw8zSmV9WvlWpXFPKHZaXF20gdgc93HsiCajbFtXdNEZkzPn4GwyVLtTmVhM1p4jKc5W2v6eisrDpbt8rsnU65u6PVRq1dJFyf0BwOu3djX82VeJwtneN45edoq5tCCRiNgFilql0K8mk8SZcxDgVNYyihlgcqZnD+g1tVOXnku6bZtKmUHnMJJySmTJxlRnPDsQt9HXN8nWcwJPJd8egCAHbRJrBaegKxwvJn2D7l7VVALbNyqfkaUV96k/+XfMRn2+PhMz3u3fp048DiY2Sg97RnHMadfzBHCYrLQc2O926bVWuHNH23Q6ug5NO4dwfgTOisrpJGuqRto16Gv8mqhzAsOM/ooQP0PiWn+8Noveek8F8wIgZLqDw8ojnrezz/+nvhyX76mYYPB8K3D/BBuMBgMBoPBYDAYDAaDwWAwGAwGw58H3wrhzXLvT1y6CHz9JuLXCXFe3Mi8POby4+j0FMsKGPVHfPnJRwBMxkNu3r7J5vYOjY52bUiTlGH/gn/62c85O9OOGd//0Y+JFiG//+efEc31xn2326bebFGSglZTxxMJSxDNQzKZMJ3oiJxarUFzrcrKxhrxVLuuOIEidSXR5IJKY6XoZ46Lj1+uoMZaDBHHMX6UMR3PEcXma61RBSFwyhVUX7tUhONz6o1bgEBILTZAuigSlJSoItrIsnzOjk9ottpYxWulisfRSZ/uxjaNTqsYAxfbEniORbWqN6ZlFhLOU1IvWQpv/FJAs1nl4f2nOIUZw+7eNo8fHSHzhEzq8fA9h1W7g5QZq2u6zsfPTuidn+K6Do3CyeZ7P/oOwrJwHG/p4pLmApkrFBZ58VoWDjn+/FeMz48JF1oMUWmsUN+6Q727jyhEO3meMT59zMXRGR9/ogUSn957zBtvvMWVvW0mhQiju7pCs9mg0agtI6Si+YIkjqlVa/QvtECi0WqBkAhhUXJ1XabjOVEcUS179I8PAfCsBBlP8Uury9wXJXOyLEQJxfPZLrBdF6UkKtftpjJDZglOUHk+hy2bbNpD2GD7er44joXrOVjChWI8EBZCKMJ5wsP7DwC4+cZ1gsAli2MuOyNsC8eyQNh4hfArTSLyNMbzG+SF4ELYAXmeImS2FH65pSpEKUEpoEghw3I9JJJ5mDIeaFeTDy4+oVQp8/a7b/DsQNdlb3eH+XjGsyfHeEW025071zh88gS/VGK1q+dGGIY02i0qFRdILiuFlDmlAEYjWYxvjmPnHDx+SmdFz91rt/aJogjbEQwGetxuXNulvbLCxx99RikoFeNxwP71HXzfZ6WjRXetpk+eKbDh8eMjAN64e5eL3gWbG2s6/gvY3F4jjWJ+8/4H7F/XDjrPnh4Cgp0rOzjFYti7ss10GvL08VO2d9eL+pXJsozAd6luNPW9iYTz+78kzUFuvQnA+fETRDJBZRFuSd9bnJe4sn+HxewZlwhLkCYh+1dblGy9PuJFiEjmRIvR0qHGsj0uwhbtIKastEDHL1e4cutHDI7+E5Yz0fXbaJPkDlE0Y3Kk48A2tm6wmCqS6RF+UzsLhYuUxTzGcSyEp52y0rCHTMeUymUOR3p9vPPWdfxyBddKmM/1GkysDUSeE8cxvXP9TEzHXyCqOfOZYuPabf3aYsDi4h5R1qC2/S4Aje4VWq0mWAKh8qIGNnGaEvg+Warnhu24pHFGHE7IJ3otBJNPSVXG6CLjyQf/AMDNv/qPOIVo69W8EOu0jKD6OiHMH+dFQc/y8+VXxQtPhheOf2U7SrvcvHDun9wXI7gx/AVzKWb5tjvfGNGNwWAwGAwGg8FgMBgMBoPhdefb/ju6/xlc3rP5/Z/B8Pph/Wt3wGAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8Fg+HPkW+F48/8Fr3LCSSLtHjMdXZCkFr/8+T/z5MkpAGtrTe6+8xad1RVGAx2ppITgv/3DP3B0eMhP/uZvABj1znn85cfaBaaIJmk0OwSVCmoeYrnaRSOKErxyjel4wM5VHfHSWOniuRYyjWms6iiifHFOshhhOzlJpB1qhO0QBHUq9QZO4bAyGfTIs5TNK1eXTg7RPEaEKV7Jo9HWThiuZREtxiAjPEcW9xGADLFdn+yyDSenVq8UEVba7aXR7nDlSkoYp8ShrpXj2DiuQ7nm4Xpal+X5AaPxKbVGmzzW13v06JBWq0GzVcMqXCAcz8VyHCQOeaZdXD7//D5eYBOUgqVzymI+Z3N7B8eR2JY+13J9hADHDZhMtNtGqVouzCYEeaYdPc4e/JJ0ekSWxjiOtm2oNeqUG9vYTrCMIhoc3OPR55/gVDdRlnZY6a6u0WpU6K53efxQu6nkueKX//w+169dYX1TO5OMR2M81yGNQ+JQ38dUjBG2g1u2aDV07T/83UesrbWpVEtYRXSVo0KkX8d2AwpzESw8siwEYYF47sZkKYlEYRcOOlJKbN8mS5JlDJlSEq/WBstBFZFUQdnDdjzicA4yKcbcxXE8/JLk6i09/yzbQeaKPM9wLutsOSAEWZZgFa/ZRXRWkkbPI66CCkJCmoaITLu42G6A49o0WzXGM+3YksSS2XhMuAjZ3NL1C8OEwXDEYp5w9dpVAE6Pj3Fsm2q1hFe4jIzHE4b9CXvXOwS+rp/n1FA5zOcRQRHVVW+UyVQCtkWzqY87fHJINB0SVJvkhRvNbDIhyxQHT56xUbgrTWczTk/PEUrSbmt3liAIcLyAN968wfEz7U61urbDfB4zmc/orum12miWSdIaw/EYt4iBWgEypfB8jyDQfQlKVQbnI3Z3t5kv5gCcn13QbDdYWWkso8REnFAq+cxmU7yKHl/LccmGEzq7byNzPcfLvkNl8w2O73/I+EI7W7U3b7GydYX7v26ym+o16FsAKfWSj7D0HErCAZVyzoNPf8vuleu6fs0m7e23yecHyFyv88Av0e6u8+SRRS3Uc4h8TrVRojIMmV665TgBwm/Qaq1hF24+jquYhDHHPcWtG1d0u9GUXm9Cr29Taev51+m2CUolJsePuXSPaWzcRTkl0jTnsw9/DcCV8pBW06ba2cJr6HOP7/+Kg+OMrPk33HhTq74Xswl5tsCxFEmxLr2gikoWuIFHEupn5+jiKW7eQ+WLZUwapT2s6i62X6Lf045G93/799z8wf++vK8lQsdIXZ576XIjXvg/SiyPE8u3HoV6RfTUq6KrLl3aXvDUWWIV7lQKkMuvFI5VFJGM3zDiquhV0eWc5y4++Tc+32B4XfkPm9/5Vv5FjflLF4PBYDAYDAaDwWAwGAwGg+H152+PPzC/CzQYXjO+FcIbpRR6b/LrI6Yuj/tTrjk+1xusAsng/Jwf/pufUKnqaKM0mtNY2aTSbLI410KPZw+fcHZyTqXe5rOPPwZgdP6UeqOK75VwfL25XW216ayuksQJeWEaVK0okjQh8LukmY5Acu0clU7BtkDpzV03qGIJiW2VSVO9+ZkmCwK/QqVWRim9CZ6kEj+XPLz/Bd/9wV8VryXU6jXK1Tp+oMUk8+mETCpUZuGVdRRRhsRxA1AxMtUxMvP+GeXmOk5QYfvKFQBmowFxFHNydE6pVAXgy3ufcuXaFghBkul6+3HOYh7RqMfMQ31vjuWRS8Hq2gZRIZSZDgaUA4egUiYsRCcbW2tU6k0GF308T99bs1EDmZJLH2HrDeQsmuF5ZfI8RRbjbNsuAkUUTln0dWSRSgYIofeeXUfXoFLvUFvdBhTpfATAxbPPyZ0mZ0dDHj7QMTfd7ioIRZ5GlEpabNJsNVAyQ6F4/Oixrss8xPdcNrc2iRO94d1qt5gtQmxhUapo4cj2lS3a7Sa+59AqhFXJKMUJHMqtbSxHtyHTDNvxSPMUq1hytm1jWS6W7SEKhY6SITLT2/2XQiNhOeRZjmWDpBDACIHMU4SwsQsRi7BdlBK4wsErBcUaEIz6Q8ajIdu7m8VrklyBkgqsQnAgFZbtIGwHVcQ7SZkhhMJxSmS5HvMsjnEcDylzVle08GY+m2LbsLnWYP/aDgAffXCPZrOC5zocPzvWdYlT3v3ebZTMSdIi0isO2d3bYqXTIS/Wvu0KTo+OcTwfvxC2ZHlCkuQIBLW6FuM0mnXiOGJtYx2nEA7Zrsugf8Fo0OONO9/T/ZvHnJ5/wd7OOl6g6zwPF4yGA6rNOuWKvt5nn35BlirG0zHb29sAuJakUa/Q7w+xCpFXkiWUKyXu3r25FFIMBmOCigdkzKZaeJNmMY4DlVoVzyvGzQHLtlBKcHGuRSKVIMezbJJwRn1dRzkJx6Pa6TIZ9Zj09KZwOJ9RbzTZu/NveXzyfwFwa1fg2jaCBMvV4zFLfFabGf1npzx5oGOWrl6/icwUTvUKtqvXuePZOK5Paq9RDvT6zXPADphHFpW2ftY5rkul1sGy3aXAKV2MubYlCMpVyi1dKyFDXEuyiBXddT0PHNtiPh0xX8Q0Ou8B4JWrRHHMxx9+hJ98AcDajmAeu6xufJe8iF0bn3xGVrnD3p07DHvnuganv6WinqJ8axnMpPwaVpYRjQUUz10/c7Equ+TOLRrd3aKmAVGYYNmCUuUuAM/u/5bV3QNWtq68FHP4XCBzKZJ7WTSjv1IIYF4Q3lzKdb6Or75/vfTvF+Onlk29ePxlIy/HKOrjX9X3V7UvAfFy1NWfIOAxGF5Hvm3iG/ODtsFgMBgMBsPrj/mez2AwGAwGg8FgMBheT74Vwhup1Et/8f/ixuD/CEpAEoYsplp0Yjkus0WIFFPWulqc4vvrtFZXEEowm2gHib/76d9y6/YtGo0GH/3mn3VfVEKr3WY6j1hf6wKQJSHT0ZA0lUSJ3ij2PYcsk7i+R62iBSH1WoVoMkKmc1SsHS5EUMGyHIRQFAYw5KlidPKAZs3DL1w+FosJ56fHlCtl4liLMBrtJkmW42cxViFs8fyA0+MzHJHj+LoNmaX45TK9ix71pt5odz2X+WxKNk0YDrQ4pVmvYVkut2/vUalrscZsViJaLGh16lRsLRhQ0mNvb4Pe+QVu0b/5fIAfeIQy57y/ACCcztjYWaO9Uqdc0e4nUZTw+MFjarUGJ8favaPZquIkMVmc0WzqPud5Ro5NluXMJ/p648mclbU2QklsR99wvDhjNl+AFLiuFlwI2yZZTLC8GpOLhwDYfgNf1BCiz+6eFgJMxmMcRyEsl/xyAxtFrdUmiUKu3NQigodfPsJ3HEbDMf2hrlW5VkXKjGaziVv0pdGsEy7mzMYZrRUt6MrmY/zAx7I9sljPDYFA2BaWsrGEVfRZ4JZ8pLSIC1eiZHpKqbaG5bjIYqNdKIVluYDEsS8dODxknmDbIKyiBkKhspRMZliuU7Tr0GjVKAUOWSHkcfAQSIRwnm/YSwXCQmYRdjHmeZqikFi2g412e8llSpakjEazpXCkXq/iByUcr8LJmRZwZFLi2w7z6Zw818KlyWTCs4NjDp4+48q1PUCLsrIs4+LignJVz4NavUKWS1YaDdJYC9M8N6BaUkiZMh7rNR2Uy4xGUzzvgqBYbxtbd8iSjNVul1pTu9usbVWpNOr4jqJS8Yp5lZLFCWmYsl6IbCrVAVkm2HV2SaKoeK1CriZcu3mNclWvj4uTU1zHpd6qkRWuK3HZY3N3h9loSK2h11urtcV0NCDLFb3zQXFvNYSwaHSalGu6z47IyaYJg1FCdU3XqtLoYFkuqxt7jB7o5xDZBK++g1fe5NcPtChmvR3SrIHKJbJwKpJ2C2UtuLKZ8OzoCQD7N2/h+QGO52EXrlhpqkiTjCR3SXM9D9I8w6utsb8z49FAOwH1ez1K5RKOEKSRbuPw4Qes2nMqjWtQOH6N+yNGs5xHRyl3rrQB8P0SSRzR3r6DVay3NE5JopTjL9/nvd35ss7d9XfxO7eZP/0HAGynwcbuD8nTjOmhdsZpyI9xA4+cFXJbu07ZpQ4y8/DbHTKp++K6LdLMJotipgvdbjg/Zz6bUa23WF3Tz6bm+g0ef/RrOms7S8eqf+ldRxVCm68ixR8e940FLS9Y3ly+76mXvqjfG5dSICH0++UL75GX7Qn08+L5mX+IEFr49byv36ybBsPrzLdFfGM2YAwGg8FgMBgMBoPBYDAYDH9JfBt+J/evjXG9MRheL74VwhullN54fPHfr+CrgpxX/dV/8QUmvfNlNI/jBYwGY/6f//oz2sXG+He+/wOyNGU+C3l4XztDBCUf3wt4+sUnWEpvMl/Zv0Gj2aRWzymX9bnJQqGwyGVCvaZf66xvgALPs7AK15B4eo5MI7JoxCLWm+9uUCWod8lySZ7q4zyvgkjG2LbL9lXt0BDOPyeVNhdnp/z+V/8EwL/9P/4j0XyBUIpKo6Hv27JpdpoMjg95+vmHANTaXTbrN/HLTbxKp6hPjJif0W5v0VrRm9YXpz0ePT3mu9+9jRBa5HDt5hUEgtFoQmBrcYDnu2RJQrhIsN1CVNSoEEYLAs+nVtOiE4Hkow8+4403b9FZKaK1sPH9ErZj4V86fwgJwiaJYrJcb5aXaw0tIslT1tZ1nzurO2Nc5wAAIABJREFUHZAKKRWDoy91TaMMJRUChVK6z0F9HWXZPPvkp6hcC1t6A4eHD7/k8eMD3n73LT0tZEqtXkc4DlnhjiGwCHxHJzZJfb31jTbjwQwhLGo1Xecsz1HCYjqNWCk27umNiBcxjZUWjboWjgynYNkeWBaFxgaURCmJwlq6+VhKgYJ0McXxtLDFXdkji0NEFiOKaCPIUbaNkpBHWpAkbAfH9bBgGW0jZY7j+mS5DYUziVQ5jmMR1GrLXXgpc5RMUbAUxaAEliW05UmxjLQYTqAUqDwr5pAkkzCZjFmEui+u4/DBB5+TJXM2trXAaWdvl4uTY1Y3Vhn2tRin3W4TBD6r3Q7dbqtoN8N1PcJoQWv1eZ2v37pGuEgY9wtXmGoJYduATZZlxXEZ3//hd3l8/yG1shZ6PHtyxJMHj0mSlC8+/hyAjc01Ks0mQii8wtVpdPCYtW4T27aYz7T4Y3VtjYveAC8o02oXIqokxopcyrUKbqGSK1UqLGYxna6PVcSagUOcSNJU0exo5xnX9Tg+ndBoVNm+ouuCJSiVPOazGUFJz/tqvUEYNKj5Pn65WEeWFkMFlSrtde1UNBqekcYrrHYbvPuDvwbgwbO/5+51G8jJ5/r5strZIq91SRdjPv6ldu3q9d9hc3MHmeeXpjCMJyMGZ0eUrRHNVuGCU10jiVsc9R5S4hEATz/JcOpXEVbAxbF2hLrafIIflPHrazienveBm+E7Odtdj0a9XNyHheO6WJYNStdqMZ/x4N7HdINjPVeBYOVNanv/nnj0mN6TjwCYinfZba4wm/SxC2er1PsOc6tNZ2Mf39PCKte3EXGOW6/hFsMxnS0IoxmffvYlD+/pb9yddEhvFPHW9/833nP12grKZfJZj8HZUzpb+8UcfzkOSr9mUZjFLIUqYhkZ9+oIqW/CS+9l6Otrxczl+dYLghu5PNbiZVTRkZfEOF/bZtH/l042GAyXP9z+a/2wb364NhgMBoPBYDAYDAaDwWAwGP4yMeIbg+H14at7eAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGg+Eb8K1wvAH0X95/w3SOV56+dCfQn0dRjls4SDhewHf/6q+pNVr0z44B2NhaJ4tjHn/5iN/96hcAfOe779E7PGLQO6Xd1q4cruuSK0GWxSSRjh3ySwFSJuzu7/Pky3sAyHzM5s41ojCjolNpSKMB5HMc1yHPtZtKEs0R1gCEhRto14b5dIjCod1dp1TVfQ5nEw4PB4RhQjQbAzDsXVCrtVnMQ5wiTkjKHM/16G7vIqV2Azk7PWM+eEYqBbOxPq7RbmC7TbI0QhXRQdV6mXfeexvHE8ShvjeEi+24eI4LhaPHaDCgWquwvtXl9LQHwP7NPeIwJgljnMJBYjQasbbWIYljHF/H+qRhDEJRLnlUyjqqS6YLpLIYDfpUC7cc31fYjkBKG5mFANi2z9nxCTU/Z3yqHW/KboJjC4Tt4heuIeX6KqODj4jGfZzWmwDcf/gR85mi02nhB9oxY219jXCRc/b4IWkRA9UTF2RpSne9y3xWOMooUDIjTuUyziqch3TWurRWWtz7TPdlPpsjM8mNu7dIY32uX65RaXfIZYzj6XaTcEaeSyzbXbrHOK6PkiABz9Zt5FmC5QbILOLS4CKTCRZg2zaicMa5jIqx3QBZXA9lkaURju0hixwyfVSGzHPsyygdqXCcEnkWodBzUggXqSSZUstIIADLdpCky3UpcLBsxfb2Kp22dnb5+KOHzCYT0jwjfqgdUcJI0l1rkSQL5nPtKJNmILOIUuCzvqEdg375T7+m2W5w9doeSaLvo+wLZuMZn356n7tv39Z1URKZWQwHMxD6PsbjOfN5yNrWGp3CwSlXit2ru6yvrxCHUwBq9TJeUKXfH2M5us5b25tIpajVqwwfPdFzslklWuh1tdBDie85VKpVhv3xc8eWxYxWq4OSiqSIaJpMZ1QrgihUSyclKaFZr+IFNkHgFeOWE0YxUspl5FieJtS7XSzxouXXpXOKjVfTtXJGX0AeIa0KKzu3ABhORnzx9J+5siqJihgox+9TXdkhEvDede2Ck5z9ilHJx/FqyLF+ljx9/Ji49z5X13PKq3rNNLZ+SBpF7N48JOzpOd51zphMTzi6kHiRrmlvYMH6FjfWb5IXzwi33GESOchsyKe/+j8BmM/+Hbu768SZZDrTEWEnB5+RHP+cRt2ivPldPc+abxEuZkRnvyMqnJSclXW8coUSgva1v9Lz3XZQMscv68guAEsoUjVjOh5y8PgAgIvzQ5g9w0ou+PEN3b+NFY/xtMSv7/+G0801AFqNOuSCw/uf0tzYW7ZxyYvvKZd2NM/dbFQxRi9rV79xxBR8xaFGO2AVYXKXRxStqhcTqZ5HxH213Zdiqv5I2y9e0GAwLPn/O3bK/CWLwWAwGAwGg8FgMBgMBoPBYDAYDK8H3w7hjc7r+AaHvbytuNyAfCl+Sn90fA9ZbOaPL475+OMvGZydsdbVEUiVSg2ExaDfxy9EIsPzE86PH1FvlWkXm/mra+uMhgOu7O/h2DoaZTiYEocTZqNzAldvtG+s79BaabCY9MjjGQBpNCaNxnheQJbq4xQWMpNIldNYqxZ9qbCIcuJwioVuo7O6zaA3RUmJzPRN/eN//Vve+9Ffs3/7DmERkZOEM2zHpVKtEJR17MvVG9dI5mM8YTMb66gfvxQwPDvBEpKdW+8BEIURlmWRxBKFVgs9fXxEueSilMDxSkX/fOI4I81S8lQLVmSm8DyP42fnOEUq0sHBMc1ahdWug8z0cXmSstKsMR5PSBJ9H81mheFgjOs6pKkWf4RhSjwZ0WjUOXh6BEC5UqO10iSaDdnYvwnA7OjXOLaku3cDpK7p7OJzbG+FzNtjONBjfng0Ig5D3rh7h2gRFu3WcFyXza0NRBFTVa6U8X2PJJUM+1p8NJ8t8FwXVEqzo4VBeZ5z0euR5xl2sWt9dnKO63kcPHrK7rauvaOmOP4OtnCx7EuhjE2e/Xf23vPZkuQ+03syy5863lxv2k+PxQwwQwILmiWXDG4oQp8Uq9C/qAhRXxShkCgtg0uuCJAwgxlgbKN9X2+OP6dspj5k3dM9DhguKWo4yOdD9+26VZVZv8yqurfzPe9bgM5wq6gulEJDJcoykWNXwhnHDXAq0Q7ZEscN0KVaiT+E0Ahh5tBVLI3SyojOhF6JcTQKyhIpMgplbnUppBHcCGHOCTguIAQFCoRp1/ElQpU4jo+6Ws7XCukI3KBDmplabW1tsLu/gx/4TCZm3p8dnzK8mEDdIQhMXUaTE/JSUavVViK0l165RavdpNvrraQFebakLMD1PI4PT01NJfhhxH/+P/+au68a0cmTB0+5efs6o+GIrb1tM09rAYN+w0R9KdPufJ4wHA5xPH9VP8f1aTZqSK1W8U6FEmys90EIxiNzbUdPLymVRiAZT4xwxBGSbqvFyeEJSFPT/Z0+ZZFQiyOKKj6uVguZjqc4fswyM9ebLua0ui2iMMT1q/GQDgJNtpghKtGHH8VIKdEI4p6JmiqTKafH93Fbt4hiE+V09/W3+c//+xN8+QRZRcX58wVRc0rY2Wa/ElZNhk84+OVfcjbrkczNtfXqc1695VHrvkxr/4/N+OLi+RHbr/wZ935majWfHHH9WsD+Tk5WGLFVIZoMbv4BYXsPrcz8c8M1XnvzDZ7d+ynTmRHAXN7/X3hwscnR6RKRGxHQZnvOy68PaG19h6D3RjV3QeVDiskTAtfM3cf3fkQpa3heDd8z4pbh5ZAsmzGfjMlS8/xbLKdMLy/R2YjYM8IgiiWDtsv2fohwzbFFktGsuVzrjPn04w8A+OEf/SlFJjl89JDtO88A6G9fA8y7RcoXRDVVfV/Y8LVENp+PR/z8tqtzyCrHSonnohixavezkVT6hfNc7fdV8YxfpDTtC/Oe+frHWSy/O/xri28sFovFYrFYLBaLxWKxWCwWy+8u9sN5Fsu3h2+E8KZU5UrU8nX4MsHNZ9DguQ7jS7NY/uTREfc+/IB+r8X1uy8D4PoBh8+O+cXPfsKtW7cAOHnyKWtrDQab27Q6RqCTpEu6nYitrc5KMLBYJCAHlFpy7aVXzDWkY+bn9ymS8cpNhWKOKlKU64A2IpEiVwgypOuyHJ0A4Ac1tHJJZ0OcyslmsNHl4ElIskyZV4vlXhDwyS/eJfADmr1+VQyH5XyGIMNxjIOO3+giGj0cKXCCBIDZ5ILFIkUll1yePDbni3s06g00gkXl9rK5G6CXM47PRuilud7Dp4fsXb+OBorCLMj/5Ec/J47rNBoR7W4XgO2dDdrNiFYz5t5H902dvYitrT6LpKARm/6pomR4eUmZ54xGZgH9pVduE0UheVawu2/cJ5Qqiet1PFkynxpxlEDjBiH1/h7L4ZOqBCGyvgFFh8uDIwCkhLsv36LT73B6YFyOPEezsTlgsSgYj8wifeD7zIuM8WSJVOZ61zbWWM7naDEnCI346ODZAa1Oh/FozPaeEUPs7hW4XoDr+TiBEVGFrgSlkYH3fFFdCFzHQUhwvXDVvzybIxArkY3wQqTrUZY5+dLURWhFluXoUiHd6h4RILQRBulKqIUUoARaqtVtIABZuRFdCaYc30c6Li8u5pcqR0gPKQOkUwl5lEZrBUoiqnPqLCFdjPDiTRzX9Fm6kvffe5/pZMrO7jUAxsMLOv0u49GUZssIYPprt/GcAuk4jIdDU+etTaJagFYFuqr9cpEihGBt0CJLTR9PT47pD9Z59dWXaLbNHNr4/bfwowDXEZCbOX5xtkAA9WZ8ZdbEfDqn0IJ+q87xobnfJsMJt1+5jRaCIDT322K+NIKOrKTVMW2cnV7S7rQYj4b01zaquZtRFAUnp8YFCqDfb4FwSRcpp2fmmVOWl6BLdm9cZzIy1zufT+j12pRlihRmHmitjQOOF5Il5h70wgghJOPjJ5S5ETNFrTVqk3Nm81O0Ns5RQkiu336HTz+Z8s4tM58dWTI+PaW70yZq7wKQ5094pZmxSM+YzkythNQ0+teob/873MBcL1qjhUD6A669+d9X8yDDVRMcnaLdqJqnXYSso8meZxUKSX33D9kqM5ajR+Z6P7lkdjqk4zn0Nqo2/Bv4ay8RtPdxQyNuTCYHIARB7zZuYkRy/fABk09OOBlHRJGZaypfkC5HNIOUVmxaXg8Fi2bJoBNSi0VV+xChNb5frqZ5hkAGcPNanYP3nwJwfnpGXG+gRMiTD80ie29r7wsuNv8cPi+weXHbbz2WK8+bF82QvuJY8bn9PtOGtbWxWP6p/GuIb+wv1BaLxWKxWCwWi8VisVgsFsvvNvb/CC2WbxffCOGN4369hc4vcw/4su1aKbSGJDWL+WfHR/Q7HTbXB0hZxSINR5yenNDptvAqccJisaDTbuL5Po8eGOHItes3iSIXXaYkS+NmISkQekmrOUBXzh9SZEiR4wf+ylVC6xLpOKgyR2OEN2maoZWPF0ApTezLbDFEOQF+bQMtzOI2xZjt7R6zyYRyaRZOsyRHiBnPHj3gRmhcL0qFcQhJUqbKnM/xAsBFiZXJB3Ec4XnbJBdzZgc/BaB7/fuIqEeRK5JK5KC14PjolCwvKMpq0RjFdHyOdHxu3r5etVtyfjak128znRqRyO7eBrPJjCePDtna3jF1Hs9wPY8syXA71TjrgsFal3q9wYcf3qvqkhDVGwgUslondr0SUHhBiKzcd6JGHW80YnL8AL9lBDqt3R+SFnU++fHPePr4GIC7d++QLKYEvsv+vnFEmS9TShwKldPutkwbYchyseDZkwM2toyYSamU8WTK9t4285kRNLS7XXb2d7g4P6ceG5HN0B/y/nu/5PXXX2V0bgod9B3KPMeRCboSahVFhiM9pCNBGQGM9mtI7SCUJqvidRASR+UoVeJ40dXsRuUZSL2KSqJUqFIhpOBKI1CWCkdIVKlecMSQaK0o8wKnErapogRRoMqcIjPz2QsiEBKBQFXOTKVSIAWS5/eW40UgZiiliKs8NY1ie2vAuefjVK4gr7/xKg8ePKXZaNBsGtHE2fklm1u3iZsxeWLEHycHRzRadaJ6nTI12549O8MLAmqhz8WFcbxxHIejgyP6az2ePDbOJFma8/Y73yFutPAD8xj70V/9F7Y3u5RlnzQxfUkyxe07+ziuQ69vIoaiKGY0mtJtt+j1u9UYKdJ0yTyZ4vumzq995zWWywXCcbg4M6KdG7euUW/GNKdT4nq9qovLcp5wcX7JxZkR2UjpkCZLotoBvY65V/f3d5iMLkmSlMGaGV/pCcpCIaVAyBcEhQKiRo9sbgZ4fnGfRqdL+uQhMqpi8PwaN25eo17/j/zsH/4SgD/6nksUaYrFAX7TuAN1d99mcfmQZligPXOsiNapbb1FEO+SpWaOyyAyLlfpkuHU9GVj6xoqu8RzJYhKxKUERZ4TejWKxAiNhBOjRI3Gjf+OcG5q9cauwhMFjivwYyNk1MIF4aPLlCIxblyqXKDLBLe5yXq9Z/q8c0w+G5ItRqh8Wu2XkS4Fo4VHv2P6ErpQZAVSliArEZrvIAUcHKeklVtYqx4ymS7Z6kfEronLe/DgHt/93tukTp3TAyPiS+cTwnqLzzvaXMW7fZ6veif9Jr7yGPG5vwG0NJqa1U1drsQ3v6nVz7rxXH0tMeF2z7f9E5KxLJbfOV78pfdfWoRjf6G2WCwWi8VisVgsFovFYrFYLBaL5dvFv9xH+y0Wi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgslt8hvhGON2jxtdMwxFd8RH+1feXO4ZFWkU9nJ6cEjosQLo5jPvHvez5nx0c0m03OT43zglA583lO3NRoxzh15NkcJTf46MNnOJWjgpYeqoTxZM5a12yTKiWdDlFaoUvTbllkKKXIy3IV4eNJRbGcoAufPDXlFyi0U8eRl6jqWIFgbWOA8GKe3P81AOOZBiEZX464/9GvAIibbdZ2r6F0uXJAUEqQLKdQlpSlcTBxHIGWPk6tS29g4ra8uAHSIahFNK6ieSYzFpmk3W6SVM4k+TIlbsT4nocQppWoFpGV53ieh8oKAGbJgm6vS7fTxPWNpqu7dp3JZEYYeAhV9cVziGoRrV6b7//AfOrbCULyvEB6DhcXxjGo1a5Rzke4UhI0jYNOkbzCQHbQXo/axvfNePh9jp4+4vx0yNqmcTWZzhZsrK8xnSxWUTW9fo9ClbieQ3/NOJ1MhhNOjs/Y3F6n3WoAcHJyjus5qCKj0zUuOMvFnFoUsAxi3vuZ+eT7+uYGd+5c4/zkgK010z/X7SO0RlOysu7ROUI6+L6PqhwndJkBTjU+ZpuUDpoSx/VBmrmhVYmQEolAXjmiSBeVzhFluYp8ohTguMYNo3K3ERKk45sv1JVLhkaXysRQXfVPStAKLwwp86I6Xw4CpCMR+NV8zvHDBkprTk6Ma4jQiu3dHY6PhiRVTFC9EbOzs8V8PiOK/KouHq4f8uzp0WoO3bp1g6PDIzr9PkVu3HeOjk85P7ugUQ+5fecGALVGn+l4zuZGH983dRldThDA2ekZg4EZoze+8zK6SGk2W4iWmX/JMkErxfnpCLeKcZvPF5yfX9Jo1Cgrp6csTdjaWWdzc51PPn4AQNyIWdtcZ21zDV1FdV1eDvGDAFXmHD5+XNUqJcvhR3//E1TlctTtdGl3O5wen9DvGpeoIi8oclDaJS9MnaMw5vzkgsHmgKBm5t+VHnKZFXi+cdWJ2tvkiwuC2mPGl8adpbP1Mq4n6G9uE3bfAODB03d5827IcgmFMv0Le+9A78+p1aEZmDZK5eAFNRPxFFexdSpFFTmuF7G7V6vmaYl2AxzXQ109W1WK42tUmSOreSp1aeaalFDfA6DXjtDCRWVLVFE5PWlAl4gyQSfGvUhd/pJifsnxMKPZMpFUhQwRbo/u3q3VM12VKbpc0E1mK+coRyhUnqLKjKt8MaU1ukhZH8irac9kpogDj/NRylbf9PmTs0OEEDQ7XSaHJqLu+MGnXHv9HTT6M++ar3rvfNX3vixi6jehhflDaP0FFxqB+OqIqRVXGlr1G/YRWK2txfLfxucdav45DjjW7cZisVgsFovFYrFYLBaLxWKx2P8ntFi+fXwzhDcIk5shvnpxUWv99RYxhTlXEARobRbBN7a2ePboHv3dH+JVET4XZ0NGF+e88dYb/OT/+S8AtFoxezs7eHGTydCIcco8RJcpjucZMQLQbDTpDPZJsyXnZ2bBtlc3sUhFtqxEFaCyBWmuKMsClOmL6/qgS1RRoJVZBM2XGcJbErgpxcJEqAhZR6ucyNVsbJh4GHk64+R0xALNcn5p+tLtc3ZyyNrmLo1Guzp2RJZl+L6L71ciDKFQ+YJpImj0TQ1EkhB1YsoiJ6rXqkIr3vjOS5RlyeiyqoFS1OsxWbokqhmhx+MHj5FZSrJIWMyN4GL32ia+K8hyKPJqAVjmLBdL6s0mqhLeuALavQ6e76GrmLEiN1FendoAXdUqTcGRINwly4kRelwcPCFuD4i6ezx7ZOLAhpOHPH5yzOnpBb01IyI4fHaEzpYIIVC9QVV7h2aryeX0DM8313FwcEyzFdFsdUkWJvIp8H0kik9+dY+oaYQPQVhjOp0ynSYMhyZOqL+xxvpmn1bdo9U0NXVcHyE0QkqgEmW5Ia4foITG8eNqXhVoFMLzkNVieJFMQRqhihTFakq7rkOR50hp9lNFhpAuSqnVOrvjOCAFnh+t6mduqSsxQlmdTSIccz85ThUdlC0RSLT2TcQUUKQ5judR6hyo5nNeorSD43g0q6ip8fkJUafNjRtb+FX82cnJGf1+C6UW9Kvx2L+5w/1PH3N8cMRb333V9Fma2zWZTemtGcHUznZCLQq4+/JNLi5MnT03JIoEBwdHbKxvAtBq1gnjGCcKODw00UbNVkQUt/A8ByqhWzJcoCcui/lyFY/VaDZYLguKvETKK0GSJE1Tjp+d4lbbosjnvXffY2Ojz0Z1HXGzztHBEafHI2qVqGiZZGjt0mk3KKt5v7+/zd61Dc5OjpjMTf0Wi4QgrDGbTGl3jADm4nSB6zmgn4s0rh5zjiOZjmemz7UmSmlSuniYZ85ysU3c7qGyAj8yQrKjE483lMPR0Zzh1DwjHP9veOuP/yfC1j55FWs2Hc/pDCI05XOhh/QAjZYeuhIGISVl4VGkAqGNEM/3XYp8UT2TKyGZdlDCx5UeZW7ipygLhHTx/BqZquLyFiN8sUDNPyY5f9/0ZZpwdJZyelmw1TOCmnbdQXHA2RhEFQ9YjyO0BCldRCX4cYI2TigRSFSVu6ZwocxwJk/RhbneMMjJlUNeFPR7Ztweng+59+mvuXHzJWo9E1t38vTXXHvte6vz/1O5ek99XcHNi5hDxEpoJIQR5FxFj1V78cWQKcHXVq5+YT+bNWWx/LfwVb8Uf5kgx/4CbbFYLBaLxWKxWCwWi8VisVgsFsu3n2+E8MYsUv7mT/T/UxYylSoRjoPvm4V2LR3cIKTebFNUzRwePCNNF4zHY8ZDs0C91gsplGB+cbwyKxGOx/nFiG6vSxwbAYzQS7TKqNddPIxDQzY7QRUZqJwiS1Z9kSgUJaISUuRZQlEWSCERwqu2ZcgyYTrM8YKoOnAGOsWvbbC+dwuAQh+SpBlZlpCXZuiKoqTdbXN+fIAujLBluZzT6bXJspKoZmqwmI44OzvnzuvfoxYb8YeUmjxJ8VyXdFGJHLwA7QRMp3OyhbmO0XhKu9kCJKOhWVQvckVUj/n5u++Tpeba6s2acVNxJK1KsHJ8+Izt3W3QJSdHF2bbr0dsba2xtdXH9SoXFySeI0Alq2NL7dJs1hg+e8b40Lj+COkQtPZxazd4+OhvAfj7H/+K7373LdqtJrOpWWh3pFF17F/f5ux8asYoc5hOctqdBvO5ETSsb/Tx/JDpeIiqxAa1WsTZyTGOJwkqlxTfd3C8kCQZcuP6NVOXi0vIHITrsVrAVjnSrRxmKnMJIQVIiVIKnRkRhi4LtFbVmrkR6PhRB4RG5SVaXQlvNDIIcbRCFWY8pOOCEDiygS6r/YRAug5Ca8rqOrQqEH6IEBrXuXJXMn8IJ6B8YZ6ab5Q4lWBFexIhQBV65RTj+C5KS1AQ1Yx4Yf/WHo702b9+feUu4tcCsmRJu9shrgRdaZrTHfRIkoynz46r64C4FpHnGV7lZNNutWm12sxmc/76r/4GgD/7i39Pt9en02uSpaZ+nV4LrXJqUUgcbQFwenxEPQ6ZLwvyyu2q0eoyX6Q8e3pEXDfz/v79B6wN+lycnnL95q7psycZX+bU6jXGl6YuSsHaYECzGZNVTkBFmhNGPq1OTC1uVrXTdDs13vn+mzx5aK6t12/jOlCvBcwrYVqtFlKLQ7SqUeZ51a6Hxjju+OHV+YQRW5Qwn8zNfm4DKT12br3G/NDUYJwuKIoWtShg/8Y2AB+c9zgfjdnfq9OemDFKkwxn+THofbzA3Fv1tovjRZWAy1ybKjRZVhBELrpy7nF8iec5lKVCF5V4Jl8yHi5wXEUcVfMqrOF6IVqVuJ4RtSk8ymxBIRzQpg2XMfn4E0ZPf8Giem48OG6zYJvCg0cTc/+64zPuffpr7u559PvmfNvrBecXS7YHIa55dFImF8ZJqCi4NEZZDNZa5KVHox5SaFPnZJGjVYnnytV9uRZnHF6cEr72GlAJoY4OyLKUIHrh1agBJIgvd5O5crfRWq/EcS8irsbzhf0//z4TL2hr9JWYCY2ung0rTaqQmD1LnrvXyOrfv80V57N9slgs//JYkY3FYrFYLBaL5fP8xdab/yzHRIvFYrFYLJZvK7+rPyfZ/0O0WL69fCOEN6CN/qBaDHxxkfI38fkFzSsuzs+J45hW17hobG1NOT8+ZTa6oN032y5Pz4njJo8f3OdqrXS+LJkvljSbdcq8WiyPI0CiFSht+tcGpf8FAAAgAElEQVTubiGly3I5x3erGB6/jlQLVJEaoQWQJxla5fiOpCzMYmqpC0SZkWUlqlIqOG6JUg5pkaBLszCOdNBFhhAgXbP4ur7mEfobHDx+xvnwSkzS4uToEM/1OXj21PSv3SGZT0B6+IFZtC7LnL2bt+gPWujCLOZn+DiOQDkCriKudIFfX0e6HrJyS+ltgMrnlCXEdXO+WeSitcPW2jpJYo6VQjBLlgRRjbJyWFlbHyAELBNFo21cQ2phTFFmXF5c0GiY6w3rHXxPky1nFFV0VdToUKRzRpMl55emz42aQMiQs6NnjKeVg47nI1wfBBRF5c6iNa7n4foRrmeOdR2XdrvNbLpkNjFuPq1Oh4ODE5bLBevr21XtFXFcZ33DpdY0LkLDywWzyRTPcys3GxieXzK+LLj78i3ySpihRInwamhd4FTzWSJwHQ/tOisXJqQwggddVk4jxsmjLDOE1EhZRZ2VKVma4DouooqVcvwYp8hRWiM9c6wqSspSg1SISjxTlhoHaWKCroQ8ukRpgVTPnUSEzkAKXD987kpUugjXp8gFrn8lBnNQRYrWGqXMnIz9BkVeAJpnT43oZO/6NnG3g+sFLOdGDeFICEKPazf2oHKUGV8MybKMerPJtBJc/OTHP+PmTSPi+cM/+QMzD6IIJKTJklarZc4XeEhCyiLHC8x4tPt9PvrwHk+fHXFt34zl9s4mjuty++4tDp8eAPCDH75DXKsxGU0Iqhiy6WjObDah1e1z/c5t07/RmLPzS1zPJTC3OY6A8XhBs9NhsTDz/vjolHrjJUbDhDwz9Ts9HzGbCJTwGVduTbPpnLW1Prfv3mAyNvcvyiEvSsJaxEo4oTUgyPKS48NTAN5970P+9D98H6FLWnvfM+f75KcspzWWM59Wy4gCB7uv8bfv/z1//Jai26zGKHJJhg8IB0fIwNyDQpoYJgexiv4SjkORXOB7AuFG1RwqcB0PqXPKKzGidvGdBJRCOhtmmxuTpwvyUiGq6/DDADwXlSaUmRH2uSzIZk+Yzpc8G5sxeuOP/keSpEA6BXHNPA+GwxFR/xFPfv0e42dGsDcczWg3PZK0JK7mvVYlaJhMSqYTc++vdSW+kKgsXLn51GIPVRRMxyVeNZb7mw7/+Nc/5cn1O/R7pn7LecJseEEQ1VhJYQQrF5ov47lT0ZWY5cWIquf7XL2rlFLGoepz6NWR4rMbEV/iBic/u9/XdL35qnemxWKxWCwWi8VisVgsFovFYrFYLP/a/K6KbywWy7eTL34832KxWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisfxWvhmON89zNJ5v+twn83+bG86L32+2m0gpeXTfxBO99+7PaDVrxHGbaeU0cXJ8hHQ9KDPiyvWi0QhYzidsbvaQ2sS+FLkiLzJGown9vnFFcBxBEMVkywWZNq4Xji7xwzYFLrJybPH9lLJUlMXzGBClNFoptCqQVw4XpTYxJlqh86oGro/KCnTmoJIq7iiMWV9vIFSHqsvg5YxnMJlcElQRLxfpEj+sE9RCBusmhufGrevEzQZu4D93uNAS1/MpywKvsQbA+PQZjWCJRrA05h1EgUupNEVeMJ2MTfekh/RC4nqD6djET7V6HdqDPst5wmJp4nri2EfjEvqS8srQw5HEjR6lFqSVW06eFwRhDYGgVMahJqzFjM/OqLd7lOVLpn7TUwg2GR48MZFLQKPe4uGvf02n3VjFCbVbMc1Gi5OjE3qVm0UYBkRxndlkSlgztTo5OSNLUzY21piOh1VRFa4naa9tkxfGoWaxOCMKfDbWt8irmKB5sqTVqlELXDxZxUC5a+iyQEqxckgSjkSVOVmerGrveB5agMDHrRyNEBIpfFAgXFkNr4MQLnmaoPO0mi+gtDIxQZXDj9YaxwuQ0jUZSYDwHRMXpTQa04aUEqkVRalW8VNal5RlTp5MEMJsM45POWhJnppYLi0dVJ4TRjGlU2n2tEBIgesKbty+ZjahmIynCMacn5kYt/XNDUI/4r13f0V/7cr5KGA8moOcMRmZNvq9PuPxhEajbuLCwDjqqJzA8xlPzVxr6JhaLUK6LkWVH/f4wVNmkzG3ru9yempcUs5ORzTqIe1eh6hmYq8Ga2scH5zw4Qe/5rW3XgHg3oNHNGohZX7CdGTckPr9HmuDPvN5sqrpg/uPUAru3L5Or2eu4/LsgvHlEIeC2y+ZGvz8Fx9z+/o2FxfDlVnK1vYG/X4H13VwK8eTJM+J4pi8KEmrGK0gDCgyzWy6IK0cdGbjMRdnQ5qxIux0zX6BTzJ6glO/jiPN+TY2d1Hqh/zXn/4Vf/CmcYVxpCIOMvLJE2obxmVmmaTMRpf4tYhGo1bNq4x6p0eWZTilmc95ptBexnS8JKychSjnjM8O6Qw2ELKKRcrHZobJgssL417kBQviUFEsxyhlro38nGJ5ztFZTnv3OwBkmUYVOYHnkFURYVEt4ru/9w47+9c5PTkC4Ojxpxw9fcjZ5ZCbO6aorYaLLxX9rs9az1jZaKWQDlCmqNX7QuI4Lo2mYDY3NZ0sSl65LqEs8NzqXsBjdPyE3tYun+ELjjO/AQ1CXGlan8dTXb2jHMf5YvyUqN5+V7FWPHfA0VpTPUqqN8aXudvIz7Txm96dNmbKYrFYLBaLxWKxWP51sXECFovFYrFYLF/N1c9KvwvON/bnQovl2803QngjrhYa9fNFyi8T2HzZti9bRIxqdbIs471f/hKAd9/9Of/Df/pP5EXKYmYipBZpQt0VZMmMWmTEGmWxxHcdxsMx6dIs8EeNJovZENfzGF0YYUaz1WW0GNNs18kWZhFXBC1k6KB1HS822/JZitQCvJwsNe06QiAcl1LqVfyPdDSNZoOi0KuomrIoUX6Amy1BH1fXv4kvA9b3dtm88ToADz7+lKOTA1SeUWqzuH10MaXR6uNQUGRmm+c7vNxvoXXBclnVUQp8/yqyxNTRj+uU+RzPrxHXTNzMYplQZIogCri4MMKbdqfFxx8/odNu0KoW7ueTGcLxSdKM2cTUTxU5aE0Qhpwcmsid6eiC3qBPb9Dkwf3HANy6fYPFZUKzWefy0oijnChGCZ+w5uNKE2nz6GLIpz96j3anz/q6EQv1+gPqjTrnp+dENTOWrVaM73oURUHcbAAwuhiSKYnnBYSxubYWLkpDWeTUKjHOdDIHNIePDxCVJqbTbjCdJdTimOnEiETqtZCNtQGu75EmVZyVHyO1oMxy1FVNg5Aiz9GqRFaCC4lEIShLjRBVDJRQCBS6yJGV6EQphRYF0nNXAg6tMhw3ACG50jMI10MgSdMljjbHliozQhs34koAoLUC18NxoEo6Q0gHXeQIXOSV8Eb6SOGgJasEJKE0rhegYBWnpooC1/PRwkNWxZKOZDpZMDw7ZW17z+wn4NOPPsFxfda2zLgt5zPWNtcZrHUYnhuBTqvTYplknBwds7beAyCIQprNmNHFOZ1OJX7zPJTSCCHRVTxWs12n0ayzvb1G7cHjao67oDSz6RxRZQz96O9+jON6rK338SvR083rO9QbNX7+j+9Tb5g5JIRgMk3xXY9exwjx3n7ndYpSoXFIEiNOuXVnH6EVvt/hyVMTDdXttsnSKetrMYUw8UlZkjIZTRiOxnTa5ny9tTWODo6ZLRZEdXMfBUHA2fEJo4tTDo8OAXjllTukaUYWhcyHRhgkow1a2YdMph8S9O4C0O+3cKUg8P6cv//gvwLwxv4M2XQRR58QDswPdbUowPd9Sq1X4jLfDdBCIFSKUwm/hKdZzhM8WSCraLLz8zG1uIZ0HbKFETi5QoPUlIWi5jvV3JhSpAF5mhJWgjitaiznKaEXErcH1cQSRHHI+cP38apjo84WmXRotZq0qlpdv7bN4cFdzk5O+IeHD0wb8ye8cdNjc00QBdXNKhVaSASaxcJc2+F5xu3tCEcKaqHZbW/D59FBQZbOudLJtLstyiw10VKrV8sLEVJXYjpxlT71fL+rmKjPvKWuFDPii0KYz7y7dHWc0J853ohvXhCkfu60X8WVsOe3iWxs7JTFYrFYLBaLxWKxWCwWi8VisVi+CdjYKYvF8m+db4TwZrW0+DU+rf+1ziYEnuuxuWXEGrz9e9y4fQstXA6fmIVslSW4jQbjZULoGlFCFLn0Bhs4QhOGbQDyrKQe1wlqTUYXRgAzujzHr7XI0wQvqpxxSoWMOswvHlEL1wHwdIFOZ+R5gheY/hd5hucFSK8kz8zCPSpDaxfPC8gLI9DxXB8viBA4pMvKVcdbUngxWV7SqIQAL3/3bdqDdYanp8xn5nxJklGv+SjhMZ8aoYxOxzjSxXUj4rhyXvACpBBI6aBKo+CIajFCC3A8HN/Uxc1yGv0OZZFxvW2EFMPLKboo6HbrBKFZyf7044d0egN830FXDiFhFBDGdRbzJUklZlrbWGO5XLKYLoiCWjUDJO1WwHgypdIB4ErNooAyGzE9+hiAer3G8P4JQRCymFSuOo2Ys5MTdJFTLM21ncynFEXB3v4O55X7yXQ8YvzwKdeub3NxYgQS0vMZDseITgchTMNKK8rcOIpcOUm0Ox0mkyd89KsPmVV1LrVAqRLHdQl9I+SR0kUjKEqN41UuR6UR1lw5uAAUWY70HFxHosqymrcahUa6PkVRLc7LwLghqQLpVooBpQBFWajVArzUmiJN0KVGu1cCNonWUKoc1zGik6LIcBwH6fhXygGKPMeRonLXqIovNGWe4zjeaiyVKpEeqNJBVaodISXSEQjhro6VjqA7aNMbdCq3J8jSJaPxmNOzCc22EULdvLlLkeXMpgnvv/8JAIONHusb67RaDRYL45zy8OFTdve3GKz3rh4R5IVidHFBr99hPDT3zIe/vIcf+WzvrLG5a+798WjO6emQZZpRc4xwpNVq4bgO/fU+y+W8KpXk/qef0Gw3+NUvPgLg9t2brG2sIyj49COz7e7Lt0A4zObTlTCtFILRJGVvt0McmzFqtxucPH2AEALp5Kv6DSdzavXaSmx4cnRCns6peU3OD42gxnNcLo5OoVS8+ear5nqzktHlmLOTc159dQeA/tYN8oZLef9vKc5/bNqIX0Iqn91rN0grx6rzi/+L5WLGgFPac/M88OtruIGHU+ZI6Vfzz7gjCSd4YR4IslwR+orZ8c8ASC8veHDu8OobMbI091aSDVHZkIvzGecjM1+ubdWIu+sIvw2FuV7Hb5DpBnEw4fjpIwCuv9zFdX0CX+MlRixZHH+K2voeYecGeXVsENa5decme9euMxwb4eHjR0/46ae/oPbwKXf2Tbt7Gz5B4CClQmlz79UDgdaglV45UWWZ5nQS8koU4QemBouzCUGjiUaY5yC8IKwRn3lHGXELKxcrI8wxX+nnX/BV2per41/kS99y4ouGO1/nbSieq4Oe//vqeOt+Y7FYLBaLxWKxWCwWi8VisVgsFovFYrH8i/GNEN6Y9cHnn+v/fAzH1bYv4/kC6GcXEqUj+cM/+SMAPv7JT8mznCAMEY5ZGC+1ZG19A5VPKCs3miLXKHxqjTauMIu4s/E5jVbMxeUILYwjytnJKds3mixSTVrFE3X6A/JcsbO3S1ot5ueei1qcUk6OiRrGqSNLlkgURfF8AVhqlzQpQJSryBjXNXEkSoPrmkXh5XKEpyCIYpJRJSBSOa1Ol7je4uDhQwC2drfJkpzZsqDZNW4bm7v7+EFknCCuYkvKAu05pGnG0ZOnAGzvriGFxHF8GpXzRxR6nB084fDojOvX9gE4P7lAC0kY1ZjPjUCi3Woym8xY3+jQaBhh0OnJBVmSU2hotozgot6K8cOQPF0yvDT127m+jeM7FHlOEJppKcqcKJJ49T7LqYnIyZZLXnvtLkfHM05OjVCB4yOiyGf3+j7Z0giIGrUa9UZMFNc5q4Q3cb2B40YkacFsbsQzu7stAk+SpAWqWs72w5AiSxleXOL4lSgBTRzXEMC4iiuLghpR3EIVObqK4ZnNEupNhyTViNy00Ww0EU6JQKCvImGQCEocIdHStOt6AaiCssxXvhlag+f5FLmGyiFJIFEKNAW6cpkRQiA9DyEVZSWicjwf1w0Q0ritAEjXR6uCQqmVYEAVc4QMKLTCdc0cd4QErVG6eO64oR10KSjyBD/wqjmkkK4LCJwqukoIgStkJTowx06GS6azOa+8fpcbt3arOe5xdnyBI+Fmta0/6NNfH3B6coqs7Hz80Ddj57grEYQnJZ1uE7QiCEy7167tMh6PuTg7pz8wbipZPkYViu3dTZaJqd/Rs2c0m03iuEa3Y+6P//V//t9YLAre+f6btKp5KrQgT1O297ZxKuHSZLIkiiJqtZDp2IhYSuHQiEPOTs6ZVk5PGxtreH7IyemURrNygFEFqkiohW3SpLIqcqDQDk8fP6PZbQEQRD6j0ZSDgyM6HbPt4uyca9e2OTk8oio9d24PiNt7xL3rXFyJy57+FK/7Bt3+DlvV9d472yLmAY1YcyXZKJXAKcHBfb6thCLLyPOSahpwcnCAyC5YzD/Gl+a5Vqtf4+W1fTQ+k9EIgMN773F8PKN0Ah49MXUZXa+zv/MMz3PZvm1ipfzmdQb7r3Fx8bccPvw7s63eZe/6dRq738PNr5nrPfiA7Px91OQehWfEfrXePnnpkxcF/Z6pS6v9CnduX+OjDz7kk5MDAH72ycd89yWP7Z6kLM2EGXQCskLjSEGJKeD9w4Q7b/yAnf0t8sw8w4rZIaKsosVWQrkrsc1zEc1nHGVW9jO6Usi86DTzPJLtuXpGo5SqHKKuTvjc7e3zaL7ocCNfeD2uoqheeEcKrav79rkDz4tv1JXrzle2arFYLBaLxWKxWCwWi8VisVgsFsu/Ltb1xmKx/FtG/vZdLBaLxWKxWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWy+f5hjjeXDlqrLZU2357oMbqk/ufi9EQQtBf3wIgrMUURUkz9PF943ZQlIKPP/2EQCwJHeMMMbqc0Gx32N3fp6jigYaXx1yOlgw2t5GuOXYyGjEdjQijgPksq9qI0KpAFx7TiXFPCP06tW4ThEMyOwfAcQuk0BRFRhiZqBpdOGRpBgJk5RoipYMQEoGkvIoiciSqWKDyAoVxMJldZLh+jPAbdAc9ANJsSZIoer0GmzvGKaaztY8XNymyHK0rJxHXRSmJ1FCPTV9UrricLNjYaoA0LgxSCFxHsLe7s3KAqbViNjyfQgmiyLiGtFtNRqMZrufQaEZVXQJUUVJkGZ1BtzqfZj6ekmYFN25VbhZxSJEsyKZnTEamVrG3hx945IXLaGbGdjYtefLsCWfnM6LIuBcFQY2d3U2SxRzXM/2L6zXiZoPJaEmrZdx3+mtdhhcTHOd5PIzreBBKOr2YycQ42aR5QT2OqMUNPM+Mea3mIwScn10wGhtXk7t3XyYKPR7ce8Dbv/8aAPV2A60VcTNCVM4aUIBWCM9fuSu5jouQHoVSaCGreWuir1zXpcirMdcKtEDgoIoqO0gqlJYI9HNnnOor6Tor5wuVLymFRCq9cqNRujBHKI30qttfgfR9HPk8IkxfxWN5EbrMV/OlzJdIP1g592hHkS0XSEes4qxwPFSRIR0XVRrXH51lxLUGw/NLypsmKinPNUEU8eEvP8D13WqMejx68IAsySonHXj19ZdxHZAOaHX1rFBcXIzptuureXDnzjWGwxFRLSTNTF3GFxOKIufo8JidPdPu7ZdusVxkfPDex9x6yTg4/dGf/Qknh+eMxzN6G8Yt5+T0nPFkyvDykkKZ693aXmdts8FiMuH0zLi9dHpdDk8O2djd4dbdl7gqanB5wWZYx6nm0HQyxQ9azGdzhDRzbbC+xrOLIVIoysr0JC8Uk/mcLE/p983cPTl4xuPHB9y//xgtjR3NjWsd/HiNxt4P+PDX/wcAmzf+FJwapRa02+bY7voWG9EFteYWUdNcW5oknByd0GxE1DvdqqYZjpNAmTJ+9gCAy4f3aARzIneEF5rrkP4M4aXM5nPU2ESECekhur/P2mCdeKuau+WMjw4PkNlDGvX3AQhKl6j/CmHviFv5hwA8/PDvWFvvEdfr4Bm3ocbOD8iXlyBmODPTl/mTT0gZMLj2NmHlxuV4AUNxzptvvYnmTQAeP32T+/c+4O9/+T53NkxRN9c8JrOcwJM8Ozdj6bW/w1pniyLX6KWJnutvDigKRbKYEdabVV2eO9h8WQzi53kxQuor9kBKWb3evuQd94J72wshVi98/2q3q0aMl9aLfdMatNBI62ljsVgsFovFYrFYLBaLxWKxWCyWf0N8W11v/mLrzf+/u2CxWP4/5hshvNGfW4B8MdLj8xFSWusviGy+9JyAkGa/0/MxYVTiej7JSvigeOud3+fDd99lNj8GIK7VyJI5k8snRHUjYoniOp21bYQqOD4wcUzN9hqj82fkiY/j1wD4xT/8lFff+A4HTy5BmAXqOy/toCXUOlurldNknFLmGY7noqvF/AJFVPMoVYm6ShwRkiIvKEuNV4ldtBJIrcjTJao6YRBLHN8nrSJiAPr9FmUp2di7QW/TCAuGo5S4bRZn/aiK0lEFZZ6ADMlKE4eDGzDYaKJViVZGcJHmBX4YEdaazGdGAVNkmsF6j+lsCUajwZSUIIxZLhb0eiZaS1Ly8NE5Z2cXDNb7pgnfZWNvlzxLePTQ1DRuNylyzWhRsLltxEKzswM2bn+P0fkZs6kRKrR6OwzKGnl5TD02td/c2wQN0+mUZbJYjf9kNGORpNRCIwK6PLskbtZZLhJabSM2iBsRw8sRCnCqaJlaLabIE5JFwjg17a5ttAh8l8lkRqPZNtc7HXF69JBb1/oEsVmkV2WJdH3KoqDSulCqHFUqlNA4XiW20gpdZiBkFTkDWpUUSWHmra5ET44RXknHQUhzbJEuUCiEKhGVOEoLSZkvcBxnFYvk+D5Sa8oyQ5VXEUMa4XhGeJSb8RVOiMpSXN9HekbUoYuCIpuRp1Nc37SLBByXIpshpGlDuj6qzBHSY5FU82U5ptWsU5QJZV4J05ox7VaDhw+fcXFm4sUKpTk9OmY2GXP3tbtVGy6tekw46JGk5tizo2O2djdJlwknxyZe7NqNffqDHq4nQJlrk9Kh129SlookNX25dnMPx3V5/OiA6cgIprJcU2QJSgvywhzreZpmw2c516RLI2r7d3/4exwdHDJfZHSr+KnxcMK0U+f9X3zA9q4RjW1uDShVjtCKIAiqGkxZX9/iw199QrMSfp0cnXH95nWWiyWdjrkXjo/OWUwXNNpNnEpodO+j+7QaEZ14m2UVndbsDnjtOy8xWF9jqxLThbFPkS2Jezt894f/3rQ7fMIiK0imF7jV+aLQobF5l+b+DxHSbKvVQ4K4DbpYRSAtzh5z+exdRD7h6NAIUcbjKd56zNGw4NY1U5dAPEbKACcvybNqfBs7/OH332aR+khh5kZWFCwXd/n0w1/w4a+NyOZO+R5h1OCV3/tTJvfMs6RzMuTH//df8trv/0eaLXNvBUFIvbmOE+7hDG4CMD19SHH+CcvDv0H0bpn5Eu0QeBEE/irybn9vh93tLY4OX+PgqXm+PJqPyAtN5MWs390AoD/YwA99yuljRsf/CIDb3ebo/q/IlgvufP/Pzf1Rxf99FfoFlc1vlLm8mBclNM+jpz7LVbSb0KDQnzmnwERcfSY26urPF96FJjbvc72pjvvM+9MKcywWi8VisVgsFovFYrFYLBaLxfIN40qk8m0U4Fgslm8v3wjhzRdRaG1cb54vEn5WgHOFcRf4cteAKyeRRqOJlA5BEJKnZvE4L0s8xycvYVm5YwzWmqSZ4snjY67dbAHgCEkyO6NebxC3jBjHD2Btc0CyTKg1zELxfDJmfHlOs92mv2UWxpNkQa0e4eLj1cyxZToHfYkoNVlZ9VV6aHKEkKvF96IoQWiko1HKKFtUniC0T6YkbtXndHlI1JxTa+8RVQ465xc5jc6AeneL4cQce2uzicpz0iRleH4JQG+tg+tGoAW9jhEHJIsl50dHtFs1VFW/5VIRBj7JMiUMjbvIxlYfP6pRbzZ59vAIgMlszk6rz6cf32N90wgLPN/h+rUt+v0OqjDuJ+NpxmKRgS5p141IKV8meL5Hf22bRmwW0ItwAw3MFhlR3dT59OSUJMl5/c1Xmc2NKObi5IQy17Q7HcYTI64Yjye88upttBaMKyebbqfDweOnOJ6k0Tbne/b0CN8T/Ornj7jz8m0ADo8OqTeaNBoxujTHSumRlTlb21scPTsA4OH9e2gkP/iDt3ED4/qjlaZMU6QbICrXmFIVaFxcHHTlXuQ4nrFwETxfkFcFxqNCAkZQI6SkyFKEJ1fHSqnQSiIdDyWuRCfGHSdfZsjYjJHQUOgSgVwJ2fzQQylwXRdVCVaUVkgpyJM5ajEGwA3bSCdESI0qzHUIN0drF/RzHw2BgxAuQmv8IKr67OKFAVmyWIkLwijm9t0bjKbTlbAlqoX0um2m0wl+YObBoNdAlwWOI6k1atVYLigVLJY5fuWuBOBIDXmGqoQejusiPR9EQs25crbSLJcZrVaTMDL7KSX49JNP2dre4OljI8z46FefsLe7w42b12i2zb0vhaTd7tDuuWxtmfv39PSS2XzJ3t7e6vmSZQVhFBPXI5SuxtcLObx/Hxy5mqdrm2scPj1gY2eTp4/MHFosFkjpoMqS08MTc2FaI9tN8ixna8e4dnmeS5kkBEFI3KiEUEJQZAkBTTpbZu4uohiOPqbmJsjAiIX677yFH3fw632kb+qXzseEjQ5SupSZEcBkszPK5SWLeU7UeRWAxNMc/r/svdmXJcd95/eJyP3uW1Xdququ3htoEABBguIyiyWPzphejsf2i8/xH2n76NgPHnvGGo9ESdxJEEsD6L1rr7uvuUb4IbJuNxoNkpLmjEApPi9A5Y3MjIz4ReZDfPv7nY04Hw6pN811/n4AACAASURBVMxz3KjmuGqEcgJ+8Yk599b790hzSbKabYSCeaqoVSPefPt9Hn9ihFCHJx+wTv+S6+/9kOreHwFQX/4511rHHH/0Z5w1jXPU9dtvIZsdAtcBTB3I6hU8p0OeDBgfGgcdz/0At3mLav9dgrCyGT/HgQN/n2rF9KXV6aKQ+EFIvC7fL/Gc9eBDkvETRMMIv5LKFbI84/jnv2LrxlsAdPtXSxnLF8Usmo1KcnNf/aqDjVD8Pmh96dz2FS5v5WEl9OZ18WINvkBt/hAvTrsUr77a+OULWywWi8VisVgsFovFYrFYLBaLxWKxWCyWvzNfC+HNpXjm9fqZS8HNi7+/yv3m1Wu+iOFRqEJTazXZ2TNuB41mi+dPn9Lb2maQmQ3lxTym3W3jCMWTz+8DsLXbZz1esVosKbRXnnuAyJeMByNWKyMiqDbapHHC8OyIydgIW67evE2WJORKEURG2CL0PkpnuNkKZKm8UQIHj0JllBoH3CBiucoJZIrjZOXzFmRxhpAOWW42j71KQboqCEMfpBGTRJUKbq1Lq1PBXRixSxrPqYQmYubw2TEAnW6DJFuxnC8pyhgjx3XN2EkHzymFNyrm9HjG1naP6dRc7+T4nL2DHabjOaq06alU6oxGA9771tuUmhOcwKMWOqzWK46PjFtJo16jXnFBRFRqxiHk6ZMTWt0eV6710dnSPO96TLxacvH8CecTM5eDwZx6o8mjzx5Sa5qN9p2dbdarmFzlm3q4duM6juuji4xa1YgN8jQhCD2EgDw2zkd+EOCIgnvv3mMxNSKC6WSBQOK2m8xL0YQ3dUBK4vVqI/4Iojq9Tp2sCEhTMwZZssB3C/za1kub7g66SCiE3Lhn5EWKlA5aF8iX61lCnqZ4vhkXlcW4vo9WGaX+irwokFJSFCmOZ0Q2aI3jBkg/3Gz+a61M9SuFLJ1OtCrvobIXMW0olJI4QZVLNZgQGi2M886lA0ehFHmW4nr+pckMJ4enSKFoNOtUquZcnWdoHSAcj3xuHFGWWUK8jrl16zbzuRFH9XZ6FAU4js/uvomBKrKU9bogyRJWsam13f0dhJC0200c1/Qlz3Kk4yMdbxM/VeQ5hQaJIC3dd7I05sHnj3GkS7Vq4omeH13w+MF9dra6JmoMaLXaVCoBSmtu3Llh6mA4ZJ0k1BsBXmjmY6u/xXKxxPM8zo6M4GwwHDGdLKhVdshLx6XFShI1qkhXMx0bMVMURvg7Hp7nG9EQUK+HuK5Ho1llPCoj6gKB5wrWKyNAApiM5yRpQZZlm2Ou55LHC4TY4ZJKe5+wvkWRrdCq2NSGG9URWpJnSTlHCbPT+2gl8VxTp6fPHvDowQWieoM7pQPR7et14uWC6tETBmd/aeZjO6ESLPGDgP0dIwJazZdkRYDj5RRT427j+xFC3qHZrtHeMc5bH/z1x7zvLTj/7EfsvPHHZgyu/BE38h9DseaX9/8jAP/fww+5961/xa07d41ADZDCIazUcJodkshEZvnFOcXqAcunJyhv19SB00HjUql3aXeNs1VUrbCYjRkfPiXwzDjH41MgoLr3fby6+S5MJ3OqFR+tXZ5+8iEA7Z19s35eGw31ZWeZ18UefsGR5uVv1suimC9d6cXfrzrc/L5yGaPr+/JVXnWSs1gsFovFYrFYLBaLxWKxWCwWi+Xrxj/W2CmLxfKPE/kP3QGLxWKxWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi+UPka+F480lL1xtAPQXIqRe54ZjjuuvjJuS0lzw+hs3GR2fISX0to1Twj//L/6Y/+vP/oyt7Q5BrQ3A86PnZEXCdqdOkhi3jcNnj9jr7yK0RGIsR2aD52itCavVzTGtFdqDSrXLuowyQWhm0yXrxZyr14yjQla4eNUruHqBWBuHlSKbkK2WFDhQ9tl1IlwvQaMQbulw4RQsFzGeJ5ClY0aeZEjHJYsXOKFxn6jXmhTSJQzr1Mt4rCJX5FmMIwS37xpHj1wpsqzgyeOntDumXRQpZvM5YRQipblvkhS0Oy2CMERpMy6drTZagRAuxycmNkdg2sXrgsGZOdbttdja7VJkCtc3/ZvOYqLQpdY0rigA29tbzBdzRidPcJQZlzweM5o5BFGFsHQWEtLl7Oyc/Su7xOWxo+UZ3V6L1Xy9iZEZDy+oVkOQPp/e/wiAvb0+0vUYng8JS9caCUTVJqqA3s42ABcXYyqVGoUq6JcOScdHz1kuYlrtBs2GcU6ZjAPmy4zh4IJmxzgaDQcLrlzp4YURQr9wKgKB4/oI+cJ9wpS5oCiM44gUDmiNcNxNnAzCM04lBSCyTW0LNDjeC1cd4Zh4NlVQlNY4wnGRUiAkCNeMM6owcVZC4MhLRx4fhEQXGVKaaB6dp0hHguOTlmMqtYsjNes4Yz4ZA3B2NKbTazCTc6Ky/lA5WuUcH55RjcpXjBR0uh3kdM5vfmOcRC6GQ+7cvs233n8bSRnR5AZUawWhqKBLpxitwIk8hMq5tIQSKjfj5jk4zqVjkEJnBTgeupQU5oXm/HxCf6fHeGLqKkljbt25x3S24uDAzG8Yhqg8o9EMEZhx9kOPTq9D4PscH54DkGUJBwf7zOYxaWLGL12MWS2WzCcOQWie9/xszcGNqyw8l+Mnh+W5migKWA6WFKVL1N5+n+PjC549PaVaM9FQYRQhXQeKnE8/+aycX4HOY7yoSl6Y/ikRoIoCrV82UdFI10O6TZKFGb/ZxWPCRhdHehtnqzyegXCoNHdYnfyVmcvTM2K5z7233sdxjZPSfLZCa4f9m2/x88NPARiNz/HcOYHf3sSpnR8+4sadNwn8ENm6au4x/QVqrnG332Orb469+70f8uDX/wdx+gzt/RiA7ds/oJqmLJ7+Ne+9acZv+2zI/V/+70wv/oj+TRP5tL/bJ04KGoFLdPley+roYJfFxWNEMgDA5Qyhc1bzcBPdND1OWK0zsjRHVM37XlZvoYMumSpIyog6gXFec5yQZw8fAHD32z+g1ur9LWKjXvkWaeN4szG8eTmu6rKp0AixSWbbICjd4MSm2RfS6X6fvlxecnPOy/2zSVMWi8VisVgsFovFYrFYLBaLxWL5GvOPwfXmh3vv/UN3wWKx/GfgayG8eXWj8tWojt/V/nf9fXDrDpPBgoeffERvywhv9q/u8cN/82+4/+FvyFZmQ/7td97l5NkjZrM1rmviTRaLFc/zY7Y6dYpLg6BmnXqzjef5xCsjREEqKpWA6WTKZHAKQBAELNYpjuOwWpUb3rlLs7WLK2Pk0kRSpUsPCBFZRpaYvkhZUK9I8txFiMs4oQTXM5vsilKsoTV5XpClOYU2G+2Ndp/CqzAcTogiIxIJIo8gCKjUQtaxif8p0oLT43Ok4+EFphRavQ5+FDKezKjXzbmeJ0G6aA2lXoDj58fcefMWg+GY84GJkPrud94hXiUMBgO6W2ZjXEjF+fEFQRTS7lXKMV2jixylJMuFiXzqdOps7W0zPD+jWJnxC5t7ePGInCqNbhknJCoICYOLC6LAjMtyMefs9JhqrcG1g4NyDBqcHJ+x3d/m5i0TczOfLelud4kq9c3z6oUii2P8MNoIOG7cvMpqteSTjz7j4Jo5t9Vs02lLhBTEZQTSznaX5Sqm3W7jlkIoVWRM5msqzfzlgsR1HTQpAiOAKQplxC7ojcBJo9CFxnEc8qyM/pISJHiORJdiCClzI+DRCl1eL00TPNdBF0ZsAuBSUBQa6QUodRkhBUICSqExNa6VQjoaIRROEJVddknXI/xKA5Em5XMoilwwGU752U+NmGm5XLLb32b/oM921zxznqWovKBWizaCkEolwPECzs7P+cZbdwF48uyIX/ziNyxnE773/W8B8MYbN3E9getIahUjApJo0AopBKp8NuF4OEKihSRLTA0J10M6kjRJcVxz7nQ+ptNuU61UmU5Nu61ui3qtgdKadWLWwmg84J13v4FWOedHZ6Ymt3tMxnM621vkhRm/0cUZD5KM05MLbtw08Vh+0Obw6QlHR2OqVXNflOTBZ0+4c/cafhkzl+cF4/GC3laH/q6JhXv29Ckq10Shz2w6KccvY2e3y/Wbu5yemrVwdDhlTk6tXZCW6zeJU1w0RZ7guEE5vwKtCpaTAUUpiql1rpCtliyXxxtxnlY5CkiXkxfxdp7Hjdu3CT2fxbERxUi/jlu/RRJn+I39sk4nPDuecKPW58qVpqm/kwnJcoAOm/ihETPl/h2c+DFFdgdHmjrtbPUZbN0h8B/jpGach08/onfwLQKxYH3xCQDX9zRRmFPoX/LRX39g2t38lxxce8PUaSlGDIMA7daQjRtUK0ags56P8d0CIQryy/dpFFDrVMmRm1i4PM3IkzVnJ0fEpUip1duiUmkipEcQmXfY8eNPufvNNsgvG8R9OWjqy2iUafVynlSpgtl864R+ESv1UiSVRn9BZLMR4FzeHFBCGzGP+HIIlRa/XVujrfLGYrFYLBaLxWKxWCwWi8VisVgsFovFYvl787UQ3gBfuTt4uTH5OgHOV/GqA47jOrzz3W8xn06ZD43Y5eLsnDv37rC3v8PnH38OwF/95X9ECJ/Gzk3SpHStyQfMlwtUMaDdNpvlcSJIh1OkkFQa5lij1UQVmqDWpdnbAeDs+WMcv0Kj2WQxMW4MtXqFwXBBpwGidBcRQYdma4/F4DmqSMtn0KVYQiCdywfzCaIClRUbAYxxwkjJ43kpwYB4NcEJQ5rtJsvSraTa6CE8j8V8xWRoNpmzLKHZatDb6W6EHsv5AlUIoijcqGw8LwQhmIwnXHYmimqslznkGbeuGwHCchFzfHjO9ZtXqDfMhvxoNICiYLmcEgRGHDCbzFguVmzvdvn886cAfP/73wJhHHLyxm0AJpM5s+EheXSNh4+OATg+POadd94hjKr4vunLlat3ODw8BBFwfGLaOb5gb2+H5SrGFabMm40648EQ1/OoNY0AS2jNfDpjeHKMLJ+tWquSpTnb/R1qNSM+Gk3GrFZzBILVamlKIyuo1qrM5zMqpUhktYrp7YYUWcrlTrvruggp0SpD5WZ+tVK4QR202jiYCK0RjoN03c1cqjwF6QICVQopVJFBLhDCQbimziUSXWiEcEhWZs4z1yGqhqAKpGfGoCgUksLc63L5S1m6YEiUKgVEao3rBEYIVI6LUiClxnMlaekItbXVYnuntRG/AETVEOFAu9tkOjJiksUqRoiM/t4ek5FZg8uPlmxt9/j2e29QrV4KRzRpUuAHEq3NfYMwgiJDuXJjCaJUZpxJ3BBRiuQcR5BnGuk4nJ0YUcd6tSKoVMgLvXGiancaxMmK/av7hFF4OdAInaFw6ZbOR67M6HTqrOYznPIee3t9hsMJ1ShkVArObty6yd5+l+XURzhuuRbmeG5AnOQsVmZssiRma6fP6dmYzz59CIDvu9QqFSr1Br/61f2ynnd5483ruJ7D1et3AGi0l3x2/wFFUeCVfUlzjRCSdL0kqLrl+AmSxYzR41/hVsy7qdbpU+RLlM7R5XstX50S1Hrk6YKoY+7RvZpQaWyTzi9oOmZdJlkNP7xHrdEmLJ/tfBBz+7pxBhrNjShrv6v4+Gf/jmv3/pitPSPQcaoH6HxOMX2IjG6ZY15Ae/dNfvyjT/gfjK4FZ3WfYlqhuvM+Qpv1MXz2EbtbHo7n0muZOf+rD/4fTp59yjvv/3O2ts07Vns+jpR4nrepFzds4FcqqDwnaBqxTJoVLOcrTo9P6W6ZcTl6+hnDo/vk61MohYzPn/Z45/0/5eDmLqNz05ejTz/mxlvfwguiF6415TfmZZHob+eL7m3it8h1viA8FablF9zfAKH0RsijEYgXdjpfcVeLxWKxWCwWi8VisVgsFovFYrFY/jD5x+B6Y7FY/vHz9RHevMRvi4/6qravHnsV13No9zpEFeO68vMf/4R0OaO7vcNb33wHgGa3zScffoDWilrLbL7vXb/L+PyI2eiU2dxsoKfZiEq1xnK5ptroADAfXqCUQ61VI6qYGKOD22+itOLJp/eR2uwyS7+N63tMpiN812zsupU22gvRYU6zFKdk8Zw0XgPJJkdGoPDcgJwUWTpwpHmBlBIJpCsTlzKbjIhaNZz1mK1t49jiuA66UGhVkKXm3IvBlE53izDwjKihvMtiNqfWauCUsUjDiylSeqxXa5S6jMIS5FlCGHq4npGJKODq9T6NRpWf/vhnAOzs9Gh2O5w8PWR712yW717p47ouZycn3H3DiGyEFAgBWbpifDEEwItq9K6+y2Cc0miYGB7/+jUWiykCh9GFETPFqyU7ezs8+PQJtXpUHltTrTaYDKdoYZ73zbfu4s8ClrMFo/Ie4+GQer1Ju9NkXkYRLedLtHTo9vuoMppnOZtRbTSZTecsl0Z0sru7x+Hhc64e9FHabNzXaiHkKarw8QJTa9LzjMOIUghtlpzjOWiVI6TEdUpnF1eic4UqFEVeuswIB53nSFGgLyOppG8EKOrFBr7jaAQOeZ4T1cx9HeGSpytwjHCnPBkpPZI4Rqfmef2wAlmC1gVClO47SqOlRGcr1KXNhiNZzhcsVzHbfSNcWiwX9Ha2qFWCjVgtrIYIQKJecu/wSNdrqt0m1bqZyzffvEWSpSyXMWlinrfdbnF8csa1G9eolo5LQggKrXGQ4Jj+CS0Q2sRj6VKQlBYgtWC9WBCv4039ffbZY7q7u1Sj0m0IQSFAFTnHz00M1FY3xJGQJDF5btoJleJ4PvF8RX4pSNI5jhvS26nQ3zVrH61ZzADpIkvXpO3tBvOF8RTq7/bMuXmOQONIzbx0t7lz9za7e3sMhxd854/eBSAvMrIsRbgBbumyIsmp1yJqNZ8sLwVxSuAEAfl6jeuXtSaNW5Jf6xCW7yYvrLIcn6BUjuOYtaDzFJXneF7IcmJESr2tOuPJArX4jKhp3mHz2RY+kjRJODszcVv3diW1iovIl2z3TLvQnXNtNeWDv/m/eee7fwJAt38NqrdQq4/QsREpuZU99q5e49nuOxydG3ebW9ddkslH4IZEuz8AIJjniPUTHj9b0WmZ9XH3AHzviCcf/688+9i819z6Pm+/9x5FkeE4RnizWq7xPJ80zfFLl7LpdA5SkKUpz+//jRnn8Qe8fQVWa0gKsy5X8YyLwTH7165Sq5vxW1yMSVYr3CB4SQhaOkfxcvyUAH0pDvtdPjNF6VJjjsjXNNdab6KnNm44ApTWm0jCS9Rv0f9sjHb0lx1wfl/ZkMVisVgsFovFYrFYLBaLxWKxWCz/kFzGNf0hCXBsxJTF8k+LL2dnWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgslt/J18fxRrD5p/i/b3zHVzni/Da3HC8wbhZxnvPv/+2/5V//t/8NO1euA3DnrTfYu7LNL37yC371U+OK8N0f/IDb33iPyWjM8cOPAVgvL4jjAa7rc/TsGQDVakR7a5vVas1qfgpAEHq4QY12t8PgwsTrzGYLmo2A7s4V5ivj0CDiBC/MaVVqSNfEoAQdzXLwFFfkZeSUccFRaUxR5KXbAriuIMs1QuZ4ZZyQypZItUJlMVnpQiJkHcipVT2cPXOPqBKiVE5ewKP7jwG4fmufbq+D0gUC078sy5lMRkRRhY8/MmPwzW9/k0qtwnyxotpsmOtFPvFiSaNZ5dr1qwB0em2qjSaddsSqdIqZzxLiVcZ0OubmTePUoZRxkXDCOvP5IwAWxwPuPzhDFYoyCQshJMvFlOs3rvP2e8YhZDgYEtXq9La3CCtmfuuNNieHR3R7HQYD44wzPB9xdj7Cdx0qVeOM0+72UEXGcpVRGolQ5Blh5BK6gqR0FpJSUmQZWhc0SjcQpQqiKKJRr9DummitZruDKyVxDHlmIqkqjRoCgRQeqnTIUEVmHIiEQpeOMp7yEFqhhYOQZTRUusav1CmUQkjzbNJ10UpTFGsoY6qcIASlkVrjXroXaYdCByiVQ+nIIxAUhWI0miIwTjGdrsRBs1rHBEHpviMEWhlvDllGDCVpzif3nyCURpWDde3aNTzXJahEULr0COFSFCloh063bWoozxCNCIWmVjVzXq/5OImmEoU45dgrAdL1UDoHZeovLxKkJyjyghcOIxKhQQoX6ZVZbFqSZykPHxyRJubZomqVOE44OnxGkmabOUqznNl4isAca3ca+G7IenTG8YmJYlNZxvVb10jijHrD1MvJ6Yh4mZMmMUkZOdZoNanU62zv9klTc2wynBJFCsgvDavobHVZLZZk2Zhbd+8CEEYRjx494uatA8al41KrWmM4mtLpdnDrJgprnST0dvvoPOX5k2ebc6/fukLVUS9ih7QirNRJ/ArrqXF1ylYThM7J4gVKmPl1wm2EG7GaD7h88YahR39LskwX5Mq0C9pvoKRkuRySLIzjTa/lIaSLLla0WsbJS6ce16+A0is+/vl/AODtH/x3NFot/MZd8vHnZUk20HjsXrvF5x99BsDeniQeD9kSP0e63wFg+96/ZnXyCzrxr4k84wxWCV1cz0XplPPhpwA8f/Ixv4mfUO/eordlXJiKwiGJlxydDghDM36r2Ygnn39GKxrz7k0zWNXrLqrQ1KIqTmjWTBJL/re/+BXdzlVqTePM5AR1losp1VabS/MnIXQZGfUSQvNlDxmBvlx7rzqzoTffPF16V716ha/0zdF689vv/b38vVpZLBaLxWKxWCwWi8VisVgsFovFYrFYLJa/LV8f4c0rQpnfFjP16m9f1fbyuFJqE0Ny+d8/+eGfIvKYKHSZT4wwww8qVGpVvvsvvk+zZYQUn3z4IdPZgus3b1N/xwg9jp895MnDT/FdheOWESWLjHg9o1KtbY75QRU/jHCEwC0jpNIsRbsBTx895dJwaP/WHc5OTwn26lRrZhM1TR0S2tS2umTLMqYlapKtRshwTZGZzdx0MgJytC5Yr4yIINCadBESRC20MmKIQlVwHEmhNHEpSggrPrVaBSnh5p0DM2ZKo5Ti8PkJO/0+AFv9DuPhmPFwRLtthBTrZcJiumQ6GROEZpN+MhzR3+tTILhysAfAfD5nMZuAVpyemI37Wr1Oq9PEDxTDkREk+ZUIL5AU8QxXmI12hGC/32Y8WZOXIqAizdjq7dPqtFmujahoMpnQbrdxHMHOnrnv4aNnJHGM73usy3az6RSdp2TaZTg092g0QrpbPeaTOSo1x/woIAhDTo4OScrIIsdxSOM1juOSZ2ZMj0+O+d7332f/xk08x9TadLpguko5PjrbbLi/894bSFnghdEmFslxfTQa1/VfxM0IFymlia2SpQBGSjSCItebGCNdFKAKkA6uW45LnppIMik3dS+kOR/h4QYmtsmRkuV8yXQ85+ZNI46SaJSC8TSl3zdiA6VzNBqdFzi+ezkddDot5tMFQWhqbaffoVCK8WBEp1PfzBtaUihFqRUyYiCl0YWiyC7P3Wa+XDM4GxCGRozz5PEx7XaF4+eHtNsm6qdaryK1B1ojRCmyQaPyhELLTdSZdMB1fRwPZG7Gajq8oL+7w8XxMddv3DD1Mpqw1W0wmczYv2LqvtZoEMdrisKh2+uWtRZTq0YsZjMyZeZyd3+f06Mz+rtdOludss/PaKHJlkPWqWnnehFIyeBiRqNuhFrLxQqtwPO8zTp6/Pgp3/vee2RZRpnARaUaUpMOUeTz7PFzc+58Qb3e4OLiDFWYOr177y5eEBJUQ/K0FD1pBWgKLQgbRoiSrSekeYHjRqYeAFUUJMsJSAnlO8J1Q2SQIrauMx2b2Drh1XEdn+l0uVlvhXaJ4xjP9/CL8lw/Aq3Y2xGMZyaS79Env+a9H/yX+NEO6cWHAKSzU8LOTfr9Pg8+MALAyWCC62qyeEl2+HMzl42Y1tV/wUHjCstTc6xYnZDnCl8q9vvmfVqJEq5sD/jw4SE/+rlZW9MVZEXBbBnTrJi6r1UK3n8zIPQdOs0ySkxLpDRivstx8VxNp7pmna7wk1K0M51x9uwx21duvBDKlLlN+gsyGTP25lu2aQgIEPqV79RLSlMAIXhx1ovj+jWaGgGbCCrTWiPLfryu/Zfv+/K5NmzKYrFYLBaLxWKxWCwWi8VisVgsfzj8cO+9P6i4KYvF8k+Hr4XwZiMUeOnvL7kD/BYhzldxeQ3HcV7cozy2u7fHf/0//Y+cPn5Ath4D8PTpQ27c+yaNbpf3vmucF1y/wl/8+3+H5wX4vjk3au3w7e/vMplOGZ4fmf6lKUIWJMmEVtts3J8ePyMMG1y5eYtK6UwyGc8ptMALfHQpJjl6+pRKILgYrjg/mwAQpzmVaoXObo2wZXbk09UA4XZw0gl5bNwxokKTJyOKLAdlNp7zuGB6/oQsd/CrZnPb8VxwWiAEaVzax+gcKQpUkVFqcQiDgMl0gRA+p8dGkHR0dELo+3Q6NdSlAKZQOA5cudqn1TaON64rOTsZsNtvE0ZmYzxPUwaDGa6r6PV3yvsWVBs1VDogiszmtnRc0AWrySHSN9drdCtUGjn1nuD0yLgIHQ1PqEQ1BhcDWqXLTH9vD6RmNptwfhyW4zzljbfucvj8aOPOUmiNF/g4UtIqxRDr5YKj50cIpShKoUw9rDAejej2esSxERE8efyc+XxBv9+n1jD3fe+736FeCyjyAsc1m/nNTpM8v6DdrjKdzs19kUxnS/bqbXJt5k2rAikclNKbwDcpBVka4/gVdDmXjpRoIXAcb+N8dPj8OXv9bVxXoouy1jXkWiEdF1FeUGpl3J9Uhs6MWEMHAZ4nOTjYQ5S2SUJqhAO7u23kpVmOdkFrMjKKwozLYraiGgZkcUJq9Eg8eficVqdO6Ls4XqfsDMZhR0vypBQuuS5KQ5G/cHBKc7g4m6IUrFZmrKqNFlmcEEWVjRPQcr6g3mgiHdDCLUs3K5VFguxSzKRz3KDCvbffIi/nPM9SPvnNfa7dvs5qZUQiy+Wcnf0tVqs1w8GwrD+HoJ2zFgAAIABJREFUeqOC4whWC9OX3PNxHCODqFZNvXiupt1t4fnuRh6xs7sN+YLJVCOEqQOlCzw/ZDwYI/3ShaleY2uvjXQdnj40rjVB4OAFLkhQC1Mbv/nFhziuR7NdJ07MWNUqEfVWk7OLCw6PzTvi29/vUKlVcFy5cSVaXDxjNZtQ7fZBpZtni+pthPCZToybTyjXuH6NsNEjXph1HtZbrIZPKNw2XmDGz6l6gGSxWLHVNe8h1xN4geLoZEmvZ94HzUaEkFDkBaFv+vz08SeMzm7SuPs2buMKAOvRgDAK8QKfoNYDIM5H3NgJAMWodKfKL/6GsFolbL9Jvjbj57ofoOYnJFnCbscI06LAIcszdroevjR1sLsdMp2uyKlzeGociHZ6IQd9ge+7+J7pn1YCIRRKw3R6WZOKyIdkvabSNy5HpBHryTmqyJGlcFNrUXrUvISmVMS88q0qRTpfsrIRL9xwtDDfPKFfOvurNDFCGFHcy5d79fLl9+7lLEltfoCXvq2X97dYLBaLxWKxWCwWi8VisVgsFovlD4U/BPHND/fe+4fugsVi+c/M10J4s3G72cR4fHVU1OXv5rTfX4xzec2Xz6l1erSWCcnabCg/fXzEr3/6E9751rt094wbyJ03bzIevMVsPGYyKF0gHJ9aJUIJl3e+8wMA4uWSo8efkywnnJ4cA9Dd6hGvEz765S+5/eY90+ciBa1wHRevdOqYTeYoz8d1XFZrI/Ro1Crk2mF8eka1vQ1Aoeo0Oi2yxQmFNE4Obi6QUrDKhhuBhNYgXYfl+Iizp2aKt/XbiECjpb+Jn2o068Rxji4UmTJjOh6cc3wy4FvvvYnnGfGMkIqnT56hJwXNpnHqePbsOd9+7x5COhuBxFavTeAvCUOfsIwT0hIarRaOIzk8Mo43visZXYwIom2qNbO5ncYxQVRB+X22m+bcVQLz6ZwPPvgF44ERQ3S7bSazKVcPrpCVLh9e5LFer2nW21QqRngTRQHLxZJ2p43rmO3n+XJOkRVEQcjOTimOOoVkOmar1+b8zDgLZQrqzRqT6YJ63fSl19uhWm3gOAWjoXHpGZ1d0GocsJjNaDpmPhQFaE1Uq3JybkQEnu+x099FA653Ga1VIC//W4pJUKp0syg2a6JQRjzjeiF5auZte6uFdDyE51M+GnmW4jhOGWl16X7h4voeiPBF3esC1/eQUiAv88pQaK1RRQYy4LKIpOshdUGeGlHCZDTm2eNT0IorV40bUrvXIYmXVCoRSl068qQINI4jueygArJ4jeP7rOPS0Ug6dHsN8kwzL2OblDL+HVnhUHX9co7O8YIqUSXAKR1vCifg5PicRi3AC8x9hV9hOpkzHk85PzWCmjB06W21kVLS6xpBVyXySdZravXGJoLrkw8/4eDGFQLPJ07MsThOqNULdF4wmxmxy/HRKds723x6/+Em2k2qhJt376CUploz9dfsNCnynFqrTbUWlNeLyXK4erC7cSqaTuYMz89odXqsFmbtd3tdVuuUk5Mh+1d3Aejv7rBep7iux/UbV8o5L1hOFwTbXS7RSHJ80nVBvC5dcKRHs9NFKU1NmPWWrJbUWg20SpGO6d9qrZBBj2y5xPGi8h5zklyxd3BAnhiB4vHgY/bdgNkypmdMdVgtF0RRSLNZ417NjIsjJzx58Dmt3h6uNO+NSm2BEBooqNaNUGs0h2s4JHFCq3Sj0SojPv0R8eQJlc5bAATdf0U6e8j18DcUsVlbgQIncjgfLGiWbmHNmmarU0OjuH1gnu3DT0eMxoJCJVy/ZoRzWuSgJQqJcIxop+o7xOs16XDA7du3zfx6PovpgKLIEM5lrBmvSF9ezIBZfl+OnHohqdGAcaZ6Id75ssrmt33djG7nxXdQ69f35hVTHeOq89I38EviIYvFYrFYLBaLxWKxWCwWi8VisVgsfy+s6MZi+aeJ/N1NLBaLxWKxWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWy6t8LRxvlC5dAl7jYPN3cbd5FXOu4IuuAybGp73TI0uNE8bNuyPmizVnj35GGJr7+kGb7/zRe0jpkOalU4eWTIYjHnz+OX/x//4HAA6uXeP2W99kPBxwfvIYgNVizvbuVZqOy7Mn5tiVa9eoVKs8f/yc7aZxSdmqNplPLoiTlErDOEN4MqZW6zEeXrDOjNOE6wkGZ+f0d9tUu7dMV9IVInRxXMlqZlxhVJ6gVYHKVuTzEwCGRz5RJ6fSvkmjY5wmXFJyV3J6NqDVNi4QnW6bPM+5uBjS2zbttvodtIJ6o0KamfG7dnWfNM3o77dxPOPyMbwYkaYFcz0jzcvoljSjVq+wXie0y+eNIp80zTg9HVGtGPeOVq+LRuL4MU8+/xyAyVLSbjfob29Tr5ion9FoXDrxKIrc9GU2XTAejtm9socq3Xc8N2A2W+B6ghs3rpbjJ6nV6wwHQ5Yr4x7TbDVwHIH0fOLERHBp1jhoHM/jw1//pqwhh6tXr9Buu3iBeV7HkSyWK1wpENo4ZhRZzHq9ptPp0GubmC8KhUAhZYAuzLhIR+I6Dnkeb+peeB7SNRFGuowmk65HUeS4UuD4xr0jEgKtC4TQqDIpRnohWqdopdC6dJnJU6TjUVCQlu4n4FKph4BCOl7ZPYFGmTioy9gmL0ApXabkGJeP+SzhRz/6Cd/57jvs7BqXlaAS0ulWzSMI8xyu45r/lS+cq7TK8Ss1NALPT8raUIRBhUmyYDI2MUsHB/s0mlWOnz9lOjV1v93fIU0zlFKbyKfhaMRivqTIc5pNc2w5GzKfrYnjlMXcXO/iPKHf77E+HbGza+xZdnc7OFowGk7ALaPOPJ+j56eoXFOtGVeiJEmo1yqkaUYrCMoa8gm8gGolol7e9/TwmLOTc+Oqs22OnZ2cILTm2q198szM+cXpGY8/+5xrN3ZJkzJyDE1aQKEK8nLOhYQ3713HcRxm5XPMplOazRbdTpeodGE6Ojln71ofKcXmrSb8OjJ0OTo6YzIs3wdScPOGw2g0oVo1zzseTZnOY1zPR5auJ3Eyw5Wak6OcZmAcb3weUdl+F7eyzUF2B4Bf//SUejSlXpGQmneiCCVF6eZFcTm/CYOzMzxH4DpmXPJVShrPSZOMnb6poeGjEJXHODibGDKBIFktOH36AdeuG3cb2nfwe+/ihDukM/OOcGePUfGEN+80SVNdPkeK4wMKXNc82zff2SGNEx4+X6OkcVLKUo3jODiOoFY1CynNwXUgU4r53DgQSSERwkUXehPj9gV/GXEZ1yRM5tOXIqjk5a/luXCZKXXpFnaZUKV4OTPqd7u+vXrs1e+k+l2GNq+5jsVisVgsFovFYrFYLBaLxWKxWCxfd/4Q4qYsFss/Lb4WwptLXiey+bsKbl4+TymN1spE37yCF4V45aZ6pdXl9OJTksWM4fOPAGj2bzM4PkFnC7ZvfQ+AaqNKa2uH/Rs3uH33KQA/++sf87Mf/4T3f/B9ejsmhufpg085PXyMkC7VqhH3nDx7hhYOnutx9PQ5ALVmlWq1RrKOGZ6dAuA6mi1ZZTWbMp8sygFKqTeaDC7WeO4z0+ewhdYCN9REyggkstWEZL0kzzJW80k5thKVx9QbbSZDMw7LRUqnW+Pq9T6VqHo5clRrEU8ePsV1TbvVdMLg/Jxe7w2kYzbGa/sd/KDCp/ef0NvqlOe6BKHHaDxk/tQ8x43b10iTlIuzIUKa6zWbNcIoYHe3y2VySxqvKbIVq9mM45NJOS5NHnxyn/7V62SZ2czv93fIlUajUJnZ8M6zmEoUIGROtWZiwwanBd1uj3qjwnxqrhf4IVmyRmtNXgoGgtChWo2YThe4ZWe2trsUeUaeF1w7MFE/o0mM47mcX0xptI1goFaPiNcxnXaIyk1UUlTvsFdpovKMeilmms1WRLmmUhM45T73cj4nilyUkCYOykwSEolWOUVh6lcVGUKWkVSlUCbPcnQZD2VCnIBCgZBIV5r/B1ApWmgj3HHNUtdKkKcJQjpkpThqPZ+ghaTaaEIpIJIYDUGhPS7KCK7lak2zVeXtd+4RhEa84PshRZEjyEGVa066KA0Sjc5fCIg0ObqASs2shUe/uk8UVRG6YH/fjPPTp89pt5tUwxqjiYl2+/Tjz3Ech/2re5t5c4Rme6fLg88fMpua9dFo1sgLQRQF3L17E4Af/egneO42vSu7PHt+BEC70yT0JAhBGJg539nuoYqc0+MLAt+M1dnRM/b2d3A9n7OTMjbMEbS3WmhRXA4V606XVrdBluZQivM+/uBTbt65zur5CaocZykVWVqwXqXEKzMu49EM2a2TrCOkMPM7GV/gu5Jbb9xCle8xf6tKslqDUHTL9XbvG3eIqiFSCNLErA9HBgi9RiBolcIvpTNOjk84Ox1x49YBAGHgs16muM6adSk4i9cprVaV+VzRbu0BUKlvsx49wM1vEpTRULe+8T0++fBHNIOEwJQBUZ4RRRmO6yDKCLMru1U+fLJgvszotM2cZ5kmKAr8qIYjTPTcdDJjsXRpNqDUpeE4Drkq2N0JIDd1kA5/TTZ/gtu6RdAx0X1O+w3y1ZBseYgoRYbIOVKa2LdLSZIvXRQOt29GiPKzN5hmuB6EbkGzVtazVLx5u82TmbuJIfNDD1GEFGmKDo0giY1A5lLUaY59WRCjX2Q8le0um7zu0yZeCbB6zdX+1rzuu3oZMfX30LNaLBaLxWKxWCwWi8VisVgsFovF8g/KZaTT10mAY2OmLJZ/unythDd/W173L/xf3w6kfF2qlnH0uBSEXL37BjvXbvDxT3zWZ8bppNndQuUZ08kEb2A2dou8Q1SNSFPBjbtvmnadBh9/8DGHjx7iV4z4o7N9hXi9YHB6hCj72er2qDTaTMZjPN9s4lbCCoEfIN0qbmTOdfWStCioNBvUW8apYzoeMbo4Rw+H3Lr3FgCZEHhSkckWYdu45Wj9kDzPkfkaR5id7CJdAA4nj35J2Lxm+tfaJvIDiqyASjmOOsX3HJrNJrLc9Q3qTQ6uucznK0rtB1IG5FlOvVYjioyLhpAOlVpIs9Pk5NmhebZGHVdAso6Zzow45fnhKZ12nVYzQmAuqIWPzhasF1NkKZDywyo333yD0fmYJC6fQxU4jmC9zKlUK5u+aFVQjSLStXH5yIs1s+kEKQq2+mb8jp48wfN9dnZ2eFaKnqKKz3K+xvd9dkvxR5ZmOK6HVBBWzZje3IpAw9PplNXciBwatzvUaz7oGULkm5qSAoRfYTI+Nn3WM3b3tgkiAY4ReRWFosBDKw2lo4wuchAgpYOQrzhhqAKtSncRN8CRHkIrtCoFNeRkWYLUHrIUPnhhHa0LcBxUqWgQrlkLWZK9EJw1e6wXcygKdCnaSYsY6XislwtWCyNsaTYr/M//y39PFAYkibleEILve2gtcRzTFyE80vUE3IhCxWaOhI8QLtKTGzHJzVsHJHFClqTMF6ZdveJzcXrOQAgaDTO/QkGz00QXOdV6rbyHcTbptNpUK1H5bJr+/hUmg9FGiHLjYJ/hcIbvurQaZm1lSUa8Kjg/HRMEpiar1QppkdPbqrGzZQRTrnsXxwmYLS7Iy3Hpdlo8uv+QTq/JqhSsoAocHLIi4+mj47JdF5VrFos5rU57U1caxXi8xPNM3f+zf/ldPv3wU0bDCbJUZV25us9kPOXsdMjO7k45v4pn50OqUcTzcm3V6hUqzRpJknD81BwLoyoXJwNGw+HmeWvNBqpQCDTPn5h2u/tdzk4HfOPt23QvRVkF5OmSTrvNdG4coRqdK1SbGaOzTwjaxvGm1azz9nf/hN/89C8RJ+Z5r/YlQeig0gLXK93CPI3vSsLQQ5ciFukI0nhBFNYJIzO/i9hnNMvJtSBwzVrwAlguCnq9AKFLgdgqw41T0sUZqxPzfvZru4Sd20R73ydIzZzX8iV5MiZbXSALs2a09EhWMBxr/LL+KvULAjcmT1NEWbuu46BUQpaldEqBU5LELIYZq8WcSrNZzodxiQI2LjiXvCy+0cbDxtgYvThYHhdfUNa86vp2aSL1he+c+LL45uX7feHeWn/pt82xV1x4LBaLxWKxWCwWi8VisVgsFovFYvlD5evgfmMFNxaL5Q9aeAO/XxTV62I5Xveb43pEjsu7/+K/4uFPzaaqxmUdr5ivBVfLDf6zw2Mc1yOsVAkjI9aot7d5/5+1mI5G3P/oPgCn50NuvfVthAxYzo1jxjpOKdSQKKpsYlAcz2e1nNHobDM/Mk4xUeQxHhzi+y7T8dS08yt4vk+14uFKI3YZDIdk6YqdXhVZOnVEnZsUWoMYIDHiAJWlKDUhiKqEjnGfcJ0mStRZLlfEpVAhDBzSJCMIXLJSV+DIlDSNWawy+qU4xfcDzs8u6O9v43hms7xIUlAKz5G0u0ZscPzkiGo15MFnT7l5x7ht7B/00UqRpjHSK4Uo6YpktUCiN04s/X6HIHT47OPPAHOPwWBoHD+0IqqYjfvpZEEaJ1ycnXPjmnH5ODjYYR3n+EFAmpjN9zhW9Po9HMcjT838erWAKJI4jkNRiiuGgyFhGFBr1lmNjZAnqkZ4vsPe3h6trrnH4GJIq9VHJSmefykIcUAVFDrfuEpcv36FSsXHcVyUMoMaVgO8IChNM0ztFkrhOAItJKJUOIkiQ3oheZ5satz1ARRaiI2wRUgHz4/QL8Wp5UWK1iZ66tKdRUiFkBIpJcWlG40DURSW3h2moXB80LBeLOjvGLFBEFbwopDJxYBK1cybRqO0AqXR8tKBaI50fIqiAGnagUuWpri+b8RGgHQ062RFo1EjKed8t7lPsxvjOg6BZ+r5448/p91uIB3J+fkIgK2tDtJxqDWrdMvotGfPj6mlKaPxjNA3Y3/txjVGkymuI4kTI7JJVyknJ6c4rkNeGAHCdDqlt9MiS10uSgedIAzxQsk33rnL+Zm573w6Yzgc0+y0OT83a7rZrFOphsznU1ZpOX4C1qs1niPJcnMsTTN2dvf4/PNHXJpvCelRFAndTpfV2tTp3tV9tvrbNJvVzTtiHRd84+03OHx2hKdK0USRMh6MODs+Q5VxVkWeQ5Hzznv3GFwYp6fJZM50MgU021tGjBNVarjOhLPjC7zg0kkpQUrJajnHKePUpKM5HjtEbh0SI7IJGlept3f51g/+lF/+1Z8DMH5wTKua8I07IYuped4slfRaHkWWoiPjKBM1mqTaJ8ty6k3Tl0pti8+ePOPqnscbN8071nNyJLBYCUQpcHGEZLRIiTyBK807Uaolw8F9nKBJEJl16df2cKvbiEYbJzT3kF4VvYhpOGd0QjOXOkt5+mhBs+4hSyFUkeZ4ruTZ4TNuXlzOb5N1onCCsFxf5dyVDjev+/R8USijEWW01FehN+45L9xoLi+s0eXvX30Jcamb/IKQ5zVxVJs4LIvFYrFYLBaLxWKxWCwWi8VisVgs/ymwohuLxQLwOhsYi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovF8jv4+jjeaPMv+/9T8WrkxuuOv/q7EAKEwPNCugffBODBj/9PPOlz951v4hirEU6OnjIbDRG+z7vqOwB0dvapVEK293YJfOPy8aM//wtODg+Rfo2UGQC77Rbz8Yg8iels9wGYzSYolRMlKfUyysQNa1ytN8iygsHQOC9UIqj3tplMlhw/ewRAGAa06yFFDpOJcfTwPZ+weZ1qrcL83EQqJekMkCzFCXlpj7BV3WG1GOM4EXlmXCrcakQYhCwWGXnpQvL5syMq1Sq+75TOGdDv9/5/9t7ryZLjztL8PHTE1Spv6soshYJGUzfZbMWZl9mxedn9V3dtzcbaxnZ717pJkAQJgKhC6cxKeTOvvqHVPnhkVgEokCCbvY2e9u8BVhY3ItzD/ecRMPOT56CLnKODI5qdymnCMPH9AB2unTpqnsXFaMKbb9+m3qwBkGYJzVaHIq8xn8hnG58+poyXYK9z9803ZV8MG90wuHH7Broux95yHJYLn+GwQ1H1L81yBmsDlvNzDg7HANx7f5c8veTk+Jzhloyasj2HJEoYX0wJQhmlU0tqFJSsDXvMZ9LpxLA0ijzDNDUsq3LzyQvOzs4YnU24ffcmAM26Qzg/xrSMl1FORcmTx8/Y3Nnlxv4mAK7nkiUZghzNqNxKDKNyyyjQqprUNJ2iKCjzFFE5/BRlQZ5EGIYhXYyAPEmxHJs8Ta/ruSgKhCjRNePlMTSSNEPXtWs3Gk03KHJAgKjib0qhk+eZdK2ptHhJlJBGIc12h8vLqaz7szG3bu/SatcxHTmXRZ5Uz2ZcP1sUJmgC3HqDq7yyIsvwF0ucunft6GFZFpblEkUltiudTsbnF5ydjtjc2qJ3U47fm2/eZDZdUJYl2tX9OnWiMMLzXGYzubY8x2I5W5CmEesb2wAsVxmtVhPH1qByTjl8cczW5pDnB0fs3+wB0O01cesueQFJJF2EFosFtbqHY5kYuhz7OE7Y3t5kfHbG3bu7VRshJycjxuM5g4FcC0kcUBSCmtfAD+X9SsB0HQ6eP7+OZ5tMptx7+y5erUa9Ka99+vQ5tqExn3qkqbz2xt4NdE0QrHwabfmOiKKYxWhGlibX0WRZXKIbGuPzMacn53LOhUG302G41qfI5TrXKXjnvdvYpolexTsdPD8ijmNcz0Ro8tjzJ8+xDAuzvcP07Aly8A+w6u/R7m/y3Z/+TI7B+JTDh7/iH34+vo63i+KCztoWWZpgGtJRRstNdFMjSQuo2v3gL/+Gw+cH/PNvf8XvHslau71XI81zRJniVPF2aQENV8NbM4krFyGRZogiJ/fHnJyNAHCdh9RqNn5k0OrIOtWsJqvExcihqFyiKGMMkWDpJmVaRaxFKXVXw9I1PFu+c0xdvgeu/Ghe8gfcbqpzxLWbzdc7zZQAoloZL81y5DviG34ZX3pd/aGzlOONQqFQKBQKhUKhUCgUCoVCoVAo/ufi3yJuSjndKBSKV/n2CG++hBQllN8oSurq/K877/dFTQHX4oCSq8iOkm61cb/3nZ/x6KOf0+t3MG0pDvj+T37I/U9+w/nxCZ/88hcAdPp93vnuDzEtl1pbRt/81c/+no8+/Dmr5ZJGU4o/wjABTcc0LGZzKRhodgeILOHg+XO2t2WUk2mazCcTXNej0+0DYNk26AZ23SAJ5bWBv2K1EiAMOgPZRryaYxklndYatY7cZE7TgChIKFhgOHLTf3XxkLRs0t24g23LSBbHq5OGPidH5wi5L87RizO2djbY3FhjfHkBwIs4RgAnx+dMJrIvu9tDesMeYRAwnsiIpiQM8Go2tVaN5UweM2yDYLnAqdcoq0a6w12WS59SuNiWFHDc/82vGW5vsbd3g/lCttHptmi122RJyHwmI2OCMOdgFbC/v02SysisMAiJ4wzTgGZdxkDVvDpJFOPVXPqDu1VfLHRdZ3R6ThzJ6KVuv4trmzx++Iz5MgRg/2YNTTe4sb/D5rYUTAWrBYv5HK9ew3RkfFeRJ3S7LfIk5sXRsRyX/ZuEUUyv36coKgGMVpKlEZqQEVNUFaibDoYQFFdlrOmQZ8SrBZrpXddpnmkIUVJWlwYLH7fuYehQVJFZQjOwLY0sTdCrSC9NN8jSmLLU0DS5/PM0xjJN8iKnrAQ/WZ5gmBoPHjzi9HhUzW+HsswQQkdUDQuqNSdKsiruKE1TsizBdtzrDJyTo0scz6Z29QBAFKa4toEfJKRVn9M8Y//mDTqdFi9VDYI0z9je3iKr5jfwM0pNcHF+iV7FBBmGyWq1YnNri6KKkHr4u4dsbvRYW+tzeSnrL4pCnj4/YnNjQJq/jIZKwhjdtEhiecyxbWqeTZqkdLoyOk0TGiUlg8EuXkOKOpbLFY6lsbvd5+DpIQBuo8b2jW3KXONyMq7qz2M1n/HjH3+fzx9IEcverV0EOv4qIomk6OSNe2+giYzVfI6/kn1ZLeeUwNb2gJWfVM9rs77ZZDadk1UCndViSZammJpBWVRinDJjPpuwvrWJVkWYUZbEUYznOdcxc8ONHvPFEs8bcnEm11aaZdQbNTRNY/fedwAYvXiMPXmKsDu017YAaHQG2LUG4cpnEcj79fo9TNOj0eqSpXIduUTkyRhhNNB1+R4abO7RX99kd2+fw4MjAM4vL7A9m8V8SZFXa9qPSMMJljbhjX1Zuy0PWjUD09Hodayq7gUUCY4ek1ciKtIFRZiR5jply6uqqmS9l1MWBVkia+3JM58s1zCM3nVdFUWBY+vXkVdXfPmbc/XNyosMXderNrSvqGHk+V80m5PnlfCFb56U0pQl18Kqr/sOluJLzZSVwEYUXAttVMSUQqFQKBQKhUKhUCgUCoVCoVAo/ifm/y/xjRLcKBSK1/HtEd6I3y+Q+WMEOFeCnT907tV+pHjlwFUXdF0OTX/7DtOLCUVRYrtyo92t1fle48cEvs9H//xrAC7ORvzz//U/+OD7f8lgS4p2mp02Wzu7HB8cklVChVvf/Q4PPvkN+Cu8utwAPn/xiOHGFq1259ppYjk+QpSCRrPJwfMDAOazMTfvvkWRxkSrGQCGVaPZ7nBxekweS/GH21xDJ2IRpvQ3fgSAVRsyPXlElhdoVRtlFqLrJnk4or0uxUIUMYYp2NpZ4+joDIDvff99LkaXnJ+P8Ry5ud1q1NANKFljOZeb6g/uP+FHvS4CHc+R46dlJpZrUeYJaSzFM1lq8PjFKXt3bmJZUsxkmCbLg0P6O7copX6DZrdDnsNsNqPTlW4gaVKg6xqf/fZTuj0phvAPT/FqNSaTKb2+dDA5Ojqj1azjuA5xtfl+ObrEdT3a3TZ65ciTZylZkmHb5rULSa1mEfkrhusbvPX+sOqfztPHh5R5gb+SzjhRHGJRUvMcyly2cTENsZ0aUZJRFJVryLMThusDyqIgTZLr+tL1As00EJUYogTQNEpNp8ylCEjTdFnPdo2Cq818KNMQYRjXXhhZkVMUokIqAAAgAElEQVQUkOUFZaXa0QAhSgQCTZNtCE2g6TpFmV+LYtAERbX+roQZTk0nz13Ojn9BUglqNnf30AwPTQiySihjmiaa6VBSEAZSJFIUOt21dUT58nktW6PRquMHCY4t2wjCENerkSU+piOFQcHSZ2Nzk6Xv41SCiyQN2b2xzdMnLxj0pNuLH6zQ9Rxh6Mynsq4uzsfcvLPL8eEJupD1l2UxQsB0MmFnu1/dr8vzg2MePHjET//2L+X8GgampWOaBiWyJnVDUKQRwSoiCuVz9DfWKIqcIofJWLYrSsH65gaHh8c4dbkGH37+jPE4YGNjQLsS7UwnMwa9DpqmsbO7I8fZcanV6pwcHfPB+3dkn5MIz3Po9PvUmlIQ57kOhmURxTZZLtd+ve5QCtBEdu3SUxZwdHhCt9Nkd1+KYsIow9RLdK0gCmVd+csFQZAQRQVhIOt5bdjBtVzKvKTeku86SkEYhtRrHrYp1369v0G7V8O/fEImhwDdG9DfvoWpQRzLenFcl9n4giw8pwykCM3sDrFtnWR6ALYUGWaaTs1z2NnbZW1T9hkEeRYjRIlhVu5AowsW8wUHzz7nwdEzOZf+gnYth3LFu3dln4Mg5fauRZgUEMm+9DoGddegKHLKNKjGKicvSnw/u67JQcfiV58t6bSbmJasoTQpicIIy7Jf+4169ZgQAkM3Xvv7F5zVKr7sjvMFVx1ReTQJ8QUR2peVPEKIawHe9cfsVeuc6xNLKMUfFqIqFAqFQqFQKBQKhUKhUCgUCoVC8e+UK1HMv4YARwluFArF7+PbI7z5Eq+63bzK1wlqXifM+fL1r3XQEeJaf/A6TEPn5rt/wfjkmMCXG7a2JdANi856n+19uQm+nM25OH7O74qMt74nxS665dIZDPnej3/CP/0//wiAZui8+90f8vjTD0liuQneag9JkhxRxhwfSteLbrdF6AdE4WMabSkYMLSSYH5JGOY4rtyQL8oc2y5pdepMLqQbjTa9JIljhhsDlkspXvBqm/RuNAj9CZqQAglNd4iTFH82J88+l+d1uuSiQa3V4rYno3Q0wK1tIIQgWEmRTejPWaxWZJlgY1OKXbZ3uozPT/H9ANeTm+VewyOMUyhA6JWgIV+ws9VBKzXCQLqQZHHC0cELzsfZtetPHJXEwYI0Teh2pKCh02lw9PwJvV6b9kCOS4ZOr9dltfCZz+X9Bv0eWZLitlqkVYyW43nMZgsG6z3GYxmZFfkBvr9kc3uTtBIM+GXIapmRZClblRgnyxIG630MXtZQvWbQdDNKBGVZbdwPW2R5QZIIhC7bePzwmXTNcC1Gp3KO5rMFb793D0GOqKJ5DMeVNYqGVm2aF4WMqNGEfi2KMQyDNI4ohbh21uh0O6CZFGl0vd1eIijznKJIIKuERmkOwoQip6wEWJoQFFlCWYCo1kWWp4SrkHtv3SEMZN27jokQBX4QY+mi6otDURTkRclJ5VZSq9tQyJgp3ZJijXa/C5ScnZ6xtS3FTI1GgyhM6Q2HZJms0431Hp5nYxgGliXbsC0Tf7kiWC7xXdnnwVqfJMmpNeu4jlR/WIZOFGSEYYpeRWvlWUGapuS5jvBl7aalwDIt9vd3sSvBhe8HTF4suPvmLfyVjGyruS4FOXEScXoqHWBWUczG5hrT6ZRVFe3W7zWxHZOa57K9I0V3jbrH6PyS4xcntDtyrQpdoBsGo4sxRSHXvqGVZGlIveFyciqdcT799HO+/8N32d/fQSAFSdPpgiwvqDc8rEr8FoYhSZaS5yW7N6WQJ/Rjzk9OsayCq2gtr+by4vkBcRCRVqKsja0hbcdG0wpcV7ZxFUs2vpzTakmXKNM2ybIUy9YwbOnSsrWzQ5rGdLY+YHXxCIB4+hmG1yPG5Ur9ES9O0OILppcLglyuX/9kwvpWD0/P0dLncgzcdfK0J4WNyaoqXg2KEk03yasYqHa3R6MzYLCxRhrLiL9wtWSx8Lm4vOTDpw8A0KMTbNui39XRrz8B5cs4wyuVihAEYc6vP5vy/j0p7MsLQVYI3Hrn2gErjgJsR8d2Pb4JQmivFdm8TnDzlW+cEF+W1Xzp7l/3sRLVf6/c24prvY7S2SgUCoVCoVAoFAqFQqFQKBQKheI/Gn9u9xslulEoFH8I7Q+folAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKL7Mt8LxRv7Vv3T2kHy9Bc3rXGu+7ILzZReBV+OnXh7Trm74hzqH43rUGm3ChXS3KUqDeDXGLATrN24AMD55Sr1u8/TpM6J//n8BuPv2u9y4dYdW6zZHz58A8Kuff8hf//3fsbV3mycPpENDHIVYjk2e5diOdFipt9eI8zFlWSA0OU3dtS0s2+by4hLPlU4d8+mC0fEp/eE6ULmz5DlezSMKAhZj6bDS67Uw9IxWf4fsKmolj3DcgixLWS2ko0e9v4lp2YiS60gqyzCJ4pgkitEN2ZdarYXj1YmihHpdOnqUCMbjMzzXZLmQbiC2KSiKkiCMcS055hejiG6vwWI+p6y0X+PzC+zmDrZjMR7Lvmi6QR4v0bSc06NTABrNOqdHZ6SlTlLI+fRcC10r8Rdzbt6Szh/+KkITBWcnLx1W9NKi0a5zeHhKrRrnVqtBVhQ8+OwROzeuIsLWcNwGmqFh2fJ5Ly/HbO9uUq87LKeyf3k4RUNwfDQmr8Z+sJbTWRtgWSabWzI2R2g6URSzXAQ4VVxZr9/Ftm1M2yCJwmo+YgzLJktDijy7LkHTklFOVxlcRWFQCkESJhiGrAPLNsiLHKHpGFd1nudkeYFuupTVtWVWILSEIs8xLOl0kqcF4SogyUrqVfzZ4bNjRmdnmLbLcE26gWiaBkVOkecEoXSooSxwvBoags0dOc6WZSLQ8ZcBTuV8lIQJlqOzf/sGuibnPAxzDp4fYHsezZp0Q5pOF+h2nbzI0a7dO8AQGY1mA9eT4+d4NbJSxkBNxtIl5Re/+C2TyynD9TXaVURTWZZcXk55+723sGxZz2mSUXcMgiC+djXprQ3RdY35bMGsckM6XByzvtnHsnQ8T46VTonjaPR7DUZHMj7pyXzCxuYGpqljWrKN6WzGG+/eIk/FtYtQu9/h9Pic4bBLw5OuTpcTn+PjE27f2iXN5Ry9/95bdNsthIDlUjo4zWc+G9tDvJrFciGf17Z1Ls/PcOtNROXiksYRYRLT0Vs8eiQdiFzLpN3rILoa49GlPOa6FFnCculju9JBJ/MT1jcGUBosK9eflR+wvT3EtGwuRtUabAmWywjLMlhGsl4efHqfvfUL2u0GT5+NZButAbZdw+7uYFf15wRLitwkcXZ58pmM6XvrZoBRnIG2CZXrVJYLQFAIlzgpX85bs4nrWHjVOjINi0a7x8b2DXZ2bwJwevSM3zz+NW/lMXf3ZF1lWYHAQIiSKjmNOM7xbMGPvzNgMpN1MFmWPLvQ+e6tPkblJiXMgrXhFropa+Cb8OeOc/rKV6rUrp1srmOmeNXx7RUHnFJZ3igUCoVCoVAoFAqFQqFQKBQKheI/Hv9S1xvlcqNQKP4Yvh3Cm+v/flV487WRHK/wheipKw3P1/3+5ba/FO0h+GrMVVmW1Fot4kgKVnTTwDUGpEmMVm0of/CTnzGbLti6eZelLzetz46P6PW7eI0Gb78vX85FmfN//u//B3v7t5mH8togilnrQFEUpIUUXHzy0a8YbG4yHp2RVO0WRYZl6tRbbabTCADHtkhFycX5MWW1werVeti2C1qNRbVJP1sl1D0Pwy9wGgMA0uUx4eSS86lJqy+FAPmzxwy39xFmSZYmsl23jhACx2ugabKN2XzJfLrA1AVpFQWTpAndTh3TcjArQYjpeJydHXJ5NuLmHbkxHqQmLdHGdiLml9UmvesQhktsy2I2rwROWcBqMaPT0ag1ZBthlLKxOcB2XVZLKVjRdA1DExRFxrQSTXg1k37XxjSbZFXUVKvZYXqZEocLbONlra1vrGGZGv2+jMzSNR2hwzLw0VdSJGLZhhQvORZ5JKONoiRnOgtAOPgLOUfzRciPt29RkmMaco7IUxaTCeQ5Ry+kGOJv/v4nhIFPmRlS0ALEqxWiaSKEhqZLMUQah5i2oMgFIOtFI0XTSkpNo6jihLICDN2gyCOKSqilaRqiLKp6lvMh9JIyyzBMmyyOq5rXME0HzRTXgpoXh8dcTqfc2N2lV0V6aZQIdEQB9aaMDorCGLumYRga2lWuTylI44hgFWJaUnhj2g6arqNpGsuFHL/zswm37t5ksVggSily6A362HrJ8xcnnFSxXNs3trmxu8FqdYZezdt0siCKcppNh9iX4pR+t0u31WRyOaFRxZWFYcLp8TH9QQ+nEs80anWEBkLo1JsyUqlIE7Isx58uGZ3KmkySGCEK1tZ61+IGr+aR5yVZlnHrthTdRWmJP19x+OKce5Yc5/2bmxRxQrPTpVoy6JTUXQ3LqVFW75c0GuM5JnGcMJ7ItWqSsXA1HM+iKOScb+308DyDNEtJEzlHkSZw6y3yOOT4uRzTUtPZ298jyzJEKe+3CpYIrSBLElmvgO16TMcX1BsNilyOy/HplLIsKSmwzCuBnct8tqIolliVWG25iLAsnbLM+O///Z8A+Ox3n/Of/+7HrJUdRCWiana7uF4d04AwqkRjyJi0ZrPO+u4dAJ5fTHjrrR1Mr4EWnsh6Xj4jjyMZw6bJ/nmNbcgMkjwjryZEMzzyNMFxLPpDKQJaWx/S6m5w+PQzpp8+BmC9I6jVckI/YNCTc75YZnhrJllYEsTyfkcXDu988AHD4QZJItevJRK2bt1F+0oM1J/G7/seve7cLwhGEdVn8lUR6evvLWOmlOhGoVAoFAqFQqFQKBQKhUKhUCgU/3H5U8Q3SnCjUCj+FL4VwpurncPrLcNXNgxf517zun+XV1cLcS2eefW8L292lgIEJeUXlDpf3aQs5e4lhmNRb0uxwfzyEtux0LWMyhQGp2YRByXnQURvIJ1ONHRGZ2dsu3XaA+kGcvfNdzg/HfHk0SNu3XkDgCyJmC2npOGcQSVycD2PLAxY37hBEEghT7d/gzQak2caViVsWcznaBps3rjN2YkUDORphLBL5tMVe3feqp4kYTEPODwcYZryvFrNRksKptMpuSY3rQ+ez9Etl42dGgny4R4+eMr+/i62JygrlxnXMXHX+4RRSlBtqluGjunoaAhsV26+h0FEt9vCtEzOz6SQYjldUGQ5tm3Q6coxfXEwpSxzhFZwc1+O32y6pNvtoBs6YSJFQLZXw6s3aTRb6LoUFoRRjGnCxnafi0o0YcYzZtMFhdYlYlCNc0Lgh+i6xcWlFPe4rotm6Hiui1aN6cV4wXC9QxynNEopirl9dw8E8tnqHVkH40tOjkdEic7uTem0U6u3uDi7oN1vcnYiHUJ6vR5CmHR6Ha627pfLgPHoktt3d6nVpHuHXWsiypIsK66dU2zHpcwzyjQFXV5bCA0oKAXoQi7hLI4pTRPdtClKKTQqBRimJb2khLxfnhUUJeiFIK8EU7ploFuCJJLiE4B7b95kOl0S+D5FJse+tEyiYInjWBiVAMaxLU4OjlnbHlKZIZElOUmS0F/rUOpy/KbnY6xak1arRq0un7fTTlkFMYO1IZNzOW9hGNNs1rl9dw/XkzWZZTlJWnD3rXvkuXQmOTse0e83uBiNWa5kHXz3B9/h9OiE6XTFs6dScPHXf/dTRp0m0+kKr6qhjbU+YSzotGvkkRRqHRxP0IRGu9NgbdiravKE1cJnrd8jy2S7n//uIUIzabdrzOZS7PLW23dZ5hnz+ZwH958B8N579zg4OCYtTXYrJ6AsibEdlyRJcWxZazXPoj/Y5vJigoFsw63XEbpB4GeYthSdlHlOmWcUWUnkS8HZ44cvKPIS14a79/Zl7V7MKLKUjfUueZZVc2SSRhG67jCw5dj7Kx/DcqjXXDRTirxW8wWxv8KtOyxn0tXJ6PfQhMHZyRm9tRYAp8dn9Hp9Pv7kIf5KCnm+9733uHnvLpQljZqc80bdI4pTsvSlWKjdqmNZLVarJTu70mHqwSLkV798zA9/8iMmvhTFtIY/YjG+RBc5JGM5LqZPGDwkjsCXzeI2N3BqLQzLRRRX3wCbrb0b9PsDPv6tXKu/+OwX7Awy7u61OBvLi3fX6iyWKZ898jkcyzFY23mH4cYOJSXRUo5Bd2+D1nCXL/N1TmtfFsu8+tsfy/V38NVvU/nFb+Pvc3tTKBQKhUKhUCgUCoVCoVAoFAqF4j86rwppvk6Eo8Q2CoXiX8q3Q3jzZYQmhTSifLnhWFb/ES+jM0qqDc7yy+e9ZgPy6rzrjUwq0Q1QxR0JIeOuxEsZDy9TsEq8htx4zpKc2fkpjXYN3ZEb6EWR0xps0pqEfPiP/wOAR0+esbtzg7WtPbyGbGPn5k1+lKb8+ue/5PToAADDrrGxsc3a4G0OHj8CwNRNoihjtTyi1ZGbxycvnrB/+w6T8QVZIjfpLctGAAdPD3FtuXlcCMHSTzFMi9VcRstYdo35aIRTbxKFfvUcC7qtFuQBi5nczK83esShjBNqtroArG8JDMskS3POR3IzemdnnbPjC+IkR1SWHpubA6aTKY26w3x+5axhoxkW9VaLshLyCGEzWOuxmF5i2HJM4/ScUrOYTVcksRRIZFmOaTn0Oy2CykUoCX2m0zlCmBTVXHZ6fS7Ozpkv5xDIMY1W55T1GnazQbMnn2M0DjEMm+VsQVa5Wezc2aTdW+f48IyikEIUUebYts3+zV0aldhKM3SSNEfXEszK1aTRaeM4NnHGtWgnTnPQYsbnl2xtSwFRGCUcvTjGqdmMLqTgp9QMzk9HrK0PMEzpJCJ0uRzTNMevon7qDRfDMtEtjzwPuSrePC/RBNciGyEgSxPSLMGqIqSKUta8jCuTl+qmTUlKkvhcqcbyvOT87JyiKPn0498BcGNvl36vQ6PuIarzZvMV44sLBms9slz21fZcWr0ujuNdiyuSvCCIS2p1wcXxeVV/FobIScIlpi2ft9Fs4PsBuga9tTXZlwLiNGO5WNHqyLH3XJc4lc/gz1bV85YslytanRYf/vK3gBST3H3jLmtrPRaLKQBnJyNqtTqGplOUcs0sfB/LNHA8izSWK333xhZ5CWkU0+7ImKpG4w2Wy4BWt43lVFFY40sGwz73P32A68hxvjg7Jy0Ef/mT75CncgxOjk9ZW+uRJgmiEkyVmsByXKaTUwxT1n1vY53H9z9nNBpj6JXIRmhQZnS7TWotKURZzRcEQUgQpHx+/8n1nPtBzNtv3SStRDYX5yOOX5xy8FQnK+UcmYbGzvYak9EY05LviNu3togLnY9/9Rs2NmWdbm2vkecZs8kS25VzdHR4Rr1Z5/DwkMMXsog63TYffvgxfuDzve/J/xEN/AR/tmAw7FFWNekvFhiWhWEaDNblXMZhwOj8FNMwsaxq/bZtnj+fMzo9ZXR+WdVkm42NdaI4Jgrl+tXbNdbbNUzHY3osx2B2fky+mhLmQ/JSjp/rOdimQ25mfPcHfwnA5/U6T+9/RBgtmczlOnrazHkxKmn29nn3R98HoNnqkKYleTLDMaSw6o2/+G8IzfiK283rBDZfxx/jcvNNubrn6/rxdX17nQhVoVAoFAqFQqFQKBQKhUKhUCgUiv8oKIGNQqH410L7t+6AQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhULx75FvheONpmmUZfnFv8T/yl/ri+qQoHzFtearf9X/1fiNl7f7OneCK/1RUbUjnUKuL5TZVQhNDler30fTdJaTCZYtXTR0oaHZBoOtNd79wY8AaA+2OHr8GZ/9+ld88EN5zG612btzF12z+eS3vwZgMp7Satdpd9dIt6VbxHR8wXJyzmS8JAwrB5gk4qPLCzZ3thkMqzgrXZCEK2zHwqkiiyhKTNNjNDojWVaZLIsQzbRZLCasbcnYlOVszNn5AtM0MWz5bLquESclKz/GRV67tt6hyHNKbHb3pHPFaj6n2W5SazRYLpYAPD94wc07N3EckySXY2rqJUI3mc/mdHsyRsswA9KiRDcLkkg6mDRabdJgDmh4DdlG6Ac4jkkch+SpHOfz8ZgoStE1A6ty76AAQy/wJyO6joxKEqkgjSOKIKa7Jx2D2qnJaDRmc2uD4xeHAARBhmHJ8Ysi6YQxGDTxfZ/N7gauJ50/KEsMzUC3DNJYuuXopsn2nbe4+OghLw5kVFJ/2GNzZ5MsCXE9OR+ua/L+B2+y9CO0Ko/J9wMmsxm/+/QR6xvS7aXXqbO+vYEgx7xyv4li2bZVol3Z1ggNXTeQnk1lVaYWeRJQpgVF5VBTolPqGkLTKasaL7KMJE7RNPP6fqsw4MWLMy4vLqnXpLPL5WhO7Ic023UsWx47PZ/QX9/G9VxOj2SM1vnFjJ2ddYKVz2Im3XySNGX7xg4lYFdxUabI8ZcL3EYDy5H9M+2Clu6RJCm6KZ+3N2gSxRmabhKHcj7yPCdJUlzPQavW4LNnx+RZxnd/8AHvvfc2AB99+BGasBj0exRlUc3lGq5jcnJyzs6NDQAcz8NfrphNp9iVO5BpGRRJzG9/c5+NTRlNtrO7QRBG5GWBWfVvd2+HZqeN576LacljjYZHVpRcjmacHp1X167R67qUeARVHNNqucQybPprHcZjGXE1vjzgxcmIWzdvoFfzUa/bhEHEaHRJM5Brqyg1Fgufy9GYyVQ6sRRpTCYs0rwAXa6Fu2/eZmd3nbPzKWVWRZPlBZbj0elpRKFcb+fnI/Zu3+Xtd+4wHldtFILzizmr5ZJer12NPQRhwp039rAd6b4DGsdHY9599x1qrl3Vn08YJ3z484+xq3dJs+GyvdXHdh2smuyfv5ogStC0nMVUume12l3+/md/RegvsSxZa1kmmE4XLJcBjivX0XIVEEUxmrFg5877AAxvf8D89Cmjp58SVtFfemcT3V7DdmyMyonqL777Abfv3OT8Yoqo1r5tm/yXv7mDZbrXjlBpmpOnc7TinDd//PcA1JodXsfXud38ueKefp+jzqu/vS5y6vfdU6FQKBQKhUKhUCgUCoVCoVAoFAqFQqFQ/Hn5VghvvowQMuxJlCXXO6JCvIx/Qm6ql1BFUr2ik7n6AaA6T54seFV4I0RZnSeqiCl5j6uQqetbVBuc4gvtCxrdDrquM7+8AGC+GOM2C54/fMB4JGNuPNeiN9wgWC0IfLn53uh0KIqUrf1t+hvrANz/+Ld89PMPWd/eZmd3W57XW8NyXZrNDlQiAsPQWc7GjC8vWa5kpI3nedi2jKXKqnbb7TbDjSaWZRIEsl1T02i1uzRpsJzJDe/FZEZ/fUASRqyW8n5rnR5pnKIbOk4lkNBNk7LUWc0m1JtSFDOd+3S7dSzHoqnL2BzTsqjXXMoS6k25SV8WUOQJnW4LoxIvWLU6jz57yM2bG/iLKuKqXiMxYoqMSlQCuqGRJAkIjSSRgqQ0SXEcB9OyaLRlJFCRp5yfnmAaJes7ckxHh4msD7tNEMoxKIqQ9fUu4/EUrRKnTOchOeDaDrVKKGPYLp5pIF4GmJGmKZZtUZYyQgegTDMa7Q67N3ZYTGe8Sr3RuBZ/GI6N5ZqkkwnvvX0HgBcvznjrjTcIo5j5XMZKHT57zk+bDeazMVvb21fFRpElJGWBUYlEdE1HoFPkKXkmhUYUAWgmuqWRFVKkJIQgS3LKoryOA8vzgiIrSYuMWSX++OijTxgM1ojilBv7e/LZspwsz+gOhghdjtXu3g4IOT97t28AsFpGOK7DxWjE1o4UgwmtJM9y0jii0ZRj+vjBYwzTot7ukKbJdf9004S8JKvETKuVz3IZ4S8DbEeKNTqdLmkSEPg+ra4UQaxvDknCiCSO2dwcAuD97Y+Jk4iNzSGVPgevZnP/s8c8+Ow+QnwHgM3tTTzPYzaZ4DiyXcsxcWt19m/vYRovhQxxHGLpXYJE9rnd7/KbX/+GXrvNYCgFOrquYdk6WRqzsS4FK+26RZbLd5NWjV+z0yb2A5I4I6iixO7du829t+6RJClPHz4DwHV0HK/G6dk5y4V8kMcPn9JsNmm0mujVXG7d2Gew3iWLMx5+JqOX+v0OWSzjuy6mcn7v3rtJWRYkSYSuS2GL7bicvjigKI1rIc9wfcjacIAfJCxn06qOaxwcHGLoBv01KUKbTqf84IfvMVwf8uLghSy/JKYsCi7OzsmrRWObFst5wO03bqBbUvBjmjqdThuNkiotD9NrEfhLhNAYrrWq+fB49uyIFydH/M1PfwJAre4SRRGT0eX1mO7cuUt/7216O28SzKXoafT4l4yOP8QbvEmUmtVc6thujb39Nq1KSONYBo7n4AcRevUBWU0OsPSUt//qf6G3fZOqUPkm/LnjnX6fgOdfW/SjUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCi+Od8K4c1XNiXLkmtPmy+44AC84owjRPVzefUjZXn9r5eXiZe/vdLEaxGiOv+l8qbqRvnqLRFC4LWbmLYUQ8wsG910GKzvc356CcD69hZnpyMWvs9sIo/leYagxHY93LoUjrz7wXsM13qcn5/zf//DPwCwvbvLzu4ujtfAqgQXi+mIcHSO6zYxNSm4SOKIKA7wHIdSSKHCarVief9THM+h3ugC4K988jLHsm16AymGCFcBzx895Oa9tymrUkizFMsWaGUMyDZ0oaFZBkkqCFZSKENeUKQFJy9OMG25uT0Y9DBEziqIOTk8AmBrZwshYD6ZgCbPG48DTAGXF1NG51K4lCUZWQ7D4YDVTI4VmoFtWfjzJSVSeGPoAl0rKfLsuo3+oE+92abV7BMlUkSgWTVyLNrDO9fPNjqbcPP2LprQ6XSlQMLxGmRpwsVsws223JA/Pjmj7hjU6rXrWivLkjzP0AwDtynnbXG2JPB9Tg6P2Nis3FRckzSJ0IUAIZ/XdCwsw0DXdI6PTgCYTEqsQ44AACAASURBVCd0Ox02N/vUKpeZ5881jl6c4zVcsqKo7lejLHKyOEDolQityNF0EwrI07gqSAPLMsnTnLxSNJimThQGCN0kiiqBiWmSZRlhkPHbjx/I8esPefTwIVGUMO7Ksd/YWqff6qHpGlVXGF+O8VcLtm/cvBZRNRo2hm2z19pDr8RMRZFwOZkQrFYMhtLlqNtvMx7PyIuSyqcI0/IoihytzNEsKep4cP9jXK/F7t4WriOPHTx7ga1DHEQsFlJE1WrW2X33LmlWsKocZZqdOrWaQ1EKDF2uedez2N5ax9YNlnMpRDlIU7q9Lv1ei6x6NtO2cByPG3s1wkokZ1gGd964AUVBHMtni/yAt966x3h0yfNnci539zZxHBvTMul2pDBtPFmiGxnNRp35fCznslbHtR2EHpOmsp6Pjs7Y2uxj6iVvfvAWABenYzoth06vzicffVbdz8cyPVrtl+5F9+8/pNF6j+Gwh8il8MvSfRZ+RHvQo92Va9+xHZarJRs7O5iGfI75bMnFRcZyMWP3xmY1Rz3KosRxLVy7Et0ZFsN4IF2TNNnuYNhjc2ub1WxGsyOFMlmaoGka2zsrjk6lAKZAgCYIo5j47AyA4aCOabuYho5TyvvFeUmz0aTb65JlUuA0OpvQ6TbZ3v0eZVWATx4+YTH3uXVrh2AuXXqOnz5h5/YbaLpOvSufw/vuf6Gze8jpk/tMzp8CYHtD0F2cWp1mJQrMi5TVYs5icg65vN/+3RtsvPF9Gp0BX++Q9kWu3hF/yJ3m1e/cH+NS87o2XncvJbpRKBQKhUKhUCgUCoVCoVAoFAqFQqFQKP5t+FYIb4QQlEXxmm1OwUu1S/EF4QtQaWLE1T+++MNXTn7dvb/aD8QXBTYIeS9NCIrKGefqd4HAcqU4YG1HuoF0hj123pBOCWkQs33zBr4fMNyRm8JJGPHi0eesLsY0KheNVq/H1v4+lmNfu3d88vGnnJyes7+/z3Bdihem8wD0OoONbcKlFEgURUoYFYwuLjBNKdDRSkG9UWM1X3J0IMUphqEzu3TodJt49V7Vbh+nXufxg/vs7kknlsBfEi98grUmvfU9+ZyaRlnoLPyIy0sp4HBdmziLaXdbxJF8jjJLWcU5pdDY2pbPm8Yhge+Tl/q1W8lOvcNHv/yIRrdHdyDnIVj65FnO6eEhupCihHavjx8U1Bo1NE1uvnvNBnEQYRgmeSVASIsS0/bI0SkK2b+yyHAaPfwgo96QE9ZoNjk/n+PWaySVw4ptCjynhufZ1CtBjT5e0Oq2cWvedRnoukYcBhiWg6gETovEZD6e0+62Wd+Wwps8T9HKnLw08Wpyg183DNy6w3BzgKgcnMIk5de//YT3332TmieFN8+ePqPdrPP2B+9wclJFV/W6CFHgOCZ5ZW6jWyZ5Jdy4quOigCzNKZKULMmrsY+5uJgShDFxFaNV5DnTxYpbN/d5/OgRAJ1Wh63tbTQNNjZkrW1trbNcrBiPLjG2pLOLZRmU9SbLhU+WpdX9Ynb299F1g7KoxGBJSZykCAFRLIVBnW6P3mANzdCvr71at6ZlISqXox/++PuEYYqmCYpcXjtYa5Jn4HgOF6dSqJVnOZphoJHjV+4xjXqNNCvJ05hOX87ldLKg2WpAmVPSrdrNySKfgiamKeej2WyTpSFJDmEk2zXyjE6nTRiG1/F2zWYDw9BJ05KFL91ePvnkc9bXBwzXhxTVJLk1lzKNME2d9XUZJfbs+RHezhateos37klhS5qWiDIiK3SKWM5RGCzotC0sw6RW1dA7H7xJGuXUmg3e6kpxz7OHz4iCjOk8JCnle2h0usTyWiwWEaYl2zg/m6IbOidHl9ierN39W3vUVktCX1BNG7EfsgpSag2Lrcp562J0QbPZYjFf4FhSSLa+vkYah2iGznIixUxZXuDZFpbjcmNXuiFFYUCt0WK5iGk2KrmV0WQxC6g3PSxbrmnXdEjSAoSGYUtRYK3mM74cU2/W8Kv3y8b2JogLHnz+hFt35PsqXoUcPX3I1s071y5WQjdor9+kuXaDzQs5R+fP7jO7OGFxnmM7cr2lufx27N5cY/3m3wDQ6m/ISMGXWs6v5XWima8T4bwapfinOuB8uc1vIrT5fXFVCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoXiz4P2b90BhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoXi3yPfCscbQGY8vdYF4NW/1n+N5c3VOeXr/qr/1Yipr/+r/y8a3FRuBFcuAaUm/1nyShuvcTqgRCAQmoZXk64NpefR7EuXl+uIkFaTTr/LcjYnrCJysiQljlMGG9v81//tfwXgOy9GjC8vGJ2f8fFHHwMQBAFbOzsIzaTQpaOHaYHtlQjdZHxZxQQNuiBA0z36Q9mX6eSSLAPN8jg5PgXAqzdotJrce/cvaHalq8nx08fY9TqW2yBL5XPqZo7QS/b2hlimdNYIo5jJ5ZgiT2i15bGiLLAcjzhYYdmytE6OZyxXEQJoVlFOmqlz9407uJ7DcnkVmZVR5gGW65Ikst0ghmbDRWiCopDjl0QxaexjOzbttnQD0bQSr+Hx5HefUUM6xRgElGZMqYXYtuxff9DjwcOnZKOEdlu6hmztbLGaL2j3+piW7HOt5mEaFmma4lQOIUmUoxs2RZZQ5LJ/pqEThDG37t4hrRxlnJrDcrXAyQpsq4qBKsC0bJotQVnVUFaU9NoNDp8dXR87eHFMurHG5589ZD6X0UG3b93i9OycH//0R7iOdPTIyhg5wRp6NR/RMiDyAyzbIYrlmN5/8DmdTpfP7z/Er2rt+cEhg0Gf2XhGWLnRbNQdsixhMGhzdHAsn8Oy2dxZJ0vr5Ll0Jjk5mcgYLc1g68rBqSwpCyiylLyKBPJXIZahYdo1nMrNxzA0dF2jyDMq8yLSLEIIvfpdjr3QDShjiiy/riHX6yAQZFlx7UJk2iaGoaPpgjyT7j++H7Dyl+iAv5LuLJ/ff8Ddu2/g+yFhsAJkBFxRlGiilE4ryKUthM6LJ08A6cizvntTuggVBZRyTIVhECc+tmfQ7VYxWt02nU6bJElIqneYZVmsIsFsvmQwkHFM3XaLcLlEw8N2ZP9sIyYrXAx0Tk+km49uCGxLR+iCW3eke8zCj0iSBNeyiKpa29zaIM9zHNtCpJVzVKozna/Y399kvpTPG/ghQRTScHXGl/LY9HJKu2lyY2+HB588BmDVrLO+tU4QRAS+dBHK0xTH9eiv9Wg05Fx6NZtYy0A3Gax1qvlYJ48jJuMFtiX1nEL0iaKUwXqXpw8fAtAZ9BAljC+WrG9LB6KSDMMo0XSLSfUOyzCJ0oIiL2m1ZCzcdDKh1ajRrG3QrRyNVsuI5dxncn5CfyhdetDkWGiaTnNNjl+jv00W+yT+kiKrLH4ME8trYDoumvZFDeo3MLz5Cn/IxebLzjPf1Pnm6875QxFXX3f9q+0qNxyFQqFQKBQKhUKhUCgUCoVCoVAoFAqF4l/Ot0d48wd5NXbqJWVZXG/ev/6ab8DVxuQrm5Bf2Jgsv/mmquD15756TDcM2v0e7Z6MfMqyjNV8yWq+AE1OydpGj539TfL8faYXcjN6Np3z4sUxH3/88XWXXddjd28XuzHA9mUkSxClRKEvY3cyKa5YG3aJ44zJZEleXXxycswwy+kN+hSpFBtEUQJlQVYYxLG8n+FYiDxCK5dkSSUmKU1mkxm2Xmd0JsUut+/eJk+XWJbAqAQhw7UBpjGl1moTh1IwEPg5cZAghEazLgUwtl0jTRIOHj2jXpfiCtu1EQLSNKHRkJvvKz9hdLnCctt0B3LjPstTijTByC8RxRiAQtMJVwHdnkVSRdVMJ3PiMGF7bxOzUn+kiY/XqDMeT8jytOqLIIkjiqJ1Lfhxah5ZmlKkOYt5UI0BnJ+d4C+nbG2tA3B5kdJo12l2api2fA7NNCEtKYqMmifnd9Cr87P/9Necn855cF+KEt64e4fRxSVnp5esrcnaeH54zHKx5J/+8Z959/13qlorKQHHcTANKRg4H42pex7TwzOGWzL26vz8gtFoynIZ8vEnnwLQ7XbRNZ1Op80777wJwHe++x6O62BbxvUKi8IYKNENQRRIocLTJwd89sln1Dybv/1PPwXg7fffJE1CpouAYLUAwKs1mEwCmi0Ht7wSvwnyLCVYzNBMKeAwNQvNMACtioyTmgnXc9B1MCwpesqzjCzJMEyd9U0pdkmzjDyLQDeo1WvVeTkFOr/51Sd87wfvAvDmm/cQQufG/hbLlYwXGwx7BEGAaZs8f/gUgHrDJpjPSeMV6zu7so00ReCj6TpmFYV1fHgKwiAIfbY2pfioLARlWeBYDouFHIPJeIrXbFLk6bWAzbRMojBGCIFly2dLEfjzAK9mMxzKOQ+jiFKYJHFKvSnFZYZtIITB4fMX13FltmtxejxCGLC7U8WB+RHGUs7denU/x3aYXM7IkpBuW459ve6RphF5DhtVTJqgoNM2qKUWl5cTAFYLH9uxsG3B5eUSgGbnNrbWZDGacjGS6219c8B8Pmdjs4/rybov8xQ/iLFsi83dHdlnx2M2GeMvVnT6cv3W6iZ5HrOcX6JdCRSznI21LkmSEEfy/aebgnanSxKHlJV4K4xStjYHRPMVC0sKl5q9AV9+9wtNx/JaWF4LUb3/vkkg4Z/K7/te/LFilz8lmurrzn9dBJZCoVAoFAqFQqFQKBQKhUKhUCgUCoVCofiX8S0S3pRAtZuKAES1SVhtkl7ttAL/H3vv9WNJkmfpfeZaXH1v3JCpMysrs2SL7RE7s0OCBIEBAT7xbyTAJwJ84QOxC8xiVDenu6q7S6eMzNBxtXLtxgfziIyMiqzKqu5Z1AL2AVUR4dfdzNzs534f7OQ5skrIEsgLWhl54afgcoqWBJDlhfOvSNmSEinEG311Xm3migtjvdzE9wt0pJTqZ9WyZVu0em1qrboS3wDTwYDFZEKz3WPrlnJt2LyecfOd29x95xbPn70A4PM/fs6nv/2EZqfBnTt3APAdk/FwwnA0JawrYUsUpxgYWJZ77mBi2T6j0YRVFHNydADAMs6oeQ6H+0f0tpSDhFdvYRgWWdJgr+rXIOL27XWEYUElfCrSmCyXHB4P6LQr95P5kt56B6/WYlht3CfRnFqziWHAYqWcNfK0YDpbYXk+YU2JdpaLFaenA9bXW0ynalO9yBPu3b9LUK9hmWo99l++5PpOk34bspVaV9P2EEEDKQy2b90E4PjwEIRJp9vGsVXpTwYn7NxcYziYnAt0wlqT1WLBcjbHEJWDiW1QYpLGS1483QUgzXIa9ZDAd1is1LXD0yFxnNNstygqZ41SlhR5RpGVHB4cA9BuN/F9B8vdIE6UkKcsJXsv93j0zSO2KjFEr9fl/Q8fUCYRv/23TwC4/+5dpDD553/8V4pczbPr+qxvrDEcTjBsJepo1GqcnEzIypK/+U9/o/rIUhbLBZZp0uv2zufl/Y8/JI0W+JVbk+e7LKYLlos5L16o2uj3e/Dhe6TxgnilRFSz8Zz2Wpta3cWzVa1lZY4sM/Zejmk0K4caw0XYLnbQwLTPXjuC5WyJlAbNjnIwGQ4m9Na6SrCSKiGU7Th4vq+cgarHNssyDh9/iW25eK4SkzzbO+CLz7+kXqvhOqomTdPk+GRAMc7PBV1lkbOczzDMDg/ee0c9C5bBwXiPoNHHtF215q5HlkSMR1OeVnX/wQfv8vjxLp9++iV/+ZfqPjqdNkiJIXLabXUfa2ttHN8nWsUsFouq34Jer8V0tsKshDxCGLTaLfIixakEScL2mJwe01tfP3dnMQ0D04Rur3s+p5ZpsLG1znI+gcqxpUQgBKQFWEn1nFsmXuDgNEPyQrXXaDepNwIcx8XzlLvSKloxHKW4rktRCexqoU9WlIyGI27d6J3P3+BkhG0KNjY61fig1e3gehbLmXqmvTBACEmap1y7vlHVyxjXtUldi8loDEBQ28QwAyw7O3eeKcqSertNURqIXD1bX3/ziJpn4QYhtaaqtbwoyLKIwXDGYSUAfP+XLl69ibj0KpYXBDdvw7+XK8z5+/8tvyvetr0f0vfFPjQajUaj0Wg0Go1Go9FoNBqNRqPRaDQazZ/GT0h4A5ddCi6KbV59Js8damTlWSAu77Cqi6FyhlC/X73JeHFj800RHFd77VzV5du5HLxps9OyLFpdtZHd7HbIkoTFaM7Byz0AHAtc32Pnxg5b17cB+Pmvfs54NOHpN0948eQZAK2WEje0u2sYphIgBJ7J8ydf883TZ7SrmCUkbO5cZzadgqGcNXzXJmjU2dzZxKwiW0zLrqbQwK0p55kscZAY5GlBp6c25C3bRJgFp8czslStXbfTocgly+mCRl31ETgGJycnhEHIcj4FoNHZoFZIyHPmc7VxH0URrusAgieVM8nD9x+wfWMH17M5eK7ut9EIiaeHLGdDrEp0IpwOttflaP8QQ6hjzVadw5eH7D6a8au//QsA2u0GRVZy553bTEbK5cMPPLI05sk3TwnqSkix0W9TlOAGAXmp1tkQknanzXy+gLQSV5SSVRTx219/xsOHSjAVNBpkaUJYC+lvKAGCITPSxQmrxGc6UcKHwWjKzdvXeO/9hzx/odZ8cDrk+dNdmp5kq4osKssCTJt6vUVcuRKlaUpYqzEYjPikEugsoxXj4Yzta9vEkZrTXsPgowf3aG7cPI8mm89n5HHMbDrFcpToZLGMSFYRtmXTbKh6mc4jer0W6+t3+T//j/8LgIP9A/63//1/xTJMRpWjTJJETCcTmq0m8VIdm2Ur6s06pqWcUNT8uZi2xenpmCBUYqtaYLKcDTCEiVWJZ4QoiFclMs+xXDU+Wea4fohpuIzGStD1m1//lsVsyRfjr1nfVG4vH330gE6vwXQc4flBdb8RQb3BcDCiX0UWFaZBu9/BsVyePVdCozzN8BwHL/BYLVWcVZpk7Gz2Wc4WHO2pyLZ2s8FiMWP7+iayrAQ/tiDPYxzHZGmq91AtdJAoIQylmoNCSoRjkaU5duWG5LsG7tYGRaH6VHNgUBYZnmtiVO+ZVZQwm8+phzUef6PiolqdNkKA41rUGpVAJ3FwwpA//PYPbG+vq36znP2XR/T7bRZzJfbDsGh3OpiW4NmumoPQ95ClpChj/Lqqv+UiZjKasb7RIayiv0xDYFomWZ6Teep5cz0Xw7bJ04QkUnXguA71VhPHs/FcNVfz2Qw3aJDlArNyooqWK0zHw3ZcbN+t6sXicP+AZQT3378HwPMnezx4eItev02WqGcwmpxgOS52Vctw9Tv8xzjJ/Lfkh4ztx577U75/jUaj0Wg0Go1Go9FoNBqNRqPRaDQajea/F66wfdFoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDTfx0/I8eYqFxjJ6/FO52Y3r58ly0suMrI6/VX8lKjiqy63LnnlQCOlPP+7LJXzgiEEr/Kp5KWfl+7gQjuvxvZ2sSLfagtwXJf2pkvYVi4zyXJBGq1I04yXu8oRpVmvs729QX+9S/Tx+wAcHx3x9eefs/v8EVblPvHw4UPqrT7bwmY2UbFNhmkTNtr0+hvMpsp1xbEMPN9DIvBqyg3EMk3yosANQ5q5uo/5uACR49Vc4kTFDvmmS5yUbG516PWVs8Z8MkGkFuPZlDxXDis3b27SajdYLVb4gXLBSeOYaBnj+j7LhYpeypICKSVRXHLz7n0AgkabUkrc0Mett6tJPubw668o84TCUCVtOzX8ehs/Hp/HcvU3+qRxjGWZHB+qsTiOw2KxotftcHykjkkkk8kYKUusKhbp2fOXFHnB5vYGjYYac1lKhqcj0jhHlirCZz6d41gWR4dH5y4z9965he06+EGI4ykXDpEXFKlFu7fGrbvq2v4qQZY5gWsxnqixXN96h/3jEbL0MV3lbrN1zcAK6ljiBmUVHSSEwHF8Hjy4y+GhirMq8oLH+XPa7RaPHj9R8xduE7a6hKGL6yqnosMjgWFCXpQ8evT8/Nr1fo/FYoVtKTeae3c3KMuc0XDIB+8/BODnf/EzDMMiWcwRlUNVlkvGwwlfff3s3MGpyBL+7u/+krAZvnp8RInjOGxubWBXdZosT0im+zQ3PwCh2osXC4QwwDSxPRXHdPriKaVwefnykC8++xKA0WRCp93l/oN7XLumnIWSvKTVblNrNImXKj4pXy0JPZfa5jrCVHNqyhLHtIkziSjVeb7n02y3SNOUB++r+vuHf/gN7VaTbrvOxo5ynRKGIElzvvjsEQ+rebFsEwwHmWesr6k5kELF5+VFgaicXZJYYpgS07RYRXlVkzaCEkMI0qquPM+lzE1gxbCKo3Mti/29YzqdOq3OmupDlvQ2upyejHErtyvbdlhGK8Iw4PDwSI3P3GS1ytjfHxLH6n5v3dphMZtzcnrKwwcqti5NMuIsJY5jynRZ3UfIahVzcDDg5h3l6mQYFhgGjmvhBCquLE8TPMMgS20cW42llCVQ0u60OX+nlymeY2DUakRL9S6xXZd6o0FWFjiuqg3Lsjg+XRDWfNIq2q3da2N7Pr5tkq3UXEWTlyTRivbGTeUOBQT1FqKKsTqPnHrDO/my69nZO7wsX33P/NCIpssRT5f7/q72tCuNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRvPT5ichvHnjBqgAUe3Sy/Js4/LiuRc3SM82SdU5r21yqg++JYA5P+dS/1dFcShBzpWnf/99XNp0/SEIwPXUMrleC4kS4axVm/7RYsVsPMDMod5UxzprfW7c3OabL7/id7/7IwBfff4p7bU+hmXSaCshwP7LXb78wydsXdtiPFRCj3qjhTW1afc32SnVmJezOdPpnO7GGq5tAxAbJaLMEbl4JbhIcspCTdbwWLV3eHjMR7/4AK9e4/effKHGvtEDw2F9s4FpKyHK0eEh4/GENC1IIiW8mU2n+KFPo93Aq4QZ4+GARiMgXq7IVipaZvTiD+RpTFlYpCt1Lf4K6awIg4BGq1ONZURhWDi2TZYosUG8ihmORoS+Q16JWGzHpdnq4PkZea42+G/cusHR0RFCQqOm4nUOj0fU6i5FFtNd6wNgeTbxPEKUJScnag5s1+GDjz5ASsFqqcacxysMmTEbjvFdNaf1WkitHhLHMbduqvtYrCKu7bi4roWs1iOVAWvtBq26x2KmYpamkwWz+YJ+v0tc3dvhwTGOY7FcLPjoww+q9pY8fnZMb5Gztq6ig27fuY1hCBbzmC8/U2t04/o2gi7D4QCzEjP5oUe73WA0Gp9HOTUaAZblEMmEZlOJYkoMHj15wuHBgFt3lIDDcw2W8xlC5riVoCtfRUymS1rdNqahnh037GIaBel8D9tX61bv9DAdh+OXuxhVbNPR0QGzOZyeTHEdVRt//Zd/wf7hAc26zdMnuwD88le/xATSNGe/ioYKfI8ZK3afPuPeO9fVM9NtUpYG6XxJqpacJI55ufeITrvBcDBWtXY6Yntng0ariSCv6r7g+naHtCiQUh1bLjMsxyeOV7hWNX+Bh2nYhKFHUQn7arbBbDzD9V2ihVrLwvOwbIsgcJhMVb1YlkGZ52BaxLHqo73Z5Gcf32Y2z5mMZtWYI6Yjg5e7e2xsfgyAIXKQcOf2LZaR6sPzfNbWHfZfHNHuqHkO6g1s1ybLEiYTdb/b129QUuI6NkWirp1PE9Y3+0TRCtc9i/MzwRTIPKesnhnLMBCWjW1YGKaq3ShKsCznwvscbD/AEALbSiiqtVwuIpbzBVmR4/TU+G7fu83ei2MWiynLKh6r1WszHc+o1QMsoebZ8buURcz8dJfJyQkA3Rvv0l7fuiCivJrve4d/n0DmTd8xl697G+HNd31v/NjvlD/lu0ij0Wg0Go1Go9FoNBqNRqPRaDQajUaj0VzNT0Z4c9VWoEBccB+ojlxwsjnbu/w+R4CzzdArRTdCvFlJc2F8UnX/Vv38e3I2BKsSwDQ6DWrNkCxJKPIzAUxCrR3SWOvx8X/8WwCm4yF7B0e02m2iuXKu+C//z//N+GTI8X7JfBWdt1sLO0ynC2aTKQDtTpt6q4mQkvlcHXNsk/EwwnUThKHG8s3XL+n329iWgMolJai3mI0XBKHLgwe3qtEb2A4YpoHlVA41loXn+UwnR6yWSnTiujYGBYcHx7z78B11nm2S5jl2LonnalN9MdrHMAWZEWKZav6b3XWiXGDZHovqflutBq1ui+ODAdEqA2DjWp96u0OyWrBZiZnG4zGyNFjMFrQaSmRT5DmdTovJZE5YV8fCWoDMc+bmgqxSa7TbLX7/fI9oGZ27vcxmMS9f7HPt+iZ+oIRGpchZzk45Gs559x0lTsmLnP29IxzPx/PV/LmeR5ZlJFGKEyhRgqRECOUKkmRqPdJCMJsvQEimA+Vo9NUX32BZNq1Wi8lgCMDaZo9ms0aWJYxH8/P1qNUC7ty/w+a1TVUHomS1Ug5EnZa6X8dKMYwM3/PxfLVu08mUZrtO0GiRxWrdWu2ADz58yPb2As9V59WadcbjOaenIza2lBvSYrFiMJhRSPCvb5wXeGPjHun8hNMXX6vRuS71YINOf5N0oQQXt+/fJ0kh+s3vOT6aVWu5Sbdbo9lp4ftqrtzQRZDj+S6dlnIqSuIl9XqNa9e6SNR5hTApEbi+dy5EieOUyTwCAzxfrVu316Veq2NYgoODk6omPVyvQ61RPxcpIQRZWTCdzJGFEsrcvHkdDIGBy7JyQ3IsEz8MyPOUWr2hakOWlGkKgUO9rkRKRZFjmRYvdl+SVs/5sSlZa3u4jsHOjR0A9l8e4vgOd+5ep91VjlB5lrHul2CYNArlRvNi95jOWoPb926QZeqZ+d2//Y5f/OpnBLUaey+Vo1atXme1zGjUbBotda3jCMo8p9WqY5vO+ZgpSwqUe8/ZHJSlpCwkpqVEWZYtEWXGYLCg21P3K0tJhsQwLZkHWQAAIABJREFUDGSp5mo8mtLptnAdweBYOTj5nksQ2hiiRhBWbly2SVlIJuMRnba6X7fWpswSZFnQ21T1bIqSoiywTOsNfmXf5rLzzVWfX37nX37/XxS6XNXeubOacXXq45/z++SsLy280Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wj+vPxkhDdwxYagFFVE1Bnla+e/4oLjDYCQ6r/yddeb18KoLjrZvM34hHhTwtS32nzT32/DZXHQ6xu3otIJlVzI60EYFo7/aimDKgpJluV5vMq2vMHDX6jPi1xtbj/4+D32n78kiSPCltrI7q+vE82WRKsUs4qqURErkniRk8dKoCNFjO37GEZOEsXq2n4LP3AxTJuDfSX0CIOQ8XCKZdVxKhHGarlkOYtp9daYTCuHGgyEAfVGA8dWY45WCxAesiyoNZU7i+eZIGzGJ0cMDp+p+6Gk1r1Hq32L0xefA5DnBr4fkiPPBQ1BGDAaTWjUXWxL9TGfzAhrdVaLBS1HCYiKAlxXYNnQ21RONmmSsFws2X+xSxqpOdjc3iKjxDAtjEqA8NUX3zA8OaXb6+BVIhshBfFyxeNHz1nvK6cYy4JOu0NrrU6RqjkopEWSxBgWuIES3izmK5I4Zq3fptNXYwlDC5mvkF6NTk/Ni19rMB7PePF8j1a7eb6WRVHgh+G56KTeqNPb6CNkdv5sNRo1yiIiSQWTkXI66babrJYptXqIUznyLFcJ7a5Nd63OsycqvqvVtZBlgWlYOF4lEskLbt29i+cdMTxRIqBPP/mMv/jVz9jYXKeUqq4My2H36S7v3r9zXvd5VoKErBRYnhJSpKs5dDaxHI/CVbU2OxnQXr/GRz9/eO4U4ze6TEc2a/0uQajmTxgGUoIoBBtb7ap2uwgsbMdHlln1UJSUBXiex2ef/boqSYdf/oePONg94ObNa2rdbJtnT3e5ffcmd+8rMVicpJwcHiFli6BaN8s2cB2PbqtOef5MF0gcyjIHqdyVTMtBChXTNB2ruLdms47p1EjihCxT45NlwSpJEAaEoaqr5Tyh3QiZjsYIS9VkksSsbbWpOz6zgRIGISyCWoMszfBDJYC5cXMLw5DMVksmoxEAa/0uo+EYgYFlK7HVbBozmUzZfXbKxz9/UI1vnSzLME27chhT76aySJFSIM2zCCmAHMqCJFb3YbkeAodSLjg4ULWxtdmhlBZlkVRveOisdRBC4Ho+CPWsLhYrNrf6HJ+M+PxzFZ3WbNe5fr2HYShBHoArbBUNJSQGZ2LEGfHUJWj1zt+JfwpXxVV9n0PNVVyOs/oh3xlXCkkvfX7x+JvEPRqNRqPRaDQajUaj0Wg0Go1Go9FoNBqN5k9D78RpNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQ/gp+O44246G3zys3l2+e++tf9ZXkWQfXqGnF2knz9mm83J95oYPMt55rzji/0cQVv41jwQ5wNLrryqA4kKpTLQIryTZe9csoxjG+5CUkpMS217P3NTdY2N+FC1JeUJWxAHKXn187GM/Is4/EXX7PWbwEQeJI0zXF8Ez9QLhpmboGA4WBIrXLdKfKCRqdFGifIyoHIcWya3TbLxZLD/UMAmq02hjDxA49+RzmijKcejXaPPC+x7CqyqNVkfDLgxaPPmZzsAyqSqtFdwzRXHMXKNWQ07bLR8PBMg9VSuYGcngzob64RhDUmJ8qRJ1olhEGNXr9PHC0A8P0QzwVDGOduL+PTIUlScv3GLeKVigmajsesVhGtZkBRLZJlWcSrmP0Xh8xm6rzbd24gRU4SJUSRmpf+egfTNQnCBiXKiWU2mWAYFlmc01tX7jZJnNO90aJW85GiqFbJQUqDLF4RLRMAstKm2WqSphmD6t46nQYbGxt88dVjlnPlCnPzjsfJyZD+WgtZqvZWq4g0npMXJmEVqSQsmzSOiaIlZaLGvHFtnRKDIKzRr+KiwrDGchbhBgGup66VZcnvfvsZJweHzKfKQccLQgwBxweHnIxUNFS9UWcymXJyckq9cu7xfIc0iolmE/q33gNUpNYZi4lqL19NmA3AC5q0ezcBiOMEmTpYxsU3SBXlQ0kpVF1ZtkueSzAkRa60h4Y0wBQslgu6XeVKVErBk0fPEQgOj5U7y6NvntJqNth7fsDTx08B+I9/91es9dfY2zvgnXfVWEzTokwX1BuN8xfGwct91jf7lKXFZDyvatfFMCSO6eBV82cJgWGbSNPD95XzTFkWxEnKZJLSaKlnsCULfM+h028xnSfVebC/e8zNGxscn6o6cFyPzsYmRrJiOFTz1+k2mU3nGDKn2axVY/F48XyPQkpu37sLwGRwih94ZHmT0UQ5yozG+zi2xdaNHeXeA8RxzHK5pF5vXng/ZwhZICybpDIW8q2COI2xbEGzuabW168jy4L5PMey1Bz015tE0QzbtvBD9XxEUcLw5BSJTbNycDo+HtNda2MZBVmh1rpRD5EUGEJgu6qujCIimR0iDBO/ruZPVI5el/muKKbvem9fdd1F17KrXHLOrrn882J/V31ffJ/DzZvir3TMlEaj0Wg0Go1Go9FoNBqNRqPRaDQajUbz5+cnIby5mqtDoFTUkrjwu0SIqzdDX9+sFIDkW/um4nW5z+V4jtc2LV/JU76nr7Omr95s/eHIV2MtJUIYr8Z9RbNv6uvKMZ61ez5mtRntBR6lrGJaBiWjkwGe7zE4OgZga7NOLfRxHI8Cdc10uKAoS0I/OJ+pRZ4yGmbMZhNu3roOQC3wSNMSISWdjtpUH5yMGQ7HbF3bpB6kAPitdeK4IM+XWKZVnTdhMRmzmo1e3buEwf4uyALHUOcZpkeW59iGgxMo8cJwPKW2zFgux9iGGqFrCLzAxvVdwkzFBEVxTrRcMh5NKCpxiu96zGYLmp02XiU0ch2LwXDKYj5nOlKCn9kiYntnk9FwSq2mxAGe5+GbkkJYTIZKwLG9s4bjhRRSMptPATg8OKTbWSOJY4ZD1V6rXaPTa+H5HkWp1mM+nuD7HqZp4gRq7pfjJUeHR/TWOhSZEkO0miEnx6eEvkurmmc/8HE9l+Fgwtp6BwDTFOSZpN4ImU6VIGR5fEoUxwjTQVSxXH/85At6/R626+JWsWEvn+6SlYLtnT7dqj3DtPjZz9/jc6vEtXbU3A/nPHn0nKOjfQpLzXOZ5exsb9Fd62FUcULpak6z18cN3zkXiJ29Byzborulaug0T6j3tnCD2rltV5ZGiGKOzHKMYFOVhgTTtMnzmChWBbMcjFjOpggkXhAC0O21GZwOaNZCOl11H2mS8PzpAWFYYzpT63H92g7HR8fU6wH1hjpvPhkTxwm3bu0gC1UvSQG27ZAkMbatYsjavS7SEAiZ0+mqmrRMg0JKsjTCNNX4SiEQRQ4UnJ4q0ZjnOhwfD0iTnOlYCZccxybLEiQSo3oWNnbWadQCTNsiz1W92E5JtJxzsH/Mi10ldPvgw9uIomDvxRF3798+v9/bd7c5HcxYVDW5fXOH2XjBfDEjS89iryAIPMq8BEsJ01zXxbJNRFmc6RORsgAMhABxdm8SPMcmcQwODg7UHJw4eL5HvRFgV8KbxSKmlBJhlJRVLJchTGqtJs92TzCqd9a9+zdwbJPlfMnNrZuqnu0A0zDI84giV/MnBFhunWQxIU/VsXpvG2G8/h3zY4QpV0UlvkmEc/mai3+XZXllHNTbfne8jRjnu+KwNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBrNj+MnKrwR8C2Ry8XNx7ONzovHL24mKpHNuTblfCP46g3Hb2lxLv7+mtvA27kdXOUwcHFz9m1cb86GKqTxajyVM5A6/mq037Ut+12bwd/n3mBWIpydG5ts7ayTZRmjyvmjiOfIImO+iDFttfnebloc7p8SyzqmrcQpg8GcXr/LZBbxb7/+FIBb79zhxs1tlss5L54oIcDx8YCt7T6WWZLlSjgyWU6x7ICw1iBeqc3y3/3mt0SLUxrOiiBQm/Su5xDNx2QF7FxXTh2RqOE6Nv2NHnt7Six04+Z1Dvb22dnqMZ0qd5u8NKh3cwzHxaw2/cejU6JlROA5SlwADBdTkjRncDJiNlUijG6/x3w8otaos6hcdWbTGb7nsL7RYxXFACRJgueFHB3uc+PGBgCmgCxZYdoulSkLUhqUZYEf+Lz46jEA7zy8i6CgzJJzdxvLcohWEfVmSFhvqLmaLMnynCwrqDQs7B8c4/s1TDMjjtT4Xj5/wfpGV5WRVM4fy8US04DpeEpSiXaCIOD4dESr7hOGSkBkmGNevjjg7ju36a4pR55Go4lhuRwfHtLuqX4tE3aub1OWBaISoiyWX/Kf/8u/0ltf5z/97ccAPHvyjCiKmI5HeL6qNaMsyZIYtxItvUJNkuUoEUtn5y7jw30s06KsxApCSrxGF9txyTN1v4ZhkGeCx4+ec/POLVUvay3qdYfpaEGzWVf1XOQspksoJXsvVU0++vobms0OW9tbjMcjVeO9JoPhiHanRVBTAqJmp4U5nRPHOWt9JcYp8oSiKAGBUQmmPM9lMJxjmdBoqmsRgiQuyHOJ41YCscEMy5R0ew0slAgtigqEMMmLFCNVa1SUBY7TYLFccfBiT9ValnDz1k1s0zh/ZlaLiE67Sei79KvxBWET0xSUHPLHzx4BsHN9i2anx7WgyT/9118DyvkqiyPeubPDdKTEOJMoZbWa4gUBjZoSLglTIvOSKFriBlW9GCamYYEssKo1MihAQL3ROHe3SdOc3/zLpzRbTRxHfSU5jkMhC/prLZrNyrXGyCmFT7fXIPBUHdRbHSajEUUu+ez3XwJw//4dgpqDaVgUhXpmbDsASizXJp6p+7D9On7tzJHox4tRfoxDzuX3/1Xv6T9FrHnV95EW3Gg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0/z78RIU3CiVQufi7eC1qSolrzjYwXxfgXD7vSr7HleCKC767Pb57o/Xs87fZAK3kNdW537UBe9EZ6Ptjri6P6W02d4UQmJaJaZm0eioeZjX3cC3BeDQ7FznU6x7XboXYrodXV5vlWA67T54yGgzOnUlkkTEdT1nfuoZhqA30ssgQhkGn26RYKbFBKQK8WgPP84jnKrapv95mb3FMnq5o9JTSI8sKgobPxu33KVCCn2Qa4fsutmOzc025n8wmU6bDUzwjot1RAphMGhzuHXHtxg5eFbPU6bZ4PBgwG2fU6kpEUGuEtFoNsjxjOhoAMB0MuHf/JgeHpzRaSgDTatWBnOUyo3ket1VyejplMp3ws7X3AcilpIgKZJSRZUqYsbOzju14PH/2kjRWc7r/4gX2jetIYZzHJkkpyfKCZLAAqRxqhscD1vsdhqMJvqOEULEJliMYjhY0LCUwadTryCIjTjP2d1VUl+1Yylmn3+PJ10/UsgmDu3dvspzNmE6VUMGyTYJaSFALGJ0qAVZYb5Aup5RlwVd/UMKH67d3aLTarG/0MCoFmUQSxREngzH/9E//pOY08Pn4wwdQphy8VO4njWaDrCjZCGuXnt/Xa9zxXIJmk8nghGZVk0Gry2jvEZnMsRxVB5QlmA5ra22Qqq7IwPE8Nra8c8eTJI5Y31yjyFNuXlcxWu/cu8Hnf3yE51oEgRLKhIHPRx895Ksvv6a7puovihP6vTYvn+/S7ap5Xi1XJElGrRGcC7qkFMg8x6vVQKg1KqVAyoLJaHbhfkvqzRayLKm11HOUpznPnrwgCGsEoRpLHCW4vst0POPzL74B4OOP3+PazW1m4yl3Gqom/7/ffMp//n//hWazxl//p58DYIoCz/f55V/9nMlYrW+axjx/+hLHdelU0V+DkxOazTYvdw+YjNSa9zavYdkuL18cU6+rsWxf2wAhkIbDdB5V62tRiBLbsbArQY0oSzAtDAPCRhU9Fxd88OE77D4/xqlixeqNGrZjUW+EPH/2AoD+WhvLhHq9RlmJmf75H3+LkAX9fofRiRrffKOH7fWIs8V51Vi2wLBshLCxzp6P6QmmZeF4wZW6mx8qgLlKVPmmd/1VbZpXRF/9uUU4Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go3mz8+3cy00Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBrN9/KTdLx53S3g4u9n/3L/lauN+uzV72cxU8pjo2rvwtGzf/3/Jg+Ay74CZ2O56LnxXXyfi8zbug+IKkJKXhjRm65U9//K9UcI4weN4W2dbwBMS11b5gml4xHUQzxPOX8Iy6KczcnzhCLL1LE8JUszbt+8jh8qd5tGo0aWJETzBUEVKXT34TssFnOgIFqqiKYoN2m0DYQsCKtIoAcfvkevJXn66T+SSuW24dg5huMwHC6xK9eaoNHh2dM9TMcjr8by7Mkuvh9iB2tEubrfMLBxPQdZSvxQRf2kWcbOtU2Ggynj4Vi1V6+BYVELDD76Dyoq6cs/fMnnnz3i8OCEGzdvADCdTBGGpFavE1VRP+lkTrvXYmN9naJQ/S7mMePhkLX1Hm7l8lFr1ImjmG63ybBy75BYnJ6O8TyXVaJic+aTGb3+GkmUUJaqvThOmQ1PONg/wrDUvLS7baI4Ym19HctUj3q318EQkqAuztdoe2cd2/cYnIwZT1QEl+fX8MsS3w84PhoCsHNzm4ODE5IopsxXAFidJsLw8f0Ux1I6vhdPd/ngFy380Cetxry+scbPfvEBh/unDIYqtunG7evcubGF7VvnMXB//PRrXNuitdZXc855VVcVePaXIGy2yZKUuIr0yocHWJaN5XjIQrnbSGFiOwGNZo3yYmRcmSGFgVSpTdiWSbNpUxISVhFSWV5w5951er0u6xudal58lssF771/H9NUY3I9i7De4MFD79xEq95s4GcS24bRULkS5XnG2loDWcLRvprTRtNDAo5j0qscdMoixXY8pIQ0U/dWCkm73cYwbZqVu5JtrRiPp3iezd///f8IgGkbGKbJy4MT3r13E4Cf/eIBu7uH7O4ecnhwovqtt3AjSdjwcavYJtuEYKfGapWQJioibGNji6PDAaVwuX5L1fh4mjOfz5jPI46qdUmTCM+vsVjFpIlyp3r/vXtYloVhCPJMzb1hWKRxxh8/+5IPP34IgOO69NZ75Fg0m8qpaDgcsxxHfPHZN2ysq1izo+MJ9bqPFwacHKn4uKPDfe7cuc329W0sV93H4fGYyWzJ7rNd1taVe9GDh7eoNepIMrJUzalRrlgOBWb/+nmE2VVvwascbN7kXHb+/fI97/kf8s693K9Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go/lp8ZMQ3lwlBHnzuXC+PSpkpToRFyKpLp4nLvz+Oq8HU11on6s3Rf/UsI6L9/RdMSTyQk/iNenQm5HnA/z+zd6rjn1f/NXFz21bxbS4QUCe5xhAUSr1gshLwprPfFIwOFHCgsVszFqvyXg0peap+zh4/pJlvGLPtmidRekUOa12l3qzhVkosUvLaWHYgiyDeKEEIb4rMU2b9Rv3sAIVMZTGMSfDBTXPolULARWBhBQ4jsPx/iEAjVaTl7t72NMp9bo6r3frGoZhsJrNOHyxp8a8Srl9Z4cXz/coChVpMxuNMSlobnT59Ld/VGNOSzzXptmsc7CvYpv8wMeUJkkc4XlKUOM6LpZhENZ8To9VTJXvuwS+SRiG2LZ6DOM442j/CM/36HZbAHQ31plPZgwGw/P4JM/3SOKEwckJRhWVdHgwIEtjepubLKpYrjiOsKXN82e79HpKOOLakiDwcD2fxVwJQg73YXN7g1pg8/6HD9T9TiY8efyMbqeD5yshigDuv3sbEIyHSpgxGU5wPY96PaQo1bF2r4UsCyzLwTRVbWTZhGvXt7i2vcboWMVKWZ6L49l4tTqieiYevH+HP/zuCwbHp1xv1M/7hbM6PTPpEliWQb3TYXaqxCSGsDEti7IoKVO1bqVZYhQZlAVG9RyprkyKPMVy1ZzmcYFhCUzTIKvOM01Bb30N37MpKqGWsATttRadbouiUMKlJCvJsxTXLJBSzUGZpayWCZ4XEPoqQigrTIRpgRAkaVKNxafVauG7EUkVL+aFHnGakWc5slIGuW7A5vYWq9WS02Mlyur2u8jEYDmPQKr7LSjJkpSXu3vUAnVvjmVx5/5dsDgX1GR+CWlKfLrCrda3zAvCwMMIJM+fKHGUZZTEqxl5nuMaSpj2x99/jmmZ/PKXH/Hpp1+pepmOOT0dsbbe52e//ECNpSixHIuizBBCzYFhGphkXNvexLZVexQxnu9y/cYG88kMgGvbW3zz9TMMBK2uekfsPnvJ/v4hOzs7JLGa+//5f/lbXNfl8eM9ikyJrcKwxunJgDyH6VTV+MvdE27csgibvor6Aih9ylLF3CGU8AYJSRQBJa6v3hFCiLcWTL4tlyOpruJtRT7fFW/4Y+MFNRqNRqPRaDQajUaj0Wg0Go1Go9FoNBrN2/OTEN68PVdtGEpeT8x6JWp5JcJ5g2PBm3q5sDF51ebm22x4ftfnb7pGvlLQwBtEN2fOP685/EiQ4nWB0eUN1jeN6W3GeHHT17RUydQ7XdI4YjkekVSuJl5QI13FyCJBFkpE4HuSte0bTEYTJiMlqBmcHNBe61PKklyqtTs6OMXxGswXBXmuBBfz8YhGpwsI/MqVY3R6hOs3KZ2U1saN6h6guZ4wm63ob65VYzaJowiJcucAuHbjBqvlilu3tzAMJQSYjSd4ocdiOSNLlSjB8ZssFyn1ep0imwJg2A6252N7Ie++dx+A54/3mM8FjZZxLk7xw4Djg2OEcCoHH7h16zamadBtdVlVLjjT2ZJGPaDMy/M9f881aXdbCMMgSZWIYHQyotNpkKYZh5WAqN3tIETCeDSi2+sCkGUJvbUOeZaeq89a7TaGZfBeq4ZtKcFUp9uhyEva7QaGUGKNOM3Js5Q0jjAdozqvy/7+MU+f7dKuxFFf/uErOus9BAZ+5SxkuwbdtRDLtsgrNx/LMkijBbKUFJVji2kZyGJFkWWEDSW4cLwQmS1IZgWmrdajXq/xl3/7K8q8oCzV+AzD+FYdnuE4DnblGDQ/PSWotzEMQaXzQBgWWbxEyBJZiVNsr05RCoRpIFHHpBCUZYEUAttRa1nkBY5tUOYpwlB1X2Q5EsHgdMRGv81ZAU6nYzbXO5im6jgvJZZtUcoYx1YCmIODA2qN61iWyeaGutb2A6QsiaKUgz21vtfv3qbIMgwhWFTuT59+8jXXr21z7VqfelPNX54mDI+HvHixz2Sk6tT3HTb+vsPPP36Porrfra0+qzjn/ffe5ff/poQyv//kj3z88w8IwgDPU7VhAmWRIA2b9z54F4DVfMZkanHnznUGx0qMc+v2FstlwePHrwRdWRIRBD6T4ZCjvSN1LIq5fvs6s8mcoBKxeDUb2/fZCMMLrzaLIlf1HgTu2ZTi+zaNVp2gcqIyDYFpCiwbWpUIreY72EGA5xo41bX1RoAsWyznc8pKjHM6GNFd7+K4NpZpV/1KhMyIpieYzjVVa6aF47hE0ercrcn1vG/V3Q8R4nzXd8jbtPOmc656d3/Xd89VfWoRjkaj0Wg0Go1Go9FoNBqNRqPRaDQajUbzp/PfgfBGXPr5+idSSsoLjgBCCCRX/Kt+IV5r4UzoIsTrIVLnspcLEVNXj6V8u9F/p+tAtUmKUJFSQr4Sz0hAGly68MIfFz4TKnrnlY3PRfHRd2+s/pANZHnBbcgwVZ+OF1BUMUGllBzsnyDIqVdxPX5/nZcv9rj//gNuP1Sb+f3NdfZfHBFFCctKWBA0WjiOweh0wGKm3G12bmwQ1kNs28GuomAcz8UwBZYXkiSq31ang9kVjKePONpXETRBEIDMyPKc9z5UDhxpmrC+scazJ/vcuX8HANO1GB8dUu+0mMSq3+HRIclqxvXr24TVpn+SZKRZCVISnDnZuBbLecH+i11u3rqt+g09lvWQPIlYW1OimDiOMU0Lc7FCVg41WRIT2xan6SGb21vV/EpqjRonByccHylnnFu3b7NaRYxHCx598wyAWu2Qei3EcV3yXNXh2nofmScYho3tqGOD01P662t0+l3sqt+jgxMMyyKsB3S6SjTxzZePOBKSeq3G7ssXANy9f5d37t0FYZw742xt9oiiDITB/r5yrVmtFuxs/x2maZ/HkJnCJIkyynSFWQl+ED5lkSBKE0tYVQ0JJWQpE4ShxFayLCnzlDRaUZYqYkgJb86et9efCWEYOJXoyTBdhGEhDPNctOM4PkIKZJmdC2+kLBEYGMYrAZtlWxjVddWlmJaLkBJhC8xKqCWTkjIradTCsweCehjie5sIQ2CYqk6zKGU2T6jVvHMR1fpmj8HpmLVeF8dxq3szkVLSbDWwqvkzyBlNF5wcDRmcqHp++PA29XpAlqXnrwHP9zAtqDVrfFQ5FU2nU5KkZG29i2GquTJNWC2XlJlFEKr7+B/+p7/i888ek6c5tbqq8QcP7uL5Np/89jN2rqm573eb1FtNZouEvHJ/SpOC0HdZvxCd9l//4TH3HtxV91O9117s7jOeTvG9kEazil07jKk1GvQ3+hgoNx/P9SCHssywK2FfKQ2QgsVsxjdfPgVgNl9hGiayKFlUcVZhq01eGJiGxSpKqqqYk0QL+utd4kyNeTGfc7B/Shg6lJXDlG0YWF6NPInJKrchN6wjTIPTgxOSWLV3/8MHr8UU/lj+HHFRbxLxXNXmD3HV0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Px7j+0/RaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0l/nJO958X9STUHYvV134xiipy+28+kf/4jym56pzX5135lbzY6OcxCWngaotcbHNy+dcHs9Z+2885dzx4PLfb+OC88ZxX2hreHxCulpg+zUAyhIc16PTa+NW8TVFUYDpQCkpSxXldOvhu2xcv8an//o7XrzMJ/42AAAgAElEQVRQ8TpxFFOrhaxt9Gi1VHtBo4HjucyHp+fRUPPJCMevsVgUxEkVxzSdce+du/TWeuSFcqk4eHGI7XqseyG1lnIXMU2fWi2g1W2xWqwA6K/3SRenDE9nOJWTjTALXD8kzTM6ayoSaD6e8/jJc/r9DmWhnDqaDZ9oabOxsYEfKNeQ2WTObLZkc3Mdz1dxOEWeUW+22D84or/WAMC2XRxDEqclhlD6t9UyYTY+xfdrnGnifv3P/8a1a30sszyPs8qSlMyxyHPJ4eEpAL21HpsbXQanY1qtFgC1ekASx4wGExp1FfUjDIPVcsHx0Qnb2z0ANrfWKBEMhxMsS/U7OB0QBA69XhuBWkvXc/BTi1IWHB5VTiwP7pFnJZZTUpnqkBcJpcwwDA9ZZT45vkORGogyIs3jqprAtD2E5SALVRuSFEoDy3IxuPyMXIXArKKDDNNAWA4IA0OqNSrSBMtyEYaNUQ2wKAuEMMAwMaoyz4oMKRNkITCsKvtLlqRZDgKsyp2lyAugxLEMZKkuLsmx7YCXuy+xXHWtZQg6nZAoSvEDVQdClhgiA1liu151v3B0MCDwPbJM9RHUXdIkYTqZ0+koVyIvaOB4HlmWKXcsoBAlDx6+w/2yxLLUPG+Xa6RJSl6W2KKKkDJMlosVfqdFWbkNFVjcv38bKUvcKlorK3KeP99je7tPvMoA2IuPabXbvNw9xKjeJRubPephjSjKsG117K//5hes4oLBcIKoosGSNMNaLjjaOyEIVB/Pnj+n2WrwwUfvsbmlXHXsnokQJdEqPnf5ms9WDE8H9Pt9ltGZM47LfD5je2edeks5/CSZ5KvPv6FME4pcnbcsC+qNJp/87guEqebq1u2bNALB6dEQ11Nz0Gn6+LaH5bjksXof2H6AIQzqjTpBtW4SqerlLfhv4SBzOTbx+8ahXW00Go1Go9FoNBqNRqPRaDQajUaj0Wg0mn9ffhLCGyVqebPo5TLfJRy5GBz1Xa2J1/93cTAA55vM5Wt9yUs/r2j3gmjl6g1P8e0+OYuKujj6C9FZF9p7JcuRr06Tl0VGr8Z3cfhvI7pR13xboCOE4GIvQsDmjR3GJ6fECxVFVKs18X0X13PwfCViKZGYjkeyikkTtZmfRClBvc4v/vZX5P/wL+q8QnLzzjUmwzGeq8QpX/7xa9qNkNHJCVkldrl5exu/ViOOJuzsqIimgpIiyxCATSXuubfJaDjnxdM9lnO1qb653eP06BS/3qTZVoKaVbTCra/zzeM/nE9bnicMR0s2t7e4c/8WAGtbNQ4Pjzk9GdDtKWHLyfEReQGrKGa5tw9Aox6wvb2OXwuZjmcAbGxsUJY5tdBjY2sbgMloBKaDacLRgRLP+LUAzzPxQpssUdE3RRqxXMYMhxOMaoCW5xOGdcbjCVmiRCynx0NqYUghC+oNJbLxPJdmM2Q6XeK5aj2Goyk3b93k6HCf/T11v4Fn47oWBiWBrwREy9mMTnudLEkwTSXqiKOMJEkwBLSbSpQQ+AFHxwM2t9cJQv+sgDBtnyKLoVo3QxgYtgdpgu1UgoayQApVy2eiLExT6d8oKatoKCV5eLPwJqsEWFJKDFFiWBayUFflWYIwbQzDPK9f0zDJ0gikhSzPnrMSQ9hIUwmlVIMCwwDDMqHMz681DAPbssgroUcUJQShjRc457Vmhw6+54GEeDlV62ZALaxRlAWTU3UsCAO++fo5771/j+VCreWzp89574OHCCTDwRiA/b09Ws0WYd1nuVJ91JotRJQhZUqeqrH4gY9rWwwPhufvslarjmUa5IXkcE8J3caDEWlS8MEH7zCZqLH01jtcu76JEAVxJXYZD0c8fvQc13HZ2FLRaaawmMxmvDw4odlQIjnKkuVyxTt3rjOuouIef/0NtVoTx7VotZWA6AYma2t1Pv3kcxZzFRflWg6WZ/Hpb//IaKiemWa7TbKKGI7njCbq2K2bO1y7uU3QajOZTgBYLTKePX7O9s4mnqfq6uRkQKNeY+vaBlkV89VotEiTFccvD+lvqmfQlCWWW8e0QVZ1mq6WeGGdeqvBqorBU+9B+VYClrcRxVz8/MfETl2+9vz78wcgtRZHo9FoNBqNRqPRaDQajUaj0Wg0Go1G8/+z92ZPkiSJed/P486MvI/KrLv6mp5zL+wuFgQoSkYTaCbQTJLpQWZ6kZn+N/0LlEgjDTQSAAFigd3BzM5M31fdWZX3EbfrwSOzjq7q7l0syZGZ/x6msj09/AqPyAf/5vs0vze+F8IbWLrX5J/zv4IbDiavCXRuOra8Xnbd9WXZzruEKDe3e0l4gkAIiczFAdd6vLW9/Mj0altC5BXeFgHJ/O9q7KvPN9RdHsRebnfZ/295vnt5Xa4651yUm6ZJs9slCZWIZdgfYJoCwzJIslw0YViEwZTJZIKXO8pMBiO80YR5EODkgpBOu4EwDRaz8co1hCzmmy+/JIlTvPyAP6HIdBrQ6rbp9/oAzOchs+mEWr3O08evANja6eKXSmRYlGrl5Yrglyv0ByPGIyUO2NruMuxPcayMZqMNgOX5uE7ujhIqBx0cjx///EecnZywmCrBQLPd4fTknIefbDOeKLGG6zj0Ts5prrWYDJRoYj6bUK74rK93OO+dAVD0C4yGQ0aTGTvb6wBEi4D9V2+otZrs7m2p9TNNvGKRjmtirEw3TITlYBgGjaYSAZmGhZQx21sbmLn7yaA/JIxCNjfWSVMl5BEyo3d2hmPbnJ2cA7Cx2cQQMY7nEOZiEr9UZDIOOYumbGx21FjI8IyQyWiBMNQ98mtV6q6JIQSTqVor33exjRLhfIDIhVBZtMDEQ0YhSabq2V4JISXCMFdCN2EK4iTCtr2Vy9G7RAVSSiWiQT2fSZRgCoHInXZs10MYAmEYqz1tWiZWaoHIEGa+qMImSSXIjNUTJCCNEhCS3NwGx7NIwpQ0S0hTJcywHRcpJI1GCUd1y+NHL5HCxi+XwFRuL0kS4ApApDTbym2o3+tjkBAECwb5ftne3SGKU6rVohLvoJyK6o0qSRySxmpN95+/IQhCdvY2KOeORpZlIg1Bu7vG0cExANPpjEqpwNdfPaZ/rvr4l//Lv+DF832ePt9fCbr2D474xS9+QLFcxnZVWbHosLG9xb//d3+Dm7v0hGGI46j3Z5KLlDrra8gTycnpOVu7ShD3P/3Zn3J4cMxiPufLL/8BgI8fPiBLJTvb26SxekccHhzR6bRI44xaTb1L1rttxsMxzbUmUb4npczYu7tHGKQ8+e6lWnvLY63doNc7ZWdXPTOuY1OsFPli7T5hlL8TDYsodDDPRjx7+lrdy0/uEx+fs7HZXN1ymebiNsemZC3334XbzXUx4nVXsdvqXeYf60bzrn7fLei5eIcLrbzRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaH5vfG+EN/C22OXyvw0hyKRUB/WXo6bec+h5uexGAc7vxCVXmuVY8v+ISy46Nx2QKinNZWcbrtS9NujLOVhXPr/7wHYZWXXZXed214a3XHXkVZmQuuQtOdNqOE7uktJo2wx6+4TTGaalDukdr0KxUMCxDcKFEkgMz494/O1TEDbbu3sATKdzPGmwvrXNOBcgWECn28V1bWprXQBevdxnd2+HIAxXIoLde3c4eB3y5uCQWkMJUTIp8MtVSlUYj3KHEF9QKnvYjrtyK5lNZ2RJTMGvEMe5I0/Ux2136HarRLnIIQ0CBmcTPM/j+M0hAMdHx3TXOzTadaLoVPVR8uidnBIuAgq5A8xpr0ecJjSbtorTAZApO3d3YX+fZ4+fAVBvNnE8BwGkuZ7LdBxm4wmlis84d/6o1ats7nSoV11Oe8N8HlPiRNLrDajkIqXJZAZSuaqksRIPeO6CNMmwbOh0lYOJkJLZLGQ07hOEar53726TJpJy1Ucs3WiQzBYJlVpttR9sW2DbJmkUk0a5SMmVYHkYwiBbRkhZGVkaYxWKJJNcKCPBNB3SLMF2lAArTVNct0iapB/0jAohkLnISzmeSAQmQqh7mWUGSbDAsJ3VWKyih+M5JJlA5H0kKUgZYBgu5PNNZYppCWzLIs3LoiAgTaDgeOoiIApT3KKBzAy+/e4pAHFsMOgPOTo65eFn9wFYTFOSOAXDURFswCKMWFtrU/aLiLVctSMlB68PKFV8JmMl8qpUfMb9PrN5yIsXbwD47POHDEdToiDgPAjyPVTF831Ojo/567/+FQDttRabGy3qzRqbW3m8k2GQRDGNepWtbSU4cxyHL7/8hnq1yCR37mm318hEyh/9yU8wzTymKkmYz+ZEUYbMI71qtQpZKokTuYorS9KE7Z119t8ccefuPQCmiwW7e+v0+xMmedzbcDTDdV3CFMbnyv1pe2eDVErSNCXL72+xVKJQ8Pjmq19jCFW21q3y7PGIn/zkC9JYrZVpNCjXqvR7fb75+hEAP/zxZ8RBhGUIXr9Q4rxKqczGdpckNbCsPDZMZqRJimlbmLnSTUpJlqaY1ts/lx/qbPO7cpODzjsd394bI/jbizA1Go1Go9FoNBqNRqPRaDQajUaj0Wg0Gs27Md5fRaPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Vzne+F4Y+QxMO/6v/uzPIpKXHOAEUJciaSS1+usqoorf/PGlWPGpTpvOdRccte54iawrCMvaZfE1a+Wc7v0VW5iY1yJ1lqOm3wuXC+/YR5XyvLypTPEMrbqel3JxXqtyqTksnvN9fG/ayzX65qOTWvzDkkYMp8qJ5ZJ7xXRYohXayOlcmL5u7/+Nf/pL/6SYqnG3fsqDqdUKVGr+ERRSLerYnhmswWNZoNas876pnK8icOIcD4lTiLC3I0miiI6Gx28os8od8FxnCJREOIVbOzcgeNv/upXuK7F5z/6HCuPIhoNhhSLFtLo0Ds6zOdkMjgf4nuCJFMTXCxigmDOuD9ga7uTL0ibxTwgCmIazQoAmQTX83nx/DWloopjatRqOK6DJGN9Q8VKnZ2eMh7NqZQqyLbq49uvv+XewwccHJ7gmKrs6KhHvdGg1arTbiuHmsl0wusXrzjrDXAc5Sy0s71LoWBS8Cs4jg2A53nMZ3N6Z30cW62BYdtsbnR59fw184VyHNnaaFPzW5SqU87ORvmaxni+izBNokjV83yf4DTg5dNXtFtV1Z4QiEySpRl+UTn8SAlCRmAagFrnJEsxsTBNgyzfNNF8jOtXMQyDLHcgIpMI1yQJgxt228X+z7Js5XYTzdX4bNfB9oq5q4eqZ1g2AkEmMox8H0jDRhoGMk3I8qg4wzIBgyyJIVVuOZZpIU0LicSw1L08PjrEMA3WC20cR70+nzx5QRcTk4ztXeXscnJ0ysbWJp4rcDx1P1yrSBjB6WGfYKHmV2lWWSxCnj55xfbeJgBpFtPudpBpDCX11IVBwKuXPUqVCnc+Ug46UlhkUlCr1wnySDS34HN60mc0WvDg4ScAmJZgcD6iVi+xtav6cByLdqfJl3/3JfO5clJ68PE9dnY3GI3mzGeq7Jw+zU4D27GYTScAdLodeqdndDstCr5yuyqXC2AafPebJ2xvf6TulWETRiGf//AT4vzd1D8bEYYLJtMZS92naZlI0+BnP/8BB7mbVK1exjLAdm2++c1jADZ391gsFhS9AkZZxcfJNKNQdEgR9PpqHwRRwh3TYTQYsbGu3Hy++fo7gnnK5laLn/3hj/PdZNBolJmNhtiOur+OmwAGhXIJkb+7oyCgd3TG+s5FjNs/FilA3OI8c/138DbXnJt+L9/Tq3a70Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wj+C/C9EN4seUsocv2U8KYDRilX4U2/C5ev+23ip37bqKrL9a+LbuDtqKlb47Sux0/dNJ48T+Sm9pbrdaWMy4e4AG8LkK5zXfB0uT3H9bCdPNLGcZicmZy/fgROLjo5H/Dws88oFEq8enWg6vUsTCExDIOTExXb1Oms4XplZrMTOhtKMLCx2SbGolwpUy75APRPDkklCOHQzMUphow5fPmG7x59y8efKAHCJ59+hGEJojjh9ct9AKaTCWXfJ04SfF+JWPyST7PVJggmvHr5GoCdvT1aLZ9R0aI/mKp6foF6u4ZhOpy8VvNYTOfM5hNq9SprbXXo73o2cRgCGSIX1JTrddI0pVz2SVJ1wL939w6mgLPTPlEeHTSdTmm3W0RBQjGfb7XZwhCSKEzY2FRr6toWL54/Z+/BPQRKxBKGEZVald5ZD9/38zVtM+idESzm9Hpnqr1qkWAxo1Kv4ngRAOeDKdFpn2ajQaupRDaptHn86Anbu9s015Q4KooTLMfDdAUGuYjFNEkziWE6yFTNQ0gDmYXg+HhFJVKKp0OyNFPyC0OJUzIZI8M5GALTetuQ67rYIE0SwoWKGLJdhySKsBxvJTAwDYk0TbI0Yyn0kGmClALTNEljtVZpmpJFIGWCtRJX5FFtUpDm2V9r612KJY/5eMxX36pYqdl4xNbOHmenQxYL1Z7tuPSHI1r1Apbn5c2ZFIo29abP6bESytQqRbKkzuvXJ0xnaq36vR71RpXvvnlCuazW/rMv7rHWbTGfznjxXO3dRqNBrVIgTmP8shLA9M/7VMseyBi/pNb5/PSMze5d/t9/9efM87i3QrHIznaHvQf3+Hf/9i/U8AyDjz76iEaryUZXCd3m84BqzefFs1cr4Y3tFWi06yRJRrmWC87igEa9yh/+0Y+wLHUvz8/OiMKEg+GA+VTdo1a7QxwJGs0GlbLak4YhWSwCAsfBttVPkm2ZSCNjOJrSzvdap10jWMScnp7z01/8EIDnj5/TatewDAPXUWtgWSFZAls722Spuh/7Bz3u3NmivVYjSdTaj0dzkiQmCRYMhkoAuAgWeH6ZT3/wOaV8bsI0qDaqCEPcKHb57QUwH8b73sEajUaj0Wg0Go1Go9FoNBqNRqPRaDQajeb7wfdCeHNdxHKbqEXeIDq5UZiy/Jj/vdUxAN520XkHN9WS176T1+otnTneuu6aYOUtp5trQh1Q7iLyBheEt9brlvVTmpqLw+Orfy8+i9wN5vKBsliKeW7rM+9XOQhJyN0iipUGxXINkBw+/gcA/rf//V9SLDcYnI949J0SL8RRRLfT5sk3v2EwVuIAv1yj2ekSxxEvX7wBoFot4RYKPP9mn+++/g0AjudQrTU5OjrlJz//OQCnvQHzYMHe/fsIWzmxPH70hM8+u8d4MCPLBRd37uzy1a+/YnOzS7iI8rFkmKaF4zns7mwA0D8fECw8PLdI7/QFAN7ONpbtYAiDVJnvUKnWKFXKFEtFKhV1cD8eTmi26xwd94hC1UeWSWSWYloGVu5QE8eSLIuxDYlRUA4chUKbyXhOrVYjyzuJFwGZzLh7Z3t1r4Vt0u6uIbKQwUAJC9I0IUoSOp01zs7P8j580jSjUCyyvr6RzzclQnL8+A2PHj1T61yp8cWPPkMKCEK1VkVf8vCjXdxSFTd3OlmEMUVfIrKUNFNOMXGYYLsFZJpiWkp0ItOENE3IkgzbVdcmUYCUCYgCwswdeaRFFIYYtrPah+/CtB2KFSW2EqQIMhDKIUu1lxEnCSAwc9FTHIRIkeL5FdL0Yh8blsAwPYRM8/ZMpAAps9V+QcYYRpFSrUY7X7/e+Zi//Mu/ZXdnG9tRY7alwenhIcXiHrPjHgDtTgfTNKhWy9iuWhfLyGjUS8xmAaVSLhwx1ihXS/zRn1QZDZRgJQgSiqZJs9Ol2W4AMBnNQECtVkQItYdMw8CyDVzfx8hfEdORw6DfZ2t7g1pFuU55hRKW5bG50eWf/ckvAKg3y4yGI57+3VN+9rOfAkroNhgNePjJA375t18C8NUv/4Ef/+xHlCsFhufK2SoMF/hFD2GYxJHa4xIJWcYv//PX/OQPlFDmyeMXLOYzKrU6z56ovfbpZw+oVEr8w1ff8fHHyjFoMpuRpg7CkCSpeh/svzni3v09Hjy8s3LkEZZBoVSm2WwSheq+Tachlg2Vaos4UWP56c8/J40yZosAM18Yp1AgCSNM21jqvnj16JDFfMHm1tZKgGVYAr9SulEYev09/MG/Je/Qbb7v9+Jd9TQajUaj0Wg0Go1Go9FoNBqNRqPRaDQazX99vhfCm6Xby/tcZJbij6X4ZlX/8oHnNeeY69zoAvOBY1we5l++6kJwkwtieFswc1t7b41rOb9LGJeFMry9VrfFYnGp7vWyi3rZtVks28iWvV0a3/Wab4uOyL2HhLjmVCIM1u58jldWDjD73/09leoeRb9MKRennJ+dYxvKcWRzW7m4dNbXaHaakCW8fq0cKYajOTu7GxwfnPI6d8vpbG3RWS9hmWPevFRRNfsH+8ynY/7pP/+nhHN1+H520qPfbeFXaxSKqmw2mRKGMWmWUakpd5Fao47rWgyHY5Yz6W50KFV8nnzzhFq1DkDvpE8QxtSrLkVXHdKnQrCYRlSrdY72TwBYzEZsbv+Au5UH9E6UCMPIMgQZX//6Gza2lZtPtV4ijhNa693Vgo+HM4Qh6A+G1Bs1AKIoYdg7Y3OjSRApscvJSR8hJIV2gzhRzik7uxscHp8hkbRqKprHwKRcK1KrFZBCiXteP3/FaDLl5OScLFP9JmnMbDzGMA0Sa/makFQqZUrV8ipizbNtQGBZNkGgxpJkJkYGhuVCLnwAgTANsiQgNXIxjmGpvZMpkYsqgzRJKddrfBBCYubDS4IYp+BgmCYyj4ZKswTLcYmjCJnlghrLwZAZSRQj8ouV2MYAmbLc0UkaK+GQAZapnhVpGsRhgGXabG0qV6dRf8BXX32HKQx++KPPAShXfHbudJTAKlHXjkZDGs0qkK7iwIJ5QJal1BsV0nytymWbNI5VDFa+D5Ik5uWzE5rNOt115QDj2A4YKafHZyxf5f1+j62dPb75zdf84EefqXtU8BBIKr5Bva6ENxgur/f38YseH31yB4Cvvn5CvJhTqzUJc6FRMU2ZzyKCySmfPFQRUqPhgDTNePXiBdXcVafRbJDEIWGUkuRPTRInNJt1fvDDTyn6LgBRElOqVJjNZuzeUfv+7LyPQJJlGYWi2huO4yDlglrDZzH18zHD/ptj0iwiWOTisiSlXIoYDQa8fvUSgM3NNUaDEbZjcLCvnjfblGRCYjkOWS628ssevcMjWutrbOSOWvPJHMu2yeKQ2aCv7rkhqZkOtuu835XtGu8S41x3OXsXNwktP8xp5/obW4t1NBqNRqPRaDQajUaj0Wg0Go1Go9FoNJrfN29nuWg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNJr38r1wvFnyzvgkVXj7d5faeGdU1QfwXlecG5xpEJnyEpBX3WM+tM+845vHcjleahnndGktrvdzxflmOf4r9W+fxvU2lpf+rqkmqzgvoNrqABDvPqB/9JRCtYvMY33CxZxHz9/w/MUxrqdikZrNOtt7u1jFEpWKcmyp1Gqc7h8QxjF3P/5EtRenlGs1wsfPmIzPVXvBjMZaG79UpuKrwe/u7fL48QvWtzZxLeU4slhEGMKk0VojClSkzcnhKQ8+fUDSH68iYUqVAkJI1rptTvPooOl8QRxFmG6d7paK/1nMQ4aDMXEUUSopp47tvS5BEDMY9HFdpXUzLYcsljhekTcvVYxWkmaI3Dtpuf7j8YhWZ539g322d7cAsGyH8WgMhkESK5eZ+WxBtVzEsiz8PAbq/LzPRw/vMp8MMAzl5jOdTcliwXg8wcljkSwjI41jWs0yG1sqPkkKi3a7ztMnT2g2u6oszTBtG9PIcO18Ho4NIiVYhKT5WFzXVvslS8myfO8aAjKJsEyi6UQtqmEgUU4kMnfuSdIEp+BRqJbf3ks3uIcIAW5BrXO0iJAI0jgmTVV7hhAYholhWViGet0lSQBSIGWGme+DLBWYRkoSS2SW5OvskWYJCIGZO+NI1ySNI45OBlSqyu1le2eTdmeNZ0+e8+1vHgOwtd1lY3uD8XhIt6scnOI0Is0yDAyiQLnbBEFItVLEdQ3iTDnjnJ30qFSKRIuI6WKq7ttkQrvdQUqDvBr7+0ekaYxtXkTQnZ70aXc32N3ZZDZV+7lULlMoFBgOzlhEam6j8YT5ZAEpCKH6qJQKWJUytUaZQh51dnx8TMGv8eu/+5L797YB6HTXcAsFPNdjNBwB0Ov18AsOo8GIUqWat1fENE3u3dslSpRDzQ9/8BHHB6cUPI+1DfU+aDWrCJlw5/4OaaIeuEUQMZsvePL0GQ/u3QfgN988Ig5TfN9hMlauTsPBkFRmPHx4b+W0dT6cYJgG5ycxvpM7FRkW/eGEN68O2cmfo3q9RLXqYwrBWe5EVS77mKbN/ut9PE+579SbVaLoiHqnRTF/ptXe+7CX4vV39HVnsg+5/rflt4m90mg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0/zi+V8Kby1xEON3+3erfN8VwvOcaye0HopfbuemQ9KaD0KVA43KYx60CoBvGcxtSNXRlDoKr87vez3IFhJCrCKwLlc31SK/bRyLlheDnRtFD3rdcCYOM1bjedVhcX99l2Dvm9cvX/Lv/518DcPTmJZ5boFLvMhwpYcbR/jHN9hrVRoNSSUXkTCdTBoMhpmWz+2BnNc5MSv75n/0phwcqaiqIUnZ3d4jmC9yCEqJ0tjaYBBEY0NlQcT2vXhxx98EdjvYPqeUxPO1OA9syaDSqGPncTo76bGx3CKOIaS5ocGyH2Szgm68ecfeBEge019ZYzOZYlkHv7Cy/ExGVSpVoEZIEal0M2yJLYTKekCa5SMQUuLZJsVzl/GwAgF/02dnbBBlQqah5TEdjGvUSvZMz7ufio8xwyeKYIIxZGllVKxWyJKbWqBEulOBi0A9pd7vUmg0OXj5T9820KRR9ypUywWymrq3VOTrsEUVg2UqgY1gmi9kCr1BASNVeGsT4votMQ6RQIodMpphYGHpmemMAACAASURBVKaFii0DiURIME0TaecxUEgs0yVLU5xcLOQagkK5nF/7/r2EFGT5PpUAWYZMIkR+TSYT4jQDBHnCUB7hZECSYphKXCFkBqaLJQRkqu90qXDJMrCVQEekKaZpUqtVMRw1D0yTTBh4vs+f/5s/z4t+SrPVwrHdVRzY428eU6r43NnbZNBXMUaNRg3DtJmMZzx98hyAiu8iswjbLYHSpeEXK2SJJM4Svvv2iSoUNls763gFj1fPlHir3mji2CbBAt68UGW7u5sYQmA5RX75N18C8Is//gWGGPMX//E/Y1tqv9iuzcef3CeTZchjueazgPn0iPsPNin53nK6hPMp48kEOxdvTaYBdrXEzk6XxVyJYqIoxnUswjDBKaj1K/lFWmttptMZ9UrenmUipAECpuOxWoN6HXcyJg4ThiMlpvvJTz7n6M0hk1nAxpYSPW1sNLAdj6dPXnKWP2/dTpPzvmBmmbTaShBXKpexhzP29jo4tlhuBAqlApbtEuebo1oucXJ8yuNHrxCmWpdudw1LmLS7TXbz57zabGLY1q3RU79tJNVt3CSs/DDEDYJJLcTRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaP5L8L0V3sCFwwvcLMB5lzONUIUXny8qXpRJecXy5bJo5Ca3gLfayYUs1+u875D0ujDnXc4El79ZjitbCgJWQ7kkPFhdI0CIlQDhYkzXRTfiylUXB71v93u1nSsDW7UsrpUhhCq/dC8Nw2Rt5z5f/s3/zeErJSKIwoCSkxBPIzbW7wHw5PFjJqMhdx88wM+dJsIoJl4ssDyPRS6AefHiDYvZmE9+8CmLmTr0D8OA509f8NFHd8mEEgfEScLe3ialsst+LlQwTZMonNNolDAdLx+fQZIkkMaEiRIgtNp1kigiiRL8ihLoVCo+ZAmT8RQSJViZz8a4BZdBf0B3XTl6hIuA2XTKWqeBsNRYDg+OmE0DWu0Ws4lyHImjMN+egkIxd9YQAbWaT+UHHxOHSsAxHs84OenRWmvSPz8FwDYl1XabarVMGi6FDwmz2QjLrlAsFwDYsDbwyyXC+YIkVnfr2fNX7OxsUq74PH96otbA9YkWC9a6aySZ6rdSqxKGIXES4xSVUIYownIcTNcljpSLSxqFGIZAihSR74hMgmFaCCkxXDUWkWUYwgRhUMiFN5ZbfMtd6brD0+VyyF13UIKaTGaYhrXqV6YGGEIJftKlgM0gkRm2bREHk7wsxZIxtlciE0pUlEUhhmMhk5A4Xu5nE5kkmBacnSihRyITSn6B3d112p0mAMVSmYODY87653z+6UMASn6B2TTgvDdcubOMJwHpcM50PuPuvbuqjyzGchwO3pyQ5PNd31hjMQ1YW6vzb//NtwB4noshEmzXwSu6ADzYuoswJUlmITN1L4eDEfPpjEajxsbWJqCcds5Oe3z62b2VkGxjY53T43Msc0g4V3uyUSvj+QXAYDJR7jaLMCWKY/xqhWA+B2BnZxMpJbZdIAzUM7OYLWi2qrgFb/XOiqXE9z2yNOHk6DRfU4uN7Sa2adJoKEGNYVns7m3R7TSRqbp2/+CMyXRClkiS/P4Wyx71RpWvvzxYOe2c9IasrQk8p0KlWVNjmY4pFhxOjvp891oJnH78k8/xCjZpkjAZq31QLDpsbm/RaDd59WIfgGrZZz6dMJ2GPP9WidV2H0ga62sYpnHj+/tdv03qO/FBLmIfIrq5aO+yJHP5vNzcv3bD0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wh+f3yvhDfvi+JYCjs+xKEmL1xdt/p7+UD0Wv/LY8sPOpRciW6W7Rk3jnlZtmzz8txu+vw+smvuN2+P6eo/V7IacVOVm1pZinGut/XueK9lnZuchq6vuxQCv9Hkp//Df8/r3HXl+bM3xElKGI2YzZSwYC7LzOYL1ta7nJ8ph5Dh8AzTcrn/8CG/+tU/ADAeTWi16pz3BhQ85ULS6baxbY/eWY8oVjE3hmWzmM0Z9U3yxB2++OIjZvMpjgWTcR7DMxoRhgvSJMOx1SMylWMMy2U0HhOFudtLFFOpVxlPFrx4oUQYW5sh48mcVGZ4rhJDrK01mS2mQIJACW+q1RrDwRsGvVOKuYjFsBwwDPpn56uyWsXjxbNXCCHpdFTkU5xKuptdJpPJalnrjRoF3yWOZ/gFNeZiuYQpPDAu4oncQgFBRhgu2Lu3k/drcn52zsH+EbajxlyvFHk9OuNua4/5XAkzCgUHwzIxDclskjvy+AUWsxnzQDIaKmeSTqsKhFiOi8ijxDKZImwPTANSVWbartKHpama+3J/qA3DTdwkIvDyqKk0jUkTG4FBmjvymEKQZRIhHURuS5VmQBoRY2Kby34NsjQmTaOLd4lpEAUBtmWvHH6yNAEJUZywyAVO/cGQc9OgVq2Aoe5v73zIxsY6k/Gc+WKe348qYXBOvz9cOcVAxGg4oui7HB0c5fPI6K7XKZcczEU+zyTB9y0ePXpCva7EKaZpgTTpHZ8T52uapZKtrS5xMKeYO9S011o8G01wXGd1f+fzEIGJ57l019fU+IoFfv2rr7AdG9NU4jIWAaf9Ce1Wlf5AudGc90Y0mxX6kzFBpPqVacpsMmdto0uprlxmitWMLEs5PT6m3VWCJMe1MDDo9wcMR2pdup0WQtiYTmFpkIRMUhASz/PJVu+pM2q1OnEUM5vlMVqlItPJhLv3d8nyd/Df/NXf0WyUKFeKnJ4ocY9lCL79+gntdpv7D+4AMJtNcb0Gz1+8IkmTfH9Jqo0q4UHA8m1m2B6T2Tn9wYGKTANsRyBJaG1uvnN/LvmvIXaRNwhBL8p56zdIo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9H8fjD+Ww9Ao9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqP5/yPfG8eby1FEy5io7JrLyk0xTu9zyVnV46q/yzLC43Ltm+JBLpddD2m6GtX0/j4vt/fu8JDb21u2ccXt55ZRCLLLiU+r0ouxZKtWl9E3IPL2l98vr/ndXBJucnoQSIQw2Lr/Of/r//l/AfBX//pf8eLpS44PDwgC5axhlcqsb+/SOx0wy11XDg/28QoF9u5u8tkPPgUgXCTYRkacpAQLFYtkGDZZmnFy3Gf/zQEAf/AHP0F6Hi9fvOGzL1T8T7Hk45U8eoenzGcqbiZNYuZpRrla4uiNciE5PTmh3e0SxyFeQUUlVSolDl6/IY4k1UpztaaVagXbMSnnkVSClFKliuvahKFaU5FlDHrHCGExm6lYn4Jfw7IcXM8jjpQbiCFTRFqmudZhNFLjs2wVK7O7t0urWV0uNEEQ0GhWECJ3lDEt0jjDFBZBpNbFLzlYFlSqPnHu+nPfs5mOxghiHEc5wOzvH7MIYhAZR4fH+Z1L8f0KxaKN5yk3leFgTJKkgEG1ppxYnEKRJFwghEeW7z/LKWJYFgIwhYqGisMFi9mI+to6hrl0gLmdy7E7lz8vry36PmmwAJNVPJEUBoZtEacJVl5PyjDfgybCVPs+SyVS2CRRhFtQbkOSCBGnxFGE7ah7nskIy7axpKC11srrGcRRQqlS4s/+7H8E4Ne//pY0jYnjlKfPVazZ1uY6zU6LaqXE118/AsBzCzQaDaRMGefOOMcnJ0ymY+7d2WZ3T/VxctInDSS1WpV793fV2o8XtJsVZtMuf/7v/wMAs+kU3y8w6E9YzJTTU78/ot1Zw/Ycul3V3rPnL+l0m7hegVpd7aHRYMzde3uQSdbyyKzDo1NGgyn1ZoW1fL5+oYAQEssuMuifL28O3a110lRiiKVjkIkwTVrdNk7u/pQlEaYl2dzusHtPzWM6nTMZz7HtAkLk943lGycjjZWz0NZOl/1Xx9TqVTr5fYuCCL9oU6tV2D/sAfBHf/wTKvUqfsHl2eMXAPR6QwqFAk7BYT5VsXCH+4dk8iVusczPf/Gj/H4IsiQizVJOjpXL1qA/Ya3VQghY5O+IOE549eQVpXpjFZOm9tbb77tlFNR13vd78+HONG87lKlrr8ZUvTcyUKPRaDQajUaj0Wg0Go1Go9FoNBqNRqPR/E58b4Q3XDsgvLHKW5e8fQiPEB8kEbkpFunyWK6IbIS42sc72rxpnJe/W/2bq0ex74rPunzNW+3m4716SHv58PZyH1f/3sTycPa2w+IP5aZ7c/0g2TBMth/+EIB/UW3x67/4t/z1f/xLXr96DUC7XeNP/+xPef38NYd5DE+WZUzGQ2ajE+58/AUAzx89p7KxRsW2+OXf/D0Atm0jpUGvd87dPFLp8LjHqxevsEybaX74PhqMcT0bw5CY5jKKxebgzRFRmOKXlZjkh1sbWJZB7/QUz1aKlX6/z+B8TBSGNFsqXmc2DymWTCynwGyiBEQFp0TZL2GaNnGoxBVhNKfeWsMUBsOBOuAfD8+p1hpsba2T5qKnyXjOsN8jeLPPw0/vq3UTGVgWjXqNNI5UH0WHMApJU4mldC0kSYhhGmQyo+AuH/WIJAZhCBw7y9eqyI9//gOG/XMMocQpr18dUquVmQwGnJ2eAOAXHUp+BUNAOFdioTBcYFo2haJHkK+pZZqkSUwqJ5imGoxpucg0RQrJbDTKN4BJa3MPt3ghXHgfNwoU8r/FSo2zUR/DsrFdJZRJ04QsSxASkjwWybAtLNeGTJBFSpySCQPLMMjSiDhQZcKQkGWYlk2WqrJhf8yb14cU/TLNNRXR1F2rYzgeveMehaLq98HDOwwHY3b3dgkCJRwJgoBG+y4yS2nW6gCcnJwxPDtnsVhQySOkfvrzL8gyiIIAmUdXbW2vk6YZ4+GIpVGZXyySZhkZMQVPxW09yEU5cZJi5BshjUM8z8CxTKy87PRkgEwE5+d97t3fA+C8d8ZnXzzk5OiMkyMlYvFsm/qdTRbTkOl0qNZe2Nzd7oKcUygqAZbnFxAyw3EtsjzXTCYRhuviuBZJooRf09EE23YplourF1GlUiKOItI0xXVVe5gZSbIgiRPOT1W/Bd/HL3nYlollqz0ThQOqtSpRvKBYVOKeOArpH59idjuUSqrefJ4wHg04/OoxH3+inqP17jqPnz2jVm+SReo5ioRNGMbYhQIPHt4FYLEIGfWHtDttsjxybDZbUCz6yCwjy2O+jJWw6waJprj5d+26tkYI4+J3JH8X3/Tb877oKilZRatdv06j0Wg0Go1Go9FoNBqNRqPRaDQajUaj0fx++V4Ib7JMHUBeP1R/yy3mXf9eHkJKiRQXfjS38a7jR4kAmbchQQqJFPKDZSjvq7eUtNwksrksUrltPSRvH6Bmlz6LS7OT8u3RXHa/uXC9kZe+u9nh5u3j5Ktjv+3fS9L8QF6IC1ejZTv19S3+6f/8f3D/x3/MV7/8z3k9h/XNdc57AzZ31aF2tVbjxdMnnJ8NCOZK0JDKjN/85jFbm2t4njp876xv8Or1AdPJDJkLFf7qP/2SeqXMz//wEzY2NwGYT8YMzhIcR9Ba6wBwfHSKX61RKHqUq0oMMZtNqRdLhOGCSi7GiXo9DEtQdIoMR0qIsndvj1azRJbFVNtKXGEIi+H5ANstINMkn5tJp9vm5dMXnJ6cAeCXfMbjAc+eL5iOlGjn3scPaK01mQcRX//mMQC1SolqvU6tUiKYKwcO13Solm0sC8jFAYbpIBEYwiDJBT9Im+l0jufaCHvpQpJQKHmUyjtM8n7H4xHbe7sUCx6bW1sADIdzNrYlxYoHuZDCdSVRLJiMF5yeKPeTvbsOaRpjGmqeADJLkZlkPh1RzNevutZFGB/+CrpdkKfK3UKZOAzw/AoY+bOT5kKGTEDuBJSGAQZCOd7k/dumhZQpnl8hjdXcsixFCoFhFxD53kXM+dUvv6Zar/CTnymRSBaZGI7LZDajXFMCmE61yXwWYNsGlaoSfzx/9oyNjS7j0YRhLj5yPBPL8mi02mCoeQz6QwqlGpPpgsMjdc/Xt7q0mhUKxQKWpeb29MvH7N7b46w34v6DOwAUi0UKRZtqrYRhqbk1qgWGwylPn7xhY7sLgF8oYtsmP/3Zjzg+UsIqx7GZT2cUiwWmU7WfN7bWOD05oVLxsQzljHNyfM5Jb8DObpc0VutiGgYyTTENi+lU7TXPtVDaD7kS/JRrVYRM1b601N4QWYpb8PIXTLpae5AI08H21LXT2ZR61efN/hGz6SkAk9mEP2g1OD6ZsHybPH/+hh9/cZfxeMxspgQ1nW6TxXzKWruJYaj3genY/OyPfk6/N+DkVN2PWt0nWMxpd9o0GkpM9/jxK2RmYJrKZQjg4eYOtWoZ27JIk+Uzrd68l9/dV3bpSht6+b2/LLuod/Euvt2d5m2h5W39/e7iSY1Go9FoNBqNRqPRaDQajUaj0Wg0Go1G82F8T4Q3KcZKjaG46f/yvy2C6sr//f8exxhxSaBzUW5cqsHVz0J9VgYwF4Kem446Vdvy0vjEyo3mJtHQKirnBueCTMorQpvVmJeHsVcak1fW4OLA9vLYbhMuvC344VJE1WoeN171NtcdGi7fq8tnyzf5DZm2w9a9B2zcyZ0mJhPGwzHb2128khI0LGYz7j/cpVIvU62rOJzxbEYmDc56Q7a2laDm2fM3OI7Np59+tjoYv39vF8tyODo6JU7UAX9nrclsOqPTXSPJxRWL2YyS7zObzXE9Fb006A+xbYsoknhFdSDv2qe4XpEkjijk4oA4CpnODJIopFqvASq6qlypMByMGY+UKGE0nbHWaeEWfCxHPYb15hovnz8nCCMaVSXqmI7HjIYzLNvm2bOnAHz2+aes2SZpkmLbuXDE85EywTBNhOHl620QRwHCLWDmEVJJElGu17AQzKZn+cobxIGN4ZXwa2rMyu3D5OXLA16+3Aeg1W7SPxtQr5dwbCe/vynz+YLzsz71XKgwn80JgojpZLZav/UtjzicUml1KOf37TbPqXe5edzspJTPwjKUe45hIQx1PywLZCbIRIZhKTcamTrkipBVnFpGimk7ZIC5FCTFEq9YJI1DyNsLFgHdjTYPPn7AyxfP1Frd34M0o+jZ+LnjzWIRMjw/x3NdhmMlYtnZ3uHly0NIIvrnSuC0d28b13U4PDzm4cdKPPPi2St65xOePnrJ7p1tAMIwZDpZkGWSYlGt6Uef3scr+mRpzNH+SX4/JItFzHA4wiuoMS+mc05Pz1ks5jTX2qu1NAyDSqUAqPuRZtBZazCbhUR5DplpCNY3NxFIKnXVb7PdxBBgOy5OYRkRliGFqcRLnrohpm2DzAADpBIzWYat3gmGumY5ZpkkpMkC28odb4RJhkCQrqKwkCCzjI3tHeJAPUeWvctwOOarL7/l7l0lENvYaOMUy0xOXiOEej7CIKC7sYnj2DSalXz+EMYp333zjONj5fDzhz//IfV6hdPjU2Sai8scC6NcYDYbsb6hxHmOYyIsk/l0ttqrhm2RxBHVZpMLlvsMrr9H1f5dfm++9Y5+/3Nw9X1/FS240Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wj+a2G8v4pGo9FoNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqO5zvfC8UYI5X4huN2t5r1cyuyQ8vZYqHe3eyXM6aL+9TYvuc58iBeMlBfeHje5E9weoXN9eO9xMVitwYWDz0V/F3N6dxO3etlc+f6mebwrGuVqPdXeW45GQiAlqygYv1qlUKlSaTSYT1SkkshC6o1t/GqFLFXXb293cW2b2WROKXfG2d7Z5PWrNwhLUK2VASj6JYaDATKVDEeqvXq9juN6vHy+j5O7s1iWxWw2BST7rw4ASNKEeclnb+8OUaicOiy3QTDfp7O+zng0AKB/3qdWv0Nro4ZXWLqfmJyfj0nSDM9XsUPj6RjXU+4fH338EQDfffuMyXRCs9Fm+85OvuoZd+/ssAhCuut/BECzWWVtrcrw7Ix6SzmYWI5LvEhyE5E0X1AD0/KQErJMrZVtuxgIpACnUFndkCQKOT05pdXdAGDn3gOC+YKTo7NVdFm5XGAyGtHvuTQauWuIaRKGMTLL6J0qB51KtYTnlpjPBkyHfQA8Bzbu3KdUr196zG7fz5f3xk3uVxf/zi7FqQlqnR36hy8xckcby3YwbAeZRMjc0UimMWkmsSwXa+UEFJJlAomFzGOqDMPAtByEMJCpunY0CWmtdXj5/A1+uQTAo++ec+/OJpVaCdvJnz3hsLnV4cu//4Zf/JM/ACBMU4IgxiuVWCZXzeYBbrHAxvYmpVo97+MRB2/22dreoJzvl+PXR4TtOrVGjaePXwLgeA6NVoPxaE7BV2M5PDjk2dN9Wp0GRU9dOxgOKRYLZFnKfKGcYgwhmc+mHB32qObxWLVSmSzLEEJQrqiy0XRGtVyhdz6i2VLj84oepjSIkxjXuogSMwybNIsxVq8fFS8mhbFSeAoDyARZKlavqWC+wLZsTMtd7VMhYgQSwxQIVB9pGoEhKJaKZK766YoWEYYw2Lu7u3reTDPl5YtD+v0hpmnn99Kk1W6xv39IfzBU62dLkjih0ahTr6r1W8xnmHaZaq2KyPfQo988oVAsgrRXLjjD8yH7Lw9orq1BmuZ7zaSx1sTxPAq+n8/jsivN+1xoll5qXLn24jtW3y/flb8t73LR0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0vxvfC+HNh7IUwdz4Xf5X3CK6uS6S+dAzS3GLkOd2YY+41o+8cuh65bv85PQmUY7gYr7vGvdybFfHk61KllE6qmlDjSgv48aIrdvmdXXtbxLgXI8Au7ENbhZSLMeh4lYuSgwBftmnWFIiglqjzmI2ZTrqQ6b6rlSKmJbNdDSjlh+gm7bDfDqh0WisYn2iOKHdbhMEIa22ikWq1avM53OSLCWbz9QoMkljrUm7XWMyUmVxEoJhMB6NOMljaeJIHdoPh0O6eYTP6ekZwWzOSRStBDrVRpkwCNnc3mCxCFRZ/SHD8wGtZn0llKrVSsgsZmt7k70H99RapQmLxYx6qUizoeZWKLpYjkeza2Na6tokScB0sAsF0lTFBBmGgchS0jTGzuOTZJYigSxNSHMRgekUsN0ijhuRpREAaRwTJykZJg8eqOgv2zaIwpjpJCJJ1DziOODsfMxiPqdcKuU3zUIa0Fxr4dq5OOrhJ7hFP98H79olig8XB1w17SpUahgnNtFMxTvhlyDOEPneAjBMAzCU+CVbPpeOSkWSGdlS3CAlwfQMr7pOvFBijWbdJwnnpGnGr//2VwAUCzZnpz0+/vQBwlX71DEdLNvln/x3P2PUP1f1KjXanQb/4c//ir1dJawqmmqPf/PNI3qnpwD0eue4rkvvtMfe3i4A09EAmcHTR88xhBKitAoFgllAOJ8ynSwAGI3GOK7gB198vIoIWyzm2LZBuVTi1fNXAOxsr9Nq1wkmM5I8VkqSkqUSy2QlYAOB61msb7RXAiyyFGHb2MIiy/caUiLJSJIMy1I/KzJNMQwDmcWrd0OaZkqQQwKGlfcAcZaSZTbO6tokF+BJZKaELYZhqti4LMMyVb2FjKjVqzx5+gzfV8KbVqdDNJ/z4OMdhsP8+Q0X2HYRr+AxmQzzemscvjkgjif0z9W+39vbJIklmUwp5JFe27sb2K7N4GxAGKuxnJ8PmYxGLIKQzlpL9RFL3rwIyIRgc1dFZpm2vVrHm7n6dr9931+KL1x+WqUmfriYRotuNBqNRqPRaDQajUaj0Wg0Go1Go9FoNJrfP98L4c1NepqbhB3XDw3lpbq/vwPFt1UBtwtF3s9bY87HepOjx4193CY2Wq7Pzb3eVj3vz3ir7rvmJ1fV5OXT3tV1V10drpbd1K5cNfjha7psz/ZcbM+jXG8QRUr8sRiPyaIZfqdMkilRwuZ2Fykljm0zmSlRQsWv8ezpC7a2OjTa6rA8RTCbL2iuNTHzZTk7GYE0CIKIYlkJEKLIYjyeMRmNefHiJQDFYglhGBQ8B2GoA/lK2afoF5nMpsxyd5G2XaHeLHPeO1vN+ODgnCScU6nXOe8pt5wHHz3g8OCE/YMDokQJAdqtJsKActXi6EjVW9/sYgQziiUHZC6ysQqkWUgcLZD5tdJ0lXOIlORGIsgsAUMwPB8hWQoappQqdUp+QQl4gPFwTppCGIYcHyrXn0qpSL1RZzIKePzkNQD7Byd4nsvO9hajsVrn12+O+NGPP6e2scbarhKO2K73YYobeOfeeR+maVDrbHB28BIAz7LJkkyJkPJ9LxEgMqSUxJG6R2QZpuNi2i5JHORt2cRxihUGK9eVVrvGeDTk5PiY3d1NAM57A56/PKRca9DudFQfXka70ySJE3LjFJyCx/Nnr0nDCJGvfalSA2GQpfDy2QsAqpUaJb9Ip1Pnq1//g7pYZrx5c8TTJy/ZvbsNgGHcx/OKZFnKTu6QVCj6zKYznj55ThSqe+lYNp1Oi3a7Sf9cORAlaYpp29i+v9qTaSoZDUfMpwmtrhKS+UUHy7KQSIKF2ldKhBZT8guYYukOZJEkiXIGyl1mhGGCTNS7bek2BJiGiRTKLQnA82ySTAmjxFIUaJrILEOmKcLI28uUGCeOQixHCVuCMGXcP+P+3W3OcoHdo2+fs7bWwi8bOLnwJY4CkjSlWHIZDlUfZ70Bk8kU07AYDNSz1QlaFAyLOImIIjXfF89eYdgmzWqFwVA5ZdmWgRQGYZjw4qUSM33+xUNG/RGLyYRpX4l7/Hp15ar0obxr318XJqoyLabRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaP5b8r0Q3rwrtuid9ZeOMLcIY66USIn8gAPKZRVxXZDyoYebb52MXnW6kcs2r7nHXB+94APX4FIb1/u8GltyWfCyJONdrJoUUl2WyQvRjhAX118by3XnniuDeMcYb7r+YizXYqkME9dTohjHLeJX68xGfYJcZLOYDdjYqLEIJDt3tgCwbIv+4JwwSgiDEIDDg2OqZZdKtUSa/H/svemToE+A0wAAIABJREFUHMeZp/m4x5H3USeAqsJFALxEqlutVquvsZ4d27XZj2u2X3b/2rWd6UPd6pZaIimRlEiCIM5CoVBVWZVXRLjvB4/IjIiMzMoC2Tswm/eRiZUZ4cfrR0R+8B9+rxNDXL/hc3pyxng0Jqy78U4jS70R0mq3aaZpfXZ2thmcnREEIV//0QlRdnd3abZbxNbSaToHDpMouv0NFCecpg4c/W6H6QgePXw4S4cTTWIUoJXi/PQUgL3ruyQ2oV5ThKnrz3h4yuZGH60sKp2XeDLEGINW1rmKAEolWK2dgMFG2cRhk4hON5ytRxJFJNGEaWzxfRdLq9vk0VePCHyFTp1JxuMJhy9fcXj4mm7PpZr65utvaLdb7Oxsz56Ze+/ep1FXbO8fENbq8zVcsrZV68uSsmXB2mJdRbu/TZJeG7x8Rq3exKCxqdBDKw9sgheEs9RBKN+N08QoXUunysMPGthkQpCmbVIqBB0Q1ur8+tefAVCrhXz08ft89/gJT58+A6DbavK3f/dzzs7H3LnrxEdRHLPR7/JXf/MzppHr9/mzZ9x/cJv33r3H6bETf0wig1YGhcftd+4A0O/3GJwck1hLJ3Wj+eoPX7O5ucnDhw/56E8+dHNhLMZaktjOHuBWu8mD+3c4O7vg/nv3AYinY6LxhPE4wli37wOVYPFoNDWNhtsHYRCQJBFKGRROyOMHHrV6A5tMMWleqcQYDJqw3oBMPGMTEpNgkggTZ646HtMkwQ9CrOcETlp7BOna2DQWa9IUf0nsPqfllPKABJPOn00itDIMTs64cd25WFnloRR88smX9DqZAxaMx2Nqw4Df/Or3ANy8vc/p8QlRPJ279CjNH758yJ/+5H3OL9yzevPObYbn5zQaAe8+cAKnv//v/0ro16iFcPuduwCcnAzo9TpMLsY8++47APZ953RUJb5Z3N+qUkSa399Vmpx1haFWpa9ypWZZ3t5UUCoIgiAIgiAIgiAIgiAIgiAIgiAIwhx9eRFBEARBEARBEARBEARBEARBEARBEARBEARBEMq8FY43c9eT1a4yVaVmn0spkBZaU4rF5Ewu3ZFSpX/1X+FAsy4KZs461trFEWVpmfLdKbVQrmomLEt8Ypa4FiilZimGsMucEVTpr531VDBesC7O/IiU0q7v9ZavEJeL4+qzXDUGpSxBGNLbvUE3TWkTjS+Ik4QkNqQmGpwPBvztX/8J09gQ+s6B4u79myjPMhyMODtzDhftTh0/CHj18ggvTXNjTUKt0eL41RM2NvquQS9gMolQSpOkIf3xq6948MFdNjY6DM7OATj56pROu87m7jYXI+fU0Wj4jGuWm94+44mL+fDwiMPnhwR+QJy61lhr6XW7eDrIOfJso4jQ1sMY59xjpmN0c4sonjBJUwLVmx5hrUU0HqDT8WoUSRKjgzo2cS4kqhYSRxGNVpN4kqYTmowZDccMzs6oN5xzT+B7nJ0NaLWbM2eS3d0davUajUZAt+NcYQ4ONrnz7n3qrdbC2q27xtnYl91b3QD0Nl0qMd/zOXz0NbVGi6Dm1lKHIdYoPO3j1VyMk9E5WluMSfBmLlU+Ya1OHE9mji0mjun3O/zFX/05z58dAdBs1mk02ly/Dlq7useHh/ziF7/i7OSCi4FLZ9Xf6NPtNGj2G5yPnKvO9s4GLw9fg4Fxmtro2o1dvv3mCWdnT2l13Nw/evgUYxPG0ykb4ZYbhz+i3anz7vv3uLHvUlxFoyGT6ZTjOOHG9esAbGz0eX18wmQSs7PrXGGCZpNodIZqBAwusnRlPt1unTi2nA/c3g03QHs+xhjCerqHtE+cJAUHLWuNc7EhdRQC4nicrpfC4pyPkmhCYiygUelD4/sWrI8XBmAytyYfq0kdiDIbMovFENRCxhfOLafRatDr1jl6dcpodJGOo00QBIyGY8Ig/YkbJnhhjZOTE3Z2Nmfrdvwq4U/+7GNu3HDzd3Z6xp27exw+f0VvewOA3sYmpycBWvu0G27dfv7zP+WT337J7vWdWcqsZJygFERJzPDYzd/G9gagaHQ6Lt3aJSzu76IDzpsY1MzqZz+RqfNN2rwgCIIgCIIgCIIgCIIgCIIgCIIgCN+Tt0J4U8q8tD4VKY0KSWfWOMC3di7kmDWn1Cy9SapYqUwBcml4S65VnXUuTbyUS12l0s/Fg1i7PNVWvqy1K9OKzItVypqqYy+lrsr3NxvPQuqtrL/0QL6UOmhZjIX0VVXlVJqeS7tD8FqzgxdPsdbiB+6wvLPVJ5pGTIYDkqkTG3z72T/Q3+xDbWcW56vjV3g6YDKZcHzqRBN37t7iV//8a4ajEQd7OwC8fvmc2MCLl6/otbNURB4vXh7TaTYZpqlqfD9gGCm8k3Nu7O8B8OLxM85HEd3+Fo/+/bcABH6NxEzZ2drDSw/zwccmEZv9LplBlRf4nJ+d0e1tEwZOmBF5AxJjMcaj03dpoOJoRDIdAR5emj4JLIEXMh6fzQ7fbTIFYzFxwuHzVwCcn59zdnrOdBpRq3cAePbsOV99/ZDzwSn7e/sAbGxusrHR4drOBnffddf27j6g1mhWruM6XDX9TXWqOjdX7f4mYb3B4XdfM7pwa+npAJQlnkaE6di8JMAYAxa05+pG0xFaGcx4iAmc6MQQ0+816XS7/OVf/QSAf/7FLxlNJkyjhJfPXwLQ67U4ONjjd8ef86tf/jsAe/vXefe9dwjqdV4fHbuxXtslSSy+7+EFTpjxq3/7LVvbu/z9L/6ZZsO9orXRfPDhA3ztMxq5dGrWwL//+nfs7GwSTZ1g5YvPv+T6jX163TaPv3sCwOnZgJu39uhvbuGl47gYDNCqjvIVN+84gc4Xn37O9m6fwPOp1+ZvJKs0eAE2TSFljEJpHxNHkIpsrPEwSYKxMUniBER+UMcYg8W6uQWs8lGewvc9ppETjWkPVDJGJZpZDiSduNR2OsCaVCCWprVSWBppuq04GoEKuL7f5ez1mbsWjxieX3Dv/m2+efgtAB9++D7WRCi1zSQVv+1e28LTiuH5dLZv6vU6jVrIhTckmThxjw01qJBvv/mOjb7r9/RkQNio8+jJM+7ecans6o0G48mUySQhSB/f8WhCLfS5iKa0t3fSeQlzvzmq8BdYuGdt/v7VlTI2r4xUFISlV/1NEwRBEARBEARBEARBEARBEARBEARhkbdCeKOUznwTVpbTFYKLvAuMa8s52+TL2fS6QuU0ICWxDXnhiCJfW2X113XsmAeDsfP6uY4WRlo+CJ3FnxOzuPh0GpEp1l0W28Ih7rKeZyEDOj1kN/k7gEKX+rGlQ9xMnJM3wVm+qpr5OtgKEVHu8L80juox2bmASIEXBKm4ZF63Xq9Rq4VMx+7Qf3h6zOmjf6S1sU/n5t8AsH3vJtNJAtaSvHKuJn/4/A/UgpBr1/fY3nGONwe3bvGLf/ol/V6HWuqmcjG64OT4hH63z3jsDvTvvXeTyfCCIPA5e30CwPn5gIvzCe0W/Pyv/8r18eU3aN/nZHBOr+MO+P1QY7QisZpms5GOTYH1GE3HtGpOOKLrPZiMqbcbs/kJtAI8lDGzdYvjCJMYPF2HVMgwOT8jSRSD1yecpq4/X/zuK54/f0mt3sCaUwC+/uZrWu0O9975mK2dXQBazSbNuuK9P/mAG7duuVg8r/JZWSZeu6rQJqPc1rI9EtYb7N37gItTt5bHT78jjiZ0+puz58YLQmycoJQ3c4lyQg8D2rkEAejAx4sVyhh+8rMfAzAcnvO7T7/k1fEp/V4mUhoTjacMBuccnzj3k2kc8+TxU/7m7/4T164515VpFLF7bYtJlDCapH14NX732Zfcv7M/E6wcHw9od7pMpjGnJ060c3R0gtKaWr3BybETnbQ6XQaDATaJefDuXXet3eTo1QlngzE3AyeOevToBb1ukxsHNxieDwBnNtNq1t1eTgU1OgixSYJJEnQqZjI2QvkhCj8zqMHzArARNpmivdQlSnkoD3zlY3TqGJRYrDUYo/FSkZzWHlppkmg8Ww9Nei2J8XQxI6Jz3nKOS0mc4PkeJokwJkn7SBhcXLCzs8Otm07o9pvffMaf//QDtOdz48Dt3fOzc8Djzr19xmMnsplOY8bjiGQ6wU9/Hf/4x29IjMcHH9wmMS6+3evbjEdj/vt/+wXD87kQqtEIaDbrvDpyAjb9/AWd7l2UsdjUsYrAzIRhszHl9m5xXxedxy4TJ5aFjMVO5m1m+qYKTzZBEARBEARBEARBEARBEARBEARBEK7IWyG8WZfKA8c17HKKB/Hrlss+5w9IM3eC9cUC1W4c5QPRxTFkRjH5w9Q3cT2YN7uYPirvbrPQh1Kzbub9Vk9e4W4mvrl0foqSqXzxvNNDfs4LfS7M11zEM49LVc6fUoowTZ/0k//1/+TR7/8FrGb3phMqNNodPM9jY3uT99JuPv/t53z15UOm0YgoaQNwMZpw+84dBufnDIfu4P7OnTvUaw1OTk7Z3HLpjs5eD8DGKH+ejqnZ7tHqbnF0eMjLYyfGaXdaDC8GDE6PuHNrfzaOjV6X2HpE6cG9tjF+UGM4GBGPXL9oj2kM/Y062jjBj/bBCzyIDTpw+9jGirPBlLAeYmJX7uR4yosXh7w6esWjb58CsL29TZwkmNEEL031s7e/z/sfvk+9HvLO3VRkoxPufPCAZqc3T9k204zZJc/U6rX8vkKcKvcQrTWdvhNcNNsbXJwdc3F6zOD5IwDi6YRGd4uw1sJEbk6j80Os8tBhg7afip50gB+EoHyyvfl3/+U/8dOf/oRPP/2Ss1Rk8+TJE168OGQcx9QbTkT1/PkRp6cDrIL/6//+PwDoBE3Ceo2Tx08IUpejwxfP2b+xzebmFmcnbm+MhjHnF2P2b+7z0Z98AEA9rJFEEc9fvGSQCqbOvjnjz//8z6jXPXZ33f779LPfMzi94NadOzx6+BiAdquFSTTHL0/49W8+A+Bnf/YhjWYDUKTmNpg4ITEWZediF6U9MAaTGPzQOSl5YQDKx4zBpoIamyR4vk9iJ2jfXVMJmGlMZGOCMEv+Z1Haw9N1574EkCQYbZyoJk3z5QdNjJlgjcUPU4epusLGU5Tv02o6wc+zJ4fcvrVHTMAn//ibtLkJRmniaTwbG0rx+uSU1ycXnA+c+EhbSOIpd+/d4sXzFwDUag1q9YBnz0+oN1wfjdYW/X6Hv/nrv+Dv/+GXALz/3n3a7SatdnMm3VTacH42oNGsMTx1Yhw/alJvdPF8vyDwTOIYE0UoP02JphWeHyz9zap6tla5vFW2sVYpQRAEQRAEQRAEQRAEQRAEQRAEQRBWoS8vIgiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAhCmbfG8ca+adKLNV00sl7KZZalv5mX1YvprdZM9QGXpVrK1ZuVnvdfdjHIx2tzbjSr4pmni6oaY7UbySyWBVeZivEV86AsXi+lylqMsTqe7N46xg1ZejAAm7quqJlbjkpTBpXqpH+b3W3e+4v/nSRKOE9T7tTqdbRWaM9jnKak+rO//ilbO5t89/AJ1/d3XF9JwqOvH5EkAdPpOG1XMzg7ZxIlxLFzK2nUQiyWxjji+JVzJokmI4JayNNHj3j85Lnr46c/xdqI27f32N5xbiVaxfhBwOnxK2q719JrmuPjU5qtBlGUrq+yBIEPSczxa5cayvMUnXaHaRTRaLk5iKdTzs/O4Nzn4sKN7ezkhCiK8cMGN/Zcap5vHz6i3ekQhCG9rkuf5PsemJitzR12b7hUSTsHN/D8sDirM9Okarenqn2wPNXOFVlpaeX+eEFAZ3OX7tY14ukdAAbHzxmevmY6Op6Np7GxQ63VY3Ix4Oi7LwDo7d4lbNbxfZ8kMWmXlk6/xc9+/mM++/SPANy9v8dnn37BxfmI8cjN87Vr23z1x695/OQp//xP/wjA//Jf/yteEHL7zh6poQx7e1tMJoaLwRmd1CGp3mrwwYcPMAZ6GxsAJIlBY6k16hwdvgYgjmN+//mX/N1//muyrdHf2OXOnSatVoNh6pBkjeGX//IbPvjwHrdv33DjbbfQXsB0PERZ51BjtEKZBOX76NSRx+BhkgQ/rKFS7eZkOMTzNdaA9ubPWxxHxLFFpa5JytMEgUuBZoybF5MolBeCiWaptbTWKBOhgjrGOhec2EzwlIdNEmzqSqSVxnoarb3UrQf2bt0iNopHf/iai/HQja2mOT+b4CnD2WuXlmvvYJfxaMov/uGXdDtdAL799lvefe8e1/f2aKSuWN3OxKVcQ9PfcG5XJoLnr15x7fouN28fAHB6esHF4JxGs0l/wz0zcWQ4e/2aen2XKH1HJNGUyfk5nvYYjVyaKmUtJh6STCP8musjbHXZuLGH5xXfX+s8H6vKKKXE6kYQBEEQBEEQBEEQBEEQBEEQBEEQfkDeCuHNXFjivtt86qXcgfwygUk+aVH582V1q9J12IJYxMzP8rM4URhrC6KafHqlKqHJKv3IPM58naLYphxXPh2T+7xsbuaHtqpQvjjfVbXzZ7NVc5jN9cIhbym9k52rhHL1MlHQZWnCbKlfl1IqE9jMyqVCG2UXY7mkA5TSeKGi0+u5HtJUOZ6naDazudLcvn+L6/vXaHZc6qB4MqXVaqC0z2GaluaLT7/g2o1d+ps7DM6c8GZrZ4PB2QUGeP74JQC72xu0Oy0++PGHeL7ro9nwufbRh9TrNaZTl15ne3cHP/Bp9zqzNfI8H9QpUWzZ2HCCgYvzAdoPODs75yIVEGm/xosnR3z73RM+/PgjAMajIcPzcy7OJzx+7GLe2dkgQZMkMb2+a+/a9V0m0ykHt/a4eeAEP0kc0d/cZP/uTdrd7mz+qgVVy0VbVc/H9xPbzBqhtC2WPvtZf1mqpI3rt9m4frucAS2NE/r7DwA4O3rK0ZOvqTc7NLqpOEp7KOWhVMxHH78LQDwdMR0OGE8M3XRfPXt6yOHhc+7dv8WHH7l0UdZoBqcDWu0QP0j3QatBEMR0ujfYSVzs1y8u+Pbhd7SaLY5fOeHIkydP8DyPg5sHfPPtEwDu3r5Bv9d1AhjtUhZ12g2Ojk74wx8fcj1NP7W9u83PfvYRW9eu4aeCGotiOp5irUarVLVjDVE0pVFrE6cpn6wxxHGEqtfAJLO6eCGKCdEkFfdYjfIUxoIZu3Lj0RCtFcpamu1UsKVBa58kmZCZsCVx4tJJGTsT92DNPD2eSddUJ6A8l6JKu/ZOX5+j0Gx1u9zed+nFnh8e89lvf8fGVo87t667NTIx125sEsVT0img1/+IbrfFr//13/iTn3wMQH9zk6OjV3z1x++49+BWGp9he7vHNErY3nZz+vTJU7rdNi8Pj2k0XYO+Ujx9eky702VzZycdx5QkmRBHisBPU6GRoGot4oZHs+32S9BqofUPp5Cxyr13y69IQRAEQRAEQRAEQRAEQRAEQRAEQRC+H2+F8Iay241SqY5kPeHKrA4stUgpH8CXBSzrMBP0ZEKYJeWu6nqTxbYoEFg3xpLUaJVVzBIXkoyZOCJftiSYyJdDqUK5uXtPsf0FZyGbym9mVYtuP+WxLS6vYvHTkhgvxcmAMkePeVuQCQGUAj8IGA1H2PTQP6jXuXZzj2iasH3DHarfeXCXTq/D6etzfM8d0vtBgIkTplHEZr/v2kvGDIcXdLob2FQg8eLlK7Z2twg8RWvTHb5PxxFhvY7nh4yHzh1jHMcMhxPM4Jzp2LmB9PpNkmnM0dEZxy9eAfDk+SHN0GM4HvPo60cAfPXHhxwdv2Sj36Pddq4ch89fsLG9SbfTp7PhREU7+9f45//2T9TUhJrTpnD7xx/R7vQLjib5zV0Q1JTVb6wWwF2VgkguczsqxXPVdpzLU3WZIKwD0N3Zo9Xb5PTwCacvnXDJD+o0mk2UBi+t7zfbvPejD8EmKN+t78bWBvce3Gbn+jXqddfe+TDmX//ll/zN3/4FOnTltOcRBID2eJX24fk+vX6XJE6w0wiA/b3rfPH5V+zuTnj65BkA17f7WGsZnJ1x0Hd7aDLyOH51zNHRMdupW85kPGRzZ5t4OkUF7mfAmhiDxQsC8Nw1nUSE9SaTSYyJnHgmbNQJgjrxOMLM3gNg4il+4KM9J4CJpzHT4QVJYohjV246GdPqdPG8GJ3OC2bKdDRAKTXT03i1Bq3+FiY2TFKXKF+FWBISY9E150ZjkimeVhgUw8G5q+tp3DPtc2t/H4DdLbdvj09OePL0EIBmo8n+zV3qtTo2FRC9OHyFSQw3btzg/Nw9b1pZnjw+YmtnE6XdvGxu1jkdjPj22+cE6aLv3dhGowjrDSZOo0SiodPucHZ2Rq3hxut7Pr6XoDyN57mHa3J+Tq13jY3ta/jZvCgWhGTlfQml99zCc1d8rzpnuZxjmljfCIIgCIIgCIIgCIIgCIIgCIIgCML35q0R3pATbFjrBBl5F5kCFSKbssOKUotHit/HVaMybU7pe2aWsc65f+E4tEIQ5JxpNPNUUeX72XizzxVzUVGeXMkql6CZOKI03vI1lRP3lJ1MquKkJLqZi40WZ6S4vAqt5+m+nAOEq1eQ5ywY3VQqKCrXZyYKyokISOfUrQFp35rexmahT8/zqdXm42w0GlhriKZTksSJYkzoUW93COtNpn0nGBidnrO7s0E8jfjwg/sA1GotNjbbBI0GSeTEFbGCsFbHGqg30/nWPl6a6qjddUKZo8NXRJGh3gjppzF+++g5tXYT3/M5fe1SEdXrNW7dvMWD9+5x+OLI9REl3H7nNp1OG2WdYmAynfBf/re/5J33HtDu9dMB60XHJYVLI5R3Y9KazEPpqs/gZeKcqud8vt+rRWXlPsv1XLmy+Gt+PT+KMKhD2KDR3iCeuDRGg5NTBkdPiCYXgBNv1VpttOeTTCN05AQc/baH6m8T1OvYNE2Vz4Sf/vgOoWdJ0vRJnvbBGobn5+zsOKGMVpbtrR7Pnr7ApEqoIPT48ccP2N7dZfgj57Rz9OoV7777gCSJGaTOR9PpFGMN/Y3+LOVTb6NDEIRgJ6jM3Ua7lE1xNJ6JP6wO3LvIWMK661eZ2DnR5ByGTJKgfIVJYkifmSSK0Z6P0govdfNpNBv4vo8xhng6ScfRxPc10fgcnab56m3t4vk+hNBVLv3ZdHiBtQmYmDh1hAKF9uDsdMDxsUuxtrnRJ/B9MAle6oLjhTA4O+f46DUf/+mPANjo9zHW4OkYHabldIDvKyaTITvbTrgUxQmNuke74dPvOaen4XBIq90mimIOUledzz77A6H22N7eYDBwYiGv3qDZ7YEy/PbXvwfg1jsH7O9to70Qa9N0ZX6LoNbA9/z5bnsTjdpsr2cvyLmYrPAY2KqLgiAIgiAIgiAIgiAIgiAIgiAIgiC8CfryIoIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIglHkrHG/yjiYASmWOJrl/8p931Mj+ui/p7XlZrfXCtWUspECi6MqxLL3S3JWgmHaqymknn/qpKqKZwUrOj8V1uzz+Yoyu7iy+zJ3G2nmaqFy9sguNyt231hLHMUEQ5LKVzC1oii4zuRQ/+X5z91Y67hTmPe9Akk8vVZVuSxWMGqocd7LvLn1Nse9CGq18rLn2LAasWow/t775udQ6l/pIKXr9LodPvgNgOjIcH75gMhxQqzknkWZ3i3qri1aWsD1K2/Mw0wGJTgibnbQXz7mQmIRpmr+m2Qx45/5tjl+8ZDxyrib1RkAttDTbNTY2nCvH48ePAWg0a/TrzmnnoNHk2dPnPH70mN7Wtmsv9Lk4e009VNQbzrHl9v136O/s4PleKW3Z3JEpXYkFW5vZbL7B87duKqoql6hCDKq4HlX33P1i1Iv9QClf1uyjn6Y72rjWoLezQzSd8vybLwA4Pz6k0d7EGMV07NZocnFCHCfs3HqXWsOtEcYSBjXGwxFemurM2ASLwUYjotSNRgchmIjtrd6s32hyTr/fxFMeH35wx/URx9TrAYPBBSZNnxQlCffu32Fra4Nglk3NYJIIrX2SKHWeCUKstXieZnx+7MavfbRfhziepWJL4gRrLFaHZD5lNklItA8mJho5dyV0iBfU0DogiVwaKKMgNjA8O4LM7cXzsfj0rt2gt3MDcE5S2doFjXpaVzE+fYXCMJk4d6DA85liSRLL3XduunKJZTAYMbgYsr3ZBmC7s02/32b/YA8vdL8Pr1+d0WnX6fS6fPLJpwA8f3rMyetX3Ly1z9GRm4NOt8+duwdYHc7cfIIgpNFo8sXv/0g9cM/0j370Pq+PT5lMxpyeOcebnd1rKE9x+uoFN/bc2Pr9DTzfjUmlv1VB6OHXmumeq36flal6VrI0eLkdXnDQyd5/YnQjCIIgCIIgCIIgCIIgCIIgCIIgCD8cb4XwpooFMUkOWxKTVKdqqj7Af5ND/jUCrTy2nwkzrK0UnhSpMh8qlsyn16kOJTf2JWMrxLGkjO8v2RYl0clCKjClCiKjrI9l8Ra7L6YQyo+nKlalqoUdxph5fBVpi1YdZhf3kSY//wsio4WYbOFvq9Pi7nvvz67FScx0NJkVC2oBflhDaU1/JpgyTEdDXn73EOW5tD5JFDMZQtDwSc/3iaYjppMJYaghceIKv64waAIdYSZOyHPn9i7TSBOEPn6quJhMYnZ2NxiPLui03eH/3u0dtm/coNPddEIbcqInm0/O5SRaSuXHvbgOVXtsmRCmKg3UKq6aLm5Zv7b0TFaVqSKfpmpe1qCUJqw1OHj346wgnvawSs/mx8QRZ6evURZafZdCKkkSVJKQxDFRlKYmSwyeVoTTCcpzix42miRRRDSZMB07EUscJXh+wCQa4Xlu3zd8hR94bPTbWO3qDi9OqYUuJdpk7EQ2Gh9jDb6nCMP6bBw27T9JBRyer9FKMRoPMNqJhZSxxNMpSTxE4cRgSRShfR8vCImmw3QKzvCTHtaCid2erLV6BI0mTb2LVlmqOujt3KDR7c4KH4UgAAAgAElEQVSELZbsVTJfoyCsMTQWFU9oNBvpArs/zVbDpbkCtFej0fCwGy1MukZJnKCVRnk+k2E6B1oxniTUGop3H9xz/SZw8+AGRmt+//uvALh5a4+9gxv8/vdfsXdtJx1Hm7PTU37yZx/z9MkLAL765jGNekjoefi+G8fLoyPuv/sO2lN4WdpAa5zgRul5xic94fTwOTu3bi/s06o9uez6Ymq3Zfd/gN8+QRAEQRAEQRAEQRAEQRAEQRAEQRCAt0x4U3Q8UYAh59WS3i8fGJYPz9MaOfeVqj6qRB3rOgxUHuan/c0cVSge7pdHVh7FzOXnkljWFY6UBTCzuuUygDVmwQGm6mC38qi25PBTJaxYR+CUlSvWz9Z7+TpSult22qmoWH2QXVFmmTtRMW6w1mBtXjiVxj3fCPi+j98NimKx1OpI5Rrzwhr17iZx6m7j+R4Yy/DkZCbNmo5GXJxfEMcjaqF7hKfjCK2bRNrgpU/17t42EBJNJzP3E8+D6/u32Njdod3puWthFpcqPTLZ/Ovc9/wzOZ+VskiizGX7ukogddm+yYtg8vUuK5eJssr9riPqme8vIBNS5PC80ivV2kxLgg4CNnauFW6HKwWGhsX3myUaunUbj0bE0ymDsxhlI8CJZqbTITaOsIm7ttFUBHXF9PwYlYpx4niI52kSv0ZajChOCDwPq5K5KCYeMR6d4mmfZHKRBmGwRhFPTp0zFE7sYpIR1hrqnU0Amt0+tWYb7XsEQZhOgk4dyUqiNTvzzsnNrxPAZVOjtaXW7jJ4eU4tSJ8Pr4YlodGoEU2jtJzB9+v8+te/Zf9GH4Cbt+4wHkVoHXN85Bx5fvPJ73n3/j0GJ69Bu3XzgxpPnh5y78E7fPijdwGYRGP+3//n73nvgw84OztxfQyHdDttkiiiUQ/TPvZ48ewZw9GIsObETNs7PabTERtbXV4/PwTgbKBp9XoEgZ6bifkevomJxmPCRqNiLywKE1eT9zHLv0/dX7twTxAEQRAEQRAEQRAEQRAEQRAEQRCEN+WtEt4UqRbYLAhmLCxLPZRn/QPL5ZQP62cCn3nHBQFLZX9LnFpmBiOZ+cmaYqAqqqUqFfGs6OOya0sdhUppvvLOMwWR0hX6dW2tnoeq1Fbuc1HmtEp0s+g0UTXOgswot5TFPpyIKPuuF2q6xV4YBUEQsL2/h43dzTiKU0GOj87GliRE0ZTpeEQ8TdMEhQFBrYHv+2id5hPSFmtU6gKUWw/tgbLkJVPZeMtjuJyS+03p+vL1vFxEdhX3qkujvMTNZt3xFtuZCxrme61Y1v0txlscm6tfFUvVq0IpRdhywoxaq4EFNvaukZkQGePeidbEjC+cM85kNCKJE+JogjXOVccmU6w1KDRx6pqUxAlB2IXEolMBkTEGP/CJo3g2Ou2F4INv2kwjJ7zp7W5Tb7QIm228sJaWU8yliHnpYf7v/LVZ/c5i5rBkraXWaDBudLCxSzWlPIWyYOIJvh/M54+Yg/1tAk+n44h4/vKIZqPB4eErAAbnQ5Rn+fqbR9y6fRuAbreFr7Y5Pz2h02mmk2rxvBCTxHihm/t+r8XDrx9zcOsW3z1+kc5fxM61HaZTw+sTJ9AZjQ1xMqDVanF84lKOBd454+GQO/dvE6RzpXQITDg5fM72wa10/ryZGDFLn5jfH9Us7sHFbb+4VwVBEARBEARBEARBEARBEARBEARBeHOq8hsJgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgnAJb6njjV34nEtetJhCiZJ7R8kqYnbH2ur0QWumRlrLI6DUR1VLC/4tmVtLRbk3YcGJ5xIucwPJt1tw+1kokDp1UJxzcq43sNyRpyoWa5eVLKYhy9d3oeTcSPLtl/q2FSnJLNmlxdRmbhz5kouf7cyFadEBpjyexTLK/S99MjPHjkI5zyP06oS1sJTCzDmL5He+0uBpr2JeVsVRdJmZ1523O69vZmPOnH3K9fPXymme3sTRaVndZSnSVrWR+3ZZ6dzfaseQZWmr1nGKWh7X5REp5nYxs7RWfkg7dCmf2n1IkgRrDMa69YonY6bjCzR6Jr+0xmCVj4mSNM0VWGMx1lDvhiSJuxYEIUHo4dfqKM+5KzmnpUUdZ/Z4Ffe9SfdK3qXKOgeehb1hc/Oh8DyfZq/P2UvnMhMA2g8wJibbi0p5eEqztbvL86cuvdNoOGZwNsAk8Oq1SzX14ME9lNLsH1yn2XRONsYmoD0SE/H61DnUTCcT7j24x5PvvqXVdqmrDm7vceuuIp7G3L3r3HI+++R3jIZjbt+9jZ8O9+T1CTYZ064HbG25uspOCetNLs4u6Gy4OfMVhPUW05MTRufOqajd680eumXP03z+MhZ/ReZVc2nSvqf7myAIgiAIgiAIgiAIgiAIgiAIgiAIc95K4U1lypHZB1t9Py8UyNqZ53hZSG9UlcrmsnQz8/PL6nRRWZlyfAtCj6rYlZNNFOKbF8g1VpVKZDHN0n8El7a7RPQwE1xcuZ9KmVTu7zot5lM+uXUrC7PKKcKUUliT3dezdsBiTFXqlmXxlSKpSJll8uvHfN0LCZzKApM0FotC526tOpxfxWWpn6ouL4pxmIk18mWWCVBWxXfVFFKXfV5VpyDQUnap0Ku4Xcr7fPG9sU6qrMvIBFxZfMvLLX8XpeGhfQ9r9Ww3h2FIo9NDpfsoq5GlNirPkVIqt9gWpb21BX7FIvP0W9X7ah704py6sYT1BmGjBUAcTwm8BgqDMS5llsGgtcfmRodW06VyGl2c895775DECZPxEICvv3nE/Xf/kmYj5FWafqrearK5fYfxcMTF0KWzev3qBGUMw+GYH320B8Cjrx7Tatf4w++/4p37dwDY27vGw28fE9Rr1Buu35u3rnP08oivv/mOze1rAGhrOHn6hM3NDq2uS2dltAJPOTFdFOVmKht7tairYgZznxVV70lrFxN/CYIgCIIgCIIgCIIgCIIgCIIgCILw5rxVwpvCIX36d91D67KgprLeJSKA7DS46pCz3F7ZXWOl6GEdIcESN558/SpRRmV/pdiXxbfq+rqU59qm41hw9CnN6fr9lstl7jmlUhWin7nDSrlJW33wvBDjYjSuraIYYnG/XO04e14/c/Gpdp+ZC6yyUG1ljMV4F9enyinmkggX4llVZ+YJs6TMqmfFWlvpnFJV90337vdzxlku3Kvq47Jrl0SajyIfUNbgm4t6MhEaJSejNQRyeWejy3jzMS8TZDnhW7PbA2Bw9AIdjcEabOZ4A6DB8+uE6eC8IGA8nhA2PO6/dy9t0Of09JzR0McPQwCOX73m6OVLDg72scqJZ/q9A87OzrkZ3eL5iyNX7mhA66LO8dmQ0adfA7C93cMLa5ycnHF34wCAk9NTvMDH03WePHHuO/ffOaA5GbO52cDLHIq8EBNHKGWZTp3gp0oQZ4zF85aLLxclNatXU3xvBEEQBEEQBEEQBEEQBEEQBEEQBOH781YIb6rcIqBaiAPVh4WrDuTdv/Bf8BEhO8StOsiuOpRf5bQzO8zP95I7xC7HbNG5q4tCkILDT3bAPyuhyNKqlOMojKNK4ED1/FaxTrlMaDPrekn5gnuDMdXzqzKnjfLB/npiFue4kgk49Cy+VWu5yvmhWjRgyY9m1f25MGPReWLuAlRsz+khSg48pVhsLv3OZa4qa6ctWiHaqihdLSopHPabxVorxC5l16b856uKS9YZi1IKY/Ix5tfhasKpqn1ymfvQ1Z1+svdFaQ6XCFtsfmwVAjyVu/dDiC+WvSsWY5s/B/M6mVRr/k50z8FygU9Qc0KZsN5kOhqhPUum13LrEWPNFGtTF5wkccIWX/Hwm+8A6PX67F7vcXF+wXg0AeD8fIwxLpTQdz+PX/3hKzrdHkcvXnKwtwvAgwcHGGPY2Orzu99+AcB4MuHk+BWbvTYvj44B8PyAl0+f8+779zg+vgBgY2eTyWTEdBxDGp/SGqVDtIoZjVyqqfHFkARFq9UkW87hxZh6IyQIQsj/fqTuSEUB6tLpEwRBEARBEARBEARBEARBEARBEAThB2R96wJBEARBEARBEARBEARBEARBEARBEARBEARBEGa8FY43GW/i4rHgsLDUG2fupODamLeV+dIUShcNZIquFiWXm3xMZQeYciQu9VHJpWIhN1NalqJDDVSlr8l/dl+MMUs9OwqOPBUOHJVuNSvme6Fsqd3KOlUOHGmKpvKcztdrcc6rWc/FpxDLyn236JK0qv/qFER5f51FZ5eiE85inItjrvZRqkordbU43xyb28PLPFQu21vlspelyLpafJe54Fy97Wq3o+8f49opsCpjYKENu+R6vs8r9bvMRWpFarHLXLMWr0F5f8+NoOZvsXp3g8l4gjExmcuSxaI9jbEWL7XBGVwM8HwPbIy2EQC9fovxaMKjh9+RJDEA//qbz/nZn37EZ7/5kmbTpZoajyL6PcO9+3eYDF0aqO++/Y4oihkOJ0zGzqHm2eCUelinFoacn50BEAShc+WZTNjedemxnj9+hFUe7V4HtAdAYuLU2QoC310bD07p7VxHKWbuTPV6Hd+vcgTLuWVR/S77Ps+PIAiCIAiCIAiCIAiCIAiCIAiCIAjLeSuEN4tClNWCgervxfQr6d353+zwd54HaibsmIl1Krs1s7YL6VlstQBD5YQc+SZnEdl8mqAsN8o8jQyl8i7uNG0Srm0F2MLBalH8szJJkLWV923pvnJqo0K9LJ6F8ZbL5GLIr+2qw/oqsUtedDObq3yca4onVopYSsKprPe5FCu/gll6suoxL7+WCYjyQpK52GhJ0IV48mTiLTArhTaXiZRWiVFW1asSAimVS2+k5uUu63NZnOsKba4i6rhsTFXCtqvFVSWOujqXCaHKQprKPVj6nn935ftQuWv5/lcJN/LvMF2RIqzMZannirJHnStR3p/5e66W72ua3R4Xp69mAkqtFCaJUUpj0q47vRZYRWI0+7f2AQgDxdHRGQe3D3h9dArAzf096vWQXm+TIAwA2N61nBwfs717Db3tGnx2eEQcAcryzv27ALw4PObV0Wu8QHH74CYASezSQ8WJ5uE3T10w8QV37t2m1enOR618lIow1qAC1280HnFy+IzNG3szAZF79osz58jeBatT7FX8WgqCIAiCIAiCIAiCIAiCIAiCIAiC8D15K4Q3xsxlDcvIjloLQo7cvZlYA+ZiitwBpc0uzBUtuYPJoiAij1IKY2z5bHplnKuuF5rJOktFGYUD9NyB9uy6srPjaLXQzPyKLrSXK2kXx7ss5sLhO4uCokJsVZOTP6SvaD+7ly9e1vYsFfV8T+eTKl+SRSccyO+ReWyqYrgLK1JsSlU76MzFN9UxurqLczBfm+qZvVS4seT+aped1fWLWiY7q18eX7ndyx2M1hfhrIpxHQHNus4/y4Vk87fYVYRDVW3Nr+dbr3hu1405F2H5uqoQea37vF0m5Fi2vmrFt2XXioKg+fVaq8np0UswCQDab2CTmHg6xQvraWWD9gNMnNDp9d01M6HVrHN6MqLTdW40P/rwAfF0QqNRI3LN4fua0TgmihIm51MA7t+7x2effMHx63P2D24AsNHrUgtCnj8/4fnzVwB8+PF7tDsttLLs6C0AwmCLazeu4ddb2DRmZa37edI+xE7AprQimkwAhdLLRWxVAr6qvVH1Ll5v9wiCIAiCIAiCIAiCIAiCIAiCIAiCsIq3QnhTPmS+6qF/VictkF1YPJgsiBWcWMKJH5Y7VRTEIKqqxGJ8VaKOaveBuVjI5uKedZg568wr5Hq3s2KZE0ux3QqJjjKQE3ssFRpUiGyWjWtZO6uuZf3n590JWuYuRPPr1SFWsY7YYZnIqBzzPG3LKlFA1b5ZPe6yU8xlKZCWu5lUOxeV26ge2/qCkDclL75Z1e9VUk2t6quqfnZvnbGsG8dqFt2d8vs5Lyi7TBiUb9NhKu/Yimd1FW+yrt93L1zOMqeq6tLF6wqtFJ2tLc5ePAYgbFiU52ExsxRSvuehUSgzBeV+9pSn2dzZptmeMExTQ52dnhEnCi+o0WiGAEynY+7cvUkcx5yeOuHN5kaX7Z0tnjx7MXPiiaIp/V6Dhw+f4IcuTdVnn3xJo9Hi9u19uj0n7un2m3hhDRNHaN/1YYkhcYPTaaqpZJownUxJEoPnX/ZTXe1us443kyAIgiAIgiAIgiAIgiAIgiAIgiAI3w99eRFBEARBEARBEARBEARBEARBEARBEARBEARBEMq8FY43ZS5LTaJTCwmzwnGFkluGcyXIXGCyOtnnTH9kcc4S+dQd+e+X+wToZU4dZUebQqhLnD1mn1Xur4uxOORyXGr2/2JqFoVSpuD5U+4zn1KqcH1JT5dRTIlVdgPJp20yWJvFPdeDuXBMoees3GVOO+ukNVJK5a7PZ8ba/Jzny+f3TXZ1Hq8zKirutarYsjGX91o2tpWeNG+Qeml1c8tTQ63ZAlU74yquNctiumq9N+nrTdtZ7mSUr5d33Jnv2/LYljvr2IpPs04WSr/Jc7qq7Kr2Ci5Ya++bvBPX+g5Ii/dz8wvUWy0u6m0AkjjC83ziJMbTLpWTNQqDSzeltHOUwbh3S71RxyQTANqdDienQ4YXU/7w3UMAtnc36Pe7HL04YWOzC8BkkpAYy48/fg+TuFg6nQ6tToeDW3r2BB+9fEnQaXF2ekEzddDxlIYkIfE0SrlYbDJFewpP1YjjyIVnLMorP1vZd73yWf3h3g6CIAiCIAiCIAiCIAiCIAiCIAiCIFzGWyO8sStS5+QpHFBnB9i5A8jqg2KbijdAVR8hV9aat1hK56KWl1yQwKyZ1mcmeKksXz54pSSosUsPwRcFAbk2KspXCWUKY8lEOeXrl7A8dVjWhl4zY071gf26fc72TzZ/uSDm8oiyYCl/N99W1RxlZS9LHVT1fT62WSxXTCWUZ11BTZXAJf+c/VAin2XCp3LfGf/xKY6uTlW8q+Msr+/ifF4tnVXxuc3vX1idXuhNWNVe+d27Xv9VgrarrbMTv83Fe2DRWtPe2AJg8PIZfjDF92ozAYy1CZYQsJjYpZ9S2seg0J5HkqTpp5TPeJIwHg/p9TuAE9QEYUjYqDG4GAMwmcTcvnPAv/zil2xuun57vTa1sMb9d+/z6SefA3Bjbx9r4dmzZ9y9t5eOQPP65Jx6LcBT5wDUWi0UHhaF9gIAomjE2ek56ps/snVwG4B6o36luSq8p69UUxAEQRAEQRAEQRAEQRAEQRAEQRCEdXlrhDeQFz4suV8+tNd6qSghL4JxwoNFUUl2AJ6dHVc3NRdCXHZwOaueP4zOxAuVFS4XGxQP6auOUVc4YlSw9JB/hSPPZe2tW+5ygcKStSzUvfrxcZXQIY/NruWmYC5QulwgUCXAWRHN0juZdOoyadFc3HNJT3lBVU4wskxQk/++7niuIhpZVa7c9zruO6vKLKxxhcvMZX1cFu8PsebL+p/HdrmHzcK6fQ+x1pIOVgryyqx6Ut28Lasxr7VMpFV1zRj3fm+0WgBMRx0m56d4GlB61qrCOIFf5nijNZgEZSM6qchmOhnz8uVLbt+6Rrvj2puMI774/GuMtWjt4nv//XsYa/nLv/opv/7VZ24UxvUX1nzi2DntnJ6dUwtq7F2/NhMBxTF8/ulXtLwhH/7l36Sh+CjPRxlFPB0C0GrXaXb2mQyHvH7+HIDdmzfxfK9q2gVBEARBEARBEARBEARBEARBEARB+B/EWyG8qRLGVFI+pLa2Uhqx4CmidKlEmhIq178rp3IphjLMvOslzjCF0qXDfMXigXHecSUrU3C9YZlowolTitPgjpSVMitdQ6oO+FXOMeP7uNZcWi/tozzf+bjmcZb7ycan03KFVkvlLqdKxpClByt4kygq9kJFexWOMivTEykzr2t14V6xf5X/Uto/bk8rNRfRXCZCWUzzVXZCulqaqXXSQF2W5uuytt+03DLRTfkZvKyf5TG7FGH5OVhnfKvKVKVFKzJPX/YmT+FyWdsl9VbN0VKHriu0ARTGdsmeKYqR0tq6mNqt3dvg4vUxvjfG8xou1CTGWPC9xizkJB6hlI/BotNH0Q9D3rl7wMuXJ7RaTQD+8OU3vDx6RbvV4mD/BgDj8YSnT1+wv3eDd9+7D8Cv/u0TfF9Tq3lsbnRndbe2d4mTAduDCwAaLc3ddx7QbIKv/XQqLcYkTEcRX3/9GICD23v4TDl9PaDbdSKg8fkFrX5vYU7Ke7BK/DQTGAqCIAiCIAiCIAiCIAiCIAiCIAiC8IOiLy8iCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCEKZt8Lx5o1JU6BkjjErsWAVqJJbQj4rS97hZCH9VL79Fa4Bl6U1yq5VRbuu60h1qhZFVavL+l/RWGW51SmwitfnaZoKNwrprLI1q3JimX/OV8unBSu7tSwdwqUkSYyni6lb5v3NXTTmY1s2x+u4n8x9R9Ssbvn+5VS5zVStx1VSMS3fd2WvFFWIeZnzjVJqbZebqjivlsppsV7ZMWpZfOu0l8WYRks5Gdg8Zd3i87Jsnlc5UVWXN8sL5ZxnVsbC5a436zgZ5Qq/QeK3VX2pmfPMbH7fwKHFD0K629cZvHpB3Y/cNT9I3/0JVgVpSY3SHlr72MSlhur1+9QbDb579BSMq/vuu3fZ2d3my8+/Ighc3W+/ecT1axtcDIcMBgMADm7e4GI4xBjN0ctjACaTiC++/BI/8IiSyWxsP//rn9LutzHG9et5Psqr4YWWW7evA5DEE4w2bG13iOMYgPPTE+qdNp63+NO9sMcRhxtBEARBEARBEARBEARBEARBEARB+P+Dt0J44w4HK9Ik5T7rnHAjn7IoE7GsPia26TmuwhYOzN21og4lS92zEGS1uKFcrHw/jTF/yDyrkx2SzzpUzE2IqkaVCQryh+pmXi536H5l0cKC0qjY+6o0JfP0TS5V1+J8qqJwIBUKrBZ75M/cq2a5mFSsqsRlqX0AfG+e6qV8312axz3XDVWJE8qCB5Ob0rlYQ+WWyjJPs+bGkNsPa3DZOlfFuaq8MaYk3JjJ2rIWS9/XizHf7zrilHLdqtirhVqr5+JNU6UVn0UL6LXn/vtjS39X9zXfU6W5W1Hnsjavwrq1CvFkD8P3aA+csDKr0+r3SeKI6cWJu2ahVm+R2BgSJ6jxghpK+xhjwEvFd9pQUwF37+2Ral1ILs7p9zp88ME9wtC9n3dvbBONI05Oj7h+bRtwz8+3j57w8NvHbO9sAnB6OqDRrJMYy8sXrwHYP9ilt9Gl2W1zkYp2rAqwJkHZmDB0A0n8Gn4QoBSo8TkA49E5xphZuIU5zH/N/TaunLPvIVoUBEEQBEEQBEEQBEEQBEEQBEEQBMHxVghvlpE/Ssw7iRSOGFeIODI/hrm4QS2IJ7L77lqV/mQuK1kV40yYUiXgqKizcC2zepgFmP2nLBQqxlLRZYFFaUhJRpGJj1DFQrlYsrEVzVnUQrn55bLzgls7k3O8WcYqsUW+qnMnKgp08p4/KidGWiU6qJy6goCpOP/WLtsbJnct24/ZvtIFgU0xDkU0ncw68INwYW/afOdpf1fRRSwTu5Q/5wViSiknZLC25BK16FB0NXlENZe59yy7XnVNa13ppLSqzdWinJKooeQq8yaCn1VjqRIkLXPtKQj5lrT9H+l6YkqxXtZTtpfd1iq6Py1j3TXMJsKmYsrO5iavxhcATKeT9NnyQOm0PbDJFGsM+defVQqFh7JTADy/xr//+6ccHh5x7+4+AO99cJfDZ8+p1TRh+itqrcYmlsffPeHi/BSA84shJoo5uHnAk2eHANz/8D7djS4WTTJxQZtoTBgCXoCXqmp0PEVrDcZQa3QB8IMYrddwa1pDdAOg9X/c3hAEQRAEQRAEQRAEQRAEQRAEQRCE/1l4q4U3ZZYdYK849k7LwFwwUFGqcMBtUy1Pdtg7r1vosyKWsigoOxS/7ACdgvChXL9YNxNdzJ15/uMtC6oO1RccK8iETkVZUV6MND8gt9ULsUYMRYFL7n75UyoaqW6juv1sLpMkQXleuh7ZIX22L2xJeLOOYEMV9mAeq8Akbkxae9XiiwpxxfehKh1RVeollca3mDWsvJ+z0nnWE5v8kFS54GTfr9LGaiGNXnrvKlzm5lOOYZnbz/8IyqKtK9UlJ/zLvVcWnHpWiI+q+1xQteH5AZvX9gA4efGUOIoIQkXmKmaTGGumkCToIATAWOdck8QWz3PlfM/QaGhiM+X5y5cA3HtwG6MCXh0fY3FCma2tPgbL/sF1Oq0WAC9e/I5bBwfsHVzj5//5LwC4c+8OyvMwSUKz68qNLwaYOEaHNbRy7SVJgjEJRnkEQQOAZq+B53+/n21JPyUIgiAIgiAIgiAIgiAIgiAIgiAIPyw/zCmyIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIPxPxlvjeFP1b/DLaZKy7zpzfEj/v8yJReXcUSyavDeOxTBPC1SVDKr8veisU3alWOYhkI81X7fM8mvVqZbyDi92ae/luIqzVTV/lZ3lypfbtgX3GrtQaiE1WEW7y3HtFedGz5qoiidbpXxKm3KZ2X1y65Nz0vC0vsQdZx7fcteRvHuRmrkozWYjczjCUm/W09Y8UAasWnD6yLverJq+dZxeZmnbyiYhueL5tG6Lc1F84spuPlXpp1a7lbyBc8qS1EtXabvq+jK3nHXckqpcbK6SQmtV2ao+svRvVemmvg/L4qyKr+xQU9XWwjpVlXOF8xVnY8v6MNm+pbwDK9pKr3s192y1NjY5fXmE8nwULrWbMQYvDDFGYaMIAO2HmDhhNJzQ3dgA4Oz1OT/+yY958O4dnn53BMCzJ8+wKKLplHoYABBPE+7fe4fffvI5o6Hr4+b+Pu9/+D5333uHnb2dWYTZUOstF1+tUcMkMRcnx8QmBsAL6/hBnTAICGs1d8335uOuctS2b+cAACAASURBVAVaMifzaRW3G0EQBEEQBEEQBEEQBEEQBEEQBEH4oXlrhDdVFA5tlUKlIo/8oWL1Yf4KGc/sZDIvbigeV+ayI+XK2MK58KpD/2rBw6pUPNUpi5aJcfJilysfo6osJRTpIBU2d5R92cFtZTwr4s3aLIoxVqdoyqf5WnZObMs3s72R2y/5/rNr5cP8Wd2K/p2wJt9clRBKVQpNis3a+fd8t7P48rGqpdOzKj3ROtfzbVTvvrkgwM3v0mZYJX2oSltV6HuNtEnLUj6tk3qonAqpLFDI7511+60i3+66YrqqMlUCivm45ruk3O/s+1rRXs7yeF0cb5Li6vvGtiBAW6Osyw5Y7Lne6WGNZnR2gp+KVzQRSTTBRBFhs+PaMAl+4NHttmYz3qiH+IFPb2MbXzcB+Oabh2xubbAxNijtfkYfPnxEf2OLMAh5evgUgJ/91U/46M8/ptFs5uJMP+SEWX7gY32PRruL1mmKq1oN7WvcW+HN95cgCIIgCIIgCIIgCIIgCIIgCIIgCP+xvDXCG6X0zHlmdnCac0uZOadUHZRXt1jwt3H/LdukrHLMyDt4LN4rH9DPXEQqXSsU2cF5Mab5/ezuqoPqykPUTKeRU3XMnGxK4hM7M6QpO/XMD/jLgozytTxZH7NR5IQQBTFBKnRQObeakqKlsK6FeSWrX9F3YR7UzOWmcLl0rapM1bV5s3PRzEphwkwIpRYcSGZzkI95tm/L+1RRLLgoMprVrBCYLBOEFa+756Dw5Cg31wVXnYoNoNIb8+ZU+gyawrNaGk1xLKXvVcKVZc4zZZHKKtFNub/sk82Wq7Sm689f8d6ymNeh6r1RbDsvPKkWoxXeTFcQxawXa7YRqt5rhcYq16ysIVslNCpTvrLqfZRvd7anSrVbvQ6+rxieX7hyU4P2NXEyxto2AFoHKJNgMOjUMa2/0cckCXge7b4r9869WxwfDZiMIk4ZA7C9s0Xgh7w6Pubg7k0A3v/ofRqNBlrr4rMKmDjh9atjADZ3d/ADn3q7vXJdVq7ZGwkyRZgjCIIgCIIgCIIgCIIgCIIgCIIgCN+Xt0J4U+XCMTvIrSi/7EA2u+cOqMsH2cWaVefTy9LFVFF5UGxtQWyweOS/gtRRZd1j0GohQP5z8ZR+2cF2VX8zEceSe6tiWpw/KM/ILJac0KEqXUr22eYP0Ze4nCyNqdDeEiuZWdPzuXL1ctKUTB/EYpxOi6JznVbEl40h18eCKKUilkqsJievmkVTvXeXCVTyI0h7z10rPi4lIYtShc1msSilZ+VmTi2lqV5n3ZanY8rmd/WzZFNhWV64YhUom9+F6Roou5Be66pxzfutdt4pl1nW7jrpnUBRXWy+r+frUN4btvKdt+hkUxT8OOHZsjdFMb5l46+6vkykWBbslQWEAGrJuykjc4xZeMaUptbuoJRzvHn9/AL1/7F3rzuSJOd5gCOre2b2vBRliqBsmIZg+I//GL4HX4Kv0pfg67FgkrZAUTztznaFf2RFZkRkZFbW17NkG3oeAZrurMyIyFP1AvHyi2tOT+8+Sym9pJRSuuaUpqcpvZveLVGya76mlH9I+ePHdH2Ze/7i66/Sy/WSXq5T+u7Pc5Dnj3/4U/r99c/pP/3HX6b//F//S0oppa//5ps0XcbX4d1nH9LP/v4Xt8/W6zAKPx5Zwlvd9vJUjCozrdtOdAAAAAAAAAAcutzfBQAAAAAAAAAA6L2hijfXzbI5Ka31LUoFhN2qEsMKN+WjbcWG8Wop242lesLaztrAqGrJqHLLfD5LK9WnsXIDo6V56vEt1TeqJY7KmOtx9ePs+7g3hr3lf+qf18I7a1WOpeDNTt/3xjDcPlreaf2oO3471uHSRtM0KLDSLq217Ft5eXlJ0+WSnp6e2vb6ffv7k7ZLDw2XYUpl9a1tbYy2isherq5UMVmryEzL/6/Oc+n3OjzPMr6l79t+awtt1ZvTVYpGy8ntlDjZLld0TXWecK2Yktc7d6diytkxHi1D1e+zN+aY4Rt7eMT6HdhVOUoptd+7++/cI8tY9X0fVf/Zqx525irV92D4t6FvO0/p3WdfpJRS+urf/Cz9+V9+l959+Kp6P39IKV1uVa9u216+TylP8zJU08e57fyS/vDHP6Rvvv08/fpP/zJve/cu/fLnf5d+80//nL7525/M2y6D74BUVbYJPAp716vbsH7fHy7ppeQNAAAAAAAAvNYbCd7kKpxRtpVJ0zKxOm1yEHsT33vLmPQ/H00k319aZlriBvMBl3m4+bqz3NKwlbv9P7Ks0r1j95YkKZ8tx94mbftrmHNugkijwMqo3+0yX3kNlNST/usO7flUP193LuZejKkO/JSoTyT3MKX1fJfW6vOotj0/PzdLvPTt1PvWv1+6JZzuW5d3aoIgw/5y928/qqmLZMwv2zT1rd32bUJcOeUpp1RCGyVRkK+D0fT3o7X/Tt4Pt5SAzt4lXIIPU5pDfLkPnWy/Rw7bufP9kaul1O61Oeo/FnS5ppSm2/dl31cJXG37XvvrjynLNl1TxPKOVCNY++rGMRxddY8GYx793vfVtJXyksv64ptv0vPzu/TPv/lVer79JXx695TyS0756cPa3uU5pTylaXpKT8/lub+kb77+Jl2vP6Rf/sO/Tyml9I//+H/Tr/7P79LP/92/TU/P7fdk8286Dh0++vXUtNUFVveV+/pgZwAAAAAAAMDGmwjeFE3QY/h5SiltK000QY+6mkVp70T1lscGuvy/amx5mfgfjbk+uB//UfWaR4zaHbYzqNzTnMdOu2eqXpwJCq3jTGm504PKPE1Q6CjkUMY2GMc2+LA/pnvBh+XadFWW7ocIyjVtYzCbWETO66T8QYWQftzl8825Hh47LaGacVhlSnMVqvE12wTb6go8u8/JfkDuXnju6Lk6DMCUY7s7slflqA+XPdJXZL9H9j8XwivnVZ/D3v3v+10jK2s/e0GtzejGo+nHOwhE7r0/dQiwGV31rA9DlWcDlTmld19+nr6dfp5++6v/lVJK6Yfvv0vvPnyZXvIP6alcwus15Tyly/NLevnhFkC6TOnrb79MH7/7Ln38/iWllNLP/+7b9MVP/kP65qffVs/Q48/B0T3erTp1EFbcUuUGAAAAAAAAPqU3EbzZCww0vyyVZOqJ020qYJqmpSpK+aSpsTGYsD0KwHQDXfYrE/p1uGLcRum9DRHsd3E8vkeWfBkth7MXbuqrSdQBnOFkcB1sGSxpUu2Y9id6p26/te36HPqzHYeyts/C6fta2r2zdNBofKkLvLQT+6X/+Ro0S0iNBzBf60Hw42wQp257GExrxlHGtz16jTHllHMdIijho8tyjmv7pb/r7ak/Dt/kvB802Ht2I8s0zcV48nKe08HtfTTw1O9zr/rTaNuoQtcoOHZ87muIalvzZRyeWa/rui2lo8o2U/fveAyHn1QhkU2wrf+5fD6o4tKHAUffi5fqb8HSbn3tp/lZeP/55+mnv5ir1vz21/87ff/xu/T++WkNAE5PKb98l675KZU0zuXpkq4ppZx/SO8+fDbvd7mkL77+Ij1dLjvP/n2PLMc2Cho178ztO7H9Huz+hgIAAAAAAACvtl/aAQAAAAAAAAAA2PUmKt5sqhXkqjTFUcWCNK6aMPrf8w+ruKTpuCDLtpG1z25po7LcR73kUakqUpbiqdtpz3eucjKqrnHvfPt963+nW9vLz+OD7p5+U5emqp7QV5kZVSk5rmbS1gvaXdxmVDWkH1dalxV6xL0qKmcejXvLVOV8XKlo6p+r0XWs9ruWzwfLS+23X4/nmuaKJ3XVlZT6ykzbO1Htf6uMUp6eecxrf2fvwyPL6kyb6h0PyMcv+r3KNP2yV2fGPDr2kWXlzj/L9dJLfdWb4pL6t2Z9fevKOHNFlNL1uhxZrl71fHumUzqukLNew71KW3Mf556XZZTX6/K9c5mm5Z3pn42+2k39WT+25w/vU0op/c0v/j799te/Sh//9Mf0/rMvl/3SdEl5mlL+4fuUUkrff/xTen7+kC6Xd+n9l5+nlFL6+oufpufn581bM1wW6+7ZtsefrcZ1HTxrkSpRAAAAAAAAwHlvIngz1oYFUqomHQdLj9wLeozkXCZAy+fnJyg3SwYdTMzXgZ9+OaRln2oy+RGjwMD2yh3vP9pnsHG7lFPpqwvjnFnGq7km8w6bkNWjzgQlNtdqMOY9084E/9H+pf+jPnL9PJ/Yr/x89mlpz//gXWgaPLoXuQntbPtpl1Hqx9AfM7ono3bP3qfRsk3dsDb77oXbRuN+TZBhE457IKR03OZoqalU9bG9x0ensX5WLyG2jnk07rPb6s/O7Dca3Kk7cCbM0+3z9PycfvKzn6c//O636bvf/3nu7vKS3n/2eco5pesPc9BoDvxc0tP7D+mzL+eAzuVyHAyLhsb6/a/Xa7oMlqO719/gKxwAAAAAAAD4BN5E8KaECJZJ6VsVhnqOcFjFphzftTU6prTf1nYYz0SOJo/r7aXayN65jMbYV4bZnsy2OsEj1W42zZ3cr1yTy+g6dG31VXouO5Pl9yp4lOotdys5HMwUb6pmDProz6N8fhRM2mu/absZ0/W2vZ0Ij1RnGVUWyrfr3LSzEyRaAxj1netDEpfBsXmpgrO2NR0EgKad57RubxxwGrd3fDf2KgqNx3cbR6nUctjy+XszCm+dCRXV/+71FQ3ytEGn0sa2Ak2+VfvZ9jPVj9Lt81slo7zey1JRZ5rKszMOfZz9LqgrNt06Hh+b0vhvQP3spfG7Ws4nEmp6evecvv7p36bnd79PKaX0u3/6Tbr+4ffp/YfP03R5mvd5/y599tU36enpOV2eqnfqoN1XBbYG7TTP1U5VoZzqr4tJ+AYAAAAAAAB+BG8ieJPSbWLxNrHbVqHZ2TelpjpIPRk5CuQMq+T0E8+DfvuqDEu/u2PbRj5ySmna9H+pPs/L53t9lxHO89V5GfflMhjJQTCoD4Qs123pYX/Cug5HLcu7LJ+0DqtjTNPu3S1VX6qGNu2V36duAj5Vwaq9ZV3q8Zf2+4nss9VkSqCh33Y2mLH5vBzXTaCXXurKOP22+fB26al5kn1cbaf+tRzSDjNvto1CYMs46rarsE8k+LAXfGs/q9/d7tlI12XgUxNKud/vmWoi9RJFe2Mffm/stNWrn5+j6zf+fD7feYz1tvbZLD/Xy5DlfO0CVOux/SmU9o9ubxv+6K5LzimPgmR1H117u98Zo1BWSmv7e+O7U43ni2++Timl9PlXX6Xr9dqkfC6XOezySJhm09fOd9TOwc3YRp/X72F7RbffUan5HAAAAAAAAHiN++tVAAAAAAAAAAAAG2+m4s1sWKvmUL6tndFXVOlLMRzUjXhkgFUX+9Um6t72l8Q5p69OsK38srN0yL1yFFXbTd2WE1U2luNvY6oraoyu9DzGtd29JaYeqY0yWsopp51qEP14yqDSWjVmU6Hk4BqM7/u5sd5va79S02g5sKO26tNYr1XTbNdj3f51s1xUaWfqKhaV69lUTxpUKDpj9L7sH7sujbTut33v52tXL3/12Dv50BJvB0vFPdJf/Duj7r9pdWm776v9vuqrIa01VLbVpmLXpYzm7BluqlTt7DOqgBW5ipvvg8uUnm5LTPX7he9xeuwvz5llzfaXXmvbaatkPTAIAAAAAAAAYOhNBG/KZOBUTaLvWZc3ajbuLEdTCvrMk8vtMiZ1sZ/r7biyRE7T9G1Jlnapj81E7zKBvS6vswQUmn23S39Mzeiqfqpldfq9D7MAgeV9zti22hdMGgU11iP75Z9G8ZVRKKcPopwNstTXv9+2TuZf5p6bJZqOJ+zr8S3tl+WBujE0Y0vbZa+2Qab1PNtzWt+OKeWqz35xmfb5KkuTreGoc+GkdSm0nMp9bs53cU3TdJmf38GyV48+iqOx5SmladPOOOS1ldOU6tBNOXb7rE3TNFxmavS8bZ6z4XJeJ0Jgg6Wp+rbr8Y2W4Yos57W3FFYf1KqfgXppr/V82+/Y/po+OrJ+/zwPcBlcH/pqx9puu3f97y0Bd8+jgZvR362qsfExO/d9eJ3a0W3+lo3aizw7AAAAAAAAQOtNBG8eqYYxNo2LdjTTkf3E5vCAYVBgCdV0h9wbdxMcaSZZt5UlRsPKm53KZGm9YxlQXnYdVR45a1TR5GDv7tjj/ZpA0kFFlLPXtR/FbqWUauJ+/5reP+NNJYw50nG6bMS9SjpVR7v9p5RSvsW0+mpI2xDO7OPHj+lyq9jx9FRX7hjv327rr1V/rlP7nG+O3/epJ/3bgMKoetb5Z+wR94Ifo+f+Xht7bb7W+H27189RKGTc/u2Xw+d9FDratt+217/TR9dpFGAajfXMtR8GwgbfYdEwzt5R+yHP0X71V1EJve2PGwAAAAAAAPg03kjwpq35MtwnDZbJWD5sK9Jsf5qrgLTxgNJfnktqlE8Gg1gmWO+M70gzpi4cUMY1VZ2slR7qoEdO126Q48n8vExSn17Opfmlm4ger0+0DKMd4UiZFK4qjSxdtWGI4fkMJrSPxtsMb6e9us/+7u1Nni/b8/pPH+8o20aRr/5+lGDUvWVkbjWOmuewvA/bYMy2jXfvntP26c0p57XC1HrOufr8VsVnulbjTU3QqJxRHQQqVXbuhRCOKm80AaeTOYHx9StXKw/7OBOKOevRwNi9fedKW8fPxl4fR2GWY9fUVk06/tbrs229H+26foJgUnSZqL6v0c9N+HHUb5q/V5fnf5ruhm+OxjJNl9s9qN+neft6j2LnCgAAAAAAABzbrqsCAAAAAAAAAADc9UYq3uS5VsrJ/0H+pnbHVFX6yFWdm+HyHOOqLcsn+ZpGAxkuaXJnbKOKKPXv2yWTpqYuT185ZVR3Z7RkzDSXHxkurjWl7RIre/uN+tjbPh83Hzle1Gu7vFSvbI9U+ViOrfosFWWObZckulsJYy1hMx7nXvWKnfXF+vtQPxt7S9xcLqPMXNlWKtms17Me4mgpob3ly+b9Szu3Kh39XuW8bmO93pYgmvoHeHAeR589+hzMY+yrg4yqKLUVo+6JVmz5FJVeHm1j/3zy8FXYVBHbVFE6Gl/f37kqNH2f956D1+i/d/txjIyWrItU07k1NlySKqdx6nXz3Xstr1b7t2xT52ozvNLXYEzp3HMPAAAAAAAAnPNmgjcp7S9XklK7lM2gheEE63ayvV6K55LybaGcago4HU3V1uN7zXTwElRoW0/zUk19GKaein18snQU4DgKEdXhj02Aph73bfJ4O4G7H0dqAiYPLIVzNhzR3MvBhPe+22JOrxjfJoTUTXL3Syo1oZIuNDQa816GZXuO21DNePvmLHa2r09CHj0Ur9Av9TT3cT6QsRdK2luaZ+2jDhXdf5M/xXJJkfZfE47YXp/y+9R8PgphnW3/jDPn9imu7W4/d457zf3fDej17273fj9dLuvbuBN+XI+9pPbv0mAZq+a75rKMbY/QDQAAAAAAAHxabyJ4M40LgWyUygN9tY/jmgtla18lYK5sk/NUTcj3ra1753xdWpimaVsp4s7Y1yIp13S95vT09NSeV5kYv7W51CwZBlu29RJyvq4/VxO99fFLfKcLOWyr6qTm893gyOD4/vcyRdxMBPcTxykdhk6aihOD8ylt5fagtK+u6pFTudpLvzmnl5eX5jlbPuv6n697Tuk24Z3KWKvrU48wp3VifIl/DM4tdUfunslOgGu7XxneUQ2Qa/XzZWlrOWIQEMq3xq/B8MSo4spReGZ9DteQwXqFSjLosp5vyilPuavD1FYEOjvO0Tgi+sDR6HxfW4lnO961atHe8fMxpeLXODxSjvuxw0gRnyLMs5ctG57vrfrTKKDYXv82VHn0Rm/6nq6j3QYtXG997n2rAgAAAAAAAD+WNxG8ubsmzbLb1Pz72ORqmeDefrJXneT2adNnGe/ZSgl9pZ5puqQqc9O2PZywrfcry8WMghXrNTw73TqVieNcTQnfAiFTtXTQfiBgFPoo+kn9NV9ytJTTXsBhVOUhT8fhgEHrg3HuV4Q5E36Yr+G0BDuWIM3wPg3u29zIYOurairt97fchz4y8EAYIKU1aJNzmi6X7r3JzT/NyA7ftePt5bP1370xt4G4+tnea2/v8z33gidHz/g48PL499rR87nXR/37uCLU/THfqzY0GudRZaNH7kEdVDo2fj76Yx+55qfCRlO/zNwwxpOO3tGo3JSk2oZD5+G156v6DQAAAAAAALze5f4uAAAAAAAAAABA701UvMkppzSdWbIj+r/Qvy2dMqVquY+dsWwqGgwqMxwsMVWW3qk/6ys67I5gsDxJvbleJmiqGslTGdN2yaJ+4ZHNQiSja3z791pVRRhXC7mk7SJPwytyd1muoyVe+uNvH6z771TZ6Mc0n8egk+7K5JSapcD6PTdbqms/laWZ6iV9UkplKar7NYKmzfMyPM9uKathxZm9ES+b6qWa2jswF89on+Nmz37JrVTfq1QtUNX3fVwR5Wi/+8bVi6bltZg/XxeNW+1VAHlsOaf2fjy6fNSnWLqpfGeeqc4yvheXbswpHVdluX9+R5Vwyuf32hgdtzuifL6KVX29qo2bY15TIWZeHjGl9v2a37e1vdctXba6HHy23a7iDQAAAAAAALzemwje7C0bcy90s1l+KKVNGGHd1C7tUSaU6znWehK0DrmURkpkpiwhNTyXqqc6yrBum8MqUxf02GtnXV6qZC2m+d8+XPGKCdRhTKM7x/XanOlnXdJrvb5T18Y2/HA4vjoEcmv0aDGpEgTplw0r4ZvR8jaRyfWl/arjcn/a52/n+M3Y8218aRlLH6DIKaUp5+azdp/+XrXhqP0A0nrM7oR9Wq/tbcdbF137t733AjjtWF4TOGljQeWpOup3Ca01OabBdb4TPBu2/Yqg4FEQ5d622ihMUra9vLwsbVwu44Jn4+X2xsGZ9vTuh62Olvu6f433Int9e+WdqL716/DMztiWg3ZaPo6z7SnfA2uQcnSezTt1tITZcASPvT/73xsAAAAAAABAxJsI3syTwtHj9ie6S+WDeVOZPF7quWwCGG07dRv5lm3ZH+TZyfkS+GmiRtV5rFGJaYkQrBPJU9dOP0dbV3YZVBA5qt6x9FvaPYq1lHGVEEs/lnWivoylqZwxpZIi2h3P4Th3K/Csbbb3ap2I78MCj1bbGPVZqleUvuZxtKf3yOlOu/V/tuPcq+DRb2t/PzeOo/7rsMRoEv/1lTT6MN5eZZBtaG9KfSBkFEw6H6SJhm4+Zfvre3Tcx70KJ30lp73n5XwllscqtrzuO3QUNpmq759PECKpAoeR9sb3qf67U29rHf09247lsWf4zDYAAAAAAAAg5k0Eb/Yq3pw+vvp5DY5U23JK67JI19vWyy0MMZrMridK+8BO3Uvdx371iToFUCpx7Fa5ud72vdQBotvny3UaBTOq/Qdbl0ol/VncEiG5rmDSVYZYqpdM2wnkcg3b8dXVHdbepuXajyaix4Zj7sa5GdD6S1PdZQ1g1bvn8b07Ssos+aGqGtGyzNdg9zyl+bkbB2ZyO8DBULoli8ajqtq9dlvbyialusYaMGjO4NBy3GCZq375qakLuj2iftZyzinl6XZ9tvevmJe4uv99Mi+ntB3PXujhNVV5muoi07ptHfS5dupw02iZoNeMb7Strk51pjrKukTVY/d5bnf83Tr6Xl7vW38NyvdiSuV5n6brw9elfnIuVf/l7a2DMPdCTlvlezKnlC6bse2+1zmlqVsWLg+u86iSlYANAAAAAAAA/PjGa40AAAAAAAAAAACH3kTFm5RKdYzzS66Un/f367fMlQL6pTvqKihr5Y5tNYJ5r7YSTNPRrQJCzrmtlVP6q7ctraz9TreKI99//D6llNL79+9TmvoKF2t1ksMlXkZjz9tzX0+hq3YyTakqJHKwDFjeLNe1rQ6yLgnzYxlV/qir77Tj75ea2o5tPrR9xtqqNLk69uj6TO0/R0tkdb8fVerYr7bRX+tt9ZCcUppyqZoxrvBS99E8f+3OZceD5XDaMYzVS5GtveRSviallKa83s/NqdXv0b0cYV9x6Pg9+dTmiimXzZU/09/+M/5pbb8fS9Wo66baS32/c64rzpzurelzVld2GR9TVzkaj327rfn5TBWcqlJZXWXrfAGdUVWi/TEvBcdSWquP3ZZxm/8ejdsvbbTL3bVtD0enEg4AAAAAAAB8Mm8meHNWM9l7+3d/CrEPT6yfjOcdSwBgu4xO3U4zjuqz3O9/PKpmS5mKf//hQ7VXTpdLu18J39RBhTUs0CVB6snjUeCjGU//YbtM0DYMMi3j2Vuip/yc8zyUdgmXUbCphJDK8PtoSD/EMxPNx0GKekmdJh5VluDq96/+/y1+c1v+5tLuNE3dA3q5O9ldf365zO3lZfK9eq4uewGTdpmvsm17nUqIbFo3dEfVL8hyhQbP0jDYsPScNwtYjZ6j+VzXizU/ttV7Pk3LOk1liZ32EVrv4TyEaQnh1NdvHddtn7Q1ukf9+S73o+u93nfve2Pqe67CdaNj98bwqdxbLmk935T6b9z23u8E+g6TKqMrOA0+r9tsx3cUZtn9Bj4Miq37NE/pNKWc+xDf3qF1UKY8qG24rA8szvvnW7in+7t1+7+mj7x9ntfn/974hG4AAAAAAADgU3oTwZu1mkUJjKRSmuNkA1UQYVhtZdkx5WXC8tpMLq973JpoUwg77dXd5mWP7bRmHYbI1SR1NZmervM+TWZmb1I8Lec55wxKZZdunH3gIrWTzfW0d95MeO8HdeY98ub67QUHNuO6BTLytJ04H41vO4rc7XEcHhhtH0+6T/2Omz36SizzuazP1RxqKRPr7Zn0VYfK78OKMs39TSnny6bSRx9smUeyXp81YHJNKV+a8c1drGMuUZz13PPtleyjM+11OXozmudlmkeSu8csl2tYcmxTEwlajpZRvAAAIABJREFUhzJd5/HkzVO4BFmm23uQm7PZPiPT5lkf6+9P2bZ8j1zW+1qu1VEQaf0eyNtwxSC00v++fMecL7uy0Vetqe1tK2M/CrnM+7XVanLuz/+hkR5sH42lv0fztv4d7I/ZBhnrIFTdch4MaTzG7Xd3f02rT6oAUfk7uIbGtkGjUZujr7nxd9y0vOv3zgEAAAAAAAA4700Ebz778PTXHgIA/KvzmiAXAAAAAAAA0KyPAwAAAAAAAAAAnCV4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAEDDlnP/aYwAAAAAAAAAAgP/vqHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAYI3AAAAAAAAAAAQIHgDAAAAAAAAAAABgjcAAAAAAAAAABAgeAMAAAAAAAAAAAGCNwAAAAAAAAAAECB4AwAAAAAAAAAAAc9/7QGklNJ/u/z3/NceAwD8a/M/r/9j+muPgS3/XQQAf3n+u+jt8t9GAPCX57+N3ib/XQQAf3ln/7tIxRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAAAAAAIAAwRsAAAAAAAAAAAgQvAEAAAAAAAAAgADBGwAAAAAAAAAACBC8AQAAAAAAAACAAMEbAAAAAAAAAAAIELwBAAAAgP/X3t0dJ66lYRj1uBwFUZAFMZMFUZDGmYtTmpExNtKLpP23VtVcdB+3LWDAYu+HTwAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEBDeAAAAAAAAAABAQHgDAAAAAAAAAAAB4Q0AAAAAAAAAAASENwAAAAAAAAAAEPgqfQAAAADs63q/Lf7ay+n8cb3fPi6n845HBAAAAADQB+ENAABAp9YEN4//Zsm/FecAAAAAAKMT3gAAAHQmCW7e/TkiHAAAAABgRJ+lDwAAAAAAAAAAAFokvAEAAOjIUdNunv3cUj8bAAAAAKAUl5oCAADoQC3Ri8tPAQAAAAAjEd4AAAA0rpbo5tH1fhPfAAAAAMUsXTOxfgG8Q3gDAADQqFqDmznxDQBA25acczrfA6AGyTrJ4+8w6xhA4rP0AQAAAAAAAAAAQItMvAEAAGhMC5Nu5nxaDACgTUvPO6evc84HwNHenXLT2hoLUCfhDQAAQEMsCAEAUKvHc1UhDgB7eCe2ud5vL/+9DxABawlvAAAAGtFydHPEp6Bt9AAAbGOr806TcADY2prfUe9MthHfAGsIbwAAABrQcnQzt9fC1bP7Z/53FssAAMoR4ACwhaVrI/PpNs/+fqufAzD5LH0AAAAAAAAAAADQIhNvAAAAKtXrJ6xKjGs2IhoAoDznZACstWbKzfS1707AfZyY43cX8IqJNwAAABXqNbrZw9L7yn0KAFCeczIAllryO+NyOn+Lbh7/2zum7w3wiok3AAAAlRlhM6LUp519yhoA4LXHT/oDwNFe/Q7663eV9/3A0YQ3AAAAlbCxsV5ynxkVDQBQ3l/ncc7TAMa0dMLN9X778bV+dwAludQUAAAAAAAAAAAETLwBAAAobNRJN6Unz7jsFABAnZynAYxl6brINO3m8e8AShPeAAAAFDRqdDOXbKxsdb/Z1AEAON6ScznnaQD9WxPczL/e7wegNi41BQAAUMCz65GPbM194X4DADjGHhuba76n8z6Afq2dciO6AWomvAEAADiYDYS6eDwAAOolWAfoT3ppKdENUCvhDQAAAAAAAAAABL5KHwAAAMBIfFr3PXvdf0ZWAwDUzfkaQB+SaTde+4HaCW8AAAAOIroBAGBkW2ycXu83G7AADVoT3My/3ms+0ALhDQAAwI7ENttxXwIA8PFhMxagJWvey8+n3Ex/BmjBZ+kDAAAA6JVQpB2X09mCHgDAg63PZ2v/fgBsS3QDjEJ4AwAAAAAAAAAAAZeaAgAAoGo+yQwAcKyWzr+u95upCACVWft7ZD7txms60CITbwAAAKjWEZs+FvUAAL7b+zKcW3/vlkIhgN55TQZGJLwBAADYiaCjfh4jAIDf7XGutNeG7PV+s9kLUFgy6ca0G6AHwhsAAACqZOMEAOB4U8Cy9ybo3lN1ADhWEt389WeAlghvAAAAAAAAAAAgILwBAADYkU9s1ctjAwDw3eO0gr2m3sx/zp7fG4B9PU5JW8q0G6A3X6UPAAAAoHfTApJNgOX2vK8s6AEALHe933Y5f9rzUlZ7HTMA//dubAPQExNvAAAADmKR6bXkk3IAALzvr3Owvc/PnCcDtEV0A/Cd8AYAAOBAFpvKcv8DANRlr6hHzA2wreSyUpfT2ftwYAjCGwAAAAAAAAAACHyVPgAAAAC4nM4uYQAAUEAtk2GOOB8EILP09dn7bmBUJt4AAAAczELUTzZZAACOV8s52J6Xm6rlNgK06tXr6HQ5qXfWOrxWA60z8QYAAKCAaUHK4tIxxE4AAN/VeB661zny9X5zPgiw0pLX4ndfW6ef4TUaaJ2JNwAAAAVZXNrXu5+6AwAAgNEcEd0A9ER4AwAAAAAAAAAAAZeaAgAAKOxyOlc56r91Pn0HAPCcc08AfvPX74gt32e7DCDQE+ENAABABVqLb7ZebNuaxTsAgJ9aOt/cmg1egN+9+v1Q+xoAQGnCGwAAgEpMC1m1LkLttVEx/75b3HYbKgAAP9V6jjmZhzGtRenANpY8773f294e0Y3XcGA0whsAAIDK1LbRcOTC5jsRjgVYAIDnajq3BPj4yF+Xnv27+Xto7wvX2fqyUmseV48V0JPP0gcAAAAAAAAAAAAtEt4AAABUqJZPfpU8jsvpvPjn13J/AQDUpsVpN3sdc4v3BfTmer9t/lycfz/P8+W2mnYzPaam3QAjc6kpAACASpW85FRNi2CvLj9V07ECAFA3l6OB44lh6vLq8Vgb3QBg4g0AAAANeVwAtGECANAH53XQnz2m2yz9ufy05PEQ3QBkTLwBAACo2LTodeSCVu2bHrUfHwBAKc+muZScolgj55JwjNKvO9f7zfN9ZsvgZsn32/JnAbTAxBsAAAAAAAAAAAiYeAMAANAAn1QGAOA3j+eJ8z+bLPCvZ5Mk3TewvZretz6bAjaaJY+Hy0sBvE94AwAAwP+MvCAJANCaJRugNkn/9ex+cCka2E7NrzWjPtdFNwDHEd4AAAA0wtQbAAB6PB98No0GqJ/nbL22fmw81gB/+yx9AAAAANRhxE8AAgAAsF5rIUZrx/uOpbd16RrASPcdQEp4AwAAAAAAAAAAAZeaAgAAaIjLTQEA0CPnuNCGlp+r1/ut60mvtT82Pd/3AMIbAAAAAABoQO2bqgkbsdCGXl5/ptvR22vPHo9PL485wBGENwAAAI2ZFggtggEAjKPnc7+ebxu0zvOzfh4jgPKENwAAAIPr7ZN+AADUzzko1K/noKOXy07t9Rj1/NgD7OGz9AEAAAAAAAAAAECLTLwBAABo1NpP5/nEGgAANZifx5Y+R+1l6gVsqfTz8igtP//feYxe3eY9Hv9W72eApYQ3AAAAg3hc6BplMRUAgPo4F4U6eW7Wb8/oBoCMS00BAAAMyoIbAABHcw4K1KS10Gjv423t/gCohfAGAABgYDY+AADa0NN5m41dqNOoz83r/dbEbW/hGAFGJbwBAAAAAAAAAIDAV+kDAAAAAAAA+nc5nQ+d2LBkStB80kVPU4WAfhzxurnnz/DaCoxAeAMAAAAAAOxur43dZ5u6rVw6Bmrh+fLvfTBaJOJxB9iG8AYAAAAAABpw9MSY2k33x1b3yYib7sB3tb0ObP2a73cIwD4+Sx8AAAAAAADAWjaQ4X2mQ/1Uy/1Ry3EA8JrwBgAAAAAAAAAAAsIbAAAAAABoxOV0ruoyKL0xYQL4+Cg/CchrEUBbhDcAAAAAAAAAD44OYEoHPwBkhDcAAAAAAFCJadPVxms57ntG4f/ryxz1muzxAGjXV+kDAAAAAACAUf210Tr9t/mlpWzMApTx7DV56+8NQJtMvAEAAAAAAAAAgICJNwAAAAAAcJBkqsH1fvu4nM4mIgBUYP5avMX0m95f26ffYQA9E94AAAAAAMDO3t1Y7X1jFjieoO99j/ffmsDEfQ/QD+ENAAAAAADswKZqu6bHzpQGYA2v+wBj+ix9ANAbJ1UAAAAAwF7rhJfTWQwCQFPsnQG9E94AAAAAAAAAAEBAeAMbmopd5S4AAAAAjG2vqTTX++3jer+ZegMAAJUQ3sBOpjfAAAAAAABb6zm+mS6n1evtg5p4rgHA+4Q3sKFnJ6fiGwAAAAAY096b2b3GN/MPNYpwAAConfAGNuYNIAAAAABwlCm+6XFdcgpwHiMcANrjShFAz4Q3AAAAAAAAAAAQEN7AARS8AAAAADCmI6a0TFMEkp/TyhQZk29gX55TAJD7Kn0A0KPL6fwjtun1essAAAAAQD2mNcglHwacr1f+tnZZ24cK58ez5rau9fi9re0CbMN+GdAj4Q0cyJs0AAAAABjTsw/rbW2+mfm4BvksWFny/dY44jbOPVtvfffn7xnzAADQJ+EN7MQbNAAAAACgFms+DPjOmmaJddHfoqKlx7Dk35jQALAdr6lAbz5LHwAAAAAAAAAAALTIxBsoQMkLAAAAAOM5+lJMqXRqzePkmRK3de0lta73WxOPCQAA9RLewM5+e4MpvgEAAAAAejWtf5aMWgQ1sE7p5yxjsU8G9MSlpgAAAAAA4CAtbTK+e6y9baqajsMIenrOAsBRhDdQkDdpAAAAAMCWtl5ztAn/k3Vdenc5nT33AWAF4Q0AAAAAAAAAAAS+Sh8AjOCv66JOf68eBwAAAIAxTGuBayanWD8EjvbX3gZswR4Z0AvhDQAAAAAAVKSnDUib9tA28Q0AvOZSU3CQV2+WnbgCAAAAwJgup/O3//Wmx9tlPZeR9Pb8BYCtCW+gIt6sAQAAAMA4WglSWjhGANplfwxonfAGAAAAAAAAAAACX6UPAAAAAAAAqNt86o3JBDCe6TXA8x8AfjLxBg60ZHSsk1YAAAAAAKBGLj0HAD8Jb6BC1/tNgAMAAAAAVMnGu/sAYGv2xYCWCW+ggKVvypxkAAAAAAA1Ep7AuDz/AeA74Q0AAAAAAAAAAASENwAAAAAAwGqX09nkCxiU5z4A/J/wBgpxuSkAAAAAoAev1jqv95t1TuiQ+A4A/iW8gQZ4UwoAAAAA1OydDXib99A2z18ARvdV+gBgZJfTeXFUM33d0Sewj8fnBBoAAAAA+M18/XDtmuazf1sja6Tw05r9DgDojYk3AAAAAAAAAAAQEN5AY44oxqdrLj/7WYp1AAAAAGAJl5+CsXjOAjAql5qCwqYT0TVBy/V+2/QEVkwDAAAAANTo2TpoqfVMUQG8lux5AEDrhDfQqPlJa/KGz0kvAAAAANCi+XqodU6o0+V09vwEYBjCG6jEOyehTl4BAAAAgBEdNRHHtBtYT3wDwCg+Sx8AAAAAAAAAAAC0SHgDAAAAAAB043I6bzqhxrQbyHn+ADACl5qCirQwdtFJMgAAAADQgvlaZrruaj0U3vf4PKp9HwQA1hLeQGVaiG8AAAAAAFqydt1VcAP7EeIA0BvhDVRoOums7WTTm00AAAAAoFWvNvutf0IZQhwAWvdZ+gAAAAAAAAAAAKBFJt4Ai/i0BwAAAADQE2ueUKf5c9P0GwBaILyBiq297vBexwAAAAAAAHA0l6ECoAXCG6hcyfhGdAMAAAAAANTi2b6FGKcP9qSAlglvoAElxio6wQEAAAAAAGpnKg4ApX2WPgAAAAAAAAAAAGiRiTfQmCMuPWXaDQAAAAAA0CKXowLgaMIbaNB00rjliaLYBgAAAAAA6NFveyCCHAC2ILyBhs1PFNeeHAptAAAAAACAkZmOA8AWhDfQCSENAAAAAADAe8Q4ZVzvN3tdQLM+Sx8AAAAAAAAAAAC0yMQbAAAAAAAAgF/8NonFJBwAPj6ENwAAAAAAAACrPQY5QhyAMbnUFAAAAAAAAMCbfpuMA0DfhDcAAAAAAAAAG7iczgIcgMEIbwAAAAAAAAAAICC8AQAAAAAAANiQqTcA4xDeAAAAAAAAAGxMfAMwBuENAAAAAAAAAEVd77fShwAQEd4AAAAAAAAA7MDUG4D+CW8AAAAAAAAAACAgvAEAAAAAAADYyeV0NvkGoGNfpQ8AAAAAAAAAoHeX0/njer+VPowihEdAz4Q3AAAAAAAAAGxOcAOMwKWmAAAAAAAAAA4wUogy0m0Fxiajb5qlAAAJ6UlEQVS8AQAAAAAAAACAgPAGAAAAAAAA4CC9T4K5nM7d30aAua/SBwAAAAAAAAAwknmYcr3fCh4JAO8y8QYAAAAAAACgkJ6mw/R0WwCWEt4AAAAAAAAAFCRYAWiX8AYAAAAAAAAAAALCGwAAAAAAAIDCLqezyTcADRLeAAAAAAAAAFRCfAPQFuENAAAAAAAAQEXENwDt+Cp9AAAAAAAAAAB8N49vrvdbwSMB4C8m3gAAAAAAAAAAQEB4AwAAAAAAAFAxl54CqJfwBgAAAAAAAKBy4huAOn2VPgAAAAAAAAAAXpvHN9f7reCRADAR3gAAAAAAAAA0RoQDUAeXmgIAAAAAAAAAgICJNwAAAAAAAAANM/0GoBzhDQAAAAAAAEAn5hHOx8exIc71fvvx8wF6J7wBAAAAAAAA6JRpOAD7Et4AAAAAAAAADOCICGf6vibfAKP4LH0AAAAAAAAAAADQIhNvAAAAAAAAAAbzbCKNS1EBrCe8AQAAAAAAAECMAxBwqSkAAAAAAAAAnrqczk+DHAD+ZeINAAAAAAAAAH+a4pvfJuA8xjnX+02wAwzBxBsAAAAAAAAAAAiYeAMAAAAAAADAIkun2Jh2A4zCxBsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAAC//nnn39KHwMAAAAAAAAAADTHxBsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAgPAGAAAAAAAAAAACwhsAAAAAAAAAAAgIbwAAAAAAAAAAICC8AQAAAAAAAACAwH8B7EQG8t17ZGsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(\n", - " dataset, config, image_id_list[3], use_mini_mask=False)\n", - "\n", - "log(\"image\", image)\n", - "log(\"image_meta\", image_meta)\n", - "log(\"class_ids\", class_ids)\n", - "log(\"bbox\", bbox)\n", - "log(\"mask\", mask)\n", - "\n", - "display_images([image]+[mask[:,:,i] for i in range(min(mask.shape[-1], 7))])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Supplementary Figure 5: Output feature maps at different stages of SeBRe image processing pipeline\n", - "# .\n", - "# ." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Supplementary Figure 5(a): Activations of feature maps output by ResNet101-FPN backbone" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "input_image shape: (1, 384, 384, 3) min: -123.70000 max: 150.10001\n", - "res4w_out shape: (1, 24, 24, 1024) min: 0.00000 max: 58.81488\n", - "rpn_bbox shape: (1, 36828, 4) min: -5.98674 max: 88.82722\n", - "roi shape: (1, 1000, 4) min: 0.00000 max: 1.00000\n" - ] - } - ], - "source": [ - "# Get activations of a few sample layers\n", - "activations = model.run_graph([image], [\n", - " (\"input_image\", model.keras_model.get_layer(\"input_image\").output),\n", - " (\"res4w_out\", model.keras_model.get_layer(\"res4w_out\").output), # for resnet100\n", - " (\"rpn_bbox\", model.keras_model.get_layer(\"rpn_bbox\").output),\n", - " (\"roi\", model.keras_model.get_layer(\"ROI\").output),\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACN0AAAIICAYAAABQawrqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3Pmv5fd91/H395xz79xl9s0zXuM1cdI4cdq6MaG4LCWiUAVURSoVQk2FEFSCgmgRP6AuCChCbCJV1SJUlUoURBEVJVEVRWmTRrUTN44dO3bsiZ2Z8TaLZzz7zF3OOV9+qJBQIXE+ndedc8fzePwBz/u9c8/9nu/3e15zu77vCwAAAAAAAAAA+PYNZn0AAAAAAAAAAABwvTG6AQAAAAAAAACARkY3AAAAAAAAAADQyOgGAAAAAAAAAAAaGd0AAAAAAAAAAEAjoxsAAAAAAAAAAGhkdAMAAAAAAAAAAI2MbgAAAAAAAAAAoJHRDQAAAAAAAAAANDK6AQAAAAAAAACARqNr+cX+wm0/0Sd7/c5tyVxVHz28P9R10dx0IfsjG6yMo71+lN9xdWvZY0z/TOK9DXgd9nPDaK8bT6O9PvxvmP5+q6q6afZ7TuvWJ9HedGk+2qvKv27S58P463AYPjdU1fyRN6K933753+UPkm/bO3/230ZP+MvHsu8f61vzL4+V3dlj3P6NaK4u3JntbTuc7VVVjZezP5elk9lz8+Iba9Fe+txcVbWyJ/v+sfzaSrQ3vLga7V24d0e0V1XVhy/5x4vZ4LaXw/+Gt22J9qqqFk9n73FWdmevf6fh65i5y/lr6bM/fDHa+9pf+VnXRTP04W0/mn1etJo9D/Tj8HMJ4O0jfL3aDbPv6f0k+7xoI8S/5/Q5exB+zjjdgJ9J+HX46cl/c100Y3/uQ/80em3UffGryVxNHnlftFdVNf/Ei9ngJj+3TC9ciPYA+L889N5o7tNf+Om3vDbyl24AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQaXcsvNjlxMto7/kPviPaWj0+jvaqqHZ9+Idrb7CupwdJivDl+7fVob7hzR7TXr6xGe91i/t9wevZstDfcti3a64bDcC//m9ItL0V7/Vz49DvIfs+D81eivaqqmmbPscNLXbSXNt2Rfc1UVVX6dcNM3f5PHp31IXxLw1274s3JmTPxZtLuWR8A18TWWR/AW0jfkSw/HQ7egHbO+gC+DVtmfQAzsP2T4Wuti9kcbaaXLs36EAD+ePo+mxuPo73rwab/nqeTWR/BWwu/Dpm97rGvRHuH//nD0d7OQ9FcVVWN9r872tv+P74c7Q3ecWu0Nwp/3lBVNT5+ItobHTwQ7Y2PHY/2AL6ZwVdfuvZf85p/RQAAAAAAAAAAuM4Z3QAAAAAAAAAAQCOjGwAAAAAAAAAAaGR0AwAAAAAAAAAAjYxuAAAAAAAAAACgkdENAAAAAAAAAAA0MroBAAAAAAAAAIBGRjcAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQCOjGwAAAAAAAAAAaGR0AwAAAAAAAAAAjYxuAAAAAAAAAACgkdENAAAAAAAAAAA0MroBAAAAAAAAAIBGRjcAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQCOjGwAAAAAAAAAAaDS6ll+sG2W/XB+eDM1dmmSDVXXxkXujva2PHYn2+oN7o73u+Olor6pquGd3NjjJ/pwHB/ZHe9PTZ6K9qqrBli3RXt/30d7k/tujvdFLx6K9qqrJvh3R3vDYm9HeyT9/R7S3/7OvR3tVVat37In25l8/F+3VXPY9anXPQrRXVbV4ZT3eZIY++EA0d/IDW6O9cTZXVVV7nsm+hhdOrUR7/R88E+0Nd+2K9qqqJmfy1wkwc4NhttdPo7nh/n3RXlVVf+FitDfYn72v6xfD9w+HX4n2qqomD94Xb/L20YXvgbv5+Wivqmp64UI22HXRXPo5wnQle91WVTW8Kfs8ZnLiZLQ3Ongg2hsfOx7tVVUNlpejvemlS9Fe+nW9EYY7d0Z7/Xgc7dV69h6sn2Svs6qqapD9Ofdra9FehZ+DboT05y68/fzaD/9CtPdTP/nj0V5V1fEPZj/wW935ndHeyp7sueqmx1ejvaqq7j23Rntrc+GfyZ96R7S3/aXsfXVV1cr+xWivm2TfQxa/fDTam7zxRrRXVTX93gejvQt3ZO9L5i5nfybbnt+AZ7Xh663x3uyD/sHl7PXliz+yPdqrqlp+/drfR/hLNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABo1PV9f82+2PcPPhr9YqO73pHM1dptu6K9qqq5r3wj2pucPRftpXWjUbzZj8fxJpvL6M47or3+9Jlor6qq27UjG1xbz/YWtmR702m2V1U1Db/fhI9xumd7tPfiX8u/p9zy2ez58Pc+8Q+7aJAm6euiix/9nmSuug24RFz+71/MR9lcuvBp5RreqwA3tk9Pf8N10Qylr4u4MQy3Z+/hJufPR3ujgweivfGx49FeVdXolpujvfFrr0d73dx8tNevr0V78McxuvWWeHP8evb88Onxf3VdNGOujQBg8/h2nhn5SzcAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQCOjGwAAAAAAAAAAaGR0AwAAAAAAAAAAjYxuAAAAAAAAAACgkdENAAAAAAAAAAA0MroBAAAAAAAAAIBGRjcAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQCOjGwAAAAAAAAAAaGR0AwAAAAAAAAAAjYxuAAAAAAAAAACgkdENAAAAAAAAAAA0MroBAAAAAAAAAIBGRjcAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQKPRrA/gqlxZieYGn3sy2quqmsSLm1s/Hs/6ELgOjQ8fnfUhvLXz52d9BN9St2VLNjjJn736aR/tdcNhtDe4dCnau+/jF6O9qqrxq6/Fm7x9LJ5aj/a2HDoe7VVV9Xv3RHuTU6ejvcED74r2pk8/H+1dF/rsuX5DdF22dz18z9Com5uP9vr1tWiPt6H0ubnL/h+z0f690V5V1fRC9n5h5XvfHe0tHXoj2rvwwP5or6pq6Wj2Hu7se7dHe7u+lv0ZX/yTd0R7VVVd+DJmy5sHo73505ejvZVbtkZ7VVXLX8nep6/fsS/aG73wSrRXu3dme1XVv34i2huEz9nTY9nj67ctRXtVVYOF8HNBAACa+Es3AAAAAAAAAADQyOgGAAAAAAAAAAAaGd0AAAAAAAAAAEAjoxsAAAAAAAAAAGhkdAMAAAAAAAAAAI2MbgAAAAAAAAAAoJHRDQAAAAAAAAAANDK6AQAAAAAAAACARkY3AAAAAAAAAADQyOgGAAAAAAAAAAAaGd0AAAAAAAAAAEAjoxsAAAAAAAAAAGhkdAMAAAAAAAAAAI2MbgAAAAAAAAAAoJHRDQAAAAAAAAAANDK6AQAAAAAAAACARkY3AAAAAAAAAADQyOgGAAAAAAAAAAAaGd0AAAAAAAAAAECj0awP4KosbJn1EbylwdJStDe9fDnag7elrpv1Eby1vo/mulH2dJ49uj803LU9GxyPo7lu+9Zor4bDbA/ewvB3vxztZX/DNsZw545ob/L089Eem9PgPe+M9qZfzb5uhu++L9q7dNfOaK+qav7cerQ3+PyT0R5Xr19fm/UhcKMJ3x8NtsxFe+PjJ6K9jbBw/FK0t3Zz9v3j0k35+6Mtp7I/5x0vXYn2hqfOR3s7Xjga7VVV1U17s7258KPmk6ejuaXDr0V7VVXTtex75nBv+B7n9JvRXqV7G2B6OHs+jPva1+PJbsvm/5wEoAbh68HpJNurquFN+6O9yYmT0R6weflLNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAo9GsD+Bq9HPhwx8Ms72q6tfH2WDXZXt9n+1dB7q5+WhvsHU52uvCvaqqfmU12uu2ZY9xfOSVaK9Lnxuqql/N/humTS9dmvUhvLVx9nzYX7kS7XVbsueG9TsPRHtVVaNT2+JNuJ5Nzp6b9SHwR4wO3BTtjY+fiPaqqgYXsu+Z02itavLcoWhv4bloDjaN4b13zfoQCBosLER73eJitDfauyfaq6rql7PH+OZ3bI/2Tv3ASrT3Z+95Ktqrqvrdz7w/2rvp8ey7+txr2Wdu/WQS7VXlr4smp89Ee/36WrS3EbotW7LBZ7+e7V0Hhvv2RXv95cvZXvh5Vk3zz+MHi9n3UZiFlb/0ULS38InHoz2u3jD82Ve/AZ9vju+5OdrrTpyM9oDNy1+6AQAAAAAAAACARkY3AAAAAAAAAADQyOgGAAAAAAAAAAAaGd0AAAAAAAAAAEAjoxsAAAAAAAAAAGhkdAMAAAAAAAAAAI2MbgAAAAAAAAAAoJHRDQAAAAAAAAAANDK6AQAAAAAAAACARkY3AAAAAAAAAADQyOgGAAAAAAAAAAAaGd0AAAAAAAAAAEAjoxsAAAAAAAAAAGhkdAMAAAAAAAAAAI2MbgAAAAAAAAAAoJHRDQAAAAAAAAAANDK6AQAAAAAAAACARkY3AAAAAAAAAADQyOgGAAAAAAAAAAAaGd0AAAAAAAAAAECj0awP4Gq8+LH90d49//pstFdV1a+uZXsXsr0b0eDO26K99Zu2R3uTxWG0V1U1f2Y12hseezPb27M72utG+X/D8bHj8eYNZ9BFc922bdHe+p0Hor1z9yxFe1VVe57Pv7aZnbUPf1e0N/+pL0V7bE7TRx6M9gafezLaq2H2PHXlIw9Fe1VVC29kr4u6o69Ee8C3Z7wvey3IjA2y/yesH4+jvbV7bor2qqpe/dML0d6//JFfjfb+8bMfifae+/kHor2qqnsf+0a0Nzl1Otobh1+HG6FfzV4XpX/3rgfpf8Ma3Hj3/ZPT2eeMg4Ut0V6/ln0eP3jvO6O9qqr+xZfjTbjWFj7x+KwP4bo33J79rCr9PH9y9ly0V132+KqquseeiTe5OoPveFe0N/3q89Ee/B/+0g0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0Gg06wO4Gvf+4ivR3uTCxWivqqpfXY03uTrrN22P9s7dvRDtrS910V5V1dkHsvu6+39mPdrrti1He/2589FeVdXk+z4Q7Y0uZM8N/RPPRnvDXbuivaqqGmXfcrrF7O/e6PmXo71d67dEe1VV/XgcbzI785/60qwPgT/iU68/Fe19x7//8Wivqmr+bB/t7ftcNFf9jq3R3rZnTkZ7VVXjbxyJN5NWfvChaG/5hdPRXlVVHX8jmuv27o72NvvPmIy5Y2dnfQgEDfZkzwMVvm7+uV/5j9FeVdWHFrL36e97/K9Ge7f9rTejvb7Pvx/1a9lnEzfi/Vb8e/7gA9Hc8Pmj0V5Ns9fSVfl/w7UP3h/tLbxwLNrrV1aivaqqafg53vTy5WgvrTuRPb9WVXW7N+A5Hlznui1bor3pd74r2ps7fi7aq6p6/u8eiPYefuj5aO/QLz8c7e36T49Fe1VV1U/yzRtM+neveyP8vhm+Xq0vPJ3tcd3yl24AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEajWR/A1eivXMn2VlejvaqqbpT9J+7H42jvejC69ZZo78riMNqbvziN9vY+eiraq6ra/0tHor3JdBLtjQ4eiPYq/HtXVTVYy37Pw9eyP+fV7/tAtHdp71y0V1W17flz0d5r37872rvl11+M9rpx9txQVdUNbWW5vl36oe+J9vphF+391qVD0d53/+Vnor2qqkP/5j3R3mB5Odo7/V17or2dv/ZYtFdVNXjgXdHe5du3R3tbnz4W7dU4ew1TVfW1f3Z/tLfv8ez72/qHD0Z7y8fz7+nb/+DVaG/86mvR3vVgfPjorA+BoP7ipWjv4G+vR3s/+oUfi/aqqu79+69HewdOfC3amy4sRHvd/Hy0V1U1vXw53rzRpJ/HTJ95Kdrr+z7am67kn/1W+hnZ7zwR7fX33xvt1cpKtldVg63Ze5Jp+D0l/Tx+ejb7fKyqqrv/7ngTrrXD/+V90d7g60vR3t2/kr3neu5n9kV7VVWHP/xL8WbSD3wy+9lc/mkHCenP2icnTkZ7le5tgP5D74/2ut9/Ktrj/8+ndwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAo9GsD+BqTE6dnvUhvKVucTHa6y9ciPauB/2ly9HedNRFe1sPX4z2Jodeivaqqobbt0d7k/Pno73xsePR3kYYra1He+v33x7tXT4wH+3d8xPPRXtVVc+cvDnau2X7kWhv7clbo73Knmqqqmr41Ll8FL6J13/yT8Sbazv6aG/xZPYX7Se/9NFob9tnl6K9qqp9v/lEtDddX4v21rZtwMkvrJ/P3gLNXRxHe+Ojr0R7G2HXV++I9sbZW6ZaPDWN9pZ+84vRXlVV9lUD17/pPdlr8aP/aC7au/f1DbgOv7ISzXWj7Ptbt5y9jpmcfjPaux4MlpejvW4+e99flX/m1s1lX4fT9O/JIH+t2s0vRHuDvXuivb7Lfs/Ti5eivaqqfnU13tzMNuL7HRw7FW/CtXbwP2+J9paOnIn2xkdejvZ2fDn8LLqqfvi+PxPtnflQ+vpt83+mC5tB9/tPRXujd2Q/j0yfD98u/KUbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQazfoArsZg27Zob3rhQrS3Uc0bzp6d0dzy069He69+9I5o78AT0VxVVU3On4/2Dv+Lh6O9e/7VoWhvcup0tFdVtfrgXdHeZEt28zgdRnP1zMmbs8Gqeujg0Wjvb+77XLT3Mz/7kWhv8vd2RXtVVdN4Eb65Wz5zLt689I6t0d7Sb34x2ps+9WC0N/j8Y9FeVVWfDnZdNHfzJ1+N9sbR2h/qv/TVaC/8Fnxd2PvL+dc2cGNLn5tHo7lob7K+Fu1dDyan35z1IVz3Bjfti/b6Uf6qY3LopXgzarD5r7QGy0vZ4DD8f2TX1qO5fnU12iPkysqsjwCu2sInHo/2Nvtz1Js+/mi8eebj8SSbzJWPPBTtLX/q6Wivqmq64j1psxkfeXnWh3BD8JduAAAAAAAAAACgkdENAAAAAAAAAAA0MroBAAAAAAAAAIBGRjcAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQCOjGwAAAAAAAAAAaGR0AwAAAAAAAAAAjYxuAAAAAAAAAACgkdENAAAAAAAAAAA0MroBAAAAAAAAAIBGRjcAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQCOjGwAAAAAAAAAAaGR0AwAAAAAAAAAAjYxuAAAAAAAAAACgkdENAAAAAAAAAAA0MroBAAAAAAAAAIBGo1kfwNVY/657o735J16M9qqqJufPx5s3msmLh6O9Kx95KNq7+TNvRnv9KP9rOVhaivaGV7po7+W/8c5o77aPfyXaq6oaXVyL9vrBfLS35zMvR3v9H2yN9qqqnn3vA9He3972/mjv3N3RXG39nmyvqmrvU/kmfDP9k8/Gm0tPxpNRg89v8gPcAMM9u6O98ZHs+xEAN4i+z+bWs/dv3Bi6LVuiven27LOY7soN+LqeTmZ9BG9pcjr7XLDSvS77DO96MNi2LdqbXrgQ7W2I+blZHwG87Q3ffV+0N3nuULRHxpsfezgb/KHT0dylL2Y/Pzz13g9Ee1VVazuy93Z3/9Rj0R5sFH/pBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoZHQDAAAAAAAAAACNjG4AAAAAAAAAAKCR0Q0AAAAAAAAAADQyugEAAAAAAAAAgEZGNwAAAAAAAAAA0MjoBgAAAAAAAAAAGhndAAAAAAAAAABAI6MbAAAAAAAAAABoNLqmX63rorkth45Hey/89Lujvaqqe3/1bLQ3OHM+2puevxDt1WSS7VXV9PLlaG/xfz4e7U2jtarB0lK4WDU5n33d3P5zj0Z7Z//6w9Fet7Al2quqqsefiebmorWqcbj36sfuDhernv07vxjt/dwb2XP2r//WI9HetlfSPxXebrq5+WivX1+L9rgxTE6dzgbD1/vV99keAJvSYNu2bG/PrmhvfOTlaI/NqV9djfa6Q0eivekGPHNj8xksLER73Y7t0d705n3RXlVVDbP3EN3ZS9HeYBp++rsB9zjTc+Fn/MD/o5+/th+nbgbTRx6M9uaePhLtTS/kz32T7NtwTT6zN9pbvJR9D5n+xTPRXlXV3O/sjjfheuAv3QAAAAAAAAAAQCOjGwAAAAAAAAAAaGR0AwAAAAAAAAAAjYxuAAAAAAAAAACgkdENAAAAAAAAAAA0MroBAAAAAAAAAIBGRjcAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQCOjGwAAAAAAAAAAaGR0AwAAAAAAAAAAjYxuAAAAAAAAAACgkdENAAAAAAAAAAA0MroBAAAAAAAAAIBGRjcAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQCOjGwAAAAAAAAAAaGR0AwAAAAAAAAAAjUbX9Kv1fTZ34WK0d+tnJtFeVVV3/I1o7+LDd0d7g/Xsz2Tx6Nlor6qqvvb1fHMTm16+POtDuOZ2/tpj0V7+N/nGc/sn34w331M/Hu3NfzB7jP0wmqvFzz6bDVbVNF5klqbffX+01z36lWgP/ljC1/sA3Bi6Yfj/hA38H7MbQtdle+HrmBvx+c6NaLhzR7Q3ue/2aO/iHUvR3tzl/JOJpc+/EO1NLl6K9mrqSSNQNX3quVkfwjU3d+x8tLfy3dnPN4er+fPzjm+sR3vzn/pStBf3H2Z9AFwLo4MHor3xsePR3tuFpxAAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQCOjGwAAAAAAAAAAaGR0AwAAAAAAAAAAjYxuAAAAAAAAAACgkdENAAAAAAAAAAA0MroBAAAAAAAAAIBGRjcAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQCOjGwAAAAAAAAAAaGR0AwAAAAAAAAAAjYxuAAAAAAAAAACgkdENAAAAAAAAAAA0MroBAAAAAAAAAIBGRjcAAAAAAAAAANDI6AYAAAAAAAAAABoZ3QAAAAAAAAAAQCOjGwAE0t+GAAAR3klEQVQAAAAAAAAAaDS6ll+sG4W/3IF90dzyky9He1VV41Ono73lF3ZGe5Pdy9HedOtCtFdVtfKDD0V7C//r8WgvbbBtW7w5vXAh3kwa3XpLtDc9czbaq6rq331XtDc4eynaq66L5iZPPx/tVVXd8drubPA3dkRz5x6cRnvTB+6J9qqqui89F28yO1//2Hy0d9+j0RwAwDXTLWefTdSVlWxvMMz2qqqmk3zzRtP3sz6Cb2l04KZob3ziZLRXVTV55MFob/jZL0d7ad1c9h6sqqrbujXaG53IPtPaOsg+Lxqeyj9jnJw/H28CcPUmh16K9uYORXMbIn+lAG8/w717or1JeEsxK/7SDQAAAAAAAAAANDK6AQAAAAAAAACARkY3AAAAAAAAAADQyOgGAAAAAAAAAAAaGd0AAAAAAAAAAEAjoxsAAAAAAAAAAGhkdAMAAAAAAAAAAI2MbgAAAAAAAAAAoJHRDQAAAAAAAAAANDK6AQAAAAAAAACARkY3AAAAAAAAAADQyOgGAAAAAAAAAAAaGd0AAAAAAAAAAEAjoxsAAAAAAAAAAGhkdAMAAAAAAAAAAI2MbgAAAAAAAAAAoJHRDQAAAAAAAAAANDK6AQAAAAAAAACARkY3AAAAAAAAAADQaHQtv1g/mUR7F+/fE+0t/87JaG8jTA69NOtD+JaGBw/EmwvD/dHe5Ps+EO2lDZ/a3D/jjdBfvJgN3n1btldVq3sWor3Fy2vRXncu+2843L492quq6ubmssFpH83t+L3D0d7X/8Hd0V5V1V1fGMebzM5dd56Y9SF8a12Xb/bZ31uAa6Eb5W+b1x95X7S35eib0V4Nsv8/Z7qcvZauquqffDbeZHb61dVscG09mhtu3xrtVVX1K9nvebqyEu1x9SanTmeDG3AtPfzsl+PNzaxfzz6LqaqaHM/e13WLi9HeaDX7PY9PbP7n54OlpWjv+I+9P9rb/wuPRnsAAN/K5I1T0d5gR/7zw7cDf+kGAAAAAAAAAAAaGd0AAAAAAAAAAEAjoxsAAAAAAAAAAGhkdAMAAAAAAAAAAI2MbgAAAAAAAAAAoJHRDQAAAAAAAAAANDK6AQAAAAAAAACARkY3AAAAAAAAAADQyOgGAAAAAAAAAAAaGd0AAAAAAAAAAEAjoxsAAAAAAAAAAGhkdAMAAAAAAAAAAI2MbgAAAAAAAAAAoJHRDQAAAAAAAAAANDK6AQAAAAAAAACARkY3AAAAAAAAAADQyOgGAAAAAAAAAAAaGd0AAAAAAAAAAEAjoxsAAAAAAAAAAGg0uqZfre+zuUEX7XW3Hoj2qqoGL0+zvf17o73x4aPRXg02YMf1haejuS0Hsz/n8bHj0V4XPr6qqjp7Lpobbt8e7XWLi9HedDiM9qqqFp84kg3u3hHNTQ7uzvbu3B/tVVXNv3Ym2ptuX4r2Bmvr0d6OF6I53o5+fl80NzqwGu31l69Ee1VVk/Pno71ulL2U7cfjaK/7zvdEe1VV/RPPxpv/u517yZGrPsM4/J2q6quxwYC5oygKICXKbcQkq8g+spFsIDvIDjKNoiiTKBIDkMiFQAwGHBkDvrS73ZeqczLIKFFi8+G3XW37eRbw81/dVV3nHL8q4N7Sfxuqqha/fSfaW0Vr8PCN4XvW+Gd6+Jqj6hTOuLEZ7aVNJ8frPsJDN2xtRXun8XnEg0v/Xqa9vWhvDPceCUP2/wxe/vVfor3pJ9+P9qqqxnezZwQAHh/p69XVV19He48L33QDAAAAAAAAAABNRjcAAAAAAAAAANBkdAMAAAAAAAAAAE1GNwAAAAAAAAAA0GR0AwAAAAAAAAAATUY3AAAAAAAAAADQZHQDAAAAAAAAAABNRjcAAAAAAAAAANBkdAMAAAAAAAAAAE1GNwAAAAAAAAAA0GR0AwAAAAAAAAAATUY3AAAAAAAAAADQZHQDAAAAAAAAAABNRjcAAAAAAAAAANBkdAMAAAAAAAAAAE1GNwAAAAAAAAAA0GR0AwAAAAAAAAAATUY3AAAAAAAAAADQZHQDAAAAAAAAAABNi3Uf4EFcePdaNnj3MNurqtreyvZOltHc/NKlaG/56nPRXlVVfX4129vcyPbCxhefjTeH619mg1vh1/XWZjQ3u/xZtFdVNYb/PszP7UR7w5//Ge1tPHUu2quqqll457m7Hc0d/PCVaO+FP3wR7VVVTbu78Sbrs/nHv0Z70072PbG6fTvaOw3TMntdlDa98/66jwDwrczOn4/2xr29aK+qavbTH8SbrM+Z/0w/4+erqpqWJ+HglO09gcb9/XUf4f6GIds746+b2Xb2nqmqajw8hefJPJj063Aao7nxveyzAOB/Gzay/+cwnRxHewA8XnzTDQAAAAAAAAAANBndAAAAAAAAAABAk9ENAAAAAAAAAAA0Gd0AAAAAAAAAAECT0Q0AAAAAAAAAADQZ3QAAAAAAAAAAQJPRDQAAAAAAAAAANBndAAAAAAAAAABAk9ENAAAAAAAAAAA0Gd0AAAAAAAAAAECT0Q0AAAAAAAAAADQZ3QAAAAAAAAAAQJPRDQAAAAAAAAAANBndAAAAAAAAAABAk9ENAAAAAAAAAAA0Gd0AAAAAAAAAAECT0Q0AAAAAAAAAADQZ3QAAAAAAAAAAQJPRDQAAAAAAAAAANBndAAAAAAAAAABA02LdB3gg0xTNLa9dj/aqqmpc5Ztn2GJrM95chnurq9fCxazZ7YN4c7kM/xRnQzS3ung+2pvd2ov2qqpmW1vR3vjFl9neQfh1s7+f7Z2C2Z3sGXeuZF/Xw9MXor2qqnH1ZH2mPO7G8PtsFr4uAuDJNe7lr6fTxvf+tu4jwJkyzOfR3pR+jsDZ9ITdQ4yHh+s+wn3NL16M9la3bkd7j8Kz7vgzsvyjWuAhmE6O130EAJ4gvukGAAAAAAAAAACajG4AAAAAAAAAAKDJ6AYAAAAAAAAAAJqMbgAAAAAAAAAAoMnoBgAAAAAAAAAAmoxuAAAAAAAAAACgyegGAAAAAAAAAACajG4AAAAAAAAAAKDJ6AYAAAAAAAAAAJqMbgAAAAAAAAAAoMnoBgAAAAAAAAAAmoxuAAAAAAAAAACgyegGAAAAAAAAAACajG4AAAAAAAAAAKDJ6AYAAAAAAAAAAJqMbgAAAAAAAAAAoMnoBgAAAAAAAAAAmoxuAAAAAAAAAACgyegGAAAAAAAAAACaFus+wIOYbt5e9xH4L6vrX677CPc1nRyv+wj3tPzHx+s+wn2NX9+M9mZHR9HedJjtVVVNqzHaG7a3sr1F9s/5sLkZ7VVVjQcH0d4wDNHe6nb2M2W2XEZ7VVVT+L3C4yX9HgOAM21crfsEPEFmu7vxZvrabf7aK9He8uMr0V76nrWqagrfc83f+G60N356Ndo7De4xz57pOPzcMvx5Odvejvaq8s/cZs8+E+1Nt7LPi4adnWivqmq8sx9vAgDwzfmmGwAAAAAAAAAAaDK6AQAAAAAAAACAJqMbAAAAAAAAAABoMroBAAAAAAAAAIAmoxsAAAAAAAAAAGgyugEAAAAAAAAAgCajGwAAAAAAAAAAaDK6AQAAAAAAAACAJqMbAAAAAAAAAABoMroBAAAAAAAAAIAmoxsAAAAAAAAAAGgyugEAAAAAAAAAgCajGwAAAAAAAAAAaDK6AQAAAAAAAACAJqMbAAAAAAAAAABoMroBAAAAAAAAAIAmoxsAAAAAAAAAAGgyugEAAAAAAAAAgCajGwAAAAAAAAAAaFqs+wAPYnzjtWhv9v5H0V5V1Xj3brQ3f/75aK+OjqK54eLT0V5V1erqtWhv/tzFaG/15VfR3vxS+HdcVVP4dTg8k/89Jw1Hx/HmeHsv2ps9fSHaG1eraG/2Qv51ONy8lQ1ubUVz843sR+KwvR3tVVWNBwfxJuvzwa/ezgY3pmjuxd/Po72qqud+dyXaW35+NdoD4N8WL70Y7U1P7UZ7VVWf/vzleBP+n0fhOnz5cfY6K21aLtd9hPtafXh53UeAGvf3132EexoPD9d9hPtaXfti3Ue4t0fgZ8j6LV57NdpbfvZ5tAcA/CffdAMAAAAAAAAAAE1GNwAAAAAAAAAA0GR0AwAAAAAAAAAATUY3AAAAAAAAAADQZHQDAAAAAAAAAABNRjcAAAAAAAAAANBkdAMAAAAAAAAAAE1GNwAAAAAAAAAA0GR0AwAAAAAAAAAATUY3AAAAAAAAAADQZHQDAAAAAAAAAABNRjcAAAAAAAAAANBkdAMAAAAAAAAAAE1GNwAAAAAAAAAA0GR0AwAAAAAAAAAATUY3AAAAAAAAAADQZHQDAAAAAAAAAABNRjcAAAAAAAAAANBkdAMAAAAAAAAAAE2LdR/gQcz+fiXaWx0cRHunYdrfzwbHMdu7cSvbq6rp5DjaG29mzzgtl9He6usb0V5V1XR0FO3Nxynaq82NbG8Vfl2fgunwMNobwj/D6W72fKdhupP9ezhsbkZ70/FJtMfj561fvBPtzXa2o70xfc1RVdlPTM6i+cWL0d7qRv66aP7W96K91QcfRXuzc+eivdN4L/Pgzvp7JX6P8+HlaK+q6vXfhB9n/DKbg4dtfulStLe6fj3am50/H+1VVY137kR7i1dfifbGGzejvZrCz2KqqoYh2wufcTzMPs9K3zNVVY3h58nz8HtlDD/fmb/2crRXVbW8/Ek2eMZf1/BNLD/7fN1HAAAafNMNAAAAAAAAAAA0Gd0AAAAAAAAAAECT0Q0AAAAAAAAAADQZ3QAAAAAAAAAAQJPRDQAAAAAAAAAANBndAAAAAAAAAABAk9ENAAAAAAAAAAA0Gd0AAAAAAAAAAECT0Q0AAAAAAAAAADQZ3QAAAAAAAAAAQJPRDQAAAAAAAAAANBndAAAAAAAAAABAk9ENAAAAAAAAAAA0Gd0AAAAAAAAAAECT0Q0AAAAAAAAAADQZ3QAAAAAAAAAAQJPRDQAAAAAAAAAANBndAAAAAAAAAABAk9ENAAAAAAAAAAA0Gd0AAAAAAAAAAEDT4mH+Y7Pd3WhvOH8+2psdn0R7VVXjwUG0N50so72axmhu2NyM9k7DsL2VDYZfN8Piob4tv52t8M9wXGV78/yecNgI/16G8Bk3wu+9u4fZXlXVbIjmpvR7bz6P9moVfl1X1fzChXiT9Rl/9uNob/jTn6O9xXdej/aqqir9PgtbXv4k2pvt7ER7VVXj4VE4mP1btbpxI9o7DUP4enrx8kvRXs2y1wiz809Fe1VVtRt+bY/Ze5Jpkf1bMxzl7xMP33wx2lvcOY729l7N3ruvtt6M9qqqdr7I/15YoyF7r5C+35o/dS7aq6pa7e1lgxez9wqz8POs03jWkX7OWNMUzZ3KZ3DYdJi99x/DzxJmO9vR3mmYh59PD+HrrFn4Hmw6uBvtVeX/Pgzh55bp5/un8fz8UXgmz2Pm7R/Fk/Ov70R7qw8vR3sAcC++6QYAAAAAAAAAAJqMbgAAAAAAAAAAoMnoBgAAAAAAAAAAmoxuAAAAAAAAAACgyegGAAAAAAAAAACajG4AAAAAAAAAAKDJ6AYAAAAAAAAAAJqMbgAAAAAAAAAAoMnoBgAAAAAAAAAAmoxuAAAAAAAAAACgyegGAAAAAAAAAACajG4AAAAAAAAAAKDJ6AYAAAAAAAAAAJqMbgAAAAAAAAAAoMnoBgAAAAAAAAAAmoxuAAAAAAAAAACgyegGAAAAAAAAAACajG4AAAAAAAAAAKDJ6AYAAAAAAAAAAJqGaZrWfQYAAAAAAAAAAHik+KYbAAAAAAAAAABoMroBAAAAAAAAAIAmoxsAAAAAAAAAAGgyugEAAAAAAAAAgCajGwAAAAAAAAAAaDK6AQAAAAAAAACAJqMbAAAAAAAAAABoMroBAAAAAAAAAIAmoxsAAAAAAAAAAGgyugEAAAAAAAAAgCajGwAAAAAAAAAAaDK6AQAAAAAAAACAJqMbAAAAAAAAAABoMroBAAAAAAAAAIAmoxsAAAAAAAAAAGgyugEAAAAAAAAAgCajGwAAAAAAAAAAaDK6AQAAAAAAAACAJqMbAAAAAAAAAABoMroBAAAAAAAAAIAmoxsAAAAAAAAAAGgyugEAAAAAAAAAgCajGwAAAAAAAAAAaPoXFNpmR7s0EvcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Backbone feature map\n", - "display_images(np.transpose(activations[\"res4w_out\"][0,:,:,:4], [2, 0, 1]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Supplementary Figure 5(b): Output feature maps of FPN head, predicting masks for input brain section" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "detections shape: (1, 8, 6) min: 0.00000 max: 336.00000\n", - "masks shape: (1, 8, 28, 28, 9) min: 0.00000 max: 1.00000\n", - "7 detections: ['cortex:' 'midbrain:' 'hindbrain:' 'thalamus:' 'prethalamus:'\n", - " 'telencephalic vesicle:' 'basal ganglia:']\n" - ] - } - ], - "source": [ - "# Get predictions of mask head\n", - "mrcnn = model.run_graph([image], [\n", - " (\"detections\", model.keras_model.get_layer(\"mrcnn_detection\").output),\n", - " (\"masks\", model.keras_model.get_layer(\"mrcnn_mask\").output),\n", - "])\n", - "\n", - "# Get detection class IDs. Trim zero padding.\n", - "det_class_ids = mrcnn['detections'][0, :, 4].astype(np.int32)\n", - "det_count = np.where(det_class_ids == 0)[0][0]\n", - "det_class_ids = det_class_ids[:det_count]\n", - "\n", - "print(\"{} detections: {}\".format(\n", - " det_count, np.array(dataset.class_names)[det_class_ids]))" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "det_mask_specific shape: (7, 28, 28) min: 0.00000 max: 1.00000\n", - "det_masks shape: (7, 384, 384) min: 0.00000 max: 1.00000\n" - ] - } - ], - "source": [ - "# Masks\n", - "det_boxes = mrcnn[\"detections\"][0, :, :4].astype(np.int32)\n", - "det_mask_specific = np.array([mrcnn[\"masks\"][0, i, :, :, c] \n", - " for i, c in enumerate(det_class_ids)])\n", - "det_masks = np.array([utils.unmold_mask(m, det_boxes[i], image.shape)\n", - " for i, m in enumerate(det_mask_specific)])\n", - "log(\"det_mask_specific\", det_mask_specific)\n", - "log(\"det_masks\", det_masks)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACN0AAAIICAYAAABQawrqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3PmzpXddJ/DPc5a79XK7O510p5PO0tlBSNgSWUpQzGAhYuEoOEUNzmBwdNRSSnGtEnUsp2bKdUQYLCkcZEbLpRjKER3ciAsqJEHAgYSEkED2Dr0vt++95zzzQ6pGa4ol33w+uff2zev1B7zP557znOf5Pt/nfW7X930AAAAAAAAAAACP32C9BwAAAAAAAAAAgLON0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADQareWL3Tj4ln4tXw82k25U83UdXHkgnXH7d+5MZ7z+JTenMyIiXrHto+mM3cOVdMZc16UzIiLGXb4LudJP0xnDqPl7/tuxp6Uz3vvAtQWTRMz+2PZ8yD/ckY7oV/PH22NB+Uvqn0x/t+aD5gm5cfStG2ddVHDeiILz12BmnJ8jIrrF/Pd96dqL0hkP3TCTzoiIOL0/f97Yu/9QwSQRjzyaf2+7Yf7QX7x5Pp0RETH/aP7Y3/6BO9MZ0xMn0xkREf2ZMyU58FRkXbS+7BfxuA2G6YjhuecUDBLxme+6PJ3x9te9NZ1x9bhmHbG1y6/FD02X0xkfXLognRER8cs//q3pjO1/+PF0xvTUqXQGrDXrovW36dZGRXvnJQr2r7pB/u+pet4Tw/zaqBuv6aPiL63g74lp0den4DPqKvY6RwXvSURMF7cUhOQj+tmav2dwfCkfcuhIOqI/XTBH1Ozp9ZNJwSRR8uxps3k8ayP/6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGo/UeAJ4KRnv3pDOu/9+fK5gk4k3nvDudsTCYKZikyuwGyeAL+f6d96QzvnfH3flBIuK//+Z56Yx3fdcr0xnDmz+azoiIiH5SkwMREV2+h90NunTGYMdiOiMiYuXSvemMB246k8548SX/J50REfHqcz6Uzhh3NeeMmavyOUemC+mM277iknRGRMQtRy5KZ3z6wqvTGefddjqdEREx/NuPpzP61dWCSQDg/9Pl14oREYOZcTpj9cD5BZNEXPrie9IZzxifSmdsHcylMyIiBpH/jM4f5reaX7XlUDojIuI5P/fz6Ywbv/770hlXv7FmT2Ny+HBJDvAUUnTtLVGw71SlGw4LMgr20ebn0xkREVGwNurma9YS/Xz+OUs/k19LTLbWPO+ZzOWPlZN7859PwRItIiJO7s0ft7NH+3TG+EQ+IyJi2735Y2V0+Fh+kL7m7+mnNTmsn41zpQMAAAAAAAAAgLOE0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKDRaL0HgCdLNztbknPHW56Zzrj95W9NZ8x243TGY2aKcmBtDLuafujrtj+aznjeO9+SzviBZ319OiMiYnL4cEkO66if5jOKvh/doEtnDLZuSWc8/IoD6YyIiIted1c64w8vfk86Y8+wZqldsQYYRP4zfkxFzul0wkvnP1EwR8T0nH9MZzz8A2fSGR9f3p3OiIj4D2/+N+mMXX/8qXTG5POH0hkA8IX0fZ/OGD90pGCSiNvv35POWLosf0+wNZ3wmIp770nBPc64G6YzIiIuGs2nMz7ytfk9gJ/5sxekMyIiPvTm69MZ8390WzqjX11NZwBrpOCaWaZqS6JAN8xf77r5/DUmzjsnnxERJ6/clc44tr9m/+r4pfljbronv8dy5YUPpzMiIi7f9vl0xnO23pPOODWtedZ5app/Nnjzo1ekMz55x4XpjIiI+Mv893DXZ/PvSX/8eDrjsaCCZwUb6bz/FOQ/3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABqN1nsA+EL6F16XznjHb72lYJKIC0d/X5AyLsgA1tuV47l0xvGXXFkwScSWP7i1JId11OW7z92gKxgkYrC4PZ0xvej8dMa1N308nRER8Ybzbk5nXDSaT2cMoubzGRYcK5vNsChn0uc/o/OH+WNlce5wOiMi4lU/8mfpjHdeeWM64+Kf/Nt0RkRE9H1NDptfV3O+Bb6IjfQdmxZcG6bTfEZEzN6RXwM8/ML8ftHiYJLOiKhbu24UFX/P1m42nfEzez6UzoiIuOtXPpjOeM1tN6UzLnr9femMiIjJkaMlOcCXsIGu390wfxffzdQ8YxnsOTedcfKafMaDz695PLvvhgfSGV+z63MFk0S8bDG/r7djeCqdce7gTDojImJc8BWaKfgeLhftjRyf5vcXL519JJ3x28Pr0xkREZ984Ip0xs6PLOQHOXosnxERsbySz+hr7gt4YuzgAwAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGo3WewA2kK5LR9z5y9cXDBJx5798Wzpj2G0tmASg1uGrhiU5W95Xk8P66Yb5z7Cbmy2YJGLpOQfSGff+60k64z/v/dN0RkTE5aN8r3xQsEwedvrtG13FZ1RxNt4aNd/l79758XTGs157Tzrjl3/9ZemMiIjV++7Ph/R9PmMzGhRcgwb5+8couBZGRMTU5wwbXtG6qBvmc/ot8wWTRCydm1//VjjTr5bkjLv8OXka03TGar8x3teIiEHB71UrMiIirhzPpDM+8LxfS2fc8Cvfk86IiLj8df+QD7HOgzVRsX812J5/VrPytIvTGRER9758Lp3xtV/7kXTGj+28NZ0REXHZ+HA6Y7Hi3i4iFrpxOmNY8JxyEDVrvQoVa6OVorXRNPJrxgtG+eNt3/yxdEZExMe25dcBk8X8sTJ8cAPt/xZ8fyLCGusJ2kBHAgAAAAAAAAAAnB2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI1G6z0ANQZzc+mMl9/6YDrje3e+PZ3xGH0wYHM6edlKSc5gPn/eZ311M+N0xmBxe8EkEfd8wzCd8W3P/GA640DRynTc5f+eYWctwtqpOt5mI39euWHuWDrjEz++L50REXHNz8+kMyZ3fSY/SN/nMyIiBvlzUzeuOVEOLr8kH7I6yWcMunxGRHTHTpbkAF9EwXWqq/q+b92SzjhxxY6CSSJ2X3YonbFtkL8/PFl0mRr3+VlO9QXXhiKzBcftOPLX7tlu42y/7xzMpzP+9iVvKZgk4lXf8gPpjK2/83cFk8Dm1Q3z57CIiG52Np2xeuX+dMZdr83f70ZE/PsXvT+d8U3bPprO2DWo2QdYGOQ/n0HR87hB5Nd7m20/btLn35NB0XuyqyBmPDqVzvjmXR/ODxIRdz1ndzrj0dsvSmfsuX9bOiMiYrB0Jp0xXa559hQbaE1/NtlcZy8AAAAAAAAAAFgDSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0Gq33AE91g7m5kpxXfeSz6YzvWHygYBJ4ajrTr5TkjGKYzhh2+pRfyKSfpjM+vpz/nC9/12o6IyJienqpJIf1M9i1M51x8pnnF0wS8XVf+dF0xqsXb0lnzHaz6YyIiHGXP5fC2aji2N8a+e/he7/uv6QzIiK+cfa70xnX/OCRdMb02Il0RkTEYPvWfMiuHfmMiPjkG7flQ4Z9OmLHLTXn/cXP1LwvsCl1XT5inN8+HGzdks6IiFj+iovTGUf+7fGCSSJ+/Wn/I52xe7i51q1Lff7asNTnj9nH5PcAtnWTdMauYc3fMyj47WzFWnHnoGYv+9/99O+lM37rj64pmCRierzmnAClKq7fMzMFg0TEZfvTEZ/5xoV0xi++9DfTGRERL5h7OJ2xOMjfx1Q8B6jiecKTp+S9LXiuEVGzDlgY5Nd6+0fH0hkREd+678PpjJ96YX5vffGePemMiIjZ5eV0xuBozXs7zY9Sc9wW3FusJWdSAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAo9F6D3A2G+4+J53xIx/6s4JJIr5qriQGzjqnpsvpjKMFGTef3p/OiIh4xuwD6YxLR8N0xsJgJp2x0dw/OZXOeNX735jOuOYTn05nRERMVlZLclg/qxfsSmccfOa4YJKIV+78SDrjnGGfzhhEl84A1t/Fo/z5ICLi17/qN9IZP/by70hnnHPLo+mMiIjVHQvpjKNX5DMiIvbsO5jOOHw8P8vq/Gw647EcvyeCL6Yb5u8PBzsW0xnT/eelMyIi7n59PuOXnv7efEhEXDXO35PNdfmt2ZV+ks6IiJhE/vq91OfX80emG2g/YpDfL1rsa9ZFgw1yqzTu8ueUiIjXbHswnfFTP/3NBZNEXP7GvyvJgUoV1+9uy5aCSSKOX55fB5z/rIfSGdfO5DMiIhYH+XuQUeQ/n2HnHobHp+xYKViSzBWsR/YMaxY1N8zdk8749uf+dTrj3fd9dTojIuLC6YXpjJlP3FcwScTg+Il0Rr+cX0f3k5r7nChaj385zuoAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBotN4DrJduPJPO+NkPvy+dcd3sbDoDzkZn+pWSnJ85+Nx0xu9+8tnpjK1/vZDOiIiY+4aH0xn/6arfT2c8f3aSzqhSdax89e//YDrjmp++I50xOXosnREREdON8xnxxBy5Yks6Y3jD4YJJIg6MD6UztnbjgkmA9Tbs8r/LWIj8vVZExIHR0XTGsVeeyA/S7c5nRMRK/rQfS7u7fEhEvOTc+9IZhxbz69/b7r4qnRERsXTY74nYhLqa73tXsO906tkXpzPuffU0nRER8c4XvjOd8dzZUwWTRMx2+evdIPKf86Dg2l3lwmH+PnVfQUZExKl+Y9wzT6Pm2J8WHCsRw4KMGqOCWX7xFe8qmCTiv77169IZkzvvLpgE/kk3Knh0t3N7PiMiHr4+f5359n3/mM7YNqhZGw0K/hdBxX0zrLWS47bPR4y6mvXIgXF+rfftO25JZ1z6moPpjIiI33jhC9IZn/vjywsmiVi8O//eLt76YDpj+tAj6YyIiOlyzTPGL8eVAQAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0Gi03gM0GwxLYs687/x0xnWzswWTwNnn8ORUOuPb7v6mgkkiVt+wJZ1xxcF70xn9mTPpjIiI7i8uSGfc9BPfls74vee/PZ0REbF3OEln/PmpCwsmibji3cfTGdPj+YyY5t8TNofjF3XpjOfuub9gkoiFri/JAai0Y5D/jcjrr/lgOuMd/QvSGRER07u25jMuya/DIyJOrM6kMx44sZjOmDmavxZGRAxXXMfYYAr2rgYz44JBIrqL8/eYB2/Kn3v+41e8L50REfHc2fws813+HBgRMew2xm8Za3ZKIyb9NJ0x7vLTTKPm2rC14Lem09gY70lExGCT/Xa24vvzsoWjBZNE/MY78ns9J19ccNz21jP8k24mf62a7Mrvm0dErJyzms64eObRdMZc2fm05joDT0UbZf0bEREFl83dw/l0xgvm8s8XIyK2XJR/xvij17+qYJKIQ7Pb0hlbPpffMxoeOpLOiIjoJvk1/eOxgb4dAAAAAAAAAABwdlC6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANBqt6at1XTri0TdcXzBIxK1Pf1tJDpxtVvpJOuMN97wyP8f37UpnRET0d38qnzHtCwaZ5jMiYvjokXTG4vt3pzN+55rnpTMiIv7y4cvTGcf+1/kFk0Ts/eiH0hn96mrBJPCY0/vzx9N12+4rmCRiWJFRsM4DNodp1KyLViK/Rlscnk5nLMwtpzMiIlauOZrOOG/biYJJIl68I7+Gfsa2LemMdzx7azojIuLo/LaSHKjSjfPbbYOdOwomiXjgq/P3h2971lvTGdfO5M/HERHz3Ww6Y9j5DeIXUvG+VNxXTPqa+4pBV7DXU/IXbRyTgr2rjfT9GRV9Pr96yXvSGTfte3U6Y/X+B9IZbB7drvw64MT++YJJIi4/kD82Lxk/ms4Y+B8CwD+zUdauF45qzrXbBg+nM/7Tdb9fMEnEe/Y/J51xy5lnpDP2H87fy0ZEDB7OX4Me1+usyasAAAAAAAAAAMAmonQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAo9Favthw1850xi/+8NsKJoGzz6SfluT8wqGr0xmnviP/XZ7ecUc647GgSU3OBjE9fDidce4HD6YzfvfAi9IZERHb785n7PurB/MhETGZbK5jhbPfYOtKOmPrcKlgkhqTvk9njLqCQaLmmjnsdNPhiao4H1S5bObhdMaN+2vWrZ88tjedceHCkYJJIo5P59IZjyxvT2ecOTabzoiImKu5VeJsNxiu9wT/T8X+1+mnX1AwScTKS4+mMw6MTqQz5rqa77s12uZX9RlXnBGq9uI2is32/an6e3YP59MZd3z/xemMy970QDqDzaPfkj8ul3bVfEcuW8ivJbYNltMZ424mnRGx+c6FwPoaRM2G9uIgv09z9Uz+2WBExIsW70xn3HzR09IZk51b0hkREaPjJ0tyvhxXFwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQKPRWr7YZ2+6Op3x/Nk/KZgkImJYlANr4wNL45Kc//mzL01nLN55S36Q6SSfsQn10z4f8sjn0xGXvWuanyMipp+9P50xWVktmCQi+oL3FgrtP+9wOmPv6EjBJBHDrivJAc5+kz6/BphGzTpiqeDavdTn19CnJzXr8Ku2PZzOuGA2f+2IiHjBwp3pjONzc+mM6bNqrj/vXXhmSQ5nt25cs8XVDfP7RSsH9qYzHvrK2XRGRMQ3XHprOmPXYCadMbIPx1lo2G2c36tWrNEqMjbSe1JlEPn1yOtf9ufpjL/6yd3pjIiI6cmTJTmsrzN7t6YzTu6rWWvvmT2ezhh3NfeIABtN2dqoYJ22r+BeNiLiefP3pDOueFr+2eDxSy9MZ0RE7Di0UJLz5Wy+VTIAAAAAAAAAADzJlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNRmv5Ys//po+mM8bdsGASWFsfW15KZ/z4T3x/wSQRO37vtnRGv7paMAlfUD9NR0yPH09ndMvL6YyIiH6l4FgpeE9gI1pazS/DlvpxwSQRy32fzph2BeevyM8RETGIriQHeGJWNtC1e0uXX9NcMf9IwSQ1xl3NOnylz99XV1yDHlxaTGdERIxGk5Ic1lGXv3YPFhYKBonoZmfSGQ8/cz6dsXT5mXRGRMTT5+9LZwwLPh8gZ9j57exG9prFW9MZH7juewomiej+5h9Kclhfy9vze0arW2vuy86fOZrOWOjy+z32eoDNrGKtN46aDsWOQf5edM/CsXTGwV015/1+a/7+/PGwWgcAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADQareWLvWnv+wtSthRkwOP32dUT6Yxv+c03pTMu/Z1b0xkREf3KckkOT5K+z0esrm6IDOBLu3zHo+mMc4b5a1RExEzXleQARERMIr+eiYhY6vPnpknkM1b6YTojIuLA7CPpjG2D0wWTROwbnkpn7BospTNesuuOdEZExIOntpfksH660Tgfct45+YyIWD53azrj8HX5+6nnXHZvOiMi4qLxoZIcgM1q2OV/l3z+cCad8envqrkvv+Lv1/SRD0+S5W3543K6+0zBJBG7Rvm9J/tOAE++QdH/WqlIuXTh8+mMW86puXZM5gv2Gx4H/+kGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQaLSWL7bUD9fy5XiK+9jyUknOa3/1h9IZB37ltnTGdGU5nQHAxnHPsV3pjIPnbC+YJOLk6Gg6YzyYpjNmu3QEPKVN+vz3cBp9OuNUn8+IiFjZIPePC4MzJTlL03E6Y9LX/G7m1PBEOqPi/v5jJ/anMyJa5vxBAAAcMElEQVQiJlO/JzrbdTP578fK3m0Fk0QcOTCXzth70SPpjPPm8t/TiIhxt1qSA8AXN+7y66I3P/cPCiaJ+O0d15bksL5WFvIZw3H+/jAiYtsg/5zFah3g7DHT5TfpV6b5tVHBNlpERPQza3MVcq0DAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGo7V8sW3d6lq+HOtgpZ+U5Ny3ejqd8bpf+KGCSSIueNst6YzpynLBJABsJuNh/pq53A8LJolY6vM97JXo8xlF64hxl39fat5ZeHwm/bQkZ1rwPTzTr6QzjkxrbjMPTRbSGUcmW/JzrG5NZ0RE7J/5fDpjrst/PlWW+vznfHoyLpgk4r6HdpbksH66+bl0xol9swWTRBy5Kp9x4+770xl7Zo7lB4mIYcG1YdLnM0ZdOgJgwxpE/iT3koV78oNExNu/5ptLclhfo/zjkVg9XXNf9tDqYjpjqX+gYBIA1sKRgm3Kh89sT2cU3RLH4PTa9FP8pxsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAECj0Vq+2G1n9qUzLhwdLpgkYtwNS3I2ikk/TWdMo09nvOfkrnRGRMSb3/3adMbFb7+1YJKIfmW5JAcA/rn7Du5MZ3zq3PMLJom4ZObRdMZMdyKdsTDMr2ciIqbRpTMmfT5j2Om3PxVslHV4RMSZfiWdsVLw99yzsjudERExLfiNyMnpTDrjVEFGRMSRyZZ0xrhbLZikxsHV7emMmz99RcEkEcMHZ0tyWD/d/Hw6Y3U+f+2OiFhdnJTkZFWde45N59IZp/oj6YxhV/P5VFwyrdGAahXnlW1F56YH/sXGWS/yxHUV2yNnao6pM9NxPqPmlheAL2Glr7mXPTXN10duP3JeOmN8oubi0U1qnjl8Oe4yAQAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjUZr+WIHV7elM870jxRMEjGILp0x7DZXZ+lTK8vpjB/9w39VMEnEVb/0j+mMyZkzBZMAwJNj9cwwnXFweWvBJBEPrS6mM7Z0+XXEtsFKOiMiYmtBr3yUXyrGpJ/mQ2LzrTkrVL23FabRpzNW+knBJBGnCnIOTvLH273L56YzIiJOTWfSGbMF55Vjq3PpjIiI45N8zqTodzP3Lu9OZ/zFwavSGVs+PJ/OiIjYdXvB9eOH8hEkDAouvFVm89eYHaNT6YzPr2xJZ0REHJkupDMOTY+kM8bdajojImKu4lDJX7ojwhoNqLUwGJfkfOcNNxek/HBBBhkLj+TXt/P35++nIiL++tBl6Yxnz9+TzrhwVPO8Z+h/EQAbUMVe56m+Zm/9b05fnc548M783uBlty+lMyIiho8cLcn5clxdAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACg0WgtX+zX7npROuPGa+8omCTi/GFB36jPRwy7Lh8SEXetrKYzXvGn35vOeNrPfTadERGxeuxYSQ4AbFSjgzPpjE8dPa9gkojLFx5JZ/zfdu7kR/LzLgP4U1W9Tff0eDyLV7zEiRM7seyQQAggFJaQiBOciBBckbjxn5AL4oBAAQQIDkACEihGLIaYJY6zEGJPYscex/a47Vl6uqent+qqHwc4IHEgb75vZibO5/MHPP121a/erZ7uE+P9csadk8vljCSZjmbljMVMyhnj9Nnn8d0z77ChPxim5Yz9of7MJslL05VyxvWhPjf98+a7yhlJctdK/UywPK6fk64d1V/XJHn54Gw542De5wj/hYv3lzNeP3+mnPGuL+yWM5Jk8eJOlxxuokl93V3Y63BJkyT79fuic9fuLGdcny6XM5LkxZW7uuRUvX/5Qpeck+PDcsZt4/palyTzof7MLY7qzz7A//aDx87f7CHQweRgXs5Y3uwwkCQvXqnv+7925t5yxg8tv1DOSJKFDvc9k5H/ZwD0dZT63eBLR33OOZ9+4/3ljDPP1ufJxQtb5YwkGfb2uuT8f6wMAAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARgs38oftXF8pZ2zMVjuMJDkzOShnLGZSztgfjsoZSbIxO17OeOiPh3LG/PKVcgYAfD848c16xvnjd9ZDknxqa72c8cgdb5YzfuGOL5UzkuR9yxfKGQ8s7JczVkeL5Yykz55znFGHkSTz1PeLPRwM0y4502FeznjpqH6kev3oVDkjSf7i8gfLGd+4eraccXl7rZyRJF+b3FXO+NC93ypnXD7o8/vMhvrn8FvX+jwrVz5Xf23f+XR9nlz4SofFMMkw7TMncBPNZuWIxd36nJ4k4/X68/Tw+sVyxqu7t5czkmRlXP99/mnrkXLGtePHyhlJ8uBS/bV9aGGrw0iSk+P63zIeHy93GEkfvfaLVZORvxHl+9O4099HP7h4tUsON9fy+UvljFOT+tkuSd44Vd+T/N7Cj5YzPvje8+WMJHls6bCccXxU/64TuPlmHe4Fj1I/yybJi9N6X+A3Nz7eYSTJpb+4r5xx99MbHQayWc9IMuztdcn5/zjFAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGi3cyB+29OW1csZT73u0w0iSyfHnyhnXh6V6xny5nJEkv/53v1LOeOTfv1bOmO/vlzMA4PvB6sV5OWP3zT5bucO94+WMlxePyhnfOHF3OSNJTkzq+5FT4436QMbTekaS9dGonFF/2vqZDUM5Y3eYdRhJcm1eH8uX9+8vZ3xp54FyRpI89fWHyxnji/UzztLVPn/bMV2rvz9PT99RzpjPJuWMJOnw6Gf82ko9JMkPPHNYzlh+4c1yxmz/oJyRJBlupVmO78i4Pm8s7PV5DubXF8sZz2/fVc5463p9f5Yky5P6Hu2pc+8uZ3zhjvvKGUlyba9+j/bhe1/pMJLk3Wv1efDn1r9azlgZ9dkX3TOpr3eLow5rZof1spfJyN+r8r1n8Vb6EPEdG67vlTOWN3Y6jCRZf6V+Rrx88lQ549mHHixnJMnZyfPljGOj+r7TGgM1sw73AEep76NfO+pzr/FHmz9WzvjiZx7rMJLk/ifr55zhQoeMwz536zfqzsisDgAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjRZu5A9bf3VezvizV57oMJJk/aH9csZ0mJQzPnflneWMJLn9K/WxzHd3O4wEAPh2LG4flTOOvdmnP720Xc/Zmd1ezvjPk/eUM5JkdXxYzjg5ru+L7lvYLmckyTz132cxow4jSaYZuuRUnT9a6pJzZXa8nPE753+8nLFx/nQ5I0nu+fv6+7xyeVrOmBzMyhlJMnR4bLfetVbOmBz2ee6Xr9Zfl5WLOx1Gkoyee6mcMTs4KGcMsz7PCm8Dh7fO3LOwvVjOeOt6fX1ZWajvFZNk82C1nDG6Un9NLl06U85IkpPn6ovDF9Ye7zCS5OlT9Yw/fPyHyxkfu/9cfSBJPnHq38sZ903qa8OpyXI5I0nGHf7WtH7bCt++eerfnSTJpM/Rj5tsvl2/TxjP++yNTj9bPw8t7NfvjD5590fLGUly8ER9X/NrJ+tr73Knr2cnI/9bge8t06HP3LQ1r3/P/9y0fmf02xs/W85Ikuf+4NFyxgOf/maHkSRHb12qh/RYg0adNjXDjbnPNhsDAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaLdzIH3bbN3bKGd98/nSHkSSfvPIz9ZCtxXLE8Vcm9XEkue+zF8oZR8PQYSQAwLdjaXO/nLFytb4XSZLxpXk5Y7ZU39M8v3FnOaOX2xZ2yxnXh6UOI0keXNjsktNDj8b+1ny5nPHM3kMdRpI8s/1AOePKs3eUM06/XI5Ikqy/uF3OGO/sdRjJreP4Sn1uWto67DCSZLQ3LWeML/WZD2aH9bEMs1mHkcD/GI3KEeODPs/k0mZ9LG+9dVt9IKM+dzRvrByVM85+sT6OSZ+pNCefqd9/pdf916zDHvrOk+WMf33Xh8oZSfLnH/1AOeOnHztXzvjVO54qZyTJ2Ul9T3PnpH51vjjqc/e7kD45VZPR2+9veGdD/bPcw3Tos45tzOrnrQfrw6Cqw1572D/oMJBkvH29nHH81ZVyxuZzx8sZSfJHJ36onPHzj/9HOePuTtP66qjP3RN8Ow6G+l3ClVmfuemZg/p93J+89SPljC89+Wg5I0keerJ+zpld7nSHPL9F7nu+x3oLb79dMgAAAAAAAAAAfJcp3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABop3QAAAAAAAAAAQCOlGwAAAAAAAAAAaKR0AwAAAAAAAAAAjZRuAAAAAAAAAACgkdINAAAAAAAAAAA0UroBAAAAAAAAAIBGSjcAAAAAAAAAANBI6QYAAAAAAAAAABot3MgfNnntYjnj/s8udxhJcuU9K+WMtbdm5Yz1F6+WM5JkfvFylxwA4MYYFifljNG8w0CSTFfrPezxUX0cqyuH9ZBONo/WyhmnJzsdRpK8MNS37OvjvQ4jSV6dni5nzIb68/apb364nJEkm2+tlzMe+Jf6w7/yxm45I0kmG/UzwbB/UB/IeFTPSJJZ/by1st3hc3jQ4TVJMhxOyxmzaYfJNslwVB9LhqGeAf9j2Kl/Vhc26nurJLnji0vljGsX6xl7Z/vMpT32aMcu1vdoi9sd5p0kw7UO83qH+ThJhsP66zK6slnOOPnKajkjSW47d7ac8cUfe7yc8Uvvf7SckSQffeK5csZPnjxXznjf0oVyRpLcs9Dhc5j6vLI6Xixn9LKQPvP+PPU9zTz1w/l06HPAnw71NYibb+hwFup1jplv1r/DWhjV55/Tzx8rZyTJxnr9XuNv3/mecsbH175ezkiSHxjV58Jxh/UhSSYj/+fhu2HWaX3YGepzwta8Pjf97uaPlDOS5E+//oFyxsrn6veC7/jrN8oZSTL71mvljOGoz50R3xkzIAAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoNHCjfxhw+5eOWPp4vUOI0nu3DooZ4y3dusDuXK1npFkvld/bQGAG2dyeaecsbK22GEkyWTvqJyxeH2lnHFl5VQ5I0m+euZkOeP5e+4sZ5w60WffevpYfc85nU06jCS5tLtazri6tVbOOP7MsXJGkty9MS9nrJ3bqA9kb7+ekWS+0+GZm83qGaNRPSNJhqGeMau/x5lO6xlJhg5jGXq8P0mf1xZ6mnd4Jo/6fD6WL90a9yvHLvdZuyeH9bln9YVL9YF0uBNMktnWtXrI0GFtSMc5uarTPmJ0dauccff5+h7tnr9aL2ckybfufWc547fue6ycsXNvn8/y9uOH5Ywzd2yXM375HZ8vZyTJe5dfL2c8srTZYSRJj1N1j93iq0f1s1aSfPL1j5UzfuLB+ji4+YYe+6skow7r3dDh+6vVC332Eqe+Vr+T+P0nPlzOmN7f5+vZT5x4rpyxOuqzVh3LUpecW8U89c/QPPV957V5fQ+QJK8d1Z+5f959pJzxh1/9UDkjSW7/x/pd9NnPXylnDBfeLGckyXBUv5/n5vKfbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI0WbuQPm+/tlzNGL7/eYSTJeDQqZwxHR/WMw8NyRpIMs1mXHADgxpifOFbPWKjvZ5JktDwpZ4xnQzlj+Wo5Ikkymtd75Uc7a+WMN0+sljOS5GJ9y5mhU9V+7dV60G179WflzFeulzOSZLJzUM4Yru/WB9LhXJEkmc/rGR3OSel0NhmG+rPSZSy9fp95h99n6PAe30p6PG+8LfS4X8nOTj0jyXg6LWesXlouZwyLfa7sRh3mnmFzq57Ra63j/5r3Wnfra8xsq/75yXafz/LojY1yxvqz9b3viUmfjfi9K/V5JYtL5Yi/ecdP1MeR5E8e7nDe+qk+88oPP/JyOePxE/XvLHZn9fcnSf7j9Xu65HCTjepzx2hSv+tJ+pzLRh1+n8l2/fvFJFnZXClnXPvLO8oZv/HEx8sZSfLZR95bzvjImW90GEnykbVz5YyT4/p3povpcPZO0uP0fXVen9s3Zqc7jCT59OUPljP+7cID5Yy1L9XvxJPk1PP1+7jRq2+WM2b79btF3h78pxsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGi0cEN/2jCvZ8xm9Ywk8x4586EcMXTI+O+gTjkAwA0xuXytnLEy67P+j6/ulDMWj6+WM1ZfXyxnJMnR8XrOMBqVM6brk3JGkoyn9fd51OlZWdo6LGeM96b1jEtb5YwkGQ7rYxl2d+sD6XTGGXqcCXqcT8b1z0+SPq/LqP53Jv3ObB3Ow/A2NfT4vE/7zD2jW+Wup9Oc0WMGm/dY6zoZjuprdzdvt7u4W+X3GTrti26RZXfo9cju73cKKrp0qUvMya8slTNOPXmiw0iSK489UM74zIPvLmdcv7fPOnb6pQ4P/y/WIyjqMIl1mk4zGurP5tBhDhtf3ytnJMmxDndPR6vr5YzDl/t8PfvC7WfLGfMO73GS3LN4tZyxNj4oZ5ydbJczkuTqvH7XefGovlY9vfVwOSNJ/uHF+lq1/J/Hyhl3fbn+HifJ4isXyxmzHuecW2XTyU3nP90AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAaKd0AAAAAAAAAAEAjpRsAAAAAAAAAAGikdAMAAAAAAAAAAI2UbgAAAAAAAAAAoJHSDQAAAAAAAAAANFK6AQAAAAAAAACARko3AAAAAAAAAADQSOkGAAAAAAAAAAAajYZhuNljAAAAAAAAAACA7yn+0w0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACNlG4AAAAAAAAAAKCR0g0AAAAAAAAAADRSugEAAAAAAAAAgEZKNwAAAAAAAAAA0EjpBgAAAAAAAAAAGindAAAAAAAAAABAI6UbAAAAAAAAAABopHQDAAAAAAAAAACN/gvSDTrcx5lERwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "display_images(det_mask_specific[:4] * 255, cmap=\"viridis\", interpolation=\"none\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/SeBRe_Masks.png b/SeBRe_Masks.png deleted file mode 100644 index eae1fb5..0000000 Binary files a/SeBRe_Masks.png and /dev/null differ diff --git a/SeBRe_block_diagram.png b/SeBRe_block_diagram.png deleted file mode 100644 index b5ffa87..0000000 Binary files a/SeBRe_block_diagram.png and /dev/null differ diff --git a/SeBRe_detection.ipynb b/SeBRe_detection.ipynb new file mode 100644 index 0000000..8a833d2 --- /dev/null +++ b/SeBRe_detection.ipynb @@ -0,0 +1,515 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "bba90324", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import os\n", + "import sys\n", + "import random\n", + "import math\n", + "import re\n", + "import time\n", + "import numpy as np\n", + "import cv2\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "from config import Config\n", + "import utils\n", + "import glob #for selecting png files in training images folder\n", + "from natsort import natsorted, ns #for sorting filenames in a directory\n", + "import skimage\n", + "import pandas\n", + "\n", + "import model_softnms as modellib\n", + "import visualize\n", + "from model import log" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e92401ef", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C:\\Users\\dal4019\\Documents\\Bst_Reg\n" + ] + } + ], + "source": [ + "def resetDataDir():\n", + " while os.getcwd() != \"C:\\\\\":\n", + " os.chdir('..')\n", + "\n", + " # Replace the following with the entire path to your data\n", + " os.chdir('C:\\\\Users\\\\dal4019\\\\Documents\\\\Bst_Reg')\n", + "\n", + "# Root directory of the project\n", + "resetDataDir()\n", + "ROOT_DIR = os.getcwd()\n", + "print(ROOT_DIR)\n", + "\n", + "# Directory to save logs and trained model\n", + "MODEL_DIR = os.path.join(ROOT_DIR, \"weights\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "db89c922", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10\n" + ] + } + ], + "source": [ + "RGB_MAPPINGS_DIR = 'rgb_mappings_hindbrain.csv'\n", + "\n", + "resetDataDir()\n", + "\n", + "RGB_MAPPINGS = pandas.read_csv(RGB_MAPPINGS_DIR, usecols = ['Label', 'R', 'G', 'B']).dropna()\n", + "RGB_MAPPINGS_MAP = {}\n", + "for index, row in RGB_MAPPINGS.iterrows():\n", + " r = row[\"R\"]\n", + " g = row[\"G\"]\n", + " b = row[\"B\"]\n", + " label = row[\"Label\"]\n", + " RGB_MAPPINGS_MAP[label] =(r,g,b)\n", + " \n", + "RGB_MAPPINGS_LABELS = list(RGB_MAPPINGS_MAP.keys())\n", + "RGB_MAPPINGS_INDEX = RGB_MAPPINGS.index.values\n", + "NUM_LABELS = len(RGB_MAPPINGS_INDEX)\n", + "print(NUM_LABELS)" + ] + }, + { + "cell_type": "markdown", + "id": "21f1c41b", + "metadata": {}, + "source": [ + "## Load data to run detection" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d4493dfa", + "metadata": {}, + "outputs": [], + "source": [ + "########### Create detection dataset:\n", + "\n", + "class BrainDataset(utils.Dataset):\n", + " \"\"\"Generates the brain section dataset. The dataset consists of locally stored \n", + " brain section images, to which file access is required.\n", + " \"\"\"\n", + "\n", + " #see utils.py for default def load_image() function; modify according to your dataset\n", + " \n", + " def load_brain(self): \n", + " \"\"\"\n", + " for naming image files follow this convention: '*_(image_id).jpg'\n", + " \"\"\"\n", + " for index, label in enumerate(RGB_MAPPINGS_LABELS):\n", + " self.add_class('brain', index+1, label)\n", + " \n", + " training_images_folder = 'images/TEST'\n", + " resetDataDir()\n", + " os.chdir(training_images_folder)\n", + " cwd = os.getcwd()\n", + " img_list = glob.glob('*.png')\n", + " img_list = natsorted(img_list, key=lambda y: y.lower())\n", + " im_id=0\n", + " for i in img_list:\n", + " img = skimage.io.imread(i) #grayscale = 0\n", + " [s1, s2] = np.shape(img)\n", + " im_dims = np.shape(img)\n", + " self.add_image(\"brain\", image_id=im_id, path = cwd+'/'+i, height = im_dims[0], width = im_dims[1])\n", + " im_id+=1" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "22874be2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done processing data.\n" + ] + } + ], + "source": [ + "# Detection dataset\n", + "resetDataDir()\n", + "dataset = BrainDataset()\n", + "dataset.load_brain()\n", + "dataset.prepare()\n", + "print(\"Done processing data.\")" + ] + }, + { + "cell_type": "markdown", + "id": "24bf9ee6", + "metadata": {}, + "source": [ + "## Load inference config and run detection" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "218fd787", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Configurations:\n", + "BACKBONE_SHAPES [[96 96]\n", + " [48 48]\n", + " [24 24]\n", + " [12 12]\n", + " [ 6 6]]\n", + "BACKBONE_STRIDES [4, 8, 16, 32, 64]\n", + "BATCH_SIZE 1\n", + "BBOX_STD_DEV [0.1 0.1 0.2 0.2]\n", + "DETECTION_MAX_INSTANCES 8\n", + "DETECTION_MIN_CONFIDENCE 0.1\n", + "DETECTION_NMS_THRESHOLD 0.9\n", + "GPU_COUNT 1\n", + "IMAGES_PER_GPU 1\n", + "IMAGE_MAX_DIM 384\n", + "IMAGE_MIN_DIM 384\n", + "IMAGE_PADDING True\n", + "IMAGE_SHAPE [384 384 3]\n", + "LEARNING_MOMENTUM 0.9\n", + "LEARNING_RATE 0.001\n", + "MASK_POOL_SIZE 14\n", + "MASK_SHAPE [28, 28]\n", + "MAX_GT_INSTANCES 8\n", + "MEAN_PIXEL [123.7 116.8 103.9]\n", + "MINI_MASK_SHAPE (56, 56)\n", + "NAME brain\n", + "NUM_CLASSES 11\n", + "POOL_SIZE 7\n", + "POST_NMS_ROIS_INFERENCE 1000\n", + "POST_NMS_ROIS_TRAINING 2000\n", + "ROI_POSITIVE_RATIO 0.33\n", + "RPN_ANCHOR_RATIOS [0.5, 1, 2]\n", + "RPN_ANCHOR_SCALES (16, 32, 64, 128, 256)\n", + "RPN_ANCHOR_STRIDE 1\n", + "RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]\n", + "RPN_NMS_THRESHOLD 0.7\n", + "RPN_TRAIN_ANCHORS_PER_IMAGE 256\n", + "STEPS_PER_EPOCH 2000\n", + "TRAIN_ROIS_PER_IMAGE 32\n", + "USE_MINI_MASK False\n", + "USE_RPN_ROIS True\n", + "VALIDATION_STEPS 100\n", + "WEIGHT_DECAY 0.0001\n", + "\n", + "\n" + ] + } + ], + "source": [ + "class BrainConfig(Config):\n", + " \"\"\"Configuration for training on the brain dataset.\n", + " Derives from the base Config class and overrides values specific\n", + " to the brain dataset.\n", + " \"\"\"\n", + " # Give the configuration a recognizable name\n", + " NAME = \"brain\"\n", + "\n", + " # Train on 1 GPU and 8 images per GPU. We can put multiple images on each\n", + " # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).\n", + " GPU_COUNT = 1\n", + " IMAGES_PER_GPU = 1 #8 ; reduced to avoid running out of memory when image size increased\n", + "\n", + " # Number of classes (including background)\n", + " NUM_CLASSES = 1 + NUM_LABELS # background + 4 regions\n", + "\n", + " # Use small images for faster training. Set the limits of the small side\n", + " # the large side, and that determines the image shape.\n", + " IMAGE_MIN_DIM = 128*3 #128\n", + " IMAGE_MAX_DIM = 128*3#128\n", + "\n", + " # Use smaller anchors because our image and objects are small\n", + " RPN_ANCHOR_SCALES = (16, 32, 64, 128, 256) # anchor side in pixels\n", + "\n", + " # Reduce training ROIs per image because the images are small and have\n", + " # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.\n", + " TRAIN_ROIS_PER_IMAGE = 32\n", + "\n", + " # Use a small epoch since the data is simple\n", + " STEPS_PER_EPOCH = 2000 #100 #steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. \n", + " #steps_per_epoch = TotalTrainingSamples / TrainingBatchSize (default to use entire training data per epoch; can modify if required)\n", + " \n", + " # use small validation steps since the epoch is small\n", + " VALIDATION_STEPS = 100 #5 #validation_steps = TotalvalidationSamples / ValidationBatchSize\n", + " #Ideally, you use all your validation data at once. If you use only part of your validation data, you will get different metrics for each batch, \n", + " #what may make you think that your model got worse or better when it actually didn't, you just measured different validation sets.\n", + " #That's why they suggest validation_steps = uniqueValidationData / batchSize. \n", + " #Theoretically, you test your entire data every epoch, as you theoretically should also train your entire data every epoch.\n", + " #https://stackoverflow.com/questions/45943675/meaning-of-validation-steps-in-keras-sequential-fit-generator-parameter-list\n", + " \n", + "\n", + " \n", + " ###### Further changes (experimentation):\n", + " \n", + " # Maximum number of ground truth instances to use in one image\n", + " MAX_GT_INSTANCES = 8 #100 #decreased to avoid duplicate instances of each brain region\n", + " \n", + " # Max number of final detections\n", + " DETECTION_MAX_INSTANCES = 8 #100 # #decreased to avoid duplicate instances of each brain region\n", + "\n", + " # Minimum probability value to accept a detected instance\n", + " # ROIs below this threshold are skipped\n", + " DETECTION_MIN_CONFIDENCE = 0.1 #0.7\n", + "\n", + " # Non-maximum suppression threshold for detection\n", + " DETECTION_NMS_THRESHOLD = 0.9 # if overlap ratio is greater than the overlap threshold (0.3), suppress object (https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python)\n", + "\n", + " \n", + " \n", + " \n", + "config = BrainConfig()\n", + "config.display()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f3d04824", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\tensorflow_core\\python\\ops\\resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "If using Keras pass *_constraint arguments to layers.\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py:4070: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.\n", + "\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Documents\\Bst_Reg\\model_softnms.py:316: The name tf.log is deprecated. Please use tf.math.log instead.\n", + "\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Documents\\Bst_Reg\\model_softnms.py:370: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.where in 2.0, which has the same broadcast rule as np.where\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Documents\\Bst_Reg\\model_softnms.py:394: calling crop_and_resize_v1 (from tensorflow.python.ops.image_ops_impl) with box_ind is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "box_ind is deprecated, use box_indices instead\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Documents\\Bst_Reg\\model_softnms.py:699: The name tf.rint is deprecated. Please use tf.math.rint instead.\n", + "\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Documents\\Bst_Reg\\model_softnms.py:699: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use `tf.cast` instead.\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Documents\\Bst_Reg\\model_softnms.py:708: The name tf.sets.set_intersection is deprecated. Please use tf.sets.intersection instead.\n", + "\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Documents\\Bst_Reg\\model_softnms.py:710: The name tf.sparse_tensor_to_dense is deprecated. Please use tf.sparse.to_dense instead.\n", + "\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Documents\\Bst_Reg\\model_softnms.py:725: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use `tf.cast` instead.\n", + "Loading weights from weights\\mask_rcnn_shapes.h5\n" + ] + } + ], + "source": [ + "class InferenceConfig(BrainConfig):\n", + " GPU_COUNT = 1\n", + " IMAGES_PER_GPU = 1\n", + "\n", + "inference_config = InferenceConfig()\n", + "\n", + "# Recreate the model in inference mode\n", + "model = modellib.MaskRCNN(mode=\"inference\", \n", + " config=inference_config,\n", + " model_dir=MODEL_DIR)\n", + "\n", + "# Get path to saved weights\n", + "# Either set a specific path or find last trained weights\n", + "resetDataDir()\n", + "model_path = os.path.join(\"weights\", \"mask_rcnn_shapes.h5\")\n", + "# model_path = model.find_last()[1]\n", + "\n", + "# Load trained weights (fill in path to trained weights here)\n", + "assert model_path != \"DANA_WEIGHTS\", \"Provide path to trained weights\"\n", + "print(\"Loading weights from \", model_path)\n", + "model.load_weights(model_path, by_name=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "57418e89", + "metadata": {}, + "outputs": [], + "source": [ + "colors = []\n", + "for color in RGB_MAPPINGS_MAP.values():\n", + " colors.append(tuple((color[0]/255, color[1]/255, color[2]/255)))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4cdfbf53", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processing 1 images\n", + "image shape: (4823, 6472, 3) min: 0.00000 max: 255.00000\n", + "molded_images shape: (1, 384, 384, 3) min: -123.70000 max: 150.10000\n", + "image_metas shape: (1, 19) min: 0.00000 max: 6472.00000\n", + "WARNING:tensorflow:From C:\\Users\\dal4019\\Anaconda3\\envs\\bstreg\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.\n", + "\n" + ] + } + ], + "source": [ + "image = dataset.load_image(25)\n", + "results = model.detect([image], verbose=1)\n", + "plt.figure(figsize=(20,20))\n", + "\n", + "r = results[0]\n", + "print(r['rois'])\n", + "print(r['class_ids'])\n", + "print(dataset.class_names)\n", + "\n", + "visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], \n", + " dataset.class_names, r['scores'], figsize=(15, 15), colors=colors)#ax=get_ax()" + ] + }, + { + "cell_type": "markdown", + "id": "5e249df7", + "metadata": {}, + "source": [ + "## Download detection masks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "929072b8", + "metadata": {}, + "outputs": [], + "source": [ + "from PIL import Image\n", + "\n", + "# Create dir for detection masks\n", + "resetDataDir()\n", + "detection_mask_dir = 'detection_masks'\n", + "if (not os.path.isdir(detection_mask_dir)):\n", + " os.mkdir(detection_mask_dir)\n", + "\n", + "# Create id class map\n", + "class_map = {}\n", + "for info in dataset.class_info[1:]:\n", + " class_map[int(info['id'])] = info['name']\n", + "\n", + "# Download masks\n", + "for image_id in dataset.image_ids:\n", + " original_image, image_meta, gt_class_id, gt_bbox, gt_mask =\\\n", + " modellib.load_image_gt(dataset, inference_config, \n", + " image_id, use_mini_mask=False)\n", + " results = model.detect([original_image], verbose=1)\n", + " r = results[0]\n", + " \n", + " # Reset data directory to directory with detection masks\n", + " resetDataDir()\n", + " os.chdir('detection_masks')\n", + "\n", + " # Download detection masks\n", + " section_detection_mask_dir = \"section_masks_\" + str(image_id)\n", + " if (not os.path.isdir(section_detection_mask_dir)):\n", + " os.mkdir(section_detection_mask_dir)\n", + " os.chdir(section_detection_mask_dir)\n", + " num_classes = np.shape(r['masks'])[2]\n", + " for class_id in range(1,num_classes+1):\n", + " im = Image.fromarray(np.uint8(r['masks'][:,:,class_id-1] * 255) , 'L')\n", + " im.save(\"section_masks_\" + str(image_id) + \"_\" + class_map[class_id] + \"_m_\" + str(class_id) + \".png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "49883ef2", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "96b3ed50", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5d68762f", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:bstreg] *", + "language": "python", + "name": "conda-env-bstreg-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/SeBRe_training.ipynb b/SeBRe_training.ipynb index 08decc0..ae0379c 100644 --- a/SeBRe_training.ipynb +++ b/SeBRe_training.ipynb @@ -2,7 +2,9 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "CX2nQuVKBxyf" + }, "source": [ "# Developing Brain Atlas through Deep Learning \n", "\n", @@ -15,14 +17,30 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "executionInfo": { + "elapsed": 7172, + "status": "ok", + "timestamp": 1626787247341, + "user": { + "displayName": "Dana Luong", + "photoUrl": "", + "userId": "11149291357161653867" + }, + "user_tz": 240 + }, + "id": "xXYUb0KMBxyo", + "outputId": "ed7b403a-8537-4357-f64e-e0280ac7a83d", + "scrolled": true + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "c:\\users\\asfandyar\\appdata\\local\\programs\\python\\python35\\lib\\site-packages\\h5py\\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", - " from ._conv import register_converters as _register_converters\n", "Using TensorFlow backend.\n" ] } @@ -38,53 +56,120 @@ "import cv2\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", - "\n", "from config import Config\n", "import utils\n", + "import glob #for selecting png files in training images folder\n", + "from natsort import natsorted, ns #for sorting filenames in a directory\n", + "import skimage\n", + "import pandas\n", + "import tensorflow as tf\n", + "\n", "import model as modellib\n", "import visualize\n", - "from model import log\n", + "from model import log" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 351 + }, + "executionInfo": { + "elapsed": 161, + "status": "error", + "timestamp": 1626787250954, + "user": { + "displayName": "Dana Luong", + "photoUrl": "", + "userId": "11149291357161653867" + }, + "user_tz": 240 + }, + "id": "fEyJkBrRBxy0", + "outputId": "746a2782-b2f6-438c-9b93-a8b7102b32db" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C:\\Users\\dal4019\\Documents\\Bst_Reg\n" + ] + } + ], + "source": [ + "def resetDataDir():\n", + " while os.getcwd() != \"C:\\\\\":\n", + " os.chdir('..')\n", "\n", - "%matplotlib inline \n", + " # Replace the following with the entire path to your data\n", + " os.chdir('C:\\\\Users\\\\dal4019\\\\Documents\\\\Bst_Reg')\n", "\n", "# Root directory of the project\n", + "resetDataDir()\n", "ROOT_DIR = os.getcwd()\n", + "print(ROOT_DIR)\n", "\n", "# Directory to save logs and trained model\n", - "MODEL_DIR = os.path.join(ROOT_DIR, \"logs\")\n", + "MODEL_DIR = os.path.join(ROOT_DIR, \"weights\")\n", "\n", "# Local path to trained weights file\n", - "COCO_MODEL_PATH = os.path.join(ROOT_DIR, \"mask_rcnn_coco.h5\")\n", - "# Download COCO trained weights from Releases if needed\n", - "if not os.path.exists(COCO_MODEL_PATH):\n", - " utils.download_trained_weights(COCO_MODEL_PATH)" + "COCO_MODEL_PATH = os.path.join(ROOT_DIR, \"mask_rcnn_coco.h5\")\n" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { - "collapsed": true + "id": "yWsl3SI7Bxy4" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "25\n" + ] + } + ], "source": [ - "import glob #for selecting png files in training images folder\n", - "from natsort import natsorted, ns #for sorting filenames in a directory\n", - "import skimage\n", - "from skimage import io" + "RGB_MAPPINGS_DIR = 'rgb_mappings_medulla_v2.csv'\n", + "\n", + "resetDataDir()\n", + "\n", + "RGB_MAPPINGS = pandas.read_csv(RGB_MAPPINGS_DIR, usecols = ['Label', 'R', 'G', 'B']).dropna()\n", + "RGB_MAPPINGS_MAP = {}\n", + "for index, row in RGB_MAPPINGS.iterrows():\n", + " r = row[\"R\"]\n", + " g = row[\"G\"]\n", + " b = row[\"B\"]\n", + " label = row[\"Label\"]\n", + " RGB_MAPPINGS_MAP[label] =(r,g,b)\n", + " \n", + "RGB_MAPPINGS_LABELS = list(RGB_MAPPINGS_MAP.keys())\n", + "RGB_MAPPINGS_INDEX = RGB_MAPPINGS.index.values\n", + "NUM_LABELS = len(RGB_MAPPINGS_INDEX)\n", + "print(NUM_LABELS)" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "MJTK5716Bxy6" + }, "source": [ "## Configurations" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": { + "id": "SgSG2JV9Bxy7", + "outputId": "3aa097ed-69e8-4055-8187-0ca8cbc8414a", "scrolled": true }, "outputs": [ @@ -102,7 +187,7 @@ "BACKBONE_STRIDES [4, 8, 16, 32, 64]\n", "BATCH_SIZE 1\n", "BBOX_STD_DEV [0.1 0.1 0.2 0.2]\n", - "DETECTION_MAX_INSTANCES 8\n", + "DETECTION_MAX_INSTANCES 100\n", "DETECTION_MIN_CONFIDENCE 0.9\n", "DETECTION_NMS_THRESHOLD 0.3\n", "GPU_COUNT 1\n", @@ -115,24 +200,24 @@ "LEARNING_RATE 0.001\n", "MASK_POOL_SIZE 14\n", "MASK_SHAPE [28, 28]\n", - "MAX_GT_INSTANCES 8\n", + "MAX_GT_INSTANCES 100\n", "MEAN_PIXEL [123.7 116.8 103.9]\n", "MINI_MASK_SHAPE (56, 56)\n", "NAME brain\n", - "NUM_CLASSES 9\n", + "NUM_CLASSES 26\n", "POOL_SIZE 7\n", "POST_NMS_ROIS_INFERENCE 1000\n", "POST_NMS_ROIS_TRAINING 2000\n", "ROI_POSITIVE_RATIO 0.33\n", "RPN_ANCHOR_RATIOS [0.5, 1, 2]\n", - "RPN_ANCHOR_SCALES (8, 16, 32, 64, 128)\n", + "RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)\n", "RPN_ANCHOR_STRIDE 1\n", "RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]\n", "RPN_NMS_THRESHOLD 0.7\n", "RPN_TRAIN_ANCHORS_PER_IMAGE 256\n", "STEPS_PER_EPOCH 2000\n", "TRAIN_ROIS_PER_IMAGE 32\n", - "USE_MINI_MASK True\n", + "USE_MINI_MASK False\n", "USE_RPN_ROIS True\n", "VALIDATION_STEPS 100\n", "WEIGHT_DECAY 0.0001\n", @@ -156,7 +241,7 @@ " IMAGES_PER_GPU = 1 #8 ; reduced to avoid running out of memory when image size increased\n", "\n", " # Number of classes (including background)\n", - " NUM_CLASSES = 1 + 8 # background + 8 regions\n", + " NUM_CLASSES = 1 + NUM_LABELS # background + 4 regions\n", "\n", " # Use small images for faster training. Set the limits of the small side\n", " # the large side, and that determines the image shape.\n", @@ -164,7 +249,7 @@ " IMAGE_MAX_DIM = 128*3#128\n", "\n", " # Use smaller anchors because our image and objects are small\n", - " RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels\n", + " RPN_ANCHOR_SCALES = (32, 64, 128, 256, 512) # anchor side in pixels\n", "\n", " # Reduce training ROIs per image because the images are small and have\n", " # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.\n", @@ -187,10 +272,10 @@ " ###### Further changes (experimentation):\n", " \n", " # Maximum number of ground truth instances to use in one image\n", - " MAX_GT_INSTANCES = 8 #100 #decreased to avoid duplicate instances of each brain region\n", + " MAX_GT_INSTANCES = 100 #100 #decreased to avoid duplicate instances of each brain region\n", " \n", " # Max number of final detections\n", - " DETECTION_MAX_INSTANCES = 8 #100 # #decreased to avoid duplicate instances of each brain region\n", + " DETECTION_MAX_INSTANCES = 100 #100 # #decreased to avoid duplicate instances of each brain region\n", "\n", " # Minimum probability value to accept a detected instance\n", " # ROIs below this threshold are skipped\n", @@ -208,16 +293,18 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "Msfd_mvzBxy_" + }, "source": [ "## Notebook Preferences" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { - "collapsed": true + "id": "dI14Q8NxBxzI" }, "outputs": [], "source": [ @@ -234,8 +321,34 @@ ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 6, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4\n" + ] + } + ], + "source": [ + "# Gets the class ID from file name\n", + "def get_class_id_from_image_name(filename):\n", + " tmp = filename.split(\"_\")[4]\n", + " tmp = tmp.split(\".\")[0]\n", + " class_id = tmp.split(\"m\")[1]\n", + " return int(class_id)\n", + " \n", + "print(get_class_id_from_image_name(\"section_mask_85_NTB_m4.png\"))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SC8bytjOBxzK" + }, "source": [ "## Dataset\n", "\n", @@ -248,20 +361,11 @@ "* image_reference() # do not need to for now" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### change directory here where the dataset is located\n", - "### .\n", - "### ." - ] - }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": { - "collapsed": true + "id": "n1opK0yTBxzL" }, "outputs": [], "source": [ @@ -278,34 +382,23 @@ " \"\"\"\n", " for naming image files follow this convention: '*_(image_id).jpg'\n", " \"\"\"\n", + " for index, label in enumerate(RGB_MAPPINGS_LABELS):\n", + " self.add_class('brain', index+1, label)\n", " \n", - " os.chdir('D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6')\n", - " \n", - " self.add_class('brain','1','cortex')\n", - " self.add_class('brain','2','hippocampus')\n", - " self.add_class('brain','3','basal_ganglia')\n", - " self.add_class('brain','4','thalamus')\n", - " self.add_class('brain','5','prethalamus')\n", - " self.add_class('brain','6','midbrain')\n", - " self.add_class('brain','7','hindbrain')\n", - " self.add_class('brain','8','telencephalic_vesicle')\n", - " \n", - " \n", - " training_images_folder = 'mrcnn_train_dataset_images'\n", + " training_images_folder = 'images/TRAINING'\n", + " resetDataDir()\n", " os.chdir(training_images_folder)\n", - " im_id = 0\n", " cwd = os.getcwd()\n", - " img_list = glob.glob('*.jpg')\n", + " img_list = glob.glob('*.png')\n", " img_list = natsorted(img_list, key=lambda y: y.lower())\n", - " #print(img_list)\n", - " for i in img_list: #image_ids start at 0 (to keep correspondence with load_mask which begins at image_id=0)!\n", + " im_id=0\n", + " for i in img_list:\n", " img = skimage.io.imread(i) #grayscale = 0\n", + " [s1, s2] = np.shape(img)\n", " im_dims = np.shape(img)\n", - " self.add_image(\"brain\", image_id=im_id, path = cwd+'/'+glob.glob('*_'+str(im_id)+'.jpg')[0],height = im_dims[0], width = im_dims[1])#, depth = im_dims[2])\n", - " im_id += 1\n", - " #print(im_dims)\n", - " \n", - " \n", + " self.add_image(\"brain\", image_id=im_id, path = cwd+'/'+i, height = im_dims[0], width = im_dims[1])\n", + " im_id+=1\n", + " \n", " \n", " def load_mask(self,image_id):\n", " \"\"\"Load instance masks for the given image.\n", @@ -318,35 +411,29 @@ " one mask per instance.\n", " class_ids: a 1D array of class IDs of the instance masks.\"\"\"\n", " \n", - " os.chdir('D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6')\n", - " print(image_id)\n", - " masks_folder = 'mrcnn_train_dataset_masks'\n", + " masks_folder = 'masks/TRAINING'\n", + " \n", + " resetDataDir()\n", " os.chdir(masks_folder)\n", - " subfolder = glob.glob('*_'+str(image_id))[0]#add 1 to image_id, to get to correct corresponding masks folder for a given image \n", - " print(subfolder)\n", + " subfolder = glob.glob('*_'+str(image_id))[0]\n", " os.chdir(subfolder) \n", " \n", " info = self.image_info[image_id] \n", - " print(info)\n", " mk_list = glob.glob('*.png')\n", - " print(mk_list)\n", - " count = len(mk_list)\n", - " mk_id = 0\n", - " mask = np.zeros([info['height'], info['width'], count], dtype=np.uint8)\n", - " #print(np.shape(mask))\n", - " class_ids = np.zeros(count)\n", + " mask = np.zeros([info['height'], info['width'], NUM_LABELS+1], dtype=np.uint8)\n", + " class_ids = np.zeros(len(mk_list))\n", " \n", - " for m in mk_list:\n", - " bin_mask = skimage.io.imread(m,as_grey=True) # grayscale=0\n", - " mk_size = np.shape(bin_mask)\n", - " mask[:, :, mk_id]= bin_mask\n", + " for ind, m in enumerate(mk_list):\n", + " bin_mask = skimage.io.imread(m,as_gray=True) # grayscale=0\n", + " class_id = get_class_id_from_image_name(m)\n", + " \n", + " mask[:, :, class_id]= bin_mask\n", " \n", " # Map class names to class IDs.\n", - " class_ids[mk_id] = m[-5] #fifth last position from mask_image name = class_id #need to update(range) if class_ids become two/three-digit numbers \n", - " mk_id += 1\n", + " class_ids[ind] = class_id\n", + "\n", " return mask, class_ids.astype(np.int32)\n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -365,31 +452,22 @@ " for naming image files follow this convention: '*_(image_id+1).jpg'\n", " \"\"\"\n", " \n", - " os.chdir('D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6')\n", - " \n", - " self.add_class('brain','1','cortex')\n", - " self.add_class('brain','2','hippocampus')\n", - " self.add_class('brain','3','basal_ganglia')\n", - " self.add_class('brain','4','thalamus')\n", - " self.add_class('brain','5','prethalamus')\n", - " self.add_class('brain','6','midbrain')\n", - " self.add_class('brain','7','hindbrain')\n", - " self.add_class('brain','8','telencephalic_vesicle')\n", - " \n", + " for index, label in enumerate(RGB_MAPPINGS_LABELS):\n", + " self.add_class('brain', index+1, label)\n", " \n", - " training_images_folder = 'mrcnn_val_blurred_images_sigma_4'\n", - " os.chdir(training_images_folder)\n", - " im_id = 0\n", + " val_images_folder = 'images/VALIDATION'\n", + " resetDataDir()\n", + " os.chdir(val_images_folder)\n", " cwd = os.getcwd()\n", - " img_list = glob.glob('*.jpg')\n", + " img_list = glob.glob('*.png')\n", " img_list = natsorted(img_list, key=lambda y: y.lower())\n", - " #print(img_list)\n", - " for i in img_list: #image_ids start at 0 (to keep correspondence with load_mask which begins at image_id=0)!\n", + " im_id=0\n", + " for i in img_list:\n", " img = skimage.io.imread(i) #grayscale = 0\n", + " [s1, s2] = np.shape(img)\n", " im_dims = np.shape(img)\n", - " self.add_image(\"brain\", image_id=im_id, path = cwd+'/'+glob.glob('*_'+str(im_id)+'.jpg')[0],height = im_dims[0], width = im_dims[1])#, depth = im_dims[2])\n", - " im_id += 1\n", - " #print(im_dims)\n", + " self.add_image(\"brain\", image_id=im_id, path = cwd+'/'+i, height = im_dims[0], width = im_dims[1])\n", + " im_id+=1\n", " \n", " \n", " \n", @@ -404,167 +482,182 @@ " one mask per instance.\n", " class_ids: a 1D array of class IDs of the instance masks.\"\"\"\n", " \n", - " os.chdir('D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6')\n", - " print(image_id)\n", - " masks_folder = 'mrcnn_val_dataset_masks'\n", + " masks_folder = 'masks/VALIDATION'\n", + "\n", + " resetDataDir()\n", " os.chdir(masks_folder)\n", - " subfolder = glob.glob('*_'+str(image_id))[0]#add 1 to image_id, to get to correct corresponding masks folder for a given image \n", - " print(subfolder)\n", + " subfolder = glob.glob('*_'+str(image_id))[0]\n", " os.chdir(subfolder) \n", " \n", " info = self.image_info[image_id] \n", - " print(info)\n", " mk_list = glob.glob('*.png')\n", - " print(mk_list)\n", - " count = len(mk_list)\n", - " mk_id = 0\n", - " mask = np.zeros([info['height'], info['width'], count], dtype=np.uint8)\n", - " #print(np.shape(mask))\n", - " class_ids = np.zeros(count)\n", + " mask = np.zeros([info['height'], info['width'], NUM_LABELS+1], dtype=np.uint8)\n", + " class_ids = np.zeros(len(mk_list))\n", " \n", - " for m in mk_list:\n", - " bin_mask = skimage.io.imread(m,as_grey=True) \n", - " mk_size = np.shape(bin_mask)\n", - " mask[:, :, mk_id]= bin_mask\n", + " for ind, m in enumerate(mk_list):\n", + " bin_mask = skimage.io.imread(m,as_gray=True) # grayscale=0\n", + " class_id = get_class_id_from_image_name(m)\n", + " \n", + " mask[:, :, class_id]= bin_mask\n", " \n", " # Map class names to class IDs.\n", - " class_ids[mk_id] = m[-5] #fifth last position from mask_image name = class_id #need to update(range) if class_ids become two/three-digit numbers \n", - " mk_id += 1\n", - " return mask, class_ids.astype(np.int32)\n", + " class_ids[ind] = class_id\n", "\n", + " return mask, class_ids.astype(np.int32)\n", "\n", "\n" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { - "collapsed": true + "id": "kfwbYWpcBxzN", + "outputId": "26a6d5f3-5e85-4511-c862-fa155462a42c" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "C:\\Users\\dal4019\\Documents\\Bst_Reg\n" + ] + } + ], "source": [ "# Training dataset\n", + "resetDataDir()\n", + "print(os.getcwd())\n", "dataset_train = BrainDataset_Train()\n", "dataset_train.load_brain()\n", "dataset_train.prepare() #does nothing for now \n", - "\n", - "\n", + "print(\"Done processing training data.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "# Validation dataset \n", + "resetDataDir()\n", "dataset_val = BrainDataset_Val()\n", "dataset_val.load_brain()\n", - "dataset_val.prepare()#does nothing for now " + "dataset_val.prepare()#does nothing for now \n", + "print(\"Done processing validation data.\")" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { - "scrolled": false + "id": "CY7cFDifBxzQ", + "outputId": "6b8d120b-832d-42ce-982f-5f56cb6a097c", + "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "397\n", - "section_masks_397\n", - "{'width': 4691, 'id': 397, 'height': 2961, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain'}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAACBCAYAAADufQTbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsnXd4G0X6xz+zkixb7j1uSZw4idN7IKSQA0KvB6EfHY4S6lEPyNHbcUc/Drijd37AAQmBkJBAGiGV9OI4cRz3XmRblrTz+2NX9kq2IUB65vM8erxazc6udsez+9X7zneElBKFQqFQKBQKhUKhONjR9vUBKBQKhUKhUCgUCsXeQIkfhUKhUCgUCoVCcUigxI9CoVAoFAqFQqE4JFDiR6FQKBQKhUKhUBwSKPGjUCgUCoVCoVAoDgmU+FEoFAqFQqFQKBSHBIe8+BFC9BRCzA5Zl/cb6pkphBhuLp8ohKgWQgjz/RNCiD/9wvYRQohvhBALhBA/CCFOMNcLIcQrQojvhRBfCyGyLNvcIYSYI4SYJ4Q4ylx3rRBi86/5DkKIN6znQAjRSwjxhRDiWyHEmz93HEKII4QQa4QQLUKIzF0/Y4oDESHEDfv6GBS/HyFEnBDiol8o86v7wd2BEOI+IcSFu1h2khDiP+bynUKIwXv26IL2/c6uHJdi/8Da5n9rG1Mo9gZCiOM7e2YUQvxHCDHJXP7N/fPP9V2HCoe8+NmNLADGmcvjgBXAQMv7+b+wvQ+4Uko5HjgZeNpcfxrgl1JOBKYBjwGY4ihWSnm0lHKSlPJbs/zHlv3+IubDQlzI6ueBq6SUR0kpAw9InR4HsA4YC/ywq/tUHJgIIWyAEj8HB3HAz4qfAw0p5WNSyjV7cX8X7K19KXYLB12bVxycSCm/klK+9XvqMO/XXdV/yPddSvzsIkKIF4UQFwkhNDPycVhIkQXAeHN5KPAiMF4I4QS6SSm3/1z9UkqvpUwLoJvLfYFl5vJS4Ehz+Wwg3Iz8vCWEiDXrKZNSekOOPUcIsciMLh0thPjU8vE04BFL2R6AC3jGjCid+XPHIaWsk1I2/tx3U+yfCCEeE0IsFkLMFUIcJ4R4yYw8LhJCjDHLvC6E+LcQYjpwDpBhtou7hRAO85eoueZ2Y8wI4efmr6Uus/7sfftNFZ1wCzDSvJYXCyFmmJHeGUKIZGvBzq6zuf51IcTz5jY/CCFSzPXnmO/nCiHuMNdNEULMN7efZq6bZPalHwshVgkhplh2+wezHa0SQuSa5R8361whhLgq9AuZxzPeXL5RCLHELH9xJ2XtQojVQgi7+f4CIcR95vKjQojvzLZ7srnuZkt9N5rr8sy/YUKIV83vN1cIMTRkX4OFELPN8/uhECLiV18txe6grc0DJ/Hb2tgt5nVcKoS431zXUwjxoxDiNSHEWrMtvWHWcZdZpi3SJIQYL4R43Vx+0tIHn7NXzoJin/NLbUYIcYkQ4h6z7BSzjX4MZFmqcQjj3rxYCPGEWTbQp34EPCyEON9sW4vNPjyQjRTouy4RQnxg9sFrhRAT9vKp2HdIKQ/pF9ATqAHmWV55nZQLBxYBLwG3d/H5VsABfAEkA29iCKL3zDJjQ/YTeB0VUtd/gUvN5ROAjwCB0WG3mOu/Bp40l6cCj4XUkRfy/gLgXeBHINFcNwl42DwHsy3HWAdkADHAWiC+q+Ow1D8PyNzX11O9drndn2i2B2G+PxN41VzuBfxoLr8O3NVZuwKuBu40l1OBheZyMoZAfg84Z19/V/Xq9Ppb/+ffBw43l0+z9Ct5v3CdXwduMpf/avZDicAaINJcbzP7jx8Ah7nuU2Cw2f+sxegzY4DNGD/I3Qc8bZY933I8gTqdZlmHWcd/LMczHiPy/R1gDxxDF+fgKeAUc3km0Bs4Hvi3uc4F/GT2ecuAaHO9FnJ+rgUesdRrCzmu74Hu5vKNwNR9ff0PxVdIm/+tbSzwuYbxPNDdrLcI4xmgG8aPl90AO7DVsr8LzeXxwOvm8jpLO9X29TlSr73aFrtsM8AlwD1mX7IZiDbb4npgklmH12x/ApgFDDPb6hra+9pIyz4/ACaay4G+6xLgf+byEcD/7etzs7dedhQAy6WUxwTeiE5yKaWULUKI14AngLQuPi8H/gislFJWCCG6YXR0C8wyizEaZ5cIIe4FaqSUr5nbzBRCHI4hLlZgdJYA1cBX5vJXwLO/8B3fx4jw/EtKWWWuuxM4l+C0t2pgjZSyyDyeVUCfnzkOxYHJIGCuNHs9IAfjZo6UMl8IEW8pu6iLOgYDRwghjjffB6KPFUKIWcAZUsrzdv+hK3Yzg4HHzB8F7UBo/9fpdTZZbv7dgSEeegOrpZRuACmlXwiRA/QAvjH3EWe+b8ToK72A1+w/kzupd7K5fI0Q4nTAD6SYr84YCCyQUvoCx9BFuTeAu4UQS4EIKeVWIcQfgSPN6AAYD8GJwE3As2ak6CXMPt1kEIagw/KdQ4/nTXNdOBA0xlSxz/gtbexMIcQVgMT4kSgL4yF2o5SyBSgVQhRJKUsBhBDNwkg/kpY6rI3jTuBVIYQO/B11Xz2U6LLNYIgegCSgTErZYH62wrJ9qZRyh7n+R6AfUAYsk+3ZPxOFELeZ9fUAPu/kOKz/B4m77dvt5yjxs4sIIdKAy4GHMETELZ0UWwDcjvErKEAxMAW41KxjLPBoJ9s9IKX8VggxFegDBKVpSCn/Zm5/LIbaB0OEjMK4kY6i4wNLKPdhpOKdIYR4H0PkdMMQRRHAQCHE3RhjeVxCiGigGRgAFPzMcSgOTNZi/OL5ivl+C8ZYs/8IIXoBtZay1odHnxBCk1LqGDfqPCnlU2Ck/5h/B2H8ivS5EOIGKeUvCXPF3qeV9v5/HfColHIltF9HC51eZ5PQh7o8YLAQIkJK2SyE0IB8c/0xUkqfuU4AE4BhpqCIwIgqVXZWrynGL8MQYg5gE8EPkaHHe40QwmYKkUB7DUJKuUoYab7XAe9Ytp0lpQyktoVJKVuFECuklAuEYeryGTDSUtVajB+1vjG3CU0nXwucJ6Us6eT8KfYe1jYPv62NPQjkAh5goeVza10yZBuBcb8NGAKNDOwQIxL1hTDSNR/AiMArDg1+qc2A0R+mCiGiMKJDwyxlUoUQmVLKnRjPgJ9gRNCt9+vHgOOllCVCiA/ovM/sSpgf1CjxswuYN7PXMFI8fhBCvC+EOElKOSOk6HwMURQY/L8QOB3j5vezkR9h5Ms/AywG5pq/Eh6N0Zg/xWjQBcD15iavA68IIeZiCJGAi80U4M9AujAc3KYBYcAQKeVpQoivzO9yrJRymLlNT4yw/sPm+zsw0kAcwCtSyjLzxtDhOIQQfYF/YYxzek8I8a6U8sVdOrGKfYaU8kszP3gxhsh9HPALIRZg/Ep0fReb/h8wQwgxE0NMP2e2QYBlwhjP8TJwIcYvSbOEEPMDD9aK/YZSoNnMI/8cuN+8wQK8CrxtKfsKIdcZuK2zSqWU1UKIR4B5Qogm4Csp5eNCiKeBb4UQfiz9FcYPRB8B2cA9nURNAtRiCJMFwAagqrNC5jGsE0J8BiwSQrgxIjxvdFH8A4wfhjLNbb8UQow1Iz8S2An8CXhLCJGEEbl5IaSO/wAvmf87rXT8Yew64HUhhMN8/yimUFLsVaxtPoWOPxjuShv7BOO+vhEjcrmrfIjxY9AEYJu5zg7MtEQEH/gV9SkOAcz+cBpGm9yGEWUMUAJME4Zp1SIp5QphOsFZeBMj4r5xrxzwAUQg31+hUCgUir2GeaO+UEp5xb4+FoVCoVAcOqjIj0KhUCgOaswxaNZ0sx+llLfvq+NRKBQKxb5DRX4UCoVCoVAoFArFIYGa50ehUCgUCoVCoVAcEijxo1AoFAqFQqFQKA4JlPhRKBQKhUKhUCgUhwT7teFBa2urGpB0UKAjhAOBDR1jdl2bZprL6wL5G6YMCgsL22t+9BHDp6p2qOiU5pXPq3ao2OfsrXao2qCiK1RfqNgf2NV2uF+LH8WBixA2/Dpomga6BAS66KS/EnrH6b0UCoVCoVAoFIo9gBI/it2CEDZTw2iAMZm6TWhIXRKYtFAIQcBdUEoJQhgvJX4UCoVCoVAoFHsBJX4UvxkhhCF6pESXEkP4SDRr0FGTIAVSAFKiaSAlSKmhIZXuUSgUCoVCoVDsNZThgWKX0DQNTdNMwWOoGykFuq4jpTQ/kwhJeznNEERSYHwmBLoOYHzuDywHzT2oUCgUCoVCoVDsGZT4UfwCRgqb3++n44S4uhG5EQKBEQlCM9PZTGw2QyzVV1ZTU1XNVzO/QJhjf4QQIP175VsoFAqFQqFQKBQq7U1horctBYsczRyaY4zXESLYSEMTEoloS18zojs6UprRIa+X2roGQCA0wRFjJ+Jv9aA5wo3y2FTym0KhUCgUCoVir6AiP4csOgIdKf3mq92IwGpQYERp9KB0t0AKmxDCSIcLRH7athEIfFRXVlFbU4+QgCaQfiNF7utZ3xr706VpfKB3eoQKhUKhUCgUCsXuRImfQwZD6Pj9XnTdB4DfMl7HSmh6W7sIMj4LRHUAM8rjpy1yJA1BU11V3yaWdKRpd21sf+zxxyEk+KWOxG+KJcee+NIKhUKhUCgUCkUbSvwc1LRHdoAgoROI8Fjtp3XdiPBolvXtaW5aW6Sn49gfoz6/34suJSVl1WzcuLF920CEB/j4k4+w2WygSWw2m5n2hjFWSKFQKBQKhUKh2IMo8XMQEYjChKayBQiIEWukx7quTRhZPmtPhzOiO+2CSEfX9Ta3N7fb3W5g4GslJyenbVshBP9+6V8kJMVzxZVXBqXNSWG4xlmjSQqFQqFQKBQKxZ5AiZ8DmHbLaYmUfoSQnUZlwBBGbdtYRInVwMBanxVpprIFhI6R4qahae3buFyutjrSM7q1CaPZc2aRmBTPPffei9HctDaxYxxKRxMFhUKhUCgUCoViT6Dc3g4gAmlpECxQOhMwXS23iY0utg+8l7reZlkdnOqmo+vSInyC6xXCBkLQLT0VKSVTzj7XqEfqIA1rbCFsCCHR9UAUSkcToGNT1tcKhUKhUCgUij2Givzsx1gjLoGoS+AFHSM1nUVQfD6fuaR1GmXpGNUxEGYKnKZpHT4L3Tawb4mGBHS/v22dENIQPmAKH2Hur70OpESiIaRqjgqFQqFQKBSKPYd62tyPCBU7gVS1AJ1FckL/WpellNjt9rYxOtZ9BJZD9x+6T2u6XEA82Wy2oH217duM2mjWz4Pq1dpT7qTlO+vmWCFlea1QKBQKhUKh2IMo8bOPsIqQriI7gahLKKFCx2azmeNoOh/zE1hvFSpWAdRpCp1on9unM6MEa9MJbG+z2ZC6z0iZ6+Q40Y0ID0DA30CjvYzye1MoFAqFQqFQ7EmU+NmLdJZi1pm4sZYPNSXoqlyAUIvqUJHVVYpc8CSmFkHSQUwZpgXGfkSQsAqMSbJ+T2tdWltAyLJeC67DZlPz/SgUCoVCoVAo9gxK/OxBQlPYQqMsAXHQPi7HwCpCrGLCWm/g887ETFflQ8uFrtM0rb1Oc/xNRyEUmNQ0WDD5/X5LGbPekP3o5vaBqU81zbDQFjYNhA3MMUMKhUKhUCgUCsWeQLm97Ua6Ehxd2TkHxIPD4egyXc1aNvSz4LE7walmXW3bdixCN8baWNbtimAy1mvour/DfEGBSVSlFEiMNDaf34/NdIvThDDFjbmdbnGM02VggFCH86BQKBQKhUKhUOwOlPj5Hfj9/k7H0RjOanqbRXRX9tPQnorWwYq6i+XO6gsIEiE6usBZRUmb05r0ga4ZTtZCR2DrckLUzscR+QkNGgadA40g57aAEGoXQIb5gWyb58c8a0Li19WcPwqFQqFQKBSKPYMSP7+CgMgwlv1B0RKrKDEmG23fzipaOktT60zsBO8zeLnzqJKOEBpdRWwCQs34ACPyAwhpQxJcb0AsdUZ7nYG/IfvVBJo0yukh30cz1wX+CgmaZiwb8woF9mFrS61TKBQKhUKhUCh2F2rMz8/g9/uDHNiMlz/I/jkgEkKd0boyDTCCMxotDc14hR+H7Nx9LdT22hgrE9ivOXZGBAwROqatWetC+rF56hnTJwtpCpW2+qUPib+DAUNXznFt30O0R7mCvr/FwrrdAlu2WV4jZdC4Hp/f8k5q2LoQXQqFQqFQKBQKxe9FRX5CsLqWdTZ+xijTudgIraehppZNKxaRmd0Pp83O+iUv09LciwEDc2iRUXTr1Z2imgriuqVTtHIGPced1yEy1GZGIKDF48UWbkf4dDTNjpQ6QuhIaURLDDMCGSw8hM5rd15CSX0JT13dj8WffcCEo0+GyDB8IcdsdZezRn+EcSAhaX1m1MYUZ4Gy7WXaU+MC9QbSAPEDSHRhsc/WhHnu/SCE8r3ezdQsfX6XysWPnrqHj0ShUCgUCoVi33FIi5/OnNSsds3QmfAJTl0LXfa4m2iqKcfdCrM+/S+6P5rouGxio2uJ6XEa8z/9ioiEdNZv3cSAknz6DxzCO6+8ydb8Uo4sepWjp1yKlBK/Dt9+9A7THnyal155nfri1RRVlDNy9JGcetK5rC/daGiEtv2bUaHAsZjHrgF67BBO6t8IPo28Fa8zf8eX3PfS/6isjWBg3+68OWchYI5fwtb2fQJI40QEnYeAkPH5fEGCK3SckZTSTLmTaJqzLVIlAU1qIA0LbL9uik6bGvOzu9hVwdPZNkoEKRQKhUKxf/Jz93d1//5lDinxE4jqQMfxNZ2NywndNrQea9nayip2LJtOdNJgXPGJeOqKKSrxsWnN96xcvp57H55GhL2Z8y44nW6pPdDt39Kjdz82rVjAlFMn0CjjiUtNoHx7KS88/RRXX3k+5RUevv7qEzwykvT0dBrmzyQqJoEpZ57MCaPG8cITd+JLzKaxcgfS18Lgw48nPN5lRGqkH4ShWU4793TKv/+B+tZm/j19I3+72MmlZ+YwvHcOheUtzHrzDfzVqzjppqeR/NLcQu3RnFDRaI3+tJkr6Lo5PkqjubmZiIiINmEWmEhVlxjjhjTQ9YA5gxr381v4LYJHoVAoFArF/suvubd3VlYJomAOGfHTVXQiNLXNGrEIXW/dRtM0Wn3NUOOhsKiM1EgHaT1G0+D18dPiGYw57gzOPmMKiVdeRlltLTHxSUQneQm3uzj95NP55P3nWLF8M4OGTmLZoi8ZP+VCGso9fDv9YzZsLuCmW59Fc3g59/xTuPe2u3jsb/exZs06GmrcCHsjPt2LK7UvWkQsaTFRtNSVUVhZRt2P6xg5+USEoG38TWVVA1GRNlxDr6LqsUuYdMHTfPnVanzuZ8nq3Y9G97dc8+ICRhx/I6m5PRHYOxWCAWMF43xobefK7zdsr222YNc4TTNS8YQ5h4/T6QAhjOiUGfVBGlP8BDYTEkO4SQ0zP06xCyjRo1AoFAqFQgmdX+agEj+dOZ11ZgIA7ZEK6ziXwHbWCJG1PqsQuue6m7npnpuY/f5nnHDu2dSVVZDePQN/XSM9ho+nqaqWisqtZGQPYdoNj/Dg326jX/9cmut38vGHz/PD0g1kdEukqCqPjOwEWr3RVFVsJKf/UO4YNoJ+AwYSpYXT6G3k/PNOYcWyuVx27VRiwnyMrDqC8eOWoBNFbFQEH3z4f0w583RiNZ3E3H5mBKbdQnvmx/9mTMommtbezqePHMmn07/C0ZLH+qZTyGz6H4mH38xzt9Rw6ZmTueSULM55fC6asAd972AxpAHtwtHhcASdu7ZzDdjsYfjN1Lg2T2sp25UZgG6qn8CmUpke7Cp7QvSojlOhUCgUiv2DX7rPq3v2r+cAFz/GfDHQHpWQMvBXo33iT1vbA3wgNcvq0tah1hDhY1339VdzGJo7hOtu/jONZfWMPHwM4U4Xm8u3s3rjRiLDIxgwYhSOMJ2xR5+MRjOvvPQIsYlZVJQUEuaKonBbMcOGjKC0vJioqBgiUgYj8dHS5AbdT7/cvlQWrMOelk3hznwG5I4mLy+fiooqiI/D4fOSO2g0q9auZPTogYwdMQS7LZKWpho83oAFt5meh2TMxBPpnnYVUSVPUpc4jj6b5pA08R527viJKs/N+Na/gNTD+Nt12fjSr0b6dfzC30EUthtBtFt+Ww0SwBo5Cxg1CLDbjTK6HuT2ZqTnaUhk25w/WpfpdopQlPBRKBQKheLgpav7vLpX/z4OsJ/Y9ZAXbeNC2u2npaVswAWNtrQsK105unVlU71i3kwmHjaMaG8dTW4/PqGRlpVJa0sl24pqGTFiKCPGjaaytIiS0iKcWiPoXuJT0slMy0ZGRNPcWEOr101UjJ2aktW8+MLrJMTGUrVtK98vWEjv3F7cPPVOImOSmTtnDoWbC4iNjWbA0GH869lnaPXU47XFkJCUxoghOXz0/qdcfNVUSopKiUtKJDUlCZ/fj46kaXsenz16KoOz0/jk1RuoTrkfb/4iGt1VVJY1EV3xFXFRdjbtaMYTNYSwyGjmLljErSf1RxA8+WroeQk9f9a/xjnT2+2tjRMZdD4Nm22JjhlVMoNBPp+vU/GpaKdm6fNK+CgUCoVCcZATP3pqpy/F72O/Fj9tNs+aZhE1HcfhtJcNjeZoHbYJ3T50fWCQvhW/309jTQN9+o+jvKCM9ds2kJIUS1x8DG63mx155Yzpm0pFZR1lRTtJz85kUP9heEQMldVuSoobmD1nOtGRMcTHpdB/0Dh87goOO/JE7vjLuciqAh66624uvfxypL+Viy76EzabncFjhjJh8rEsWbmS2rLNXH3tVL74Yjq9spNwuDQye/UkNj6eb776lMycLG674QZKSkoQmvE9mqWLlFgvhQsf5KqH3iM2TlJXvhyp1eNefxW+nEvIyRmAJIHDTrkOV/qfGZKbjs+WyAN/uR+EHjw5quU8dyUQO00ztJxTERjzE3gJI+pjXC7RZnltXPcDPDC5B1BjexQKhUKhUCh+O/u1+Ak8SHf+AB4seDp+ZgsSTJ2lt3Ulfqz7FkLQXFfH9lVrWPDtXMKjoqls1vHaYmjxeHjgkUfI6JFCt9FHEuuKI6P/EGJtTmZ+/RU1JTvZsrmUuPgY7E4Xurce4XRQV1WITio/LPyRt/63lnfe/Yzvl6+hsGgnGjYOHzeM5SvWER0eg1dvJiUpmpSsPghZxxVXXkNLg5vF8xdSVlDAlDMnExkdQ2V5EdPuuR5nWBSasGPXbCyY+w2umAgiYsLR9Ui2bM/H43WRNelxIvxxdO8zmPUbl5Jz7J2I8lW0FvyD7voX3HRxL4o3fIWGCDJ/aD+HXUdmQs9hIMLT5vBmuR4BC20hBGgSIaQRndOM/fhVBCgIJXwUCoVCoVAofh/7tfixprdZIwehZawmBe0D8iHw7Bw6n09XQsi6LIRg6+pV6A3NrFwwB3dLHcWl+UTGOBgz/DBOO/EYZJONhx9+FHtEJD/O+oao5BhibE627tzMyJHDCA9z4fdUgU2noriWCK0Vv0/iikzELexkZg9k7NihpOaO5dMZ7/Pqq6+yactqdhZtJzc3A83fTIwrgla3j/zNxbzy4r+5fer1uCI0PFXNRCYn09LqobHZR2xcDyIdNaT1yELXdWY8di2Fy1/F11LBtoJqdmxaj6eqlFdnCsKkn+bYOCp3FDJoyChsjU2UFCym/7Cj8LY00+yuZ/KwZGa9/igSf6fW31L6uxSL7e+D5x4KxRBAgbFZ7U1R13VzDJAa/wN7Ls3NigqjKxQKhUKhOBTYz/OKjAdjTTOsla2RHCP1yhA6UvrRNHuQ1XKojXVn4qazSU7BeCh36oInn/wXl517CkMGjkOLjWb4EUdSVbidxPgkXvjnI/htbrytERTmb+OZZ//D44/n4BQNxMQlEBuVzPqffmDMYeMJj3GSMzgLX3gC25avJmdwP5wtBUQmJSLCM5g76yOGXHIUJ530B0aMHc32dZuo9bcQ060XxdsryR6YC8A9d08jOtlF8c48LvnzdcyaN51uCU4SslLZsTWflIgwtsy9l76TH2HIqTcyaMOzbG0oJi5OEB0dCd7vqfTkUL79U5KjNVJ79aHB6+PJ+2/g2fc/onjRfWzxjKZv6rEMHjec4nXfc+aY3vzfkrw2++vA+TFoFy1WC/DOnPIwIz3C4rCHriOERGBrN0EIjCPSzTLSDsL3O9vRgcvuEj1K3CgUCoVCoVDs95Gf9ofhdocxLeh9INLTWXQCguf3Ca3TiBpZtzOiSHXb17N5Qz4TDh9J34FDafBLmpuq2LZ5LdFx8XgdYWT2GURScjzfff8VWVk9+Oe/HqNHdgqt/jBcznTczZVk5/YlIi6CbUvfpUdKDA01VcSnR9HirqOqtBg9XCAby0nq3o2YuB4cMfZIfli4FL+MRnokEcJFRKwN4dcpLytERCSh6y7iskdSXFlIz569cWX0ZOu61cQkx7KzYDmxUf0RQFR8NP9bUMKi6cvpOfZ8ln3+N8L7Xcxb7z6OkC5aGkup3llI6cbNXHoiNC64h6jht5PsycfeuIXi5Z/RtOIxbr7pPjb++K1x3kLOaecRoY7W4dKyPhCdk7puiKE2geoH3RA9bfXIjmOIDiWU8FEoFAqFQqHYvRwQ4scQPDYz1cpwd7OmVRnW1n7LQ7nf3LbzqE47GtbIBWi4q91s3FiKKyKMY/5wDI6IKJLi7ETHJpPQrS/33vcoHncpKfExxMfEc+JJZ1JUUYBDD6O+qZqVq38iMl4QERXDljVf45M6td7h/LR+MxXlpcQKQWJaGlkDjqKxyEVLSzjHHXM0fncDUvPSPSOHz76cTm5uLrbwBKKSksjfupHE2FgiYxzYbV6+++Ittm1ZSUuLRPPaSE0bQJi/iYTsSdhj+/DU9QOJDRPYq7Zx1UMfk7/wHfr31UnPGUNddQPvvv0ZM6c3YqMOv89Nz4mXMLNwFD+tWMK4K57FXfI+ztL/kZaehFb5BoXbvUEW1aHnMnR+n+B1OlqIHXabnXVAQGntNeu63iaADmWU8FEoFAqFQvFzqLHAv439XvwYKVTBttXB40yM1CspRVBalhDSnJcmZJC9ZbLO0OhFXU09zzz6NCWFeUS6bMz6dgajRhyJ12Ynb+M6osMb+OcTdzLn2wWUVlZRW1uNzdHEwMFpvlJ1AAAgAElEQVQDaGoto2DdJnwtfurd9dgcEQwfegR+j2DomFyy+/UnMsqOLyELb4ubMcOO4u0P3qGyxk1DjZ9Gt49/Pf8CyQmRXHfddbRqks1rV+H3tJKaloRdkwiHoLy6mSMm/IGU9EyavLW8+OIrhDmdlNc0kNxzFJnDJnH1ff/jtSeuY9TYVLYXNpIxdhpaCxRNPwW58TmuPfcoLnvoDYq+uBZb3cuk54zj8MTZRJbMoKXoe1zxKWSkRxAXn4Te2sC1F09pE5RdEZg3Kfi60W6YICXC8r5tslkp0P3+tusnbFqHyNGhhhI+CoVCsXfYG2MqFYrdTaDNqvv8b2M/H/MDoJnGBe0iKEB7OpsOBEcXoP2B3Br86TgfjVH32iU/MH/OYiZPnkDvnCw2rFtPclwyA3qn0tqok56WyZo1K+mdPQyf30lMVCwNjTprl84lLSOa6MhUmiPsTJrYn6qSEqrq6kmPdUFUIz5PNK4wQUaUB4/egiMqjpGjB3DO2WfQKL2ER0hWLsnniiumUlZRSlJCJKsWrWPwqJ7YND8lhU1Ex1eS1H0UUZGNOMNtNNW28tT90/jb448QEdaCu8n4Hi1eD1GJ3TnjpB4UbFlH45a78Vb3RHrDCTviaiIjY7Hb09mWt4GwMQ+RM2QQrXUb0MLieOHbMA7XI6hbF0Ne3pdccdXpfLemiXsefIiX776JPz/yHLSlIQaEpASCRWXoNQokzOlSgt8fFAnShESXoCECzgjopmANpL1pwoHE+/ub0gGAEj4KhUKx5wnta9XDpOJAQrXT38d+H/kxCAifjrbWbalUWvs6I7oQsMHWOjyUB0cTdErW/4TT6eSs88+nvKwK/JCdnU1MXBPT7r2bitIN1NZU0T2zH+UVBYwcnYu/1U9l6TZS0geit9hITEglrX8WNTu3c8Pl15KYmEj5xh+4Z8rxVK/+EJ9Px5Xcn+bmBorzC7n91itxxbj47N0PsTc1c/jEITTUekmKjWHlqiU4nX7CIxNwCMDVTHpaLjZPBX4RzfRPZ/DMC69zzU23Ey7DaWqWpCVkYreHYdMkuhbB/CUlTLllJZtXV7JqYwNi8BnEuXpi88bgbdLpP2gs3XN7U1PTRHRCDtlHv8o915/CKd2/5Ojjc5n2z29I73s5J0way5TLLkAIL8vmzOtU3HQueIzojzHGx+IYZxkT1CZEpd2Y60fo2GzGtRRCGOu0joLqYGV3CB81AZpCoVD8PFaho/pLheLQ4wARP9BxAlM6pLAFPm+3SNY7TZuyPpRXb9+GK7k765aupaa2lqT0GITDTlVdI06tJ9tLi+jWZyixzhjmzV+GjUiWLV+Fu74Ae3gkj95/F3GZmfzjuVfxlZfQXC155ePXKF2/jkqPYOptl+ALz6G1voG6uiIyuvUmLjOOxO4jaKgq4fDhIznx5HNYumgNLd5iIsIjiY+OYfykI9kw9z10LYrcbokIzYGn2c5/XnyBkvwi/nzZWaSlZdHq81FXXYRLJlNbUUrBuh+Rus7g0x7g7Wcm0fOP7xIZa8Onx7K9rBbhiEfYnUw4bCxbNq+iZfnf2THvNrSoWsq3vY6/z930G3clCampiPA4fL0u4u4zBjG+fyGPPfE4L99zTyeCxziXfr+/7RqEXqsAQtPwm6YHbREkobcZI/j9hshtiyxJOBQcr3eX8FEoFApF19Qsfb6tr1QpbwrFockBIn4CttbWuX40NE0zJzO1EXhgDhAwO2if+8fY1vrQ3uK34Yz2krdsOX84+RRc7nr6jxjHH085k50FO7j5rjs57rTTWDb3a1rtHo48ehQR4U2cdvpZrFi+BWeMg3+99SpOLYF7/nIehKWQ0r8XUc5onA2fcNjEE3jjkx0kZ3anwePFHtkPn3DjaPJQWrCJ7j3SGDlhAlNvuZoNa9cxY8YMiovz6Nknk+LiUnInnc+YkeOobnLx9ayZXHvlVAbkjuDcy05i5bJV+HQvhDtwOp0QU0VZQT4pGbkITaN3r74MOuO/RDu2Mez0acTF5+BvaMTtdpOQGMfrj/+RvllhuDPOxz7gSeb/5xb6DTmZ0lVX89bfz6Np3Z00rLiJtPJn8OOmsaaKp65N5YxLL4GQOX6Mcyw6jAsKssYWAptmGc8jRNvkp5qQIM2JbPVANMh4BZYPmKa6j1DCR6FQKHaNnxM8SgwpFAc/B8wTpRACm81mur5ZxUzggVsPiUi0u7gFnNzahZCBt76Kd9+Yh09qhGutVDTVI+sKeO65v9MrO5N//+sJFn83n+GjBpKelEK000Viak+kJsnMTiDOKfnvc08Rk5zAwiUVLFv6E9Kvo4swfHHjKFs/kzvvuZma6kpaWt04fG48jfVgd9BvQG/8zmjKq/KZdNyRFBYXcf75V3PdtXezcU0VnuY6IlzRVFVXEB7WzIjBPXjz/Vfo289BYloOf7r6Rl5+9hnuvvchKmtaaWmycfzkKVRVFFGStxFvcxXuymJGHHYcCZmDSXB5+XrWCqKjHaz/YSGZ/S5k5gcfEFn1KWFOGH/hC5Tnf0WkP4zJo2OpkQPoPv4JMg67javvuB6P7iLMFc0N19yHbjGXkFKaItT4a0R/9Lb0QytBYsg0QMC6Tu84L1N7utwB01R/Nepmq1AoFHueXe1rVZ+sUBzcHDBPlMYDcbBZQftkmsHjgayTbAohzSiQP8h+GeHB626mf3YSW3auZszoCfQdPpzNecVs31lMavdsUrrn8tfb/8bc2SvZtH4j2wsL8DRrREe4wBFBREQUN/11Gotnz2DFyiUM6NuHG6++g7rS7YSFhROZcwo+XxglhZsJtwmIjkS3ObBFJKHrPuzeFnIys8hKyuKvD95JQ30Tmd1SyezrohUdfF6WL11EQcFO4tP6oOl+Pv5gEU2+cIYPyuWeBx/lyiuvxBlp54F77+DRJ++jsaYI0eyjubWRqJhkXvvXq/j9OlEpAzn79EzwFONwz6baozFqSHf8VHHt5GGUbl9Gc+YNpCZl8cOKTSSwg+q1r7Hw0ydY9+10emZ1Y+e2Tdx713XoehcpbUK0jb0KTkOUCFMQyYDoCbm2esi4Hp3O5xFSdERFfRQKheLn+bWCRgkgheLg5YARP8ahto/hsTqOBeb2sUZ2rALIKG9rs70WQtBQVATotEob2d1H8uAj06jfvpbBQwYyasxIfK1eYiKjePujZxg2tBsDRo2ksdYDsoqfli9lxqdz8IS5uOCMixk68g+cdeYJaI4IHnzgKmqKVpCSNZj65mqEy0n2kImEx2WAX+JpasbWWk95wWZadT/u5kbKynfgb6ijqryQ7du2MPezZeRkdcfnbcEVE02/QUPZnreJVgR/nHIUcz57C03T+PyjL+iVnkKcS+PJZ/7OwnkL0UUSqT1SaW3V2Jqfz/kXX4DmbmLDmo3Epk8GLY3+Jz5M05JnSRh8C09/pJPWux+ttiRS6+awpH4ix1/5Lqua/oCz71UccfnLjDjtr5x+/WLmryxh2ZpVOMKEacwWbFzQPh9T+7oOE8ya1yZo7BaAbh27pXeYO+hgtbz+vTdYJXwUCoViz6AEkEJxcHIAWF0bGA/FEr/fR6gICnZ8a7e+Bqv9so6UgTlmdOrrqnGFRVNaWsrEsRkMHjQJhysGYbMRn6SxLX8V/XJHEB2Vxp9v/gu1tY/xxqt/JzIpjRfueoTHn/o7Nt3ODTddx5aNBSQnO0jJdBDuGkxsz2G01BUTEyZodvvwN9bg11sJd/amwe0lLCqcJg9oRKOFO0lKceJyCH5cuIzPZ86hVbbQ4PPgrW1g/ITTmTXvfebPWUKEPZzM3v1x++L4vxmncusV15A9MIswaSeeVoYNH43d3kSt20ur10GfAbnoegRvv/YKuUOHkpGVSW1VMduW/MhyMZGzIiS3330v4REZREY04s24kmEl9ei2GIaNGUWEbscWGUPGMaO45eIkjjz3b2QNPQld17Fpji4iMzpCaHTmzmdNZ/Prettkp5oQSCGNtDdNtqU2Wq+tFIDsWOehjBI+CoVC8cv8HhFjNUhQKBQHBwfUk6TVIcyKNcpgPHzbLOus7nBG6ltVQQk7SxJoqHUyaMBY4nr2p6ailM35G7n50pvxNjbiikxj/uxvWb96DTffcCVvvf0y0TEJ6L4m/vH034hOSODWG/9CclIitTVbeO211ygr9eBtbUXzNBIf46K6wUN9ST5RaT3ZuWMLNXUFRMU4aG2qJy4pkfqa7TS3NiCxodui6TewJ7VNO9BlK/U7d/DNvNmsWDeTtPQsJh05mB69srFFxFNXspPwcBf3P/MIFdWVtLTWcMvUG7jgvPOpq6jiuSefxWlzU1lcjK9xJxkxDnp0T8fl8JOc4KK0pIgPX36HB//6ONu3FLBm6VfUlTr4+tMFpOZkEh8XRn1xMRGRUWz97huWvLGIU6d+SPrgk9ClAKkFRdbax+f4sY7VkRZjhMD7tmsW2Nb6XrPM0YQAzXyhTA9CUTdjxf6A+mVccbCj+lqF4uDjAHya1IPSqgIEXN8CrmMBR7h2Y4RAmpyfktJ8ol3lRCaH8fF7z+Fsrcff0ojm1XjyqcfZtq2AxNgYBg09nLSUHiQlZhGfHEF5ZQE+by0OeziexkpuuO5arr/mKlLj40lNicPhhMaKHfhbJWWlecTHxJGW3Zuq4mIGHn4CGfHxREcloGktOB3huMI1hCuWhhY3W9avJjEpgZj4bL769HPOP/9WBg4egbfFidSbccUlUlnZgmxpprSpmjBho6nOTWaspFtaMklJKSzasIXM3qO5/c4b0TWNsMh4vvxsFgPHH4V7+4es37yVhqoWhh12BNffeC7THrqeex9+jD+cfDLxmT78PkF53jaaG8vI6t2b1177iJ5DhrJq7VZWrS1m7cIFrF28pv1KhAigwEvXfeY16Zi6JoRsmygVIdqiP4HlwJgsKUDTgtPnkAdMoHKXUA+OigMd9WCoUCgUigONA0r8BBzEAi5iAYtrA2Mi1IDo6TgHkN72sJ7dqz/hUdF88/mnZOUMobqunpoWSWZaAis2/Uhm7x4sXrKI7fkr2Zi3hZTe2RRtWUNSag5rFq/BGRlFTUkTs2fP5e0vPmf16i2cetaFeN0N2MIj8Ws7sZFMg7uE2poKNOmlpbEerzeM6romvK3glzqEpYCnhUg79BiQS11LCY1VW5kwaSLfLfyE8qpKPnz3v9iddlwR8fh81Wz4cRkTRo6n1dtCZlZPthYJWlrCmHDMWFIimhGimShbFC7NgWwu59TzTsMVFUna4MuIc3Xjossf5KlHnuHEC84iL28rN950NUXbi/nkk3lExsaQkt2b5154C3eznVWrVuCTcVz4p3PolRVN757ZZPaIYuOSFW3XoLNJTgPXqv260EEEYb7XA2OCLH/ND+g0q06hHjgVCoVCoVAofiMHlPgxRE17JMAQM6HpV3pbhKc9AmRubS5XVZVTWZjPmNHDyeqRwo8rNlBcVk1Dg4fsXhmE2yM5bPQk0jJ7M3T4CNzl60nq1oPysnyOOPkM1v20GhEuuPzyM9BbBUccO5bLLv4TmT160tQKkVoyQoIrLIm4pB7EpaQRG5tMRXUl8ZHRxMUl4G/20NzcSEK4A5vNRnVpKS01LlqdMcSnpqBLD2Wb8pj+zUpsjjBq6yvweR3EJ0eTlhZNXW0FJx77RwYP6s57b73N4NxeNOkQFefC7bThEzZSevZiZ0k9M754n8LCbXj8O3jljX9wzQ3X8ODtT9Cv1zAGZGaRmJbGiccOpL7eDa06t995L2Fh4WzfUYau60SnpXP9jU/Q1NDIppUbWLpoAacdPRmp+TuIn67SEoMmPrU4wQna0+Z0w0bO+Fzohm24ZUJUhUKhUCgUCoXi93BAiR/rQ7Cm2dvc26xz+QTSrqzW2IEyulmuePNKRh9+LDfe+ShDh4ziqKMnctQRQ3EBiXE9WTBnDtWeOoStlaS4aNIzR5KWEktiYgbrl/zA4OHD2LlpG5otmrqyPIqKS/nns0/z5itvUlawGVlbgCaa8SKRQqds51aadZ3IuCTqq6uweStxJUTjigxne1E5Pq9OVHwq85eswe5tYGdhPS2+GKKTcnjqqX/ga4JumdnUNbSQkd0Dj5S0NupM//w9brjhAa686hIOG3c8i7+cTWONh/rybWiRYWhSI1JWc+FFl7JqyXKys/uTlmijR8+eXH/H7azduIG3P5pOUdFWmpo9nH3hqTQ1FuH12/G2uvnTOWeg+0oRfj833HQZTc0eBo8YRGJ8Ii889zTPPvgvoKPrW7BQMVIPA2I1EH0LjRZZxwrpUiJ1Y7xPmz12YB84dn/DOoBQUR+FQqFQKBSK384BJX7AOqkpWA8/eOLTwMOyGWGgPWVu7cJlrF21iNKyHfz3pX8SEenku++/J7+olsKqGtb8tJwJk49i1dwlOJwJREc5cXtKcbdAanQcObn92ZFXjDMxnvXrtlJb38DjD/+D+XPmcvqU48jLryFCq6PG4yfSJdmyeSPYnNSV76Ayfz3h8ZF4ZDRNTa1ozkh6ZnbHGe4g0mnjisvPIjmlN9nZsTS4C/hm5jxKCtZSWFhFk0fn5mtvZdCAoaxY/BOJ6b04/ewpPPHEQzid0fyUv44rbr2d5LQUauvdODUXunTgiu9GXWMD511xCV4BrbqfNUuXYPc3ExmZxbDRwzjv7CtJyRzEgu8X0i1tCJERdmbPnsUZ553GBRfcgpSSgblDiYkNZ+3qxSSkxHPNVX8hu0ciOzZusZz/0GsVcNkLuPEZ10vXfQgwJ0QN3jYwD5BV9EgBEj9S6G0GCAcDSsgo9gd259izmqXPq7FsCoVCodivOQDFjxG9MR6c28eTWN3dgiySpUSz2Zj3ybtsXfwtDeWFZGcN4vFpfyUuIRyXK5yJRwynV3YqfXonkd1/MEXbNjLhuONxhUcwY+58HFLibgrHTQsyKpLb7riXjO5ZZPXswc1/uYcL/jiCcy84l23r84h0tvLel0XEJiag6S5yeuaS2aMXEXGZ5Aw+GruugSuKyrJCNF8jTS0aFbVNCHQ2r/sRbODVbETFZHDtTReRlplDRvdY4mNcfDz9Nb7+egYXXXI+rU1V/N97/yMywsPOklpszbXUVm7jf1/M4U9nXUpzZSGt7gbwNKC11nDSMSfi98KiuUvp3q8vrSKcHtkJTD7pBJYtmEWLz8uQwX1Ys3I5usfLqNFDWf7jSt567w125G/jH3+/H83l4vNPFhKflAgOyaTD+mP3Nnaalha6zjoHU8DUwDrnT2iEB619wlRN00BqHIDN9RdRAkixLwiIlIBQ2R2CxVqHEkAKhUKh2F85AJ8mA2YHwjQ8CMY6kSnAS889St7qdTRUeojK7E9JXTl9xx7JA888ySsvvs7C+c9hk2lszyunrMzL159+wwknX8BDjz/I5p+W0SM9Abw1iGgbDe4mVnz/LU8/8SDS20R9eQ0ffPg2p1x4PU1enQXL1nLY+KMZc+RxRIgwmn2tbNyxEeH18c5/XqG0Ng+PDXxNjQzoPxSvjKLGV4VTC8NDGJn9hqF7mtn602KWfr0AvbWJ5PgodKCuupiZ0+eR1j+drJyhNHnr+MeTz7Npy3I2Ll+M1+MgKjWDip1bmb90IbHdstAiwklMy2TewkI++OQDjpt8OkdOOok50z/FFRFH+Y5NfPDa+2BzUbqzkKomP6kJLmorirGJaHr1ziDC4SWxWzx33XYdV192CxsLFuDQErn0jD/w3aJVRLocVG3bTpiZcgh0+Au0OcAFkKJzN7i2z6W/TcgKIQyRJAH94HNBUAJIsbf4ucjM750LRaHYX1F9rEKhsHIAih9oNzUIHmgPtI0r+WnRAp659a8MS+uNbK5n5FFjqN+5hYE5gyhYs4qmGjfX3PIXRo45j5jwUrL7ZRCXFcWkM8Yz57vPuP+eWxlw2BH0ys0lf0c1Py1dR2NjLWHhMfgdgrjYJB655140WySNjRpvPfc8p5x8AnfdOJUwRykt7kYitFZqC4rRbGGcecZxRMf2Qa/cQUuTG6l5sdkEMXbw+hop2b4ZuxYHUpDRcyQ5I3qTkZvNVTfcgsetI70uJp9yHPFaJPPmvU9aSiZ3/+1mHn34HYYcNpGZs6fTVFTFMX84hpNPvpCa2krsNo3WlmpGjujDnJnfMePjN7ju1hsYceSxvPLvB5l4zIWkZ2WyYWM5WZnplG9fz4q8AqIS0rE5G4mMiSYiQhATE09UWjrvfvhvHnriTaLjobBa46mn/0NjXTVLvp9H3oqFps241fJa73B9AsuG47VsS4ULoFnGDwkh28RsgIPV/CB+9FR1g1bsUXZFoPwWEbMnxJRCoVAoFHuKA1L8BEcMjHQoq+tYzfZtZMWmcsI551JXX4orLgXZ4mTanY/x+KP/ZM7seVx84Tn84847aKyXeDWB19NIZHQqK79fT3a3Qcyds4yKomKaa6roPWQEqfGRxCdlcNPUvyA9goXfLeDsP19C2c5y5n8zi9SMVLqlp/HY08/z8buL+PjzWdTX1pGUmsgpJ07BFRPNktkfYHfFg/RTVLITXYRhCw8jIT6FLz/9Dk9DPRqSBnct3TNSiY5w8vijd7Fx9WrsDgdSSqrKS2h1C8KcgPDy5hsv0tJcxZ+vuY2UzFSyembx4P2X0drso3DLJoqKwREmOOtPxxMWH8XjTzxKREshpxx9Kus3/YC3xUtGdiIXXfhnhowaQUqii6uvvhNXRCoxMTHccP29SOGkuaWe0opGuqcl4vFqXHztZbz29tNkdu/H2PHD+Wbe92xatKxL57dQkeP3+5FoWKVNkDW5+ZJ+Y4JTKcxIkiZAHrymBz8ngpQ4UvxWfo0QCU2J+7WfKxQHC6rPVSgOTg5Q8WOku2lasOgBwOflo9ffRUREUlZQTEav0Wi2CDytjQzM7c0D902jubGK+++/mQHDhrFu1WrWrill409r+O/9d3LK6Ufyzby3OXLCUOIiw3A4I6mvqsHhEMTao7jzL5fz9dw5DB06kC8+/pjGxipGjBjGwNFjaGqowtNSzXlXnsf4CUfjcMQhCOOii8/j7pv/Tvc+46mpbyHcGUV8VAqexgry1hZSXNjM6VNOZ9OGdezYsYOUnqn4NQdNjW569Mxh5NjhSIdOyY51xGdk40yIwdPUQEvdNuqqi/H6Klk2fxk7t2zAHmane/ZIYmMSSchIoXuPdGrdrZTtrKexBfC5SMmeQEqPdA47/GimnDmZ1pYazj7lLGzR0eworePlt54mPCyCe+54jD9ddhG6V8OhOUlIcILfxh8mHE2Y085pp17Bms35XHX1HTQ2hdF//KguxU5gXeBzu92OMMf90DZeK+RaSq0tgtTmJCcBDr7Ut1DUTVexu9iT6WxKACkOFH5tn6r6YIXi4MW+rw/gtxBsea21W1vrOvdd/SeOO/VSli/8ioqyrZRWZpCd2xuNCC6/7XrqS/IZM/EkygrriO0xgJItKynavIQ1qzfQf9BANq1cxQf/m0uPjFyS+wzC11TNA/c9zJa1y5g+ezZHnvBH6tyCJYsWcPzJU/jyyy84evIxRCUn4XBF47JHULwznwQ2U+eeSKsfBg0ZjMsZR4wdbp/2ApdeeA7r8zaRkdyNfzz7IjvzNjLtsfv5fvYCnn3+EQo2rCO7Vz+iw52MGjKRJT8tIDraSW78OFp1ndXff0tyegrlxW6iYhz06D0UR2QkeCW11fVExyTQ3FzFkiVbGTo4B6/fx0uvfML111yMT6ul2d2I1+/h61lPc+P1N3HBeVM55ezTWL94JZMnDMVdnU90Ug8qq4pJzUgH0YjUJTYZRkVVHivWzqOlvob5388kIsbFWx9/Ql11VdB10XW9TZwGNHaouUGgvKZpbTbkge3MCx08WarQLbInbG81t32Guvkqfi+728hAoTiQiR89dZfas+p7FYqDmwMy8hM6piTwQF1dXEiLHssTD91JZVEB5aUN5PQaSmlVPjGJ3YhJ7kav3L5MPOEoho07hYXT32bC5NN5+dX3OGPKWZx9znmsXr6YumoPfiSypRFvi4et64p49c1X8LQ2sGbVJmZNn86sb+fy3fxZnHTiJHp1i6ckfytn/fEcfvzuG7JzB6A7U0DWk5gai03TOWryeMoq8qkq3U7uoH6cNuUs8vK2EO5wMnPO/3B4W7nwwrPIyyshMTETKR3U+sKYMeN9KsqKg6y8h048mm7JyfQblEufXv3YuTOP2vIGCrauJjzCxs6CfCLDMxg5vC/SFUdNaTXnnXMiwleCw+VCc0UR5oyiW7dREBNLZr9UHnz4Ac6/9kYKdlRwxXX3UV9fy9PPPUVKfDcIC6O4rAx7ZBh2px2brwlnBOiaB7sdNL2ebtndg+b5CQgY42/7ZLSB62aN8AQsr9vLY5QXPiReED6sk9kqFIp9i3o4VByodJVaHFiv2rZCcfBzQIof6OgoJqXELsK54rrrOPa40/j2u2/5aeV8SrevpFvGACLsErv08NWsHwiPCOPLL97k8IknU1BQyKRxh1FZuZObbryXoeMO49YbLyAqxkFlXQWRMdG8/8XLSJtGbEwKI0b0YemiZZx6/GSm/vk0evXK4d1/30WPzFQG5/RBi0zC7a4mMW0gq1dv5qEb76WkpAZ7rJPc/n05/9yz8DQ3Ea43cc6UM3j2uQdpqvXTq28/wsKaeP+dd6lrKKOycBmLv/+al175gDC7g8aiyrbvLoSkunQ7VZV1lFeVkh7lITFRo1tqEhU7tpCR2ZNrr7qMwsIi/u+d9zls6BC8/nL89hhEayKaiMTjFwibzo3XXseMzxdw1NiJLF/8NUR05+XXXiRMOPG6JRtWLsAZFUd2/yEQHklmn1FEde9PRGIWcem9EK54/r+9ew+Pqr7zOP4+50wmVxJyISEEQuQmyDXchAUEKlakKFq5KY+tVdzWW+26eNnVdqvVyvqsVl2tVhev20rVqoiogBQQtdap7kAAAA9kSURBVIjIRSSoQAHDJZCQhFwgl5lz9o/JSc4Mg7q7CEnm83qePJk5Mzkzk4Q88+H7/X1/8em5JxxCELmHj3cIQijEunv9uKPLW4KSiJw+J+NNoKpG0lp5w44Cj0hsabPhx1tJgNA6oNVLFvP6W2/xxjuvk5vhp1/f3pQeqsE06qkMmASNNMZNHIkRqOGaG2+j9MhuSorWcuGll5Kckk7h2B7s+3IVOYllfLxhL43VAey6WpKSkujYqTdvvr6Q2ooDdMvPo1t+Ntlp/UhNTWXG1Xezu7iEvxfvov+wEcQbsGHz30lJbOCKG6+nIdiIFXQI+OIZM34kS99cjBnfgVVr1vHCc8/TIdnmnl/fR11dBjfcch2rl60jKS2LCRdM4/bbfsHRymIarbqm1xkKGVn9RpOTn0daWh57azpglx+ipKyU3oMGkJAUZN6NPyWvSw8un9yHwtGTyMruhi8unoBZQeXBHQSqqnhv6YfccusdnD91NKPPHYnPhoPlGzhWuYuAaZCan8Wg8eeFvt2OiWn4Qo/vuextY3N5J755W+FC09uijbZW2BE52f6/wUPBRURE2qM2G35M0+eZJhZaSJ+Vmc33xo6lc8cscrueSW19I+s+/ABqG4kPNrJvVxFLl67B9GdReqiE91Zt5O2Va6gOdmL9+pVkp3TmjddW4SR2JrtTFZmZyVTVHKVi724+eesVslMyyel6Jp2zMigrPcKur7bxzIKn8cWlM7RvP6ZOncqDv/k1ATueEcOHM2LQOSQkxPPYvY8wavhYSvcfwnEsplw4h/PGX8Cw7ocp6J7DHb+6l4nnnM2y5UtY+cpi/rJoGamdulCxbxNOgk3nbl3I7JLfNOjBxDAsTBwSfBZJyfH0OKMTjs+mID+f3Tt3UnGwlrLqUuLsw1TFd+H++f/GSy+8jJGUQFqyg+GzWLlmHZnZHXjm6SdpqD1C+ZEGfFlZjBk3hbw+o0jNzsbBBMPCsqywAQZuqJl/1/2hiWxfE3xCH6GfkftzEhERERE5Hdps+PGu93HfmJ9zycUsf3Mx8//w37z44ms4Ri5Woo/XF72M7YvjjPwcZs6ejWH6yM3O48ezZtIxPZtEo4YjZbW8u2YD1dUV1Af8pPsNUtJz+OzzfSR07Ebh6KEMHDWc3971KwYW9qP6WB2ffLKJXt17sXzZWzzz4p+56OIfkpGVgeE3eeLZ/+KDrVupKT3A7Xffxs0338LBvYeoqijhWGMpixb9hbzC2Vw8Yzb/9Mu7+P7kKVz1j7OZMGUGNVXlbFy7gc5d+1F2oJjkTj2b99AJvfbQhqGOP4lAfCKfr34Of3IaARsS03LZsmk1A4cP4Uh9Ens+W8/k759LWcVhDhbvpPqYRVpqPnOuuYKBY8aSmJFO9/6Dye3eDdPwYTctvzGiTWBzHAxaRlLf+st5YcHni61FuNHGMKzmDxE59U5mK0/kuVQVEhGRtsoIGy3cyjQ0NHztk/PuI+OGoecfmE/Jnn0MHFlIr36DcGw/nQsKsOIasBsstm79iEFnj+XQru2kJMTz3vIPKC8txrRsyvYXcfW8+Tz1wHy2fV7E3Q89TE73syjbs53yygOc1bcQfJlUlh3EbwUo2rSBrVu3MmX6bNKS42kwEvGnpVB/tArDn0zj4VIWvbGUP/1xAS8tWc2+7dtYvexdLvvJbD7dvJ3CwX2J75hDSXUFLz21gGuvvQ5/io+NG7YQbxxj944DTJtzIfFxHQmabmvY8S1ibmtZaN2TTcAx8Rk2b/7uMcZe8j1KDpZSMHwMcZYfA5sdm/9Gz8FjTvh9jTpC3PM9966zsprGV9vOqa3o+P3+U/aAiYU3tN5/JHJaHdv4aKv/PTzdQUXrKb57p+r3UH8L5UTawt9Caf++7e9hm638uCLfoF9x823M+dnPKRwwlPeXvErZ3q04tUep3L+PtSvfoX/vM3nn5T+Sm9+L5Kw8Jl06mSMVh7lo+o+Is9N46fHfUrT5Ay44bwrz77yT1SvXk5OVQ1W5n8NHAuzauZEnn/o9K95+m01byxgxcRqfbPwCw++j4VgVc2ddQWJSClddOpeElA4kxSVx9z2/4/mnniCvex6Tpl5IUkonRo0YxF/ff494ox7/kVJunncdiR187Cgq4tD+YjqlZDB2wjheffA2gqa7z03LOqfIgQ8hJrbhwwACjsn5N91Acv5Z9Bo5AZ/ZtDGoYdFryNjmrzAiPxtG8zQ2N1yabuAxWqa0GYaFafpwME958BGRb0/hQ0REpEWbDj8tbWDhww9y+/Ykp/8AUrOy6Tl4HM8teIhtG99n7YermT7lB6QaVQQrGqg5vBej3mbGtddx8KudTP/ZT7lg1lwysnvQf/BZ5HfpwcSJI6gPWPToX8D6tR9x7dxb+fGsqxlw9gRM/1HizFpyOiaw7cs9GGYj/3LPv7Jh9afceNN0amoruPyKmQwZOow5syezYsVKLp1+MQ31NRytq+WcseNZvnwFFVX1/Gj25ST6g/QZNITBA/pjd8gAJ44Zt/8+7LUBxw0N8A4UaG4HpKUlMPw+RtjX2+55PW1uzbfZob11bMcJrbEiTq1sIm3QyQhA3nMoUImISFvVptveTsQ7ThnAcmzqDYOVD8+mYNxN1JV+Sc+hl/DWK8+R1KEjgwr/gS7dc9i/4zPuuuNhfnjlLDateoc7nniQO264j9lzxhLv78IZPXtwpLKWysoSSkpKSEs0KMjvwf7iMvwJ6XTvl4+vrozPi8vIyuuPcewgC59/iqv++S4qq6qxG2vITEmksbGeHTv2U1dbRq/BA9m28VOGDh1E/dFqrKRkKkr2kdm1J0lp6U0VmFDY8FZ/vNxWNG+7mnfKmvc+RkTI8W48GnnO1pyN1fYmrUFbbvU4Ve1wCkrfPbW9yenWlv8WSvsRM21vkW/cKyvLw6odpmmCLw6/aTH55lfoM2wMuX3HU1f8FRNHDWPxi3+ma/9eHKg4QnlFFXPmnk+Cz2LeI48RVxVg3p03sbPoU7plx1FetgUjOZNVKz/Gb/sp3r2HTR/vIr93Hl8e3MO691ZQVdsAqbkcOrSFa+ZeT0LaUCrLtlNWupeMjum889oyPt20nryCLnRMzqADfhoaAzhxCRypruSzzZtISe1GQkoNjmOEBZ+WlrNol82wqWoQvT3O3WvHDYihYRFm2IACd6qciLRfkfucfJv9TrQnioiItHW+0/0ETgZvS1d6embzZe8bfrcqYhgGnQp64HQPHXt8yRKK1q3jzGHD6NI1L6xCUp+cRloyTPvJLTiOw7r/vJOJVw5j2+YtbN/6EeMnTGHzzi0MGTOSMUMGsHjRCoaP7kYPo4HN2wI8u3AhfiPA7p276XZGHxqcBn4w8yIWPLmAd98tYvrMydipaVjBcta9u4b8vr3p2b2Aw3UVpFu9aelIMzyfnaZQ5O6vEzpmGA7uyh3veh13/U7k98s0fZ7r393PRkTalm8Tbtz7nO5hCiIiIv9b7eK/90MFDyOs3ct9w++OwY4MAaZpNh87a+RILMsKqyC51SOguQIz9ef3kpKWwH0PP8LR6hrefPVpxo0bw6pVf+X6X9xOTU0NL/xpIdUNAV5fuJTGunpKy8op/mo32zb/jY3vf8bajzdw2ZWXMfm8PpwxZCCJ8QmMmjSDoZPOoerQF2T36kSv3r2PCywt182IY3ZYq5t3/ZNt282DDEzT1/yhNTsicjKoCiQiIm1Nmw8/juNgOIQ+IsZeey97A4IbfICwzTvdNjlv8HGvh263cBwHf6rBpPMuoaBrJn946HGeefRJ8jLTKdmykM4Z6ThWI9NmXkh8WhKZublUHD5KdWkNfQr7M3T4YBLSMxl27sXEWyYBuxF/UjypaekMmTiN5k1MwzZxbQljbmBznMj1POFrepqDTtNnEZHvwjcFIFWHRESkNWkX74qjLfCPvB55/8j7ekOQ97K3hcxbVbroqlkEnDmUbHmfO371AHv27OHf/+N+cvuNBKBwVBam4eBgcsnVs5rOaWPboaDmrUx51+14RT5mMBhsPk/TPYBQwLOsuLCvExE5VbwBqOLjR1UREhGRVqvdhB9omVwGxweAaNdt28Y0TSzLCjtPtHDkvezebtFIlwEjefa1lwgFEjP8vpjNjxU67mBZvrDH8J7Pff7R2vPcywCWFYfjBHHDkvv8RURONwUfERFpzdpF+AGag0wkb+Um8njk/d2hCG7giByaEC1ARa7FibYHT0sos44LUpHPM/K8brXn+DDW5jsWRUREREROqXbzDtoNMtHa1L6pCuSK3DQ1GAw2H48WrNxzRRuUEHks2uN4vz5yLLW7/ihyEIOIiIiIiPzftJvKT0v4MZpawkLtYNHGPHvb46JNiPNuGuq9n/e493yRIlvXTnQMOOHgBRERERERObnaTfgJBoNYcT5wHAhGDxvRNv303gbhlRzvMdeJWui8l932Oe9t0QJW5LlFREREROS7027Cj7vo33DAjSLewBEtsEQGkGjBJFq1Jlrbmnvcu9cOtAwsaBmXrbAjIiIiInI6tJs1P7Ztg90UPMzjJ7V5qz7e4QSRVZ3mc3mOefcKitQSduzm+0dbdyQiIiIiIqdXu6n8gGcKmm1DlKpOS9hxME0r7Lj38okqO9Efz2W6D6mwIyIiIiLSCrW78OMYDjimt/gTtldO0xEcx8YxgIjWuMgA9HWbpyrkiIiIiIi0He2m7Q1CIcfEwDCdULBpEioEGYS9XMPCJHytT7RhCN7Kz9dVgUREREREpHVrV+EnGAyGAgpW87FQWLGbKjZuqLGbYk/Lyw9fE8Q3HhcRERERkbalXYUfwzBaKj6O2RxcIkdRQ2ioQdCz34+qOiIiIiIi7Vu7Cj8A2A4OQUzDwDBaKkAtIcgktPzHxmiqCImIiIiISPvXrgYeABiGhUGoBS602WjLbaGg46ACj4iIiIhI7Gl34ce2A80VH9sOnOZnIyIiIiIirYWhti8REREREYkF7W/Nj4iIiIiISBQKPyIiIiIiEhMUfkREREREJCYo/IiIiIiISExQ+BERERERkZig8CMiIiIiIjFB4UdERERERGKCwo+IiIiIiMQEhR8REREREYkJCj8iIiIiIhITFH5ERERERCQmKPyIiIiIiEhMUPgREREREZGYoPAjIiIiIiIxQeFHRERERERigsKPiIiIiIjEBIUfERERERGJCQo/IiIiIiISExR+REREREQkJij8iIiIiIhITFD4ERERERGRmKDwIyIiIiIiMUHhR0REREREYsL/AB6qPzJLBs8KAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "199\n", - "section_masks_199\n", - "{'width': 2695, 'id': 199, 'height': 2305, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain'}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAACfCAYAAADXoWcwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsnXd4HMX5xz+z10+nLlmyZFly7x1sY7Axpphiem+hJtQAIaGEEkoSTCABQugdU38QQkKxjQHbuGCDwTbuXZKt3vv1nd8fuyedZLmBbUn2fJ5nn5vdm52d252b3e++77wjpJQoFAqFQqFQKBQKxaGO1tEVUCgUCoVCoVAoFIqDgRI/CoVCoVAoFAqF4rBAiR+FQqFQKBQKhUJxWKDEj0KhUCgUCoVCoTgsUOJHoVAoFAqFQqFQHBYo8aNQKBQKhUKhUCgOCw578SOEyBFCfNVm25afUc4sIcQoM32qEKJKCCHM9ceEEJfvYX+XEOJLIcQiIcRSIcQp5vb+QohvhRDzhRCLhRAjzO1OIcQ7QoiF5qfT3P6GEGKFmf/DPRzzKfNYS4UQd0dt7y2E+FQIMVcIMcPcJoQQLwshFgghvhBCZJnbrxRC5JrHmy+EyNzXc6foOgghbunoOih+OUKIBCHEr/aQZ5/7wf2BEOJBIcRle5l3shDiFTN9txBi2IGtXatjv7M39VIceHZxHz95T/ddheJgsz/aaqRv/iX9jBBipBDijp+z76GAtaMrcAixCDgaWGF+LgeGAGvM9ef2sH8I+LWUMk8IkQIsBmYB24CjpZRSCDEFuA84H7gS2CClvFQI8Sdz/QWzrN9KKRftRZ2flVLeJoTQgMVCiA+llFuBZ4BrpJTFUXnPBMJSyklCiHHAo8Cl5nevSin/shfHU3RhhBAW4Bbg6Y6ui+IXkwD8CpjR0RXZX0gpHz3Ix7t0z7kUHYWUcnZH10Gh2BsOZFsVQliklOF2jrkSWHmgjtvZOewtP3uLEOJ5IcSvhBCaafkY1ybLIuAYMz0CeB44RgjhANKllHm7K19KGYzK4wN0c3tItsxEGwesMtOTgc/M9KfApKjinjAtQheade9rWo9cQojjhRAfm2VvNj91IAyEhRDZgBv4p2nJOdcssz/wg5leBhwbdbxfmRarP5tCStEFEEI8KoRYIoSYJ4SYKoR40byO3wohxpp53hBCvCCE+Ay4EMg028W9QgibEOIVc/9FQoixpoXwE/ONlNssv1fH/lJFO9wOjDGv5RVCiM9NS+/nQojU6IztXWdz+xtCiGfMfZYKIbqZ2y801+cJIe4yt51v9kmLzJc1kbeWXwghPhJCrBRCnB912OPMdrRSCDHQzP83s8zlQojftP1BZn2OMdO3CiG+M/Nf0U5eqxBilRDCaq5fKoR40ExPF0J8Y7bdaea230WVd6u5LfL21S6EeM38ffOEaZ2POtYwIcRX5vn9QAjh2uerpdgb4szrsFwIcZswvBLuAzDb+RPmdfhMCOExt+eb/dsSIcRj5ja3EOJDsw3ME0L0NbcfJwzvi/lCiCfNbTu1SbNdzxZCvC+EWC+EONMsb7Uw3+4Lw7o5Qwgx02xXg83tzdZW8z83WQiRLgyPi3nmseMO5klVHBD21FYfFULMEUJ8LYxnSIQQj5vt9AXAFlVWVts+1GxfbwghPgEu2E07jVjN2+3LD2mklIf1AuQA1cD8qGVLO/mcwLfAi8Cdu/h+K0aj/BRIxXiregzwnpnnqDbHiSxT2pT1KnBV1PoYYAlQCIwzt80Bcsx0L+ALM51ifiZhWKF6m+uXAu8C3wPJbY53OfBmVB1rgUwMsbUGSAROAT4EBHAa4DPzJwIWc5kBXN7R11Qte9XuTzXbgzDXzwVeM9O9ge/N9BvAH6P22xKVvh6420ynAYvNdCqGQH4PuLCjf6ta2r3+OcBXZvp9YLyZPhP4e/S13s11fgO4zUzfA9wMJAOrgRhzu8XsI5YCNnPbx8AwjBc4azD6zDhgE8YLuQeBp8y8l0TVJ1Kmw8xrM8t4Jao+x2BY3L8BrJE67OIcPAmcbqZnAX2Ak4EXzG1u4Cezz/sBiDW3a23Oz43AI1HlWtrUawHQ00zfCtzc0df/UFvM9lxkXjMnkIvhDXGf+f184GIzfW9Uuw0CPc1rPAcYCdwG/Mn8fhLwH/P7DUBadJvaTZtcZrbl8UCxWa8kYIWZ/0HgRTN9NPDf6DZlpl8xyzon0r7MeoiOPt9qOeBt9Swz/RIwDRgFzI7aP2imJ7PrPvTFqGPuTd/Zqi/v6PN0oBfl9mbwo5TyhMiKaMfXXUrpE0K8DjwGdN/F92UYHdUKKWW5ECId42a8yMyzBKPB7RIhxP1AtZTy9aiyfwSOEsYb12eAsUAVhusKQLy5jpSywvysEkJ8iWGF2obxgPMI8JyUsjLqeCcAVwCnm5uqgNVSykLz+5VAPynlLCHEeIw/5nJgrXmc6qiy3gemAm/t7jcqOgVDgXnS7O2AvhjiHinlNiFEYlTeb3dRxjBgghDiZHM93ty/XAgxBzhbSnnx/q+6Yj8zDHhUGEMUrUDb/q/d62zyo/m5HUM89AFWSSkbAaSUYfPNeTbwpXmMBHO9AaOvDAJBs/9MbafcE830DUKIszCs1N3MpT2GAIuklKFIHXaR703gXiHEMsAlpdwqhDgHOFYIMd/M48AQdLcBT5uWohcx+3SToRiCjqjf3LY+M8xtTqCVv79iv7FeStkEIIRo75p/b35+h/GyB6BESrnd3Od7YIC5fGR+/y2GO3kqUCmlLIVWbWpXbXKVlFIXQhQAm8x6NbWx+kXXp3879Y00os+BEUKIt4EdwANAYLdnQtHZ2VNbje7/koEYDEGNNIZGlEbl3VUfGn3f3pu+s21ffkijXJT2EiFEd+Aa4C8YIqI9FgF3YozXAUPdnw8sNMs4SrQEBoheppjf3wz0A5oHoQkzkIFJDdBkpr/BeHuP+fmNmT/B/LRjvFHaZOZ5EMMV72xhuLYhDNe9PwPnSSm9Zr4tgFsIEWve6AcD+QBSygeklMdivCX9Ovp4JlOAjbs4N4rOxRpauy5uBiaAEfACo61FiO6cQ6LFtXEtMENKOVlKORkYbe4/1CzrE6ECJHRWArSM+VwL/M68jscAbV3K2r3OJjIqLTD6j2GRhzyzrWwzt58Qtf8sc5+RwnBBi8WwKlW0V64pxq/GaLNTMazTrRRGm/pOEMYYNcQuXHGl4fOeDdwEvBO175yo3zrcfKG0XEp5FfBH4J9tilpD1Eutdo63BsPqMFlKOR54eBf1Vvwy5B6+P8L8PJKW+2KaEKJH1PebMe5hE8xtE8z1ciBJmC6hwnB/312bjK7LruoVXZ/NZrpWCNHdbLsjzW0W8957GcaD7dQ9/E5F52dPbbVtv7oZwwMIIURPjL4ywq760LCZf2/7zrbHPKRRlp+9wLyZvY5hFlxq+vKeJqX8vE3WhRi+9EvN9cXAWRg3v91afkwfy39iuLfNM98SHg8cLwy/+cgD6G3m5xvAa0KIhUABcJW5/f+E4c9sA96WUq4VQkzGuImfKYSYDbwuhDgJw70O4L/m8X4vpfzRPN4ss4yXpZSl5h/oY7Me+cBvzX3vMK1HIYybxB93fzYVnQEp5UzT53cJ4AX+hjHmaxGG285vd7Hrv4HPhRCzMMT0v4QQ88zvfhDGeI6XgMsw3iDNEUIslFKuOJC/R7HPlABeIcRHwCfAQ2a/AfAa8HZU3pdpc52JekETjWlxfgSYL4RownDV+JsQ4ilgrvmWM4gRbAGMF0QfYrju3teO1SRCDYYwWQSsByrby2TWYa0Q4n/At0KIRgwLz5u7yP5/GC+Gepj7zoy8pMJ4GCjAcAt+SxiBaJzAs23KeAV40fzvBDDuAdHcBLwhhIj46U8HvtxV/RUHjKPM8Q4B4AJzWzHwJ2FECfxWSrlcCLERw1K3AKMN/FpKKYUQN2G80PFjuJTfzl62yV3gMfvRFAy3JzA8S+aY5ZaZ2yYLIe7BuMf6aW11VBwGmO1yvXm/XoPRb0bYUx+6133n4UTE31+hUCgUioOG+VLmMinltR1dF8WhjSlmL5NSFrTZvkVK2bcD6vMgxviet/eUV6FQ7H+U5UehUCgUhzTmGDR71KbvpZR3dlR9FAqFQtFxKMuPQqFQKBQKhUKhOCxQAQ8UCoVCoVAoFArFYYESPwqFQqFQKBQKheKwQIkfhUKhUCgUCoVCcVjQqQMeBAIBNSCpCyCEQErZ/HkwsNvtBy0OvWvUzaodKtrFu+IZ1Q4VHc7BaoeqDSp2heoLFZ2BvW2HyvKj+Nm0FToqeIZCoVAoFAqFojOjxI9ir5BS7iRuIhNpRbYr8aNQKBQKhUKh6Mx0arc3RccRETZCCMLhcPP2vRFAu5ihXaFQKBQKhUKh6FCU5UexE9GCJrK0FTTtWXuUBUihUCgUCoVC0ZlR4ucwJ1rc7Eq8RAc0aLtvdBkKhUKhUCgUCkVnRomfw5SIWBFCNIsbTdN2EjS7cmNrax1SKBQKhUKhUCg6O2rMz2FCtEBpES5hhLAgZRjQdunKtqsw1m0tQgcz1LVCoVAoFAqFQrGvKMvPIUzEqtMWQ+xARPBI2V6efRcxKtiBQqFQKBQKhaIzoyw/hxgRARItQlosMjoAmmZtFcGtbcS26LLalru3x1coFAqFQqFQKDobyvJzCBA97iZayERET4s7m/FdRPjsTcCC3Y33MdI7u8JFLwqFQqFQKBQKRWdBWX66KLquNwcpaCty2uaJYIgRgRARcSSBiEDR2ZUWbjuWJzqtadbmY0UET3RaoVAoFAqFQqHoLCjx00XYnXVmV1HZdN1wc2sJTGCM7zFET6QsPXoPogVQWwGjaZpZpo4QluZjtz6G2KUbnUKhUCgUCoVC0ZEot7dOTERQtLXgwO5d1tpbbxEprd3j2hIKhTDETcsYoZ3RWpUbCaBgWH2M/aNDZSsUCoVCoVAoFJ0BJX46GRGxE1l2FUCg2aojW/bb09gdcxcErQMTRH9arZq5rhFpHkIY7nXmkaPqY1iBpGzrFiei0kr8KBQKhUKhUCg6B0r8dBKixU6E9ubdEZLmsT4AOu1bcnYtOjQkWqv8LROctg5W0FpMtUSKMyw9enN5LZaeMNFWIYVCoVAoFAqFojOhxvx0EBGxEy00oPXYmbZWHyklAoEmJHo71pW25UR/ti6rtTtbpA6aJmnRLBHXN4kxH5CgZZxQ5JhaK3FkJMNReQxhpOtEWY4UCoVCoVAoFIqOQYmfg0jbuXXaCwwgZRiLsBKWejvfSaQmQBctQdowrUGircBpjSFkNDNPi1CKWHwibnTRwiuybnwXsRaZrniAJJLXEDnRGPuHzcAIu44kp1AoFAqFQqFQHCyU+DnAhMPhnSwuQmpI2ncLk1IQZuexPq1c3zRpCiAdpIYUezMfjyXKXU6PEjcCogIWSAyrlGaKs3CzhSdsWna0lrKlYe2Jtgm1dnfbWRQpFAqFQqFQKBQdhRI/B4CIFQXaup9ZDBEhWqw16LJ5HU3QdqxMZNxNS5jpiMAQIE1rjJTNVpj2aF2HNnP/oBv1IoyM5JGGNJNSokX2afl1Rp2IcrMz94k+VqR0kMrlTaFQKBQKhULRKVBPpfsJXdcJh8OthE80bQWHISd00MztWstcPUIaYigyJigiHoQQhuuc1FrJkX2jZZxOs8VG6JFKNosYaab1qKAH0eOJmt3mhEDQxsoU+TRD0ek6zeGwFQqFQqFQKBSKjkJZfn4B0WN4IkgZRsOyUxS2cDiMxWLBiLYGwhx7I3WBRCLNMT4aFsJSR0MgNEHepi307TOIjz75iO6pKRSXlxFrdzLxxMnYbc52AxxEi5Xo9cj3mmYFaVp6zHzNacBqsRAKhZod1iKWJ6FphlXIFEUiyqITEUAyar1tMIRdGKYUCoVCoVAoFIqDghI/+0hE8AghTJcxzNDRrS0kgpYgBECz21qzhUToSF0DoRsjY4Qk7HOSn5tLVVk+QS8Ii4OUtG5sXrcFrdFLXJ90NFxk5/SgaHMxcckJfD/nI064+GostvaNeNHiSNd1Q8SIiMtc1NiiKAEUDIUMMRMpRAhD7EStSymbzYbRgqc9osNm78o1T9F5qF72zD7vk3jkzQegJgqFQqFQKBT7FyV+9oJ2Jw+VhvsZQjfG6xhRB2g9wN9M6wIZDqNrLXPoaFjQJdRXN1BcVk6Czc2Owlz6ZPWhyAe9sjLYtm0bC79eRr/+Q7AS5tbrbiQ1xcOvr7uIuLgsyqtrGDbxNCoKylj23QKmXXQBuh5CCMsu5/1pFiHoCET77mqRfSLrpmtbVGEtQiryS6OFHS2WH62V5ckYX6ToXPwcsbOrMpQIUigUCoVC0ZlR4mcX7GrsDphCQmCOldHADFhgzL/TYvHRwxKbxUpY6GC1YNcslBeXUVdZS01xPl5fiLVrfyI3dyNXXnsrD99zOw/+41mqiwp58ZmXmHzsMM656BKEbqOyshuvPj+WhkAVCQkJrN+Qz3vvf8iQvj3pP3w8I0eNI3fFRtJ6dccV5wYtcmlb3OkiQQyEBJ2WOYbaEtmmRSw+UeN7IjLGYrHsdI4iFi+i9ocoMWW6+ik6nv0heHZXrhJBCoVCoVAoOiNK/ETROix1y5iZnSYhDesIC4blB5BCN+wokSABZuADi82KL+CnvKCChto6yguL+PS//2bipMH879MfuP9317BeNHDUUWNprCnhlTfew+l0k+Z2c/SJE/hh4XIKcotxJ7qpbaijsaaJWTNnc8ykiQwaPoDbr/s1ZTUVrNuwhpzMbsTFJZC3rZSYBDflG3/iiFNORUqj/tEBEgxxpqFFPPDazDcU7aamNbvpmXl0vTkdcaWLLsMsqNUAn+bzCOh6yBhzpDjoHCjBs6djKSGkUCgUCoWis3DYR3vTdb15iY62Bu2LAiGEEbjAdHkzvjfy6SGJ1AVOu52qwgqqdhSzfMEC0GvJSHXw7oy3OGXqJDJ7pTH90YfREtwcfcJpyHAsvQeMoLGmgrq6OnaUlVCwrQSrw0pFTS1lBQX0yumDxWpjzNgROF020pI9LF+3mmBIcPqZ5zBv3lzsGjx09x1YbFYy+w0l7NO597rrEeGAGXlNb15EGy++6N8LkShwhggKm+cnHCV8mvfRpDHvkNDNMVDGEhFP0UEXIhHkFAeP6mXPNC8dWQeFQqFQKBSKzsBhKX6iBU+EiMDRdTMMtb7zfDvNIokwMhIe2hzzIyTMeO1Njhwyni1r1lJTmsvaH1YTY0/AjpMzzvoVf7jrD0w4+2xqamOxOzQcroF4YpLpN3osuh5AcyUSDAuyc/oTn5FCv0HDqKltQLPHc+opZ5OV3YtjjpuI5nCy5PufmDXze+wOC/X1dQwZMYIN+Zu45dbr0SuL8flDFOfv4K6/PMZbz/wN46dGLrdmWKvajNOB1gJI1/VWgQ7azuADoIcBXTaLqfbGR+28TU18eqDpaMHTls5UF4VCoVAoFIcvh4X4iQiX6IfwtmlosewIIZrH7bQXpaztWBe73cm//vwUHmHjs88+YMOq2ZRV1DJi3HDyCzZRXLGVN19/kRhXmJ8WL8HjFOQWl+NtKiWg28jumcLfn3gGi83O+++/y1nTLqSuuo4nn3mWnB6ZZHRPp6KymosuvIr773kQu8XG4KEj+WbBVww7cizLV6xBhHzUV1fx8CP/pKI2QFxcHLo/SMgf4KSzrkETZpAD07Jl0TQ0TWslSiLnqNkKBs3WrUgYbEm4OZiBwAiLLQWEZevzq+shMx2xBrWc51AwuD8vryKKziZ6oums9VIoFAqFQnH4cEgPvoi2bOzOwgGG5SY6NHWE9ubKQVgQSKxWK8vnroJ4N9NOnojVnUR1RTVzPl/M5KlpWIRO777DmTP7I0aP6E98YjqBxgBCpHLNOb9izqxP2F5cxtZNP+K0OSguLeDUU87ljjvuYsOa1UydMonEbol8+O6HvPvRu9j0IEJz4ImN5513X2fRwo/ZsbmEE889gdwV+QwcOYR/9R/KnXfeybZtubz+5qts3bKJt95+l5vuu5Mxo4cagsacUDUS2jryO6WRMH5iq3MQpqG2jk9fe5ziHRvpmRJD8caV3Pjacu67eipnnH4ZcT0GMfPlW/D7Qtw9YzkWLURkfh/zpLUEUtAOC819UOkqwqJ62TNqDJBCoVAoFIcYbQMedeYASIfcU2i0e1r7c8po7T58S2GKpSiNs1N4ayLhmyVb1haxedlqfGEv3pom7C4fBTu20VBTyZhRxzBg4ECamprI6uFmxPAj+P0fp5Oe0ZeAcGEL1fPx52+x7Mfl9OrTjSEjjuKr+V+waP5yzr7wXGqqyvDpOlZLCJdLUFJSQl15CXFxCWRk9KC4uJgTp5yI36Jx/a0XIaoE3qYSFs1bht0Vw2OP/JXjT5jEqdNOo6GpnuRu3UjyxPPOP/5qihrNEHBmSGwZJXharGFhQEeGdeZ8/BbffvAan8xegzV5GnGDriRn8hV8+PcruOyq61i+sZKPPl3IitwETrnmJT5+40X+cdtZrc6baA4DrpvjjxT7g85s6VEoFAqFQnFoEj2muO1zSPR6Zxh73JZDQvxIufMkmtHBClq7uoV3EjXRAQ6kGba6lSuc+b2u6zx2/3T+cMW1bFy5BKszhm0r5kDDFuoanKSmJ5Gbu5aTzjgeu9WLwyFxORN4/e0P+PjTWZRX1KIHahk8diguVyITTj4KGQixfsVy3njtJc65eBprf1pOQWEe9Y119OmfQ2VpFWddfAY2J3h91Uyffj89s7qTnZnOx/83i39/+AnC3sD0R54gMTmFc047i9T0LM4983zWrvqJCRMmYLFYcGoWTrjgRqQumn9z6xhw0ecz3Px7333wcnRvLBkDT+SWX5/KqLTZ/PGO6xCuPgw9/g7e/uANhsbN4eR+S7n5yu787bG/4G3wc8oFt/P2k3+KKjXiKqhxiDS7DqczdST7Qlett0KhUCgUit3fx3/udweTLvsUGhE1xvCbnQMXtB1k33ZsS7OoiQpsEG2QiJ4Dx5i/1ELR1u30yUnj7LPOJXfdT9itGieceRE9cobQ6KsmLi6OiccfT0APE/CF2JpXS0lZBTvycikv3kFe3joS43sS9MKS+XNwSI1zzrsUzV+CJz6Wpsoa3nvvdYJBH6NGDcMq7SQmxZOUEoPT7iAhKYHbb78FX00dZZWNxHliaKotp6mhnDfeepNBOb0476Jz0HWNvgN7Y7VDcXEpZ585DbsDbFqY6b85xxA9UWN5Ir83+lwJqXPjOePpe+ztPPn849Rv/SdWyypCYXj4133J9FSTlJDMyUM9xKem4LD4qS7ZwZ2XxGFxxeKK7YHV3du0MEVb4Ixzr0v/L7r+hzOd7Q2KQqFQKBSKw4Nf+vzRGZ5fupT40TQrQlia1w23rfYDF7T306IFUThsWoA0w9pjHKBF7ERjs9lY9/VM1q/byNCBI8nqm820i6+mob4aadXZnLsat9NDEC/1TQGKy/18NHMJmZmZLF26kqf+OZ3evQYxZcoUYjxWNm/+iar6MFXVXj76+C1yBh6LxRlHv0EDOWbCeJIS4ykp2kFBdQNodrwBQ+SFgkFeff4dav1+pk6dytU3XIsMS2oaBe44J7XeSq6/4Rrc8YLV69byw4LFdE/PJDkhjXWrtiHDIa7+4wzTsqO169YX4bn77+SqW//JI/ddzT9u7I2w+KguKCAj2cV/VqWw9funyS+op1u6A7+vFs2dypCB2ejUkx2cRf62DQwZMZx7zx4Wdb0icyaF2w21rdgzB7PTSDzy5p2W/UVn6PwUCoVCoVDsP/b2OaGjnwE6ecCD1gKmJcqaBoSb3bOAnQSQOVNNq+3R0c2EEC2TdUpajX2JiB+7zcK29QWkJjTiSuzPvPef5vKrLmTLuhKOOPoIAkEdX30tFl0juXs3yop3kJTYn7//7X7+8eyj7NiSS69e3YmPzaCqoYI4h4fU5ERs4SBTp55EXWURK1dv5PwLz2Dzlm24XR6C3krS+k3GFuvDW+fDaRUImU2tpZQ4dyJ33X8rVWWVfPHJawTqdnDvA0/zzHMPUlGwEW+TTn1dPOFAPckujZsfeoWXn8tBD9joO7A/viYBWhVBvxWbI731b25jJatoDNBYGeKR28ejW4LEhpxoKX6qGyzcef0tlK99lIbyFSxcXMxpExII1tdTY/Fh0R3EeALc9LurGDz8FC6++gk2r/iefqPGthGnAkQIZCdvgp2Eg9VR7Knjavt9R3dgikOTvRko25kH0yoUCoWi89KpnzylDLey9EQQQqDronngvPEQHxlQH72/bLVPdLrd7zRhunwZ44gKf1yNNxBmwbJ1TDpuKhdccg4JSYmUV5QQDupoFp2wxcmQI0ZQVlJJ95yR4PfxyON/p6muiYxuvSgsyEWXQeoqKyksW0O/YUNZl7uFUUccSUxCLMdOnkhIt5GZmUmMx0NDsoeKopVY7T7ccUmERAIxMT6czlh2FG2l/5AxaA4nXyxYy3FT0vnrX39PTaWPeQvXcOmFp/P2G69TWBri8l9fwGsv/Z3UlBQCQcnibxZy9KRx2Kzwxr/e5Zrbb9vpnESn0zOHctmVZ/GvPx5BRnIayYMn4m6cxxeL8smwrySn+1Bef2cet52ZQUhvJLZ7Drq/iqA3hrq6TQzLdLDmpznUVp1BQeVc+o0a2+rcCyGQYR3RpWyPHcPBEBg/9wGybVQXheKXsrcRAbtCRCFF12Zv+zXV9hSHC3v6T+zLs0BHRn/t1I+eERep6Pl2IsvOEdtazyXTVtxEB0JoN3x1FGX5RdQVliI83Xn+mRfx2Wqpb6yhutrLti1b+emnjfhD9axcVsqsT/9L2CtwuZL5evZXFBTlU12eh8/nwxf0I7QQnlgnmZnp9Bs2nJi4REYcNYGysiJiYlOIS4zjj/f8nrhEN0IXxHnSmPPVMlzuQYSCyaxZmcvyFTsoKa7G77cQCum4U5MZ3j+Nvv2ySemWTGqPVPr37UdeQQFHT5nEMceMp0dqD7qlpuJvaiSgV9C//0C+W7KUyqoGpp51UatJXcPh8E4Tvo4cOYieKUFy+ncjPi2e8q0fUVNdweBxV5Ii1lPclE16t2qrx3bwAAAgAElEQVQ8iQ7qgy48STmEw2Hs7jpq/XZOOvdkrjj/aBYvXUJZ8bZ251lqO1+SYmc6s/D5pWUowaRoj31tSxGXTDUWTrG/2Ne2pNqdQtG1XgJ0avFjsLPrW2SJZk/z+US7XEWEU3RAAx3jwXzDkvVsWrqEG667kQZvAxddeh4jBx5HIBwio2cqs76cixB+fD4fRx7Vm3MvuJQtuXloNiennTGRxEQHm9dvwmpxYLVbSOvdkyVLFrPy+40UFhbjr2/E4q0lJSUdT7wHl93Gs4//me15xVRX+wmLMFddfRk78teyZcsq3nzzDYYMH0Z6ZjrDhoyirrSC9cu2ktJjCBaLn8aqQppqvYwddyTVNXWkp/cgLiGNytpSsFixe+LI3ealpr6CwQMHktY9Bbvd1mrOHYvF0ipaXnV1NZ999iV3XH82bqsDGQqTGusBi5vYpGyS/FuxxcVw8hlX4PXVEZIO6mr92B1ugiEfvXsmMyi7lq3lOdx78/mEfJUQCrUSr1FXdP80k0OMg/Ugtz87q67U8SkOPZQVUrE/+LntR4lvhWLf6Mhnhk4vfiLjepofmqOsOG2tFW1dt1rNYdNmPdr6I6UEXfLmo3+moKic7MGjuPv+BwgHm0hMTqWxupCmeh9OTyqXn38OZ556EmmZWdTWliIcLvoPyOKyiy/jN9fcTOG2BqyOVD7533946ol/Ul1ex+9/excjxozkzjvu5uabbkB3SxI8OiGLhTVr1uD1x9K9W3e8tfn0zx6Gt6aGbqlJjB41hXvuvAPNKREWD7NnzeXa395OKNSETUBdtY/S/PUkyUasdkFWxgBSYuPJ6R1PbYWPvIIdvPXCs8hwNanx8Tx0/22EQjolpUU7nWdN05rHRHk8Hvr078/m0hL0oKTSNhRvoJ7thQlsXZ9L2KEzeMhYZv33Y559aS6ZiX7Ccb1xWLxojV7qKv0sWjeei85L4V9PXEfWkb+lZEchS+b8j/raIqTUWyxP4eCBaThdmK58A1UCSNGRqPan+CV05b5Xoeho9vX/05Hz/3R68RMdpABaT8TZOvJbexOattDW4hDtNhckRNHGXLIGjScxIUR5RQ2aCPHMv15ky6YNpPcZQGKCGxGoIDWrBz36D2XJ/MWEpAe3w4lFJPD0P6dz9ZXX0GNAT8aNG8YZZ0zjut9cgs0Oy9d9h9dfyTtvv8qN111JvCsZf10e5YWl9O43kKAtzE/LFlNeXs4XHz9PwbZ15G9czvzZM/AkOQk1eJEhH90yUnjjxecZd2RfUrp1Z/u2LST1Hkc4rRvbd2zF7gjzyew5fL/4G/7whz/QL7sXV990K93TU3G47Dzx7MvMePUdMjMzdzoP0ZYfq9XK1i0riAs2IKUk1m5h3rdFrF2ziVFHDMPf1MiypUuYN+cL7r39FBLinNjr1lJbW01+ZZAS9ynkZJSxZnUh46fewzXX/44ZMz4mxtObx393AVrUvEy7izh3OHKwo7kpFIci6iFW0VGotqdQdH46vfhpj9YWnhYBtLsH6fbEkZSScDjMtx99xcqVK6mtKsblSiKnd3f8gUau/vUlZPXIoLYsnwsuuRx/oA6Xy0V5cTGexFjSuifga/DR0FBH7vZ8Rh0xFIewECJAcVER1ZW1rFy8nOJt+SQlJBEfH8fwsePRbbEE7b156enXsAiNpXM/xqL7SO8eQ3r/UfQ6cjKjJ5/N6CNG0lhTj95Uj7TZ+Gb2QkIhPyXFlXz04WeUlNfhstsI1OqkpmTg8wWYeMxxTJxwGo0NFQweMJwN67eSlpyOxeaiprqJUSMHU11WtZMFLNoKpmkaF15wAd+tXEtZZSnUr+DEE3sR4w7z8ssvEwiHGDR0GIFgPMee/x8WLt7BiuU/UFllJeeEp6HoM2rDw8gZdhEDtY/54rnj2bbwVXz+Ok44/yGqC3NbXwc99EubxCHBoXLTVKJKsS/s73av3N8UP4f92V5U21Mo9o2D/Z/pcuJnV2N72ssXPb5nV3luvuI2/jL9CQYMGMDRk07AbmlkzeoVFOVtwmm1YLFpbN9ex5szXqBbej+25xbhDwVJSs/A1wBBoXHiScczesRwNm3YzNatm/HV1pKWnES/QQMZN2kK3XsP5LxzriKgORChaqylnyL9QW657Wq8VRXE2V307D8EZ3wWWEAP+6go20FtyE5CRhb2+BRWLVvNtddfiI6gpKSMy68+i6OPPpqa2kYemf444VA1CWlJ6FoIYWnk0ekPM3feV1RXF1JTXU1cQgzxyYmsXruB+AQXMXbRrptgZAyOryFITPY5lDckkGT3EWrSmDC6J25PIv5gCqH6KrLTBS8+MoVePRyMGT2Q1EQ7jZVFxAy6jvvuuJEeoZcJxdip8edx3RUDeOH5VxjQpzev/PmqVtcwOmT54crB/uMrgaLoDByoaD+qfSsUCkXnY2+mLzgYdAnxo2mtI7ZBJHBBtLVHMyc9tTRbg9pzq4pEGcvNzads7Uruvft27rjnTv7w+zv55OP/o9YHaakJZPYcQGy6h6rqIo4cm83f//EMvoZ6evfvQ0JGBmmp8cybu5TakjI+n/kfvH6NnN796ZGVTkxcN+LjrCxcsIx4j4PG+nJee+NZli54n+qaElYXpZGQkMLSxd9QWLCVjNQ0XMlZON0uYhwWtm8pweZOINYSi8VqJaRpjBg3GGusB/Qw4SBUl1UhXE7cdhsFRfk0NVqoLa1ge0E5WDzEelKIjXOS0zub2LR0RDhE4fZizjljGhZbPA/d/ZddhgIHGHrCUZx+6in0SbfjDWlYk8ZhdYe4/tor8YhG0nr15tY/PUdykk5CfBL5NWGs2Pnk2atIKv8Xn799NmEZRIQ1pM+GU0CjlHzy2ackOFusTXsSsYcDh6LwUQ+fij1xMNq9egOv6ChU21Mciuzq3t5VJjeN0CXET1taHpiNQfot63rz0nbSzujPQLiJWF1CTCK6HqZf32zu/9O91FQ04rJpODxOPB5466nXGTB4NJX1gnvuuIuQCNEYaCJ31Q6qy71UlBWRmObB7XFht+kkJDiw4WTlmm/JLSxh/JiBbNm8Hk9cGqlpiRw7aRoFP8yhYOsWwnYL6UnJWB1unGk98TV5CYQsVFVXoAe8XHvZTXgSnOi+AAVbCxHCgsdlpzHkp8+I3tTU1LF84VxeeP41rr78YtwOC4nJccz836dUV5ZTkJdLk6+OxNgswt5GGrw+kuPcSDQsBDnrnPOizqgRPU8LhJn++z+x+Yef+L/H7mHJd5/y/r/ngEXD0rQGh5Cs3LCYEvsJlOTt4Iels2gIdicm+wTSKGL+6ibOu/w8YnucTCDk4pX/rqCushwRG4fDk8TqhXPJyEzFlnGkEj0mh6LwUSj2RFeLZKg4tOksD2QKRVegvb61q/2HupT4aXF5kzu5aUWHTG5v7E+0AHr9qecJYWPuzE+pqiylvrYai8XC+InjaaiporSknNS0blz/h9spK6ugoGAHiWnd0Sx2ApX1fPHZbELBAA5XDOvXbUYP+EhKicHrC1FYmM/QgQPQAxYKS8sJO9yUVBVRWbKDHaXluNN7c9LpZ1BfX0tdfQO9hgzBb3MRE+MmJiYGLWCj15DevPfhC7hiEomJcZGVE09VUT7FZZVsWLUSv0+S3jODZ/41gxtuvoHuGX3xNvmpqwtxyaUXkpCcwCcz5xHjTMFh8+KKcRIOaUihE5sQTyCoU1dXB0A4HCQU0ineWkjp9gouv+YKvL4AF9/yAJdMO4KxJ/2WOWtHUlmVhzfgJ6bwQ7SUXrhTutGvWwE1FYVUbf0ftbW1HDnUQrh2C5POvINQsJgLj+9L0GnHFvSzfVslmWnxjBw2kf5DB+90jcK6b/83mE7OoS581MOnoj262k1Sofi5qLau6OpER2SLXrr6/b3LiJ/WY3iiq63t0orQnluXVYeBfcZQW1OB3ZWAXw+gByqxWmHI8EF44mIYOGwAYRGHsNvJ6tmbQYNHEPA3EgoGSOmRwRW/uZziwnw0TWNg3wGsWbEGb72koqSCwcP6Ir0+7C47QT1A7x7pWPQm4jweunVLIbHPBL6ev4w4Vyy19V4aGiXx9hj8/gAN9V6aQgFiXXY0WxxNgQa8vkaCug23Jw0LkmOmTCEhIQ6rDe77yx+pKiulrGQH2/NLifPY+OC9/9DY4OeR6Xfx3NNPIBw2mhp1Tpg8GYcrlpKCQj6f+Qnz584BwKH7mThkBCFviIVL5tKzTzb5G5ey/Iv3KW4cwKSzLuGGm85nxXo7Zd5syusF5cuepnbDBzT5cxh55uNUuE7D0e8OkntdT36F4N1Hh2EPx2Kxuoh3xNLUIMnul0h9yMumbev4dv6CduZjOryivh3qwkeh2BsOdLuMTH6qUCgUin1jd31nVxdA1o6uwN6jI6WGYeHRQAikrqNpoO9mnszocT9fvj+DvuOOJWdwLxZ/OYdtO/IZOmIwQWsMj/35Xp589CGcNic2kUJjQzFXX/VrXnr5HySnpXPuSRcw44PXqaivwWoPMWroaBKTSmiozaPfsKNY8d0ikpPTcLg1wtJBdlYqQuh4ffXEJ/fEYa1n80/zaBTduWDCVJZuXITb3Y2ivO3YY7rTo6cbu7TQLTWVyqZGLLqG0+lE94ZweWLZuOxbBowejsVigaBAWB3kZHenKK8cT4KgW7yDyppabr71etw2DyVFa5l6+unM/+9cMnr25JPZM7G4LbhDsQweNpjvqyrQsfK/x6cxafwIZn49i+9n/Yec/v059ZrbePG3J3HqjS+TnpzOW3/7DZf87iUS05MJhHSE1YkLP0NPtaBJC70G9uDvl4xlym/ewBd/Li99/An9477j9MkjCLhiiIt1UFFXzwln/Qq3zcWN9/7DcLMzg1E0NDTg8XgQVnFYhL5WwkdxuBLd9lW7VBwOdPWHRMXhyd48p+xN296X552D+T/pMpYfiFhytMiKGZ7ZCHyw258ibPz35ecYNnoqD992D25p5fRzzuC6665DNoUp27SCB+67i+1528nq04vioo24k5N4/LG/EpfYjeKNubzz71f49psl1BaVIKxhGnxe4mItuJwetm78iX6DBzJ0zAh8TX4aaooJh0NUVPuoqm0iySbZ+N17lK79nD6ZLrZunUNaWhY78jaS2aMHWT1jcWgaYd3H6o3rcUoXuZu2EfL6qW+opK6skCGjRqFJEBYNi8tGyOsnhI233n8XQnXk7yhm5Xff0VjfgN+3g6BwkLt5C1POPY20jERKSgpobAgxf+ECuiUmU9tQj6ABQm7q6hoINTXxlxdeZMTIIXz/5aecdt7FbFr5FX/903RG9QtTuuxRQjpYrVYshAhhQQiBbpEE/TH89o01DJ84jnh7JVnpTk79zT+wjLibT79PoEifxKqi07j1phup3/AsnsRUhGixzEVEUDh06Lu+HW7Cp6OPr+g8dKTwUdYfxe5Q/ZRC8fPYU9+aeOTNOy27yncw6UKWH4hYfwzREyYiePZkLNixYhvDJ51KSXke1159BdV1pWz+IZ+RowfiiLMzuPtR2F1QXlzE26//hzMvPJPcTXlowVqWfFNJvBNi4jz0yOpDcnoC111+Aw/85U/YZJDEbn3oNcBG74weLFi0kAH9B+POMObcSUt1IZyZBHylhJKmEfaNZuVPyxg95RqcTidHHTUMb6ARf1EhcWk5fDlnPiecOgWkZOiwgfgaK3A6JBpx6MEyLJ4skEEK87aSlpaG227npusvR8fC1OPPYvbsz3F67Kzbsp3irdvYurmI7dvyKCjczoRx49E1G/O/WsjI0QNISojjs7deZOmWbUw47h4mHDeOJW/fx9n3vUph7nbsA8ZyzHF98Af/hzeQS3y8zhd/P4mT756LRQ/wwvSnOemko9n60/8o2rKMeJefRvfxZA05nr+8dCsWwgipM+jIcfir8zg+KQehB0m95V10AYLIdZS43e4D33QUCkWH0ZHCR7m+KRQKxYGjPQtQ2z43+vvO8LKhS1l+WuaFabEARdza2hvfE3m4dsRb+W7+99RWN1Bc8B2x7mSOPuYohMVCbGIytWV5VG3bwg/LN3DGOadgd3ro378vJbVN9OqVyncrf8DqjqH/kGyaagPcc++dJHncJKZls2ntUjyWeBoDOkeMGUFSioui3B1YKEXXQ8z677usW13ClvWriY9PpP/IsynO30HhtgKsdhtOpxVbcjplRSVMPX0qmqZh0wKgSTatWUtYuAkJP2UVfiqKS6kvzyMmNg2b3U1eXh4xcamsWr2eeQvm4g/W8u3CBQzJyWHkqGE0NlVTW13J6DFjWPjtYl59+RUe+vPDpMR35+JLruLUy25iY+kQjp92PGu/n03qiHOY/eGzbM0vw2ENUV/+Lf0HjMEv4iEYpG+f/sx74nQ2r1zHhVddycq1y8jJiiNYV4m0JxGoX0NiXACpmcElhMCiB/EkZqGHg80hKYxw42Gk1IG2Ufl248PYxTncrD57g3ooPfRRrm6Kwx3Vzym6GvvaV7cNiNDe952JLiV+DIyH4z2NDYkIoqKtefz4/U+MHNaXQf0HM27SWcSmJvLA/Y+ydd0WrJYQCRm9SMoeTFl9CM1pYf6iuVRWFTN+9Gi6pWdz1tTz+PqLWfjrQrjikhg6sD+JGVlY7H4GDDsSHPX4A41cfc0drM31YbMJampC+HTomXUEM+fMwarbKSnbwtJvv8Pp2UCPrFSuvPTXeJuaSNAktthYZMiP3+9n+5ZCZr/7JOmJDgq3r8aORkVdHckp8bjjulG9YxPVJVX0yhmA1FxMnHgsEj8FxeWMGXMk87+cSTgEU6adRk7vAWxa8SODBw+me4+ebFyzkuqmWvK2bgRd8sHM9wkLH+eddz5HnXYGucu/5+JrrqOpqYlteTZ+XDGfvJLuPPLkXFaVu8k65mGwJvDFy+chCr9h/WbBxc+v4ux7/sM1D/2H4RNPwto8CMsIUCGlRNNEq4h7EWFqrLeEJtdl6MA0mw7mcBY+nakuioNLZ7vhKRS7QvVTCkVrduemtq9ldLb/VxcUP5gub7r5Gb1dtBpH4qv1IcMaNocdf1ii60FKqxrwNXq56+7fkJIaQ2VZDQmeJIpLC7js7DMJ6xZOmDSZt155i02bS6kp247mEUw56UTmLviS31x5AT5iKCrIx98QZsnCBegBC5XlFTz72uNkJoTo1a8nl192LS888Rpfzv4fo8aMYvTRIyGo43G5Wf3hh3i9Xr75YTnzv5hPQVEdsR4bmpBYhYYnOZMpp99AbI8hlJWFqK6tpX9WT4I+L+Xl5WT26Ye0BaltqsHulDQEAsS5Y8jdtIMH7rufo086BV1A/8xMtuatJ6P3CCqrajjzjNNITU0lMcZFbX1Ns4UsMzsbryeV4oIqxk26BPwhPv30K9zxbvLzSsgZMZCHn/0Snz6AhPh6wuU/cN4Dcznzjx9y6vV34NZ1kDb0qABurScwlc2CxxA9evNks9ECyIhcfuhafg4Wna2TURye7M7toSNQQkyhUCj2nZ/Td3dGwRNNlxM/xgO1Ee468jAdHTa5efC8gMItuYRDPmSoET0YxGK3cP9d9/L90m/whgJs2JRLQ10jTb5yMvoMIrt3KuGgzvLV6zjupBPweUvRY5LxeetZ891sJk6cyNvvvk1D9TYyM3KIjY3lpNNPwxnjJt5lQ29qwh7j4NHpz/Hy6zMYNWoEW7Zt5rE/TyfWZmHw8BEMHTOck659hLh4FzgEo4f3Q9gcuFyxVNV5Of20aST2SAB3LLlrtjNmzAjSM1PBW0dDfSlx7hgqGn2kZfTC7/dCyEeMzcbl19zEhIkTuOHaG3n2mZfweDykdk8nOaE7tY2FJMalUlNSQHpWGhYthoEDBkeFDjfOa0Z6AhWVediE4NyzTmXlqp+4/IpfERvTDZstyIknncK2tRuoqylAMzWKxWIBaBYykSUcDhMKhdpct52vZSS/EALdFD7iEHZ9O9B05s5Gcfiwr8LnQAsT9b9Q7A2qnSgUv4zOLnoidDnxE2HneWIi44GMT3vYBjYLpTty6dOnFympcdRXVvDeB6/SMzOFOGsMr774FjGeBKQtnoayHRRUVuByWnE6wtQ0FNItI5P68m3EuJzUNMaQlBJHWVk5Cd3SKCouZfacuUz/0z8ozM8jaHFidbp48vEXWb9pO/PnLKK4dBPTH76HD//zKh+8/39o2OiWYKesLMDcD5+EkJ9+w45ky/qfOHL40cS7PXw5/yuC1aXYtTB9+qdQW1tLY9BPg3Ty9VeLmDl7Dm6HFb+3hmSXB6SD/NzVPHT/rejSz+NPPM/1111Do08QDNTwz6efITYuAU9CHCWVTaDZKa+swx6TuLMgEUF6pDhYvGAuycmJTJowjurqKkqKtrNhWy5PP/UIKTnjaQz6+erJi7HIFhfESFGGmNGbr0kk3fZaRY/LansNw+HgL2wdnYuD9ca5K3Q4ikOfn2PxUW1XcaijLI+Kw4Gu0s67pPgRQuD3+zGqr0c9TLe4Uy2d/W/+cPu9SItGZUUDZSVeUjKz+e67H4h1CEL2MDM+fx+H20JNRTkORzzP/uMdmoKQ2TOL0UPHMmPGDHrmDKJwx3rGjBtLdVUTt9/+AMGmEBYCTJ02hUnHjuPBe6eTlpGD3ZbEkD7duf/he+nRPYnczSWsWbOOjIwMkjN6YHNoVNUGePn5GeDuS11jE2GrJKtHbz6d+S5WG1SXl1K+dRP+Jj9bckv4/U13grST3KMbQwb0Ydo55+HQG1m16gcqSnMJW7z0yulH9qBhOOI93PH766iqb8IR78JptXHNZeewaN6PrF29iorKUl5++TUCwXLA13wumz+tTjZ/+wVjxozi+edf5oG/Ps6G1evI6T2IXjn9OPHUc7FaXOA5AnvysTx1bT8aykoxgha0WHEiaTCuRfT4nggRaw8Y1jpN06LqchAa0SFGZ3947Oz1UxwY9uW6d5WbpkKhUCh2TVfoy7uo+JE4HA4zbYnabsw9Ew7bcCZl868XnmH5sm386f6H6TkgmbqaIo45bgqFlT5e/de7WEIuPv3kC6Q3hM9bz30P/o6Na37EErbh8iTy4H0P4Gus47HpLxGXmEDIV8lfH32IsqpteAMaNZUNDBw5iPxNGxDeJrZtWkGfIeP54NknOencU8jMzGTpDxsoqgoyacqJvP/upyz4eh4ZfTPp3qsP3ZLdlBSUUdNQwsrFy2io9xGXlI47LYf1G1bSd/QRvPDmU1gDQaQvSPbAAdg0CyFho//Q8cQmpWPHTV1TE6EGL4G6RoIabFr3IzVFuXz7w3I0u4s+fXuSlZ1Cv/7ZnHvqiSSnZLJl/WoIRlzOjHOoIdheWcLSH5ey+ocVBAry8FbM5PG/3sXSr/+NJSDQbFYsmg131lDWVAxlzrOXUllVHhW5zVgMIdMirKIj9bW1OEUEa7Qb3qHCwegElLBQdBZ+SWS3g9GOu8JNWdGxqP5UofjldPa+tss+abZ1nYp+qLZoTZSXVfHl5++xddtGnn3pMfLWbsTvayRQU0p8Yiw3/O4mNBq46JJLWb5mFfFJyZSVFdEnpw+uWMFf7plOZVUBVi2WV99+jbNOu5iEpHjSkpMIVIXw+2pISklg44qvWbJ8FfO+WYDTFkdtZSlX//5uXnnqNaZNm8ak4yayaNaXCAKce96ZHHfiKcTYbHz7zXJWff0FWZlprNlUisNlRVg0Fn81D3esk75DhmMRYdzxabz19gdIwridyTQ11WGzxBFubGJHSQU+fxPxKd0RFnC5HPTI7MU7781l8dIV9OjRE5ulgcLtm3C7kggGJFaXhXAwxOCRY7E4jWmeNKkjdIkmwZ0yktxN+dx4YQy/u7kPg7pLLjjWT4a2AEfVC6z78npmv/kwuVtWMfTIiaQecQ+v3Dq5ebxOCy2WnnA43GpsT9uw5BHLT3TIckngALaeQwd1o1Z0FvbHze5A3jDVf0WhUCgOHp1ZAHVZ8dOWiNuUEIKvPnyTxiYfx4ybxMSjj0GEnZRUNSJsdvxhsNpdeP0N6JqDgL+Wfn17U1tbyhUXXUVCQgI7ciu5676bcHoSgDqKy0u4846bkLqd2NgYeo6aQPfsbMrzihk79nS+X/Ed6X2yKC6qoN+QIdx31x38+oab6Nk7FZtFMu28aZSVVeCy2aksy+OVF16nZ3Ymcb2HsnH1l1z1qws5espkmqrLGTpyFAgXrz33JrmbN6DpYa6+4RogTGHhVsJBH7/7/Y24PTZSU5Opq6tB+hqwOxz0yEijqnw7d95yIRMnHA1hndo6F4OHDACbwGaJZ9PaFfz4w/ds2bQVvSloWF2EIULCCLaXxDJ3/iLyNvupqq0i6A3hciSQlJYMFo0ETywnT0ng2y+/YfDgwfTt3ZOxx4zHEmXNaRE3EiE0pGwtVjVNw2KxNFt52gojXdeRetcPed2Z//gKxf5kf0Z2U/8bRUdzoISyatsKReegC4uf6EH1rSc67Tv8FPr17c2mjWsYfdQIYhNi6dMrGY/LjS9kIykhFp9PI39zPuVlDXTPzKGuKsCsz/5NXVMtFiopytuOFgpy8gnHYw/7GXbkYGobQvjqq/GHmrC6Pbzz3oc88fQ/2ZZfRLiqiCZvI1999An33Hs/8+fPpMHvIi3dScHy7/jxuxXEZNp54cXXmP7cdL7+aj524UInBeloQtdisVqtuGwaj05/nBtvvJluiVnUV1fhtDjRw0ESExPJ/2kmD9xxB42V23EkxGK1ufDp4Bc67//fm/j8Qbr36oknxkVqajJ9+ifz/AvvIwJVVFWXMvurtUw59gj69enLx2/PMCwv0hAgFiSDxw/C7gjTc1AsCbEZOJISiElJ5pY/fIS0WHE5Y0hKyWHTpi955MHbQLNT0eSHQMsYotZR+FqCIbSNzBdtAYpcv0Ag0Dx+S7F71JtsRWegs4W0VigUCoVid3Rh8QOgN7tb/X979x0eR3ntcfz7zmzXahesppMAACAASURBVNWr1eXeDRgXsME2JgEDIYRAIIRQExIgXEIoIYUaEhJSaKGlQC6E3nKT0GuMMe64yrYky7Ysyeqrrt2dmfvH7kgrWSQkAWNJ5/M8eiSvVqstI2l+Puc9r33ybJomLs1Cd5j0RFx0NncRjrSRkJCGpRn43CavvLoclwMSXBrZeRm0NDVTWFKK5TFwKQdOXyoTD5vJ+s07OPW083EkJJPoT0ajhZrmFnwuL3qXyXkXn8/lV36XhfOOoaqqidJJE8gpSCYtL5e/vvgXfnnLbQQ73FS0m5x8yglsW7+HH/zoBu762b00NjbQUN9EXWMPz/zhedxOjXCki20b1nLd9VfQbXTiD3gIW7C/bhNufyqV2+somP4lnP5UAhlFeCwNt9uL06XoqK/hjLMuJCktk5pddSh0Xnz2z6xYvpbu1jq6OyzO+/qZnHLq8ZTv6GD9hyvp6QqhTKuv+mMqKBqTTeuuMrLHlNDV3oPXk8nLr5dxw3WL6e5spzccoa2xgqu/NpvLzszg3eWv0VDTw0vPPDPE5DYVq/I4hhx4MBRd16OvpamjDGl9E2I4+aQqPvI/5OKzJiFeiH4j7edhmIcfhlxD4nS72FXRwOx580lM89K8vxfDbKO7o5ed5TWcdMrJeBPcpGRlEe41cWk6O8u3Y4Z0Hv3fZ0gJZLBnTw1HzhjH5dd+h5b6Frraumisb8Xj9LFh7Rqeeuwh9pRtpaelA1eii607trF6+Sr+8KdnKXv3CX50423MW3wcumZS21SL5nCRlZnB1q1l/Pqe+2htDbJp61YyU5IoKZlK+YZXSUrPonT8eJpbgnQFgzQ2VuN2usjNnUZV+XZyEhtoat7BsuOPob65BUxFV2cLXj1AUlIOjc0NJCclkpFfRASd8ZOmc9TCBVx08Vm0tHYwfdZM1q1eS/G4MUyYMION2zf1hR47PB65aAlhPZFrfvwMEUNn+/btjC3NpbHdTajXZM3WEKbZhd+bwssvbWN86WG4nE46Ojr6XgO7nS3aiqgdUOEBUIOqdfEtcfZl4RHQ+vZpGY6/iIbjfRYf33B4fYfDfRRCCPHpGvbhZ6jWqZ7e/UyfOZYvf/ELmJEQvcF9rHhnDQoHqYFEutqbaG0O4nC40JSb8spN5Odl4/B4+erXTqV86ypSM52YDg9GdzuZY5JIzkynsHgKutPLS888TWJyFu7EAC0djYSNIN+4/BJO+uKJXHnlVZQcdRLP/fVJSgvG8NrLL7G7Yg8dPV3oKGbMPpz77/4l37vmUk48fjHBYJB/vPcqbV2p7NlVx423/pQvHX8q/kACSckZuL1OKndXkZ1XTPqEYygqns7yNatprG2grbsTze2kvaeNtrY2EpPSMMMR3nztdYj0EolE8Ll9FJYUc9ttt1GzZz8TJo6lo7OLYH0VTXV7Bjx/mhUNHw89/xfO+8pi2tuacTk1clJ0Ul09+F0RJmS0EXKECesmtdYE2rvr8PmdzF98woBx1eFwGLBQZvz0t9iAAwBNQ4t7zQa3LvYPUJD2NyEOVXaF5tMIFZ9W9UeqSuLjGk7HtRDi4xv24Se6t48xYNrbrg1bcLlc3H7LTzjtlIvInTCBBYsWk5bmJTEthcSMLMYUZuEwTTw+g4KiIp740zN0NjTQ3W2RkzeFso2VlJVVs39/Ax29FpHuTsJmJyvfe4vzz7+EGZOnMnbiBJqamnj1uRdwaR4wQ0yYXkr1pr3kZY8nPZDE0UcfyxdOOgm/38+qD97jfx/8PZU7t1BSOpnGYBMJfj9f+dq5VFRtp3XX68w/eiG3/fwKyta9T7ClFUM5SclKwq05MCMGba3tNDTtpbAwCycablcC3Z0mPpcTK2TS1t3KKWd8heXLl1M6bizVe/ayZ3cnt99+Ow8/9lt2Vzdg9oRo7TL58Y9vA+ib9AbRKtCjv7mN1eUOXnhxNV1tQdpbmohYLlasrMSbnECytxSn28+kkgI2bywj3JNA3rgilGWhEa3qmGED0zQx4loTB4y4Ns2+WGPFvs7+OD6QmYbxKR47w5P877U4lHwSx6OcEIpDlfy+FSJqJP0sDPvwM7htSilF6pgi2no6wA1PvPAn9lfX021YdLQbpCYlULtrBz2dGhs2b6G2poue9l5OWjYX063x/nur+OUv7qewsJCEpGSu+8GPadhWRU3ldrRQiPUrt+EMJLBq7Ro6uiIcNm0SHn8y7S093HXP/ax9/wPCFiw6ZgEOn4eybTvwuT14HC4WHr+U448/ga5eWLtqLT2dPfgSPNx04430dIa48w9rOOOME5gxfSGdnQZuXaHrCqfmoa2jhVAoRGpWGkmeXJQycDqd9La30xNsoNfoYX9tHW6PTkddLZWVdTQ3BEnPzcaTk8Demt0sWXA6Ls2iJ9SDoTnJmzIJHYWlqb72N6UUdzz6v1x/601MnX8MubOv4e3tqQQ7DPLyCrnlrs1U17ZSXtnFrFmHU5CfRji4o++1sF8Pl9cd3YI2bk2WaZqowW1ugK4URuzz8VP7AAwjxHA9TEfSLwohBvukAss/ux0JRUIIcegYKec1w/OsMk70ZNne6DR6op3o6sLn9DPtsLk0VNdw6+03UZSbSzDYQnd7O263j+SEdv727N+IRCKMmzqBtOyxPP3nv5KWk8bXzj0Jp+7G6WjmrjtuZcKRs0jMHMOtt9xOcnYiy99dwZLjjmft8ne5+8E/MXPaTDp6WkhOTWPMmHFkZmYSjnRx8w0/oKW+AiNscPsdt/L8o0+RnOHn+p/fQFFxATvKttPT00FXUy3hsMXESSV0NNXR2N7JmNJJ7CnfxfOPPUHYCGEZDmpraujp7MHh1vC5fbQFuwl4NFKyMlAuH20dQZprW0jOSOJ711yKM8FLVUUZVkeIcSU59Jq9nHbmaeSVFlBclIVhmge0vUH0oMguyuH6O59kzap3CPRUEjSmkTLtEmYtWUJLwonsaCulYNLhlK9+hqmLrj5gc1JlWRiWFd3Dh/7wYxscWvVY4Im/Tv+mp9L6JsRoJQFIfNZGygmfEJ+ElNmXDfufiWEffgZTymJnRTtp+emEHYpLLr+W7111HcFgkK1by+jp6cHpSiTYo3PtjVeQ4LXYsb2Gi877JhdefDb5WWPw+XwkJbpobgxSWVFFQ3U5aelZLDhmERdfcjHjc7IJtjay+KQTuPSKS3nr/Q8AF+ee9VUy8lJ55bW/0NUZ5Dvf/SZpheNoDRlUlTdy9vmnsrd6PxNyS/lg5ToycwsIJKdz4423M2PmZMyIwWtvLMdlNZGVn4Pmi3D4jCk4ejvRHJ0UjS/B5XWhu5yETI3ENC9h5cXl1GlrbiA9OYWGhk6ee/EdzjzjHIoLskjwJBFwe4n0ONm4+i0a9rWwduW76G5PX2BRSqGjUPbRoMX24NE1rrrldn74+CqeeOpvNNZuJ7WtjNq1j9K+/0Pefu4eGptg4eknDjnUAKKVnwFreeiPMo7Y97cvs8POARvYyuADIUakjxtsJACJz9pwP9kT4pM2nEOQ47O+A58cE6V0lFIs/erJKEtHC5uUFhWTl5OBw+Xj2EVL8AXcvPTyKxw2Yw5pGZns3rOZaRMn89v77qZ8ZyX+BDdpaen04GTitMNxK0V7pJNHHn6KU05axrYt6xg7aw7PPv44YwpLqN67g/GTCvngvTc5ZtECPO5ElpzwZQw9wqo168lPT+HFx5/gzrtvJdgapLigAIcTcsYE2L5jM2OLc6lubqMl2ExWTjbHHH8KuqObmq3vUN3gZvrEVOqqNuNOLiXc3Y5yhPD4MvG6NCLhELsryklMS2HdB++z6h8buehbFzJjSjGhjhOp3ddObmE+tXt3UVsfZFLSVNo7G8nLz+T5R/7EBVd9Bx0N07LQNQ1TRdOwZtmbnsZCjGHy+qbVYJmYXIthKTSnk0fvup9zLj6XSGRgtcayrAG1GvtjDbAMAy02ztowjGhlKBaMrPg1QXEsK4IaSYeq6DNcf3GK/54EGjHcpMy+TI5bIQYZjn/HR8QZpVIWoKNUdENNzXKjNEViVgK/+M0t1NfU8pe//xmcJg7dy9IvHE9LWz0Op0Z2ehphI8SmTZsoHDuF7o4GKvZUkpuVSyAth2BXB25fAied/Dneff0NEhK8/Pbeu8hPT6Rq9x42rdtMXmEmc2fPZc+uGqbOmodHBVnx2rtMmTmNguJMyjZX0RIMoULgcGu0t/VQlDeRHVu2k+BLIcFjkXdYCl6ng4fv+S2z5h7Omo0buOi88/GnpLJh9Xs8/+IjLDthNllZxXiToKUuRH5BMW3tnQSS/cycM5cTTvgSq95fR11lBU2NbRy7+HiWL/8rvb0OtlY00dL8PpNnzCK7MIlzckpxatH9dxz2+pu4rXcM+ocgKBWrClk6poqgTBe6aXLupRcDB07cg2jQiQ9ASilMy4LY+h590J5AhmXBR+z9oz4iFAkhPnstq+/5t//4/ScnkP/J9xnKcPxDLQ4dEoCEGP5GTNub3SplT32zLIsPXn4bTMiZOJ5jFs7h4m9cwodrVlGUlQqWCyOi8fo77/LuOx+Qn19ISqKP9NRMNN2gJdjFju0baQ02sL9iG8o0OHreLI5aMJczTjmJZctOIS/dYlxxAbPnzCU5OxtdKeqqq1i9/FWSUr34PBruiJNJ0yfz1+efJSc3C1+Cl7bmZt54+yWOnH00jzz2J7LSktm2Yw9FRUXUN9SRkpLC/3znKhLSswloLiZOX8CFF5/DxKkLMM0ILjOZ4uKx3P6LX5NfWEplZTmvvPgmL7/4LJVVu3j9/bXMnDWNp578PVgGNdXbWDRvKvc9eCfL33yX9sYunnjm2SE3Gu1bi2NamJaBhQkqNoYak59efD6G0d13vY/arBSi637iBxvEv1Z2dcgEjNj1+sZgD7rucCYnWv3khGFkiT+2D9ZrK8eQGO7kb4IQn70RE3727KmKThNTOhbRatDso5by8KOP8ecH/5eicdNorKuioLCIb3z9CtJSk3E7obGugdZgE+1t3bh1Bwn+VDrqu0jN8JOXV4gTJ7ml4wl1NLPmw428/c7fSEzJpb6llRXraskfN4G3X3qb7qZmtm8rw+t00NIUZu6c2bz6t9f4+6tvMLZoEqeffTqPP/EMP73pJnaUbaRuXysP/P53GN1d+H3tbF23Cm+inwsvvpAx2fmsXfUBF551NjXBJtq3/ZbfPfQkboeisGQiTc2tbN1ZyY03/YBNGz6kKH8yc448nLzSUo47bjFnXXAuk6eMx+32smbVJqbNOIy/vPgKN//oetqDjQSbWzj/sm8AsSBC/0S2vvcqOqzANKLBx57G9sP7H+UvT70wIJRYlkVI09F1vf82Y+t3tLh/O2LreezgE78WyDIMwr29B0yEszdDVZGeg3MgDQNyAigORQdr/Y4c/+KzNpzXOgghRlD4yc/PB7TotDDLwLIUiZlubv3FD/nmVd/C5VbU7qvh29+6iDt+9XM6WtrZVb6Nv7z0Mo2NjdRV76M30ktT036OnDOHhn0tmFYn++oquPYH11K2s4zph01j/oJTeOX5PxDu6WBsUQa9nR3409PxJaUybuI0HAkJJCRaRAydl159iV379vLnP/+Bx//4BDk5WfTqGln5RSxf8S7HLpyJMgzueuBJTjvtdJLTUunojuBNTSQhkMDVV19LVWUFeUdeSVFGN4lpaTz59KtMPWwhPn8ATyCTfQ31aE4fDkeAUCjEjq3baKiuINjeSmFBHiUFhZSt38hXzlzMW6++ydyFi1n54RqAvmqO/bGKbtKD0mJDCEwTpdkhJValweTLZ5/ZN5Vt97bN3H/jN/ndjd+Nhc/+6W02+2OlVN9UN03TBmxsqpTC5XL1DzywrOh+QbHbMLThO/FttP+RbFl9j5ywjhL/6rX+JMdjy3ElPmt2CPo4v+MlMAlx6BgRa35slhW/IaYRG6+soWld3Pfbu/ju93/I0oXLeOrJP5KSmoQn0cnTTz1Bb6id3l4nHR1dnHP2edzz0EM0NjYzJm8848cm8cPvH87OzeUEEnPYV7mVfdXtZNQ2ULOjBkM3WHricXj9fjJLctmyciVLj1lGRMG5X7uYsl3bWbbkGKbPKiBsOjls7hG0tvXywJ/vw9HtwpdmUdvQisOXQMQwSEv1EA5rOHWdy/7ne7zw7IuUr1vLt6+7C7oUl3/rbCprKvFqEe67826am2tJcpv87I7f89gff0mz1UNKShZhw2T7ltWohFwiGrQFQ+za38M5BRnkFn5uQKiJPXuYRn/LoCL6eV3XMQwDXYGJGhBW7vjRzVx38w1ccsPvYuuu+qe2KaIDDOy1PpZlYb869khru9XNNE1Q/bcdDUAWhhUNTiZgmQpThdCU6yAdTeLTJicCI9fBDCUf93vJ8SY+TXJ8CTF8qH+2ZuOzFgqF/q07N/CxaH1hyIgo9JBJWUUZodZ2wqEuOjvbyMmfgBXpJCUznd52g+SMVILN7WiaRldnC+vXrWLpyZ9j145aCvNSKSvbznevuYkfXX8lk8ZOZvvmDzli0efYuWMldXXdlBYXonBQNK6I73z7W0wcN5XDDp/FtMmT0H0eUjIT2V1ZTqQ3hMPtIS0th472dgLJ6WzbtBpvQhJOp5OUlBSskMm6jR8yqbSEsK4zJjONfY2N1FeXk5SUQu2eanrMCAuPXUqvrqGHDHZV7CU7JwWvI0RD0CA9NYuVK5YzbWIpOyp2U1I6kfyxuXgTvQfU/OLXSg1+LlUsgNjtaCb9Y6rjv96EvoqOPfAgPujYtxV/+/a6oIhposet2bKvGz85TimF7vAC4HK5DtpiIO+syz6RH5JP8oRwuP2hHeqxD7fHMJTu9fcMu+PwkzScKi8j4Xj7KAfrODwUj0FxaBjtvwvFoeHjHocjpu0N6Nu3Jnpi3d8mpekmltvC606gYOIEsnILyM+bjtNoo7GhjXCnhcevY/R2UVu9lrDZwGOPPsHUyaVs3VCFijTT1dWFSw/z69/8mNlHTychkMCGsjIee/h3/P35lzhqySK2bNlCbn4O29av5eqrryarIJfC4jwuv+r71O7bx09v+Sm52eNIzy4lObOA7q4uktL8XH/t97EcXrZt2kFScjKRHguHVzF+bAndkS48Dp2a2loiHd2MLSpkX22QYFeIB+5/mFAoQk99F6o3THZmCpFQN39/8TV8Louqikr27t1NsN3A50zAm+zC7eQjX/XBQTh+iET82h27GjPga+P25iHu2bcrOfGvD8Q2Ne0LXEbsugZgYiqzb1NU4yP2DxqORvLJ178y+LGP5udCfDaGU1ATQgjx6RlR4Sd+Af0BNEXB+BKcyqTXstC9QZTXT15WKm3tDWgWmJYbpzuTgC+Lc752FnnFU8krSuH1t1bg8iaTWVBKfnYhG1bs5u03/8q3Lv4G8xcfw6RpR7LitTd5/c23ufLK7+H0+mgJtnPc0s+zbctWHnn4HsZNHMdll19B+fYdOB0hzM4WNOWgprqFn91+C7/8yV3MPHwW7c0dROjm3nsfQHM6yM4dS3V9DeUVtST4NJyJWegWZGVl8ewLT+NWYTa9/wxr1m+CSC/76xo55YwL+cEPbqEr2MwxxyziyaeeYNyMUvRIBMPhxDQGVnXs9/HhZfCUNbuKo8cFIvvyAVWiIZ7/vuAUt8bHiqsA2eHK/rcy7fBqRvcGihuAwAGxa3gZzSf9o/mxi0ODBCAhhBAjKvwAB7RNxZ/UKyLs3VlJTkEuvuR80vLz6I10oxxOqhr28+GmlST4M4n4FMnpY4iYnQQS0jnzm98gYvTQtL8Nh8dL8cRJLFy6jF3VVWxd/SFpaR42r1zDLTfdwJ333MX2bWXU7a/m9/ffw+uvvEWPodHU0ohmKtavXEl3h5vysq00NbfT3tJDXbCOm2++Bh0HrS0N+DxOMjJz8XgtmusqKczO5fAjptMV6sXr9LB64zukJaWyv66FdRs2ccxJX6O4OJtV6z4gFDJZuuQY5s2Zz9cvvICmuipuveMnONDJLi1A09WAkDhUWOwbOjBoaIFlt7/FPa8a/ZuT2q1udtjRYh8bhgGmCWa0oqNiG5z2t7PpgDmgPa7/vpnoysLCwMLAMLo/waPlszGaF76O5scuDg0yKEEIIUa3ERd+7HHLMPAk3X6bOO9wVr7wHIH0VCxLkVJQQlpqFumJ6eRkZpGa4ePxB/8PTbVjWW7MSIRQ/T78fh/jJpZSX7eX1GQXusNDXl4OG9b/g7T0MXzlgvNoa2vlry88wYw5R9LbafDls85m3KQJLD76CNat3ExjUw3zFy+gYd8WCsZOJiklQIJfo7m2E39Ap7llP62tEVau2Mjxi5YQ7lS0d5h4/AlEujp55f/e4ebbfspZX76c6voGGmsrmTt/HjU1VbQEW9i7p5VAip8nH32YJUsWcf8995KWNYY3XnoFf1YKaKpvw9KP2j9HG7SWx57MBgcGy/iqjf1VdvCxJ7UZlgWahhGr9mixy1Ssrc2yjL62N03T+qbI2f/u2ydI0wb8eyT4T0OAhAdxKJAAIYQQYjgaceEHhm7hil9ov/icrxLwePB6wO12owd87Nq1ixXvref39z3EG289g6kc9Frg8Pu58eb70FQGvZbFmKLxuDxuujt70dwJ3PrrOwl31XHF5ZfjdSjGZJeQkZFGQ309eWOyOH7BHF5+8w2OPmEJmzeUk5CQiD8jj0gYzI4mklICZKZ6CPjdTJwyntyidHyJCbQFW3B7XXRbIfbt3sOeuv0cvegofvSjq9i2ZQOJ/ghjCkpprm3G4/QwoWQSJ5yyjOqK3RguRXd3N0Vjx/H80y/S09jI8489PyBYmLEqzFDPF9BX5Ymnx8KLGXedwe1rhmURjlV14itAfWHJnvAW9/n4+2QPTIi/f/G3r5QCFfnPD45DjAQZIYQQQoiDZ0SGH1t/lUKPvfWf5PcYPbz0x99jWA46G9rIysnk5FNPZM7co/j5zT+lvamJqrIdHD1vAb954Gc89dTDJAa8fLjiPar213HHHXcTbG9j87p1FE6by2PP/R/elDQOnz+d6p1lHHXUBN58/kHypkxk8/vltOzZyeLPH0tjcys7t20mIUVDd7vYsGYtoc4QTS0R2lu6SUsKMKa0CMvpxOlwcNlF36Jg3AQMw8DnD/DUo8/gdfWgR3y4nE7qGlswdR9l5RUk+718WFbJeytW0d3dTWd3B1OmjOWIE47jy2efOGRVBxiwFsc0o+1ndjVncCiyw4xNG3Rb8UHH3hjViF/rEws0dhtdfMCxg8/gapOpQEeho7AiBpYZ/u8PjkPIvxOAJCwJ8d+TnyMhhBi9RmT46V/PotA0R+yE2jqgwnHyJVey/o1XcCW6aan4EIffS1FREXpSBmtX/YPf/OpnPP30k9TtqWfbxq007Wsjr3g8PY21fPeKc/G5XQTSC2jYXU+woZ6mhhq2l20lkJFDyaQjWHDKeYQ6uli0dDYeTyq7KspISU0kNz8brbsXt8NgxrTptHZW09rViHKBK8nHt845g4y0VPbu2MHfX/4bRBSlhUU4NReHHTmHtJyx5I8tpLysirGTCwgZJpYVpnJbJSmeRCZOnEg4bPCl08+loLCQjKxsNG9iX6gYqtIDA9sEzUHP5eCPh/rawV+jDfq8M64lcfDXxr+3CGOYvei6jqZp0dBDGFQkev/M4T31TYjhbji3vEnwEUKI0W1Ehp/+E3sT04yglIVl2ZfFP2SThV86Ba/XTd7UeezbtQt/RgrdwT24HD6u+961VO7YQ05BDt++6tvU1+8nMS2RcUUl7NvfjtuXSFFeCsH2fTQEawmkp+F2+XEleNlZXoWyYMOGbVTtrefZF5/m0m9cyr7dlYzJLqR6XztOXxItLe2MLZ1NY2MXDsuDV9e5975H6O0xaeg2aWkOUrt3F2+89SYup4/erl6aG+v5/jU3Yrq7ePqxZ9lfvYv2YA9t3UGq9u2it70bv9/H9VdcxOTDjsDhMQZUeewQ9M+GHmAObHrrm+4Wa0frqxTFfd6u5sSvBxo8wEDDRGnRMKor64BqlL22x+l0YhGOBiEsIijQAihHAui+/+SwOKR93B3ChfisDefgI4QQQozI8GOzW91s8RUgm6ZpvPXcs2huJxkZWRhKp6E+yPL33mLblq3QWUVN5UYa9laD7kQBHaaisHAajfX7aW9rorW5l8KiHPzJaZROmkTFpnLycnPQAx5mz5vFHx75IwuPXsptv76DMYVT+fbl/8M9d9+HEXaxdfMGwoYiJy0L3Qc9HSaBQAB/qs7kyRPwJ7rQPQHKtlXQ3dtKSWkR6Rn5fOG0z9PTGebIufPQlElxcSHbyyq55JJLWP7ee7z95pt89dvfZM37K8DQBlRX7HBy4GS1/o8H7pk0kL3hqRWb2tb3dXGtb5qmYSmFQ9PQAF3FgpYWbV87YLNTzYhWdrTo7UUsA8N0ojuTcDj8uBxJ/+FRMHz8s3AjwUeI/578HAkhhBjR4Sc6ScyuUvR/PNipF5xHXtYY9uypRhlh5i5ayMKlJ9PTA4FABq01daSlpLCvoorGvXWEOjpYOOdwPLqFy5fGtFlTsEyd9954k7amFlIyAgQCARyGRXtXJ1888USSkn2UlkxCaRFmTJ3EoiVHcvGFFzN56nTCYZ2tO7fQsHsHHd0d+BL9OCIeNIci2NZCW1sN06ZOQClFONRFU/0WJpTOICM5nezsbFICxXR1tHH+hRdQuWMHR0yfydkXnEcXBgtOPPaAkd928BkqEA2u8MDADUuNuIrPUG1y8dPeHPaUN82+3ei1Ilb0vaZpaLqJppt9t28qD5ojGacjFYfTF1exGx3k5EwcyqTqI4QQYrgb0eFncHXBFl+tUEoRMU2Uz82kKRNpbWhlX/lOJo2bwtTppeBPJSGziI2bK5kyZRIb121gW9lGfnzzpRgRFx1tPbS39dDZEeIfb2+hK9hEYlIajU211O1r4spLryS/pID27py1qAAAD35JREFU1np6OiNoWHz9vDNYvHgZF1x4Ppljiqnes47jT1xGeXkNSSkegr2N9EbCfPDecgKJyeRnjWPWkfNxeH049QD+5GI6w0E8gRR27dzBu8uXk5uXx4r338E0uumwulEujfTEzNgeOkM/J0OFwaEui9+4VBt0XaVUdJw1AwckRIcZGKDM/u+ra32DC0zTjK7jsW/XEUB3ZKBr7o/78o4aEojEoWC4Bx/5ORJCCAEjPPzY1YvBIeiA/WI0hWmGCKQEyCrOpinYRSA9ldyi8ahwB17NQenEEkyHhsdtMSZvLMcdu4D9+/awu3IbHZ0t3P2Ln7P4+MNJTMkgIUHh0hy4nR4efOAuDC1CbkEx6dkpmBp8sGo3IbOHuQsW0NpSR3ZePsH91axYsYm9lQ1onb0oR4hly5bh8iWys6aK5oY95KQF2LhhNS7Nz5NPPomKKApKiknxhthduZsZ02aSX1LE/NmzePHxp1DO3gHPhz3NbfBzEe+jhiGYcW/2mqGh9v/pa2OLVdrssAP0DSpQmChHAkpPAi0QfUMbUSOs/xvxJ2lywiYOBRJ8hBBCjBQjOvzY4vezMc3Bu9fY61MgokFKoh/dhFBvLz29vby/diPZJcWkpXlJ8Ps4YunJ7Ni0lq1b91C1o4y25kb+79lXKC/fgtkZwuzu5Je3/QrDCHHLLTdx8hfOxYjo9PR00dxYR1d3KwX5mYQisG7V26RkpOFyJBFsa+E7l51LSX4WgYwckpMC1DfvZ/OaNeRlpfDiX19j+45yGltaqazYyjlnfp2d5Vt5/eW/sfjk40nLzGLtug10m/D+2jVccvXlfYHEMIwBww3s58A0zQGf+6gNRE2io6kHt87Za4PsEBTfCmdPaot/DXTNFx1W4EgcUZuVfhpSZl8mJ2xCCCGEEJ+wER1+hjrBHqpaEX/dsLKYftxcNn6witLJ4zn3/AswTZN33/yA3VXllJdt5pjPf4GZ82dTOmUeJeMms3TxLG764TWsXf0eq1cs59STFlFdsYv777ydU076HF6fn+aWdlJSkvAoD+lJLjy6Scm46QQba6nfHyQtOYs9DTVU7a8j0t1FXV0rddVNLP7csXS3h7n4gq9RWbGXo5csIjHgo7WjnYbmbiZOn43D4eb+B+/j86csYffmjZz21bMH7qkTN2L6ozZ/jX9O7DU8Km56W3ywsQNPfAXNXjNkV4f6WuccLtACaE4/huQdIYal4RzEh/N9F0II8ckb0eFnaNoBLVp9n4md0Lstjc+f8yU8Xje1eyrYsXoFk6dPwJOcyJFHzCMYDNLdYZCe7cET8DNh5iz01Awu++EtFJaOpTfYSoQQDcEgCX4vwZYgT/35cWr3NuLzB/COycDrSeYPf3wQhZOf3PBTrvrOD0nNzSIjNQPd7SIQcJFXUsCKd1aQlZnKzTf+gsOOGI8n0Y8rIYe8ghSykpPRvA4SMzK47tbriPR2cNqF54AZPrC1b9DjjDdUC5weF2p0NXQrnP097LHZdsjSdR3D6YlWeSyHtLMJMQIMxxAxHO+zEEKIT9eIDz8HTjmzBlwev/EngLJAaRaYFj2hbqbOm8O8L36RhqqtrHt3NVU7tuHzeSjbthVfcjLJyak4XAFWrdhKW1MDydljOHzx55g6bSGNFXuYPC6ftoZ9LFn6ed555x+0But5+enX6TWDnH7WF/D5/Fxx1Te586Hf4bEinLjsi1RXVdLUHOQnP7qRKfPnoLwuVm9YRWdHiNqKCjZ/+C4/+fGvyM5LY/LEEjqbmkhNTcWTmgZa9HEM1d5nPwcHDDQYYvKbXfWBgZWcwc8nygRloukeUC403YOFE90c8YeWEKPOcGrHHC73UwghxMGlhtzg8hARCoU+kTsXf+IeX6GIn/rW93lj0OaexO1jEwsOPZ1dqJDivl9cy5IzL0PrDJKQnEJl+R4y0rNIz/aDoeNP9rPi78/R1tbK7PlLqG9q5/LvXsNDD/yS+oZOpk0fyynLTuOZ515g/fr15OVmotNLICmLXbur8Puy0d1hitIS2FxRQ3FpCXffeRezD5+B7vCTlpVAyeSp5Ab8uDKSD3i89mOyLxtcvYn/XHzVJ76FDQ6sFEE0NZuaFq3sfAZcLtdBa6Lzzrrs0P0hEZ+p7vX3yHHIoTUQYTSGnoN1HB7Kx6D4bMnvQnEo+LjH4aj573n7BP6jTvjtywZQA4OQXfXwJPhwJXu44id3MmXaWKYvOJIVrz7Hti0b2VdbSW9XBIteGvY3UjB5LguWnc2GNStRkW7+55vfJispj7yCbLyah3vvv5fGpjru/fUDuN0GiRkl9PQ0EGxq5JFH/0BhYTHrdu7lN795kAgGZ5x+Knfd+xDHfu4YxuTnM740F29K0pDrlwbfd8MwDqh42c/NAUEnbk2P1vfc6KBcoDyYyvWZBR8hxKHlUKkIHQr3QQghxKFtVJy92mtS7KrPR635UUphYBLrjEOp/ipI/PXjNwUFME346pXXEgqFeOqO2/HNOgJfwM9xh80hPyeLu357L+PmzSdZOQhHuti9awNJGRn09iawdcMapk+bwewjpmFZblrq9tLY0MOR8+dx7IknEAlZzJk/i/GTbychNZVAopfHHn+Q6upyps2fRcjSwAGD4058uLOrPvakt/g2P03TiMQus6Bvzx7iHrOlOVG44tbuDN1SJ4QY3QaHj4NZEZLgI4QQ4uMYFeFn8Kjrjwo/fTQLTIVlKlBm39d9VOuYim3o6XI5OOf6HwAQ7uji8UcewJeazb7yClLz8miyusmbfAR5Y1LZsHw9veZeSosm0NXUTcn4sTjcLtKysklOayF1TDbf+cbV/OqOG+nuNnAZPfQ27SclO42mukpmzj0KZfXfF8MwBkx1swNO/GN3Op19j9uu9miahkZ/QNRMg4imoanoZqMKsECGFggh/m2fZhiSsCOEEOI/MSrCz2B2BUTX9egJPwqTWGVIA9NiQMubPTzADgi2/mpKZMDAAABXYgKzliwAoHhsLuVbNpJXMp01772Hy5xA0eQSPIEATftqsBRMXnAEDq/Oug/WM37SeJrr2vjFL2/k5afv4bSvnIereGLf/Zh45FEHPCZ7Up19nfiQZj9OK9bC5nA4osEn7mujww2cmPoo6oUUQhxUdmD5T0OQBB4hhBD/rVEXfgZXgSzLilU2opPeLBVrIVMK0+rvf7MrIHbgGVgB0lHKnqJmR4f+SpHT72PikXNQSrFh7ZscfcQEgp5Etm3czNRJE+no7mHlP9Zy8mmf57CZU1jz9gssPf1CIsrijCtu+Ijvad+1gZuOxl/eV+ExzWjgsdvbYo/ZskBpjuh9luWDQoiDJD7E/KsgJIFHCCHEJ2lUhZ/Ba3f6Llfx77Vo1cey0Aa1xymlopfHAkR8KLHsBDWgptIfSuz2uO/efBumggwssubNpCdskpbk4/gzjsO0DFIyUlhy5kUYloXin09qG2qqW/zldsXH4Yi+zH2DDVQ08HzENkBCCHHQSLgRQghxMI3K8DNY/HqZvupPrPKjlOoLQfHVIvv2+kOJ3W6mEasR9X3NgO+ta2ixz5uahlOPbTBqWShNYVr6gGAFQ7fb2W17g8Xvw2NYFrplYqFhae5//wkTQgghhBBiBBlV4WcwO0TEDwewVH8rnIprd7MsC2W3yDGw/S26cap+wH5CMDAgRd9bWFbfGIGB9wXQlIqGFuhrWYtvX4uf0hbf2gax+GVZ0Y80JwqHzGUTQgghhBAiZlSFn/gKyuCqimWHBgbtkxNrdbODkAIs++NY8LGsgWFoqBA0sE3twHa1vvukFI5BG44CsTa4/ssG71tkEq06WUpDRhYIIYQQQghxoFEVfmz/akNQOzxYltEXNKy4vXAU0QlwCrAs1bd2ZvDtDt0ed2Dr3cAq0sC1PJZSKMsaEIjs24x+XgOlQ6yZTgghhBBCCDG0URd+Bo+kHjhJzb7M3gtH768KxdYARdf/mGjKwrQUWmzKm/0Wv7Fo/PexrP41QaZpDBiaEB+azNgd0IhWezRNQ9n3zwqD5cDQNRTOT/25EkIIIYQQYiQZdeHHFh9O7MCiafqQ++TY/7YsKzoEIdYAp/7J+p347zHw9qwDWtbib78vlBFd/2PFApeBjtJcfZ8TQgghhBBC/HtGZfixhwcMrr5YljHgegPaz+ywpFlYZlxrmjJRFqApsAa2uw2u+sBHB6XBlSgjtgePUtHx1BJ4hBBCCCGE+O+M2pXx8VPTgAHB54B9gOJDkB18VKxCZMWqOFb0zbD+2Xy1gZPf7Df7PkRHV+ugXLEqz6h9eYQQQgghhPjEjcrKT7TqA6Bi46MtokGjv+Utvv1twMACZUY3AoqFnr69TaNXjo2aHmjwSOq+qXPKxEJhWdGXwZC51EIIIYQQQnxqRmX4iYpfd2O3qvW3pfXtnRO3tw5EKz9Ks/o+RpkD1vhEBxQMrBZpmk50f5/+6W8WzqEGvwkhhBBCCCE+JaM4/ACYcSHFDjtgT5UevG8PxMKSFQs9mhXdWyfuelZsIMLggQnRoo6OtLIJIYQQQgjx2Ri14cdud4sGFx3TjKCUfsD1htoHKNq2pvrX/cSuo+vR0dgaCsOI7hFk4RiqE04IIYQQQghxkI3a8APRKo9S0bU+0Ta3aOubnXfsqXAHbDxqr9cxFVpcXrIrQIahgZJNR4UQQgghhDiUjOrw07/BaHTj0uhlFqZp9Q8liLuuZVnR6g4GoLALRdEJcLF1Pwf3IQghhBBCCCE+Jgk/yp74RizA9A8wiK/49I3Exuib9GYY1pBtcUIIIYQQQohDz6gOP/aAgmiu0RmcY+I3K7Wva1n9Awsk+AghhBBCCDF8jOrwAwzR9tZf9bHX+0T3/NHo39BHCCGEEEIIMdyM+vADdmVH69vs1DRNLCt+x1EZTy2EEEIIIcRwN+rDT7SVzQA0DMMCjM/6LgkhhBBCCCE+BcqSTWiEEEIIIYQQo4D0cwkhhBBCCCFGBQk/QgghhBBCiFFBwo8QQgghhBBiVJDwI4QQQgghhBgVJPwIIYQQQgghRgUJP0IIIYQQQohRQcKPEEIIIYQQYlSQ8COEEEIIIYQYFST8CCGEEEIIIUYFCT9CCCGEEEKIUUHCjxBCCCGEEGJUkPAjhBBCCCGEGBUk/AghhBBCCCFGBQk/QgghhBBCiFFBwo8QQgghhBBiVJDwI4QQQgghhBgVJPwIIYQQQgghRgUJP0IIIYQQQohRQcKPEEIIIYQQYlSQ8COEEEIIIYQYFST8CCGEEEIIIUYFCT9CCCGEEEKIUUHCjxBCCCGEEGJU+H/rLrWRZJ+P2QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "149\n", - "section_masks_149\n", - "{'width': 3474, 'id': 149, 'height': 2046, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain'}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAB7CAYAAABadD6kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsnXWcHEXeh58a2dmddctaNrLJxj0hTgwL3BHc3e6FIzgEyyG545DjsMMJEuwgHHBIIEBCiAfiLuvurmNd7x/ds9s72YTAIbtQz2f3MzPV1TXVMt317Z+UkFKiUCgUCoVCoVAoFL91LL92BxQKhUKhUCgUCoXil0CJH4VCoVAoFAqFQvG7QIkfhUKhUCgUCoVC8btAiR+FQqFQKBQKhULxu0CJH4VCoVAoFAqFQvG7QIkfhUKhUCgUCoVC8bvgdy9+hBB9hBDLAsoyf0Q7nwshRhvvTxJCVAshhPH5ESHERd+zfogQ4ishxBohxAYhxImmZXcJIdYKIb4WQvQJWO9+c3+FEHFCiHeNul9+z3f+QwixUgjxnRDiHwHLYoQQNUKIC43P5wshvjH+9woh3g+ovyhwPyoORggRJYS4+Hvq/ODz76dACHGf/3gfQd0ZQoiFxvs7hBDDf97edfjut46kX4rfLkKI63/tPii6F4e418/+vntzQP1M4/VHX2eEEKOEELf9mHUV3Rvz/f/H3m8VPw2/e/HzE7IGmGK8nwJsAYaaPq/+nvW9wFVSyqnAH4EnAIQQg4BZUsopwH3AQ/4VhBAJwICAdp4AFkgpZ0kpj/+e77xbSjldSjkeGC+EGGpadiew1v9BSvm2lHKGlHIGsAJ4z9SP4UDU93yXQicKOKz46W5IKR+SUu78Bb/vgl/quxRdDyGEFVDiR/E/I6VcKqV84+do2zhPO/vObVLKf3S2TPGb5zd3/++uKPFzhAghnhNCXCyEsAghvhBCTAiosgaYarwfCTwHTBVCOIBEKWXu4dqXUnpMdVoBzXg/A1hi1FlltO3nL8CDpj5agWHALYZF589G+RTDMmURQlwuhHjSaM9tLLcDTUCx8bkXkARs6mQ/2IETgY9MxfcAfz/c9inauBkYa1jQLhFCLDGsdEuEEPHmikIIuxBioRBihWERHG+UvyaEeNpYZ4MQoodRfo7xeYUQ4naj7CwhxGpj/XuMshnGOfy+EGKbEOIs09fOFEJ8bJQPMuo/bLS5RQjxp8ANMvoz1Xh/gxDiW6P+JZ3UtQkhdgghbMbnC4QQ9xnvHzTO2/VCiD8aZTeZ2rvBKPM/fQ0SQrxibN8KIcTIgO8aLoRYZuzfxUKIkB98tBQ/O0KIh4xjvkIIcYIQ4gXjfF0XcM4/L4T4FDgHSDF+Q3d39jsROh8b57rTaL/vr7ulii5AhHHN2CKEuFEIcakQYj6AcT49JIT4Ugix3Lh3+z0k1gshngfsprZSA6+hQn+a/5oQ4mPg7M6unaKj1bzTa7niN0vb/R/4Az/ufnuzcU/bKIS43yjrI3QPnleFELuM++oio407jTptliYhxFQhxGvG+0dN199zfpG90AWw/dod6CL4T8bDcRPwNboVZ7mU8tuA5d8CrwhdHEhgFfBPYBfwHYAQYhImsWJigZTya9PnJ4FHjPcxGKLEwGq0lQ6ESSl3CN27DqAHMBy4BNgLfC2EWCGlXCuEWAM8iy6OjvGvIIT4F3Aq8CVQZxTfCzyAPsgI5ERglZSyxVh/BnAAKOukruJgHgOGSCmPFUK8A/xVSrlBCHEKcDtwq6nuFUCmlPJKoVv5PqDdupgppZwrhLgL/Sb7b2A+MFFK2SSEsAohooFbgKOllB4hxIei3T0tBRgNhACbRLsbY4OU8gohxPnAlUZ/FhhtOoCdQohXO9swoVsOTwemSCm9opMnn0b5cvTz6BPgQmCuEGI2EC2lnC6EcALrhRBLgAuAmVLKBiFE4MOaK4FSKeXlxvdbgaNNy58BLpRS5gtdOF0BPN1Z3xW/DkKIk4BewGQppRRCnAHYpZRThRBpwDvAeKN6npTyamO9BYYVGiHE1QT8TqSUU4QQVwCfAZnAE1LKnF926xRdkJ7oDxQ19Hvk/QHLN0gp7xBCvAgcJ4QoAoZLKScJ3eX8ClPdQ11DXVLKOQBCiI+P4NrZ4VqOukb9ljHf/+8Don7E/fYFKeVjxv1wjRDiZaM8BZiGbl3KBfoAlcB+Oh93+jkRGGncm383BhElfnQ2SymP9X8QncRcSClbjZPwEXSrSGfLy9EHf1ullBVCiER0a9Aao8569AvvIRFC/AWokVL6T/hqOrqU+YzX+9AtLmaqgWIp5XajrW/QxdBe9AtqMXC5lNJl6vd1QoibgPeB2UKIAr1Y7jWJKjMXAi+ZPt8BnItye/sxDAceMvazDX2QFrh8siEMACJNyzYbr/lAP+N/h5SyCUBK6RNC9Ad6A18Z3xFlfG5EP0c9gMc4b+M7afc44/01QohT0c+9HsZ/ZwwF1kgpvf4+HKLeIuBuIcRGIERKmSWEOB2YbnoI4QBigRuBp4RuKXoB47dkMAz40P/B2ObA/rxulAUDKiat6zEMWCGllMbn/sA6AClltiHg/aw7RBud/k6Ma/CXwGlSyvN++q4ruiF7pZTNAEKIzq5P5utfLBAKbASQUuYKIcwP+Q51DTWfp0dy7Qy8lit+P/yY++0ZQogr0R+ypwGpQBGwT0rZCpQKIYqklKUAQogW48GgNLVhvlHegf7gXgP+Aez+ybauC6PEzxEihEhCf+rzN3QXr5s7qbYGmAfcZXwuBs4CLjPaOKzlRwgxF0hHt9z4WYkex/OEEGIysN0oTwOeMQZ2SUKIp6SU1wshsoUQqVLKAmAsurUA4F9Gn28RQiyVUtYJIYKllK2G4m8Cmo11BgohlqIPRJqEEAeklN8JISKM5eca2xMOJKI/nQ0Bhgoh7pZSPnAk+/R3ipv2391u4EEp5VbQ3bgC6u5Gfyr4eCfLAy9kmcBwIUSIlLLFeIKTbZQfa3qqI9CtI6MMQRECJKA/ITqoXWPweTn6ANOO/hSpU1Vs9PcaIYTVECIWKaUWWElKuU0I0Ru4FnjLtO6XUkq/a1uQlNIthNgipVwjhOiJ7mo51tTULvSHCV8Z6wQ+tdoFnCelLOlk/ym6BruA82l/oJKBHvO40LD81JrqmgerXtP51envRAgxDJgMfCyEuF5K+dTPuymKboD8AcsF+vl4CbS5gyeYlh/qGuoz6h/ptfNQg1LFbw/z/R9+3P32r8AgwIUel+1fbm4r8DwX6A/Hexqfx/q/EFgmpfxE6K7rC4AzfvhmdT+U+DkCjEHVq8CNhovSO0KIP0gplwRUXY0uMDYYn9eiu5TtgsNbfoTu6/sksB5YYYiaYwwLzBohxFr0H84VRluTTOtmSin9AcA3AG8K3f3uaynlFqFnF6mXUr5gWHZeQBcwbwkhYtF/ZGuklN8YbbxmtHsf+qDiO6P8TOC//gGtlLIBGGXU7QMsVMLneykFWgwXiY+B+4UQYcayV4A3TXVfAv4lhFhhfN4EdJolSEpZLYT4O/CNEKIZWCqlfFgI8QS6+6MP8NAebFmMnrSiLzC/E6uJn1r0weUadAti1aE2TEq5WwjxEbDOENOLjP/OeBfdetnTWPczIcQkw/IjgULgIuANIUQcuuXmmYA2FgIvCN2l083BDySuBV4zfgugP3j46lD9V/zyGMd9hhBiPdACPAz4jGNqBa47xKr/AZYIIT5Hj6/s8DsRenzbi+iW6nzgSyHEav+DBoXiSDDun3uN83MXHV3Qv+8aesTXTsXvBvP9vwcHe3scyTnzAfrYch+6F8eRshj9QdDRgN8F2AZ8bvKOWPAD2uvWiHZvA4VC8XtA6HFaF0opr/y1+6JQKBQKhULxS6IsPwqF4mfDiLkwu5t9J6Wc92v1R6FQKBQKxe8bZflRKBQKhUKhUCgUvwt+N2ntFAqFQqFQKBQKxe8bJX4UCoVCoVAoFArF74IuHfPjdrslgEDD63XTnklFAgIhBEKTaAKkACklQurvAawWh17H+Ne0g7LuKropQUFBv1hK0JDRc5VvqKJTWrY+rc5Dxa/OL3UeqnNQcSjUtVDRFTjS87BLi592NDqmkBT4Y5X8QkdIEAj0P92gJTUvEg1pVLJYLO3rmV797y0WfT2/UPKLprZ6WsfPWARCgk/qdS0WSwexpVAoFAqFQqFQKLoO3UT8HEwHERJQLqUPi8VmWHp0K5GUEk3TdOuQEG2vVqsVr9fbVgagSYlFCDQfWKyGSDKEj8SHwKrXlYAQ2IQVn9TavkNIsNisaF6fIc4sbcv8AklKfb4+XZDp/QAvPp9AiHZhZhZRfvHmL/cLLoVCoVAoFAqFQvH9dAvx4/O1T+wdKAigXQhpGgjRLoD0YoGUfuHgQwhLB8Hkt/D425GG8NG/x4LUAKG1rSeEtb0PEpASDalbnIz1pND7LBEITUMaYkbTNKwCkBYQFkBD98STaJrX6JdASmH0V8M/ea9ujfK7+xmWLanh8x1s/bVarYbw09rW9ffbvw/b29QOElDm5e37qr2t9jZNVrFOjotCoVAoFAqFQtGV6Bbix0y70Gm3ogDtYkVqgAUh/O5slrbl/vfmQXrnA33zFxrubxw8sPe73KFJBAKfz9cmCvT+SCQWhAQNic1mQyDR8PfRaggyXaDp/dOX+dvS++hDCJtJvPiMPlvRFRjoroFWk5jT29HXkUjp7bD97YJFdr7ddLSqSSnaBFj7a8c6/t3qF0JmYXU4YWQWTh3bEweJKt0qpqxdCoVCoVAoFIofTrcbRfoH7YHWivYBv7+eX8wcPsnB4dznhG5G0i01JsyiSy9ot4aY+6W3offBYjEsLUijHvhjmTpaUfRXq7Vd+Phf/eu1xxa199lisbV9Z/s6fnHTptI62daDt82MOSaqvf2DP/vd+sxl5rbM1iH/e/M6h/sec32fT6rEFQqFQqFQKBSKH0W3ED/mwe7hEwrom9NubbByJJvY1pZstxK1xQdJC62trQcN0s0DdQsCKdrdyEBPwKC74VnBYm0TYh2tGAdvgz+ux+/Optfx98tn9M2clEF2EAod44X8iRzMli8Ns+AL7IOmeTv0zWwZC8S8L/xi53D1ze2Z90Fn/elMTLXFZCnxo1AoFAqFQqH4EXQL8dNZUH/7YN4SYI2wmOJd9EFyYOY2//oHDdCFhs3WbkERFr3N4ODggywRwqq7swnZnmLbv54/7scvUHRLjKVDX9q3gQ7v/RYeP/5xvm698W+vbHOLO5TLmjk2x78P/UIqMObH36+O+9fXJmgO2vZO2j4S9zbzdh4uZuhga9jB/VUoFAqFQqFQKH4o3UL8+DnYqqALnM4EgNnq0y5CzG5i7VYec7k/81tng/iDxJPVghR6PI/f9c2cia3drc2qW4cMMRHYF39/zeLEv76Fdvc9iwV8Pk8Hi0i7qPJ26Kc59qgdrYOrnL9ue9yROZ7mYCtYZ25oZjESKEw6i60K/Ox3FQy0+Bwc63Nw/I9CoVAoFAqFQvFD6FYJDw5l6dCtIoGDa/+AXnRwx2pf3jG+xF8WOMgWQuiCyGoBTbfoWBBoXp8uoIzPba5fCCTm9XU3NcMBDZ/PnwSgPSGDTVpwaW4Kd2/j63UZnHzysVSWFBIaEYpbsxIW7KCsuIbeaQlU17USHBxMcV4GvdLTcLs0vnr3JS6942+A76DtaxcLlrb++JNCmLfZ38PAbHgdEziIDu36hYumaVit1sOKHfP+DMww11HMdX6cA93qFArFb5+ajU//qPWij5r7E/dEoVAoFL8VupXlB8zuUubEAp3FmVgwD/APXt7eXuByPbubFaSl3fVLGlYKU+ppc6IDc1lHAeXP4KYP8PXEB7rwKduXTUlOBss/+5odq9dRVlRJbEgdNo/k5YWvY5MaGTv34GlqIDk5jHdef5uwELjz1jsYPGgA7y9azJ4tWzn9ov9jwzeree/FRw6TNMBHYMyROS7InxThcNaVwHinQLe9zgRlZ20ELgvsU2ftH87FT6FQ/Dao2fh0h///tR2FQqFQKALpFuJHNwxYOgy+pfSZ4lXal0PHoH/zQNqctCDQwhNofUBoCItEWKQpu1q7sNGQbYLIJ3XLhzl2pT0Opt3K4mtx8clLj5O5O5OWylpeXPQmO9dvJNwpSEyIJyI+lgaPlx27vmVg/4EUlhYzbsIkomJjCA6ycsIJx+EIsvLCCw/S1NJM7/Qkph8zk5x9W7F5GukzaBKF2flYNY+xnYJAa4o+Z5I/8YFZXPizwmlt4uxwYtG8b83xPodORkGHOodqN7DscJ8VCkX356cQO4drW6FQKBQKM93C7a1j9jatw6Db77Klu7lZgfZBf2CWsM7cqswJCPR1TcJJE6b2O1oh7BarHuuj6eVerxFzo0k0zYew6nP1aJqGq6mZ+to8Pn33v/TvM4BIayurVn5IXFgk46aPx9MqCLL7iJZhzJp8BsERboaPHc3q5ZtITG0iMiyWXZmFDOybgrvVSnFFCTfOfZIX3/oLmXt2EZvQj+iknpTu3oT0uigrLycmJRmLT0NK//YKhDBvX8e5c/Tl+iSumqZPBtsZfkuYeX/6fL429zezO5u/LHB9/zL/ema+z+VNxf0oFN2fX1KU+L9LucIpFAqFArqJ5cePPwNZx2xo/slOrR0Gze1WDh2Xy9VpVjF/emvz4NpfZs4u5hdT/tgWTdPaLD9Ws1Cw6K5v5552Lq56Fw/eeSdbl68gUkRzwklzqPO4sTtDmTBxFhHxVlwNPl597UW+WbmT/bm5hEbbKS4u5MPFnzBi1EDOP/0ctm1eh81n5ebr5iOszdQ11HPDLadTnFdEr/79KSitJjNjHbH90qkpKgavj6aK5rbEAf6Mc5qmtWXC8ydR8L/3CyQ9ccLB8Th+AjO0mYWJxWJpF4Fw0L4zZ4czi05zeWeY61mt1kOcHQqFoivzc1p4FAqFQqE4UrqF+DEH7futO3pKa9pEj9/VzIzFYiErKwsAh8PR5opmdn9DaG2CpzNR5B+0u91uXVBJTbf4GEih/1ssFhz2YDavXsO+nVu5/dZrqSotYvLU2ZQ01JBZsI/I2ARcSMLjovlu/Spmn3QGdY11XHThXArydjNkyDAK8vK57/7HOPWcM9m6ZTvvffwuUREW/vPOOzzw4O1ILLQ2SaYefTSDBg4jOyuDHbu3YyGC/IIM+vRLw+VqpbGxQd8uTSI1LxoSr6eZ+ooCFj18Lzu+foOa8mKqC/Kob2jB5/Ph83lMrx40zWskbNAFTYf9ZvrcXu5rSxWu07mbodlCZM7EF2ilC3RJNIs3hULRPVCCR6FQKBRdiW7h9tZxjpmDB8dtlpgOcTwaUlpIS0vr0E7gevoCCz7N0yZ6fJqvzZrhr2O32/X2NYlEYviQtcmg4gPZaL4GMjP2MGrEMELtrZSXZhAaGYTLG0RGRgY9+wzh5FkzaK11MXDIcLL37qVHajwWu5dLr7oad2sDfQf34oknHuL999/nqyUf0S89DZstjNvuuhXNKrAiqKotZePmOgrzSpkxayannHoiQcKO5vPQ4qrCERpKcJidzJ27+Hb5u4w9+lKsOHj26QcZOW4EiT1HkdhvLI/e/xSbt+xi/n3X8smHn3Lz/H9yxakT+XTDZqTVnFDC2tEy1lbecV4ef8Y4f0yWHgel1z2ccApMaW0+lnBoFzmFQtE1UWJHoVAoFF2VbjWa1Ae/7VnczJaFQFeqwMk8/ZjL2qwN+NosP0IIrDaBFFqHdcyuWxb0uXvcrdU011XzyeIP2bljHyuWLyM5sQc9evQgNmUgA4YNIjkxkj8eP5ujxo2juCCfwtIKsvP3k5CUjNvXSHhYDNHRDoTNTlCwFXezh+OO+SND0gfyxNNPkdIziZ7pg2hpaaG5voa1a5eT3q8/H77/MZOmTiAsLJSEhATCI0Kprc7j6y8/RxMx+FrqKC6oZuiwk9i7YxMhDjdr1m2EVjcjR46hKK+EVWvW8OS/HiQ2NoVjjj2VbWtWcf8/FlJWUsrTC+5p237/pKrtrnIdrTn+Y+GPydItbDakFAGC6eB9aibQbdF87FScj0LR9emqVh4V76NQKBQKP93C8nPoNMft2i3Qtcpc3yyKDj3JqEBqICwaoFt1hLB0cNOSUrJl/Qp6RgbjEpGEBUn++s9nmH/fNTRWlHPcrJPIyyujsmE3zdWR9BkwgLikoeQU7iUheQSt+Xu484abmXfnvfi8EOKMIq8sE6tHY0C/sdRpQexb9xVbduwGWyWffbCamTMnUZSVRXxMIuEhDoYOGU5kZDC3z7sLj89KU0MLeTl59Ombgj04kjHTTsUZGsTVl9xFVk42r7++mGExUXy94ks++uhDqutr2Z+TxbD0NJ578RnWrPqU2PgBhEcEk1+Si5T9KS7IZd++emYN7s+KfVnG/vLH+uiJE9qta34rDYA0DGL+jHLt9Wib+0ifVNViEZ0es0OJHCV+FIquSVcUO2aU8FEoFAqFmW5h+TncfDLAIQfO5nL/vzkgX9Centqf2hpA83Wc3NNqE1QWVpKXlc2yJctY/PFyElMSeOLpV7j3oQVYtUR8lkSKyn3E9EgnOnQ0cfF92b+3iLyM7fTokcrOHRux26ws/PBdBo0ewP9dPZewiHB6J/chffA4XELD4nYzYsLx7N2xnKZajekzx+MItrFjxw4kLjweD/FxMRQXFFBVnE1keAg+rZl58+5i04b1xCUn06tXMkPTR3LXnTew4C/30dpcgyPUymnnnEFkdDDZWXsYN24It89fQGRkOIkpo3j73Xfo1683H73/AdNmHIVb8xEaGYSISGDZ+4uNfSHRvc78KbL9VpyOIqejJUgQaO3RhY9uvQu06nSW+CDwWAdmlFMoFL8OXdXKo1AoFArF4eh2o8jO5ok5KINbQH1/HWgfWLcJHiGwCFt7wgNhRVgt+iSnwH9eeJCasgby9+8i2NvKilUbmXHsFJpbJWeefSpaYwM+rZXU5FheW/QSVdX1tHgFZTW5DBzcE4uEJx5biOZpoaa2DilCcIRE8c+H76OpuZa68lp2bNjGny77E+FhdrZs3siQUdNpamgmMjKSulqNP5z4R4TVRml5FbmZBUw/9kL6DRuMhoft2/bwz0duwRHaA5slnCVLVnPisVN57J9PEhebSHRMKM888Ti2YBvrVq9h9h+OZef2Azz4wDyyDuxk+IhkBqQn4/N4eOXNd2ltbWXq9OnMOfNMnnlpEV+v3EFDWWmH/WkWJIfTIboFKLBMmjL0dTw2gQkOdPyTw+rJKlS2N4Xi16U7iR5l9VEoFApFIN1C/AQKms6yg3UWL9JxUtSDg/Xb0jTjM9zehD5vj/SB0KivrWbP/lIytq8ipzCHqmYPby1+FVtwHEE2B9fNnYfHE0J9XRWZhcXcdNu9pKb1oro8h4GDh+LzeMnKLSM/P5ee/ZLweTSaK7Jx0EBYbBLDh43BGR7KgKG9uX/BfMrLarjk8iuoq6okISmRwsJiIqLsrFr1DR5XKylpvUjt2593336GVje8tWgR06eNoKwgj1Gjh9LUmMuwQWncf//9PPzYw2Rm7iFzbxYXXXYpm9atxWqvoa66hcHD0gkOjwark6YGC5OmTOOG624HTysffrKY9au/pWePZN548RnOPONs9u3JIGPbLp68+0+0Nrd02M9HMu+OuY5ffLbHELWnGQ+sq7+2TxbbueujQqH4JehOogeU8FEoFApF53QL8RNIYAKDwAG4eSLOwFcwxJMxgak/HkjTND3ttdCoqqqiqqSOzM3b+PO8u9h2oJTB6f2JinSSkZ3Ffxd/SkFBHl8s/5JQZxAx0UkEEca+HXu49LxL0bwhZO7bS3hoGJOOHc9DDz1Kiwti4qIQWjRb1qwnPzObLd99R1R0HOEOC2++8hp19bVs/HYVe/dsw+3ViO8RhgXBpKMnERkdgxULDQ11DBk8HK/bw9lnnYKmBdNv2DG4fS5s4fGEhtj5YtlX7N62lXETJ7Dy23UMSB/G2LFHMWjwVN5e9AoXnnMVV1x6DUOGDGHNsjU4bU7OPf8Sxk6cxtbvtpKRkUFlZSVp/QcQ1zOSnj37E+YI570l+2iqKidr+05qyvYjfRoC/T/QytM+v9DBQlQ/hp3HZJmPcaCw7cySpFAofl66m+hRKBQKheJwdAvxE/jE3+8CZbbeBC4PTKVsdqVqc7mShnubbHenqi+tJ2fPFrJzdxHVM40WVyUFB3YSn9oLzWensdLK1TdeQVlpMV4rbN2zB1uwlfiYJNIHp/H4U/9iyPB0+vbsQ3lDJVa3gx27tvLW68+TnNKDmKRYRk6eQYv0MmjsSHw+H8HBCcy75ya+W7sdu6OVsePSqKjIprUxCImbCIeNFlcTFulAC5aExUZw4EAGVp+V5tYIEnr3wuP2UVtURklJC+PHj+Oee5/E2+ImPiKOnZt2YCUaj1vy2qIlPPHkwzz37JPkZO+jrCaPmB4JzDp+Fo88+HfuXfB3woM9JPd20CM2nOVfLOW9dxdTUJHNS4tepr6mlLhEga81DJ+7gccvmsWco+L4/Ln7eOG2izoIns4ETbvQ0a05/vL2NOYHT36qzzXkzyanUCh+Kbqr6FFWH8XvGfXAQqE4PN1C/MDB1h6/mOks+N08l0zgpJlCiLZ4ng6JDmxw1MhJfPj+vxk0YBwhoWDVmuntsBHsdBIeFk1MUgz90+1s37iJIUOH421uYPzwQWTvzSIoBIKsNiLCbOzcsZuG5joiQxw4giTJCQls/y6Tyqp6Xlv4LB6fh6SYSJzWEGw2N42+ehz2KI458WjcLigrqCA0PApnuBV84LZItFYPVVVFhNmDKc/fzcjRKThiQmhp2EJlcRVWLZh//uNRUpI1nn/uNerqaojsEURkVDD//XQJC194Cg0H/377cVLTejB95kkMGDqGOaf/gReeX4gjGIYM7s0999xPSu8+lJe0MmHiOE6YOZPjj59I716J7N6+gdde/wR7UCxhEXa89jBOvfkZHr3zRHpFbeTxN9/nhgvG4/H4AA2/ccd87Npd3PxiVJ+0VC/XRVHgZKd+4WOe50mhUPy8dNfBkxI+it8z5t+tEkEKRed0G/EsPz0GAAAgAElEQVQTaP3xZ20LzOjmL/Nbh8zr+3y625Q/xsdiGBJ8MojqggqeefIBZs+eDXYPvRL6ExISjtsRwYxjZ+ETNrQWjUWvf0Zqcjr2IGhorqWltYy0QUPIy82lsUlSU91EbU0Ns485k+bmWlpbmggNhzf+/Ro2Ibjs4muoqyokNjaF8uIDlFQ0UpBTyHNPPklqz2TikvrgC4kkOjIJe0gYdmcYuASNzc3ERISQl3GAsoosLG4LmrsFq8XJt9+uYs+ePdxy85+prvFw6aXH8+CCm3A3t3D8acexa89mjp41mdw9m7GFO8BnY9HLT7B3+3aaaqz86fJzwOclNDycO2//E1MmT2DY6N6UFucQGuYlacAwnnj0VU48djaXXHIWq1espLXZxYs3n0JReS2OEKitqWPl4pupKPKwZdV3eHxeNOlFSh+a5m377xiDJUxC1RtwDM1ucu0Tzqq4H4Xi56crDZiij5rb9n8kdRUKRUe60u9ZoegKdAvxc1DCAymx2WwHuVeZY0TMliG/GLJarW2D6LZ6QsNVW4bNrtGvbypLl/wXDQt2RxC5Wbvw+UKxWa14W10UFx9g6tHjaXHXUFvjwmGzsnVbIa7mBkKcNrZsWc9rixYyceI0Vq7/krycRiwihIb6ZqTdRk1DBXanhi0knrysbFxuSXlhMUl9Erngyqtwez24NUnf+EgELYCGzeqkpLwUu00jvyCPmEiNO25/Brc9hbK8PYT26ENidDADBqZhs4QTFm4lqecIxk6cRItbIrwa733wBvExkYyYOAl3fR052dmkpqay6puvGTQklrRBvdi3exML/vYAheXl2ILjKMotJSapP+WVPupLSzjtjBNAeElMSmLC1Fl88sF/ieg3g4vPPoPKunz6Hn0TjZXbmXteOL36xJG97nmEFhjnE5gYwezi1p52vN26o3V4VTE/CsXPT1cYKB1K8BxO3Cjho/i90xV+uwpFd6BbiB9NShBWpNFdi8nCY3ZxC7T8mAkMwAeQmqCmrAYfGrVl9WRk7uH0iy7D5RLUVFZRXulG2q0MGz2WE447nl59BjJ5ytFYrE6CQyA8LJox40exO3MvJWW1PPnYc1x+1ZXs2rGBmsom+qVH4NZa6ds3nY/eeYd33/wvJSUlxEdFsGrVGvoMGsLosSMpzt0AlnrqqhtY9PwLrFy/F5/NhsfVTE11PqlJwWTs3ci7by9h875KPlnyDZ7qIsISJ3Hh6ReSkJLCiy+9SlCQl4iIGKIjYwiLjOKqq67D57WRn51DWGwcmruFgSPGUpC/h/LyXK674XLsQeG4Wiz0HzyCDz9eyqCB6Qibi8LCYqKjQklJSaC45ABDhg5jz75NgAshGzn5ogsIDgnn8Tt74W6EutJ1NFbU8vpH5Xy2ZAkh8XN459V32bbk9bbjYxzNQ6Qr9yGlDyE6Wnj8lh+zUFIoFD8Pv/bg6UgsPJ0tV8JHofh+fu3ft0LRVRBd2Y3I7XYbI2CfLoAMq01n2cG+bzLMzgbOdUXZaPYYcvZuILlvf4IJJzgmmpqKckrK64gOg7iYFL7buIapk0eTn5NNXomFYcNj+eA/n3PhhefT0toMIhSPq4GK8hrwlZFX4sNqraPVo3HczOMIckhcmp3qsipeeWUhN95wKyERTuyygaIKD96aLFzeUJZ+8AHJCTHEpcSROmAWzuBCcktqiJYlJA+bitcjKd29hzOvupMbr7uVrP35JKZG86e5F+JtqaOpWaOmupBe6RNwtFRTUlZOWFwQNTUhjBiUSEZpFUKrIzqsJxlZGcQm9MPq9fDpp0tYteZrHvn7vVhkI9XV9ST1SiPYGUFDXQXVDbUEWXvSXLeJklrBtMmTyfj6Xuz9zyW48Eu8jlwspeWUekKJGLYA79757GseS1TwRoZPfQZX7Xb6Tzi1zQqnyY4uiv7jd2i3NosRE+TD5/Nhs9kICgr6xZRQyOi5XfdH8j/gvxGqgeOPp2Xr07+Z8/DXGhj9mPNPnbsd+aXOw9/qtfC3wpH+hn+O381v6VrYHanZ+LS6HnLk56Ht5+7IT4EmBVKCkAINEBYLBATEAyD1OXsArFZrW3nbQBtr23JLcz0eSzgzJ85i+YovcTiDkK4W9m7fSI/oOKw+H1HR8Xg9ZRQUFOGyHUdUspuQaDdWWySnnHIKWVllhEa4qC7LoG//4URG1qDZB9DLWUG8sz8bvltJWXkVVVUFhNjDGTRsGPMXLMCieSkvryB/z36i4qNJTBnE3j1b+PPdf6GubBP5+wvxeA6Qmj6Q2JgInM6xhATZWfLZUnr3GsBrL7/Jth1bOf6EKdjsGu+/8zE2axCnnXEqdbWNRIbZefqFxVx+1elozhiqa3PYlZ1L7z5D8HlD0UQQqb1SsCCI7xPPJZedxoiR8ThCnXikj97J/bng7PN48ukFxEX3I8wZjyOkiY83ljDzuOnkZe+l0RNPdJOP0OAsrKExVASVE9PvHkSQIGrKg0R+/iwpooErzpzE1dfdQvpEs8gBIdrjeDpOanrwXD9C+LP3CSyWbnHKdmnMN0h1sVTAryN8/pdzT523CsXBRB8194h+y2qg3H051PFVx/OH0S3c3qSUWPTZZBASvF4NpEUXO5o+Oalf2JgtCeZ4H6mJDrEnmUWlXHb2+Xz0yfu4XNVkHdjLO/9+lX79+pJfkEF8tBOLxYYlrAdzTjyZptpirITgtFkID2qmtbUZbFVoLYK/PfgY9Q2FPPPUvynI3UuoTUPYXZx48snQ2kBKYhIpiTF4hcRbWYzwtvDio08wetoE4hJ64fG2MnriKHZtW44MSSIkJpxBQybS1OrDGRFPcVE+1bXNjBo7mZqWUCrKc/G01FJb20y/QUOZeewxzDn9VCrzconpEceyTz9nRHowdlsYQcJOkPDQIzGFICAoLM6Ir/EgrM14NBc2u2DEpBPA0kRsfBoOgnjvvfcID3ES2iOa0ORwtqx5j5P+eAp7d2czaMQo0kZOIig0GmtQNCV5uTht4Zx6zlk4wq3EBGnU1W4FFzx77yTee/sbnr1qWIeYHbOlJ9D647fY+cv1ZAiHihtSHCmBmX/UxVLxa3CkyQsUCsWR4b+2K7e23y6HO77qevrD6RaP0XVXKV0ASaFbdSSAZmR5s8g2sSM1gcUiO1gTNE1DkxoCgcvlRja14na5+Psj94C3kdDoZByOYIpSB1OQk4nDEU1oZAQNDQ3YkJSVlXHCCWeybsNygoOs1NTVYLUKEnv0Zvu2Pbz+yr8orqjFanMTExZBWUkDY8akUVJeRkLPgYRFBtFQ7+bTxZ+ycfNebp93JVffeB1LnrmLKk8wZ152FU4ZyrAhR5Gdm0n/YROwWTy47Ro+t5XmlmCaWqtJTEkmpWcoKbFHMXHqBFpbmwkJCSMu0Ymn1Udw/1SOnnw0K9Z8Q05mBV7hoKG6nOS+/bE7whB40Nw+gmxOtPAoQoOcNLVaKN7yH4bMuJyQsKGgWWlqzCEmqRchkcPweX0U7V+HDJtORW01w0ePYenid0gfMQu7vYRlmdM4YfBq6DGDZc+7sNmD2PTeKQya9hbu7KsID0nmstMqWXngJBxuD64gS6cCxi+EOhNDukY3J0FQAuiHom6Kil8bdYNWKH4aforrubL+dB/U/funp9tYfvwIaQyKZUd3trZJS42yg6w9FgsSCHY4aHQ1Ul/eSLDTSUraEJZ/9SX1TRpRscm8vuhjUnr3oaGxlvv/Mp/mJjcNNTXsz9lGdEI8NkcQsTEJpCYl0FzXzLhx42j1hpCS1Juk+Dis1lDGjB9CZW0ZkcFRBEfZ+fA/S7j68rlMmzmZv9x5Iy8+txi7tZw518zn7D/dDTKEosLv2L93Ez0SUykuqqK1tZXKglJWfv0RFXXFlGR+S6vHjbe1hMLq/RQXlZCYkEJ1VQkaFpqaKkFaeff9/3D7zfMIj7Rx9eW3YLXGEmILQ/haqG9txqJ50LzNeBsq8XgFQVYvvcacSG1zNTYhsVl9RCb2wSfBh2TbB7cg7FF4C+4jd9kNnH/GWZTkr8JiaeKzL3Yw7qgxvLVoEzU738Ml4pl/x3w+397IgAEhOFojiUsZTpTTzfU3XstTV48Aiz9eq12cdmYB8h9Df13d/U0eIiZIcSjU00DF9/FLnB9qkKVQdD3UvaFrYrbkqWP089DlxY95UOyTWpuFBw7jAmW4xJknNm2bW8brQdMk/frGExEeT0lePsOHpOMM9hAWauWq/zsfjXBsVjsxMSF8tXwFaQN701xZTWVhIUuXrmLf3iz6D5vEtt3bcUkLVpskO3MvU48ejYdgWt3RNDX4CAq1cd8dD3DcccfhDLNSkpPL2vVrOO/SP9La2MyBr5/H7imjpW4vO/c14HTGsnvLDqIjQsguLCA3v4JjZl9FTFxPhk04iWCHlfDoRBIShtJ76FFU11SQkNKDyqpi7NZIRJCXlD49Oe3M6aQlRnH/gmsJsjXQ1NJMYX4JGbv2M2vaqbz33ns4opIRogVPcyvSHYasbSJz7Tu6lUzzomkantYGdlcMo2rFn0lPCCUqJJYXX3ues86ey+PzzuXM846j2b2Voy9ZyCMPf0V1bivBLbUcc9YjvPP2Yp7ZGE/1/q9xtwhefeo2CoOOxyttIKWRsU876Bj76cwSBJ1PaqvoHHXRVPzaKBc3heKnRV3XFWbU9fXH0eVHkuZ5YvwTl0opkaJ9WYf01f4yfPokm+gJE0BPkb307ZewWp0UV9bTUF/Ovsx9RESHYXUEExkaxf4Du5GWBjas/5r58xfwyiuvsXrlFhY8/Dh33f4wc/5wDDa7j08+eJ0Zx55AuM3Hgvv+QVK/JFpcNgb0TSFj57f0HTiQ0045nzvvvoNPP/2UESOGseSL1fTtNxCHI5iSoi14Q3vQ0uqjtj6UwYOHUVvXyqijhuNpraNvr8GMnj6TZlcNyak9CYuPwu0Bu7DgDHETFdZCeHg4dovEpkFYqGDzmq1k7i7j6GPOZuOeXKwOJ1aPj5KcTPLzikjrm8qH77/MySedyvVX3Eh9rQeXy01DUznW0AhSh5+M8BpJBjTJ6jdvYdKkwYTE9MDlgvpWL5ERITSEpDL34lS+fPUq9n3xFjHxFv58/TGExYVw/VlRDBuQTnDzDq65+kqKqxw4IlxMGBTKqAmTWL/wfLyapy3teOC//xiaMWf4C8iNoOgE9bRI0RVQN2WF4qfl57iuq3tF90Ydvx9HtxA/ZjT02B+rsICl3bLjr9sWJO8zrARS4pMallYPS954mtnnXUtLUwX1laVUl1UwauRgqqpcFGTmcuEllzJi5BTCnQKHIwFhDcLlaiG2Rywhzkj+9ezdFOZXkpzUm7SBQynK2kZZyQFmHz+a2FAnm7bupsndSN+B/Rk9cBzTJ84gN3M/Y8cMIsgRSVV9C74QD1tX/JsgTwuhKUdjDQ0nPCmZyOh40gamk52VT0R8P4TQcGg2qstzsVrsCGGjucFFcWERNquD5tp6aqqbsTri2L69iLoWF70GpdA/NYTGmjKSEiNY+Pyb1NcIevbtSXVFPSU5e3nz3x+Tk1vIzbffRnV5Bc0uQVRwAj7NQllZLsWFW7FrgPBR1jIKS2s1OGyU11vYUDqBbSvf4LG/PYgzLJFPltYyIi2Fl19+hWinBV9zBq31paz8Zi2poUUkpgzBo+XxxeoqosJ8HDiwg+L9ufqBFEJPXR7g/uZ/7WzC2t+K8Pk5xcmvmepUoQBl7VEoFIofy48ZGygB9MPp8uLH7PJkJPxC4+AJS/20lVkEuTu/Y9aYYVRmbSE/r5Cywga+XbMBmzOC/fklbNq8l1CrmzfefJnklN489fg9bNq4jZysfEaNG4TVauWzz97F42pk1tTRSOGkR7KF0KhQ/vno4/TsM4ScnBomHDWTAztyueDis3BGhhEkgjnnvPPonZZKiNPBk4+9RFKfZObMmcXA1AHMnnM1/Sdfg8elUZRTRnlBGVWVtVitkqjYZHy+FnwWDZerhfDweJrqaqktryAuJZGeAwaQcWAX7mYvjmBYuWwlxQV5NNa4iI+IwWsPYdlXG7j6qtu4fd4NPPX8i2zalMmeXTvZm1vErBlTSIqNYNfW9WBpoaWmhtr6Kr786HOSU/sjfVFUluwjRPqoafJRUKtRV5pDTOoAzr94JmUljfyxTy4lhTu5+Mb7yMw6wNTJR1FekUF4sJOGujD6DexJr5lPUllYQHm1k+Ejx+Jzl7Dhm6/4urAPdldQ25xNSEvbcQ2c/DQw5bUe+9M9Y35+Cf/dH9K2ulgq/PyUQkWJHoVCofhx/C/3ZeXx8cPo8uKnQ8yHxWTlEboY8vi8ugucKWRE0zQKM/fz8D8f483FSzl60hk0NFbjIZjEmHg8VZUMHdCHE8+5kH2FXm6743727d6GwxnB+DFp5BwoY/uW3dTXN7J2zXKmTJnClBnTqKluodVlx+rxcfyxx5O5ayejx45i/bqvGHbUSCR2KvM2ccVlc5lz8nEcd8JJ7NlTwLkXXMz4MSMZNWIc7pZiikp3gj2EsBAnUkri48IIC4/FZrMRHu5g15ZNNFU3kpubi8MZyjcrlxMfG8bKTz5GepsYPmoCL7+2CItwMGbMKPoNGMDfH3gEKSKpqa6mV8805s+/l4qKUqQUREYlkNg7iiHpg/nksyXs3P0tJ8w5kZ6p6Xy9bDmfffoVkyeOp66iioi4ePIzdrLy/WfYl7GH/zz3AGWVCUT2OgZ3veDYU+9DRLYSE5rKyKNGc+Itb+EMi6a5XiBtjfxnbS4lZa2sXLuG2prtDIjLRkZOxBkezF+u6EWvpHjefWw2uoQFLLLt2JkFbWcucN0x3udwF6Sf8kL1Q9pSA1SFQqHoXnSVB2eKro06lkdGtxpNtsWFaO3xIXarrcOynJwcHrj5RrZ99x2Xn38jSz75lKceu597b72FbWs/5+KzT2DuDfeRsXkzwTZIiLbSUl/Jrj15xESmUFbtYvio4UwaPwGXy06/oVPZvXcTFilIjPdhs2jMmn02g/sl4HBGYpcax06fSllRMSXbFvLXB97nmReeYMWqlbz47LNMmDiOoQN7oFnsVFdmYY9LIqbnANx11aSk9qJ3/yH06jMMZ6iFBncLFXVVpI87mrBoB337pVFT5eKUk+fw4ftfMPX4Y6mtqMGKnXNPmY3HY+fkOaeze8dO7FZJ7oHN3DFvASXFFXy7ZTsrv1zDrOnj+W7TevJya0jtE099XROj+yfTUF1LXl4BtmAnx86eSGuTxvmnnYXP10Ti4NGkjDuJRx6+h+uu7Ef/Pj6K6/L59Lk7yF95Liu/ymNNxTRqi0tYt2Ij8cV/Z/QfnmLvPpj/wudsWvIwU6ZNonbbMzS60whv+YC64mpC7U0sfOtjXHXG5LN0nrT6UBndAidD7eoc6WRzv8T3BNZXAkhh5qc4H9Q5pVB0T9Rv99fn13oY+nulW4kfM+ZU1/7U1/9+8Wkenz+Psy44hwf/+hSlFQf4fPEHLHzhRdLS+rAzq4SxoycSZpMUlDbx7dLn0BDU1FVz4eUXEh4bheap56P3F7JvdzYRkT62Lnudvr1GUlpZzv4DlYSHh7Po5YVk5pbxxNPP8OHHX+ELicEZGcy6rL7cdOsVHNizl9NOOZ9LrrmB66+dS4PLwfx5d5CY1IvKjf8hLCSOZUuXUFVRzqYd32K1B+Hz+SjOLadPXB8ibVBbXYfFbiU0wsrWzftIHzicELuD6KgI9u7cRXL/EQQHwzuLF3HyHyZz2613ct3192IF3PW1TBozhPMuuYiouGCmTBnMRVedT1hYFH/+84XkVLQQHBZEQo8UZsw4Go/HSWNLPk8//wLbVm7CpjlJjA5h7TfLeei1Cj54P5P6Zc9z9txLaA0fx7RpXkLCHIjiRQwdOY7scvjuy/n0SYzA49Y48bg5OIMsDOgTgy0qBldxObYQSXlZDbdd0o/KJnfbcdSFTkdRI4TAarW2ve8s61tX55dyQVMXOcVPxf8yAFKDJ4Wi+6LuI7891DE9PF1+klMhBGiyzUQgpD7dpR7349OXAU88cCcJPXpyy70PctN1t9IzIZ7N67/l8j9fwM4N67jiz7cwfvwGqisKObF/P3YeKMIjowiPCSciMhrR4qPRnU2vAWM4I7UP2zZvJqLEytipF/Kf995j6lH9iUsYxMKXFnHKnDPYvSOfk048gdvvnMdZF80hY08+p/7hBF5/502CNI3UtGQsPhsezUdsTCTJvYaQsfs7+g87ncqSMsLiemB1Whk2aBgVVfmEBceR3r830mZH87hwRsRQkl9EjzgHffvG4XBG8u3atdRUNDJ1fAz79u+kZ580UkQof/vnq2xbvZz6JitnTR7PaWcch0cIqupKGXXURKyah/q6ZloaXSQkJBAWHourtorb7pzHqGGDSEjui+Zu4JTzryCpb0++WbaJ6bPH0seyjkcef5n9S24iyJVH8Y5vCeozi1tvr+WdpSey/aXF/HXRXO48OY7Skgye2ziFlPxX0WzVtHx+NSee1APZUkbszAX0HzCI/777LsdfNIvkWGfAUbYcJG7MVp6Ok512betPd7jgqIGq4lBEHzX3B5/D6nxSKLo36jf869Idxg2/NbqF5ccczyOsxhw/EqRPa8sGlrM7lwnTZvLso/8gJVIjuW8yI0eO5s033iC/op6lSz9nUHpPqurq+fDDj7H56vl8+VIyt67FKiz47C4ysvJxWDwEB8UydtwEXnr+JZITw5g5czoxvYexfvUqTv7jKSQkxrLwzbdxhsWSlJCMxxXEls3r8XgbufpP5xEVFUP2gUIqyou49dbbyMrK4fhpfUnoPYSCwn3U1VYRHRFDaFAELXUNZO3JoKG1kdXrNlBWWkhpTSWVJaXEJ/Rg47d7iYzqQVF+OaOPmkALDezMcTMgvS/BDideRwh33n0H511yEX+/72527trOijUb2L59B86wUB7568Ps2bOH4NAoWurrqSivQnNbiUzqw4MPXsdl18zluNlnMHHWCbzxysu46mtYvfwrPn3vU9KPfQrN4uXGf+WQnBSHp3EXAwcO4Z+3jSEo2M7Qi18iNtZBnQim36DhPPSPBUyP/IIzZp/LqmW5JNpCiT7qYd78xw1sWjiD6X3308MZwatv/c04mn73N61DhrcOx96Y10mP99GQsvtYf34IKsOLQqFQKA6FEigKxU9Hlxc/fpc2IdvTHnfMCGYld+s2jjvtDO64/kpaq7PZvGMfF5x7DnnZWcRFRHD05LFsXL+Oqto8BvXvS2KMpLXVzYQxU9i3p4jczO3YrEEEW7zU1VTyp4vOJjIilHXf7iI8MoawcDtOq5ey0gq27tjJlVddz03XX0VyQjxTJh7NQ3+7nzUb1+LytBJsdTJp6kReeuUVoqNjSExMpKiomJHjpvLFf18lNTma2KRkElOS8CFwhofRo1dvGisqmTZ1OtGxkbTUu0lOTqastAJLkI+WVo3oWCceGhkwcDBD0hNoEKFIj5f6hlqEQ+OPZ59Js8/NA48+SmSMZMzwkYSGhnDrnbfSK60fJYU5zP/r01h9wWC14XYJrr3hETKytrNz9zr6pvbk4otPp7XVzSWXnEJCbArFlZVs/2AeK1cv4R+vbOTj/+5h8XN/JmbEtSxbeBXhDivJVg+Vvv4s+DdU1FSTfsYrZKy9h8Vv3kz4UY/i8rZy89VnMuS8LyiNPJ8TJo1nzpxHDKGjn3665Ol4XM0T1PqFUWA2uK7GLylGlPBR/Fz8kEGWGpApFN0fdT/57aGuzYenW4gfKQDLwS5RUkDGrnVkVxZTmF3KsGETuf2h51ny+adsWLeCSVMncdPttxOd1JPZfziWnL35rPp6C4XlPnZtXEV0ZASlOQU8+vBC7JZQYiJ6U5S7m6tuvpGsPVtISk5m9erN5Bfl0tBSzahRY3AEW7jv3tvo03sgURFhXHPFDVx6xeXMu/URaiureP/dd7j9rvnccP1tePEQGetk7/7dCG8TQ/rZcUs7vuZqoiKjcblchIaGkhAdS2V9PZs3bsLV2kxsXA9yM/YQH5NKr9792LvjE0LCQsnLKSc9PR03wZQdWA7SxrdrV1O8aykhQYJeyQ7qait4772vKKjMpaSkhobaMqwhIfRMiiG3vIwXXniJispqSssKeeutRYwYOpJta7aRXVJKXkEd27dsp7jIh91upzg7k6kXLGDDmnU4oi9kZ15vqittlO54hbOuXcjGd87igvPGk2bfR0rvRGyeFnbvWkpqeAir12zi3x8vpeKz+0iecg3b3z6NsKwneeGhY3j+6ee59bzZSOnzH+QOiQ/McT4HT37aNd3efo3EBT8GdUFU/FSoc0mh+GVRvzmF4qehy4sf/9N+r9cL+IWPHiNi1dzs3LCBPZu3U16WQ6jDybyb/o9V36zm1Nmn8Mxzz5OfXcmBA/mkDRxMoxTM/MMURg/pzQsvPktVcRZNXhd/PGkGn334LI4YJ5kH9tI7yUGfgUOZf/dNjBjfC5/LjjOsH2mD05g2bTJffLWOnTs2EhcTzxcrV3Hf3fdj0RpZtWYD0hrExeedRr/+4SQnJrFq2Tf07x3Ck088w4BRl7Bh1XeUN7TidWns2LGLgoIiSsvLGDq0H86wUJobmmltaSG1z2DCggpJSkoite9Ummrq6JWSjA83WQdyiQgdwN133cqUqRMI6TGUxlYXA9NGUJxXzLXzbqZn2mDCgx04w1KweDRcwsbzj81n2jFz+HrZN2heyZtvfkBRcSVpA2O59rL/44lH/0VaX0G/9CQ2bdzITXfPJzOzmb49NdLH9OX1pR9Tzmg25fx/e/cdHlWZ9nH8e86ZlkmZ9N5JIUCA0JtUGyLY+7r2jmvvva64uqyiru+q2OuKhZUiIAhIkV7TSCGN9DqZPnPO+8ekou6uq+5GeT7X5ZVMMkwmOcfM+eW+n/ux0G73EjH2dryW4SgGPbaqBrZ/dCdB1SvxBsWiEWgAACAASURBVI9g6Nz72b5hDXURx3F49bVkZieiGGzUNLuYFLuFUy+5C6/qw+fzAP7qj6b5uqp7/mPdN/j82ia9/af+WxPiBOGf+VcXWeIiTBB+W8Trym+H+P38rw34gQe9F71yb8uT5v+YraaO0dNPJ7WogN17NzFj7jxO15/P/i3beP6VVzjp+ElUVheRaNHYsvZL8kZMpKq0lD35Zbz1wfts3LyHhx5/hjVfvY3HHUh1aQFnXnwjFUV7+MennzFv7sU4fB6G5Ebg8dhw2ny0aFbycmJJzM7GrZd4bfHLnDDrRLZsKGDC+GlExRkx6s0UFB4hLdVE5tA0jFI6RiWc5k4nw4YNwxQWypGKMqLD9MQmxKOpbjSvQkhYDOVVxeg0HRmZ6TQ5JWLTgmhvLSMpOxFVU5CQeea5hUybfDoXnH8JwWGx6HUShwoPsG//IWISYogOi6L1SBXxiaF0ejSaKooJjx3Ox5+8y7XXX4NB305RcQlTp07FYmhn6OgZLP/ydFav2IJOl8D/vfISOikIiymE2NgYdMCk4wbx1p/O4/eXPY1U/BrvLLyZ5FiVt7e1MSInjJlzZzImbxQffPYF0/Q76GiZwfyrL2HrR7fTMD6aTjUZXUQsDsc6UlPiqGtrQ5INyPirPxKgdR1jrc+mp33fdoeh7klwxyLxAiX8r4kXVkEQBOHX7FdR+QGQ5f5//Vc1L39b/FfuvPFqtu5YT9HBA+zavJc1HzyH11nPGSePYcSIUQwbFsqU2efRalfRYaW69jCnnDSFiy75PXPmHs/aVW8zMncqb7y1mHsefhKDUeLSy28iJyuH0sPlvPT049TVlKLJeqbOmEpDbRMOLzharFSXlfD6K3+ltLSUrKFZLHz2SZa8twqdpmf58k9obmvH2uZA0swkZo3AYNITE2umufEIGVnZmIKiaaitRvN4aWmsprm+hOxBmbS22wiwBBObEovD2oI5RE9NaR2K10lTXTM3Xzuf8FAL8fHBOOxWvBLogyKZdeJJjB+XR3VpAZqqcLiqg6qiIpJSs7nh2mv5/SXnY21rZ+iICTxw5/3ERVvYXdjM+Wedy1ertzJqzAgiY1NYsfxrkpJjmX3iDJxeDx5dFB8vvgcl8XyevOdKipqsrN7RxtK1bq65635mTUjlw0WPUrHjWaYklNHS6sHXtJS6/S9z5aOLaWt3E6jVozTsZMLEUzl0yEZwy2s8dtnsnnVc/hVAEv62tu+f6iZJ0oDc6PTnDiT/jU1RBeFfCRs7/ztBRwQfQfjfEv8PCsJPJ/3QhpIDgdvt1jweD7Is92uBQtWoOrCe5g4TTz10Jwv//AFvvLmISWNz6Wjey5Hqw8w97Qxef3sJHe5AhsUHoRozaWjYz/Zd5bS1NbPgiXt56/0lXHz6KazdvpvsYTmkpsfx+6seYN26ZXid7VQecTAoNY2DB7YSE5tOqEXP++99wpjRwxk9ejRfLltOXEoSn//ja1S1g+DAeC67/GI6Wjqxu6188sknnDn3dGRFIiHBTE2zg/gghfLGVobk5uJzeXD7nHz95TpG5o0mKMiAU+2grKSGkcOH49MUAgL07NtZisPbxOSpM6goqyU0zIzBYKGjvYbYhESQHdRW1REbE09bq4PAYJn2NgmTWaGj/QhRESk0NzRTXdeIy9ZJSHgABimEV/72f8ycfRIfv/suu7bt5+Q5p3CoZB9/e/U5iouryR06jNvuuo+n/vwgkfEJFGz8Bwnpw3h3wZWMmPsQzkPvcuv9nzD/uuPIDHOxtXUUdmsH3yx/j1eemkE9J3J411IcgYMYMu5ELr/w93y0cDyS3gi6UNoMJzLtjN+hKHr/8e058v7wI0m9e/30fQtgMBj+a5MPAvLm/+D/JL+2QCJeOH9ejt0vDIjzUDi2/bfOQ3EODgy/5OvOf/oaIX4X/jQ/1zE91l/j/93zcOD9Gf0oiqL07OXTvf5HURR8UjCRUcHYHT4qy1YxKieGgr0bMZt0JMWncahqFxddfx2jRk7EGZxCR/t+DGFZzDllPE/85Rn+tvhDzr74Qr7csZnBmckU5NeRnjWSjRs2oOnMrF+7m8S4QBpaD5GYMoR5p1+IyyNzytxTCVZkiopLefvj1ciqj99fcgH1zQ2cefZszCFGoJ5nnnyI6665ik8++YTDJUXs3VPAis9WUlJeTGJyGl6nistmB52BmMQ4whMS0WQjgeZ0Rk2ajMOq0dhYT6vNSUbOCI6bNI1Oq4vCg7s5ftYpyO42FEWP09WE02FDloOoqG3AaAyg06ojOMhEoNlIVEQap805m/b2VtKTkxg5ejg3XX8nKanx3HPXw6z5fA2PPnA35503h6uuOof09CwevO0RvG6N/UV72bBxN5WVbXy76lOGTZ1HSEwik+bOJsC2ihpnCg/eNYqEgGp0hlDmzDmJlsIN/N/7q3E4XBxusTN6ZDgGVyOyIYQHnn4Sg9vLt9uj2JA/nLUff9B/khsgSQqSpPUEn76jrmVZHtDT3gRBEAThl/Z9Vdmfy6/tD3pCr2M9+PwYAz/8yKDTy+h1sr8tSvW3ScVEh7F303qmTDue/QfK+HzZ52QPisXr6CQkTMZt07Fj3XpWrvqcXV+vpKCkif17vkJvSkB1NTJh4igqDpUSFR3K0Nx00jLj6bS7UXQeGirzGT8pD6RAoiOjaaiv4vXXn8fefoSnHv8TWkAUISHhjM/L49LLbyIiNIb5196BTolgybtL2bRlP9OnzmL1quVkpKYy5cRZZA3PJTgwBNUUjtlooLriMK3NDSiaQmpKJp1NdbS01mNvawdNQdOp1FU3UldxBJPsxIOT6pLdJMWnEmMJRHWryLKM0ZSI0+YhPDqOTWt2Iek13HYrbbZGrNYm6qor+GTphwzKTKSwuJgrLpjPytWrKThwCK/HSmVDGYYgM19v3EFQqIXY2FieeGEhSQlm2ptauf7iUwgyKgwdkce+r96jYONH2B1emstL+WLZt3z41i7iE6MxBBxh/cYvmXdcOHZbK0geJgTvxOboZORgK80bn2Z8VCCrq7OZfe09DBkSStqEOfhsnQCoPZUfFVX1Dz9QFAlF6Q47av/qnyAIgiAco0RIEYT/3IAPP33HHMsKKDp/9cfpUkkdmk1hYTFbdx8gJSmVsCEzabS1Exg1nJThs8genEF6lExM0iBuuG4+F593FjUlWyjNz6fN5Wbzxs2kR1morS1j/NhsHO2N7N+znrff/TudNo0tOwvAaSVn6GAystM4XNHIU3/6I8npcaxZt4F3X3+RhYvuZcOqb6gu3sDSz94mMsbIzJNP5putWygtbmb8rOlcfMHvaG3I55wrL6ZgXzEdLitJgzLRB1pot9tpaKxB1hmIj0sjPCmG1to6PE4bYyaOIWvYMDo9VlqabcSlZJOak8YnX3yIQ60hKioKVW3CpepBcjFj1gQUo5nQ+DAqS4qJCI8hJi6WQJ0Hg9FC7rAM3vzgz9RXHCB35FA+W/IR5194HgGmOBYvfpTmuipGT8qmsnwXYQlJfLV2OTa3TEtrLfVHymmqOoAhIJSYxIk0HdnOKcfP4767ZqEoRhLiJ5GZlAshI1m/9mNcNhWjQSN95l14nB5MAXVUlr3J5IxvKdk8n4aS3cw56STuv+0pf+UHkHs2OlX7DTWQJK3fW0EQBEE4lnVXf/7ZX/tFJeDX46ceK3Gsf5wBH344aoNLRVGQFWhpPcS9t9zP7y45j5RoC8Nyh9Ncup6Y2LFEhJt5deHz7M9vJC4phZhQH39//xU2ff0lg/Mm8cFHy8hMjGLazGl8tmw/DW2BbFzzBVEJSVhCEjjphBlUlucza/IwnB4djXVt/PHxZxgybDBrVq7GZesk0GDg4qtvQfNEMn76SNKHjGfuGfMYPW4UqkvPvQ/cicvdgU5Reffjt2luaGfRgj9x6mmn0F7bgU6WiElKQnHpGZScRmVFER6PC9XbgcvjIiltMJKkw9XpxOc2cLi8js5ONyaDgbKKesxB8djsdipK6vC62pG8GpGRoTitzbQ3N2A06XC17WfDupV0uHQcKCjGbnOxZMmX3HHvU3z60ceMHDcO2WdAMXSiGZOIz8jl27X5rFm2lwCjmcsuOZfohAjKSmuIiE5i2kUPk5CcSVxiLpmzbsfurOLbmlk4VAsHCrcREa6nqrGaieMmYXU4aXe3s3fJTTRbFZrlGfzxfZX4ae8g2W2EW0rYufQuTjvv5H6hRpFlDHp9v3a47re/htNVEARBEP6bfujCV1SHfvt+yRbI37IBfzXpXwfSe3GsaT4kSSMtdRTzb7yG3BGjqWzy8MXSZajEoJhMVFfVkpo+iE1rl7O/pJmg2ByGjBhL0eEOtu/YwsnzTsQUZKGto52Y8CDKSyrJGJRM0cF8Cgv2k5SUS+aQ4TTUllFX30hNbRnz519PXUMr046fhKTIjJ48jPPPm8O6tZuwOd1cefV1dHR0snXjXgJDdVgiwrGEhbJn1170ioHY+FgiI8Nx2FuIjosmP38XTz/+JB5fG1W1dQweMoxDRQUUH6rCI7lx+jy4nBqS7KGsopDaskqKC/ZQsDeftqYGXB4VRXMSERFGYko2mqYSEBqMJOsxGo3k5c3Arovi4IFabr7xYbZ8s5FlK75ix6btnHjC8SSkp2J3tXPSnJk43J0Yg8BsUrjq5suZMXsWY4efSHJ8NhPHDsVsNhORnI3OYGTP+iWUb/8HLY3tzJk7iomDm9hbl0vWzCew+oIZnR3M4dp2Hnujg6YGPWnpWaQl6MkepGGr20PDymtIiotlUIwFWWqntrqJksLCroMt+cMuHLWxae+xH2jELx1BEARBEH6qH3s9Ia4//nMDPvwAfVqgescfG8NSmTnnfDZt2sgfbruY9Xur0CQn+77dgFsKRJXMPPzYH5k0aRLHnXACH3/8McOHDCYxKYq1qzfz5mtv4HS3EJKWw9oVX7Js1T5aD68jO2cIu7euoyi/gqbGWmqb6pAcnQTrJA5XVPD1us20NpYSFR5HefFhbr7tUr5auorRQ8fSXF/HuInjKNxbwDVX3siV113JyInZeNGITRrK7y47n4CYdAxBZmJiwznj1Hncduv9lBTUMGniHPLGTMCo2IgNTaKpupx2awtPPfEXQswBzJo7jemzZmIKDCcuIZmOzkBamssJCIhA8qpIiozP1kZIsJng0BhuuelRXnjqPS78/Zm89PLTNNdUMmvaVK6Zfx3LVn5FztBhpMTF4vO2UlhQTqAuiDVfbuMfH35EREQDry9+hKKSvaTkjWNkXjYNRXso2r+bKRfcTcb0OZx4/o3kb9kAuiDG5wRx8NutTJo2hLqIOVgPLGfRaw+TMusZ5ty5kZqyNqSWfbz19Ak45Qh8odGYAsOJjdKxd9sGSr99p6eyxw+s6zlG9jj9xYm/BAqCIPz2iArAb8O/ewzFsf5pBvwmpwA+n69fCxSAjB23VsT4MUnI5mCeevxWJs6eQ2VFM4PSR7F22XKeePQJLJGh4Haz6PVXePreB6jddoS0xDgiEnM4YfpcSg5tJikzmWCjxsoN5dyQVcOwkbFExQzm8Uef5cLfnUnmoEGsWbMGRYW0jCwWPLCA8SeewFlnzsPa6WTjN1/wlxcXctUlN5I3eRJ6nDzy0C0cOLCHkXnD0ZkCaG12sGXLZobnDiMqNhSXSyYyLooFC/5CeLiHL7/8lCM1VQQHJXKo8BBRsWGoDi9z5s7Bq+mpqa4mNiqGzGEZ1FUdIiSkDastFo+tFkUXQnlNPTnpWdjtjQQFh3Lv3Tfg9DQyefIpvPDSAs4493wCQ804G2w4vU5aq/eiSVHUtXrJzshGI5iTTxrN0k9rSYgew4dvPcsf7rkD1e4kMjyNJx9/mNvvuZWqQ4fYunkv6emxJEyaQ3JiJmHxKYzEn6RPOiWBmQ88w2FtCbVFt/P2q+8SoFO5+9YreOjWJGLDFBpKfJgSOvlwWQ1VLWaGZUYjy/gHHvzANDd/9U8GxLofQRAEQfg+/+yiWPzx69eh+xj+0PESweenG/DhR1W9PSOO+7ZCqbKEx9VJ0uBJVOd/yJBROXgI4KQz5+L2+KhvbKO8pobM9ihe3HSQL5ct48STz8GpNaK6NL7asJaS0gKuOO0iJo2x0Wl3U1hWx6ov1lBa7+LaPwziikvPRA5UaG11kzl8MAlR6Xy9+jNSBuehenTsPXiYEJOTBX99mevPPpVFb6+ita0el6MTnSEEu6MQr0vDjEJB8V7GTpmA5mpFrxiwhAdTXriXULOKouSC5GbXrh1kDRlMu72NCF8sYdEW2h1VJCRE4PO5OFKnog9pITI+CUXzsG93IcPHZyMbzPhs5Rwq2E1UdAh2WyFBpmTWfZVPYekWtm/eQWNzOxGRoQQGGXjh5YWotjbMJjeFBw7SERVK9tBgPChs3b6ZU888k5Mn59DRaicwJIyCfd9iMips3bSHJZ/8g5S4OBJiQogOG4NX9fH1Z28y67SL8Un+/Zjuu+dyHn/0RZ5e8AiDp41g9auvkzJ4Ks8v8XHDRDdXLFrBE+emMX3CUL49MoQzbrj3B49//z1+NAbisLewsfPFi4ogCIIwoP2ri2phYBEh55cz4Nveui9++4457g5C4XGTkLQgEoadT3buRMLCLbTV12JtLOOuxx7hkgsu5aGX32Dy6CxuuPl6DpcfpGDXdrIzU7ju8nNpKNmL1d2AXq9n49cruPbacznhjNnMmj0bS4SJ4tJ9fLF0Gw5XFa4OJ599/jE5Q0fw6B/vITklipRwI5ExiSy67y7S0lP47JP3MZlDCA2JITolhhHDx3Go9ADOjjZUB7y26AXeXPwmTzzyFAse/SsxCdkYokahEY7TaSc6NobIhAQWPfcCRp2OL5YvIzYymegwAyuXrsXRUY3H46GhugZZ8pI1JJHK8p24nXaCQ0zEJQxGb4zGkDiLjrK/k5YZjaQLxhIWTkZ8A+aQUDZt2kJ8ZDTbdh7AYklh2swZlBVV4O7swNbZyYOP3Imi9zLyhPMJsUTQ0VLB0r+v4IabbmXw0FTOPXU6kRES27fuZt1XH3PpBZeSO3wWW5Z/wuq/3ULN1vcICElk0fN/pq3JS9HX6znt8uv4w9XHkxhrocw0ixvnjSQoIZ03v2xn6OjRGAyG77S6dbfB9Q47YECPuf41/ZISL3yCIAjHLtEiJxzrpIF8Qel2uzU0T7+PybK/uoDPvwjE19UGJWuA5N8DSHI10W41Ybe1s2PNWjRzCIMyEvnw7Q9oq29DVRtITMqm4OB2JF8AV86/hoxBqbz35htU1tdz2/334HD6OFRcDh7wKgq7t+zgpntu4WDBRmJCB3P5FTdy7RXnYm1voL4iH4/bxKARxxGfnEJdfQ02m41zzj2N0pIqlnz4ETfcNJ/a6jpefe3/mDxxCmFRkZxw0kzsdieS7CMk2ExZaTkOj4vYyAyCglQWPvMc82++iX27tyErKkaDwqCMbDCGsW/nRkYMGUllbRW5o/Ooqy4iJjITTaeyec1nuBv2kzbxAgJMRgrzD3Pc1Cns3rOXrKxMWtpaWb/qayZPPo5IcwAz5p3KN5vWczC/CGtbLZk5Y7C21BFgjmbv7p2EhsVQVXyQidOOIy4lgqLtBwgMjWb33m9ISg5l4XPvMe+UWZx1+RU4Wsrw+sBjV7FExVHfUElbRzuTx4/Bqw/lomEjeez99wkMDORwdTMzThqHR1WQJAlV6w08six/95jTu/bHYDAM2N2kfw3hQrzw/TzErubCQPDfOg/FOfjbc/Tr1X/62iB+FwoDwb97Hg74yk93xUfT/MHG5/OhqiqqBKrUFXrorRTIihcpIBrJt4tbLr4aT4CZKSfMpLiwhC0bviFpSCrX3f1H8iYchyU4FtnsY9u2bWz9dgdVVc3Mmz0PnTkCc2AUk6ZNJmPoUAZnxXH1/MtZ+ukHDMuZTqe1ldtuvZRhuTmcedrp+Lyd7Nlfhjk0nDGThhIbk8Ccs87g5Lln8dmny7j77tsxGrwkpsZwwozT+WTJ54wYMRK8NuqbW/DJPpxePVWVdiIS45A1J1998Q+W/eNrbM3NjBw5nF27SsnMGIy9Q8VaV0pWxmSMIRo5QwfT3tFKZGQ0ikFj25aPGDvjNGZd/TjO5v2Em2HoqBE0NxaTlZhCS3MjkRExTBg/FWdHJ8bYAD5c/B7FO/YRbNLx8Qdf09hUBnYXG75ey/6tG5BcLmIsFhqaayk9VETWxAkkpiXQ0uRhUMZ47r/3AU47/yw8TitSYBRep4fQuBR8NivxFhNem4+rr74TSZJ4r2A/WSNySUqPZ+KsiXjU7mEW/tZGJBWp56CqPefAr8mv4a9qv4aAJgiCIPyy+u4XNNBftwTh5zLgw09f0lGL4WWtKwChQfc4bM2AjERo9BTeX7WcV//yDK8ueoEZJ87gvaXLOPnEU7C1NLHwqSf4wwP3Ehw7lF3bNvDu629yqCqfzVs2ImseXO5OrO1u3O2FNDd20umAacedjMdtZ8+e3aRnDqa2pYWXnv8TqieIVpeb/bt3YW93s3PXNkySyrJPP+PGm6/hcG05bc1ufG6NnCHpuBydFBcU8OyzizDILtxWB22N1SQkRvLWi+/x3HML+eOzz3HTjZexdWcho/Nm0HKkmLXf7ODqG64jJDIGU3AgBn0EHq+TIEMosikUr8fFuHGnU1G0E8WnJyx2NCvWbSNAUum0K4QFG/17Jbk68DTVUnJgN43b82moqaeirA5HYw333XMTGbEZ7D6Qz6wp45k6dhKDc9IoOlBMamw8RoOeQ5s20NFczrlXXsy2PYUczC/G06mguVw4m21Ex6azb/nL6IKisfrMKD6NU2eOp3R/BUY5AE2R8enNoPlAlpAkBU1S/cGne+obgHb06fmrOl0H1AvJ0S9wA+m5CYIgCIIg/LcM6KtJSZK6Kjt993rRum77A49OltAkqWcItv99jc7Gr1EDFJZu2UBQYACu9lpW/GMp0VFmTCEunn1jIe+89jbl+XsZPWUGqWlJDB02jh179lK8fyd6nQHJ04ZPsqAzhtBaV8LWLRt544U3iYhOpb2uluyMLGTNRk1jI7c9eCeTpk3CZXdz2RWXozfKKMj8Yf5dBJrD8birqagoZdM3K3nxry/T1tbGcRNHER4ezo4dhSxY8CILHn+Yz5Z+SkpqPIvfeYsASwRDc+LZsXctJ51+DlPGjeOd9z7CrenR6cooLT2A0Wihs6WM5trduNqbaGmuJjt7BJomYQyJZlxeNkX7CogKDmbz2hUEBkbhwkzC8KGMHX8y6/d8y6Y9B9m96xsGDx5HcHgg23buY/Sw0YRGRzH25NF88O4bmNKjCIgMxdHuIWvCeFxSCGbZx5Spoxk1IZeaxnrqaxwYgwwYAgMYMvtqmtoqiYxLITV3OPfc+wyBJpny0gY0CUBGVvR0H92ewQYavaFHOnq+9a9v3vVACBkD4TkIgiAIgiAMBAM6/Giar2dNT0/gOWrUce/oa/B1j8OWJMxxJ+Cz19BUv4Zrb72MiOQYFj//ZzxSMFtXrwenhWtvvp5XP3ifgvwSZp5+EXaHi0uuvBRDwDCszRW4fRJp2YNJTk2izdZO7qjx7DhwgEnH5ZE5PA+3r5741Mnc8eBjGCWJUSPzSEiOx27vwNrRDorEK4tfJCwsgt9f/gBRUTFMnHwqVlsnQ4YPZs2GAjraXIwdPYb511zFgoUL+cPVNzJk6Gi++PwL9LLCRRddzb5dBbz6f4vRm0289drfUO3t+HxGYmPjUNVOAsKSMBpj0AUnYwmLxGaX2fXNGqTOZiz6RLJzh9LQ2Er2hKlong62rPySjiOVhMUEMnbibGaPG8GsaWNwG1QUpw1TcADhyVE0tTThCgjllnvu4exzziPYEkR0WhoNDY2899YS6lvasLlaaa1vJD01mudfehFFCaS9uYlAg5HYiCSs9lY0n48VK5Zgs3XgaKrgpade6trQ1B9mZEnyBx5NRut7Svap/PzaWt/6+l+GDxF8BEEQBEEQeg3s8IOPo6s+kiQh0/vEuy+Ku4OPqqo9HzMFxROXOAfJEIbeHM+6on0kpIRx+gWnsP/ATvL37cVHKw8/+xRjJuRyxTVXU9/UzrBR4dQ12Xju+VdxOt2YAgyMyJtBsF7hjpvn47BDgCWMV1/9gjXfbCUyOZm8vBNYt34rFdV1mExmvD4fJYfqObB3H9u+3cR111zB0hVfsXHjKha99CJ6vcJVV5yGJEmsWrkMQ0AQqBCTFIbeEIiGjuknTuHjpa9gt/m48aZ78DkcbNyyDbPZjEkxUV5Wgabq0ONG9clYO2qoKmsiMERBp5OpaXWwO38P9qZWzIEK9hYf0ZEW8qZPRh8QxF133UFsYiDVjVW49bG4nCoN7VZGDE4nKjyQ6OgYnC022jpacbe3cOXlN2Ey6nHbHYyfmEZ0mAXJZSQ03MCB/Hwee/JBVIcLnU6Hz+XG4/OSv/IlnE4nbknBbavGGBrMjMljqC8r8Q+n0OjX8qZpWk8oOnrK2689AIkgIgiCIAiC8L81oMMP0BN2pD4jj8HfAKXib3OTJAmlz1jkvnvD9G2UkmUZVRdA1KAJXHj5uQwaHIAl1MzrT97FufMupKmpnBOnpeBWgpAMIVx3zUW0N9ai80Bjcx2BkXF0tteh16m01FQzdcIUMrNSePZPL1O0fzsfvv93PvrgQ9qsbsJDIzEH2YiOM5Kens7Y8ROZPGYEHq+GLGvY7B149CF8+vGnDBuZxaLnnuObjZtJTckkKSWR888+iw1frSMwIAaMPtZ8sZx9ew4xfcpk7rjjj7Q3tRESFkRdUxtuzYfd2ow+0ExHcxuyPghZ1pGclERUZCI7DxRjkAOQw2XWLFuNQaewf/MaHnnyERb98TkaOztISQ6ixdqCIcDAru37uPOupzhUsh+H00tR/l68sswrLy1EwkNkcgIWSxxLlnyCz+PkSKODhLgcnbDxpQAAE7xJREFUDuzejykkGqQA6tpbqG1sYcwp99FSugNNkolKGc665S/SYfNR11CLrDlRta7A01XlkeTe91X119fm9q9839qbo0ORWJcjCIIgCILwyxjYo67tVk2SuzY1pX9S674sViQJn+Zvluq+j9r1cZXeakH3/bppmgaq2i9QdVeOZMmI5HPh9nlpa2rkSEUNyYNyUG0tmAJD0RQvqgoXXHAFr736Mh/8/WOmHzcTvSGII1X78KkmNm78hltvuBSHJKHIEu+9s4TLr7yMDlsLX376CSPzjiM2OZGmphacNi/XXncDf335RTZtWs9FF5+N224jPCYcm8NOZFgUb736IU6vhwC9h8ysXMxBQcQlhNNQX4qk6DEZdBiNehIz8ji49RscLhfNHa2MyZlAQEgAzS2NBJn1uDEQZNLT1tEKPj3moCAaa6rp6OggI3cIJknijXde44ILL2bxqx9y7XUX4NMFcO2F17H4/cX4NDtFRYUYZQvxaYm0N7TS0t5BdEwcOsWHTpZo6Whn69rtzDh9NrK7ikfvuIeHnnuNtpY2wrRGtuY3kDsyl9Z6K+NPmoaiSCAp/kpQv01N6bfPj/+2//2BPOr65/RTp7KJAPXLEuNdhYFAjLoW/tfE70JhIPhNjLru2+4k9anqdFd6lJ5F8r2bn/abFtalez3Q0SRFQZMkkGX0qowmSSiKgk5V0WkdOKyFBEj7GJw3AgI9HC7ZwzdfL6e+vp2FCxbxyL03s3v7Aa649BLccikhQXryxo7H4fRQUphPp81Jc0MHd939GHoJFi18nuaaejKH5qF6VB58/FGMso7ISJmX/7qIjEEpDBkyjJqyKsyBUegkMxZzOBWVNZz7uzM54+zT2LOnlPyDRQQEBrF82Qpa6howGcIJj04nJHoQAMPGzyQ8xMK4yTNweLyUlRcSHhWPxxyDSVN45813sDpVAoMs2DpdtLTaCQs2E2wKprXdyblnX4fP4eSc807l8OEGKkvqeeW9xVSW5mPtUKgqrycuI5nW5jY6Xc1s2/AtJSUHOP+C8wgIMrJo0UsMG5PE5x99hNcVzM0PPc3CO87CEhJIRWMQW7bup6G+mfjEMDoOb/AHmu+EnN5jeqwTVSBBEARBEISfx4AOP9BnnU+fjS6P1r0hZvc3I3VVioB+YenoKk/fj3l0CnqfAk2r8ehUvIYwLJEjCY6fg8lsItiYxoipJxIZH0dp/h7OPXsqCemp5I0dwvp127j+dwvRDBJnn3EZUeGBPL7gCTrckBBn4ZmnH6Ozo4WszBRSByWSnZ7F9vw9xIYnsvKL5ZSVN+H2ONi8ZR1TZ45GMmoEBsg43Z001tXjcbeh1ys8/uhjzJ07h6VLPycszIrskdi+u4mw4BDCIyxYLBb/z0mn4vY6qTlUSGxCOF6fi9ojhzAbrFjtTZx30YUMSkrGHKjHINvJy8slNSObIw31xMRFUVVVRUhcEhHhMZgDdbz0/HN0WptISM8GzUFGTjplBfn43BAWHM2oSSMYM3Yay5cvx2m38uSTTxIRGsPxM8aBQUdbfTNW3WgUg4P0lEQuufh0jhw+jFNVaSMGZM2/7of+63oGclXyv6Vv6BEhSBAEQRAE4acZ0OFHkr097/+Yi+LudULdeoLQUWuCVPqMWJZUvDoVX8TxKF0bbkpy7+f1eiuK0URO3nSmTJ3OsqUb2b7qA6zVBSQnBfLUgntYt2wNI0dlM3hoFnabk3vvux27x0dVXQsnnHoKERFJqJqePbu2cfYZ87j09+cREBzEm4tfJyUllTETp6GTdYSHBtHYVEd9TTWRsWHUVNdSXX6IZ555mpdfeJ5LL72UihorgWFRjB05iKjURCSdEVn2P28FjdI9a4lPHMLunXvwehTASd2RDjrcLhSjCY+7Ex8SK9Zu4c67nkDSZIKD4zhUdIiktBjaWxzcfc/jNDZbueWB24kO0OO0O6mpOkyAXofH7iMyIghLRBiZg3NYsXw5VpsTxRhGff0RwmOSqDlSSWCAmUNVRVhtLez+4u90GnSkZqYQk5SGJTiEYGMEnfXbewYd9A2536n6SL4ffQ79FokAJAiCIAiC8J8Z0OEHdN+Z9PVDk7++rz1K0rSeRfOapvlb3Lr0tMxJEjpZ7q0aSRKqpHUNVJDwofYOVZB1BIWo4Crmlvvu5rizruPlBQ+Slj0CJRKqKwrpbOngovNvxNZRxqKXX6Dy0D4kewOJickkJIXhk1TGT5mI3hRIm7WZlKQhXHjRFaxetQ5NsVNdW4lb9REdF0twVCxIXsaPGU90TCKrV60kLDKMMcOziQtKQU8nU089HlXTeoJP9/dw+vWPUVb8JRlZSWRmpmFtNxITEYXX7sakD+Ol51+krLiAuaedyuN/vg+314NOgb17DoJRYf2Gr3hywQM8/shfwC2xvdRGe4uNuPShRMQmoUgdSAaNitJynF6JGAt4fUbefOVNJE8LNmsnoZYoPLQx55QzGZScRVFVFKW7v8BhLefNv/2NkLBwgkL0mOUEavbc6j9O+Pyjr7/nGKMp/+F59NsjqkCCIAiCIAg/3oAeeOCxd2gqPiRJ6R2DDN95v6+jF8hD7yCEvp87eo5Yd/jx9bmPfNTtXhIyGi0FzxMy6HokCdw2B41N7QSbjWAw0VxdzrdfbWLehb+jrLSI/fuKmHXCdNyqj8AgIzZbE4GWOAr37SMsMIbTzzmdHTu3ceRwMclZKezYvY+wYAsur0pkRBCx0XEcOFhEUlQMRoOJDnszMelZPS2BkiSB0n9fHAUJt2TFd7gSpyGK5oZ2Pvv8fS699hLaqpsIT0wiQOfA7dbhsntRjEYaGxsJDtdQbRHUNuSTkp2LQdHx9bLVJKYkkj06m7PnXMKTTz1GZmYmeoNEXeURdAYFLxI7t2xh+omzsDs6CA4Kozh/Nzm541n28Ts8+afnWXDLTCbNu4q6Zi96vZ6oaAvhMYFIHge+gGwkSeu310+/n73kQ1N1wLEz8ODHOnpAgghIvyyxyFcYCMTAA+F/TfwuFAaCf/c81P3ST+Sn0DQfSP63mtZ9Ieyf5yZJctd9esOJz+fraZvqe9Hct6oDvSOUuzdE7Z4Q1/c+0L8tTusXivz/34Xm/ME/HQ4ZY3AQCUGBuG1WGve+QPyEWyl44w3a33qVKEs8p86bg9vnJjLYQlNDM4EBoWz7ZhdxcRFEJ1nYvmczDmslmcOGUHzoIEMHj6CmupThOYM4UlnB16u2UXm4kM3tTlq9bu5+/D50sgZd089kWe6pbGldlSANMBKMljoEvaoSYLZzy/33onpVFE1G0hmZf/XV3HHf/QRFRxFq0mE2GTE6QymsLyA1OZOyov2sXbOFq664jIAQCzpJ5smnHiA8KgSHoxm3TY9O9tFQXkN4bBgZQ1LZs30baRnZOBUbtk47Lnsz0085laSEbGTjClyqQltdHTqTj7A4HT5PEjbXAYICeo9Wd8DtN7b8tzf5+mfXN+z81ElxgiAIgiAIvzUDOvx8PxV/0ee7FSFF8bdF/atqlizL/ulvRwWfvrofV4aeUCFrvS1xfR9L1fA/liZhDAohcfLdaKg8/Kc/+cd0q2CQ26ivKmPJe18xbdoMHKqHtqb9DM2Zjeaz09Tg3xy1oqqSlIwhVJfUEiAb2PrNQYr270VnVDjjgnMwxUYTIIEk+QOO6vMHBE3uDQl9g4OqaSiyjF6SMITF4/MpyAYZS3Q8Pg1eev9T3KqThsotdDrCCbFEsuivL3P1lZexef1GJs2cTlbmMA7sKcKDm7iYaCIsIZQcKCd9cAYBAR5Co+OprqgjIiKB0l17mTx1Fl9+uYLx44aTkpLD4dJCRuYNpcLkwl6sQaaFTkcBjZW1jJ4yG4+nDHNAnP/Y0nsM+wZP/5ogH2i/wlP2f0RUfQRBEARBEPob8FeS/2rUsab56K4W+EOPv8mt5+K/67N9QxL0rvn5vuAjA2r32qI+/06Vur+m1lV50gAJSQJJPWoNEjKS7K8y6XQSPi2MyOSxnH/V6J6Ack7GZP/jqiqhXc9Hp1h58ZGbOPP82zhUk8+QrCkMTysiKP1SJIPS0+YGoKkAXSFBktA0FZB6P0afACFJqJoBWQFV1VAUBUlVQdYwYCQwYxrgr57dfOPZ2DuamXzcGGRMVFdXMWJoKh0uHx3NNkKjw8nKVQmwBNN8pAazOZIDpSUkpqeSm5NFe2czSQnxFBYWkJo6iCONdrK8Blo7rDjQkD0uVn76Dn+4cyGSXg9yLHqDgiK14pbC/cdK9Y+/7v6p+jdCHfCnqyAIgiAIgjCADfiryaNb2LqDg6qq/YJPr97bfYPN902L624PO/q+R7e7dTXaQdeleGdnJ8HBwd2PhtbVfabQP6h5NRVkCdTeryPLcs9mnt1BRu3TzyXJ4Vz/0CsgacTlDO4KbVd9dzNWQOtTtuoNZL338X+b2nc2hEWW+32PXU8M1etFp+gJjs4hIFLD63Sho5OaynL2fHuErNEzaGqpos3WTlhoBAbNRUenB7O1jpYjjUg6Cbfmo6OxmdSMQezY0UawJYzk+DT0ukAGpY2hWA1j+9rXuP/pl7j++vt5b8l7SM52PEo6Tk8husAw0OTen3a//Z36/6wEQRAEQRAE4ccY2OFH1pC+ZyBd/0CkoWm9m5v2DTl9o0j3JXN3FUgF6H7bR991Qd2DBFRNQ0brGX4QHBwCPTUJf+VH1sDXZ6m+qqpIXa1oKP2/jiqBrk+I80+YA50k40MDRUaSutq9up4nPd+vhCTL+BfAaD2tfnTfX9OQe1rgoPvHcfS6p+7pd92DIEACWYGutUJ6vYxeVtC0AHLHz0Md50On6IlJyeTQjhVsXbOGoPhMkAKIjUniytuvZ9Pa1UyeOo38g7uxdjiJjQrF4bZiMNpwqV5abfWsXr2Smy4cjrWzivseuBWT3o3dG4pBZ8MrJyGhoEkqGiCj0LeeNpCHcwiCIAiCIAgD38AOP8jfqXgAPYGh78elrqpGT/jo8yiKJPUEoe6x0Eevnj+6ve7oTVXVrsfpaqrreXxN0/yhRdJA69MaJ/c+noLkDzV9Htunaf6RzoqMT1WRjrqP/0tLPSFIknqfT9+BDSoacs99NWRZ6fq81puXkND6hKPuf6t1bQbbFX16wp7/fqp/loLkD1sKMhoSskFP9qR5DJ58mj9odYU+fCrzzjmXJS89zunX34esatSX7MWtmWhqdZPi82AymVj31U6uOyMV1arwl6ee5C+Ln8AcEI/qbMJJIAYlrGc/JpXe5yrR24ooCIIgCIIgCP+Jgb3Pj2JCk42okgFN0aNK4O1ZxyIjSQqyrOu5YFe6prf1ndwmSf2rLn2HAfzQuOy+G6H2tlxJ3zMRzv9xr9YbRmTNXwVSuj7X3QrXPXq65359gkb3+33/6923R+oXfL5T3er33Lu/N/8tVdV6bvvbBHtbyP7ZqPDux+r/8+h+juD1euheT6TJEqrHi6zXgSJz1o0P9qxBUkKiCTT6yMvLo6y8iLIDBZx80iR27NiAw+Pmpb8+S0hQMApGnD4PsmrlSPEGJLnrOUi97YHa9zxXQRAEQRAEQfgxBnzlB7o6vjQAHbLUM925t07izwi9jWj/5jWy/AN7Zmqo/gvvrpYyVVXRaRJeqesCXO3+6v6vKMtST3tZ34oPmtZTCZIluadtrm+7W/daoH/m6MDSM/Cg67a/3a5/COoOKr2BqPfzfcNf7/tqn7DVG9J660Ld95MwGIx9Pg56k7HfY/rHbmt4nW7CLVHs3PUtqckpJJ0yjNrGRkZndnKo+giRYVnI3nIiI2RkDTRHJRZTMJoPJEVFUyUk+Yc3thUEQRAEQRCEH2OAh5//FblrmkDXLcnfztbTUif3X08E3x+4JABNh0/2ohx13d69H6mk0VPh6J5W932Vne8LAN3/pnt/I+hbzdG+E3qOfsy+Icz/fu96oZ7vXVZ6psj1TrjrHa5wdEWq71tLiMzOnZuoLqkjLdSNs8PGzDExFK15HWuYh4TZw3E6jbidKiEBJuy2KIKCNWRZQ0PqrQAJgiAIgiAIws9AhJ9fmvTd4NOXv4ol96zxgd5k9b2BSvrubYPR8P1fus/j9AYhf4ue1r3mCLWnJQ56g5QkSSiK0jsMwf+vuh6v75jv/u1xfcOQKSKFxOQmBiUEEZmUi8vezhXzX+DaeZmMHZ1Owd41ZI2/HTQHXqMRfWwCEv72QkntGvIg9X3sH/45CoIgCIIgCMK/IsLPMaI3pPS2EmrgH2bwA513PXnsqNv/NIP0GUyn0+tJHTal51P68HhW7tyD6iil5sAnhKVdgmT0YcDgH0TRFXb8ww28yJJM9ynaP4QJgiAIgiAIwo8niXUUgiAIgiAIgiAcCwb2tDdBEARBEARBEISfiQg/giAIgiAIgiAcE0T4EQRBEARBEAThmCDCjyAIgiAIgiAIxwQRfgRBEARBEARBOCaI8CMIgiAIgiAIwjFBhB9BEARBEARBEI4JIvwIgiAIgiAIgnBMEOFHEARBEARBEIRjggg/giAIgiAIgiAcE0T4EQRBEARBEAThmCDCjyAIgiAIgiAIxwQRfgRBEARBEARBOCaI8CMIgiAIgiAIwjFBhB9BEARBEARBEI4JIvwIgiAIgiAIgnBMEOFHEARBEARBEIRjggg/giAIgiAIgiAcE0T4EQRBEARBEAThmCDCjyAIgiAIgiAIxwQRfgRBEARBEARBOCaI8CMIgiAIgiAIwjFBhB9BEARBEARBEI4J/w/4zVsk2+b/GgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "286\n", - "section_masks_286\n", - "{'width': 3791, 'id': 286, 'height': 2661, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain'}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAACKCAYAAACEuvQYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsnXd8HMX5/9+z19VP3bIl995xwQUwGNOrv/SOCSQBDARCSegtBPiFEGqAEEroHQym2Mbghg3uuHfJ6r1dLzu/P3ZPOsmyMQnYlj3v1+tetzc3Ozu3Ozc7n32eeUZIKVEoFAqFQqFQKBSKgx1tf1dAoVAoFAqFQqFQKPYFSvwoFAqFQqFQKBSKQwIlfhQKhUKhUCgUCsUhgRI/CoVCoVAoFAqF4pBAiR+FQqFQKBQKhUJxSKDEj0KhUCgUCoVCoTgkOOTFjxCihxBiTru0rf9FOV8IIUaa2ycLIeqEEML8/KgQ4pKf2N8lhJgthFgohFgihDgp7rsThBBfCyG+EULcFJd+m5n+rRBispl2jRBi8978BiHETUKI+UKIRUKI/wghbGb6LLPMb4UQfiHEUDP9PiHEd2b6MDOttxBiuRDCI4Q44ueeN0XnQghx/f6ug+LAoaP+8xco81shRLdfssy9PO5W832EEOKWfX18xa/Lbu71J/7Uvbld/lgbOVoI8eJ/WQ/Vvg4ghBBpQohLfyLPzx4T/hIIIe4VQly8l3lb2qQQ4k+xcdu+QAjxxt7U60DCur8rcBCxEJgIrDTfVwCDgbXm52d/Yv8IcJWUslAIkQksAr4wt68DTpJShmKZTXGUKqU8tl05HwD/AjbsRZ2fllL+3SzvP8DxwEwp5fFmWi4wR0q5RggxAhgrpZwghMgH/gMcA5QDxwF/34vjKToxQggLcD3w5P6ui0LxayGlXAWs2t/1UPz6SCm//LXKFkJYpJTRDo6p2teBRRpwKcaY5qBASvnwPj7eRfvyeL8Eh7zlZ28RQvxTCHGpEEITQnwlhDi8XZaFQMzyMRz4J3CEEMIB5EopC/dUvpQyHJcnAOjm9ilAHTBDCPGlEGKwmX4u4DQtP68JIVLNciqllOF2de9jWmxcQohjhRAfmXlD5vcCoy20f7pxIfC2ud0PWG7uVwz0FEI4pJQ+KWXdnn6b4sBECPGwEGKxaVE8QQjxvGl5/E4IMdbM84oQ4jkhxGfAeUBX88n8HUIImxDiRXP/hUKIscJghvm0J8Esv+f+/aWKX5lUIcQbQohlQogbhBDHmG1igRDiEyGE02wLXwgh5pntp58QYpAQYq6Z9rUQIuunDmS2q1VmG3tPCHG5mf6qWe4KIcTpZtrlQoh3hBAfCCHWCiGO3FMZ7Y4Re4J6k1nHpUKI+37pE6fY56QIIV4y28kfzDZyJ7RYHB8WhufD1+a9GyHE/zP7secAW1xZ+WbbWiWEOMfMe6/ZZ84AzhVCPGL+F1YIIX5r5olvX68IIZ4WQswUhsdH9j49GwqAm4BR5vW/zLwWc833Nn1SR/c8M73D6yiEOM/8/I0Q4jYz7Ryzb1wohLjbTDtaGOPKNu3J5Bizr1olhBhg5t+lXbWr5yvC9MQx++TvzfyXdZDXKoT4UQhhNT9fJIS419z+q9k/LxZCnGqm3RhX3g1mWswiajf/XwvM74e3O9ZQIcQc8/y+K4Rw/eyr9UshpTykX0APoB74Nu61tYN8TuA74Hng1t18vw2jc/wUyMJ4knAE8JaZZ3y748Rek9uV9W9gmrn9Z/O4dgxRtchM/wr4m7k9HXi4XRlb232+CHgT+AHIiEu/A9gCfA4ktNtnOdDL3B6EIfBi9YhgiLpY3leAI/b39VSvvW73J5vtQZifzwJeMrd7AT/EXdc/d9SugN8DfzK3c+LaZhawFHgLOG9//1b1+lXbUQ+gGkg2+75VQPe47x/BeKp6GPBmXLoGuADN/Hw1cLe5/S3QbTfHWw7kAwKYBVxupiea7xnAWnP7cuBjc3sC8P5PlLHVfD8aeLFduZrZDxfs73OuXv9TWy0DEjDu1zvMNnJnXLs709x+ATgVGAl8Gbd/OK6NrDXbfAqw2Wwj9wLPxx0z1n4cZh5bu/b1CvAHc/t2YPr+Pk+H2su8rnPM7beBceb2GbSOsWJ9w+7uebtcR7MvWhPXBiyAG1gC2My0j4ChP9Ge/mHmvTCuPnvTro7A8D6aB1hjddjNOXgcOM3c/gLoDZwIPGemJQCrMfrMZUCyma61Oz/XAA/FlWtpV6/5mH0ocMP+bO/K7c1guZRySuyD6MC/U0oZEEK8DDwKdNnN91XA/wErpZTVwnAbOwJDNCClXIzREHaLEOIuoF5K+bKZVAfMlYaVZnXck4g6IGay/5KfdkV6G3gIeFZKWRtX778IIR4Cnsa4ETxr1mMg4JdSbjfzrRdCvAnMxhB56zAGPYrOyRDgG2n2QkAfjMEdUsrtQgh3XN7vdlPGUGCCEOJE83PM+lgthJgFTJVSXvDLV11xgLFRStkMIIRYC+QKIf6FcWPOAZqA14DlQojXgVrgHgyR/HchRApG21m6F8dKloblGSHED+a7BtwjhJiA8VCme1z+5eb7TozBSIdl7IGzhBBXAhLjoUC+WZaic7JBSukDEELs4pLGru0lEbNdSsMlvTIu70ppeFmEzXt/7N4c319eLYQ4E4gC2eZrT8fs/fN/kuIXZCjwsDCma1vZ1Rumw3ueSfvr2Bv4UUrpBZBSRoUQfTD6p9nmMdLMzx52357iyz3O3N6bdgWG+FkopYzE6rCbfK8CdwghlgIuKeU2IcT/AZOEEN+aeRwY/4k/AE+alqLnMce3JkMwBB1xv7l9ff5jpjmBX3S+6M9Bub3tJUKILsBvgAcxRERHLARuxZivA8ZTpnOABWYZ40VrIIH4VyxYwXSgLxA/GfJbjKemCGOuTVNc+mhzezS7/knbcy+GK95UIUR3szwngDkAbgR8cfkvAdpMYpNSPiulnIQxv2fNHv5IigOftcCkuM9bMJ6OI4ToBTTEfRd/nSPmYBMMAfwfKeXRUsqjaW2nQ8yyZggVIOFQYIAQIsm8GQ7B6GvuMfuKGRhPCx3A36WUF2M8NLkE4+nom2a+F8x8P4VHtAZDiPV/w4FhwJHA2bS6DIMhWmLEyu+ojN3xAHACxvzGHXtZR8WBi/wZ3wuMfnEUgBCiAEPMxxhhugwlm+k1ZnrUzO8GrsDoZ0/AuMd21H46aqOKfUeI1vnv64AbzXvaEUB7l7IO73km7a/jVmBozLXLvG9uN9OnxO3/hbnP7tpTm3J/RruK1XeCMObrEnfvboM05qF1B66lddy3DpgV91uHSSlrgBVSymkYXklPtCtqLXEP+Ds43lrgArPMccD9u6n3r46y/OwF5gV8GcOsuUQI8bYQ4hQp5cx2WRdg+I8uMT8vAs7EuOB7tPyYPqJPAIuBb0xlfKyUcpMpkOZjmDZvMHd5BfiXEOIbIIzhWoLpK/o7IE8YkW3uxnBVGyalPEMI8SXwshDieOAxYcwhis33uccsQ2AMIsa3q+MsjDZTi/EnwXxq+yGGW9xgIcTnUsp7fvqsKvYnUsrPheFnvBjwY7gnRYUQCzFM1dftZtf3gZlCiC8wxPRTZhsEWCYMH+YXgIsxnlTNEkIskFKu/DV/j2K/UogRZKUvxhPECuDfQohNGDfmJoz+4UkhRASjv7kMw93kaSHEBUDpXh7rZuAzIUQpxtzIELAJo2/8FsPtrmG3e+++jN3xIUY/vhHj6aziEEJKuUIIscHsJ9diPNCMUQa8B/TEcJ1r/5S7AWMAuRAjAFEtigORCsAvhPgA42HNfUKIJPO7l4DX4/L+i3b3PNo+rG5BSllnetV8K4TwYbhPPiKE+Acw17Q8tozd+On2FGOv25WUcp0Q4hPgOyGEF6N/fnU32d/BeHDVzdz389gDewwBVoLx0Oo1YQTicgLPtCvjReB5cxwRwhgPx3Mt8IowIwsDf8XwJtrnxPz9FQqFQqE4oBFC2KSUYfMBzZfAHVLKZfu6DIVCofilEEIcDVwspbxyf9flUEFZfhQKhUJxQCGESMewusQzA9gsjDVSEjB82f8b0XLCL1CGQqFQdDpMDx57XNIPUspb91d99hfK8qNQKBQKhUKhUCgOCVTAA4VCoVAoFAqFQnFIoMSPQqFQKBQKhUKhOCQ4oOf8hEKhvfbJi7nv7SY6huIgw26377ML7Ro5XfmGKjrEv/Jp1Q4V+5191Q5VG1TsDtUXKg4E9rYdHlSWHyFpWb3VEEEaUkp0XW/zrgSSQqFQKBQKhUJx6HHQiJ+2gRs0dN2wAsXSY6LI+E5HSoGUhkBqfSkUCoVCoVAoFIqDlQPa7W1v0SPGAvRSxJbCjSKEQNd1w8qjS6QwXeL0KGgWI387VzlDEMkW0RRLb/tZR6FQKBQKhUKhUHQ+DgrxI4QwhI8uoUXISDRNa2MRktL8XkYBrY1lKPZ9e2tRPMb3Wtu8ugYirFzpFAqFQqFQKBSKA5yDQvyAKYC0uO14AROnS1oFTRRNsyAlLRYiISSG7Uh0kL+9Bch0pSNimJxoTYu3GGmaUb5CoVAoFAqFQqHYvxwc4kdrFRtxiYYQiTfexIkiwy2uVdAYoiWWUW/dX+wqhNpbiOK/a4+uY84takusDOVKp1AoFAqFQqFQ7BsOuln+rVYXU4yYwiimP2KCo2UukIzGWX1MEaMbgiReGO1yHAmatqvrXKyM+Ohy8Wlto9HF0mOR6Yx3XTdEkwrEoFAoFAqFQqFQ/HIcNCPrmBgB4iwqJlrrdvx3wqIhhBH8QEMgpIaGAM2ICtc+fxtLj6BN6Ow9zRPqiPaiKt4iFTueruttItNFo7LFWqVQKBQKhUKhUCh+HgeF21vMyKPrepsgB61zeQQaglbvs1bNZwiXKGhW4x0NgQ6IlvLi80KrUNG0VstN/DyfeDoSPx0Jplg921uL2vzOFlEE0Jq/tSx9V+GnUCgUCoVCoVAogIPA8hMTC/GCJ/bZsOYAukQnXki0nWOjaRq6HqH1dGgt6fHERIWRru+VyGjjZhdHRwKnvTWo/T7x4iteJLX+HsN1LjbPqHUtI+M7FXdBoVAoFAqFQnEoc1BYfqSgReTExvoaokXuSClBgtDMOTwCjLWALKaAiC12qrfkj33XkQBpXSzVPNIeNNCeosXtLn8sTHf7/aWUWK1WolFjXaNWy5QAYnOJjLrFl2NYpkBDousdi6u9qZtCoVAoFAqFQtGZ6fziJzaYj4mSDubnCCHQMaw/saG9kBoSaYaj1pBRHanrpjDSjHKFWb7W3mpjuMfFyu4wIMJu3OD2RNsIcHQoRiKRyC77tEUzgzi0XcjVsIRpQHQ3++1qeWr/e5QwUigUCoVCoVB0Zjq925sQolWcaB0PzjuKuKYTBYyAAtFoFCmjLVYjY7vVRyy2Tk+rONDalC061gst38e74hnCKW5fIYzocrrAJiXhncV8894M/HX1aNFdAzW0Cdiwi1VKtvmtrZjHF7v3e9vtPKMWzzqzbN14tZ1rpDjYqF/69P6ugkKhUCgUCsUvTue3/GAO0DUBppjQdR1BO4FgWnFaXOQ0i2khMeb7tESKk+Yyp9Jwp5MCBPFrAYkWQdDiQidpsTiBeRytNQ+AjOoIXVJb30DN9hKaGyoJ+SL0Hz6Ib76cyfiJh+FydyNS1cDgYYNprqmkvryKpQu+pClgYUC/fL78ajHuzAxGjxnG+BNOaKkXWvycpwgWi4U2K7uiEXOLazlnQhh1EvGBIFrrrJkBFSSm4ImFBm8poO3irTKqI7RdLUdCCDCtUIoDg70VNj+Vzz1m+i9RHYVCoVAoFIp9RucXPx1Ye4QQrcIAU8AIAcKcHaNB6zo+UayarcUiIwVo0nCTY3eR2jBc4aSuo0eiCIsVIc1w29IQBV+89xWDh/TBbrFjsUQo3LQE3buVl95bz6WXXcSCJT8ybkRPfvjiYwYOGY5wpOCr3I4jaxCRYBXPPfsy27fu4KnHH+Tttz4jISmDU089lrxu2RQVlvHGc0+Sk5HLJ5+t5J6H/0hG1ywjQrcl3phnLNaKGb0uJuhazpNF20UQxX5j7F0KDJdCjN+nYwij+HzGznrL6Wq/jhEy0uFisWAEj5Cd3wB5wPJrWnA6KlsJIoVCoVAoFAcynV/8xM3JiXcLk9G44AVgWDAEbVzUYlacmMtbTMBIAUInzqJiLGYajUaNyHAYC6HG1hb66suvyM/NJyXJgcsKW1avon+PLmzeuob83K7IQCXZBcNJco/md+4d/PXhx7n51qv560P/5tEHpuPTIjTVVZGSk0lT1XYy8rvxm+uuwG5Nxev3s3nLei678nIKt6/kqqvu4V+vP0VWlwJyc1Pok9+NQG0j24o3g5aKyy7ZuHUHk886rWXejxEWW2vjchd/DnZHbA5VTPS0WMQwzGNWq5VwNGIeYdd9OxI88aHIAaLRKELobfaRu4m2p9gzB4KrWvs6KDGkUCgUCoXiQKJTix9d17GYYsRYnLSttSeGhuESJwWgibYDdc1w52ovimJua8b6QBJ0HWmBaCRKQ1ktQZ8Pp12j3ltEn5R63AnDmDP/I9JTsyjb0UiTz8roSePwVNUiRRIFgweyfPYc+g7vxZPPP4XN5uLpfw/n++8Wcfzxk7HaUyjeup287t2Z+/V8Ro0cyUknnsKfb7uV31x7PdJqZ/Y33/Psv58h1R6lqnkbDY4+JOelUbhxAwUF3fBFI6zavIoBPQ6jfssWpHRRE/TSb2hfINpybiwWyy7uaTFaXPuIC7wQZ+2JvUkBUakbAlAIOiotfuHW2LYhdjqwHBEXJCIWunuXAAx63LW1d1j/Q4kDQez8FLE6KhGkUCgUCoXiQKBTi5+WQXVM2ETj3NzixsyxmSrCjGrdMkeIONcu4qwVcQIqFAhit9hprK4norvYueRldtYKPGEbZ54zlQytO8XNSTSUbuOwwYfREAhz4sknU1VbTVFREVnZbhpLLRQu+5b83gUEgk7Wb9wCoSCazcoTj/yDKSecSDAYoqBnNhUeL6eeegQLFq3n868+pmT7djKzUvnnE89wxNFTsFgFQRLoP+RwTj3xDB575G94oy42bKlg9aqNTBg2AKl7qKvzkZadSWBnMS/OeIHLbvwLVpcNaJ2r094yEx9IIWblaflexM2DktJ0K4wi4/fpQOzEyu7oOO2/iw+3vadACuIQDrLQGQRPRygRpFAoFAqF4kCgU4uf+An4sUVMNURr+GviXKlig/eoDhbDjiHNaAXLli1j1KhRZuQ12WJBcoa8LP/ia3L6DGHLlu2MOnwsiQWHM+XwTOoaA2zYuJlVS1fR6Gvm8svPxelKINPfRGFJDSFfDd275PPjulUcNWk8RUW1uLOyWbtxC6MPGwxCEPT6ePPjD4iEvSQkJLFw4Souv/y3bF6/kpEjh1NTVUuvfvnMnbOYS6+6hOeefZ4XznuVed/MpqmmghmfzSKk+0hrqCUUCtNjQG8iHj/1DR5sNgtZWNHsGqefeRE1O7fQ1Oyj76hRwK5CI34B15ZIbnFCUYsFkmgT8tqCsYCSvoto2d12e6tTR2538QvWxru+tUTa0w4t8dNZBU9HKBGkUCgUCoVif9KpJ1XIOFcuAHRJVO4azrkj64KRZuQdNWpUi2iSUuKpruHz9z5lxeKV1Ho8JKQ5cNkEItSAu1s+v5v+J5577m2y3GmcfdE5nHXGybhcbizCjkVzoAkvaRl51NT6GTFxEr6QjW5dswh6PXTv2x2XQ6NkWyllZRV88vHnNDWUsnLxd9jtKcyd/QEOlwth8ZGTmURVeQUnnXICVpuP7xfPY8O6edgcQQYNGMhbb7xMCCd1dXWE/V4igQi2BDtWh4NUdwbNAQ/VDTvB4qS4uAgZ0diydE6bcxMfsS12ruLd0nRdbxGN7UN6a5hrJLGr2IFWFzdN0zoUOe3XDtpz2Gy95f1QMfzUL336oBI+8Rysv0uhUCgUCsWBTacWP7GJOS1r6MS5u+0ykNZli3VImBHZYmJHSMDfRHVNIz9+v4KFX87BKS2UlNcyZOLRREOQkd8Nr89KQ3kxf5h+DVffcAlFO+soK62gvKqRaFhS39DE2h8LERYnoaid7PQoCTJKbW0h1WVV1NRU88G/3yVCAsJmZ8UPi7j0sjPo270/adl9cDo9dOnejaeffYYFC1YiEpOwZ7iRogZHYjbvf/oBwYhg1GETWLN5CZddeT4/zJlNsstJdnY2dluUs86+kLOnTuX+B/9CKORn1JjT2LylmqTkVAQhrI58yreWdLigaXyUt1jwh3hRE79PbOFY84uWtHhLks1ma118ll2DHcRov35RfLp58dqkWTTHXjaQzsnBLHriORR+o0KhUCgUigOLTu32Fj9YbhkmG+HbOhxoxyKV6cjWwXtU0lBRShQXTz14P+dech6bC3dyxulTSUy1kZiYQHMoyrnHncJfH70PW1hn2LjxvPj8S5x34Tno0ofdpmERHjyNFfQbVkCCy01U+Ag02okQIpF0vHoVL77yHjddfyUnTj6eBQvn0KfPxQQ1wcczvmD8pDG4Iz1JS03m+j/cgC3FRcm6+eS783Gm56PXbcDVpQfOpCRefvHfjJl8FmFfExu2r6NfnyzWb2pixIgBfPX5axx77EWMHN6T4ooSomGd7j3cpKbn8uOyxXTvnkhtcSHd8jOI2J0t5zF+AVhN05B6nBCKrQVkRn5riZ4Hu7gYxm8bgRNaRc/u3N3ap+9uzs+eItMdDByoYmBPLmoHap0VCoVCoVAoOkLs2dVo/xIKhfZYufhFOmPhmKHdRP244AUaos3cIB2Jt6qOD19/g/4DhtFr8ADq6yqQfsjs5mbpD2sZN348W7cspe+wMchAFBmoA1ca1RWlSEJ0LxhAdV0pOVk9KC0tJaNLGg3VfhwOSUpaMqEmyfbiCrasW8qI0QMINTeQVdATpzOJlYtW0HNYH3r06o+3vpHEVBcBnx+LI4GQJ4Kwmm54/iY8Pj+5aV2x2qJUbVtJ1sihaD5BckoqIaL46xqpLPWQlZlAKOxl/sKlnHDi0WzduInPPvqMSy67hLLKOhZ+s4gzz59KZl4eialJLULQEBwCIWRruG/ZGhBCaxfMOhYkQkMgibYRULuz4MQWoN0dbeYhGRev5RoaZZiBGjQ7drt9nykh18jpv/qf5EAREf/tXJz/pf6def6Pf+XTB1U7VHRO9lU7VG1QsTtUX6g4ENjbdthp3d7aWxla1unpYOAthGgRO/GD+CZfKU//7W+s21hMvxH9sCVYcafmkdMtgSZvgMnHHktzQy2rlpUQ8ElWL/sOYXezavl6unTJp7nZy5plK8jO7kFdkwfNU4UlaodALdt3rKO5spy/P/Yo2Tl2srLzeOzx1yjoNZbX3/yEyrJtTDrtdBJTHWzfshnN1kRA2qkp3s6OpV9SWVGPpgWI2i0kRP00FK8i4NvBlOPP45ulO3B4olgQ7Fy6CG99FdhtJCQJNqzfxumnXM64iYexZeMWvF7J8cefSVF5NV5PE0OHDWTV8u3UV9W1Lv7acj51MwhEa2S3NudYGlYznVYrEXFr9LS/Lu33bT8nqKM8LYEX4tzgYnOGjJdll307O/tb+LjHTG95/S9lKBQKhUKhUBzodFq3NyNstWEpiK0zI0Wc+xtxA2291bqBNKwVdoskWCU56bQphCJONKGzfcOPZOd2Z+CQSWzduJJpF5/PZVdczennHENKosbIsaOJBnyMHz+cpqYGstKzcLrc1NYWYyUVZ3o+ZdWldMnvQnbXHAq3FXPH3bdQWdXEqCMG0G9oN4QjxLSLTyUlvSsy3IgtO4cuCToVm1eS3SuR3D6HEZEDEBHAJrjivN/x+lvPMDjzFL6f8ykvP/cAW7ZV4QnruJw6DRYviSE4bcqp+Hw+PvlkHp/P+RBPczM2awIjBmezatXn1FQlMvbokUwcdTyz58xg5cp1dOvfvfV8tlhudIQwNXFskVMMN7dYmOtYBLaO5gz9VJjqWL72keA6WvunVZBpgGnlk9GDUgDtS5RQUSgUCoXiwCH+Iai6R//6dFrxEz9I1pFo0liYMzZXJeaypQvD2iOlMUtFmvveeM2d+Jtd3H7bBViTEqgsrmbgsCFUlNcy7dKLOOfcS3n37dewpSSi6V4e+39/Z/pN13PhRRdy8SVXUVDgZvig3kREiIsv/D0vvfQsXk+IjPQcJE4CkWZystyEpY+0DI201HSSkpIIiyCysZIta5aR3eVo9BqorvaT3280wUATFnsDzU0RrDYHLs3KlKMnEvDrNDbU0r3fcEKhWtYsX8oxx4yktrGJXr0n8PdHnyMvrys33XIyic5tELGi+5rI62Hnt7+7keNOOItJkw7H31zL228+QyTsoUt6qOX8xVtiNE1Dl8Y5ayNkzMVh21ttfo7bZPvQ1fH7dxR22/hsCB/DJW+vD9Vp2FdWnwO1Mz1Q66VQKBQKxa9FR/d+dT/cd3Ra8RNPLJBB+4G5ZgE9GrfIKcb8IIvFwv33301p6Q4SU5OYN/8bevcYQWVVDU01Po49+TjKKqvYVrSBLnkFOGxOrr7mSj58+WPeeftjGoOVyLCGK8nNQw8+yQsv/IPkNElBj+7s2Okl3aETdWQSTA7QULoOq0zGX7WUrN4nULVxMdLWgz4DhqNjpbpkM+6MDMJ6lNXL1pKS4KFX/1E0NZWhB9yUlO/EYtPIzckjEg3idAylrOYjcLnwVARJsHg56pixdO+qs/Trb+g3/US0hDRSE4JoGjz/2hvUlG0jGqzD2ygZMHwsEp3eoye2nCdDcFgQ5no90Go5owPBIczAB6ZsaZPeWt6u6/y0X+Ono3Jb3OtahJKO4Z0ZRddpEWGKPbOvO9H97bqn6DzUL31a3eQVCsUhR0fWHdUf7h86rfjpyFLQft5JNCI7HJDruk59QwnpqVbCVguHjT2cqmIP25cX4XanUlVaxCuvvMD69esp2bqVoRNHcdSY05g752OstmY8NfX06tEXa1ImF5/SnTSXCxEJoOuQnupk0edfk1bQjaf+3/P8vyef5fOP32bZyvU89uoF5Aw4GYcrgbBexMzXvmbMUaOZM3c5J02dwuhxw6ko3wION1mnoRTVAAAgAElEQVRpXQj6K7n3rvvxN2zEnjUEadEJRhq578Ebqakqx2mDZo9k6IiedC8AV9ql+BuT0Jq2kJLZg4ZGHxZNY93S9fTuFsViTcKROwKLvutUL8OdrN18KdN6htZObugSXQCmm2F7V7d4y83PYXfBEKSMxpWnXN72xIHYiR6IdVLsG5QoVigUCoOO7oXq/rh/6LTiB9rOHYmPPhb/3ZWnH8u389bw7oyPmP3x+2zbvpHnP/uc7ZtKGdCnK6XbvuGfr85hyqTxHHH0FG665kauveF6/vOf/3Dx+Weh2XqDsPLW209hdVkJhKPk52UQDDWRrLlx9R5HadlGCst0Fs59heuuu5rl63Zw6fBx/OaKM6jYuZHC7Vs59/yzkMEwTpeFwvXz6d5/BAOGFJDpzmPceA8uzYZDa+a2qy7ikbuuIhT2U1e7AVfeEfQ98hoCuodEp8AXCONKSceZ4KaquoT0VAelRdvp3n0U1SXzycwazZbNXj797N+U7PTz4SdP07P3aK647HKGjhxE2fIf2LhjO8f934Udh57WTbFjChwRS4s/71pr5DVdStD1Dtfp2aXs3aS1F7K7hCiPE7CapsRPRxwoHeiBUg/F/mNvBI962qlQKPYnv7bbmerjDmw6bahrPRJtXdRUE61WChNPXTUN5RF+XLmY4ePGcMbkCfzuuqvpU9CD0ZMm4vEI7A5ISUwhEAjx6WdzOHrKWBob/GzbvIYx407AQRkJ2b0Ie70IXeAJ1pKc5MaZECUazmPOFy9yxOTTqa9qIC03j9rSIrK65uP3+ijbuYNu3Qr493Mv8fa7M7nr7ps4/vQxONy98FRuwWJ14HJlUVu9k0BDE5m5XVi+citdchI4+/yrmf3+AwR9gkB4I8mWCoJNJXQ76hl8pYtw5U0mEI6QmOiiucGCpWkVa7f7eOWlp8jq2pdMdwIlJRV4vY3ceMutJDhTWPHDEqxE+WTWPK6/7ny2rt/Exi01ZGVqXHrDrYDWGuZaSqJSB28Qb30R7m6DiNBqGZJCN0SREEhT+LSnzRpMHQQz2BNtQ1vHXN9M8WMxFjg9WEJdH6ohog8WVHjXtvyc9qza7y+HCnWt2N90pr5wd/3UL9EnxcpW/dv+YW/bYae0/MTW9zEG4MRPOwFg65JZBLxRnnvhDXLSnbzy4uN8+d0KEpwJhAiwdMFiDp98NNVbNrFk6w/0GTSI9958nxPOPo0sV4jU9ASsrigW0Y+akm040pKRYYk7Jwd/xU4uOPdGXn3tTVLdXdm6bR39+owkqkdoaAqwfPkMSopqGDx0ABkpdWTlZjB73kyKi8tJtrpp9lTiSs7HZhMIPUhzs5euBQVYHOn0GhgmJT2Lb75+k4TETKIIovpAEhwpNAV8rFqygP5DJrPs+yWs/3ELo8dNZMumjZx+8kRSu9Ryy5/+SEZWT/SoD13X8YYaKS0sJr9Hd7r36kJVaRX3PHI/jqgVizWHocMl4RaRoqPrRqCDiNdLaXEZejQKFo3n73uC6XdOw2FxGmHDdZ2XrjuCFTvCTJx8Muf98W50YcHCrtacPa3/E8/uBFS8XjrYFzn9OaiOVXEgodzbFApFZ2BPfdX/Yq1Roqdz0SnX+WkTMUwThuXHHGgvffcRNmxt5LyLfsfAwT046rgpnHzm6WgEKNm2jCvPPI9Acwhf5XpKtlcwavRwUtITePejf9FcXMyCr77k2ktvwKlp1DUXk57Zleod1aRmZOOvClNcWcEZJ51CfZOXngV59O45glBYIqOQlGrD528kIzuZo48cy9NPvELAG6Z45062F25mycJXiXjtyLCXNcveQWCne58BSN2Kp2kn7lQNXaQjcWF3umioL6V8cx31FQEe/suzDDrsGN559VUyM7vxn7fexaJFmTBuDHc98BR9e/XmH4+/iq+hlkavB0eqhURXNj37DiM1M5c//uE+Ghvraa4upa5iM7l5XUlNhXCwkkgo2sYqU160DT3oI+QpIxoSDOzXjaVfzqdszQoaCwt5+qG7+L68L5dMzcHl+Z6hPcZy+/W3d7jWT2y7fZS3jojPawgdYx8jGMPu3eo6M/9NR6k6V8WBhBI+CsX+pX7p0y3/w9i2+l/uyq91TpTw6Xx0SvGj63qL6IkhBUT0KNasUQwaPpJnnn0CV6KGOy2Xo44eg9fnYdrlN/HYMy8wd94svl2whm9X/YjLmUyS3UFlXRPp3fszcNgA7n/sHjQNqotqePH5d8nr3ZVv5szEle5kwMBjafAGmf3ZV3z61RIqCguxOEPYLBqNJfXM+PAbdhSX4HfauOC3l7J2+2YWzJ3PxrVbGDDyOHRLmOJtqxg6+jx+XLMOh/ASkCFSk/OwO5JwWwK4khNAk6S6c8jokUlCpp0rfzOVz2d8xmW/v5yMLm6uvuoaNm/axk23X8cFF53OqhWrefhv95DdJw9fXTXh5ggpmZk0N++kqbmWPsN7ctTxk1m7fD2pmcl4G3Zid2aT6c7Dare0rIc064N/Ir3NrNtYyO13PE5SQhSriJLbJQNnQior3riKfta1uNPsFEbOIDc9xAd/GUTx8vdoKtzSZt5OmzlZHQii+G09zn2u7b56S8CDA9lFU6E4FFEDLIVi/xL/H2z/f1T/z1b29lz8t+dMCZ/ORacUP4CxcGksGrP5Xrx5G02N9dx28430GzwCazBKz4F9Se3aH39jDf986QUWfPU2acku5n42l2v/eDHecCNIC253Kt66zSQkZtDkjXDKSRfy+ttvce7lU7HbNIYNG43X08iHr73G6aeNZNu2Qras3YjVFqWqsJaZn37KrK/ncNvtN3DD9dcw890ZbFy3gQfvuZthI4azde3HeAMOXKk2cgqGgdDpM3QAnoAgNSGFZn+Yx//+KoGIB5+vDr/Xh80lCHrA4UqkX0EBWVkD2LBqCb5mD6ecPpFA0MfAoSP5evZ3zPxsBpYEOyGPh4Ejh5CQlMr3i2Zh1ZLZvHYrTz32DJFolGGThmOxJuNOz2LjhlUkJFqMNX0kzHn1BYYPPZXMHt3JzM4iYpXc8odbGDFuHH979CnK18xnpe1Y7AMu56QRATJz8+h67LNERQ1/uKQvm4sizHvrlZaobbqut0TXa097V7h4wdSW+AVVO29zVSgUCoXil0SJm71DnSdFezr1aLLFQiBAEw62rF5C/2GHccst1/Lpmy9y0jkXsX7zJmoralj47Xc47VYaPH7qK3Zy411Xk+zMpLqkkqKd24mEG/H4wyRnOBk+oAfvvvEc99//J+zWAE0NzTR4GnDYXejhEH37TeaeR+7koisvosEfxZlkYcn8WVx2zYXM/epzHO40pp4/lalnHUutr5ltWzfx8IN3s37ROwifFavLRXNzMw6LhnDoCIcFuyXCH/9wNZVF68lK74K0akRCLhxJEIpEmbt4G8kpGimZubz18utoUmPU6CFccN65XHLFJVx7w9VEgiEq6hooKalGsziwJ2TRJbc7E8eNZNuOQtIyc3nn5Tf5+stvaWzwMvrwkRiBDgQWIRg1fjzjjppAU3UF/ft35dl/PMRTTzzKh+98yJ23X0/uoOO5oP8KugY/ofcJD5NS/U+++GIWtdUebCm9qVp0G/1GHUFURlrc1H7KVa0jC1GrADKsPi3rBe2F61xnRD0xUigUCsWvgRr4KxS7clCMJmVUJxrx02/o4fy4Yi4987tx6gXTeP/tD8numkdE6gwZMQiL8NDcUEl5nYe87kPx1JXQb/ThFG0roa48RG5aOhWVtViTkojioGxHKd5aH+mpKfTuM4aQzc8Zl05l5oyveO2l91k4+ztmvPMh6zcUcdHl08ns3htNOHFFQyydNx9vs8aaBcs4+pjJzF24nvS8w/BFQyTZLUi9Ed2vQ8CGt9mHxWEHm42M/GEEgjp2YSESbCASDEDQx6jhPcjrmoUjyc7pZ5xIcWURX82ez8z3PseVpGGz2JGWKBlpDmwJTlav+ZFuvbsR1sJsKyqmvGwHTU0NvPTmTPp2d2GxOQgEJS5nClJKKteupLymhJVLPiQ5uyvFS2eT5M6kyR/lrPPOJD2rGzsX/YvmiJ9opAZfcy12h4XhI/tyzWNbcFJMzz5pNBfXs+Stu4DdByjYXXpbF7mYtUjrMPz1oYoSSgqFQqHYHeoe8b/zcwWjOuedj04pfnRkG4uBFKCLMFH/FkaOncKmzZt54V+P0X/YQH74ei4WqdMtvw+VVVEcNju2UD0OqwVLghVCHiZMOQ5HSjLWxCSaK2qQwSD2JMjK7055VTUzPppDWdFaEsNpPPnwUwwYMpQzTp9CZrqNC6+4iPy8ruTm51G8ZTtX33IXK1ZvwBuEHYVFHDZhAgsXLuT40y8CWx7fzl7JgvlzcZCAjhfN6aS+tgopNGTIg8Mm8QeaqKuvxuVMIbVLV6TViTM1kZ1FW3C4ssnv0Y/ubiu5mblc8vtpNDd6CEa82KJ2XI50KndWkZuZS0aCg53bt1BeEWHchMMZO3IMxWvn0G3QeNzZSZTXNrJp/WoAanU/a9bvYM2S7fjqK+k55nRkUCc3K4+pZ1yM1ZpCfvcKbJY0XKkZzPryZTZXdCHgifLbadOxh/04gAcfewjdehTSFC27s/7sKS1e6ESj4bjPnbK57hWq81R0Nv7XJ8rqibRC8d/zc/4/6r/28/m15wgp9i+dbjSp6zoaAiloWedHSJC6BaezG7W1Xvr1781tt96OiATISxU0NDQRQqesZAOX3nAb/foNoNnfgCNiweZ04nI4cdiDSFcCvfr3RLNqFO/cQXJyMs4kO1279yMtM407b7yForIa5s7+nEXz5nL6uReQk9eV0tJlZOWmkJORiSXcwOzPPuTYyYcRaG4Ei447xUFpVR0JyXZsoUb69u+HcGXjC+loUT/uzAy0SIhAMEgw6qOosBh3VjZYQhAJQ9hLQ30z3XsMQ/hr+ctD9+HVHRx51DjqymuxImmur2frti1s2LCB75YsoLahgpNPOJ2+/QoY3MfKtEsvYe68WSxbt42Vq5ax7sfV2CJecrtnoes6Pbr05OSTT2XIxCHU1OykrKIKl8tFncfP47cO4ZijxuPRa6ho9LN951aefuhlho87h579CnjjrdcI6jrl/hSuOrqSe++6lRum9ELXI3sMcR0vjuLzWCwWYk3TarUelFHeOsI9ZvoeRZASSAqFQqHYE2ow/svxU1Hz1LnuvHS6dX6klCAEwpykLzVAl2ialVAoQsXW78kYfzKF2zdT29DAqu+/408PTiYiMynavJHVTsnF0y4mIyWRRq8HEQhht0oszhQaqypIdadjFZKCghG8+NJbHD3pcLp1j+JpquXuB+/CE4bktHQaG2rRkq2snr2CuiYHwhfh6YeepDHo54H7r2Pzlmq+X7qEaSNHkte7Pz179mTTmnVs31HOieeeTNDXTEpyGl5fM9FQGLs7gwSXD58vSH7P3lgjLnQ7CF8En6cJpysHq4iypTJAVnY6j/ztNe748004UlNZvnAOg4eMRdNCSHsTl1z+e6wuBzdMv5lwyIqenEt2Tj65GWkk9+hKU98+RH3VWCJWVqxcSm6NoLHRw9ABaYQiafToM4aqqhqqmxpY8f0ixk25m+lbr8dbpdF74CC8RWG6D+5PaXMVo/sNYeKYY3GmVlGQPpIK/0aOmdKFsX0de7T6tHdja59PCHnIrvGjRI5CoVAodsd/M+j+X9awOdRpf77dY6Yr4dPJ6XSWH4slbs0XzRBAxoKnEaK6nd6Dx6FhIb/PYEZPOI6rb7sfj8eJbpdYkjJ4+sn/cNzpl+MLWfCXFfL9wiVEfD62bl6H252BjEYIRqwIh5crfnsRmemJbC0qJzW9CyvWbWbx0sX4/X7+9fQLNJQ0MWHCCJoKCymsqOCsaZfw59tvBdLJyc3kqpvvwOkUjBg3ikZPJcnJmdQ1VmGP1JPgchAIRPDW12GVQXxNlQQ9jVSVFGOz2agL1eDzNGBxuUjNycHhgL8/9hQ2Wc+FF53NXx+6HemIsGPLOpq9Vq6+9hruuuMuNJGBK8FBxc7N5OVm4w9ESHM4GDn8OD778iuW/LCChup16M3N2FMzGTlsFHZriEEDs7E409ADVXw9axF+n4fKnUX01GdSs20n7362EmeCTkpqf5aurGLiqAIG9+5BfXMzKcnVWKROCDuzFzVz2Ngp5BaMIxwOtZu/Y7Cn+Tux9YCk3LuACQqFQqFQHCqoQff+R12Dzk+nEz8xWkIkWzTD/Q0LK1bPx5GUzKZ1a/E37ECKAIvmfEFNySaK127g5NPPIDU3iyXLF2O3WcgcMIaJE8ZSW16KVejoIR+l29fzxQfvc/ykqdx96+1YExLomd+b2vJymsuqcAgL77z2Br/7/ZXYHXDLzXeT3aMvP67eRN9+vQiICNddfyNnnHwC0ZAXXbdDJIxLpHD3vfdw4mlT8YRdCAF2GkjN7AaaE3+TB4stkZ69+qNZINLsp6GyjLAexNPoxWaVTPvdJbz8z9eprw9SXlmPDOhUl9dy1KQxPPrwo2wrLCI9zU1jdTl5XbqD3Yo7xQUE6dsni/59D6NP3wEE/Jms21FKOGChsNSLHm4iEpYE/QGqa7xMmDSRyvJCbDsewZ2ZhTs7ldycvshILU2lqxl3WG96Dj6NH79+mu/mfkOXnAScFh+i4mP6HHkducHPaLT044s3Z5vzsvZewLQPgf1z9lUoFJ0H9RRaodi3HKqDdtXXKNrT6cRPbM2Y+MhgMWvBuVdMx2lJoKbOi9Aycaem02/gMOoqt5KSlkrXLDejx04GpxNPcwMRfxi0NFav2YjNmkBFeSkffTiTvgMH8eW8Wfz+5hvYsvJ7MvLyyMjoRllpMYP6Dmbqmacxf9HXLFmxjCt+N40Gby1nnX0qwagHhxPS3WnMmvsNDSU/4A02EAqFmPv1Qu67+w5+f9VvCGsapTu3E4pasegBHE4XOV1yqa+tIyqbcQgnFitk5+VTW12FTYOmhjq+X76Wa/8wHS0S4eLzz6SmrIQjjz8KKTQyMjP5+P2PSXIFCfrq2bljKwOHDOa99+bx26tuZcLho7nljzdTW7wNmyuZjz/6nEXzFmNzaXTr2Z+QP8SK5WvoP7gfzuqPyO8zlK3No/E1bMQhNWS4EadmI9BUQl2Tl1PPOoaC7CAOwhzTv5RI6iTqmutJc0l8eVfgbniVzfP/xt+uPRsh2i5q2pHlp31aq2gyrrfA9ms0J4VCoVAoDnhi80/UQP6/40A+b4eqKN2fdDrxE+8GFRtTx0d+S+maw1svv0Qw3ITQkugxZAh+n4usrl2oqm1i4pHjEbokGtERDhdYQlidqfTo2ZWU1Eyu+8N1ZOfkccdNf6ZLWhL9R41n26YSPnn7dU6ZegZN4QDBkJexY45gSO8BWO2JHDP5eD6d8SE3//Z6HrzrMY4YdyTekE5O75GkpqYirQkcc8oxPPq3Zzj/rBPxe71IEqhr8iAcdgC8gQCRUB1b1q8gEvWj6zphXSPTnQmaIKTZOOP/ppCT14WdZStJSOiCK6OAxooGPJ4G/P56rvrt5WzbUE1SVj++W7iQxiYPoUA9jz/yCO9/9DlPPPMEXlsyOUlw7e+vIBhuICunK9VVtXz0xTyOOu1krPYcou7jee7vT9Cz3xGEPUHsWiP9Bg+l0JdDWeFGyqojzPp0JvbM8xg07DBCwQRSe57EotUZiPrFvPTMiwRCdUwa0pWsASe2WG/ar+XT/tW6GKreJl/MxVGhUCgUikON+MHxngbKezPAVwNthaITih+Is/4IY4Acm/cT482vPiHqsxMKhfDUNrFuw0bCwQhWp4u33/kP0Ug9EaJIPYTVaqVnv2w0u53UtDSuveoO5s79ln888Qjz539PsLkZX+1Weg0Yyo0334VLCxGy2SkvrSAUCFLQtSsi2kBVlYeJR4xDEy5yuybhTrPjKSsiULuJ806YSnnhZu5/+CY+/XI52Rl5ZPRMR/OHscgoIW8zVnTc3QeRVTAAabNTXxtARq3Ue8pwJqbjtGoEmypxORIYMOAoevbvj4aPipJicnK68sPSTaxasZltxcXcfPWNeBotLPh2JROOHE1A9zD1/04k0ZFIljOZgHSxcM56jp5yJN/Nm8v7H87kiuuvYuus+1k772OKFlxL45oPKa6q5gffBZTUBDl78DYGDxlNSVUC+cc9QLeUSrwikftvuoaUtGTC4Ub6jzoTS89TmH62j6Z6H4tXVzOkXx/02HWKuSrGhbRub/Exrm18s9TiRJFCoVAoFIcOKqT1L8evYf05kC1Kit3TqcSPrustg+j4gXNU7jqhvmDUEGa8+Srnn3U+tQ31RP1Bklwat912IzXVYdKTEwj5QyCjJNiSqamuo6y4hkcfv49JJxxBQ30zI0eMIC03B5vVjdNp5x//fJyqRj8Lvl7Mu++/Q3p2F5avXEFqWibjJ07g6NNOIic9hVpPhKZGD8lds9FSezBxyiTWr17KlPGnktXVzeYNqxAhgbtbdyLSicXpQtesRL0REkQmQmp0651HOOTHZU3A11RGbW0lFdUV1DY1kJiSwW+mXcikSSfxw6oVVNVuZPKJY1i26hvGHj6SSccdzrTrLuOU044gyRVh5/ZiqqsayMlLp3D7dqwWwQW/PxerLZX8ntlcf/utJFgFb/3rPf541x1orkTuu3Myw7TXmJT2LdH19xDpfxn+7fPp2zeRim3rieych5aYyR+vcJM86iaCDRvI5w16+Z4hq2tPbEmpuEf+H7ffeD3WaNtw1fEiqH1AA8OF0XR1E7sGS1AoFPsfNchSKBSdkZ9aUmJ/cKDV51CgU4mfn6LNQFqXXHHrzcxbuYgzzrmAjT/+SLMvyv133smyxQupr4mw6vuVRKKSpPR08rLzWfbdEnZsKqK5tgqrJRGnPZ0ERzK9+/XFEvGT6ErA29jE4m9mcviY0QirleSUVO64/V5mfvgBDSV1TLtmGgMH9kePhrBE3diFxCqDZOf1Z+iIYQwfPAK7w0HIG8JqkUSiPqxWKwFfPXYiBMINhIMe6mpr0UUUZ2IekbDEnZaDDIEe9CKll+XLVzH/23n89oppWPRMnBYrLlcykUCExMRk/A11WKUkMTWVxNRMpMXLG/95jy4FWTicGtVl23EkhEjwriXgC1K5o5AzLz6evz72EQGfn+aAj8SeJyOHXMWwc17BmdWFrOHnk2j1YNU0Msfey+cf3MvAE+/FbomgJx1G2sAbsfa9mPLyHWSl2nnwwQd57o33CDVW0Spo2oe03tUaZF7AFqGrE/m1m45CodjHKAGlUOwZ9R/59TgQRZBi39GpxE/7gXI8MRc4aA2XHNsefcwkJp5xGjdedz2nnTaNcy68hPRMB8PGj2FnYQk2zULhzm0cecxh3Pzn+/hx9SYamkpwpSdRVrKd5lAzW4tKWLdsFX9/9K8cPvEojjvpZL6Y8TENlRXccvu9TD7xCN546U2eefQhakoKcSUmsGzlMoQ1i549BlBf7eOcc0/HagmSlujCGwwQaqwjGg2hWwT1tU3oOiSkZiMsaeTkFGDTJIlaFKc7D00GSHZ35Y03ZrJu+VamnnsiCxbNY8mSb/nq86+RUQuaplFcs5PSwm0kJCSA38uCRVuY/flXPHDP45x86tH06tWX2rp6pOaibFMhvcZPI+irJSHRRt7I3+D3FvKnxyrRLBnYeh1P1+49qKouJcmViit3OHmTHqBXnhVf42qmXXkLPt2FxZ6Ab8U91Gx9Hv+G10kRGWhRP+88OJjrf3McV5wwmlhTi1nt4q0+HS102vZ6W37xtqRQKBQKxYGMGpz/+igRdGjSqcQPdOwyJYSx3k/7SfExMSQsGmiC92d/xjHnHkdJ0TZCukblzlKSUwUfv/4SvrpakjK7Mn/5LKZeehYFQwex+JtPCKOTluTitKnH0+Dx8vQLL1NQ0I27/3QLSSkp9Bo2lKaGavIye3Hhby7kqCOO5PXX38ZqSeTdFz6ivm4rFmnnzjvvxG63ctX06/lxbTUuuwthS8OW5KahpoievfrQFAgQ9ldgtUeR4SbKt2+i1ufhgdvvobwqgoaLC6+8lMEjRpDqSiAjxYXb3YX1a3+koaGOxupK+hQM4LrpVyCEJJqcxOB+LqYcP4KHHvkTEX+IpuYQm1ZuoktOEsWFlZSVFOFvCIBDQ49mkpcR5YHHHqLbMU+iRcP4w8m4nOm8+9YsflhWTDAYJK/fMLr2n4QzPZ+quX9mWN8J7LBfRLdxD/D2rGIClihOmwNXchLTThxEt+xWV7b4uT/x17N1e1c3t3gxq1AoFAqFQvFLokTQoUWnGlUKEVvg1NKxCJJtxZGmaa3CKI7ew0fgyshEDwdITe3CWZdezaBxE3GmJNBU0Yi3zs+2FetwOVPp2aMvrpQkpD2RsZNH8/ZHbzNywhj++tiTDBw4kLkzPqGkopEkdyLBoIO3P5jJn+65C106uOOxW4hKF0UVhYwdO4FFi1dTU1TK2WefytpVa6mo2Ew0HMKdXkAoGsXtTsVizyDUXMOapZvJ6DaGwX3Hkpnqpqq0mPLycpwywJqVq1i5fCNjxk9g5uefct9fbqexphB7ciqVlUVU19Vw9hnTGJjfj9TkPKyuLmz5cQ3unEzKqjYz8siR6ElZOLtkEESSlJqOFk2luLwYZ5c+JCVK3n/9dXbsKMcu6wlKF/+/vfsOb6s8/z/+PudIspYl73gnjp29SAIZQELZPyizhD0KpS0rhUK/7Rcos4wvFEpZpbQpu0DTskcpO6SBpCGDLDIdx07ieMVbkm1J5/z+kCUdyXK6ErDx/bouX7alo6MjHSU5n9zPcz9Tp82kICeD9MxxVG5aj2ptYPtb82nI+xHXX30mtponUcLt3Hj/Ep56cw97Wpuorgf7uCu4483q3jla4T7nNDkMRT6S8SpRZAFb237/LAkh/nP76yJBhvUIEZHc0S36Jb5a0RCU6kt8c1i+7t3NOpAAACAASURBVAP4d0QunlUURe+9YFbjt6uR4VQqCtF1MWOd4DQVTF3FFBQwdMbNOChyUW669k4v8ALgzckAIBTuQU1zsqd6B1bNxgXzTiU9Mw9/az3PPfNbRpSUcvihk3n414/jSLdx/f/+iEBXiM62rWQWFHPvPXeydetmJk6ewmGzD+fpp57ngV/+H7oOG1btwGr14slx0tXuJyO3gObmBuiGsBbmkgsvoXrbKj7++6fMPPQQ2n1+Au3NjB4/HL/fj6qlce4F5+Dv6KGgZCptLQ28+peFfP+y+Tz/59+T4c3j4JkzWbjwSYZPn0LTnhqK84tAsaIYKnqgicLyGRj2NLo7GmnaU8XEMd+iams9W3ZsR7OFKR0/Gd/uBqzpaXQFOnlp4RJOOnEGWmAFH6z1MenkbEpHTyfXXUzDuif4stnKD666jzSnhku3sWfJLRiWb0M4PnQtOfDEKnRKP5U76XIthBDiGyRVsNmfYSfzkPkSnr4CsvbS4DSoKj9RhqFg7n6c3C7ZPIdE0VQUg3gVSImEo+gXqkLynJNIZUlD01Xqq5tY+eFS8rx5bNuwklUrN7Jl9Tp0xcGNt95Hd49K2NfOjOnjuOqay6lt8uNyZZJdUkpD3W6OO2I2j/7+QUpLCskvGcZNd/4v5aNHYU9LJ78kn/aWHn5y5c1YrFZWLF3HpuX/4IN3PqB2VwNnzTuOV99awrhR5expbkfVLThyPHicLpr2tqFrXTz7zJuoVhVLOngy87jiyp9SW13HhrU7WbboIz764B30Th93/vx+nHY7tuwCrrnqJpq3raUwvxS7zUGgcTMdnSHmzDmClsYmxk+cxEUXXMhxc+fS3tyIN7+AlsY6wqrKEUcfQuPeKoLO2Uyfks6OFQ9xyXX3kz76bEpmXcPYQ87FPczB+397m53rN1N48A3YAtGPmRo7V9HOfeZzF/lZjy2KmmoxVCGEEGIw+ypCSfJzyAW6EHGDJvxELoTVFLeRMKzNvJBm9D6dyGMTJ9WrfUIPmOed6GxetZFnFjyBPc3KwqcX0N2qsunLKirGjMMwwqxZsYzTzj+bjxZ/wpwjj+STd1ej6T3gMvjjU38kZNiYctjh7NxSxRHfmklpWSEtHZ386cWX6OneQ+mIMTz04D2omsGiD1azu6aaxh0rOfHk4zh40iieeXohq77YwC8f+iOl+floVrAGc1m7tQaHxUl3R4jLr7kclCBnHn8x9951D399431ee+15li9bSlGBm/o6P5klxVx62TmE8OBrquTuX95MXbOf3OISWup2oTnzcLvdhMNBtNxcOprquP7q6zEMlYysTBpb9vKto44gM91DzaY6uvwq9XVf4p12HmMKarjoaCuBL25m2bM/oWbtE3z87E+Y6vmSnMATNO1tpUWz9Dk/5nk85oVOowEp+TwKIYQQg93XVY2RKtB/TwLkN8egCj+KknhRHLtIVuPr/hhKPAwphnmIVbzSoBigGHrCfuJBSIt9jZ45kR9edRklhUWUj53I8s9XMX3CcG694Xreff0t0mwe9O4wRx//bbSu1Rx2+AwmTDkIX0MTAX8Hyz75gD/85inGTJxCSelI2ps66Kiv57bb7mH4mGncefOt/N89D1JRPoY5c2dw2613ccJ5t/LGO+/z+juf8dvHf0dZSRajR5WwZcNm2lqbWLfyfdJt6RQOz+STD5dz0tGzaWrt4eRTj+GWO67jhNOO5fs//Cnbq7dR27iXrEIv4ZDGwoXvkpWTSbpVpXbbPygbWURHewvuwgJcaSpffLqS7vZOVi1ZyrARFTz9p9/RrfoJ+Vuo2bCeQJsPmzePKUccjpUG9iz/M6plAtay67jwO+UEOlvJGGah0OXnkNEhCgrDWG35bF3yWxy6HjsH0XNoXrg0+nt/DQ+EEEKIoUbmmwhxYAya8APEhrqZqwHmi2iVSAUnUumJfI+2wDYPk4sOfUM3VxWS3wqdLRuW4/f72NvWTs2O3Zx7wYUEbV6uvvZqRpWXMaI4n08/W8au7V9Q3VJCTd0ODJuDcKiH7Nwsjj7qRHS1h5BVpT3gw+V08v351+DwdNHt6+CBR+9m145q5n3nNFBU7vvVHRj4OeP0eVx06dkEujr5ZNFKzj/vDGqqKykpG07huMnoBNmydQ/HnjSDrqCNHE8G55x7Bi888RK79qwEm4+77v4JFRMO4be/uo9dW7ayadNyeowwek8JQcNOdfUOelqDVK7/lM8XfY4j3UpY7+LgQ45FVboJaRpBPZeulnpGZu5k6z+e5rTDjmLvkquw1b9DwF7BYw+8iD2rGN11CJpi4FC6qGuoxp1dgoGKI62NZTu8OGzmOT3JFbh4cwpz8EnVzlwIMTDI/yIL8e/7Z39u9jXBXibfD0xyLganQRR+4h3AksWqQUrisDfzELdI5UeJrTMD8ZAU2T7cZ/jVY3c8zLZ1K1i9fCllI4uwZFo5/PApdPcEGFFRTnquh++cdRqaI5db/+davG4HPp+Piy+5jNNPOZnMQi8X/+B72FDxeDy0t9Wz+MM/EQxbePP1DwmGVHqCPlS7lcrNWwgEDGp27UZ1aNx/9+PklOTjznSx6cutjCgv4eLzr2bXpl1s2VTF5IljeeShJ3jyqd+wavU60tIdnH7puYwsPoSujhBNuzbj79jLM0++yLCiQh75zdNs31zJp198SH7xcFQ8LHn/E4YXTMCTVcjSv/+DzGEl6EYjmbnpXH/NTeRle6nfuQu/ZxRpGZ28+ObzfLKkmVWbOxk76zjOn1fMWfPO5MIfLcSdUYDNNQyrM51gp5/29la6cHPmOWcTNqKNKaLVNSNhyGHieSLx/KkSgoQYSCT4CLF//SeBRi66v35yDgavQRN+Ui2KCYmNDGINDfrMF4kPcUNP7O4WF2+xHB2GNe/Cs/CHwhx76im0NPhxKSo33XIP7777Dm6rQlVVFc0tbWQ53Dz4yAK8WiabNm3htbdf55NFq3ju0d9h0cHh1NA7WvA1+WhsDBHo3Msl879L3Y5OMrLz6QqEyc7yMswVpqKiArfNwnU3XMy7r7zFxReexoiS4Xiz3LS37aW8YjiTJo/h408/5/xzzuHTD5YwZUo5VouF7qY6DLWH7Vs3YnW6WfzJEl7/2yv4/G18+NfXGD9hNLMOmYvD7ibg207J2CmsXrMMj9fJGeefhr+1Do/DQmfQy82/uA6/3489fxodbR5GjLsKb9tqmu0TcNhGcuUVP8RLI26ljFfum4p75nWEsy/g6puqcFhL2bwzA593Hra2JbEGBonvdfS8GrFAJJUfIQa2AxF8JEyJoSDV5/zrqOLIBft/T6pvg9+gCT/Qd4HT+EVz7/0Gpvu13mCkEQ028UpCvIoUr/aEY9WfqPEHVZCbW0zt7kY2b9/MujXbuOTCCzn9rAvY1dhBcdlo9J4A66vryR9eipLtIjvdRSgU4uhjZxKyu0lLC9PZ3EqPolAwoYT03GxUWxpq2KBLrSe30ENujhNXhpsZh0+js2kHhjVMe2MtJ588h9KyUtZt20w46MSV7iZnWDY5eRkcesgUmpub+WzFFnwBP05bA+7cQsI97Rz2rSN556+ree6ZF8jLy+P2G+/gsONPJBjupq2pmnCwi7zig1m6/DNGlw8nI8NOWpoVZ2YOLbWbGVM+FsIWfB1NDBtWwt7aRjoCjey0HsT3zr8U1dXDtaePRy07mt899wgrK+0ENzxKu28R55x3Mh/vHMXYWRfT1baR0tHfMlXTUs3nUUFRMFBN6zjFv1RF1vgRYiCQkCLEf+5ArBsj1aKvnryH3wyDZp0fc/CJflcUpXfOT2+XMEWPrOET2aL3dh1FUWNrBEUaHiixIXLm9YIiF+eRxxuGQVDJxupoY83a5Vx6xeXUNNYxqngY3Z1+Pl+/hsKyQrauX09+YQk799Tgb/WzZuUqVq40OPbY4znj1NNo9QXIdKVhYMVmd9He0MC8089h0dLFjBxVwRsvv8nbb/yZzMwR3HLzVXSH7bTU+wh0GYSDPjzDSikr9REMdvPzG27hxhtvZuGLz7JsxWomTB7NI3+4l5bd1fTYx1O15A9o7onU7tnMhd8/n9mHTaZl50Yee+oxXGmZqA4dw5tH2G6ju7OJubPnEDSyyPBYqK/ZicupojkL2b11PUE1wLZ1W8koHsEHiz6nPdzNqaecTuUXf2P2mT+mu92NovUQDtcx3FrHHst15HUtYGZFG0ZaPe6WFfxpcRqzdS+jj1IwUpfbIucAUGMVOyOheicFICG+2eRiQoj/XPKfH/N/UqS6T/68CTFowo9quhiOD21LniuiKBqGEUZVVXQ9+nt0u8hXZDd6bF8Reu+2ic+aOyyHQFMr0yaNQ7PA8NxcVi5ZSnFFKTNnzMXf3M3IsaPJ8nhRrBbS7E4mzZhOXnYeq1evJNPjZXR5MVp6Bnt3bCEnv4B0l5OtlVtZ/OE7HDH3aMaNOQjXORnMmj2V55/5EyecfAzBvbspH1tO0N9D2G6nyDWKTr+Pe++9idtuv4N7HrqH3TUb6eq0klM6Fm92DqoKRRVH0h3WWb50Mzu37SQY0hmWOxK9J0jA4cOjeui2WfDV1pHpcXHmeWewdOVb6P5OisomUL+rEkNXaG5r4MWnXmL+j06hs+Yj5l93Nnf/4g5K83Ko2rSJrPJDcGVYsdsthA0D45h7CPZ00tpzEb7cbgqLy6ip2sGEolc47fvXxt7jWPhMsZipudNbtImFDH0TYuCQRROFGPjM4Ub+vA4uEk6/OoNq2BtgGkKV6r4wEO0KF7+AjnQTs/ReZGug9i5iqsWHWUUDkKqaq0sGIyaUU1gxmpaWRv6+dBne0rFkFxbhycrEnu7AmZ5LR5eDnh6NYIefvKwsVny+hoOmTKS0LJ+XXv4Y1ejCmltIj55BONTDvHnf4eBZR7J503a+f8n52B0OfnTlTzn+uKMZUVyEzZnP+rVraO3soLm2kkBXO8O8cPnl55DmMcCisWnxe2SWjCFEpAW4ruuEdB/OTA8nnngidTu2YrM76HHqONIz0LsMqqt3kpmWQfbwcl544VlWr/+C7u5mQhYv9TVrCQVasKg6xaVl/Oy2m7G4K7j82sfJKSrnvvseZ/zkKeQUTKajtRqvy87SD5fR0tCG2+2hx9+Oq8DJxOkTKT14DEd+5yQuvPOPKc9XcnOJfZ1TIcTAIf8wCzF4HIihduLAkfPz1RkU4afvxXPfC+bE+Tp6rOpj/jJXekDvDUkq5mYH0blBFkskLD35+wW4MzKp2lTD1KlTGZ6Tjr8jyN7mOqrWb6N603oqt25lySeL+Pidj9HS0thVXYXd4cKS5mHOMZNIU634mzvYsOIf7Nndyg3XX09PoBmLLcjDjz7OpAkVnH3GZNp8nVjTFCxKF96MXFo6fGTlj8CVZsFw5zB59rfIys7FosNR37020sq797WFAkE0i4d3/7KYzvZannvtZbIzsvn7x+v44WVX4HIpFOZn09G2hUvP/x5nnjWfmsp/4PFWsHtXB1ZrAd6C8bR1OAiFgihdftasWsfcWdPYvWkLrR01pFnCzDx6Bs8++SodbZ28+eY75AwfSVewk1ff+Jxr5t9HWG9Cr28mpEaKiqmrN2qfc5owd0uJDz0UQgws8g+0EEKIwWzQhJ9UX/E1fiJDquLUpGCU2PUtflviBPzk9YMUReOSyy4DVWHqzIM5/vBjefnlhdzzv/PZtn4td977C0aMnsAjj9yNI20YOcWj6GrrYurUKbTUN7Jy2RLWr62kywd11at58YWXuOqyy8kvyiA/L5Oi/FKqtm7i2yfOY8ah5zNpykQamjroDHRSOLyYjHQ7Fk1hyWcfoBk6qApBA4KKOfj1dqhzuNjb+jknnziVP7/yMrffehNOj5Ujj5jGj6++lta2Zn73yPOEQ24efeAe0rMgJzOf7RtXUJBnxZXt5su1m8nKd/Odk85lV1MzTz/1HPO+9120NDsez0Fs2rKR1e++ys9uuZp1ny/mB1eezSfvfsjid77kih/MY8Ezv+Gu256kvcOHTdNJnp8VDZ2R28znRE95vmTYmxDfbBKkhBBCfNUGRfhJXhSzr3jVxjCUfsOSuZU1AHp8nkn0ecwX4Yqh9+5VwZXrZfFnf+ft197l2ht+yYuv/JVfP/AwN990F7MPPhQNH08uuI/nn32O4WWlrPpiA++/u5jjjzmW1pZdVEyYQ0aOk0cefQDdcLDqHyvRbGms/OJzjjnu24R6munu0nF5irjoossxgip5heU40p0cc/TphJXofBkt1jzAXP3a/PZteFyT0a0WPnzvE+qqd9LZ0U0oZMfj8rKjqolLL7uI9957D1e2h73NDbS0tRNoC/PiC6+B1UlBXhrNdZ3MOuwoNIeds887m6ad9QR8jXyx6j3Ky0Yyds4pPHTv00yeNZfXX/2A088+ibmHT6Iz2IPL4uTmX9zCnlY/O7ftJBzsSXkezev8mNfxiYbZeKtyCT9CDERfR6cqIYQQYn9QBvLQop6eHgNSXwQbhoGqqqYLZXMloW+mi2yPaVs15cR7iIcgxUhcCFXTYff2VRjhPOp21/HaK69z8fe+y8UXf4+Fr72IEbLQ1tLGG2+9TVlpLqPGTOKmm2/hqmt/iNvqZWTFGAi1s2TpaqbNGMMtN97DrOkHccoZZ/HlhnVU1exizuzDcDqdtPh7OOKIUVT9/RUK556Vcuhf4mvQ6fYrGO2b2LbhUzIL5mBxaNx5073c9cjdBJsDuLKyCPm7aeloIqzUUrWhiTHjx5CdXUDIDk1VG8nMcrK31YEtzeDnN9zNCScdRbp3FHPnlLN1extFHhtaup3MLC8+XydbN2/lsQcfZf41FxDq0XA7nbQ3t1I+cTrtTTsomzbL1KQiGjbV3t/D+zz/impJeS4BbDbbV5aMHFPnD9w/JOJrFVj96JD+HP6nE6ol+OxfX9XncCB+BsXAMNT/LhQDw7/6ORxUlZ/khU7N3yM/J88jSd7GPLdHT1jbx1x1iPysYyiJ+w+rOgWjptOyp5LcwhwuuPQCckrzuOZnl9JSX40eaubl11/g3IvO5JiTT2T0lAru//UtvPXqG0yaMZJhhS4amluZe9g48goKCRs6x516HHX1u/jzS3+htq6OkZOKuPPu/2PmEeP504IFlMw5KzZfydyWO1pBMYeitsbNYMvmt08uw+mw8NZL7/LIgru59frb8WbYqancQpO/Bbc3gxH5BzFxxsE89fRrqOkuupobGVY0nl27dDw5WTjSrDzy0F007Gnn4In5GP4g48cU4nLpZDgtdDS2sqe6Gq8jnbPPvoQ//uFtCoumcOKJZ6M5sunqCBCy5sTe03A4GnRUosPcDCOyHhO96/skn89B8vEUYsiSSdRCCCEGm0FR+UlelBTi7ZH/leNPGMoWm0wfJnohHrldi22n6zqqGr8vsqmSsL/E0JV4X+w2Q2Xp05cz/uhr0MOdWHJLcIQdhDQdBStWm4a/zUdrRzsqaVRvXsPsE/5f73MnLsIa/T3eBto85ycSJjasXo3VBrm5ZbTX7cGT7SXQ3kxXWCczs4iX/7yQG266hYV/fJpDDz2ckC3Epo217K7aSGVlJZdedjHHHz2PJx69ncuu/Dlv/PVF6utqWbxoNSFV55ijT8CTZaHb182IEaVsr6qkZvtuykcVYlM97NhZSVd7mF8/+iS33fwzOgO1pKkhZpxwSsrzElmAFgxFB73veVTU/hc4lcqPGAjkfzvFQCCVH/F1k78LxUDwDar8xA/RHAJUVU2oFvQ3Lyje6jq6faSqoyhaLEBE22CbHxN/bpXea/Q+9/cXvGKhTNGZfcljeEvHkFk2nXR3HtYMD470DNLcdhz2dJRwK776rRSOLODQE09I2G+qFtHRik/s2HqrQZpmpWz8dLJziti0YgXtbd3UVleiB3aSO2wYFqOTE048nrUrl4LDTlObj01rtzJlYgHTpo/j6iuu4stVa3j/wxdYu/ZLbrrtf7jm2ltQVBvTpk3jV/f8isIR+Rg9Glatk7++8z6ZHi+lhQX87H9vJyPbzf33LmDyQVP52fzzsDvaWLp8I++9twJdj1d6zI0a4nOv5O8xIYQQQghx4A34RU776/z1z9aGMYchVVVNw64gsa11YiUn+nNkodTUzRD23XxBxzCSGiuQGJgityt0hbtx5Y9kTP7IPtubX2f8WOLHbT6+6LE57Rr2jGxGjitjWGY2TW0BOjta0NUgN17/ID+55iKKJozkkJwCXG4LLncPKi7y84tJM3yMmT6WpZ9u4NQzT8dqz2TuCfO44KwLePzxe/hi82es+HQ5jz78IM89/TyHH1aKZrHxxz89zhXfPQVfV5hb77ieNEeY6ccdT6DVx8XnlrFmzRK6dYU01SDyFqgYhg6xuVTx9zh6nqTLmxBCCCGEOBAGQeWn73C3aCBIDhTJ4SQ50ER+7jtczTzMLD4530iqspDwnObHJx9rf7dFjy+6H/OwtuShc+bgldwFLfm22OsmhJqmkVc2hp21lWxY9QF1TQoW3cqNN16O3W1l8Wuf4bL66PJ3YFGc+FuqCXR1E9AcdLWHGFUxllafSiDQwbJP3mHmtFlsWb2Szz9bhTfd4Mkn7mXFikV4PRbC3e386IdnsPrLWmbNmM32ypX4uoNMmzwduxrkrbdf5oaf/5JdX6ztPdYw4XAw1mY8OcBGA6oseiqEEEIIIQ6EAV/5gb7DwMzhwDwPJtr9zTx3J/lxySHDHHRSzSNSFA1VVWLP+c+rEir72iSxghSpACWHnehzRKsg/R1z8vax3wlRPG4amqrS3WNh7uEn8dHHf6Gr08Zh35rNzBkz+Gz5ctrCLXiySvB3tuJEJSfXi65aQTVoqN3JjBnTmTZpHP5AN5k5mTQ3NuHvCPHBe+sYPW4i6cPysXucHDLnSH7uzWPW9Lls3VhFYb6Xhx9+mNlzjuKBX40m2NWGgYqqGH2GKxoGsffXTMKPEEIIIYTY3wZ85afPej16vFoSnUti3jY5KBiGgaZpffaZajtIPbzO/Dzm6pCqqmiaFvv9o48+ij0mal+d6qJVqL6LgZqP0xwCIgHJHJTMx5jU7I780VNwexQ+/vQd3nj9fdo6Aih2BX8nNO2tp333XuhsJzvdy+7qanxdGg/dv4Dvzrucpl0+/vbyWyz5bBHWNDu7t++gaNhofvXYAq7+8RkoqoHh89PV2cHYEXmcdubxbNxey21338lrLz7LiLIJjCn0cvVVN7FhVSXtVTtTvL96Qsc6830WzY4QQgghhBD704Cv/JjX8gFAMTCM5BbXiQubJguFQrGhbVH9NRVI3md0m2jYSWw7nfj4Y445JmH75PtTHXNiFSRxnaHIMUeGiEVu1/oEN/Pr0VO0+s4tLSfU2c7vFzzPrppGrrziEn731FNkFwzDZnNj97iprd1J0cgJdLTs5IJzz2Hu7OlMmDGR4pGl0GXl4w8XM3pSHgGlnbvv+gXNTbUYukZbSyvOrEx6gk3YPcUUFQfIcRVw5nlX8vyzC7Dn5fPiwkfJzixl8xeLmDnygpThMhVZ31QIIYQQQuxvA77yA32rJ6lCTnLVJDmgJA8XM+8jeS6NefhcqiCzr6CVam6SeY6P+fiS5xAlv9ZI+DF/6bFKkLlznblpgHk/UVq6h0UrFjH/0mNYtvQvjC+1owctZOVlomg2cvILQQli0TLJzMni4YcfJtilsXHNOtxZTorLhlGQU8ypJ5zLts2b8GYX486w4cx04HJayM4vxml08pfX/syWbV9wySVnceedd7N3zx6efu5FqnZtY/jkg/s9t6nP46D4aAohhBBCiEFkQK/zEwwGDXNL5OQGAeb5Pv3Z13A28z7N+l23J4VUFSLz9tEAFL3P3M0sVbXHHH50XU+aZ6SjqpYUw94iaxapGOgYSfelPr8qCvQEaOvsIC3YSUd3GorVTo8RpHLNVsZMGI5OO7uq/VRUVGDQTWNDC06XjYxsN80Nzbicbprra0jPzMLpyqalvYOWva1cO//H/O4PC6ip2kzFqFG4Mjws+/hvbK5q4n9u+2n89SqgGH2rY4Zh7HONH5B1fsTAIGtbiIFA1vkRXzf5u1AMBN+IdX4MQ+nTtCBeEaFPA4LkeTXJc21SbZc8jC1Zqo5yydWdVGEpVeMF8/7M25qPw/x73zAVD1GJHeq0eJjopwKW8jXaHHiz8kjLK8PmhByvk7rte8jO9/DyX/5G7c4uHn/g1/z617/BYbERCgYIBvx0NtSi6ODv8DNi3GT21q4DaxCCAUpLCljw6JN409MYWVrIT665jrWLFzHxoKksX/J3fn/ng/H3Ru9bPYu8V/L3mhBCCCGE2P8GdPgx62/IWvS+5EqL+fZU1Zjkx/27koNLf7+HQqGEBg3J2/Q3fyf5533NUUoOO0CfOU7mYXYJz6lEjsmTk4/htDHlsKmUTZhIoKWGkuGF3H7/L7jg+6dTWfMl5WNH0LRnB41tAWxOF52dzVRuWktOwXC6u7vJGlZAONRJ3phsDIdKKC2dn9xwM1u2V6O6snj4sfs44v/NZNPSpSmHDcaGJsp8HyGEEEIIcQAM+IYHsQt1Q41dqCdXY6K37WvOT3KDgVS3RW/v9xiSpBqulXx/tNPcvxJ0NE0jFAr1eQ2pKkTJQSr5Z3NFK1VQNMK9jzd6myoYKoYSmVNkt8G1d94OQMvu3bQ3tFNUUo4v0IPd4SGvuBiLDqNnHIxi9LYDN3RamvcSDHbR3VBJfn4+muamuDSb4qIMmnbvwGZNZ/XKTXjcTsbMmpXw3iYGWwskNugTQgghhBDivzbAw49pbosSHf5G7/e+82WSA0Z0WNy+hpclD5Pb1xyifxaSzNukapSQao6PeT/BYDBh/+ZOd/0Nz4s/j45hJD5XquNMmC+FgYoSHzKnR+fhaKBEZg9lFBWRVVwce3xmbh6R89JbXVMVDCOMrqh4s3PxZGWhKAq+unrSjB7UNtPNGQAABpdJREFU7hasNo1JU6fz2ScfMnbMBHo6dsSeO9WxJbcmF0IIIYQQYn8Y4OGnf4piEM8B5gt8A103UOidMK+kDkBmfdpp07cVtfk28+NS7S+6bX+P6+/2VPOLzFINfYsfZ5/dx7aN7jfayS4aClVTgMQAFB0VDVQdAwUFUFPMjYoGz8ThhNGfI++JuyCf3etXkD9+BllpHShKF/kFE8jJc5BZfDCGoWOoiQed6jwIIYQQQgixvwyaOT//DkVRQAmCEuzthKb3WzWJzsXpd/6JkboldqphdpqmJbSvTm420F8AStWQIbn6sa+hd/3NOTIMI7bwaZ+OdNFmA4qp0pViaGGq50s8dgOItvNOnJPlzCrG6Gqnats6mvbWklfiRDc0PnpvCa8+9zpdPf5+9y2EEEIIIcT+9o0MP6lF1sOJVIwSv6L3pRo2F5VqflE0NPU3BwmIhaFUa/qY7aszXeJr6Ht7qqpV/BGJjRZiQU+NDHEzeoe6xYYV6qYhhEn7T/X6IP66DNSE15FZmE9d9RbKKsrp6bZjsYDT7eLYow5lZEUBTpurn9cphBBCCCHE/jdoh70dGNGqB6bv5oqKEqsUaZq2zzk95t9TNVfor0HCvgOS1mfb+GP6X3C1734ilR8FMBQdI9r0QNHjs3AMIzKzx1S16m8YXux3PRR/83rpoRDNbQ3k5eVEht0pIZr27MSmWfsMc5MAJIQQQgghDiQJP/+G6LAuRYkuLBoVDTh9387kkJI8/MwcnMwtupODUnIAibeyjjQfMAw9Ybvo41K+DgP03gVGFbRIFwklEu6iATAaSVLFp8ixRYa7RY/BMNQ+c6AMw8DtdaNaXYSx0NHeQNve7di9OZQdNEGGuQkhhBBCiK+UhJ/9ID5cTU8qfPTtQhcdgpZqcn+0IQGk7tqWKjCBFmtgYA5N/VWWIk+u9Aaf3ttUAwxQFQMDU/DqpwlEZF/mapNBJADqseF9sddpycKq+kjTrNhzinE77dTXhXE7XX3mUsWO/99474UQQgghhPhXDaE5P1+H+Byj6LwiTVPQNAVzc4BU3yF1C+9o0ImK35cYppLDUzQQRUOXEm2LregohoqqabHm07EAluIVRUNe9PVFqETnTJmrU7qu4y3Kx5KWTjDcxZdfrqcnZKfkoFF9hvjFKlqa9V9/e4UQQgghhPg3SOXnaxRv153YqtswzPON4vOMIo9JHDqnaRrhcJBU+lvgVNf13iYHCopi6Q0seuT5FA3QURXFvMpSUsUpOvco+j2yxlC0jXY0PKmqihHW6Qx0Q0835eXlhDUbVl1HN4w+1a9I1UfyuBBCCCGEODDkSnOAUxQDVYXkDnXRFt66HsJ8GlN1ZjNLXsTVPIxNJRJ8FEUDU4e6xPV8Eqs/hhFOuD0+F4nYbZnDivB1hwn06LgzvP28ztStwIUQQgghhNhfpPIzSJlDRmQIXTyARANOqjCRsM6PYmrJrRhEZvxAvIlCODbvJ6F9tmGgKFr0GRP2Ez+mxMVRSytGYiiWPpWraLUo+TmEEEIIIYTY3yT8fAMlV1/MUjVBUFHQiQQaA53ImLhIN7tomEpopkDvELnYc6noahiFfXSaU6yoSYvCRp9fqj5CCCGEEOKrIOFniIkFI01J6KqmYumtwCi9bbN7q0BJneMi35XeoXfRwBJGAXQjcVFYs3/WiU4CkBBCCCGEONAk/IiY/ipGihKZK2TQg9r7kUlcr0jr3U7vM6RtX13s+j6R1vc2IYQQQggh9hMJP+JfEglG9j63K0QDTzz4mIfJJdtXdWdfw/WEEEIIIYT4b0n4Ef8VA7W314IWW+BVM2cY3UA3evD7/Tidzr6PT5gjJOFHCCGEEEIcOBJ+xIGlKqik4U5PS7jZMAw0I0QIg9jaRl/PEQohhBBCiCFCkUnmQgghhBBCiKFAxhkJIYQQQgghhgQJP0IIIYQQQoghQcKPEEIIIYQQYkiQ8COEEEIIIYQYEiT8CCGEEEIIIYYECT9CCCGEEEKIIUHCjxBCCCGEEGJIkPAjhBBCCCGEGBIk/AghhBBCCCGGBAk/QgghhBBCiCFBwo8QQgghhBBiSJDwI4QQQgghhBgSJPwIIYQQQgghhgQJP0IIIYQQQoghQcKPEEIIIYQQYkiQ8COEEEIIIYQYEiT8CCGEEEIIIYYECT9CCCGEEEKIIUHCjxBCCCGEEGJIkPAjhBBCCCGEGBIk/AghhBBCCCGGBAk/QgghhBBCiCFBwo8QQgghhBBiSPj/ieHA8iMwI1sAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Load and display random samples\n", - "image_ids = np.random.choice(dataset_train.image_ids, 4)\n", + "resetDataDir()\n", + "image_ids = np.random.choice(dataset_train.image_ids, 2)\n", "for image_id in image_ids:\n", + " print(\"IMAGE ID: \" + str(image_id))\n", " image = dataset_train.load_image(image_id)\n", " mask, class_ids = dataset_train.load_mask(image_id)\n", - " visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names)" + "\n", + " unique_class_ids = np.unique(class_ids)\n", + " mask_area = [np.sum(mask[:, :,i])\n", + " for i in range(0,len(unique_class_ids))]\n", + " \n", + " visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names, 4) #limit=4, display 4 images" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "FWPGbuPNBxzT", + "outputId": "3b29b078-2399-4021-9055-63e1f38b4ae5" + }, + "outputs": [], + "source": [ + "# # Verify that all images and masks are the correct size\n", + "# train_errors = []\n", + "# for info in dataset_train.image_info:\n", + "# # Check training image sizes\n", + "# image_id = info[\"id\"]\n", + "# info_height = info[\"height\"]\n", + "# info_width = info[\"width\"]\n", + "# try: \n", + "# mask, class_ids = dataset_train.load_mask(image_id)\n", + "# [mask_s1, mask_s2, mask_s3] = np.shape(mask)\n", + "# if (info_height != mask_s1 or info_width != mask_s2):\n", + "# train_errors.append(\"Training Images. Image and mask shape differ for image id: \" + str(image_id) )\n", + "# except: \n", + "# train_errors.append(\"Training Images. Image and mask shape differ for image id: \" + str(image_id) )\n", + "# continue\n", + " \n", + " \n", + "# # Check images not empty\n", + "# image = dataset_train.load_image(image_id)\n", + "# image_total = np.sum(image)\n", + "# if (image_total < 0):\n", + "# train_errors.append(\"Training image empty: \" + image_id)\n", + " \n", + "# # Check masks not empty\n", + "# mask = dataset_train.load_mask(image_id)\n", + "# mask_total = np.sum(mask)\n", + "# if (image_total < 0):\n", + "# train_errors.append(\"Training mask empty: \" + image_id)\n", + " \n", + " \n", + "# val_errors = []\n", + "# for info in dataset_val.image_info:\n", + "# image_id = info[\"id\"]\n", + "# info_height = info[\"height\"]\n", + "# info_width = info[\"width\"]\n", + "# try:\n", + "# mask, class_ids = dataset_val.load_mask(image_id)\n", + "# [mask_s1, mask_s2, mask_s3] = np.shape(mask)\n", + "# if (info_height != mask_s1 or info_width != mask_s2):\n", + "# val_errors.append(\"Validation Images. Image and mask shape differ for image id: \" + str(image_id))\n", + "# except: \n", + "# val_errors.append(\"Validation Images. Image and mask shape differ for image id: \"+ str(image_id))\n", + "# continue\n", + " \n", + "# # Check images not empty\n", + "# image = dataset_val.load_image(image_id)\n", + "# image_total = np.sum(image)\n", + "# if (image_total < 0):\n", + "# val_errors.append(\"Validation image empty: \" + image_id)\n", + "\n", + "# # Check masks not empty\n", + "# mask = dataset_val.load_mask(image_id)\n", + "# mask_total = np.sum(mask)\n", + "# if (image_total < 0):\n", + "# val_errors.append(\"Validation mask empty: \" + image_id)\n", + "\n", + "# print(train_errors)\n", + "# print(val_errors)" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "DCwqjDHzBxzX" + }, "source": [ "## Create Model" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": { - "collapsed": true + "id": "8i711wH5Bxza", + "outputId": "c589d395-2736-47d9-f904-ec8538e897b8", + "scrolled": true }, "outputs": [], "source": [ @@ -575,9 +668,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { - "collapsed": true, + "id": "Hn1axmeyBxzc", "scrolled": false }, "outputs": [], @@ -601,7 +694,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "tpFQNxtLBxzd" + }, "source": [ "## Training\n", "\n", @@ -613,26268 +708,71 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, + "metadata": { + "id": "zOo_8g2ZBxzd", + "outputId": "3e020c4f-be4e-4a75-bc7d-3390b56a8fd0", + "scrolled": false + }, + "outputs": [], + "source": [ + "# Train the head branches\n", + "# Passing layers=\"heads\" freezes all layers except the head\n", + "# layers. You can also pass a regular expression to select\n", + "# which layers to train by name pattern.\n", + "model.train(dataset_train, dataset_val, \n", + " learning_rate=config.LEARNING_RATE, \n", + " epochs=1, \n", + " layers='heads') #epochs = 1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xX4PLFP5Bxzi" + }, + "outputs": [], + "source": [ + "# Save weights\n", + "# Typically not needed because callbacks save after every epoch\n", + "# Uncomment to save manually\n", + "# resetDataDir()\n", + "# model_path = os.path.join(MODEL_DIR, \"mask_rcnn_shapes_A4_Ch01_E=5_fine.h5\")\n", + "# model.keras_model.save_weights(model_path)" + ] + }, + { + "cell_type": "code", + "execution_count": null, "metadata": { + "id": "aGQVL2EiBxzi", "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Starting at epoch 0. LR=0.001\n", - "\n", - "Checkpoint Path: C:\\Users\\Asfandyar\\Documents\\Romesa\\Scene_Parsing\\Code\\MaskRCNN_master _AP_0.82_dataset_6\\logs\\brain20180322T2325\\mask_rcnn_brain_{epoch:04d}.h5\n", - "Selecting layers to train\n", - "fpn_c5p5 (Conv2D)\n", - "fpn_c4p4 (Conv2D)\n", - "fpn_c3p3 (Conv2D)\n", - "fpn_c2p2 (Conv2D)\n", - "fpn_p5 (Conv2D)\n", - "fpn_p2 (Conv2D)\n", - "fpn_p3 (Conv2D)\n", - "fpn_p4 (Conv2D)\n", - "In model: rpn_model\n", - " rpn_conv_shared (Conv2D)\n", - " rpn_class_raw (Conv2D)\n", - " rpn_bbox_pred (Conv2D)\n", - "mrcnn_mask_conv1 (TimeDistributed)\n", - "mrcnn_mask_bn1 (TimeDistributed)\n", - "mrcnn_mask_conv2 (TimeDistributed)\n", - "mrcnn_mask_bn2 (TimeDistributed)\n", - "mrcnn_class_conv1 (TimeDistributed)\n", - "mrcnn_class_bn1 (TimeDistributed)\n", - "mrcnn_mask_conv3 (TimeDistributed)\n", - "mrcnn_mask_bn3 (TimeDistributed)\n", - "mrcnn_class_conv2 (TimeDistributed)\n", - "mrcnn_class_bn2 (TimeDistributed)\n", - "mrcnn_mask_conv4 (TimeDistributed)\n", - "mrcnn_mask_bn4 (TimeDistributed)\n", - "mrcnn_bbox_fc (TimeDistributed)\n", - "mrcnn_mask_deconv (TimeDistributed)\n", - "mrcnn_class_logits (TimeDistributed)\n", - "mrcnn_mask (TimeDistributed)\n", - "WARNING:tensorflow:From C:\\Users\\Asfandyar\\Documents\\Romesa\\Scene_Parsing\\Code\\MaskRCNN_master _AP_0.82_dataset_6\\model.py:2073: calling reduce_mean (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "keep_dims is deprecated, use keepdims instead\n", - "95\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2718, 'width': 3724, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_4.png', 'section_masks_95_m_5.png', 'section_masks_95_m_6.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\users\\asfandyar\\appdata\\local\\programs\\python\\python35\\lib\\site-packages\\tensorflow\\python\\ops\\gradients_impl.py:98: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", - " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/2\n", - "45\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - " 1/2000 [..............................] - ETA: 2:07:02 - loss: 9.4210 - rpn_class_loss: 0.0321 - rpn_bbox_loss: 1.4579 - mrcnn_class_loss: 5.6017 - mrcnn_bbox_loss: 1.1279 - mrcnn_mask_loss: 1.2015112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Asfandyar\\AppData\\Roaming\\Python\\Python35\\site-packages\\scipy\\ndimage\\interpolation.py:616: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.\n", - " \"the returned array has changed.\", UserWarning)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 2/2000 [..............................] - ETA: 1:20:55 - loss: 8.6897 - rpn_class_loss: 0.0618 - rpn_bbox_loss: 1.3280 - mrcnn_class_loss: 5.0746 - mrcnn_bbox_loss: 1.1689 - mrcnn_mask_loss: 1.056350\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - " 3/2000 [..............................] - ETA: 1:02:33 - loss: 8.1985 - rpn_class_loss: 0.0583 - rpn_bbox_loss: 1.4847 - mrcnn_class_loss: 4.5378 - mrcnn_bbox_loss: 1.0690 - mrcnn_mask_loss: 1.048785\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - " 4/2000 [..............................] - ETA: 54:41 - loss: 7.5148 - rpn_class_loss: 0.0618 - rpn_bbox_loss: 1.5000 - mrcnn_class_loss: 3.9203 - mrcnn_bbox_loss: 0.9833 - mrcnn_mask_loss: 1.0495 104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - " 5/2000 [..............................] - ETA: 50:59 - loss: 6.8994 - rpn_class_loss: 0.0627 - rpn_bbox_loss: 1.3683 - mrcnn_class_loss: 3.4510 - mrcnn_bbox_loss: 1.0036 - mrcnn_mask_loss: 1.0138153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - " 6/2000 [..............................] - ETA: 47:58 - loss: 6.7315 - rpn_class_loss: 0.0740 - rpn_bbox_loss: 1.4236 - mrcnn_class_loss: 3.1339 - mrcnn_bbox_loss: 1.0706 - mrcnn_mask_loss: 1.0294347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - " 7/2000 [..............................] - ETA: 46:57 - loss: 6.6936 - rpn_class_loss: 0.0759 - rpn_bbox_loss: 1.5609 - mrcnn_class_loss: 2.8963 - mrcnn_bbox_loss: 1.1415 - mrcnn_mask_loss: 1.0191293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - " 8/2000 [..............................] - ETA: 45:42 - loss: 6.3670 - rpn_class_loss: 0.0823 - rpn_bbox_loss: 1.4624 - mrcnn_class_loss: 2.7204 - mrcnn_bbox_loss: 1.1109 - mrcnn_mask_loss: 0.991039\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - " 9/2000 [..............................] - ETA: 43:39 - loss: 6.0781 - rpn_class_loss: 0.0773 - rpn_bbox_loss: 1.4229 - mrcnn_class_loss: 2.5270 - mrcnn_bbox_loss: 1.0777 - mrcnn_mask_loss: 0.9731167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - " 10/2000 [..............................] - ETA: 42:15 - loss: 5.8962 - rpn_class_loss: 0.0749 - rpn_bbox_loss: 1.4252 - mrcnn_class_loss: 2.3998 - mrcnn_bbox_loss: 1.0459 - mrcnn_mask_loss: 0.9503359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - " 11/2000 [..............................] - ETA: 42:15 - loss: 5.6946 - rpn_class_loss: 0.0751 - rpn_bbox_loss: 1.3772 - mrcnn_class_loss: 2.2860 - mrcnn_bbox_loss: 1.0285 - mrcnn_mask_loss: 0.9277149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - " 12/2000 [..............................] - ETA: 41:17 - loss: 5.6579 - rpn_class_loss: 0.0779 - rpn_bbox_loss: 1.4482 - mrcnn_class_loss: 2.1805 - mrcnn_bbox_loss: 1.0238 - mrcnn_mask_loss: 0.927575\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - " 13/2000 [..............................] - ETA: 40:08 - loss: 5.4770 - rpn_class_loss: 0.0753 - rpn_bbox_loss: 1.4025 - mrcnn_class_loss: 2.0693 - mrcnn_bbox_loss: 1.0215 - mrcnn_mask_loss: 0.9083278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - " 14/2000 [..............................] - ETA: 40:06 - loss: 5.3828 - rpn_class_loss: 0.0785 - rpn_bbox_loss: 1.3987 - mrcnn_class_loss: 2.0002 - mrcnn_bbox_loss: 1.0179 - mrcnn_mask_loss: 0.887567\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - " 15/2000 [..............................] - ETA: 39:09 - loss: 5.2570 - rpn_class_loss: 0.0764 - rpn_bbox_loss: 1.3540 - mrcnn_class_loss: 1.9286 - mrcnn_bbox_loss: 1.0167 - mrcnn_mask_loss: 0.8813332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - " 16/2000 [..............................] - ETA: 38:55 - loss: 5.1886 - rpn_class_loss: 0.0769 - rpn_bbox_loss: 1.3362 - mrcnn_class_loss: 1.8864 - mrcnn_bbox_loss: 1.0095 - mrcnn_mask_loss: 0.8795327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 17/2000 [..............................] - ETA: 38:43 - loss: 5.0285 - rpn_class_loss: 0.0755 - rpn_bbox_loss: 1.2899 - mrcnn_class_loss: 1.8095 - mrcnn_bbox_loss: 0.9851 - mrcnn_mask_loss: 0.868572\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - " 18/2000 [..............................] - ETA: 38:01 - loss: 4.9217 - rpn_class_loss: 0.0742 - rpn_bbox_loss: 1.2664 - mrcnn_class_loss: 1.7436 - mrcnn_bbox_loss: 0.9752 - mrcnn_mask_loss: 0.8623320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - " 19/2000 [..............................] - ETA: 38:14 - loss: 4.8804 - rpn_class_loss: 0.0733 - rpn_bbox_loss: 1.2599 - mrcnn_class_loss: 1.7233 - mrcnn_bbox_loss: 0.9621 - mrcnn_mask_loss: 0.8618254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - " 20/2000 [..............................] - ETA: 38:00 - loss: 4.7809 - rpn_class_loss: 0.0726 - rpn_bbox_loss: 1.2314 - mrcnn_class_loss: 1.6717 - mrcnn_bbox_loss: 0.9522 - mrcnn_mask_loss: 0.8531120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - " 21/2000 [..............................] - ETA: 38:16 - loss: 4.7016 - rpn_class_loss: 0.0718 - rpn_bbox_loss: 1.2180 - mrcnn_class_loss: 1.6201 - mrcnn_bbox_loss: 0.9441 - mrcnn_mask_loss: 0.8476253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - " 22/2000 [..............................] - ETA: 37:53 - loss: 4.6275 - rpn_class_loss: 0.0714 - rpn_bbox_loss: 1.1900 - mrcnn_class_loss: 1.5845 - mrcnn_bbox_loss: 0.9322 - mrcnn_mask_loss: 0.849541\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - " 23/2000 [..............................] - ETA: 37:28 - loss: 4.5474 - rpn_class_loss: 0.0689 - rpn_bbox_loss: 1.1686 - mrcnn_class_loss: 1.5407 - mrcnn_bbox_loss: 0.9273 - mrcnn_mask_loss: 0.8420335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - " 24/2000 [..............................] - ETA: 37:39 - loss: 4.4974 - rpn_class_loss: 0.0680 - rpn_bbox_loss: 1.1497 - mrcnn_class_loss: 1.5131 - mrcnn_bbox_loss: 0.9245 - mrcnn_mask_loss: 0.8421279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - " 25/2000 [..............................] - ETA: 37:40 - loss: 4.4438 - rpn_class_loss: 0.0678 - rpn_bbox_loss: 1.1322 - mrcnn_class_loss: 1.4768 - mrcnn_bbox_loss: 0.9294 - mrcnn_mask_loss: 0.8376139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - " 26/2000 [..............................] - ETA: 38:05 - loss: 4.3808 - rpn_class_loss: 0.0681 - rpn_bbox_loss: 1.1173 - mrcnn_class_loss: 1.4435 - mrcnn_bbox_loss: 0.9222 - mrcnn_mask_loss: 0.829788\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - " 27/2000 [..............................] - ETA: 37:44 - loss: 4.3752 - rpn_class_loss: 0.0684 - rpn_bbox_loss: 1.1516 - mrcnn_class_loss: 1.4138 - mrcnn_bbox_loss: 0.9160 - mrcnn_mask_loss: 0.8254175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - " 28/2000 [..............................] - ETA: 37:29 - loss: 4.3348 - rpn_class_loss: 0.0667 - rpn_bbox_loss: 1.1525 - mrcnn_class_loss: 1.3862 - mrcnn_bbox_loss: 0.9128 - mrcnn_mask_loss: 0.8165221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - " 29/2000 [..............................] - ETA: 37:10 - loss: 4.2765 - rpn_class_loss: 0.0655 - rpn_bbox_loss: 1.1364 - mrcnn_class_loss: 1.3616 - mrcnn_bbox_loss: 0.9028 - mrcnn_mask_loss: 0.81030\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - " 30/2000 [..............................] - ETA: 36:46 - loss: 4.2366 - rpn_class_loss: 0.0635 - rpn_bbox_loss: 1.1294 - mrcnn_class_loss: 1.3421 - mrcnn_bbox_loss: 0.8938 - mrcnn_mask_loss: 0.8077148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - " 31/2000 [..............................] - ETA: 36:36 - loss: 4.2006 - rpn_class_loss: 0.0628 - rpn_bbox_loss: 1.1148 - mrcnn_class_loss: 1.3318 - mrcnn_bbox_loss: 0.8884 - mrcnn_mask_loss: 0.8027154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 32/2000 [..............................] - ETA: 36:31 - loss: 4.1657 - rpn_class_loss: 0.0624 - rpn_bbox_loss: 1.1039 - mrcnn_class_loss: 1.3134 - mrcnn_bbox_loss: 0.8831 - mrcnn_mask_loss: 0.802816\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - " 33/2000 [..............................] - ETA: 36:09 - loss: 4.1351 - rpn_class_loss: 0.0612 - rpn_bbox_loss: 1.1131 - mrcnn_class_loss: 1.2853 - mrcnn_bbox_loss: 0.8776 - mrcnn_mask_loss: 0.797926\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - " 34/2000 [..............................] - ETA: 35:53 - loss: 4.0894 - rpn_class_loss: 0.0599 - rpn_bbox_loss: 1.1161 - mrcnn_class_loss: 1.2562 - mrcnn_bbox_loss: 0.8652 - mrcnn_mask_loss: 0.7919219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - " 35/2000 [..............................] - ETA: 35:40 - loss: 4.0375 - rpn_class_loss: 0.0586 - rpn_bbox_loss: 1.1010 - mrcnn_class_loss: 1.2355 - mrcnn_bbox_loss: 0.8560 - mrcnn_mask_loss: 0.7865224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - " 36/2000 [..............................] - ETA: 35:26 - loss: 3.9822 - rpn_class_loss: 0.0580 - rpn_bbox_loss: 1.0918 - mrcnn_class_loss: 1.2072 - mrcnn_bbox_loss: 0.8411 - mrcnn_mask_loss: 0.784190\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - " 37/2000 [..............................] - ETA: 35:12 - loss: 3.9655 - rpn_class_loss: 0.0575 - rpn_bbox_loss: 1.0935 - mrcnn_class_loss: 1.1935 - mrcnn_bbox_loss: 0.8363 - mrcnn_mask_loss: 0.7847207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - " 38/2000 [..............................] - ETA: 34:58 - loss: 3.9244 - rpn_class_loss: 0.0565 - rpn_bbox_loss: 1.0795 - mrcnn_class_loss: 1.1765 - mrcnn_bbox_loss: 0.8307 - mrcnn_mask_loss: 0.7813282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - " 39/2000 [..............................] - ETA: 35:07 - loss: 3.9009 - rpn_class_loss: 0.0553 - rpn_bbox_loss: 1.0742 - mrcnn_class_loss: 1.1622 - mrcnn_bbox_loss: 0.8332 - mrcnn_mask_loss: 0.77601\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - " 40/2000 [..............................] - ETA: 34:50 - loss: 3.8750 - rpn_class_loss: 0.0541 - rpn_bbox_loss: 1.0693 - mrcnn_class_loss: 1.1502 - mrcnn_bbox_loss: 0.8262 - mrcnn_mask_loss: 0.775217\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - " 41/2000 [..............................] - ETA: 34:35 - loss: 3.8541 - rpn_class_loss: 0.0531 - rpn_bbox_loss: 1.0720 - mrcnn_class_loss: 1.1347 - mrcnn_bbox_loss: 0.8215 - mrcnn_mask_loss: 0.7728367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - " 42/2000 [..............................] - ETA: 34:49 - loss: 3.8316 - rpn_class_loss: 0.0525 - rpn_bbox_loss: 1.0651 - mrcnn_class_loss: 1.1251 - mrcnn_bbox_loss: 0.8168 - mrcnn_mask_loss: 0.7720290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - " 43/2000 [..............................] - ETA: 34:59 - loss: 3.8100 - rpn_class_loss: 0.0517 - rpn_bbox_loss: 1.0547 - mrcnn_class_loss: 1.1154 - mrcnn_bbox_loss: 0.8176 - mrcnn_mask_loss: 0.7707296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - " 44/2000 [..............................] - ETA: 35:04 - loss: 3.7818 - rpn_class_loss: 0.0516 - rpn_bbox_loss: 1.0457 - mrcnn_class_loss: 1.1062 - mrcnn_bbox_loss: 0.8085 - mrcnn_mask_loss: 0.769843\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - " 45/2000 [..............................] - ETA: 34:57 - loss: 3.7472 - rpn_class_loss: 0.0507 - rpn_bbox_loss: 1.0375 - mrcnn_class_loss: 1.0899 - mrcnn_bbox_loss: 0.8025 - mrcnn_mask_loss: 0.766573\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - " 46/2000 [..............................] - ETA: 34:43 - loss: 3.7119 - rpn_class_loss: 0.0502 - rpn_bbox_loss: 1.0270 - mrcnn_class_loss: 1.0723 - mrcnn_bbox_loss: 0.7989 - mrcnn_mask_loss: 0.7636151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 47/2000 [..............................] - ETA: 34:40 - loss: 3.6903 - rpn_class_loss: 0.0499 - rpn_bbox_loss: 1.0277 - mrcnn_class_loss: 1.0559 - mrcnn_bbox_loss: 0.7961 - mrcnn_mask_loss: 0.7607170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - " 48/2000 [..............................] - ETA: 34:33 - loss: 3.6537 - rpn_class_loss: 0.0489 - rpn_bbox_loss: 1.0160 - mrcnn_class_loss: 1.0421 - mrcnn_bbox_loss: 0.7902 - mrcnn_mask_loss: 0.756599\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - " 49/2000 [..............................] - ETA: 34:26 - loss: 3.6342 - rpn_class_loss: 0.0480 - rpn_bbox_loss: 1.0172 - mrcnn_class_loss: 1.0287 - mrcnn_bbox_loss: 0.7835 - mrcnn_mask_loss: 0.7567198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - " 50/2000 [..............................] - ETA: 34:16 - loss: 3.6148 - rpn_class_loss: 0.0475 - rpn_bbox_loss: 1.0131 - mrcnn_class_loss: 1.0180 - mrcnn_bbox_loss: 0.7800 - mrcnn_mask_loss: 0.7562214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - " 51/2000 [..............................] - ETA: 34:06 - loss: 3.5762 - rpn_class_loss: 0.0470 - rpn_bbox_loss: 0.9997 - mrcnn_class_loss: 1.0016 - mrcnn_bbox_loss: 0.7740 - mrcnn_mask_loss: 0.753974\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - " 52/2000 [..............................] - ETA: 33:59 - loss: 3.5456 - rpn_class_loss: 0.0462 - rpn_bbox_loss: 0.9910 - mrcnn_class_loss: 0.9871 - mrcnn_bbox_loss: 0.7682 - mrcnn_mask_loss: 0.753195\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - " 53/2000 [..............................] - ETA: 33:52 - loss: 3.5176 - rpn_class_loss: 0.0459 - rpn_bbox_loss: 0.9875 - mrcnn_class_loss: 0.9725 - mrcnn_bbox_loss: 0.7603 - mrcnn_mask_loss: 0.7514272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - " 54/2000 [..............................] - ETA: 33:50 - loss: 3.4971 - rpn_class_loss: 0.0460 - rpn_bbox_loss: 0.9760 - mrcnn_class_loss: 0.9657 - mrcnn_bbox_loss: 0.7597 - mrcnn_mask_loss: 0.749722\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - " 55/2000 [..............................] - ETA: 33:41 - loss: 3.4719 - rpn_class_loss: 0.0453 - rpn_bbox_loss: 0.9709 - mrcnn_class_loss: 0.9542 - mrcnn_bbox_loss: 0.7545 - mrcnn_mask_loss: 0.7469178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - " 56/2000 [..............................] - ETA: 33:56 - loss: 3.4502 - rpn_class_loss: 0.0451 - rpn_bbox_loss: 0.9615 - mrcnn_class_loss: 0.9492 - mrcnn_bbox_loss: 0.7509 - mrcnn_mask_loss: 0.7435345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - " 57/2000 [..............................] - ETA: 34:03 - loss: 3.4374 - rpn_class_loss: 0.0445 - rpn_bbox_loss: 0.9590 - mrcnn_class_loss: 0.9439 - mrcnn_bbox_loss: 0.7476 - mrcnn_mask_loss: 0.7424376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - " 58/2000 [..............................] - ETA: 34:15 - loss: 3.4144 - rpn_class_loss: 0.0440 - rpn_bbox_loss: 0.9530 - mrcnn_class_loss: 0.9333 - mrcnn_bbox_loss: 0.7431 - mrcnn_mask_loss: 0.7411382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - " 59/2000 [..............................] - ETA: 34:24 - loss: 3.4073 - rpn_class_loss: 0.0435 - rpn_bbox_loss: 0.9528 - mrcnn_class_loss: 0.9309 - mrcnn_bbox_loss: 0.7412 - mrcnn_mask_loss: 0.7388116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - " 60/2000 [..............................] - ETA: 34:36 - loss: 3.3897 - rpn_class_loss: 0.0430 - rpn_bbox_loss: 0.9471 - mrcnn_class_loss: 0.9242 - mrcnn_bbox_loss: 0.7385 - mrcnn_mask_loss: 0.7368215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - " 61/2000 [..............................] - ETA: 34:29 - loss: 3.3651 - rpn_class_loss: 0.0424 - rpn_bbox_loss: 0.9387 - mrcnn_class_loss: 0.9154 - mrcnn_bbox_loss: 0.7331 - mrcnn_mask_loss: 0.7355121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 62/2000 [..............................] - ETA: 34:38 - loss: 3.3623 - rpn_class_loss: 0.0420 - rpn_bbox_loss: 0.9419 - mrcnn_class_loss: 0.9115 - mrcnn_bbox_loss: 0.7337 - mrcnn_mask_loss: 0.7333222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - " 63/2000 [..............................] - ETA: 34:34 - loss: 3.3810 - rpn_class_loss: 0.0423 - rpn_bbox_loss: 0.9734 - mrcnn_class_loss: 0.9028 - mrcnn_bbox_loss: 0.7323 - mrcnn_mask_loss: 0.7303118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - " 64/2000 [..............................] - ETA: 34:46 - loss: 3.3628 - rpn_class_loss: 0.0417 - rpn_bbox_loss: 0.9676 - mrcnn_class_loss: 0.8941 - mrcnn_bbox_loss: 0.7313 - mrcnn_mask_loss: 0.7281298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - " 65/2000 [..............................] - ETA: 34:53 - loss: 3.3535 - rpn_class_loss: 0.0412 - rpn_bbox_loss: 0.9637 - mrcnn_class_loss: 0.8921 - mrcnn_bbox_loss: 0.7300 - mrcnn_mask_loss: 0.726656\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - " 66/2000 [..............................] - ETA: 34:46 - loss: 3.3305 - rpn_class_loss: 0.0406 - rpn_bbox_loss: 0.9582 - mrcnn_class_loss: 0.8799 - mrcnn_bbox_loss: 0.7269 - mrcnn_mask_loss: 0.7249197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - " 67/2000 [>.............................] - ETA: 34:37 - loss: 3.3074 - rpn_class_loss: 0.0404 - rpn_bbox_loss: 0.9508 - mrcnn_class_loss: 0.8704 - mrcnn_bbox_loss: 0.7229 - mrcnn_mask_loss: 0.7229183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - " 68/2000 [>.............................] - ETA: 34:28 - loss: 3.2908 - rpn_class_loss: 0.0400 - rpn_bbox_loss: 0.9498 - mrcnn_class_loss: 0.8610 - mrcnn_bbox_loss: 0.7193 - mrcnn_mask_loss: 0.7207142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - " 69/2000 [>.............................] - ETA: 34:28 - loss: 3.2821 - rpn_class_loss: 0.0399 - rpn_bbox_loss: 0.9494 - mrcnn_class_loss: 0.8540 - mrcnn_bbox_loss: 0.7194 - mrcnn_mask_loss: 0.719466\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - " 70/2000 [>.............................] - ETA: 34:20 - loss: 3.2588 - rpn_class_loss: 0.0395 - rpn_bbox_loss: 0.9412 - mrcnn_class_loss: 0.8456 - mrcnn_bbox_loss: 0.7152 - mrcnn_mask_loss: 0.717346\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - " 71/2000 [>.............................] - ETA: 34:13 - loss: 3.2348 - rpn_class_loss: 0.0390 - rpn_bbox_loss: 0.9349 - mrcnn_class_loss: 0.8362 - mrcnn_bbox_loss: 0.7093 - mrcnn_mask_loss: 0.7153242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - " 72/2000 [>.............................] - ETA: 34:11 - loss: 3.2255 - rpn_class_loss: 0.0385 - rpn_bbox_loss: 0.9299 - mrcnn_class_loss: 0.8331 - mrcnn_bbox_loss: 0.7089 - mrcnn_mask_loss: 0.715054\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - " 73/2000 [>.............................] - ETA: 34:03 - loss: 3.2038 - rpn_class_loss: 0.0385 - rpn_bbox_loss: 0.9254 - mrcnn_class_loss: 0.8242 - mrcnn_bbox_loss: 0.7024 - mrcnn_mask_loss: 0.713257\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - " 74/2000 [>.............................] - ETA: 33:56 - loss: 3.1867 - rpn_class_loss: 0.0381 - rpn_bbox_loss: 0.9224 - mrcnn_class_loss: 0.8162 - mrcnn_bbox_loss: 0.6984 - mrcnn_mask_loss: 0.7116351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - " 75/2000 [>.............................] - ETA: 33:55 - loss: 3.1719 - rpn_class_loss: 0.0378 - rpn_bbox_loss: 0.9183 - mrcnn_class_loss: 0.8093 - mrcnn_bbox_loss: 0.6961 - mrcnn_mask_loss: 0.7104194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - " 76/2000 [>.............................] - ETA: 33:46 - loss: 3.1496 - rpn_class_loss: 0.0374 - rpn_bbox_loss: 0.9102 - mrcnn_class_loss: 0.8024 - mrcnn_bbox_loss: 0.6909 - mrcnn_mask_loss: 0.708653\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 77/2000 [>.............................] - ETA: 33:38 - loss: 3.1325 - rpn_class_loss: 0.0372 - rpn_bbox_loss: 0.9056 - mrcnn_class_loss: 0.7956 - mrcnn_bbox_loss: 0.6873 - mrcnn_mask_loss: 0.706884\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - " 78/2000 [>.............................] - ETA: 33:33 - loss: 3.1138 - rpn_class_loss: 0.0369 - rpn_bbox_loss: 0.8986 - mrcnn_class_loss: 0.7888 - mrcnn_bbox_loss: 0.6841 - mrcnn_mask_loss: 0.705412\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - " 79/2000 [>.............................] - ETA: 33:24 - loss: 3.0991 - rpn_class_loss: 0.0366 - rpn_bbox_loss: 0.8978 - mrcnn_class_loss: 0.7806 - mrcnn_bbox_loss: 0.6803 - mrcnn_mask_loss: 0.7038297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - " 80/2000 [>.............................] - ETA: 33:27 - loss: 3.0924 - rpn_class_loss: 0.0365 - rpn_bbox_loss: 0.8965 - mrcnn_class_loss: 0.7783 - mrcnn_bbox_loss: 0.6793 - mrcnn_mask_loss: 0.7017196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - " 81/2000 [>.............................] - ETA: 33:20 - loss: 3.0750 - rpn_class_loss: 0.0362 - rpn_bbox_loss: 0.8886 - mrcnn_class_loss: 0.7743 - mrcnn_bbox_loss: 0.6764 - mrcnn_mask_loss: 0.6995257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - " 82/2000 [>.............................] - ETA: 33:18 - loss: 3.0600 - rpn_class_loss: 0.0361 - rpn_bbox_loss: 0.8865 - mrcnn_class_loss: 0.7682 - mrcnn_bbox_loss: 0.6713 - mrcnn_mask_loss: 0.69798\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - " 83/2000 [>.............................] - ETA: 33:10 - loss: 3.0502 - rpn_class_loss: 0.0362 - rpn_bbox_loss: 0.8852 - mrcnn_class_loss: 0.7622 - mrcnn_bbox_loss: 0.6700 - mrcnn_mask_loss: 0.6965379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - " 84/2000 [>.............................] - ETA: 33:20 - loss: 3.0347 - rpn_class_loss: 0.0361 - rpn_bbox_loss: 0.8804 - mrcnn_class_loss: 0.7563 - mrcnn_bbox_loss: 0.6669 - mrcnn_mask_loss: 0.6950228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - " 85/2000 [>.............................] - ETA: 33:13 - loss: 3.0228 - rpn_class_loss: 0.0359 - rpn_bbox_loss: 0.8798 - mrcnn_class_loss: 0.7514 - mrcnn_bbox_loss: 0.6626 - mrcnn_mask_loss: 0.6930315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - " 86/2000 [>.............................] - ETA: 33:16 - loss: 3.0104 - rpn_class_loss: 0.0357 - rpn_bbox_loss: 0.8755 - mrcnn_class_loss: 0.7467 - mrcnn_bbox_loss: 0.6608 - mrcnn_mask_loss: 0.691840\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - " 87/2000 [>.............................] - ETA: 33:11 - loss: 2.9999 - rpn_class_loss: 0.0353 - rpn_bbox_loss: 0.8731 - mrcnn_class_loss: 0.7433 - mrcnn_bbox_loss: 0.6581 - mrcnn_mask_loss: 0.6900286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - " 88/2000 [>.............................] - ETA: 33:12 - loss: 2.9925 - rpn_class_loss: 0.0351 - rpn_bbox_loss: 0.8716 - mrcnn_class_loss: 0.7380 - mrcnn_bbox_loss: 0.6586 - mrcnn_mask_loss: 0.6892179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - " 89/2000 [>.............................] - ETA: 33:11 - loss: 2.9806 - rpn_class_loss: 0.0351 - rpn_bbox_loss: 0.8655 - mrcnn_class_loss: 0.7360 - mrcnn_bbox_loss: 0.6569 - mrcnn_mask_loss: 0.6871110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - " 90/2000 [>.............................] - ETA: 33:08 - loss: 2.9722 - rpn_class_loss: 0.0348 - rpn_bbox_loss: 0.8626 - mrcnn_class_loss: 0.7315 - mrcnn_bbox_loss: 0.6575 - mrcnn_mask_loss: 0.6857287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - " 91/2000 [>.............................] - ETA: 33:08 - loss: 2.9624 - rpn_class_loss: 0.0345 - rpn_bbox_loss: 0.8605 - mrcnn_class_loss: 0.7261 - mrcnn_bbox_loss: 0.6576 - mrcnn_mask_loss: 0.6837176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 92/2000 [>.............................] - ETA: 33:05 - loss: 2.9520 - rpn_class_loss: 0.0343 - rpn_bbox_loss: 0.8569 - mrcnn_class_loss: 0.7238 - mrcnn_bbox_loss: 0.6551 - mrcnn_mask_loss: 0.6819126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - " 93/2000 [>.............................] - ETA: 33:06 - loss: 2.9469 - rpn_class_loss: 0.0341 - rpn_bbox_loss: 0.8544 - mrcnn_class_loss: 0.7221 - mrcnn_bbox_loss: 0.6551 - mrcnn_mask_loss: 0.6813157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - " 94/2000 [>.............................] - ETA: 33:06 - loss: 2.9397 - rpn_class_loss: 0.0338 - rpn_bbox_loss: 0.8528 - mrcnn_class_loss: 0.7187 - mrcnn_bbox_loss: 0.6545 - mrcnn_mask_loss: 0.6798368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - " 95/2000 [>.............................] - ETA: 33:06 - loss: 2.9288 - rpn_class_loss: 0.0335 - rpn_bbox_loss: 0.8497 - mrcnn_class_loss: 0.7138 - mrcnn_bbox_loss: 0.6528 - mrcnn_mask_loss: 0.679014\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - " 96/2000 [>.............................] - ETA: 32:58 - loss: 2.9178 - rpn_class_loss: 0.0333 - rpn_bbox_loss: 0.8477 - mrcnn_class_loss: 0.7096 - mrcnn_bbox_loss: 0.6500 - mrcnn_mask_loss: 0.6772130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - " 97/2000 [>.............................] - ETA: 32:58 - loss: 2.9111 - rpn_class_loss: 0.0331 - rpn_bbox_loss: 0.8452 - mrcnn_class_loss: 0.7058 - mrcnn_bbox_loss: 0.6510 - mrcnn_mask_loss: 0.6759267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - " 98/2000 [>.............................] - ETA: 32:56 - loss: 2.9032 - rpn_class_loss: 0.0329 - rpn_bbox_loss: 0.8415 - mrcnn_class_loss: 0.7038 - mrcnn_bbox_loss: 0.6498 - mrcnn_mask_loss: 0.6752206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - " 99/2000 [>.............................] - ETA: 32:50 - loss: 2.8906 - rpn_class_loss: 0.0327 - rpn_bbox_loss: 0.8369 - mrcnn_class_loss: 0.7004 - mrcnn_bbox_loss: 0.6469 - mrcnn_mask_loss: 0.6738102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - " 100/2000 [>.............................] - ETA: 32:51 - loss: 2.8818 - rpn_class_loss: 0.0324 - rpn_bbox_loss: 0.8343 - mrcnn_class_loss: 0.6970 - mrcnn_bbox_loss: 0.6456 - mrcnn_mask_loss: 0.6726172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - " 101/2000 [>.............................] - ETA: 32:46 - loss: 2.8704 - rpn_class_loss: 0.0323 - rpn_bbox_loss: 0.8308 - mrcnn_class_loss: 0.6934 - mrcnn_bbox_loss: 0.6434 - mrcnn_mask_loss: 0.6705140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - " 102/2000 [>.............................] - ETA: 32:47 - loss: 2.8612 - rpn_class_loss: 0.0322 - rpn_bbox_loss: 0.8271 - mrcnn_class_loss: 0.6907 - mrcnn_bbox_loss: 0.6411 - mrcnn_mask_loss: 0.670030\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - " 103/2000 [>.............................] - ETA: 32:41 - loss: 2.8513 - rpn_class_loss: 0.0321 - rpn_bbox_loss: 0.8259 - mrcnn_class_loss: 0.6866 - mrcnn_bbox_loss: 0.6381 - mrcnn_mask_loss: 0.6686337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - " 104/2000 [>.............................] - ETA: 32:43 - loss: 2.8428 - rpn_class_loss: 0.0319 - rpn_bbox_loss: 0.8237 - mrcnn_class_loss: 0.6834 - mrcnn_bbox_loss: 0.6365 - mrcnn_mask_loss: 0.6673109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - " 105/2000 [>.............................] - ETA: 32:40 - loss: 2.8383 - rpn_class_loss: 0.0317 - rpn_bbox_loss: 0.8212 - mrcnn_class_loss: 0.6810 - mrcnn_bbox_loss: 0.6375 - mrcnn_mask_loss: 0.6671340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - " 106/2000 [>.............................] - ETA: 32:44 - loss: 2.8325 - rpn_class_loss: 0.0315 - rpn_bbox_loss: 0.8199 - mrcnn_class_loss: 0.6786 - mrcnn_bbox_loss: 0.6363 - mrcnn_mask_loss: 0.666359\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - " 107/2000 [>.............................] - ETA: 32:40 - loss: 2.8228 - rpn_class_loss: 0.0312 - rpn_bbox_loss: 0.8172 - mrcnn_class_loss: 0.6761 - mrcnn_bbox_loss: 0.6338 - mrcnn_mask_loss: 0.6646158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - " 108/2000 [>.............................] - ETA: 32:39 - loss: 2.8181 - rpn_class_loss: 0.0311 - rpn_bbox_loss: 0.8182 - mrcnn_class_loss: 0.6728 - mrcnn_bbox_loss: 0.6322 - mrcnn_mask_loss: 0.6637304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - " 109/2000 [>.............................] - ETA: 32:43 - loss: 2.8145 - rpn_class_loss: 0.0309 - rpn_bbox_loss: 0.8165 - mrcnn_class_loss: 0.6731 - mrcnn_bbox_loss: 0.6311 - mrcnn_mask_loss: 0.6631186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - " 110/2000 [>.............................] - ETA: 32:37 - loss: 2.8045 - rpn_class_loss: 0.0307 - rpn_bbox_loss: 0.8134 - mrcnn_class_loss: 0.6690 - mrcnn_bbox_loss: 0.6295 - mrcnn_mask_loss: 0.6619313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - " 111/2000 [>.............................] - ETA: 32:37 - loss: 2.7966 - rpn_class_loss: 0.0305 - rpn_bbox_loss: 0.8106 - mrcnn_class_loss: 0.6655 - mrcnn_bbox_loss: 0.6290 - mrcnn_mask_loss: 0.6610244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - " 112/2000 [>.............................] - ETA: 32:36 - loss: 2.7890 - rpn_class_loss: 0.0302 - rpn_bbox_loss: 0.8083 - mrcnn_class_loss: 0.6619 - mrcnn_bbox_loss: 0.6288 - mrcnn_mask_loss: 0.6598131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - " 113/2000 [>.............................] - ETA: 32:35 - loss: 2.7822 - rpn_class_loss: 0.0300 - rpn_bbox_loss: 0.8063 - mrcnn_class_loss: 0.6598 - mrcnn_bbox_loss: 0.6275 - mrcnn_mask_loss: 0.6585103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - " 114/2000 [>.............................] - ETA: 32:35 - loss: 2.7754 - rpn_class_loss: 0.0298 - rpn_bbox_loss: 0.8033 - mrcnn_class_loss: 0.6578 - mrcnn_bbox_loss: 0.6265 - mrcnn_mask_loss: 0.6580397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - " 115/2000 [>.............................] - ETA: 32:37 - loss: 2.7727 - rpn_class_loss: 0.0296 - rpn_bbox_loss: 0.8065 - mrcnn_class_loss: 0.6542 - mrcnn_bbox_loss: 0.6258 - mrcnn_mask_loss: 0.6566169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - " 116/2000 [>.............................] - ETA: 32:33 - loss: 2.7622 - rpn_class_loss: 0.0296 - rpn_bbox_loss: 0.8028 - mrcnn_class_loss: 0.6503 - mrcnn_bbox_loss: 0.6245 - mrcnn_mask_loss: 0.655061\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - " 117/2000 [>.............................] - ETA: 32:29 - loss: 2.7508 - rpn_class_loss: 0.0294 - rpn_bbox_loss: 0.7987 - mrcnn_class_loss: 0.6462 - mrcnn_bbox_loss: 0.6235 - mrcnn_mask_loss: 0.6530174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - " 118/2000 [>.............................] - ETA: 32:27 - loss: 2.7450 - rpn_class_loss: 0.0292 - rpn_bbox_loss: 0.7969 - mrcnn_class_loss: 0.6444 - mrcnn_bbox_loss: 0.6227 - mrcnn_mask_loss: 0.6518358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - " 119/2000 [>.............................] - ETA: 32:29 - loss: 2.7400 - rpn_class_loss: 0.0291 - rpn_bbox_loss: 0.7960 - mrcnn_class_loss: 0.6427 - mrcnn_bbox_loss: 0.6217 - mrcnn_mask_loss: 0.6505125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 120/2000 [>.............................] - ETA: 32:31 - loss: 2.7317 - rpn_class_loss: 0.0290 - rpn_bbox_loss: 0.7930 - mrcnn_class_loss: 0.6391 - mrcnn_bbox_loss: 0.6207 - mrcnn_mask_loss: 0.649911\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - " 121/2000 [>.............................] - ETA: 32:25 - loss: 2.7227 - rpn_class_loss: 0.0289 - rpn_bbox_loss: 0.7916 - mrcnn_class_loss: 0.6363 - mrcnn_bbox_loss: 0.6171 - mrcnn_mask_loss: 0.6487232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - " 122/2000 [>.............................] - ETA: 32:20 - loss: 2.7194 - rpn_class_loss: 0.0289 - rpn_bbox_loss: 0.7960 - mrcnn_class_loss: 0.6331 - mrcnn_bbox_loss: 0.6145 - mrcnn_mask_loss: 0.6470269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - " 123/2000 [>.............................] - ETA: 32:19 - loss: 2.7111 - rpn_class_loss: 0.0287 - rpn_bbox_loss: 0.7925 - mrcnn_class_loss: 0.6307 - mrcnn_bbox_loss: 0.6132 - mrcnn_mask_loss: 0.6460374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - " 124/2000 [>.............................] - ETA: 32:23 - loss: 2.7047 - rpn_class_loss: 0.0287 - rpn_bbox_loss: 0.7914 - mrcnn_class_loss: 0.6280 - mrcnn_bbox_loss: 0.6117 - mrcnn_mask_loss: 0.6449256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - " 125/2000 [>.............................] - ETA: 32:22 - loss: 2.6970 - rpn_class_loss: 0.0285 - rpn_bbox_loss: 0.7892 - mrcnn_class_loss: 0.6254 - mrcnn_bbox_loss: 0.6100 - mrcnn_mask_loss: 0.6440261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - " 126/2000 [>.............................] - ETA: 32:22 - loss: 2.6905 - rpn_class_loss: 0.0283 - rpn_bbox_loss: 0.7862 - mrcnn_class_loss: 0.6234 - mrcnn_bbox_loss: 0.6091 - mrcnn_mask_loss: 0.6434111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - " 127/2000 [>.............................] - ETA: 32:21 - loss: 2.6851 - rpn_class_loss: 0.0281 - rpn_bbox_loss: 0.7843 - mrcnn_class_loss: 0.6222 - mrcnn_bbox_loss: 0.6074 - mrcnn_mask_loss: 0.6432309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - " 128/2000 [>.............................] - ETA: 32:20 - loss: 2.6804 - rpn_class_loss: 0.0280 - rpn_bbox_loss: 0.7826 - mrcnn_class_loss: 0.6193 - mrcnn_bbox_loss: 0.6083 - mrcnn_mask_loss: 0.6422262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - " 129/2000 [>.............................] - ETA: 32:20 - loss: 2.6760 - rpn_class_loss: 0.0281 - rpn_bbox_loss: 0.7804 - mrcnn_class_loss: 0.6178 - mrcnn_bbox_loss: 0.6084 - mrcnn_mask_loss: 0.6413393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - " 130/2000 [>.............................] - ETA: 32:20 - loss: 2.6731 - rpn_class_loss: 0.0281 - rpn_bbox_loss: 0.7817 - mrcnn_class_loss: 0.6159 - mrcnn_bbox_loss: 0.6076 - mrcnn_mask_loss: 0.6398375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - " 131/2000 [>.............................] - ETA: 32:21 - loss: 2.6644 - rpn_class_loss: 0.0281 - rpn_bbox_loss: 0.7805 - mrcnn_class_loss: 0.6125 - mrcnn_bbox_loss: 0.6052 - mrcnn_mask_loss: 0.638268\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - " 132/2000 [>.............................] - ETA: 32:16 - loss: 2.6561 - rpn_class_loss: 0.0279 - rpn_bbox_loss: 0.7777 - mrcnn_class_loss: 0.6100 - mrcnn_bbox_loss: 0.6034 - mrcnn_mask_loss: 0.637098\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - " 133/2000 [>.............................] - ETA: 32:13 - loss: 2.6535 - rpn_class_loss: 0.0280 - rpn_bbox_loss: 0.7824 - mrcnn_class_loss: 0.6065 - mrcnn_bbox_loss: 0.6005 - mrcnn_mask_loss: 0.6361199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - " 134/2000 [=>............................] - ETA: 32:10 - loss: 2.6481 - rpn_class_loss: 0.0278 - rpn_bbox_loss: 0.7813 - mrcnn_class_loss: 0.6040 - mrcnn_bbox_loss: 0.5991 - mrcnn_mask_loss: 0.63589\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - " 135/2000 [=>............................] - ETA: 32:04 - loss: 2.6427 - rpn_class_loss: 0.0277 - rpn_bbox_loss: 0.7809 - mrcnn_class_loss: 0.6020 - mrcnn_bbox_loss: 0.5974 - mrcnn_mask_loss: 0.6347264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - " 136/2000 [=>............................] - ETA: 32:04 - loss: 2.6346 - rpn_class_loss: 0.0276 - rpn_bbox_loss: 0.7776 - mrcnn_class_loss: 0.5993 - mrcnn_bbox_loss: 0.5961 - mrcnn_mask_loss: 0.6341285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - " 137/2000 [=>............................] - ETA: 32:05 - loss: 2.6320 - rpn_class_loss: 0.0274 - rpn_bbox_loss: 0.7769 - mrcnn_class_loss: 0.5984 - mrcnn_bbox_loss: 0.5960 - mrcnn_mask_loss: 0.6333305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - " 138/2000 [=>............................] - ETA: 32:06 - loss: 2.6277 - rpn_class_loss: 0.0273 - rpn_bbox_loss: 0.7753 - mrcnn_class_loss: 0.5966 - mrcnn_bbox_loss: 0.5957 - mrcnn_mask_loss: 0.6328235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - " 139/2000 [=>............................] - ETA: 32:03 - loss: 2.6221 - rpn_class_loss: 0.0271 - rpn_bbox_loss: 0.7740 - mrcnn_class_loss: 0.5954 - mrcnn_bbox_loss: 0.5936 - mrcnn_mask_loss: 0.6320395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - " 140/2000 [=>............................] - ETA: 32:04 - loss: 2.6208 - rpn_class_loss: 0.0271 - rpn_bbox_loss: 0.7754 - mrcnn_class_loss: 0.5939 - mrcnn_bbox_loss: 0.5927 - mrcnn_mask_loss: 0.631635\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - " 141/2000 [=>............................] - ETA: 32:00 - loss: 2.6149 - rpn_class_loss: 0.0271 - rpn_bbox_loss: 0.7762 - mrcnn_class_loss: 0.5912 - mrcnn_bbox_loss: 0.5901 - mrcnn_mask_loss: 0.630438\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - " 142/2000 [=>............................] - ETA: 31:57 - loss: 2.6118 - rpn_class_loss: 0.0269 - rpn_bbox_loss: 0.7773 - mrcnn_class_loss: 0.5890 - mrcnn_bbox_loss: 0.5888 - mrcnn_mask_loss: 0.629820\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - " 143/2000 [=>............................] - ETA: 31:53 - loss: 2.6050 - rpn_class_loss: 0.0268 - rpn_bbox_loss: 0.7764 - mrcnn_class_loss: 0.5868 - mrcnn_bbox_loss: 0.5863 - mrcnn_mask_loss: 0.628732\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - " 144/2000 [=>............................] - ETA: 31:48 - loss: 2.5994 - rpn_class_loss: 0.0266 - rpn_bbox_loss: 0.7762 - mrcnn_class_loss: 0.5844 - mrcnn_bbox_loss: 0.5846 - mrcnn_mask_loss: 0.6276350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - " 145/2000 [=>............................] - ETA: 31:49 - loss: 2.5953 - rpn_class_loss: 0.0265 - rpn_bbox_loss: 0.7744 - mrcnn_class_loss: 0.5825 - mrcnn_bbox_loss: 0.5849 - mrcnn_mask_loss: 0.6271205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - " 146/2000 [=>............................] - ETA: 31:45 - loss: 2.5891 - rpn_class_loss: 0.0263 - rpn_bbox_loss: 0.7717 - mrcnn_class_loss: 0.5803 - mrcnn_bbox_loss: 0.5849 - mrcnn_mask_loss: 0.6259195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - " 147/2000 [=>............................] - ETA: 31:41 - loss: 2.5832 - rpn_class_loss: 0.0262 - rpn_bbox_loss: 0.7688 - mrcnn_class_loss: 0.5789 - mrcnn_bbox_loss: 0.5838 - mrcnn_mask_loss: 0.6255396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - " 148/2000 [=>............................] - ETA: 31:42 - loss: 2.5801 - rpn_class_loss: 0.0260 - rpn_bbox_loss: 0.7695 - mrcnn_class_loss: 0.5773 - mrcnn_bbox_loss: 0.5821 - mrcnn_mask_loss: 0.6252201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 149/2000 [=>............................] - ETA: 31:39 - loss: 2.5764 - rpn_class_loss: 0.0259 - rpn_bbox_loss: 0.7668 - mrcnn_class_loss: 0.5776 - mrcnn_bbox_loss: 0.5819 - mrcnn_mask_loss: 0.6241384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - " 150/2000 [=>............................] - ETA: 31:40 - loss: 2.5730 - rpn_class_loss: 0.0260 - rpn_bbox_loss: 0.7667 - mrcnn_class_loss: 0.5765 - mrcnn_bbox_loss: 0.5809 - mrcnn_mask_loss: 0.622880\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - " 151/2000 [=>............................] - ETA: 31:38 - loss: 2.5688 - rpn_class_loss: 0.0260 - rpn_bbox_loss: 0.7666 - mrcnn_class_loss: 0.5748 - mrcnn_bbox_loss: 0.5799 - mrcnn_mask_loss: 0.6216202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - " 152/2000 [=>............................] - ETA: 31:35 - loss: 2.5626 - rpn_class_loss: 0.0259 - rpn_bbox_loss: 0.7644 - mrcnn_class_loss: 0.5737 - mrcnn_bbox_loss: 0.5780 - mrcnn_mask_loss: 0.6207233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - " 153/2000 [=>............................] - ETA: 31:32 - loss: 2.5559 - rpn_class_loss: 0.0258 - rpn_bbox_loss: 0.7646 - mrcnn_class_loss: 0.5712 - mrcnn_bbox_loss: 0.5753 - mrcnn_mask_loss: 0.6190288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - " 154/2000 [=>............................] - ETA: 31:33 - loss: 2.5512 - rpn_class_loss: 0.0257 - rpn_bbox_loss: 0.7629 - mrcnn_class_loss: 0.5696 - mrcnn_bbox_loss: 0.5747 - mrcnn_mask_loss: 0.6183212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - " 155/2000 [=>............................] - ETA: 31:29 - loss: 2.5444 - rpn_class_loss: 0.0256 - rpn_bbox_loss: 0.7601 - mrcnn_class_loss: 0.5672 - mrcnn_bbox_loss: 0.5743 - mrcnn_mask_loss: 0.6172260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - " 156/2000 [=>............................] - ETA: 31:31 - loss: 2.5392 - rpn_class_loss: 0.0254 - rpn_bbox_loss: 0.7583 - mrcnn_class_loss: 0.5654 - mrcnn_bbox_loss: 0.5734 - mrcnn_mask_loss: 0.6167389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - " 157/2000 [=>............................] - ETA: 31:30 - loss: 2.5338 - rpn_class_loss: 0.0253 - rpn_bbox_loss: 0.7576 - mrcnn_class_loss: 0.5634 - mrcnn_bbox_loss: 0.5719 - mrcnn_mask_loss: 0.6155380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - " 158/2000 [=>............................] - ETA: 31:31 - loss: 2.5315 - rpn_class_loss: 0.0252 - rpn_bbox_loss: 0.7584 - mrcnn_class_loss: 0.5620 - mrcnn_bbox_loss: 0.5715 - mrcnn_mask_loss: 0.614410\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - " 159/2000 [=>............................] - ETA: 31:26 - loss: 2.5270 - rpn_class_loss: 0.0251 - rpn_bbox_loss: 0.7591 - mrcnn_class_loss: 0.5591 - mrcnn_bbox_loss: 0.5699 - mrcnn_mask_loss: 0.6137273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - " 160/2000 [=>............................] - ETA: 31:26 - loss: 2.5208 - rpn_class_loss: 0.0250 - rpn_bbox_loss: 0.7568 - mrcnn_class_loss: 0.5564 - mrcnn_bbox_loss: 0.5687 - mrcnn_mask_loss: 0.6138283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - " 161/2000 [=>............................] - ETA: 31:28 - loss: 2.5176 - rpn_class_loss: 0.0249 - rpn_bbox_loss: 0.7561 - mrcnn_class_loss: 0.5560 - mrcnn_bbox_loss: 0.5675 - mrcnn_mask_loss: 0.6130155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - " 162/2000 [=>............................] - ETA: 31:28 - loss: 2.5139 - rpn_class_loss: 0.0249 - rpn_bbox_loss: 0.7574 - mrcnn_class_loss: 0.5535 - mrcnn_bbox_loss: 0.5663 - mrcnn_mask_loss: 0.6119346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - " 163/2000 [=>............................] - ETA: 31:29 - loss: 2.5117 - rpn_class_loss: 0.0248 - rpn_bbox_loss: 0.7577 - mrcnn_class_loss: 0.5524 - mrcnn_bbox_loss: 0.5656 - mrcnn_mask_loss: 0.6112312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 164/2000 [=>............................] - ETA: 31:32 - loss: 2.5084 - rpn_class_loss: 0.0247 - rpn_bbox_loss: 0.7571 - mrcnn_class_loss: 0.5509 - mrcnn_bbox_loss: 0.5653 - mrcnn_mask_loss: 0.6104383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - " 165/2000 [=>............................] - ETA: 31:33 - loss: 2.5023 - rpn_class_loss: 0.0246 - rpn_bbox_loss: 0.7559 - mrcnn_class_loss: 0.5482 - mrcnn_bbox_loss: 0.5641 - mrcnn_mask_loss: 0.6095328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - " 166/2000 [=>............................] - ETA: 31:32 - loss: 2.4979 - rpn_class_loss: 0.0245 - rpn_bbox_loss: 0.7542 - mrcnn_class_loss: 0.5465 - mrcnn_bbox_loss: 0.5637 - mrcnn_mask_loss: 0.6090193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - " 167/2000 [=>............................] - ETA: 31:28 - loss: 2.4921 - rpn_class_loss: 0.0244 - rpn_bbox_loss: 0.7515 - mrcnn_class_loss: 0.5451 - mrcnn_bbox_loss: 0.5631 - mrcnn_mask_loss: 0.6081352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - " 168/2000 [=>............................] - ETA: 31:28 - loss: 2.4853 - rpn_class_loss: 0.0243 - rpn_bbox_loss: 0.7498 - mrcnn_class_loss: 0.5432 - mrcnn_bbox_loss: 0.5609 - mrcnn_mask_loss: 0.6071338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - " 169/2000 [=>............................] - ETA: 31:29 - loss: 2.4808 - rpn_class_loss: 0.0243 - rpn_bbox_loss: 0.7485 - mrcnn_class_loss: 0.5421 - mrcnn_bbox_loss: 0.5598 - mrcnn_mask_loss: 0.6062330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - " 170/2000 [=>............................] - ETA: 31:28 - loss: 2.4770 - rpn_class_loss: 0.0242 - rpn_bbox_loss: 0.7475 - mrcnn_class_loss: 0.5413 - mrcnn_bbox_loss: 0.5587 - mrcnn_mask_loss: 0.6054217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - " 171/2000 [=>............................] - ETA: 31:25 - loss: 2.4715 - rpn_class_loss: 0.0241 - rpn_bbox_loss: 0.7469 - mrcnn_class_loss: 0.5396 - mrcnn_bbox_loss: 0.5567 - mrcnn_mask_loss: 0.6042159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - " 172/2000 [=>............................] - ETA: 31:26 - loss: 2.4696 - rpn_class_loss: 0.0240 - rpn_bbox_loss: 0.7463 - mrcnn_class_loss: 0.5401 - mrcnn_bbox_loss: 0.5558 - mrcnn_mask_loss: 0.603436\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - " 173/2000 [=>............................] - ETA: 31:23 - loss: 2.4644 - rpn_class_loss: 0.0239 - rpn_bbox_loss: 0.7466 - mrcnn_class_loss: 0.5379 - mrcnn_bbox_loss: 0.5537 - mrcnn_mask_loss: 0.6023156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - " 174/2000 [=>............................] - ETA: 31:23 - loss: 2.4611 - rpn_class_loss: 0.0238 - rpn_bbox_loss: 0.7466 - mrcnn_class_loss: 0.5358 - mrcnn_bbox_loss: 0.5534 - mrcnn_mask_loss: 0.6015191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - " 175/2000 [=>............................] - ETA: 31:21 - loss: 2.4552 - rpn_class_loss: 0.0237 - rpn_bbox_loss: 0.7436 - mrcnn_class_loss: 0.5345 - mrcnn_bbox_loss: 0.5526 - mrcnn_mask_loss: 0.6008326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - " 176/2000 [=>............................] - ETA: 31:21 - loss: 2.4503 - rpn_class_loss: 0.0236 - rpn_bbox_loss: 0.7420 - mrcnn_class_loss: 0.5323 - mrcnn_bbox_loss: 0.5522 - mrcnn_mask_loss: 0.6002329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - " 177/2000 [=>............................] - ETA: 31:20 - loss: 2.4455 - rpn_class_loss: 0.0236 - rpn_bbox_loss: 0.7409 - mrcnn_class_loss: 0.5301 - mrcnn_bbox_loss: 0.5511 - mrcnn_mask_loss: 0.5999385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - " 178/2000 [=>............................] - ETA: 31:21 - loss: 2.4419 - rpn_class_loss: 0.0235 - rpn_bbox_loss: 0.7399 - mrcnn_class_loss: 0.5291 - mrcnn_bbox_loss: 0.5500 - mrcnn_mask_loss: 0.5995230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 179/2000 [=>............................] - ETA: 31:17 - loss: 2.4369 - rpn_class_loss: 0.0234 - rpn_bbox_loss: 0.7395 - mrcnn_class_loss: 0.5276 - mrcnn_bbox_loss: 0.5484 - mrcnn_mask_loss: 0.5980100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - " 180/2000 [=>............................] - ETA: 31:18 - loss: 2.4367 - rpn_class_loss: 0.0235 - rpn_bbox_loss: 0.7388 - mrcnn_class_loss: 0.5284 - mrcnn_bbox_loss: 0.5482 - mrcnn_mask_loss: 0.5978115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - " 181/2000 [=>............................] - ETA: 31:18 - loss: 2.4330 - rpn_class_loss: 0.0235 - rpn_bbox_loss: 0.7373 - mrcnn_class_loss: 0.5271 - mrcnn_bbox_loss: 0.5478 - mrcnn_mask_loss: 0.597494\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - " 182/2000 [=>............................] - ETA: 31:15 - loss: 2.4296 - rpn_class_loss: 0.0236 - rpn_bbox_loss: 0.7381 - mrcnn_class_loss: 0.5254 - mrcnn_bbox_loss: 0.5465 - mrcnn_mask_loss: 0.5960238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - " 183/2000 [=>............................] - ETA: 31:13 - loss: 2.4243 - rpn_class_loss: 0.0235 - rpn_bbox_loss: 0.7376 - mrcnn_class_loss: 0.5232 - mrcnn_bbox_loss: 0.5453 - mrcnn_mask_loss: 0.5947122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - " 184/2000 [=>............................] - ETA: 31:15 - loss: 2.4229 - rpn_class_loss: 0.0235 - rpn_bbox_loss: 0.7365 - mrcnn_class_loss: 0.5237 - mrcnn_bbox_loss: 0.5451 - mrcnn_mask_loss: 0.5942144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - " 185/2000 [=>............................] - ETA: 31:14 - loss: 2.4207 - rpn_class_loss: 0.0235 - rpn_bbox_loss: 0.7355 - mrcnn_class_loss: 0.5225 - mrcnn_bbox_loss: 0.5455 - mrcnn_mask_loss: 0.5937310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - " 186/2000 [=>............................] - ETA: 31:14 - loss: 2.4167 - rpn_class_loss: 0.0234 - rpn_bbox_loss: 0.7348 - mrcnn_class_loss: 0.5204 - mrcnn_bbox_loss: 0.5450 - mrcnn_mask_loss: 0.5932394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - " 187/2000 [=>............................] - ETA: 31:14 - loss: 2.4112 - rpn_class_loss: 0.0234 - rpn_bbox_loss: 0.7332 - mrcnn_class_loss: 0.5181 - mrcnn_bbox_loss: 0.5442 - mrcnn_mask_loss: 0.5923108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - " 188/2000 [=>............................] - ETA: 31:12 - loss: 2.4081 - rpn_class_loss: 0.0234 - rpn_bbox_loss: 0.7316 - mrcnn_class_loss: 0.5169 - mrcnn_bbox_loss: 0.5443 - mrcnn_mask_loss: 0.5919127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - " 189/2000 [=>............................] - ETA: 31:13 - loss: 2.4040 - rpn_class_loss: 0.0233 - rpn_bbox_loss: 0.7302 - mrcnn_class_loss: 0.5164 - mrcnn_bbox_loss: 0.5429 - mrcnn_mask_loss: 0.5912366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - " 190/2000 [=>............................] - ETA: 31:13 - loss: 2.4006 - rpn_class_loss: 0.0234 - rpn_bbox_loss: 0.7298 - mrcnn_class_loss: 0.5152 - mrcnn_bbox_loss: 0.5420 - mrcnn_mask_loss: 0.590163\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - " 191/2000 [=>............................] - ETA: 31:11 - loss: 2.3960 - rpn_class_loss: 0.0233 - rpn_bbox_loss: 0.7282 - mrcnn_class_loss: 0.5144 - mrcnn_bbox_loss: 0.5411 - mrcnn_mask_loss: 0.5890252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - " 192/2000 [=>............................] - ETA: 31:09 - loss: 2.3934 - rpn_class_loss: 0.0233 - rpn_bbox_loss: 0.7262 - mrcnn_class_loss: 0.5138 - mrcnn_bbox_loss: 0.5401 - mrcnn_mask_loss: 0.5899129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 193/2000 [=>............................] - ETA: 31:08 - loss: 2.3904 - rpn_class_loss: 0.0232 - rpn_bbox_loss: 0.7259 - mrcnn_class_loss: 0.5127 - mrcnn_bbox_loss: 0.5391 - mrcnn_mask_loss: 0.5895239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - " 194/2000 [=>............................] - ETA: 31:06 - loss: 2.4100 - rpn_class_loss: 0.0234 - rpn_bbox_loss: 0.7500 - mrcnn_class_loss: 0.5108 - mrcnn_bbox_loss: 0.5375 - mrcnn_mask_loss: 0.5881268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - " 195/2000 [=>............................] - ETA: 31:05 - loss: 2.4051 - rpn_class_loss: 0.0233 - rpn_bbox_loss: 0.7481 - mrcnn_class_loss: 0.5096 - mrcnn_bbox_loss: 0.5367 - mrcnn_mask_loss: 0.587470\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - " 196/2000 [=>............................] - ETA: 31:01 - loss: 2.4013 - rpn_class_loss: 0.0233 - rpn_bbox_loss: 0.7463 - mrcnn_class_loss: 0.5087 - mrcnn_bbox_loss: 0.5363 - mrcnn_mask_loss: 0.5867333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - " 197/2000 [=>............................] - ETA: 31:01 - loss: 2.3972 - rpn_class_loss: 0.0232 - rpn_bbox_loss: 0.7446 - mrcnn_class_loss: 0.5072 - mrcnn_bbox_loss: 0.5361 - mrcnn_mask_loss: 0.5860245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - " 198/2000 [=>............................] - ETA: 30:59 - loss: 2.3946 - rpn_class_loss: 0.0232 - rpn_bbox_loss: 0.7423 - mrcnn_class_loss: 0.5074 - mrcnn_bbox_loss: 0.5359 - mrcnn_mask_loss: 0.5858117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - " 199/2000 [=>............................] - ETA: 30:59 - loss: 2.3909 - rpn_class_loss: 0.0231 - rpn_bbox_loss: 0.7411 - mrcnn_class_loss: 0.5059 - mrcnn_bbox_loss: 0.5354 - mrcnn_mask_loss: 0.5854364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - " 200/2000 [==>...........................] - ETA: 31:00 - loss: 2.3895 - rpn_class_loss: 0.0231 - rpn_bbox_loss: 0.7410 - mrcnn_class_loss: 0.5047 - mrcnn_bbox_loss: 0.5360 - mrcnn_mask_loss: 0.584723\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - " 201/2000 [==>...........................] - ETA: 30:57 - loss: 2.3858 - rpn_class_loss: 0.0230 - rpn_bbox_loss: 0.7409 - mrcnn_class_loss: 0.5030 - mrcnn_bbox_loss: 0.5351 - mrcnn_mask_loss: 0.5838123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - " 202/2000 [==>...........................] - ETA: 30:58 - loss: 2.3861 - rpn_class_loss: 0.0231 - rpn_bbox_loss: 0.7400 - mrcnn_class_loss: 0.5046 - mrcnn_bbox_loss: 0.5353 - mrcnn_mask_loss: 0.5832190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - " 203/2000 [==>...........................] - ETA: 30:55 - loss: 2.3809 - rpn_class_loss: 0.0230 - rpn_bbox_loss: 0.7382 - mrcnn_class_loss: 0.5028 - mrcnn_bbox_loss: 0.5345 - mrcnn_mask_loss: 0.5825270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - " 204/2000 [==>...........................] - ETA: 30:53 - loss: 2.3762 - rpn_class_loss: 0.0229 - rpn_bbox_loss: 0.7357 - mrcnn_class_loss: 0.5017 - mrcnn_bbox_loss: 0.5342 - mrcnn_mask_loss: 0.5817147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - " 205/2000 [==>...........................] - ETA: 30:52 - loss: 2.3725 - rpn_class_loss: 0.0229 - rpn_bbox_loss: 0.7341 - mrcnn_class_loss: 0.5014 - mrcnn_bbox_loss: 0.5334 - mrcnn_mask_loss: 0.5807237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - " 206/2000 [==>...........................] - ETA: 30:50 - loss: 2.3682 - rpn_class_loss: 0.0228 - rpn_bbox_loss: 0.7334 - mrcnn_class_loss: 0.5001 - mrcnn_bbox_loss: 0.5323 - mrcnn_mask_loss: 0.5797258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - " 207/2000 [==>...........................] - ETA: 30:49 - loss: 2.3655 - rpn_class_loss: 0.0228 - rpn_bbox_loss: 0.7328 - mrcnn_class_loss: 0.4987 - mrcnn_bbox_loss: 0.5320 - mrcnn_mask_loss: 0.5791234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - " 208/2000 [==>...........................] - ETA: 30:46 - loss: 2.3600 - rpn_class_loss: 0.0228 - rpn_bbox_loss: 0.7315 - mrcnn_class_loss: 0.4973 - mrcnn_bbox_loss: 0.5302 - mrcnn_mask_loss: 0.578365\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - " 209/2000 [==>...........................] - ETA: 30:43 - loss: 2.3539 - rpn_class_loss: 0.0227 - rpn_bbox_loss: 0.7290 - mrcnn_class_loss: 0.4960 - mrcnn_bbox_loss: 0.5291 - mrcnn_mask_loss: 0.5771303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - " 210/2000 [==>...........................] - ETA: 30:45 - loss: 2.3520 - rpn_class_loss: 0.0226 - rpn_bbox_loss: 0.7291 - mrcnn_class_loss: 0.4950 - mrcnn_bbox_loss: 0.5290 - mrcnn_mask_loss: 0.5763373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - " 211/2000 [==>...........................] - ETA: 30:45 - loss: 2.3472 - rpn_class_loss: 0.0226 - rpn_bbox_loss: 0.7272 - mrcnn_class_loss: 0.4935 - mrcnn_bbox_loss: 0.5284 - mrcnn_mask_loss: 0.5755271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - " 212/2000 [==>...........................] - ETA: 30:45 - loss: 2.3425 - rpn_class_loss: 0.0225 - rpn_bbox_loss: 0.7249 - mrcnn_class_loss: 0.4926 - mrcnn_bbox_loss: 0.5276 - mrcnn_mask_loss: 0.5749390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - " 213/2000 [==>...........................] - ETA: 30:43 - loss: 2.3396 - rpn_class_loss: 0.0224 - rpn_bbox_loss: 0.7250 - mrcnn_class_loss: 0.4910 - mrcnn_bbox_loss: 0.5268 - mrcnn_mask_loss: 0.574489\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - " 214/2000 [==>...........................] - ETA: 30:42 - loss: 2.3362 - rpn_class_loss: 0.0224 - rpn_bbox_loss: 0.7249 - mrcnn_class_loss: 0.4898 - mrcnn_bbox_loss: 0.5258 - mrcnn_mask_loss: 0.57322\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - " 215/2000 [==>...........................] - ETA: 30:39 - loss: 2.3342 - rpn_class_loss: 0.0223 - rpn_bbox_loss: 0.7251 - mrcnn_class_loss: 0.4897 - mrcnn_bbox_loss: 0.5249 - mrcnn_mask_loss: 0.5723265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - " 216/2000 [==>...........................] - ETA: 30:38 - loss: 2.3297 - rpn_class_loss: 0.0222 - rpn_bbox_loss: 0.7231 - mrcnn_class_loss: 0.4880 - mrcnn_bbox_loss: 0.5243 - mrcnn_mask_loss: 0.5721307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - " 217/2000 [==>...........................] - ETA: 30:38 - loss: 2.3262 - rpn_class_loss: 0.0222 - rpn_bbox_loss: 0.7226 - mrcnn_class_loss: 0.4864 - mrcnn_bbox_loss: 0.5236 - mrcnn_mask_loss: 0.5714192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - " 218/2000 [==>...........................] - ETA: 30:36 - loss: 2.3215 - rpn_class_loss: 0.0221 - rpn_bbox_loss: 0.7201 - mrcnn_class_loss: 0.4853 - mrcnn_bbox_loss: 0.5232 - mrcnn_mask_loss: 0.5708211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - " 219/2000 [==>...........................] - ETA: 30:33 - loss: 2.3156 - rpn_class_loss: 0.0220 - rpn_bbox_loss: 0.7181 - mrcnn_class_loss: 0.4835 - mrcnn_bbox_loss: 0.5223 - mrcnn_mask_loss: 0.5697128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - " 220/2000 [==>...........................] - ETA: 30:32 - loss: 2.3120 - rpn_class_loss: 0.0220 - rpn_bbox_loss: 0.7167 - mrcnn_class_loss: 0.4826 - mrcnn_bbox_loss: 0.5218 - mrcnn_mask_loss: 0.5688251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - " 221/2000 [==>...........................] - ETA: 30:31 - loss: 2.3092 - rpn_class_loss: 0.0220 - rpn_bbox_loss: 0.7151 - mrcnn_class_loss: 0.4826 - mrcnn_bbox_loss: 0.5213 - mrcnn_mask_loss: 0.5682220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 222/2000 [==>...........................] - ETA: 30:29 - loss: 2.3130 - rpn_class_loss: 0.0221 - rpn_bbox_loss: 0.7218 - mrcnn_class_loss: 0.4813 - mrcnn_bbox_loss: 0.5208 - mrcnn_mask_loss: 0.567125\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - " 223/2000 [==>...........................] - ETA: 30:27 - loss: 2.3084 - rpn_class_loss: 0.0220 - rpn_bbox_loss: 0.7220 - mrcnn_class_loss: 0.4794 - mrcnn_bbox_loss: 0.5192 - mrcnn_mask_loss: 0.5659236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - " 224/2000 [==>...........................] - ETA: 30:24 - loss: 2.3036 - rpn_class_loss: 0.0219 - rpn_bbox_loss: 0.7210 - mrcnn_class_loss: 0.4780 - mrcnn_bbox_loss: 0.5181 - mrcnn_mask_loss: 0.5646399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - " 225/2000 [==>...........................] - ETA: 30:25 - loss: 2.3136 - rpn_class_loss: 0.0220 - rpn_bbox_loss: 0.7321 - mrcnn_class_loss: 0.4775 - mrcnn_bbox_loss: 0.5178 - mrcnn_mask_loss: 0.5641171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - " 226/2000 [==>...........................] - ETA: 30:22 - loss: 2.3114 - rpn_class_loss: 0.0221 - rpn_bbox_loss: 0.7306 - mrcnn_class_loss: 0.4775 - mrcnn_bbox_loss: 0.5180 - mrcnn_mask_loss: 0.5632300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - " 227/2000 [==>...........................] - ETA: 30:25 - loss: 2.3102 - rpn_class_loss: 0.0220 - rpn_bbox_loss: 0.7306 - mrcnn_class_loss: 0.4773 - mrcnn_bbox_loss: 0.5174 - mrcnn_mask_loss: 0.5629152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - " 228/2000 [==>...........................] - ETA: 30:23 - loss: 2.3096 - rpn_class_loss: 0.0220 - rpn_bbox_loss: 0.7319 - mrcnn_class_loss: 0.4767 - mrcnn_bbox_loss: 0.5171 - mrcnn_mask_loss: 0.562029\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - " 229/2000 [==>...........................] - ETA: 30:20 - loss: 2.3059 - rpn_class_loss: 0.0219 - rpn_bbox_loss: 0.7310 - mrcnn_class_loss: 0.4755 - mrcnn_bbox_loss: 0.5165 - mrcnn_mask_loss: 0.5610317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - " 230/2000 [==>...........................] - ETA: 30:21 - loss: 2.3029 - rpn_class_loss: 0.0220 - rpn_bbox_loss: 0.7296 - mrcnn_class_loss: 0.4747 - mrcnn_bbox_loss: 0.5161 - mrcnn_mask_loss: 0.5604325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - " 231/2000 [==>...........................] - ETA: 30:21 - loss: 2.2994 - rpn_class_loss: 0.0219 - rpn_bbox_loss: 0.7281 - mrcnn_class_loss: 0.4734 - mrcnn_bbox_loss: 0.5161 - mrcnn_mask_loss: 0.5599168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - " 232/2000 [==>...........................] - ETA: 30:19 - loss: 2.2948 - rpn_class_loss: 0.0219 - rpn_bbox_loss: 0.7261 - mrcnn_class_loss: 0.4724 - mrcnn_bbox_loss: 0.5152 - mrcnn_mask_loss: 0.5592372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - " 233/2000 [==>...........................] - ETA: 30:19 - loss: 2.2902 - rpn_class_loss: 0.0218 - rpn_bbox_loss: 0.7243 - mrcnn_class_loss: 0.4710 - mrcnn_bbox_loss: 0.5147 - mrcnn_mask_loss: 0.5583189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - " 234/2000 [==>...........................] - ETA: 30:15 - loss: 2.2857 - rpn_class_loss: 0.0217 - rpn_bbox_loss: 0.7224 - mrcnn_class_loss: 0.4695 - mrcnn_bbox_loss: 0.5145 - mrcnn_mask_loss: 0.5576334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - " 235/2000 [==>...........................] - ETA: 30:15 - loss: 2.2810 - rpn_class_loss: 0.0217 - rpn_bbox_loss: 0.7208 - mrcnn_class_loss: 0.4680 - mrcnn_bbox_loss: 0.5134 - mrcnn_mask_loss: 0.5571274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - " 236/2000 [==>...........................] - ETA: 30:15 - loss: 2.2782 - rpn_class_loss: 0.0216 - rpn_bbox_loss: 0.7198 - mrcnn_class_loss: 0.4670 - mrcnn_bbox_loss: 0.5134 - mrcnn_mask_loss: 0.5563266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 237/2000 [==>...........................] - ETA: 30:14 - loss: 2.2740 - rpn_class_loss: 0.0216 - rpn_bbox_loss: 0.7176 - mrcnn_class_loss: 0.4657 - mrcnn_bbox_loss: 0.5131 - mrcnn_mask_loss: 0.5560210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - " 238/2000 [==>...........................] - ETA: 30:11 - loss: 2.2692 - rpn_class_loss: 0.0215 - rpn_bbox_loss: 0.7163 - mrcnn_class_loss: 0.4643 - mrcnn_bbox_loss: 0.5121 - mrcnn_mask_loss: 0.555087\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - " 239/2000 [==>...........................] - ETA: 30:09 - loss: 2.2666 - rpn_class_loss: 0.0216 - rpn_bbox_loss: 0.7156 - mrcnn_class_loss: 0.4629 - mrcnn_bbox_loss: 0.5121 - mrcnn_mask_loss: 0.5544200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - " 240/2000 [==>...........................] - ETA: 30:07 - loss: 2.2630 - rpn_class_loss: 0.0216 - rpn_bbox_loss: 0.7148 - mrcnn_class_loss: 0.4616 - mrcnn_bbox_loss: 0.5113 - mrcnn_mask_loss: 0.553713\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - " 241/2000 [==>...........................] - ETA: 30:04 - loss: 2.2608 - rpn_class_loss: 0.0215 - rpn_bbox_loss: 0.7146 - mrcnn_class_loss: 0.4605 - mrcnn_bbox_loss: 0.5110 - mrcnn_mask_loss: 0.5532361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - " 242/2000 [==>...........................] - ETA: 30:06 - loss: 2.2603 - rpn_class_loss: 0.0214 - rpn_bbox_loss: 0.7159 - mrcnn_class_loss: 0.4597 - mrcnn_bbox_loss: 0.5109 - mrcnn_mask_loss: 0.552478\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - " 243/2000 [==>...........................] - ETA: 30:04 - loss: 2.2552 - rpn_class_loss: 0.0214 - rpn_bbox_loss: 0.7138 - mrcnn_class_loss: 0.4588 - mrcnn_bbox_loss: 0.5095 - mrcnn_mask_loss: 0.551621\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - " 244/2000 [==>...........................] - ETA: 30:02 - loss: 2.2514 - rpn_class_loss: 0.0214 - rpn_bbox_loss: 0.7135 - mrcnn_class_loss: 0.4572 - mrcnn_bbox_loss: 0.5085 - mrcnn_mask_loss: 0.5509161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - " 245/2000 [==>...........................] - ETA: 30:01 - loss: 2.2516 - rpn_class_loss: 0.0213 - rpn_bbox_loss: 0.7142 - mrcnn_class_loss: 0.4565 - mrcnn_bbox_loss: 0.5094 - mrcnn_mask_loss: 0.5501250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - " 246/2000 [==>...........................] - ETA: 29:59 - loss: 2.2503 - rpn_class_loss: 0.0213 - rpn_bbox_loss: 0.7129 - mrcnn_class_loss: 0.4563 - mrcnn_bbox_loss: 0.5095 - mrcnn_mask_loss: 0.5504365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - " 247/2000 [==>...........................] - ETA: 30:00 - loss: 2.2470 - rpn_class_loss: 0.0212 - rpn_bbox_loss: 0.7128 - mrcnn_class_loss: 0.4548 - mrcnn_bbox_loss: 0.5086 - mrcnn_mask_loss: 0.549549\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - " 248/2000 [==>...........................] - ETA: 29:57 - loss: 2.2421 - rpn_class_loss: 0.0212 - rpn_bbox_loss: 0.7114 - mrcnn_class_loss: 0.4538 - mrcnn_bbox_loss: 0.5074 - mrcnn_mask_loss: 0.5484240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - " 249/2000 [==>...........................] - ETA: 29:56 - loss: 2.2400 - rpn_class_loss: 0.0211 - rpn_bbox_loss: 0.7102 - mrcnn_class_loss: 0.4535 - mrcnn_bbox_loss: 0.5072 - mrcnn_mask_loss: 0.5479341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - " 250/2000 [==>...........................] - ETA: 29:58 - loss: 2.2387 - rpn_class_loss: 0.0211 - rpn_bbox_loss: 0.7096 - mrcnn_class_loss: 0.4536 - mrcnn_bbox_loss: 0.5071 - mrcnn_mask_loss: 0.5473204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - " 251/2000 [==>...........................] - ETA: 29:55 - loss: 2.2357 - rpn_class_loss: 0.0210 - rpn_bbox_loss: 0.7080 - mrcnn_class_loss: 0.4531 - mrcnn_bbox_loss: 0.5070 - mrcnn_mask_loss: 0.5466216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 252/2000 [==>...........................] - ETA: 29:53 - loss: 2.2314 - rpn_class_loss: 0.0210 - rpn_bbox_loss: 0.7066 - mrcnn_class_loss: 0.4519 - mrcnn_bbox_loss: 0.5063 - mrcnn_mask_loss: 0.5456381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - " 253/2000 [==>...........................] - ETA: 29:53 - loss: 2.2304 - rpn_class_loss: 0.0210 - rpn_bbox_loss: 0.7060 - mrcnn_class_loss: 0.4518 - mrcnn_bbox_loss: 0.5065 - mrcnn_mask_loss: 0.5450275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - " 254/2000 [==>...........................] - ETA: 29:52 - loss: 2.2282 - rpn_class_loss: 0.0209 - rpn_bbox_loss: 0.7051 - mrcnn_class_loss: 0.4511 - mrcnn_bbox_loss: 0.5065 - mrcnn_mask_loss: 0.5447263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - " 255/2000 [==>...........................] - ETA: 29:53 - loss: 2.2243 - rpn_class_loss: 0.0209 - rpn_bbox_loss: 0.7038 - mrcnn_class_loss: 0.4500 - mrcnn_bbox_loss: 0.5056 - mrcnn_mask_loss: 0.5440137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - " 256/2000 [==>...........................] - ETA: 29:53 - loss: 2.2233 - rpn_class_loss: 0.0209 - rpn_bbox_loss: 0.7032 - mrcnn_class_loss: 0.4497 - mrcnn_bbox_loss: 0.5058 - mrcnn_mask_loss: 0.5436291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - " 257/2000 [==>...........................] - ETA: 29:53 - loss: 2.2220 - rpn_class_loss: 0.0209 - rpn_bbox_loss: 0.7029 - mrcnn_class_loss: 0.4496 - mrcnn_bbox_loss: 0.5057 - mrcnn_mask_loss: 0.5429348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - " 258/2000 [==>...........................] - ETA: 29:53 - loss: 2.2194 - rpn_class_loss: 0.0208 - rpn_bbox_loss: 0.7028 - mrcnn_class_loss: 0.4484 - mrcnn_bbox_loss: 0.5051 - mrcnn_mask_loss: 0.542324\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - " 259/2000 [==>...........................] - ETA: 29:50 - loss: 2.2186 - rpn_class_loss: 0.0208 - rpn_bbox_loss: 0.7027 - mrcnn_class_loss: 0.4486 - mrcnn_bbox_loss: 0.5046 - mrcnn_mask_loss: 0.5419377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - " 260/2000 [==>...........................] - ETA: 29:51 - loss: 2.2168 - rpn_class_loss: 0.0208 - rpn_bbox_loss: 0.7024 - mrcnn_class_loss: 0.4484 - mrcnn_bbox_loss: 0.5040 - mrcnn_mask_loss: 0.5412343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - " 261/2000 [==>...........................] - ETA: 29:52 - loss: 2.2137 - rpn_class_loss: 0.0208 - rpn_bbox_loss: 0.7018 - mrcnn_class_loss: 0.4476 - mrcnn_bbox_loss: 0.5031 - mrcnn_mask_loss: 0.540419\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - " 262/2000 [==>...........................] - ETA: 29:49 - loss: 2.2123 - rpn_class_loss: 0.0208 - rpn_bbox_loss: 0.7024 - mrcnn_class_loss: 0.4468 - mrcnn_bbox_loss: 0.5024 - mrcnn_mask_loss: 0.539927\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - " 263/2000 [==>...........................] - ETA: 29:47 - loss: 2.2105 - rpn_class_loss: 0.0207 - rpn_bbox_loss: 0.7028 - mrcnn_class_loss: 0.4460 - mrcnn_bbox_loss: 0.5017 - mrcnn_mask_loss: 0.539228\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - " 264/2000 [==>...........................] - ETA: 29:44 - loss: 2.2078 - rpn_class_loss: 0.0207 - rpn_bbox_loss: 0.7026 - mrcnn_class_loss: 0.4448 - mrcnn_bbox_loss: 0.5011 - mrcnn_mask_loss: 0.538647\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - " 265/2000 [==>...........................] - ETA: 29:42 - loss: 2.2042 - rpn_class_loss: 0.0207 - rpn_bbox_loss: 0.7011 - mrcnn_class_loss: 0.4442 - mrcnn_bbox_loss: 0.5002 - mrcnn_mask_loss: 0.5381213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - " 266/2000 [==>...........................] - ETA: 29:40 - loss: 2.2001 - rpn_class_loss: 0.0206 - rpn_bbox_loss: 0.6996 - mrcnn_class_loss: 0.4436 - mrcnn_bbox_loss: 0.4992 - mrcnn_mask_loss: 0.5371138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 267/2000 [===>..........................] - ETA: 29:41 - loss: 2.1983 - rpn_class_loss: 0.0206 - rpn_bbox_loss: 0.6986 - mrcnn_class_loss: 0.4440 - mrcnn_bbox_loss: 0.4985 - mrcnn_mask_loss: 0.5366277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - " 268/2000 [===>..........................] - ETA: 29:41 - loss: 2.1967 - rpn_class_loss: 0.0206 - rpn_bbox_loss: 0.6981 - mrcnn_class_loss: 0.4433 - mrcnn_bbox_loss: 0.4984 - mrcnn_mask_loss: 0.5362241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - " 269/2000 [===>..........................] - ETA: 29:41 - loss: 2.1941 - rpn_class_loss: 0.0206 - rpn_bbox_loss: 0.6968 - mrcnn_class_loss: 0.4426 - mrcnn_bbox_loss: 0.4981 - mrcnn_mask_loss: 0.53605\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - " 270/2000 [===>..........................] - ETA: 29:38 - loss: 2.1904 - rpn_class_loss: 0.0206 - rpn_bbox_loss: 0.6961 - mrcnn_class_loss: 0.4418 - mrcnn_bbox_loss: 0.4968 - mrcnn_mask_loss: 0.5350322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - " 271/2000 [===>..........................] - ETA: 29:39 - loss: 2.1884 - rpn_class_loss: 0.0206 - rpn_bbox_loss: 0.6952 - mrcnn_class_loss: 0.4412 - mrcnn_bbox_loss: 0.4970 - mrcnn_mask_loss: 0.5345181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - " 272/2000 [===>..........................] - ETA: 29:37 - loss: 2.1865 - rpn_class_loss: 0.0205 - rpn_bbox_loss: 0.6956 - mrcnn_class_loss: 0.4405 - mrcnn_bbox_loss: 0.4962 - mrcnn_mask_loss: 0.533851\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - " 273/2000 [===>..........................] - ETA: 29:35 - loss: 2.1824 - rpn_class_loss: 0.0205 - rpn_bbox_loss: 0.6945 - mrcnn_class_loss: 0.4394 - mrcnn_bbox_loss: 0.4954 - mrcnn_mask_loss: 0.53263\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - " 274/2000 [===>..........................] - ETA: 29:33 - loss: 2.1815 - rpn_class_loss: 0.0205 - rpn_bbox_loss: 0.6950 - mrcnn_class_loss: 0.4387 - mrcnn_bbox_loss: 0.4948 - mrcnn_mask_loss: 0.532596\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - " 275/2000 [===>..........................] - ETA: 29:32 - loss: 2.1806 - rpn_class_loss: 0.0205 - rpn_bbox_loss: 0.6960 - mrcnn_class_loss: 0.4380 - mrcnn_bbox_loss: 0.4940 - mrcnn_mask_loss: 0.5320289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - " 276/2000 [===>..........................] - ETA: 29:33 - loss: 2.1793 - rpn_class_loss: 0.0204 - rpn_bbox_loss: 0.6956 - mrcnn_class_loss: 0.4377 - mrcnn_bbox_loss: 0.4940 - mrcnn_mask_loss: 0.531655\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - " 277/2000 [===>..........................] - ETA: 29:31 - loss: 2.1755 - rpn_class_loss: 0.0204 - rpn_bbox_loss: 0.6944 - mrcnn_class_loss: 0.4366 - mrcnn_bbox_loss: 0.4931 - mrcnn_mask_loss: 0.531044\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - " 278/2000 [===>..........................] - ETA: 29:29 - loss: 2.1724 - rpn_class_loss: 0.0203 - rpn_bbox_loss: 0.6935 - mrcnn_class_loss: 0.4360 - mrcnn_bbox_loss: 0.4922 - mrcnn_mask_loss: 0.5304177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - " 279/2000 [===>..........................] - ETA: 29:28 - loss: 2.1721 - rpn_class_loss: 0.0203 - rpn_bbox_loss: 0.6934 - mrcnn_class_loss: 0.4361 - mrcnn_bbox_loss: 0.4924 - mrcnn_mask_loss: 0.5298163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - " 280/2000 [===>..........................] - ETA: 29:27 - loss: 2.1715 - rpn_class_loss: 0.0203 - rpn_bbox_loss: 0.6948 - mrcnn_class_loss: 0.4355 - mrcnn_bbox_loss: 0.4919 - mrcnn_mask_loss: 0.5290135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - " 281/2000 [===>..........................] - ETA: 29:28 - loss: 2.1690 - rpn_class_loss: 0.0203 - rpn_bbox_loss: 0.6946 - mrcnn_class_loss: 0.4347 - mrcnn_bbox_loss: 0.4911 - mrcnn_mask_loss: 0.5283136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 282/2000 [===>..........................] - ETA: 29:29 - loss: 2.1672 - rpn_class_loss: 0.0203 - rpn_bbox_loss: 0.6939 - mrcnn_class_loss: 0.4342 - mrcnn_bbox_loss: 0.4911 - mrcnn_mask_loss: 0.5277107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - " 283/2000 [===>..........................] - ETA: 29:28 - loss: 2.1649 - rpn_class_loss: 0.0202 - rpn_bbox_loss: 0.6928 - mrcnn_class_loss: 0.4334 - mrcnn_bbox_loss: 0.4911 - mrcnn_mask_loss: 0.527469\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - " 284/2000 [===>..........................] - ETA: 29:26 - loss: 2.1618 - rpn_class_loss: 0.0202 - rpn_bbox_loss: 0.6918 - mrcnn_class_loss: 0.4325 - mrcnn_bbox_loss: 0.4904 - mrcnn_mask_loss: 0.5270336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - " 285/2000 [===>..........................] - ETA: 29:27 - loss: 2.1587 - rpn_class_loss: 0.0202 - rpn_bbox_loss: 0.6910 - mrcnn_class_loss: 0.4316 - mrcnn_bbox_loss: 0.4896 - mrcnn_mask_loss: 0.5263355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - " 286/2000 [===>..........................] - ETA: 29:27 - loss: 2.1565 - rpn_class_loss: 0.0201 - rpn_bbox_loss: 0.6898 - mrcnn_class_loss: 0.4313 - mrcnn_bbox_loss: 0.4894 - mrcnn_mask_loss: 0.5260388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - " 287/2000 [===>..........................] - ETA: 29:26 - loss: 2.1560 - rpn_class_loss: 0.0201 - rpn_bbox_loss: 0.6894 - mrcnn_class_loss: 0.4310 - mrcnn_bbox_loss: 0.4899 - mrcnn_mask_loss: 0.5256344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - " 288/2000 [===>..........................] - ETA: 29:28 - loss: 2.1549 - rpn_class_loss: 0.0201 - rpn_bbox_loss: 0.6892 - mrcnn_class_loss: 0.4305 - mrcnn_bbox_loss: 0.4899 - mrcnn_mask_loss: 0.5252259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - " 289/2000 [===>..........................] - ETA: 29:28 - loss: 2.1544 - rpn_class_loss: 0.0201 - rpn_bbox_loss: 0.6900 - mrcnn_class_loss: 0.4304 - mrcnn_bbox_loss: 0.4891 - mrcnn_mask_loss: 0.5247119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - " 290/2000 [===>..........................] - ETA: 29:28 - loss: 2.1534 - rpn_class_loss: 0.0202 - rpn_bbox_loss: 0.6904 - mrcnn_class_loss: 0.4296 - mrcnn_bbox_loss: 0.4891 - mrcnn_mask_loss: 0.5241180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - " 291/2000 [===>..........................] - ETA: 29:27 - loss: 2.1520 - rpn_class_loss: 0.0201 - rpn_bbox_loss: 0.6902 - mrcnn_class_loss: 0.4295 - mrcnn_bbox_loss: 0.4886 - mrcnn_mask_loss: 0.5236133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - " 292/2000 [===>..........................] - ETA: 29:27 - loss: 2.1498 - rpn_class_loss: 0.0201 - rpn_bbox_loss: 0.6898 - mrcnn_class_loss: 0.4289 - mrcnn_bbox_loss: 0.4880 - mrcnn_mask_loss: 0.5231314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - " 293/2000 [===>..........................] - ETA: 29:27 - loss: 2.1469 - rpn_class_loss: 0.0200 - rpn_bbox_loss: 0.6889 - mrcnn_class_loss: 0.4277 - mrcnn_bbox_loss: 0.4874 - mrcnn_mask_loss: 0.5229299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - " 294/2000 [===>..........................] - ETA: 29:28 - loss: 2.1457 - rpn_class_loss: 0.0200 - rpn_bbox_loss: 0.6891 - mrcnn_class_loss: 0.4276 - mrcnn_bbox_loss: 0.4866 - mrcnn_mask_loss: 0.5224246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - " 295/2000 [===>..........................] - ETA: 29:27 - loss: 2.1425 - rpn_class_loss: 0.0200 - rpn_bbox_loss: 0.6878 - mrcnn_class_loss: 0.4267 - mrcnn_bbox_loss: 0.4859 - mrcnn_mask_loss: 0.5221353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 296/2000 [===>..........................] - ETA: 29:27 - loss: 2.1404 - rpn_class_loss: 0.0200 - rpn_bbox_loss: 0.6867 - mrcnn_class_loss: 0.4265 - mrcnn_bbox_loss: 0.4858 - mrcnn_mask_loss: 0.5215324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - " 297/2000 [===>..........................] - ETA: 29:27 - loss: 2.1382 - rpn_class_loss: 0.0199 - rpn_bbox_loss: 0.6858 - mrcnn_class_loss: 0.4257 - mrcnn_bbox_loss: 0.4858 - mrcnn_mask_loss: 0.5210101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - " 298/2000 [===>..........................] - ETA: 29:28 - loss: 2.1360 - rpn_class_loss: 0.0199 - rpn_bbox_loss: 0.6850 - mrcnn_class_loss: 0.4249 - mrcnn_bbox_loss: 0.4857 - mrcnn_mask_loss: 0.520534\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - " 299/2000 [===>..........................] - ETA: 29:26 - loss: 2.1342 - rpn_class_loss: 0.0198 - rpn_bbox_loss: 0.6850 - mrcnn_class_loss: 0.4243 - mrcnn_bbox_loss: 0.4849 - mrcnn_mask_loss: 0.5201146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - " 300/2000 [===>..........................] - ETA: 29:26 - loss: 2.1343 - rpn_class_loss: 0.0198 - rpn_bbox_loss: 0.6849 - mrcnn_class_loss: 0.4246 - mrcnn_bbox_loss: 0.4852 - mrcnn_mask_loss: 0.5199308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - " 301/2000 [===>..........................] - ETA: 29:25 - loss: 2.1320 - rpn_class_loss: 0.0198 - rpn_bbox_loss: 0.6844 - mrcnn_class_loss: 0.4239 - mrcnn_bbox_loss: 0.4845 - mrcnn_mask_loss: 0.5194229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - " 302/2000 [===>..........................] - ETA: 29:23 - loss: 2.1294 - rpn_class_loss: 0.0198 - rpn_bbox_loss: 0.6838 - mrcnn_class_loss: 0.4238 - mrcnn_bbox_loss: 0.4834 - mrcnn_mask_loss: 0.518677\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - " 303/2000 [===>..........................] - ETA: 29:22 - loss: 2.1255 - rpn_class_loss: 0.0197 - rpn_bbox_loss: 0.6828 - mrcnn_class_loss: 0.4227 - mrcnn_bbox_loss: 0.4824 - mrcnn_mask_loss: 0.5179316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - " 304/2000 [===>..........................] - ETA: 29:22 - loss: 2.1247 - rpn_class_loss: 0.0197 - rpn_bbox_loss: 0.6835 - mrcnn_class_loss: 0.4221 - mrcnn_bbox_loss: 0.4819 - mrcnn_mask_loss: 0.5175187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - " 305/2000 [===>..........................] - ETA: 29:20 - loss: 2.1211 - rpn_class_loss: 0.0197 - rpn_bbox_loss: 0.6821 - mrcnn_class_loss: 0.4210 - mrcnn_bbox_loss: 0.4814 - mrcnn_mask_loss: 0.516979\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - " 306/2000 [===>..........................] - ETA: 29:19 - loss: 2.1176 - rpn_class_loss: 0.0197 - rpn_bbox_loss: 0.6807 - mrcnn_class_loss: 0.4204 - mrcnn_bbox_loss: 0.4804 - mrcnn_mask_loss: 0.5163281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - " 307/2000 [===>..........................] - ETA: 29:21 - loss: 2.1162 - rpn_class_loss: 0.0196 - rpn_bbox_loss: 0.6805 - mrcnn_class_loss: 0.4202 - mrcnn_bbox_loss: 0.4801 - mrcnn_mask_loss: 0.515792\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - " 308/2000 [===>..........................] - ETA: 29:19 - loss: 2.1147 - rpn_class_loss: 0.0196 - rpn_bbox_loss: 0.6814 - mrcnn_class_loss: 0.4192 - mrcnn_bbox_loss: 0.4793 - mrcnn_mask_loss: 0.5152363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - " 309/2000 [===>..........................] - ETA: 29:20 - loss: 2.1128 - rpn_class_loss: 0.0196 - rpn_bbox_loss: 0.6816 - mrcnn_class_loss: 0.4186 - mrcnn_bbox_loss: 0.4785 - mrcnn_mask_loss: 0.5145141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - " 310/2000 [===>..........................] - ETA: 29:20 - loss: 2.1126 - rpn_class_loss: 0.0196 - rpn_bbox_loss: 0.6820 - mrcnn_class_loss: 0.4183 - mrcnn_bbox_loss: 0.4787 - mrcnn_mask_loss: 0.5141247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - " 311/2000 [===>..........................] - ETA: 29:20 - loss: 2.1094 - rpn_class_loss: 0.0195 - rpn_bbox_loss: 0.6804 - mrcnn_class_loss: 0.4175 - mrcnn_bbox_loss: 0.4780 - mrcnn_mask_loss: 0.513915\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - " 312/2000 [===>..........................] - ETA: 29:18 - loss: 2.1087 - rpn_class_loss: 0.0195 - rpn_bbox_loss: 0.6813 - mrcnn_class_loss: 0.4169 - mrcnn_bbox_loss: 0.4773 - mrcnn_mask_loss: 0.5136113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - " 313/2000 [===>..........................] - ETA: 29:17 - loss: 2.1070 - rpn_class_loss: 0.0194 - rpn_bbox_loss: 0.6804 - mrcnn_class_loss: 0.4161 - mrcnn_bbox_loss: 0.4777 - mrcnn_mask_loss: 0.5135134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - " 314/2000 [===>..........................] - ETA: 29:17 - loss: 2.1050 - rpn_class_loss: 0.0194 - rpn_bbox_loss: 0.6800 - mrcnn_class_loss: 0.4155 - mrcnn_bbox_loss: 0.4773 - mrcnn_mask_loss: 0.5127386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - " 315/2000 [===>..........................] - ETA: 29:17 - loss: 2.1036 - rpn_class_loss: 0.0194 - rpn_bbox_loss: 0.6800 - mrcnn_class_loss: 0.4153 - mrcnn_bbox_loss: 0.4769 - mrcnn_mask_loss: 0.5120292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - " 316/2000 [===>..........................] - ETA: 29:17 - loss: 2.1024 - rpn_class_loss: 0.0194 - rpn_bbox_loss: 0.6796 - mrcnn_class_loss: 0.4151 - mrcnn_bbox_loss: 0.4766 - mrcnn_mask_loss: 0.511771\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - " 317/2000 [===>..........................] - ETA: 29:16 - loss: 2.0988 - rpn_class_loss: 0.0194 - rpn_bbox_loss: 0.6784 - mrcnn_class_loss: 0.4141 - mrcnn_bbox_loss: 0.4759 - mrcnn_mask_loss: 0.5111378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - " 318/2000 [===>..........................] - ETA: 29:16 - loss: 2.0962 - rpn_class_loss: 0.0193 - rpn_bbox_loss: 0.6778 - mrcnn_class_loss: 0.4131 - mrcnn_bbox_loss: 0.4754 - mrcnn_mask_loss: 0.5105339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - " 319/2000 [===>..........................] - ETA: 29:17 - loss: 2.0948 - rpn_class_loss: 0.0193 - rpn_bbox_loss: 0.6777 - mrcnn_class_loss: 0.4126 - mrcnn_bbox_loss: 0.4751 - mrcnn_mask_loss: 0.5101243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - " 320/2000 [===>..........................] - ETA: 29:16 - loss: 2.0929 - rpn_class_loss: 0.0193 - rpn_bbox_loss: 0.6765 - mrcnn_class_loss: 0.4118 - mrcnn_bbox_loss: 0.4749 - mrcnn_mask_loss: 0.510418\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - " 321/2000 [===>..........................] - ETA: 29:14 - loss: 2.0920 - rpn_class_loss: 0.0192 - rpn_bbox_loss: 0.6770 - mrcnn_class_loss: 0.4110 - mrcnn_bbox_loss: 0.4748 - mrcnn_mask_loss: 0.5100106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - " 322/2000 [===>..........................] - ETA: 29:13 - loss: 2.0891 - rpn_class_loss: 0.0192 - rpn_bbox_loss: 0.6758 - mrcnn_class_loss: 0.4100 - mrcnn_bbox_loss: 0.4744 - mrcnn_mask_loss: 0.5097226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - " 323/2000 [===>..........................] - ETA: 29:12 - loss: 2.0866 - rpn_class_loss: 0.0192 - rpn_bbox_loss: 0.6751 - mrcnn_class_loss: 0.4094 - mrcnn_bbox_loss: 0.4739 - mrcnn_mask_loss: 0.5091387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - " 324/2000 [===>..........................] - ETA: 29:11 - loss: 2.0854 - rpn_class_loss: 0.0192 - rpn_bbox_loss: 0.6749 - mrcnn_class_loss: 0.4085 - mrcnn_bbox_loss: 0.4741 - mrcnn_mask_loss: 0.508831\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 325/2000 [===>..........................] - ETA: 29:09 - loss: 2.0828 - rpn_class_loss: 0.0191 - rpn_bbox_loss: 0.6747 - mrcnn_class_loss: 0.4076 - mrcnn_bbox_loss: 0.4733 - mrcnn_mask_loss: 0.5081354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - " 326/2000 [===>..........................] - ETA: 29:09 - loss: 2.0801 - rpn_class_loss: 0.0191 - rpn_bbox_loss: 0.6741 - mrcnn_class_loss: 0.4067 - mrcnn_bbox_loss: 0.4728 - mrcnn_mask_loss: 0.50756\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - " 327/2000 [===>..........................] - ETA: 29:06 - loss: 2.0784 - rpn_class_loss: 0.0190 - rpn_bbox_loss: 0.6738 - mrcnn_class_loss: 0.4058 - mrcnn_bbox_loss: 0.4726 - mrcnn_mask_loss: 0.507197\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - " 328/2000 [===>..........................] - ETA: 29:05 - loss: 2.0797 - rpn_class_loss: 0.0191 - rpn_bbox_loss: 0.6756 - mrcnn_class_loss: 0.4056 - mrcnn_bbox_loss: 0.4725 - mrcnn_mask_loss: 0.5069162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - " 329/2000 [===>..........................] - ETA: 29:04 - loss: 2.0797 - rpn_class_loss: 0.0191 - rpn_bbox_loss: 0.6766 - mrcnn_class_loss: 0.4051 - mrcnn_bbox_loss: 0.4725 - mrcnn_mask_loss: 0.506464\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - " 330/2000 [===>..........................] - ETA: 29:02 - loss: 2.0754 - rpn_class_loss: 0.0190 - rpn_bbox_loss: 0.6750 - mrcnn_class_loss: 0.4041 - mrcnn_bbox_loss: 0.4715 - mrcnn_mask_loss: 0.5057124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - " 331/2000 [===>..........................] - ETA: 29:03 - loss: 2.0740 - rpn_class_loss: 0.0190 - rpn_bbox_loss: 0.6748 - mrcnn_class_loss: 0.4037 - mrcnn_bbox_loss: 0.4712 - mrcnn_mask_loss: 0.5054225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - " 332/2000 [===>..........................] - ETA: 29:01 - loss: 2.0705 - rpn_class_loss: 0.0190 - rpn_bbox_loss: 0.6740 - mrcnn_class_loss: 0.4027 - mrcnn_bbox_loss: 0.4703 - mrcnn_mask_loss: 0.5046203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - " 333/2000 [===>..........................] - ETA: 28:59 - loss: 2.0677 - rpn_class_loss: 0.0189 - rpn_bbox_loss: 0.6729 - mrcnn_class_loss: 0.4020 - mrcnn_bbox_loss: 0.4698 - mrcnn_mask_loss: 0.504048\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - " 334/2000 [====>.........................] - ETA: 29:02 - loss: 2.0645 - rpn_class_loss: 0.0189 - rpn_bbox_loss: 0.6718 - mrcnn_class_loss: 0.4013 - mrcnn_bbox_loss: 0.4692 - mrcnn_mask_loss: 0.5034105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - " 335/2000 [====>.........................] - ETA: 29:02 - loss: 2.0645 - rpn_class_loss: 0.0188 - rpn_bbox_loss: 0.6710 - mrcnn_class_loss: 0.4016 - mrcnn_bbox_loss: 0.4696 - mrcnn_mask_loss: 0.503483\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - " 336/2000 [====>.........................] - ETA: 29:01 - loss: 2.0634 - rpn_class_loss: 0.0188 - rpn_bbox_loss: 0.6711 - mrcnn_class_loss: 0.4010 - mrcnn_bbox_loss: 0.4696 - mrcnn_mask_loss: 0.5029349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - " 337/2000 [====>.........................] - ETA: 29:01 - loss: 2.0622 - rpn_class_loss: 0.0188 - rpn_bbox_loss: 0.6710 - mrcnn_class_loss: 0.4006 - mrcnn_bbox_loss: 0.4694 - mrcnn_mask_loss: 0.502342\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - " 338/2000 [====>.........................] - ETA: 29:00 - loss: 2.0603 - rpn_class_loss: 0.0187 - rpn_bbox_loss: 0.6705 - mrcnn_class_loss: 0.3998 - mrcnn_bbox_loss: 0.4693 - mrcnn_mask_loss: 0.5019362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - " 339/2000 [====>.........................] - ETA: 29:01 - loss: 2.0595 - rpn_class_loss: 0.0187 - rpn_bbox_loss: 0.6708 - mrcnn_class_loss: 0.3995 - mrcnn_bbox_loss: 0.4692 - mrcnn_mask_loss: 0.5014321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 340/2000 [====>.........................] - ETA: 29:02 - loss: 2.0575 - rpn_class_loss: 0.0187 - rpn_bbox_loss: 0.6699 - mrcnn_class_loss: 0.3988 - mrcnn_bbox_loss: 0.4691 - mrcnn_mask_loss: 0.5009132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - " 341/2000 [====>.........................] - ETA: 29:02 - loss: 2.0571 - rpn_class_loss: 0.0187 - rpn_bbox_loss: 0.6693 - mrcnn_class_loss: 0.3991 - mrcnn_bbox_loss: 0.4693 - mrcnn_mask_loss: 0.5007311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - " 342/2000 [====>.........................] - ETA: 29:02 - loss: 2.0543 - rpn_class_loss: 0.0186 - rpn_bbox_loss: 0.6688 - mrcnn_class_loss: 0.3981 - mrcnn_bbox_loss: 0.4686 - mrcnn_mask_loss: 0.5002284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - " 343/2000 [====>.........................] - ETA: 29:02 - loss: 2.0521 - rpn_class_loss: 0.0186 - rpn_bbox_loss: 0.6686 - mrcnn_class_loss: 0.3974 - mrcnn_bbox_loss: 0.4679 - mrcnn_mask_loss: 0.4997301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - " 344/2000 [====>.........................] - ETA: 29:04 - loss: 2.0530 - rpn_class_loss: 0.0186 - rpn_bbox_loss: 0.6697 - mrcnn_class_loss: 0.3978 - mrcnn_bbox_loss: 0.4675 - mrcnn_mask_loss: 0.499582\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - " 345/2000 [====>.........................] - ETA: 29:02 - loss: 2.0521 - rpn_class_loss: 0.0186 - rpn_bbox_loss: 0.6699 - mrcnn_class_loss: 0.3974 - mrcnn_bbox_loss: 0.4670 - mrcnn_mask_loss: 0.4992306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - " 346/2000 [====>.........................] - ETA: 29:03 - loss: 2.0499 - rpn_class_loss: 0.0185 - rpn_bbox_loss: 0.6695 - mrcnn_class_loss: 0.3966 - mrcnn_bbox_loss: 0.4663 - mrcnn_mask_loss: 0.4989371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - " 347/2000 [====>.........................] - ETA: 29:03 - loss: 2.0470 - rpn_class_loss: 0.0185 - rpn_bbox_loss: 0.6686 - mrcnn_class_loss: 0.3958 - mrcnn_bbox_loss: 0.4658 - mrcnn_mask_loss: 0.4983360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - " 348/2000 [====>.........................] - ETA: 29:04 - loss: 2.0461 - rpn_class_loss: 0.0185 - rpn_bbox_loss: 0.6689 - mrcnn_class_loss: 0.3952 - mrcnn_bbox_loss: 0.4658 - mrcnn_mask_loss: 0.4978143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - " 349/2000 [====>.........................] - ETA: 29:04 - loss: 2.0453 - rpn_class_loss: 0.0185 - rpn_bbox_loss: 0.6688 - mrcnn_class_loss: 0.3948 - mrcnn_bbox_loss: 0.4659 - mrcnn_mask_loss: 0.4973342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - " 350/2000 [====>.........................] - ETA: 29:05 - loss: 2.0427 - rpn_class_loss: 0.0185 - rpn_bbox_loss: 0.6684 - mrcnn_class_loss: 0.3940 - mrcnn_bbox_loss: 0.4650 - mrcnn_mask_loss: 0.4968294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - " 351/2000 [====>.........................] - ETA: 29:06 - loss: 2.0419 - rpn_class_loss: 0.0185 - rpn_bbox_loss: 0.6683 - mrcnn_class_loss: 0.3935 - mrcnn_bbox_loss: 0.4651 - mrcnn_mask_loss: 0.4965323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - " 352/2000 [====>.........................] - ETA: 29:06 - loss: 2.0394 - rpn_class_loss: 0.0185 - rpn_bbox_loss: 0.6673 - mrcnn_class_loss: 0.3927 - mrcnn_bbox_loss: 0.4647 - mrcnn_mask_loss: 0.49627\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - " 353/2000 [====>.........................] - ETA: 29:05 - loss: 2.0397 - rpn_class_loss: 0.0185 - rpn_bbox_loss: 0.6679 - mrcnn_class_loss: 0.3925 - mrcnn_bbox_loss: 0.4643 - mrcnn_mask_loss: 0.4964208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 354/2000 [====>.........................] - ETA: 29:03 - loss: 2.0370 - rpn_class_loss: 0.0185 - rpn_bbox_loss: 0.6668 - mrcnn_class_loss: 0.3922 - mrcnn_bbox_loss: 0.4637 - mrcnn_mask_loss: 0.4958114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - " 355/2000 [====>.........................] - ETA: 29:03 - loss: 2.0360 - rpn_class_loss: 0.0184 - rpn_bbox_loss: 0.6659 - mrcnn_class_loss: 0.3925 - mrcnn_bbox_loss: 0.4636 - mrcnn_mask_loss: 0.4955357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - " 356/2000 [====>.........................] - ETA: 29:03 - loss: 2.0337 - rpn_class_loss: 0.0184 - rpn_bbox_loss: 0.6653 - mrcnn_class_loss: 0.3920 - mrcnn_bbox_loss: 0.4631 - mrcnn_mask_loss: 0.495076\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - " 357/2000 [====>.........................] - ETA: 29:03 - loss: 2.0314 - rpn_class_loss: 0.0184 - rpn_bbox_loss: 0.6650 - mrcnn_class_loss: 0.3912 - mrcnn_bbox_loss: 0.4625 - mrcnn_mask_loss: 0.4943185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - " 358/2000 [====>.........................] - ETA: 29:01 - loss: 2.0294 - rpn_class_loss: 0.0184 - rpn_bbox_loss: 0.6644 - mrcnn_class_loss: 0.3906 - mrcnn_bbox_loss: 0.4621 - mrcnn_mask_loss: 0.4939145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - " 359/2000 [====>.........................] - ETA: 29:01 - loss: 2.0280 - rpn_class_loss: 0.0184 - rpn_bbox_loss: 0.6641 - mrcnn_class_loss: 0.3904 - mrcnn_bbox_loss: 0.4616 - mrcnn_mask_loss: 0.4935188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - " 360/2000 [====>.........................] - ETA: 29:00 - loss: 2.0252 - rpn_class_loss: 0.0184 - rpn_bbox_loss: 0.6628 - mrcnn_class_loss: 0.3900 - mrcnn_bbox_loss: 0.4609 - mrcnn_mask_loss: 0.4931227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - " 361/2000 [====>.........................] - ETA: 28:59 - loss: 2.0221 - rpn_class_loss: 0.0184 - rpn_bbox_loss: 0.6620 - mrcnn_class_loss: 0.3892 - mrcnn_bbox_loss: 0.4602 - mrcnn_mask_loss: 0.492481\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - " 362/2000 [====>.........................] - ETA: 28:58 - loss: 2.0197 - rpn_class_loss: 0.0183 - rpn_bbox_loss: 0.6612 - mrcnn_class_loss: 0.3886 - mrcnn_bbox_loss: 0.4597 - mrcnn_mask_loss: 0.4919276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - " 363/2000 [====>.........................] - ETA: 28:57 - loss: 2.0184 - rpn_class_loss: 0.0183 - rpn_bbox_loss: 0.6607 - mrcnn_class_loss: 0.3882 - mrcnn_bbox_loss: 0.4594 - mrcnn_mask_loss: 0.4919150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - " 364/2000 [====>.........................] - ETA: 28:56 - loss: 2.0168 - rpn_class_loss: 0.0183 - rpn_bbox_loss: 0.6603 - mrcnn_class_loss: 0.3879 - mrcnn_bbox_loss: 0.4589 - mrcnn_mask_loss: 0.4914391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - " 365/2000 [====>.........................] - ETA: 28:55 - loss: 2.0164 - rpn_class_loss: 0.0182 - rpn_bbox_loss: 0.6605 - mrcnn_class_loss: 0.3876 - mrcnn_bbox_loss: 0.4587 - mrcnn_mask_loss: 0.4914231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - " 366/2000 [====>.........................] - ETA: 28:53 - loss: 2.0137 - rpn_class_loss: 0.0182 - rpn_bbox_loss: 0.6599 - mrcnn_class_loss: 0.3871 - mrcnn_bbox_loss: 0.4579 - mrcnn_mask_loss: 0.4907392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - " 367/2000 [====>.........................] - ETA: 28:53 - loss: 2.0125 - rpn_class_loss: 0.0183 - rpn_bbox_loss: 0.6601 - mrcnn_class_loss: 0.3867 - mrcnn_bbox_loss: 0.4573 - mrcnn_mask_loss: 0.4902173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - " 368/2000 [====>.........................] - ETA: 28:51 - loss: 2.0117 - rpn_class_loss: 0.0182 - rpn_bbox_loss: 0.6602 - mrcnn_class_loss: 0.3865 - mrcnn_bbox_loss: 0.4568 - mrcnn_mask_loss: 0.4899166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 369/2000 [====>.........................] - ETA: 28:50 - loss: 2.0100 - rpn_class_loss: 0.0182 - rpn_bbox_loss: 0.6598 - mrcnn_class_loss: 0.3860 - mrcnn_bbox_loss: 0.4567 - mrcnn_mask_loss: 0.4893318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - " 370/2000 [====>.........................] - ETA: 28:51 - loss: 2.0094 - rpn_class_loss: 0.0182 - rpn_bbox_loss: 0.6596 - mrcnn_class_loss: 0.3857 - mrcnn_bbox_loss: 0.4566 - mrcnn_mask_loss: 0.4893218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - " 371/2000 [====>.........................] - ETA: 28:49 - loss: 2.0069 - rpn_class_loss: 0.0182 - rpn_bbox_loss: 0.6590 - mrcnn_class_loss: 0.3848 - mrcnn_bbox_loss: 0.4562 - mrcnn_mask_loss: 0.4888184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - " 372/2000 [====>.........................] - ETA: 28:48 - loss: 2.0051 - rpn_class_loss: 0.0181 - rpn_bbox_loss: 0.6584 - mrcnn_class_loss: 0.3841 - mrcnn_bbox_loss: 0.4560 - mrcnn_mask_loss: 0.4885319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - " 373/2000 [====>.........................] - ETA: 28:48 - loss: 2.0044 - rpn_class_loss: 0.0181 - rpn_bbox_loss: 0.6584 - mrcnn_class_loss: 0.3836 - mrcnn_bbox_loss: 0.4560 - mrcnn_mask_loss: 0.488333\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - " 374/2000 [====>.........................] - ETA: 28:46 - loss: 2.0030 - rpn_class_loss: 0.0181 - rpn_bbox_loss: 0.6585 - mrcnn_class_loss: 0.3830 - mrcnn_bbox_loss: 0.4556 - mrcnn_mask_loss: 0.4878165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - " 375/2000 [====>.........................] - ETA: 28:45 - loss: 2.0012 - rpn_class_loss: 0.0180 - rpn_bbox_loss: 0.6575 - mrcnn_class_loss: 0.3832 - mrcnn_bbox_loss: 0.4551 - mrcnn_mask_loss: 0.4874223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - " 376/2000 [====>.........................] - ETA: 28:43 - loss: 1.9982 - rpn_class_loss: 0.0180 - rpn_bbox_loss: 0.6567 - mrcnn_class_loss: 0.3825 - mrcnn_bbox_loss: 0.4543 - mrcnn_mask_loss: 0.4867209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - " 377/2000 [====>.........................] - ETA: 28:41 - loss: 1.9949 - rpn_class_loss: 0.0180 - rpn_bbox_loss: 0.6555 - mrcnn_class_loss: 0.3817 - mrcnn_bbox_loss: 0.4536 - mrcnn_mask_loss: 0.4861160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - " 378/2000 [====>.........................] - ETA: 28:41 - loss: 1.9929 - rpn_class_loss: 0.0180 - rpn_bbox_loss: 0.6551 - mrcnn_class_loss: 0.3811 - mrcnn_bbox_loss: 0.4531 - mrcnn_mask_loss: 0.4856331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - " 379/2000 [====>.........................] - ETA: 28:40 - loss: 1.9924 - rpn_class_loss: 0.0180 - rpn_bbox_loss: 0.6548 - mrcnn_class_loss: 0.3811 - mrcnn_bbox_loss: 0.4530 - mrcnn_mask_loss: 0.4855280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - " 380/2000 [====>.........................] - ETA: 28:40 - loss: 1.9928 - rpn_class_loss: 0.0180 - rpn_bbox_loss: 0.6550 - mrcnn_class_loss: 0.3813 - mrcnn_bbox_loss: 0.4533 - mrcnn_mask_loss: 0.4853164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - " 381/2000 [====>.........................] - ETA: 28:39 - loss: 1.9910 - rpn_class_loss: 0.0179 - rpn_bbox_loss: 0.6544 - mrcnn_class_loss: 0.3811 - mrcnn_bbox_loss: 0.4527 - mrcnn_mask_loss: 0.484958\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - " 382/2000 [====>.........................] - ETA: 28:38 - loss: 1.9899 - rpn_class_loss: 0.0179 - rpn_bbox_loss: 0.6546 - mrcnn_class_loss: 0.3807 - mrcnn_bbox_loss: 0.4523 - mrcnn_mask_loss: 0.4844182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - " 383/2000 [====>.........................] - ETA: 28:36 - loss: 1.9887 - rpn_class_loss: 0.0179 - rpn_bbox_loss: 0.6547 - mrcnn_class_loss: 0.3800 - mrcnn_bbox_loss: 0.4522 - mrcnn_mask_loss: 0.4840370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 384/2000 [====>.........................] - ETA: 28:35 - loss: 1.9871 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6541 - mrcnn_class_loss: 0.3794 - mrcnn_bbox_loss: 0.4522 - mrcnn_mask_loss: 0.4836398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - " 385/2000 [====>.........................] - ETA: 28:35 - loss: 1.9881 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6546 - mrcnn_class_loss: 0.3799 - mrcnn_bbox_loss: 0.4521 - mrcnn_mask_loss: 0.4836295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - " 386/2000 [====>.........................] - ETA: 28:35 - loss: 1.9864 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6541 - mrcnn_class_loss: 0.3793 - mrcnn_bbox_loss: 0.4518 - mrcnn_mask_loss: 0.483452\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - " 387/2000 [====>.........................] - ETA: 28:33 - loss: 1.9834 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6529 - mrcnn_class_loss: 0.3786 - mrcnn_bbox_loss: 0.4512 - mrcnn_mask_loss: 0.482860\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - " 388/2000 [====>.........................] - ETA: 28:32 - loss: 1.9813 - rpn_class_loss: 0.0179 - rpn_bbox_loss: 0.6529 - mrcnn_class_loss: 0.3779 - mrcnn_bbox_loss: 0.4505 - mrcnn_mask_loss: 0.4821302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - " 389/2000 [====>.........................] - ETA: 28:32 - loss: 1.9809 - rpn_class_loss: 0.0179 - rpn_bbox_loss: 0.6530 - mrcnn_class_loss: 0.3775 - mrcnn_bbox_loss: 0.4505 - mrcnn_mask_loss: 0.4820255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - " 390/2000 [====>.........................] - ETA: 28:31 - loss: 1.9795 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6528 - mrcnn_class_loss: 0.3771 - mrcnn_bbox_loss: 0.4502 - mrcnn_mask_loss: 0.4816248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - " 391/2000 [====>.........................] - ETA: 28:30 - loss: 1.9787 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6522 - mrcnn_class_loss: 0.3772 - mrcnn_bbox_loss: 0.4500 - mrcnn_mask_loss: 0.481591\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - " 392/2000 [====>.........................] - ETA: 28:29 - loss: 1.9801 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6553 - mrcnn_class_loss: 0.3766 - mrcnn_bbox_loss: 0.4493 - mrcnn_mask_loss: 0.481086\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - " 393/2000 [====>.........................] - ETA: 28:27 - loss: 1.9786 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6546 - mrcnn_class_loss: 0.3763 - mrcnn_bbox_loss: 0.4492 - mrcnn_mask_loss: 0.4806249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - " 394/2000 [====>.........................] - ETA: 28:26 - loss: 1.9772 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6540 - mrcnn_class_loss: 0.3762 - mrcnn_bbox_loss: 0.4488 - mrcnn_mask_loss: 0.480437\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - " 395/2000 [====>.........................] - ETA: 28:25 - loss: 1.9766 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6550 - mrcnn_class_loss: 0.3757 - mrcnn_bbox_loss: 0.4482 - mrcnn_mask_loss: 0.48004\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - " 396/2000 [====>.........................] - ETA: 28:23 - loss: 1.9747 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6543 - mrcnn_class_loss: 0.3754 - mrcnn_bbox_loss: 0.4476 - mrcnn_mask_loss: 0.4796356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - " 397/2000 [====>.........................] - ETA: 28:23 - loss: 1.9722 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6535 - mrcnn_class_loss: 0.3746 - mrcnn_bbox_loss: 0.4470 - mrcnn_mask_loss: 0.479393\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - " 398/2000 [====>.........................] - ETA: 28:21 - loss: 1.9732 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6563 - mrcnn_class_loss: 0.3739 - mrcnn_bbox_loss: 0.4464 - mrcnn_mask_loss: 0.4788369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 399/2000 [====>.........................] - ETA: 28:21 - loss: 1.9717 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6556 - mrcnn_class_loss: 0.3735 - mrcnn_bbox_loss: 0.4461 - mrcnn_mask_loss: 0.478762\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - " 400/2000 [=====>........................] - ETA: 28:19 - loss: 1.9689 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6547 - mrcnn_class_loss: 0.3727 - mrcnn_bbox_loss: 0.4455 - mrcnn_mask_loss: 0.4782200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - " 401/2000 [=====>........................] - ETA: 28:18 - loss: 1.9667 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6540 - mrcnn_class_loss: 0.3720 - mrcnn_bbox_loss: 0.4452 - mrcnn_mask_loss: 0.4778180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - " 402/2000 [=====>........................] - ETA: 28:17 - loss: 1.9653 - rpn_class_loss: 0.0178 - rpn_bbox_loss: 0.6536 - mrcnn_class_loss: 0.3718 - mrcnn_bbox_loss: 0.4449 - mrcnn_mask_loss: 0.4773346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - " 403/2000 [=====>........................] - ETA: 28:16 - loss: 1.9639 - rpn_class_loss: 0.0177 - rpn_bbox_loss: 0.6535 - mrcnn_class_loss: 0.3713 - mrcnn_bbox_loss: 0.4446 - mrcnn_mask_loss: 0.4768178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - " 404/2000 [=====>........................] - ETA: 28:15 - loss: 1.9632 - rpn_class_loss: 0.0177 - rpn_bbox_loss: 0.6527 - mrcnn_class_loss: 0.3713 - mrcnn_bbox_loss: 0.4449 - mrcnn_mask_loss: 0.4767299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - " 405/2000 [=====>........................] - ETA: 28:15 - loss: 1.9623 - rpn_class_loss: 0.0177 - rpn_bbox_loss: 0.6527 - mrcnn_class_loss: 0.3709 - mrcnn_bbox_loss: 0.4446 - mrcnn_mask_loss: 0.4764290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - " 406/2000 [=====>........................] - ETA: 28:15 - loss: 1.9619 - rpn_class_loss: 0.0177 - rpn_bbox_loss: 0.6524 - mrcnn_class_loss: 0.3709 - mrcnn_bbox_loss: 0.4448 - mrcnn_mask_loss: 0.4760331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - " 407/2000 [=====>........................] - ETA: 28:14 - loss: 1.9602 - rpn_class_loss: 0.0177 - rpn_bbox_loss: 0.6517 - mrcnn_class_loss: 0.3705 - mrcnn_bbox_loss: 0.4445 - mrcnn_mask_loss: 0.4758287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - " 408/2000 [=====>........................] - ETA: 28:14 - loss: 1.9589 - rpn_class_loss: 0.0177 - rpn_bbox_loss: 0.6511 - mrcnn_class_loss: 0.3703 - mrcnn_bbox_loss: 0.4443 - mrcnn_mask_loss: 0.4755350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - " 409/2000 [=====>........................] - ETA: 28:14 - loss: 1.9578 - rpn_class_loss: 0.0177 - rpn_bbox_loss: 0.6510 - mrcnn_class_loss: 0.3700 - mrcnn_bbox_loss: 0.4439 - mrcnn_mask_loss: 0.4751144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - " 410/2000 [=====>........................] - ETA: 28:13 - loss: 1.9563 - rpn_class_loss: 0.0177 - rpn_bbox_loss: 0.6506 - mrcnn_class_loss: 0.3695 - mrcnn_bbox_loss: 0.4436 - mrcnn_mask_loss: 0.4749161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - " 411/2000 [=====>........................] - ETA: 28:12 - loss: 1.9553 - rpn_class_loss: 0.0177 - rpn_bbox_loss: 0.6506 - mrcnn_class_loss: 0.3691 - mrcnn_bbox_loss: 0.4435 - mrcnn_mask_loss: 0.4743325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - " 412/2000 [=====>........................] - ETA: 28:12 - loss: 1.9539 - rpn_class_loss: 0.0177 - rpn_bbox_loss: 0.6500 - mrcnn_class_loss: 0.3689 - mrcnn_bbox_loss: 0.4432 - mrcnn_mask_loss: 0.4742396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - " 413/2000 [=====>........................] - ETA: 28:11 - loss: 1.9526 - rpn_class_loss: 0.0177 - rpn_bbox_loss: 0.6501 - mrcnn_class_loss: 0.3682 - mrcnn_bbox_loss: 0.4426 - mrcnn_mask_loss: 0.4740132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 414/2000 [=====>........................] - ETA: 28:10 - loss: 1.9520 - rpn_class_loss: 0.0176 - rpn_bbox_loss: 0.6500 - mrcnn_class_loss: 0.3680 - mrcnn_bbox_loss: 0.4426 - mrcnn_mask_loss: 0.47378\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - " 415/2000 [=====>........................] - ETA: 28:08 - loss: 1.9497 - rpn_class_loss: 0.0176 - rpn_bbox_loss: 0.6490 - mrcnn_class_loss: 0.3672 - mrcnn_bbox_loss: 0.4425 - mrcnn_mask_loss: 0.4733174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - " 416/2000 [=====>........................] - ETA: 28:07 - loss: 1.9495 - rpn_class_loss: 0.0176 - rpn_bbox_loss: 0.6489 - mrcnn_class_loss: 0.3673 - mrcnn_bbox_loss: 0.4426 - mrcnn_mask_loss: 0.473171\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - " 417/2000 [=====>........................] - ETA: 28:06 - loss: 1.9470 - rpn_class_loss: 0.0176 - rpn_bbox_loss: 0.6481 - mrcnn_class_loss: 0.3668 - mrcnn_bbox_loss: 0.4420 - mrcnn_mask_loss: 0.472698\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - " 418/2000 [=====>........................] - ETA: 28:04 - loss: 1.9468 - rpn_class_loss: 0.0176 - rpn_bbox_loss: 0.6489 - mrcnn_class_loss: 0.3662 - mrcnn_bbox_loss: 0.4418 - mrcnn_mask_loss: 0.472334\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - " 419/2000 [=====>........................] - ETA: 28:03 - loss: 1.9452 - rpn_class_loss: 0.0175 - rpn_bbox_loss: 0.6490 - mrcnn_class_loss: 0.3655 - mrcnn_bbox_loss: 0.4413 - mrcnn_mask_loss: 0.471924\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - " 420/2000 [=====>........................] - ETA: 28:01 - loss: 1.9431 - rpn_class_loss: 0.0175 - rpn_bbox_loss: 0.6489 - mrcnn_class_loss: 0.3648 - mrcnn_bbox_loss: 0.4405 - mrcnn_mask_loss: 0.4714381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - " 421/2000 [=====>........................] - ETA: 28:01 - loss: 1.9442 - rpn_class_loss: 0.0175 - rpn_bbox_loss: 0.6500 - mrcnn_class_loss: 0.3647 - mrcnn_bbox_loss: 0.4408 - mrcnn_mask_loss: 0.4711337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - " 422/2000 [=====>........................] - ETA: 28:00 - loss: 1.9423 - rpn_class_loss: 0.0175 - rpn_bbox_loss: 0.6496 - mrcnn_class_loss: 0.3642 - mrcnn_bbox_loss: 0.4403 - mrcnn_mask_loss: 0.4708179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - " 423/2000 [=====>........................] - ETA: 28:00 - loss: 1.9418 - rpn_class_loss: 0.0175 - rpn_bbox_loss: 0.6494 - mrcnn_class_loss: 0.3641 - mrcnn_bbox_loss: 0.4404 - mrcnn_mask_loss: 0.4704143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - " 424/2000 [=====>........................] - ETA: 27:59 - loss: 1.9411 - rpn_class_loss: 0.0175 - rpn_bbox_loss: 0.6490 - mrcnn_class_loss: 0.3643 - mrcnn_bbox_loss: 0.4403 - mrcnn_mask_loss: 0.4700383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - " 425/2000 [=====>........................] - ETA: 27:59 - loss: 1.9399 - rpn_class_loss: 0.0175 - rpn_bbox_loss: 0.6487 - mrcnn_class_loss: 0.3639 - mrcnn_bbox_loss: 0.4402 - mrcnn_mask_loss: 0.469760\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - " 426/2000 [=====>........................] - ETA: 27:58 - loss: 1.9390 - rpn_class_loss: 0.0175 - rpn_bbox_loss: 0.6485 - mrcnn_class_loss: 0.3636 - mrcnn_bbox_loss: 0.4401 - mrcnn_mask_loss: 0.4693369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - " 427/2000 [=====>........................] - ETA: 27:58 - loss: 1.9382 - rpn_class_loss: 0.0175 - rpn_bbox_loss: 0.6480 - mrcnn_class_loss: 0.3636 - mrcnn_bbox_loss: 0.4402 - mrcnn_mask_loss: 0.4690366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - " 428/2000 [=====>........................] - ETA: 27:57 - loss: 1.9374 - rpn_class_loss: 0.0175 - rpn_bbox_loss: 0.6476 - mrcnn_class_loss: 0.3635 - mrcnn_bbox_loss: 0.4402 - mrcnn_mask_loss: 0.4686205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - " 429/2000 [=====>........................] - ETA: 27:56 - loss: 1.9352 - rpn_class_loss: 0.0174 - rpn_bbox_loss: 0.6469 - mrcnn_class_loss: 0.3629 - mrcnn_bbox_loss: 0.4398 - mrcnn_mask_loss: 0.468116\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - " 430/2000 [=====>........................] - ETA: 27:53 - loss: 1.9344 - rpn_class_loss: 0.0174 - rpn_bbox_loss: 0.6471 - mrcnn_class_loss: 0.3624 - mrcnn_bbox_loss: 0.4395 - mrcnn_mask_loss: 0.467986\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - " 431/2000 [=====>........................] - ETA: 27:52 - loss: 1.9324 - rpn_class_loss: 0.0174 - rpn_bbox_loss: 0.6460 - mrcnn_class_loss: 0.3620 - mrcnn_bbox_loss: 0.4391 - mrcnn_mask_loss: 0.46784\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - " 432/2000 [=====>........................] - ETA: 27:50 - loss: 1.9299 - rpn_class_loss: 0.0174 - rpn_bbox_loss: 0.6450 - mrcnn_class_loss: 0.3615 - mrcnn_bbox_loss: 0.4387 - mrcnn_mask_loss: 0.4674261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - " 433/2000 [=====>........................] - ETA: 27:49 - loss: 1.9293 - rpn_class_loss: 0.0174 - rpn_bbox_loss: 0.6443 - mrcnn_class_loss: 0.3618 - mrcnn_bbox_loss: 0.4387 - mrcnn_mask_loss: 0.4673148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - " 434/2000 [=====>........................] - ETA: 27:48 - loss: 1.9284 - rpn_class_loss: 0.0173 - rpn_bbox_loss: 0.6442 - mrcnn_class_loss: 0.3616 - mrcnn_bbox_loss: 0.4383 - mrcnn_mask_loss: 0.466926\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - " 435/2000 [=====>........................] - ETA: 27:46 - loss: 1.9274 - rpn_class_loss: 0.0173 - rpn_bbox_loss: 0.6444 - mrcnn_class_loss: 0.3613 - mrcnn_bbox_loss: 0.4378 - mrcnn_mask_loss: 0.4666282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - " 436/2000 [=====>........................] - ETA: 27:46 - loss: 1.9265 - rpn_class_loss: 0.0173 - rpn_bbox_loss: 0.6441 - mrcnn_class_loss: 0.3610 - mrcnn_bbox_loss: 0.4376 - mrcnn_mask_loss: 0.4665127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - " 437/2000 [=====>........................] - ETA: 27:45 - loss: 1.9259 - rpn_class_loss: 0.0173 - rpn_bbox_loss: 0.6437 - mrcnn_class_loss: 0.3609 - mrcnn_bbox_loss: 0.4379 - mrcnn_mask_loss: 0.466254\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - " 438/2000 [=====>........................] - ETA: 27:43 - loss: 1.9230 - rpn_class_loss: 0.0172 - rpn_bbox_loss: 0.6427 - mrcnn_class_loss: 0.3601 - mrcnn_bbox_loss: 0.4372 - mrcnn_mask_loss: 0.4657291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - " 439/2000 [=====>........................] - ETA: 27:42 - loss: 1.9224 - rpn_class_loss: 0.0173 - rpn_bbox_loss: 0.6423 - mrcnn_class_loss: 0.3601 - mrcnn_bbox_loss: 0.4371 - mrcnn_mask_loss: 0.4657204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - " 440/2000 [=====>........................] - ETA: 27:40 - loss: 1.9204 - rpn_class_loss: 0.0172 - rpn_bbox_loss: 0.6415 - mrcnn_class_loss: 0.3597 - mrcnn_bbox_loss: 0.4366 - mrcnn_mask_loss: 0.4653295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - " 441/2000 [=====>........................] - ETA: 27:40 - loss: 1.9195 - rpn_class_loss: 0.0172 - rpn_bbox_loss: 0.6413 - mrcnn_class_loss: 0.3597 - mrcnn_bbox_loss: 0.4362 - mrcnn_mask_loss: 0.4650188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - " 442/2000 [=====>........................] - ETA: 27:38 - loss: 1.9178 - rpn_class_loss: 0.0172 - rpn_bbox_loss: 0.6404 - mrcnn_class_loss: 0.3593 - mrcnn_bbox_loss: 0.4361 - mrcnn_mask_loss: 0.4648349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - " 443/2000 [=====>........................] - ETA: 27:37 - loss: 1.9168 - rpn_class_loss: 0.0172 - rpn_bbox_loss: 0.6405 - mrcnn_class_loss: 0.3590 - mrcnn_bbox_loss: 0.4357 - mrcnn_mask_loss: 0.4645323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 444/2000 [=====>........................] - ETA: 27:36 - loss: 1.9157 - rpn_class_loss: 0.0172 - rpn_bbox_loss: 0.6402 - mrcnn_class_loss: 0.3586 - mrcnn_bbox_loss: 0.4355 - mrcnn_mask_loss: 0.4642137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - " 445/2000 [=====>........................] - ETA: 27:36 - loss: 1.9153 - rpn_class_loss: 0.0172 - rpn_bbox_loss: 0.6397 - mrcnn_class_loss: 0.3589 - mrcnn_bbox_loss: 0.4355 - mrcnn_mask_loss: 0.4640339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - " 446/2000 [=====>........................] - ETA: 27:35 - loss: 1.9146 - rpn_class_loss: 0.0172 - rpn_bbox_loss: 0.6394 - mrcnn_class_loss: 0.3590 - mrcnn_bbox_loss: 0.4353 - mrcnn_mask_loss: 0.4637231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - " 447/2000 [=====>........................] - ETA: 27:33 - loss: 1.9126 - rpn_class_loss: 0.0172 - rpn_bbox_loss: 0.6391 - mrcnn_class_loss: 0.3584 - mrcnn_bbox_loss: 0.4347 - mrcnn_mask_loss: 0.463211\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - " 448/2000 [=====>........................] - ETA: 27:31 - loss: 1.9122 - rpn_class_loss: 0.0171 - rpn_bbox_loss: 0.6395 - mrcnn_class_loss: 0.3580 - mrcnn_bbox_loss: 0.4347 - mrcnn_mask_loss: 0.4629251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - " 449/2000 [=====>........................] - ETA: 27:30 - loss: 1.9103 - rpn_class_loss: 0.0171 - rpn_bbox_loss: 0.6388 - mrcnn_class_loss: 0.3576 - mrcnn_bbox_loss: 0.4342 - mrcnn_mask_loss: 0.4626370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - " 450/2000 [=====>........................] - ETA: 27:29 - loss: 1.9096 - rpn_class_loss: 0.0171 - rpn_bbox_loss: 0.6382 - mrcnn_class_loss: 0.3576 - mrcnn_bbox_loss: 0.4343 - mrcnn_mask_loss: 0.4623380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - " 451/2000 [=====>........................] - ETA: 27:29 - loss: 1.9093 - rpn_class_loss: 0.0171 - rpn_bbox_loss: 0.6384 - mrcnn_class_loss: 0.3576 - mrcnn_bbox_loss: 0.4342 - mrcnn_mask_loss: 0.4620305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - " 452/2000 [=====>........................] - ETA: 27:28 - loss: 1.9086 - rpn_class_loss: 0.0171 - rpn_bbox_loss: 0.6380 - mrcnn_class_loss: 0.3573 - mrcnn_bbox_loss: 0.4342 - mrcnn_mask_loss: 0.4620315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - " 453/2000 [=====>........................] - ETA: 27:28 - loss: 1.9072 - rpn_class_loss: 0.0171 - rpn_bbox_loss: 0.6374 - mrcnn_class_loss: 0.3568 - mrcnn_bbox_loss: 0.4342 - mrcnn_mask_loss: 0.461838\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - " 454/2000 [=====>........................] - ETA: 27:26 - loss: 1.9066 - rpn_class_loss: 0.0171 - rpn_bbox_loss: 0.6379 - mrcnn_class_loss: 0.3564 - mrcnn_bbox_loss: 0.4338 - mrcnn_mask_loss: 0.461470\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - " 455/2000 [=====>........................] - ETA: 27:24 - loss: 1.9047 - rpn_class_loss: 0.0170 - rpn_bbox_loss: 0.6372 - mrcnn_class_loss: 0.3558 - mrcnn_bbox_loss: 0.4337 - mrcnn_mask_loss: 0.4610281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - " 456/2000 [=====>........................] - ETA: 27:24 - loss: 1.9043 - rpn_class_loss: 0.0170 - rpn_bbox_loss: 0.6371 - mrcnn_class_loss: 0.3557 - mrcnn_bbox_loss: 0.4336 - mrcnn_mask_loss: 0.4608344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - " 457/2000 [=====>........................] - ETA: 27:24 - loss: 1.9034 - rpn_class_loss: 0.0170 - rpn_bbox_loss: 0.6370 - mrcnn_class_loss: 0.3554 - mrcnn_bbox_loss: 0.4337 - mrcnn_mask_loss: 0.460383\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - " 458/2000 [=====>........................] - ETA: 27:22 - loss: 1.9024 - rpn_class_loss: 0.0170 - rpn_bbox_loss: 0.6363 - mrcnn_class_loss: 0.3557 - mrcnn_bbox_loss: 0.4335 - mrcnn_mask_loss: 0.4600284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 459/2000 [=====>........................] - ETA: 27:22 - loss: 1.9012 - rpn_class_loss: 0.0170 - rpn_bbox_loss: 0.6360 - mrcnn_class_loss: 0.3552 - mrcnn_bbox_loss: 0.4332 - mrcnn_mask_loss: 0.4598142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - " 460/2000 [=====>........................] - ETA: 27:21 - loss: 1.8996 - rpn_class_loss: 0.0170 - rpn_bbox_loss: 0.6357 - mrcnn_class_loss: 0.3548 - mrcnn_bbox_loss: 0.4327 - mrcnn_mask_loss: 0.4595112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - " 461/2000 [=====>........................] - ETA: 27:20 - loss: 1.8989 - rpn_class_loss: 0.0169 - rpn_bbox_loss: 0.6357 - mrcnn_class_loss: 0.3544 - mrcnn_bbox_loss: 0.4325 - mrcnn_mask_loss: 0.459443\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - " 462/2000 [=====>........................] - ETA: 27:18 - loss: 1.8972 - rpn_class_loss: 0.0169 - rpn_bbox_loss: 0.6353 - mrcnn_class_loss: 0.3539 - mrcnn_bbox_loss: 0.4321 - mrcnn_mask_loss: 0.4591348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - " 463/2000 [=====>........................] - ETA: 27:18 - loss: 1.8961 - rpn_class_loss: 0.0169 - rpn_bbox_loss: 0.6353 - mrcnn_class_loss: 0.3535 - mrcnn_bbox_loss: 0.4317 - mrcnn_mask_loss: 0.4587249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - " 464/2000 [=====>........................] - ETA: 27:16 - loss: 1.8954 - rpn_class_loss: 0.0169 - rpn_bbox_loss: 0.6346 - mrcnn_class_loss: 0.3536 - mrcnn_bbox_loss: 0.4315 - mrcnn_mask_loss: 0.4587253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - " 465/2000 [=====>........................] - ETA: 27:15 - loss: 1.8939 - rpn_class_loss: 0.0169 - rpn_bbox_loss: 0.6340 - mrcnn_class_loss: 0.3532 - mrcnn_bbox_loss: 0.4312 - mrcnn_mask_loss: 0.458633\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - " 466/2000 [=====>........................] - ETA: 27:13 - loss: 1.8924 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6340 - mrcnn_class_loss: 0.3527 - mrcnn_bbox_loss: 0.4307 - mrcnn_mask_loss: 0.4583232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - " 467/2000 [======>.......................] - ETA: 27:12 - loss: 1.8908 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6335 - mrcnn_class_loss: 0.3522 - mrcnn_bbox_loss: 0.4304 - mrcnn_mask_loss: 0.4579267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - " 468/2000 [======>.......................] - ETA: 27:11 - loss: 1.8892 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6329 - mrcnn_class_loss: 0.3517 - mrcnn_bbox_loss: 0.4303 - mrcnn_mask_loss: 0.4576257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - " 469/2000 [======>.......................] - ETA: 27:10 - loss: 1.8884 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6326 - mrcnn_class_loss: 0.3514 - mrcnn_bbox_loss: 0.4301 - mrcnn_mask_loss: 0.4574114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - " 470/2000 [======>.......................] - ETA: 27:09 - loss: 1.8874 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6323 - mrcnn_class_loss: 0.3514 - mrcnn_bbox_loss: 0.4297 - mrcnn_mask_loss: 0.4571100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - " 471/2000 [======>.......................] - ETA: 27:09 - loss: 1.8871 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6320 - mrcnn_class_loss: 0.3514 - mrcnn_bbox_loss: 0.4299 - mrcnn_mask_loss: 0.4570206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - " 472/2000 [======>.......................] - ETA: 27:07 - loss: 1.8850 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6312 - mrcnn_class_loss: 0.3511 - mrcnn_bbox_loss: 0.4293 - mrcnn_mask_loss: 0.4566234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - " 473/2000 [======>.......................] - ETA: 27:06 - loss: 1.8835 - rpn_class_loss: 0.0167 - rpn_bbox_loss: 0.6311 - mrcnn_class_loss: 0.3508 - mrcnn_bbox_loss: 0.4287 - mrcnn_mask_loss: 0.4561375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - " 474/2000 [======>.......................] - ETA: 27:05 - loss: 1.8825 - rpn_class_loss: 0.0167 - rpn_bbox_loss: 0.6309 - mrcnn_class_loss: 0.3505 - mrcnn_bbox_loss: 0.4286 - mrcnn_mask_loss: 0.4558239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - " 475/2000 [======>.......................] - ETA: 27:04 - loss: 1.8926 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6421 - mrcnn_class_loss: 0.3502 - mrcnn_bbox_loss: 0.4281 - mrcnn_mask_loss: 0.4554171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - " 476/2000 [======>.......................] - ETA: 27:02 - loss: 1.8916 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6416 - mrcnn_class_loss: 0.3499 - mrcnn_bbox_loss: 0.4282 - mrcnn_mask_loss: 0.4551116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - " 477/2000 [======>.......................] - ETA: 27:02 - loss: 1.8912 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6414 - mrcnn_class_loss: 0.3498 - mrcnn_bbox_loss: 0.4283 - mrcnn_mask_loss: 0.454978\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - " 478/2000 [======>.......................] - ETA: 27:00 - loss: 1.8892 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6405 - mrcnn_class_loss: 0.3492 - mrcnn_bbox_loss: 0.4279 - mrcnn_mask_loss: 0.4547246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - " 479/2000 [======>.......................] - ETA: 26:59 - loss: 1.8879 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6396 - mrcnn_class_loss: 0.3488 - mrcnn_bbox_loss: 0.4280 - mrcnn_mask_loss: 0.454630\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - " 480/2000 [======>.......................] - ETA: 26:57 - loss: 1.8870 - rpn_class_loss: 0.0168 - rpn_bbox_loss: 0.6396 - mrcnn_class_loss: 0.3487 - mrcnn_bbox_loss: 0.4278 - mrcnn_mask_loss: 0.454262\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - " 481/2000 [======>.......................] - ETA: 26:56 - loss: 1.8852 - rpn_class_loss: 0.0167 - rpn_bbox_loss: 0.6388 - mrcnn_class_loss: 0.3485 - mrcnn_bbox_loss: 0.4274 - mrcnn_mask_loss: 0.4539256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - " 482/2000 [======>.......................] - ETA: 26:55 - loss: 1.8845 - rpn_class_loss: 0.0167 - rpn_bbox_loss: 0.6383 - mrcnn_class_loss: 0.3482 - mrcnn_bbox_loss: 0.4274 - mrcnn_mask_loss: 0.4538355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - " 483/2000 [======>.......................] - ETA: 26:55 - loss: 1.8824 - rpn_class_loss: 0.0167 - rpn_bbox_loss: 0.6374 - mrcnn_class_loss: 0.3479 - mrcnn_bbox_loss: 0.4269 - mrcnn_mask_loss: 0.4535176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - " 484/2000 [======>.......................] - ETA: 26:53 - loss: 1.8817 - rpn_class_loss: 0.0167 - rpn_bbox_loss: 0.6371 - mrcnn_class_loss: 0.3478 - mrcnn_bbox_loss: 0.4267 - mrcnn_mask_loss: 0.453399\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - " 485/2000 [======>.......................] - ETA: 26:52 - loss: 1.8812 - rpn_class_loss: 0.0166 - rpn_bbox_loss: 0.6375 - mrcnn_class_loss: 0.3475 - mrcnn_bbox_loss: 0.4264 - mrcnn_mask_loss: 0.453135\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - " 486/2000 [======>.......................] - ETA: 26:51 - loss: 1.8801 - rpn_class_loss: 0.0166 - rpn_bbox_loss: 0.6375 - mrcnn_class_loss: 0.3472 - mrcnn_bbox_loss: 0.4259 - mrcnn_mask_loss: 0.452976\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - " 487/2000 [======>.......................] - ETA: 26:49 - loss: 1.8783 - rpn_class_loss: 0.0166 - rpn_bbox_loss: 0.6371 - mrcnn_class_loss: 0.3467 - mrcnn_bbox_loss: 0.4254 - mrcnn_mask_loss: 0.4525356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 488/2000 [======>.......................] - ETA: 26:49 - loss: 1.8762 - rpn_class_loss: 0.0166 - rpn_bbox_loss: 0.6364 - mrcnn_class_loss: 0.3463 - mrcnn_bbox_loss: 0.4248 - mrcnn_mask_loss: 0.4521303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - " 489/2000 [======>.......................] - ETA: 26:49 - loss: 1.8754 - rpn_class_loss: 0.0166 - rpn_bbox_loss: 0.6362 - mrcnn_class_loss: 0.3462 - mrcnn_bbox_loss: 0.4244 - mrcnn_mask_loss: 0.4520207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - " 490/2000 [======>.......................] - ETA: 26:47 - loss: 1.8742 - rpn_class_loss: 0.0165 - rpn_bbox_loss: 0.6355 - mrcnn_class_loss: 0.3459 - mrcnn_bbox_loss: 0.4245 - mrcnn_mask_loss: 0.4517166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - " 491/2000 [======>.......................] - ETA: 26:46 - loss: 1.8726 - rpn_class_loss: 0.0165 - rpn_bbox_loss: 0.6346 - mrcnn_class_loss: 0.3454 - mrcnn_bbox_loss: 0.4244 - mrcnn_mask_loss: 0.4516236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - " 492/2000 [======>.......................] - ETA: 26:44 - loss: 1.8702 - rpn_class_loss: 0.0165 - rpn_bbox_loss: 0.6341 - mrcnn_class_loss: 0.3449 - mrcnn_bbox_loss: 0.4237 - mrcnn_mask_loss: 0.4510367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - " 493/2000 [======>.......................] - ETA: 26:44 - loss: 1.8689 - rpn_class_loss: 0.0165 - rpn_bbox_loss: 0.6340 - mrcnn_class_loss: 0.3443 - mrcnn_bbox_loss: 0.4233 - mrcnn_mask_loss: 0.450779\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - " 494/2000 [======>.......................] - ETA: 26:42 - loss: 1.8670 - rpn_class_loss: 0.0165 - rpn_bbox_loss: 0.6330 - mrcnn_class_loss: 0.3439 - mrcnn_bbox_loss: 0.4231 - mrcnn_mask_loss: 0.4504104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - " 495/2000 [======>.......................] - ETA: 26:42 - loss: 1.8661 - rpn_class_loss: 0.0165 - rpn_bbox_loss: 0.6325 - mrcnn_class_loss: 0.3438 - mrcnn_bbox_loss: 0.4231 - mrcnn_mask_loss: 0.4502321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - " 496/2000 [======>.......................] - ETA: 26:41 - loss: 1.8658 - rpn_class_loss: 0.0165 - rpn_bbox_loss: 0.6322 - mrcnn_class_loss: 0.3438 - mrcnn_bbox_loss: 0.4233 - mrcnn_mask_loss: 0.4500109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - " 497/2000 [======>.......................] - ETA: 26:40 - loss: 1.8645 - rpn_class_loss: 0.0165 - rpn_bbox_loss: 0.6315 - mrcnn_class_loss: 0.3436 - mrcnn_bbox_loss: 0.4231 - mrcnn_mask_loss: 0.449844\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - " 498/2000 [======>.......................] - ETA: 26:39 - loss: 1.8629 - rpn_class_loss: 0.0165 - rpn_bbox_loss: 0.6309 - mrcnn_class_loss: 0.3432 - mrcnn_bbox_loss: 0.4227 - mrcnn_mask_loss: 0.4495264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - " 499/2000 [======>.......................] - ETA: 26:38 - loss: 1.8611 - rpn_class_loss: 0.0164 - rpn_bbox_loss: 0.6303 - mrcnn_class_loss: 0.3427 - mrcnn_bbox_loss: 0.4225 - mrcnn_mask_loss: 0.4492211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - " 500/2000 [======>.......................] - ETA: 26:36 - loss: 1.8586 - rpn_class_loss: 0.0165 - rpn_bbox_loss: 0.6293 - mrcnn_class_loss: 0.3422 - mrcnn_bbox_loss: 0.4219 - mrcnn_mask_loss: 0.4488203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - " 501/2000 [======>.......................] - ETA: 26:35 - loss: 1.8567 - rpn_class_loss: 0.0164 - rpn_bbox_loss: 0.6285 - mrcnn_class_loss: 0.3418 - mrcnn_bbox_loss: 0.4215 - mrcnn_mask_loss: 0.4485285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - " 502/2000 [======>.......................] - ETA: 26:34 - loss: 1.8560 - rpn_class_loss: 0.0164 - rpn_bbox_loss: 0.6284 - mrcnn_class_loss: 0.3416 - mrcnn_bbox_loss: 0.4213 - mrcnn_mask_loss: 0.448369\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 503/2000 [======>.......................] - ETA: 26:33 - loss: 1.8544 - rpn_class_loss: 0.0164 - rpn_bbox_loss: 0.6277 - mrcnn_class_loss: 0.3416 - mrcnn_bbox_loss: 0.4207 - mrcnn_mask_loss: 0.4481372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - " 504/2000 [======>.......................] - ETA: 26:32 - loss: 1.8526 - rpn_class_loss: 0.0164 - rpn_bbox_loss: 0.6270 - mrcnn_class_loss: 0.3409 - mrcnn_bbox_loss: 0.4205 - mrcnn_mask_loss: 0.4477389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - " 505/2000 [======>.......................] - ETA: 26:31 - loss: 1.8513 - rpn_class_loss: 0.0164 - rpn_bbox_loss: 0.6269 - mrcnn_class_loss: 0.3405 - mrcnn_bbox_loss: 0.4201 - mrcnn_mask_loss: 0.44742\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - " 506/2000 [======>.......................] - ETA: 26:29 - loss: 1.8508 - rpn_class_loss: 0.0164 - rpn_bbox_loss: 0.6275 - mrcnn_class_loss: 0.3400 - mrcnn_bbox_loss: 0.4197 - mrcnn_mask_loss: 0.447295\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - " 507/2000 [======>.......................] - ETA: 26:28 - loss: 1.8511 - rpn_class_loss: 0.0164 - rpn_bbox_loss: 0.6289 - mrcnn_class_loss: 0.3399 - mrcnn_bbox_loss: 0.4191 - mrcnn_mask_loss: 0.4468333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - " 508/2000 [======>.......................] - ETA: 26:28 - loss: 1.8499 - rpn_class_loss: 0.0164 - rpn_bbox_loss: 0.6285 - mrcnn_class_loss: 0.3395 - mrcnn_bbox_loss: 0.4189 - mrcnn_mask_loss: 0.446632\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - " 509/2000 [======>.......................] - ETA: 26:26 - loss: 1.8483 - rpn_class_loss: 0.0164 - rpn_bbox_loss: 0.6283 - mrcnn_class_loss: 0.3390 - mrcnn_bbox_loss: 0.4184 - mrcnn_mask_loss: 0.446337\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - " 510/2000 [======>.......................] - ETA: 26:25 - loss: 1.8478 - rpn_class_loss: 0.0163 - rpn_bbox_loss: 0.6289 - mrcnn_class_loss: 0.3388 - mrcnn_bbox_loss: 0.4178 - mrcnn_mask_loss: 0.4459330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - " 511/2000 [======>.......................] - ETA: 26:24 - loss: 1.8466 - rpn_class_loss: 0.0163 - rpn_bbox_loss: 0.6287 - mrcnn_class_loss: 0.3383 - mrcnn_bbox_loss: 0.4176 - mrcnn_mask_loss: 0.4457117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - " 512/2000 [======>.......................] - ETA: 26:23 - loss: 1.8462 - rpn_class_loss: 0.0163 - rpn_bbox_loss: 0.6285 - mrcnn_class_loss: 0.3383 - mrcnn_bbox_loss: 0.4176 - mrcnn_mask_loss: 0.445531\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - " 513/2000 [======>.......................] - ETA: 26:22 - loss: 1.8441 - rpn_class_loss: 0.0163 - rpn_bbox_loss: 0.6278 - mrcnn_class_loss: 0.3379 - mrcnn_bbox_loss: 0.4170 - mrcnn_mask_loss: 0.4451110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - " 514/2000 [======>.......................] - ETA: 26:21 - loss: 1.8435 - rpn_class_loss: 0.0163 - rpn_bbox_loss: 0.6275 - mrcnn_class_loss: 0.3378 - mrcnn_bbox_loss: 0.4169 - mrcnn_mask_loss: 0.4450368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - " 515/2000 [======>.......................] - ETA: 26:20 - loss: 1.8424 - rpn_class_loss: 0.0163 - rpn_bbox_loss: 0.6272 - mrcnn_class_loss: 0.3377 - mrcnn_bbox_loss: 0.4166 - mrcnn_mask_loss: 0.4446126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - " 516/2000 [======>.......................] - ETA: 26:20 - loss: 1.8413 - rpn_class_loss: 0.0162 - rpn_bbox_loss: 0.6268 - mrcnn_class_loss: 0.3374 - mrcnn_bbox_loss: 0.4165 - mrcnn_mask_loss: 0.4443361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - " 517/2000 [======>.......................] - ETA: 26:20 - loss: 1.8405 - rpn_class_loss: 0.0162 - rpn_bbox_loss: 0.6272 - mrcnn_class_loss: 0.3369 - mrcnn_bbox_loss: 0.4162 - mrcnn_mask_loss: 0.4439293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 518/2000 [======>.......................] - ETA: 26:19 - loss: 1.8400 - rpn_class_loss: 0.0162 - rpn_bbox_loss: 0.6268 - mrcnn_class_loss: 0.3368 - mrcnn_bbox_loss: 0.4164 - mrcnn_mask_loss: 0.4438167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - " 519/2000 [======>.......................] - ETA: 26:18 - loss: 1.8386 - rpn_class_loss: 0.0162 - rpn_bbox_loss: 0.6263 - mrcnn_class_loss: 0.3363 - mrcnn_bbox_loss: 0.4163 - mrcnn_mask_loss: 0.443615\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - " 520/2000 [======>.......................] - ETA: 26:16 - loss: 1.8379 - rpn_class_loss: 0.0162 - rpn_bbox_loss: 0.6270 - mrcnn_class_loss: 0.3358 - mrcnn_bbox_loss: 0.4158 - mrcnn_mask_loss: 0.4431278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - " 521/2000 [======>.......................] - ETA: 26:16 - loss: 1.8372 - rpn_class_loss: 0.0162 - rpn_bbox_loss: 0.6269 - mrcnn_class_loss: 0.3355 - mrcnn_bbox_loss: 0.4157 - mrcnn_mask_loss: 0.4429183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - " 522/2000 [======>.......................] - ETA: 26:14 - loss: 1.8364 - rpn_class_loss: 0.0162 - rpn_bbox_loss: 0.6269 - mrcnn_class_loss: 0.3352 - mrcnn_bbox_loss: 0.4154 - mrcnn_mask_loss: 0.4427259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - " 523/2000 [======>.......................] - ETA: 26:14 - loss: 1.8355 - rpn_class_loss: 0.0162 - rpn_bbox_loss: 0.6269 - mrcnn_class_loss: 0.3347 - mrcnn_bbox_loss: 0.4153 - mrcnn_mask_loss: 0.4425152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - " 524/2000 [======>.......................] - ETA: 26:13 - loss: 1.8359 - rpn_class_loss: 0.0162 - rpn_bbox_loss: 0.6277 - mrcnn_class_loss: 0.3348 - mrcnn_bbox_loss: 0.4151 - mrcnn_mask_loss: 0.442217\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - " 525/2000 [======>.......................] - ETA: 26:11 - loss: 1.8355 - rpn_class_loss: 0.0161 - rpn_bbox_loss: 0.6282 - mrcnn_class_loss: 0.3344 - mrcnn_bbox_loss: 0.4148 - mrcnn_mask_loss: 0.4420135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - " 526/2000 [======>.......................] - ETA: 26:10 - loss: 1.8349 - rpn_class_loss: 0.0161 - rpn_bbox_loss: 0.6281 - mrcnn_class_loss: 0.3340 - mrcnn_bbox_loss: 0.4146 - mrcnn_mask_loss: 0.4420385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - " 527/2000 [======>.......................] - ETA: 26:10 - loss: 1.8339 - rpn_class_loss: 0.0161 - rpn_bbox_loss: 0.6279 - mrcnn_class_loss: 0.3338 - mrcnn_bbox_loss: 0.4145 - mrcnn_mask_loss: 0.4416374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - " 528/2000 [======>.......................] - ETA: 26:09 - loss: 1.8323 - rpn_class_loss: 0.0161 - rpn_bbox_loss: 0.6273 - mrcnn_class_loss: 0.3333 - mrcnn_bbox_loss: 0.4143 - mrcnn_mask_loss: 0.4412265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - " 529/2000 [======>.......................] - ETA: 26:08 - loss: 1.8316 - rpn_class_loss: 0.0161 - rpn_bbox_loss: 0.6270 - mrcnn_class_loss: 0.3331 - mrcnn_bbox_loss: 0.4144 - mrcnn_mask_loss: 0.4411354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - " 530/2000 [======>.......................] - ETA: 26:08 - loss: 1.8298 - rpn_class_loss: 0.0161 - rpn_bbox_loss: 0.6264 - mrcnn_class_loss: 0.3326 - mrcnn_bbox_loss: 0.4139 - mrcnn_mask_loss: 0.440839\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - " 531/2000 [======>.......................] - ETA: 26:06 - loss: 1.8290 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6264 - mrcnn_class_loss: 0.3325 - mrcnn_bbox_loss: 0.4135 - mrcnn_mask_loss: 0.4406153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - " 532/2000 [======>.......................] - ETA: 26:05 - loss: 1.8288 - rpn_class_loss: 0.0161 - rpn_bbox_loss: 0.6267 - mrcnn_class_loss: 0.3324 - mrcnn_bbox_loss: 0.4132 - mrcnn_mask_loss: 0.4405342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 533/2000 [======>.......................] - ETA: 26:05 - loss: 1.8283 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6268 - mrcnn_class_loss: 0.3325 - mrcnn_bbox_loss: 0.4128 - mrcnn_mask_loss: 0.4402235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - " 534/2000 [=======>......................] - ETA: 26:03 - loss: 1.8265 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6266 - mrcnn_class_loss: 0.3319 - mrcnn_bbox_loss: 0.4122 - mrcnn_mask_loss: 0.4399390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - " 535/2000 [=======>......................] - ETA: 26:02 - loss: 1.8256 - rpn_class_loss: 0.0161 - rpn_bbox_loss: 0.6266 - mrcnn_class_loss: 0.3316 - mrcnn_bbox_loss: 0.4117 - mrcnn_mask_loss: 0.4396187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - " 536/2000 [=======>......................] - ETA: 26:00 - loss: 1.8234 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6257 - mrcnn_class_loss: 0.3312 - mrcnn_bbox_loss: 0.4112 - mrcnn_mask_loss: 0.4393270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - " 537/2000 [=======>......................] - ETA: 25:59 - loss: 1.8216 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6249 - mrcnn_class_loss: 0.3307 - mrcnn_bbox_loss: 0.4109 - mrcnn_mask_loss: 0.4390373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - " 538/2000 [=======>......................] - ETA: 25:58 - loss: 1.8197 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6242 - mrcnn_class_loss: 0.3303 - mrcnn_bbox_loss: 0.4105 - mrcnn_mask_loss: 0.4386353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - " 539/2000 [=======>......................] - ETA: 25:57 - loss: 1.8176 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6235 - mrcnn_class_loss: 0.3298 - mrcnn_bbox_loss: 0.4100 - mrcnn_mask_loss: 0.4382384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - " 540/2000 [=======>......................] - ETA: 25:56 - loss: 1.8161 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6231 - mrcnn_class_loss: 0.3293 - mrcnn_bbox_loss: 0.4097 - mrcnn_mask_loss: 0.437950\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - " 541/2000 [=======>......................] - ETA: 25:55 - loss: 1.8147 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6228 - mrcnn_class_loss: 0.3289 - mrcnn_bbox_loss: 0.4093 - mrcnn_mask_loss: 0.4377181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - " 542/2000 [=======>......................] - ETA: 25:53 - loss: 1.8141 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6230 - mrcnn_class_loss: 0.3286 - mrcnn_bbox_loss: 0.4090 - mrcnn_mask_loss: 0.4375316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - " 543/2000 [=======>......................] - ETA: 25:52 - loss: 1.8135 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6228 - mrcnn_class_loss: 0.3282 - mrcnn_bbox_loss: 0.4090 - mrcnn_mask_loss: 0.4375386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - " 544/2000 [=======>......................] - ETA: 25:51 - loss: 1.8118 - rpn_class_loss: 0.0160 - rpn_bbox_loss: 0.6224 - mrcnn_class_loss: 0.3278 - mrcnn_bbox_loss: 0.4086 - mrcnn_mask_loss: 0.4371197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - " 545/2000 [=======>......................] - ETA: 25:50 - loss: 1.8099 - rpn_class_loss: 0.0159 - rpn_bbox_loss: 0.6217 - mrcnn_class_loss: 0.3275 - mrcnn_bbox_loss: 0.4081 - mrcnn_mask_loss: 0.4367329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - " 546/2000 [=======>......................] - ETA: 25:49 - loss: 1.8088 - rpn_class_loss: 0.0159 - rpn_bbox_loss: 0.6214 - mrcnn_class_loss: 0.3272 - mrcnn_bbox_loss: 0.4077 - mrcnn_mask_loss: 0.4365111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - " 547/2000 [=======>......................] - ETA: 25:47 - loss: 1.8076 - rpn_class_loss: 0.0159 - rpn_bbox_loss: 0.6211 - mrcnn_class_loss: 0.3269 - mrcnn_bbox_loss: 0.4074 - mrcnn_mask_loss: 0.4364377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 548/2000 [=======>......................] - ETA: 25:47 - loss: 1.8071 - rpn_class_loss: 0.0159 - rpn_bbox_loss: 0.6209 - mrcnn_class_loss: 0.3271 - mrcnn_bbox_loss: 0.4072 - mrcnn_mask_loss: 0.4360194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - " 549/2000 [=======>......................] - ETA: 25:45 - loss: 1.8052 - rpn_class_loss: 0.0159 - rpn_bbox_loss: 0.6200 - mrcnn_class_loss: 0.3268 - mrcnn_bbox_loss: 0.4068 - mrcnn_mask_loss: 0.4358141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - " 550/2000 [=======>......................] - ETA: 25:45 - loss: 1.8051 - rpn_class_loss: 0.0159 - rpn_bbox_loss: 0.6198 - mrcnn_class_loss: 0.3270 - mrcnn_bbox_loss: 0.4068 - mrcnn_mask_loss: 0.4356247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - " 551/2000 [=======>......................] - ETA: 25:43 - loss: 1.8038 - rpn_class_loss: 0.0159 - rpn_bbox_loss: 0.6191 - mrcnn_class_loss: 0.3266 - mrcnn_bbox_loss: 0.4066 - mrcnn_mask_loss: 0.4355130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - " 552/2000 [=======>......................] - ETA: 25:42 - loss: 1.8033 - rpn_class_loss: 0.0159 - rpn_bbox_loss: 0.6190 - mrcnn_class_loss: 0.3265 - mrcnn_bbox_loss: 0.4064 - mrcnn_mask_loss: 0.435449\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - " 553/2000 [=======>......................] - ETA: 25:40 - loss: 1.8016 - rpn_class_loss: 0.0158 - rpn_bbox_loss: 0.6183 - mrcnn_class_loss: 0.3261 - mrcnn_bbox_loss: 0.4062 - mrcnn_mask_loss: 0.4350156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - " 554/2000 [=======>......................] - ETA: 25:40 - loss: 1.8012 - rpn_class_loss: 0.0158 - rpn_bbox_loss: 0.6184 - mrcnn_class_loss: 0.3262 - mrcnn_bbox_loss: 0.4061 - mrcnn_mask_loss: 0.4347122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - " 555/2000 [=======>......................] - ETA: 25:39 - loss: 1.8011 - rpn_class_loss: 0.0158 - rpn_bbox_loss: 0.6185 - mrcnn_class_loss: 0.3262 - mrcnn_bbox_loss: 0.4061 - mrcnn_mask_loss: 0.434688\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - " 556/2000 [=======>......................] - ETA: 25:38 - loss: 1.8003 - rpn_class_loss: 0.0158 - rpn_bbox_loss: 0.6185 - mrcnn_class_loss: 0.3258 - mrcnn_bbox_loss: 0.4058 - mrcnn_mask_loss: 0.4342212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - " 557/2000 [=======>......................] - ETA: 25:36 - loss: 1.7986 - rpn_class_loss: 0.0158 - rpn_bbox_loss: 0.6180 - mrcnn_class_loss: 0.3254 - mrcnn_bbox_loss: 0.4055 - mrcnn_mask_loss: 0.433963\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - " 558/2000 [=======>......................] - ETA: 25:34 - loss: 1.7972 - rpn_class_loss: 0.0158 - rpn_bbox_loss: 0.6173 - mrcnn_class_loss: 0.3252 - mrcnn_bbox_loss: 0.4052 - mrcnn_mask_loss: 0.4337317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - " 559/2000 [=======>......................] - ETA: 25:34 - loss: 1.7960 - rpn_class_loss: 0.0158 - rpn_bbox_loss: 0.6169 - mrcnn_class_loss: 0.3249 - mrcnn_bbox_loss: 0.4049 - mrcnn_mask_loss: 0.4336312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - " 560/2000 [=======>......................] - ETA: 25:33 - loss: 1.7948 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6167 - mrcnn_class_loss: 0.3245 - mrcnn_bbox_loss: 0.4045 - mrcnn_mask_loss: 0.433468\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - " 561/2000 [=======>......................] - ETA: 25:31 - loss: 1.7934 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6161 - mrcnn_class_loss: 0.3242 - mrcnn_bbox_loss: 0.4041 - mrcnn_mask_loss: 0.433341\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - " 562/2000 [=======>......................] - ETA: 25:29 - loss: 1.7926 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6160 - mrcnn_class_loss: 0.3239 - mrcnn_bbox_loss: 0.4039 - mrcnn_mask_loss: 0.433197\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 563/2000 [=======>......................] - ETA: 25:28 - loss: 1.7917 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6162 - mrcnn_class_loss: 0.3235 - mrcnn_bbox_loss: 0.4034 - mrcnn_mask_loss: 0.432818\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - " 564/2000 [=======>......................] - ETA: 25:26 - loss: 1.7914 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6169 - mrcnn_class_loss: 0.3233 - mrcnn_bbox_loss: 0.4030 - mrcnn_mask_loss: 0.4326392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - " 565/2000 [=======>......................] - ETA: 25:25 - loss: 1.7903 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6164 - mrcnn_class_loss: 0.3232 - mrcnn_bbox_loss: 0.4028 - mrcnn_mask_loss: 0.4323397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - " 566/2000 [=======>......................] - ETA: 25:24 - loss: 1.7900 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6163 - mrcnn_class_loss: 0.3231 - mrcnn_bbox_loss: 0.4027 - mrcnn_mask_loss: 0.4321318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - " 567/2000 [=======>......................] - ETA: 25:23 - loss: 1.7892 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6160 - mrcnn_class_loss: 0.3229 - mrcnn_bbox_loss: 0.4027 - mrcnn_mask_loss: 0.4320226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - " 568/2000 [=======>......................] - ETA: 25:22 - loss: 1.7879 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6154 - mrcnn_class_loss: 0.3228 - mrcnn_bbox_loss: 0.4024 - mrcnn_mask_loss: 0.4317170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - " 569/2000 [=======>......................] - ETA: 25:20 - loss: 1.7871 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6150 - mrcnn_class_loss: 0.3228 - mrcnn_bbox_loss: 0.4022 - mrcnn_mask_loss: 0.4314388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - " 570/2000 [=======>......................] - ETA: 25:19 - loss: 1.7865 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6149 - mrcnn_class_loss: 0.3226 - mrcnn_bbox_loss: 0.4020 - mrcnn_mask_loss: 0.4314382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - " 571/2000 [=======>......................] - ETA: 25:18 - loss: 1.7860 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6149 - mrcnn_class_loss: 0.3224 - mrcnn_bbox_loss: 0.4019 - mrcnn_mask_loss: 0.4312120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - " 572/2000 [=======>......................] - ETA: 25:18 - loss: 1.7859 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6146 - mrcnn_class_loss: 0.3226 - mrcnn_bbox_loss: 0.4019 - mrcnn_mask_loss: 0.4312168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - " 573/2000 [=======>......................] - ETA: 25:16 - loss: 1.7840 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6138 - mrcnn_class_loss: 0.3221 - mrcnn_bbox_loss: 0.4015 - mrcnn_mask_loss: 0.430936\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - " 574/2000 [=======>......................] - ETA: 25:14 - loss: 1.7833 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6139 - mrcnn_class_loss: 0.3219 - mrcnn_bbox_loss: 0.4013 - mrcnn_mask_loss: 0.43065\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - " 575/2000 [=======>......................] - ETA: 25:13 - loss: 1.7830 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6138 - mrcnn_class_loss: 0.3220 - mrcnn_bbox_loss: 0.4012 - mrcnn_mask_loss: 0.4305147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - " 576/2000 [=======>......................] - ETA: 25:11 - loss: 1.7828 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6138 - mrcnn_class_loss: 0.3220 - mrcnn_bbox_loss: 0.4010 - mrcnn_mask_loss: 0.4304298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - " 577/2000 [=======>......................] - ETA: 25:11 - loss: 1.7823 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6137 - mrcnn_class_loss: 0.3216 - mrcnn_bbox_loss: 0.4010 - mrcnn_mask_loss: 0.430410\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - " 578/2000 [=======>......................] - ETA: 25:09 - loss: 1.7817 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6138 - mrcnn_class_loss: 0.3213 - mrcnn_bbox_loss: 0.4008 - mrcnn_mask_loss: 0.43020\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - " 579/2000 [=======>......................] - ETA: 25:07 - loss: 1.7814 - rpn_class_loss: 0.0155 - rpn_bbox_loss: 0.6143 - mrcnn_class_loss: 0.3211 - mrcnn_bbox_loss: 0.4005 - mrcnn_mask_loss: 0.4301399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - " 580/2000 [=======>......................] - ETA: 25:06 - loss: 1.7859 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6192 - mrcnn_class_loss: 0.3209 - mrcnn_bbox_loss: 0.4003 - mrcnn_mask_loss: 0.4298105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - " 581/2000 [=======>......................] - ETA: 25:05 - loss: 1.7845 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6185 - mrcnn_class_loss: 0.3206 - mrcnn_bbox_loss: 0.4000 - mrcnn_mask_loss: 0.4297237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - " 582/2000 [=======>......................] - ETA: 25:04 - loss: 1.7830 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6181 - mrcnn_class_loss: 0.3203 - mrcnn_bbox_loss: 0.3996 - mrcnn_mask_loss: 0.4293196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - " 583/2000 [=======>......................] - ETA: 25:02 - loss: 1.7810 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6173 - mrcnn_class_loss: 0.3199 - mrcnn_bbox_loss: 0.3992 - mrcnn_mask_loss: 0.4290159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - " 584/2000 [=======>......................] - ETA: 25:01 - loss: 1.7810 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6176 - mrcnn_class_loss: 0.3198 - mrcnn_bbox_loss: 0.3992 - mrcnn_mask_loss: 0.4288288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - " 585/2000 [=======>......................] - ETA: 25:01 - loss: 1.7806 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6175 - mrcnn_class_loss: 0.3197 - mrcnn_bbox_loss: 0.3991 - mrcnn_mask_loss: 0.4287169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - " 586/2000 [=======>......................] - ETA: 24:59 - loss: 1.7793 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6171 - mrcnn_class_loss: 0.3194 - mrcnn_bbox_loss: 0.3989 - mrcnn_mask_loss: 0.4283223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - " 587/2000 [=======>......................] - ETA: 24:58 - loss: 1.7800 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6186 - mrcnn_class_loss: 0.3190 - mrcnn_bbox_loss: 0.3986 - mrcnn_mask_loss: 0.4282241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - " 588/2000 [=======>......................] - ETA: 24:57 - loss: 1.7799 - rpn_class_loss: 0.0157 - rpn_bbox_loss: 0.6184 - mrcnn_class_loss: 0.3191 - mrcnn_bbox_loss: 0.3986 - mrcnn_mask_loss: 0.4282192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - " 589/2000 [=======>......................] - ETA: 24:55 - loss: 1.7784 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6175 - mrcnn_class_loss: 0.3191 - mrcnn_bbox_loss: 0.3982 - mrcnn_mask_loss: 0.4280101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - " 590/2000 [=======>......................] - ETA: 24:54 - loss: 1.7772 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6171 - mrcnn_class_loss: 0.3189 - mrcnn_bbox_loss: 0.3979 - mrcnn_mask_loss: 0.427781\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - " 591/2000 [=======>......................] - ETA: 24:53 - loss: 1.7766 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6166 - mrcnn_class_loss: 0.3187 - mrcnn_bbox_loss: 0.3980 - mrcnn_mask_loss: 0.42773\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - " 592/2000 [=======>......................] - ETA: 24:51 - loss: 1.7756 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6167 - mrcnn_class_loss: 0.3184 - mrcnn_bbox_loss: 0.3976 - mrcnn_mask_loss: 0.4274296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 593/2000 [=======>......................] - ETA: 24:50 - loss: 1.7746 - rpn_class_loss: 0.0156 - rpn_bbox_loss: 0.6164 - mrcnn_class_loss: 0.3180 - mrcnn_bbox_loss: 0.3974 - mrcnn_mask_loss: 0.4274113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - " 594/2000 [=======>......................] - ETA: 24:49 - loss: 1.7738 - rpn_class_loss: 0.0155 - rpn_bbox_loss: 0.6160 - mrcnn_class_loss: 0.3179 - mrcnn_bbox_loss: 0.3971 - mrcnn_mask_loss: 0.4272133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - " 595/2000 [=======>......................] - ETA: 24:48 - loss: 1.7730 - rpn_class_loss: 0.0155 - rpn_bbox_loss: 0.6159 - mrcnn_class_loss: 0.3177 - mrcnn_bbox_loss: 0.3969 - mrcnn_mask_loss: 0.427082\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - " 596/2000 [=======>......................] - ETA: 24:47 - loss: 1.7728 - rpn_class_loss: 0.0155 - rpn_bbox_loss: 0.6156 - mrcnn_class_loss: 0.3178 - mrcnn_bbox_loss: 0.3968 - mrcnn_mask_loss: 0.4271292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - " 597/2000 [=======>......................] - ETA: 24:46 - loss: 1.7716 - rpn_class_loss: 0.0155 - rpn_bbox_loss: 0.6153 - mrcnn_class_loss: 0.3175 - mrcnn_bbox_loss: 0.3964 - mrcnn_mask_loss: 0.4269229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - " 598/2000 [=======>......................] - ETA: 24:44 - loss: 1.7701 - rpn_class_loss: 0.0155 - rpn_bbox_loss: 0.6149 - mrcnn_class_loss: 0.3171 - mrcnn_bbox_loss: 0.3961 - mrcnn_mask_loss: 0.426561\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - " 599/2000 [=======>......................] - ETA: 24:43 - loss: 1.7684 - rpn_class_loss: 0.0155 - rpn_bbox_loss: 0.6143 - mrcnn_class_loss: 0.3167 - mrcnn_bbox_loss: 0.3957 - mrcnn_mask_loss: 0.4263165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - " 600/2000 [========>.....................] - ETA: 24:41 - loss: 1.7669 - rpn_class_loss: 0.0155 - rpn_bbox_loss: 0.6139 - mrcnn_class_loss: 0.3163 - mrcnn_bbox_loss: 0.3954 - mrcnn_mask_loss: 0.4259123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - " 601/2000 [========>.....................] - ETA: 24:41 - loss: 1.7661 - rpn_class_loss: 0.0155 - rpn_bbox_loss: 0.6137 - mrcnn_class_loss: 0.3160 - mrcnn_bbox_loss: 0.3952 - mrcnn_mask_loss: 0.4257271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - " 602/2000 [========>.....................] - ETA: 24:40 - loss: 1.7649 - rpn_class_loss: 0.0155 - rpn_bbox_loss: 0.6131 - mrcnn_class_loss: 0.3158 - mrcnn_bbox_loss: 0.3951 - mrcnn_mask_loss: 0.4255308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - " 603/2000 [========>.....................] - ETA: 24:39 - loss: 1.7642 - rpn_class_loss: 0.0154 - rpn_bbox_loss: 0.6129 - mrcnn_class_loss: 0.3155 - mrcnn_bbox_loss: 0.3950 - mrcnn_mask_loss: 0.4254398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - " 604/2000 [========>.....................] - ETA: 24:38 - loss: 1.7634 - rpn_class_loss: 0.0154 - rpn_bbox_loss: 0.6132 - mrcnn_class_loss: 0.3151 - mrcnn_bbox_loss: 0.3945 - mrcnn_mask_loss: 0.42519\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - " 605/2000 [========>.....................] - ETA: 24:36 - loss: 1.7629 - rpn_class_loss: 0.0154 - rpn_bbox_loss: 0.6135 - mrcnn_class_loss: 0.3147 - mrcnn_bbox_loss: 0.3942 - mrcnn_mask_loss: 0.4250294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - " 606/2000 [========>.....................] - ETA: 24:35 - loss: 1.7623 - rpn_class_loss: 0.0154 - rpn_bbox_loss: 0.6135 - mrcnn_class_loss: 0.3146 - mrcnn_bbox_loss: 0.3940 - mrcnn_mask_loss: 0.4249219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - " 607/2000 [========>.....................] - ETA: 24:34 - loss: 1.7612 - rpn_class_loss: 0.0154 - rpn_bbox_loss: 0.6129 - mrcnn_class_loss: 0.3146 - mrcnn_bbox_loss: 0.3937 - mrcnn_mask_loss: 0.4246320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - " 608/2000 [========>.....................] - ETA: 24:33 - loss: 1.7603 - rpn_class_loss: 0.0154 - rpn_bbox_loss: 0.6126 - mrcnn_class_loss: 0.3143 - mrcnn_bbox_loss: 0.3935 - mrcnn_mask_loss: 0.4244336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - " 609/2000 [========>.....................] - ETA: 24:33 - loss: 1.7593 - rpn_class_loss: 0.0154 - rpn_bbox_loss: 0.6123 - mrcnn_class_loss: 0.3140 - mrcnn_bbox_loss: 0.3932 - mrcnn_mask_loss: 0.4244387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - " 610/2000 [========>.....................] - ETA: 24:32 - loss: 1.7584 - rpn_class_loss: 0.0154 - rpn_bbox_loss: 0.6124 - mrcnn_class_loss: 0.3136 - mrcnn_bbox_loss: 0.3928 - mrcnn_mask_loss: 0.424212\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - " 611/2000 [========>.....................] - ETA: 24:30 - loss: 1.7572 - rpn_class_loss: 0.0154 - rpn_bbox_loss: 0.6123 - mrcnn_class_loss: 0.3133 - mrcnn_bbox_loss: 0.3923 - mrcnn_mask_loss: 0.4239289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - " 612/2000 [========>.....................] - ETA: 24:29 - loss: 1.7562 - rpn_class_loss: 0.0154 - rpn_bbox_loss: 0.6120 - mrcnn_class_loss: 0.3131 - mrcnn_bbox_loss: 0.3920 - mrcnn_mask_loss: 0.4237327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n", - " 613/2000 [========>.....................] - ETA: 24:28 - loss: 1.7552 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6116 - mrcnn_class_loss: 0.3127 - mrcnn_bbox_loss: 0.3920 - mrcnn_mask_loss: 0.4235149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - " 614/2000 [========>.....................] - ETA: 24:27 - loss: 1.7554 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6118 - mrcnn_class_loss: 0.3127 - mrcnn_bbox_loss: 0.3922 - mrcnn_mask_loss: 0.4233163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - " 615/2000 [========>.....................] - ETA: 24:25 - loss: 1.7547 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6118 - mrcnn_class_loss: 0.3124 - mrcnn_bbox_loss: 0.3922 - mrcnn_mask_loss: 0.4230364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - " 616/2000 [========>.....................] - ETA: 24:25 - loss: 1.7540 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6118 - mrcnn_class_loss: 0.3123 - mrcnn_bbox_loss: 0.3919 - mrcnn_mask_loss: 0.422765\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - " 617/2000 [========>.....................] - ETA: 24:23 - loss: 1.7528 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6113 - mrcnn_class_loss: 0.3119 - mrcnn_bbox_loss: 0.3916 - mrcnn_mask_loss: 0.4226309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - " 618/2000 [========>.....................] - ETA: 24:22 - loss: 1.7524 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6112 - mrcnn_class_loss: 0.3118 - mrcnn_bbox_loss: 0.3914 - mrcnn_mask_loss: 0.4226138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - " 619/2000 [========>.....................] - ETA: 24:22 - loss: 1.7524 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6113 - mrcnn_class_loss: 0.3119 - mrcnn_bbox_loss: 0.3914 - mrcnn_mask_loss: 0.4225307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - " 620/2000 [========>.....................] - ETA: 24:21 - loss: 1.7513 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6110 - mrcnn_class_loss: 0.3115 - mrcnn_bbox_loss: 0.3911 - mrcnn_mask_loss: 0.422467\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 621/2000 [========>.....................] - ETA: 24:19 - loss: 1.7498 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6103 - mrcnn_class_loss: 0.3113 - mrcnn_bbox_loss: 0.3907 - mrcnn_mask_loss: 0.422166\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - " 622/2000 [========>.....................] - ETA: 24:18 - loss: 1.7482 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6097 - mrcnn_class_loss: 0.3110 - mrcnn_bbox_loss: 0.3903 - mrcnn_mask_loss: 0.4219201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - " 623/2000 [========>.....................] - ETA: 24:16 - loss: 1.7471 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6092 - mrcnn_class_loss: 0.3108 - mrcnn_bbox_loss: 0.3900 - mrcnn_mask_loss: 0.4217213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - " 624/2000 [========>.....................] - ETA: 24:15 - loss: 1.7456 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6087 - mrcnn_class_loss: 0.3105 - mrcnn_bbox_loss: 0.3896 - mrcnn_mask_loss: 0.421525\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - " 625/2000 [========>.....................] - ETA: 24:13 - loss: 1.7443 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6086 - mrcnn_class_loss: 0.3101 - mrcnn_bbox_loss: 0.3891 - mrcnn_mask_loss: 0.4212210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - " 626/2000 [========>.....................] - ETA: 24:12 - loss: 1.7428 - rpn_class_loss: 0.0152 - rpn_bbox_loss: 0.6082 - mrcnn_class_loss: 0.3097 - mrcnn_bbox_loss: 0.3888 - mrcnn_mask_loss: 0.4209371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - " 627/2000 [========>.....................] - ETA: 24:11 - loss: 1.7415 - rpn_class_loss: 0.0153 - rpn_bbox_loss: 0.6077 - mrcnn_class_loss: 0.3094 - mrcnn_bbox_loss: 0.3886 - mrcnn_mask_loss: 0.4206359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - " 628/2000 [========>.....................] - ETA: 24:10 - loss: 1.7403 - rpn_class_loss: 0.0152 - rpn_bbox_loss: 0.6074 - mrcnn_class_loss: 0.3091 - mrcnn_bbox_loss: 0.3882 - mrcnn_mask_loss: 0.4204324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - " 629/2000 [========>.....................] - ETA: 24:09 - loss: 1.7397 - rpn_class_loss: 0.0152 - rpn_bbox_loss: 0.6070 - mrcnn_class_loss: 0.3089 - mrcnn_bbox_loss: 0.3882 - mrcnn_mask_loss: 0.4203310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - " 630/2000 [========>.....................] - ETA: 24:08 - loss: 1.7392 - rpn_class_loss: 0.0152 - rpn_bbox_loss: 0.6068 - mrcnn_class_loss: 0.3086 - mrcnn_bbox_loss: 0.3883 - mrcnn_mask_loss: 0.420256\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - " 631/2000 [========>.....................] - ETA: 24:07 - loss: 1.7377 - rpn_class_loss: 0.0152 - rpn_bbox_loss: 0.6063 - mrcnn_class_loss: 0.3083 - mrcnn_bbox_loss: 0.3880 - mrcnn_mask_loss: 0.419946\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - " 632/2000 [========>.....................] - ETA: 24:05 - loss: 1.7364 - rpn_class_loss: 0.0152 - rpn_bbox_loss: 0.6056 - mrcnn_class_loss: 0.3082 - mrcnn_bbox_loss: 0.3878 - mrcnn_mask_loss: 0.419696\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - " 633/2000 [========>.....................] - ETA: 24:04 - loss: 1.7355 - rpn_class_loss: 0.0152 - rpn_bbox_loss: 0.6055 - mrcnn_class_loss: 0.3081 - mrcnn_bbox_loss: 0.3874 - mrcnn_mask_loss: 0.4193151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - " 634/2000 [========>.....................] - ETA: 24:03 - loss: 1.7357 - rpn_class_loss: 0.0152 - rpn_bbox_loss: 0.6060 - mrcnn_class_loss: 0.3081 - mrcnn_bbox_loss: 0.3873 - mrcnn_mask_loss: 0.4192286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - " 635/2000 [========>.....................] - ETA: 24:02 - loss: 1.7348 - rpn_class_loss: 0.0152 - rpn_bbox_loss: 0.6058 - mrcnn_class_loss: 0.3077 - mrcnn_bbox_loss: 0.3871 - mrcnn_mask_loss: 0.4190136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 636/2000 [========>.....................] - ETA: 24:01 - loss: 1.7342 - rpn_class_loss: 0.0152 - rpn_bbox_loss: 0.6056 - mrcnn_class_loss: 0.3075 - mrcnn_bbox_loss: 0.3869 - mrcnn_mask_loss: 0.4189304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - " 637/2000 [========>.....................] - ETA: 24:01 - loss: 1.7333 - rpn_class_loss: 0.0152 - rpn_bbox_loss: 0.6054 - mrcnn_class_loss: 0.3072 - mrcnn_bbox_loss: 0.3868 - mrcnn_mask_loss: 0.418864\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - " 638/2000 [========>.....................] - ETA: 23:59 - loss: 1.7321 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6049 - mrcnn_class_loss: 0.3070 - mrcnn_bbox_loss: 0.3864 - mrcnn_mask_loss: 0.4186352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - " 639/2000 [========>.....................] - ETA: 23:58 - loss: 1.7317 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6048 - mrcnn_class_loss: 0.3069 - mrcnn_bbox_loss: 0.3863 - mrcnn_mask_loss: 0.4185244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - " 640/2000 [========>.....................] - ETA: 23:57 - loss: 1.7315 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6045 - mrcnn_class_loss: 0.3071 - mrcnn_bbox_loss: 0.3864 - mrcnn_mask_loss: 0.418440\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - " 641/2000 [========>.....................] - ETA: 23:56 - loss: 1.7305 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6044 - mrcnn_class_loss: 0.3068 - mrcnn_bbox_loss: 0.3861 - mrcnn_mask_loss: 0.4181395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - " 642/2000 [========>.....................] - ETA: 23:55 - loss: 1.7300 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6043 - mrcnn_class_loss: 0.3066 - mrcnn_bbox_loss: 0.3859 - mrcnn_mask_loss: 0.418072\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - " 643/2000 [========>.....................] - ETA: 23:53 - loss: 1.7286 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6040 - mrcnn_class_loss: 0.3062 - mrcnn_bbox_loss: 0.3856 - mrcnn_mask_loss: 0.4177238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - " 644/2000 [========>.....................] - ETA: 23:52 - loss: 1.7278 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6039 - mrcnn_class_loss: 0.3060 - mrcnn_bbox_loss: 0.3852 - mrcnn_mask_loss: 0.417694\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - " 645/2000 [========>.....................] - ETA: 23:51 - loss: 1.7277 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6043 - mrcnn_class_loss: 0.3057 - mrcnn_bbox_loss: 0.3851 - mrcnn_mask_loss: 0.4175155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - " 646/2000 [========>.....................] - ETA: 23:50 - loss: 1.7280 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6048 - mrcnn_class_loss: 0.3056 - mrcnn_bbox_loss: 0.3852 - mrcnn_mask_loss: 0.4174131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - " 647/2000 [========>.....................] - ETA: 23:49 - loss: 1.7277 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6047 - mrcnn_class_loss: 0.3054 - mrcnn_bbox_loss: 0.3852 - mrcnn_mask_loss: 0.4172224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - " 648/2000 [========>.....................] - ETA: 23:47 - loss: 1.7265 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6044 - mrcnn_class_loss: 0.3051 - mrcnn_bbox_loss: 0.3850 - mrcnn_mask_loss: 0.416974\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - " 649/2000 [========>.....................] - ETA: 23:46 - loss: 1.7251 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6040 - mrcnn_class_loss: 0.3047 - mrcnn_bbox_loss: 0.3846 - mrcnn_mask_loss: 0.416680\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - " 650/2000 [========>.....................] - ETA: 23:44 - loss: 1.7241 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6039 - mrcnn_class_loss: 0.3044 - mrcnn_bbox_loss: 0.3844 - mrcnn_mask_loss: 0.4164191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 651/2000 [========>.....................] - ETA: 23:43 - loss: 1.7232 - rpn_class_loss: 0.0151 - rpn_bbox_loss: 0.6034 - mrcnn_class_loss: 0.3043 - mrcnn_bbox_loss: 0.3842 - mrcnn_mask_loss: 0.4163302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - " 652/2000 [========>.....................] - ETA: 23:42 - loss: 1.7229 - rpn_class_loss: 0.0150 - rpn_bbox_loss: 0.6034 - mrcnn_class_loss: 0.3042 - mrcnn_bbox_loss: 0.3840 - mrcnn_mask_loss: 0.4162358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - " 653/2000 [========>.....................] - ETA: 23:42 - loss: 1.7219 - rpn_class_loss: 0.0150 - rpn_bbox_loss: 0.6031 - mrcnn_class_loss: 0.3039 - mrcnn_bbox_loss: 0.3839 - mrcnn_mask_loss: 0.4160154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - " 654/2000 [========>.....................] - ETA: 23:41 - loss: 1.7212 - rpn_class_loss: 0.0150 - rpn_bbox_loss: 0.6034 - mrcnn_class_loss: 0.3035 - mrcnn_bbox_loss: 0.3835 - mrcnn_mask_loss: 0.415748\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - " 655/2000 [========>.....................] - ETA: 23:39 - loss: 1.7196 - rpn_class_loss: 0.0150 - rpn_bbox_loss: 0.6028 - mrcnn_class_loss: 0.3032 - mrcnn_bbox_loss: 0.3832 - mrcnn_mask_loss: 0.4155319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - " 656/2000 [========>.....................] - ETA: 23:39 - loss: 1.7192 - rpn_class_loss: 0.0150 - rpn_bbox_loss: 0.6028 - mrcnn_class_loss: 0.3030 - mrcnn_bbox_loss: 0.3830 - mrcnn_mask_loss: 0.4154215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - " 657/2000 [========>.....................] - ETA: 23:37 - loss: 1.7182 - rpn_class_loss: 0.0150 - rpn_bbox_loss: 0.6022 - mrcnn_class_loss: 0.3031 - mrcnn_bbox_loss: 0.3827 - mrcnn_mask_loss: 0.415284\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - " 658/2000 [========>.....................] - ETA: 23:36 - loss: 1.7176 - rpn_class_loss: 0.0150 - rpn_bbox_loss: 0.6016 - mrcnn_class_loss: 0.3033 - mrcnn_bbox_loss: 0.3826 - mrcnn_mask_loss: 0.4152182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - " 659/2000 [========>.....................] - ETA: 23:35 - loss: 1.7171 - rpn_class_loss: 0.0150 - rpn_bbox_loss: 0.6016 - mrcnn_class_loss: 0.3030 - mrcnn_bbox_loss: 0.3825 - mrcnn_mask_loss: 0.41501\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - " 660/2000 [========>.....................] - ETA: 23:33 - loss: 1.7173 - rpn_class_loss: 0.0149 - rpn_bbox_loss: 0.6020 - mrcnn_class_loss: 0.3031 - mrcnn_bbox_loss: 0.3823 - mrcnn_mask_loss: 0.4149172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - " 661/2000 [========>.....................] - ETA: 23:32 - loss: 1.7162 - rpn_class_loss: 0.0149 - rpn_bbox_loss: 0.6016 - mrcnn_class_loss: 0.3028 - mrcnn_bbox_loss: 0.3820 - mrcnn_mask_loss: 0.4148103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - " 662/2000 [========>.....................] - ETA: 23:31 - loss: 1.7156 - rpn_class_loss: 0.0149 - rpn_bbox_loss: 0.6013 - mrcnn_class_loss: 0.3026 - mrcnn_bbox_loss: 0.3821 - mrcnn_mask_loss: 0.4148275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - " 663/2000 [========>.....................] - ETA: 23:30 - loss: 1.7149 - rpn_class_loss: 0.0149 - rpn_bbox_loss: 0.6012 - mrcnn_class_loss: 0.3024 - mrcnn_bbox_loss: 0.3819 - mrcnn_mask_loss: 0.4146173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - " 664/2000 [========>.....................] - ETA: 23:29 - loss: 1.7142 - rpn_class_loss: 0.0149 - rpn_bbox_loss: 0.6010 - mrcnn_class_loss: 0.3022 - mrcnn_bbox_loss: 0.3817 - mrcnn_mask_loss: 0.414485\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - " 665/2000 [========>.....................] - ETA: 23:27 - loss: 1.7132 - rpn_class_loss: 0.0149 - rpn_bbox_loss: 0.6004 - mrcnn_class_loss: 0.3022 - mrcnn_bbox_loss: 0.3814 - mrcnn_mask_loss: 0.4143250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 666/2000 [========>.....................] - ETA: 23:26 - loss: 1.7122 - rpn_class_loss: 0.0149 - rpn_bbox_loss: 0.5999 - mrcnn_class_loss: 0.3021 - mrcnn_bbox_loss: 0.3811 - mrcnn_mask_loss: 0.4142217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - " 667/2000 [=========>....................] - ETA: 23:25 - loss: 1.7108 - rpn_class_loss: 0.0149 - rpn_bbox_loss: 0.5995 - mrcnn_class_loss: 0.3017 - mrcnn_bbox_loss: 0.3807 - mrcnn_mask_loss: 0.4140272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - " 668/2000 [=========>....................] - ETA: 23:24 - loss: 1.7098 - rpn_class_loss: 0.0149 - rpn_bbox_loss: 0.5990 - mrcnn_class_loss: 0.3014 - mrcnn_bbox_loss: 0.3806 - mrcnn_mask_loss: 0.4139198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - " 669/2000 [=========>....................] - ETA: 23:22 - loss: 1.7087 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5988 - mrcnn_class_loss: 0.3011 - mrcnn_bbox_loss: 0.3804 - mrcnn_mask_loss: 0.413752\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - " 670/2000 [=========>....................] - ETA: 23:21 - loss: 1.7076 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5985 - mrcnn_class_loss: 0.3008 - mrcnn_bbox_loss: 0.3800 - mrcnn_mask_loss: 0.413491\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - " 671/2000 [=========>....................] - ETA: 23:19 - loss: 1.7066 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5985 - mrcnn_class_loss: 0.3005 - mrcnn_bbox_loss: 0.3796 - mrcnn_mask_loss: 0.4131334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - " 672/2000 [=========>....................] - ETA: 23:18 - loss: 1.7054 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5980 - mrcnn_class_loss: 0.3002 - mrcnn_bbox_loss: 0.3794 - mrcnn_mask_loss: 0.4130379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - " 673/2000 [=========>....................] - ETA: 23:18 - loss: 1.7045 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5977 - mrcnn_class_loss: 0.3000 - mrcnn_bbox_loss: 0.3793 - mrcnn_mask_loss: 0.4127254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - " 674/2000 [=========>....................] - ETA: 23:17 - loss: 1.7036 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5975 - mrcnn_class_loss: 0.2998 - mrcnn_bbox_loss: 0.3791 - mrcnn_mask_loss: 0.4125186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - " 675/2000 [=========>....................] - ETA: 23:15 - loss: 1.7027 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5972 - mrcnn_class_loss: 0.2996 - mrcnn_bbox_loss: 0.3787 - mrcnn_mask_loss: 0.4123326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - " 676/2000 [=========>....................] - ETA: 23:14 - loss: 1.7013 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5967 - mrcnn_class_loss: 0.2993 - mrcnn_bbox_loss: 0.3785 - mrcnn_mask_loss: 0.4121202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - " 677/2000 [=========>....................] - ETA: 23:13 - loss: 1.7000 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5962 - mrcnn_class_loss: 0.2989 - mrcnn_bbox_loss: 0.3782 - mrcnn_mask_loss: 0.411919\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - " 678/2000 [=========>....................] - ETA: 23:11 - loss: 1.6996 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5967 - mrcnn_class_loss: 0.2985 - mrcnn_bbox_loss: 0.3779 - mrcnn_mask_loss: 0.4117184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - " 679/2000 [=========>....................] - ETA: 23:10 - loss: 1.6987 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5965 - mrcnn_class_loss: 0.2984 - mrcnn_bbox_loss: 0.3776 - mrcnn_mask_loss: 0.411655\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - " 680/2000 [=========>....................] - ETA: 23:08 - loss: 1.6973 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5961 - mrcnn_class_loss: 0.2981 - mrcnn_bbox_loss: 0.3772 - mrcnn_mask_loss: 0.4113340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 681/2000 [=========>....................] - ETA: 23:08 - loss: 1.6967 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5962 - mrcnn_class_loss: 0.2977 - mrcnn_bbox_loss: 0.3771 - mrcnn_mask_loss: 0.41107\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - " 682/2000 [=========>....................] - ETA: 23:06 - loss: 1.6959 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5961 - mrcnn_class_loss: 0.2976 - mrcnn_bbox_loss: 0.3767 - mrcnn_mask_loss: 0.4108360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - " 683/2000 [=========>....................] - ETA: 23:06 - loss: 1.6955 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5962 - mrcnn_class_loss: 0.2973 - mrcnn_bbox_loss: 0.3766 - mrcnn_mask_loss: 0.4106107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - " 684/2000 [=========>....................] - ETA: 23:04 - loss: 1.6956 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5958 - mrcnn_class_loss: 0.2978 - mrcnn_bbox_loss: 0.3766 - mrcnn_mask_loss: 0.4106252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - " 685/2000 [=========>....................] - ETA: 23:03 - loss: 1.6949 - rpn_class_loss: 0.0148 - rpn_bbox_loss: 0.5953 - mrcnn_class_loss: 0.2976 - mrcnn_bbox_loss: 0.3766 - mrcnn_mask_loss: 0.4106351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - " 686/2000 [=========>....................] - ETA: 23:02 - loss: 1.6944 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5953 - mrcnn_class_loss: 0.2974 - mrcnn_bbox_loss: 0.3765 - mrcnn_mask_loss: 0.4105119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - " 687/2000 [=========>....................] - ETA: 23:02 - loss: 1.6938 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5951 - mrcnn_class_loss: 0.2972 - mrcnn_bbox_loss: 0.3764 - mrcnn_mask_loss: 0.4104124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - " 688/2000 [=========>....................] - ETA: 23:01 - loss: 1.6933 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5949 - mrcnn_class_loss: 0.2970 - mrcnn_bbox_loss: 0.3763 - mrcnn_mask_loss: 0.4104106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - " 689/2000 [=========>....................] - ETA: 23:00 - loss: 1.6920 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5944 - mrcnn_class_loss: 0.2967 - mrcnn_bbox_loss: 0.3760 - mrcnn_mask_loss: 0.4102266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - " 690/2000 [=========>....................] - ETA: 22:59 - loss: 1.6910 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5939 - mrcnn_class_loss: 0.2964 - mrcnn_bbox_loss: 0.3759 - mrcnn_mask_loss: 0.4100280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - " 691/2000 [=========>....................] - ETA: 22:58 - loss: 1.6912 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5941 - mrcnn_class_loss: 0.2965 - mrcnn_bbox_loss: 0.3760 - mrcnn_mask_loss: 0.4099343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - " 692/2000 [=========>....................] - ETA: 22:58 - loss: 1.6902 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5940 - mrcnn_class_loss: 0.2962 - mrcnn_bbox_loss: 0.3757 - mrcnn_mask_loss: 0.4096338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - " 693/2000 [=========>....................] - ETA: 22:57 - loss: 1.6893 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5938 - mrcnn_class_loss: 0.2959 - mrcnn_bbox_loss: 0.3755 - mrcnn_mask_loss: 0.4094268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - " 694/2000 [=========>....................] - ETA: 22:56 - loss: 1.6882 - rpn_class_loss: 0.0147 - rpn_bbox_loss: 0.5933 - mrcnn_class_loss: 0.2957 - mrcnn_bbox_loss: 0.3753 - mrcnn_mask_loss: 0.409223\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 695/2000 [=========>....................] - ETA: 22:54 - loss: 1.6872 - rpn_class_loss: 0.0146 - rpn_bbox_loss: 0.5931 - mrcnn_class_loss: 0.2955 - mrcnn_bbox_loss: 0.3750 - mrcnn_mask_loss: 0.4090335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - " 696/2000 [=========>....................] - ETA: 22:54 - loss: 1.6862 - rpn_class_loss: 0.0146 - rpn_bbox_loss: 0.5928 - mrcnn_class_loss: 0.2951 - mrcnn_bbox_loss: 0.3748 - mrcnn_mask_loss: 0.4088102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - " 697/2000 [=========>....................] - ETA: 22:53 - loss: 1.6853 - rpn_class_loss: 0.0146 - rpn_bbox_loss: 0.5925 - mrcnn_class_loss: 0.2950 - mrcnn_bbox_loss: 0.3745 - mrcnn_mask_loss: 0.4086274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - " 698/2000 [=========>....................] - ETA: 22:52 - loss: 1.6843 - rpn_class_loss: 0.0146 - rpn_bbox_loss: 0.5920 - mrcnn_class_loss: 0.2948 - mrcnn_bbox_loss: 0.3744 - mrcnn_mask_loss: 0.4085347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - " 699/2000 [=========>....................] - ETA: 22:51 - loss: 1.6838 - rpn_class_loss: 0.0146 - rpn_bbox_loss: 0.5921 - mrcnn_class_loss: 0.2945 - mrcnn_bbox_loss: 0.3743 - mrcnn_mask_loss: 0.4083301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - " 700/2000 [=========>....................] - ETA: 22:50 - loss: 1.6838 - rpn_class_loss: 0.0146 - rpn_bbox_loss: 0.5920 - mrcnn_class_loss: 0.2945 - mrcnn_bbox_loss: 0.3744 - mrcnn_mask_loss: 0.408287\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - " 701/2000 [=========>....................] - ETA: 22:49 - loss: 1.6827 - rpn_class_loss: 0.0146 - rpn_bbox_loss: 0.5916 - mrcnn_class_loss: 0.2943 - mrcnn_bbox_loss: 0.3742 - mrcnn_mask_loss: 0.4080228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - " 702/2000 [=========>....................] - ETA: 22:48 - loss: 1.6815 - rpn_class_loss: 0.0146 - rpn_bbox_loss: 0.5913 - mrcnn_class_loss: 0.2941 - mrcnn_bbox_loss: 0.3738 - mrcnn_mask_loss: 0.4077115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - " 703/2000 [=========>....................] - ETA: 22:47 - loss: 1.6808 - rpn_class_loss: 0.0146 - rpn_bbox_loss: 0.5909 - mrcnn_class_loss: 0.2939 - mrcnn_bbox_loss: 0.3738 - mrcnn_mask_loss: 0.407628\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - " 704/2000 [=========>....................] - ETA: 22:45 - loss: 1.6797 - rpn_class_loss: 0.0146 - rpn_bbox_loss: 0.5907 - mrcnn_class_loss: 0.2935 - mrcnn_bbox_loss: 0.3735 - mrcnn_mask_loss: 0.4074393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - " 705/2000 [=========>....................] - ETA: 22:44 - loss: 1.6790 - rpn_class_loss: 0.0146 - rpn_bbox_loss: 0.5905 - mrcnn_class_loss: 0.2932 - mrcnn_bbox_loss: 0.3735 - mrcnn_mask_loss: 0.4073208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - " 706/2000 [=========>....................] - ETA: 22:42 - loss: 1.6777 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5900 - mrcnn_class_loss: 0.2928 - mrcnn_bbox_loss: 0.3732 - mrcnn_mask_loss: 0.407189\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - " 707/2000 [=========>....................] - ETA: 22:41 - loss: 1.6765 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5897 - mrcnn_class_loss: 0.2926 - mrcnn_bbox_loss: 0.3728 - mrcnn_mask_loss: 0.406920\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - " 708/2000 [=========>....................] - ETA: 22:40 - loss: 1.6760 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5899 - mrcnn_class_loss: 0.2924 - mrcnn_bbox_loss: 0.3725 - mrcnn_mask_loss: 0.4067125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - " 709/2000 [=========>....................] - ETA: 22:39 - loss: 1.6753 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5896 - mrcnn_class_loss: 0.2921 - mrcnn_bbox_loss: 0.3724 - mrcnn_mask_loss: 0.4066146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - " 710/2000 [=========>....................] - ETA: 22:38 - loss: 1.6752 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5896 - mrcnn_class_loss: 0.2922 - mrcnn_bbox_loss: 0.3724 - mrcnn_mask_loss: 0.4064277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - " 711/2000 [=========>....................] - ETA: 22:37 - loss: 1.6747 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5893 - mrcnn_class_loss: 0.2922 - mrcnn_bbox_loss: 0.3723 - mrcnn_mask_loss: 0.4065255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - " 712/2000 [=========>....................] - ETA: 22:36 - loss: 1.6738 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5892 - mrcnn_class_loss: 0.2919 - mrcnn_bbox_loss: 0.3719 - mrcnn_mask_loss: 0.4063269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - " 713/2000 [=========>....................] - ETA: 22:35 - loss: 1.6728 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5888 - mrcnn_class_loss: 0.2916 - mrcnn_bbox_loss: 0.3717 - mrcnn_mask_loss: 0.4062128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - " 714/2000 [=========>....................] - ETA: 22:34 - loss: 1.6722 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5889 - mrcnn_class_loss: 0.2913 - mrcnn_bbox_loss: 0.3715 - mrcnn_mask_loss: 0.4060357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - " 715/2000 [=========>....................] - ETA: 22:33 - loss: 1.6712 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5888 - mrcnn_class_loss: 0.2910 - mrcnn_bbox_loss: 0.3712 - mrcnn_mask_loss: 0.4058248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - " 716/2000 [=========>....................] - ETA: 22:32 - loss: 1.6701 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5884 - mrcnn_class_loss: 0.2907 - mrcnn_bbox_loss: 0.3710 - mrcnn_mask_loss: 0.405614\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - " 717/2000 [=========>....................] - ETA: 22:30 - loss: 1.6693 - rpn_class_loss: 0.0145 - rpn_bbox_loss: 0.5884 - mrcnn_class_loss: 0.2903 - mrcnn_bbox_loss: 0.3708 - mrcnn_mask_loss: 0.4053218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - " 718/2000 [=========>....................] - ETA: 22:29 - loss: 1.6684 - rpn_class_loss: 0.0144 - rpn_bbox_loss: 0.5881 - mrcnn_class_loss: 0.2901 - mrcnn_bbox_loss: 0.3706 - mrcnn_mask_loss: 0.4052214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - " 719/2000 [=========>....................] - ETA: 22:28 - loss: 1.6671 - rpn_class_loss: 0.0144 - rpn_bbox_loss: 0.5875 - mrcnn_class_loss: 0.2899 - mrcnn_bbox_loss: 0.3703 - mrcnn_mask_loss: 0.405013\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - " 720/2000 [=========>....................] - ETA: 22:26 - loss: 1.6666 - rpn_class_loss: 0.0144 - rpn_bbox_loss: 0.5875 - mrcnn_class_loss: 0.2896 - mrcnn_bbox_loss: 0.3702 - mrcnn_mask_loss: 0.4048150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - " 721/2000 [=========>....................] - ETA: 22:25 - loss: 1.6662 - rpn_class_loss: 0.0144 - rpn_bbox_loss: 0.5875 - mrcnn_class_loss: 0.2896 - mrcnn_bbox_loss: 0.3701 - mrcnn_mask_loss: 0.4046227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - " 722/2000 [=========>....................] - ETA: 22:23 - loss: 1.6648 - rpn_class_loss: 0.0144 - rpn_bbox_loss: 0.5871 - mrcnn_class_loss: 0.2893 - mrcnn_bbox_loss: 0.3698 - mrcnn_mask_loss: 0.4043158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - " 723/2000 [=========>....................] - ETA: 22:22 - loss: 1.6643 - rpn_class_loss: 0.0144 - rpn_bbox_loss: 0.5871 - mrcnn_class_loss: 0.2891 - mrcnn_bbox_loss: 0.3695 - mrcnn_mask_loss: 0.4042118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 724/2000 [=========>....................] - ETA: 22:22 - loss: 1.6641 - rpn_class_loss: 0.0144 - rpn_bbox_loss: 0.5869 - mrcnn_class_loss: 0.2891 - mrcnn_bbox_loss: 0.3696 - mrcnn_mask_loss: 0.4041322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - " 725/2000 [=========>....................] - ETA: 22:21 - loss: 1.6639 - rpn_class_loss: 0.0144 - rpn_bbox_loss: 0.5870 - mrcnn_class_loss: 0.2890 - mrcnn_bbox_loss: 0.3694 - mrcnn_mask_loss: 0.4041209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - " 726/2000 [=========>....................] - ETA: 22:20 - loss: 1.6632 - rpn_class_loss: 0.0144 - rpn_bbox_loss: 0.5866 - mrcnn_class_loss: 0.2890 - mrcnn_bbox_loss: 0.3692 - mrcnn_mask_loss: 0.4040297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - " 727/2000 [=========>....................] - ETA: 22:19 - loss: 1.6631 - rpn_class_loss: 0.0144 - rpn_bbox_loss: 0.5870 - mrcnn_class_loss: 0.2888 - mrcnn_bbox_loss: 0.3691 - mrcnn_mask_loss: 0.403851\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - " 728/2000 [=========>....................] - ETA: 22:17 - loss: 1.6622 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5867 - mrcnn_class_loss: 0.2887 - mrcnn_bbox_loss: 0.3689 - mrcnn_mask_loss: 0.403658\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - " 729/2000 [=========>....................] - ETA: 22:16 - loss: 1.6614 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5867 - mrcnn_class_loss: 0.2884 - mrcnn_bbox_loss: 0.3686 - mrcnn_mask_loss: 0.4034345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - " 730/2000 [=========>....................] - ETA: 22:15 - loss: 1.6606 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5866 - mrcnn_class_loss: 0.2881 - mrcnn_bbox_loss: 0.3683 - mrcnn_mask_loss: 0.4033185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - " 731/2000 [=========>....................] - ETA: 22:14 - loss: 1.6597 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5864 - mrcnn_class_loss: 0.2878 - mrcnn_bbox_loss: 0.3680 - mrcnn_mask_loss: 0.4031276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - " 732/2000 [=========>....................] - ETA: 22:13 - loss: 1.6591 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5862 - mrcnn_class_loss: 0.2878 - mrcnn_bbox_loss: 0.3678 - mrcnn_mask_loss: 0.403047\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - " 733/2000 [=========>....................] - ETA: 22:12 - loss: 1.6578 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5858 - mrcnn_class_loss: 0.2875 - mrcnn_bbox_loss: 0.3674 - mrcnn_mask_loss: 0.4028365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - " 734/2000 [==========>...................] - ETA: 22:11 - loss: 1.6573 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5858 - mrcnn_class_loss: 0.2873 - mrcnn_bbox_loss: 0.3674 - mrcnn_mask_loss: 0.4025313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - " 735/2000 [==========>...................] - ETA: 22:10 - loss: 1.6569 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5856 - mrcnn_class_loss: 0.2871 - mrcnn_bbox_loss: 0.3673 - mrcnn_mask_loss: 0.402693\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - " 736/2000 [==========>...................] - ETA: 22:09 - loss: 1.6564 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5858 - mrcnn_class_loss: 0.2868 - mrcnn_bbox_loss: 0.3672 - mrcnn_mask_loss: 0.4024195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - " 737/2000 [==========>...................] - ETA: 22:07 - loss: 1.6552 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5854 - mrcnn_class_loss: 0.2865 - mrcnn_bbox_loss: 0.3669 - mrcnn_mask_loss: 0.402177\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - " 738/2000 [==========>...................] - ETA: 22:06 - loss: 1.6540 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5849 - mrcnn_class_loss: 0.2863 - mrcnn_bbox_loss: 0.3667 - mrcnn_mask_loss: 0.4020140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 739/2000 [==========>...................] - ETA: 22:05 - loss: 1.6534 - rpn_class_loss: 0.0143 - rpn_bbox_loss: 0.5846 - mrcnn_class_loss: 0.2862 - mrcnn_bbox_loss: 0.3666 - mrcnn_mask_loss: 0.401873\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - " 740/2000 [==========>...................] - ETA: 22:04 - loss: 1.6528 - rpn_class_loss: 0.0142 - rpn_bbox_loss: 0.5845 - mrcnn_class_loss: 0.2862 - mrcnn_bbox_loss: 0.3663 - mrcnn_mask_loss: 0.4015283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - " 741/2000 [==========>...................] - ETA: 22:03 - loss: 1.6521 - rpn_class_loss: 0.0142 - rpn_bbox_loss: 0.5844 - mrcnn_class_loss: 0.2860 - mrcnn_bbox_loss: 0.3661 - mrcnn_mask_loss: 0.4013242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - " 742/2000 [==========>...................] - ETA: 22:02 - loss: 1.6522 - rpn_class_loss: 0.0142 - rpn_bbox_loss: 0.5841 - mrcnn_class_loss: 0.2862 - mrcnn_bbox_loss: 0.3662 - mrcnn_mask_loss: 0.4015193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - " 743/2000 [==========>...................] - ETA: 22:01 - loss: 1.6510 - rpn_class_loss: 0.0142 - rpn_bbox_loss: 0.5835 - mrcnn_class_loss: 0.2861 - mrcnn_bbox_loss: 0.3659 - mrcnn_mask_loss: 0.4013134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - " 744/2000 [==========>...................] - ETA: 22:00 - loss: 1.6507 - rpn_class_loss: 0.0142 - rpn_bbox_loss: 0.5837 - mrcnn_class_loss: 0.2858 - mrcnn_bbox_loss: 0.3657 - mrcnn_mask_loss: 0.4013164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - " 745/2000 [==========>...................] - ETA: 21:59 - loss: 1.6500 - rpn_class_loss: 0.0142 - rpn_bbox_loss: 0.5834 - mrcnn_class_loss: 0.2857 - mrcnn_bbox_loss: 0.3656 - mrcnn_mask_loss: 0.4011162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - " 746/2000 [==========>...................] - ETA: 21:57 - loss: 1.6497 - rpn_class_loss: 0.0142 - rpn_bbox_loss: 0.5831 - mrcnn_class_loss: 0.2858 - mrcnn_bbox_loss: 0.3656 - mrcnn_mask_loss: 0.4010190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - " 747/2000 [==========>...................] - ETA: 21:56 - loss: 1.6486 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5828 - mrcnn_class_loss: 0.2855 - mrcnn_bbox_loss: 0.3653 - mrcnn_mask_loss: 0.400857\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - " 748/2000 [==========>...................] - ETA: 21:55 - loss: 1.6479 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5828 - mrcnn_class_loss: 0.2852 - mrcnn_bbox_loss: 0.3651 - mrcnn_mask_loss: 0.400722\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - " 749/2000 [==========>...................] - ETA: 21:53 - loss: 1.6470 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5827 - mrcnn_class_loss: 0.2849 - mrcnn_bbox_loss: 0.3648 - mrcnn_mask_loss: 0.4005230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - " 750/2000 [==========>...................] - ETA: 21:52 - loss: 1.6459 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5825 - mrcnn_class_loss: 0.2847 - mrcnn_bbox_loss: 0.3645 - mrcnn_mask_loss: 0.400259\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - " 751/2000 [==========>...................] - ETA: 21:51 - loss: 1.6450 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5824 - mrcnn_class_loss: 0.2845 - mrcnn_bbox_loss: 0.3642 - mrcnn_mask_loss: 0.3999175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - " 752/2000 [==========>...................] - ETA: 21:50 - loss: 1.6444 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5821 - mrcnn_class_loss: 0.2843 - mrcnn_bbox_loss: 0.3641 - mrcnn_mask_loss: 0.3997216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - " 753/2000 [==========>...................] - ETA: 21:48 - loss: 1.6429 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5816 - mrcnn_class_loss: 0.2840 - mrcnn_bbox_loss: 0.3637 - mrcnn_mask_loss: 0.399527\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - " 754/2000 [==========>...................] - ETA: 21:47 - loss: 1.6421 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5817 - mrcnn_class_loss: 0.2837 - mrcnn_bbox_loss: 0.3634 - mrcnn_mask_loss: 0.3993362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - " 755/2000 [==========>...................] - ETA: 21:46 - loss: 1.6415 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5817 - mrcnn_class_loss: 0.2835 - mrcnn_bbox_loss: 0.3632 - mrcnn_mask_loss: 0.3991157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - " 756/2000 [==========>...................] - ETA: 21:46 - loss: 1.6414 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5819 - mrcnn_class_loss: 0.2835 - mrcnn_bbox_loss: 0.3630 - mrcnn_mask_loss: 0.3989394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - " 757/2000 [==========>...................] - ETA: 21:45 - loss: 1.6409 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5817 - mrcnn_class_loss: 0.2835 - mrcnn_bbox_loss: 0.3628 - mrcnn_mask_loss: 0.3988258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - " 758/2000 [==========>...................] - ETA: 21:44 - loss: 1.6407 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5817 - mrcnn_class_loss: 0.2834 - mrcnn_bbox_loss: 0.3629 - mrcnn_mask_loss: 0.398875\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - " 759/2000 [==========>...................] - ETA: 21:42 - loss: 1.6400 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5814 - mrcnn_class_loss: 0.2833 - mrcnn_bbox_loss: 0.3627 - mrcnn_mask_loss: 0.3986220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - " 760/2000 [==========>...................] - ETA: 21:41 - loss: 1.6394 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5810 - mrcnn_class_loss: 0.2832 - mrcnn_bbox_loss: 0.3627 - mrcnn_mask_loss: 0.3984199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - " 761/2000 [==========>...................] - ETA: 21:40 - loss: 1.6389 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5811 - mrcnn_class_loss: 0.2829 - mrcnn_bbox_loss: 0.3626 - mrcnn_mask_loss: 0.39826\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - " 762/2000 [==========>...................] - ETA: 21:39 - loss: 1.6382 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5809 - mrcnn_class_loss: 0.2828 - mrcnn_bbox_loss: 0.3624 - mrcnn_mask_loss: 0.3980243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - " 763/2000 [==========>...................] - ETA: 21:38 - loss: 1.6385 - rpn_class_loss: 0.0141 - rpn_bbox_loss: 0.5808 - mrcnn_class_loss: 0.2829 - mrcnn_bbox_loss: 0.3625 - mrcnn_mask_loss: 0.3982263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - " 764/2000 [==========>...................] - ETA: 21:37 - loss: 1.6382 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5804 - mrcnn_class_loss: 0.2828 - mrcnn_bbox_loss: 0.3627 - mrcnn_mask_loss: 0.3982108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - " 765/2000 [==========>...................] - ETA: 21:36 - loss: 1.6378 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5802 - mrcnn_class_loss: 0.2828 - mrcnn_bbox_loss: 0.3626 - mrcnn_mask_loss: 0.3982221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - " 766/2000 [==========>...................] - ETA: 21:35 - loss: 1.6375 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5799 - mrcnn_class_loss: 0.2827 - mrcnn_bbox_loss: 0.3626 - mrcnn_mask_loss: 0.3983311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - " 767/2000 [==========>...................] - ETA: 21:34 - loss: 1.6369 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5797 - mrcnn_class_loss: 0.2825 - mrcnn_bbox_loss: 0.3625 - mrcnn_mask_loss: 0.3982341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - " 768/2000 [==========>...................] - ETA: 21:33 - loss: 1.6369 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5796 - mrcnn_class_loss: 0.2827 - mrcnn_bbox_loss: 0.3625 - mrcnn_mask_loss: 0.3980273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 769/2000 [==========>...................] - ETA: 21:32 - loss: 1.6360 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5793 - mrcnn_class_loss: 0.2825 - mrcnn_bbox_loss: 0.3623 - mrcnn_mask_loss: 0.3979378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - " 770/2000 [==========>...................] - ETA: 21:31 - loss: 1.6353 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5790 - mrcnn_class_loss: 0.2824 - mrcnn_bbox_loss: 0.3621 - mrcnn_mask_loss: 0.3978332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - " 771/2000 [==========>...................] - ETA: 21:30 - loss: 1.6344 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5787 - mrcnn_class_loss: 0.2822 - mrcnn_bbox_loss: 0.3619 - mrcnn_mask_loss: 0.3977306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - " 772/2000 [==========>...................] - ETA: 21:30 - loss: 1.6338 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5786 - mrcnn_class_loss: 0.2819 - mrcnn_bbox_loss: 0.3618 - mrcnn_mask_loss: 0.3976139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - " 773/2000 [==========>...................] - ETA: 21:29 - loss: 1.6334 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5784 - mrcnn_class_loss: 0.2817 - mrcnn_bbox_loss: 0.3618 - mrcnn_mask_loss: 0.397521\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - " 774/2000 [==========>...................] - ETA: 21:28 - loss: 1.6331 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5784 - mrcnn_class_loss: 0.2815 - mrcnn_bbox_loss: 0.3618 - mrcnn_mask_loss: 0.3975145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - " 775/2000 [==========>...................] - ETA: 21:27 - loss: 1.6327 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5784 - mrcnn_class_loss: 0.2814 - mrcnn_bbox_loss: 0.3616 - mrcnn_mask_loss: 0.3973160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - " 776/2000 [==========>...................] - ETA: 21:26 - loss: 1.6327 - rpn_class_loss: 0.0140 - rpn_bbox_loss: 0.5785 - mrcnn_class_loss: 0.2813 - mrcnn_bbox_loss: 0.3618 - mrcnn_mask_loss: 0.3971328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - " 777/2000 [==========>...................] - ETA: 21:25 - loss: 1.6322 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5784 - mrcnn_class_loss: 0.2810 - mrcnn_bbox_loss: 0.3617 - mrcnn_mask_loss: 0.3971314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - " 778/2000 [==========>...................] - ETA: 21:24 - loss: 1.6313 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5782 - mrcnn_class_loss: 0.2807 - mrcnn_bbox_loss: 0.3614 - mrcnn_mask_loss: 0.3970260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - " 779/2000 [==========>...................] - ETA: 21:23 - loss: 1.6308 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5780 - mrcnn_class_loss: 0.2806 - mrcnn_bbox_loss: 0.3613 - mrcnn_mask_loss: 0.3970262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - " 780/2000 [==========>...................] - ETA: 21:23 - loss: 1.6303 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5777 - mrcnn_class_loss: 0.2805 - mrcnn_bbox_loss: 0.3612 - mrcnn_mask_loss: 0.3969177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - " 781/2000 [==========>...................] - ETA: 21:22 - loss: 1.6295 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5776 - mrcnn_class_loss: 0.2802 - mrcnn_bbox_loss: 0.3610 - mrcnn_mask_loss: 0.3967121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - " 782/2000 [==========>...................] - ETA: 21:21 - loss: 1.6296 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5779 - mrcnn_class_loss: 0.2801 - mrcnn_bbox_loss: 0.3610 - mrcnn_mask_loss: 0.396642\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - " 783/2000 [==========>...................] - ETA: 21:20 - loss: 1.6289 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5780 - mrcnn_class_loss: 0.2798 - mrcnn_bbox_loss: 0.3607 - mrcnn_mask_loss: 0.3964129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - " 784/2000 [==========>...................] - ETA: 21:19 - loss: 1.6283 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5779 - mrcnn_class_loss: 0.2796 - mrcnn_bbox_loss: 0.3607 - mrcnn_mask_loss: 0.3962189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - " 785/2000 [==========>...................] - ETA: 21:17 - loss: 1.6272 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5774 - mrcnn_class_loss: 0.2795 - mrcnn_bbox_loss: 0.3604 - mrcnn_mask_loss: 0.396029\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - " 786/2000 [==========>...................] - ETA: 21:16 - loss: 1.6265 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5772 - mrcnn_class_loss: 0.2793 - mrcnn_bbox_loss: 0.3602 - mrcnn_mask_loss: 0.395990\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - " 787/2000 [==========>...................] - ETA: 21:15 - loss: 1.6258 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5772 - mrcnn_class_loss: 0.2791 - mrcnn_bbox_loss: 0.3599 - mrcnn_mask_loss: 0.3957376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - " 788/2000 [==========>...................] - ETA: 21:14 - loss: 1.6252 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5769 - mrcnn_class_loss: 0.2790 - mrcnn_bbox_loss: 0.3599 - mrcnn_mask_loss: 0.3954363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - " 789/2000 [==========>...................] - ETA: 21:13 - loss: 1.6248 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5770 - mrcnn_class_loss: 0.2788 - mrcnn_bbox_loss: 0.3599 - mrcnn_mask_loss: 0.3952300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - " 790/2000 [==========>...................] - ETA: 21:13 - loss: 1.6248 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5772 - mrcnn_class_loss: 0.2787 - mrcnn_bbox_loss: 0.3598 - mrcnn_mask_loss: 0.395253\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - " 791/2000 [==========>...................] - ETA: 21:11 - loss: 1.6234 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5767 - mrcnn_class_loss: 0.2784 - mrcnn_bbox_loss: 0.3595 - mrcnn_mask_loss: 0.394992\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - " 792/2000 [==========>...................] - ETA: 21:10 - loss: 1.6230 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5767 - mrcnn_class_loss: 0.2783 - mrcnn_bbox_loss: 0.3593 - mrcnn_mask_loss: 0.3948391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - " 793/2000 [==========>...................] - ETA: 21:09 - loss: 1.6224 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5765 - mrcnn_class_loss: 0.2783 - mrcnn_bbox_loss: 0.3591 - mrcnn_mask_loss: 0.3947225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - " 794/2000 [==========>...................] - ETA: 21:07 - loss: 1.6214 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5763 - mrcnn_class_loss: 0.2780 - mrcnn_bbox_loss: 0.3587 - mrcnn_mask_loss: 0.3944279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - " 795/2000 [==========>...................] - ETA: 21:07 - loss: 1.6213 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5761 - mrcnn_class_loss: 0.2782 - mrcnn_bbox_loss: 0.3587 - mrcnn_mask_loss: 0.3944245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - " 796/2000 [==========>...................] - ETA: 21:05 - loss: 1.6202 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5757 - mrcnn_class_loss: 0.2779 - mrcnn_bbox_loss: 0.3585 - mrcnn_mask_loss: 0.3942233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - " 797/2000 [==========>...................] - ETA: 21:04 - loss: 1.6192 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5755 - mrcnn_class_loss: 0.2777 - mrcnn_bbox_loss: 0.3583 - mrcnn_mask_loss: 0.3940222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 798/2000 [==========>...................] - ETA: 21:03 - loss: 1.6192 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5760 - mrcnn_class_loss: 0.2775 - mrcnn_bbox_loss: 0.3580 - mrcnn_mask_loss: 0.393845\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - " 799/2000 [==========>...................] - ETA: 21:02 - loss: 1.6182 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5756 - mrcnn_class_loss: 0.2772 - mrcnn_bbox_loss: 0.3578 - mrcnn_mask_loss: 0.3936240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - " 800/2000 [===========>..................] - ETA: 21:01 - loss: 1.6181 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5754 - mrcnn_class_loss: 0.2773 - mrcnn_bbox_loss: 0.3579 - mrcnn_mask_loss: 0.3936399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - " 801/2000 [===========>..................] - ETA: 21:00 - loss: 1.6184 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5760 - mrcnn_class_loss: 0.2771 - mrcnn_bbox_loss: 0.3577 - mrcnn_mask_loss: 0.3936194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - " 802/2000 [===========>..................] - ETA: 20:58 - loss: 1.6174 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5756 - mrcnn_class_loss: 0.2769 - mrcnn_bbox_loss: 0.3575 - mrcnn_mask_loss: 0.3934329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - " 803/2000 [===========>..................] - ETA: 20:57 - loss: 1.6171 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5756 - mrcnn_class_loss: 0.2768 - mrcnn_bbox_loss: 0.3575 - mrcnn_mask_loss: 0.3934328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - " 804/2000 [===========>..................] - ETA: 20:57 - loss: 1.6170 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5754 - mrcnn_class_loss: 0.2770 - mrcnn_bbox_loss: 0.3574 - mrcnn_mask_loss: 0.39330\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - " 805/2000 [===========>..................] - ETA: 20:55 - loss: 1.6169 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5756 - mrcnn_class_loss: 0.2769 - mrcnn_bbox_loss: 0.3573 - mrcnn_mask_loss: 0.3932156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - " 806/2000 [===========>..................] - ETA: 20:54 - loss: 1.6168 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5757 - mrcnn_class_loss: 0.2768 - mrcnn_bbox_loss: 0.3573 - mrcnn_mask_loss: 0.3931205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - " 807/2000 [===========>..................] - ETA: 20:53 - loss: 1.6157 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5753 - mrcnn_class_loss: 0.2766 - mrcnn_bbox_loss: 0.3571 - mrcnn_mask_loss: 0.3928245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - " 808/2000 [===========>..................] - ETA: 20:52 - loss: 1.6153 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5749 - mrcnn_class_loss: 0.2766 - mrcnn_bbox_loss: 0.3571 - mrcnn_mask_loss: 0.3929354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - " 809/2000 [===========>..................] - ETA: 20:51 - loss: 1.6144 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5745 - mrcnn_class_loss: 0.2764 - mrcnn_bbox_loss: 0.3569 - mrcnn_mask_loss: 0.3927145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - " 810/2000 [===========>..................] - ETA: 20:50 - loss: 1.6140 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5744 - mrcnn_class_loss: 0.2762 - mrcnn_bbox_loss: 0.3570 - mrcnn_mask_loss: 0.3925223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - " 811/2000 [===========>..................] - ETA: 20:49 - loss: 1.6133 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5740 - mrcnn_class_loss: 0.2763 - mrcnn_bbox_loss: 0.3569 - mrcnn_mask_loss: 0.3923376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - " 812/2000 [===========>..................] - ETA: 20:48 - loss: 1.6126 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5738 - mrcnn_class_loss: 0.2762 - mrcnn_bbox_loss: 0.3567 - mrcnn_mask_loss: 0.3921177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 813/2000 [===========>..................] - ETA: 20:47 - loss: 1.6120 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5734 - mrcnn_class_loss: 0.2763 - mrcnn_bbox_loss: 0.3566 - mrcnn_mask_loss: 0.3919359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - " 814/2000 [===========>..................] - ETA: 20:46 - loss: 1.6115 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5732 - mrcnn_class_loss: 0.2763 - mrcnn_bbox_loss: 0.3564 - mrcnn_mask_loss: 0.391829\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - " 815/2000 [===========>..................] - ETA: 20:45 - loss: 1.6105 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5728 - mrcnn_class_loss: 0.2760 - mrcnn_bbox_loss: 0.3562 - mrcnn_mask_loss: 0.3916305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - " 816/2000 [===========>..................] - ETA: 20:44 - loss: 1.6099 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5725 - mrcnn_class_loss: 0.2760 - mrcnn_bbox_loss: 0.3561 - mrcnn_mask_loss: 0.3915272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - " 817/2000 [===========>..................] - ETA: 20:43 - loss: 1.6094 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5722 - mrcnn_class_loss: 0.2760 - mrcnn_bbox_loss: 0.3560 - mrcnn_mask_loss: 0.3914370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - " 818/2000 [===========>..................] - ETA: 20:42 - loss: 1.6087 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5719 - mrcnn_class_loss: 0.2758 - mrcnn_bbox_loss: 0.3558 - mrcnn_mask_loss: 0.3912238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - " 819/2000 [===========>..................] - ETA: 20:41 - loss: 1.6082 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5718 - mrcnn_class_loss: 0.2759 - mrcnn_bbox_loss: 0.3557 - mrcnn_mask_loss: 0.3910103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - " 820/2000 [===========>..................] - ETA: 20:40 - loss: 1.6076 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5715 - mrcnn_class_loss: 0.2757 - mrcnn_bbox_loss: 0.3556 - mrcnn_mask_loss: 0.3909251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - " 821/2000 [===========>..................] - ETA: 20:39 - loss: 1.6069 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5712 - mrcnn_class_loss: 0.2756 - mrcnn_bbox_loss: 0.3554 - mrcnn_mask_loss: 0.3909294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - " 822/2000 [===========>..................] - ETA: 20:38 - loss: 1.6071 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5712 - mrcnn_class_loss: 0.2755 - mrcnn_bbox_loss: 0.3555 - mrcnn_mask_loss: 0.3910389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - " 823/2000 [===========>..................] - ETA: 20:37 - loss: 1.6070 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5712 - mrcnn_class_loss: 0.2754 - mrcnn_bbox_loss: 0.3555 - mrcnn_mask_loss: 0.3910390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - " 824/2000 [===========>..................] - ETA: 20:36 - loss: 1.6071 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5713 - mrcnn_class_loss: 0.2753 - mrcnn_bbox_loss: 0.3556 - mrcnn_mask_loss: 0.391071\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - " 825/2000 [===========>..................] - ETA: 20:34 - loss: 1.6062 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5709 - mrcnn_class_loss: 0.2752 - mrcnn_bbox_loss: 0.3554 - mrcnn_mask_loss: 0.3908112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - " 826/2000 [===========>..................] - ETA: 20:33 - loss: 1.6058 - rpn_class_loss: 0.0139 - rpn_bbox_loss: 0.5708 - mrcnn_class_loss: 0.2751 - mrcnn_bbox_loss: 0.3554 - mrcnn_mask_loss: 0.3907330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - " 827/2000 [===========>..................] - ETA: 20:32 - loss: 1.6056 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5706 - mrcnn_class_loss: 0.2751 - mrcnn_bbox_loss: 0.3555 - mrcnn_mask_loss: 0.3906146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - " 828/2000 [===========>..................] - ETA: 20:31 - loss: 1.6050 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5705 - mrcnn_class_loss: 0.2750 - mrcnn_bbox_loss: 0.3553 - mrcnn_mask_loss: 0.3904275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - " 829/2000 [===========>..................] - ETA: 20:30 - loss: 1.6047 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5703 - mrcnn_class_loss: 0.2749 - mrcnn_bbox_loss: 0.3553 - mrcnn_mask_loss: 0.390481\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - " 830/2000 [===========>..................] - ETA: 20:29 - loss: 1.6046 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5700 - mrcnn_class_loss: 0.2749 - mrcnn_bbox_loss: 0.3554 - mrcnn_mask_loss: 0.390547\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - " 831/2000 [===========>..................] - ETA: 20:28 - loss: 1.6035 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5696 - mrcnn_class_loss: 0.2747 - mrcnn_bbox_loss: 0.3551 - mrcnn_mask_loss: 0.39033\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - " 832/2000 [===========>..................] - ETA: 20:26 - loss: 1.6034 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5697 - mrcnn_class_loss: 0.2744 - mrcnn_bbox_loss: 0.3552 - mrcnn_mask_loss: 0.390355\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - " 833/2000 [===========>..................] - ETA: 20:25 - loss: 1.6022 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5693 - mrcnn_class_loss: 0.2742 - mrcnn_bbox_loss: 0.3549 - mrcnn_mask_loss: 0.3900280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - " 834/2000 [===========>..................] - ETA: 20:24 - loss: 1.6021 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5694 - mrcnn_class_loss: 0.2742 - mrcnn_bbox_loss: 0.3549 - mrcnn_mask_loss: 0.389953\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - " 835/2000 [===========>..................] - ETA: 20:23 - loss: 1.6009 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5689 - mrcnn_class_loss: 0.2740 - mrcnn_bbox_loss: 0.3546 - mrcnn_mask_loss: 0.3897241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - " 836/2000 [===========>..................] - ETA: 20:22 - loss: 1.6007 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5686 - mrcnn_class_loss: 0.2741 - mrcnn_bbox_loss: 0.3546 - mrcnn_mask_loss: 0.3897364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - " 837/2000 [===========>..................] - ETA: 20:21 - loss: 1.6008 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5690 - mrcnn_class_loss: 0.2740 - mrcnn_bbox_loss: 0.3545 - mrcnn_mask_loss: 0.3895116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - " 838/2000 [===========>..................] - ETA: 20:21 - loss: 1.6003 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5688 - mrcnn_class_loss: 0.2739 - mrcnn_bbox_loss: 0.3543 - mrcnn_mask_loss: 0.389462\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - " 839/2000 [===========>..................] - ETA: 20:19 - loss: 1.5991 - rpn_class_loss: 0.0138 - rpn_bbox_loss: 0.5684 - mrcnn_class_loss: 0.2736 - mrcnn_bbox_loss: 0.3541 - mrcnn_mask_loss: 0.3892218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - " 840/2000 [===========>..................] - ETA: 20:18 - loss: 1.5981 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5682 - mrcnn_class_loss: 0.2734 - mrcnn_bbox_loss: 0.3538 - mrcnn_mask_loss: 0.3890200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - " 841/2000 [===========>..................] - ETA: 20:17 - loss: 1.5970 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5678 - mrcnn_class_loss: 0.2731 - mrcnn_bbox_loss: 0.3536 - mrcnn_mask_loss: 0.3888165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 842/2000 [===========>..................] - ETA: 20:16 - loss: 1.5966 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5676 - mrcnn_class_loss: 0.2731 - mrcnn_bbox_loss: 0.3536 - mrcnn_mask_loss: 0.3886168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - " 843/2000 [===========>..................] - ETA: 20:15 - loss: 1.5960 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5672 - mrcnn_class_loss: 0.2730 - mrcnn_bbox_loss: 0.3536 - mrcnn_mask_loss: 0.388466\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - " 844/2000 [===========>..................] - ETA: 20:13 - loss: 1.5950 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5668 - mrcnn_class_loss: 0.2728 - mrcnn_bbox_loss: 0.3534 - mrcnn_mask_loss: 0.3882197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - " 845/2000 [===========>..................] - ETA: 20:12 - loss: 1.5938 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5662 - mrcnn_class_loss: 0.2727 - mrcnn_bbox_loss: 0.3532 - mrcnn_mask_loss: 0.3880258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - " 846/2000 [===========>..................] - ETA: 20:11 - loss: 1.5936 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5662 - mrcnn_class_loss: 0.2726 - mrcnn_bbox_loss: 0.3531 - mrcnn_mask_loss: 0.3880161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - " 847/2000 [===========>..................] - ETA: 20:10 - loss: 1.5933 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5662 - mrcnn_class_loss: 0.2726 - mrcnn_bbox_loss: 0.3529 - mrcnn_mask_loss: 0.3879237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - " 848/2000 [===========>..................] - ETA: 20:09 - loss: 1.5926 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5661 - mrcnn_class_loss: 0.2724 - mrcnn_bbox_loss: 0.3528 - mrcnn_mask_loss: 0.387764\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - " 849/2000 [===========>..................] - ETA: 20:07 - loss: 1.5919 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5658 - mrcnn_class_loss: 0.2723 - mrcnn_bbox_loss: 0.3526 - mrcnn_mask_loss: 0.3876291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - " 850/2000 [===========>..................] - ETA: 20:07 - loss: 1.5917 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5656 - mrcnn_class_loss: 0.2723 - mrcnn_bbox_loss: 0.3525 - mrcnn_mask_loss: 0.387533\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - " 851/2000 [===========>..................] - ETA: 20:05 - loss: 1.5910 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5655 - mrcnn_class_loss: 0.2721 - mrcnn_bbox_loss: 0.3524 - mrcnn_mask_loss: 0.3874232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - " 852/2000 [===========>..................] - ETA: 20:04 - loss: 1.5901 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5652 - mrcnn_class_loss: 0.2719 - mrcnn_bbox_loss: 0.3521 - mrcnn_mask_loss: 0.3871178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - " 853/2000 [===========>..................] - ETA: 20:03 - loss: 1.5898 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5651 - mrcnn_class_loss: 0.2720 - mrcnn_bbox_loss: 0.3521 - mrcnn_mask_loss: 0.3870174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - " 854/2000 [===========>..................] - ETA: 20:02 - loss: 1.5893 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5649 - mrcnn_class_loss: 0.2719 - mrcnn_bbox_loss: 0.3520 - mrcnn_mask_loss: 0.38687\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - " 855/2000 [===========>..................] - ETA: 20:00 - loss: 1.5883 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5646 - mrcnn_class_loss: 0.2716 - mrcnn_bbox_loss: 0.3518 - mrcnn_mask_loss: 0.3866217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - " 856/2000 [===========>..................] - ETA: 19:59 - loss: 1.5873 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5643 - mrcnn_class_loss: 0.2714 - mrcnn_bbox_loss: 0.3515 - mrcnn_mask_loss: 0.3864253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - " 857/2000 [===========>..................] - ETA: 19:58 - loss: 1.5866 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5640 - mrcnn_class_loss: 0.2712 - mrcnn_bbox_loss: 0.3514 - mrcnn_mask_loss: 0.3863117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - " 858/2000 [===========>..................] - ETA: 19:57 - loss: 1.5863 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5639 - mrcnn_class_loss: 0.2711 - mrcnn_bbox_loss: 0.3515 - mrcnn_mask_loss: 0.3861167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - " 859/2000 [===========>..................] - ETA: 19:56 - loss: 1.5859 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5635 - mrcnn_class_loss: 0.2714 - mrcnn_bbox_loss: 0.3513 - mrcnn_mask_loss: 0.3860153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - " 860/2000 [===========>..................] - ETA: 19:55 - loss: 1.5857 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5636 - mrcnn_class_loss: 0.2713 - mrcnn_bbox_loss: 0.3512 - mrcnn_mask_loss: 0.3859150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - " 861/2000 [===========>..................] - ETA: 19:54 - loss: 1.5853 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5636 - mrcnn_class_loss: 0.2712 - mrcnn_bbox_loss: 0.3511 - mrcnn_mask_loss: 0.385865\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - " 862/2000 [===========>..................] - ETA: 19:52 - loss: 1.5843 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5631 - mrcnn_class_loss: 0.2710 - mrcnn_bbox_loss: 0.3509 - mrcnn_mask_loss: 0.385687\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - " 863/2000 [===========>..................] - ETA: 19:51 - loss: 1.5839 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5627 - mrcnn_class_loss: 0.2713 - mrcnn_bbox_loss: 0.3507 - mrcnn_mask_loss: 0.385677\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - " 864/2000 [===========>..................] - ETA: 19:50 - loss: 1.5830 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5623 - mrcnn_class_loss: 0.2711 - mrcnn_bbox_loss: 0.3505 - mrcnn_mask_loss: 0.3854394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - " 865/2000 [===========>..................] - ETA: 19:49 - loss: 1.5825 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5623 - mrcnn_class_loss: 0.2709 - mrcnn_bbox_loss: 0.3504 - mrcnn_mask_loss: 0.3853315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - " 866/2000 [===========>..................] - ETA: 19:48 - loss: 1.5818 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5621 - mrcnn_class_loss: 0.2707 - mrcnn_bbox_loss: 0.3502 - mrcnn_mask_loss: 0.3852195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - " 867/2000 [============>.................] - ETA: 19:47 - loss: 1.5812 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5619 - mrcnn_class_loss: 0.2706 - mrcnn_bbox_loss: 0.3500 - mrcnn_mask_loss: 0.3850213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - " 868/2000 [============>.................] - ETA: 19:45 - loss: 1.5800 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5614 - mrcnn_class_loss: 0.2704 - mrcnn_bbox_loss: 0.3497 - mrcnn_mask_loss: 0.384897\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - " 869/2000 [============>.................] - ETA: 19:44 - loss: 1.5798 - rpn_class_loss: 0.0137 - rpn_bbox_loss: 0.5616 - mrcnn_class_loss: 0.2702 - mrcnn_bbox_loss: 0.3496 - mrcnn_mask_loss: 0.3847182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - " 870/2000 [============>.................] - ETA: 19:43 - loss: 1.5794 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5618 - mrcnn_class_loss: 0.2700 - mrcnn_bbox_loss: 0.3494 - mrcnn_mask_loss: 0.3845378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - " 871/2000 [============>.................] - ETA: 19:42 - loss: 1.5787 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5616 - mrcnn_class_loss: 0.2698 - mrcnn_bbox_loss: 0.3493 - mrcnn_mask_loss: 0.384430\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 872/2000 [============>.................] - ETA: 19:41 - loss: 1.5779 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5613 - mrcnn_class_loss: 0.2697 - mrcnn_bbox_loss: 0.3490 - mrcnn_mask_loss: 0.3842101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - " 873/2000 [============>.................] - ETA: 19:40 - loss: 1.5772 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5611 - mrcnn_class_loss: 0.2695 - mrcnn_bbox_loss: 0.3489 - mrcnn_mask_loss: 0.3841345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - " 874/2000 [============>.................] - ETA: 19:39 - loss: 1.5769 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5612 - mrcnn_class_loss: 0.2693 - mrcnn_bbox_loss: 0.3487 - mrcnn_mask_loss: 0.3840362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - " 875/2000 [============>.................] - ETA: 19:39 - loss: 1.5764 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5613 - mrcnn_class_loss: 0.2692 - mrcnn_bbox_loss: 0.3485 - mrcnn_mask_loss: 0.383812\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - " 876/2000 [============>.................] - ETA: 19:37 - loss: 1.5753 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5609 - mrcnn_class_loss: 0.2689 - mrcnn_bbox_loss: 0.3482 - mrcnn_mask_loss: 0.383550\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - " 877/2000 [============>.................] - ETA: 19:36 - loss: 1.5744 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5608 - mrcnn_class_loss: 0.2688 - mrcnn_bbox_loss: 0.3480 - mrcnn_mask_loss: 0.3833369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - " 878/2000 [============>.................] - ETA: 19:35 - loss: 1.5738 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5606 - mrcnn_class_loss: 0.2686 - mrcnn_bbox_loss: 0.3478 - mrcnn_mask_loss: 0.3832110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - " 879/2000 [============>.................] - ETA: 19:34 - loss: 1.5737 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5605 - mrcnn_class_loss: 0.2687 - mrcnn_bbox_loss: 0.3477 - mrcnn_mask_loss: 0.3832216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - " 880/2000 [============>.................] - ETA: 19:33 - loss: 1.5727 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5601 - mrcnn_class_loss: 0.2685 - mrcnn_bbox_loss: 0.3475 - mrcnn_mask_loss: 0.3830207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - " 881/2000 [============>.................] - ETA: 19:31 - loss: 1.5718 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5597 - mrcnn_class_loss: 0.2683 - mrcnn_bbox_loss: 0.3474 - mrcnn_mask_loss: 0.3828290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - " 882/2000 [============>.................] - ETA: 19:30 - loss: 1.5715 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5596 - mrcnn_class_loss: 0.2682 - mrcnn_bbox_loss: 0.3473 - mrcnn_mask_loss: 0.3829386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - " 883/2000 [============>.................] - ETA: 19:29 - loss: 1.5712 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5596 - mrcnn_class_loss: 0.2681 - mrcnn_bbox_loss: 0.3472 - mrcnn_mask_loss: 0.382874\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - " 884/2000 [============>.................] - ETA: 19:28 - loss: 1.5705 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5594 - mrcnn_class_loss: 0.2679 - mrcnn_bbox_loss: 0.3470 - mrcnn_mask_loss: 0.3827210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - " 885/2000 [============>.................] - ETA: 19:27 - loss: 1.5695 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5591 - mrcnn_class_loss: 0.2676 - mrcnn_bbox_loss: 0.3467 - mrcnn_mask_loss: 0.3825164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - " 886/2000 [============>.................] - ETA: 19:26 - loss: 1.5688 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.5589 - mrcnn_class_loss: 0.2675 - mrcnn_bbox_loss: 0.3465 - mrcnn_mask_loss: 0.3823206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 887/2000 [============>.................] - ETA: 19:25 - loss: 1.5679 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5584 - mrcnn_class_loss: 0.2674 - mrcnn_bbox_loss: 0.3463 - mrcnn_mask_loss: 0.3822384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - " 888/2000 [============>.................] - ETA: 19:24 - loss: 1.5673 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5582 - mrcnn_class_loss: 0.2673 - mrcnn_bbox_loss: 0.3462 - mrcnn_mask_loss: 0.3821102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - " 889/2000 [============>.................] - ETA: 19:23 - loss: 1.5666 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5579 - mrcnn_class_loss: 0.2671 - mrcnn_bbox_loss: 0.3461 - mrcnn_mask_loss: 0.3820144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - " 890/2000 [============>.................] - ETA: 19:22 - loss: 1.5661 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5578 - mrcnn_class_loss: 0.2669 - mrcnn_bbox_loss: 0.3461 - mrcnn_mask_loss: 0.3819111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - " 891/2000 [============>.................] - ETA: 19:21 - loss: 1.5656 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5576 - mrcnn_class_loss: 0.2667 - mrcnn_bbox_loss: 0.3460 - mrcnn_mask_loss: 0.3818379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - " 892/2000 [============>.................] - ETA: 19:20 - loss: 1.5651 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5573 - mrcnn_class_loss: 0.2668 - mrcnn_bbox_loss: 0.3459 - mrcnn_mask_loss: 0.3816311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - " 893/2000 [============>.................] - ETA: 19:19 - loss: 1.5645 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5571 - mrcnn_class_loss: 0.2666 - mrcnn_bbox_loss: 0.3457 - mrcnn_mask_loss: 0.381549\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - " 894/2000 [============>.................] - ETA: 19:18 - loss: 1.5634 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5567 - mrcnn_class_loss: 0.2664 - mrcnn_bbox_loss: 0.3456 - mrcnn_mask_loss: 0.3813159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - " 895/2000 [============>.................] - ETA: 19:17 - loss: 1.5630 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5565 - mrcnn_class_loss: 0.2663 - mrcnn_bbox_loss: 0.3455 - mrcnn_mask_loss: 0.381151\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - " 896/2000 [============>.................] - ETA: 19:16 - loss: 1.5621 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5560 - mrcnn_class_loss: 0.2661 - mrcnn_bbox_loss: 0.3455 - mrcnn_mask_loss: 0.3809152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - " 897/2000 [============>.................] - ETA: 19:15 - loss: 1.5622 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5564 - mrcnn_class_loss: 0.2660 - mrcnn_bbox_loss: 0.3455 - mrcnn_mask_loss: 0.3809252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - " 898/2000 [============>.................] - ETA: 19:14 - loss: 1.5616 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5560 - mrcnn_class_loss: 0.2658 - mrcnn_bbox_loss: 0.3454 - mrcnn_mask_loss: 0.3808183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - " 899/2000 [============>.................] - ETA: 19:12 - loss: 1.5614 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5562 - mrcnn_class_loss: 0.2656 - mrcnn_bbox_loss: 0.3454 - mrcnn_mask_loss: 0.380763\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - " 900/2000 [============>.................] - ETA: 19:11 - loss: 1.5604 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5558 - mrcnn_class_loss: 0.2654 - mrcnn_bbox_loss: 0.3452 - mrcnn_mask_loss: 0.3805349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - " 901/2000 [============>.................] - ETA: 19:11 - loss: 1.5601 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5558 - mrcnn_class_loss: 0.2652 - mrcnn_bbox_loss: 0.3450 - mrcnn_mask_loss: 0.3805322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - " 902/2000 [============>.................] - ETA: 19:10 - loss: 1.5599 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5557 - mrcnn_class_loss: 0.2651 - mrcnn_bbox_loss: 0.3451 - mrcnn_mask_loss: 0.38055\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - " 903/2000 [============>.................] - ETA: 19:09 - loss: 1.5590 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5553 - mrcnn_class_loss: 0.2650 - mrcnn_bbox_loss: 0.3448 - mrcnn_mask_loss: 0.3803355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - " 904/2000 [============>.................] - ETA: 19:08 - loss: 1.5581 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5550 - mrcnn_class_loss: 0.2648 - mrcnn_bbox_loss: 0.3447 - mrcnn_mask_loss: 0.3802201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - " 905/2000 [============>.................] - ETA: 19:07 - loss: 1.5577 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5548 - mrcnn_class_loss: 0.2648 - mrcnn_bbox_loss: 0.3447 - mrcnn_mask_loss: 0.3801344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - " 906/2000 [============>.................] - ETA: 19:06 - loss: 1.5575 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5548 - mrcnn_class_loss: 0.2647 - mrcnn_bbox_loss: 0.3445 - mrcnn_mask_loss: 0.380091\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - " 907/2000 [============>.................] - ETA: 19:05 - loss: 1.5568 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5547 - mrcnn_class_loss: 0.2645 - mrcnn_bbox_loss: 0.3443 - mrcnn_mask_loss: 0.379841\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - " 908/2000 [============>.................] - ETA: 19:04 - loss: 1.5563 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5547 - mrcnn_class_loss: 0.2643 - mrcnn_bbox_loss: 0.3441 - mrcnn_mask_loss: 0.379646\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - " 909/2000 [============>.................] - ETA: 19:02 - loss: 1.5554 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5543 - mrcnn_class_loss: 0.2642 - mrcnn_bbox_loss: 0.3439 - mrcnn_mask_loss: 0.3795220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - " 910/2000 [============>.................] - ETA: 19:01 - loss: 1.5565 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5560 - mrcnn_class_loss: 0.2640 - mrcnn_bbox_loss: 0.3437 - mrcnn_mask_loss: 0.3793175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - " 911/2000 [============>.................] - ETA: 19:00 - loss: 1.5562 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5556 - mrcnn_class_loss: 0.2641 - mrcnn_bbox_loss: 0.3438 - mrcnn_mask_loss: 0.3792357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - " 912/2000 [============>.................] - ETA: 18:59 - loss: 1.5555 - rpn_class_loss: 0.0135 - rpn_bbox_loss: 0.5554 - mrcnn_class_loss: 0.2639 - mrcnn_bbox_loss: 0.3436 - mrcnn_mask_loss: 0.3791265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - " 913/2000 [============>.................] - ETA: 18:58 - loss: 1.5549 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5551 - mrcnn_class_loss: 0.2637 - mrcnn_bbox_loss: 0.3435 - mrcnn_mask_loss: 0.3791274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - " 914/2000 [============>.................] - ETA: 18:57 - loss: 1.5545 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5549 - mrcnn_class_loss: 0.2635 - mrcnn_bbox_loss: 0.3436 - mrcnn_mask_loss: 0.3790199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - " 915/2000 [============>.................] - ETA: 18:56 - loss: 1.5539 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5548 - mrcnn_class_loss: 0.2634 - mrcnn_bbox_loss: 0.3434 - mrcnn_mask_loss: 0.3789261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 916/2000 [============>.................] - ETA: 18:55 - loss: 1.5539 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5546 - mrcnn_class_loss: 0.2636 - mrcnn_bbox_loss: 0.3434 - mrcnn_mask_loss: 0.3788296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - " 917/2000 [============>.................] - ETA: 18:55 - loss: 1.5535 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5545 - mrcnn_class_loss: 0.2636 - mrcnn_bbox_loss: 0.3434 - mrcnn_mask_loss: 0.3786113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - " 918/2000 [============>.................] - ETA: 18:54 - loss: 1.5529 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5542 - mrcnn_class_loss: 0.2634 - mrcnn_bbox_loss: 0.3434 - mrcnn_mask_loss: 0.378593\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - " 919/2000 [============>.................] - ETA: 18:52 - loss: 1.5522 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5541 - mrcnn_class_loss: 0.2632 - mrcnn_bbox_loss: 0.3431 - mrcnn_mask_loss: 0.378460\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - " 920/2000 [============>.................] - ETA: 18:51 - loss: 1.5517 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5541 - mrcnn_class_loss: 0.2630 - mrcnn_bbox_loss: 0.3430 - mrcnn_mask_loss: 0.3783335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - " 921/2000 [============>.................] - ETA: 18:50 - loss: 1.5512 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5539 - mrcnn_class_loss: 0.2628 - mrcnn_bbox_loss: 0.3428 - mrcnn_mask_loss: 0.378267\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - " 922/2000 [============>.................] - ETA: 18:49 - loss: 1.5503 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5537 - mrcnn_class_loss: 0.2626 - mrcnn_bbox_loss: 0.3425 - mrcnn_mask_loss: 0.3781109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - " 923/2000 [============>.................] - ETA: 18:48 - loss: 1.5496 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5534 - mrcnn_class_loss: 0.2624 - mrcnn_bbox_loss: 0.3424 - mrcnn_mask_loss: 0.3779204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - " 924/2000 [============>.................] - ETA: 18:47 - loss: 1.5485 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5530 - mrcnn_class_loss: 0.2622 - mrcnn_bbox_loss: 0.3422 - mrcnn_mask_loss: 0.3777107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - " 925/2000 [============>.................] - ETA: 18:46 - loss: 1.5480 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5527 - mrcnn_class_loss: 0.2622 - mrcnn_bbox_loss: 0.3420 - mrcnn_mask_loss: 0.3777342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - " 926/2000 [============>.................] - ETA: 18:45 - loss: 1.5478 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5527 - mrcnn_class_loss: 0.2620 - mrcnn_bbox_loss: 0.3420 - mrcnn_mask_loss: 0.3777124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - " 927/2000 [============>.................] - ETA: 18:44 - loss: 1.5476 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5527 - mrcnn_class_loss: 0.2619 - mrcnn_bbox_loss: 0.3420 - mrcnn_mask_loss: 0.3777136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - " 928/2000 [============>.................] - ETA: 18:44 - loss: 1.5473 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5527 - mrcnn_class_loss: 0.2617 - mrcnn_bbox_loss: 0.3419 - mrcnn_mask_loss: 0.377645\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - " 929/2000 [============>.................] - ETA: 18:42 - loss: 1.5463 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5523 - mrcnn_class_loss: 0.2615 - mrcnn_bbox_loss: 0.3416 - mrcnn_mask_loss: 0.3775154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - " 930/2000 [============>.................] - ETA: 18:41 - loss: 1.5462 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5524 - mrcnn_class_loss: 0.2614 - mrcnn_bbox_loss: 0.3417 - mrcnn_mask_loss: 0.3774383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - " 931/2000 [============>.................] - ETA: 18:41 - loss: 1.5459 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5522 - mrcnn_class_loss: 0.2614 - mrcnn_bbox_loss: 0.3416 - mrcnn_mask_loss: 0.377369\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - " 932/2000 [============>.................] - ETA: 18:39 - loss: 1.5450 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5519 - mrcnn_class_loss: 0.2612 - mrcnn_bbox_loss: 0.3414 - mrcnn_mask_loss: 0.377284\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - " 933/2000 [============>.................] - ETA: 18:38 - loss: 1.5442 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5515 - mrcnn_class_loss: 0.2610 - mrcnn_bbox_loss: 0.3413 - mrcnn_mask_loss: 0.3771157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - " 934/2000 [=============>................] - ETA: 18:37 - loss: 1.5440 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5514 - mrcnn_class_loss: 0.2609 - mrcnn_bbox_loss: 0.3414 - mrcnn_mask_loss: 0.3770303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - " 935/2000 [=============>................] - ETA: 18:37 - loss: 1.5439 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5513 - mrcnn_class_loss: 0.2609 - mrcnn_bbox_loss: 0.3413 - mrcnn_mask_loss: 0.3770327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n", - " 936/2000 [=============>................] - ETA: 18:36 - loss: 1.5435 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5510 - mrcnn_class_loss: 0.2612 - mrcnn_bbox_loss: 0.3411 - mrcnn_mask_loss: 0.376848\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - " 937/2000 [=============>................] - ETA: 18:34 - loss: 1.5424 - rpn_class_loss: 0.0134 - rpn_bbox_loss: 0.5506 - mrcnn_class_loss: 0.2610 - mrcnn_bbox_loss: 0.3409 - mrcnn_mask_loss: 0.376731\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - " 938/2000 [=============>................] - ETA: 18:33 - loss: 1.5416 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5502 - mrcnn_class_loss: 0.2609 - mrcnn_bbox_loss: 0.3406 - mrcnn_mask_loss: 0.376452\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - " 939/2000 [=============>................] - ETA: 18:32 - loss: 1.5408 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5499 - mrcnn_class_loss: 0.2608 - mrcnn_bbox_loss: 0.3405 - mrcnn_mask_loss: 0.3763257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - " 940/2000 [=============>................] - ETA: 18:31 - loss: 1.5403 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5498 - mrcnn_class_loss: 0.2606 - mrcnn_bbox_loss: 0.3403 - mrcnn_mask_loss: 0.376218\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - " 941/2000 [=============>................] - ETA: 18:30 - loss: 1.5403 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5501 - mrcnn_class_loss: 0.2605 - mrcnn_bbox_loss: 0.3402 - mrcnn_mask_loss: 0.3761138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - " 942/2000 [=============>................] - ETA: 18:29 - loss: 1.5399 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5501 - mrcnn_class_loss: 0.2603 - mrcnn_bbox_loss: 0.3401 - mrcnn_mask_loss: 0.3761115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - " 943/2000 [=============>................] - ETA: 18:28 - loss: 1.5394 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5499 - mrcnn_class_loss: 0.2602 - mrcnn_bbox_loss: 0.3400 - mrcnn_mask_loss: 0.3760162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - " 944/2000 [=============>................] - ETA: 18:27 - loss: 1.5390 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5498 - mrcnn_class_loss: 0.2601 - mrcnn_bbox_loss: 0.3400 - mrcnn_mask_loss: 0.375925\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 945/2000 [=============>................] - ETA: 18:26 - loss: 1.5384 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5496 - mrcnn_class_loss: 0.2600 - mrcnn_bbox_loss: 0.3398 - mrcnn_mask_loss: 0.3757356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - " 946/2000 [=============>................] - ETA: 18:25 - loss: 1.5377 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5494 - mrcnn_class_loss: 0.2598 - mrcnn_bbox_loss: 0.3396 - mrcnn_mask_loss: 0.3756338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - " 947/2000 [=============>................] - ETA: 18:24 - loss: 1.5372 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5494 - mrcnn_class_loss: 0.2596 - mrcnn_bbox_loss: 0.3395 - mrcnn_mask_loss: 0.375511\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - " 948/2000 [=============>................] - ETA: 18:23 - loss: 1.5371 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5495 - mrcnn_class_loss: 0.2595 - mrcnn_bbox_loss: 0.3394 - mrcnn_mask_loss: 0.375410\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - " 949/2000 [=============>................] - ETA: 18:21 - loss: 1.5371 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5497 - mrcnn_class_loss: 0.2593 - mrcnn_bbox_loss: 0.3395 - mrcnn_mask_loss: 0.3754224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - " 950/2000 [=============>................] - ETA: 18:20 - loss: 1.5363 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5494 - mrcnn_class_loss: 0.2591 - mrcnn_bbox_loss: 0.3393 - mrcnn_mask_loss: 0.375259\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - " 951/2000 [=============>................] - ETA: 18:19 - loss: 1.5358 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5494 - mrcnn_class_loss: 0.2589 - mrcnn_bbox_loss: 0.3391 - mrcnn_mask_loss: 0.3751333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - " 952/2000 [=============>................] - ETA: 18:18 - loss: 1.5353 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5491 - mrcnn_class_loss: 0.2590 - mrcnn_bbox_loss: 0.3389 - mrcnn_mask_loss: 0.3750334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - " 953/2000 [=============>................] - ETA: 18:17 - loss: 1.5347 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5488 - mrcnn_class_loss: 0.2588 - mrcnn_bbox_loss: 0.3388 - mrcnn_mask_loss: 0.3750321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - " 954/2000 [=============>................] - ETA: 18:16 - loss: 1.5344 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5487 - mrcnn_class_loss: 0.2588 - mrcnn_bbox_loss: 0.3387 - mrcnn_mask_loss: 0.3749147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - " 955/2000 [=============>................] - ETA: 18:15 - loss: 1.5340 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5486 - mrcnn_class_loss: 0.2587 - mrcnn_bbox_loss: 0.3387 - mrcnn_mask_loss: 0.3748118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - " 956/2000 [=============>................] - ETA: 18:14 - loss: 1.5337 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5485 - mrcnn_class_loss: 0.2587 - mrcnn_bbox_loss: 0.3385 - mrcnn_mask_loss: 0.3747282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - " 957/2000 [=============>................] - ETA: 18:14 - loss: 1.5335 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5486 - mrcnn_class_loss: 0.2585 - mrcnn_bbox_loss: 0.3385 - mrcnn_mask_loss: 0.3746208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - " 958/2000 [=============>................] - ETA: 18:12 - loss: 1.5326 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5482 - mrcnn_class_loss: 0.2583 - mrcnn_bbox_loss: 0.3383 - mrcnn_mask_loss: 0.3745307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - " 959/2000 [=============>................] - ETA: 18:12 - loss: 1.5322 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5481 - mrcnn_class_loss: 0.2583 - mrcnn_bbox_loss: 0.3382 - mrcnn_mask_loss: 0.374478\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 960/2000 [=============>................] - ETA: 18:10 - loss: 1.5314 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5477 - mrcnn_class_loss: 0.2582 - mrcnn_bbox_loss: 0.3380 - mrcnn_mask_loss: 0.3743392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - " 961/2000 [=============>................] - ETA: 18:09 - loss: 1.5308 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5474 - mrcnn_class_loss: 0.2581 - mrcnn_bbox_loss: 0.3378 - mrcnn_mask_loss: 0.37429\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - " 962/2000 [=============>................] - ETA: 18:08 - loss: 1.5300 - rpn_class_loss: 0.0133 - rpn_bbox_loss: 0.5472 - mrcnn_class_loss: 0.2579 - mrcnn_bbox_loss: 0.3377 - mrcnn_mask_loss: 0.3740287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - " 963/2000 [=============>................] - ETA: 18:07 - loss: 1.5299 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5471 - mrcnn_class_loss: 0.2579 - mrcnn_bbox_loss: 0.3377 - mrcnn_mask_loss: 0.3739288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - " 964/2000 [=============>................] - ETA: 18:06 - loss: 1.5298 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5471 - mrcnn_class_loss: 0.2578 - mrcnn_bbox_loss: 0.3377 - mrcnn_mask_loss: 0.3739192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - " 965/2000 [=============>................] - ETA: 18:05 - loss: 1.5290 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5468 - mrcnn_class_loss: 0.2576 - mrcnn_bbox_loss: 0.3376 - mrcnn_mask_loss: 0.373861\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - " 966/2000 [=============>................] - ETA: 18:03 - loss: 1.5282 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5464 - mrcnn_class_loss: 0.2574 - mrcnn_bbox_loss: 0.3375 - mrcnn_mask_loss: 0.373720\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - " 967/2000 [=============>................] - ETA: 18:02 - loss: 1.5276 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5464 - mrcnn_class_loss: 0.2572 - mrcnn_bbox_loss: 0.3372 - mrcnn_mask_loss: 0.3736377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - " 968/2000 [=============>................] - ETA: 18:01 - loss: 1.5275 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5465 - mrcnn_class_loss: 0.2572 - mrcnn_bbox_loss: 0.3372 - mrcnn_mask_loss: 0.3734353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - " 969/2000 [=============>................] - ETA: 18:00 - loss: 1.5267 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5462 - mrcnn_class_loss: 0.2570 - mrcnn_bbox_loss: 0.3370 - mrcnn_mask_loss: 0.3733158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - " 970/2000 [=============>................] - ETA: 18:00 - loss: 1.5266 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5464 - mrcnn_class_loss: 0.2569 - mrcnn_bbox_loss: 0.3370 - mrcnn_mask_loss: 0.373121\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - " 971/2000 [=============>................] - ETA: 17:58 - loss: 1.5262 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5463 - mrcnn_class_loss: 0.2568 - mrcnn_bbox_loss: 0.3369 - mrcnn_mask_loss: 0.3730198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - " 972/2000 [=============>................] - ETA: 17:57 - loss: 1.5254 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5461 - mrcnn_class_loss: 0.2567 - mrcnn_bbox_loss: 0.3366 - mrcnn_mask_loss: 0.372938\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - " 973/2000 [=============>................] - ETA: 17:56 - loss: 1.5253 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5464 - mrcnn_class_loss: 0.2565 - mrcnn_bbox_loss: 0.3364 - mrcnn_mask_loss: 0.3727395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - " 974/2000 [=============>................] - ETA: 17:55 - loss: 1.5248 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5464 - mrcnn_class_loss: 0.2563 - mrcnn_bbox_loss: 0.3363 - mrcnn_mask_loss: 0.3726188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 975/2000 [=============>................] - ETA: 17:53 - loss: 1.5241 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5461 - mrcnn_class_loss: 0.2561 - mrcnn_bbox_loss: 0.3362 - mrcnn_mask_loss: 0.3725148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - " 976/2000 [=============>................] - ETA: 17:52 - loss: 1.5237 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5462 - mrcnn_class_loss: 0.2559 - mrcnn_bbox_loss: 0.3361 - mrcnn_mask_loss: 0.3724381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - " 977/2000 [=============>................] - ETA: 17:52 - loss: 1.5237 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5462 - mrcnn_class_loss: 0.2558 - mrcnn_bbox_loss: 0.3361 - mrcnn_mask_loss: 0.3724171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - " 978/2000 [=============>................] - ETA: 17:50 - loss: 1.5233 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5461 - mrcnn_class_loss: 0.2558 - mrcnn_bbox_loss: 0.3359 - mrcnn_mask_loss: 0.3723256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - " 979/2000 [=============>................] - ETA: 17:49 - loss: 1.5228 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5459 - mrcnn_class_loss: 0.2557 - mrcnn_bbox_loss: 0.3357 - mrcnn_mask_loss: 0.372224\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - " 980/2000 [=============>................] - ETA: 17:48 - loss: 1.5221 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5458 - mrcnn_class_loss: 0.2554 - mrcnn_bbox_loss: 0.3355 - mrcnn_mask_loss: 0.3721374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - " 981/2000 [=============>................] - ETA: 17:47 - loss: 1.5214 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5455 - mrcnn_class_loss: 0.2554 - mrcnn_bbox_loss: 0.3353 - mrcnn_mask_loss: 0.3720227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - " 982/2000 [=============>................] - ETA: 17:46 - loss: 1.5206 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5453 - mrcnn_class_loss: 0.2553 - mrcnn_bbox_loss: 0.3351 - mrcnn_mask_loss: 0.3718348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - " 983/2000 [=============>................] - ETA: 17:45 - loss: 1.5203 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5453 - mrcnn_class_loss: 0.2552 - mrcnn_bbox_loss: 0.3350 - mrcnn_mask_loss: 0.3716387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - " 984/2000 [=============>................] - ETA: 17:44 - loss: 1.5201 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5453 - mrcnn_class_loss: 0.2552 - mrcnn_bbox_loss: 0.3349 - mrcnn_mask_loss: 0.3715365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - " 985/2000 [=============>................] - ETA: 17:43 - loss: 1.5196 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5451 - mrcnn_class_loss: 0.2550 - mrcnn_bbox_loss: 0.3349 - mrcnn_mask_loss: 0.371479\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - " 986/2000 [=============>................] - ETA: 17:42 - loss: 1.5189 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5448 - mrcnn_class_loss: 0.2549 - mrcnn_bbox_loss: 0.3348 - mrcnn_mask_loss: 0.3712336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - " 987/2000 [=============>................] - ETA: 17:41 - loss: 1.5183 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5446 - mrcnn_class_loss: 0.2548 - mrcnn_bbox_loss: 0.3346 - mrcnn_mask_loss: 0.371244\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - " 988/2000 [=============>................] - ETA: 17:40 - loss: 1.5175 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5443 - mrcnn_class_loss: 0.2546 - mrcnn_bbox_loss: 0.3344 - mrcnn_mask_loss: 0.3711179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - " 989/2000 [=============>................] - ETA: 17:39 - loss: 1.5175 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5442 - mrcnn_class_loss: 0.2548 - mrcnn_bbox_loss: 0.3344 - mrcnn_mask_loss: 0.3709141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 990/2000 [=============>................] - ETA: 17:38 - loss: 1.5169 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5441 - mrcnn_class_loss: 0.2546 - mrcnn_bbox_loss: 0.3343 - mrcnn_mask_loss: 0.3708380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - " 991/2000 [=============>................] - ETA: 17:38 - loss: 1.5167 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5442 - mrcnn_class_loss: 0.2544 - mrcnn_bbox_loss: 0.3343 - mrcnn_mask_loss: 0.37064\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - " 992/2000 [=============>................] - ETA: 17:36 - loss: 1.5163 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5442 - mrcnn_class_loss: 0.2543 - mrcnn_bbox_loss: 0.3341 - mrcnn_mask_loss: 0.370534\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - " 993/2000 [=============>................] - ETA: 17:35 - loss: 1.5156 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5441 - mrcnn_class_loss: 0.2541 - mrcnn_bbox_loss: 0.3340 - mrcnn_mask_loss: 0.370472\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - " 994/2000 [=============>................] - ETA: 17:34 - loss: 1.5148 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5438 - mrcnn_class_loss: 0.2539 - mrcnn_bbox_loss: 0.3338 - mrcnn_mask_loss: 0.3702222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - " 995/2000 [=============>................] - ETA: 17:33 - loss: 1.5146 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5440 - mrcnn_class_loss: 0.2536 - mrcnn_bbox_loss: 0.3336 - mrcnn_mask_loss: 0.3701250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - " 996/2000 [=============>................] - ETA: 17:32 - loss: 1.5140 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5438 - mrcnn_class_loss: 0.2536 - mrcnn_bbox_loss: 0.3334 - mrcnn_mask_loss: 0.3701283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - " 997/2000 [=============>................] - ETA: 17:31 - loss: 1.5137 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5438 - mrcnn_class_loss: 0.2535 - mrcnn_bbox_loss: 0.3333 - mrcnn_mask_loss: 0.370036\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - " 998/2000 [=============>................] - ETA: 17:30 - loss: 1.5134 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5441 - mrcnn_class_loss: 0.2533 - mrcnn_bbox_loss: 0.3330 - mrcnn_mask_loss: 0.3698337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - " 999/2000 [=============>................] - ETA: 17:29 - loss: 1.5133 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5440 - mrcnn_class_loss: 0.2532 - mrcnn_bbox_loss: 0.3331 - mrcnn_mask_loss: 0.369843\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - "1000/2000 [==============>...............] - ETA: 17:28 - loss: 1.5126 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5438 - mrcnn_class_loss: 0.2530 - mrcnn_bbox_loss: 0.3330 - mrcnn_mask_loss: 0.369742\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - "1001/2000 [==============>...............] - ETA: 17:27 - loss: 1.5119 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5436 - mrcnn_class_loss: 0.2528 - mrcnn_bbox_loss: 0.3328 - mrcnn_mask_loss: 0.3695123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - "1002/2000 [==============>...............] - ETA: 17:26 - loss: 1.5116 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5436 - mrcnn_class_loss: 0.2527 - mrcnn_bbox_loss: 0.3327 - mrcnn_mask_loss: 0.369475\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - "1003/2000 [==============>...............] - ETA: 17:25 - loss: 1.5109 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5433 - mrcnn_class_loss: 0.2526 - mrcnn_bbox_loss: 0.3326 - mrcnn_mask_loss: 0.3692120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - "1004/2000 [==============>...............] - ETA: 17:25 - loss: 1.5109 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5432 - mrcnn_class_loss: 0.2527 - mrcnn_bbox_loss: 0.3326 - mrcnn_mask_loss: 0.3692221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1005/2000 [==============>...............] - ETA: 17:24 - loss: 1.5102 - rpn_class_loss: 0.0132 - rpn_bbox_loss: 0.5430 - mrcnn_class_loss: 0.2525 - mrcnn_bbox_loss: 0.3324 - mrcnn_mask_loss: 0.3691302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - "1006/2000 [==============>...............] - ETA: 17:23 - loss: 1.5101 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5430 - mrcnn_class_loss: 0.2523 - mrcnn_bbox_loss: 0.3325 - mrcnn_mask_loss: 0.36918\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - "1007/2000 [==============>...............] - ETA: 17:22 - loss: 1.5092 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5426 - mrcnn_class_loss: 0.2521 - mrcnn_bbox_loss: 0.3324 - mrcnn_mask_loss: 0.3690172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - "1008/2000 [==============>...............] - ETA: 17:21 - loss: 1.5087 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5424 - mrcnn_class_loss: 0.2520 - mrcnn_bbox_loss: 0.3323 - mrcnn_mask_loss: 0.368822\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - "1009/2000 [==============>...............] - ETA: 17:20 - loss: 1.5081 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5422 - mrcnn_class_loss: 0.2519 - mrcnn_bbox_loss: 0.3322 - mrcnn_mask_loss: 0.368770\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - "1010/2000 [==============>...............] - ETA: 17:18 - loss: 1.5075 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5419 - mrcnn_class_loss: 0.2519 - mrcnn_bbox_loss: 0.3320 - mrcnn_mask_loss: 0.3686193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - "1011/2000 [==============>...............] - ETA: 17:17 - loss: 1.5066 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5416 - mrcnn_class_loss: 0.2517 - mrcnn_bbox_loss: 0.3318 - mrcnn_mask_loss: 0.3684313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - "1012/2000 [==============>...............] - ETA: 17:16 - loss: 1.5060 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5414 - mrcnn_class_loss: 0.2514 - mrcnn_bbox_loss: 0.3317 - mrcnn_mask_loss: 0.3683343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - "1013/2000 [==============>...............] - ETA: 17:15 - loss: 1.5060 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5414 - mrcnn_class_loss: 0.2513 - mrcnn_bbox_loss: 0.3319 - mrcnn_mask_loss: 0.3682191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - "1014/2000 [==============>...............] - ETA: 17:14 - loss: 1.5051 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5411 - mrcnn_class_loss: 0.2511 - mrcnn_bbox_loss: 0.3317 - mrcnn_mask_loss: 0.3681398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - "1015/2000 [==============>...............] - ETA: 17:13 - loss: 1.5050 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5414 - mrcnn_class_loss: 0.2510 - mrcnn_bbox_loss: 0.3315 - mrcnn_mask_loss: 0.3680277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - "1016/2000 [==============>...............] - ETA: 17:13 - loss: 1.5044 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5412 - mrcnn_class_loss: 0.2509 - mrcnn_bbox_loss: 0.3314 - mrcnn_mask_loss: 0.3678105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - "1017/2000 [==============>...............] - ETA: 17:12 - loss: 1.5037 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5410 - mrcnn_class_loss: 0.2507 - mrcnn_bbox_loss: 0.3313 - mrcnn_mask_loss: 0.3677133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - "1018/2000 [==============>...............] - ETA: 17:11 - loss: 1.5033 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5410 - mrcnn_class_loss: 0.2505 - mrcnn_bbox_loss: 0.3311 - mrcnn_mask_loss: 0.3676269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - "1019/2000 [==============>...............] - ETA: 17:10 - loss: 1.5030 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5407 - mrcnn_class_loss: 0.2506 - mrcnn_bbox_loss: 0.3311 - mrcnn_mask_loss: 0.3675267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1020/2000 [==============>...............] - ETA: 17:09 - loss: 1.5026 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5405 - mrcnn_class_loss: 0.2505 - mrcnn_bbox_loss: 0.3310 - mrcnn_mask_loss: 0.3674341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - "1021/2000 [==============>...............] - ETA: 17:08 - loss: 1.5025 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5405 - mrcnn_class_loss: 0.2506 - mrcnn_bbox_loss: 0.3310 - mrcnn_mask_loss: 0.3673326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - "1022/2000 [==============>...............] - ETA: 17:08 - loss: 1.5020 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.5402 - mrcnn_class_loss: 0.2506 - mrcnn_bbox_loss: 0.3309 - mrcnn_mask_loss: 0.367332\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - "1023/2000 [==============>...............] - ETA: 17:06 - loss: 1.5012 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5400 - mrcnn_class_loss: 0.2503 - mrcnn_bbox_loss: 0.3307 - mrcnn_mask_loss: 0.3671180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - "1024/2000 [==============>...............] - ETA: 17:05 - loss: 1.5008 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5400 - mrcnn_class_loss: 0.2502 - mrcnn_bbox_loss: 0.3306 - mrcnn_mask_loss: 0.3670371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - "1025/2000 [==============>...............] - ETA: 17:04 - loss: 1.5005 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5398 - mrcnn_class_loss: 0.2502 - mrcnn_bbox_loss: 0.3305 - mrcnn_mask_loss: 0.3669230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - "1026/2000 [==============>...............] - ETA: 17:03 - loss: 1.4998 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5396 - mrcnn_class_loss: 0.2501 - mrcnn_bbox_loss: 0.3304 - mrcnn_mask_loss: 0.3667163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - "1027/2000 [==============>...............] - ETA: 17:02 - loss: 1.4995 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5395 - mrcnn_class_loss: 0.2499 - mrcnn_bbox_loss: 0.3304 - mrcnn_mask_loss: 0.3666166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - "1028/2000 [==============>...............] - ETA: 17:01 - loss: 1.4989 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5392 - mrcnn_class_loss: 0.2498 - mrcnn_bbox_loss: 0.3304 - mrcnn_mask_loss: 0.3665360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - "1029/2000 [==============>...............] - ETA: 17:01 - loss: 1.4987 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5393 - mrcnn_class_loss: 0.2497 - mrcnn_bbox_loss: 0.3303 - mrcnn_mask_loss: 0.3664249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - "1030/2000 [==============>...............] - ETA: 17:00 - loss: 1.4981 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5390 - mrcnn_class_loss: 0.2496 - mrcnn_bbox_loss: 0.3301 - mrcnn_mask_loss: 0.366335\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - "1031/2000 [==============>...............] - ETA: 16:58 - loss: 1.4976 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5390 - mrcnn_class_loss: 0.2495 - mrcnn_bbox_loss: 0.3300 - mrcnn_mask_loss: 0.366173\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - "1032/2000 [==============>...............] - ETA: 16:57 - loss: 1.4968 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5389 - mrcnn_class_loss: 0.2492 - mrcnn_bbox_loss: 0.3297 - mrcnn_mask_loss: 0.366095\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - "1033/2000 [==============>...............] - ETA: 16:56 - loss: 1.4967 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5391 - mrcnn_class_loss: 0.2492 - mrcnn_bbox_loss: 0.3295 - mrcnn_mask_loss: 0.365999\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - "1034/2000 [==============>...............] - ETA: 16:55 - loss: 1.4966 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5392 - mrcnn_class_loss: 0.2490 - mrcnn_bbox_loss: 0.3294 - mrcnn_mask_loss: 0.3659368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1035/2000 [==============>...............] - ETA: 16:54 - loss: 1.4961 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5392 - mrcnn_class_loss: 0.2489 - mrcnn_bbox_loss: 0.3292 - mrcnn_mask_loss: 0.3657248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - "1036/2000 [==============>...............] - ETA: 16:53 - loss: 1.4954 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5389 - mrcnn_class_loss: 0.2488 - mrcnn_bbox_loss: 0.3291 - mrcnn_mask_loss: 0.3656367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - "1037/2000 [==============>...............] - ETA: 16:52 - loss: 1.4949 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5388 - mrcnn_class_loss: 0.2487 - mrcnn_bbox_loss: 0.3289 - mrcnn_mask_loss: 0.3655196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - "1038/2000 [==============>...............] - ETA: 16:51 - loss: 1.4940 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5384 - mrcnn_class_loss: 0.2486 - mrcnn_bbox_loss: 0.3288 - mrcnn_mask_loss: 0.3653264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - "1039/2000 [==============>...............] - ETA: 16:50 - loss: 1.4936 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5381 - mrcnn_class_loss: 0.2487 - mrcnn_bbox_loss: 0.3287 - mrcnn_mask_loss: 0.365257\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - "1040/2000 [==============>...............] - ETA: 16:49 - loss: 1.4932 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5380 - mrcnn_class_loss: 0.2485 - mrcnn_bbox_loss: 0.3286 - mrcnn_mask_loss: 0.3651149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - "1041/2000 [==============>...............] - ETA: 16:48 - loss: 1.4929 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5381 - mrcnn_class_loss: 0.2484 - mrcnn_bbox_loss: 0.3285 - mrcnn_mask_loss: 0.3650361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - "1042/2000 [==============>...............] - ETA: 16:47 - loss: 1.4924 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5381 - mrcnn_class_loss: 0.2482 - mrcnn_bbox_loss: 0.3283 - mrcnn_mask_loss: 0.3648134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - "1043/2000 [==============>...............] - ETA: 16:47 - loss: 1.4922 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5382 - mrcnn_class_loss: 0.2482 - mrcnn_bbox_loss: 0.3281 - mrcnn_mask_loss: 0.3647129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - "1044/2000 [==============>...............] - ETA: 16:46 - loss: 1.4921 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5382 - mrcnn_class_loss: 0.2482 - mrcnn_bbox_loss: 0.3281 - mrcnn_mask_loss: 0.364756\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - "1045/2000 [==============>...............] - ETA: 16:45 - loss: 1.4913 - rpn_class_loss: 0.0130 - rpn_bbox_loss: 0.5380 - mrcnn_class_loss: 0.2480 - mrcnn_bbox_loss: 0.3279 - mrcnn_mask_loss: 0.3645185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - "1046/2000 [==============>...............] - ETA: 16:43 - loss: 1.4908 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5378 - mrcnn_class_loss: 0.2478 - mrcnn_bbox_loss: 0.3279 - mrcnn_mask_loss: 0.3644203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - "1047/2000 [==============>...............] - ETA: 16:42 - loss: 1.4900 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5375 - mrcnn_class_loss: 0.2476 - mrcnn_bbox_loss: 0.3278 - mrcnn_mask_loss: 0.364276\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - "1048/2000 [==============>...............] - ETA: 16:41 - loss: 1.4894 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5373 - mrcnn_class_loss: 0.2474 - mrcnn_bbox_loss: 0.3277 - mrcnn_mask_loss: 0.364126\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - "1049/2000 [==============>...............] - ETA: 16:40 - loss: 1.4889 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5372 - mrcnn_class_loss: 0.2472 - mrcnn_bbox_loss: 0.3276 - mrcnn_mask_loss: 0.3639242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1050/2000 [==============>...............] - ETA: 16:39 - loss: 1.4889 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5371 - mrcnn_class_loss: 0.2473 - mrcnn_bbox_loss: 0.3276 - mrcnn_mask_loss: 0.3639127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - "1051/2000 [==============>...............] - ETA: 16:38 - loss: 1.4886 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5370 - mrcnn_class_loss: 0.2472 - mrcnn_bbox_loss: 0.3275 - mrcnn_mask_loss: 0.3639239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - "1052/2000 [==============>...............] - ETA: 16:37 - loss: 1.4892 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5379 - mrcnn_class_loss: 0.2473 - mrcnn_bbox_loss: 0.3273 - mrcnn_mask_loss: 0.3638139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - "1053/2000 [==============>...............] - ETA: 16:37 - loss: 1.4892 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5380 - mrcnn_class_loss: 0.2473 - mrcnn_bbox_loss: 0.3273 - mrcnn_mask_loss: 0.3637130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - "1054/2000 [==============>...............] - ETA: 16:36 - loss: 1.4886 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5379 - mrcnn_class_loss: 0.2471 - mrcnn_bbox_loss: 0.3272 - mrcnn_mask_loss: 0.3635246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - "1055/2000 [==============>...............] - ETA: 16:35 - loss: 1.4881 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5375 - mrcnn_class_loss: 0.2470 - mrcnn_bbox_loss: 0.3272 - mrcnn_mask_loss: 0.363486\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - "1056/2000 [==============>...............] - ETA: 16:33 - loss: 1.4876 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5373 - mrcnn_class_loss: 0.2469 - mrcnn_bbox_loss: 0.3270 - mrcnn_mask_loss: 0.363514\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - "1057/2000 [==============>...............] - ETA: 16:32 - loss: 1.4874 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5376 - mrcnn_class_loss: 0.2467 - mrcnn_bbox_loss: 0.3268 - mrcnn_mask_loss: 0.3633106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - "1058/2000 [==============>...............] - ETA: 16:31 - loss: 1.4868 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5372 - mrcnn_class_loss: 0.2467 - mrcnn_bbox_loss: 0.3268 - mrcnn_mask_loss: 0.3633143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - "1059/2000 [==============>...............] - ETA: 16:30 - loss: 1.4865 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5373 - mrcnn_class_loss: 0.2465 - mrcnn_bbox_loss: 0.3267 - mrcnn_mask_loss: 0.3631236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - "1060/2000 [==============>...............] - ETA: 16:29 - loss: 1.4860 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5370 - mrcnn_class_loss: 0.2464 - mrcnn_bbox_loss: 0.3266 - mrcnn_mask_loss: 0.3630301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - "1061/2000 [==============>...............] - ETA: 16:29 - loss: 1.4858 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5369 - mrcnn_class_loss: 0.2463 - mrcnn_bbox_loss: 0.3267 - mrcnn_mask_loss: 0.363082\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - "1062/2000 [==============>...............] - ETA: 16:28 - loss: 1.4851 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5367 - mrcnn_class_loss: 0.2462 - mrcnn_bbox_loss: 0.3265 - mrcnn_mask_loss: 0.3629202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - "1063/2000 [==============>...............] - ETA: 16:26 - loss: 1.4843 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5363 - mrcnn_class_loss: 0.2460 - mrcnn_bbox_loss: 0.3264 - mrcnn_mask_loss: 0.3628320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - "1064/2000 [==============>...............] - ETA: 16:26 - loss: 1.4841 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5362 - mrcnn_class_loss: 0.2460 - mrcnn_bbox_loss: 0.3263 - mrcnn_mask_loss: 0.3628281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - "1065/2000 [==============>...............] - ETA: 16:25 - loss: 1.4840 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5361 - mrcnn_class_loss: 0.2460 - mrcnn_bbox_loss: 0.3263 - mrcnn_mask_loss: 0.362788\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - "1066/2000 [==============>...............] - ETA: 16:24 - loss: 1.4834 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5360 - mrcnn_class_loss: 0.2458 - mrcnn_bbox_loss: 0.3261 - mrcnn_mask_loss: 0.3626215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - "1067/2000 [===============>..............] - ETA: 16:23 - loss: 1.4825 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5357 - mrcnn_class_loss: 0.2457 - mrcnn_bbox_loss: 0.3259 - mrcnn_mask_loss: 0.362416\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - "1068/2000 [===============>..............] - ETA: 16:21 - loss: 1.4823 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5359 - mrcnn_class_loss: 0.2456 - mrcnn_bbox_loss: 0.3257 - mrcnn_mask_loss: 0.3623373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - "1069/2000 [===============>..............] - ETA: 16:21 - loss: 1.4818 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5357 - mrcnn_class_loss: 0.2454 - mrcnn_bbox_loss: 0.3257 - mrcnn_mask_loss: 0.3622310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - "1070/2000 [===============>..............] - ETA: 16:20 - loss: 1.4813 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5355 - mrcnn_class_loss: 0.2453 - mrcnn_bbox_loss: 0.3255 - mrcnn_mask_loss: 0.3621121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - "1071/2000 [===============>..............] - ETA: 16:19 - loss: 1.4815 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5356 - mrcnn_class_loss: 0.2453 - mrcnn_bbox_loss: 0.3255 - mrcnn_mask_loss: 0.362189\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - "1072/2000 [===============>..............] - ETA: 16:18 - loss: 1.4810 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5355 - mrcnn_class_loss: 0.2452 - mrcnn_bbox_loss: 0.3254 - mrcnn_mask_loss: 0.362154\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - "1073/2000 [===============>..............] - ETA: 16:17 - loss: 1.4802 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5353 - mrcnn_class_loss: 0.2450 - mrcnn_bbox_loss: 0.3252 - mrcnn_mask_loss: 0.3620293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - "1074/2000 [===============>..............] - ETA: 16:16 - loss: 1.4799 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5352 - mrcnn_class_loss: 0.2449 - mrcnn_bbox_loss: 0.3251 - mrcnn_mask_loss: 0.3619308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - "1075/2000 [===============>..............] - ETA: 16:15 - loss: 1.4797 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5351 - mrcnn_class_loss: 0.2448 - mrcnn_bbox_loss: 0.3250 - mrcnn_mask_loss: 0.361823\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - "1076/2000 [===============>..............] - ETA: 16:14 - loss: 1.4789 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5349 - mrcnn_class_loss: 0.2446 - mrcnn_bbox_loss: 0.3248 - mrcnn_mask_loss: 0.3617350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - "1077/2000 [===============>..............] - ETA: 16:13 - loss: 1.4784 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5348 - mrcnn_class_loss: 0.2445 - mrcnn_bbox_loss: 0.3247 - mrcnn_mask_loss: 0.3616142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1078/2000 [===============>..............] - ETA: 16:12 - loss: 1.4781 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5349 - mrcnn_class_loss: 0.2443 - mrcnn_bbox_loss: 0.3247 - mrcnn_mask_loss: 0.361519\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - "1079/2000 [===============>..............] - ETA: 16:11 - loss: 1.4778 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5350 - mrcnn_class_loss: 0.2441 - mrcnn_bbox_loss: 0.3245 - mrcnn_mask_loss: 0.3614259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - "1080/2000 [===============>..............] - ETA: 16:10 - loss: 1.4779 - rpn_class_loss: 0.0129 - rpn_bbox_loss: 0.5354 - mrcnn_class_loss: 0.2441 - mrcnn_bbox_loss: 0.3243 - mrcnn_mask_loss: 0.3613319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - "1081/2000 [===============>..............] - ETA: 16:09 - loss: 1.4778 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5354 - mrcnn_class_loss: 0.2440 - mrcnn_bbox_loss: 0.3243 - mrcnn_mask_loss: 0.3612187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - "1082/2000 [===============>..............] - ETA: 16:08 - loss: 1.4769 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5351 - mrcnn_class_loss: 0.2438 - mrcnn_bbox_loss: 0.3241 - mrcnn_mask_loss: 0.3611247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - "1083/2000 [===============>..............] - ETA: 16:07 - loss: 1.4763 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5348 - mrcnn_class_loss: 0.2437 - mrcnn_bbox_loss: 0.3240 - mrcnn_mask_loss: 0.3610135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - "1084/2000 [===============>..............] - ETA: 16:06 - loss: 1.4759 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5347 - mrcnn_class_loss: 0.2436 - mrcnn_bbox_loss: 0.3238 - mrcnn_mask_loss: 0.361096\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - "1085/2000 [===============>..............] - ETA: 16:05 - loss: 1.4756 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5347 - mrcnn_class_loss: 0.2435 - mrcnn_bbox_loss: 0.3236 - mrcnn_mask_loss: 0.3608316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - "1086/2000 [===============>..............] - ETA: 16:04 - loss: 1.4753 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5346 - mrcnn_class_loss: 0.2436 - mrcnn_bbox_loss: 0.3235 - mrcnn_mask_loss: 0.3608396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - "1087/2000 [===============>..............] - ETA: 16:03 - loss: 1.4752 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5346 - mrcnn_class_loss: 0.2436 - mrcnn_bbox_loss: 0.3234 - mrcnn_mask_loss: 0.3607181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - "1088/2000 [===============>..............] - ETA: 16:02 - loss: 1.4747 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5346 - mrcnn_class_loss: 0.2434 - mrcnn_bbox_loss: 0.3232 - mrcnn_mask_loss: 0.3606295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - "1089/2000 [===============>..............] - ETA: 16:01 - loss: 1.4743 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5345 - mrcnn_class_loss: 0.2433 - mrcnn_bbox_loss: 0.3231 - mrcnn_mask_loss: 0.3605271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - "1090/2000 [===============>..............] - ETA: 16:00 - loss: 1.4737 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5342 - mrcnn_class_loss: 0.2432 - mrcnn_bbox_loss: 0.3230 - mrcnn_mask_loss: 0.3604263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - "1091/2000 [===============>..............] - ETA: 15:59 - loss: 1.4731 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5340 - mrcnn_class_loss: 0.2431 - mrcnn_bbox_loss: 0.3229 - mrcnn_mask_loss: 0.360458\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - "1092/2000 [===============>..............] - ETA: 15:58 - loss: 1.4728 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5341 - mrcnn_class_loss: 0.2429 - mrcnn_bbox_loss: 0.3227 - mrcnn_mask_loss: 0.360227\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - "1093/2000 [===============>..............] - ETA: 15:57 - loss: 1.4724 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5341 - mrcnn_class_loss: 0.2429 - mrcnn_bbox_loss: 0.3225 - mrcnn_mask_loss: 0.3601126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - "1094/2000 [===============>..............] - ETA: 15:56 - loss: 1.4722 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5341 - mrcnn_class_loss: 0.2429 - mrcnn_bbox_loss: 0.3224 - mrcnn_mask_loss: 0.3600297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - "1095/2000 [===============>..............] - ETA: 15:55 - loss: 1.4721 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5342 - mrcnn_class_loss: 0.2428 - mrcnn_bbox_loss: 0.3224 - mrcnn_mask_loss: 0.360080\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - "1096/2000 [===============>..............] - ETA: 15:54 - loss: 1.4721 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5343 - mrcnn_class_loss: 0.2426 - mrcnn_bbox_loss: 0.3225 - mrcnn_mask_loss: 0.3600254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - "1097/2000 [===============>..............] - ETA: 15:53 - loss: 1.4718 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5341 - mrcnn_class_loss: 0.2426 - mrcnn_bbox_loss: 0.3224 - mrcnn_mask_loss: 0.3599278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - "1098/2000 [===============>..............] - ETA: 15:52 - loss: 1.4714 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5341 - mrcnn_class_loss: 0.2425 - mrcnn_bbox_loss: 0.3223 - mrcnn_mask_loss: 0.3598229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - "1099/2000 [===============>..............] - ETA: 15:51 - loss: 1.4708 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5340 - mrcnn_class_loss: 0.2423 - mrcnn_bbox_loss: 0.3221 - mrcnn_mask_loss: 0.3597155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - "1100/2000 [===============>..............] - ETA: 15:50 - loss: 1.4708 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5343 - mrcnn_class_loss: 0.2421 - mrcnn_bbox_loss: 0.3220 - mrcnn_mask_loss: 0.359613\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - "1101/2000 [===============>..............] - ETA: 15:49 - loss: 1.4704 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5343 - mrcnn_class_loss: 0.2420 - mrcnn_bbox_loss: 0.3218 - mrcnn_mask_loss: 0.3595255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - "1102/2000 [===============>..............] - ETA: 15:48 - loss: 1.4699 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5341 - mrcnn_class_loss: 0.2419 - mrcnn_bbox_loss: 0.3217 - mrcnn_mask_loss: 0.3594363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - "1103/2000 [===============>..............] - ETA: 15:47 - loss: 1.4696 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5342 - mrcnn_class_loss: 0.2419 - mrcnn_bbox_loss: 0.3215 - mrcnn_mask_loss: 0.3593298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - "1104/2000 [===============>..............] - ETA: 15:46 - loss: 1.4700 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5341 - mrcnn_class_loss: 0.2421 - mrcnn_bbox_loss: 0.3216 - mrcnn_mask_loss: 0.3593284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - "1105/2000 [===============>..............] - ETA: 15:45 - loss: 1.4696 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5341 - mrcnn_class_loss: 0.2420 - mrcnn_bbox_loss: 0.3215 - mrcnn_mask_loss: 0.3592300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1106/2000 [===============>..............] - ETA: 15:45 - loss: 1.4693 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5341 - mrcnn_class_loss: 0.2418 - mrcnn_bbox_loss: 0.3215 - mrcnn_mask_loss: 0.3592393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - "1107/2000 [===============>..............] - ETA: 15:44 - loss: 1.4690 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5340 - mrcnn_class_loss: 0.2418 - mrcnn_bbox_loss: 0.3214 - mrcnn_mask_loss: 0.3591231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - "1108/2000 [===============>..............] - ETA: 15:43 - loss: 1.4684 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5337 - mrcnn_class_loss: 0.2418 - mrcnn_bbox_loss: 0.3212 - mrcnn_mask_loss: 0.3589314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - "1109/2000 [===============>..............] - ETA: 15:42 - loss: 1.4680 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5335 - mrcnn_class_loss: 0.2416 - mrcnn_bbox_loss: 0.3212 - mrcnn_mask_loss: 0.3589131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - "1110/2000 [===============>..............] - ETA: 15:41 - loss: 1.4676 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5335 - mrcnn_class_loss: 0.2415 - mrcnn_bbox_loss: 0.3211 - mrcnn_mask_loss: 0.3588151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - "1111/2000 [===============>..............] - ETA: 15:40 - loss: 1.4676 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5336 - mrcnn_class_loss: 0.2416 - mrcnn_bbox_loss: 0.3210 - mrcnn_mask_loss: 0.3587260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - "1112/2000 [===============>..............] - ETA: 15:39 - loss: 1.4673 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5334 - mrcnn_class_loss: 0.2416 - mrcnn_bbox_loss: 0.3209 - mrcnn_mask_loss: 0.3587114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - "1113/2000 [===============>..............] - ETA: 15:38 - loss: 1.4668 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5332 - mrcnn_class_loss: 0.2415 - mrcnn_bbox_loss: 0.3208 - mrcnn_mask_loss: 0.3586346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - "1114/2000 [===============>..............] - ETA: 15:37 - loss: 1.4665 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5333 - mrcnn_class_loss: 0.2414 - mrcnn_bbox_loss: 0.3206 - mrcnn_mask_loss: 0.3585226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - "1115/2000 [===============>..............] - ETA: 15:36 - loss: 1.4657 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5330 - mrcnn_class_loss: 0.2412 - mrcnn_bbox_loss: 0.3204 - mrcnn_mask_loss: 0.358398\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - "1116/2000 [===============>..............] - ETA: 15:35 - loss: 1.4656 - rpn_class_loss: 0.0128 - rpn_bbox_loss: 0.5332 - mrcnn_class_loss: 0.2411 - mrcnn_bbox_loss: 0.3203 - mrcnn_mask_loss: 0.3582243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - "1117/2000 [===============>..............] - ETA: 15:34 - loss: 1.4653 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5330 - mrcnn_class_loss: 0.2411 - mrcnn_bbox_loss: 0.3203 - mrcnn_mask_loss: 0.3582266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - "1118/2000 [===============>..............] - ETA: 15:33 - loss: 1.4648 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5327 - mrcnn_class_loss: 0.2409 - mrcnn_bbox_loss: 0.3204 - mrcnn_mask_loss: 0.35812\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - "1119/2000 [===============>..............] - ETA: 15:32 - loss: 1.4647 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5329 - mrcnn_class_loss: 0.2409 - mrcnn_bbox_loss: 0.3202 - mrcnn_mask_loss: 0.358083\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - "1120/2000 [===============>..............] - ETA: 15:30 - loss: 1.4640 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5325 - mrcnn_class_loss: 0.2407 - mrcnn_bbox_loss: 0.3202 - mrcnn_mask_loss: 0.3579211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - "1121/2000 [===============>..............] - ETA: 15:29 - loss: 1.4633 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5322 - mrcnn_class_loss: 0.2405 - mrcnn_bbox_loss: 0.3200 - mrcnn_mask_loss: 0.3578234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - "1122/2000 [===============>..............] - ETA: 15:28 - loss: 1.4625 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5320 - mrcnn_class_loss: 0.2404 - mrcnn_bbox_loss: 0.3198 - mrcnn_mask_loss: 0.3576140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - "1123/2000 [===============>..............] - ETA: 15:27 - loss: 1.4621 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5319 - mrcnn_class_loss: 0.2403 - mrcnn_bbox_loss: 0.3197 - mrcnn_mask_loss: 0.357528\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - "1124/2000 [===============>..............] - ETA: 15:26 - loss: 1.4615 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5317 - mrcnn_class_loss: 0.2402 - mrcnn_bbox_loss: 0.3196 - mrcnn_mask_loss: 0.3573391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - "1125/2000 [===============>..............] - ETA: 15:25 - loss: 1.4611 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5317 - mrcnn_class_loss: 0.2400 - mrcnn_bbox_loss: 0.3195 - mrcnn_mask_loss: 0.3572137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - "1126/2000 [===============>..............] - ETA: 15:24 - loss: 1.4612 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5317 - mrcnn_class_loss: 0.2401 - mrcnn_bbox_loss: 0.3195 - mrcnn_mask_loss: 0.3572324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - "1127/2000 [===============>..............] - ETA: 15:24 - loss: 1.4606 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5316 - mrcnn_class_loss: 0.2400 - mrcnn_bbox_loss: 0.3193 - mrcnn_mask_loss: 0.3571176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - "1128/2000 [===============>..............] - ETA: 15:22 - loss: 1.4602 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5315 - mrcnn_class_loss: 0.2398 - mrcnn_bbox_loss: 0.3193 - mrcnn_mask_loss: 0.3570228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - "1129/2000 [===============>..............] - ETA: 15:21 - loss: 1.4594 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5312 - mrcnn_class_loss: 0.2397 - mrcnn_bbox_loss: 0.3191 - mrcnn_mask_loss: 0.356892\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - "1130/2000 [===============>..............] - ETA: 15:20 - loss: 1.4590 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5311 - mrcnn_class_loss: 0.2395 - mrcnn_bbox_loss: 0.3190 - mrcnn_mask_loss: 0.3566332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - "1131/2000 [===============>..............] - ETA: 15:19 - loss: 1.4585 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5309 - mrcnn_class_loss: 0.2394 - mrcnn_bbox_loss: 0.3189 - mrcnn_mask_loss: 0.3566244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - "1132/2000 [===============>..............] - ETA: 15:18 - loss: 1.4582 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5307 - mrcnn_class_loss: 0.2393 - mrcnn_bbox_loss: 0.3188 - mrcnn_mask_loss: 0.3566385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - "1133/2000 [===============>..............] - ETA: 15:17 - loss: 1.4584 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5306 - mrcnn_class_loss: 0.2395 - mrcnn_bbox_loss: 0.3189 - mrcnn_mask_loss: 0.3566388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - "1134/2000 [================>.............] - ETA: 15:16 - loss: 1.4580 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5305 - mrcnn_class_loss: 0.2395 - mrcnn_bbox_loss: 0.3188 - mrcnn_mask_loss: 0.3565270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1135/2000 [================>.............] - ETA: 15:15 - loss: 1.4575 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5302 - mrcnn_class_loss: 0.2393 - mrcnn_bbox_loss: 0.3187 - mrcnn_mask_loss: 0.356515\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - "1136/2000 [================>.............] - ETA: 15:14 - loss: 1.4573 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5305 - mrcnn_class_loss: 0.2392 - mrcnn_bbox_loss: 0.3186 - mrcnn_mask_loss: 0.3564186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - "1137/2000 [================>.............] - ETA: 15:13 - loss: 1.4568 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5303 - mrcnn_class_loss: 0.2390 - mrcnn_bbox_loss: 0.3186 - mrcnn_mask_loss: 0.3563382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - "1138/2000 [================>.............] - ETA: 15:12 - loss: 1.4566 - rpn_class_loss: 0.0127 - rpn_bbox_loss: 0.5302 - mrcnn_class_loss: 0.2390 - mrcnn_bbox_loss: 0.3185 - mrcnn_mask_loss: 0.3562268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - "1139/2000 [================>.............] - ETA: 15:11 - loss: 1.4561 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5299 - mrcnn_class_loss: 0.2389 - mrcnn_bbox_loss: 0.3184 - mrcnn_mask_loss: 0.3561184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - "1140/2000 [================>.............] - ETA: 15:10 - loss: 1.4557 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5298 - mrcnn_class_loss: 0.2388 - mrcnn_bbox_loss: 0.3184 - mrcnn_mask_loss: 0.3561262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - "1141/2000 [================>.............] - ETA: 15:09 - loss: 1.4553 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5296 - mrcnn_class_loss: 0.2387 - mrcnn_bbox_loss: 0.3183 - mrcnn_mask_loss: 0.356137\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - "1142/2000 [================>.............] - ETA: 15:08 - loss: 1.4553 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5300 - mrcnn_class_loss: 0.2385 - mrcnn_bbox_loss: 0.3181 - mrcnn_mask_loss: 0.3559372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - "1143/2000 [================>.............] - ETA: 15:07 - loss: 1.4548 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5298 - mrcnn_class_loss: 0.2385 - mrcnn_bbox_loss: 0.3181 - mrcnn_mask_loss: 0.3558279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - "1144/2000 [================>.............] - ETA: 15:06 - loss: 1.4544 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5296 - mrcnn_class_loss: 0.2383 - mrcnn_bbox_loss: 0.3180 - mrcnn_mask_loss: 0.3558347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - "1145/2000 [================>.............] - ETA: 15:05 - loss: 1.4541 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5296 - mrcnn_class_loss: 0.2382 - mrcnn_bbox_loss: 0.3179 - mrcnn_mask_loss: 0.35576\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - "1146/2000 [================>.............] - ETA: 15:04 - loss: 1.4536 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5295 - mrcnn_class_loss: 0.2381 - mrcnn_bbox_loss: 0.3178 - mrcnn_mask_loss: 0.3556331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - "1147/2000 [================>.............] - ETA: 15:03 - loss: 1.4531 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5293 - mrcnn_class_loss: 0.2379 - mrcnn_bbox_loss: 0.3176 - mrcnn_mask_loss: 0.355639\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - "1148/2000 [================>.............] - ETA: 15:02 - loss: 1.4526 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5293 - mrcnn_class_loss: 0.2378 - mrcnn_bbox_loss: 0.3174 - mrcnn_mask_loss: 0.3555318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - "1149/2000 [================>.............] - ETA: 15:01 - loss: 1.4522 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5293 - mrcnn_class_loss: 0.2377 - mrcnn_bbox_loss: 0.3173 - mrcnn_mask_loss: 0.3554366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1150/2000 [================>.............] - ETA: 15:00 - loss: 1.4519 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5294 - mrcnn_class_loss: 0.2376 - mrcnn_bbox_loss: 0.3172 - mrcnn_mask_loss: 0.3553160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - "1151/2000 [================>.............] - ETA: 14:59 - loss: 1.4520 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5296 - mrcnn_class_loss: 0.2375 - mrcnn_bbox_loss: 0.3172 - mrcnn_mask_loss: 0.35511\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - "1152/2000 [================>.............] - ETA: 14:58 - loss: 1.4521 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5297 - mrcnn_class_loss: 0.2374 - mrcnn_bbox_loss: 0.3173 - mrcnn_mask_loss: 0.3551306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - "1153/2000 [================>.............] - ETA: 14:57 - loss: 1.4516 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5296 - mrcnn_class_loss: 0.2373 - mrcnn_bbox_loss: 0.3171 - mrcnn_mask_loss: 0.355094\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - "1154/2000 [================>.............] - ETA: 14:56 - loss: 1.4518 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5300 - mrcnn_class_loss: 0.2372 - mrcnn_bbox_loss: 0.3170 - mrcnn_mask_loss: 0.355017\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - "1155/2000 [================>.............] - ETA: 14:55 - loss: 1.4516 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5302 - mrcnn_class_loss: 0.2371 - mrcnn_bbox_loss: 0.3169 - mrcnn_mask_loss: 0.3549169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - "1156/2000 [================>.............] - ETA: 14:54 - loss: 1.4509 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5299 - mrcnn_class_loss: 0.2369 - mrcnn_bbox_loss: 0.3168 - mrcnn_mask_loss: 0.3547304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - "1157/2000 [================>.............] - ETA: 14:53 - loss: 1.4504 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5298 - mrcnn_class_loss: 0.2368 - mrcnn_bbox_loss: 0.3166 - mrcnn_mask_loss: 0.3546397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - "1158/2000 [================>.............] - ETA: 14:52 - loss: 1.4502 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5300 - mrcnn_class_loss: 0.2366 - mrcnn_bbox_loss: 0.3165 - mrcnn_mask_loss: 0.3545351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - "1159/2000 [================>.............] - ETA: 14:51 - loss: 1.4500 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5300 - mrcnn_class_loss: 0.2366 - mrcnn_bbox_loss: 0.3165 - mrcnn_mask_loss: 0.3544299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - "1160/2000 [================>.............] - ETA: 14:50 - loss: 1.4501 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5301 - mrcnn_class_loss: 0.2368 - mrcnn_bbox_loss: 0.3164 - mrcnn_mask_loss: 0.3543358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - "1161/2000 [================>.............] - ETA: 14:49 - loss: 1.4498 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5300 - mrcnn_class_loss: 0.2366 - mrcnn_bbox_loss: 0.3164 - mrcnn_mask_loss: 0.3542340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - "1162/2000 [================>.............] - ETA: 14:49 - loss: 1.4498 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5301 - mrcnn_class_loss: 0.2365 - mrcnn_bbox_loss: 0.3165 - mrcnn_mask_loss: 0.3541309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - "1163/2000 [================>.............] - ETA: 14:48 - loss: 1.4497 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5301 - mrcnn_class_loss: 0.2366 - mrcnn_bbox_loss: 0.3164 - mrcnn_mask_loss: 0.3541219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - "1164/2000 [================>.............] - ETA: 14:46 - loss: 1.4493 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5299 - mrcnn_class_loss: 0.2365 - mrcnn_bbox_loss: 0.3164 - mrcnn_mask_loss: 0.3539209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1165/2000 [================>.............] - ETA: 14:45 - loss: 1.4488 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5297 - mrcnn_class_loss: 0.2365 - mrcnn_bbox_loss: 0.3162 - mrcnn_mask_loss: 0.3538352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - "1166/2000 [================>.............] - ETA: 14:44 - loss: 1.4486 - rpn_class_loss: 0.0126 - rpn_bbox_loss: 0.5296 - mrcnn_class_loss: 0.2365 - mrcnn_bbox_loss: 0.3162 - mrcnn_mask_loss: 0.353785\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - "1167/2000 [================>.............] - ETA: 14:43 - loss: 1.4479 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5293 - mrcnn_class_loss: 0.2364 - mrcnn_bbox_loss: 0.3160 - mrcnn_mask_loss: 0.3536173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - "1168/2000 [================>.............] - ETA: 14:42 - loss: 1.4475 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5292 - mrcnn_class_loss: 0.2363 - mrcnn_bbox_loss: 0.3159 - mrcnn_mask_loss: 0.3536122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - "1169/2000 [================>.............] - ETA: 14:41 - loss: 1.4473 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5292 - mrcnn_class_loss: 0.2362 - mrcnn_bbox_loss: 0.3158 - mrcnn_mask_loss: 0.3535286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - "1170/2000 [================>.............] - ETA: 14:40 - loss: 1.4470 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5291 - mrcnn_class_loss: 0.2363 - mrcnn_bbox_loss: 0.3157 - mrcnn_mask_loss: 0.3534292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - "1171/2000 [================>.............] - ETA: 14:39 - loss: 1.4466 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5290 - mrcnn_class_loss: 0.2362 - mrcnn_bbox_loss: 0.3156 - mrcnn_mask_loss: 0.3533212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - "1172/2000 [================>.............] - ETA: 14:38 - loss: 1.4459 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5287 - mrcnn_class_loss: 0.2360 - mrcnn_bbox_loss: 0.3156 - mrcnn_mask_loss: 0.3532119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - "1173/2000 [================>.............] - ETA: 14:37 - loss: 1.4458 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5286 - mrcnn_class_loss: 0.2360 - mrcnn_bbox_loss: 0.3156 - mrcnn_mask_loss: 0.3531190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - "1174/2000 [================>.............] - ETA: 14:36 - loss: 1.4453 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5284 - mrcnn_class_loss: 0.2359 - mrcnn_bbox_loss: 0.3155 - mrcnn_mask_loss: 0.3530214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - "1175/2000 [================>.............] - ETA: 14:35 - loss: 1.4446 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5281 - mrcnn_class_loss: 0.2357 - mrcnn_bbox_loss: 0.3154 - mrcnn_mask_loss: 0.3529289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - "1176/2000 [================>.............] - ETA: 14:34 - loss: 1.4443 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5281 - mrcnn_class_loss: 0.2356 - mrcnn_bbox_loss: 0.3153 - mrcnn_mask_loss: 0.3528132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - "1177/2000 [================>.............] - ETA: 14:33 - loss: 1.4442 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5282 - mrcnn_class_loss: 0.2355 - mrcnn_bbox_loss: 0.3152 - mrcnn_mask_loss: 0.3528276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - "1178/2000 [================>.............] - ETA: 14:32 - loss: 1.4439 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5282 - mrcnn_class_loss: 0.2354 - mrcnn_bbox_loss: 0.3151 - mrcnn_mask_loss: 0.3527323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - "1179/2000 [================>.............] - ETA: 14:31 - loss: 1.4436 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5281 - mrcnn_class_loss: 0.2353 - mrcnn_bbox_loss: 0.3151 - mrcnn_mask_loss: 0.3526104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - "1180/2000 [================>.............] - ETA: 14:30 - loss: 1.4433 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5279 - mrcnn_class_loss: 0.2352 - mrcnn_bbox_loss: 0.3152 - mrcnn_mask_loss: 0.3525233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - "1181/2000 [================>.............] - ETA: 14:29 - loss: 1.4426 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5277 - mrcnn_class_loss: 0.2350 - mrcnn_bbox_loss: 0.3150 - mrcnn_mask_loss: 0.3524170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - "1182/2000 [================>.............] - ETA: 14:28 - loss: 1.4422 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5275 - mrcnn_class_loss: 0.2349 - mrcnn_bbox_loss: 0.3149 - mrcnn_mask_loss: 0.3523240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - "1183/2000 [================>.............] - ETA: 14:27 - loss: 1.4422 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5274 - mrcnn_class_loss: 0.2351 - mrcnn_bbox_loss: 0.3150 - mrcnn_mask_loss: 0.3523225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - "1184/2000 [================>.............] - ETA: 14:26 - loss: 1.4415 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5271 - mrcnn_class_loss: 0.2349 - mrcnn_bbox_loss: 0.3148 - mrcnn_mask_loss: 0.3522317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - "1185/2000 [================>.............] - ETA: 14:25 - loss: 1.4413 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5270 - mrcnn_class_loss: 0.2348 - mrcnn_bbox_loss: 0.3148 - mrcnn_mask_loss: 0.3522125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - "1186/2000 [================>.............] - ETA: 14:24 - loss: 1.4409 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5268 - mrcnn_class_loss: 0.2346 - mrcnn_bbox_loss: 0.3147 - mrcnn_mask_loss: 0.3522285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - "1187/2000 [================>.............] - ETA: 14:23 - loss: 1.4404 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5267 - mrcnn_class_loss: 0.2344 - mrcnn_bbox_loss: 0.3146 - mrcnn_mask_loss: 0.3521128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - "1188/2000 [================>.............] - ETA: 14:22 - loss: 1.4399 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5266 - mrcnn_class_loss: 0.2343 - mrcnn_bbox_loss: 0.3146 - mrcnn_mask_loss: 0.3520100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - "1189/2000 [================>.............] - ETA: 14:21 - loss: 1.4396 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5265 - mrcnn_class_loss: 0.2342 - mrcnn_bbox_loss: 0.3145 - mrcnn_mask_loss: 0.351990\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - "1190/2000 [================>.............] - ETA: 14:20 - loss: 1.4395 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5264 - mrcnn_class_loss: 0.2343 - mrcnn_bbox_loss: 0.3144 - mrcnn_mask_loss: 0.3520339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - "1191/2000 [================>.............] - ETA: 14:19 - loss: 1.4392 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5264 - mrcnn_class_loss: 0.2341 - mrcnn_bbox_loss: 0.3142 - mrcnn_mask_loss: 0.3520235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - "1192/2000 [================>.............] - ETA: 14:18 - loss: 1.4385 - rpn_class_loss: 0.0125 - rpn_bbox_loss: 0.5262 - mrcnn_class_loss: 0.2340 - mrcnn_bbox_loss: 0.3140 - mrcnn_mask_loss: 0.3518189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1193/2000 [================>.............] - ETA: 14:17 - loss: 1.4380 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5260 - mrcnn_class_loss: 0.2340 - mrcnn_bbox_loss: 0.3139 - mrcnn_mask_loss: 0.351768\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - "1194/2000 [================>.............] - ETA: 14:16 - loss: 1.4373 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5257 - mrcnn_class_loss: 0.2339 - mrcnn_bbox_loss: 0.3137 - mrcnn_mask_loss: 0.351640\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - "1195/2000 [================>.............] - ETA: 14:15 - loss: 1.4371 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5255 - mrcnn_class_loss: 0.2339 - mrcnn_bbox_loss: 0.3137 - mrcnn_mask_loss: 0.3515108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - "1196/2000 [================>.............] - ETA: 14:14 - loss: 1.4367 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5253 - mrcnn_class_loss: 0.2339 - mrcnn_bbox_loss: 0.3137 - mrcnn_mask_loss: 0.3514375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - "1197/2000 [================>.............] - ETA: 14:13 - loss: 1.4361 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5251 - mrcnn_class_loss: 0.2338 - mrcnn_bbox_loss: 0.3135 - mrcnn_mask_loss: 0.3513325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - "1198/2000 [================>.............] - ETA: 14:12 - loss: 1.4358 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5249 - mrcnn_class_loss: 0.2337 - mrcnn_bbox_loss: 0.3135 - mrcnn_mask_loss: 0.3513273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - "1199/2000 [================>.............] - ETA: 14:11 - loss: 1.4354 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5247 - mrcnn_class_loss: 0.2336 - mrcnn_bbox_loss: 0.3134 - mrcnn_mask_loss: 0.3513312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - "1200/2000 [=================>............] - ETA: 14:10 - loss: 1.4350 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5245 - mrcnn_class_loss: 0.2335 - mrcnn_bbox_loss: 0.3134 - mrcnn_mask_loss: 0.3512154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - "1201/2000 [=================>............] - ETA: 14:09 - loss: 1.4351 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5247 - mrcnn_class_loss: 0.2336 - mrcnn_bbox_loss: 0.3133 - mrcnn_mask_loss: 0.3511332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - "1202/2000 [=================>............] - ETA: 14:08 - loss: 1.4346 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5244 - mrcnn_class_loss: 0.2334 - mrcnn_bbox_loss: 0.3132 - mrcnn_mask_loss: 0.3511164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - "1203/2000 [=================>............] - ETA: 14:07 - loss: 1.4340 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5243 - mrcnn_class_loss: 0.2334 - mrcnn_bbox_loss: 0.3130 - mrcnn_mask_loss: 0.351014\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - "1204/2000 [=================>............] - ETA: 14:06 - loss: 1.4337 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5243 - mrcnn_class_loss: 0.2332 - mrcnn_bbox_loss: 0.3130 - mrcnn_mask_loss: 0.3508320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - "1205/2000 [=================>............] - ETA: 14:05 - loss: 1.4335 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5243 - mrcnn_class_loss: 0.2331 - mrcnn_bbox_loss: 0.3129 - mrcnn_mask_loss: 0.3508233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - "1206/2000 [=================>............] - ETA: 14:04 - loss: 1.4329 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5240 - mrcnn_class_loss: 0.2331 - mrcnn_bbox_loss: 0.3127 - mrcnn_mask_loss: 0.3506215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - "1207/2000 [=================>............] - ETA: 14:03 - loss: 1.4321 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5237 - mrcnn_class_loss: 0.2329 - mrcnn_bbox_loss: 0.3126 - mrcnn_mask_loss: 0.3505309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1208/2000 [=================>............] - ETA: 14:02 - loss: 1.4319 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5237 - mrcnn_class_loss: 0.2328 - mrcnn_bbox_loss: 0.3126 - mrcnn_mask_loss: 0.3505204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - "1209/2000 [=================>............] - ETA: 14:01 - loss: 1.4314 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5234 - mrcnn_class_loss: 0.2328 - mrcnn_bbox_loss: 0.3124 - mrcnn_mask_loss: 0.3504218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - "1210/2000 [=================>............] - ETA: 13:59 - loss: 1.4308 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5232 - mrcnn_class_loss: 0.2327 - mrcnn_bbox_loss: 0.3122 - mrcnn_mask_loss: 0.3503360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - "1211/2000 [=================>............] - ETA: 13:59 - loss: 1.4308 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5234 - mrcnn_class_loss: 0.2326 - mrcnn_bbox_loss: 0.3122 - mrcnn_mask_loss: 0.3502186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - "1212/2000 [=================>............] - ETA: 13:57 - loss: 1.4300 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5230 - mrcnn_class_loss: 0.2325 - mrcnn_bbox_loss: 0.3121 - mrcnn_mask_loss: 0.3500359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - "1213/2000 [=================>............] - ETA: 13:57 - loss: 1.4296 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5229 - mrcnn_class_loss: 0.2324 - mrcnn_bbox_loss: 0.3120 - mrcnn_mask_loss: 0.3499286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - "1214/2000 [=================>............] - ETA: 13:56 - loss: 1.4294 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5227 - mrcnn_class_loss: 0.2324 - mrcnn_bbox_loss: 0.3119 - mrcnn_mask_loss: 0.3499177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - "1215/2000 [=================>............] - ETA: 13:55 - loss: 1.4289 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5226 - mrcnn_class_loss: 0.2322 - mrcnn_bbox_loss: 0.3118 - mrcnn_mask_loss: 0.3498294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - "1216/2000 [=================>............] - ETA: 13:54 - loss: 1.4286 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5226 - mrcnn_class_loss: 0.2322 - mrcnn_bbox_loss: 0.3117 - mrcnn_mask_loss: 0.3497172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - "1217/2000 [=================>............] - ETA: 13:53 - loss: 1.4278 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5223 - mrcnn_class_loss: 0.2320 - mrcnn_bbox_loss: 0.3115 - mrcnn_mask_loss: 0.349680\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - "1218/2000 [=================>............] - ETA: 13:51 - loss: 1.4277 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5222 - mrcnn_class_loss: 0.2321 - mrcnn_bbox_loss: 0.3115 - mrcnn_mask_loss: 0.349569\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - "1219/2000 [=================>............] - ETA: 13:50 - loss: 1.4272 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5219 - mrcnn_class_loss: 0.2320 - mrcnn_bbox_loss: 0.3114 - mrcnn_mask_loss: 0.3494274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - "1220/2000 [=================>............] - ETA: 13:49 - loss: 1.4267 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5217 - mrcnn_class_loss: 0.2320 - mrcnn_bbox_loss: 0.3112 - mrcnn_mask_loss: 0.34939\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - "1221/2000 [=================>............] - ETA: 13:48 - loss: 1.4260 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5215 - mrcnn_class_loss: 0.2319 - mrcnn_bbox_loss: 0.3111 - mrcnn_mask_loss: 0.3492250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - "1222/2000 [=================>............] - ETA: 13:47 - loss: 1.4255 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5213 - mrcnn_class_loss: 0.2318 - mrcnn_bbox_loss: 0.3109 - mrcnn_mask_loss: 0.3492209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1223/2000 [=================>............] - ETA: 13:46 - loss: 1.4248 - rpn_class_loss: 0.0124 - rpn_bbox_loss: 0.5210 - mrcnn_class_loss: 0.2317 - mrcnn_bbox_loss: 0.3108 - mrcnn_mask_loss: 0.349015\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - "1224/2000 [=================>............] - ETA: 13:45 - loss: 1.4246 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5211 - mrcnn_class_loss: 0.2316 - mrcnn_bbox_loss: 0.3106 - mrcnn_mask_loss: 0.3490216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - "1225/2000 [=================>............] - ETA: 13:44 - loss: 1.4240 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5208 - mrcnn_class_loss: 0.2316 - mrcnn_bbox_loss: 0.3105 - mrcnn_mask_loss: 0.348842\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - "1226/2000 [=================>............] - ETA: 13:42 - loss: 1.4236 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5207 - mrcnn_class_loss: 0.2315 - mrcnn_bbox_loss: 0.3103 - mrcnn_mask_loss: 0.3487324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - "1227/2000 [=================>............] - ETA: 13:41 - loss: 1.4234 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5207 - mrcnn_class_loss: 0.2314 - mrcnn_bbox_loss: 0.3103 - mrcnn_mask_loss: 0.3487180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - "1228/2000 [=================>............] - ETA: 13:40 - loss: 1.4231 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5207 - mrcnn_class_loss: 0.2313 - mrcnn_bbox_loss: 0.3101 - mrcnn_mask_loss: 0.3486245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - "1229/2000 [=================>............] - ETA: 13:39 - loss: 1.4228 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5205 - mrcnn_class_loss: 0.2313 - mrcnn_bbox_loss: 0.3101 - mrcnn_mask_loss: 0.348647\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - "1230/2000 [=================>............] - ETA: 13:38 - loss: 1.4221 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5201 - mrcnn_class_loss: 0.2312 - mrcnn_bbox_loss: 0.3100 - mrcnn_mask_loss: 0.3485316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - "1231/2000 [=================>............] - ETA: 13:37 - loss: 1.4217 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5200 - mrcnn_class_loss: 0.2311 - mrcnn_bbox_loss: 0.3099 - mrcnn_mask_loss: 0.3484236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - "1232/2000 [=================>............] - ETA: 13:36 - loss: 1.4209 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5196 - mrcnn_class_loss: 0.2310 - mrcnn_bbox_loss: 0.3097 - mrcnn_mask_loss: 0.3483270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - "1233/2000 [=================>............] - ETA: 13:35 - loss: 1.4205 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5194 - mrcnn_class_loss: 0.2310 - mrcnn_bbox_loss: 0.3096 - mrcnn_mask_loss: 0.3482162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - "1234/2000 [=================>............] - ETA: 13:34 - loss: 1.4204 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5193 - mrcnn_class_loss: 0.2310 - mrcnn_bbox_loss: 0.3096 - mrcnn_mask_loss: 0.3481334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - "1235/2000 [=================>............] - ETA: 13:33 - loss: 1.4197 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5191 - mrcnn_class_loss: 0.2309 - mrcnn_bbox_loss: 0.3095 - mrcnn_mask_loss: 0.3479147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - "1236/2000 [=================>............] - ETA: 13:32 - loss: 1.4195 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5192 - mrcnn_class_loss: 0.2308 - mrcnn_bbox_loss: 0.3094 - mrcnn_mask_loss: 0.347922\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - "1237/2000 [=================>............] - ETA: 13:31 - loss: 1.4191 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5191 - mrcnn_class_loss: 0.2307 - mrcnn_bbox_loss: 0.3093 - mrcnn_mask_loss: 0.3478284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1238/2000 [=================>............] - ETA: 13:30 - loss: 1.4189 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5191 - mrcnn_class_loss: 0.2306 - mrcnn_bbox_loss: 0.3092 - mrcnn_mask_loss: 0.3477310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - "1239/2000 [=================>............] - ETA: 13:29 - loss: 1.4185 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5190 - mrcnn_class_loss: 0.2305 - mrcnn_bbox_loss: 0.3091 - mrcnn_mask_loss: 0.3477148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - "1240/2000 [=================>............] - ETA: 13:28 - loss: 1.4183 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5189 - mrcnn_class_loss: 0.2304 - mrcnn_bbox_loss: 0.3091 - mrcnn_mask_loss: 0.3476337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - "1241/2000 [=================>............] - ETA: 13:27 - loss: 1.4178 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5188 - mrcnn_class_loss: 0.2302 - mrcnn_bbox_loss: 0.3090 - mrcnn_mask_loss: 0.3475258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - "1242/2000 [=================>............] - ETA: 13:26 - loss: 1.4176 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5187 - mrcnn_class_loss: 0.2302 - mrcnn_bbox_loss: 0.3090 - mrcnn_mask_loss: 0.3475171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - "1243/2000 [=================>............] - ETA: 13:25 - loss: 1.4173 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5185 - mrcnn_class_loss: 0.2303 - mrcnn_bbox_loss: 0.3089 - mrcnn_mask_loss: 0.347312\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - "1244/2000 [=================>............] - ETA: 13:24 - loss: 1.4169 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5185 - mrcnn_class_loss: 0.2301 - mrcnn_bbox_loss: 0.3087 - mrcnn_mask_loss: 0.3472159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - "1245/2000 [=================>............] - ETA: 13:23 - loss: 1.4165 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5185 - mrcnn_class_loss: 0.2301 - mrcnn_bbox_loss: 0.3086 - mrcnn_mask_loss: 0.3471149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - "1246/2000 [=================>............] - ETA: 13:22 - loss: 1.4163 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5185 - mrcnn_class_loss: 0.2300 - mrcnn_bbox_loss: 0.3086 - mrcnn_mask_loss: 0.3470187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - "1247/2000 [=================>............] - ETA: 13:21 - loss: 1.4155 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5182 - mrcnn_class_loss: 0.2299 - mrcnn_bbox_loss: 0.3084 - mrcnn_mask_loss: 0.3469226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - "1248/2000 [=================>............] - ETA: 13:20 - loss: 1.4148 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5179 - mrcnn_class_loss: 0.2297 - mrcnn_bbox_loss: 0.3082 - mrcnn_mask_loss: 0.3467350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - "1249/2000 [=================>............] - ETA: 13:19 - loss: 1.4145 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5179 - mrcnn_class_loss: 0.2296 - mrcnn_bbox_loss: 0.3081 - mrcnn_mask_loss: 0.3467291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - "1250/2000 [=================>............] - ETA: 13:18 - loss: 1.4141 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.5177 - mrcnn_class_loss: 0.2295 - mrcnn_bbox_loss: 0.3080 - mrcnn_mask_loss: 0.3466338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - "1251/2000 [=================>............] - ETA: 13:17 - loss: 1.4137 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5177 - mrcnn_class_loss: 0.2294 - mrcnn_bbox_loss: 0.3079 - mrcnn_mask_loss: 0.3465302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - "1252/2000 [=================>............] - ETA: 13:16 - loss: 1.4138 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5178 - mrcnn_class_loss: 0.2294 - mrcnn_bbox_loss: 0.3079 - mrcnn_mask_loss: 0.3465243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - "1253/2000 [=================>............] - ETA: 13:15 - loss: 1.4134 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5176 - mrcnn_class_loss: 0.2293 - mrcnn_bbox_loss: 0.3078 - mrcnn_mask_loss: 0.3465123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - "1254/2000 [=================>............] - ETA: 13:14 - loss: 1.4134 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5176 - mrcnn_class_loss: 0.2292 - mrcnn_bbox_loss: 0.3078 - mrcnn_mask_loss: 0.3464116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - "1255/2000 [=================>............] - ETA: 13:13 - loss: 1.4132 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5175 - mrcnn_class_loss: 0.2292 - mrcnn_bbox_loss: 0.3078 - mrcnn_mask_loss: 0.3464246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - "1256/2000 [=================>............] - ETA: 13:12 - loss: 1.4128 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5173 - mrcnn_class_loss: 0.2292 - mrcnn_bbox_loss: 0.3077 - mrcnn_mask_loss: 0.3464396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - "1257/2000 [=================>............] - ETA: 13:11 - loss: 1.4126 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5173 - mrcnn_class_loss: 0.2291 - mrcnn_bbox_loss: 0.3077 - mrcnn_mask_loss: 0.3463220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - "1258/2000 [=================>............] - ETA: 13:10 - loss: 1.4128 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5177 - mrcnn_class_loss: 0.2290 - mrcnn_bbox_loss: 0.3075 - mrcnn_mask_loss: 0.346259\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - "1259/2000 [=================>............] - ETA: 13:09 - loss: 1.4123 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5177 - mrcnn_class_loss: 0.2289 - mrcnn_bbox_loss: 0.3074 - mrcnn_mask_loss: 0.3461388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - "1260/2000 [=================>............] - ETA: 13:08 - loss: 1.4122 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5178 - mrcnn_class_loss: 0.2288 - mrcnn_bbox_loss: 0.3075 - mrcnn_mask_loss: 0.346073\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - "1261/2000 [=================>............] - ETA: 13:07 - loss: 1.4119 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5176 - mrcnn_class_loss: 0.2287 - mrcnn_bbox_loss: 0.3073 - mrcnn_mask_loss: 0.346078\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - "1262/2000 [=================>............] - ETA: 13:05 - loss: 1.4113 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5174 - mrcnn_class_loss: 0.2287 - mrcnn_bbox_loss: 0.3072 - mrcnn_mask_loss: 0.3458321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - "1263/2000 [=================>............] - ETA: 13:04 - loss: 1.4111 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5173 - mrcnn_class_loss: 0.2287 - mrcnn_bbox_loss: 0.3072 - mrcnn_mask_loss: 0.3458115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - "1264/2000 [=================>............] - ETA: 13:03 - loss: 1.4108 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5171 - mrcnn_class_loss: 0.2287 - mrcnn_bbox_loss: 0.3071 - mrcnn_mask_loss: 0.3457247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - "1265/2000 [=================>............] - ETA: 13:02 - loss: 1.4103 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5168 - mrcnn_class_loss: 0.2287 - mrcnn_bbox_loss: 0.3070 - mrcnn_mask_loss: 0.3456329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - "1266/2000 [=================>............] - ETA: 13:01 - loss: 1.4100 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5167 - mrcnn_class_loss: 0.2287 - mrcnn_bbox_loss: 0.3069 - mrcnn_mask_loss: 0.3456381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1267/2000 [==================>...........] - ETA: 13:00 - loss: 1.4102 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5170 - mrcnn_class_loss: 0.2286 - mrcnn_bbox_loss: 0.3069 - mrcnn_mask_loss: 0.34552\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - "1268/2000 [==================>...........] - ETA: 12:59 - loss: 1.4099 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5170 - mrcnn_class_loss: 0.2285 - mrcnn_bbox_loss: 0.3067 - mrcnn_mask_loss: 0.3455280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - "1269/2000 [==================>...........] - ETA: 12:58 - loss: 1.4098 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5171 - mrcnn_class_loss: 0.2285 - mrcnn_bbox_loss: 0.3066 - mrcnn_mask_loss: 0.345420\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - "1270/2000 [==================>...........] - ETA: 12:57 - loss: 1.4095 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5171 - mrcnn_class_loss: 0.2283 - mrcnn_bbox_loss: 0.3065 - mrcnn_mask_loss: 0.3453283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - "1271/2000 [==================>...........] - ETA: 12:56 - loss: 1.4093 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5172 - mrcnn_class_loss: 0.2283 - mrcnn_bbox_loss: 0.3064 - mrcnn_mask_loss: 0.3453289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - "1272/2000 [==================>...........] - ETA: 12:55 - loss: 1.4090 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5171 - mrcnn_class_loss: 0.2282 - mrcnn_bbox_loss: 0.3063 - mrcnn_mask_loss: 0.3452314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - "1273/2000 [==================>...........] - ETA: 12:54 - loss: 1.4085 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5169 - mrcnn_class_loss: 0.2281 - mrcnn_bbox_loss: 0.3062 - mrcnn_mask_loss: 0.345174\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - "1274/2000 [==================>...........] - ETA: 12:53 - loss: 1.4081 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5167 - mrcnn_class_loss: 0.2280 - mrcnn_bbox_loss: 0.3062 - mrcnn_mask_loss: 0.3450165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - "1275/2000 [==================>...........] - ETA: 12:52 - loss: 1.4079 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5166 - mrcnn_class_loss: 0.2280 - mrcnn_bbox_loss: 0.3063 - mrcnn_mask_loss: 0.3449325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - "1276/2000 [==================>...........] - ETA: 12:51 - loss: 1.4073 - rpn_class_loss: 0.0122 - rpn_bbox_loss: 0.5163 - mrcnn_class_loss: 0.2279 - mrcnn_bbox_loss: 0.3062 - mrcnn_mask_loss: 0.344865\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - "1277/2000 [==================>...........] - ETA: 12:50 - loss: 1.4067 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5160 - mrcnn_class_loss: 0.2277 - mrcnn_bbox_loss: 0.3061 - mrcnn_mask_loss: 0.3447363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - "1278/2000 [==================>...........] - ETA: 12:49 - loss: 1.4064 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5161 - mrcnn_class_loss: 0.2276 - mrcnn_bbox_loss: 0.3060 - mrcnn_mask_loss: 0.3446281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - "1279/2000 [==================>...........] - ETA: 12:48 - loss: 1.4062 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5159 - mrcnn_class_loss: 0.2276 - mrcnn_bbox_loss: 0.3060 - mrcnn_mask_loss: 0.3445308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - "1280/2000 [==================>...........] - ETA: 12:47 - loss: 1.4058 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5159 - mrcnn_class_loss: 0.2275 - mrcnn_bbox_loss: 0.3058 - mrcnn_mask_loss: 0.3445137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - "1281/2000 [==================>...........] - ETA: 12:46 - loss: 1.4055 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5158 - mrcnn_class_loss: 0.2275 - mrcnn_bbox_loss: 0.3057 - mrcnn_mask_loss: 0.3444370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - "1282/2000 [==================>...........] - ETA: 12:45 - loss: 1.4053 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5157 - mrcnn_class_loss: 0.2275 - mrcnn_bbox_loss: 0.3057 - mrcnn_mask_loss: 0.344311\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - "1283/2000 [==================>...........] - ETA: 12:44 - loss: 1.4048 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5155 - mrcnn_class_loss: 0.2274 - mrcnn_bbox_loss: 0.3057 - mrcnn_mask_loss: 0.3442290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - "1284/2000 [==================>...........] - ETA: 12:43 - loss: 1.4045 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5154 - mrcnn_class_loss: 0.2273 - mrcnn_bbox_loss: 0.3056 - mrcnn_mask_loss: 0.344110\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - "1285/2000 [==================>...........] - ETA: 12:41 - loss: 1.4042 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5154 - mrcnn_class_loss: 0.2272 - mrcnn_bbox_loss: 0.3055 - mrcnn_mask_loss: 0.344026\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - "1286/2000 [==================>...........] - ETA: 12:40 - loss: 1.4038 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5154 - mrcnn_class_loss: 0.2271 - mrcnn_bbox_loss: 0.3054 - mrcnn_mask_loss: 0.343962\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - "1287/2000 [==================>...........] - ETA: 12:39 - loss: 1.4033 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5152 - mrcnn_class_loss: 0.2270 - mrcnn_bbox_loss: 0.3053 - mrcnn_mask_loss: 0.3438383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - "1288/2000 [==================>...........] - ETA: 12:38 - loss: 1.4030 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5150 - mrcnn_class_loss: 0.2270 - mrcnn_bbox_loss: 0.3052 - mrcnn_mask_loss: 0.343790\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - "1289/2000 [==================>...........] - ETA: 12:37 - loss: 1.4029 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5151 - mrcnn_class_loss: 0.2269 - mrcnn_bbox_loss: 0.3051 - mrcnn_mask_loss: 0.3437346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - "1290/2000 [==================>...........] - ETA: 12:36 - loss: 1.4029 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5153 - mrcnn_class_loss: 0.2269 - mrcnn_bbox_loss: 0.3050 - mrcnn_mask_loss: 0.3436299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - "1291/2000 [==================>...........] - ETA: 12:35 - loss: 1.4031 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5155 - mrcnn_class_loss: 0.2269 - mrcnn_bbox_loss: 0.3051 - mrcnn_mask_loss: 0.3436135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - "1292/2000 [==================>...........] - ETA: 12:34 - loss: 1.4028 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5155 - mrcnn_class_loss: 0.2268 - mrcnn_bbox_loss: 0.3050 - mrcnn_mask_loss: 0.3434214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - "1293/2000 [==================>...........] - ETA: 12:33 - loss: 1.4022 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5152 - mrcnn_class_loss: 0.2268 - mrcnn_bbox_loss: 0.3048 - mrcnn_mask_loss: 0.3433277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - "1294/2000 [==================>...........] - ETA: 12:32 - loss: 1.4021 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5154 - mrcnn_class_loss: 0.2267 - mrcnn_bbox_loss: 0.3047 - mrcnn_mask_loss: 0.3433313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - "1295/2000 [==================>...........] - ETA: 12:31 - loss: 1.4017 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5153 - mrcnn_class_loss: 0.2266 - mrcnn_bbox_loss: 0.3046 - mrcnn_mask_loss: 0.3432389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1296/2000 [==================>...........] - ETA: 12:30 - loss: 1.4017 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5153 - mrcnn_class_loss: 0.2266 - mrcnn_bbox_loss: 0.3045 - mrcnn_mask_loss: 0.3432198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - "1297/2000 [==================>...........] - ETA: 12:28 - loss: 1.4012 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5151 - mrcnn_class_loss: 0.2264 - mrcnn_bbox_loss: 0.3044 - mrcnn_mask_loss: 0.343149\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - "1298/2000 [==================>...........] - ETA: 12:27 - loss: 1.4006 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5148 - mrcnn_class_loss: 0.2263 - mrcnn_bbox_loss: 0.3043 - mrcnn_mask_loss: 0.3430393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - "1299/2000 [==================>...........] - ETA: 12:26 - loss: 1.4002 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5147 - mrcnn_class_loss: 0.2262 - mrcnn_bbox_loss: 0.3042 - mrcnn_mask_loss: 0.3430182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - "1300/2000 [==================>...........] - ETA: 12:25 - loss: 1.4000 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5148 - mrcnn_class_loss: 0.2260 - mrcnn_bbox_loss: 0.3041 - mrcnn_mask_loss: 0.3429169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - "1301/2000 [==================>...........] - ETA: 12:24 - loss: 1.3997 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5146 - mrcnn_class_loss: 0.2260 - mrcnn_bbox_loss: 0.3041 - mrcnn_mask_loss: 0.3429348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - "1302/2000 [==================>...........] - ETA: 12:23 - loss: 1.3995 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5145 - mrcnn_class_loss: 0.2260 - mrcnn_bbox_loss: 0.3041 - mrcnn_mask_loss: 0.3428231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - "1303/2000 [==================>...........] - ETA: 12:22 - loss: 1.3991 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5144 - mrcnn_class_loss: 0.2260 - mrcnn_bbox_loss: 0.3040 - mrcnn_mask_loss: 0.3427374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - "1304/2000 [==================>...........] - ETA: 12:21 - loss: 1.3987 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5142 - mrcnn_class_loss: 0.2259 - mrcnn_bbox_loss: 0.3039 - mrcnn_mask_loss: 0.3426257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - "1305/2000 [==================>...........] - ETA: 12:19 - loss: 1.3988 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5145 - mrcnn_class_loss: 0.2258 - mrcnn_bbox_loss: 0.3039 - mrcnn_mask_loss: 0.3425355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - "1306/2000 [==================>...........] - ETA: 12:18 - loss: 1.3984 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5143 - mrcnn_class_loss: 0.2258 - mrcnn_bbox_loss: 0.3038 - mrcnn_mask_loss: 0.3425207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - "1307/2000 [==================>...........] - ETA: 12:17 - loss: 1.3979 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5140 - mrcnn_class_loss: 0.2259 - mrcnn_bbox_loss: 0.3036 - mrcnn_mask_loss: 0.342350\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - "1308/2000 [==================>...........] - ETA: 12:16 - loss: 1.3973 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5138 - mrcnn_class_loss: 0.2258 - mrcnn_bbox_loss: 0.3035 - mrcnn_mask_loss: 0.3422181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - "1309/2000 [==================>...........] - ETA: 12:15 - loss: 1.3969 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5137 - mrcnn_class_loss: 0.2257 - mrcnn_bbox_loss: 0.3034 - mrcnn_mask_loss: 0.34211\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - "1310/2000 [==================>...........] - ETA: 12:14 - loss: 1.3969 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5139 - mrcnn_class_loss: 0.2255 - mrcnn_bbox_loss: 0.3034 - mrcnn_mask_loss: 0.3421328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1311/2000 [==================>...........] - ETA: 12:13 - loss: 1.3967 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5138 - mrcnn_class_loss: 0.2255 - mrcnn_bbox_loss: 0.3033 - mrcnn_mask_loss: 0.3420138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - "1312/2000 [==================>...........] - ETA: 12:12 - loss: 1.3967 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5139 - mrcnn_class_loss: 0.2255 - mrcnn_bbox_loss: 0.3033 - mrcnn_mask_loss: 0.342066\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - "1313/2000 [==================>...........] - ETA: 12:10 - loss: 1.3961 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5136 - mrcnn_class_loss: 0.2254 - mrcnn_bbox_loss: 0.3031 - mrcnn_mask_loss: 0.3419156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - "1314/2000 [==================>...........] - ETA: 12:09 - loss: 1.3961 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5139 - mrcnn_class_loss: 0.2253 - mrcnn_bbox_loss: 0.3030 - mrcnn_mask_loss: 0.341867\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - "1315/2000 [==================>...........] - ETA: 12:08 - loss: 1.3955 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5136 - mrcnn_class_loss: 0.2252 - mrcnn_bbox_loss: 0.3029 - mrcnn_mask_loss: 0.3417122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - "1316/2000 [==================>...........] - ETA: 12:07 - loss: 1.3954 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5136 - mrcnn_class_loss: 0.2252 - mrcnn_bbox_loss: 0.3029 - mrcnn_mask_loss: 0.341755\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - "1317/2000 [==================>...........] - ETA: 12:06 - loss: 1.3949 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5134 - mrcnn_class_loss: 0.2251 - mrcnn_bbox_loss: 0.3027 - mrcnn_mask_loss: 0.3416125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - "1318/2000 [==================>...........] - ETA: 12:05 - loss: 1.3947 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5133 - mrcnn_class_loss: 0.2250 - mrcnn_bbox_loss: 0.3028 - mrcnn_mask_loss: 0.3416212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - "1319/2000 [==================>...........] - ETA: 12:04 - loss: 1.3941 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5131 - mrcnn_class_loss: 0.2249 - mrcnn_bbox_loss: 0.3026 - mrcnn_mask_loss: 0.3414185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - "1320/2000 [==================>...........] - ETA: 12:03 - loss: 1.3935 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5129 - mrcnn_class_loss: 0.2247 - mrcnn_bbox_loss: 0.3024 - mrcnn_mask_loss: 0.341430\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - "1321/2000 [==================>...........] - ETA: 12:01 - loss: 1.3930 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5129 - mrcnn_class_loss: 0.2246 - mrcnn_bbox_loss: 0.3023 - mrcnn_mask_loss: 0.3413222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - "1322/2000 [==================>...........] - ETA: 12:00 - loss: 1.3925 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5127 - mrcnn_class_loss: 0.2244 - mrcnn_bbox_loss: 0.3021 - mrcnn_mask_loss: 0.341176\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - "1323/2000 [==================>...........] - ETA: 11:59 - loss: 1.3920 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5126 - mrcnn_class_loss: 0.2244 - mrcnn_bbox_loss: 0.3020 - mrcnn_mask_loss: 0.3411114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - "1324/2000 [==================>...........] - ETA: 11:58 - loss: 1.3915 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5123 - mrcnn_class_loss: 0.2243 - mrcnn_bbox_loss: 0.3019 - mrcnn_mask_loss: 0.3409232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - "1325/2000 [==================>...........] - ETA: 11:57 - loss: 1.3914 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5122 - mrcnn_class_loss: 0.2244 - mrcnn_bbox_loss: 0.3019 - mrcnn_mask_loss: 0.3409196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1326/2000 [==================>...........] - ETA: 11:55 - loss: 1.3908 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5120 - mrcnn_class_loss: 0.2243 - mrcnn_bbox_loss: 0.3017 - mrcnn_mask_loss: 0.340824\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - "1327/2000 [==================>...........] - ETA: 11:54 - loss: 1.3904 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5120 - mrcnn_class_loss: 0.2241 - mrcnn_bbox_loss: 0.3016 - mrcnn_mask_loss: 0.340761\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - "1328/2000 [==================>...........] - ETA: 11:53 - loss: 1.3898 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5118 - mrcnn_class_loss: 0.2240 - mrcnn_bbox_loss: 0.3014 - mrcnn_mask_loss: 0.340698\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - "1329/2000 [==================>...........] - ETA: 11:52 - loss: 1.3899 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5121 - mrcnn_class_loss: 0.2240 - mrcnn_bbox_loss: 0.3013 - mrcnn_mask_loss: 0.3405342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - "1330/2000 [==================>...........] - ETA: 11:51 - loss: 1.3899 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5124 - mrcnn_class_loss: 0.2239 - mrcnn_bbox_loss: 0.3012 - mrcnn_mask_loss: 0.3404227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - "1331/2000 [==================>...........] - ETA: 11:50 - loss: 1.3896 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5122 - mrcnn_class_loss: 0.2239 - mrcnn_bbox_loss: 0.3012 - mrcnn_mask_loss: 0.340397\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - "1332/2000 [==================>...........] - ETA: 11:49 - loss: 1.3895 - rpn_class_loss: 0.0121 - rpn_bbox_loss: 0.5122 - mrcnn_class_loss: 0.2239 - mrcnn_bbox_loss: 0.3011 - mrcnn_mask_loss: 0.340337\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - "1333/2000 [==================>...........] - ETA: 11:48 - loss: 1.3897 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5124 - mrcnn_class_loss: 0.2239 - mrcnn_bbox_loss: 0.3011 - mrcnn_mask_loss: 0.3402117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - "1334/2000 [===================>..........] - ETA: 11:47 - loss: 1.3893 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5123 - mrcnn_class_loss: 0.2239 - mrcnn_bbox_loss: 0.3009 - mrcnn_mask_loss: 0.3401263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - "1335/2000 [===================>..........] - ETA: 11:46 - loss: 1.3891 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5121 - mrcnn_class_loss: 0.2240 - mrcnn_bbox_loss: 0.3009 - mrcnn_mask_loss: 0.3401144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - "1336/2000 [===================>..........] - ETA: 11:44 - loss: 1.3887 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5120 - mrcnn_class_loss: 0.2239 - mrcnn_bbox_loss: 0.3008 - mrcnn_mask_loss: 0.3400323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - "1337/2000 [===================>..........] - ETA: 11:43 - loss: 1.3882 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5119 - mrcnn_class_loss: 0.2238 - mrcnn_bbox_loss: 0.3006 - mrcnn_mask_loss: 0.3399191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - "1338/2000 [===================>..........] - ETA: 11:42 - loss: 1.3879 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5116 - mrcnn_class_loss: 0.2239 - mrcnn_bbox_loss: 0.3005 - mrcnn_mask_loss: 0.3399194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - "1339/2000 [===================>..........] - ETA: 11:41 - loss: 1.3873 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5113 - mrcnn_class_loss: 0.2238 - mrcnn_bbox_loss: 0.3003 - mrcnn_mask_loss: 0.339884\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - "1340/2000 [===================>..........] - ETA: 11:40 - loss: 1.3869 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5111 - mrcnn_class_loss: 0.2238 - mrcnn_bbox_loss: 0.3003 - mrcnn_mask_loss: 0.3397203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1341/2000 [===================>..........] - ETA: 11:39 - loss: 1.3863 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5108 - mrcnn_class_loss: 0.2237 - mrcnn_bbox_loss: 0.3002 - mrcnn_mask_loss: 0.339645\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - "1342/2000 [===================>..........] - ETA: 11:37 - loss: 1.3856 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5105 - mrcnn_class_loss: 0.2235 - mrcnn_bbox_loss: 0.3000 - mrcnn_mask_loss: 0.33956\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - "1343/2000 [===================>..........] - ETA: 11:36 - loss: 1.3851 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5103 - mrcnn_class_loss: 0.2235 - mrcnn_bbox_loss: 0.2999 - mrcnn_mask_loss: 0.3394153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - "1344/2000 [===================>..........] - ETA: 11:35 - loss: 1.3851 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5104 - mrcnn_class_loss: 0.2234 - mrcnn_bbox_loss: 0.2999 - mrcnn_mask_loss: 0.339334\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - "1345/2000 [===================>..........] - ETA: 11:34 - loss: 1.3847 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5104 - mrcnn_class_loss: 0.2233 - mrcnn_bbox_loss: 0.2998 - mrcnn_mask_loss: 0.3392260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - "1346/2000 [===================>..........] - ETA: 11:33 - loss: 1.3845 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5103 - mrcnn_class_loss: 0.2233 - mrcnn_bbox_loss: 0.2997 - mrcnn_mask_loss: 0.3392178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - "1347/2000 [===================>..........] - ETA: 11:32 - loss: 1.3845 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5102 - mrcnn_class_loss: 0.2233 - mrcnn_bbox_loss: 0.2998 - mrcnn_mask_loss: 0.3391265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - "1348/2000 [===================>..........] - ETA: 11:31 - loss: 1.3842 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5100 - mrcnn_class_loss: 0.2233 - mrcnn_bbox_loss: 0.2998 - mrcnn_mask_loss: 0.3391188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - "1349/2000 [===================>..........] - ETA: 11:30 - loss: 1.3837 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5098 - mrcnn_class_loss: 0.2232 - mrcnn_bbox_loss: 0.2997 - mrcnn_mask_loss: 0.3390312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - "1350/2000 [===================>..........] - ETA: 11:29 - loss: 1.3833 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5098 - mrcnn_class_loss: 0.2231 - mrcnn_bbox_loss: 0.2995 - mrcnn_mask_loss: 0.3389353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - "1351/2000 [===================>..........] - ETA: 11:28 - loss: 1.3829 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5096 - mrcnn_class_loss: 0.2230 - mrcnn_bbox_loss: 0.2994 - mrcnn_mask_loss: 0.3389254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - "1352/2000 [===================>..........] - ETA: 11:26 - loss: 1.3826 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5096 - mrcnn_class_loss: 0.2229 - mrcnn_bbox_loss: 0.2993 - mrcnn_mask_loss: 0.3388202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - "1353/2000 [===================>..........] - ETA: 11:25 - loss: 1.3820 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5093 - mrcnn_class_loss: 0.2228 - mrcnn_bbox_loss: 0.2992 - mrcnn_mask_loss: 0.3387364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - "1354/2000 [===================>..........] - ETA: 11:24 - loss: 1.3818 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5093 - mrcnn_class_loss: 0.2228 - mrcnn_bbox_loss: 0.2992 - mrcnn_mask_loss: 0.3386373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - "1355/2000 [===================>..........] - ETA: 11:23 - loss: 1.3812 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5090 - mrcnn_class_loss: 0.2227 - mrcnn_bbox_loss: 0.2991 - mrcnn_mask_loss: 0.3385339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1356/2000 [===================>..........] - ETA: 11:22 - loss: 1.3810 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5091 - mrcnn_class_loss: 0.2226 - mrcnn_bbox_loss: 0.2990 - mrcnn_mask_loss: 0.3384108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - "1357/2000 [===================>..........] - ETA: 11:21 - loss: 1.3807 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5089 - mrcnn_class_loss: 0.2226 - mrcnn_bbox_loss: 0.2990 - mrcnn_mask_loss: 0.338457\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - "1358/2000 [===================>..........] - ETA: 11:20 - loss: 1.3803 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5088 - mrcnn_class_loss: 0.2224 - mrcnn_bbox_loss: 0.2988 - mrcnn_mask_loss: 0.3383279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - "1359/2000 [===================>..........] - ETA: 11:19 - loss: 1.3799 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5087 - mrcnn_class_loss: 0.2223 - mrcnn_bbox_loss: 0.2987 - mrcnn_mask_loss: 0.3382275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - "1360/2000 [===================>..........] - ETA: 11:18 - loss: 1.3798 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5087 - mrcnn_class_loss: 0.2223 - mrcnn_bbox_loss: 0.2987 - mrcnn_mask_loss: 0.338286\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - "1361/2000 [===================>..........] - ETA: 11:17 - loss: 1.3794 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5084 - mrcnn_class_loss: 0.2223 - mrcnn_bbox_loss: 0.2986 - mrcnn_mask_loss: 0.3381395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - "1362/2000 [===================>..........] - ETA: 11:16 - loss: 1.3791 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5083 - mrcnn_class_loss: 0.2222 - mrcnn_bbox_loss: 0.2985 - mrcnn_mask_loss: 0.3381221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - "1363/2000 [===================>..........] - ETA: 11:15 - loss: 1.3788 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5081 - mrcnn_class_loss: 0.2222 - mrcnn_bbox_loss: 0.2985 - mrcnn_mask_loss: 0.3380306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - "1364/2000 [===================>..........] - ETA: 11:14 - loss: 1.3785 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5080 - mrcnn_class_loss: 0.2221 - mrcnn_bbox_loss: 0.2984 - mrcnn_mask_loss: 0.338092\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - "1365/2000 [===================>..........] - ETA: 11:12 - loss: 1.3783 - rpn_class_loss: 0.0120 - rpn_bbox_loss: 0.5080 - mrcnn_class_loss: 0.2221 - mrcnn_bbox_loss: 0.2983 - mrcnn_mask_loss: 0.338040\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - "1366/2000 [===================>..........] - ETA: 11:11 - loss: 1.3782 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5079 - mrcnn_class_loss: 0.2220 - mrcnn_bbox_loss: 0.2983 - mrcnn_mask_loss: 0.338094\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - "1367/2000 [===================>..........] - ETA: 11:10 - loss: 1.3780 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5079 - mrcnn_class_loss: 0.2221 - mrcnn_bbox_loss: 0.2982 - mrcnn_mask_loss: 0.3379336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - "1368/2000 [===================>..........] - ETA: 11:09 - loss: 1.3777 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5077 - mrcnn_class_loss: 0.2220 - mrcnn_bbox_loss: 0.2981 - mrcnn_mask_loss: 0.337918\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - "1369/2000 [===================>..........] - ETA: 11:08 - loss: 1.3776 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5079 - mrcnn_class_loss: 0.2220 - mrcnn_bbox_loss: 0.2980 - mrcnn_mask_loss: 0.337854\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - "1370/2000 [===================>..........] - ETA: 11:07 - loss: 1.3770 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5077 - mrcnn_class_loss: 0.2219 - mrcnn_bbox_loss: 0.2978 - mrcnn_mask_loss: 0.3377235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1371/2000 [===================>..........] - ETA: 11:06 - loss: 1.3764 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5075 - mrcnn_class_loss: 0.2218 - mrcnn_bbox_loss: 0.2977 - mrcnn_mask_loss: 0.3376341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - "1372/2000 [===================>..........] - ETA: 11:05 - loss: 1.3761 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5074 - mrcnn_class_loss: 0.2217 - mrcnn_bbox_loss: 0.2976 - mrcnn_mask_loss: 0.3375307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - "1373/2000 [===================>..........] - ETA: 11:04 - loss: 1.3758 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5074 - mrcnn_class_loss: 0.2216 - mrcnn_bbox_loss: 0.2975 - mrcnn_mask_loss: 0.3374120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - "1374/2000 [===================>..........] - ETA: 11:03 - loss: 1.3759 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5073 - mrcnn_class_loss: 0.2216 - mrcnn_bbox_loss: 0.2976 - mrcnn_mask_loss: 0.3374365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - "1375/2000 [===================>..........] - ETA: 11:02 - loss: 1.3756 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5073 - mrcnn_class_loss: 0.2215 - mrcnn_bbox_loss: 0.2975 - mrcnn_mask_loss: 0.3374106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - "1376/2000 [===================>..........] - ETA: 11:01 - loss: 1.3752 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5070 - mrcnn_class_loss: 0.2215 - mrcnn_bbox_loss: 0.2975 - mrcnn_mask_loss: 0.3373160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - "1377/2000 [===================>..........] - ETA: 11:00 - loss: 1.3753 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5071 - mrcnn_class_loss: 0.2215 - mrcnn_bbox_loss: 0.2975 - mrcnn_mask_loss: 0.3373368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - "1378/2000 [===================>..........] - ETA: 10:59 - loss: 1.3749 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5071 - mrcnn_class_loss: 0.2214 - mrcnn_bbox_loss: 0.2974 - mrcnn_mask_loss: 0.3371224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - "1379/2000 [===================>..........] - ETA: 10:58 - loss: 1.3746 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5068 - mrcnn_class_loss: 0.2213 - mrcnn_bbox_loss: 0.2974 - mrcnn_mask_loss: 0.337141\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - "1380/2000 [===================>..........] - ETA: 10:57 - loss: 1.3743 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5068 - mrcnn_class_loss: 0.2213 - mrcnn_bbox_loss: 0.2973 - mrcnn_mask_loss: 0.337095\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - "1381/2000 [===================>..........] - ETA: 10:56 - loss: 1.3739 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5067 - mrcnn_class_loss: 0.2212 - mrcnn_bbox_loss: 0.2972 - mrcnn_mask_loss: 0.336993\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - "1382/2000 [===================>..........] - ETA: 10:54 - loss: 1.3735 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5066 - mrcnn_class_loss: 0.2210 - mrcnn_bbox_loss: 0.2971 - mrcnn_mask_loss: 0.3368168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - "1383/2000 [===================>..........] - ETA: 10:53 - loss: 1.3732 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5064 - mrcnn_class_loss: 0.2211 - mrcnn_bbox_loss: 0.2971 - mrcnn_mask_loss: 0.3368217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - "1384/2000 [===================>..........] - ETA: 10:52 - loss: 1.3729 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5063 - mrcnn_class_loss: 0.2211 - mrcnn_bbox_loss: 0.2970 - mrcnn_mask_loss: 0.3367238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - "1385/2000 [===================>..........] - ETA: 10:51 - loss: 1.3724 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5062 - mrcnn_class_loss: 0.2210 - mrcnn_bbox_loss: 0.2968 - mrcnn_mask_loss: 0.336546\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1386/2000 [===================>..........] - ETA: 10:50 - loss: 1.3718 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5059 - mrcnn_class_loss: 0.2209 - mrcnn_bbox_loss: 0.2967 - mrcnn_mask_loss: 0.3364141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - "1387/2000 [===================>..........] - ETA: 10:49 - loss: 1.3717 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5059 - mrcnn_class_loss: 0.2209 - mrcnn_bbox_loss: 0.2967 - mrcnn_mask_loss: 0.3364387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - "1388/2000 [===================>..........] - ETA: 10:48 - loss: 1.3717 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5059 - mrcnn_class_loss: 0.2209 - mrcnn_bbox_loss: 0.2967 - mrcnn_mask_loss: 0.3363377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - "1389/2000 [===================>..........] - ETA: 10:47 - loss: 1.3714 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5059 - mrcnn_class_loss: 0.2208 - mrcnn_bbox_loss: 0.2966 - mrcnn_mask_loss: 0.33623\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - "1390/2000 [===================>..........] - ETA: 10:46 - loss: 1.3711 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5059 - mrcnn_class_loss: 0.2208 - mrcnn_bbox_loss: 0.2965 - mrcnn_mask_loss: 0.3361330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - "1391/2000 [===================>..........] - ETA: 10:44 - loss: 1.3709 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5058 - mrcnn_class_loss: 0.2207 - mrcnn_bbox_loss: 0.2964 - mrcnn_mask_loss: 0.33618\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - "1392/2000 [===================>..........] - ETA: 10:43 - loss: 1.3707 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5059 - mrcnn_class_loss: 0.2206 - mrcnn_bbox_loss: 0.2963 - mrcnn_mask_loss: 0.3360351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - "1393/2000 [===================>..........] - ETA: 10:42 - loss: 1.3702 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5057 - mrcnn_class_loss: 0.2205 - mrcnn_bbox_loss: 0.2962 - mrcnn_mask_loss: 0.3360193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - "1394/2000 [===================>..........] - ETA: 10:41 - loss: 1.3696 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.5055 - mrcnn_class_loss: 0.2204 - mrcnn_bbox_loss: 0.2961 - mrcnn_mask_loss: 0.3358288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - "1395/2000 [===================>..........] - ETA: 10:40 - loss: 1.3698 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5055 - mrcnn_class_loss: 0.2206 - mrcnn_bbox_loss: 0.2961 - mrcnn_mask_loss: 0.335881\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - "1396/2000 [===================>..........] - ETA: 10:39 - loss: 1.3696 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5053 - mrcnn_class_loss: 0.2206 - mrcnn_bbox_loss: 0.2961 - mrcnn_mask_loss: 0.3357282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - "1397/2000 [===================>..........] - ETA: 10:38 - loss: 1.3696 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5052 - mrcnn_class_loss: 0.2208 - mrcnn_bbox_loss: 0.2960 - mrcnn_mask_loss: 0.3357234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - "1398/2000 [===================>..........] - ETA: 10:37 - loss: 1.3691 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5051 - mrcnn_class_loss: 0.2207 - mrcnn_bbox_loss: 0.2959 - mrcnn_mask_loss: 0.335633\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - "1399/2000 [===================>..........] - ETA: 10:36 - loss: 1.3686 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5050 - mrcnn_class_loss: 0.2205 - mrcnn_bbox_loss: 0.2958 - mrcnn_mask_loss: 0.3355311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - "1400/2000 [====================>.........] - ETA: 10:35 - loss: 1.3683 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5048 - mrcnn_class_loss: 0.2204 - mrcnn_bbox_loss: 0.2957 - mrcnn_mask_loss: 0.3355163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1401/2000 [====================>.........] - ETA: 10:33 - loss: 1.3683 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5048 - mrcnn_class_loss: 0.2205 - mrcnn_bbox_loss: 0.2957 - mrcnn_mask_loss: 0.3354240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - "1402/2000 [====================>.........] - ETA: 10:32 - loss: 1.3682 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5047 - mrcnn_class_loss: 0.2205 - mrcnn_bbox_loss: 0.2957 - mrcnn_mask_loss: 0.3354242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - "1403/2000 [====================>.........] - ETA: 10:31 - loss: 1.3682 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5045 - mrcnn_class_loss: 0.2207 - mrcnn_bbox_loss: 0.2958 - mrcnn_mask_loss: 0.3354322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - "1404/2000 [====================>.........] - ETA: 10:30 - loss: 1.3679 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5043 - mrcnn_class_loss: 0.2207 - mrcnn_bbox_loss: 0.2957 - mrcnn_mask_loss: 0.3354327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n", - "1405/2000 [====================>.........] - ETA: 10:29 - loss: 1.3676 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5042 - mrcnn_class_loss: 0.2206 - mrcnn_bbox_loss: 0.2957 - mrcnn_mask_loss: 0.3354386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - "1406/2000 [====================>.........] - ETA: 10:28 - loss: 1.3675 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5042 - mrcnn_class_loss: 0.2205 - mrcnn_bbox_loss: 0.2957 - mrcnn_mask_loss: 0.335313\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - "1407/2000 [====================>.........] - ETA: 10:27 - loss: 1.3673 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5043 - mrcnn_class_loss: 0.2204 - mrcnn_bbox_loss: 0.2956 - mrcnn_mask_loss: 0.3352118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - "1408/2000 [====================>.........] - ETA: 10:26 - loss: 1.3670 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5042 - mrcnn_class_loss: 0.2204 - mrcnn_bbox_loss: 0.2955 - mrcnn_mask_loss: 0.335191\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - "1409/2000 [====================>.........] - ETA: 10:25 - loss: 1.3668 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5041 - mrcnn_class_loss: 0.2204 - mrcnn_bbox_loss: 0.2954 - mrcnn_mask_loss: 0.3351296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - "1410/2000 [====================>.........] - ETA: 10:24 - loss: 1.3666 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5040 - mrcnn_class_loss: 0.2204 - mrcnn_bbox_loss: 0.2953 - mrcnn_mask_loss: 0.3351303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - "1411/2000 [====================>.........] - ETA: 10:23 - loss: 1.3665 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5040 - mrcnn_class_loss: 0.2203 - mrcnn_bbox_loss: 0.2953 - mrcnn_mask_loss: 0.3351354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - "1412/2000 [====================>.........] - ETA: 10:22 - loss: 1.3661 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5038 - mrcnn_class_loss: 0.2203 - mrcnn_bbox_loss: 0.2952 - mrcnn_mask_loss: 0.33507\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - "1413/2000 [====================>.........] - ETA: 10:21 - loss: 1.3657 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5037 - mrcnn_class_loss: 0.2202 - mrcnn_bbox_loss: 0.2951 - mrcnn_mask_loss: 0.334923\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - "1414/2000 [====================>.........] - ETA: 10:20 - loss: 1.3653 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5036 - mrcnn_class_loss: 0.2202 - mrcnn_bbox_loss: 0.2950 - mrcnn_mask_loss: 0.3348179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - "1415/2000 [====================>.........] - ETA: 10:19 - loss: 1.3653 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5038 - mrcnn_class_loss: 0.2202 - mrcnn_bbox_loss: 0.2949 - mrcnn_mask_loss: 0.3347378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1416/2000 [====================>.........] - ETA: 10:18 - loss: 1.3651 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5037 - mrcnn_class_loss: 0.2201 - mrcnn_bbox_loss: 0.2949 - mrcnn_mask_loss: 0.3346264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - "1417/2000 [====================>.........] - ETA: 10:16 - loss: 1.3648 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5036 - mrcnn_class_loss: 0.2200 - mrcnn_bbox_loss: 0.2949 - mrcnn_mask_loss: 0.3346399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - "1418/2000 [====================>.........] - ETA: 10:15 - loss: 1.3647 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5037 - mrcnn_class_loss: 0.2199 - mrcnn_bbox_loss: 0.2948 - mrcnn_mask_loss: 0.334538\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - "1419/2000 [====================>.........] - ETA: 10:14 - loss: 1.3646 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5039 - mrcnn_class_loss: 0.2198 - mrcnn_bbox_loss: 0.2947 - mrcnn_mask_loss: 0.3344295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - "1420/2000 [====================>.........] - ETA: 10:13 - loss: 1.3644 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5038 - mrcnn_class_loss: 0.2198 - mrcnn_bbox_loss: 0.2947 - mrcnn_mask_loss: 0.334396\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - "1421/2000 [====================>.........] - ETA: 10:12 - loss: 1.3641 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5038 - mrcnn_class_loss: 0.2197 - mrcnn_bbox_loss: 0.2946 - mrcnn_mask_loss: 0.3342237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - "1422/2000 [====================>.........] - ETA: 10:11 - loss: 1.3636 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5036 - mrcnn_class_loss: 0.2197 - mrcnn_bbox_loss: 0.2944 - mrcnn_mask_loss: 0.3341152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - "1423/2000 [====================>.........] - ETA: 10:10 - loss: 1.3638 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5038 - mrcnn_class_loss: 0.2197 - mrcnn_bbox_loss: 0.2944 - mrcnn_mask_loss: 0.3340318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - "1424/2000 [====================>.........] - ETA: 10:09 - loss: 1.3635 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5037 - mrcnn_class_loss: 0.2196 - mrcnn_bbox_loss: 0.2944 - mrcnn_mask_loss: 0.334053\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - "1425/2000 [====================>.........] - ETA: 10:08 - loss: 1.3629 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5035 - mrcnn_class_loss: 0.2196 - mrcnn_bbox_loss: 0.2942 - mrcnn_mask_loss: 0.333964\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - "1426/2000 [====================>.........] - ETA: 10:07 - loss: 1.3623 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5032 - mrcnn_class_loss: 0.2195 - mrcnn_bbox_loss: 0.2941 - mrcnn_mask_loss: 0.3338136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - "1427/2000 [====================>.........] - ETA: 10:06 - loss: 1.3620 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5032 - mrcnn_class_loss: 0.2194 - mrcnn_bbox_loss: 0.2940 - mrcnn_mask_loss: 0.3337200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - "1428/2000 [====================>.........] - ETA: 10:05 - loss: 1.3617 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5030 - mrcnn_class_loss: 0.2193 - mrcnn_bbox_loss: 0.2939 - mrcnn_mask_loss: 0.3336124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - "1429/2000 [====================>.........] - ETA: 10:04 - loss: 1.3615 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5030 - mrcnn_class_loss: 0.2192 - mrcnn_bbox_loss: 0.2939 - mrcnn_mask_loss: 0.3336371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - "1430/2000 [====================>.........] - ETA: 10:03 - loss: 1.3612 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5028 - mrcnn_class_loss: 0.2192 - mrcnn_bbox_loss: 0.2938 - mrcnn_mask_loss: 0.3335213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1431/2000 [====================>.........] - ETA: 10:02 - loss: 1.3608 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5026 - mrcnn_class_loss: 0.2192 - mrcnn_bbox_loss: 0.2937 - mrcnn_mask_loss: 0.3334230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - "1432/2000 [====================>.........] - ETA: 10:01 - loss: 1.3603 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5025 - mrcnn_class_loss: 0.2191 - mrcnn_bbox_loss: 0.2936 - mrcnn_mask_loss: 0.333325\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - "1433/2000 [====================>.........] - ETA: 10:00 - loss: 1.3600 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5026 - mrcnn_class_loss: 0.2190 - mrcnn_bbox_loss: 0.2935 - mrcnn_mask_loss: 0.3332229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - "1434/2000 [====================>.........] - ETA: 9:59 - loss: 1.3593 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5023 - mrcnn_class_loss: 0.2189 - mrcnn_bbox_loss: 0.2933 - mrcnn_mask_loss: 0.3331 269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - "1435/2000 [====================>.........] - ETA: 9:57 - loss: 1.3589 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5021 - mrcnn_class_loss: 0.2187 - mrcnn_bbox_loss: 0.2933 - mrcnn_mask_loss: 0.3331150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - "1436/2000 [====================>.........] - ETA: 9:56 - loss: 1.3588 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5021 - mrcnn_class_loss: 0.2187 - mrcnn_bbox_loss: 0.2933 - mrcnn_mask_loss: 0.3330298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - "1437/2000 [====================>.........] - ETA: 9:55 - loss: 1.3586 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5021 - mrcnn_class_loss: 0.2186 - mrcnn_bbox_loss: 0.2932 - mrcnn_mask_loss: 0.3329384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - "1438/2000 [====================>.........] - ETA: 9:54 - loss: 1.3583 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5020 - mrcnn_class_loss: 0.2186 - mrcnn_bbox_loss: 0.2932 - mrcnn_mask_loss: 0.3328292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - "1439/2000 [====================>.........] - ETA: 9:53 - loss: 1.3580 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5019 - mrcnn_class_loss: 0.2185 - mrcnn_bbox_loss: 0.2931 - mrcnn_mask_loss: 0.332872\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - "1440/2000 [====================>.........] - ETA: 9:52 - loss: 1.3576 - rpn_class_loss: 0.0118 - rpn_bbox_loss: 0.5017 - mrcnn_class_loss: 0.2185 - mrcnn_bbox_loss: 0.2930 - mrcnn_mask_loss: 0.3327197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - "1441/2000 [====================>.........] - ETA: 9:51 - loss: 1.3571 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5015 - mrcnn_class_loss: 0.2184 - mrcnn_bbox_loss: 0.2928 - mrcnn_mask_loss: 0.3326111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - "1442/2000 [====================>.........] - ETA: 9:50 - loss: 1.3569 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5014 - mrcnn_class_loss: 0.2184 - mrcnn_bbox_loss: 0.2928 - mrcnn_mask_loss: 0.3326385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - "1443/2000 [====================>.........] - ETA: 9:49 - loss: 1.3565 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5013 - mrcnn_class_loss: 0.2183 - mrcnn_bbox_loss: 0.2927 - mrcnn_mask_loss: 0.3325131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - "1444/2000 [====================>.........] - ETA: 9:48 - loss: 1.3564 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5013 - mrcnn_class_loss: 0.2184 - mrcnn_bbox_loss: 0.2926 - mrcnn_mask_loss: 0.3324335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - "1445/2000 [====================>.........] - ETA: 9:47 - loss: 1.3560 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5011 - mrcnn_class_loss: 0.2182 - mrcnn_bbox_loss: 0.2925 - mrcnn_mask_loss: 0.3324262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1446/2000 [====================>.........] - ETA: 9:46 - loss: 1.3556 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5009 - mrcnn_class_loss: 0.2181 - mrcnn_bbox_loss: 0.2925 - mrcnn_mask_loss: 0.332387\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - "1447/2000 [====================>.........] - ETA: 9:45 - loss: 1.3551 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5007 - mrcnn_class_loss: 0.2181 - mrcnn_bbox_loss: 0.2924 - mrcnn_mask_loss: 0.332388\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - "1448/2000 [====================>.........] - ETA: 9:44 - loss: 1.3547 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5007 - mrcnn_class_loss: 0.2180 - mrcnn_bbox_loss: 0.2922 - mrcnn_mask_loss: 0.3321100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - "1449/2000 [====================>.........] - ETA: 9:43 - loss: 1.3545 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5006 - mrcnn_class_loss: 0.2179 - mrcnn_bbox_loss: 0.2922 - mrcnn_mask_loss: 0.332136\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - "1450/2000 [====================>.........] - ETA: 9:42 - loss: 1.3543 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5007 - mrcnn_class_loss: 0.2178 - mrcnn_bbox_loss: 0.2920 - mrcnn_mask_loss: 0.332032\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - "1451/2000 [====================>.........] - ETA: 9:41 - loss: 1.3541 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5007 - mrcnn_class_loss: 0.2177 - mrcnn_bbox_loss: 0.2921 - mrcnn_mask_loss: 0.3319132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - "1452/2000 [====================>.........] - ETA: 9:40 - loss: 1.3540 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5007 - mrcnn_class_loss: 0.2177 - mrcnn_bbox_loss: 0.2920 - mrcnn_mask_loss: 0.3319394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - "1453/2000 [====================>.........] - ETA: 9:39 - loss: 1.3537 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5006 - mrcnn_class_loss: 0.2176 - mrcnn_bbox_loss: 0.2919 - mrcnn_mask_loss: 0.3318184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - "1454/2000 [====================>.........] - ETA: 9:38 - loss: 1.3534 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5006 - mrcnn_class_loss: 0.2175 - mrcnn_bbox_loss: 0.2919 - mrcnn_mask_loss: 0.3318102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - "1455/2000 [====================>.........] - ETA: 9:37 - loss: 1.3532 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5004 - mrcnn_class_loss: 0.2174 - mrcnn_bbox_loss: 0.2919 - mrcnn_mask_loss: 0.3318175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - "1456/2000 [====================>.........] - ETA: 9:36 - loss: 1.3529 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5003 - mrcnn_class_loss: 0.2174 - mrcnn_bbox_loss: 0.2918 - mrcnn_mask_loss: 0.3317362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - "1457/2000 [====================>.........] - ETA: 9:35 - loss: 1.3528 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5004 - mrcnn_class_loss: 0.2174 - mrcnn_bbox_loss: 0.2918 - mrcnn_mask_loss: 0.3316205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - "1458/2000 [====================>.........] - ETA: 9:34 - loss: 1.3525 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5002 - mrcnn_class_loss: 0.2174 - mrcnn_bbox_loss: 0.2917 - mrcnn_mask_loss: 0.3315133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - "1459/2000 [====================>.........] - ETA: 9:33 - loss: 1.3524 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5002 - mrcnn_class_loss: 0.2174 - mrcnn_bbox_loss: 0.2916 - mrcnn_mask_loss: 0.3314105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - "1460/2000 [====================>.........] - ETA: 9:32 - loss: 1.3520 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5000 - mrcnn_class_loss: 0.2173 - mrcnn_bbox_loss: 0.2915 - mrcnn_mask_loss: 0.3314361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1461/2000 [====================>.........] - ETA: 9:31 - loss: 1.3520 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5002 - mrcnn_class_loss: 0.2173 - mrcnn_bbox_loss: 0.2915 - mrcnn_mask_loss: 0.3313259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - "1462/2000 [====================>.........] - ETA: 9:30 - loss: 1.3518 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5002 - mrcnn_class_loss: 0.2173 - mrcnn_bbox_loss: 0.2914 - mrcnn_mask_loss: 0.3313146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - "1463/2000 [====================>.........] - ETA: 9:29 - loss: 1.3518 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5003 - mrcnn_class_loss: 0.2173 - mrcnn_bbox_loss: 0.2913 - mrcnn_mask_loss: 0.3313398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - "1464/2000 [====================>.........] - ETA: 9:28 - loss: 1.3519 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5005 - mrcnn_class_loss: 0.2172 - mrcnn_bbox_loss: 0.2913 - mrcnn_mask_loss: 0.3312340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - "1465/2000 [====================>.........] - ETA: 9:27 - loss: 1.3518 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5006 - mrcnn_class_loss: 0.2172 - mrcnn_bbox_loss: 0.2912 - mrcnn_mask_loss: 0.3312176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - "1466/2000 [====================>.........] - ETA: 9:26 - loss: 1.3519 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5006 - mrcnn_class_loss: 0.2174 - mrcnn_bbox_loss: 0.2912 - mrcnn_mask_loss: 0.3311300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - "1467/2000 [=====================>........] - ETA: 9:25 - loss: 1.3520 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5007 - mrcnn_class_loss: 0.2174 - mrcnn_bbox_loss: 0.2911 - mrcnn_mask_loss: 0.3311376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - "1468/2000 [=====================>........] - ETA: 9:24 - loss: 1.3517 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5006 - mrcnn_class_loss: 0.2174 - mrcnn_bbox_loss: 0.2910 - mrcnn_mask_loss: 0.3309287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - "1469/2000 [=====================>........] - ETA: 9:23 - loss: 1.3514 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5006 - mrcnn_class_loss: 0.2173 - mrcnn_bbox_loss: 0.2910 - mrcnn_mask_loss: 0.3309317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - "1470/2000 [=====================>........] - ETA: 9:22 - loss: 1.3512 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5005 - mrcnn_class_loss: 0.2172 - mrcnn_bbox_loss: 0.2910 - mrcnn_mask_loss: 0.3308356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - "1471/2000 [=====================>........] - ETA: 9:21 - loss: 1.3508 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5004 - mrcnn_class_loss: 0.2171 - mrcnn_bbox_loss: 0.2909 - mrcnn_mask_loss: 0.3308272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - "1472/2000 [=====================>........] - ETA: 9:20 - loss: 1.3505 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5002 - mrcnn_class_loss: 0.2170 - mrcnn_bbox_loss: 0.2909 - mrcnn_mask_loss: 0.3307358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - "1473/2000 [=====================>........] - ETA: 9:19 - loss: 1.3501 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.5001 - mrcnn_class_loss: 0.2168 - mrcnn_bbox_loss: 0.2908 - mrcnn_mask_loss: 0.3306228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - "1474/2000 [=====================>........] - ETA: 9:18 - loss: 1.3496 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.4999 - mrcnn_class_loss: 0.2168 - mrcnn_bbox_loss: 0.2907 - mrcnn_mask_loss: 0.3306301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1475/2000 [=====================>........] - ETA: 9:17 - loss: 1.3494 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.4999 - mrcnn_class_loss: 0.2167 - mrcnn_bbox_loss: 0.2906 - mrcnn_mask_loss: 0.3305315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - "1476/2000 [=====================>........] - ETA: 9:16 - loss: 1.3491 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.4998 - mrcnn_class_loss: 0.2166 - mrcnn_bbox_loss: 0.2905 - mrcnn_mask_loss: 0.330529\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - "1477/2000 [=====================>........] - ETA: 9:15 - loss: 1.3486 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.4996 - mrcnn_class_loss: 0.2166 - mrcnn_bbox_loss: 0.2903 - mrcnn_mask_loss: 0.33045\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - "1478/2000 [=====================>........] - ETA: 9:13 - loss: 1.3479 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.4993 - mrcnn_class_loss: 0.2164 - mrcnn_bbox_loss: 0.2902 - mrcnn_mask_loss: 0.3303276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - "1479/2000 [=====================>........] - ETA: 9:12 - loss: 1.3478 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.4993 - mrcnn_class_loss: 0.2164 - mrcnn_bbox_loss: 0.2902 - mrcnn_mask_loss: 0.3303126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - "1480/2000 [=====================>........] - ETA: 9:11 - loss: 1.3476 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.4993 - mrcnn_class_loss: 0.2163 - mrcnn_bbox_loss: 0.2901 - mrcnn_mask_loss: 0.3302343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - "1481/2000 [=====================>........] - ETA: 9:10 - loss: 1.3476 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.4994 - mrcnn_class_loss: 0.2163 - mrcnn_bbox_loss: 0.2901 - mrcnn_mask_loss: 0.3301142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - "1482/2000 [=====================>........] - ETA: 9:09 - loss: 1.3473 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.4993 - mrcnn_class_loss: 0.2163 - mrcnn_bbox_loss: 0.2900 - mrcnn_mask_loss: 0.3301382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - "1483/2000 [=====================>........] - ETA: 9:08 - loss: 1.3473 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.4994 - mrcnn_class_loss: 0.2162 - mrcnn_bbox_loss: 0.2900 - mrcnn_mask_loss: 0.3301210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - "1484/2000 [=====================>........] - ETA: 9:07 - loss: 1.3468 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.4992 - mrcnn_class_loss: 0.2162 - mrcnn_bbox_loss: 0.2898 - mrcnn_mask_loss: 0.3300251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - "1485/2000 [=====================>........] - ETA: 9:06 - loss: 1.3466 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4990 - mrcnn_class_loss: 0.2161 - mrcnn_bbox_loss: 0.2898 - mrcnn_mask_loss: 0.330027\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - "1486/2000 [=====================>........] - ETA: 9:05 - loss: 1.3463 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4989 - mrcnn_class_loss: 0.2161 - mrcnn_bbox_loss: 0.2897 - mrcnn_mask_loss: 0.3299268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - "1487/2000 [=====================>........] - ETA: 9:04 - loss: 1.3460 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4987 - mrcnn_class_loss: 0.2161 - mrcnn_bbox_loss: 0.2897 - mrcnn_mask_loss: 0.3298183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - "1488/2000 [=====================>........] - ETA: 9:03 - loss: 1.3458 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4988 - mrcnn_class_loss: 0.2160 - mrcnn_bbox_loss: 0.2896 - mrcnn_mask_loss: 0.3298255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - "1489/2000 [=====================>........] - ETA: 9:02 - loss: 1.3455 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4987 - mrcnn_class_loss: 0.2160 - mrcnn_bbox_loss: 0.2894 - mrcnn_mask_loss: 0.329821\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1490/2000 [=====================>........] - ETA: 9:01 - loss: 1.3453 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4987 - mrcnn_class_loss: 0.2159 - mrcnn_bbox_loss: 0.2893 - mrcnn_mask_loss: 0.3297252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - "1491/2000 [=====================>........] - ETA: 9:00 - loss: 1.3450 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4986 - mrcnn_class_loss: 0.2159 - mrcnn_bbox_loss: 0.2892 - mrcnn_mask_loss: 0.3296127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - "1492/2000 [=====================>........] - ETA: 8:59 - loss: 1.3446 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4985 - mrcnn_class_loss: 0.2158 - mrcnn_bbox_loss: 0.2891 - mrcnn_mask_loss: 0.3296109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - "1493/2000 [=====================>........] - ETA: 8:58 - loss: 1.3443 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4983 - mrcnn_class_loss: 0.2158 - mrcnn_bbox_loss: 0.2890 - mrcnn_mask_loss: 0.3296134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - "1494/2000 [=====================>........] - ETA: 8:57 - loss: 1.3442 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4983 - mrcnn_class_loss: 0.2157 - mrcnn_bbox_loss: 0.2889 - mrcnn_mask_loss: 0.3296128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - "1495/2000 [=====================>........] - ETA: 8:56 - loss: 1.3438 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4982 - mrcnn_class_loss: 0.2156 - mrcnn_bbox_loss: 0.2888 - mrcnn_mask_loss: 0.329539\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - "1496/2000 [=====================>........] - ETA: 8:55 - loss: 1.3436 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4983 - mrcnn_class_loss: 0.2156 - mrcnn_bbox_loss: 0.2887 - mrcnn_mask_loss: 0.3294326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - "1497/2000 [=====================>........] - ETA: 8:53 - loss: 1.3432 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4981 - mrcnn_class_loss: 0.2155 - mrcnn_bbox_loss: 0.2886 - mrcnn_mask_loss: 0.329470\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - "1498/2000 [=====================>........] - ETA: 8:52 - loss: 1.3428 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4979 - mrcnn_class_loss: 0.2154 - mrcnn_bbox_loss: 0.2885 - mrcnn_mask_loss: 0.329356\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - "1499/2000 [=====================>........] - ETA: 8:51 - loss: 1.3424 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4978 - mrcnn_class_loss: 0.2154 - mrcnn_bbox_loss: 0.2884 - mrcnn_mask_loss: 0.3292189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - "1500/2000 [=====================>........] - ETA: 8:50 - loss: 1.3420 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4976 - mrcnn_class_loss: 0.2153 - mrcnn_bbox_loss: 0.2884 - mrcnn_mask_loss: 0.3291278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - "1501/2000 [=====================>........] - ETA: 8:49 - loss: 1.3418 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4976 - mrcnn_class_loss: 0.2153 - mrcnn_bbox_loss: 0.2882 - mrcnn_mask_loss: 0.3290107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - "1502/2000 [=====================>........] - ETA: 8:48 - loss: 1.3414 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4974 - mrcnn_class_loss: 0.2152 - mrcnn_bbox_loss: 0.2882 - mrcnn_mask_loss: 0.3290173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - "1503/2000 [=====================>........] - ETA: 8:47 - loss: 1.3412 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4973 - mrcnn_class_loss: 0.2152 - mrcnn_bbox_loss: 0.2882 - mrcnn_mask_loss: 0.3289104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - "1504/2000 [=====================>........] - ETA: 8:46 - loss: 1.3409 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4972 - mrcnn_class_loss: 0.2152 - mrcnn_bbox_loss: 0.2881 - mrcnn_mask_loss: 0.3288271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - "1505/2000 [=====================>........] - ETA: 8:45 - loss: 1.3405 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4970 - mrcnn_class_loss: 0.2152 - mrcnn_bbox_loss: 0.2881 - mrcnn_mask_loss: 0.3287347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - "1506/2000 [=====================>........] - ETA: 8:44 - loss: 1.3405 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4971 - mrcnn_class_loss: 0.2151 - mrcnn_bbox_loss: 0.2881 - mrcnn_mask_loss: 0.328763\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - "1507/2000 [=====================>........] - ETA: 8:43 - loss: 1.3402 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4969 - mrcnn_class_loss: 0.2151 - mrcnn_bbox_loss: 0.2880 - mrcnn_mask_loss: 0.3286174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - "1508/2000 [=====================>........] - ETA: 8:42 - loss: 1.3399 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4969 - mrcnn_class_loss: 0.2150 - mrcnn_bbox_loss: 0.2879 - mrcnn_mask_loss: 0.3285223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - "1509/2000 [=====================>........] - ETA: 8:41 - loss: 1.3396 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4968 - mrcnn_class_loss: 0.2149 - mrcnn_bbox_loss: 0.2879 - mrcnn_mask_loss: 0.3284208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - "1510/2000 [=====================>........] - ETA: 8:40 - loss: 1.3392 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4966 - mrcnn_class_loss: 0.2149 - mrcnn_bbox_loss: 0.2878 - mrcnn_mask_loss: 0.328435\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - "1511/2000 [=====================>........] - ETA: 8:39 - loss: 1.3388 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4966 - mrcnn_class_loss: 0.2147 - mrcnn_bbox_loss: 0.2877 - mrcnn_mask_loss: 0.3283253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - "1512/2000 [=====================>........] - ETA: 8:38 - loss: 1.3385 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4965 - mrcnn_class_loss: 0.2147 - mrcnn_bbox_loss: 0.2876 - mrcnn_mask_loss: 0.3282139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - "1513/2000 [=====================>........] - ETA: 8:37 - loss: 1.3382 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4964 - mrcnn_class_loss: 0.2146 - mrcnn_bbox_loss: 0.2875 - mrcnn_mask_loss: 0.3281367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - "1514/2000 [=====================>........] - ETA: 8:36 - loss: 1.3380 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4964 - mrcnn_class_loss: 0.2144 - mrcnn_bbox_loss: 0.2874 - mrcnn_mask_loss: 0.3281248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - "1515/2000 [=====================>........] - ETA: 8:35 - loss: 1.3375 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4962 - mrcnn_class_loss: 0.2144 - mrcnn_bbox_loss: 0.2873 - mrcnn_mask_loss: 0.3281143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - "1516/2000 [=====================>........] - ETA: 8:34 - loss: 1.3374 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4962 - mrcnn_class_loss: 0.2143 - mrcnn_bbox_loss: 0.2873 - mrcnn_mask_loss: 0.328019\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - "1517/2000 [=====================>........] - ETA: 8:33 - loss: 1.3374 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4964 - mrcnn_class_loss: 0.2143 - mrcnn_bbox_loss: 0.2872 - mrcnn_mask_loss: 0.3279140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - "1518/2000 [=====================>........] - ETA: 8:32 - loss: 1.3371 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4963 - mrcnn_class_loss: 0.2142 - mrcnn_bbox_loss: 0.2872 - mrcnn_mask_loss: 0.3278113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1519/2000 [=====================>........] - ETA: 8:31 - loss: 1.3368 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4962 - mrcnn_class_loss: 0.2142 - mrcnn_bbox_loss: 0.2871 - mrcnn_mask_loss: 0.32780\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - "1520/2000 [=====================>........] - ETA: 8:29 - loss: 1.3370 - rpn_class_loss: 0.0116 - rpn_bbox_loss: 0.4964 - mrcnn_class_loss: 0.2141 - mrcnn_bbox_loss: 0.2872 - mrcnn_mask_loss: 0.3277219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - "1521/2000 [=====================>........] - ETA: 8:28 - loss: 1.3365 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4963 - mrcnn_class_loss: 0.2140 - mrcnn_bbox_loss: 0.2871 - mrcnn_mask_loss: 0.3276349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - "1522/2000 [=====================>........] - ETA: 8:27 - loss: 1.3363 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4963 - mrcnn_class_loss: 0.2139 - mrcnn_bbox_loss: 0.2870 - mrcnn_mask_loss: 0.327568\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - "1523/2000 [=====================>........] - ETA: 8:26 - loss: 1.3358 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4961 - mrcnn_class_loss: 0.2138 - mrcnn_bbox_loss: 0.2869 - mrcnn_mask_loss: 0.3275201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - "1524/2000 [=====================>........] - ETA: 8:25 - loss: 1.3353 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4959 - mrcnn_class_loss: 0.2137 - mrcnn_bbox_loss: 0.2868 - mrcnn_mask_loss: 0.3274375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - "1525/2000 [=====================>........] - ETA: 8:24 - loss: 1.3350 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4957 - mrcnn_class_loss: 0.2137 - mrcnn_bbox_loss: 0.2868 - mrcnn_mask_loss: 0.3273304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - "1526/2000 [=====================>........] - ETA: 8:23 - loss: 1.3347 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4956 - mrcnn_class_loss: 0.2136 - mrcnn_bbox_loss: 0.2867 - mrcnn_mask_loss: 0.3273392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - "1527/2000 [=====================>........] - ETA: 8:22 - loss: 1.3346 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4956 - mrcnn_class_loss: 0.2135 - mrcnn_bbox_loss: 0.2867 - mrcnn_mask_loss: 0.3273380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - "1528/2000 [=====================>........] - ETA: 8:21 - loss: 1.3346 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4956 - mrcnn_class_loss: 0.2134 - mrcnn_bbox_loss: 0.2868 - mrcnn_mask_loss: 0.327317\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - "1529/2000 [=====================>........] - ETA: 8:20 - loss: 1.3345 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4958 - mrcnn_class_loss: 0.2133 - mrcnn_bbox_loss: 0.2867 - mrcnn_mask_loss: 0.3272190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - "1530/2000 [=====================>........] - ETA: 8:19 - loss: 1.3340 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4957 - mrcnn_class_loss: 0.2132 - mrcnn_bbox_loss: 0.2866 - mrcnn_mask_loss: 0.3271101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - "1531/2000 [=====================>........] - ETA: 8:18 - loss: 1.3338 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4956 - mrcnn_class_loss: 0.2132 - mrcnn_bbox_loss: 0.2865 - mrcnn_mask_loss: 0.32704\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - "1532/2000 [=====================>........] - ETA: 8:17 - loss: 1.3334 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4954 - mrcnn_class_loss: 0.2131 - mrcnn_bbox_loss: 0.2865 - mrcnn_mask_loss: 0.326983\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - "1533/2000 [=====================>........] - ETA: 8:16 - loss: 1.3330 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4952 - mrcnn_class_loss: 0.2130 - mrcnn_bbox_loss: 0.2865 - mrcnn_mask_loss: 0.3268244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1534/2000 [======================>.......] - ETA: 8:15 - loss: 1.3328 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4951 - mrcnn_class_loss: 0.2130 - mrcnn_bbox_loss: 0.2864 - mrcnn_mask_loss: 0.3268206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - "1535/2000 [======================>.......] - ETA: 8:14 - loss: 1.3324 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4949 - mrcnn_class_loss: 0.2130 - mrcnn_bbox_loss: 0.2863 - mrcnn_mask_loss: 0.3268119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - "1536/2000 [======================>.......] - ETA: 8:13 - loss: 1.3324 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4950 - mrcnn_class_loss: 0.2129 - mrcnn_bbox_loss: 0.2863 - mrcnn_mask_loss: 0.3267372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - "1537/2000 [======================>.......] - ETA: 8:12 - loss: 1.3320 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4947 - mrcnn_class_loss: 0.2129 - mrcnn_bbox_loss: 0.2862 - mrcnn_mask_loss: 0.326671\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - "1538/2000 [======================>.......] - ETA: 8:11 - loss: 1.3314 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4945 - mrcnn_class_loss: 0.2128 - mrcnn_bbox_loss: 0.2861 - mrcnn_mask_loss: 0.3265397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - "1539/2000 [======================>.......] - ETA: 8:10 - loss: 1.3312 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4946 - mrcnn_class_loss: 0.2127 - mrcnn_bbox_loss: 0.2859 - mrcnn_mask_loss: 0.3264366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - "1540/2000 [======================>.......] - ETA: 8:09 - loss: 1.3311 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4946 - mrcnn_class_loss: 0.2127 - mrcnn_bbox_loss: 0.2859 - mrcnn_mask_loss: 0.3264331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - "1541/2000 [======================>.......] - ETA: 8:08 - loss: 1.3309 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4944 - mrcnn_class_loss: 0.2127 - mrcnn_bbox_loss: 0.2858 - mrcnn_mask_loss: 0.326389\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - "1542/2000 [======================>.......] - ETA: 8:07 - loss: 1.3307 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4944 - mrcnn_class_loss: 0.2128 - mrcnn_bbox_loss: 0.2857 - mrcnn_mask_loss: 0.326375\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - "1543/2000 [======================>.......] - ETA: 8:05 - loss: 1.3303 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4943 - mrcnn_class_loss: 0.2127 - mrcnn_bbox_loss: 0.2856 - mrcnn_mask_loss: 0.3262225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - "1544/2000 [======================>.......] - ETA: 8:04 - loss: 1.3298 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4941 - mrcnn_class_loss: 0.2126 - mrcnn_bbox_loss: 0.2855 - mrcnn_mask_loss: 0.3262297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - "1545/2000 [======================>.......] - ETA: 8:03 - loss: 1.3296 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4941 - mrcnn_class_loss: 0.2125 - mrcnn_bbox_loss: 0.2854 - mrcnn_mask_loss: 0.3261369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - "1546/2000 [======================>.......] - ETA: 8:02 - loss: 1.3292 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4940 - mrcnn_class_loss: 0.2124 - mrcnn_bbox_loss: 0.2853 - mrcnn_mask_loss: 0.3260285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - "1547/2000 [======================>.......] - ETA: 8:01 - loss: 1.3290 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4940 - mrcnn_class_loss: 0.2123 - mrcnn_bbox_loss: 0.2852 - mrcnn_mask_loss: 0.3260157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - "1548/2000 [======================>.......] - ETA: 8:00 - loss: 1.3288 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4941 - mrcnn_class_loss: 0.2122 - mrcnn_bbox_loss: 0.2851 - mrcnn_mask_loss: 0.3259129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1549/2000 [======================>.......] - ETA: 7:59 - loss: 1.3287 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4941 - mrcnn_class_loss: 0.2121 - mrcnn_bbox_loss: 0.2852 - mrcnn_mask_loss: 0.3258390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - "1550/2000 [======================>.......] - ETA: 7:58 - loss: 1.3289 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4942 - mrcnn_class_loss: 0.2123 - mrcnn_bbox_loss: 0.2851 - mrcnn_mask_loss: 0.325831\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - "1551/2000 [======================>.......] - ETA: 7:57 - loss: 1.3285 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4941 - mrcnn_class_loss: 0.2122 - mrcnn_bbox_loss: 0.2850 - mrcnn_mask_loss: 0.3257344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - "1552/2000 [======================>.......] - ETA: 7:56 - loss: 1.3283 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4941 - mrcnn_class_loss: 0.2122 - mrcnn_bbox_loss: 0.2849 - mrcnn_mask_loss: 0.3256333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - "1553/2000 [======================>.......] - ETA: 7:55 - loss: 1.3280 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4939 - mrcnn_class_loss: 0.2121 - mrcnn_bbox_loss: 0.2849 - mrcnn_mask_loss: 0.3256391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - "1554/2000 [======================>.......] - ETA: 7:54 - loss: 1.3277 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4938 - mrcnn_class_loss: 0.2120 - mrcnn_bbox_loss: 0.2848 - mrcnn_mask_loss: 0.3256249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - "1555/2000 [======================>.......] - ETA: 7:53 - loss: 1.3275 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4936 - mrcnn_class_loss: 0.2120 - mrcnn_bbox_loss: 0.2847 - mrcnn_mask_loss: 0.3256158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - "1556/2000 [======================>.......] - ETA: 7:52 - loss: 1.3274 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4938 - mrcnn_class_loss: 0.2119 - mrcnn_bbox_loss: 0.2847 - mrcnn_mask_loss: 0.325558\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - "1557/2000 [======================>.......] - ETA: 7:51 - loss: 1.3272 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4938 - mrcnn_class_loss: 0.2118 - mrcnn_bbox_loss: 0.2846 - mrcnn_mask_loss: 0.3254166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - "1558/2000 [======================>.......] - ETA: 7:50 - loss: 1.3267 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4937 - mrcnn_class_loss: 0.2117 - mrcnn_bbox_loss: 0.2845 - mrcnn_mask_loss: 0.3253267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - "1559/2000 [======================>.......] - ETA: 7:49 - loss: 1.3264 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4935 - mrcnn_class_loss: 0.2117 - mrcnn_bbox_loss: 0.2845 - mrcnn_mask_loss: 0.3253121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - "1560/2000 [======================>.......] - ETA: 7:48 - loss: 1.3266 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4936 - mrcnn_class_loss: 0.2118 - mrcnn_bbox_loss: 0.2844 - mrcnn_mask_loss: 0.325399\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - "1561/2000 [======================>.......] - ETA: 7:47 - loss: 1.3265 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4937 - mrcnn_class_loss: 0.2117 - mrcnn_bbox_loss: 0.2843 - mrcnn_mask_loss: 0.325279\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - "1562/2000 [======================>.......] - ETA: 7:46 - loss: 1.3261 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4935 - mrcnn_class_loss: 0.2117 - mrcnn_bbox_loss: 0.2843 - mrcnn_mask_loss: 0.3252266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - "1563/2000 [======================>.......] - ETA: 7:45 - loss: 1.3257 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4933 - mrcnn_class_loss: 0.2116 - mrcnn_bbox_loss: 0.2842 - mrcnn_mask_loss: 0.3251305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1564/2000 [======================>.......] - ETA: 7:44 - loss: 1.3255 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4931 - mrcnn_class_loss: 0.2116 - mrcnn_bbox_loss: 0.2841 - mrcnn_mask_loss: 0.325151\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - "1565/2000 [======================>.......] - ETA: 7:42 - loss: 1.3249 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4929 - mrcnn_class_loss: 0.2115 - mrcnn_bbox_loss: 0.2839 - mrcnn_mask_loss: 0.325044\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - "1566/2000 [======================>.......] - ETA: 7:41 - loss: 1.3244 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4927 - mrcnn_class_loss: 0.2115 - mrcnn_bbox_loss: 0.2838 - mrcnn_mask_loss: 0.3249211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - "1567/2000 [======================>.......] - ETA: 7:40 - loss: 1.3239 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4925 - mrcnn_class_loss: 0.2113 - mrcnn_bbox_loss: 0.2837 - mrcnn_mask_loss: 0.3248293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - "1568/2000 [======================>.......] - ETA: 7:39 - loss: 1.3238 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4924 - mrcnn_class_loss: 0.2113 - mrcnn_bbox_loss: 0.2838 - mrcnn_mask_loss: 0.3248155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - "1569/2000 [======================>.......] - ETA: 7:38 - loss: 1.3237 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4926 - mrcnn_class_loss: 0.2112 - mrcnn_bbox_loss: 0.2837 - mrcnn_mask_loss: 0.3248103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - "1570/2000 [======================>.......] - ETA: 7:37 - loss: 1.3234 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4924 - mrcnn_class_loss: 0.2112 - mrcnn_bbox_loss: 0.2836 - mrcnn_mask_loss: 0.324782\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - "1571/2000 [======================>.......] - ETA: 7:36 - loss: 1.3229 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4922 - mrcnn_class_loss: 0.2111 - mrcnn_bbox_loss: 0.2835 - mrcnn_mask_loss: 0.3246357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - "1572/2000 [======================>.......] - ETA: 7:35 - loss: 1.3227 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4922 - mrcnn_class_loss: 0.2110 - mrcnn_bbox_loss: 0.2835 - mrcnn_mask_loss: 0.324660\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - "1573/2000 [======================>.......] - ETA: 7:34 - loss: 1.3227 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4922 - mrcnn_class_loss: 0.2110 - mrcnn_bbox_loss: 0.2835 - mrcnn_mask_loss: 0.3245130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - "1574/2000 [======================>.......] - ETA: 7:33 - loss: 1.3224 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4922 - mrcnn_class_loss: 0.2109 - mrcnn_bbox_loss: 0.2834 - mrcnn_mask_loss: 0.3244110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - "1575/2000 [======================>.......] - ETA: 7:32 - loss: 1.3221 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4921 - mrcnn_class_loss: 0.2109 - mrcnn_bbox_loss: 0.2833 - mrcnn_mask_loss: 0.3244256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - "1576/2000 [======================>.......] - ETA: 7:31 - loss: 1.3218 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4920 - mrcnn_class_loss: 0.2108 - mrcnn_bbox_loss: 0.2832 - mrcnn_mask_loss: 0.3244345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - "1577/2000 [======================>.......] - ETA: 7:30 - loss: 1.3217 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4920 - mrcnn_class_loss: 0.2108 - mrcnn_bbox_loss: 0.2831 - mrcnn_mask_loss: 0.324328\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - "1578/2000 [======================>.......] - ETA: 7:29 - loss: 1.3213 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4920 - mrcnn_class_loss: 0.2107 - mrcnn_bbox_loss: 0.2829 - mrcnn_mask_loss: 0.3242145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - "1579/2000 [======================>.......] - ETA: 7:28 - loss: 1.3211 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4920 - mrcnn_class_loss: 0.2107 - mrcnn_bbox_loss: 0.2829 - mrcnn_mask_loss: 0.3241379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - "1580/2000 [======================>.......] - ETA: 7:27 - loss: 1.3210 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4919 - mrcnn_class_loss: 0.2107 - mrcnn_bbox_loss: 0.2828 - mrcnn_mask_loss: 0.324052\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - "1581/2000 [======================>.......] - ETA: 7:26 - loss: 1.3206 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4917 - mrcnn_class_loss: 0.2107 - mrcnn_bbox_loss: 0.2827 - mrcnn_mask_loss: 0.323943\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - "1582/2000 [======================>.......] - ETA: 7:25 - loss: 1.3201 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4916 - mrcnn_class_loss: 0.2105 - mrcnn_bbox_loss: 0.2826 - mrcnn_mask_loss: 0.323848\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - "1583/2000 [======================>.......] - ETA: 7:23 - loss: 1.3195 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4914 - mrcnn_class_loss: 0.2105 - mrcnn_bbox_loss: 0.2825 - mrcnn_mask_loss: 0.323716\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - "1584/2000 [======================>.......] - ETA: 7:22 - loss: 1.3193 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4913 - mrcnn_class_loss: 0.2104 - mrcnn_bbox_loss: 0.2824 - mrcnn_mask_loss: 0.3237167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - "1585/2000 [======================>.......] - ETA: 7:21 - loss: 1.3189 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4911 - mrcnn_class_loss: 0.2103 - mrcnn_bbox_loss: 0.2823 - mrcnn_mask_loss: 0.3236239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - "1586/2000 [======================>.......] - ETA: 7:20 - loss: 1.3187 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4911 - mrcnn_class_loss: 0.2103 - mrcnn_bbox_loss: 0.2822 - mrcnn_mask_loss: 0.3235112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - "1587/2000 [======================>.......] - ETA: 7:19 - loss: 1.3184 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4910 - mrcnn_class_loss: 0.2102 - mrcnn_bbox_loss: 0.2822 - mrcnn_mask_loss: 0.3235319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - "1588/2000 [======================>.......] - ETA: 7:18 - loss: 1.3184 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4910 - mrcnn_class_loss: 0.2102 - mrcnn_bbox_loss: 0.2822 - mrcnn_mask_loss: 0.3235261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - "1589/2000 [======================>.......] - ETA: 7:17 - loss: 1.3181 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4909 - mrcnn_class_loss: 0.2102 - mrcnn_bbox_loss: 0.2822 - mrcnn_mask_loss: 0.3234273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - "1590/2000 [======================>.......] - ETA: 7:16 - loss: 1.3177 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4907 - mrcnn_class_loss: 0.2101 - mrcnn_bbox_loss: 0.2821 - mrcnn_mask_loss: 0.323485\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - "1591/2000 [======================>.......] - ETA: 7:15 - loss: 1.3172 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4905 - mrcnn_class_loss: 0.2100 - mrcnn_bbox_loss: 0.2820 - mrcnn_mask_loss: 0.3233352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - "1592/2000 [======================>.......] - ETA: 7:14 - loss: 1.3169 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4904 - mrcnn_class_loss: 0.2099 - mrcnn_bbox_loss: 0.2819 - mrcnn_mask_loss: 0.323277\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1593/2000 [======================>.......] - ETA: 7:13 - loss: 1.3166 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4902 - mrcnn_class_loss: 0.2099 - mrcnn_bbox_loss: 0.2818 - mrcnn_mask_loss: 0.3232161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - "1594/2000 [======================>.......] - ETA: 7:12 - loss: 1.3165 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4902 - mrcnn_class_loss: 0.2098 - mrcnn_bbox_loss: 0.2818 - mrcnn_mask_loss: 0.3232241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - "1595/2000 [======================>.......] - ETA: 7:11 - loss: 1.3163 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4900 - mrcnn_class_loss: 0.2097 - mrcnn_bbox_loss: 0.2818 - mrcnn_mask_loss: 0.3232199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - "1596/2000 [======================>.......] - ETA: 7:10 - loss: 1.3161 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4901 - mrcnn_class_loss: 0.2097 - mrcnn_bbox_loss: 0.2817 - mrcnn_mask_loss: 0.3231151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - "1597/2000 [======================>.......] - ETA: 7:09 - loss: 1.3159 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4902 - mrcnn_class_loss: 0.2096 - mrcnn_bbox_loss: 0.2816 - mrcnn_mask_loss: 0.3231195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - "1598/2000 [======================>.......] - ETA: 7:08 - loss: 1.3154 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4899 - mrcnn_class_loss: 0.2095 - mrcnn_bbox_loss: 0.2815 - mrcnn_mask_loss: 0.3230192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - "1599/2000 [======================>.......] - ETA: 7:07 - loss: 1.3151 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4897 - mrcnn_class_loss: 0.2096 - mrcnn_bbox_loss: 0.2815 - mrcnn_mask_loss: 0.3229170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - "1600/2000 [=======================>......] - ETA: 7:06 - loss: 1.3148 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4895 - mrcnn_class_loss: 0.2097 - mrcnn_bbox_loss: 0.2814 - mrcnn_mask_loss: 0.3229217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - "1601/2000 [=======================>......] - ETA: 7:04 - loss: 1.3145 - rpn_class_loss: 0.0115 - rpn_bbox_loss: 0.4894 - mrcnn_class_loss: 0.2097 - mrcnn_bbox_loss: 0.2812 - mrcnn_mask_loss: 0.3228233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - "1602/2000 [=======================>......] - ETA: 7:03 - loss: 1.3141 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4892 - mrcnn_class_loss: 0.2097 - mrcnn_bbox_loss: 0.2811 - mrcnn_mask_loss: 0.3227116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - "1603/2000 [=======================>......] - ETA: 7:02 - loss: 1.3140 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4891 - mrcnn_class_loss: 0.2097 - mrcnn_bbox_loss: 0.2811 - mrcnn_mask_loss: 0.322725\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - "1604/2000 [=======================>......] - ETA: 7:01 - loss: 1.3140 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4893 - mrcnn_class_loss: 0.2097 - mrcnn_bbox_loss: 0.2810 - mrcnn_mask_loss: 0.3226212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - "1605/2000 [=======================>......] - ETA: 7:00 - loss: 1.3134 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4890 - mrcnn_class_loss: 0.2096 - mrcnn_bbox_loss: 0.2809 - mrcnn_mask_loss: 0.322560\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - "1606/2000 [=======================>......] - ETA: 6:59 - loss: 1.3133 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4890 - mrcnn_class_loss: 0.2096 - mrcnn_bbox_loss: 0.2808 - mrcnn_mask_loss: 0.322493\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - "1607/2000 [=======================>......] - ETA: 6:58 - loss: 1.3130 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4889 - mrcnn_class_loss: 0.2096 - mrcnn_bbox_loss: 0.2808 - mrcnn_mask_loss: 0.3223299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1608/2000 [=======================>......] - ETA: 6:57 - loss: 1.3130 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4890 - mrcnn_class_loss: 0.2096 - mrcnn_bbox_loss: 0.2807 - mrcnn_mask_loss: 0.322395\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - "1609/2000 [=======================>......] - ETA: 6:56 - loss: 1.3129 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4890 - mrcnn_class_loss: 0.2096 - mrcnn_bbox_loss: 0.2806 - mrcnn_mask_loss: 0.3223152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - "1610/2000 [=======================>......] - ETA: 6:55 - loss: 1.3128 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4891 - mrcnn_class_loss: 0.2096 - mrcnn_bbox_loss: 0.2806 - mrcnn_mask_loss: 0.3222326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - "1611/2000 [=======================>......] - ETA: 6:54 - loss: 1.3126 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4889 - mrcnn_class_loss: 0.2095 - mrcnn_bbox_loss: 0.2805 - mrcnn_mask_loss: 0.3222177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - "1612/2000 [=======================>......] - ETA: 6:53 - loss: 1.3123 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4888 - mrcnn_class_loss: 0.2095 - mrcnn_bbox_loss: 0.2805 - mrcnn_mask_loss: 0.3221263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - "1613/2000 [=======================>......] - ETA: 6:52 - loss: 1.3120 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4887 - mrcnn_class_loss: 0.2094 - mrcnn_bbox_loss: 0.2804 - mrcnn_mask_loss: 0.3221321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - "1614/2000 [=======================>......] - ETA: 6:51 - loss: 1.3119 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4886 - mrcnn_class_loss: 0.2095 - mrcnn_bbox_loss: 0.2803 - mrcnn_mask_loss: 0.3221258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - "1615/2000 [=======================>......] - ETA: 6:50 - loss: 1.3117 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4886 - mrcnn_class_loss: 0.2095 - mrcnn_bbox_loss: 0.2802 - mrcnn_mask_loss: 0.3221359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - "1616/2000 [=======================>......] - ETA: 6:49 - loss: 1.3115 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4885 - mrcnn_class_loss: 0.2094 - mrcnn_bbox_loss: 0.2802 - mrcnn_mask_loss: 0.3220262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - "1617/2000 [=======================>......] - ETA: 6:48 - loss: 1.3112 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4884 - mrcnn_class_loss: 0.2093 - mrcnn_bbox_loss: 0.2801 - mrcnn_mask_loss: 0.3220232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - "1618/2000 [=======================>......] - ETA: 6:47 - loss: 1.3107 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4882 - mrcnn_class_loss: 0.2093 - mrcnn_bbox_loss: 0.2800 - mrcnn_mask_loss: 0.3219353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - "1619/2000 [=======================>......] - ETA: 6:46 - loss: 1.3104 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4880 - mrcnn_class_loss: 0.2093 - mrcnn_bbox_loss: 0.2799 - mrcnn_mask_loss: 0.3218183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - "1620/2000 [=======================>......] - ETA: 6:45 - loss: 1.3103 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4880 - mrcnn_class_loss: 0.2093 - mrcnn_bbox_loss: 0.2798 - mrcnn_mask_loss: 0.3218396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - "1621/2000 [=======================>......] - ETA: 6:43 - loss: 1.3101 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4880 - mrcnn_class_loss: 0.2092 - mrcnn_bbox_loss: 0.2797 - mrcnn_mask_loss: 0.3217362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - "1622/2000 [=======================>......] - ETA: 6:43 - loss: 1.3100 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4881 - mrcnn_class_loss: 0.2091 - mrcnn_bbox_loss: 0.2797 - mrcnn_mask_loss: 0.3217260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - "1623/2000 [=======================>......] - ETA: 6:42 - loss: 1.3098 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4880 - mrcnn_class_loss: 0.2091 - mrcnn_bbox_loss: 0.2797 - mrcnn_mask_loss: 0.3216214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - "1624/2000 [=======================>......] - ETA: 6:40 - loss: 1.3093 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4878 - mrcnn_class_loss: 0.2089 - mrcnn_bbox_loss: 0.2796 - mrcnn_mask_loss: 0.321582\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - "1625/2000 [=======================>......] - ETA: 6:39 - loss: 1.3089 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4877 - mrcnn_class_loss: 0.2089 - mrcnn_bbox_loss: 0.2795 - mrcnn_mask_loss: 0.3215376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - "1626/2000 [=======================>......] - ETA: 6:38 - loss: 1.3088 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4875 - mrcnn_class_loss: 0.2090 - mrcnn_bbox_loss: 0.2795 - mrcnn_mask_loss: 0.3214385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - "1627/2000 [=======================>......] - ETA: 6:37 - loss: 1.3085 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4874 - mrcnn_class_loss: 0.2089 - mrcnn_bbox_loss: 0.2795 - mrcnn_mask_loss: 0.3213397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - "1628/2000 [=======================>......] - ETA: 6:36 - loss: 1.3083 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4875 - mrcnn_class_loss: 0.2087 - mrcnn_bbox_loss: 0.2794 - mrcnn_mask_loss: 0.3212168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - "1629/2000 [=======================>......] - ETA: 6:35 - loss: 1.3077 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4873 - mrcnn_class_loss: 0.2086 - mrcnn_bbox_loss: 0.2793 - mrcnn_mask_loss: 0.3211105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - "1630/2000 [=======================>......] - ETA: 6:34 - loss: 1.3074 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4871 - mrcnn_class_loss: 0.2086 - mrcnn_bbox_loss: 0.2792 - mrcnn_mask_loss: 0.3211238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - "1631/2000 [=======================>......] - ETA: 6:33 - loss: 1.3071 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4870 - mrcnn_class_loss: 0.2085 - mrcnn_bbox_loss: 0.2792 - mrcnn_mask_loss: 0.321097\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - "1632/2000 [=======================>......] - ETA: 6:32 - loss: 1.3071 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4871 - mrcnn_class_loss: 0.2085 - mrcnn_bbox_loss: 0.2791 - mrcnn_mask_loss: 0.3210348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - "1633/2000 [=======================>......] - ETA: 6:31 - loss: 1.3070 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4872 - mrcnn_class_loss: 0.2085 - mrcnn_bbox_loss: 0.2790 - mrcnn_mask_loss: 0.320954\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - "1634/2000 [=======================>......] - ETA: 6:30 - loss: 1.3065 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4869 - mrcnn_class_loss: 0.2084 - mrcnn_bbox_loss: 0.2789 - mrcnn_mask_loss: 0.320836\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - "1635/2000 [=======================>......] - ETA: 6:29 - loss: 1.3064 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4871 - mrcnn_class_loss: 0.2083 - mrcnn_bbox_loss: 0.2788 - mrcnn_mask_loss: 0.3208134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - "1636/2000 [=======================>......] - ETA: 6:28 - loss: 1.3062 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4870 - mrcnn_class_loss: 0.2083 - mrcnn_bbox_loss: 0.2787 - mrcnn_mask_loss: 0.320883\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1637/2000 [=======================>......] - ETA: 6:27 - loss: 1.3058 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4868 - mrcnn_class_loss: 0.2082 - mrcnn_bbox_loss: 0.2787 - mrcnn_mask_loss: 0.3208176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - "1638/2000 [=======================>......] - ETA: 6:26 - loss: 1.3056 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4867 - mrcnn_class_loss: 0.2081 - mrcnn_bbox_loss: 0.2786 - mrcnn_mask_loss: 0.3207108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - "1639/2000 [=======================>......] - ETA: 6:25 - loss: 1.3053 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4865 - mrcnn_class_loss: 0.2081 - mrcnn_bbox_loss: 0.2786 - mrcnn_mask_loss: 0.3206234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - "1640/2000 [=======================>......] - ETA: 6:24 - loss: 1.3049 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4863 - mrcnn_class_loss: 0.2080 - mrcnn_bbox_loss: 0.2785 - mrcnn_mask_loss: 0.320621\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - "1641/2000 [=======================>......] - ETA: 6:22 - loss: 1.3046 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4863 - mrcnn_class_loss: 0.2079 - mrcnn_bbox_loss: 0.2784 - mrcnn_mask_loss: 0.3205241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - "1642/2000 [=======================>......] - ETA: 6:21 - loss: 1.3045 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4862 - mrcnn_class_loss: 0.2080 - mrcnn_bbox_loss: 0.2784 - mrcnn_mask_loss: 0.3206274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - "1643/2000 [=======================>......] - ETA: 6:20 - loss: 1.3042 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4861 - mrcnn_class_loss: 0.2079 - mrcnn_bbox_loss: 0.2783 - mrcnn_mask_loss: 0.320511\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - "1644/2000 [=======================>......] - ETA: 6:19 - loss: 1.3040 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4860 - mrcnn_class_loss: 0.2079 - mrcnn_bbox_loss: 0.2782 - mrcnn_mask_loss: 0.3205356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - "1645/2000 [=======================>......] - ETA: 6:18 - loss: 1.3037 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4859 - mrcnn_class_loss: 0.2078 - mrcnn_bbox_loss: 0.2782 - mrcnn_mask_loss: 0.3204266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - "1646/2000 [=======================>......] - ETA: 6:17 - loss: 1.3034 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4857 - mrcnn_class_loss: 0.2079 - mrcnn_bbox_loss: 0.2781 - mrcnn_mask_loss: 0.3203113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - "1647/2000 [=======================>......] - ETA: 6:16 - loss: 1.3032 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4856 - mrcnn_class_loss: 0.2079 - mrcnn_bbox_loss: 0.2781 - mrcnn_mask_loss: 0.3202302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - "1648/2000 [=======================>......] - ETA: 6:15 - loss: 1.3030 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4856 - mrcnn_class_loss: 0.2078 - mrcnn_bbox_loss: 0.2780 - mrcnn_mask_loss: 0.3202162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - "1649/2000 [=======================>......] - ETA: 6:14 - loss: 1.3030 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4855 - mrcnn_class_loss: 0.2080 - mrcnn_bbox_loss: 0.2780 - mrcnn_mask_loss: 0.3201237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - "1650/2000 [=======================>......] - ETA: 6:13 - loss: 1.3026 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4853 - mrcnn_class_loss: 0.2079 - mrcnn_bbox_loss: 0.2780 - mrcnn_mask_loss: 0.320044\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - "1651/2000 [=======================>......] - ETA: 6:12 - loss: 1.3021 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4851 - mrcnn_class_loss: 0.2078 - mrcnn_bbox_loss: 0.2778 - mrcnn_mask_loss: 0.319920\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1652/2000 [=======================>......] - ETA: 6:11 - loss: 1.3019 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4851 - mrcnn_class_loss: 0.2077 - mrcnn_bbox_loss: 0.2778 - mrcnn_mask_loss: 0.31998\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - "1653/2000 [=======================>......] - ETA: 6:10 - loss: 1.3013 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4849 - mrcnn_class_loss: 0.2076 - mrcnn_bbox_loss: 0.2776 - mrcnn_mask_loss: 0.3198399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - "1654/2000 [=======================>......] - ETA: 6:09 - loss: 1.3021 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4858 - mrcnn_class_loss: 0.2075 - mrcnn_bbox_loss: 0.2776 - mrcnn_mask_loss: 0.3198261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - "1655/2000 [=======================>......] - ETA: 6:08 - loss: 1.3018 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4856 - mrcnn_class_loss: 0.2074 - mrcnn_bbox_loss: 0.2776 - mrcnn_mask_loss: 0.319885\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - "1656/2000 [=======================>......] - ETA: 6:07 - loss: 1.3018 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4855 - mrcnn_class_loss: 0.2075 - mrcnn_bbox_loss: 0.2776 - mrcnn_mask_loss: 0.3198198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - "1657/2000 [=======================>......] - ETA: 6:06 - loss: 1.3014 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4853 - mrcnn_class_loss: 0.2074 - mrcnn_bbox_loss: 0.2776 - mrcnn_mask_loss: 0.3197165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - "1658/2000 [=======================>......] - ETA: 6:05 - loss: 1.3010 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4851 - mrcnn_class_loss: 0.2073 - mrcnn_bbox_loss: 0.2775 - mrcnn_mask_loss: 0.319748\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - "1659/2000 [=======================>......] - ETA: 6:03 - loss: 1.3005 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4849 - mrcnn_class_loss: 0.2072 - mrcnn_bbox_loss: 0.2774 - mrcnn_mask_loss: 0.3196247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - "1660/2000 [=======================>......] - ETA: 6:02 - loss: 1.3003 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4847 - mrcnn_class_loss: 0.2073 - mrcnn_bbox_loss: 0.2774 - mrcnn_mask_loss: 0.319565\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - "1661/2000 [=======================>......] - ETA: 6:01 - loss: 1.3000 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4845 - mrcnn_class_loss: 0.2073 - mrcnn_bbox_loss: 0.2773 - mrcnn_mask_loss: 0.3195239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - "1662/2000 [=======================>......] - ETA: 6:00 - loss: 1.3001 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4849 - mrcnn_class_loss: 0.2073 - mrcnn_bbox_loss: 0.2772 - mrcnn_mask_loss: 0.3194267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - "1663/2000 [=======================>......] - ETA: 5:59 - loss: 1.2998 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4847 - mrcnn_class_loss: 0.2072 - mrcnn_bbox_loss: 0.2771 - mrcnn_mask_loss: 0.3193112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - "1664/2000 [=======================>......] - ETA: 5:58 - loss: 1.2995 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4846 - mrcnn_class_loss: 0.2072 - mrcnn_bbox_loss: 0.2770 - mrcnn_mask_loss: 0.319384\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - "1665/2000 [=======================>......] - ETA: 5:57 - loss: 1.2990 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4844 - mrcnn_class_loss: 0.2071 - mrcnn_bbox_loss: 0.2769 - mrcnn_mask_loss: 0.3192149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - "1666/2000 [=======================>......] - ETA: 5:56 - loss: 1.2989 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4844 - mrcnn_class_loss: 0.2070 - mrcnn_bbox_loss: 0.2769 - mrcnn_mask_loss: 0.3191222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1667/2000 [========================>.....] - ETA: 5:55 - loss: 1.2985 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4842 - mrcnn_class_loss: 0.2070 - mrcnn_bbox_loss: 0.2768 - mrcnn_mask_loss: 0.319174\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - "1668/2000 [========================>.....] - ETA: 5:54 - loss: 1.2982 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4841 - mrcnn_class_loss: 0.2070 - mrcnn_bbox_loss: 0.2767 - mrcnn_mask_loss: 0.319069\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - "1669/2000 [========================>.....] - ETA: 5:53 - loss: 1.2978 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4839 - mrcnn_class_loss: 0.2069 - mrcnn_bbox_loss: 0.2767 - mrcnn_mask_loss: 0.319038\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - "1670/2000 [========================>.....] - ETA: 5:52 - loss: 1.2977 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4841 - mrcnn_class_loss: 0.2069 - mrcnn_bbox_loss: 0.2766 - mrcnn_mask_loss: 0.318949\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - "1671/2000 [========================>.....] - ETA: 5:51 - loss: 1.2972 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4838 - mrcnn_class_loss: 0.2068 - mrcnn_bbox_loss: 0.2765 - mrcnn_mask_loss: 0.3188381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - "1672/2000 [========================>.....] - ETA: 5:50 - loss: 1.2972 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4839 - mrcnn_class_loss: 0.2067 - mrcnn_bbox_loss: 0.2764 - mrcnn_mask_loss: 0.318861\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - "1673/2000 [========================>.....] - ETA: 5:48 - loss: 1.2968 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4838 - mrcnn_class_loss: 0.2067 - mrcnn_bbox_loss: 0.2763 - mrcnn_mask_loss: 0.3187139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - "1674/2000 [========================>.....] - ETA: 5:47 - loss: 1.2968 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4839 - mrcnn_class_loss: 0.2066 - mrcnn_bbox_loss: 0.2763 - mrcnn_mask_loss: 0.318745\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - "1675/2000 [========================>.....] - ETA: 5:46 - loss: 1.2964 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4838 - mrcnn_class_loss: 0.2065 - mrcnn_bbox_loss: 0.2762 - mrcnn_mask_loss: 0.3186210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - "1676/2000 [========================>.....] - ETA: 5:45 - loss: 1.2960 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4836 - mrcnn_class_loss: 0.2065 - mrcnn_bbox_loss: 0.2761 - mrcnn_mask_loss: 0.3185236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - "1677/2000 [========================>.....] - ETA: 5:44 - loss: 1.2956 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4834 - mrcnn_class_loss: 0.2065 - mrcnn_bbox_loss: 0.2760 - mrcnn_mask_loss: 0.318452\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - "1678/2000 [========================>.....] - ETA: 5:43 - loss: 1.2952 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4832 - mrcnn_class_loss: 0.2064 - mrcnn_bbox_loss: 0.2760 - mrcnn_mask_loss: 0.3183161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - "1679/2000 [========================>.....] - ETA: 5:42 - loss: 1.2951 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4833 - mrcnn_class_loss: 0.2063 - mrcnn_bbox_loss: 0.2759 - mrcnn_mask_loss: 0.31836\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - "1680/2000 [========================>.....] - ETA: 5:41 - loss: 1.2946 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4831 - mrcnn_class_loss: 0.2062 - mrcnn_bbox_loss: 0.2758 - mrcnn_mask_loss: 0.3182154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - "1681/2000 [========================>.....] - ETA: 5:40 - loss: 1.2945 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4831 - mrcnn_class_loss: 0.2061 - mrcnn_bbox_loss: 0.2757 - mrcnn_mask_loss: 0.3181347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - "1682/2000 [========================>.....] - ETA: 5:39 - loss: 1.2945 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4832 - mrcnn_class_loss: 0.2061 - mrcnn_bbox_loss: 0.2757 - mrcnn_mask_loss: 0.3181216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - "1683/2000 [========================>.....] - ETA: 5:38 - loss: 1.2942 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4830 - mrcnn_class_loss: 0.2061 - mrcnn_bbox_loss: 0.2756 - mrcnn_mask_loss: 0.3180363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - "1684/2000 [========================>.....] - ETA: 5:37 - loss: 1.2941 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4831 - mrcnn_class_loss: 0.2062 - mrcnn_bbox_loss: 0.2755 - mrcnn_mask_loss: 0.318029\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - "1685/2000 [========================>.....] - ETA: 5:36 - loss: 1.2937 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4829 - mrcnn_class_loss: 0.2061 - mrcnn_bbox_loss: 0.2754 - mrcnn_mask_loss: 0.317943\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - "1686/2000 [========================>.....] - ETA: 5:35 - loss: 1.2933 - rpn_class_loss: 0.0114 - rpn_bbox_loss: 0.4828 - mrcnn_class_loss: 0.2060 - mrcnn_bbox_loss: 0.2753 - mrcnn_mask_loss: 0.317858\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - "1687/2000 [========================>.....] - ETA: 5:34 - loss: 1.2930 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4828 - mrcnn_class_loss: 0.2059 - mrcnn_bbox_loss: 0.2752 - mrcnn_mask_loss: 0.3177328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - "1688/2000 [========================>.....] - ETA: 5:33 - loss: 1.2928 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4828 - mrcnn_class_loss: 0.2058 - mrcnn_bbox_loss: 0.2751 - mrcnn_mask_loss: 0.3177395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - "1689/2000 [========================>.....] - ETA: 5:31 - loss: 1.2925 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4827 - mrcnn_class_loss: 0.2057 - mrcnn_bbox_loss: 0.2751 - mrcnn_mask_loss: 0.31779\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - "1690/2000 [========================>.....] - ETA: 5:30 - loss: 1.2923 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4827 - mrcnn_class_loss: 0.2056 - mrcnn_bbox_loss: 0.2750 - mrcnn_mask_loss: 0.3176170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - "1691/2000 [========================>.....] - ETA: 5:29 - loss: 1.2919 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4826 - mrcnn_class_loss: 0.2056 - mrcnn_bbox_loss: 0.2749 - mrcnn_mask_loss: 0.3175246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - "1692/2000 [========================>.....] - ETA: 5:28 - loss: 1.2918 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4824 - mrcnn_class_loss: 0.2057 - mrcnn_bbox_loss: 0.2749 - mrcnn_mask_loss: 0.317578\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - "1693/2000 [========================>.....] - ETA: 5:27 - loss: 1.2914 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4822 - mrcnn_class_loss: 0.2056 - mrcnn_bbox_loss: 0.2748 - mrcnn_mask_loss: 0.3174358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - "1694/2000 [========================>.....] - ETA: 5:26 - loss: 1.2911 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4821 - mrcnn_class_loss: 0.2055 - mrcnn_bbox_loss: 0.2748 - mrcnn_mask_loss: 0.3174184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - "1695/2000 [========================>.....] - ETA: 5:25 - loss: 1.2909 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4821 - mrcnn_class_loss: 0.2055 - mrcnn_bbox_loss: 0.2746 - mrcnn_mask_loss: 0.3173223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - "1696/2000 [========================>.....] - ETA: 5:24 - loss: 1.2906 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4819 - mrcnn_class_loss: 0.2055 - mrcnn_bbox_loss: 0.2746 - mrcnn_mask_loss: 0.3173101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1697/2000 [========================>.....] - ETA: 5:23 - loss: 1.2905 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4818 - mrcnn_class_loss: 0.2056 - mrcnn_bbox_loss: 0.2746 - mrcnn_mask_loss: 0.317271\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - "1698/2000 [========================>.....] - ETA: 5:22 - loss: 1.2901 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4816 - mrcnn_class_loss: 0.2055 - mrcnn_bbox_loss: 0.2745 - mrcnn_mask_loss: 0.317262\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - "1699/2000 [========================>.....] - ETA: 5:21 - loss: 1.2897 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4814 - mrcnn_class_loss: 0.2055 - mrcnn_bbox_loss: 0.2744 - mrcnn_mask_loss: 0.3171158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - "1700/2000 [========================>.....] - ETA: 5:20 - loss: 1.2896 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4814 - mrcnn_class_loss: 0.2055 - mrcnn_bbox_loss: 0.2744 - mrcnn_mask_loss: 0.3170171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - "1701/2000 [========================>.....] - ETA: 5:19 - loss: 1.2894 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4813 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2744 - mrcnn_mask_loss: 0.317063\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - "1702/2000 [========================>.....] - ETA: 5:18 - loss: 1.2890 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4811 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2743 - mrcnn_mask_loss: 0.3169295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - "1703/2000 [========================>.....] - ETA: 5:16 - loss: 1.2890 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4811 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2743 - mrcnn_mask_loss: 0.3169252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - "1704/2000 [========================>.....] - ETA: 5:15 - loss: 1.2887 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4809 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2742 - mrcnn_mask_loss: 0.3169264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - "1705/2000 [========================>.....] - ETA: 5:14 - loss: 1.2885 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4808 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2742 - mrcnn_mask_loss: 0.3168221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - "1706/2000 [========================>.....] - ETA: 5:13 - loss: 1.2883 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4807 - mrcnn_class_loss: 0.2053 - mrcnn_bbox_loss: 0.2742 - mrcnn_mask_loss: 0.3168126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - "1707/2000 [========================>.....] - ETA: 5:12 - loss: 1.2882 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4807 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2742 - mrcnn_mask_loss: 0.3167273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - "1708/2000 [========================>.....] - ETA: 5:11 - loss: 1.2881 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4806 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2742 - mrcnn_mask_loss: 0.3167349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - "1709/2000 [========================>.....] - ETA: 5:10 - loss: 1.2880 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4805 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2741 - mrcnn_mask_loss: 0.3167201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - "1710/2000 [========================>.....] - ETA: 5:09 - loss: 1.2877 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4803 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2741 - mrcnn_mask_loss: 0.3166394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - "1711/2000 [========================>.....] - ETA: 5:08 - loss: 1.2875 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4802 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2740 - mrcnn_mask_loss: 0.3165141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1712/2000 [========================>.....] - ETA: 5:07 - loss: 1.2873 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4802 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2739 - mrcnn_mask_loss: 0.31655\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - "1713/2000 [========================>.....] - ETA: 5:06 - loss: 1.2868 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4799 - mrcnn_class_loss: 0.2054 - mrcnn_bbox_loss: 0.2739 - mrcnn_mask_loss: 0.316473\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - "1714/2000 [========================>.....] - ETA: 5:05 - loss: 1.2866 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4799 - mrcnn_class_loss: 0.2053 - mrcnn_bbox_loss: 0.2738 - mrcnn_mask_loss: 0.3163377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - "1715/2000 [========================>.....] - ETA: 5:04 - loss: 1.2864 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4798 - mrcnn_class_loss: 0.2053 - mrcnn_bbox_loss: 0.2738 - mrcnn_mask_loss: 0.3162336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - "1716/2000 [========================>.....] - ETA: 5:03 - loss: 1.2863 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4797 - mrcnn_class_loss: 0.2053 - mrcnn_bbox_loss: 0.2738 - mrcnn_mask_loss: 0.3162231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - "1717/2000 [========================>.....] - ETA: 5:02 - loss: 1.2859 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4796 - mrcnn_class_loss: 0.2053 - mrcnn_bbox_loss: 0.2737 - mrcnn_mask_loss: 0.316175\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - "1718/2000 [========================>.....] - ETA: 5:01 - loss: 1.2855 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4794 - mrcnn_class_loss: 0.2052 - mrcnn_bbox_loss: 0.2736 - mrcnn_mask_loss: 0.316092\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - "1719/2000 [========================>.....] - ETA: 4:59 - loss: 1.2852 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4794 - mrcnn_class_loss: 0.2051 - mrcnn_bbox_loss: 0.2735 - mrcnn_mask_loss: 0.3160195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - "1720/2000 [========================>.....] - ETA: 4:58 - loss: 1.2850 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4793 - mrcnn_class_loss: 0.2051 - mrcnn_bbox_loss: 0.2734 - mrcnn_mask_loss: 0.3159257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - "1721/2000 [========================>.....] - ETA: 4:57 - loss: 1.2848 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4792 - mrcnn_class_loss: 0.2051 - mrcnn_bbox_loss: 0.2733 - mrcnn_mask_loss: 0.3158107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - "1722/2000 [========================>.....] - ETA: 4:56 - loss: 1.2846 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4790 - mrcnn_class_loss: 0.2052 - mrcnn_bbox_loss: 0.2733 - mrcnn_mask_loss: 0.315842\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - "1723/2000 [========================>.....] - ETA: 4:55 - loss: 1.2842 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4789 - mrcnn_class_loss: 0.2051 - mrcnn_bbox_loss: 0.2732 - mrcnn_mask_loss: 0.3157175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - "1724/2000 [========================>.....] - ETA: 4:54 - loss: 1.2839 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4787 - mrcnn_class_loss: 0.2051 - mrcnn_bbox_loss: 0.2732 - mrcnn_mask_loss: 0.315767\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - "1725/2000 [========================>.....] - ETA: 4:53 - loss: 1.2835 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4785 - mrcnn_class_loss: 0.2050 - mrcnn_bbox_loss: 0.2731 - mrcnn_mask_loss: 0.3156389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - "1726/2000 [========================>.....] - ETA: 4:52 - loss: 1.2833 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4786 - mrcnn_class_loss: 0.2049 - mrcnn_bbox_loss: 0.2730 - mrcnn_mask_loss: 0.3155387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - "1727/2000 [========================>.....] - ETA: 4:51 - loss: 1.2831 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4786 - mrcnn_class_loss: 0.2049 - mrcnn_bbox_loss: 0.2730 - mrcnn_mask_loss: 0.315599\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - "1728/2000 [========================>.....] - ETA: 4:50 - loss: 1.2830 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4786 - mrcnn_class_loss: 0.2048 - mrcnn_bbox_loss: 0.2729 - mrcnn_mask_loss: 0.3154310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - "1729/2000 [========================>.....] - ETA: 4:49 - loss: 1.2829 - rpn_class_loss: 0.0113 - rpn_bbox_loss: 0.4786 - mrcnn_class_loss: 0.2048 - mrcnn_bbox_loss: 0.2728 - mrcnn_mask_loss: 0.3154185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - "1730/2000 [========================>.....] - ETA: 4:48 - loss: 1.2826 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4785 - mrcnn_class_loss: 0.2047 - mrcnn_bbox_loss: 0.2727 - mrcnn_mask_loss: 0.315322\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - "1731/2000 [========================>.....] - ETA: 4:47 - loss: 1.2825 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4786 - mrcnn_class_loss: 0.2047 - mrcnn_bbox_loss: 0.2726 - mrcnn_mask_loss: 0.3153213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - "1732/2000 [========================>.....] - ETA: 4:46 - loss: 1.2820 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4784 - mrcnn_class_loss: 0.2047 - mrcnn_bbox_loss: 0.2725 - mrcnn_mask_loss: 0.3152324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - "1733/2000 [========================>.....] - ETA: 4:45 - loss: 1.2818 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4783 - mrcnn_class_loss: 0.2046 - mrcnn_bbox_loss: 0.2725 - mrcnn_mask_loss: 0.315151\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - "1734/2000 [=========================>....] - ETA: 4:43 - loss: 1.2813 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4781 - mrcnn_class_loss: 0.2045 - mrcnn_bbox_loss: 0.2724 - mrcnn_mask_loss: 0.3150125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - "1735/2000 [=========================>....] - ETA: 4:42 - loss: 1.2811 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4781 - mrcnn_class_loss: 0.2045 - mrcnn_bbox_loss: 0.2723 - mrcnn_mask_loss: 0.3150351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - "1736/2000 [=========================>....] - ETA: 4:41 - loss: 1.2808 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4779 - mrcnn_class_loss: 0.2044 - mrcnn_bbox_loss: 0.2722 - mrcnn_mask_loss: 0.3150279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - "1737/2000 [=========================>....] - ETA: 4:40 - loss: 1.2807 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4779 - mrcnn_class_loss: 0.2044 - mrcnn_bbox_loss: 0.2722 - mrcnn_mask_loss: 0.3149160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - "1738/2000 [=========================>....] - ETA: 4:39 - loss: 1.2805 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4779 - mrcnn_class_loss: 0.2043 - mrcnn_bbox_loss: 0.2722 - mrcnn_mask_loss: 0.3148296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - "1739/2000 [=========================>....] - ETA: 4:38 - loss: 1.2803 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4778 - mrcnn_class_loss: 0.2043 - mrcnn_bbox_loss: 0.2722 - mrcnn_mask_loss: 0.3148243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - "1740/2000 [=========================>....] - ETA: 4:37 - loss: 1.2802 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4777 - mrcnn_class_loss: 0.2043 - mrcnn_bbox_loss: 0.2722 - mrcnn_mask_loss: 0.3148371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1741/2000 [=========================>....] - ETA: 4:36 - loss: 1.2798 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4775 - mrcnn_class_loss: 0.2043 - mrcnn_bbox_loss: 0.2721 - mrcnn_mask_loss: 0.3147343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - "1742/2000 [=========================>....] - ETA: 4:35 - loss: 1.2796 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4775 - mrcnn_class_loss: 0.2042 - mrcnn_bbox_loss: 0.2721 - mrcnn_mask_loss: 0.3146335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - "1743/2000 [=========================>....] - ETA: 4:34 - loss: 1.2793 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4774 - mrcnn_class_loss: 0.2041 - mrcnn_bbox_loss: 0.2720 - mrcnn_mask_loss: 0.3146228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - "1744/2000 [=========================>....] - ETA: 4:33 - loss: 1.2789 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4771 - mrcnn_class_loss: 0.2041 - mrcnn_bbox_loss: 0.2719 - mrcnn_mask_loss: 0.3146307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - "1745/2000 [=========================>....] - ETA: 4:32 - loss: 1.2787 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4771 - mrcnn_class_loss: 0.2040 - mrcnn_bbox_loss: 0.2718 - mrcnn_mask_loss: 0.3145368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - "1746/2000 [=========================>....] - ETA: 4:31 - loss: 1.2786 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4771 - mrcnn_class_loss: 0.2041 - mrcnn_bbox_loss: 0.2718 - mrcnn_mask_loss: 0.3145240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - "1747/2000 [=========================>....] - ETA: 4:30 - loss: 1.2784 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4769 - mrcnn_class_loss: 0.2041 - mrcnn_bbox_loss: 0.2718 - mrcnn_mask_loss: 0.314557\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - "1748/2000 [=========================>....] - ETA: 4:28 - loss: 1.2782 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4769 - mrcnn_class_loss: 0.2040 - mrcnn_bbox_loss: 0.2717 - mrcnn_mask_loss: 0.3144129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - "1749/2000 [=========================>....] - ETA: 4:27 - loss: 1.2780 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4769 - mrcnn_class_loss: 0.2040 - mrcnn_bbox_loss: 0.2716 - mrcnn_mask_loss: 0.3144345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - "1750/2000 [=========================>....] - ETA: 4:26 - loss: 1.2778 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4768 - mrcnn_class_loss: 0.2039 - mrcnn_bbox_loss: 0.2715 - mrcnn_mask_loss: 0.3143366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - "1751/2000 [=========================>....] - ETA: 4:25 - loss: 1.2777 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4768 - mrcnn_class_loss: 0.2039 - mrcnn_bbox_loss: 0.2715 - mrcnn_mask_loss: 0.3142148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - "1752/2000 [=========================>....] - ETA: 4:24 - loss: 1.2775 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4768 - mrcnn_class_loss: 0.2039 - mrcnn_bbox_loss: 0.2715 - mrcnn_mask_loss: 0.31424\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - "1753/2000 [=========================>....] - ETA: 4:23 - loss: 1.2772 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4768 - mrcnn_class_loss: 0.2037 - mrcnn_bbox_loss: 0.2714 - mrcnn_mask_loss: 0.3141270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - "1754/2000 [=========================>....] - ETA: 4:22 - loss: 1.2769 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4765 - mrcnn_class_loss: 0.2037 - mrcnn_bbox_loss: 0.2714 - mrcnn_mask_loss: 0.3141167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - "1755/2000 [=========================>....] - ETA: 4:21 - loss: 1.2766 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4763 - mrcnn_class_loss: 0.2037 - mrcnn_bbox_loss: 0.2714 - mrcnn_mask_loss: 0.31400\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - "1756/2000 [=========================>....] - ETA: 4:20 - loss: 1.2765 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4764 - mrcnn_class_loss: 0.2037 - mrcnn_bbox_loss: 0.2713 - mrcnn_mask_loss: 0.3140317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - "1757/2000 [=========================>....] - ETA: 4:19 - loss: 1.2763 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4763 - mrcnn_class_loss: 0.2036 - mrcnn_bbox_loss: 0.2713 - mrcnn_mask_loss: 0.314032\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - "1758/2000 [=========================>....] - ETA: 4:18 - loss: 1.2759 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4762 - mrcnn_class_loss: 0.2035 - mrcnn_bbox_loss: 0.2712 - mrcnn_mask_loss: 0.3139186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - "1759/2000 [=========================>....] - ETA: 4:17 - loss: 1.2756 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4761 - mrcnn_class_loss: 0.2034 - mrcnn_bbox_loss: 0.2711 - mrcnn_mask_loss: 0.3138196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - "1760/2000 [=========================>....] - ETA: 4:15 - loss: 1.2752 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4759 - mrcnn_class_loss: 0.2033 - mrcnn_bbox_loss: 0.2710 - mrcnn_mask_loss: 0.313755\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - "1761/2000 [=========================>....] - ETA: 4:14 - loss: 1.2748 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4757 - mrcnn_class_loss: 0.2032 - mrcnn_bbox_loss: 0.2710 - mrcnn_mask_loss: 0.3137333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - "1762/2000 [=========================>....] - ETA: 4:13 - loss: 1.2745 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4756 - mrcnn_class_loss: 0.2031 - mrcnn_bbox_loss: 0.2709 - mrcnn_mask_loss: 0.3137285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - "1763/2000 [=========================>....] - ETA: 4:12 - loss: 1.2745 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4756 - mrcnn_class_loss: 0.2031 - mrcnn_bbox_loss: 0.2709 - mrcnn_mask_loss: 0.3137304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - "1764/2000 [=========================>....] - ETA: 4:11 - loss: 1.2742 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4755 - mrcnn_class_loss: 0.2031 - mrcnn_bbox_loss: 0.2709 - mrcnn_mask_loss: 0.3136202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - "1765/2000 [=========================>....] - ETA: 4:10 - loss: 1.2739 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4753 - mrcnn_class_loss: 0.2030 - mrcnn_bbox_loss: 0.2708 - mrcnn_mask_loss: 0.3136361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - "1766/2000 [=========================>....] - ETA: 4:09 - loss: 1.2739 - rpn_class_loss: 0.0112 - rpn_bbox_loss: 0.4754 - mrcnn_class_loss: 0.2030 - mrcnn_bbox_loss: 0.2708 - mrcnn_mask_loss: 0.3136379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - "1767/2000 [=========================>....] - ETA: 4:08 - loss: 1.2737 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4753 - mrcnn_class_loss: 0.2030 - mrcnn_bbox_loss: 0.2707 - mrcnn_mask_loss: 0.3135244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - "1768/2000 [=========================>....] - ETA: 4:07 - loss: 1.2736 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4752 - mrcnn_class_loss: 0.2030 - mrcnn_bbox_loss: 0.2708 - mrcnn_mask_loss: 0.3135277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - "1769/2000 [=========================>....] - ETA: 4:06 - loss: 1.2735 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4752 - mrcnn_class_loss: 0.2029 - mrcnn_bbox_loss: 0.2708 - mrcnn_mask_loss: 0.3134282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1770/2000 [=========================>....] - ETA: 4:05 - loss: 1.2733 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4752 - mrcnn_class_loss: 0.2029 - mrcnn_bbox_loss: 0.2707 - mrcnn_mask_loss: 0.3134120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - "1771/2000 [=========================>....] - ETA: 4:04 - loss: 1.2735 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4752 - mrcnn_class_loss: 0.2030 - mrcnn_bbox_loss: 0.2707 - mrcnn_mask_loss: 0.313413\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - "1772/2000 [=========================>....] - ETA: 4:03 - loss: 1.2735 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4754 - mrcnn_class_loss: 0.2029 - mrcnn_bbox_loss: 0.2707 - mrcnn_mask_loss: 0.3134114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - "1773/2000 [=========================>....] - ETA: 4:02 - loss: 1.2733 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4753 - mrcnn_class_loss: 0.2029 - mrcnn_bbox_loss: 0.2706 - mrcnn_mask_loss: 0.313372\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - "1774/2000 [=========================>....] - ETA: 4:00 - loss: 1.2730 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4752 - mrcnn_class_loss: 0.2029 - mrcnn_bbox_loss: 0.2705 - mrcnn_mask_loss: 0.31337\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - "1775/2000 [=========================>....] - ETA: 3:59 - loss: 1.2727 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4751 - mrcnn_class_loss: 0.2028 - mrcnn_bbox_loss: 0.2704 - mrcnn_mask_loss: 0.3132118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - "1776/2000 [=========================>....] - ETA: 3:58 - loss: 1.2730 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4751 - mrcnn_class_loss: 0.2030 - mrcnn_bbox_loss: 0.2705 - mrcnn_mask_loss: 0.3132104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - "1777/2000 [=========================>....] - ETA: 3:57 - loss: 1.2727 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4749 - mrcnn_class_loss: 0.2030 - mrcnn_bbox_loss: 0.2704 - mrcnn_mask_loss: 0.3132265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - "1778/2000 [=========================>....] - ETA: 3:56 - loss: 1.2725 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4748 - mrcnn_class_loss: 0.2030 - mrcnn_bbox_loss: 0.2704 - mrcnn_mask_loss: 0.3132300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - "1779/2000 [=========================>....] - ETA: 3:55 - loss: 1.2726 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4749 - mrcnn_class_loss: 0.2030 - mrcnn_bbox_loss: 0.2704 - mrcnn_mask_loss: 0.3132251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - "1780/2000 [=========================>....] - ETA: 3:54 - loss: 1.2724 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4748 - mrcnn_class_loss: 0.2029 - mrcnn_bbox_loss: 0.2703 - mrcnn_mask_loss: 0.3132298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - "1781/2000 [=========================>....] - ETA: 3:53 - loss: 1.2723 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4748 - mrcnn_class_loss: 0.2028 - mrcnn_bbox_loss: 0.2704 - mrcnn_mask_loss: 0.3132138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - "1782/2000 [=========================>....] - ETA: 3:52 - loss: 1.2723 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4749 - mrcnn_class_loss: 0.2028 - mrcnn_bbox_loss: 0.2703 - mrcnn_mask_loss: 0.3131124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - "1783/2000 [=========================>....] - ETA: 3:51 - loss: 1.2722 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4748 - mrcnn_class_loss: 0.2028 - mrcnn_bbox_loss: 0.2703 - mrcnn_mask_loss: 0.3131155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1784/2000 [=========================>....] - ETA: 3:50 - loss: 1.2722 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4750 - mrcnn_class_loss: 0.2027 - mrcnn_bbox_loss: 0.2703 - mrcnn_mask_loss: 0.3130384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - "1785/2000 [=========================>....] - ETA: 3:49 - loss: 1.2719 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4749 - mrcnn_class_loss: 0.2027 - mrcnn_bbox_loss: 0.2702 - mrcnn_mask_loss: 0.3130131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - "1786/2000 [=========================>....] - ETA: 3:48 - loss: 1.2717 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4749 - mrcnn_class_loss: 0.2026 - mrcnn_bbox_loss: 0.2701 - mrcnn_mask_loss: 0.3130140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - "1787/2000 [=========================>....] - ETA: 3:47 - loss: 1.2717 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4748 - mrcnn_class_loss: 0.2027 - mrcnn_bbox_loss: 0.2701 - mrcnn_mask_loss: 0.3129132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - "1788/2000 [=========================>....] - ETA: 3:46 - loss: 1.2716 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4749 - mrcnn_class_loss: 0.2027 - mrcnn_bbox_loss: 0.2701 - mrcnn_mask_loss: 0.3129220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - "1789/2000 [=========================>....] - ETA: 3:45 - loss: 1.2713 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4747 - mrcnn_class_loss: 0.2026 - mrcnn_bbox_loss: 0.2700 - mrcnn_mask_loss: 0.3128207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - "1790/2000 [=========================>....] - ETA: 3:43 - loss: 1.2709 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4745 - mrcnn_class_loss: 0.2026 - mrcnn_bbox_loss: 0.2700 - mrcnn_mask_loss: 0.3127344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - "1791/2000 [=========================>....] - ETA: 3:42 - loss: 1.2708 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4744 - mrcnn_class_loss: 0.2027 - mrcnn_bbox_loss: 0.2699 - mrcnn_mask_loss: 0.3127360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - "1792/2000 [=========================>....] - ETA: 3:41 - loss: 1.2707 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4745 - mrcnn_class_loss: 0.2027 - mrcnn_bbox_loss: 0.2698 - mrcnn_mask_loss: 0.3126130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - "1793/2000 [=========================>....] - ETA: 3:40 - loss: 1.2707 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4744 - mrcnn_class_loss: 0.2027 - mrcnn_bbox_loss: 0.2698 - mrcnn_mask_loss: 0.3126164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - "1794/2000 [=========================>....] - ETA: 3:39 - loss: 1.2704 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4743 - mrcnn_class_loss: 0.2027 - mrcnn_bbox_loss: 0.2698 - mrcnn_mask_loss: 0.3125173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - "1795/2000 [=========================>....] - ETA: 3:38 - loss: 1.2701 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4743 - mrcnn_class_loss: 0.2026 - mrcnn_bbox_loss: 0.2697 - mrcnn_mask_loss: 0.3124268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - "1796/2000 [=========================>....] - ETA: 3:37 - loss: 1.2698 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4741 - mrcnn_class_loss: 0.2026 - mrcnn_bbox_loss: 0.2697 - mrcnn_mask_loss: 0.3124227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - "1797/2000 [=========================>....] - ETA: 3:36 - loss: 1.2694 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4739 - mrcnn_class_loss: 0.2025 - mrcnn_bbox_loss: 0.2696 - mrcnn_mask_loss: 0.312379\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - "1798/2000 [=========================>....] - ETA: 3:35 - loss: 1.2691 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4737 - mrcnn_class_loss: 0.2025 - mrcnn_bbox_loss: 0.2695 - mrcnn_mask_loss: 0.312386\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1799/2000 [=========================>....] - ETA: 3:34 - loss: 1.2690 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4736 - mrcnn_class_loss: 0.2025 - mrcnn_bbox_loss: 0.2695 - mrcnn_mask_loss: 0.3123365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - "1800/2000 [==========================>...] - ETA: 3:33 - loss: 1.2689 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4735 - mrcnn_class_loss: 0.2026 - mrcnn_bbox_loss: 0.2695 - mrcnn_mask_loss: 0.3122259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - "1801/2000 [==========================>...] - ETA: 3:32 - loss: 1.2691 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4737 - mrcnn_class_loss: 0.2026 - mrcnn_bbox_loss: 0.2695 - mrcnn_mask_loss: 0.3122248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - "1802/2000 [==========================>...] - ETA: 3:31 - loss: 1.2688 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4735 - mrcnn_class_loss: 0.2025 - mrcnn_bbox_loss: 0.2694 - mrcnn_mask_loss: 0.3122280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - "1803/2000 [==========================>...] - ETA: 3:30 - loss: 1.2688 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4736 - mrcnn_class_loss: 0.2025 - mrcnn_bbox_loss: 0.2694 - mrcnn_mask_loss: 0.312290\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - "1804/2000 [==========================>...] - ETA: 3:29 - loss: 1.2687 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4735 - mrcnn_class_loss: 0.2025 - mrcnn_bbox_loss: 0.2693 - mrcnn_mask_loss: 0.3122287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - "1805/2000 [==========================>...] - ETA: 3:27 - loss: 1.2686 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4735 - mrcnn_class_loss: 0.2025 - mrcnn_bbox_loss: 0.2694 - mrcnn_mask_loss: 0.3121391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - "1806/2000 [==========================>...] - ETA: 3:26 - loss: 1.2686 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4735 - mrcnn_class_loss: 0.2025 - mrcnn_bbox_loss: 0.2694 - mrcnn_mask_loss: 0.3121225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - "1807/2000 [==========================>...] - ETA: 3:25 - loss: 1.2682 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4733 - mrcnn_class_loss: 0.2025 - mrcnn_bbox_loss: 0.2693 - mrcnn_mask_loss: 0.3120206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - "1808/2000 [==========================>...] - ETA: 3:24 - loss: 1.2678 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4731 - mrcnn_class_loss: 0.2024 - mrcnn_bbox_loss: 0.2693 - mrcnn_mask_loss: 0.3119215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - "1809/2000 [==========================>...] - ETA: 3:23 - loss: 1.2674 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4729 - mrcnn_class_loss: 0.2023 - mrcnn_bbox_loss: 0.2692 - mrcnn_mask_loss: 0.311989\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - "1810/2000 [==========================>...] - ETA: 3:22 - loss: 1.2672 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4728 - mrcnn_class_loss: 0.2023 - mrcnn_bbox_loss: 0.2691 - mrcnn_mask_loss: 0.3118320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - "1811/2000 [==========================>...] - ETA: 3:21 - loss: 1.2672 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4728 - mrcnn_class_loss: 0.2024 - mrcnn_bbox_loss: 0.2691 - mrcnn_mask_loss: 0.3118208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - "1812/2000 [==========================>...] - ETA: 3:20 - loss: 1.2667 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4726 - mrcnn_class_loss: 0.2024 - mrcnn_bbox_loss: 0.2690 - mrcnn_mask_loss: 0.3117187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - "1813/2000 [==========================>...] - ETA: 3:19 - loss: 1.2663 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4724 - mrcnn_class_loss: 0.2023 - mrcnn_bbox_loss: 0.2689 - mrcnn_mask_loss: 0.3117286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1814/2000 [==========================>...] - ETA: 3:18 - loss: 1.2662 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4723 - mrcnn_class_loss: 0.2023 - mrcnn_bbox_loss: 0.2689 - mrcnn_mask_loss: 0.3116110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - "1815/2000 [==========================>...] - ETA: 3:17 - loss: 1.2659 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4722 - mrcnn_class_loss: 0.2022 - mrcnn_bbox_loss: 0.2688 - mrcnn_mask_loss: 0.3116224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - "1816/2000 [==========================>...] - ETA: 3:16 - loss: 1.2655 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4721 - mrcnn_class_loss: 0.2022 - mrcnn_bbox_loss: 0.2687 - mrcnn_mask_loss: 0.3115367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - "1817/2000 [==========================>...] - ETA: 3:15 - loss: 1.2654 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4720 - mrcnn_class_loss: 0.2022 - mrcnn_bbox_loss: 0.2687 - mrcnn_mask_loss: 0.3114293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - "1818/2000 [==========================>...] - ETA: 3:13 - loss: 1.2652 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4720 - mrcnn_class_loss: 0.2022 - mrcnn_bbox_loss: 0.2686 - mrcnn_mask_loss: 0.3114388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - "1819/2000 [==========================>...] - ETA: 3:12 - loss: 1.2649 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4719 - mrcnn_class_loss: 0.2021 - mrcnn_bbox_loss: 0.2685 - mrcnn_mask_loss: 0.3113250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - "1820/2000 [==========================>...] - ETA: 3:11 - loss: 1.2646 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4718 - mrcnn_class_loss: 0.2021 - mrcnn_bbox_loss: 0.2685 - mrcnn_mask_loss: 0.3113174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - "1821/2000 [==========================>...] - ETA: 3:10 - loss: 1.2648 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4718 - mrcnn_class_loss: 0.2022 - mrcnn_bbox_loss: 0.2685 - mrcnn_mask_loss: 0.3113292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - "1822/2000 [==========================>...] - ETA: 3:09 - loss: 1.2647 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4717 - mrcnn_class_loss: 0.2022 - mrcnn_bbox_loss: 0.2685 - mrcnn_mask_loss: 0.3112103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - "1823/2000 [==========================>...] - ETA: 3:08 - loss: 1.2644 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4716 - mrcnn_class_loss: 0.2022 - mrcnn_bbox_loss: 0.2684 - mrcnn_mask_loss: 0.3112192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - "1824/2000 [==========================>...] - ETA: 3:07 - loss: 1.2642 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4714 - mrcnn_class_loss: 0.2022 - mrcnn_bbox_loss: 0.2684 - mrcnn_mask_loss: 0.3111197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - "1825/2000 [==========================>...] - ETA: 3:06 - loss: 1.2638 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4712 - mrcnn_class_loss: 0.2022 - mrcnn_bbox_loss: 0.2683 - mrcnn_mask_loss: 0.3110151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - "1826/2000 [==========================>...] - ETA: 3:05 - loss: 1.2636 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4713 - mrcnn_class_loss: 0.2021 - mrcnn_bbox_loss: 0.2682 - mrcnn_mask_loss: 0.311091\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - "1827/2000 [==========================>...] - ETA: 3:04 - loss: 1.2634 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4712 - mrcnn_class_loss: 0.2021 - mrcnn_bbox_loss: 0.2681 - mrcnn_mask_loss: 0.3109102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - "1828/2000 [==========================>...] - ETA: 3:03 - loss: 1.2630 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4711 - mrcnn_class_loss: 0.2020 - mrcnn_bbox_loss: 0.2680 - mrcnn_mask_loss: 0.3108226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - "1829/2000 [==========================>...] - ETA: 3:02 - loss: 1.2627 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4709 - mrcnn_class_loss: 0.2019 - mrcnn_bbox_loss: 0.2680 - mrcnn_mask_loss: 0.3108283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - "1830/2000 [==========================>...] - ETA: 3:01 - loss: 1.2627 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4709 - mrcnn_class_loss: 0.2019 - mrcnn_bbox_loss: 0.2680 - mrcnn_mask_loss: 0.3108255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - "1831/2000 [==========================>...] - ETA: 2:59 - loss: 1.2625 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4709 - mrcnn_class_loss: 0.2019 - mrcnn_bbox_loss: 0.2680 - mrcnn_mask_loss: 0.3108370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - "1832/2000 [==========================>...] - ETA: 2:58 - loss: 1.2624 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.4708 - mrcnn_class_loss: 0.2019 - mrcnn_bbox_loss: 0.2679 - mrcnn_mask_loss: 0.3107271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - "1833/2000 [==========================>...] - ETA: 2:57 - loss: 1.2621 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4707 - mrcnn_class_loss: 0.2019 - mrcnn_bbox_loss: 0.2679 - mrcnn_mask_loss: 0.3107341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - "1834/2000 [==========================>...] - ETA: 2:56 - loss: 1.2620 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4706 - mrcnn_class_loss: 0.2019 - mrcnn_bbox_loss: 0.2678 - mrcnn_mask_loss: 0.3106390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - "1835/2000 [==========================>...] - ETA: 2:55 - loss: 1.2618 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4707 - mrcnn_class_loss: 0.2018 - mrcnn_bbox_loss: 0.2677 - mrcnn_mask_loss: 0.3106369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - "1836/2000 [==========================>...] - ETA: 2:54 - loss: 1.2616 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4706 - mrcnn_class_loss: 0.2017 - mrcnn_bbox_loss: 0.2677 - mrcnn_mask_loss: 0.3105235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - "1837/2000 [==========================>...] - ETA: 2:53 - loss: 1.2612 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4704 - mrcnn_class_loss: 0.2017 - mrcnn_bbox_loss: 0.2676 - mrcnn_mask_loss: 0.310526\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - "1838/2000 [==========================>...] - ETA: 2:52 - loss: 1.2609 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4704 - mrcnn_class_loss: 0.2016 - mrcnn_bbox_loss: 0.2675 - mrcnn_mask_loss: 0.3104115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - "1839/2000 [==========================>...] - ETA: 2:51 - loss: 1.2607 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4703 - mrcnn_class_loss: 0.2016 - mrcnn_bbox_loss: 0.2675 - mrcnn_mask_loss: 0.310328\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - "1840/2000 [==========================>...] - ETA: 2:50 - loss: 1.2605 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4702 - mrcnn_class_loss: 0.2016 - mrcnn_bbox_loss: 0.2674 - mrcnn_mask_loss: 0.3102276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - "1841/2000 [==========================>...] - ETA: 2:49 - loss: 1.2604 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4702 - mrcnn_class_loss: 0.2016 - mrcnn_bbox_loss: 0.2674 - mrcnn_mask_loss: 0.3102327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1842/2000 [==========================>...] - ETA: 2:48 - loss: 1.2602 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4701 - mrcnn_class_loss: 0.2015 - mrcnn_bbox_loss: 0.2673 - mrcnn_mask_loss: 0.3102380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - "1843/2000 [==========================>...] - ETA: 2:47 - loss: 1.2606 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4704 - mrcnn_class_loss: 0.2015 - mrcnn_bbox_loss: 0.2674 - mrcnn_mask_loss: 0.3102166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - "1844/2000 [==========================>...] - ETA: 2:46 - loss: 1.2605 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4704 - mrcnn_class_loss: 0.2015 - mrcnn_bbox_loss: 0.2675 - mrcnn_mask_loss: 0.3101249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - "1845/2000 [==========================>...] - ETA: 2:44 - loss: 1.2602 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4702 - mrcnn_class_loss: 0.2015 - mrcnn_bbox_loss: 0.2674 - mrcnn_mask_loss: 0.3101291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - "1846/2000 [==========================>...] - ETA: 2:43 - loss: 1.2600 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4701 - mrcnn_class_loss: 0.2014 - mrcnn_bbox_loss: 0.2674 - mrcnn_mask_loss: 0.3101142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - "1847/2000 [==========================>...] - ETA: 2:42 - loss: 1.2598 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4701 - mrcnn_class_loss: 0.2013 - mrcnn_bbox_loss: 0.2673 - mrcnn_mask_loss: 0.3100199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - "1848/2000 [==========================>...] - ETA: 2:41 - loss: 1.2595 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4701 - mrcnn_class_loss: 0.2013 - mrcnn_bbox_loss: 0.2672 - mrcnn_mask_loss: 0.309994\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - "1849/2000 [==========================>...] - ETA: 2:40 - loss: 1.2593 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4701 - mrcnn_class_loss: 0.2012 - mrcnn_bbox_loss: 0.2671 - mrcnn_mask_loss: 0.309918\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - "1850/2000 [==========================>...] - ETA: 2:39 - loss: 1.2593 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4703 - mrcnn_class_loss: 0.2011 - mrcnn_bbox_loss: 0.2671 - mrcnn_mask_loss: 0.3098269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - "1851/2000 [==========================>...] - ETA: 2:38 - loss: 1.2591 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4701 - mrcnn_class_loss: 0.2011 - mrcnn_bbox_loss: 0.2670 - mrcnn_mask_loss: 0.3098284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - "1852/2000 [==========================>...] - ETA: 2:37 - loss: 1.2588 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4701 - mrcnn_class_loss: 0.2011 - mrcnn_bbox_loss: 0.2670 - mrcnn_mask_loss: 0.309777\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - "1853/2000 [==========================>...] - ETA: 2:36 - loss: 1.2585 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4700 - mrcnn_class_loss: 0.2010 - mrcnn_bbox_loss: 0.2669 - mrcnn_mask_loss: 0.3096111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - "1854/2000 [==========================>...] - ETA: 2:35 - loss: 1.2583 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4699 - mrcnn_class_loss: 0.2010 - mrcnn_bbox_loss: 0.2668 - mrcnn_mask_loss: 0.3096204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - "1855/2000 [==========================>...] - ETA: 2:34 - loss: 1.2580 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4697 - mrcnn_class_loss: 0.2009 - mrcnn_bbox_loss: 0.2668 - mrcnn_mask_loss: 0.3095383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - "1856/2000 [==========================>...] - ETA: 2:33 - loss: 1.2578 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4696 - mrcnn_class_loss: 0.2009 - mrcnn_bbox_loss: 0.2668 - mrcnn_mask_loss: 0.3095190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1857/2000 [==========================>...] - ETA: 2:32 - loss: 1.2575 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4695 - mrcnn_class_loss: 0.2008 - mrcnn_bbox_loss: 0.2667 - mrcnn_mask_loss: 0.309423\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - "1858/2000 [==========================>...] - ETA: 2:30 - loss: 1.2573 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4695 - mrcnn_class_loss: 0.2008 - mrcnn_bbox_loss: 0.2666 - mrcnn_mask_loss: 0.3094392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - "1859/2000 [==========================>...] - ETA: 2:29 - loss: 1.2571 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4694 - mrcnn_class_loss: 0.2007 - mrcnn_bbox_loss: 0.2666 - mrcnn_mask_loss: 0.3094147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - "1860/2000 [==========================>...] - ETA: 2:28 - loss: 1.2571 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4696 - mrcnn_class_loss: 0.2006 - mrcnn_bbox_loss: 0.2665 - mrcnn_mask_loss: 0.309312\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - "1861/2000 [==========================>...] - ETA: 2:27 - loss: 1.2567 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4694 - mrcnn_class_loss: 0.2005 - mrcnn_bbox_loss: 0.2665 - mrcnn_mask_loss: 0.3092357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - "1862/2000 [==========================>...] - ETA: 2:26 - loss: 1.2566 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4695 - mrcnn_class_loss: 0.2004 - mrcnn_bbox_loss: 0.2664 - mrcnn_mask_loss: 0.3092378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - "1863/2000 [==========================>...] - ETA: 2:25 - loss: 1.2565 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4695 - mrcnn_class_loss: 0.2004 - mrcnn_bbox_loss: 0.2664 - mrcnn_mask_loss: 0.30911\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - "1864/2000 [==========================>...] - ETA: 2:24 - loss: 1.2565 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4697 - mrcnn_class_loss: 0.2004 - mrcnn_bbox_loss: 0.2663 - mrcnn_mask_loss: 0.3091393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - "1865/2000 [==========================>...] - ETA: 2:23 - loss: 1.2563 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4696 - mrcnn_class_loss: 0.2003 - mrcnn_bbox_loss: 0.2663 - mrcnn_mask_loss: 0.3090219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - "1866/2000 [==========================>...] - ETA: 2:22 - loss: 1.2560 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4695 - mrcnn_class_loss: 0.2002 - mrcnn_bbox_loss: 0.2662 - mrcnn_mask_loss: 0.3090136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - "1867/2000 [===========================>..] - ETA: 2:21 - loss: 1.2558 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4695 - mrcnn_class_loss: 0.2002 - mrcnn_bbox_loss: 0.2661 - mrcnn_mask_loss: 0.3090209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - "1868/2000 [===========================>..] - ETA: 2:20 - loss: 1.2554 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4693 - mrcnn_class_loss: 0.2001 - mrcnn_bbox_loss: 0.2660 - mrcnn_mask_loss: 0.3089325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - "1869/2000 [===========================>..] - ETA: 2:19 - loss: 1.2552 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4692 - mrcnn_class_loss: 0.2001 - mrcnn_bbox_loss: 0.2660 - mrcnn_mask_loss: 0.3089188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - "1870/2000 [===========================>..] - ETA: 2:18 - loss: 1.2550 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4691 - mrcnn_class_loss: 0.2002 - mrcnn_bbox_loss: 0.2659 - mrcnn_mask_loss: 0.3088301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - "1871/2000 [===========================>..] - ETA: 2:17 - loss: 1.2549 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4691 - mrcnn_class_loss: 0.2001 - mrcnn_bbox_loss: 0.2659 - mrcnn_mask_loss: 0.308866\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1872/2000 [===========================>..] - ETA: 2:16 - loss: 1.2546 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4689 - mrcnn_class_loss: 0.2001 - mrcnn_bbox_loss: 0.2659 - mrcnn_mask_loss: 0.308735\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - "1873/2000 [===========================>..] - ETA: 2:14 - loss: 1.2544 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4689 - mrcnn_class_loss: 0.2000 - mrcnn_bbox_loss: 0.2658 - mrcnn_mask_loss: 0.3087290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - "1874/2000 [===========================>..] - ETA: 2:13 - loss: 1.2542 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4689 - mrcnn_class_loss: 0.2000 - mrcnn_bbox_loss: 0.2657 - mrcnn_mask_loss: 0.308634\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - "1875/2000 [===========================>..] - ETA: 2:12 - loss: 1.2540 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4688 - mrcnn_class_loss: 0.2000 - mrcnn_bbox_loss: 0.2657 - mrcnn_mask_loss: 0.3086323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - "1876/2000 [===========================>..] - ETA: 2:11 - loss: 1.2538 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4687 - mrcnn_class_loss: 0.1999 - mrcnn_bbox_loss: 0.2656 - mrcnn_mask_loss: 0.308527\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - "1877/2000 [===========================>..] - ETA: 2:10 - loss: 1.2535 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4687 - mrcnn_class_loss: 0.1998 - mrcnn_bbox_loss: 0.2655 - mrcnn_mask_loss: 0.308559\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - "1878/2000 [===========================>..] - ETA: 2:09 - loss: 1.2533 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4687 - mrcnn_class_loss: 0.1997 - mrcnn_bbox_loss: 0.2654 - mrcnn_mask_loss: 0.308481\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - "1879/2000 [===========================>..] - ETA: 2:08 - loss: 1.2531 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4686 - mrcnn_class_loss: 0.1996 - mrcnn_bbox_loss: 0.2655 - mrcnn_mask_loss: 0.3084256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - "1880/2000 [===========================>..] - ETA: 2:07 - loss: 1.2528 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4685 - mrcnn_class_loss: 0.1996 - mrcnn_bbox_loss: 0.2654 - mrcnn_mask_loss: 0.3083318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - "1881/2000 [===========================>..] - ETA: 2:06 - loss: 1.2526 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4684 - mrcnn_class_loss: 0.1995 - mrcnn_bbox_loss: 0.2654 - mrcnn_mask_loss: 0.3083297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - "1882/2000 [===========================>..] - ETA: 2:05 - loss: 1.2526 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4685 - mrcnn_class_loss: 0.1995 - mrcnn_bbox_loss: 0.2654 - mrcnn_mask_loss: 0.308288\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - "1883/2000 [===========================>..] - ETA: 2:04 - loss: 1.2524 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4685 - mrcnn_class_loss: 0.1995 - mrcnn_bbox_loss: 0.2653 - mrcnn_mask_loss: 0.3082372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - "1884/2000 [===========================>..] - ETA: 2:03 - loss: 1.2521 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4684 - mrcnn_class_loss: 0.1994 - mrcnn_bbox_loss: 0.2652 - mrcnn_mask_loss: 0.308196\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - "1885/2000 [===========================>..] - ETA: 2:02 - loss: 1.2520 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4684 - mrcnn_class_loss: 0.1994 - mrcnn_bbox_loss: 0.2652 - mrcnn_mask_loss: 0.308137\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - "1886/2000 [===========================>..] - ETA: 2:01 - loss: 1.2522 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4686 - mrcnn_class_loss: 0.1994 - mrcnn_bbox_loss: 0.2651 - mrcnn_mask_loss: 0.3080245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1887/2000 [===========================>..] - ETA: 1:59 - loss: 1.2519 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4685 - mrcnn_class_loss: 0.1993 - mrcnn_bbox_loss: 0.2651 - mrcnn_mask_loss: 0.3081157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - "1888/2000 [===========================>..] - ETA: 1:58 - loss: 1.2518 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4685 - mrcnn_class_loss: 0.1993 - mrcnn_bbox_loss: 0.2650 - mrcnn_mask_loss: 0.3080133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - "1889/2000 [===========================>..] - ETA: 1:57 - loss: 1.2517 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4685 - mrcnn_class_loss: 0.1993 - mrcnn_bbox_loss: 0.2650 - mrcnn_mask_loss: 0.308015\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - "1890/2000 [===========================>..] - ETA: 1:56 - loss: 1.2516 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4685 - mrcnn_class_loss: 0.1992 - mrcnn_bbox_loss: 0.2650 - mrcnn_mask_loss: 0.307930\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - "1891/2000 [===========================>..] - ETA: 1:55 - loss: 1.2513 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4684 - mrcnn_class_loss: 0.1992 - mrcnn_bbox_loss: 0.2650 - mrcnn_mask_loss: 0.3078386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - "1892/2000 [===========================>..] - ETA: 1:54 - loss: 1.2510 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4683 - mrcnn_class_loss: 0.1991 - mrcnn_bbox_loss: 0.2649 - mrcnn_mask_loss: 0.3078306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - "1893/2000 [===========================>..] - ETA: 1:53 - loss: 1.2509 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4683 - mrcnn_class_loss: 0.1991 - mrcnn_bbox_loss: 0.2649 - mrcnn_mask_loss: 0.3078312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - "1894/2000 [===========================>..] - ETA: 1:52 - loss: 1.2507 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4682 - mrcnn_class_loss: 0.1990 - mrcnn_bbox_loss: 0.2648 - mrcnn_mask_loss: 0.307839\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - "1895/2000 [===========================>..] - ETA: 1:51 - loss: 1.2506 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4683 - mrcnn_class_loss: 0.1989 - mrcnn_bbox_loss: 0.2647 - mrcnn_mask_loss: 0.3077229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - "1896/2000 [===========================>..] - ETA: 1:50 - loss: 1.2503 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4681 - mrcnn_class_loss: 0.1989 - mrcnn_bbox_loss: 0.2647 - mrcnn_mask_loss: 0.3077117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - "1897/2000 [===========================>..] - ETA: 1:49 - loss: 1.2502 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4681 - mrcnn_class_loss: 0.1989 - mrcnn_bbox_loss: 0.2647 - mrcnn_mask_loss: 0.3076281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - "1898/2000 [===========================>..] - ETA: 1:48 - loss: 1.2501 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.4680 - mrcnn_class_loss: 0.1989 - mrcnn_bbox_loss: 0.2647 - mrcnn_mask_loss: 0.3076309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - "1899/2000 [===========================>..] - ETA: 1:47 - loss: 1.2500 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4680 - mrcnn_class_loss: 0.1988 - mrcnn_bbox_loss: 0.2647 - mrcnn_mask_loss: 0.3076315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - "1900/2000 [===========================>..] - ETA: 1:46 - loss: 1.2499 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4680 - mrcnn_class_loss: 0.1988 - mrcnn_bbox_loss: 0.2646 - mrcnn_mask_loss: 0.3075193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - "1901/2000 [===========================>..] - ETA: 1:45 - loss: 1.2495 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4678 - mrcnn_class_loss: 0.1987 - mrcnn_bbox_loss: 0.2645 - mrcnn_mask_loss: 0.3075288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - "1902/2000 [===========================>..] - ETA: 1:43 - loss: 1.2494 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4677 - mrcnn_class_loss: 0.1988 - mrcnn_bbox_loss: 0.2645 - mrcnn_mask_loss: 0.3075178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - "1903/2000 [===========================>..] - ETA: 1:42 - loss: 1.2492 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4676 - mrcnn_class_loss: 0.1987 - mrcnn_bbox_loss: 0.2645 - mrcnn_mask_loss: 0.307453\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - "1904/2000 [===========================>..] - ETA: 1:41 - loss: 1.2488 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4675 - mrcnn_class_loss: 0.1986 - mrcnn_bbox_loss: 0.2644 - mrcnn_mask_loss: 0.3073159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - "1905/2000 [===========================>..] - ETA: 1:40 - loss: 1.2486 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4674 - mrcnn_class_loss: 0.1986 - mrcnn_bbox_loss: 0.2644 - mrcnn_mask_loss: 0.307331\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - "1906/2000 [===========================>..] - ETA: 1:39 - loss: 1.2481 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4673 - mrcnn_class_loss: 0.1985 - mrcnn_bbox_loss: 0.2643 - mrcnn_mask_loss: 0.3072330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - "1907/2000 [===========================>..] - ETA: 1:38 - loss: 1.2479 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4672 - mrcnn_class_loss: 0.1984 - mrcnn_bbox_loss: 0.2642 - mrcnn_mask_loss: 0.3071278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - "1908/2000 [===========================>..] - ETA: 1:37 - loss: 1.2477 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4671 - mrcnn_class_loss: 0.1984 - mrcnn_bbox_loss: 0.2641 - mrcnn_mask_loss: 0.3071153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - "1909/2000 [===========================>..] - ETA: 1:36 - loss: 1.2476 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4672 - mrcnn_class_loss: 0.1984 - mrcnn_bbox_loss: 0.2641 - mrcnn_mask_loss: 0.3070374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - "1910/2000 [===========================>..] - ETA: 1:35 - loss: 1.2472 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4670 - mrcnn_class_loss: 0.1983 - mrcnn_bbox_loss: 0.2640 - mrcnn_mask_loss: 0.3070121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - "1911/2000 [===========================>..] - ETA: 1:34 - loss: 1.2473 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4671 - mrcnn_class_loss: 0.1983 - mrcnn_bbox_loss: 0.2640 - mrcnn_mask_loss: 0.3070144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - "1912/2000 [===========================>..] - ETA: 1:33 - loss: 1.2472 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4671 - mrcnn_class_loss: 0.1983 - mrcnn_bbox_loss: 0.2639 - mrcnn_mask_loss: 0.30693\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - "1913/2000 [===========================>..] - ETA: 1:32 - loss: 1.2470 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4672 - mrcnn_class_loss: 0.1982 - mrcnn_bbox_loss: 0.2639 - mrcnn_mask_loss: 0.306964\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - "1914/2000 [===========================>..] - ETA: 1:31 - loss: 1.2466 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4670 - mrcnn_class_loss: 0.1981 - mrcnn_bbox_loss: 0.2638 - mrcnn_mask_loss: 0.3068319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1915/2000 [===========================>..] - ETA: 1:30 - loss: 1.2466 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4671 - mrcnn_class_loss: 0.1980 - mrcnn_bbox_loss: 0.2638 - mrcnn_mask_loss: 0.3068331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - "1916/2000 [===========================>..] - ETA: 1:29 - loss: 1.2463 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4670 - mrcnn_class_loss: 0.1980 - mrcnn_bbox_loss: 0.2637 - mrcnn_mask_loss: 0.3068332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - "1917/2000 [===========================>..] - ETA: 1:28 - loss: 1.2461 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4668 - mrcnn_class_loss: 0.1979 - mrcnn_bbox_loss: 0.2636 - mrcnn_mask_loss: 0.3067180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - "1918/2000 [===========================>..] - ETA: 1:26 - loss: 1.2461 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4669 - mrcnn_class_loss: 0.1978 - mrcnn_bbox_loss: 0.2637 - mrcnn_mask_loss: 0.3067346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - "1919/2000 [===========================>..] - ETA: 1:25 - loss: 1.2459 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4670 - mrcnn_class_loss: 0.1978 - mrcnn_bbox_loss: 0.2636 - mrcnn_mask_loss: 0.3067181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - "1920/2000 [===========================>..] - ETA: 1:24 - loss: 1.2459 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4671 - mrcnn_class_loss: 0.1977 - mrcnn_bbox_loss: 0.2635 - mrcnn_mask_loss: 0.306619\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - "1921/2000 [===========================>..] - ETA: 1:23 - loss: 1.2457 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4672 - mrcnn_class_loss: 0.1976 - mrcnn_bbox_loss: 0.2634 - mrcnn_mask_loss: 0.3066355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - "1922/2000 [===========================>..] - ETA: 1:22 - loss: 1.2454 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4670 - mrcnn_class_loss: 0.1976 - mrcnn_bbox_loss: 0.2634 - mrcnn_mask_loss: 0.306546\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - "1923/2000 [===========================>..] - ETA: 1:21 - loss: 1.2450 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4668 - mrcnn_class_loss: 0.1975 - mrcnn_bbox_loss: 0.2633 - mrcnn_mask_loss: 0.3065128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - "1924/2000 [===========================>..] - ETA: 1:20 - loss: 1.2448 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4668 - mrcnn_class_loss: 0.1974 - mrcnn_bbox_loss: 0.2632 - mrcnn_mask_loss: 0.306417\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - "1925/2000 [===========================>..] - ETA: 1:19 - loss: 1.2447 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4670 - mrcnn_class_loss: 0.1974 - mrcnn_bbox_loss: 0.2631 - mrcnn_mask_loss: 0.3063205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - "1926/2000 [===========================>..] - ETA: 1:18 - loss: 1.2444 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4668 - mrcnn_class_loss: 0.1974 - mrcnn_bbox_loss: 0.2631 - mrcnn_mask_loss: 0.306368\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - "1927/2000 [===========================>..] - ETA: 1:17 - loss: 1.2440 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4666 - mrcnn_class_loss: 0.1973 - mrcnn_bbox_loss: 0.2629 - mrcnn_mask_loss: 0.3063146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - "1928/2000 [===========================>..] - ETA: 1:16 - loss: 1.2440 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4666 - mrcnn_class_loss: 0.1973 - mrcnn_bbox_loss: 0.2629 - mrcnn_mask_loss: 0.3062352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - "1929/2000 [===========================>..] - ETA: 1:15 - loss: 1.2437 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4666 - mrcnn_class_loss: 0.1973 - mrcnn_bbox_loss: 0.2629 - mrcnn_mask_loss: 0.3061350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1930/2000 [===========================>..] - ETA: 1:14 - loss: 1.2435 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4666 - mrcnn_class_loss: 0.1972 - mrcnn_bbox_loss: 0.2628 - mrcnn_mask_loss: 0.3061194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - "1931/2000 [===========================>..] - ETA: 1:13 - loss: 1.2431 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4664 - mrcnn_class_loss: 0.1971 - mrcnn_bbox_loss: 0.2627 - mrcnn_mask_loss: 0.3060314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - "1932/2000 [===========================>..] - ETA: 1:12 - loss: 1.2429 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4663 - mrcnn_class_loss: 0.1971 - mrcnn_bbox_loss: 0.2627 - mrcnn_mask_loss: 0.3060294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - "1933/2000 [===========================>..] - ETA: 1:11 - loss: 1.2429 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4663 - mrcnn_class_loss: 0.1971 - mrcnn_bbox_loss: 0.2626 - mrcnn_mask_loss: 0.3060218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - "1934/2000 [============================>.] - ETA: 1:09 - loss: 1.2426 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4662 - mrcnn_class_loss: 0.1971 - mrcnn_bbox_loss: 0.2625 - mrcnn_mask_loss: 0.3059109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - "1935/2000 [============================>.] - ETA: 1:08 - loss: 1.2425 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4660 - mrcnn_class_loss: 0.1971 - mrcnn_bbox_loss: 0.2625 - mrcnn_mask_loss: 0.3059308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - "1936/2000 [============================>.] - ETA: 1:07 - loss: 1.2423 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4660 - mrcnn_class_loss: 0.1970 - mrcnn_bbox_loss: 0.2625 - mrcnn_mask_loss: 0.3059137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - "1937/2000 [============================>.] - ETA: 1:06 - loss: 1.2421 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4660 - mrcnn_class_loss: 0.1969 - mrcnn_bbox_loss: 0.2624 - mrcnn_mask_loss: 0.305870\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - "1938/2000 [============================>.] - ETA: 1:05 - loss: 1.2418 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4659 - mrcnn_class_loss: 0.1969 - mrcnn_bbox_loss: 0.2623 - mrcnn_mask_loss: 0.3058303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - "1939/2000 [============================>.] - ETA: 1:04 - loss: 1.2416 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4658 - mrcnn_class_loss: 0.1969 - mrcnn_bbox_loss: 0.2623 - mrcnn_mask_loss: 0.3058123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - "1940/2000 [============================>.] - ETA: 1:03 - loss: 1.2416 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4659 - mrcnn_class_loss: 0.1969 - mrcnn_bbox_loss: 0.2623 - mrcnn_mask_loss: 0.305780\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - "1941/2000 [============================>.] - ETA: 1:02 - loss: 1.2415 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4658 - mrcnn_class_loss: 0.1969 - mrcnn_bbox_loss: 0.2622 - mrcnn_mask_loss: 0.3057145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - "1942/2000 [============================>.] - ETA: 1:01 - loss: 1.2414 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4658 - mrcnn_class_loss: 0.1969 - mrcnn_bbox_loss: 0.2622 - mrcnn_mask_loss: 0.3057172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - "1943/2000 [============================>.] - ETA: 1:00 - loss: 1.2412 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4657 - mrcnn_class_loss: 0.1968 - mrcnn_bbox_loss: 0.2622 - mrcnn_mask_loss: 0.3056354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - "1944/2000 [============================>.] - ETA: 59s - loss: 1.2409 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4656 - mrcnn_class_loss: 0.1968 - mrcnn_bbox_loss: 0.2621 - mrcnn_mask_loss: 0.3056 289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - "1945/2000 [============================>.] - ETA: 58s - loss: 1.2407 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4655 - mrcnn_class_loss: 0.1967 - mrcnn_bbox_loss: 0.2621 - mrcnn_mask_loss: 0.3055398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - "1946/2000 [============================>.] - ETA: 57s - loss: 1.2406 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4656 - mrcnn_class_loss: 0.1967 - mrcnn_bbox_loss: 0.2620 - mrcnn_mask_loss: 0.3055203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - "1947/2000 [============================>.] - ETA: 56s - loss: 1.2404 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4654 - mrcnn_class_loss: 0.1967 - mrcnn_bbox_loss: 0.2620 - mrcnn_mask_loss: 0.3054122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - "1948/2000 [============================>.] - ETA: 55s - loss: 1.2402 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4654 - mrcnn_class_loss: 0.1967 - mrcnn_bbox_loss: 0.2619 - mrcnn_mask_loss: 0.3054305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - "1949/2000 [============================>.] - ETA: 54s - loss: 1.2399 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4653 - mrcnn_class_loss: 0.1966 - mrcnn_bbox_loss: 0.2618 - mrcnn_mask_loss: 0.3053364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - "1950/2000 [============================>.] - ETA: 53s - loss: 1.2397 - rpn_class_loss: 0.0109 - rpn_bbox_loss: 0.4653 - mrcnn_class_loss: 0.1965 - mrcnn_bbox_loss: 0.2618 - mrcnn_mask_loss: 0.305350\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - "1951/2000 [============================>.] - ETA: 51s - loss: 1.2395 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4653 - mrcnn_class_loss: 0.1965 - mrcnn_bbox_loss: 0.2617 - mrcnn_mask_loss: 0.3052338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - "1952/2000 [============================>.] - ETA: 50s - loss: 1.2393 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4652 - mrcnn_class_loss: 0.1964 - mrcnn_bbox_loss: 0.2616 - mrcnn_mask_loss: 0.3052334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - "1953/2000 [============================>.] - ETA: 49s - loss: 1.2390 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4651 - mrcnn_class_loss: 0.1964 - mrcnn_bbox_loss: 0.2616 - mrcnn_mask_loss: 0.3051382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - "1954/2000 [============================>.] - ETA: 48s - loss: 1.2388 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4651 - mrcnn_class_loss: 0.1963 - mrcnn_bbox_loss: 0.2615 - mrcnn_mask_loss: 0.3051373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - "1955/2000 [============================>.] - ETA: 47s - loss: 1.2386 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4649 - mrcnn_class_loss: 0.1963 - mrcnn_bbox_loss: 0.2615 - mrcnn_mask_loss: 0.3051156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - "1956/2000 [============================>.] - ETA: 46s - loss: 1.2384 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4649 - mrcnn_class_loss: 0.1963 - mrcnn_bbox_loss: 0.2614 - mrcnn_mask_loss: 0.3050189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - "1957/2000 [============================>.] - ETA: 45s - loss: 1.2382 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4648 - mrcnn_class_loss: 0.1963 - mrcnn_bbox_loss: 0.2613 - mrcnn_mask_loss: 0.305014\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - "1958/2000 [============================>.] - ETA: 44s - loss: 1.2380 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4648 - mrcnn_class_loss: 0.1963 - mrcnn_bbox_loss: 0.2612 - mrcnn_mask_loss: 0.304940\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1959/2000 [============================>.] - ETA: 43s - loss: 1.2378 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4647 - mrcnn_class_loss: 0.1962 - mrcnn_bbox_loss: 0.2612 - mrcnn_mask_loss: 0.3048311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - "1960/2000 [============================>.] - ETA: 42s - loss: 1.2376 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4647 - mrcnn_class_loss: 0.1961 - mrcnn_bbox_loss: 0.2612 - mrcnn_mask_loss: 0.304876\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - "1961/2000 [============================>.] - ETA: 41s - loss: 1.2374 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4646 - mrcnn_class_loss: 0.1962 - mrcnn_bbox_loss: 0.2611 - mrcnn_mask_loss: 0.3047135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - "1962/2000 [============================>.] - ETA: 40s - loss: 1.2372 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4646 - mrcnn_class_loss: 0.1961 - mrcnn_bbox_loss: 0.2610 - mrcnn_mask_loss: 0.3047253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - "1963/2000 [============================>.] - ETA: 39s - loss: 1.2370 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4646 - mrcnn_class_loss: 0.1961 - mrcnn_bbox_loss: 0.2610 - mrcnn_mask_loss: 0.304687\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - "1964/2000 [============================>.] - ETA: 38s - loss: 1.2368 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4645 - mrcnn_class_loss: 0.1960 - mrcnn_bbox_loss: 0.2609 - mrcnn_mask_loss: 0.3046272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - "1965/2000 [============================>.] - ETA: 37s - loss: 1.2366 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4644 - mrcnn_class_loss: 0.1960 - mrcnn_bbox_loss: 0.2609 - mrcnn_mask_loss: 0.3046339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - "1966/2000 [============================>.] - ETA: 36s - loss: 1.2364 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4644 - mrcnn_class_loss: 0.1959 - mrcnn_bbox_loss: 0.2608 - mrcnn_mask_loss: 0.3045200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - "1967/2000 [============================>.] - ETA: 34s - loss: 1.2363 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4643 - mrcnn_class_loss: 0.1959 - mrcnn_bbox_loss: 0.2608 - mrcnn_mask_loss: 0.3045143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - "1968/2000 [============================>.] - ETA: 33s - loss: 1.2360 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4643 - mrcnn_class_loss: 0.1958 - mrcnn_bbox_loss: 0.2607 - mrcnn_mask_loss: 0.3044340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - "1969/2000 [============================>.] - ETA: 32s - loss: 1.2360 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4644 - mrcnn_class_loss: 0.1958 - mrcnn_bbox_loss: 0.2607 - mrcnn_mask_loss: 0.3044119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - "1970/2000 [============================>.] - ETA: 31s - loss: 1.2359 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4644 - mrcnn_class_loss: 0.1957 - mrcnn_bbox_loss: 0.2607 - mrcnn_mask_loss: 0.3043342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - "1971/2000 [============================>.] - ETA: 30s - loss: 1.2357 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4644 - mrcnn_class_loss: 0.1957 - mrcnn_bbox_loss: 0.2606 - mrcnn_mask_loss: 0.304356\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - "1972/2000 [============================>.] - ETA: 29s - loss: 1.2354 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4642 - mrcnn_class_loss: 0.1956 - mrcnn_bbox_loss: 0.2605 - mrcnn_mask_loss: 0.3042100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - "1973/2000 [============================>.] - ETA: 28s - loss: 1.2353 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4642 - mrcnn_class_loss: 0.1957 - mrcnn_bbox_loss: 0.2605 - mrcnn_mask_loss: 0.304141\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - "1974/2000 [============================>.] - ETA: 27s - loss: 1.2352 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4642 - mrcnn_class_loss: 0.1957 - mrcnn_bbox_loss: 0.2604 - mrcnn_mask_loss: 0.304110\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - "1975/2000 [============================>.] - ETA: 26s - loss: 1.2349 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4641 - mrcnn_class_loss: 0.1956 - mrcnn_bbox_loss: 0.2604 - mrcnn_mask_loss: 0.3040316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - "1976/2000 [============================>.] - ETA: 25s - loss: 1.2346 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4640 - mrcnn_class_loss: 0.1955 - mrcnn_bbox_loss: 0.2603 - mrcnn_mask_loss: 0.3040275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - "1977/2000 [============================>.] - ETA: 24s - loss: 1.2343 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4639 - mrcnn_class_loss: 0.1954 - mrcnn_bbox_loss: 0.2603 - mrcnn_mask_loss: 0.303933\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - "1978/2000 [============================>.] - ETA: 23s - loss: 1.2341 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4639 - mrcnn_class_loss: 0.1954 - mrcnn_bbox_loss: 0.2602 - mrcnn_mask_loss: 0.303916\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - "1979/2000 [============================>.] - ETA: 22s - loss: 1.2339 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4640 - mrcnn_class_loss: 0.1953 - mrcnn_bbox_loss: 0.2600 - mrcnn_mask_loss: 0.3038375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - "1980/2000 [============================>.] - ETA: 21s - loss: 1.2337 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4639 - mrcnn_class_loss: 0.1953 - mrcnn_bbox_loss: 0.2600 - mrcnn_mask_loss: 0.3037322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - "1981/2000 [============================>.] - ETA: 20s - loss: 1.2336 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4638 - mrcnn_class_loss: 0.1953 - mrcnn_bbox_loss: 0.2600 - mrcnn_mask_loss: 0.3037150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - "1982/2000 [============================>.] - ETA: 19s - loss: 1.2334 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4637 - mrcnn_class_loss: 0.1953 - mrcnn_bbox_loss: 0.2600 - mrcnn_mask_loss: 0.3037242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - "1983/2000 [============================>.] - ETA: 18s - loss: 1.2333 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4636 - mrcnn_class_loss: 0.1952 - mrcnn_bbox_loss: 0.2600 - mrcnn_mask_loss: 0.3037254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - "1984/2000 [============================>.] - ETA: 16s - loss: 1.2331 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4636 - mrcnn_class_loss: 0.1952 - mrcnn_bbox_loss: 0.2600 - mrcnn_mask_loss: 0.3036191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - "1985/2000 [============================>.] - ETA: 15s - loss: 1.2327 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4634 - mrcnn_class_loss: 0.1951 - mrcnn_bbox_loss: 0.2599 - mrcnn_mask_loss: 0.3035337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - "1986/2000 [============================>.] - ETA: 14s - loss: 1.2326 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4633 - mrcnn_class_loss: 0.1951 - mrcnn_bbox_loss: 0.2598 - mrcnn_mask_loss: 0.3035106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - "1987/2000 [============================>.] - ETA: 13s - loss: 1.2324 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4632 - mrcnn_class_loss: 0.1952 - mrcnn_bbox_loss: 0.2597 - mrcnn_mask_loss: 0.3035313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1988/2000 [============================>.] - ETA: 12s - loss: 1.2321 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4631 - mrcnn_class_loss: 0.1951 - mrcnn_bbox_loss: 0.2597 - mrcnn_mask_loss: 0.303524\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - "1989/2000 [============================>.] - ETA: 11s - loss: 1.2319 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4631 - mrcnn_class_loss: 0.1950 - mrcnn_bbox_loss: 0.2596 - mrcnn_mask_loss: 0.3034163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - "1990/2000 [============================>.] - ETA: 10s - loss: 1.2319 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4631 - mrcnn_class_loss: 0.1950 - mrcnn_bbox_loss: 0.2596 - mrcnn_mask_loss: 0.3034211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - "1991/2000 [============================>.] - ETA: 9s - loss: 1.2315 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4629 - mrcnn_class_loss: 0.1950 - mrcnn_bbox_loss: 0.2595 - mrcnn_mask_loss: 0.3033 179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - "1992/2000 [============================>.] - ETA: 8s - loss: 1.2314 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4629 - mrcnn_class_loss: 0.1949 - mrcnn_bbox_loss: 0.2595 - mrcnn_mask_loss: 0.3033182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - "1993/2000 [============================>.] - ETA: 7s - loss: 1.2311 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4629 - mrcnn_class_loss: 0.1949 - mrcnn_bbox_loss: 0.2594 - mrcnn_mask_loss: 0.3032127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - "1994/2000 [============================>.] - ETA: 6s - loss: 1.2309 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4628 - mrcnn_class_loss: 0.1948 - mrcnn_bbox_loss: 0.2594 - mrcnn_mask_loss: 0.303247\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - "1995/2000 [============================>.] - ETA: 5s - loss: 1.2305 - rpn_class_loss: 0.0107 - rpn_bbox_loss: 0.4626 - mrcnn_class_loss: 0.1947 - mrcnn_bbox_loss: 0.2593 - mrcnn_mask_loss: 0.3031230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - "1996/2000 [============================>.] - ETA: 4s - loss: 1.2301 - rpn_class_loss: 0.0107 - rpn_bbox_loss: 0.4625 - mrcnn_class_loss: 0.1947 - mrcnn_bbox_loss: 0.2592 - mrcnn_mask_loss: 0.3030169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - "1997/2000 [============================>.] - ETA: 3s - loss: 1.2299 - rpn_class_loss: 0.0107 - rpn_bbox_loss: 0.4623 - mrcnn_class_loss: 0.1946 - mrcnn_bbox_loss: 0.2592 - mrcnn_mask_loss: 0.303098\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - "1998/2000 [============================>.] - ETA: 2s - loss: 1.2298 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4625 - mrcnn_class_loss: 0.1946 - mrcnn_bbox_loss: 0.2591 - mrcnn_mask_loss: 0.30292\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - "1999/2000 [============================>.] - ETA: 1s - loss: 1.2296 - rpn_class_loss: 0.0108 - rpn_bbox_loss: 0.4624 - mrcnn_class_loss: 0.1945 - mrcnn_bbox_loss: 0.2590 - mrcnn_mask_loss: 0.3029329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - "2000/2000 [==============================] - 2120s 1s/step - loss: 1.2294 - rpn_class_loss: 0.0107 - rpn_bbox_loss: 0.4624 - mrcnn_class_loss: 0.1944 - mrcnn_bbox_loss: 0.2589 - mrcnn_mask_loss: 0.3029 - val_loss: 1.2776 - val_rpn_class_loss: 0.0116 - val_rpn_bbox_loss: 0.7112 - val_mrcnn_class_loss: 0.0397 - val_mrcnn_bbox_loss: 0.2314 - val_mrcnn_mask_loss: 0.2836\n", - "Epoch 2/2\n", - "25\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - " 1/2000 [..............................] - ETA: 27:26 - loss: 0.6737 - rpn_class_loss: 0.0044 - rpn_bbox_loss: 0.3010 - mrcnn_class_loss: 0.1891 - mrcnn_bbox_loss: 0.0427 - mrcnn_mask_loss: 0.1366240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - " 2/2000 [..............................] - ETA: 30:35 - loss: 0.8921 - rpn_class_loss: 0.0044 - rpn_bbox_loss: 0.3345 - mrcnn_class_loss: 0.1929 - mrcnn_bbox_loss: 0.1499 - mrcnn_mask_loss: 0.2104354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 3/2000 [..............................] - ETA: 34:12 - loss: 0.8603 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3183 - mrcnn_class_loss: 0.1406 - mrcnn_bbox_loss: 0.1754 - mrcnn_mask_loss: 0.2193266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - " 4/2000 [..............................] - ETA: 34:48 - loss: 0.8125 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.2769 - mrcnn_class_loss: 0.1470 - mrcnn_bbox_loss: 0.1541 - mrcnn_mask_loss: 0.2278251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - " 5/2000 [..............................] - ETA: 33:27 - loss: 0.7896 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.2678 - mrcnn_class_loss: 0.1245 - mrcnn_bbox_loss: 0.1515 - mrcnn_mask_loss: 0.2398167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - " 6/2000 [..............................] - ETA: 34:20 - loss: 0.7520 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.2586 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1468 - mrcnn_mask_loss: 0.2337234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - " 7/2000 [..............................] - ETA: 33:31 - loss: 0.7240 - rpn_class_loss: 0.0054 - rpn_bbox_loss: 0.2518 - mrcnn_class_loss: 0.0994 - mrcnn_bbox_loss: 0.1443 - mrcnn_mask_loss: 0.2232356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - " 8/2000 [..............................] - ETA: 34:29 - loss: 0.7486 - rpn_class_loss: 0.0051 - rpn_bbox_loss: 0.2615 - mrcnn_class_loss: 0.1025 - mrcnn_bbox_loss: 0.1527 - mrcnn_mask_loss: 0.226995\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - " 9/2000 [..............................] - ETA: 34:35 - loss: 0.7882 - rpn_class_loss: 0.0051 - rpn_bbox_loss: 0.2940 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1560 - mrcnn_mask_loss: 0.2245154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - " 10/2000 [..............................] - ETA: 34:42 - loss: 0.8116 - rpn_class_loss: 0.0055 - rpn_bbox_loss: 0.3052 - mrcnn_class_loss: 0.1194 - mrcnn_bbox_loss: 0.1621 - mrcnn_mask_loss: 0.2194225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - " 11/2000 [..............................] - ETA: 34:36 - loss: 0.7852 - rpn_class_loss: 0.0051 - rpn_bbox_loss: 0.2909 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1583 - mrcnn_mask_loss: 0.2171336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - " 12/2000 [..............................] - ETA: 35:12 - loss: 0.7784 - rpn_class_loss: 0.0050 - rpn_bbox_loss: 0.2902 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1526 - mrcnn_mask_loss: 0.218791\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - " 13/2000 [..............................] - ETA: 34:59 - loss: 0.7752 - rpn_class_loss: 0.0048 - rpn_bbox_loss: 0.3024 - mrcnn_class_loss: 0.1050 - mrcnn_bbox_loss: 0.1474 - mrcnn_mask_loss: 0.2156288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - " 14/2000 [..............................] - ETA: 35:03 - loss: 0.7867 - rpn_class_loss: 0.0051 - rpn_bbox_loss: 0.3089 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1477 - mrcnn_mask_loss: 0.2184284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - " 15/2000 [..............................] - ETA: 35:17 - loss: 0.8116 - rpn_class_loss: 0.0053 - rpn_bbox_loss: 0.3147 - mrcnn_class_loss: 0.1175 - mrcnn_bbox_loss: 0.1535 - mrcnn_mask_loss: 0.2206318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - " 16/2000 [..............................] - ETA: 35:48 - loss: 0.8063 - rpn_class_loss: 0.0054 - rpn_bbox_loss: 0.3124 - mrcnn_class_loss: 0.1139 - mrcnn_bbox_loss: 0.1529 - mrcnn_mask_loss: 0.221849\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - " 17/2000 [..............................] - ETA: 35:19 - loss: 0.7863 - rpn_class_loss: 0.0052 - rpn_bbox_loss: 0.2999 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1485 - mrcnn_mask_loss: 0.2189253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - " 18/2000 [..............................] - ETA: 35:13 - loss: 0.7976 - rpn_class_loss: 0.0052 - rpn_bbox_loss: 0.2959 - mrcnn_class_loss: 0.1168 - mrcnn_bbox_loss: 0.1549 - mrcnn_mask_loss: 0.2248314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - " 19/2000 [..............................] - ETA: 35:39 - loss: 0.7977 - rpn_class_loss: 0.0051 - rpn_bbox_loss: 0.2919 - mrcnn_class_loss: 0.1181 - mrcnn_bbox_loss: 0.1552 - mrcnn_mask_loss: 0.227444\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - " 20/2000 [..............................] - ETA: 35:28 - loss: 0.7815 - rpn_class_loss: 0.0050 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1531 - mrcnn_mask_loss: 0.2238342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - " 21/2000 [..............................] - ETA: 35:39 - loss: 0.7912 - rpn_class_loss: 0.0050 - rpn_bbox_loss: 0.2939 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1542 - mrcnn_mask_loss: 0.222931\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - " 22/2000 [..............................] - ETA: 35:05 - loss: 0.7820 - rpn_class_loss: 0.0052 - rpn_bbox_loss: 0.2896 - mrcnn_class_loss: 0.1174 - mrcnn_bbox_loss: 0.1503 - mrcnn_mask_loss: 0.2196126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - " 23/2000 [..............................] - ETA: 35:17 - loss: 0.7851 - rpn_class_loss: 0.0052 - rpn_bbox_loss: 0.2930 - mrcnn_class_loss: 0.1153 - mrcnn_bbox_loss: 0.1531 - mrcnn_mask_loss: 0.2185142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - " 24/2000 [..............................] - ETA: 35:21 - loss: 0.7834 - rpn_class_loss: 0.0055 - rpn_bbox_loss: 0.2924 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1554 - mrcnn_mask_loss: 0.218164\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - " 25/2000 [..............................] - ETA: 35:04 - loss: 0.7692 - rpn_class_loss: 0.0055 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1523 - mrcnn_mask_loss: 0.2163189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - " 26/2000 [..............................] - ETA: 34:38 - loss: 0.7606 - rpn_class_loss: 0.0054 - rpn_bbox_loss: 0.2793 - mrcnn_class_loss: 0.1074 - mrcnn_bbox_loss: 0.1519 - mrcnn_mask_loss: 0.216659\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - " 27/2000 [..............................] - ETA: 34:17 - loss: 0.7706 - rpn_class_loss: 0.0052 - rpn_bbox_loss: 0.2926 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1510 - mrcnn_mask_loss: 0.215072\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - " 28/2000 [..............................] - ETA: 33:57 - loss: 0.7688 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.2904 - mrcnn_class_loss: 0.1084 - mrcnn_bbox_loss: 0.1495 - mrcnn_mask_loss: 0.2147220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - " 29/2000 [..............................] - ETA: 33:48 - loss: 0.7663 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.2889 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1518 - mrcnn_mask_loss: 0.213540\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - " 30/2000 [..............................] - ETA: 33:33 - loss: 0.7677 - rpn_class_loss: 0.0055 - rpn_bbox_loss: 0.2860 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1538 - mrcnn_mask_loss: 0.2144329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - " 31/2000 [..............................] - ETA: 33:39 - loss: 0.7666 - rpn_class_loss: 0.0055 - rpn_bbox_loss: 0.2865 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1525 - mrcnn_mask_loss: 0.2144103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 32/2000 [..............................] - ETA: 33:43 - loss: 0.7725 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.2875 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1562 - mrcnn_mask_loss: 0.214687\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - " 33/2000 [..............................] - ETA: 33:39 - loss: 0.7665 - rpn_class_loss: 0.0054 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1546 - mrcnn_mask_loss: 0.2136341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - " 34/2000 [..............................] - ETA: 33:52 - loss: 0.7625 - rpn_class_loss: 0.0055 - rpn_bbox_loss: 0.2853 - mrcnn_class_loss: 0.1054 - mrcnn_bbox_loss: 0.1533 - mrcnn_mask_loss: 0.2130198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - " 35/2000 [..............................] - ETA: 33:36 - loss: 0.7533 - rpn_class_loss: 0.0054 - rpn_bbox_loss: 0.2810 - mrcnn_class_loss: 0.1041 - mrcnn_bbox_loss: 0.1515 - mrcnn_mask_loss: 0.2113183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - " 36/2000 [..............................] - ETA: 33:22 - loss: 0.7547 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.2821 - mrcnn_class_loss: 0.1030 - mrcnn_bbox_loss: 0.1520 - mrcnn_mask_loss: 0.212083\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - " 37/2000 [..............................] - ETA: 33:19 - loss: 0.7488 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.2771 - mrcnn_class_loss: 0.1035 - mrcnn_bbox_loss: 0.1504 - mrcnn_mask_loss: 0.2121129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - " 38/2000 [..............................] - ETA: 33:27 - loss: 0.7591 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.2838 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1513 - mrcnn_mask_loss: 0.2128179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - " 39/2000 [..............................] - ETA: 33:28 - loss: 0.7728 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.2903 - mrcnn_class_loss: 0.1093 - mrcnn_bbox_loss: 0.1537 - mrcnn_mask_loss: 0.2138379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - " 40/2000 [..............................] - ETA: 33:40 - loss: 0.7755 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.2912 - mrcnn_class_loss: 0.1092 - mrcnn_bbox_loss: 0.1557 - mrcnn_mask_loss: 0.2136151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - " 41/2000 [..............................] - ETA: 33:33 - loss: 0.7855 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2985 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1567 - mrcnn_mask_loss: 0.2119111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - " 42/2000 [..............................] - ETA: 33:30 - loss: 0.7880 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2975 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1577 - mrcnn_mask_loss: 0.212729\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - " 43/2000 [..............................] - ETA: 33:17 - loss: 0.7879 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2990 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1582 - mrcnn_mask_loss: 0.2122252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - " 44/2000 [..............................] - ETA: 33:09 - loss: 0.7891 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2969 - mrcnn_class_loss: 0.1160 - mrcnn_bbox_loss: 0.1576 - mrcnn_mask_loss: 0.212676\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - " 45/2000 [..............................] - ETA: 32:58 - loss: 0.7871 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.2963 - mrcnn_class_loss: 0.1156 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.2129374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - " 46/2000 [..............................] - ETA: 33:06 - loss: 0.7844 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.2946 - mrcnn_class_loss: 0.1160 - mrcnn_bbox_loss: 0.1558 - mrcnn_mask_loss: 0.2121203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 47/2000 [..............................] - ETA: 32:55 - loss: 0.7813 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.2922 - mrcnn_class_loss: 0.1155 - mrcnn_bbox_loss: 0.1565 - mrcnn_mask_loss: 0.211256\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - " 48/2000 [..............................] - ETA: 32:43 - loss: 0.7749 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.2893 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1548 - mrcnn_mask_loss: 0.2100214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - " 49/2000 [..............................] - ETA: 32:34 - loss: 0.7707 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.2863 - mrcnn_class_loss: 0.1158 - mrcnn_bbox_loss: 0.1535 - mrcnn_mask_loss: 0.2094322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - " 50/2000 [..............................] - ETA: 32:42 - loss: 0.7764 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.2882 - mrcnn_class_loss: 0.1157 - mrcnn_bbox_loss: 0.1557 - mrcnn_mask_loss: 0.2110135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - " 51/2000 [..............................] - ETA: 32:53 - loss: 0.7838 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.2937 - mrcnn_class_loss: 0.1185 - mrcnn_bbox_loss: 0.1550 - mrcnn_mask_loss: 0.2109217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - " 52/2000 [..............................] - ETA: 32:45 - loss: 0.7804 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.2929 - mrcnn_class_loss: 0.1171 - mrcnn_bbox_loss: 0.1547 - mrcnn_mask_loss: 0.2101352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - " 53/2000 [..............................] - ETA: 32:46 - loss: 0.7808 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.2952 - mrcnn_class_loss: 0.1160 - mrcnn_bbox_loss: 0.1543 - mrcnn_mask_loss: 0.2097147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - " 54/2000 [..............................] - ETA: 32:45 - loss: 0.7857 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.3010 - mrcnn_class_loss: 0.1153 - mrcnn_bbox_loss: 0.1553 - mrcnn_mask_loss: 0.2083377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - " 55/2000 [..............................] - ETA: 32:49 - loss: 0.7856 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.3021 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1559 - mrcnn_mask_loss: 0.2081148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - " 56/2000 [..............................] - ETA: 32:46 - loss: 0.7932 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.3067 - mrcnn_class_loss: 0.1160 - mrcnn_bbox_loss: 0.1571 - mrcnn_mask_loss: 0.2072227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - " 57/2000 [..............................] - ETA: 32:43 - loss: 0.7935 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.3043 - mrcnn_class_loss: 0.1178 - mrcnn_bbox_loss: 0.1574 - mrcnn_mask_loss: 0.2078278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - " 58/2000 [..............................] - ETA: 32:46 - loss: 0.7938 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.3059 - mrcnn_class_loss: 0.1165 - mrcnn_bbox_loss: 0.1575 - mrcnn_mask_loss: 0.207636\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - " 59/2000 [..............................] - ETA: 32:36 - loss: 0.7987 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.3136 - mrcnn_class_loss: 0.1157 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.2068340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - " 60/2000 [..............................] - ETA: 32:42 - loss: 0.8086 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.3223 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1579 - mrcnn_mask_loss: 0.2069200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - " 61/2000 [..............................] - ETA: 32:35 - loss: 0.8077 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.3204 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1590 - mrcnn_mask_loss: 0.2068348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 62/2000 [..............................] - ETA: 32:34 - loss: 0.8126 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.3238 - mrcnn_class_loss: 0.1171 - mrcnn_bbox_loss: 0.1590 - mrcnn_mask_loss: 0.2064269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - " 63/2000 [..............................] - ETA: 32:33 - loss: 0.8128 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.3213 - mrcnn_class_loss: 0.1191 - mrcnn_bbox_loss: 0.1592 - mrcnn_mask_loss: 0.2067226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - " 64/2000 [..............................] - ETA: 32:31 - loss: 0.8072 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3191 - mrcnn_class_loss: 0.1175 - mrcnn_bbox_loss: 0.1577 - mrcnn_mask_loss: 0.2062125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - " 65/2000 [..............................] - ETA: 32:42 - loss: 0.8064 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3190 - mrcnn_class_loss: 0.1160 - mrcnn_bbox_loss: 0.1576 - mrcnn_mask_loss: 0.2072343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - " 66/2000 [..............................] - ETA: 32:46 - loss: 0.8057 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3192 - mrcnn_class_loss: 0.1154 - mrcnn_bbox_loss: 0.1575 - mrcnn_mask_loss: 0.206894\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - " 67/2000 [>.............................] - ETA: 32:42 - loss: 0.8057 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3205 - mrcnn_class_loss: 0.1149 - mrcnn_bbox_loss: 0.1568 - mrcnn_mask_loss: 0.2069218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - " 68/2000 [>.............................] - ETA: 32:36 - loss: 0.8027 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1156 - mrcnn_bbox_loss: 0.1548 - mrcnn_mask_loss: 0.2061357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - " 69/2000 [>.............................] - ETA: 32:41 - loss: 0.8016 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3196 - mrcnn_class_loss: 0.1143 - mrcnn_bbox_loss: 0.1547 - mrcnn_mask_loss: 0.2064165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - " 70/2000 [>.............................] - ETA: 32:45 - loss: 0.7978 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3174 - mrcnn_class_loss: 0.1135 - mrcnn_bbox_loss: 0.1542 - mrcnn_mask_loss: 0.2061219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - " 71/2000 [>.............................] - ETA: 32:41 - loss: 0.7960 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3159 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1542 - mrcnn_mask_loss: 0.2060293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - " 72/2000 [>.............................] - ETA: 32:44 - loss: 0.8006 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3165 - mrcnn_class_loss: 0.1160 - mrcnn_bbox_loss: 0.1554 - mrcnn_mask_loss: 0.2061291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - " 73/2000 [>.............................] - ETA: 32:45 - loss: 0.8013 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3175 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1558 - mrcnn_mask_loss: 0.2064267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - " 74/2000 [>.............................] - ETA: 32:48 - loss: 0.7998 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3166 - mrcnn_class_loss: 0.1147 - mrcnn_bbox_loss: 0.1552 - mrcnn_mask_loss: 0.206642\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - " 75/2000 [>.............................] - ETA: 32:47 - loss: 0.7976 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3162 - mrcnn_class_loss: 0.1140 - mrcnn_bbox_loss: 0.1541 - mrcnn_mask_loss: 0.2067297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - " 76/2000 [>.............................] - ETA: 32:51 - loss: 0.8045 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1185 - mrcnn_bbox_loss: 0.1544 - mrcnn_mask_loss: 0.2064273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - " 77/2000 [>.............................] - ETA: 32:50 - loss: 0.8032 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3167 - mrcnn_class_loss: 0.1190 - mrcnn_bbox_loss: 0.1543 - mrcnn_mask_loss: 0.2064160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - " 78/2000 [>.............................] - ETA: 32:55 - loss: 0.8104 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1214 - mrcnn_bbox_loss: 0.1572 - mrcnn_mask_loss: 0.2067277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - " 79/2000 [>.............................] - ETA: 32:56 - loss: 0.8097 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3187 - mrcnn_class_loss: 0.1209 - mrcnn_bbox_loss: 0.1563 - mrcnn_mask_loss: 0.2070306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - " 80/2000 [>.............................] - ETA: 32:58 - loss: 0.8110 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1210 - mrcnn_bbox_loss: 0.1558 - mrcnn_mask_loss: 0.2078224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - " 81/2000 [>.............................] - ETA: 32:56 - loss: 0.8086 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3189 - mrcnn_class_loss: 0.1206 - mrcnn_bbox_loss: 0.1546 - mrcnn_mask_loss: 0.2078290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - " 82/2000 [>.............................] - ETA: 32:56 - loss: 0.8116 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3189 - mrcnn_class_loss: 0.1222 - mrcnn_bbox_loss: 0.1553 - mrcnn_mask_loss: 0.2084358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - " 83/2000 [>.............................] - ETA: 33:01 - loss: 0.8101 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3171 - mrcnn_class_loss: 0.1224 - mrcnn_bbox_loss: 0.1555 - mrcnn_mask_loss: 0.2085204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - " 84/2000 [>.............................] - ETA: 32:56 - loss: 0.8085 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3142 - mrcnn_class_loss: 0.1252 - mrcnn_bbox_loss: 0.1544 - mrcnn_mask_loss: 0.208026\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - " 85/2000 [>.............................] - ETA: 32:50 - loss: 0.8068 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3148 - mrcnn_class_loss: 0.1246 - mrcnn_bbox_loss: 0.1536 - mrcnn_mask_loss: 0.2073119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - " 86/2000 [>.............................] - ETA: 32:51 - loss: 0.8133 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3173 - mrcnn_class_loss: 0.1271 - mrcnn_bbox_loss: 0.1542 - mrcnn_mask_loss: 0.207879\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - " 87/2000 [>.............................] - ETA: 32:48 - loss: 0.8111 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3164 - mrcnn_class_loss: 0.1263 - mrcnn_bbox_loss: 0.1541 - mrcnn_mask_loss: 0.2075201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - " 88/2000 [>.............................] - ETA: 32:42 - loss: 0.8080 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3142 - mrcnn_class_loss: 0.1266 - mrcnn_bbox_loss: 0.1529 - mrcnn_mask_loss: 0.2076245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - " 89/2000 [>.............................] - ETA: 32:41 - loss: 0.8100 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3121 - mrcnn_class_loss: 0.1294 - mrcnn_bbox_loss: 0.1539 - mrcnn_mask_loss: 0.208051\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - " 90/2000 [>.............................] - ETA: 32:37 - loss: 0.8063 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3105 - mrcnn_class_loss: 0.1287 - mrcnn_bbox_loss: 0.1528 - mrcnn_mask_loss: 0.2076313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 91/2000 [>.............................] - ETA: 32:42 - loss: 0.8065 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3104 - mrcnn_class_loss: 0.1282 - mrcnn_bbox_loss: 0.1528 - mrcnn_mask_loss: 0.2084361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - " 92/2000 [>.............................] - ETA: 32:46 - loss: 0.8099 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3136 - mrcnn_class_loss: 0.1275 - mrcnn_bbox_loss: 0.1534 - mrcnn_mask_loss: 0.2088316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - " 93/2000 [>.............................] - ETA: 32:51 - loss: 0.8108 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1269 - mrcnn_bbox_loss: 0.1545 - mrcnn_mask_loss: 0.2099344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - " 94/2000 [>.............................] - ETA: 32:53 - loss: 0.8115 - rpn_class_loss: 0.0069 - rpn_bbox_loss: 0.3146 - mrcnn_class_loss: 0.1262 - mrcnn_bbox_loss: 0.1539 - mrcnn_mask_loss: 0.2099163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - " 95/2000 [>.............................] - ETA: 32:55 - loss: 0.8117 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3157 - mrcnn_class_loss: 0.1254 - mrcnn_bbox_loss: 0.1545 - mrcnn_mask_loss: 0.2093338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - " 96/2000 [>.............................] - ETA: 33:01 - loss: 0.8104 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3158 - mrcnn_class_loss: 0.1245 - mrcnn_bbox_loss: 0.1541 - mrcnn_mask_loss: 0.2093396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - " 97/2000 [>.............................] - ETA: 33:02 - loss: 0.8115 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3177 - mrcnn_class_loss: 0.1242 - mrcnn_bbox_loss: 0.1536 - mrcnn_mask_loss: 0.209378\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - " 98/2000 [>.............................] - ETA: 32:59 - loss: 0.8088 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3165 - mrcnn_class_loss: 0.1235 - mrcnn_bbox_loss: 0.1526 - mrcnn_mask_loss: 0.2094150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - " 99/2000 [>.............................] - ETA: 32:57 - loss: 0.8089 - rpn_class_loss: 0.0069 - rpn_bbox_loss: 0.3165 - mrcnn_class_loss: 0.1240 - mrcnn_bbox_loss: 0.1521 - mrcnn_mask_loss: 0.209561\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - " 100/2000 [>.............................] - ETA: 32:54 - loss: 0.8078 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3161 - mrcnn_class_loss: 0.1238 - mrcnn_bbox_loss: 0.1518 - mrcnn_mask_loss: 0.2092364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - " 101/2000 [>.............................] - ETA: 32:55 - loss: 0.8090 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3157 - mrcnn_class_loss: 0.1253 - mrcnn_bbox_loss: 0.1519 - mrcnn_mask_loss: 0.2092250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - " 102/2000 [>.............................] - ETA: 32:52 - loss: 0.8078 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3146 - mrcnn_class_loss: 0.1249 - mrcnn_bbox_loss: 0.1517 - mrcnn_mask_loss: 0.2099375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - " 103/2000 [>.............................] - ETA: 32:55 - loss: 0.8073 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3132 - mrcnn_class_loss: 0.1254 - mrcnn_bbox_loss: 0.1524 - mrcnn_mask_loss: 0.209614\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - " 104/2000 [>.............................] - ETA: 32:50 - loss: 0.8066 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3141 - mrcnn_class_loss: 0.1245 - mrcnn_bbox_loss: 0.1523 - mrcnn_mask_loss: 0.208937\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - " 105/2000 [>.............................] - ETA: 32:46 - loss: 0.8104 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1239 - mrcnn_bbox_loss: 0.1516 - mrcnn_mask_loss: 0.2085140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 106/2000 [>.............................] - ETA: 32:47 - loss: 0.8129 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3195 - mrcnn_class_loss: 0.1260 - mrcnn_bbox_loss: 0.1522 - mrcnn_mask_loss: 0.2085174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - " 107/2000 [>.............................] - ETA: 32:46 - loss: 0.8158 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3198 - mrcnn_class_loss: 0.1286 - mrcnn_bbox_loss: 0.1524 - mrcnn_mask_loss: 0.2084180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - " 108/2000 [>.............................] - ETA: 32:43 - loss: 0.8205 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3236 - mrcnn_class_loss: 0.1289 - mrcnn_bbox_loss: 0.1525 - mrcnn_mask_loss: 0.2087382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - " 109/2000 [>.............................] - ETA: 32:43 - loss: 0.8210 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3238 - mrcnn_class_loss: 0.1286 - mrcnn_bbox_loss: 0.1523 - mrcnn_mask_loss: 0.2096230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - " 110/2000 [>.............................] - ETA: 32:42 - loss: 0.8185 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3223 - mrcnn_class_loss: 0.1285 - mrcnn_bbox_loss: 0.1520 - mrcnn_mask_loss: 0.2089391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - " 111/2000 [>.............................] - ETA: 32:41 - loss: 0.8185 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3226 - mrcnn_class_loss: 0.1276 - mrcnn_bbox_loss: 0.1526 - mrcnn_mask_loss: 0.2089188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - " 112/2000 [>.............................] - ETA: 32:38 - loss: 0.8159 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3214 - mrcnn_class_loss: 0.1273 - mrcnn_bbox_loss: 0.1519 - mrcnn_mask_loss: 0.208543\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - " 113/2000 [>.............................] - ETA: 32:36 - loss: 0.8139 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3216 - mrcnn_class_loss: 0.1266 - mrcnn_bbox_loss: 0.1511 - mrcnn_mask_loss: 0.207973\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - " 114/2000 [>.............................] - ETA: 32:32 - loss: 0.8129 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3217 - mrcnn_class_loss: 0.1261 - mrcnn_bbox_loss: 0.1507 - mrcnn_mask_loss: 0.2078238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - " 115/2000 [>.............................] - ETA: 32:30 - loss: 0.8119 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.3204 - mrcnn_class_loss: 0.1272 - mrcnn_bbox_loss: 0.1503 - mrcnn_mask_loss: 0.2074399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - " 116/2000 [>.............................] - ETA: 32:34 - loss: 0.8187 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3261 - mrcnn_class_loss: 0.1275 - mrcnn_bbox_loss: 0.1504 - mrcnn_mask_loss: 0.2080212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - " 117/2000 [>.............................] - ETA: 32:31 - loss: 0.8155 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3246 - mrcnn_class_loss: 0.1270 - mrcnn_bbox_loss: 0.1498 - mrcnn_mask_loss: 0.2074223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - " 118/2000 [>.............................] - ETA: 32:28 - loss: 0.8141 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3227 - mrcnn_class_loss: 0.1277 - mrcnn_bbox_loss: 0.1499 - mrcnn_mask_loss: 0.2071178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - " 119/2000 [>.............................] - ETA: 32:29 - loss: 0.8155 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3229 - mrcnn_class_loss: 0.1283 - mrcnn_bbox_loss: 0.1501 - mrcnn_mask_loss: 0.2075109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - " 120/2000 [>.............................] - ETA: 32:29 - loss: 0.8176 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3223 - mrcnn_class_loss: 0.1286 - mrcnn_bbox_loss: 0.1511 - mrcnn_mask_loss: 0.2088333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - " 121/2000 [>.............................] - ETA: 32:30 - loss: 0.8176 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.3212 - mrcnn_class_loss: 0.1288 - mrcnn_bbox_loss: 0.1513 - mrcnn_mask_loss: 0.209688\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - " 122/2000 [>.............................] - ETA: 32:27 - loss: 0.8216 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3214 - mrcnn_class_loss: 0.1302 - mrcnn_bbox_loss: 0.1514 - mrcnn_mask_loss: 0.2118263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - " 123/2000 [>.............................] - ETA: 32:26 - loss: 0.8219 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.3205 - mrcnn_class_loss: 0.1305 - mrcnn_bbox_loss: 0.1515 - mrcnn_mask_loss: 0.2125371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - " 124/2000 [>.............................] - ETA: 32:27 - loss: 0.8218 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3198 - mrcnn_class_loss: 0.1303 - mrcnn_bbox_loss: 0.1520 - mrcnn_mask_loss: 0.2126332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - " 125/2000 [>.............................] - ETA: 32:28 - loss: 0.8204 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3186 - mrcnn_class_loss: 0.1297 - mrcnn_bbox_loss: 0.1520 - mrcnn_mask_loss: 0.2130120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - " 126/2000 [>.............................] - ETA: 32:33 - loss: 0.8229 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3202 - mrcnn_class_loss: 0.1293 - mrcnn_bbox_loss: 0.1525 - mrcnn_mask_loss: 0.2138232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - " 127/2000 [>.............................] - ETA: 32:32 - loss: 0.8230 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1286 - mrcnn_bbox_loss: 0.1532 - mrcnn_mask_loss: 0.214285\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - " 128/2000 [>.............................] - ETA: 32:32 - loss: 0.8218 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3188 - mrcnn_class_loss: 0.1282 - mrcnn_bbox_loss: 0.1532 - mrcnn_mask_loss: 0.2145264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - " 129/2000 [>.............................] - ETA: 32:33 - loss: 0.8212 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3178 - mrcnn_class_loss: 0.1279 - mrcnn_bbox_loss: 0.1534 - mrcnn_mask_loss: 0.2151162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - " 130/2000 [>.............................] - ETA: 32:35 - loss: 0.8194 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3170 - mrcnn_class_loss: 0.1274 - mrcnn_bbox_loss: 0.1532 - mrcnn_mask_loss: 0.2148353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - " 131/2000 [>.............................] - ETA: 32:37 - loss: 0.8171 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3157 - mrcnn_class_loss: 0.1268 - mrcnn_bbox_loss: 0.1529 - mrcnn_mask_loss: 0.2146395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - " 132/2000 [>.............................] - ETA: 32:37 - loss: 0.8174 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3163 - mrcnn_class_loss: 0.1265 - mrcnn_bbox_loss: 0.1528 - mrcnn_mask_loss: 0.2145141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - " 133/2000 [>.............................] - ETA: 32:37 - loss: 0.8184 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3167 - mrcnn_class_loss: 0.1265 - mrcnn_bbox_loss: 0.1535 - mrcnn_mask_loss: 0.2144393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - " 134/2000 [=>............................] - ETA: 32:37 - loss: 0.8196 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3166 - mrcnn_class_loss: 0.1259 - mrcnn_bbox_loss: 0.1543 - mrcnn_mask_loss: 0.2155302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 135/2000 [=>............................] - ETA: 32:40 - loss: 0.8215 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3174 - mrcnn_class_loss: 0.1259 - mrcnn_bbox_loss: 0.1545 - mrcnn_mask_loss: 0.216530\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - " 136/2000 [=>............................] - ETA: 32:35 - loss: 0.8205 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3174 - mrcnn_class_loss: 0.1255 - mrcnn_bbox_loss: 0.1542 - mrcnn_mask_loss: 0.2161359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - " 137/2000 [=>............................] - ETA: 32:39 - loss: 0.8192 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3173 - mrcnn_class_loss: 0.1247 - mrcnn_bbox_loss: 0.1541 - mrcnn_mask_loss: 0.2158186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - " 138/2000 [=>............................] - ETA: 32:35 - loss: 0.8169 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3157 - mrcnn_class_loss: 0.1241 - mrcnn_bbox_loss: 0.1538 - mrcnn_mask_loss: 0.2160110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - " 139/2000 [=>............................] - ETA: 32:34 - loss: 0.8172 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3158 - mrcnn_class_loss: 0.1248 - mrcnn_bbox_loss: 0.1537 - mrcnn_mask_loss: 0.215669\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - " 140/2000 [=>............................] - ETA: 32:30 - loss: 0.8150 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3148 - mrcnn_class_loss: 0.1247 - mrcnn_bbox_loss: 0.1529 - mrcnn_mask_loss: 0.2152122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - " 141/2000 [=>............................] - ETA: 32:33 - loss: 0.8171 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3159 - mrcnn_class_loss: 0.1249 - mrcnn_bbox_loss: 0.1535 - mrcnn_mask_loss: 0.215520\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - " 142/2000 [=>............................] - ETA: 32:29 - loss: 0.8180 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3179 - mrcnn_class_loss: 0.1240 - mrcnn_bbox_loss: 0.1534 - mrcnn_mask_loss: 0.215318\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - " 143/2000 [=>............................] - ETA: 32:25 - loss: 0.8200 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3212 - mrcnn_class_loss: 0.1233 - mrcnn_bbox_loss: 0.1530 - mrcnn_mask_loss: 0.21538\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - " 144/2000 [=>............................] - ETA: 32:21 - loss: 0.8202 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3221 - mrcnn_class_loss: 0.1231 - mrcnn_bbox_loss: 0.1525 - mrcnn_mask_loss: 0.2152233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - " 145/2000 [=>............................] - ETA: 32:19 - loss: 0.8203 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3211 - mrcnn_class_loss: 0.1234 - mrcnn_bbox_loss: 0.1533 - mrcnn_mask_loss: 0.2152242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - " 146/2000 [=>............................] - ETA: 32:18 - loss: 0.8214 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1235 - mrcnn_bbox_loss: 0.1541 - mrcnn_mask_loss: 0.216339\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - " 147/2000 [=>............................] - ETA: 32:15 - loss: 0.8222 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3217 - mrcnn_class_loss: 0.1235 - mrcnn_bbox_loss: 0.1535 - mrcnn_mask_loss: 0.2163229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - " 148/2000 [=>............................] - ETA: 32:13 - loss: 0.8195 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3200 - mrcnn_class_loss: 0.1232 - mrcnn_bbox_loss: 0.1530 - mrcnn_mask_loss: 0.216010\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - " 149/2000 [=>............................] - ETA: 32:10 - loss: 0.8165 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1224 - mrcnn_bbox_loss: 0.1528 - mrcnn_mask_loss: 0.215582\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - " 150/2000 [=>............................] - ETA: 32:10 - loss: 0.8158 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3175 - mrcnn_class_loss: 0.1219 - mrcnn_bbox_loss: 0.1534 - mrcnn_mask_loss: 0.215855\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - " 151/2000 [=>............................] - ETA: 32:07 - loss: 0.8136 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3164 - mrcnn_class_loss: 0.1215 - mrcnn_bbox_loss: 0.1529 - mrcnn_mask_loss: 0.2156355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - " 152/2000 [=>............................] - ETA: 32:08 - loss: 0.8133 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3153 - mrcnn_class_loss: 0.1215 - mrcnn_bbox_loss: 0.1535 - mrcnn_mask_loss: 0.215899\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - " 153/2000 [=>............................] - ETA: 32:08 - loss: 0.8147 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1215 - mrcnn_bbox_loss: 0.1534 - mrcnn_mask_loss: 0.215854\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - " 154/2000 [=>............................] - ETA: 32:05 - loss: 0.8125 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3155 - mrcnn_class_loss: 0.1214 - mrcnn_bbox_loss: 0.1530 - mrcnn_mask_loss: 0.2154121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - " 155/2000 [=>............................] - ETA: 32:08 - loss: 0.8146 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3170 - mrcnn_class_loss: 0.1209 - mrcnn_bbox_loss: 0.1538 - mrcnn_mask_loss: 0.215881\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - " 156/2000 [=>............................] - ETA: 32:06 - loss: 0.8152 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3165 - mrcnn_class_loss: 0.1214 - mrcnn_bbox_loss: 0.1543 - mrcnn_mask_loss: 0.21596\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - " 157/2000 [=>............................] - ETA: 32:03 - loss: 0.8124 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3153 - mrcnn_class_loss: 0.1207 - mrcnn_bbox_loss: 0.1540 - mrcnn_mask_loss: 0.2154199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - " 158/2000 [=>............................] - ETA: 32:00 - loss: 0.8130 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1202 - mrcnn_bbox_loss: 0.1536 - mrcnn_mask_loss: 0.2152128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - " 159/2000 [=>............................] - ETA: 32:01 - loss: 0.8137 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3173 - mrcnn_class_loss: 0.1209 - mrcnn_bbox_loss: 0.1536 - mrcnn_mask_loss: 0.2149311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - " 160/2000 [=>............................] - ETA: 32:03 - loss: 0.8142 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3175 - mrcnn_class_loss: 0.1205 - mrcnn_bbox_loss: 0.1538 - mrcnn_mask_loss: 0.2152114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - " 161/2000 [=>............................] - ETA: 32:01 - loss: 0.8137 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3170 - mrcnn_class_loss: 0.1209 - mrcnn_bbox_loss: 0.1536 - mrcnn_mask_loss: 0.215157\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - " 162/2000 [=>............................] - ETA: 31:58 - loss: 0.8128 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3173 - mrcnn_class_loss: 0.1205 - mrcnn_bbox_loss: 0.1531 - mrcnn_mask_loss: 0.2148153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - " 163/2000 [=>............................] - ETA: 31:56 - loss: 0.8141 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3181 - mrcnn_class_loss: 0.1206 - mrcnn_bbox_loss: 0.1539 - mrcnn_mask_loss: 0.2146397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - " 164/2000 [=>............................] - ETA: 31:56 - loss: 0.8154 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3187 - mrcnn_class_loss: 0.1207 - mrcnn_bbox_loss: 0.1545 - mrcnn_mask_loss: 0.2146158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 165/2000 [=>............................] - ETA: 31:56 - loss: 0.8170 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1209 - mrcnn_bbox_loss: 0.1550 - mrcnn_mask_loss: 0.2141169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - " 166/2000 [=>............................] - ETA: 31:54 - loss: 0.8162 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3188 - mrcnn_class_loss: 0.1206 - mrcnn_bbox_loss: 0.1555 - mrcnn_mask_loss: 0.2143197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - " 167/2000 [=>............................] - ETA: 31:51 - loss: 0.8138 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3173 - mrcnn_class_loss: 0.1200 - mrcnn_bbox_loss: 0.1554 - mrcnn_mask_loss: 0.2141146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - " 168/2000 [=>............................] - ETA: 31:50 - loss: 0.8136 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3175 - mrcnn_class_loss: 0.1198 - mrcnn_bbox_loss: 0.1555 - mrcnn_mask_loss: 0.2138324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - " 169/2000 [=>............................] - ETA: 31:52 - loss: 0.8142 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3175 - mrcnn_class_loss: 0.1195 - mrcnn_bbox_loss: 0.1559 - mrcnn_mask_loss: 0.2143298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - " 170/2000 [=>............................] - ETA: 31:53 - loss: 0.8180 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3191 - mrcnn_class_loss: 0.1199 - mrcnn_bbox_loss: 0.1571 - mrcnn_mask_loss: 0.2149177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - " 171/2000 [=>............................] - ETA: 31:53 - loss: 0.8169 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1199 - mrcnn_bbox_loss: 0.1566 - mrcnn_mask_loss: 0.2147194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - " 172/2000 [=>............................] - ETA: 31:49 - loss: 0.8147 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3174 - mrcnn_class_loss: 0.1195 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.214590\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - " 173/2000 [=>............................] - ETA: 31:45 - loss: 0.8156 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3178 - mrcnn_class_loss: 0.1194 - mrcnn_bbox_loss: 0.1562 - mrcnn_mask_loss: 0.2152265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - " 174/2000 [=>............................] - ETA: 31:45 - loss: 0.8147 - rpn_class_loss: 0.0069 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1190 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.215493\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - " 175/2000 [=>............................] - ETA: 31:42 - loss: 0.8142 - rpn_class_loss: 0.0069 - rpn_bbox_loss: 0.3165 - mrcnn_class_loss: 0.1190 - mrcnn_bbox_loss: 0.1563 - mrcnn_mask_loss: 0.2155228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - " 176/2000 [=>............................] - ETA: 31:39 - loss: 0.8121 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3155 - mrcnn_class_loss: 0.1184 - mrcnn_bbox_loss: 0.1559 - mrcnn_mask_loss: 0.2154236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - " 177/2000 [=>............................] - ETA: 31:37 - loss: 0.8109 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3142 - mrcnn_class_loss: 0.1195 - mrcnn_bbox_loss: 0.1553 - mrcnn_mask_loss: 0.2149387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - " 178/2000 [=>............................] - ETA: 31:36 - loss: 0.8134 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3155 - mrcnn_class_loss: 0.1197 - mrcnn_bbox_loss: 0.1562 - mrcnn_mask_loss: 0.2148350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - " 179/2000 [=>............................] - ETA: 31:36 - loss: 0.8128 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3159 - mrcnn_class_loss: 0.1191 - mrcnn_bbox_loss: 0.1562 - mrcnn_mask_loss: 0.2145208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 180/2000 [=>............................] - ETA: 31:32 - loss: 0.8108 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3149 - mrcnn_class_loss: 0.1189 - mrcnn_bbox_loss: 0.1557 - mrcnn_mask_loss: 0.2142168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - " 181/2000 [=>............................] - ETA: 31:32 - loss: 0.8091 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3141 - mrcnn_class_loss: 0.1189 - mrcnn_bbox_loss: 0.1554 - mrcnn_mask_loss: 0.2137261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - " 182/2000 [=>............................] - ETA: 31:32 - loss: 0.8088 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3139 - mrcnn_class_loss: 0.1184 - mrcnn_bbox_loss: 0.1558 - mrcnn_mask_loss: 0.21377\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - " 183/2000 [=>............................] - ETA: 31:28 - loss: 0.8071 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3132 - mrcnn_class_loss: 0.1179 - mrcnn_bbox_loss: 0.1554 - mrcnn_mask_loss: 0.2135301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - " 184/2000 [=>............................] - ETA: 31:29 - loss: 0.8099 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3142 - mrcnn_class_loss: 0.1179 - mrcnn_bbox_loss: 0.1566 - mrcnn_mask_loss: 0.2142195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - " 185/2000 [=>............................] - ETA: 31:25 - loss: 0.8080 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3132 - mrcnn_class_loss: 0.1176 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.2139384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - " 186/2000 [=>............................] - ETA: 31:25 - loss: 0.8069 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3125 - mrcnn_class_loss: 0.1172 - mrcnn_bbox_loss: 0.1563 - mrcnn_mask_loss: 0.213960\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - " 187/2000 [=>............................] - ETA: 31:22 - loss: 0.8074 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3135 - mrcnn_class_loss: 0.1166 - mrcnn_bbox_loss: 0.1563 - mrcnn_mask_loss: 0.2141362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - " 188/2000 [=>............................] - ETA: 31:24 - loss: 0.8096 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3145 - mrcnn_class_loss: 0.1167 - mrcnn_bbox_loss: 0.1573 - mrcnn_mask_loss: 0.214117\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - " 189/2000 [=>............................] - ETA: 31:21 - loss: 0.8115 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3170 - mrcnn_class_loss: 0.1166 - mrcnn_bbox_loss: 0.1569 - mrcnn_mask_loss: 0.213958\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - " 190/2000 [=>............................] - ETA: 31:18 - loss: 0.8123 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3180 - mrcnn_class_loss: 0.1163 - mrcnn_bbox_loss: 0.1569 - mrcnn_mask_loss: 0.2139320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - " 191/2000 [=>............................] - ETA: 31:20 - loss: 0.8137 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3178 - mrcnn_class_loss: 0.1165 - mrcnn_bbox_loss: 0.1578 - mrcnn_mask_loss: 0.2144287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - " 192/2000 [=>............................] - ETA: 31:21 - loss: 0.8146 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1163 - mrcnn_bbox_loss: 0.1581 - mrcnn_mask_loss: 0.21455\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - " 193/2000 [=>............................] - ETA: 31:17 - loss: 0.8151 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3189 - mrcnn_class_loss: 0.1166 - mrcnn_bbox_loss: 0.1582 - mrcnn_mask_loss: 0.21423\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - " 194/2000 [=>............................] - ETA: 31:12 - loss: 0.8151 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3195 - mrcnn_class_loss: 0.1162 - mrcnn_bbox_loss: 0.1580 - mrcnn_mask_loss: 0.2142161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - " 195/2000 [=>............................] - ETA: 31:12 - loss: 0.8169 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3206 - mrcnn_class_loss: 0.1164 - mrcnn_bbox_loss: 0.1585 - mrcnn_mask_loss: 0.2143260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - " 196/2000 [=>............................] - ETA: 31:13 - loss: 0.8174 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3200 - mrcnn_class_loss: 0.1164 - mrcnn_bbox_loss: 0.1594 - mrcnn_mask_loss: 0.214521\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - " 197/2000 [=>............................] - ETA: 31:09 - loss: 0.8174 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3206 - mrcnn_class_loss: 0.1165 - mrcnn_bbox_loss: 0.1589 - mrcnn_mask_loss: 0.214347\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - " 198/2000 [=>............................] - ETA: 31:06 - loss: 0.8165 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3194 - mrcnn_class_loss: 0.1172 - mrcnn_bbox_loss: 0.1587 - mrcnn_mask_loss: 0.21422\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - " 199/2000 [=>............................] - ETA: 31:02 - loss: 0.8163 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3200 - mrcnn_class_loss: 0.1167 - mrcnn_bbox_loss: 0.1585 - mrcnn_mask_loss: 0.214084\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - " 200/2000 [==>...........................] - ETA: 30:59 - loss: 0.8155 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3191 - mrcnn_class_loss: 0.1166 - mrcnn_bbox_loss: 0.1583 - mrcnn_mask_loss: 0.214277\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - " 201/2000 [==>...........................] - ETA: 30:56 - loss: 0.8147 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3188 - mrcnn_class_loss: 0.1161 - mrcnn_bbox_loss: 0.1583 - mrcnn_mask_loss: 0.2143390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - " 202/2000 [==>...........................] - ETA: 30:54 - loss: 0.8154 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1157 - mrcnn_bbox_loss: 0.1584 - mrcnn_mask_loss: 0.2143124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - " 203/2000 [==>...........................] - ETA: 30:56 - loss: 0.8157 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1154 - mrcnn_bbox_loss: 0.1588 - mrcnn_mask_loss: 0.2146363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - " 204/2000 [==>...........................] - ETA: 30:56 - loss: 0.8168 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3205 - mrcnn_class_loss: 0.1160 - mrcnn_bbox_loss: 0.1587 - mrcnn_mask_loss: 0.2145104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - " 205/2000 [==>...........................] - ETA: 30:55 - loss: 0.8162 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3200 - mrcnn_class_loss: 0.1158 - mrcnn_bbox_loss: 0.1586 - mrcnn_mask_loss: 0.2146191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - " 206/2000 [==>...........................] - ETA: 30:51 - loss: 0.8148 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3189 - mrcnn_class_loss: 0.1154 - mrcnn_bbox_loss: 0.1586 - mrcnn_mask_loss: 0.2148368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - " 207/2000 [==>...........................] - ETA: 30:50 - loss: 0.8147 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3194 - mrcnn_class_loss: 0.1150 - mrcnn_bbox_loss: 0.1584 - mrcnn_mask_loss: 0.2149205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - " 208/2000 [==>...........................] - ETA: 30:46 - loss: 0.8140 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3186 - mrcnn_class_loss: 0.1149 - mrcnn_bbox_loss: 0.1581 - mrcnn_mask_loss: 0.215238\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - " 209/2000 [==>...........................] - ETA: 30:42 - loss: 0.8152 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3207 - mrcnn_class_loss: 0.1146 - mrcnn_bbox_loss: 0.1578 - mrcnn_mask_loss: 0.2150105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 210/2000 [==>...........................] - ETA: 30:41 - loss: 0.8160 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3202 - mrcnn_class_loss: 0.1155 - mrcnn_bbox_loss: 0.1578 - mrcnn_mask_loss: 0.2153100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - " 211/2000 [==>...........................] - ETA: 30:40 - loss: 0.8164 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3202 - mrcnn_class_loss: 0.1155 - mrcnn_bbox_loss: 0.1580 - mrcnn_mask_loss: 0.2156209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - " 212/2000 [==>...........................] - ETA: 30:36 - loss: 0.8147 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3194 - mrcnn_class_loss: 0.1152 - mrcnn_bbox_loss: 0.1577 - mrcnn_mask_loss: 0.215322\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - " 213/2000 [==>...........................] - ETA: 30:33 - loss: 0.8151 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1577 - mrcnn_mask_loss: 0.215568\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - " 214/2000 [==>...........................] - ETA: 30:30 - loss: 0.8135 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3193 - mrcnn_class_loss: 0.1146 - mrcnn_bbox_loss: 0.1574 - mrcnn_mask_loss: 0.2153144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - " 215/2000 [==>...........................] - ETA: 30:29 - loss: 0.8144 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3196 - mrcnn_class_loss: 0.1144 - mrcnn_bbox_loss: 0.1582 - mrcnn_mask_loss: 0.2153143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - " 216/2000 [==>...........................] - ETA: 30:28 - loss: 0.8148 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3204 - mrcnn_class_loss: 0.1142 - mrcnn_bbox_loss: 0.1583 - mrcnn_mask_loss: 0.215066\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - " 217/2000 [==>...........................] - ETA: 30:25 - loss: 0.8130 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3194 - mrcnn_class_loss: 0.1137 - mrcnn_bbox_loss: 0.1580 - mrcnn_mask_loss: 0.2149181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - " 218/2000 [==>...........................] - ETA: 30:22 - loss: 0.8133 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3192 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1580 - mrcnn_mask_loss: 0.2152372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - " 219/2000 [==>...........................] - ETA: 30:21 - loss: 0.8129 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3186 - mrcnn_class_loss: 0.1137 - mrcnn_bbox_loss: 0.1584 - mrcnn_mask_loss: 0.2152248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - " 220/2000 [==>...........................] - ETA: 30:18 - loss: 0.8128 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3180 - mrcnn_class_loss: 0.1141 - mrcnn_bbox_loss: 0.1584 - mrcnn_mask_loss: 0.2153330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - " 221/2000 [==>...........................] - ETA: 30:18 - loss: 0.8123 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3179 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1582 - mrcnn_mask_loss: 0.2154259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - " 222/2000 [==>...........................] - ETA: 30:17 - loss: 0.8166 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3215 - mrcnn_class_loss: 0.1139 - mrcnn_bbox_loss: 0.1584 - mrcnn_mask_loss: 0.2156166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - " 223/2000 [==>...........................] - ETA: 30:15 - loss: 0.8162 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3207 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1580 - mrcnn_mask_loss: 0.2156164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - " 224/2000 [==>...........................] - ETA: 30:14 - loss: 0.8167 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3213 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1579 - mrcnn_mask_loss: 0.2156323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 225/2000 [==>...........................] - ETA: 30:15 - loss: 0.8172 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3213 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1579 - mrcnn_mask_loss: 0.215865\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - " 226/2000 [==>...........................] - ETA: 30:13 - loss: 0.8155 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3203 - mrcnn_class_loss: 0.1149 - mrcnn_bbox_loss: 0.1575 - mrcnn_mask_loss: 0.2157215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - " 227/2000 [==>...........................] - ETA: 30:10 - loss: 0.8145 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1574 - mrcnn_mask_loss: 0.215824\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - " 228/2000 [==>...........................] - ETA: 30:06 - loss: 0.8137 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3195 - mrcnn_class_loss: 0.1142 - mrcnn_bbox_loss: 0.1572 - mrcnn_mask_loss: 0.2158185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - " 229/2000 [==>...........................] - ETA: 30:03 - loss: 0.8130 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3190 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1568 - mrcnn_mask_loss: 0.2157207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - " 230/2000 [==>...........................] - ETA: 30:00 - loss: 0.8112 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3179 - mrcnn_class_loss: 0.1141 - mrcnn_bbox_loss: 0.1566 - mrcnn_mask_loss: 0.21569\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - " 231/2000 [==>...........................] - ETA: 29:57 - loss: 0.8125 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3195 - mrcnn_class_loss: 0.1140 - mrcnn_bbox_loss: 0.1566 - mrcnn_mask_loss: 0.2154315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - " 232/2000 [==>...........................] - ETA: 29:58 - loss: 0.8128 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3195 - mrcnn_class_loss: 0.1143 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.2156190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - " 233/2000 [==>...........................] - ETA: 29:55 - loss: 0.8122 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3191 - mrcnn_class_loss: 0.1143 - mrcnn_bbox_loss: 0.1563 - mrcnn_mask_loss: 0.215511\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - " 234/2000 [==>...........................] - ETA: 29:52 - loss: 0.8126 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3204 - mrcnn_class_loss: 0.1139 - mrcnn_bbox_loss: 0.1559 - mrcnn_mask_loss: 0.2153360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - " 235/2000 [==>...........................] - ETA: 29:54 - loss: 0.8150 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3216 - mrcnn_class_loss: 0.1144 - mrcnn_bbox_loss: 0.1567 - mrcnn_mask_loss: 0.2153307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - " 236/2000 [==>...........................] - ETA: 29:55 - loss: 0.8156 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3224 - mrcnn_class_loss: 0.1143 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.2155136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - " 237/2000 [==>...........................] - ETA: 29:57 - loss: 0.8160 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3227 - mrcnn_class_loss: 0.1141 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.2158176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - " 238/2000 [==>...........................] - ETA: 29:56 - loss: 0.8168 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3224 - mrcnn_class_loss: 0.1141 - mrcnn_bbox_loss: 0.1573 - mrcnn_mask_loss: 0.2158184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - " 239/2000 [==>...........................] - ETA: 29:54 - loss: 0.8158 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3218 - mrcnn_class_loss: 0.1139 - mrcnn_bbox_loss: 0.1571 - mrcnn_mask_loss: 0.2160300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 240/2000 [==>...........................] - ETA: 29:55 - loss: 0.8171 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3220 - mrcnn_class_loss: 0.1144 - mrcnn_bbox_loss: 0.1573 - mrcnn_mask_loss: 0.2163386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - " 241/2000 [==>...........................] - ETA: 29:54 - loss: 0.8162 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.3214 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1572 - mrcnn_mask_loss: 0.2161347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - " 242/2000 [==>...........................] - ETA: 29:54 - loss: 0.8163 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3220 - mrcnn_class_loss: 0.1142 - mrcnn_bbox_loss: 0.1570 - mrcnn_mask_loss: 0.2160369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - " 243/2000 [==>...........................] - ETA: 29:54 - loss: 0.8163 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3222 - mrcnn_class_loss: 0.1142 - mrcnn_bbox_loss: 0.1569 - mrcnn_mask_loss: 0.2158106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - " 244/2000 [==>...........................] - ETA: 29:53 - loss: 0.8160 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3215 - mrcnn_class_loss: 0.1143 - mrcnn_bbox_loss: 0.1569 - mrcnn_mask_loss: 0.2161213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - " 245/2000 [==>...........................] - ETA: 29:51 - loss: 0.8147 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3208 - mrcnn_class_loss: 0.1139 - mrcnn_bbox_loss: 0.1570 - mrcnn_mask_loss: 0.2160378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - " 246/2000 [==>...........................] - ETA: 29:52 - loss: 0.8147 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3209 - mrcnn_class_loss: 0.1142 - mrcnn_bbox_loss: 0.1565 - mrcnn_mask_loss: 0.2160370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - " 247/2000 [==>...........................] - ETA: 29:51 - loss: 0.8141 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3205 - mrcnn_class_loss: 0.1142 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.215875\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - " 248/2000 [==>...........................] - ETA: 29:49 - loss: 0.8131 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1563 - mrcnn_mask_loss: 0.2157285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - " 249/2000 [==>...........................] - ETA: 29:48 - loss: 0.8144 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3208 - mrcnn_class_loss: 0.1141 - mrcnn_bbox_loss: 0.1567 - mrcnn_mask_loss: 0.2157108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - " 250/2000 [==>...........................] - ETA: 29:47 - loss: 0.8134 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.3202 - mrcnn_class_loss: 0.1140 - mrcnn_bbox_loss: 0.1567 - mrcnn_mask_loss: 0.2155280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - " 251/2000 [==>...........................] - ETA: 29:49 - loss: 0.8161 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3209 - mrcnn_class_loss: 0.1147 - mrcnn_bbox_loss: 0.1574 - mrcnn_mask_loss: 0.2159325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - " 252/2000 [==>...........................] - ETA: 29:49 - loss: 0.8156 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3205 - mrcnn_class_loss: 0.1147 - mrcnn_bbox_loss: 0.1573 - mrcnn_mask_loss: 0.2160271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - " 253/2000 [==>...........................] - ETA: 29:48 - loss: 0.8158 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1153 - mrcnn_bbox_loss: 0.1574 - mrcnn_mask_loss: 0.2160303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 254/2000 [==>...........................] - ETA: 29:49 - loss: 0.8169 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1158 - mrcnn_bbox_loss: 0.1576 - mrcnn_mask_loss: 0.2164275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - " 255/2000 [==>...........................] - ETA: 29:49 - loss: 0.8175 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3198 - mrcnn_class_loss: 0.1160 - mrcnn_bbox_loss: 0.1580 - mrcnn_mask_loss: 0.216645\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - " 256/2000 [==>...........................] - ETA: 29:48 - loss: 0.8167 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3195 - mrcnn_class_loss: 0.1156 - mrcnn_bbox_loss: 0.1579 - mrcnn_mask_loss: 0.2166131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - " 257/2000 [==>...........................] - ETA: 29:49 - loss: 0.8172 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3202 - mrcnn_class_loss: 0.1153 - mrcnn_bbox_loss: 0.1580 - mrcnn_mask_loss: 0.2165279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - " 258/2000 [==>...........................] - ETA: 29:49 - loss: 0.8173 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3202 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1582 - mrcnn_mask_loss: 0.2166392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - " 259/2000 [==>...........................] - ETA: 29:48 - loss: 0.8180 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3206 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1586 - mrcnn_mask_loss: 0.2165123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - " 260/2000 [==>...........................] - ETA: 29:49 - loss: 0.8187 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3212 - mrcnn_class_loss: 0.1152 - mrcnn_bbox_loss: 0.1585 - mrcnn_mask_loss: 0.2165381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - " 261/2000 [==>...........................] - ETA: 29:49 - loss: 0.8194 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3213 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1591 - mrcnn_mask_loss: 0.2167152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - " 262/2000 [==>...........................] - ETA: 29:48 - loss: 0.8202 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3224 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1592 - mrcnn_mask_loss: 0.2164334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - " 263/2000 [==>...........................] - ETA: 29:48 - loss: 0.8202 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3221 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1594 - mrcnn_mask_loss: 0.2166373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - " 264/2000 [==>...........................] - ETA: 29:49 - loss: 0.8197 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3212 - mrcnn_class_loss: 0.1149 - mrcnn_bbox_loss: 0.1598 - mrcnn_mask_loss: 0.2165349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - " 265/2000 [==>...........................] - ETA: 29:48 - loss: 0.8196 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3215 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1598 - mrcnn_mask_loss: 0.216571\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - " 266/2000 [==>...........................] - ETA: 29:46 - loss: 0.8182 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3211 - mrcnn_class_loss: 0.1141 - mrcnn_bbox_loss: 0.1595 - mrcnn_mask_loss: 0.216253\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - " 267/2000 [===>..........................] - ETA: 29:45 - loss: 0.8166 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3203 - mrcnn_class_loss: 0.1137 - mrcnn_bbox_loss: 0.1594 - mrcnn_mask_loss: 0.2159262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - " 268/2000 [===>..........................] - ETA: 29:45 - loss: 0.8176 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1142 - mrcnn_bbox_loss: 0.1598 - mrcnn_mask_loss: 0.216146\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - " 269/2000 [===>..........................] - ETA: 29:43 - loss: 0.8165 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3195 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1599 - mrcnn_mask_loss: 0.216067\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - " 270/2000 [===>..........................] - ETA: 29:41 - loss: 0.8151 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3186 - mrcnn_class_loss: 0.1137 - mrcnn_bbox_loss: 0.1596 - mrcnn_mask_loss: 0.2159247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - " 271/2000 [===>..........................] - ETA: 29:40 - loss: 0.8154 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3182 - mrcnn_class_loss: 0.1143 - mrcnn_bbox_loss: 0.1596 - mrcnn_mask_loss: 0.2160304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - " 272/2000 [===>..........................] - ETA: 29:41 - loss: 0.8154 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3180 - mrcnn_class_loss: 0.1142 - mrcnn_bbox_loss: 0.1598 - mrcnn_mask_loss: 0.2160138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - " 273/2000 [===>..........................] - ETA: 29:41 - loss: 0.8164 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3184 - mrcnn_class_loss: 0.1149 - mrcnn_bbox_loss: 0.1597 - mrcnn_mask_loss: 0.2161145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - " 274/2000 [===>..........................] - ETA: 29:40 - loss: 0.8167 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3188 - mrcnn_class_loss: 0.1147 - mrcnn_bbox_loss: 0.1599 - mrcnn_mask_loss: 0.2159331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - " 275/2000 [===>..........................] - ETA: 29:39 - loss: 0.8168 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3187 - mrcnn_class_loss: 0.1144 - mrcnn_bbox_loss: 0.1602 - mrcnn_mask_loss: 0.2161182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - " 276/2000 [===>..........................] - ETA: 29:37 - loss: 0.8166 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1147 - mrcnn_bbox_loss: 0.1602 - mrcnn_mask_loss: 0.215933\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - " 277/2000 [===>..........................] - ETA: 29:36 - loss: 0.8165 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1149 - mrcnn_bbox_loss: 0.1600 - mrcnn_mask_loss: 0.2158117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - " 278/2000 [===>..........................] - ETA: 29:36 - loss: 0.8169 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1152 - mrcnn_bbox_loss: 0.1603 - mrcnn_mask_loss: 0.2156272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - " 279/2000 [===>..........................] - ETA: 29:36 - loss: 0.8167 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3179 - mrcnn_class_loss: 0.1150 - mrcnn_bbox_loss: 0.1608 - mrcnn_mask_loss: 0.2156192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - " 280/2000 [===>..........................] - ETA: 29:34 - loss: 0.8160 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3174 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1610 - mrcnn_mask_loss: 0.2154281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - " 281/2000 [===>..........................] - ETA: 29:35 - loss: 0.8168 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3183 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1612 - mrcnn_mask_loss: 0.2153210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 282/2000 [===>..........................] - ETA: 29:33 - loss: 0.8157 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3179 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1608 - mrcnn_mask_loss: 0.2151346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - " 283/2000 [===>..........................] - ETA: 29:34 - loss: 0.8168 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3186 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1611 - mrcnn_mask_loss: 0.2151202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - " 284/2000 [===>..........................] - ETA: 29:32 - loss: 0.8163 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3184 - mrcnn_class_loss: 0.1144 - mrcnn_bbox_loss: 0.1611 - mrcnn_mask_loss: 0.215041\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - " 285/2000 [===>..........................] - ETA: 29:30 - loss: 0.8158 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3188 - mrcnn_class_loss: 0.1141 - mrcnn_bbox_loss: 0.1608 - mrcnn_mask_loss: 0.2148221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - " 286/2000 [===>..........................] - ETA: 29:28 - loss: 0.8155 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3186 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1611 - mrcnn_mask_loss: 0.2147249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - " 287/2000 [===>..........................] - ETA: 29:26 - loss: 0.8147 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3182 - mrcnn_class_loss: 0.1136 - mrcnn_bbox_loss: 0.1608 - mrcnn_mask_loss: 0.214797\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - " 288/2000 [===>..........................] - ETA: 29:25 - loss: 0.8156 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3190 - mrcnn_class_loss: 0.1137 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.214780\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - " 289/2000 [===>..........................] - ETA: 29:23 - loss: 0.8157 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3189 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1611 - mrcnn_mask_loss: 0.2145196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - " 290/2000 [===>..........................] - ETA: 29:21 - loss: 0.8151 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3180 - mrcnn_class_loss: 0.1140 - mrcnn_bbox_loss: 0.1613 - mrcnn_mask_loss: 0.2145309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - " 291/2000 [===>..........................] - ETA: 29:21 - loss: 0.8163 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3184 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1612 - mrcnn_mask_loss: 0.214689\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - " 292/2000 [===>..........................] - ETA: 29:19 - loss: 0.8161 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3186 - mrcnn_class_loss: 0.1147 - mrcnn_bbox_loss: 0.1610 - mrcnn_mask_loss: 0.2145193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - " 293/2000 [===>..........................] - ETA: 29:17 - loss: 0.8151 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3181 - mrcnn_class_loss: 0.1144 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.214534\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - " 294/2000 [===>..........................] - ETA: 29:14 - loss: 0.8148 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3181 - mrcnn_class_loss: 0.1142 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.214427\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - " 295/2000 [===>..........................] - ETA: 29:12 - loss: 0.8151 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3184 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1608 - mrcnn_mask_loss: 0.214215\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - " 296/2000 [===>..........................] - ETA: 29:09 - loss: 0.8157 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1141 - mrcnn_bbox_loss: 0.1606 - mrcnn_mask_loss: 0.2140243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 297/2000 [===>..........................] - ETA: 29:07 - loss: 0.8163 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3193 - mrcnn_class_loss: 0.1147 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.214212\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - " 298/2000 [===>..........................] - ETA: 29:05 - loss: 0.8156 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3186 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1606 - mrcnn_mask_loss: 0.214035\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - " 299/2000 [===>..........................] - ETA: 29:02 - loss: 0.8147 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3186 - mrcnn_class_loss: 0.1147 - mrcnn_bbox_loss: 0.1604 - mrcnn_mask_loss: 0.2138239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - " 300/2000 [===>..........................] - ETA: 29:00 - loss: 0.8179 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3224 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1602 - mrcnn_mask_loss: 0.2135258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - " 301/2000 [===>..........................] - ETA: 28:59 - loss: 0.8186 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3228 - mrcnn_class_loss: 0.1147 - mrcnn_bbox_loss: 0.1600 - mrcnn_mask_loss: 0.2137296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - " 302/2000 [===>..........................] - ETA: 28:59 - loss: 0.8188 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3233 - mrcnn_class_loss: 0.1146 - mrcnn_bbox_loss: 0.1598 - mrcnn_mask_loss: 0.2138127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - " 303/2000 [===>..........................] - ETA: 28:58 - loss: 0.8201 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3239 - mrcnn_class_loss: 0.1146 - mrcnn_bbox_loss: 0.1603 - mrcnn_mask_loss: 0.2140256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - " 304/2000 [===>..........................] - ETA: 28:57 - loss: 0.8202 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3241 - mrcnn_class_loss: 0.1143 - mrcnn_bbox_loss: 0.1602 - mrcnn_mask_loss: 0.2141171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - " 305/2000 [===>..........................] - ETA: 28:56 - loss: 0.8208 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3240 - mrcnn_class_loss: 0.1143 - mrcnn_bbox_loss: 0.1608 - mrcnn_mask_loss: 0.21430\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - " 306/2000 [===>..........................] - ETA: 28:53 - loss: 0.8218 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3245 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1607 - mrcnn_mask_loss: 0.2143389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - " 307/2000 [===>..........................] - ETA: 28:52 - loss: 0.8222 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3246 - mrcnn_class_loss: 0.1150 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.2143246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - " 308/2000 [===>..........................] - ETA: 28:51 - loss: 0.8219 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3240 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1610 - mrcnn_mask_loss: 0.2144276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - " 309/2000 [===>..........................] - ETA: 28:51 - loss: 0.8220 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3240 - mrcnn_class_loss: 0.1151 - mrcnn_bbox_loss: 0.1610 - mrcnn_mask_loss: 0.214550\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - " 310/2000 [===>..........................] - ETA: 28:48 - loss: 0.8214 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3235 - mrcnn_class_loss: 0.1150 - mrcnn_bbox_loss: 0.1611 - mrcnn_mask_loss: 0.2144175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - " 311/2000 [===>..........................] - ETA: 28:47 - loss: 0.8211 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3234 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1612 - mrcnn_mask_loss: 0.2143134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 312/2000 [===>..........................] - ETA: 28:48 - loss: 0.8210 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3237 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1612 - mrcnn_mask_loss: 0.214232\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - " 313/2000 [===>..........................] - ETA: 28:45 - loss: 0.8197 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3231 - mrcnn_class_loss: 0.1142 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.2140173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - " 314/2000 [===>..........................] - ETA: 28:45 - loss: 0.8194 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3233 - mrcnn_class_loss: 0.1139 - mrcnn_bbox_loss: 0.1610 - mrcnn_mask_loss: 0.2140237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - " 315/2000 [===>..........................] - ETA: 28:43 - loss: 0.8178 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3225 - mrcnn_class_loss: 0.1136 - mrcnn_bbox_loss: 0.1606 - mrcnn_mask_loss: 0.21371\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - " 316/2000 [===>..........................] - ETA: 28:40 - loss: 0.8185 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3232 - mrcnn_class_loss: 0.1135 - mrcnn_bbox_loss: 0.1607 - mrcnn_mask_loss: 0.2137310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - " 317/2000 [===>..........................] - ETA: 28:40 - loss: 0.8188 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3233 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1608 - mrcnn_mask_loss: 0.2139116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - " 318/2000 [===>..........................] - ETA: 28:39 - loss: 0.8195 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3235 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.2140388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - " 319/2000 [===>..........................] - ETA: 28:38 - loss: 0.8204 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3237 - mrcnn_class_loss: 0.1140 - mrcnn_bbox_loss: 0.1613 - mrcnn_mask_loss: 0.2142383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - " 320/2000 [===>..........................] - ETA: 28:38 - loss: 0.8201 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3233 - mrcnn_class_loss: 0.1141 - mrcnn_bbox_loss: 0.1612 - mrcnn_mask_loss: 0.2142328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - " 321/2000 [===>..........................] - ETA: 28:38 - loss: 0.8197 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3233 - mrcnn_class_loss: 0.1140 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.2141366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - " 322/2000 [===>..........................] - ETA: 28:37 - loss: 0.8201 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3235 - mrcnn_class_loss: 0.1143 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.214196\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - " 323/2000 [===>..........................] - ETA: 28:36 - loss: 0.8204 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3239 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1607 - mrcnn_mask_loss: 0.2139170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - " 324/2000 [===>..........................] - ETA: 28:35 - loss: 0.8200 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3233 - mrcnn_class_loss: 0.1144 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.2140107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - " 325/2000 [===>..........................] - ETA: 28:34 - loss: 0.8194 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3228 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.2140101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - " 326/2000 [===>..........................] - ETA: 28:34 - loss: 0.8196 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3226 - mrcnn_class_loss: 0.1147 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.2140139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 327/2000 [===>..........................] - ETA: 28:34 - loss: 0.8206 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3233 - mrcnn_class_loss: 0.1147 - mrcnn_bbox_loss: 0.1611 - mrcnn_mask_loss: 0.2141270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - " 328/2000 [===>..........................] - ETA: 28:33 - loss: 0.8200 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3228 - mrcnn_class_loss: 0.1144 - mrcnn_bbox_loss: 0.1610 - mrcnn_mask_loss: 0.214374\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - " 329/2000 [===>..........................] - ETA: 28:31 - loss: 0.8190 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3222 - mrcnn_class_loss: 0.1144 - mrcnn_bbox_loss: 0.1608 - mrcnn_mask_loss: 0.2142282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - " 330/2000 [===>..........................] - ETA: 28:31 - loss: 0.8195 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3223 - mrcnn_class_loss: 0.1146 - mrcnn_bbox_loss: 0.1607 - mrcnn_mask_loss: 0.2144339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - " 331/2000 [===>..........................] - ETA: 28:31 - loss: 0.8206 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3231 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1607 - mrcnn_mask_loss: 0.2146159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - " 332/2000 [===>..........................] - ETA: 28:31 - loss: 0.8211 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3236 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1610 - mrcnn_mask_loss: 0.2146286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - " 333/2000 [===>..........................] - ETA: 28:31 - loss: 0.8219 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3241 - mrcnn_class_loss: 0.1146 - mrcnn_bbox_loss: 0.1611 - mrcnn_mask_loss: 0.2147112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - " 334/2000 [====>.........................] - ETA: 28:30 - loss: 0.8222 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3240 - mrcnn_class_loss: 0.1150 - mrcnn_bbox_loss: 0.1611 - mrcnn_mask_loss: 0.2148254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - " 335/2000 [====>.........................] - ETA: 28:29 - loss: 0.8217 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3240 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1609 - mrcnn_mask_loss: 0.2147292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - " 336/2000 [====>.........................] - ETA: 28:29 - loss: 0.8218 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3242 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1608 - mrcnn_mask_loss: 0.21484\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - " 337/2000 [====>.........................] - ETA: 28:26 - loss: 0.8208 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3234 - mrcnn_class_loss: 0.1145 - mrcnn_bbox_loss: 0.1606 - mrcnn_mask_loss: 0.2149308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - " 338/2000 [====>.........................] - ETA: 28:26 - loss: 0.8205 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3236 - mrcnn_class_loss: 0.1143 - mrcnn_bbox_loss: 0.1604 - mrcnn_mask_loss: 0.2149326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - " 339/2000 [====>.........................] - ETA: 28:26 - loss: 0.8202 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3233 - mrcnn_class_loss: 0.1142 - mrcnn_bbox_loss: 0.1605 - mrcnn_mask_loss: 0.2149337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - " 340/2000 [====>.........................] - ETA: 28:27 - loss: 0.8200 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3234 - mrcnn_class_loss: 0.1141 - mrcnn_bbox_loss: 0.1603 - mrcnn_mask_loss: 0.214823\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 341/2000 [====>.........................] - ETA: 28:25 - loss: 0.8202 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3242 - mrcnn_class_loss: 0.1138 - mrcnn_bbox_loss: 0.1601 - mrcnn_mask_loss: 0.2147113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - " 342/2000 [====>.........................] - ETA: 28:24 - loss: 0.8202 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3240 - mrcnn_class_loss: 0.1139 - mrcnn_bbox_loss: 0.1603 - mrcnn_mask_loss: 0.214813\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - " 343/2000 [====>.........................] - ETA: 28:22 - loss: 0.8191 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3237 - mrcnn_class_loss: 0.1136 - mrcnn_bbox_loss: 0.1600 - mrcnn_mask_loss: 0.2146222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - " 344/2000 [====>.........................] - ETA: 28:21 - loss: 0.8227 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3272 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1601 - mrcnn_mask_loss: 0.2146376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - " 345/2000 [====>.........................] - ETA: 28:21 - loss: 0.8230 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3273 - mrcnn_class_loss: 0.1136 - mrcnn_bbox_loss: 0.1602 - mrcnn_mask_loss: 0.2144244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - " 346/2000 [====>.........................] - ETA: 28:20 - loss: 0.8233 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3271 - mrcnn_class_loss: 0.1135 - mrcnn_bbox_loss: 0.1605 - mrcnn_mask_loss: 0.214862\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - " 347/2000 [====>.........................] - ETA: 28:18 - loss: 0.8227 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3268 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1603 - mrcnn_mask_loss: 0.2148118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - " 348/2000 [====>.........................] - ETA: 28:18 - loss: 0.8230 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3268 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1605 - mrcnn_mask_loss: 0.214928\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - " 349/2000 [====>.........................] - ETA: 28:16 - loss: 0.8219 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3264 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1602 - mrcnn_mask_loss: 0.2147398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - " 350/2000 [====>.........................] - ETA: 28:16 - loss: 0.8226 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3273 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1602 - mrcnn_mask_loss: 0.214748\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - " 351/2000 [====>.........................] - ETA: 28:15 - loss: 0.8213 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3266 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1599 - mrcnn_mask_loss: 0.214652\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - " 352/2000 [====>.........................] - ETA: 28:13 - loss: 0.8204 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3262 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1598 - mrcnn_mask_loss: 0.2146327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n", - " 353/2000 [====>.........................] - ETA: 28:13 - loss: 0.8201 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3259 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1599 - mrcnn_mask_loss: 0.2146172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - " 354/2000 [====>.........................] - ETA: 28:12 - loss: 0.8198 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3253 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1601 - mrcnn_mask_loss: 0.2145115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - " 355/2000 [====>.........................] - ETA: 28:12 - loss: 0.8193 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3249 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1600 - mrcnn_mask_loss: 0.214486\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 356/2000 [====>.........................] - ETA: 28:11 - loss: 0.8185 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3246 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1600 - mrcnn_mask_loss: 0.214270\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - " 357/2000 [====>.........................] - ETA: 28:10 - loss: 0.8178 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3242 - mrcnn_class_loss: 0.1119 - mrcnn_bbox_loss: 0.1600 - mrcnn_mask_loss: 0.2142367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - " 358/2000 [====>.........................] - ETA: 28:09 - loss: 0.8178 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3244 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1599 - mrcnn_mask_loss: 0.2141351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - " 359/2000 [====>.........................] - ETA: 28:08 - loss: 0.8179 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3246 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1597 - mrcnn_mask_loss: 0.2140268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - " 360/2000 [====>.........................] - ETA: 28:08 - loss: 0.8172 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3240 - mrcnn_class_loss: 0.1119 - mrcnn_bbox_loss: 0.1596 - mrcnn_mask_loss: 0.2140294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - " 361/2000 [====>.........................] - ETA: 28:08 - loss: 0.8176 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3244 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1598 - mrcnn_mask_loss: 0.2141345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - " 362/2000 [====>.........................] - ETA: 28:08 - loss: 0.8177 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3248 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1598 - mrcnn_mask_loss: 0.2140312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - " 363/2000 [====>.........................] - ETA: 28:08 - loss: 0.8177 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3247 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1596 - mrcnn_mask_loss: 0.2140137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - " 364/2000 [====>.........................] - ETA: 28:09 - loss: 0.8179 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3248 - mrcnn_class_loss: 0.1119 - mrcnn_bbox_loss: 0.1595 - mrcnn_mask_loss: 0.2141155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - " 365/2000 [====>.........................] - ETA: 28:08 - loss: 0.8184 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3255 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1594 - mrcnn_mask_loss: 0.2141241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - " 366/2000 [====>.........................] - ETA: 28:07 - loss: 0.8188 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3255 - mrcnn_class_loss: 0.1119 - mrcnn_bbox_loss: 0.1595 - mrcnn_mask_loss: 0.2143132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - " 367/2000 [====>.........................] - ETA: 28:07 - loss: 0.8189 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3261 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1594 - mrcnn_mask_loss: 0.2141289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - " 368/2000 [====>.........................] - ETA: 28:07 - loss: 0.8193 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3262 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1594 - mrcnn_mask_loss: 0.2139102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - " 369/2000 [====>.........................] - ETA: 28:06 - loss: 0.8188 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3260 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1592 - mrcnn_mask_loss: 0.2138317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 370/2000 [====>.........................] - ETA: 28:07 - loss: 0.8182 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3258 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1591 - mrcnn_mask_loss: 0.2138216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - " 371/2000 [====>.........................] - ETA: 28:05 - loss: 0.8178 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3256 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1591 - mrcnn_mask_loss: 0.2137149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - " 372/2000 [====>.........................] - ETA: 28:04 - loss: 0.8184 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3265 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1590 - mrcnn_mask_loss: 0.213692\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - " 373/2000 [====>.........................] - ETA: 28:03 - loss: 0.8182 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3269 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1589 - mrcnn_mask_loss: 0.2134274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - " 374/2000 [====>.........................] - ETA: 28:02 - loss: 0.8180 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3269 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1590 - mrcnn_mask_loss: 0.2134235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - " 375/2000 [====>.........................] - ETA: 28:01 - loss: 0.8173 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3265 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1588 - mrcnn_mask_loss: 0.213363\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - " 376/2000 [====>.........................] - ETA: 27:59 - loss: 0.8163 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3261 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1585 - mrcnn_mask_loss: 0.2132305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - " 377/2000 [====>.........................] - ETA: 27:59 - loss: 0.8159 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3262 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1584 - mrcnn_mask_loss: 0.2130187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - " 378/2000 [====>.........................] - ETA: 27:58 - loss: 0.8152 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3257 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1584 - mrcnn_mask_loss: 0.2130255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - " 379/2000 [====>.........................] - ETA: 27:57 - loss: 0.8150 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3256 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1583 - mrcnn_mask_loss: 0.2131385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - " 380/2000 [====>.........................] - ETA: 27:56 - loss: 0.8148 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3255 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1583 - mrcnn_mask_loss: 0.2130319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - " 381/2000 [====>.........................] - ETA: 27:57 - loss: 0.8155 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3260 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1584 - mrcnn_mask_loss: 0.2132130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - " 382/2000 [====>.........................] - ETA: 27:57 - loss: 0.8155 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3260 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1585 - mrcnn_mask_loss: 0.2132157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - " 383/2000 [====>.........................] - ETA: 27:56 - loss: 0.8167 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3267 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1590 - mrcnn_mask_loss: 0.2133295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - " 384/2000 [====>.........................] - ETA: 27:56 - loss: 0.8164 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3265 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1591 - mrcnn_mask_loss: 0.2132299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - " 385/2000 [====>.........................] - ETA: 27:56 - loss: 0.8178 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3277 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1590 - mrcnn_mask_loss: 0.2132211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - " 386/2000 [====>.........................] - ETA: 27:54 - loss: 0.8169 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3272 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1588 - mrcnn_mask_loss: 0.2129156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - " 387/2000 [====>.........................] - ETA: 27:54 - loss: 0.8169 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3276 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1586 - mrcnn_mask_loss: 0.2128394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - " 388/2000 [====>.........................] - ETA: 27:54 - loss: 0.8161 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3273 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1584 - mrcnn_mask_loss: 0.2127257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - " 389/2000 [====>.........................] - ETA: 27:53 - loss: 0.8170 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1585 - mrcnn_mask_loss: 0.2127283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - " 390/2000 [====>.........................] - ETA: 27:53 - loss: 0.8183 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1110 - mrcnn_bbox_loss: 0.1588 - mrcnn_mask_loss: 0.2128133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - " 391/2000 [====>.........................] - ETA: 27:52 - loss: 0.8183 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3283 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1586 - mrcnn_mask_loss: 0.2128365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - " 392/2000 [====>.........................] - ETA: 27:52 - loss: 0.8180 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3283 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1585 - mrcnn_mask_loss: 0.212798\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - " 393/2000 [====>.........................] - ETA: 27:51 - loss: 0.8186 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3292 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1585 - mrcnn_mask_loss: 0.2126231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - " 394/2000 [====>.........................] - ETA: 27:50 - loss: 0.8182 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3290 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1583 - mrcnn_mask_loss: 0.2125206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - " 395/2000 [====>.........................] - ETA: 27:49 - loss: 0.8172 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3284 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1582 - mrcnn_mask_loss: 0.2123321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - " 396/2000 [====>.........................] - ETA: 27:49 - loss: 0.8180 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3286 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1582 - mrcnn_mask_loss: 0.2127335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - " 397/2000 [====>.........................] - ETA: 27:49 - loss: 0.8179 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1582 - mrcnn_mask_loss: 0.2128380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 398/2000 [====>.........................] - ETA: 27:48 - loss: 0.8184 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3292 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1581 - mrcnn_mask_loss: 0.212716\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - " 399/2000 [====>.........................] - ETA: 27:47 - loss: 0.8188 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3299 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1580 - mrcnn_mask_loss: 0.212519\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - " 400/2000 [=====>........................] - ETA: 27:45 - loss: 0.8188 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3304 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1578 - mrcnn_mask_loss: 0.2124328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - " 401/2000 [=====>........................] - ETA: 27:45 - loss: 0.8188 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3303 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1577 - mrcnn_mask_loss: 0.2124351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - " 402/2000 [=====>........................] - ETA: 27:44 - loss: 0.8187 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3304 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1577 - mrcnn_mask_loss: 0.2123246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - " 403/2000 [=====>........................] - ETA: 27:42 - loss: 0.8192 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3299 - mrcnn_class_loss: 0.1110 - mrcnn_bbox_loss: 0.1581 - mrcnn_mask_loss: 0.21258\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - " 404/2000 [=====>........................] - ETA: 27:41 - loss: 0.8180 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3293 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1579 - mrcnn_mask_loss: 0.2123201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - " 405/2000 [=====>........................] - ETA: 27:39 - loss: 0.8173 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3288 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1578 - mrcnn_mask_loss: 0.212233\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - " 406/2000 [=====>........................] - ETA: 27:37 - loss: 0.8167 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3287 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1576 - mrcnn_mask_loss: 0.2121227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - " 407/2000 [=====>........................] - ETA: 27:36 - loss: 0.8156 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1574 - mrcnn_mask_loss: 0.211969\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - " 408/2000 [=====>........................] - ETA: 27:34 - loss: 0.8153 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3277 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1573 - mrcnn_mask_loss: 0.2119206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - " 409/2000 [=====>........................] - ETA: 27:32 - loss: 0.8143 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3271 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1571 - mrcnn_mask_loss: 0.2117346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - " 410/2000 [=====>........................] - ETA: 27:32 - loss: 0.8151 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3278 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1571 - mrcnn_mask_loss: 0.2117340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - " 411/2000 [=====>........................] - ETA: 27:32 - loss: 0.8156 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1573 - mrcnn_mask_loss: 0.2117363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - " 412/2000 [=====>........................] - ETA: 27:31 - loss: 0.8158 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1573 - mrcnn_mask_loss: 0.211695\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 413/2000 [=====>........................] - ETA: 27:30 - loss: 0.8162 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3290 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1572 - mrcnn_mask_loss: 0.21169\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - " 414/2000 [=====>........................] - ETA: 27:28 - loss: 0.8166 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3296 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1572 - mrcnn_mask_loss: 0.2115157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - " 415/2000 [=====>........................] - ETA: 27:28 - loss: 0.8171 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3301 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1572 - mrcnn_mask_loss: 0.2113249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - " 416/2000 [=====>........................] - ETA: 27:26 - loss: 0.8168 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3297 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1571 - mrcnn_mask_loss: 0.2113185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - " 417/2000 [=====>........................] - ETA: 27:24 - loss: 0.8166 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3295 - mrcnn_class_loss: 0.1110 - mrcnn_bbox_loss: 0.1570 - mrcnn_mask_loss: 0.211530\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - " 418/2000 [=====>........................] - ETA: 27:22 - loss: 0.8159 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3294 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1568 - mrcnn_mask_loss: 0.2113390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - " 419/2000 [=====>........................] - ETA: 27:21 - loss: 0.8169 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3298 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1570 - mrcnn_mask_loss: 0.2113370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - " 420/2000 [=====>........................] - ETA: 27:20 - loss: 0.8164 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3295 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1568 - mrcnn_mask_loss: 0.2112285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - " 421/2000 [=====>........................] - ETA: 27:20 - loss: 0.8169 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3300 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1568 - mrcnn_mask_loss: 0.2112384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - " 422/2000 [=====>........................] - ETA: 27:19 - loss: 0.8165 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3298 - mrcnn_class_loss: 0.1110 - mrcnn_bbox_loss: 0.1569 - mrcnn_mask_loss: 0.2112375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - " 423/2000 [=====>........................] - ETA: 27:19 - loss: 0.8161 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3297 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1569 - mrcnn_mask_loss: 0.2111156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - " 424/2000 [=====>........................] - ETA: 27:18 - loss: 0.8164 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3299 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1569 - mrcnn_mask_loss: 0.2110289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - " 425/2000 [=====>........................] - ETA: 27:17 - loss: 0.8162 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3298 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1569 - mrcnn_mask_loss: 0.2109252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - " 426/2000 [=====>........................] - ETA: 27:17 - loss: 0.8161 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3295 - mrcnn_class_loss: 0.1110 - mrcnn_bbox_loss: 0.1568 - mrcnn_mask_loss: 0.2110263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - " 427/2000 [=====>........................] - ETA: 27:16 - loss: 0.8156 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3292 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1568 - mrcnn_mask_loss: 0.210979\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - " 428/2000 [=====>........................] - ETA: 27:15 - loss: 0.8151 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3291 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1565 - mrcnn_mask_loss: 0.2110115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - " 429/2000 [=====>........................] - ETA: 27:14 - loss: 0.8149 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3289 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1565 - mrcnn_mask_loss: 0.2109279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - " 430/2000 [=====>........................] - ETA: 27:14 - loss: 0.8148 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3288 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1565 - mrcnn_mask_loss: 0.210842\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - " 431/2000 [=====>........................] - ETA: 27:12 - loss: 0.8144 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3287 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.2108151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - " 432/2000 [=====>........................] - ETA: 27:12 - loss: 0.8144 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3289 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1562 - mrcnn_mask_loss: 0.2107175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - " 433/2000 [=====>........................] - ETA: 27:11 - loss: 0.8140 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1563 - mrcnn_mask_loss: 0.21065\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - " 434/2000 [=====>........................] - ETA: 27:09 - loss: 0.8139 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3286 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1563 - mrcnn_mask_loss: 0.2105203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - " 435/2000 [=====>........................] - ETA: 27:07 - loss: 0.8129 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3280 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1561 - mrcnn_mask_loss: 0.2105380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - " 436/2000 [=====>........................] - ETA: 27:07 - loss: 0.8136 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.2105183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - " 437/2000 [=====>........................] - ETA: 27:05 - loss: 0.8136 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3287 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1563 - mrcnn_mask_loss: 0.2106191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - " 438/2000 [=====>........................] - ETA: 27:03 - loss: 0.8127 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3282 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1561 - mrcnn_mask_loss: 0.2105177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - " 439/2000 [=====>........................] - ETA: 27:03 - loss: 0.8126 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3280 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1562 - mrcnn_mask_loss: 0.2104160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - " 440/2000 [=====>........................] - ETA: 27:02 - loss: 0.8132 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1564 - mrcnn_mask_loss: 0.2105333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - " 441/2000 [=====>........................] - ETA: 27:02 - loss: 0.8130 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3279 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1563 - mrcnn_mask_loss: 0.2105324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 442/2000 [=====>........................] - ETA: 27:02 - loss: 0.8128 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3279 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1561 - mrcnn_mask_loss: 0.210599\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - " 443/2000 [=====>........................] - ETA: 27:02 - loss: 0.8129 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3284 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1560 - mrcnn_mask_loss: 0.2105167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - " 444/2000 [=====>........................] - ETA: 27:00 - loss: 0.8126 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1560 - mrcnn_mask_loss: 0.2103152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - " 445/2000 [=====>........................] - ETA: 27:00 - loss: 0.8140 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3290 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1561 - mrcnn_mask_loss: 0.210362\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - " 446/2000 [=====>........................] - ETA: 26:58 - loss: 0.8134 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1559 - mrcnn_mask_loss: 0.210497\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - " 447/2000 [=====>........................] - ETA: 26:57 - loss: 0.8136 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3288 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1559 - mrcnn_mask_loss: 0.2106193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - " 448/2000 [=====>........................] - ETA: 26:56 - loss: 0.8128 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3283 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1558 - mrcnn_mask_loss: 0.2105244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - " 449/2000 [=====>........................] - ETA: 26:55 - loss: 0.8126 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3282 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1557 - mrcnn_mask_loss: 0.2106202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - " 450/2000 [=====>........................] - ETA: 26:53 - loss: 0.8124 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3278 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1557 - mrcnn_mask_loss: 0.2105357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - " 451/2000 [=====>........................] - ETA: 26:53 - loss: 0.8122 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1555 - mrcnn_mask_loss: 0.2105112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - " 452/2000 [=====>........................] - ETA: 26:52 - loss: 0.8116 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3280 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1553 - mrcnn_mask_loss: 0.21040\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - " 453/2000 [=====>........................] - ETA: 26:50 - loss: 0.8114 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1553 - mrcnn_mask_loss: 0.2103204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - " 454/2000 [=====>........................] - ETA: 26:49 - loss: 0.8108 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3276 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1553 - mrcnn_mask_loss: 0.2103158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - " 455/2000 [=====>........................] - ETA: 26:48 - loss: 0.8112 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3280 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1553 - mrcnn_mask_loss: 0.210257\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - " 456/2000 [=====>........................] - ETA: 26:47 - loss: 0.8116 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3283 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1552 - mrcnn_mask_loss: 0.2102222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 457/2000 [=====>........................] - ETA: 26:46 - loss: 0.8120 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3288 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1551 - mrcnn_mask_loss: 0.2101150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - " 458/2000 [=====>........................] - ETA: 26:45 - loss: 0.8126 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3288 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1552 - mrcnn_mask_loss: 0.2101349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - " 459/2000 [=====>........................] - ETA: 26:44 - loss: 0.8127 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3290 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1553 - mrcnn_mask_loss: 0.2100198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - " 460/2000 [=====>........................] - ETA: 26:43 - loss: 0.8120 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1553 - mrcnn_mask_loss: 0.2100395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - " 461/2000 [=====>........................] - ETA: 26:42 - loss: 0.8122 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3286 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1552 - mrcnn_mask_loss: 0.2099296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - " 462/2000 [=====>........................] - ETA: 26:42 - loss: 0.8122 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3287 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1551 - mrcnn_mask_loss: 0.2098397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - " 463/2000 [=====>........................] - ETA: 26:41 - loss: 0.8122 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3288 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1551 - mrcnn_mask_loss: 0.2097295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - " 464/2000 [=====>........................] - ETA: 26:41 - loss: 0.8121 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3288 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1549 - mrcnn_mask_loss: 0.209777\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - " 465/2000 [=====>........................] - ETA: 26:40 - loss: 0.8114 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3286 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1547 - mrcnn_mask_loss: 0.209615\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - " 466/2000 [=====>........................] - ETA: 26:39 - loss: 0.8115 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3291 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1546 - mrcnn_mask_loss: 0.2095125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - " 467/2000 [======>.......................] - ETA: 26:39 - loss: 0.8117 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3292 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1547 - mrcnn_mask_loss: 0.209620\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - " 468/2000 [======>.......................] - ETA: 26:37 - loss: 0.8123 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3297 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1547 - mrcnn_mask_loss: 0.209614\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - " 469/2000 [======>.......................] - ETA: 26:35 - loss: 0.8120 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3297 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1545 - mrcnn_mask_loss: 0.2094360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - " 470/2000 [======>.......................] - ETA: 26:35 - loss: 0.8124 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3303 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1544 - mrcnn_mask_loss: 0.209487\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - " 471/2000 [======>.......................] - ETA: 26:34 - loss: 0.8124 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3300 - mrcnn_class_loss: 0.1110 - mrcnn_bbox_loss: 0.1543 - mrcnn_mask_loss: 0.209374\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 472/2000 [======>.......................] - ETA: 26:32 - loss: 0.8117 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3295 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1541 - mrcnn_mask_loss: 0.20927\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - " 473/2000 [======>.......................] - ETA: 26:31 - loss: 0.8108 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3291 - mrcnn_class_loss: 0.1110 - mrcnn_bbox_loss: 0.1539 - mrcnn_mask_loss: 0.2090365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - " 474/2000 [======>.......................] - ETA: 26:30 - loss: 0.8108 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3290 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1539 - mrcnn_mask_loss: 0.2091327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n", - " 475/2000 [======>.......................] - ETA: 26:30 - loss: 0.8105 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3288 - mrcnn_class_loss: 0.1110 - mrcnn_bbox_loss: 0.1538 - mrcnn_mask_loss: 0.2091308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - " 476/2000 [======>.......................] - ETA: 26:29 - loss: 0.8108 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3289 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1538 - mrcnn_mask_loss: 0.2092301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - " 477/2000 [======>.......................] - ETA: 26:29 - loss: 0.8114 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3291 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1538 - mrcnn_mask_loss: 0.209354\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - " 478/2000 [======>.......................] - ETA: 26:28 - loss: 0.8107 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3287 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1538 - mrcnn_mask_loss: 0.2092348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - " 479/2000 [======>.......................] - ETA: 26:26 - loss: 0.8112 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3291 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1537 - mrcnn_mask_loss: 0.2092288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - " 480/2000 [======>.......................] - ETA: 26:26 - loss: 0.8111 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3291 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1537 - mrcnn_mask_loss: 0.2092265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - " 481/2000 [======>.......................] - ETA: 26:25 - loss: 0.8108 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3287 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1536 - mrcnn_mask_loss: 0.2092278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - " 482/2000 [======>.......................] - ETA: 26:24 - loss: 0.8109 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3288 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1536 - mrcnn_mask_loss: 0.2091271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - " 483/2000 [======>.......................] - ETA: 26:23 - loss: 0.8105 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1536 - mrcnn_mask_loss: 0.2092388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - " 484/2000 [======>.......................] - ETA: 26:23 - loss: 0.8106 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1535 - mrcnn_mask_loss: 0.209291\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - " 485/2000 [======>.......................] - ETA: 26:21 - loss: 0.8104 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1533 - mrcnn_mask_loss: 0.209152\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - " 486/2000 [======>.......................] - ETA: 26:20 - loss: 0.8094 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3280 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1531 - mrcnn_mask_loss: 0.2090329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - " 487/2000 [======>.......................] - ETA: 26:19 - loss: 0.8092 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3280 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1531 - mrcnn_mask_loss: 0.2090322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - " 488/2000 [======>.......................] - ETA: 26:19 - loss: 0.8092 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1530 - mrcnn_mask_loss: 0.2090377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - " 489/2000 [======>.......................] - ETA: 26:18 - loss: 0.8090 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1528 - mrcnn_mask_loss: 0.2090238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - " 490/2000 [======>.......................] - ETA: 26:17 - loss: 0.8091 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3278 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1529 - mrcnn_mask_loss: 0.2091132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - " 491/2000 [======>.......................] - ETA: 26:17 - loss: 0.8094 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1528 - mrcnn_mask_loss: 0.2090145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - " 492/2000 [======>.......................] - ETA: 26:15 - loss: 0.8093 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3283 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1528 - mrcnn_mask_loss: 0.2089235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - " 493/2000 [======>.......................] - ETA: 26:14 - loss: 0.8089 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3280 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1527 - mrcnn_mask_loss: 0.2088197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - " 494/2000 [======>.......................] - ETA: 26:12 - loss: 0.8081 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3275 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1525 - mrcnn_mask_loss: 0.2087128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - " 495/2000 [======>.......................] - ETA: 26:12 - loss: 0.8083 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3277 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1525 - mrcnn_mask_loss: 0.2087306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - " 496/2000 [======>.......................] - ETA: 26:12 - loss: 0.8083 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3279 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1525 - mrcnn_mask_loss: 0.2086290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - " 497/2000 [======>.......................] - ETA: 26:11 - loss: 0.8084 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3278 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1524 - mrcnn_mask_loss: 0.2085394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - " 498/2000 [======>.......................] - ETA: 26:10 - loss: 0.8079 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3276 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1523 - mrcnn_mask_loss: 0.2084194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - " 499/2000 [======>.......................] - ETA: 26:08 - loss: 0.8073 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3272 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1522 - mrcnn_mask_loss: 0.208310\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - " 500/2000 [======>.......................] - ETA: 26:06 - loss: 0.8071 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3272 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1521 - mrcnn_mask_loss: 0.208283\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 501/2000 [======>.......................] - ETA: 26:05 - loss: 0.8067 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3268 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1522 - mrcnn_mask_loss: 0.2083331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - " 502/2000 [======>.......................] - ETA: 26:04 - loss: 0.8064 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3267 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1522 - mrcnn_mask_loss: 0.20832\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - " 503/2000 [======>.......................] - ETA: 26:02 - loss: 0.8061 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3267 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1521 - mrcnn_mask_loss: 0.208243\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - " 504/2000 [======>.......................] - ETA: 26:00 - loss: 0.8056 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3266 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1519 - mrcnn_mask_loss: 0.2082268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - " 505/2000 [======>.......................] - ETA: 25:59 - loss: 0.8058 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3262 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1521 - mrcnn_mask_loss: 0.2083148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - " 506/2000 [======>.......................] - ETA: 25:58 - loss: 0.8067 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3263 - mrcnn_class_loss: 0.1119 - mrcnn_bbox_loss: 0.1524 - mrcnn_mask_loss: 0.2083383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - " 507/2000 [======>.......................] - ETA: 25:58 - loss: 0.8065 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3261 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1524 - mrcnn_mask_loss: 0.2083366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - " 508/2000 [======>.......................] - ETA: 25:57 - loss: 0.8063 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3261 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1525 - mrcnn_mask_loss: 0.2082230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - " 509/2000 [======>.......................] - ETA: 25:55 - loss: 0.8059 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3259 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1523 - mrcnn_mask_loss: 0.2081323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - " 510/2000 [======>.......................] - ETA: 25:55 - loss: 0.8059 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3260 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1522 - mrcnn_mask_loss: 0.2080210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - " 511/2000 [======>.......................] - ETA: 25:53 - loss: 0.8054 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3258 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1523 - mrcnn_mask_loss: 0.2079139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - " 512/2000 [======>.......................] - ETA: 25:53 - loss: 0.8064 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3260 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1525 - mrcnn_mask_loss: 0.208211\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - " 513/2000 [======>.......................] - ETA: 25:51 - loss: 0.8061 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3263 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1523 - mrcnn_mask_loss: 0.2081338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - " 514/2000 [======>.......................] - ETA: 25:50 - loss: 0.8061 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3265 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1522 - mrcnn_mask_loss: 0.2081381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - " 515/2000 [======>.......................] - ETA: 25:50 - loss: 0.8069 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3271 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1524 - mrcnn_mask_loss: 0.2081218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 516/2000 [======>.......................] - ETA: 25:48 - loss: 0.8061 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3268 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1522 - mrcnn_mask_loss: 0.2080326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - " 517/2000 [======>.......................] - ETA: 25:47 - loss: 0.8059 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3266 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1521 - mrcnn_mask_loss: 0.2080120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - " 518/2000 [======>.......................] - ETA: 25:46 - loss: 0.8067 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3267 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1524 - mrcnn_mask_loss: 0.208078\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - " 519/2000 [======>.......................] - ETA: 25:45 - loss: 0.8060 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3264 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1522 - mrcnn_mask_loss: 0.2080225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - " 520/2000 [======>.......................] - ETA: 25:43 - loss: 0.8054 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3259 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1521 - mrcnn_mask_loss: 0.2078269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - " 521/2000 [======>.......................] - ETA: 25:42 - loss: 0.8050 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3255 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1522 - mrcnn_mask_loss: 0.2078245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - " 522/2000 [======>.......................] - ETA: 25:40 - loss: 0.8046 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3252 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1521 - mrcnn_mask_loss: 0.207944\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - " 523/2000 [======>.......................] - ETA: 25:39 - loss: 0.8038 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3247 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1520 - mrcnn_mask_loss: 0.207818\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - " 524/2000 [======>.......................] - ETA: 25:37 - loss: 0.8039 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3251 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1519 - mrcnn_mask_loss: 0.2077350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - " 525/2000 [======>.......................] - ETA: 25:35 - loss: 0.8036 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3252 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1518 - mrcnn_mask_loss: 0.2076276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - " 526/2000 [======>.......................] - ETA: 25:34 - loss: 0.8037 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3253 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1517 - mrcnn_mask_loss: 0.2076282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - " 527/2000 [======>.......................] - ETA: 25:33 - loss: 0.8040 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3254 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1517 - mrcnn_mask_loss: 0.207647\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - " 528/2000 [======>.......................] - ETA: 25:31 - loss: 0.8035 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3251 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1516 - mrcnn_mask_loss: 0.2075116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - " 529/2000 [======>.......................] - ETA: 25:30 - loss: 0.8036 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3251 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1517 - mrcnn_mask_loss: 0.2074287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - " 530/2000 [======>.......................] - ETA: 25:29 - loss: 0.8038 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3252 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1517 - mrcnn_mask_loss: 0.2074309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - " 531/2000 [======>.......................] - ETA: 25:29 - loss: 0.8037 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3252 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1516 - mrcnn_mask_loss: 0.2075300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - " 532/2000 [======>.......................] - ETA: 25:28 - loss: 0.8040 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3255 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1516 - mrcnn_mask_loss: 0.207589\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - " 533/2000 [======>.......................] - ETA: 25:26 - loss: 0.8039 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3256 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1515 - mrcnn_mask_loss: 0.2075364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - " 534/2000 [=======>......................] - ETA: 25:25 - loss: 0.8038 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3256 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1515 - mrcnn_mask_loss: 0.20746\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - " 535/2000 [=======>......................] - ETA: 25:23 - loss: 0.8031 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3253 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1514 - mrcnn_mask_loss: 0.2073261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - " 536/2000 [=======>......................] - ETA: 25:22 - loss: 0.8031 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3252 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1514 - mrcnn_mask_loss: 0.2074220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - " 537/2000 [=======>......................] - ETA: 25:21 - loss: 0.8028 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3250 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1513 - mrcnn_mask_loss: 0.2073106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - " 538/2000 [=======>......................] - ETA: 25:19 - loss: 0.8023 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3246 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1512 - mrcnn_mask_loss: 0.207386\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - " 539/2000 [=======>......................] - ETA: 25:18 - loss: 0.8018 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3244 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1510 - mrcnn_mask_loss: 0.2073239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - " 540/2000 [=======>......................] - ETA: 25:16 - loss: 0.8033 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3259 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1510 - mrcnn_mask_loss: 0.2072298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - " 541/2000 [=======>......................] - ETA: 25:16 - loss: 0.8039 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3262 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1510 - mrcnn_mask_loss: 0.2072281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - " 542/2000 [=======>......................] - ETA: 25:15 - loss: 0.8041 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3263 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1509 - mrcnn_mask_loss: 0.2072216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - " 543/2000 [=======>......................] - ETA: 25:13 - loss: 0.8035 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3261 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1508 - mrcnn_mask_loss: 0.2071131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 544/2000 [=======>......................] - ETA: 25:13 - loss: 0.8038 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3263 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1509 - mrcnn_mask_loss: 0.207194\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - " 545/2000 [=======>......................] - ETA: 25:11 - loss: 0.8039 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3265 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1508 - mrcnn_mask_loss: 0.2070214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - " 546/2000 [=======>......................] - ETA: 25:10 - loss: 0.8035 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3261 - mrcnn_class_loss: 0.1119 - mrcnn_bbox_loss: 0.1507 - mrcnn_mask_loss: 0.2070153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - " 547/2000 [=======>......................] - ETA: 25:09 - loss: 0.8042 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3266 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1507 - mrcnn_mask_loss: 0.2070385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - " 548/2000 [=======>......................] - ETA: 25:07 - loss: 0.8045 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3268 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1508 - mrcnn_mask_loss: 0.206936\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - " 549/2000 [=======>......................] - ETA: 25:05 - loss: 0.8049 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3275 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1507 - mrcnn_mask_loss: 0.2068321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - " 550/2000 [=======>......................] - ETA: 25:05 - loss: 0.8052 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3277 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1507 - mrcnn_mask_loss: 0.2068280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - " 551/2000 [=======>......................] - ETA: 25:04 - loss: 0.8056 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3279 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1508 - mrcnn_mask_loss: 0.2068121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - " 552/2000 [=======>......................] - ETA: 25:04 - loss: 0.8063 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3284 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1508 - mrcnn_mask_loss: 0.2069248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - " 553/2000 [=======>......................] - ETA: 25:02 - loss: 0.8059 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3282 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1507 - mrcnn_mask_loss: 0.2069317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - " 554/2000 [=======>......................] - ETA: 25:02 - loss: 0.8060 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1507 - mrcnn_mask_loss: 0.2070399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - " 555/2000 [=======>......................] - ETA: 25:01 - loss: 0.8062 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.206925\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - " 556/2000 [=======>......................] - ETA: 24:59 - loss: 0.8060 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1505 - mrcnn_mask_loss: 0.2069140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - " 557/2000 [=======>......................] - ETA: 24:58 - loss: 0.8065 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3285 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.2068170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - " 558/2000 [=======>......................] - ETA: 24:57 - loss: 0.8063 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3283 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.2069270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 559/2000 [=======>......................] - ETA: 24:56 - loss: 0.8060 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3280 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.2068154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - " 560/2000 [=======>......................] - ETA: 24:55 - loss: 0.8061 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3281 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.206771\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - " 561/2000 [=======>......................] - ETA: 24:53 - loss: 0.8055 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3278 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1505 - mrcnn_mask_loss: 0.2067188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - " 562/2000 [=======>......................] - ETA: 24:51 - loss: 0.8048 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3274 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1503 - mrcnn_mask_loss: 0.2066368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - " 563/2000 [=======>......................] - ETA: 24:50 - loss: 0.8047 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3274 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1503 - mrcnn_mask_loss: 0.2067213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - " 564/2000 [=======>......................] - ETA: 24:48 - loss: 0.8044 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3270 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1503 - mrcnn_mask_loss: 0.206785\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - " 565/2000 [=======>......................] - ETA: 24:47 - loss: 0.8041 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3267 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1503 - mrcnn_mask_loss: 0.2067161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - " 566/2000 [=======>......................] - ETA: 24:45 - loss: 0.8054 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3271 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.2068273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - " 567/2000 [=======>......................] - ETA: 24:44 - loss: 0.8053 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.3269 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1505 - mrcnn_mask_loss: 0.2067200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - " 568/2000 [=======>......................] - ETA: 24:42 - loss: 0.8048 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3267 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1505 - mrcnn_mask_loss: 0.20661\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - " 569/2000 [=======>......................] - ETA: 24:40 - loss: 0.8043 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3265 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1504 - mrcnn_mask_loss: 0.2066166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - " 570/2000 [=======>......................] - ETA: 24:39 - loss: 0.8042 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3263 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1505 - mrcnn_mask_loss: 0.2067292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - " 571/2000 [=======>......................] - ETA: 24:38 - loss: 0.8046 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3263 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1505 - mrcnn_mask_loss: 0.206763\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - " 572/2000 [=======>......................] - ETA: 24:36 - loss: 0.8041 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3259 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1504 - mrcnn_mask_loss: 0.2066316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - " 573/2000 [=======>......................] - ETA: 24:36 - loss: 0.8040 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3258 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1505 - mrcnn_mask_loss: 0.2067186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 574/2000 [=======>......................] - ETA: 24:34 - loss: 0.8035 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3256 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1503 - mrcnn_mask_loss: 0.2066114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - " 575/2000 [=======>......................] - ETA: 24:33 - loss: 0.8031 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3253 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1503 - mrcnn_mask_loss: 0.2066168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - " 576/2000 [=======>......................] - ETA: 24:31 - loss: 0.8029 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3250 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.2065155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - " 577/2000 [=======>......................] - ETA: 24:31 - loss: 0.8032 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3254 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.2065286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - " 578/2000 [=======>......................] - ETA: 24:29 - loss: 0.8033 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3254 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.2066223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - " 579/2000 [=======>......................] - ETA: 24:28 - loss: 0.8033 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3250 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.2066242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - " 580/2000 [=======>......................] - ETA: 24:26 - loss: 0.8033 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3247 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.2066111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - " 581/2000 [=======>......................] - ETA: 24:25 - loss: 0.8032 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3246 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1507 - mrcnn_mask_loss: 0.2067189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - " 582/2000 [=======>......................] - ETA: 24:23 - loss: 0.8026 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3243 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.2066108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - " 583/2000 [=======>......................] - ETA: 24:21 - loss: 0.8022 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3239 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.206692\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - " 584/2000 [=======>......................] - ETA: 24:20 - loss: 0.8025 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3243 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1506 - mrcnn_mask_loss: 0.206519\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - " 585/2000 [=======>......................] - ETA: 24:18 - loss: 0.8025 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3244 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1504 - mrcnn_mask_loss: 0.206465\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - " 586/2000 [=======>......................] - ETA: 24:16 - loss: 0.8022 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3242 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1503 - mrcnn_mask_loss: 0.206445\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - " 587/2000 [=======>......................] - ETA: 24:14 - loss: 0.8014 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3238 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1502 - mrcnn_mask_loss: 0.2063215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - " 588/2000 [=======>......................] - ETA: 24:13 - loss: 0.8009 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3235 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1501 - mrcnn_mask_loss: 0.2063253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 589/2000 [=======>......................] - ETA: 24:11 - loss: 0.8006 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3234 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1500 - mrcnn_mask_loss: 0.2063144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - " 590/2000 [=======>......................] - ETA: 24:10 - loss: 0.8008 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3236 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1500 - mrcnn_mask_loss: 0.2063347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - " 591/2000 [=======>......................] - ETA: 24:09 - loss: 0.8014 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3238 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1504 - mrcnn_mask_loss: 0.2064330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - " 592/2000 [=======>......................] - ETA: 24:08 - loss: 0.8013 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3236 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1503 - mrcnn_mask_loss: 0.2064336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - " 593/2000 [=======>......................] - ETA: 24:07 - loss: 0.8013 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3235 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1503 - mrcnn_mask_loss: 0.2063275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - " 594/2000 [=======>......................] - ETA: 24:06 - loss: 0.8010 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3234 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1502 - mrcnn_mask_loss: 0.206326\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - " 595/2000 [=======>......................] - ETA: 24:04 - loss: 0.8009 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3237 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1501 - mrcnn_mask_loss: 0.2062184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - " 596/2000 [=======>......................] - ETA: 24:02 - loss: 0.8009 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3237 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1501 - mrcnn_mask_loss: 0.206248\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - " 597/2000 [=======>......................] - ETA: 24:01 - loss: 0.8005 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.3232 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1501 - mrcnn_mask_loss: 0.2064192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - " 598/2000 [=======>......................] - ETA: 23:59 - loss: 0.7999 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3229 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1501 - mrcnn_mask_loss: 0.2064319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - " 599/2000 [=======>......................] - ETA: 23:59 - loss: 0.8001 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3231 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1500 - mrcnn_mask_loss: 0.2064284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - " 600/2000 [========>.....................] - ETA: 23:58 - loss: 0.8002 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3232 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1501 - mrcnn_mask_loss: 0.2064396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - " 601/2000 [========>.....................] - ETA: 23:57 - loss: 0.8003 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3232 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1500 - mrcnn_mask_loss: 0.2063237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - " 602/2000 [========>.....................] - ETA: 23:55 - loss: 0.8003 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3228 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1500 - mrcnn_mask_loss: 0.2064356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - " 603/2000 [========>.....................] - ETA: 23:54 - loss: 0.8003 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3228 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1499 - mrcnn_mask_loss: 0.2065236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 604/2000 [========>.....................] - ETA: 23:52 - loss: 0.8002 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3225 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1500 - mrcnn_mask_loss: 0.2067211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - " 605/2000 [========>.....................] - ETA: 23:51 - loss: 0.7997 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3222 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1499 - mrcnn_mask_loss: 0.2066332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - " 606/2000 [========>.....................] - ETA: 23:50 - loss: 0.7992 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3219 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1498 - mrcnn_mask_loss: 0.2066274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - " 607/2000 [========>.....................] - ETA: 23:49 - loss: 0.7990 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3218 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2066314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - " 608/2000 [========>.....................] - ETA: 23:48 - loss: 0.7989 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3218 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2067391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - " 609/2000 [========>.....................] - ETA: 23:46 - loss: 0.7993 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3221 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2068138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - " 610/2000 [========>.....................] - ETA: 23:46 - loss: 0.7994 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3221 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2069374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - " 611/2000 [========>.....................] - ETA: 23:45 - loss: 0.7992 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3218 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1498 - mrcnn_mask_loss: 0.2068291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - " 612/2000 [========>.....................] - ETA: 23:44 - loss: 0.7993 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3218 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1498 - mrcnn_mask_loss: 0.2068104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - " 613/2000 [========>.....................] - ETA: 23:43 - loss: 0.7991 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3215 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1498 - mrcnn_mask_loss: 0.206890\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - " 614/2000 [========>.....................] - ETA: 23:42 - loss: 0.7994 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3219 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1498 - mrcnn_mask_loss: 0.2068117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - " 615/2000 [========>.....................] - ETA: 23:41 - loss: 0.7995 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3218 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1498 - mrcnn_mask_loss: 0.2068361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - " 616/2000 [========>.....................] - ETA: 23:40 - loss: 0.7999 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3223 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1499 - mrcnn_mask_loss: 0.2067255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - " 617/2000 [========>.....................] - ETA: 23:39 - loss: 0.7999 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3222 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1499 - mrcnn_mask_loss: 0.2068219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 618/2000 [========>.....................] - ETA: 23:37 - loss: 0.7993 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3221 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2067173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - " 619/2000 [========>.....................] - ETA: 23:36 - loss: 0.7991 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3220 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2066302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - " 620/2000 [========>.....................] - ETA: 23:36 - loss: 0.7990 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3221 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2067164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - " 621/2000 [========>.....................] - ETA: 23:35 - loss: 0.7987 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3220 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1496 - mrcnn_mask_loss: 0.2066299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - " 622/2000 [========>.....................] - ETA: 23:34 - loss: 0.7992 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3223 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.206684\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - " 623/2000 [========>.....................] - ETA: 23:33 - loss: 0.7992 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3220 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1496 - mrcnn_mask_loss: 0.2067240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - " 624/2000 [========>.....................] - ETA: 23:31 - loss: 0.7995 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3219 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1499 - mrcnn_mask_loss: 0.206768\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - " 625/2000 [========>.....................] - ETA: 23:29 - loss: 0.7992 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3216 - mrcnn_class_loss: 0.1135 - mrcnn_bbox_loss: 0.1498 - mrcnn_mask_loss: 0.2066135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - " 626/2000 [========>.....................] - ETA: 23:29 - loss: 0.7994 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3219 - mrcnn_class_loss: 0.1135 - mrcnn_bbox_loss: 0.1498 - mrcnn_mask_loss: 0.2066110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - " 627/2000 [========>.....................] - ETA: 23:27 - loss: 0.7995 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3219 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1499 - mrcnn_mask_loss: 0.2066362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - " 628/2000 [========>.....................] - ETA: 23:27 - loss: 0.7996 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3221 - mrcnn_class_loss: 0.1134 - mrcnn_bbox_loss: 0.1499 - mrcnn_mask_loss: 0.2066180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - " 629/2000 [========>.....................] - ETA: 23:25 - loss: 0.8000 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3226 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1498 - mrcnn_mask_loss: 0.206698\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - " 630/2000 [========>.....................] - ETA: 23:24 - loss: 0.8007 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3234 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1498 - mrcnn_mask_loss: 0.206682\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - " 631/2000 [========>.....................] - ETA: 23:22 - loss: 0.8010 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3237 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2066379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - " 632/2000 [========>.....................] - ETA: 23:21 - loss: 0.8010 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3237 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2066233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - " 633/2000 [========>.....................] - ETA: 23:20 - loss: 0.8006 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3235 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2065205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - " 634/2000 [========>.....................] - ETA: 23:18 - loss: 0.7999 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3232 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1495 - mrcnn_mask_loss: 0.2065272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - " 635/2000 [========>.....................] - ETA: 23:17 - loss: 0.7995 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3229 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1496 - mrcnn_mask_loss: 0.206460\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - " 636/2000 [========>.....................] - ETA: 23:15 - loss: 0.8000 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3233 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1495 - mrcnn_mask_loss: 0.2064342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - " 637/2000 [========>.....................] - ETA: 23:14 - loss: 0.8003 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3234 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1495 - mrcnn_mask_loss: 0.2064182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - " 638/2000 [========>.....................] - ETA: 23:13 - loss: 0.8000 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3234 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1494 - mrcnn_mask_loss: 0.2064207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - " 639/2000 [========>.....................] - ETA: 23:11 - loss: 0.7995 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3230 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.206356\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - " 640/2000 [========>.....................] - ETA: 23:09 - loss: 0.7992 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3228 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2062313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - " 641/2000 [========>.....................] - ETA: 23:09 - loss: 0.7993 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3228 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2063310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - " 642/2000 [========>.....................] - ETA: 23:07 - loss: 0.7989 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3228 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1492 - mrcnn_mask_loss: 0.2062134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - " 643/2000 [========>.....................] - ETA: 23:07 - loss: 0.7994 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3231 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1492 - mrcnn_mask_loss: 0.2062234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - " 644/2000 [========>.....................] - ETA: 23:05 - loss: 0.7988 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3228 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1491 - mrcnn_mask_loss: 0.206176\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - " 645/2000 [========>.....................] - ETA: 23:03 - loss: 0.7986 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3227 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1492 - mrcnn_mask_loss: 0.2061102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - " 646/2000 [========>.....................] - ETA: 23:02 - loss: 0.7988 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3226 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1492 - mrcnn_mask_loss: 0.2062133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 647/2000 [========>.....................] - ETA: 23:01 - loss: 0.7988 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3228 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1491 - mrcnn_mask_loss: 0.2061137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - " 648/2000 [========>.....................] - ETA: 23:01 - loss: 0.7989 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3228 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2062260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - " 649/2000 [========>.....................] - ETA: 23:00 - loss: 0.7991 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3226 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1496 - mrcnn_mask_loss: 0.206332\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - " 650/2000 [========>.....................] - ETA: 22:58 - loss: 0.7988 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3225 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1495 - mrcnn_mask_loss: 0.2062107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - " 651/2000 [========>.....................] - ETA: 22:57 - loss: 0.7986 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3223 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1495 - mrcnn_mask_loss: 0.2062344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - " 652/2000 [========>.....................] - ETA: 22:56 - loss: 0.7988 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3225 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1495 - mrcnn_mask_loss: 0.2062122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - " 653/2000 [========>.....................] - ETA: 22:55 - loss: 0.7990 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3227 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1494 - mrcnn_mask_loss: 0.206235\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - " 654/2000 [========>.....................] - ETA: 22:54 - loss: 0.7989 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3227 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2062178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - " 655/2000 [========>.....................] - ETA: 22:53 - loss: 0.7992 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3229 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1494 - mrcnn_mask_loss: 0.206216\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - " 656/2000 [========>.....................] - ETA: 22:51 - loss: 0.7992 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3232 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.206188\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - " 657/2000 [========>.....................] - ETA: 22:50 - loss: 0.7991 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3232 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1492 - mrcnn_mask_loss: 0.2060100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - " 658/2000 [========>.....................] - ETA: 22:49 - loss: 0.7992 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3233 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2060335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - " 659/2000 [========>.....................] - ETA: 22:48 - loss: 0.7993 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3231 - mrcnn_class_loss: 0.1133 - mrcnn_bbox_loss: 0.1494 - mrcnn_mask_loss: 0.2060256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - " 660/2000 [========>.....................] - ETA: 22:47 - loss: 0.7991 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3231 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.206012\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - " 661/2000 [========>.....................] - ETA: 22:45 - loss: 0.7990 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3234 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1492 - mrcnn_mask_loss: 0.2059258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 662/2000 [========>.....................] - ETA: 22:44 - loss: 0.7992 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3234 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1491 - mrcnn_mask_loss: 0.205949\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - " 663/2000 [========>.....................] - ETA: 22:43 - loss: 0.7986 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3232 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1490 - mrcnn_mask_loss: 0.205853\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - " 664/2000 [========>.....................] - ETA: 22:41 - loss: 0.7980 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3229 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1489 - mrcnn_mask_loss: 0.205722\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - " 665/2000 [========>.....................] - ETA: 22:40 - loss: 0.7978 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3227 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1490 - mrcnn_mask_loss: 0.205729\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - " 666/2000 [========>.....................] - ETA: 22:38 - loss: 0.7972 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3224 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1489 - mrcnn_mask_loss: 0.2056369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - " 667/2000 [=========>....................] - ETA: 22:37 - loss: 0.7976 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3226 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1490 - mrcnn_mask_loss: 0.205575\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - " 668/2000 [=========>....................] - ETA: 22:35 - loss: 0.7970 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3223 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1489 - mrcnn_mask_loss: 0.2055345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - " 669/2000 [=========>....................] - ETA: 22:34 - loss: 0.7972 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3224 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1488 - mrcnn_mask_loss: 0.2054264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - " 670/2000 [=========>....................] - ETA: 22:33 - loss: 0.7975 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3222 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1492 - mrcnn_mask_loss: 0.2055232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - " 671/2000 [=========>....................] - ETA: 22:32 - loss: 0.7974 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3221 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1491 - mrcnn_mask_loss: 0.2055311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - " 672/2000 [=========>....................] - ETA: 22:31 - loss: 0.7970 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3220 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1490 - mrcnn_mask_loss: 0.2055358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - " 673/2000 [=========>....................] - ETA: 22:30 - loss: 0.7970 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3220 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1490 - mrcnn_mask_loss: 0.2055307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - " 674/2000 [=========>....................] - ETA: 22:30 - loss: 0.7970 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3220 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1491 - mrcnn_mask_loss: 0.2055212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - " 675/2000 [=========>....................] - ETA: 22:28 - loss: 0.7964 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3217 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1490 - mrcnn_mask_loss: 0.205481\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - " 676/2000 [=========>....................] - ETA: 22:27 - loss: 0.7964 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3215 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1492 - mrcnn_mask_loss: 0.2054373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 677/2000 [=========>....................] - ETA: 22:26 - loss: 0.7964 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3212 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1494 - mrcnn_mask_loss: 0.2054124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - " 678/2000 [=========>....................] - ETA: 22:25 - loss: 0.7964 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3213 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2054103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - " 679/2000 [=========>....................] - ETA: 22:24 - loss: 0.7963 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3211 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.205424\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - " 680/2000 [=========>....................] - ETA: 22:23 - loss: 0.7962 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3210 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1494 - mrcnn_mask_loss: 0.2054353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - " 681/2000 [=========>....................] - ETA: 22:22 - loss: 0.7962 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3208 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1495 - mrcnn_mask_loss: 0.2054259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - " 682/2000 [=========>....................] - ETA: 22:21 - loss: 0.7970 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3210 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2056171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - " 683/2000 [=========>....................] - ETA: 22:20 - loss: 0.7970 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3208 - mrcnn_class_loss: 0.1132 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2057250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - " 684/2000 [=========>....................] - ETA: 22:18 - loss: 0.7967 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3205 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.2058318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - " 685/2000 [=========>....................] - ETA: 22:18 - loss: 0.7967 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3205 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1497 - mrcnn_mask_loss: 0.205851\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - " 686/2000 [=========>....................] - ETA: 22:16 - loss: 0.7960 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1496 - mrcnn_mask_loss: 0.205773\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - " 687/2000 [=========>....................] - ETA: 22:15 - loss: 0.7957 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1496 - mrcnn_mask_loss: 0.2056126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - " 688/2000 [=========>....................] - ETA: 22:14 - loss: 0.7958 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1495 - mrcnn_mask_loss: 0.2057190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - " 689/2000 [=========>....................] - ETA: 22:13 - loss: 0.7952 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1494 - mrcnn_mask_loss: 0.2056303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - " 690/2000 [=========>....................] - ETA: 22:12 - loss: 0.7953 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1494 - mrcnn_mask_loss: 0.2057226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - " 691/2000 [=========>....................] - ETA: 22:11 - loss: 0.7947 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3196 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2056118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - " 692/2000 [=========>....................] - ETA: 22:10 - loss: 0.7948 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2056387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - " 693/2000 [=========>....................] - ETA: 22:08 - loss: 0.7950 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3200 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2055393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - " 694/2000 [=========>....................] - ETA: 22:07 - loss: 0.7951 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3198 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2055376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - " 695/2000 [=========>....................] - ETA: 22:06 - loss: 0.7948 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2055389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - " 696/2000 [=========>....................] - ETA: 22:05 - loss: 0.7949 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.205539\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - " 697/2000 [=========>....................] - ETA: 22:04 - loss: 0.7952 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3202 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2055341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - " 698/2000 [=========>....................] - ETA: 22:03 - loss: 0.7954 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3202 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.205561\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - " 699/2000 [=========>....................] - ETA: 22:02 - loss: 0.7951 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3200 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2055174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - " 700/2000 [=========>....................] - ETA: 22:01 - loss: 0.7952 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2055199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - " 701/2000 [=========>....................] - ETA: 21:59 - loss: 0.7952 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1493 - mrcnn_mask_loss: 0.2055355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - " 702/2000 [=========>....................] - ETA: 21:58 - loss: 0.7949 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3198 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1492 - mrcnn_mask_loss: 0.205441\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - " 703/2000 [=========>....................] - ETA: 21:57 - loss: 0.7947 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1492 - mrcnn_mask_loss: 0.2054224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - " 704/2000 [=========>....................] - ETA: 21:55 - loss: 0.7942 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1491 - mrcnn_mask_loss: 0.205331\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - " 705/2000 [=========>....................] - ETA: 21:54 - loss: 0.7939 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1490 - mrcnn_mask_loss: 0.2052343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 706/2000 [=========>....................] - ETA: 21:53 - loss: 0.7941 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1490 - mrcnn_mask_loss: 0.2052247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - " 707/2000 [=========>....................] - ETA: 21:52 - loss: 0.7938 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3194 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1489 - mrcnn_mask_loss: 0.2052149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - " 708/2000 [=========>....................] - ETA: 21:51 - loss: 0.7939 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3196 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1489 - mrcnn_mask_loss: 0.2051297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - " 709/2000 [=========>....................] - ETA: 21:50 - loss: 0.7939 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3198 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1488 - mrcnn_mask_loss: 0.205134\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - " 710/2000 [=========>....................] - ETA: 21:49 - loss: 0.7935 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.2050277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - " 711/2000 [=========>....................] - ETA: 21:48 - loss: 0.7936 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.2050241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - " 712/2000 [=========>....................] - ETA: 21:47 - loss: 0.7941 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1488 - mrcnn_mask_loss: 0.2051179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - " 713/2000 [=========>....................] - ETA: 21:46 - loss: 0.7940 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1487 - mrcnn_mask_loss: 0.205058\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - " 714/2000 [=========>....................] - ETA: 21:44 - loss: 0.7942 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3203 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.2050337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - " 715/2000 [=========>....................] - ETA: 21:44 - loss: 0.7942 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3203 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.2050251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - " 716/2000 [=========>....................] - ETA: 21:43 - loss: 0.7943 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3202 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.2051305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - " 717/2000 [=========>....................] - ETA: 21:42 - loss: 0.7942 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.2051146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - " 718/2000 [=========>....................] - ETA: 21:41 - loss: 0.7942 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.2050312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - " 719/2000 [=========>....................] - ETA: 21:40 - loss: 0.7942 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.2051217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - " 720/2000 [=========>....................] - ETA: 21:39 - loss: 0.7940 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3201 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.2050147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - " 721/2000 [=========>....................] - ETA: 21:38 - loss: 0.7939 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3200 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.205070\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - " 722/2000 [=========>....................] - ETA: 21:36 - loss: 0.7934 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3198 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2049101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - " 723/2000 [=========>....................] - ETA: 21:35 - loss: 0.7935 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2049304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - " 724/2000 [=========>....................] - ETA: 21:34 - loss: 0.7936 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.2049127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - " 725/2000 [=========>....................] - ETA: 21:34 - loss: 0.7940 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3199 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.2050371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - " 726/2000 [=========>....................] - ETA: 21:33 - loss: 0.7937 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3197 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2049339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - " 727/2000 [=========>....................] - ETA: 21:32 - loss: 0.7937 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3198 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.204966\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - " 728/2000 [=========>....................] - ETA: 21:31 - loss: 0.7930 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3195 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1481 - mrcnn_mask_loss: 0.2048378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - " 729/2000 [=========>....................] - ETA: 21:30 - loss: 0.7933 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3195 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2048187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - " 730/2000 [=========>....................] - ETA: 21:29 - loss: 0.7926 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3192 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.204755\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - " 731/2000 [=========>....................] - ETA: 21:27 - loss: 0.7923 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3189 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1481 - mrcnn_mask_loss: 0.2047228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - " 732/2000 [=========>....................] - ETA: 21:26 - loss: 0.7915 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1480 - mrcnn_mask_loss: 0.2046159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - " 733/2000 [=========>....................] - ETA: 21:25 - loss: 0.7920 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3188 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.2045195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - " 734/2000 [==========>...................] - ETA: 21:23 - loss: 0.7916 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1481 - mrcnn_mask_loss: 0.204596\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 735/2000 [==========>...................] - ETA: 21:22 - loss: 0.7917 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1481 - mrcnn_mask_loss: 0.2046163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - " 736/2000 [==========>...................] - ETA: 21:21 - loss: 0.7921 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3187 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2046262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - " 737/2000 [==========>...................] - ETA: 21:21 - loss: 0.7920 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3186 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2046267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - " 738/2000 [==========>...................] - ETA: 21:20 - loss: 0.7919 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2045320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - " 739/2000 [==========>...................] - ETA: 21:19 - loss: 0.7920 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3185 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.20474\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - " 740/2000 [==========>...................] - ETA: 21:18 - loss: 0.7915 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3182 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2046196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - " 741/2000 [==========>...................] - ETA: 21:16 - loss: 0.7909 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3179 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.204521\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - " 742/2000 [==========>...................] - ETA: 21:15 - loss: 0.7909 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3180 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.204513\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - " 743/2000 [==========>...................] - ETA: 21:13 - loss: 0.7905 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3179 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1481 - mrcnn_mask_loss: 0.2044119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - " 744/2000 [==========>...................] - ETA: 21:13 - loss: 0.7913 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3184 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.2044221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - " 745/2000 [==========>...................] - ETA: 21:11 - loss: 0.7913 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3183 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.2043359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - " 746/2000 [==========>...................] - ETA: 21:11 - loss: 0.7912 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3183 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2044325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - " 747/2000 [==========>...................] - ETA: 21:10 - loss: 0.7910 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3182 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2044143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - " 748/2000 [==========>...................] - ETA: 21:09 - loss: 0.7913 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3183 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2044209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - " 749/2000 [==========>...................] - ETA: 21:07 - loss: 0.7909 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3180 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.2043105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 750/2000 [==========>...................] - ETA: 21:06 - loss: 0.7911 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3179 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.2043266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - " 751/2000 [==========>...................] - ETA: 21:05 - loss: 0.7910 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3176 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1485 - mrcnn_mask_loss: 0.2044392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - " 752/2000 [==========>...................] - ETA: 21:04 - loss: 0.7907 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3175 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1485 - mrcnn_mask_loss: 0.2043208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - " 753/2000 [==========>...................] - ETA: 21:03 - loss: 0.7903 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3172 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1485 - mrcnn_mask_loss: 0.204364\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - " 754/2000 [==========>...................] - ETA: 21:01 - loss: 0.7898 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.204227\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - " 755/2000 [==========>...................] - ETA: 21:00 - loss: 0.7897 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3171 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.204137\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - " 756/2000 [==========>...................] - ETA: 20:59 - loss: 0.7901 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3176 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2041398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - " 757/2000 [==========>...................] - ETA: 20:58 - loss: 0.7904 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3179 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.204067\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - " 758/2000 [==========>...................] - ETA: 20:57 - loss: 0.7900 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3176 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.204023\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - " 759/2000 [==========>...................] - ETA: 20:55 - loss: 0.7896 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3174 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.2039334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - " 760/2000 [==========>...................] - ETA: 20:54 - loss: 0.7894 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3172 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.203980\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - " 761/2000 [==========>...................] - ETA: 20:53 - loss: 0.7898 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3176 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.203917\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - " 762/2000 [==========>...................] - ETA: 20:52 - loss: 0.7899 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3178 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1481 - mrcnn_mask_loss: 0.2039109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - " 763/2000 [==========>...................] - ETA: 20:51 - loss: 0.7898 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3176 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.2040172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - " 764/2000 [==========>...................] - ETA: 20:50 - loss: 0.7896 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3173 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.2039315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 765/2000 [==========>...................] - ETA: 20:49 - loss: 0.7895 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3172 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.2040142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - " 766/2000 [==========>...................] - ETA: 20:48 - loss: 0.7894 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3172 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.2040231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - " 767/2000 [==========>...................] - ETA: 20:47 - loss: 0.7892 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1485 - mrcnn_mask_loss: 0.204140\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - " 768/2000 [==========>...................] - ETA: 20:46 - loss: 0.7889 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3168 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.2040367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - " 769/2000 [==========>...................] - ETA: 20:45 - loss: 0.7890 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.2040162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - " 770/2000 [==========>...................] - ETA: 20:44 - loss: 0.7890 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1485 - mrcnn_mask_loss: 0.2040176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - " 771/2000 [==========>...................] - ETA: 20:43 - loss: 0.7889 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3170 - mrcnn_class_loss: 0.1119 - mrcnn_bbox_loss: 0.1485 - mrcnn_mask_loss: 0.2039141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - " 772/2000 [==========>...................] - ETA: 20:42 - loss: 0.7890 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3168 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1487 - mrcnn_mask_loss: 0.2038283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - " 773/2000 [==========>...................] - ETA: 20:41 - loss: 0.7895 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3168 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1488 - mrcnn_mask_loss: 0.2038243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - " 774/2000 [==========>...................] - ETA: 20:40 - loss: 0.7896 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3166 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1488 - mrcnn_mask_loss: 0.2039130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - " 775/2000 [==========>...................] - ETA: 20:40 - loss: 0.7901 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3168 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1488 - mrcnn_mask_loss: 0.203950\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - " 776/2000 [==========>...................] - ETA: 20:38 - loss: 0.7899 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3168 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1488 - mrcnn_mask_loss: 0.2039165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - " 777/2000 [==========>...................] - ETA: 20:37 - loss: 0.7899 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3168 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1487 - mrcnn_mask_loss: 0.2038123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - " 778/2000 [==========>...................] - ETA: 20:37 - loss: 0.7901 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1487 - mrcnn_mask_loss: 0.2038354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - " 779/2000 [==========>...................] - ETA: 20:36 - loss: 0.7900 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3168 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1487 - mrcnn_mask_loss: 0.203893\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 780/2000 [==========>...................] - ETA: 20:35 - loss: 0.7898 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.2037129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - " 781/2000 [==========>...................] - ETA: 20:34 - loss: 0.7900 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3171 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1487 - mrcnn_mask_loss: 0.2038382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - " 782/2000 [==========>...................] - ETA: 20:33 - loss: 0.7903 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1489 - mrcnn_mask_loss: 0.2039136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - " 783/2000 [==========>...................] - ETA: 20:33 - loss: 0.7904 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3170 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1489 - mrcnn_mask_loss: 0.203972\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - " 784/2000 [==========>...................] - ETA: 20:31 - loss: 0.7902 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1489 - mrcnn_mask_loss: 0.2038372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - " 785/2000 [==========>...................] - ETA: 20:31 - loss: 0.7901 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3167 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1489 - mrcnn_mask_loss: 0.2037294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - " 786/2000 [==========>...................] - ETA: 20:30 - loss: 0.7903 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3168 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1489 - mrcnn_mask_loss: 0.2038113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - " 787/2000 [==========>...................] - ETA: 20:29 - loss: 0.7901 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3167 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1489 - mrcnn_mask_loss: 0.203728\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - " 788/2000 [==========>...................] - ETA: 20:27 - loss: 0.7898 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3166 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1488 - mrcnn_mask_loss: 0.2037257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - " 789/2000 [==========>...................] - ETA: 20:27 - loss: 0.7897 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3167 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1488 - mrcnn_mask_loss: 0.2037352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - " 790/2000 [==========>...................] - ETA: 20:26 - loss: 0.7895 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3167 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1487 - mrcnn_mask_loss: 0.2036254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - " 791/2000 [==========>...................] - ETA: 20:25 - loss: 0.7895 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3166 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1487 - mrcnn_mask_loss: 0.2037169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - " 792/2000 [==========>...................] - ETA: 20:24 - loss: 0.7893 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3164 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1488 - mrcnn_mask_loss: 0.2036386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - " 793/2000 [==========>...................] - ETA: 20:23 - loss: 0.7892 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3162 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1488 - mrcnn_mask_loss: 0.203646\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - " 794/2000 [==========>...................] - ETA: 20:22 - loss: 0.7887 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3159 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1487 - mrcnn_mask_loss: 0.2035293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - " 795/2000 [==========>...................] - ETA: 20:21 - loss: 0.7889 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3160 - mrcnn_class_loss: 0.1131 - mrcnn_bbox_loss: 0.1487 - mrcnn_mask_loss: 0.203538\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - " 796/2000 [==========>...................] - ETA: 20:20 - loss: 0.7894 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3166 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1487 - mrcnn_mask_loss: 0.203559\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - " 797/2000 [==========>...................] - ETA: 20:19 - loss: 0.7895 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.3169 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.2035181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - " 798/2000 [==========>...................] - ETA: 20:17 - loss: 0.7895 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3167 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.20353\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - " 799/2000 [==========>...................] - ETA: 20:16 - loss: 0.7893 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3167 - mrcnn_class_loss: 0.1130 - mrcnn_bbox_loss: 0.1485 - mrcnn_mask_loss: 0.2035229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - " 800/2000 [===========>..................] - ETA: 20:15 - loss: 0.7888 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3164 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.203550\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - " 801/2000 [===========>..................] - ETA: 20:14 - loss: 0.7883 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3161 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2034387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - " 802/2000 [===========>..................] - ETA: 20:13 - loss: 0.7883 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3161 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2034221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - " 803/2000 [===========>..................] - ETA: 20:11 - loss: 0.7882 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3160 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.2034213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - " 804/2000 [===========>..................] - ETA: 20:10 - loss: 0.7878 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3157 - mrcnn_class_loss: 0.1129 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.203391\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - " 805/2000 [===========>..................] - ETA: 20:09 - loss: 0.7881 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3159 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1484 - mrcnn_mask_loss: 0.2034379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - " 806/2000 [===========>..................] - ETA: 20:08 - loss: 0.7880 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3159 - mrcnn_class_loss: 0.1128 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.203457\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - " 807/2000 [===========>..................] - ETA: 20:07 - loss: 0.7878 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3159 - mrcnn_class_loss: 0.1127 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.2034272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - " 808/2000 [===========>..................] - ETA: 20:06 - loss: 0.7877 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3157 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1483 - mrcnn_mask_loss: 0.2035224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 809/2000 [===========>..................] - ETA: 20:05 - loss: 0.7872 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3155 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1482 - mrcnn_mask_loss: 0.203412\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - " 810/2000 [===========>..................] - ETA: 20:04 - loss: 0.7868 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3154 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1481 - mrcnn_mask_loss: 0.2033293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - " 811/2000 [===========>..................] - ETA: 20:03 - loss: 0.7868 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3153 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1480 - mrcnn_mask_loss: 0.2033176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - " 812/2000 [===========>..................] - ETA: 20:02 - loss: 0.7867 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3152 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1480 - mrcnn_mask_loss: 0.2033196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - " 813/2000 [===========>..................] - ETA: 20:01 - loss: 0.7863 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3150 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1479 - mrcnn_mask_loss: 0.2032344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - " 814/2000 [===========>..................] - ETA: 20:00 - loss: 0.7864 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3151 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1479 - mrcnn_mask_loss: 0.203290\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - " 815/2000 [===========>..................] - ETA: 19:59 - loss: 0.7863 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3151 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1478 - mrcnn_mask_loss: 0.203287\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - " 816/2000 [===========>..................] - ETA: 19:58 - loss: 0.7859 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3148 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1477 - mrcnn_mask_loss: 0.20316\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - " 817/2000 [===========>..................] - ETA: 19:57 - loss: 0.7852 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3145 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1477 - mrcnn_mask_loss: 0.2030264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - " 818/2000 [===========>..................] - ETA: 19:56 - loss: 0.7850 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3143 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1477 - mrcnn_mask_loss: 0.2030178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - " 819/2000 [===========>..................] - ETA: 19:55 - loss: 0.7848 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3141 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1476 - mrcnn_mask_loss: 0.2030255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - " 820/2000 [===========>..................] - ETA: 19:54 - loss: 0.7848 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3141 - mrcnn_class_loss: 0.1126 - mrcnn_bbox_loss: 0.1476 - mrcnn_mask_loss: 0.2030391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - " 821/2000 [===========>..................] - ETA: 19:52 - loss: 0.7847 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3141 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1475 - mrcnn_mask_loss: 0.2030309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - " 822/2000 [===========>..................] - ETA: 19:52 - loss: 0.7845 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3141 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1474 - mrcnn_mask_loss: 0.203019\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - " 823/2000 [===========>..................] - ETA: 19:50 - loss: 0.7846 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3143 - mrcnn_class_loss: 0.1125 - mrcnn_bbox_loss: 0.1473 - mrcnn_mask_loss: 0.202986\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 824/2000 [===========>..................] - ETA: 19:49 - loss: 0.7842 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3140 - mrcnn_class_loss: 0.1124 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2029180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - " 825/2000 [===========>..................] - ETA: 19:48 - loss: 0.7846 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3145 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1473 - mrcnn_mask_loss: 0.2029325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - " 826/2000 [===========>..................] - ETA: 19:48 - loss: 0.7845 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3143 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1473 - mrcnn_mask_loss: 0.2030336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - " 827/2000 [===========>..................] - ETA: 19:47 - loss: 0.7842 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3142 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1473 - mrcnn_mask_loss: 0.20294\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - " 828/2000 [===========>..................] - ETA: 19:46 - loss: 0.7836 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3138 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2028346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - " 829/2000 [===========>..................] - ETA: 19:45 - loss: 0.7838 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3140 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2028363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - " 830/2000 [===========>..................] - ETA: 19:44 - loss: 0.7841 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3142 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1473 - mrcnn_mask_loss: 0.2028154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - " 831/2000 [===========>..................] - ETA: 19:43 - loss: 0.7844 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3144 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1473 - mrcnn_mask_loss: 0.2028364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - " 832/2000 [===========>..................] - ETA: 19:43 - loss: 0.7844 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3146 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2027160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - " 833/2000 [===========>..................] - ETA: 19:42 - loss: 0.7846 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3146 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1474 - mrcnn_mask_loss: 0.2027215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - " 834/2000 [===========>..................] - ETA: 19:41 - loss: 0.7841 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3143 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1474 - mrcnn_mask_loss: 0.2026110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - " 835/2000 [===========>..................] - ETA: 19:40 - loss: 0.7840 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3143 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1473 - mrcnn_mask_loss: 0.202615\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - " 836/2000 [===========>..................] - ETA: 19:39 - loss: 0.7836 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3143 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2025394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - " 837/2000 [===========>..................] - ETA: 19:38 - loss: 0.7837 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3142 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.202577\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - " 838/2000 [===========>..................] - ETA: 19:36 - loss: 0.7834 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3141 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.202524\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 839/2000 [===========>..................] - ETA: 19:35 - loss: 0.7833 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3140 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.202513\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - " 840/2000 [===========>..................] - ETA: 19:34 - loss: 0.7829 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3139 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1469 - mrcnn_mask_loss: 0.2024158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - " 841/2000 [===========>..................] - ETA: 19:33 - loss: 0.7836 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3142 - mrcnn_class_loss: 0.1123 - mrcnn_bbox_loss: 0.1470 - mrcnn_mask_loss: 0.2025199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - " 842/2000 [===========>..................] - ETA: 19:32 - loss: 0.7835 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3143 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1469 - mrcnn_mask_loss: 0.202439\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - " 843/2000 [===========>..................] - ETA: 19:31 - loss: 0.7835 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3146 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1469 - mrcnn_mask_loss: 0.2023236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - " 844/2000 [===========>..................] - ETA: 19:29 - loss: 0.7832 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3144 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1469 - mrcnn_mask_loss: 0.202314\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - " 845/2000 [===========>..................] - ETA: 19:28 - loss: 0.7831 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3146 - mrcnn_class_loss: 0.1119 - mrcnn_bbox_loss: 0.1468 - mrcnn_mask_loss: 0.2022143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - " 846/2000 [===========>..................] - ETA: 19:27 - loss: 0.7834 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3146 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1469 - mrcnn_mask_loss: 0.2022186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - " 847/2000 [===========>..................] - ETA: 19:26 - loss: 0.7831 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3145 - mrcnn_class_loss: 0.1119 - mrcnn_bbox_loss: 0.1469 - mrcnn_mask_loss: 0.2021271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - " 848/2000 [===========>..................] - ETA: 19:25 - loss: 0.7830 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3144 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1470 - mrcnn_mask_loss: 0.2021388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - " 849/2000 [===========>..................] - ETA: 19:24 - loss: 0.7833 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3145 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2021172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - " 850/2000 [===========>..................] - ETA: 19:23 - loss: 0.7830 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3142 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2021125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - " 851/2000 [===========>..................] - ETA: 19:23 - loss: 0.7832 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3144 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1470 - mrcnn_mask_loss: 0.2021121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - " 852/2000 [===========>..................] - ETA: 19:22 - loss: 0.7840 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3147 - mrcnn_class_loss: 0.1122 - mrcnn_bbox_loss: 0.1473 - mrcnn_mask_loss: 0.202240\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - " 853/2000 [===========>..................] - ETA: 19:21 - loss: 0.7838 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3146 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.202220\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 854/2000 [===========>..................] - ETA: 19:20 - loss: 0.7837 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3148 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2021310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - " 855/2000 [===========>..................] - ETA: 19:19 - loss: 0.7838 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3149 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2021232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - " 856/2000 [===========>..................] - ETA: 19:18 - loss: 0.7837 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3147 - mrcnn_class_loss: 0.1121 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2021149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - " 857/2000 [===========>..................] - ETA: 19:17 - loss: 0.7837 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3148 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.202016\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - " 858/2000 [===========>..................] - ETA: 19:16 - loss: 0.7838 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3150 - mrcnn_class_loss: 0.1120 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.201944\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - " 859/2000 [===========>..................] - ETA: 19:15 - loss: 0.7834 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3148 - mrcnn_class_loss: 0.1119 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2019349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - " 860/2000 [===========>..................] - ETA: 19:14 - loss: 0.7834 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3149 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2019135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - " 861/2000 [===========>..................] - ETA: 19:13 - loss: 0.7836 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3150 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.202010\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - " 862/2000 [===========>..................] - ETA: 19:12 - loss: 0.7831 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3148 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2019365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - " 863/2000 [===========>..................] - ETA: 19:11 - loss: 0.7832 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3148 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2019320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - " 864/2000 [===========>..................] - ETA: 19:11 - loss: 0.7833 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3148 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2019100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - " 865/2000 [===========>..................] - ETA: 19:10 - loss: 0.7833 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3148 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2019313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - " 866/2000 [===========>..................] - ETA: 19:09 - loss: 0.7830 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3146 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.20189\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - " 867/2000 [============>.................] - ETA: 19:08 - loss: 0.7826 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3145 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.201845\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - " 868/2000 [============>.................] - ETA: 19:07 - loss: 0.7823 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3143 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1470 - mrcnn_mask_loss: 0.2017399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 869/2000 [============>.................] - ETA: 19:06 - loss: 0.7826 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3144 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2017200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - " 870/2000 [============>.................] - ETA: 19:05 - loss: 0.7823 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3143 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2016281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - " 871/2000 [============>.................] - ETA: 19:04 - loss: 0.7826 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3144 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.201622\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - " 872/2000 [============>.................] - ETA: 19:03 - loss: 0.7821 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3142 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2016384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - " 873/2000 [============>.................] - ETA: 19:02 - loss: 0.7820 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3141 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.201670\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - " 874/2000 [============>.................] - ETA: 19:01 - loss: 0.7817 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3139 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2015366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - " 875/2000 [============>.................] - ETA: 19:00 - loss: 0.7817 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3139 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2015337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - " 876/2000 [============>.................] - ETA: 19:00 - loss: 0.7816 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3139 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2014287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - " 877/2000 [============>.................] - ETA: 18:59 - loss: 0.7819 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3140 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.2014117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - " 878/2000 [============>.................] - ETA: 18:58 - loss: 0.7818 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3139 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1473 - mrcnn_mask_loss: 0.2014258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - " 879/2000 [============>.................] - ETA: 18:57 - loss: 0.7818 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3141 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.201460\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - " 880/2000 [============>.................] - ETA: 18:56 - loss: 0.7818 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3143 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1472 - mrcnn_mask_loss: 0.201454\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - " 881/2000 [============>.................] - ETA: 18:55 - loss: 0.7815 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3140 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.201455\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - " 882/2000 [============>.................] - ETA: 18:53 - loss: 0.7811 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3137 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2014374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - " 883/2000 [============>.................] - ETA: 18:53 - loss: 0.7807 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3135 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1470 - mrcnn_mask_loss: 0.2014322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 884/2000 [============>.................] - ETA: 18:52 - loss: 0.7808 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3135 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1470 - mrcnn_mask_loss: 0.2015321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - " 885/2000 [============>.................] - ETA: 18:51 - loss: 0.7810 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3135 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1471 - mrcnn_mask_loss: 0.2015338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - " 886/2000 [============>.................] - ETA: 18:51 - loss: 0.7809 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3134 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1470 - mrcnn_mask_loss: 0.2015250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - " 887/2000 [============>.................] - ETA: 18:50 - loss: 0.7808 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3133 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1470 - mrcnn_mask_loss: 0.2015219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - " 888/2000 [============>.................] - ETA: 18:48 - loss: 0.7806 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3133 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1470 - mrcnn_mask_loss: 0.201592\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - " 889/2000 [============>.................] - ETA: 18:47 - loss: 0.7802 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3133 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1468 - mrcnn_mask_loss: 0.201485\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - " 890/2000 [============>.................] - ETA: 18:46 - loss: 0.7799 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3131 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1468 - mrcnn_mask_loss: 0.2014301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - " 891/2000 [============>.................] - ETA: 18:46 - loss: 0.7799 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3131 - mrcnn_class_loss: 0.1110 - mrcnn_bbox_loss: 0.1468 - mrcnn_mask_loss: 0.2014371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - " 892/2000 [============>.................] - ETA: 18:45 - loss: 0.7798 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3130 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1467 - mrcnn_mask_loss: 0.2014226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - " 893/2000 [============>.................] - ETA: 18:44 - loss: 0.7795 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3127 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1467 - mrcnn_mask_loss: 0.2013389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - " 894/2000 [============>.................] - ETA: 18:43 - loss: 0.7795 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3127 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1467 - mrcnn_mask_loss: 0.201318\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - " 895/2000 [============>.................] - ETA: 18:42 - loss: 0.7797 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3131 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1466 - mrcnn_mask_loss: 0.2012246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - " 896/2000 [============>.................] - ETA: 18:41 - loss: 0.7795 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3129 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1466 - mrcnn_mask_loss: 0.2013123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - " 897/2000 [============>.................] - ETA: 18:40 - loss: 0.7795 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3129 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1465 - mrcnn_mask_loss: 0.2012323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - " 898/2000 [============>.................] - ETA: 18:39 - loss: 0.7798 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3129 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1466 - mrcnn_mask_loss: 0.2012225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 899/2000 [============>.................] - ETA: 18:38 - loss: 0.7799 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1119 - mrcnn_bbox_loss: 0.1466 - mrcnn_mask_loss: 0.2012174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - " 900/2000 [============>.................] - ETA: 18:37 - loss: 0.7798 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1467 - mrcnn_mask_loss: 0.201258\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - " 901/2000 [============>.................] - ETA: 18:36 - loss: 0.7800 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3128 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1467 - mrcnn_mask_loss: 0.2011230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - " 902/2000 [============>.................] - ETA: 18:35 - loss: 0.7798 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3128 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1467 - mrcnn_mask_loss: 0.2011354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - " 903/2000 [============>.................] - ETA: 18:34 - loss: 0.7797 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3127 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1467 - mrcnn_mask_loss: 0.2011204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - " 904/2000 [============>.................] - ETA: 18:33 - loss: 0.7792 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3125 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1466 - mrcnn_mask_loss: 0.2010262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - " 905/2000 [============>.................] - ETA: 18:32 - loss: 0.7791 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3124 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1465 - mrcnn_mask_loss: 0.2011159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - " 906/2000 [============>.................] - ETA: 18:31 - loss: 0.7793 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1465 - mrcnn_mask_loss: 0.2010189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - " 907/2000 [============>.................] - ETA: 18:30 - loss: 0.7789 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3124 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1464 - mrcnn_mask_loss: 0.201095\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - " 908/2000 [============>.................] - ETA: 18:29 - loss: 0.7791 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3128 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1464 - mrcnn_mask_loss: 0.2010229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - " 909/2000 [============>.................] - ETA: 18:28 - loss: 0.7785 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3125 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1462 - mrcnn_mask_loss: 0.2009286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - " 910/2000 [============>.................] - ETA: 18:27 - loss: 0.7785 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3125 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1463 - mrcnn_mask_loss: 0.2009276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - " 911/2000 [============>.................] - ETA: 18:26 - loss: 0.7789 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1463 - mrcnn_mask_loss: 0.2009277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - " 912/2000 [============>.................] - ETA: 18:25 - loss: 0.7787 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1463 - mrcnn_mask_loss: 0.2008137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - " 913/2000 [============>.................] - ETA: 18:25 - loss: 0.7788 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1463 - mrcnn_mask_loss: 0.200893\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - " 914/2000 [============>.................] - ETA: 18:24 - loss: 0.7786 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1462 - mrcnn_mask_loss: 0.2009312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - " 915/2000 [============>.................] - ETA: 18:23 - loss: 0.7787 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1462 - mrcnn_mask_loss: 0.2009395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - " 916/2000 [============>.................] - ETA: 18:22 - loss: 0.7786 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1461 - mrcnn_mask_loss: 0.2008393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - " 917/2000 [============>.................] - ETA: 18:21 - loss: 0.7785 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1461 - mrcnn_mask_loss: 0.2008179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - " 918/2000 [============>.................] - ETA: 18:20 - loss: 0.7786 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3126 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1461 - mrcnn_mask_loss: 0.200774\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - " 919/2000 [============>.................] - ETA: 18:19 - loss: 0.7782 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3124 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1461 - mrcnn_mask_loss: 0.2007106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - " 920/2000 [============>.................] - ETA: 18:18 - loss: 0.7781 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3123 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1460 - mrcnn_mask_loss: 0.2007228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - " 921/2000 [============>.................] - ETA: 18:17 - loss: 0.7777 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3121 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1460 - mrcnn_mask_loss: 0.200676\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - " 922/2000 [============>.................] - ETA: 18:16 - loss: 0.7776 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3120 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1459 - mrcnn_mask_loss: 0.200632\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - " 923/2000 [============>.................] - ETA: 18:15 - loss: 0.7774 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3120 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1459 - mrcnn_mask_loss: 0.2006241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - " 924/2000 [============>.................] - ETA: 18:14 - loss: 0.7775 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3121 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1459 - mrcnn_mask_loss: 0.2006127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - " 925/2000 [============>.................] - ETA: 18:13 - loss: 0.7775 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3121 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1459 - mrcnn_mask_loss: 0.200638\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - " 926/2000 [============>.................] - ETA: 18:12 - loss: 0.7778 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3124 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1458 - mrcnn_mask_loss: 0.2006253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - " 927/2000 [============>.................] - ETA: 18:11 - loss: 0.7777 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3125 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1457 - mrcnn_mask_loss: 0.200584\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 928/2000 [============>.................] - ETA: 18:10 - loss: 0.7775 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3123 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1457 - mrcnn_mask_loss: 0.2005295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - " 929/2000 [============>.................] - ETA: 18:09 - loss: 0.7774 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3122 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1456 - mrcnn_mask_loss: 0.200583\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - " 930/2000 [============>.................] - ETA: 18:08 - loss: 0.7771 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3120 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1455 - mrcnn_mask_loss: 0.2004332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - " 931/2000 [============>.................] - ETA: 18:07 - loss: 0.7768 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3119 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1455 - mrcnn_mask_loss: 0.2004261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - " 932/2000 [============>.................] - ETA: 18:07 - loss: 0.7767 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3118 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1454 - mrcnn_mask_loss: 0.200499\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - " 933/2000 [============>.................] - ETA: 18:06 - loss: 0.7772 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3120 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1455 - mrcnn_mask_loss: 0.2004212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - " 934/2000 [=============>................] - ETA: 18:05 - loss: 0.7769 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3118 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1455 - mrcnn_mask_loss: 0.200494\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - " 935/2000 [=============>................] - ETA: 18:04 - loss: 0.7769 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3119 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1455 - mrcnn_mask_loss: 0.2003240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - " 936/2000 [=============>................] - ETA: 18:03 - loss: 0.7771 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3118 - mrcnn_class_loss: 0.1118 - mrcnn_bbox_loss: 0.1456 - mrcnn_mask_loss: 0.2005308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - " 937/2000 [=============>................] - ETA: 18:02 - loss: 0.7770 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3117 - mrcnn_class_loss: 0.1117 - mrcnn_bbox_loss: 0.1455 - mrcnn_mask_loss: 0.2005112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - " 938/2000 [=============>................] - ETA: 18:01 - loss: 0.7768 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3116 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1455 - mrcnn_mask_loss: 0.2005318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - " 939/2000 [=============>................] - ETA: 18:00 - loss: 0.7768 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3116 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1455 - mrcnn_mask_loss: 0.2005351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - " 940/2000 [=============>................] - ETA: 17:59 - loss: 0.7766 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.3116 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1455 - mrcnn_mask_loss: 0.2005102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - " 941/2000 [=============>................] - ETA: 17:58 - loss: 0.7764 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3115 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1454 - mrcnn_mask_loss: 0.2005210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 942/2000 [=============>................] - ETA: 17:57 - loss: 0.7762 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3114 - mrcnn_class_loss: 0.1116 - mrcnn_bbox_loss: 0.1453 - mrcnn_mask_loss: 0.2004282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - " 943/2000 [=============>................] - ETA: 17:57 - loss: 0.7761 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3114 - mrcnn_class_loss: 0.1115 - mrcnn_bbox_loss: 0.1452 - mrcnn_mask_loss: 0.2004331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - " 944/2000 [=============>................] - ETA: 17:56 - loss: 0.7759 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3114 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1452 - mrcnn_mask_loss: 0.20041\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - " 945/2000 [=============>................] - ETA: 17:54 - loss: 0.7759 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3115 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1451 - mrcnn_mask_loss: 0.200369\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - " 946/2000 [=============>................] - ETA: 17:53 - loss: 0.7756 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3113 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1451 - mrcnn_mask_loss: 0.2003297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - " 947/2000 [=============>................] - ETA: 17:52 - loss: 0.7757 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3115 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1451 - mrcnn_mask_loss: 0.200382\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - " 948/2000 [=============>................] - ETA: 17:51 - loss: 0.7754 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3113 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1450 - mrcnn_mask_loss: 0.2002173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - " 949/2000 [=============>................] - ETA: 17:50 - loss: 0.7755 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3112 - mrcnn_class_loss: 0.1114 - mrcnn_bbox_loss: 0.1451 - mrcnn_mask_loss: 0.2002278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - " 950/2000 [=============>................] - ETA: 17:49 - loss: 0.7755 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3112 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1452 - mrcnn_mask_loss: 0.2002280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - " 951/2000 [=============>................] - ETA: 17:49 - loss: 0.7757 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3115 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1451 - mrcnn_mask_loss: 0.2002381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - " 952/2000 [=============>................] - ETA: 17:48 - loss: 0.7759 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3117 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1452 - mrcnn_mask_loss: 0.200253\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - " 953/2000 [=============>................] - ETA: 17:47 - loss: 0.7755 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3115 - mrcnn_class_loss: 0.1112 - mrcnn_bbox_loss: 0.1451 - mrcnn_mask_loss: 0.20020\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - " 954/2000 [=============>................] - ETA: 17:45 - loss: 0.7754 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3114 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1451 - mrcnn_mask_loss: 0.2002392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - " 955/2000 [=============>................] - ETA: 17:44 - loss: 0.7754 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3114 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1451 - mrcnn_mask_loss: 0.200230\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - " 956/2000 [=============>................] - ETA: 17:43 - loss: 0.7752 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3114 - mrcnn_class_loss: 0.1111 - mrcnn_bbox_loss: 0.1450 - mrcnn_mask_loss: 0.2001390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 957/2000 [=============>................] - ETA: 17:42 - loss: 0.7753 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3116 - mrcnn_class_loss: 0.1110 - mrcnn_bbox_loss: 0.1451 - mrcnn_mask_loss: 0.200256\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - " 958/2000 [=============>................] - ETA: 17:41 - loss: 0.7750 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3114 - mrcnn_class_loss: 0.1109 - mrcnn_bbox_loss: 0.1450 - mrcnn_mask_loss: 0.2001329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - " 959/2000 [=============>................] - ETA: 17:40 - loss: 0.7749 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3114 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1451 - mrcnn_mask_loss: 0.200146\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - " 960/2000 [=============>................] - ETA: 17:39 - loss: 0.7744 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3111 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1451 - mrcnn_mask_loss: 0.2000268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - " 961/2000 [=============>................] - ETA: 17:38 - loss: 0.7743 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3110 - mrcnn_class_loss: 0.1108 - mrcnn_bbox_loss: 0.1450 - mrcnn_mask_loss: 0.200066\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - " 962/2000 [=============>................] - ETA: 17:37 - loss: 0.7740 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3108 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1450 - mrcnn_mask_loss: 0.1999114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - " 963/2000 [=============>................] - ETA: 17:36 - loss: 0.7737 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3106 - mrcnn_class_loss: 0.1107 - mrcnn_bbox_loss: 0.1450 - mrcnn_mask_loss: 0.1999208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - " 964/2000 [=============>................] - ETA: 17:35 - loss: 0.7733 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3104 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1449 - mrcnn_mask_loss: 0.1999107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - " 965/2000 [=============>................] - ETA: 17:34 - loss: 0.7729 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3102 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1449 - mrcnn_mask_loss: 0.199872\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - " 966/2000 [=============>................] - ETA: 17:33 - loss: 0.7725 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3100 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1448 - mrcnn_mask_loss: 0.1998239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - " 967/2000 [=============>................] - ETA: 17:32 - loss: 0.7729 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3104 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1447 - mrcnn_mask_loss: 0.19973\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - " 968/2000 [=============>................] - ETA: 17:30 - loss: 0.7727 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3104 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1447 - mrcnn_mask_loss: 0.1997207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - " 969/2000 [=============>................] - ETA: 17:29 - loss: 0.7722 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3102 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1446 - mrcnn_mask_loss: 0.1996372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - " 970/2000 [=============>................] - ETA: 17:28 - loss: 0.7719 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3100 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1446 - mrcnn_mask_loss: 0.1996266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - " 971/2000 [=============>................] - ETA: 17:27 - loss: 0.7718 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3098 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1447 - mrcnn_mask_loss: 0.1996292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 972/2000 [=============>................] - ETA: 17:27 - loss: 0.7718 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3098 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1447 - mrcnn_mask_loss: 0.1996245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - " 973/2000 [=============>................] - ETA: 17:25 - loss: 0.7718 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3097 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1446 - mrcnn_mask_loss: 0.1996324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - " 974/2000 [=============>................] - ETA: 17:25 - loss: 0.7718 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3096 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1446 - mrcnn_mask_loss: 0.199647\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - " 975/2000 [=============>................] - ETA: 17:24 - loss: 0.7714 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3094 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1446 - mrcnn_mask_loss: 0.199696\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - " 976/2000 [=============>................] - ETA: 17:23 - loss: 0.7713 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3094 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1446 - mrcnn_mask_loss: 0.1995377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - " 977/2000 [=============>................] - ETA: 17:22 - loss: 0.7713 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3095 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1445 - mrcnn_mask_loss: 0.199671\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - " 978/2000 [=============>................] - ETA: 17:21 - loss: 0.7710 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3093 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1445 - mrcnn_mask_loss: 0.1995168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - " 979/2000 [=============>................] - ETA: 17:20 - loss: 0.7709 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3092 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1445 - mrcnn_mask_loss: 0.1995302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - " 980/2000 [=============>................] - ETA: 17:19 - loss: 0.7710 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3093 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1444 - mrcnn_mask_loss: 0.199521\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - " 981/2000 [=============>................] - ETA: 17:18 - loss: 0.7709 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3094 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1444 - mrcnn_mask_loss: 0.1995398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - " 982/2000 [=============>................] - ETA: 17:17 - loss: 0.7711 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3097 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1444 - mrcnn_mask_loss: 0.1994311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - " 983/2000 [=============>................] - ETA: 17:16 - loss: 0.7711 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3097 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1444 - mrcnn_mask_loss: 0.199464\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - " 984/2000 [=============>................] - ETA: 17:15 - loss: 0.7710 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3096 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1443 - mrcnn_mask_loss: 0.199423\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - " 985/2000 [=============>................] - ETA: 17:14 - loss: 0.7706 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3094 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1442 - mrcnn_mask_loss: 0.19947\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - " 986/2000 [=============>................] - ETA: 17:13 - loss: 0.7709 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3097 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1443 - mrcnn_mask_loss: 0.1994254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 987/2000 [=============>................] - ETA: 17:12 - loss: 0.7708 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3096 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1443 - mrcnn_mask_loss: 0.1994150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - " 988/2000 [=============>................] - ETA: 17:11 - loss: 0.7709 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3098 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1443 - mrcnn_mask_loss: 0.1994355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - " 989/2000 [=============>................] - ETA: 17:11 - loss: 0.7707 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3096 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1443 - mrcnn_mask_loss: 0.1994327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n", - " 990/2000 [=============>................] - ETA: 17:10 - loss: 0.7706 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3095 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1443 - mrcnn_mask_loss: 0.1994345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - " 991/2000 [=============>................] - ETA: 17:09 - loss: 0.7705 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3096 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1442 - mrcnn_mask_loss: 0.199497\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - " 992/2000 [=============>................] - ETA: 17:08 - loss: 0.7707 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3097 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1443 - mrcnn_mask_loss: 0.1994120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - " 993/2000 [=============>................] - ETA: 17:07 - loss: 0.7710 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3097 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1443 - mrcnn_mask_loss: 0.1994234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - " 994/2000 [=============>................] - ETA: 17:06 - loss: 0.7707 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3096 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1442 - mrcnn_mask_loss: 0.19942\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - " 995/2000 [=============>................] - ETA: 17:05 - loss: 0.7706 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3096 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1442 - mrcnn_mask_loss: 0.1993314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - " 996/2000 [=============>................] - ETA: 17:04 - loss: 0.7705 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3095 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1442 - mrcnn_mask_loss: 0.1994260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - " 997/2000 [=============>................] - ETA: 17:03 - loss: 0.7707 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3095 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1442 - mrcnn_mask_loss: 0.1994188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - " 998/2000 [=============>................] - ETA: 17:02 - loss: 0.7702 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3092 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1441 - mrcnn_mask_loss: 0.1994352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - " 999/2000 [=============>................] - ETA: 17:01 - loss: 0.7701 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3092 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1440 - mrcnn_mask_loss: 0.199465\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - "1000/2000 [==============>...............] - ETA: 17:00 - loss: 0.7698 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3090 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1440 - mrcnn_mask_loss: 0.1994128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - "1001/2000 [==============>...............] - ETA: 16:59 - loss: 0.7698 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3090 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1440 - mrcnn_mask_loss: 0.1994233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - "1002/2000 [==============>...............] - ETA: 16:58 - loss: 0.7700 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3089 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1442 - mrcnn_mask_loss: 0.1995203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - "1003/2000 [==============>...............] - ETA: 16:57 - loss: 0.7699 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3087 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1441 - mrcnn_mask_loss: 0.1995396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - "1004/2000 [==============>...............] - ETA: 16:56 - loss: 0.7699 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3087 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1441 - mrcnn_mask_loss: 0.1994190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - "1005/2000 [==============>...............] - ETA: 16:55 - loss: 0.7696 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3085 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1441 - mrcnn_mask_loss: 0.1994290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - "1006/2000 [==============>...............] - ETA: 16:54 - loss: 0.7696 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3085 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1441 - mrcnn_mask_loss: 0.1994386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - "1007/2000 [==============>...............] - ETA: 16:53 - loss: 0.7693 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3083 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1440 - mrcnn_mask_loss: 0.1994288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - "1008/2000 [==============>...............] - ETA: 16:53 - loss: 0.7693 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3084 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1440 - mrcnn_mask_loss: 0.1994304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - "1009/2000 [==============>...............] - ETA: 16:52 - loss: 0.7692 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3084 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1439 - mrcnn_mask_loss: 0.1994235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - "1010/2000 [==============>...............] - ETA: 16:51 - loss: 0.7692 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3083 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1440 - mrcnn_mask_loss: 0.1994170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - "1011/2000 [==============>...............] - ETA: 16:50 - loss: 0.7690 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3081 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1439 - mrcnn_mask_loss: 0.1993132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - "1012/2000 [==============>...............] - ETA: 16:49 - loss: 0.7690 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3081 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1439 - mrcnn_mask_loss: 0.1993129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - "1013/2000 [==============>...............] - ETA: 16:48 - loss: 0.7689 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3082 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1438 - mrcnn_mask_loss: 0.1993397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - "1014/2000 [==============>...............] - ETA: 16:47 - loss: 0.7692 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3084 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1438 - mrcnn_mask_loss: 0.1992152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - "1015/2000 [==============>...............] - ETA: 16:46 - loss: 0.7696 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3088 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1438 - mrcnn_mask_loss: 0.1992283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1016/2000 [==============>...............] - ETA: 16:46 - loss: 0.7696 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3087 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1438 - mrcnn_mask_loss: 0.1991175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - "1017/2000 [==============>...............] - ETA: 16:45 - loss: 0.7694 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3087 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1438 - mrcnn_mask_loss: 0.199125\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - "1018/2000 [==============>...............] - ETA: 16:43 - loss: 0.7692 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3086 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1437 - mrcnn_mask_loss: 0.1990326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - "1019/2000 [==============>...............] - ETA: 16:43 - loss: 0.7692 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3085 - mrcnn_class_loss: 0.1106 - mrcnn_bbox_loss: 0.1436 - mrcnn_mask_loss: 0.199078\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - "1020/2000 [==============>...............] - ETA: 16:42 - loss: 0.7690 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3084 - mrcnn_class_loss: 0.1105 - mrcnn_bbox_loss: 0.1436 - mrcnn_mask_loss: 0.1990185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - "1021/2000 [==============>...............] - ETA: 16:41 - loss: 0.7686 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3083 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1435 - mrcnn_mask_loss: 0.199033\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - "1022/2000 [==============>...............] - ETA: 16:39 - loss: 0.7684 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3082 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1434 - mrcnn_mask_loss: 0.199028\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - "1023/2000 [==============>...............] - ETA: 16:38 - loss: 0.7681 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3080 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1434 - mrcnn_mask_loss: 0.1989306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - "1024/2000 [==============>...............] - ETA: 16:38 - loss: 0.7682 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3081 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1434 - mrcnn_mask_loss: 0.1989342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - "1025/2000 [==============>...............] - ETA: 16:37 - loss: 0.7684 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3082 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1434 - mrcnn_mask_loss: 0.1990147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - "1026/2000 [==============>...............] - ETA: 16:36 - loss: 0.7684 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3082 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1434 - mrcnn_mask_loss: 0.1990141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - "1027/2000 [==============>...............] - ETA: 16:35 - loss: 0.7685 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3082 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1434 - mrcnn_mask_loss: 0.1990361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - "1028/2000 [==============>...............] - ETA: 16:34 - loss: 0.7685 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3083 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1434 - mrcnn_mask_loss: 0.1990257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - "1029/2000 [==============>...............] - ETA: 16:33 - loss: 0.7686 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3084 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1434 - mrcnn_mask_loss: 0.1990343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - "1030/2000 [==============>...............] - ETA: 16:33 - loss: 0.7686 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3084 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1433 - mrcnn_mask_loss: 0.1990382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1031/2000 [==============>...............] - ETA: 16:32 - loss: 0.7688 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3085 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1434 - mrcnn_mask_loss: 0.1990350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - "1032/2000 [==============>...............] - ETA: 16:31 - loss: 0.7687 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3085 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1433 - mrcnn_mask_loss: 0.1990333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - "1033/2000 [==============>...............] - ETA: 16:30 - loss: 0.7685 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3084 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1433 - mrcnn_mask_loss: 0.1990227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - "1034/2000 [==============>...............] - ETA: 16:29 - loss: 0.7682 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3082 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1433 - mrcnn_mask_loss: 0.1990340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - "1035/2000 [==============>...............] - ETA: 16:28 - loss: 0.7683 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3083 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1433 - mrcnn_mask_loss: 0.199048\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - "1036/2000 [==============>...............] - ETA: 16:27 - loss: 0.7680 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3082 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1433 - mrcnn_mask_loss: 0.1990211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - "1037/2000 [==============>...............] - ETA: 16:26 - loss: 0.7677 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3080 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1433 - mrcnn_mask_loss: 0.1990183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - "1038/2000 [==============>...............] - ETA: 16:25 - loss: 0.7677 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3081 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1432 - mrcnn_mask_loss: 0.199052\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - "1039/2000 [==============>...............] - ETA: 16:24 - loss: 0.7675 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3079 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1431 - mrcnn_mask_loss: 0.198937\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - "1040/2000 [==============>...............] - ETA: 16:23 - loss: 0.7679 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3083 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1431 - mrcnn_mask_loss: 0.1989109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - "1041/2000 [==============>...............] - ETA: 16:22 - loss: 0.7677 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3082 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1430 - mrcnn_mask_loss: 0.1989103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - "1042/2000 [==============>...............] - ETA: 16:21 - loss: 0.7678 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3081 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1431 - mrcnn_mask_loss: 0.1990151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - "1043/2000 [==============>...............] - ETA: 16:20 - loss: 0.7679 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3082 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1430 - mrcnn_mask_loss: 0.198968\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - "1044/2000 [==============>...............] - ETA: 16:19 - loss: 0.7677 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3080 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1430 - mrcnn_mask_loss: 0.1989198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - "1045/2000 [==============>...............] - ETA: 16:18 - loss: 0.7673 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3079 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1429 - mrcnn_mask_loss: 0.1989231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1046/2000 [==============>...............] - ETA: 16:17 - loss: 0.7672 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3078 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.1988300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - "1047/2000 [==============>...............] - ETA: 16:16 - loss: 0.7673 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3079 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.1989249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - "1048/2000 [==============>...............] - ETA: 16:15 - loss: 0.7673 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3078 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.1989285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - "1049/2000 [==============>...............] - ETA: 16:14 - loss: 0.7674 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3079 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.1989217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - "1050/2000 [==============>...............] - ETA: 16:13 - loss: 0.7673 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3078 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.1989223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - "1051/2000 [==============>...............] - ETA: 16:12 - loss: 0.7671 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3076 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.198843\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - "1052/2000 [==============>...............] - ETA: 16:11 - loss: 0.7667 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.3075 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1427 - mrcnn_mask_loss: 0.1987330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - "1053/2000 [==============>...............] - ETA: 16:10 - loss: 0.7669 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3075 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.1988252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - "1054/2000 [==============>...............] - ETA: 16:09 - loss: 0.7668 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3074 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.1989360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - "1055/2000 [==============>...............] - ETA: 16:08 - loss: 0.7670 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3076 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.1989339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - "1056/2000 [==============>...............] - ETA: 16:08 - loss: 0.7672 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3078 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.198980\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - "1057/2000 [==============>...............] - ETA: 16:07 - loss: 0.7675 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3077 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1429 - mrcnn_mask_loss: 0.199049\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - "1058/2000 [==============>...............] - ETA: 16:06 - loss: 0.7671 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3075 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1429 - mrcnn_mask_loss: 0.1989238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - "1059/2000 [==============>...............] - ETA: 16:05 - loss: 0.7670 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3074 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1429 - mrcnn_mask_loss: 0.1989182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - "1060/2000 [==============>...............] - ETA: 16:04 - loss: 0.7673 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3077 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.1989220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1061/2000 [==============>...............] - ETA: 16:02 - loss: 0.7672 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3076 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1429 - mrcnn_mask_loss: 0.1989177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - "1062/2000 [==============>...............] - ETA: 16:02 - loss: 0.7672 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3075 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1429 - mrcnn_mask_loss: 0.1989317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - "1063/2000 [==============>...............] - ETA: 16:01 - loss: 0.7671 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3075 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1429 - mrcnn_mask_loss: 0.1990378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - "1064/2000 [==============>...............] - ETA: 16:00 - loss: 0.7670 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3075 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.198973\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - "1065/2000 [==============>...............] - ETA: 15:59 - loss: 0.7669 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3075 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1428 - mrcnn_mask_loss: 0.1989146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - "1066/2000 [==============>...............] - ETA: 15:58 - loss: 0.7669 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3076 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1427 - mrcnn_mask_loss: 0.1989251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - "1067/2000 [===============>..............] - ETA: 15:57 - loss: 0.7669 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3075 - mrcnn_class_loss: 0.1104 - mrcnn_bbox_loss: 0.1427 - mrcnn_mask_loss: 0.1989289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - "1068/2000 [===============>..............] - ETA: 15:56 - loss: 0.7667 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3074 - mrcnn_class_loss: 0.1103 - mrcnn_bbox_loss: 0.1426 - mrcnn_mask_loss: 0.1989383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - "1069/2000 [===============>..............] - ETA: 15:55 - loss: 0.7667 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3075 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1426 - mrcnn_mask_loss: 0.1989380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - "1070/2000 [===============>..............] - ETA: 15:55 - loss: 0.7668 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3077 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1426 - mrcnn_mask_loss: 0.1989267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - "1071/2000 [===============>..............] - ETA: 15:54 - loss: 0.7667 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3076 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1426 - mrcnn_mask_loss: 0.1989218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - "1072/2000 [===============>..............] - ETA: 15:53 - loss: 0.7663 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3075 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1425 - mrcnn_mask_loss: 0.1989385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - "1073/2000 [===============>..............] - ETA: 15:52 - loss: 0.7662 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3073 - mrcnn_class_loss: 0.1102 - mrcnn_bbox_loss: 0.1424 - mrcnn_mask_loss: 0.1989113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - "1074/2000 [===============>..............] - ETA: 15:51 - loss: 0.7659 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3072 - mrcnn_class_loss: 0.1101 - mrcnn_bbox_loss: 0.1424 - mrcnn_mask_loss: 0.1988335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - "1075/2000 [===============>..............] - ETA: 15:50 - loss: 0.7658 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3072 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1424 - mrcnn_mask_loss: 0.198827\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - "1076/2000 [===============>..............] - ETA: 15:49 - loss: 0.7657 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3072 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1424 - mrcnn_mask_loss: 0.198831\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - "1077/2000 [===============>..............] - ETA: 15:48 - loss: 0.7654 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3072 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1423 - mrcnn_mask_loss: 0.1987362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - "1078/2000 [===============>..............] - ETA: 15:47 - loss: 0.7655 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3074 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1423 - mrcnn_mask_loss: 0.1987108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - "1079/2000 [===============>..............] - ETA: 15:46 - loss: 0.7653 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3072 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1422 - mrcnn_mask_loss: 0.1986181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - "1080/2000 [===============>..............] - ETA: 15:45 - loss: 0.7651 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3071 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1422 - mrcnn_mask_loss: 0.1986270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - "1081/2000 [===============>..............] - ETA: 15:44 - loss: 0.7648 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3069 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1421 - mrcnn_mask_loss: 0.1986202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - "1082/2000 [===============>..............] - ETA: 15:43 - loss: 0.7644 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3067 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1421 - mrcnn_mask_loss: 0.1986163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - "1083/2000 [===============>..............] - ETA: 15:42 - loss: 0.7644 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3068 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1421 - mrcnn_mask_loss: 0.19855\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - "1084/2000 [===============>..............] - ETA: 15:41 - loss: 0.7642 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3067 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1420 - mrcnn_mask_loss: 0.1985124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - "1085/2000 [===============>..............] - ETA: 15:40 - loss: 0.7643 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3067 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1420 - mrcnn_mask_loss: 0.1985148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - "1086/2000 [===============>..............] - ETA: 15:39 - loss: 0.7645 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3069 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1420 - mrcnn_mask_loss: 0.1985247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - "1087/2000 [===============>..............] - ETA: 15:38 - loss: 0.7644 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3068 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1420 - mrcnn_mask_loss: 0.198581\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - "1088/2000 [===============>..............] - ETA: 15:37 - loss: 0.7643 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3066 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1421 - mrcnn_mask_loss: 0.1985133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - "1089/2000 [===============>..............] - ETA: 15:36 - loss: 0.7643 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3067 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1421 - mrcnn_mask_loss: 0.1985164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1090/2000 [===============>..............] - ETA: 15:35 - loss: 0.7644 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3068 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1421 - mrcnn_mask_loss: 0.1984145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - "1091/2000 [===============>..............] - ETA: 15:34 - loss: 0.7645 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3069 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1420 - mrcnn_mask_loss: 0.1985294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - "1092/2000 [===============>..............] - ETA: 15:33 - loss: 0.7646 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3070 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1420 - mrcnn_mask_loss: 0.1984193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - "1093/2000 [===============>..............] - ETA: 15:32 - loss: 0.7642 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3067 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1419 - mrcnn_mask_loss: 0.1984305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - "1094/2000 [===============>..............] - ETA: 15:32 - loss: 0.7642 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3068 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1419 - mrcnn_mask_loss: 0.198362\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - "1095/2000 [===============>..............] - ETA: 15:30 - loss: 0.7642 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3067 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1419 - mrcnn_mask_loss: 0.1983369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - "1096/2000 [===============>..............] - ETA: 15:29 - loss: 0.7641 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3067 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.1983155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - "1097/2000 [===============>..............] - ETA: 15:29 - loss: 0.7644 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3069 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1419 - mrcnn_mask_loss: 0.198361\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - "1098/2000 [===============>..............] - ETA: 15:28 - loss: 0.7642 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3068 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1419 - mrcnn_mask_loss: 0.1983171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - "1099/2000 [===============>..............] - ETA: 15:26 - loss: 0.7641 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3067 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1420 - mrcnn_mask_loss: 0.19838\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - "1100/2000 [===============>..............] - ETA: 15:25 - loss: 0.7640 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3067 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1419 - mrcnn_mask_loss: 0.1982237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - "1101/2000 [===============>..............] - ETA: 15:24 - loss: 0.7636 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3065 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1419 - mrcnn_mask_loss: 0.1982356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - "1102/2000 [===============>..............] - ETA: 15:23 - loss: 0.7634 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3064 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.1982105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - "1103/2000 [===============>..............] - ETA: 15:23 - loss: 0.7633 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3062 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1419 - mrcnn_mask_loss: 0.1982194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - "1104/2000 [===============>..............] - ETA: 15:21 - loss: 0.7630 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3060 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.1981111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1105/2000 [===============>..............] - ETA: 15:21 - loss: 0.7629 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3059 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.1981192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - "1106/2000 [===============>..............] - ETA: 15:19 - loss: 0.7626 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3058 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.1980104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - "1107/2000 [===============>..............] - ETA: 15:19 - loss: 0.7624 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3055 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.1981195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - "1108/2000 [===============>..............] - ETA: 15:17 - loss: 0.7621 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3053 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1981209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - "1109/2000 [===============>..............] - ETA: 15:16 - loss: 0.7619 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3051 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.198142\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - "1110/2000 [===============>..............] - ETA: 15:15 - loss: 0.7617 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3050 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1980284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - "1111/2000 [===============>..............] - ETA: 15:14 - loss: 0.7618 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3051 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1982375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - "1112/2000 [===============>..............] - ETA: 15:13 - loss: 0.7618 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3050 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1982118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - "1113/2000 [===============>..............] - ETA: 15:13 - loss: 0.7620 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3050 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1982197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - "1114/2000 [===============>..............] - ETA: 15:11 - loss: 0.7616 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3048 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1982169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - "1115/2000 [===============>..............] - ETA: 15:10 - loss: 0.7615 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3047 - mrcnn_class_loss: 0.1095 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1982167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - "1116/2000 [===============>..............] - ETA: 15:09 - loss: 0.7615 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3046 - mrcnn_class_loss: 0.1095 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.1982307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - "1117/2000 [===============>..............] - ETA: 15:09 - loss: 0.7615 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3046 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1983166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - "1118/2000 [===============>..............] - ETA: 15:08 - loss: 0.7614 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3044 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1983298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - "1119/2000 [===============>..............] - ETA: 15:07 - loss: 0.7617 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3046 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.198311\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1120/2000 [===============>..............] - ETA: 15:06 - loss: 0.7614 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3045 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1982116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - "1121/2000 [===============>..............] - ETA: 15:05 - loss: 0.7614 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3045 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1982243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - "1122/2000 [===============>..............] - ETA: 15:04 - loss: 0.7615 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3044 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.198388\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - "1123/2000 [===============>..............] - ETA: 15:02 - loss: 0.7617 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3044 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.1983299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - "1124/2000 [===============>..............] - ETA: 15:02 - loss: 0.7618 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3046 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.1983256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - "1125/2000 [===============>..............] - ETA: 15:01 - loss: 0.7619 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3047 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.1984303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - "1126/2000 [===============>..............] - ETA: 15:00 - loss: 0.7619 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3047 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.1984156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - "1127/2000 [===============>..............] - ETA: 14:59 - loss: 0.7622 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3047 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1418 - mrcnn_mask_loss: 0.198429\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - "1128/2000 [===============>..............] - ETA: 14:58 - loss: 0.7619 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3047 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1984373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - "1129/2000 [===============>..............] - ETA: 14:57 - loss: 0.7617 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3045 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1984136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - "1130/2000 [===============>..............] - ETA: 14:56 - loss: 0.7616 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3045 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1983358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - "1131/2000 [===============>..............] - ETA: 14:55 - loss: 0.7615 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3044 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1416 - mrcnn_mask_loss: 0.1983165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - "1132/2000 [===============>..............] - ETA: 14:54 - loss: 0.7614 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3043 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1416 - mrcnn_mask_loss: 0.1983248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - "1133/2000 [===============>..............] - ETA: 14:53 - loss: 0.7613 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3042 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1416 - mrcnn_mask_loss: 0.1983315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1134/2000 [================>.............] - ETA: 14:52 - loss: 0.7612 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3042 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1984214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - "1135/2000 [================>.............] - ETA: 14:51 - loss: 0.7609 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3040 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1416 - mrcnn_mask_loss: 0.1983263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - "1136/2000 [================>.............] - ETA: 14:50 - loss: 0.7610 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1416 - mrcnn_mask_loss: 0.1983162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - "1137/2000 [================>.............] - ETA: 14:50 - loss: 0.7610 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3040 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1416 - mrcnn_mask_loss: 0.198363\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - "1138/2000 [================>.............] - ETA: 14:48 - loss: 0.7608 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1415 - mrcnn_mask_loss: 0.1983206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - "1139/2000 [================>.............] - ETA: 14:47 - loss: 0.7605 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1414 - mrcnn_mask_loss: 0.1983130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - "1140/2000 [================>.............] - ETA: 14:46 - loss: 0.7606 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3037 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1414 - mrcnn_mask_loss: 0.1983157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - "1141/2000 [================>.............] - ETA: 14:45 - loss: 0.7610 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.198326\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - "1142/2000 [================>.............] - ETA: 14:44 - loss: 0.7608 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1416 - mrcnn_mask_loss: 0.1982101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - "1143/2000 [================>.............] - ETA: 14:43 - loss: 0.7609 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1100 - mrcnn_bbox_loss: 0.1416 - mrcnn_mask_loss: 0.198298\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - "1144/2000 [================>.............] - ETA: 14:42 - loss: 0.7611 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3041 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1415 - mrcnn_mask_loss: 0.1982153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - "1145/2000 [================>.............] - ETA: 14:41 - loss: 0.7613 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3043 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1416 - mrcnn_mask_loss: 0.1981244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - "1146/2000 [================>.............] - ETA: 14:40 - loss: 0.7612 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3042 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1416 - mrcnn_mask_loss: 0.1981274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - "1147/2000 [================>.............] - ETA: 14:39 - loss: 0.7611 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3041 - mrcnn_class_loss: 0.1099 - mrcnn_bbox_loss: 0.1416 - mrcnn_mask_loss: 0.1982353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - "1148/2000 [================>.............] - ETA: 14:38 - loss: 0.7609 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3040 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1415 - mrcnn_mask_loss: 0.198289\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - "1149/2000 [================>.............] - ETA: 14:37 - loss: 0.7609 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3041 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1415 - mrcnn_mask_loss: 0.1982222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - "1150/2000 [================>.............] - ETA: 14:36 - loss: 0.7606 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1415 - mrcnn_mask_loss: 0.1982273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - "1151/2000 [================>.............] - ETA: 14:35 - loss: 0.7605 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1098 - mrcnn_bbox_loss: 0.1414 - mrcnn_mask_loss: 0.198175\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - "1152/2000 [================>.............] - ETA: 14:34 - loss: 0.7603 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1413 - mrcnn_mask_loss: 0.1981328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - "1153/2000 [================>.............] - ETA: 14:33 - loss: 0.7604 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1413 - mrcnn_mask_loss: 0.1982191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - "1154/2000 [================>.............] - ETA: 14:32 - loss: 0.7601 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1413 - mrcnn_mask_loss: 0.1982142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - "1155/2000 [================>.............] - ETA: 14:31 - loss: 0.7604 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.3037 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1414 - mrcnn_mask_loss: 0.198359\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - "1156/2000 [================>.............] - ETA: 14:30 - loss: 0.7605 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1413 - mrcnn_mask_loss: 0.1983205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - "1157/2000 [================>.............] - ETA: 14:28 - loss: 0.7603 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1413 - mrcnn_mask_loss: 0.1983296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - "1158/2000 [================>.............] - ETA: 14:28 - loss: 0.7603 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1097 - mrcnn_bbox_loss: 0.1413 - mrcnn_mask_loss: 0.198251\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - "1159/2000 [================>.............] - ETA: 14:26 - loss: 0.7599 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1096 - mrcnn_bbox_loss: 0.1412 - mrcnn_mask_loss: 0.198279\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - "1160/2000 [================>.............] - ETA: 14:25 - loss: 0.7598 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1095 - mrcnn_bbox_loss: 0.1412 - mrcnn_mask_loss: 0.1982131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - "1161/2000 [================>.............] - ETA: 14:24 - loss: 0.7598 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1095 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1981216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - "1162/2000 [================>.............] - ETA: 14:23 - loss: 0.7595 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3035 - mrcnn_class_loss: 0.1095 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1981242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1163/2000 [================>.............] - ETA: 14:22 - loss: 0.7594 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3034 - mrcnn_class_loss: 0.1094 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1982140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - "1164/2000 [================>.............] - ETA: 14:21 - loss: 0.7594 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3034 - mrcnn_class_loss: 0.1094 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1981126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - "1165/2000 [================>.............] - ETA: 14:20 - loss: 0.7595 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1094 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1981279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - "1166/2000 [================>.............] - ETA: 14:20 - loss: 0.7595 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1093 - mrcnn_bbox_loss: 0.1412 - mrcnn_mask_loss: 0.1981138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - "1167/2000 [================>.............] - ETA: 14:19 - loss: 0.7597 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1094 - mrcnn_bbox_loss: 0.1412 - mrcnn_mask_loss: 0.1981161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - "1168/2000 [================>.............] - ETA: 14:18 - loss: 0.7602 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1095 - mrcnn_bbox_loss: 0.1413 - mrcnn_mask_loss: 0.198235\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - "1169/2000 [================>.............] - ETA: 14:17 - loss: 0.7603 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3040 - mrcnn_class_loss: 0.1095 - mrcnn_bbox_loss: 0.1413 - mrcnn_mask_loss: 0.1981275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - "1170/2000 [================>.............] - ETA: 14:16 - loss: 0.7600 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1095 - mrcnn_bbox_loss: 0.1412 - mrcnn_mask_loss: 0.1981187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - "1171/2000 [================>.............] - ETA: 14:15 - loss: 0.7597 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3037 - mrcnn_class_loss: 0.1094 - mrcnn_bbox_loss: 0.1412 - mrcnn_mask_loss: 0.1980134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - "1172/2000 [================>.............] - ETA: 14:14 - loss: 0.7598 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1094 - mrcnn_bbox_loss: 0.1412 - mrcnn_mask_loss: 0.1981367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - "1173/2000 [================>.............] - ETA: 14:13 - loss: 0.7597 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1094 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.198136\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - "1174/2000 [================>.............] - ETA: 14:12 - loss: 0.7598 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3041 - mrcnn_class_loss: 0.1093 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1980269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - "1175/2000 [================>.............] - ETA: 14:11 - loss: 0.7596 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1094 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1980376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - "1176/2000 [================>.............] - ETA: 14:10 - loss: 0.7595 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1093 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1980184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - "1177/2000 [================>.............] - ETA: 14:09 - loss: 0.7593 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3037 - mrcnn_class_loss: 0.1092 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1980259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - "1178/2000 [================>.............] - ETA: 14:08 - loss: 0.7596 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1093 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.198117\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - "1179/2000 [================>.............] - ETA: 14:07 - loss: 0.7598 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3041 - mrcnn_class_loss: 0.1092 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1981357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - "1180/2000 [================>.............] - ETA: 14:06 - loss: 0.7597 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3041 - mrcnn_class_loss: 0.1092 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.1981122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - "1181/2000 [================>.............] - ETA: 14:05 - loss: 0.7600 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3042 - mrcnn_class_loss: 0.1092 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1981319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - "1182/2000 [================>.............] - ETA: 14:04 - loss: 0.7602 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3044 - mrcnn_class_loss: 0.1091 - mrcnn_bbox_loss: 0.1412 - mrcnn_mask_loss: 0.1981291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - "1183/2000 [================>.............] - ETA: 14:03 - loss: 0.7601 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3044 - mrcnn_class_loss: 0.1092 - mrcnn_bbox_loss: 0.1412 - mrcnn_mask_loss: 0.1981341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - "1184/2000 [================>.............] - ETA: 14:02 - loss: 0.7601 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3044 - mrcnn_class_loss: 0.1091 - mrcnn_bbox_loss: 0.1412 - mrcnn_mask_loss: 0.198167\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - "1185/2000 [================>.............] - ETA: 14:01 - loss: 0.7598 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3042 - mrcnn_class_loss: 0.1090 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1981139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - "1186/2000 [================>.............] - ETA: 14:00 - loss: 0.7600 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3044 - mrcnn_class_loss: 0.1090 - mrcnn_bbox_loss: 0.1412 - mrcnn_mask_loss: 0.1982334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - "1187/2000 [================>.............] - ETA: 13:59 - loss: 0.7599 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3043 - mrcnn_class_loss: 0.1090 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1982316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - "1188/2000 [================>.............] - ETA: 13:59 - loss: 0.7597 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3042 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1411 - mrcnn_mask_loss: 0.1982201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - "1189/2000 [================>.............] - ETA: 13:58 - loss: 0.7596 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3041 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.198234\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - "1190/2000 [================>.............] - ETA: 13:56 - loss: 0.7593 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3040 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.1981370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1191/2000 [================>.............] - ETA: 13:55 - loss: 0.7592 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.1981359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - "1192/2000 [================>.............] - ETA: 13:54 - loss: 0.7591 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.1981119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - "1193/2000 [================>.............] - ETA: 13:53 - loss: 0.7592 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.1981144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - "1194/2000 [================>.............] - ETA: 13:52 - loss: 0.7592 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.1982348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - "1195/2000 [================>.............] - ETA: 13:51 - loss: 0.7593 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3041 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1982368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - "1196/2000 [================>.............] - ETA: 13:50 - loss: 0.7593 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3040 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1981115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - "1197/2000 [================>.............] - ETA: 13:49 - loss: 0.7591 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.198141\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - "1198/2000 [================>.............] - ETA: 13:48 - loss: 0.7590 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1981347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - "1199/2000 [================>.............] - ETA: 13:47 - loss: 0.7591 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3041 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1981265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - "1200/2000 [=================>............] - ETA: 13:46 - loss: 0.7591 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1981285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - "1201/2000 [=================>............] - ETA: 13:45 - loss: 0.7594 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3040 - mrcnn_class_loss: 0.1091 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1980151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - "1202/2000 [=================>............] - ETA: 13:44 - loss: 0.7594 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3040 - mrcnn_class_loss: 0.1091 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1980379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - "1203/2000 [=================>............] - ETA: 13:43 - loss: 0.7594 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3041 - mrcnn_class_loss: 0.1092 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1980222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - "1204/2000 [=================>............] - ETA: 13:42 - loss: 0.7593 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3039 - mrcnn_class_loss: 0.1091 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.1980277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1205/2000 [=================>............] - ETA: 13:41 - loss: 0.7592 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3038 - mrcnn_class_loss: 0.1090 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.19806\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - "1206/2000 [=================>............] - ETA: 13:40 - loss: 0.7588 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1090 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1979307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - "1207/2000 [=================>............] - ETA: 13:39 - loss: 0.7587 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3037 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1979253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - "1208/2000 [=================>............] - ETA: 13:38 - loss: 0.7586 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1979221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - "1209/2000 [=================>............] - ETA: 13:37 - loss: 0.7586 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3035 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.1980369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - "1210/2000 [=================>............] - ETA: 13:36 - loss: 0.7587 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3035 - mrcnn_class_loss: 0.1089 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.197922\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - "1211/2000 [=================>............] - ETA: 13:35 - loss: 0.7587 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1410 - mrcnn_mask_loss: 0.1979133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - "1212/2000 [=================>............] - ETA: 13:34 - loss: 0.7587 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3037 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1979102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - "1213/2000 [=================>............] - ETA: 13:33 - loss: 0.7585 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1979128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - "1214/2000 [=================>............] - ETA: 13:32 - loss: 0.7586 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3036 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1979246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - "1215/2000 [=================>............] - ETA: 13:31 - loss: 0.7584 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3035 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.197935\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - "1216/2000 [=================>............] - ETA: 13:29 - loss: 0.7583 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3035 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1408 - mrcnn_mask_loss: 0.1978164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - "1217/2000 [=================>............] - ETA: 13:29 - loss: 0.7582 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3035 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1408 - mrcnn_mask_loss: 0.197855\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - "1218/2000 [=================>............] - ETA: 13:27 - loss: 0.7579 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3033 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1408 - mrcnn_mask_loss: 0.1978271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - "1219/2000 [=================>............] - ETA: 13:26 - loss: 0.7577 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3031 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1408 - mrcnn_mask_loss: 0.1977327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1220/2000 [=================>............] - ETA: 13:25 - loss: 0.7576 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3031 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1409 - mrcnn_mask_loss: 0.1977194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - "1221/2000 [=================>............] - ETA: 13:24 - loss: 0.7575 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3029 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1408 - mrcnn_mask_loss: 0.1977203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - "1222/2000 [=================>............] - ETA: 13:23 - loss: 0.7572 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3027 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1408 - mrcnn_mask_loss: 0.1977225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - "1223/2000 [=================>............] - ETA: 13:22 - loss: 0.7569 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3025 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1407 - mrcnn_mask_loss: 0.1977381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - "1224/2000 [=================>............] - ETA: 13:21 - loss: 0.7571 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3026 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1408 - mrcnn_mask_loss: 0.1977114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - "1225/2000 [=================>............] - ETA: 13:20 - loss: 0.7570 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3025 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1408 - mrcnn_mask_loss: 0.1977235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - "1226/2000 [=================>............] - ETA: 13:18 - loss: 0.7569 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3024 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1408 - mrcnn_mask_loss: 0.1976138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - "1227/2000 [=================>............] - ETA: 13:17 - loss: 0.7568 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3024 - mrcnn_class_loss: 0.1088 - mrcnn_bbox_loss: 0.1408 - mrcnn_mask_loss: 0.197658\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - "1228/2000 [=================>............] - ETA: 13:16 - loss: 0.7569 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3026 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1407 - mrcnn_mask_loss: 0.1976283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - "1229/2000 [=================>............] - ETA: 13:15 - loss: 0.7568 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3025 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1407 - mrcnn_mask_loss: 0.1976269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - "1230/2000 [=================>............] - ETA: 13:14 - loss: 0.7566 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3024 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1407 - mrcnn_mask_loss: 0.197691\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - "1231/2000 [=================>............] - ETA: 13:13 - loss: 0.7566 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3024 - mrcnn_class_loss: 0.1086 - mrcnn_bbox_loss: 0.1407 - mrcnn_mask_loss: 0.1976145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - "1232/2000 [=================>............] - ETA: 13:12 - loss: 0.7565 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3024 - mrcnn_class_loss: 0.1086 - mrcnn_bbox_loss: 0.1407 - mrcnn_mask_loss: 0.1976397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - "1233/2000 [=================>............] - ETA: 13:11 - loss: 0.7565 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3025 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1407 - mrcnn_mask_loss: 0.1975172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - "1234/2000 [=================>............] - ETA: 13:10 - loss: 0.7564 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3024 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1407 - mrcnn_mask_loss: 0.197546\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1235/2000 [=================>............] - ETA: 13:09 - loss: 0.7560 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3022 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1406 - mrcnn_mask_loss: 0.1975241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - "1236/2000 [=================>............] - ETA: 13:08 - loss: 0.7562 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3021 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1406 - mrcnn_mask_loss: 0.1975103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - "1237/2000 [=================>............] - ETA: 13:07 - loss: 0.7561 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3020 - mrcnn_class_loss: 0.1086 - mrcnn_bbox_loss: 0.1406 - mrcnn_mask_loss: 0.1976256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - "1238/2000 [=================>............] - ETA: 13:06 - loss: 0.7559 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3020 - mrcnn_class_loss: 0.1086 - mrcnn_bbox_loss: 0.1405 - mrcnn_mask_loss: 0.1976177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - "1239/2000 [=================>............] - ETA: 13:05 - loss: 0.7559 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3019 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1406 - mrcnn_mask_loss: 0.1976266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - "1240/2000 [=================>............] - ETA: 13:04 - loss: 0.7556 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3017 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1406 - mrcnn_mask_loss: 0.1976305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - "1241/2000 [=================>............] - ETA: 13:03 - loss: 0.7558 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.3017 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1406 - mrcnn_mask_loss: 0.1976247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - "1242/2000 [=================>............] - ETA: 13:01 - loss: 0.7556 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3015 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1406 - mrcnn_mask_loss: 0.197626\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - "1243/2000 [=================>............] - ETA: 13:00 - loss: 0.7556 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3015 - mrcnn_class_loss: 0.1087 - mrcnn_bbox_loss: 0.1405 - mrcnn_mask_loss: 0.1976334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - "1244/2000 [=================>............] - ETA: 12:59 - loss: 0.7553 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3013 - mrcnn_class_loss: 0.1086 - mrcnn_bbox_loss: 0.1405 - mrcnn_mask_loss: 0.1976345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - "1245/2000 [=================>............] - ETA: 12:58 - loss: 0.7553 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3014 - mrcnn_class_loss: 0.1086 - mrcnn_bbox_loss: 0.1405 - mrcnn_mask_loss: 0.1976196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - "1246/2000 [=================>............] - ETA: 12:57 - loss: 0.7550 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3012 - mrcnn_class_loss: 0.1086 - mrcnn_bbox_loss: 0.1405 - mrcnn_mask_loss: 0.1975292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - "1247/2000 [=================>............] - ETA: 12:56 - loss: 0.7549 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3012 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.197590\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - "1248/2000 [=================>............] - ETA: 12:55 - loss: 0.7549 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3011 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.197548\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - "1249/2000 [=================>............] - ETA: 12:54 - loss: 0.7545 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3010 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.1974332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - "1250/2000 [=================>............] - ETA: 12:53 - loss: 0.7544 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3008 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.1975184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - "1251/2000 [=================>............] - ETA: 12:52 - loss: 0.7542 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3007 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.1974272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - "1252/2000 [=================>............] - ETA: 12:51 - loss: 0.7540 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3006 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.1974389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - "1253/2000 [=================>............] - ETA: 12:49 - loss: 0.7542 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3007 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.1974123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - "1254/2000 [=================>............] - ETA: 12:49 - loss: 0.7543 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3008 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.1975341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - "1255/2000 [=================>............] - ETA: 12:48 - loss: 0.7542 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3007 - mrcnn_class_loss: 0.1085 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.1975339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - "1256/2000 [=================>............] - ETA: 12:47 - loss: 0.7542 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3008 - mrcnn_class_loss: 0.1084 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.197425\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - "1257/2000 [=================>............] - ETA: 12:46 - loss: 0.7539 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3007 - mrcnn_class_loss: 0.1083 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.1974357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - "1258/2000 [=================>............] - ETA: 12:45 - loss: 0.7539 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3007 - mrcnn_class_loss: 0.1083 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.1974310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - "1259/2000 [=================>............] - ETA: 12:44 - loss: 0.7537 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3006 - mrcnn_class_loss: 0.1083 - mrcnn_bbox_loss: 0.1402 - mrcnn_mask_loss: 0.1974370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - "1260/2000 [=================>............] - ETA: 12:42 - loss: 0.7536 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3005 - mrcnn_class_loss: 0.1082 - mrcnn_bbox_loss: 0.1402 - mrcnn_mask_loss: 0.197497\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - "1261/2000 [=================>............] - ETA: 12:41 - loss: 0.7538 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3006 - mrcnn_class_loss: 0.1081 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.1975121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - "1262/2000 [=================>............] - ETA: 12:40 - loss: 0.7541 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3008 - mrcnn_class_loss: 0.1082 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.1975361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1263/2000 [=================>............] - ETA: 12:40 - loss: 0.7544 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3010 - mrcnn_class_loss: 0.1082 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.1975346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - "1264/2000 [=================>............] - ETA: 12:39 - loss: 0.7544 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3012 - mrcnn_class_loss: 0.1081 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.1975363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - "1265/2000 [=================>............] - ETA: 12:38 - loss: 0.7545 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3013 - mrcnn_class_loss: 0.1081 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.1975308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - "1266/2000 [=================>............] - ETA: 12:37 - loss: 0.7545 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3013 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.19754\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - "1267/2000 [==================>...........] - ETA: 12:36 - loss: 0.7543 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3012 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.1974265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - "1268/2000 [==================>...........] - ETA: 12:35 - loss: 0.7542 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3011 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.1975191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - "1269/2000 [==================>...........] - ETA: 12:33 - loss: 0.7539 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3009 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.19749\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - "1270/2000 [==================>...........] - ETA: 12:32 - loss: 0.7537 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3008 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.197431\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - "1271/2000 [==================>...........] - ETA: 12:31 - loss: 0.7533 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3007 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.197388\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - "1272/2000 [==================>...........] - ETA: 12:30 - loss: 0.7534 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3007 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1403 - mrcnn_mask_loss: 0.197475\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - "1273/2000 [==================>...........] - ETA: 12:29 - loss: 0.7531 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3005 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1402 - mrcnn_mask_loss: 0.1973214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - "1274/2000 [==================>...........] - ETA: 12:28 - loss: 0.7528 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3004 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.197367\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - "1275/2000 [==================>...........] - ETA: 12:26 - loss: 0.7524 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3002 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1972306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - "1276/2000 [==================>...........] - ETA: 12:25 - loss: 0.7524 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3002 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1400 - mrcnn_mask_loss: 0.1972119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - "1277/2000 [==================>...........] - ETA: 12:24 - loss: 0.7526 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3003 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1972106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1278/2000 [==================>...........] - ETA: 12:23 - loss: 0.7525 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3002 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1400 - mrcnn_mask_loss: 0.1972395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - "1279/2000 [==================>...........] - ETA: 12:22 - loss: 0.7525 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3001 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1972364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - "1280/2000 [==================>...........] - ETA: 12:21 - loss: 0.7524 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.3000 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1972142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - "1281/2000 [==================>...........] - ETA: 12:20 - loss: 0.7524 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2999 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.197256\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - "1282/2000 [==================>...........] - ETA: 12:19 - loss: 0.7520 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2997 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1400 - mrcnn_mask_loss: 0.1972234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - "1283/2000 [==================>...........] - ETA: 12:18 - loss: 0.7518 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2996 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1400 - mrcnn_mask_loss: 0.197193\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - "1284/2000 [==================>...........] - ETA: 12:17 - loss: 0.7520 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2996 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1400 - mrcnn_mask_loss: 0.1972300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - "1285/2000 [==================>...........] - ETA: 12:16 - loss: 0.7524 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2997 - mrcnn_class_loss: 0.1081 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1972125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - "1286/2000 [==================>...........] - ETA: 12:15 - loss: 0.7525 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2997 - mrcnn_class_loss: 0.1082 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1972323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - "1287/2000 [==================>...........] - ETA: 12:14 - loss: 0.7527 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2998 - mrcnn_class_loss: 0.1082 - mrcnn_bbox_loss: 0.1402 - mrcnn_mask_loss: 0.197341\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - "1288/2000 [==================>...........] - ETA: 12:13 - loss: 0.7525 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2997 - mrcnn_class_loss: 0.1081 - mrcnn_bbox_loss: 0.1402 - mrcnn_mask_loss: 0.197333\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - "1289/2000 [==================>...........] - ETA: 12:12 - loss: 0.7522 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2996 - mrcnn_class_loss: 0.1081 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1972264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - "1290/2000 [==================>...........] - ETA: 12:11 - loss: 0.7520 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2994 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1972208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - "1291/2000 [==================>...........] - ETA: 12:10 - loss: 0.7518 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2993 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.197220\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - "1292/2000 [==================>...........] - ETA: 12:09 - loss: 0.7519 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2994 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1972353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1293/2000 [==================>...........] - ETA: 12:08 - loss: 0.7518 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2993 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1972396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - "1294/2000 [==================>...........] - ETA: 12:07 - loss: 0.7518 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2993 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1971257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - "1295/2000 [==================>...........] - ETA: 12:06 - loss: 0.7520 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2995 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1972167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - "1296/2000 [==================>...........] - ETA: 12:05 - loss: 0.7519 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2994 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1971391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - "1297/2000 [==================>...........] - ETA: 12:04 - loss: 0.7518 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.2994 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1401 - mrcnn_mask_loss: 0.1971124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - "1298/2000 [==================>...........] - ETA: 12:03 - loss: 0.7518 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.2994 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1400 - mrcnn_mask_loss: 0.1971108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - "1299/2000 [==================>...........] - ETA: 12:02 - loss: 0.7515 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.2992 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1400 - mrcnn_mask_loss: 0.1971159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - "1300/2000 [==================>...........] - ETA: 12:01 - loss: 0.7514 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.2992 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1400 - mrcnn_mask_loss: 0.1971230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - "1301/2000 [==================>...........] - ETA: 12:00 - loss: 0.7512 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.2991 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1399 - mrcnn_mask_loss: 0.197054\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - "1302/2000 [==================>...........] - ETA: 11:58 - loss: 0.7509 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.2990 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1398 - mrcnn_mask_loss: 0.1970350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - "1303/2000 [==================>...........] - ETA: 11:57 - loss: 0.7508 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2990 - mrcnn_class_loss: 0.1077 - mrcnn_bbox_loss: 0.1398 - mrcnn_mask_loss: 0.1970398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - "1304/2000 [==================>...........] - ETA: 11:57 - loss: 0.7508 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2991 - mrcnn_class_loss: 0.1077 - mrcnn_bbox_loss: 0.1398 - mrcnn_mask_loss: 0.196938\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - "1305/2000 [==================>...........] - ETA: 11:55 - loss: 0.7510 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2994 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1397 - mrcnn_mask_loss: 0.1969322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - "1306/2000 [==================>...........] - ETA: 11:54 - loss: 0.7511 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2994 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1397 - mrcnn_mask_loss: 0.1969301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - "1307/2000 [==================>...........] - ETA: 11:54 - loss: 0.7514 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2995 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1397 - mrcnn_mask_loss: 0.1970262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1308/2000 [==================>...........] - ETA: 11:53 - loss: 0.7513 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2994 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1397 - mrcnn_mask_loss: 0.1970356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - "1309/2000 [==================>...........] - ETA: 11:52 - loss: 0.7511 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2993 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1396 - mrcnn_mask_loss: 0.1970156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - "1310/2000 [==================>...........] - ETA: 11:51 - loss: 0.7513 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2995 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1397 - mrcnn_mask_loss: 0.1969233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - "1311/2000 [==================>...........] - ETA: 11:50 - loss: 0.7511 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2994 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1396 - mrcnn_mask_loss: 0.1969326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - "1312/2000 [==================>...........] - ETA: 11:49 - loss: 0.7510 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2993 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1396 - mrcnn_mask_loss: 0.196944\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - "1313/2000 [==================>...........] - ETA: 11:48 - loss: 0.7507 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2992 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1395 - mrcnn_mask_loss: 0.1969251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - "1314/2000 [==================>...........] - ETA: 11:46 - loss: 0.7506 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2991 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1395 - mrcnn_mask_loss: 0.196977\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - "1315/2000 [==================>...........] - ETA: 11:45 - loss: 0.7504 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2990 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1395 - mrcnn_mask_loss: 0.1969393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - "1316/2000 [==================>...........] - ETA: 11:44 - loss: 0.7505 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2990 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1395 - mrcnn_mask_loss: 0.196969\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - "1317/2000 [==================>...........] - ETA: 11:43 - loss: 0.7502 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2989 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1394 - mrcnn_mask_loss: 0.1968279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - "1318/2000 [==================>...........] - ETA: 11:42 - loss: 0.7503 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2989 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1394 - mrcnn_mask_loss: 0.1968113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - "1319/2000 [==================>...........] - ETA: 11:41 - loss: 0.7501 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2988 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1394 - mrcnn_mask_loss: 0.1968331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - "1320/2000 [==================>...........] - ETA: 11:40 - loss: 0.7501 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2987 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1394 - mrcnn_mask_loss: 0.1969134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - "1321/2000 [==================>...........] - ETA: 11:39 - loss: 0.7503 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2988 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1394 - mrcnn_mask_loss: 0.1969204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - "1322/2000 [==================>...........] - ETA: 11:38 - loss: 0.7500 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2986 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1393 - mrcnn_mask_loss: 0.1969319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1323/2000 [==================>...........] - ETA: 11:37 - loss: 0.7500 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2987 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1393 - mrcnn_mask_loss: 0.1969268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - "1324/2000 [==================>...........] - ETA: 11:36 - loss: 0.7497 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2986 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1393 - mrcnn_mask_loss: 0.1968244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - "1325/2000 [==================>...........] - ETA: 11:35 - loss: 0.7496 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2985 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1392 - mrcnn_mask_loss: 0.196894\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - "1326/2000 [==================>...........] - ETA: 11:34 - loss: 0.7496 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2986 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1391 - mrcnn_mask_loss: 0.1968202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - "1327/2000 [==================>...........] - ETA: 11:33 - loss: 0.7493 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2984 - mrcnn_class_loss: 0.1079 - mrcnn_bbox_loss: 0.1391 - mrcnn_mask_loss: 0.196872\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - "1328/2000 [==================>...........] - ETA: 11:32 - loss: 0.7491 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2983 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1390 - mrcnn_mask_loss: 0.1967137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - "1329/2000 [==================>...........] - ETA: 11:31 - loss: 0.7491 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2983 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1390 - mrcnn_mask_loss: 0.1968207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - "1330/2000 [==================>...........] - ETA: 11:30 - loss: 0.7488 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2981 - mrcnn_class_loss: 0.1077 - mrcnn_bbox_loss: 0.1390 - mrcnn_mask_loss: 0.1967273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - "1331/2000 [==================>...........] - ETA: 11:29 - loss: 0.7487 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2981 - mrcnn_class_loss: 0.1078 - mrcnn_bbox_loss: 0.1389 - mrcnn_mask_loss: 0.196716\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - "1332/2000 [==================>...........] - ETA: 11:27 - loss: 0.7487 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2982 - mrcnn_class_loss: 0.1077 - mrcnn_bbox_loss: 0.1389 - mrcnn_mask_loss: 0.1967122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - "1333/2000 [==================>...........] - ETA: 11:27 - loss: 0.7487 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2983 - mrcnn_class_loss: 0.1077 - mrcnn_bbox_loss: 0.1389 - mrcnn_mask_loss: 0.1967238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - "1334/2000 [===================>..........] - ETA: 11:25 - loss: 0.7486 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2982 - mrcnn_class_loss: 0.1077 - mrcnn_bbox_loss: 0.1388 - mrcnn_mask_loss: 0.1966104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - "1335/2000 [===================>..........] - ETA: 11:24 - loss: 0.7485 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2980 - mrcnn_class_loss: 0.1077 - mrcnn_bbox_loss: 0.1388 - mrcnn_mask_loss: 0.1967135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - "1336/2000 [===================>..........] - ETA: 11:23 - loss: 0.7485 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2981 - mrcnn_class_loss: 0.1077 - mrcnn_bbox_loss: 0.1388 - mrcnn_mask_loss: 0.19678\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - "1337/2000 [===================>..........] - ETA: 11:22 - loss: 0.7482 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2980 - mrcnn_class_loss: 0.1076 - mrcnn_bbox_loss: 0.1388 - mrcnn_mask_loss: 0.1966206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1338/2000 [===================>..........] - ETA: 11:21 - loss: 0.7478 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2978 - mrcnn_class_loss: 0.1076 - mrcnn_bbox_loss: 0.1387 - mrcnn_mask_loss: 0.1966188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - "1339/2000 [===================>..........] - ETA: 11:20 - loss: 0.7475 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2976 - mrcnn_class_loss: 0.1075 - mrcnn_bbox_loss: 0.1387 - mrcnn_mask_loss: 0.196618\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - "1340/2000 [===================>..........] - ETA: 11:19 - loss: 0.7475 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2978 - mrcnn_class_loss: 0.1074 - mrcnn_bbox_loss: 0.1386 - mrcnn_mask_loss: 0.1965388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - "1341/2000 [===================>..........] - ETA: 11:18 - loss: 0.7475 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2978 - mrcnn_class_loss: 0.1073 - mrcnn_bbox_loss: 0.1386 - mrcnn_mask_loss: 0.1965347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - "1342/2000 [===================>..........] - ETA: 11:17 - loss: 0.7475 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2979 - mrcnn_class_loss: 0.1073 - mrcnn_bbox_loss: 0.1386 - mrcnn_mask_loss: 0.1965216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - "1343/2000 [===================>..........] - ETA: 11:16 - loss: 0.7472 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2978 - mrcnn_class_loss: 0.1072 - mrcnn_bbox_loss: 0.1386 - mrcnn_mask_loss: 0.1964351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - "1344/2000 [===================>..........] - ETA: 11:15 - loss: 0.7470 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2977 - mrcnn_class_loss: 0.1071 - mrcnn_bbox_loss: 0.1385 - mrcnn_mask_loss: 0.196583\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - "1345/2000 [===================>..........] - ETA: 11:14 - loss: 0.7469 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2975 - mrcnn_class_loss: 0.1072 - mrcnn_bbox_loss: 0.1385 - mrcnn_mask_loss: 0.1965371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - "1346/2000 [===================>..........] - ETA: 11:12 - loss: 0.7467 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2974 - mrcnn_class_loss: 0.1072 - mrcnn_bbox_loss: 0.1385 - mrcnn_mask_loss: 0.1965190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - "1347/2000 [===================>..........] - ETA: 11:11 - loss: 0.7464 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2973 - mrcnn_class_loss: 0.1071 - mrcnn_bbox_loss: 0.1385 - mrcnn_mask_loss: 0.1964259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - "1348/2000 [===================>..........] - ETA: 11:10 - loss: 0.7467 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2975 - mrcnn_class_loss: 0.1071 - mrcnn_bbox_loss: 0.1385 - mrcnn_mask_loss: 0.196552\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - "1349/2000 [===================>..........] - ETA: 11:09 - loss: 0.7464 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2973 - mrcnn_class_loss: 0.1070 - mrcnn_bbox_loss: 0.1384 - mrcnn_mask_loss: 0.1964199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - "1350/2000 [===================>..........] - ETA: 11:08 - loss: 0.7463 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2973 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1384 - mrcnn_mask_loss: 0.196465\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - "1351/2000 [===================>..........] - ETA: 11:07 - loss: 0.7461 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2972 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1384 - mrcnn_mask_loss: 0.196459\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - "1352/2000 [===================>..........] - ETA: 11:06 - loss: 0.7461 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2973 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1383 - mrcnn_mask_loss: 0.196468\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - "1353/2000 [===================>..........] - ETA: 11:05 - loss: 0.7459 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2971 - mrcnn_class_loss: 0.1070 - mrcnn_bbox_loss: 0.1382 - mrcnn_mask_loss: 0.1963248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - "1354/2000 [===================>..........] - ETA: 11:04 - loss: 0.7458 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2970 - mrcnn_class_loss: 0.1070 - mrcnn_bbox_loss: 0.1382 - mrcnn_mask_loss: 0.196363\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - "1355/2000 [===================>..........] - ETA: 11:02 - loss: 0.7455 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2969 - mrcnn_class_loss: 0.1070 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.196323\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - "1356/2000 [===================>..........] - ETA: 11:01 - loss: 0.7453 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2969 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1963220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - "1357/2000 [===================>..........] - ETA: 11:00 - loss: 0.7452 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2968 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1963109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - "1358/2000 [===================>..........] - ETA: 10:59 - loss: 0.7451 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2967 - mrcnn_class_loss: 0.1070 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1963192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - "1359/2000 [===================>..........] - ETA: 10:58 - loss: 0.7448 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2965 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1962312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - "1360/2000 [===================>..........] - ETA: 10:57 - loss: 0.7449 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2965 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1962136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - "1361/2000 [===================>..........] - ETA: 10:56 - loss: 0.7447 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2964 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1962101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - "1362/2000 [===================>..........] - ETA: 10:55 - loss: 0.7446 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2964 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1962224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - "1363/2000 [===================>..........] - ETA: 10:54 - loss: 0.7444 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2962 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.196195\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - "1364/2000 [===================>..........] - ETA: 10:53 - loss: 0.7444 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2964 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1379 - mrcnn_mask_loss: 0.196113\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - "1365/2000 [===================>..........] - ETA: 10:52 - loss: 0.7442 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2963 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1379 - mrcnn_mask_loss: 0.1961153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - "1366/2000 [===================>..........] - ETA: 10:51 - loss: 0.7443 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2965 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1379 - mrcnn_mask_loss: 0.1960227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - "1367/2000 [===================>..........] - ETA: 10:50 - loss: 0.7442 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2963 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1379 - mrcnn_mask_loss: 0.1961146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1368/2000 [===================>..........] - ETA: 10:49 - loss: 0.7442 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2963 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1379 - mrcnn_mask_loss: 0.1961360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - "1369/2000 [===================>..........] - ETA: 10:48 - loss: 0.7444 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2964 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1961229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - "1370/2000 [===================>..........] - ETA: 10:47 - loss: 0.7445 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2963 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1962195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - "1371/2000 [===================>..........] - ETA: 10:46 - loss: 0.7442 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1962328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - "1372/2000 [===================>..........] - ETA: 10:45 - loss: 0.7441 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.196280\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - "1373/2000 [===================>..........] - ETA: 10:44 - loss: 0.7443 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2962 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1961130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - "1374/2000 [===================>..........] - ETA: 10:43 - loss: 0.7444 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2963 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1961376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - "1375/2000 [===================>..........] - ETA: 10:42 - loss: 0.7443 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2962 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - "1376/2000 [===================>..........] - ETA: 10:41 - loss: 0.7444 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2963 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - "1377/2000 [===================>..........] - ETA: 10:40 - loss: 0.7442 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2962 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - "1378/2000 [===================>..........] - ETA: 10:39 - loss: 0.7442 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - "1379/2000 [===================>..........] - ETA: 10:38 - loss: 0.7444 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1960284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - "1380/2000 [===================>..........] - ETA: 10:37 - loss: 0.7444 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2962 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.196086\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - "1381/2000 [===================>..........] - ETA: 10:36 - loss: 0.7444 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1382 - mrcnn_mask_loss: 0.1961110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - "1382/2000 [===================>..........] - ETA: 10:34 - loss: 0.7445 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - "1383/2000 [===================>..........] - ETA: 10:33 - loss: 0.7445 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2962 - mrcnn_class_loss: 0.1070 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - "1384/2000 [===================>..........] - ETA: 10:33 - loss: 0.7445 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2962 - mrcnn_class_loss: 0.1070 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - "1385/2000 [===================>..........] - ETA: 10:31 - loss: 0.7447 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1072 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - "1386/2000 [===================>..........] - ETA: 10:31 - loss: 0.7445 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2960 - mrcnn_class_loss: 0.1072 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - "1387/2000 [===================>..........] - ETA: 10:30 - loss: 0.7445 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2960 - mrcnn_class_loss: 0.1071 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - "1388/2000 [===================>..........] - ETA: 10:29 - loss: 0.7446 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2960 - mrcnn_class_loss: 0.1073 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - "1389/2000 [===================>..........] - ETA: 10:27 - loss: 0.7444 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2959 - mrcnn_class_loss: 0.1072 - mrcnn_bbox_loss: 0.1381 - mrcnn_mask_loss: 0.1961349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - "1390/2000 [===================>..........] - ETA: 10:26 - loss: 0.7444 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2959 - mrcnn_class_loss: 0.1072 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1960303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - "1391/2000 [===================>..........] - ETA: 10:26 - loss: 0.7443 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2959 - mrcnn_class_loss: 0.1072 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1960255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - "1392/2000 [===================>..........] - ETA: 10:25 - loss: 0.7441 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2959 - mrcnn_class_loss: 0.1071 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1960212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - "1393/2000 [===================>..........] - ETA: 10:23 - loss: 0.7439 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2957 - mrcnn_class_loss: 0.1071 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1960387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - "1394/2000 [===================>..........] - ETA: 10:22 - loss: 0.7438 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2957 - mrcnn_class_loss: 0.1070 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1959201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - "1395/2000 [===================>..........] - ETA: 10:21 - loss: 0.7436 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2956 - mrcnn_class_loss: 0.1070 - mrcnn_bbox_loss: 0.1379 - mrcnn_mask_loss: 0.1959260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1396/2000 [===================>..........] - ETA: 10:20 - loss: 0.7436 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2955 - mrcnn_class_loss: 0.1070 - mrcnn_bbox_loss: 0.1380 - mrcnn_mask_loss: 0.1960286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - "1397/2000 [===================>..........] - ETA: 10:19 - loss: 0.7436 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2955 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1379 - mrcnn_mask_loss: 0.1961176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - "1398/2000 [===================>..........] - ETA: 10:18 - loss: 0.7436 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2956 - mrcnn_class_loss: 0.1069 - mrcnn_bbox_loss: 0.1379 - mrcnn_mask_loss: 0.1961236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - "1399/2000 [===================>..........] - ETA: 10:17 - loss: 0.7434 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2954 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1378 - mrcnn_mask_loss: 0.196111\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - "1400/2000 [====================>.........] - ETA: 10:16 - loss: 0.7434 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2956 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1378 - mrcnn_mask_loss: 0.1961154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - "1401/2000 [====================>.........] - ETA: 10:15 - loss: 0.7435 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2957 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1378 - mrcnn_mask_loss: 0.1961382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - "1402/2000 [====================>.........] - ETA: 10:14 - loss: 0.7434 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2956 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1378 - mrcnn_mask_loss: 0.1961318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - "1403/2000 [====================>.........] - ETA: 10:13 - loss: 0.7434 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2956 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1378 - mrcnn_mask_loss: 0.196132\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - "1404/2000 [====================>.........] - ETA: 10:12 - loss: 0.7432 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2956 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1377 - mrcnn_mask_loss: 0.1960232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - "1405/2000 [====================>.........] - ETA: 10:11 - loss: 0.7432 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2955 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1377 - mrcnn_mask_loss: 0.196034\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - "1406/2000 [====================>.........] - ETA: 10:10 - loss: 0.7430 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2954 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1377 - mrcnn_mask_loss: 0.1960330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - "1407/2000 [====================>.........] - ETA: 10:09 - loss: 0.7428 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2954 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1377 - mrcnn_mask_loss: 0.1960267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - "1408/2000 [====================>.........] - ETA: 10:08 - loss: 0.7427 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2953 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.1961149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - "1409/2000 [====================>.........] - ETA: 10:07 - loss: 0.7427 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2953 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1377 - mrcnn_mask_loss: 0.1960385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - "1410/2000 [====================>.........] - ETA: 10:06 - loss: 0.7429 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2954 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1377 - mrcnn_mask_loss: 0.1960359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1411/2000 [====================>.........] - ETA: 10:05 - loss: 0.7428 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2954 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1377 - mrcnn_mask_loss: 0.1961392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - "1412/2000 [====================>.........] - ETA: 10:04 - loss: 0.7426 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2953 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1377 - mrcnn_mask_loss: 0.1960337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - "1413/2000 [====================>.........] - ETA: 10:03 - loss: 0.7428 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2954 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.196192\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - "1414/2000 [====================>.........] - ETA: 10:02 - loss: 0.7427 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2954 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.1960179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - "1415/2000 [====================>.........] - ETA: 10:01 - loss: 0.7428 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2955 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.1960399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - "1416/2000 [====================>.........] - ETA: 10:00 - loss: 0.7436 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2964 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.1960365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - "1417/2000 [====================>.........] - ETA: 9:59 - loss: 0.7438 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2963 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1377 - mrcnn_mask_loss: 0.1960 200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - "1418/2000 [====================>.........] - ETA: 9:58 - loss: 0.7436 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2962 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.1959311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - "1419/2000 [====================>.........] - ETA: 9:57 - loss: 0.7437 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2963 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.1960296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - "1420/2000 [====================>.........] - ETA: 9:56 - loss: 0.7436 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2963 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.195949\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - "1421/2000 [====================>.........] - ETA: 9:55 - loss: 0.7434 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2962 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - "1422/2000 [====================>.........] - ETA: 9:54 - loss: 0.7434 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2962 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - "1423/2000 [====================>.........] - ETA: 9:53 - loss: 0.7434 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - "1424/2000 [====================>.........] - ETA: 9:52 - loss: 0.7432 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2960 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.1959226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - "1425/2000 [====================>.........] - ETA: 9:51 - loss: 0.7429 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1958302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1426/2000 [====================>.........] - ETA: 9:50 - loss: 0.7429 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - "1427/2000 [====================>.........] - ETA: 9:49 - loss: 0.7431 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2959 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - "1428/2000 [====================>.........] - ETA: 9:48 - loss: 0.7431 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2957 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - "1429/2000 [====================>.........] - ETA: 9:47 - loss: 0.7430 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2957 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - "1430/2000 [====================>.........] - ETA: 9:46 - loss: 0.7432 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.1959127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - "1431/2000 [====================>.........] - ETA: 9:45 - loss: 0.7434 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2959 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.1959213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - "1432/2000 [====================>.........] - ETA: 9:44 - loss: 0.7431 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2957 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - "1433/2000 [====================>.........] - ETA: 9:43 - loss: 0.7430 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2957 - mrcnn_class_loss: 0.1068 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - "1434/2000 [====================>.........] - ETA: 9:42 - loss: 0.7429 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2956 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.195915\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - "1435/2000 [====================>.........] - ETA: 9:41 - loss: 0.7430 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - "1436/2000 [====================>.........] - ETA: 9:40 - loss: 0.7430 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - "1437/2000 [====================>.........] - ETA: 9:39 - loss: 0.7428 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2957 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1959333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - "1438/2000 [====================>.........] - ETA: 9:38 - loss: 0.7427 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2956 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1375 - mrcnn_mask_loss: 0.1958180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - "1439/2000 [====================>.........] - ETA: 9:37 - loss: 0.7428 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1374 - mrcnn_mask_loss: 0.1958289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - "1440/2000 [====================>.........] - ETA: 9:36 - loss: 0.7428 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1374 - mrcnn_mask_loss: 0.19587\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - "1441/2000 [====================>.........] - ETA: 9:35 - loss: 0.7426 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2957 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1374 - mrcnn_mask_loss: 0.19580\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - "1442/2000 [====================>.........] - ETA: 9:34 - loss: 0.7427 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2957 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1374 - mrcnn_mask_loss: 0.1958321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - "1443/2000 [====================>.........] - ETA: 9:33 - loss: 0.7428 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1374 - mrcnn_mask_loss: 0.195999\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - "1444/2000 [====================>.........] - ETA: 9:32 - loss: 0.7431 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2962 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.1958205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - "1445/2000 [====================>.........] - ETA: 9:31 - loss: 0.7429 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.1958386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - "1446/2000 [====================>.........] - ETA: 9:30 - loss: 0.7428 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2960 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.1958161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - "1447/2000 [====================>.........] - ETA: 9:29 - loss: 0.7429 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.195814\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - "1448/2000 [====================>.........] - ETA: 9:28 - loss: 0.7427 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.1958169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - "1449/2000 [====================>.........] - ETA: 9:27 - loss: 0.7427 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2961 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.1957254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - "1450/2000 [====================>.........] - ETA: 9:26 - loss: 0.7427 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2960 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.1958166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - "1451/2000 [====================>.........] - ETA: 9:25 - loss: 0.7426 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2959 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.195853\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - "1452/2000 [====================>.........] - ETA: 9:24 - loss: 0.7424 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.1957158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - "1453/2000 [====================>.........] - ETA: 9:23 - loss: 0.7425 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.1957362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - "1454/2000 [====================>.........] - ETA: 9:22 - loss: 0.7426 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2959 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.195742\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1455/2000 [====================>.........] - ETA: 9:21 - loss: 0.7424 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1373 - mrcnn_mask_loss: 0.19572\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - "1456/2000 [====================>.........] - ETA: 9:20 - loss: 0.7423 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1372 - mrcnn_mask_loss: 0.195773\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - "1457/2000 [====================>.........] - ETA: 9:19 - loss: 0.7421 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1372 - mrcnn_mask_loss: 0.1956209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - "1458/2000 [====================>.........] - ETA: 9:18 - loss: 0.7420 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2956 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1371 - mrcnn_mask_loss: 0.1956140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - "1459/2000 [====================>.........] - ETA: 9:17 - loss: 0.7420 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2956 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1371 - mrcnn_mask_loss: 0.195664\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - "1460/2000 [====================>.........] - ETA: 9:16 - loss: 0.7417 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2955 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1371 - mrcnn_mask_loss: 0.1956293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - "1461/2000 [====================>.........] - ETA: 9:15 - loss: 0.7417 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2955 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1371 - mrcnn_mask_loss: 0.195562\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - "1462/2000 [====================>.........] - ETA: 9:14 - loss: 0.7416 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2954 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1370 - mrcnn_mask_loss: 0.1955115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - "1463/2000 [====================>.........] - ETA: 9:13 - loss: 0.7416 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2953 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1371 - mrcnn_mask_loss: 0.195540\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - "1464/2000 [====================>.........] - ETA: 9:12 - loss: 0.7414 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2953 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1371 - mrcnn_mask_loss: 0.195576\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - "1465/2000 [====================>.........] - ETA: 9:11 - loss: 0.7413 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2952 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1370 - mrcnn_mask_loss: 0.1955157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - "1466/2000 [====================>.........] - ETA: 9:10 - loss: 0.7413 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2952 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1370 - mrcnn_mask_loss: 0.195596\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - "1467/2000 [=====================>........] - ETA: 9:09 - loss: 0.7412 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2952 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1369 - mrcnn_mask_loss: 0.1955198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - "1468/2000 [=====================>........] - ETA: 9:08 - loss: 0.7410 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2951 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1369 - mrcnn_mask_loss: 0.195547\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - "1469/2000 [=====================>........] - ETA: 9:07 - loss: 0.7407 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2950 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1369 - mrcnn_mask_loss: 0.195430\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - "1470/2000 [=====================>........] - ETA: 9:06 - loss: 0.7405 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2950 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1368 - mrcnn_mask_loss: 0.19543\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - "1471/2000 [=====================>........] - ETA: 9:05 - loss: 0.7405 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2950 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.195479\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - "1472/2000 [=====================>........] - ETA: 9:04 - loss: 0.7403 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2950 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.195429\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - "1473/2000 [=====================>........] - ETA: 9:02 - loss: 0.7401 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2949 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1953170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - "1474/2000 [=====================>........] - ETA: 9:01 - loss: 0.7401 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2948 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1953148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - "1475/2000 [=====================>........] - ETA: 9:00 - loss: 0.7401 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2948 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1368 - mrcnn_mask_loss: 0.1953174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - "1476/2000 [=====================>........] - ETA: 8:59 - loss: 0.7401 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2948 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1368 - mrcnn_mask_loss: 0.1953373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - "1477/2000 [=====================>........] - ETA: 8:58 - loss: 0.7399 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2946 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1953111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - "1478/2000 [=====================>........] - ETA: 8:57 - loss: 0.7402 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2946 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1368 - mrcnn_mask_loss: 0.1953313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - "1479/2000 [=====================>........] - ETA: 8:56 - loss: 0.7400 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2946 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.195345\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - "1480/2000 [=====================>........] - ETA: 8:55 - loss: 0.7398 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1952228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - "1481/2000 [=====================>........] - ETA: 8:54 - loss: 0.7398 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1368 - mrcnn_mask_loss: 0.1953374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - "1482/2000 [=====================>........] - ETA: 8:53 - loss: 0.7396 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1952348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - "1483/2000 [=====================>........] - ETA: 8:52 - loss: 0.7395 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1952294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - "1484/2000 [=====================>........] - ETA: 8:51 - loss: 0.7397 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1952281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1485/2000 [=====================>........] - ETA: 8:50 - loss: 0.7399 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1952274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - "1486/2000 [=====================>........] - ETA: 8:49 - loss: 0.7399 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1952358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - "1487/2000 [=====================>........] - ETA: 8:49 - loss: 0.7398 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1951152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - "1488/2000 [=====================>........] - ETA: 8:48 - loss: 0.7402 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2945 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1951239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - "1489/2000 [=====================>........] - ETA: 8:46 - loss: 0.7401 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.195170\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - "1490/2000 [=====================>........] - ETA: 8:45 - loss: 0.7399 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1066 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1951197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - "1491/2000 [=====================>........] - ETA: 8:44 - loss: 0.7396 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1065 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1951185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - "1492/2000 [=====================>........] - ETA: 8:43 - loss: 0.7394 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2941 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1951210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - "1493/2000 [=====================>........] - ETA: 8:42 - loss: 0.7392 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2940 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.195037\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - "1494/2000 [=====================>........] - ETA: 8:41 - loss: 0.7396 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1950178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - "1495/2000 [=====================>........] - ETA: 8:40 - loss: 0.7397 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1950155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - "1496/2000 [=====================>........] - ETA: 8:39 - loss: 0.7398 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2945 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1950182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - "1497/2000 [=====================>........] - ETA: 8:38 - loss: 0.7396 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1950354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - "1498/2000 [=====================>........] - ETA: 8:37 - loss: 0.7394 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1949352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - "1499/2000 [=====================>........] - ETA: 8:36 - loss: 0.7394 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1949163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1500/2000 [=====================>........] - ETA: 8:35 - loss: 0.7394 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1949223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - "1501/2000 [=====================>........] - ETA: 8:34 - loss: 0.7391 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1949219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - "1502/2000 [=====================>........] - ETA: 8:33 - loss: 0.7391 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1948105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - "1503/2000 [=====================>........] - ETA: 8:32 - loss: 0.7392 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.194821\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - "1504/2000 [=====================>........] - ETA: 8:31 - loss: 0.7392 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1948139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - "1505/2000 [=====================>........] - ETA: 8:30 - loss: 0.7396 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2945 - mrcnn_class_loss: 0.1064 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1949242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - "1506/2000 [=====================>........] - ETA: 8:29 - loss: 0.7395 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1949160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - "1507/2000 [=====================>........] - ETA: 8:28 - loss: 0.7396 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1949150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - "1508/2000 [=====================>........] - ETA: 8:27 - loss: 0.7396 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2945 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.194943\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - "1509/2000 [=====================>........] - ETA: 8:26 - loss: 0.7394 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1367 - mrcnn_mask_loss: 0.1948394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - "1510/2000 [=====================>........] - ETA: 8:25 - loss: 0.7393 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1063 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1948144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - "1511/2000 [=====================>........] - ETA: 8:24 - loss: 0.7392 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1948187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - "1512/2000 [=====================>........] - ETA: 8:23 - loss: 0.7390 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1948237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - "1513/2000 [=====================>........] - ETA: 8:22 - loss: 0.7388 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2941 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1947367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - "1514/2000 [=====================>........] - ETA: 8:21 - loss: 0.7388 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2941 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1947245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1515/2000 [=====================>........] - ETA: 8:19 - loss: 0.7386 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2939 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1947252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - "1516/2000 [=====================>........] - ETA: 8:18 - loss: 0.7384 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2938 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1947165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - "1517/2000 [=====================>........] - ETA: 8:17 - loss: 0.7384 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2939 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1947309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - "1518/2000 [=====================>........] - ETA: 8:16 - loss: 0.7384 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2939 - mrcnn_class_loss: 0.1060 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.194784\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - "1519/2000 [=====================>........] - ETA: 8:15 - loss: 0.7381 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2937 - mrcnn_class_loss: 0.1060 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1946278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - "1520/2000 [=====================>........] - ETA: 8:14 - loss: 0.7383 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2938 - mrcnn_class_loss: 0.1060 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.1946295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - "1521/2000 [=====================>........] - ETA: 8:13 - loss: 0.7383 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2938 - mrcnn_class_loss: 0.1061 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.194674\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - "1522/2000 [=====================>........] - ETA: 8:12 - loss: 0.7381 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2937 - mrcnn_class_loss: 0.1060 - mrcnn_bbox_loss: 0.1366 - mrcnn_mask_loss: 0.194517\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - "1523/2000 [=====================>........] - ETA: 8:11 - loss: 0.7381 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2939 - mrcnn_class_loss: 0.1060 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1945183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - "1524/2000 [=====================>........] - ETA: 8:10 - loss: 0.7380 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2939 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1945340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - "1525/2000 [=====================>........] - ETA: 8:09 - loss: 0.7382 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2940 - mrcnn_class_loss: 0.1060 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1945132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - "1526/2000 [=====================>........] - ETA: 8:08 - loss: 0.7383 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2940 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.194528\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - "1527/2000 [=====================>........] - ETA: 8:07 - loss: 0.7380 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2940 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.194557\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - "1528/2000 [=====================>........] - ETA: 8:06 - loss: 0.7380 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2941 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1364 - mrcnn_mask_loss: 0.1944380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - "1529/2000 [=====================>........] - ETA: 8:05 - loss: 0.7383 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1944368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1530/2000 [=====================>........] - ETA: 8:04 - loss: 0.7383 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1944324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - "1531/2000 [=====================>........] - ETA: 8:03 - loss: 0.7383 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1364 - mrcnn_mask_loss: 0.1944240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - "1532/2000 [=====================>........] - ETA: 8:02 - loss: 0.7385 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1945280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - "1533/2000 [=====================>........] - ETA: 8:01 - loss: 0.7386 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2945 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1945276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - "1534/2000 [======================>.......] - ETA: 8:00 - loss: 0.7387 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2946 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1945217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - "1535/2000 [======================>.......] - ETA: 7:59 - loss: 0.7386 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2946 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1944249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - "1536/2000 [======================>.......] - ETA: 7:58 - loss: 0.7386 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2945 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.194527\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - "1537/2000 [======================>.......] - ETA: 7:57 - loss: 0.7385 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2945 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.194412\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - "1538/2000 [======================>.......] - ETA: 7:56 - loss: 0.7384 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2946 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.194450\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - "1539/2000 [======================>.......] - ETA: 7:55 - loss: 0.7382 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2945 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1364 - mrcnn_mask_loss: 0.1944231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - "1540/2000 [======================>.......] - ETA: 7:54 - loss: 0.7380 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1364 - mrcnn_mask_loss: 0.1943147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - "1541/2000 [======================>.......] - ETA: 7:53 - loss: 0.7380 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1364 - mrcnn_mask_loss: 0.1943141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - "1542/2000 [======================>.......] - ETA: 7:52 - loss: 0.7380 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1943243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - "1543/2000 [======================>.......] - ETA: 7:51 - loss: 0.7380 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.194419\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - "1544/2000 [======================>.......] - ETA: 7:50 - loss: 0.7380 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1943320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1545/2000 [======================>.......] - ETA: 7:49 - loss: 0.7380 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1944173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - "1546/2000 [======================>.......] - ETA: 7:48 - loss: 0.7378 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1944117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - "1547/2000 [======================>.......] - ETA: 7:47 - loss: 0.7377 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1365 - mrcnn_mask_loss: 0.1944126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - "1548/2000 [======================>.......] - ETA: 7:46 - loss: 0.7378 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1364 - mrcnn_mask_loss: 0.1943258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - "1549/2000 [======================>.......] - ETA: 7:45 - loss: 0.7378 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2943 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1364 - mrcnn_mask_loss: 0.194451\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - "1550/2000 [======================>.......] - ETA: 7:44 - loss: 0.7377 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1364 - mrcnn_mask_loss: 0.1944288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - "1551/2000 [======================>.......] - ETA: 7:43 - loss: 0.7379 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1364 - mrcnn_mask_loss: 0.1943171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - "1552/2000 [======================>.......] - ETA: 7:42 - loss: 0.7377 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2941 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1363 - mrcnn_mask_loss: 0.1943116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - "1553/2000 [======================>.......] - ETA: 7:41 - loss: 0.7378 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2941 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1364 - mrcnn_mask_loss: 0.194339\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - "1554/2000 [======================>.......] - ETA: 7:39 - loss: 0.7380 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2944 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1364 - mrcnn_mask_loss: 0.194387\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - "1555/2000 [======================>.......] - ETA: 7:38 - loss: 0.7378 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1363 - mrcnn_mask_loss: 0.1943118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - "1556/2000 [======================>.......] - ETA: 7:37 - loss: 0.7379 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1363 - mrcnn_mask_loss: 0.194371\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - "1557/2000 [======================>.......] - ETA: 7:36 - loss: 0.7377 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2941 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1363 - mrcnn_mask_loss: 0.1943215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - "1558/2000 [======================>.......] - ETA: 7:35 - loss: 0.7374 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2940 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1362 - mrcnn_mask_loss: 0.194398\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - "1559/2000 [======================>.......] - ETA: 7:34 - loss: 0.7375 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1362 - mrcnn_mask_loss: 0.1942282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1560/2000 [======================>.......] - ETA: 7:33 - loss: 0.7376 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2941 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1362 - mrcnn_mask_loss: 0.1942298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - "1561/2000 [======================>.......] - ETA: 7:32 - loss: 0.7376 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1362 - mrcnn_mask_loss: 0.1943291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - "1562/2000 [======================>.......] - ETA: 7:31 - loss: 0.7376 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2942 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1362 - mrcnn_mask_loss: 0.1943335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - "1563/2000 [======================>.......] - ETA: 7:30 - loss: 0.7374 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2941 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1362 - mrcnn_mask_loss: 0.194378\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - "1564/2000 [======================>.......] - ETA: 7:29 - loss: 0.7373 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2941 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1361 - mrcnn_mask_loss: 0.1942189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - "1565/2000 [======================>.......] - ETA: 7:28 - loss: 0.7372 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2940 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1361 - mrcnn_mask_loss: 0.194224\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - "1566/2000 [======================>.......] - ETA: 7:27 - loss: 0.7369 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2939 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1360 - mrcnn_mask_loss: 0.194285\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - "1567/2000 [======================>.......] - ETA: 7:26 - loss: 0.7370 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2938 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1360 - mrcnn_mask_loss: 0.1942299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - "1568/2000 [======================>.......] - ETA: 7:25 - loss: 0.7372 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2939 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1360 - mrcnn_mask_loss: 0.19425\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - "1569/2000 [======================>.......] - ETA: 7:24 - loss: 0.7369 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2938 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1360 - mrcnn_mask_loss: 0.1942315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - "1570/2000 [======================>.......] - ETA: 7:23 - loss: 0.7369 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2937 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1360 - mrcnn_mask_loss: 0.194210\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - "1571/2000 [======================>.......] - ETA: 7:22 - loss: 0.7366 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2936 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1359 - mrcnn_mask_loss: 0.1942131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - "1572/2000 [======================>.......] - ETA: 7:21 - loss: 0.7369 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2937 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1359 - mrcnn_mask_loss: 0.1941193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - "1573/2000 [======================>.......] - ETA: 7:20 - loss: 0.7366 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2936 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1359 - mrcnn_mask_loss: 0.1941355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - "1574/2000 [======================>.......] - ETA: 7:19 - loss: 0.7364 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2935 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1359 - mrcnn_mask_loss: 0.1941372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1575/2000 [======================>.......] - ETA: 7:18 - loss: 0.7363 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2934 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1359 - mrcnn_mask_loss: 0.1941366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - "1576/2000 [======================>.......] - ETA: 7:17 - loss: 0.7364 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2935 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1359 - mrcnn_mask_loss: 0.1941343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - "1577/2000 [======================>.......] - ETA: 7:16 - loss: 0.7363 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2934 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1359 - mrcnn_mask_loss: 0.1941325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - "1578/2000 [======================>.......] - ETA: 7:15 - loss: 0.7363 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2934 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1358 - mrcnn_mask_loss: 0.1941375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - "1579/2000 [======================>.......] - ETA: 7:14 - loss: 0.7362 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2933 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1358 - mrcnn_mask_loss: 0.1941218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - "1580/2000 [======================>.......] - ETA: 7:13 - loss: 0.7360 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2932 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1358 - mrcnn_mask_loss: 0.1941384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - "1581/2000 [======================>.......] - ETA: 7:12 - loss: 0.7359 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2931 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1358 - mrcnn_mask_loss: 0.1941377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - "1582/2000 [======================>.......] - ETA: 7:11 - loss: 0.7358 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2931 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1357 - mrcnn_mask_loss: 0.1940342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - "1583/2000 [======================>.......] - ETA: 7:10 - loss: 0.7357 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2931 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1357 - mrcnn_mask_loss: 0.194060\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - "1584/2000 [======================>.......] - ETA: 7:08 - loss: 0.7359 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2933 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1357 - mrcnn_mask_loss: 0.1940275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - "1585/2000 [======================>.......] - ETA: 7:07 - loss: 0.7358 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2933 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1357 - mrcnn_mask_loss: 0.1940316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - "1586/2000 [======================>.......] - ETA: 7:07 - loss: 0.7357 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2932 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1356 - mrcnn_mask_loss: 0.19401\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - "1587/2000 [======================>.......] - ETA: 7:05 - loss: 0.7357 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2932 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1356 - mrcnn_mask_loss: 0.1940261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - "1588/2000 [======================>.......] - ETA: 7:04 - loss: 0.7357 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2931 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1356 - mrcnn_mask_loss: 0.1940338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - "1589/2000 [======================>.......] - ETA: 7:03 - loss: 0.7357 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2931 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1356 - mrcnn_mask_loss: 0.1940181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - "1590/2000 [======================>.......] - ETA: 7:02 - loss: 0.7356 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2931 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1356 - mrcnn_mask_loss: 0.194081\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - "1591/2000 [======================>.......] - ETA: 7:01 - loss: 0.7355 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2930 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1356 - mrcnn_mask_loss: 0.1940120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - "1592/2000 [======================>.......] - ETA: 7:00 - loss: 0.7356 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2930 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1356 - mrcnn_mask_loss: 0.194066\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - "1593/2000 [======================>.......] - ETA: 6:59 - loss: 0.7353 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2929 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1356 - mrcnn_mask_loss: 0.194036\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - "1594/2000 [======================>.......] - ETA: 6:58 - loss: 0.7354 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2930 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1356 - mrcnn_mask_loss: 0.194089\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - "1595/2000 [======================>.......] - ETA: 6:57 - loss: 0.7354 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2930 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1355 - mrcnn_mask_loss: 0.1939336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - "1596/2000 [======================>.......] - ETA: 6:56 - loss: 0.7353 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2930 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1355 - mrcnn_mask_loss: 0.1940112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - "1597/2000 [======================>.......] - ETA: 6:55 - loss: 0.7353 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2929 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1354 - mrcnn_mask_loss: 0.194082\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - "1598/2000 [======================>.......] - ETA: 6:54 - loss: 0.7351 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2928 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1354 - mrcnn_mask_loss: 0.1940129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - "1599/2000 [======================>.......] - ETA: 6:53 - loss: 0.7352 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2929 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1355 - mrcnn_mask_loss: 0.194061\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - "1600/2000 [=======================>......] - ETA: 6:52 - loss: 0.7350 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2928 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1354 - mrcnn_mask_loss: 0.1940146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - "1601/2000 [=======================>......] - ETA: 6:51 - loss: 0.7350 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2928 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1354 - mrcnn_mask_loss: 0.1939231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - "1602/2000 [=======================>......] - ETA: 6:50 - loss: 0.7350 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2927 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1354 - mrcnn_mask_loss: 0.193944\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - "1603/2000 [=======================>......] - ETA: 6:49 - loss: 0.7347 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2925 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1354 - mrcnn_mask_loss: 0.193939\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1604/2000 [=======================>......] - ETA: 6:48 - loss: 0.7348 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2927 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1353 - mrcnn_mask_loss: 0.1939395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - "1605/2000 [=======================>......] - ETA: 6:47 - loss: 0.7348 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2927 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1353 - mrcnn_mask_loss: 0.1939162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - "1606/2000 [=======================>......] - ETA: 6:46 - loss: 0.7346 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2927 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1353 - mrcnn_mask_loss: 0.1939140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - "1607/2000 [=======================>......] - ETA: 6:45 - loss: 0.7346 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2926 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1354 - mrcnn_mask_loss: 0.19388\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - "1608/2000 [=======================>......] - ETA: 6:44 - loss: 0.7345 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2926 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1353 - mrcnn_mask_loss: 0.1938261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - "1609/2000 [=======================>......] - ETA: 6:43 - loss: 0.7345 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2926 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1353 - mrcnn_mask_loss: 0.193845\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - "1610/2000 [=======================>......] - ETA: 6:42 - loss: 0.7343 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2924 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1352 - mrcnn_mask_loss: 0.1938189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - "1611/2000 [=======================>......] - ETA: 6:41 - loss: 0.7341 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2923 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1352 - mrcnn_mask_loss: 0.1937226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - "1612/2000 [=======================>......] - ETA: 6:40 - loss: 0.7338 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2922 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1352 - mrcnn_mask_loss: 0.1937340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - "1613/2000 [=======================>......] - ETA: 6:39 - loss: 0.7338 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2922 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1352 - mrcnn_mask_loss: 0.193783\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - "1614/2000 [=======================>......] - ETA: 6:38 - loss: 0.7337 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2920 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1351 - mrcnn_mask_loss: 0.1937397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - "1615/2000 [=======================>......] - ETA: 6:36 - loss: 0.7336 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2920 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1351 - mrcnn_mask_loss: 0.193753\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - "1616/2000 [=======================>......] - ETA: 6:35 - loss: 0.7334 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2919 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1351 - mrcnn_mask_loss: 0.1937327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n", - "1617/2000 [=======================>......] - ETA: 6:34 - loss: 0.7334 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2919 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1351 - mrcnn_mask_loss: 0.1937348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - "1618/2000 [=======================>......] - ETA: 6:33 - loss: 0.7335 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2920 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1351 - mrcnn_mask_loss: 0.1937272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1619/2000 [=======================>......] - ETA: 6:32 - loss: 0.7334 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2919 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1351 - mrcnn_mask_loss: 0.1937232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - "1620/2000 [=======================>......] - ETA: 6:31 - loss: 0.7333 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2918 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1351 - mrcnn_mask_loss: 0.1937147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - "1621/2000 [=======================>......] - ETA: 6:30 - loss: 0.7331 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2917 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1350 - mrcnn_mask_loss: 0.1936132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - "1622/2000 [=======================>......] - ETA: 6:29 - loss: 0.7332 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2918 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1350 - mrcnn_mask_loss: 0.1936246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - "1623/2000 [=======================>......] - ETA: 6:28 - loss: 0.7331 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1350 - mrcnn_mask_loss: 0.193676\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - "1624/2000 [=======================>......] - ETA: 6:27 - loss: 0.7329 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1349 - mrcnn_mask_loss: 0.193614\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - "1625/2000 [=======================>......] - ETA: 6:26 - loss: 0.7328 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1349 - mrcnn_mask_loss: 0.1936328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - "1626/2000 [=======================>......] - ETA: 6:25 - loss: 0.7327 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1348 - mrcnn_mask_loss: 0.1936299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - "1627/2000 [=======================>......] - ETA: 6:24 - loss: 0.7328 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2917 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1348 - mrcnn_mask_loss: 0.1936302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - "1628/2000 [=======================>......] - ETA: 6:23 - loss: 0.7328 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2917 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1348 - mrcnn_mask_loss: 0.1936289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - "1629/2000 [=======================>......] - ETA: 6:22 - loss: 0.7328 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2917 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1348 - mrcnn_mask_loss: 0.193637\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - "1630/2000 [=======================>......] - ETA: 6:21 - loss: 0.7329 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2920 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1348 - mrcnn_mask_loss: 0.1935210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - "1631/2000 [=======================>......] - ETA: 6:20 - loss: 0.7327 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2919 - mrcnn_class_loss: 0.1054 - mrcnn_bbox_loss: 0.1347 - mrcnn_mask_loss: 0.1935292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - "1632/2000 [=======================>......] - ETA: 6:19 - loss: 0.7326 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2919 - mrcnn_class_loss: 0.1054 - mrcnn_bbox_loss: 0.1347 - mrcnn_mask_loss: 0.1935142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - "1633/2000 [=======================>......] - ETA: 6:18 - loss: 0.7326 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2918 - mrcnn_class_loss: 0.1054 - mrcnn_bbox_loss: 0.1347 - mrcnn_mask_loss: 0.193510\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - "1634/2000 [=======================>......] - ETA: 6:17 - loss: 0.7325 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2918 - mrcnn_class_loss: 0.1053 - mrcnn_bbox_loss: 0.1347 - mrcnn_mask_loss: 0.193511\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - "1635/2000 [=======================>......] - ETA: 6:16 - loss: 0.7325 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2919 - mrcnn_class_loss: 0.1053 - mrcnn_bbox_loss: 0.1346 - mrcnn_mask_loss: 0.1935370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - "1636/2000 [=======================>......] - ETA: 6:15 - loss: 0.7325 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2919 - mrcnn_class_loss: 0.1054 - mrcnn_bbox_loss: 0.1347 - mrcnn_mask_loss: 0.1935347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - "1637/2000 [=======================>......] - ETA: 6:14 - loss: 0.7326 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2920 - mrcnn_class_loss: 0.1053 - mrcnn_bbox_loss: 0.1347 - mrcnn_mask_loss: 0.1934227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - "1638/2000 [=======================>......] - ETA: 6:13 - loss: 0.7323 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2919 - mrcnn_class_loss: 0.1053 - mrcnn_bbox_loss: 0.1346 - mrcnn_mask_loss: 0.1934228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - "1639/2000 [=======================>......] - ETA: 6:12 - loss: 0.7321 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2917 - mrcnn_class_loss: 0.1053 - mrcnn_bbox_loss: 0.1346 - mrcnn_mask_loss: 0.193384\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - "1640/2000 [=======================>......] - ETA: 6:11 - loss: 0.7321 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1054 - mrcnn_bbox_loss: 0.1346 - mrcnn_mask_loss: 0.1934141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - "1641/2000 [=======================>......] - ETA: 6:10 - loss: 0.7320 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.1933300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - "1642/2000 [=======================>......] - ETA: 6:09 - loss: 0.7321 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.19343\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - "1643/2000 [=======================>......] - ETA: 6:07 - loss: 0.7321 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.1933260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - "1644/2000 [=======================>......] - ETA: 6:06 - loss: 0.7322 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1346 - mrcnn_mask_loss: 0.1933306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - "1645/2000 [=======================>......] - ETA: 6:05 - loss: 0.7321 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1346 - mrcnn_mask_loss: 0.193315\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - "1646/2000 [=======================>......] - ETA: 6:04 - loss: 0.7321 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.1933368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - "1647/2000 [=======================>......] - ETA: 6:03 - loss: 0.7321 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2917 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.1933187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1648/2000 [=======================>......] - ETA: 6:02 - loss: 0.7319 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.193318\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - "1649/2000 [=======================>......] - ETA: 6:01 - loss: 0.7319 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1054 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.193330\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - "1650/2000 [=======================>......] - ETA: 6:00 - loss: 0.7318 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1054 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.193246\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - "1651/2000 [=======================>......] - ETA: 5:59 - loss: 0.7316 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1054 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1932151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - "1652/2000 [=======================>......] - ETA: 5:58 - loss: 0.7316 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1054 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1932116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - "1653/2000 [=======================>......] - ETA: 5:57 - loss: 0.7315 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1053 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1932287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - "1654/2000 [=======================>......] - ETA: 5:56 - loss: 0.7315 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1053 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1931281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - "1655/2000 [=======================>......] - ETA: 5:55 - loss: 0.7316 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1052 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.1931112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - "1656/2000 [=======================>......] - ETA: 5:54 - loss: 0.7315 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1052 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.1931110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - "1657/2000 [=======================>......] - ETA: 5:53 - loss: 0.7315 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1052 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.193124\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - "1658/2000 [=======================>......] - ETA: 5:52 - loss: 0.7316 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2917 - mrcnn_class_loss: 0.1052 - mrcnn_bbox_loss: 0.1345 - mrcnn_mask_loss: 0.193152\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - "1659/2000 [=======================>......] - ETA: 5:51 - loss: 0.7314 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1931224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - "1660/2000 [=======================>......] - ETA: 5:50 - loss: 0.7312 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1930394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - "1661/2000 [=======================>......] - ETA: 5:49 - loss: 0.7309 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2914 - mrcnn_class_loss: 0.1050 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1930156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - "1662/2000 [=======================>......] - ETA: 5:48 - loss: 0.7311 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1929124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1663/2000 [=======================>......] - ETA: 5:47 - loss: 0.7312 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1929111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - "1664/2000 [=======================>......] - ETA: 5:46 - loss: 0.7311 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1929235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - "1665/2000 [=======================>......] - ETA: 5:45 - loss: 0.7311 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2917 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1929359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - "1666/2000 [=======================>......] - ETA: 5:44 - loss: 0.7311 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1929317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - "1667/2000 [========================>.....] - ETA: 5:43 - loss: 0.7310 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1343 - mrcnn_mask_loss: 0.1929127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - "1668/2000 [========================>.....] - ETA: 5:42 - loss: 0.7310 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1343 - mrcnn_mask_loss: 0.1929248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - "1669/2000 [========================>.....] - ETA: 5:41 - loss: 0.7309 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1929280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - "1670/2000 [========================>.....] - ETA: 5:40 - loss: 0.7311 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1929153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - "1671/2000 [========================>.....] - ETA: 5:39 - loss: 0.7311 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2916 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.192977\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - "1672/2000 [========================>.....] - ETA: 5:38 - loss: 0.7309 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2915 - mrcnn_class_loss: 0.1050 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1928104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - "1673/2000 [========================>.....] - ETA: 5:37 - loss: 0.7308 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2914 - mrcnn_class_loss: 0.1050 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1928313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - "1674/2000 [========================>.....] - ETA: 5:36 - loss: 0.7308 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2913 - mrcnn_class_loss: 0.1050 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1929250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - "1675/2000 [========================>.....] - ETA: 5:35 - loss: 0.7307 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2913 - mrcnn_class_loss: 0.1051 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.192926\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - "1676/2000 [========================>.....] - ETA: 5:34 - loss: 0.7306 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2912 - mrcnn_class_loss: 0.1050 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1928381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - "1677/2000 [========================>.....] - ETA: 5:33 - loss: 0.7307 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2913 - mrcnn_class_loss: 0.1050 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1929374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - "1678/2000 [========================>.....] - ETA: 5:32 - loss: 0.7305 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2912 - mrcnn_class_loss: 0.1049 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1929185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - "1679/2000 [========================>.....] - ETA: 5:31 - loss: 0.7304 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2912 - mrcnn_class_loss: 0.1049 - mrcnn_bbox_loss: 0.1344 - mrcnn_mask_loss: 0.1929275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - "1680/2000 [========================>.....] - ETA: 5:30 - loss: 0.7304 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2911 - mrcnn_class_loss: 0.1049 - mrcnn_bbox_loss: 0.1343 - mrcnn_mask_loss: 0.1928325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - "1681/2000 [========================>.....] - ETA: 5:29 - loss: 0.7302 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2911 - mrcnn_class_loss: 0.1049 - mrcnn_bbox_loss: 0.1343 - mrcnn_mask_loss: 0.1928264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - "1682/2000 [========================>.....] - ETA: 5:28 - loss: 0.7300 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2909 - mrcnn_class_loss: 0.1049 - mrcnn_bbox_loss: 0.1343 - mrcnn_mask_loss: 0.1928218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - "1683/2000 [========================>.....] - ETA: 5:27 - loss: 0.7298 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2909 - mrcnn_class_loss: 0.1048 - mrcnn_bbox_loss: 0.1342 - mrcnn_mask_loss: 0.1928296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - "1684/2000 [========================>.....] - ETA: 5:26 - loss: 0.7298 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2909 - mrcnn_class_loss: 0.1048 - mrcnn_bbox_loss: 0.1342 - mrcnn_mask_loss: 0.1928181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - "1685/2000 [========================>.....] - ETA: 5:24 - loss: 0.7298 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2910 - mrcnn_class_loss: 0.1047 - mrcnn_bbox_loss: 0.1342 - mrcnn_mask_loss: 0.192735\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - "1686/2000 [========================>.....] - ETA: 5:23 - loss: 0.7298 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2911 - mrcnn_class_loss: 0.1047 - mrcnn_bbox_loss: 0.1342 - mrcnn_mask_loss: 0.192722\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - "1687/2000 [========================>.....] - ETA: 5:22 - loss: 0.7298 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2912 - mrcnn_class_loss: 0.1046 - mrcnn_bbox_loss: 0.1342 - mrcnn_mask_loss: 0.192742\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - "1688/2000 [========================>.....] - ETA: 5:21 - loss: 0.7296 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2911 - mrcnn_class_loss: 0.1046 - mrcnn_bbox_loss: 0.1341 - mrcnn_mask_loss: 0.1927102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - "1689/2000 [========================>.....] - ETA: 5:20 - loss: 0.7295 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2910 - mrcnn_class_loss: 0.1046 - mrcnn_bbox_loss: 0.1341 - mrcnn_mask_loss: 0.192793\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - "1690/2000 [========================>.....] - ETA: 5:19 - loss: 0.7294 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2910 - mrcnn_class_loss: 0.1045 - mrcnn_bbox_loss: 0.1341 - mrcnn_mask_loss: 0.1927133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - "1691/2000 [========================>.....] - ETA: 5:18 - loss: 0.7294 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2911 - mrcnn_class_loss: 0.1045 - mrcnn_bbox_loss: 0.1341 - mrcnn_mask_loss: 0.192620\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1692/2000 [========================>.....] - ETA: 5:17 - loss: 0.7293 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2911 - mrcnn_class_loss: 0.1044 - mrcnn_bbox_loss: 0.1341 - mrcnn_mask_loss: 0.1926352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - "1693/2000 [========================>.....] - ETA: 5:16 - loss: 0.7293 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2911 - mrcnn_class_loss: 0.1045 - mrcnn_bbox_loss: 0.1340 - mrcnn_mask_loss: 0.1926143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - "1694/2000 [========================>.....] - ETA: 5:15 - loss: 0.7292 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2910 - mrcnn_class_loss: 0.1045 - mrcnn_bbox_loss: 0.1340 - mrcnn_mask_loss: 0.192643\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - "1695/2000 [========================>.....] - ETA: 5:14 - loss: 0.7291 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2909 - mrcnn_class_loss: 0.1045 - mrcnn_bbox_loss: 0.1340 - mrcnn_mask_loss: 0.1926115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - "1696/2000 [========================>.....] - ETA: 5:13 - loss: 0.7289 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2908 - mrcnn_class_loss: 0.1045 - mrcnn_bbox_loss: 0.1340 - mrcnn_mask_loss: 0.192596\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - "1697/2000 [========================>.....] - ETA: 5:12 - loss: 0.7291 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2909 - mrcnn_class_loss: 0.1047 - mrcnn_bbox_loss: 0.1339 - mrcnn_mask_loss: 0.19250\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - "1698/2000 [========================>.....] - ETA: 5:11 - loss: 0.7290 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2908 - mrcnn_class_loss: 0.1046 - mrcnn_bbox_loss: 0.1339 - mrcnn_mask_loss: 0.1925333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - "1699/2000 [========================>.....] - ETA: 5:10 - loss: 0.7289 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2908 - mrcnn_class_loss: 0.1046 - mrcnn_bbox_loss: 0.1339 - mrcnn_mask_loss: 0.192568\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - "1700/2000 [========================>.....] - ETA: 5:09 - loss: 0.7287 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2906 - mrcnn_class_loss: 0.1046 - mrcnn_bbox_loss: 0.1339 - mrcnn_mask_loss: 0.1925150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - "1701/2000 [========================>.....] - ETA: 5:08 - loss: 0.7286 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2906 - mrcnn_class_loss: 0.1046 - mrcnn_bbox_loss: 0.1338 - mrcnn_mask_loss: 0.1925174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - "1702/2000 [========================>.....] - ETA: 5:07 - loss: 0.7285 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2906 - mrcnn_class_loss: 0.1045 - mrcnn_bbox_loss: 0.1338 - mrcnn_mask_loss: 0.192572\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - "1703/2000 [========================>.....] - ETA: 5:06 - loss: 0.7283 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2905 - mrcnn_class_loss: 0.1045 - mrcnn_bbox_loss: 0.1338 - mrcnn_mask_loss: 0.192498\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - "1704/2000 [========================>.....] - ETA: 5:05 - loss: 0.7284 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2906 - mrcnn_class_loss: 0.1045 - mrcnn_bbox_loss: 0.1338 - mrcnn_mask_loss: 0.1924208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - "1705/2000 [========================>.....] - ETA: 5:04 - loss: 0.7281 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2905 - mrcnn_class_loss: 0.1044 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1924167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - "1706/2000 [========================>.....] - ETA: 5:03 - loss: 0.7280 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2904 - mrcnn_class_loss: 0.1044 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.192440\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1707/2000 [========================>.....] - ETA: 5:02 - loss: 0.7279 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2904 - mrcnn_class_loss: 0.1044 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1924255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - "1708/2000 [========================>.....] - ETA: 5:01 - loss: 0.7278 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2904 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1923160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - "1709/2000 [========================>.....] - ETA: 5:00 - loss: 0.7278 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2904 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1924230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - "1710/2000 [========================>.....] - ETA: 4:59 - loss: 0.7276 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2903 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1923244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - "1711/2000 [========================>.....] - ETA: 4:57 - loss: 0.7275 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2902 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1923365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - "1712/2000 [========================>.....] - ETA: 4:56 - loss: 0.7276 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2902 - mrcnn_class_loss: 0.1044 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1923388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - "1713/2000 [========================>.....] - ETA: 4:55 - loss: 0.7275 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2901 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1923335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - "1714/2000 [========================>.....] - ETA: 4:55 - loss: 0.7274 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2900 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1923369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - "1715/2000 [========================>.....] - ETA: 4:53 - loss: 0.7274 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2900 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.192386\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - "1716/2000 [========================>.....] - ETA: 4:52 - loss: 0.7272 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2900 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.192312\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - "1717/2000 [========================>.....] - ETA: 4:51 - loss: 0.7272 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2901 - mrcnn_class_loss: 0.1042 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1922194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - "1718/2000 [========================>.....] - ETA: 4:50 - loss: 0.7270 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2899 - mrcnn_class_loss: 0.1042 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1922123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - "1719/2000 [========================>.....] - ETA: 4:49 - loss: 0.7271 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2900 - mrcnn_class_loss: 0.1042 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1922257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - "1720/2000 [========================>.....] - ETA: 4:48 - loss: 0.7272 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2902 - mrcnn_class_loss: 0.1041 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1922214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - "1721/2000 [========================>.....] - ETA: 4:47 - loss: 0.7271 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2902 - mrcnn_class_loss: 0.1041 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1922177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1722/2000 [========================>.....] - ETA: 4:46 - loss: 0.7271 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2901 - mrcnn_class_loss: 0.1042 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1922157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - "1723/2000 [========================>.....] - ETA: 4:45 - loss: 0.7271 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2901 - mrcnn_class_loss: 0.1041 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1922118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - "1724/2000 [========================>.....] - ETA: 4:44 - loss: 0.7271 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2901 - mrcnn_class_loss: 0.1042 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1921288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - "1725/2000 [========================>.....] - ETA: 4:43 - loss: 0.7272 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2901 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1921274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - "1726/2000 [========================>.....] - ETA: 4:42 - loss: 0.7272 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2901 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.192182\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - "1727/2000 [========================>.....] - ETA: 4:41 - loss: 0.7271 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2900 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1921360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - "1728/2000 [========================>.....] - ETA: 4:40 - loss: 0.7274 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2901 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1922217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - "1729/2000 [========================>.....] - ETA: 4:39 - loss: 0.7272 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2901 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1921245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - "1730/2000 [========================>.....] - ETA: 4:38 - loss: 0.7271 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2899 - mrcnn_class_loss: 0.1042 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1921109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - "1731/2000 [========================>.....] - ETA: 4:37 - loss: 0.7271 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2898 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1921256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - "1732/2000 [========================>.....] - ETA: 4:36 - loss: 0.7270 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2898 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.192181\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - "1733/2000 [========================>.....] - ETA: 4:35 - loss: 0.7269 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2897 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.19225\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - "1734/2000 [=========================>....] - ETA: 4:34 - loss: 0.7267 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2896 - mrcnn_class_loss: 0.1042 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1921356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - "1735/2000 [=========================>....] - ETA: 4:33 - loss: 0.7267 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2896 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1921339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - "1736/2000 [=========================>....] - ETA: 4:32 - loss: 0.7270 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2897 - mrcnn_class_loss: 0.1044 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1921114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - "1737/2000 [=========================>....] - ETA: 4:31 - loss: 0.7268 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2896 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1921305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - "1738/2000 [=========================>....] - ETA: 4:30 - loss: 0.7268 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2896 - mrcnn_class_loss: 0.1044 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1921285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - "1739/2000 [=========================>....] - ETA: 4:29 - loss: 0.7268 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2896 - mrcnn_class_loss: 0.1044 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1921355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - "1740/2000 [=========================>....] - ETA: 4:28 - loss: 0.7268 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2895 - mrcnn_class_loss: 0.1044 - mrcnn_bbox_loss: 0.1337 - mrcnn_mask_loss: 0.1921225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - "1741/2000 [=========================>....] - ETA: 4:27 - loss: 0.7265 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2894 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.192127\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - "1742/2000 [=========================>....] - ETA: 4:26 - loss: 0.7264 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2894 - mrcnn_class_loss: 0.1043 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.19216\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - "1743/2000 [=========================>....] - ETA: 4:25 - loss: 0.7262 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2893 - mrcnn_class_loss: 0.1042 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1920265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - "1744/2000 [=========================>....] - ETA: 4:24 - loss: 0.7260 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2892 - mrcnn_class_loss: 0.1042 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - "1745/2000 [=========================>....] - ETA: 4:23 - loss: 0.7260 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2891 - mrcnn_class_loss: 0.1042 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1920101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - "1746/2000 [=========================>....] - ETA: 4:22 - loss: 0.7259 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2891 - mrcnn_class_loss: 0.1042 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1920314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - "1747/2000 [=========================>....] - ETA: 4:21 - loss: 0.7258 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2891 - mrcnn_class_loss: 0.1041 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1920207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - "1748/2000 [=========================>....] - ETA: 4:20 - loss: 0.7257 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2890 - mrcnn_class_loss: 0.1041 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1920176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - "1749/2000 [=========================>....] - ETA: 4:19 - loss: 0.7257 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2890 - mrcnn_class_loss: 0.1041 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1920100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1750/2000 [=========================>....] - ETA: 4:18 - loss: 0.7257 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2890 - mrcnn_class_loss: 0.1041 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - "1751/2000 [=========================>....] - ETA: 4:17 - loss: 0.7257 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2890 - mrcnn_class_loss: 0.1040 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1920175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - "1752/2000 [=========================>....] - ETA: 4:16 - loss: 0.7256 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2889 - mrcnn_class_loss: 0.1040 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.19207\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - "1753/2000 [=========================>....] - ETA: 4:15 - loss: 0.7256 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2891 - mrcnn_class_loss: 0.1040 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1920234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - "1754/2000 [=========================>....] - ETA: 4:14 - loss: 0.7256 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2890 - mrcnn_class_loss: 0.1039 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1920240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - "1755/2000 [=========================>....] - ETA: 4:13 - loss: 0.7257 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2890 - mrcnn_class_loss: 0.1040 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - "1756/2000 [=========================>....] - ETA: 4:12 - loss: 0.7256 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2889 - mrcnn_class_loss: 0.1040 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - "1757/2000 [=========================>....] - ETA: 4:11 - loss: 0.7256 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2889 - mrcnn_class_loss: 0.1040 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - "1758/2000 [=========================>....] - ETA: 4:10 - loss: 0.7257 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2890 - mrcnn_class_loss: 0.1040 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - "1759/2000 [=========================>....] - ETA: 4:09 - loss: 0.7255 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2889 - mrcnn_class_loss: 0.1040 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - "1760/2000 [=========================>....] - ETA: 4:08 - loss: 0.7254 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2888 - mrcnn_class_loss: 0.1039 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - "1761/2000 [=========================>....] - ETA: 4:07 - loss: 0.7253 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2888 - mrcnn_class_loss: 0.1039 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - "1762/2000 [=========================>....] - ETA: 4:06 - loss: 0.7252 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2887 - mrcnn_class_loss: 0.1038 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - "1763/2000 [=========================>....] - ETA: 4:05 - loss: 0.7253 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2888 - mrcnn_class_loss: 0.1038 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - "1764/2000 [=========================>....] - ETA: 4:04 - loss: 0.7252 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2888 - mrcnn_class_loss: 0.1038 - mrcnn_bbox_loss: 0.1336 - mrcnn_mask_loss: 0.1920212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - "1765/2000 [=========================>....] - ETA: 4:03 - loss: 0.7250 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2887 - mrcnn_class_loss: 0.1038 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1919254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - "1766/2000 [=========================>....] - ETA: 4:02 - loss: 0.7249 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2886 - mrcnn_class_loss: 0.1037 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1919198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - "1767/2000 [=========================>....] - ETA: 4:00 - loss: 0.7246 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2885 - mrcnn_class_loss: 0.1037 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1919103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - "1768/2000 [=========================>....] - ETA: 3:59 - loss: 0.7244 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2884 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1334 - mrcnn_mask_loss: 0.1919139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - "1769/2000 [=========================>....] - ETA: 3:58 - loss: 0.7246 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2885 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.191964\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - "1770/2000 [=========================>....] - ETA: 3:57 - loss: 0.7244 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2884 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1919173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - "1771/2000 [=========================>....] - ETA: 3:56 - loss: 0.7243 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2883 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1919171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - "1772/2000 [=========================>....] - ETA: 3:55 - loss: 0.7243 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2883 - mrcnn_class_loss: 0.1035 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.191951\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - "1773/2000 [=========================>....] - ETA: 3:54 - loss: 0.7241 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2882 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1334 - mrcnn_mask_loss: 0.1919108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - "1774/2000 [=========================>....] - ETA: 3:53 - loss: 0.7240 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2880 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1919371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - "1775/2000 [=========================>....] - ETA: 3:52 - loss: 0.7239 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2880 - mrcnn_class_loss: 0.1035 - mrcnn_bbox_loss: 0.1334 - mrcnn_mask_loss: 0.1919120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - "1776/2000 [=========================>....] - ETA: 3:51 - loss: 0.7239 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2880 - mrcnn_class_loss: 0.1035 - mrcnn_bbox_loss: 0.1335 - mrcnn_mask_loss: 0.1918307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - "1777/2000 [=========================>....] - ETA: 3:50 - loss: 0.7239 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2880 - mrcnn_class_loss: 0.1035 - mrcnn_bbox_loss: 0.1334 - mrcnn_mask_loss: 0.191999\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - "1778/2000 [=========================>....] - ETA: 3:49 - loss: 0.7241 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2882 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1334 - mrcnn_mask_loss: 0.1919393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1779/2000 [=========================>....] - ETA: 3:48 - loss: 0.7240 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2881 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1334 - mrcnn_mask_loss: 0.191819\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - "1780/2000 [=========================>....] - ETA: 3:47 - loss: 0.7240 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2882 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1334 - mrcnn_mask_loss: 0.1918159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - "1781/2000 [=========================>....] - ETA: 3:46 - loss: 0.7240 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2882 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1334 - mrcnn_mask_loss: 0.1918166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - "1782/2000 [=========================>....] - ETA: 3:45 - loss: 0.7239 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2881 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1333 - mrcnn_mask_loss: 0.1917209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - "1783/2000 [=========================>....] - ETA: 3:44 - loss: 0.7237 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2880 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1333 - mrcnn_mask_loss: 0.1917258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - "1784/2000 [=========================>....] - ETA: 3:43 - loss: 0.7236 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2880 - mrcnn_class_loss: 0.1036 - mrcnn_bbox_loss: 0.1333 - mrcnn_mask_loss: 0.191765\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - "1785/2000 [=========================>....] - ETA: 3:42 - loss: 0.7234 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2879 - mrcnn_class_loss: 0.1035 - mrcnn_bbox_loss: 0.1332 - mrcnn_mask_loss: 0.1917268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - "1786/2000 [=========================>....] - ETA: 3:41 - loss: 0.7233 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2878 - mrcnn_class_loss: 0.1035 - mrcnn_bbox_loss: 0.1332 - mrcnn_mask_loss: 0.1917206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - "1787/2000 [=========================>....] - ETA: 3:40 - loss: 0.7230 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2877 - mrcnn_class_loss: 0.1035 - mrcnn_bbox_loss: 0.1332 - mrcnn_mask_loss: 0.1917145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - "1788/2000 [=========================>....] - ETA: 3:39 - loss: 0.7229 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2876 - mrcnn_class_loss: 0.1034 - mrcnn_bbox_loss: 0.1332 - mrcnn_mask_loss: 0.191656\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - "1789/2000 [=========================>....] - ETA: 3:38 - loss: 0.7227 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2875 - mrcnn_class_loss: 0.1034 - mrcnn_bbox_loss: 0.1331 - mrcnn_mask_loss: 0.1916301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - "1790/2000 [=========================>....] - ETA: 3:37 - loss: 0.7228 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2876 - mrcnn_class_loss: 0.1034 - mrcnn_bbox_loss: 0.1331 - mrcnn_mask_loss: 0.1916204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - "1791/2000 [=========================>....] - ETA: 3:36 - loss: 0.7225 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2875 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1331 - mrcnn_mask_loss: 0.1916182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - "1792/2000 [=========================>....] - ETA: 3:35 - loss: 0.7226 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2876 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1330 - mrcnn_mask_loss: 0.191655\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - "1793/2000 [=========================>....] - ETA: 3:34 - loss: 0.7224 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2874 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1330 - mrcnn_mask_loss: 0.191659\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1794/2000 [=========================>....] - ETA: 3:33 - loss: 0.7224 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2875 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1330 - mrcnn_mask_loss: 0.1915391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - "1795/2000 [=========================>....] - ETA: 3:32 - loss: 0.7224 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2875 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1330 - mrcnn_mask_loss: 0.1915252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - "1796/2000 [=========================>....] - ETA: 3:31 - loss: 0.7223 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2875 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1329 - mrcnn_mask_loss: 0.1915117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - "1797/2000 [=========================>....] - ETA: 3:30 - loss: 0.7222 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2874 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1329 - mrcnn_mask_loss: 0.1915320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - "1798/2000 [=========================>....] - ETA: 3:29 - loss: 0.7224 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2874 - mrcnn_class_loss: 0.1035 - mrcnn_bbox_loss: 0.1330 - mrcnn_mask_loss: 0.1915379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - "1799/2000 [=========================>....] - ETA: 3:28 - loss: 0.7223 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2874 - mrcnn_class_loss: 0.1034 - mrcnn_bbox_loss: 0.1330 - mrcnn_mask_loss: 0.191548\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - "1800/2000 [==========================>...] - ETA: 3:27 - loss: 0.7221 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2873 - mrcnn_class_loss: 0.1034 - mrcnn_bbox_loss: 0.1329 - mrcnn_mask_loss: 0.1914349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - "1801/2000 [==========================>...] - ETA: 3:25 - loss: 0.7220 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2873 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1329 - mrcnn_mask_loss: 0.191492\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - "1802/2000 [==========================>...] - ETA: 3:24 - loss: 0.7219 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2873 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1329 - mrcnn_mask_loss: 0.1914238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - "1803/2000 [==========================>...] - ETA: 3:23 - loss: 0.7218 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2872 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1328 - mrcnn_mask_loss: 0.191428\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - "1804/2000 [==========================>...] - ETA: 3:22 - loss: 0.7217 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2872 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1328 - mrcnn_mask_loss: 0.1914203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - "1805/2000 [==========================>...] - ETA: 3:21 - loss: 0.7215 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2871 - mrcnn_class_loss: 0.1032 - mrcnn_bbox_loss: 0.1328 - mrcnn_mask_loss: 0.191331\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - "1806/2000 [==========================>...] - ETA: 3:20 - loss: 0.7213 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2870 - mrcnn_class_loss: 0.1032 - mrcnn_bbox_loss: 0.1328 - mrcnn_mask_loss: 0.1913180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - "1807/2000 [==========================>...] - ETA: 3:19 - loss: 0.7213 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2871 - mrcnn_class_loss: 0.1032 - mrcnn_bbox_loss: 0.1327 - mrcnn_mask_loss: 0.1913121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - "1808/2000 [==========================>...] - ETA: 3:18 - loss: 0.7214 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2872 - mrcnn_class_loss: 0.1031 - mrcnn_bbox_loss: 0.1328 - mrcnn_mask_loss: 0.191375\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1809/2000 [==========================>...] - ETA: 3:17 - loss: 0.7212 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2871 - mrcnn_class_loss: 0.1031 - mrcnn_bbox_loss: 0.1327 - mrcnn_mask_loss: 0.1912304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - "1810/2000 [==========================>...] - ETA: 3:16 - loss: 0.7212 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2871 - mrcnn_class_loss: 0.1031 - mrcnn_bbox_loss: 0.1327 - mrcnn_mask_loss: 0.1912196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - "1811/2000 [==========================>...] - ETA: 3:15 - loss: 0.7210 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2870 - mrcnn_class_loss: 0.1030 - mrcnn_bbox_loss: 0.1327 - mrcnn_mask_loss: 0.1912119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - "1812/2000 [==========================>...] - ETA: 3:14 - loss: 0.7211 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2872 - mrcnn_class_loss: 0.1031 - mrcnn_bbox_loss: 0.1326 - mrcnn_mask_loss: 0.1912135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - "1813/2000 [==========================>...] - ETA: 3:13 - loss: 0.7212 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2872 - mrcnn_class_loss: 0.1031 - mrcnn_bbox_loss: 0.1326 - mrcnn_mask_loss: 0.1912286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - "1814/2000 [==========================>...] - ETA: 3:12 - loss: 0.7211 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2873 - mrcnn_class_loss: 0.1031 - mrcnn_bbox_loss: 0.1326 - mrcnn_mask_loss: 0.191263\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - "1815/2000 [==========================>...] - ETA: 3:11 - loss: 0.7210 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2872 - mrcnn_class_loss: 0.1030 - mrcnn_bbox_loss: 0.1326 - mrcnn_mask_loss: 0.1911385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - "1816/2000 [==========================>...] - ETA: 3:10 - loss: 0.7210 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2872 - mrcnn_class_loss: 0.1030 - mrcnn_bbox_loss: 0.1326 - mrcnn_mask_loss: 0.1911170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - "1817/2000 [==========================>...] - ETA: 3:09 - loss: 0.7209 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2871 - mrcnn_class_loss: 0.1030 - mrcnn_bbox_loss: 0.1326 - mrcnn_mask_loss: 0.1911330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - "1818/2000 [==========================>...] - ETA: 3:08 - loss: 0.7208 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2871 - mrcnn_class_loss: 0.1030 - mrcnn_bbox_loss: 0.1325 - mrcnn_mask_loss: 0.1911200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - "1819/2000 [==========================>...] - ETA: 3:07 - loss: 0.7207 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2870 - mrcnn_class_loss: 0.1029 - mrcnn_bbox_loss: 0.1325 - mrcnn_mask_loss: 0.1911396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - "1820/2000 [==========================>...] - ETA: 3:06 - loss: 0.7206 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2870 - mrcnn_class_loss: 0.1030 - mrcnn_bbox_loss: 0.1325 - mrcnn_mask_loss: 0.1911183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - "1821/2000 [==========================>...] - ETA: 3:05 - loss: 0.7205 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2869 - mrcnn_class_loss: 0.1029 - mrcnn_bbox_loss: 0.1325 - mrcnn_mask_loss: 0.1911201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - "1822/2000 [==========================>...] - ETA: 3:04 - loss: 0.7203 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2868 - mrcnn_class_loss: 0.1029 - mrcnn_bbox_loss: 0.1325 - mrcnn_mask_loss: 0.1911358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - "1823/2000 [==========================>...] - ETA: 3:03 - loss: 0.7202 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2868 - mrcnn_class_loss: 0.1028 - mrcnn_bbox_loss: 0.1324 - mrcnn_mask_loss: 0.1911184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1824/2000 [==========================>...] - ETA: 3:02 - loss: 0.7200 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2867 - mrcnn_class_loss: 0.1028 - mrcnn_bbox_loss: 0.1324 - mrcnn_mask_loss: 0.191085\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - "1825/2000 [==========================>...] - ETA: 3:01 - loss: 0.7198 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2866 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1324 - mrcnn_mask_loss: 0.1910266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - "1826/2000 [==========================>...] - ETA: 3:00 - loss: 0.7198 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2866 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1324 - mrcnn_mask_loss: 0.191041\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - "1827/2000 [==========================>...] - ETA: 2:59 - loss: 0.7196 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2865 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.191123\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - "1828/2000 [==========================>...] - ETA: 2:58 - loss: 0.7196 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2866 - mrcnn_class_loss: 0.1026 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1910378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - "1829/2000 [==========================>...] - ETA: 2:57 - loss: 0.7196 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2866 - mrcnn_class_loss: 0.1026 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1910341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - "1830/2000 [==========================>...] - ETA: 2:56 - loss: 0.7196 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2865 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1910318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - "1831/2000 [==========================>...] - ETA: 2:55 - loss: 0.7196 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2865 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.191080\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - "1832/2000 [==========================>...] - ETA: 2:54 - loss: 0.7197 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2865 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1911322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - "1833/2000 [==========================>...] - ETA: 2:53 - loss: 0.7196 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2865 - mrcnn_class_loss: 0.1026 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1911193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - "1834/2000 [==========================>...] - ETA: 2:51 - loss: 0.7194 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2864 - mrcnn_class_loss: 0.1026 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1910241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - "1835/2000 [==========================>...] - ETA: 2:50 - loss: 0.7196 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2864 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1911172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - "1836/2000 [==========================>...] - ETA: 2:49 - loss: 0.7195 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2863 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1911202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - "1837/2000 [==========================>...] - ETA: 2:48 - loss: 0.7194 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2862 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.19119\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - "1838/2000 [==========================>...] - ETA: 2:47 - loss: 0.7194 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2863 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1911357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1839/2000 [==========================>...] - ETA: 2:46 - loss: 0.7194 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2863 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1911337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - "1840/2000 [==========================>...] - ETA: 2:45 - loss: 0.7194 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2863 - mrcnn_class_loss: 0.1027 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1911229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - "1841/2000 [==========================>...] - ETA: 2:44 - loss: 0.7192 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2862 - mrcnn_class_loss: 0.1026 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1911310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - "1842/2000 [==========================>...] - ETA: 2:43 - loss: 0.7191 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2861 - mrcnn_class_loss: 0.1026 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.191189\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - "1843/2000 [==========================>...] - ETA: 2:42 - loss: 0.7190 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2861 - mrcnn_class_loss: 0.1026 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.1910190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - "1844/2000 [==========================>...] - ETA: 2:41 - loss: 0.7188 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2860 - mrcnn_class_loss: 0.1025 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.1910113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - "1845/2000 [==========================>...] - ETA: 2:40 - loss: 0.7187 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2860 - mrcnn_class_loss: 0.1025 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.1910398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - "1846/2000 [==========================>...] - ETA: 2:39 - loss: 0.7187 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2860 - mrcnn_class_loss: 0.1025 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.1910283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - "1847/2000 [==========================>...] - ETA: 2:38 - loss: 0.7186 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2859 - mrcnn_class_loss: 0.1025 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.1910168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - "1848/2000 [==========================>...] - ETA: 2:37 - loss: 0.7185 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2858 - mrcnn_class_loss: 0.1024 - mrcnn_bbox_loss: 0.1323 - mrcnn_mask_loss: 0.1909273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - "1849/2000 [==========================>...] - ETA: 2:36 - loss: 0.7184 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2858 - mrcnn_class_loss: 0.1024 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.1910384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - "1850/2000 [==========================>...] - ETA: 2:35 - loss: 0.7183 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2857 - mrcnn_class_loss: 0.1024 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.1909294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - "1851/2000 [==========================>...] - ETA: 2:34 - loss: 0.7183 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2857 - mrcnn_class_loss: 0.1025 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.1909253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - "1852/2000 [==========================>...] - ETA: 2:33 - loss: 0.7183 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2857 - mrcnn_class_loss: 0.1025 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.190950\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - "1853/2000 [==========================>...] - ETA: 2:32 - loss: 0.7183 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2858 - mrcnn_class_loss: 0.1025 - mrcnn_bbox_loss: 0.1321 - mrcnn_mask_loss: 0.1909155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1854/2000 [==========================>...] - ETA: 2:31 - loss: 0.7184 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2859 - mrcnn_class_loss: 0.1024 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.1909129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - "1855/2000 [==========================>...] - ETA: 2:30 - loss: 0.7185 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2860 - mrcnn_class_loss: 0.1025 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.1909343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - "1856/2000 [==========================>...] - ETA: 2:29 - loss: 0.7184 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2860 - mrcnn_class_loss: 0.1024 - mrcnn_bbox_loss: 0.1322 - mrcnn_mask_loss: 0.1909315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - "1857/2000 [==========================>...] - ETA: 2:28 - loss: 0.7183 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2859 - mrcnn_class_loss: 0.1024 - mrcnn_bbox_loss: 0.1321 - mrcnn_mask_loss: 0.190933\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - "1858/2000 [==========================>...] - ETA: 2:27 - loss: 0.7182 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2858 - mrcnn_class_loss: 0.1023 - mrcnn_bbox_loss: 0.1321 - mrcnn_mask_loss: 0.1909247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - "1859/2000 [==========================>...] - ETA: 2:26 - loss: 0.7180 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2857 - mrcnn_class_loss: 0.1023 - mrcnn_bbox_loss: 0.1321 - mrcnn_mask_loss: 0.1908130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - "1860/2000 [==========================>...] - ETA: 2:25 - loss: 0.7179 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2857 - mrcnn_class_loss: 0.1023 - mrcnn_bbox_loss: 0.1321 - mrcnn_mask_loss: 0.1908376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - "1861/2000 [==========================>...] - ETA: 2:24 - loss: 0.7178 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2857 - mrcnn_class_loss: 0.1022 - mrcnn_bbox_loss: 0.1321 - mrcnn_mask_loss: 0.190816\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - "1862/2000 [==========================>...] - ETA: 2:23 - loss: 0.7177 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2856 - mrcnn_class_loss: 0.1022 - mrcnn_bbox_loss: 0.1321 - mrcnn_mask_loss: 0.190849\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - "1863/2000 [==========================>...] - ETA: 2:22 - loss: 0.7175 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2855 - mrcnn_class_loss: 0.1022 - mrcnn_bbox_loss: 0.1320 - mrcnn_mask_loss: 0.190878\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - "1864/2000 [==========================>...] - ETA: 2:21 - loss: 0.7173 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2854 - mrcnn_class_loss: 0.1022 - mrcnn_bbox_loss: 0.1320 - mrcnn_mask_loss: 0.190854\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - "1865/2000 [==========================>...] - ETA: 2:19 - loss: 0.7171 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2853 - mrcnn_class_loss: 0.1021 - mrcnn_bbox_loss: 0.1320 - mrcnn_mask_loss: 0.1907297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - "1866/2000 [==========================>...] - ETA: 2:18 - loss: 0.7172 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2854 - mrcnn_class_loss: 0.1021 - mrcnn_bbox_loss: 0.1320 - mrcnn_mask_loss: 0.1907251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - "1867/2000 [===========================>..] - ETA: 2:17 - loss: 0.7171 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2854 - mrcnn_class_loss: 0.1020 - mrcnn_bbox_loss: 0.1320 - mrcnn_mask_loss: 0.1907329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - "1868/2000 [===========================>..] - ETA: 2:16 - loss: 0.7171 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2854 - mrcnn_class_loss: 0.1020 - mrcnn_bbox_loss: 0.1320 - mrcnn_mask_loss: 0.1908199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - "1869/2000 [===========================>..] - ETA: 2:15 - loss: 0.7171 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2855 - mrcnn_class_loss: 0.1020 - mrcnn_bbox_loss: 0.1319 - mrcnn_mask_loss: 0.1907383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - "1870/2000 [===========================>..] - ETA: 2:14 - loss: 0.7170 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2854 - mrcnn_class_loss: 0.1019 - mrcnn_bbox_loss: 0.1319 - mrcnn_mask_loss: 0.190788\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - "1871/2000 [===========================>..] - ETA: 2:13 - loss: 0.7170 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2854 - mrcnn_class_loss: 0.1020 - mrcnn_bbox_loss: 0.1319 - mrcnn_mask_loss: 0.190729\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - "1872/2000 [===========================>..] - ETA: 2:12 - loss: 0.7168 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2854 - mrcnn_class_loss: 0.1019 - mrcnn_bbox_loss: 0.1319 - mrcnn_mask_loss: 0.190797\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - "1873/2000 [===========================>..] - ETA: 2:11 - loss: 0.7169 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2855 - mrcnn_class_loss: 0.1019 - mrcnn_bbox_loss: 0.1319 - mrcnn_mask_loss: 0.1907334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - "1874/2000 [===========================>..] - ETA: 2:10 - loss: 0.7168 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2854 - mrcnn_class_loss: 0.1020 - mrcnn_bbox_loss: 0.1319 - mrcnn_mask_loss: 0.1907338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - "1875/2000 [===========================>..] - ETA: 2:09 - loss: 0.7167 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2853 - mrcnn_class_loss: 0.1019 - mrcnn_bbox_loss: 0.1318 - mrcnn_mask_loss: 0.1906148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - "1876/2000 [===========================>..] - ETA: 2:08 - loss: 0.7167 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2853 - mrcnn_class_loss: 0.1019 - mrcnn_bbox_loss: 0.1319 - mrcnn_mask_loss: 0.1906342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - "1877/2000 [===========================>..] - ETA: 2:07 - loss: 0.7165 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2852 - mrcnn_class_loss: 0.1018 - mrcnn_bbox_loss: 0.1319 - mrcnn_mask_loss: 0.1906169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - "1878/2000 [===========================>..] - ETA: 2:06 - loss: 0.7165 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1019 - mrcnn_bbox_loss: 0.1319 - mrcnn_mask_loss: 0.1906353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - "1879/2000 [===========================>..] - ETA: 2:05 - loss: 0.7164 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1018 - mrcnn_bbox_loss: 0.1319 - mrcnn_mask_loss: 0.19064\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - "1880/2000 [===========================>..] - ETA: 2:04 - loss: 0.7162 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1018 - mrcnn_bbox_loss: 0.1318 - mrcnn_mask_loss: 0.190625\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - "1881/2000 [===========================>..] - ETA: 2:03 - loss: 0.7162 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1018 - mrcnn_bbox_loss: 0.1318 - mrcnn_mask_loss: 0.1906390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - "1882/2000 [===========================>..] - ETA: 2:02 - loss: 0.7162 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1318 - mrcnn_mask_loss: 0.1906303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1883/2000 [===========================>..] - ETA: 2:01 - loss: 0.7162 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1318 - mrcnn_mask_loss: 0.190636\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - "1884/2000 [===========================>..] - ETA: 2:00 - loss: 0.7163 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2853 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1318 - mrcnn_mask_loss: 0.1906387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - "1885/2000 [===========================>..] - ETA: 1:59 - loss: 0.7162 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2853 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1318 - mrcnn_mask_loss: 0.1905213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - "1886/2000 [===========================>..] - ETA: 1:58 - loss: 0.7160 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2852 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1317 - mrcnn_mask_loss: 0.1905399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - "1887/2000 [===========================>..] - ETA: 1:57 - loss: 0.7161 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2852 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1317 - mrcnn_mask_loss: 0.190560\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - "1888/2000 [===========================>..] - ETA: 1:56 - loss: 0.7162 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2854 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1317 - mrcnn_mask_loss: 0.1905392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - "1889/2000 [===========================>..] - ETA: 1:55 - loss: 0.7162 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2853 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1317 - mrcnn_mask_loss: 0.1905372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - "1890/2000 [===========================>..] - ETA: 1:54 - loss: 0.7161 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2852 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1317 - mrcnn_mask_loss: 0.1905242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - "1891/2000 [===========================>..] - ETA: 1:53 - loss: 0.7161 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1018 - mrcnn_bbox_loss: 0.1317 - mrcnn_mask_loss: 0.1905161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - "1892/2000 [===========================>..] - ETA: 1:52 - loss: 0.7162 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2852 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1317 - mrcnn_mask_loss: 0.190571\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - "1893/2000 [===========================>..] - ETA: 1:51 - loss: 0.7160 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1317 - mrcnn_mask_loss: 0.190517\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - "1894/2000 [===========================>..] - ETA: 1:49 - loss: 0.7160 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2853 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1316 - mrcnn_mask_loss: 0.1905386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - "1895/2000 [===========================>..] - ETA: 1:48 - loss: 0.7159 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2852 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1316 - mrcnn_mask_loss: 0.1904236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - "1896/2000 [===========================>..] - ETA: 1:47 - loss: 0.7157 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1316 - mrcnn_mask_loss: 0.190474\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - "1897/2000 [===========================>..] - ETA: 1:46 - loss: 0.7154 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1315 - mrcnn_mask_loss: 0.1904389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - "1898/2000 [===========================>..] - ETA: 1:45 - loss: 0.7155 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1315 - mrcnn_mask_loss: 0.1904259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - "1899/2000 [===========================>..] - ETA: 1:44 - loss: 0.7154 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1315 - mrcnn_mask_loss: 0.190387\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - "1900/2000 [===========================>..] - ETA: 1:43 - loss: 0.7153 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1315 - mrcnn_mask_loss: 0.1903332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - "1901/2000 [===========================>..] - ETA: 1:42 - loss: 0.7153 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2848 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1315 - mrcnn_mask_loss: 0.1903345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - "1902/2000 [===========================>..] - ETA: 1:41 - loss: 0.7152 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2848 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1315 - mrcnn_mask_loss: 0.1903131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - "1903/2000 [===========================>..] - ETA: 1:40 - loss: 0.7153 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1315 - mrcnn_mask_loss: 0.190495\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - "1904/2000 [===========================>..] - ETA: 1:39 - loss: 0.7153 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1314 - mrcnn_mask_loss: 0.1903219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - "1905/2000 [===========================>..] - ETA: 1:38 - loss: 0.7152 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1314 - mrcnn_mask_loss: 0.190391\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - "1906/2000 [===========================>..] - ETA: 1:37 - loss: 0.7152 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1314 - mrcnn_mask_loss: 0.19031\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - "1907/2000 [===========================>..] - ETA: 1:36 - loss: 0.7151 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2848 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1314 - mrcnn_mask_loss: 0.1903188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - "1908/2000 [===========================>..] - ETA: 1:35 - loss: 0.7149 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2848 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1313 - mrcnn_mask_loss: 0.1903279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - "1909/2000 [===========================>..] - ETA: 1:34 - loss: 0.7149 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2848 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1313 - mrcnn_mask_loss: 0.1902233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - "1910/2000 [===========================>..] - ETA: 1:33 - loss: 0.7148 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2847 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1313 - mrcnn_mask_loss: 0.190279\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - "1911/2000 [===========================>..] - ETA: 1:32 - loss: 0.7146 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2847 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1313 - mrcnn_mask_loss: 0.190238\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - "1912/2000 [===========================>..] - ETA: 1:31 - loss: 0.7147 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1312 - mrcnn_mask_loss: 0.1902223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1913/2000 [===========================>..] - ETA: 1:30 - loss: 0.7151 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2853 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1313 - mrcnn_mask_loss: 0.1901351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - "1914/2000 [===========================>..] - ETA: 1:29 - loss: 0.7150 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2852 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1312 - mrcnn_mask_loss: 0.1901179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - "1915/2000 [===========================>..] - ETA: 1:28 - loss: 0.7150 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2852 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1313 - mrcnn_mask_loss: 0.1901165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - "1916/2000 [===========================>..] - ETA: 1:27 - loss: 0.7150 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2852 - mrcnn_class_loss: 0.1013 - mrcnn_bbox_loss: 0.1313 - mrcnn_mask_loss: 0.190161\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - "1917/2000 [===========================>..] - ETA: 1:26 - loss: 0.7149 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2852 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1312 - mrcnn_mask_loss: 0.1901263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - "1918/2000 [===========================>..] - ETA: 1:25 - loss: 0.7148 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1312 - mrcnn_mask_loss: 0.190194\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - "1919/2000 [===========================>..] - ETA: 1:24 - loss: 0.7148 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1312 - mrcnn_mask_loss: 0.1901350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - "1920/2000 [===========================>..] - ETA: 1:23 - loss: 0.7148 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1312 - mrcnn_mask_loss: 0.1901354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - "1921/2000 [===========================>..] - ETA: 1:22 - loss: 0.7148 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1312 - mrcnn_mask_loss: 0.1900344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - "1922/2000 [===========================>..] - ETA: 1:20 - loss: 0.7148 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1312 - mrcnn_mask_loss: 0.1900197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - "1923/2000 [===========================>..] - ETA: 1:19 - loss: 0.7146 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1312 - mrcnn_mask_loss: 0.1900290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - "1924/2000 [===========================>..] - ETA: 1:18 - loss: 0.7146 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1312 - mrcnn_mask_loss: 0.1900191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - "1925/2000 [===========================>..] - ETA: 1:17 - loss: 0.7145 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1311 - mrcnn_mask_loss: 0.1900361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - "1926/2000 [===========================>..] - ETA: 1:16 - loss: 0.7145 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1311 - mrcnn_mask_loss: 0.1900363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - "1927/2000 [===========================>..] - ETA: 1:15 - loss: 0.7145 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1311 - mrcnn_mask_loss: 0.1899298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1928/2000 [===========================>..] - ETA: 1:14 - loss: 0.7145 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1311 - mrcnn_mask_loss: 0.18992\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - "1929/2000 [===========================>..] - ETA: 1:13 - loss: 0.7144 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1310 - mrcnn_mask_loss: 0.1899122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - "1930/2000 [===========================>..] - ETA: 1:12 - loss: 0.7145 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1310 - mrcnn_mask_loss: 0.1899295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - "1931/2000 [===========================>..] - ETA: 1:11 - loss: 0.7145 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1310 - mrcnn_mask_loss: 0.189973\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - "1932/2000 [===========================>..] - ETA: 1:10 - loss: 0.7144 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1310 - mrcnn_mask_loss: 0.1899284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - "1933/2000 [===========================>..] - ETA: 1:09 - loss: 0.7145 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1310 - mrcnn_mask_loss: 0.1899215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - "1934/2000 [============================>.] - ETA: 1:08 - loss: 0.7143 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1899222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - "1935/2000 [============================>.] - ETA: 1:07 - loss: 0.7143 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1898106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - "1936/2000 [============================>.] - ETA: 1:06 - loss: 0.7142 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.189858\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - "1937/2000 [============================>.] - ETA: 1:05 - loss: 0.7141 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1898316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - "1938/2000 [============================>.] - ETA: 1:04 - loss: 0.7141 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1898186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - "1939/2000 [============================>.] - ETA: 1:03 - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1308 - mrcnn_mask_loss: 0.189790\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - "1940/2000 [============================>.] - ETA: 1:02 - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1308 - mrcnn_mask_loss: 0.1897312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - "1941/2000 [============================>.] - ETA: 1:01 - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1308 - mrcnn_mask_loss: 0.1897262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - "1942/2000 [============================>.] - ETA: 1:00 - loss: 0.7139 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1308 - mrcnn_mask_loss: 0.1897154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - "1943/2000 [============================>.] - ETA: 59s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1308 - mrcnn_mask_loss: 0.1897 13\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - "1944/2000 [============================>.] - ETA: 58s - loss: 0.7139 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1308 - mrcnn_mask_loss: 0.1897366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - "1945/2000 [============================>.] - ETA: 57s - loss: 0.7138 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1308 - mrcnn_mask_loss: 0.1897152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - "1946/2000 [============================>.] - ETA: 56s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - "1947/2000 [============================>.] - ETA: 55s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - "1948/2000 [============================>.] - ETA: 54s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1013 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - "1949/2000 [============================>.] - ETA: 53s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.189734\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - "1950/2000 [============================>.] - ETA: 51s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - "1951/2000 [============================>.] - ETA: 50s - loss: 0.7141 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2851 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - "1952/2000 [============================>.] - ETA: 49s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2850 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - "1953/2000 [============================>.] - ETA: 48s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2849 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.189766\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - "1954/2000 [============================>.] - ETA: 47s - loss: 0.7139 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2848 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - "1955/2000 [============================>.] - ETA: 46s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2847 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1956/2000 [============================>.] - ETA: 45s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2847 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - "1957/2000 [============================>.] - ETA: 44s - loss: 0.7141 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2847 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - "1958/2000 [============================>.] - ETA: 43s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2847 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1310 - mrcnn_mask_loss: 0.1897276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - "1959/2000 [============================>.] - ETA: 42s - loss: 0.7140 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2847 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.189769\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - "1960/2000 [============================>.] - ETA: 41s - loss: 0.7137 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2846 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1896136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - "1961/2000 [============================>.] - ETA: 40s - loss: 0.7137 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2846 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1896243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - "1962/2000 [============================>.] - ETA: 39s - loss: 0.7137 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2845 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - "1963/2000 [============================>.] - ETA: 38s - loss: 0.7137 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2845 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - "1964/2000 [============================>.] - ETA: 37s - loss: 0.7137 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2845 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.1897375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - "1965/2000 [============================>.] - ETA: 36s - loss: 0.7137 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2845 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.189762\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - "1966/2000 [============================>.] - ETA: 35s - loss: 0.7135 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2843 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.189747\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - "1967/2000 [============================>.] - ETA: 34s - loss: 0.7133 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2842 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.189632\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - "1968/2000 [============================>.] - ETA: 33s - loss: 0.7131 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2842 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1308 - mrcnn_mask_loss: 0.1896128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - "1969/2000 [============================>.] - ETA: 32s - loss: 0.7131 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2842 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1308 - mrcnn_mask_loss: 0.189667\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - "1970/2000 [============================>.] - ETA: 31s - loss: 0.7129 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2840 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1308 - mrcnn_mask_loss: 0.1896336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - "1971/2000 [============================>.] - ETA: 30s - loss: 0.7128 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2840 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1308 - mrcnn_mask_loss: 0.1896216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - "1972/2000 [============================>.] - ETA: 29s - loss: 0.7126 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2839 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1307 - mrcnn_mask_loss: 0.189657\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - "1973/2000 [============================>.] - ETA: 28s - loss: 0.7126 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2839 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1307 - mrcnn_mask_loss: 0.1896220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - "1974/2000 [============================>.] - ETA: 27s - loss: 0.7126 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2840 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1307 - mrcnn_mask_loss: 0.1896377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - "1975/2000 [============================>.] - ETA: 26s - loss: 0.7126 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2840 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1307 - mrcnn_mask_loss: 0.1896293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - "1976/2000 [============================>.] - ETA: 24s - loss: 0.7126 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2839 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1307 - mrcnn_mask_loss: 0.1896205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - "1977/2000 [============================>.] - ETA: 23s - loss: 0.7124 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2839 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1895107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - "1978/2000 [============================>.] - ETA: 22s - loss: 0.7122 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2837 - mrcnn_class_loss: 0.1013 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1895239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - "1979/2000 [============================>.] - ETA: 21s - loss: 0.7128 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2844 - mrcnn_class_loss: 0.1013 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1895319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - "1980/2000 [============================>.] - ETA: 20s - loss: 0.7129 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2844 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1895380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - "1981/2000 [============================>.] - ETA: 19s - loss: 0.7129 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2845 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1895346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - "1982/2000 [============================>.] - ETA: 18s - loss: 0.7130 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2846 - mrcnn_class_loss: 0.1013 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1895178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - "1983/2000 [============================>.] - ETA: 17s - loss: 0.7130 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2846 - mrcnn_class_loss: 0.1013 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - "1984/2000 [============================>.] - ETA: 16s - loss: 0.7129 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2846 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1985/2000 [============================>.] - ETA: 15s - loss: 0.7129 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2846 - mrcnn_class_loss: 0.1013 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.189421\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - "1986/2000 [============================>.] - ETA: 14s - loss: 0.7129 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2847 - mrcnn_class_loss: 0.1013 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - "1987/2000 [============================>.] - ETA: 13s - loss: 0.7130 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2846 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - "1988/2000 [============================>.] - ETA: 12s - loss: 0.7129 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2846 - mrcnn_class_loss: 0.1013 - mrcnn_bbox_loss: 0.1305 - mrcnn_mask_loss: 0.1894326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - "1989/2000 [============================>.] - ETA: 11s - loss: 0.7128 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2846 - mrcnn_class_loss: 0.1013 - mrcnn_bbox_loss: 0.1305 - mrcnn_mask_loss: 0.1894149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - "1990/2000 [============================>.] - ETA: 10s - loss: 0.7129 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2846 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - "1991/2000 [============================>.] - ETA: 9s - loss: 0.7129 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2845 - mrcnn_class_loss: 0.1014 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894 267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - "1992/2000 [============================>.] - ETA: 8s - loss: 0.7129 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2845 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - "1993/2000 [============================>.] - ETA: 7s - loss: 0.7130 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2845 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - "1994/2000 [============================>.] - ETA: 6s - loss: 0.7130 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2844 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - "1995/2000 [============================>.] - ETA: 5s - loss: 0.7131 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2845 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1307 - mrcnn_mask_loss: 0.1894192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - "1996/2000 [============================>.] - ETA: 4s - loss: 0.7130 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2844 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.189470\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - "1997/2000 [============================>.] - ETA: 3s - loss: 0.7128 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2843 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - "1998/2000 [============================>.] - ETA: 2s - loss: 0.7127 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2842 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - "1999/2000 [============================>.] - ETA: 1s - loss: 0.7126 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2841 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1305 - mrcnn_mask_loss: 0.1894364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", - "2000/2000 [==============================] - 2083s 1s/step - loss: 0.7126 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2841 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1894 - val_loss: 1.8708 - val_rpn_class_loss: 0.0074 - val_rpn_bbox_loss: 0.7350 - val_mrcnn_class_loss: 0.3455 - val_mrcnn_bbox_loss: 0.4253 - val_mrcnn_mask_loss: 0.3576\n" - ] - } - ], - "source": [ - "# Train the head branches\n", - "# Passing layers=\"heads\" freezes all layers except the head\n", - "# layers. You can also pass a regular expression to select\n", - "# which layers to train by name pattern.\n", - "model.train(dataset_train, dataset_val, \n", - " learning_rate=config.LEARNING_RATE, \n", - " epochs=2, \n", - " layers='heads') #epochs = 1" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Starting at epoch 2. LR=0.0001\n", - "\n", - "Checkpoint Path: C:\\Users\\Asfandyar\\Documents\\Romesa\\Scene_Parsing\\Code\\MaskRCNN_master _AP_0.82_dataset_6\\logs\\brain20180322T2325\\mask_rcnn_brain_{epoch:04d}.h5\n", - "Selecting layers to train\n", - "conv1 (Conv2D)\n", - "bn_conv1 (BatchNorm)\n", - "res2a_branch2a (Conv2D)\n", - "bn2a_branch2a (BatchNorm)\n", - "res2a_branch2b (Conv2D)\n", - "bn2a_branch2b (BatchNorm)\n", - "res2a_branch2c (Conv2D)\n", - "res2a_branch1 (Conv2D)\n", - "bn2a_branch2c (BatchNorm)\n", - "bn2a_branch1 (BatchNorm)\n", - "res2b_branch2a (Conv2D)\n", - "bn2b_branch2a (BatchNorm)\n", - "res2b_branch2b (Conv2D)\n", - "bn2b_branch2b (BatchNorm)\n", - "res2b_branch2c (Conv2D)\n", - "bn2b_branch2c (BatchNorm)\n", - "res2c_branch2a (Conv2D)\n", - "bn2c_branch2a (BatchNorm)\n", - "res2c_branch2b (Conv2D)\n", - "bn2c_branch2b (BatchNorm)\n", - "res2c_branch2c (Conv2D)\n", - "bn2c_branch2c (BatchNorm)\n", - "res3a_branch2a (Conv2D)\n", - "bn3a_branch2a (BatchNorm)\n", - "res3a_branch2b (Conv2D)\n", - "bn3a_branch2b (BatchNorm)\n", - "res3a_branch2c (Conv2D)\n", - "res3a_branch1 (Conv2D)\n", - "bn3a_branch2c (BatchNorm)\n", - "bn3a_branch1 (BatchNorm)\n", - "res3b_branch2a (Conv2D)\n", - "bn3b_branch2a (BatchNorm)\n", - "res3b_branch2b (Conv2D)\n", - "bn3b_branch2b (BatchNorm)\n", - "res3b_branch2c (Conv2D)\n", - "bn3b_branch2c (BatchNorm)\n", - "res3c_branch2a (Conv2D)\n", - "bn3c_branch2a (BatchNorm)\n", - "res3c_branch2b (Conv2D)\n", - "bn3c_branch2b (BatchNorm)\n", - "res3c_branch2c (Conv2D)\n", - "bn3c_branch2c (BatchNorm)\n", - "res3d_branch2a (Conv2D)\n", - "bn3d_branch2a (BatchNorm)\n", - "res3d_branch2b (Conv2D)\n", - "bn3d_branch2b (BatchNorm)\n", - "res3d_branch2c (Conv2D)\n", - "bn3d_branch2c (BatchNorm)\n", - "res4a_branch2a (Conv2D)\n", - "bn4a_branch2a (BatchNorm)\n", - "res4a_branch2b (Conv2D)\n", - "bn4a_branch2b (BatchNorm)\n", - "res4a_branch2c (Conv2D)\n", - "res4a_branch1 (Conv2D)\n", - "bn4a_branch2c (BatchNorm)\n", - "bn4a_branch1 (BatchNorm)\n", - "res4b_branch2a (Conv2D)\n", - "bn4b_branch2a (BatchNorm)\n", - "res4b_branch2b (Conv2D)\n", - "bn4b_branch2b (BatchNorm)\n", - "res4b_branch2c (Conv2D)\n", - "bn4b_branch2c (BatchNorm)\n", - "res4c_branch2a (Conv2D)\n", - "bn4c_branch2a (BatchNorm)\n", - "res4c_branch2b (Conv2D)\n", - "bn4c_branch2b (BatchNorm)\n", - "res4c_branch2c (Conv2D)\n", - "bn4c_branch2c (BatchNorm)\n", - "res4d_branch2a (Conv2D)\n", - "bn4d_branch2a (BatchNorm)\n", - "res4d_branch2b (Conv2D)\n", - "bn4d_branch2b (BatchNorm)\n", - "res4d_branch2c (Conv2D)\n", - "bn4d_branch2c (BatchNorm)\n", - "res4e_branch2a (Conv2D)\n", - "bn4e_branch2a (BatchNorm)\n", - "res4e_branch2b (Conv2D)\n", - "bn4e_branch2b (BatchNorm)\n", - "res4e_branch2c (Conv2D)\n", - "bn4e_branch2c (BatchNorm)\n", - "res4f_branch2a (Conv2D)\n", - "bn4f_branch2a (BatchNorm)\n", - "res4f_branch2b (Conv2D)\n", - "bn4f_branch2b (BatchNorm)\n", - "res4f_branch2c (Conv2D)\n", - "bn4f_branch2c (BatchNorm)\n", - "res4g_branch2a (Conv2D)\n", - "bn4g_branch2a (BatchNorm)\n", - "res4g_branch2b (Conv2D)\n", - "bn4g_branch2b (BatchNorm)\n", - "res4g_branch2c (Conv2D)\n", - "bn4g_branch2c (BatchNorm)\n", - "res4h_branch2a (Conv2D)\n", - "bn4h_branch2a (BatchNorm)\n", - "res4h_branch2b (Conv2D)\n", - "bn4h_branch2b (BatchNorm)\n", - "res4h_branch2c (Conv2D)\n", - "bn4h_branch2c (BatchNorm)\n", - "res4i_branch2a (Conv2D)\n", - "bn4i_branch2a (BatchNorm)\n", - "res4i_branch2b (Conv2D)\n", - "bn4i_branch2b (BatchNorm)\n", - "res4i_branch2c (Conv2D)\n", - "bn4i_branch2c (BatchNorm)\n", - "res4j_branch2a (Conv2D)\n", - "bn4j_branch2a (BatchNorm)\n", - "res4j_branch2b (Conv2D)\n", - "bn4j_branch2b (BatchNorm)\n", - "res4j_branch2c (Conv2D)\n", - "bn4j_branch2c (BatchNorm)\n", - "res4k_branch2a (Conv2D)\n", - "bn4k_branch2a (BatchNorm)\n", - "res4k_branch2b (Conv2D)\n", - "bn4k_branch2b (BatchNorm)\n", - "res4k_branch2c (Conv2D)\n", - "bn4k_branch2c (BatchNorm)\n", - "res4l_branch2a (Conv2D)\n", - "bn4l_branch2a (BatchNorm)\n", - "res4l_branch2b (Conv2D)\n", - "bn4l_branch2b (BatchNorm)\n", - "res4l_branch2c (Conv2D)\n", - "bn4l_branch2c (BatchNorm)\n", - "res4m_branch2a (Conv2D)\n", - "bn4m_branch2a (BatchNorm)\n", - "res4m_branch2b (Conv2D)\n", - "bn4m_branch2b (BatchNorm)\n", - "res4m_branch2c (Conv2D)\n", - "bn4m_branch2c (BatchNorm)\n", - "res4n_branch2a (Conv2D)\n", - "bn4n_branch2a (BatchNorm)\n", - "res4n_branch2b (Conv2D)\n", - "bn4n_branch2b (BatchNorm)\n", - "res4n_branch2c (Conv2D)\n", - "bn4n_branch2c (BatchNorm)\n", - "res4o_branch2a (Conv2D)\n", - "bn4o_branch2a (BatchNorm)\n", - "res4o_branch2b (Conv2D)\n", - "bn4o_branch2b (BatchNorm)\n", - "res4o_branch2c (Conv2D)\n", - "bn4o_branch2c (BatchNorm)\n", - "res4p_branch2a (Conv2D)\n", - "bn4p_branch2a (BatchNorm)\n", - "res4p_branch2b (Conv2D)\n", - "bn4p_branch2b (BatchNorm)\n", - "res4p_branch2c (Conv2D)\n", - "bn4p_branch2c (BatchNorm)\n", - "res4q_branch2a (Conv2D)\n", - "bn4q_branch2a (BatchNorm)\n", - "res4q_branch2b (Conv2D)\n", - "bn4q_branch2b (BatchNorm)\n", - "res4q_branch2c (Conv2D)\n", - "bn4q_branch2c (BatchNorm)\n", - "res4r_branch2a (Conv2D)\n", - "bn4r_branch2a (BatchNorm)\n", - "res4r_branch2b (Conv2D)\n", - "bn4r_branch2b (BatchNorm)\n", - "res4r_branch2c (Conv2D)\n", - "bn4r_branch2c (BatchNorm)\n", - "res4s_branch2a (Conv2D)\n", - "bn4s_branch2a (BatchNorm)\n", - "res4s_branch2b (Conv2D)\n", - "bn4s_branch2b (BatchNorm)\n", - "res4s_branch2c (Conv2D)\n", - "bn4s_branch2c (BatchNorm)\n", - "res4t_branch2a (Conv2D)\n", - "bn4t_branch2a (BatchNorm)\n", - "res4t_branch2b (Conv2D)\n", - "bn4t_branch2b (BatchNorm)\n", - "res4t_branch2c (Conv2D)\n", - "bn4t_branch2c (BatchNorm)\n", - "res4u_branch2a (Conv2D)\n", - "bn4u_branch2a (BatchNorm)\n", - "res4u_branch2b (Conv2D)\n", - "bn4u_branch2b (BatchNorm)\n", - "res4u_branch2c (Conv2D)\n", - "bn4u_branch2c (BatchNorm)\n", - "res4v_branch2a (Conv2D)\n", - "bn4v_branch2a (BatchNorm)\n", - "res4v_branch2b (Conv2D)\n", - "bn4v_branch2b (BatchNorm)\n", - "res4v_branch2c (Conv2D)\n", - "bn4v_branch2c (BatchNorm)\n", - "res4w_branch2a (Conv2D)\n", - "bn4w_branch2a (BatchNorm)\n", - "res4w_branch2b (Conv2D)\n", - "bn4w_branch2b (BatchNorm)\n", - "res4w_branch2c (Conv2D)\n", - "bn4w_branch2c (BatchNorm)\n", - "res5a_branch2a (Conv2D)\n", - "bn5a_branch2a (BatchNorm)\n", - "res5a_branch2b (Conv2D)\n", - "bn5a_branch2b (BatchNorm)\n", - "res5a_branch2c (Conv2D)\n", - "res5a_branch1 (Conv2D)\n", - "bn5a_branch2c (BatchNorm)\n", - "bn5a_branch1 (BatchNorm)\n", - "res5b_branch2a (Conv2D)\n", - "bn5b_branch2a (BatchNorm)\n", - "res5b_branch2b (Conv2D)\n", - "bn5b_branch2b (BatchNorm)\n", - "res5b_branch2c (Conv2D)\n", - "bn5b_branch2c (BatchNorm)\n", - "res5c_branch2a (Conv2D)\n", - "bn5c_branch2a (BatchNorm)\n", - "res5c_branch2b (Conv2D)\n", - "bn5c_branch2b (BatchNorm)\n", - "res5c_branch2c (Conv2D)\n", - "bn5c_branch2c (BatchNorm)\n", - "fpn_c5p5 (Conv2D)\n", - "fpn_c4p4 (Conv2D)\n", - "fpn_c3p3 (Conv2D)\n", - "fpn_c2p2 (Conv2D)\n", - "fpn_p5 (Conv2D)\n", - "fpn_p2 (Conv2D)\n", - "fpn_p3 (Conv2D)\n", - "fpn_p4 (Conv2D)\n", - "In model: rpn_model\n", - " rpn_conv_shared (Conv2D)\n", - " rpn_class_raw (Conv2D)\n", - " rpn_bbox_pred (Conv2D)\n", - "mrcnn_mask_conv1 (TimeDistributed)\n", - "mrcnn_mask_bn1 (TimeDistributed)\n", - "mrcnn_mask_conv2 (TimeDistributed)\n", - "mrcnn_mask_bn2 (TimeDistributed)\n", - "mrcnn_class_conv1 (TimeDistributed)\n", - "mrcnn_class_bn1 (TimeDistributed)\n", - "mrcnn_mask_conv3 (TimeDistributed)\n", - "mrcnn_mask_bn3 (TimeDistributed)\n", - "mrcnn_class_conv2 (TimeDistributed)\n", - "mrcnn_class_bn2 (TimeDistributed)\n", - "mrcnn_mask_conv4 (TimeDistributed)\n", - "mrcnn_mask_bn4 (TimeDistributed)\n", - "mrcnn_bbox_fc (TimeDistributed)\n", - "mrcnn_mask_deconv (TimeDistributed)\n", - "mrcnn_class_logits (TimeDistributed)\n", - "mrcnn_mask (TimeDistributed)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 3423, 'width': 4324, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_4.png', 'section_masks_180_m_5.png', 'section_masks_180_m_6.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Asfandyar\\AppData\\Roaming\\Python\\Python35\\site-packages\\scipy\\ndimage\\interpolation.py:616: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.\n", - " \"the returned array has changed.\", UserWarning)\n", - "c:\\users\\asfandyar\\appdata\\local\\programs\\python\\python35\\lib\\site-packages\\tensorflow\\python\\ops\\gradients_impl.py:98: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", - " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 3/3\n", - "106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - " 1/2000 [..............................] - ETA: 4:34:22 - loss: 0.7656 - rpn_class_loss: 0.0033 - rpn_bbox_loss: 0.2111 - mrcnn_class_loss: 0.2175 - mrcnn_bbox_loss: 0.1635 - mrcnn_mask_loss: 0.1701278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - " 2/2000 [..............................] - ETA: 2:41:54 - loss: 0.7955 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.2407 - mrcnn_class_loss: 0.1397 - mrcnn_bbox_loss: 0.2195 - mrcnn_mask_loss: 0.1900124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - " 3/2000 [..............................] - ETA: 2:04:42 - loss: 0.8570 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.2842 - mrcnn_class_loss: 0.1494 - mrcnn_bbox_loss: 0.2107 - mrcnn_mask_loss: 0.2070307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - " 4/2000 [..............................] - ETA: 1:44:35 - loss: 0.9104 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.2958 - mrcnn_class_loss: 0.1696 - mrcnn_bbox_loss: 0.2261 - mrcnn_mask_loss: 0.2131146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - " 5/2000 [..............................] - ETA: 1:31:46 - loss: 0.9280 - rpn_class_loss: 0.0131 - rpn_bbox_loss: 0.2845 - mrcnn_class_loss: 0.1891 - mrcnn_bbox_loss: 0.2401 - mrcnn_mask_loss: 0.2012287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - " 6/2000 [..............................] - ETA: 1:23:53 - loss: 0.8765 - rpn_class_loss: 0.0136 - rpn_bbox_loss: 0.2898 - mrcnn_class_loss: 0.1597 - mrcnn_bbox_loss: 0.2184 - mrcnn_mask_loss: 0.195098\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - " 7/2000 [..............................] - ETA: 1:18:01 - loss: 0.8599 - rpn_class_loss: 0.0123 - rpn_bbox_loss: 0.3134 - mrcnn_class_loss: 0.1481 - mrcnn_bbox_loss: 0.1989 - mrcnn_mask_loss: 0.187218\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - " 8/2000 [..............................] - ETA: 1:12:38 - loss: 0.8497 - rpn_class_loss: 0.0110 - rpn_bbox_loss: 0.3380 - mrcnn_class_loss: 0.1396 - mrcnn_bbox_loss: 0.1814 - mrcnn_mask_loss: 0.1797366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - " 9/2000 [..............................] - ETA: 1:10:04 - loss: 0.8346 - rpn_class_loss: 0.0102 - rpn_bbox_loss: 0.3218 - mrcnn_class_loss: 0.1356 - mrcnn_bbox_loss: 0.1873 - mrcnn_mask_loss: 0.1798381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - " 10/2000 [..............................] - ETA: 1:07:33 - loss: 0.8231 - rpn_class_loss: 0.0119 - rpn_bbox_loss: 0.3105 - mrcnn_class_loss: 0.1324 - mrcnn_bbox_loss: 0.1836 - mrcnn_mask_loss: 0.1847288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - " 11/2000 [..............................] - ETA: 1:05:18 - loss: 0.8155 - rpn_class_loss: 0.0117 - rpn_bbox_loss: 0.3045 - mrcnn_class_loss: 0.1299 - mrcnn_bbox_loss: 0.1841 - mrcnn_mask_loss: 0.1853360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - " 12/2000 [..............................] - ETA: 1:04:24 - loss: 0.8405 - rpn_class_loss: 0.0111 - rpn_bbox_loss: 0.3096 - mrcnn_class_loss: 0.1321 - mrcnn_bbox_loss: 0.1977 - mrcnn_mask_loss: 0.1900217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - " 13/2000 [..............................] - ETA: 1:02:36 - loss: 0.8217 - rpn_class_loss: 0.0103 - rpn_bbox_loss: 0.2998 - mrcnn_class_loss: 0.1359 - mrcnn_bbox_loss: 0.1894 - mrcnn_mask_loss: 0.1863344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - " 14/2000 [..............................] - ETA: 1:01:41 - loss: 0.8065 - rpn_class_loss: 0.0104 - rpn_bbox_loss: 0.2985 - mrcnn_class_loss: 0.1289 - mrcnn_bbox_loss: 0.1841 - mrcnn_mask_loss: 0.1845320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - " 15/2000 [..............................] - ETA: 1:01:05 - loss: 0.7963 - rpn_class_loss: 0.0101 - rpn_bbox_loss: 0.2877 - mrcnn_class_loss: 0.1244 - mrcnn_bbox_loss: 0.1851 - mrcnn_mask_loss: 0.189130\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - " 16/2000 [..............................] - ETA: 59:36 - loss: 0.7790 - rpn_class_loss: 0.0098 - rpn_bbox_loss: 0.2845 - mrcnn_class_loss: 0.1173 - mrcnn_bbox_loss: 0.1805 - mrcnn_mask_loss: 0.1869 292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - " 17/2000 [..............................] - ETA: 58:41 - loss: 0.7754 - rpn_class_loss: 0.0094 - rpn_bbox_loss: 0.2859 - mrcnn_class_loss: 0.1190 - mrcnn_bbox_loss: 0.1761 - mrcnn_mask_loss: 0.1849151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - " 18/2000 [..............................] - ETA: 57:39 - loss: 0.7724 - rpn_class_loss: 0.0100 - rpn_bbox_loss: 0.2856 - mrcnn_class_loss: 0.1214 - mrcnn_bbox_loss: 0.1721 - mrcnn_mask_loss: 0.1832176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - " 19/2000 [..............................] - ETA: 56:40 - loss: 0.7712 - rpn_class_loss: 0.0096 - rpn_bbox_loss: 0.2835 - mrcnn_class_loss: 0.1183 - mrcnn_bbox_loss: 0.1773 - mrcnn_mask_loss: 0.1825203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - " 20/2000 [..............................] - ETA: 55:38 - loss: 0.7511 - rpn_class_loss: 0.0093 - rpn_bbox_loss: 0.2744 - mrcnn_class_loss: 0.1148 - mrcnn_bbox_loss: 0.1726 - mrcnn_mask_loss: 0.180039\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - " 21/2000 [..............................] - ETA: 54:35 - loss: 0.7553 - rpn_class_loss: 0.0089 - rpn_bbox_loss: 0.2827 - mrcnn_class_loss: 0.1113 - mrcnn_bbox_loss: 0.1698 - mrcnn_mask_loss: 0.1826262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - " 22/2000 [..............................] - ETA: 53:58 - loss: 0.7515 - rpn_class_loss: 0.0088 - rpn_bbox_loss: 0.2779 - mrcnn_class_loss: 0.1093 - mrcnn_bbox_loss: 0.1716 - mrcnn_mask_loss: 0.1840234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - " 23/2000 [..............................] - ETA: 53:06 - loss: 0.7366 - rpn_class_loss: 0.0086 - rpn_bbox_loss: 0.2712 - mrcnn_class_loss: 0.1075 - mrcnn_bbox_loss: 0.1667 - mrcnn_mask_loss: 0.1827162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - " 24/2000 [..............................] - ETA: 52:50 - loss: 0.7265 - rpn_class_loss: 0.0089 - rpn_bbox_loss: 0.2682 - mrcnn_class_loss: 0.1048 - mrcnn_bbox_loss: 0.1637 - mrcnn_mask_loss: 0.1809351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - " 25/2000 [..............................] - ETA: 52:16 - loss: 0.7219 - rpn_class_loss: 0.0087 - rpn_bbox_loss: 0.2657 - mrcnn_class_loss: 0.1031 - mrcnn_bbox_loss: 0.1632 - mrcnn_mask_loss: 0.1812227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - " 26/2000 [..............................] - ETA: 51:44 - loss: 0.7053 - rpn_class_loss: 0.0084 - rpn_bbox_loss: 0.2566 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1596 - mrcnn_mask_loss: 0.179284\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - " 27/2000 [..............................] - ETA: 51:22 - loss: 0.7006 - rpn_class_loss: 0.0083 - rpn_bbox_loss: 0.2499 - mrcnn_class_loss: 0.1015 - mrcnn_bbox_loss: 0.1584 - mrcnn_mask_loss: 0.1825248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - " 28/2000 [..............................] - ETA: 50:45 - loss: 0.7007 - rpn_class_loss: 0.0082 - rpn_bbox_loss: 0.2457 - mrcnn_class_loss: 0.1046 - mrcnn_bbox_loss: 0.1582 - mrcnn_mask_loss: 0.1840219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 29/2000 [..............................] - ETA: 50:15 - loss: 0.6886 - rpn_class_loss: 0.0080 - rpn_bbox_loss: 0.2408 - mrcnn_class_loss: 0.1017 - mrcnn_bbox_loss: 0.1549 - mrcnn_mask_loss: 0.1832190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - " 30/2000 [..............................] - ETA: 49:41 - loss: 0.6767 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.2350 - mrcnn_class_loss: 0.1019 - mrcnn_bbox_loss: 0.1508 - mrcnn_mask_loss: 0.1812264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - " 31/2000 [..............................] - ETA: 49:35 - loss: 0.6785 - rpn_class_loss: 0.0076 - rpn_bbox_loss: 0.2318 - mrcnn_class_loss: 0.1060 - mrcnn_bbox_loss: 0.1511 - mrcnn_mask_loss: 0.1821350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - " 32/2000 [..............................] - ETA: 49:18 - loss: 0.6774 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.2328 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1501 - mrcnn_mask_loss: 0.1812119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - " 33/2000 [..............................] - ETA: 49:12 - loss: 0.6890 - rpn_class_loss: 0.0079 - rpn_bbox_loss: 0.2433 - mrcnn_class_loss: 0.1080 - mrcnn_bbox_loss: 0.1496 - mrcnn_mask_loss: 0.1802367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - " 34/2000 [..............................] - ETA: 49:01 - loss: 0.6869 - rpn_class_loss: 0.0082 - rpn_bbox_loss: 0.2436 - mrcnn_class_loss: 0.1058 - mrcnn_bbox_loss: 0.1501 - mrcnn_mask_loss: 0.1792168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - " 35/2000 [..............................] - ETA: 48:43 - loss: 0.6819 - rpn_class_loss: 0.0084 - rpn_bbox_loss: 0.2388 - mrcnn_class_loss: 0.1031 - mrcnn_bbox_loss: 0.1538 - mrcnn_mask_loss: 0.1778385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - " 36/2000 [..............................] - ETA: 48:26 - loss: 0.6780 - rpn_class_loss: 0.0083 - rpn_bbox_loss: 0.2364 - mrcnn_class_loss: 0.1025 - mrcnn_bbox_loss: 0.1524 - mrcnn_mask_loss: 0.178489\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - " 37/2000 [..............................] - ETA: 48:06 - loss: 0.6763 - rpn_class_loss: 0.0081 - rpn_bbox_loss: 0.2372 - mrcnn_class_loss: 0.1046 - mrcnn_bbox_loss: 0.1492 - mrcnn_mask_loss: 0.1772336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - " 38/2000 [..............................] - ETA: 48:03 - loss: 0.6751 - rpn_class_loss: 0.0080 - rpn_bbox_loss: 0.2356 - mrcnn_class_loss: 0.1059 - mrcnn_bbox_loss: 0.1486 - mrcnn_mask_loss: 0.177020\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - " 39/2000 [..............................] - ETA: 47:35 - loss: 0.6734 - rpn_class_loss: 0.0078 - rpn_bbox_loss: 0.2373 - mrcnn_class_loss: 0.1055 - mrcnn_bbox_loss: 0.1462 - mrcnn_mask_loss: 0.1766312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - " 40/2000 [..............................] - ETA: 47:33 - loss: 0.6711 - rpn_class_loss: 0.0077 - rpn_bbox_loss: 0.2366 - mrcnn_class_loss: 0.1034 - mrcnn_bbox_loss: 0.1457 - mrcnn_mask_loss: 0.1778328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - " 41/2000 [..............................] - ETA: 47:25 - loss: 0.6664 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.2355 - mrcnn_class_loss: 0.1024 - mrcnn_bbox_loss: 0.1440 - mrcnn_mask_loss: 0.176911\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - " 42/2000 [..............................] - ETA: 47:05 - loss: 0.6614 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.2327 - mrcnn_class_loss: 0.1020 - mrcnn_bbox_loss: 0.1422 - mrcnn_mask_loss: 0.177079\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - " 43/2000 [..............................] - ETA: 46:57 - loss: 0.6554 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.2312 - mrcnn_class_loss: 0.1006 - mrcnn_bbox_loss: 0.1397 - mrcnn_mask_loss: 0.1766377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 44/2000 [..............................] - ETA: 46:54 - loss: 0.6582 - rpn_class_loss: 0.0075 - rpn_bbox_loss: 0.2311 - mrcnn_class_loss: 0.1035 - mrcnn_bbox_loss: 0.1404 - mrcnn_mask_loss: 0.1757166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - " 45/2000 [..............................] - ETA: 46:45 - loss: 0.6588 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.2280 - mrcnn_class_loss: 0.1038 - mrcnn_bbox_loss: 0.1442 - mrcnn_mask_loss: 0.1754378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - " 46/2000 [..............................] - ETA: 46:49 - loss: 0.6569 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.2268 - mrcnn_class_loss: 0.1033 - mrcnn_bbox_loss: 0.1445 - mrcnn_mask_loss: 0.1749277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - " 47/2000 [..............................] - ETA: 46:41 - loss: 0.6586 - rpn_class_loss: 0.0074 - rpn_bbox_loss: 0.2273 - mrcnn_class_loss: 0.1031 - mrcnn_bbox_loss: 0.1454 - mrcnn_mask_loss: 0.1753207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - " 48/2000 [..............................] - ETA: 46:22 - loss: 0.6516 - rpn_class_loss: 0.0073 - rpn_bbox_loss: 0.2239 - mrcnn_class_loss: 0.1020 - mrcnn_bbox_loss: 0.1437 - mrcnn_mask_loss: 0.1746330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - " 49/2000 [..............................] - ETA: 46:14 - loss: 0.6539 - rpn_class_loss: 0.0072 - rpn_bbox_loss: 0.2230 - mrcnn_class_loss: 0.1050 - mrcnn_bbox_loss: 0.1436 - mrcnn_mask_loss: 0.175213\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - " 50/2000 [..............................] - ETA: 46:02 - loss: 0.6482 - rpn_class_loss: 0.0071 - rpn_bbox_loss: 0.2221 - mrcnn_class_loss: 0.1031 - mrcnn_bbox_loss: 0.1417 - mrcnn_mask_loss: 0.1743116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - " 51/2000 [..............................] - ETA: 45:58 - loss: 0.6514 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2244 - mrcnn_class_loss: 0.1040 - mrcnn_bbox_loss: 0.1422 - mrcnn_mask_loss: 0.1738153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - " 52/2000 [..............................] - ETA: 45:52 - loss: 0.6555 - rpn_class_loss: 0.0069 - rpn_bbox_loss: 0.2276 - mrcnn_class_loss: 0.1057 - mrcnn_bbox_loss: 0.1420 - mrcnn_mask_loss: 0.1732304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - " 53/2000 [..............................] - ETA: 45:55 - loss: 0.6566 - rpn_class_loss: 0.0070 - rpn_bbox_loss: 0.2293 - mrcnn_class_loss: 0.1050 - mrcnn_bbox_loss: 0.1414 - mrcnn_mask_loss: 0.173869\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - " 54/2000 [..............................] - ETA: 45:36 - loss: 0.6502 - rpn_class_loss: 0.0069 - rpn_bbox_loss: 0.2268 - mrcnn_class_loss: 0.1037 - mrcnn_bbox_loss: 0.1396 - mrcnn_mask_loss: 0.173268\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - " 55/2000 [..............................] - ETA: 45:22 - loss: 0.6467 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.2237 - mrcnn_class_loss: 0.1056 - mrcnn_bbox_loss: 0.1384 - mrcnn_mask_loss: 0.1722376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - " 56/2000 [..............................] - ETA: 45:23 - loss: 0.6441 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.2226 - mrcnn_class_loss: 0.1045 - mrcnn_bbox_loss: 0.1383 - mrcnn_mask_loss: 0.1719132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - " 57/2000 [..............................] - ETA: 45:21 - loss: 0.6520 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.2314 - mrcnn_class_loss: 0.1038 - mrcnn_bbox_loss: 0.1378 - mrcnn_mask_loss: 0.1721164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - " 58/2000 [..............................] - ETA: 45:18 - loss: 0.6529 - rpn_class_loss: 0.0069 - rpn_bbox_loss: 0.2304 - mrcnn_class_loss: 0.1067 - mrcnn_bbox_loss: 0.1376 - mrcnn_mask_loss: 0.1712301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 59/2000 [..............................] - ETA: 45:18 - loss: 0.6568 - rpn_class_loss: 0.0069 - rpn_bbox_loss: 0.2345 - mrcnn_class_loss: 0.1062 - mrcnn_bbox_loss: 0.1372 - mrcnn_mask_loss: 0.1721128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - " 60/2000 [..............................] - ETA: 45:19 - loss: 0.6597 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.2383 - mrcnn_class_loss: 0.1050 - mrcnn_bbox_loss: 0.1374 - mrcnn_mask_loss: 0.1721272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - " 61/2000 [..............................] - ETA: 45:11 - loss: 0.6564 - rpn_class_loss: 0.0068 - rpn_bbox_loss: 0.2369 - mrcnn_class_loss: 0.1046 - mrcnn_bbox_loss: 0.1361 - mrcnn_mask_loss: 0.1720214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - " 62/2000 [..............................] - ETA: 45:00 - loss: 0.6521 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.2362 - mrcnn_class_loss: 0.1031 - mrcnn_bbox_loss: 0.1348 - mrcnn_mask_loss: 0.1713268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - " 63/2000 [..............................] - ETA: 44:53 - loss: 0.6506 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2346 - mrcnn_class_loss: 0.1040 - mrcnn_bbox_loss: 0.1339 - mrcnn_mask_loss: 0.1715374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - " 64/2000 [..............................] - ETA: 44:51 - loss: 0.6484 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2326 - mrcnn_class_loss: 0.1047 - mrcnn_bbox_loss: 0.1333 - mrcnn_mask_loss: 0.1713138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - " 65/2000 [..............................] - ETA: 44:58 - loss: 0.6508 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.2334 - mrcnn_class_loss: 0.1060 - mrcnn_bbox_loss: 0.1328 - mrcnn_mask_loss: 0.1719144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - " 66/2000 [..............................] - ETA: 44:55 - loss: 0.6491 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.2336 - mrcnn_class_loss: 0.1048 - mrcnn_bbox_loss: 0.1326 - mrcnn_mask_loss: 0.1715238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - " 67/2000 [>.............................] - ETA: 44:45 - loss: 0.6472 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2330 - mrcnn_class_loss: 0.1038 - mrcnn_bbox_loss: 0.1327 - mrcnn_mask_loss: 0.1710226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - " 68/2000 [>.............................] - ETA: 44:35 - loss: 0.6420 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2304 - mrcnn_class_loss: 0.1035 - mrcnn_bbox_loss: 0.1313 - mrcnn_mask_loss: 0.1702222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - " 69/2000 [>.............................] - ETA: 44:27 - loss: 0.6393 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2284 - mrcnn_class_loss: 0.1038 - mrcnn_bbox_loss: 0.1306 - mrcnn_mask_loss: 0.1699295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - " 70/2000 [>.............................] - ETA: 44:29 - loss: 0.6381 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2278 - mrcnn_class_loss: 0.1029 - mrcnn_bbox_loss: 0.1309 - mrcnn_mask_loss: 0.169915\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - " 71/2000 [>.............................] - ETA: 44:19 - loss: 0.6386 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2310 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1298 - mrcnn_mask_loss: 0.169782\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - " 72/2000 [>.............................] - ETA: 44:13 - loss: 0.6365 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2303 - mrcnn_class_loss: 0.1007 - mrcnn_bbox_loss: 0.1294 - mrcnn_mask_loss: 0.1696319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - " 73/2000 [>.............................] - ETA: 44:20 - loss: 0.6423 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2324 - mrcnn_class_loss: 0.1028 - mrcnn_bbox_loss: 0.1301 - mrcnn_mask_loss: 0.1705149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - " 74/2000 [>.............................] - ETA: 44:14 - loss: 0.6424 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2340 - mrcnn_class_loss: 0.1018 - mrcnn_bbox_loss: 0.1299 - mrcnn_mask_loss: 0.1702303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - " 75/2000 [>.............................] - ETA: 44:14 - loss: 0.6421 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2344 - mrcnn_class_loss: 0.1021 - mrcnn_bbox_loss: 0.1288 - mrcnn_mask_loss: 0.1704180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - " 76/2000 [>.............................] - ETA: 44:05 - loss: 0.6422 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2363 - mrcnn_class_loss: 0.1013 - mrcnn_bbox_loss: 0.1277 - mrcnn_mask_loss: 0.1704134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - " 77/2000 [>.............................] - ETA: 44:06 - loss: 0.6438 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2388 - mrcnn_class_loss: 0.1006 - mrcnn_bbox_loss: 0.1274 - mrcnn_mask_loss: 0.1705156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - " 78/2000 [>.............................] - ETA: 44:04 - loss: 0.6451 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2406 - mrcnn_class_loss: 0.1003 - mrcnn_bbox_loss: 0.1270 - mrcnn_mask_loss: 0.1706174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - " 79/2000 [>.............................] - ETA: 43:59 - loss: 0.6450 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2415 - mrcnn_class_loss: 0.0996 - mrcnn_bbox_loss: 0.1271 - mrcnn_mask_loss: 0.1703397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - " 80/2000 [>.............................] - ETA: 43:58 - loss: 0.6457 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2416 - mrcnn_class_loss: 0.1003 - mrcnn_bbox_loss: 0.1271 - mrcnn_mask_loss: 0.1701118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - " 81/2000 [>.............................] - ETA: 43:56 - loss: 0.6462 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2426 - mrcnn_class_loss: 0.1003 - mrcnn_bbox_loss: 0.1269 - mrcnn_mask_loss: 0.1699387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - " 82/2000 [>.............................] - ETA: 43:54 - loss: 0.6458 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2416 - mrcnn_class_loss: 0.0996 - mrcnn_bbox_loss: 0.1283 - mrcnn_mask_loss: 0.169810\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - " 83/2000 [>.............................] - ETA: 43:46 - loss: 0.6410 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2395 - mrcnn_class_loss: 0.0986 - mrcnn_bbox_loss: 0.1271 - mrcnn_mask_loss: 0.1692338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - " 84/2000 [>.............................] - ETA: 43:49 - loss: 0.6389 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2392 - mrcnn_class_loss: 0.0975 - mrcnn_bbox_loss: 0.1263 - mrcnn_mask_loss: 0.1695383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - " 85/2000 [>.............................] - ETA: 43:48 - loss: 0.6388 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.2397 - mrcnn_class_loss: 0.0974 - mrcnn_bbox_loss: 0.1257 - mrcnn_mask_loss: 0.1693318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - " 86/2000 [>.............................] - ETA: 43:51 - loss: 0.6409 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.2389 - mrcnn_class_loss: 0.0995 - mrcnn_bbox_loss: 0.1259 - mrcnn_mask_loss: 0.16994\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - " 87/2000 [>.............................] - ETA: 43:42 - loss: 0.6389 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2367 - mrcnn_class_loss: 0.1011 - mrcnn_bbox_loss: 0.1252 - mrcnn_mask_loss: 0.1693231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 88/2000 [>.............................] - ETA: 43:35 - loss: 0.6388 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2358 - mrcnn_class_loss: 0.1024 - mrcnn_bbox_loss: 0.1246 - mrcnn_mask_loss: 0.1693235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - " 89/2000 [>.............................] - ETA: 43:28 - loss: 0.6355 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2346 - mrcnn_class_loss: 0.1018 - mrcnn_bbox_loss: 0.1237 - mrcnn_mask_loss: 0.1688313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - " 90/2000 [>.............................] - ETA: 43:29 - loss: 0.6370 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2349 - mrcnn_class_loss: 0.1022 - mrcnn_bbox_loss: 0.1241 - mrcnn_mask_loss: 0.169194\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - " 91/2000 [>.............................] - ETA: 43:25 - loss: 0.6349 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2346 - mrcnn_class_loss: 0.1016 - mrcnn_bbox_loss: 0.1231 - mrcnn_mask_loss: 0.1690198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - " 92/2000 [>.............................] - ETA: 43:20 - loss: 0.6326 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2337 - mrcnn_class_loss: 0.1010 - mrcnn_bbox_loss: 0.1221 - mrcnn_mask_loss: 0.1691233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - " 93/2000 [>.............................] - ETA: 43:12 - loss: 0.6293 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2324 - mrcnn_class_loss: 0.1004 - mrcnn_bbox_loss: 0.1213 - mrcnn_mask_loss: 0.168632\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - " 94/2000 [>.............................] - ETA: 43:06 - loss: 0.6271 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2319 - mrcnn_class_loss: 0.0996 - mrcnn_bbox_loss: 0.1207 - mrcnn_mask_loss: 0.168499\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - " 95/2000 [>.............................] - ETA: 43:02 - loss: 0.6329 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2394 - mrcnn_class_loss: 0.0987 - mrcnn_bbox_loss: 0.1203 - mrcnn_mask_loss: 0.1679258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - " 96/2000 [>.............................] - ETA: 42:59 - loss: 0.6367 - rpn_class_loss: 0.0067 - rpn_bbox_loss: 0.2416 - mrcnn_class_loss: 0.1000 - mrcnn_bbox_loss: 0.1199 - mrcnn_mask_loss: 0.1685182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - " 97/2000 [>.............................] - ETA: 42:53 - loss: 0.6344 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2412 - mrcnn_class_loss: 0.0991 - mrcnn_bbox_loss: 0.1192 - mrcnn_mask_loss: 0.168388\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - " 98/2000 [>.............................] - ETA: 42:47 - loss: 0.6349 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2416 - mrcnn_class_loss: 0.0992 - mrcnn_bbox_loss: 0.1191 - mrcnn_mask_loss: 0.168496\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - " 99/2000 [>.............................] - ETA: 42:45 - loss: 0.6354 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2425 - mrcnn_class_loss: 0.0992 - mrcnn_bbox_loss: 0.1185 - mrcnn_mask_loss: 0.1685255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - " 100/2000 [>.............................] - ETA: 42:42 - loss: 0.6345 - rpn_class_loss: 0.0066 - rpn_bbox_loss: 0.2420 - mrcnn_class_loss: 0.0996 - mrcnn_bbox_loss: 0.1179 - mrcnn_mask_loss: 0.1684196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - " 101/2000 [>.............................] - ETA: 42:37 - loss: 0.6313 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2407 - mrcnn_class_loss: 0.0988 - mrcnn_bbox_loss: 0.1173 - mrcnn_mask_loss: 0.1680347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - " 102/2000 [>.............................] - ETA: 42:36 - loss: 0.6322 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2422 - mrcnn_class_loss: 0.0983 - mrcnn_bbox_loss: 0.1167 - mrcnn_mask_loss: 0.1685299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 103/2000 [>.............................] - ETA: 42:39 - loss: 0.6347 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2437 - mrcnn_class_loss: 0.0990 - mrcnn_bbox_loss: 0.1168 - mrcnn_mask_loss: 0.1687206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - " 104/2000 [>.............................] - ETA: 42:33 - loss: 0.6309 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2418 - mrcnn_class_loss: 0.0981 - mrcnn_bbox_loss: 0.1163 - mrcnn_mask_loss: 0.1682260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - " 105/2000 [>.............................] - ETA: 42:32 - loss: 0.6311 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2414 - mrcnn_class_loss: 0.0985 - mrcnn_bbox_loss: 0.1161 - mrcnn_mask_loss: 0.1687181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - " 106/2000 [>.............................] - ETA: 42:27 - loss: 0.6316 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2425 - mrcnn_class_loss: 0.0979 - mrcnn_bbox_loss: 0.1160 - mrcnn_mask_loss: 0.1688187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - " 107/2000 [>.............................] - ETA: 42:21 - loss: 0.6284 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2409 - mrcnn_class_loss: 0.0974 - mrcnn_bbox_loss: 0.1151 - mrcnn_mask_loss: 0.168726\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - " 108/2000 [>.............................] - ETA: 42:15 - loss: 0.6276 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2415 - mrcnn_class_loss: 0.0968 - mrcnn_bbox_loss: 0.1147 - mrcnn_mask_loss: 0.168451\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - " 109/2000 [>.............................] - ETA: 42:09 - loss: 0.6256 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2406 - mrcnn_class_loss: 0.0963 - mrcnn_bbox_loss: 0.1143 - mrcnn_mask_loss: 0.1682108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - " 110/2000 [>.............................] - ETA: 42:05 - loss: 0.6228 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2392 - mrcnn_class_loss: 0.0958 - mrcnn_bbox_loss: 0.1137 - mrcnn_mask_loss: 0.167952\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - " 111/2000 [>.............................] - ETA: 42:00 - loss: 0.6200 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2381 - mrcnn_class_loss: 0.0951 - mrcnn_bbox_loss: 0.1130 - mrcnn_mask_loss: 0.1677348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - " 112/2000 [>.............................] - ETA: 41:58 - loss: 0.6215 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2392 - mrcnn_class_loss: 0.0954 - mrcnn_bbox_loss: 0.1132 - mrcnn_mask_loss: 0.1676334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - " 113/2000 [>.............................] - ETA: 41:58 - loss: 0.6197 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2379 - mrcnn_class_loss: 0.0951 - mrcnn_bbox_loss: 0.1130 - mrcnn_mask_loss: 0.1674122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - " 114/2000 [>.............................] - ETA: 42:02 - loss: 0.6217 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2382 - mrcnn_class_loss: 0.0958 - mrcnn_bbox_loss: 0.1135 - mrcnn_mask_loss: 0.168193\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - " 115/2000 [>.............................] - ETA: 41:59 - loss: 0.6198 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2377 - mrcnn_class_loss: 0.0953 - mrcnn_bbox_loss: 0.1130 - mrcnn_mask_loss: 0.1677111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - " 116/2000 [>.............................] - ETA: 41:55 - loss: 0.6185 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2374 - mrcnn_class_loss: 0.0946 - mrcnn_bbox_loss: 0.1125 - mrcnn_mask_loss: 0.1679241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - " 117/2000 [>.............................] - ETA: 41:52 - loss: 0.6196 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2367 - mrcnn_class_loss: 0.0955 - mrcnn_bbox_loss: 0.1131 - mrcnn_mask_loss: 0.168137\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 118/2000 [>.............................] - ETA: 41:46 - loss: 0.6238 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2416 - mrcnn_class_loss: 0.0951 - mrcnn_bbox_loss: 0.1129 - mrcnn_mask_loss: 0.1682261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - " 119/2000 [>.............................] - ETA: 41:44 - loss: 0.6231 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2411 - mrcnn_class_loss: 0.0946 - mrcnn_bbox_loss: 0.1127 - mrcnn_mask_loss: 0.1685281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - " 120/2000 [>.............................] - ETA: 41:47 - loss: 0.6240 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2420 - mrcnn_class_loss: 0.0943 - mrcnn_bbox_loss: 0.1128 - mrcnn_mask_loss: 0.1686145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - " 121/2000 [>.............................] - ETA: 41:45 - loss: 0.6236 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2415 - mrcnn_class_loss: 0.0945 - mrcnn_bbox_loss: 0.1128 - mrcnn_mask_loss: 0.1686389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - " 122/2000 [>.............................] - ETA: 41:42 - loss: 0.6240 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2414 - mrcnn_class_loss: 0.0947 - mrcnn_bbox_loss: 0.1128 - mrcnn_mask_loss: 0.1688263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - " 123/2000 [>.............................] - ETA: 41:40 - loss: 0.6241 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2404 - mrcnn_class_loss: 0.0949 - mrcnn_bbox_loss: 0.1129 - mrcnn_mask_loss: 0.169695\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - " 124/2000 [>.............................] - ETA: 41:38 - loss: 0.6245 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2417 - mrcnn_class_loss: 0.0945 - mrcnn_bbox_loss: 0.1129 - mrcnn_mask_loss: 0.169276\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - " 125/2000 [>.............................] - ETA: 41:33 - loss: 0.6233 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2414 - mrcnn_class_loss: 0.0940 - mrcnn_bbox_loss: 0.1126 - mrcnn_mask_loss: 0.1690352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - " 126/2000 [>.............................] - ETA: 41:32 - loss: 0.6227 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2408 - mrcnn_class_loss: 0.0945 - mrcnn_bbox_loss: 0.1123 - mrcnn_mask_loss: 0.169014\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - " 127/2000 [>.............................] - ETA: 41:26 - loss: 0.6210 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2404 - mrcnn_class_loss: 0.0941 - mrcnn_bbox_loss: 0.1118 - mrcnn_mask_loss: 0.1686161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - " 128/2000 [>.............................] - ETA: 41:25 - loss: 0.6228 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2423 - mrcnn_class_loss: 0.0939 - mrcnn_bbox_loss: 0.1121 - mrcnn_mask_loss: 0.1684218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - " 129/2000 [>.............................] - ETA: 41:21 - loss: 0.6203 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2411 - mrcnn_class_loss: 0.0932 - mrcnn_bbox_loss: 0.1116 - mrcnn_mask_loss: 0.168238\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - " 130/2000 [>.............................] - ETA: 41:17 - loss: 0.6221 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2437 - mrcnn_class_loss: 0.0929 - mrcnn_bbox_loss: 0.1115 - mrcnn_mask_loss: 0.1679105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - " 131/2000 [>.............................] - ETA: 41:14 - loss: 0.6210 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2422 - mrcnn_class_loss: 0.0932 - mrcnn_bbox_loss: 0.1115 - mrcnn_mask_loss: 0.1680251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - " 132/2000 [>.............................] - ETA: 41:09 - loss: 0.6211 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2415 - mrcnn_class_loss: 0.0940 - mrcnn_bbox_loss: 0.1111 - mrcnn_mask_loss: 0.1684369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 133/2000 [>.............................] - ETA: 41:08 - loss: 0.6216 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2414 - mrcnn_class_loss: 0.0937 - mrcnn_bbox_loss: 0.1117 - mrcnn_mask_loss: 0.1687368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - " 134/2000 [=>............................] - ETA: 41:09 - loss: 0.6228 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2426 - mrcnn_class_loss: 0.0932 - mrcnn_bbox_loss: 0.1123 - mrcnn_mask_loss: 0.1687160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - " 135/2000 [=>............................] - ETA: 41:09 - loss: 0.6229 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2425 - mrcnn_class_loss: 0.0928 - mrcnn_bbox_loss: 0.1130 - mrcnn_mask_loss: 0.1684396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - " 136/2000 [=>............................] - ETA: 41:07 - loss: 0.6222 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2425 - mrcnn_class_loss: 0.0923 - mrcnn_bbox_loss: 0.1129 - mrcnn_mask_loss: 0.16830\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - " 137/2000 [=>............................] - ETA: 41:02 - loss: 0.6219 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2432 - mrcnn_class_loss: 0.0919 - mrcnn_bbox_loss: 0.1125 - mrcnn_mask_loss: 0.1681249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - " 138/2000 [=>............................] - ETA: 40:56 - loss: 0.6205 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2426 - mrcnn_class_loss: 0.0913 - mrcnn_bbox_loss: 0.1121 - mrcnn_mask_loss: 0.1683194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - " 139/2000 [=>............................] - ETA: 40:51 - loss: 0.6181 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2412 - mrcnn_class_loss: 0.0909 - mrcnn_bbox_loss: 0.1117 - mrcnn_mask_loss: 0.1682371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - " 140/2000 [=>............................] - ETA: 40:50 - loss: 0.6174 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2403 - mrcnn_class_loss: 0.0908 - mrcnn_bbox_loss: 0.1118 - mrcnn_mask_loss: 0.1682137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - " 141/2000 [=>............................] - ETA: 40:51 - loss: 0.6188 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2406 - mrcnn_class_loss: 0.0918 - mrcnn_bbox_loss: 0.1117 - mrcnn_mask_loss: 0.16849\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - " 142/2000 [=>............................] - ETA: 40:47 - loss: 0.6168 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2401 - mrcnn_class_loss: 0.0913 - mrcnn_bbox_loss: 0.1112 - mrcnn_mask_loss: 0.1680165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - " 143/2000 [=>............................] - ETA: 40:45 - loss: 0.6169 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2399 - mrcnn_class_loss: 0.0913 - mrcnn_bbox_loss: 0.1115 - mrcnn_mask_loss: 0.1680285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - " 144/2000 [=>............................] - ETA: 40:44 - loss: 0.6161 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2400 - mrcnn_class_loss: 0.0909 - mrcnn_bbox_loss: 0.1112 - mrcnn_mask_loss: 0.1677240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - " 145/2000 [=>............................] - ETA: 40:43 - loss: 0.6175 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2395 - mrcnn_class_loss: 0.0920 - mrcnn_bbox_loss: 0.1112 - mrcnn_mask_loss: 0.1685375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - " 146/2000 [=>............................] - ETA: 40:44 - loss: 0.6164 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2386 - mrcnn_class_loss: 0.0915 - mrcnn_bbox_loss: 0.1111 - mrcnn_mask_loss: 0.1687372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - " 147/2000 [=>............................] - ETA: 40:44 - loss: 0.6151 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2380 - mrcnn_class_loss: 0.0912 - mrcnn_bbox_loss: 0.1109 - mrcnn_mask_loss: 0.1687297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 148/2000 [=>............................] - ETA: 40:44 - loss: 0.6163 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2387 - mrcnn_class_loss: 0.0920 - mrcnn_bbox_loss: 0.1107 - mrcnn_mask_loss: 0.168686\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - " 149/2000 [=>............................] - ETA: 40:42 - loss: 0.6147 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2380 - mrcnn_class_loss: 0.0915 - mrcnn_bbox_loss: 0.1104 - mrcnn_mask_loss: 0.1685143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - " 150/2000 [=>............................] - ETA: 40:41 - loss: 0.6139 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2379 - mrcnn_class_loss: 0.0911 - mrcnn_bbox_loss: 0.1103 - mrcnn_mask_loss: 0.1682314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - " 151/2000 [=>............................] - ETA: 40:43 - loss: 0.6138 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2376 - mrcnn_class_loss: 0.0915 - mrcnn_bbox_loss: 0.1102 - mrcnn_mask_loss: 0.168359\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - " 152/2000 [=>............................] - ETA: 40:40 - loss: 0.6135 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2383 - mrcnn_class_loss: 0.0910 - mrcnn_bbox_loss: 0.1100 - mrcnn_mask_loss: 0.1680305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - " 153/2000 [=>............................] - ETA: 40:41 - loss: 0.6142 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2387 - mrcnn_class_loss: 0.0912 - mrcnn_bbox_loss: 0.1098 - mrcnn_mask_loss: 0.1683215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - " 154/2000 [=>............................] - ETA: 40:37 - loss: 0.6116 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2375 - mrcnn_class_loss: 0.0906 - mrcnn_bbox_loss: 0.1092 - mrcnn_mask_loss: 0.1680100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - " 155/2000 [=>............................] - ETA: 40:37 - loss: 0.6120 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2373 - mrcnn_class_loss: 0.0908 - mrcnn_bbox_loss: 0.1094 - mrcnn_mask_loss: 0.1683322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - " 156/2000 [=>............................] - ETA: 40:38 - loss: 0.6129 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2378 - mrcnn_class_loss: 0.0910 - mrcnn_bbox_loss: 0.1094 - mrcnn_mask_loss: 0.1685141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - " 157/2000 [=>............................] - ETA: 40:36 - loss: 0.6138 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2380 - mrcnn_class_loss: 0.0911 - mrcnn_bbox_loss: 0.1100 - mrcnn_mask_loss: 0.1684267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - " 158/2000 [=>............................] - ETA: 40:34 - loss: 0.6121 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2374 - mrcnn_class_loss: 0.0907 - mrcnn_bbox_loss: 0.1097 - mrcnn_mask_loss: 0.1680298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - " 159/2000 [=>............................] - ETA: 40:36 - loss: 0.6131 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2384 - mrcnn_class_loss: 0.0911 - mrcnn_bbox_loss: 0.1096 - mrcnn_mask_loss: 0.16785\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - " 160/2000 [=>............................] - ETA: 40:32 - loss: 0.6113 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2374 - mrcnn_class_loss: 0.0910 - mrcnn_bbox_loss: 0.1091 - mrcnn_mask_loss: 0.1675224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - " 161/2000 [=>............................] - ETA: 40:29 - loss: 0.6102 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2363 - mrcnn_class_loss: 0.0909 - mrcnn_bbox_loss: 0.1090 - mrcnn_mask_loss: 0.1677283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - " 162/2000 [=>............................] - ETA: 40:31 - loss: 0.6108 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2362 - mrcnn_class_loss: 0.0913 - mrcnn_bbox_loss: 0.1092 - mrcnn_mask_loss: 0.167954\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - " 163/2000 [=>............................] - ETA: 40:27 - loss: 0.6090 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2353 - mrcnn_class_loss: 0.0907 - mrcnn_bbox_loss: 0.1090 - mrcnn_mask_loss: 0.1678289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - " 164/2000 [=>............................] - ETA: 40:26 - loss: 0.6087 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2353 - mrcnn_class_loss: 0.0905 - mrcnn_bbox_loss: 0.1088 - mrcnn_mask_loss: 0.1678362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - " 165/2000 [=>............................] - ETA: 40:27 - loss: 0.6092 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2357 - mrcnn_class_loss: 0.0911 - mrcnn_bbox_loss: 0.1087 - mrcnn_mask_loss: 0.1675361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - " 166/2000 [=>............................] - ETA: 40:29 - loss: 0.6094 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2360 - mrcnn_class_loss: 0.0906 - mrcnn_bbox_loss: 0.1087 - mrcnn_mask_loss: 0.167825\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - " 167/2000 [=>............................] - ETA: 40:26 - loss: 0.6080 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2355 - mrcnn_class_loss: 0.0903 - mrcnn_bbox_loss: 0.1084 - mrcnn_mask_loss: 0.167647\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - " 168/2000 [=>............................] - ETA: 40:22 - loss: 0.6060 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2342 - mrcnn_class_loss: 0.0903 - mrcnn_bbox_loss: 0.1080 - mrcnn_mask_loss: 0.1674343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - " 169/2000 [=>............................] - ETA: 40:23 - loss: 0.6060 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2340 - mrcnn_class_loss: 0.0907 - mrcnn_bbox_loss: 0.1077 - mrcnn_mask_loss: 0.1674104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - " 170/2000 [=>............................] - ETA: 40:23 - loss: 0.6053 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2332 - mrcnn_class_loss: 0.0905 - mrcnn_bbox_loss: 0.1076 - mrcnn_mask_loss: 0.167829\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - " 171/2000 [=>............................] - ETA: 40:19 - loss: 0.6035 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2326 - mrcnn_class_loss: 0.0901 - mrcnn_bbox_loss: 0.1073 - mrcnn_mask_loss: 0.1674294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - " 172/2000 [=>............................] - ETA: 40:19 - loss: 0.6036 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2330 - mrcnn_class_loss: 0.0901 - mrcnn_bbox_loss: 0.1071 - mrcnn_mask_loss: 0.167355\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - " 173/2000 [=>............................] - ETA: 40:16 - loss: 0.6016 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2321 - mrcnn_class_loss: 0.0897 - mrcnn_bbox_loss: 0.1067 - mrcnn_mask_loss: 0.167067\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - " 174/2000 [=>............................] - ETA: 40:12 - loss: 0.5993 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2310 - mrcnn_class_loss: 0.0893 - mrcnn_bbox_loss: 0.1063 - mrcnn_mask_loss: 0.1667212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - " 175/2000 [=>............................] - ETA: 40:08 - loss: 0.5974 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2300 - mrcnn_class_loss: 0.0889 - mrcnn_bbox_loss: 0.1060 - mrcnn_mask_loss: 0.1665155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - " 176/2000 [=>............................] - ETA: 40:06 - loss: 0.5998 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2313 - mrcnn_class_loss: 0.0896 - mrcnn_bbox_loss: 0.1063 - mrcnn_mask_loss: 0.1665178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 177/2000 [=>............................] - ETA: 40:04 - loss: 0.6010 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2319 - mrcnn_class_loss: 0.0899 - mrcnn_bbox_loss: 0.1063 - mrcnn_mask_loss: 0.1667126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - " 178/2000 [=>............................] - ETA: 40:03 - loss: 0.6020 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2326 - mrcnn_class_loss: 0.0902 - mrcnn_bbox_loss: 0.1062 - mrcnn_mask_loss: 0.1668216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - " 179/2000 [=>............................] - ETA: 40:00 - loss: 0.6009 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2322 - mrcnn_class_loss: 0.0897 - mrcnn_bbox_loss: 0.1061 - mrcnn_mask_loss: 0.1666379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - " 180/2000 [=>............................] - ETA: 40:01 - loss: 0.6016 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2327 - mrcnn_class_loss: 0.0896 - mrcnn_bbox_loss: 0.1063 - mrcnn_mask_loss: 0.1667184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - " 181/2000 [=>............................] - ETA: 39:58 - loss: 0.6002 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2320 - mrcnn_class_loss: 0.0894 - mrcnn_bbox_loss: 0.1059 - mrcnn_mask_loss: 0.1666353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - " 182/2000 [=>............................] - ETA: 39:57 - loss: 0.6001 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2313 - mrcnn_class_loss: 0.0904 - mrcnn_bbox_loss: 0.1056 - mrcnn_mask_loss: 0.16653\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - " 183/2000 [=>............................] - ETA: 39:53 - loss: 0.5987 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2307 - mrcnn_class_loss: 0.0901 - mrcnn_bbox_loss: 0.1054 - mrcnn_mask_loss: 0.1662157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - " 184/2000 [=>............................] - ETA: 39:53 - loss: 0.5997 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2312 - mrcnn_class_loss: 0.0908 - mrcnn_bbox_loss: 0.1055 - mrcnn_mask_loss: 0.1660279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - " 185/2000 [=>............................] - ETA: 39:52 - loss: 0.5999 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2318 - mrcnn_class_loss: 0.0905 - mrcnn_bbox_loss: 0.1055 - mrcnn_mask_loss: 0.1658391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - " 186/2000 [=>............................] - ETA: 39:50 - loss: 0.6000 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2322 - mrcnn_class_loss: 0.0904 - mrcnn_bbox_loss: 0.1053 - mrcnn_mask_loss: 0.1658274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - " 187/2000 [=>............................] - ETA: 39:49 - loss: 0.5999 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2316 - mrcnn_class_loss: 0.0907 - mrcnn_bbox_loss: 0.1054 - mrcnn_mask_loss: 0.1658253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - " 188/2000 [=>............................] - ETA: 39:46 - loss: 0.5997 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2317 - mrcnn_class_loss: 0.0906 - mrcnn_bbox_loss: 0.1053 - mrcnn_mask_loss: 0.1658101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - " 189/2000 [=>............................] - ETA: 39:46 - loss: 0.5991 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2313 - mrcnn_class_loss: 0.0904 - mrcnn_bbox_loss: 0.1053 - mrcnn_mask_loss: 0.1657135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - " 190/2000 [=>............................] - ETA: 39:46 - loss: 0.6005 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2323 - mrcnn_class_loss: 0.0908 - mrcnn_bbox_loss: 0.1052 - mrcnn_mask_loss: 0.1659269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - " 191/2000 [=>............................] - ETA: 39:43 - loss: 0.6013 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2314 - mrcnn_class_loss: 0.0920 - mrcnn_bbox_loss: 0.1056 - mrcnn_mask_loss: 0.1660127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - " 192/2000 [=>............................] - ETA: 39:43 - loss: 0.6019 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2317 - mrcnn_class_loss: 0.0923 - mrcnn_bbox_loss: 0.1057 - mrcnn_mask_loss: 0.1659252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - " 193/2000 [=>............................] - ETA: 39:40 - loss: 0.6023 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2311 - mrcnn_class_loss: 0.0928 - mrcnn_bbox_loss: 0.1059 - mrcnn_mask_loss: 0.1662243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - " 194/2000 [=>............................] - ETA: 39:38 - loss: 0.6028 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2306 - mrcnn_class_loss: 0.0931 - mrcnn_bbox_loss: 0.1062 - mrcnn_mask_loss: 0.1665189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - " 195/2000 [=>............................] - ETA: 39:33 - loss: 0.6013 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2298 - mrcnn_class_loss: 0.0929 - mrcnn_bbox_loss: 0.1059 - mrcnn_mask_loss: 0.1664191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - " 196/2000 [=>............................] - ETA: 39:28 - loss: 0.6000 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2290 - mrcnn_class_loss: 0.0926 - mrcnn_bbox_loss: 0.1057 - mrcnn_mask_loss: 0.1664169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - " 197/2000 [=>............................] - ETA: 39:25 - loss: 0.5993 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2284 - mrcnn_class_loss: 0.0924 - mrcnn_bbox_loss: 0.1059 - mrcnn_mask_loss: 0.1663188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - " 198/2000 [=>............................] - ETA: 39:21 - loss: 0.5977 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2276 - mrcnn_class_loss: 0.0920 - mrcnn_bbox_loss: 0.1054 - mrcnn_mask_loss: 0.1663177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - " 199/2000 [=>............................] - ETA: 39:19 - loss: 0.5975 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2274 - mrcnn_class_loss: 0.0919 - mrcnn_bbox_loss: 0.1057 - mrcnn_mask_loss: 0.1663337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - " 200/2000 [==>...........................] - ETA: 39:19 - loss: 0.5971 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2275 - mrcnn_class_loss: 0.0918 - mrcnn_bbox_loss: 0.1054 - mrcnn_mask_loss: 0.1662232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - " 201/2000 [==>...........................] - ETA: 39:16 - loss: 0.5972 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2272 - mrcnn_class_loss: 0.0918 - mrcnn_bbox_loss: 0.1054 - mrcnn_mask_loss: 0.1665148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - " 202/2000 [==>...........................] - ETA: 39:15 - loss: 0.5970 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2268 - mrcnn_class_loss: 0.0921 - mrcnn_bbox_loss: 0.1054 - mrcnn_mask_loss: 0.1664282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - " 203/2000 [==>...........................] - ETA: 39:15 - loss: 0.5974 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2270 - mrcnn_class_loss: 0.0921 - mrcnn_bbox_loss: 0.1054 - mrcnn_mask_loss: 0.1665250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - " 204/2000 [==>...........................] - ETA: 39:11 - loss: 0.5968 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2267 - mrcnn_class_loss: 0.0920 - mrcnn_bbox_loss: 0.1052 - mrcnn_mask_loss: 0.1666158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - " 205/2000 [==>...........................] - ETA: 39:10 - loss: 0.5970 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2272 - mrcnn_class_loss: 0.0920 - mrcnn_bbox_loss: 0.1050 - mrcnn_mask_loss: 0.1664195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 206/2000 [==>...........................] - ETA: 39:07 - loss: 0.5954 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2263 - mrcnn_class_loss: 0.0916 - mrcnn_bbox_loss: 0.1047 - mrcnn_mask_loss: 0.1664339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - " 207/2000 [==>...........................] - ETA: 39:07 - loss: 0.5962 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2268 - mrcnn_class_loss: 0.0918 - mrcnn_bbox_loss: 0.1047 - mrcnn_mask_loss: 0.1665358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - " 208/2000 [==>...........................] - ETA: 39:08 - loss: 0.5952 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2263 - mrcnn_class_loss: 0.0916 - mrcnn_bbox_loss: 0.1045 - mrcnn_mask_loss: 0.166373\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - " 209/2000 [==>...........................] - ETA: 39:05 - loss: 0.5943 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2262 - mrcnn_class_loss: 0.0913 - mrcnn_bbox_loss: 0.1042 - mrcnn_mask_loss: 0.1663273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - " 210/2000 [==>...........................] - ETA: 39:02 - loss: 0.5942 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2260 - mrcnn_class_loss: 0.0917 - mrcnn_bbox_loss: 0.1041 - mrcnn_mask_loss: 0.166261\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - " 211/2000 [==>...........................] - ETA: 38:59 - loss: 0.5931 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2251 - mrcnn_class_loss: 0.0919 - mrcnn_bbox_loss: 0.1038 - mrcnn_mask_loss: 0.166056\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - " 212/2000 [==>...........................] - ETA: 38:57 - loss: 0.5919 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2247 - mrcnn_class_loss: 0.0915 - mrcnn_bbox_loss: 0.1035 - mrcnn_mask_loss: 0.1659349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - " 213/2000 [==>...........................] - ETA: 38:55 - loss: 0.5916 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2249 - mrcnn_class_loss: 0.0912 - mrcnn_bbox_loss: 0.1033 - mrcnn_mask_loss: 0.1659133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - " 214/2000 [==>...........................] - ETA: 38:55 - loss: 0.5917 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2255 - mrcnn_class_loss: 0.0909 - mrcnn_bbox_loss: 0.1032 - mrcnn_mask_loss: 0.165970\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - " 215/2000 [==>...........................] - ETA: 38:51 - loss: 0.5900 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2248 - mrcnn_class_loss: 0.0905 - mrcnn_bbox_loss: 0.1028 - mrcnn_mask_loss: 0.1656256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - " 216/2000 [==>...........................] - ETA: 38:50 - loss: 0.5905 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2249 - mrcnn_class_loss: 0.0904 - mrcnn_bbox_loss: 0.1029 - mrcnn_mask_loss: 0.1659220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - " 217/2000 [==>...........................] - ETA: 38:47 - loss: 0.5905 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2245 - mrcnn_class_loss: 0.0902 - mrcnn_bbox_loss: 0.1034 - mrcnn_mask_loss: 0.166075\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - " 218/2000 [==>...........................] - ETA: 38:44 - loss: 0.5891 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2238 - mrcnn_class_loss: 0.0899 - mrcnn_bbox_loss: 0.1031 - mrcnn_mask_loss: 0.1659225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - " 219/2000 [==>...........................] - ETA: 38:42 - loss: 0.5885 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2230 - mrcnn_class_loss: 0.0904 - mrcnn_bbox_loss: 0.1029 - mrcnn_mask_loss: 0.165858\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - " 220/2000 [==>...........................] - ETA: 38:39 - loss: 0.5882 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2235 - mrcnn_class_loss: 0.0900 - mrcnn_bbox_loss: 0.1026 - mrcnn_mask_loss: 0.1657365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 221/2000 [==>...........................] - ETA: 38:39 - loss: 0.5878 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2235 - mrcnn_class_loss: 0.0898 - mrcnn_bbox_loss: 0.1026 - mrcnn_mask_loss: 0.1656230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - " 222/2000 [==>...........................] - ETA: 38:36 - loss: 0.5872 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2232 - mrcnn_class_loss: 0.0895 - mrcnn_bbox_loss: 0.1025 - mrcnn_mask_loss: 0.1656192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - " 223/2000 [==>...........................] - ETA: 38:32 - loss: 0.5867 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2224 - mrcnn_class_loss: 0.0903 - mrcnn_bbox_loss: 0.1022 - mrcnn_mask_loss: 0.1654113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - " 224/2000 [==>...........................] - ETA: 38:30 - loss: 0.5861 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2221 - mrcnn_class_loss: 0.0903 - mrcnn_bbox_loss: 0.1020 - mrcnn_mask_loss: 0.1654154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - " 225/2000 [==>...........................] - ETA: 38:29 - loss: 0.5876 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2230 - mrcnn_class_loss: 0.0905 - mrcnn_bbox_loss: 0.1022 - mrcnn_mask_loss: 0.1655163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - " 226/2000 [==>...........................] - ETA: 38:28 - loss: 0.5883 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2234 - mrcnn_class_loss: 0.0904 - mrcnn_bbox_loss: 0.1027 - mrcnn_mask_loss: 0.1654221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - " 227/2000 [==>...........................] - ETA: 38:25 - loss: 0.5881 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2227 - mrcnn_class_loss: 0.0907 - mrcnn_bbox_loss: 0.1028 - mrcnn_mask_loss: 0.1656131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - " 228/2000 [==>...........................] - ETA: 38:25 - loss: 0.5898 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2245 - mrcnn_class_loss: 0.0908 - mrcnn_bbox_loss: 0.1026 - mrcnn_mask_loss: 0.1655293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - " 229/2000 [==>...........................] - ETA: 38:25 - loss: 0.5893 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2246 - mrcnn_class_loss: 0.0904 - mrcnn_bbox_loss: 0.1025 - mrcnn_mask_loss: 0.1653346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - " 230/2000 [==>...........................] - ETA: 38:24 - loss: 0.5903 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2258 - mrcnn_class_loss: 0.0902 - mrcnn_bbox_loss: 0.1025 - mrcnn_mask_loss: 0.1653280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - " 231/2000 [==>...........................] - ETA: 38:25 - loss: 0.5905 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2260 - mrcnn_class_loss: 0.0903 - mrcnn_bbox_loss: 0.1024 - mrcnn_mask_loss: 0.16532\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - " 232/2000 [==>...........................] - ETA: 38:22 - loss: 0.5894 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2254 - mrcnn_class_loss: 0.0903 - mrcnn_bbox_loss: 0.1021 - mrcnn_mask_loss: 0.165146\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - " 233/2000 [==>...........................] - ETA: 38:19 - loss: 0.5881 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2248 - mrcnn_class_loss: 0.0900 - mrcnn_bbox_loss: 0.1019 - mrcnn_mask_loss: 0.165149\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - " 234/2000 [==>...........................] - ETA: 38:16 - loss: 0.5868 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2242 - mrcnn_class_loss: 0.0897 - mrcnn_bbox_loss: 0.1016 - mrcnn_mask_loss: 0.1649354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - " 235/2000 [==>...........................] - ETA: 38:16 - loss: 0.5866 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2239 - mrcnn_class_loss: 0.0897 - mrcnn_bbox_loss: 0.1016 - mrcnn_mask_loss: 0.1649211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 236/2000 [==>...........................] - ETA: 38:12 - loss: 0.5852 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2231 - mrcnn_class_loss: 0.0894 - mrcnn_bbox_loss: 0.1014 - mrcnn_mask_loss: 0.1648150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - " 237/2000 [==>...........................] - ETA: 38:10 - loss: 0.5862 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2238 - mrcnn_class_loss: 0.0897 - mrcnn_bbox_loss: 0.1015 - mrcnn_mask_loss: 0.1647244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - " 238/2000 [==>...........................] - ETA: 38:08 - loss: 0.5862 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2233 - mrcnn_class_loss: 0.0898 - mrcnn_bbox_loss: 0.1017 - mrcnn_mask_loss: 0.1648228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - " 239/2000 [==>...........................] - ETA: 38:05 - loss: 0.5853 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2225 - mrcnn_class_loss: 0.0900 - mrcnn_bbox_loss: 0.1015 - mrcnn_mask_loss: 0.164824\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - " 240/2000 [==>...........................] - ETA: 38:02 - loss: 0.5849 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2230 - mrcnn_class_loss: 0.0896 - mrcnn_bbox_loss: 0.1012 - mrcnn_mask_loss: 0.164635\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - " 241/2000 [==>...........................] - ETA: 37:59 - loss: 0.5844 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2232 - mrcnn_class_loss: 0.0894 - mrcnn_bbox_loss: 0.1009 - mrcnn_mask_loss: 0.1644286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - " 242/2000 [==>...........................] - ETA: 37:59 - loss: 0.5846 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2234 - mrcnn_class_loss: 0.0895 - mrcnn_bbox_loss: 0.1008 - mrcnn_mask_loss: 0.1644370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - " 243/2000 [==>...........................] - ETA: 37:58 - loss: 0.5844 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2230 - mrcnn_class_loss: 0.0897 - mrcnn_bbox_loss: 0.1008 - mrcnn_mask_loss: 0.1643197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - " 244/2000 [==>...........................] - ETA: 37:55 - loss: 0.5833 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2225 - mrcnn_class_loss: 0.0896 - mrcnn_bbox_loss: 0.1005 - mrcnn_mask_loss: 0.1642333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - " 245/2000 [==>...........................] - ETA: 37:54 - loss: 0.5831 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2222 - mrcnn_class_loss: 0.0897 - mrcnn_bbox_loss: 0.1005 - mrcnn_mask_loss: 0.1642202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - " 246/2000 [==>...........................] - ETA: 37:51 - loss: 0.5819 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2216 - mrcnn_class_loss: 0.0894 - mrcnn_bbox_loss: 0.1004 - mrcnn_mask_loss: 0.1640390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - " 247/2000 [==>...........................] - ETA: 37:49 - loss: 0.5823 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2221 - mrcnn_class_loss: 0.0891 - mrcnn_bbox_loss: 0.1005 - mrcnn_mask_loss: 0.1641271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - " 248/2000 [==>...........................] - ETA: 37:47 - loss: 0.5820 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2216 - mrcnn_class_loss: 0.0891 - mrcnn_bbox_loss: 0.1005 - mrcnn_mask_loss: 0.1644254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - " 249/2000 [==>...........................] - ETA: 37:45 - loss: 0.5818 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2217 - mrcnn_class_loss: 0.0889 - mrcnn_bbox_loss: 0.1003 - mrcnn_mask_loss: 0.164391\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - " 250/2000 [==>...........................] - ETA: 37:43 - loss: 0.5820 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2218 - mrcnn_class_loss: 0.0889 - mrcnn_bbox_loss: 0.1001 - mrcnn_mask_loss: 0.1647275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 251/2000 [==>...........................] - ETA: 37:41 - loss: 0.5820 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2218 - mrcnn_class_loss: 0.0888 - mrcnn_bbox_loss: 0.1001 - mrcnn_mask_loss: 0.164877\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - " 252/2000 [==>...........................] - ETA: 37:39 - loss: 0.5813 - rpn_class_loss: 0.0065 - rpn_bbox_loss: 0.2216 - mrcnn_class_loss: 0.0886 - mrcnn_bbox_loss: 0.1000 - mrcnn_mask_loss: 0.1647186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - " 253/2000 [==>...........................] - ETA: 37:36 - loss: 0.5802 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2210 - mrcnn_class_loss: 0.0883 - mrcnn_bbox_loss: 0.0998 - mrcnn_mask_loss: 0.1646136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - " 254/2000 [==>...........................] - ETA: 37:36 - loss: 0.5808 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2210 - mrcnn_class_loss: 0.0887 - mrcnn_bbox_loss: 0.0998 - mrcnn_mask_loss: 0.1648310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - " 255/2000 [==>...........................] - ETA: 37:35 - loss: 0.5807 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2209 - mrcnn_class_loss: 0.0888 - mrcnn_bbox_loss: 0.0997 - mrcnn_mask_loss: 0.1649325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - " 256/2000 [==>...........................] - ETA: 37:35 - loss: 0.5805 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2208 - mrcnn_class_loss: 0.0887 - mrcnn_bbox_loss: 0.0997 - mrcnn_mask_loss: 0.1649173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - " 257/2000 [==>...........................] - ETA: 37:32 - loss: 0.5801 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2206 - mrcnn_class_loss: 0.0884 - mrcnn_bbox_loss: 0.0999 - mrcnn_mask_loss: 0.1648284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - " 258/2000 [==>...........................] - ETA: 37:33 - loss: 0.5800 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2207 - mrcnn_class_loss: 0.0884 - mrcnn_bbox_loss: 0.0997 - mrcnn_mask_loss: 0.1648147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - " 259/2000 [==>...........................] - ETA: 37:31 - loss: 0.5810 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2211 - mrcnn_class_loss: 0.0887 - mrcnn_bbox_loss: 0.1001 - mrcnn_mask_loss: 0.1647302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - " 260/2000 [==>...........................] - ETA: 37:32 - loss: 0.5816 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2216 - mrcnn_class_loss: 0.0886 - mrcnn_bbox_loss: 0.1003 - mrcnn_mask_loss: 0.1648107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - " 261/2000 [==>...........................] - ETA: 37:31 - loss: 0.5818 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2210 - mrcnn_class_loss: 0.0891 - mrcnn_bbox_loss: 0.1003 - mrcnn_mask_loss: 0.164933\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - " 262/2000 [==>...........................] - ETA: 37:29 - loss: 0.5810 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2205 - mrcnn_class_loss: 0.0891 - mrcnn_bbox_loss: 0.1002 - mrcnn_mask_loss: 0.164881\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - " 263/2000 [==>...........................] - ETA: 37:27 - loss: 0.5813 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2200 - mrcnn_class_loss: 0.0893 - mrcnn_bbox_loss: 0.1005 - mrcnn_mask_loss: 0.165134\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - " 264/2000 [==>...........................] - ETA: 37:25 - loss: 0.5810 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2202 - mrcnn_class_loss: 0.0891 - mrcnn_bbox_loss: 0.1002 - mrcnn_mask_loss: 0.1650209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - " 265/2000 [==>...........................] - ETA: 37:23 - loss: 0.5796 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2196 - mrcnn_class_loss: 0.0888 - mrcnn_bbox_loss: 0.1000 - mrcnn_mask_loss: 0.164919\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 266/2000 [==>...........................] - ETA: 37:20 - loss: 0.5801 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2205 - mrcnn_class_loss: 0.0885 - mrcnn_bbox_loss: 0.0999 - mrcnn_mask_loss: 0.1648259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - " 267/2000 [===>..........................] - ETA: 37:19 - loss: 0.5806 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2208 - mrcnn_class_loss: 0.0884 - mrcnn_bbox_loss: 0.0998 - mrcnn_mask_loss: 0.165217\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - " 268/2000 [===>..........................] - ETA: 37:16 - loss: 0.5805 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2212 - mrcnn_class_loss: 0.0882 - mrcnn_bbox_loss: 0.0996 - mrcnn_mask_loss: 0.1651183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - " 269/2000 [===>..........................] - ETA: 37:14 - loss: 0.5801 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2211 - mrcnn_class_loss: 0.0882 - mrcnn_bbox_loss: 0.0994 - mrcnn_mask_loss: 0.1651308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - " 270/2000 [===>..........................] - ETA: 37:13 - loss: 0.5808 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2216 - mrcnn_class_loss: 0.0882 - mrcnn_bbox_loss: 0.0995 - mrcnn_mask_loss: 0.1651395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - " 271/2000 [===>..........................] - ETA: 37:12 - loss: 0.5804 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2218 - mrcnn_class_loss: 0.0881 - mrcnn_bbox_loss: 0.0992 - mrcnn_mask_loss: 0.1650342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - " 272/2000 [===>..........................] - ETA: 37:12 - loss: 0.5803 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2215 - mrcnn_class_loss: 0.0882 - mrcnn_bbox_loss: 0.0992 - mrcnn_mask_loss: 0.165041\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - " 273/2000 [===>..........................] - ETA: 37:10 - loss: 0.5799 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2215 - mrcnn_class_loss: 0.0881 - mrcnn_bbox_loss: 0.0990 - mrcnn_mask_loss: 0.164971\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - " 274/2000 [===>..........................] - ETA: 37:07 - loss: 0.5787 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2209 - mrcnn_class_loss: 0.0879 - mrcnn_bbox_loss: 0.0988 - mrcnn_mask_loss: 0.1648102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - " 275/2000 [===>..........................] - ETA: 37:07 - loss: 0.5785 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2206 - mrcnn_class_loss: 0.0877 - mrcnn_bbox_loss: 0.0988 - mrcnn_mask_loss: 0.164927\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - " 276/2000 [===>..........................] - ETA: 37:04 - loss: 0.5781 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2207 - mrcnn_class_loss: 0.0876 - mrcnn_bbox_loss: 0.0986 - mrcnn_mask_loss: 0.16487\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - " 277/2000 [===>..........................] - ETA: 37:01 - loss: 0.5791 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2222 - mrcnn_class_loss: 0.0875 - mrcnn_bbox_loss: 0.0984 - mrcnn_mask_loss: 0.1647332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - " 278/2000 [===>..........................] - ETA: 37:00 - loss: 0.5783 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2219 - mrcnn_class_loss: 0.0873 - mrcnn_bbox_loss: 0.0982 - mrcnn_mask_loss: 0.164631\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - " 279/2000 [===>..........................] - ETA: 36:57 - loss: 0.5774 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2213 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0980 - mrcnn_mask_loss: 0.1644359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - " 280/2000 [===>..........................] - ETA: 36:57 - loss: 0.5774 - rpn_class_loss: 0.0064 - rpn_bbox_loss: 0.2213 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0979 - mrcnn_mask_loss: 0.164560\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 281/2000 [===>..........................] - ETA: 36:55 - loss: 0.5777 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2219 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0978 - mrcnn_mask_loss: 0.1647316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - " 282/2000 [===>..........................] - ETA: 36:55 - loss: 0.5773 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2216 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0978 - mrcnn_mask_loss: 0.16478\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - " 283/2000 [===>..........................] - ETA: 36:52 - loss: 0.5761 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2210 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0977 - mrcnn_mask_loss: 0.1645300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - " 284/2000 [===>..........................] - ETA: 36:53 - loss: 0.5766 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2213 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0977 - mrcnn_mask_loss: 0.1647291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - " 285/2000 [===>..........................] - ETA: 36:52 - loss: 0.5765 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2213 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0977 - mrcnn_mask_loss: 0.164643\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - " 286/2000 [===>..........................] - ETA: 36:50 - loss: 0.5756 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2208 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0974 - mrcnn_mask_loss: 0.1645130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - " 287/2000 [===>..........................] - ETA: 36:49 - loss: 0.5765 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2212 - mrcnn_class_loss: 0.0864 - mrcnn_bbox_loss: 0.0977 - mrcnn_mask_loss: 0.164892\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - " 288/2000 [===>..........................] - ETA: 36:47 - loss: 0.5762 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2213 - mrcnn_class_loss: 0.0863 - mrcnn_bbox_loss: 0.0975 - mrcnn_mask_loss: 0.1648386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - " 289/2000 [===>..........................] - ETA: 36:46 - loss: 0.5757 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2208 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0974 - mrcnn_mask_loss: 0.1647357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - " 290/2000 [===>..........................] - ETA: 36:46 - loss: 0.5757 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2208 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0974 - mrcnn_mask_loss: 0.1646311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - " 291/2000 [===>..........................] - ETA: 36:45 - loss: 0.5761 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2208 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0973 - mrcnn_mask_loss: 0.164836\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - " 292/2000 [===>..........................] - ETA: 36:42 - loss: 0.5771 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2220 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0972 - mrcnn_mask_loss: 0.1648306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - " 293/2000 [===>..........................] - ETA: 36:42 - loss: 0.5773 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2223 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0972 - mrcnn_mask_loss: 0.1649326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - " 294/2000 [===>..........................] - ETA: 36:41 - loss: 0.5768 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2221 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0970 - mrcnn_mask_loss: 0.1648193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - " 295/2000 [===>..........................] - ETA: 36:39 - loss: 0.5760 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2214 - mrcnn_class_loss: 0.0864 - mrcnn_bbox_loss: 0.0971 - mrcnn_mask_loss: 0.1648247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - " 296/2000 [===>..........................] - ETA: 36:37 - loss: 0.5752 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2209 - mrcnn_class_loss: 0.0864 - mrcnn_bbox_loss: 0.0970 - mrcnn_mask_loss: 0.164742\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - " 297/2000 [===>..........................] - ETA: 36:35 - loss: 0.5747 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2205 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0967 - mrcnn_mask_loss: 0.1646208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - " 298/2000 [===>..........................] - ETA: 36:33 - loss: 0.5736 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2199 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0966 - mrcnn_mask_loss: 0.1645121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - " 299/2000 [===>..........................] - ETA: 36:33 - loss: 0.5746 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2207 - mrcnn_class_loss: 0.0863 - mrcnn_bbox_loss: 0.0968 - mrcnn_mask_loss: 0.1646323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - " 300/2000 [===>..........................] - ETA: 36:33 - loss: 0.5748 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2208 - mrcnn_class_loss: 0.0863 - mrcnn_bbox_loss: 0.0967 - mrcnn_mask_loss: 0.1647246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - " 301/2000 [===>..........................] - ETA: 36:31 - loss: 0.5751 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2203 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0972 - mrcnn_mask_loss: 0.1650398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - " 302/2000 [===>..........................] - ETA: 36:30 - loss: 0.5754 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2203 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0973 - mrcnn_mask_loss: 0.165187\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - " 303/2000 [===>..........................] - ETA: 36:28 - loss: 0.5751 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2200 - mrcnn_class_loss: 0.0864 - mrcnn_bbox_loss: 0.0973 - mrcnn_mask_loss: 0.1651123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - " 304/2000 [===>..........................] - ETA: 36:28 - loss: 0.5754 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2203 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0972 - mrcnn_mask_loss: 0.1651296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - " 305/2000 [===>..........................] - ETA: 36:28 - loss: 0.5766 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2206 - mrcnn_class_loss: 0.0874 - mrcnn_bbox_loss: 0.0973 - mrcnn_mask_loss: 0.1650237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - " 306/2000 [===>..........................] - ETA: 36:26 - loss: 0.5764 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2202 - mrcnn_class_loss: 0.0874 - mrcnn_bbox_loss: 0.0975 - mrcnn_mask_loss: 0.1652179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - " 307/2000 [===>..........................] - ETA: 36:24 - loss: 0.5762 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2202 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0973 - mrcnn_mask_loss: 0.1652103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - " 308/2000 [===>..........................] - ETA: 36:24 - loss: 0.5767 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2202 - mrcnn_class_loss: 0.0875 - mrcnn_bbox_loss: 0.0975 - mrcnn_mask_loss: 0.165228\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - " 309/2000 [===>..........................] - ETA: 36:21 - loss: 0.5761 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2199 - mrcnn_class_loss: 0.0876 - mrcnn_bbox_loss: 0.0973 - mrcnn_mask_loss: 0.1650327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 310/2000 [===>..........................] - ETA: 36:20 - loss: 0.5759 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2199 - mrcnn_class_loss: 0.0876 - mrcnn_bbox_loss: 0.0972 - mrcnn_mask_loss: 0.16491\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - " 311/2000 [===>..........................] - ETA: 36:18 - loss: 0.5748 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2195 - mrcnn_class_loss: 0.0873 - mrcnn_bbox_loss: 0.0969 - mrcnn_mask_loss: 0.1648242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - " 312/2000 [===>..........................] - ETA: 36:16 - loss: 0.5750 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2190 - mrcnn_class_loss: 0.0874 - mrcnn_bbox_loss: 0.0973 - mrcnn_mask_loss: 0.165097\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - " 313/2000 [===>..........................] - ETA: 36:15 - loss: 0.5753 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2196 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0972 - mrcnn_mask_loss: 0.1650394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - " 314/2000 [===>..........................] - ETA: 36:14 - loss: 0.5752 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2198 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0971 - mrcnn_mask_loss: 0.164944\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - " 315/2000 [===>..........................] - ETA: 36:12 - loss: 0.5741 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2193 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0970 - mrcnn_mask_loss: 0.1647129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - " 316/2000 [===>..........................] - ETA: 36:11 - loss: 0.5744 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2196 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0970 - mrcnn_mask_loss: 0.164880\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - " 317/2000 [===>..........................] - ETA: 36:09 - loss: 0.5750 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2193 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0974 - mrcnn_mask_loss: 0.1650363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - " 318/2000 [===>..........................] - ETA: 36:09 - loss: 0.5751 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2197 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0973 - mrcnn_mask_loss: 0.164978\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - " 319/2000 [===>..........................] - ETA: 36:07 - loss: 0.5748 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2195 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0974 - mrcnn_mask_loss: 0.1649229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - " 320/2000 [===>..........................] - ETA: 36:05 - loss: 0.5748 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2191 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0975 - mrcnn_mask_loss: 0.1651266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - " 321/2000 [===>..........................] - ETA: 36:03 - loss: 0.5741 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2187 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0974 - mrcnn_mask_loss: 0.165074\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - " 322/2000 [===>..........................] - ETA: 36:01 - loss: 0.5732 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2182 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0973 - mrcnn_mask_loss: 0.1649204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - " 323/2000 [===>..........................] - ETA: 35:59 - loss: 0.5726 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2177 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0972 - mrcnn_mask_loss: 0.1649142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - " 324/2000 [===>..........................] - ETA: 35:59 - loss: 0.5727 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2178 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0973 - mrcnn_mask_loss: 0.1648392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 325/2000 [===>..........................] - ETA: 35:57 - loss: 0.5727 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2177 - mrcnn_class_loss: 0.0864 - mrcnn_bbox_loss: 0.0975 - mrcnn_mask_loss: 0.1648115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - " 326/2000 [===>..........................] - ETA: 35:56 - loss: 0.5726 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2176 - mrcnn_class_loss: 0.0862 - mrcnn_bbox_loss: 0.0975 - mrcnn_mask_loss: 0.1649139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - " 327/2000 [===>..........................] - ETA: 35:57 - loss: 0.5745 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2180 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0977 - mrcnn_mask_loss: 0.1654309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - " 328/2000 [===>..........................] - ETA: 35:55 - loss: 0.5744 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2181 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0976 - mrcnn_mask_loss: 0.1654276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - " 329/2000 [===>..........................] - ETA: 35:55 - loss: 0.5743 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2181 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0976 - mrcnn_mask_loss: 0.165363\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - " 330/2000 [===>..........................] - ETA: 35:53 - loss: 0.5736 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2176 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0974 - mrcnn_mask_loss: 0.1653199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - " 331/2000 [===>..........................] - ETA: 35:51 - loss: 0.5740 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2182 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0972 - mrcnn_mask_loss: 0.1654245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - " 332/2000 [===>..........................] - ETA: 35:49 - loss: 0.5735 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2178 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0971 - mrcnn_mask_loss: 0.1654120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - " 333/2000 [===>..........................] - ETA: 35:49 - loss: 0.5738 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2180 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0972 - mrcnn_mask_loss: 0.165521\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - " 334/2000 [====>.........................] - ETA: 35:46 - loss: 0.5736 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2180 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0970 - mrcnn_mask_loss: 0.1656117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - " 335/2000 [====>.........................] - ETA: 35:45 - loss: 0.5734 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2181 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0971 - mrcnn_mask_loss: 0.1655114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - " 336/2000 [====>.........................] - ETA: 35:44 - loss: 0.5733 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2176 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0971 - mrcnn_mask_loss: 0.165523\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - " 337/2000 [====>.........................] - ETA: 35:42 - loss: 0.5726 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2173 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0970 - mrcnn_mask_loss: 0.1654236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - " 338/2000 [====>.........................] - ETA: 35:39 - loss: 0.5720 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2168 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0969 - mrcnn_mask_loss: 0.1654171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - " 339/2000 [====>.........................] - ETA: 35:37 - loss: 0.5720 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2165 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0971 - mrcnn_mask_loss: 0.165350\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - " 340/2000 [====>.........................] - ETA: 35:35 - loss: 0.5716 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2165 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0970 - mrcnn_mask_loss: 0.1653388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - " 341/2000 [====>.........................] - ETA: 35:34 - loss: 0.5718 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2165 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0970 - mrcnn_mask_loss: 0.1652172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - " 342/2000 [====>.........................] - ETA: 35:32 - loss: 0.5712 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2161 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0970 - mrcnn_mask_loss: 0.165285\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - " 343/2000 [====>.........................] - ETA: 35:30 - loss: 0.5705 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2157 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0968 - mrcnn_mask_loss: 0.165112\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - " 344/2000 [====>.........................] - ETA: 35:28 - loss: 0.5693 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2152 - mrcnn_class_loss: 0.0864 - mrcnn_bbox_loss: 0.0966 - mrcnn_mask_loss: 0.1649384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - " 345/2000 [====>.........................] - ETA: 35:27 - loss: 0.5692 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2150 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0966 - mrcnn_mask_loss: 0.1649382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - " 346/2000 [====>.........................] - ETA: 35:26 - loss: 0.5701 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2156 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0965 - mrcnn_mask_loss: 0.1650223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - " 347/2000 [====>.........................] - ETA: 35:24 - loss: 0.5696 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2152 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0964 - mrcnn_mask_loss: 0.1650167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - " 348/2000 [====>.........................] - ETA: 35:22 - loss: 0.5693 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2148 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0964 - mrcnn_mask_loss: 0.1649345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - " 349/2000 [====>.........................] - ETA: 35:22 - loss: 0.5689 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2148 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0963 - mrcnn_mask_loss: 0.1649110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - " 350/2000 [====>.........................] - ETA: 35:20 - loss: 0.5689 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2147 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0963 - mrcnn_mask_loss: 0.1650185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - " 351/2000 [====>.........................] - ETA: 35:18 - loss: 0.5682 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2144 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0961 - mrcnn_mask_loss: 0.1649140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - " 352/2000 [====>.........................] - ETA: 35:17 - loss: 0.5687 - rpn_class_loss: 0.0063 - rpn_bbox_loss: 0.2142 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0965 - mrcnn_mask_loss: 0.1648210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - " 353/2000 [====>.........................] - ETA: 35:14 - loss: 0.5685 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2141 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0963 - mrcnn_mask_loss: 0.1648125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 354/2000 [====>.........................] - ETA: 35:14 - loss: 0.5689 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2141 - mrcnn_class_loss: 0.0873 - mrcnn_bbox_loss: 0.0963 - mrcnn_mask_loss: 0.1649201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - " 355/2000 [====>.........................] - ETA: 35:12 - loss: 0.5682 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2137 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0962 - mrcnn_mask_loss: 0.164953\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - " 356/2000 [====>.........................] - ETA: 35:10 - loss: 0.5672 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2133 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0960 - mrcnn_mask_loss: 0.164862\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - " 357/2000 [====>.........................] - ETA: 35:08 - loss: 0.5666 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2129 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0959 - mrcnn_mask_loss: 0.1648290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - " 358/2000 [====>.........................] - ETA: 35:07 - loss: 0.5665 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2128 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0959 - mrcnn_mask_loss: 0.1647331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - " 359/2000 [====>.........................] - ETA: 35:06 - loss: 0.5666 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2128 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0959 - mrcnn_mask_loss: 0.1647205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - " 360/2000 [====>.........................] - ETA: 35:04 - loss: 0.5660 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2123 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0958 - mrcnn_mask_loss: 0.164690\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - " 361/2000 [====>.........................] - ETA: 35:02 - loss: 0.5663 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2126 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0960 - mrcnn_mask_loss: 0.1647341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - " 362/2000 [====>.........................] - ETA: 35:02 - loss: 0.5660 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2124 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0959 - mrcnn_mask_loss: 0.164648\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - " 363/2000 [====>.........................] - ETA: 35:00 - loss: 0.5650 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2118 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0957 - mrcnn_mask_loss: 0.1644315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - " 364/2000 [====>.........................] - ETA: 34:59 - loss: 0.5648 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2118 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0956 - mrcnn_mask_loss: 0.1644393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - " 365/2000 [====>.........................] - ETA: 34:58 - loss: 0.5646 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2116 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0955 - mrcnn_mask_loss: 0.164357\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - " 366/2000 [====>.........................] - ETA: 34:56 - loss: 0.5649 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2121 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0954 - mrcnn_mask_loss: 0.1644159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - " 367/2000 [====>.........................] - ETA: 34:55 - loss: 0.5651 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2122 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0956 - mrcnn_mask_loss: 0.1643321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - " 368/2000 [====>.........................] - ETA: 34:55 - loss: 0.5651 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2123 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0955 - mrcnn_mask_loss: 0.164340\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 369/2000 [====>.........................] - ETA: 34:53 - loss: 0.5647 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2123 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0953 - mrcnn_mask_loss: 0.1643112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - " 370/2000 [====>.........................] - ETA: 34:52 - loss: 0.5651 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2123 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0955 - mrcnn_mask_loss: 0.1644373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - " 371/2000 [====>.........................] - ETA: 34:51 - loss: 0.5648 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2121 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0954 - mrcnn_mask_loss: 0.164464\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - " 372/2000 [====>.........................] - ETA: 34:49 - loss: 0.5639 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2116 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0953 - mrcnn_mask_loss: 0.1643109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - " 373/2000 [====>.........................] - ETA: 34:48 - loss: 0.5637 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2113 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0953 - mrcnn_mask_loss: 0.1642200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - " 374/2000 [====>.........................] - ETA: 34:46 - loss: 0.5635 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2112 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0952 - mrcnn_mask_loss: 0.1641270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - " 375/2000 [====>.........................] - ETA: 34:44 - loss: 0.5636 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2110 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0952 - mrcnn_mask_loss: 0.1641175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - " 376/2000 [====>.........................] - ETA: 34:42 - loss: 0.5632 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2109 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0951 - mrcnn_mask_loss: 0.164172\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - " 377/2000 [====>.........................] - ETA: 34:40 - loss: 0.5627 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2105 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0949 - mrcnn_mask_loss: 0.1640329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - " 378/2000 [====>.........................] - ETA: 34:39 - loss: 0.5628 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2108 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0947 - mrcnn_mask_loss: 0.164045\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - " 379/2000 [====>.........................] - ETA: 34:38 - loss: 0.5621 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2104 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0946 - mrcnn_mask_loss: 0.163983\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - " 380/2000 [====>.........................] - ETA: 34:36 - loss: 0.5615 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2101 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0945 - mrcnn_mask_loss: 0.163966\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - " 381/2000 [====>.........................] - ETA: 34:34 - loss: 0.5608 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2096 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0943 - mrcnn_mask_loss: 0.163816\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - " 382/2000 [====>.........................] - ETA: 34:32 - loss: 0.5602 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2094 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0942 - mrcnn_mask_loss: 0.1637355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - " 383/2000 [====>.........................] - ETA: 34:31 - loss: 0.5596 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2091 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0941 - mrcnn_mask_loss: 0.1637324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 384/2000 [====>.........................] - ETA: 34:31 - loss: 0.5594 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2091 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0940 - mrcnn_mask_loss: 0.16376\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - " 385/2000 [====>.........................] - ETA: 34:29 - loss: 0.5584 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2086 - mrcnn_class_loss: 0.0864 - mrcnn_bbox_loss: 0.0938 - mrcnn_mask_loss: 0.1635213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - " 386/2000 [====>.........................] - ETA: 34:27 - loss: 0.5579 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2081 - mrcnn_class_loss: 0.0864 - mrcnn_bbox_loss: 0.0937 - mrcnn_mask_loss: 0.1635380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - " 387/2000 [====>.........................] - ETA: 34:26 - loss: 0.5581 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2083 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0937 - mrcnn_mask_loss: 0.1636364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - " 388/2000 [====>.........................] - ETA: 34:26 - loss: 0.5580 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2082 - mrcnn_class_loss: 0.0864 - mrcnn_bbox_loss: 0.0937 - mrcnn_mask_loss: 0.163622\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - " 389/2000 [====>.........................] - ETA: 34:24 - loss: 0.5575 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2080 - mrcnn_class_loss: 0.0864 - mrcnn_bbox_loss: 0.0936 - mrcnn_mask_loss: 0.1635399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - " 390/2000 [====>.........................] - ETA: 34:23 - loss: 0.5588 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2091 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0935 - mrcnn_mask_loss: 0.1634265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - " 391/2000 [====>.........................] - ETA: 34:22 - loss: 0.5585 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2088 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0934 - mrcnn_mask_loss: 0.1635152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - " 392/2000 [====>.........................] - ETA: 34:20 - loss: 0.5593 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2097 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0933 - mrcnn_mask_loss: 0.1634317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - " 393/2000 [====>.........................] - ETA: 34:20 - loss: 0.5589 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2095 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0932 - mrcnn_mask_loss: 0.1634340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - " 394/2000 [====>.........................] - ETA: 34:20 - loss: 0.5592 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2096 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0932 - mrcnn_mask_loss: 0.1635335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - " 395/2000 [====>.........................] - ETA: 34:19 - loss: 0.5589 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2093 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0931 - mrcnn_mask_loss: 0.1636356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - " 396/2000 [====>.........................] - ETA: 34:18 - loss: 0.5589 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2093 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0932 - mrcnn_mask_loss: 0.1636257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - " 397/2000 [====>.........................] - ETA: 34:17 - loss: 0.5591 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2097 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0931 - mrcnn_mask_loss: 0.1636239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - " 398/2000 [====>.........................] - ETA: 34:15 - loss: 0.5592 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2100 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0930 - mrcnn_mask_loss: 0.163665\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 399/2000 [====>.........................] - ETA: 34:13 - loss: 0.5589 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2097 - mrcnn_class_loss: 0.0866 - mrcnn_bbox_loss: 0.0928 - mrcnn_mask_loss: 0.1635170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - " 400/2000 [=====>........................] - ETA: 34:12 - loss: 0.5584 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2094 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0930 - mrcnn_mask_loss: 0.1634206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - " 401/2000 [=====>........................] - ETA: 34:10 - loss: 0.5581 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2089 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0928 - mrcnn_mask_loss: 0.1633122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - " 402/2000 [=====>........................] - ETA: 34:09 - loss: 0.5586 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2090 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0929 - mrcnn_mask_loss: 0.1634369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - " 403/2000 [=====>........................] - ETA: 34:08 - loss: 0.5590 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2091 - mrcnn_class_loss: 0.0873 - mrcnn_bbox_loss: 0.0930 - mrcnn_mask_loss: 0.163331\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - " 404/2000 [=====>........................] - ETA: 34:06 - loss: 0.5582 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2088 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0929 - mrcnn_mask_loss: 0.1632288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - " 405/2000 [=====>........................] - ETA: 34:05 - loss: 0.5586 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2088 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0933 - mrcnn_mask_loss: 0.1632377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - " 406/2000 [=====>........................] - ETA: 34:05 - loss: 0.5582 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2088 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0932 - mrcnn_mask_loss: 0.1630306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - " 407/2000 [=====>........................] - ETA: 34:04 - loss: 0.5585 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2090 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0931 - mrcnn_mask_loss: 0.1630340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - " 408/2000 [=====>........................] - ETA: 34:04 - loss: 0.5588 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2091 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0933 - mrcnn_mask_loss: 0.1632170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - " 409/2000 [=====>........................] - ETA: 34:02 - loss: 0.5585 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2088 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0932 - mrcnn_mask_loss: 0.1631324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - " 410/2000 [=====>........................] - ETA: 34:01 - loss: 0.5583 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2087 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0932 - mrcnn_mask_loss: 0.1631127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - " 411/2000 [=====>........................] - ETA: 34:01 - loss: 0.5584 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2089 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0932 - mrcnn_mask_loss: 0.1632354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - " 412/2000 [=====>........................] - ETA: 34:00 - loss: 0.5583 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2087 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0932 - mrcnn_mask_loss: 0.1632312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - " 413/2000 [=====>........................] - ETA: 33:59 - loss: 0.5581 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2088 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0932 - mrcnn_mask_loss: 0.1632283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - " 414/2000 [=====>........................] - ETA: 33:59 - loss: 0.5588 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2091 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0931 - mrcnn_mask_loss: 0.16326\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - " 415/2000 [=====>........................] - ETA: 33:57 - loss: 0.5579 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2086 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0929 - mrcnn_mask_loss: 0.1631375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - " 416/2000 [=====>........................] - ETA: 33:56 - loss: 0.5574 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2084 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0929 - mrcnn_mask_loss: 0.1631212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - " 417/2000 [=====>........................] - ETA: 33:54 - loss: 0.5569 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2079 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0928 - mrcnn_mask_loss: 0.1630140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - " 418/2000 [=====>........................] - ETA: 33:53 - loss: 0.5569 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2078 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0929 - mrcnn_mask_loss: 0.1630241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - " 419/2000 [=====>........................] - ETA: 33:51 - loss: 0.5566 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2076 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0929 - mrcnn_mask_loss: 0.1630219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - " 420/2000 [=====>........................] - ETA: 33:50 - loss: 0.5562 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2074 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0928 - mrcnn_mask_loss: 0.1629220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - " 421/2000 [=====>........................] - ETA: 33:48 - loss: 0.5566 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2072 - mrcnn_class_loss: 0.0873 - mrcnn_bbox_loss: 0.0929 - mrcnn_mask_loss: 0.1630279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - " 422/2000 [=====>........................] - ETA: 33:47 - loss: 0.5567 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2073 - mrcnn_class_loss: 0.0873 - mrcnn_bbox_loss: 0.0929 - mrcnn_mask_loss: 0.163177\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - " 423/2000 [=====>........................] - ETA: 33:46 - loss: 0.5562 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2072 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0927 - mrcnn_mask_loss: 0.163181\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - " 424/2000 [=====>........................] - ETA: 33:44 - loss: 0.5565 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2070 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0930 - mrcnn_mask_loss: 0.1632248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - " 425/2000 [=====>........................] - ETA: 33:42 - loss: 0.5561 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2067 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0930 - mrcnn_mask_loss: 0.1632265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - " 426/2000 [=====>........................] - ETA: 33:41 - loss: 0.5558 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2064 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0929 - mrcnn_mask_loss: 0.1632231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - " 427/2000 [=====>........................] - ETA: 33:39 - loss: 0.5556 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2062 - mrcnn_class_loss: 0.0872 - mrcnn_bbox_loss: 0.0928 - mrcnn_mask_loss: 0.163119\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 428/2000 [=====>........................] - ETA: 33:36 - loss: 0.5555 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2065 - mrcnn_class_loss: 0.0871 - mrcnn_bbox_loss: 0.0927 - mrcnn_mask_loss: 0.163035\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - " 429/2000 [=====>........................] - ETA: 33:34 - loss: 0.5555 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2068 - mrcnn_class_loss: 0.0870 - mrcnn_bbox_loss: 0.0926 - mrcnn_mask_loss: 0.1629315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - " 430/2000 [=====>........................] - ETA: 33:34 - loss: 0.5551 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2067 - mrcnn_class_loss: 0.0869 - mrcnn_bbox_loss: 0.0925 - mrcnn_mask_loss: 0.16293\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - " 431/2000 [=====>........................] - ETA: 33:32 - loss: 0.5545 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2064 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0924 - mrcnn_mask_loss: 0.1628255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - " 432/2000 [=====>........................] - ETA: 33:31 - loss: 0.5545 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2064 - mrcnn_class_loss: 0.0868 - mrcnn_bbox_loss: 0.0923 - mrcnn_mask_loss: 0.1629300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - " 433/2000 [=====>........................] - ETA: 33:30 - loss: 0.5549 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2067 - mrcnn_class_loss: 0.0867 - mrcnn_bbox_loss: 0.0924 - mrcnn_mask_loss: 0.1630360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - " 434/2000 [=====>........................] - ETA: 33:30 - loss: 0.5554 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2070 - mrcnn_class_loss: 0.0865 - mrcnn_bbox_loss: 0.0926 - mrcnn_mask_loss: 0.1631321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - " 435/2000 [=====>........................] - ETA: 33:29 - loss: 0.5555 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2072 - mrcnn_class_loss: 0.0864 - mrcnn_bbox_loss: 0.0926 - mrcnn_mask_loss: 0.1632104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - " 436/2000 [=====>........................] - ETA: 33:28 - loss: 0.5550 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2068 - mrcnn_class_loss: 0.0863 - mrcnn_bbox_loss: 0.0926 - mrcnn_mask_loss: 0.163271\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - " 437/2000 [=====>........................] - ETA: 33:26 - loss: 0.5546 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2065 - mrcnn_class_loss: 0.0861 - mrcnn_bbox_loss: 0.0925 - mrcnn_mask_loss: 0.1633117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - " 438/2000 [=====>........................] - ETA: 33:24 - loss: 0.5548 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2065 - mrcnn_class_loss: 0.0862 - mrcnn_bbox_loss: 0.0926 - mrcnn_mask_loss: 0.1633358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - " 439/2000 [=====>........................] - ETA: 33:24 - loss: 0.5546 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2065 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0925 - mrcnn_mask_loss: 0.163433\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - " 440/2000 [=====>........................] - ETA: 33:22 - loss: 0.5540 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2061 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0924 - mrcnn_mask_loss: 0.163385\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - " 441/2000 [=====>........................] - ETA: 33:21 - loss: 0.5538 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2059 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0924 - mrcnn_mask_loss: 0.1634275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - " 442/2000 [=====>........................] - ETA: 33:20 - loss: 0.5537 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2059 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0924 - mrcnn_mask_loss: 0.1633101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - " 443/2000 [=====>........................] - ETA: 33:19 - loss: 0.5536 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2059 - mrcnn_class_loss: 0.0859 - mrcnn_bbox_loss: 0.0924 - mrcnn_mask_loss: 0.1634192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - " 444/2000 [=====>........................] - ETA: 33:16 - loss: 0.5533 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2056 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0922 - mrcnn_mask_loss: 0.1633367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - " 445/2000 [=====>........................] - ETA: 33:15 - loss: 0.5533 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2058 - mrcnn_class_loss: 0.0859 - mrcnn_bbox_loss: 0.0922 - mrcnn_mask_loss: 0.163356\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - " 446/2000 [=====>........................] - ETA: 33:14 - loss: 0.5526 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2055 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0920 - mrcnn_mask_loss: 0.1632136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - " 447/2000 [=====>........................] - ETA: 33:13 - loss: 0.5526 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2055 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0920 - mrcnn_mask_loss: 0.1632335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - " 448/2000 [=====>........................] - ETA: 33:12 - loss: 0.5522 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2054 - mrcnn_class_loss: 0.0856 - mrcnn_bbox_loss: 0.0919 - mrcnn_mask_loss: 0.1632249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - " 449/2000 [=====>........................] - ETA: 33:10 - loss: 0.5527 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2052 - mrcnn_class_loss: 0.0861 - mrcnn_bbox_loss: 0.0920 - mrcnn_mask_loss: 0.1632189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - " 450/2000 [=====>........................] - ETA: 33:07 - loss: 0.5523 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2050 - mrcnn_class_loss: 0.0861 - mrcnn_bbox_loss: 0.0920 - mrcnn_mask_loss: 0.1632362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - " 451/2000 [=====>........................] - ETA: 33:07 - loss: 0.5524 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2051 - mrcnn_class_loss: 0.0861 - mrcnn_bbox_loss: 0.0919 - mrcnn_mask_loss: 0.163157\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - " 452/2000 [=====>........................] - ETA: 33:05 - loss: 0.5522 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2052 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0918 - mrcnn_mask_loss: 0.1631216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - " 453/2000 [=====>........................] - ETA: 33:03 - loss: 0.5515 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2049 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0917 - mrcnn_mask_loss: 0.1630388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - " 454/2000 [=====>........................] - ETA: 33:02 - loss: 0.5517 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2050 - mrcnn_class_loss: 0.0856 - mrcnn_bbox_loss: 0.0918 - mrcnn_mask_loss: 0.1631393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - " 455/2000 [=====>........................] - ETA: 33:00 - loss: 0.5516 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2049 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0918 - mrcnn_mask_loss: 0.163012\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - " 456/2000 [=====>........................] - ETA: 32:59 - loss: 0.5513 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2050 - mrcnn_class_loss: 0.0856 - mrcnn_bbox_loss: 0.0917 - mrcnn_mask_loss: 0.1630379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 457/2000 [=====>........................] - ETA: 32:58 - loss: 0.5513 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2052 - mrcnn_class_loss: 0.0854 - mrcnn_bbox_loss: 0.0916 - mrcnn_mask_loss: 0.1630390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - " 458/2000 [=====>........................] - ETA: 32:57 - loss: 0.5515 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2054 - mrcnn_class_loss: 0.0854 - mrcnn_bbox_loss: 0.0916 - mrcnn_mask_loss: 0.1629103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - " 459/2000 [=====>........................] - ETA: 32:56 - loss: 0.5516 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2053 - mrcnn_class_loss: 0.0855 - mrcnn_bbox_loss: 0.0917 - mrcnn_mask_loss: 0.1629282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - " 460/2000 [=====>........................] - ETA: 32:55 - loss: 0.5517 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2053 - mrcnn_class_loss: 0.0856 - mrcnn_bbox_loss: 0.0917 - mrcnn_mask_loss: 0.1629264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - " 461/2000 [=====>........................] - ETA: 32:54 - loss: 0.5516 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2052 - mrcnn_class_loss: 0.0856 - mrcnn_bbox_loss: 0.0918 - mrcnn_mask_loss: 0.1629119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - " 462/2000 [=====>........................] - ETA: 32:53 - loss: 0.5522 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2058 - mrcnn_class_loss: 0.0855 - mrcnn_bbox_loss: 0.0917 - mrcnn_mask_loss: 0.1629181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - " 463/2000 [=====>........................] - ETA: 32:51 - loss: 0.5521 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2058 - mrcnn_class_loss: 0.0854 - mrcnn_bbox_loss: 0.0917 - mrcnn_mask_loss: 0.162980\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - " 464/2000 [=====>........................] - ETA: 32:50 - loss: 0.5526 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2056 - mrcnn_class_loss: 0.0855 - mrcnn_bbox_loss: 0.0920 - mrcnn_mask_loss: 0.1632303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - " 465/2000 [=====>........................] - ETA: 32:49 - loss: 0.5526 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2057 - mrcnn_class_loss: 0.0855 - mrcnn_bbox_loss: 0.0920 - mrcnn_mask_loss: 0.163264\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - " 466/2000 [=====>........................] - ETA: 32:47 - loss: 0.5518 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2054 - mrcnn_class_loss: 0.0853 - mrcnn_bbox_loss: 0.0918 - mrcnn_mask_loss: 0.1631151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - " 467/2000 [======>.......................] - ETA: 32:45 - loss: 0.5520 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2056 - mrcnn_class_loss: 0.0853 - mrcnn_bbox_loss: 0.0918 - mrcnn_mask_loss: 0.1631285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - " 468/2000 [======>.......................] - ETA: 32:44 - loss: 0.5521 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2056 - mrcnn_class_loss: 0.0854 - mrcnn_bbox_loss: 0.0918 - mrcnn_mask_loss: 0.1631110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - " 469/2000 [======>.......................] - ETA: 32:42 - loss: 0.5525 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2055 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0918 - mrcnn_mask_loss: 0.1632370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - " 470/2000 [======>.......................] - ETA: 32:41 - loss: 0.5524 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2054 - mrcnn_class_loss: 0.0859 - mrcnn_bbox_loss: 0.0917 - mrcnn_mask_loss: 0.163215\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - " 471/2000 [======>.......................] - ETA: 32:39 - loss: 0.5518 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2052 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0916 - mrcnn_mask_loss: 0.1630188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - " 472/2000 [======>.......................] - ETA: 32:37 - loss: 0.5513 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2049 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0915 - mrcnn_mask_loss: 0.1629280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - " 473/2000 [======>.......................] - ETA: 32:36 - loss: 0.5517 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2053 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0915 - mrcnn_mask_loss: 0.1629295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - " 474/2000 [======>.......................] - ETA: 32:35 - loss: 0.5517 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2052 - mrcnn_class_loss: 0.0859 - mrcnn_bbox_loss: 0.0914 - mrcnn_mask_loss: 0.162922\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - " 475/2000 [======>.......................] - ETA: 32:34 - loss: 0.5513 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2053 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0912 - mrcnn_mask_loss: 0.1629227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - " 476/2000 [======>.......................] - ETA: 32:32 - loss: 0.5513 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2049 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0913 - mrcnn_mask_loss: 0.1630304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - " 477/2000 [======>.......................] - ETA: 32:31 - loss: 0.5515 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2051 - mrcnn_class_loss: 0.0859 - mrcnn_bbox_loss: 0.0912 - mrcnn_mask_loss: 0.1631266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - " 478/2000 [======>.......................] - ETA: 32:30 - loss: 0.5510 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2048 - mrcnn_class_loss: 0.0859 - mrcnn_bbox_loss: 0.0911 - mrcnn_mask_loss: 0.1630389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - " 479/2000 [======>.......................] - ETA: 32:29 - loss: 0.5510 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2049 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0912 - mrcnn_mask_loss: 0.1630294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - " 480/2000 [======>.......................] - ETA: 32:28 - loss: 0.5517 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2051 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0913 - mrcnn_mask_loss: 0.163076\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - " 481/2000 [======>.......................] - ETA: 32:26 - loss: 0.5513 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2051 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0912 - mrcnn_mask_loss: 0.1630319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - " 482/2000 [======>.......................] - ETA: 32:25 - loss: 0.5519 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2054 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0914 - mrcnn_mask_loss: 0.163134\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - " 483/2000 [======>.......................] - ETA: 32:24 - loss: 0.5517 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2054 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0913 - mrcnn_mask_loss: 0.1631195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - " 484/2000 [======>.......................] - ETA: 32:22 - loss: 0.5512 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2051 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0912 - mrcnn_mask_loss: 0.1630106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 485/2000 [======>.......................] - ETA: 32:21 - loss: 0.5512 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2051 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0912 - mrcnn_mask_loss: 0.1629292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - " 486/2000 [======>.......................] - ETA: 32:20 - loss: 0.5513 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2052 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0913 - mrcnn_mask_loss: 0.1629126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - " 487/2000 [======>.......................] - ETA: 32:19 - loss: 0.5520 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2055 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0913 - mrcnn_mask_loss: 0.1629257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - " 488/2000 [======>.......................] - ETA: 32:17 - loss: 0.5521 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2056 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0913 - mrcnn_mask_loss: 0.162991\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - " 489/2000 [======>.......................] - ETA: 32:16 - loss: 0.5522 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2057 - mrcnn_class_loss: 0.0861 - mrcnn_bbox_loss: 0.0912 - mrcnn_mask_loss: 0.163065\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - " 490/2000 [======>.......................] - ETA: 32:14 - loss: 0.5517 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2054 - mrcnn_class_loss: 0.0861 - mrcnn_bbox_loss: 0.0911 - mrcnn_mask_loss: 0.1629153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - " 491/2000 [======>.......................] - ETA: 32:12 - loss: 0.5523 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2058 - mrcnn_class_loss: 0.0862 - mrcnn_bbox_loss: 0.0911 - mrcnn_mask_loss: 0.162998\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - " 492/2000 [======>.......................] - ETA: 32:11 - loss: 0.5525 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2062 - mrcnn_class_loss: 0.0862 - mrcnn_bbox_loss: 0.0911 - mrcnn_mask_loss: 0.162963\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - " 493/2000 [======>.......................] - ETA: 32:09 - loss: 0.5520 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2059 - mrcnn_class_loss: 0.0861 - mrcnn_bbox_loss: 0.0910 - mrcnn_mask_loss: 0.1629391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - " 494/2000 [======>.......................] - ETA: 32:08 - loss: 0.5522 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2061 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0910 - mrcnn_mask_loss: 0.163011\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - " 495/2000 [======>.......................] - ETA: 32:06 - loss: 0.5523 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2065 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0910 - mrcnn_mask_loss: 0.1628338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - " 496/2000 [======>.......................] - ETA: 32:05 - loss: 0.5522 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2065 - mrcnn_class_loss: 0.0859 - mrcnn_bbox_loss: 0.0908 - mrcnn_mask_loss: 0.162847\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - " 497/2000 [======>.......................] - ETA: 32:04 - loss: 0.5515 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2061 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0907 - mrcnn_mask_loss: 0.1628132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - " 498/2000 [======>.......................] - ETA: 32:03 - loss: 0.5519 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2064 - mrcnn_class_loss: 0.0856 - mrcnn_bbox_loss: 0.0907 - mrcnn_mask_loss: 0.1629286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - " 499/2000 [======>.......................] - ETA: 32:01 - loss: 0.5518 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2064 - mrcnn_class_loss: 0.0856 - mrcnn_bbox_loss: 0.0907 - mrcnn_mask_loss: 0.162950\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 500/2000 [======>.......................] - ETA: 31:59 - loss: 0.5517 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2063 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1628165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - " 501/2000 [======>.......................] - ETA: 31:58 - loss: 0.5515 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2060 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0908 - mrcnn_mask_loss: 0.1627112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - " 502/2000 [======>.......................] - ETA: 31:57 - loss: 0.5515 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2060 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0908 - mrcnn_mask_loss: 0.1627251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - " 503/2000 [======>.......................] - ETA: 31:55 - loss: 0.5514 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2058 - mrcnn_class_loss: 0.0859 - mrcnn_bbox_loss: 0.0907 - mrcnn_mask_loss: 0.162843\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - " 504/2000 [======>.......................] - ETA: 31:53 - loss: 0.5510 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2057 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1627233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - " 505/2000 [======>.......................] - ETA: 31:51 - loss: 0.5504 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2055 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0905 - mrcnn_mask_loss: 0.1626243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - " 506/2000 [======>.......................] - ETA: 31:50 - loss: 0.5505 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2052 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1626164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - " 507/2000 [======>.......................] - ETA: 31:48 - loss: 0.5508 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2054 - mrcnn_class_loss: 0.0861 - mrcnn_bbox_loss: 0.0905 - mrcnn_mask_loss: 0.1626297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - " 508/2000 [======>.......................] - ETA: 31:48 - loss: 0.5509 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2056 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1625394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - " 509/2000 [======>.......................] - ETA: 31:47 - loss: 0.5507 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2055 - mrcnn_class_loss: 0.0859 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.162632\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - " 510/2000 [======>.......................] - ETA: 31:45 - loss: 0.5502 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2052 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1625302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - " 511/2000 [======>.......................] - ETA: 31:44 - loss: 0.5503 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2053 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0905 - mrcnn_mask_loss: 0.1626261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - " 512/2000 [======>.......................] - ETA: 31:44 - loss: 0.5504 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2052 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0905 - mrcnn_mask_loss: 0.1627336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - " 513/2000 [======>.......................] - ETA: 31:43 - loss: 0.5505 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2051 - mrcnn_class_loss: 0.0861 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1627386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - " 514/2000 [======>.......................] - ETA: 31:42 - loss: 0.5503 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2049 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1626350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 515/2000 [======>.......................] - ETA: 31:40 - loss: 0.5504 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2050 - mrcnn_class_loss: 0.0860 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1627166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - " 516/2000 [======>.......................] - ETA: 31:39 - loss: 0.5501 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2047 - mrcnn_class_loss: 0.0858 - mrcnn_bbox_loss: 0.0907 - mrcnn_mask_loss: 0.1626278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - " 517/2000 [======>.......................] - ETA: 31:38 - loss: 0.5498 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2047 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0907 - mrcnn_mask_loss: 0.162594\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - " 518/2000 [======>.......................] - ETA: 31:36 - loss: 0.5502 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2048 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0908 - mrcnn_mask_loss: 0.1628234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - " 519/2000 [======>.......................] - ETA: 31:34 - loss: 0.5504 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2047 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0909 - mrcnn_mask_loss: 0.162995\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - " 520/2000 [======>.......................] - ETA: 31:33 - loss: 0.5509 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2051 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0909 - mrcnn_mask_loss: 0.162961\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - " 521/2000 [======>.......................] - ETA: 31:31 - loss: 0.5504 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2048 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0908 - mrcnn_mask_loss: 0.1629152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - " 522/2000 [======>.......................] - ETA: 31:30 - loss: 0.5511 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2054 - mrcnn_class_loss: 0.0857 - mrcnn_bbox_loss: 0.0908 - mrcnn_mask_loss: 0.162974\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - " 523/2000 [======>.......................] - ETA: 31:28 - loss: 0.5504 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2051 - mrcnn_class_loss: 0.0856 - mrcnn_bbox_loss: 0.0907 - mrcnn_mask_loss: 0.1628380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - " 524/2000 [======>.......................] - ETA: 31:28 - loss: 0.5506 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2053 - mrcnn_class_loss: 0.0855 - mrcnn_bbox_loss: 0.0909 - mrcnn_mask_loss: 0.1628200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - " 525/2000 [======>.......................] - ETA: 31:26 - loss: 0.5504 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2051 - mrcnn_class_loss: 0.0854 - mrcnn_bbox_loss: 0.0908 - mrcnn_mask_loss: 0.162825\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - " 526/2000 [======>.......................] - ETA: 31:24 - loss: 0.5500 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2050 - mrcnn_class_loss: 0.0853 - mrcnn_bbox_loss: 0.0908 - mrcnn_mask_loss: 0.1627186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - " 527/2000 [======>.......................] - ETA: 31:22 - loss: 0.5495 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2047 - mrcnn_class_loss: 0.0852 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1628125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - " 528/2000 [======>.......................] - ETA: 31:21 - loss: 0.5497 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2051 - mrcnn_class_loss: 0.0850 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1628160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - " 529/2000 [======>.......................] - ETA: 31:20 - loss: 0.5496 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2050 - mrcnn_class_loss: 0.0850 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1627327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 530/2000 [======>.......................] - ETA: 31:19 - loss: 0.5494 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2050 - mrcnn_class_loss: 0.0849 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.1627357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - " 531/2000 [======>.......................] - ETA: 31:19 - loss: 0.5494 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2050 - mrcnn_class_loss: 0.0849 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.162852\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - " 532/2000 [======>.......................] - ETA: 31:17 - loss: 0.5491 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2048 - mrcnn_class_loss: 0.0849 - mrcnn_bbox_loss: 0.0905 - mrcnn_mask_loss: 0.1627296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - " 533/2000 [======>.......................] - ETA: 31:16 - loss: 0.5491 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2048 - mrcnn_class_loss: 0.0848 - mrcnn_bbox_loss: 0.0905 - mrcnn_mask_loss: 0.1627247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - " 534/2000 [=======>......................] - ETA: 31:14 - loss: 0.5490 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2045 - mrcnn_class_loss: 0.0851 - mrcnn_bbox_loss: 0.0905 - mrcnn_mask_loss: 0.1627342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - " 535/2000 [=======>......................] - ETA: 31:14 - loss: 0.5489 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2044 - mrcnn_class_loss: 0.0850 - mrcnn_bbox_loss: 0.0905 - mrcnn_mask_loss: 0.1627173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - " 536/2000 [=======>......................] - ETA: 31:12 - loss: 0.5489 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2044 - mrcnn_class_loss: 0.0850 - mrcnn_bbox_loss: 0.0906 - mrcnn_mask_loss: 0.162751\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - " 537/2000 [=======>......................] - ETA: 31:10 - loss: 0.5483 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2042 - mrcnn_class_loss: 0.0849 - mrcnn_bbox_loss: 0.0905 - mrcnn_mask_loss: 0.162688\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - " 538/2000 [=======>......................] - ETA: 31:09 - loss: 0.5484 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2043 - mrcnn_class_loss: 0.0849 - mrcnn_bbox_loss: 0.0904 - mrcnn_mask_loss: 0.1626345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - " 539/2000 [=======>......................] - ETA: 31:08 - loss: 0.5483 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2043 - mrcnn_class_loss: 0.0848 - mrcnn_bbox_loss: 0.0905 - mrcnn_mask_loss: 0.1626208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - " 540/2000 [=======>......................] - ETA: 31:06 - loss: 0.5477 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2039 - mrcnn_class_loss: 0.0848 - mrcnn_bbox_loss: 0.0903 - mrcnn_mask_loss: 0.1625332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - " 541/2000 [=======>......................] - ETA: 31:05 - loss: 0.5475 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2037 - mrcnn_class_loss: 0.0849 - mrcnn_bbox_loss: 0.0903 - mrcnn_mask_loss: 0.162544\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - " 542/2000 [=======>......................] - ETA: 31:03 - loss: 0.5469 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2034 - mrcnn_class_loss: 0.0848 - mrcnn_bbox_loss: 0.0901 - mrcnn_mask_loss: 0.1624371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - " 543/2000 [=======>......................] - ETA: 31:02 - loss: 0.5466 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2033 - mrcnn_class_loss: 0.0847 - mrcnn_bbox_loss: 0.0901 - mrcnn_mask_loss: 0.1624395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - " 544/2000 [=======>......................] - ETA: 31:01 - loss: 0.5464 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2033 - mrcnn_class_loss: 0.0845 - mrcnn_bbox_loss: 0.0899 - mrcnn_mask_loss: 0.162448\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 545/2000 [=======>......................] - ETA: 30:59 - loss: 0.5458 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2030 - mrcnn_class_loss: 0.0844 - mrcnn_bbox_loss: 0.0898 - mrcnn_mask_loss: 0.1623274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - " 546/2000 [=======>......................] - ETA: 30:58 - loss: 0.5456 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2029 - mrcnn_class_loss: 0.0845 - mrcnn_bbox_loss: 0.0898 - mrcnn_mask_loss: 0.1622240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - " 547/2000 [=======>......................] - ETA: 30:56 - loss: 0.5458 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2027 - mrcnn_class_loss: 0.0848 - mrcnn_bbox_loss: 0.0897 - mrcnn_mask_loss: 0.162428\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - " 548/2000 [=======>......................] - ETA: 30:55 - loss: 0.5453 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2025 - mrcnn_class_loss: 0.0847 - mrcnn_bbox_loss: 0.0896 - mrcnn_mask_loss: 0.1623182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - " 549/2000 [=======>......................] - ETA: 30:53 - loss: 0.5451 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2024 - mrcnn_class_loss: 0.0847 - mrcnn_bbox_loss: 0.0895 - mrcnn_mask_loss: 0.1623215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - " 550/2000 [=======>......................] - ETA: 30:51 - loss: 0.5447 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2022 - mrcnn_class_loss: 0.0846 - mrcnn_bbox_loss: 0.0894 - mrcnn_mask_loss: 0.1623348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - " 551/2000 [=======>......................] - ETA: 30:50 - loss: 0.5448 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2025 - mrcnn_class_loss: 0.0845 - mrcnn_bbox_loss: 0.0893 - mrcnn_mask_loss: 0.1623100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - " 552/2000 [=======>......................] - ETA: 30:49 - loss: 0.5449 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2024 - mrcnn_class_loss: 0.0846 - mrcnn_bbox_loss: 0.0894 - mrcnn_mask_loss: 0.1622328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - " 553/2000 [=======>......................] - ETA: 30:48 - loss: 0.5449 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2024 - mrcnn_class_loss: 0.0847 - mrcnn_bbox_loss: 0.0894 - mrcnn_mask_loss: 0.1622229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - " 554/2000 [=======>......................] - ETA: 30:46 - loss: 0.5446 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2021 - mrcnn_class_loss: 0.0848 - mrcnn_bbox_loss: 0.0894 - mrcnn_mask_loss: 0.1622313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - " 555/2000 [=======>......................] - ETA: 30:45 - loss: 0.5445 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2020 - mrcnn_class_loss: 0.0848 - mrcnn_bbox_loss: 0.0893 - mrcnn_mask_loss: 0.1622311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - " 556/2000 [=======>......................] - ETA: 30:44 - loss: 0.5445 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2022 - mrcnn_class_loss: 0.0847 - mrcnn_bbox_loss: 0.0892 - mrcnn_mask_loss: 0.162223\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - " 557/2000 [=======>......................] - ETA: 30:43 - loss: 0.5441 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2020 - mrcnn_class_loss: 0.0845 - mrcnn_bbox_loss: 0.0892 - mrcnn_mask_loss: 0.1622287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - " 558/2000 [=======>......................] - ETA: 30:41 - loss: 0.5440 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2021 - mrcnn_class_loss: 0.0844 - mrcnn_bbox_loss: 0.0891 - mrcnn_mask_loss: 0.162239\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - " 559/2000 [=======>......................] - ETA: 30:39 - loss: 0.5444 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2027 - mrcnn_class_loss: 0.0843 - mrcnn_bbox_loss: 0.0890 - mrcnn_mask_loss: 0.1622222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - " 560/2000 [=======>......................] - ETA: 30:38 - loss: 0.5444 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2025 - mrcnn_class_loss: 0.0844 - mrcnn_bbox_loss: 0.0892 - mrcnn_mask_loss: 0.1621301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - " 561/2000 [=======>......................] - ETA: 30:37 - loss: 0.5449 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2027 - mrcnn_class_loss: 0.0844 - mrcnn_bbox_loss: 0.0893 - mrcnn_mask_loss: 0.1622135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - " 562/2000 [=======>......................] - ETA: 30:36 - loss: 0.5451 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2030 - mrcnn_class_loss: 0.0844 - mrcnn_bbox_loss: 0.0893 - mrcnn_mask_loss: 0.1623333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - " 563/2000 [=======>......................] - ETA: 30:35 - loss: 0.5448 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2029 - mrcnn_class_loss: 0.0843 - mrcnn_bbox_loss: 0.0892 - mrcnn_mask_loss: 0.1623364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - " 564/2000 [=======>......................] - ETA: 30:34 - loss: 0.5452 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2030 - mrcnn_class_loss: 0.0844 - mrcnn_bbox_loss: 0.0893 - mrcnn_mask_loss: 0.162236\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - " 565/2000 [=======>......................] - ETA: 30:32 - loss: 0.5455 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2035 - mrcnn_class_loss: 0.0844 - mrcnn_bbox_loss: 0.0892 - mrcnn_mask_loss: 0.1622116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - " 566/2000 [=======>......................] - ETA: 30:31 - loss: 0.5457 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2037 - mrcnn_class_loss: 0.0844 - mrcnn_bbox_loss: 0.0893 - mrcnn_mask_loss: 0.1622316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - " 567/2000 [=======>......................] - ETA: 30:30 - loss: 0.5456 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2036 - mrcnn_class_loss: 0.0843 - mrcnn_bbox_loss: 0.0892 - mrcnn_mask_loss: 0.1623108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - " 568/2000 [=======>......................] - ETA: 30:29 - loss: 0.5454 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2035 - mrcnn_class_loss: 0.0843 - mrcnn_bbox_loss: 0.0893 - mrcnn_mask_loss: 0.1622209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - " 569/2000 [=======>......................] - ETA: 30:27 - loss: 0.5451 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2032 - mrcnn_class_loss: 0.0843 - mrcnn_bbox_loss: 0.0892 - mrcnn_mask_loss: 0.1622263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - " 570/2000 [=======>......................] - ETA: 30:26 - loss: 0.5450 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2030 - mrcnn_class_loss: 0.0844 - mrcnn_bbox_loss: 0.0892 - mrcnn_mask_loss: 0.1622118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - " 571/2000 [=======>......................] - ETA: 30:25 - loss: 0.5452 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2031 - mrcnn_class_loss: 0.0846 - mrcnn_bbox_loss: 0.0892 - mrcnn_mask_loss: 0.1621120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - " 572/2000 [=======>......................] - ETA: 30:24 - loss: 0.5457 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2032 - mrcnn_class_loss: 0.0847 - mrcnn_bbox_loss: 0.0893 - mrcnn_mask_loss: 0.1623276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 573/2000 [=======>......................] - ETA: 30:23 - loss: 0.5458 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2032 - mrcnn_class_loss: 0.0848 - mrcnn_bbox_loss: 0.0893 - mrcnn_mask_loss: 0.1624378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - " 574/2000 [=======>......................] - ETA: 30:22 - loss: 0.5457 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2031 - mrcnn_class_loss: 0.0848 - mrcnn_bbox_loss: 0.0892 - mrcnn_mask_loss: 0.162366\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - " 575/2000 [=======>......................] - ETA: 30:20 - loss: 0.5451 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2029 - mrcnn_class_loss: 0.0847 - mrcnn_bbox_loss: 0.0891 - mrcnn_mask_loss: 0.1623339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - " 576/2000 [=======>......................] - ETA: 30:20 - loss: 0.5452 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2031 - mrcnn_class_loss: 0.0845 - mrcnn_bbox_loss: 0.0891 - mrcnn_mask_loss: 0.162272\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - " 577/2000 [=======>......................] - ETA: 30:18 - loss: 0.5447 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2028 - mrcnn_class_loss: 0.0845 - mrcnn_bbox_loss: 0.0890 - mrcnn_mask_loss: 0.162260\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - " 578/2000 [=======>......................] - ETA: 30:16 - loss: 0.5448 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2031 - mrcnn_class_loss: 0.0844 - mrcnn_bbox_loss: 0.0889 - mrcnn_mask_loss: 0.162268\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - " 579/2000 [=======>......................] - ETA: 30:14 - loss: 0.5442 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2028 - mrcnn_class_loss: 0.0843 - mrcnn_bbox_loss: 0.0888 - mrcnn_mask_loss: 0.1621224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - " 580/2000 [=======>......................] - ETA: 30:13 - loss: 0.5436 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2025 - mrcnn_class_loss: 0.0842 - mrcnn_bbox_loss: 0.0887 - mrcnn_mask_loss: 0.1621213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - " 581/2000 [=======>......................] - ETA: 30:11 - loss: 0.5431 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2022 - mrcnn_class_loss: 0.0841 - mrcnn_bbox_loss: 0.0886 - mrcnn_mask_loss: 0.1620178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - " 582/2000 [=======>......................] - ETA: 30:09 - loss: 0.5430 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2021 - mrcnn_class_loss: 0.0842 - mrcnn_bbox_loss: 0.0886 - mrcnn_mask_loss: 0.1620344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - " 583/2000 [=======>......................] - ETA: 30:08 - loss: 0.5430 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2023 - mrcnn_class_loss: 0.0841 - mrcnn_bbox_loss: 0.0885 - mrcnn_mask_loss: 0.1620149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - " 584/2000 [=======>......................] - ETA: 30:07 - loss: 0.5434 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2027 - mrcnn_class_loss: 0.0841 - mrcnn_bbox_loss: 0.0885 - mrcnn_mask_loss: 0.1619163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - " 585/2000 [=======>......................] - ETA: 30:05 - loss: 0.5435 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2028 - mrcnn_class_loss: 0.0840 - mrcnn_bbox_loss: 0.0887 - mrcnn_mask_loss: 0.162069\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - " 586/2000 [=======>......................] - ETA: 30:03 - loss: 0.5429 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2025 - mrcnn_class_loss: 0.0838 - mrcnn_bbox_loss: 0.0885 - mrcnn_mask_loss: 0.1619228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - " 587/2000 [=======>......................] - ETA: 30:01 - loss: 0.5426 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2022 - mrcnn_class_loss: 0.0839 - mrcnn_bbox_loss: 0.0885 - mrcnn_mask_loss: 0.1619239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - " 588/2000 [=======>......................] - ETA: 30:00 - loss: 0.5431 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2025 - mrcnn_class_loss: 0.0840 - mrcnn_bbox_loss: 0.0884 - mrcnn_mask_loss: 0.1620211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - " 589/2000 [=======>......................] - ETA: 29:58 - loss: 0.5426 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2023 - mrcnn_class_loss: 0.0840 - mrcnn_bbox_loss: 0.0883 - mrcnn_mask_loss: 0.1619353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - " 590/2000 [=======>......................] - ETA: 29:57 - loss: 0.5424 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2021 - mrcnn_class_loss: 0.0839 - mrcnn_bbox_loss: 0.0884 - mrcnn_mask_loss: 0.1619382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - " 591/2000 [=======>......................] - ETA: 29:56 - loss: 0.5426 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2023 - mrcnn_class_loss: 0.0839 - mrcnn_bbox_loss: 0.0883 - mrcnn_mask_loss: 0.1620177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - " 592/2000 [=======>......................] - ETA: 29:55 - loss: 0.5424 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2022 - mrcnn_class_loss: 0.0838 - mrcnn_bbox_loss: 0.0884 - mrcnn_mask_loss: 0.1619169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - " 593/2000 [=======>......................] - ETA: 29:53 - loss: 0.5424 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2020 - mrcnn_class_loss: 0.0838 - mrcnn_bbox_loss: 0.0885 - mrcnn_mask_loss: 0.161929\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - " 594/2000 [=======>......................] - ETA: 29:51 - loss: 0.5421 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2019 - mrcnn_class_loss: 0.0839 - mrcnn_bbox_loss: 0.0884 - mrcnn_mask_loss: 0.1618128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - " 595/2000 [=======>......................] - ETA: 29:50 - loss: 0.5421 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2019 - mrcnn_class_loss: 0.0839 - mrcnn_bbox_loss: 0.0883 - mrcnn_mask_loss: 0.1618322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - " 596/2000 [=======>......................] - ETA: 29:49 - loss: 0.5423 - rpn_class_loss: 0.0062 - rpn_bbox_loss: 0.2019 - mrcnn_class_loss: 0.0840 - mrcnn_bbox_loss: 0.0884 - mrcnn_mask_loss: 0.161813\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - " 597/2000 [=======>......................] - ETA: 29:48 - loss: 0.5419 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2019 - mrcnn_class_loss: 0.0838 - mrcnn_bbox_loss: 0.0883 - mrcnn_mask_loss: 0.161842\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - " 598/2000 [=======>......................] - ETA: 29:46 - loss: 0.5416 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2018 - mrcnn_class_loss: 0.0837 - mrcnn_bbox_loss: 0.0882 - mrcnn_mask_loss: 0.1617176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - " 599/2000 [=======>......................] - ETA: 29:45 - loss: 0.5415 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2018 - mrcnn_class_loss: 0.0836 - mrcnn_bbox_loss: 0.0883 - mrcnn_mask_loss: 0.1617291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - " 600/2000 [========>.....................] - ETA: 29:44 - loss: 0.5414 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2018 - mrcnn_class_loss: 0.0835 - mrcnn_bbox_loss: 0.0883 - mrcnn_mask_loss: 0.161618\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - " 601/2000 [========>.....................] - ETA: 29:42 - loss: 0.5415 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2022 - mrcnn_class_loss: 0.0834 - mrcnn_bbox_loss: 0.0882 - mrcnn_mask_loss: 0.1616273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - " 602/2000 [========>.....................] - ETA: 29:40 - loss: 0.5414 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2021 - mrcnn_class_loss: 0.0835 - mrcnn_bbox_loss: 0.0881 - mrcnn_mask_loss: 0.16161\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 603/2000 [========>.....................] - ETA: 29:38 - loss: 0.5415 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2023 - mrcnn_class_loss: 0.0834 - mrcnn_bbox_loss: 0.0881 - mrcnn_mask_loss: 0.1616158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - " 604/2000 [========>.....................] - ETA: 29:37 - loss: 0.5417 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2024 - mrcnn_class_loss: 0.0836 - mrcnn_bbox_loss: 0.0881 - mrcnn_mask_loss: 0.161575\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - " 605/2000 [========>.....................] - ETA: 29:35 - loss: 0.5412 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2022 - mrcnn_class_loss: 0.0835 - mrcnn_bbox_loss: 0.0880 - mrcnn_mask_loss: 0.1614114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - " 606/2000 [========>.....................] - ETA: 29:34 - loss: 0.5409 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2020 - mrcnn_class_loss: 0.0834 - mrcnn_bbox_loss: 0.0880 - mrcnn_mask_loss: 0.161570\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - " 607/2000 [========>.....................] - ETA: 29:32 - loss: 0.5404 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2017 - mrcnn_class_loss: 0.0833 - mrcnn_bbox_loss: 0.0879 - mrcnn_mask_loss: 0.161484\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - " 608/2000 [========>.....................] - ETA: 29:31 - loss: 0.5400 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2015 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0879 - mrcnn_mask_loss: 0.1614343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - " 609/2000 [========>.....................] - ETA: 29:30 - loss: 0.5401 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2016 - mrcnn_class_loss: 0.0833 - mrcnn_bbox_loss: 0.0878 - mrcnn_mask_loss: 0.1613143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - " 610/2000 [========>.....................] - ETA: 29:28 - loss: 0.5401 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2016 - mrcnn_class_loss: 0.0833 - mrcnn_bbox_loss: 0.0879 - mrcnn_mask_loss: 0.1613329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - " 611/2000 [========>.....................] - ETA: 29:27 - loss: 0.5400 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2016 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0878 - mrcnn_mask_loss: 0.161358\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - " 612/2000 [========>.....................] - ETA: 29:25 - loss: 0.5402 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2020 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0877 - mrcnn_mask_loss: 0.1612147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - " 613/2000 [========>.....................] - ETA: 29:24 - loss: 0.5405 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2021 - mrcnn_class_loss: 0.0833 - mrcnn_bbox_loss: 0.0878 - mrcnn_mask_loss: 0.1613372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - " 614/2000 [========>.....................] - ETA: 29:23 - loss: 0.5404 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2020 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0879 - mrcnn_mask_loss: 0.161353\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - " 615/2000 [========>.....................] - ETA: 29:21 - loss: 0.5400 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2018 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0878 - mrcnn_mask_loss: 0.161297\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - " 616/2000 [========>.....................] - ETA: 29:20 - loss: 0.5404 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2021 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0878 - mrcnn_mask_loss: 0.1612387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - " 617/2000 [========>.....................] - ETA: 29:19 - loss: 0.5403 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2021 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0878 - mrcnn_mask_loss: 0.161292\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 618/2000 [========>.....................] - ETA: 29:17 - loss: 0.5402 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2022 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0877 - mrcnn_mask_loss: 0.1611268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - " 619/2000 [========>.....................] - ETA: 29:16 - loss: 0.5402 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2019 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0878 - mrcnn_mask_loss: 0.1613226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - " 620/2000 [========>.....................] - ETA: 29:14 - loss: 0.5398 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2017 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0877 - mrcnn_mask_loss: 0.1613107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - " 621/2000 [========>.....................] - ETA: 29:13 - loss: 0.5396 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2015 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0878 - mrcnn_mask_loss: 0.1613145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - " 622/2000 [========>.....................] - ETA: 29:12 - loss: 0.5396 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2014 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0878 - mrcnn_mask_loss: 0.1613187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - " 623/2000 [========>.....................] - ETA: 29:10 - loss: 0.5390 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2011 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0877 - mrcnn_mask_loss: 0.1612384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - " 624/2000 [========>.....................] - ETA: 29:09 - loss: 0.5386 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2009 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0876 - mrcnn_mask_loss: 0.1612105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - " 625/2000 [========>.....................] - ETA: 29:07 - loss: 0.5384 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2007 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0876 - mrcnn_mask_loss: 0.1612281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - " 626/2000 [========>.....................] - ETA: 29:06 - loss: 0.5386 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2008 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0877 - mrcnn_mask_loss: 0.1612156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - " 627/2000 [========>.....................] - ETA: 29:05 - loss: 0.5389 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2011 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0877 - mrcnn_mask_loss: 0.1612374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - " 628/2000 [========>.....................] - ETA: 29:04 - loss: 0.5387 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2010 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0877 - mrcnn_mask_loss: 0.1612175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - " 629/2000 [========>.....................] - ETA: 29:03 - loss: 0.5385 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2008 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0876 - mrcnn_mask_loss: 0.1612331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - " 630/2000 [========>.....................] - ETA: 29:02 - loss: 0.5385 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2008 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0876 - mrcnn_mask_loss: 0.161287\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - " 631/2000 [========>.....................] - ETA: 29:00 - loss: 0.5384 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2006 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0876 - mrcnn_mask_loss: 0.161290\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - " 632/2000 [========>.....................] - ETA: 28:59 - loss: 0.5385 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2007 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0875 - mrcnn_mask_loss: 0.16129\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - " 633/2000 [========>.....................] - ETA: 28:57 - loss: 0.5387 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2011 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0875 - mrcnn_mask_loss: 0.1612330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - " 634/2000 [========>.....................] - ETA: 28:56 - loss: 0.5384 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2010 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0874 - mrcnn_mask_loss: 0.1611142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - " 635/2000 [========>.....................] - ETA: 28:54 - loss: 0.5382 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2009 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0873 - mrcnn_mask_loss: 0.161179\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - " 636/2000 [========>.....................] - ETA: 28:53 - loss: 0.5381 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2008 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0873 - mrcnn_mask_loss: 0.161141\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - " 637/2000 [========>.....................] - ETA: 28:52 - loss: 0.5378 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2007 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1610131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - " 638/2000 [========>.....................] - ETA: 28:50 - loss: 0.5380 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2010 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1611155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - " 639/2000 [========>.....................] - ETA: 28:49 - loss: 0.5383 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2012 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0873 - mrcnn_mask_loss: 0.1611214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - " 640/2000 [========>.....................] - ETA: 28:48 - loss: 0.5379 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2010 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1610171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - " 641/2000 [========>.....................] - ETA: 28:46 - loss: 0.5376 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2008 - mrcnn_class_loss: 0.0825 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1610323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - " 642/2000 [========>.....................] - ETA: 28:45 - loss: 0.5376 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2009 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1610129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - " 643/2000 [========>.....................] - ETA: 28:44 - loss: 0.5379 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2010 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1611262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - " 644/2000 [========>.....................] - ETA: 28:43 - loss: 0.5379 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2009 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0871 - mrcnn_mask_loss: 0.161186\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - " 645/2000 [========>.....................] - ETA: 28:41 - loss: 0.5379 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2008 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1611246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - " 646/2000 [========>.....................] - ETA: 28:40 - loss: 0.5378 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2006 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.161220\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 647/2000 [========>.....................] - ETA: 28:38 - loss: 0.5379 - rpn_class_loss: 0.0061 - rpn_bbox_loss: 0.2008 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1612201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - " 648/2000 [========>.....................] - ETA: 28:37 - loss: 0.5376 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2007 - mrcnn_class_loss: 0.0825 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1612221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - " 649/2000 [========>.....................] - ETA: 28:35 - loss: 0.5374 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2005 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0873 - mrcnn_mask_loss: 0.1612130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - " 650/2000 [========>.....................] - ETA: 28:34 - loss: 0.5377 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2007 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1613363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - " 651/2000 [========>.....................] - ETA: 28:33 - loss: 0.5379 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2008 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0873 - mrcnn_mask_loss: 0.1613162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - " 652/2000 [========>.....................] - ETA: 28:32 - loss: 0.5377 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2008 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0873 - mrcnn_mask_loss: 0.1613207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - " 653/2000 [========>.....................] - ETA: 28:30 - loss: 0.5372 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2005 - mrcnn_class_loss: 0.0822 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1612289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - " 654/2000 [========>.....................] - ETA: 28:29 - loss: 0.5374 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2006 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1612334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - " 655/2000 [========>.....................] - ETA: 28:28 - loss: 0.5370 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2004 - mrcnn_class_loss: 0.0822 - mrcnn_bbox_loss: 0.0872 - mrcnn_mask_loss: 0.1612191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - " 656/2000 [========>.....................] - ETA: 28:26 - loss: 0.5365 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2001 - mrcnn_class_loss: 0.0821 - mrcnn_bbox_loss: 0.0871 - mrcnn_mask_loss: 0.161296\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - " 657/2000 [========>.....................] - ETA: 28:24 - loss: 0.5366 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2002 - mrcnn_class_loss: 0.0820 - mrcnn_bbox_loss: 0.0871 - mrcnn_mask_loss: 0.161293\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - " 658/2000 [========>.....................] - ETA: 28:23 - loss: 0.5367 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2003 - mrcnn_class_loss: 0.0820 - mrcnn_bbox_loss: 0.0871 - mrcnn_mask_loss: 0.1612180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - " 659/2000 [========>.....................] - ETA: 28:21 - loss: 0.5366 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2004 - mrcnn_class_loss: 0.0820 - mrcnn_bbox_loss: 0.0870 - mrcnn_mask_loss: 0.1612238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - " 660/2000 [========>.....................] - ETA: 28:20 - loss: 0.5365 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2003 - mrcnn_class_loss: 0.0820 - mrcnn_bbox_loss: 0.0870 - mrcnn_mask_loss: 0.161259\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - " 661/2000 [========>.....................] - ETA: 28:18 - loss: 0.5366 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2006 - mrcnn_class_loss: 0.0820 - mrcnn_bbox_loss: 0.0869 - mrcnn_mask_loss: 0.1611204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 662/2000 [========>.....................] - ETA: 28:17 - loss: 0.5363 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2003 - mrcnn_class_loss: 0.0820 - mrcnn_bbox_loss: 0.0868 - mrcnn_mask_loss: 0.1611254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - " 663/2000 [========>.....................] - ETA: 28:15 - loss: 0.5365 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2004 - mrcnn_class_loss: 0.0820 - mrcnn_bbox_loss: 0.0869 - mrcnn_mask_loss: 0.1612141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - " 664/2000 [========>.....................] - ETA: 28:14 - loss: 0.5368 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2005 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0869 - mrcnn_mask_loss: 0.1611159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - " 665/2000 [========>.....................] - ETA: 28:13 - loss: 0.5369 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2005 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0869 - mrcnn_mask_loss: 0.1611293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - " 666/2000 [========>.....................] - ETA: 28:12 - loss: 0.5369 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2006 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0869 - mrcnn_mask_loss: 0.1611258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - " 667/2000 [=========>....................] - ETA: 28:10 - loss: 0.5370 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2007 - mrcnn_class_loss: 0.0822 - mrcnn_bbox_loss: 0.0869 - mrcnn_mask_loss: 0.1611144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - " 668/2000 [=========>....................] - ETA: 28:09 - loss: 0.5368 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2006 - mrcnn_class_loss: 0.0822 - mrcnn_bbox_loss: 0.0869 - mrcnn_mask_loss: 0.1611272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - " 669/2000 [=========>....................] - ETA: 28:08 - loss: 0.5366 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2005 - mrcnn_class_loss: 0.0822 - mrcnn_bbox_loss: 0.0869 - mrcnn_mask_loss: 0.161117\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - " 670/2000 [=========>....................] - ETA: 28:06 - loss: 0.5369 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2010 - mrcnn_class_loss: 0.0821 - mrcnn_bbox_loss: 0.0868 - mrcnn_mask_loss: 0.1610259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - " 671/2000 [=========>....................] - ETA: 28:05 - loss: 0.5371 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2012 - mrcnn_class_loss: 0.0820 - mrcnn_bbox_loss: 0.0868 - mrcnn_mask_loss: 0.1610225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - " 672/2000 [=========>....................] - ETA: 28:03 - loss: 0.5368 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2010 - mrcnn_class_loss: 0.0820 - mrcnn_bbox_loss: 0.0868 - mrcnn_mask_loss: 0.1610203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - " 673/2000 [=========>....................] - ETA: 28:02 - loss: 0.5365 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2007 - mrcnn_class_loss: 0.0819 - mrcnn_bbox_loss: 0.0867 - mrcnn_mask_loss: 0.1610184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - " 674/2000 [=========>....................] - ETA: 28:00 - loss: 0.5360 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2006 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0867 - mrcnn_mask_loss: 0.160940\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - " 675/2000 [=========>....................] - ETA: 27:58 - loss: 0.5358 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2005 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0867 - mrcnn_mask_loss: 0.160955\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - " 676/2000 [=========>....................] - ETA: 27:57 - loss: 0.5354 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2002 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0866 - mrcnn_mask_loss: 0.1609183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 677/2000 [=========>....................] - ETA: 27:55 - loss: 0.5354 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2001 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0866 - mrcnn_mask_loss: 0.161089\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - " 678/2000 [=========>....................] - ETA: 27:54 - loss: 0.5353 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2002 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0865 - mrcnn_mask_loss: 0.16094\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - " 679/2000 [=========>....................] - ETA: 27:52 - loss: 0.5348 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1999 - mrcnn_class_loss: 0.0815 - mrcnn_bbox_loss: 0.0865 - mrcnn_mask_loss: 0.1609236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - " 680/2000 [=========>....................] - ETA: 27:50 - loss: 0.5345 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0815 - mrcnn_bbox_loss: 0.0864 - mrcnn_mask_loss: 0.1609320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - " 681/2000 [=========>....................] - ETA: 27:50 - loss: 0.5345 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0864 - mrcnn_mask_loss: 0.1609148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - " 682/2000 [=========>....................] - ETA: 27:48 - loss: 0.5345 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0864 - mrcnn_mask_loss: 0.1608244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - " 683/2000 [=========>....................] - ETA: 27:47 - loss: 0.5345 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0864 - mrcnn_mask_loss: 0.1608271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - " 684/2000 [=========>....................] - ETA: 27:45 - loss: 0.5344 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1993 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0864 - mrcnn_mask_loss: 0.1609124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - " 685/2000 [=========>....................] - ETA: 27:45 - loss: 0.5346 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0864 - mrcnn_mask_loss: 0.1609190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - " 686/2000 [=========>....................] - ETA: 27:43 - loss: 0.5346 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1993 - mrcnn_class_loss: 0.0819 - mrcnn_bbox_loss: 0.0864 - mrcnn_mask_loss: 0.160937\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - " 687/2000 [=========>....................] - ETA: 27:41 - loss: 0.5354 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2001 - mrcnn_class_loss: 0.0819 - mrcnn_bbox_loss: 0.0864 - mrcnn_mask_loss: 0.1610314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - " 688/2000 [=========>....................] - ETA: 27:40 - loss: 0.5352 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2001 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0863 - mrcnn_mask_loss: 0.1610376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - " 689/2000 [=========>....................] - ETA: 27:40 - loss: 0.5350 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1999 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0863 - mrcnn_mask_loss: 0.1610252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - " 690/2000 [=========>....................] - ETA: 27:38 - loss: 0.5349 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1998 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0863 - mrcnn_mask_loss: 0.161099\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - " 691/2000 [=========>....................] - ETA: 27:36 - loss: 0.5352 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2001 - mrcnn_class_loss: 0.0819 - mrcnn_bbox_loss: 0.0863 - mrcnn_mask_loss: 0.1609113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 692/2000 [=========>....................] - ETA: 27:35 - loss: 0.5352 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2000 - mrcnn_class_loss: 0.0819 - mrcnn_bbox_loss: 0.0863 - mrcnn_mask_loss: 0.1609361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - " 693/2000 [=========>....................] - ETA: 27:34 - loss: 0.5354 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2002 - mrcnn_class_loss: 0.0819 - mrcnn_bbox_loss: 0.0864 - mrcnn_mask_loss: 0.1609154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - " 694/2000 [=========>....................] - ETA: 27:33 - loss: 0.5355 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2003 - mrcnn_class_loss: 0.0819 - mrcnn_bbox_loss: 0.0863 - mrcnn_mask_loss: 0.1609398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - " 695/2000 [=========>....................] - ETA: 27:32 - loss: 0.5360 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2007 - mrcnn_class_loss: 0.0821 - mrcnn_bbox_loss: 0.0863 - mrcnn_mask_loss: 0.1609250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - " 696/2000 [=========>....................] - ETA: 27:30 - loss: 0.5361 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2006 - mrcnn_class_loss: 0.0822 - mrcnn_bbox_loss: 0.0863 - mrcnn_mask_loss: 0.1610308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - " 697/2000 [=========>....................] - ETA: 27:29 - loss: 0.5363 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2007 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0863 - mrcnn_mask_loss: 0.1610396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - " 698/2000 [=========>....................] - ETA: 27:28 - loss: 0.5366 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2007 - mrcnn_class_loss: 0.0825 - mrcnn_bbox_loss: 0.0863 - mrcnn_mask_loss: 0.1610245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - " 699/2000 [=========>....................] - ETA: 27:26 - loss: 0.5367 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2005 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0863 - mrcnn_mask_loss: 0.161145\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - " 700/2000 [=========>....................] - ETA: 27:25 - loss: 0.5364 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2003 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0862 - mrcnn_mask_loss: 0.1610205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - " 701/2000 [=========>....................] - ETA: 27:23 - loss: 0.5362 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2000 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0861 - mrcnn_mask_loss: 0.1609298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - " 702/2000 [=========>....................] - ETA: 27:23 - loss: 0.5366 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2003 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0861 - mrcnn_mask_loss: 0.1610337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - " 703/2000 [=========>....................] - ETA: 27:22 - loss: 0.5366 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2004 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0861 - mrcnn_mask_loss: 0.1610202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - " 704/2000 [=========>....................] - ETA: 27:20 - loss: 0.5366 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2002 - mrcnn_class_loss: 0.0834 - mrcnn_bbox_loss: 0.0860 - mrcnn_mask_loss: 0.1609146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - " 705/2000 [=========>....................] - ETA: 27:19 - loss: 0.5366 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2002 - mrcnn_class_loss: 0.0834 - mrcnn_bbox_loss: 0.0861 - mrcnn_mask_loss: 0.1609111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - " 706/2000 [=========>....................] - ETA: 27:18 - loss: 0.5367 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2001 - mrcnn_class_loss: 0.0836 - mrcnn_bbox_loss: 0.0861 - mrcnn_mask_loss: 0.1609325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - " 707/2000 [=========>....................] - ETA: 27:17 - loss: 0.5364 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2001 - mrcnn_class_loss: 0.0835 - mrcnn_bbox_loss: 0.0860 - mrcnn_mask_loss: 0.16097\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - " 708/2000 [=========>....................] - ETA: 27:15 - loss: 0.5368 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2006 - mrcnn_class_loss: 0.0834 - mrcnn_bbox_loss: 0.0859 - mrcnn_mask_loss: 0.1608351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - " 709/2000 [=========>....................] - ETA: 27:14 - loss: 0.5367 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2006 - mrcnn_class_loss: 0.0834 - mrcnn_bbox_loss: 0.0859 - mrcnn_mask_loss: 0.1608356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - " 710/2000 [=========>....................] - ETA: 27:13 - loss: 0.5366 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2005 - mrcnn_class_loss: 0.0833 - mrcnn_bbox_loss: 0.0859 - mrcnn_mask_loss: 0.1608198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - " 711/2000 [=========>....................] - ETA: 27:11 - loss: 0.5364 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2005 - mrcnn_class_loss: 0.0833 - mrcnn_bbox_loss: 0.0859 - mrcnn_mask_loss: 0.1608277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - " 712/2000 [=========>....................] - ETA: 27:10 - loss: 0.5365 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2006 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0859 - mrcnn_mask_loss: 0.1608218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - " 713/2000 [=========>....................] - ETA: 27:09 - loss: 0.5363 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2005 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0858 - mrcnn_mask_loss: 0.1608150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - " 714/2000 [=========>....................] - ETA: 27:07 - loss: 0.5363 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2004 - mrcnn_class_loss: 0.0833 - mrcnn_bbox_loss: 0.0858 - mrcnn_mask_loss: 0.1608253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - " 715/2000 [=========>....................] - ETA: 27:06 - loss: 0.5362 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2005 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0858 - mrcnn_mask_loss: 0.16085\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - " 716/2000 [=========>....................] - ETA: 27:04 - loss: 0.5358 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2002 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0857 - mrcnn_mask_loss: 0.1607399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - " 717/2000 [=========>....................] - ETA: 27:03 - loss: 0.5357 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2003 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0857 - mrcnn_mask_loss: 0.1607256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - " 718/2000 [=========>....................] - ETA: 27:02 - loss: 0.5359 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2003 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0857 - mrcnn_mask_loss: 0.1608349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - " 719/2000 [=========>....................] - ETA: 27:00 - loss: 0.5358 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2003 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0857 - mrcnn_mask_loss: 0.1608365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - " 720/2000 [=========>....................] - ETA: 26:59 - loss: 0.5358 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2003 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0858 - mrcnn_mask_loss: 0.1608102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 721/2000 [=========>....................] - ETA: 26:58 - loss: 0.5357 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2002 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0857 - mrcnn_mask_loss: 0.160849\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - " 722/2000 [=========>....................] - ETA: 26:56 - loss: 0.5352 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2000 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0856 - mrcnn_mask_loss: 0.1607383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - " 723/2000 [=========>....................] - ETA: 26:55 - loss: 0.5351 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2000 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0856 - mrcnn_mask_loss: 0.1607109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - " 724/2000 [=========>....................] - ETA: 26:54 - loss: 0.5350 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1999 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0856 - mrcnn_mask_loss: 0.1607137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - " 725/2000 [=========>....................] - ETA: 26:53 - loss: 0.5350 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1999 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0856 - mrcnn_mask_loss: 0.1607352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - " 726/2000 [=========>....................] - ETA: 26:52 - loss: 0.5348 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1998 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0856 - mrcnn_mask_loss: 0.1607210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - " 727/2000 [=========>....................] - ETA: 26:50 - loss: 0.5345 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0855 - mrcnn_mask_loss: 0.1606341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - " 728/2000 [=========>....................] - ETA: 26:49 - loss: 0.5343 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0855 - mrcnn_mask_loss: 0.1606359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - " 729/2000 [=========>....................] - ETA: 26:48 - loss: 0.5341 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1994 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0855 - mrcnn_mask_loss: 0.1606309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - " 730/2000 [=========>....................] - ETA: 26:47 - loss: 0.5342 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0855 - mrcnn_mask_loss: 0.1606346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - " 731/2000 [=========>....................] - ETA: 26:46 - loss: 0.5346 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.2000 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0854 - mrcnn_mask_loss: 0.1606242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - " 732/2000 [=========>....................] - ETA: 26:45 - loss: 0.5348 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1998 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0855 - mrcnn_mask_loss: 0.1606290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - " 733/2000 [=========>....................] - ETA: 26:44 - loss: 0.5349 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1999 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0854 - mrcnn_mask_loss: 0.1606194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - " 734/2000 [==========>...................] - ETA: 26:42 - loss: 0.5346 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0854 - mrcnn_mask_loss: 0.1606185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - " 735/2000 [==========>...................] - ETA: 26:40 - loss: 0.5342 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1994 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0853 - mrcnn_mask_loss: 0.1606270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - " 736/2000 [==========>...................] - ETA: 26:39 - loss: 0.5339 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1993 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0853 - mrcnn_mask_loss: 0.1605305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - " 737/2000 [==========>...................] - ETA: 26:38 - loss: 0.5340 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1993 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0852 - mrcnn_mask_loss: 0.1605161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - " 738/2000 [==========>...................] - ETA: 26:37 - loss: 0.5343 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0852 - mrcnn_mask_loss: 0.1605157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - " 739/2000 [==========>...................] - ETA: 26:35 - loss: 0.5344 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1997 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0853 - mrcnn_mask_loss: 0.1604355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - " 740/2000 [==========>...................] - ETA: 26:34 - loss: 0.5341 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0852 - mrcnn_mask_loss: 0.1604167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - " 741/2000 [==========>...................] - ETA: 26:33 - loss: 0.5337 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1993 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0852 - mrcnn_mask_loss: 0.1604197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - " 742/2000 [==========>...................] - ETA: 26:32 - loss: 0.5334 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1991 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0851 - mrcnn_mask_loss: 0.1604139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - " 743/2000 [==========>...................] - ETA: 26:31 - loss: 0.5339 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1994 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0852 - mrcnn_mask_loss: 0.1605123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - " 744/2000 [==========>...................] - ETA: 26:30 - loss: 0.5341 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0852 - mrcnn_mask_loss: 0.1606199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - " 745/2000 [==========>...................] - ETA: 26:28 - loss: 0.5340 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0852 - mrcnn_mask_loss: 0.160521\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - " 746/2000 [==========>...................] - ETA: 26:27 - loss: 0.5340 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1997 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0851 - mrcnn_mask_loss: 0.160583\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - " 747/2000 [==========>...................] - ETA: 26:26 - loss: 0.5337 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0851 - mrcnn_mask_loss: 0.1604373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - " 748/2000 [==========>...................] - ETA: 26:24 - loss: 0.5334 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1994 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0850 - mrcnn_mask_loss: 0.1604368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 749/2000 [==========>...................] - ETA: 26:23 - loss: 0.5338 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0850 - mrcnn_mask_loss: 0.160410\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - " 750/2000 [==========>...................] - ETA: 26:22 - loss: 0.5337 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0849 - mrcnn_mask_loss: 0.1604138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - " 751/2000 [==========>...................] - ETA: 26:21 - loss: 0.5339 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0849 - mrcnn_mask_loss: 0.160314\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - " 752/2000 [==========>...................] - ETA: 26:19 - loss: 0.5338 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1997 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0849 - mrcnn_mask_loss: 0.1603223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - " 753/2000 [==========>...................] - ETA: 26:18 - loss: 0.5337 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0848 - mrcnn_mask_loss: 0.1602392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - " 754/2000 [==========>...................] - ETA: 26:16 - loss: 0.5336 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0848 - mrcnn_mask_loss: 0.1602232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - " 755/2000 [==========>...................] - ETA: 26:15 - loss: 0.5336 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0848 - mrcnn_mask_loss: 0.16032\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - " 756/2000 [==========>...................] - ETA: 26:13 - loss: 0.5336 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1997 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0848 - mrcnn_mask_loss: 0.1603133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - " 757/2000 [==========>...................] - ETA: 26:12 - loss: 0.5338 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1998 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0848 - mrcnn_mask_loss: 0.1603318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - " 758/2000 [==========>...................] - ETA: 26:12 - loss: 0.5339 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1998 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0848 - mrcnn_mask_loss: 0.1604217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - " 759/2000 [==========>...................] - ETA: 26:10 - loss: 0.5337 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1997 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0847 - mrcnn_mask_loss: 0.1604310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - " 760/2000 [==========>...................] - ETA: 26:09 - loss: 0.5337 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0847 - mrcnn_mask_loss: 0.1604193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - " 761/2000 [==========>...................] - ETA: 26:07 - loss: 0.5333 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1994 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0846 - mrcnn_mask_loss: 0.160354\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - " 762/2000 [==========>...................] - ETA: 26:06 - loss: 0.5329 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1993 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0845 - mrcnn_mask_loss: 0.16030\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - " 763/2000 [==========>...................] - ETA: 26:04 - loss: 0.5330 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1994 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0845 - mrcnn_mask_loss: 0.1602237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - " 764/2000 [==========>...................] - ETA: 26:03 - loss: 0.5328 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1992 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0845 - mrcnn_mask_loss: 0.1603230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - " 765/2000 [==========>...................] - ETA: 26:01 - loss: 0.5329 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1991 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0845 - mrcnn_mask_loss: 0.1604179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - " 766/2000 [==========>...................] - ETA: 26:00 - loss: 0.5329 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1992 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0845 - mrcnn_mask_loss: 0.1604397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - " 767/2000 [==========>...................] - ETA: 25:59 - loss: 0.5330 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1994 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0845 - mrcnn_mask_loss: 0.1604260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - " 768/2000 [==========>...................] - ETA: 25:58 - loss: 0.5331 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1994 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0845 - mrcnn_mask_loss: 0.160462\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - " 769/2000 [==========>...................] - ETA: 25:56 - loss: 0.5328 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1992 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0845 - mrcnn_mask_loss: 0.160467\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - " 770/2000 [==========>...................] - ETA: 25:55 - loss: 0.5324 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1991 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0844 - mrcnn_mask_loss: 0.16048\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - " 771/2000 [==========>...................] - ETA: 25:53 - loss: 0.5320 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1988 - mrcnn_class_loss: 0.0825 - mrcnn_bbox_loss: 0.0843 - mrcnn_mask_loss: 0.1603317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - " 772/2000 [==========>...................] - ETA: 25:52 - loss: 0.5323 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1988 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0843 - mrcnn_mask_loss: 0.160424\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - " 773/2000 [==========>...................] - ETA: 25:51 - loss: 0.5319 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1987 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0843 - mrcnn_mask_loss: 0.1603267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - " 774/2000 [==========>...................] - ETA: 25:49 - loss: 0.5319 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0842 - mrcnn_mask_loss: 0.1604381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - " 775/2000 [==========>...................] - ETA: 25:48 - loss: 0.5319 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1985 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0842 - mrcnn_mask_loss: 0.1604196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - " 776/2000 [==========>...................] - ETA: 25:46 - loss: 0.5315 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0842 - mrcnn_mask_loss: 0.1604168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - " 777/2000 [==========>...................] - ETA: 25:45 - loss: 0.5314 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1981 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0842 - mrcnn_mask_loss: 0.160478\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - " 778/2000 [==========>...................] - ETA: 25:44 - loss: 0.5311 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0841 - mrcnn_mask_loss: 0.1603326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 779/2000 [==========>...................] - ETA: 25:43 - loss: 0.5309 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1979 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0841 - mrcnn_mask_loss: 0.1603115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - " 780/2000 [==========>...................] - ETA: 25:41 - loss: 0.5309 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1979 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0840 - mrcnn_mask_loss: 0.1603121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - " 781/2000 [==========>...................] - ETA: 25:40 - loss: 0.5315 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1981 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0840 - mrcnn_mask_loss: 0.160473\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - " 782/2000 [==========>...................] - ETA: 25:39 - loss: 0.5314 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0840 - mrcnn_mask_loss: 0.1603134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - " 783/2000 [==========>...................] - ETA: 25:38 - loss: 0.5315 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.1603284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - " 784/2000 [==========>...................] - ETA: 25:37 - loss: 0.5319 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0840 - mrcnn_mask_loss: 0.1603385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - " 785/2000 [==========>...................] - ETA: 25:35 - loss: 0.5319 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0841 - mrcnn_mask_loss: 0.1604366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - " 786/2000 [==========>...................] - ETA: 25:34 - loss: 0.5319 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0840 - mrcnn_mask_loss: 0.160426\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - " 787/2000 [==========>...................] - ETA: 25:33 - loss: 0.5317 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0840 - mrcnn_mask_loss: 0.1603307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - " 788/2000 [==========>...................] - ETA: 25:32 - loss: 0.5317 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1985 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0840 - mrcnn_mask_loss: 0.160227\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - " 789/2000 [==========>...................] - ETA: 25:30 - loss: 0.5315 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1985 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.1602174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - " 790/2000 [==========>...................] - ETA: 25:29 - loss: 0.5317 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0840 - mrcnn_mask_loss: 0.160246\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - " 791/2000 [==========>...................] - ETA: 25:27 - loss: 0.5313 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.1601299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - " 792/2000 [==========>...................] - ETA: 25:27 - loss: 0.5316 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1987 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0840 - mrcnn_mask_loss: 0.160130\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - " 793/2000 [==========>...................] - ETA: 25:25 - loss: 0.5314 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1987 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.160138\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 794/2000 [==========>...................] - ETA: 25:24 - loss: 0.5317 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1991 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.160082\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - " 795/2000 [==========>...................] - ETA: 25:22 - loss: 0.5319 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1990 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.1601235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - " 796/2000 [==========>...................] - ETA: 25:21 - loss: 0.5318 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1989 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.1601172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - " 797/2000 [==========>...................] - ETA: 25:19 - loss: 0.5316 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1988 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.1601347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - " 798/2000 [==========>...................] - ETA: 25:18 - loss: 0.5319 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1990 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.160116\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - " 799/2000 [==========>...................] - ETA: 25:16 - loss: 0.5320 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1993 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0838 - mrcnn_mask_loss: 0.1600269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - " 800/2000 [===========>..................] - ETA: 25:15 - loss: 0.5322 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1992 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.1601398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - " 801/2000 [===========>..................] - ETA: 25:14 - loss: 0.5326 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.1601382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - " 802/2000 [===========>..................] - ETA: 25:13 - loss: 0.5330 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1997 - mrcnn_class_loss: 0.0833 - mrcnn_bbox_loss: 0.0839 - mrcnn_mask_loss: 0.160177\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - " 803/2000 [===========>..................] - ETA: 25:11 - loss: 0.5328 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0838 - mrcnn_mask_loss: 0.1601310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - " 804/2000 [===========>..................] - ETA: 25:10 - loss: 0.5332 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1997 - mrcnn_class_loss: 0.0835 - mrcnn_bbox_loss: 0.0838 - mrcnn_mask_loss: 0.1601397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - " 805/2000 [===========>..................] - ETA: 25:09 - loss: 0.5332 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1999 - mrcnn_class_loss: 0.0834 - mrcnn_bbox_loss: 0.0838 - mrcnn_mask_loss: 0.160183\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - " 806/2000 [===========>..................] - ETA: 25:07 - loss: 0.5330 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1997 - mrcnn_class_loss: 0.0834 - mrcnn_bbox_loss: 0.0837 - mrcnn_mask_loss: 0.160164\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - " 807/2000 [===========>..................] - ETA: 25:06 - loss: 0.5327 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1995 - mrcnn_class_loss: 0.0833 - mrcnn_bbox_loss: 0.0837 - mrcnn_mask_loss: 0.1601180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - " 808/2000 [===========>..................] - ETA: 25:04 - loss: 0.5326 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1996 - mrcnn_class_loss: 0.0833 - mrcnn_bbox_loss: 0.0837 - mrcnn_mask_loss: 0.1602221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 809/2000 [===========>..................] - ETA: 25:03 - loss: 0.5324 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1994 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0837 - mrcnn_mask_loss: 0.1601318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - " 810/2000 [===========>..................] - ETA: 25:02 - loss: 0.5323 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1993 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0837 - mrcnn_mask_loss: 0.160247\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - " 811/2000 [===========>..................] - ETA: 25:00 - loss: 0.5319 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1991 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0836 - mrcnn_mask_loss: 0.1601386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - " 812/2000 [===========>..................] - ETA: 24:59 - loss: 0.5316 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1990 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0836 - mrcnn_mask_loss: 0.1601214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - " 813/2000 [===========>..................] - ETA: 24:57 - loss: 0.5313 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1988 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0835 - mrcnn_mask_loss: 0.1600112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - " 814/2000 [===========>..................] - ETA: 24:56 - loss: 0.5314 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1987 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0835 - mrcnn_mask_loss: 0.1600194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - " 815/2000 [===========>..................] - ETA: 24:54 - loss: 0.5311 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0835 - mrcnn_mask_loss: 0.160037\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - " 816/2000 [===========>..................] - ETA: 24:53 - loss: 0.5316 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1991 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0834 - mrcnn_mask_loss: 0.1599274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - " 817/2000 [===========>..................] - ETA: 24:52 - loss: 0.5316 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1991 - mrcnn_class_loss: 0.0833 - mrcnn_bbox_loss: 0.0834 - mrcnn_mask_loss: 0.1599355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - " 818/2000 [===========>..................] - ETA: 24:51 - loss: 0.5315 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1990 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0834 - mrcnn_mask_loss: 0.1599207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - " 819/2000 [===========>..................] - ETA: 24:49 - loss: 0.5311 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1988 - mrcnn_class_loss: 0.0832 - mrcnn_bbox_loss: 0.0833 - mrcnn_mask_loss: 0.1599270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - " 820/2000 [===========>..................] - ETA: 24:47 - loss: 0.5309 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0831 - mrcnn_bbox_loss: 0.0833 - mrcnn_mask_loss: 0.1599343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - " 821/2000 [===========>..................] - ETA: 24:46 - loss: 0.5307 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0830 - mrcnn_bbox_loss: 0.0833 - mrcnn_mask_loss: 0.159943\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - " 822/2000 [===========>..................] - ETA: 24:45 - loss: 0.5304 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0832 - mrcnn_mask_loss: 0.159915\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - " 823/2000 [===========>..................] - ETA: 24:43 - loss: 0.5301 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0832 - mrcnn_mask_loss: 0.159849\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 824/2000 [===========>..................] - ETA: 24:42 - loss: 0.5297 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1981 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0831 - mrcnn_mask_loss: 0.1597241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - " 825/2000 [===========>..................] - ETA: 24:40 - loss: 0.5298 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0831 - mrcnn_mask_loss: 0.1598102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - " 826/2000 [===========>..................] - ETA: 24:39 - loss: 0.5298 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1979 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0832 - mrcnn_mask_loss: 0.1598197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - " 827/2000 [===========>..................] - ETA: 24:37 - loss: 0.5294 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0831 - mrcnn_mask_loss: 0.1598261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - " 828/2000 [===========>..................] - ETA: 24:36 - loss: 0.5293 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0831 - mrcnn_mask_loss: 0.159846\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - " 829/2000 [===========>..................] - ETA: 24:35 - loss: 0.5289 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0830 - mrcnn_mask_loss: 0.1598172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - " 830/2000 [===========>..................] - ETA: 24:33 - loss: 0.5287 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0830 - mrcnn_mask_loss: 0.1598375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - " 831/2000 [===========>..................] - ETA: 24:32 - loss: 0.5285 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0829 - mrcnn_mask_loss: 0.1598135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - " 832/2000 [===========>..................] - ETA: 24:31 - loss: 0.5286 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0829 - mrcnn_mask_loss: 0.1598229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - " 833/2000 [===========>..................] - ETA: 24:30 - loss: 0.5286 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0829 - mrcnn_mask_loss: 0.1598234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - " 834/2000 [===========>..................] - ETA: 24:28 - loss: 0.5286 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0829 - mrcnn_mask_loss: 0.1598326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - " 835/2000 [===========>..................] - ETA: 24:27 - loss: 0.5285 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0829 - mrcnn_mask_loss: 0.159890\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - " 836/2000 [===========>..................] - ETA: 24:25 - loss: 0.5287 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0829 - mrcnn_mask_loss: 0.1599298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - " 837/2000 [===========>..................] - ETA: 24:25 - loss: 0.5291 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0829 - mrcnn_mask_loss: 0.1598297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - " 838/2000 [===========>..................] - ETA: 24:24 - loss: 0.5292 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0829 - mrcnn_mask_loss: 0.1598336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - " 839/2000 [===========>..................] - ETA: 24:23 - loss: 0.5291 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0829 - mrcnn_mask_loss: 0.1598273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - " 840/2000 [===========>..................] - ETA: 24:21 - loss: 0.5289 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0829 - mrcnn_mask_loss: 0.1598252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - " 841/2000 [===========>..................] - ETA: 24:20 - loss: 0.5289 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0828 - mrcnn_mask_loss: 0.1599125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - " 842/2000 [===========>..................] - ETA: 24:19 - loss: 0.5288 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0828 - mrcnn_mask_loss: 0.1598149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - " 843/2000 [===========>..................] - ETA: 24:17 - loss: 0.5289 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0828 - mrcnn_mask_loss: 0.1598106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - " 844/2000 [===========>..................] - ETA: 24:16 - loss: 0.5289 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0829 - mrcnn_bbox_loss: 0.0828 - mrcnn_mask_loss: 0.159820\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - " 845/2000 [===========>..................] - ETA: 24:14 - loss: 0.5288 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0828 - mrcnn_bbox_loss: 0.0827 - mrcnn_mask_loss: 0.1598211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - " 846/2000 [===========>..................] - ETA: 24:13 - loss: 0.5284 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0826 - mrcnn_mask_loss: 0.1598346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - " 847/2000 [===========>..................] - ETA: 24:12 - loss: 0.5287 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0827 - mrcnn_mask_loss: 0.1598351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - " 848/2000 [===========>..................] - ETA: 24:10 - loss: 0.5286 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0827 - mrcnn_bbox_loss: 0.0826 - mrcnn_mask_loss: 0.1598216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - " 849/2000 [===========>..................] - ETA: 24:09 - loss: 0.5284 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0826 - mrcnn_mask_loss: 0.159713\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - " 850/2000 [===========>..................] - ETA: 24:07 - loss: 0.5282 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0826 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1597107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - " 851/2000 [===========>..................] - ETA: 24:06 - loss: 0.5281 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0825 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1597167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 852/2000 [===========>..................] - ETA: 24:04 - loss: 0.5280 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0827 - mrcnn_mask_loss: 0.1597151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - " 853/2000 [===========>..................] - ETA: 24:03 - loss: 0.5283 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0825 - mrcnn_bbox_loss: 0.0827 - mrcnn_mask_loss: 0.159833\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - " 854/2000 [===========>..................] - ETA: 24:01 - loss: 0.5281 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0827 - mrcnn_mask_loss: 0.159726\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - " 855/2000 [===========>..................] - ETA: 24:00 - loss: 0.5280 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0826 - mrcnn_mask_loss: 0.159792\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - " 856/2000 [===========>..................] - ETA: 23:58 - loss: 0.5279 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0826 - mrcnn_mask_loss: 0.1596321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - " 857/2000 [===========>..................] - ETA: 23:57 - loss: 0.5279 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1596210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - " 858/2000 [===========>..................] - ETA: 23:56 - loss: 0.5277 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0822 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1596114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - " 859/2000 [===========>..................] - ETA: 23:54 - loss: 0.5275 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0822 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1596379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - " 860/2000 [===========>..................] - ETA: 23:53 - loss: 0.5276 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0821 - mrcnn_bbox_loss: 0.0826 - mrcnn_mask_loss: 0.1596315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - " 861/2000 [===========>..................] - ETA: 23:52 - loss: 0.5278 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1596246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - " 862/2000 [===========>..................] - ETA: 23:51 - loss: 0.5279 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0825 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.159625\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - " 863/2000 [===========>..................] - ETA: 23:49 - loss: 0.5276 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1596140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - " 864/2000 [===========>..................] - ETA: 23:48 - loss: 0.5277 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0826 - mrcnn_mask_loss: 0.159566\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - " 865/2000 [===========>..................] - ETA: 23:46 - loss: 0.5273 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1970 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1595368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - " 866/2000 [===========>..................] - ETA: 23:45 - loss: 0.5276 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0825 - mrcnn_bbox_loss: 0.0826 - mrcnn_mask_loss: 0.1595212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 867/2000 [============>.................] - ETA: 23:43 - loss: 0.5272 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1594160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - " 868/2000 [============>.................] - ETA: 23:42 - loss: 0.5272 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1970 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1594309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - " 869/2000 [============>.................] - ETA: 23:41 - loss: 0.5273 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1594380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - " 870/2000 [============>.................] - ETA: 23:40 - loss: 0.5274 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0826 - mrcnn_mask_loss: 0.1594262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - " 871/2000 [============>.................] - ETA: 23:38 - loss: 0.5276 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.1595182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - " 872/2000 [============>.................] - ETA: 23:37 - loss: 0.5274 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0825 - mrcnn_mask_loss: 0.159556\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - " 873/2000 [============>.................] - ETA: 23:35 - loss: 0.5271 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1970 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0824 - mrcnn_mask_loss: 0.15940\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - " 874/2000 [============>.................] - ETA: 23:34 - loss: 0.5272 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0824 - mrcnn_bbox_loss: 0.0824 - mrcnn_mask_loss: 0.1594142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - " 875/2000 [============>.................] - ETA: 23:33 - loss: 0.5272 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0824 - mrcnn_mask_loss: 0.159473\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - " 876/2000 [============>.................] - ETA: 23:31 - loss: 0.5271 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0823 - mrcnn_bbox_loss: 0.0823 - mrcnn_mask_loss: 0.1593324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - " 877/2000 [============>.................] - ETA: 23:30 - loss: 0.5270 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0822 - mrcnn_bbox_loss: 0.0823 - mrcnn_mask_loss: 0.1593358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - " 878/2000 [============>.................] - ETA: 23:29 - loss: 0.5268 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0822 - mrcnn_bbox_loss: 0.0823 - mrcnn_mask_loss: 0.1593283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - " 879/2000 [============>.................] - ETA: 23:28 - loss: 0.5269 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0822 - mrcnn_bbox_loss: 0.0823 - mrcnn_mask_loss: 0.159376\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - " 880/2000 [============>.................] - ETA: 23:26 - loss: 0.5267 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0821 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.1593264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - " 881/2000 [============>.................] - ETA: 23:25 - loss: 0.5266 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0821 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.1593328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 882/2000 [============>.................] - ETA: 23:24 - loss: 0.5268 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0821 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.1593372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - " 883/2000 [============>.................] - ETA: 23:23 - loss: 0.5266 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0820 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.1593202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - " 884/2000 [============>.................] - ETA: 23:21 - loss: 0.5263 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1970 - mrcnn_class_loss: 0.0819 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.159341\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - " 885/2000 [============>.................] - ETA: 23:20 - loss: 0.5261 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1968 - mrcnn_class_loss: 0.0819 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.1593291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - " 886/2000 [============>.................] - ETA: 23:18 - loss: 0.5262 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0819 - mrcnn_bbox_loss: 0.0823 - mrcnn_mask_loss: 0.1593308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - " 887/2000 [============>.................] - ETA: 23:17 - loss: 0.5262 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0823 - mrcnn_mask_loss: 0.159329\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - " 888/2000 [============>.................] - ETA: 23:16 - loss: 0.5259 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1968 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.1592116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - " 889/2000 [============>.................] - ETA: 23:14 - loss: 0.5262 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0823 - mrcnn_mask_loss: 0.1593255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - " 890/2000 [============>.................] - ETA: 23:13 - loss: 0.5262 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.1593282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - " 891/2000 [============>.................] - ETA: 23:12 - loss: 0.5261 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.1593139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - " 892/2000 [============>.................] - ETA: 23:11 - loss: 0.5263 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1970 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.1593111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - " 893/2000 [============>.................] - ETA: 23:09 - loss: 0.5263 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1970 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.15932\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - " 894/2000 [============>.................] - ETA: 23:08 - loss: 0.5260 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.159386\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - " 895/2000 [============>.................] - ETA: 23:06 - loss: 0.5257 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1968 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1593370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - " 896/2000 [============>.................] - ETA: 23:05 - loss: 0.5256 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1967 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.1592300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - " 897/2000 [============>.................] - ETA: 23:04 - loss: 0.5260 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.1593223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - " 898/2000 [============>.................] - ETA: 23:03 - loss: 0.5258 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1968 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1592258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - " 899/2000 [============>.................] - ETA: 23:01 - loss: 0.5260 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.159398\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - " 900/2000 [============>.................] - ETA: 23:00 - loss: 0.5261 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1593251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - " 901/2000 [============>.................] - ETA: 22:59 - loss: 0.5261 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.159354\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - " 902/2000 [============>.................] - ETA: 22:57 - loss: 0.5257 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1592303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - " 903/2000 [============>.................] - ETA: 22:56 - loss: 0.5258 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0815 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1593166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - " 904/2000 [============>.................] - ETA: 22:55 - loss: 0.5255 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1968 - mrcnn_class_loss: 0.0815 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.159338\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - " 905/2000 [============>.................] - ETA: 22:53 - loss: 0.5258 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.1593376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - " 906/2000 [============>.................] - ETA: 22:52 - loss: 0.5257 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1593314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - " 907/2000 [============>.................] - ETA: 22:51 - loss: 0.5257 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1970 - mrcnn_class_loss: 0.0815 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.159382\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - " 908/2000 [============>.................] - ETA: 22:50 - loss: 0.5258 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.159321\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - " 909/2000 [============>.................] - ETA: 22:48 - loss: 0.5258 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0815 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1593327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n", - " 910/2000 [============>.................] - ETA: 22:47 - loss: 0.5259 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.1593257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 911/2000 [============>.................] - ETA: 22:46 - loss: 0.5259 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1970 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.1593341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - " 912/2000 [============>.................] - ETA: 22:45 - loss: 0.5257 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.1593301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - " 913/2000 [============>.................] - ETA: 22:44 - loss: 0.5258 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1970 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.1594152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - " 914/2000 [============>.................] - ETA: 22:42 - loss: 0.5264 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0822 - mrcnn_mask_loss: 0.159419\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - " 915/2000 [============>.................] - ETA: 22:41 - loss: 0.5264 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1593203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - " 916/2000 [============>.................] - ETA: 22:39 - loss: 0.5262 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.159399\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - " 917/2000 [============>.................] - ETA: 22:38 - loss: 0.5265 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0818 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.159358\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - " 918/2000 [============>.................] - ETA: 22:36 - loss: 0.5265 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1593159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - " 919/2000 [============>.................] - ETA: 22:35 - loss: 0.5265 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1593161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - " 920/2000 [============>.................] - ETA: 22:34 - loss: 0.5267 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.159387\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - " 921/2000 [============>.................] - ETA: 22:33 - loss: 0.5265 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1592357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - " 922/2000 [============>.................] - ETA: 22:32 - loss: 0.5265 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.1593156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - " 923/2000 [============>.................] - ETA: 22:31 - loss: 0.5266 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.159255\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - " 924/2000 [============>.................] - ETA: 22:29 - loss: 0.5263 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0817 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.1592100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - " 925/2000 [============>.................] - ETA: 22:28 - loss: 0.5264 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.1593205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 926/2000 [============>.................] - ETA: 22:27 - loss: 0.5262 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.1593367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - " 927/2000 [============>.................] - ETA: 22:26 - loss: 0.5263 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1593388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - " 928/2000 [============>.................] - ETA: 22:24 - loss: 0.5265 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0821 - mrcnn_mask_loss: 0.1592333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - " 929/2000 [============>.................] - ETA: 22:23 - loss: 0.5263 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.159294\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - " 930/2000 [============>.................] - ETA: 22:22 - loss: 0.5263 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0816 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.1592196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - " 931/2000 [============>.................] - ETA: 22:21 - loss: 0.5260 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0815 - mrcnn_bbox_loss: 0.0819 - mrcnn_mask_loss: 0.1592118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - " 932/2000 [============>.................] - ETA: 22:19 - loss: 0.5260 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0815 - mrcnn_bbox_loss: 0.0820 - mrcnn_mask_loss: 0.159252\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - " 933/2000 [============>.................] - ETA: 22:18 - loss: 0.5257 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0819 - mrcnn_mask_loss: 0.1592317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - " 934/2000 [=============>................] - ETA: 22:17 - loss: 0.5257 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0819 - mrcnn_mask_loss: 0.159178\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - " 935/2000 [=============>................] - ETA: 22:16 - loss: 0.5255 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0819 - mrcnn_mask_loss: 0.1591143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - " 936/2000 [=============>................] - ETA: 22:14 - loss: 0.5255 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0819 - mrcnn_mask_loss: 0.1591292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - " 937/2000 [=============>................] - ETA: 22:13 - loss: 0.5255 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0819 - mrcnn_mask_loss: 0.1591323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - " 938/2000 [=============>................] - ETA: 22:12 - loss: 0.5256 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0819 - mrcnn_mask_loss: 0.1591247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - " 939/2000 [=============>................] - ETA: 22:11 - loss: 0.5254 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0819 - mrcnn_mask_loss: 0.1591198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - " 940/2000 [=============>................] - ETA: 22:09 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0818 - mrcnn_mask_loss: 0.1591260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - " 941/2000 [=============>................] - ETA: 22:08 - loss: 0.5252 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0812 - mrcnn_bbox_loss: 0.0818 - mrcnn_mask_loss: 0.15918\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - " 942/2000 [=============>................] - ETA: 22:07 - loss: 0.5248 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0812 - mrcnn_bbox_loss: 0.0818 - mrcnn_mask_loss: 0.159116\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - " 943/2000 [=============>................] - ETA: 22:05 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0817 - mrcnn_mask_loss: 0.1591132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - " 944/2000 [=============>................] - ETA: 22:04 - loss: 0.5255 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0817 - mrcnn_mask_loss: 0.1590269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - " 945/2000 [=============>................] - ETA: 22:03 - loss: 0.5253 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0817 - mrcnn_mask_loss: 0.1590280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - " 946/2000 [=============>................] - ETA: 22:02 - loss: 0.5253 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0817 - mrcnn_mask_loss: 0.1590154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - " 947/2000 [=============>................] - ETA: 22:00 - loss: 0.5253 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0812 - mrcnn_bbox_loss: 0.0817 - mrcnn_mask_loss: 0.1590287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - " 948/2000 [=============>................] - ETA: 21:59 - loss: 0.5256 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0818 - mrcnn_mask_loss: 0.1590254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - " 949/2000 [=============>................] - ETA: 21:58 - loss: 0.5256 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0818 - mrcnn_mask_loss: 0.1590284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - " 950/2000 [=============>................] - ETA: 21:57 - loss: 0.5255 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0817 - mrcnn_mask_loss: 0.1590350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - " 951/2000 [=============>................] - ETA: 21:55 - loss: 0.5255 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0817 - mrcnn_mask_loss: 0.15905\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - " 952/2000 [=============>................] - ETA: 21:54 - loss: 0.5253 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0817 - mrcnn_mask_loss: 0.159068\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - " 953/2000 [=============>................] - ETA: 21:52 - loss: 0.5253 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0816 - mrcnn_mask_loss: 0.159063\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 954/2000 [=============>................] - ETA: 21:51 - loss: 0.5250 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0815 - mrcnn_mask_loss: 0.1589371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - " 955/2000 [=============>................] - ETA: 21:50 - loss: 0.5248 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0815 - mrcnn_mask_loss: 0.1589295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - " 956/2000 [=============>................] - ETA: 21:49 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0815 - mrcnn_bbox_loss: 0.0816 - mrcnn_mask_loss: 0.1589381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - " 957/2000 [=============>................] - ETA: 21:48 - loss: 0.5249 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0815 - mrcnn_bbox_loss: 0.0816 - mrcnn_mask_loss: 0.1589123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - " 958/2000 [=============>................] - ETA: 21:47 - loss: 0.5250 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0815 - mrcnn_bbox_loss: 0.0815 - mrcnn_mask_loss: 0.1590337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - " 959/2000 [=============>................] - ETA: 21:46 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0814 - mrcnn_bbox_loss: 0.0815 - mrcnn_mask_loss: 0.1591189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - " 960/2000 [=============>................] - ETA: 21:44 - loss: 0.5249 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0815 - mrcnn_mask_loss: 0.1590200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - " 961/2000 [=============>................] - ETA: 21:43 - loss: 0.5247 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1970 - mrcnn_class_loss: 0.0813 - mrcnn_bbox_loss: 0.0815 - mrcnn_mask_loss: 0.1590387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - " 962/2000 [=============>................] - ETA: 21:41 - loss: 0.5245 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0812 - mrcnn_bbox_loss: 0.0814 - mrcnn_mask_loss: 0.1590204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - " 963/2000 [=============>................] - ETA: 21:40 - loss: 0.5242 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1968 - mrcnn_class_loss: 0.0812 - mrcnn_bbox_loss: 0.0814 - mrcnn_mask_loss: 0.1590339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - " 964/2000 [=============>................] - ETA: 21:39 - loss: 0.5243 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0812 - mrcnn_bbox_loss: 0.0814 - mrcnn_mask_loss: 0.1590119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - " 965/2000 [=============>................] - ETA: 21:38 - loss: 0.5246 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0812 - mrcnn_bbox_loss: 0.0814 - mrcnn_mask_loss: 0.1589199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - " 966/2000 [=============>................] - ETA: 21:37 - loss: 0.5248 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0811 - mrcnn_bbox_loss: 0.0814 - mrcnn_mask_loss: 0.159065\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - " 967/2000 [=============>................] - ETA: 21:35 - loss: 0.5246 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0811 - mrcnn_bbox_loss: 0.0813 - mrcnn_mask_loss: 0.1589171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - " 968/2000 [=============>................] - ETA: 21:34 - loss: 0.5243 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0810 - mrcnn_bbox_loss: 0.0813 - mrcnn_mask_loss: 0.158988\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 969/2000 [=============>................] - ETA: 21:32 - loss: 0.5243 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0810 - mrcnn_bbox_loss: 0.0813 - mrcnn_mask_loss: 0.1589230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - " 970/2000 [=============>................] - ETA: 21:31 - loss: 0.5242 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0809 - mrcnn_bbox_loss: 0.0813 - mrcnn_mask_loss: 0.1589365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - " 971/2000 [=============>................] - ETA: 21:30 - loss: 0.5245 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0812 - mrcnn_bbox_loss: 0.0813 - mrcnn_mask_loss: 0.1589134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - " 972/2000 [=============>................] - ETA: 21:28 - loss: 0.5246 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0811 - mrcnn_bbox_loss: 0.0813 - mrcnn_mask_loss: 0.158924\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - " 973/2000 [=============>................] - ETA: 21:27 - loss: 0.5246 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0811 - mrcnn_bbox_loss: 0.0812 - mrcnn_mask_loss: 0.1589294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - " 974/2000 [=============>................] - ETA: 21:26 - loss: 0.5247 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0811 - mrcnn_bbox_loss: 0.0812 - mrcnn_mask_loss: 0.15897\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - " 975/2000 [=============>................] - ETA: 21:24 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1981 - mrcnn_class_loss: 0.0811 - mrcnn_bbox_loss: 0.0811 - mrcnn_mask_loss: 0.1588363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - " 976/2000 [=============>................] - ETA: 21:23 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0811 - mrcnn_bbox_loss: 0.0811 - mrcnn_mask_loss: 0.1588227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - " 977/2000 [=============>................] - ETA: 21:22 - loss: 0.5248 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1981 - mrcnn_class_loss: 0.0810 - mrcnn_bbox_loss: 0.0811 - mrcnn_mask_loss: 0.1588176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - " 978/2000 [=============>................] - ETA: 21:21 - loss: 0.5250 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0809 - mrcnn_bbox_loss: 0.0812 - mrcnn_mask_loss: 0.1588331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - " 979/2000 [=============>................] - ETA: 21:19 - loss: 0.5249 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1981 - mrcnn_class_loss: 0.0809 - mrcnn_bbox_loss: 0.0812 - mrcnn_mask_loss: 0.1588319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - " 980/2000 [=============>................] - ETA: 21:18 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0809 - mrcnn_bbox_loss: 0.0813 - mrcnn_mask_loss: 0.1588157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - " 981/2000 [=============>................] - ETA: 21:17 - loss: 0.5253 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0810 - mrcnn_bbox_loss: 0.0813 - mrcnn_mask_loss: 0.158927\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - " 982/2000 [=============>................] - ETA: 21:16 - loss: 0.5252 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0810 - mrcnn_bbox_loss: 0.0812 - mrcnn_mask_loss: 0.1588391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - " 983/2000 [=============>................] - ETA: 21:15 - loss: 0.5252 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0809 - mrcnn_bbox_loss: 0.0812 - mrcnn_mask_loss: 0.15886\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 984/2000 [=============>................] - ETA: 21:13 - loss: 0.5250 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0809 - mrcnn_bbox_loss: 0.0811 - mrcnn_mask_loss: 0.1588138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - " 985/2000 [=============>................] - ETA: 21:12 - loss: 0.5250 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0809 - mrcnn_bbox_loss: 0.0811 - mrcnn_mask_loss: 0.1588361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - " 986/2000 [=============>................] - ETA: 21:11 - loss: 0.5252 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0809 - mrcnn_bbox_loss: 0.0812 - mrcnn_mask_loss: 0.1588220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - " 987/2000 [=============>................] - ETA: 21:10 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0812 - mrcnn_mask_loss: 0.1589249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - " 988/2000 [=============>................] - ETA: 21:08 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0812 - mrcnn_mask_loss: 0.1589277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - " 989/2000 [=============>................] - ETA: 21:07 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0809 - mrcnn_bbox_loss: 0.0812 - mrcnn_mask_loss: 0.1589215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - " 990/2000 [=============>................] - ETA: 21:06 - loss: 0.5248 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0811 - mrcnn_mask_loss: 0.1589219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - " 991/2000 [=============>................] - ETA: 21:04 - loss: 0.5246 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1981 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0811 - mrcnn_mask_loss: 0.1589302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - " 992/2000 [=============>................] - ETA: 21:03 - loss: 0.5248 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0811 - mrcnn_mask_loss: 0.158917\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - " 993/2000 [=============>................] - ETA: 21:02 - loss: 0.5247 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.1588348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - " 994/2000 [=============>................] - ETA: 21:00 - loss: 0.5247 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.1588178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - " 995/2000 [=============>................] - ETA: 20:59 - loss: 0.5246 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.1588131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - " 996/2000 [=============>................] - ETA: 20:58 - loss: 0.5249 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.1588162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - " 997/2000 [=============>................] - ETA: 20:57 - loss: 0.5249 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0809 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.1588390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - " 998/2000 [=============>................] - ETA: 20:56 - loss: 0.5249 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.158859\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 999/2000 [=============>................] - ETA: 20:54 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0811 - mrcnn_mask_loss: 0.1588286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - "1000/2000 [==============>...............] - ETA: 20:53 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.1588120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - "1001/2000 [==============>...............] - ETA: 20:52 - loss: 0.5254 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1989 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.158870\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - "1002/2000 [==============>...............] - ETA: 20:51 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1987 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.1588313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - "1003/2000 [==============>...............] - ETA: 20:50 - loss: 0.5250 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1987 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.158879\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - "1004/2000 [==============>...............] - ETA: 20:48 - loss: 0.5248 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.158834\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - "1005/2000 [==============>...............] - ETA: 20:47 - loss: 0.5247 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0809 - mrcnn_mask_loss: 0.15884\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - "1006/2000 [==============>...............] - ETA: 20:45 - loss: 0.5244 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1985 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0809 - mrcnn_mask_loss: 0.1587316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - "1007/2000 [==============>...............] - ETA: 20:44 - loss: 0.5243 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0809 - mrcnn_mask_loss: 0.158735\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - "1008/2000 [==============>...............] - ETA: 20:43 - loss: 0.5242 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1984 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0808 - mrcnn_mask_loss: 0.158739\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - "1009/2000 [==============>...............] - ETA: 20:42 - loss: 0.5244 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0808 - mrcnn_mask_loss: 0.1587133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - "1010/2000 [==============>...............] - ETA: 20:41 - loss: 0.5246 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1988 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0808 - mrcnn_mask_loss: 0.1588253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - "1011/2000 [==============>...............] - ETA: 20:39 - loss: 0.5248 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1988 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0808 - mrcnn_mask_loss: 0.1588362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - "1012/2000 [==============>...............] - ETA: 20:38 - loss: 0.5247 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1989 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0808 - mrcnn_mask_loss: 0.1588399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - "1013/2000 [==============>...............] - ETA: 20:37 - loss: 0.5252 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1992 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0809 - mrcnn_mask_loss: 0.1588168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1014/2000 [==============>...............] - ETA: 20:36 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1991 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0809 - mrcnn_mask_loss: 0.1588385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - "1015/2000 [==============>...............] - ETA: 20:35 - loss: 0.5252 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1990 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0810 - mrcnn_mask_loss: 0.1588377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - "1016/2000 [==============>...............] - ETA: 20:34 - loss: 0.5251 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1989 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0809 - mrcnn_mask_loss: 0.1588179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - "1017/2000 [==============>...............] - ETA: 20:32 - loss: 0.5251 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1990 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0809 - mrcnn_mask_loss: 0.158844\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - "1018/2000 [==============>...............] - ETA: 20:31 - loss: 0.5248 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1989 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0809 - mrcnn_mask_loss: 0.1588173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - "1019/2000 [==============>...............] - ETA: 20:30 - loss: 0.5248 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1988 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0809 - mrcnn_mask_loss: 0.1588213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - "1020/2000 [==============>...............] - ETA: 20:28 - loss: 0.5244 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0808 - mrcnn_mask_loss: 0.1587275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - "1021/2000 [==============>...............] - ETA: 20:27 - loss: 0.5243 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1986 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0808 - mrcnn_mask_loss: 0.158769\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - "1022/2000 [==============>...............] - ETA: 20:26 - loss: 0.5241 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1985 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0808 - mrcnn_mask_loss: 0.1587193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - "1023/2000 [==============>...............] - ETA: 20:24 - loss: 0.5237 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0807 - mrcnn_mask_loss: 0.1587113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - "1024/2000 [==============>...............] - ETA: 20:23 - loss: 0.5238 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1983 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0807 - mrcnn_mask_loss: 0.1587108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - "1025/2000 [==============>...............] - ETA: 20:22 - loss: 0.5237 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0807 - mrcnn_mask_loss: 0.158780\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - "1026/2000 [==============>...............] - ETA: 20:20 - loss: 0.5238 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0808 - mrcnn_mask_loss: 0.158722\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - "1027/2000 [==============>...............] - ETA: 20:19 - loss: 0.5239 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1982 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0807 - mrcnn_mask_loss: 0.1587248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - "1028/2000 [==============>...............] - ETA: 20:18 - loss: 0.5240 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1981 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0807 - mrcnn_mask_loss: 0.1587271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1029/2000 [==============>...............] - ETA: 20:16 - loss: 0.5238 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0807 - mrcnn_mask_loss: 0.1587256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - "1030/2000 [==============>...............] - ETA: 20:15 - loss: 0.5239 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0807 - mrcnn_mask_loss: 0.158851\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - "1031/2000 [==============>...............] - ETA: 20:14 - loss: 0.5236 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0807 - mrcnn_mask_loss: 0.1588228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - "1032/2000 [==============>...............] - ETA: 20:12 - loss: 0.5235 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0807 - mrcnn_mask_loss: 0.1588126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - "1033/2000 [==============>...............] - ETA: 20:11 - loss: 0.5236 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0807 - mrcnn_mask_loss: 0.158811\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - "1034/2000 [==============>...............] - ETA: 20:10 - loss: 0.5237 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1979 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0807 - mrcnn_mask_loss: 0.158857\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - "1035/2000 [==============>...............] - ETA: 20:08 - loss: 0.5237 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1979 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0806 - mrcnn_mask_loss: 0.15873\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - "1036/2000 [==============>...............] - ETA: 20:07 - loss: 0.5234 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0805 - mrcnn_mask_loss: 0.1587335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - "1037/2000 [==============>...............] - ETA: 20:06 - loss: 0.5234 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0805 - mrcnn_mask_loss: 0.1587121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - "1038/2000 [==============>...............] - ETA: 20:05 - loss: 0.5236 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1979 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0805 - mrcnn_mask_loss: 0.1587329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - "1039/2000 [==============>...............] - ETA: 20:04 - loss: 0.5238 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0805 - mrcnn_mask_loss: 0.1588289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - "1040/2000 [==============>...............] - ETA: 20:02 - loss: 0.5237 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0805 - mrcnn_mask_loss: 0.1587369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - "1041/2000 [==============>...............] - ETA: 20:01 - loss: 0.5238 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0805 - mrcnn_mask_loss: 0.1587226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - "1042/2000 [==============>...............] - ETA: 20:00 - loss: 0.5238 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0805 - mrcnn_mask_loss: 0.158818\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - "1043/2000 [==============>...............] - ETA: 19:58 - loss: 0.5238 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0805 - mrcnn_mask_loss: 0.1587394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1044/2000 [==============>...............] - ETA: 19:57 - loss: 0.5237 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0805 - mrcnn_mask_loss: 0.1587392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - "1045/2000 [==============>...............] - ETA: 19:56 - loss: 0.5237 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0805 - mrcnn_mask_loss: 0.1587356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - "1046/2000 [==============>...............] - ETA: 19:55 - loss: 0.5236 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0804 - mrcnn_mask_loss: 0.1588285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - "1047/2000 [==============>...............] - ETA: 19:54 - loss: 0.5237 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0804 - mrcnn_mask_loss: 0.158771\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - "1048/2000 [==============>...............] - ETA: 19:52 - loss: 0.5235 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0804 - mrcnn_mask_loss: 0.1587242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - "1049/2000 [==============>...............] - ETA: 19:51 - loss: 0.5237 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0804 - mrcnn_mask_loss: 0.1588124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - "1050/2000 [==============>...............] - ETA: 19:50 - loss: 0.5237 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0804 - mrcnn_mask_loss: 0.1588299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - "1051/2000 [==============>...............] - ETA: 19:49 - loss: 0.5238 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1979 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0804 - mrcnn_mask_loss: 0.158767\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - "1052/2000 [==============>...............] - ETA: 19:47 - loss: 0.5235 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1587396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - "1053/2000 [==============>...............] - ETA: 19:46 - loss: 0.5234 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1587353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - "1054/2000 [==============>...............] - ETA: 19:45 - loss: 0.5232 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1587239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - "1055/2000 [==============>...............] - ETA: 19:44 - loss: 0.5234 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1588305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - "1056/2000 [==============>...............] - ETA: 19:43 - loss: 0.5235 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1588345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - "1057/2000 [==============>...............] - ETA: 19:41 - loss: 0.5235 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0808 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1588148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - "1058/2000 [==============>...............] - ETA: 19:40 - loss: 0.5236 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1588137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - "1059/2000 [==============>...............] - ETA: 19:39 - loss: 0.5236 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1979 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1588384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - "1060/2000 [==============>...............] - ETA: 19:38 - loss: 0.5235 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1587378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - "1061/2000 [==============>...............] - ETA: 19:37 - loss: 0.5236 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1588366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - "1062/2000 [==============>...............] - ETA: 19:36 - loss: 0.5236 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0807 - mrcnn_bbox_loss: 0.0804 - mrcnn_mask_loss: 0.1588243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - "1063/2000 [==============>...............] - ETA: 19:34 - loss: 0.5235 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0804 - mrcnn_mask_loss: 0.1588263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - "1064/2000 [==============>...............] - ETA: 19:33 - loss: 0.5234 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0804 - mrcnn_mask_loss: 0.1588187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - "1065/2000 [==============>...............] - ETA: 19:32 - loss: 0.5231 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.158830\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - "1066/2000 [==============>...............] - ETA: 19:30 - loss: 0.5229 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1588312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - "1067/2000 [===============>..............] - ETA: 19:29 - loss: 0.5229 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1588153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - "1068/2000 [===============>..............] - ETA: 19:28 - loss: 0.5230 - rpn_class_loss: 0.0060 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - "1069/2000 [===============>..............] - ETA: 19:26 - loss: 0.5229 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - "1070/2000 [===============>..............] - ETA: 19:25 - loss: 0.5228 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1587259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - "1071/2000 [===============>..............] - ETA: 19:24 - loss: 0.5231 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1588311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1072/2000 [===============>..............] - ETA: 19:23 - loss: 0.5231 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - "1073/2000 [===============>..............] - ETA: 19:22 - loss: 0.5230 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - "1074/2000 [===============>..............] - ETA: 19:20 - loss: 0.5228 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - "1075/2000 [===============>..............] - ETA: 19:19 - loss: 0.5230 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0803 - mrcnn_mask_loss: 0.1588218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - "1076/2000 [===============>..............] - ETA: 19:17 - loss: 0.5228 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - "1077/2000 [===============>..............] - ETA: 19:16 - loss: 0.5226 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - "1078/2000 [===============>..............] - ETA: 19:15 - loss: 0.5226 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - "1079/2000 [===============>..............] - ETA: 19:14 - loss: 0.5226 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1973 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.158814\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - "1080/2000 [===============>..............] - ETA: 19:13 - loss: 0.5225 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.158797\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - "1081/2000 [===============>..............] - ETA: 19:11 - loss: 0.5227 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.1587360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - "1082/2000 [===============>..............] - ETA: 19:10 - loss: 0.5228 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - "1083/2000 [===============>..............] - ETA: 19:09 - loss: 0.5231 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1589332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - "1084/2000 [===============>..............] - ETA: 19:08 - loss: 0.5231 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1589290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - "1085/2000 [===============>..............] - ETA: 19:07 - loss: 0.5230 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - "1086/2000 [===============>..............] - ETA: 19:06 - loss: 0.5232 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.158896\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - "1087/2000 [===============>..............] - ETA: 19:04 - loss: 0.5232 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - "1088/2000 [===============>..............] - ETA: 19:03 - loss: 0.5235 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1589389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - "1089/2000 [===============>..............] - ETA: 19:02 - loss: 0.5235 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1589177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - "1090/2000 [===============>..............] - ETA: 19:01 - loss: 0.5235 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1980 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.158812\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - "1091/2000 [===============>..............] - ETA: 18:59 - loss: 0.5232 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.158832\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - "1092/2000 [===============>..............] - ETA: 18:58 - loss: 0.5230 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.1588122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - "1093/2000 [===============>..............] - ETA: 18:57 - loss: 0.5230 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1978 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0800 - mrcnn_mask_loss: 0.1588238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - "1094/2000 [===============>..............] - ETA: 18:56 - loss: 0.5229 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1977 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0800 - mrcnn_mask_loss: 0.1588175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - "1095/2000 [===============>..............] - ETA: 18:54 - loss: 0.5227 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1976 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0800 - mrcnn_mask_loss: 0.158874\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - "1096/2000 [===============>..............] - ETA: 18:53 - loss: 0.5225 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1975 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0800 - mrcnn_mask_loss: 0.1587320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - "1097/2000 [===============>..............] - ETA: 18:52 - loss: 0.5225 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0800 - mrcnn_mask_loss: 0.1587146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - "1098/2000 [===============>..............] - ETA: 18:51 - loss: 0.5225 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1974 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.1588188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - "1099/2000 [===============>..............] - ETA: 18:49 - loss: 0.5223 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.1587364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - "1100/2000 [===============>..............] - ETA: 18:48 - loss: 0.5223 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1972 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.1587233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1101/2000 [===============>..............] - ETA: 18:47 - loss: 0.5223 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1971 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.1588244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - "1102/2000 [===============>..............] - ETA: 18:45 - loss: 0.5224 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1970 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - "1103/2000 [===============>..............] - ETA: 18:44 - loss: 0.5223 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1969 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.158881\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - "1104/2000 [===============>..............] - ETA: 18:42 - loss: 0.5224 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1968 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0802 - mrcnn_mask_loss: 0.1588267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - "1105/2000 [===============>..............] - ETA: 18:41 - loss: 0.5223 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1967 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.158845\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - "1106/2000 [===============>..............] - ETA: 18:40 - loss: 0.5220 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1966 - mrcnn_class_loss: 0.0806 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.1588117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - "1107/2000 [===============>..............] - ETA: 18:39 - loss: 0.5220 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1966 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.158810\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - "1108/2000 [===============>..............] - ETA: 18:37 - loss: 0.5218 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1966 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.1587307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - "1109/2000 [===============>..............] - ETA: 18:36 - loss: 0.5217 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1966 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0801 - mrcnn_mask_loss: 0.158753\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - "1110/2000 [===============>..............] - ETA: 18:35 - loss: 0.5215 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1965 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0800 - mrcnn_mask_loss: 0.1587347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - "1111/2000 [===============>..............] - ETA: 18:33 - loss: 0.5216 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1966 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0800 - mrcnn_mask_loss: 0.1586325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - "1112/2000 [===============>..............] - ETA: 18:32 - loss: 0.5215 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1965 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0800 - mrcnn_mask_loss: 0.1586192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - "1113/2000 [===============>..............] - ETA: 18:31 - loss: 0.5212 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1964 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0799 - mrcnn_mask_loss: 0.1586245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - "1114/2000 [===============>..............] - ETA: 18:29 - loss: 0.5211 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1963 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0799 - mrcnn_mask_loss: 0.1586158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - "1115/2000 [===============>..............] - ETA: 18:28 - loss: 0.5212 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1964 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0800 - mrcnn_mask_loss: 0.1586395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1116/2000 [===============>..............] - ETA: 18:27 - loss: 0.5210 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1963 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0799 - mrcnn_mask_loss: 0.1586237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - "1117/2000 [===============>..............] - ETA: 18:26 - loss: 0.5211 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1962 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0800 - mrcnn_mask_loss: 0.1587191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - "1118/2000 [===============>..............] - ETA: 18:24 - loss: 0.5210 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1961 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0800 - mrcnn_mask_loss: 0.1587373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - "1119/2000 [===============>..............] - ETA: 18:23 - loss: 0.5208 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1960 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0799 - mrcnn_mask_loss: 0.1587334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - "1120/2000 [===============>..............] - ETA: 18:22 - loss: 0.5207 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1959 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0799 - mrcnn_mask_loss: 0.1587185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - "1121/2000 [===============>..............] - ETA: 18:21 - loss: 0.5205 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1958 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0799 - mrcnn_mask_loss: 0.158793\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - "1122/2000 [===============>..............] - ETA: 18:19 - loss: 0.5205 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1959 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0798 - mrcnn_mask_loss: 0.1587232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - "1123/2000 [===============>..............] - ETA: 18:18 - loss: 0.5206 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1958 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0799 - mrcnn_mask_loss: 0.1587145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - "1124/2000 [===============>..............] - ETA: 18:16 - loss: 0.5207 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1958 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0799 - mrcnn_mask_loss: 0.1587330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - "1125/2000 [===============>..............] - ETA: 18:15 - loss: 0.5206 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1957 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0799 - mrcnn_mask_loss: 0.158784\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - "1126/2000 [===============>..............] - ETA: 18:14 - loss: 0.5204 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1956 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0798 - mrcnn_mask_loss: 0.158795\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - "1127/2000 [===============>..............] - ETA: 18:13 - loss: 0.5205 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1957 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0798 - mrcnn_mask_loss: 0.1587144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - "1128/2000 [===============>..............] - ETA: 18:12 - loss: 0.5204 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1957 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0798 - mrcnn_mask_loss: 0.1587183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - "1129/2000 [===============>..............] - ETA: 18:10 - loss: 0.5202 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1956 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0798 - mrcnn_mask_loss: 0.1587184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - "1130/2000 [===============>..............] - ETA: 18:09 - loss: 0.5200 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1955 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0797 - mrcnn_mask_loss: 0.1587278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1131/2000 [===============>..............] - ETA: 18:08 - loss: 0.5200 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1955 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0797 - mrcnn_mask_loss: 0.1586359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - "1132/2000 [===============>..............] - ETA: 18:07 - loss: 0.5199 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1955 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0797 - mrcnn_mask_loss: 0.1587306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - "1133/2000 [===============>..............] - ETA: 18:05 - loss: 0.5200 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1955 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0797 - mrcnn_mask_loss: 0.1587276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - "1134/2000 [================>.............] - ETA: 18:04 - loss: 0.5199 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1956 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0797 - mrcnn_mask_loss: 0.158762\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - "1135/2000 [================>.............] - ETA: 18:03 - loss: 0.5197 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1954 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.158740\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - "1136/2000 [================>.............] - ETA: 18:01 - loss: 0.5196 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1954 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.158672\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - "1137/2000 [================>.............] - ETA: 18:00 - loss: 0.5194 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1952 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.1586141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - "1138/2000 [================>.............] - ETA: 17:59 - loss: 0.5195 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1953 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.158648\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - "1139/2000 [================>.............] - ETA: 17:57 - loss: 0.5192 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1951 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1586288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - "1140/2000 [================>.............] - ETA: 17:56 - loss: 0.5193 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1952 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1585169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - "1141/2000 [================>.............] - ETA: 17:55 - loss: 0.5191 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1951 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1585342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - "1142/2000 [================>.............] - ETA: 17:54 - loss: 0.5191 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1951 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1585170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - "1143/2000 [================>.............] - ETA: 17:52 - loss: 0.5191 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1950 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1585201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - "1144/2000 [================>.............] - ETA: 17:51 - loss: 0.5188 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1949 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1585383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - "1145/2000 [================>.............] - ETA: 17:50 - loss: 0.5188 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1948 - mrcnn_class_loss: 0.0799 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1585340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1146/2000 [================>.............] - ETA: 17:49 - loss: 0.5189 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1948 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0797 - mrcnn_mask_loss: 0.1585110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - "1147/2000 [================>.............] - ETA: 17:47 - loss: 0.5189 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1948 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1585217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - "1148/2000 [================>.............] - ETA: 17:46 - loss: 0.5187 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1948 - mrcnn_class_loss: 0.0799 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1585174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - "1149/2000 [================>.............] - ETA: 17:45 - loss: 0.5188 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1948 - mrcnn_class_loss: 0.0799 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1585354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - "1150/2000 [================>.............] - ETA: 17:44 - loss: 0.5188 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1948 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1585374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - "1151/2000 [================>.............] - ETA: 17:42 - loss: 0.5186 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1947 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.15849\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - "1152/2000 [================>.............] - ETA: 17:41 - loss: 0.5186 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1948 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.158428\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - "1153/2000 [================>.............] - ETA: 17:40 - loss: 0.5186 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1947 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.1584222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - "1154/2000 [================>.............] - ETA: 17:38 - loss: 0.5187 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1946 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.1584109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - "1155/2000 [================>.............] - ETA: 17:37 - loss: 0.5185 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1945 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.1584268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - "1156/2000 [================>.............] - ETA: 17:36 - loss: 0.5183 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1944 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0794 - mrcnn_mask_loss: 0.1584296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - "1157/2000 [================>.............] - ETA: 17:35 - loss: 0.5183 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1945 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0794 - mrcnn_mask_loss: 0.1584101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - "1158/2000 [================>.............] - ETA: 17:33 - loss: 0.5183 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1944 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.1584165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - "1159/2000 [================>.............] - ETA: 17:32 - loss: 0.5184 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1943 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1584150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - "1160/2000 [================>.............] - ETA: 17:31 - loss: 0.5184 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1944 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.158431\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - "1161/2000 [================>.............] - ETA: 17:29 - loss: 0.5181 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1943 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1584130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - "1162/2000 [================>.............] - ETA: 17:28 - loss: 0.5182 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1943 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0796 - mrcnn_mask_loss: 0.1584186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - "1163/2000 [================>.............] - ETA: 17:27 - loss: 0.5181 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1942 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.1583344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - "1164/2000 [================>.............] - ETA: 17:26 - loss: 0.5181 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1942 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.1583240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - "1165/2000 [================>.............] - ETA: 17:24 - loss: 0.5182 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1942 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.1584147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - "1166/2000 [================>.............] - ETA: 17:23 - loss: 0.5181 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1941 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.158485\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - "1167/2000 [================>.............] - ETA: 17:22 - loss: 0.5182 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1940 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.1584338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - "1168/2000 [================>.............] - ETA: 17:21 - loss: 0.5182 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1940 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.1584190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - "1169/2000 [================>.............] - ETA: 17:19 - loss: 0.5180 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1940 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0794 - mrcnn_mask_loss: 0.1584105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - "1170/2000 [================>.............] - ETA: 17:18 - loss: 0.5180 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1939 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0794 - mrcnn_mask_loss: 0.1584104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - "1171/2000 [================>.............] - ETA: 17:17 - loss: 0.5180 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1938 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0795 - mrcnn_mask_loss: 0.158475\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - "1172/2000 [================>.............] - ETA: 17:15 - loss: 0.5177 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1937 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0794 - mrcnn_mask_loss: 0.158436\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - "1173/2000 [================>.............] - ETA: 17:14 - loss: 0.5179 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1939 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0794 - mrcnn_mask_loss: 0.15841\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - "1174/2000 [================>.............] - ETA: 17:13 - loss: 0.5178 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1938 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0794 - mrcnn_mask_loss: 0.158489\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1175/2000 [================>.............] - ETA: 17:11 - loss: 0.5177 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1938 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0793 - mrcnn_mask_loss: 0.1583235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - "1176/2000 [================>.............] - ETA: 17:10 - loss: 0.5175 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1937 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0793 - mrcnn_mask_loss: 0.1583279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - "1177/2000 [================>.............] - ETA: 17:09 - loss: 0.5176 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1938 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0793 - mrcnn_mask_loss: 0.1582136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - "1178/2000 [================>.............] - ETA: 17:07 - loss: 0.5175 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1938 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0792 - mrcnn_mask_loss: 0.1582115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - "1179/2000 [================>.............] - ETA: 17:06 - loss: 0.5174 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1937 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0792 - mrcnn_mask_loss: 0.1582281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - "1180/2000 [================>.............] - ETA: 17:05 - loss: 0.5177 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1938 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0792 - mrcnn_mask_loss: 0.1582393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - "1181/2000 [================>.............] - ETA: 17:04 - loss: 0.5177 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1938 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0792 - mrcnn_mask_loss: 0.1582209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - "1182/2000 [================>.............] - ETA: 17:02 - loss: 0.5174 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1937 - mrcnn_class_loss: 0.0805 - mrcnn_bbox_loss: 0.0791 - mrcnn_mask_loss: 0.1582266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - "1183/2000 [================>.............] - ETA: 17:01 - loss: 0.5173 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1936 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0791 - mrcnn_mask_loss: 0.158223\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - "1184/2000 [================>.............] - ETA: 17:00 - loss: 0.5171 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1935 - mrcnn_class_loss: 0.0804 - mrcnn_bbox_loss: 0.0791 - mrcnn_mask_loss: 0.158260\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - "1185/2000 [================>.............] - ETA: 16:58 - loss: 0.5172 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1937 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0791 - mrcnn_mask_loss: 0.1582352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - "1186/2000 [================>.............] - ETA: 16:57 - loss: 0.5171 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1936 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0790 - mrcnn_mask_loss: 0.158291\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - "1187/2000 [================>.............] - ETA: 16:56 - loss: 0.5172 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1937 - mrcnn_class_loss: 0.0803 - mrcnn_bbox_loss: 0.0790 - mrcnn_mask_loss: 0.1582181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - "1188/2000 [================>.............] - ETA: 16:54 - loss: 0.5170 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1936 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0790 - mrcnn_mask_loss: 0.158342\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - "1189/2000 [================>.............] - ETA: 16:53 - loss: 0.5168 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1935 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0789 - mrcnn_mask_loss: 0.1582236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1190/2000 [================>.............] - ETA: 16:52 - loss: 0.5167 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0802 - mrcnn_bbox_loss: 0.0789 - mrcnn_mask_loss: 0.1582349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n", - "1191/2000 [================>.............] - ETA: 16:51 - loss: 0.5166 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0789 - mrcnn_mask_loss: 0.1582224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - "1192/2000 [================>.............] - ETA: 16:49 - loss: 0.5164 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0789 - mrcnn_mask_loss: 0.158361\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - "1193/2000 [================>.............] - ETA: 16:48 - loss: 0.5163 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0789 - mrcnn_mask_loss: 0.1582103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - "1194/2000 [================>.............] - ETA: 16:47 - loss: 0.5162 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0789 - mrcnn_mask_loss: 0.1582206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - "1195/2000 [================>.............] - ETA: 16:45 - loss: 0.5161 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0788 - mrcnn_mask_loss: 0.1582250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - "1196/2000 [================>.............] - ETA: 16:44 - loss: 0.5160 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0788 - mrcnn_mask_loss: 0.158250\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - "1197/2000 [================>.............] - ETA: 16:42 - loss: 0.5160 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0788 - mrcnn_mask_loss: 0.1582225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - "1198/2000 [================>.............] - ETA: 16:41 - loss: 0.5158 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0788 - mrcnn_mask_loss: 0.1582293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - "1199/2000 [================>.............] - ETA: 16:40 - loss: 0.5157 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0787 - mrcnn_mask_loss: 0.1582155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - "1200/2000 [=================>............] - ETA: 16:38 - loss: 0.5158 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0787 - mrcnn_mask_loss: 0.1582301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - "1201/2000 [=================>............] - ETA: 16:37 - loss: 0.5159 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0787 - mrcnn_mask_loss: 0.158235\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - "1202/2000 [=================>............] - ETA: 16:36 - loss: 0.5160 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0787 - mrcnn_mask_loss: 0.1582380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - "1203/2000 [=================>............] - ETA: 16:35 - loss: 0.5161 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0787 - mrcnn_mask_loss: 0.1582347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - "1204/2000 [=================>............] - ETA: 16:34 - loss: 0.5162 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0787 - mrcnn_mask_loss: 0.1582262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1205/2000 [=================>............] - ETA: 16:32 - loss: 0.5164 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0788 - mrcnn_mask_loss: 0.1582153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - "1206/2000 [=================>............] - ETA: 16:31 - loss: 0.5165 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1935 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0788 - mrcnn_mask_loss: 0.158152\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - "1207/2000 [=================>............] - ETA: 16:30 - loss: 0.5163 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0801 - mrcnn_bbox_loss: 0.0787 - mrcnn_mask_loss: 0.1581180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - "1208/2000 [=================>............] - ETA: 16:28 - loss: 0.5162 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0787 - mrcnn_mask_loss: 0.158113\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - "1209/2000 [=================>............] - ETA: 16:27 - loss: 0.5160 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0787 - mrcnn_mask_loss: 0.1581375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - "1210/2000 [=================>............] - ETA: 16:26 - loss: 0.5158 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0799 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1581243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - "1211/2000 [=================>............] - ETA: 16:24 - loss: 0.5159 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1582220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - "1212/2000 [=================>............] - ETA: 16:23 - loss: 0.5157 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1581199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - "1213/2000 [=================>............] - ETA: 16:22 - loss: 0.5157 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0800 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1581284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - "1214/2000 [=================>............] - ETA: 16:20 - loss: 0.5157 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0799 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1581200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - "1215/2000 [=================>............] - ETA: 16:19 - loss: 0.5156 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0799 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1581230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - "1216/2000 [=================>............] - ETA: 16:18 - loss: 0.5155 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0799 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1581161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - "1217/2000 [=================>............] - ETA: 16:16 - loss: 0.5157 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1581240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - "1218/2000 [=================>............] - ETA: 16:15 - loss: 0.5157 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0787 - mrcnn_mask_loss: 0.1581358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - "1219/2000 [=================>............] - ETA: 16:14 - loss: 0.5157 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0787 - mrcnn_mask_loss: 0.158232\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1220/2000 [=================>............] - ETA: 16:13 - loss: 0.5155 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1582102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - "1221/2000 [=================>............] - ETA: 16:11 - loss: 0.5154 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1581181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - "1222/2000 [=================>............] - ETA: 16:10 - loss: 0.5155 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.158192\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - "1223/2000 [=================>............] - ETA: 16:09 - loss: 0.5155 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1581175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - "1224/2000 [=================>............] - ETA: 16:07 - loss: 0.5154 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1581218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - "1225/2000 [=================>............] - ETA: 16:06 - loss: 0.5153 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.1581396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - "1226/2000 [=================>............] - ETA: 16:05 - loss: 0.5153 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.1581139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - "1227/2000 [=================>............] - ETA: 16:04 - loss: 0.5155 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0786 - mrcnn_mask_loss: 0.1581207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - "1228/2000 [=================>............] - ETA: 16:02 - loss: 0.5152 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.1581316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - "1229/2000 [=================>............] - ETA: 16:01 - loss: 0.5152 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.1581382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - "1230/2000 [=================>............] - ETA: 16:00 - loss: 0.5152 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.1581225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - "1231/2000 [=================>............] - ETA: 15:59 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1928 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.158244\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - "1232/2000 [=================>............] - ETA: 15:57 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1927 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.1581344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - "1233/2000 [=================>............] - ETA: 15:56 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1928 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.158139\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - "1234/2000 [=================>............] - ETA: 15:55 - loss: 0.5150 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.158237\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1235/2000 [=================>............] - ETA: 15:54 - loss: 0.5153 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.158191\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - "1236/2000 [=================>............] - ETA: 15:52 - loss: 0.5152 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.158129\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - "1237/2000 [=================>............] - ETA: 15:51 - loss: 0.5150 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1581321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - "1238/2000 [=================>............] - ETA: 15:50 - loss: 0.5150 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1581166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - "1239/2000 [=================>............] - ETA: 15:48 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.15808\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - "1240/2000 [=================>............] - ETA: 15:47 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.158031\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - "1241/2000 [=================>............] - ETA: 15:46 - loss: 0.5143 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.158098\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - "1242/2000 [=================>............] - ETA: 15:44 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.1580169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - "1243/2000 [=================>............] - ETA: 15:43 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - "1244/2000 [=================>............] - ETA: 15:42 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - "1245/2000 [=================>............] - ETA: 15:41 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.158078\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - "1246/2000 [=================>............] - ETA: 15:40 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - "1247/2000 [=================>............] - ETA: 15:38 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n", - "1248/2000 [=================>............] - ETA: 15:37 - loss: 0.5153 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - "1249/2000 [=================>............] - ETA: 15:36 - loss: 0.5153 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1250/2000 [=================>............] - ETA: 15:35 - loss: 0.5152 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n", - "1251/2000 [=================>............] - ETA: 15:34 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - "1252/2000 [=================>............] - ETA: 15:32 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - "1253/2000 [=================>............] - ETA: 15:31 - loss: 0.5150 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - "1254/2000 [=================>............] - ETA: 15:30 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - "1255/2000 [=================>............] - ETA: 15:28 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.158028\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - "1256/2000 [=================>............] - ETA: 15:27 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.158065\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - "1257/2000 [=================>............] - ETA: 15:26 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1579123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - "1258/2000 [=================>............] - ETA: 15:25 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - "1259/2000 [=================>............] - ETA: 15:23 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - "1260/2000 [=================>............] - ETA: 15:22 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - "1261/2000 [=================>............] - ETA: 15:21 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.1580178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - "1262/2000 [=================>............] - ETA: 15:20 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.1580361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - "1263/2000 [=================>............] - ETA: 15:18 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.158086\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - "1264/2000 [=================>............] - ETA: 15:17 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.158069\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1265/2000 [=================>............] - ETA: 15:16 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.1580325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - "1266/2000 [=================>............] - ETA: 15:15 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.1580234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - "1267/2000 [==================>...........] - ETA: 15:13 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.157974\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - "1268/2000 [==================>...........] - ETA: 15:12 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.157977\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - "1269/2000 [==================>...........] - ETA: 15:11 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1579163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n", - "1270/2000 [==================>...........] - ETA: 15:09 - loss: 0.5144 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1579329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - "1271/2000 [==================>...........] - ETA: 15:08 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1579136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - "1272/2000 [==================>...........] - ETA: 15:07 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1579260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - "1273/2000 [==================>...........] - ETA: 15:06 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.157988\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - "1274/2000 [==================>...........] - ETA: 15:05 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - "1275/2000 [==================>...........] - ETA: 15:03 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - "1276/2000 [==================>...........] - ETA: 15:02 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - "1277/2000 [==================>...........] - ETA: 15:01 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.1580253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - "1278/2000 [==================>...........] - ETA: 14:59 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0785 - mrcnn_mask_loss: 0.158010\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - "1279/2000 [==================>...........] - ETA: 14:58 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1280/2000 [==================>...........] - ETA: 14:57 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.158067\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - "1281/2000 [==================>...........] - ETA: 14:55 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - "1282/2000 [==================>...........] - ETA: 14:54 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.158025\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - "1283/2000 [==================>...........] - ETA: 14:53 - loss: 0.5145 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - "1284/2000 [==================>...........] - ETA: 14:52 - loss: 0.5144 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - "1285/2000 [==================>...........] - ETA: 14:51 - loss: 0.5144 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - "1286/2000 [==================>...........] - ETA: 14:49 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - "1287/2000 [==================>...........] - ETA: 14:48 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - "1288/2000 [==================>...........] - ETA: 14:47 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - "1289/2000 [==================>...........] - ETA: 14:46 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.158040\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - "1290/2000 [==================>...........] - ETA: 14:44 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - "1291/2000 [==================>...........] - ETA: 14:43 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - "1292/2000 [==================>...........] - ETA: 14:42 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - "1293/2000 [==================>...........] - ETA: 14:41 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - "1294/2000 [==================>...........] - ETA: 14:39 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - "1295/2000 [==================>...........] - ETA: 14:38 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - "1296/2000 [==================>...........] - ETA: 14:37 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - "1297/2000 [==================>...........] - ETA: 14:36 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - "1298/2000 [==================>...........] - ETA: 14:35 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - "1299/2000 [==================>...........] - ETA: 14:33 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - "1300/2000 [==================>...........] - ETA: 14:32 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0784 - mrcnn_mask_loss: 0.1580186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - "1301/2000 [==================>...........] - ETA: 14:31 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - "1302/2000 [==================>...........] - ETA: 14:30 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n", - "1303/2000 [==================>...........] - ETA: 14:28 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0783 - mrcnn_mask_loss: 0.1580383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - "1304/2000 [==================>...........] - ETA: 14:27 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.1580294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - "1305/2000 [==================>...........] - ETA: 14:26 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.1580376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - "1306/2000 [==================>...........] - ETA: 14:25 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.1580164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - "1307/2000 [==================>...........] - ETA: 14:24 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.1580349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1308/2000 [==================>...........] - ETA: 14:22 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.1580328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - "1309/2000 [==================>...........] - ETA: 14:21 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.1580389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - "1310/2000 [==================>...........] - ETA: 14:20 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.158095\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - "1311/2000 [==================>...........] - ETA: 14:19 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.1580359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - "1312/2000 [==================>...........] - ETA: 14:18 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.158089\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - "1313/2000 [==================>...........] - ETA: 14:16 - loss: 0.5150 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1935 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.158085\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - "1314/2000 [==================>...........] - ETA: 14:15 - loss: 0.5150 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.1580241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n", - "1315/2000 [==================>...........] - ETA: 14:14 - loss: 0.5150 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0782 - mrcnn_mask_loss: 0.1581254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - "1316/2000 [==================>...........] - ETA: 14:12 - loss: 0.5150 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.1581261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - "1317/2000 [==================>...........] - ETA: 14:11 - loss: 0.5152 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.1581103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - "1318/2000 [==================>...........] - ETA: 14:10 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.1581120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - "1319/2000 [==================>...........] - ETA: 14:09 - loss: 0.5154 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1936 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.1581106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - "1320/2000 [==================>...........] - ETA: 14:08 - loss: 0.5153 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1935 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.158182\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - "1321/2000 [==================>...........] - ETA: 14:06 - loss: 0.5153 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.1581393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - "1322/2000 [==================>...........] - ETA: 14:05 - loss: 0.5152 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.15810\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - "1323/2000 [==================>...........] - ETA: 14:04 - loss: 0.5152 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.158119\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - "1324/2000 [==================>...........] - ETA: 14:03 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.1581149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - "1325/2000 [==================>...........] - ETA: 14:01 - loss: 0.5151 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.158116\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - "1326/2000 [==================>...........] - ETA: 14:00 - loss: 0.5149 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.158072\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - "1327/2000 [==================>...........] - ETA: 13:59 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - "1328/2000 [==================>...........] - ETA: 13:57 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - "1329/2000 [==================>...........] - ETA: 13:56 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - "1330/2000 [==================>...........] - ETA: 13:55 - loss: 0.5143 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - "1331/2000 [==================>...........] - ETA: 13:54 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - "1332/2000 [==================>...........] - ETA: 13:52 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - "1333/2000 [==================>...........] - ETA: 13:51 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - "1334/2000 [===================>..........] - ETA: 13:50 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - "1335/2000 [===================>..........] - ETA: 13:49 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - "1336/2000 [===================>..........] - ETA: 13:48 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.158099\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1337/2000 [===================>..........] - ETA: 13:46 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n", - "1338/2000 [===================>..........] - ETA: 13:45 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.15806\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - "1339/2000 [===================>..........] - ETA: 13:44 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0781 - mrcnn_mask_loss: 0.158046\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - "1340/2000 [===================>..........] - ETA: 13:42 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1579357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - "1341/2000 [===================>..........] - ETA: 13:41 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1579121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - "1342/2000 [===================>..........] - ETA: 13:40 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - "1343/2000 [===================>..........] - ETA: 13:39 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1580191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - "1344/2000 [===================>..........] - ETA: 13:37 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1579278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - "1345/2000 [===================>..........] - ETA: 13:36 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0799 - mrcnn_bbox_loss: 0.0780 - mrcnn_mask_loss: 0.1579132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - "1346/2000 [===================>..........] - ETA: 13:35 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0779 - mrcnn_mask_loss: 0.1579258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - "1347/2000 [===================>..........] - ETA: 13:34 - loss: 0.5148 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0779 - mrcnn_mask_loss: 0.1580184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - "1348/2000 [===================>..........] - ETA: 13:32 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0798 - mrcnn_bbox_loss: 0.0779 - mrcnn_mask_loss: 0.1579348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - "1349/2000 [===================>..........] - ETA: 13:31 - loss: 0.5146 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0778 - mrcnn_mask_loss: 0.1579385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - "1350/2000 [===================>..........] - ETA: 13:30 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0779 - mrcnn_mask_loss: 0.1579196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - "1351/2000 [===================>..........] - ETA: 13:29 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0779 - mrcnn_mask_loss: 0.1579202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - "1352/2000 [===================>..........] - ETA: 13:27 - loss: 0.5144 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0778 - mrcnn_mask_loss: 0.157959\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - "1353/2000 [===================>..........] - ETA: 13:26 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0778 - mrcnn_mask_loss: 0.157938\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - "1354/2000 [===================>..........] - ETA: 13:25 - loss: 0.5147 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1934 - mrcnn_class_loss: 0.0797 - mrcnn_bbox_loss: 0.0778 - mrcnn_mask_loss: 0.1579212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - "1355/2000 [===================>..........] - ETA: 13:23 - loss: 0.5145 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1933 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0778 - mrcnn_mask_loss: 0.1579185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - "1356/2000 [===================>..........] - ETA: 13:22 - loss: 0.5143 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0796 - mrcnn_bbox_loss: 0.0778 - mrcnn_mask_loss: 0.1579374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - "1357/2000 [===================>..........] - ETA: 13:21 - loss: 0.5142 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0778 - mrcnn_mask_loss: 0.1579277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - "1358/2000 [===================>..........] - ETA: 13:20 - loss: 0.5142 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0777 - mrcnn_mask_loss: 0.1579387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - "1359/2000 [===================>..........] - ETA: 13:18 - loss: 0.5141 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1932 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0778 - mrcnn_mask_loss: 0.1579114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - "1360/2000 [===================>..........] - ETA: 13:17 - loss: 0.5141 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0777 - mrcnn_mask_loss: 0.157933\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - "1361/2000 [===================>..........] - ETA: 13:16 - loss: 0.5140 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0795 - mrcnn_bbox_loss: 0.0777 - mrcnn_mask_loss: 0.1579174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - "1362/2000 [===================>..........] - ETA: 13:15 - loss: 0.5140 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1931 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0777 - mrcnn_mask_loss: 0.1579107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - "1363/2000 [===================>..........] - ETA: 13:13 - loss: 0.5138 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0777 - mrcnn_mask_loss: 0.1579100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - "1364/2000 [===================>..........] - ETA: 13:12 - loss: 0.5137 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0777 - mrcnn_mask_loss: 0.1579116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - "1365/2000 [===================>..........] - ETA: 13:11 - loss: 0.5138 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0777 - mrcnn_mask_loss: 0.157922\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1366/2000 [===================>..........] - ETA: 13:10 - loss: 0.5137 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0777 - mrcnn_mask_loss: 0.1578242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - "1367/2000 [===================>..........] - ETA: 13:08 - loss: 0.5137 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1928 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0777 - mrcnn_mask_loss: 0.157950\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - "1368/2000 [===================>..........] - ETA: 13:07 - loss: 0.5136 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0776 - mrcnn_mask_loss: 0.1579302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - "1369/2000 [===================>..........] - ETA: 13:06 - loss: 0.5137 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0776 - mrcnn_mask_loss: 0.1579308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - "1370/2000 [===================>..........] - ETA: 13:05 - loss: 0.5138 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1930 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0776 - mrcnn_mask_loss: 0.15794\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - "1371/2000 [===================>..........] - ETA: 13:03 - loss: 0.5135 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0776 - mrcnn_mask_loss: 0.1579206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - "1372/2000 [===================>..........] - ETA: 13:02 - loss: 0.5134 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1928 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0776 - mrcnn_mask_loss: 0.1579312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - "1373/2000 [===================>..........] - ETA: 13:01 - loss: 0.5135 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1929 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0776 - mrcnn_mask_loss: 0.1579378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - "1374/2000 [===================>..........] - ETA: 13:00 - loss: 0.5134 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1928 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0776 - mrcnn_mask_loss: 0.1579333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - "1375/2000 [===================>..........] - ETA: 12:58 - loss: 0.5133 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1928 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0775 - mrcnn_mask_loss: 0.1579105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - "1376/2000 [===================>..........] - ETA: 12:57 - loss: 0.5132 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1927 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0775 - mrcnn_mask_loss: 0.1578356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - "1377/2000 [===================>..........] - ETA: 12:56 - loss: 0.5131 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1927 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0775 - mrcnn_mask_loss: 0.1578148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - "1378/2000 [===================>..........] - ETA: 12:55 - loss: 0.5130 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1926 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0775 - mrcnn_mask_loss: 0.1578214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - "1379/2000 [===================>..........] - ETA: 12:53 - loss: 0.5128 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1925 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0775 - mrcnn_mask_loss: 0.1578314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - "1380/2000 [===================>..........] - ETA: 12:52 - loss: 0.5127 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1925 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0775 - mrcnn_mask_loss: 0.1578233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - "1381/2000 [===================>..........] - ETA: 12:51 - loss: 0.5128 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1924 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0775 - mrcnn_mask_loss: 0.15787\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - "1382/2000 [===================>..........] - ETA: 12:49 - loss: 0.5129 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1927 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0774 - mrcnn_mask_loss: 0.157881\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - "1383/2000 [===================>..........] - ETA: 12:48 - loss: 0.5129 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1927 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0775 - mrcnn_mask_loss: 0.157875\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - "1384/2000 [===================>..........] - ETA: 12:47 - loss: 0.5127 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1926 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0774 - mrcnn_mask_loss: 0.157861\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - "1385/2000 [===================>..........] - ETA: 12:46 - loss: 0.5126 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1925 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0774 - mrcnn_mask_loss: 0.1578238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - "1386/2000 [===================>..........] - ETA: 12:44 - loss: 0.5124 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1924 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0774 - mrcnn_mask_loss: 0.1577335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - "1387/2000 [===================>..........] - ETA: 12:43 - loss: 0.5123 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1923 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0774 - mrcnn_mask_loss: 0.1578205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - "1388/2000 [===================>..........] - ETA: 12:42 - loss: 0.5121 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1922 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.1577165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - "1389/2000 [===================>..........] - ETA: 12:41 - loss: 0.5121 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1921 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0774 - mrcnn_mask_loss: 0.1577228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - "1390/2000 [===================>..........] - ETA: 12:39 - loss: 0.5120 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1920 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0774 - mrcnn_mask_loss: 0.1577315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - "1391/2000 [===================>..........] - ETA: 12:38 - loss: 0.5119 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1920 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0774 - mrcnn_mask_loss: 0.1578171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - "1392/2000 [===================>..........] - ETA: 12:37 - loss: 0.5118 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1919 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0774 - mrcnn_mask_loss: 0.1577113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - "1393/2000 [===================>..........] - ETA: 12:35 - loss: 0.5117 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1918 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0774 - mrcnn_mask_loss: 0.157866\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - "1394/2000 [===================>..........] - ETA: 12:34 - loss: 0.5115 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1917 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.1577226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1395/2000 [===================>..........] - ETA: 12:33 - loss: 0.5114 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1916 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.157793\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - "1396/2000 [===================>..........] - ETA: 12:32 - loss: 0.5114 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1917 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.1577108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - "1397/2000 [===================>..........] - ETA: 12:30 - loss: 0.5113 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1916 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.1577313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - "1398/2000 [===================>..........] - ETA: 12:29 - loss: 0.5113 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1915 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.157790\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - "1399/2000 [===================>..........] - ETA: 12:28 - loss: 0.5114 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1916 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.1577352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - "1400/2000 [====================>.........] - ETA: 12:27 - loss: 0.5113 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1916 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.157742\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - "1401/2000 [====================>.........] - ETA: 12:25 - loss: 0.5112 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1915 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.157760\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - "1402/2000 [====================>.........] - ETA: 12:24 - loss: 0.5113 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1916 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.1577319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - "1403/2000 [====================>.........] - ETA: 12:23 - loss: 0.5116 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1917 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.1577203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - "1404/2000 [====================>.........] - ETA: 12:22 - loss: 0.5115 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1916 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0773 - mrcnn_mask_loss: 0.1577190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - "1405/2000 [====================>.........] - ETA: 12:20 - loss: 0.5114 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1915 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0772 - mrcnn_mask_loss: 0.157634\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - "1406/2000 [====================>.........] - ETA: 12:19 - loss: 0.5112 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1915 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0772 - mrcnn_mask_loss: 0.1576183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - "1407/2000 [====================>.........] - ETA: 12:18 - loss: 0.5111 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1914 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0772 - mrcnn_mask_loss: 0.1576331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - "1408/2000 [====================>.........] - ETA: 12:16 - loss: 0.5110 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1914 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0772 - mrcnn_mask_loss: 0.15765\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - "1409/2000 [====================>.........] - ETA: 12:15 - loss: 0.5108 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1913 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0771 - mrcnn_mask_loss: 0.157658\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1410/2000 [====================>.........] - ETA: 12:14 - loss: 0.5109 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1914 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0771 - mrcnn_mask_loss: 0.1575300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - "1411/2000 [====================>.........] - ETA: 12:13 - loss: 0.5111 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1915 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0771 - mrcnn_mask_loss: 0.1576216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - "1412/2000 [====================>.........] - ETA: 12:11 - loss: 0.5109 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1914 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0771 - mrcnn_mask_loss: 0.1575177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - "1413/2000 [====================>.........] - ETA: 12:10 - loss: 0.5109 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1914 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0771 - mrcnn_mask_loss: 0.1575350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - "1414/2000 [====================>.........] - ETA: 12:09 - loss: 0.5109 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1914 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0771 - mrcnn_mask_loss: 0.1575291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - "1415/2000 [====================>.........] - ETA: 12:08 - loss: 0.5109 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1915 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0771 - mrcnn_mask_loss: 0.1575137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - "1416/2000 [====================>.........] - ETA: 12:06 - loss: 0.5110 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1915 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0771 - mrcnn_mask_loss: 0.1575266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - "1417/2000 [====================>.........] - ETA: 12:05 - loss: 0.5108 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1914 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0771 - mrcnn_mask_loss: 0.157547\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - "1418/2000 [====================>.........] - ETA: 12:04 - loss: 0.5106 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1913 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0770 - mrcnn_mask_loss: 0.1574267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - "1419/2000 [====================>.........] - ETA: 12:03 - loss: 0.5105 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1912 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0770 - mrcnn_mask_loss: 0.1574279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - "1420/2000 [====================>.........] - ETA: 12:01 - loss: 0.5106 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1913 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0770 - mrcnn_mask_loss: 0.1574343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - "1421/2000 [====================>.........] - ETA: 12:00 - loss: 0.5106 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1913 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0770 - mrcnn_mask_loss: 0.157514\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - "1422/2000 [====================>.........] - ETA: 11:59 - loss: 0.5105 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1913 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0770 - mrcnn_mask_loss: 0.1574274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - "1423/2000 [====================>.........] - ETA: 11:58 - loss: 0.5104 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1913 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1574144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - "1424/2000 [====================>.........] - ETA: 11:56 - loss: 0.5103 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1912 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1574235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - "1425/2000 [====================>.........] - ETA: 11:55 - loss: 0.5103 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1912 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1574147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - "1426/2000 [====================>.........] - ETA: 11:54 - loss: 0.5101 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1911 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1574310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - "1427/2000 [====================>.........] - ETA: 11:52 - loss: 0.5102 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1912 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1574381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - "1428/2000 [====================>.........] - ETA: 11:51 - loss: 0.5101 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1911 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1574297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - "1429/2000 [====================>.........] - ETA: 11:50 - loss: 0.5102 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1912 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.157426\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - "1430/2000 [====================>.........] - ETA: 11:49 - loss: 0.5101 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1912 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - "1431/2000 [====================>.........] - ETA: 11:47 - loss: 0.5099 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1911 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1573280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - "1432/2000 [====================>.........] - ETA: 11:46 - loss: 0.5101 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1913 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1573249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - "1433/2000 [====================>.........] - ETA: 11:45 - loss: 0.5101 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1912 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.157471\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - "1434/2000 [====================>.........] - ETA: 11:43 - loss: 0.5099 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1911 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - "1435/2000 [====================>.........] - ETA: 11:42 - loss: 0.5100 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1911 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - "1436/2000 [====================>.........] - ETA: 11:41 - loss: 0.5100 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1910 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - "1437/2000 [====================>.........] - ETA: 11:40 - loss: 0.5100 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1910 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1438/2000 [====================>.........] - ETA: 11:39 - loss: 0.5100 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1909 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0770 - mrcnn_mask_loss: 0.1574182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - "1439/2000 [====================>.........] - ETA: 11:37 - loss: 0.5099 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1909 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1574146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - "1440/2000 [====================>.........] - ETA: 11:36 - loss: 0.5099 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1908 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1574247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - "1441/2000 [====================>.........] - ETA: 11:35 - loss: 0.5098 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1907 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1574197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - "1442/2000 [====================>.........] - ETA: 11:33 - loss: 0.5096 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1906 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.157457\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - "1443/2000 [====================>.........] - ETA: 11:32 - loss: 0.5095 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1906 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1573351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - "1444/2000 [====================>.........] - ETA: 11:31 - loss: 0.5095 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1906 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1573293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - "1445/2000 [====================>.........] - ETA: 11:30 - loss: 0.5095 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1906 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1573318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - "1446/2000 [====================>.........] - ETA: 11:28 - loss: 0.5096 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1906 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0769 - mrcnn_mask_loss: 0.1574248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - "1447/2000 [====================>.........] - ETA: 11:27 - loss: 0.5096 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1906 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - "1448/2000 [====================>.........] - ETA: 11:26 - loss: 0.5095 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1906 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n", - "1449/2000 [====================>.........] - ETA: 11:25 - loss: 0.5095 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1905 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1575208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - "1450/2000 [====================>.........] - ETA: 11:23 - loss: 0.5094 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1904 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.157555\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - "1451/2000 [====================>.........] - ETA: 11:22 - loss: 0.5093 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1903 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.157453\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - "1452/2000 [====================>.........] - ETA: 11:21 - loss: 0.5091 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1902 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0767 - mrcnn_mask_loss: 0.157484\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1453/2000 [====================>.........] - ETA: 11:19 - loss: 0.5090 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1901 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0767 - mrcnn_mask_loss: 0.1574141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - "1454/2000 [====================>.........] - ETA: 11:18 - loss: 0.5092 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1900 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - "1455/2000 [====================>.........] - ETA: 11:17 - loss: 0.5093 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1901 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - "1456/2000 [====================>.........] - ETA: 11:16 - loss: 0.5093 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1901 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - "1457/2000 [====================>.........] - ETA: 11:14 - loss: 0.5093 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1901 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - "1458/2000 [====================>.........] - ETA: 11:13 - loss: 0.5094 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1901 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - "1459/2000 [====================>.........] - ETA: 11:12 - loss: 0.5094 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1901 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.157421\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - "1460/2000 [====================>.........] - ETA: 11:11 - loss: 0.5093 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1901 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - "1461/2000 [====================>.........] - ETA: 11:09 - loss: 0.5094 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1901 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - "1462/2000 [====================>.........] - ETA: 11:08 - loss: 0.5094 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1901 - mrcnn_class_loss: 0.0794 - mrcnn_bbox_loss: 0.0767 - mrcnn_mask_loss: 0.1574340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - "1463/2000 [====================>.........] - ETA: 11:07 - loss: 0.5094 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1901 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0768 - mrcnn_mask_loss: 0.1574213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - "1464/2000 [====================>.........] - ETA: 11:06 - loss: 0.5092 - rpn_class_loss: 0.0059 - rpn_bbox_loss: 0.1900 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0767 - mrcnn_mask_loss: 0.157463\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - "1465/2000 [====================>.........] - ETA: 11:04 - loss: 0.5090 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1899 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0767 - mrcnn_mask_loss: 0.1574133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - "1466/2000 [====================>.........] - ETA: 11:03 - loss: 0.5091 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1899 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0767 - mrcnn_mask_loss: 0.1574273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - "1467/2000 [=====================>........] - ETA: 11:02 - loss: 0.5090 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1899 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0767 - mrcnn_mask_loss: 0.1574354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - "1468/2000 [=====================>........] - ETA: 11:01 - loss: 0.5089 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1899 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0767 - mrcnn_mask_loss: 0.157370\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - "1469/2000 [=====================>........] - ETA: 10:59 - loss: 0.5087 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1898 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0767 - mrcnn_mask_loss: 0.1573304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - "1470/2000 [=====================>........] - ETA: 10:58 - loss: 0.5089 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1898 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0766 - mrcnn_mask_loss: 0.157376\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - "1471/2000 [=====================>........] - ETA: 10:57 - loss: 0.5088 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1898 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0766 - mrcnn_mask_loss: 0.1573324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - "1472/2000 [=====================>........] - ETA: 10:56 - loss: 0.5088 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1898 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0766 - mrcnn_mask_loss: 0.1573259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - "1473/2000 [=====================>........] - ETA: 10:54 - loss: 0.5089 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1899 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0766 - mrcnn_mask_loss: 0.15742\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - "1474/2000 [=====================>........] - ETA: 10:53 - loss: 0.5089 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1899 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0766 - mrcnn_mask_loss: 0.1573158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - "1475/2000 [=====================>........] - ETA: 10:52 - loss: 0.5090 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1900 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0766 - mrcnn_mask_loss: 0.1573195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - "1476/2000 [=====================>........] - ETA: 10:50 - loss: 0.5088 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1899 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0766 - mrcnn_mask_loss: 0.1573194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - "1477/2000 [=====================>........] - ETA: 10:49 - loss: 0.5086 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1897 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0766 - mrcnn_mask_loss: 0.157394\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - "1478/2000 [=====================>........] - ETA: 10:48 - loss: 0.5086 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1898 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0766 - mrcnn_mask_loss: 0.1573210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - "1479/2000 [=====================>........] - ETA: 10:47 - loss: 0.5086 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1897 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0765 - mrcnn_mask_loss: 0.1573386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - "1480/2000 [=====================>........] - ETA: 10:45 - loss: 0.5085 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1896 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0765 - mrcnn_mask_loss: 0.1573286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - "1481/2000 [=====================>........] - ETA: 10:44 - loss: 0.5085 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1896 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0765 - mrcnn_mask_loss: 0.1573227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1482/2000 [=====================>........] - ETA: 10:43 - loss: 0.5085 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1895 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0765 - mrcnn_mask_loss: 0.1573275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - "1483/2000 [=====================>........] - ETA: 10:42 - loss: 0.5084 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1895 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0765 - mrcnn_mask_loss: 0.1573131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - "1484/2000 [=====================>........] - ETA: 10:40 - loss: 0.5085 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1896 - mrcnn_class_loss: 0.0793 - mrcnn_bbox_loss: 0.0765 - mrcnn_mask_loss: 0.1573167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - "1485/2000 [=====================>........] - ETA: 10:39 - loss: 0.5084 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1895 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0765 - mrcnn_mask_loss: 0.1573193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - "1486/2000 [=====================>........] - ETA: 10:38 - loss: 0.5081 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1894 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0764 - mrcnn_mask_loss: 0.1573244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - "1487/2000 [=====================>........] - ETA: 10:36 - loss: 0.5081 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1893 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0765 - mrcnn_mask_loss: 0.1573345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - "1488/2000 [=====================>........] - ETA: 10:35 - loss: 0.5080 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1893 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0764 - mrcnn_mask_loss: 0.1573173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - "1489/2000 [=====================>........] - ETA: 10:34 - loss: 0.5079 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1893 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0764 - mrcnn_mask_loss: 0.1573104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - "1490/2000 [=====================>........] - ETA: 10:33 - loss: 0.5078 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1892 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0764 - mrcnn_mask_loss: 0.1573229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - "1491/2000 [=====================>........] - ETA: 10:31 - loss: 0.5077 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0764 - mrcnn_mask_loss: 0.1573134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - "1492/2000 [=====================>........] - ETA: 10:30 - loss: 0.5079 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1892 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0764 - mrcnn_mask_loss: 0.157315\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - "1493/2000 [=====================>........] - ETA: 10:29 - loss: 0.5078 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1892 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0764 - mrcnn_mask_loss: 0.1573150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - "1494/2000 [=====================>........] - ETA: 10:28 - loss: 0.5077 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1892 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0764 - mrcnn_mask_loss: 0.1573326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - "1495/2000 [=====================>........] - ETA: 10:26 - loss: 0.5076 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - "1496/2000 [=====================>........] - ETA: 10:25 - loss: 0.5077 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1892 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - "1497/2000 [=====================>........] - ETA: 10:24 - loss: 0.5076 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - "1498/2000 [=====================>........] - ETA: 10:23 - loss: 0.5076 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.157397\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - "1499/2000 [=====================>........] - ETA: 10:21 - loss: 0.5076 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1892 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - "1500/2000 [=====================>........] - ETA: 10:20 - loss: 0.5078 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1892 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - "1501/2000 [=====================>........] - ETA: 10:19 - loss: 0.5078 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - "1502/2000 [=====================>........] - ETA: 10:18 - loss: 0.5077 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1890 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - "1503/2000 [=====================>........] - ETA: 10:16 - loss: 0.5077 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - "1504/2000 [=====================>........] - ETA: 10:15 - loss: 0.5077 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0764 - mrcnn_mask_loss: 0.1573309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - "1505/2000 [=====================>........] - ETA: 10:14 - loss: 0.5078 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0764 - mrcnn_mask_loss: 0.1573290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n", - "1506/2000 [=====================>........] - ETA: 10:13 - loss: 0.5078 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0792 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - "1507/2000 [=====================>........] - ETA: 10:12 - loss: 0.5078 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.157368\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - "1508/2000 [=====================>........] - ETA: 10:10 - loss: 0.5076 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1890 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - "1509/2000 [=====================>........] - ETA: 10:09 - loss: 0.5076 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1890 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1510/2000 [=====================>........] - ETA: 10:08 - loss: 0.5077 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1890 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1574154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - "1511/2000 [=====================>........] - ETA: 10:07 - loss: 0.5077 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - "1512/2000 [=====================>........] - ETA: 10:05 - loss: 0.5078 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1893 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.157387\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - "1513/2000 [=====================>........] - ETA: 10:04 - loss: 0.5077 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1892 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.1573209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - "1514/2000 [=====================>........] - ETA: 10:03 - loss: 0.5075 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0791 - mrcnn_bbox_loss: 0.0763 - mrcnn_mask_loss: 0.157318\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - "1515/2000 [=====================>........] - ETA: 10:02 - loss: 0.5075 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1892 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0762 - mrcnn_mask_loss: 0.15723\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - "1516/2000 [=====================>........] - ETA: 10:00 - loss: 0.5074 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1892 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0762 - mrcnn_mask_loss: 0.157243\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - "1517/2000 [=====================>........] - ETA: 9:59 - loss: 0.5072 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1891 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0762 - mrcnn_mask_loss: 0.1572 115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - "1518/2000 [=====================>........] - ETA: 9:58 - loss: 0.5072 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1890 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0762 - mrcnn_mask_loss: 0.157245\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - "1519/2000 [=====================>........] - ETA: 9:56 - loss: 0.5070 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1889 - mrcnn_class_loss: 0.0790 - mrcnn_bbox_loss: 0.0761 - mrcnn_mask_loss: 0.1572239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - "1520/2000 [=====================>........] - ETA: 9:55 - loss: 0.5071 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1890 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0761 - mrcnn_mask_loss: 0.1572265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - "1521/2000 [=====================>........] - ETA: 9:54 - loss: 0.5070 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1889 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0761 - mrcnn_mask_loss: 0.157264\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - "1522/2000 [=====================>........] - ETA: 9:53 - loss: 0.5069 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1888 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0761 - mrcnn_mask_loss: 0.157220\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - "1523/2000 [=====================>........] - ETA: 9:51 - loss: 0.5068 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1889 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0761 - mrcnn_mask_loss: 0.1572355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - "1524/2000 [=====================>........] - ETA: 9:50 - loss: 0.5067 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1888 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0761 - mrcnn_mask_loss: 0.157249\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1525/2000 [=====================>........] - ETA: 9:49 - loss: 0.5065 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1887 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0760 - mrcnn_mask_loss: 0.1572346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - "1526/2000 [=====================>........] - ETA: 9:48 - loss: 0.5066 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1888 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0760 - mrcnn_mask_loss: 0.157241\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - "1527/2000 [=====================>........] - ETA: 9:46 - loss: 0.5066 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1887 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0760 - mrcnn_mask_loss: 0.1572125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - "1528/2000 [=====================>........] - ETA: 9:45 - loss: 0.5068 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1889 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0760 - mrcnn_mask_loss: 0.1572118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - "1529/2000 [=====================>........] - ETA: 9:44 - loss: 0.5069 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1889 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0760 - mrcnn_mask_loss: 0.1573255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - "1530/2000 [=====================>........] - ETA: 9:43 - loss: 0.5068 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1889 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0760 - mrcnn_mask_loss: 0.157373\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - "1531/2000 [=====================>........] - ETA: 9:41 - loss: 0.5067 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1889 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0760 - mrcnn_mask_loss: 0.1573395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - "1532/2000 [=====================>........] - ETA: 9:40 - loss: 0.5066 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1888 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1573289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - "1533/2000 [=====================>........] - ETA: 9:39 - loss: 0.5066 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1888 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1573217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - "1534/2000 [======================>.......] - ETA: 9:38 - loss: 0.5065 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1888 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1572219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - "1535/2000 [======================>.......] - ETA: 9:36 - loss: 0.5064 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1887 - mrcnn_class_loss: 0.0787 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.157227\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - "1536/2000 [======================>.......] - ETA: 9:35 - loss: 0.5063 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1887 - mrcnn_class_loss: 0.0787 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1572145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - "1537/2000 [======================>.......] - ETA: 9:34 - loss: 0.5063 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1887 - mrcnn_class_loss: 0.0787 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1572298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - "1538/2000 [======================>.......] - ETA: 9:33 - loss: 0.5065 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1888 - mrcnn_class_loss: 0.0787 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1572162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - "1539/2000 [======================>.......] - ETA: 9:31 - loss: 0.5065 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1889 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1572250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1540/2000 [======================>.......] - ETA: 9:30 - loss: 0.5065 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1888 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.157280\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - "1541/2000 [======================>.......] - ETA: 9:29 - loss: 0.5067 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1888 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0760 - mrcnn_mask_loss: 0.15721\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - "1542/2000 [======================>.......] - ETA: 9:27 - loss: 0.5066 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1888 - mrcnn_class_loss: 0.0789 - mrcnn_bbox_loss: 0.0760 - mrcnn_mask_loss: 0.1572211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n", - "1543/2000 [======================>.......] - ETA: 9:26 - loss: 0.5064 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1887 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1572365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - "1544/2000 [======================>.......] - ETA: 9:25 - loss: 0.5063 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1886 - mrcnn_class_loss: 0.0788 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1572204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - "1545/2000 [======================>.......] - ETA: 9:24 - loss: 0.5061 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1885 - mrcnn_class_loss: 0.0787 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1571390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - "1546/2000 [======================>.......] - ETA: 9:22 - loss: 0.5061 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1886 - mrcnn_class_loss: 0.0787 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1571119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - "1547/2000 [======================>.......] - ETA: 9:21 - loss: 0.5062 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1887 - mrcnn_class_loss: 0.0787 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1571111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - "1548/2000 [======================>.......] - ETA: 9:20 - loss: 0.5062 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1887 - mrcnn_class_loss: 0.0787 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1571364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - "1549/2000 [======================>.......] - ETA: 9:19 - loss: 0.5061 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1886 - mrcnn_class_loss: 0.0787 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.157154\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - "1550/2000 [======================>.......] - ETA: 9:17 - loss: 0.5059 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1885 - mrcnn_class_loss: 0.0786 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.157124\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - "1551/2000 [======================>.......] - ETA: 9:16 - loss: 0.5057 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1885 - mrcnn_class_loss: 0.0786 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1570168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - "1552/2000 [======================>.......] - ETA: 9:15 - loss: 0.5056 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1884 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1570224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n", - "1553/2000 [======================>.......] - ETA: 9:14 - loss: 0.5055 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1883 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1570138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - "1554/2000 [======================>.......] - ETA: 9:12 - loss: 0.5056 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1883 - mrcnn_class_loss: 0.0786 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.157156\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1555/2000 [======================>.......] - ETA: 9:11 - loss: 0.5055 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1882 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1571323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - "1556/2000 [======================>.......] - ETA: 9:10 - loss: 0.5054 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1882 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1571221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n", - "1557/2000 [======================>.......] - ETA: 9:09 - loss: 0.5055 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1882 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1571369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - "1558/2000 [======================>.......] - ETA: 9:07 - loss: 0.5056 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1882 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1571391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - "1559/2000 [======================>.......] - ETA: 9:06 - loss: 0.5055 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1882 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1571231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - "1560/2000 [======================>.......] - ETA: 9:05 - loss: 0.5055 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1882 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1571303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - "1561/2000 [======================>.......] - ETA: 9:04 - loss: 0.5055 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1882 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1571187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - "1562/2000 [======================>.......] - ETA: 9:02 - loss: 0.5053 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1881 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1570288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - "1563/2000 [======================>.......] - ETA: 9:01 - loss: 0.5054 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1881 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.157096\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - "1564/2000 [======================>.......] - ETA: 9:00 - loss: 0.5055 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1882 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.157151\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - "1565/2000 [======================>.......] - ETA: 8:59 - loss: 0.5053 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1881 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.1571232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - "1566/2000 [======================>.......] - ETA: 8:57 - loss: 0.5052 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1881 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0759 - mrcnn_mask_loss: 0.157136\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - "1567/2000 [======================>.......] - ETA: 8:56 - loss: 0.5053 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1882 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.157011\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - "1568/2000 [======================>.......] - ETA: 8:55 - loss: 0.5053 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1883 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1570101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - "1569/2000 [======================>.......] - ETA: 8:54 - loss: 0.5053 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1883 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1570223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1570/2000 [======================>.......] - ETA: 8:52 - loss: 0.5051 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1882 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1570251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - "1571/2000 [======================>.......] - ETA: 8:51 - loss: 0.5050 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1881 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1569215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - "1572/2000 [======================>.......] - ETA: 8:50 - loss: 0.5048 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1880 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1569170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - "1573/2000 [======================>.......] - ETA: 8:48 - loss: 0.5048 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1880 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1569271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - "1574/2000 [======================>.......] - ETA: 8:47 - loss: 0.5047 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1879 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1569367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n", - "1575/2000 [======================>.......] - ETA: 8:46 - loss: 0.5047 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1879 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0758 - mrcnn_mask_loss: 0.1569366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - "1576/2000 [======================>.......] - ETA: 8:45 - loss: 0.5047 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1879 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1569189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - "1577/2000 [======================>.......] - ETA: 8:43 - loss: 0.5045 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1879 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1569338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n", - "1578/2000 [======================>.......] - ETA: 8:42 - loss: 0.5045 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1878 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1569341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - "1579/2000 [======================>.......] - ETA: 8:41 - loss: 0.5044 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1878 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1569397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - "1580/2000 [======================>.......] - ETA: 8:40 - loss: 0.5045 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1878 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1569142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - "1581/2000 [======================>.......] - ETA: 8:39 - loss: 0.5044 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1878 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1569282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - "1582/2000 [======================>.......] - ETA: 8:37 - loss: 0.5045 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1878 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1569322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - "1583/2000 [======================>.......] - ETA: 8:36 - loss: 0.5046 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1878 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1569198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - "1584/2000 [======================>.......] - ETA: 8:35 - loss: 0.5045 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1877 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1569295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - "1585/2000 [======================>.......] - ETA: 8:34 - loss: 0.5045 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1877 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.156962\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - "1586/2000 [======================>.......] - ETA: 8:33 - loss: 0.5043 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1876 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0756 - mrcnn_mask_loss: 0.1568292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - "1587/2000 [======================>.......] - ETA: 8:31 - loss: 0.5043 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1876 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1568339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - "1588/2000 [======================>.......] - ETA: 8:30 - loss: 0.5045 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1877 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0756 - mrcnn_mask_loss: 0.1568143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - "1589/2000 [======================>.......] - ETA: 8:29 - loss: 0.5044 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1877 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1568109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - "1590/2000 [======================>.......] - ETA: 8:28 - loss: 0.5044 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1877 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1568320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - "1591/2000 [======================>.......] - ETA: 8:26 - loss: 0.5044 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1876 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0757 - mrcnn_mask_loss: 0.1568296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - "1592/2000 [======================>.......] - ETA: 8:25 - loss: 0.5043 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1876 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0756 - mrcnn_mask_loss: 0.156812\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - "1593/2000 [======================>.......] - ETA: 8:24 - loss: 0.5042 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1875 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0756 - mrcnn_mask_loss: 0.156883\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - "1594/2000 [======================>.......] - ETA: 8:23 - loss: 0.5041 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1874 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0756 - mrcnn_mask_loss: 0.156830\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - "1595/2000 [======================>.......] - ETA: 8:21 - loss: 0.5041 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1875 - mrcnn_class_loss: 0.0785 - mrcnn_bbox_loss: 0.0756 - mrcnn_mask_loss: 0.15689\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - "1596/2000 [======================>.......] - ETA: 8:20 - loss: 0.5039 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1874 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0756 - mrcnn_mask_loss: 0.156723\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - "1597/2000 [======================>.......] - ETA: 8:19 - loss: 0.5039 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1875 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0755 - mrcnn_mask_loss: 0.156717\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - "1598/2000 [======================>.......] - ETA: 8:18 - loss: 0.5039 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1876 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0755 - mrcnn_mask_loss: 0.156779\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1599/2000 [======================>.......] - ETA: 8:16 - loss: 0.5038 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1875 - mrcnn_class_loss: 0.0784 - mrcnn_bbox_loss: 0.0755 - mrcnn_mask_loss: 0.156748\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - "1600/2000 [=======================>......] - ETA: 8:15 - loss: 0.5036 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1874 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0755 - mrcnn_mask_loss: 0.1566348\n", - "section_masks_348\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_348.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 348}\n", - "['section_masks_348_m_1.png', 'section_masks_348_m_2.png', 'section_masks_348_m_4.png', 'section_masks_348_m_5.png', 'section_masks_348_m_6.png', 'section_masks_348_m_7.png', 'section_masks_348_m_8.png']\n", - "1601/2000 [=======================>......] - ETA: 8:14 - loss: 0.5036 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1874 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0755 - mrcnn_mask_loss: 0.1566390\n", - "section_masks_390\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_390.jpg', 'source': 'brain', 'height': 1968, 'width': 4344, 'id': 390}\n", - "['section_masks_390_m_1.png', 'section_masks_390_m_4.png', 'section_masks_390_m_5.png', 'section_masks_390_m_6.png', 'section_masks_390_m_8.png']\n", - "1602/2000 [=======================>......] - ETA: 8:13 - loss: 0.5036 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1875 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0754 - mrcnn_mask_loss: 0.1566139\n", - "section_masks_139\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_139.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 139}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_4.png', 'section_masks_139_m_5.png', 'section_masks_139_m_6.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - "1603/2000 [=======================>......] - ETA: 8:11 - loss: 0.5039 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1876 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0755 - mrcnn_mask_loss: 0.156653\n", - "section_masks_53\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_53.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 53}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_3.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - "1604/2000 [=======================>......] - ETA: 8:10 - loss: 0.5037 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1875 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0754 - mrcnn_mask_loss: 0.1566274\n", - "section_masks_274\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_274.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 274}\n", - "['section_masks_274_m_1.png', 'section_masks_274_m_2.png', 'section_masks_274_m_3.png', 'section_masks_274_m_4.png', 'section_masks_274_m_5.png', 'section_masks_274_m_6.png', 'section_masks_274_m_7.png', 'section_masks_274_m_8.png']\n", - "1605/2000 [=======================>......] - ETA: 8:09 - loss: 0.5037 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1875 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0754 - mrcnn_mask_loss: 0.1566207\n", - "section_masks_207\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_207.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 207}\n", - "['section_masks_207_m_1.png', 'section_masks_207_m_2.png', 'section_masks_207_m_3.png', 'section_masks_207_m_7.png', 'section_masks_207_m_8.png']\n", - "1606/2000 [=======================>......] - ETA: 8:08 - loss: 0.5035 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1874 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0754 - mrcnn_mask_loss: 0.1566242\n", - "section_masks_242\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_242.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 242}\n", - "['section_masks_242_m_1.png', 'section_masks_242_m_2.png', 'section_masks_242_m_3.png', 'section_masks_242_m_4.png', 'section_masks_242_m_5.png', 'section_masks_242_m_7.png', 'section_masks_242_m_8.png']\n", - "1607/2000 [=======================>......] - ETA: 8:06 - loss: 0.5036 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1874 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0754 - mrcnn_mask_loss: 0.156789\n", - "section_masks_89\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_89.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 89}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_3.png', 'section_masks_89_m_5.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - "1608/2000 [=======================>......] - ETA: 8:05 - loss: 0.5036 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1874 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0754 - mrcnn_mask_loss: 0.1567252\n", - "section_masks_252\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_252.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 252}\n", - "['section_masks_252_m_1.png', 'section_masks_252_m_2.png', 'section_masks_252_m_3.png', 'section_masks_252_m_4.png', 'section_masks_252_m_5.png', 'section_masks_252_m_7.png', 'section_masks_252_m_8.png']\n", - "1609/2000 [=======================>......] - ETA: 8:04 - loss: 0.5036 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1873 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0754 - mrcnn_mask_loss: 0.156714\n", - "section_masks_14\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_14.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 14}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - "1610/2000 [=======================>......] - ETA: 8:03 - loss: 0.5034 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1872 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0754 - mrcnn_mask_loss: 0.1567213\n", - "section_masks_213\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_213.jpg', 'source': 'brain', 'height': 2039, 'width': 2705, 'id': 213}\n", - "['section_masks_213_m_1.png', 'section_masks_213_m_2.png', 'section_masks_213_m_3.png', 'section_masks_213_m_7.png', 'section_masks_213_m_8.png']\n", - "1611/2000 [=======================>......] - ETA: 8:01 - loss: 0.5032 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1871 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0753 - mrcnn_mask_loss: 0.1567249\n", - "section_masks_249\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_249.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 249}\n", - "['section_masks_249_m_1.png', 'section_masks_249_m_2.png', 'section_masks_249_m_3.png', 'section_masks_249_m_4.png', 'section_masks_249_m_5.png', 'section_masks_249_m_7.png', 'section_masks_249_m_8.png']\n", - "1612/2000 [=======================>......] - ETA: 8:00 - loss: 0.5031 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1871 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0753 - mrcnn_mask_loss: 0.1567130\n", - "section_masks_130\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_130.jpg', 'source': 'brain', 'height': 2144, 'width': 3824, 'id': 130}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_4.png', 'section_masks_130_m_5.png', 'section_masks_130_m_6.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n", - "1613/2000 [=======================>......] - ETA: 7:59 - loss: 0.5031 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1872 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0753 - mrcnn_mask_loss: 0.1567189\n", - "section_masks_189\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_189.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 189}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_3.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1614/2000 [=======================>......] - ETA: 7:57 - loss: 0.5029 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1871 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0753 - mrcnn_mask_loss: 0.1567192\n", - "section_masks_192\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_192.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 192}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_3.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - "1615/2000 [=======================>......] - ETA: 7:56 - loss: 0.5027 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1870 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0752 - mrcnn_mask_loss: 0.1566132\n", - "section_masks_132\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_132.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 132}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_4.png', 'section_masks_132_m_5.png', 'section_masks_132_m_6.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - "1616/2000 [=======================>......] - ETA: 7:55 - loss: 0.5028 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1870 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0752 - mrcnn_mask_loss: 0.1566368\n", - "section_masks_368\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_368.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 368}\n", - "['section_masks_368_m_1.png', 'section_masks_368_m_2.png', 'section_masks_368_m_4.png', 'section_masks_368_m_5.png', 'section_masks_368_m_6.png', 'section_masks_368_m_7.png', 'section_masks_368_m_8.png']\n", - "1617/2000 [=======================>......] - ETA: 7:54 - loss: 0.5028 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1871 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0752 - mrcnn_mask_loss: 0.1566203\n", - "section_masks_203\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_203.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 203}\n", - "['section_masks_203_m_1.png', 'section_masks_203_m_2.png', 'section_masks_203_m_3.png', 'section_masks_203_m_7.png', 'section_masks_203_m_8.png']\n", - "1618/2000 [=======================>......] - ETA: 7:52 - loss: 0.5026 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1870 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0752 - mrcnn_mask_loss: 0.156634\n", - "section_masks_34\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_34.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 34}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - "1619/2000 [=======================>......] - ETA: 7:51 - loss: 0.5026 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1870 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0752 - mrcnn_mask_loss: 0.1566263\n", - "section_masks_263\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_263.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 263}\n", - "['section_masks_263_m_1.png', 'section_masks_263_m_2.png', 'section_masks_263_m_3.png', 'section_masks_263_m_4.png', 'section_masks_263_m_5.png', 'section_masks_263_m_6.png', 'section_masks_263_m_7.png', 'section_masks_263_m_8.png']\n", - "1620/2000 [=======================>......] - ETA: 7:50 - loss: 0.5027 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1870 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0752 - mrcnn_mask_loss: 0.156622\n", - "section_masks_22\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_22.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 22}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - "1621/2000 [=======================>......] - ETA: 7:49 - loss: 0.5026 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1869 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0752 - mrcnn_mask_loss: 0.1566318\n", - "section_masks_318\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_318.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 318}\n", - "['section_masks_318_m_1.png', 'section_masks_318_m_2.png', 'section_masks_318_m_3.png', 'section_masks_318_m_4.png', 'section_masks_318_m_5.png', 'section_masks_318_m_6.png', 'section_masks_318_m_7.png', 'section_masks_318_m_8.png']\n", - "1622/2000 [=======================>......] - ETA: 7:48 - loss: 0.5026 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1869 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0752 - mrcnn_mask_loss: 0.1566236\n", - "section_masks_236\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_236.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 236}\n", - "['section_masks_236_m_1.png', 'section_masks_236_m_2.png', 'section_masks_236_m_5.png', 'section_masks_236_m_7.png', 'section_masks_236_m_8.png']\n", - "1623/2000 [=======================>......] - ETA: 7:46 - loss: 0.5025 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1868 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0751 - mrcnn_mask_loss: 0.1566145\n", - "section_masks_145\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_145.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 145}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - "1624/2000 [=======================>......] - ETA: 7:45 - loss: 0.5025 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1868 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0752 - mrcnn_mask_loss: 0.156649\n", - "section_masks_49\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_49.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 49}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_3.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - "1625/2000 [=======================>......] - ETA: 7:44 - loss: 0.5023 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1867 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0751 - mrcnn_mask_loss: 0.1565313\n", - "section_masks_313\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_313.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 313}\n", - "['section_masks_313_m_1.png', 'section_masks_313_m_2.png', 'section_masks_313_m_3.png', 'section_masks_313_m_4.png', 'section_masks_313_m_5.png', 'section_masks_313_m_6.png', 'section_masks_313_m_7.png', 'section_masks_313_m_8.png']\n", - "1626/2000 [=======================>......] - ETA: 7:43 - loss: 0.5022 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1867 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0751 - mrcnn_mask_loss: 0.1565155\n", - "section_masks_155\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_155.jpg', 'source': 'brain', 'height': 2491, 'width': 3691, 'id': 155}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - "1627/2000 [=======================>......] - ETA: 7:41 - loss: 0.5023 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1868 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0751 - mrcnn_mask_loss: 0.1566106\n", - "section_masks_106\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_106.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 106}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_4.png', 'section_masks_106_m_5.png', 'section_masks_106_m_6.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - "1628/2000 [=======================>......] - ETA: 7:40 - loss: 0.5022 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1867 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0751 - mrcnn_mask_loss: 0.1566319\n", - "section_masks_319\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_319.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 319}\n", - "['section_masks_319_m_1.png', 'section_masks_319_m_2.png', 'section_masks_319_m_3.png', 'section_masks_319_m_4.png', 'section_masks_319_m_5.png', 'section_masks_319_m_6.png', 'section_masks_319_m_7.png', 'section_masks_319_m_8.png']\n", - "1629/2000 [=======================>......] - ETA: 7:39 - loss: 0.5023 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1867 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0751 - mrcnn_mask_loss: 0.1566194\n", - "section_masks_194\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_194.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 194}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_3.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - "1630/2000 [=======================>......] - ETA: 7:38 - loss: 0.5021 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1866 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0751 - mrcnn_mask_loss: 0.156678\n", - "section_masks_78\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_78.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 78}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_3.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - "1631/2000 [=======================>......] - ETA: 7:36 - loss: 0.5020 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1866 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0751 - mrcnn_mask_loss: 0.1566327\n", - "section_masks_327\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_327.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 327}\n", - "['section_masks_327_m_1.png', 'section_masks_327_m_2.png', 'section_masks_327_m_4.png', 'section_masks_327_m_5.png', 'section_masks_327_m_6.png', 'section_masks_327_m_7.png', 'section_masks_327_m_8.png']\n", - "1632/2000 [=======================>......] - ETA: 7:35 - loss: 0.5020 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1866 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0751 - mrcnn_mask_loss: 0.1565267\n", - "section_masks_267\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_267.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 267}\n", - "['section_masks_267_m_1.png', 'section_masks_267_m_2.png', 'section_masks_267_m_3.png', 'section_masks_267_m_4.png', 'section_masks_267_m_5.png', 'section_masks_267_m_6.png', 'section_masks_267_m_7.png', 'section_masks_267_m_8.png']\n", - "1633/2000 [=======================>......] - ETA: 7:34 - loss: 0.5020 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1865 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0751 - mrcnn_mask_loss: 0.156544\n", - "section_masks_44\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_44.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 44}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_3.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - "1634/2000 [=======================>......] - ETA: 7:33 - loss: 0.5018 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1864 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0750 - mrcnn_mask_loss: 0.1565159\n", - "section_masks_159\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_159.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 159}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - "1635/2000 [=======================>......] - ETA: 7:31 - loss: 0.5018 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1864 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0750 - mrcnn_mask_loss: 0.15659\n", - "section_masks_9\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_9.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 9}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - "1636/2000 [=======================>......] - ETA: 7:30 - loss: 0.5019 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1865 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0750 - mrcnn_mask_loss: 0.1565296\n", - "section_masks_296\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_296.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 296}\n", - "['section_masks_296_m_1.png', 'section_masks_296_m_2.png', 'section_masks_296_m_3.png', 'section_masks_296_m_4.png', 'section_masks_296_m_5.png', 'section_masks_296_m_6.png', 'section_masks_296_m_7.png', 'section_masks_296_m_8.png']\n", - "1637/2000 [=======================>......] - ETA: 7:29 - loss: 0.5018 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1865 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0750 - mrcnn_mask_loss: 0.156537\n", - "section_masks_37\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_37.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 37}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - "1638/2000 [=======================>......] - ETA: 7:28 - loss: 0.5020 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1868 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0750 - mrcnn_mask_loss: 0.156591\n", - "section_masks_91\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_91.jpg', 'source': 'brain', 'height': 2095, 'width': 2589, 'id': 91}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_3.png', 'section_masks_91_m_5.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - "1639/2000 [=======================>......] - ETA: 7:26 - loss: 0.5021 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1868 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0750 - mrcnn_mask_loss: 0.1565389\n", - "section_masks_389\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_389.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 389}\n", - "['section_masks_389_m_1.png', 'section_masks_389_m_4.png', 'section_masks_389_m_5.png', 'section_masks_389_m_6.png', 'section_masks_389_m_8.png']\n", - "1640/2000 [=======================>......] - ETA: 7:25 - loss: 0.5020 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1868 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0750 - mrcnn_mask_loss: 0.156540\n", - "section_masks_40\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_40.jpg', 'source': 'brain', 'height': 2578, 'width': 2826, 'id': 40}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_3.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - "1641/2000 [=======================>......] - ETA: 7:24 - loss: 0.5019 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1867 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0750 - mrcnn_mask_loss: 0.1565247\n", - "section_masks_247\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_247.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 247}\n", - "['section_masks_247_m_1.png', 'section_masks_247_m_2.png', 'section_masks_247_m_3.png', 'section_masks_247_m_4.png', 'section_masks_247_m_5.png', 'section_masks_247_m_7.png', 'section_masks_247_m_8.png']\n", - "1642/2000 [=======================>......] - ETA: 7:23 - loss: 0.5020 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1866 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0749 - mrcnn_mask_loss: 0.1565338\n", - "section_masks_338\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_338.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 338}\n", - "['section_masks_338_m_1.png', 'section_masks_338_m_2.png', 'section_masks_338_m_4.png', 'section_masks_338_m_5.png', 'section_masks_338_m_6.png', 'section_masks_338_m_7.png', 'section_masks_338_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1643/2000 [=======================>......] - ETA: 7:21 - loss: 0.5019 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1867 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0749 - mrcnn_mask_loss: 0.1565375\n", - "section_masks_375\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_375.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 375}\n", - "['section_masks_375_m_1.png', 'section_masks_375_m_2.png', 'section_masks_375_m_4.png', 'section_masks_375_m_5.png', 'section_masks_375_m_6.png', 'section_masks_375_m_7.png', 'section_masks_375_m_8.png']\n", - "1644/2000 [=======================>......] - ETA: 7:20 - loss: 0.5018 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1866 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0749 - mrcnn_mask_loss: 0.1565246\n", - "section_masks_246\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_246.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 246}\n", - "['section_masks_246_m_1.png', 'section_masks_246_m_2.png', 'section_masks_246_m_3.png', 'section_masks_246_m_4.png', 'section_masks_246_m_5.png', 'section_masks_246_m_7.png', 'section_masks_246_m_8.png']\n", - "1645/2000 [=======================>......] - ETA: 7:19 - loss: 0.5017 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1865 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0749 - mrcnn_mask_loss: 0.1565259\n", - "section_masks_259\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_259.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 259}\n", - "['section_masks_259_m_1.png', 'section_masks_259_m_2.png', 'section_masks_259_m_3.png', 'section_masks_259_m_4.png', 'section_masks_259_m_5.png', 'section_masks_259_m_7.png', 'section_masks_259_m_8.png']\n", - "1646/2000 [=======================>......] - ETA: 7:18 - loss: 0.5017 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1865 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0749 - mrcnn_mask_loss: 0.1565382\n", - "section_masks_382\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_382.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 382}\n", - "['section_masks_382_m_1.png', 'section_masks_382_m_4.png', 'section_masks_382_m_5.png', 'section_masks_382_m_6.png', 'section_masks_382_m_8.png']\n", - "1647/2000 [=======================>......] - ETA: 7:16 - loss: 0.5016 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1865 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1565276\n", - "section_masks_276\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_276.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 276}\n", - "['section_masks_276_m_1.png', 'section_masks_276_m_2.png', 'section_masks_276_m_3.png', 'section_masks_276_m_4.png', 'section_masks_276_m_5.png', 'section_masks_276_m_6.png', 'section_masks_276_m_7.png', 'section_masks_276_m_8.png']\n", - "1648/2000 [=======================>......] - ETA: 7:15 - loss: 0.5017 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1865 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1565107\n", - "section_masks_107\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_107.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 107}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_4.png', 'section_masks_107_m_5.png', 'section_masks_107_m_6.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n", - "1649/2000 [=======================>......] - ETA: 7:14 - loss: 0.5016 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1864 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0749 - mrcnn_mask_loss: 0.156580\n", - "section_masks_80\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_80.jpg', 'source': 'brain', 'height': 2749, 'width': 3055, 'id': 80}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_3.png', 'section_masks_80_m_5.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - "1650/2000 [=======================>......] - ETA: 7:13 - loss: 0.5017 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1864 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0749 - mrcnn_mask_loss: 0.156592\n", - "section_masks_92\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_92.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 92}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_3.png', 'section_masks_92_m_5.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - "1651/2000 [=======================>......] - ETA: 7:11 - loss: 0.5016 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1864 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0749 - mrcnn_mask_loss: 0.1565306\n", - "section_masks_306\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_306.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 306}\n", - "['section_masks_306_m_1.png', 'section_masks_306_m_2.png', 'section_masks_306_m_3.png', 'section_masks_306_m_4.png', 'section_masks_306_m_5.png', 'section_masks_306_m_6.png', 'section_masks_306_m_7.png', 'section_masks_306_m_8.png']\n", - "1652/2000 [=======================>......] - ETA: 7:10 - loss: 0.5017 - rpn_class_loss: 0.0058 - rpn_bbox_loss: 0.1865 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0749 - mrcnn_mask_loss: 0.1565198\n", - "section_masks_198\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_198.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 198}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_3.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - "1653/2000 [=======================>......] - ETA: 7:09 - loss: 0.5016 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1864 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0749 - mrcnn_mask_loss: 0.15655\n", - "section_masks_5\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_5.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 5}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - "1654/2000 [=======================>......] - ETA: 7:08 - loss: 0.5015 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1564235\n", - "section_masks_235\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_235.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 235}\n", - "['section_masks_235_m_1.png', 'section_masks_235_m_2.png', 'section_masks_235_m_5.png', 'section_masks_235_m_7.png', 'section_masks_235_m_8.png']\n", - "1655/2000 [=======================>......] - ETA: 7:06 - loss: 0.5013 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.156450\n", - "section_masks_50\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_50.jpg', 'source': 'brain', 'height': 1900, 'width': 2316, 'id': 50}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_3.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - "1656/2000 [=======================>......] - ETA: 7:05 - loss: 0.5013 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1862 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1564149\n", - "section_masks_149\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_149.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 149}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - "1657/2000 [=======================>......] - ETA: 7:04 - loss: 0.5014 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.156338\n", - "section_masks_38\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_38.jpg', 'source': 'brain', 'height': 2321, 'width': 2568, 'id': 38}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1658/2000 [=======================>......] - ETA: 7:03 - loss: 0.5015 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1865 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.156433\n", - "section_masks_33\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_33.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 33}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - "1659/2000 [=======================>......] - ETA: 7:01 - loss: 0.5014 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1864 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1563377\n", - "section_masks_377\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_377.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 377}\n", - "['section_masks_377_m_1.png', 'section_masks_377_m_2.png', 'section_masks_377_m_4.png', 'section_masks_377_m_5.png', 'section_masks_377_m_6.png', 'section_masks_377_m_7.png', 'section_masks_377_m_8.png']\n", - "1660/2000 [=======================>......] - ETA: 7:00 - loss: 0.5015 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1864 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1564250\n", - "section_masks_250\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_250.jpg', 'source': 'brain', 'height': 1848, 'width': 2868, 'id': 250}\n", - "['section_masks_250_m_1.png', 'section_masks_250_m_2.png', 'section_masks_250_m_3.png', 'section_masks_250_m_4.png', 'section_masks_250_m_5.png', 'section_masks_250_m_7.png', 'section_masks_250_m_8.png']\n", - "1661/2000 [=======================>......] - ETA: 6:59 - loss: 0.5014 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1864 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1563353\n", - "section_masks_353\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_353.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 353}\n", - "['section_masks_353_m_1.png', 'section_masks_353_m_2.png', 'section_masks_353_m_4.png', 'section_masks_353_m_5.png', 'section_masks_353_m_6.png', 'section_masks_353_m_7.png', 'section_masks_353_m_8.png']\n", - "1662/2000 [=======================>......] - ETA: 6:58 - loss: 0.5013 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1563330\n", - "section_masks_330\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_330.jpg', 'source': 'brain', 'height': 2128, 'width': 3824, 'id': 330}\n", - "['section_masks_330_m_1.png', 'section_masks_330_m_2.png', 'section_masks_330_m_4.png', 'section_masks_330_m_5.png', 'section_masks_330_m_6.png', 'section_masks_330_m_7.png', 'section_masks_330_m_8.png']\n", - "1663/2000 [=======================>......] - ETA: 6:56 - loss: 0.5012 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1563255\n", - "section_masks_255\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_255.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 255}\n", - "['section_masks_255_m_1.png', 'section_masks_255_m_2.png', 'section_masks_255_m_3.png', 'section_masks_255_m_4.png', 'section_masks_255_m_5.png', 'section_masks_255_m_7.png', 'section_masks_255_m_8.png']\n", - "1664/2000 [=======================>......] - ETA: 6:55 - loss: 0.5013 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1563251\n", - "section_masks_251\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_251.jpg', 'source': 'brain', 'height': 1947, 'width': 2931, 'id': 251}\n", - "['section_masks_251_m_1.png', 'section_masks_251_m_2.png', 'section_masks_251_m_3.png', 'section_masks_251_m_4.png', 'section_masks_251_m_5.png', 'section_masks_251_m_7.png', 'section_masks_251_m_8.png']\n", - "1665/2000 [=======================>......] - ETA: 6:54 - loss: 0.5012 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1563154\n", - "section_masks_154\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_154.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 154}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - "1666/2000 [=======================>......] - ETA: 6:53 - loss: 0.5011 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.156339\n", - "section_masks_39\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_39.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 39}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - "1667/2000 [========================>.....] - ETA: 6:51 - loss: 0.5012 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1564357\n", - "section_masks_357\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_357.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 357}\n", - "['section_masks_357_m_1.png', 'section_masks_357_m_2.png', 'section_masks_357_m_4.png', 'section_masks_357_m_5.png', 'section_masks_357_m_6.png', 'section_masks_357_m_7.png', 'section_masks_357_m_8.png']\n", - "1668/2000 [========================>.....] - ETA: 6:50 - loss: 0.5013 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1864 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1564386\n", - "section_masks_386\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_386.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 386}\n", - "['section_masks_386_m_1.png', 'section_masks_386_m_4.png', 'section_masks_386_m_5.png', 'section_masks_386_m_6.png', 'section_masks_386_m_8.png']\n", - "1669/2000 [========================>.....] - ETA: 6:49 - loss: 0.5011 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563365\n", - "section_masks_365\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_365.jpg', 'source': 'brain', 'height': 2970, 'width': 4112, 'id': 365}\n", - "['section_masks_365_m_1.png', 'section_masks_365_m_2.png', 'section_masks_365_m_4.png', 'section_masks_365_m_5.png', 'section_masks_365_m_6.png', 'section_masks_365_m_7.png', 'section_masks_365_m_8.png']\n", - "1670/2000 [========================>.....] - ETA: 6:48 - loss: 0.5011 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563153\n", - "section_masks_153\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_153.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 153}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - "1671/2000 [========================>.....] - ETA: 6:46 - loss: 0.5013 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1864 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563260\n", - "section_masks_260\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_260.jpg', 'source': 'brain', 'height': 2946, 'width': 3740, 'id': 260}\n", - "['section_masks_260_m_1.png', 'section_masks_260_m_2.png', 'section_masks_260_m_3.png', 'section_masks_260_m_4.png', 'section_masks_260_m_5.png', 'section_masks_260_m_6.png', 'section_masks_260_m_7.png', 'section_masks_260_m_8.png']\n", - "1672/2000 [========================>.....] - ETA: 6:45 - loss: 0.5014 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1564169\n", - "section_masks_169\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_169.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 169}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_8.png']\n", - "1673/2000 [========================>.....] - ETA: 6:44 - loss: 0.5014 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1563102\n", - "section_masks_102\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_102.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 102}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_4.png', 'section_masks_102_m_5.png', 'section_masks_102_m_6.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - "1674/2000 [========================>.....] - ETA: 6:43 - loss: 0.5014 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1862 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.156458\n", - "section_masks_58\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_58.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 58}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_3.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - "1675/2000 [========================>.....] - ETA: 6:41 - loss: 0.5014 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0748 - mrcnn_mask_loss: 0.1563336\n", - "section_masks_336\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_336.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 336}\n", - "['section_masks_336_m_1.png', 'section_masks_336_m_2.png', 'section_masks_336_m_4.png', 'section_masks_336_m_5.png', 'section_masks_336_m_6.png', 'section_masks_336_m_7.png', 'section_masks_336_m_8.png']\n", - "1676/2000 [========================>.....] - ETA: 6:40 - loss: 0.5013 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1863 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563376\n", - "section_masks_376\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_376.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 376}\n", - "['section_masks_376_m_1.png', 'section_masks_376_m_2.png', 'section_masks_376_m_4.png', 'section_masks_376_m_5.png', 'section_masks_376_m_6.png', 'section_masks_376_m_7.png', 'section_masks_376_m_8.png']\n", - "1677/2000 [========================>.....] - ETA: 6:39 - loss: 0.5012 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1862 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563187\n", - "section_masks_187\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_187.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 187}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_3.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - "1678/2000 [========================>.....] - ETA: 6:38 - loss: 0.5010 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1861 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563233\n", - "section_masks_233\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_233.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 233}\n", - "['section_masks_233_m_1.png', 'section_masks_233_m_2.png', 'section_masks_233_m_5.png', 'section_masks_233_m_7.png', 'section_masks_233_m_8.png']\n", - "1679/2000 [========================>.....] - ETA: 6:37 - loss: 0.5010 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1860 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563317\n", - "section_masks_317\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_317.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 317}\n", - "['section_masks_317_m_1.png', 'section_masks_317_m_2.png', 'section_masks_317_m_3.png', 'section_masks_317_m_4.png', 'section_masks_317_m_5.png', 'section_masks_317_m_6.png', 'section_masks_317_m_7.png', 'section_masks_317_m_8.png']\n", - "1680/2000 [========================>.....] - ETA: 6:35 - loss: 0.5010 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1860 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563305\n", - "section_masks_305\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_305.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 305}\n", - "['section_masks_305_m_1.png', 'section_masks_305_m_2.png', 'section_masks_305_m_3.png', 'section_masks_305_m_4.png', 'section_masks_305_m_5.png', 'section_masks_305_m_6.png', 'section_masks_305_m_7.png', 'section_masks_305_m_8.png']\n", - "1681/2000 [========================>.....] - ETA: 6:34 - loss: 0.5011 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1860 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563193\n", - "section_masks_193\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_193.jpg', 'source': 'brain', 'height': 1910, 'width': 2451, 'id': 193}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_3.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - "1682/2000 [========================>.....] - ETA: 6:33 - loss: 0.5009 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1859 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.156331\n", - "section_masks_31\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_31.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 31}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - "1683/2000 [========================>.....] - ETA: 6:32 - loss: 0.5008 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1859 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563325\n", - "section_masks_325\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_325.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 325}\n", - "['section_masks_325_m_1.png', 'section_masks_325_m_2.png', 'section_masks_325_m_4.png', 'section_masks_325_m_5.png', 'section_masks_325_m_6.png', 'section_masks_325_m_7.png', 'section_masks_325_m_8.png']\n", - "1684/2000 [========================>.....] - ETA: 6:30 - loss: 0.5008 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1858 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563219\n", - "section_masks_219\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_219.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 219}\n", - "['section_masks_219_m_1.png', 'section_masks_219_m_2.png', 'section_masks_219_m_3.png', 'section_masks_219_m_7.png', 'section_masks_219_m_8.png']\n", - "1685/2000 [========================>.....] - ETA: 6:29 - loss: 0.5007 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1858 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563286\n", - "section_masks_286\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_286.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 286}\n", - "['section_masks_286_m_1.png', 'section_masks_286_m_2.png', 'section_masks_286_m_3.png', 'section_masks_286_m_4.png', 'section_masks_286_m_5.png', 'section_masks_286_m_6.png', 'section_masks_286_m_7.png', 'section_masks_286_m_8.png']\n", - "1686/2000 [========================>.....] - ETA: 6:28 - loss: 0.5007 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1858 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563241\n", - "section_masks_241\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_241.jpg', 'source': 'brain', 'height': 2644, 'width': 3299, 'id': 241}\n", - "['section_masks_241_m_1.png', 'section_masks_241_m_2.png', 'section_masks_241_m_3.png', 'section_masks_241_m_4.png', 'section_masks_241_m_5.png', 'section_masks_241_m_7.png', 'section_masks_241_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1687/2000 [========================>.....] - ETA: 6:27 - loss: 0.5007 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.15641\n", - "section_masks_1\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_1.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 1}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - "1688/2000 [========================>.....] - ETA: 6:25 - loss: 0.5007 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563127\n", - "section_masks_127\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_127.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 127}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_4.png', 'section_masks_127_m_5.png', 'section_masks_127_m_6.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - "1689/2000 [========================>.....] - ETA: 6:24 - loss: 0.5007 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1564177\n", - "section_masks_177\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_177.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 177}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_8.png']\n", - "1690/2000 [========================>.....] - ETA: 6:23 - loss: 0.5006 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563109\n", - "section_masks_109\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_109.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 109}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_4.png', 'section_masks_109_m_5.png', 'section_masks_109_m_6.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - "1691/2000 [========================>.....] - ETA: 6:22 - loss: 0.5006 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.156470\n", - "section_masks_70\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_70.jpg', 'source': 'brain', 'height': 1824, 'width': 2480, 'id': 70}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_3.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - "1692/2000 [========================>.....] - ETA: 6:20 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0747 - mrcnn_mask_loss: 0.1563298\n", - "section_masks_298\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_298.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 298}\n", - "['section_masks_298_m_1.png', 'section_masks_298_m_2.png', 'section_masks_298_m_3.png', 'section_masks_298_m_4.png', 'section_masks_298_m_5.png', 'section_masks_298_m_6.png', 'section_masks_298_m_7.png', 'section_masks_298_m_8.png']\n", - "1693/2000 [========================>.....] - ETA: 6:19 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1563240\n", - "section_masks_240\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_240.jpg', 'source': 'brain', 'height': 2718, 'width': 3327, 'id': 240}\n", - "['section_masks_240_m_1.png', 'section_masks_240_m_2.png', 'section_masks_240_m_3.png', 'section_masks_240_m_4.png', 'section_masks_240_m_5.png', 'section_masks_240_m_7.png', 'section_masks_240_m_8.png']\n", - "1694/2000 [========================>.....] - ETA: 6:18 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1563183\n", - "section_masks_183\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_183.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 183}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_3.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - "1695/2000 [========================>.....] - ETA: 6:17 - loss: 0.5003 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1563248\n", - "section_masks_248\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_248.jpg', 'source': 'brain', 'height': 2044, 'width': 2990, 'id': 248}\n", - "['section_masks_248_m_1.png', 'section_masks_248_m_2.png', 'section_masks_248_m_3.png', 'section_masks_248_m_4.png', 'section_masks_248_m_5.png', 'section_masks_248_m_7.png', 'section_masks_248_m_8.png']\n", - "1696/2000 [========================>.....] - ETA: 6:15 - loss: 0.5003 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1564129\n", - "section_masks_129\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_129.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 129}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_4.png', 'section_masks_129_m_5.png', 'section_masks_129_m_6.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - "1697/2000 [========================>.....] - ETA: 6:14 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.156411\n", - "section_masks_11\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_11.jpg', 'source': 'brain', 'height': 1790, 'width': 2091, 'id': 11}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - "1698/2000 [========================>.....] - ETA: 6:13 - loss: 0.5002 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1564284\n", - "section_masks_284\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_284.jpg', 'source': 'brain', 'height': 2876, 'width': 3899, 'id': 284}\n", - "['section_masks_284_m_1.png', 'section_masks_284_m_2.png', 'section_masks_284_m_3.png', 'section_masks_284_m_4.png', 'section_masks_284_m_5.png', 'section_masks_284_m_6.png', 'section_masks_284_m_7.png', 'section_masks_284_m_8.png']\n", - "1699/2000 [========================>.....] - ETA: 6:12 - loss: 0.5003 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1564275\n", - "section_masks_275\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_275.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 275}\n", - "['section_masks_275_m_1.png', 'section_masks_275_m_2.png', 'section_masks_275_m_3.png', 'section_masks_275_m_4.png', 'section_masks_275_m_5.png', 'section_masks_275_m_6.png', 'section_masks_275_m_7.png', 'section_masks_275_m_8.png']\n", - "1700/2000 [========================>.....] - ETA: 6:10 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1564302\n", - "section_masks_302\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_302.jpg', 'source': 'brain', 'height': 3119, 'width': 4169, 'id': 302}\n", - "['section_masks_302_m_1.png', 'section_masks_302_m_2.png', 'section_masks_302_m_3.png', 'section_masks_302_m_4.png', 'section_masks_302_m_5.png', 'section_masks_302_m_6.png', 'section_masks_302_m_7.png', 'section_masks_302_m_8.png']\n", - "1701/2000 [========================>.....] - ETA: 6:09 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.156421\n", - "section_masks_21\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_21.jpg', 'source': 'brain', 'height': 2375, 'width': 2606, 'id': 21}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - "1702/2000 [========================>.....] - ETA: 6:08 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.156472\n", - "section_masks_72\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_72.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 72}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_3.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - "1703/2000 [========================>.....] - ETA: 6:07 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1564312\n", - "section_masks_312\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_312.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 312}\n", - "['section_masks_312_m_1.png', 'section_masks_312_m_2.png', 'section_masks_312_m_3.png', 'section_masks_312_m_4.png', 'section_masks_312_m_5.png', 'section_masks_312_m_6.png', 'section_masks_312_m_7.png', 'section_masks_312_m_8.png']\n", - "1704/2000 [========================>.....] - ETA: 6:05 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1564256\n", - "section_masks_256\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_256.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 256}\n", - "['section_masks_256_m_1.png', 'section_masks_256_m_2.png', 'section_masks_256_m_3.png', 'section_masks_256_m_4.png', 'section_masks_256_m_5.png', 'section_masks_256_m_7.png', 'section_masks_256_m_8.png']\n", - "1705/2000 [========================>.....] - ETA: 6:04 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1564291\n", - "section_masks_291\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_291.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 291}\n", - "['section_masks_291_m_1.png', 'section_masks_291_m_2.png', 'section_masks_291_m_3.png', 'section_masks_291_m_4.png', 'section_masks_291_m_5.png', 'section_masks_291_m_6.png', 'section_masks_291_m_7.png', 'section_masks_291_m_8.png']\n", - "1706/2000 [========================>.....] - ETA: 6:03 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1563271\n", - "section_masks_271\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_271.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 271}\n", - "['section_masks_271_m_1.png', 'section_masks_271_m_2.png', 'section_masks_271_m_3.png', 'section_masks_271_m_4.png', 'section_masks_271_m_5.png', 'section_masks_271_m_6.png', 'section_masks_271_m_7.png', 'section_masks_271_m_8.png']\n", - "1707/2000 [========================>.....] - ETA: 6:02 - loss: 0.5003 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0746 - mrcnn_mask_loss: 0.1563180\n", - "section_masks_180\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_180.jpg', 'source': 'brain', 'height': 2361, 'width': 2725, 'id': 180}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_3.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - "1708/2000 [========================>.....] - ETA: 6:00 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563388\n", - "section_masks_388\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_388.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 388}\n", - "['section_masks_388_m_1.png', 'section_masks_388_m_4.png', 'section_masks_388_m_5.png', 'section_masks_388_m_6.png', 'section_masks_388_m_8.png']\n", - "1709/2000 [========================>.....] - ETA: 5:59 - loss: 0.5003 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563258\n", - "section_masks_258\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_258.jpg', 'source': 'brain', 'height': 2567, 'width': 3267, 'id': 258}\n", - "['section_masks_258_m_1.png', 'section_masks_258_m_2.png', 'section_masks_258_m_3.png', 'section_masks_258_m_4.png', 'section_masks_258_m_5.png', 'section_masks_258_m_7.png', 'section_masks_258_m_8.png']\n", - "1710/2000 [========================>.....] - ETA: 5:58 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563397\n", - "section_masks_397\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_397.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 397}\n", - "['section_masks_397_m_1.png', 'section_masks_397_m_4.png', 'section_masks_397_m_5.png', 'section_masks_397_m_6.png', 'section_masks_397_m_8.png']\n", - "1711/2000 [========================>.....] - ETA: 5:57 - loss: 0.5003 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563227\n", - "section_masks_227\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_227.jpg', 'source': 'brain', 'height': 2101, 'width': 2877, 'id': 227}\n", - "['section_masks_227_m_1.png', 'section_masks_227_m_2.png', 'section_masks_227_m_5.png', 'section_masks_227_m_7.png', 'section_masks_227_m_8.png']\n", - "1712/2000 [========================>.....] - ETA: 5:55 - loss: 0.5002 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563114\n", - "section_masks_114\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_114.jpg', 'source': 'brain', 'height': 2453, 'width': 3362, 'id': 114}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_4.png', 'section_masks_114_m_5.png', 'section_masks_114_m_6.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - "1713/2000 [========================>.....] - ETA: 5:54 - loss: 0.5001 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1854 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.156387\n", - "section_masks_87\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_87.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 87}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_3.png', 'section_masks_87_m_5.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - "1714/2000 [========================>.....] - ETA: 5:53 - loss: 0.5001 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1854 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563135\n", - "section_masks_135\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_135.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 135}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_4.png', 'section_masks_135_m_5.png', 'section_masks_135_m_6.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - "1715/2000 [========================>.....] - ETA: 5:52 - loss: 0.5003 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563290\n", - "section_masks_290\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_290.jpg', 'source': 'brain', 'height': 2192, 'width': 3520, 'id': 290}\n", - "['section_masks_290_m_1.png', 'section_masks_290_m_2.png', 'section_masks_290_m_3.png', 'section_masks_290_m_4.png', 'section_masks_290_m_5.png', 'section_masks_290_m_6.png', 'section_masks_290_m_7.png', 'section_masks_290_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1716/2000 [========================>.....] - ETA: 5:50 - loss: 0.5002 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563121\n", - "section_masks_121\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_121.jpg', 'source': 'brain', 'height': 3221, 'width': 4300, 'id': 121}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_4.png', 'section_masks_121_m_5.png', 'section_masks_121_m_6.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - "1717/2000 [========================>.....] - ETA: 5:49 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563185\n", - "section_masks_185\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_185.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 185}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_3.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - "1718/2000 [========================>.....] - ETA: 5:48 - loss: 0.5003 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563147\n", - "section_masks_147\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_147.jpg', 'source': 'brain', 'height': 2274, 'width': 3591, 'id': 147}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - "1719/2000 [========================>.....] - ETA: 5:47 - loss: 0.5003 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563287\n", - "section_masks_287\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_287.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 287}\n", - "['section_masks_287_m_1.png', 'section_masks_287_m_2.png', 'section_masks_287_m_3.png', 'section_masks_287_m_4.png', 'section_masks_287_m_5.png', 'section_masks_287_m_6.png', 'section_masks_287_m_7.png', 'section_masks_287_m_8.png']\n", - "1720/2000 [========================>.....] - ETA: 5:45 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563310\n", - "section_masks_310\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_310.jpg', 'source': 'brain', 'height': 2180, 'width': 3712, 'id': 310}\n", - "['section_masks_310_m_1.png', 'section_masks_310_m_2.png', 'section_masks_310_m_3.png', 'section_masks_310_m_4.png', 'section_masks_310_m_5.png', 'section_masks_310_m_6.png', 'section_masks_310_m_7.png', 'section_masks_310_m_8.png']\n", - "1721/2000 [========================>.....] - ETA: 5:44 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563340\n", - "section_masks_340\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_340.jpg', 'source': 'brain', 'height': 3421, 'width': 4311, 'id': 340}\n", - "['section_masks_340_m_1.png', 'section_masks_340_m_2.png', 'section_masks_340_m_4.png', 'section_masks_340_m_5.png', 'section_masks_340_m_6.png', 'section_masks_340_m_7.png', 'section_masks_340_m_8.png']\n", - "1722/2000 [========================>.....] - ETA: 5:43 - loss: 0.5007 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1859 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563100\n", - "section_masks_100\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_100.jpg', 'source': 'brain', 'height': 2980, 'width': 3619, 'id': 100}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_4.png', 'section_masks_100_m_5.png', 'section_masks_100_m_6.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - "1723/2000 [========================>.....] - ETA: 5:42 - loss: 0.5007 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1859 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563391\n", - "section_masks_391\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_391.jpg', 'source': 'brain', 'height': 2119, 'width': 4411, 'id': 391}\n", - "['section_masks_391_m_1.png', 'section_masks_391_m_4.png', 'section_masks_391_m_5.png', 'section_masks_391_m_6.png', 'section_masks_391_m_8.png']\n", - "1724/2000 [========================>.....] - ETA: 5:40 - loss: 0.5007 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1859 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563282\n", - "section_masks_282\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_282.jpg', 'source': 'brain', 'height': 3078, 'width': 3988, 'id': 282}\n", - "['section_masks_282_m_1.png', 'section_masks_282_m_2.png', 'section_masks_282_m_3.png', 'section_masks_282_m_4.png', 'section_masks_282_m_5.png', 'section_masks_282_m_6.png', 'section_masks_282_m_7.png', 'section_masks_282_m_8.png']\n", - "1725/2000 [========================>.....] - ETA: 5:39 - loss: 0.5007 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1860 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563264\n", - "section_masks_264\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_264.jpg', 'source': 'brain', 'height': 2582, 'width': 3605, 'id': 264}\n", - "['section_masks_264_m_1.png', 'section_masks_264_m_2.png', 'section_masks_264_m_3.png', 'section_masks_264_m_4.png', 'section_masks_264_m_5.png', 'section_masks_264_m_6.png', 'section_masks_264_m_7.png', 'section_masks_264_m_8.png']\n", - "1726/2000 [========================>.....] - ETA: 5:38 - loss: 0.5007 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1859 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563341\n", - "section_masks_341\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_341.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 341}\n", - "['section_masks_341_m_1.png', 'section_masks_341_m_2.png', 'section_masks_341_m_4.png', 'section_masks_341_m_5.png', 'section_masks_341_m_6.png', 'section_masks_341_m_7.png', 'section_masks_341_m_8.png']\n", - "1727/2000 [========================>.....] - ETA: 5:37 - loss: 0.5006 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1859 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.156310\n", - "section_masks_10\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_10.jpg', 'source': 'brain', 'height': 1720, 'width': 2032, 'id': 10}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - "1728/2000 [========================>.....] - ETA: 5:36 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1858 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.156320\n", - "section_masks_20\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_20.jpg', 'source': 'brain', 'height': 2425, 'width': 2640, 'id': 20}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - "1729/2000 [========================>.....] - ETA: 5:34 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1858 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563277\n", - "section_masks_277\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_277.jpg', 'source': 'brain', 'height': 2678, 'width': 3645, 'id': 277}\n", - "['section_masks_277_m_1.png', 'section_masks_277_m_2.png', 'section_masks_277_m_3.png', 'section_masks_277_m_4.png', 'section_masks_277_m_5.png', 'section_masks_277_m_6.png', 'section_masks_277_m_7.png', 'section_masks_277_m_8.png']\n", - "1730/2000 [========================>.....] - ETA: 5:33 - loss: 0.5006 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1859 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563268\n", - "section_masks_268\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_268.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 268}\n", - "['section_masks_268_m_1.png', 'section_masks_268_m_2.png', 'section_masks_268_m_3.png', 'section_masks_268_m_4.png', 'section_masks_268_m_5.png', 'section_masks_268_m_6.png', 'section_masks_268_m_7.png', 'section_masks_268_m_8.png']\n", - "1731/2000 [========================>.....] - ETA: 5:32 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1858 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563142\n", - "section_masks_142\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_142.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 142}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - "1732/2000 [========================>.....] - ETA: 5:31 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1858 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.156388\n", - "section_masks_88\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_88.jpg', 'source': 'brain', 'height': 2179, 'width': 2654, 'id': 88}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_3.png', 'section_masks_88_m_5.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - "1733/2000 [========================>.....] - ETA: 5:29 - loss: 0.5006 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1858 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0745 - mrcnn_mask_loss: 0.1563234\n", - "section_masks_234\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_234.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 234}\n", - "['section_masks_234_m_1.png', 'section_masks_234_m_2.png', 'section_masks_234_m_5.png', 'section_masks_234_m_7.png', 'section_masks_234_m_8.png']\n", - "1734/2000 [=========================>....] - ETA: 5:28 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1858 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563308\n", - "section_masks_308\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_308.jpg', 'source': 'brain', 'height': 2434, 'width': 3855, 'id': 308}\n", - "['section_masks_308_m_1.png', 'section_masks_308_m_2.png', 'section_masks_308_m_3.png', 'section_masks_308_m_4.png', 'section_masks_308_m_5.png', 'section_masks_308_m_6.png', 'section_masks_308_m_7.png', 'section_masks_308_m_8.png']\n", - "1735/2000 [=========================>....] - ETA: 5:27 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.156326\n", - "section_masks_26\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_26.jpg', 'source': 'brain', 'height': 2079, 'width': 2385, 'id': 26}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - "1736/2000 [=========================>....] - ETA: 5:26 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1858 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563184\n", - "section_masks_184\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_184.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 184}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_3.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - "1737/2000 [=========================>....] - ETA: 5:24 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563144\n", - "section_masks_144\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_144.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 144}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - "1738/2000 [=========================>....] - ETA: 5:23 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563186\n", - "section_masks_186\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_186.jpg', 'source': 'brain', 'height': 1982, 'width': 2500, 'id': 186}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_3.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - "1739/2000 [=========================>....] - ETA: 5:22 - loss: 0.5002 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563280\n", - "section_masks_280\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_280.jpg', 'source': 'brain', 'height': 3264, 'width': 4058, 'id': 280}\n", - "['section_masks_280_m_1.png', 'section_masks_280_m_2.png', 'section_masks_280_m_3.png', 'section_masks_280_m_4.png', 'section_masks_280_m_5.png', 'section_masks_280_m_6.png', 'section_masks_280_m_7.png', 'section_masks_280_m_8.png']\n", - "1740/2000 [=========================>....] - ETA: 5:21 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563321\n", - "section_masks_321\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_321.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 321}\n", - "['section_masks_321_m_1.png', 'section_masks_321_m_2.png', 'section_masks_321_m_4.png', 'section_masks_321_m_5.png', 'section_masks_321_m_6.png', 'section_masks_321_m_7.png', 'section_masks_321_m_8.png']\n", - "1741/2000 [=========================>....] - ETA: 5:19 - loss: 0.5005 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563217\n", - "section_masks_217\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_217.jpg', 'source': 'brain', 'height': 2344, 'width': 2889, 'id': 217}\n", - "['section_masks_217_m_1.png', 'section_masks_217_m_2.png', 'section_masks_217_m_3.png', 'section_masks_217_m_7.png', 'section_masks_217_m_8.png']\n", - "1742/2000 [=========================>....] - ETA: 5:18 - loss: 0.5004 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0783 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.156318\n", - "section_masks_18\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_18.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 18}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - "1743/2000 [=========================>....] - ETA: 5:17 - loss: 0.5003 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563226\n", - "section_masks_226\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_226.jpg', 'source': 'brain', 'height': 2186, 'width': 2929, 'id': 226}\n", - "['section_masks_226_m_1.png', 'section_masks_226_m_2.png', 'section_masks_226_m_5.png', 'section_masks_226_m_7.png', 'section_masks_226_m_8.png']\n", - "1744/2000 [=========================>....] - ETA: 5:16 - loss: 0.5002 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563362\n", - "section_masks_362\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_362.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 362}\n", - "['section_masks_362_m_1.png', 'section_masks_362_m_2.png', 'section_masks_362_m_4.png', 'section_masks_362_m_5.png', 'section_masks_362_m_6.png', 'section_masks_362_m_7.png', 'section_masks_362_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1745/2000 [=========================>....] - ETA: 5:14 - loss: 0.5002 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.156341\n", - "section_masks_41\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_41.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 41}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_3.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - "1746/2000 [=========================>....] - ETA: 5:13 - loss: 0.5001 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.1563131\n", - "section_masks_131\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_131.jpg', 'source': 'brain', 'height': 2277, 'width': 3897, 'id': 131}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_4.png', 'section_masks_131_m_5.png', 'section_masks_131_m_6.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - "1747/2000 [=========================>....] - ETA: 5:12 - loss: 0.5002 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1857 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.1563358\n", - "section_masks_358\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_358.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 358}\n", - "['section_masks_358_m_1.png', 'section_masks_358_m_2.png', 'section_masks_358_m_4.png', 'section_masks_358_m_5.png', 'section_masks_358_m_6.png', 'section_masks_358_m_7.png', 'section_masks_358_m_8.png']\n", - "1748/2000 [=========================>....] - ETA: 5:11 - loss: 0.5002 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.1563343\n", - "section_masks_343\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_343.jpg', 'source': 'brain', 'height': 3114, 'width': 4198, 'id': 343}\n", - "['section_masks_343_m_1.png', 'section_masks_343_m_2.png', 'section_masks_343_m_4.png', 'section_masks_343_m_5.png', 'section_masks_343_m_6.png', 'section_masks_343_m_7.png', 'section_masks_343_m_8.png']\n", - "1749/2000 [=========================>....] - ETA: 5:09 - loss: 0.5002 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.1563175\n", - "section_masks_175\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_175.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 175}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_8.png']\n", - "1750/2000 [=========================>....] - ETA: 5:08 - loss: 0.5001 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1856 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563104\n", - "section_masks_104\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_104.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 104}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_4.png', 'section_masks_104_m_5.png', 'section_masks_104_m_6.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - "1751/2000 [=========================>....] - ETA: 5:07 - loss: 0.5001 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563334\n", - "section_masks_334\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_334.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 334}\n", - "['section_masks_334_m_1.png', 'section_masks_334_m_2.png', 'section_masks_334_m_4.png', 'section_masks_334_m_5.png', 'section_masks_334_m_6.png', 'section_masks_334_m_7.png', 'section_masks_334_m_8.png']\n", - "1752/2000 [=========================>....] - ETA: 5:06 - loss: 0.5000 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1855 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.15630\n", - "section_masks_0\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_0.jpg', 'source': 'brain', 'height': 2311, 'width': 2498, 'id': 0}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n", - "1753/2000 [=========================>....] - ETA: 5:05 - loss: 0.4999 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1854 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.1563164\n", - "section_masks_164\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_164.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 164}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_8.png']\n", - "1754/2000 [=========================>....] - ETA: 5:03 - loss: 0.4999 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1854 - mrcnn_class_loss: 0.0782 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.1563197\n", - "section_masks_197\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_197.jpg', 'source': 'brain', 'height': 2184, 'width': 2627, 'id': 197}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_3.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - "1755/2000 [=========================>....] - ETA: 5:02 - loss: 0.4998 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1853 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0744 - mrcnn_mask_loss: 0.156379\n", - "section_masks_79\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_79.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 79}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_3.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - "1756/2000 [=========================>....] - ETA: 5:01 - loss: 0.4997 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1852 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.1563143\n", - "section_masks_143\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_143.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 143}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - "1757/2000 [=========================>....] - ETA: 5:00 - loss: 0.4997 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1852 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.156354\n", - "section_masks_54\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_54.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 54}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_3.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - "1758/2000 [=========================>....] - ETA: 4:58 - loss: 0.4995 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1851 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.1563381\n", - "section_masks_381\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_381.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 381}\n", - "['section_masks_381_m_1.png', 'section_masks_381_m_4.png', 'section_masks_381_m_5.png', 'section_masks_381_m_6.png', 'section_masks_381_m_8.png']\n", - "1759/2000 [=========================>....] - ETA: 4:57 - loss: 0.4996 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1853 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.1563163\n", - "section_masks_163\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_163.jpg', 'source': 'brain', 'height': 2872, 'width': 3781, 'id': 163}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1760/2000 [=========================>....] - ETA: 4:56 - loss: 0.4996 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1853 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.1563396\n", - "section_masks_396\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_396.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 396}\n", - "['section_masks_396_m_1.png', 'section_masks_396_m_4.png', 'section_masks_396_m_5.png', 'section_masks_396_m_6.png', 'section_masks_396_m_8.png']\n", - "1761/2000 [=========================>....] - ETA: 4:55 - loss: 0.4995 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1853 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.1562324\n", - "section_masks_324\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_324.jpg', 'source': 'brain', 'height': 2877, 'width': 4183, 'id': 324}\n", - "['section_masks_324_m_1.png', 'section_masks_324_m_2.png', 'section_masks_324_m_4.png', 'section_masks_324_m_5.png', 'section_masks_324_m_6.png', 'section_masks_324_m_7.png', 'section_masks_324_m_8.png']\n", - "1762/2000 [=========================>....] - ETA: 4:53 - loss: 0.4994 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1852 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0743 - mrcnn_mask_loss: 0.1562216\n", - "section_masks_216\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_216.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 216}\n", - "['section_masks_216_m_1.png', 'section_masks_216_m_2.png', 'section_masks_216_m_3.png', 'section_masks_216_m_7.png', 'section_masks_216_m_8.png']\n", - "1763/2000 [=========================>....] - ETA: 4:52 - loss: 0.4993 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1852 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0742 - mrcnn_mask_loss: 0.1562231\n", - "section_masks_231\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_231.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 231}\n", - "['section_masks_231_m_1.png', 'section_masks_231_m_2.png', 'section_masks_231_m_5.png', 'section_masks_231_m_7.png', 'section_masks_231_m_8.png']\n", - "1764/2000 [=========================>....] - ETA: 4:51 - loss: 0.4992 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1851 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0742 - mrcnn_mask_loss: 0.1562111\n", - "section_masks_111\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_111.jpg', 'source': 'brain', 'height': 2148, 'width': 3178, 'id': 111}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_4.png', 'section_masks_111_m_5.png', 'section_masks_111_m_6.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - "1765/2000 [=========================>....] - ETA: 4:50 - loss: 0.4992 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1851 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0742 - mrcnn_mask_loss: 0.156246\n", - "section_masks_46\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_46.jpg', 'source': 'brain', 'height': 2204, 'width': 2558, 'id': 46}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_3.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - "1766/2000 [=========================>....] - ETA: 4:48 - loss: 0.4991 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1850 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0742 - mrcnn_mask_loss: 0.1562279\n", - "section_masks_279\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_279.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 279}\n", - "['section_masks_279_m_1.png', 'section_masks_279_m_2.png', 'section_masks_279_m_3.png', 'section_masks_279_m_4.png', 'section_masks_279_m_5.png', 'section_masks_279_m_6.png', 'section_masks_279_m_7.png', 'section_masks_279_m_8.png']\n", - "1767/2000 [=========================>....] - ETA: 4:47 - loss: 0.4991 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1851 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0742 - mrcnn_mask_loss: 0.1562158\n", - "section_masks_158\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_158.jpg', 'source': 'brain', 'height': 2793, 'width': 3808, 'id': 158}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - "1768/2000 [=========================>....] - ETA: 4:46 - loss: 0.4991 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1851 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0742 - mrcnn_mask_loss: 0.1562395\n", - "section_masks_395\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_395.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 395}\n", - "['section_masks_395_m_1.png', 'section_masks_395_m_4.png', 'section_masks_395_m_5.png', 'section_masks_395_m_6.png', 'section_masks_395_m_8.png']\n", - "1769/2000 [=========================>....] - ETA: 4:45 - loss: 0.4990 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1850 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0742 - mrcnn_mask_loss: 0.1561112\n", - "section_masks_112\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_112.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 112}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_4.png', 'section_masks_112_m_5.png', 'section_masks_112_m_6.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - "1770/2000 [=========================>....] - ETA: 4:43 - loss: 0.4990 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1850 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0742 - mrcnn_mask_loss: 0.156135\n", - "section_masks_35\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_35.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 35}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - "1771/2000 [=========================>....] - ETA: 4:42 - loss: 0.4989 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1851 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0742 - mrcnn_mask_loss: 0.1561315\n", - "section_masks_315\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_315.jpg', 'source': 'brain', 'height': 2792, 'width': 4035, 'id': 315}\n", - "['section_masks_315_m_1.png', 'section_masks_315_m_2.png', 'section_masks_315_m_3.png', 'section_masks_315_m_4.png', 'section_masks_315_m_5.png', 'section_masks_315_m_6.png', 'section_masks_315_m_7.png', 'section_masks_315_m_8.png']\n", - "1772/2000 [=========================>....] - ETA: 4:41 - loss: 0.4989 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1850 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0741 - mrcnn_mask_loss: 0.1561342\n", - "section_masks_342\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_342.jpg', 'source': 'brain', 'height': 3221, 'width': 4241, 'id': 342}\n", - "['section_masks_342_m_1.png', 'section_masks_342_m_2.png', 'section_masks_342_m_4.png', 'section_masks_342_m_5.png', 'section_masks_342_m_6.png', 'section_masks_342_m_7.png', 'section_masks_342_m_8.png']\n", - "1773/2000 [=========================>....] - ETA: 4:40 - loss: 0.4988 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1850 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0741 - mrcnn_mask_loss: 0.156195\n", - "section_masks_95\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_95.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 95}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_3.png', 'section_masks_95_m_5.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - "1774/2000 [=========================>....] - ETA: 4:39 - loss: 0.4989 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1851 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0741 - mrcnn_mask_loss: 0.1561211\n", - "section_masks_211\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_211.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 211}\n", - "['section_masks_211_m_1.png', 'section_masks_211_m_2.png', 'section_masks_211_m_3.png', 'section_masks_211_m_7.png', 'section_masks_211_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1775/2000 [=========================>....] - ETA: 4:37 - loss: 0.4987 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1850 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0741 - mrcnn_mask_loss: 0.156166\n", - "section_masks_66\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_66.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 66}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_3.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - "1776/2000 [=========================>....] - ETA: 4:36 - loss: 0.4986 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1849 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0741 - mrcnn_mask_loss: 0.1561297\n", - "section_masks_297\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_297.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 297}\n", - "['section_masks_297_m_1.png', 'section_masks_297_m_2.png', 'section_masks_297_m_3.png', 'section_masks_297_m_4.png', 'section_masks_297_m_5.png', 'section_masks_297_m_6.png', 'section_masks_297_m_7.png', 'section_masks_297_m_8.png']\n", - "1777/2000 [=========================>....] - ETA: 4:35 - loss: 0.4987 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1850 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0741 - mrcnn_mask_loss: 0.1561222\n", - "section_masks_222\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_222.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 222}\n", - "['section_masks_222_m_1.png', 'section_masks_222_m_2.png', 'section_masks_222_m_5.png', 'section_masks_222_m_7.png', 'section_masks_222_m_8.png']\n", - "1778/2000 [=========================>....] - ETA: 4:34 - loss: 0.4987 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1849 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1561157\n", - "section_masks_157\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_157.jpg', 'source': 'brain', 'height': 2695, 'width': 3773, 'id': 157}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - "1779/2000 [=========================>....] - ETA: 4:32 - loss: 0.4987 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1849 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.156163\n", - "section_masks_63\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_63.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 63}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_3.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - "1780/2000 [=========================>....] - ETA: 4:31 - loss: 0.4986 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1848 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.156175\n", - "section_masks_75\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_75.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 75}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_3.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - "1781/2000 [=========================>....] - ETA: 4:30 - loss: 0.4984 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1848 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1560199\n", - "section_masks_199\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_199.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 199}\n", - "['section_masks_199_m_1.png', 'section_masks_199_m_2.png', 'section_masks_199_m_3.png', 'section_masks_199_m_7.png', 'section_masks_199_m_8.png']\n", - "1782/2000 [=========================>....] - ETA: 4:28 - loss: 0.4984 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1848 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1560176\n", - "section_masks_176\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_176.jpg', 'source': 'brain', 'height': 2774, 'width': 3735, 'id': 176}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_8.png']\n", - "1783/2000 [=========================>....] - ETA: 4:27 - loss: 0.4985 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1848 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1560329\n", - "section_masks_329\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_329.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 329}\n", - "['section_masks_329_m_1.png', 'section_masks_329_m_2.png', 'section_masks_329_m_4.png', 'section_masks_329_m_5.png', 'section_masks_329_m_6.png', 'section_masks_329_m_7.png', 'section_masks_329_m_8.png']\n", - "1784/2000 [=========================>....] - ETA: 4:26 - loss: 0.4984 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1849 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1560140\n", - "section_masks_140\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_140.jpg', 'source': 'brain', 'height': 2978, 'width': 3862, 'id': 140}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - "1785/2000 [=========================>....] - ETA: 4:25 - loss: 0.4984 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1848 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1560120\n", - "section_masks_120\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_120.jpg', 'source': 'brain', 'height': 3323, 'width': 4327, 'id': 120}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_4.png', 'section_masks_120_m_5.png', 'section_masks_120_m_6.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - "1786/2000 [=========================>....] - ETA: 4:24 - loss: 0.4985 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1849 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1560333\n", - "section_masks_333\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_333.jpg', 'source': 'brain', 'height': 2516, 'width': 4026, 'id': 333}\n", - "['section_masks_333_m_1.png', 'section_masks_333_m_2.png', 'section_masks_333_m_4.png', 'section_masks_333_m_5.png', 'section_masks_333_m_6.png', 'section_masks_333_m_7.png', 'section_masks_333_m_8.png']\n", - "1787/2000 [=========================>....] - ETA: 4:22 - loss: 0.4984 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1848 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1560369\n", - "section_masks_369\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_369.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 369}\n", - "['section_masks_369_m_1.png', 'section_masks_369_m_2.png', 'section_masks_369_m_4.png', 'section_masks_369_m_5.png', 'section_masks_369_m_6.png', 'section_masks_369_m_7.png', 'section_masks_369_m_8.png']\n", - "1788/2000 [=========================>....] - ETA: 4:21 - loss: 0.4984 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1848 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1560190\n", - "section_masks_190\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_190.jpg', 'source': 'brain', 'height': 1680, 'width': 2288, 'id': 190}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_3.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n", - "1789/2000 [=========================>....] - ETA: 4:20 - loss: 0.4983 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1847 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1560245\n", - "section_masks_245\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_245.jpg', 'source': 'brain', 'height': 2318, 'width': 3146, 'id': 245}\n", - "['section_masks_245_m_1.png', 'section_masks_245_m_2.png', 'section_masks_245_m_3.png', 'section_masks_245_m_4.png', 'section_masks_245_m_5.png', 'section_masks_245_m_7.png', 'section_masks_245_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1790/2000 [=========================>....] - ETA: 4:19 - loss: 0.4983 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1847 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1561371\n", - "section_masks_371\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_371.jpg', 'source': 'brain', 'height': 2482, 'width': 3840, 'id': 371}\n", - "['section_masks_371_m_1.png', 'section_masks_371_m_2.png', 'section_masks_371_m_4.png', 'section_masks_371_m_5.png', 'section_masks_371_m_6.png', 'section_masks_371_m_7.png', 'section_masks_371_m_8.png']\n", - "1791/2000 [=========================>....] - ETA: 4:17 - loss: 0.4982 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1846 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1561136\n", - "section_masks_136\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_136.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 136}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_4.png', 'section_masks_136_m_5.png', 'section_masks_136_m_6.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - "1792/2000 [=========================>....] - ETA: 4:16 - loss: 0.4982 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1846 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.1560191\n", - "section_masks_191\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_191.jpg', 'source': 'brain', 'height': 1759, 'width': 2346, 'id': 191}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_3.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - "1793/2000 [=========================>....] - ETA: 4:15 - loss: 0.4980 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1845 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0739 - mrcnn_mask_loss: 0.1560346\n", - "section_masks_346\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_346.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 346}\n", - "['section_masks_346_m_1.png', 'section_masks_346_m_2.png', 'section_masks_346_m_4.png', 'section_masks_346_m_5.png', 'section_masks_346_m_6.png', 'section_masks_346_m_7.png', 'section_masks_346_m_8.png']\n", - "1794/2000 [=========================>....] - ETA: 4:14 - loss: 0.4981 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1846 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0739 - mrcnn_mask_loss: 0.1560126\n", - "section_masks_126\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_126.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 126}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_4.png', 'section_masks_126_m_5.png', 'section_masks_126_m_6.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - "1795/2000 [=========================>....] - ETA: 4:13 - loss: 0.4981 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1847 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0739 - mrcnn_mask_loss: 0.1560399\n", - "section_masks_399\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_399.jpg', 'source': 'brain', 'height': 3214, 'width': 4740, 'id': 399}\n", - "['section_masks_399_m_1.png', 'section_masks_399_m_4.png', 'section_masks_399_m_5.png', 'section_masks_399_m_6.png', 'section_masks_399_m_8.png']\n", - "1796/2000 [=========================>....] - ETA: 4:11 - loss: 0.4983 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1849 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0740 - mrcnn_mask_loss: 0.156061\n", - "section_masks_61\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_61.jpg', 'source': 'brain', 'height': 2501, 'width': 2923, 'id': 61}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_3.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - "1797/2000 [=========================>....] - ETA: 4:10 - loss: 0.4982 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1848 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0739 - mrcnn_mask_loss: 0.1560196\n", - "section_masks_196\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_196.jpg', 'source': 'brain', 'height': 2119, 'width': 2588, 'id': 196}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_3.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - "1798/2000 [=========================>....] - ETA: 4:09 - loss: 0.4980 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1847 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0739 - mrcnn_mask_loss: 0.1560113\n", - "section_masks_113\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_113.jpg', 'source': 'brain', 'height': 2354, 'width': 3305, 'id': 113}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_4.png', 'section_masks_113_m_5.png', 'section_masks_113_m_6.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - "1799/2000 [=========================>....] - ETA: 4:08 - loss: 0.4980 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1847 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0739 - mrcnn_mask_loss: 0.156067\n", - "section_masks_67\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_67.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 67}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_3.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - "1800/2000 [==========================>...] - ETA: 4:06 - loss: 0.4979 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1846 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0739 - mrcnn_mask_loss: 0.1560182\n", - "section_masks_182\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_182.jpg', 'source': 'brain', 'height': 2246, 'width': 2663, 'id': 182}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_3.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - "1801/2000 [==========================>...] - ETA: 4:05 - loss: 0.4977 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1845 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.156027\n", - "section_masks_27\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_27.jpg', 'source': 'brain', 'height': 2012, 'width': 2332, 'id': 27}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - "1802/2000 [==========================>...] - ETA: 4:04 - loss: 0.4977 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1845 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1560292\n", - "section_masks_292\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_292.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 292}\n", - "['section_masks_292_m_1.png', 'section_masks_292_m_2.png', 'section_masks_292_m_3.png', 'section_masks_292_m_4.png', 'section_masks_292_m_5.png', 'section_masks_292_m_6.png', 'section_masks_292_m_7.png', 'section_masks_292_m_8.png']\n", - "1803/2000 [==========================>...] - ETA: 4:03 - loss: 0.4977 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1846 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559137\n", - "section_masks_137\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_137.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 137}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_4.png', 'section_masks_137_m_5.png', 'section_masks_137_m_6.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - "1804/2000 [==========================>...] - ETA: 4:01 - loss: 0.4978 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1846 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1560224\n", - "section_masks_224\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_224.jpg', 'source': 'brain', 'height': 2350, 'width': 3021, 'id': 224}\n", - "['section_masks_224_m_1.png', 'section_masks_224_m_2.png', 'section_masks_224_m_5.png', 'section_masks_224_m_7.png', 'section_masks_224_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1805/2000 [==========================>...] - ETA: 4:00 - loss: 0.4976 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1845 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559229\n", - "section_masks_229\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_229.jpg', 'source': 'brain', 'height': 1922, 'width': 2763, 'id': 229}\n", - "['section_masks_229_m_1.png', 'section_masks_229_m_2.png', 'section_masks_229_m_5.png', 'section_masks_229_m_7.png', 'section_masks_229_m_8.png']\n", - "1806/2000 [==========================>...] - ETA: 3:59 - loss: 0.4976 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1844 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1560378\n", - "section_masks_378\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_378.jpg', 'source': 'brain', 'height': 3298, 'width': 4263, 'id': 378}\n", - "['section_masks_378_m_1.png', 'section_masks_378_m_2.png', 'section_masks_378_m_4.png', 'section_masks_378_m_5.png', 'section_masks_378_m_6.png', 'section_masks_378_m_7.png', 'section_masks_378_m_8.png']\n", - "1807/2000 [==========================>...] - ETA: 3:58 - loss: 0.4976 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1844 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1560383\n", - "section_masks_383\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_383.jpg', 'source': 'brain', 'height': 2961, 'width': 4691, 'id': 383}\n", - "['section_masks_383_m_1.png', 'section_masks_383_m_4.png', 'section_masks_383_m_5.png', 'section_masks_383_m_6.png', 'section_masks_383_m_8.png']\n", - "1808/2000 [==========================>...] - ETA: 3:56 - loss: 0.4975 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1843 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1560331\n", - "section_masks_331\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_331.jpg', 'source': 'brain', 'height': 2261, 'width': 3896, 'id': 331}\n", - "['section_masks_331_m_1.png', 'section_masks_331_m_2.png', 'section_masks_331_m_4.png', 'section_masks_331_m_5.png', 'section_masks_331_m_6.png', 'section_masks_331_m_7.png', 'section_masks_331_m_8.png']\n", - "1809/2000 [==========================>...] - ETA: 3:55 - loss: 0.4974 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1843 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.155964\n", - "section_masks_64\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_64.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 64}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_3.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n", - "1810/2000 [==========================>...] - ETA: 3:54 - loss: 0.4973 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1842 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559225\n", - "section_masks_225\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_225.jpg', 'source': 'brain', 'height': 2269, 'width': 2977, 'id': 225}\n", - "['section_masks_225_m_1.png', 'section_masks_225_m_2.png', 'section_masks_225_m_5.png', 'section_masks_225_m_7.png', 'section_masks_225_m_8.png']\n", - "1811/2000 [==========================>...] - ETA: 3:53 - loss: 0.4971 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559322\n", - "section_masks_322\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_322.jpg', 'source': 'brain', 'height': 3100, 'width': 4263, 'id': 322}\n", - "['section_masks_322_m_1.png', 'section_masks_322_m_2.png', 'section_masks_322_m_4.png', 'section_masks_322_m_5.png', 'section_masks_322_m_6.png', 'section_masks_322_m_7.png', 'section_masks_322_m_8.png']\n", - "1812/2000 [==========================>...] - ETA: 3:51 - loss: 0.4972 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1842 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559206\n", - "section_masks_206\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_206.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 206}\n", - "['section_masks_206_m_1.png', 'section_masks_206_m_2.png', 'section_masks_206_m_3.png', 'section_masks_206_m_7.png', 'section_masks_206_m_8.png']\n", - "1813/2000 [==========================>...] - ETA: 3:50 - loss: 0.4971 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559351\n", - "section_masks_351\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_351.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 351}\n", - "['section_masks_351_m_1.png', 'section_masks_351_m_2.png', 'section_masks_351_m_4.png', 'section_masks_351_m_5.png', 'section_masks_351_m_6.png', 'section_masks_351_m_7.png', 'section_masks_351_m_8.png']\n", - "1814/2000 [==========================>...] - ETA: 3:49 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559152\n", - "section_masks_152\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_152.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 152}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - "1815/2000 [==========================>...] - ETA: 3:48 - loss: 0.4972 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1842 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.155960\n", - "section_masks_60\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_60.jpg', 'source': 'brain', 'height': 2562, 'width': 2955, 'id': 60}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_3.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - "1816/2000 [==========================>...] - ETA: 3:47 - loss: 0.4973 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1843 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559162\n", - "section_masks_162\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_162.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 162}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_8.png']\n", - "1817/2000 [==========================>...] - ETA: 3:45 - loss: 0.4973 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1843 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559344\n", - "section_masks_344\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_344.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 344}\n", - "['section_masks_344_m_1.png', 'section_masks_344_m_2.png', 'section_masks_344_m_4.png', 'section_masks_344_m_5.png', 'section_masks_344_m_6.png', 'section_masks_344_m_7.png', 'section_masks_344_m_8.png']\n", - "1818/2000 [==========================>...] - ETA: 3:44 - loss: 0.4973 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1843 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559303\n", - "section_masks_303\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_303.jpg', 'source': 'brain', 'height': 3014, 'width': 4129, 'id': 303}\n", - "['section_masks_303_m_1.png', 'section_masks_303_m_2.png', 'section_masks_303_m_3.png', 'section_masks_303_m_4.png', 'section_masks_303_m_5.png', 'section_masks_303_m_6.png', 'section_masks_303_m_7.png', 'section_masks_303_m_8.png']\n", - "1819/2000 [==========================>...] - ETA: 3:43 - loss: 0.4973 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1844 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559370\n", - "section_masks_370\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_370.jpg', 'source': 'brain', 'height': 2352, 'width': 3760, 'id': 370}\n", - "['section_masks_370_m_1.png', 'section_masks_370_m_2.png', 'section_masks_370_m_4.png', 'section_masks_370_m_5.png', 'section_masks_370_m_6.png', 'section_masks_370_m_7.png', 'section_masks_370_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1820/2000 [==========================>...] - ETA: 3:42 - loss: 0.4973 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1844 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559355\n", - "section_masks_355\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_355.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 355}\n", - "['section_masks_355_m_1.png', 'section_masks_355_m_2.png', 'section_masks_355_m_4.png', 'section_masks_355_m_5.png', 'section_masks_355_m_6.png', 'section_masks_355_m_7.png', 'section_masks_355_m_8.png']\n", - "1821/2000 [==========================>...] - ETA: 3:40 - loss: 0.4973 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1843 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1559174\n", - "section_masks_174\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_174.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 174}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_8.png']\n", - "1822/2000 [==========================>...] - ETA: 3:39 - loss: 0.4974 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1843 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1559173\n", - "section_masks_173\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_173.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 173}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_8.png']\n", - "1823/2000 [==========================>...] - ETA: 3:38 - loss: 0.4974 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1843 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1559220\n", - "section_masks_220\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_220.jpg', 'source': 'brain', 'height': 2641, 'width': 3163, 'id': 220}\n", - "['section_masks_220_m_1.png', 'section_masks_220_m_2.png', 'section_masks_220_m_5.png', 'section_masks_220_m_7.png', 'section_masks_220_m_8.png']\n", - "1824/2000 [==========================>...] - ETA: 3:37 - loss: 0.4973 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1842 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.1559228\n", - "section_masks_228\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_228.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 228}\n", - "['section_masks_228_m_1.png', 'section_masks_228_m_2.png', 'section_masks_228_m_5.png', 'section_masks_228_m_7.png', 'section_masks_228_m_8.png']\n", - "1825/2000 [==========================>...] - ETA: 3:35 - loss: 0.4972 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.155982\n", - "section_masks_82\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_82.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 82}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_3.png', 'section_masks_82_m_5.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - "1826/2000 [==========================>...] - ETA: 3:34 - loss: 0.4973 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0738 - mrcnn_mask_loss: 0.155973\n", - "section_masks_73\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_73.jpg', 'source': 'brain', 'height': 2074, 'width': 2657, 'id': 73}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_3.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - "1827/2000 [==========================>...] - ETA: 3:33 - loss: 0.4972 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.155968\n", - "section_masks_68\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_68.jpg', 'source': 'brain', 'height': 1993, 'width': 2602, 'id': 68}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_3.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - "1828/2000 [==========================>...] - ETA: 3:32 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1559181\n", - "section_masks_181\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_181.jpg', 'source': 'brain', 'height': 2305, 'width': 2695, 'id': 181}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_3.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - "1829/2000 [==========================>...] - ETA: 3:30 - loss: 0.4971 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1558122\n", - "section_masks_122\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_122.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 122}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_4.png', 'section_masks_122_m_5.png', 'section_masks_122_m_6.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - "1830/2000 [==========================>...] - ETA: 3:29 - loss: 0.4971 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.155852\n", - "section_masks_52\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_52.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 52}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_3.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - "1831/2000 [==========================>...] - ETA: 3:28 - loss: 0.4969 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.155877\n", - "section_masks_77\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_77.jpg', 'source': 'brain', 'height': 2370, 'width': 2848, 'id': 77}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_3.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - "1832/2000 [==========================>...] - ETA: 3:27 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.155829\n", - "section_masks_29\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_29.jpg', 'source': 'brain', 'height': 1871, 'width': 2218, 'id': 29}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - "1833/2000 [==========================>...] - ETA: 3:25 - loss: 0.4967 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155848\n", - "section_masks_48\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_48.jpg', 'source': 'brain', 'height': 2057, 'width': 2443, 'id': 48}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_3.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - "1834/2000 [==========================>...] - ETA: 3:24 - loss: 0.4966 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1838 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558124\n", - "section_masks_124\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_124.jpg', 'source': 'brain', 'height': 2893, 'width': 4187, 'id': 124}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_4.png', 'section_masks_124_m_5.png', 'section_masks_124_m_6.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - "1835/2000 [==========================>...] - ETA: 3:23 - loss: 0.4966 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1838 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155899\n", - "section_masks_99\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_99.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 99}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_3.png', 'section_masks_99_m_5.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - "1836/2000 [==========================>...] - ETA: 3:22 - loss: 0.4969 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155856\n", - "section_masks_56\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_56.jpg', 'source': 'brain', 'height': 2340, 'width': 2661, 'id': 56}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_3.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - "1837/2000 [==========================>...] - ETA: 3:21 - loss: 0.4967 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558161\n", - "section_masks_161\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_161.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 161}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_8.png']\n", - "1838/2000 [==========================>...] - ETA: 3:19 - loss: 0.4969 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1557283\n", - "section_masks_283\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_283.jpg', 'source': 'brain', 'height': 2979, 'width': 3946, 'id': 283}\n", - "['section_masks_283_m_1.png', 'section_masks_283_m_2.png', 'section_masks_283_m_3.png', 'section_masks_283_m_4.png', 'section_masks_283_m_5.png', 'section_masks_283_m_6.png', 'section_masks_283_m_7.png', 'section_masks_283_m_8.png']\n", - "1839/2000 [==========================>...] - ETA: 3:18 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558238\n", - "section_masks_238\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_238.jpg', 'source': 'brain', 'height': 2502, 'width': 3100, 'id': 238}\n", - "['section_masks_238_m_1.png', 'section_masks_238_m_2.png', 'section_masks_238_m_5.png', 'section_masks_238_m_7.png', 'section_masks_238_m_8.png']\n", - "1840/2000 [==========================>...] - ETA: 3:17 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1557188\n", - "section_masks_188\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_188.jpg', 'source': 'brain', 'height': 1836, 'width': 2400, 'id': 188}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_3.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - "1841/2000 [==========================>...] - ETA: 3:16 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1557398\n", - "section_masks_398\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_398.jpg', 'source': 'brain', 'height': 3089, 'width': 4718, 'id': 398}\n", - "['section_masks_398_m_1.png', 'section_masks_398_m_4.png', 'section_masks_398_m_5.png', 'section_masks_398_m_6.png', 'section_masks_398_m_8.png']\n", - "1842/2000 [==========================>...] - ETA: 3:14 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1557215\n", - "section_masks_215\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_215.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 215}\n", - "['section_masks_215_m_1.png', 'section_masks_215_m_2.png', 'section_masks_215_m_3.png', 'section_masks_215_m_7.png', 'section_masks_215_m_8.png']\n", - "1843/2000 [==========================>...] - ETA: 3:13 - loss: 0.4967 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1557332\n", - "section_masks_332\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_332.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 332}\n", - "['section_masks_332_m_1.png', 'section_masks_332_m_2.png', 'section_masks_332_m_4.png', 'section_masks_332_m_5.png', 'section_masks_332_m_6.png', 'section_masks_332_m_7.png', 'section_masks_332_m_8.png']\n", - "1844/2000 [==========================>...] - ETA: 3:12 - loss: 0.4966 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1557125\n", - "section_masks_125\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_125.jpg', 'source': 'brain', 'height': 2776, 'width': 4139, 'id': 125}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_4.png', 'section_masks_125_m_5.png', 'section_masks_125_m_6.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - "1845/2000 [==========================>...] - ETA: 3:11 - loss: 0.4967 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558345\n", - "section_masks_345\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_345.jpg', 'source': 'brain', 'height': 2891, 'width': 4098, 'id': 345}\n", - "['section_masks_345_m_1.png', 'section_masks_345_m_2.png', 'section_masks_345_m_4.png', 'section_masks_345_m_5.png', 'section_masks_345_m_6.png', 'section_masks_345_m_7.png', 'section_masks_345_m_8.png']\n", - "1846/2000 [==========================>...] - ETA: 3:09 - loss: 0.4967 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558171\n", - "section_masks_171\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_171.jpg', 'source': 'brain', 'height': 2237, 'width': 3440, 'id': 171}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_8.png']\n", - "1847/2000 [==========================>...] - ETA: 3:08 - loss: 0.4966 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1838 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1557307\n", - "section_masks_307\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_307.jpg', 'source': 'brain', 'height': 2556, 'width': 3920, 'id': 307}\n", - "['section_masks_307_m_1.png', 'section_masks_307_m_2.png', 'section_masks_307_m_3.png', 'section_masks_307_m_4.png', 'section_masks_307_m_5.png', 'section_masks_307_m_6.png', 'section_masks_307_m_7.png', 'section_masks_307_m_8.png']\n", - "1848/2000 [==========================>...] - ETA: 3:07 - loss: 0.4967 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.15587\n", - "section_masks_7\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_7.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 7}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - "1849/2000 [==========================>...] - ETA: 3:06 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1557221\n", - "section_masks_221\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_221.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 221}\n", - "['section_masks_221_m_1.png', 'section_masks_221_m_2.png', 'section_masks_221_m_5.png', 'section_masks_221_m_7.png', 'section_masks_221_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1850/2000 [==========================>...] - ETA: 3:04 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558285\n", - "section_masks_285\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_285.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 285}\n", - "['section_masks_285_m_1.png', 'section_masks_285_m_2.png', 'section_masks_285_m_3.png', 'section_masks_285_m_4.png', 'section_masks_285_m_5.png', 'section_masks_285_m_6.png', 'section_masks_285_m_7.png', 'section_masks_285_m_8.png']\n", - "1851/2000 [==========================>...] - ETA: 3:03 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.15586\n", - "section_masks_6\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_6.jpg', 'source': 'brain', 'height': 1986, 'width': 2252, 'id': 6}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - "1852/2000 [==========================>...] - ETA: 3:02 - loss: 0.4966 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155717\n", - "section_masks_17\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_17.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 17}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - "1853/2000 [==========================>...] - ETA: 3:01 - loss: 0.4967 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.155786\n", - "section_masks_86\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_86.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 86}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_3.png', 'section_masks_86_m_5.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - "1854/2000 [==========================>...] - ETA: 3:00 - loss: 0.4967 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155871\n", - "section_masks_71\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_71.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 71}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_3.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - "1855/2000 [==========================>...] - ETA: 2:58 - loss: 0.4966 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1557328\n", - "section_masks_328\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_328.jpg', 'source': 'brain', 'height': 2390, 'width': 3964, 'id': 328}\n", - "['section_masks_328_m_1.png', 'section_masks_328_m_2.png', 'section_masks_328_m_4.png', 'section_masks_328_m_5.png', 'section_masks_328_m_6.png', 'section_masks_328_m_7.png', 'section_masks_328_m_8.png']\n", - "1856/2000 [==========================>...] - ETA: 2:57 - loss: 0.4966 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1558103\n", - "section_masks_103\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_103.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 103}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_4.png', 'section_masks_103_m_5.png', 'section_masks_103_m_6.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - "1857/2000 [==========================>...] - ETA: 2:56 - loss: 0.4966 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.155890\n", - "section_masks_90\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_90.jpg', 'source': 'brain', 'height': 2008, 'width': 2520, 'id': 90}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_3.png', 'section_masks_90_m_5.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - "1858/2000 [==========================>...] - ETA: 2:55 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558179\n", - "section_masks_179\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_179.jpg', 'source': 'brain', 'height': 3057, 'width': 3859, 'id': 179}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_8.png']\n", - "1859/2000 [==========================>...] - ETA: 2:53 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558339\n", - "section_masks_339\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_339.jpg', 'source': 'brain', 'height': 3206, 'width': 4295, 'id': 339}\n", - "['section_masks_339_m_1.png', 'section_masks_339_m_2.png', 'section_masks_339_m_4.png', 'section_masks_339_m_5.png', 'section_masks_339_m_6.png', 'section_masks_339_m_7.png', 'section_masks_339_m_8.png']\n", - "1860/2000 [==========================>...] - ETA: 2:52 - loss: 0.4969 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558167\n", - "section_masks_167\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_167.jpg', 'source': 'brain', 'height': 2461, 'width': 3572, 'id': 167}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_8.png']\n", - "1861/2000 [==========================>...] - ETA: 2:51 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155898\n", - "section_masks_98\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_98.jpg', 'source': 'brain', 'height': 2625, 'width': 2976, 'id': 98}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_3.png', 'section_masks_98_m_5.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - "1862/2000 [==========================>...] - ETA: 2:50 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155874\n", - "section_masks_74\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_74.jpg', 'source': 'brain', 'height': 2152, 'width': 2710, 'id': 74}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_3.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - "1863/2000 [==========================>...] - ETA: 2:48 - loss: 0.4969 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558323\n", - "section_masks_323\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_323.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 323}\n", - "['section_masks_323_m_1.png', 'section_masks_323_m_2.png', 'section_masks_323_m_4.png', 'section_masks_323_m_5.png', 'section_masks_323_m_6.png', 'section_masks_323_m_7.png', 'section_masks_323_m_8.png']\n", - "1864/2000 [==========================>...] - ETA: 2:47 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155884\n", - "section_masks_84\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_84.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 84}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_3.png', 'section_masks_84_m_5.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1865/2000 [==========================>...] - ETA: 2:46 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1558347\n", - "section_masks_347\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_347.jpg', 'source': 'brain', 'height': 2653, 'width': 3977, 'id': 347}\n", - "['section_masks_347_m_1.png', 'section_masks_347_m_2.png', 'section_masks_347_m_4.png', 'section_masks_347_m_5.png', 'section_masks_347_m_6.png', 'section_masks_347_m_7.png', 'section_masks_347_m_8.png']\n", - "1866/2000 [==========================>...] - ETA: 2:45 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.155865\n", - "section_masks_65\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_65.jpg', 'source': 'brain', 'height': 2227, 'width': 2759, 'id': 65}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_3.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - "1867/2000 [===========================>..] - ETA: 2:43 - loss: 0.4969 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155819\n", - "section_masks_19\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_19.jpg', 'source': 'brain', 'height': 2264, 'width': 2464, 'id': 19}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - "1868/2000 [===========================>..] - ETA: 2:42 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558156\n", - "section_masks_156\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_156.jpg', 'source': 'brain', 'height': 2595, 'width': 3735, 'id': 156}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - "1869/2000 [===========================>..] - ETA: 2:41 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1558294\n", - "section_masks_294\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_294.jpg', 'source': 'brain', 'height': 2661, 'width': 3791, 'id': 294}\n", - "['section_masks_294_m_1.png', 'section_masks_294_m_2.png', 'section_masks_294_m_3.png', 'section_masks_294_m_4.png', 'section_masks_294_m_5.png', 'section_masks_294_m_6.png', 'section_masks_294_m_7.png', 'section_masks_294_m_8.png']\n", - "1870/2000 [===========================>..] - ETA: 2:40 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1558257\n", - "section_masks_257\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_257.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 257}\n", - "['section_masks_257_m_1.png', 'section_masks_257_m_2.png', 'section_masks_257_m_3.png', 'section_masks_257_m_4.png', 'section_masks_257_m_5.png', 'section_masks_257_m_7.png', 'section_masks_257_m_8.png']\n", - "1871/2000 [===========================>..] - ETA: 2:39 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1558223\n", - "section_masks_223\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_223.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 223}\n", - "['section_masks_223_m_1.png', 'section_masks_223_m_2.png', 'section_masks_223_m_5.png', 'section_masks_223_m_7.png', 'section_masks_223_m_8.png']\n", - "1872/2000 [===========================>..] - ETA: 2:37 - loss: 0.4969 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1558134\n", - "section_masks_134\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_134.jpg', 'source': 'brain', 'height': 2656, 'width': 4086, 'id': 134}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_4.png', 'section_masks_134_m_5.png', 'section_masks_134_m_6.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - "1873/2000 [===========================>..] - ETA: 2:36 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.155897\n", - "section_masks_97\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_97.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 97}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_3.png', 'section_masks_97_m_5.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - "1874/2000 [===========================>..] - ETA: 2:35 - loss: 0.4971 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1842 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1558356\n", - "section_masks_356\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_356.jpg', 'source': 'brain', 'height': 3004, 'width': 4151, 'id': 356}\n", - "['section_masks_356_m_1.png', 'section_masks_356_m_2.png', 'section_masks_356_m_4.png', 'section_masks_356_m_5.png', 'section_masks_356_m_6.png', 'section_masks_356_m_7.png', 'section_masks_356_m_8.png']\n", - "1875/2000 [===========================>..] - ETA: 2:34 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1842 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.1558105\n", - "section_masks_105\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_105.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 105}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_4.png', 'section_masks_105_m_5.png', 'section_masks_105_m_6.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - "1876/2000 [===========================>..] - ETA: 2:32 - loss: 0.4970 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1842 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0737 - mrcnn_mask_loss: 0.155845\n", - "section_masks_45\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_45.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 45}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_3.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - "1877/2000 [===========================>..] - ETA: 2:31 - loss: 0.4969 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558148\n", - "section_masks_148\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_148.jpg', 'source': 'brain', 'height': 2161, 'width': 3535, 'id': 148}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - "1878/2000 [===========================>..] - ETA: 2:30 - loss: 0.4969 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.15584\n", - "section_masks_4\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_4.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 4}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - "1879/2000 [===========================>..] - ETA: 2:29 - loss: 0.4968 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558349\n", - "section_masks_349\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_349.jpg', 'source': 'brain', 'height': 2402, 'width': 3837, 'id': 349}\n", - "['section_masks_349_m_1.png', 'section_masks_349_m_2.png', 'section_masks_349_m_4.png', 'section_masks_349_m_5.png', 'section_masks_349_m_6.png', 'section_masks_349_m_7.png', 'section_masks_349_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1880/2000 [===========================>..] - ETA: 2:27 - loss: 0.4967 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1841 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1558385\n", - "section_masks_385\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_385.jpg', 'source': 'brain', 'height': 2693, 'width': 4620, 'id': 385}\n", - "['section_masks_385_m_1.png', 'section_masks_385_m_4.png', 'section_masks_385_m_5.png', 'section_masks_385_m_6.png', 'section_masks_385_m_8.png']\n", - "1881/2000 [===========================>..] - ETA: 2:26 - loss: 0.4966 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1840 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1557266\n", - "section_masks_266\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_266.jpg', 'source': 'brain', 'height': 2381, 'width': 3511, 'id': 266}\n", - "['section_masks_266_m_1.png', 'section_masks_266_m_2.png', 'section_masks_266_m_3.png', 'section_masks_266_m_4.png', 'section_masks_266_m_5.png', 'section_masks_266_m_6.png', 'section_masks_266_m_7.png', 'section_masks_266_m_8.png']\n", - "1882/2000 [===========================>..] - ETA: 2:25 - loss: 0.4966 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155728\n", - "section_masks_28\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_28.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 28}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - "1883/2000 [===========================>..] - ETA: 2:24 - loss: 0.4964 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1839 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155715\n", - "section_masks_15\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_15.jpg', 'source': 'brain', 'height': 2047, 'width': 2300, 'id': 15}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - "1884/2000 [===========================>..] - ETA: 2:23 - loss: 0.4964 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1838 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1557118\n", - "section_masks_118\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_118.jpg', 'source': 'brain', 'height': 2818, 'width': 3550, 'id': 118}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_4.png', 'section_masks_118_m_5.png', 'section_masks_118_m_6.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - "1885/2000 [===========================>..] - ETA: 2:21 - loss: 0.4964 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1838 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1557354\n", - "section_masks_354\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_354.jpg', 'source': 'brain', 'height': 2774, 'width': 4040, 'id': 354}\n", - "['section_masks_354_m_1.png', 'section_masks_354_m_2.png', 'section_masks_354_m_4.png', 'section_masks_354_m_5.png', 'section_masks_354_m_6.png', 'section_masks_354_m_7.png', 'section_masks_354_m_8.png']\n", - "1886/2000 [===========================>..] - ETA: 2:20 - loss: 0.4964 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1838 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1557278\n", - "section_masks_278\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_278.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 278}\n", - "['section_masks_278_m_1.png', 'section_masks_278_m_2.png', 'section_masks_278_m_3.png', 'section_masks_278_m_4.png', 'section_masks_278_m_5.png', 'section_masks_278_m_6.png', 'section_masks_278_m_7.png', 'section_masks_278_m_8.png']\n", - "1887/2000 [===========================>..] - ETA: 2:19 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1838 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1557314\n", - "section_masks_314\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_314.jpg', 'source': 'brain', 'height': 2676, 'width': 3980, 'id': 314}\n", - "['section_masks_314_m_1.png', 'section_masks_314_m_2.png', 'section_masks_314_m_3.png', 'section_masks_314_m_4.png', 'section_masks_314_m_5.png', 'section_masks_314_m_6.png', 'section_masks_314_m_7.png', 'section_masks_314_m_8.png']\n", - "1888/2000 [===========================>..] - ETA: 2:18 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1838 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1557261\n", - "section_masks_261\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_261.jpg', 'source': 'brain', 'height': 2860, 'width': 3713, 'id': 261}\n", - "['section_masks_261_m_1.png', 'section_masks_261_m_2.png', 'section_masks_261_m_3.png', 'section_masks_261_m_4.png', 'section_masks_261_m_5.png', 'section_masks_261_m_6.png', 'section_masks_261_m_7.png', 'section_masks_261_m_8.png']\n", - "1889/2000 [===========================>..] - ETA: 2:16 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1838 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1557320\n", - "section_masks_320\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_320.jpg', 'source': 'brain', 'height': 3308, 'width': 4321, 'id': 320}\n", - "['section_masks_320_m_1.png', 'section_masks_320_m_2.png', 'section_masks_320_m_4.png', 'section_masks_320_m_5.png', 'section_masks_320_m_6.png', 'section_masks_320_m_7.png', 'section_masks_320_m_8.png']\n", - "1890/2000 [===========================>..] - ETA: 2:15 - loss: 0.4964 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1838 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1557273\n", - "section_masks_273\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_273.jpg', 'source': 'brain', 'height': 2276, 'width': 3458, 'id': 273}\n", - "['section_masks_273_m_1.png', 'section_masks_273_m_2.png', 'section_masks_273_m_3.png', 'section_masks_273_m_4.png', 'section_masks_273_m_5.png', 'section_masks_273_m_6.png', 'section_masks_273_m_7.png', 'section_masks_273_m_8.png']\n", - "1891/2000 [===========================>..] - ETA: 2:14 - loss: 0.4964 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1837 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1557288\n", - "section_masks_288\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_288.jpg', 'source': 'brain', 'height': 2433, 'width': 3665, 'id': 288}\n", - "['section_masks_288_m_1.png', 'section_masks_288_m_2.png', 'section_masks_288_m_3.png', 'section_masks_288_m_4.png', 'section_masks_288_m_5.png', 'section_masks_288_m_6.png', 'section_masks_288_m_7.png', 'section_masks_288_m_8.png']\n", - "1892/2000 [===========================>..] - ETA: 2:13 - loss: 0.4964 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1837 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1557208\n", - "section_masks_208\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_208.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 208}\n", - "['section_masks_208_m_1.png', 'section_masks_208_m_2.png', 'section_masks_208_m_3.png', 'section_masks_208_m_7.png', 'section_masks_208_m_8.png']\n", - "1893/2000 [===========================>..] - ETA: 2:11 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1837 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1557128\n", - "section_masks_128\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_128.jpg', 'source': 'brain', 'height': 2406, 'width': 3965, 'id': 128}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_4.png', 'section_masks_128_m_5.png', 'section_masks_128_m_6.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1894/2000 [===========================>..] - ETA: 2:10 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1837 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1557160\n", - "section_masks_160\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_160.jpg', 'source': 'brain', 'height': 3144, 'width': 3890, 'id': 160}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_8.png']\n", - "1895/2000 [===========================>..] - ETA: 2:09 - loss: 0.4964 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1837 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.155723\n", - "section_masks_23\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_23.jpg', 'source': 'brain', 'height': 2265, 'width': 2527, 'id': 23}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n", - "1896/2000 [===========================>..] - ETA: 2:08 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0736 - mrcnn_mask_loss: 0.1556204\n", - "section_masks_204\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_204.jpg', 'source': 'brain', 'height': 2272, 'width': 2848, 'id': 204}\n", - "['section_masks_204_m_1.png', 'section_masks_204_m_2.png', 'section_masks_204_m_3.png', 'section_masks_204_m_7.png', 'section_masks_204_m_8.png']\n", - "1897/2000 [===========================>..] - ETA: 2:07 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556151\n", - "section_masks_151\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_151.jpg', 'source': 'brain', 'height': 2046, 'width': 3474, 'id': 151}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - "1898/2000 [===========================>..] - ETA: 2:05 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556293\n", - "section_masks_293\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_293.jpg', 'source': 'brain', 'height': 2548, 'width': 3730, 'id': 293}\n", - "['section_masks_293_m_1.png', 'section_masks_293_m_2.png', 'section_masks_293_m_3.png', 'section_masks_293_m_4.png', 'section_masks_293_m_5.png', 'section_masks_293_m_6.png', 'section_masks_293_m_7.png', 'section_masks_293_m_8.png']\n", - "1899/2000 [===========================>..] - ETA: 2:04 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556300\n", - "section_masks_300\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_300.jpg', 'source': 'brain', 'height': 3318, 'width': 4234, 'id': 300}\n", - "['section_masks_300_m_1.png', 'section_masks_300_m_2.png', 'section_masks_300_m_3.png', 'section_masks_300_m_4.png', 'section_masks_300_m_5.png', 'section_masks_300_m_6.png', 'section_masks_300_m_7.png', 'section_masks_300_m_8.png']\n", - "1900/2000 [===========================>..] - ETA: 2:03 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556205\n", - "section_masks_205\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_205.jpg', 'source': 'brain', 'height': 2197, 'width': 2804, 'id': 205}\n", - "['section_masks_205_m_1.png', 'section_masks_205_m_2.png', 'section_masks_205_m_3.png', 'section_masks_205_m_7.png', 'section_masks_205_m_8.png']\n", - "1901/2000 [===========================>..] - ETA: 2:02 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556363\n", - "section_masks_363\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_363.jpg', 'source': 'brain', 'height': 3192, 'width': 4218, 'id': 363}\n", - "['section_masks_363_m_1.png', 'section_masks_363_m_2.png', 'section_masks_363_m_4.png', 'section_masks_363_m_5.png', 'section_masks_363_m_6.png', 'section_masks_363_m_7.png', 'section_masks_363_m_8.png']\n", - "1902/2000 [===========================>..] - ETA: 2:00 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556392\n", - "section_masks_392\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_392.jpg', 'source': 'brain', 'height': 2267, 'width': 4471, 'id': 392}\n", - "['section_masks_392_m_1.png', 'section_masks_392_m_4.png', 'section_masks_392_m_5.png', 'section_masks_392_m_6.png', 'section_masks_392_m_8.png']\n", - "1903/2000 [===========================>..] - ETA: 1:59 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556350\n", - "section_masks_350\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_350.jpg', 'source': 'brain', 'height': 2272, 'width': 3760, 'id': 350}\n", - "['section_masks_350_m_1.png', 'section_masks_350_m_2.png', 'section_masks_350_m_4.png', 'section_masks_350_m_5.png', 'section_masks_350_m_6.png', 'section_masks_350_m_7.png', 'section_masks_350_m_8.png']\n", - "1904/2000 [===========================>..] - ETA: 1:58 - loss: 0.4962 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556110\n", - "section_masks_110\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_110.jpg', 'source': 'brain', 'height': 2040, 'width': 3108, 'id': 110}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_4.png', 'section_masks_110_m_5.png', 'section_masks_110_m_6.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - "1905/2000 [===========================>..] - ETA: 1:57 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556380\n", - "section_masks_380\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_380.jpg', 'source': 'brain', 'height': 3335, 'width': 4755, 'id': 380}\n", - "['section_masks_380_m_1.png', 'section_masks_380_m_4.png', 'section_masks_380_m_5.png', 'section_masks_380_m_6.png', 'section_masks_380_m_8.png']\n", - "1906/2000 [===========================>..] - ETA: 1:55 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1837 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556304\n", - "section_masks_304\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_304.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 304}\n", - "['section_masks_304_m_1.png', 'section_masks_304_m_2.png', 'section_masks_304_m_3.png', 'section_masks_304_m_4.png', 'section_masks_304_m_5.png', 'section_masks_304_m_6.png', 'section_masks_304_m_7.png', 'section_masks_304_m_8.png']\n", - "1907/2000 [===========================>..] - ETA: 1:54 - loss: 0.4964 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1837 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556394\n", - "section_masks_394\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_394.jpg', 'source': 'brain', 'height': 2554, 'width': 4576, 'id': 394}\n", - "['section_masks_394_m_1.png', 'section_masks_394_m_4.png', 'section_masks_394_m_5.png', 'section_masks_394_m_6.png', 'section_masks_394_m_8.png']\n", - "1908/2000 [===========================>..] - ETA: 1:53 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1837 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.155696\n", - "section_masks_96\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_96.jpg', 'source': 'brain', 'height': 2488, 'width': 2883, 'id': 96}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_3.png', 'section_masks_96_m_5.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1909/2000 [===========================>..] - ETA: 1:52 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1838 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556326\n", - "section_masks_326\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_326.jpg', 'source': 'brain', 'height': 2640, 'width': 4083, 'id': 326}\n", - "['section_masks_326_m_1.png', 'section_masks_326_m_2.png', 'section_masks_326_m_4.png', 'section_masks_326_m_5.png', 'section_masks_326_m_6.png', 'section_masks_326_m_7.png', 'section_masks_326_m_8.png']\n", - "1910/2000 [===========================>..] - ETA: 1:51 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1837 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.155683\n", - "section_masks_83\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_83.jpg', 'source': 'brain', 'height': 2558, 'width': 2931, 'id': 83}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_3.png', 'section_masks_83_m_5.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - "1911/2000 [===========================>..] - ETA: 1:49 - loss: 0.4963 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1837 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1556210\n", - "section_masks_210\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_210.jpg', 'source': 'brain', 'height': 1784, 'width': 2532, 'id': 210}\n", - "['section_masks_210_m_1.png', 'section_masks_210_m_2.png', 'section_masks_210_m_3.png', 'section_masks_210_m_7.png', 'section_masks_210_m_8.png']\n", - "1912/2000 [===========================>..] - ETA: 1:48 - loss: 0.4962 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.155613\n", - "section_masks_13\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_13.jpg', 'source': 'brain', 'height': 1923, 'width': 2201, 'id': 13}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - "1913/2000 [===========================>..] - ETA: 1:47 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.15562\n", - "section_masks_2\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_2.jpg', 'source': 'brain', 'height': 2214, 'width': 2428, 'id': 2}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - "1914/2000 [===========================>..] - ETA: 1:46 - loss: 0.4959 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0734 - mrcnn_mask_loss: 0.1555289\n", - "section_masks_289\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_289.jpg', 'source': 'brain', 'height': 2314, 'width': 3595, 'id': 289}\n", - "['section_masks_289_m_1.png', 'section_masks_289_m_2.png', 'section_masks_289_m_3.png', 'section_masks_289_m_4.png', 'section_masks_289_m_5.png', 'section_masks_289_m_6.png', 'section_masks_289_m_7.png', 'section_masks_289_m_8.png']\n", - "1915/2000 [===========================>..] - ETA: 1:44 - loss: 0.4960 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0734 - mrcnn_mask_loss: 0.1555150\n", - "section_masks_150\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_150.jpg', 'source': 'brain', 'height': 1928, 'width': 3408, 'id': 150}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n", - "1916/2000 [===========================>..] - ETA: 1:43 - loss: 0.4960 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1555364\n", - "section_masks_364\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_364.jpg', 'source': 'brain', 'height': 3083, 'width': 4167, 'id': 364}\n", - "['section_masks_364_m_1.png', 'section_masks_364_m_2.png', 'section_masks_364_m_4.png', 'section_masks_364_m_5.png', 'section_masks_364_m_6.png', 'section_masks_364_m_7.png', 'section_masks_364_m_8.png']\n", - "1917/2000 [===========================>..] - ETA: 1:42 - loss: 0.4960 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.155593\n", - "section_masks_93\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_93.jpg', 'source': 'brain', 'height': 2261, 'width': 2716, 'id': 93}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_3.png', 'section_masks_93_m_5.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - "1918/2000 [===========================>..] - ETA: 1:41 - loss: 0.4960 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1555311\n", - "section_masks_311\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_311.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 311}\n", - "['section_masks_311_m_1.png', 'section_masks_311_m_2.png', 'section_masks_311_m_3.png', 'section_masks_311_m_4.png', 'section_masks_311_m_5.png', 'section_masks_311_m_6.png', 'section_masks_311_m_7.png', 'section_masks_311_m_8.png']\n", - "1919/2000 [===========================>..] - ETA: 1:39 - loss: 0.4960 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0734 - mrcnn_mask_loss: 0.1555295\n", - "section_masks_295\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_295.jpg', 'source': 'brain', 'height': 2770, 'width': 3848, 'id': 295}\n", - "['section_masks_295_m_1.png', 'section_masks_295_m_2.png', 'section_masks_295_m_3.png', 'section_masks_295_m_4.png', 'section_masks_295_m_5.png', 'section_masks_295_m_6.png', 'section_masks_295_m_7.png', 'section_masks_295_m_8.png']\n", - "1920/2000 [===========================>..] - ETA: 1:38 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1555138\n", - "section_masks_138\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_138.jpg', 'source': 'brain', 'height': 3115, 'width': 4267, 'id': 138}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_4.png', 'section_masks_138_m_5.png', 'section_masks_138_m_6.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - "1921/2000 [===========================>..] - ETA: 1:37 - loss: 0.4962 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1837 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.155543\n", - "section_masks_43\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_43.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 43}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_3.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n", - "1922/2000 [===========================>..] - ETA: 1:36 - loss: 0.4960 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1555262\n", - "section_masks_262\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_262.jpg', 'source': 'brain', 'height': 2771, 'width': 3681, 'id': 262}\n", - "['section_masks_262_m_1.png', 'section_masks_262_m_2.png', 'section_masks_262_m_3.png', 'section_masks_262_m_4.png', 'section_masks_262_m_5.png', 'section_masks_262_m_6.png', 'section_masks_262_m_7.png', 'section_masks_262_m_8.png']\n", - "1923/2000 [===========================>..] - ETA: 1:34 - loss: 0.4960 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1555108\n", - "section_masks_108\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_108.jpg', 'source': 'brain', 'height': 2252, 'width': 3243, 'id': 108}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_4.png', 'section_masks_108_m_5.png', 'section_masks_108_m_6.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1924/2000 [===========================>..] - ETA: 1:33 - loss: 0.4959 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.15553\n", - "section_masks_3\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_3.jpg', 'source': 'brain', 'height': 2161, 'width': 2388, 'id': 3}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - "1925/2000 [===========================>..] - ETA: 1:32 - loss: 0.4958 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0734 - mrcnn_mask_loss: 0.1554232\n", - "section_masks_232\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_232.jpg', 'source': 'brain', 'height': 2012, 'width': 2821, 'id': 232}\n", - "['section_masks_232_m_1.png', 'section_masks_232_m_2.png', 'section_masks_232_m_5.png', 'section_masks_232_m_7.png', 'section_masks_232_m_8.png']\n", - "1926/2000 [===========================>..] - ETA: 1:31 - loss: 0.4958 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0734 - mrcnn_mask_loss: 0.1555281\n", - "section_masks_281\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_281.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 281}\n", - "['section_masks_281_m_1.png', 'section_masks_281_m_2.png', 'section_masks_281_m_3.png', 'section_masks_281_m_4.png', 'section_masks_281_m_5.png', 'section_masks_281_m_6.png', 'section_masks_281_m_7.png', 'section_masks_281_m_8.png']\n", - "1927/2000 [===========================>..] - ETA: 1:30 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.1554230\n", - "section_masks_230\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_230.jpg', 'source': 'brain', 'height': 1828, 'width': 2700, 'id': 230}\n", - "['section_masks_230_m_1.png', 'section_masks_230_m_2.png', 'section_masks_230_m_5.png', 'section_masks_230_m_7.png', 'section_masks_230_m_8.png']\n", - "1928/2000 [===========================>..] - ETA: 1:28 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.155442\n", - "section_masks_42\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_42.jpg', 'source': 'brain', 'height': 2465, 'width': 2750, 'id': 42}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_3.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - "1929/2000 [===========================>..] - ETA: 1:27 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.155412\n", - "section_masks_12\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_12.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 12}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - "1930/2000 [===========================>..] - ETA: 1:26 - loss: 0.4961 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0734 - mrcnn_mask_loss: 0.1554119\n", - "section_masks_119\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_119.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 119}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_4.png', 'section_masks_119_m_5.png', 'section_masks_119_m_6.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - "1931/2000 [===========================>..] - ETA: 1:25 - loss: 0.4962 - rpn_class_loss: 0.0057 - rpn_bbox_loss: 0.1836 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0735 - mrcnn_mask_loss: 0.155432\n", - "section_masks_32\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_32.jpg', 'source': 'brain', 'height': 1942, 'width': 2276, 'id': 32}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - "1932/2000 [===========================>..] - ETA: 1:23 - loss: 0.4961 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0734 - mrcnn_mask_loss: 0.155462\n", - "section_masks_62\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_62.jpg', 'source': 'brain', 'height': 2437, 'width': 2887, 'id': 62}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_3.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - "1933/2000 [===========================>..] - ETA: 1:22 - loss: 0.4959 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0734 - mrcnn_mask_loss: 0.1554272\n", - "section_masks_272\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_272.jpg', 'source': 'brain', 'height': 2168, 'width': 3400, 'id': 272}\n", - "['section_masks_272_m_1.png', 'section_masks_272_m_2.png', 'section_masks_272_m_3.png', 'section_masks_272_m_4.png', 'section_masks_272_m_5.png', 'section_masks_272_m_6.png', 'section_masks_272_m_7.png', 'section_masks_272_m_8.png']\n", - "1934/2000 [============================>.] - ETA: 1:21 - loss: 0.4958 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0734 - mrcnn_mask_loss: 0.1554212\n", - "section_masks_212\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_212.jpg', 'source': 'brain', 'height': 1957, 'width': 2651, 'id': 212}\n", - "['section_masks_212_m_1.png', 'section_masks_212_m_2.png', 'section_masks_212_m_3.png', 'section_masks_212_m_7.png', 'section_masks_212_m_8.png']\n", - "1935/2000 [============================>.] - ETA: 1:20 - loss: 0.4957 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1833 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0734 - mrcnn_mask_loss: 0.155394\n", - "section_masks_94\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_94.jpg', 'source': 'brain', 'height': 2340, 'width': 2775, 'id': 94}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_3.png', 'section_masks_94_m_5.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - "1936/2000 [============================>.] - ETA: 1:18 - loss: 0.4957 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1833 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0734 - mrcnn_mask_loss: 0.1554239\n", - "section_masks_239\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_239.jpg', 'source': 'brain', 'height': 2573, 'width': 3133, 'id': 239}\n", - "['section_masks_239_m_1.png', 'section_masks_239_m_2.png', 'section_masks_239_m_5.png', 'section_masks_239_m_7.png', 'section_masks_239_m_8.png']\n", - "1937/2000 [============================>.] - ETA: 1:17 - loss: 0.4959 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.155347\n", - "section_masks_47\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_47.jpg', 'source': 'brain', 'height': 2132, 'width': 2502, 'id': 47}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_3.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - "1938/2000 [============================>.] - ETA: 1:16 - loss: 0.4957 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553269\n", - "section_masks_269\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_269.jpg', 'source': 'brain', 'height': 2057, 'width': 3338, 'id': 269}\n", - "['section_masks_269_m_1.png', 'section_masks_269_m_2.png', 'section_masks_269_m_3.png', 'section_masks_269_m_4.png', 'section_masks_269_m_5.png', 'section_masks_269_m_6.png', 'section_masks_269_m_7.png', 'section_masks_269_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1939/2000 [============================>.] - ETA: 1:15 - loss: 0.4958 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553387\n", - "section_masks_387\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_387.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 387}\n", - "['section_masks_387_m_1.png', 'section_masks_387_m_4.png', 'section_masks_387_m_5.png', 'section_masks_387_m_6.png', 'section_masks_387_m_8.png']\n", - "1940/2000 [============================>.] - ETA: 1:13 - loss: 0.4957 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553360\n", - "section_masks_360\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_360.jpg', 'source': 'brain', 'height': 3496, 'width': 4338, 'id': 360}\n", - "['section_masks_360_m_1.png', 'section_masks_360_m_2.png', 'section_masks_360_m_4.png', 'section_masks_360_m_5.png', 'section_masks_360_m_6.png', 'section_masks_360_m_7.png', 'section_masks_360_m_8.png']\n", - "1941/2000 [============================>.] - ETA: 1:12 - loss: 0.4957 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553299\n", - "section_masks_299\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_299.jpg', 'source': 'brain', 'height': 3173, 'width': 4025, 'id': 299}\n", - "['section_masks_299_m_1.png', 'section_masks_299_m_2.png', 'section_masks_299_m_3.png', 'section_masks_299_m_4.png', 'section_masks_299_m_5.png', 'section_masks_299_m_6.png', 'section_masks_299_m_7.png', 'section_masks_299_m_8.png']\n", - "1942/2000 [============================>.] - ETA: 1:11 - loss: 0.4958 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0781 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553337\n", - "section_masks_337\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_337.jpg', 'source': 'brain', 'height': 2990, 'width': 4226, 'id': 337}\n", - "['section_masks_337_m_1.png', 'section_masks_337_m_2.png', 'section_masks_337_m_4.png', 'section_masks_337_m_5.png', 'section_masks_337_m_6.png', 'section_masks_337_m_7.png', 'section_masks_337_m_8.png']\n", - "1943/2000 [============================>.] - ETA: 1:10 - loss: 0.4958 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1835 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553214\n", - "section_masks_214\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_214.jpg', 'source': 'brain', 'height': 2119, 'width': 2756, 'id': 214}\n", - "['section_masks_214_m_1.png', 'section_masks_214_m_2.png', 'section_masks_214_m_3.png', 'section_masks_214_m_7.png', 'section_masks_214_m_8.png']\n", - "1944/2000 [============================>.] - ETA: 1:09 - loss: 0.4957 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553372\n", - "section_masks_372\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_372.jpg', 'source': 'brain', 'height': 2609, 'width': 3915, 'id': 372}\n", - "['section_masks_372_m_1.png', 'section_masks_372_m_2.png', 'section_masks_372_m_4.png', 'section_masks_372_m_5.png', 'section_masks_372_m_6.png', 'section_masks_372_m_7.png', 'section_masks_372_m_8.png']\n", - "1945/2000 [============================>.] - ETA: 1:07 - loss: 0.4956 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553101\n", - "section_masks_101\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_101.jpg', 'source': 'brain', 'height': 2901, 'width': 3587, 'id': 101}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_4.png', 'section_masks_101_m_5.png', 'section_masks_101_m_6.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - "1946/2000 [============================>.] - ETA: 1:06 - loss: 0.4956 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1834 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553237\n", - "section_masks_237\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_237.jpg', 'source': 'brain', 'height': 2427, 'width': 3062, 'id': 237}\n", - "['section_masks_237_m_1.png', 'section_masks_237_m_2.png', 'section_masks_237_m_5.png', 'section_masks_237_m_7.png', 'section_masks_237_m_8.png']\n", - "1947/2000 [============================>.] - ETA: 1:05 - loss: 0.4955 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1833 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553379\n", - "section_masks_379\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_379.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 379}\n", - "['section_masks_379_m_1.png', 'section_masks_379_m_2.png', 'section_masks_379_m_4.png', 'section_masks_379_m_5.png', 'section_masks_379_m_6.png', 'section_masks_379_m_7.png', 'section_masks_379_m_8.png']\n", - "1948/2000 [============================>.] - ETA: 1:04 - loss: 0.4954 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1833 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1553373\n", - "section_masks_373\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_373.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 373}\n", - "['section_masks_373_m_1.png', 'section_masks_373_m_2.png', 'section_masks_373_m_4.png', 'section_masks_373_m_5.png', 'section_masks_373_m_6.png', 'section_masks_373_m_7.png', 'section_masks_373_m_8.png']\n", - "1949/2000 [============================>.] - ETA: 1:02 - loss: 0.4953 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1832 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1553335\n", - "section_masks_335\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_335.jpg', 'source': 'brain', 'height': 2760, 'width': 4136, 'id': 335}\n", - "['section_masks_335_m_1.png', 'section_masks_335_m_2.png', 'section_masks_335_m_4.png', 'section_masks_335_m_5.png', 'section_masks_335_m_6.png', 'section_masks_335_m_7.png', 'section_masks_335_m_8.png']\n", - "1950/2000 [============================>.] - ETA: 1:01 - loss: 0.4954 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1832 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1553166\n", - "section_masks_166\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_166.jpg', 'source': 'brain', 'height': 2568, 'width': 3631, 'id': 166}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_8.png']\n", - "1951/2000 [============================>.] - ETA: 1:00 - loss: 0.4953 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1831 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.155324\n", - "section_masks_24\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_24.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 24}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - "1952/2000 [============================>.] - ETA: 59s - loss: 0.4953 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1832 - mrcnn_class_loss: 0.0780 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553 201\n", - "section_masks_201\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_201.jpg', 'source': 'brain', 'height': 2479, 'width': 2960, 'id': 201}\n", - "['section_masks_201_m_1.png', 'section_masks_201_m_2.png', 'section_masks_201_m_3.png', 'section_masks_201_m_7.png', 'section_masks_201_m_8.png']\n", - "1953/2000 [============================>.] - ETA: 57s - loss: 0.4952 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1831 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553367\n", - "section_masks_367\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_367.jpg', 'source': 'brain', 'height': 2733, 'width': 3986, 'id': 367}\n", - "['section_masks_367_m_1.png', 'section_masks_367_m_2.png', 'section_masks_367_m_4.png', 'section_masks_367_m_5.png', 'section_masks_367_m_6.png', 'section_masks_367_m_7.png', 'section_masks_367_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1954/2000 [============================>.] - ETA: 56s - loss: 0.4952 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1831 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0733 - mrcnn_mask_loss: 0.1553218\n", - "section_masks_218\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_218.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 218}\n", - "['section_masks_218_m_1.png', 'section_masks_218_m_2.png', 'section_masks_218_m_3.png', 'section_masks_218_m_7.png', 'section_masks_218_m_8.png']\n", - "1955/2000 [============================>.] - ETA: 55s - loss: 0.4951 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1831 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1553393\n", - "section_masks_393\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_393.jpg', 'source': 'brain', 'height': 2412, 'width': 4526, 'id': 393}\n", - "['section_masks_393_m_1.png', 'section_masks_393_m_4.png', 'section_masks_393_m_5.png', 'section_masks_393_m_6.png', 'section_masks_393_m_8.png']\n", - "1956/2000 [============================>.] - ETA: 54s - loss: 0.4951 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1830 - mrcnn_class_loss: 0.0779 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1553254\n", - "section_masks_254\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_254.jpg', 'source': 'brain', 'height': 2230, 'width': 3098, 'id': 254}\n", - "['section_masks_254_m_1.png', 'section_masks_254_m_2.png', 'section_masks_254_m_3.png', 'section_masks_254_m_4.png', 'section_masks_254_m_5.png', 'section_masks_254_m_7.png', 'section_masks_254_m_8.png']\n", - "1957/2000 [============================>.] - ETA: 53s - loss: 0.4951 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1831 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1553165\n", - "section_masks_165\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_165.jpg', 'source': 'brain', 'height': 2673, 'width': 3685, 'id': 165}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_8.png']\n", - "1958/2000 [============================>.] - ETA: 51s - loss: 0.4950 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1830 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.155355\n", - "section_masks_55\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_55.jpg', 'source': 'brain', 'height': 2274, 'width': 2611, 'id': 55}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_3.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - "1959/2000 [============================>.] - ETA: 50s - loss: 0.4948 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1829 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1552374\n", - "section_masks_374\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_374.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 374}\n", - "['section_masks_374_m_1.png', 'section_masks_374_m_2.png', 'section_masks_374_m_4.png', 'section_masks_374_m_5.png', 'section_masks_374_m_6.png', 'section_masks_374_m_7.png', 'section_masks_374_m_8.png']\n", - "1960/2000 [============================>.] - ETA: 49s - loss: 0.4947 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1829 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.155257\n", - "section_masks_57\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_57.jpg', 'source': 'brain', 'height': 2404, 'width': 2707, 'id': 57}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_3.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - "1961/2000 [============================>.] - ETA: 48s - loss: 0.4946 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1829 - mrcnn_class_loss: 0.0778 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.155230\n", - "section_masks_30\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_30.jpg', 'source': 'brain', 'height': 1796, 'width': 2156, 'id': 30}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - "1962/2000 [============================>.] - ETA: 46s - loss: 0.4946 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1829 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1552361\n", - "section_masks_361\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_361.jpg', 'source': 'brain', 'height': 3399, 'width': 4303, 'id': 361}\n", - "['section_masks_361_m_1.png', 'section_masks_361_m_2.png', 'section_masks_361_m_4.png', 'section_masks_361_m_5.png', 'section_masks_361_m_6.png', 'section_masks_361_m_7.png', 'section_masks_361_m_8.png']\n", - "1963/2000 [============================>.] - ETA: 45s - loss: 0.4946 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1829 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1552123\n", - "section_masks_123\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_123.jpg', 'source': 'brain', 'height': 3006, 'width': 4229, 'id': 123}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_4.png', 'section_masks_123_m_5.png', 'section_masks_123_m_6.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - "1964/2000 [============================>.] - ETA: 44s - loss: 0.4947 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1829 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1552265\n", - "section_masks_265\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_265.jpg', 'source': 'brain', 'height': 2483, 'width': 3560, 'id': 265}\n", - "['section_masks_265_m_1.png', 'section_masks_265_m_2.png', 'section_masks_265_m_3.png', 'section_masks_265_m_4.png', 'section_masks_265_m_5.png', 'section_masks_265_m_6.png', 'section_masks_265_m_7.png', 'section_masks_265_m_8.png']\n", - "1965/2000 [============================>.] - ETA: 43s - loss: 0.4946 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1829 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1552366\n", - "section_masks_366\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_366.jpg', 'source': 'brain', 'height': 2853, 'width': 4051, 'id': 366}\n", - "['section_masks_366_m_1.png', 'section_masks_366_m_2.png', 'section_masks_366_m_4.png', 'section_masks_366_m_5.png', 'section_masks_366_m_6.png', 'section_masks_366_m_7.png', 'section_masks_366_m_8.png']\n", - "1966/2000 [============================>.] - ETA: 41s - loss: 0.4945 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1829 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1552270\n", - "section_masks_270\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_270.jpg', 'source': 'brain', 'height': 1944, 'width': 3272, 'id': 270}\n", - "['section_masks_270_m_1.png', 'section_masks_270_m_2.png', 'section_masks_270_m_3.png', 'section_masks_270_m_4.png', 'section_masks_270_m_5.png', 'section_masks_270_m_6.png', 'section_masks_270_m_7.png', 'section_masks_270_m_8.png']\n", - "1967/2000 [============================>.] - ETA: 40s - loss: 0.4945 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1828 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.1552170\n", - "section_masks_170\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_170.jpg', 'source': 'brain', 'height': 2120, 'width': 3368, 'id': 170}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_8.png']\n", - "1968/2000 [============================>.] - ETA: 39s - loss: 0.4944 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1827 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0732 - mrcnn_mask_loss: 0.155269\n", - "section_masks_69\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_69.jpg', 'source': 'brain', 'height': 1910, 'width': 2543, 'id': 69}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_3.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1969/2000 [============================>.] - ETA: 38s - loss: 0.4943 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1827 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.155276\n", - "section_masks_76\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_76.jpg', 'source': 'brain', 'height': 2300, 'width': 2805, 'id': 76}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_3.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - "1970/2000 [============================>.] - ETA: 36s - loss: 0.4942 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1827 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1552116\n", - "section_masks_116\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_116.jpg', 'source': 'brain', 'height': 2642, 'width': 3465, 'id': 116}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_4.png', 'section_masks_116_m_5.png', 'section_masks_116_m_6.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - "1971/2000 [============================>.] - ETA: 35s - loss: 0.4943 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1827 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1552209\n", - "section_masks_209\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_209.jpg', 'source': 'brain', 'height': 1872, 'width': 2593, 'id': 209}\n", - "['section_masks_209_m_1.png', 'section_masks_209_m_2.png', 'section_masks_209_m_3.png', 'section_masks_209_m_7.png', 'section_masks_209_m_8.png']\n", - "1972/2000 [============================>.] - ETA: 34s - loss: 0.4942 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1826 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1552352\n", - "section_masks_352\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_352.jpg', 'source': 'brain', 'height': 2529, 'width': 3910, 'id': 352}\n", - "['section_masks_352_m_1.png', 'section_masks_352_m_2.png', 'section_masks_352_m_4.png', 'section_masks_352_m_5.png', 'section_masks_352_m_6.png', 'section_masks_352_m_7.png', 'section_masks_352_m_8.png']\n", - "1973/2000 [============================>.] - ETA: 33s - loss: 0.4941 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1826 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1552301\n", - "section_masks_301\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_301.jpg', 'source': 'brain', 'height': 3221, 'width': 4204, 'id': 301}\n", - "['section_masks_301_m_1.png', 'section_masks_301_m_2.png', 'section_masks_301_m_3.png', 'section_masks_301_m_4.png', 'section_masks_301_m_5.png', 'section_masks_301_m_6.png', 'section_masks_301_m_7.png', 'section_masks_301_m_8.png']\n", - "1974/2000 [============================>.] - ETA: 32s - loss: 0.4942 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1826 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1552168\n", - "section_masks_168\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_168.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 168}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_8.png']\n", - "1975/2000 [============================>.] - ETA: 30s - loss: 0.4941 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1825 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.155251\n", - "section_masks_51\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_51.jpg', 'source': 'brain', 'height': 1980, 'width': 2381, 'id': 51}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_3.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - "1976/2000 [============================>.] - ETA: 29s - loss: 0.4940 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1824 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0730 - mrcnn_mask_loss: 0.1552384\n", - "section_masks_384\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_384.jpg', 'source': 'brain', 'height': 2828, 'width': 4659, 'id': 384}\n", - "['section_masks_384_m_1.png', 'section_masks_384_m_4.png', 'section_masks_384_m_5.png', 'section_masks_384_m_6.png', 'section_masks_384_m_8.png']\n", - "1977/2000 [============================>.] - ETA: 28s - loss: 0.4938 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1824 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0730 - mrcnn_mask_loss: 0.1552172\n", - "section_masks_172\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_172.jpg', 'source': 'brain', 'height': 2350, 'width': 3508, 'id': 172}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_8.png']\n", - "1978/2000 [============================>.] - ETA: 27s - loss: 0.4938 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1823 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0730 - mrcnn_mask_loss: 0.155236\n", - "section_masks_36\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_36.jpg', 'source': 'brain', 'height': 2205, 'width': 2483, 'id': 36}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - "1979/2000 [============================>.] - ETA: 25s - loss: 0.4939 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1824 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0730 - mrcnn_mask_loss: 0.1552141\n", - "section_masks_141\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_141.jpg', 'source': 'brain', 'height': 2887, 'width': 3837, 'id': 141}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - "1980/2000 [============================>.] - ETA: 24s - loss: 0.4940 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1824 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1552146\n", - "section_masks_146\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_146.jpg', 'source': 'brain', 'height': 2384, 'width': 3644, 'id': 146}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - "1981/2000 [============================>.] - ETA: 23s - loss: 0.4940 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1825 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.155125\n", - "section_masks_25\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_25.jpg', 'source': 'brain', 'height': 2143, 'width': 2435, 'id': 25}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - "1982/2000 [============================>.] - ETA: 22s - loss: 0.4939 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1824 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1551253\n", - "section_masks_253\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_253.jpg', 'source': 'brain', 'height': 2138, 'width': 3046, 'id': 253}\n", - "['section_masks_253_m_1.png', 'section_masks_253_m_2.png', 'section_masks_253_m_3.png', 'section_masks_253_m_4.png', 'section_masks_253_m_5.png', 'section_masks_253_m_7.png', 'section_masks_253_m_8.png']\n", - "1983/2000 [============================>.] - ETA: 20s - loss: 0.4940 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1824 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1551195\n", - "section_masks_195\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_195.jpg', 'source': 'brain', 'height': 2052, 'width': 2545, 'id': 195}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_3.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1984/2000 [============================>.] - ETA: 19s - loss: 0.4938 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1823 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1551200\n", - "section_masks_200\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_200.jpg', 'source': 'brain', 'height': 2543, 'width': 2990, 'id': 200}\n", - "['section_masks_200_m_1.png', 'section_masks_200_m_2.png', 'section_masks_200_m_3.png', 'section_masks_200_m_7.png', 'section_masks_200_m_8.png']\n", - "1985/2000 [============================>.] - ETA: 18s - loss: 0.4938 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1823 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1551115\n", - "section_masks_115\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_115.jpg', 'source': 'brain', 'height': 2549, 'width': 3415, 'id': 115}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_4.png', 'section_masks_115_m_5.png', 'section_masks_115_m_6.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - "1986/2000 [============================>.] - ETA: 17s - loss: 0.4938 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1823 - mrcnn_class_loss: 0.0777 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.155185\n", - "section_masks_85\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_85.jpg', 'source': 'brain', 'height': 2415, 'width': 2831, 'id': 85}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_3.png', 'section_masks_85_m_5.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n", - "1987/2000 [============================>.] - ETA: 16s - loss: 0.4937 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1822 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.155181\n", - "section_masks_81\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_81.jpg', 'source': 'brain', 'height': 2689, 'width': 3017, 'id': 81}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_3.png', 'section_masks_81_m_5.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - "1988/2000 [============================>.] - ETA: 14s - loss: 0.4936 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1821 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1551359\n", - "section_masks_359\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_359.jpg', 'source': 'brain', 'height': 3323, 'width': 4278, 'id': 359}\n", - "['section_masks_359_m_1.png', 'section_masks_359_m_2.png', 'section_masks_359_m_4.png', 'section_masks_359_m_5.png', 'section_masks_359_m_6.png', 'section_masks_359_m_7.png', 'section_masks_359_m_8.png']\n", - "1989/2000 [============================>.] - ETA: 13s - loss: 0.4936 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1822 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1551178\n", - "section_masks_178\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_178.jpg', 'source': 'brain', 'height': 2966, 'width': 3822, 'id': 178}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_8.png']\n", - "1990/2000 [============================>.] - ETA: 12s - loss: 0.4935 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1821 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1551202\n", - "section_masks_202\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_202.jpg', 'source': 'brain', 'height': 2413, 'width': 2926, 'id': 202}\n", - "['section_masks_202_m_1.png', 'section_masks_202_m_2.png', 'section_masks_202_m_3.png', 'section_masks_202_m_7.png', 'section_masks_202_m_8.png']\n", - "1991/2000 [============================>.] - ETA: 11s - loss: 0.4935 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1821 - mrcnn_class_loss: 0.0775 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1551244\n", - "section_masks_244\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_244.jpg', 'source': 'brain', 'height': 2404, 'width': 3190, 'id': 244}\n", - "['section_masks_244_m_1.png', 'section_masks_244_m_2.png', 'section_masks_244_m_3.png', 'section_masks_244_m_4.png', 'section_masks_244_m_5.png', 'section_masks_244_m_7.png', 'section_masks_244_m_8.png']\n", - "1992/2000 [============================>.] - ETA: 9s - loss: 0.4935 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1820 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1552 133\n", - "section_masks_133\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_133.jpg', 'source': 'brain', 'height': 2532, 'width': 4028, 'id': 133}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_4.png', 'section_masks_133_m_5.png', 'section_masks_133_m_6.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - "1993/2000 [============================>.] - ETA: 8s - loss: 0.4936 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1820 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1552243\n", - "section_masks_243\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_243.jpg', 'source': 'brain', 'height': 2487, 'width': 3230, 'id': 243}\n", - "['section_masks_243_m_1.png', 'section_masks_243_m_2.png', 'section_masks_243_m_3.png', 'section_masks_243_m_4.png', 'section_masks_243_m_5.png', 'section_masks_243_m_7.png', 'section_masks_243_m_8.png']\n", - "1994/2000 [============================>.] - ETA: 7s - loss: 0.4935 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1820 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1552309\n", - "section_masks_309\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_309.jpg', 'source': 'brain', 'height': 2309, 'width': 3786, 'id': 309}\n", - "['section_masks_309_m_1.png', 'section_masks_309_m_2.png', 'section_masks_309_m_3.png', 'section_masks_309_m_4.png', 'section_masks_309_m_5.png', 'section_masks_309_m_6.png', 'section_masks_309_m_7.png', 'section_masks_309_m_8.png']\n", - "1995/2000 [============================>.] - ETA: 6s - loss: 0.4935 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1820 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.155216\n", - "section_masks_16\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_16.jpg', 'source': 'brain', 'height': 2105, 'width': 2346, 'id': 16}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - "1996/2000 [============================>.] - ETA: 4s - loss: 0.4935 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1820 - mrcnn_class_loss: 0.0775 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1552316\n", - "section_masks_316\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_316.jpg', 'source': 'brain', 'height': 2904, 'width': 4084, 'id': 316}\n", - "['section_masks_316_m_1.png', 'section_masks_316_m_2.png', 'section_masks_316_m_3.png', 'section_masks_316_m_4.png', 'section_masks_316_m_5.png', 'section_masks_316_m_6.png', 'section_masks_316_m_7.png', 'section_masks_316_m_8.png']\n", - "1997/2000 [============================>.] - ETA: 3s - loss: 0.4934 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1820 - mrcnn_class_loss: 0.0775 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.155259\n", - "section_masks_59\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_59.jpg', 'source': 'brain', 'height': 2523, 'width': 2790, 'id': 59}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_3.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - "1998/2000 [============================>.] - ETA: 2s - loss: 0.4934 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1821 - mrcnn_class_loss: 0.0775 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.15518\n", - "section_masks_8\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_8.jpg', 'source': 'brain', 'height': 1858, 'width': 2147, 'id': 8}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1999/2000 [============================>.] - ETA: 1s - loss: 0.4933 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1820 - mrcnn_class_loss: 0.0775 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1551117\n", - "section_masks_117\n", - "{'path': 'D:\\\\Romesa_Work\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_train_dataset_images/section_img_117.jpg', 'source': 'brain', 'height': 2732, 'width': 3509, 'id': 117}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_4.png', 'section_masks_117_m_5.png', 'section_masks_117_m_6.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - "2000/2000 [==============================] - 2467s 1s/step - loss: 0.4934 - rpn_class_loss: 0.0056 - rpn_bbox_loss: 0.1820 - mrcnn_class_loss: 0.0776 - mrcnn_bbox_loss: 0.0731 - mrcnn_mask_loss: 0.1551 - val_loss: 1.0743 - val_rpn_class_loss: 0.0074 - val_rpn_bbox_loss: 0.4007 - val_mrcnn_class_loss: 0.1281 - val_mrcnn_bbox_loss: 0.1823 - val_mrcnn_mask_loss: 0.3557\n" - ] - } - ], + "outputs": [], "source": [ - "# Fine tune all layers\n", - "# Passing layers=\"all\" trains all layers. You can also \n", - "# pass a regular expression to select which layers to\n", - "# train by name pattern.\n", + "# # Fine tune all layers\n", + "# # Passing layers=\"all\" trains all layers. You can also \n", + "# # pass a regular expression to select which layers to\n", + "# # train by name pattern.\n", "model.train(dataset_train, dataset_val, \n", " learning_rate=config.LEARNING_RATE / 10,\n", - " epochs=3, \n", + " epochs=1, \n", " layers=\"all\")#layers=\"heads\" ; epochs = 2" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": { - "collapsed": true + "id": "LKQirAN3Bxzj", + "outputId": "0aca002c-7ec7-433b-8530-5ce2b66677a6" }, "outputs": [], "source": [ - "# Save weights\n", - "# Typically not needed because callbacks save after every epoch\n", - "# Uncomment to save manually\n", - "model_path = os.path.join(MODEL_DIR, \"mask_rcnn_shapes.h5\")\n", + "resetDataDir()\n", + "print(os.getcwd())\n", + "model_path = os.path.join(\"weights\", \"mask_rcnn_shapes.h5\")\n", "model.keras_model.save_weights(model_path)" ] }, @@ -26882,95 +780,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Detection" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading weights from C:\\Users\\Asfandyar\\Documents\\Romesa\\Scene_Parsing\\Code\\Mask_RCNN\\NatMachIntell_Code_Submit\\logs\\brain20180322T2325\\mask_rcnn_brain_0003.h5\n" - ] - } - ], - "source": [ - "class InferenceConfig(BrainConfig):\n", - " GPU_COUNT = 1\n", - " IMAGES_PER_GPU = 1\n", - "\n", - "inference_config = InferenceConfig()\n", - "\n", - "# Recreate the model in inference mode\n", - "model = modellib.MaskRCNN(mode=\"inference\", \n", - " config=inference_config,\n", - " model_dir=MODEL_DIR)\n", - "\n", - "# Get path to saved weights\n", - "# Either set a specific path or find last trained weights\n", - "# model_path = os.path.join(ROOT_DIR, \".h5 file name here\")\n", - "model_path = model.find_last()[1]\n", - "\n", - "# Load trained weights (fill in path to trained weights here)\n", - "assert model_path != \"\", \"Provide path to trained weights\"\n", - "print(\"Loading weights from \", model_path)\n", - "model.load_weights(model_path, by_name=True)" + "## Detection and Validation" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": { - "scrolled": true + "id": "rdznSLooBxzl", + "outputId": "d481a985-43e2-4402-d659-0beb98326b99" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "121\n", - "section_masks_121\n", - "{'width': 3303, 'id': 121, 'height': 2666, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_121.jpg', 'source': 'brain'}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_5.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Asfandyar\\AppData\\Roaming\\Python\\Python35\\site-packages\\scipy\\ndimage\\interpolation.py:616: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.\n", - " \"the returned array has changed.\", UserWarning)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "original_image shape: (384, 384, 3) min: 0.00000 max: 255.00000\n", - "image_meta shape: (17,) min: 0.00000 max: 3303.00000\n", - "gt_class_id shape: (6,) min: 1.00000 max: 8.00000\n", - "gt_bbox shape: (6, 4) min: 58.00000 max: 322.00000\n", - "gt_mask shape: (384, 384, 6) min: 0.00000 max: 255.00000\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAANSCAYAAACTM9TNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3XeUZHd1L/pvncpVndPkGY1G0iggGSEkARILEYRIBoGvARMkMCCMMWAb8LUBv/uwrUfGNg7Cxn5+F2NYOAG+FtHA4gIXE0wyBiQNmtGETtO5K6fz/th7V3Wd7uoKXae7pvX9rAWlrj51ctX0Od/a+xdwXRdERERERETUXc5OrwAREREREdFuxIstIiIiIiIiH/Bii4iIiIiIyAe82CIiIiIiIvIBL7aIiIiIiIh8wIstIiIiIiIiH/Bii4iIiIiIyAe82CIiIiIiIvIBL7aIiIiIiIh8wIstIiIiIiIiH/Bii4iIiIiIyAe82CIiIiIiIvIBL7aIiIiIiIh8wIstIiIiIiIiH/Bii4iIiIiIyAe82CIiIiIiIvIBL7aIiIiIiIh8wIstIiIiIiIiH/Bii4iIiIiIyAe82CIiIiIiIvIBL7aIiIiIiIh8wIstIiIiIiIiH/Bii4iIiIiIyAe82CIiIiIiIvIBL7aIiIiIiIh8wIstIiIiIiIiH/Bii4iIiIiIyAe82CIiIiIiIvJBaKdXoNsCgYC70+tARERERES9wXXdwE4tm8kWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5ANebBEREREREfmAF1tEREREREQ+4MUWERERERGRD3ixRURERERE5IPQTq9At5XL5Z1eBepRrhvwPFMBAAQC3ueJiIiIiLaOyRYREREREZEPdl2yRdSI67reZ5q+hqkXEREREXWKyRYREREREZEPmGzRrldLtLwplaO/3+zV8ppAoHkKRkRERES0FpMtIiIiIiIiHzDZol1v8+Sq2Wub1XlZ8uV9pfcJJmNEREREDzdMtoiIiIiIiHzAZIt2LRtXq5ZObZwutdZx0Oa18WsbPb9mbVpYBhERERHtJky2iIiIiIiIfMBkix72LPnaLOFaX7vV2jwbaVzjxQSMiIiIaLdgskVEREREROQDJlu0a7WbRm1lGc3rvup/zxovIiIiot2PyRYREREREZEPmGzRrlOpSCrUbrDVjSSsUcLlnbd3Om/HxNrk9ckZEzAiIiKiCweTLSIiIiIiIh8w2aJdqD4dam0cre3VaormnWx9QtZqzRgRERERbTcmW0RERERERD5gskW7husG6h5rCVerKdL6lKhZDZb9fjs6H268Ht71qb9/sn71WeNFREREtF2YbBEREREREfmAyRbtIvVJVqMxsLw/VyoVAECxWAQAhMPhhtN6E6xGCVfj7oEbz6dVrXc1rE5hv/E8bvx6IiIiIuoeJltEREREREQ+YLJFu0az1KcRmy4UCrX1uo2W7VdS1CgJa7bcxgmaJXHY8PXW5ZCIiIiIOsdki4iIiIiIyAdMtuiCV+vIV/98ozoqL3s+GAz6sG7bkxC1nqy1loDV5ud5NWu8iIiIiFrGZIuIiIiIiMgHTLZo12nWfbAb8+5WYtVsfn6N49W8vq2+pqv2uvrpay9jjRcRERGRF5MtIiIiIiIiHzDZol3gwk1VmnUZ7HR+21VbVVtPjt9FRERE5MVki4iIiIiIyAdMtuiCV6l4U6CdS1V6JdHZ7nG/AgHH83t4fm/rsXESRkRERLQbMdkiIiIiIiLyAZMtuuDVUhN/Ove1tw69pdV94U3CmnVHbLYc73SN18Oe93Y3JCIiIrrwMdkiIiIiIiLyAZMtuoBtHIO0OjZV6+nLw0ezfdBq98RgMAhgs2Ox8ThetWO69hfb22GRiIiIqFuYbBEREREREfmAyRZdsNpNopolI60mYhvNq9m8m9U0NZquVzRLAbuVEm7+OlensWVWl+75mYiIiKg3MNkiIiIiIiLyAZMtumDVUpDNa7fatfZ12500tZOubabVJK3T+W2vjeu7bHy19ZvGGi8iIiLqDUy2iIiIiIiIfMBkiy4gjTrYNXlVmwlHOylOq/PuRsoG+FUL1Xy5W12eH50fvSlgbZYbJ142fW1derM+joiIiHYPJltEREREREQ+CPRq97NOVayQg3YhSSQ6PcTtdgzcbJqtJlXdrslq9/eNpm+3y2K7ujE/77p2ntpV6n5mjRcREdHu5DjOjv0jz2SLiIiIiIjIB6zZol2rUQKylQSjW+mHHzVM7Synm/ukHVtZnncfbbUOzV6+fp0arSO7HBIREVF7mGwRERERERH5gMkWXTC61VGvWX3SbqhjbLTtzVKZbqc23Rjvq9ZtsNvJUrPUr/obz6NnLky6iIiIqAEmW0RERERERD5gskUXjFpK4m+SsFFS0a20a7trpJrxaz0a7S8/t7tRirb1McOqc/T8pj4Bqy0m4Pn5wk9KiYiIqDNMtoiIiIiIiHzAZIt2vW6kKd2u59rqfHq9vqyb67f1ZKq9NLH5GGa2Xhs/b0lWbbreSjOJiIho+zDZIiIiIiIi8gGTLep525XebJaA9HqC1Mx2r383uhB2qlkXyk55uyI6jrPp8mocfd3Gv13/8t4814iIiKh9TLaIiIiIiIh8wGSLet6F2IWwV7sO+p1w9UIC6Feq1qy7YaPldloD1iOnDhEREW0Bky0iIiIiIiIfMNmiHma39nfunkDr6UR9ktUriZZXp/VM3v1QqVTqnvc+Nkr2XNdeZ894j21lg3Xb/Bjs9L5utF6tJmyNj0n9fNZPZ8+3uKJERES07ZhsERERERER+YDJFvUsb/c3026S4Wf9lN81SuuTIX+W1+6+aTa99/eNt6N7x6bVfbVTnRK3Ot7X+u3pzaSPiIiIaphsERERERER+YDJFvWsZslELyRcfqcIjWrBdqrr39YTsO4nWK1O12rS1a3lN65b69Z5aOeCd7n2X/X1bzYuGBEREW0f/utLRERERETkAyZb1MM2H1+rUe2Ndcqz39sd/Wad8jZbRquvabWrX7PX+V2r1WlXQr+XX0tr1q9Hp0nQdiWk7XakbLfDZaPXtXqulMveDpLVOXjms/NjpREREe0WTLaIiIiIiIh8wGSLek4tTWr0/OZ1TOVyGUAt4QoGgwCAUKjz073ddMEvfnZWbId/tWPbv13N9ulWuwi2m3A1SsZaTehqx6bR8uD5vSXA3g6Sm642ERERtYDJFhERERERkQ+YbFHP0UCqeufd7rC3OnaTJVr2aDVb3gRgKylRszSi0853W+1016pu15a1vj7e5W7POGIbaTdxanT+NNNq7VWz9dpqDVgz3rHPNppd43o01nkRERFthMkWERERERGRD5hsUc9oNw1qlBhYjZYlWt7xhdpNFNp5zc5389vYVmvMupXIrZmjvbLt+TQ7Fs3St1Z1IwFdy69zo933R/Ptaby/aq9d95u653e6ppCIiKhXMNkiIiIiIiLyAZMt6hm1LmmtJQCNargs2Wp9ue0nDtudaDWrH+qWRmlO97oPbn19O93mTscWa7a8re4b73hwjX6/Va2O69XZvOrrvLwJF2u8iIjo4YrJFhERERERkQ94sUVEREREROQDfo2Qekh7Xy3qdtOGzb6a598gvvXz90u78+92S/n18/Nve9s9Vu1+vbDbrdk7/XpjM36fs56l1f3k/UpwbRM3brDBhhpERLRbMdkiIiIiIiLyAZMt2nF297v2KM9v193uzRKtbqcCnbfjbm9+reo08Wp3v3QzhfSrOUj329tv/Pp2E7etNt7oLbZN0MfNW8YHAr24DURERK1jskVEREREROQDJlu047aaaHUrbfErMWlnWd7n/U5bOtXteqB2Bl1udZvbXcdG69DtFLLReu7muqVG+6z5EApbG4ybiIhopzHZIiIiIiIi8gGTLeoBcs1v9Rmdpjmt3vVuljB0s9al3VSlW2nMhWaz7e1WrVSzZfvVFXCnaq6anUudbPdWj0W7HRm99wO9L18/+DZrvIiIqLcw2SIiIiIiIvIBky3qOY3uyPt1V70X9Hoi1WpKstX5tzLv7dpXzWq1tlor2KvHfLPt2a5OkO2OWea6lU2n79V9TUREux+TLSIiIiIiIh8w2aId4+1C6HUh343utFZru5bbbnLQSzqtuetW7Vejjnqd7vt1P9tsbCwqz2p3e7yuTo51oyTK7/O58Xzrx+9aPx97vedVF+5HDBERXSCYbBEREREREfmAyRbtmNpd691ze7lZStBsfC2vrSYE5XIZAOA41vGxteW2uvxeSsBa3feNbLXLZbNaw2YpTfX3Td4Wne7zVhOxdubfaJ5brbNrNSFrt4tn7df2Ou8U9eklky8iItoqJltEREREREQ+YLJFu95W05tuLKOby2pHu2NHbXWssm7pJF3pFr+OUbNaL9dTWFSdvsO0dDt0uuxuJVedb3OzGi/v+snPjsOoi4iI2sNki4iIiIiIyAdMtmjbVUtTOgxH2k1rdkKnYzBVKpW61wWDwZaW04jVal0ottIZb7s6OvZKkmbraedMo7q8Zq9vpbtip+ezd1mtPt/qcv1O82rLtX29cUGdrUYg4H2/9c5nEhER7YwL6y8xIiIiIiKiCwSTLdoBAc9jk6kv4JZgW00EvKmFV7upTqtjLjVLD7eaInbSEa9XzoNm+6hZh76tdj30Tt9uotXq8tqZX/dqqXZmvo3Ulrd5jZclXo7jXd+dq6cjIqLewGSLiIiIiIjIB0y2aNv51WFsq+McbUWjMZPaXYalFO0mR+12d2t1fu2qrYf3N+0lfGu3Y6fqdVq1XZ0ou3Ueb6XmsdfGXev0feKXxmlm/XS1cby8+5M1XkREuw2TLSIiIiIiIh8EeqmDWzdUau2iqMfU6n027n7mna5by9tOzVKYdpOlZilEr3TGM65bsf+yOXoebbr2O/61msj0SuLl1Wg9202seuG87rT+rNNktXES1Jl292Gr799OU8ba6yodzYeIiDbn7OBAiUy2iIiIiIiIfMCaLbrgdCsJ22qnwE7m6ccyu6n1O/fe6Rp1mOzsWG00xtNm01yIakmvpYHdTW/81GrtVqMxvLzTbXV5futWIt1oeu94XrVxu2rzYX0XEdGFickWERERERGRD5hske+8d2/tJm636iDaTYu24y75Vmu0Oh0Dya/6t/Xqj+UGa9L9JXa53s3Lr/Oi1THFbPE2uV91eZ3YqUS2F7a9E52fY/XjedUnvN55bfw8ERH1FiZbREREREREPmCyRdtge2699uJd8GYJlN/pRbtjj3k1HhPNW7vlrT2pX85WzgGraartos3rwmqv23jbtqt7obcOZ80SN1yP2o9bq0H0U6s1ic20mmY3r1Nqb5t7pc6vkzR//WvqU7D1749GY94REdF2YrJFRERERETkAyZbtI0adbLzaWkN6pd6oRZmq3fYu1Xj1Wz+bbxCl+N9fWdJR/36emv9qlO1t4YtJl0br8NWNEtjOuvs1+l0F7bN96VfqWW3zpFOxxlrZVnrk9HNP+9293lCRNQ7mGwRERERERH5gMkW+c57k3a776iuH8um3k50WmvWNXCnxpZquI8aLLZ2D71BqlKdQH/veX2lg5RzfS2U94693EOydXY9y66+3tn4GFTPh0pFn6/UL8bmv265G8+vXCrpy+T3juNZb519WZfn6PwRqF+u63rr3zxjMum9s2onO8/Odjo85zbS7fdw6+uy+f3Brb6Xm6WD3fqs6GTft59c1p8v3lVe/7m8PbWMREQPN0y2iIiIiIiIfMBki3zTI42/GuqFzmTt3uHulbqLdemSZ4yoNRNi7QTr9rmnxquz7fEsoyI/VxqkaTZ9xRNYWZJV0iSqkM3JYyEPAAiFgwCAvoFBeV0wWL8pntSjovMr5uX1liyFopG69S2XyrKcvCw3FLL5lvV1jk5XrFthS7IcXY+AZx+7Vs9niZpNV4vC9Gen7vlW6wA32/ZW+fUe7HQcunYTra2uf7MEu5WuhFv9DKgl/5UNf2/zdxzemyUi6gQ/PYmIiIiIiHwQ6IW7+91UqVR21wZdwGp3+Df+fat1SY3SnHa7tG3vue7d6Pr7Gts11lMzrdazBdxK/fTrOgJ6jlF1AZ7l6X6xGi943q5uNW2pzW/d8W5QA2iJVrEgCVGxWKyfUE9ES5xyef19WRKkn2WzOB2NIJ3KAABi8RgAIBIN63Jk8mAkCgAo6PyDQadu+ZYQxKIxXV9L2kq6jU7dPijrepTLbv38qu8fWT+r6bJ95jghXc9Idfq9pRIOF4p16x2OaZKm87OEy9EELRyW7Qk49V90CK5NMpyN065Oz9vm40yte4WtSEfLa2YrXQL9XI+N3get/txs3u1O1yjxrAalLPEioh7mOM6OfUrxa4RE9LD3o0gYLzm8Dxfl89Wv9QUdvSgJev641IsQu69T++PTXfP/nosVALAL1mp/fHvaLmSx8fwaXBBXv95lX2d0XTwQieADUzO4OZNtYauJiIjIb0y2yDcVzx+R7Y6LtPYO6u2b3JB4jQs8Tf/7swDusb9x3boHAMAny7XE6Y1OAD9rcDv2qa6LX9VT6QSANwUb31F/b7mCS/S//9wJ4POBgGepABDAMdfF+9acnrdvMs/XVCq4TSf9XAC4Z5N6iU626QHXxZtDa+bpWd33lMo4Brlb/eeOgy+sm6U8cbHr4r2aDAHA80KN7t+4+JVSGbfqOfE5J4C/CIXWJWCW9nwsna6+8rejMZx0nDV30Gsr85RSCU/O5TDrODhVKOGv+pPViyWbaVn3z3Pvvw/j+Tyi0Si+OD6OHw0MAQCKDnCivx9Hl5YxkstjeG4Rd379PzCxdwIA8Hu33CjT6Xytu2CpWMTTf/oArp9dAAB87+A+/OulRxHUczWo+8Iupn73y1/RPefgg9deg/PDsnx7nzh6cffY+WU8/8w0UukUziXj+LOrj8t89GLNarMCjoPX/udPcTgrSdzHD+3Hlw/tx/3DwziymkJC33ihcAh7iiXceX4OABCJRPH/jI9Wa7kQCCDsuujTY3DnagpPzOURCAbx5WgEf9OXqNbr2KMdg3/IF/T5AN4cDuHkuvNUpru1Uql7P73Ze+6vSUrr30/Q99O6Cbv8fqrN5xOlNe+noIMHN3o7A7i14uI1euxOwMVvNTz3gXeXSjjmyn67x3HwBc/nmZ0DBwsF/P5KCqGwzOuO4cHqNIFasR4A4FfKLm7TY/y5QAAf3GT72/mMeE3Ztgn1nxEe7ynJcZLPiAC+UJ1n/XoeA/CHa/7OePYmEdivum7dZ/mfbzLtv6yZ528EAvhZg+luc128Vv/7BIDf1Hn+yy7724eINsdki2gTf8avp1ADP3Yc3D0wgEvKZWRjLk4HQ3Dtj17PIK8fufRSRMtlOE4Qc9EIVnW6AIBLVlcxmMtv+/p3W3+hiMsWl3GmP7nmq38OzkYrmAnvk5+dAH5WbdIhMo6D44Ui9pUbfOeXiIiIOsJki3ygXda2+Idbq/UgzWq/unmOe+fZuEPX5jVbO61ZVzWrM1o3bFb1q25WV2R1UJom1TcnrCZVNl1ZU7BSoaCPWq9U0I58hQJOhsM4l8lUl5nLS1fAeFxqi/r64gCAnzjAu/YewJ/+5Ie4JrWCks6jqPO0dCCflq/UnZ/8mc4nCQCI9g0AACJhqW0quVJjNTefAgBkM7LcffsnqusGAGX9iFlaWKp7tBqpYU2shsdGdT6yLT/+r5/W7ZuLjl4EAAhH5HUDgwO6L2VfLS+uyHxGdD1jsj2VssxhdWkVALCyNC/bXZL1SyZl+sHRYdnePtneUvVi0rrLSZJWKldwsi+JX7/xWjz/x/fh0lmZXzAUhoknZZ/3DfTJ73TfRiJy0RbSC9dEALi8UISr8w7H5JiFdV52TOzRTjBvYmY/b61L5Wbq35+ud1Ayj2afIY1+711/73ZYXeHU5KQ8njkHAOjTc+HI0Yuq0yaTyU3n1a191GrHxU47p9p4XjtVp/psJltED0tMtoiIAPzTQB9+b3wMB3K56nO1r9nJH+BB/WpTuFzGhx46geOple1f0V3maCqNu7/8NfzZ9Y/EFy86DKD+j+Gg1oUFQ/Xt4wOexhlToRDuWFnFG5ZT27buREREvYwXW9R1Wx1rx9t9zuoLjjW4y+3f3e/1Nqob0rVo8spGv29/nJ1WNBxPqOkdelsrm96OhSZYOkGhIBdDJb0zb2NAlTSFQll+tgslq3PKZLJ4KBrFnKZGFUs/K3n8YHgE/3PvMfzpl7+I/UvL1XVaSUn91tCQpCr9mq6kM/L8bEnWMRSUlKXahVDXOZ+VZCsQkrTg3LQkUYl+2ZaRsT2yblmZX6WU102Q1xVycuGQ0HSnVJRtWXVlG/qicvGXzUnSFCjLBYlblI/XUk6SrdEhSc5imtAFA1ndZzL/6bOzsv6a0MXiCVmfosw/7+p4W5ps5XS+1uExGpX5JvtkOdGwpkV6LAo6/eLiokyXlP1Y0hqlodU03nrqtO22akIoM9H6L02wkklZVjQmy7KOhnOREN78xMfj5OoKbjp1BoFQfZI1PCJp38ToCC4tFBHWdQ5F5PfxhOxjS/u8iVf7vCkNmsyvfsy2VjUah6tRCmUJ7/KynOcP3Hc/AODB+x8AAFx0yTEAwL4D+6uvsWSruqZNPiNa7fbaTKPPkmbLX7+cjROz2jhvba0WEdEFgxdb1PPepHfPP1Hm1z4udH83Po4/3b8fEzpgcO3vrwpipTL++GtfxZHUKoqNZkA9bSSXx3u+/FW88/pH4bsH9q8bONkuupZiUTxrNY23r2TavKwhIiK6sPBii7quW8lW9fcdLr/d9Xjve9+D66+/Hk94wi0bzbXu0Wo8aqvarGaj/ueajcepWv/69uojNpiRPtZ3tLMSx7LWXBU1oXK1/qdiP+uFbkG/3jc7M4OHYjGs5iXlicckkQiirIuRx5zVCQUc/J+xUfz92Dju+dLXMTQv6Upfn6Q3xbzc4c/nc1gFUHZrDRzCYZkmHJHHdEbmubgoSVQoXJ/kRMIRXXdZh0hEj1VMkoFEQWu5NAFbWMzovpBtGRyU6ZK6bhFNX3I53Rea1o2NjQAASgVZn5WUpDGupkBZrRXr79M6J61jKmjSlNTnI5oOFbSzn423ZcdkaUWSr1RKkrOxUUmHKmWZ3tV9PqS1YpZMWc1XSGvSwlpT5gRl+y2VCuox7qvosdD9NjIq8wOAoq5bdQyxuMwrnc7pvpF90JeMYDRXxN1f/DwAYHFZ9kGxKPMcHJTueoWBQfzuk27GXfkMbnvgQQRKFRxYWcWw1pkdOHgQALDngKSOYa0NcwL1nR4bjf9l519R6+xsetv2dePCBerHkVv/+9bSm4aJsofV/y3OSX3c3Iykmnl9vpYYhjd49cbr0Oqym2mU0nl/365GXWm9n5H2WdooFSQiutDwYotIve9978VrXvOrDS62yLgA/vTQIfzTnj0Y1j/Cq7U71YlsIN/aH2wDxRL+6Gvfwr5MFhwF6uGtv1DE73/pa3jv4x6N9990A1YiETzm9Dm86cGHmHSRr97PxhhEtM14sUVd402UGv2b1moXrdqd1c0HdV0/fcM13PDZbDaLeDy+4Xya1XZ413HN2tU9rr+r22p3s/o77fZ1LG9pyboOYvpo6Y4lVOWipSdyJ7+gqUwhLenO0tIiTkejKGnKY10GQ0G7wx7CP02M4euD/fjn7/wAg1q/FIpI+mM9F1dXJY1ZWZF0JayNFYq5HPIAQpowWGIyMyVJ10q6Pq0CgL2aIGU1RclruuZouhjW8YUG+iUpimndT8YSME0P+of6AQD7tQuh1TytrshjVNO5sQlZ3uKCpG3z+miJ1sCAvB66DSvabbBQ0c57Ogjyqn5T0tHEDUHZJicgKU06J/MraTIVi0myFNRjad0Qs7qeCET1UY5FsSzPh0IRXT/59cK8jPtVyMslbUJruA4c2gsAOHhAts9K22y/hrQJhiVb8VgtVUlokuV6BnK2aS2hjIRlHisLclzzejwtoYnpvinlU0jkgf/xhS8DAE4vp/C+X3w2/sfEKG755ndwQFduT1HWzQaSDgfDOJwvVDs+Jgc1HbTaL12OqzVRlsRG9NgGArJ+Fa1zc+z9tGacr7U/NvtEafYZ1Oj31aYvuqSJsXEAwOjYGADg8GFpUhKLxdCpTus+m3Yq9S1p8u6rjZe/1YZilzSfhIioq3qrHzVRC7761f+NW299MoaGBjBIrJ/6AAAgAElEQVQ6OownP/lJ+N73vgcA+P73v4+nPvVWDAz0YWJiDHfc8VLMzMxUX3vq1ClEImF89KMfxctf/jKMj4/huc+9HZdeegnm5+fxB3/w+4hGw4hGw/jKV74CQP4weve7340rrrgcfX19uPLKK/G3f/vh6jxPnjyJ0dFRvP3tb68+VywWceONN+DJT35S9Q+rXlcB8AdHjuCOK67AG45fjjccvxy/ccVV+I0rrsLrjx/X/x3DfYkE/vKHP8GwNr0g2qpEoYA3/sO/YGmgHx96wXNx9y2Pw923PA5vvOIyvPGKy/Cbxy/Bbx6/BL98+TG85eJDKDefJRERUU9gskVd02qy1ep8ak/U/vMrX/kKnvGMp+GWW27BX//13yCZTOAb3/gGJifP4eDBg3jKU56Eyy+/HB/+8EeQSqXwtre9BU9/+tPw7//+TUQioerMfvu3/ztuv/12fOxjH0MwGMTQ0BCe+tSn4nnPex5e/vJfBgBcccUVcF0Xb3jD6/GRj/wt3vKWt+Haa6/FF7/4b7jrrrswMjKCZz7zmTh69CK8853vxK//+q/jWc96Fq677jq84x3vwAMPPIBvf/s/quMZrduYTdTuHnsSrorVluiz+rO3K6AlVsvLKzgbDqNcsNornU5fV9FkqlAq4n8eOoT7QiH8f5//MkbCkgRMTEh9kNUlpVYlLYkl40AoiEBF5pdLSZK1uiJJxvzcHAAgpKmOhk/VpKFYqN8PiYSkTv0DUrMTDNbuA9n4UtYdL6fd+vr7JU3JabONUlL/BLcxwDw1UstLkvgkdRkTeyRFiMckISrqvkhoF8DQuNY2WVqj7cwtRSnrQShqd0AbS6qvTx4XFrXWKpvRbZNtLGudW0SbRSQSkl5Yx8ZUSrsM6jV6WFPDeDipP8v0Y+NRnY8szy7qo3GZT17Ty0BQpkun5BhqgFXtSpheleUNDUg9VUR3/ezUWRhXE6GJCRlzzL4eWtROhjYmlyVdUT2eAwOScNkYaQNDWrOliVVYUznrfvnOr/+7zEePhZ2nJd03oaFh3P2km/HL0SDu/PH9GBq0McjkfI1rh8WwpnLhSASHymUEQ3Z5Zq1X9PwL1ga2Xsv11gs1SFOajaPVKG23pM/GYovE62u0hoYkubPuj5vN0zsmWbPpm9nqOFutdils95sJNr3du7LxuppN7/Vn+vjaTV9NRNQ9vNiiC8rv/u5bcc01P4d77/1M9R/Tpz3t6QCAt7zldwAA9977mepXvS677FLcdNPj8M///M944QufX53PDTfcgA984AN18w6FQjhw4ABuvPHG6nMnTpzAX/7lX+BDH/orvPSldwAAnvzkJ2Nqagp33303nvnMZwIAXvWqV+FTn/oUXvGKV+Cee+7Bu971Trz//X+IY8eO+bQnmisCeN3+ffh2Io54dYBpt+7B/qPiurg4k8E7v/EdJEsloHldPtG2i5XLeOuXvoYPPPEm/PbNNyLYYDBk+znnBHBVsYSPZfPo/At5tJt8Ts+N17J2i4i2CS+2qGtaHMqp5VoCm+49erc8ncngW9/6Ft7//j/c8LXf/va3ceutt1YvtAIucMOjb8BFRy7C//n61/HCF74Adg/7Gc94xrrlbORLX/oSHMfBs5/9nNr4TQCe+MRb8Pd//3GUSiUd8NXBBz/4l7juumtx22234QlPeALuuuuu6s6ora9nvavXPpW1P66bwNWLpbKug9U6ra6mMB0KYnFe6pLsBnzJdfD+IweRKRbxL1/7IYb1jj/0j9GSpiuOzr+kY0udXZbmFYsrkkz1D0pCkdXam7nZ8wBq4yEND8vv0ytS1zQzOQ0ACGtqE9Gxr6L686p2/pub10FvNWaZCErNykhCUqXBoYHqHkjomE5LOvZWoSTrHEskdRYyj8UlGT+rUJZtGxmV2qQDB6VWyWqgrK4n5GiypKlCRtt2WEIU0jqzaiJlQ4JVB1uTB6vxymgiNaJpxdiEdNLLaoe5+TlJkqbOTNetXzSmNVe6vY6uVywh2z0Sk+nm9Rhb27aYrretTjkvxzAc1X1e0jolrbdbXpHtty6LA8Oyfok+rd/L6bhiedmOVHoVxtVkKRGR92KpIgudX5LzMa7rYp0Sbd+FtDOkjdOV1OObn7dBq+X5oWE53mU9trN6nk1Nyb5K6OvKep7+xr2f0W2RY2NJWzan3fw0nYz2D+IPHnUVbo9F8ab7T2GwT86ZwZHB6nT7Ki6Skfruht5BnxzXqX++w7Ih+xywxMqSvn5N6KyGzJLdzT5KbdqAp8Jsq5cQzboRtsrv8Q+tI6zxLqbVjrFERH7jxRb1PMuGzi0uwnVd7N27b8PppqencOWVV657fmLPBBYXF+qf0z+Em5mfn0O5XMbExNiGv5+amsJBbVN94MAB3HTTTbj33ntx112vbmn+W5ED8LK9E/hBLIrw3om637kI4NrVVbznRz9FhHdw6WEq6Lp423f/C3983dV4zbVXVpsr2Fd7S04Ax8oVfCpbQN9OrigREe1avNiiLWs10Wo+n81nMDw8DMdxMDU1ueG0e/fuxezsbO1Oqk4zOzOLR117HeR2dHtjt4yMjCAUCuHLX/5K9StKOnMAtRoWAPjUpz6JT3/607jmmmvwlrf8Dm699SnVO/KoNOpFY/Vtlbp1thqVotYjZbVbYDaTwlwohHSxiP/78CFE0hl8+jvfR35FUogR7dLmWJ1OKQAXAeR1jCgbx8e6FBartVwlXa78XClKgvBf3/8BgNqd9qjekU8VZH0SNhyWq2M9DfXVTV/R7YpErJ5JkoV8UQuHdLfEtdvdea31Wk2nqnvossuOAqjVswQc2Uc2nlZI/4AuaedE23d2hJNJST9CIe2YqMfR0W2JxvUP8JA8vzbBlOVp7Zfuu2WtcYJ2bNyrtV9uUrsJhuwLa7Lt8Zgsd1jrcNyi1jlpvVBJx6DK5mSbBwdkurieOyWtX4rqWFPeOp6w7lvrOjgwJPtnaUm7HqbSup06zlhSHiO6XrmMJForyyu61rK9hy+u9W0radqVych5Zvt4aVGazwwOy7wOHdL3gyZB+YLMO6U1ffH4IVlnPRaFgpzfMU2iikWZPtkX1+djda9PpeRYlctynhw8IKllVOvoUtoFs6LHcHVR0s4XPXQKLwIQ0n01sUde54bDePfVx/GskWG8a3IGezVtDIVDGHNdOBU7VrJPql9T1PPbWy9V7TIY2Dgh837dsf4zZQMtfKjaZ0e1QWnH42C1N76Vd/pmNWPdTrjWLx8bLmddZ1fP+nIcLyLyG7sRUs+7x3Fwj+MgmUzihhtuwN/93Uc2/If9+utvwBe+8Hmsrta+/vTt73wbpx46hZtuuqnpciKRCHK5XN1zt9xyC8rlMpaXl3Hdddet+19E/wCem5vD6173a3j1q38F/+t//SsWFxfx1re+dYtbXi8bCODOi47gtkuO4fmXH8dosYS7f3I/75gQdcgB8Fv/eR8uy+fxi0cP4pahPtwy1IfHJOO4NRHD8k6vIBERXfACW/1edq+pVCq7a4MuALbLy2V/Wpw/T+s/PlGu4Ktf/Sqe/vTbcMstT8QrX/lKJBJJfPOb/45HPeo63HjDjbjyqstxxRVX4M1v+i2kUqt469veiqGhIXzzG99EOBrFqVOncNlll+ATn/gknvGMp+sS5M7mbbc9FefPn8cf/uEfo68vicsuO47+ZB9e94bX4R//8R/wxt94I6697lHI53L48Y9/jAdOPIAP3nMPAOBFL34xvv/97+Pb3/4Okskk/uHjH8cdL7sTn/3MZ3DLE26pLsOSnrJn/KtCXrv06cVeVhOtfCaPpVAQmXIAv3vxIYyUK3jXg2cQ0DvoKb2wLGuC0K/1asGQJAOTWvNiyVNCa61yWUmulpYkzchnJf1IajoT0ZZ009NSO7NHv6aYTMrrszq2lCVWQU2dbLyy1VX5M9U6+PVpfVVE64lmZpfW7nocOizzP3dO1rdYqJ1LFx09Ipvgaoc6TVVsWda5LhqVdcjovrNxtpJ9krY5+lmX131t/elGRqU7YaA6vpXsS6tLs32WTsvz57WeaGF2CgAwODqh+yCq625d/2QfJnSfVVOQstWEyWWyYylgRZIzuwOWSmu6aWOj6TG3hG9wQPZpNS0J1o/FtqydIafPTtctZ2KfrG9U65SqY6OtaJqoSaHVlAFATo+3pQPBgKzL3Jzsi6FRqT2yekk7v7IZWQe3EtR5yrIX5qV+raL7IqYdGa1Gy5KkrO7zFU1urZ7NxgQ7eEi+DmzvK+vkmE7ldP7y/oppXVw2U9T1kGNeKGh938R43aMbCuMdRw/ivr4k3nVqEkfGZfpIOIwh10XMUlb9bCppMpzS9bQUMlqtq9NarfDmnWda7QQo+2LjMfda5U2kqqlcg7Rtq38rtDq+on/zl/V/jp7fn6o02nH1SRiTL6LdwdnqIH1bWfZOLZioE49//OPx6U9/FtlsBi972Z14yUtehK9+9X/j4MEDGB8fx+c//2+IxWJ4yUtfjNe/4fW4+aab8dlPf7aaQG3mHe94J5LJJG6//dl43OMei+9+97sAgA/80QfwO7/9Fnzkox/B7bc/B6+661X4zGc/g5tvvhkA8PGPfxyf/OQn8aEP/RWS+hWt5z//+Xjec5+Hu+66qy5pa0c2EMAvX3oxbrvqcvzC1cexp1DEux48wySLyGcBAL9z8ix+Lp3FCy+/CDePDePmsWE8eqgPTxrsw0LTOVCvOubK/4iItguTLepY7Y5o/WO3WbL1z6WNhzK1blzOujuQ9UmbG7B7C546qeqdzcDaX+t/148dtuYX9fOqlmhoulCtY7PUT9Y9ozUlaa2PyWuKkk6nkAoGq3eXC6Eo3nr5MezNF/H2+0+hpDVXlizZ1x1TWo8TdvSutN7xLxS1jklrr5a0QYjVNwW0XshqWKzboO3DnKY/6bSs5xVXSeORoB6LbMqSMEmNVjWBsBQopGNTLczJci3JG98jaUlaUydLKGJxuRg+f1467gWDtYtjS4CS2p3PElS7iLXOh9YR79w5qSNaXJD0bO8eSVPGx8d02bLuaU3A9u6TNMPSCDsGfdq1z7oFWrKUSclyF2bOyXrk5BjHdWypuB6jqKZ4QU2c8rq8Od3GkI4xVbDxvXT7kjHZJxXtv2/H2k7fsK5nv9Z0nT51BgAwOSUp04HDkvaMamfABx84CaCWlh65RJLCsREdy0nnaylTQNOjte/ngnY67NO6sKCeR1bH5uj5lM1a+icJVakkv49FZZ+MjMkxWF7Q+rCSjQ0m853TY1bS54s6ppqN22bJmR3LuO6zSrlc97pVHQ8urAltLivHbFU7MuppjHxW1m9gWMcYS1gSpeN/aW2Z1c8Fw2H8xRWX4Pt7xvDeH5/AAe2aOTA0gKTrImD1gvY54FjtWn3KmuirTyW9NhsI3VtT1axmqraI9m7qtpOyrf19o21qNSHaapLULOFqXqvlqfFqY1lE1Lt2MtniTXKiHZZyHLzymkfgvmSy2ordRQC3nZ/H206cRhBAaWdXkYgglyuv/skJfDgSwQuvu6quEcbBcgV/f34B45tcKBER0cMPL7bogudWkyrvbzzjrFT/CNI7m9g46aoLtqoXP/UzbzBqVi3t0yQnpwnQio4BtTi/jJzjVAdtmk3n8Lbrr8aB2Xm8/VtfqkZk9nXEvN7xt/ofu0NuCdDkmbMAgGgkWLf8pVVZ7rgmCTlNcyKaOE1oDVZC7+SHQ1Y3pOuvOy2qiZO9zhKDVEoeo1FZz7T+bN0NR0fljr+Nq5TSMa5c3WO2XEt9Srq/LMVau7+Xl2XfZTOSMuQ1ZXE0PizpusWi8jg0KOuUjGsqobVddritvsZStYx2erRFBrX7YE7HbHJh3QJlGwq5vG6DjhlVlNcHdH3iutyYdshDQLctqOuBUV1/WaGU7tNlrW9zKzLf4REdf0vr7fr7ZbvCWmvllutrbQqaYlrJTUA3KKGd/YbGLMmSfV7UcbUCOj8bG0tDqur81+4bVzsw5gv6HtKFFfNy3Gen5by0ca/CIdmWWKJP172+limt6WSlIvu2VEzpoyxvbEy6Bg4N6L7WroirK1LztbQo+2Z0bFjXT9YnEpJt7NcEKRKW5/v75byc1tqw6dlZAEAmL+sxOCTzScRlfUsF2R4dTgxZrfF69Pe+h0evmf7oZcfwV5dchOfu34s/v/8k9sdiiLoukpoElnVcvJWSrLelpdVxyFQ7HfIaJTi1eXhf4b0I3LyKoFvjbZl2x1dstD7dWk6j5dn7uJXtbrQsJl5EtBYvtoi2ybLj4I5rrsADiXj1uQqAZ52ewsu+9QM4WP/nEBH1vgCAV544hUQshmdffRwIAIcLJfz9/AImmHT1lNutQQYLDohom/BiizrmeuqZmn03vtM7pBc3eV2ze4i1lzdb/ka/b/D9ff2xUk2y5I631basLCyhGAggq93JFspl/NpVl+Oa1TQ+8sP7EInIHe/Feenadzat4wLpeELpmDbV0CShXzvPRWPyurzWPFlnvnRRxyuKas2Jrma6WoslP8e026DV2Kxox7qgJlulstyBD2sSMD4uKUxYE6dBHccrqsmbjWuU13G3SiVLmWxMLHmdnQPWqERDpWrnvGx2qW47155KbkX2TUnHp7K0wLrxhTWRSSQlSRobk2Val8IV7bIXCusYTdr1z4qgbGywcERev7IsxySVlnWyOrnpyVl9vRzzPROyL9JpramSQ1JdnyUd68nq4qyLYF+1O6FMb10ELX2xsc6WFhbr9sXQgL5Ok66cdilM9Ml6X/WISwEAwyOStoS07u3QIV2+Jm12zqS0btA6961qLdrAoKQ/E3tqA3mXNbG07oCOpiKWAmb0PFtYkBq9wSE5NqOjMo+Ipn2WylkiFtL3QXJAjsFQSTY2m5XzKRqTn+OaBLkLciwzeU0B9Tzu0/QulZJ9YuO15QuWmMnjgJ4z/VqPd+CQDJAejWqSq7VlyZjss3JY9lVFtzOUln2/OK/dOCHzWT0/CQB40r1n8CQA0WQCH7v6cjzn4iN49ze+i6Naaza2V95P6WIJYdTCdusUWU3MbTyvDRKSRqnJ+nGyqr+xV3qm33A2DTWvDdv8k3i70571iZV95dMmaPTKphM0XVajZTPxInp44sUW9bz3+tRS3i/zgQCee9Eh3BeN1hpsAHjR5DTe+NBUux2aiegC9Ev/+VPEIlG8+Ck31y6i1vyxfbBSwb9mCzi0y5pUERFRPV5sURd405/Nu1E1vONoc2n/lmv94m0+ntXwdgh0A/XdDWs3gmszsi5n3nW0cbHSK6twASzqnfTJbBavfeTP4TGTk/jL++9HX1K6nLmOdrrTeQf1lnYkKm/BgtZizc9peqJ33oPVMW/kDvvklHTay2nd0IEDcmfeEiMbw8mSK+sWF9EamYKmLYtaQ1ZNW2LSSS/kWrqS1fXVTo8hHU/LkceoJhW5jKQhVtMV0bGmrB6uoHVOy4uS0gxoOmOd9SKaJllXResAODI6BGOpmtWrxbTDXFC3cXlREppiKV/32rCma44mTdYhcWiwT1+3qo+SZCUHZB/UIgF5XF6S6awGK9Ev69inaUyuYON8WfooxyKjY5dlNYVcLmjCprFeKKjnn+7jcEjH09IOflbTZeOH5XJadxfTfajHrloXpOfq8pLVBcl0pZKccwUrhNI3yuCwjoml59LJ01L/t7Ka0f0xABPUzokZ3WfW9TKvXTL7k/L7i44ekH2kCWo4LvvUEjE736zz4fKinIchPQ8iUXmddSG05DVkyU9Ez489su8RkHMglpB1Dces5lDPER0PrJSX+Wd1W3OaQCc1DQ3q9AFNLYv6Pslm5JjFNMm12jFLGStlrTnUZDes79fsstR6PeHez+EJ9wJBPXcOX3wRACDeP4CPHtiDpx7Yiw/++ASuHh5CAMDgoOyvoCWAgVpdldVt2sdTwDqL2gTV//B2Wd2Y9/O4028etPr53W4tVaP5t6u2PrZfrL514+62bQ9Yhtb/TWONF9HDEy+2iDo0Gwjg2fv34afhMHDkMADADQTw8lOn8Kr772eCRUQNvejcDIJOED9/rQyrcKhUxr+mszjC0UuIiHYVXmxR22p36eTnVhOrRs83u6PqHWer0zukrd65dTf4b0u4rDblvvNzeNmll+ApZyfx4VOnq134IlpTFYjYeFhyx/v8nIyBNKcJ2Mio1NVENJ1ZmpdEK65jRlkaM6zTWS1TZEVSHBvPqH9Q7rTb+EM2blefpi+WJFgKZGmfjVFld8vHtJub3S1fWtJhW13rFih7IpORFKgvqbU2mp64Nl6S3sGvVMq6HfK6ZL9MH9LaMKtRiWgXxfFxGX+rqCmR7WeZVqYJaBo4O7Okywrrtkj6YJ3hSnqsEJB5lbXma+G8bHNAu06efkiSnJQu6/IrLgNQ6zKY0w57y1rDNa7HYljHVrK/iUfHZN0jYa2n01QkUtKOc332Mav7ULsf5vRYWeIU0qTVOj4m+/p1/rJcS/iqY6Tp9occfZ12bUxp2rSg84cr01ui54Sse6Gj+0deX9YujTndf1bbBQCBgByDotbNlXUZtq5uQM7PI0ck2bLju7Ak25pe0RosHXvMkiI4kgCltFZxRGu8kgOSCC9p6mhJmCWh1jmxpGlnRt8PAe0cOTaq471pzWAhL6+fmZH32fKyvY8keY1qIhu39YvJ607rmG2JuNZ4HZQkeWJcxmZbWJD1y2rq2N/fp/tSNm9A6+nK+tmzMC1js6UelLHPLvrK1/AnAI5cfBT3XnYUT7vmSnz4xElcqcc+rt0U1+47Y+MG2th3nY6ntd1arflqf3ysjZezbvoWxwvb6jTtvH59vV1vH0Miag8vtohaNB0I4OfHRnF/KITKvr143eQU7jh1eqdXi4h2gWfefxJjeyfwlKuOw3FdHCqV8YlUFkfZzZCI6ILGiy1qW+2mnHe0qfa+q7/VGoHq0hvMxhKMNS+sXx9vjVc1sau9rqjdzB5YSuGFB/fhGdOz+OjkNDIrqwgCqGhqENJakkRC7kRnNDmanZ4CAKRXtXugjrczfVrucPfp2EkHD8p4QhreIac1YZaa2L6NaZI0oCnF0IikLNaFMB6zZEk772l3QRvPp6JjJ1myZWM3We2YJXNW75TNZHQ/yHyi2qXNjkGfJWqaitjJYa8f7JOEwhI0S3WCmpSUtWOgHYu0dsQrVeuLarVRrtXHFC2JkeNU0TMhptueS8u+DmiK1qdJFfR1i1o/FtZUbSwuydGQ1ssMDstjRmut4lrXE9Ll1LYlq+shKx+yZEvH55o7L+mg49gYT4m69U5nC7ocSXX27ZO0ZL8mdNX6Pk1dglo3Z0mU/Q0eCsnvXYT1UfapncauRnBhPbaxmI6nFZTp83psR/RcS2qKk4jL7wFgSROqitbiJfW8QUCmKRZkYQFHlmFDOFmXyalpSXZXNZm18a8GhnUcOH1fLK/IPt17UNZlTPfpinZmLOm2LGstVzV9c+V8CdsYYa6NdWaDjrm6jXI+RsLytd90VruHLuv2aYdH6+gIrVVb1q6ieX2DVseh0/HiVvS8tXMmpl0WozbGm06f1wS8XJDtzOl4YdOnZP8dOz+Fvw4EkBwYwr9ddgzPeNQ1+JPv/QgHszkcOirrnOzXui5NOhHQDp+oH2vPyr0srW6m3fGvmn1zodXP91ZTnE7HzaqRHfKaHm5I0u19RkS9gRdbRA2cCwTw8wODeDAYRGFkFG+eW8BLJmUw1OAOrxsR7U6O68JxXTz1vhMYHh3BCx57HYKui/3lMv526jyu3ukVvMDd1rvXWkS0S/Fii3aM3Z2reL4m0/yuXX3XQ1d/ruZr1buDrf2raglCSWttcqsrmHIc3D4+jl+YmcEdc+exupxB2HWR1TqXQlZe4zg6Do+mAyW90754XmpRZmfkMa6J1NCg3Fm3ZMlSh74+SW8iWpdhnffCmkhZ7Yp1LRwY0Bora2hXqu9AVtFYwzrjxTTVsHqmQa07su6ES1qXNGD7TB+sw93srCQTIb2bvne/1K7EtHarryiPOmQUEpp8hLRmzBKInI53ZDVpBU0WbHwyS9psvQHA1TGOrA7G5jk9PavrJMdkRetwClprldDxrMIh6/YX1uclubn8ShnzyGqjkjpWk43JVCrLfAYHtSZLuyDarq4lbPJzVmukrLNiIinzdWyMJo1d+gY0hdTlTmmHyVhSuiju2SdpT0C7pwX0/FxelnNmZlrq/iqamA1oYpZOWadJWf6EJlVWt1fSFLGidU/WsTKsqeYlx4/LdAXb0bVbCskBHScrntR9IutunRqtdsrSlKCO8ZXUfRDWhKpUkXlGk3L+Ji0ZWpHzzzowZnTsL6vBKui6z2sqOTgo+8q6X1Y7P+ZlOju/rJZrdUnehyNDluTK7yuaCqU1kRockn2f0MQ2OSzruU+TW0u9LUV1NDVa0EfrPFmwGk59tM+YWg2lbOfggNU8yvZmlmR90/p+vOxTs/gzx4EbCOCnNz8Wz7v6Snzw+/+Fw9kc+obls2RIx8KLax2cvfctXbY6SmdNZ0MAcNcNod7dhKnT+XQ7tVk/3lgvqv92SLc6QxJRb+DFFpHHlOPgOePjuCOdxovOyx/04R7+6gkR7V4hvRl124OnAAAveOyjEalUMFYq4Z4Tp/CoHVy3C9Hn9HqECRcRbRdebFHL1idGnd0J9X6n33Gcda+pX171mfrHgGe6Nv/xtA6DWe1Gd356BjOhEF589Aiee/ocnnN2ElmdaSEjd6hTKbnzbHfU4zreVEVTkLQmVtZNr69f7pBb3VBaa6CWtHZlZFTSh6CmL3GtibIxYGw8r1BYa2X6hvQxqbtAnl9elrqfgqYSBa0tsfkNj2j9j3b2y+n4V1mtlXE0HTqvF5dLC9q5DzbukNZ+WXe0inVn1HGIImF9lPnk87KflhclURjQ7nKDmuAtahe3TCan6yWzTWrtme52koYAACAASURBVHX2A4A5TfXymloMDco+3btP0zVNwU4++BAAYGpKUriJCUkprGvh8IhMNzK2RzZBt61vSPZpSJOvsKaQe2OyzlY+ls1m9FHrbTSVs7Khou7zlI5TFdAUcED3WaVaQyWPg4PWuU5eF9Sx2FytA9TgCcW8zO/0afkK68mTZ2T79kqNV9xqrBKapOnYU7Y9FU1PC3qs44k+na+lLlqLpsmbdRxcWpJjC9QSmaiO52b1ajmtTws59XVC9pYsaxdLqz20rpjWfXBF3wejNq6a7pysnlfW1bKa2wbq6/Ps/C9pHVymJO+7gh6UpKaY/cP1HRyXdCyy8+dl+dbJ0cYDS2mKaO/DvQfkXBrWpMvGMENKUyStm7M0NK9jpVVrtnQ/zM9LKpnXJNcSXLekKaVuVyJR33kQAPKri7jlB4t44s8eRCUQwDcuOYY7H3EF/uib/4Ej6Qz2HNwv8xiS87ZSlHnY52tEU/LGTQv9SUXareHqtNvs+uVuvLx79CS9bRtvoDXeptbqnhvNrxEmXES9hRdb1PN+pbw93bhmQiG89NhRPPfcNF52dnJblklE1I6oXpw/7eRpOK6Llz/hcYiVytWLqmHXxd/MzrG2i4ioR/Bii1pWDZAadf/bYjerRnfrnup9necObO1Oree2ut4lrFTbsslDSeur0lrjMzc5iZlIGHdefjme/dBpvOjUDAo6h7gmUmEdLyqTkvqavHZyW1nWMYs0yRnQWpacdjFMah3F0KjcbQ5rrUhOa1xGRgb1dYN1W1Mqy/zCmmhZCmJ1GJaslTUuiSbkDroTlDv6xVRGf7auhJoQaPoSro7jJelQPC53vc+cPgUAmJ6W7ZwYlzv6e/bKo3XUC0e0VmVeUqdE3GpYZP1mdTyjfEaShogdGm0tckpTqIgmJYcvkrSpoPsttZqDyWvSYvVrlnZYihBLSNoQ79d9rHVEQzo+1Zimh0VNO1Y1kcrrGEuudtSzejSrGwsEZZuWdGy05WoXQ03IRkd1m2T9VrXjJBxL0iStGayOvVRfj1HWjpF9WruVTsv6zMxIMpfUdCOm54x1rrz00qOyXXpsIjqmW0HHKCuX7BzStDVliZysXzojZ/f4hCRj1qnS5lMqyPpZ/REArBZkn9q+D3nGb7Oxx4r62oUF2YYpbSizV+vQrJvm4pwknouLS7qNUX29jjmm531fNRWUbQrp+66g3Q+tBjCnCaklyNZd0+qVbOw0V98HfUNy7HIFGz9O9olrqWBMpj937ow+L/s27FhHSu3oqGngqO7LjKWdFZm+pAlWqSiPdkEU1/erJXQpHa9sednGkJP9uWevdCkFgJB2OExpPdvK4jwesziPv/vpAyg7TnXssp8cP4bnX3Ix/ubkQzieyyOviWb/gJxnlrYFtG7MrxSk3ZqsbiVa3bLRv0etd0S06VteWqsTNlkuEy+iXsSLLXrYOhsM4mUTYzi3fy9SwSBedeJneMmp0wCiO71qREQtietNhLjeBHjGzHkEXRe/cOVxJCsVDLou/uL8PB6zkytJRPQwxostakNn45xUx8Vq866aTf85fbTv2Fe/ir/uLl79/C3RKund8oyOlbMyv4jJcBgvOXYRXjg1g5+fnUPQdTEcCALDY8jnStV5zM7O6Tzkjni/1h5Z97xprQ9a1u5hh/WOt40jlNQapaAmAdbFbUhrP2xjyrquy9pJzsZiCoV13+kddet+VijaWEvy6FrCpTVaobAsJ5HQ2jK9k57LaeKVk+VGNUGoaI1JX1JrzLST36B2bxvVdMgJynJs18f1LnlU79DntWvcyrLcfY/oOEVZTRACQa2T0m5vtl4lHUMrFJKf86lavZDViyX7JG0oajoRcOrHBjtwSGpW9u2XNKBf63WCusxcTutxAvXdCbM69te0jgV15CIZz2h4ZFTXzbobWqpn2yrzGRoe0G2T+bs6htiA1paFtB5v5qykhee1U2VY69zCmo4EPd01UxF5fmxc9n0sauNfyXyzmsZY3ZKN4bScksQ2ofv2wBHZnhlNK61Tpu2/QR2rrW9A5m81cGsrKRfmZcww66JniWRAOy2mtQPjHv3Dv6Tn5ajumyE93tD08ODhA7JMfZ/067F1dP5LmjpbLVYhr3VtmqRpcIVCScdC0/PQOj7a+bm8tKLz1fNOj6F147Tugq7ue+vYl9DOlBFNHfviMl89tFjVmi5LYl3dl/2D8rrVFTmnljUdTGut5+CgJVajujtkeefOSgJYSernxLAc81C0duPHOp2WrTOijqeWSctxt/dJJOTgsYuL+McTD6HoOPjOnjG88OeuxJ/86AEcT2dw+Jgko8kB2feW1NoBb3X8rK2Op+Wdj7d2t9VvPnTaua+ZzlKg+hos77qtT+82/v1W16XVsS2ZdBFtD15sUc/7oH4V7rZSd/5RnQyH8ZJLjuKXpmZw5/RsbRDjEEfPIqLdIakXZ7ecnUSwUsErbrgW/aUyBh0HH1xYwWN3eP2IiB4ueLFFTdndsFrNVmt3zbzPt1rT1axLYaPXVWu0rDPZqtzVXpqT+qH0UgpT0Qhe8Ygr8cIzU7jz/AIABwGtAwloV7ZKuZZszc1L2nF+Ru7s99vYTXoH3sbmSmpNSCEnd7L3H5Q791ajgoqtY1CflzRGF1kdRyhkacag3PlOW9c2GwdL74yvao1HNCbTW9c1u1G6uCC1H/mc3LWOa8KViMtyszrfTEYeS2UbB0imO6zJg915t+6Fru4bRxO8lI0tpSmL1R05UblrHtdujAt6p78vGdL9c0jXS7sO2qG2znhaPwQAMY0xEpoyZLQz5Py81FAV9Xj3D8oyHVfWzbrt1boGyrrntaugpSVR7eYXi8oybbyskTHZJxN75FikVmVf2fk2o+N85XOyXtZRclU77C0tyTGwhG1lSY6h1ctZklXULouhmHW21E52MdkeqwOyuiTbWUua2gwMyvyHddylce38F9Fzz+r8xrWGzdH1n9dzxG7GW21bPCnrsffAHpiAvhcXF+V9UNQkdHRwXPeZ1k5pHVw0Lssc2SO1WkVNhhfOW92bHNORMalrszStrImYfVJYnVtBUxtLjG2bKzoOVy4rxzqu7yurVczpeWXdMe19tqIpZl67KVpiFtH1shTVEtjFBdnutJ57fTq+3NKqJHrplBzb/ZqqQtPQ8RGZ7tBBHQsrJkm3dchcWdEarWqNmhzDvoR1pqx9pi7r+VOxfaKfNUl9j8WTMm/beeenpMlPrlDCJQ+dxl+dPINCMIjJKy7D849fjP/3oXO4KptHUutF+4Z03bT+svaNhM0Tp1b/HfBq9Pne6Tcg1j/f1mw6WmbjjrmNfkaD122u+b+h3amD8/4bvF1joRHtdrzYol3vbDiMXzt0CHNOEIvhEH7t5Fm89Nw0EFnfXpmIaDfqKxQBFHHlzBwilQpeedVl+NDJM7hxp1dsm32ysj3dbYmIDC+2qKntGo6k0++lm5KOSbU4K3etZ85OYjIWxV2PfASef/ocnr6SkcFAy2UgHEJe656gd7uL2qXQ7hgDQE7recqaNqRXZdqBfkkNxnR8IOs6GIvXxocCap3lrH7G7miXypm66Yql+roLqz2xDmLliq6bdjFMJiP1y41Zp7J03XwiWheU0e2wfbasNSc27tDefVLvZOlOpSJ3uS0Nqrg23lhO90dF5y8JQEb32Yre6R/SmpgBrU1LazqzOC9pTEY7qk3sk2QkqslbWBOzAavxARB07C4ydN10XfR4ZbXbXqkQ1HWT4zp/XtKI6lmlYyZZlz2rc4sldOwwnbCkxyKtNX7WeS+Z1GOhqYWNCbVkXQrDNkaadb+U9fzZAw/K6zS1OaY1MzZel30IW73doNaKDQ7163w0AdPpK7qiVs8X0lTGll/RmsMlrbPKaJI3Oizn6sqKJHRBx/a1dtDMWSolx35sz4jtuWq9WnJGx4vTlM/GFLP3TtCR41ZNE/u1jkyXuaqPE3snANRq9qyj49yM1JPNzco+tdTGxqOz8bhsDDJ7/ZwmZhk9//ftl/lPTMjjrH4mWJdNSzXTaXsfyrG6+NgRAEBIzzk7r0+fOqfTy/ofOXRQX6U1ZAlJh87r+HEVreXat0fWLx7S/qYlWU848nxQz0nr4nn2rKznyLCO9XbgEEy/vidmdR9ZPelhPX/7B+w81i6Xmv5FdFsjWreWWjiPRy2cx28WC3jFNVfgPf/xIxxfSWFIO6PuOaAdSq1uTevG3AYJV7Okq5Ht64LYWoe+Tmq/Wk+4toutj7yfbFe02gm4eY3Z5s8T0cZ4sUW71mQsilc/8mq86KEz+MUzk0jE9Y8Rh/9AENHD2+NnzgM/BF53wyMxXCggAeD3Tp7BnqavJCKidvBii9rm1/e4m3ct1Ltv1buG8ljScWSmT8vYTefPnsVkPI5fvf56vOCBk3jGibNIA3ACkv7Y2FVWAxGx7nLaqW91cbm6RKttWtaUIKpfPbRxpwY0wbGOcn2aNGW0FiSlry9o6ladTsdesnShone4k9pVraApQ1DrlaxTXF7TjaQma5Zs2S4Jaoe9YR0Dqk+7IdqdzsUFubN+dlLuoFt3xP0HtDmIY90Pw/qjzDgWlX1n446lVyRBiGoXtliiqNsn+3JIa8sSWvsyr3fHHV3PmCZqRa15Cxb1o0hTqdKaXnglTSDTWg9k5W9W+7SqnesWtJ5ofI+kZXFddkBTuErZOjfK61etBkufj0SsQYp2iKzWp9mukXVK6dhhliT198d0W+SYD2pHRxvPbU7TTeu0aMcir+fEyIh1etTaNDumFpDpekS1rqmgNV6xqPyczxXX7jqEdDuCOTmWcd3XtuEVTfSSVuOjPy/MS2LiBmRGQ9Wx34Bw1GoDZVtnpiQhOvHACQDAxIScb5GopCKDWl/n6DFKVMeBk31o9W1FPbYxHeetv19eZ50iK5rqLer7r08T3T7d50lNRAc11bGuf1a36er7Kmfvv6h1LZTtOnDoQN16WZfRnNb7RXW7LVHLpuX3M1rDuXefJGfDI7LeVis5r11Fh0qyXglLqAuyfqtaF5jXmsmlZdn3ZU0MwrExXX4tKbdx5s5p+pXUfVX9LNFtyOo8rQ5sUBMx63RqSexIIIDHnEzjI9MzyIRC+GE8jtfc+Ci874c/xZUrqWrN3pi+n4L2Hm7SSKjZvwONPufbrQVuplZrVp/a/KZ+xr2/Uql7fiu2ko41mXPdT7XZb/5vZG369tan3bEy2+2eyCSMHq54sUW7zmQ8jtfecD1ecOIhPO/k6bo/3ImIqGY4X8BwvoCB2XlEy2W86fE34r3f+zH2Nn/pBenBFocwISLqFl5sUQvs7lV3/5Fq9W7gJ0r1Bc2WbLlaTzQ/I13hps9NYioew+tuvAEvfugs7ljOASMT1VqUcskSAblbHNFkIqV1RvNzUgMR0NoaoJZUlUfkTrfVLwwNyV3/qNZKWWoQ1Lu+9vzIqI6npXfYretaX7+OcaN3q53qOFo67pV2HKvYoGK6j+LaYS6qtVIF7fJmdT35vKxHWmui4tppL6TjG2Uy1n1NuxNW65Dk9Sm9c2/jd5VKMp/+fh1nyM6Fah2VTGc1O1Y/ZNthnf9Qkf1ntVj9mtRFNHVJp+UYrOqjjbsk2yjzzuhxgt6xLpd07CXd5yEdBMlquKKawlntUlk76B0+JHUw0Wh917WEdkYMWeyhF+lWl7Sg3Q9LOgRBMCjHblRTROvsWLbzU/fB/gN76+azqHU9JRsvSY9tsSA/ZzU1nNN9Ye+7ZF9U12NJt6ek+0dr1HQ7RzSFse0rFuWYWso6pt0Krd7Juic62nlyYd663tXe70MjluDKPh7VeWSykgy5eiwsLRwclfeHJZgBV88HTZimz56VdRmXfZeI6VhiMfsnSWsbizr+nG7DitYaRrVroHXX3L9fErWHTp3V9ZJ9bQnwxITMP50t6D4p6/M2lprW39m2677NaFI2PCT7NB5L6HbKeoxoB8jBQa1x1PrPZU1bZ2atRkvWd3jEPjdk+nxFtjMYSuvvrfbTup3WajtdfY9b6j0woImW7rJUStZp+ty0LkOOf6kk85rX88bS7rLWJgK1mtVHPvgQXhcM4Y03Xov3/eDHuGplFWVNbPu0/jKmHSEjOv+g1lk2+zzvtO6n0e9bHc+xeRrUvkbr3v2Ey58Lw07H22p1+yqeJiRMuujhjhdbtGtMxWN43fXX48UPncUvnjkHxAabv4iIiKquPzeD13/ze3jDTddjTy6HRDCI/+vcFB6/0ytGRHSB4sUWNeQdX6tbOr77Z+Ng6V3npfOSaM3NzGAyGsXrb7wRd07N4L9NLwLhRLWTXlzroJa1u9ycJli5nI23pF3pqvURtfWyca9sDKcBrZMY0ru8lqpYh7pC0Wo+dOwkraOw2qThEblDbvVGVitidzDtjmBQkyjrQFcqyOszelcbjtxVzmjthyVXCU1zwuNS82FD2eS0q1o6I9s8MjKsj0O63nL32tUEwsZJqo65o8dqVffhgo47ZOvtaOIRjcpd81MPngIAxOLy/PCQjv0UlfUr6f4KlWV5aU0KpnX8I+dA7UtMln5ZzZKdNmFNoixhsmQok87q6+R5q5OzY2BdKMNaf2frYmnawKDsm4ImWDnd9zaG2NhEfT1NsWzjVi3r8zaulWyzJU1ZHaNpdkbOv5gmA2PjI7ocOQZWl7eyIvNLJGSfrq7Iehe026B1vkwmZR+nNdko5LSeTs9dS0DsWFnnSlMs6fheeu6ldf8tVJMPYGBQXjOgYzHFNd2w9O6cduvL6zY4WnDmBLRrZVSmC4UswdWx9AJ2Xsm22vlpaZ2tk6Uw05OS2kS0Hsn2bT4v21wqyrontG7O3p9ZPf/PnZOxpxLawW9Aa70iei7YPrXxwlaW5DyPR+xYybkRjtj7V88tTd+tc6Ulu1mt/Zqbk/lYCrRH66DGtfNjQLsTLszLubGwKPshoWOtrZ33yITcRArrsld1He29b6mxfvxhdlr2maV5ST3f7LxY1cSzpB0UQ6Egrjt5Cn+dWcVqJIzpiXG8+vLLcPe3fohHLK1gQLtaHrjkIlluf6Ju21pNorz8q3vyzK9JzVgrWk3jtrotrXf9azQ+VqOv0LdWr9buPmo21ma7XQyZfNFuwYst6nlv1AuS95U2Hh9lMhrFXddchTumZvBLM+dR3HAqIiJq1Xguh/FcDtdUKugvFvFbN/4c9mVyiDoO3njyLA7s9AoSEV0geLFFDW31rly37u49qDe3bPyk9JLUQ0yfOovJWBSveuQ1eNGps7h9ah5ZADlNIOKabBT1Fu+CduFaWZTOX9aVa88eqfcY1ju26WqtDBDR7mWjWmvhai1TNid30O1urtVgudXaLbnkq9asBPr1Z00R3Po7i7avLNGyFCKod7NjSa3DydsYT/V3/EpaM2OpXVwTKesCV9H6oERMx2YK6fhZmhwUtKNjVrsohrMyndVYlSxh0GMwPSXLsbTo8FGpg+rvl+WuLMp2nT0zrdsdr1vtxUU5hiVN1IaHJDGwYzCl3RIBYFyTJEsqh4dlXya0I13QkUdL4TJpmXdI049IRKa3BCkciui+kemtLMK2paSPlnZY98q4dn2zWic79ta5bkLrhixSsLSwnJd9YZ3y9unYYra8+Tk5Dyt6dzqlKV9e52tNA61GrWjjwpUlkTigKWBCx0WyLorWrc6iwJSOcWX1eHYsHRvbTFPO4VGrA9RoBEBIOxQGtPYupMnNoB4DHJRtsn1qnfHOnD0jPwdsn2tXQn29JbMx/cqvvQ8sibVOiRMTcn4saS1UQROsYkmWn81pB75osO5xUZOiqUl5z5f0/C5Afr+g428ldRyxOT0WQa2l3H9ALins/WSpYEnfv9N6nhY1/RzVGs2JPdLJL6vdDTMpG5dMPpsScavF0vHFtJ4qrTWVRy+Wcbz6Bi2VBFb0vBjQTp9xTXqXtKuqfaZYJ9B8QY77iu6zYkn22eKSrLMbsCRTu3JWtNun1smV9BDkgyE86uwU/uhn57ASi2Jp/zh+/eorkTw3heszWQSDOmZaX21dgdbH39pq6tHo9bV/dyzJ2nwMKf+Stc61GuzUVrmz+upGNVx+74utjG1GdCHhxRZdsGTA4mvwoofO4hfPTAKh6E6vEhHRrjSeyWI8k8WQW8JAoYhfueFafPD0OTzl/2fvusOjKNfvmdlesrvZ9ITQuyi9Y1dsiAr2hiKKgnAVEbleROyi2DtWUC9iBdsV2/XaEDsoTemQRpLN9l5+f3zvO8tuEpIoCv6c8zw8S3anfPPNN7M77/nOOfu7YW3E6APoYUqFChV/D6gPWyoaobk0+d9aLWur21Sj/dKfAXJNa6htwC69DpP798VFVbU4pyEAWO1KVZpzmbiQGSMXOq9HfM55SZzlkyCdCed1MTsFpLOIJHLf8xI7oCV2JBrLnLRodwg2gSv77gZyTzNwbhDl6OhZf8TVZXJMJLbBZOLsJmJbiGzQk04jTstZrexKSG5qlBEWiYgqNnct65nK2hVTn2Tq8eKkNWuoEwwA6z801Fe7a8X7FqpeW6ycayRYQJnGBu+H87/K24sHYB2xjJxpJYN0U8QgcL4QM2jM3gBAhFgO7luTlbOS9Bl9x8fgcGQylMwUlRFLweeQ3QOZKaitFSwIj4tc0uXV7s7MNUokxDjRkyNkTk5mhpSrTrAUHmJgZQrqYsdGAznjGYkFCoWIQqBzwVlrrDXMobwrmRbIIZ0Rs54pJYuKzp0l02WRGQ+tJrPCz7lyUeprWRLn1k76xFiU2oU9xglN5fXQtaglTRQzOqy54pw51gAq417H2qcC+pt0ZZRXZ6VzDEkwom66pvn6Y5Y6QkxSmDLGXPWiPZyvFa0VOqYAOVO6XOJzduKLkK4toKHri1w3JWJ7EskI7Y+YKNIFur2iPW7Kq9NQn0Zo3O4mZ1RmD/n4feSkqSFGz0v9p9ex1pK+iiXR9+xWGIqk70X19WIcBwPitVPHUgBAYbFgVD3k1MisIDOurF2UtMSO07gKki7NyGHvdK8IEmtvtZGjJDmglrYj9j4Zw2F+Dyxr12Fyr554aNNmDPT7kd9esNsWYqk10t7zuNqK1n6fpL8/kk0uP5U/b8Ehb2/7a55F2/u22o5U1mvTGqx0G1vX53zPSK/X9BT9PwptP5ctr6syXioOZKgPWyr+ckgCmNClAyZU7sa51XVIqbkpKlSoUPGnYnhDA25fvwFTDuqNzqEwjAY9Zvt8GL2/G6ZChQoVBxjUhy0VjdCY2eIq2O/bXlurfJzhxLFXrqoqAEAgEEGlXoezKmqRABClCjznZnFGlc8rGAYd5QcxPRQhHUUqKwukgSrDgVA624a1UMWlQpdgYxdCYisaqMLNGiTWojAjxs5uXJnU6ig/i7VdpJdhPRLrdLiCGaTKPOuGjKShslgF88W6C79fVPLrSKPCfcbbZ5rPYhf6pxxihyRqRwPp2DhzKRSK0friFsEMQjQqmDOHXTAQCqtDx+12u6n14lybWONCrCEzFPnkluihTKkoMRXMXuU70/qPSChT98LFW70+kbFPHbWBWUU9u0umOGNMVPINlJWUTIo+9/vIfY8ylkpLBQPGeVucscRZTMxQ2e3EFJCrIDMK7ABpJ8asfrfoWx2PTxp3BmI3bbk22i65KRILEqZxHSJdk4OcAPlVqxfb81Efxix66hfRQbXVNQAAE7WP9886OUlO0vGJ7enJITBM/VxPTBkAGMk1L0mXLrsC5uXnU1+Jfft9pMVLcFadTH3Crp3MaFLfkk5MSwxPOCLGOzO6Ep1LSVle5GLZ7eIcmklr1a495X3RXoPEuLLbYF6+YGl4PPOr2SLGCDNPrCFjpz63m68LMTaY6Q0Ta1pYKLRZ7GTJ1xvr86qrxfrMknbqLNgfdiOto/tHJJai/YsxunWryAuT9mAcGhq4DWJZj1eMD12Y8+bEOdCSAyjnvVkgjlGSabzRtSvRNRoihisYZFZP7C8a5XuSuC/KGho/Scq5gxb9alx4su5z1BkN8Bfm4eKOnfCM14OR0SgsdsHgcvZeSzWx35q31RhNa7MYm+i122/YX1t1ZXyt83p8n9xf+rDG2izlf7+rPftqvd/TLyrjpeJAhvqwpeIvhxqaFqNChQoVKvYvSkMhlIZCyNWkkB+LYlKPXnja3YBj93fDmsFMeuBZrmq3VKhQ8SdBfdhS8aeh5WpV5lz7BLE9I6naGwrGUKXXYVLv7piyfjOqqLrODJVMGgGPh9kZcu+iqnOcmAJFw6JkXZHzH1XRzeZcpUVcoY+Emc2w0jri0jEYmdkhpzhiwqLUdtZLsJ6H9UUyZSVZSfvEeVc8JdLd4KbtC1aCM3bYzY+zp7jurSe3NM7vSREFUUAMUooM8Vkz1UDuZyYjuR2SW2A+ZUN5yTUtEBBMA1fBORYsRvooH+mhiooE82cmhzRmDphF5ONkxz0PMQV+YgAk6Gj74oichXlg6PXUdho/CWIumfGKk+bIQlojvUHsmxZTXCijpN3r2rMHgLReKOgTbbF6qY00nnw+wfBUVohxJlOFtICc8RLUBxQVBj+Nu62bNgMA8vPzaDteOjbOmhINY22ZTA6UBmaqaHy6SfPllCnLibLbYjrRH7LMzpLi1UlsYCop/vb7IxnHySyO3yfOaYgYrFSCtS2s5eJcMdFfAODxCJaMmdccYn5sdnJm1InXcChAy4s+11KuGrMtMrXVSswvj2uJmK8oMTxaMrsxU4YYM2OWHLE8s4HMFBgoc43zudiJVCJ2HDLfW0RfJJO8H/qb7h1eypHjew87V4aoTywOOh4lU4pyxIh5thDTq2yXdXjU92ZqJx+3KcjsJemnDHz9iO3lEJMNAHbSUDHTWV0trmGJ9I+5TrFsQYEYd6xFDIXEeQ6wEyJdo8yMMqvIOlF2PXTVZebGabSkQ5Mp946yx+wOcY+RknEMc/tw17qfMbFHLzxeki6n8gAAIABJREFUvRvDQyGY7aI9eovoG72B+y4zY7CtrFFjMIuU+W5rt9ea/TfPvPCxZGqseHy2xLr8+Q6I/M2RqQHbVyxQc4xVW9drzbKtdaVUGS8V+xPNJd6pUHHA4GKfHxf7/KjS63Bpnx4Yt70CZ27btb+bpUKFChUqsjDE48FdGzfg8tJirCQzDhUqVKj4O0NltlQoaN6FsLkV6HUfF4h498wmBb0hVOq0uPTgHjinuh6n7qwBNDqkEKbliPmgHBm/R1RkU5QJFNeRjiLI+idRmWVHQM5TYo1NOusKALEHMuUMueqFNsruEFXmvDzxGomItrCugt33DPSquKSRDiIQzNQqGYiNiREdo6eqscQRzVSFY1YnSo6LLDuLRdidUDAGLNXinCyJ2h+idgZIp1RTLxgIrsgXFgnWJr9Q7C8eF/WYujpx3AZiwixmzvES1XArra9RKvrEOBDjpiNGI0SVfNZX5VN+WZRYG9aWxfZweZSJgeT8K3ZwZCe33FzS47A0j1gJZiUlSfytoT5IRsWxJ0nDYjKJ13ZllJNFfc1uhokkO0gyA2CmY6GsJ9JwaViPli/60GQW22UmjF0Vq0h7GKc8LAOxiqwX4nHvpL5hd0AjMRKc6RSmc6mMZ2KX+Hrg5WJKv5loO6RTonPgYTaHxlJOjhgz7crJGRBAMCRYtoBPtM1BzBIzr4GAODYj/bg2E5scoXHK2j0DHYNE+1ayvmg/vL6T3ApjYXGMVmLSZGI+FUaM9aTU93yO+brVkvshkyiyxA6OyOgbZqqYBZSU9cX7dtL/sR4vx2am/hD3FL0ytZn1U2IHhUWCKbYQq+N2C5apgVhLvnXaSUdlLRVuoXx/4P0DaZdVZnIl0hTabWIfVso8Y/1oEuQuSQxqTg7nuInPvXSvCvgpl5BcCVmraKBzxhl8es6jooGSiou+itKrjthIT30tute7Mc/vw2UDBuHujVsw0ONDHh1bfolgwtiJlAmGtpI76e+pva+Y/X2mrJWVTdXYFbfxtniR5jPDmm5D4+X577a68vHyTdfJW/vd/Udni7XENrV1/b2h9RrwtvWNChX7EiqzpeKAxxa9Dud2bY9zqutxYXXd/m6OChUqVKhoAYPq63Dz99/i2l5d8a09p+UVVKhQoeL/KdSHLRUHPG4rLUSNTqs+aKlQoULFXwiD6utw5/pNmNWrK1Ya1dB5FSpU/D2hTiNU0SKam64hKX8S5d/CdI7WTpVIxEmgzyGdZB4Bmj7GJhU8pc1LgaUel5jqpteJ/ZgtYj02THDStEItTRtkq+QU1RzYAjm1RzMLCsWUl2hY7CPKYcEQU8N0PL2I7OV5epOcFZicpGPiY3DRFDB9REP7FstFaMqO2UyhwWRQEQzwtEMxlciZJ47NmkMW2Cb+IZPK2A5PTWPw9ESeXpggQw8ThRgrU9Koz+Jx0Rm1dTHaLhl/kCEAT5Xj9dg4JEjmFbEoifJJfM/GARyYayCb8hwlnJmmfsbS5gzZ81QlNtmg6aL5ZAjgo+lwHreYGsmmI13IbpsDeUMBMZUrEiYb5myBPk0hY9vtfLINZwMBFpezQQtPW2zfoR0AoLSkkJYS28ulKXccI8ChxNxnbk+APicTBgol5umHZgqI5jlK8RiZrZCpQpSmmnKANlvQs4kKjyXuR6OZQmrLO4p+iHC4rdgvT/lLsrkE0sYWdgeZK9B5TFA4tkx9wtNrjXRtxmK8DZpGStMCoymaeskmNSk2kMkyjGAzB5pOx4HTbGjBUzj1err+aNZdKkmf0/jV0Tjj8iJHN/B0RiNNJ2RTCbZ+5+OUaMUoTUENUqRDJMrTHI3UDppqahR9zqYqHHLMEQ4cscAxFcVkMKOn47RYndQP6eu3sn43tVksw+Y3fB3oDdSHdC9JQIxzI9njG2i8sUlPPd0v2aVfQ8YXHhqPPMVSoxHnlu8RPOW3loLOTXSulPspGbRIdI77Vm7CLeEGXNF/MO7ZtAUn0zRHKwVZS9pME5R05nBL07laN42weUgZr62ZZZZuW/bCPE0ue9u8Xvac++xja+0xZB/z7zPc+L3TB9u6/u8JM24rWhs03VKb1GmFKvYF1IctFQc0qjQa/Gw1owM9CKlQoUKFir8WBrnqcc+mLZjZtTOcbi9GRmMtr/QHYQGLE5vRPalQoULFvob6sKVCAdshc0EolcVcKeDPuZr3Gx0ymqsYhanyWlNTh9P79kJxOIp24QjiZDst69iuXFRagxrB/jAbwhX9KFW9XS5RgeXAUTtVnTl4mF1wZYmNENI5XkpfSJlBoVFiITjoVkv23GxxHSMWxUVCeD1V5Lk6zAYUXPmuoimSbP3MJgYcSMtsTT0ZWsTJxry2NpVxbGzeoLSLK/PU1VoKJmVL6kBAsCF2h4XaJ145TFaWxX6MxBzwemwHzUyZRpfZ5xoNjSViRNieP6KYNpAxgkwB00QnNpBNO5tRAECAgp3ZDjsvj0wHyJwjbT4SpWMK0d8JOjZmluJ0jOSQluCKZirj/QYKN+ZoAKNRtIVNIQJkmc7socslLLjZWt1Jhh0JYjOMZCbCkQPMfvCrwvIZ2VAjj/ZP7BFRD1Ea/ynabl2tGDNslGHPYmU4MJhNHfwU3MuDwURmFDyW9RT2rCOGa8/M7zSTRGYjxEQptvJWZnbJPIEvqqxrXOl7ZjFoQMVoPPPiJmqDg5gynZ7HIxnF0DiUZWJMKb4hkqDxJrGxDBlW0LjXEgPNbDb/3Obxa7EKbZGZrlNm3jgl3EDskZGuS7bAl2m8N1BkQ5LMenj7yQS1RyPOcWlxIR0vGXvQcA9RoLohRUy1nO4/DiO22UWfcN/5yaqd2TZmQrXEovE5Y8aSDTNSyowEAT0ZVnAYOBvR8LUepCiAemJQd1UIo5ciYtjKy4UBhoXaqdeJdgb9ok+6bViHG+t2Y+KwYbjvl18wmpheM41bZlYlheFqzj789zFaXdu4/L4gNtJsChtTKJ/Q+79vVkhb27G/yJrGJiS/1+6/7fitbFxLTJnKgKnYG9TSjooDFkGNBi6dFuU0LUqFChUqVPx1MaCuDgt++RVXde+OL9VwehUqVPxNoDJbKhrNJ8/+u1HFJrsq95vnzGe1g4rhyRiFFGv0kJAOhmTbc1+QK/TiJUiaAdbEcPWa7c5lYp0cjlz6m/UXolJrU4JDkxmfA0A4LKrFHNJr4aoxV8ipYu0LZNpw63Vkw+wO0LGJtrTvKPRDiv026S2qq0RoLBeyNRTCaia9hY6qy8yS1DcIto5twQ06c8b2cvNF5dxKlXruC9bzJJKi2s3W1CYTBwHTuaTPgwHBzMUpwFcme2c+WX7SSTHLw9XwFK3vcOTQfkU/1dYI3YmsYbty0ffMCHAIMtuxA401T3zi2dqch59ezxolwZ646jmUlWz4iTmKUh+wHi6/IDfzc2bfiJ1k63keH3zuuF3MTtaTPb7RQHb3NBY8pFHxk90+a8KceTY6VtaCiQMJEtvIl1lCOWwx5vS03fwCJy1H16kSnC3GXIT0UcyQcdg39wfb9TPjwbokvg51e0YgpPR7doGizWN7/RhdBxzQzPobrZ6vJWaYiLXI0ucgkkQcwOPl5diq02dU4FNI4hftXfDJ65U+St+TmmYGJEnCRN8ZuNLdVzSbbPZlJYyYGF5ih5LUtzo+d2THz/rAFOv4JNJ76sT7RmoGs+p2GwVie8W59pC9OrONetq+TGHIzHZGSfulJ8aM7dsVvR6AXKcYpxxizRbwSmA4HQvr0VgPxoHMqZQY7xHSdMVJW8VB1JVuwVSVl4t7FFvB8/iSrZmB5SnS9KVoP2Eeb8TYBv1iuxxcbjSKdvWv3oU7I0FM6tMXC9avx2Fu0UfFnToAAAymtN09sO8YLcajdC6nNrOZxmxLai+f7X0bjPR4bhuD1VI48J+ehdxGNKePykZLrNGfgeb6ulF0QDN/t8RwqczX3xvqw5YKFSpUqNiviAOYWVqOOp0O53vc0HDBQ07gRes/kZDWY4z/IuVJUOJ5d/xgQVMh+cGgQRfBbY7piKYWYIZn8J95KCpagSENLszfsAEze/XCQzsqMJQKH38G3pf2/rClQoUKFfsa6sOWCqUyw5XRPT7J+Lx5tK6S03xFSPydSGSGtXJldnaFYEM0xFzIpPfhkGKfXzABXDX2eARLUlcn2J+8PKEpYD0SO5NxqCw7nrE+g7U9QNrtjMOCmTXhir7HzcyOYEtyc0X1OZgkVzUy9rBSqCm7kOXkiLbYbYL5qa8VWqVQWOiBorQ9/vHI7mwW0gWVlhYBAGy0Pv8Iraul8GGDhtoVzmgHOz0y22G1kiMYVXvdVGX2kb4nHg1k9BEkdk8MZvRZKEh9RlqeeIx1RFY6DgEL9SO/4yHHST+9lrUXx5VfQA6USAclJ+K8jmiTjxggA533eIKYStpnfj6dd+qzOLEHu3YKFjFJoiSuzLNLW5CDl0nDkpcntm8gLV9SK9bjoFrlHJMzpMHIznmsa6LQYr/YrpnYSS25t8kyV/7F++ysx851rLVijQ2PvQRrcUwGXNn7OqW/mJljpu/82jNxqHc4iouL8b+cL/DvwlcApK+7ZIodLGO47+c7YSIt3AM9HsM27XaxrMzOjQJHhA7DJf4JCIcj2KbbjpvKb6NjSbPCunAC4x7dhT4n3IbF3Y9DtUaLzdonUKP5iI4nCb+8CQmEkIAELSwYHeyOD62CIf3S9C3CUgQpKYVDPJ2wCc8oTPKEmhNwuLsvtAYbPrF9h+fy36H981eaBj2jZbgr91I8bz0ecorYPe0axKUA9kRxvABdY04cHhyFid4JAICdxgrMzb0lzdRm3btuqLoWHWPtkUqksMi5BJ9YPgctmLF8WaAEszZPU/R/U3rNEudQYWnTIbVn7BqLQVX9AQBf5X+Dt7q9m9GfvG1JlnDH1zcqWqyHDn4MNbbdYFUA6+gAYGD1AIz+6UgAwJexb7D0yNeUewprINlWdvyKk1DozkcwFMZb3d/Hd8U/UtvI0ZEY1faRUlyz8XJoNEJbOGvILQDS3x/p4F8ZJ64/Gv29gwAAqzttwhsdlivjMhGLoV1Qh4s656CX14MVdc+KdhWV4lr9LGyVt9GGMroeo1OjMSU5BQCwCZswUzMz4/NliWVoHZpjU7KWylgs27mwtWzF3pdrikXLfL+59TJ11mlkf9dmbm9fhxk3H/L8+9wK27L+vmKOmmUTuW1ZWkem+xX2jt04GzVHuTAyP1cZr78F1IctFQc8OpAxgOpHqEJFY+ww7trfTWgEXTiBeef8DGdVBPpFs9Dw3kCMzs3Bf/VRJPUJpKQkdmp+hoQ48pMlkFIpdIrn4tjgSABAKpHAL/otQCqF/LgTEtqu2yyLWaCPH4SDQ8OVB+vvc3bDp6mHRNMG40him24jEuiGw/fd4atoJRyxGHp5Pdhgs2Nl0ITh4VDLK6lQoULFXwzSvqpsHChINqZnVDSDNKMlfoiwJioNmrLTYuWl6eyQ1leaxH5ixOZUb6sEAGyu9+OMkX3xv1U/AxBZO+2vuRKJBOuCSJMQEl/Q64YdisqefRCLR9Fu41p0/GgFAMBA7lqKdsegx9o5NyvOZj0WPQV9ZYVSYErtMYRc/Qeg5uRTodPpYKjYhfYLH6WFxAtXqBPJJH6dcBk03bsDAPKXvYLc779Rcqz21KCEikuwYcJEAEBBfi46Xj9b2Se7uLG2perEk+EdPASJRBL2b79ByTtvUl+I6rAisUomsfX2u5TssaL774V+1y5ESdfBmTlarQYN/QcicM7ZAABzTRWKH3xQYS748mFt184pkxEuLYXVpEPeG8th+Hxlxn4V3VxRMdZPuAh6rejrQQvuUM4ZAOWcxWNxVI05Gd4hQwEAju++RdFbb4KL7HxOuKJfff/dCrNlvvlOGCorFX2YXs8ZX1oEhw2D56zxYt2tO1B4/4OKix/rdGTaydbLLkOkrAxaWUbe668j5+uv6RyS02SY9GcdO2Db5CtQVCTYyqKrrqFjSSh9Dgjt2M7jj0f88MMAAM4fv0PBsjeVc5jWHCbomOaL/cRTKL7vQWDr9oxzylPooocOh//cs9DgaoB+VwVKHnpMdDlvj8eWLGPH5VfARzq9vNdfRd6PP8KYlW0myzLi7csRnDdXnLNgGIVTpipjmBldHqvhCy9EaOQocUyrv4Np0fNI199TQDwOzeYtSMXj+OzEE/Dcv/6FcGEBJlw3G8OWLYecSOCn/v3QactmFFZsw8+H5mHNMUVYMbkzNmu3occmDZ68ygIN5PT1FBWMaSwSQOUlpyJeJtjJwv98Dst3GxQWRiZXP0nWItauCIE5gtmTNAY4Lr8GKcrUSyqCNwH36acgOHwQIJtgXrkKjleXoVYXxs/mdTAkHZDAmi4Jk5YdAaRSODZ0BO6/eiU023coTBc7YCKVQnDkSIQvOJ/OMemjaL/ZWpUQOQbuJldRo5G0YaTpjMW4Si7OscWaDgL2eATrzaRYiJj9dIGc3AfjmeOeO5d1a6yhYn0oOz3GSJdZQFrAdKVetCmXXD3NFtH3QWKC+XuDuzpC14+SqUf3IC0xt4WUKZZK0gNvsB5fO534Z99+uGf9Gow20X5yBXPGOWEaTfrcNIVTNacCaJnZOpW2syxrbDDSLBBrf/c989C8K9/ef760VjOW3NNKFACzntnasX2Vs9VWZqul939Ln+/r89QsC8jjA/xnEhkfpJr+PdTo2LKYLdXV8I+HLMv7rXNVN0IVBzxeKsnHSyX5aH/Nlfu7KSpUqACAeBy61WuQisWwtaAAIUhYMPYUjK7YhbJ4DJLFDIvfj85+H6zuHQhYJTiTuegU64AR4SG4xHce7q6fJx609jMKYkb0DxwMZzwXzqSD/uViVHQYBkcG4+mcm/GJccv+bub/awxxuXD3hp9wTa9DsJIiCVSoUKHi/wtUZutvDD736Up9c248/HcWndFKtOQcxsxWnLQm1dvEtKhNdV6cMao/DiFd1NtjxwIA1lx/MwAgFBCV2IqdggnzB4TeiLUv7IBXUlICIJ1lw3lJrE3hiilrEqRUuuLJjnUNpGUqKBRVWbNVVFu5zyK0L3bIU6rGOnbVE9XdBLEHPnKMKy0toDaL7UXJ1cxH+9NRjhVnfylaLupTrh6zDo1zvAJUveYMHmb3IjRNh3wFYKNqtZ50HuyOxs517NzHmhPWqPn9oqqtofU444dZkg4dy6hdrDljl0HRPmZxDOzER+6FAb84bs45AgCjWWiw4tTXnHNlpWU4L4pZD26LmzK7zOTWpqGsMzO3gVzTmKWIkC7OVS80fyYzMWekMfF6xX6zK5c+n+grDWU9OShny+kUlflwRLQnlWRGLtPJDylm/yR6Fe3JIVYjSAwGM2/cN7z+C4WvAQDG7xCV/SixmJyzxdlWMmt5aDuuOtE/PHZZR8jnykwsKQDkOCzwBwLY/MST0Pp86P2/T7Fp8CBc/vQz6B4JY+6v61H68GOwrV+PiqVP4aH8hRi14AuMuWc9vjs2Dx0WvAO93rxHvha5E7LBBenpQn6hz4yRQ57OIM69wZpLXU/5WDrKZNKQux+5f8aJGfLRuJfpXsOaw5rKWvFK7p/FpeJc2SyiHRrS2WnI3dNkzcN/DTtwdsEFKEkOhSGVg+LE4WgfOx0jw2GMI72ovHWr6MuSUvEa8NNxUu4cXT8Rup6qKVePnf3YwTIeE+3VEwtvd7DGMZ3RxK6WmzdtA5DOpispKaZtimPw0T2Ac+acTsFY1dXW03ZE2/mat5iZRRPXIutTHZSbZTQR80r3Ds6xA7GBnJ3nJf0laxp5OVe92K81h+45Rjq2lOijnBwjvnbkYnafg3HP+g0YTvfCPDouK7nJapTswMzvod/LbKVZSND2OdutNQWB7O+0pjVYjT/fO1omOZr+TmYGtvH2+Fj2DbPVElra/oH4+zObyVLcXpl5ylo+fQzNnYtWHqMi6cpmuKQmP1fRduxPZkvVbKn4y6Dm1PH7uwkqVBxw+CxHTO0cj1Nxw6234tfNm7F44cJmly/p1AW3zbsRp550cqv34Q8E4Lv0cug7tEds6BBov1yJwe/+B9PX/IhRRgOS0SiMm7cgWl6Ky0pmQCtpUH7VmVg+qhLD218oHrT+ojgy0h7vNizHs6bPkUwl8L5xDori9Zjv+AcaJAmX+Lyw3yoMQnY/8sh+bu1fG0PcDbhrw0Zc06sn7t+yBUOosNIaLEgsaNVyXQ7AH/gqVKj4/w31YetvjMbZF9lfQnIz7zNal3/S2u82rv5aqBJricQhSZJSWazqLTJzaioFk+Vp8FMrxHp2O2sNRFXPZBYV2bx8wTBIMmnQqLihoeoxs1F+YpOse2Q8sdOdkZkhcic0pkTV1kAsmtEoWAF2JQwTIyZruBpGegPqC85q4so+H7uUENsLBMhpjrQbwRCzI6QZoVdm4yxWE73POjyxH65O846ZrUnQApzJlDJntkfPjBz1JTuIcSU+GKwQfUVZTaUlQlvDTpJ6g1hu29YdtH/x0qOH0LRlu7FxLpNOK7ZXTxlZAGCOiDbY8wRT43AINiJG2i3OSzOYRN8xM2QhrYeJsoqiUTZZIE0LOSvKOqpkknbFRtllkpIFRcwrsZI8HnNyrBnLg7KTDJSJxkyqUSOOKRUnBoC2EwqRjo7GCB8zM8hmUyG1l67DVFojRg2n5cXnZqsVGp0WWp0WhUVFiisda9X4eN5d/gbal5fDzs6QdrE/LTF/1mQc1kceQSIawWq9ATEJKP9qFVyDB6PrrKshyzKSJx8P+cRTccno4+Efexxcv3yGnzsYMO0ZNwpi+bh343ToUlrETL3hr61EyiHGr470ODI5MSZofKcg/tbbRMaTrZjy4ei6CVI2FDNWBkmM1xxjDnUNMcbkVLl9u2CO4qTdyiOWb3eVYC29XmKIdaJdFms7sZ0Y5b35qgEASbqeDwnbcR+OREqSsE3bE6eXXYKDIp/gztwyPGNL4Cnjr3Ak7cilc5UAs+WinVxPpdsJCgvE9cLXJTPUPp+4byTpeOJ7sC+yxPmA4hrLJQaVx1t+PuWu0fg0mkXb2dWVXS21zHBShZyZzVxijmJRdoPlLLAo/U3nis5ZNMLasEyXNdbGsrtnhAyOmNVLJIRjahI0E4GuW6tNnKOuW6swxxfGtAEHY/YXqzDaL1jDsg5if7YCcT9ntp/RFV3RGtyTpWdqPiep8UyM5lmFplmNNEvC+mfuQ55VkqnRbYyW9pf5d6qRXihbA/XnMFqMllwF97Ur4r5As23h30vNrtk2RquRhiuV+X6j/FI5c3yqeV5/LagPWypUqFDxN8KgAQMAANFQY+c3yetF7oQJCHXvjscOOwx5iQQ6xePYOXAA+ow+BnGKDkAkgmRBPmJOO54ethqxI52IH38iznYDp9QfAekA+vG0r9ExXo5llS/gQ/MnGBTTY71OB2vyC1RqN+O6sqVYWHHW/m7iXx4D6how+4tVmD9yCPI2/IKBNK1ZhQoVKv6KUB+2VDRCdmUku9KXFTuBdEWnbU5HSmWHXrlya6XsKEMgBAmSwoLE3hVZOlVF7fDD2h/h8/sxoM8AmCk/q2NhBwDpnBlZFttlty1Z1uLpF5/D6+8sw/uvvA0DVfK1PDefGA/W8gCAhnJ7zKQ/0FLVlt0DY+y8RewI53KFqSJuIVbDQ7oen1dU5pnZShJbwzoZPzFiScqMkiXKFmNNB2Xr/PDzD5g2eyZefXYxunXuDJ2W3QlT1O7M+eXs2CgRyxEipkCWZbz9/grcsmABvlqxAiajCRVVVTjx7LNw940344hRQ6m95ORIOh4b6d4S5HAma8WeCuz51A7xd3Gx0FuYSA9isjBzF6HjIb2QTZxDZtA4xwtIa0rkVHa1NtNBceuW7Tj0xJNw3+234LDhw5RxmKMRDIBE+rck6YVSySSumv0vbPx1E957/WUk6P2a3bW0G7H94hLW1ZF+jvqa+0RPr1zhZzfB7PEfpfwV1p6ZiXHzNogx4W4QlX6Hk9qr0VHfiVdmxHSUoaZl1oTOqcVshE6jgSRJ+PKrlZh3++3YsXMnevfshVvm3ICBA/oBAAo7d8YdN83DpLEnwvz4kxi9/E1ozGYMKC/Hq1+uxO5kEvqyMow94Vg8aDVCArBh3XoUd+mBu2+ei88+/wIff/hfGLUa5MwoQJ+LeuCuny+BdqcGqVgAK7//DPc8+QY2bN4Jq9mII0cMxMwrL4XZZEK+SbAS1TVe3HX/g3j/40/g9flQVlKCc844A5MvmwQAWPj4U3hj+XJs3rIFBr0B3bt0xbTJU6GRRF+Xd26PKf+YgrKyUhx7zNG45777UF9fj+NHH4d77rwLDd5q3HzHbdi0eTMO6tUbc2Zdj+KiYmh0Mqp31+CiKyZi7uwbsHLJSnz+1Rcw6g0YP3Ycxp8splbacwy49Z57sXX7Vix++B5YLeLc7NpZgWPPmYzH756H8SNHwGjLxUuvvYmLPt2OreEwwp3moU+vZ3D0/BdxaMdOOIey4BJ0X/D7xbiOU2Yc5+axVizHJs7t7mqhKUvE08wWjz+Px5MxPvOI0bKQjlTJxaJ7laKvJPbEQJljfq9YLkAasHqtYPVCITFjwOEQ4zOvQDBeWrp+FNt8Wi9O9xaZrgtm45S8OoNYvqhUnPsI5dIFwmI5ZtGZOTaQQ+PIaBLzVv+C2QN64Z6NW5FDuYmct2jLE8fNTPOjsnCK5Qyu1mLfMgFNa7eytVIMJeushTY1dulr2vEum2FrvJ29Oww3mzHVzOetRWsZrt+7n329rT8C/DWWng+UpQ3j97NmHmWzogyF6VJOvZSxH9Xl8MCA+rCl4i+Dnp+JMNS1p0/Aj2t/hNfnxYA+A/Zzq/7/oSAvDwvvfQAd2pXv76a0CQUFBXj9+cVwOnL2d1P2KyoqK3HL/Pm4/JJLYTQYMP++ezF91rX4/IP301+4gSAc502A/+A+qDRb0FA7xaXQAAAgAElEQVRXhx2BIM6/ZCK2DuiP9+fdjHVnnAXpP8sztn33g4/gJEnCosF9MWNUDbbOr8TFmvHQniB+yG/aVolJ192PEQP74MGbpmPbzmo8vPh1VNW58dh8YTkfCodx1kWXoN7lwqUTLkKnDh1QU1uL7Tt3KvuprKrCpIsvRklREXw+Px5f+CSmXDMd9916b4Z5ynfffw9Xgwvzb7sVuyoq8K8b58FoNOLb77/DpIsvgVarxfwFd+POe+7C/Xfdm3Esjz75GIYNHop5s+di3fp1ePqFZ6HXaXDy8Se2uq9XffsD/nXLfNzQvj2G2mz45Iozcd/m+agJPIeH8x+GW6/FFWRgoaLtGOBy4+6NW3FNj054YMs2DPU1r+F6X3ofADAFe3/Yasn6XYUKFSr2NdSHrb8hGmu1BFpb+fi9haKW9svub3kFeZBkCZ1TqYz323Ush8liQiwRQ5duXZX2WGxCg+J0knMZZd4kyRHM7wsgHo8hlUrB6/XAqRPLcWXUZMxkPoA0Q8VtlOmVXQX95GDHKoBgkKq9rO0iRoo1Sawv4h+MrIHi/TADxSwL510ZyZkuRC5tUdJBJJJxxBNx6BTtk44+F+sFSAPiJWatoEhUl+3UV35/QKmkVeyqRHk74SJ42AjBaIXIvZC1JEqWT5R1caQVY30HO/sRY8WsFOubNLS+kZ0fqbArSaT/oAq/Xp/WMMTpPMbI1S9AboNcqbcQQxQLR9GtY2cEgwHEo0lYs9z1lLwfLTNQWqSSKaRSQDyWULQozJRy7dFIbJ7eINg81uFwzlEoRCwmaaAUxzwt52xRD1M2VCImziHr+6x2wWR1sYiHxATpdbhCyZX/RNZ1k86SEsunUlGkkITb48Gyl/6NPEcBHXcM02fNxKZvv0W/jz8W6zz7LD684HzMuOMORI8+Gv4dO7Bi2StoV1aKcMSPcXfMxVkTLse7b7+JIw8djlRcMDTd4n5cdmwJpj0dxiHJHhi0oTMefuJ5nHZEP8iyjEeXfIyykmI8t/BxaDQa7NxZA7OjDHPvuAtf/bgDY9r1wqtvvolfNm3G26+8iqLCIgBAfqFgRDkb7PabbgIgxn8ikUDn9p1x/GljsHHzehx31Gjk5tqg1WkRCAbwwqJFKCAdz5ervsaLLy3B22++iZEjRiASDCMcCeOfc/4FrU6L3NxchEhX2KN7D9x+460AgE7tumBnRQVefPVl9OnRF3n5TgSCUYQjcfyy2YX2HYXLYL2XnBxdAVRWufHVqm/RrXMnzKTsqJ5Dj8OYUYfgnK5X4KDw6Xg4tzN+1nfHo3WjxbloIGaZ9IaQxDk0EFtpIB2SkVikoD/N8OpJ18WaqGhEnPe6WqFPYza4jK7hAGuk6F6i1Yl911ULzRRrqhxUnNDpeAYAMaYyj1+xP3bzTNK4YwfUFLm3soMpM7TMANtsubR90rEx06xhBky0O1IhtLj2XLG8M0+M36NSMh7auRvTunTCwzsqMNxDGWWkyTT8Rqv4ljKdfh8TkHWtpjK3lZ4d0jrWobVtyWaQ0reMA4Pdaa1Gqy3s1G/tuz8i62tv+2+RYUvbYLZp/9n5X8q5b4bZUpmu/QP1YUvFAY/rdlZl/P3wUw9j1berAADnThbhvONOGo/LLpqMld98iaXLlmLL1s2wWq048ZgTMHnCxYoAvSl4vB489ORj+O/nn8LvD6Bnt26YMXUqDu7VW1lmxInH4B+XTYHH58Wyd9+CJEk45vAjcflFl6bNJADU1O7Gsy8uwvdrfkAkGkH7sna48MzzcdiIkQCEtfvS5a9h5bdfw+1xo3PHTrhm6jQMHTRY2caZEy/AqCHDYDab8fb77yEUDuGwkYfiuunXNGq72+PBrHk34stvvkZergMTzz0P555+uvL5T+vXYfErS7Hul18QCAXRoV07XHjWmRg3Zkyz/VFZXY0hx43GYwsWYNiggcr7y959F0vfWI6dFRUwm804uFdv3HDtTFgtlma3JY5nIk467lhc94/pGe9Pu2426l31WPL0k8qx3PXAI3j/IzG1rGe3rpgx5XL06tFDWefV5W/imRf+jYqqKphMJnTp2BG3/Ot6dOvSBRVVVTj+zDNwz003YdSwYco6Ly9bhueXLsX2nTthtVgwqF8/3Drn+rR5SBaqa2rw0JMLseq77xCJRjFkYH/Mu24WOnVsv9fj3F/oEG2X8Xd5WRk6d+wIj1s81HXt1BkA4JsxA9FRIqT4+2OPRXLO9bjK58HieAxFfQ5Cu7JSZRuD+vdFfl4uflyzFkceOhzRiHjYGthFh3cfOBmn+/Q4230C3j/sbbz2zueorm1AaVEeVq/dgBOOPixD8H/EyBHQaDRYvfZnjBlzHL5Y+RUO6tULB/Xqhbp6V5PH9M133+GOu+7C6p9+gtvtVt7fWbErY7l+ffvCZrMpf3fu1Bl6vR7D9zj/nTp2BADsrq1FHpnoAMCxRx2Tsa2hA4fi488+htvjVqbmtYQeXbvgvsefwSx/AGPznegUi6EdSvDK9kV42/Yeusc0eNR5Dy7U1GJxzXmt2qaKxhgRCOHBHZWY1r4Mj1TswtBgsOWVVKhQoeIAgfqw9TdGdgWnufyrltB4/d9XMeHtGU1GSJKEjt2FFkubK/RNs6fPQCgSgquhAVdNuQrJWBIFeQX4ctWnuPXe2zH2+DG47IKLUVlTjcefXYhYLIopl0xGIpFAMpmEBJE7lUykEI1GMXnGdPj9fvxj8hQ4Hbl49a1lmDLzGix7YQmcjvSPrqXLXsOAQ/ph3rXXY8Ovv2Lh88/ApDfhtBPHIi/fiQZ3A2beMAtGoxHTJl2BooJCbNq6BRVVlUjERV8+9PQT2PDrRlxx8SS0Ky3Dx599gitmXo1Xn1uEXt17wJ5jgSxL+O+Xn6GsuAQzp05DfYMLTyx6DrfH5+OmWXMAADHKoJk3fz6OGnUobp19LT769HPcvGABOnfsiN7dxAPK1h070aNLNxx/1NHQ6/TYUbUL8+66GyajEWOOGw2Px6ewcaFgGLIsKUyMTqdRsqMeXLgIzy1ZgtNPHovpl12GUDiML1Z9DZ1OC4fDpuhJWGOiJ7e5PGcuTjz2GLz34UeYM3OGoiVzuerxvy++wJWTJsFV7wGkFCZMmYpAMIjZM65CniMXL77yKqbO+ife+veLyM/Lw9ff/YB5d96FqZdeir4HH4y6ulr8vG49auvqUFZSgiRNCzKZLcix2RGNRfDkosV49JlncPpY0e5wJILPVq5EbZ0LWo0WkUgUiUQCrnovIKXg8Xpx2Yyr4bDZcdvcG2A0GrHwuedwweQp+Pyjd2AyGqGhbCd2dPR4RSWfnSkNOlPGOOZzxc56zNoRIaVU/HNIq5iucCYy/vTRFCoizGAlndsNVVeJN4wJACnYTEbk3Hcv5HgSPxmNqCUHv6+GDsFVi54Dli5F3y6dMNkrNDCLUknk5zmQihPj5hVOk06rCfUffABd3TaE138KAOh97tU42XW0Un0tLO4EANheC+Tk56Om1gW90YFQTPSFVm+HFoA9xwaP14d4CnC53SgpLYE11waLPZ0jBQjmt6KiEqefcw76HdIXd9x8M4oKi+Dz+HH17Jnw+bxoaHDBkedAMpGALScHqUQc8Zhoj1anhdVqhZYYY40kwUhska/BjajPj921IsvLpNMg5BdsTH5eDjq0E3l8peVF6Nq9I3JsVuj1epR3LIdMLoP+oDjnoZgO/ogBgwYfhhtnX49Xly7Boz+tg/nwo3HyccfinzOmYIL3ZOiNZhzjPgrjOl+BkeUbkFtShIMi3TBrnXgYjBDLZpQ5545YVz3lz8lhpW8kKl2zzofPP2u1WCtVVyeYrnrKUbPlintYDjmWuuiarqsTD7EFpMninLVIhFg2cjn0ecX9gR0h9XqujIs2603iNVrvzTimgkJxv7ZS+/jbQasVxyZpY7RdMa4jpH91Ux5XhNi/QmKKR8hmPLizElPbleG+LZtxrEscn7Yk05Wwrchml35bxT9bk5XNLDGkZt7ntuwbVqUlNqW1OqY/Su/UVhfCP4KF2ddOiK09d1LmEGl+e1naruxBI7fwOyu9n0x3w1QLroYq4/XHQH3YUvGXQ/vy9rDb7YhEIujdszeS0SRSqRSeWLQQo484BjOnXg0AkDUa6HU6LHjkPpx3xtnQa3SNtvWfj97H5m1b8PJTL6BDe8EQDB00EOMuPA/Pv/wS/nFZev5/aXEJ5s6cDQDo16cfflq/Fl999zVOO1GELb+8/HX4AwEseuRJOMjGuF8fYUoQj8fw/Zof8NV3X+O+W+bjcGK6jhg1Ett27sDjzz6LB+64U9lXNBrFbf+cCxtN98t1OHHDHbfg4rMvQMf2HZTlDh02AmeeMg65DgP6H9wHX377Hf772WfKw9aRIwSTIcniy+C4Y45ATe1uvLz8TYw5bnSr+tvr8+Hfr76K8WNOxrXTpgEQ2zpy1KGKscXecMIxx+DpF17ED2t+wqB+hwAAPvnyS0RjMRx12OEAgHc++ACbtm7F+6+/ik4dOiCVTGLk0CE45rRxWPTSUlwzdQrWrFuH7l274tIJEwAAfp8Xhw0fng41bqLdT7/wAs4ZNw5XT7kCMv0AP4LYnabwwssvIxQK4bVFi1FSKsw9Ro0YjCGHH4uXXnkdF19wbqv6bH9BCoWg3boNkQY3nj+oD8po6iQAbBg/Hv9wN2AKGpdD6upcWdsJo6GiBiUl+Xilx2rUdy4EVu+EqyFTM1PfIH6w5+eJH+z5Tica9mCiABGa7vF5kZMjHiZzHQ7s2FXR7DH899NPEQqF8NzChdDTg1LFzip4vPvWkS67nQ0ePhYxJdFg0CumJAxfE7lPJ59wAs49/VS4GhrwnxUrMP/Bh2GzWXDttMsBAH3DTqyoWoI7HO8glkxiqf0BbO61C0+sP73RtlTsHcODIdy7ZTOu6twFT9bVY0Q43PJKKlSoULGfoT5s/Q3xR2VetLUikhX9oSBdIQLiAM6yWiABeJM1W53awWQ2wWQyokv3TqjeVYXtO7ajpnY3Rg0biZpqkZFj0OvRvWNnRKNRbNywAX16HZSu8iRTCIXCWPnNKvTo2h15zjwly8pk1GFg335Yv3GjojUCgFHDhqOhQfzgC4fCKC4owsZNv8Bms8Fms2P12p8xfMhQFBUWKg6KYXYr1Grw48+r4XTkomfX7oiRDinsDWPAIf3w7ocrEI+noNHpAUgY1G8Achx2WGiq22HDRyKVSmHztk3o1b0r8ujH7fBBA2E2G+Bxix+BJUVF2FlRoRTBgqEQFr28BCu//wa1dXUKG1NcWAitToNcp13Jo7Lbc6DT6pQplwF/CKFgFN98vxqRaBSnjz0ZOfTwpyV6RUd5WrxOIkbHHUznbfU75CB07tABb723AgP7iYfPDz75BEMG9kdBvgNACiu//gY9u3VDaXEJIpGo0ItIGgwZOAg/rdsAfzCOspL2WP/LL5j/wAM45vAj0LVTOXQ6naJlipAtudagg95kwJadOxGORHDheeeioKhIcXsKkw7N425AMiUe1OOJOHR6LVZ99x2GDxkscsskZuk06NO7J35Y/RPOPyuGpJZZFFHN5twv1v4liclKEjOciDMjQNls5I6p1ZJ7HK2n0bIrFYHdp4hgNpnE+I9ExBQqZh0NdfWwvPwGAilA+uxLePOcGL5oEcb5PLigoRZVtfXAQw/jpIAHo/38sJVAMuqj7cewZu06VO7YhLKSQiSC27D26ltQG09g6YI4eo0sw7VfnQ9gFlZ8/AUuOf9M6CxCo/TRVz+jqLAQBcUdkJJl9O7VC59+8QVkWQONRoPcXCf+88EKJBIJDB04GMlkCsOHDcM7827Cmp/WoEcXMcUxGhbH5Npdi92VuyBJEiq3bILVKh7mly97E4lEAvFIGCGvC3VVOsSiESRiUQRcdYjGxLl319YimUjAVSHMNjwuN2orKuizKhQXFEBKCC3Tex+8jyG9ewEAikqK8OWqz1FYkI9eXTvAaLWgc6cOWPHhBygqzoeBmNqd74jcuOKSAnTu0gESuYXu2rUbgIyBfUegV/cP8evmHYjFtdBQxlXPgA2LAudA0mjxk/4kjCm9AOcN0OMI/3R0iUYxnnRIMdJh2WlMmSx7FIiIuYqRm6We9KDMdLKWsbpSMHcxWt5OOXCciZdPTFZVlXA8NFsF02ShvmYdJudfuemeF6qnqAAqmbNu1U4FFwO5wHLb2VUwGhXLeyjHkHWsJnJ4tZBTaZzuIUajuC5c9CAPiZk2UQzrGwzizsgvmNSzO+5f8zPGsGEKRZe1/fsrc0bGnt8/e77/R2Jf64T2F/Y1Y3VAOAlmaalaXjxbr9e231vpnK22obUa/MYuh00zWyrjtW+hPmypOGDhADA0mcRqSULfFm66bqpKz7n9xiY/r62va/J9j9eDtRvW4fCxxzb6rLysLONvmzXT5U6r0So/8nhbvbr3QHNwe71wuRtwwjmnNfosO9TS4XBk/G00GGA2mVBHU2wY/KDE0Gkz23TXow9i3a8bcen5F6Jzhw4oKS3Ci6+8ig//90mz7cwGMwpc8f8tGHP8aLz8xnLceN0s+AMBfLZyFW649mrlc7fXi5/Xr0fPIUMbrVtWIrREgwcMxPUzrsUbby/HC0uXwmwy4fhjjsKMqVc2yW4xc1FYUNDqdro9HqxZuxbvffhRo89GDmvctv0NTXUNEpeMw38Pc2Bz+8uwtd8h8PsDmOeqwSl+X6u3k+/MxYTpN2DaxHFwPfsg7t8ZR0FvK845aBjOWj0YHvrBuXHTFsyceydOGXsaVq76GkuWvopbbvyX8qA54bzzcfHlkzF5+pU476yzUVFRhQUP3ofhQ4bikD4HAwDGn3IKXnzpJZx1/oWYMe1KdOnUEVu3bsHW7Ttw6XnnYHD/fkgmk7j13ntx2piTsGXbdjy35KUWtYFtxY6KCjz2/PMYPmAAtn/4Ad7+4APMnXWtcizHH3M0FjzwIK6bewNOH3sq1q5fjzfefitjGw8tfAQejxfDGhqQazThE4cDP29Yh2umNu+Id3A0H29tX4xzy8/HamMC7+bMxQ6dBlfXNX2PUtEYQzxejKmuwSpnLlh92jnVeb+2SYUKFSqag/qw9TdCcy6E2fjjKxitq9nIAF6JxtDNaMAaAPE3XhfvR2OQJKFgSCSTiERiSjX03HHnol2R0F6UFIlSp1ajQXFBEVLxBFLJFJKpFLxuL3LsVuRYrejZrQeunXo1dOSEp9WzC5wOqT10aylZgp3ypRx2K6xWMyQJsJhN8DS4YTVbUF1dA6/bBy257bEOQqsRP2gL8vJxx5x5iuOdP0A6HK0WPp8fJrMFKQCu+npEgyEkKfMrFI4jGArBbDbD4/UgGhVV5mQihUQ8CbOFGTiJek5CJBrFV99/i+mTLsM548cDAOxOK5Iv0zFJMmx2u1LJzst3QqORlZyoaCyGUCgMk0F87vZ4FBMFxUWQJpYnib1hJ8dgWBxX3CfO9eD+A/DgE0/i81VfY1dlJZLJJE49eaziypif50Sf3r1wx1zxsMx5MKIdSVisZiSTcZx+6lhcdO5ZqG9owNvv/QcLHnoYzlwnrpk+TamkpxIJJONx5JErpcvtQlFRPpJxyreiir1GssCg10Kr1SCvwAaNVgen04Ee3bti+hWXKvldQb/oa6fDgUgwCqOJnCkpx40dJLXEfpjIUY9VHOwsp9WztoRywxLMgHElkY+Z+pRYSO5Tg4k0X3U+2Ja/g4AkQf/Wf7Bwcjvccl03zGi4DB3XfI+Ix4NxAb8yRz8eJgYrHkQyShlNiSDiEfH/VCyOITkWjCq04+Yb74UrkcLQ/j1x55xJKPU5AScQiQjdz7wb5uD9Dz/CRZOnwmA04Jqrp2PyZZcqGUmdunbBksWLcMsdd+KKq6bDZDThsBGjcMl5F6K2phapuGCwHp9/G+5/4incueAeBENhFBfkY+xxR8FXX4Fiux4zL70Qz7/xNj758kt07VCOm2dcgZvufwwWs4ySAh2igVogEUM05IeragvqaXpjQ10NEok4aiu2AgBqa1yoq66k/o2gXTsnZNIKTTrnDHy+6hvc9fhj0Ot0OPvkkzDu+CPgc1fDLjvRtX0Rbr9hDh59+hm898GHGDp4EObfejvOvOA86PV6mExGdCjtgJe/fgXvrV2DQDKJ3PwinHrcKThy+NHYtaMedoe4LnNson9suYL1GaAvxidVL+K04nNxcHQjFuf2wi/mcjxVczQAIEauoxpyBgQAn1ccIzuaGonpZOLFQCyzkQoPGmLXvcQQGQ3ajOXKykTxxOEQ14lGYbTJYZVcBzUaYtKIyXWR22Ad5V6FnMzsUkNJf+bzhekcCJYxGBTHVFoiWNEEbd/PTqekaUwQI0cEMnQyMXrESIfIZTHiCyCWSqGaHlJv198CAEhZMrqlES5vZPnO30eZGuU0odHUlprOx2o+/+rPRtPH9HtxoGdYtQXNMk70ypoo1k4lm8nDarR+M32UnavVaIctQNrreGzKibKFPK7m2sPv74UpU1mvtkN92FJxQMMEoG8yiU/kzC83vV6nWGcDQPt27eGwOVDfUI+RAwUDwYJ3HU9xSzS+qQw4pD8WLn4aRQWFKCb7aZ3ht904BhzSD6+9sxwudwMKCwobfT5kwEC88MpLMBuNOKinmL7E5go6Xaae7Ps1qxEKh+CAYNM++eJTSJKEHl27tro9sVgUyWQyY9v+QAAf/e/T1s6IAAD07tEDRoMBb773HvrQtKu2olP79ujcoQPeff8D7KqsxKEjhiM316GI4IcNHowvvlqFspJi5OflKQ8aAOCh8NQ9kZebi9NPGYuP/vcpNm3d2uQ+B/brC6PRiFfeWIa5s2e1qp0jhw3F2++9jx5du0BHD0k+j/iRa6LpT/sTmspqFF0yBXXDh+L1bj2RmjsHT563FJ0jIVzZUAPMvwkaObOd7duVovqX75CMi+ulcu0nAIBkMg4pGILu162QTAbknhHCTSd3xeEDpkCj0UJrbswk2XJy8OSjD0Emk4MExSrsiUNHjcJrS14CAGzduE3sK5GpfXLY7Zg36xpcev45AAC9lq9N8UP42EOH4dhDhykProlECksfWaBECQDA3dfPREFxfsZ2zx47BmePzXTaPKRXT3yw5LlG7bSYTZh+8YUAgByy7c/+0TBuzBiMGzMGSZouqDcasfmndUoQ+4ghwzFiyHB0mi1Y2o8n/aPJ7TSF4kQRltW8hBesS1AS9+IZ2z04vXgrXq2e1OK6KoDBlVW47dBhOGnLNgxoQkvXHI77Cz8gqFCh4q8J9WHrb4g/qhrV2kyPtj7K8AQ7znCKhqPo0rkL3n77bbz15pvQJLTIc+bh9DFn4tmlTyMei+HgngfD63ejenc1vvjmK1w/fSYsZpOovqZSiEbD8HqTGD5gCN5c8Q6mXncVLjzrHJSVlMLtcWHtxg3Iy3XirFPHKe0I+oKIkSDbYtFCpoqvrAHi8QTGnXgq3vv4A0y//hqcO/5MFOTlo9ZVj3A4hMkXTcShw0di5NDhmHHj9bh0wkXo2rkzPB4PNvz6K0KhEKZfNhkGvQYSAJPJhFvuuxtnnzoOdS4XHnpqIUYNHY6i/HyEQsF09VejgU6rVXQQyWQKyWQSeoMJToMJhxx0EJa88Ro6duoASZbx+NNPw2qxwOf3o77OA5vNojzYWOwWmCxmGH2iMu7ItaGgMA8FhXm48tJLcc8jj0DWyDhq1KHwhwL45PMvMHXixSgqLFSq5Sk6u3HKrApSf2k1Ghx9+OF47a234PP5cPett0KWtEhRptQpJ47BS6+9jrMunojJF1+M9u3bocHtxo9rfkJBfh4mTbgA9z78CNweL0YOGQJnbi5+Wr8e369ejetnzoDNZoWNnO30Bh1MZgNydGZcPfVy3HnvA4jGojh8xEhEolF8+vkXuPrKKSgvL4HOYICs0cBit0FKJjDt8klY9vY7OGfiZFxywbkoLipCVXUNvvrmOwwbNBCnjjlR0aslqe1Rcl/jJ1idLofGuUyvmW5QknKhMEMmZ/zNyyW3bof5nffglSWsNZiARAJDXlyC9y6fjOmzZmGCx4XJ7jq8E1ssrhNi1ljjkgyJ6Z/+2l9o+2K7plzBTmqjMnKn/AtJox6fjUhAnt4Tt224EEazYCos+ekHe289OSrKWkgaPYKULcZ6NBOxhfGo6JPqXYJN8roE62CipoXowTVJ+ssoOdF5yMqbH3o0ZGYTS3DuGunkSKcWJYYuEhKsXY5FjD+LkR0dxfYcDiOtT6ygNgmdljLiDBoU5otjtZJuCQmxvbAvRvsR6/nD4tXjI4e8YsEKmS1iPR4TfGZ/WrMBANClq4gLMJvFq8IE070sP+nEVa6pkGQZZ/nOw3FlF2J8CfDvLcImPhxOszCcd2VkBpfGkc8nzgVHUBSX5NG64n2vVxyTm8KVufhSUEiMFuW/1VSLPnW7xbjp0kVMo84ha/2wXvSJT8m5E+cmTk6rFmLXo8SocfQAT/Hl+wy3nzMGmUmvra0FAOSS66ydTIZYD+r1iPZpiWkfHonjxjXrMb3vQbjjh9U4maaK5+pFkU2ra2yI9FvQ9PelOJb0Q3XrtEet1SgdaExBa7PI9vVvi6b6oyVd2L7XnrdNf/ZHP8o3N0Za6o9G28n+D7sf/oZ+a8SCMfsnH1jjeH9CfdhS8ZeBbta1AIDQjTdj4kUT8fXX3+CGW+bC6/Xi/DPOx6GDDofJYMR7n/wHn339uZg+WFiEwX0HKuxWNvR6PR64dQGe/vdzWLj4GdQ3NMDpcKB3j544bPiINrXPYbfjjutvxqKXX8Tji55CLBZDeVk5JpwtfjhJkoQHbr8LCxc/i0VL/o2q6mrYbDb07NYt46EOAE44+hhYzGbcdv89CIXCGD54CK6e3LwOpDnce9ttmHPrrZg5Zw4cDgfOO/0MhMJhvPDy0jZtZ8olE+Gw2y7+wC8AACAASURBVPDckpfw71dehc2Wg8H9+8PSBPvRHI45/Ag8uXgx9Ho9jj82M+PIYDBg0eNP4PGnn8I9jzyCuvo65Dnz0O/gg3HMkcKxsG+fPnhq8fN48933EAgEUFZaihlXTsGkiy5sdp/TL78UdlsOnl78Il586RXYbDYMGzyoWf1PnjMX776+BHcseABzb7sLXq8XhQX5GDSgP3r16N7qY/290GzfAef5E1F3xOFYXt4B5aEwTMkEls+dg9Xjx+G6+t04xe9ueUPNQAqGkDt1LsKdy/CTcRNykhbctuFCaJqdHqXij0aveD5WVDyP48ouwNkdEnhpe/PjWoXA4LoGzFvzE/45oC+eTpwERzKB5Xhrr+usoB+fKsOlQoWKPwvSX3nObVNIstBCRSPwuU40mrPeNjTvcsMVJZ7q03TultTCmMsek2P1OnwkywidcAIAoOqRJwAAfpeo2Pq9oopdXSFcCLkCytVsO+UXsXtcjAwkmIXhqUoGYofi8bTBRJz0ETLpEDSKE534nB3AggHKjKEKfUlZEQAoboZRmi7HrIXZnOkAFgmy0xdw7PjTcMwRR2Hm1OmKLoK3wzlVrH9QuirFFX/RjlzSK5lyhCZKT05hoYBgYXbXCMeyfKpuJ8gdkVkWKzEM3FdMvqSnJPL+Inv8BcSi5EZIDIeBNFmKnoSyqHgMRSN0LlLcL6aMfhKfiW3K5A7IVTOZTEVkqsyzloXbyMfC77OuiPetpT5hcxI5Fc/oC4kYosbuTXJGu8LEzrBWxUTMkJK1o/Rt9jx3KgBs2wLDig9RL2uwXm+AFItj6LPP4ePpV2L61dfgstoKnO+qQZzOhdEg+lRD+VwTiqcCABZX3ie2RxqvsEeEgQcatou+dYqKv81SDvvEaQh3KMaJz1SjMGDCbesvgsEkxoLFKYwGZH36gVRL+0wSY1lNTnbcp0WkjwzQtNjNGzcBADz1PH7FeS8pFdNrjWZxTaZkYrhoO3zueBwZTTR+KMuJ7y18zWtJgKAnh0fQOYkR4ybTOWT2hqcp1tez+5/YXq6TDFbixFIqFxbna9F6bjHeS8sF62Ml1qdwypUAgE+niILQD9//CADoRhmBXbuJPDK9QbTDYhfr8X1AYT21OqzX1uG44nMxODwOL2w9H4wYXVNByk0jiSmi5ADK9ybOWPcRs8T5VbE43/fFvpgxipADostFGr6E2E7P3jQOZA31mWC8NtC5ZU0Vu2QWl4iohFBQ9FFtnbjHFOYLhspLmjMT0ZxmMvfhc15VWUV/s6uh0Any9G8OwDbRmHDmibHkcFjxldOBq/vOxsF+P971/VusT4Y+ctYU9NPouN/IsvVn/L6craYhSdnfha1jin4rGn8H/zFobXt/6+/MfcH0tTVrLH2GMjVbyuctHEoyq895+eY0W81tr637bWn5NPPWtNthi/lge9FsNWK2lOFOy/HL78qy+/2Qs7+E/8x9768dq1DRWlwci2PfTAhRoeLAgrx5MxxnT0BgZwXeDccRdzVA9njwym23YsXEi/HPqp0431Wzz/YnBcOwT5yGSJdynPhMNUoSRbht/UUqo3UAoVc8HyuqXsQ3xtdwbvtF+7s5fwkMc7lREomibh9NHVShQoWKfQl1GuHfCC1Wl7KqEW0vPvy+Klpz7TsqHofWoEeCKrNcqWWXNtZbOPNEBTUcCvIGqVVSxvusIdDqxXoej6gU19eLaVk5trTFO2fG6Ij9CBGjFCFGxlUvqsHshJdfkE9tIvaBys8G0lvEoszkgLYXobaJV2HlLkGSJMiyrEx309OPCHa+a3CJKrGBKuVcOWUNSZzYlN3VQsdgNIj1zXTsJWXF1G7xfsAfoD4lLQIVgJjtY+ewGGVIsR2hRqNBPB5HjMJzmd3k/SMchizLihNadkWLq9r8qtVlWuAD6cR7ZiUkakuSGNoUv69h974wtYXZSNFW1rzESGMVCxLbSJV0idwFEylm0FIZ+0nb89OxEokeJjYzkeD9g9YjzdavG2D58iul8liv0WOTyQRtPIkRzzyDV2fNwj+unIYpO7Zi1O5qxGMR5AMYvHY1AKA6KM41uygm9YJhMBILeFHDeOoH0a6wR2RBhd1CN6Vn5jYBFFxzN6LdOuPEp3ahLF6Me6pnI2IX6zX4iUGMkhunnDajiCXEuJPpvBuoKwykuwl4BOsQoJgAJ2c7GcWCOeTCl1skGF+NnhlMYp5kHh+ZbCKzEjKNb2ado3FmJYmJtYtrliRdSJDrIS+v0zCDJGB0sIEN64bEX3HK+4r6SRMWFPeEZFycA0cOXUck8dLRmEt1EgxWYbFgY3KIuYqTA2aAHC23bhHOfCXk6llUIpY30gY1dK/qmcjFexXP4/iyC3B+Zw3eqLtMabzRKMaxxyX6WqaD1vC3OfVBhBihEN1zTAaxD74E9eR0GiFdZZKuWZORGU1iDY1iOR2dS0euYL0dlK+lJyMZ5e5N54rZcYmYMXZJNJlZe0ZGLsSW6ukeGiEmup7yvYKU2aej4wyRg+suuncaDN3EdpJJJCQJ9ZVi3LNmy0Lso3LvaSFnqDGa/zytD8r+O81jtG1fbUXTs0f+LPzRM6Oa6q+26sSa03C19L6k9GnTTFCjvSqDIOMlvd30Dpper41o6cxnf67M0Ghmhd+igctmqlL05Zce/pl9ksp2MVSceDO312wn/oWhPmypUHGA4cPXl+OvMhl2V2UljhhzSrOfn3z8Cbj5X3P+xBYdWNBv/AXF/8fedQbIVZXt597pfWf7ZlNJDwkJ0qXLByoq0vEDURABEelNQJqAiCiiiELooPQiHSnCF6Q3QyiBFNK2t9np/X4/zvPeycxms7vJJrsJ8/7Izc7ce+57yj1zz/uc53lPOQ3RffeC4bAjZLHi1YoqjA1HYAFwz2+vwQff+iYuWb0Se7W3btA99o3uqv7Td51qmpZIoebsK5GZ1IhPf/MjLHH+HPcv+SMssEAWj2XbcAtdcKH6T3vPsJU5M1uNF9r+gQPqjsEh1cDjHScNW9lbo1VkMvjM78N/PR7Mi8VG2p2yla1sZTOtvNj6ClvfPcDCe1CHvET4B73P1ig5ln4+gD/9RFBezOeRRQFh0Er2vct1DkZgNe5XF2QCzF+UlesZaZWoeYBRaOH2CO8JAKKUFK6tUfv/rTZ1biyqIuAOKmMJ/0AQnTZyogRF8/skSbG6dyatfOroVQpcNvLJJElxhhwvi6m+JtFndV1NrYqIp4jSNK1RfIcxDvJy/PaiNogQcUin1EtIwzgVWc9SUU8QLt2M6hHVkVWfGQ6THFzKj4aGsXji/vvN86UvBFFwOt0KNeDnwheUPhbVOYnOF/hSME04UmLCE8oRZTP04n5NJiQHmdxLVNP4N1GPDHOBWU1UjVwsTovZvIq893arF2ivn2qHTnWeiZZ88iU8CxeaqGW73YlVHg8c6TT2vutO3HPJr/DR/vsjnc/joalTccpnn2FmczOcDid2AjDnnfcAAG0cfxny4JxEIqRPUoRfkqLwyHxIbo8akx4/x06GyJ5G3lIsg8YL5yM1qREdZx2GtJ6AzbDC6VQcLRCVDIUU6uIPCLIlPCcg1E2+DNEQqy79rK4VDlQbkVRBigTpra5XHCebi1xA9k08LoiZ6jvhDwUEqbIWcr4BQLRHodAp5lyqqFTPlW4RNUxlVvLNLBaZC8zEcMoPc3yxzwWptak+txPdsUWVv92hZeq+RFViYYV42WyqjwTNTDI/VmWln0f1nHrJuZT2yrM+K5YqPp2VyPOE8aqdZC6bknbimeStOHD8idi/Bjg8egbG2Zz4VjwOG1FnS575AVlFQaddzD2o8e8q+iQIkyC4BMeRzwoyK9xW8uj43MRj6rmpZZ8GON7S5JJlyR0znKqNe7pD/Jzls8+7OtXnbiJcouQoHMwqcq1CIXLT+Hkd5zwL+zBtlqvGezAPzIglcNrUqbj5s6WwtTQp/4lcW/k8Gf2IJfVv6/vdK0E/NhLpGbyiXH+/tVs2FNAfAri+d49NnvurGJwxfwr75LUSf0pQzg1V+RuQo2U61k/byH2HdNeh2aDrVIp0mR+XtF0pUjZKuF7DYeXFVtlGvd3ldCAz8GllGwGz22zYbtttzcWW8E9l4SoS4VurORYuwrizz0PvXnvCmjfQbbdjYW0tGkI9sBrAX677Az7Yew8AQN4wcNZ//4s9KBoxXPZaxbsAgG/l9+7znZ5IofHSe5AZV4vO845B0prFxXV/xt6xHYfVh7JtOpuZrsSzq27FEeNOwL0+Dd2WK/CtVatG2q1RaZWZLL7e24l/VQUxr7NlpN0pW9nKVjYA5cXWV8Ly5j5aRo1K9sma55Wq5GBo0YTB5hAZrAknK2vkAZsNkV12AwDEIuRNJVRE08XQbIxqV6uY5NYXUJFXN5XQDEbP7U4V4fT5JPqtHoMIeUsd7R2mD5mkcC7Iy2FkOsGIvPB2JEJvJw9B+DrhXlVmNlMcsYtGlK8WRl3tDuWL5MRpprKi06HKESTLVEPkMRpmzhuiOoIAZHJqsZNMKb+T5KLYGPEX/lp7u0IiJDRvcs58Pn6sPhc+kk3yI8WZj4goi/A33FRXJAXHTBCt66KExii88EcYupIE1eKnqCACgMujIvE21lH6Xa5JpEXJTo2DJCPwIXI+UklVVt3SL+BpWgMXuSdutr3wzzRyvyRCn6dSXS90dPi8JhLqIGfGl81i9/m34O5rr8MXe+6FrkgUj86ZhZ+++h/4Vq6G3x/APABz/qMWQ3YiETrRy2SCC1JyxwR90XVR/lP+eYVDKOqKKVVOjFzDO7Z9DACwx0q1qHPl/fC+uABI9sL34htIj69H+9lHwhasxykTL0etNhZ/iF4NcCz4gqo9phHNcQjysZYqp11yiwkyw2c5IzsQLeQsNowFAHRTOS5P9E+3qu9jTFCd47gSOp4gwqGQ5IKy8OjlecJLUuNP1A0lv1yWPE55frxU4XQIumOGeem/IKjsc1gdReVruiDDdtZLXdferNC/ZcvUYmcqz5v0q18DAFaf/0sABQU+GSvCdauqqmS5qv7Ll6t2av5CPe85jr3JUxUHTHKCzUoG8Mrym3HIhBOR0qzQtB+holKNC8l1luC4F2XHAmpIpJLzpJWwnkY+mTw3kistZwiqrXzp4ByR4pxh5XyZdgjfjuUSjfNwXm1pVcIuiaSaA73Mw9XWLknKlR+Vleq+9Q2KR9fWpu7X1amOsntAxoQom7q5S8CgSukP2o4AACz2AN02C8JEpD2cy3xUL4S9gNhuuJUiWf399pWiLsXX92f9oTUD5fXaXCqEg7WhctX6Vzruny/U3+f9cbEG9K2Eh9df1/aLwvVzXn9mojcDIVml5QwSMRsqGtTHj3WUbxTgu7Vd6beQfttaNs4YxecVyil5V+WxNDflloB4lRdbZdtiLMR8VUiWca6yDc0aX38NMx/8Bzq+tqMpEy7blgoTNReW3E5lzxjocDnRXFOD2lVd5sJAhDIsVgv+eMt8fLiL4kwldA1nvfYmpq9cvZlq1df0WAxjzr0EebcT6fogYrt/DT2H7wroOlbb27DEsQYPt90NK6yj5HWsbIO12lw1Hlh1G/aafAoOrU/h0dYyh2tt26NX5UV052M4a9oE7OfzYTZl8te2hxkgQlm5sGxlK9tmsvJi66tkJcjWOk4o+mu4owVaSRRkoIhMlmHznEQxGLQTBMvhlLxY6rwYSdEpcl4qLMxxRX6Hzc4od8l90+T+iBKe5IsBgARRh/YOFYEWXoTDLqiIcirJKHJVtYpcg0hQW5uK7uazwu0gWsJcYGYergTVDXKqLsK7SSbUwrJC8vIQOcqRa5Vk3bJZVecUletiEckFpbFOSgXO4xWehTo/z0h6kshAtlLQFXKpbMpfUX0juGTmJpO20zSBODjGGP0WdTjhmuXpp3SB8D3CvTEEXluAxKo1AIAE0SsAWD5+LOJWq4kSSM4yUaeUWK6NqIS0cYIqgdVtrZj07NP4w003o3XSNsgK/43XCbIpio2CVnblNTwxd1uc/vSLsDe3meX5g6ovGsc3Yl8AO7z2lrrucwM1S+tgGFNUueSGRKMR3kfU3IS/p8xNtbVEMlXkv5zvqPAW+eljPVPJJKINUThnZvCN50PwtT+LqmefQWbOTPRcfA7SEYW+5BIdqrKuAFxwwWZXyoCCKmrktLmJIokiXmdXp+ljNBRi23C889m02hVq4PKoo0NU9ch9EuU84SrGY9L/5FKJiiY5WjVEVq180IysIFBi8nxQOTInaJ86LxZRaKaDOfZEaUaQJeENCadQxrXVpc4X3p7F5GEoP71UJRV8Np4pzpsnJqqaggSnUur57OpWV9oFRSJH0m4XdUP1XDatUQhXFfOW1VQXxoqOPCbk6/Hsivn49oSTcGhtDg+t+aGJVrvcnEsyqg0kZG7leBEuYirFXGQJaTPJT6e+93uUj3m2em+v6jOZMwzJMci50eVWH0j+LEHQqqtVHWQedzPnHkUSYRGeHKMYorjq4s6DmuoaAIVcay6X1FN9n8nweWFf9RAJm5PO49LP8zhru7n440efwS9oZ1D5YzEVXNePoqzv96+AIInpA1wztN/S/nzoH+Hqj8M1uPtsqA0lN9Nw20D9tD4VvfWdX/igz3/kxuv0Y0NtqO9FI2Vr+yX/K7CpixGoPrnETBSu+LnRSp6bPnUvUQ41ETVT5bD4+tKceqPJyoutsm0xZlutyORw+UfWkbINrxkGxvz1JvjffgudE1UiVQ+3EX5ZVYnw6hyqkimTKJ/j9qbS/OXCF5N52Ctb3iwWnHXXvWiePl39zRftvHmdbFkrfkFPZ3M4/4VXMKF54DxXvhUB7PjH3dA2oxk5S66oXG/Sx7+5qOlwS8XVfdIiq58tqpfOhYC7nVsudUnQS5GVjBvTHx6Dv9/TiaZxEbgDnyG0517InfrDQhZqWkrP4LKqP2G3xNcGrEvZRrfNTFfiuZXzceCEk3DkWODx9pNH2qVRYW/XKKGZ/VIHYK/uXly6eCnO3m4mblnxJeYyUFK2spWtbCNh5cXWVmxGSVRAIp1GSTSsIJpTGiXj50PkYpVGKQbai9yfmcgWXy5rfn8tAKDnmt8DKESre4g6CY9KUBfhV2WJnrg9xVFniYYLf0REHQTlAQq5t0QQb0ydirZKvinJFeMj4pQhOiGcI4kqZ4gg5YhcyQtznC8BFhMxUpHsCRPHAyiowEVjMcz73e5mZwkPY6I2GwCwcv+l6JrXhkDAC/+7Vai5UXFnpEslagxNQ/MfvjC5KbP+vgOcLfLyD1iJxugWHYndwkgcqxA4+xonKq4dY5ZXOibCFzUhN0G1ifveIOyvqSi7oE/ZbAa27meR9nbi9YPjyDCKvvOdQbh7X4cz+hlWzH4FmaTPvO7+H4bx96ODuOKZl9D4fiW2fXsegEI/FXJz6Hj/3DdhJ9do0vypcLd5oIU0WNI26LqGPRT4hN7GHoT8L8IdXgU9ZkXdqgazDrpFQ8aZgaEDaf+++PjrTXDEXdD1Kaj/fAz8a5R6nzW3FNb0+9D1JcofWwquXje+3Ol5dI/vxIxXZ2Ptxhfk1Wqzon1GCxKzieas9CLw3ypzTJhqboz+fbznR+o8jwvj354IV7TQTwCg6TosqXtQ13wQbjmnEkftfCjsqx0Y9wvV9/ksxwBy+Mj3JX6LXTEnORXhOxTiZXMRheXiTsa4IGvWtdZrVkKUESoghomKBCtVPweIvskiz8+/nXwWNZvkalKogsGtmmkiuPLciMpgVhAnQ9VZkC6NXMUM0clcrhhhFlVQQTnTLFfqJvnkOqkWmkwzV1+FGnfCG3KL30TkhGNYVauedz85iimqD5bOdfJ8e30qMMT4gPk8mCglFS7j5EP5yS9iyjeEugsS5qKC6bIDMxJ+/HPJH/H9qWfhkFodDzUdC8MgP4wKny4iScLHlHEYJfoXCVG1k845XcqnBLfZSQ4/nfnW/OQOJmLq+x4KvcgOg7yh2qiVipSiyCqqmsIhkz6Q4ImNqGaol7xSzlW19UqVMCYcTKKriYQgU6DfqvxHx/0TALD3Z/uoY68GbclKnDxtG9z8+RLszRyJF3E3wfX5UnSq2ArIybp+wPpTByz9vhQF4beDRHyGi49TigKNNvRkQ/KQDZUHNhCHa0NtoDYtzWulGev+fLD3Wccd1vp3MOev3/r4NUB+rnWcisKLgvkN/yxGZI1SRHaAe2glitlaCdIlO2j6cLlGAaervNgqW9m2AJv3u91H2oUNNyMP1/JzYI1+gJ6GOUh/pnLiAIA97EDK6sGSrz2DnC1oblPL5w3ktSjOvOdhBCiQMRRzdLvgbfIi5U0V/RhWLnsNY3suRTywF7SsBY74SvMa3dDhDGnIuJvha/srdl/+Apq2zUDTNfjaAnDGnNCz78KZOAo56z6ARlEFPY/u8Z2wpaKoWwLYKQ8uZpVtgSkdgTW95o+to8sBW8QDi3wvPxT84RizXG2ptNvtcIU6YE+WEPs1DanKA/HwIRNx5lXfR/wXYSRm9s0vFLekELMksdOkcQh/ZymA4RAIKNtI28xkAE9wwXVkI/DgmhNG2qVRZ3t19+J/2zrwRHUV9mZQ48tR8OJVtrKV7atl5cXWVmwDRq/626JsRh0GZwNGUIaaX6Jk/+2fVzVjr4APGreJubmnX7ZfCVcrySi23a5egjMkB3gDCi0KMueNRO6jjLBKFFpQHSMvalmAjxwnh1uVKdHicIviAXT3qOjuNlMn0XdLUZWrq1UEPB4XBT11b8ntJb6bCwLeV6LQkqdLfH737FcBADa7+ryyMmB+74MXdocDyT2iWLrTwqJyhTuTSKSAEOBkG3actQJAYcuag1FiQRKsGnNOjc+h86YvzS1uaTNCz/qmU/A89RqMRBJxB9CzVxafer3oTSQx4/X/IFDfgjPu/geWjx2Lqxe8AdnE9+/9FHLndr8OAPD6RS0xjf0AAHUwNCC6exTLg1/AHnIgxtxnbi7CfK0fYc49bWab650fwtVRj4+/9zGSwTi8Xiratbdhm+eewotnn4aeceNNIYwM21rTdcz7106Y/X9zAeMa5Fx7oXved5HLZdG+LZCPRjHv+aex4OSfoHn2diaHpKdbjQFZKNqICOQZCoyTY1hdr1DRCvaZ9K0grJEoeXxESQVhlfxdMrYSzCMm3JVbD/gjXj78Zdx1xN3ovKAFX175mmqIlBLqaJ6o49Rxv8WLX9yq+jTJvEN2oo+ZfFH5EY7J7s4CZ8sqSpDsd5vklyNKINyjUK9SgLOQ/+bxFo/ffF7VRcRGPB5VB1GW1IlQedg2NsmJxPNdbvW5g+NXVAhzfNb9fn+RPyb3C0XFIJtWaMryL9WCtqNToTB2izqz1xRPEQRKzSHCOxLEOmen2iLPl9xRtrz6XlQR+Z6PfE6ea3Wdw6XOSzL/nc8rSpAKzenpLqROqKCSoYu5yrRsHLNSATz6ye9w2Lbn4TtjcvjfthNRX12BvaMxBHm+IMFmPi3DwxL5bOfIfWLfCo/S5eScROTLZhc1TeV7kiqDklNN0MRQjxrHoVAvy1H3r6xUyLDkFJT51kZ1wNWrW9hG6vwpM9ScKihjOKQQOTvP98puAlMhU8ax8sfFuduXM9Br1RHpIe+wrg5Dsb78LGBttgrP6uda0KehIzfr96mPZNx6zx8uXtPG2obeb+3zB8qrtamV6QaNJvbzuakOzb/lt7e0/AFRzdL/DbLaQ+2DDRsZ60Z2UYJsDZ5rKLy29V9XUNwWznrJ7SwD3GYTWnmxVbaylW3jLJtF7SWXwb5iBdLjJ8AAsMTtRs5qRV0qjZV1tbjluuug2+24esEb8GSzxXvUBmETn52MSc9NQWhatymQYbPb4G77B3yrr0c68HXIjJo38uiaEkJFUwZoAhx8Ocsaebxz7kXoqQiu+yYa8N9vvQtjbB6xut3hXbUcdR8vLMjfZ3N47egfo2v2dhvUTJvKrnn3CgBA++VNCN5Wg66dC9+ltQyurbsfX4vPGCHvvhrWe+QRI3bv6Uk/Hv3kOhwz81zc0aAjabsSB/WGcUZz+xae4rZsZStb2bYOKy+2tkIzuVoiINBPFKw0NrCp1Af7ywcxUISqEPl0QIMGQxS+mCg3Rg5AmtHtJCP+PvIe/EGFIAQq1d5/iYC2tao8Wr3MU9Q4dgwAIBhktN5d2LYWoApZxtzipQ4uD3MSJSS6qxYPUebjEr6Z8Akkp5eoD2okZUSj6ntRujOVuzzFIgqCIAVZF2k7QcCEX+Em2iH6CNJWItYg4hLCEalgtNnMj6ULEmDQH4VEGEQOYqEQfG++iURPL5YEAkgD2O6FF9CeSuHBO+6E4fHitZpqtFlsuPqNtxFmvqWfvPGOqofbgyQAp9uNyoU18HVV0n8HvCvfhtfC+601FCyrrfB/HsGywx5A1peBwbo7Vq9C8IuX8dIVFyFWVw+bVQQk1Pd+oofS5t1dCnWxdqpjIklZaBNJVdev3PNLAEDn1G9ixX7fNHNLeQKqnCpGIkOdKnIviz+JtAv6IoqM0oYR5oeLRdU4dVK9TRPhDHIKhY8njWBlveS6ZKw4x1s1eYTw56AZQDqh6uVwOXHOtrfCrVfh992Xw/2gUmNLHdvMluXYEj6foe7TG1J+trYUki9XcZzozEc1ZoLiFAaorGhlm/g08sCY+0jUK0X9T8hIkv9KUAor82UliFoKii1H6dM820KXuY2LdotGFDAVYRtKDj2O+1wxeldVqxRHfUH1PMncIYp8UW4FTfP56e5Qc0aM/CQnc1KJf/l99lb3I7KX45gwcpIDjn3LesrMl6M6YrBC9c3a22iBYlSlpUkhP7queIbBSvLBsl2YnQng2UW/wXEzzsFB0TRe8l+DZ/0+zEil0JBK44KWNtiIzhumIIxqe4uuyhEeajSi5gbpO4tFnRfnuBMVy2hEOFjqfI9bjYWxDco/FdHHpAAAIABJREFUN5Gw9g41jlJE2BrGUO1VE56F6sMs55iKQJBtRI4a/TYFcojApTKiyErBG/ZxNqV2EaSJ0EbsFkQNN7rJ7c1PWz9/aXCR/3XzvfpesmkRowLXaeOuH6ptMB9oEyJoAyk3DjeKV8rTLG2RgphhiV8yt5UWaCr5FX9Qquw3GkzvgzT1Y32IXus/XytBjEvz0hlaMXpdWl6hj4u/HQ07h8uLrbKNevtdXRVSo+FpGUFr+vbykXYByGQw/tLLYG1rx4opU+C2WlGVyWLxpG1w2yW/Qtrlgq5pqEhncPrbH8CVyyG9rnIMYMp9M1H7VgNCjeoFKNByA1wdDyMX2KHP6XnkEZkWRfAzKY0LTV3HWxdehhhfmL/Kpid1BP9ah9ScwhbYpZ5mfOFpwltr/gYbrHC9rhZChcVW2bYmq8lW4pYvrsEhs0/GvvHL8aQvgC+5uLujphqrli79SiJdU3sj+MeUSTi8owPTon05jWUrW9nKtqmtvNgqm2nDvfe5oIK4YZEZifqusOgwtIJqoKA52YwgCgpJsEC9TEreFpOnFFN7/UVaW6LsJueLP8DCr3DwBUWdo3xoY3TWTl6CNI2PCl1StpSlUf6st1fdW1TW5PNg0EcfmSuM6EchT0+O1yv0xLK7iur+/sa/YMny5Xjs7ruLzhNESng+MUahHTbhZVB1LSBIFlXkqohYSESf6E+ouRXed99FPBHHFz4/8oaBuU8+gZa8gVOeeRY9ugWe//0Bmpub8etzf4njX3xFlcP6pS1WtdAygJpPG6DFgcCa96GnV6GiqQqB9jex5JBPkHGkUbnkc6BlEV770xVwbzNB+ekvyPu3NKvcQ3G2rdOtUIsI8+cIGqgx+iVcKlFZE/RBkFKTB8dI+q9v+C18Xi8uPP08AMAD/3wYz7z0PO684W9FdfJ4VJsJfy/WGytqeyk/STU3aVO7U/UdU6OZY6CAYBHNdCq/bcwR5dYUStnTrcZQPC4oqsZ6qPF9+/S7cPaPzkOuKoXus1cis1qdr1sd8OXc0NNZ5JCFqQhlVdflyJ+yM0+TkVf3dZKPFaxUYxQAPMyl5CMC4ybiK9woeYvPxsiDE7VOKtFJDjtR3xPOk5io7+n8RUoKjy2sxnEFfREETeYmKTcriqJJyeNFxMxGZIx9ZKO/Fh5twsEiyiOKphXcahrV5PlV5cpY6yFyFQyq8/xvvavqPW8OAKCto4cVolIfeVHS5YKeh8Nh+sucavQjyTxzwrcCCoi8LkqGFSpNgt3Nfoq0oSbrQELPYaUOfLLkYwTyeSz3VGCvseMxfsoUHB6PYb9wBN+LxZBLSo4yLtDpnOwM0CTHmF8ddavyqb1FcfnkORNlRskNaKNipNdH/lm+oqj8jHDD+JxUciz5OScFK2t4uoVtQZVT7hLI6urvOPtA+LDyuxAimp5mX21vseLsjxfjjLmz8ZePPjHRQlHlHYjPtLZtcM6mYUYnhqreN9yI0kB5wMSGqhg4mHJKzx1s/w03orWhNlAuqAIrqVTBb2jWrzriCChRliJUAytc9/sNj8UoZf/P2+gJL5UXW2XbYmzNqWeNtAtfDUunMfHii2Dp6cH7kybCb7HAkc1h4bRpuOnCC1GRz+PY51/EnQPN2QYw54EdUbuoAVr+XDjDLyLjmom8nkdkfBh1H+ZhGEDO4cB7v7oC6UAA7gGK3By2/z77Yaft+yJso9W8n/jhafOh408rRpQA/FU29z/+AQDomvfbEfXDlXdANxrhzl2FQP5YAMCUbAYL1qzCXmPH4xG3Bx3Q8L3Y1ofwnPXEz9R/avp+t3drB5qqKvBYQz32lQXsWkG1spWtbGXblFZebG2FVohcrP9tWC+JDgw178OmMvEnwrwq+QqFcthmqqS0GtWyJFqdJ/qUNBR3QCKmdkaJ01FBGtSbaHW1irSKepaZw4f1F3QJKKBfubSKTMdZtnCuzNw1VJyTqJWIMkiEOsUobIJcqXRaRZO9VMzqpYJXLEbFL4n8Mwob/EC9QeTzeRiGYebxEvVAUayLCN+C6IeNamkRIl0VNaotneQX2Yg8pLq7YH/rLcSbWuF66kmscblw0oMPIpfXcPb/vQk9m4UG4Jw3P1B+WmzQdTWCGpeMh90gIpfJoKJpIfRsGlUrauEPfYiemefAt/JzvHT5JYiQdyHKYYIuue02IBGHHqLfa70IGYbURX1ms4hqZDFHw8irz9O81mIn5498NrtT+ZjtIsdjLb6DrmsmQmq316ChtgbNa5pUWxKJ8leqcSPIVYy8HhuV98TnWEihGjr7yORw2YsfMOHXieKljClR5rNLfiLyhmQM1XD81jcqlMmatyBSFYYrHwbygJ7nizRpJaLuJpw0u4tvoxa2MfMyaewbUb1z6FnTV0EDrPbiHEfmHnnh0bmKESVdeHQGuVUWURcsUbrjM2cjUpyKqzqn+fwIqq2LkpdwtiQBtFW1sdOj6iTqhHFysYQXJ+qIJpRGjoBuY1toRJTY1gRX4Cdfz06uWZbXCSdSEGZBLV0OImZs2wxvl0qq59PFseh2qPaIx8lV5E+ycNnWjoKng6o/BL3LMNeZs1JQ4DzsAB768CIcsf1v8IO6LO76fB84/Y3YBkDTUoWiWaxuwKJB43Mhiqg93Wrc2nRBZJWPcea5knE8boLiuEpuQDvLCXUrpFnyG3rYl7VONd6yWdUI3V2yS4BKpmAuPqJ/CT7PGvu0nUnF3URXRYFV5m+vV5Bi5Y/0eZIqm/VjxwEAqvJ59FgsOJ6IOGoGu9haG4kYqupfqfpaqZX+Vq8f9RiqCuGWaptCUXDIKnyDPa+Ek64PE5oyVNRwwHynI5BjzWwb8cnc7CQ+lXC0OBcU4D35XgoqaVvhfZpVKuHDCT9uFNBQyoutspVtC7C6J5mglkJ6Ly9YgBtuvhlNra2YM3MmLrvgAkyZNAkAcP9jj+LlBa9iVVMTHA4H5syciVNPOBFjxzSa5b3z7rv47XXX4bPFiwEAkwwDv6ysxITpM/D59tvjmsnboPuQQ5D8fDGON4CJ4ybg2COOxrbTpxecMgBPtw87PPJ1xKujgJGHr/liOKP/QcYxBXlrDvHxMeh5N94690LE7Q7ceu8deP29t6HrOvbZbQ8E/RW497EH8c/b7wGgEqredt+9WPjpJ2hrb0dlsBI7zN0eJxzzYzjWWgTve+iBOP6oHyIU7sVLC16BpmnY9Ws74tjDflDUbv9d9BFuPvcOrFi1CpMnTsS5p56OMy/+JQ78xgH4/jcPWmdb//2RB/H0C8/h+kuvBgCk0ik8/MwT+GLFMnR0diJYEcBO2++I733jAHNL4khay4QWjP98AmL/MRDfo3uk3SnbCNusmBsPc8F13HTggZZjRtqlspWtbGX7Slt5sbUVmYlQmUf1eb8xtSFGeIaNwzXQeYyDpBihzPt8MAwDwQfuAwB0HHokgLW4VfQrJPwmiVpLlJkRWQ/5GTYiHmk3o8mMrsfCCkmLrRVt0RjldTACLbwgj0/U+9S9RSnOVCskr0eiwhLQzxvqnm5G4CXPUD5HpIrRZDsRqViMkXaiJKlUCk0tLbj2T3/GT489FtU11bhx/nycdOaZeO6hRxAIBNEbieD4Hx6DxoZ6RKNx3Pfoozjl3LPxzMOPwOGyIxKN4scnnIBvzpmDM078KbQXXsTCXA6Xn3giag87HOf95y3s9NijCM7dAYHd90M2l8Urry/AJddegVuvuxGzureFz7ENGpfYEUknsPyYG5DIRTHmvfdgia3GU+f9HDnySLw+FXXPZbO444F78epbr+Pogw5FfU0t/u/tN/DGe0qlUFQbw7EI8vk8fnjYEQj4/ejo6sIDjz+GK3//G/zmwktUWxD5eerF5zBnxiyce8ppWLF6Fe5++H7UVdfimCPUgisSjuDCq67AnJmz8JuLL0V7Rwcu++1vFFqpATZrccTa4yUiZtEArYDmJOMJ5HJZHP7tg+Dz+tDR04Un//UMlq/4EueefLo5zsIRhRxYGemX8S6ojfCXksmEeU8AsHN8Jol6ClqayyrEIZdWY8AqKEuFGns1NSrC397Ygl89dD6uP+wGrDz3ddjmCVqjA5pm8pME3REkS/w2I7Is3yo8LGvh50GTRFFmFJdy+ER0TN4cn0VTTVMQHXKwNJPfVqwAKfw1mSFkDfulswOrbU1Y4WzCKutqE9EycQCtIPcPFBTpNE3DiT3HotpQyncZtiGofKeBN+D1giTl2ReCHPuoaCr8Jcm7JY1lJf9NEy6ZRXiBqv4x8omE7xeskrQDkjtN1BnV2JCJQtoxlSxwtuIJpUZoM3ld6jnw5Ii6eahoWJ3HDgAe//TXOGTWpThEj+AXzWPgjNkxLzINDl8D78X8c0T1rMzdF+E86reIYmSxSmaMCqw27hQQrmt1japbuDdaVCdBr3t71fwqPFGPU1BS9X1nt7pvR3sH/SEyze+dJfkV26kQGSAP9c6vPwAAOOyFg9V5UfIGA0wyTv+Xsj13HOTv2tq/W/0p3G1qK/3tHOg3ecMUFgd///5Qk4GuK71+Y3zZXO8jg857ZXJwN8qtgcsvsUH7VfL3QNet7/tBt30/RWxo3xWuK3keRMWVH4sKrcmLLiNbZSvb4M39lkp8Cy62vqrWGw7j2ksuw5xZs1BVU4VtZ8zAAYceisefeQZHfv9QXHD6WXC5RSY5jz122QU77b8//r1gAY466gis+PxzRKJR3NTVhZULP8In3/gG3rj0UuycTuOIV/4Di2Hgfw8+HIDalpjP5zG2rhGrmlbh4+u/wGGZo2BP/RzW3veQt+cw7qUnkctmkQoE8PJJP0PG6eqzGSYSjeKl117FUd89GN/d7wBkMhlsN2MWLvjtlehGj3lehT+A0396krnFL5fLoaGmFmdffgnaOztQW10gZNRWVeP0n5wMm82GHebMw8eLP8NbH75nLrYefOIxOB0O/P6Kq+B0OJDJZOBxu3HZ764ZUnv7vF4ce/CR8FA4IJ3NoraqGr/+47Xo6ulGVbBySOVtCvtsp0+x+rS3UX//dlg276N1npMbv05tyFFrrzhfw4lVpyGmx5HRsgNfUGK3Vd6Df3/xLCZkxm0C70a/bZvw4vFPf40jZz6ASyd+ijS+wBFt++Hs0C9G2rVNYi2e1kGddzlFTZ7elM6UrWxlK9taVl5sbU0mi31zA6twsdYdySjdW6yVRCEGyu8wYKRFELb1lrKOciHRZhXJ3LU3gg+qgub9LFR5k+hFVb16AW9vU3v7Rfkvyyi3nZwanbl6hDcifCmJYpsRfr2gMiB8BsmhJHl4BGUw+BIYIK/M6SQ/h00jfwsCYMgeY6IXCSrMOXiel2pt0hk+fzE/wWKxIFhRgV12UgIO2WwWdTU1mDltGhZ+vAhHHXI4Fn68CDfdfgs+WbzYRPsAoOPDD+CaNhUzb/orPBYLZkyahHFHHomrvB6c/eRzAICeHoXOtLZ14MlHn8enzYsRShbKWOV+B71zD4Y70o322TsivmY1Prz4MiSFv5RMwYaCMp/whda0rkE6k8FOc+dB0wtIxA5z52FNazNsRBZsDhv+9e9/48F/PoY1LS0mPwoAmtpaUVdXhwTzVW07fQaSqTh0q2qzsQ2NWLbyS0SY62jRp59g3razEQ6FEQbgdDuxw9x5qt0yORN1zOfzyGXzpsqfoJWm8p1Vw+vvvYMX//N/aGlvMzlVAJBIxeH1Nhb1sYeqajFyQ/KifslrMiTouz2M3HMwJU1ek3BlVD1Fuc7tUxL3tQ21LEk4PGq8R5wtqM5OgzvAxZ/RCsAwn8P45W2sH9XhUBwlFIQ3GlF92dTUZtazWngyLuFIKZ81yX9F3mRBOYtIEbfgR6kkKc+sKC46rMXKjIJ8vex6BUfWnIBjo0fiWddLuL3nr9gjvRuyaWl7zml8VgVxyuVV2+ayaYyfPAvfmHYgTuo5Hg7Y8OPeoxE01HMMSVRNnpDwiRycK5xsczPvHNvQVLikv8IB01kv4WaZSbuzRNeZ681Nhb4sOZtJUS/l8yLzRZpqjmtHLSSvlkyoMj70bnVSTW0N71Wn6ub0YicAr305HUeOm4l9ez/CIw0/QLvzHvzmy0OQyqp+NmzMS8i5R5J4u4m62xzkxPJ5cdolPxf7Pis5p6QP1TFMzq3wMoQTVuck5xK2ous1qrvYiQQHiJg5HczDxd+1CPN6eT3k6TkklxpzDgq3k9cVeG8aCFmr+5f8PvUf+y7k1OobKB+IazU4/vRQrTTCPxBIM1REa6iI1Ego3A3kw0DoyXApKfbxYzODKBuqSDlUtHPt+/RDnep7jXnUij8wTyjOV9dXebE/H4XzKw6JHyM/Dvuz9bMxy1a2UWCHtbTBlh+9D9HmtmBFRZ/PKiuC6OjqQnNrK0488zQYhoErL74ID991J5644zbUWq3Iv/46mm+9Fa/vuismPfMMXKkUPjv5ZBxy9DG46oY/oLWjHQCQjKfwpxtuQXxVEtcbk/GKpQGvO+Ziju5G3PIRDKuGjy6+rMCQH4TJos/Pl04xv89X9PeCN9/A1X/8A2ZNn4HLzr0AN117Ha655DIAha2UYp4SvpTVYjEXzgDQEwoh4PMXnWO3283tfIO19xctxK3334tp20zBOSediusuuxoXnXHuOn0aCdu1cy527Zw70m4Mqy2xLUdVLohV1ibc2fUX7JHebUjXa9CwatmncOTtmB+8EzcG52PHiftgqW0U5KvbzFaXy+Ch1Z+h1T4Rjeln8HDtazh65r9G2q2yla1sZfvKWBnZ2oqsD2fLDH4NDzerP1Wb/vYE50sQrsGaXG93kUNjswJaIXos/IowVd/CVPITJCJPFEgitHHmzslxwRbXVDRbouxm0EUTPklBiMG+ligDUFA5SzPCLmplwsuxUMFNeAUd7SonTYQR7CrybCRnTI7om4com8fjoS+qXOGlCTrncNjRG+6FxohQmIuY7lAPpkyahLfffwvJVBK3Xvc7VCz/EvFkGq5b56M7l8PDRx+NNVdehetaWjGvowO44kqsWrkSHy5ahJvvvBN/umE+rj/oaoSe+AAtmVbcO70a21pyeP3kK1AxthYdp5yEim0m4/Mzz0JnSxsS8Tgy6TRaVq8xOTregFo8SV/lmVOntlrxSTq6w7DZ3KZSWJgoigyRV/7zOmZOn47zzzzHbPN3P3hftYHdAafLgxxRiGQqjXAkhmi0gDQBhX4NBgLoDYfXaks7Uuk0kqkk14mqr6xWC2w2a1G2eQ2Ai330/scLMWXiJJx+wgkAgEwO+Hhxgv2cglVQHt4oyfGWJufQwrGREP4OUdLKSoVAWUU5kn57iJIKPynHtgoG1SJb+D+ZtBpTRzV9XbW92w2LxQK7R5I8twIGkM9QkU/qJ1FBs74SJSRqxb/9gcJC1SYIVjbJI9X2+KxIvjiZEyQvVYIqezZrMT9HeHc2TV0naIig8D/t/RF+2vsj02dd0GmrqE+RT5fI0md1nijoZXIZABoWL1Zjx+l2o2HiZOw+9kCcEToFTsOBIyOHoiquxmWYKGSQipM2cz0ufUuUxFLc1zLJdt92m6p3a2tRe/jJJ7I7ittHLrcShbFI7jOio6FuhQrl+PwAQHW1mjuiRHYj4R62nSozyHxVVhvROMh8FkAjgLt6QgAsWNR2Mw6c9DMctV0S32nfEd4M8N32WlipTmmqtJLLlWceOKdT+WInmhel8mmcSJODdRb0v4fzszzcwktN8vxUXHiuVA1sENVCdZ8wOV45E4WUuZI5AsmbLXB3iXxF1HUTtpkCAGgYqzhqdocD1rXn81JS8wbxS4S7JUVubFBw3RH80u83FVdsNCBUg7XhQuuG6/zRbkPhJq7r/A0Zc6WXDNykA91j/Yhrf8fRYGVkq2yj3lY7HFupwO2GWVd3D/778cfm363t7Vj8xReYPWsWkqkkdE1D4+lnIHjNNYjcfRcur65G1jBQmcvhupbWolRMDrsDu83dCT+2/hhNbc3Y9+93wdZ1KwBAdzrw+smnI2+z4ZPFi9Ha3r7BPk8cOx52mw0fLPqv+ZlhGHj/ow+LzkulU2biaLGXXn1lg+45bZvJ+PDjRUitlRj29XfeHnI5mUwaNmtxXGqB8AdHqeWQw/yGpzE5Ocb8zPuT8fD+ZPwIejVypkFDy4plcOfd+FPF33Bt8AbsMH4vLLEvHfjircxmpivw7Jc3o9m5EjdOvAOXzLgcx899AfnyLFu2spWtbJvEysjWVmRGSdRrIM6V+f0gf2OHul/bjOIOrvi+9+Ne+z+NH4O0ppuKMxL97WVuKzMKnCEvihHQZIqcHEZmBdmSqLigSMIvkgipvlY9XVTMyhLRkhB6Ps84RV5Uw9S9wr0qQi55tsJUOGxpUQuVzk51nDJlAuvCnGF8EisqFDKUpAqZxnhIy/V8KbxcQ7CiAhdfdQ1+dtxxsNvsmH/P3agMBnHYd7+DFSu/RC6bxbE9PVhy442wL/oY7Tf+GT6vF3M6OrFm2XK8+e47ePzpp7HL9jug0u1DzUNZ3N/1D+zms6Br7Ep0HnkOnNdcgTPTSRy0bDG6enrw8DNPoioYRC6XI88sB8CApgF2C8zotGHynnS2uUIwKit9OHC//fDYc0/C4XCgsb4Br7zxGhLJJDRNQ4wI19yZs3HTnbfiznvvxsxp0/H2++/ig4VqQaZpqvkFZbDoFhWF5701HYBWQD4P/+5BePqlF/DrP1yL7x/wLUQSCTz05OOqbwwNVr2AUui6bvKQnC4HNF1DLSPtc7edjdvu+wce+OdjmLbNZLz30SJ89OknHBc55PLMxZYrRjtEyU5yNiXIrap0CVpJFTgiEd6AglPc5KLEEyLIQS4Yt1wmEqq8bFyNtfaAGlNjA9Nhtdlgcfhw3phr0elI4J6m62ClMqSmWYqO5nPL9kynEryvGsuSbwsAtKz6TnhdGd47k2L+LSowOnhMkE+0fPlKAEDDGMUjqiL3y5ItjvNl+OyCXEY7kR7ZqioKjWHyfixW4QdR+VGXzfvihygqEulibr7PFr8LQKHuk7adjf2nHIRbmm5EpbMCU1NTTL5emnNHAbEuVmgUlVJTTZB9WVev1A81GZN8sE1WU0k+LidRygRRnji5jxZriYIkAH9AkCvJj6V8tFO1r7tToeh2zllup6BmbCv+3Gs2J2YZ9XhvybUAgEXpFThs7oU4anYCBzfNg1/341udtbBYZL5UPkv+Kgvzwwmi1tmu8mYFOHdVVatxk0yq+bW1lX7Zi/PR5Q1BS9Uc4feLwiuVxFj1pJkrjX6Q55rPqz5tbFScScmrWF2tkF0nc76JnxZdY//K7xLbZaPWmMW7STbeBodsbek2WE7YsCjibaAvw23DpaI4kA02v9bGcLgG+8wYfTiLpaTHEvSsJC9d4Z1WSsmv87w+/g3Ovc1q5cVW2bYYy477akblS62xvh7HHnkkbrr9drS0t2Pm1Km4/qorkTcMTLj5Vvxszz1w2+o1yB11FGZNnow/XP0bnHPxRYXrG8ZA0zT8/dGHEAmFUAMd+3ndOG3qDLx29HHwW204/5TTcddD9+Hav92Ihto6/Pz4n+CxZzZOv+vEo49GPJ7Gw089Dk3XsOcuu+Mbu++JZ15+wTznwP85AK3tbXj06SeRTqex49ztcdGZ5+C0C88f8v2qK6tw1QUX4S933o5rbvozxjeOxdkn/xwXXv1ruJ2D523tv9feaOvowFMvvoB0JoO5287BOSefivOvumzIPm0Ku3bGgwCAB5fsCQD41LkMb3g+xIKV98FtjHwesNFoGjR8+cnHmDZre5zceBrqMrXw5bx4uOVe1OZqBi6gxNyXXgoA6L344uF2dZPb5KQXjy68Bj+e9RfcMP0jJC0tuC9yEB5ZfsKwJWjdHLZzx9dG2oWyla1sZVunaVvbvtR8/qunpCB9aO7vL+Vs9WP9KshIhGOg6wdAuszIygb2iKi5fcei453KIBa+txAAkCGHJUYelMR+E71KSU9QkuYWlZfGwmh03Ri1d7+CXBRRleslGlVToyKimbW2nYn6mIdog50ciwj5CklyUwQVyVJ5TtQLJWdNJBzjPVWUdtw4FQGXiLfk5fKJGqGpyCg8iuLyBeXTMlk4li9HJJ1G9u670TN5MsaefhoyVPhKM/9ROKT8CDe1Y8wHIWRiScx9+hVoMPDcZUcgZVedZCcy4aOQhbSRqTAmCnu8f329imILqpPMiCIYo+tEcbIUkujsVH4Ip+WS312DXC6LK8+/qOhzyeEDwFQq1IkSJJOqLOGriaKjoBBWnif8m0QiyfMS+GzpF7j097/FRaeeia9tt71qS7a15F8bN2EM20KV197arM4Tvh4l53rD4SJfrVbmTvOqCL9wvtasWKOuI48vWOXnUZ0XYN4sUR2MRjM8pumXKPgpf7rIC7LnFWJwyb43AQAefOqvqPjTTPz70QdxQeMf8XKrWoRZHOo+vuNVYuz43xXamiXKImhONiMIRqrIfwAwUqqNs0R85BlMUoXQ5lLjRdCXFNG8npBKshyk3LaobsZj6h4Ou6hWqnGTZT4sFzmAOvs0RSRt+adq+6ykAqtjom6riJ7Idk/Jt6IxJxWR4nCPmht6yPNsHFeHP9bfhFcqFuDriZ3xmvsNPNr6d1RngiyGBRFFsTpUPa2sBx8D+I79IQAgeu/dKDJBbzgXZjl2pb7C9xP+aZRjSsaQ5JoCCtHdMOceUd7SOYtEolTulPyCRLj8AXWUZ0tQuRxR+a4ONY5ScTUuumpyOHjOJZiV3BuPLPkBLFbVpzJPJsiJEq6hjCPhSsp9OzpUnZpaFPLl86lynC5RXFR++8kBc/I6UcMM8X6iGltVXYwUixhOJRFYC9tS5u8058CcpgbL89Mn4wuHAydzTO7coOZgCxGx/mx9SMTGvj8NhCYYfX6EC3nkNqVtivxYm8oGy88Zal7RTWVDzYu1qW1D6lsahOkMZk1kAAAgAElEQVS3jFLVTqOkr7Ri5EvGe1+5gRJ+ZWmxpf5Jni29eAeFLj92I2BlZKtsZdsCrPoPKldQ6xkFNTU9FsO4s8+BFo0iUVGBFbvsgukn/IQTTL5PGXo8iwN+eR/s0SXIW4OIBybjpQsOQM6lA7lcn/OH2z78+GO8v3ARJo0bD4tFx2vvvI2PPvsE5//8tE12z/l/vwfjG8ciGKjAipUr8cizT2H8mEbMmDx1k91zJEzP6fA+MgHZxvhIu7JFmQYNZ7WeCpvdihfc/8aeid1xWP0P8XDzXRuEcG0NNinpxj8XXYmDt7sEh08FHv3ypC0K4erPxqXT+FtNFX4e6sa4UaAiWrayle2rY+XF1lZghahCyR7cDQzQFLhWJdGLwf7emjkPNuz+YlZBNKRABiUkZ42NEckM9/T3MM9WLKKiwwJyCodHUCLDjKIU+1tA5AoVXbVaoWNe8hQCVNvz+RU64eLnEkERXoOd29S8RMbE10SymEeRTjDSnVefi4qbk6iCIFjW1cxbFIvBvno10pk0qv5yE1pmzcJR8+djciqFy1asgNutUJJ8TvnR262iw6n2MPY5507kYMHD154P3SuPvvJbRCkk4CSIlqVEATLnluSyojrHfGGpFGAYJlfGyyi2w+mCpgHxaBJenx8ffPRfPPGvZ5HOZNBYX4+zTvoZ9vr6101UyrxPtpDEVtTIJPLtcKpId5o8nPY2FZk3DFVXNyPnHq8byVQSdz5wH0K9vXA6HZg7czZ+evQPEagIwF+pkMyutg4AQHenisTbPaovpkybpMqh6lm8lzwe9l1lpUI/MplUkT9OtoEo8Mmy10JulvB8JKealeptXZ1EZJnfysUx5HKr+na3Kz/DPWpM1vmVP1bYcP4Zl8PS6UTXDe9Bt0h+IfLniLiZJnAM1RhFtc5GVDNgKucVLsmRg5TNkkvI/GlWqgNamW8uFVd1EH5khV+hiy6XasNETI3L1eRy1TYoLpeb6EU0kaNnqk1JqzRVP/0+5WsqpK6PtKg2sTrUiRaHei51i6glOorawE4E1+VmrifW65z2nyNfncNL3lexR3xXHD7mx3is9e+ogUI5s0k1tuJhNdZcBlUGnep+gvwKamTi7Sxf59FKSC5vkD8lcxTnBwePghwL/xQo5A3UOT9ZLTJPcY4hAirAfG+vKH0y1x+zLLjdHB+UyhFlVLstwHunMCHpwdOLrsJ35/wK35uUwk9bvgGbzY59QnVmm0XJMxMkScaxrqtx7eG4raxSdRROljwnkTBVYol+x+OqnKZmxUEUTqPMpRrnHJmrwiFVv4hDldNdoxCrMXGFdEn03OdR9dovnsCpnd04atw43L9iGWpM7payPmypQSAMmxuF6A/FGekdSiOJhA1XfqzNZYPlRm0ujtdANtR8XEXXlnKr+lSltO+K380K99ZKTi99yZTnojS33uix8mKrbFuMjT/rdABA8023jrAnI2TZXkw87XRosShW+f14ZP8DcOMVV2CXaBTnrl7dr7SoHs9gn3PugKHb8NTF30XOoQ27DOnPL7wAHV1d6/yuoa4OD8y/HTOnTsPvL/01gML2qdwmJnz/7Njj8PPjTgJQSLIqRP2txWa+Pxuz356Hrvveg+Hqi2iWbWDToOG8ztNggY7nvS9jr8TuOKz+WDzSfj9q87UDF7AV2qS0F08vugpHzfoLfjnpN0jrnZgV+z7mv/adUYl0/W7SnwEAN/z38n7P+VFPCP/yuXF24zgs2Ex+la1sZStbebG1BZtEGiQKmh8kR2qwkZI+UsADlWsiRcPzAm2xMkpRQsOzMGqhEwVJxYRHoiKmmZwgIRLNVsdoVEVCkwlV/yrmORJZb3kJt1oLe/jdLhWdzRBpEa6Wl8lypQ8sRBOEqyU8hkhERcQlKuvzqCitwyH3lAg7Izisq8Hr0/EEHM3NyIXjcH15PlZ8ezYOnz8fM6Ix/HLJUjzw0SIAQM7QkAOQsiikLM42iTS1Yd/z7kZOs+K5yw8BbCpzkJ0cF8l3JIia5E0SdTXJmSPKXx76L1y1CBUhLzz1NGQyWfgDqr3MnDtOh0KtqAgm7eIRngYRjQQ5NfmczvILyJZwqdKCcBEhkrxqXvJ7pC2tHDfig93ByH6+WIVSHgPhemSJ1qRSivuis+42oibpTIxtps4T1cAsEQJRSkplJNKv2nLseMqvG6pvXE5VbgXzacXItWlaoxCtULfiE+UCqs2WLVMoTi9VN8c3qOs99aretpwDHY3tqK8UPlEAum6FZvfSL2Wp41guUc88VRR1TfLTETmxCMpZ+HkwRF2SPxnZnOr/DPvNAsmrpspMkJuUpeqgjO8U+WAdbe30TXnXOL6R1ynfUuRuxWLqfn6igBVVSiQnnlcoZLx7mbouRD+sRLhs6nxNJ5JsJwfMTp6cRyFTYJ/Ho6rup8RORLohi39XLcCeid1xeN0xeLTjQVTzuiznmBA5X4FKchPNKUpUtIpN5lydYzebYjuZvFN1hfDyBBmU+wBAMsk24TVeIkUVFawbnzEPkVlHkHNXWjiAqm0FgbJahP+jjpJ2MEsuVyKVQX3KgTc+VOIfy61pHDL3HBy/ax5/W3AIomF5RtVxLDmSbrfkEFTfjuWcIX2dzTp5PypJsq4y1wSp4il53mTu7elWc40g1wnOQeHVisOYmafqGSPi5qLSo9Mt3ENVz07dgrDVgjwRaZkIhnP5ONjf2IH5O6MLtRnuXFUD86z64o79XbKh6N5AasqltrF90AeJKxS8UeUOZP0hVIPm3q993mDVCDcQdSyoDxb3vyBl8kqolTy7I/18rM/Ki62yjXo7r7UNR3ER81UySySCbc49D1oshnzIh6a67+HA2y/BHt3dOH35igFfDvRYBvuedzcM3YbnLj8EeYe+1hay4bUJjUp8IVhJcQgRFOEWpdLEw2XbNGbAwL3eRzE2N6bPd9lvMInspqfnbbGmQcMZLafA7rTjX+6XsVdyDxxWcxQebr37K8vhEhuX9uLxhX/AIdudjVP2Aq59ap9RiXCtzxKahja7DcG1timXrWxlK9umtvJiawu20shDAVEaHlUe0waIfPRVjhkmY3ljknFohoE8Q6Wl+YGyVGEUZEv8rZAIaVBxc9KMhIZ6FUJQUaGuc3nIDWP0XpAGoMCDcFpUtDgYVNFbQU1izCckvB3JB5QmjyFBDpffq6KsonAnKJogYklyVVLkMyCdxrQLLsDy7bbD4bfcgn8c6cLkWBSPL/xI+UoOTCYliJCJXwAAula1Yc8z5iMHC566+HvIagaQzpkIlijq+Ygw5agMJpH7GLk1Uq6IvGnkK6VSwhMhEkbeRYIctDSV7RxEzvKMlueIiCQTzPlE5UBRWUzGqBwYiUHMXxFg2UmWlWcbqjIqucAzVQs1QVOomJcoFo3oZD4iyacmPCThlEhfyf5vUTtLx9X928kTEvRQIyRQQQ6XRN5TRGlqG9Q2NINjQ8aUg+d1dlDdzabasHaMUklLxOk3o7syxmAof51u5dfxbd/D+HQDMo4W/LLqWnziWIpHu++CblXlC++vINRK7pgh3B0+wVyHG0RI1t72nqWyW5yIVSpO9UD+7XQoFMWgyp7O3HYGx0FPq+KZCRqRk+eFaI2T6PMY1l1yKXVQKS+dVufX1ag2rpyws7qPS/3dtPRT1ZarFNLldqj7VvjV2HERyRJky5JQbZ7X1N85XfW9w6vOO7fzNOSr8njJ9yqmZLfB18buiTdaX8VYTSmaahzXOeYfS++1hyqPY0nmJrEC8FUcJRaul6g7xol4OdgeLk8hyGTnnOOgcqnMHYahxlOSbeZ0kYNH1NjL/Gx5rrIlr6BBpFXKsVmlXFVeVxeRUOHrGRnUph245aVLcPL/XInzDsrgJ5/ugwq7CzuEKuD1OlgX1Qaijmgibt7i51T4nq2tolZIZJbIdJrlOKn8GAsnWT7nCOY2TKeJyEruMiLROWpgdBMRtvm9OGXyRDjyeYxPJmHwPoP71RycbWhkfWN4MZvCNpc/g0c+1v5883CdNhUvziy3hBu/IZzB9Z0/WsbSUKxvHcwv+EHJn6UI1yhGtkYfi6xsZfuKWyKZhOeyS/HQ/vvjO7ffjh27ujCZyU4HY1pGw06/7oKe7cRTl3wfOUf5Md9qLQ9s8/hc2Gry+Mi+GP9yL8Cj3XchYPj7nGp7xQXbK+W8W4MxDRrO7zoDByW+g8W2L5DTctilYU98alu8zvOTxx+H5PHHbV4nR8jGxF245aVL0O5agUt3vRKn7nAqjt35ob7bzkeZPV0ZRA4aZsTjWxgeV7aylW1LtzKytSWbLOs3MLXYgDk+Su/T3/Xy9wZ5sY77muEKdXiophbZtSIWghAkiaJI7ifJu+IXpUBuZROFPJfwiPi3oCpJRpNFN0EivwDgcatoa4yLHeFgSfRXciOBvIf2NvV9mMhMjoiNJUAFMUZT5XoLeT1OKovl4kk0Xn411uy4I3Y59FDc+eK/AAC9O8xRvhIZcHvIu7AxomNX5fZ29GL6NfOQSS3Aqmk2xA0DSObgFD911XYmTykjOWuINBDd0MjdgkXagrnNiHilU1TecxPZMnPkqPK8ovxoImNEfwKqPRNUHoszp47dLXmLiPBlCtsOhb/j96lIPQPxcPNvUQeU/Ftm/qC2LlZB+RggKikIqIf3FCXEHFEZ4cZEKKhRVanQEbfwzMgR65W8biF1DHLcCt/N7aWaIPsqnSCCwLbKEalNJolI8HNp2yhzs1Uwd1XQq/ysDar7Od0+1Fy3K2xNAfTe9ilyNhvq83UIoJLPjqAnRNLuUuVkvsExSYk/QfiE82lwzGZR2GplsRCdYJtn6aMnqPpT5zjs7e5iG1AZj3nl4kQsI+xvn5s5oIiGpBOqrhY+hDZ2ckO9UitMESnW2ZcWImnBhrkAgEROodetvaq87oRCxPJRRo9Ditdj0dXRV0Gky6rKyVNBz+Wartogr1CYs0Kn4qzQqchBw9hxk7H/mO/ihTXPYDvHNHUex0w6qepltanyRD5R8r0UZkmqEvJ5kLEUI2esl5zQYIUaM961tk/Ls2E+y0ScJIeeRihSVPxkw7AoIEInR4rzp0WUE8nfTHEelBx9NvLchDcjfVJV5UUVvHjlLcXlarUncdjOF+OQ2cCD/z3aRGJlHu3tUc9RMi45CZU/0VgxZ1DGhnDKsnmi4hyXTs7nsYiqr+SBE0RN2qdljepjm1O1XVWjqkfOZsPUTBbNwgXeAK7Wpo6c94dODHTfTY7CDHO5A91nrTuu7yp1htlGJVcOk6+bqs4lNM9ht9L3O/m9kZ0hspOnP+W+0uvXbofSTVSF3U1DQxWNfpCqgaxUKVv+LiNbZSvbRtjbHg8MAF22rUtFrtRi8TgCF1+INV/7GuqPOaZo4ug4eA06Dl4zYBlVb9TBFjKQ8N2NOF/Sy7Z1mnNRLVzvNeDGh6/BrY0P4gH3P9GQqxtpt7ZaW7N6GXRDxwFjv9MH4bKsWAnLipUj5NnI2pi0G4++czVWuj7AUfPuG7UIV10mi9e8bqRG8QtZ2cpWtq3TysjWFmz50v3Om3lzRClna2NDNH0iSPxTNwzMjcVxwTln48jVzdiREdOstThKbCEKIxGclhal7lZZpSK5Ab+KVvupJBjqJQrVq5TN6upUtNtmE/WqQl4tnciTcLTSRFtElVAWRm4qbwnPIZ3U6Jsqz2wh4cvoagEZT8QRuPhiNO24EyYcf7ypENbAPESgclc8pqK9ouDlIy9NcivljSyc3ccjUm/F54cdASs5M+K/KPtVVSu+T578hzSRJI+TfCVBELjA1dg3EgyPRhVvKUreksenUKMkI/wSNfb4iT7Rf4dLjkZRPZJEJW1ExII11dJSkl4NOSJONuY28rBvHIxw58gxSbOPCtEy1QbSB4JwyniJkxsl3JUs2yzUrcaF1y25j+gzY1ROKlVms0bR96LGVlWr/LM7VRvq5NNZHYwYkr/mYflp1i8eU+NS1NlsNlVuwKPKaWhQvCbHijrkx2fwQsOb+Ny2DJX5SjzWdW9hka5JXq/SqJ80jKiYMrdVMkQ/VB+Kgh8A6Ow/G38yXE5RrVRoQ4aqfhmWXeFV49LCZ8nhVmX6K9T4spj5VKgAGSevJq/K0wWNI1/HzjZNZwQNYZ2IYsp9xk9WSFfTyiYAQCSt+ra5meqJUYV6jK1RiFtDraqHL6Ce/XSPum+MfeWsUMIvFuZqWr1iCcZNnIpvjPkeXml+DjOy2wAAAlf/DgDQPV+lpcjyeXKScyXIn1iOKIzk2xOk2ecR3pL6O7NW8l3hgUoOOoejOCeXqF9KXjZB8EWFU/iXBWRLjY9oRPkaJ2oNjcgm7yd8S0FeXRy/8nk4FEIwBtz50nk4br/f4ch5Bu5+8zDYrTIfCx9U+Gyq7pKTbMxYxWmUvGCy08BDVC9NdVDZwJHgc1JTq+YITVP1PHrBUQCAVStUUCpYqwRNxk+dDAD4ViyCz3vtuCMYxDfDIehWqiQOIRrf37lDj+gPbkG6sRywge63ofym4eZ09c/dWlf5JaiGyY/MD1DW8NjGKiwOVN5QVQMHW768F8mcUppDs7/y1/W50U9ApfTcgRFL+R3g+aX4zwBVLqgQrv+80WBlZKtsW4T58nl8u34sjjvphJF2ZdhND4dRf+45WLrzzhh//PHrnKBsqx2wrXas4+picy/+F/RkC9488RTkreVYylZrBuB6vha5mhQ+ty1Dj96Lx7ruRYVRRjM3ta1esQS6oWPfMd/Gp/Z1c7i+ijYm6cDdL5+P1e4P8ePdHtnsCFdDuA4N4fUju6d0dqEql8WMVFkdtWxlK9vms/Lb2BZoBfXBfr6XwHYpUNTnHd7o5/PBmZS/qfbJlka3xrW2IqttB4uNfAiiRpIrShTMRHHPKI2O8U9Ry5LIq4VRdFED1vVCNFlUAyUnkvC/hKOVyYiOtvrb6yNPgMiRRIezzHXTxvxCPiqEBRDC9IsuxP/tsSdeOu10TGxVaJyp8udUUeqGP6sIeu/lH6q7MVpto4JdjHwHWyKOjHsaAozqhnoUhyYriACj2UnJFUVkwutXjSMck57ubgBAJKw+lzxHEgWT3DVJIlsp8udE6r2goqYV3Q85ImzswwS5cHEqDbqoWFZVXZDZThCpSkQUVylCrpTUSbgcVXWqzZ0RQa54S3Zsgr4KEiZqgNFYMRoXqFILFuGcSKRdtwoPp5h3J/m2JAIv48tEXCHoItXgJL8QUU1RZ+vpVop9wkHUyfuxWZT/lRXKb08giOBvt4N9WQXOe/JM9Oi92DE9DxWGQhfzxUHDdUT9GDkVxCNLdJOIllwgaBZQQEUyGYV+OJknzmrnHJIRZUjVBx6Ob49Xcpu5eY8470m1TqIUoozHAzKsRJacL6tT1b2XbeMnkmojAptKsI/jolSXZE2VX/6gQqjiFuVXd0KNITs5huGoQsJqeF2W9czRIb9dcblsVD9cs+wLjJ08DfuN+z6eWfIo9mN03ZxLTPSGbSmQMNFEg2NC2jUl+e6Em6YLylpQ0hQuoIPjRcanPGsW3ssqfFCWIf0cpzJqmOp8PiL9oqCay4myJPPUEaWPJZiPi3XQeR8beXkVqKCvOVQAeOjNy3Dkblfg2J113P/+UahvIALF143uEJ839p2ogMp4zYUE2WXk3eahv+rodckcrA5x9rnMycEaxd8LVqujcCQT2Qx+MWEcpqbT+GE4DAQrsbZtCMK1obaxXKiBfN1c5W0owjVY9GYo7xZGPy8yw4XCDTbv1saqIW4qFHI4Ffv68Ln6KbI/BMwsx7ywhPxlfl9cjrzT9dnFtQVAW2Vkq2xbjFW9/x4OeP75kXZjWK3+kYcRnjARZ1x/PSr5orXBlgW8S/3I28uJlLZaM6AWWp9X4NUHnsLj9c9ix/Q82LB18xlHo61Z9gV0Q8d3ph6GiD54tdCt3cYkXXjozcuw0v0B/neHBzcbwvXcrBfx3KwX+/3+iYoAeiwW3NjcVH5ayla2sm1WKyNbW6D1u8e3cIZ8oQ4ln5cEvkddjg/TSrgnY595Cj97720kf/N7AGupxjHa3UtVOFGl8lEgwin5achxEO6Dk/yhOgfzIBminFeIQZj5sBhFlmiy3ENU9bqowuZ0qWhs/Ri1ncVO3o0kE66oVNFWL3PK5PIG7tt3H2wf6sW32jqR1oT/Q8Ug8ookOi2IgfAyJJoX7g5j0lUzkM/mERnfbUbGPeTWxLLkkPi4zYzojOSukvxaLlEXZPQ8Go0XtY2XOahENS7ao3hS2VxxjjM7kYgko+mScyrLPGJO+pVhRF+QP8PMoVVAVVLMk5XLq2t7utWLbTis2rqK/C6fcLiq/PRJldnbpbhXpe98kofLTaQrQUU8qbvw8URRMkuEK0Iul2S3T7PtBJ0QxchCHhUU1Un4SLGIapPuTtWG3d1qHAsv0OdRfRQMMKLvsaP2hl3gWFGJ7ts+RKwiiXHZsbAZqi3zEKSqeI++cL+kvpro1EmeMUFn7Wps2B2qHY21ooUZol8pKtW5pEzyzuSHRPhoQLHqpXCudHKUMin1uYQFDObl0jRBfKiMlyBim1PXa0RhMuyrHNvSklfne13Kk20mNar72snn4/iUvF0hPq9WtnGkawkAILaqGQDg61V9M47oooNto2tSnqrHmqWfY+yU6XjT+Q6+ntoFFlG6ywonkeOaf4sypDyfgoI66afJU0pIPrpCzr94XPnkIKroJaIaj0ZZdjG6BvoqA1CQ4BBVNm1EwGR8eDxUa+VKJEfUzWKTfITsA/ZaJsu5J8Y6EHnrCvXCAeC2F8/HT//nWvxgR6VS6HFxXFlkqcN8WpyPw0Ssu83caoGi+gi/zarJ3KXaI0GVw08mfQ4A+EHTkQAAX1ChkKLemLJYMDOVwqnjJwIAnpZ22ggbLNoxkA2VY9Xf36XoxXDxiwYqb7i4ZRtifX2SNlh/3Yebe9Vf+ZuaPzfY62UnRukYkbloQ97/Nh69Gxza1icXWR9gq4xsla1sG20T0mlM2FjUZxSaJRoBPloI3efHmYu/2Ch5kcpXamBvsyBR+yBSFb5h87Fso8dsrV4En5iB3is+g+EdOnoZuacDkXs6NoFnX21bs/RzaADecLyNT2yfjbQ7o8bq4w7c9tIFWDXKVQrLVraylW1TWxnZ2pJNRMVKPtb727tsXrDufbY6BhcN29x2WZfiD4lXpRHa1hbFgzIYhQ5WCXdF1HcEeVDX9fA6D9EhCYp4yBeSPC8AkBOQ0ChWOpJoajRKBS/JBcP8P3lGfUHegQG1WLRRlSzV0Y7Zl/4Kr++2K5r/Z3942jvpa5I+KBREolGiPBklP8HBaG0squqCHgOWnh/DYk9i2eGHI08EQPg7mi5RL3UU9CZpqp1RbZC8h6rqYJEfgsZINFmCwl6iLtIewluK9FIZkGiPzvsK3yMjCBcV/SzWYmW1GKPcABALq/+n06JYqM4VFEBjvws6Jjm/BNEMUfkxS2QsR5QtxwW8cGHiceZrIzKVdajx00P0Lk8FSlGiFA6L3E/GZ5r5vlIJ9rmdnBqiHkY2xzZSiJ0gdd6AQtICQYUgjGlQbVNTyVxW1iy6zl6I4C+2R8+9nyBfuQYGgAm58cofEzEgKopik+c/x7YPh9SYa2mmeltNAwCgIigIRsFMHpBb+EGiIkU+G8e5cKziUfJuiNhYHaoONocowDHnGBtN+EY5Pqsm2sdnP1gpqpvCR5LN/KotO/+fvesMj6M6u2dne9eqS25yt+m9dzCGhGI6CUkoIYAp4Qu9hh6K6aG3QAgklAQSQgkmIRBIAGPAYMDGvam3XW0vM9+Pe95ZrWRZki1X9n0eP+vVzt65be7OvOeec5oVUiXIaE1tDY9XY1tPZVIbOY7jJykOlqZRNbRSlf/lx++q+jco1cLKUrUmRMlt1ImquINKEVJ8uqYkDsJM979wQM3heLfxTUy2TGIfEumSvidXTRBpw1QSVHPJ4+OaxDH0+hQSDgDhiOoTUeeUa4sgOzrb1HUi6mwlnADiM+fgGFWR02RlnbIsx8L5mUoLz468Ur8op6ryCJgiRa+1VDrHNqnrQlQ8vW4HSqLAHz/8NU7e60YcMeExPPvJj+AgdJYkYt1O5LmTyK5wIlNE94SHF6PHYTAoa0bh9SccydIyxcVyyvrODsrlAD1nNxHA/mJ1v4N9cYrWmxfTEHHDNrXf9KGJnop2q0dJ1rbt619pcXCxrkqX8n3bAIWz1tT+/uoyYJSux+d9JWT6GtO+PMI2xdh8alqMYmxBMeKlFxAZPhwX3ncfgpls/19YU2SBmn/8D1pqKT7/1cXQu23BK8aWFV0nL0Ly2Bb4f1Nn/u2W8LW4JXztWpfZ7GzFPocdOwS1+/5G9Nprsecl6kHtwOrDN3JtNq2oTbrxwn+vw3L3Z/jJbkWEqxjFKMb3L4rI1mYYq3P0HkzkfXiGqkZrFwOtv2Qwpd6i1JfnWKnPhTMgSEWUfkXCCUiZvjG61ABAntuiMVvucOYvC1GES1FNb+nSFQCAlSsUt8PLTLT4ccWJ8ORyKltbEqLXErO5wm1KxeP44yGHYKu2DhyweCmSzM6K35XUWfyxJDJUc8umFEKQiiQw4pYJQDKO5u0q0ZlIAIkELPQdsgiC4BCOl2qjcKlEJU48pgRZc5PHpNHDRvosmVb1C5Pz4mP22E+vqADRwbR4T+U09g95VHyw7KJ6ovgQ+TmmKfLwhI+n+lK9ip+Oy9vDv4owW3ubQvkE0QLH0+MVjzLhzRQqIpZVq0x4KdGNLDP79SsU4rN82Uq2lcqN5K2JCpxwQpLMxGc4dvJq5MTHhDwn8pmcLnqeVai+GRlQrz56k/mpbCloT7JLqRUmt43D95kfmmaDBRazXLmg5XoQvp9c7vbL1ZguO+drAMC8r9WWtw+js4EDgZbGMNun+lfmBAA4ZD6Jp42pqke0DoWcJIPIrk6OV74nFLgAACAASURBVDpH7y7WKZWi9xLnh4c+ViktwePVaZIciww9nYKcr5wuCHeo6yzWpcbeQRQnx3ls8uqI3rS2quNEVVT6xu1RvL/hk/YBALQt/1S9dqjjdesy9UqUJEME1+5XKoe+ESMAAIfFp+Atz0xk6S1lFz4E+1GQasnC283MLPlRVvXqdrI/knllVGeKKpussyh5io9VjD5Z3piajy7yJh1OQazIPeR8slFN0El1P0H+w2FByISvps7bFY2xqpxnXNP8XANtnC/DRyhUUVDOXDqLyrQNj795CX5x+AyctJ2Ox9492uSMGexTu4McxZD4HarzRiL03yJnzcY5JLzXDFF86XNPidrZUFKqXjNpQddtsFjy2fC+fv4G87s61IjRQMvbWEjV5sCN6Rn9KR9uaqjfUPVxX+0bCiXLIeszuZeV93JruhnOs/6iiGwVY5OP06urcHr1mv1TNrf4LhSCP53ChV9+PaBn3sYLlqDxgiW9/l7yTgUcq+yI1fwZab9nNd8sxpYWejAL+zwPXPWDG29tmQ3ast75tUV16kHi65Ii32hdY3S2DgDwnX3Bxq3IJhjVcScef/NSrPTNwVkH/rWIcBWjGMX43kQR2dqMwsxImLZRotCylgjXIL/WMyOy3rMPJgC3+v26QSIBZZXcoy/oCP2UNItkMNVrJ7PUfmZEfSbnR5VrIxKSTee9bWzM6GfIs2kjeiK8glJmYSVTLfyDYMDNOqisa5DZVuGs5DQNtdF4ni/BtIfD9NIhasM0dmaEyqSXOZj1lQx+OAst8nNYtTjmH3WMmdmPx1S5khUWHkOIqImp9kbOlq5b2U5B+4hIEEkTpC0tJDYiDdEu9XnQp9CbILPJ8aTqr1hXjO0i8kXxjpIy1Q6HW3hzVDYj1ytLfgaQ55ykMsLzUn3rZGZeVMwEScpRpc0fJAJFJTwPkSjh/Yjqn3BgrEQ0w21KREL8vHJEBNp4vCgqhuil5iGqJxl64RvF2Qa/XxToiExo7CuifYKUiVKfxjlnJ88pGqYXWZpzZ2IUlp81YN9jp6DynWdwyjBl9P1cy5OqfEEMyEfKkidkz6l+SZBLFo5k8eGEj/DObh/gwL8ciCsPvw6XvnMRquNHsF15E23dSh6YpOfMxaOQOKrZqGgn1x4/jnSqPhFuko1bXZ12UftUx7usaj7UjlJIUWmlQpwE3bNbBVVRxzs8ar65fESUic5EwmqsaFMHr1cUJ1X9THSEXlNy4187bJT6Qk6hKEZiKQCgvVUhubGI+ru/Ul2Pjpg6X/mflf/dtT+/Eg8HHsdBww7D6/NfxdaWyer8RClt5Caa/SXmfoag7SoSaeFc5oVQDBIwu2LkdRLBzOlEbjg2NtMPjmsHr/FlSxRCmyXqV07U3c3rSZAsOeWK5cp7TNbR5mbFnxtB5KqKCTDhjKWJ/juILBtE8cVjzzAMVMUcuOelX+D/jn8Mp++t477XDzbRUuGJ+nzquohxbZE1yM9kkpOItpuIso19ODxRCwCw8zp2cP5mUrzOrS5omiX/u7UW2fmh9mrqD30Yar+sDRUbAjXq3ZfS9sHVYW2PG6o+HizytLblDva49TGXes/rnorZA4sNdg86hFFEtoqx2cSca6/Hia+8gk+8RQRHwjv/NVijCzHrl79Czuns/wvF2CKi89RGrDxhOX71fxevdRldri48feCzOOm3J2G3f+6G6f85GzMOuRtfeL4awpp+P8L5wQdwfvABLLCgfuliAMAPJ07byLXaNKMyase9L5+FVYEvceEP/zlkCNcF30zHBd9M7/e4s7MZnJ3N9HtcMYpRjGIMVRSRrc0oemVyzP8UZuoG6s7eV7lmwT3/3IcijGROe6rd9OudMNDsF4txWm24+bMv8cudt8f9y1ZhB6phSfbbyWx1I/f2dxHVcbtVVtnhFP6RKNmo98IBE8U+8WcCgHhMOEwqizp5a6ViJipibmZxm5rEG4a8Amb4YzGRrKfiHDPpFosFmqaZfDEPuU/yuWH6VqnzBF9SXmDJU1U5DvIorNkEsqGdkLbagGwOGaIwcaJ7Mhbi55PL8ZXZ4AhREyfbIby3VEo4L+R3EHnIMu1dM0L5GAkfwqA/UjKpjk+nBDEj54bIhNdHVTeWE6NHkIxJPC5qjPkHR7uDXAyiE8INSXCcZR6JJ5ooHppeY1TQE65W0lRxY51ZjosZ8VxGuC3qOCsRghjRwnCXQmlyOvtStxUcJ/URT6fSCl/h50SwDI6tnfPSSuQrB0EZ1eeiquYJqjmQSamxbdxpJbyflOYz9BZBJVVfa+zjbJqIXIYcF3pEpawZ+JJ+lDeo66fm4yqc3HYCph/3K9w19xbsl1L8JQDQiZ4ISpj3ZlF1zBH5lesij8JzLKiUaCVqR7ASBlGWdILXJNUvPfTIcxKFTtFLL02uoSDNdptwyYj00gMqRn8qQdBEDVP8vHKGGjsuGYhH1fHCy6sdMQEAEG5V7xtXfKO+H1aqhk76eXk8Abab8z2nxubIzsPxWsmb0DmH2H3QLao96OHxJP0lipuitCoIHABEyHMMd6rXUInqozTXQUHws6JEyj4Kd6q+a6hXCoulRJ/b21heWCFYwt8UDlR7OzmQXPvEd0vWGHnNcb0Ubm2ev6exr1wsJ8u2uuCDC0/941f4+WH34KIjNTz27pFwEPVPUQ20vp4cRY55J9HRirRClG3kXKbZTpdL+KcoDNm5YLfDarXhMBGyHCKVuO6xtkjU5hoD9d8aaDs3JCK2tsqSQ+2/taG4Y4NVaVyXdq5rm4baz21TiCKyVYzNKnZua8fdy1dhet3wjV2VtQ4tmcCkz2Yj6Ru4H5Z/Vgj+WaHCP+qAa4Ubul1f/ZeKsUWH3WvHyG9HwVvvXadyttlhPm66705ceO0lePRHT6Ld0Ymjdzwfy0J/GaKaFqMYvaM67sSTb12Elb4v8IsDX1uvHC4dwP9cbvj14lpZjGIUY8NHEdnaDKNXRq6nlIu865nJ6Om63eO3Lf/56rlgfXG8emZohkxNh/WwMkM66WnFSam6/kYkNA1ecnKCopDXqjgFktl1MKudoLKdKP0JolESUhleBxEFg0iAgEoAYGQLM/SS2Rd+gmTMS8hFkuyweMO0kOvRxizxyPIQdrztJny29db44phjcOi8+aocpmPt5HSITVc2I8gYOTBE43I5C0LXVkFL2BDdMWYiWMKREoQtS3QklRIlL5bD82niwcOscoKoT5zZZeFJGORwge1OxcmjEBVGemFFuzrYl+rwDDvT9MjieQQ2jbK+MsaCKuW6TaFgiB5NRD0EhRD1vxz9swSVyzAD39GhMvoejpkgWzFBz4g+Ssa+nccLS0ZQOLtVECjpM1WelWiN9KnNo94HSsRXSzL8RMxkYmmCcIk/F1EXc8zVcdFO1af+oHrI9vDhvItzoqzWh09P/wi3HXYnLn7tl4gZYfaTqqd4w0U6FBqjJRQS0tJAFDaTwxHWFI4+aSYenvFT5DJbAwB22nlbtEx4FvuPvxFzDAvqOo6B5mAbBEQXxJLjmhL/N2eh2p7MazcVJIXraJFeJgohfdNOdUG3V12bwRLVds3NeUakWDiEMXKzImE1diUlaq6Ulam2uolq6lRszIk3GjmETs5HUSmUJa+UXn3xRAUAwFWqfLMQ9/B8CiWy2Zercsnz1E1km+0mgpfuUmNgEYVIu6qXXJcRtttKjqfHxY4x8vlQj5vzlUhOR7ta7wTBypo7DEQBkd5nvHZDoSDLUfPaRM/ZaEGhq6vK+araniBaLdeN3aG+n8nk2AeqTWnyzGT5FzVMQdWF2+gnf9VhdyAI4Hf/vAKnH3w7Tt3DwN1vToXToo7rJCIn67eX6ooyBwSxaye38t4jHwEA/KH1adUqQ5QsDVxRXY12hx0PxqKY6VVz5ND1+HC3tnyXdVUaXtfzr20MdBfLYMtbm37ojwfX8/26eqet61gP9PO19Q9b175fE7ffMF/XvKuqP77/YEd5c0S4ig9bxdhswlm/amNXYZ1jzJ9fRKIkhAsfeQTHrmpY63I8r/nhWOBE89ENcNZv3ltRirH2MfaEarxheR3TL/4lcCdQMfyCbj9Eal74ytXNaecppyD+9V4AgPLqz3DqwU+h1B3DqlXDMeXI/8Dp+BgAECwJYO6sG/BZwIedRtyARMmbKKdwhTywyhni0b0QC/8EAGBzLEfZsLt61DD/oxhuvRyGPhoA4Ak8B4f7w27Sv+o1UJVFOjkMkfa8b5iv9HQYfCD2hGjfwMTI3P+tvb/Y+gyfrh6mOrQwQnpwI9dm046ahBO/++flOO2g23DR4cBv3zrCNIEeinglEMC3Life6OiA1zDwMBMAh3bPqhWjGMUoxnqM4sPWZhBrrUw0wOPMbMQAv9Ezq2Cnotj6irOYPRekS/hIcfJ9klH1vrVZZewlQ1tTo9SynORhCJdHfLikHeLtJFl3yRwDQJIIj/jrCFdFPGvAjL94O7ndhTtzq6rKAOT5OtZUEk9POxqjsxlMi4RhpaKXZJnFDyg/FqLqxroSWcq25RDbqgsJPQEtnTZ5FpJWLqFKYoLoT4IcFkFx/ERtvOTEWDXx1FHlR+nhkyIfJCfqaIQ2WpqUYp+gMcJ/6xQVQXKw3F7VL0GqD2qS8XdRGY98KUE2BKGTbLlqkpWfUYWMfZygOmCKpkwJQ3hpavxlHginxC9IJjP7wiszhMPEDL6gMaWVKrOfTStUJcg+8AVLWA/6Z3FeijeYk6hEgKifzSmeZTyfcBt7+GMZ5hwTlNPa7dNuipUu4dWpPv5i78+x8we7wGK/CrFo3OSsWMlBFBQqtl8HIls3wRq2oqxyPipKm/Bx1obytAealufYJOJJrFi2CpN8P8b/EilMqXsasdQEeLI1gK51rzKMbBa5dBJ6LtMNKcnPVxkLwwCSiTTsNvHnMg8s6AM9ZyCX1RELK6THZdfgCWShi18WUT+pa5oTcMTokQCAoJ/KeryWnR4/x0T93U0FUkGBRFnSS16ceEfJdV5WXs7yVJ/Hu9SYtyxWKGJ6pZLN35q8uK42lUDZp2QPPBt4ASeNOAsv1j+JoCGqm4L8EXWMqHJWLVGiGiEic4Ji5rLd1hN2Wgm5Wkl6+umcGILgtrerMpOcH6LKWV2j5puod0ajohRaqEYofWA1PcLsLE/Gl2PB607KiXJd9nB++rjGiB+WoJ0O1tNH1DGRzGJ4xoHfPH8WrvrxY7hgqgX3vP4DVFdX8zyyiwAF9ZK1oqpScRltnPgZrpEm18vlxM6xGIJi9t7Pc9xQokI9f7s1rT/mhtHjta8YWN163zP01bahVdrbGKqIA0W0ekZfXPi1RbgGGwPto6HmP63hC4M+x/oa5b4QsSKyVYxirIc4JLvlZCDnlwTh0HO4YcEi9ORxDzoMHcFvv0WKN4TF+H7G9sltMP678TBc9QCsWPDFVQAAD4VFMnyAz1poG+AIY+T41/Gb/x6BR7b6GGc/+WMAQFk5zWCDeS5h7bLTMRPAnnXP4JP2n2Bc4iQAAPVSkOINLQBk0iPQ3vAQgPxNZUJMvvnwLc/Q8cgpiEdOMX+kc3wgbKpX2+0c3fI3HQ0PIJVTf1i+VJmJV9TMHmw3rddIVhbyKX2GF6PTIzE2PRq/Lr8d99VvmgjcphSVUbv5wPWrHwK3/+XgIUW4ilGMYhRjY0XxYWsziF7I1gB/f/p8+jfLKVQx7LOc/spbzyFZbEFR4rEYYABpIgmiJhemsp6X6m6SoTU3VfGGL0mUR1CVsjKFPmXJQQiH8x5PcXKThP/l9zPjnFFlRagMV15G7pODyA35FS6iHOIN02qzYUIyBR99grLkjyWIsnTx1cVssyA80veJeIyvHvhn3Qw4G/Hl6b+AzuyvP+Blvdk3ROZypueNqm/Irm6svT6VcZebGuH7ZHLq+10RdXyKfWZnNtnvD7Lv1IOeQW5JNKrOJ2MjiKCH3lc2UVFkOaXs+zQ5Lwkq/kk2W/2fqoClfDxlJl84Ux639JH6WFC8TEZ4YapPNasq00UiTSYhqKUgYPQWS4lqmipPeG3yQCAZ9DgfJJobW3k+9d7nVcfXDFMZd5k7FotqezZDNI/+VzarZNyJeBGV8XGuaYIScfO8J0A0Mqm+d+CwgzDrlE9wwPwSRMZ1oLGRaomZOM+jyqvTlHeVp64JUd2Ou3Z+F5f9/VcI8SErTI+zlibFRyqn75Gj6Sh84XFhh5rrMK/ZhrFdx5t9JsiQqHXaHeKxpMbdai1EwrJEjTXOF1ECtVKZsaJK9ZmFPLxMQqEwOhUfK8rJxXIfBQAYPU59z2ErzHhG6NGUExMog75ZWaLiRHcWLVoKAPCXqHlYUyveUep4p4MKeXG1tixZrBDdkE+pcVqTius16+Cxqpyl8wAAewb2w36OPfBM+YvYI7ELrDZRIRW0Uo2lk9e3l3y/ZFzmPdUStfxTp6xzmlXNZ+EsCkfVb3Ks1PrV0a7QwUxaXQ+lpaoOZaVqXKNUaxVE1u+nAiiR1Rj/LqqFsp4GxJuM6NzyFapPUnyotxNpsrAcL1G6/FpE1VfOBQe5mKUlQZQC+N0/r8IZh9yKy481cN/rh8FiCMKmQriZ5lpUquaEXZQneb1m6M9lcTlgQTePsz5iIAjAYBXcBsoT6r17ZcD7UgZ4XGG5vdtRiLj1rGd/9V7b6E8heSiU+vqrs4mW9FCp7G+nz1ApMG4q0dvHtf+w9Pyf9OEg71G3RPXBnlFUIyzGJh8zbVbMtK0zDrRZR3pYCulhKfO997u/wd4+G7OvvBY5T9F37PseI06oRaQijMDCEBLJ9GqPGfP4JIx5fBLC9gjCjggu+/uvMLq1bkDlj2s+D583n4NJlVdjkf+lIaz5lhkWWHBd/cWozFbgI/enG7s6m1VUx914auZVqA/MwYVHvLlOKoU6gC/cbriNogphMYpRjI0XRWRrM4ihzpBIaZbB+ixs4ESNnP8JZpcPYxZY0CCvjx433GUYpBqhXRPlPvJADNnCpL4vWXmr7PEnfyNGDpDLlc+AOp3CmeKlYghaojLjVrvkK4hKmNlT9WDU3qHQgpKSgFmmYRhI08dKlBFNvyJR/WN6Kc26LT17AQCgk3yM2nALEiW7ozkaA6Ixk0MV8Ctky+SfsXxBTcQzR7hf4iOWo8lnIhEv6BMrH3Jd5FlYWU6QXj0OqrpJlrq8gllzooMGEQpBOsTHKE70SdptZzY6qYnHVZ43p9PDKM2HCDfVxPxB1add5O5JOs30LGIfRzrVuCaTChkIkc+WJXpmYV9LW0z9RyrXOTim8Yx4l6nMuoOqbLqukC1RS3TTV8jOMRAulpnbYpsN+nQZpmdVYfbZyvND/Ll68CoEHZwzUpkQH+32IGaNYqfpB+K7W75CR6dq79dzvwMA7Mi52BxrxWTDgomRMYAjj752dqpyXSafLv/QlkpmMHL5LzDXbsU2ldfg9+9+i+iXNfjR8cexD1UbLrj4Usz7bgH+8ap6ILMR6dXIi+sUhUginU72YX4eSFttOObHpyIUCuDx+++EQfTGR6DH638fAJBJ7a+OzxXyiVg8UmHFqepoXAEAqF++EgCQjKm+6aAKoS2lOF+Gr07Vg2OYjLPejQtV30DNqWEVav4bESLUKXpSWYgqptTrAdG98WLJq+ba4uVcshIlcpHzWV6uvKPkehRumnhOqZOBx6iyWlrVNe8iJzBCpEqWbVEfdDjIsUqRh5lU11OU/EoZbxfV/gTB7YyoPmrg2jJqpLLbkPkt07m2ViFZrVx/40TP002q7qJaaLUS0eJaEGezwlTdzJmqilaUZzT8buYVOOPQ23HF8RY88I/DkSVPVrOTe+su5N7Keu8mWp/KJHF9dTXqnS7c0dYOrdpX0I/5H0KsMQbz+9sXajJYHtHg6zJQvvW6nW+w3mT9cbeGgts15EqHa1mVtVU13FCoTk/0dKD8p/V52zdYRcXNGekqPmwVY7OJxD77buwqrFNYMmmMmfsV5my9zboVZADuVjcMWzFbWwzg98FnAQBHpwFXjRP/O/xLHH7KEYj6oqgfvgrf7r3YfKgHAEvdJ0gaa7epYVLHLzEXwKJZD+CVF4Pmw9aGDk/gOQBAuGX/jXL+nrHd458AABZeuf1GrsmWE9VxF556+3KcdujtuGb/BK6beYSZcFhd/KTt5IL3rwaD+NzjwV/q6+HfzLZ0FaMYxdiyoviwtQnH+vLa6Et9sGfmvNf3hrh+verTZ4ZHveamnwsA0L9W3lTi3WQjR6ua6oM2+rsIN0t4V6KamDP5JMy6a1rBe+HMAIB4YArPIEaVvji5U+LFJEiQlC1clGSCstvJVuz62zuxaMQwzPnBD1HXIkIADp5Tsk7q+8J3yJLDJeXHY0ls/Yft4YjMQfMOHUhQAUyECBx2le0tCSmeRGWli99nQ/gSI6fFMPkQVKwjSuR2e9gnghKq+uSIBomCY1uz8hFzMtvtJqQQF1VCIoLCg0qxPXoP/pxw3Urob+Ty5rdGtraojHmG3/EQiXISgdSp9NYVUWMi453JFqJzTifnBdECF+usaUQ6OewVpQpl0CyCfApqp/4uCo6COlRUFCpO+n0cuwxRw4waE5vpzyUcLXVe8zrj/NdzohzJeaqJ7DphHV2Oo3oiM/oOzrnSqW68v/9b+ObLeQitqMSZ/zgbz017FrpuQDv8DUyd/Db+9u8zYGf9G+qb2V867Ha7Oeb19XlrgprhShnO53dgfPM5aE28D7v1S9RXvYW6yLEmzweG+mdwtZA+1GzC0VJjoLGvBFE11x7hlEAQLg0WzWGijyYaSIXJTLyDfUgVQZCb2DoXABBrVqhfOkpeXYdCoAhYY3y1oIrfAgCiK5YAyCtICmAWNNTc8jj4h4iqn8dOLiOvX5tB9Ij1kjG1EbHTxY8rJ0qWXHMcaoztVPgTXmA4leePtrcqtCzcJQg8+XGcD3PmqLYGyOkbO7ZOlck1JsHrIpVS56gbrT73UqFR5pFONFr87ORaFWQqx/lp5MiV5PpZXa34m8IxrOe8ikZVG9zkreZ67CQQ9F4jOtrSrP4u18U+83+LOSPPxOO7dOLns34Mj1sh2j76dcl8nZI+WNWLY9umadijK4pKv7+gvFd4PomevzoDQSTWFZnqxSMyzZYLE2gm+NaTX22WI+qWvD4s/SFJWOPng633YL/fMwaK/nQ/b3/KjoNFS/IcrcFFz+/Ljpme9VpfHK71zQnLz6m1+XLh277mzebKb1ubKD5sFaMYGyAm/PUl6FYr7vntg5jQfWvQAGPiddsCAJbttBil88qx7JDFcIaLyFYx8pFK5JHfux/6Lb7+Zh6m7n8wLm+9Cu33tOPPoRfw7M+W49//PgPu7/bFKRechh8dcwKWLluGOd/OhcvpxEVnXggA+Pq7b/Hvj95HQ3Mj3C43jjr8hzjn9DNV2Q88iJce/hIAcODw6wFcj5/+1IO7bnnSPP97H3yIG39zO5YuX4FttpqMO266CRMnjDc/f+LpZ/DaG29i6bJlcDqd2HG77XDD1VehbtSIPtu3cPES3PvAw/j08y/RGWlF3SgnTjz6jzjjJyeZcvf//WQ2jj9tOp655xL8/uV38OGnc1ER8uHSn+yMXbeqxpN//wYzZy2H3WbFcQeMwSlT83W68N73EAq48Zvp+5l/+2xeA8674w08cvlhqKtRN/cv/Wse/jl7CVo6EvC5bZgwMoindR1V9u83r3R9hTflwYT6Z/Bt1cl4ctfnceF3564R4QLUvd63LjeGZdKD3ztXjGIUoxhDHMWHrU04jB5ZrIHuMZfY3Pa39ldfT4OSfS4JBgFLnj8kKlSBQIDlqOOF05LO0AiV5Zi+LUQ8BPkQHokgXACQy6rCBNGKRCL8pFARL0aESRKUMSI2Vt6Aubu60LLTLkhbrchmM4hGFR/C77fxPOqLgoRZNNUmURGU7K0/7Udkhw5ktBTsuazp2VRKzofXq7LUbnKsxDPKSp5GShTN2DeCAomimSB2Up8Qlcv85Ek1NSqlOpH8Fh6c8Nzc5GSlyFFLmqqI5ImEKRVukYy/nf3GB1Aq9AX9eWTLalN1kPkhCFJHm0IpYl1qbJobFcqWYua6kupsoriYz56p75eQ0yIIU7hDfV84MTCoHEcVwUCp6ltBX9p5/jjnRoBKkA4XUUHxbCLSCvaVKMxZ6Fmlk6eXI29Jz5JzRhU5is/B5hIPKVWOKNnJVZPqUubCZaUtcDoc6IyE8deZb+CoI47EmO/G4Pmvfo8jjk7j1mv3MZXl3vzXTIyoGY4TjzweNqsVHo8Hc7+biz+88kfss9teOHrqD9Ha1oZXX38NqWQSv776chw+9TAsXroM//34E5zzxI/wTNnv8AMci1D1ucgZW2HlqlW46dY7cME5Z8Ht9uCm2+7A2RdeiHfffANBzouW1laceepPUVNdg65oFL9//o848sST8N4bf0fA74eN12QupyMRTyORTGHJ0lUYO2YcjjnqaAyrexxzvozixpseQ6wrguMOPwgA0LRMPQRec/sTOG7KdjjuwKPwzF8/xZUP/gc/2GcrGDYvfnPhUXh/9nd47G9fYe+dxmO78VXQcxnYbDZomgaHwwYYgrZQ6c/rQknAjdc/XICX352H80/aCWOGlSASS2HWN41I1HfBYrUDjnKOJceKWW4756wgcVaX+M5RAZAIl/CWBIVa2c34nGCe6RFWShRYvPAqqCopCoycbiYClkqqv1PoFKWVVGHleigcL/HsC5Sota6Ean8VFepV5r+oD4Y7VF299NSrrFRr0bBhhQqnoo6YNtVg6ctFZE12D0QjCoV0UNnypHkLcd2hB2Gb8MuYV3sSni55Hpcs+SXcAVUf4Vb+p+S/AIC9O3bD9ZWVWO5y4pbWVrhqFCrbC03qSUkeQu5MT2U7swQpy5TIXbP6YP6wHup8JgJcyPFFj+N7ltMLITPP3vP41e96yTfDrNlq693fARv2OAAAIABJREFUTcr65GgNVjGxL3TF/LteOIY9581A29LfeQYb/fHg+or+lB7z7ROe1ODP0d85B1tOkbNVjGJswHBddSUAYP5d98P2PYCd+wzDQGDFMqR4s1GMYqwuuqJRXDz9AgyrHgXsDPwpcxd2mHsU3vvwfUw54BAAQEkgiB9PU95ZTocThmHglbdew2477oIfHX28Kmg8UDusBg88+Sh+ef45qK6sRGVFBRwOB04dfxZG+SbhF8Muxyu6BlvgQ3RGLHj1T89hTN0oaFYbdMPAz6efh4WLF2P8WCWRfuM1ygssm80hl8thz112wa4HHIi3//Uujj/6qNW2Z49dd8XUQw4EAJTVvoi99gyiafn+eOHVN8yHLYkf7j8Zp03bFTAMVJX5cdyvnsHS+nY8fM0JAICdJlbinY8X4t1Pl2K78VUD7tNvlrRit62H4YSDJwEALBpw0K6jMPru9wZcRjEGF/50Gje8/S/ccPgUbNX+Aj6rPAUzRt+HGyM3FjwEPO3/PQwAM+1H4HO3C39YuQpBvTf6fzEf5O/sxmMsRjGKUYz1GcWHrU0suj/pGz0Qrf5ySWsqq3sMNjO06YQFEQtw/oQxuG3pSjPjJOpZSWZoPV6F6viC9CMiKiSoTRf9hHJxlcFtb1WIhs9PLoBImQFwu6keJgqHJrqCglcbFbJE8S7c3l74fZsGu90Gi8UCTdPgEfRDK/S1Ej6Ezsy4tEX2gXu9HgT/eweyqZX49IyfI5AmGkK1N0GWbDbhoqj62alIJopj4t/Vyb6w873PR8Uu8QEiH07aIdl04bV5KDsvao3ChxKPKOGLdLSqrLYggJJ195A3JXymTFrVJ5XMm+Wm0uTHsG6CHAnPQZCtCNvi9qhMeTmRLRdVy9rbVB0cRHVEAS/NDL2glPkLTP1HvM28fu7FJ+/I5ycHy6bmUTabYl8E2Teqr2TsNI61KEUahvh5kcdGDkxnh5oDK1cqXp+VY+Mhj62UCEYwKAqXRAnty9XnpSPgdLoQKgnh8MMOw6IFSpGv/tCl2AlOzP32a2w/SW1LnTRuIqrZT4YBNDQ3oqOzA/vvuTeCofzDfGWsAul0Gv+a+W9sNXESMukMDF2Hnslhv4698XbLa0hoCdwc/yVG1i1Ebtv/Qe8ciXQ6iVHDlYrdkkVLMLZuFADgi6/m4I6778eXc7825yAALFq8GNlMBprFAsMwoOd0pJIpRMIRpNJpPP7MM3j176+jvmElfdT+o/rc6ILNaoWRUtfd7ttPhMXqhd1TjbET6gA8gz122QWuiu0AAPZMEiNqa9ASs8MW2lah3db3YdjcyHq3gov8PmeJH8DbcJdNgLeqBttsFcVtj72CJ95swH67TsY2E8fCatWgOecAAEKjdlDfCwznXFBzN5UiYkyU3UZZRcPS4zolChVPCsKd5394iBz5/eoaD0cUF6q8QqkBjhmrFBWFIyXLuMw7H5H/gKyLfOhIEsnNEkU3UfxO1ZdV1ar8IDlSMm/FG084Xrqu2tRJBCsa7eTxwhclOs+1Ie/NxjWCXLRSciATUfJRE0nYEkncM+szXLT7Ltgt/TrmlB6NW/134saO62DoeeXV75wONDsdeGrhd6gpV/Na0H35PVzcD09kbTyeeh3Tx1sZE91ESwqRLZMnI95/fO2FjEG+byn4ey+OV4/3ffO4pR29atzjvHJcT0ROyl2z8M6me2/RN+rSV43769OBnmeoY8gUMAeI/G6I2JTnzUCj+LBVjE0+/kIhDAPALKsV16yox6GdkTV/aQsN1/xX4aifiY/uvQ5Znx9oD/f/pWJ8L8JXegsAoH3VIwCA0lBJweexQAyVZVYsXpG/dvw0nJWI8kb7jgfvXe05WjvaV/t3f84Hf86HYGIibN4wtq6+GV8DGNV2vPlwm2IyZFV9PU4+9efYcbvt8Jsbfo2qykqk4imcf+ml5jGri4eeeBJ//8c/8H/nnoN9DvgXSkpseOEP2+H+R3+HdDoDmzu//dfPJAUAOPiw6vcV+tHZbTak01kMJqZN2Q2xRAp//sdHePRPM1ES8OKkH+6D2wzD3NZcjPUTgUwWd3/8Ka7Ydy/sEP8bZvmm4dehG3B92/WwwIJ6uw0dVitenb8QgSJqVYxiFGMTiuLD1qYW3ZEt3ej1t4IYIEI1VE7n5l7eQarUWIYoIaLDQNZiwX4NDUgCMLjH3/RNypIvxBs2t0tl2YJEApxxdQMmCn7iMyPqbpJN7F5dG5GZ8kpmYalSFieaUhL0FzQynhEuljpOlME0zQKbTYOu68jldOi66rw01fmE/yB75x0OVXen3Wp+HwCs8Rakaw9Ghh5jgkgZRLIybHsmTdSPfj2SMQ+RpyGIVA5UvCMyJQp4XWxflBw1U/GO5eR4kxqlX1GGWXbhjAmaJMqQcR7X3qJQxPIqxW2RrHf+hly9j3ZDO4ST4vWqtlUNU2XrTL2lyTEpr1TzIFBSxvdlrLsqJ9KpyhTPrxz5YfIq3BaT82eqU6rjPUQFPT5XQV9kMmqME+Sx2eziv6W+r5P/5qCaG4TDxfoLIpbOqPdNTQoRWLFCIVulZaX8OzlpRP266GV256qb1PcnXwYAiMXjyGSz6AyHUV5eghzJPvFUGM1tOfh9fjNjnk6mkCBPEJphcrlOPvp4TBo/ARI6x2l4ZRly6QTCHZ3IZrNoJ2JZTp6OzWaDO1eJzxtOwI41N+PTeAKW+B6qjFwOmVQK7/zrXSQSSTzxwL0mIppOZRCJRGDRLArJ06SrbPD4vHB63Hjvww9xxk9PwfnnnAULfs6+vh8AECyvhNfjhieo5pUzMBKu0HDYvNVmG+zeMvgqJ3FscrA6vLA6/fBUbgO3Dnj8pYDdjtCIPcHLCqn55BWVTYKvajRyehrnnL0dpp/zS9Q3NuO1me/hzgcex9iTj8dp++0DT8VY1ptKgRD+HdFT+myJ2qKoKoqaoyBZgij7/YI0q22eQF7BsYUqnTI2XnrsibdZF323MlwDAlyr/Jy/WXIFBenKEHVLkFMVCBC5pVqn8FXFJyuTkuPpY8dXB5UXBcUTVdCyMnU9Ch9PfLFKQuSbEjmTenTRH0/WJH/ADz+A5+sb8ONhtdgl9RpmOY/E9aHrcF3rNUgBKM9kMIwJBA93KvQnptEzzN+r1fzOrWuG3fxNl/fkXBnso1iXWqNamxVXL9JJVUtBwjRRvlMT1OZSbbURHRR+nPxuubjTQdBEJ9csQft6criMHubPeSCtUDm1211KYXsG6KuVL3/t+3N9qTX3zWFafQzUa2x9xdooOgLdeIV9VH9t6j3UvmpbAqIlUXzYKkYxilGMLTDa2tsx+4svMLxmGABA+9CFz79O4ZjD+lb8qyqvRDAQRHtnB0aPrDP/rtOSwMVfDLvNakp2ry7GtJyJzwHsMuYuvL7yzILPUqkUNM0Cq80G8Xt+8513zJv4viKZTMLhyBuO53I5/O2Nt9f4ncFEdWUFZn3+ZcHfPvjo0z6Pr62uxLln/BQv//UNfGuxILXvXljzJqpiDEWU6DqeX1WPU0YMw87J1/CJ60hcX34zopoFPn393thuyFi4yI1LrpyEWLz3bVp+u2Dh9nan08AN167ALrsMDrEtRjGKsX6j+LC1iUVBMmGQiNZQuLGvqdz+Pl9fWYhLmGa+i+VXkEOQionSHV9NRUCVhcuSG+Pm9iHx2SqrUHv5Q+XkBhDFESRDeE+AIsB3D1HtE16DjzyKBJXjhJ/jJ79Iui6VTiMeTyCbzSGdzpi8hyz5Bhmml0SBy8m6ihlt+7FKBdD/og7oBlJU+cumxYeLP648f4CZzBzJUYb5Y8xsNTOf4rmTy6ryhNPlIvIF8jFExdDu1tmXVNYTT7MuInPse8l66zaiQh6iUby7FnRRlPzKOSY6l6R4In8jbyJOWo51Ju+L6J9Vo9+apupaQtVAN9G1aBcz8nw4EG8zg33u9Qm/TJ1POFyZpCguCj9NfU88yzraFbIkPDTxQmttVecTjkuIKoWhMm5z0wTVkIcLVX4nt8Y2Nit/IvGRyxDtS8TZJ4bqo5YmlfUOE+GqGqXqHYvGkM1mEQqV4OKrr8KZP/sZnE4nnnnjWVSWWTFl/ynmteD1+eAid8bNrXdHTfkBnn/lRYQ7w5hQNw5WqwZdAz6fOweXnXcOnA4nrFY7OsNhPPL4kxhWXYOdd9oeNdXVyGZz0HUdmmbFuLazMcdqwbYjH1T96LBBs2rYe8/dkcvpuPjKa3DCtGPw3aKFePzp3yPg98Ni0ZS6nMVi/tOsVtgdTuy3zz54+rnnMXrUKAQDXjzz3J/MPnL6auD0euDwKbELh78azpKRsHsqIaHZPXB61ZjougWa1Q6L1QGrqwx2qxVHHH4EXvrbG5jx0JOYcuAB+PDjj/Gfj2er8kuq4C4bjkuuvAolJUHstOOOCPh9+PB/n2DJ8pW4ep/9YHX5YXXIXJWFg2qm9Kxye1S/Z8hPIggEN7mLFkNUQ+V6FLVCQCOnMM31ThCg+npRaVXzTNbhIBEr4Qi6XYJepwvmk1yDXo/wJ9VxdlMpUX1/yWLFCYzH1feHDVN9K2hII5VKa4ha+6gyaO2xNgmvNcnrLEhkSxBcUQNNJ9X3EkTF9ZygLxqCOeBPzS04ubIaO8RexV/9xyGsdWByYjT8IfreUel0fUZfXK3+fjMFrUsm1LXbtPg7AMDKhep19hwDdzz2I/xg/7cxftQSZJPquHhUIV9dUSqmWtUY52gu1hYehTPPPg3HHvoQhlUtRqhMratjxyuLg0nbK65mBRUahQcq64FZ617qb2vmt+W/Njge09rcO5i8tiFCyXrWYUOhKf2qIA7w74NFoAaL9K5NDBXCtSWoEEoUH7aKscmHEJqjG2SZ2DQjtqe6ES991A5D23Kyt8VY93h692cBAPv3+Puwmhqc8/MzcPvd96KxuRk7eifhhadqMXvBmm9Cd9x6e7gcLrz93jv47Os50DQLKssrsd1W25jbQnfYehssXLoEf/77q+iKRfGDKYfi2ksu61XW2JZf4MNEBMCzaPL9B8ABmDRhAu685Sbc+9DDeOudf2HyxAl4YMYM/PLyy9dYr5t/fS2u+PWvcdX1N8LtyeHHJ4/GYVPOwGXX3jTQrlpjHHLA/rjioovwzPPP448vv4ypBx+Mm66+Bqeec455zM477oDnXngZf/jjS0imUhg9ahRm/OZmTHM6gPfeR3bKlCGpy5YeV922j5kUc5lCGWpenjitHvvuqR4qPp5djpf+ppBZh1M9/DmYELJoFvzp6RacVF6DiuzraL/8JXy+YDucoFO0p5s5/ZRDdJw7nYI6C4FvL9ZwnLH662DG7VmMHavW2IcftmLmP1ePV44ZY2DGjDyCdNxx9j7Vq84+K4tDD1Xnf/ttDY88akc4DHw11wNdBwydySZ9T1SWxdDc5sHPjn0LCxZX48v5W8HIiQiPetDNZrKoq/kMO231PgCgNVKL9z49BRaLBUFfM5577VLYrBnzJjVUkoLNpsPpciIcsSGVsmLC+AwqK9XnkiQcPVrHjBl53uQxx+aR5J5xzjk5HHpoLt+mR7rfThb+Ur/6ah61vvhiDYsWrV6gY8oUA+edpzpx4ULgkkt69708W8yYkcW4cer/Dz2kYebM1Y/T2LEG7rorvz1y2rQ8t/OVV4oIYDE2TBQftoqxWUQXgB/edy8uSvVNoN/So+yJWjganejcL7axq1KMTSga/U38X29T3akHH4RddtgRADB+hg+hCT/B7AXqsyfverTPMiePn4iRVcPM97UjatUZiP7abXb86Ohj4fcrntw22you1K3X39CrrL3dF2NmYwDbVz6EuY0TMbbzRBw/7SgcP+0o089N14H333wTDkf+BvjlZ38PvVvWtqK8HE89rFCyUNUvAADt9cfhlBOPg64rlGb3nbbBgv/9BXZPaUEdln7zVa96vfzcH5BJJQv+dv7ZZ+P8s8+GVctnVBsXLjC79qTjj8FJxx/TDfIm6nnm2QCASPFha4NGSNfxt2UrcHv5DDTl9sE2yR2Avp8PAAB76zpaBko4Xk8RDgOfzlYPPIGAgTTRvlQijgtO+xDRaCPKSrqwYHHPFEr/4XF1YWTtPOi6FTZyBE8+diEqymMYM3ECXn8zhFmfleGruQ5sv10W5eXF5F0xirG+o/iwtYlEbynVviH5nkujEB0F9+n1+WCFNHoQhM2NBH0Us762LUq5OoBPNA0PDh+OwzJZ0yiXnGIkw2obTJY3bm5uWTMlvjMqq6axJS5Ku6fkRosdmKTEt0laB+Bwy7YgG8+hHvbKaCIsW1UyUVWHHG/6LBA5YnambkHOsKDB68Hk1jZlnIq8ubCd70Wy3eawFZQTvK8SJf8ow6qpy2FNJRCnLLKYHstYuZzqeBe32OWIRERYv7Y2ZRhaym17ZZRZbm1SW4BaW1pUdTnYAW4FSpDg7+NNqJPZaCF8lwTV9iyRyBezZJEtD5WrrUVllerzKMUqYiTVazR9lXIMPZ9x1ESG3i5tVH0cokhIJqHa0Nyo6p5IqLpGo4XbB2XrjmxtdPP7Xi+3FVJ2v7SiRh3PCZbqUoIVFpLZI2HVNpGSFzGR8jLVxnZuB5TtVna72rLjzzEjT2EC2X6lWbl1082x41ZPQ1d91Nmuzt/SpgQR/CT+S1/LGIicdGdHDOlUFul0FqtWtKC5SX1vdEaVG/QrSfd4gobWsqWJcuNiuC3Xk6qTXAfqqSNNAZZli5WsfILb4qqHq74bN3606pMK9TA2ofNcfKlZsV31LZhrAGM6lbeXLDURCqyIybVsOzV0VRernaIkDs47c1US42j1anNwmyC32OURAR7N68PmVGNusRRuSZL2WThvNVNAQAQCCt4iLTs7zbVXHsLMRRlAfu7KHDNy6rrS+dCWSXILdEbNXVFQdHXjqDU2K4EUIbr5KYghWyk7OE+SFGoJhCgUwflts6h5E6PlRZJbiEW8w8trXZdtrRGOqZtWCuVq22AXxypFmwcRgKkbqbiA5RWigil9INt9RewHuPfmz02+kZ0uyznO37bWVixfCkTDUdTVNOCGixYDAErK1XUUqlZrl9OpIxU3cHftg/jQ9SE+v/UqlBka7A5BUXp7bAHAdaN1XPdnvU9T4+6CTtOn5zB9eh6V6fO30qLjL39O9SpLrslcTsdHH2u46CIHUmkLli8DZvxmASaP/AgAsHTefABAJm1FJgpohhUdHcD+u/wRAJDqXKFeu1YBALrCar1uW8Jt2k4nDp/0Z2i00MhC9Wlrl+rzhZ97sRBAZ8POqHEDV16wI+YtqMCdDx2MjvYUXG47Lvm/Fkw71oVUAnASPXxF2tTPb/zUQ3VMPTTdW2wChdtpAeCuu/Q1ijoYhurnceOAV1/tPYb5bYT5v517ro5zzy0U8egrXn01Z6JbG2J72mDvv/rbYjdYM+Ne2xG1wvvEgW5b7H7eXsf2vAe1oM/vrrFuW8B2wb6i+LBVjE0+dABZACdmNl/I37AA746tg26xYL/lK4HQ4AyJA++HoNsN5NxZWFP9H1+M71/M/fRUADCV9Da1GN9+NuboBravuQVzYcGYzhM3dpWKsRHinke3AgBcdM68dSrHgIHbKu7BB66P8HLL8yjzl/b/pY0Us2drOPEkD66/LoLJkzPIJVehpjqN+kUbr06Txrfg+Sc/QnuHA5ncMFxyRQ28gRimHPL93T1SjGKsr9hEf5a/v7FaU+Me73tmJIY81syJXW/Rs72SFdRzOqBpsD78MAAgd8rPAOQz87K1yUeZZLuJCqnIMa0t3eV0UWY8pTLAktnVsxSLsObr0UkRBDu/46OhqJvZXkFLyh00htUFFVMZvWw2B+g6Uok4OkpKcNdnX8LtdiPFzLuDtcwwS2yKerjELLgb0gkLx9xiGpXGiHDlTY9V/SKUfU6SZC7bsWL1jew7lWEvKQmyttzORRlyyZCK4lwyrv4eIJldzIpFGt5F0+Q4Se9ZokJ2qHK8wp+gqp2TZH2PjxLwbGMsHOHneWEAkc+29RD7gKaOCZYpNCUcpqBESrVFpNIdPHeKW1CDlMAuKVFjqOXUGIsptt3FMXao46xEdURIpbNDIU6CQHV2qDq3tRFZYB+I0Ioo6NlF8j0nfUrURmTCKZYSo/BLK822/V6FSKSJWKxcthJAN1RmXwrCZEapdiaiuODMcxDp6EL98kY0ExFJpSoBw8DKlUpQIUq0U/p6+Ei1VXBUnUIoli1ZCglBVYRQn0pSlITX3qpVKuO+op6Z94jqi625vTDIeVbWfDw+iiewR93NmJ1MY2zkxIK2xGnH4BT58Kya3zEKAngDav6FBDDmvM7SiiCZJWLFMbUkOFbucnSP/PZEsWBQY+b0cIykb2UVMaXZuc1R0MlsYeZDRE8MSQx51XuRY7dYiMRxTsh1q2dU+3QK1VjEEsGZ56GUMEHjpfhOiki8mHk7ue755aGDIjxOosYitiOXj5vGzZA1ix/4aVdRS5TSQpsKmS9+v8iME7GyeHl+Nd9F0EXWWUFORWhm6XL1/XCnGiOHPcny1fxuop3AMJ6/rEyho4KSZ5IdMGDg7trH8L7nI7yVegtl/lJc4bkaAHB37i4URiESspDtH9vjKJOML99ag/BAbxPgwjCFjVqa8MUcJ049owpXXzwH48q/RqYFaFjVgFXz8mInadpEtLQrFLqjZQkAwJZR63V1SI2RfzjR+UrVh06r9C2tQdjHXUQtv1ms+rg5oubI/DnqfLmEWrPGjFOoYXl5CS77RTXOOutoPDrjA+yxnzLlLq1Va4qs9z1J030aAa+jHPq6yKUPlbx4f0IUQ33/taHMjnvGUErT5zdFDU2ZWxLSVVSqLcZmE/Z334X93Xc3djUGF7qOCQ/eh7RmgbbzbnAXzTaLsZGiyxsdsDfe+ozhK3+KWSvPxs6j78DSspc3dnWKsZFixsMP4byrrlzjMYedfBxefPWVgr8ZMHDviEfwvu8jPL/0IZQZ6uFysWUxFlsW91nWyT/6EaYcOgWX2my41GbDTTfdhGHDhvV5/FDEnff8DUceMwqXnP8p9turdb2ea11j4phG1I2IoKXN3f/BxShGMQYVRWRrE4m+5ExXF3K/ZJrSmXyD9ZwZWctkRX97gnuGzvyIGP1u3diJ9+pGIEEkQJAqkI8hJpkiVy57/3NEMsSQ12YXfpSQ8MlxaVU/gvGk8Ifyl4XwcWykd5WVKbQjzkx7inyJkqBCHzRmsHVdB3Qd4+//LZzNTTjv9ddxUCQKjVyljnaVvbXaVZtcrFvAo8oRTkiO/9ENA5qhw9HYiJzLBSvbkCUaZ2X2OpFQ7+PMeqeJ1sgefMkOJ4mIWQLqfAHKlAu/ooRG0RmW397azr4U82SaJdvFlJYoIcfMzsy9yEmbmVeryErT/JgIXpxjK+V2zwIJ907mSyJGZCim0BMb+8JJREqsADTOC4MT18H3wrvTs+qcFp3GtZSA16j2mOHYdnaoOdDeouaJoDqS+c8Q5ahfoRAjMQw1eXMsRzhaVmshL08QXEHEPOwzyezHKRsu6m0JSmNX1yiZc9knP3aS8pxKdp0OAGhxtfBzFV/vNgcTLTpyOs9D24Ic6x+P0pia3J1hw/M3oh0dqq8FyXST8+QtVX3W2ana3N6m5veXX3wDIC9LP2HiGADAyFEqYz6++Ux8btGw4/DbcEnFC5ir+3FF44XYsXM7nlHV2u4iB4vzWK5HWSOEV9baquonvl2hoEKB0kl1PMiLs+rqNZVgORkx8Vb1DOaIcLnVvNTI1TSV7YhwmebjThHSUB+nyQPV02puGSXkkfpo+uzkHHOoPha+XTZBk+mEWhd0i3rv8eZvfIXbJ8toltdeSam6VsXSwOmkmgd5j3aOlciDa7RKkGu1gdLx/Bhe4fQRyRLqU3sbkVafqlNNjUILXWVqjFK0RIjTJNvG74kthRjuin1GLpeDYejmvBb+WnWtmvcjRo3E848/hbFjR6G0rBS6rsOAgdur7saHwY/xt44XUeoPwUa5fZnoklAQjmVfOzTW5ddSzIh7FiI8toZlS/HVXA+eeup4/ORYCwKWtzDrfQt8XtW3uqHGJEL+cdNKch/blfT72BoauJeKuT35x1RQtPDV7+a6ahELD/JRyRc1RqjGB5pVny9tVmI6uSivjy71/Zaupar+0YPw6X/moS6k5sTkvY4CAATJY3V6aJwt9hlaoc9X7z4Vfiq7y9JbxGewMVDUZE0I1/Tpq+fzdY/BythvqiG/D5p5gfDvPTQAjH62MnXv9148s56I51peXVKe1mNebQlRRLaKscnHcU3NsG9uZpW6jtH33AVnQwPOfPlldPn9OKB53TKb1uh9KP18NlYefuQQVbIYW0Jsu2IbbLtiG5RWzEZpxeyNXZ0Bx+imM9C88iY8Zm/FZV17YPrIi/GJ77MBfTcR3QuJ6F7ruYbF2Nix/TbborxMCeAYMDCj5n78N/AJnpp3P0r10EapU4LbedcUX8314JxfjsH0U7/GUVPdZsJvU49p+/4JL//7FHz2zbiNXZX1GlOnGpg6dTO7pyjGZh1FZGsjRy9Eaw3Xfz4TsXoUzMinjwreb+zsgGQuB7yHmq9xZtGXL5gPfecdkCXPSZAFEyUhmiToTYLIRorZcBeRjxT5EF3kBWXNz1WWLk0ekc2er2cp+QLCA7Mza9zeqjL4aaJnwrFyOGyArmPMfXfD2dCA0154EYvKynDnJ5/DnsvBQ76F9IUgBllNlOnU31MZcrEszKxHX4EWfRjvXX0ZEhYLLLpwOpzsCyvfq7bEeUMgKop2uzrOH1RZ6RhRjNZGZaArXJyuLnVeNzOYPtbXWav4PGI4mmIf87SI8u8yJmZ9eqCIkrGyU+VRkKyUyZlxF/QzkFeoM3LCz1HnStCMNSfooyBKRDXMq4MZfiMn6AFNYUVNjX3DJiGtpVi+6sM2ojUWQ1BL1pnzp6JCZfjt5JTsctL7AAAgAElEQVRl0oKoqvLaycMopdmy10/jaif5T1k15rG4mgtOzsfRo0ew/qoltUSy2skNk+z61m8qo9Ku2jkAgIb6JtZPNShGbuOIYAlgsWD8eHUjlabyXZJIhFx4MhbCDQKAEiKfLVSrlHGsojKcxaa4JRby6CIRhYIsW6r4ZYI2CndLFEM97T9ARyaI40b8Gr5Vp+Gnoy/DfQtvw76ZPdWJiTI6LeSMcE1razyBVRYOoKugT61WNUZdVJLUdZXocBBRyhHVTKSoVkhUJhkrnCNemoObCXlL4auV3Ma2xx4BAGRiaq7kaFZbb1djYXMVqndKO/ScZNjJUSM/KpcTNB5m2GzqOytWqDIFMRo3Tik/upzq4BivxQ6qtJZxfgoKmOU55b3VqsYiHuHOAVF5JTruZt9WVaty0rxuWlrUvM6yHqVUniwlt0wM07s61FxwEQ2Rtcbr9cLhcOCr7xbg/icew8r6eoweVYfLL7wIo0fWwaIBW+2+K2665mqcdsopeNL7NP5wwgvYy70bPj74C/zk0fPQ0tKKPffcEw8//BBQx560ACtWrMB5556Hf7/3HqqqKnHlFVewi3v/Bv3vv//Fry66CN9++y0mTpyIe+++G3vvvbeJVo6fOBHHTJuGYLAETz75BJqamxHtCuOjjz7GjBl3YvZnnyESCWPM6DE48ZhpGDniWFxw8UT87Li/YtmSp3DHQ2/inqtvhMvpxPKGdlxz929w8mFHYNHK5fhi3jdw2KzYZlQJ9pxUhZ3HqTGsrZCdC9zFwd8Ft4tcPyJZMi31nHBliVoTca2tlDlBRV6uz54yhVqXjdxGFZBW83UrzML/HXsrbn/8StSWroDd6cS0A97BQQep66FypDJHDlSq7/uoEOl2q7XCyjWwF5mt1z2J+UGv8dhoYd6CiQqzoNbrxj8baAz0/miwpsZ9FdvzfnEwMZQ8r9XFxr5nXR9RfNgqxiYfjT7/JsE1GVDoOkbfOwPOxnqc+fKfsag0hNv+Nxse67qByFp2AXKu45EoLRuiihbj+xY7vLkTtKM3vc0Mia690bD415g65kY8W38GfjbuSjy0/C7sHtt5Y1dtneKdkg/xge8TVGUqNnZVNtloaG7GA089jtNO+hHiySye/tOzuOH2W/C7Bx7rdexS53JUZMrwzXfz0dHUiVtvuRmJZBKXXX4lzj33PFjf4BZPw8Bxxx2PtrZWPProw3C53LjxxpvQ0dGBcWMLEZt4PI7TTj8dl116KapranDvvffiqGnT8PVXX6G6uto87oUXXsTkrSbjvvvuNbexL1++HHvsuQfOPPPnMAwDn3zyCW649Xa4XBNx2vGLsf1WC/HP5tW3+60P38c248Zjyi7bYVVrOz6evxRlARe2H1O++i9swJg44lvc9LNz0NZViaS2HR548Sfwlr6D3XdYurGrNmTxj3+oG4oiulWMDRXFh61NJAaSKei1P1b2phcmS/tNVAxUCWhdn2/WWnGI2d8u8pqe3XkHZKxW05dFOCvCtzCsKkOb0+mTxWKEwxamelyY6m7CtxKul9tUGHTx1WNWRdT8JPMtmcF0ih5M6Swsuo6qB+9FcPkSpHIZLC8vw5lvvw3N5cIjXy+EpyRk8gdEUU/T1DmczrzqHgBY7YXoiXCiOke1wR5LwkIEzElvmgz7QDhSLq9qQ5KohZs7he1sa6RTZfo7yR2z20QVTZ0/VKoQDFHQE1Uth0P4Par8jCg4Em3KSJacaljCQxLkzsO+LSlVHDEZyyx5d3m+FL9v5OWHk/TsEhTMyApfR9VNFBlDZYoXI+iYfB6ggp3s5BElRItGPlqbyurGqNBVUkr1NionVtBTLUn/roZGhZIYTVRvowqm+NxW1agH4nCHKldQPlGQlAtY5pIuhnFEbkWlME6fMA89zUJExkrL1RgtX9YAAGguUa+C/C5dtJDnIQInCJ6uA4Zhrg9RXgeifuigKmFpSJVvs+dhFR/nlYxXlL5aLc0K3Wijx5OHCnejRiiOx6JFywEAHW2qLcsWKy5IPEYkk4ixz7ctkvFLcejWd+DxxT/GL8ZcjAeW3IE9U7uouglvj32XzirZ8FxuDPuIPluSWKeyo8evxsLOtskYaBl6lGlJfo9kL5NnRATXKtycHourRdB6UdlU589lFJo01/k1rh59B/6v5UzMdc03M7WZFP3xdHW8TgTLKshWVpXX1iaqnOp4IH9NuomSebyFD84p4Z+Rr8PLBemMqrusg+ixFpk7Aqg4GixR1+jIUcMKmuzieQXdlusynhAfO6Ly9GsTZMBJNKaNvnS7bq+eQBYusyDS1YU/PfEU6kaORDSWQll5CJdceyXawu2orq1ifS0wYEGzsx0Wi4ZoPI4/v/gCho1SiF5rawcuufQSTE1MhdVtxVtvvoUvvvgCH7z/H+y2224AgJ122AmTtpqMcePGdfthM5BIJHDjDdfj5JOV79sB+++LceMn4rcP/BY333xTvnMtBl75y8twucQDT8cJxx+HMFG7L//3EWoCB0KztCDouw1bj/0JsinA4VJrQ1NzExwOB1Ys/hIAUBuyY48xVpT6kwAC6Ai70BbpxAii15omv2lqTL2mdyT5yFwDo1HV95pFFCClfvycu0Aaw1yrypUGY+1ohYaHyhWHMhVWPl8Wl7oeyoLtKAuuRByNOHvaEtz60BWorVxlIsmydrk8wDE/+BY/PU1dZ+XVageEjb9PwnU0+d6WQg5XTyZL34p53TlWhUqi5jXY6zur3wFksVjw8MPqO1On5nr5q3VzkyqsqyX//dXVeW3RnsGiOP2dr+++5efSrvw3BlX+QOqWr8vgyjC5f0VkqxjF2HiRql2/ylFrExZdx27PPAZ3uAN3XHEFOv0+bO0N4fz6FmwVicJjXXdCcDGKsaZ4/cg3AQDnbOR6rGtE2nfDkq8vw5Fb34HnGs/EKaMvw0PLZ2D3eG+Eq3bMAwCAlQvu3tDVXG2UzbgXAND0f2cCAFa4GrBrZBtsm5yEua75G7Nqm1wcf4QSg7jtQaC2uhp1I0ean40ZVQcAaG5pwdaTJwNQt4Izyu/DIucSlGfLULdDnbmtFQC24nG7rNwZFeMqMOvTWaiqqjIftABg1KhR2GmnnVZbn6OPPsr8v8/nw8EHHYRZn35acMwBBxxgPmhJdHR04Nprr8dbb89EQ0ODuV0+ngj02wd1VYU+i7VlLrR1bZr+VmNqF+DaM29Gc0cFjBwtSzzqIdJdtjXueWxPlNU04QdTw2sqphjF+F5H8WFrI0cv1/B1KKunP8ig1XTWEVHveZ61zU7ozOZJ1tBgpnXFeRcAAOzMnEpmViJL/pRs8+ikelaUGd3ONpWF1wVNYbZQeBGai5kgPZ/RF85TkihANBaHJZfD2GeeQKhhFTJ6Bk2VFfjpG2/AYrXhxv/MgqurDZVEfHLkJhlESTJEHwSxEhVBQeHEz8QC9Zo1vXE0wGIx1ZwkC52Mq0x6JqX+Ln4+PnJNUuSeiJdYmucvIXohXDOrTXyAiByQt5MQxMquvucl30LGSBAxyboL+pNOCvKn3pdXqMyncNbaqAApaofC5dFJGHG582Mg3l9R8Q5LFHo8CQIj6J7wzCxE2dxe4TkYLJu+WUSQOiMq097ZqdCEQNDDctSrm8iSeJIJYpYy56Gqh531EE8oQfWqqipVfTTh42QK+jBKnyRBDGJx8Y9T7RdumqhphkrLeV7yL4jkeVl+VRU5OmnxYaJPWW09YGiIdanrIBjwsz9UO1t5fTSQxxfqZrydTqo6mRlzKtWlydcJUMFueC3FDIhMJsnbaWpWbayvbyl4TZBPtu12igtSZ9sLy+ZdiUMm34ZnG87AT0deigeXzsBeKXXjbLEUqm867aK0Jb5XnJeiUBooY99RPY3zMcefPreLbZTrTLLlWmFWOJcTrz7hVlHRkvwn+yqFLjrc6rrS7D5omgP19jZosMFiketdvWY59pKvt5KbZnJDOf2t3bYfy/wKlKjxFvXNWCxeUOdUUlDxQsQqyWsyFCrkjRpQ86SpRY27zH/xXRMvwTQ5gCnOBVHNdPJ6isfpc0eETdDt8mqF1kTIwZX5ncvp8Hm8SIuia2kA0UTILFNUMT9xfYr5vgX4S/OfcJZ2PkKlpXB5/SaULOqyx8WPwzb61jiv6XxUVFT0+jGtqKhANNqFGfx9+KPFAp/PZ17f5nGVFfhq7twChb2qqipYLBZkee22NzXijLOmY9asT3HIfqfg9Zk/xOH7fYpVzX/D3PnzoJO72N6ufoOals2G3WZFlVddY5NHGNhxbBpu/ub8c46G1ogBp014dKouTpug4bKugmNn8DjOd84voQDK2hSOqTYkrWor66jx2wMAggGqzUb5m9ilJPNzGbUmZh3KX0u3qddcsgNloQha6pVaYjrOB6uoE9N2G4crrrkf99+XQjCUw9GHL8QpP1PXQaBMrX0u9rEotcK8R+gBG/WINXudmXc8ayyjvzL73YFjlr7m8jeU79ZAOVp97XQy27MB0KOh8jzbEqL4sFWMYgwiLLkcdnj0fqCjDXdcegliHg8qrW4c8cmXGFvfBFfp+lHI8tb7oWW23IWoGOsesUhln5+VlDcgdPftyF10N7Bvqs/jNoXo6tgdTUtvwKF11+G5pjNxSt2leGTFXdg9vsvGrtqg4oPAJ5hlfIknV927sauyScWqRu+gjm+2teDHnSeiTB8YX7WqqsoUcukeLS0tcLtd6M7aikajSCQSBQ9cLS0tqOnG1wJ63wQmUyn86933cNyR5+Dtd2fg1GNexnYTM3j61e8fB6gqtBBX/eJ2NLZWo2rkjrjr4Z3hL2vFUT8sIl3FKIZE8WFrI0evLMtq7qd7+lutrd9Vr73LKEyBDDVXa22zFOItlUmL4p3K/onSkew5lvdOUeCjKl07JdbbmpRCmsnx4jYPczsIUaIoVeccVFRCt6x2uLMLllwOk/74O3ibGhBPxbGsqgqnv/kmbBYLrv9gNpyZDNraWnm8yhR6POSYaFJXei4xSyzIlijtaWyj9J0ojcViivejpazQsla0UYlOlL6yGZVp9blVH9hENo3ny6TMjeYAgPIKdUMeCFA9yqrO30YfraZ61WeCbAlXS7hWPg8zkoY6Ly2rzKx7joie0ylwYaFnWprqb+3t6odYUKAwFfsMIgihivw2IUGuXG51kxaPqWMjzNh7vZI1VW0WzySYSomc3+TBlVeqGymrJiqW9CEi2tDaouomKoRVVSorLL5aNeSSrFiu0IymRqUOFwio+onMsyBsth48PMn4azbyMMjb07nHvoPeVJ0diuMydpRCGFJEgZo5RgbHTq6HOR+fosrhHEsm1avNlcLUEx5H9Npb4XnpJOj7PgsAyJArFqY6p8slCEWi4D2QX3O6koV8RxD5LSFK5gvQv4d+UyNGqbFpbPoCANDQoPrKQ088uW5EGVH4P5HwOLS1/gqH7HIPnll1Ok4deREeXDIDu3Rtzz5Up8/zVwuz3II4WcgR+X/2vjtMkrLq/lR1jtPTk2c2zmYWWHIQJAqICgLKh6IoJhQD6ucPPrMoop8iggkxfSiIoGQQkKQYAMm4C5tgd3Z3difHnukc6vfHPbd6u2dnZzbOwPZ9nn16p7vqrfvGqrrnPeeqEqmVK83N52IfWI5S4quluWlYrpOoqV4mn2efFUq5nL6AvBC0RboQdyTxhy2/wRG5Q+xcb7oCKzKn52d4XadX+lT5eaoUKNem2mVBOX/MwaSKn8pJ5NzTOaf8OF1TnORpag4+5XYoMqbS5tm0qr7K9ynOt25yFmupPqhKk8NDcX4v88PH8R8gH1PVLa+4Rl53qkIOGKZRVEz1+OB0az5AN0y2edyZhNvpRai6Gg6nE4ZpwuF0FfMCsVPa0Q4fvDj8sMPw7W9fiWeefRpHcivhpk2b8OKLL+JNbzoadhJDtvk9996L977nPQDk5euxx/6Kj3zkwygxywKsAmJ98hL37F8fRj6fx70PLMWFZ/8RBy5qRyoNrFi9GgaA/zz/BAAgP7oBALC4eRQelwMBv4y72moXZjR6kCAKaXDEWfb4ZS4+OzeZzOUhcrQ85G6FuB4XiJEOx+T7rj7m1eqVeVY/Q1QHW+cLZ0v9SPYIh8waFg4kTFnnXQFRQu3qlDVn3eqXxZ+sqIsG/eJHd6+MoYFBGRMF/0Kcf/IsXPblH6B//e049ngpb/5+Mm/rmgUpc3BHhdKKiryriflCYxGtMUds97ytn3MMq1iMnZ+tnJNVVs5k84XurO0sh0ut+PxV3j47h/ztCIdrV3c3VThbFavYNLB5X7wUALD++3svUmzk8zjk+mtgJuO4+rOfRczlQthbhbc9txwL2zvgqamoA1ZsepsvMIJ0yofM/WfBP/Hh08YGew9Dx7rL8dZ5lwuHa85l+Enbd3HE6La5N9PJ1ruEl3REavr7Ot2tx9GLM+KnA5HtH3e142qEHCHcdfodOPDAA/He956P71x5JbxeLy7/5rdQXy9Bk+vMIo/W5/PhG1+/HPHROJqamnDNtdcik8ngM5/+1Hav1dE1Gw7zULhcX0eucAxeWuXDw//6J7xuj711el80ywJWrD8WNZFBRCPDACbmr1WsYvuCVV62psgsRjSLeVd2ooxpkkdLbbL5KCY8jm2SZ3Q6r+iPqgcyKq7KSxlGVjvatwAANq1rk+OojOYhMqIcGScjtQnyi0bIiQn4PFh8y+/hHxjAhnAIKacD8zdtwvr6enz0tj/CDQOff+CvcI8MIEEu1DBz2ShapshVitFh5f34SSjWSLZynDRyripvyr9QBbnREUEdjJxEPTXCaYNvRFE8zIulkdEEOTU6rrLkRWSJqOmwK1eytCOLKI2s+nxUD2T+r0w6ST+pPOagoiOj2HVEgzS31SD5QBrJjJAPpMicmkm0JpXM2d/5TTfrUJrTLJNhvrRcadspN0rRRAeV5tg16O0WHkUV83GpmmBrqyrWyfXaN7YDADxuQbhqa6tLrqc8vAg5hTaKaaraoaKZRGqzpbnRlH8XDMv5i/dfCAAIBOWp8tlnXgRQVJmrqgqxbTiOiToqQj04KH2eU4VKjv+6cAQOhwMdy7Yg2FeFkTjzy/npn+YhY5MrktfYqGpwQBvn1KqVEgH3c7xpzqYs56CijDofFFmKRol4sQ/1UxHWHqIl618T9cJFiyUCn8sdif7+S/CWI36MGzs+jPfP/R/csuoG1JBLODpK1U1F4ViJAapu+gPMFxeQ6xRzy5J7RbTHop8Foh7ah8oLUrRQ15BypS9VS9PxXOR+OXgd8pSy0k4uIjgmy0knlf/HPHNuHWPFG4OOF80bqPzIIt9TvvfwXOUAaq47G6lkCF+VEJXzt2TJIimH62yKHFjNH6eKrMp/c3At8RpEljlvvBx3BYopqHKpciVNo4jiW1ZxLbOsgp07LpfN4upqET/5ZPbjmFM1Dx6vD6ZpCiJhGOMG6g3DwF133o6LP/kpfOyij6O+vg7/8z+X4bFH/4q+/j48Qt7QIYYBv9+PG274DT77uf/G6tWrsWjRItx7z91oamoq4VPn8nmkUmm0rV6DlWuq8M0fvhXveftGPPfyz3Dj3Q/A5/HiyGUHo6e7A6s2boSZlHnSFJXxMH+WGz6PA0Oj2s8G3G4DbnK2XC4DpsNAjqhl/6CMs5pq8TXAuRoNc8cEVQEVpNNRmUrLF52DzPtYI4jSgqWHy/n1wuf0QNY0s1eQqjTXSiMo8244KX3YuVm4XB6ri/WQPvvKLauRzo2/HXRG3Rpcd+Pb4XITffX6cMwh/8FHLhK0ftbCpfJ9QNYF01mKVhV5R2MfjMY+RyjyYh9R9vsENg6iNfF1t//9jtrueo4bUw7bpWCTuPj1HsiVNV4dJlIpVBXi6fIsuyes8rJVsWltfR4PukNBnLNq5R69jpnL4ZAf/xAFA7j24k8iZxo4rLsPq0YSWLPsELxj+Wosbe+EW/cv7UVr/vtsONOrkQxPT7Wqik0PO/XsnwMAHvjTRWN+M3MmFj26H5af/eLedmuXbaD7UHSuvxyntV6O96ZmYqN3E46caqcqtsv2rS9+ecx3M1tmoG3VWlxb+2M8GHgIL2x4GvOriiyrRx95ZIzU9/HHH49MJoOzHWfZ382aNQv3//m+kuMu+tjHAADv5N9f/9pX8fWvfRWGYeD5554Z9+FzxfKX7P+vXFOFS79+GC54521YtngIxx/+EQBAN5Pcr3/1FRy8YCFgbQAAHLu0BscurYGPSdobox789aoj7OCV2lffPwcAkJ7mS7xlAf/vJgm8HLXgTlvsJ8NtjznLi5boS6iulmCCPygvh4FwE2665+1omL0R7zitawo8L7W77srBnE4JlSv2hrfKy9YUWTFqpvvHt3MsP8fL7zDRNcaz3b3U7L5M6opIeHDZ4UfiLW0bcP4rr9jRYo0yK4qUoLpVnFwdzTdUYFTNyKax7O7b4RyWqJplmGivq0GE6BIAtGzYgDWzZuGTv7sRgUwWl/79Kbiag3D19mP/9i1oamoEImE7umwRqQkG5aYSDKlyHTkHinIQRVM1QFUjK+5NRonPynWJDUtUOvhUBPNuXYJk9E7AKKIw2taKdHlsWWKiOvRTVdQ0T4uD+VtGhiXyb4H5iRgVryeaoeiNmssjUcwM87ukiJQV8oJwUZgMPkbJ02nN/6LfU8WwDAHQ8e/yeLdZLzlWfFHlOs1Npqp7xXxRzLcVFQTIyqtqGvvGX0PfGHEnT6i3R5Auf0DKVbW2hoYGthnHGa+jOdZQUCVFuZ7DRcSUfvT2SBuHiFxFcnJcnqiMqm1qHi5FBWui4m9djZyXTMh1YRHJJdcqmZHrv+uxs+X3E++Qw7hiKB8u3ZOBvz+AR45/HCtnvozCoCJwgqDVciusIr1+olOD5HIBRR5PijwgzamknL4AkSOHURqhVF+iRAU1X5Yiv9pnCfIm+/ukzbrI7Xp1TRvLm4f+vs/hyqOvwO2ZdqxdIQ/O8RF5yFXOoiLHL7y4AkARpdt/f5EHt/maulZZypHheHMq6kKkqyzNln6hpyv/buRw4QbpGFF0XsdYPiX1ArljBQ9VQB3yaXMtiRTqGNUcaADg8cocJChmr3uKFGnbKrqoa5HOqRjVPPuYb9Btq1vKOFPEKk3VwkHm4vOSE9vXK2veCHOsVVfzPKLRGaKKqlSpfZFMyvHRaLSk7QySKk3uXFC0/3vhq/BA6CHcM3Q76j11cNso6Y7dsSZ7PxrvOFW3bV/3KgBgxSsBfOErB+OiCx7BsoX9AGoRH+Wuii2S287Dl6zDl0ofzG5iXkKupwWiijrntUY5lcS1qOqakzZLcq0JesVHfWnjso44+XhD3Miwup3c2aBwtBYukXHZNEN4nwFyvLLdr/LCwkHLe0V+3xmaAwBID4gyZWZEdovU+ZN80RK0/1efPhWN1VuQIdo5SrS9s1f87E1SMTUg/NiaaDU+fMYKXPWjS7Fu5Qq87/zHxb8DDwYARJsl35fDWbwns0Ewnu3o48ZEKoTWOIjYROftap6tiWyyz33jXr8MudtTfm7z0hNcs5yjVUG2KlaxKbIDhofwYmMjzlqzc7lqnJk03nzDL5CMVKNt2SHIOUzcf8ShcOfyWEaxCcDClqOPRdsJJ+K96zZi0fqNcBX23oK0PaveVIONR69Hy4sFmPmJj6/YvmcNQ+OrEAKAL+6DZViIB+KY/dpctLWu30ue7V4b6DkUqVwAUW8fkgnNuTc9oIDh886bahfeEPaD6mtwv/8h3LLpt6gP1U21O7ateCWAT31+ES664CEceuAGfWfeZ8yygO/cJy9aV33geDRW9+1wGQ01HfjcB36Ja2+8CPUzXsEpx23YzV5WrGLT1yovW3vZ9A3f3j9b9ky/TTXCMgyqXIVpZ62gkZxdKmX3RUq0HIep+ZEC+MqmzXjf/Hm44Mx34v7rr8fCtWux+qpvA5DqOywLYaIg4VwOQx4P6rZq1P1efhkPH3UkLvnZz1AzMISUx42Gnn4cunwlrj37HABFroNyHx6YNxvff05UmkKhIH52wGJ0ky+jVVVk5thYDOdu2gLLymOz34dvLFpA30qRK8DE59euR3NC7tK/b6jDv6PVdgRd0bxCIY+WRBKn3HYvAKAmUY+XFuyHxRkX3GknfvC2t5Qcf9orq3FQewdSyQSWz56Bx5btX9KGyo0xTAP/fc+Ddl3/7+hD0ROpsvtelR2dTicO7ezBaS/Lts2uSAi/PuwgmOSeKA/JIqrzvr8/jqZYDEODKTx04FKsmC0RUlVK07HbFI/joueXQ9kF3zz+WJZTpl5kmjjj1fU4rEMiq8811ePe+XPopVVSttvjxrUvr7Rzi13V2orOUMBWetScXU6XG0f19+GCAXm53hIM4KrZs4so2vz5dhsBwEUvvYyWeAJuhwt3zpmJZxsE+dFytVPrh4ZxyarVNn/vKwccyj5UPlHCdvuk5a/gfCIFT0Zm4KaaeuRrNXdTqRLXDzdTIayQw03HHoV2RvaVS6N5jY7qH8Y5GzZhdDSFjmAAm5olivx/F5wLoKgoedzmdTjJAA58+iAAwG0fbsQrc2bZXBwbXc3lUTccw6deFr6J0w1861jZsJc5RMZV6rQTxDfLwJFPPIsFq+XFbcOBS/DI0oV2vjY1RUgvufcvAAB/wI8bjjwEHczXpn2g6OSMF1/Bskf/iUDQj4G6GvzgHaeIL0QCfmQ68ETUgScOORAff2kFDiQX8o7ZM/BkdbWNGsbmC//I5/OiaTSO7xHVBvL4yJx59rgvR+AuHB7GiYk4DAB/8wfw20h1iZ9b7TPADZs32tzHbzU3o93jtctbEZC2v7CpBceNxvB+5jHa4HTgylkHwSQ3C1QbVG7jFze2YXY6ja6OXtw9fwGem9tkt6XmVcvl82iOx/HJzaKG2VBfh0/vtx+KZAyuKZyz52zciKP7B5DPF/B0XS3+dIDwZRn0IZYAACAASURBVJQvqn1mOhy4dvnL9hr3i4MPxha/b6vxIX2ZTmew/4ZNOKdN6jTUUI9fHHyQPe6Nskj6Z1auwox4HE6HiVuam7GCPNbPHyxjSteWAde3ETcfwD19t6HOV4sP1DKIwHm5Navn4nwepxF1/IsBXO9w4Dle752O0seau3NFXugXHGMfecpVeJVjtvFVCfA9eOdGfPsn78CnPvgQDlq6EbAMu/+6ugQhCkK2xi1ZSlS8lpxX5s2KjRDJJzKV47a7vMWdBV5BCX1Eimc0UZ2SOdDs+47ymLnDQKu2uY/1CgiCu2R/mbfVbEPd4RDrWgcAMAdfkXKVb+eX+1YOcp8bia2DZQEvb3g/emOL8GrX6QCA6y8+AQ2RLQgSPdU+5u0RkaD4F+gSxKytR/zvNcSvaPV6XHjmtbjuN5dg09qVePfZsi4c8Za3y+8NMt5V3dMwx386Kd5bdZfQ5BGfL3zBAQPA1T+YygjmzqkD2mdPkEd1byJYO3rNHd2l9UawystWxaa1mQACmQwOWLcORzz9NAajUTxx+lvlN8NEMF/AIUxGGx8Zwb+bG4tbgmDhobe/A4+e9lZUJVOY174Fc7d0YuHq17C2dc6U1GdnbcWhGQRGsxMfWLF9zu5b+ACG3W4smWpH9oJdn2vBr6puw4MuN+bPdgDd755qlwAA9W1tKLg96Jg3D0POJ9DvfBROawL5vH3U5l2Z5P+KD1jr3Vdi0Hk3/tl+C+qctVPj2DZsxSsBvmj9FUcs24BM7o3/UAjIy919/zgPG7qrMZKSF6Dvnn8sGiK7zrdqqOnCJ951Da6/4/Ooa/o3jj9q9S6XuaO2fv2+0Y8Vmz5mTMXb7560QmGa7P8ax4qcFG66LnN3W8EZE6URjPHyQeyoD2o2qrCTLTfenuaJ/Bvv9wLbZs0Kye3RtmYdTvzGl5Ga3Yruk08DTjkVAOBjdC1NtGioT6LXPR2yzzw9KhwuzakzwJeyNHNBLVqyGABQQz6J3vszmeJLjfITDKolqcreMPNEKRcqn5NoqPJkFDXwkovUNyjXTpJ/VFcjD2KaV8pLXtFoTOrw6mqJqh73zIkws044g1fAmUzh6dPPlDrkJCLqI8+ht0ciieGIlFtTI3WKM/eYRsXjVCgb5WcgwPxIbEvNWWY6SpGxVEoekKJR+g2pb2eHbCfJ2il7pJ28TBJaYFv7lNRFtTFV6FPugnJ/lLeh+b+AIlIUjghnJUyOiaqhjQxIP8fIMQqFfLwGuV7kPWg50VqV62feNeYlSnAcjY6QA0g+kfLfaskR8wWkLu0bO1h3KoOBfcscYdksUWyqAza3kMfAquWo4Of2iL/9g3K9JK+7pV3KH4nJWKupljESJLcslZP6X3GSpEJ4kH3878e/CADIUCkyGuvBMW/9CTad8QAA4J+f+QcAoKGurqT84WH5dLoV6S2S+JWHNsrx5HKJD8NE66Icz41MBmuptCGU4yRtqAqQmturs1Me3pSr5fVKWyTIU9vc2cm/Zfw9/Z0n8KH1dfjqWf/B5o2zsO4/P5G24fWTbNPBQfFr7vy5AIpcF0V8NXJesJRLozmlqJinay7X54Kh9VCVQFUplFrWf/ozAIB//erzOL/1wzhj5K3odvbil5u+BwDIJmVNyqal3u6gIMAOH5ErInLJuPi9cZ0gEG53MR7qIsI5zHWsgW0dDoXYRjInBwZkDXEyf5xyjxLkf2n+tgjhCBe5WoqEqQKqnwiqJvzNZKj6ScQ2RcXUAtfxhsbaknLd5G+avLG4OPBdHO8ul3z+pvq3uCnyB9ze+QfU5msQ4fx0+7bN1bLvN1ZpbsJ1pvCm5mMedsT0fF0vOtqknDtvXoMrf3omPnreQzh0f0HxDKfMwfXrhUs4sOU5AMCiBpkXrTPFZ82RbBFd7x1QdVpyCy3p11hW2qq5hfzQvPS/kZF11WVobj62Pd9TE1QUXb9ZPntyUudFywQJjtbLuFI0PDksqoPm8NPyfUHmXc4jCqhGRBKGJzLi1zXX1WBd+/6o9b+AnuEluPpjH0PQF0MkRDRU0UZ2ja7z6bR8DsXE39fapf6vdks9o02ijjhrZiM6++rxs1s/inccdzfOO1fm/2HHif9VDZLnS3PCbQ0CFQVFy8fF5JGic86Ret51Rw5bwdz8mBxCtutoTKma4ti8WDtnu8pV3D0+yOdETaRtuLfUCE1zO1DpHjZz4kMqVrGpNWc6jUB3F1Zf9jUMHrZv6pC5Rj1wJsrJwxWr2L5nz6yrRzrlhdszPfhaW9tq71ocGT8MxySOmmpXXjf2vO8FfKr/E6jN71rOwvmYt8MvWuPZ8hV+XPnTM/GpCx61X7T2JWvvWoBM1oue4SU479gPI+iLTXzSDlpTbQ8+ce6P8ed/nIW/Pbl4t5dfsYpNJ6tsI9zLViiXDtdt9ts4tsgnKD3YjoeU872Ug2WWRvzs38sjM6VpF3bZdht3i5+6HdDpMgHDQDVz9ajDaUaxcwwvG6okpnm6yOUyGF33U7HMazJvF0MNbk9p9Cy/VR+p8p2q6GUJ4WjUt6hOJtf0qhohERstKZeT82oiUodoVJAnVdgbHqaSYkpuarXV4mMw6IKRcSD65FyYhVE4z5OQaSpb+qCpymOqhlZUARQ0SMeEoSpYrHsxDwpV5cKhknp0UxXO0Nw8rEcBisiRy0akK52h2hrbJRCU66sKXNJWoZNIsOb4CTE6r46Fq4vJMJX3EAyw/0JSVk+PROh7u8RHD8tysc+slJQ12C9RYg/RjXRSrpVTNFL5FJZGGOW8SLWgJQkqfo2OJlk3OW7L5i7WXfxrILdLlfk0rJcnIhAKS1Rcx6PFcZdMye8pIlHDQ/ESP5YdLBybbEbGiiJqWzolCp4+Rs779xMSnX7myWekDZn/qzqYLlHu8rMvVDWuu0f4cT6f+JciQrK1IqUqfyrKESASm+c4TJO3pqic5qNStM9F5FIR1X6iK+3tEnGPs21VOdKeT0Q6nbqmQcaWgTwKuQK2bBZEV/lHQaKaM+dKZNzjozobx61hOEuOt/+2ynL1UE20QI6h5sOyUJpDLUleXHFdt+CwHBgwBiWPFM/Lg7niyNUxlXtD5FiRLUV26+pkLCkSDQApIq8h5ibzcj3Lc71LsyxdS+IdqgKovDO5hnKkFE1XxCmbURRFrhdPZlmuVVJHRaUHBjT/HBFbU/NzSTnuAFFrov9uImg33SLHf+RCIsjOBDxOD4JE5V1ezUOnNS9HFLjDw+Yc7/SWDPlURUkq8D183yZ85X9Pxcfe8yAOWLQOmbzXPqVjvSCOPW3PAgCWzpY5NKfZy6LIE+W9CNwhoKq1bvJLs+RGuR1yP8hzbg8OcK0ypK8jYX1A0MaQtu+Pic9ru6UPW/aTl5XmWaLq5+Q4yjMfojMr+evchpRvuWRMeGuFN+cKCLKW7O2DZQEbOvYDAHzuzLPhc8dgGUQZtVo2NbOUZ63znhslMKNB/s4QsdvYLVsG68gvndGYxKfeewN++ocPomvDOjisPwMADj5BFFarG6Q+utNCnNBLl+2gMUq+npRtDYYVi909yNDEKM3UbsLaM+qe5ejgeOeUcbX3Ac5WBdmq2OvGgv9+EsF/PznVblSsYtPSNrctwea2UuZWs5HDm//rBrT97bQp8mp3m4ULj38VpqOARNw78eFTYMt9L+Oq+h/j/MFzp9qVaWmP/8uHx/8lT+PXRH6Mjc5NeHPy2F0u9zrz57jO/PkulfHiSx585X9PxRc+8U8cuv+6Xfbp9WaWBZzzMckddvG5n4LPvfsRrXJrqu3BRe/8Lu5/4nz89an99vj1KlaxqbAKsrWXbPwcCKVo1XZNAzjjplPYsTwKUx1NKOd2FffiE5lilCyVjMOyLNTccSsAYOhw2UqokXnNL6P5mLSYDBUDTXJZlI+UZzRb1eLclIB3OpVv5Ld9DBPpGeG1MozAa2RPuSSxmESTFcmpqq5mmURJIlJmuMrH7+V8k3ygJPMFOQvkwEQ0L5UTpmVKfpYCkGcozqMRf/KWNCKu3LEceULqd5r8itpayXWjvIoY+TpJ5uzxUiksTZkrjYK7ieSNMLquIyfI3FAmOVYhI8T6iV+qflj+qXu0fTYvQ8rTqLnbW1yaqiNy7Vxa6pIYkf7KkNfT3yfR2jDbvLa+hm0ndfYxst7cJBH1BPMIKcqmEf0a8tEGyPepa5C20Gh0X5/kGYoyj9fS/UXFUBGvALlcigzEYvKg4iFvwlbbdJeqAPpMRdIEiRoclHp2dPbye3LAiDQNjTK/V7VExd3knPmDMrbCVVKOJ53Gf118A9Y/dAYeGWjFW6G8CubTIhKovan+1tVLO1VFigIPnVsETevuluh/HzmCmjdOy9ScS4qo5gvS1v6A+KT5s3S8+dn/Ps7NGDmSyp/Tce0LCprziYZRHOnKo+3VRuTzwCsvrwJQHAOLlsg2stZq6aNCVsoxC6XojMVIeTGyXcodKPI35E/Lyut/AAA58nu0fmobfO3Y5NmM32y+DsenjgccPM8RYnnpkuu4yI/L5Im8sf1McuJiw9122YkUc+8xb5vyHP26XJFXVk9u4cYNmsNMPjNEnTVH2jCTMyla7+Faoih8XX0dyxffte9jJA6ZHHdNswQVCVcF6AfnLhfJBJEup1d/l+tfG/0p7gzcg/tH70NjqBEe/3j5tMZTYyv9zyPmowCATxYu3ubxdmll98cscxs+cn8HLvnSEfj4e+7DkpmvIe+Q9SQ1OGIf29ch4212rawR85Sj5RYf4snSsnX99/vk90xe2iALrjX9UrYrT66vyXyLHFaJtLShi307NCzlv9xGdDIqLycLFghC5ffL2FAkN5MUzqO7QGTLxTxuDhkjDjfvUw5nyYvWB07/KBxWtz2vk1neX8i9dOsOCTuvHv/mOM6R20jwFYtmyFhJpiXHW/t6UbudN184XE31cXz8XT/B9Td/GhtfW49s7n4AwBEniQpipGnGVm1a+tha7M/JPc/I+DJQPq4myzWfrE2e46VqihMdt2PX2122I/6MdWHbc3lfQrTUKi9bFatYxSr2BrCmWSIo09MtCUxb3DkUEj483C8vIPe+9y4AQB2mT/6iHbU3hVK46dH9cM7cwYkPngJ7xSsP4yfHT5xiT6a3rXe1YUPgLtzefSsa/Y1T7Q6ef8GBS750BL5x6X8wI/zaVLuz182ygKPPEPn1X/7vn7D8ue4Jztj91ljThQ+941u44c9fw4y5z+CEPahSeMopBUz1Nr6K7VtWednay7Y31B8nErXZVQ+KGWe2X9J46oljuGblbcLjnERB8kRplDei0WlV+nMzOuwgChMiapNKMiLJYLUiXMGQRP8CISrr8XfNO+YmZwAAMrz2ENXTLEbKozWCKmh+KuVoKc9lkIpgihYEiTq43ORBpHR7hoPHS8Qv5JPzAwHJj5LOAI6sIXUuWAiT86UWH5aIqKomalO6yVsaZm4pG0HieYp8ab6WPCPwo8xH5GLbVkVC9FdClENDmgha88hI/ZXDo3+nUqXcLcMocloAIEvUMUj+VYHR5XSaOapio3YdNZCpnA/Ng5Nl+Ff7IEGkUpGqYDjAuhBtIW/C4ZVrxBm1dRmK3snvs8iJUV5POqN8Io43llcdFcUv5ciMxOT62heKXqiKonJNTIVFLeUUiuWJJsao+DfEcteslu1MmpsvTSRi1ix5qZqdEX7SkmWiMvjyC++XesIJyzKRoRqdqiauXrVWzpsj0WJFznS+NTaqSmGxD0bo00hMFT6lLzymfCrnKpPuLCkzWiufmhvMwUh/mHPUy7mmKodgXyh/TPuyu1se/vJmAemMhY52OW/tmrUlfs0hVyuTpGoi+8zhUnk4lLSlnb+I89btMdl2dId9lC9bo7QP1X9VPLXjtERodS0zifYo30/nRUHVOXmik2RLReGrqrZC2avIeyTHL0l+ZohzL8DxmzJkHNXVCYqt6OAI50cuK9ccHiIar9wtdylCqkirKs0pN0pRyMYGRb64tqnaIBE3p1d5PkR2uX63uTagy9GN/yTuQ2OwES6qJppmebS7HHnQ/5X+PpbbvG0rz6el3Nznnu7Fu9/Xis984AEsaF6PRJxKqsyBtbl9Q7GQjCC8c1vkGD/Hi9erSKWqDSoSKldzeWTdNtxEaAocP4OynrrZZ26XfN8T49rGNslyQK7v4BrgnA0A2G+hIEN1tdIXDq7byRGZL5kBefkPGXIdw8E+8Qiylc0ZsCzguHfLi9ZPLr8RVcEROMhV9BKFtzhA8xy/lqFtr2qd4p/B/GOGWbruB4NyQGuTrLnPrxO13Q1t0l5NzaIaGg504/zTvoff3HIZNq19BcjeCQA45C1nQa12pih5OomqF/u9FOEybMa0WGErgtbFF4+fX2tnEa7dhYwVyynNvzjWCuN8v6NmlH2O8Yj+FH8fP6dX+Wf57+XX3Hes8rJVsYpVrGKvY7tk5UXynwO+PLWO7GFb/r7lsBwFVLVX4Q//WspvR7d7zt6ywf+5jP+7ekr9mO72k5rr0Ok4E4elD0HjNAEWlr/sw9FHxnHkwfue6qBlAdfdKMnYr7j0X6ivHZngjD1vdZEOfODUr+LGh7+NWfOewAlHvDLVLlWsYrtslZetvWQT7d/dJcRrAuEXG2HSA8ojgTt7bVtJsTRiuMvGaJ6fPA2vxwvDMIo5b8jN8pMXoshVntFpRZlcLlUnJJcrK1G1VJxcGkaCw4zCexgVVF4RACSJCqgSWJy5u6I1EhkMhRVdK43OaiR8eJhcLyp6DQ1KNNpBtTNboY5RLLdPotFpRlUzmRzMrAWjIMhBOqEJQeX8wX7hEWlk3suos/IzguRgqcqbKjhm2YaqdubhnnxVk6pmxL5QkDYzTIm0KrroIOdF0ZsclR81L5e2Q1VE1QjluG7ykNLkWw0XqGZHZMvrlwiwRtMBYLifeX+ITGketIF+4U24XN7SOpGnFgo3lLTN6Ii0XY7jKE7kJkeflXNVFann8eJjLEbVwoQialKeGaKSI5Eub10120bGn3IOC+QxFOOu5MaQ92PndaNanI8cMeXQDBO1qWNeLOVujYyokqXUQ8eQIn6pXAKwLDj4/fF/PRkA8OQ7RGRGFSI155Xm11Kkoqtjq61E7Ofahnq2WSkyOmuuRKZ1fKRT4pvyx/QzwjxbmsOsv1fGryJbiiTVExEbJT/oqRPXYfNxmzGzvQZrrYCNnA3FpI/8IRnfNTUyf1Bw0j/5U9O2FTlYKPlC/VbeJ4g0ZJhfznIQ/eHaoFw1GGyH2RJtT5kyjp0cA6pUaeeR4bxQZEyRYKeirprHKyPXiUSLqpxZrl9ut5TpcvtK6pQtQ9XjbDsjpJxVOT4a1XxtMjd1R4AqvrnIP9I66lrV1MQcavRH1Q11PnjcyrliORy/uhZcG/kZ7g3dhyPyV8Dj8MDhyfL43YMETPp7fir62b6+G6l4ASPDMiZNr4zxJOdFenijfW5rM9UFA6WqlIreJZn/KjYq46BecwIG5X7hCsma5MnK3HLXE1El6pLjuqdpCTPMEbixT75f3y/zp3X/g+VzwQIpn4iYQZ6q38EdCk5RTHUQgUpaskYZviZYFnD974/AK2trUV8bR8CXwuCQnGflle+q91Dyp1Oq7Ku806JKKAAULLmPBILkqnkt1kPaJegVP+c1yfdrtshWwc1EzuqbZR7NCY/i4+/6MX5522fRuakNluNBqL3pDElkXlVTTx92fPwwjR3mTSJTwGS5V7ubf7T783rtPhtvbhX59/aRJd+XHzed6rSnraJGWLGKTXML9j4BT/x3eOHsmVPtSsVex1Y1GEHVYGTiA6ehtS/bjB+11aAqkMaG1xqm2p1t2grvSvwj8CT8Bf/EB+9j9qPIdbgjdA/+2HETFs9xYu7c8bdx7U176T9O/PoPB+C0EzZOfPAbyCwL+NlNb8aK1bVY2DqIUCCD1tlDE5+4F62hphMfffvlePDpC/D400smPmEH7NJLnbj00grWULG9Z5XRNsVWzHXFvfw7wagq38o+kVqh/VmGcO1w3gh7D7yWM060w64jTzO2/buayWhZkFHwQDjMq/BERbjyEvVzkcvjZQ6gIHlNo6MSpctS+SxB5b0seUeqfDdK7kO4SqJ+USr2AUWUIsF8WBot1vw6hkN8SjHPkHKc/FQlnE/uiZUv3V+dz0o5I+RI5RnRtEw5fmRUyp/Z/Sxaln8Fj37iIvTOjSDb26+tBqCoSKb5wBxO7Qvy2vzM+cQ21jrnUopUkf/BnDoW99pXG6UJRj3kVYSYx0hRFZNcFVNzmtl5WKQczZHl9Ul7qMqaRoTTzC/k9FD5j9cp5Ioqb4oCJOnz8LD0n/J4AlS6c5Azotw8RbRiRH4UtVA+UFOjcK78AfFJI/EM4iKTKbCuqjhJNbgglSNdytuhMqRTczplS+oYG6LSI8eni32R5FjqY59qrrMlSyXcqmjpqlWvSr2IEESIEkWpnnjFCVcBAO4hcULz0dVkk4BhwDKMkvJmzZnJevHhimjSwnlz2A7i59BA8eFLUThFbFIcL4ND0hYhIk0Zoi/prNR5lAiWoo5R8oC0Lr29Mv4TVMtUHo0er8qOF9UncOKMGH76zfOQTgfwkUtE7OObl0lusSAT+ygvz8l5oYuLqrPZaA3jjDomNE+Ych1Nck+QI+JAjqP2sc4/ByGzxM3X4h/Vv8MZHz6d9WPEn/V0FeQ4VRF1uTjeuXbZyEC2lB+l/CegOJ6czI3n4Ll5chjTzNOmnEFdrxNxqdvQkKpNRnlNonoZrn/kOCbinMuG8pGkTXUNSHA9HSTnS/lnOn6D7tKceb+O3Ijbw/fggdF70RhuxDXXbJtrMv79p3zrhp5fGiueZ80d5/xSHkmBa+ALTw/g3Avm45PnP4glM19DzpKX+MFRGduvrn4BAFDlKCK8jdXKSZVjwiH2n8H54aKiLVFE0yv3FNMnyJaVk/liJrcAAAJO5u7j/NJ+97KcDd3St6+2y7wL14sC6uxWrhHMI6fIU4Y7FfIxyV/ntDRPG/mnlsy/m+44AS+/2owlC0ewck0tvn3ZX+ByZjDI/HdOp1x3VpOM04Y6IlUeKqqW8erSKe7c4MYLJ3NZOi3NNynnZ7hGeaiKGA3I2rypS7ZwhmtaAAD1s+eznDZc/O6f4ud/+gyGu9fggNbn0XqAoHpB3q/1/l/ez2Ofa3aOg7X3bCLuVLnp+N82T2rnrXR+7phKYtmz5Zg2nCZ7h6fAKi9bFXvd2KqvfxsA4JrguDeShfufQ3/TO9A7dxL7HSpWMVo0n8Hx774FGx8/eapd2S12QiiJmx49GCPDgal2ZZtmPvE3nOMMYPa5p+DB0CNT7c60skf9f8XXBr6ERteeVR28Ov+DHTr+xf/48aajRvGmQ/Y99cGnnp8Bvy+LlWsi+Ml3nkKO2/ymozXWdOLkQ+/Dmo0H4oDW56fanYpVbKes8rK1h83mS9k5pPjDOEGCraMHE+6LLR653WtP5Nt0Nc3Z4zBV4YlKdhm9MTDKptwAck4CzI1VVS3RxBFLeCGpOHkhipqQSzPcLzl6lB+SyRZvPH6iIKoS5ievJ0Nka5QcLuWTVUWo4KU8HEZ9XapaSOQpkRvlecyZxJxGHvLQ3G7CK4YBy/Ri3uOLAQArjviP1JUcgSoiBar6lCZXS/lnGjlPMuKZihNBYCS1qVmiuZqfS7k5BtWoshmN7Gt7hHi+/O1wlHKzksoJU94QI8ChavGncUZLif/5MsTAH/DzesU+SJHP5XHKbw5T2tJHHpqNHniYP438nxg5F8mk1K2pUR72Ukn2O7lQc+fNpg9S9yHNP0RkS89X9FD5PcNEddx1Ms5ybDNV8XN7pE0KeUVRqECn0Bn9tlgfJzkvTnJnZsyqL7leL/lN2jZBoowm+8BNhcDZDVGcdPTX0ffcW7HCezxaF0hbqxJgby8j9UR9dAzU1AkiNjQoyEVRDauoWDfEOitaEgoJcqqcEItoc3WUSnieUk6jqux5qHJWVy/jvqeL44r8ykhUotYYIL/SUYBleBAlgqYIrSqSVfP4AJUkVTlS+XIFtpnyOu21hUid8pf0e11jPV71n01WltvJXq8NwISJuJmABcvmP+k8yxE9MkFOl84z5bxYOjakHRVtH+jtgpqfPnqIEmdtVUHlgYovNeS7ZTm3EnFF9Rwl19D1X9eIfE7zGjL/HCd9tFr6UtHNrk7JtxUMyngJERHT+agInMbHs84cQt4IXDana3fxNLZ9M52Iw5UhnzDW34VcykKG6LquI11b2gAAqUHhEy3bagdbNKLcVo4jrrsO1tZHpN9TzfFEVVnTKdfOjUq+KystcxnkrGoetyKXVsrrG+T66xQU/sCloj7Y0CRz1ku+aIE7JRL97QCA/LCg4U6HrF2ZHNdKTwSWBazbKH368B8fQyQMtG+ScdnfJ5zaDHdyKNdW+5RUTRQ49vx+KsES2RpJlK5F+STzJvK+l86rGqeUM69Z/Brl9Qb7RO2xkWu1iyhpLj2MRLIFiVgv1r/0HACgee5CAEA4KrswJhpX46Mtu8cmUiMci7BNbifRRPXa3dUpIlk7dTY/t41waZl2PsN9yPa9GlesYq9Dm7F2NmasnT3VblRsGtvK56/AyuevQE1mGFbWhaeyx0+1S7vF6j90A6KuHBIv7l7exu62uBnHVbU/whkjp0+1K9PGrov8Aj1mDw7KLbO/O+ddHpzzLs92zqrYnjLLAn59h4zPH3/7H4iEsxOcMT1sXtOLWN95MJa3vTHWtIrte1ZBtvaw2dGMgiJbpTyn7dm4EZLy41AaPbDKoq92VGEXIyC7GhEqqiKKjRdpUv81/5U21dxf/BQA8NqHPwGgiHhoZN9reVk+OQ1EujxUV/Oq+haPZyDTjor7ghIRzhWK5G2TEbnZ5Ln0kl+j6nsGnY3WlHKcYmV8hiAj7spj0KizKi6CCmOqTOck8uNwNbuw5wAAIABJREFUOGBYBTsanSRfIkhEQZE2jYxr66oyWSYhyIAdJWO+lhCv6w9K5NB0SJRa8wZp2yQZ5VYkw0cVKuWKaWelyLnJJFW9UNXg5IJDg6O8XqDk/CzV1zTvlnJtqrZSYYszyp9KqdId0Y+I9Fua51YT9RjsF67RAHPYaL6g6powfRF0pn2z/B4bkb7zpGW8DPB8W0GObRFiTrAwle9UWVEV72rJhRlk+YX8SMn5CSqYBUKq+ifl1NVpFFDbSs63ClKvxkZBzvr6JBqeYd9u2SI5rRJEZDe0SdR8RnIIhZzTVp4MBFTxspR/FAzLvGhqpsqcRWSQObN6egTBAIo57ZRrpTPWRkM4PlJUbAwSXc4Q2dy0QQQIhvql/1taJOIfYR6p+fNFhUz5dRlG+Gs/8Gu8ed4GXPfN/0JuowumQc4L+0av4/IQKSUak8sSXbGRJaq+Kb+D89CkmqAiraQs2nmSCuwDg4uRUaY0mWa5SSOJmDmKr/Z/E29LnW6vYelMguUQOYbm1+J1icoben8gyuKwuVzFtcjmmzlkjsQTgop0dPSxbuJjfT2V71w6l6WsUebZ0uVN+86g+mWGnC9F8d2sq6KZirYFOYdrmGuwqkbmoZ+50/Qed13Nr/GnwG14KPUgGj0Ndt66iWw8hGBsni37FwDA2c53AQDuyt1R8qserX022C18qb7eUaSTIbi8RHTJrRwdFGRrXrMq7znsslLkx9VVS9u6ya3Ks98oHgi3V9YCBzlbFjla2YT0lak5I7UPVC2QSNCmbhlXr3XLdVoWCorT2CiIls+r3D/2HfM/IiW++52ax1H8i3Nt+90jb8dLa+ehuioFny+DVFrqrPcPB2QMUCTX/j6V0Vakuia/D/hkzEWq2fd+qunyPqVjVtMsBv3yn5qqUoR7iGN5VYcguTGOuQjR+6b6GD769ivw6we+jqrQr3BA63PoOlj4moHwkQCKHFq14mNQ+U6gXbPJ7hga+/xWyskqIkg7V94YtcKyYsq58fZxY567Sj+Liq36t6PEXzHNozbeHJ3eu6amwirIVsVeN+bt7oS3u3Oq3ahYxV6X1rN/F3r275r4wGlivnf/FMcv3ICbrrkQuY31U+3Odm3IlIfbs+NnTLEn08N+FvkFbgncitt7/4Rmq3mq3Rlja1714ua7j8Ixh+9bfK0nn1+EcCCJ6kgKs2ZMfU6tHbHGaDvecshtWNF2+FS7UrGK7bBVkK09bJPNlVDc6brV72PE/3YxWjDJPc3j2Y6qFU7o74S/y4dGp5UXpVFpW8GxrBzlvGgeLcvO/aNcB6p3cQO6WxWSyMkJetx2WW4iPQMDgiqkydWqouKh11OmBshIno/Kc7bL9FnzppiMFmlWe+WSJJlHy7DrnodZsACHfOEkJyCdluM071coJJHFmlqJaiv6MdBD9IUcF0X7nIx6x4lIqKKe10vFPHIBNF9YhmqJDraNmVPkQPwcpNKZctkibB9Vr8uwXm7NByOnIU4enfKSNE9X2FkUQlA1tOSoRDsVsamtp9IX+3uEaoGWqqMRJQuQBxcjF8tJtHL+AkFTAkSslFOl28n7+iQKXcPIfUOT5LnKE0kbHJQ6x4nmORjl1jxVhqHoXprl5umfKjeS3+HUsUAFOpct6SjHM4qsCpMaRXeXKdodduytAID2B04ALKCPHK9X18oDZf/h8vcs5rJRhT7NS6b5tgb6hvi9KpkVx084TJSQ3JVBoofqm0bac0RodZyaVURwocguI6OsqqJ3mjNt6Jiv4ajZa/HwzV/ETGM2zBp5Sezulk/lfi1cIKpl4ZD4pXnoMoyspzhWnOTzRaoV/Raz2RO68YAheB2PepwivYW85hfj7/ZuAs4vQ/l5RGrZN06fIBKFjLSD6QqUXFcV8nT863pRRfRWfJA5OcocTu2bpS2GOa7dzAFWyEs/NzTKeNU1SVFr5UeqSiWI9OfstU3asopqsMq7VB5oUDlaXF+dHK8F8o+uq/olbg3dgQdG70WztwkOZyniMFnbXdwanVfJEVk/nn+yAxddejI+eu6jOHzpWsRTUt/XNmwAAIwMCEJ8wELpY593q8ck9rM9Hgq6k4B8yJj0d21E0GIvdF2XtSRBZVOfhwPfKkU7snlpq84BKie65UV19rxFAIo50eLkpTp5X8iNiO9ICLLlZLLvZF65WjNhWcCmjjq0d9biL7c+jEiV0+Z/JuLSNkODMqbmVMv3Pt4vlGeqHC6vQ+qpOxjcRLSCbhkzPkOu7yBHKzHK+wdnVMivfGypD1MUYu0WWYN6eoRXWhUWRC8YpXJsKIh0h4VMsg/ta14EAMxYuL/U2VXcDQGMj+AYhoGrrsrb/99ZbvtkuYfjPwPuLEI2nm2/3B3nSpbzrYxt/DbeuWP3X5V+7ntWedmqWMUqVrHXsb119akAgODCByc48vVhyZOuwFGNa/DwTZfB3bdtnuLT/zh0L3s1vr3qWYfVC4fhsBw4bKqdmWK7LvIr3Bq+A7duvgHNkaapdmeb9sKKehxxUDeOO2LNVLuy18yygN/edxYA4JrLH0Ckatvy+9Pd5s98Dfc8fjqWtx2HpcfuQjnzd59PFavYZKzysrWHbFxFpEmoEI5nO4wc7WbbXWo+dt4tey/1OOUpjSGTlaMs5S/Ip+ZVslWuFOnKqcKT7oMnV4EFmlQcU4RkNBYrKccbLKIqyuXQvCGqslbNHEeKctgKcxYjfkRbTHI9zDKUgmCajSzFyadQvpnm/clmczDzFiyqWXkYobf30rMODqodeomqhJiLSTlgA/0S7dYYsyJkGkFPE3Eb2iTcgjA5ZgHy3FRaTPMoUdjO5kF4bZW5UjU3zU/mYtQ9TQ5YiopgaX6qClyOkf2ejq22i+o4IKLTMkOixuEq8U3zVKlinirUpdKC6mnbZtOidBUl16R5ZhOPK+XT1DHMWswtJtdxcbwZ7CNbEYzKd0Eep+psDo1WZzSHk3IFGbXO69gpHUMOImLaWV6/XG/JfhLd3tzeWVLPQzpEfMC1VCTHIxEvDKOI/qgKXe418kSapJ4zZgnCpShM+waJ6CtatTVi3Nstkfm+HmnrLDkiOXKkHByfOl48RAP8/gjrLOUMEwHNcY7Wa84njuf4CZfjsMaV+NufvozQyBy4yY+LRqWPYjHJA9TTLtHslhYqKZIzaZTlz/IR1fQHZV6oYp8iVFDOlpIZ2Tfqr8nIvaJAqtRnEentqerDhbM/icVXHotovhpntjPPEevjD2qePfHHJBrp8pYiW4ps6/hXcqXyswAgQUVRAqkYGuK4J2+zsV7mhXJYNadXbDjB4+TailCNUHlOx3sD+0Lnqiqouoja+zjOs0T1CjZfU3z/v9rf4LbQXbir7xY0uRptJco9rQJXbsXrMGcb53fnOnm5Gug1kM964Q3KmOncJO246TVRH5wZVt4h19JgMdmIIklpKpVqHimTiGy4Rsajk2p82VHJd2XkZAeCn93pZJ4ppdqmqOY3EJO2GkrI+JhDxb1mchyd5PilkzIW0lmZq86RVwAA7pzM0xzzfsWJpN78+Hvw3OrFCAUziETcyOWViyvlDA8IouVkedEAETwoGs+1LCvXD3M3gOGS8nOmjB2vi/deN/OHEcF2u6kYy/tiNq959Hg/1J0NKfFnJEbE3NLdK9LONdUD+PApn8P/PXwNoo1/wsGLVyA5ImtKgLs7igqfZYhS+XNGOWWpzMZ7VrN/n0gtegJVzPHRoVIkabLzxhrzDFnGhS9DqMblzI9T8a2PG/95dduNaou27jYl0tefVThbFavY68CGo0MYjg5NfGDF9mkzCwUcctwN6F9xzJjfjn/oZBz/0PTNuzVw1OU4rHklnrj7G/D0zZlqdyZlT/mfxeHJQ3BObN/mav2q8QbcVn0Xft/2azTl92w+rV2xdW0B/PH+o3DEsvVT7cpetb8/uz9qq2OoqU6huTE+8QnT2Jqjr+GUg3+N51YevNNlXHediet+Xnn8rdjeswqytYesPK9W+T5dO8qwC/kGynfojhepsCMZUywQU+7fhBwws/RTzcWIrfIhXIRZVKEspXwJRvQ1V04yLtFFD3NnqeKXRt9SVO7LFopyuKp0p+p+ZlnUTJEdRb40x1OeKNzoCG9srIPfp7wJ+dtJJEh5SQUeOEJFumw2C0fBwp2H/BEA0OqeAwCob5BIZ2xE6tTdLXvcNUdYhLlxdJBotFqVGJ10IEUELc2kloqEjdBvBQBGYlTIYz2aWwQVKlcu0j7I2Yifcs3k+jHmoNJwXohcG1UzHCHy4QsUI/ra9ra6YFbQErenVFlOI/cNTcL/8TGM/NILK/m3tHEkKsiW5mtjsNXmtGij+dmWGhFtb99SUkc3kS/lxvjJQ4DJuU3UR+epaXroLi9ojzPNgyV9EgqT50ZEbIjKlpmMRItVBU55go96/w4AeFMhj9qqdRh4+jw8mTkJ+bwgF/V1Em3XhSLOvu3cItFs5dklE3K9BHlPPd1FNUI9poHjLkjlTh03VVUy3hRdtLEFDqCkRuLZ5qok+uy8F9AT7MVxc57CcdGNeOzWy+DurUeCXL5gSNpKURZFrKobnmNbzgAANDc38Thp7eHMMD3QkCqRZf6tyJOpnClD81wRcVAVQx5nOJTnRH6SLqamCb/ll/FvWchS3U05ljkiIKnRGK8vfoSZM85ZlrtNeXyaOzCbLkaCFWnVfGnzWudsXUP4mX/LRYU3w1ZsFPRB+aBJRc3Zp7qmqXphmn2jJbvoS04V9JRbyLXrxsZbcWftPbit4w9ocjYiWCVjw3Bu+/HiEx8vlRvfcW5KqY2NzBPR4vzp75J5+/wTHfj8d96FD57zTxxx4Ho4PXPk+ILMk2q/tMeMOvF7YFj+5rICAKgK671H/nYQ0XJ6ZA3wmcKxUgQ4aMgc8jmIABNAVf6xpmPc0inXWtlGPrJPxvPMuXMBAF637uLQAuQjHRPkDElR+3QYXMcLgsrBK+j15u5adPREccdv7oPbmUEuI9fp6xX/trQLr7MmKOc31BDFN9VP5e2x/m5Zt02/qPTmiPSaCebwA9c+LnWmqXxU5ZtKPTSdYv8g1/+kHFddJScmufMhl0rCtnweDiOFdBrIJWPIUSFyR5TwHn5Eyv/kxYVJ8+onazs+nsdDwLZ99MSo0gRXG1Pw5PzclXaZbM6wN7JVXrYq9rqx3gOWTXxQxSq2j9n9C/8CAPiMMwVYwJY7PwWctm6KvZrYHjj6ITy37Hl8NxXGyeFu/OvBb8LdWzupc9904nIAwItPnLUnXZy0nfHB3+JNjgHgO1Ptyd63e6L34Vubv4EmTA7ROvXUPcMX+kT+ou3+/vwrM3Ho0naceNSqPXL96W5f+NhjqK5KT3zg68Bm1a3AQy99Di+sOQynTrUzFavYJKzysrWHbGwOA6P0z3F+3trGjQIUSk8qKmrZMNpEzm3/90naRBEhG8kqq/pEARgNGisa4/Y6YVgWNp58ImCaiFL9yk3+kpNojUaFtUVUnSusqlqMlmv76L76+JBGwRmNK2zlIPkJYe4HV05KgPycLHk3W9qFD6SRca1DXrkabIRYjOga1f5crlKOl0VVMu1Uh8OEAxZCVIHTPFSKiGn0WtEWVUlTHlqGUWxF81Rqb5h1VtU43UOvnDQ7N1Sc3CoeF2KU3MfyYryOXl/HhEbmAx4fv0dJ/d1u5UNJeU72VSIuDwP5rfogoLnIeI2+/kFew0VfFBUkF4qR7TBzddU3lXK8dDxqzrJAQMrvYbmKACi/oIFKeQ0N0jbKvwsxR5kiaJqDKl8gH0FRE3ZpnrwHJ1EWg+qEmh+mfP4k4vK7qiRqWxXzfzGfHBEEh9uBvNfC3EdaEbdG8Wz1czyPuajYXkVUU9CmBJEuVSNUHqB7q7w1gYDMoWqignb+nBFpww6iZOXX0Mmu+YheWvIfDFfFsN/itTiwsQtXbj4Ysxpfw+N/+jaMRDVqotKX+ZxwDPOcXznNG0duofI8fVTPVEVKvZ6qJ/ZSkTHbKRH8ugbh6dTX15S0ZYHl63xVDpUqW/qIWvrIQ9IJEu6OYVYyBsuwYBiAYcnYySVknCdS5PQYpfNcEV9FgBXZHdaxzYRfLrN4i87l5RjNA+fxS79WkZ9p2rnDNJeXclTF1yTJXsqz0/GqnMYib013IHB8EdXLZjm/2GbKbTWcBhpDTYh4yPlyF9Vct7bJco53ltt1Sl62yKYSMp77OwTt6WiTwMPIaD2ANEzmvioopzIt476WyFZNldR3kMqBXb3FF5SgX5UdqdbqkDYouAU9zuWl7p1UzWzwyT3HJAdKOV8m+zdJJGdTt8z1ziEpb/bCOQCAMHOXZfN6Q6FaZoY7JtLC3zQgvmYha1HKbAEAeGoW2b6HIz5YlnC6DLbxyJCMNyMr6N6cZvm+KszxmVO/ZWxUR8hHDQiiDNbfSmyQ8rgDwkUupNPN8c4dGy62W86Sz95B8kUJiDk4hpQ/GGCOs9xWYyJp5FFftQH//Z6rcM2tl+KI04Zx8omjO6BzVyxLAOmy8WYUf9sVmxjh2ja/qXheaaLRiRG4yakbjm+TV6OeLEK1LyNZ5VbZtFqxaW95rxejra1Y+rvfFZ9c9zE7+/bzcPbt5021GxWbxhYb3A+5bBBpXwaeUe9UuzPGHjrpUfzl1MfwjgNX4NMtW/C2VYvhSIbx13u+iFSieuICppk5Nm7Ee95+Pb769scRG1yHmnx0ql3a6/br6hswasYxNzdn0uc89LCJhx7eu48emzaHcM9jR2DZ4g179brTwd7y/k8DAA5c0jvFnuxem924EeeccBvuuq9qql2pWMUmtAqytbtNoxLjRAnG3buqQQNzEpGAMfwv/b70GmPVeEovtas2WbWcMVyx8gin/WmVHO9khLSqJoKN11yNWR//BA64/jq0ffFLAACX5ifKS5QslRxl8Yp8ae4r8iSq5YEuPixR53IlQc05kkrmbN9CkVJlLq3rSFy5WFT+0txKbOURIkdapwivrTmRFI3o76diHstTpEuVtBwOB0xYRUU5zfOjea8YZY4QvfMyv5fm69Hrq4qh5tfS3GMazTaJILjJ98hyH7xyZzTyHiaipxyeNHkRHiIdqoLop4pcOsG9+GxzzUuWZnldLL86yvYhJ0ARDAD2wFXFQ+VQdVGxsLa+lm1BZIm8uHBY2qR1gfAeQuRsWcwHpKhGd5fwK9auFdK8ojP7H7hEfCJXxlVQ3gVV2qiwVSCSpapsGjXWgZ1KkRvm0jFEBUiihQXlQyj6qOelVVVTrhMksuVmtLizgzmnehOYuTGDYf/5aB5pQ9/CHqx5xyuo76xhm2o+JKlXfYPwS4IB5TLK2Hvt1batL4/q6gjUdHxmNX8W23CESmBadpQqnU6nAxYsPDHjSYyGRrBgyUoc3NyHL6+YjcXzuvDbb30YoyNB7LeftLHPx75lX+s4HB1lni72raKLysNUpCir3ErOZf29lyqc3V1dbGsdx2xLjimdl4qeOomY2fm2jNK1yTvYj8iFH8K9lx6O7x31KP51nIn8Yic2UwVOUcgkOZyGh1wsr+YbE9M8ZKpyGCMvUVHHSCRkH6v8sjTHUzwpqATBbPiIlitqrmiIm2h48wxBX9JEuPr6yJvhuqfqmB5vKRqta42GuTzkNv6m9ne4KXwL7h+9D3W+eji9yqHc/j3s+uulb0/jdsLJcnjLTXO7KYT8QP7PAIBDehcDALra1gIAXl6ex9euPh7vO/t5HHN0D0yHrFHKc+3rFL5SvT9eUm+/b+wLoc5Z5drlTCK9LuaZ8kg/LpgtbevKSV+YyhFUzh/n9HBcxktPjMhptSBScxe0yt+e0vuBjdwmhIfmyEkdVP0zl1e5Q+FSnX7hJ5HPO/C7Hz+GuloL+YJcR/MzdmxpF7/y8nckSNScjeAhuu3ljg5vRNbSAhGoRL+gh+kh2dmRVI6yoZxc8V9RfVJysaVbxlzXMINCIeG6LSEPsaWJnOC8inn0Q41LBYLhKMJhN3qHHLxvTh5tMcCWNKzic5O9U8j+osTGQ6p2NQ/XVmeUlWv/b5LlbhvpmoijVayXHr/tHUq7YhWEq/KyVbHXiRUCAaSDQcx46t9om2pnKlaxaWKOkRH8/Px1mLMuDc9lP8Tofu/Ei+c+O9nnjj1mFiz8+YQH8PyCF/DdtBun1Q6g7cX5sBIuXP/9s5HLBScuZBqb++//QPbww/D9i7vwtAcozJkLR0/PxCe+Qez3zTfjjvDd+GPHzZgRbplqdwAAv/LcAAD4Ob5nf7dpcxhfu/pEvP+sp3DCMRumyLOpsZv+fCpSaReu/tqjWDA3NtXu7BFrbdmEmx/x4uFH/XjPBVPtTcUqNr5VXrZ2sxVVCEujCpN+s986CFF2yti8VIqSjXNCuU/l5ewm7taOZlIfc7wGkmzKmXyhaE4gJNHDAgzAMJCiaprXq4p/EpXrH5RIryrftbS08G/yh8ixiVMRL2/nCKKCXk4+40TIAMBFpEh5LAMDEilXVTXliniJSiQZoU6S69RoK9X5S3xRQbqaGirrEXHSTGKqNOdyr4CZKyCv3BJG2pX7NMo98nEiRHNaJSLqJVdKEaIBto3yk0BeR4S8JuWaxWLK5cqwnFIkKs62DhO5aqir4/FZXi9N/6myyMhsgu00wpw/qsal6KOqJxYYph8eVh4dECcHIxCQOvm8ioLI335eI0YFx3SS3DtDUTxVBZTj/JQXU26W5nxqbhalvS1bBDHrHxikj+JHkopy4YigcN6AIgDSdpqfKs6+Uf7ZEFHORUskKuxmFDxHhCKTEz/cHEOaK0oRV8siXymr416Oq44ZmHfJt/CfRQcC/zsAXNiODef1wnGwg20q86aqKoylh94C/wevBQAs9QBrVpyHZEqo5SaROodD2ieZpETYVpYhytZFhKi2VtDEUCgICxZWHbQWSX8C1bMeR8idwVD1IA6sHsTXV83G/FmduOX7n0EiHrSRAYdL+W3Sdv3kIVVHmAON6oK9zKEW43iYOVPQGR/RlboG9UPaRMdtnPNQEa9olAqVARnvsaE421Tmc1OzlKtIl0lU3WAfFHS+c/4aDgfg99ucrrxlwSgUkKWSn3crHh0AeIIyZvIck4rOqjqoKvv5yYnUfHb5XHHbtJvoeUOzcBA7tgj/prdT0HE/kVuleuips+YIyuEjx0rnYJxrVFWVXNMfLOUEah5DVTgd5Rpze+vd+FPT7bh74C60uFrg5lwv523uLhuX20W0J8E1KemWz87XVgAAVq2y8KXvnYj3nf08TjpmA/zMq6UcyHWrJDdVZlA4XU37SV8EvOT8su8cWwFcuZz4kspJWzv8sv5pPjYjy3XWnaKPcnwyyd0WTiolZuUaXX3y93BK7k1z588DADQ0K1pP5JYql7m4jGsjLYiWw5I1Se+ZBafcT277+zn4+4uLEfBn0dpqwiRCFRuQ47dskJDlaJ+g+c1h8vjK7s0+rpXuyBwp3yVtmBpkTr6uV+X7lLS9j2h//6CMmXxG1q4Rchc39spY6U9JOdUzJY/YnKjMv1BA2sFpxUuu43QO2D65moQvVjtzPmpnAr8/rgsXfKQRkfocTju1sBXXaXxrnWcBljw7mfZuolJyeflz0njPOZM9brI2Xp6wSZzJz20jWkU/y5ErnqVJ3yYRqdvdCo77glU4WxWrWMUq9jozR3sciz7wZcA4HomT3oaRQ+IY/GEzFv/7vrEHG0Bd03JEmtfJv5p1CIa37BY/LFj4y5mP4rFT/4pz3vQM3n3ActS3bMESbwrvWT8fjpQHv/vZ+5CIv76RrHLLHbQM7ocexiF/j2FGO+DZvAU5bqF9o9udTXfhG2u+hpb89EC0tmUbN4fxpe+dgw+86ymcfMzaqXZnr9vdDx+Ayz/3IKKRN4b64PbsoGVpfPmyAfz2t5PHDn54dR5XX52b+MCKVWw3WQXZ2s22qzE9a6sSxuN9TWTjRVqs8r2/46jc7KqVJyAvR6zG+91W3eHvGnEKEkkwqYplcNgqCpJlFFjVCGOjEhXzEZmorZEoocspUWXlMgwzIqr70g1TuTgu27dsRiKKw0S0/EQzTHKg0tlSJEYRMA/zrwQYqXO5qbJG3k+BaIqLyoqBoJQ7MsLIOBE10zRhImcr4LkYbc6mFXlSDhhRHx85VznmaqJ/KaI4bvoRYPnK3dL8Rf1Ub1O0r4o5c3w+uW6QnC2NepvsM+WSqd+avyuTkvrGiUZqHi/NcRXxS9/4/WUcmULxRujltQNhactm8mtUyW2UvKFRRuo7u/r4vYyDEBW9vMq9Yt8pD4dUKngZ4U+lBF0ZGBBUpbFB2mA4JuUVDDkhTBRG1dd8rHuC6m7KudqyWaLQypmpJxqjSIKbvA7lnGl0OUCkwkNuoq8ni6rfPAcTgP/B3yPTejS23PRBuAcegNMZRNaXg2VZyDGa7PNLX3m8Pjz12LVIE3WMx8S/unoqVpKfpxywrk7xV9FMAHAyf1Uul4MFC8/MfQ4ZfxoHnbQRR9YO49r1czCzqQc3XvkppJI+NDc1ogeAAQeikeJcHqT6mfLeNC9df1/p/FIOmK5Nff3SFzre7r/tYwCA/Q8olNTB4HV0/AaD8gJkq35ybdlCdcJgUCL3vX2CrFVxrFTXiR+KdFlu9YcqcvPnIv+zH+HK91+Iy4JA/O2nI/GWExHg9XKZftZTyvf6ZawkmXdLE9apn6pu6uZ1quhXJpmw+8CCniPjQRVJs+S1KQIVCHBNUD4mK60oWVpzBnK9VKXTLFE6zTenuf88/N7jZxu6DMyKzLLzd6k/O3v3mywHptwKXMdHhqXvClFZO9o2BvC5b5yCD7z7WZzy5g3IFaRtdf52dghaMrBF8u/NCMsYDHC+pDNSTt+grFlNNUWxGbeihz5BtDx+WRvMHH0g4gQqRxa43qeVg1qQPkwkpE03d1Nt06RyaoO8wPq5C0N3X+Q5vlFgbrSC3LuYSeY2AAAgAElEQVRcJn8vSJ+pKqJhOBCu9iOXN2XcsK8Vzd+8QXhqEa/4vXC2nF9txwuomuiVelpeQf27NpOj1S9oYNBLvp/HYNuxTzhs27p4/zEFyfLXCp9ucZ3k/4rWckdDVk7IJ4nYJeQ6LoucMk+xDwzeU4d65bdNK19AanAGUskwkiPD8IWZ522MOnK56mDZ89E4w27S3PQJ0Z3y83f9aREY6/dYN8qQuzG2/d8ng9iNj3RVEC+1ystWxSo2jS1RvQwznv8K+meei6x3yVS7U7EpMuemOFrefxksXyMK4VqkjzkLHd9/G2AaiI80wh/oRdq3/eW89RHZorTiyBU77YcFC099+Bl07t+Fqw3g+GgSPS/PAzJe3PyLC5BKeiYu5A1i64+ZiUvuy2PGZuAHS74MADCtxARnvb7t5sY/IossGnOTy6m1ty3x2ix87htvxUfPfwHHHb7vIVpb26137wfTtFBX88ZHt+bPHcLVv3Thkcc8OPPsqfamYhUba5WXrd1ktqKSJtfZzWjR1tfY4eMmOG28iMVEKju7GxHbxoUAAF4iAAWFICz5zUGeU4YIl5/IhcNURT1yXYimKPJQWyfIgsWoY5LKTCPMq2IYRZ5EMivR0IEB5UTNBgC4qXjnDso1w2C0mVyNNCOIPT2CslTXCjqnvCON7DtYR0XEkuQnaR6XROPR6Nn/i6hZ9V68dOZ34SCBQHNLqblcEjk36Ec2z4gj+T7KU1JkLEFOi5NIQCqtSnulOZ+UL6U5l1SJzEeOjIt/Bxnd1ij3aIx8JEUdGUX0MWJfoMhUgrmu+vr6StovQd4TnRJfyE3xEQXzqdqkU/Ntyd/KF1OuhfLqtOwsUbw8+zboJ/eDHCob8SUCkIxL34RCEvb1MsoaI/clFDL4yVxsOl7ZF8b6NlaDeZDIjdK/tc1tJdP+Abj/8QRqhvNwrfbBymXhv+93yC45AQM3fxBgff1EOlrnHo7eDb9AS/i9sOC0EQtFkTTv2KErRfFr4ykSldYod2enIFqdHR3Y2mpqyJU0LKxd+irS3jRaDn0eJ9aM4L3rWjCzaQC//+aHkEp6kc1lISQIKVO5WMr10j5pmSE+xIk6DjCvlPLTND9WT48gQwbr2tAk5wWpitY8UxCA6oj0ic4fHWfa18pFVOR5mJzEVavkQby1VXh0+x+wHwAgx7WkyBslF4aLaJZjZGNuE97T+hH46xagZcliBEeZgw3SZiODXEOIOBvM6edkHi9F55Mci5pHTPf16zxSJUCgqDAaqpI51NTSQB8dJedqv+XyVEYdlrVL15qqENEZIj72+ON4LPJFiV7z+1tqbsIfon/EfSN3Y0ZVC1xcj8fnfOzZqLbOU7+i6RtmY8U5P8Ml576EE49pQ4H1M9gOPUS01i3/FwCg1ifjfXYT5yE436nWmEozZ6JZzBvmIpLl8ApSY+UFHc4lNwMABvsEmTGJQFHwEwRMkSWy2dUr86Sjn/3v0fFGziDzsuXJS9M2zudkvphpQWZNp4zXRJ47FRyCQHX3BXD3XxbgDz9/GIV8EqR8ITkqSFZiWJCjRc1EM93aiVTXDco90h2Q8rKpIRYgaJKfiJaD98qhUfGjvVv+bu8jqh4RDvGchQcAAJpb5P6pOxfSI9Ju6UGZj2ZCyndYMp+zBneEmEV595Bfxv3wkIzrlU//EwDw/a/7cNEnjobDmcBJJ2bgI8qsXMKtdY/POssNywDuvjszGWiIX29/PE/+eWg8VcPtlz9Wybp0bJTPt7HoUimnaxtX2O71dyzPVrmvFau8bFXs9WOGgbzPhwV/uAmvnr/vSA+NNL8Vg9HHEBi4F8BZU+1OxfagGb19qHr/h1ConwHn8iZY3gIsdwGpY8/B8I/P2GZqiCtargYA/NhchGDHShy24QY8N+dDu8WfgmHhgXc/hE2tm3Cts4AjA6PoWTEThZQbv/rhOTAwNfm8Wpf8FAAQ6/7ylFz/sdDfsV9yEU4efTP+HXgerr/9HQCQP/HYKfFnT9sN0ZtwQ/RG/GHjbzEzMnOXyrrrzrECLLvDeu86GTWn/xOnnhCf+OA3uH3+oufxpsM6UV+7Z9p6OtoBSwbxmY+9jN/csBQnnbjv1Ltirw+rvGztLrPza/HPCQ/fAeWawgTHmuURkm2ja2Z55KLszzGRGS23LHfYGC7YBBGdCQI228g5piQv+XAygvraJZ+FY3QUs7/3v5hzcwFdH7+Ebioao+giFcTov4oTmcpDYk4njcR2MWJsmBL+05xaUqZEGAuGlKkcrVReIm8jcUFkolTTa2yQSGCSyl2aRysYJieJiFXBokIe+T5ZlqvRYlUvdDgcMAsm8oEgnKmk7VuBbZTSvfwJ+XuAqm45KvBpfixFXB2GoivSNoo0ZcnnSJLX41SOGJEGj1OOsxhpT5AnogiFVZZs2sN6hcjrUD7dKJGs2gZVMcyU+NfXJe3V1dVplxVlm/rYJgkqcuk1IuROjY5I3ZT3pWidk7y4dIq8NbahzUnh78GIlBel0l5ciQccP9E68WOgV9r4tU0SjZ05S5TzauqY1JaR8AzbPkS//UTejN5uuP79DBxEOxwjBszVbiCfgfvhHyF70BlwrP8ukh8cRuKz3cgXSoncOs5VqWxLQNrK6a1F5t6lmHfm44i8K4d1+YORqKnB/2fvuwPkqsr2n3un953ZXpLsphBC74giSvVDmhhBRBQBC6I/FAT5KKIIgh+IXaRFqiAgqChF9PsURXoINYTUTdu+Ozu9z/z+eJ93JrPJspuQZAnM+0cmO3Pvueece865M+9znufp9VdneH0NXjzT9By6eyS7nXTKWI6EBPWxWizYf3o/fG4DPW29+IAvgRu7O9DcNIw7rzsDmbQTdrsdDjvQ29vLPleemLRx/VoR4AgEguUyASBG3kwZjSHCGyH68uorssVRfbJ2midqZV2zhOPhckrGPBAS5Cs5Kn0YH5K/lWem6PX0GYKApfh+W0G2v6nPnZvIbHMjfepY/2xS+iIZpgoc1dYUTbf5LKhHEE6PFza7A+7f3ifHfWK+HOeSPi8QKdNX5Rmqd5tFkWidB+RyqddV1l350pih55D6D9b7pW+LXCjTcfX+43rIOal8O0UP7TzfTw8vB1Fy9X5KkV9pVUSr8QHcVn8n/hR+ENM8HWWUfCxiUEG4tlY2e6z/D/2+VJE1LPe8f7Ugxx9Z/gHkchbks4sAAMOj8nl4UJDbeL/M1xlBGbPtTerHKFeLRaXdFiIGXreusZV7UEiwTkUZr06qDuYSgmjpLgkH+9ywW7Bh5DIyT9YPSJmZgqyPs7s6AQA+v/RtoaDcXnKy+LxBTtpiA9VaiSxZ7PTEc8saNP9YURlUnl8iKghc77q3pG02OT/gMarKMe0yD6xeUfxDiUgvEad6j9ZH2pVkf/SH5bU3Lut6x877AgCmzxKOltutyrAyn1IRqV928BW5HtulqH/JKfPdsMvWZ7tH1lgAcASpHApZhyO9UtYrT/0Na5cdiKVL5mD5Ky9i530PkuPKHphjogSgZG7wNWnTyNC22sEzrsrmRkCbokT6QfWzdvyo1r/b5juRavG2UfuxVYsdJjKUcn/2WxfhqG+cU/6x9X4Ib78f1mxtuu7oYesfQPD8C1GY1QV4vEDagO0ZJ+AuoWQrotD4JcD2JaRPGUHq80ObvROrOLceS679PnZ65ErMGeiBa9EwXj7+JKz64IcBCOfqyr1+iPWeHvhJwtfttulMGgZKuKpzEHt5U1iadmJuwYrWnmZkszbce9NpyKRrY/D9Fgvqb8fP1/0I05wdU12VcWP1Whce+fsc/L8zX5jqqtRiimIwXI/b/nQ6AODZFxvA33u1qMW7ImpPzq0UFTBpvGzFtssqjI+SGRv8O3GdNtpDXDGc0DfGuc6my9vSqKgnSpT9tpihX2exomQYKKj6lle3MjHLZ6NfjEW5PPK5lbwjRYXK2XVmaLVZG+aDvORYuT1ybEY5KGM4UHaqnSk3RDPZyuOxMoOfJlcqHpe996GQZCLDVE4sc1zIlzAMA6Zhon5VA8xCvMwncHulPv4AVc6IMOWIdKm6YB0/9/KLtXJDlJsSj0vGVLlTXvKNFMVMUi3Obq9GytL8gq6oo6oqKozoIrem3OfMsltYboE8OuWoZdJSXiLBduQraI5ySLz0CdJxlqT6YIIZffVU0jZYyXux2emFRlRRuUolw8bjZHy42OcOF9X/lF9GREDrof47TekkfMuXw7b0Tbk++0J93lq6I3D3+DGDbQm9+BJ8T/wUuY+cgezhX4Zp2OG+vg7pr8eQ/noEpSJ5drm12DAUKTBV9c2o7mu9V4kR2VJnzA1h5LBVqG+5C+mX63Hgcb/Bngf9CbY7rkPaksGV9QOoW/o1hPtkrM7a+UEAMiZ8gQRs9jzWLG1Bl2nDc0/ujX8t7oLfH0TXTkux54FPs0/Ic+O4MQ0DP73q0LJ/3Amn/BsNTZEycqVz2mq1YtWyOehZdTwAoH1aGh847PdIxOltxzmoc/aVZz+DWKQJDpuBlhkPo7FVkC/lvqxcKX1VHk/kVFmdUq/pM4Tr5abapyJL8+YKV6uUp0dTVJC4QoboI+tRzNKLLUMfoVAry3fCYrXBYrHDarGVkVtFqh0KlxCZiI/Sgy1Bc1lVmHQTXeJ5itookuE1K3LyTnrkORR5Z9/WBQXhGiE6PhqObtiVZY4jq1hWPLRRXdCqiouccsppNPRmmkC7Y1pZDbQ8DicZY58X539L6n39j3KbVY6i56P9cq+WLHwRALB8pQOXXnssPn38S9hr3gr09QmitfRNQbgsaeEozm6R6zX4pZw4FQFHuea6yVsK+nXtlfYPxytfk5S7GrALZyo6KOt2eFjUNBvr5B4oVytfRqik7NGo9O1QlOi6V9DyaZ3CZQrQG69IREnXsALHaSEtPDOLciOpOltykH9no4phUftcyhkJC3IUHpC+mNNK/l6A45VIqiMoSFLRJLIaFfS7lJF22kzps1hKyl3Zy90hMUG0GmbsDwDYec89AVQ4lqmI7FhIDIsCJEZflX6iT5jpk34oeefKdR2CbFkNGdv6vOkbDOCB2w+U7TLl7yUFFIsGXnxNULRLv3ozLv7+qWhoj+CQg1Ood8kasKX8oa2nRlgdW/p9afzve9X+q1vM8d+CczZWfhzL2aqharUfW7XYYaL+ftmqg845U1uR7RjRrgh2u3Uv5AxLTUX1XRTOlSux87e/jdicOTBVSIBfTk3TAiNlon2RF3lXHkVTt3NZkW86H0b6TDgeka2VqTOjyJ4e3Sp1KuRm8H8xFHL1iIZ3gWuXdcjf7oLz/CHkTyrADmDvghuppqfgc/MHdkC+yBWLRRTyFqxZ0Yxi0awyc63FxjFkGcbP7b/Cl3NnAfjHVFdnm8Rv638HAGgoNmy1Mleu3HoL2bpeHy699ih85oSF6L7gKtwK4MRHj9xq5dfi3RNre+pxyXWfHfdzlyOOK77ydTR3tOOUYx7HrbcdjUMOTm3HGtaiFuNH7cfWO4zx+FGbe/6msiKlMdyl0jgqNuXjxyghlnMKW5jhGOsmP96X/bGZn/KrljvW32sChGyj8vkltu5FyWSa3AeeYdbZawoCodm5ODk9I0OSjfMQhbLYZbgXFEEoqQIfFZj4pbmY3SDjyj61OeVc5Yx4iBRVfKPop6LeT1TTi0WVByaZ7lSaymBUkWpoEA5JnlnpMNXZ7MyM5/cpYfnJS7DLzR6k6mIVVTRm+gwLuV/kp/kpe5VKZfm3ZEoVKYhSjU39gyIRqefg4DD7So5zM4tezrTTFyye1IwV7wn5byYVIBXpUg5POk3+FH23cuRRZazyeZLvF8reP1Sg3MBXRbPJdvUk4/5/pYmtWLaK12RWmWikj95Ffmbk3WxbhPdmOCx9oaifrUkUxhQpK63ohqu7G46IHfY+Z1n1zBEZQfCxH2H4vy5CfI+jkeN1U1TEC7o9aLthDvrOeRMjx69EOiP3LNQqylz+ABXLLKqOmGPbwfepfkZFSe3LBO+piwidzU4enWYRrYoA+5BLn4WB3pOkj5e9gOb8hXju4l/ioP4DEL1IUJb1ayVL/vyzMq9i7JdsRtqRTusXlSGgZMUrL7Ti9UWfAQDkidgM038uFokCKCJpSB3vXbA/2yY3yUP1yq6uTukDqrNljen416PnIxaXe1FfL+OpY4aIMLS2GWhtA/w+L7LxM/HK0zI/1q4R3s3IyDIAQIaIbpieS7vtJupnAXIG43Gp5yhVL01m/EN+8p2IGOfIyXJ56KHGcVgoSF8UyZ8bMcN41PkELsldhLMLX4ZhyI+tyoo2dleAnFcqKOdljHKfqQqYcl6CHoD5bIWfoXwxPTXPNiuP08l1LsU5pXNI199YUo5vZR+r4qFytQy7HOeg6Ml9jQ/gN/478Fj6L2iua4FF1QfLNRqrPjhW9W2848aLTXO09DUekTVqyUJBVxctTOHqmz6BTx39HD60z2L8r9kNAFi88AkAgM8UpbvZrXJ+cz13F3ANUg9A7Z9AiP5iRMKVslncAF30+WQNUM6TYUiipD8la0Zc1SvzxaqyQK7ruh4ZB+GEjK8Q1Tn9fvlb1z8dJzC4LhbpT2dwbeJ4Suf4nHBKHX0WqhKSDxqlV+CapW9IfUoy/huJ3jn4PPM2CJJUMOXvdEKQsNFBOT7PHRl+t4yZVX3Svrd6ZH61ztwPADBrZ1H11OeNaXBtIyfLkpBdAA4LkWxvp7wf2lte+XdiRDr/+ReG8eQLRyIWTWPZ2o8CAM487igAQFuboHBtrbK91UAWwAyk0lnYbAlk02kM9fXAR+TX7pD5YRiGCBqjekSWyuN001mmye7o2dzjJnv+xrGxyuLWrMfmhJ6r43cjT7Na1H5s1aIW7/bo+eg6zLkzB2vKNvHBtdgq4XpzCbouuBCpabvBuySAgjdf/kFbKpWQ6bgWjt5j4egFivxBnuePIofdir4vrkDk8JVTVn+NnJHHTfMW4DKUEDzei5XF5WjA1kMp3q/xqFO+0F+Wu3iLzeffzXFX3W9xk/8WPDhwP7p8XVNdnY1iXa8fV990Mj5xxJM47IOrp7o6tdgGsWptA35y+9fLf/vc/fjc0WchvRWEBr96dmE8hfda1GKbRO3H1juNsWjO5qgMbmZM6POgmcFy1TZvj/HY4yfy2Zqo3LG7dat3FE8+yp43zOD6yN3KkbOlPCgrOTXJMRlLi2Zb+LdmgtUzysnXPLNxJWfFmNVCLoXFVv1DJ0nvJUWYVN1POVLqx5OySl1GyMly0k+lrUMUlWwsV3lGKaJyyq0qaW9ZAKNQgssjkECGqoGGqghSHdBFVKfA8+zMdivomU4rF4qvLD4QkD7NZqVdirJoH2WoopWISGZVFQB165yiSsqJCQ9LRlSlKNUvyUqVOSszvar8pXBnkfe6paUJGj6f9M0okagEf3S20Xtp5qxZrEOOdZPjNbvqctNvx9DypK2q/Kb337WwH64XexCIDCD05x+h+yOXouPfX8dL31iIgf170dbWUlWO3b6S13FV9WkyL1lbV4JeOz7ea47PMhdGfYlUsQ4ct0rNKlZzWlLkR1lMaZciW4cmRW5c55XbzXFsKeBrLd9C6NUC2rLNiPoFuVPkKssxFCI66We/DA1LNlyRPwCwkVPV1CT3xV0eV/yhSWRX+W3Kh7TbqtX+fB5FinTeyL1sbRMuVEubcD8a2+Q6Jnl1iahcf2QkwvLluuoptWSJqKwtfkMy+EEiBc0N9J+j2bCVvkiWElU86U/kCMgPUIebamzkfZZRQ6JIkWHJ0BfyOcBW4WbaipteK7U/VJmySGW7Iu9B0UmkizCtHm+1SD8ls/FyWTbOFQL05R/3yr/UcezhfHER2UrzWlGiZbqsm+qpNwZ4urfhPtzsvRWPpx9Dl68LVnu1n9aW8y827zxd93Wd71klKOZrr6Rx5Q0n49hDn8RB+yzC4jcFwUp/UNacTq80aDr9s5wOaafTTsVMB3ml9H6LJbQD6A3HXQaKPAfJ3QQAn1vKsGSlL52m9G2H5i+4W0L5YIUsVTjpQ9XdR55do6Dcu++xGwAgFKJiKNeQEncSZNPy3MjEhCNmpDgeTI5Pt+zycAZla73dJe8n+EzsXyeofzayHAAwV5ZMhDhvXCGph+mQ84bXynG5lFzPaZF6R/i4WNYt9VoTkTWjfoYgWjvtKsiU3y9rrcmt0/mkoPilmMxPB2Qe5hyCXBt+OW+0uCveWlGPcNiGpSsb0dsTxktvfghWM4nPH3ogAg62OwXY+ExZu0Tu+8ig8Lzm7iKKGF6/D1abD9HRGBa/9HL5Gdo5V1A3p8uFo44qwjBEiXDsqNzcr26T3qGzhQjS+NysMe9O8rvndvNJrUVV1H5s1aIWO0AUbLvCmfgmvAMdiDc1T3V13nNR/+dVaLv+AhQDe6AIA5lpv4J3/SF45SsLMbRf78QFTGGcFTttk+8vtS/Hq9ZXsOi7c5GZ3bTJY2qxdSLzgPBJd/QH6p3+u3Gz9xY8OPQAujzvPkRr9Vo3rrzh85j/sSex/x6Lpro6tdgKMTASwCU/+zhMs4j1fRXz4vpAP07Y74gtKrO5IYzl3c1YvLQd8/bZWjWtRS22PHb0Z8OUx/bMDpQzF+NxnrZTVTY7MzNGFbFU3mq8af+usTYt+rlJxr6/vg4GKlnlXF734NOLhCiLcrB0L7Zm0w1my11eWdjdXsmapZi910wqgLLTfSqpKkySWc9TXUpVBjWjl0zJ+zZmTRuaqTZILpbNqtkneiT1CG9mlBl7zT4XiHooByyJY1ByXIhDrr8CfzzjazBmdrI8KadExTELJcesFqrFUbHPTVVEQxE69kVDA9WeiFQM068oR4UuReyiMfpqUS2wLqCqV8wCs7/UJ8ySI/9Nt9Y59V7Qu4Y+RqUyt0t9mqQeHn8lm6z+VQmqCEYjbJNT7pfHI+ij2yvZYVWGy5KbMTxEnhq9jWKjcl5m6Vvw9PehabUN7ff8EkNfuhojX9oHFo6b4UHx5Ul0CyqxZpVkUhvJ7UoyS2tt4vWpYqgohvYNxd2Qp3+RcgStvBeq2FjIkxekqGZJhTXkOD8RC4sqPJJ3pGO0PG3YfosB/Pr0OJypDPp/eg26zhXPqkX/vRAA4CBvb+7OkhVftlSQugzn0bSOireNZvszKWmzwbrFYoIUlQxFBaTt0X76+BDpTWfq+Cp13XV3QSMNzukk+8bpVtSO/llU2UzGZFx6nWXCEl+kz9oa5XjP3jtV/W0SybLbZCw4/YrsCgrk8MuP0GBzpxxPrksmrWsKeVFOueeukvIFZRxnVdmSa5ebiJqi8PmCjncqZhJlsuaUk8P1gmMhR3U5m5PvpyvopqLlOfJHVZRSYWsL1wLlJqr/oNMgmkyESvlEiqiqx9e9zb/HTcFb8EjyEXS5OmG1q38hqsIwqjktE3NOJvu8MKpelbcU6RfFyYXPDOGia07AcYf+Hw7a8yWsWL4EAJAcfAkA4LZI305vINLHeZZRhUqu1V4vdzZwjfa4pT9GwnIvR+NyfGOr3HN/c7BcQwvnfJbjMkH0Wjmy6s2l1x4Ky3h7aYm0ZSgj423vPecBANqI5LpdHK8cN8kU+ZNJeW6U1xIIuu70CSLlaZJybF5JwOn8W7FE1P5GVj8HAJjTqnO6gefNlvM8srZmRmXuuw1BB9PkXpqmItRSr74Ix1RIELU99j4AANDEBGBe52WaXK/h16WcrPxdcAs3zBaUX0CrhvbA2Zcei93mrsNw2IvjDnkQR33gcUR75Ie01y7taW8kyRNAvkBkq1/uQfeAoGYDvTL3HO5dUR8awRc++Tv8+OaTkEw+gJ26VsNGjuKMnXfFE3+zwmIxcNRRm/Ks2jIO1UQ7hSYqbyJ/usn72I23l+jtEa2tiXhti51dO3rUfmzVYscL04J0xzTMeeRhLDvm+KmuzXaJ1/d4Da7UgXBY9sKuLzyNN/hjqxZbFr7Fb2C/Ky5HqmE2/GuCWPv57yL1pR0zBbrKugYAMDM/vep9z1urMe/pFPr/8GOUHI5NnVqLWgAA7g79DrcGb8O96+5CV6hzm17ryCMLm33Oym47LrrmBHz2xBew16yXtkGtarG9443l7Tj/mmMBAKZZwscPew17TX98q5W/U1c3Tjjib3jsnwdjp65qXt/NN9thGCaOOmorEMBqUYtJRO3H1juMcg7hHWYDxir4AeNnBybkbm2m+uCUZSEm8O/aSH2R3Jy6pkasX3Abpp92KmCxYOizZ/A4kl2UR8JsoPoqWZV/pb5a5IsYVNLT6xXylWyycpH6ByVTP0JUxauckCbJTKqy1+CAZPD85JXV1cmrejyZRTlfM5XhYclgLn9L/E+y5IZ0zZIvzo1Exnw+D+wWB7K+RjijkTInRrPdmoE3iXBpT+b4foJ/J5lh9/A4X1AQh3yBam30CXMS9VDek2bem5olMxsgZ0uvYyH6EmB7GxolGxyj2uEQ1Q5T5PaYRBuLZd8vKqERuchv4LOl2d5ZcwW1UJXJtavpR0VlrjlzJdurynSKiiiHpZCTPqt/agVm//QKrDzs+5jx5FfwzDeeQ/8efWgbjbCNck9DIWmjqhOGlcs0JH1l4fhRNKQUpOqlSeXJjJP1leOtdrlXbab0odNFLiIVJUGOVtnvzaj2+7GTa6J9VaIs3fearwUA3Nn3S3m/pHyRHMINFqlnvlguN0mVQbdL6uuk8qXysIL1MiZCwcqWnv5+aXtvj3CW7JxLigLreHSTM+giQuUhF9FDn6vmVunbIPtWkSwY1Z5omYjc4+Qg73FOVAYdVGezeeQ4R1DGW0u9lJNNy/xS1UBLTvx9DKI/hkmumFPqZaPPlYVqoaaFiJdLvajIMSM8aXNUEFegglT5r7xG/r72f6Qcc4yHH1+L5I+qt1VlzVMVL7AeRBTslR/JmWS1oqdK82vfKwIa4DjUNqtvVpoIluHbFU4AACAASURBVHK8clTJvDN4DxY03o6Ho39Ep7cTNtZNYyKvnIlVz6rPP+er1T+2Kr6Kyv+Tekb65AvyPx97A+ddcTxOPPzv+MC8hVi9UrhbheHnAQDzWuSex1aRs+ZSRFj6yUaErkCUMZPRnQ/V6ocW8pPSOVVKlfoFzQr6YRaU60d+ZVbOMRR5yshNGQrL30vXy9oVLYpi3gw67XbOEmRJVWGLys/ktXMZPicgdXcEZe2z1BGVcwlCZXFSfZbPgf618hxZv+QpAECjW3ZOtLXKnPbUSz0s5Gjl4t1y/YTMM7uF6CmRuTSR1YGw/J13dAIAZs3aC0BF7RYG7ynnaWnoZfk7JvfK9ApZzNN4EABg8bq9cP41h6CxPon7FzyGV18UhcmlL0u9d+2Q63Y0ybph34AyrbtKZrfR65K8ubfWvyKfG3JO18yZCIXyyGfzSITDeGuRGF43tHagkLPDYrOhWCxuYvzK/dZ1d+zXqW3N0Rp7/sbIsv5vI7YZrzf2uPFi0yz6Lan3xr5atRgbNSeVWuwwkb/uR8hf9yMAQKGpCf+5+HLscv+9Wyy7vyNFpDmMzkUzYU/UEIp3EvV/WIa5V38HmcabEVx5Chae/QL69+ib6mrVYgcPy+rVsKze8VTx7q7/HRY03447lt+CzmLnVFdno1jZbcd5VxyP0z/1Ig47cOHbHvvxp734+NPe7VSzWmxpvPZWC75ywSFoakjh/gWPTXV1alGL7RI1ZGsLo1hWj2IWZJzj3onr+HjnjlfiO3Ukn+j9bZW12Mh9XK9fNhhj5pGZJg8V+SIu4UkNh0cBw0C7R7J2TrrWR8OSZRshX8rrkyxc0WTGl1npOJGLFBWclGcEAFmqDep9bm5kZr6RCE+ASnfMhq1eFWYZ5HAQQbJq9pkKcgNEypLkidXReCiRNFl3+byhQZCt3fr2Ra41i7nPzEP/gWmE6iWzmWb6VdG7aEzOC4XkvCCV5rJEiuKKiJEzMjrKTCTvgZsoEErM/lJpz6D3k91Bha4Gub5VuSksT9Xp7A5FCMj1SYvIRIzImYOfK0Ki6nKxKDk29koeKE4lOn9QzlH/pwSRKxd9t9ato5AF2+IgGiceUEDXP4Yw7ZcXYdXnv4u1JwWQTAqfoZRiRp19NDggaEjZt4t+XZqFLoxRK1P0xmIjVwZyj9N5GV+lIpFVQhGFPLPj5A2p51KxXK5m5tUHiZ9zOubLdB9FCKjkyOx6qUTFu0IeJVSQDO2XEo/rI1/QwXsQDHp5mHC1dGwAFTS4nuMpybni5VyzkQ/URCRW0bUQ1Qtnzxaxhfp6+TxfRo+lXEWkkqPkNhKLddiIKPll3plW6dtYTPrWRXQuTZ+j/KggcJai/G2a6pMnfZ3NkMsYEQTa6pSMfyYpCGyuyHtGpC0QknmpnlWFrKKP5ANR0VGXqox6kykXi/dQuY+6til/qLQRj2IM0mVW5oH6wRXpv2bwHPXei9IYyl+naKLU2V4iV4l+UUmuFXfV3Y1bArfh4cgf0FnfCTdV9wi+bQLR2nQmfbyoZMhR9bpihbRp9uxqFUA9IBmVe/OPvzyPb155Mk489M/Yf+YzGI3KfE4OC0dnLhGtphC5Zewru03Va+VV50WGvCqDX3ssfNVaWLkGccmGnegmNvAMKhV12xnnqI3ji4dkc/KfAXKbwnmO/12F2zRvL9mqXN8o66c+awpcK3JcG1QFFwZVX/mss1CqVL3CwmHhkfasE0QrNSxqnNMDsoa1ENHyUf2wxD7KhIWPWkxzrSOSpoRqfV5l8tJHsYLM23YiWh3T2uVw9kYqIeh9Yfg1KTe2WD4gEmwL7QEAeGPNbjjnu4ehqSGJB3/zV/SslnoPrRVUymuTtd5L1VrdZVKwVL6q6lyyEZn0StfAY+Xuk4FuqWvHDOTzRZgWO9y+evStk2TIUO9aZDNeuGxWFIsFWCzVX4Mrc7Ea4ZpovL9TLlTla5CiRBMcP2Y3VKWe481XTPD5ln+/0zaa5tg61EKjhmzVohY7QLj63Ci4ChjdqRGtT/8HzsGBqa7SDhXtj69D1y8vwtovfB9rT9ppqqtTi1pMadzpvws3Bm7Cvb33oLPQuV2vfcGFVlxw4cR53t8/ti+O+vBiHH7AM5MqtyeUQ08oN/GBtZiSeG1pO77y7coPre0RoUAEq3vasGJNx3a5Xi1qMV7UkK0tjBKRjjLvaUxWYHN5U+W/N/j/5iJJ29o/YXM5Xu+UEzY2r2qZfyIAwLXgdgCAn4p4Pq8LMIwyApFKVmeFTavu2afKW9kHTDNX6pEm11HuAwBYyMex2iRDV2B+IpEQtMTjls/9VM9rISfF6aQ6IDOEisZYyV0pcS++kxm8UFDaMjwoWd3wiGQKV6+QbNzeRN+Gd90Lpdjnsf/3L8HTF1+BulmSseyYIXviC0Q71N8oRT+wBHlDDnu1t1iJymSKznRSeGM0XI3QsRllpT6vX473Mq2oGVo1/i0QJSqXQ6TDx+sY6plGlcRYlChkv2RaFa0CKghTidwsFzPO7dMEgckSbVi9uhsAUBeULKyLbZz+RA/m/vZqLDvlEnQf3Q4fr53hOKinx5hmc5VPZ2Vb3URvtE9XrxJBiiT5aHZFTXJaTyo4JqS+Pr+gQaGglKOIFeiXlcnI2IhH5Hz1AbLZpc9I/6modxrqe6QfqFonFR+5Nlkssip5iVbaqGLYMV36bfXKLNsl7zc2ivqalcpjYd476VPpo6ZmycjHy8qdek9kXOv4b2gK8jwpUzlaFqJ7WeUPMaMeG5I+tZEz4m8W1TUXVdZMm5SfIoKajYt/j4NKew6iOHEKkjpsUk9ViMznyIFJSr2jw4IIWO1Mi5MfVzDUC03mtcNOlJTz2SSCpxncPJFvXaR0rMZGZb45OYZSRJwLRMLUM81Kzo1pVPvV6VpU3MC/y6TaoNWmnCrlOJGfxncNjr8sOV7JuMyp7roBxMw4Xqp/Dbf77sJfkn9Gl7+zjDLr3B1/vZ7sOr553K7K59poojy5PEItQzAt0vdDg4LEFukB1TBDjg/4peVXHS/j9ap7qk27tU+VHmha9dnNV/ax0ynltJCn6giqZ1Sl3roGGeRxGUROld+Vzsk9CqcFUWqYLhytnfckokU+pN0mx6W5/ipn0CDKYilRFRMyXkaG5XkTGZY+iAzKc8Gal3uLrLxOq5dyO2fK88BJNLSQ5/iPynHFrPRVTjmzOUXYpK2RhNRjXUTqG2gTP6zWWfT14nMvl5B1uxARtBER4WoZ7CdboyB6b/YegK9ecTga65O479ZHy6j6uhVyvLO4XvqrTcqt5y6GfI6ofqFyD3QXhEJBXi99F3nbI32CbidTKfi863Hmp/+CG+75NE4/tg+dbSvRv3YlMqkZcLi9yOdyGyFbY3mUY2NL/Ue3dhTLzwN9Z3ORqskh0+XS3wd0jW0ZNWSrFrXYgSLWGINn5FIM7XwQuv726FRX510foaVLsOe9V2H5kZeg+8RZU12dKY3YZ0YQ+8zIVFejFlMQdzY8gJOmfx5XNl2LfzmfwgP996DrXcjRqsV7L/qHA/jSBYcDAO5fsP2fWbvu1I0vnPQobn/46+jumbndr1+LWgA1ZGuzo/zrXpMrmxZ02fi8rZD0GKtYuLUzKVuKxmlMWqVnzOmlzcyEqoeV3UE/IbMIGEY522zyAj4qJakSms1OTg33fJe5Wby8RVUJi5WtKMqHUHUxt0dQgjQV7xTxUTSkkZl/OzPxyo2yUAXN7pBrt7YIAhAhIuB2queLg3WVugwMyJfjJDPhzwWeRmHPPD747IFYvcs/kSeq4yN6oSpnel0mb8ueU8oxUdXAWIyeU0TefOSOWZSTkmJfMC1TT06OekOp91mJXIIMEQvlZmXo1+VwSpbYQyTM7SM/hPcsEpFsZJb3xOqsEN0zGVXoIkpHdCJDTxlVSuyc2cW2yjXr3lqCA352PWItt6Bn33rEmeH3UHXPp3VxK79MxodFuVnMiKvS42gszPrQWwnkePVLpr1Yti8i342IV5F9qX5bOn8s5HeUivSUihMNHK32uHE71TtNUUb520vFy7L6FLPhhaLUt6wUycx86mBB4twZOU4VL6PkZkVGBFWNRxJV/SR1kmN8RDSb6Eul/J9gSDLgylFUlFnHmd6jElELsyB1KRXIMyIXTL3vPIEG9gF5NQXl/sn1CllpdMqU970eKtFRXbDMHaT3WmxAMukxqhw6TWmPpSDjziwJkqaokUG+T2RU6ulwEqUkwqcrlnIVFSVRP7sUuYdxIlxltVB7NYKhoWMiHVc1RVVPrORDjTLvk2UoZytP7iL9t5QHmSVquCBwD+5qfAB/WHYPOnJtCDW3ALYKB9Ew337drqibvX2mezzVwo3U1ColVJfHNVT5qumMiUQyj3RJxqHyBPNjPMoUXdJyC6xXlt6IytNze4kM8l7Z7EQEuYYpYqzzzmpV78LKWpQmhymTprJhVspK8HVgRM4dTco9mh2gsmcDES2u97ow67XzRXKpyFEa6RPkNTIgCFYyTLXAgiBA9Ta5t07uqPDXC4eqjkqULgfXTK55Q9x2XmLfWdlnkSg5UVy8IimZp+EMdwc07CnXa5Gt14rU5tRvMrpczh8VpT9bnjsZfLsDAPoye+Cb1x0Di1nEV89cWvZ4618v7cpExN9rRqvcvYBHucHKo5XuiiUqz2QrUUFFHG28Xy4b113u7sjwOZE0rehqXYKTDl+L2x/+OhpbHsDXP7sAh80/HakYYCcfs8I3qka2JqvuN95OnskjQuMhy+N8PzLHXmeyHLMt3Gm0Qb3GtrWyTNXQr/GihmzVohY7WLy4//NYvYuJOS8thu+t6FRX510bu9x/D1Yd/lU4o8cjXZea6upss/jewEX43sBFU12N93VkDjkEmUMOmepqbBR55PHDmb/Agtd/go5c21RXpxbvoxgYCeGb3z0GhxzYjabGNNooaDJVMXfG6zj6oAdw/yOHTWk9avH+jBqytZmhv+iLY7lWG6U/JpcOeTvBmUqZY97XsieZRNhee2/HK1fRoUq+aPM4X2PDQs6NzSFZwr6efsAwYHVI1tlHJKuOnC7loKjMVlkBjNUoFPWeUrWtUPGBKSsiauqGN6yhiZwQla5ipjqVksz9CBEpzS6bVEeLc8886AVSIkfES38if51k+AcGJUM4yixvgYpyI+Ry/d+J02GPH4f9L78U/77kEgy5JCOYZ+YwQT8t5VTZyROKM/s1NCQZfeXcaJbMyz73E+EqeQtVfddETo52nird5amop1yuUkkykaouWORSo9wX9R9Ttam6kHB78kTIHOSyARVka3BQ0IhkMss+k7Y5qJBopUfS0CD5MikLZj3xMbx63svArBJ8kDa5OT7Kt7TsEUKYkgjVQK/cq2RCMqSKfPq9yj+qPi/Me6UKjcGg8pbkNUdEbIjqmKZV2pOhV48qXkajgqaMDEs7AhzHdT6pd6GgimgiWV9PxcpEvdQzT3Qwlc7AVyohzesWHpd6LmkTpbC2dsmGq+daKi71D1PRr1CszFPNIrtcDr4SPSG6qGqFiu4pD8im1nd5ohJZcr2yMj5LkEx5gp5PeVWUc5bYl0QXiZiO8t4moqo2SFSCSKkib4rY6ljpG5BxONov57VKl6LIehTTzNQTXbE4lUOlvDopx5WvrA0AkGP7Bz55HACguVitxpnPEGkIkA9HjpibXJqSevmw4/L0b8pSOS+3wfUc7HOrnd5G5b6SOhY5B1MJGT+R4T7kjDyscy3oNLpQ3ypcPTfVXBWVrkRxzN+bfm6Un4HF6uMVcR17foUTW70zY2y5OXLPBnpEVbRQaEcuX4JplT7LEj3SZTqb1fNUrZOKpglFwoloVZYSAJV26w4I7eICkWYLpQWdBj2wTE/53HBczu3tlfue59qUoihlmh54FkPeKCSEi9izVtbN+qYO9gw9vYjW6breT1VBe0ZePRZ5v8Ul46GxQcZ3oFFQaatb7qmCGYWkIGDJsKwNZlHmgbUkz6XRFLlUXMuyfF6MRKWA4ayM06ZO4VpN79pFrheS62Y4T9JDb0q5qdflOhkqwbqnSTm5A3Dhr07FRz/ch38/04UTP74ah36oF6tXCjI3tE7WoI6AtL81qJ6CUp8010R9nsUSquAKlKiY6OF8SCbzVa9u7nixsiz1irQbIbS3ZbBoaR5DfT2IDNETs76e5ep4xSZjS/22Joot50iOhyxv6fUmHxMpJdZi46ghW7WoxQ4QS1oXY0nr4qr3Hv/cTujf4wR8+Oqr4V0SmaKavTuj/X974FmzDku/MIyhvQenujrvimj8Yzsa/9g+1dXY4SNpJPGa842prsak4g+tj6A90zrV1ajF+yj6w404/4en4sP7voV/P9OK4z62Gp87eeVUV6sqHvr7ybj6umlTXY1avI+ihmxtZlQ4W5v+ZT8WjdrcHMKm0JyxHK3SmE/GQ4rebW7e5Xq/Q86XZrOdbnqPmFZJRzGzmyjzHiSb7Se3RZEIC1GeLI9XL6081eSyycqWM5ebPiHkQSgaopymItOiJqdSmnJog/2S6fMy4w4iWN1UstPs6rROEW2wqcIY99Knya3SfdhrjpJM55ygHF/fINntRRe2YJ/rgd0vuggvXHEFwtPJ2VJ/sLzu4wavQ+6MDlM2KEeEqcwx4774eqrK6b72YrGaa2ASNbSpcp8iaXw/r1yGfsnQqpfZQD/RGbbP4xNOg9ND9atAhSehvKDenmq5e69b7ms0TKVHq9S96bFV2PWOH2D1qZdj+L/cqGMmX3lr2veqtpcmL61z5oyqvnM55d5ZqfKXTkudh4cEkUpQkc9LhUVVeMwRGY3S30v5d3qcw02Ps4iUEydKo8qUJm9Wc5NkXOvo5RYlD254SF51LD48R2SUvxg5TcohLyRBVKefKGuDKe0LBevYPrmeqi0qyrKiW7LiirABQCM5VarYmE5InyepeBePCSeqqVky+K1UAwQ9xhJxQcsMU/rSdAoaN9Av9yBPlMIg32w4J/faxnGn6ocZ5e0QAVJencl62cnLLNGbbU23cF/WrZU2BZzSp0lyxQyqdVodzMznpJ2GRRE8qm2ybxKlOL44/RwAwKcj82Gh/5yxQuZnsUl+2NhsqqYp9zJNzpbPVcf6Sj+Ud0jwZqq/ksm1yLcBwqv+a4Ws1NnCa6jfWy6jfSTj7g+dj+COlvvwSOxBNE/rgIvjzzTH5lg3L0tdQYInl5Ef+0y77rpM1fv6miSy2tfdh6GwFwPDLejsiMBuVQVLOW9wWObna/z+3p6SPuJQxGhUynNYyOEhN81BmNXG8lQhNZMmEqaqhFQ/zJNLCUtFGdWwKs+T6DjVLu1E0VxeOccZ5TjulR/lq9fL+PfWyVZO5RdZSjLHzLyqa8q9awxKH/qCRNHdnQCAujZ59ZITmYvL+M5HugEAhRRVBrnDwmaVNtlsqmAq7dAxEEtKfdeHZS1t3Wl/AMCM2cK5cpO3qfMyG14CACiFn+P7ksjKWkQ1tDd+FL501bdw2MHd+M/Lu+CEo9fi9JNXIpWWNa53zVLWew3boz6lqhjMsZCQ9530W2xurMyDHBUKdZ0sEYEvFLk2haXtnqLcVyc5uRZ3K9zhEArFEgZG6pFbUcJQ/zq0z5Jnqmkfi8xumpC//b9XjXe9qUeXtCvebd81341R+7FVix0mimefPdVVeFfGS986EPv92IL9v/td/OeSyxCZ45n4pPdo+N96E3veeTVWHHkxek6ZO9XV2S6xsEUMQb8YO22Ka/Lej4frHkHeyOOA1L6Ylq+ghM3X/wwAUPj9wVNVtaq4t+lB/Kblt7jjrZ+js2XGVFenKmbPGv9L4rr1Fpzznc/CNEtY3x/EG8s7cfB+K+D3pics9zO/r+P/pv5L6Psx3lyzGy685VsAgOWrgjjhY8tw+snrp7hW1VHnT6J/uB3N9esQnOrK1OJ9FbUfW5OMsVm4sVHO9unx+r4CYWN5V+NI3GyIUo318Bp3m+wkkwqby9UaX21q82Ky23s34qiN5Zp97GMAAFP5QT7Jxvn9fsAwEKCHSTrNbHtEsuCqwGdlBtjNbLSbGc/mNlEiM1QJKlPZH67qZ3kiOn6iFNmUZJFHw+TbcEduMiEZc49Tym5skEz6IH2ulKNVF5LMfqhBkAD1QEplyCGhDJOXmcWZZqfUeXq1V5OOq8XfORy7/cDEh35wJf5x4UUYaiBax0xhA/elO4hsDdLPS7kwTo+iHHI99dOy2uR9g4pPcaI1en0vPaoUWchl1BdGUJvhYclW56iaqIpiyjsMMnOb4/ua4Tct+sUJ5XGQyytnQ3lp/ALGceN4eRF2+8kPkWy6BQMfaYLHpzwxaZPdqop2VEyMVmfY+3okSxshglRHBEg9kBSdiMToeTMqr1EiqYoYqRqceo0N9HGMNFE9i2qaymtKmQkeL/VqaKRHTwP9v0z1siKi61TvN/LbOI7Ln7voYeZVhT5FZeXzltYmdqsqBEr73RwDISoLKvcMADpnyJYbg+Nc0ThFTj08t62DZTMTHh8WhCqrCnJOGe9eZpuVk6Eomo11dNDXLkc0Q/k1HiI90bD0fYLcrHX5DPtOys9wvKWIwKm/m48od4b8OkdWysnEZT5QgA455ekYUo8UOSRD+WG85H4Zx4ePwRd7zkSGnEztQx1LqnhaUks1jqGyzxjrq+eluW5kOMbs9F2yWDdcA6mAl5JjCY6U75N6ed3X+hB+03o3/hL7AzpbZsDFNpvm2My9xkRqhGP9fNgms/ppV1FDmyQnl6/KmV36+ghOPWs3HHng4zjmkCeRzAVxxqWX46yLz8EN370eTiqUZiyCDi1aK/3w1hDHN2Q9aPLIWOpskHK9LqmXw6b3RLcncH3gPc+nuK6kpGNzMTm/3q++ZkCGnCyXm75sRLQMcrfqA1Kmi2p6hZLcT2dOEChLRhBgF9ew+qDOYSnf4Zb10FsnP5CdIXn11Mu8Mgtyj1NDsqU8G+3m+7oWkvuXV6VT+TuXlzZHY9K2gbDUtz8h5TbPEB+wrp2qEa1MUuZHIS9IlD1BHy2DHnwOmW+LwyfhwlvOQ1N9Ag8teBCmTe6VPhczablXqVFRIWzwkstcIFcsrJ5ZfEZ7qr9PZTfQ1lBuoI1zQ+eWPh9SJNDpayGvqKMf06cVcMrRd+POP58Jl2cAAz1rkOUzy0aVzzLdvszt3jRSO3acv3N0Z6IvSmPL37pqg+NedZOS2xOh27UYGzXOVi1qsQPEfn/8EPb744fe9pjXLz0Ufbsdj0Ov+x80rM687bHvxdjtt7dh5RFfgz1xArK+7MQnvMcjG/RhWnce7td3DH7RjhCP1cuWzWvX/QAWjPfjZeridy0PYkHbXVjw5s/RWXx3IVoaN/zaiht+vXGe95c3d+DoI4dxzCFPAhBxlNuuvgIAcO2tp27XOtZi8vHG6t1x3rXnoSEYxkMLHpzq6kwYu815FU2hfqztCU11VWrxPooasjXJGMvVmugX/YTe3ZPICEze1+SdxbvNGXwst6uMGv5VvuiUjjgS/AAAYHc5AcOAy6N+Wsz8s3tUvTCvnlPkebiJMIQaBfXJEcVK0ItH3tPMtWQCVT0qqepIVlUIk9d162XbRCv9thTBUWRH1fi07oosFYhOjJCPE4tIxl4VsnREqU+Lcp/KfUTPp0dOnYkj7zgaR9/wS9x98qkw9hLUTrktel555PB8m/I+uNffWlfHest5mj33qooaM6hxojrDg8JJUC5PH/lVUSIPTU2SAVUETPkSXvoSlVW52P4EvZ6kzwTN8FJWLEzPJx3+ilZY40XM/OtxePXrryDVnAVickB/P1X/yNlS/oIqR6qi4iB5ZZo5HeqXNin3Sn2zgvRa6prRwfPVr6daoVF9uxR5UpQmPKJqg1J+PdG9llZ5+PvqqlU0LeVxLmhLQzMRPn2f5fvpK4eS1KfQ4ccFdzbhhjMvwdAvrgWwG4CKUl8sJn2s/Lq6OqnvtI5GliuKZwDg9Uqmu0h+RJT3x8JzR4YFGRodlAy+4SWKRzTB6ZU5BouU4yAq0tEq8ySi6BuUfyF96CLCquppSXK31HMsPDRQ1Rbvvsqz4/XJ+WholnvloMrgW72SqS/Rp8tq4/kOZuSpmphNy703yePJEWUs5UvII4/oKDkynMfZhJRj45gtcz3p4aSqn8qdVD2/QjzGcojCk9um6CsAuDzsC0UcOYfWZVchY2bwaNMj+G3bg3ho4F7MCEyHm8h/xXdnohiP+6v/m+g58fa7PzT+9jeZX+d8VeZjkYhuJl1E165hWK2KCtkUfEI668Tc3QR1aW4XlHXNGllrB6kq98bHhcSVuYdrV0bms88t/WQlV8tCFKrAH8tOTzUyYnDsuN2K9lc4W831Mg4ypryXoOqqwfHptBu8lhy/R4D3rDyXwePl1XTInE1DOE+mX/ysWjt3BgCUyHnMRlcBAIZWvyR1TYjqYIlrj4scW0XI7Jx3fIxgYFCOWzckB4QLMse79vwgAGD2nHnSV+SCKdcyl1om14ksknYUZC0tuWU+LRmdj3NvPAdNDQk8fOejsDsEKVPF1BR3gPSs7ZbzUkPsR+6EyKkKJ/lzKfYfFQWV71qo8r6kT5rynNmnae5MKZTY11b6cRKxUv/DYqEIuy2NYhEYHepHIadbVP2ojs37fjUe4rX5MdktTNsbVdq4XjVka/JRQ7ZqscOE5cYbYbnxxqmuxrs+/nb6XKzoOhyn3X8PGte8PxCuxr+tga9/EC9/ag0G9x2Y+IT3QQQLftx/TBIvX34ygj+4fqqrU4ttELeH7sIRuxyLz8/+Eh5t+l/c9MqPMCM/feITd6BwOjLoGwwinnS+7XF9B4TRd0D4bY+pxdaL11ftgq9eeQ6aQqN4+M4/TnV1alGLd3XUkK3Jxph9vMUxRKTx+VRjWVybH8XKxavqMFFWYaIM43ifl/lpk1RU3HoZHV5vrJ/FmM+LyeQDUgAAIABJREFUzFAlYpINttrtgGGUM5L5pPKDqNqlHkAsd4hZZOWmuLg/XZX4jA3UuspqfUSmivQrSeeU50LVKCI0IXoqqbqSclI8LuUNEeWgmprLqagHle76lTckGUQn1dgsTPGqApmVXko5cjzC9G5SvtCL5x8E140uHHvTDXjmsssR71CuFzOwzLwPMSusHlJuqi+mmKFP8m8nPU2U7jAals+7uyXDOkwOmI4B5WwpkqXoT1k1jllJHYK6X17338eoJgdUVCK9fqKCzGzqMGn533WY+ZML8MYx/43ug0swiXKUOUccyIk4vZm4+6ugflRUO0xTvU/7WtG6BPtCVS3VXqjA8WKzUnFxRNrsqyMfr179kOSlr1cU7+xUojPYeEWNPH4qV+pAJbpjWqtV57IcO4qgaZrcJOGoRGSrPd+Bn/V+F9/8yBV45FdejP5aFPPcVG8rKJ+DaEoxL2PbzfS4W5EyAC4qf+r9Us6eQZ6MUeT4cRA19gti5fA1sQRyANl25Sb108vMShha1xK9BymqBcbIkxthH1t4E036FXmpDqcIrYsKi7ZObQsRWa4doZYu6QOqnllsMn8K6v9l0KcrI++7AopQEfUgaqmouPKXFLHVQWblvdO/1S9P0XYrlGfn5ee8J7z3xQ12KhbpL+TgXPlN8A7cHrwLf37jAbRnW+Fw2gEPECAfdCyiNRHfePzQe6PHV7+/wRW0plXXG6/8Mmcrl93gnRKcVPjLkZN5+3ULcMq55+Dc71+A3/3iLjQSJW9qFtS+p0eUJhf6lwMA2jvFG2r10oUAAGu3oO97sDuCfvKIuIY7qGBZ76dSJhFkX5BKtLYNKu3mmpKU1yIRGLuDaww9vmxUtlMepWnV8eDhNeQ54QyJiI/F2ymvrkYeJ+VkRmR9LYRfAwBkI4Icx5PSJuUh601JUf01GpPXVdI1GEnyWVcn19ltlqDcnbNmSz34nCllZX4Vo+KjZYkLklYqCEoYNzsRTfixdvBIXPTLM9BUH8dDtz6AUknKz9KPLs0dIYMDorK4fpVwzJxWefZmOA/S3G3Q3qRKrDrIFBGkD6X6PQIYjcg5paKqy0rfjkTZZ0XeN5Lxilz/i/SUzKWS6GhYhngyiEImjUKherxWuIiKOxtjXlF1/Hg7kN7596Hq627t71mTjU35j9UArc2PGrJVi1q8R+PfZ++FgT0/gYOu+j4Cy+ITn7ADRts/ezHz+vOx/tTL8cYJXVNdnSmJGblpmJHbtGfM4YmD8ZWhz6LfNrSda1WLbRnDlmFc03gt7ltzN9qz720fLZutiN/9/AYAwCn/73OIxR0TnFGLbRF94Tac+T8LcOqV9+Cin5yBlvowHrr13qmu1hbF7rNeQMAbm/jAWtRiK0UN2ZogJvLVGi82yj4Y1dmJjY4vw1YbfD7OJadsp+4UcbvG9plm9LNEm9x+nyBbRGdiMcmqvfisZOX6+wRR0P3ogTrJ2De1yD75YKNk4UeJxuSKG+QgiBYod0r39SeSVN2jKpqV/K/6kGS6FTXRTLafqn39fZLpSybi2ji2RTKCDiJTfr+vqs66d93ONGsiJm1X/6E4Ub56qh8G+fryhUHs/SPggCu/i3+e/VXEWi3IuVwocj+7+mO5iAyoapyTmfeysiPLj41KhjM8LO2OR+R9Ra50HHuILPgCigbRN4WImrYvRhW6OiKCM7pkC5R6YG1YtpsKdomUoA/Bx1Zij9uvwtpPX4o1n90FgRjryr7VDKUilvrqIjIQIaFBFety5HIoIpBRpUby5NSPKso+z5PHB9bPzr4MUfkxRIQhk8uwL6U85Z4FQzoepS8s5IHE2KcOp2RsLR5NrVMJkJwrHYOXWy8CAJRIYSgRVbXYpdy5xXkooQTTVIVJeqg1k5+kXnFFRXZzVe0BKqp4eaIQpSI5Tm4Zv4G5wjUxbdKmFPsy3E/uIeeN2yVtTFNRb013t9QlJOPERV5cUb3wVF2NvArlVY5SvU+RUMOUxodHBI0sGXXsi2rFsnhS6h2nUpnTUNVBKpflpO8Ni9S7VCISMY43lfLx+r7xNekHIli6/pf5o+TsZDifXHkp1xgjsqHopd4jj7di42BRpKpQRNbIoS4fQN2oBybvTaiZvB97NZdFw5jgGTTZqJz+DsvhGpmnoiNKdpQKeXiIBhXIwTGddjicwEM3LcAnv3IWTj33C7jvhrvQ3EJPK6KM+rrzLoLaRKOyRi1b9zoAoM4jY7fOxzXIq6g71+A8EZA00cuSokaVH3cWju8S52oBiqJz3fNx7ll0DVHlQ3rm1QsXy1Un3k5OIsCK3meiolaYzYhqX25UEKF8XCAqCzmGRcpcpnPyOpqQ6w/HZK1KFij+4BXlxllz5XrtHfLD3Ot1VdU7E5Hr5Uelr4yEXBdc47ojh+DrP/sxDj/odSx604ZPHr0cpxz/BgBVDZV6lUpUB10t5b2+6Bm5Tlr8tTra5TgdmpY8ET/lnBERNG3VW0Y3HMr5XDUSpdzsRIpcP0PO9ZBfrDscVI3TZrOVkeUNyxn796RVNSdAuMpteIdw0FTzozZsTg3Z2vyoIVu1qMV7PBZdcDB6dj0OH/31dTjumu/h2Gsuh4dfSnfUmPlMGAfefhXe+Pg3sObzu091dXaICFzTjsA17RMfWItNRtbMYblz5aY/62hHtmP79e1jvr8ilHt/OQXZbEU8dNMCAMCnz/kconH7BGfUYmvEKyv3wZf+5wZksk7856V5OP7QF/hDa8eNSDyIXL6GNdRi+0VttG1hbJRlGI//VP64OvuxUTZlU1nCMRytraUaOBFXq3z5zbzc9tpTrHusVcHI4/cS2SLfJy7Z78VvipLSywufBwA4nZKpnzZNtlw1cO9/UdtNJCS0AVelmb49AarzRZgtDdRL5lCRIeWYKELVx73qXvr7zJ41EwBQVyd/25nJSxIx6uuX49PMuKvCXn2jXGfFmbKHPkMeQ57XidAvKMe+iBF1sVjV90qO+9P8adiz7T7s8cI+WLHb13HEL67H/55zAYxWybj62GZVLVT0cA05WV6iOikiEupN4iDnLBaXfkmR96QeUoqOOKnCWEdU0cF7oZycnrWS0bUTISyTwwAEfOo7Ja/TnxrCvHuuxVvHfQvL5s9GkMjS0LB6hylCJeerqtj0TvkyrCiFopWDvVRSVA8wDoccy21s7OD1pa96yL0aGhCUT3k8XV2dAIAil9UIESitR0tLA+tDDpaSxwxVcWOWWTO3zIXZy4gVlfBUhZAoUIaIXTYraKCVa4lVpcnIa7Ktk35wEVVUBK9E5bCiKl9SYa2QiUBjlOqDSaJzqiLmq5M2WewyXsOjck5khL5yLFJRmSh9t5y8z37OD+Vw6TKoiK2quCkXsb5B5kOcvLwc/arUnycWpl8WuzZXVHST6B37zkEOpcF5BIsq41Hlk2psXnoseeoc+M7O1wAATho6EXlm8g2DinZuL//m2CpUc7MUsVOkuMJNI4LF+WV3WKv6bUODRn3vJvPXuDW4AAve/BWKxQIamwS9ULXKClq2uc+LTXNUxsv8a4ynVrhxpl/K7+qSvomPCF8v3EvFu8JcFPMpOKjoZ+TkXhbT9H1zN8BiKeKxu+/G0aedhvlf/iweuf1+NJLvo2qh7dM7AQBzuesgFZWxmKTHFam88AdUGVL+Vg5XJCnzrE5VRs0NUBAb0RKixm6PjD+Dfedgm4tU3TQDgjY66gT59TcJsmWnCmGBCHEmLfOib+WL8nlekCELfeBKOicLRLCiMm76wuSM+UTmP9Qm12nwC1cyGJT5EqAHoMtBn7ekrHkF+l7lBoQTVkqISmfOCCCddWHpyDG49NZz0dYcxm3X3gKHT9bQbEH9JqUzlfc60CeqiSsXSztcBeGYTW8kl5PPPZ9H+bTV3xnyJbkZHj4vsuR+FTaYB76A3O8iPSRjCd3pIn/ztqHEzxVBLZbI+yoV8e9Fh2NoNIRiMVf2IqsEr0WO5HbfSrSVY6LvjVONmL1fooZs1aIWO0CkW5NItyYnPvBt4pWDFuKND76CnV+8Gc74RTjuml+jYUVqK9Vw+0To8W7M+9UlWDX/v/Hm/NlTXZ13RXyl8xv4Suc3xv3cU3QjbxQQM9+bvL3tEX9q+iui1hguWXchbCXbRp/X3fcA6u57YJvX43bv7bi1eQHuXH4bpmV2TJTyuuvSuO66dNV7I2E7Fr7WhGBgYvVUu01+cAHAMV84GdGY/CBuizehLd70dqfWYhLRM9KBM65/ACdd9VdcesO5aG/qx23X3jLV1apFLXboqCFbmxllZGqCLN6ky5kEWlVGjLbwWu+VyD34EACgSE5Wec+21QoYRhllyhDN8fok26yeNsqXGqYCn/KHVIFPFcwaiWYBQI4oiaqJtXOrkJ98nDSvBWbOBwclW+vxqC+RvD9Kb6jGRtn646a639o1kkns75U6qReI8slC9Q1VbSjz1XhdH7101BtKVQ2VC6XKdtrWlUcsxcojlsLpasaBN56II352PZ6++HJE64lyKGpCnxZFVdetEzRHM/ONzdJHNmYgA4E69pj6BUm/xXmv1OukSF5QkfUKhSTDqy71ypPacH4lyMGa9fwwOq8/Hys/+W2sOGUu7DlF4YpVfZwgsqk8MfUjUiW6FFGUCI/XvlX/oix5SQ4q6DUSXSyPK4+MqzzVrTJE+dTDTF8LRbaFSFqA6pcW9kUmLX2RIo/ISfWsTJqqWVQWy+Wi7EO5x3GqI6rKVnlMpKgElpBsssMm5fhH4nBlg3jR8Qr2TMxGOiz8CRO8J5r55atyvnK5Cp+or18QqwK5IkUe0zMg12pvb2MbpM+C5GCBZYJ9n7WR28F5YRDlGxqWNmVLOWStORQtJbjyzvI40sy5y8l5xayzt069xaS8JPtGkVpFuXt6Ze57iEB1tAtaabdKva0Q9CMrL8gkyN1iPjKBJHaOzkYpU0TOkivz/9Tvy/3MswCA0bPOkuPp1adea8WijBHT0DFZ4vvKP1GkrFppVjmfAHCL/Rbc4rsVC5b8Gi3ZBoSaZFy6/VRA3YhXtmkl3LHPnsqOBGxRTPb8Eud8dEj4R289+1dkslasX7YS37vlmzhkj79jtvcBpIfIgyU3M8l7b1r2kuvYQ3BYgMfuvA1Hf/4MHPeF+Xj4tt/jm4ul7+M2WS/8RHMCDfIDLJ2UtVm5nKZJNIoou4PPAZ9L1l6XX9a4kumuNMKUvrZ6+ENXuVtsm2mR8WV1yLkOl3Ck7F65VyUioSWudzoerDnpE1exGwBQJEqd5E6B4agc1xuW50b3iJRX1yxI2Zw995W/2Wblu3noX2ezkpMYF2+y7KBsAywlBdky0hlkcg70xD+EC275IY74wCt45lUrTjp2CeYf/TpKpswTXRt0B0Y4LGto72pZU8LrRQGyzSntoXVg+XmSLyr6xOcSka4EuVslCGLogtQ7EpV1J060EQBCXvksxXU3GZdXl0P6yG4qL0x51or8k+8ZjcuumFIJiWQS+UKl7Oqo9rh898TY74zbp34bfu98n34FfUdR+7FVi1rsANHyZ9n6uO7o7q1W5nNn74ODbjHxwWu+j2cv/wFG5441dXz3xPSnBjDrN1dg/We+gxWffH+qDr6T8BXcmJVux5vubsyY6sq8Tfzqw3fgnzs9DbNoYv5Lx+DTLx471VWCkc/j1PP+BmtkFBfetR7TcvO2ex1u996BW3y34q7Vd6Apu+NztQYHLfjCBaeidyCAUqmI+Yc+htOPeUC+xE1y96PdViz/4Dr+jE/hz3f8AX5fduITa1EV6wY7cP6vf4rhaAUVfPw/++OMTzyO+Uf3T2HNalGL907UfmxNEO+UJ1WxJNnyVIC5lTIXm7t3d0vbPtnzxkPoihM8bcvnqZJfJgMYBkINggJ1dknW+sCDJNvnsMpxzz/7HABgDZWSVKFs1qw5AIDWDvlBo/wsANiJKk6NzCKrwpxBpEvRjkHyhTIZQX6aiPxoU9auFWRI+WE+ZvQHqZQYGZVsbqhRsqpNrdzrz8yk70X5gjX6IVGLGuyX66nnjqIzyjNSBCoUlAy/Ikuq4GixStsXfuMD2PfnJj7w/Uvxz3MvQHiOF0WLFRbyelroZaM8pzVE4tLMNifJrdFMf4RKeoogaLZdk+6GqZl7WXricclcKpqkmVnTYodRKMAoFND2VC/m/eYKrD7pYnSfMg+5RPV2uBh5b8p7cdjpr0IeW/cKqbM/IHUqkccTHhytqrtmmyuZfym/l6iI8vHqqTY4Y8Z0tjnCPqbyHNsaoBKjScU6F/20FKVZvUL4DXnekyAVGdXDSlEZRU/VX05f/UQTtZ0Wh5xvKUhWPM+sdSa+FsVCFt4kULDnEetZJNdxypcru0fGms0t55s23rtMZX4WBmVcRel/FmBbQM6U+r3ZTOm0FDl8BOPK6GM8nqzqIwtVx+qo4nnWa6dheXM3dl8zD/+a8yxyZg6fevEY2D12OAp2pDm/dBxZiegm6DvkJBfLQs+9FMfnKLmNVg7EBJFfW1Da6nDL9eGWeZtOcUxkipj7s1vR58niqV2HcN0pGZR+dA0cDVLvfIrKl+Rs2oggx5jxT0ak3WX/Lmb2Mwmpp9VRXd8NkSwpZwT3NNyPW72349bFv0BDxovGFqmjV+cK26TosLHF5ACi2xXC2GadPZ76mnK10kQLjzvBg9eXNOPjBz2C+V/6E0BfuOFBGTMei6AiXgfVMXWMSZciU5Rki8XRCAuAv959Bz522uk47vQTcf9Nj6CYz8PrycJP1D8YlOdCJq9cSZlPBlVnS3x1ErF2Ngq/1lknr7Cov1/Z+g4mt5Ja3ER8ClS6c5BfZuV9tclrifPCUvZfk/ML9JnKxWSNsuSlD5R3miTK3TcidY9Dnkfz9t4PANDSKs+sYEjmbrEkfWU1uM5nBMnKDQrnt8g1IZvIIpV1oze6Ky6+6Roc/aHn8c+F++AzJ7yC+f/1CooW6bMipA8VxS/xXkTJjVyzjP5fw68CALqCAg03B6pRd5OcNg85ib1DUj9dS4PtkgIyiRQWU4JCZrmuZFKV7aUFclgVvfPR+6yZ42yAa0wqQTSevLUs0bSiYYfiXulUFrnc2K2rRHx1/BNFH282jEWKx36v2Xo7kapVGCcqv1TauvWoPn9qlKl35Kj92KrFDhPWCy6Q/3zvqqmtyHssFp57APb8cRGH/vRbKFqLSNXV4cXLfoBUU/OU1Smw9E3sffV3YE1nYOQdWPWpK7DmtJrq4Hs9Qqkgrvn7Zbjkoz9Af2AQf9zncfxxn8dhlAyc9PKx+OTTR1dsMrZDNP/jP7DGYtj3X2uQswFDxx6E4oK7EL/o29vl+vc03I9bm27HHctvRnOmYbtcc1vGwICJ15c0oCGUwPxD/7RVyrTbiuUfXCd/5RgAwLe/+k/sOWtgq5T/Xowf/f4S/P2lo8t/P/SPj+JrJ/0e8/+rbwprVYtavHej9mNrnJjIX2vcx/1YBUG8vQrh5sR7jau1ueqFxipBAjTzr0pfoyNhwDDQMUNVBiWT1TlLMqBWKn65yKN64vEnAAA5Zg3r6yXDv8fue/D8+vI1G5ulLOVeqWqalqX+U91rJTPZRL6XcqpSVGsKMfPY3MytGuQuucjpKHs0NQmS5CffrJxKVYU5ZtBNiyJrygWRPrQoF4DH6/Wd9DfyeOkxUycZS4IiWHzRRxB//HTM+MtMrP3Qt7Hv9y7GY18+D/lddgYMs8wtUTRQs9WqqKe+SV6P+oP5WE8pX9URXUQeFE1avUbUDt0uN1AswuN2o27ZMuz1k6vx5jEXY+6j52HhGS+ib69eGMOSNW1olPujSNa6daIypvya+gbp62iMXmDkRKnvToEqVS6iEDpHFfXTe6FtzmYz7Dtpk3onJdlm9QFTNTRVmBsYkC97BtEbVaxcu0Kyy6tXynhWn60crxOi0qWOocGB4aq/1WcrUCep/tS+co8zVMhzu+T8XKqP/WIFYGBov8X4V+dCfKrEsUV0yOYm+umRsZvL0yMoXxFkaaU/j2NYssUZepPpOLWSe5IkV2mI3MWAn6gAFd0UpdP543LJ+V6ikblcFiE04N7/3Cpttw7imwdfij17dsWzXYuQKmTwyec+DtNtga1gK8+Dzk5BGW0OvXeo6tsos92KrDmp1Fhkpj5GzQsH/bpK5OsZ2QSeODiCrAOY338csN+esK+syL8XyvOAPkEck2lyx0YHBblWbpfy7tIJItMG1xoiIBminvHRMH7X8iBua7kLN758PUJpD4Ltcl99XEsM9QoqVb2M+2x65/5aY9UKJzqeSAKR2KWvr8Nnv7g7gr4wmoNDcAY75TjynBJD3QCAWFz6xkaE1mmVNdaaVtRH5nvcIut93fT9YDOAg/v3BwBc9ZT8EB4lr8lq55pDnzmDOx3SWbbDKvfc3So7ImxUDjTtiu5U+s0gD9ICRbGlTLsp49dORN9mlzmvir65rM4lrjVp+hPGZY2IDtJ/MSJzuXu9HN8XpqKoby4AoGveBwEAbXzWOR1ynUJOxlticIXUPS2IVim3ghUgLEjV0Mu+/AAuwwMw63YBALiC0wFYUcRMlid9E6da7MiQnN+3vhsAkAq/JcXl5O/2Zrk+hznCCfrqOcmt5NroYP+0EXX01Es73HxeZCLCAc2lZZ0xqJRqKVV4VXzklXlfqjzqsMnfNqJ6sajUOcQ1x8I56na5YLHIfiGbaZZ5zePNoNIEM2s8penJ/j1+jFUBneDwzTxu4/O2ri9YLaqj9mOrFjt05L1eBBa9hMg++051VXb4WPNf3cjlCtjtvp/DKOyCk679BmCUkKqvx9+/dgHi2xDpalq1HEfc+kvY02mg5EDJvB+7/OljeOHLz6Nvr95tdt33U3R/4kncceDv8Kl/fHOqqzLpqM8E8dOnfoBvHnQp1tStw5r91uHP+z1R/vyBG2/cpkjXS9PXYafHI/j2krOw3huG47nnkJ85c5tdT+O+5odwW/vduPHl69GRbtvm19se8Zu72hCsyyHgHJrqqtTifR4f2P3veOrlj091NWrxPoraj61xoqzUxL/HPs7HPuCLY/keGxxZdd4E2YJNZR/LW28VNRsnc7G1OFdbGhN5iWlM6LQ+7gXkRflGdfV1WPPTX2DO+d/AwnPOxSizfW63ZMlUjbClRdAiN1EVVVB66fmXAFTUCVcTOfN4K3v0AcluDg0LumAwuxtQBSNmxWbO6Kyqqu5xV3W0YEgykIowkVKFhpZWtpmqZv5QVWPNsmeO9IqiLMrRKhJpUhVDt0umtHrJjBJ56yJaopl+i00ys4PMWCqXZNH+L2PR/i8jGslj9+efwIHPHojuQy7GYT/7IR4/+zxYbVJ/9Q9TFUTN7Cs65PVJH/oDcj0H2x0jKqO8JQMWtKxeicN+eysWHflt7PH3C/Do8X9B7y7LAIj/ji9CtIzeY3qNZJK+WsxcBvxetkmyxb39guy4PXLtXEb6qI+qlE4XeRNF9WmRcjweqXtjk6CQAwOC0igvz0dVwWSiui0l+lnVNwpSpKiLhQjS8sWSDe5eTi8b8tR0rNjI43CTO6J+cqqiqL4x4WG5Z2nylPb/9z4AgKE6GaMtzXq+KmJyRpkeIfQY0h/5lCAF+bSMUcNOPlFG6hMZpaIlKuqRcXILCzkiplQTy9N3q8A2KXKkFCQb0QPTSvU1on0Ol/S1ix5RhYLyaqTcYi6DIOpwz1M3S9+tkr5b5VyNy758NU46+2zc8ZOfoc0hiQBdSVThUZHdMDlaynNTjuToCD2VVBWzJPfSlpd2PDm/Da2vrsGXz3oCfW0GLPEOjJ7ztfK4t3Me5afL2qMcRSeV7fJ5+hAlZN4GyB9RL6l0XO7l4Ai5NJk0Hpz+KO5t/yNuffUn2Lf5A+V74KMyqUlEq+wOpLd3gmfL+NyOalXCTRxR9aqHTfZZlie35uRjX8T/PXkoopEGtDX2ocRxaNK7ykYPp3RG5ls8p6pygnDZLXJPHSXlLhKhik7j9ahGR+8/Ja9lyItSVdJyf1k430JEiRp2AwBYPU1srfo0bfA0Vy4WuUUWm4xfg+iZjRw8s6QKofTJUvVNs5rHNsy5vGSZtNlnkTmdI7KUNgRtmzlLOFohJrwMRZLVJ2tksVQwIc8wkz5xOa4pJYcgYx76fHmCwlOGXdYK06YG0dJnad6zgX5Bmpa++oKUk1gOAGgLydrncUm7XHYZk5k0EVxysxqaZb6568gP9Ur96wxyjMl5jNJrLRUbZv1l3rhc5MJZK3YLKaq45nJceyzSF6rOarepEq6gY3ldk9xyrwqFPHzuYdhtBTjdLlhtW8cce+shWtXljacm+jZn8vzJHv/2oacbm2u8WouqqP3YqsUOHcm998Xz534LB137A6z/3GmAtTakt1a8dsBrCNXXYfff/hRmYTd86odnA6gs/cm6Ojx57rcRbZ2830/w9Vex13U/gDWlP7YAwAHgT9j3sUPxp/kPoXvWKjjgeJtSarFhzFsuX6Cw39sf515fjxkr3htKji3hJlx18yW47MtX4/TzKh5jTz38h62GdBWMIl5tWonMVfvgxOtfQnu/HcM33oiSy1X54s6IXHYJAMD7Dq/54PRH8duZf8CC136Kjsx7A9HSCAayuPG6f+DoU46Bz1PzfKtFLWrx/onaN9NxYqNs3zgQV/ntrbS/dcNy/j973x0nWVVnfyrn3Hl6pnsSM8CQRBDXtAaCShRdcZVd9bergKJrABRR1iyurAq6gAjiLioKqCQTCAioGMh5hglM6NzVXTm/+v3xPd9XU9VddE+iGeZ9/UhNV71337333Xtf1ffcc85c6jatmcj5qg3uacRrrvJ39Pqt7desdwf5T+tXHwB7rYZN69ah7nJh1YGSoVQ0xcv94k67ZNle+cpXAgCmk5L52vIcs3drZX97LKHoEhChml+Y6nweKss5+aPO5yeExCxqOiWZTBcz/qpSpnyhKXpdqWybAAAgAElEQVQ7acY/FBWezNiooC0hR7Nh6tioZDx7YvQbSTejKape5nTqfnR5jTFTH6XqX5B74qeZ0c9T3alInk+ViFmJvi7FopT/4KEP4MFDH0B6Og3Uv4ZSuYw1jx6EN9z/Jmw97ot403cvxpNfuRgj5PSsWyd9WOL57k7JxtdqBmKPPYKDvnkR1r7ty1h50wfx8EcfwPoeyZQOjz4C4BEkJyeBJNDZ3eDNdXVJGX6/oB8ZooWjI4JcJajK1tUZZRslEx4nihHhvcsTXahxr3+RP/iUdxYISvnKJ1OeXozll4hAValepZk+HzOmXnqn6ZgJsjxVzRofGub1pF0ZcspqhqA85bJcZ3yUPA56lKWJBpr8D1M9Szllcs/WPS1cIrdLsthhP/mBnmHA5sCay0/F58Ivg/McqUeN5dSYEXbWNStN3yFv4wfvxnWbAAAuZtTDIQ+vpUpdzLQTSapTwSuflT7rVKRTkQAupG5yWwocj2PjwsuLkFPogJzvI1IUT3SbfRc24vjlD36IOuoo9edx2tFn4dUnnoJf/d+15sLsIcK2hMhTokPGVTYt10lP5XhdGTPpaeED9Xca+O5bfoWyA9gYHcUXL1mEK579BqpOB1Apb+fVpNJ/RJ6LLcpmRMCLzNiDXj8OZuop0oha3cAvBm/HdSt/ix8+fQmOWPJaAIA/GDGLUgVUkwdsqqbpAbP7au2+aN2RoD84n/96ytmqVQoI+wvwefKoVW1Y97Qoq7pDcm8WLRFFuvgSQfOMgvxdLApa43LJ2KqR71otk7/K8a+pfJdKYFIB0CBK4vfqvJaPnT4ZY/5e4eq6o4L21MnDMmpyvN3eWJNVhVDBYkXF60SwYBClVs4W11/1WXPY7E3v2yHXiASp0koFUEWSfSFZE2LkAutzpZSXNSFPnztbXp4fiiA7YrLV1RUQLqOdaJ0vIq92t6xNuisgP8XyuLaOj8gatPbJv0v7soLKD3ZIe/t72C6upcpTjcW4gyMiz4NY1zJeT+Zvkh5r9ZxwdY2CzLvCtFy3yv5zsp0et7w60JDYVEXHMtHhiWlde6QulSqVEB3k1zl0d4iqF5fx2NrDkClE4Q/H4CWq3vhaMrsqbev784357vDZ7gT5vIX3P38/rZ37Ltru+6FF3do9Yf3YssKKvSAef5fIdSML/OP3jjZFGVoNRTe9/imMHCAPsu4nFmHFH4QArbLkel6tZuCes+40yz/q5lchPBk2ZcR1C5vb48LQqq34y0F/Bmx2RKcT2G/tASiHq9jvuq8C9f1xyAffj0P4MDz2eVvhAnAr9v/J6zD28hEkD0oCk3LeST89BQBQUZEKT+MLzsTJY5g4RB7+8QcTWH2rqBKWuRdTzaw9bjeeuvAR87zX3PZaRJIR84extqlcKmP94Hr8cf97pczpON5835vR+pDycDvSvcfdjVRCfuwe+tfDsGLzCgCNL5H6bMp1ZvGnE/9onr/y/P35uVy3Ny1fHkvFMv5+6N8wEZRtiSs3r8JRT7zKFEtRIrfKJv/oxGvNMo++61gEx+XHoz4cC2HK8A/l8QStAbxDPgxeeSAAwF6MwbPla7AnNgMvXiu1nQob/9ef68VPf/c/eOcxZ+Etp7/H/PyXP7gG9u2+qM0nanb5oZXx59FZ7sC0J4urn70cPv4o3hPxi8Hb8eOVt+GHT38Hi19iiFZrdMXHceDSJxe6Glbsw7FtYgUKhT03n62wojWsH1tzRIOD9cKgQc0u3fPbg7+zSNELzelqF/Otj/GmN8lx7JYAOTorD1gNm82GWqmAulFFLiPZMo+XSmkuZoSZNevqlezekkH58ruB6nDJpGS7N1ElDgBgly/KBx92KAAgSs5FgahIlWnSYWYCN23cBADo7BTFsIPWyA+DCjkgmvkul9TVnspJRC/8PiJjTslo5qj6VszLl/3J5KSJyAANhE35GtVKBeVSCR3ROLxer/kjq1Jp9t8C6oKg6BAzDKBeNzP2mkW322ywO2yo8wurz+uHw+FEKVJCKT4Oo34sUN+ESlnKve/oPyAdSyEaC2P5vavQ/aR8cbTZbIDNAZfbA2AM9d4aIpGQiToqYqhcn5rR2KZVLJaQy+XhcDhRqVRURK9Rdw6bmlFHsViBk+igy+mEw+EwfxRVyQGx2+1wOJxwOhX59MLucJhKizWiEXXWweNxw+v1YPHgEnRuSsCxlcdV1LOMKGfAi66eBDyqEKa+WCzHxvLdbjdC4RBC5BTap2yw2RrcraophMo1gVluu10UtBrLgrw/HSfvrmAgm0pj66YhBMeCWFalGqdnAMUl5yP2+L/A98qvwh+Ve1LimHJ75ReY9luJSIHf2/gyEiSPzcE5pPdAfxBq24rkxVVZ9wzROadHvdAkw93Z3c02yTWffkoy5xs4f9YcLEmC3h5BNW1EggqsW50/SOMd9JqqG1hc7Mf1l12BirOCDcYWXPDBi3Dy+96L6y6/0uRtNjYqyPiOx+WHa4ESZ7a6F1ef+AvkA3mECl5MxbO46L6z4epzoYoanLznNZP/IwV2fUC22Ca/d7l8zvleq3D+pqk2x5vrDQtSkVi0DD/tuxU/W3o7fj70IxwyKHtBHUQCtg+jZeuihjkdlKNhn3093fn1vnVnxVwcL70eEzfaFyUZC9HAOJb1PAFk5QfXlmFRzlO1zv0PlG2xvi4Zp5WiIE5OO3232Kc+3gubQ+7hiWulnqMjshtg47MyporTgvguSeg9k751RwR18RAFcniYieBYthvazka/1+s6/hWZkldNYtnYJzo/6uQTufgMMuq6FklfBPwyx/r75Zk0sZW+bTaieGVJyOTTgozqPPR4BY2xdQ5K3dHL8uW6Tr8qMZJb61YfRjkgnZJn3eiQIE0j5Lfm01QDzMg96Q/KGtG9iGq3nDc28lPdLml/ICrXCSUESfMm5J4ZXEtLSeFk1ZKy86FeyTT1U8DP55ch5RdKqv7bjPIAgMutpo3yEg1J28q8B1MZvQfkcrFTdD221WsA6rDZ7YgkOuH2NP/oqjfITk3vt0d+5seVn8Hd0vdnUQSY7bj6DKStdT1oTSrNPv/b+psazT5eilbuLFJmRXNYP7as2GuiduaZ/NfMxczw+RB55hlMr1nzwlZqAeLGt/0EugDq9kbdzuXabkZPHDyC7FHNpq4qk97ah38+QVAefcDowqtb60ABsVQihdvecwtWr5aHaZlb0aamuA0rnQXgQM3jwNo3PYun30jCNk1b49weFg43Qyx3ffAOAI0tIippDzTEOABg4tBxjB8iX1yHhqQtkQi3TG5nRg0Afz35/qY6TnOrjGn2yN+dU7Ep3PC2680tbTmar0Zj0rd+f0MwZePRG/DYUWLgOcZtjCoJv/3WRwB4/EI5rsq2bNokiKPaB4Aii+sG1mLdwFqE2U5+H0O1NvPL9R1v+B3S6RTbIe/d8KFfAADOvOGD5nHZriye/NxfpX8CBQBLEfjV6+C6933Y5L4Kg+X58+z2prDDDk/Vg57pLlz03c/gvA99Gaed8e8zjrvu+1fDzq2OVVsV3zn6Kvx5xd9N81kAWPPcAP77vnPgre05/uDP+m7DNUuux41D12KguniPXWdfiCNHZTtgDtU5jrRiX49iOQC7ffbkhRVW7ImwfmxZ8ZKIrV+/GAed90k8ds65wMoVC10dK6x40YXjyFdj+Y2/wsErz8WP1n0dvfldlXN4cUciHcd1V1yJrCeHGJX8ptxp/NuxZ+G0f3s/rvv+1ajaavjm67+HjDOHQzYfiKw9jQ9ffxpijjI8FRe8g3vuh9ZNK+/B9UvuxpUPfw0DnfvOD61UNopNw8vQtecV9K2wYkY8uPaNSGW7sWqFZeBsxQsX1o+tlmgr12keYUPLG7t0HbPUWaDddvD0fGHquWJHJdpbY2e3pSiwMIOAOuN6LX20ngaN9LlRCfj+pf3A0ndguFbGoeeei7++7DDUXS70LJZtVD4ajWppXsLtg0vl8/5+KTdDeehkcqpx0Q1yVihEojqTYT6/fAnriAuaUS2pfDcFA4gMqeyxh/KyKt1e4TZC3eLm4ucqS6/ITjanqAy3itV0fMp5yitSjlOGct3ujBCOQ0R91FS4s0u2L1Uruo2x3NQ3DicRs0iMfSLlZCghr9uxvOQX6d4lra+iMcUSt+BxG6Ofxzu5HaxEYrZKf2s9C3n2T7WxVXLt2rUAgL4+2Va0jPd/gNtAC5RAH9omW1+SRPE6EnJvTE5Vbox14zYkL7fkkCyuWz2jFMRYvESu5+Vx2mdplT/nPe7kVrcgt8iNDwvyNsV6mDw4k0wufdC3SL5gF4ik5XPSDpdDxlYkQuNplQ8nIqaoY6siXonbS4eJXjrqguS5F1E8JZ9BsOLDe7e+GWcPfAk3Zr4FALA7pf2pFA11aQYa3g5RjNAMOz0l24+mk1JX3ULpIDFft+6GKGihAg+6zXWUBs0l9kUXBVR0e2F/v0hde2htoONaLRNU1luFZuqG3GMnx5luL1RLg0nOh95DZJtVVy2Ba264HO99+xk47d/eb7bPVrfhsJE1+MYdH4Mn4UY1NwK4thOl0P1ZurVMxUm4NU63S6lZbTYpUHBmaoJ9LGPot0c8gisP/AVgtyFWjeC2zM0YXDoAn2kCrkbFM8Uu6q2CGPyH9m1jvW73bGmVkm7HZZv9OTP380X3zsnaVOGW5cy4zMtSWr7cjk1145HaIfiXf+S23ufk/a3rBYl2u5vXZ7dX+qbMvrdxu5/bK+enk9Lnv/b8BgCw+GEZK6nhJwAA+3XJmF01SPuLHkHlI4uPBAA4/dzSSmNp7Wd7Xft1+37SLWkl9oW863E2G5cb3G5o8LiGfraMZwev5YnIGmbQdDjNdRaUXA/XBf5ObrqTbV0OAIh1yXa9cETa5PZFWA8KcNCcO5eh8TkN2JPjsgZOjssakRyT12pR+qi/U9a43j5pWCzC8ch5VSrLuFdz+jLkORHoE36on8+NSo7bEseeYfky710OGRMVRe+pEGOjiIUubamM1GMqLf3ndqnIBdDdIffXRpWSQsHgORy33Faq66uDa4nNVsHQaAfufuhdWNKzDpFIHD39S+D0qJhJq/pZyxbGXTT91XmjojqNedxmPs2wEZrr+9Zc23uf3/phZnta1xUrdiWsH1tW7DXhPPdcAEDlhhtm/Tz/ilfAZhiwVauou1yzHmOFFft6vDF5BP6377aFrsaCRbwQw/VXX4ukfwr1Wgm+iheBgAf+ig+2WmqPXfeX+/8Rv1z5J1xx92dwQNdR8Boe9PQN7LHr7Wtx58vEC+pf//rqBa6JFS/WyOV96E5sg9tVXuiqWLGPhfVjqyXaojytsrc7WF47+fY9EXOZV+7u68wHpWuqR2vvtT1cM0rP+6mZ1e7o6wd8PrieeBrTB67BRkq59/frFh3ymvhD7KDDZI//MLk/D/5VFP8UdQGAclFScKPDQrpWYYvObsnI9/Z285XSupT/zmYFVVBlOc2Mp1OZpjqYGU+2sViSzN/YmGQgFVVxEkEKhAWFiHZQDp2oXUmV+TTbS2EC/5SgMMp70ky9Ero9fM3n5fwQ+UemjDKlukMhySarwIZKwyv3qoP1SVAKOTkpmdIKy5ksCELmtNPckoIY1ZrU083+WL9lA+vLegDo6uxm30mfDpHUHU8IAqXCF7ks0TwKT+g10uk82yh19tL42eFg9pbcLMWJ1AxbjWmLlMNPT0ubpiZlLCiKUqRsebUoxyUn5DglZhcK8r6aHOvYUDGSFGXIs0QjuzoFPayk5N5USrmm+ldqSk6nfDiFNcaIGkWj8rnqW3TSBiDisMOZnIZrywjqB9ZNhEzHdCYl9XSynoViHhp5mgQr4OIjEuWmoEkmR8sAIpxRSqyr9Loa0OaJQo4MbWMbpEB/YHsj8QZKWGPbSqDATKnZCLrKctWUVcfNshWCfk5OSZ+Ms28qHCtuhwfeaQ9sNiLOmQrKqABVQbWjRK6rBk3COT/cLjWztTe1X+/l1IggEld2/gg/Xv1r4KiGRHywFsBt0zdh8YH9CNC8vK2h6qzJdM00txzaKuLUZp1vVS6dO9pJYLccZShyy7WERs2Tm0QZdGy9/AjKTwjK4bDXUCgFEfTL+F09IOX7KNLw7GO3AwCmxvYDAHR0yHxQRMBmp9BBjRYQQ8KFLL9CUMR4TczqBwflnkVjglBHFx8CAAh1U6E1KCiqnaiUiWTwXjoccm9q23Endd2k+rw5J1URVRFac7OGnUa6hh6v6x0FiIjaeTqkTtGqjKcBu4iHeOvSl/mcjN/RpDwXxpMPAwCGIdfriMt14jGaaRvyOjYu5yviqsbQ8br0TUeCOzJ0LYxIO3x+Prfqahgs9Q0RuYp0y1Z9T0TRIzm+MC67EPLjYulRKWSayzHkuEqV8u00Q1d1die5vQG/fjXlbgBnA9mq6bqak3OHJqUNwynpu97FYn2xdJkgo14++0rZEWwd6oTPa6CnM4WBlX3oWTxgrncatlakuD67BPx8Y0fNjGdexVSxet5y620EdGZaNjx//XWeNWwtXhxCant7WD+2rHhJRfo738VBZ52JRz99AVL7H7TQ1bHCihdNVLoSGDv9JBz+4e+i7y7rAbqn4pqBn+PWnntwyZ3noc8hiYJITz8Chh/dXf0LXLuFj8Vdm/DUcwfhZ/e8B//02mvnPsEKK3ZD3PfAYbj9j6/ER0+/BN2JcRzzjpc2Z9WKF1dYP7bM0P259e3/NF/rOwhEtctm7Cw/ap5X5X9b5VJ1v3jLtestGZzW0naQ+9WaYTWzezOALFvT+61923p82+uax0kB3mAIOP5EbBkdx2EXfBo3fv1bMFwuxMirUulXzcBGaF48uJ9kwbdtk8xqcnzSvIYaHqosdqFIrhWVzNRgEzbJjk2Rz6OVq6EZ6VFzY0WawkRRikWaUTLLVqPEdr1c5XGSfY13MLNIJEkRqSJRFQ8zrIrOmOayNJvVzKpma5VLFaKqYbGk6Ixkib2UGO7tky+NyjlT9KbIcl1EkUwDU2YfPV6pT5gokaI7ml5PTcu2rXJJORByvvLngAY/TGXsvZRLjiWkLwzKjyvKECL/RY1jnURPurvJ2YiqT5WUHyay5XFLdljvTSar5smSTXY6pc/UGDdDJCo1KWiIZkgnJ2T85NjXir50dtJQlAnDsTFByPxsj9/rb2pPmrwkoNl7zEuem6Klx33tjVKPkhyv+cjuHkG0jDrRE5sTk6e+FTlPFZedfjMc35Xrqn3BFMeox6OIndoEAOmklB3vIDeE91u5hkZO6hyOBNhmtoEm3D7yIvqXiApiLC/3LkFenYlY8Tw7uWCZLM27iYAGgmrnQMnpCLkjZUUPea975F6HoszwjxBt4b1R1DES4TwkJ83Oe2XYpI9LZWb81T6CXElFFx1ULxw9/s0AgO8vuh639N6JHzxzKbqjneheItn1IBEBJ5Exk8JjIljtYKPGP1sU/xsIla0+82A0JNobf+/qM0Yv3Mxfy0zKujm0QdCYjU8LolUek9d6Wfrc4ybP1FnF/kuewC33n4pKzY53v+k6AMAKD5FVm8ynelXQG/uU9JnpXcxmBH1y/WVxGm0THN1vP/lB6wrL2HKHZKumPyHrvC8oY0N5dCYfT829aUegfNv0dNbsAUXXa+QLKcfVzueC0y11VfNh/Yplp4y2DTQ35nNBw+mmAXuXoHmh2CKezTUkK2tQHy0EMimuMVyD6hXuhCDiW6Z0epeTa2NM2hgMSD0MjqYU0XM1WU7n+Hwj2tfVLWuWMyT1CUToAUceW35C1GYzU4Iu5qZkTcuSczWdb0bGSkSydPOI2yn18rrk+FBA+r5edTSdVyw0UJuRpMFrSB3GstyJEBc+2+LlghJ6qSJbLWVx79/W4OY7XoGPvOtbePnLowDCiHIHgU0R03bfg1r+trXsuJnvd8PW7z1m+W3Pn98Xocba0e57XHN5c68Ds68nVuxa7JjboxVW7AWROeoowGaDgw9LK6ywohHjbzwcHeOW7PHujOxRR+Dbp67HLYvvxKX3fw7d5c6FrtKLOjyuMr7y/rPwm7+dgp/d/a6Fro4VL+G4929rcNPt/4CPvOtSdMfHF7o6VuyjYSFbM0IVXfTv2bMAO8tX2hHFwJ3nWLW2QS/e/Plce/F3+KqqltiiNmhr+Xx3s9W0PDXh6+jsALxeJIaHMLHfKtOA2EH0Sbk9QXo+LR6QfecHHSKKSk88+lSjTXxVo1dw77iNGXTlC6kKn5dcjwC5VMqLUdRFle600zVDr5nPKhXnOqnS1kn0Rg0a7TTiLVc1Q0jVwiy5YKzXwCBV3YjM5ah0V1CEi2bJairZt3hRUzu3PCcZS+XzKL9JOQuZFNGWLDkGywblbyJYsbimoeVFeVT5ovKOmFGVj+HneUsWy73YuHELNEplOaevT7KswaAcq6hJgWUqOjdNRChPtC8REzTG5UqwLnJcpSKfV6pSiyCzqoqAThK9U1PWDiJalTKz0hzoyr8boe/W2nXr2WfkcdCrzEeErkQFOxez4OGwjIksUT7TTNmtyBwRPSrxFZlFL1MdUVULszTGrhNt1fL9Ucnk25y853Y3EmM1PDH5DBLx1aZipHq25XPMlm/HVfF5Zdwru6GQo+mqh4pgeeXwyX2OEzV2UqWwWlb+jFyjoyvBusj55ZKTbbU3tTmdkgGUJcKlfRgIKioB1lnKz2WJxjFTb+Mjrp/jW1F3RVSV9xcNy3EVtj0Qlnnni5KLGQzzfOlb5dHlyGW7evH1uLnz97hu4/fRk+hC54CgKDofTLNw9l+rQuAMhGuW58+MZ4ut9Vy0ibnUB+cbzRdQFDo7IXN1ywPi9za0QVQAYaiKpvRZPMY1kRX1h2r47HvPx5ev/Qbs3i68/6TfAQBifYpyt+4KIQJB1EVVCpVX6gtfDwDoOOCtAAA7VQudVP5z+Wgibpd7Xec8V2VJ9firUHGvVGrexQAANrvMqRLXnEQo2tQzNpuuIaoYSk4U0WJ/kBw/qBm4h20zmupms3HdV3XKmPCQfDW5bpxqrWVyolLkkdppguwg97DIz1UZ0ktOr87sIseXPoeCLq5VUUF9Qt2CzLqoMmpkVR3xAQDA5o3CUZzI0PTcLyqJNqesuXmvlKuqs1XyW3WtqpZl/lTz3BEynmO/ETlUpHB7k2+HlOWKS10HBmgQ3s05zud8uZTHfX8/GDf99kic8Y5voK83BcCO/Q45HGd8dH94fxbCjdfn2pIYn28u7smYuSuqdd6142Si5bzmv1vVrNt9V21F3a3YPWEhW1a8JGPqqxfhqP+5BPEN6xe6KlZYsUfj96fdg9+fds+8j4/FV+KeD78cXR/6GCaTT+/Bmu0bcc3AjUg9dRuuv/Sf0FPpWujqvOjjgtM/hQtO/xQAIBGZxDc//nXcfM8/4tpfHbuwFbPiJRX3/f1g3HzHq3HGO76FrvjYQlfHin08LGSLMSNbYP6q1xzQ7Pt622cHdtTTYP7RsGBp5mY1mmBvPk7rZL4hr8YclK4djhYka0fLM/ukJcur5VS//vXnPV9RGl8oCJx4Ah5/dgNe883/wp2r18DweEwEocIN4wXud7dxz75XlcW2uzcTE1SeY3apzy9+PYo61FuyT51d9A1S9IVeS+m6Kr9JZs/HTF82KyhHpSLnh8KSEewgN6ZvkXx5yxE5eOxxUXsirQcRXke5Iy63k+VK26apxGdmXtXPhH3r5vF+qigqT0GRJvU9KRElUt5UOi/tGqaCWJY+LvuvXg0AcDrVN0WuowqPYyPCOVBelCJtyrnRQTlFPycACFOBUcf3ELl1FSI7AXKe9FoaihCpklVPTyfLUb7CNPtKsqxZooIV8h6UN6beOdkM0ZOcKkrKPItE5V7pWFFkzEsvmm6OCa9HPcZkDOSY3S2zD1T9KRKRjH2VfD0HiGjRy03RR82GZ3qzTfXQeTM+SgXN1ZJtrnukHaXsNBa/4Ww8Yfw3Fl9wLqqX3yX1I3KmvmW27TKqQZP/wAw5/bOc5PS56Qfn9jbz63QeuFxyv/0m4itll+l5pmqaBtESD/uqmx5mYfaReh7VOU5SU5LBN1dpcqt0XGU4vxJxIlXKLWS9nHY5Mz0lY4rULfjDzdxIL1Xm1DcpPy19+4OBn+PmvjvwyBmr4Kk/DOPM/5T2epiJb0lnzlwSW8Zsi4/jDOVWbJ9fn4ur0fqsev5rt+NotD4bddxVidAW0qIs6azKa0dQ7mkqK/dymvN0ckrmjccl75fsMhZWre7Cdz5/I/7jy6fDF1+JD5y+Tq6jyB3RHgfRTn0eKM+oSuT76k2iNugI0zdJ203upp2IiEHkV5E5RbZyRDUnxqZ4PSlHlV8BwE2EJ0ilTl0blGOo/K88d1O43TIeVaXW4VFLkio7k0gTdww43M0wpUF117oitW6dd+QABuV4T3w/9o2MT1tN55X0eZk7G2x1VUKVyyQcRKxYKzuR6DpVOqf5/Jre8BgAIGRsAgCMEcV/ZpjquP2vBAAs2U8UfhXNr3JXgKLket1yRean8ll1Z4Y+LxVpUzVTRcgBwM01R5V1ayxLXydGh/Hnh4/ALXcfhQ+c/AUkfOtRKwCrjjoeANCzZAU8vgBsNhvsDtecu43m4pS3/m2087lrFjeceZ0Z86x1B9Lu5VDt6K4sK3YtLGTLir0nli+X/88zxl92OOoOBxz8cmuFFVY0Ivaqf0ZixPKb2dm4ZuBG3Nx3Oy5/4Mvw1D0LXZ29OroSGVx7yZ34yU0rcOWPVi10dazYi+PPDx+B2+45Fh84+SvojI4sdHWssAKAhWw1YsavfPNfLa96+M4hVHOpE+7W7EVjE+9OnT7ftpl1ngMha1te27dn37M8V6gyXjgWAlwuuJ99BpmVqxAKCGKgWWr16vFQKa13kez5fm7jNrOsrdvEg0t5X9rWKpEaO/2BNJvlJ2LloKJVzeRW8fgWDws/65IgR8vBDGi/DvgAACAASURBVGlHJzPxPiknTRSkxHrEYvL5on4iX+TKOMgfUs8l5WoNLBUOl5N78keGhllPqV+KKopjY4IoKTKhKEydGdYAEQ6HQ+qr6oI18hu2bhb+RiMj6eDf0q4auVoZtkf5ERo5Zji1fUAD6Qn4pe46nt1EYtSL6bnnNgNo8OQS5ORRjNBES0olVQKzNdVpfFzQiiphQ9MDicNP66zZ2UhEssyKhDkc0uZFi6SvfUQHPaznyIj0uclXYMZfX1VlcJqIm2bFFbDTvokQ/YyEVVVR2qG8pYJ6rpHvAINjkQUpB82o2RBLGnhy898RDi7HxJiUPzYqvA/ndoppTsLGFfbN0pjcf0VKdYZq3ymS6VOlRb+bfUefHc6HyYlp1oWIFjlZiloqb0b96qpVGY/K13PyfbdbFeSauWUU68RUUtCK1DSVIzkuczkitJtlu/Hq/feX+oYFBXVzvCvnqkSE+cren+DWnrvw401XoSfSBTfXEMNDSbxmwbIZ0X5pnp3LNdsRu8ohaS27rSCirnm8J/mMrBEbHxP/rMn1f5QDK3JPPOSfBjwyDytEX/g2fnLXOQCAD550OQDAZch4i3UVce0ld+GdZx2NlSvKeMPriHJ49B7IGlIuyvt24jE6Tw3lgRLxsPMV5E6anBWjebeKzofMtIx/RfFdkPN0vgKAi8iqrhmqHqtdmSUaPjEu29Zi5KlxCYCD46jOuaVIqXJhG3xnFlhVFE7q7iDCU64q50vq43DL+FOkGZC1we6V3RzeCFUIaxWeZ2s6X98H1/lSRu5JaVL8svIjwtGyOaVvxqfkeuHeIwAAyw98OQAgEqVaqM5zrrX5DOedItNUZbTxORmPyVrdFZfXGttdLpLDtd1aROtJlMtZ/Prug3DDrw7CyGTz9t1z3/7v6Ak+B1SBRSsPkzqukbp6fAE+t2yYjRO5s9/BWr8HtZY7Xz7/jPJ2MXa0HAvh2jNhIVtW7DVhv+wy2C+7bIfOWX/2R3Dk/3wb0U0b9lCtrLBi74xgeAnu/ODBWHbex5DOWtzG+cb3uv8Pty65C5f++bPoqVocrR2NkanFGJlaPOtnPV0FvOaocQyPeXe43M8vvgqfX3zVrlbPir0kbr3zYPzsV0dgvwFZu9573KX40MlfxQFL7sctf/l3VKquOUqwwooXLvZhZEuVWQz+1YJszXH2DruB7w6uFsuwz4G2mX/rUW32Cu+uvcCtqoOtnKvWmLdnWUt22H7HHQCA2hlnPO9pTqJDic5O4KST8Hg6j1dffBEevf7VMHx+eJnx9JE/4qRXilFTH6WoWZYqtKVTgvxsfU5Qr2JO1dckzbZoUL48+MjTmSA6oMqHXqbjAkTC1FfIR45LIMQ97swsVqqa2Ze6RaOC9Bx62BqpK7OzXq+gF5l0rqn8oPpmUTVL71GKiID+rX2VpFfUNBEuRbaKVEd0ktvlIxLndCtKJO0IEjVU4pzTSa+mHH1pAlLPPqKH27YIyqM+TYoS+Ykk5POa0WxwK4pE9QJE8fR1nH3tJbqgWWcXs85ltmFinPweDqhxcjM0yxyjUmSJ3CgvM+pT5AVNjAvfTP29KkQt66bnjvRRX18P+0DaVmH2Op3JsIvsvJ5kcW3KYyDao9wRgAhsVTPy6u0kn+o9UP5TgfXOkj8VJx8iRW+gkqpweqjs5/Bi8bHn4Cn7t7H/pz6Gxz9zEQL+ZagRPVI+CSsNAHBzHOt9s1H5K0iORpnjMsd75fIqqibFKE9tlMjrJF87O0Wd0MP5oNwX5bN5+b6qII4SmVWfOkWIR0dkLGTZ10GqCLp5L10cIzCUQyjzeTpFVTT1JHMqF4foIhtwq/3X+FH8RlzzyDfR7elAx+IB6QeFO+3NHjU25foqr7ZlbWx9LjSeD7OtzTxnjmfVfDPkyukyn4F8bTwX5O8iEdXxzc8AAEY3Pg4AePZBcv0g98JZVxVLGTehoPRhZ1y3WKrqH/miNiK8KeGh5jz0BqwdirXr7ChQuc5nU/SI/B+jWZnVRfRmi49KfPTPMvmpiuiS22XUpBxFwOqG3CMv1QqVV+Wi71610vCby3L91HVRdyA4nKqiSf83v5RRzsnakXPL8V6i3Q6HqnBmmq5Rr0gdqyVZh5V7ZT7D6b+Y07VEn2XkUDq88mp3S1tc7AsHdzQoytdCbzW5WiZsz/ke9BKBCtIvMknvsZIg270rZVu/cjGLvGeoCvpZmZYxU07JroNSXc6v1XT8c6eHk88/Il2FPBG/irz+6m/H4/cPHoOhieYf6S5HGY8WV+DC9/wLOoKbAABL3vA7/OQPF+D7v74Qp7/hs3B6uQYEaGI8F8JkYhAt32vQ9LYZJker9XvQHDFfL9Yd/X62s1ys+SJwVuxc7MM/tqzYV2L08CNQcznhyOdh+Pxzn2CFFftQLD7hIjyF87DmS+fi8Qu+jhdK4nhvjBHvGF49cQS6yx1zH2zFTsV7T3sCHzznaCzqA05/56aFro4VCxy33n8i7njwOCzrXY+hicV431u+B5+7gHhoAj5PAW7bWvg9OfB3KBz2Gt71ui/hR3d/Ftfe9QV8/vC74HY1m0if8cGqtcxZ8YKG9WPrBYq5VAt3x/7cGRmSObhOu1vdpm20+m3tIAerVc1nxvstodm+aFy8fhLd3bC5PXBt3YxiNGaqEbpUfZDH56mop3wOAIhR4U25V4py+BRBisqPtyK5HJNUgFN+TzqVYtWpGuXqlvPJz8nxmslpejqpMiJ/FPqYZY2yHqEwPZWooJcjipFjJtDBDKp6RCl3Sl8JHKEWlWxwJCzXGRkVjoFyB1KsdyYjGdZEXJCHel3QnbExOV5vQVencFycVIMrUa2rSGRiwwbhcqnKYYUZS1VPrFaLbJ987vY07kGeiIy2KUMVSfVeUh6bh2hLnnyGLAk72vY0lRmVNxQMChpXZjZZlb90VCmHS5EyVdiyM/M5MqyImruprcrLGJ6i8mJI2uT3aVa7oawFAFOT0pc6H/Ve+/1SP0VVKhWqslEBbZock4HHB1lPg+fLve3pEYStwDFWrUv9nDUZO14qpAX9bqx+5zfxZO0jWPOl83DvmZ+Ax7UE05OTZh17umQuxbu6mvrKzfsdoLqkg/dTEScP+6ZCZcXGHJM+6qZ3WkenlG8nQlAwfbWojkaUTVG3MPs0TX7b+LiMjdQ00RKigXa7HB+h11rAJ/XbtkEy7h6qwu23SrhabvrSVYnOKApZpPLe1sQYXHCjZ+kq9iHRmDa7Deb+Pjd/HseM9VrRsTbnzrW+q8/cOOe+zsV4QuZ6jTye5Ih4KW15XOwFCmOCbAUdPA9EflQRlSiJ293cJ4UC7yGrNTlJFKcm5U9l5O+p0lp84t134ytXfR6e2p9wyptlLXL7yMEkAlayEe20yTwweqiSWG3mH5lIhZqyQVVHDdZLxoCdKJDuFtB1ol5rfE0qEz3WZ4ZyVkE+mQJEbnJU8+RPlgu8tiFrlxPS1ty0ID7VvIzfeoVtqco4dth03Mt1y1oeX918VtX5nKhA6p4ry99B+oD5Oa5hJ3eSfE6nXz73BOS5BA+RMbbHExb+aXlatuF7iYq7yd0qc160gDso0TfLyMsa8rcnD8cXf3g+djZ8ngLWDa3GJZ/4NHp6ydP0BgH4kckcBADIF1WJUT4/+Q3fx413nY0L//s4vPu4/8bi1WJzEYxE8IbXq2LoLJwt/Zuve+pr0s5ztGbnsrfqDMzXV8uKFyasH1tW7BOx6cyzsfILF+Dpr1yM1OD8FQ2tsOLFHoffdTgAYAITu1ROz7FfwpO4AK+57Bu498xPAgjMec6+FFd3Xot7Yn/BFQ9/HWihHFV/fiMAiwS9u6IjOonD1zyFsckYgNRCV8eKXYxDlj+Gc991MSpVbs/ljzm1MLFRXAimKTS3fhoGumITcLtL6IpNIOArAOic1zUddgOnvv5S/OIPZ+NHv/k43nDKCDxuY+4TrbBiD8Q+/2Orkb1oNU9ozQK0TtI981h9Pm8q2zxxb+UF2E2CAF9a22jfsUzHvLlWLdF6mn2+7dDMzDwRrdbPQ+Q5LV5qAEvfg81OF/Y//xN49MKLkF2+EkXygnIZZt3JlbE7G+UX6QOUTssD3+THkAulKINyjvIFSmnzYaJqT6quliFKE1L0winZWbs91tTmNBGlNDlUyg/yUN1Nka1ETBCBzm7JTJbK6uPV7Bm2cf0m+ZzqgtpHmr32U+mvo0O5L5KRVC6YKt3peVvJuVIUMEzOQIJ8pkQnfbSK5FU9J6qOmzcJR6arW7Zhuclx2ExEUD2x/EQOASBK9T2CDcgTxavTM8ZN9CRJj5ZkcrKpTYv6hScWpCKe8n/Ua6xQIEeD166Rg6Wonk9Rtrry26T8UlH6roNIgMPsU/WKIirDpcPFjHmOfakon/q/qceUj4piWv88fa+U8+XxUH2QiJ7yAnXshIgq9ff3yXWZba/kyXkBeVF2qY9hKqzV0Pmmz+Oh6vl47WUX4+7jP4p8SNC11LQgSHV+GQonyIchx2IyOc22SJ3D5OiVC0Q76FkUI0LqICJV47ctFzmCypEqEZEqct4UiByPUdExxXus6F62oBwa+SLW2yd+eDoPnA7y/lJyXixM9dDwMgBAvEe8yHy8F0G2W43mLg9dgZ/Fb8WPN16J3kAPQjG2w95AYIGZa7R6ONnMhb3Vr3HHF9W5NFrbc7Sa+WQF+sWNPCcCA9GE9J2PvLbxYZmzj953OwCgPPYIACAeVCU59Q6keidRSZtbkSz5vMY+nEzK+FPhOzv5QyPkAdltItPt93EtKG/D8OYSks/+Tv4m6uIhGpMpUVGyKNctLaEn1OhGaUdE1kanizxThypiynnqGWfnGHbTG02fAyUiJaoKCgCBsCJERLao/lqtKRdJXpXjGonLOCqlZN0rTAjC74aM/3JW2lzjul3jGmAjSqibLDJpPqOyRGrD5Ig5pG8N7gwoFaQPFJSecsk/Aj4pSJEwj5/nk8uofeoOyrxxh2U+2AMyzp1hSVA6M/mm+k8NPwqgsQZ6uGa5/YJYu8KvAwCEYOD4AxrfSVzkmyq3004vNKOmazD9ynJ5AEGUii4Asq6pv1qF319q5Fd6QlT45Q83O739jjvia7jlT5/EeZ+J4d0n3IDegWW4654Aoh0BHHOMYSKYjWhVFWxGvMyj5olE7Shnql25+l3CrJjRvDXSQDNyO9fa0kC8tPzn9+2zYtfCSsRZsc/E1Gtfj+c+di4O+s9zEVy/bqGrY4UVuyWmu1OY7t592X/ba/8D/3s68Lb/vQZ+/sDbl+PK2DX4Wd+t+N4jX0dvpWehq7PXx5qB+7Bm4L45jzvpH36MPz7xRvzi3hNegFpZ8VINu93AoSt+g4mphPne/14bw+VXWGqFVrxwsc8iW62eG+2zCS2SeOYHM97Yqetv94ZecOZ7eyhm1kGr0JzJ2ekMjpmp4Z87WsGWE+pLlz7vdVvr6WD2LEi/pVAmh+oJx2PIbschF34Sj/7wetSCQSTJw9Lo7GzIOceJHKl6nmayHcxTqOP9iFcylF4v+TlUyotTZU15R5qMGhmS7K1mh3upYKfclXBEzh8ZFt7PMJEm/dut6oAHKkojfbB5i2ROvcz2BagStYXvTxOh0Gye8hNi5Pmoot+y5aKytmRA0BH1slIPqLFROT5FlcZtW6X9Wfp6hSP7yXncDpKhipcigar0VypLJniUvBH1rFq5ahAaJtpFJEg9lVRNTblKiii5lY/ArLOiiqlUQ1UMABzkGwXJE/OR0DY9leF1pfzJpCJZ9EpjhjEUYlaYintmm8gBi8Ykq53LMaNPFEfrOTkxyXLkHgV9imRJPaemhMehGc0A1bTy5IZpefe//y8AgKO/9EYADQXNGJXSAkSZtm2Qe5cj2hQl54X0JkzxHlWMGr56vg0nPnok/unHP8K9n/gkUi5FKwo8mKjIKMuk6mTsAOEyGTXyYkzVTOlrFw2HQnYZP1X6aGm5ymVUVUpVoBwfIxdyWvrMoKeTcmB8ij7Upa/TUzKekmOCBISYyQ95ZHx190rmPr5IMvYOook+qmoqmnGp77u4LvwLXPXYt9BT60K8l351zmbvJscnPynVufhiALuGXG0fTWua7lDYQc5rawFlovLJIVkTqjm5h1kq32VG5f3HH7wfADCxSdCLRV1UcnRLH4XDyj/SeyX3stLiGZXNU0GP0++1a24AAHhCcg9KFSmP4D3sHhlbfmMInzrtTHzp2u9geDiJE//hegBAb3eE5fHZTYT28Gflnkxv/isAwOiRNcgTEWTb7ab6LJ/dTp7n9NCvjsiXUZc1TNcXReCkrUS9s0R4uA77veo3KOPP4+RCX5fnQ6koyb30iHCfHIb0td8tx6Uzct7IhLyGo1Jud0LqyMvAxnGsSpHlsqLS8vlzo/RZzMrOAZePOx98XN8h98iYlvlUysuzz26XekbDso53dMnzzh5cLe2JSl8Gie73FgTlTKaF+7j1KaLyXcJ9jHfJPLF75fouF9Em9qNhkzFR5XJSq0i/pqe4o4Kc4emkPO+m6VsGADaqx+qzo0Y/tP4BqWM8Rl40lRlDsQEE8p2YTAYw8twwtq5fh0I+CpfHg1q1YvLXzPJnfI/Rl+bvGXMjUbbm89rN2xZAqW25c3wPa5xna/l7fudZnK49GxayZcVeE7VvfAO1b3xjl8tJ/eMbUfMH4ExbXAArrGgNX9WLdzx6Ak763kNY+5rD8JqLvwEvf1TvS3Fl7Bpc1/UL/ODpS9BTfn4/LdvGDbBttLz8dnd0RYdx9vH/it8/8v9w+4OnPe+xpzy2FKc8NntCzop9O5b0bEBXbDN+eufHzB+oVljxQoaFbM3z+EZWQ99p8STZyQxmAyCbef7O5i/b8b5aMx3tjmvtG83IzJcz1lrOdhWY9Tg7Zs/AmNerN6d+WjNEbTNLfHWqlxN9jQrOLOwuJ0K5NBzBlfBmufef3lk+9eMA0NkjWbLwJlGNmkxKJlD5MqEy1ciYlQ0GBSUJEdlSNEY5JxPkJo0MS6bOy0y/+vSUiMKoepTDpZwu+bzKbJ6qFBbUk4nZ1xQRhwz7xDcgWeeurk5erxkxSKXor0XOzRRfDznsUOkzqr6NMtM4OdGMjEXpTRWLCYqi3IUs09jqwxWJap+qkpS0S32XqkRpgkTiqpXGfvQtWyXL6iGipTwvB9vsJU+gs1vaqBymHBGgMvtM+Q+KKJWoWpbokAyoizyhPH9YKAqnHjShML3COCb0npu+WMzWKs9naJvc6zz5RNpHiiKOjBANZH11frpc+mVAl2f5W++Nook6nZR6qZ5v0YjcswA5anqPSt3ygyEzJf1ZJ/qUmZLySkWpfzgUxPvXvxs22HDMD+/E575ox4k//Cpu+9cPwOsRxDNM76Qw1f3icelDt6KJ9AzTShapnqZoovq4KUpYmJJxUCZXRflqDt5r9d1x0VspGpLx43Lb2YeCNFSYqS+lOZfJH6rWpV6OiHBSAjFyukLkAZGjpV5pt7puwQ9i/4erHvk2Osqd6OoXRYxAqLE2SPNmX9NmKIC1ZK/n9MLR3QCzLG3zfS60XkP5RCObhdP01AN/BgBUC1SOIyJb4d9IPwcAWEKhOl9ExlE6Sx868mo6IuQv2agGWGHbdWBynqSy8o/1Y4J+BsmljJArpmtgXT3QcpukPtWHcdprzsB1916BfAF43/G3AgACPjne4ZR2BTwcQ4R5itP8nKiKi/O5zIlrgGirS328uGZybVIOZpk8VwAoEL3L81kRVG4i1xZVYbXbZX03sk/Ja16eH0aZXEWFosgPTRHZymak/EiYqBrXEkVufYS4CkUiYuzT6Zx8nrIJurNozRHSNo/Mowjvnd6j9KQoQFaIAKcnBc3MZOS1mJYx4vTL82TRqpcDAALdgnR1k7uZffxvbJ8gXDV6Hk5My1qz1cHngqEqtDJ2HDQLLOWlP5RzVivKc6ZCdUaHTfqzxvkNAE56lDnZh+NTct9U2Xf/A44EAHipXunxyxx/85EX4ZY/fxJfuKgfhVwOwUgUlWLB9Aycy3+rXcyJCOla0PbjVmjr+cvRFWAmh175oK3lzv63+fywW8jWCxHWT3wr9slIfuQ/0H/BefCsW7vQVbHCihdlvOuxk3HhnR9H8XVn4g9vWoRjr/0fVCjT/VKP9Z6NOCH1ZvSUuxe6Ki+5uPn+j+Dm+z+yQ+dEA0P48FvfjzsffR9u/fOpsx6zJZzHlnB+1s+ssMJhr+HwlbdgaDS+0FWxYh+MfQ7ZangP7Nh56hLe6mWwXcmzvj9fN+9d8bzaUR+FeTuMt8petfDKdpdHWFv1rJYcrvPUtwEAqjf+fIfKcTI7Hk3IIuvxeoH3vAfJOrD0o2dg6OJvoxoMwsvjvKGG5HWcHCoHM4v5smQ0C1QpVITL6/M21UG9vJzMnDsc3IsfkQx6gAiYw66ZSkE3tm6WbLKN73d3SwZeFfXKVMCrUElreloygX3MvPf2SEaxRCRBlewMZkiXLF6ivcXPs03lTFLGStXlFDkbH5f3VckrSF+lGFGTrh7JTm/bJgpmY2MTPE7aOTBArWyOGR89p9JE9pQLluiQTKgiIUDDDydExUPNzmro3+qDFSFnaQvronyiKLl7tSrvjaIqzJqOM+uqHk3Ky1H00cfXMtFH9emqMVOenCTHqk70zqUcEJbH8eUmGhONEL0hmqJcQR/H0jSVKAtUuNSxpQiZmeHkX/G43IuEelbRA6hAVTWXV+5ZOCZ8jiq5bqq6qEidthuwYXlStmWlD/wYHrD9D0695BKUYoOwe6N46J9PRykh4zMUZxbZ26wqqL50Og7Vh02Vr+zMcKsvkXJR6nW5FyHe0/1WCxpSLct4LGY4Hh1yXCQkCINyA3P0VAsSeQtGqB7olXFadZB/xD5Sfl6N3lPlchkVexWRDjk+TLW1hiLY/Na8mSh8m+OMFjRo1rJ2LGas67zfVVWAM2Qc63QqcG2p5mQcd4Q5r8gTqjl5HvvOUZE5bBgyfjiMTUSoUlZFPaKLBH4JUiJFpVJPhMqjRVkzbOTQhDtkrZpMCroyNbYeJ73yA/jZ3VdiKl3Hu4++Sc53y3W++QrhRX3uBjnfC1EArFEVtOaWertDwo+t1Pg++1799CpE1fVeKa8VaKBvPp9+dZI+UqSrXqXKYEEUHvOjz0rZJemjkJ/PB65pySm5pqLZKwalL3we+btc4nzgdexEfg0iYoWy1HVkSu5FjLYm3d2LeB3pbF0jdfxG4pJEUBXOUk64VhNbn5Tytgli1VkT9D2zVXihRkWQLXdMEO7oEpkvNnK3XEiyXvI6Oin1HSV3skzUU70Io3559dqkHIrtItxDZM8px0+mG2s+H1kI+uUeuOj59cgm6etE1woAwOBSWQf99KaswQ4DdlQqFTjtJdQNA+VyCX7MN3aSuz7Haeb3qDaqy22/X81AxCw1wRdzWMiWFfts5I57M2qhENwpi7tlhRVzRf2As/CtL/0DPv61JEaWdeJ1F38NXop4WGHFCxER/zA+fuqZuP3B9+C2+9+20NWxwgorrJhX7HPIViOa99GaOYE5XL31L/uM45ozR3NlFxrXaeZDzQclmstHZQY3a2cRL5NggJb3m1/bxXz9sNqrazV/bgJsrYmceYZm+n0B8qhyOdicTtgmkyh19yJEr6wQ0ScACNDvSTPfg8slE3jwQQcDAJ59WrJp6+lj1Ud/H0U1MinJsOuw8HOPv4dqazmiKg5mTFOT5PmQP+OnOlqF/CJV2lNO09SUZFLjccniKWqjyIGqvFXIW6oyU6roTKlSZL1FdXDlqpUsX84rUy3OH1RPKOmj8bEx9qn0SzZLiXCOoQD7OB4XFMb0tiLCpvWKJwSNWVSU66sKnc4nAEgTrdDhqXSuKttaIRdFURUbs6HdXTFeS46bSsqP6jz39qvnTDIpfeDxqBIeFSX90teKrthtisqQoGHT7KssoyFmUBXVdHs1Oy3lZsjdClPFsJueUMpOU0TL6VTjT0UEpLwA+XPal2nllnHshMkFU45ihejg9ITcqyz5cTGqJFaIHnnpRWWj35CqIY4Mj0MjPS0I1eqOd2Dd6iiO+78/4zNfdeNt3/k47v74+ejpebXUkZw75WTUqoJeGObaIq0tkE9XrajXkbTV7fRvf5iJhHnVX65GdcGooHO+gLxfzEr91NssShVRgyij3SX1yhIwLRKpTdCfTheVFPtqMjKBQM2PGBEtJ3l7rWSq1iXIXMvm660zQ3CsZQ2f7bM5ymy37lfo5TQ5Iuj5ODmDdYM8O30tEG006AdH1NHlIX+I6p2OqowjO1H2SknGU6FAnzkv/Y9UPY5rmPrYlSrNnK7StKAj1ZKsafAJQtG3RNCaQlHalSoM4+2vOxs/+8OlmEgZeOfrxVBaaVC1mswXoyLzPD8l/KNKjfOEqoM2t9xbg5DbZJJqnES444rW+vTeAzbyw2xaaY5Hm6Hr6zDbIihbMSfjLE0OoZuqnqok6jSRXXn1eHSNQVPfZMjNKrGufvZtnn2Sq8qa0h8igkt0Ok8vtdykoPwu2xivJ/PGFhLkWn22OhYfBgCYGJe+2DQqiJbfI+fZauTBFqXc7n6qeVJRspyUbfnujIytKu+Bnhf2S70UwNU1uFSiUibRV+XL0roNPkfjeeAI0CeN0r5ljrtqmTtuOP67F8mzmEsAxrY8BX8+ANSBs/75h3jbv39oVq5969wzv6m1TO2ZlPQ2u5ZaEat2nPrWtWCOiT6nymHbaF4fLK7WCxMWsmXFPh2ZD38Eh1z63whu2bzQVbHCip2KN990DN580zEv2PVO+OvROO/ujyH9uvfh7pOW4dXf/gLS2WdesOvv6fhpzy9xd+w+nDo2f3+n+tFHo3700XuwVlZsH5HACD580lm48+F34zd/m53DZYUVVljxYol9CNnir39FoLbT2gO2T0S2Zgmaf/XPiXzNgUzNzDpqk/nPSQAAIABJREFUukTLn+2k+SFVDT7a7HXSTImJDM0TTWu93rwd0bXL55k4aVduw6+iOead+WnplzrL84dDwHvejYlcDq/82hex+eZfw4hE4d9OjbBIFOQ1//gqAEAXlejs5FQ986SoTY0MiR9ILiPHqwJeZ6dk4ENEJfzMxLvIA1AUo4MITx85VcqN0i7ZtkX4B11dcv3OLslgjg5LJlXVDdX3RctVrlWRaoj5vByfyeTYJ4qryPX6+oQ3pKydafIlkkRRQlS16mPWUBGziUlBFir01VKlQPW40oYob8lPtKhIhMPp0P33kkVWnhQARHlNBz9TdCxJtEWzzD4iUqoeVi7L+6lpydKqIqSOA1VATFJhclE/kS16PSl/x0PlvFrLNKnwc0XjNEudYma8yAx/lSl35X6YHC4irS4iU+VyMzdLj1dfMcPk9cjx3d0yBjyeZm6ZrS59niZKWiF6ZNDIKE/SjPrVOJhVd5LTEqISoD/Z2F47PMSMPdGuLmMR4kiguuQ/8KejL8U/nH82HrzgIrjcr2CdyU8jyubxMaPtUMUsIk58rRMhKJDXo4iWg32k4yydkvEYickcDZEzVqX/j6Mmx5ep1haKCXpo6L2jx1QnuY0uojY5+vvcHrodV/Vfi1smb8BAYompdNmImYgTAFTPOLP5jR3cVWCWbj6WNJPfuNKO5p8bXpIc56MibvLoX/8EABjdJghSOCGeSA6X8jjltZSWvo5FBbXwcbzUDFWUJIeyJuVUy8p/4xpAWKJCBCuT1zWtWTWtxnrWOD59xijrIce5gmsAAPsfcAAAoFiQNXJ8bBPed8LncfXNn8c9j74eI79PoeOfv4+JKZHgjxBJc4CKd1NPy6td7mms90Ap3y9jyUf1zmKS6wTXlZrRuAd1s67yd5VrgBcyV4opQQ1LeeGf6Y6EKs8r5vhKHY9wUPpEn2VT01X2ifzt4o4KnfukbIEWYxidlH9M5bl+0i+uZuj3HCJpeUG2PNWH5H0qNJZ44dAiURv0B4hwDQiH69Gta3kdmR9et4yJelKee2Wb9FUgLjsi/F2HsOIyZjxFuRdhrrWRAFF73RGRl/7LEZ2q1RS14lggEuhxbocLcJKQPo06MYNgQMajl4qo6Qkqk1YVeS2hWq7A4XQiGAnDpX6NLd8vGr6gtubPWzhRM6hZbbjwM76PtX7/0u+gM2Dy2c/b7gr8r337P2e1bJ0tVFHYQrZemLCQLSv2+Ugd92bUwhE4x8fnPtgKK6xoivLKs/HACYfhZV86D6n0kwtdnV2KdcFNOH74jRioLpn7YCsWPGLhcXz0lDPx2oNugM1ZQe7hIxe6SlbsBXHtL47Gpz8TXuhqWLEPxT6DbOmv/fqMjOHz84VmljP7Xv1dj5klNjIsbc7Y0ezpDiJY8w7t253049ptmZV2XjWtyBxfXW71T4rA5nLBnpxC3QDqtYbH0+DyQQDAkmWipufkHvPHHnoMAJCgwmGKPkHq8aQZ+SpRjjH6jwTp06OqhIlOckLIxfL6gqwj+Qlp5ULpi/wj3kF+DjOE27YI8tC3SJS2FP0YGZ1s7hPTS0auF1eFRiIRlZKkXH3kvrjJYwp4pB25ND2lVDZKvWhaEC7tp1xWMr5BIlkBqhiq91NSPaoaExQAUCg0JJyVX5YgfyZIlDAYEcWtYk6OnSZ/rVptVhUbGxthVetsK9EzZrS1vHBYvZ1Y97yUM06Vwa4uQSkdZtvoAVNt9txTdUI/+UsuZlo9ylvj52WielMUaFFEzkdkTcsL0QMqQFRUkS5FN28c/CUA4K1Pv0nazbR5mnwN9azq7VSlR3J32C4HUaBoTMaEnWqJHSwfAGpU31RunocoiIN1ib3683jIdiEOO/csPHjBRQgGJdPd0SHjK0CemvLe1O8NHrlmvS59oYp4dZuij6oOKG0KhZXXprwf8jbIN7J76JlGzzOnW66jPExFqnX8abumJwRNKQxWEKmFEfTLvTbJljOihe+wXrib9eXLm45qt0Y3+FdzMrDm+HzucytVud9jW2SrZ3KE/B03575f+qZO3lGRFmk1IsOKANuIPuocrTvky6phJ8/STqiB9y6bI5JakL/TRHVetuJSXl+U7TzKS/USbbRL/UJ1GZ/D40/IcVHxkOrslh/CQd7DiZEJxPry+GXuIZSG+7G2KOPdY5Ox2tchfRwLCzo/uU0QrmBIUE+XT+61zk+noiiKYhG9ksYqWiht83J9rBPFTnENshOpsTOf7SLST5ARafJIt47LGxXCFgXyOyv0hdPb77DJcX63lisfbBnn9xkiRhXeq1qtGQVX7zInVf9c6onGv2tcM4s1mR8Rch5Dcenr0Wl5fnUl5Djl4WFSuGnVgjxngnFBH90xmQe+irTHsAuq6nByvYeMFfU4C4XYT/xGWmZ9UinujDAa87BS1XEtf5eIqEapsurjmpKaTrIvZNzWjAqyRT9cHjemsj2wb3bB7fE0OOgmEqVXap2bO/c9pS3CtYvfIlvra2tB3Nr6j1pcrQUJC9myYq8J48wzYZx55twH7kSkP3gGej71Cbg2rN8j5VthxZ6Kv3U9iL91PbjQ1UDkVZ/Hgyccipd96Txk8+sWujo7HDf1/w53RP6AU6beusPnOs85B85zztkDtXrpRdi/DWH/tt1e7on1p2HccQz+9sxJu71sK/b+GJ5cjt/95d/x9uMfW+iqWLEPxj6EbLUiUnMo5bXhau2qp9RMFcRdx8jmUidsjUYmp/Ufz1++vupe35nlNu99buWlzdySvGPInHHMMXpi03lmOXN0pR5vOuXYlaviRvnt/4TNk9Po/3+n4/GrfoIalQl7F9NHKKoKhXKRji7Jwr7ilcJR+eM99wMAtm2WDJ76SKlvVY1o2dA2QaAC9PI68GDZG9+7SLhYTP6iQhXAGOuh3KbkpGQYE1TKirBeHt1/zr7IZiVz6CT3S1E8J1Eir5eKYuR2acY/M8kMv0c+3zYs16syy93dLdlg9eVSxE7Lj0WlvupJpbykKFUMnfQrU/QwEgmzPeT2eJRz1hhj00T3XKxriciMZm1V2dBgmVPkYOm9Glwq2VlVyFPulo7XADPa+YwqQ7pYPvkVpqeZZK3VY0wz/kVeX8u31dnn5CtF49L2Gvu+SFVCPV5R0BLvuSpLap/29MrYUB6UoV5QJWaJOX3snACKfBXJAVOFPo2Jcekf9TaL8h7kM3JPCzlp7/bTUhHYAHktOpeCUekL9VjqPuZreMT5GRz+xfPw9FcuRc2Qtqd4T5Rv1/Clk7+dbFuYvnQGVGmM/nQh5fhJOtu8xzbNWtdZPjkeRM6Ur0QA2FQXNcilyeWlD29e8nv8YNn1uDl1I5bFlprcQo3GWsXLmh80vcyIOTm+81Qq25nQZ0uZbZwcFlW+Ul7mUyAmKLhyDot5KsHZ5ZXDAFuHBbVfRTTbaRB1yBGtycv5LvpW+f0yno2s3JsSvaDsNkVd5H2DSJqLXEFvjFs3k7KGhl2yrbtqyL3OFgQ9rBS41iQG5HoBQTR6ymW87OO34T+/+S8YSh2LQm4Ka5bdiXT+FgDAAUulXYtCsiaXp4V35PTJGur2y/WjUVn7VL1WFS2BhmedwTZ4I3IDKxWpa6kgc0hnnN1OVVr2RYEoTLYi7w9n2PawrKvdREaDnAdlrj06t2tEKfP0DhxIcB1NyPluojrmM5ivOj/q5Oaq8qjHE2T5yq8jz40n+sOCho9PyOc55aESzY8R4UZeOMMFzit7TFDIYKcoSgZionpYTG+R87N8TpLr5qHPmEElSX1eqlqgPt8AwEZlwjzH1WRaxmOgk3xoPmN0jhcKWUylo7jhzs/gLa+6Am956yG44z4fbDY7HE53e066iRi1IlLmkc3vt/k+05jTs6sHzvieZFLDWrlkO6oH0Fxjc+2yEK0FCQvZssIKxuSxb0E1EoV7fHShq2KFFXttdLzhy3j45Jdj9flnI51+eqGrM2f8vPc2XL3sOnz371/BstrSha7OSz6e2fp2PLP17Xuk7K5EGud/8Aq86mUPol63Y/PowXvkOlbsXTE53YGO6FasGnhgoatixT4a+wyy1T52jl+0owhXY4/+HESsPViX+aoZtpY/b/XBeR21831o++1v5TwiXLuKMiqioKhVOB6B3eNGcsN6TBDZWb9e1JSOfNURciy5HwUlNhBd0Qz56KjwgwJBQQvcRCdUXbCQF/TES78Rv8nDIWdLuVTkIwR8ymmRy6kHkqlcx7a4iSSNUpWwRJ8ur8mJqTVdJ0CeRJXZv44EPcaiPi1QXiakXS57bfvmokzPnjGKiigvaHBQuG2q7KXokYNIgSIYoaj0T5Tl5ZhGV38V23boqSKpiQ7JsipHSv23KhVV3pLjAlQldJrIkbz6iGDp+FOeWTeRI1Xpq7KvdDwn4uT30ANGfa5S5FrlM/Q6S8h1YzGpZ5rZ7HxB6unkdT1U/3O7/WyrjA3lMyn6o7y3IPlOim7myJuqVdTzRl63Pidbs9TrSulGWfaTcrW2DckYDdILTZXOMhlFn5xsHzk4AEBPrp5ORVrp38aBGesk2kD1zfAp38Hjzv/AmnM+hPXfuAx+n2TsM1S1jHIeselwExXR8aqVr1b1VequHEXTk4zoYYnzwe6iomJIxpeOHbdmu4mmaOb895334crB/8N1W6/BYMcS+ANKmm+3RvLTeUJQ881Ga+wI37Wdr6JGmcqLIxvlB292QrhQFfJhSmVFiOX4IBHO1KSgHcNZKS+YIspI1MNuyJqQI7+oVhOU30tPpaBX7rHHI+c7HXJveuLkkSZF+e7ZdZcBaHj3hUMyz2xBQUPq9Prrist492UlCZZKyb2crlHZzi3n/e6wvwIATvIegxUrU8gWsnhu2yAWDcr1JrNi7+GcTLG/ZMt4jLSnYDfXOp9wQfVWlEqNe6Lj3u/ls7FeYp9Imzuj5BqWpK1jY9Jnz43J8bm6cqGWAQBWL5a1JxiR9xMJmT9Op6p3ynV1HOu4zZPrqn8HgnIvdMeC6fdZk3JcfL+Sl3q4OVTU78tgu3RNUs9BN5+D+RIr4pATAyGu6w6FdslDLQlPqp6UMee3UUHWK+0dy8rYKiWlvASne73SjLzli1L/CVqudepNQgPtKtBXq2KT+x+McQdAQPnBMp4zG0ZgVEtwOm0IBoOIJTpl14DNBpvNvgM7bJrVCNGyW6otit2CVKHN8SaS1YZzNbN+sx8/c81pRs4sztbChIVsWbHXhOPyy+G4/PI9eo2p9/wLjrjiEgRJIrfCCit2Lpac8C08euorsPyTZyKVfmqhqzNrPB5+CqcMH4/BiqU+uLfHw0uewcNLGn5vrzh4LZ58dgnufei1C1grK6ywwop9AtlqVh00f8vPk6fU3vtp9t+pc4EtL0Q2Yb7eX+beYXNvcHOGdAafYA7PsXb1aC1nR7labblnu4nfoGpxPr8PldPehd/84T684Yvn4wen/jN+/5zsMY91SfZs9SpR0Bqi+t/TT8iXyPFR+Xuaqk057ql3MdOuSleqaHf44YcCAJYvl4yfdoUqzxWyktLLZ6Q8B329FMGq1uQEg/mSLBX58lS5SpFTFSdiNTFRbSpH/V/SGalnRwd5O0Q/QoEY35f6lskzmkpKBjedkvOi5JQt6hduWw/9iybGm/vBRu5MlOqHyuVStbkKkQmHT+qXVdVDALksER0/ER0qbW2l99jYGJWwqCqoaGCQGU5FX4pEI9X7SZGqHNvmDyjSxMwps8eKNGkW2fQOYwTIr4jFyWsKE1VxTLMPpM/iPVQ/o8dNkeijWjnVDOVDyPtd3aqIJy/ap1XyOFwu9VdR9UCqJZKPkclIf6XoR+YnGhShMmSViJYiZpEwfb3IYckVGipsqrLpVG6goZls6btcSlUnpe2kU8B/5GfxYOVCvOzTH8Xmz10Fb0xQg3K5zrZT7ZLjXstTZDabo+eRoRw/OS7moYKedk5OPi8RrVT1Ne3TPMdXjRwwFxX4SoEqOspBxCLCX1IOY2u087jZLVsUtr9Ovfl5NZ/i2633uSm57+sffxQAUKNCXoDj3MU1ST2ZfOQiBiMy95UzWCV6U+L5fvKVoiHyMr3Sd/kkx0JJ5ryP3Jp4hKgix0TAK/VLjoqH09OPSyP7F8tamKCqXK3aJ8fXBIGqE93Mpql4CkFRPAEHj5d7WyTSPLA4jK+dexPOv/gUDKeOgK2ewYErngNcPwUAjEwKB2xVSX6gLXZQwTJOlNQr13cYjTER8kib1NvOQaS1RJ+3AjmFFSowjif5uU3G/eL9BGXr6h6UvqQiqiJYyrGtUGpPlU+Vh6TPPF0/dYeBIsJu8jNryp1iuYr0VovKzeK6S/6qm/fEoYga+XX6LcdmcrqkPeohWCMi5fO0zIeSrD3ZMUG4knW5XqnM9aMs60mxrgqXzbsJKDKKCtfoYqkxxseTsl6NTUubl66UraK9g8tZR6pfkpM6MTaCsfEBuN0edPb0IJpI4Jija/AGam2+gyhiVZ/t7e3gbeXothzXjjPV8vnc3zHn9/2q9fiZ7zd/biFaCxMWsmWFFS3x4IGH4M5Xvhbvu/HH6MtnF7o6VljxvNGT7kRPunOhq9E2wq/6PP73/V687Pzz4KbAy4shftn1K9wVugfHpY5e6KpYsYeiuyODiz9zE446bBP2X7YFP7/91bjn4WMXulpWvIAxPj2AOx/4AF5/1P3me//2/izOOrP2PGdZYcXujZc8stWaKZyxr7bNeXP/+m/3+VzQ1uzXmR290T24cygntvNxmIujNXuVGuU971Xn9nGYK+byoNlTMUPFkH87mdV2upx49NDDYXfY8ZW7bscXX/EaOJjF+vv9wgu4/rqfAwDWPinIVpn+VIrU2GySudO97yt7RJ3pwINEfXDFKvWMkX3mqga4aa1kezetE3NYG1XZlu4niFpnryhwDQ0JV2rjelEYU2SoStTFF5CsX5Q8JzvV/WplyZhuHRb+g2b+FeUZHZFsYHJaFfiyTeXmubdfM6fKX3KRk6W30lQVdAiKohyuqaRko91eyXAqNyGZlEyoYcj1lYMANDhXw+SjKbdJ66zXVuSpyle7crYUwVGOE9ETf1AV7jRjLnWIRskdgXrUyHXsRAUV6VI/rCgVGCMxeWX1EA5Tpc2p3BUPz5fPM0TO1I8r4ZWMfoqIhN7T7LTeWyIKMclSK5frvA0flvrF1atG+lp9ufReaDhcyn+Qm+VXlTnWU9PhPb1d5jnjo3JsPsesP8elon/KqdJMf7EidUlx/Fz2kQDeuP4IHP6Zc/DQd76HHHl3ZY4jj4/cDnaOIlTKKfRRXdCtaIx656jiIq+r49wOttGQ41LkKykf7b6V9+Oyvqtxc/YXWJlYYZZbb81Ct4kGd0teq//1X3Oc0Xp+mzWupdxdCRcVURM9gqo4ybXqTNGXjqhhakrWEkPbzr6scSCX1TOKdS7rGkCYxcf5EuxcBQDIjHBc22VXQMAvx3l4b8IBed2vW+7t6KisoU+Oy+6AwVWHAQB6e8SrrVSSNaJiyNrhIrcrHO+X8qOyxikfVRX57OQZdsTSeNOr0qjWnTjqyF/jU189AaF4Pw4ZvFranxHkrGNSXh05mX81n2wttTsbfnOekPzbqMp4rRSlj4o16esUlRLrRemD8WlyBsNSVle3rN+hsCCrDvpv6f2ucG0y0XMqorr4HUA/13tQJwpfKlFJkvdON96oj5UBVe3k88ne+tWPPzx4Tw32XaVMn8ea/J3Jqu+VKleSz+eV8gJ+rkEUD6wUBdW3OZufG9WSvD9dkH5SdVqfm5wytiMSlHIJ9kuZNSo6QsbB8l5BtOJERNNpKXtk63qksjHcePfn8JqDLsPJJy8GsB98/hBmi/aqzs1/K8o3311Su2UyP0+xM+s3O7JmxcKGhWxZYUWbePigw/CzlQfgs3+5F/5tWxe6OlZYsdfGW9e+Be/85gMw6mW4+YN7oeJXg3/ApX1X4Kp138HK2ordU+jy5fJ/K17U0dWRxWc+dD1+e89huPehYxa6Olbs4Rif6kUstBkrF93T9P76DXY8u97aTmfFCxcveWSr9Vf97vuNbzT9ZVMvDhWgMbMOVErTfbM7sMe/gTA1Xwv1dnyxZjUaExDTa7dLpppKie38IXYsZjqlzx5zqRKatWnN3OziTWx3PVUafOvbTjDfGzry5dh85+14+YWfxsbvfg9/fVr29z/y4EMAGhnISFjQCXedPAe+HwhKxvOANQcAAA49TPaXl4uSXd62UZCpJDPvI5s3sZJyz3v6JSOqalWKck5OUjmOe+9DRGmUp+Smd47u/Ve/IvWqWkGuWIwcKoPIxGOPyDYvI1dtOr+mmc6qoEMDS6ReRe75n56SL9ABoiRxZrtVBbFAXlCJynmKiPiC5M7w84mk8K86O6VeANDTI5yQqSm2hdwrL/kJRWZvFZUo8hpp8oxiVBMMU+ExSY8mVfRyMDtcps+VyTPj+AyRg+WgIpiD7ysqqD5f+byidVKfNJX3DHLM6gZ5DObx8uphJj7M66gHVZa+V8qzMz3JOqQdDpcqgumYk/5Js/4eIlxRqiPmyOtLTkkf65iJRQNN/ZeiR5vd3vC2qVTls3VDglZ0kQtYZQbf5ZYyUklBSWogisep9va1p8Bw1DDu+wlqzgl0dAlqodyRXEbKKRF5Vd5cY61rxuHdVFej/ZvpiRQMyXVrnOPpCRnPFXIR/3TkU/jh4l/iluzNWNG9HF4qVyoUoBywepudEO2idU2qt0JfbRTGWo9v8GbNT+Z1/dnCFxA+0OLlgjjVi9IX0Th95Upyr+pEIQspjmuuBXabjLtYhMqpcprJ9xwaknGUq8lYWLZCkCanTdY6EB0vpWTMVDhvB3skcXXYqv/P3nfHSVbV2Z/3XuXYXR2nZ3ryMEMQEBQBXQNhDOgaYM3rqrsioLgqQV3XwO6aAAOiDIhxxeyAKCsI42JY4/5wBZQ4OXfurpzr98f3fKu6XnVNVff0TM8M73w+M9VV9d699913762q77nnfOVe7R+Xez48KWtIYkR0PuGoOMBGOqW8QFSO89Ip1ct75/bLdVrUx0a6hZFNjgkTnh6RdrrJjq5a3olPvu8ufODalyHWPYDeE24CAEzE5XgrKWux6ZL2ZEvqUAlEuUMh1i/XWjbJ3AdlTnb2yOvxfTKePT4ZoAV1pSW7neP67yHrbHBdL3N91fGva06poIwXcwqCa2GmnlEuFagVJruOohxfTMg1uQx+H+Hc9lEDXCHrmLXtXMjl5HlnRMZhrEPZfanf71WWR797lPlIF1GuSUUyzJSewTD1XpJJK6punM3mBAhxh0YyWfsOlCE77QlJX8Oiyyx3OLi9dP5NTiCZKCIY8mLFcWuw5kT57HV53PjAB32AYeCO2/Mtd+jM7AFYQ7nFHDWra4qg3byoba89DV+U7GtIfXmOZmth4DBbDhy0wK5zzsfQ2y/DindcjNj4kaM5ceAAAN576ofw3lM/tNDNaIlXP3oRHnz1M9H18SsxFX+89QnzjLtX/gZfGPwqvvrIZ7G6PL8slLlhA8wNG+a1zGMV73rF9XjXK66f93IHUr0YSPW2PhDCcH30n7+Du395Gu79wwXz3hYHC4/RySXY9MBbcObJv1nopjhw8FRgtmbGXHM9LQRatdUehbVHSe0Zyo/ULbyN11nf7uLG2w9p/W46ra07cV31tdVrJQJfet6zke+K4U3XfBT3X/VB/PF4iRb39YrmauWq5QCAPdxu+Mff/k7KVB0Y9Q9bn5AvmUN7dwAAliyR6JyfjNTgaik31EHXPkZxLZdE+CbG6VKYlMio7nVXZtWi016B7ERO839Ro1WkzilKtsPNyGYndUABsieTE8LChMj2JeJMeMJ7pHnFPNQcRMlk+X2ap4WsU05ZEmlfZ0yi4MpYFMkmRcPMjxQSV0N1cQRqWjqLWiJ9rgyWRlM7yFxpHqEpzelETZXmVdPjdW+/soGqndIcThr19VGbpQ5gOeY6S5I5S5Eh8/qlL2Jd0rfKpJWYB0yjvJGw1sMcUWSHsowS9/YvYn3sAOojgnTuU5awkJC+K5ANSqfV2VGOV7YyRAarwvZWHf88Ul+CDFqZ8y6ZYrmFWixO86CleO1jpkbiZRyaLtV/lVmn9OGyZaIXsnzCPrjPvQ6P5N6DE654K3Z95ocI+el2yXw/ugYUaEemOrpSURkE5lBj/p6qxL1q58bIu7okks37zRlb8J+Dd+On6R9j9dJV8JANqebLqq6R7UaT648zN90n9V56ad37LeS2B4iq8/22WtMM1K/pnCT70sHxWcyTuUnL/c9VmPSIfRliLsAOdan02vLBTcp4GhuRcpYsFfe+AmTNcHtkbSvRldO0qPOUWwc3c1JFw1LeigGpb8+YMFH79vwv2yfrcVeP/JCyVA8KsjIcp5c//E/STh/ZIGq78mRPNcdapSxr0vJlAXzqX36Kqz/2CmwfPR1+1yhWLt6KZ676PgAg6Jb1oVLaX+vSiox/jyVlBLvkR7vHT91YVLalZvYw/6BH2LIEZByqhspLiqdIpiqXkmtGTh4tuvSlVeBZHZ7KZsv5QU2nxXL0sUI3wXKBmqmcrP9ergUqCauAroU1yzq+L/Um49JuryFrTMhPBrii+lA5TdcgO2miefE8Jtcs3gO/W9rnVZ0odaT5PLWeyWLd8/GJmmhrJCGfUcedynHRLTq6UHVngAs793Tg+794K1545nfw+tcHADwDXYvIhMHCdPZntkRPZYa/ZkJjsTa2XL+ONcmX1+q7aSuGyv6+w2gtLBxmy4GDNpF7/Rvw8Csuwguu+5jjUujAwRzR95LPwipXkIo/dljqu3vZr/CFwa/hy49cP++MloOjG71dSXzkHV/Fcct3oy82hB/94uX42f9etNDNcnAQ2LmnA9dcvx7rz/gunrbq961PcODgMOAYZrbaiw7YMdtf/1p+dd9uE7dBs2mxGtXeMSrfAAAgAElEQVRoz3kQACpGvYareg4flEWoRkyqXWDM9FCLpNgiNQsVCWlk6A5t+fbXlcGY/neZLkldV1+NxKoVuO76a3HvP1+NdI9E7sPMUTNJLZVquUxqQbZulpwuAbIfiwYkShvtEmYsnpRIZiXDev0cV2Q9piYkMrlj63YAwO5dwqC5OLAiZKTSGWEKMtW99/U5onQwTDEvkuqWfAFGtctSXpyMQiqhboQSmezuE4txk3GaPK8zlWbklu6C5ZK6y0m9HrKGJYp4Jsk6ad4kHwUhuSyjz5XaGE8lpQ0ui3vyA+pgKBH1PB3pPNRFaF156nSUgVL3QmUDYzFhD5XJUgc8dRkMUi8QJOOlOjyjrHokuZYw9Xpeuv+5ParDkPrSZJiyzI+lY8rDvgoy146bbGCZegnV2XkZPlZdxtio3Bt1xaq6MDK67Ca7qetAkqxUkeyRtnd0RMaqOgb29AgD2MGcPHvpTCltl/t70gnC9CobOD4+zDZz4LKPNWJdyErZObJ6HW4ZP2XTgDebq7KGBbZtYkLqdFXzXck1T03JNfvpUhnQdZeR/yoXbkjfZdJy/C9OfghfX3YH7kzcjjUDq+GtMlr1cUb7p0SN8Dqwk6v9eUNuwjY3E1SJC3Nun1sAUC7X90mG+d32b38SQE0X5wvIPejulvkzPiLMTTGT4PvCrJqmjPM481aVKkwIRw2hjpuKS9iYXEaecxiiWJH5FS8I6+Mnu/PeWz4JAPjcZf8MAHCTYQ0wXxalhigXZWxt3iZr1a4twtAtXjIIAIh2CZNmeiK8HuaZI3seCFE3yq85ySlhmwo5ZbikvQMDLvztwJPw+fx44fp7cdXHL8JQ8kwY5d1Y3LMda/q+W+3jTjL8+bwECrq5xnQNSt7EUNcKAED/SpkPbkO+7I+SPbQq8uimwyHTT6GcEk2VlRE3WjfkOIMMVU0DqI653PHANaFMJky/R5g6fNzyhxWWe+ANyedOfEQ+T8p0J1Rtra4ZykiBOyqGJzmvslJ/N7VbOo10TdPPOx2D6jYb8XJN4+dImfNd9azpLD+n+PkT8NHlkbn+hidqOf90HOr6HaUm1xvwYnjEj3/79HPw1tc9gLWLhwCsxLK1ovlzUxsLo2IThDdRZTXTxjeZ47POG6rmr/p9pFz/faddVrz2fWZmF0LTdLRaRwIcZsvBUQPryithXXnlQjcDiQv/Dg++9BVYf8O1CDOZsQMHDtrHxjeGcMa/3wIXDVEOBe7svxsbln0NNz98/fy5Djo4YnHNuTfimnNvPKgyemIp/NvlX8OqpXvRGR7FfX98Ff7n4TfOUwsdHGps3hrF8sEJPP+s7QvdFAcO6nDMMlvtRgbb/7U/t9wFta3WB68Ra6ZpqkZG5sHBqr78+nrnCw3lNYSVm5y3betB1XswY0KZSc09VLjiCkytWoH1N16LP3zkExguSKRx+3Zx3hpnrqQAI/f79smPsoEBiRrDkijtXx+V3C47t8l5fjpsqTNdrIsOemMSUR0akmivMmcDi4QZUzZHI4rKTBWpfcmRVfH7JboX65aooOZ7mZykboP6hsUDEjVOkxXKMqLZQ6cvzfcyQWc/dRMsMH9WmZqEJDUzqjHweaWf/G7VspH5YgS0YGNlASCd1lxO1JuRDQtR+6S6nMkJuYYlg9QJMc9WhjnMSkWpI8T8Q6FICNMxTNeykubVsuo1YnH2kZd92BGUCHqZzJIep23XKHE0KvV42TdTzCmWz8l5KbIw6m5Y6KQ+in2fZkgsQB2UlzmhVJOpzN7OHTsBAMuWiVNkEdJ+vbfhkLS7r08YgEpZ3eeYR4laHe03zdMFAGvWSMS+m1Hk0eEJHksnRLKCplsj2lL2jm0yvsfjci3HrT0JALDhPRG8aPupWPPOi/HYTV9BoaRsjFx7loyBRmVLzPPTzUh4kC6WYEReWcZMVhiFuwY34ZbB/8SPJjdi1cBKBMLqKHdwa9lcV1abarYh/6NdODKbz4uS5sAjA6zjbmK/6EIndz0sr5eocYSObxmX4UgHK2U5hYm6NoDjqFyqd5bTOd3ZTda6QPYxIOMrGJN75LKYo2kvcyrZbHJ1XluW6njk3f4Y721Rxu8ImewynU937BP9a5xugYkXyetDu7cDAGI9sjb6qXV0e+R5LiEmR8WssDs+OuKFvdIP69a4sW7NI9g/nsOL1v8AH/ns6xDuXoEXPfdXiI/tAQDsHJK55nbJDgPNpxgeEIarZ7FsV/Vack8iw+I6m0lKTrFEUVwNfX7po2CU+bvKMp8Mal3d7BPdbGFxnTQsMrqq6YIyYDqnK3zVw/aR7esUF9oic5elmJ9L74jOM3VbDoW5Y6NCpimrek45w+3W3SA8q6zt4M4H3tt0RsaUpk/U9k9Sm7Vzr4zNMHctdFLHZ9El0eWp5V3s65TPJs3xqO6tKBWQz1VQKaUwsm83Fi1ZBgDo6pXP3Lo5NU2s1XyO1c/N2qidm2NpwyrQrkNpi/IbNe4OjkQ4zJYDB3PE1CtehSde+/d41jUfQGj/3oVujgMHRxUefvPLgUoFnn3zO3fu6Pkxbhr8Cm796w1YVVo5r2U7eGoh1pHEe97yVfzu/56Oe3713IVujoMDYOfuML70n6fgWaf+teWx116bx3XX5lse58DBfOGYZbb0V749KtA2u2F/wbYftmzPszVP7oYHimI0apg08tFQykG1oWm99r60VVPNJ2Fnxuw5aOzasIb3m7Wjvj3V89uO/Nher4nWpJwD9RuPcZGR6R2QKOkTF/0ddgf9eO711+Cu934AbtUNMdIZT0q0dysj/ENDI3wuEdEiWYUC2Ql19evqkkin5rFSp7xuvp4mW+NlVM/DKF+S0e1sWqLP8SnqLci+LFokmpugarTYdz19wljlMhK5jI9LNFl1URox3b9PosKm7ulXxzOGbShXgsn5oayP1l914ovSKSwv7SxBGQt5P1+ouU+l6TqojIvqbcJkK+JT0hcTE6JR6YyJPqGjgw6LzDmWyzFnWLlUV16O2ijNn5WMSx8qk7VkST+vkVFcMljqVqi5pLJ06nO7GX121ceyImQR1VVRGanxsTifM7cNH/MUv2iuGx+d+Ax2tjLaL3n0fAA150gv2VR1PyxRJ2FRg6MOmb3MZablqUvhJJk31cABQEe39KmLeYImmYtoZL+M586otE0NDJUli3DcqgRvfHiI15TD41seRb5Ywu6du5Fh3h912cxR07FilbB0Xp/Uq25q7mnRbKCmPfzJortxU/+tuHPydqxatArhqET07RqtZmiWW0fRdC1cObcfdZqfyJj2yvR6Dggek+NasHuLaLMqRRlXyVFZc0rUA/micg9BRzjVTwZ6pO0d3fJcmdZyWViNYlLmQYoulT6yDsuW0Gad+qE9O2VNM1yy5qxbJ+xO14CUHwxQV0QdULEk5UzFs3pBAIAQLfY8Xnm+fImMjcW9cnya7MrOfcw5RTdNlGQepfb9DwDAVV4OAPCGpR0+MtEW52c+zuTaedlVkOfaZxhy3VFTGJFTTliOT//LD/D+a1+LUCiMV734AYzuk2vfNfwXtl36XodZsE90QqE+YXLdZIBz27eyL+lq2Ps0aWOEzo38MEyPSBtzdBF0QdYkDzVYBt39qlpwjscymaxCSTWy8ljhTgdvlC6y1LMl08I4uSnyMqn3rDq8dghLuYcsaCYrfa3rucvQ9rAhnOc6fEucn4UsP+eouzV5nMV7HvHLvfX7yHay/KmEPCYKZLIBHNcvmj2LTrjZTAojYwFc9dGzcOEL78Hxg79GYgJ4+tlnS5nKgk+bZatWVQBU6nJR1VwC7Rp2FVfp50/9y3a0yts1X27QDd+b7N/H7O11sKBwmC0HDg4SIy9+KSYWDaB7x/aFboqDpyBO3XUSTt110kI3Y1Y445HT8LULvo2SWW59cJvYGLsTn++/CV/b+iWsKh1e18HS9dejdP38545ycGSgqzOJT179Xdz/u3W4/e7TF7o5Dmx4Yks3li7aj7NPe3ihm+LAwYw4hpmtmdH2/lpbhLMZm9Ly9TlrwpqjedRzlm44zUpp5sDVbA9x1ZFxNq04AKpmPW1aeVWbMU8hozagOoDBFRJlM/wBBDwuLFsm+8SVPXhis+gKRkZEa+Wh616ADI8yAJqraSohEcgcWY98QaLBg3TgCgQlwqj71P0+P49TlkQilZqLaZQ5a5QZ6FkkLE2EebVU46WspJvMXZLW9kU642kUUeGl9qpA1km1aarJUk2ZMnYuZXuqeVyUteFWDkbjUVEHwXS1Lh+Zqc6YRFmVsdmzZ6iuzEWL6HSn7nx89LGPymV1wpJrzrHtyjCFwsqAScRcmbIotV3KyimjlKXjo8G+UffAApkpnftqrOf1RfioecLkGj0UqYQiXXV9ZdKWzZuTdnm9wh6ZlozzJJ0idUyoXmJo/xD7SyL5PcpgcWJqrjXVpKn2RiNvBWX6qom+gAz1Yx46xsXo/FbiuOvvIVNJR7tJ5mDycDyFOV69bOubN78B7qgHI+Gfwh1xociIutstfefmeFWXze5e6RsPdW8GV5sE583G2J24cWAD7pzaiFUdqxAMSzRbo7utGKPGNW9mIWmz5bxZsNvO4jdCo88twuUzoMJzlOXrps5yeKc4n+YSnPte1e3I+DUq0oeZIhlPsvAWGapIt6wRwS5hdvZtk3E3NSkMkI+6vWBQ5tvoJOcu17JiXsb1vt2iU1q6TNYuf4jugS5phxXi6xUZr4lJ1YdybeA8j4ak/ZEQxxJJbz8d6xbTye5uOrjG3Nw1MMV8eNQlmYbopEwPHSm9cn2ltLCzpYKw9h4X2Z6yvJ5KiT4rCuBD/7QH/3bLu1DMvQgvP/e3SLtOlGNK7PMpuWZdR81OyZvo65FgSDglczSzRz4XJnfKGuLvlpxR/ihz7FFXmUuIU2SBDFehIMySum1q7jPVcoEMlCci5Vh0jiyX5JrydGL0cJ12kSlzmXSrdctYqFAb2dEp887yyVoymRLWsod609oOBjld2RUX1yg36ZcA3Xwn6CoYoAOlOq32dNAFNynvp7mE7hujNs0rYxIAAmHVt8l7w7u3YWw4iGLOjV1P/hXrTpYfwwMr5LO45mxaw4YN8tqll9Z2UNi1T7aNL43fBe3fU1qglTZr3r442Z7XWP3D9/3IQSMcZsuBg3nA7tOfiVO+/y3EpsYXuikOnmJ4YODPeGDgzwvdjFnBgIE3PPB3KBsVjARGDqqsjV0/wo0DG/DVJ2857IyWg9njNS/+DV7z4t8sdDPmhFg0jg+//fP41f87GXf+/OyFbo4DAPtHY9j4s3Nw/PI/tH3Opk0WNm2yWh/owME84ZhjtuzZt+2RyFaMVEN51QMOHBG1OwFqvgv7XvwZSmjyenM01Yc12xJsP2yOOrbanmBeW0VdeerdeRoiQ3ZXnxZ7nZvqIs4/f8bXFbPVzTXkH5sFNJ9IJ6O8mXddjsRAHy6+8fP4+Xs+gKGVElU79ZnPAABMTMqPMHWCi1F7pV2zY7tETx/5i+Rv2b1LosijdDW0WF8sVs9+DNOdUF3/EmTGQsz7pc56Pb0ShV48KNHlLrId6vqWYN4rj1fKXbZStDIR5mSaHJf3Vf+kebHSCXm9VKQrXYH8JrtU3Q9V86XuhaaluXWkfI+bUXEyeWXmpgIAgw5dGerXhoYkAq26rj7m/uokW6eR/nKp3mkr0iFtyaYkOqz5tgzGnNRhUdvQTWaoNnxdvFa6spH1g0aFqVvIkjFTtyzN06WMmKUugozg79stmhoXHRyD1FMo6xnwat4wasJ4nEH9w89Ouh8AcPreU9lP0n6vN8t+EZZHtWQ6D/VexScnMP1CdQwYVm1exDmu8nR8zObpOsZwXZK6oeE9w2yDsBRhagOVdVtE/U1HmNdYMWBZFnxksoIct6oR6+F8UTe2AjV+qmv7Ue9duLHvZvxoaiPWdK9GgO5p1VyDyrcb+pxP7WtiA5FVvwaVq2PAlsNQ2ctXvhIAULz99rp6Wq1EVZ1oNVdi+9FnvTsuMqAd3T1sE10tk8KKZEZk3qSZL8vD+VHxkCHgTSyQDS8x91IwLGtE/6DoPIch49XyST2pHOdsSVrS281xTmc8dapL6RpBXc7zzqYrYlH0SsrGJNPbAQATnJ+dYRkTHq/2jTx6vVx7O3gP4tKuVz0kOirK+jCVlOstpMSVMc955bboTsh8YhkyzLmMjNmYJfUH/FKfmZF+BIBScgr9buAjbyvgmi+9F4FgBS87908gaY54ktvYSmLSUMkxv1ZM5qa/93gAQJSEyo7H5PhKXj4fJkZk3bXCzGcXleBBqF8YsiLz1mXHZJ6VuOaUNZ8n9XDuDtEUV90Ks8NsnzBk/oKU42ZfGiV5rnkZy2Xq5lyqQZZ7FE9Ln49OymNfp9SbI3uYL8jr0TBdSek6WCpKeVMJ5jjjvXWTActkuBal2I/c2JAoyz1buqK2TbqnTz7DXGYeI+MhXH/rBXjhWXfgjJP+AiCCtafLZ26g6rI5N8rIzjjVNPM2d8I56vWra8RcGS178lZb/bVclY5o60iAw2w5OGpQvvRSlC+9dKGb0RTxi16Nv7zkb3HuZz+ByOjwQjfHgYNjGj/ovAOf6/sC/nPbl508Wg5wxrYIztgWaX3gPCAWmcI/vvw7+M0D6w5LfQ5mxmNb+rGkdwfOOPG3C90UBw4OiGOO2VK02gM/axak3ZwMzV49BHqiqnNW9VqNuoe2na3qTXgaHLlqZzfpy1qD6guyR1SqzJXt5WblzRJtM3Rt6zYa37Ofa3E/+KJlktvJ+OC/ILVmJV7+hRvwwH9cj9Ty5SxAzlOtVakioc1esjLLV8txa0+QD+/HH30CAPDAHx4AAORSEp0eGRVWp0B2RduVzanuSFiMvn6J8i4hk7XueImMal4tZRAqbFeO+YmimveF4eGOiLA7u1zCvni9EpEMR+kaSEbDYC6ePB3/XNQSaPuULdHuU00DCa6qK5syEpFpObCUgdm1U9i/iUmJlMdiEnnPke1IUMPkZzQ3QWdG1VAN0FUwQHcqZfPctFD0GNLGbtIoWl4ileB5ol1x0fGrROYsQAarSN1ZngxAiZoYZf0KBWXOSnXtStPFsBDXnGh0ZWNSmnBQIrSa56jCnDdRui5qH6s7o9vSnGtSXpzuilG6M4Y4Bop5RqPZf1NT1HVk5LkydECNRfS6pG09ZGYrLnlMsS+zvP9ut+rL6BhWkPeT1H4FQ2QuDcBlmQiSkQpwXIbJKrrp+JiJT7GNwlbcvWwTbuj9Iu5K/BirY6vgV/bQnDl+WF2Rmk5x+04H0/a8/kRzhnxwbaHVtoPZFGWrW9nuSEzmfu8yYVFGyupKyXxzjLGWqVFKjouTnmohiyWZD4aL+eGo6zH5PFOQceQJyHOm2YLXS21Uhbn16MaZTkm56ayMxz8/Iu6EZ51OfZNPdgH4e2TMTGSF1S+5yBxb8jg2pW6f0j4/Ga9SRd02ybJwfqWz1FAWZZtqxS9rao7z0hUUzZgZkv4ql4VVyuQeYT3Sbh/rB4CoV65tPLMN/ooPlXIRpewkgp1ybm5C1tHJSXEpLOdFm5VhnkRP7GQpp0eYq8CYHF+ckPxb6YkHAQD7twgbF+6Wdbt/qfRRd5fM+VjfCrlmMk8lXnORWtlshjnKlL0vS58VMnJ8fJw6tADz4xUlD6SnV+pRDW6GWjAWgyDvaUdYNVe6bpO1t4p1z5W28XC+LOrirgO+naI4K5FSxz9Z20aSMpY8YbnObubKkmuWx4mhXYhPdsFl+lHITuGZ51wAAFh63Ak8rl5nPFfYv8PNNe9o406kg2OcWu3OarYWOlgYOHfDwdGDLVvk3xGO+Ktfi22vfgNO/9cr4d+3Z6Gb48DBMYU7eu/C53q/iNu2fwWry45G62jD7fedjtvvm39Hvz8un8Qfl0/Oe7kOjkwMj8Vw53+fj7VL/7TQTXHgoCWOOWarJQM1R4apJu9p5lJoj3rURxmauRrOBq0jKvU6MdVSVfvEpp2qtc3OSNUV15A5vfp2Uxma1sen9gNte6AbEqs30ZS5r74KAFDceHv9+S3Q6rgDvd8uA6qOR4vIniTedzVygwM449/fj0c/fSOeoMbFn5HobaxHIpR+aqD81EBpLqYushYZarH+/KeHpNwpifArG1HNhcR2rj1RmLEzzjhNyvXWciUBwOS4fBkJRyQ67fNIvTkv2Qw67IXJkKkLoeZimowLQzFBhsHFm1ckU5elM1jIy/NdfL9Yn9tKI5/qKFUuMedVtj4vFwAkEhles9QR65Cyo3SEdJFtUx2dpflFeH6WrF2WmhRlxMYZbU6TuYpR2+RneWn2vcF762bblZFSx0d189OIa5jtUs2WsiQpsjolar00/1UPo9VTU/K+n+ynspMe1h8no6eRe+0hbU+CuXTGyH6qG6NqxtSBLBip1yH5gzIWCiy3nGdepYRquWr5cvxRubaU3v+A5iqjDoed7vHLuAkEpc5QRLVbckAiJeOtUhHdX5rjLkBGs1xRR0m55/f57sdm3xaM90/iJ5H/wk/TP8Ga7tVw02myWRTXnjun9kb9U82bWFsr5xi9blJ/zcGMTIB+jpjtqrsa0bg2UT/mlr7uWiwMkpv3PTEh42KMTniVKpss46PEEZXlPNN8cz0xOtRZMj9Khq5R1M7QtbLCe1ahgKmQpQ7U4twna1HiXN8/TPaC4zsakd0Bi1cJW+pT1gTCUJUKMj8MMk2GXx69ZZmnP36GmG6cvFOYjWgv5wl1ROGA1DcyJQG7iVHRL3X1yjwLc12pTDHXVFHGeKVU049WOB4LuSkUC0lUyiXks5MIQvrCTbZs317ZCZBKikthrFOYKpPMV8kSF8PeAcmvNWpIuZ3uzayHWlw6ou5OyOsJMk+dfbJtNtxJ10LqzpStL1DzSjIdXIYR65SdFPDqmijsorci7F+BzozugLTL7ZF7r5otkyy9OqpaZB9Nk4y2Vb+DIc91v8zFRrXHmbTci0KeY5g7LHbul/L2J6Wdq5fI9SprCwCp5BiGRjtw7Vf/AeecfjsuePEogLVYe5potfyaj3CepEqG/XtQw4Ydu1aqTQbMlje12fepdsuzHzdXBs7BoYHDbDlwcIiQef0bseeNb8bxV1yO0ND+1ic4cPAUw2NnLscJt92KbL65I+G3Qt/BBwevwZB7BAaAb+/4OtaUHY2WAwdPRQyNduBTN78G55z+Y5xx4v1zKmPFygpWrJx/aYcDB81wzDFbitqv+gP/nrQzTrVggD0qcGCdz1wd/maDWZepQV37C80Ot0VK5+qSMwtDrQMe3xgxmvn1g8V8RoCqmqOYsAXWFe9Fvq8b533mk3jy87dgN3VBmuspRdbGQ92Q5ufqohvbGWefAQBggBAP/1ksvlPc497TI1HZ7n5xnzr9WcJoDS5VxyZpzxhdAHNkJLLMTxTpiLJ8KS+byfM5I7jUhmmuHh1CO3dul/epi1jUI5HIUIAC9SrLpKepa5XqgDSqbvF11ksdUS5Xiyan6EKoDI3mvVLNVIp6tjT1Y4EkGS9qO1xsRJblTFSkD0ZGJA9Rhn1RLjDqTEbIrc5e7vrIvWEqWydRWNURdXULY+ZjXylzoNdSKWuk3qrrEzeZMc1JptfjIeuIkmqrpH6vasoYxdbhq+3OFbQc5hGjFqejU925LPYPmRAXtWcB6j8Yve7ppRsjgFKxXgOSIusXNDO8Bunjvh7m5SFj42JfqetkjotKV5+MV2vwc9ibfwcGrrsYQx+5DYHQcgBAKCr3+Jv+2/C5yOdx+77vY0VxOSKxKNADeMg+1tY4XRxQ1yeNOXBmXq/1ntQOs9HtzXSoDaU30Qq3Fo0dNKpsnG1BzXPcJ0ZFl1PhnLY8cn8NSx7DYd4rarw6IX0cCnKNICtpUY8X7pA1Ks/xncvJmChXeG/cMh/8ZN/LpQxbpNoqeZyiPqcEuecDS2Tt8jKnWoEaxq4QWXFDtWHSzkCUDLNfnFx7jlPXWjmPSxkMaikTlrBGFWWm3arBFCbPZXL+shvL0+6lrpOlsoVy2YJhGLAsX5VNh1uuwRUSjVF8RBitjqCsMS6PBN3yY6zbJ1qv3j5h9YpRqdsyhH0cNIStzuTl3g2PCTv52C7Rn4Wi0sceN3NODctapA6TJvNswZB7Zq09lfWtYDu47TIjbHZhUuqBRxgzdY31h2RdH9khz/eSlezplPJ9XEu45FZZ8vG4OrdyxwNzo2V5T/N5spxj8nw8LWvU6uOfCQA48WRxrAxQQ7xvKIxP3vR8rH/2PTjzxN8D8OPUZ78AANDRI2uKYXfpmwHXX5dveYwd7X5PaNfpeoYT5UHPs7se2g9vUqzDaB2ZcJgtBw4OMbJvfBP2/8M/Yc273o7A/r0L3RwHxxj+9edX419/fvVCN2NOMAwTnld+Ed0TFm4NXYGEmai+d1vgW/hs5Ab8cOR7WFFcvnCNbAOlSy5B6ZJLFroZDhwcs9g3FMY1n16P9c++D88+7XcL3RwHDmaFY5bZqqG9X/m1YEAzb7z5YVPmmpNhTnXZ3Aln67yoaBapaVpeiy6bazvaxXz2bdOcXy3q0OODzFPlff9VKPX34OxPfhjJiy9FKp1B8uxnY2SCboKqlaKWSt0Aox0SKY1GJTKZy0j0tb9PGITTThN3q8XLJULaGZHjxkeo2yHLMT4uLM7+vRK53LtVIqP9ixexPrq/mRKVVr1RT68899MVTrVbuZxEaicmJTI6uEb21vdQD5Wlo12c7EuVFWKuqgojr6p1U8ZLtTvjEzW9kLIieTI/cTI20aj01a5tEgUeHZFcNZoLLBiWx9UrBnlN1A2RKfL75ZrUiTGVoWtaOs3j6RjZ281rl7YGqUPyeNw8Xs7XtCbFYqWuHHWK1IkRZxKZcbKNZc13lZTXY3QCm6JGq8DzS2Qcurt7WZxGieX9m065FfvCQ9U8YNpfhmHghG3rsCTD8zkAACAASURBVGZSNDw7vDvxmTU3VjVuOlGVvXrVvS9D/1QfykUD953yCzy0/BG4LL1vcmyhkEfvRBf+8Xevr17a9X978zQn03rn0Vdu/1s8Y9/TsXzxYvw29nvcuvQzUg71Zl/3lRH3JPC8tefgPfv/GZMdk9joux3PLz4P/9b9H1Xd2/RpeH75PFxWllQQm7EFV7lm+sEpDbiueB1WV8RM4yZrA+4z72soDwBWVlbhM6VPV5euV1iv1MtrKPXS8qV4IV4IAPjZiw1sMDcAlZtnaANwR+H26t9XuK7EVmNrXfumX9OlJfnRtsXYgqtc75uxPLmmT2EVr2mDdTM2WZsA1HSQOUvWiljAg8v/fCHS1Az++4u+DQAwOfdq5F0Fr9q6HqftlZxGDy19HBuX3VNlN+xk3+ce+ggAoFgq4DPrvoIdHjEDUoZV2Z6zRk/BhVvXwzTd2B3cj8d7xG3wUy/9BgDATc2XZVl4+/+7EF1F0b3e1rMJ/9v7UPXeKwtumsCSzCK88+G/l3b5KrjytE8AoP7UkDUtQt2pzkedJ4EeYZGC1Ol56ZSaipP5Y54yg4wwMjU3Qv1MNS23rAeGCdNyVxlU1UX6AsLQjGTk+fgkmS0jy75nDjQ6gPojsj4HOmQd7RuU+1pMimugNyNrm98t19CZEXbOMGWdD3BtG6CGMpOj02lOrmVoTO717m1yXKRTdkyYflkb8wlplycv7UCRelVT1qKuXmEbh3bJ586uEWl/jmvXom5ZS2lSiCLzapXLFtsj/UOCC8mMPE+k5IX9SVnL+1eKccraE+RzTXd4PPrIOD5+08vxsnN/hVNW/hLFPHDqs58PABhcc5z0bZvug820Ta1citv9PjLnPKat3m/iZuhotY4OOMyWAweHCYU3vxnxD3wIrs1PIvDgn7Hi4rfAt3vXQjfLgYMFxUVf3odgogSjdyV6C7140vckUkYad0xsRBTR1gU4cODgmMZDj63E6mV78PwzH5yX8i68yIcLL/TOS1kOHLQD43AwLIcTZbW9mTOa7c23FztzNU2jI81KsTnSTA+1NrzXpI4Gt0HbNdS0TsbM583S1a9lJKiZuyFRtvWCXbPVLDJjvepVAIDixo0HbF+7aEeTVnUimmW0qvH9+kh/IV+A+1u3wfvxjyHxjsur7Eg2K4yQupUV6Qw2tF8iiXv3SPS4h9qYWEwiqDmyGAVGY3UWuFweTCwZRHKt5NxR57xcWqLek9RxZOk81714OQBg5fESWSyVpB15Mk8x6pIefVRy86TItJ39N2cCAEJk5EaHpbztzBfjYX4Wkx1QzKomi1og0kI7d+1nP9T21HeSLVOmKE2tRQeZrXE6LO7eLVs0q3mnIhKVPeEEyWnT3d3Fa2LNFHOMjko0N8norkFNiJc6uk728aJ+YbgCfi/Pp3sbNSsklKraLL3nWc1FRi3B+PgUr0fzWwmDNcZ2rDtB7lX/IonQ790j12XSseyEEyX3Tp4R+717h+uuT8fC9q3bAdRyuXV10VGMjmGdMV4Pc1slqcPauV0CAFn2N1Bj95TNyyblGpRFiyckcq952EJ0BNOucAeFZehnPjrVwVkbbkL/xh/gsc/egHx/P/oWSwQ9xvHtpp5GWQ3w3lS1V7rGaUNt067qdlllVqlTI1OnrIld22V3Xm0MS9qiyj/7mdSzfj3bUa+/qJ114M+RA68ruq5S40Sms0x2MM85NTUk92/7o38AAKTJPrt8Mo9C3dRE0fXS41aNklykuliq5lG1hKaha1i9rjKXlXbs3Stz10Pru2XLlvB4zakmrytTOzokpiiWUe9oZ9EBbzxOxrUg7erplTGh+eMyGbmuYDjAbnHx9QzbL2M1kySbZGmOQGFLlFX30NES1IC58tJ/RlzcDUvJWrqRXFrG+VRhER7fdTy+vulKfPw9tyDcvZR9JHWMMeXH9sf/KHXkxE1wxSK59qCPmqVCfV+7A3KP8qbco8kEF5Uic/25Zb3lhonq1wUD6hpLHSt3FgyNSn2JtMyfvZMyj5esOQsA0N0j89JISft8dBd0R4UtsqLCtI2PS/07t4gubmibjK0OjzBry/qYd4tkqY6JIsfUZLLAR7nu4SmyUB5hMSO9skYfd7xotHoWif5q/57tAIB771+LvcMDePULv4dTnvUsAMBJZ/4NACDU0cG+sOku7Y7Q0763XHihFzAM3L5xmtOkXZdZUcdQeWrPHVY9zv4FpnLg70f27x1t5/1skadL9eL66DBcjTDNNgR9hwhPgW2EDo4VFK+9dqGbMK8ovOGNyFoueH/9K/j4RclV0C0rsiaUubWrRBMGc1y2k0Ro5hDiNhQ1tFCLdV2XXaaJU++6Hf/7lrdj/8lPP7QX5MDBLBD51jcR/uH38ehnbkChv3+hm3NQMDdsADDtx5YDBw7mBSPjHfjvP5yLC577k4VuigMHc4bzY6sBzX74tudO2BLV3FK28maIQtT0D3rqgfMtVI9r0GjpXt76JrRyzWn1ftN21BuDtY1m5VWve/XqGdtlP38h2NqmUayG/dTyukfd/d7098Cb/h5eRuBNRqlVy1Lmjy8Xo7URsg8ejTozUFPSCD7rtRi19QUCiP/f/+HZb/tHZDqCqMS6WL78uBuZkB9xO54U3VPpwT9jLNaJ3Ty/6ArzePkRV2DUOxCQaHJPn0RKQ+EQL1ha4GOepWXUcgV86rIl0cfxYYmIjuyjdiEhEdsKKQSXu5YfLMH3VIOU0Fxf/OFZ63r5w0/9Qm+PfIFXxmnH9t0Aai59GgGMMz+Vsh0dHRI2VnZRH5V9izPXmUb8M4zwu9wSIXe7pO1uRtZNk1Fn3vsANVkWl1+D9E+cDMSePRJZt9zSvs4u2UqnrODkRILvSz1FspnqRqeujRHq/3TseckulthPiYSU4+e9c5OV6qBOwuNmTh7UGEvNvzYyLGxaieMz2Fkfoe8gG6jjvMLwcJEMU+g/v4noN7+J4du+jc4lS6rug8qyWS51bGxzp3vbU17ZmXr2sUkqwAO+Akxbs+z6jyZn2ZmtxmB18zVMc51pjrOhHcwXNSz5orIJeT3PXEllumUGIsKShGPClCqToxF7ZbsrZc1Px1ar8x4dQvk2/AEZJ6qRCfgrLIesIZktr0/z1Uk79J76AnLe4qXyfjYt43B8v+iTjLI8LwqJhFSW+eFCsuaoC6gyXJpHS1011a0wOSnrQ5zjvFykC2KKOlLOS2W6NEeiJ7iY9cojXNQxATDdzCdluOFyuWCYJnx+X5UVzJC1s7x0//PKHNq7fxsAIBSUtpY13xpX7CLvrQlpcy4rbc5npY0uj8y7iTSZXrf0iZ8MmWp5/R5pn4/3IBYhg0zGazQu5Q/vFobK5xcmyQNSZRkZS3ALm+4Ny/oeY95Ht1vcbpNx+TzatYPuuNkU28/FlmtbhTrXYkXaH8/JPTeiwnquXiM50ZR9N6mXe/KRcfx18wpkc+vws1+fize9bhteeYEfwHNw0jOFlQtElNFqnGUHgmEYM+4ganq8ncW25xu1f086YGmzR6vdUg6DdXTA+bHlwMExjvzTn474bd+C7xtfr1lj8xdIlD8cFjMPWGR0BFa5jF8959yFaKqDpwA6v/0tdN72Tez8ylfhWrJkoZvj4DDj0zfLFuX3vu1PC9wSB0ci9o9E8fGbL8SKJXvhciXx0hf8DK+8wLEXcHB0w/mxNWfMPPmN6r52fUX37tfv4bdHJdrJEm6PmjZGPGx7je0v6+vz7E5oR5VZa3pAW9U2tuOmm+T0Sy898HFzdAOabX6wtspsFXVS9oTRZa9fHj3UU2hfdWBmvVzzccMTNc9V73NQee5zajeHbEhhTKK2o0+IBuvJH/0QZ959T5VdGVh1IgAgnRY2KBmXH2fLVghj1UkNl+o41PGswojt4kGJFmv+sAI1aKr1yZCpS6WEHfIwJ4/HW1ualFlyUeeDvcrwSIRaI+guWx2qhZoic1XIyzUkEvK6uhPqo5dMkuYNqjDaPD6qebdcdefnWZ6XbU5npC9jMYnSRiKaw0z6QvVBAeasAWhzbgqb4yOr4yPz0NNdrxFTOWqS+igPc7bpdStrUqaWq5q7jNfR2xVkPdRTUcOiGi9l+gJkLvTeAoDbzT4iQxktd7KP9Ne7siBkDdmXBdbd8eCDsEaG4du5A/47f4zET+5E5+AgfF7mRLM0H5Bt7bLrLqrrbnssdlXH0KDfqNc1tIoNt7M+15XXjKGqUmgH1mopU13IZqqvje8TfeVjD4oOaMcj8mMlS+YmEuX9pcumPyzj0KePzJelOcr0sypfkHumzK22XftOGaUKWQuXW7VdbCvXkmhU3f/UBVNdBjmnqffbvY/aQeaz8gfkvCCZWK8p8yilTJ2pjIJUqPnsVJulUh2LTJul0p2KXFcoIP1iGZpvT/qrwvq9LE+XF7dX2lfxSL+VLbL2ACyL+rdSXrRmlRLKhVS1bC/XLd2RYJHdzpfkcQ9zd7vZxz6PnOfzUs/G+14qybrYE5bzSmWuRQUpf88+6YtYjIywp96Jz2VJn3WEqF8NqPurvP6X7cJcjY2L1mzZYtnxgLRcn651xaQE4SpeaVdnp2ipnna6uBl2MbfV8LAcl+Ta6OX1hMiER5mTTbVlJa5dkbDcG1dFmLknthRxwzf/ARe95Pc47zkP4vjTzwSwGEtWH1e9Nj/1oPrhVpuTh4rhselDbd/tDJura6uvGw3fM3QnUAstV4M0zLaGKEPtMF1HJpxwgYOjBuamTTA3bVroZhzTiMdiCE1OYt0jf13opjg4RtB52zfR/f73wf/rX8MaHsbY976L8uDgQjfLgQMHRxD2j3bihm++Ey/+m3tx3nPmx3XQgYMjBQ6zNe+oZ4/aPmsO0YhW57SbC2q+2tRKczVf9cwW86Hlmq9raN/Rsf6PWvSsvr7W1zTz+ya1NbFeid4GqNsJd0Sx86RT8LzLLoE/2oGpk8RUo7df9HLqwBfplCi0x1fPuoSC8nomK1Hl+JREkTXqrayRMluqP0omJUrdRTbH7a71pzI3ypbt2z/C5waPJQtIUUkqKbqEYkHqUjdBUEtFLxHs2inRXc3LddyaFSxPoq6qf8vklCmT6Ku6CWboihiOhHkN8r5h+thX4PHMGcZLWkSnLS/1TMoWrTteHLnUeS+kGpWCOmaZda8bjGT2B6it4q0eGR5hdYwuU8NVrDpLSpTcz3JcZDDUVVEdBZXxA2o6mcSEuhBSY8I2WC451iJbFnnoYVhjYwhs3gzvT36C3M83AUuWwPS4EcU0ZqkhWoy6580NuWY3l+3zp1Zem4zVrGqbPSrKaJAlGmceo+2P1YIeI3tEc1jMyjjr6xdNUTYq9y1K3VuB5jlev8zFQEAeTRt7qE6N2jce5ptyVTVcbBPvdUFNeOjhE+d8iHNMdHXF6sqfpKYyGKLrIce79rVFNqbMcQm3zKN0ijmlXMLgjtM86MknZUL19sn8CVAXapLaGk4rC1g/tvzUl3rUAZN5w3J5ufduD+crz8tzLVOdVNlbY3hREq2pmYmjUsyiXCwgE9+HPNTZUxgcZQWjHcImhqgvmuBa0BOVtoTDmsdQ6qQBKnzUV1qmjnNhC91u6YNR5u0CXWJBVi+n+azoXMpLhZcMWiwiFViQvopTs1um02qFrLhJPajbL30XHxO3wlJOWMeoX/okvE5y9y1eJjsdVLumujmvj/fIYu6/hIyVqXFZo8aHZQ3eV1yJT3/9tXjLGx7Fy9bnsPrkvwUAdJI5Uy2owM5k1bPJrVCpVHDJ2wstj2uet2o2DqKtUSt/ZgfTZmh37XJwZMD5seXAgYM6ZFeuxN2XXIYX33wTHg13YPfZz1noJjk4itD51a+h83vfQ+6002AGApj8wQ/gc7RZDo4hZPNe3Pbzi7F6cGvrgx0cECMTPdiw8RJc8LxNeNn6dOsT5gHr15dbH+TAwTzC+bF1yGGPvtS/2+hk03oRsO/6bxbhaNSDNXPMs5fcov52GTWtt8ke5VqBs6tvvlwH56LRaprjbJaajvlGMw1XKzc3gxFYH6O/K9bK3vj8S1+KLSeegBMuvxzJdBLG370BANA/wDxJHnUSY24qdovmUNNRXC7IX9u3bJfjk/wwrUhkV6PlMTrg9S8WjVeSjoNSiERzi4y0d3bJsbGeXgBAirqvRDV/lTwPBL1sq0RXvXQfqwxLOVN0ddMBmSerkKMrYJ4ubOGgMAaloLzv8Wi5ZH6odVEtTIE6pm07drO9Et3u7upieyWqrMxRjO93Uu+h2spyNXGXPKg2RXVtJWrBCurOxuM91GVEwppHSdknecxmpX9UI6ZOgXk6YILOYvvSZOSmXaOyBOrgFnvkERhTU3CxTa6HHoLrrruQ//WvYA0MwDANhDGDrqJFLppqtQcZvZ2v+VbLHTjz++Uf/WjmN2qLNAuauQDVS+3fswMA8Nff/w5AzVEPAHoHxE0wtnIVgJqOrkDNlYuOc/FxYcU0hxPIcqg7Yb5SrwdTJlcd6zjNqmuHSXrEKMn4KStly/e9dNdUnVmemq0UtVHRqrunsh6qCZPHTKbI4+UxPSHtVF41SwZK89IN08m0m3olv0/G5CRZozAZW13TlGXy+pTJleud3C3Oe3uZn89Ud8UINWqWtLvs6oSi4upEvuDCNd+6Gl2RUbz1xbfAKpdRyErdJS/PKemaIGV5qQObqkgd43HpI52riMjrUboH+nxyvrKLOg8sri3dEfahS/qkzBxhyYy8PpWQe6QOkf1d8shmwUs2L6CuoT5Ze/Ipai/VBZfHWZDnubHtAICMKX3mj8ia5jdUY6ysoVxfNi/Xk+FYYHOQd63Ak1sH4A504ss/Ph3vvnwIr7loEH2DoiHz+aUfG3Nn1XDotVqzw8F+L2mVn7Sh3OqulyPj+h0cGM6PLQcOHMyIzIqVuOed78KLvvB57Ojpx/DzHYdCBzV03HQTQj/+CYqnnFzd+mgEA8j+109gDgwscOscODg0eHT7cZhIxPCxt7wbWW4fdNA+9o104+O3vhHLlowgGLLwj2/4E15zkbv1ifOIe++VH4UOw+XgcMH5sbXAaGBtZojSNMuLZT90rlHg2uGzO8/entlGdObezrnhUOThmmsfzPbaW2m9yvYIqNU8IjhTuQplTVasluj5+BnPxAP/8TGc/q8fxMjQMIYueg0AwOuVSGZNs0ONAaPkEWoV9KZp9Dgdp66JEdBg0M/yNDeVlGe6p7Wfx7rIhqTIpi1bLsyWzpmhPVJHnlFZX1nauHsXbe3p1jawWM7zB+guSAdF1bEF6AQ5MjRWd41p5iYr0IbNMOjYpexcj3zx6ozJY3e/tKO7W6LHmqtmalIYOO377pjmi6l3s4rTTVE1Yy4VYFjSx6rvKJJp0L7rpf6izL5XN8QAGTovtTn+kGhScjllxuT6TDIcgXAQwf/3AMxMBuFoB/uM+pc//BDm/b9A8Te/gdHbq7cIFbT7oXIIrD9nqqXNNbHVcXYXWfvrTcuzHdfgUst5OzUqbM2Tf/4/ADUN5HEn1RKRh6h7VOdG1SoVC8JUljgOvQG5V7lJKXN8XHKihQKis3Hx/mephdL8XSDrUiDDq+Nb53Y6LXPXx/kRI1ObIVM7SUa4wPnX1y9aQnULVffAs59BTaGy4SXNj6WsjlynVSJrbpGlUQaO4z8YlutRrZpLmVu2c5KsYDYr7YlQW8m4ACoVuf7UpKwbyUlpZygi2k14eH1mzcylWE4iV+5GKJiBKxCBn/mwjAptBiFriy8k659qV90+KatYkbbGM9JXIcoxvZReef12hz2yiRw46azqKvUilJWWe5ZIynEjE5W69yNBk+WosysZ6jBZycwoX+faEpVgye7RZdi1N4JidjlOPXE3vD65zqK6yXItzudlraqyobyHydJSbNvZAz/7IxDtx7XfWIZ//VACr3+tBV8wBOCE6u4Ds0Fb2f7n5Gw+32++Repbvz7X9Lx2XY3t5+tnsTKqB/u9o7muu9411GG4jmw4P7YcHDWorFi50E14SiK5dCnue8d7cP4XP4ttPT0Yft45C90kB4calQoW3XAjIr/8NbKrVlS3TuqXMSMcQf6//gtmb+9CtvKIgfne9wIAyp/5zAK35MjH618pWyUPz89tB3PFA39Zho9teBFOWjuC8XEXvv2TZ+Cjl30DAV++rfN37uvFx255DZYvGYU/wB/S/gCufvdOvP61nhZnO3BwbMH5sXWEoTKTxqa6N5fHVCMd9kdBzWXqwC49jdHcmSMwrSI6zVBrnV2XNrcITOn66w/YnnZxMJGm2ebwalbXvEe55jmqFaSe5+SnS2T9UdONBxd/Cqd88H2YmBjD3rOfDwDoiDFarroon0S9i3SxAqNu6iCWZA6pPCO0ZeqxgsydEgwJ++RhOQBQoJZI82d5+cU/lZIIdpbR4w4yRIsXi67MxzL27RNthuYCG1wqZg2rjxOHxScelxxj6vLXFZModNAv0dnOTinXS/ezYkn1CNSuMFS+YoXoDdzUfug1+QPKApp17dRotc541UkUyZwx/VBVU1WNSjOCzwd0BriVqaIMAfUZpfryLLazXCwj9Of/g5vzMsh7t8ivubT88Gy6D+5HH0f6N7+F0dGBClmzkup3tN1zHHbVYWzY1rBK/VpUO/7AUefW9c2O4WqAYX9qe2Hr1hnPr+ZXrGq2+DrX6AxzwO3ZLG5vHlM+kgdWrwUAeKldAWoaJzed4nTrpjJPpRLnVFHcB4sFGadj48x95KH2UJ3iqBF00/FOtV8TdLobGRZmqCMq5QUD6lLJucl7VyAjqvnZ/ByP/oC0M0ttWI7z2EVmzGK+LjcZZWXU8kWOb6q2ykVhghNx5r/jGBkfZ/48jm+dP7v2yHxXRrpCfaiX89VgvrBuasncdPqbGpPzLI+8Hu6UtS2P2j2w3D0wXB0wDDdMTzdckHPKZWGGCllhw10e6TM/3Vm7Fwk7Nsn7PT4s97syKvfGw7kc8EsbczllpXnP6SaYSlNbFS+zb+X4DPNv5YvSZyYdXLs7pa8rljqO0omUi8vIeBfGJjvgAnOSdTxD6is+C9feugTf+uY4zjqzgmI+jav/pRuf+MbluPySIZRMqTdvMEebi+y6V50dw7j2a/341CemcOErraprreW2APRW700N9u8qs2e07M8PdqeNoU6QzZaEw8QkNfvO0er7nYMjC86PLQcOHLSF1NJl+PnlV+DcGz+Nhy03dj3r2QvdJAezRbmMpZ+5FqGHH0KBua7UJEUNNCzLQqUzhvQdPwI6OhasqQ6OTezcQzOe5dkFbslTGw9tfRa+c/9lWLlkFyyaqKghRrizExs+uxlnnakJqIFrPz6Kj38igK/f1lMN6KpZiv4AqG0rd+PfPrQfF77ysF6SAwdHLJwfW0ch7NGfxj3DpSbHz05PpEzAwbdTq5/bnuiW5c7y/PlEq2toqQVps82tyqlGuUx1IZxjBN9WXgdZnaefIRHP3b292HnCOpx86cVwJ+IYinYiEw6jeNzxAAA/czolE6Ij0ah1iIyVOvsVGR1P0klQ9UM+skElarsAwOKPgTI/yAfUlY0OhiM+iSa7PcJYFRlBT8YlIt7Tywg1HbJ6+5jLi9FWT0Da5KZVlrJu6rjXy1xk6tbmI1Ol1JIyRz7mlCnmNC+WarukXNWyaAS+VJH3VZ9TZjmqAStQI0aiDF6ygmY+j9DDD6FM5kpdEfWLjn0saI4al9uFwJ0/hntiDKP33A0vc5opi2hUc9nwvGljSPVkzaOozV5vxsTWv2sn61sFa+eqT50rQ1Zjpuodw2oSrPoouDJaNfNBZbjkHuvY3PX4YwCADPMPdTN3lsdX76Q3/W9d3yscX/bOc1N3GbRplKKcL8WyugJyvNGdskCG2GS5Hs11RyZMjeGKHJcTnLvqoBtmrj4/82opZav60SjXkg98/CQAwBc/+ScAQCgsep7FS+W4fbvlxIlh0TV5qE/qiFBfRI3XxLi8r/ntlHmras3oOtjbL1tdo+yPdHKK7dZ+pHYzIeW4A/Jo0e3R5arlm3OHF8EV6AJML+AbRKUic9DKSZm51HZpI3P/udxybV3dsgYZplz7CNnt4b3bAAA7x2QNK1a1fPKYydZrcZN5uaaJlI4/qaevTzRWoQ5532fJvQl1ce2iZmpyXzfGpjoxklyBH/76+fjUv9yFtSuHEQxKexatXgcA6F7SAaC3OpYUn7q+BExzTC5XlD0Er0/HFgB0wKhOaD2j1ecSj5rFtG42p+eL4dJ51Zx10/flWbt66Vb1t9rFouu7g6MDzo8tB0cNXBe+CgBQ3Hj7ArfkqY3cylX4xXveh1M2fhd92Ry69uzCg69+I3ac5eTjOtQwcjms+tcPwD06gjy3cFadAO0fvnyqonPDNFDq78fol7+MCo0uHDhw8NTBJ79xMUyjjN7uFD76jm9j7cr29FcOHDg4ODg/to4J1EdyNLdGc7QbFW5P09X07IY8W0bdw9EAlZC0m5Nr1pHyeTquWq9hYyMr9e2Za5QvQMZp5TrROXX3dKHy96/Dzm07MLJjO552xbvhyaWwKyo/ADLaDJ8XuUAQ8RNPBDBN/0Q2JUw3QjdZItVtaLQaALI5MlI9EqVduVqMUiz+uEinRGNiWRKF3Tu+D0CNcVp13Mq6Mg1qXILUaCnrptqqFFk1dfkL0bGrwPxBGlnX+GU1d0xOtCkV5rxxsz250SH4n3gcbva9R28VI/8uRtA131HNkIuMAikCy7IQ3LABlcWLEP/B9wAyURbd6VykwKo/vtS9kNHmiiElxVqwozOOkVb545rkc6uy4w0TqJ7aUibWrnE6WBfB+UYDw9WsPdVXuN2KjFZiXNzcNv/lIQBAmo6TXX10sVOto46uaf1WrqhrINkD6nnK1BBWqEWyqNcJhEQv5KUWz0MXQh8pqhIZshLzb6njZJg5nDo7O3lcvQZ4YkxySqUyUu/y5cLGjdnxzQAAIABJREFUuagly2aEIbOq+eCU4VVtmNQ3OiLl9DJ3Xygi19XTK+WmE8JcuVhvivMrk5PyYpEa48TOAgB0k7FNp5nPjjoin9p3qvaSDHiR+chc1fx5cpzB/gl3Rqo1uFxR+CMxGC4v3OFlAF1UK3FhqHwp0W6V4w/ItULWwyKE9etQbepS0bCGqY2dIrOZyMs159hHhTLvKdcSbXs33QU9prwf8Bq8VnlcvFw0f6tOeq7U1y35C/1fDOOGTz2BU091ATgLHmq33Nw+6PKpvlRz/tnmrS3vldWSXWmxbjRhkdo9fya0uwuk1euN66DObV3rmnw5qByetagaRHM0W0cFnB9bDhw4OChkli3HL698P0797m3o4xcchWVaiO7bgycuei22n/fCBWrhwsE1NoYV73wHKl4vSkz+av9sNPjjyGzyxaUa6jBNFE44AakPfQhwOUu3AwcO2sd993difMKNrlgeT/Wvfnfcnl8Q2YGDpy6e2jPuGEXraHDbJbVVfmu3nPrXbcZcC4amkXxjxj8PbxuIZlG65ue1F0lsV7Nlh4tf8mN94tgXpfYgte444M1vwsS4OJiNDElun1Q8Dv/+/XjGhz8IM53EniViypBgnhavP4Ci14fccaIV8DOy7+UPEwBwM3oMZWoqqm2Sx0hEIs/qdqb5fVRDotRTrqpJof5hcoIXKw+FojBcJTJiygRY1IwE6U7mT2fg3ra1qmdweeq1UlVmOZGE76qrULjoQuSuvrp6PfZtfxpFLhszR0prkVTxKg03DQbPLpLbkASq2fszltEqIl1/XuO7qjlR9q6e9W5/3h1cJHyu86ChnPXrZ3w9T/3eyL49AIBtf/0zACA5IRqdRYPLAQAespKVcj07Nb36Uln1PPLcJBtRLNZrAd1VZ1C66BnyWKYWsEQmzCB7pqy1Mj3DzC+XoO4yEpV6Cnmp+LHHxHkxSvOUUokaq6kUO0MegmSqPF5qqci8qY5H52GKee5yWWmX5oXrJttXYrGhgFzXaFLm3fiUBHYSmruP86mrK1bX/gR1VCuXCbuTSgjz7bGkHk1r4HZJP+To4hhiecVpmwWCwQ64fSG43D5E+5YjEFgDAIgPCVOV2CM6tEJaGEwzK3WDfedxU3dGp0VXWPq2m4/5jDBNBbJtFTJJhaL0VZF5vayKXLOLLqGRmFzb4PHiHrvsaWeyr1ZiZMTAlt948ZGP+fCjO1N42mlrq46laMhrVY9D9XOkXe1nO8x142da/feMaQdi+huGYdYd36wtjS7QB25z++1s7/jGahzN1tEI58eWAwcODiky/f349fs/iKd/46vofeB/AdQE4JZlIjQ0hK0veRk2v+zIt65y796FRW97K0qxLhj6JbJqSkJM+5AsvO51yL7jHYe5lQ4ON8qXXcY/nGj5sY7+3hy27QjhgQc78TdnJVufsED46c868L4Pd2Dt2hK8PmDj7Smcflqp9YkOHDiYdzg/tp5SqNd2tQa1HrPM7dSuFsyeameu7oTzjmnV1rRQTQ5t4oQ0XxFzu7NSy/Pmab94a9c26oiYKydCF6xwVCKzi5nLSvUa+bPOAN7wWiQmRZswRd1HMpGAZ2wMJ17xbpQzaexaK66GsFwouT2YWjKo1laYGGYeHLIABUag1Z1NWTfNZ5VMyOuah0sj+yhLNDiUTcM3OoLOHtF4ROjOptopDykEV0Laao7sg/cdl6F41dUov+1tTdnG6WPAAOCrMroHqy86MEPVigW1Q4eK3TlvpuMbpRW2qC+aOZfqD9H6KHJFHe5qBdqe2xqpTxtYaHVrs9ej7T64+VCtzy7LaEoI1N/r5ISMnccf+CMAIEMXwr4l4h4XoGamTDYH1GVpTjVzej06rnhJRea3SiaE7QDzbFkuKbOoWitTtR1q8S9BAs31pbo67auxMWGnEwmhlDpjMpfzPC5Ix1EfmbVEXI6LJ6UdIWrEurrFAU/Zl0y6VN8eztfRYdE5JZPCRHV1yXnBiGjGhqcSPE/mr8m8WMpUe33CdEWicp6frLhqPcNh5t9jn2fj0g6zJD+UJpJyXXnugI6SEdR7kGT9ANDR2YnBxTl84XN78K4rTsetN+3GWWdkEB8TJssdOU7K9gi75smN8FH6VKdJqSCVuSpyzXpvaRQJHQ4FsoY79g8inQvABJ1U/XJNnX3Mx7ZUdgbkwuLUetd/R/DRj3lwzz1ZnHqqzk0D7X7lm+tnb7uff81yfNpXgNlM3xbmx3VtuvJKWeOvv77249OofSPh//r9p4Urc5ufuVU9qv0rRZtdrYfpdnNHq3V0wfmx5cCBgwVFvqsL91/1fjzzG19F/0MPApAPkuDYCDY/9xz89eWvmvc6o9u34szrPoFMby9cZKh065Zusalu89PtJoaBwtVXo/yWt857exwc5WBSYqxatbDtOApwxSWPLHQTDhrPOSuFz396F/7pskF8+abdWHoI09Hd/YcL8N2fvxH9XXun6TeZkJo/DPVRzXZ8fhM/uiODU091mNaZsHWr80PFweGF82PLQVM0Y1PsUalZ55Kao2ar9PZLam27915Yt9zM8huPLW7cWP3buupKGFu3zSgzKZ93HsqXXirPN2+G631X1x8zbZ938dprUVktbnzWTRtgbto0QysrqKxYicL111Vf8Vx4IZppXEoXvx1l6j3M++6F60tfmukwwADyP/hh9WXXVVfB2LZ1hvqB0rnnoXSJ9JWxZQvc739fY3lE/pOfRIVfEF233Axr089nLLOycgUK1067pr+7aMbjAKB48cUwzpdr8tz/33XX1GXLO5T69ncAAJmTT0Losb/C5DWVSiWUFvXh+Pvvw+oHH8DUC87B+PPPAQBYO/ah//vfgX1PvUbMJ/7hH1Ds74dpAOF7fgr/gw/xOB6fz8Pz6CPIP/d5yH/zNpi0Qfe97jVNr2n6fbLuvRfWl26Z9m59O4q3b6w+t668Etiyre6aFeXzzkPpEhl7xpYt08Zeo5iq+Klrq/fJulnHXuNxlRUrUbzuuur1ui68sGnEt3TJtLF3771w3XJL/YHTPfXuqKVbMK+8EsbWmcde5XyZTxVUgC1b4LrqfTMeB1RQvO5aGCvlmswNN8PctGma258eZqCycgVK111fPdN90YVNypQ1QvVTskbYr4nFG/UpJKwrr6ybT9PvVPn881HhfcKWLXBdfZUtBl47XtcdjZJ7mVeuf6msGyXmtArQCdNi9LxIF051CFR9U2XaPVCtX4WumPG4aI/iU8KehSLdPFCO04SzBiPzVlUXJm3LU+Ol+ecCAfnCvnKNuHeqM2goKF/gCyFqGV3CJO3bK6zNnj3SjgLzvgUWMbcTm57NZNhOYaKWLRXmaWpKrj2bk/P6mQ8ryDxdBrWZe6gtS5KR6urgDwuvn/2Q43Wxo3gzeuhe2tEhjJcm4i1UND+eXEeCpj7aPx5q3tx0V5yeaqpSlrYGw1G8cD3w1Vsn8Y8XD+KaD2SwZCCHgBlGX08WyQmy79Dt0tJWl4daVLM+J1ihINewd6QfmZwHFvv4T4+twX/98en49ufvwJL+OJKj0teGW/pg+WkvAADEBkU7pjn55qJ9mn7cXNH6/Gbaz9n/+GmlIzUaHFAPrE+rQc4rV51UZy6/xsbb2LwGqZVR92g/r9nOhGaSM9Ns9zocHElwfmw5OGrQTITu4NhExeNB9pRT4HnsMXT+7B6E//B7eSOXh2d0pOF4/Shz3Xgj4HEDhgFrfBwmreGna6ry645HacWKQ34NDhw4OHbxvOfm8ZUvTeDDH16CQtHA7t0n4DPX/B4nLN8567K+f8/f4La7zkF/92T1C3coWMAXP/J9LOnPtTjbgQMHRzKMY83+slx2FMoLhVaOetXHUv0e6HYZsXY1XU1ft0ecmu3pnl5PM5lMk1FWvUYNWimb0ur4OWq8Zjt/m7GSs633YDGb66n2kT0HU0Mkc3Z72Y2mEcvZtbXRNareFUsFPocqJ9Rsy6u1ztaftq6fSwTVruGqRX11Qtj7pj6y3a7WY/btmt09brlW2Ob3tHf4INefY86p0d175TlzvdVyZsnxLjpSFvL56aXURbc9dOUsMd9UfEwYU56KUEQc8UyXn49kaEjNmJY8j8dFgzQ+LjmdAnQAVRdPEmNVrYoJZcrkeYrarGE6jk5MSDAjxaDG4GJpRy8dS0dHpZ6xMXn85R+fid//qad6XSU6k3q8HgwOZHD1Ox+X+st5vOuDz6gybMqQKWNx0UsewTNP2YmR4XE8+Ogq3P3L09gfdAnlIwzgw+++F/Ep0ct9+TtnYmQ8Vh2smqfOMCyctHYHXvFi6deSsQKfv/V4uFy1eeBizi6X241P/HsCA/3SF7fcYuFXv4lidKSMR57owJqVU/D7ikC5iL6eFF5zwf/wnpj49JdeUL0XymyNjrkwNBrE1Zf+Fi85ZwuMioXf/WkA3//JcbwmaUM+o/o1C//xz9/Bume/HADw8RtOwLZtZuN4rADnnVfEpZfKeNu61cRVV9vzk6E60K69NotVq+TJhg1ubNo0czx+xcoyrr8uV63vVRf6ZjwOAC55ewHr1wsree+9Ltx8i7vpsXfcXkuyfMWV7qbb/c4/v4R3XCbjcfNmA1de1Zw3uO66HFavqgCGhZtusnDffbX7efvtRdSYpvpJXnt2YPatVZqtA2lhgQPovu3lGKrjdPJrzRVms/wqhwEOs+XAgQMHDhw4OCyY/kPrWENHtIATjpvElh1hyK7FCjbv6MRjmy+QAwwD+0dqSZI1GGG5Sjhp7TA6o9nD32gHDhwccjjMloNDjgZmq+qCZTvOFlkybH9VAzkt7vCsGa8m9UudbbIkbUa37O/b+6YZA7ZQzFa79c81ytZKD3gwZbQ+scVNa1J+s3qashyzzf3UsOdfH9u7zqaR0Zmlk9OYwpnLqX+t/txaVNjOgjUoDmxtnrlvDhWz1QCby6i9b+Y6npXRU71UYlRyVu3fvkPepyOmyyfRfWVfXJawR1lNCq71W7V+9dAls5gT3Vc6LltpvT5hKkxT3k+nZcuZi5qjUEeERVLTSEZryzbZ6raoX3I0rVotWi3Tqr92dfssUuNVYl6vChmnIq9pcjIu7aTmye8XtiOTYj4suiZGoxG2m/m7yGylyPplyAYGQ2ToGIxO0R2xVJHju+l2WMhTs0U7wWyWDqh08vOSERymm+munXQ19Uo7BpfLdetV+9VNsUf0dl193dW+CMbk7zzv0/jwfgDA1JD0ZWpMnsf6l0pfBKSOPNtWYl+p46lFQwuvXzRYIToqTgxJG/MZ6ROTGr6xfWLE0rNMXAgHTzwDAOALdtb1leJwfb+brcPxfJbf/D3bZ6v9c6ImlrKXOP10HOz63bSd1R0bWotqu2YuRxktR7M1dywks+XcNQcOHDhw4MCBAwcOHDg4BHC2ETo45GjIP9SEVWmlX2qXJ2iV/6uxnlYMRRsw6qNSjcZF7WqjKnUPrautv6ZWLM+85R1q8f58MV2HFk0imrNE8zbPTQvW9LR5Yl9aVdNeuTPPnebjY376+nBhroyAsuPKbGVSwkKps5nGVZVJ0+NKfO5yUTBlyKPlqWlhlGECNVQeX5jHCHNj8ByXRypxM7+VXovW3UGma906cbAL0jFRUx+4yLqoM2IxV6yrP53WvF50J2T94XCQL5fqHv3BANvlruuLEtulx8WZg6/EnQ/KSPmYN2vRYsn35fLp9aLufIuMXJbMWJaMmjJtpqn3QPrFG5LtjF6yTwaEsfN6pF2hKF1KA9I/AJBm3rTJMTXoYd9WbyxzdpF9tPxyj0Ix0bEVc8LCaV/6I1J3rFfyY3m8mgNNikuMkaVjnw+eJExWD/Nqef1sm6GfaZhXtJtj80jRo05HrelNtsS07KtDvEbZvzPYPvoPVZ86WBg4zJYDBw4cOHDgwIEDBw4cHAI4zJaDw45W+btmy3i1i5rxGeu35WWxR5jqzrHB3vYGzUdDIH/m/doNwbZZshcH2ycH6/B4sO2Yj+jdnMuotBdrmi07OFs93HyhYY+/LTJbtg3KVi5ZM9ZRPUf7bn6vsV1m1u76WX2/RXOa6dnmCvvYUz2FLi0FMhmVInNeuZRtkvfL1CvBElZFdRumpccpm1XT+6hdoNsnzItqpizIsS6LjBQZH59JBoz6IJNOiF0h5quyNJGUamnzvCZppNdL9zi2xUOtlTJEJl83LTm+WGDnku3RHGKhsLAwuZyUn83IYyYlfeRRpz+Pi/XK9SlzpsO5lC+wPo5B7Uu6Cnr9wha5XXK9RfZ9MCy6pi51fOT5lle1MHJ+V18MANDZLXm/RvcPQ5GjG2CR+dLKek94Qzt6BwEAfcslr1qoq5/XJOxcMS+sW2JSGDK9hzp+EmNSV2pCNFu5tOjgot3CjEUXrZB6y9LmdEI0XX7eS2UnF4o5blwfDked7a1B6ojasIuk8Uh50MXE5pjaCq302U01wE122MzWZdfBkQmH2XLgwIEDBw4cOHDgwIGDQwCH2XJwxKBtxqusLj717FBL9sVWj73eGSNPhyiY1O5e+HbPb1endrBol0WaLds0n9qyQ80szZXlW7DIpE0bMB/90ljGoenrZvey+nqTeg91X7fMT1c9kM9N2xqDel1VsSTsTom5rDxuH4+flpOQIfNAR7SukknmuyrkhW1heq2qRkodDU03P+7JvrnJJFXzaBWlDUW6DVpk16ouaazPS5Ymny/xEqWNmXSK5Qpbo2yL6pO0T8oZOX58fIKPzPcVkPZ00sVQ83Z5qdEyTbn+HFklN5m6UllKtqj1cpHR0r40yfb4QsKsZZPCGmUyUr8nKPXF6MoY65NH1UN1TmPALbOPfcO+rV4UtVvsMzdzl5k2pslN50hPQPomy9xf+zf/FQCQnpB8bBb70BcRlg0uaePYnm3SdvaNm7q9niXifqhiL5Mul95AvR7vaMOB5tmcHUMP8Y6DqmNrk2pmW7/DbB0bcJgtBw4cOHDgwIEDBw4cODgEODrDHQ6eUmh0M6xSWfUHtshZVY3sN0vFptHnGepuhrlGyVTbMVc92qF2f5pvJsxe/mzPa+fcYy1n4FxR7Se7FtHefw0ywgNEkW05YFphvu9Fs3GpurSmWkOb+1+1vCbNs2u6Wjmj2vvY4NqielCXVa/lclN/ZLlYT5m5q6j90XxlZeqMKq5ajwfoXNfR28tjK6xDPsYnmPMJedEV5VPymE6JRql70QAAwB8UNsTgRVZK8n6JzFZ1nFAbViqWebxeE9vo0tfJ5pA5U2bL7RYGTNm5dFzao4xVgIxSuSxMXSYj9efz7LxqM6RcjQxbrL+muzPYTjJoZpH18gAWVylpe6lx80g5sZ4ePgpr5WHOK4t5yiJdtTxbVZBF05xjoEbJcrvrnusAqVA/V8jJ8TmygOmpcbnmLJkqjg/Vo+XikqctPS73tuq86BHGSvVpmudrbPcWOY85xvqXnwgAWLRCcom5VP/WJprNu5b6o8PA7s+2jnY/2xqOqy4WbWrDqgXpHwfmNBqkYQ6OSTjMlgMHDhw4cODAgQMHDhwcAjg/thw4cODAgQMHDhw4cODgEMDZRujgqEO7Rhq13YY2Q43qCQcu/4CY5RaGuW6raLZ941BjvpISH472HmnJH+e69Wa+6v3/7d3ZkxtHkudxx1n3xaJISpRa6muOnpm9bNdsX/b/f1rby3ZnbXt6Wmq1RIniWTdQBWAf3D2yMhKBzAQQVUXy+3loEEAiMpBAVSvzV+6Rut/29aX5h1br0T5a7WF1d7WYattFyP2+L1J8YX8m5k0avNlE35tU2C+nqf3Z4cD//Gzm7dK9/Xrxvrzlum/bsT9RPHyif+bmfw744o/fiYjI6Tv9E7Sdx/onZN7a3E2s7fzU/hTOW7n7osM31qJ9MrU/u7O5922crrWrvx7ZnwVu658nntufyl1d6Z/IdUNjI2v+Yc0bhjt2a81AXv5i29t+Dg/sT+U2+/Zyn4e+zj/73qDcTn9mx87/fNH/avzm8r29cz1uj59rG/UnX+vx2bCmFeFbbQPeeHt+KVr5e4v2k5d/1WNiixEfPtPW70XzER3r+kIXWH7x4wt9/XttCrK/q39yeTn2Nvu2APSga+Pae7fv0c21fr/Or+zPTN/q4sqzkTb9uHil8xlb+/2f7Pu0/1i/IwfHx+X32NC6/rz8of2unmf59/hw3xPuH8kWAAAAAGRAsoWPRrJFami37HcTadGiK1pxs4Ho6mflinulF0H5ymD8fGhLv6Z2sbFVr0w2Xzhy/UnWsgnNfV2FXfmzavjy0PzBv/fx61o0wJj3+s6tAaaJInG/V9eoIpfazyb0Cil/lsmFR/2Bco+GYrvwi2B+wnZ1qYvWvv5ZE4fRld630Kiyw5BYWHoym3qzB5vATbGo8fvX2qp8c0cTmKG1SB9fadpyfqbJzehSk6beUJ/fPdaGGl1bvHhsKcvMFjfuWmMgCY0nbLFiO0g9b/7gCy2HZg86zuTatrPFiAcDT2H08Wtr1b69pQ0zvA3+uaV//pXZtwYg3g5frGX81Nrid6zJSNebiPjPpzcbskM2mZSbVnjydn2t4+w/00Tr2Td/LyIim94wxH9v2H7HF9rQ48Ra04uInFuTj6tzfezGFjm+PNcU8caajPTsWHuq56li15pz+ELNV5d+Xz/Tra2hHYOBvRfbcUf/Mejpm9zfsnGnur/RRD/rDUsXuyP7DCzNe/9SW8rv+ELWlrzdVxrTtElFm9cuXMJlzuNr+101Kze7qulDdOs/RKKH4/vR73d82Ei2AAAAACADki189OpqWRbVRcX1XsVz7RYaLNrBlhcITc0hdlfJVN3+m45/F1fjkm2513TF8qFeUQzziq+gxt/r8I9yLJusdYx3dPs41hyK2mMephwlvM2GL4ZZ8udg1XQ05HqJ1vPueqxJw5W1Xfdnu31LiyyF8SRrZKnU6FrTmJ39IxER2X9sacutOquJtzi3uMNvvTbr23/+b/r42SsRETn6XOuHOjeaQL19eSIiImNLY7z9/O6B7nNzW1uwDzd37D1bXZC1p/d6tJtrT+t0bj3xdvbWAr7jr9Paqf621iENra5Jxvr6wdiSpxs9pkNbhLlIvCwps0WUh1ar1el68mXHZeRJnd7v+GLHVrvlizQ/+lwX/j1+/lt9v5YQ+lfD27hfnmoadPaztlsfj3UckSItPDj29vvaLn5qidXMWvhP7fOc3GiqN/LvxUgnuW0LJod2+zNL8ab+/zOecM5uPx32M9zytvp6zPq7eqz2trWN/eWZLZJtKd2bH7SOb2dX08NHz/VYeMrYXqo22Z4NT8f/3xqN0rLGeZGmddGr/u6oW9C9OnyUtNX9qoz+Queh/v8Q2iHZAgAAAIAMSLbwyVuUfMUdDov6Lts22i45ds3FKb/iPbWOXeH191QL09aq3Qs/hC5VKW1TvXW/13AMU/uxq9d1e6t061zjR1FZ6LNTnlPy5ydcKbf32OzicP184lSwZsCQbNv9rs8rSgaGG5q+eNdB7+jXtxqeG0s8Tk81ZRpsWRe7I+0Wd/zkmYiIbO9rsjWbFDVbI0tYBpv6Gv+dsbunidQXX/+NiIicvz+0fWuqcvlek64bS108CfNap41tTTt2hxul9+JJlt/6Iso96ybY6VhdkdWXnZ1f2Tx1v7Mbne+2je+LJHe9M6MlWR5Undviy/2BJ2X6/Mz+M8X30w2rG9s8eoPS/DxdHFld1eFTXcz5yde/ExGRgS1a7B/m+EyTtNM3Wmc3tmRtaqnQYNPrm0R61jmxqNW192IJ06xnnRAt9bu50ecv31vSaV+8zS1LpMLC0VYnZl0JLy+so+Ol3vY7dhvq4eznp2vj2LHobWjidT3Rz0CsM+TFiXZBfP3iexER2ftMv2fDW++tieL3dZz2TKP74V/2ujBCtN3834XrrKvK9VcXxbjxfwwsl2GEQ0qt1keJZAsAAAAAMiDZAhao63BYXNya361t2f3Ff/i99g5KD0ybq3h3fQxWTaJq14Nr2+0wqnRaVx1ftfPe3an7fqfqylat4Wr6uiKQs454lc9Mx+n3bS0q6yY3su6E3uHu4lTXkroZa+Lw5d/8XkREdg61bmpgaY53BpRZ8X/RvaEnPeX3sLWvydY3//SfdJ9XZyIi8tO//m8REbm+1JqmvYNDG1NHePlSEy9PUQ7tivwkdEjU24kvMzXz96j79aXBvHjKa6MuLOHqd/Txcc+6CdrW3i3w0o7NpqUrW9tWA9bXhG167eNa573QpNDuewJgT5ydabfGkSVT29bd8OjLr0VEZGiJlocwl5Yuvv7Ln/W+dXPc3NIas4HVrvUGtxI/W8vM6+W8xmpqdXFel+apnyefWzuaOO1vaK2WH8OJpY8nJzqX777Tz2Rg+3z3Rue0a8fmy680kdrb1fG8Q+T0+sb2q5/h0Ds6+jpvNp+Tlz/o7etvRETk0efPReRWR8rGcXbdz81qvz0eUqJVP5fF4zbeb1TASrL1cSHZAgAAAIAMSLaAZURdBePaqlQtSt394s+/vQ4nUTMWprG4Y1HdmiOrWrWb1DquPsbHIHfyFR/TpqnM2uYZlQiEh2u6E8bziXXiERfMr7JOXNOLty3X14nryFLvaeXUMQTKlXZpelMuSamuqeNFX5YQbGxq8jC68LWoNN0ZX+n9wdDTnF2773VQlQ+x+HdYTyqq6/QaKHu+N9Sk6+iLX4uIyNWJpiOHTzTFOHii9UObh5pybHitln2IPt5gw9MTTU18DTGvFZtYR0WvQ9uxroPXY+vIZ532fC2xi/MLG69rb03TFq+DGgwt7Rnr9j+/tBoqq/36/EutvfKuhWIJ2ejixMbXRO+R1SPtP9ZOgZvW+c8/2ivb7pe/fCsiIufvNBEbWi3czDpATuw49259Jfy9jKwWytfu6swu7D3ZMbTOjF6/M/RjaYnTxDoyXl7o6395qfVlP734WV8vut37d6e2Z53xVHZeAAAgAElEQVTE6EbHf2pp5MDWNhtZUnp4oO+1K9ZB0hLVoaV179/8VUREfvzj/xGRW50od7wDZdOft/h+s1qs6jj50pum/9+y8l8GzMq/19vOIzxvvzv854tk6+NCsgUAAAAAGZBsAWvUdE2v+Mpf3IUw13zuew2qZeazbEq2Lsuu01Z3tXfVK5fhKvSq40QdNpuo695Xu8/ElOs+w7Z1bk27XdavExayar0r5fvese/sra3R9F5vfe2msdVRXZzq7faRpig3VkC0WZlXuu1i6r3Ev0P2bS2oXVu7q2sd8q6vNV179FQToGtb68vrkLzbYG/o3QOt66EXaVla4rVR1khPBgPbzuqTJtflhOjta+2C2LUaq/0Dranqh859ut2JHaNTq2Oa2DGaTb1Wq2fHweqnbAIH1tHxsa0hNbDU0N+3dzN8/4uun+WJ1vaezqPr9XYbVqtlCd9s6kVrIheWVH7//Y/2nvVz/PL5E3tvOsasY8faOkhOJ1a7N7NOiZf6Hs9Odbx//ZOmjD+/eKnHwj6Lqys7uPZR9y0BfWX1diNLyC6u9Pb3v/tGRER+93s9Blu2Hteo6ymidrk8faWvv7AuiRuWSq76u8Qn2ol+Xu5T6vft2v7/ouP1pIkEq9K5cXHnYhKtjxPJFgAAAABkQLIF3KHU1atiHaHyVVwX1vfpLnd9JN5vXZJWu25Yw/2tY7tsVyQzS/2t/qq1BJV1tRqmPW2P27ztc191bZpcLZtwtd0uHIPwcDlx8udvLjWxePOjJh6nluJ0ZpqKXLzXdY429rQj4Fd/83d63zrxpd9Pp/Iv73gYfz7x74aQzFiHw8v3mhT9y//4rzaObn/0+EsREZla8tOfaZrSn1gaYklUzxKlsXW+ux7rdv67amw1Wt6d0H/HeEfG6bVufz2zWqsNWyPK6pu6lgZ5ndHjJ8ciIrJ7oDVoO1ZXNLa06NrmsX2g223vaWrj62h53Zz/fFxZ2nj+XjtCbu1p8rW5s23vQ4+wr+8VPupbv4u9u+Devr5mw1Iw38STzLOTC7vV9G9oKeGb15okffvtX+S2szNNuK7t9Tu7Ou5ofGrHSI/NrnUhfG+f5Q9/1ZTOU8lNqwU8On4kIiJfPtd52ldBNrf1GI0udX5vX+r3deeRfi/brruVdn/JVuMaqRXHvfVMzSub1a2RZ33cSLYAAAAAIAOSLeABCFe3/Gp09HfgHbuqFhKpeJ2vRFdE1/Rq37o65vmfqadqe9bRGequuxC6pdfHaljLFYQEq1wnVFfvVFunNAsvsHHzS8258v1YMTmLxwvHbsUaw8rPk/0cnr/XLnLvfvrRbr8XEZGJddAbX2gyMbrS7b74mz+IiMjRU+2U53VCVfNaTi7XudO3G1iSdPDoqDTH7X1NeE5eaeJz+k67AHqnurDOVEhvNEWZWBfCmXUF9O/TxDrwnds6Vt6Yb9865b22taO++06P2dfffKX729M0Z89ufX0t79Q4tdqtyURTmU1Lf46ffa7bbWqK43VNM0vYxueaLr364VsRERld6f39w8/s+HRL28+mYz9wetstjvPQxn7y2bEdG0smLdq6vNBarLevtR7s6tLryqzD4k96jH95qc9//rnWej1+fGzvVT+jw0OtI9vb17n2bS7Pnuicuz3d7ueXOt7QvijjkXU3tNqvLQvptrd13tt7mhIO7bvw5oWuMbZlqeBnv9IOlv1B0/80TCex8+6vo9b3wf9lQ/hl57+/9bNP1XAV/z9GF8KPGckWAAAAAGRAsgU8QF4bEK995HUZcVfDkGLEV/Zr1n6qnceKCVTOq3R1XQLduv+GP9d7qqQnvr/u4vdVl5Sl7jedx31o+hktmzIuyxOMi7faze37//vfRUTk5JXWznSt5nJ88c5uNek4ePZbERF59KUmBz1PtGo/k1v1QjXHpO7737d1pH71h3+rj1udT9+6D3pXwasXmhxd2Ppc3s0vrvf0300jWzvMpzOwOibvhOdJ0dSu8L+09bPevdNj88VzTabG41FpP/69v7y8tMetRmtP38fBsaZBm7uayvQGw9L7Hlmy9vLP/09ERN6/1DWmdq1LY9cSOz+KE6sVm4y9K6OvlXWrvtU6E3otXr/raZ6vi6XHztfjurE6tZ9+1O/Lla3PtberKZ93ZJxMdDxfW+z6Wo/Zr57r2mgju+/fm53o9e+sC+a//Pk73b+9qY0tfY9ff6WdJ/s96zTZt/dhb+3191pDtmkdHA8sefW6v3rzv3ue1qS0XXevjaZrUKb2tfzvQf+Z9rvlv0KprGcY9r/k7vBBINkCAAAAgAxItoAPSO3VuqlfRbOOYInkq+lV8bp53HpExy0KgubPz2u5/H1E82mSvqw+17sV1yvFs/Hn267D1bZjX213w3tItGrrz2xK3WSXwOjxJT/qpsdgPNLOer/89VsRETn56V9FRGQ61URjaHVD1xYZdLe0RubJr/9JRES29x/ZSJ5QL+4Kuugzrsw5qhXx2KJIv/Xxja3d8kD28idf6dpMh491varLd5rOvXqhqceZJUViKY4nYt6dMOy3qwnVzrZ16rPEbHaj2x0daS3Y0aF2wOtY98NrO7bhB6Sr429ZF8L9z/R1e4ded6THutMtpy83lpD99Kd/1tt//V/2Oq138g6C3ajutWPdEP2vB7wL49Rr0kSkI/oeZvb5+fpqvpbYyJIrP9YHNtfLS3383Xe6ntb5uXcZ1O02bW0yr2tz79/6WmDenVDf29SO5abVkHlNmP8n3dmFJmGja6t7s2MV/jKip4nX9r6mg2NbM+3Hf/mjbr+1bcfsILzz0k347slarfK7etW/4kjNZeXfizOvxfKB/bOqq3fDx4RkCwAAAAAyINkCPiJFrZdele2Eq962gScGfoVzGl/9bpt4la+md+KHZ/O3roxyh+lKqlPjfSdg6+pumNou7Kdmf4s+i7o6sepglX+sRbEuXfnxdSe21fdlXUFvNIXxpm0zS3uuLJ2ZDjQR+OI3/yAiIp99/RsREen1/P9ym83r9u5DM7P5oV7lPcxStSFxhzj7ndG1lKRvtU9ev7N1pHVBF+80ZTm1NZ5mdsX+2tbR8mSqY1fuJ3aMxlbT5RN+dLxnb8S7C1oNWF/TnR3rxLd7oCngjq2zNdzatPn67y6rl7J0yd/3jdU/XZy/L81nc1eTNLFOfhNLh3xdLU99fLyuJVv9ja1wrGa2ja+HJWENMt3HwZF1UhzZmmX2eZ+ceH2YJWBXlv5Zajfc0mP++LF3itQ5fPdnrTO79nXbwkziueqjx/b6r6wOrucdGa91f0MZlI6Vp4LexfDNKz1mB0++0Pnt79nbLKeHyR/3B/RXB+voeLtOxX7L3WXD/2cTbH3USLYAAAAAIAOSLeAjFq7uRQmD1yv4GjLeYWwakjBf58telbwYOL9GK2xf2X/Lec/b45qvTDZe96qhurqhdSVpIaGywzGN1pSKj1PXr6TG79dv/aMKyUmxXd26bbG4Ni+l0j0zTqo8zbFZdmu+SHV1aU2lxvE1nAaWSIys21zXUpZpV9Og57/Tjn/Pfvt3IiKyYTUwfrSL8edf75w738rSW/55S/SEJUWWPIV6t2603k9C2Ny68Xmd2ZYlQ4dPrR7oXOvU3v6snRjP39naYiN9/Oz8jd3XhGt7W1OS3UfaDXBnX1OY/qYmR5v7mmj5seoPyilMLF5DzW+HQ03Anv7q97qhJWfdoX0GVgvmNVndvtVfWdLl43hqdDtymPlY3fKaSF6ztW9JkNenja/0mHQsxTu2lHBqa5Td2O2mJVvDgc7pwh4fjfX22u5vbGhC9uhY074L69S4d6Xfxx1LI7d3dLsN+76+/Fm7Ifq3bXdb/9NvYPuzsjk5O9PP6uULXQPt6W+0jm+jHyeyy3X4uwutk/7cc4xrtOznMqzf1g2/LPPOA/eKZAsAAAAAMiDZAj5BReKltz27UttN1G7FtV0SArCaDndxJ754bSwfv0Ha0zZdabtuStPxVl2Xq+n1y9pjEpXjLV0WNatEJg/eLE5eEx0cPYFYF6/j2T/WmpafdjSluTzVWpfPf/dv7NYSLevIV8xqcSLQ5iq713wU38b59WXxz3rj8eNjaXU7XetkF9ZgsivzO7bm0/hK18+6toTrxtaI8saL3gHv+Pk3IiLSt3Sl0/Kz8vn5POLvxMjqkM7PdD4bu5qkeQfBma0BVdTO6P2Brydm43hqpe/JOybqXjY2NEWTqdXsXXm6p9vNrH7Mk6vjx/u2L93Hd99+r/t8qf8ptrWzbXP3cfT1h9a5sWcp3NDq6l788INNUrf3db88gduzpO3NG6238yN8cKCfwca2zn9jS7+nEzt4vj7c+GJUfp8mVxq0zFpXqaRq3X+xsG5Nu87i40CyBQAAAAAZkGwBCJJXBaNWaKHOxxMvvx8lX5WanLiuqGiNl55Toq4nXosptmxSVUmiGq5TdWvPt/53zjiJNcjS46W282tlnlwsXrMprn+Kj1u6Lm/OWPEaXmu6OFs3h2koKJPS/sPrM18l9vH3rO7od//+v4iIyHiktTOHT5+KiMhw0zvYNf0s28+7+DrGdZHxD9+6ahzt+2Ufdte6+O0caOqyvbdv87LkKHzPrGvgjddAaQo0GA6ieTdTTd31vtc/+bpYF7Yu2OW5pjQT68hXZFYqdDOMksKppVJyqxNfp2f1XbZ42MiSrPdvdZ2qFz/+IiIi72yNsqurCxtCX/f082ciIvL8K6258uTqhxda9/bDn74TkaLW6rPHujbY4880iTq3Gq0fftTtLy80Qdvc8m6H5Z/H63DMdf+PrFvhriVefiy69pls2XpfJye6Dtj7N9oFcefAuhJ2yynisj9/q9Tdxr+Pm/++vKMEKfl7OPq57JB1fEr4tAEAAAAgA5ItALXiuo9QaxUnYNPy1XS/X5fmLJJrVZR4bbF017OWomNUd/V36VqxkDaWJxof6zitXGc3xzDWPdUd3FVnsXhcrxM6evKkNA9PPsJ34F6W9Ak/nYnHZe7z6WMXKuPm3g+v8w59Uu7UF+pCB/O/v8m9NvyeTixlevfqdenxo890ranRpaY019fleqpuR//zZ3aj++lbxz1P5nz73mwQxvR10vz2l590n//8v/8oIiLnp/qas1NNusa21thMNMG6vNTUrdfX5OrA1hC7tjlcWFI1Hus4Jye+ppl1vez4dpqYbW1p98GNzYHd12Tq/Eyf//4vL0RE5NGxpo47O5s2fz/q9p6nllZ2B3ZMdH9X5+f2vKU1lmw1/TFr+tcD69C0Buou0rfF+y93CaVm69NAsgUAAAAAGZBsAVhaJbXpldOWWbecHqWuFi66ihiSGr+APvO6hPKV9vgqatMrk8lEK6qBaXv9sW0tQV3SVtlOyqlS3duNS3gqnSIXvL4uFYvnHJVWVdfPSiRi95ME1atcmffbkObYdvH7DN+ddt+eRWlruj6ufKW8I3EH0ehKelRbks7BFs+9aTe4Zbsh1qUi3kl1Z0/riqbW9nA4tNTIkqyXf/mT3de6p42Nnbn79TTeU6Sb8Sg85zVL3oFxcqP7Oj/XMU9PNVE6tQ6IR4c6h0fHWiv18qXWdPV6OqfHR7qG2cCS0t0tTZ5e2Rpmo46OO/baL3vrO9tbNk55LbJuV/+TbjLVJM3r0XwNMa81u5l6rZa+7sqO0UT0+cFww47VVWmcrq+3Fb6fUd1oZNnfwQu//y1rtdqmast2m61/nf/c2e+Mbm/BtvjYkGwBAAAAQAYkWwDWLzRIW/x36XGaM+/qYKX7WKpmxB8NV+6j189k7vbJLoNhf/Ol3tOyKUbd89XaK3/eE4p7jIXish5/OOpe6XLVKVS6JN5RTVdK6HBXM691altHVyRhNeM1HGd183++kz+nlmxt7WlSNbXUxteK6lv642lNrz8/UfBuib6bXt/XliqSLZ/LJJQwae3V4ZEmV5dXmiBdvLZE6M2ktE9/D5999pm9U72/ta3jbG/rHMWSqZ1NfU9np5c2vo77/fe6vtbOrtZsffPr34iIyJ7VgI2udPub60s7Rp58dUvHYhoSroE9b90Lbbvx2Ds8xh32lkvtU883ffy2+/7ZTs0jhXW1Pm0kWwAAAACQAckWgHuTXNdrQcI1i7eJEqvKlf3yTXIO8f1i/LyJUdvuWdVjk7hqHNdNNUy+5tUEVdbkio/Z4qlUtvPxKjVOa7rom6rrqLsavmziFPbXsr4pyVPZlY6HfY+jMf3gNx06ta5R29qZ+v1IadxbzzSan/P1sV79+L2IiIysfmoWri37Wlm63WxSrj8K6ZV1CPR6J5EQ+MjZe02MTt69FRGRg31NmHzdq+tr7VI5sBqnV6/elPb55IkmW1ejkT2v45ydaxfCQ6v16ttaZiNLmI5t3a3TM+0SeHGh8/j5J11369y6B05udPs//OF3IiLy+LGOJ5aCX4+uS++5a+lfd2Brjlk9ke+/2w1fnsStDd8wwV3lO7Nqd9WcqfJtqf9f8XSRhOvTQrIFAAAAABmQbAF4cG5f9fM1jZL1XXY7raxD5TflmpSmNVLOr0RWtkv1b2t5wbKubmHZK7HxvCupTmLYkDoteG2bTobznp/O28mi16eOUSJx889m2fSl6bGqe11T1TQ1DFiMHW1b05Swkvimu1HWHJsoUQ6ZxpIJV9PUo3g6mnix5fzpWn3R6VtNi375SROuvX3t/NcdbuutrWXV9bWzbL+VxOvWbr0D6sDWU/Pqr9m1JkVbG1oLtbertVbexc9vzyxle/HjjyJSJFWeXPn6V73u0LbXLoTXlkgdPToWEZGvvvqViIicnLwXEZG3707s9fpe9qx+bXNb684GA1sfyzpUdmyNsb7Vkg369t4tFby2ZMzrQUPXwei71bS7bOM62cpHWv+dapu8rqvbYOtkyjYvUkJ8Ski2AAAAACADki0AH4S6+q5OXWfDmnqC1vUFa7qSX5cMtE241jbO7Tk2esX9q7y3RB3QXXQFnKfu6viiq+WNr4cnOkOmR6ypM1vTp9++RiU+VtGzlR9vfeDK6pjE6o6e/eq3IiKyf6Sp0NlbTYEure5pY8uSrk3d3hPykEBMbu14ptenNzY1edra1CTr2281qTq/0rTswmqnPDk62NV9eCI2HOrrPXHa39fnpxMd7+RE5/josXY5vLFk7C9/+c5ep7VUB/v7IiLy1LobHhzq/aPjA5undR20GHN3V58fbG7be7Mky1I+jzsndv/iVOfh63Mtq/53XNgyep0/3/y7U/cznfxLhZr1GZetsYprtVr/6QM+CiRbAAAAAJAByRaAD1pd4hVuO9GVy3jpmFTyVBS/NJpH3fOrpilNx2lbV9Vmn3VjrXPfpf3Gn/GSF4lrr7QXkVijcVL3V3V7vFW7ly17rEK9jiSu/Ic6Obu7dBIW12rNl35enzg70Vqtn7/XFOjX//CPIiJycKzpz7WthTW+1M6BN1afNJho2hRKany9rvFl2MOgP7Sp2iSsaOtqrF0Fz63Gym1u2PaWTO0P9T+5nn/1hc7Y6sKGg75tpvvc2NJEasMSsHNL4X74QRO0N2/0Pe7s7YmIyNPPNLUb9vWzurH1uM5PrAbsQGu4Tk+1Zqx7pu9p22rLZvblmFmC1bG6tdGl7tfTwqEnYmv+uVvlx2b5Osn5NYBN/xIhvl/3FxB0H/y0kWwBAAAAQAYkWwA+SrWJVzdKvqLnixf4gKvNo2m3rLY1V23qflbVdA7rqvOJNa1vi7evG68yTm26cvdVbOte16r9uPO/Z03XfYv3V29xUh3Pw2+9HmpoqdLoXNOm6Y2mNkdPn4qIyP6h1kOd2VpZ16Nyd8JQa2OdBkVExmNNjHzNrq6to3Vs61hdhrRM93V+oYmX1495zdarX3TdrYElWhtDTbJ8Pa7X1klxw7obbm1viYjIxI7J/sGh3rckbGYx/abVn3lCtbutydXujiZgb96803laUvVsYAnahtaAeW3W9USfv3yv7/2XF7qO167tt9cv/6fjyp36ilfOfXRewrtyzW3NPkmisE4kWwAAAACQAckWgE9KKvES6xYV1utKrN+1rrWU1pVINV2DKjUP5zU9i1Kdov4tGrNmjsvWC7XVNv0J20drsX0I6o5p069TOFYhObLHG64HVDnWYWLtfk7qfq5qf3781uY9s057P//5jyIicm11TI+/0DWq9h9psnUweCwiIr/8VeuhbmzNq8GmrlHVH2yGfVgZl4wsGbq80BooWwpQbm708b7Xdtn17Dfv39sAmhwd7GvitH+gKdv7E62NevnLaxEp1uPyjoh9S7iODg/tvegc31gS1rFxN77WhOrJE11TbGtnV3drXRSHG5t+kOxxfZ0FcTK60hRwuK1J3bMvvxIRkT1LAbsNk+P6NdQWd4Zd9PO7/jpJn4uP1+63QHqu/v8znmmQbXzK+PQBAAAAIAOSLQAQCZc246u3ncSV1Lp1WeLt07ttWgszf/t1KfZXn/JU04z5z9fWdq2t1iOazoqfybpft6xVjkfblC90YKwpWKt+9uWax1Q3wrbrxKW2T62T5InawNewsjWmRtdai/Xqh29FROTNyxciIvL7f/cfRUTk0TPtDNjf0tTn/M1r25Gtt9UbhF0Mt7R2yo9At2e1UpY8HexrkjS51qjo9ExrtiY3entmXQWPDg/sviZYP/z4U2nuT588ERGRS0uaLq2e7Mbqx16+/FnnPNDt93Z07hcX53aMtDvh6zeafO3bvHZtu86+1nB56OJdB9+9tu1t3a5f/+0f9P1Z18OZH/s1/Rys4+cpue7i0n8p4OOUH2/6+zhs5z9OdpCpAfu0kWwBAAAAQAYkWwCwQF1tVSrpWnd6UndlNFWDldKRcoLQbVCxFFKHeN+19UPtOn6ta02yWOs1clbdX7hKPv8Yh+e9biQs6dYpPW+D6HOePLZc6yxlaoVIIdGN62qipLM6rm/ntY6Lr+FOoxqZVBLW+jtgqcvOvtYX/e1/+M/6sI0zutQU6crSpYNHmv4MrI7p+PkXpfmcvXmlr+8Vb9i7BvYHWqQ1mdr9vt4+srW8vEvg+/en9h7s/psTEREZ2jgzO6qP9jXpuvGiMFuX6/DZU7ur999al8LJRBOuqY17bclZf6DjeVfBmdVkXVm92sZQ5923Y3Uz1tdfnOg8RyMd99FTPRZblmj1B0W6t4q2KX/x+O0xfIHETnS7eIwFe7VxW74szGfx95dECyIkWwAAAACQBckWAKygdj2vJZOuuiuibTt5VVKdVrNZzrJXdXPXRsWJVtNZtl3Hq/K6OLlKzW/O4m5h2zWlccnvQ3LdrHb7qxybth0il3x/fat7OvxMU6EiwdU6qOlUuxR2u/afP1ZTs7OjHQIHX2m3ws1tXbPq8uRtGNvX4urZulleP3Z9Y0mT+LpXamCJ0CNL0S7PtVvhyYkmXAfWXfCLL3ZsrvrK81NN4aZ2CHz9Lj82+1ZztbGpNWRbVm+2uTm0t6TbbW/r/asrqxk718eHQ53XxOrZXv/8nb7OErrDZ3qsetZmMfU75q7Wfru9++KxFb+PEv0OSNRqVffbrB6UPAu3kWwBAAAAQAYkWwCQQV3iFWub5tSNU3u1OX7aS26K+KXVfO7D0kmT39aENk3HS9ZtJF4e10NVN6hOKyQ0a16/qvb1xQTsZlZ6ZhbmNT8lLD4jf93UtmtXg1jPxg3Dlq8l+zx63aHMZQnXxramRcebz0VE5ObRo7DJ6TtdL+vc0q7ppSZUHdG0bHKj/0nVtX34Oxjf6PPbe5pgnVrXwJc/vxQRkUNbx2rb9n1la339/PIXnbMlTD3rjPjckqcnT7VG7PDooHTriVq337X7tq6WdTO8OtWEbXRZ7nb49d/9XkREdiw5S/0OqKt9bJ34JsaZv+9VEy3XjZ6Pfxks93s7/r1PzRZESLYAAAAAIAuSLQC4Q2078Hm3uKa1WHWPN53PXa4o1bbTYt04qSvvYTv5gK86L7t+UPT6St1a4vHqsSyPO6++7Pbr429S23Xliv2mur6Ff8XPLBzv1shzB/Q0qbu9E546HGhNU6+v2/z4x/8pIiI311oTdfTs1yIiMrQkadDXMfb2tuw9XJfmvGH1ZbOJJl8nJ+9EROTSEidP6wYDT+N0rnsHum7Ws6da8+X1Zb2B/iddx2rKbkY6jndi7HVsHKtXO3z+lYiIfPn3/ygiIsdfPNN5bW7KMlZN59e9Ztbt17avnV32N6AnvGQZKPBtAAAAAIAMSLYA4AGJr+J6xzO3bA1ObXoUJRRNriWvWg/UNNFqe2W7Li3xR7sNk7Cm+5vGKc4a48GisqSm3ishbD8r3RTjx0lXnGD581ERV+0sag5C21qYVNJW6VzXsrYnNc/OrZ+/3lD/k2lzT5OlPVtXa3ylNViHnz0WEZHrka5vdX2ij+/a9h1Lqn7zm290vL51BRxbt8GpzuH4SBOrsXULdL6u1pE9v7WrCZR3WJxNdPtL6z44scStv6GJ3PGzL0VEZMdqxPYeaz3axo4mY/67pm2n03VbZr9tf1ekuhOmum82rg+12r8PoeYVd4dkCwAAAAAy6ORez+SuTafTj+sNAcAcqRqEpp3C6mrAFncEW65L37qujLft8FhZ8slu42Rr1ZqTOExZNtmatw5XqIDyroCVUqPomNTMJRX8VJKt0JzN/jGNE4AaLQ9CcUzjZCG1XWqghteSK/NLf2d9nxOrsbo6OxURkW7ParSGmiBdXWhS9f6XVyIiMj7XhOvKbsfW/c/Huxlrd8Br6xY41WBMBlbT1Q3rXenjXasFGwz19uy91npdnJ7bTDUxO3yqXQuf//YbERE5suTN1yLrWm1X2xDwrvixj9P9eVbuulnzu6r+d47V+vW9I2Vvpflg/brd7r1900m2AAAAACADki0A+AjVJV9NE677tGz9RfV+tPZNqHuav31qnOU7my3nduJQdywqAc2SF3HrumWK1Q2t2hqbcmkAABVZSURBVK8y9f0r1iDza8FxlNewvq5pshVL7GeR1BxuLKmajLV26vpSby9OtTvg2Ttdr2tsz08t0rrxdbm2db2rzV2t+epbt0GvsdrY0pqtia+fda4JmXcj3NnT1w+9Jqs3/5g8hJ/1RW4nW+v+fZXuctmua2zHarW8Du+D7HT6kSPZAgAAAICPDMkWAHxCUqmMr+fV5LUu19XbZcdNp3jlcTvFBkuNW/d4Vqlaq/iJ+L1GmtbppLoTevITuiN68NUwKWh+7Oav19X0dUUi12w9r/irF3eYFKkPDSs/Y/79k3LN183Yki/72YsvvHdtPSyv0ep044Q2ul4+K38m4TvQcC2zuvdz1xbVbK27Riu176bCumy9wdJzQl4kWwAAAADwkWGdLQD4hHSiq93x4/MSrlRHw2VTjNQc1q0Yv5y+dMqBw4clNen4UIaUw55e9lgnugPGiVNdUrB8ErHa60KqKU1TnkYrzC18tnKsO+V/dDuafgz7a05BQuK13p+rVCfTda35V/d7ZJn93PUaYdRoYRGSLQAAAADIgGQLABCuzHrtwW1xkpWq72ra6TDevm5OddY9TtPtV73CXzufBdPwdC7MoW5drUoXv2j78I8odQivS73HuvWuPE6cv33qmBfpTKL7XJSoFclVPO/yfsL41YXE7Cbabu6HsNrn3fR7k/v71VYqDW86v7aJVhv5ktUa1oUw3AJz8O0AAAAAgAxItgAAC8U1Vqkr2qlarruql1j16nXbea4rmahc8Zdq2lMZo2U3QQ9o0utShR2Vtu8UrfSWFHZsu1nc2bE4ZtEolc8mTlej11XbJ/qeSvNI1zfVPb/8967p9utOY9JrRM2v12y7ptW6kuhlpOrK6vZdt5ZenW7oEEl2gTS+HQAAAACQAckWAKCVum6CqYSrrothapx4v6n7TceZ1qQ1yVCkpdbvMywDU51Y8lhHz4exEtunxvFHp7OpjRNv3/CgzKJruJ0ogUoMU1vfFydZs2gdsXg/SfOPcVz71SbKWzXheig1gm3nsep+ctRstX1tqo6sbpxFa4ABMb4lAAAAAJAByRYAYK2aJl9xjci6a1/aJgHVdCOvaq3WQxAlWUseiqIrYDOVFDPVhdCSt45dK059tLUBxxrWWrvrGsGmr1t1/avc3Q9z1mytus+2awTe1e8KfNhItgAAAAAgA5ItAMCditf0imu5mtZ21XVXW/UKeqrmrHGtmHf0q6m3is3bPuy7UkuVGDNKlurq0OI6ttQV+064RmvHONRS+eun5Xk0FGrEPLEKE56Whk8PUE7kilq2eD/NutXNX6/LP4PqWnSlSa6r6C8xt4di3UlYXSK+yr6WTbnrHs/daRUfB5ItAAAAAMiAZAsAcK9SV7SXTbhWvfotUXqUSkPqkrW2+c6iq+RFjch8y2YLRffC1q9cbj/Jx9eVEEQJl48f7b4+4fLhbr+w2dG/6wSqadpSt92ydU3LrsdV953IUUPWdq6p13e8CyHBFhog2QIAAACADEi2AAAPUtOuhqnH49tc3d+S+w8hy5JrAC242D5LDJVMCRNJVOXRsORXvAOvhWq6ntX8eYXRksfEa7T88fnXhCvzDutseQLo3QoXJxa1341b64ZVt1numNxV17+kWdTJsfEaZe20XU9r2aStzT5X1unafrxuj2gL9Ui2AAAAACADki0AwAeproYqXsdrWXVVRclUpOFF71U6mjV9bePOjZUOip7eNJ1jXL+Umm9te8Ho/vxUKfnqDMnGqglprnm0r1lse2zixMkeXdNhSL2PZeTqVujPd7vd0n2gCZItAAAAAMiAZAsA8FGpW8fLhfvTxYnATBZfyvfaqlBmlOgcGLaL1oJqo27trmU7OobXV2edeDwxv2jdrbh2qphGeZ2ukCzcGkkfL91N1hl14jokWZxCLdPBMtWdch21RuvQOBmKigGTqad/RqkCwXhtthWTqYewjljd96XJWmBAjGQLAAAAADIg2QIAfNTqE4j53QtTtVqVK/DRUk51V71DSlRzcbzJCk/h+RXTlSiUq85lNlv4fHrExc93OlHyFRKxaP81NVyptztLFBjNZpaotegml6zZihLL5Bwajp/Stj4vHrd1V83oX+H1YZhm9Xc5kr/GNYhrRqKFZZBsAQAAAEAGJFsAgE9SuErdK9dYxVfFvathNdHKfPX81kX0unSi7vnabms1tVnFuHYsKjVZxUhNFPMpv8p3k6ylCh9Su2vFqdSpMmw0/XlrndWu37ZogbQ1qEtX6mrKUtvPecZ2KOXb1uOU3UU6tO6Ei1otrIJkCwAAAAAyINkCAOCW+Op1sqthXOPl63vVpEfrmFPd43XjpGpdQrIUFaIVpU/lBGwWpx+x2fxx4/q2VCe80LVwxYSiEjbVdIycp1JXFrVKbBt6tH1Pq26/bM1XLqusW1Z9b+EZe37x65uuq+XjFetrkVGgPb41AAAAAJAByRYAAA3UdTUMV+oTiVdcNpS6ut7kin9tx8OaDnDx851KZ7n5vRjjhKu6fWUm0f35XQWLdbbi/eZJWVYaNVoTrFszWO4OeevWtP6v6Tjr2m7xHBZ3q1w6ratr0wk0QLIFAAAAABmQbAEAsILadbziWq54Ha8o+chRM5PcR5hSlK5Fzxfj+MNTmbtB3M7PHw6JWHSNtxOnf4sTrWSqGG3eTdR6VV6/RCPBum1WTbCWrbVqO27T7ZP7rxy88ITdLX/WxXdmdfHcZlFtYJjSinVq/n2lVgur4NsDAAAAABlwsgUAAAAAGfBnhAAAZFAsTqy3PXs8uWBvw+fXMqf6LXUOHW/64Y+3bYhR3m/x5182ysz/tGy5hhjzFoC+Pb2cbcyrTUKaqftc42OV889Lm8yjwZYiUnyWxcuaNXFZ7/d8/p8TurqfuUrjmG7PHiebwPL49gAAAABABiRbAADcoVRDDbco2Vp72jW/D8atJCtOb8qLGsficYqmCPNbyMeJlvdciJtQ1La6b3lYUvupbNfgeK+7xXnb9KV+wJouILM4zYk2X7pteryfxGZrWNS47vG24xaLGNPyHasj2QIAAACADEi2AAB4QBYlX6kFkJet76mtHyom1Wi8OL4oXhaWAI72e8/JQVE8tvRLJUvtUdqyCVfRfj9+Zn7BW934lffbKT+eIxSqO8ap59seq/AzeN/fT3wUSLYAAAAAIAOSLQAAPhCVbmmJVKVpx8Pk46lFXmvCm2qC0Cvdm0XJV2IN5Oq8asqO6jrbhRotu9+Na8ji7ecsluyP9UJR03LdCNetdhHkcLB84eho/p14seFmiVaRTcaLGHt6mVj4egXL1lA1TwPte+TvhZotrAHJFgAAAABkQLIFAMAHbl2JV7zdnD3d+t/0/utqZ4pn86ZCdetwLTXWA9E2tQzzn5W3i99WXVK26vpiqxzHVcdousbZQ/us8WEj2QIAAACADEi2AAD4SKVSiTj5ap50ze8i2LYTXwicOuXuhMlUZvHSUMVqXQ1rzSq1Yi06Cna68bFoqlt+WVRLtbZuhuHNlRcTC+PXFcpZTVdt+hjtp7p9NA+ZlOZRV2e3cIoNX9O2oyLJFnIg2QIAAACADEi2AAD4xKSu4Dddx2vZUqvK+JV1ucr1QL7O0bKpT+X9zfnX3PHDOkvz1NSjpdK58Op11am1rZ1KvJt4vp48hdHrPvNyktW0pqvpmlg51y9L16MB60OyBQAAAAAZkGwBAAARWb6r4WwaWty121+yHKhcB9SJU5kluwuGl0XlS+tMU5IJV7zeVdPXVbe0YWoWH3NNFzOLXxamm6iD8xK0sJ5WuSatqG2T0uP3KXVsu12de8dvSbiwRiRbAAAAAJAByRYAAFioNvHqlBOuuM4n5Alrqr/JnTvMG7/t+lKppKq2tqtxyrbcOld1+2sxoL4+6kZY1PUttyZWzhqtNLoQIh+SLQAAAADIgGQLAAAsJSQB3r0v1PGUa7qKcqVEd8O2+03UcMVrOLnqulzhBck96M20eKTuJb6vxmuWLcvTxIZb10542ZqudmtY3afkXML317MHki2sH8kWAAAAAGRAsgUAANYqtY5XKtkqbsOGC8dfNTUJr07VYRUb3NpnarTV1gKrU9R4rfb6wt0kTpX08QHr0oUQGZFsAQAAAEAGJFsAAOBuRIlXyJUSNVzh8clUmqjUaiUer4YuiQ6At3YbarYqKVj0XjIlRx27Pr5yghavx5VaRyvRFbFu7bWijm+56aW6N65jrFinQ6KF/Ei2AAAAACADki0AAHCvUjVexTpe+vi0so5XlK5UBl51YsWI6dWuyqlbJYHqzE/tlp5STcK2+vjrWher3bpk96Gbqi0E1ohkCwAAAAAyINkCAAAPUryOVy+xjpere7wybqSyPliDVCZef+uulpcq3kInup2vvn6pWbqTOpZt1xdbdn/ztE2mQpLaJdFCfiRbAAAAAJAByRYAAPigJNfxMql1vFKSz8+tg5q/blWoUAp1XlF3vspYUf1Zo33f2tOctcAWKRKo9V5nTyZWs9JNtXQrSgQr7yvumthgDvUJlyelPduezAH58S0DAAAAgAxItgAAwEeltrthw/u3U6PiuVTt0fxEq0hd/Pq2pyse/ZS7GRb7aZjStJSr817dsfb5FjVu09Lj62ha2DThKp6nZgv5kWwBAAAAQAYkWwAA4JMQJx5x+rSw1sv/OV28rpSvs1UEXbbPcHl7Wn48qqGKmwyua32ulPpEar5l51W8rGv7t8c7cdLlx+XWfhrWcdUlXHU1f8A6kWwBAAAAQAYkWwAA4JPWpMYr/LuzuNNhsrFhXPPVsJtg03Ws1mXZ/S2bEhXHdf44q7zr+D10u127JdHC3SHZAgAAAIAMSLYAAADmuJ2yhMSnE62rNdVao2I9qSjx8hqv2Wod8KrdDe82gUqNU1cXlZpfNcEqJ3/F/VvbeR1XtJZZ2znThRB3iWQLAAAAADIg2QIAAGio0tGw1yvdD7VcU09opuXHJUq+lixKapwYLVnrFZIpv7/keKmEq0joJHq81fCt5uA1W3QhxF0i2QIAAACADEi2AAAA1iTUMvUs0enOT5r8dmo1X17blavrYNs0J8wzLnPy99dymrX7n8XX/1vMN55kWLPLH9b0sdMtp5DAXSDZAgAAAIAMSLYAAAAyqdR4Rfe9jih0NYxqvqbJ9bnmSyVjcRfDWp5ghe6ATaW2jPdb3s6nVZ3/MvVVi485cJdItgAAAAAgA5ItAACAe1LUeM3vatitqfGKt1/bvKJ/Fd0JPWGL9le39tUsSpeSRV/p99HxjCCZgpX3RRdCPAQkWwAAAACQAckWAADAAxMSr2SN1/zEa9ayxqvBRMp3LVaadVLjN02P4vW3WtRqzRpsI+ljCNwlki0AAAAAyIBkCwAA4AMRr+PlurZOVbyOl3c5LEqtolqv2tAn6hqYCqKiOqnaGjLfPgzs81swsXgbWZxckWzhISDZAgAAAIAMSLYAAAA+cKkUZ9YtJ14Ski+7K1GXw9T4Pl5NYtW+K+LiVGrR2MnEyh7u0IUQDwDJFgAAAABkQLIFAADwkaqrWwrreUUJWNzdcM3LeM2Zj89z/vzmv2b+tp5odXtkCrh/fAsBAAAAIAOSLQAAgE9UKvmKuwo27W4Yv96F1Kll/VST2q14207jtb6A/Ei2AAAAACADki0AAACUeA2XC8mW13ZNy4mXxAlYlGQ1XX+r8Tpdc7b1+126EOIBIdkCAAAAgAxItgAAALBQpbbLLtcXyZbeTGfWxdCTr+KJRvtps05XKj3rdEm08HCQbAEAAABABiRbAAAAWEpIuuymJz3/h4jcquGaaOI1jboatkmyUlIJF/AQkGwBAAAAQAYkWwAAAMgipE19jbo6oVuhdTWsrOMV1XrdTr4SIdjMw7UeXQjx8JBsAQAAAEAGJFsAAAC4E3V1VdWka1o8N222lhfwkJBsAQAAAEAGJFsAAAB4EKrreRW5gCdZ00QnQ5ItPEQkWwAAAACQQWcd6xs8JJ1O5+N6QwAAAACWNpvN7i32JNkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDjZAgAAAIAMONkCAAAAgAw42QIAAACADDqz2ey+5wAAAAAAHx2SLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMiAky0AAAAAyICTLQAAAADIgJMtAAAAAMjg/wMao3ABU15HiQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "# Test on a random image\n", - "image_id = random.choice(dataset_val.image_ids)\n", + "image_id = 10\n", "original_image, image_meta, gt_class_id, gt_bbox, gt_mask =\\\n", " modellib.load_image_gt(dataset_val, inference_config, \n", " image_id, use_mini_mask=False)\n", @@ -26982,966 +804,76 @@ "log(\"gt_mask\", gt_mask)\n", "\n", "visualize.display_instances (original_image, gt_bbox, gt_mask, gt_class_id, \n", - " dataset_train.class_names, figsize=(15, 15))" + " dataset_val.class_names, figsize=(15, 15))" ] }, { "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing 1 images\n", - "image shape: (384, 384, 3) min: 0.00000 max: 255.00000\n", - "molded_images shape: (1, 384, 384, 3) min: -123.70000 max: 151.10000\n", - "image_metas shape: (1, 17) min: 0.00000 max: 384.00000\n" - ] - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAANSCAYAAACTM9TNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzs3Xl4JGd5Lvy7qlctI83mmbHH23hhbANeGBaDk4OJsY1ZgoEkJCEhHAIGEwIEbMDAOQlgiA1mM4f98CUQwvKdACYJZnNICBBIgHMC30cIGC/Y2DOeXUu3eq06f7zPXaUqqdXdUpfUI9+/6/Ilq7u6ti5p9Nbdz/N6YRhCREREREREBstf6x0QERERERFZjzTYEhERERERyYAGWyIiIiIiIhnQYEtERERERCQDGmyJiIiIiIhkQIMtERERERGRDGiwJSIiIiIikgENtkRERERERDKgwZaIiIiIiEgGNNgSERERERHJgAZbIiIiIiIiGdBgS0REREREJAMabImIiIiIiGRAgy0REREREZEMaLAlIiIiIiKSAQ22REREREREMqDBloiIiIiISAY02BIREREREcmABlsiIiIiIiIZ0GBLREREREQkAxpsiYiIiIiIZECDLRERERERkQxosCUiIiIiIpIBDbZEREREREQyoMGWiIiIiIhIBjTYEhERERERyYAGWyIiIiIiIhnQYEtERERERCQD+bXegUHzPC9c630QEREREZHhEIaht1bbVrIlIiIiIiKSAQ22REREREREMqDBloiIiIiISAY02BIREREREcmABlsiIiIiIiIZ0GBLREREREQkAxpsiYiIiIiIZECDLRERERERkQxosCUiIiIiIpIBDbZEREREREQyoMGWiIiIiIhIBjTYEhERERERyYAGWyIiIiIiIhnQYEtERERERCQDGmyJiIiIiIhkQIMtERERERGRDGiwJSIiIiIikgENtkRERERERDKgwZaIiIiIiEgGNNgSERERERHJgAZbIiIiIiIiGdBgS0REREREJAMabImIiIiIiGRAgy0REREREZEMaLAlIiIiIiKSAQ22REREREREMqDBloiIiIiISAY02BIREREREcmABlsiIiIiIiIZ0GBLREREREQkAxpsiYiIiIiIZECDLRERERERkQxosCUiIiIiIpIBDbZEREREREQyoMGWiIiIiIhIBjTYEhERERERyYAGWyIiIiIiIhnQYEtERERERCQDGmyJiIiIiIhkQIMtERERERGRDGiwJSIiIiIikgENtkRERERERDKgwZaIiIiIiEgGNNgSERERERHJgAZbIiIiIiIiGdBgS0REREREJAMabImIiIiIiGRAgy0REREREZEMaLAlIiIiIiKSAQ22REREREREMqDBloiIiIiISAY02BIREREREcmABlsiIiIiIiIZ0GBLREREREQkAxpsiYiIiIiIZECDLRERERERkQxosCUiIiIiIpIBDbZEREREREQyoMGWiIiIiIhIBjTYEhERERERyYAGWyIiIiIiIhnQYEtERERERCQDGmyJiIiIiIhkQIMtERERERGRDGiwJSIiIiIikgENtkRERERERDKgwZaIiIiIiEgGNNgSERERERHJgAZbIiIiIiIiGdBgS0REREREJAMabImIiIiIiGRAgy0REREREZEMaLAlIiIiIiKSAQ22REREREREMpBf6x0YtHa7vda7IEMqDL3UIwEAwPPSj4uIiIiIrJySLRERERERkQysu2RLpJMwDNOPdH2NUi8RERERWS4lWyIiIiIiIhlQsiXrXpxopVMq355f6tXuNZ7XPQUTEREREZlPyZaIiIiIiEgGlGzJurd0ctXttd3qvJh8pV+ZfkDJmIiIiMiDjZItERERERGRDCjZknWL82rF6dTi6VJvHQe5rsVf2+nxeXvTwzZEREREZD1RsiUiIiIiIpIBJVvyoMfka6mEa2HtVm/r7KRzjZcSMBEREZH1QsmWiIiIiIhIBpRsybrVbxq1km10r/tKPq8aLxEREZH1T8mWiIiIiIhIBpRsyboTBC4V6jfYGkQS1inhSq87vVy6Y2K8eDI5UwImIiIicuxQsiUiIiIiIpIBJVuyDiXTod7m0VpdvaZo6cUWJmS91oyJiIiIyGpTsiUiIiIiIpIBJVuyboShl/gaJ1y9pkgLU6JuNVh8fjU6Hy6+H+n9Sd4/Wbj7qvESERERWS1KtkRERERERDKgZEvWkWSS1WkOrPT3QRAAAJrNJgCgUCh0XDadYHVKuDp3D1x8Pb3qvathtASfSX1d/PUiIiIiMjhKtkRERERERDKgZEvWjW6pTydcLp/P9/W6xbadVVLUKQnrtt3OCRqTOCz6enY5FBEREZHlU7IlIiIiIiKSASVbcsyLO/IlH+9UR5XGx3O5XAb7tjoJUe/JWm8JWLy+1KtV4yUiIiLSMyVbIiIiIiIiGVCyJetOt+6Dg1j3oBKrbuvLah6v7vVtyZqu+HXJ5eOXqcZLREREJE3JloiIiIiISAaUbMk6cOymKt26DC53fatVWxXvp+bvEhEREUlTsiUiIiIiIpIBJVtyzAuCdAq0dqnKsCQ6qz3vl+f5qeeRep77sXgSJiIiIrIeKdkSERERERHJgJItOebFqUk2nfv624fh0uu5SCdh3bojdttOernO+8HH090NRURERI59SrZEREREREQyoGRLjmGLxyC9zk3Ve/ry4NHtHPTaPTGXywFY6r1YfB6v+D2d/8TqdlgUERERGRQlWyIiIiIiIhlQsiXHrH6TqG7JSK+J2GLr6rbubjVNnZYbFt1SwEGlhEu/LrRluM1o66nvRURERIaDki0REREREZEMKNmSY1acgixdu9Wv+a9b7aSpn3RtKb0mactd3+pavL6L86stPDTVeImIiMhwULIlIiIiIiKSASVbcgzp1MGuy6v6TDj6SXF6XfcgUjYgq1qo7ttd6fay6PyYTgHjVS6eeHH5eF+Gsz5ORERE1g8lWyIiIiIiIhnwhrX72XIFLOSQdcglEst9i/vtGLjUMitNqgZdk9Xv852W77fLYr8Gsb70vi4/tQsS36vGS0REZH3yfX/N/pFXsiUiIiIiIpIB1WzJutUpAVlJgjGo9COLGqZ+tjPIc9KPlWwvfY5WWofGly/cp077qC6HIiIi0h8lWyIiIiIiIhlQsiXHjEF11OtWn7Qe6hg7HXu3VGbQqc0g5vuKuw0OOlnqlvpFz6S+ptaipEtEREQ6ULIlIiIiIiKSASVbcsyIU5Jsk4TFkopBpV2rXSPVTVb70el8ZXncnVK0lc8ZFq0x9UwyAYs346W+P/aTUhEREVkeJVsiIiIiIiIZULIl694g0pRB13OtdD3DXl82yP1beTLVX5rYfQ4z7tfijzPJipcbrjRTREREVo+SLRERERERkQwo2ZKht1rpzVIJyLAnSN2s9v4PogvhcnXrQrlc6a6Ivu8vub2Yb69b/NmFLx/Oa01ERET6p2RLREREREQkA0q2ZOgdi10Ih7XrYNYJ1zAkgFmlat26G3ba7nJrwIbk0hEREZEVULIlIiIiIiKSASVbMsR4a3/t7gn0nk4kk6xhSbTSllvPlD4PQRAkHk9/7ZTshSFfx0fS722wyL4t/R6s9bnutF+9Jmyd35PkehYux8d73FERERFZdUq2REREREREMqBkS4ZWuvsb9ZtkZFk/lXWN0sJkKJvt9Xtuui2ffr7zcQzuven1XK1Vp8SVzve18HiGM+kTERGRmJItERERERGRDCjZkqHVLZkYhoQr6xShUy3YWnX9W3kCNvgEq9flek26BrX9znVrg7oOeS2kt8v/S9a/cV4wERERWT3611dERERERCQDSrZkiC09v1an2ht2yuPzvKPfrVPeUtvo9TW9dvXr9rqsa7WW25Uw6+3Hac3C/VhuErRaCWm/HSn77XDZ6XW9XivtdrqDZLSG1HrWfq40ERGR9ULJloiIiIiISAaUbMnQidOkTo8vXcfUbrcBxAlXLpcDAOTzy7/c+00XspJlZ8V+ZFc7tvrH1e2crrSLYL8JV6dkrNeELn5vOm0PqeeZAKc7SC652yIiItIDJVsiIiIiIiIZULIlQ8cCqejOO++w9zp3ExMtfmXNVjoBWElK1C2NWG7nu5V2uuvVoGvLet+f9HZXZx6xxfSbOHW6frrptfaq236ttAasm/TcZ4utrnM9muq8REREFqNkS0REREREJANKtmRo9JsGdUoMWKPFRCs9v1C/iUI/r1n7bn6LW2mN2aASuXlr5Cv7Xk+396Jb+tarQSSg82V1bfT789H9eDqfr/i1C55JPL7WNYUiIiLDQsmWiIiIiIhIBpRsydCIu6T1lgB0quFistX7dvtPHFY70epWPzQondKcwXUfXPn+LveYlzu3WLftrfTcpOeD6/T8SvU6r9fy1pWs80onXKrxEhGRByslWyIiIiIiIhnQYEtERERERCQD+hihDJH+Plo06KYNS300L7tJfJPrz0q/6x90S/mF68vuePt9r/r9eOGgW7Mv9+ON3WR9zaa2lvgu/ZHg+BAXb7ChhhoiIrJeKdkSERERERHJgJItWXO8+x1/dY+v1t3upRKtQacCy2/H3d/6erXcxKvf8zLIFDKr5iCDb2+/+Ov7TdxW2nhjuPCYYF+XbhnvecN4DCIiIr1TsiUiIiIiIpIBJVuy5laaaA0qbckqMelnW+nHs05blmvQ9UD9TLrc6zH3u4+d9mHQKWSn/VzPdUudzln3KRRWNhm3iIjIWlOyJSIiIiIikgElWzIE3Jif9RnLTXN6vevdLWEYZK1Lv6nKoNKYY81SxzuoWqlu286qK+Ba1Vx1u5aWc9wrfS/67ciYvh+YfvnCybdV4yUiIsNFyZaIiIiIiEgGlGzJ0Ol0Rz6ru+rDYNgTqV5TkpWuv5d1r9a56lartdJawWF9z5c6ntXqBNnvnGVhGCy5/LCeaxERWf+UbImIiIiIiGRAyZasmXQXwrRj+W70cmu1Vmu7/SYHw2S5NXeDqv3q1FFvued+wfdcDeeiSu32oOfrWs573SmJyvp67rze5PxdC9fD16dedez+ihERkWOEki0REREREZEMKNmSNRPftV4/t5e7pQTd5tdKW2lC0G63AQC+z46PvW231+0PUwLW67nvZKVdLrvVGnZLaaLnu/xYLPec95qI9bP+TutcaZ1drwlZv10846f5uvQSyfRSyZeIiKyUki0REREREZEMKNmSdW+l6c0gtjHIbfWj37mjVjpX2aAsJ10ZlKzeo261XmGqsChafplp6WpY7rYHlVwt/5i71Xil98997/uKukREpD9KtkRERERERDKgZEtWXVSassxwpN+0Zi0sdw6mIAgSr8vlcj1tpxPWah0rVtIZb7U6Og5Lksb95DXTqS6v2+t76a643Os5va1eH+91u1mnefF2ea4XL6jjbnhe+udteH4niYjI2ji2/hITERERERE5RijZkjXgpb52WfoYbgm20kQgnVqk9Zvq9DrnUrf0cKUp4nI64g3LddDtHHXr0LfSrofp5ftNtHrdXj/rG1wt1dqst5N4e0vXeDHx8v30/q5dPZ2IiAwHJVsiIiIiIiIZULIlqy6rDmMrnedoJTrNmdTvNphS9Jsc9dvdrdf19Svej/Qz/SV8849jrep1erVanSgHdR2vpOZx2OZdW+7PSVY6p5nJ5eJ5vNLnUzVeIiLrjZItERERERGRDHjD1MFtEIK4XZQMmbjeZ/HuZ+nlBrW91dQthek3WeqWQgxLZzwKw4D/xzWmvnK5/jv+9ZrIDEvildZpP/tNrIbhul5u/dlyk9XOSdDy9HsOe/35XW7KGL8uWNZ6RERkaf4aTpSoZEtERERERCQDqtmSY86gkrCVdgpczjqz2OYg9X7nPr1cpw6Ty3uvFpvjaalljkVx0ss0cLDpTZZ6rd3qNIdXermVbi9rg0qkOy2fns8rnrcrXo/qu0REjk1KtkRERERERDKgZEsyl757y5u4g6qD6DctWo275Cut0VruHEhZ1b8tlHwvF9mTwW9xwPVuaVldF73OKcbNc/Gs6vKWY60S2WE49uVY/jWWnM8rmfCm17X44yIiMlyUbImIiIiIiGRAyZasgtW59TqMd8G7JVBZpxf9zj2W1nlOtHTtVrr2JLmdlVwDrGmKT9HSdWHx6xY/ttXqXpiuw5m3xUX3I/52ZTWIWeq1JrGbXtPs7nVK/R3zsNT5LSfNX/iaZAq28Oej05x3IiKympRsiYiIiIiIZEDJlqyiTp3sMtpah/qlYaiFWekd9kHVeHVbfx+vsO2kX7+8pCO5v+lav2ip/vawx6Rr8X1YiW5pzPI6+y13uWPb0ucyq9RyUNfIcucZ62VbC5PRpX/fre/rRERkeCjZEhERERERyYCSLclc+ibtUndU/SsXPsdHgqsBPMm++TLgf6DzNoMvzHv9nwC4E/DCVP2QB4SXhsAfWe3D7SFy13S+/9C+KQDOsP18vwfvqx1qhU4PEbwjPujclZ3XGVwdILzc3X32vuIh98HONU7tW4LoLnXuGh/end68peL/Cy8LEbzEtv9zLHlMrbe3k8f0tQ7vzWlAcFMQfZt7ZnKdIZMteGi/uI3wMvv+Kx5yH+y8/cZnW9H/56/Jwbtrse37CC4NEFztth/+PET+2vm/upKvab/dvU9eCPgfWHhMUae300P3nvKYnuEvsjZ3bO0XtRFebsf01RxyH/QXeYfcI+1bbD9Ddz15d+QWWwzBpe79RwDgDiD/6lxyASYUHtB6WwvB6bafH8jBv81HOuXx4CE8LUT7Jks0PCD/DD/x/HztFwfxMXV5n3hMAOC/yoN3x+LL9n7thWi9Pf558t7vwf/aYlezl/p58vv8eUovG5+z1ufnvfev8uHdGT87/0wFl4ZoX23n6Q4P+Wv9RZcDkDgmP3VMif08LXntFZ6ZW3Q5AGi/OER4ebjwmBZZdXBLfHz+K33gzsXXGV4aIvgj++bngH9N+uqYt+w7w+iY8D53rSzqdCB817zuib/e+fd8+JIw8bvce/8Sy/7tvHX+iQfc0WG5y0Ng3jF5r1xinYsc0/ztiIgMkpItEREReVDqOHgUERkQb1i6Mw1KEATr64COYfFcMb0t733Flr889fgKawvStVrDZLk1JoOqz1nYEW/xc5TOcdKd9kJv8S6F6TRxwfZSNV6L16AF6A1Xlur0uGC50NbqJfc4cNtptVza1pirua+NOgAgX3Dpw/jEpHtdLplGpDv1Bba+Zm0OAODb8/lSMbG/7VbbbafutpvPc71te51vyzUTh+nZvTLf9sNLneOQ59L3kstFEzRxv/3E473WAS517N10+5lczj4sR7+/Ewb9O6TbXHBLHf+gzlF8TIv/nHH9vr8+780ygVOyJbK++b6/ZndW9DFCGRreB+wfvcv1j56IiIiIHPs02JIMJbvIpXW7q9vJas1RtTLpu8SpGqcVdk0b9DF37bYWBonlosAqyoWSx9exAsQSMNZ4IUimT/OqMxbsQ/R+d6gBZDLVbLiEqNlsJhe055k41er2fNslSJXpGQDA9JT7Ojo2BgAojxZtO27x+lzTXt8AECdRXC/nBRsbGbX9dTvcDtzyoZ9LHE9zziVnrVaYWB/X02637GvbjsMt5+cKbjvjI4ntB7beYsk9XyhbkhbydW79vm2nUCi5/fST/xzk5icZ/uIpSr+JVlrneej4f+m5ygabrqx0/1eq12QZWFkK1m3djt9hn5beThSUDuOvYRGRIbA+PxcgIiIiIiKyxpRsSWYW3kldek6ceXGJW3qZyVd6ufTyN930djzqUY/C4x9/cU/rGYQwDHHjjTfgwx/+EA4ePIhHPvKReOc7343zzz+/6+tuuOHP8T//50ewf/9+nH32Obj++utx2WXJwrYf//jHuPbaV+Hb3/42RkdH8axn/QZuuOFGjI+PL7Gus/HmN78Fl1122VJ7EL02aWHPPvcl9XiYTLLSX9MBBtOZVjvuUhhaksOkJZfzE+tuWYJVr7oaq8rMrFtX062jVq0CAA4f3AcAGLHEKbBffzm41x855BKtg4fc67ft2AYA2HHCdgDAtK23MmMJ2NGj7vUFlxwxMSpbojQ+PpbYv5mZo3bMbv83btzo9rvhEq9icdSO0+3XbGWWJwAA0LSaLdbOFPIF+96dh5qtx8+5149tcNvftHWL266dr1K5DADIF+z1OVdT5tl6A74382rSCgW3zvJI2Za15+wN5Efhc7lUR8V44jXM1ynZXfgz32u9Xra6/c5Jpz79zstVr7t0s1px12rezvfo6Gi0TC5Vc7faaVyn36cLky0v9bgiLxF5cNNgSx503vGOm3D11S9Z1cHW2952I9761rfghhtuxO7du/Ge97wbV1xxOf7P//khduzYseTr3vKW6/Gnf/pnOO+88/DJT34Sz3jGlfjGN/4Zj3zkowAAU1NTuPzyS3HmmWfir//6kzh8+DCuu+612Lt3Lz772c8tuq5zzz0Pn/rUX+OZz7wS//RP38CePY/M/Bxkzb83B3+/j1LVDQgCazzh1dwfexum3OCmVLLn4f54zcE+pjflfh2GU+75iSnXCGPkkA3OqjagqNrrZuyrDXo4WCkW7Q/lEffxvrY13MhV+UEC93V8gxsIF21QyI/z+Z59zK9mAxcOKm0AGjXasEGVZ4Otkq2Hg6SRUXcc5Um3HxxsFUpuO/y4IgdO/KOYwxsvF3/wgcv6W30EZw/HAEhkIE5f6x0QkfVO3QglA9Zlrd3fH2WcP4dz+vR6R7RbAsavc3NzGBkZwfHHb8fVV78E//2//2lf+7fYOjt36IqPvVar4cQTT8QrXvEneMMb/hsAoFKp4MwzT8cLXvBCvOlNb150DY1GA8cfvx1//Mcvw5/92Rujxx/zmEfj+ON34JZb/hYAcOONN+Btb7sRd9xxV5SW/N3f/R2e9axn4Dvf+S727HnkgnVx/y+88NHYseN4fP7ztyS27UV36tPHb897rO9gHZTVE8VTQ9m3YWI51h21LIVpNVxa0260o2MGgKmjU9E2q3Pubv/4mBs8TE66QUqzUXHPz0xj7F834aTXPhytieb8nXRfA9ZM2WCEd9795Lxaof0ff4VEc5rleKzJcxGkasDirm38mqy9ajZbidfn88l7XbyWonPG2iw/nRIhsV5uPzr3fvL4/CgJwZKCMLWeeW8+/z9fKaBy/izue98vAAClshu4FQvJASfr0gr2PFM4Jjb8iuicJTsiRucis7rM5O+mMJ3IpvSabHV6vFNyx7rCvfff777eex8AYHxyAgBwyq5To2XHrIaw07oGdY56rSPrtr1O++d5w1xrKyLrlboRiqR885v/jDe96U34/ve/h1wuh/PPvwA33fQOXHDBBQCAf//3f8erX30tvvvd76BUKuGKK56Mm256B7Zvdx/5uvvuu3HGGafhYx/7OL761a/i7//+77Bnzx7ccccdOHToEK6//s24/no3yPna127D4x9/MYIgwE03vR1/8Rf/D+69916cfPIpeO1rr8Nzn/tcAMBdd92FPXsuwMte9vJooNZsNnHRRY/D+PgYbrvt64sOvr7zne9genoav/Ebvxk9NjY2hqc85an4yle+0nGwdccdd2BmZgaXXHJJ4vFLLrkEN9/8HjQaDRSLRfzwhz/Enj17ooEWAFx66aXwPA+33nor9ux55BLremJiXcOscF8Ruak8CuP2UTY2lPjPMna8+0wc/bV9aG6vRwM6vhdtG+RUZg679eTdceaKbiDAwVQQul+H1TkbCNrrxu3jeFwv//asWWt4fuV6+FG7EfsIGP+gPrD/oNtvO56Nm9z75dvrSpY48Y/beq1u67P9zNsAJHBraNjzdWst37YBb9GOq2T7UbD3NWhxsJf8Y50NNfhxxniQF3+MsGjt6kdao9j0pS3Y8pfHofLoWRSKNojakEPrjFRDEhEREdFgSwZvuXPXtD7v/lj85298A1dc8SRcfPHF+OhH/wLj42P4l3/5F9x33y9x/vnn4+DBg3jiE38NZ511Nv7qrz6B2dlZvP71r8OTnnQZ/vVfv5cYNLzmNa/GlVc+A5/61KeRy+WwceMmXHbZE/HMZz4Lz3/+8wEAZ599DgDgFa94Of7qrz6O17/+Dbjgggtw22234aqrXoAtWzbjKU95Knbt2oUbb7wRL3/5y/G0pz0Ve/Y8Em9+81tw++0/w/e//wNLIBYe+09/+lPkcjmceeYZiefPOuss/K//9f92PCc1+yM6PQgqlUpoNBq48847cdZZZ6FWqy1YplAowPd9/PSn/wnP81CruQFBsVBIRBxc11133Yndu8+KQ6FUDVaUotgCjYZbH+uROAdUq+4eR9t9z9SFH6WrVt0xzVrHP37UD233uqYNIJqtOHmYnq1gxw9OxmkfOQetsWaU3MSdEUMceMT9aE42gFo86ODBcNueX7L1uW0VSu75kVFLyuxYQnt9wC6ArUZ0Tucfkxe654s5z/bZLecFNihq2yDOzs1omakO58Wyc2SDxtl6xbZrg0jbXti2pDjk4Mh9bdl6mYTxo34F+xhjPsckrG3H4Zafi64FG4QFqcEW6+fmJdOVGffglO/j0CP246RPnYoNH5+ME6+5AqbOPIz//fpvAQCq9j56dgwc8G2zmyFbd7iveX6k0fZ5ZHTElmc9WjLx6t/infU6r4/LL687aK+1aBy4T025BPf2n/4MAHDnz24HAJx6hvts2/E7T4hew2Qr2tMuqd9Ka147rSed7ve+ncUTs3iet752S0TkmKHBlgydN7zh9Tj33PPwxS9+CZ7nwfM8XH75k6J/nN/1rncCAG699UuYmHAftznzzIfgoosei8997rP47d/+nWhdj3nMY3Dzze9NrD+fz2Pnzp14zGMujB77+c9/jg996IP4yEc+GiVZl1zyROzbtw/XX389nvKUpwIAXvjCq/CFL3wBz3/+H+KDH/wAbrzxBrzrXe/G6ad3/uD/kSNHMD4+Pq95gLNp00ZUq9WOqdKuXafB8zx8//vfT+zr97//PVuvS2rOOON0fPrTn0az2YwGBD/4wQ/Qbrdx+LBb5rTTFl/X977n1nX48JGO+79aivtGUDwO7sq3AAAgAElEQVTi0pjWvD/0J//zeJzzN3uw//H3oLG5FqUszaYbHASW9PjIQbLXHGng3sfdCSD+KGShXsLx3zgZp332LOzfsxd5G7h59rw/kkNl5+za7LDIEjSpsYhkTYMtGbjlJluAq2X6t3/7N7zzne/qeLf4e9/7Hi699NJooAUAj370o3Hqqafi29/+Fp797N+OXnPFFU/uaR/+8R/dRwCvvPJKtFpxbc0TnvBr+MxnPo12u2WDpRAf+tCHcMEFF+Cyyy7DxRdfjBe96MXo1DUtefc3TBxLVGuTepwmJyfx7Gc/Gzfc8Od46EMfak0tPol/+Id/ABB3J3v+81+A9773vXjFK9zHGw8dOoQ//uOXIpfLRctMTky4dd14Ax56zjluXZ/+FL7+dbcuDyHarVbU8S60lIapTGhpS8NSkQMPPAAAqFZdgjE24u6652AftbP6qKp9xI53ryuzbvk5e3x83H3U7iHXn48t/74DrRGmNfPOoR/igT33wzsugI9CVPs0Z/NdsftePtURjx+HAxMeqxsqWOLEmkKuh+ldueyWK1q6wvW1WsnEbNRSGCZg9YYlWh67JLrHSzaQ9u0cxB/3s48z2oCEaUdUghVyPjD3XrCejdsNLbHitVcuj87fPdRs/i52SeTHHPlecLse9ycs2P5ZI42R+J+HIPoIJVM3t07OadbKtXDPY2/HCd84BSd+bVfcXZLL1/M4tPMgvvO6rwMe8IDVJjXBejr3deOWTQCAnSeeCADYvtMlYIXoHHqJfe80/xfTyaadMy7PayWdXHlech65hc/3lt50SoHS+F4eOXgIAHDwgf0A4nSRHSN582QpnRKmlc59ttxarU7i1S2+n+m51Tp3qBQRObZosCVDI3eNj+nZKYRhiB07ju+43L59e3HOOecseHzbtu0LEppt27b1tO2DBw+i3W5j69bNiz6/d+9enGh/AO7cuRMXXfQr+OIX/x5XXfXiruveuHEjZmZm0G63EzVdR48exejo6JJ/UN100zvxe7/3u7jssksBACeddBKuu+51ePOb34Rt29wfomeddRY+8IEP4pprXoWPfOTD8H0fL3jBC+F5XrQMALzjpnfiOc/5XVz2JNc2/qQTT8JrX3Mdrn/LmxPL9at03whKvvvjMAf+0WoDhxo73dlApGoDmLr7OjpaxsR/bMLmH23H3ifchdqYa4YRhHFKxYYWZQx3TdmDXWukhX3/5W4A8UTMc3X7COecjzO+fxYe+tnzcc9j70LROkK2osGWW8fYrBu0F2s2uJqxAWIh9Yd3HsBDoJkiRURk6GmwJQOT/ix/pxurnbpU+Xd62NLaDN/3sW/f3o53Vnfs2IH9+/cveHz//gfwiEc8Yoltda4h2Lx5E/L5PL7xjW9EA4P5r58/aLvllltw661fxLnnnovrrnstLr30iVHaMG/L0dfdu89Cu93G7bf/HLt37462/bOf/Wze96k9s2PfunULvvzlr+C+++7D9PQUdu8+Gzff/B7s2LEDp55yarT88573X/Hbv/07uP3227Ft2zZs2boVx+/Yhuf9wfPQarYQtJrYODGBv/3c53DffffhyNEpnHnGGfgf738ftm3bhg35PA7fdx+mjrrBasBkyxICNpXw7FdG2HLH99BXPQKj/zmGcCTd3a3T/FwLBfkAdz3yp6j7NdSnkmkVAIzbuW0xRWENlj2fs/eoZB8vZKe7ZtPt+5zNs8XOeRusgQRrnhp19zVnxzg65rY3N1dPfOWxsJEFL5N6zerWQs7bZY9bQOpF3QTZqt0t0WCDj6jmyjr62QqYjHE/oydsC+2A826x6yFsf61hhr2ONVwT1sVxYoKJnFu+ZtuJGopE7/m8j2UWkm3oefaDvHvfoxTQ1lGfszoxzv1VzOGOR/4Eu37wEJzy7TOQxpSXq2cK56c+esuBt9/y0d7Rxsw3poECUGTtV1TnZt0tWZ9Wtvb3dg4DuynAtDEOW7zEt92u3m5pUqfneby+bWnb1uMAAFu2bgUAnHzyyQCAsiVcy7HcTo7duhFmlzSlz9Xi21/DhmIiIsuiwZYMlbH8GB796EfjE5/4BK6++iWL/sP+qEc9Gh/+8IcwMzODDRs2AHAfLbz77rtx0UUXdd1GsViMGkbQxRc/Ae12G1NT07jkkidGj8fbd//gHzx4EC996Uvxohe9GNdddx0uuOB8vO51r8O73/2ujtt77GMfi4mJCXzuc5/Fdde9DgBQrVbxxS9+EX/4h3/YdX8BWKp2Iur1Bv7yL/8Sf/AHz1uwTLlcxsMf/nAAwMc//nEEQYBnPes3Fiy3c+dO7NhxPGq1Gj71mU/jd5797O47EAKFvSX4LfuV0cpj01e3ovyLERy88gFgPPlHKj8mxcla+Yd80Eq1X7cX1GeT74esP+1iC/c/7i4A8ccLeWODjVMa1qSEnRo3bJy05WyQZYPwUqGM0S+OYvzF46heV4VXsuuJ/6K1PYS7VIMjIiJrT4MtGZhek61urr/+rbjiisvxtKc9FS94wQswOjqK737XzRf1lKc8Ba94xZ/gwx/+EJ785CfhmmtejUrFdSN82MMejmc+81kIw8VroDhg2r17N770pVtx+eWXYXx8HA95yEOwe/dDcNVVV+H3fu85eNWrXoVHPGIParUa/uM/foKf//xn+OAHPwwAeOlL/xjj4xvwlre8BWNjY3jPe96D5z73ubjyyqfj4osvnreteJBYLo/g2mtfjbe+9S3YuHFTNKlxEAR4yUv+KFruE5/4K1x11Qvxk5/8FKeccgoA4K//+hNoNpvYtWsX7r33Xtx8883I5Xy8+ppXIwwChEGA6elp/PkNb8VFj7sIngd881vfwv94//vwzrffhPrMNPbOTCOoN/D5v/87NBs1nLTzRPzy/vvx8U99EmG7jef8+pU4aPP8HDnqmhiURtwgdtu2rUAInPBfT0b5p6MIihaHeB6CsTaOXnEQGAmj+bKYElUtTfKtXoo3o9kZsN1Ovj+c0LdYGrHl4/PHlufRHF32mbNSyaUYTLriGjirObF1tO3xqLujfYRtbMzVOBXylkzZejknlD/qtstasHqd9T/JJCkqDYsmNXbPz1kL+YYlTExfYJ0W85beFCyJ4/437FwyVolq0mz5nH0/at3pclGyxYTMOkDajnl+3tZrLfE9S/zsfDTtPSvbeWGJW2V2GsQ5yOKOeMlaK6Z1PNc5ez9LJbctpo2sReKcZ7movbzVwcGet0HXkf0HEucmSrCKRRx6pIcd//sEjD9pDOl29l47j/aWNppfD4AykMuzvo3t6fmmWdqIpDBdL9QhTek2j1anZJcfHd60dYs7rpFkjRancUjPxbbYOtNzknVbvpuVzrPVa5fCfmvMoqkKAn7f2/IiImtNgy0ZOr/6q7+KW2/9Mt74xj/F8573BygWizjvvPPx9Kc/HQBw3HHH4atfvQ2vec21+P3ffw6KxSKuuOIK3HTTO1EsFrv+o33DDTfgZS97GZ7+9KejWq3ia1/7Gh7/+Mfj5ptvxplnnomPfvSjeOMb34iJiQmcffbZeN7z/isA4DOf+TRuueXzuO22f4j+6Pyt3/ot3HLLLbjqqqvwgx/8IEra0q699tUIggBvf/vbcOjQIezZswe33nprNC8Y4P6gbLfbC5po3HTTTbjnnnswOTmJX3/ar+PNb3ozxsfHo2VyuRx++KMf4S8/9jHM1eZw9lln46Mf+jCefMUVmJma9wdzEOAjH/sY7tu7FxvGx3HJ4x+Pl7/wRRgbHY2SqHhhoHighHyjgMm/2YTiL0s48pv7UffcH6ts1c0mDiKrLhfi6H9x3TbzUYt5zp2Ww8iXRzD5wknMvmkW3qiH8MRQ/+KJiMiq85bbsWhYBZw0RlYdk4Fe34L0ncf8M9wd2tbn053Bkst3qvmi6M5pajfCBXdCO9UVxevr/OORHmQk54qJ9gGL73N0Zz36Es7/duE+2rnlHf+mpSzVGZdEHTrgatiiqZWsHXrN5jsaG7dBoN0Fb1lBkW/rb7Xccr+8dz8QAo/5s1/B5D2TQBloj7dx+FcPICgHqM66uaD4x+3IiKtzqlXdxwBnbH9Yc8O5n5jKzNrrOXEwTxgHryN2h79s9VUAULB6IR5LrdawZd0yTMta1pSBXf44ZxOfZxdD1gGVS3y9da6z5Vj7RUzUuP2oWIvvjd1qb1oiNb5h1A7N5t9qs3bMztHUbGL/xqwjIy821ppF5y7PyZZdWli0c8/HeWnxOBv2eg6goykHbGCcnsOKP6+s8eJXTpY8/xjHrJ6NP+JzNff4xKS7vkZtImc/lQbyXHHfWVfG64QHwbF7peKuE15PheiYc4nv+V7z56bZ4rkrAAGw44c7Ud4/Aj/w0dzYxN1/cyfCcohN1ginPOquu1Ix2d0wPelT1NiGj6d+nPud04pJXVyrFtrmmV76ieNajB/NT5X8qPOg/gHsVHfZrUtgrzVe/SZP3ZZf+LSXerzDmfmyfX1SX7sjIscYfw0LPnWfT2Q9C4HCwSLyFet4yD/QGqyxskGhfayvfKiMXV86HaMHR3HHpXdg4/GuZiZoKsGSY4wPHHrMQQDuo6GbvrUZJ77yZOx7w/3wrU2/N2I/B4X444Lh9hBqfPkgokGWiGRMgy1Zsbhr1MrW0760tw52vX62f+EOdUiXlqVbvzLeZWZhT6ce1TzmaHIlAHEdUtPmo5qruFSjXnV3+huWGMzOuoSgMj0DANhsjQX8XBFoAWf/4Tko31+GNcqL92fx3cAZCNEYa+AXF96JINfGgX373NHaDaG83eFvtK3TXdQsjnM9WctuPzlXD+/Us2tdO0gmBIUCGyW445z/scYtW3hMvJNv67R6H9/GkUGYTAsomqPJZxt6+wPbjiXHtuJ+ssaLuDwTrnrDmnnY9sat9iu0tIU1UjyphbydC6tX4pxlUbJkqWXLOkCWSsn6HR5P3hKq+dMHzD8vhaJ7Xclip5q13ee5zOfso3YFzu9l84dZ4le35C60lHZyUzwNQmDvdzyRNOvgWOPn1jUxaTVdIc9ZM7EPhcKkHYPVeFkayU6MTCeZvrHWi69vNHhduetkYsN44lj4cxEW7L1iI5wwxJHdB7DzP07BKb95atxxNBpj8eaDj3AyRPVf54CJ+DhzqXPvsVtiql4q6jIYJWAdOq/6ydd31MMvVf7uiPpELnserP7mt0ov361mbNA1VAu3j0W3E+9Xf7VnIiKDosGWDI3gaqUnfQuA/JECCrPW9jzgR8Ty2PbenfDrPvY9ay/8crLJBD8Wxo9+suq8Zt0DOYmtyLrhA3vP+yUAYIw1jzbYmbCuhyNjo8h/LY+RZ5ZR+2gdXtEGHrl4HQu+bgbQfe5hGVb6GKGIZEyDLVmxfuZUWux1g9q+tyBt6pRspfc3fWcz/t5Ld+ZasG7eTk12YFzYKMvufNtdaNYJBdFcT+4OfNPuxM9ZotWsusFPu8mEiF3ffKDp4eznno/S/hJCP7qtGx1Bc1sTex93P8IgBCpWr1NIdvBjHVLLasGYPLGGhTVWY+M22ay9vmnLcz2sgxqzOqhGw623bvVVTKHYQS9AstX7hg3u8Wmr0WHa47YR2KG5Y2NdFzsdBpYasu6LtVezs1bjZMkW3xOmJ3yLuD5i7VPUdMHSFTYl8ayeaK4ya9tz7yU78lXsnDEp4+uZ9o2NW8dFP1lzE9pEzun2+dEAOWQHQL6XrMWCnQc7T1yDpTcNq89r+taNkPN5RamNWy6qk7OXl+fNHRddH2WryWJqZ+e2PGqpnU1m3Yrm7rKPp1odXFSjZTjvFVPGOuflsnNVsoYX0Y+Zl0yEWPeWrnls2pxsvKnAWq+GzYmWY4rJOlPWqc2NAecDG743ifJjRqKT4Xeo1UIIYBSofLeKcBswawlzyc5Lya4tvse8pvqt8VpU9OssXZvU48tTiVSnBKrX5CprvSZnC4+jS63X++33yOXRGhNflXyJyEppsCXD4w77evqa7sVwCwF/Kge0fBz/1hMBD9j7G/chRLK9uG+frQtn1S9GpC8eMHPhDGYunIna7o/bzYBosmW2rPc9+N/0MPKUEcx9pgYv5yEcV82XiIjENNiSZVtuotVJ/lqrIfnc4h9h6zjfS7rrVLRYt5qthWta9GVLbDveUjJ9Sb+OtSnsHlixlux1m8yVKQnvtPtWX+PDnZN6rQmv4eHhLz4fhQeKgBeifkId+y/cBwRxEzXO0cRaGUZtNUvKGpacMUngHf8wsKQtmuuJc1e5x0vRIM5LLMfUqG7bZQkK57LifFqcj6lkd/bHxtK1K8kuc34xKgaLUjQmREhNhBt1brNjnZ2x5MmOedwSL86rxX1nd0KmeUwNc9blj9vjOWJtlJ9z28lbUtSwZCvnJ+eSiut83LEy7YnmIIvqlphUudcX88lELH2DnutlN8Kpo1MAgBlL8lg3NTJiXQ49dktkoufSoKiWjXVzRda0LTJvk22zWEzuU7HEOjU/cYzsNsjrh/sahJznyi3H65Mli7x+opTOS15vnFuN72U05xmvr6KlheB7xXOf7IpYr1XtcaaGVrdWr9rrOZiyhNfOMa8B3tQoj40A5wLj/z6OsQtHMBaOIBwNcfi2Qwi2B1GCXW+wK6hLR0ctKe6UIqXrDhdbJvreXzp5ihdfuitg1LXSLPeTCr0mQf3O39Xv9jslXIPaz37WISIPbhpsiQyjAPCruWiwlauGOO1tZyDMhzj0nP1o2aSwaCyxDhFZFa0LW2hd2EIQBCj8WwEbf2sTjn78KLAFCEeVLouIPJhpsCXHvKheY8HfNKnEK7pbzBqv1HxJqa5eiXWn4q5O1QBRVzK7o12z+p3po0cBAFOH3B1yWJoxPeWen5p2SVcQesjVc3jC638NpUPlxAZqJ87hyK8eAkKgYukIJy3OR/PyWJJVdwnCmM17xDv7TIFYg5WuJ4rSSttm3uqCcpYQsP6HCRq7yDE1Ya3VyKi7888ar4YlHhSlNqmkbLHubDXWszXda5gSxm+rlzgHZUs/Cqk5mfiC9LY4PxabHPBudavFhNWSIavlYlrB9baDpr3OEq98MhHj2fQ9/rpNzsPVsPcqmpMqdOstW4c/pqasA2K6glSyHJ2XqLyIdVW2PqurYpLFOqV0Z73UNGIOy8PY8bGdrBEMrK6uYukar8Ocz66CrNlKpodNq9FishQE1u3QTv3oqEuC+J622jxXLjmrzbntjNixsX6JNVlMXvk9E9pZS5hnrf6u2XbJU7lsqV++aPth27FfHS3Odxew+6bb7qYtrnNjaWQEOBsYb2/A5idshgcP4ViI+79wL9rb25huHXHLWddOnhfqJ3XpVlu1cBWLzw3Ybf0Dr63tscthp/0Z1Hai5Re8rvdPbHSrcxMRATTYEllbAeA3ffh1+yO0mcOe9z4K7XIbv3jG3SgUk4OSNZyTT0R6VN9TR31PHfliHsXvFbH990/A/o/uRXu7DXiqAEpQF0MRkQcBDbZk2bp1sep1HpaV6jb8iDfbbfuLPd+hsyE7wEVJliU+1jp99rBLsqrWnaxpqYVnd/oLI6PwKz4ectV5KB0sJZKzI8cfwd3n3gVUAMxabZTd2Wdq0m4mW7g37GOFeSvojzraWaLF7+NuaNb9LdovJkxWf2RJ1qglYzlLPdhdLWdpCec1YuIQpUwNzmPEu+fJupB4miP3eM3qskqlhZ0F2OGOaQoHoOxw56e6/o1ahzqmDzxG30+uj/sUzQ1m+1a397BhNV9M51gLxvd8fMydC9a3eRbeMSGqVduJ9UZzjUXvARJfc1F3RWvDb3VP0XKsj7KEomVdCnk+tm3b4o6H3RqtJmxywmrHovomu2asEyX3n90PS9aVkHVRABDAbYv1c3zffI/poHsta7WY3IykaqviudLs9Xa9Fu295PxrLUvdcla/FtUWzrntNG1OMr6prLtrNNx+Mvll58nAvrLmi8tPTNo8XTlux+r18pYUW5IV2v7WG3xvbP9stFSvup/zmSmXXPPnrFgqAScCmxvH4fgnnTivYyqAcaD6zRrCU8L4vNhTXqpT5XzdOhnG82RFz/CVqeUXXU1H3X6Pd0tzVjvtSe9nr/OHzWvzuOxtLX/bIrIeabAlsppCAG3Ar/s48ZUno7WhhQNPPIBp+xhhNPmrl1tiJSJyLKk+vILqwysYG3eDz2K5DP8HPkaeWsLc39aBU+A+qtlljmMZvOAW1dSJSLY02JIBSKc/S3e96njXb7mb593CdPiUWiHnWYoSOS/Z9TC+ERyviJP7pu9Icl4sJldHDh4EAFRs0NRi97ExN1lq6BfhV3zs/v1zUDjg7uLXzprD9EVHkfP8aC6latWlJ2W78x7N72NpxozVgHF+q4kNGwDEiVF0d9u3+blsvayRaVtyNWddCaO0JV+y1zNZSM5FxTmkcl6yi2FcC8ZaGf5KsXmMbD11S4lKpWQ3u5wlG6wBsxKbuAYHcarGlCKfS3YyrM3ZRMx2bJw3i8cWfQQzmk/Kzr+lJDU7F+wwF7PUzRIgHjNroJjGlC39yFmdD5dr2tljh766Ff7446yRYg0Nzx3TyuQ1l7f3tmVpTo7zZKU6BHIOtzrfW3YAZKe/IHm9l0ZKtl73+FF2yLT3ojDvfDAla84lk9C2JVBFq+3buGnCvZZdJa0mqWXpGa8TXqfskhmlf3ZsrP2LU0n7HWFdOkfGmYDa9Vgo2ev5s23vOee3a9v+27HyWopqFlO/Q7j9pl3fTKpYO8avYbS8JV22nqbVlM3NutqwaUu8JjdtdNstusRrrDKOiUdMACEQjoeo/GMF4akhclHXx3j0FXfddN/zPVjYbDBIP7CoTvNs9avTJxrS+q2l6rT+fsX7k+xw2fl4+99ep3/T0s+rxkvkwUmDLRkarbd3bnd8zLJ/g/1ZH7tedSZam1s4/ORD0ceq0Oz8UhFZ36rnVFE9p4qx8TEUflTA2NPHUPlCBXjIWu+ZiIgMigZb0rf4Lp37vltildbxTmiPkxkv9w5pr3duw0X+nwlX1bqXHdq7DwBQOerSAHa0K1p3smLRR242h4c89wKUDrjHjp5+BL84827ggXnpS5TOuPUWojTGUhhLeFjLlLN6ItbOFMsFe97d2W/z8WjuKNZ+REVSABYmBqNMkjymOXN2AlhHFNp23faL0ZxQ9ivEnl+YsLmnC6Vk10PelY9qw8ZcnVWUKDTinvZR/Yqts1JxaQgTn7otW/bKtivJQTs76M1VqnwEADA1lfzo5tbjXM0TU5lWi+mK297oiNvHstU08doYsRoxpnScNyuaZ8tLfjaM713LvrK2zLc77/UG5/9y7zlr0KJugbY+3+qKfM/mOrNEi/N+NeY4kmeXRrec57N7IX9urcMgu3G2OPdVfB5Da0fI64DdNhvR3F3unG3cOGH76NY9V3P7wI6LvMkQdeHz5mw97j3g3GBMGZla8nqK5y5zx8RarCY7K9q7MjrCxMq3Y7XugpYMz1payQ6TeT/ZQTJv53Zq2iVTvCYmJlySzC6fc3Ncj9W7sY7QTl2JqaPt19ysu+amrOayVnOv27hpI7AJOOHUEzH6+FEcuvUg2ie3MWJdQ+evm0I7Np7TbvNpDYtea7661QD3up1uyZv/SruW3hksuX9LraNfnWq8VNslsj5psCWSgdxsDme85lw0N9dx8PL7UeUfvtWlXyciD161h7rB5+bf2YLDnzoEnLPGO/RgcOda74CIrHcabEnf4pty6dmm+vus/oI7jB+wO4xXL/1xwnSNl9fhJqOXSjiQSuDSr4sTu/h1zYZLCzg/1tRhN08Oa7X8MI/8dB57XvwYFA4n7zxXzprB/WfdC1SAps1PxURgdsq9nl0GJyZcVzSGCawpYapB7JbGu9xlq7vh4yG7tkWJVLIjXmjJBJOtdALGOh9+zxQmiGq/kgkZE4hWkDzXfH256J7ne8b1+Za2sPMe34tGo5543G3Dzqs9xK6EzSBZV8Zz0LKOdJxQit3/OLdZXK/GVM8SKzuW8kjR9pXd/ixNYQc+n53pbPt23bCzHmugqhV2E7T9sPea6VCjyQ5/7r3YsMGlGBtsrid2qGS9HOumogSKH1GN6uTYVMVOVFSjaM9G838l01PW9TGhK+Y5T1mcyNUsoQrBY7F6LmvkEs+7Zfti10ez5c71rCVK7NbJ665kSRbPWc1+TsYn3L6Mjrn1seaPnSBrdv1G6VvIudNg62dClfydw1pA+3GI3oO6JW9hO1n3Bz/ZoZLXOWvCcpbw1htMnN3r2RWU55y/e3iuQ/v5bllt1+xRd1zVyiwwBmzbfAK2Xn4cfvyhH6J+glv3SbtOBgCMsU4zWrel3lg8VfZ6nC6i3/mvun1yodf0p9cUp99Ea6H0BHLD1xhj0OdMRIaDBlsyNPyv2QDh6jXekT7kp/PY/dqHob6jjgNX7I8++tVs1N2/7TNru38icuw5suswAOCcax6O/7jp/4sGXCIicuzRYEvWDO/OBUG/jTGSXQ+jBIDPhv3dueTdctbQ1Gamo+cOH9gPAJiecp//azd95I/mccGLHovCVAFe6GF69zSOPvww0AYCzsNTdXesK7PudQVLC1jvw/mpuKscpLEmpW13vplmsCMe74xzvqAovQgWrwGIa1CSHevKbavxCpgouPWn+/GFUZ1U1fbH3R0e3+CSuDxrt9qskXGvKxQ5d1UywWpZGhV1s7MkgMdb4nlgAxEgSgV4iKN2jpiWRElT6hxFHfHshnbOziUfj2q0LH2LuvpxbqaA55o1Wcn94DExCGXXwah9fyrV47krWv0azxE7TOYLLk0Z2+DSHi8VTTGNnLVriulKyVKiZoOdJt11PMZaMj/5HoQh52Kzmi97jzZv2WrHz/aFcbIV1dwV7PphDaHVHPGcRXOC2bkuFngd8Pqz7oFFt2/sBsi6OM5D1eTcZXYOWNdWtXm8ylYb6Vmqx5qplu2717JklvPf1ft/fwwAACAASURBVNw5Gynz58w9zzmFm/beFcujdrzuvSswZQyT9Tz5VJ3UXNVLrCfqAsokiylkap6xqKuh/Vw0oxq3GipbjqLVbOC8P9gDeEBrpIX7L/oFbr/2FwCA8U2u0+lGu45HxsbsHAd2DMl6znTtYIj0793BJkzLXc+gU5uF840No+SnQwbVGVJEhoMGWyJ9yB/N4+xXn4Pajjk88Gt73egiN8z/iIvIsergiQ/g0An7gRA44ehJ2PnNUzH9u0dR31lb610TEZEeabAlPVuYGC3vTmj6M/1Rl7UOz8/bg+RXTo3D5foc87AOac46DB7Y9wAAoHI0/uwf5+lpVJvITxVw3ovPRfWECqYeNgV4cT0P50ZiFz1+ZW0L64ZYs8QkaSTqNOe2F9fJsJ6GCZfVyhTdHX2mIkwC6pYwsBNeO+AdeLeeEavtYp0O59Fqch4xW3/F5vliFzi+J7xTz1ob3qqP5iGytIlzYLVt3iHW+pRKbr/Ltt9RFzdLApiIsSaMnf0AoGr1Ojw21laNj1u6ZinDkSOuro6J19jYqK0rZ+fAvo66BICXCztI8jr0LYUcz1t3QwsAoi6CLXYTbCee5znnnGE810zr0j8+JUtZgqim0dK8kDVVXK9b39TUbOI4x6xTHVPTQoFJGufxStbwMEXMs4TNui1yt6IOf3YcnH8MiM8hv/J9Y61VVBaUKt/kuWFdHPeN6R9roaIaqWhuMia/YWIfo7nHWK8Epo328xXYz4FtmNdrseyuFXZw5LFVKm77nDePx9WwlJSp+biljVEXUZ7EhnVJTNXTtQLWOEa/pAAAc1WXsLXs54nXLgJLKQtMXxdOan54bC+CVhNnX30e7rvoLtzxgp8AAA5aZ9TtJ54AAJjY6BKvoGmpIhPVAn9nJE7dPNmkIv3WcC232+zC7Q7PTbDOx9Rb3XOn9XWihEtkuGiwJdKD/FQBD73uPFRPqODwQw8h5+lHR0RW19FTDsLP5bDz27tw/1PuwdzxlbXepWNeeOnwDMpEZH3SX4zSsyhA6tT9b0DdrLrxUndg4zu1PjfELQKYN++SPdyyu+oVm2fp4P33AwCmZ1xycMqHdmPrPx2H/Gw+XnsbmD17Bg+cdj/QjJOhet1SA0s7SlaTxW6CTKDKvCNuNRutqOuZW57JDwVWw+FbUlQuJ2ugmPxE8w9Z7YtnE/y0o3SFd/7tziqTCHt8w6i741+wO+xTU0cBzEuHbD6h8XHOf8TuhW4/56ouAeCdeKYzFXs96+By0Zvk9v/okaO2Hrf85Ea3H0zyGtaVDogTo3RSw/c1X7D6H9amWCpRtjSF82Mx7eA8VKyxQpQEWQJg7xk70dUsjahFXQyZkCW7Bjbq1gXRzgHfc6Z5QSqBZcfIuKmK259ZS1qLBaaF3C937rds2eSOa5TJXXJ+L6ZJrNHiHHBNzo1lCdeY1fjwvOZy1i3RDqPVjJOtRo1Jk3X9y/H9tuTUrnt2JZyzeeNm7GeK10/eEqHpo672ip0h81GtItfPc1NInKt43ixLwNjVjzVXliCnE1LW6bF7YdFqsVrsbGnnhNcn083pqH7T5k6z67g0kuzoyHqpvP1e4LXJ7qP8eebvPNaqMaHjPGTxNZZMb905ccvO7joMD8CFr7oEYS5Aq9TCfY/+Be68yiVdrEUc2+yuE9b6bbA5wkr28+Cl6scGrd+arEElWv0K/2jpLrrz9d4Rkcv3vBe9Lthlu0q8RIaRBlsyNMLT1noPgMKhIo67bTuqp1Ywu3s2+qOo1W4iLIbAdJcViIhkbGbXYRzZfhAIPEzu34yT/mUX9j31XlRPmF3rXRMRkRRvpTOhD5sgCNbXAQ2RaEqbLtfMchOsnucYiRZL15Alk60gTNZRcW6s6UNurqyoLsPuQu943ymY/OJmzO2qonK++6OFcyUFqTvubbuDPTvrlmMnvMmNE24fvWRqwfoctq7zFnQGg63HurvZZRzdAS/wTn1yHq2opiVg7ZVv3/P1lo7YnX3WG3F/R0Y4j1dy/qIjNp8Y535i98F0HUTD0pio26FdJFNMrmx/yja/EW/1Vqs12z/WGyXnkqrZeQDiejEmRfF1YumczTvUsBSNz5ds3TzVPHbuM88x31t2+dtoNS9lOzcVS5p4Tvke8FjKI3ZuLV2pWUrBzpM5SxGnp+2ask6VUUoZ1Swm6zaYgo6OWTLXSl47rJeKbwhYZ8la8twygWPaOGedJUtWq1aydJUpJs/H1NH4zgKvc17XuSjZ8hJfWUcWpcl2PYxa/RyLE1uWttWsHo/vLZNYdt/kdcUkKz1lVCOq7bJarlzy5yqIahLd65l85e3nktvn9cj3oFDknGlMzOy9YrdFS7qYxIYefz7d+jlv15y916zj4zUxNs5aTbfCGbs2+LuInSSjOeYQ/2zx+m1FnQ+Bjb/cghN+cjKCXICwFODA4+7Hf77gx2452+fNW48DAJx8+i63jQmr+YuS3OR72Uk6gVru3xDp9XSq7U0v32k9afxd1fXfn5/b1zOWXqyXbXauwert38TOx7LMT4F0eZ2SLnkw8f0eJx3MgJItEQD5gwVM/v1m1M+YQ+Vc3R0WkWPH0RMPoXLCDLzAw+aprdj2zyfinst/gepJ+l3WjX+NNYa5pd8pSEREeqPBlnQVpSdh8vt+7zz2esc03aWw1/2LarTsznzV6i2OHnRzZVWO2t3jttuPnR88FRP/sAl+JQev6WHu3CrmLqgibMb/6Fat9qQy6+5Qc04jn3M/2baYIjDx2jDhEq6oa1p0avzE43yY9URMO0YtCYq6ttmd/lI0T5fVQuWT9TxcYdW6q7VaLoHYUGDtit2xZ9dESwaYB+ds3qLJSbf/vBHEO/xMKphANNi9rckU0WpTcu5ued7qqOZsf4u2/Q0Tk4n9Sd8I9ud1I2RawXmrWF8TdSlkkmXpoReyI6KlD00mWfy+ac9bgmT1OXxP2HWQidCYJUt8L3i5MSlqt4rJc2Id9pgwMWHje8hz6iO5n4VUOhjvT6rGDMn0p1S2BMuuDXb+43ExheI15dkB8PwRa9vy1mFz3JIP9yJu05JeS1JHbF6qVtSdkEmn1TJZrRbPNbvxMbUbsX1iV76ottA2y3PNdDNv1zmPOaxa7VaL3f2sdtH2l6kOEyj+nNUtxYy7KTKZSv48sZtozeb3arDmy65bppjNhnt+wwZ2lHTrHR1xy01M2Pxdec4j57bD+cVyUbdRdi9N1icC8fvNhLXNZJNzgtk+VTZPAz6w57rH4e5H3Y5/ecY3AADVGTtmS9m2bHPzqo1Nup/FcaubZNIZJ07J38PLTaDSOv1+7zdt6Vwb1tdqlrXNzh1zO32PDq9bWvd/QwdTB5f+N3i15kITWe802JKhkX+mtZX+bKvLkoMx8Y+b0DipjtruGkI/BEb0CVQROfZVTpnG3FwNp37vTPz4sT/C1I4ja71LIiIPWhpsSVerVdaXnmerm/TdwZbdJT6y/wAA4IFfui6D7MI2OuLu1HsFu2Nb9VE5tYp2yZIP6ybHO8ZAfBc4tDvVjbq7s12yrnxMC6JakELyR4p1QHH3MbuDb3MnUZS62B18JlylEudosn2LuhzmbLuWILGrWaORWA/v1DOt4ZvJeb7YVW7c6p7yliiVw2Jiv9hxjylRXL9k8xuxO2OqNoV1QZy/KJpfyxKwMZu/iN0Ucx6PuxSdm+guMhKHEB0j36PAEkvuG2ujoqvJ6mGiznO2ItazUVQbkzpHnMeK70VU52YJFu/Ux/O+ua+Hrf6Nj2/atNHtt50zJlxMO8YsYWKKGc1ZZctHFYoWojCV4X6GVtvFNIbv/ajVRbE7nZ8611EqZdcUa8XcsbtzVKkU7Ny4dTSic8+EiEkou/AFiW3ydaztis+9vWdWH1etuHPKpIcpI+e5iuals+uG7zU7L7LWkB0XK1anxtqzdss6SPLnAsn3hsfB3x1TNvcea8Q2WnIdWlKds2ujYmlhaD+nG8atJtG3ayZw+4m2JeSpOdamp6t2nO64xjdMgvg+Vex3Co9pssAUzs4l6yJPn8HBwj485b3Pwj0X3oGfPv9H7hwcdr8fm3X7+djr5hfcuNlta/vO490+jLNuzK77DglXt6Srk9XrgtilQ98K5hfrPeFaLdwf1nfa3nSpo04nWunHOy2vhEukN719TktknckfzMOv+whzSrNEZH2aOfko9p+9Fyd/93SM3zex1rsjIvKgpGRL+pbd57itliX1Wf50TVaY6vDUsrvl++75BQDgwC9/CQCoN+wue9ut7+QPnYnN39yC3FwOft3H1O6jmMtVkWu6u8pRtzpLX4C4k2HN7pxzPiDOG1SKOs4l52iK5jSKkqZWcjlLrNJ3Roup2i/OhcO71txH1pQUUrVanp+cA4r7w/XPWd3HtNVvlG0/WGOGVJ0GO3rlc+wayGSD82dZDRqTKav5YrLF/Zubs1oat5UF8ypxfjB4Nj9RO76W2DWQ9WF891nnwlqoOasnGrPOd9G5CXjX1lI6W0FUgxWldLzuFl+e7xXTnHheLtZaWd1QgfNVWW2ZJRDstBhdt/YesyMkO0kWCsX5i0V1cjlLRdmVMDqH9j0bALJjpm+fxi3kk106eS1EXeh4bVgSxnaf5Xnpop/nvtlcTzZ/1uFDhwHE5zyXs7ofS6RYx8bXRWmIz0NjfVou8bpcNKeaW45d/VjLlCslaxB5HfO9CYPU74g2562zRMm2v2FyQ2K/orSUyXA+WVvWnOJcaG5/xi2hGxlx25+zZGuuZrVcgf3clDgPmdULssbNkrJavTpvb4FcnvOSxf9Es/ZuOqjYOt02+buEtYCsw8zb9+3dNUyVDuGi/3YZ2qVW/Pu0ABx81F787EX/PwDgzgdcwjUz5d7bHTu3AwC2bnddDHOcxy7P63hxvXbA6zUtWW63w7jWbPHUZuG/J8u30s6MS6w58V28+k7nePFkquet9TlXZr/dE5WEyYOVBlvyoFA8VMJxXz0OldOraJw2h9AHqvnqWu+WiEjmqqdOY2rjUfgtP/qY9OTsRmz/5km47/J7UDlVEwiKiGRFgy3pQXJeo0FZ7t1A3okMLRk49IDrNrjvPlejlc+7u9Cbxl0Nwtb3bLeB1ixmHjoTzaGTq7s7n0xpqtYpzQvjboRRMpRKF8pldlFjt0G7K+uz/sY9zjviUX2QvZ5JFe/gp+/2Rp+h52fu7ZgLUYc5S8DarA9C4vt4/iveyWftFmtrrA7JkoQwsNQmaCW2H9j3pWLqE8dRuzgmUe3EdqJucFGtmHuedSfR8dvdet6NrzWSyZ07puR8aVFdQpA856x9Yt0OEybWLjF5mrROiHHnOrdWpiRxssrugpwzqWbrYbdMdvkbTRxDYG+GF3AeMJf2MHVh3RpTnXQXzWadnSKTdX28brkfYVTnZ9037ThZ18RrjeePSR67FeajlNLtD89jvP5422XrUJez1IzraLYsEWVtlm2jxC6DTAvDZFfL2elpWw+79Nk+MYWzT7hHc6HZdVi3fWUKyfeM5/iozQ3WtAS4ELrn2VGS1z+7EjKR43Y47xbPLWsLR+znnT9/3I8ROy/lcrLGkc9XrPaMUV5Uc5Z3y7VCq7fzG/Y8azDZ7TS+BqLOpXYOWc/JAIfv76zN2ZWL6kPduirBHOADxXH3uunNR9D229jzul9Bu9xC229j77n34ccvcvNzeawTtet6fNMmd6yW5hWZ6qfmXOs17ei17qfXOak6J2bREnwk8XxwU/8t3zvt++ATrmySoOXOhdnr8cW/25Zev5IuebDQYEvWtfyBghtonVHBzDkza707IiJDo3LiNGpb5uA3feQOFnHyv56KX172S0ztmlrrXVs9fUxmLCKyHBpsSUfp+bUGpdPdseDqLncY7e44u7IdPeASrYNWazC+cQsAYNs7dmLTtzbBr/vwqz7mHlZF/dwagjq71HGOHaufaDF14o9DvF9+wI5tNr9PiXeybc6iqAMduwWy5sPmzeJ8XBYTxN3UWLsS9WBMnBPWG0RzRDH14HxXHhMhq0WJ6n3YJXHU1gM7VkuHOIfUSLK7W9tSn9DOcb7A+cDiuh0gTkGi+h4kjyNn8wgdPXLUXu/Z+UrO/cQ7n77Pzn92V97mrpqYGI+2yTvnTGp42eRsH1mnFp0jOye8s89zE827Fc1pxjv/TN34HvOcuO20ovW6Yx+N6pPytlxy3qp8NK+VnWNLeVo2fxu7yfF42PWPdUKcs4pzMLGGiwlbVLPFudOKTPSsPrBlNTu5sh1PEfPNrwNyx5+c04m1cZwTCwBK5bx9teSFia9dYDPWrY/Xv8d0z+NcZqzHZPqAxPM81mZqDrTod5C9Z6wVY71edG5b7Ipo3TqtOyDfe17/0zMz9jzfa5v3KrrGbB46dte0OsCCvdfsPsq6uOjnNJV28ndc094rdktkB8gxq/kcG2ftJmsb3TlnzReTNLdNq8ccc/vAeskG9zHVlZDhQoUdGAPOCTiSOPaG10AAYLo4jZbfxOOu/xXce+HduOtlPwEAHIY7F3vvdb9nJ6xj484zTnXnhB1FUwlXWrc0JLu6p3SKE/1fcqk+tttrGrfSY+m961+n+bE69UALEst30m/9XLe5NvvtYqjkS9YLDbZkaISXD2Y9W27bgrldVdRPrCHMh8DGwaxXRGQ9m9kxhX25+3HSd3bhnhf+DO2RdvcXHeO899nA6CXqTCsi2dBgSzpa6V25Qd+p5F3zitVl7LvbdR1sWDKFlnUqm83hyOlHkR+xu3oWBs3ZfEh1u3vM+ZHGx1yKUraUhzU/AOAxKRrhHEtuW0yYeKeetV1+jne4bZ6hHGuY3OvjdCZZa8WbrOlOjJxvK1+0u9nRHGDJO35MipjacTu8283OepwGjIkS94NF8+yiyAAtmu8qquFyX2etmyHvlk9udLU7Jasrqs+55aanK7Y/nAPIfYnrltz2RsrJpG1mJk5V4roat62o06F1pPM9zmHmvjKB4nvD+h4mSKyTK6TmRGO6x+3wTj3XwzSHiRJTCiZSYzZXGSOFKC1M1dGNWxLAJK7KGim7GJjytSwVYXNC7lc0D5glWaxXYvdFpkDsVsdrjOuN7zKzE2RyTrcyXzCvaMtPPcbEtmzvASas9io6N+75aavN8pA851Hy02RtIRNU1nYl54UbszSnZp0n21bDxa8tpnmWoPEr0zler4Fd323bzpzN68UuoHwvPHvvN2yYsP1OJl+sy4t+DmY5l9+I7a97T5qWtDF15DVQqCfn92Iq2rCask2b3HaL5TiVZB0YfyYL9jPO32N8X/nzwXSQr2PdW63Gny0mmVYLGbrnZ7YfxHbveOBoEy1/DnVL9Y4ccecqbLv1TU4y0doGABgZj9NooPf5t1aaenR6ffzvDlPIxTvp+V+139F/lFWytny9BjvxLi+vvrpTDVfW52I561faJccizbMlQ8P7ivtvJQoHCq4xgX4fi4gsjx9i5MDYWu+FiMi6oGRLFug0m/xy75b1+vl2/4M2L8zlydot3qmv2F3yIweOAACKZZckFGy/Jm/cjB1f34HDDzuMttcGLPFiwsD6C26Pc16xkx7ves+fd6XEuYg4x1KdqYm7q9wIkh+z4bxbvLPPO/FMSXhKWX8R3V1uJLsA8g4664xYfxHtsz3Arn28i12zxIjJAE8917PBaqG4Pu5PdNe7mqz/8OzcVjjPkZ2PaI4mu2PP5bgdLseujDzeqIOgHTdTpoDJGb+242uA9TPx3F3sGpisW+MxsJ6OyQ/fswmbS6wedfuzznmWFFQsBeE+cT3VCuc1YudGq0uymrGidYZMd/Pj/F/pOZzylrAxZozq8KxershaLPvKGjKes7gLXbJrYs32n+eH70kI1sfZ0naHP66PsoTLUhTWrvHnwq3DvgbJtISpH+vTGrZOJqSsAeQaclHtE1MRS9XsvWWHO1htFq9HXshMUqP6Nkv/mJRy/9o2D1a6AySvy7b9fDQ5r1vAWsjk7774cUuRrLaMXQv588XlK3atxHO0eYn94O+FunVCzUW1lnwvrUtnnvP1xb+LqnN23TbcsWza6H7/jY1vsH3jzz7TvmRC6/mWjueT113etmVHimarhft334M9f/4ENMcb8PIepvYcxj2v/Lk7psAdy9RBV8NVq7o6uK0nn+T2Z6PrWpjzlp6Pq1+9/nsS/7sVLLl8t8eX2l7nFG3pdfUvTH1d/P54vI+9nXNel/Hr+u/IuBL9v5fdX6vES4aZBluyLuQP5LHj6zswc9oMpnY/iDppiYgM2NSOw8D2ELl6DmO1CWz5xx04+LR9qJ45u9a7JiJyzNFgSxZYmGwlO4gtd3393uVjh7/6nPsH/vDevQCAWqVuS7jLd9t7tmHrV47D7OmzqDx0Fl6Ld4/d3Wd2LgPvereTKRLVLPFozJvfiAnS+Ab3kZqS1RSxCxnncOKdcx5j1EHOEisGQS1LoHJI1q4EqTmTkJozivMb5VmvwRVGyZjbj6rVo7HcJq4Bc8sVSy5RKJYtjbFzMGd1HEwsmEx4qW5u7bY7p+USU5DkcbB+hJdKgTUu7FJnT7CjH1MmHjcTjtGRuFal1UzNs2XryFl9HLfJ1CBKLqOue5xjjF0KWcdm6WSD3ffcsW+w2is/lXAxdWNCVUrNtcZEgcfIxGyu4s5tlO6FTHlyiWOOuinaYbZY72PXI+dy4leuj+ewULSaRbtW2IWuEKWLySSXCRfXl7PvW3ae55gqAcjb9cwfGXYFHLGEKkp66+k5xJJd+9L1cOWoOyfr39hVkPvIbpecp2rUzpl7D5nATkz+X/auO06KIm0/nSbPJnbZJWck5yTBeIo5XvA89VQ84wVPzCiIGeOZz7vTM+uFzxNRDGDEAApiIkjOC2ycnDp8f1S9Ndu9DLskQe3n94PZmemuqq6u7ul6n3qel50zuqLpuiEWkFwEqRzS2xELmGc77Tms0uK6sI8x6iPSZhke+/VC9cfjrA9pDJWUshxvdE8irRbdF6j+xgZKMpy/RzmvrXSG1alw9otcOWWeq8wCz1lHP/MSjTfOjNI9JkfjzO4+m/GnAT9g+nToahYHXTEYNYdtwYpLmUuhwcuNxWvZe854te3SlfVNcRkAQFWofuwUu5tvqzl2rM3aG/Xtqq6MxrvQhznyEH7f+rDm2izx1x61Z2/ttyf94jJeLg5kuJotFz94tJlTgWSvJGL93TxaLly4cLG3keoYR8PI7ah4vz1Cq8P7uzkuXLhw8YOCy2y5+N7Q+mgVZ3k4UxBrZFH0VJJFTmPc4S7Bo8YDI0Owves2SFwHQTopXefuXR7SoNgZLRFl5FFmiloHeRQcyLvvkVuf6tDLEEuiSuRAx8umCL7qyLvDWRRdtmubyIVP6G94FJtcBQUrwrcirYt4z7cj5z76grQxAGloOBuUpPK526FC+bmY9iaTJRc1rv0C9RH1C2cdOZMRCjHmTxMOfsSIEbPHmRGQ5oe7r2VJKUKMA+US4romAIpijw7TMKKyTeG+R3oX2bZdirMHpN0rKy9n2wkWgn1P+YlEvinOXsQ4i0N9QM54Fmn9eJ9k+bhrrK8HkO/7DNfY0PiSZWKU7GwLsT0Zi9VL49jvJ0aKjzHFrkUh3ZSf2EChE2LtI0aLNGCkHyKmUOjo+HEQi0nOeACQzvBcTVwH5CFm00f6OY3vy8oUTBAfV7JGDBW5d/LPRaSfcqHRtUk5xOzfa147G0h9QA6RxJBqDk0khBOdfWxQ/RaIDac+4dcv6QLpuDmjJgdIAEcsJWe0hZ7QXg99Ltwa+fcqsbbClZEcIll5wg0UgI//TdvG48R0cZdO7phK9wDqIz3ncEJ03FPyOfqI5eO59DjTS/egWLsIjGEmBl87CtniLCRFQmRwA7ZP2czawfVt21YzbVdJRTsAQKCY5T/08Gva46V7ol1zuKusUXPQfcL+aYu6oB6td0MszLzYVxDQa34c7Jx1+f4dEIl5tsfb9xYLVIix2tX9WrNta10pXcbLxf6EO9ly4cKFCxcuXLSIZMcYqotzUFIqvCk/yt+vROy0RqT6JvZ303Yb1n2U1mD/tsOFCxc/XriTLRcChV0IC+3AX/dygEhoBtIsIpuMMgZLoSg5f7WQFvvouinyxGR5VJ2ESyYxGFz7QhFdxfFKkWOpaa4rfmykb0ml7BoMyr9F+hpyA6QyVYdOhyLv2bTdCU5ReO4lh57H2bmiHNPO8hAjIPJ98UOgyLjEmTdyIMvxPD8JfjyUoykY4sdlkZaMa0u4foeYMM3hmEdMheRgCrw8Kk4aFYrKE8tD/UeMCR1uXvOTj/JTviqheeJ1+YQDpH1fUzA23I2PD1iL64IsiXInsdciypPFyyFWj/pY6Oa4Tijv5mfXFxE7qGrENrL3xMSR3onaSTnIqDxilojtJP0QtZP0TGleHrGcxC4RCytcNg0+GDR7PrKs5GBz+HF6+JgpKsqzKjnOEue4TohYFFFWlpgZrqVyuGTSdqqD6XU6x1Hf+jk7Q+w2MWl0HRJbJ4kLlL8IqZhk2y6/md2tjc6dLNhF+/a0v08lbSL1ET9nQlNpZ9KIvQyG2LknbVk6bWctCaSB9PCcaZT7qmnePWeeNV3kRyPGiLWR9KM+EPvo499zxpYzV8S4EttOfU/6O9I80ngi6VU2mAKCgOHJwPRm0e2PB6H+yBpUX7sRABCpqwEAxBqZa6yvmDFcbdpXAQDK25XzPqFzyntuFyc7+bGz8x0L/57ZnTKdTMeOdpPE78GOf/QKVdV8+53X3bxc+7HmWcFC2+0cQgu5j5i1ltimXd1/Z2i9BnzX+saFi70Jd7Ll4oCB+Qp/Uvp+XWhduHDhwsVuIN0xiUa1HmXvVKDx5PofNMPlwoULF/sKrkGGCxcuXLhw4WK3kOmUQuPYOnS9phf8y354iZDlU2TIp7iPQi5cuNh3cJktFy2i0HINoTkXyVN3TtO3dqkEJRxNH/IiOAAAIABJREFURJi7YDZNywLZ98XFbKmN16dBbeSJX30ekbSYlqxpHp7Eky8F8lt8uZlI8mlfqieSyzZBQCxnyvBX3baPzJfaaGSyIVPZfDkdX6ZkObIIU3k6X5pGS8folZYd0TIlSsBLy7JoiRktZyLROyW1pOVRuSY29qwvKFEutxvnS+2oPlqaR/bR+WWEvH1i2SMtqSOxvd3IICeWsvH+Uu3GALTEjc5NPjmzaft+R6BRRCYMwoiClkfx8UJ9VFpaZDtWsu02dCrJsY5Jsi/xCQTsS+boc+dywOISVk+Ym4XQ9SCRtTvfjpYFUl+k+ZJOkaiaL/cLcCMOYfMvEu3yJZ58SSb1WZonvdXF8kJ2bmi5Fh0nmUmEi0rY9gYtAeRjmb9aaLqUk736fHZTBVOs/iTTD/tyQcNhAU9tE0svZfvyorwNuW4rRyzzoyWljkTRNB7FUlL+h8H7ir7PLwvmn0u8veLcePmr/RzRjoZB1yM3ujFomaPK6+HLbPlyyvxyKPt1Q2OV7nmhUBvb8QU9fOlpLn9PisXS1HgATdInUOJ0le5j/J7DxwMtD6S2UduTfAkxpYmgazeTsS+PpSWRVA6Nt0SCkmjrSLdJItdfR/c/9Ebj9FrEekYgcaOXTIIlP47VsfID3Ho+xK8XSZxje+L3lpdztW4ZYXNIO3xtzSqzfNucG9tNZgot/25et33/VrTA8bpnhht7unxwV/ffk2TGu4rWJppuqU3uskIXewNuOMfFAQN5sgx5cuuHpNqootcVfdDYr3Gv68ZcuHDhwkXrkeqQQM3I7Rh8x2iEVxXv7+a4cOHCxQEDl9lyIWA6TBfygSHHTEaYN/GI0G7OdJpZsa5mr+kEi+DWb2XJMs0csUNcfK5pgAX0O38gsp2yiPaJQJbkPFuiko00e5/iiX4pkalX5WJ0wRjYj1JW7CJ63li+KRlUcOaG2kTW1Bqvm3+eoqgzj9pSdDgQtPdBLM7aSIYaTkOBdJrVl+SW7WS9nkja66fyRbtk++RVRI/5+1yOi+m5pTUlryVTCknilveKZNsvby5CjJWdUZMp8surzxuE8OTInEmQiCkkm3bOSgmjAuStyslUwx8g0wF1h2Vnc3bzEa+DWSIWzxnKpvLIYIAs1ckUhEwhyDJdF+OLtZnsvf0iCTKZPhBTROYndjMGM0nJllkfBrihhrCNdiS8JpYkyZkFYlecrIxPJOBmx0f9SBBMhUhTQDbtdoYBABTQNcXPGzdQISYUHjKksGzH6rx3UF8IqsyyX08EYteE+YniEPRT6WSEQcmGeTkWqDy7oQCd02aMANmf83sCjRFhlkPnUiWzEmKI7cYdNH4tzqgJjpQYPn6dEPtJ54aq0Tmrr4hExPk2er12wwuRooASMvPzS22nPqNzJtpM+zv6QHEYY9C5oXGZy9J4Z9dHlDO7Qc4sFxeHkGoXRVSVMeymsVh139dI9okjGW8EADRsZgYaMh+vut4JABAoZgwXXV+SYLgK2YfvLqO1e9gbxEaeTaFxLL7hn+/ZqpBdbcf+Imuam5DsmnHG3sDusnEtMWUuA+ZiZ3CZLRc/TFiAVq8hMTzhslouXLhwcYAg3TGJhjG16D5lAALLQ/u7OS5cuHCx3+EyWy6arSd3vm8WsXFG5fZyhNHMUaSdR5F5tDwZY5H8WDIBmKzeVCYtNAjEXOSj1/aots/ntx0PMSH5xKHNo2wUaRZJVYW1Oul8uJU7WZoLC2l2aaXTZB/OosHFJWx5DUWZSbtB+h8R6eaRcrLQpugyaaSSnK3z+SjSzuolfZuPU2eCvePHJhIB83aTLbmqkWW7PYqX4/bQxKTldW52G2myhxZjgZdP7dN1YmMS/Dh5FJ1Hs4kRIE2cpuZtx/0OZopASX51y26/TZH9FGcBRd+RjojXQQwYWbXTdjQuTJOSXtsTltK5o3YRsyvs8Ynt48wVaWqyXAsDwdA5tWAMxJzRKDQdDDMxYgGR+Nl+nZJtOB0njcm8tocdJ+n9qH7BUJPVfVNWlNheYoGFZovryCw+Piy7do/YFbIYFWydZK8LlLpAs2udqAkm2fWTnT/1MZ0zfszUZmJoLcuumaR2kwW8iFqThou0haS5EtcDbO1y5OMVrLqP26tnMqzvM5z1JFZKJDmncokpN+zsJqWQoOsfAHx+Yjx5nbwvSO/obCNpsUgHCvDUAnylAI0rnV8HmTTTyBYVs3uUYIDpUD12/Zy41k37vUVWZCSqotB1HT3/PAjbrq1DpHu90PtlklEAwPb1awEAgeIyAEBVty6sr/z2lQXfN6PVnG2xdvLdzssg5NmPXWOwWkoO/L3nQt5FFNJHOdESa/R9oFBfOz8v9L4lhstlvn7acCdbLly4cOHiRwF1qQ9msQGr8wH+FPoTQKp9AjUjt2L0/RNQ23c7ZBXYcOwqoE1zIyIXLly4+DHDnWy5EJEZ03Q+oOw8GpVH6yI5hSNC9J79keYuc+S8p3E2R+ERXDmX13foOR3ZLEXsiU1i+yeTjP0htzqnK5fQ1FC0WUTr8wwKRayJIdIszbYvJSclZod0MuQIRg6H5DBHTBCxCpTMNMWZg5xOroP8GLN2lzYP1wWFefJTipjTuUom7MmHKdosGC3TzjB4PJT0WLIdDyW6JUZBFW6HvFweDZdEsuIs/5475QkdEbWPQTjrgc41Z314steiYsbIkRMfq4O0S+Bt5JF4ft6JmSH2jeqk805aLGpTNMpYRDEeicUTTnhc+8cZBL/fkaBatrOO4hx7WX3kCiec82RWPyWPpfYI50qJtGHkaGd30CNNjgU7m2RZdi0OMQ3CyY+SGPPyQ6EQbx+xT8TSsNd4PGHbjxg/IO+6SYwtJd8m1kSBvY8IeQbIrq+THcyWzPvIIu2WSe6cfPymWYJcM8fZSu40Kite0R7fonIodQq0qA+ZQxphdMoIdi+v52TbKxqNL9YOuj4lD2m7yE2Uu2Na4iaFpg23HDpXSrxOrozkSkhMeD4puV2rSGPFcFynehOHVGI8iTElZpfuf3RtUsJ1AiVSTiaYdkqw9HTMEmkC7eOH7sMyL9fPmTXSd0oSe0/3CmLpcyIhs4JMWRqpoWl44l549QBG3HIoNj26EumBCSR40uPo9jUAgGCY358r27P9VXvS471HDDjO4SVORsOxte1rp3Nhaxu18+12xKLZPy+0n3385eH8rbWXt7eTGRdO8rx7+qjdad/eYo4KsonUNrGih2Da9hN6zWbNsQ9k8b3LeP0k4E62XLhw4cLFvoMOaPP9kOItS4TzDzqOBxiDTRQtx3JWmjggo0CJadj28nyo64Mov2QojM7pJsuXTMd+9klhfuF084dRo2sO2V7pXTliF02QKUkjU5KGHtKRC+fQ4coeSI6OIqe3R82JG5Hsu3/71pq4X6t34cLFTwDuZOsnDOc66uZRJP6A0urIy+5FaOhBSD+Cs0U8wp7kDn1e0iVxVkfLKlBiXHeiaUiRKxuPqNJxpHnElfIMERMS4k5gCn9QEzoN0l80OQydt40izSLvD9emGDrVybYXeaL49gHOdAmNF49EplOUI4rngipjOgnSvpBegvQVIZ5Th1gIn8iTRfWy7cJFYbYdP2fklEcOYl7qQ5U0K8Ti2XVNqRRn9DhL5OFsSIIzZ86hIjQvnKHwE5tI9Qh3RDubQ30fJN2U0jyiKdH55BH6OB8XwZDf1hf0yEzMD0XoaVh6uMYqSGyKI3qqO3J7kTsasY+miPxzt0PKJSbyY9mdIOnYSUdEDpSyyAFFrAnvG8V+DlTOkOmiHtqO6/MyxCYy0NjL50eyO1SSpk0WbCTXrmXtDpEm15YRKwMAHsUhUhJOpAyCCxaaQ963OROe2WEYPbLInhnPn1eK7tJ+fBxm4jUAgGTjNv499SWvn7Mwqo9NviSFXT+qN4T0+AbI5X6Y7U1sf3YBtOVFMPg1L7gMmR+TRIwTby8fl5qPs5Me9mplTATuL4Gky9AHZvP3qpxdo+hkVyk3VVNXTaBJ3jxdd+xH9w1i8/l16slPCjNpYr3ZtjQO85o/zoSS5s/hvEjMFLlSCpZb5MwjF0Ni90gLRtcuK42YW80k90JWrlMjJjtWCph6FsnKLLQJEtRGDVraj97XDMeq2z9Hon8j6rasZ9vx6yxQynKP+fi9j8bv3mMwzAKfg9djZ4B3DTvXVhV25dt5qYU0Y83ZOCc74zyW73eZbUurXH4IcLbY2ZOScwvLfsy0GkYEchzMlutq+OOGO9lyccBAv4gbCKzb+XZKXMFB1x2EeJ/4Pm+TCxcuWgkd0BYEIKWkPENUL8MKmog9tgXQ8hNLYYBB+/IHkUTtFgBAY/VK9r1EJhBkVsLt+0PMVEHRWHBB85ez73nQINczwf5xIxmq1+KTM8hkisLe0vJIX6iEl8c+N3MGcqMyKDmhHZSNKiyVT4aaLDXW22Vh9LNPfF0Uhl6eg16eg2VJMEp0dJs+FGunLUZ25P65n0tv8YffiT+8CYALFy5+GJB+iBGGncFsLjxyUQDO/ETOrssvpaH3+RjOriAfqSm0DptHi3nEdeu6TQCAmq31VACAPOsx4NeDoRflsG3gNkACYlHmopUVGh72wEUOeCGub6LILOXuUYV2xq7TaBqhoigw6cACQUZPaA4HMGI5RB4ifsiKcO+zM17kGBcOB3mbec4jfi4yIt8UOduRU57O20hubXbXN2LEslliLXif8HJIA0KrrygHleJwGMsILZrd0Y40XVQ+RcFJj0THV1xSxNvP6iEdlMgBRK6NlHeJP2yT+2FTJzRylqMHZorcE5MkGBg+Pqkt6TRj4UgnJnIpqfYIvrgOONNDLobk/EgR9UzG+UAt8c8pLxf7lDQzxCRQHixyxhOaQfHAbtek0XESC0kMBn2uORg0Oi46bmKoSD8otDkiZxT4cbL+oevEy3WE4lypeVaG2GUhXzCJbeT6yoyBkjkVMAZkkT40CpWOUcshfUwDZD8/R5RDySRdHHtvZjkDG9/O2pBi7Lbm5drEUCnbj1wONa415JotmWuwdO5kGouxe4LM+4xcMbdtYczZtmrGnFW1Z4xyUZBYGhqXjE3xhxi7otWGoX7gybM0Te6ZocdKoHfOITcsA5PfB4hlB7k0Ck0We0/sLDEOdM8iyRq5ElK7gfy9hq69hnqmwUql2HkkHadwpeTb0TVO45G0rHktIJ/QavZ7FY0zYnbpeqAxQPc6wD6eiYGjvHOkBUvxej2ciSa3Wd8WL8rnV2HlowuR7pYQejqNj9827aoAAKGSUr4fac32DgOgnMJ/L/5H1yl4+fbfhZ2jJd7Dida1veVD3PFvciHWTiy7bbUee8/QUvkH4vOnUy/mXFrsPCX5Yyh0Llp5jELS5WS4pB1+72LXIeetqr93uMyWiwMG0mqaoex8Oz2UgxbRIBmSiDS7cOHie0IO0D4NQMpIUAz2QKzUqTDCOurvXw+ogEdMHn4cjI/VwUTuzLQIdui5/MQ2MyGFiuM6QNmqwtJM6JU56L1+HMf9fSDdLol0VRL+lWGkuyX2d3NcuHDhYq/DnWz9hNFcq+WcuMgFPic4o3c73q61gR3v9ezBLfg4Y0WSScYY6DxCG2mMAABmT34VI58bg4p5bbFy6ArRDi/Po0UVUu4ocqUj5kPkshJ5lTjbxFmbfIS3qX6GorQs9KxCc3xvZ6aIpROBRGKiQJFse3RW6Cu4DiLHI/QWuDZEp3xd9nNGzABFkR0Ge00YImJF+EOwyKPFHwqFMxnlCbPn0yI2xs+XX+VyLFcO5fgJh1gfE4tD2zfyc0ZoU86YAmfOrHwUmbUjmcyL5jUPZye4vo2YI1OwiZwlcRwbHTu9CodH2MeBiBQqNI48sG0g3Drta+7JUZIYIRpfQlvCz70qnPYkWznEKJG+Kcn1dXRVaWqQeqdps4ULHVUgSzQGuBsdabMUh+sgNYgXR8dJijeK4Ivcbk30RpSnSk/pCMwqgT4shdyYJAxOxRhaEsljamCkONtC2iSu/wpyVkLzs2ubnOYMixhVrg0s6gQAKKri2kNQXjk2Tomx8kpsDIR9Yd4+Nu5iEfawvn59LWuvyepvU8aWB26vZu2LRtm1LmmMFQqGOrJycuz7TGwrAMAk99AgY8BEfjDurqhoHqCjju1vb4HvHT/0rIHif5bCSlhIDUmI8SyGGL+sgo57ksiFlqHr3M6EszI4O8avMWLoRd41co8kd0uN3zscjLBgaoihIvdNfl1R+cJpke5BJmlNqB10Hdkj+sTKEdOqk5aQX68Zi+s+kV+JYJgG5LQPluRDXT1jwBIJxj4m4mz7Dl3Y/kUVnG302J1O9xSFGAWbfrQgq7BjViPPktC9w8Gm875RlEIRxpbqs7+3LHvb8/c6ybHd9xOkbMlVcG+7Iu4NFGwL/fYW3HPXGK1m+jvL/nmz/KVy67RdLvN1YMKdbLn44UEGFv5mAX5x2Zn7uyUuXPx4kJbg+dwH5BwBAEA8aMhbFRhtdMTu3wLIPOm3lEGg+FGUKBFYnMkiowiaGGo8xYCw8xbLa+1LG+lZUVXtKQLUACvPX8QTWPNghQgmUPDBx+r3hUmrxZdU8qVrFZV8CR2feNCEs6iITWwliy+tM6geWqboeLAnwwFaFlkCoA8gGybSv5MQfD0Mn8+EpVrQNw5Eau3P4aIwop0bUPVUJyR7xRHpmNzfzXHhwoWLvQp3suWiGZo7HdmjZY6AP/IRHfq+ddEzEdlxODGFuKNeLMqi1FvWMtH8+rUbAQAN9fXi4SyRSgq3wRLuWpWP6IO/t0f2SZ9ErJBM7YZp27/pPkJrRPmmKDJJzlsKRXs5s8Wjwxp39CJdD+kkRG4kHowmdzPSiAmLax7Zlyi/kdCE2V3L6FgoGiY7zqHI1yPZHe7yUTIeQecakyxfJkVd4XTI83KnPmI86ME8wN3c6KmZcjuR3oOYNX6YQvtCubEoSk95vJoek+QcTo6oqKmTUxxn6/gOXtmed0joGSy7FoMYsXgiYT8GoasjNz+7ayBF8sV4o3Y5mku5mkgaSWOKNC5p7hhJLoiksVJlGcFLzmkeCeWvuXmTYCw7EgoApe878Ex4ktXjYA9lWUbmHy+K/fyn3wCpfB0b/SYg1SuwfmfCKjJhrDkCuUWTWDWla6AeMYXVBR162yxCapNrRspClrcgl66EGtgOxRNr0tf8D0mGaXhgGb355xI8vqVNHLrs16xpdoJltoFlWpCUOmjqBtbXHvs1qigK9Nzg/L3DuwKSnEKoyB4dtiwLerYEksyMNIo1HYHQOjghnEwTnWGaXhiw4PFth8cb5eXxw6Ht4Yee6S4mXV7/EiAEWGfJkOJ+SLDgDbwAz9ZHkXxzGhJfjAUAaP3fR+DIZ/PXqWORQPWdD7F2mCZKzroNauUGcd79TVwzk1+OQ+rd8wAAvo6bEf71zfmiiAnl46Dh+Ruhb+sK1TIROvoZaP3eB5B34aR7SHpzO2z66xVCL9Zhyh9s54gqMA0T8TlnIrl4HGvXkI8RPvqFZnkb6RBr7nkUANOBtjn3LiiV7H6ed670oHe9B8GSftiYOAmy5oUvsAm9Bl7PtiM3RNLpyR7o+t2Q5V44cLBj7ZZTK0VwulWKvQq6FTqZq2YKIke9O9ZytTYv1t5yEWwtw7Wn9eztsvYFRMo+ei+cXe2aMOcqFicrShC/4eLUEwPt+N5lvPYr3MmWCxcuXBzACF5yzt4tMClBW+SFPEJlk3kJkFISzCodRu8cAAm5igyyg7jJhJKAFOC2402S7BK8gW/RsHkiYGlA0IAkG6BHhryJhwI9F4SZG8A+tySono3CzEMWTBEPWug9YBrdYBoGFHUdIDGzHAoS5M1tNOi5oSJtA7QGyGgUE4ymD/6ZTBUiDd0BAIFABl5fXbOHWGLkkvFu0HNhKJIBwIKq0pI82La3rBJkU/0gKTxYoLEJBGQARey5RzbCkMP18C4KQFpQAqM0B71fq87UTwqGz4DiM+Dd5gNC+7s1Lly4cLH34LoR/gSRfwBprguwozUuTM3RnNkqvAae1cI1Vqdz97X/MlYjyXM6bVrL3AnXrloDAMhmcoAJnD7pdHx7whJRDrlt0SuxNOQCl80QW8Lq83ONQz7iQw9o+f4gXYLQSNHaemKIOANER0S5i4ixCfLkSjmdjomxJqQ7Ki5hLB49RKYzpFOjHDqcReHLsLL8e6rQ5yftGDEDlP+LlUd5fYhZC4Qo/xXra1pORX1Nug9yMCNGjBg76ity5qOHXsrblddH8ZxpacptZmcdDd3u2phnH7l+KZ5fSiTc+Xif5YQejpXlETnJWFvJvY80VcQ6ECtIhkTEClIj6HvSTlEnB4M8j5AYA3aXQELe9XDHGim6Nem87/KMgmz7ntgeLy8vxCdbsUef5uXDdhzUbmLY6LpNp+3t8/u9QFKCd14AucFpWH3J2dKCWW4gelQNIAHpDLPg9mr569/QWZ/I3BNdMriupnY5eo7/Peo2TAQsFZqPaZvIJTAaJTtv1mclpUyzRbKzJHdEDHBWmrSHpEOj8ReNsIkf6YBCxSHbfjT+LeHsSCwnd5jk45uYZbr26RzW1rDJXIpbxfv9pAtk+9N1SssLLUvn5bDtPPz6lLiWi5hoSZahamshm0mk7/sXYo1xlM+qRDacRWRwo3B8VJswday9CX68+XNIOe8yIs8baf84i861dkVFrI8pzyC5S1If0bVF17DIeSdcMml71paSUnZOiZW2hHMoTcDp3sWdW/n1Q0xZMMRzDRKLwxnlbM6eL0ySgKovOmD7sdWoPm4jytpUsP2LeA5CcAdUle1X3r4DAMAf/Cdv12XYFdD1rJ7K9bivEGPoZKNag0Luf/Sb59RQwfb53mYdmj/X2XXV3zez1VI9e7L97vZdoTKdARgn47Sr5TtZPcFsOfvaEchp1s4WjPScKz8KMVs/ZabLdSN04cKFCxd7FXJShn9JUDwHqqoCZZ2G1BlRxP9cD81Hy2hp5rOLFUhZtO/3GBJ1gwGrBQvRnzo0C4lzI6jZsh0NR9Wiz9mDocZUWEETenEOuT6pXX+a+xEi2jGCLi/1RKxXBGjTun1keQ4AwDB2bbJFyE+yXLhw4WLfwJ1s/YRRKPKSRyHGy47m++/ZU4PQJvDoc9feXQAAZRXM0SxSHxFNCxWFYHH2qWreBfbam7Qr1usspCuYXiJc8wnCK59rrpfgaPjZk+LvkkU3QY3l9RJNlyelqiYg2ukXrExjG0q/uC0fDXU4F9UNvh56uAsCgQDCK59FcPvHtmOlJuRCnREffRMSPFpd8eFFAPIOYuQQZpgmIj1+jWhbdkwl9Z8gvPLF/HYO57pt45leQlUUBOdPhxpjGpgcr6eIH5fR+XAk+5wDVZEhR9Yi/PFU9rnQiuWjvZERU6CEmV4iuPwZqBvfdwZQYcGCUdQFuUNuE6fE//o5TVhVe6RXHzQJeucj4PMHoG54D94l/yw4rmoO+6v4NLRgOoLRDWhaGK2FT7cbj2SfcyDJMpToOoQ+uwV25MdBbNSN8JT0YMf0HTsmp/4NkgSruCvMsdMBMNaw5O3z83naRPCMs4ADz4PR9QhIkKGsewf+r/7B2pdfkwaAaVdSJ74gOs/74RTIkXWQT/8CAOB//SxRarbjITCG/o69j6yG/+Pp9nYaEoK1KsxSA6kTpsMs7Q4dgLrqb1CWzkXxhXkNDOWV09pVIXLdn5GJbgYAtL0q30+C/eDMVuI3JyJ4xmuQ1XpkXu6O0BMLbcdMBhYew0T9P37GjDQAeKbMg7w2Kvoq3ETDYhzZFZlJA1nfrGmAb8qHUMlZkrSQxFTdegiMrsVAwIT6+GIo76631U8wXzqZ7cdZmFg0wo+HX8d8/AX8jDUqKyuyFUNMGEW301k6Z+z4vNzL0eTaSpPrBRWTDDY0WIoOWcvBo6hoW1EJVAArn1+G0rfKYGQMtJlTAS3hQXJELK+4oWzLUvNlm3SeFc50kSMoMcCUR4tYQ3Jppe1SxB5zx8+AYOe4Q6TDUTSbIcaY8sTRPYtyknG2mmsOaf9gkMrlOQmp/dyhETxBdU7PM2SxskZIfYBBU0Zi0bRPEe3ZiLb8nhMuZixmJslYv3h9A2t/yKlt2fnvj/N3zsku7V7E36nJojY5t5MKfG5v256yDi1ppFrLLO2rlU+76kK4L1iYve2E2NpzJzl+IwuW59B2OQeN3MJzVr4eh361BVfDnyLj9X3AnWy5OGCg39X8wcKFCxcMv6tbiqW5OD6pGgUAkGIKvEv9QCoEpUEVkzY18gYelPvj4i7toXfJIvnLGIyujZAlIPBMBtqHe9gQzUT4qGdhWOVI1I+Ham3dwwJ/fIhGs7h+2gLMfmsDLNPC8cdruOOWB6Dg9wAAo1RH7RnbkcmkUXvMNgycNAyQgG2DNuPG+Tdh9ro3kTVzGFk+HDcNnYKu4S628t/aNBf3f/sQ1kTXoK2/Euf2PguTDjpPfP/ptgX49btn77Bt49qOxRNj/7bvDn4PkaiKYeuQTRgyYzS+vGYB0GF/t8iFCxcu9gyuZusniJa0Wrs6Jlpe/71jzZYglppFGndcv9E0um0C4fIiRP8QQZzrQtI8kpvj0WWV8h1RvSLXFOVRYi8UKRZ5kdT8kijSIJGMq7GRuZKRToJc9Pw8b46wvObDkDQXtFSYXAoDXFdG+hxhYS2iziw6TXok6pN8W2m7BO8THlHnEXEfj2ZTZJ40WKQxIWowxaPR5IQX5GwinQGh1SJ9FI9SEzMhq7LtvWXYtTISj4IL1od3ss6j2eTER059gWY6OiAep7w8DH7ukpbNch0ROTVy7Yif63goMi8IJL4/nbt0OsXrUmzbU9/SuRUnnxgocn5s5hblXNtP2khiBOw5z5oxW7JDI8IL8k76DQDg7NOLsKz+O7x18kzIMRWlH7dF+rAozLbZpsXgs+rF6NSvCkVnsHOt8bGgZ4h54KyLxLWdwtRPAAAgAElEQVQ/Oe6+yMdQMrIOAJCN5ydRgZLO7LW8G4rbT4HqrUY2dQwMk+dTa4jajikUYhonk7PO2Syr28/ZDtLLkbbR4MwXaZVIK0kaJmJpSFsY5A6RZW1K+fZco8jHXemtjGlruH44ACARY/cIOvfOnFWhMNOAhbneSeHXHV3HxIDlmhmEsPbF46zd2Qwbk5f88WOsXhPBzdPGQJaB6bd9hnZVCbw+8yokIhfAyBH1yxnjOgsV53fB8dUnYImxBDeOuh5FnjDuXfwX1KRq8cFpbyGssjZ+tHE+Tp/za5zR6xc4scvx+LLuS9z35UO4ftjVuKDPuYjHEojn4lgZXc2OqZgdU012OybNvRhTh0/BBX3Ow7ZtLBcZXXOU+0tomfg5onuD0ChSxJ3/flCeOXJQpT6icoXLYZr1jSps+9lrht8jiYWnnIXKWg/afdURi6YvQLRnBJ26sVxoaX5vpHoGj72Ft3sWa94uyjKUyZyVvM/+ef4WtCvlOWkLyfG6c+w77VYr6ZQ9xL5ii/YlmjOdjvt5AS1VS+Xsbv3i8xaGgpPZaklvV6jcQszWj5HxcjVbLly4cHGAQV3vgbJVg/PBqWVbZkDvnIHZzm5Q4YRcq0Jd7S1YrvgtbT8RAKDULoKcVhBcVAL/qhCif9qGxNm1kHnSWZqID5DZxGhvPaZIcg5F7WdDVtIIlG2GaYaQTR0DNtE4MGNbqVvG8T/SO99wH2DxV7V474PNmPmf4zBhAqNlOnYsxRFH/weffv4kDh4JRGsn2fYxywy8ecUrmHvxO3ij/WwcGh0PI2RgyFEDMfJf4/HM8hdw2YALAQB/+fZhjKwYjnvHzgAAHNHxEEQyUTzwzSM4pxfLPRjSQhhcOggAUNqmDADwt+V/hyzJOKHzcd9LP+wp4lVRVGMThtw5EpuP2IiiNiHEDosi3Xnv5uGS1tjNK1y4cOFib8OdbP2E4IzEF8K+j2DsuH75Mb72/2K7YJkiMeS2ZpqmeBA1LQu6YaB04XQoiRQ2HnQFwCOuxUUsEqw4dEwZ7pBH7l6UTEqwRk0OX6xz5owM5ZfyWfakqxketaVIODlvUR0UT5F5YJxYDHJIzEeTuW6CXA5FHhb2muEMgarZHeyIrTObh63YCzWAwnR8O3L4yzNP7HNyfSMmjtzZ8uU6ijPJ+dGuwzB5yity3guGGCOhecihzO5eSExG0zEqNB+8bJEnjTNaKjkgUh4Syv0l8mJRG9krOSdKnCGTmzjH8S2hfeeD56sgYr+szedGE/XZ82plBXvJHRmhIfCvUmQPicLolBP7yeRkCQvSdgWeOSGkT2+AGdjxWn9xvW5mzJbZdj6sOhNvdXwDN26bjnX3bUD/2Qfh1imT0btHd/i5a2JVr8G4Y+r1OP/sMwAAJ57+K5SVluDQg4fjwb89g9q6eowbPQx3Tr0c7SrLYeRy2LhlG8afcC4emH453p33MeZ+/DV8Pg/OPv1Q3HbXeniCDTD1SkAO4b33SjF1+v/hm29qUFTkxSkn98TNN41FKOQBjdOt1VHcevt8zH5jDSLRLDq0D+LXv+qJyy5imqy/PbEEr8xah9VrIvB6FAweWIIbrhmIbl3Y+DB1A2dO+gRlZT4ccUglHnjsO9TXZ3D0ke1w582D8eWizZh+57dYtTaOwQNKcddtw9C+XQCZTBabtyRx1Inv4aF7x2DOu5vwznvV8PoUnH1Gd1xzxVAAQCKRxNU3foHvVkTwr6cPRjrJmK+t25MYNWEmXnrmaBxzdGfoOvDci9/hsb9/i/UboggENPQ5qAx333EI+vYpQzTCGK0Yd0u0TBPvvbcJ5W186N+3GMk4GzsD+hahc+cwXptVjqOOehSyJCMV/Z24Li3Li+U1q6AqKsacMQLZTBL+OUXoEemNfm364p1N7+GSfkyjt7R+Gc7udaZwfYUEHNphPB5f+gS+qv8KA0ODWR/y6yDDJ5wvr5qJg6vGoEO4HQCgKMyYLHJGpfFP1z65uEoysYysrcSGE/se4PeGfAoofm/j5STiTCdHzFiYs5KWxa7bvEus/Z4mS0CyXRT1QQWlK0rgUTwoe64CS2bEEe8bRX0tc5DMcNYTYK8ezmzv+q+YfaWH0+bfjkJOhbvGZO070P2zdbrr1uJAz2G1KyiY84u/EnNEP6lmgXxYzfYvdB+n987nn1YOlZYYtmauhy3l4yrUHvp8J0zZj5H12tdwJ1suDhjIc3c82WoN1NgG+MgW3YWLHUBd7YFcr4J+9lSTHhLtE00pI0Fb6UP1iyuR65lGLMIexP1ePtH2U1JVVk6ML21TVb6k1O9DZlwCbS7ojNyAJK00y0/mTED9xofovRuRnRiDCecyQvY+v9yXpy5Yn8TGDzfixpU34eLLz4E/4Mft9zyIP1w9FW/+99mdHvuixV9j9Zq1uOmaPyKdTuK2+x/HBX+aitdfetS23e0PP4PDRvXFQ9MmYdGytXjgidfQqVdnXHTBRAAyvludxsmnPY8jj+iCF58/CRs3RTB12sdYu7YR//u/UwAAqZSOk059BbW1KVx2yQD06FaEdeujWL8hLuqprk7i/HP6oE2ZhHhcx4v/WYtfnD0P775+JIrCmthu8Vf1aGjIYPp1A7Flawq3zPgWPp+CL79uwO9+2wMlZQHcePNiXH/TYjz1+Djbsdx611c4bHxbPHj3KCz8sg4PPrYcbSuCOO/s3jvtq6b4ZH41rrzuI1xz5UiMHF6JRNLA5wu3IhorfK9Zuz6O7t2Kmn3eu2cxVqxIIBE9BYHw8wCAdPxC8X0mk4GqKkhfFkMulUD813WoPLkX/OkAVpgr8tuZGZEsneDheb5WRlaLyZatTbF1+KbuW9wz7s5WH/uBgkzbFDJtU/CHgshWZtFn6gAsv/lb1FewyVY2w5YXcvd9Fy5cuDjg4E62foLYV9GofLEtMGe7WT6t6c+ms4AJBAHkMlnoWZ2zGRLe2fYOslYGJ3U4SbAk9NBKy3Up4prJsHZSZPcv3z6If373DL755SJRJ0V5iTEiBkfTKK8PfzDmOWModw3pEUg3Ru5spFegvFJ+mbuZUW4b/nkRZ+WoPGKKyNWNGCFieajcVCqLBTWf4ZyPzsN7J83BoHb9ATTVqPB2cnaP9BbEwFGAinJGPbf0Rfxx3mRsOH8lQloQG+ObMPj5UXh+4lOY2OVnQiOTz3PE+4O/kq6CWEPKn0QTHJHTzBG1axopo1xiImbM99U8YhbD6lTJMTEfGQeYLq56fg36LByIFyc+g+O7H8P7kJ9TYvV4WyxYiN9bjSsevRbLV6zCrH+xB2M6l6pgWNmxkU6HOk/TwrDG5RB5cQM877DzGMlEcfVHN+C1NbNhWiYmjjgSt4y6EmUoaTbJokhjLqcjEo3i1rum48235yMWT8EwDDxy3104ZPzBgGVCUVRMuvRyvPB/M/HCf2di9dp1AIB58z/DuWecAAAwsnHU1tXjkZsvxvOvzMbHXyxDY2MM1VtrcPtfnsSVF54Bk7MOPTtXYsaNlwFSFuf8eRZScgj33F+Liy8KQZYl3DHjQ3TuXIQXnz8RiiLDNA0UhT04b9Kb+PzzbRg5ogovvrgUy7+rx+uvHI8uHdm5Gz2MTT70NJtwTb2GJTeOJ5IwDAvDBwdx6LHv4823t+DUEztCkmVYkJBIGnj8wYNRWsLKWbCwDi/9dz1eeHIMRg0vg9frQXV1T9xw89cwdAOhoAcBPzuWAVkDd986AgBwzFEdEGnM4aG/LsX5Z/eE1yNDkSXIsoRgwAcPz+/VGGMTZ0NPQ88msGjRFvTrU4KLJ7EJWjpjYNTwYgRDfqTTaZEXjK6jVCqDaCwHrwfYvq0WpWUsR1SZVoziIi82bk4ARhjpxBEIFD8C0zKRjFwASZbRtUsXpDMZLF+xAt06dYJZYmHpk59j6anLEENMJKDuGu6CbxqWiPt4Nmtg4dbFAICGTAShMNfocQ1jJpPBzPWvQpM1HFV1uLgfBoLEapPujOs3+b2hzBPmx8Zz7in8/svviSLPG2eihJuhSTn26F5o153SvcoZ5CD9Kd2PfV47655Jp5GpSMMYYaDfNYOh36Uj0SOOFV+eDwDo3JNp0Eo9jLkjxntPsePfS7rXtI7J2lWnxAONKWiJTSHs7WeLHfVHS7qwPdWNNT/WXXNM3NdcX6Ex0lJ/NCvH+QdpMXej35qxYMT+7T+J1AGH3cta68LFAYo52+bi1c2z9nczfrSoClZizqmvY0zVyP3TAAtQl3vhWeiHZ2GA//PDs9AP76IAvIsC8PB/2kI/tIV++D4Io/N33fDKAy+g39SuiP2pBrE/1SBxRS0SV9QieWU9+ze5DsnJdUhcUQOjR3aPm6oPSSM5uRapyTU467vf4sPYPNz/l1vx0IO344vqxfjtRX9ssYxL/3w1PvjoQ9x7TweMHjkMHo8Hk6+fihg3fOjdszsA4Mbb7sGwwQPx7N8fBgC8Ofdd/O2Zf4ly+vXqjJvufxafffUdpvz5Ajz98M3web149IkX8Nb7n4rtfjZ+KCBl0bb3/bAsFSccMxbVW5PYtJktk1u4aCtOOqGnMBMBgJNO7AFVlfHJ/C0AgA/mbUT/fmXo36+s4HEt+rIOvz7vA4w+/G30HzkbIw99B8mkgXVN2C8AGNS/xMZ0de0ShEeTMWJoaf6zzmxCu3W7XZ91YoV96euxR7fH1m0pbKluveanf79SfLOkATfdthDzP9uGbK51rPuOnm8sK/9IbplhpGKnIVD0AgLFLBXAYYdMQOdOnXDVlClYvXYtttfUYOpfb0MEESiWguDCYsACzup1Jt7eNBfPr3gJjZkIPtgyD39fxtJVUDDDidc3vokJVeNQ4i1p9bEfqEh3SCPZLYHSRa1MxOXChQsX+xkus+Vil1E46kYRJVon7oyQWE222sHXhcAjpxm+TDAeiwMmUIoySJDg8/kgKwpU04KqKJB0Fg1Ncy0AucpRlEXz2CNQ1F7ysdT1/Dp3ckujKKwzmpvNsQe8XJa78HEmxx/gS804e5LN2R/eifnSuB6JG8QJvRG1Jcej0xRd9nFXQdI/OB33NE0VzIsFi+RrQm+Rd4dj+5PjGLkD0rmlKDXRQ6ZlwrRMeGQNIyqHgs6iYbHjJcaMypcsmfcD02cQ86UQA+ZwpCQWUrgaNukrETu2LHg+CUJKKcgeGstHxvk+1Aan/syAgeQjjRjelhkG5POX8HPKPxCKLTMftZYA+H32yDy1mcZCcZg/1Mv2B10qf8Hnn+PdDz/CzJeexthRjGmpqizHxFN/jXkff47x40eLPmbHwc75gs8+x4cffYrXXu2Pww4twWszw+jWpRPWb9yEp597AZdeeC5Ufv579eiKu6ZfLeoeM2II7nvkCfzy2DEwDR1eTcbn36zG43dNximn/xIA0LXT49heW49X35iD3h1PBwC0rSxHhyE3wrI0ZJLHoKKCsQXVWxPo1KkIW7fGUVERQIrrdYglKSvzob4uiWw6hdraJCraeJDLpGDxgU36OY/Pj02bE/jNpHkYNqQc980Yj6qqABRFwlnnzQUUH0oqKmEaJhRVQ1kbP8JlFWLcBMMbEAp7UFzeTpyzUBG7L8hqEKGiEgTDrK4qr4pAOMzPlYIOnVhb6iIWKtv5IMkKJEmG6vHD4+eMs5ThY8CCaVg4bHwlHrh7NP7+zxV48unlCARUnHx8Z9wyfSyCAQ0ervvzqGzy19AQRVmpD9VbY8jpunA7NAwTkUgG4bCGVCoDzesFEADwM4RKHgMgwYpegL8+8ggu+f3vceSJJwIARgwbhtNOPgmffvoZlJwGFT785qAzsTyyAtfOn4qrPp0Cv+rHlGHX4obPpqEy2FZc07QSYGVsNVbH1uCyfhfD0E0YZKhCjBFvIzlG0nXgZKByOfZ9ijNWtGyW7kHkdEr5uIipCvLPaawQGw7HvYZYfNrO4NcbuWgmU7RcV4M364ORNpBJZVBSwibbjTXb2ffc6bW4TRvbcbaEXWOVnLqYndchOYUyBZiwvcVo7SuGyYnWanf2lGXaUbkt5rPaW86IDpfZZqfSAacGqqUzWqi8ltwIm7koOuXaln27PPNm15Dl27n7Y69ZHwvdGIm7YWvDgcbcfh9wJ1sufjS4KLIMb6e3AQAGvzEEAHBJr4txxaDLAQBzNs/Fw8sexYrIShRpRTily0n4c//Loe3kMmjMNOLub+7D25vnIpaLYUBZf0wdOgXD2w4R2/T4d19cP/Ba1Gbq8J91/4UE4Pgux+GGodfBA4/YblN8M+5YPAPztn6MtJ5C16KuuHzoH/DzXqcBANJ6GjMW34v/rZmJ2lQdehb3wOQBf8bh7Q8TZYz67zgc3+U4BJUAnl35PBJ6Ekd1OBK3jpiOIr7sh1Cfqcf5cy/EOxvfRYW/HL8ffAnO6Z3PvfNF7WL87ZN/4KvarxHNxdA93BWXDrwIp/c4pWB/bIhuxOAXRuPFY5/BMV2OEp8/s/wF/P3bJ7Emug5hLYzRlSNx79gZKNUKRJ9NQFvmxaBPBuLUNqfgts7Mvpke3M5Y/htsz23HOwPnALBQn6vHtBXT8WrkNUS0Rgz098UtN16H4UMGQ+Z6laeefwF/e/IpbNi4CYFAAH1698Ldt96M7t26YuOmTRjV52f452MP46gjDhfNeO6lf+OJp5/FmnXrUBQOY8zI4bj/jptQFA47W8zO4ZZq3DLjPrz/0cfIZLIYPWIYpl79R/To1qVgn7374UeoKG8jJloAMGzwIHTp1BFz3/9QTLacWLp8BVRVwYTxxeIzVVXRt3cvvPvhx7j0wnPF5/0O6mnbt2e3Lvjksy+w+Fum9WmIsgffcCggtqmtb0Qw4Lf9UOY8L8OyPMjEjoCkyKipYQ+47arYpLmqMoiaGjszZBgm6uvTKC1hD9VlpV6sXFVfsD/e+7AaqZSOZ544AsEgCx5ksjoaG/eu5nJ7zm4OUFPLjqWqLXsY93oV5BzbNEaaM5pnnN4dp53UFXX1acx8fSNuv/srlLUJ4oZrRzTbFgC6dyvCgoXbmn2+ak0Ex060jxPLCiMVOx2BIrZUddiQSzB/3jysXr0aqqqisk05Jl16CYYMHYTNV69Fh4u7waN5cfuYW3Dt8MnYktiKjoEOWBVhNu/DK4Y2q3fWhtfhU3w4qv0RO2zvDxHxihg6vdkFdUNr0eP8qwAAm1fdvVtlmUftXRMJFy5cuHDCnWz9hNBihEes3W3uytfKGnZ1B/vehSI8PNKZSrCHvAzXbLF9THg8KmRJwvVF3bG2uDsaU424YeAUwLJQ6asEIGH2ptn484LJ+FW3X+CqAVdgfWID7v7mPkiShMn9JgNgOaksyxLMVsbI4px55yOajWLqiCko95XjqeXP4Dfv/RbvHf82KvwVSCXZA+I/Vz2F0eWjcd+Ye7C88Tvc88296FzUCX8YdCkAoC7dgFPeOh0+1Y8bh1+PjqEOWN74HTZGN0HPGdBzOs579yJ8VfcVrho2GV3DXTBz7Sxc+NElmH3cqxjsHyj645W1r6JzoBNuHnIT6rJ1mPHNPbh6wXV4+OC/QNNUMWG58pNrcXrXU/HL8T/Haxtfx1UfXYcBJf0xrGIowuEQ6rfX4+D2ozFpwLlQLAWfb1+Iyz+6CrIk41d9fwEAUJroKiRJgmFRHjEThmlAkmXc88VfcOfn9+C8fudg2qgpSOlpvLV+LhK5BIoNvmxJbaJLMgF1gwa5UcGpvU7Cy+texi39pkGSJJiyiXgujrfmv41bR0+H1U9H2szguFdORMSMYNotV6O8UzH++dyL+PnZ52P+u7NRVdUenyz4HNdOnY6rLv89Rg4bhFg8gUWLv0ZDpB6K2l24Q6qqBnB93D33P4J7H34M5575K9xw5Z+RzqQw9/15aIzG4A/4YZkmLFjIZtkDeDQWx4m/OhtlJcWYMX0KfF4fHv77P3HmBX/AW/95WmhTiE00DVbn0uXfoVvnTmhoaORjln3evWtXLF+xEo31MT6u2WRA5wxCpKERiqxAz2agA9BzXpiGAcWrYtXq1cgl6qGnWJmaqsJCkxxQBptcLVv6FSRZwrpN29G/dzc8+MTL6NKjPzZsqkZtfQNURcHtN06GWlQOAJg1uxa/PessADIUycLMWatRVRlAZVs/9JyOEcMr8eprq3DdlUPYOFNkzJy9DrpuYuTwNshl0hg3pi1mzlqDtWsTOKgXm7R6KM9bKAQTHqaVKi4WWqdX31gBXbegaV4EQsWwwNwmZUWFLxiGBHL5ZD9ZiubNj0vOsGj+ELzBEnj87Mb1ak0a53KWQ5ZVvPH2JlRVBdG1RyXTPnVrg5mz1sMXLoOfM1sfLVjFyle9UD0BGJy5tkwdZSUqzjurB+a+txmrVjVCUwGZ9IFcPxgM+XH0Ud3wyONLsOy7JMaOYRPlhYu2Yv2GGEYMLUFtTT3CRWGxPeCBaR2OUMmjACQkoxegR7euAID1G9fj4/mf4tknn0BRjyDi/65F0RkVCCgByJKMEm8ZTMvE0yuew8i2w9G7rJeIIuv8fvrahjdwRLvDEPYV0RXIjlGhnHd0jFyPquYDRKwviJVme/r87HsfP3fkCpqHXcMlkm2L/Fp27SOF5EnXSsxuSuT3Io0YP65cFtHieljdgaFTRyL5SxlGQEeSa87qtrDlrKTZCvLcaYWi6ealLU22Cv8Q5tkT53t7Xqt9p8Vy5vP6frGv3Qhbw2i11l25kLteQde+/KLfJv83qddZkSOho7Pl4r3zmHY3P5ez3Ba+Fy6FBXbYHQ2ck6miZ7X88Lf3ieVkQkXaE3t5BTvxBwx3suXigIHVffdv3NmOh6FdVkfJ9vnI5XIYXDq4CZVtYcY3d+OUzifhpiE3QlM1TADYxGfRNJzfYxJKd6BlmLlhJr5rXIF3TpyDnsVMGzOmfDQOf/0o/P27J3H9kGvEth0CHXDn8NugeTw4pGoCvmxYjDfWvykmW48vfQLRXAyzj5uFykBbKIqCCe3HiyUu86o/xjub38Urx/0HY9sdDMsCDutwKFY3rsaD3zyMJ454XNSVNtJ4fOyjCKpBKIoCvxrAlZ9djVXR1ejb5iCx3cldT8QfBlwGABjfYSzmbHoHr69/E8N49PvUHicLO/1sJoODq0ZjS7waz333ophstYRIJoK/LH4IFw2YhFvGTBOfT+zIWS8T8K8KQrX4Q7IiQ9mswajSUfvURkxcdRj+cvpD+PDYdzB86FComoL/zXwVmWcyOPbBw5CsaMCz//43lkaXYd47b6BHt26QzBwOHX8wRh9+LB77x9OYfsN1WPzl1+jbpzf+eOnvIPOfmWOPOqpZe0W7o1E8/PcnMensM3HLlGsBAJJs4fiJPxMTSif+9tSzSKVS+PfMf6G0pBiWaWHksCEYdcRx+L9Zb+CM007a4X7RaAzhHTBlRUVF2LhpU8E2durQDplsFkuXpdCvL082bZlYuWaDSPJLWLveXs7mrWz5X4QnhC4rCSOr66itj2DcxDPEdn+5/XqMHdUfafU6AMCSJRIuv+ojnHR8d3z62TY88/wyzLh9vFgyefXkkRh32Es4+7y3cd5v+2FLdQLTb1uAIw7riJEjKpHLZPCL03rgyWeW48zz3sPlv++HHl2LsGV7BmvWRHHbrYfgkAkdYBgWLrlsLs45uz+WLa/HQw9/gZLivWsntzSew5+u+AAnndgdn3y6FU8/uxR33XkIZFmCaVk44bjuuO2OBfj9n97BWWf2xVdf1+D5F5fbyphx39doiGQxalgZSks9WLIsggWf1WDq9TtmtQBgxLC2GDOyHDff8TWuvNyCLAEPProMI4dX4ODRbcV2V133MT5buB0LPz0TlhlGInoK7n/oEXTv9glKizvh2yVZ3HPfHJxy4ok47JAJgAVYpSbe/PMsLL1hFQYE+6Om6za8vPYVvL/5Q7x6wv81a8sXtYuxMbEJ1w++utl3P3RE20bQ0FCHUIMHRsCZbNqFCxcuDhy4k62fMJqvFaaEROzFpDwrrV5nazlenZ/vHOY9xg43z/G1/Jkki8Da1xazv9P9JyGbzUKqmc/LsEQ0fG18DbYkt2Bi+6OR1XOQeER3bOVYZIwM1qfXoV3RaKiqAgl5rcPHWz/GgNL+qPRUwpTYZ16fF2PbHYxvG5ZAUTQRrZ3Qbjw0jyZcBbsGuuLL2q+R4jluPq7+BIe3PwyVgUp2rFzbRLqGDzZ/iApfBUZVjoRu6jC4Vmt8u3H49+r/Cu0HAEyoGoeKYsZEGLqO4ztPxOTPrsLn1YvQu7S30JMd2elQaDwqncno6BrqjE3RjUinkwgVh9GYacSd8+/BG+veQnViq5hktAtWib5rnoODNFwWDNPCwu2LkdLTOKvfb6BqWl7PpMiAASirvFBjKnIDWNTZlGVkBiQRuaAGlmphQP/+6N61K159YzZGjhgGw8jhf7Nexbgxo1DepgSmmcOH8+Zh8MD+6NKxI/RcTrANY0YMxeKvvkEmk8ZBvXrg2yXLcOPNd+Jnh47H0MEDoYr8ajLi0SgAIB6LItZYg48+XYB0Oo1jDh2FhpqNAPK5yyx+W8xksjB0AxvWsO/f/eAjjB42DKaRQ11dLTTFB0VS0Ld3L3z57QoccwQbp/UNbKKjqDyPUDYHRVaxaSNbWiar5FyXRi6no3oz+zzHGbQc18707dEX7dq2xRVXrseD93dFMunHlq01SCQSUFQVtdsbUF/Lchgt/mYJnn1xJo47ii2R/HTRElaXbEKyLAzp2xnrttRh7Yat0FQVA/r2xKCBAzH5xhno3LcIvXuzydzVkwdj3ic1OGfSHPh8Cq6+ciQu+t0QpPk47tk9hH8/fyxuveMz/PaCOQiHNJx2cg9cO3kQUokU4nHGPj/1+Djc88AS3PfgEsTjOXTuXIQLzh8AVfNh8OAOePSRo3DnjAV47fXV6N+/HE/+YyIm/e4t5HQdyVRaaBMlif0jPZ6uG4AF6Jzt8Pl9TTR6MmdwABgAACAASURBVHOm5GzsnQeV4dW4jrPPfQs+r4prrx6NSy8aBkmSIEvAoEFV+OujE3HnjPmY9dpqHHpIZ/z10WNw5NEvQfX64QmEMXJkJzzy+Nf436vrkUjk0L59AH+8pA/OO7s7spk0fLLKxxgb9zrXZt59xyjcff83mHbrYpimhaOO7Ixbpo0BJ9pgGSYM3UQ2a6CxPgJZpfxk7fD43z5CXZ2BTp2A3196CM779Y3IJuNiPPnaevGv8pdw67LVkDZJGFM1Cq+d9AoGtOnL28Iao6kaXt/wBoq0MI7sdAQCXEdK9yy6tin9m2XadRbkKiiT1orrPIMBnp/La8+RR1ori5dPY8ak2zrXJCb5fZwYLnH++ITez8snV0Sa6Id4Hjm6+xsmoHhkdiSWCX+Q2+3zW2V99WZeD3eC9VKqB8lWL1bxAu0rcZtgZ797DvZjD5me1jvKFfqt/WFTAYUYwJ09e+zz3F92ckYwQ83yWlF7HCzn7rr8tVobVqhvhDZ536HVx+RkusTHjr5zMmU/Iq2XO9ly8aNHQ4Yttbpo/qU7/L46Wb3j/bKNWFz3JQ76T99m33UJ2bUXRZo9r44ma8gYeQ1KQ6YBg9s0z39DqM80oCZdg/b/7NrsO8XhMFbus+ugfKoPASWA2kytvU2eYtt7TdaQMfOalMveuxyLtn2BycMuR++SXgh7wnhq6TN4Y/1bBdu5o3YDQJWvLTzLfJAMMhAxoW30Id0xibUPLIG/jD1A0YNP05v0iccdh3+//DJuvmEKYrE43vtgHm6/6cZ8HfUNWPjFl2jXvU+z+rt2Zjl2Jowbg/tm3Ionn34eTzz9HIKBAE4+biKuveIP8PuCzfZrjLDJV0Wbwo55zfeJ4OslS/Hmwe81+2708GEF9wuHQqK+pojH4wiHQgX30zQNN1xxBe5+bCoOPoRNngb374eO7Sux6KtvAQDtq9ri6/dn444HH8MNt92H626+G36fB1dc+HPc+sDzaFPKyq+pj2HFmi2Y++LN6D+E5aNSveWIxWswZcoHeOaJXwL4F8IhDX9/7GcAmiwDc+DQCR1w2IRTAeQfsCmoQCgt8eK2acMQmMHOe1GpfSyeeUZfnHlGX7FETJIkfPXFb23mNLNf+4XN9RAArrlyJK65cqQwogGACeM7IhGd3KydoeN74Olrx7DyCzyEnv2b/jj7N/2RN/exkIhcIZbUHXN0FxxzdBdEGpgGjSZTLf3oF4U13DJ1GAJ84sCWC+YnIABw753jRNJwwh03H447bj4ciipDVrfB41uM7evtP9ODBw7Em7NeQXRtEp0u7Q5LMqFX54BGE9nu9vNw86hpmDr0up229acO9SpuEvQ/lx1z4cLFvoE72foJQEQcKWrkWCcrtmvmorNr0YTW5hBpLYglisfYg2omRXlgckKzlcvloCoKlOhaWMkU0xLpOiKNDUIPUqSxB87pQ25Cv+I+Io8LOQF2CXeB3+dnjniSJFzhirUiDCwdgOlDp4kHT1qTrFgKcpmsCNQYhoFcThfL8qgrM9y5q1grRnW8WjhuZfkraYlKvCWo8lfiH4ex5YJJniiXXATFAQOoy9SBnkGzRg5pI42kkUSFrwKGacAQ7ooGdO4Gp+s53v/sXzwVw5z17+Cm4Tfgl51OFxEn3dTZciXx8EnnwoJpWsJa2jRNGIaBoMQmMrXfNKC93AnmQTl++BbSgyNo/N0WFHm8kGVamse1UxRltiScduIJeODRRzHvk0+wZu0aGKaBg0eORG1tHQAgFApi0IB+uGPaVN53pOXIwaNp2LaVPQgfOeFwHDnhcFRv3oL3PvoI9z/6KPSshbN+fga2caey7VsbEGlIQOP5zaprEwiXtGdt4TnMMinGzqQSGeSyOjZvZO3waT6MGjIcF/72HABAUSlzoEvEkwgEAti+nbFMNPEoKmITjLZtKvHlN0uQzbA+DXBNzLoNGzB+9MFIJvkDPLkjygF+/lQc1LM/XnnuCazfWA3D6ISO7Tvg8muvQv8+/RGJsHOR2R7BWaecid9fcCG21dSgR9dirFm3EcDzGDF0JGa98xUSqQz8fi8OGjAEWoixq5bkw8BBffDm3Pfh8bI6w8VF8HH6he4bQD6fm3DLBI0L/ofEfkoCoSLeB2z8Wpz5kfhrljuEOp0dTZGbicY99YU9/xvlhPJ67HnszCY5pdK87tygCkAEKijMy++F/N4i7liinbxeygfHtViBENsvEWPnuKGevZa1If2Rlx8XK5cc+Oh+QPfSQIBTW/wGkWxgbY3VMct7izPepW2KYUEBYELibTWzPBefl7W1qHsA0Re3I/BIGHJagvq5H0aVjqwvC0h5x9K8RoszSZRfju5l/HMKhJhi+TVnorhWVuT448yhodLvA/UBOayycxaPM9aecgQK18EETWo4k8X1cqEwu5ckODtKjpcKzykoi5yCPM8eJP43X8Ugcoaz8qL17LoN8iW84TZt+fHLtvJ2D04mq9Bvn5N1se9fCIXYmpbyehV2At4/2FWt2q64GbaU+6uQFqvFtjl0eIVObUEWrsB2hSDYm5aYLGc5rWTMdpUNataOHZRv5em7pk0pWEjBvhaOifbt8uU4nlXF74A9N+UPgfFyJ1suDhiop7PhmPtvbpf3DS+YhoBhwKOGbOwNAHQPd0OlrxJbkpvxy64/F9FmYQkv7fhHd0zFGNy75D6097dDh5IOAPIPhbSMqbUY2/ZgPL3yWdSma1HuK2/2/bjKg/GP5U8iqAbRs7gHYhp7+FLV5jeRD6s/RiKXQFBjDydvbZoLCRIGFPdrdXuyZhaGZcAj59mLeC6BtzfM3bkFLJ8zeTb54E+GMCE3AX7Jj+frXkT5f3wIlPKJAk/4C6PlH/2DevXCQb16YdbsN7Fuw3qMGz0aJSV5JmTsmFGYcd+n6NC+CuVt2iDDJzOUCiCVtZ+L0pISnHbCCZjz3vtYv2njDusc2PcgeL1evPbWHFzRs1eLbQSAQf3646PPF6Bb5y7wer0oq6gAAESj7Fxt3bxlh/sNHzQE/5r5Mr5dvhQD+rBztHzlCmzZuhWjhg9vsd5suhPaVXQCZBkbNm3Ewi+/wIxptzTbrrgojOKiMHzeJJ7/7+sYNqAXenRhE0mf14NUKoPVazdhwNDufI8Mlix7GV277JjBcrF/YZohSJKOYOkzSDScs8NtrFIT0WtrAACZ6gzaXdwTHsVAfHTk+2zqfkOmbQrh7QHkSvauk6ULFy5c7E24k62fEhzM1g42sL3b29ECyREFaSkiQxOaeJRbTfOgXSIaF39LkgzTNGFZjH3pEuyCtzfNwfs1H6BzSUdUeMsRNAK4uv8VuPaLKUjoCfys05HQFA1b0lvwxvr/Z++7A6yqrq/Xba+XaQxDb1IEBRQLYMMee43GktgTTYzRaGKJJhqTL/aoicZeYo0/TdRYY8du7IAgXWCAYYapr9/2/XH2Pm/uHYYpDDVv/8Hj3bnn3NPfPXudtfaruGffuxHRw5IzEIsLJOyUCSfjqe/+D6e+ezrOGHUaBkeHoNVsxtdNs1Ad7oczx5wObjPHtmGZBYQjYpOg6zoUKBKdO3270/DP757FiW+ehPPGnotytQyLU0tgooCzRp+J6VVTsVf/PXDy6z/EudufgyGBwUhZacxtmYeCncfvdv+NbJewFsIP3zwL5004B8sal+OGOX/Gfv1nYER0GGyzAIc80FahAJeUvmNxIaah6zqisShCto3JVZPwlzl3IqZH4drAPfPvR9yIo81MdYgrpmkaNFdD8FvyzJc5QLWNmBPFRTv/HH/6/Ea0/HkNDj5gf+QLJt54ZyYuOv+nqKmupPYhRMSiOEbU9QXaKO2/9z54/OmnkUqlcMGPz8XXnxeFCnbbcTf0r6rGcaecgTNOOQXJeAItra34es4cVJSV45jDjsDfn3oCuXweO+04CbFoFAsWL8LXc2bjB0cfj0w6iyzxRGzLQu1y8XJ67CGH4bGn/4mmxjbsPHESdE3Bx198jlOPOR5VFRXIF0xYto1cTpRx2uTd8cZ7M3HuJRfj4Bn7Y8zYMWhqbsInn32G8WPHYcp4iuPlMCIgPPuJcAzjR4/FdbfdghMOPxqVVZV44IlHMWHsOEwYPQ6tTUKN8PYH7sH8xQvw+4uvBCCQ13+/9jK2HzsGiVgCy1fV4vGn/4F995qByROnINUq0n05ey7mLZyPPffYHalMBm+9+zpmvv8xnrjzt1A0Aw/ffAHSmRyOPvcWnHPRDfjVJSYqK8vxznvn4+lnWvHnW2Zg+MgypNt+Kfqc2p0RPgAo5EixTiKgxOch2X09QHwgQkdUzac4B47VRI4QqVJF/CKKIxeNRjzjDn4Eiia+TfwinflFhGwVCnnU9A+i7cnDAbiwJbrD3movv0jydwwe74xEeTmLrKboQMxv0/GKqHC7cHpVE99tQpazWS+KxO3CCJ5BfCzeuIdjEQAKdH0/xKvuQzD2CZprBeptFTJUNpGnEaBjsjUqmh5ehbIf1UDLGICbB5QiksN9YNNRTf4s5L1xt4IBjtMn2iafs6kudvtsZIDnorogqxYSGhhhxwuV0+B4dSK9bHv61CRyRSipjNFneNIX44jZMAflkXrtFMTuTCJ/cBaZYWnEEnw0WPRZmuZJrFw4uTTpZFs/irK+378igsTmje3X0Xr2W9pZGTpHuDrjcHXvOb217sa62hjWVT/1NM5WR4Srw3/4wessR2+tp+9Fm8val4v/V3RTexGoDrHGJArnnTeKb950Hq+LlRR9UJjiTb9haPXGtdJmq2TblJ084iR8ufoLXLfoRrTZbfjxiLNwUfnPceiggxEPJHH3/HvwzHf/gqZoGJYYigMHH4CAaqwzr5AWwhP7PY5bZv0Zf5l3B9bmGlARrMTEih1xwKD9e1SuymAFntrncVw/60b88es/oWDnMTQ6FD8eczYAsVjcOf0vuOvbe/DA/IdRm16JZCCJsfHROHn4iZ68jhpxOKJ6FBd/cBnSZhr7DZiBy8f1XG3srhm34cKZl+KSjy9HWSCJU0adBEdz8eC8h4s3MZL1bQixJeVYNXo1AKDphDVYvdd3KJgFnIgjEX4RePjxp/DkM88imUxg9113QSzakSvVmR20/wG48/77YBgGpu26G2yz+DIbDARw2/+7AU/88yn89d570NDYiPJkGcaM2g7Tdt0NADBm1HZ4/pWX8cY7byOdzaCmXzWOO+woHLLvAZ0+85hDDkMsGsXLb76BV995E/FoDDtuvz3CdMzUb/FoDJef90u8+M5/8MjTTyKTzaKyogLjRo/FiKHD1pmG7ewf/AjPvPw8HnzqcUABdt9pCs497UzPPY7jeI7uAUA6k8YDT9yFpuYcqir647gjj8HJx5/kuUfTNHz42cf458vPQVUU7DZlMp555G6M7F9c3qOREJ5+5K/440134qqr/4hUWxtGbZfD7bftizPP6JxLuLVa8AHBacsdOLKLO7dsc504sm0HIRx/rXv3Jx0s++sCDD1/NAw3iKad1m7kEm5+a63bFcrCKvSLNOK7YQu7TlCykpWsZJvYlC11F91bc1iKrWTSGyBf4OR7nNcbVvRGwHO9eF62d1ws6XnqpEf86fzHCDN05v+7+UsAAIGgQFWyuSzgADvvMwWrz1yNXDqL/u+eA9uysHy3v6KlWQhiBMhDGyYOSjAkPK0cf8XPUWDPrWUVX/Ql8Z+aIE4bCEasWCVQk4pa5D2W6mksAEDeYuqLfIGPvYhnM78sHBYv+owMMP+Eu2Cflw7C9wYfhCt3EnLljABwmfloJNdFKnxRvuzhZ34ec8q4ggFKb+gaYALh2XHABexBBVgDC0j9tAHQIBUdJVqqcJtRrBwaa6k24YVPE+/DzInPAPHlWppF/QqkdNbYIPquubEZbJX9hKd6wBBxlLNhjeBfaTJ2VoDqGKY6iT5rbBRcLulhp77KpAR6kCf+EHvDyiqE/D+P1za6j9GITFr0WSIpkM94Mk51aKH8CSHQvGjO2nohXFJdI44dDhwygNoMVFfBSVy1ag21RZ7qJdrysBMfAAB88hZtqClhkHhWPNaGbSfEQuIkg222LBClcEU9wxXDRX3CSaj6KlQOPhn59JntkAZvn64L2crniNdG4y0cFvMhloh5ysZ8IT+PJ08Kc6x8x/OHkR6eLzyuA4bh+c6IEqPewQCjJS49V/y97HQh8pJ65FAql/hgRT1eWyxqO0aumDdk6LxRpTWQPabM0SQeki1RZFEe5mSykh+vNezQ5Xrz2lMgpI/5TcEglyNG9Vah6c1IVL6KpXPeBgBQmCuYpugfI5ykNhB/SKezUFs1DPzJULTt2Ao7bAEKECSuF48v7ktuO0amFJW+0zjmeFeMdHFdec2JUcwwnfo4R2OltbmV8iE+HPVBcd6JCyGqc4DKx6girzHcZ37uGeen6zoSsyuwdkwDFp84F8mKaioP5ytu7DeoBgCQqBJoO3PP9GPWL5CxrmPmXasG+hEnTue/r3fWUZ3Ny7Pzmx8F6qv3vr5CrnoTh6ynz+6rOncVr8v/vtOBC8/gjB9I64y31Fk5fP/zp+ozVNFdd/5AEZXueFqKB7rvu8yE2qzH3EIvCsjvN53eVwzgBQDQiiT4TW4lZKtkJStZ0UwFwWUh6IqGwLdhFHbJoPHaWkDjY2Prh+ltG3j5tTgyWXFfLic2efm8eHm0Sd6cX65ZHIJf3NIp8SKUSRVf9GMJ8QJctkAIUrS18lEzOrZER7f4hd6iF/1UWmzSgnSdN8gFeuHnZ/KCHImJfPlHj18a+UW7kBcvY2GS0GYhCSbys1NDVVWMHVWH6qpiHUpWst6aY0egKA6SVY+jpeHk7qVJ2Pj2htkY++sd4GouWqY0beRSbj4LTZwJPRkH6rc9hLZkJSvZtmGlzdY2bF16SDo7oiy9Dt2zLj0oPY0v4Tt/K1EZeqmOhEJFzhaEd1jwtlxYliU9n4yuBEj5jl+OuV0YTWHviDzv6xY9nIzAME+AeQOpFIkzEPJUXkmoCDi2k8ib1cdY4tqyxLM5jlChUESWzv1waDupa6/H8qTha7B3f4G0LE9pOHOmED7QfGeUFUXB3w9YI7//7tNKfNdmyDqyZ11RFMwYlMNZ24sNx9KUgd9+WAGtzQAUF27QhRt2YDWrwAVD8LtLV2L40AIs08LDT1Th7fdiMh9RSheuC3z5dRSG4aIsKeq/vNaLlrRXL0rELQQD4r5cPoC2VLDd2W5PtdC/OiNbpGFtEKaldohjAgCRkIVYRGySTEtFU3ORi+dXPCpPpKHrDly4SKVDyOW9yndsuuagvCwt45c1NCY897WfZ7FIDsGgjbVN03DikR/hyznDYBNaEyAPvkFKejddMwsAEApHcMcD22NZLfGfWGGPNm/1+QzOPP0fUBUNq+piuOfRHQEAv7vkAwBAslyMPd4EpptIqCMvkIVkjQggZBKK5OZaoBmtVHZbKuC5VCGeF7yJBNop0EkFO0KHaSPL41ZuUFkxzoc8sVofN3GA2qKIABPyQ8iSnJOUQPJ26O+sQsjgPSNDPDZkqAF4soFD8FBTk2iHNMW70wjVyUkugPjkNcSQSBsh1cTNouaAQRt61aV0AR+yRf/h8mvEFWOlP24P1yEELivaJZfbDzXD7kIw+i7a1twvymYRatwiOIgFRzwrFhdOBm14EnX31WLAj4ciZIehag6gAAb42LRKbUfjQqKNxLHSvWXmPldkn9H6SY3Ka1FOqsZSPC3di9qzc5n7lpHg1hZSZKQxUlElxjX3IaOiRfVE0YexAx+H3mbAuf0WWKYpyxMm54lDzpe2JoGWx0h8R6X01o3rFztaN1rkdzp1drpDfPK47mskqKvns/UVr2lDrbfPa39/V3G1NrYyXXfz76yGUh2avvsdmN1tI//7WndpgT3tg96NjHUju+0wKd/fu3qKH0Fbd7qi4ja/h/ke542is0mttNkqWcm2ADv3w6Hduu/Ng1/GzLoYHl/SN89VTAWBFWEEshr0+gDscguF0Vnmnfboh8s0FbS26fjJ6SvhujZa25ZjwaI9O72/LHE8dpt8BQCgvrECCxZXtJOl9h6SmL7rSnlk4aNPK5DKBIsbzXZlHNg/jRFDRJDgtpSBL+cMlC9nfFyUj/vtMHYFYtE8HMfB4mXVWNMoXu78G9hoOIfJE1bIDfNHX44FUDxCIYUDAIwYXIcBNSksW1mBp1/cDYMHNMLQtrT4PRYS1ffAsWs2d0FK1k2zrRia1hyK8uqX4BQeRbr51G6lcxIOvvvrIgw7fxSUgIvstLaNXNKt0DoNZlyykpWsZH1jpc3WNmjSi8wvrJ14wfy+gY2lPthZPAj/8+yfeBW+inwP4RHNpih+jlmQyFahYMK2bKwa/2sUcllYliW920FCj4JhryoW8yOYXxEnzkE45OVyAUCMxBIcCYuA7glQWTj2jBcVYPU9RsQ4xgzHieWq87O4Le7bq5aui7LYzA2zLAAGNF3HQcNtHDy8jjKitqINRSBoANBl/r/fRRDkdfKws1y6oihQTAWxWdWA7mJMfwePndOA1M/WAmrxLDUfyXNtF6YFpFMpHHNYG/benYK8MncnEkZDYxAnnb03TDMPM29CdRM4cO/HPO2h6YwUaggGy2UfDx2UxdBBtfIoX/uhItA/AzZtdqbtKo5E+Tl2Rd6caIuaGgPfq6mXPDZWJMxkstQWBYF+KgpGDKvHqBGirXj8yHniOAA0xBICpTxghgiCncuQBz/DPDRCpgwDo4a1Qdfq8dU3NfjNz5/CgOpmWS5GiVYsIyRNVXHCEe8iEhVtE4/GqJyivFP2eQqAglw2i/JEVirvZWg+VPXvR/Wn9sqKF+oo8amMsEA6nHwGgIPqUWdCUSwUskKxr8i/Y3RKzI9UW1b2QRFdFv0VJ3QgSPNDcqxCpFapkNofxz5iHiSjIDS+i7GfxKdZ8AYNlksIo5P0qTDhQaXnkJKLY4v0PH47enEJLac2DhCPk1EaHkPMpeIxl7UoZhSNV50U+IpcAB57VD5bkrQ89VMU5iXxnxnpJtlQv/pWO89tS5OCdGoGhoz8K7TgW2hdc6+os7WW7iWunyHS8Jrk9lOx8t7vMOS8EdALISCoAApk7DtVEeOd1xqOheaPbcbOBi4Sr3XMqQoYYiwkiG9mUJ3TNN8smq/MRyvyjIhHSnUOBVmgRqH6EMqpMBLHipSOTOdCrAO5XAFWXsybAqmBNhKnMhoV9awaJLifRoBjo62fg7Nu64wb1eHKevLYcPPHq+tt+p5ab98VNiaC1pVyY1+jeH6Olr9F5Hd/uXiN8GfI70m+Cz3nNW18UzsgTZ2Yn5jWxf2KDzH2x6Vz+Xel2Lje9L4YaRJH22xMraKVNlsl22LMPaj3i4oZG4q8WuLIdGWKqSC0KgJFURCbW4bMnq2ou3QpIsSL6ql0qm0D//2iBooawjsf1KBfVTHejaYFUFE2AUARTdINlgoXL9tmvoBt1YYPaUZLawgffDYOxx3y0eYuDgBAN1ZBM+qQbjweWmAznqkoWa/MMqNoqj8U5f1egt1DhKv+oZXod/pAGKqB7PTURi7p1mPqnbSJ++m6N1AlK1nJSrahVtpslUxaX599lvn10pPEyEWWVNFyeVYyc6Rj0bFtyYtQIbzqRZUqUjgz85SfN8YO58/edM5H04vTgtOwd9Z/xCwg1f8oZg175mWMGhZjYE6KuB4KBTxlhM+LzF5eTs9Ke6Fw0JO/43rjBTHKY5JiGHvcHceBUlBQMac/HMMFKl2kj2+Fc4WFKnUwVPIep9YK1KipQSBXafIOgzzwKVLoq1tVB8dRcOUN30drKox4NI9Q0MKUHRegpcntuGnj8nHcIx9ywbwIP78JAHJZRrBIuY5QEUvydRjdEBYwvDwhfgiXSffH+2GhDc17LJHVC7mtDYlckWpmzlsXzl/2tapC102oqopASAPHeZYxzGTlxR8iIUKiaBMUUYSHv61FIFcZ4hVJTgrxjsrLBTILQnVM4mppiUq6LDz9KhwoigO4OhQ10I6LE6D2ICSB0McQy94BCBCSw0iQQahxsc3EB/PaWIyEleiYl8DzxT8+pHeYLjMKwsp1PO5VxbtB5Hx4vlikRpj6+2Hi77YX5ZEIFKEuzLVSTV4r6HmE0BXgnb881rIUe4rDBGgqrx3iPl4vIFVIWYxFXJY8pLxX6U9XWZXRF9sKQJpEYxQ1jnRqPwwe+TcEIu+jacVt4oY2gXbbrQId12P9ARQFZlTDQPOTDSj7QRWMfBB2qAAoxTnHxkgwe5MDQfLgq1Q3UhhlFVBWUi0qsxLKGfTPQ3jakJ/LbchCNiFCZHneWTKeF6GCvG7Tp+sKvm4+l0drSwtChFgVCIlTNS//j08jcLm016iPftb171+vYzb1MTrRU/W+vkaUuooDxtbd8vUkH/+9XfHROsuzt7ah+XTl0Cyykph/1Lco4uZQIPcjVF0rXHf6F/r0opSdz7ctANIiK222SrbFmPIfmkC9QLiSCx+FbVtoHtE9ta7/NVMKCsr/U4O2fZqw8pdLEaGjPEm1vFf5OY6Cux/dD/mCjhlTv0EgSC+xW9DitiVYMpHBB5+OwV5Tv0VNZXPXCdZhsz7+If2vpe8KVrKt2iwrilTLUYgln0O0/Amkm07qOhEAt8xFw8OrUHXaALhuANbQAhRFgzUo33XikpWsZCUrWa+stNnaBq3ouVj/pkX1eQc6HK/dxKbdTdyAA0k9iuJl5fPCox+LCxU4q2BJZCsYDMC1HUTr3oPjOGgefko7DyvlxwgFeVwjEfZGE8LAZ6h9qlpAOzSM8mB0gl3x7KUt5L1cE+ZQsUecPdXMDbFtVh8T3t+p5aKuv3jvl1jQughP7/sPehB7lRltYe4LoxC6p5x+voWm6VAKCkKfxdE4rQ5Nl62FrgQRihGKQvyIPKEmDXUiJlRjg0C4/t+fb8ay2uW4/so/UHsbT2dHYgAAIABJREFUsB3gqhtPQL6gY49dFkLTlCLSZns98mHmy8m4Y6J8HOuHhb4Mg+KPMQLRDl1krz/zXoqqkdQH7JnXOMYZ84AYsdLwrxeORyCQxAF73wEna2P2vDuxYPGTOOLAt6CTKAf3BZedOVFctyDxlrhPmdfjKjbmLrgTK1a9DMvOorJ8Z0wc9ytEI4NQVd6EUcMNXH3TsfjTFS9gYP9WWS/D0PDwU09g5scfIJPJYMyo7XD+WWdiuxEiEC8r4K1YtRoPP/UYZs+bA103EAl/gsEDrkDNoCoAQDIRxaVXX4MPPvoQq9fUQ1MVbDesBheeczL22HWi5DEZoSg0IwgoKjQ9AhD/Cj7lPVbt1JXisSpeIyT3iK4X1SiFMZeJ1QEZNVTBCJMXCfPny3w55krxZ1HN0IeWs2dT9aqGMtJl+pBUVkdUZDAcL88PoOcyx4yKGyQkmjmHDlWAg2+bphfR1gkyYyTOUbzzn2NaGTqjLYTSoDhmASDYzmNrh72IkJ1PoG3tEUhU3YNw/GM0LLsFAJBZs4ieJRCoUEJwlFyL1r2KCJofXY3Y7yugtujQFwRhRS1kjYzgclEfaVw24mRx2ybK4lQ30H0cE1DMaV4TGZ3WWRWQxgSrXPI664JPHFAbyfVaPC/dJtYmw/Cq07aPbagoCkLhEMrKy5EhhdicKfKtGTxEpOf5TWOi+9Yeieip6p9ffc1v/t/q9aMePVUh3FptYygK9liFr7v3+deyPnI49hQ17DL+1yZWngTatQ2XSS7bXCYfRwtebi/ziIs/GL625fcwWSUfH06+221+J3DPCBolK1nJNoqdPLweJw+v7/N8lYKCsv9UIz2mFUvO+7bXqLptK/hqTg0+/bIGt/xtN9poLYambZ0/9iOHHYs9d7ujT/KaNe9mLFv5AiaNvxjTp9yMQqEFH372c9i2ePkcPrgRQwc14c33RnvS3f3oQ3ht5ls4/cST8PtfX45wOISLf/s71K0pSvdbto0b7rgFDY1rcfYPfoQTDj8Gudyz0LWzPXnlcjmcesLRuOPG3+P3F56EZDyKsy65Dl/Mnt/uLhvRigfg2lV9Uu8t2cJXvofwle9t7mJsdHPsOLKpY2AEv0K0/Mlup3OTDpqvr0PTXauw9MFvEP4mivJP+iFUG0FgdWireoevu/5vSJ3/6OYuRslKVrKSdWolZGsbMr/316/I0tn93c23zzhcXd1Hv/R58lDm0+IzFk50uFfXdAHjKAps20Eun0MxqDh5s1kRkGPkMALCimIcd4tVrNpHsCDPi+6LhcF8BG4TVuYqqhUSr4c96wzGwMs/kHGA2gXEVdSiMiIrgHE8rwJ5vCUXJsoeeUJfiGtiGAqQVxD+NIHMvi1ovGg1kkoSQeLh5LLCW2xTnVsoBs2q5bXUJNRGlgXHdnDhVQeiLR1GIu4gEjZx6IFN0PUy5KhcJiFV7KHndmMUiOvH5tqsVsc8Kl6KRAOmU+0I/L5xbFte/kuIOB/M81Fln3F8npyMw2bbApOIhmsQClRT/uIBzJVyCxQHxYeepEnFkq87jotsrg7Lap/H5AlXYUD/gwAAu0+5Ef95+0isWP0Khg85GqqmIRSyoetBxKIx5HJZrG1sxGvvvIXzzzgb3z/mWADApIk74pRzf4wnnv0Xzj/zLNhWGm+9/x5W1q3EzDfHYN7HQmxk0MAq/PG225DKtmDE0KEwzQxuuvYqrF35DQBAG6Zh7123xxE/uR4vvPkh9pixNwAblcPOgKJkUMgfDaiabNGiGqn4lHFf2iG8ioSquEu8yK4j+5fnnIH2ZllebqHq8zgWPZGEVrACHQNhzM1qx2HyXJfKdDSPlrZ40jPazZ5RhWJNsaOUkSSXkTFGZwzmSPqQBx7fpOjHsI1DiDXXn+cv8/1iFHcP8MYbk0iuRBnFV0bERV6mp6z8N8NJIpM6Fol+9yKc+BT1zg3i72nB4Sq0LRPpiccZjA+gh5IqYLmOFXcuQfkf+sFoCcJYEURey8OpFnG5JM+NCsUcVw7TwGshxxRklVeuEysuctytIN0XYL4qtW2GkDHmiUpkmv5eRPEpADqpdQaDYTiOC10PIhiOozVFccdSohyhpFhLohR/jJHB3iAcnSncbWzzl7Wr3+TeKSx2//mdoSZdpfOn35CybKr3kW7HvZIc3A0qVtf5+6zb5fJ97yrd+v7e7bbvJIve9l0xnW8+yPVffJcqt1LOdvMjW6XNVslKtgXYd6mA5/urK17H9V/djBXpWuxYPgHXTrkaoxOj5N/vmXs/nv/uRSxpW4qQHsROVZPx+6m/w4j4CHFDXsFXz87DFfrlmLVkNtwXXAweNAjnn3cuDj34YADAv557Hv94+hksWLQQjuNi3OjROPmo4zB6ZPE5jqtgzdoYIiENe+wyC/36CclvXQ9hXWY7Bcya92fUrnoNUFSMHHoMwqFqfDnnRpxw+BcAAMvK4qu5t2JNw8fI5uoQDFZi8IC9MXmHCxEMxGVejz49AbtMugzZ3FosXPI0oCgYNuggTJl4uRR1AIC6+k/w2aw/oTX1HZLx0dh959/irfd/gvFjf4SdJ/5ineWcRccIjzr4bSpTBh98cgNWrnofqcwqhEKV6Fe+O8Zt91MEtGin/bam4WMAwMD++8pr4VA1Kssno67hAwwfcjQAIJnI4d2PB+OQ/RajsiyL72qXw3EcTJqwo0wXMAxMHD8en3z+OXDmWQCA/37xBSZNDGPokADmiUdh+m67Qdd1zPzgI4wYuu74bJqmIh6P0Mu+jWTNn6AoGeTT34OiG+tMU7Kt11wngVzqOIRizyBW8SRSjT/oUXon7mDxZd8CALKr0ph87VToi3Tkhqdhw0K+X25jFLtkJStZyf4nrLTZ2paMN/vyACtzsdbtyfCfLVZ8Xoiu4jt06WmRsWJ6Zsx7CFB8rWBQeEI19jrLfwBV1xCJRaBpGizVgm4Y0nPJvA3mFDDviTk/zNGREd3XcY6YuRgcQ4nTSvSMeC0hUmfTfS+y7I0Nurw5oTahZ7K3+k+zBwIAKsIaVmZW4Y9fXo9LJl2IiBHFTV/+GWe99xPMPPINGITW1OXX4Kzxp2FIYgjaCm14eO6jOPzfx+Cj77+LJJIwPwWOSh+NAw7eG+cediM0I4h58+cjly8gHI1h7erVWLJkKWZMn4ZTjj0Waxua8O5HH+LSP1yNP1zyG9RU94dtK/js68EwzRT2m74QmqZKXoU/HhKjSXMX3IlltS9h4rjzkYiPwJLlz2FZ7SvUdgocx4Xt5OC6NiaMOQ/hcBUy2Tp8u+gBvPvxxfjefg96+mTugocxsGYaZuxxM+rXzsEXs25FOFiD7UefAcsykc2twdsf/RRVFZMwbezPkcs34L2PL4Fl52CZJnLZLBzHhWPbcB0XlmXBsmxSzXNhmiZcRyNeoINddroYupZAOrMaX86+A5/N+g32mHK7KD952vV2fLJcYQXCoWpEIgnpwTcCAZQnt0Nd/SfQVRWuY6OmqgW5rIFfXLUf/nTpsxKpDIU0GMx5cVUYegBrGhpgWg4cy8J3K1Zg8s4haJqGAYMFIjHzk52RjA/D4iVLAFhoqF0OAMi01cN2HESiYTz76vtYunwVrrviLFQNOxuKmkU+cxigGOvw8vF89SpqtrYW0cUI8WQCBnOkvHGlXJvnDs92VuED5WnKMeBpS3/MGYkYeOeuy4iPfzXh8adxzDIvp5E9nKz6KeetjEXIipau5z4oXuRazlvfGurn+TEnSz5IZa5YgD5pDSOkzQIj396xJVUI23VVOFxU6ATazcEscVGjSeRSxyNRfT8iyc/RvOpOcZ8p4q4pGcEXdCgOW94S/esawsGRSMSoLRzMv342Rt+1PYJrwzBWBZEKtSCbTANKkY8qHfmOv0/ER56QLF7Pc1nxPaozV4uDsHlV15hrG6K21XXig7JCq4zrJf7e/6zrEGwMo+H/fo5sJoUgqREaQebkep/nWt713h3V1S9UEZXv6CjvimvVPf50T63juFz//T1FtHqKSG0OhbuuytAVetJXSoodyrGJQZTeKlL2FO1s/5xOqFMd08hPxXtB3uA98dJRYKuzMtJ1Ts6nX7aAcdiZlTZbJSvZFmaN+SbcP+Nu7FK9M3RVx8TKHTDtn/vg/xY9gx+OEapjv9/tKgBCWMB2bOxduRd2eHpnvPbVGzhr1Tl4f9LbaJ3biqsvvxSxaBRGKIp99twTWqj4wnbeWWehqUEcualftRaTx++Abxctwr9fn4s9d9sJb7w/Hq77DqKRXLe4WflCMxYv+xd2GHMuxo4S8X/695uGV9/+PrLt7gsFy7HThMsACMEBx7FQUTECr7x5ClLplYhFB8p7o9FB2HuaOBZVXTUVaxq+wIrVb2D70WcAABYseQKaFsJeU/8CxaUXWj2Cjz6/rEdtHgyWY8/drwUgNgaOYwFOEu/99yfIZFcjEq5ZZzqz0ArDiHe4HggkUDBbPddGDmtCWzqI/7w7HjOmzgUAzF+0CGPGjAMgflC+XbgArusilU4jEgwilUkjkfDKnX/wSQUKZiVa2to819/44Etcc6vgrkTCQfzlDxdgl13C0IzVSDcdKwMJl2zbNddNIJ86HsHY0wgnHkW2tXtxuPxmR22s/N1C8f9WFyN+NQGhdASZEW3FzZXmolC5+REvvWY51Gig6xs7Mftmb+iIkpWsZCXraytttrYh68DZ8nlxu5u+K+9VV+e1+bvjQ7i6a5w+QJ5cRrSCxM1RlIJ0NpqFPPLZHPLhQTB1E6qqwGVPpk+RjMujoBgHaV3PbR8HQ1O9L7rFPIlzIektzGvwxvDKpIXyFntjIxHyujJXS6qpET9BVVEVqsL0QVMBCE/7qOAITKqaiNktcxAmJcWPaj/BDV/cgq/XzkFzoSgpvmTNUrQdtRZlp0UQ/SCCCy69AscffRSm7TYViUQCAXpRMvMmFi9dipv/ejvmzp+P5pairHhDo4K5C/dFNJpHdWUKbWkFiSRvKEQbpelFX/JGAgbWNn0Lx8lj2NADYFCsHtdxMXjgvvhm/mJomoYCtduS5S9i0bInkM4sh20Xt2ItbUsRjQ6SG4PBA/eCJVGHACrKxmBB0xxohoFUJoO1TbNRVb4r8lkXNDwwuKZ4pA+uK4qsCBRG0zVoajuEA47kuS1Y/C/M+uYBtLQtlUpuAJDNL0ciPlAqx9mSn2OL+GWKAlVVJRJsmSb1vwLbsmTfWq4FQ88B0DBq+AhMHD8eDz75JMaMHo2a6v544PHHsWKl4MxVVlQAjgtFUaGqDlRFQXl5mRgjmgYoLlwHMAs2YIm+O3DPKRg3aijyMPDcy+/ggiv/gr+Xn45jxxlwbZfBGuk9lFwt6T30fg+225gzjct1mIPHan2MyHjnCaPLJinCyXlELlD+e5GrxIVhj6XX46kSYiy5jxxXy/K+KLOCHldOxvsyvLGjGDnl9BzvipXuVIle+rhlfmhDLm1UHkKsJKId5Phb3vYp8uNYYZNVHInfRCiQ0w41YhVVRh7zxLfkyjO6DjWGXNuxiJbfgUDkXTSvuleUqUyMHysn5lt2rXC0OLlGKgs7K1jZUeTnxC0su2UBaq4fgvCaaFHptN5AekwLcjUZQC3WkVUCmaMlUUSX0D9aC1lpktsuRgqp3DdcP0f2pfgPnzLgeGCaqkJVFCiKA0W10dYm5sOwkdsBgESEgyFf3C8/qblX/BIeF5zlhnrW1+3B9/99Y3HFtgSEqrvWV2hdX92/pVvXsa3Wj+z1Zsz5k3TdpF09Y/2Ia2efW4KVNlsl22LMesbq+iay5EPlsMqK9zftfCXS6cx6Umw9VhWu7HCtX7gSdVmhUrciVYsfvHYadqqaiOum/AHjZo+HuXsOJ352CtYeuBpNP12FpJ7Aw3ffhVvv+BsuuvxyuK6LPaZOwx+u+i2GDhmCdCaDn11yMRLxGM754WkwlDCefWUa5i++ElUVazB9ilCx+2x298udy68FAASDFZ7roaA3llft6jfxxZxrMHzwcZi4/QUIGEk4bjPe/qCo4McWCHhFUVTVgNPunnxhLZJxr8qfpgWha5HuFxzA8trXMfPjS7D9mFOw044XIhhMonHtcnz4+SWwSTp9XRYwEvKYVnszzTYYemy9z/ztJZfgij/+Eaecey4AYMTQYTj+iKPwzIv/RiKRQGtzC+LRKFpbGzuktaxWJOIDPdcS8SgmxKNIVNVgxvQpqFtTj5vvfA3H/qg7LVCybclcN4Fs6iiEY88hnHwE2ZYfdp1oPeZEHCz/zTwAQIA2tJn6HLa7ZmeUL4mhadqa9SUvWclKVrL/aStttrYhc31er644V/Lv3XTg9PS8tkRtupd9x+eRh9Qm3pRFn/3PGYjQvBBW7lsLO29LLzDzRiC93iZ9FZ5SQ/6ZPaSkTsioEvGh2teTPfYSFVMYNWOuiuJ5FitxMa+BvbNtFCsmkxHXKyqE0ITr44tBARqyayUyxihDfXYtxpWPAaDgjeVvI2tl8eD0e1EzaxDaDmhB/UXfoXXfVsB14bo2XOjYadIk/O3PtyKXy+GtmTNx+9134ScXnI+7bvoz3njzLdTVr8FlP/sF+vcbiEt+fyRsR0XAaISqVkvvMZvZITYNcWoYBHRdhGiTlS80Ihwqp8s2ctJzLhQCV9W9iYqyHbHr5KskN6eh8XMAQmnQKpgyXpNrO3A57k47PpwCBZqqIhSsQqHQBFVx26FVFiw7IxAnTYNtFuC6LlzHgVUw4ThuMSaKokLVNCxb+RqqqyZjr2nXQlO5T3NUbgWqpsq+UsAIl41odCgy2TqYZgqqGpFN05paimRiJAKhoOzLQt6C67jQdA3BcBCDBvfHP+67D6vWrIZlWxg8YCCuv+12TBg3DmXlcZimg+HDhmPholVQNA3ReFyWK5dbisE1+yDb1oZQQJQ3USmOOmpBMbYmTpyI5156BVBUqEZExqLqMCNpvNs0hk365HhbAKA4XgU3h+aiY1E7MqpB455V+JqaBMoQjwvUQiJHvrVEIjiON0YefGqDrFDK3C8ozOnycsWc/YcBKHIoOc4bI3I83RhR4vGu+NqClfj4OVIt0Ydo8NoRi9EG24dYyxVSIlUiISNulslIIPGwVOaYFRE+RhoZDWMeHJdRxq+ivjD0ONItRyFW/lcEwzPRvOZ+kbch+iBaLtQ4M60itl6mTSBdgXCS8qW+JkSK41dphLC5ERuLrvkMQ6/YEVimwRxcAFQgTGqDliXaPpWiclG5pUqhpAqK/INS4dWvyEjzX/HyXHldVxQFUIBwOIzKigoo9FoTCjOPj5Fx5tt6f5f0o0S57Ge9Spfds3Vz+Xpv3UO2tnbrLiesTxTxelmWvra+UlHsyrobX2tDOFydcbT85nbgLPpJjz70zBeXrvhOy7k467yvQ/m6V7xNaqU4WyXb6iy4MIj8mBzsSG9+HLd8a8g14L9rPpPfV6Rq8XXDLOzcbzIAIGfnoCoqYt8lUKgoYPm58/HKm29K6XO/hUIh7DltGg4/+GAsXSZkoPP8UqcYuPW+GbAdFaOH/xOZ3MpelzsZ3w6aGsTylW/Ja67ronb1O577bDsHVfVu5paueKlXzyxPbI/6xk9g20XuyIrVb60nxbrNtnMehUMAWPzdC12mq64Sxz1rV70pr2Vza9DQ+Dlqqvfo1rOHDBqIEUOHormlFf95+x0cf+SR8m9Tp+yKL7/M4KN3p8praxtfgePkMX2XnTvN03VdfPbFbAwd3K9bZdjWzPzxJJg/nrS5i7HZzXXiyLYdBSP0NcKJh/s8fyfk4LOL3kH5/CoYzcGuE5SsZCUr2f+glZCtbcAkR4u9pl0F2JIJe/cctr5WJtIuIQ/jTcSzkHwO4gllBDo0/2/zsN0Fo5FQEkiNSSEaj6HqrbPgOg7q9rwLBUKX8hT7ySXPaJC86qGgeClgxCGXE/dFoxy/png8kb2nrHzFXuSi+hjzv4inxlwT8i4HGSEihzfH+9HYi8TKXvw8x0VFsAIXvPdL/HqnixExwrjh85tRFa7CSWNOgOs42LNmOmzXxvlLLsTJ40/Ef1/5EA8+9hjisRhcCNTtlVdfw79efAF7T98DNf3747vvluFfL76AHcZuj7Vr6jGkfw1CwSAu/eOLiIa3w7DBX+CzWfcgHKqGqijQDfYCK8KLxEpg1Lbcx7FYhL4DwVA1Rg4/FrPm3AFV0ZGMj8SSZc/BtNIAFCiKCsc1UV21O76Ycx3mLbwPleU7YtWad1FX/7Fsb9e1YVvMrbElCiL6ghEDIBgMYtzoH2HJ8qfx8Ve/wpgRpyCXX4tvFz0ETQtBUVXiU2lQKA5bPp+HbbMaoQJdN5DL5lFVsRu+mP0nfPjxLRgyZHcsr31blikQCCAUDsk2kEJxloJopAYjhh6FL+bcDCgqQsFyzPn2bsSigzB+3InQtSBam1vxzYJ7MHfhvdhh7BIAAll76MknkIzHMXzYYHy3YgUeePQJjBuzHQ4/+GDkcnkoqor99p6BR/7vCVz229fw03OGI5VOY8GiO1BVcQwqIkBbYy2WrliIh57+Dw4/eD8MqumH5kwOTz//Gj77ag4ef/DXUJR7oRkhQPUu98V56kVtpXJeO9VF1yaEiRAfjndlUVwp1SYeDRHnmLcTjbKiKHOuOP4aeSg1Rn6KPDhxHyve8XPFHE21NFH+olzRuDhmyhwrOf8YuVKYCyXyzWfF+M0Sn4gV+BjlLsb98nLHXNei5xBawop6Ps6Wn5vFxFl/XDL2czJyzrHjuNzMR1Lbxfcrene9Coes0FjIE/qcJ5RMp3UvFIJlHop4xV8QCL2D5lX3iGcTqmY64tNRBPoYIFRZg2ijZIKO8nK8uTbBEWUlybKBMTjlFjRFhaOpUmlRjhHLi1xxm9r0exWktuf7CnmBoOWIR8d9E4lGPG3FfcoWjoRR2a8CiaTo0wKNsVbiowYCvNa2X0+6tvUhERuKinSFJmxq3tCGxuPaUOvJc/sq5llP0LQNsR7H6+qldYVgdVWe7jy/+222bnXBjuqEjBDz5c7K7OPZe1J7buykPJvPSputkm0xpizp3gQpDCpg4e0LsP0PJiA1JtV1gq3AfruzOMJzx1xgcGwQLpj4M/y/z67HilQtJlVNxL373YmQHoLj2BhfMQ63T7sJt3z0F7zwwQsY07gdbrzmGvz6mmtkfkMGD4YCBXfcey8am5uQTCQwbZdd8f1DjwAARCNlGDrwTixedhOa206CtWwIdppwORYseWSD6jF5wkVwHQuzvrkTiqJi1PAjMXrkcfhm/t/lPSOHHYdMbiXmL34MtlNATb+pmDblT3j93Z7zSiLh/pg25c/4eu4t+PDzXyEeG4FdJ12Ndz4+r0vOVHsbNex4ZLK1mL/4Mcxb9BAGDdgTB+zzF/zzhaO6TLvTDr+GroXx5eybYNlZ9O+3G/acejN0rejp501ke8vnC7j32UfR0NiIivIyHHXowbjgx2fDtos/KLqu47brbsCNt9+GS3/3WwQMA0MGHoEdtr8UwIcAgJp+5dA0DTfc+Xc0NrWgorwME8aNwr+fuh9Td+8Zd21bMWUxCb6Mqlj/jf8j5jhxZFqPRCTxPKJl9yGfnQ7FisAyR2zuom2wFWbvjUDtuuP+laxkJSvZlmDKtqa44jj+oB/bvjmO1yvcV8e6O3gvOlA9OkG2/AhbN00/Tuz9WSgjT4jT8gWLRHasfBYIAw4wZvJo1J9TD8c0Ufb66bAsE6um3Sl5HVnmT5EHOE6cF45rxJ5UViKLENeA+R0A0Nwi5LsDpB4YCom8AoSOFVUIRVswV4UVFG3iF/CzmNsVCoq/m+R9DciYMhQXiNJz/CpGBBzbglJQEP2iDNmxbaj/9Qrh3qHnR6PCO51JizZoqBdIQEuz+GxuXAvLVnHF9SfAcRRM23kJNM1tp7ImPpgzw4id5OIUvGIRXH+bvMx8H/M2dMPAC6+eCssq4JD9H5V9ypwb15cPp/eo0bE6JSvK0b2s9NjSLF6s2VPdmpqN9/57Lvbf6wHU9NtNoiQc94fRyWBYbESyKYGYMmoXKxObtIpKod6WTYsNvZljVUs/WiHqbtO4iUSi9BzRh02NTfL+hUv6YdiQDH7yw88xeLgQuAjSWGhrEeVbWVsn2pBQooHDvgEA1C4VEvGtTasAAP0TGfr7YABAKCp4clpI1CsQKYNmLECi5jwUsj8qSvnR/HTQjvMCQFG8qEz76cu8OcsU/cdrDa89KtVVJfSsyHEk/lCAuUmiDZsbRZ9Fictl0PjP52jOErpiMHePkKVMs3BKWLkW+js9VyNkShfzMn7Gu+L+vx8krtMYMAkxZXXQMPHSeN75FUldVgm0uN4WlZdi/9HzmMRQbDIpT8ctKP51XN9l4pcSCl+gtUiqk7ZDtvinjcdZkaNIiJDFSqh0v82IkmijQMCAqrUhVjYTilqAoqZQyO6MFd/eKspgZamMhCjRsx0Q8uSItmih8ZwnBMosFLDrbw5GengLCpVZieY7jihghvqU0ToufzYjrjOPj9u+hdZcRgkZPQ8GvLHbMhkxX4LhEBKzypDbOY01Zy+HlRfzwqH8wlGx4Y5SPo4r6lczYqRI/31CzHycrU2pZNY5suVXhFs376ev3+P6Ks7WpmzDrhCu7rbRpuZw+a0rtedNVY7OygN0jNHa6/5X1o0u+5VxO2bPN/C6y33vfY/wm6qqm25A+qyEbJWsZFuRKQUFZf/pj9Y9G7DyFwtgKOGuE/nsm/kDkUoHsf8e89DJmtRrq6v/BA2Ns1BTMxmOY2Lp8ldQu+p9zNjjtr59UDubu/AOJONjEDDKkc4sw8LvHkYith36V+2y0Z7ZW4tECvj0y4E47rC5GDy8e2kGDP83gOJmqyfm2OVQlDRUbT5ctxIuwgCiPc6nZNuGOXYc2VaB1ipqGpHksyirfgzNa07ZzCUrWclKVrJt10qbra3YpDIYI1vsCelyLsFhAAAgAElEQVTCMdNdT4njh8i6ytfnrd1Q45g5AUKTCgVWKmsXB0vTYJOXGq7wmtoyLpMu7xHpWdVQ3B4hr7amhj33qe1iaxnE1SrGfhGJAwHh0S6qmhH6Qh567gtGzbjFGSHjurHn+sH5AkU5c5zw6jKyYzGXxXSgFFQkv65A0/R61J6/CHAUQHI9xBPymigfoz7NjQ2e75qmw4WBSMRCIKhJ/gNzz7juuqZ42tp1HTiuDQIwJFKXJSVITdegKhpCwRhqV7+NbxY8ANvOI5kYjhl73IDhQ7/naUdWf9OpvUzKz3VYCbDo8WLeik1tqjP6IPk1NuYtugO5fCMMPYr+/aZi8vhfyr7TdG98Hb4uwTxGDV0/D494ayScYTsUH8hidIP6mvqIvWuM8nG5izHKHCSTNhw3jwuuPBSv/nM+BtSYSKdEG9auEIgWoz52UpS3rU0ga198OgsAMHSA6IRoDSFYQUKHwgn6FGpyCIQBxJBqfgTh2DVQsBCKVgcztw8ce1i7Y43UEKpXQa/9+XhGCVywOqBFbeFVzbRl/CpGvrxrjUVx1tLpNOXnUhuJsrMSIserKhQIhSRUJBQRdTNd0WZmtpG+U5uT8AojUfm21aJ8jHzR0c4gKfKB+sossKdUlJeV/7gNGLlj1JtjSAXDrLDHa0ZnayuNVQYXKR9GipmjwOsBHw7IZYthDnhc8joW4DYJecez5FyFvEqMrF7I41J1I0g3H4nymgcRSXyI2gU3iudQn2VprWNU0nZFG+QK4rO1lbmtFhzHRUA3oARsiTZyHRIGH2Xl3ytG7Rm19NY9TPEVg8ytpTGVJb4dxwHj9nCj3yDSvxK5TBWa1jZDVUWfhqMCoQ5F+IghjU1qP4chMimQ1ndO7+7m1TWq0HM+zca0vo5V1XXsp46snM6S9BaR6ilfrq85VTK3TaxS6L/uN3/cVs993VUj7AUfTNzHj/H2P//OOHK55neAnuW/Oay02SpZybYAm7lKvJDwZmtdFlkYh1lRwIqfL+hAFO2u2baCmR+NQTTceeyozuy5Vw5FOrNutcJIeAAO3/8FVFXsiMP2fxx6gDeV4rNQ2HjKkRO3vxgTt79YvqxtxpMC3bJJE5qRyei4+6FqXH1ZbY/T33T/iQCAe//4727db5m7o63pJSiuDc34FLGyH6GQnwHXLgPcIOB2n9tWsm3LXCeGtrWHIl75Esr7P4ZUyx5QVAVmfkCP8slUplG2qAxmVa7rm/vYas66EYF0EKm77uhVeve8/znmQclKVrJNbKXN1lZsfs9DEVHqylvUwx+XLjwf0vfQ179ZlB8rnhWI72MEI+08KwocxxFxlFxXICdU3hB5fpmbw4gEe6WdECElAS9fwywU1Qg1Qng4xhPzC3gTwXFxmGLEyI1frZB5DEVEi+PoeD0zko/h40gZAQOqqyA/NAcjGIBKXBGTeEYOxxiDaKP6ehFguKWZkDJXgW0ruPz6Y2FZGqbuvBj5vItAgFXcvChpgbg1hstcHGCfqbcDoL6QmyeRLhAIQzd0iVCxN1rTvXGNGE3huELs6ufn8nUrX9wMssKdyZ7sDp5wVm7z9iOjJpYvRliG4hHxfY4vzo9UkGTOB/HPbCpbmjheJiOqtLkL0dhgzzvHamJeEqOVmqaishJwXQPBcBgN9aTuZog+rR4o4mVx3CQ202SUQ5SXPfbMSdQJ4dICYvPkknIeP9dxXDj5KWhrfAiR5NXQ9DxUdS3M/N5wrOFyTsnz8u2mPY8P7l/LpDzpu07IERNqFPrk2HfZlEDnJBrBinX0nePSxeMxqishtNQGrOIZi4q+CJcNEs8hhKq1UXC5MqRWGKd5mc8I5MsIEC+IkC2FYqhZoDZSaH7Sfa5DMfgo1hRztzRCtBUqj0top4zxJ50gnazBnSAVxfblMUIIc6AYW47RM81gBF76c0VdaHzquhdlZ34pKz4yH02Sn5w4Uk2Hoaz6eZTX/AOKmkMuvSPmfCIEd2y6z3IpDhutbTFSckzEQqj7zWJUXDkF4UwUBT0HKMWTCDyOGCHjvmb0OpUS3C+pwKh6EWKOlVagmIWMqjIKyuu/pmow9AAMg+Mziuc2Nor5laB5KGOu8cmQg72/YxtiG6qIt6Vw6DdVebqPfLS/vv4y9RXXaWPx4mS+8v3Jy1/u7Pndzhec/ZYxlnpiHesg/0AXfF/9CFcJ2SpZybo254DuSfGuy9JjT0M6tW0oE24Ms20Fdz6yHyxLw64T53dKIF2flSdHyxehfJ43pLRhNUpLydZiVmFXtNa/CMc2oQe+RLLf6Sjk9oHr1MBFADJOQcn+Z8x1Ykg3HS7+r7QhXvEyBgx/Eo11e8MwxAZXcUIw8/3Xmd6J2qi9dRYGXbgjAlYMqakNm6zsJStZyUq2pVvpDWlrNt7W91KAscsYH/7ndJaev/eqFEVzzvN6HKUynvSaC8+ma1l8/B6WaSKfLyBfNR3pYCtg2/KsP3MHdEJADEKDeKNRjPnDSnoiT7UdJ8zgWDSEMLFinYxJZLDnWZQ5Tdwovo8RG6KAyM2KRLR8ZWGuSJHfQJsal3gKto1cLo9IlOpmUD4Bkb65WXhxa5fT8TRHhW0ruOb2E2BaGnadNB+aphTjgrGqHCMN0kGv8n885WFvNSNwHI+Lve6FPLclLS3Ul9ymjDaaJnNlRDtpBvOqyIveLoaORmWTsZrYU07fuajsKefhkyWPOdeFkSfuE8npkpwtb5y1AiGgjGYaAW5zUs4jPl4hJ+4P03N16pvi/eRpt6jvdQ2KpsJ1Ldi2jVxOIGWsdFmgjWyqVVxnpGz0yCHUDqSMGRNcMD1ShlMHjIPKUvPcZ9RQZ2fTOMDMw4WKNwJB3B9uL5AxBIq1GFpoLgAbz+M44nSNxMXBI7FEraLGpvFIeiz7ZGbhrPTbCIQDWKz1w5WJ48XfOU4W9ZHjOPhdw2MYnBHj8YH4/ngvPhnoxyqXfNxUwwi7Addl/0V9ouDE+I8Bop+5chyJdM/kHqQ2ECig6Qj0OpUjFVAsBQBkiV+Uy6WoXOIzGKINhErjjpAt3aik5zEnk3hF4HKAyk2LBY1X2xLjmFUROY6W4j/S6qsHI1cF4ozlCmL9CIeIr9oO2eI20F3vmsMqm7we81zkMstYXaw26bAKJV2nPuCg6LYVQ0vDoage9Cpqhj4rn6+qeWRS4zH/y1vpCiFlVNecZmLJTV9h2MUToTUGoSYcQAFyxOtk5I2VIRkd53LzmqlK3poXFed5VyiI/Hh91zQNqqLAsm3k83k01JFSZUiM88pBYmzoQZr/hELyGqy+Sr9jB3f9O7qxPeedoRNdPXejozB9nG9Xz2n3xPWlEnfINvKl7KOybqw6tzucs1HM/35n+xVkmZOsrpuS4E/fvh38h6iKp5t6hir6T1F0t6kVX6Px9xKyVbKSlWyz2dfzhiGVDmLGtPn4H4yMsM3bqQN6rlLY3lwnCaswFQCQSj2CeMUPYOZnQEEBfGzU/6OqqHmoWhsUEqTY0mzlBULWu3fMxpI5ThSNdYfQN94Y51Fe/TIGDH8Aa1cdAtdVYRb6edNFbSy58QuMPnt3OBPXwuy3CThcrgItr6NQ0btnKX/r/marZCUrWcl6Y6XN1lZsjv+888ZykXRifs7Whrpo3IX0n1F8gT5og1Agz2eyTJfIlqoqUFUF4VXvQMtkkareQ3JU2ohbEw4zuuRVucoRByxPXIBolPhY7WLbcJpiHC1RBuaQMB+Ca15U4iJvklT5g+c+qU7mQyF0ebxPpI/F6EiXqkHVNChQoaqabJN4eZL+LPJhHkM0Kry5+WwerqshGilA1yED5nJMMebOMD8iSDwfqUgnPfisVCe+FsgDzx555sRYFiN/oPYh9Enx8k00gztXfLBXnZGOcKR4zFF6vagtNUL/jCDz4EQalzzorLrmj07P+bBKJccwY36QRPto/LBHPiBjPckSUT6sVMlNxGqHVIcol4/QS9BY0BVCNmwAeUQjhGgRQpFJt3ny+fC1CwAAlVUifYjqH64Q8bVYLfHJJnF0ixUlXaqnoiiAqgFwcaBlYf9mwedTJHpIaGKuGXkMQa71VpQP+n+4TTmtU/erEwIQAjStBSPrf4snWu8GUOSZRYlPZls2EABMClFwnvkuzmt8V8aIkmgNcaEcWWYVTzbfKfuWO+9VbRy1OTc6qA3EfckKccytTRXjn/mebW2iznZBIFuJqGjLeJQQpCDx8rI0z4kX54aESqJi8DyneQGvkp5sF9sb85CRKz/C5frmEyNdQcPHW2oX848905L7p3vLwP3OiC1zGKVnmmN8sWeb2pTRaslVVRjtZmSJeaUBNNUdhMqaV1E96Bkoqolsaiy+fu/3ABSpNBkIhZGvzEJxVEBR5fMZzS4SL0Tl4wlaqygel0V1ZrVPXkO5pRl5jkQjUAoqgukgzPICZu38FdAArF4hRHzKq8VGcOho8YOicUwfebqAuWvotnXmue+5R797D91QDlhXz+stv6mvOV2dc7fWlb8P1ZCnL3wnYzrk1Te2oQqLXeXXU9XA7ubP6wf/3jE6z8rAneW/rutuJ5PGf2/XiCWjZnS/3z3WRZWl82/LBbSklTZbJdtiTP81BzU2u7izo8UXPIqIZSFVvUdfF2uT2PB4z+vcHXMcBZ98PQqh4MbJv2S9s2jEwfsfxdGwdstbgs3c9liz6BFogYi8xhs6h34y0inxwhuNrUbV4B8in52AQn77jV62A8y54j99HSCuZN0yxwmjpV6EcYCSQ0XN8wjHliObGuq5r1CRR3hpDIX+GxfZii8ogxOwkRnWBny9UR9VspKVrGS9ti3vl75kXVpRfbCTv/ORH3fd19td6eR694zz31jnZGW+5IHPpYTHXxs8WCJbChTYti2VCE3TlJ5P6fcIe7+yh0eT8YQY0eDnFr3JjHIxmqDrXg6TIz3PpMpHSA4r2BU5Ud74QhynKxAU6a6aJGIsWSahLqxGRugJFIU8sS4Atx3vSOSTplhMqRaRf3lFOWwH+NW1+yBX0DF954VwHVfWlXlqzAcKBL1nnnNZwXdyCU1kpTCpkkaoi1Xg2FPkbafrRS4bPY/qz/3G7cqcLVPGrhLPCUeLL/r8DLNASCQhkn70IExKdVw2RhOLSocmtSlxPZgDYnKsI2HM7VIlp484LuQRl58u8/aIJ+RDCeWZeI6VpjJXBBizXR71DRoOOGJ7PPNwGyorTDQ1rgIAtLa20X2EVGgi34oyUa4zTlkBAAhEiE/lU8BzvE7Ddl4/70F7qVJIynwF4jVxAt5gAUWei2mKcREKMgI1As11f0dZ/x8hlzkQ4fByUWbqRyNAaJ/lVWh0Ha9aJ5ifw8OEleLofpX6LCfHI6HQ3EemV80y+cQCAMDa748Q91MMMpOOPWZJ2VEjjmG+IFQ7I1Qe5koybyioVVE5mPfD8cR4HvJPKS++tqctFR/3kbmJLAjI89GyvTwmxynG2ZL8NhkPUOSpMxpGj2bERvV5yE1qmzwjtjSni3EaaT5RRjyXTcuLRPF4UtUYXCeCZDKEoF4mka1CwcKKX8zD6CumwEgZ0OIRahaRPksIFnO3eG3h4enQ37lvNRpLzNkM8BqsAJqrYc3Tl2DlYUsBWrfL+wneXXmV+DSIC2nTPFcpH6jeDXtPUJ4NRXQ2lAvVVVk3VX69Rbi6i9705N3C7eRFpq9QuO7G3dpQNcSNhUL2pWJfBz5XJ1l2hoDJfGRC3zl1+XdvPq5Ub/bfuOVDW6Uj7SUr2dZgFmAsF8dlumsffjoArakQ9tx1ETStxEfYkkxRgD2mpjFooIm7Hxq23nsnTX8Gk6Y/I7/PmL4GM6av2dhF7LbZ1kjU1z6EZOWtCIS+gaJkAGwcROPN0A54M7RDl/fFP65H/OP6jVKGkhXNscOIV87scN2OWVh84+dIfFwFY01oHSn7zqy6YcilB27UZ5SsZCUr2YZYCdnaCq3TM77FO/gP4sN33ef43uJifEhjdS1CIJiPlMsXimqEloV8Pg/HceA4DnK5vPQas/db5/g05BFmZEsnLk5MpzhIzP9ox6/we5H5U6rmkTc3Q0gQqwPGKF6Q5H9R5iGK+cXnpDn2DbuGOD5V0YulAhYQmRtHZsc2pE9vQVSLIxyJ0H0iXWuL8My30WcgGIBl6UjG8wgFFZBTV3Jj2A3O3u4iUub1nkv+E5WHy80csUI270kvFSQJiWDkwuKYOKxiSH3CcZaK/BDX83wAsBVCQ1zmUrEypHhYhFCwGHnI9TDxfxgRJU9+Bycbc6w4ZhrxzeRZ9iDn4+XhMDIgy8cohy+2mv+BUgVTYTSmgKqKAtpaLTQ2tKCxUSBajH4yn6i8UvCN3CZCi0LM42OVTkKBGEGzvGf0uU9dlzhj7GNjlJO5NIEk1VuoHLrtvIUmoV+vz3wfCxctxk9/fIa4xxb9f+Gv7sK3C+P476fLEIp8DVXNIt18FXSDNoVUBgZ4HMu7ZnHfKoqDI457GeXlQTx494yiyh/Fe3uofAYA4OCmb6iMNC8JlWHUg+tcWVUu7qM+TBOnjJFbleZrPivauNAi+iCYF2Muwfw8jeJ0hbktQdd5ffByLVmIZmVtC375q7fx1tvLEApqOP64cfjjtXsjHOH4dhynTHxn9cFly1rwu2s/xsx3a6EowIy9B+Lqq3ZFVWVYrikcI88sFDB7TiMOPfolJJMBLJh9mshT0VFXl8GFv3obs2Y1oL4hi2QygCmTK3HxhRMxYXw1gCKCFGBEWAotMq/My0XkxddxFLQ17YNk9b8RiHyNJbP/AgBY2yzUADUNGFiVgupogKpJZdciosS8NJpXpO6ZlbHVCGFmpJX5bUpx7XJsF5ZpI5vJo6JS9DUBzIiXi+8hOmVgZkk1NBr39VnvrbtoR1fWU45VZ9/96EVf8Yu6yq+vuGW9sY5l4jZYf937mnvVWf4bmz/X3fSaLw6lIucVv9P0/P1vw9G77qFtHWKRdQC2tnxkq7TZKlnJtgA7421B7H9439Ud/haeF4Oru1j120VSprkrs23gw09rEAxaXd9csq3K3npXHI866FDx/fFGcQS1eJxw49n7H3yIV15/XW622pvrBtCw7P8AAKHoKiT6nQrHGg/bHAPx67hlKhduLLMsB0cd9ywChoq/P3gomlvyuPyKmWhpyeP++w5Zb7pTz3gVjgPcdN00OA5w/c1f4LSz38TzTx/iEfABxIvLlVd/gsqKICzb+8KUzZooSwZxxaW7YcCAENbUZ3HLrZ/j1DPfwtuvHo1kMogNMdcJo37lgeg/+EWEoouQS4/qOlEfW/J7j2Po6NWoW370Jn92yUpWspJ1x0qbra3ZWNHLd1nt7OyyTLDuc7YquucN29TGyJbN/B/TlMhWLpdDqi1NaIICQEGY0CNXemApFg55ULM5VpkrxrABOqI2Ig/+9OKBRX6C6bmuE8+FuRjSHQvb85VROomYST4E82XYY65AdRSkx7bBgo1chmJOkbc2nRJxtdKtzZSPA9tRcN6v90E6a2Dv3RaJ7pYEOy6nN7YOl1+hT1YrVDugMazcR20WItSR2oORKvZSs5IYO56KNDyO08VqbV7lNDNX5KoUOC8qqypVlLwxjfyoGXOzeKA7LiM/XjSNUTjTZJ4Q1UUX3xkZk8qNNtfJG2OMRwjz12xqEy3EnBovVyqfM2GZNvIw0dSYQiwpeEXJcuHRHzhAjONwWPRFMCI88g/9Qxw7POB7de2rX4xHJ+MfeY3nv02qc63NQr1w6ZJFCAaDKO83AABQRs9vvzzokqtnQFFUOX5cl8a/qgCKAoeQrlRzDLn07eg39DIEIp9CUQpIt1wOTWsU91OfcBm5bUQfKnBsB4W8iWyGOGKEVrpljNrxcVpR10yaOIaMjHLcOhojbcRpVFVGvMSGlb3fdlTkX1e7FABg0v1Rem5B53hchHQFBboo43TxhOf5q+t47tlv8e23jfj689MxcoRAWQxdxWlnvoTLLt0N240qLyoJcizAgIHnX5iPBQtb8P7b38d2o0S68eOrMePAp/GfN1bgiEOHizLTOH3mX0tQ35DDcUePwD+eXiTnnqIAQwZHcedt+4qWojLuOL4c02f8Ex98uBqHHzJczgNGu3nDxuthSPI5qcUdWgtovpmFICwzAtNqQzaXQ3NjE7VdAI5tw7UdWKYt+6zIhRRjh/uYEWvmRPLakSP0vUD8zhDH21OF0mF08gdQB6aRbjoZAKARChkk9J9VNy1Krwe8m377WRvrsnX9DnbGKdposZj6iBu2pf2m9435Fe3WjZL0tu4bX2mxZ7ahSpecXv4u9jKf7pSl2yid7+9ON1UOiwqsWw8TauspaclK9r9oFmDUhmAlu68m+MF/B6GpNYh9py+DrjtdJyjZNmE/u+Ai7HfQoXjplVcxbe99MWTkaBx+9LGY9+18z339ho3E3+69D9fecAt2nXEQfnTeRfJvb749E4ccdSxGbr8jJu2+B6697gYpFXzTbbfj7vsfwIraWtSMHIuakWPxi1/9xpP3zPc/wgFHnoCxU2bgyBP/gPffuAFrls5EU91LCMfvxu13voA9ZzyOQcPvwchx9+MHp76MxYtb1luvRUva8NMLP8Cuez2HN/tNx4e7fB933/+NJ2bcR/+tx6gdn8EHH63BTy74EBVv12LCh6vx1sxa2LaDP930FXbZ81nsdcC/8eDfve3x/VNex3kXfuK59tlXGex68AJ8uzAjr91+10LsssezGDjqMWw3/iEce8ILqKtLd1ru115biik798fw4Ul57YjDRiEQ0PDa6991mu7/s/fdAXZV5fbr1Nvv9EzKZNIbgST0KiBNfIKCiAqK2B4PLIgi6LPSpAiI6I+i8hRFBQsP9akoIKJID52QnkzaZCbT7szcftrvj/19+845k8mUTJIJnu+PuXPvPWefffbZe99zvrXXWq+v6ERTUxKzZ1X2W3xAHRrqo3j871t922azFq6/+SV87cuHwDBG9nNeUyMeIC1r/OYG142guv65cSsvjDDCCOOtFCGytR/Gzhy9RxMyS7CPl7kG629/e+dL3hh5YDUuwzQksuXBg6qqWL/sNqiqChMVpKFcFhlLRkTsAC+okhHjLAwdbwCyxegFZ5EzGcGJ6iNuB3vBRAm9YITH84q+z7lMzi6XSFWtghBQlthm9MQBHAXxlhRyi/rQdU4r4AFWUdz82SWRvS1RVjjbJ+qVy+aQyUxCOlmA45YlmiFRDzp1Rqi4/hGFOWPi+KzoF1P867m5DYs5UQ9GByPEfwNxwhz29KEsNas5MvpU4iwz8TjMKLczc7wqfaHSTQhdMQP+VVT3AiFQjGxx/zZM8d4q+7mMfE3iSYEcxRJcR7Ed8996mQdnMK+GuFNUd6nMyIiY4+93rLynyCwcI3AqVE1BJGqiriGN5rRAtpLkO5RKJeh8SdlSJW4heK29OP7XquplW23ZuhXfuPpafOVLVyKeiOOGm27G+8/7MF5+4VnoA7KA37/rB5g/ZzY+8/GPoXVbO55/+jX0lpfj2ptvxPkfOBdXXHYptmzdhhtvvQ2u6+Dar38DHznvPGzatAVPPv00fvqDuwEAtXVV0LQIFCjY1rod1918Oy695D9h6iq+dcv3cNGlV+Lx//sNiv21sIo/QGvrh/CZzxYxc4aL1s3vxr33PYfTz/g9Xln+UbGkTbGgKAJfdVyBsrRuL2DWzDTec+ZM3DnzAvS/tho3X3s7ymUXl3xCLFuziZT4tWtfwgfPmYHLekr4zuYsPnHJ43jve2ahXLJw6w1H4NG/b8WNt76Kww6tx8FLRbt5ngcoGlQ9jnS9kDBXDNG/C8US8gUVv/3jGtx+9wZ87YsLMX9eEr05E/96uh2ZTA411XrFb48ROs/D6rU9WLSgFgMjEtUxe1YV1q7tEWi25p+EVUWDZbmImBpi8aicdwDAjGhYt6FPZqatchm33P4y5s6uwjtOmY6XX9kBDxXU3dYZuVXguh7KZQtt7TnccNNyNE1L4NSTmwDFg0Y8N+YestqnIseJOB4jSxKVlNwxA33dx2Fy859QXbcSrv0tcfxSAbqmwiZ0i320eL+gWqJKbRGTaqDiuDxX8pzF2WwzYkLTNCiK8K3L5kW9p0yfDACorq2mdirRfgrt579WwRjN7+p4I0YjLW9fIVX7AzcmGMMpH0401G+82nio8xsPJctxazO+l+X3cgXM/tfPhovwYSuMiRNzJtakt0/DUVD/zykoL8pj69dXA/pbb/IJY3xiIy1xqwPQ1d2NX/zsJzjy8MOhajqWLV2KZYcdgV/c/wAu/NB5cp/6ulpc8elLAADV8SpYqoK7fnwPTj3pZHzrm18HIB5GTdPAV6++Dp//zGcxdcoUNE6ahEjExGGHHAwA8FB5GMhkevG7++/F7JkzYJeLcF0PF33uSqzf2IK5c+bAsabjK597GgBguVtwzNEfxzveOQMz57ThTw+vxfkf3LnK4NFHNuDkk8RD0P3TDkX1MctwbtffcN8v18iHLY73vKsJn7xwLqZmXEyelcbhv2vB+g19+Mndwn9v6ZI0HnlsOx55bJt82BpJvPJGFm87uhof/ZCohxapwRmnT4cWSQ+5TyZT3Cknqro6ikxmaLXG2bOrseknr6Oru4DqtHig3t6WQ1tbHhGzIuqwfkMvfvrz1fjDb04ftv5X/PeT+Ol9wqNsRnMSD/zsVCSTxjB7jTxcJ46e9tNRO/n/EE+tR75fXBcraSG2PY7S5PwwJYwhbAWR9ijs3UTv1cspEXZruAogjDDC2DMRPmztRyEzEpyglwotY0S4RrlbMCOyx7MPEmmq8JdkPaju0UgEcfJXkmqDzCuS9ROvzL1hXxczsHZfpQZxncqSPZWyuqwSmM+LMphXwFlYzvYWCuxDRLwCQjEi0aivPAWszrcTFT5HQXpDNYoLc9h+1VqouiI5YHW1zP0Q5WdKGaqf+N6MxKAbJt1HxYsAACAASURBVDzXg2s7MivMvB+uF6MtjDQxAsWigqxExr5IjNJUbMXE9sxZi9JNYITawyLekqX43eojhHCxQpgmfcTEi/TQKlc4W5LPJTlZBu2r+PfhtjTZO8yPPBlGhesh6u731+KMe4nU0Jgr5jHXj7bnNmMvNcPw880K1EfYQywSIXSQfLPYPysSjUA3dKSrkpg9dwZUOh/VEG1oEC+okD8BAJAvi8+ZYqOZ/gy953poqK/HkYccCjguPNXF9KZpWLrkILywfDk+cPaZsk2PPeoo9PYJ9PDus9+LtREN3tXfxGOfuxRP2h6W5XOIxyM4+ojDUSqV8OaqVTjmyCPFXOMBnpw8KnPA9KZpmDt3vqi7omLRImFy3NbRhcmThADM6ytX4bY7foAVK9cg09sLQHiLtWx5HMAx0I0+KKoCwzCQqk4jloijWLTx3e+/ggcfWo9Nrb+BZ9n4Gx3TU0zouip5nUcfMQmAis4rlqCq7AK/a8ExR06SSnrRiI7pTXG07yhAVVSYkQhUVYWiqFA1A6mUWLoXjVdTI0cBLYZ5swz86qF2fOvbr+HEY6tx6KEWNE2BRiiSrk+ia0tKeSULnif6hGXbFT6oqsED9UFNhSIHXGUyfv/75uOa657Bpz/7N9x43bFwXQ+fv/KftL+CEiklfuPa5Xj/OXMxf341XM8b4H9F8zOPacfB5z69FGe8cypaW/P4n5+uwgcueAS///VpaKiPDlAZVH1V6SX0nn9ncsSLq6oS/TKRTFK/G8DdshOIxh3YVgSeY2Pjp1Zg8VeOglOmXymlojbIPECueDwu+jd7EJalh594ZZ8tTVeh2ArS66pRWJqFMqUMTdHkCgiDPODMOC2XLImlnqw+K5FvCmX9yH/HxturaTj0Ybz9svZW7A3UaHBb+leojFaRcbTbjVcbjxZ5Gmu5o91uT/Slwf1aGfB35LHX7kHHMcKHrTAmTKh3kRz4JTsnLO8qGt+4CYqioGPJf493tfZ6pFZVwTM9tHxlJSIjJLOG8daNXO8F9F/rsNvW19UN+qyhvg7t7X5frlqSxX5m3hxsXDQfc+65F+sAOGeeiQ/vpNzW7duHPXZV2o/y8BJTfuBvbWvDRy++FEsOPADXX/1VNE5qQCQSw0cv+hT6ut+BaPJeOPZM2tuDWG7p4prrn8fPf7kGX/z8Miw7qA7pdAR/eXQzbv3uKyiVnAFG40A6VUFrTFMd9BkgRCpK5dGhGOecUYdc3sWv/9CF//c/raipXosLPtCEL36+epA6IEd1VQS9faVBn/dmSqg6aGgVwLraGH5096m49LLHseSwnwMA3vXOWTj57U3o7xcPHn//xzYsf2kHrrvqSPT2sRWCA88DevvKiEY0RGKVMpumJZGIO1hyYC2OOaoOJ7/zr/jZL9fi8ksPGlU7DBeeYyJd+yKyvaJcO13Gq1f9C4d8+UR0L+pAsX58EK7U6hp4SQ9bvrIGzfvP/VYYYYTxbxrhndx+FIMyOfIfv8rgSN3ZhypXFhz8eAhFGCuAJDGnYFjvhOCa/cdoOUfgYYuRCImCDAjN0BFLxBErtkJRBNqQ7RX1KdNNniGREEYg+PjEHZCKe4RsuZUbsRIptzEq0jCpzldn9mjKZtkbhvk0xBtjDyOIujDawkgP8xA+tlCon0WjMRieieySDKKJCKCQhxMhUVGdeUMRKoeQN+J2WGULtmXDdV1YZUvyGxzXzx/ic5TcMVbwkyqF4rxZ0ZGz5S6dd6oqRedL5XI9WYkvgNgxMmjIay7eM7pU6UvkBaVWpiaVDJk5A891sS1WBWRuCV9H+D6XqpPsK0V8MMlDo2vAN+2uRP385UvlRkK8XPJ2cj32YPMfN0+8tljc9NXLUwcOMA+qpsCIaNBU4rsRN43RQVZVi1dNonoTikp+XKiiByzFQ2dXl1RLZO+pHTt2YMH8uejPZGSbup6C751+ClY0T8PiZ16EQv1q8Re/hPQpb8eL1dW4urUVC0m5c+bMGSgWS5CqlQG/OUZxJFLqebKvuB6gagb+9exyFIol3HPH91FVLc7JKuSR6e2FbRno2voj1E67GKq2DUYEqKq/BwDwxz+7+Oxngc9/7gi4tmj7Rx/fQvXQqa9Q/4QCF4rkPnJdKp47rmx3Fw4UFYhENJRLNmzbrjwg2uTRF6mBHksjW+7AB89txgfPrkXbjjIe/1cet9yxEVOnJHDheTPg2nmqDyHYAObPrcaaNT3wHAceKfGVLA0bWzL45CeWYmBIJUtqvxPeNhkvPvdBbNzYj1TKwNQpSbztpF/jpBObkC8UsWp1F3I5G287+SEE48BDf4XLP7cEV15+mDgmcaWyrLAYj2J6UwIbW/pQKJSR6RGcROZv8txQ4UDS5zyWHb/vHG+vqir6uo/BpKbfI1m9Am88fY1ok0YVxeYcItDhRTTwbYdUYOWVC5qf+8gKkjw+i9QXE4kYEgUH/Yd0I1/qR7avAUAFtdf8wJX8PYtESWE1oHw6njFWJGp/jZH6b430PPcmIjZWZcnx9t/aW9yx0ao07s557u45jbef20SI8GErjDAmQLx9mliiAycCvd2Emwz9scIQoWob6T/xUHX37evpfXLQth2dnXh++Ys44rBDAQBbt23D6ytW4rxzz/ZttzKVwormaThm1TqUsjl406YjUt+AQtt2HLNgAapiMdx86KG4u6UFh+TzA5ZimiiWBqM1I4liqQRVUeRyLwD4v788VhEWsaegu/VhWMULUCrUo6P1Ljiug3zuYJSy70Ei/RfY5Spke5fhod9v2OWxpnz2mRHXa8rkBJ593u9v9+RTQyN5kyeZuORjNfjNHzqwdn12yO1OObkZv/3M37BlSz/mzBHLEv/05/UolRyceuqsYeul6yoWzBcI5NPPbMf6DX2483uzAQDvOLUJS5eIh28WlfnN/67HY3/fhnvuPBHTmxJDltvTU8LGTVkcf2zjsHUYbbhOAl1tp6F+yp+QSK9Drm+uqGPcRmRHHMVpQ6s3jjQUR0GsO4G+hLAu2PDmRQAA8rAPI4wwwphwET5s7YcxCLEKSrnwu2AmI5AUCHK2Kt/vnAs2FMcrmKEZNzUdqgfzfFLVgk+h6ZpUIzQiJiKOA1VT4ToOHMeRmVZGOqTCn0R3xPdR4lEx94fb1R24wkhylMQL33QyksS+VKw6yN5PjNDkSS2woIisbDotbpBZEYsRH0VVAQeIrU2ifEABved2Q9V1qbKmqsw3Is8x6Sni95TKkeeY53lwHEvKY7OnDXNKFMnrINSQssoWozfUZiZli8Ey2+SrxNnmSIR5EeIGPF8qYGA4AY8zLWDKLHlTnAmjrLkzoAtFon400CK0kZEtVnjkNmBeWZG4XJKTwnwaiZ5pvlMrkM8Pd3PO9Ksq8el0bjPOzPu5hFxeJMrXig/rR4EYEYOqyTp5iifHH59XlpQvp8+9is77XgBAP/WJ/oyQTC/VFWk/C7U1Nbjk0s/his9/FrGIiZtvvwO1NVU4/YQjsW3TFtmmjzTU45gVaxAvFFGC6AcLLvkMXr/hWjwJD03HH4/5dXX40I521D34IP5x2y2IxWKYM3c2Ojo78Ytf/RoLF8xHOpnC9KYm2LYN1/UGcBAVuK5kwyGWSOHE40/ADbfeji99/Sqcf+57sXrtOtx1z09QlU7Bcz04jo3unh5YlgXbspDr7UVVdQ1OPP5tuO/+P2Le3Evx8OxevPGDv0J1xLkXCyVoqif7hK5rMAxdoth8HePJFLWzCpUU7AzDgK7rOOM/ZuH+X6/FVde9gFNOasIzz7XjH0+Khy9Vj0Iz4vjWd7YhXWVi6SITyaSO5S+2oGVzEUceHEO50AvN8HMyDdPEOe+dh+/c/iIu/Phf8NUrl6Gv38J/f/MFvP/cBZgzpwaeJ1DWM8/6X3iuiwd//S6oNOFcd/3zOPLwRiTiJl56pQO3fe9lfO7TS7BoQR1KZQvNzVWY3Ej9lcbYU0/HoGsqjj5ysmz3u374GjZsyOCIwychkQC2bcvjvl+uR8RUcd775/h8anj+Sybi9Coe2CT/kvqlRNMdVhH0qxnCjcO20jAiJaiaDssqY90nX8fSrx8LVdNg8rzL6D9xswo0XlXijvH4ZSTa0HUojoJkaw06m3dg3dEr4WU8dJNaaE2tSEbUTmIEmOYSGuAJQoglsoU9F2Plu+yu0vDuHn+sMdJVLKMtbyztMBwPLvh+d73Tdvdaj/T7sfqH7W7b74rb78nXXa+qGo7vP9qrvD8iXOHDVhhhTID4+7YoohvjOL3RQ9u3NgPq/r28JIy9F8f1iQePVQCmTZ2Cz33qP3H9zd/F1m2tWHrQYtx89ZUkCpNDNz0cz+vqQargV8SbctIp0BMJbP3NA1j34G+haBpiM2ei88wz5TLaM9/1Ljz1zLO49oab0NXVjfedfRZu+/aNI6rnogXzcdtN1+M7378Df3nkMRywaAF+9L2b8V+XfWmX+9143TX4whVfxpe/cStKsRgaP/hBfHTp23H1jXciXfsGnNLBo2uwQJx6cjMuv2wJfvHAWvzmwQ049eQmXPvNI3HhJx+T2yxdUovfPrQJv3mwH+Wyi+YmE9d+uRnvOGkwR47DMDQ89OszcPmXnsRHL3oCZkTD+86Zj29dc5xvO9fxfJ5hALB1Wxa/+s1a9PWXMWd2Fa67+mh84H1+5cWRxAGL6vDXRzfhjw9vQjZnoXFSDEcdMQmfufgATG6MDV/AGMN1DaRq3kBft1guaVWXseaWFzD/i4ejnC6hb0nXmMqdvGUavISHZy58AjVaajyrHEYYYYSxx0LZ39cMB8MN/mq9BaKCuHDmcIQZl+AHwyBbQffuoRC08c4q8HH0c8QNnf2g5fucVeFa1ojlU4oqkK0Dj1qKjot2oJgvouHvn4BtW9h8xP+Da3OWW+QSdFahY3VD/jzALZMeOU6FM1bJ5qq+bWxWxtMYGfJ7PjEXypLIlPicUZZInFUMxctHHq2D1mvgpx9qQ9dH2mSmiLOzkufA3lJU3o42sdypq70DAJDP5vHk8/Px8BNLcfjSFll/zg6zKiEja8wh43ozYlfmess2qXBxBp5XPBmn/UU7sGIZnxcr9cWT5BkVaPs88Y74PBUwj66Sca+oiDGqyKp/Yl9GLjlLz1MA1zVC6mSslMjfcyaeEVRWD2REinlszN3iNuDMPH/P+3MbM3LFqpcJ8stSWCZdYSRMxyuvRdE4ycZtN7UBxP1yPI3OTzwMTZ55GQCgt+teAMCXvyra/MuXbwYAZDp7AADfuO5abNy8GffddTMAIG4SIkHjx1ZqsCUWx4VHHI2z1m1Eb0aozTE3JkZ9Mkp9o35SLWwF+FlzM9atflOcM40l1qQokfpmmRTyuD/wtSiQ9xGjC3FSiGMeHs8kjIC2t7aLNqZxUlcvHmZKjjju+YRe3LpiJXQjg0VLLkVn29GkbKcgStc6/THxoJT/xRkAKmOeEV5X8o7Ea7FAqMoA7yhgAH+JeE9WSbRVvkeIlRiKOP90jfDTiqSnijZM1vrOz3NJldMU7cPKlPkcXYPubrEfobgGcTI9tzLX8pzDaHS2n8YOta2mcT90fWWwih9z+UrUH8pF/8M2c6iSKR7TXJ4ov1hidU0/0szlltm7T9eh6TlMm/l3ZPvmY+Mbt4h6egr0HgNzr1iK2KY4PBXovqAN+XwOUIAMqR9GzKivXEbFFQCTV05F68FbsObUFaitF4IsS469AQCw9mXh71XdICT90w3iGhRpnmiYIhC/aMK//Fa9k5DnT/vnjT2hwjYQSdz5dv55dugYa92GOrexKe0NxwPfk4p6Y+akDxNBLvxoEajRxkRBH2UEvK9GgmzJ/8a5PwT34/Ez3DgaKlRV3TuNvZMIka0wwpgI4QFqWYUbD71ewth1bN5sDr/REPFqdQ0Md+R9TPUAxfPwSjSGZcXC8DvsxbCtarzy7A045NgvINd7AEqFqfu6SmFQOHYCHa2nYlLTXxBPrUK+fyEAwK6xsPKeF6E4CtJWGtMvnQ8jEkXvQcMjXYqjINYbhx2xht12NOF+yp90CSOMMMIY7wgftvaDGLSOe4S/CUNmEbxAFmI4VZrhyhun8GYPoUATyGbksjnJpXJsW/A7Go9FPldAsViGqftVBmX5VDxzYph3FIuJTC5zfziDC1SUFqVPFPnlcDa5RJ5c8RgjXOJVqvvppBqo+/k9xkB1PwdQ8xqcuI0tJ22A1+8hSrrNzBHj/XMBNKdAGXnOwKfSCURjEXHRlIqyF3/Pmf0ooRjMS+IrqzE65HEWnLxuLD96xMhYjHgQFd8t8uMKKP4ZJiFzmu4rh/d3qB3tsj+bLf4nVcCYJEFRGaJNDEP1nYPlMRLl+eqkqOyJpPrOKTi+HIu9j+hwkttF2WlCACxSmsyREqXrEs+NkLgUIVqa7IeabzvXdeB5rrhUnifPi9HSZCrlO68Kd4zQwpTI7K92mG/nwnU9tLX10nmQQqYtyrvjzJPwXEM9TtnaCk3TJMrK/kbsV5bPZn2fH7tlG85vnol392TwnZ4uqjv1p7IfMZWIjOTo8TUTL9wfVULxuP9ppGbZ0Cj4Ngq1kVXoo+MROmkKdGLKNBJ3cBvgOUuRTHuIRqsggxFZGtMaSHCGECZG+3q6hUKjGRX9MBUV18yjPsTqnA4huZkeMf6ipmh7xRboUK5PIFOWS8gUeaTpBiF5Kj8gE4pOnYuvNSPAtlQvpXZSKhlcW6q+qr5t+VpEIuIcbFvUtUioIyOzsZioQ5wQXlZr5fnQjAS4jTzH5Anl5jmQkC0eL7193M9oFQBxvVwnBatcjUTKheKlJAfLcTxABUqJEjbevhLTPzsf0x6ajanw0HLaWmiGBiiARfL8iudCcRRUtdYiM6MbbSdvRkyPSCVYnluq6wWSpZJ6olUU9VK5rfVdJylGglCMVsFtpDyhwVytkaIlI/1N9pc7+Dz8SEGwnsPVe6wxUmRsd44zXJ3lyhbP//1w/qXjpcA4UWKwj+vwoQT/4zYc5T3qW1F9MBjhw1YYEyacm0enwOfpHowOA4V4AX3zLkBPd+8eqtmejfjrKcBVkF/QB8/YXWI0sGZDPTQtRMj2hzAMD2+sjKJQVBAbI4XmlplNAIArLv4MAMC1ByvkPT17Dp5rqMdp27ajekAyYSTR1J9FurcPf6iplg9bEylcNwbD3AC7PG9fVyWMQHiejmjideT7jtzp906NjRXffw6qpaJ3Sw6H3XIcvKiHniWdchvFUTDtxZnom5bBc//5D0SGeWgadayj17njW2wYYYQRBkf4sLUfxHhnSCprcUeXpduj8k27OD5zdZJVIpvcS2v7t3+nFY3fnAwcA1gNFgpRkcmVinsy2UKIgPQG4qyZ31eJVbH0AUpmOvEgoPgzf8wjU/h7kBqZyvuKMhl5ipKiImdhGa3xXA8oKLCryvBUT37O6SXmQbglzqyLB0pGqLo6BFero70Dngfc+fML0d5ZjWMPWwXHtiucL25L4txUfLm4HvQ+wGlhBEox/Py2KGXHGbVhHlQ8QVnzIvtn+XmGZpRQGMqmM9zI18YOcMQGlsF1NgxSfiR0jRUNKzuAtid0rkioGfPWiHMluXnM5Qsgodw/WDXNIlSErzGrsmW9vO9zPeAHVuGjBZBkz8HCuVlsbInguFNn45+PrEcs6skT0FQ/0qAE1qlrMrMv2mP6nBkAgEyXeCBqWbcRAHD90Udh44GLcNhLr6OQyyPCqp4ajy9Sf5MIAHEnrQq62JQvoFhdJceUS75RjsteZP6xxf5sukmILslLZnrE2I0nxJNlxIz52shgxUf6aXKojh6jJnSJIjpzYDQU+65ALP5hKPAq6OYnFot/bFItzIrXflKuYzSHeXGqI9rEM4VEu0bXkIYDilmBXOmEkKWpn3sl6q+EcOko+d67UrmP+H7UR9hbipGteFy0A48L3n6gXxj3ax6jeUK5eX4sBR6ipdoqtZlDiBdzungO4+vN5TCCWyyJY/eTX1w1zb+8HTc2I7isvGoRSu1kHRQ3LcaMub+AaryINS9dJ45P447tjXtJddNJOXjmisdwzC2nYvr/zZLlK66CjqXb8cpF/4Kpq1AN8UUkxsbQtFqAEDeT0HLLEtcgGmGlSM3Xjhz6FXStH9p5sm80v79DoSbDKeONtfwB34xo/9ECBcPVezjkYTiuznhwu8Zd6XCMVRmrquHeQnWC6OlI1aP35G3faBUV92ekK3zYCmO/jdwJObRf3YYpV0xF5388DTPXi3KieV9Xa3ThAnq3CUR331frjTXzsL2jFscdtgIR0xl+hzD2eagq8K539OEPf67CTd+ZhKu+0j5om0L/N8ZcflcygQ1LFmPxMy8gtRvaQQoAzQNeMyNYUh6bz9Z4xAnZvkGfuW49elrvRc20D8EuLoNjNcM5meaB0v6Jdr9VwrYSaN96Chqb/4pE1WrkehfscnsrWcZz1z8OvajLJIdtl2HHLHjW/rUsK4wwwgiDI3zYmsCxp7w2ZMYl6KM1jCJRMKcwXogbH0d7L2UYH/QToBldiacED4LvGctlC+WjM5hamoaq5dcg6TjoOOEeuT1nr5l3Jf1VGGlQ/AqD0i9pwHnLle6sjEjoF5dpKJQNdpk/QRwrylgzR6VAMtu6LrLAtucBLpDYnEJpVgGWK/xlmFfAPCG75D9enjPxlKQtUNa5kC+hJ2OiOt0HTS1D00TWN5Hwe+JgQNuJt1IvjT4X2W9DZ68oCfuIrSgrzShRgdQHGQlg5MwqsX+W34PHsVltC75yGGVhLplOXB4AyNMxOOPOqB8jkB7EtmWpAEmZdelh5udC8TXRJVrH/V0UH6f1fBV1SkLtCH3gDDojbYmEf/uIyfsRauiwgiQjXpxhryyOnzOrhO5uDQo8uE6R2oz9uKbT/vAFl8+AV329MMDt7RJoZ19vPzrMCCKlEmoKJdjUXrZT4YwBFVU7ySei9mKVQgBIppM4ob0D753WhLN6M7ixXXh2mcR35A7pSbobjyVCtnTmaDF3T6E2JB5SwNvPk3VhtUzx+YVdQgXQBl9bVgFNopw/EIqSheuUYed3AADKOfHw6pSJV0QKfAxI1yV5zhN9p9zXQ/XTfecTIX85g5fn0vOmoRKyZ/B5E+JHqIpmivHO18hzWGmVkVvmlxJ3jRFlutglp/Jgy8qORRqjjDBxN2prE+fMnKraWkLp2J/OYoRX7FBdI743TW5j+OomUW/5e8CZcf7cP38mWZmU6ttP/aqQN1EqVAHoRLk0Ew7VI0dKpIze8zl39OV85SqKAxSBOPl/8fhMVvP5qXTeEV97MDoeS6d95QU5yl6AxzQSRGJ3kalBPCIpWuNf/i1XoQTrLsvh3zQ6B2Xn5VeOj11+P9p6j3b/YIwU/Rl43OGUHUeLllTQ+NFFcH/mTgbrtac4XHuaE1bpU2PZ2f92qH6zv/LbxhLhw1YYYeyjSL5RDcUAWq5/E7drvGxoH1cqjAkfbz+xOPxGeyBm5vNIZPvwUFU1bmjfMuG02zwvAt3YCrs0F8YT4iGrfPg+rlQYezx6dpy7r6sQRhhhhLHLCB+2JnB4gSxWJc01sv33t/WtXN2h1INixBOqZs7JgO0URYGqqiK7KWlWhKpQBp+bT/q2kLqbSl42bNyqDLBi4AR0kThI7FHDB2GUQiJFjBzRUxOXxagZH9txHSAH9JzWhbLqSAW8YoG9ngg9IRSC/XeSaZHdzfQIDolHbVBbX4tEMgFN0xCJRiuoDR1XIUSJs8rcNpzt5qwcv2e1xShlkSPEk8qSUh0r+WkRv/oiK9w5xFGTyo/s31XaOWrpkTcVXOK4DUC2VDUW2EecE/Nt2B+LVQHZjyhBmXb2TAomz5h3xj2jROpl7CEGmbknFbaY4dtfHt8K+A8RKsieTZJrpfqRAMUbmNVT4MGD67lwbUYZRfmp+C/EcUqfBAB84mOs0kbXmOqjU1a7jhCN+oZ65GtroGoqUlUpeU25zzKHhdEhnd5rul/dEajwe6b1ZVFIVcHxNKgAGDAtEBrBionJBPNk/LyzqmpCGajNuV8wEqoH1DzZ36pASnbdpDg3lzhRhT6B5uxoa0fb1pNxwFFPIbNjKxruXS2Oe7iQHNdMoeyY0Fkpj9QGVUJa5RzBnYS5juKF/bs4+DwZ0lIIXfU0UjZlXzxGz8Hjj5BpXbQPo518IOY+2pY4376+CroobRYZsSEUmNHiBL1nBUbudtyWts3os/g8RkgRcxdjNGYZEY5EaSwSN4rLl/MoXbtiQYxpk/h5QaRXVRVomgrbtlAul1AmlL+QF+ONPfgYfc/2dVJ54ri1DcJbLU2cMX4fS1fR+b6L6kscziIrRppUf399OIIZ+/HkzgSV7WQJ8kdOHpT/2Xk5gboFV6V4sp8Ow62Sh981ulfZfuerXiqn4V8RMXTNh/h2D3K0RquYOBS6Ij93/dcw2G9G60k2Wt7bcOUFY6QcsSH5hJXOStuN/hjDHXO05bwVOFtjcwYLI4wwJlxs3V4PTR3dJBjGxI9o/ClE40/t62rI0D0Pb0aiw2+4B+KaSZNxzaTJO/3OKtVg5ZOfQn3zcmgfmlieYP/u4XkaUtWb9nU1wggjjDD2SYTI1gSLgU/6XgDRGi6XtKuyBsZoM0MTJSS3S/KH/G3leR5sx5G8EJOQBuZgMQJRLhG/ilAczrByJtUcgKpwVlgJZCSVwCtzUJiDVCKPG91gvy2/Qp2qGlBVFaqiQlM1fPvOGQCAiz/yqqibJ7KxrO4nkaNoHZ2DKD+dFhn7q289HVu21+CkY1tgmmZFCY/Oo6I85/e5KpaIW8Koi8myysSLYqSBzoOz6dymEg2Enw8l256uVZGUyhgB5Ky7IZX7iPtGfKXSABU2KlKq7mkqE2QIASJUhH2imDcWJ78frjsjUdL7iX212MdLCaqViX8kP89k/hp7jTF6KLLL7J8FhZQnDUIvZFaOkS4qZisWWwAAIABJREFUxx2AqngePE+B62jI9Ih6bt0qlsLF6kTbtazbDADozwsvqiUHifKvJZSTUZTa2noAwJx5c+El4lCgwDQM5IjflyN0kvsAc234vGWfH8A96CUVv2KxgMPLFs6dMQvv7uzEtW1t1IYsyEL8BelxRvwzQl9i1J81Uh1kNUPmh6UIFeH+xde0j44v+zO1rRkXaIehbhTbd+ex4pH34eBT7oH27j7UpVfSHip6tp0AVXEBKPBYRZEQVa4/I7ys0KgOk4mVnDGN+qZB3moRQvDoWts09zCCJvmjgfLZQ83iTj/ge/biitD8ViS0kft5Ta1AesoBARPud6zeyQisnAMIGWZEjOfJEplYJwh5ikT5AZtQugD/jDlcRUKu+Np7nodyeSFmLPgdUtWrsGa5EHypeLOJ+vQQx4uRqwIh1cx3rWloAACkagjZiot6GZEnAAD9PUeI+peonEbxUM5z0Eg5WWPxeBq0zRBvpZqnREv8yJbkyVA/lLxTBAoA7+//IRrE8Qq8H5rHzecxqMaB4/J2QUSOy911/n6i3lsAQ6MuQ9V4uDYd6XHGO8ZNAXOEyO/eiIncb0Ya4cNWGGFMgNi2PT7mfZe/Oh2bt9XghKPXIbZvAIcw9mJ869tTAQC/uk88ZM1mA+m9dPymTC/SVRn8ob4e52UyOKC4bzhkQ4VVSCL3oWYoNQ7arhRLL6GpmL7kTjh2HLmeRfu2gv+GYZWT2Lb+bWia+0+katagv2f+uJWdSP8UQOVha7RhfzskyoYRRhh7NsKHrYkWA5Etlt0b0g9iZAjVeDmdy7W8o1SpUcbpLpDbo1gQmcuByJaiKlChwDB16ePCnj0RQmM0iz2eREaWERHper4TVSLOirISFnsrMU+I/bMkCkIoCaMenEXmcKR/lQ4PChzbQblkSWU4XjtvmqSwZTC/hpEfyiKzt4yhoy+bxKSGHBIJV/IeGGjgDKmq83lQNpjQH17zL32SqI1LZUYByU+MUUVWAKR6lEmxzKG2NKlc6TVF5bKyWcES2fI4oynSU4qV8hitqtzAMypikJy9ktIH7FnJ/jIKGImSapnkjojtGCVhOcuKgiSpE0oUE742UVX2gGJfK1KcpPemI64xe5+pKnPE/G2qyYHg9/NyXUdwtRwP5bKD9vYMAGDLFoFsLSa/q40bttB5iIeFrZu3iXoH0EfDEH2yvr4aXdEoNE1DdU1K9u88IbmyPQjx4ExmWXLQuG9XEBrmOtVt24ZDs1mcO28eoo4DE8CpfX24qbPdV3aBEF6TVDYt6k+eS1zHov9YrGrJC9yZzxOJ87VkdUviHtK5Vzc0AgCKKnHHvBTQDWgJugFXomjbuBhT538BZrmOpjAFIIRLl4sI+JrTbjzHUR9zCQmroJSsrkgop1TxpD7qsG+WH9HiYKRLSk1Kb0FW2KvMHxLRZ9SD0GK+robJXEFCBWlM8pwTId4nI2Os7smfcx3Z6ysS4TFMcwJdO0bAXJuVScu+V41R9YH8VACqkkKpUINovBeFfk32qeoawcNLkLogI2v9mZyvXilC8XWqvyfVEUV9bJozUlWinHiK+YEBxAL+8OYE0EoJ1gz+ndvdDLsXsF/g+dejuSPXL6wKOndsBwD0ZYQ6Js9ZzDNm1Vs9ym0iriGjnzpxbKM0blIpsR3z2iRfMwBpVVQyQd/Livu2H3CX4j+fEfpqVcofe3vuKbXmoTlMO4+Reo3tqRiLoiMwgFc4RPXHUu/x9lV7KyBaHOHDVhgTJpz/Grs3VOGYa/0GoBM9XMDoM+AaIccqjN2L+yeL5VIXkOT7wFgbiUDdQ5hXc28vZngKLFVFb1UKv6+uxof7e3FQaWIhXRyuXYP2DXegcfan4dgpFLOH7OsqhRFGGGGE8W8Q4cPWBAtfMmGUiNZ4uLHvqtzhvt/trN9pw2RmKIvdMFlwVkq5yk1dOdEskKqyVfG94CwxZXyZqxOntf6xuEBAWAmNeU7M+QEGNzVzOtiPyqRMvCV5P4SmMfeJTqlAN6C6ZgAekMrEUWoooP3trXBdVyJVOvHGIlQHVgqT3mJFkQEtEf/ILltwHQeu68K2LFlhPr7nErpC56Frfq8nRpI81+/dI9uAs8aEBmrwc76kp1nJ78nDSmUSFTL8HmcW+5VROzJyyMiCZVUyrBXEyaM6E4JEGXxV4cy52CdKqoHMB2N0jtuSEQIO5uox6ODQQ7tL2WbO1PM5MHrIypHsE8Tl5xVxPOa4xCKsiuavbyXLLT4vly1kMn1o27FDvhfbia0Kecu3fUe7yHr/tXkWAOD4FpENnzJFcFu+sWghHq2qxintbVDUSn0Y6TBN/7hlNDLbJ/hRvT0VQ+BUlciMs19WV7dA38ys6IdNVj2OyRdw7vQZOKO7Gze2ibokCZmS3EapPineM1roSsFGv3qhqjFqU0HZRJtwpl1c60hKLK1kNEU1REY/WtUEALAIHTQijehp+zlqp1wI3YwSaqpAZzRG2TlXi5G2SuZfCbx6VF9//V2H+KKE7OoGIXPMXaS9ua+COWSELnHfF0Uyn4v6J51rf3+/OFdCqLhG0Qh79lH/pWvH6ByPMSswl1XGtl8pMUP9gdsylU5Qm4hzZy5gUqqA0vHJZ47bxLLKKBYLknNWRchWbZ14zbP/VtHv5cc8QEaMZdDxozSHMKeLVUGDEfyV0e6icX3J6JN9Q3G1hvvNZLSuWBDXrn3DGgDA1nXita1dJE6ydG2tvGj7XL9YOpzpFZ9DF+id45GSKM+Jpuj/NXViLpgzbx4AYOHSgwAADVNEgobn3cpKB4pB6m+75rdVdhsdj2ks9w5yBco4oWTBOuwtNGVYFcQRfj5aBCqI9O6JGC+E662gQsgRPmyFEcZejurVtdAVA6uuehnuOHCsWturKlLUYbzlItvfOOp92kwTj1TX4IyeblSXSsPvMA4xM5+H2duLP9bW4sOZDA4s7jtFwI7v3wAA2NnttufWomvbz1A37cMoF2fCKs3bu5ULY0KF+hg9AI/hYSuMMMIIYyQRPmyFMWFCeYQyN8MgXDuL6Iofw7Bt5BZ+dJxrNf6h5w10vaMdbtTF7rov/OHRA7H8tWYcvLhlXOoWxsSL157/GP3XP+J9egwDKcfBFMvC3nzkmV0sAejFx2fOxI9bWnBQKT+u5V/dOXip5FjCdWtRzL8duvH6uJQXRhhhhBFGGENF+LA1QWKwlOrQkHzwUYSJjgwPD/p+tEIaAYKwXEgwRDHjBfFqP6BlMqdaO60Xv0ZpGaA9wB/X2PJ36J6H/vkXyuVQcrmYw/K5vFRPfM8y7dyAbMDLS5QAQDN4CRstwSGyd5wJ+7Tkxi0HCPRsUiqlfOlcCIHSdRWmqUOlZVTHHSVupFOppK+OLKnOQhQsgZ3P5vHi69Px0MNL8LYjVyMetQAP0FniXePjif1Z8CJfEDe/LJvM55HPZelVfM9dgJcj2iz8wUIZUSKp04bRqF/mnEVIeElSlJZsxhK0ZI4EFCwi1fN+0mh4AFGbe5dGS8p0jZaEkdmqY4uyc9kclUkGyiSBLcVHAv2Il5eacomjTW2ToiqQAABJWLNMc4mMmVn8gYUI4nSObMDLy614GaJJbaZ4rB7IpHcdiqJB03VEY3FEycPKc8XSoQwt2evo6qbjif3zOX9/LdGyq0xPDv2OCsdx0N+XQy4r6mmVRX24fGlozUtFZbvRMrUBZH49sDyOl1LyUkOblsUl00kkARzaNBUfnD0bv9nUgiXFIjyNl9XR+AhMNX19ov/rtPQrHo/QuYm6s9T7TLJEcF1e6sYCMiTMYgpxBJel1h021RbHMdiEO2JCVSPQ9D4p+iJOL2hATV8E50KquMOesrw8ko1ApRS2+F7635Egh6fQMl9uT5uXjPJSV6rngCWvWVpOx2OD7RUqS9JoaTFd10iMLQiojdj0l5YPsvk37y/Nv+kcitSvkzrPFeKVhTJ4uS0vh62uEtLzLFRTubq8FEgVxvPRKOLJBBIk2sCCRh20dK6rU5gaZ3tpWSKJ+ljU7/k8pfhPg2irmkaxvNww/aJEwZC/ViMl6Q/4Qa1cf39/gOI3weaxzWOIl+6yuNOObULspnX9KgBAyyphwm2V6TeQlgVmMmJclDJCDKfUL177e/2WCzESmGGzbBtinGxYIcp58el/AQAWHXgoAGDxIQcDAKbPFMtvpzZNAwBU1YslmFLmP+BxMpRZcuW9/z7Gk8bwAXGGIX7bg9+PJiaq+MJo77+GO4/RmhkPtqvw3yeOdNniwOMO2jZ4D6pgyH13Wbe3wHLBoSJ82AojjAkQ7z+rlf4bOdLV2Z1EY0OfeNAK498mPnreq/u6CsPGrHwBiteNjzbPwE83b8KB1t5ZyshRe+tdAIDsN68ecpt89qOoTf4CZvR5lItjkw0PY99Hb+ePAQCJqn1ckTDCCCOMISJ82JpgsVNT48D7YEZi3GPXnNg9FsHEDGcFKwIHlImlDDyjNAAARZDazYgJlbLCiiyHyfTiPWeyGdni7KDMlA4wZmQRBE1nY1DKoOss7y3qGNdI4CFAoOdjM/LjeS5UVYXtOChZZZi0nUVoiE11j5F8OYtCcAa/IkeuQVFUIYxhO7IvMNGe0RbbZql4EWUyj2V5Z4lIcSaSzV6JHM9tYxNKE4mK4zNqKKXhaSphVEmiSSyXrspUF7WfKMcw/f5iLA3OsuoYUHs1qMetiG2iMYEGlop0bFtsnyVTVEaWGLlhOW0pKOBS27OABhs/k1GtQu9tatNigcyTCe0p0v5smszlBBFWjfsVI2YS/dMFOuAJQZMcCb90dnYBAM7/xK8AAPfd/X4AgBMRWfDNLXTN3nao77yy/VnkdR2u46K/N4scISJF6mNsJssiLzwe0iSCUVUtSPe9GYGoAUCWEE+WF+d+xaIyfSyq0S9eS6UiIgCWuc04p3kGfr56FRbn8yiQJ5dpkikxG0NTP8+TIECETY9tNmIWiMCDs4Q/0yf6SLyDOrZNaFzRJnPhzVsBAFZBbBeN1WNguJ4HOPXo3PIn1E69AKq2ElZpPjSD+5gflalIs9M45MnKDSigslE1G/1KMRfO8LMJsl96mwVqePzxOGHBA6BiM8HIjUP9p1Tym3WbJI7A5sMVD2//PGjILxiVIXEd6kcstc5Nwf0lEiGkTGUUT2zP44FRTx7jPI+L7RVks3lkevrknGYaov5ZQmDbO4Xwy7SmKQCAuroacR4sRlQU30c00R4JEkExIjyXBYMRg0Ff+EKS8XmvXeww2ATYH4zgdncIK4S2lhbxfod4v32bEJAp03gokxVCR7dAr3s6NgIAdEsgWJNrxLVONdEcN4lk/Bnlp/HCv1P9JfH5mxvEeNpB42X1q2QyXhDjNNs+XXy/XiDCDVOFcEbT3IUAgNqpM0T5JCUfbNwhjYB3Uw59d+TSxwvhGk6IYrzvv/aW2XEwxlOavrIoanzKfCshXbtHGAkjjDDGJba2xrC1NTb8hmGEEYhJvX2YRMtLJ1rMzOdxXEcH/mv+AqyIj924m+PJVBpPkn/SeITr1KOYOw2qNnI+XBhhhBFGGGGMJkJka4LEUGuXdxZSdDggM8trcfdUjNWceLg1wZX34pXX+zI3YP0Kkck3KbNbUyfWlcOpZJUVKFBUBUbElNlGzi5ys3B2mQ0dERUbFsnklSWVlQHIFhsfq3SoWIzMWckPmZEfzjpLc2BvYDZ3ALfLFeedzxeR6emHZohs7nd/dBQA4I6bhPQvJ5sdzy81z2icZhrozKShwIPrerItbUJ12BjUCaI1LNVOHBuF1vrLNfpg7pR48GPD4AIZqPJxKubMpOQlUULxym3MctKMLsm+oPoRQkbaZLkDuoY04GQUsOznUvF1ZalnbiM5HiRvhtFGRjKpDTzxyvLi3A8rPIsytUGezpV4e2mBqDl0rftJjpmvtS55SowuUp+QsuaVvtLbryGRKKFYKiFOJtyc2ZeGwnQt/vakyDq/910CvfnIU8sBALFmkeGvratBNhGDqqlIJJOyHR1CTVzijDGXh3mFUgKc0KtUuvJQwzwZRjINuiYGjYdiUaU2Etu1twn+TalYhgZg8awyPjx/IR578QWkHQcmoWkmXbMI8X3KMRpYbNodJQ4W1Y37mc0oNHEhOzsz1Na8O8n+FwWSC42MzUn+s1QQn7uWg0jChqb3oFjII+IRSsOy4ZLDVeEdAZVrqek8t/G4IB4TW0GADbnFeFLJ3Fkh1FTaVFjE7bGIj0STLSOJoip+nqRL/YfHKhuDc514EmFk1ZXcKeZqiTqyvDiPEx4H3B+kfQX1f9k/UuLhWY+zpQD1I0a3Ja+NrpWmAPBQKBbQn+1HlNBN5qW51LaTp4p+P31Gszi/ONlguGxDIeaiZDXxi+Jfpe+/M7C6su0H6JljYMjfz9mj/2FjM+Ig0sNm3ts3tQAAXnvuWQBA53ayQqC1ji71sz4eL1s3AQAK3WL+nzNFtH1jLZvb80oKMs2m1xTZSWhkJ8FzUyxPSOl0cW7pHeJatxCy5mRpvPWL/Tv6RX27N4q+0LNVzDGLjnk3AKCqQVyTCPH22DTZk9xGPypYCUZ6Qdtpg7YYbYwUNdldS5rRythP1ODfTbVCKBSfBzQAvGGWMg1s90E8syDiOUZ5+cp90865fvtzhMhWGGHsh/Hw4/Px7IvNmDW9bV9XJYzdjDfejOGNN2O48EPbR7T92pbZWNsyew/Xanyjqb8fmueiT594+b2+znNgRtuRSL+2r6sSxhhCUTZCUTaOeX/nFgfOLaHsexhhhLHnYuL98v2bxSBEaxfJhUomYucomFdJH/ne7+vsQIUzNcI11PSaJx5Iy+qVAIBJTSLTGU+IjLvGCmkqgPhseFEFuq5LhIpRHTZDZrVBp+g3ueXMqqMz8lWpZ4yythI90fwZfD4GZ8I1zZ+RYZ4QG+aahgm9YCCeiqO2rhY9PSIjLzM6dOySJbLIKmXoe2gtf6a7Gy++Ng33P7QUbz9mHXTVBqBJNIWz2Jbl55polBVnRTzOWueJC8MZ9BIhXpy5ZGNSPcX7ie8diQKKw5QtVhVkU1h/fbhjc7sw/4LRI1Y7ZDNlVa9cA+Z2cKqc0QtG77yynz+kR/0GuBImlIbLbFpMCBcjBoReOgqhJ9RfCoTqcPqOUQzmZiVoeZzGKB/3OzoFVi2Mkdky85R03cCmLQZefzOOv/x+M1RkkMtXFCBnzRJ8ilRKZJOXLVsMAPjdo5RVpqzxtq1Cva2fOGqz58xEZ3Ua3vzZsGxLqg4mAgqUjuSOUYNSfbnPmgNU3Zjbx4azfB0TbFqsZulzca1KJXHOmUwflWnDnTMb62wXqd5+xEht0KXrzggyK+Hx8UAqfhFS75Nql2VGjijzT9tHIsR1pGtaKLAiZSedk6ivY4v6FUjhbsUz38eCQ78Cz12JUn62NBU2CfllICOYsGXjX663Q+qaHr3q1IasOiqnaKlSGpzD6XAelz/wWOK1l1T6eF6trRWcJp3mHjbZLhZFHWJkXMvcqeCrNEsusTm3OI5N44uNpxNkVszoCXMBuR48V8Zo/LFhepn6v65GoGoFTG6cgrg+S85tfA1682IuTBMay6Ai98MioZERVjatrqH6w/cqo0JuFi8I/i7ufPPKXEXvfJfIHfhmkKHzhlVCXfCVZ54BAPR1CX5ZIilQOPrZQHeHUCNsaREP+AlVGJkfOle0ydQGP0oP+l2IEc+UjdF5dnUd4p3a4jUeEdtPnSTKyeX4d0iUH68T6oN1zQeKAsqketj2gqjfhqcBAC8T16t6qkjuTGoWnnTpSWL/ZL3geMWINyu5tkH0adA9ifwCEybkLRgrTfpXYwy5217mJ43W1HioYoP3i6OJ8eR57Sz29T3rnojwYSuMCRP2g/bwG+0k8kflEH3jDuTfm8NeV/UYTXhA6oUqaAUNXSfsGHMxre1pTJvci0TcAnHjw9hPo6dHxUkn5jBntoWNG8ZWxr0fOQcAcOkfHhnHmo1/zF27AVcdvAy3Pv8CJu/rygTCKteiu/14VNWt2NdVeYuGi7qpz8B1TPT3HLKvK7NXo3XyDvz5Pf8LW3MqCQ1KdhVLInmhQTzo/ikqNjCNwNJ7XgovRUl8H0vxE37wReChvVAUn+dKYo9/Jh4GAMQT/6TtaeknPXTxe01fjfc+eyhOLO9fSHoYYUy0CB+2JkiMJFMwaH0sZ/Qkd4veD5MUGKkS0O7mFsasOES/EP3dIitYLovMqElcggJl113KyG++bSNq7q9Dw48bkflgz6D2YfW4EnOzyqwCR0gIKQxyBpfRFaCiuuY6/oxcBZGhHzHiNDEqwehBNE4Zec9D8vkqqK6C9b9cSZ+biET8CmOawfwE5tWIOuWzzAdyoSgeVE2FbuiyXsxrYn8unfbXqREYdSmR+hUr02lS5VCcV4x8rhiR8iTvQ5Tr6owusVcUtYfLCmT+mwRGhfg8ojFGnfw8pApfivevLOth1T7JfZKZefGerydzV1gFkDP3Ebq+FTVKRh+pjnnRFmXKIkdJp0QqTdK1ZAQomxX90hPdUF5z7m9JQgC4jRnlk1xAHqeqKj5zHbi2K4mARepL+axAhRgpq6klZIrKZ4UwvkZ9GaFe2LLeRltDPYrHHYZMfx9AN3aMwiDhVyNkXy3OSnMfUAfAKqbJbernEOYJ3cjzdSZ0pYr4bD3kw1UolJDatBXz4nFcfOSRuO2Jf2FOby8iVG4yGRvYNLK/sIKjSeOC+2uJ5gBGYOMx5gCK/YvHHis+TwlEwSC0RfpyWcS9Uou0nwOD/bY8wCU+n20FM/T8T2DVAPkiVVQFiQ8I7hvU39lPy2O+nh91cYmDxoicpldsHXhMGswnC3B0bVZvpX7KHmDUfSSfiOvO11enRrOk4qhoq6qqtKz6Rxofl1xDVyouinLO75yDE7KT4XkK/pFoxX01a32N5ToOLo72IeNq6Pz1d1BXpwCwcOeyH2JLrFXOXTzXQgGO7jkSH8tcAADYaGzBNY03SD84niuYo/kr5BFHHICHO9W78Ijy6MDTlDEbs3Grc6u8hmdpZ4vDLadrcVgFtbrYuQinuacBAB7RHsHd2g/9hYF5jhbu6/4fvP7scwCA65tuQ0dNN3AWodyqi7Uz18PMm6jpqkLVRlLfjOWxfV4OmsLzqyi1TNdkYVsc8bIGx/Gwpa6A7qrgMkdx/FhBxYLtCclPe3lW1rcVz8vlMlC71UBtdy0AQK1KYHvdDuR09nej+ZyQsQPWCk5X3lRx/Tl/xK83L0e0bEjYk33tjt92LM7ecApmLjwYLcZm3NT8/+h7njsqffRm+9uYq8wFANyh3IVH1cews5jjzcGt7q3y/VnaWTvdDgAudi7G6TgdAPBX5a+4S71rp9s9ZD8k/x9SQdH/XAvIFUT+UxnOM2y0MVoUZ7jjVT72s4TkVMXnVdljVOWPpG6VuoyuDMn9C5GtMMKYmNFzXhcavzdFrPLYfQ7u+IYHJJ+vgrnDxPpfrISbcoCQIhDGCGPz2tNHvc+0zi7U9PXjhUULcMjrK6C57vA77YWYRstmv3r80fjWP5/BAWTyOtJoLo/Mr6v/vA+Kf0qhyuBEiBmqjft7J+MkZ9eGw2+1sDUHqqsiWogglo8i3SnOv5S0YJQLUpZfp+HJS0HrsybSRR227SKTsJBLBBOglAgqa2jsNaXoScT232CzaIlX9hDPaEh1kJjKlBS6qnqgKyS8QQ/5HiWc6jNkfI4UVpbaUTZs8bAVRhhhjCmUPb32cm+H67r71QlxllDyPEZQ+0HKL97Ovx91Bia4ZnmULbm7HDHti+TddKPINr/xglg/vm7F6wCAuQcI13v2ZuKMrKaqaLr8M0j+K43uD/wYdoK4NoRklSmjy4gBIwGsxmaSrwyreBlGhfPjuMSDoEw+K7flqOyKGp8oM0H8iAShIbquIf1CNeACa7/9Bpwk+aIYnOcQ5X32y0L96YffbQFQ+VFlXtDmDeLzYqmIPzyyEP96bgYOPrBVnhsr1kViLB/PnDHiJxESxTwnRqo4S877V1QLqa8wr4M9ccyA4h9VlH29uB0qqoViuzjxLBiVYY4OZ15ZzZG9znSjctPAdS4RB8W2/BwtrmOMjsGZec78GyarGYLKZl6bqFt3p0BfGImqqU37zpWvFbdBH6kOMndFoiUa14d84Aj1YV5TVVWCtgPVR8Err0dRnc7j2q9uwJZN5MnTLpAzznY79IDBiN1tPzoDAHDZf/4NAHDz6W8DAHz1b0/QfuS1ZuVx82mnotOMYOmGDbIFmIekUT9nlDZP3BreLjqA+yaVHGnbLCFLvC8fM51ieXfRBswvYu8w9vhqb6jDqgVz8Inv/QiTW9tx0BLBBZk5W/Ayk8TbYTRHJ9TJIW6KnC9ZaUt661H/pe0Vg9FqQgHLvD9zYaifOQ5qplwL3dyEcv6wQcsDuF8igLzK8SEVTBl1ZQ4iozCEDPJ4hD5ga0Clm+UyzSt5etW0yjhgXqjrsfomI1KEolHdSiV+z6dIqDYpSUp/OdqAuVf9faJf19YKBUj2XeP5ktucxyGvBHAZ5bH8S9j498CM6GiY9jBWLP8UutsPkUqN1cS5iiYIsU3RNTeYl8RIGvHniBNW0zDJt52mn0X1+1/4IvBDGVRbY29B7Wya0/63jOHCJt+07nYhTPTmi88DANavEFwty6OHGUO8PmM+iYcveAKz/ibasjYpjpGK09xEPwM81iMG+yhSneVvNfcrqjv9ODMvTgmgGDw39efF99szoq2q6mcCAGpqGwAApkYrN4rsSyfQ8TIEsmWr1Vh+4Aoc++hBOPyZA9DRKtQSFVvMmawQPGvhUgDAkiPFXDRltuCCpevEteJVB1IJWCIYfgRsaGRk4LULjjmOwfuerQv0ciCyJbcO8sgGbeE/8t5GXYbzxRpOwZpR84AorxyvI+WijeYZIVjmaPn6fD+1p9QIVXUPS3bvIkKgoOy7AAAgAElEQVRkK4wJE8rG3RsHTrWN6odr0P3OLriJCZDJ94D0C9UwdkTw5o9flA9aO4srL23Ze/UKY7+OKY0jQ4M21dZiXUMD5m3avIdrNPpo7OgCFOC+//oIPvyD+3DQOJevbxbn7MwZGdckWXsfoonnUOg/cZxrsv/HV6vEErlrug8bw94uaiY9Bdc1kek4cHwrRuG5p+6Rcsca2xrb8OdTHoejOtjUsBmn/uo4bI2v2tfVGnPM3tyEv575HKp7Uqhu3de1GV3s7CErjDD2RYQPW/s4BinL7OR5I4gwjdXvapDPlfRd8GcwxourNdasBHtLWeSjFCOlMc7kVjxuxPtIxISqasgvziG3rB31P23AtnduQSEvsupStc5jXhF3e0atROY0pvv5FUAF7WDlwlKZORmijpyxKzgiE10qiiyxoauoe7UBHjy8evdzQNwF3Ep2mNESzlbPmeVfH86oSy4nss154lr1dGewvV2BbVvI5goSaTAJrVGDvkDy+U68j1MWORLh7LHYL0+oX65ftBln/hmxYK4VE7cVQi5YuYy5NJR0l7woyAwsKUES8sWcFEYMS4SqcLvGEuz7NZBbwh5nYtsSqZixkiKjc3yNuCOXmXdD/SqeILUzVkbU2W+KEB6SDGO+WYLaLEU8pBRl4HsJ4cqSEhm3KXcfVlHj+jNCIIehqgGKyPaakQhc6o89VG6mRyBcx71NKFFuXjcHAHDOaYKTYlm0BIiK49dy2UEmFsXX330mlm7chMbuDFyosj6snMd+Y0VCPPQAUqIPkGnnEVEuMd+Rry95PRFaxqgZ95+qqmpqI4EE9FP/MgwDVZtb0ZjN4Z7PfhzWbXdj8rbtyBdE+U3kMTapsd53drxwgb2cJEIsx6z4vvrGbwMAOu66EwBQssm/ipAlRsoMPYJo4s9IN/wI+f6zAaQwMGEu5zDNPze6zNFiFVHF3x4uIV/sbSOzxPBtJj8ngEIicuznx2iqODah6MzzYs6p5l83zUvRGBXn61nxxmOUUJqS8cmK/WzmSIrvW3TRH5mzmCPVyziNUUa5i0WxX5y9mEwTVXXL4ToN2PTmLWicTEgptQ0vcWPlSCNC6AdzIJkvSnNUqkYgYczV4t8B1/s0nUUgwTZoyUcAEUBg86FQFa9Sbl+n8I976R+Cb7R14yY6BzEnrElsxE8/9ACq1yUR6Tcxb10KHVVvoiEm2qgmReqZEfFqMU8tMIp5WR8jtnKslllBV2zNNmzcFqWSeM3mRbmZnNggkRYIU01tLe0nyrdy4nxQ7KRGYNRbIFvZrIV4MY5pO9K47+N/xmkbG9C0PI5kXFzr9g4x13b3iP07tguVxSkzxEqN5nkLAABzDxDIV8PUGaL8KCHgPGwCCNeu0BQlMNZ3ssUu9wtytCQSO9SKoEA5w/mF7m6MlcPFUbn/GtTDR1TeUOc3Gl2BsaKAIWcrjDD2k+g6fwcafzAFirMPB6sH1L3agGhnDK//cDmcpA1tnCztnlq+EM++uABLDlg3LuWFMfFj3oFPAKg8bI0kuuNxRMtlTOvJYGwan3snarYJb7EHPv0JnHfH/2DRMNtfNEcsN7xj9ZvjVgc9shpWaRE8NzVuZb4V4/NXPoPVazN44N7jdrnd7MUP4KqvHIKPf+xAmJEetLdcAs+NYuib46Hjok9fgp6ebvz2/l8CAK6/4Ub88J57sH3bnoNYfvaz+/DJ/7wIXZ075HLWXcWWye3489v/AFd1sXHKVpz54DuwJiaQrKjiom9VCSt+kUF/i41YrYYF70tgyfnD97W2V0tYfkcfutZYMNMq5r0rhoUXxHzWJE7Zw/K7ctjwSAnlnIva+QYO+XQSkemV35vVd2TQ/g/2Y3zFd4yjrpqL5lPrMVwkO6KY9UQ9Hv9KBxpWR6Cr/qWjqp7DAX+sRvPYRXbDCOMtHeHD1j4KzuBLn5UxoFUTxUeLY6RrgIfdjtqEM7EmoUe8tp/9Wdhbp1wswvNclApFtG7ZhkXeEvR0dkElcERn1IUylMwFYD8uRlcMUq3zrEomk/kMuu5fS+zQ9WP+AqMArudh0oZGwAae+NZfUJVIAx4Qj4sfbV7DLFEPqstPHxBZ27P+YxOVK9CGbL9QpMvnCnhtZRN++bvjcfTBbyKRIM13asqKgmJFJWvAW5nF1hxGWejrIS4Fox9SsVFnNIR9tkitjRAGRSU1ODov5inxtSwyH4iOx3wg1/EvrWS/MHvANWDOVdDTjPtHRSHPz1XhzL+qcgZcfJ7LFnx1YERK16tof+ZmibbXNNHWceKMSHll+PlmFb8f/3pziV64fkRWIBUKDNNAMp3GwgPnU9sJNOiF51+meov9UsShKRaoHUiV7bQVqwEAPT1ZajsHfboOS9NgeUAsFvfVQ3qpySwyt6OoPyN5SbqGAJAhYYuODpHBNlg1k8pkLpIpEVtGnIhPRwqHfA35NRIxMbmzC+4bK3HvZRej82OXIZbpxYKF4sHyuOOPBAA0TZ9CdRV17u8T52BGRDns7cRmaYzWMTqYJDSzsmKfOIWWDddx4XkePNet8FX5GtLWPF+7MrvrHzjsWVbpe6pvM6n2Rq/sd8SrCyr8P+KcaUHEA2AYQCJXtt8fjdFljfZlRIt5X7ruVwLltuRr2dBQR3Xwlz+Qu+F5Fd6NIhFnsX8sJj7/3a9Ow/SmBDzXged5sG0LVrkk0XGVPNPKZYGQ8YIC7ocW+VnoER2AB03XkaqpRiQaq4wdRRlwCTjxtOsloyP9nXznO0/Hk/98QvJMi8WKKMvGVWKstW0RSYLtTVnced6DaNzUgGg2gqa19VhlvAHNEuMlWvbw3A1daDomgsMuqULPagsv39WHeFrDgvckJE+YwTOHkoQdGy385XNdmHZkFCden0Z+u4UX7uyHXfBw5GVpieI9dVM/NjxWwqGfSiI5WcMbD+Tw+OUZHHZLPaINGrR4I2Z9uBqLLhCIVoyUSNc+sBrr/7QNTYepMNEHmweGKbYrktBGto/4o14WVTuASS8kkE+58sbRpjYtuB7+9tVWGLfFMfe5WlhlcZzeTtFOHVuEr8XiI04EADTPF56BkYSYcyu+ijz+6N1O0JTB9xHcn+UW8vvL1csBwKduOCiGQLSGP+6uPx9tjNd93KByqF3k3LWLth33Yw/xefDYe4qjNZEifNgKI4xxjlhfDOvPXgUrYQ2/McVTz4kfnY9HH4OrG2g/4qhB22zeVotpjZ1IJooT2U0sjD0cN98tJKn/+1LhkbNsi8jyDxR9nrqjC+l8Acvnz8Gxm7ZCneBCSDVbt6N94XzkJ9Uhlund19UJYzfikGUCKdlbPU7TvggAcIMCGQOiUChIcZZgeJf4Ez4NDQ1oaGgY9mZ08+Q2fP+8B3D+w2didVIkyXoy/rLW/zaHaJ2KY75WA1VX0HREFLl2By/f04f5744PadOy6v4cYnUaTryuDqquwDBMeACe+24fDvpwAol6BbkdDtb8sYhjv5TC3DPEg2HVIh1/vqAbm3+fw/xPCqGf2JQIahtEMi9BBunPfK0XU49qQLRmdLeAiZyGRE6TyxfLZChftFTE+lX87ZKNAIBD1swYVbl7KtYr6/d1FcIIA0D4sLXPopIt9Cs47XRbeh1KXXC4YwwV451DGD8ndVbbokwseXowouUGsuP5fB6O48C2beT6+yF8chwo7GVDJ2qxghllqZlbEKWsO3OCOPNPGwOooAOSbJFn7y9RJ5NQMV3TEfUiSFUn0DCpRmaVy6SCxhyoytpkUZzruTC3b0fz7d8BXA/5Cz6GbSecjCzxI2KxGAzDgKZrQj2Rs1V0Lprk1zCnyo9aMOLA67jLlD32SCefM0uJpB+B42CeBHv3MB/EIySBKVqMsEnEK4C8SZ4FI7vMv6N2CZ4XUFHAY78t5lglWNmQkEnO5EeJ7wJC4Thzrxti+yC6ksvlaTv2mSJ0TiKpfrRQcl2obSWyRct7eLs8KfAxj4nrxbyjcikPq6zAKtnoz3QjlhTIVV2tqGdDnbhZ8gIwJHPL+rM5qoZfEdCybKiehyvu/Anufd+ZeH7qZCxb34IyoT1cnKqIfh+nvs1Ir0F9mtGhgW3L3DsuQ6paGn6Fu+BdZCzu92/ja8nlWmUbCoBsNIpksYy27UKZce3qjVQccVxmzhRty8hvTlz7pGxb6u+ESq5dLVCPAw8UCxSjhIZXoF0PgAcQsiWhryCvR/I7Ahxbei89osCoI3u7MfJHSDQjXBrzDHluowHk+vsm80mBCoI0SIWQvfRMVgzla5L01ZEVQ6XSIY35GCNOAb+rAvFEuU1tx4Hrunjin9tw6/dWYmtrHosX1eCGa47AgnlVko/ZvOCX+MZ/L8MF582GohbxgQtvRzwyBe84+WTcfe9P0JPpxSFLluBrX7gSjQ2ToNJ5dXR24sqvfQVPPfsMGurqcPkXPg9NU6GoKsxoFIqiyP711NNP47LPX4aVK1di4UIT3/veYhxzdOW6zJ03H2efdRaqqqtxzz33oL19B/K5fjz77LO46du34KWXXkRvbx/mzp2LL3zhMpx/3nlyX15G2L5tK5LJJJ598h94x7vfi1tuuA4P//lhPP3CizBiOkr/VcbijQuwtbED/W2CV6l7AtGaOklcg5UvlTHr1DhUo+KrNvPkOFY/lEPvRhu1cwkhlpCruAY96y3ULTHhKC4cBzB1D9OPMPGsA7QvL2Puf8SQ2WDBc4DGg3UU8qK/9BQ1pBYa6HrJgmdOQl39NABAKp2iPoH/z953x9lVlWs/u5zeps+kV1JICIQgHUWKWFAU+7VxQRAQvaIo+qmoKCioCFgQL9g+vytcpQhYAlGCdAgkhDRIn7TJ9Jlz5tRdvj/e913n7D0zmUkyKcB5fz84mXPWXn2tvff7rOd50bWuF70b01jwny2Aw3sIo/p6iFB1m0My2AVaR9EAq8qGmVMYpvbZYd7LLAd1ThCBF3QsvnID9J9omPl8HfJWC88dQrgymcUAgM7dxBWbtYAUhuvGT6TWC8ypbPhnir193BjEj/f/PYxK30jX7W+crZFstM99w5bvQ+4OpgL5SGX6OVpVZKtqVTsI5py17wqCHed/ELu3HWKpJBeoWVEHvWig79iuvbo0uGsXgjt3oP2cs6E5Nmb96Y8AgFcWnXAgalq115GtmjoJALCg1Tv/TcfBO5Y+ids+8aFDUa29tnGvbsQLV1+BU6+6Fk3ZzMgXVO2g2662LH7ys3X49AUzUVcXx/U3rsDlX3gCSx56py+li8YJL8J1TFilKNZtW4++dD+uvPQyQNNw/U034dof34Cf/4COd7muiwsuvRjd3T248XvfQygYwi23/QI9vb044ogjPDlns1lccMEF+MrVX0FLSwtuueXTeNe7nsfaNW1oaWlR6e66+39x5Ny5uPWWW5STYGtrK04++URccvGnEQ6H8dTTT+Piiz8DXdfxkQ9/eI9tv+nWn2HhvLn46FXvwf/L3o/CD4pACMAZQ6e38g6yu22kJnvjU6Wm0GNX75byy5bf7KJbcbSOTOf3kJ4tlkoDlEOWqHQBDfmOEuzC0PfTTQ9thRHSMeWt9XCdXcO2d18s2WvimCcTeOSyzVhzeid0vRXzn5yE+q21Y1pO1ar2WrPqy9ZBNnnDV+dn/YJJQ6kR+uNHyEX76QVQ8Rb2K5ex85TYl3p5RRFGFtp2kpe7u5O8h7GYxLBifohuIHfSaUi3bEUEADQgokdgaV4VQlHTEu5MJEYtF2+3eHYFOQHKfB4/R0UGTlAQ13GRWl4Hvahj+S+eBOLkqRf0w7LYuyyefEYR7FIJTQ/cj1Dr21FsbISdIA/kxrnzMOd3d2BHLo/WOfMwriUJQ7OgwaXz+rq0XThOJVUP6htqg3indcVfEv4Tx8mCoBnUDok5ps6hK541e88lnhF77kWBLJ9nD3wxw+V7EbxyeAvvvFf58a+ixla5LoTP4j/PH+K+F8J4Plf0lGkJz8YRRS+O+eGLGWWq2GLMU2DESFTQXF04V7bneqm1QoQ0QQnpV1EzlM9QiOeXAjFs4gk5DuxSEf09dHwul2UEypHYaNTHPd3kNQ9x38+YQUd1frnoGADAu3Uiv6cZDW3f3YZwOAwXgG1ZCo2UeGQBH89PIcbCH6oQuZM+jUWF/+XdNQQd1hU/ktecLRwl3VOmQjy57wdCObR0dgOajn/f9n1M/eFtaNq5G1uZG9PJfdPHCFWe0ZmGBvLEB4OUfzbD853HIhohdLAch4hVNHmdUH1dGkptCK6WAsCG3uPka+EPar4wLhLfzuX4YMIpgxPm9F7upszZTJoRh4p+dkP07wFG1eUXQWBthTYzN1WQTkvQSEbrHEHtKL2oCRqKzEEfJqNvb8mOBwCs0DrQ11/Cb355EqZMiiEYCuDKz83F5696Dmtf6cbUyWWOXzzVCsdqxlOPfhvAD5HN5fDzG25AMpFAKBxBZ1cnvn/zzTCCAYSjMTz62FKsWr0af73nPhx/PEnMn372mZh31ALMmnUEr01CIXO5HL5z7bfx0Q8TGnXmGcdh6rRHccutP8X1133P0//3339vGc0E8OEPlR0PruvitNNOxY5nduDXP/wNPsK/iRpj68ZXEYtGsWX1SgDArCmTcO4nz8BX338jFu44CmsfXI9tj+5A8vgwgnyIt7GJUfGohixHaAgltTLyaWgwuJvyfQ4s3pt0PsVh8pjVTA6if4OFEKsGunDRvrqkrnMcF/EJdG372hIi8+me6Jr16N/YC7hAMtKo1GcFDS9kurHhoS2YcFIUutENy+X1GCC+ngM+3VGge21ApzJrREWRX/iUKi3/HeZ2hIMuGhBA+AWgP1VA2irhgcueR+m/DcxeNhE2qJ2ZJx8FAPR10b39+LPeBQCoayZupuI07iEsUvnxR04JDZ/28Iwnu2/qgOpqv7riCIjcwbDRlrm3p7ReDzY2EmlVq9phZB1T2zDthVkwCgfJl+ACqeV1CLdFsPp7y2AlRs/Vanrgfoz7890oNjbCrZDaLsTi6JowCU3btx2IGletaoel1e9ow5SX1uKuz1+E9vHN+5zPU+eej6fOPX8Ma/bGtQt6Z+OCXpLwnjA+iimTyi9VM6eTc6httwTEFrSlgBcf/ypsi150Zs+ciWSirMA3Y9o0AMDuDpKvW/HySjQ2NODYYxaqNFMmT8bCheW/K+29552n/h2PmzjrrAYsW7bMk+atbz3d86IFAD09Pbjyyi9i5hGzEI0lEI0lcMfiO7F+/cjqrsfMm4tdqQ5M6G3GhJ5xSE6Lo9A5ciDkYZ8j9/B8Oft9cXS/UsSKX6eR77XR/nIRz/88A80oO8DqZgTQON/Ei7dl0behhEKfg02/b0duhzfQfaV1vNyHzPYcpr3twCpvxgYMjNsZRNPmCOYuTWHJJ1/EK8dtP6BlVq1qh7NVka1DZHsVldt3jYoHMVZly3nZfcxvuPxHOls8yLuxievB3NpyNHHyUkvsKeV9llhSmob4M09iYl8GvYuOx1NXPYq5Dy3A9KWzsem4V+BGhj5OIUhWWcmP62eX+0cp3rl0A1OeQuF/QUdyeQ30ooaXbn8KGa0fyAEBfnEKh+hm38nxWXLchsb6Goz76wOY+Pvfou2MM+EuNwG3HBPMsYtwXBspFNFUH0YsWELQcAC40OAqlCLAbRD1wlCY+iTEHDJ/rCfFvVH8HK+SnutIHBdWXeRyBEkQVTlBCBRaqEL2eL3rQklU8ZBUbBxGFlQcIy+ioBllP5DL4xwJk/c2JBwTiV8lZQQZqTIEYYpwm4X/wm1gdEbmXzwe5nTUJw4rghVL1Ke6qMBxX5oc00xiPckcyeeFC0j51dUT6uLy72EfaqgzB0XXDQQCYXT1UP1yAxKrjcpZ+sBnAAD1tRyHiJXI0r2kDKhxfkFT1OWovo0NDcjWpKBrGiKRiEJhTDU3Kb+C8PcY8SjkRemyvD4V+mEKOse8Lk6bZTe+LlLZKkYS/Sm8nFDQ2wcZPi4oazwWDyPWl4G5cSt+/+XL8d7Pfg3Rnl4VB27ynx8CALzMsc2OXUTxe+qlrxnRSh1L30+bSQ/1ZVSR9xRD1EMtxksIPdDU3ujlbvmhLi++DZgBL5Lr3/kkneL72aI+KHuTV1GtzImrQLZ43AUtE35lOT4afZ9jhFc3JRYex9sqSjwsGjOJjeYWBJXmdcJcPVmzgQo+aDIRRIivsyxbrd90uoBgKITaJkJX21s/ieaT6QUtGAyipialTioEQhHEmJ8ITYeuAZ1dHaivr4ftWkgkiD9kBEw0NTUhk0l77hXxeJz2oYrbWFNTECtXtqHSmpua4LeLPn0JnnvuOfyfr30Vc+fORTKZwK8+dCce2P2AQmH7umivXr/8eUTCIeSzrDirm3AcDXA09PR0o+SUYOeLKGQ70JCgsUnFRY0TMEjYD6WMA0DQRgPFfv53REOmQOsiEeS1zfeZKSeHsOiyFFbc2Yfl/52GbgLHXhTHqruzCNUaKPARwiOviGP5DWk89UVSDUxOj2Pmh6dg459akWxJqRczK0fI8OaHNsKM6hh/ognHLgAmIVpmiOZSyZZ9X/ixVE4sRvUU0U+/qqeKLcgPJwnWIimViohlgcK/o/jbxc8AvzIx+/kpmDyJjntu3bCeyg/+DQBw3JspQHWqmY5GmwKdVSyo0T6nDI9G+04V+drit+F4R2OHxvhOfYzSRmzfcKXtI3drb9qrts0RLnkjIFpi1Zetqh02Zn6FpmPx7r2PDFR3z/8iWSyid9HxgAasPXcl6tbWY/qy2dhy/HrYof2INuQCNWvqEEwHlFCEPMCYRRN6XsdLv3wKdsLySsINYVMeX4rGdasRdR0kNqxH2xlnworHMSUxOEBJd3MLZr64HL1TpqDvzMHqhFWr2uvVGne1Y+eUiegf14Qoy84DwOSXVtM/ZhweamdvBNsSSI86bThCDgDXGZqLNJw1NjSiq2swz7Wjo32QimAmkyF1wXAZYWtvL2LcuKmedP4HuXw+j7///e+45eaf4JJLLlbfO+5/71VdR2uBiI5Ys4G+rRbGoyz80LeV7kXJKXvuo4UXJnH0R6Lo32kj1qjBdYBlt2fQOL98XWy8gVNvqUHnzjhc28WkY+dgxY/Xou7IWiXKIeY6Lrb+qx+T3pyAGTq4h5qiPQHMeKQGSz71HABgclvLCFeMjZ3tnH1Qyqla1Uay6svWQTa/ypvvmLz3J/FA+BIr77+f7yWcFvH4j6Si43Pa7q+N1RlhyUVeaMRTX1tL/AupsHjgLY7nAk2DZurKQ//IxfdhwZLjMeuZ+dh83DoEGJEwVRwkykcU0iRfp6Idpm6g/oUG2KaDbe9pRTjKrj1BvzQHvSd2wYqUALfMXZE8ZbQtq4jpi/+G2X+5D33z5iMYCiFzxpnQgkEEAPyfBb+l9BYjaGEDCCfQe/IiHHP33Vg3rgFG4ARo0CkWj+OVGBYvdImV+XKafC8cGZ9KnGo7/UO84wGJOcX5DTB3REyQL/GymwH2jjP3y7a9/BBB1pT3nfkQJVZGk3oHQ0IQYmROXKgox8kKstqayWprEgMtKxwrzkt4X65FeeVyHM+H2ypKiY4jcdZ8iqCal8tXRsaYF8fp+vvlzVq8vxFPm6Utwg0TxUpNOAamAdsJwEUBDjTkOWZbX+8AV4Pm6dELKSZNiZG5t55E6MH69XTEtHAKXbdmNQVS3ckcx2RNEruaGuG4LnL5vNofBKkQFceBASpPKUmWpH8qFCH53wF2NigOo6jnMapiqT4SBEiUEmlMiiVqk/DY+vr7uW2WJ1+K6eQCyQTCwaDiJtq87vr7qM47thMKIQhLnF3qxyx7GgCQP4pil9mW8PlMT3pNM6FpOjRo0DSjYgoID0R4rYpVyL8Lx0p4oF7+n3Bk5DqHVeYc9vwLguYK0iUx2LifJMaTIN0AYHEfB1VcOC8/TlCzAiNTxTSNRRmNlhMFjNRyXxuqbxmN5k6Qef/tyS8AAGrcIFzXVftjLpdXMag06KyoKDxGB2CUUTMM6IaJUEyQuKCKEWcETARCQSxauBA3//ynWLdxI06bSByxbdtasXz5Cpx88knw3yH/8pe/4CMfIc5WX++3sWTJWbjoouOwJysUCrBtWyFzcF2k02k82P4gNGhId5PDq2vnVk5fhAYNJVeUWE1s7d6CfD6Pgd4dsIpZmIaLhngBNQmTs2TUiqGfSSeHsfWxHI76dAK6ocEwdLQ+WkC02UTdrBhKLo2Ny0hSlvcqQ6OxDkeB2pkG4AIv/HcasRYd448LIpOjcroGqG6pmcR1Crph7PxXOxZduQDBUAAO77e604e2F/qQ67Aw/ewwNEb9zSihf0aQkS1WZhWUrxzKynvP9AMSoqbpcow3uWcnYw73XR41BQCPJ/C3S55A8s81WPDybERYBfHVF+glzGBkb+Hp7wMA1DaTSqFecdLBjzJrvnta5WPI5c7lGM78FC//CaKRbLQI0h5yGFU5B8r2FlUaXb+UTxvxVcPl5kn3RkC4qi9bVXv9mgasPOs5tGyegOnPz0WmJl3+AUAg6H1wFKt8yNQzBjRLw4u3Pgk7YiNew95UJjxrKhrlnqsyffHfMO2RxWg74yzYsZh6mIK1Z36XlUwgM3MqkuteBWJ7TFq115ht3RbE8y/G8X9v37OK5qRZtwEANq36FADgmHn0krVjbIXEDjtr3tyKxz/9MaSuuwWJrdTmbcfQi2fzrsFIcKXFn3kGAJD/z08d2EpWbUzszLeegfnz5+OCCy/E9ddfh3A4hO9c+z00NTUOShuJRHDNt76NTGYA48aNx09+8hMUizY+d8Vn91hGKpXCccctwnXXXY9EMgFd0/DDH/0YKTOFfqt/xDp2Jrtx/weW4N33vRUbwy+Pql1HfSKBDf/I4snv9uCId8fQ/UoJr9yXwYlfaaQHTH4W/e0Ja3HMpxsw9+P0EtS/3cKWR3IYtyAAxwZaHy/g1QezOG0FOaAAACAASURBVOtHtR6VwrZ/DMCM67Cm9SG7I4+n//QyamelMOuDgwM8b324C6GUjvFvGjre2MGwaE8AM5bU4/73LoHmAsevO/KQ1aVqVTuYVn3ZOkg2fAyEveBLiQNnuKzUuf99U4Q52ObnbpWF/rzqbznmg8g5cheiGkfIQjAQgMPollWyVD5F5ictuexeTFgzFdEs8QQc9rgGguRVjMXoxUehPIGKWB+mht43dwEOYMBAMZPjtPSzcEn6++lFLhanN6JULUndmqaO+n/8HRP+ci92n3EGAvUpBFBWrJMxK3EcLt0lj38kLOqHJlzXQNHSUCDwDA405QEXj59C0hxRlmP1KZc846IwF43SjVZiQwlfR7hcEh9IPPUyNhLbpyC8Oe4eQXEETdXg5VOp+une+kq+grJIfuI1N8yyJ1Niujg2x9MqUp1trrPEDQqxBz8aE8U8QUap7ERc4klJ3C5B45hrxdeLgmOUeQqimChjLXGJmpqIlCGIl6B0Mv8EYTBU7Cb60AwdbbtNLH0igbt+14rjF5YABFHDyG1PD83rnbsYtQkQsbynj+rbm6F2pWrJKxwMUbnROI1tMkX5FAtFNa5UL15XlvSLNzab1FfWQ6hCXCDD8zvDKFiWP2XclYKh7uVBqjFgJCOTprZJvWT8FfewKPG3LCQ3t8J2gfu+dzU+9bXrEe/tx9q3vxUAMPvWXwMAVq9aCwDo6qTja7PnzgAAzBXFxxKrE8q6kPhuRjkGn6aVz/6W90TxuArq6WVpST6O6/WyKFGCQUiy7CmCGPC64nb7lS416Y90GdkSVFjitpVjnEnhgrAKKtbHnxIfjlFnh8ebkVQpW9BDQStF5VAU8tQ8YRRSMw1ovE6jsTDC0SAM5omFIiG1STqOC9tx4bC6oWPocGUDNDVEU7Qv33vPPfjsFZ/FJZ+5FE1Njbj66q/gn0v+ic6uLlSy5KLRKH7z6zvwX1/4EtatW4fZs2fjwQfux/jxhIjt6f73+9/9Dpdf/llceOGnUV9Xh0svuxT57jx+0Xobdm2iuTTAc90IJGAEwygUiA/155P+iolrU9gcewU1oTyCpg3XAGpTOniLQbHkJQLVTgninT9txFM39eJfV3UiXGfiTZ+vx/TzmmADyDEfzLUJFdZlnhgadj5fxJq7BuDaQMPcAN7xs3okZgWQzwPtvdx/bgzb/9SFzT2vIFQXxBHnTceizy1QyJpr0dzWSr1o/VcXpp4RRSAEWBrNEd1grpgPuZJYgYbw/WxqYMiV+41/nfD1vB4cl+8n3C/1Sea52jnEBgDz6Qbc9cG/wrzHxNGr5kAziXO5/NnnKZ1F/XD8Ge8AANSMm6jG0DS9j63l8R78PLMBJHwyEzPVd8Nxlkbimu+tjZ7jJSj6SOn2rryxsn3halVc7U/hyfNQP4MeTKu+bFXt9W8asGPeFhUU1OajROEY3eTr6uTFiI+PSQBjAJroX+9H2J/4S8vRN28e7Fhs2AV36dNfAwD86sRv7ntBVXvN2K42E+86J42TT8jBGlnQzGOrXpkMADhm3g4AwDWPPQ4A6B32iteuNWzbgc6pk9A9rhnx3pHRh721SOLviCYXI5uucjtGsu9fS8f0crlysOvx46LY+srHAbhI1D4LuDpWPvUoXKf8on7nL381KK+TTjwRu7Z6lVYnT56EBx94QL0oaBpwycWfRuVRpGuu+QauueYbAIAXltHRM02/DcAquM5pKt36V18Zsg0zZ87A4sV/93yn/9vANTO/idV4GABwxomLcMaJi2Ab1IbCEUWk+pP4wL/OxZptz6vrjvpCCs0NIz9CtSwM4z2/IWVN26WXCD+D+GNPCAeRXlJizQbO/lk9gnwcz+AX6YGsl4Yw8fxG+m8yCcEkk+RocXzHzHVTw0cengXDzeFwsFhvCLMen4A/n7cYq+dsgFG0MHfNFExfFh354r2wL5tfBgDcZ903pvlWrWp7a9WXrYNsByP2wXDIl6rDfuZf9jHuOadB6onizfBzzYZRRxTvuPBBBhjBCIdpQxalv2AwAF0n3kU0HkWCPaX5HB8bZCegzh6xeIJuSLEEK5iJF5zbE6zgCxWZt9DbRw96LnvK6+pZMYvzFA+1qLb1dJM3tL+/H00dXQholJduSNwteWBhTocjMW+Y3xOIcfmA7QB2egB5w4Jhmh4+U4njXBUK3id28XoXmBvj9wYK8iWnIF324BcLdDPWLUovZdmWV8nM5XoLgiVHMeVvyxfbRwZduCpSvjhyXfa62xyPrFjRHnGCK/TOFtVAQVNYaZG9sX6OlKBkwvXSWGGryPkYgjIw0pMKcWwmnrfCXxAkSJCucIR4DoIQFAolz6fM91BYFLWEU2lA0zXoOpUhvj2bkYt+Rn96+xhNYk7ahvVbAABL/k2y16ecQHMsxUhWLpvn+rEiWsCl+em6sC1b9UtnJwkRpGqS3A6JkUXtijM6WzmnCszvknERBEv6TtA926Y6C98twsqMwi8S5Ebmlenjjwk3xFRCNA40Dejr7UNHe4dClHp7qQ19vdRXaUYjpk6bxNcxUsS8PCPAR6d4Ojqui3D8cdS1fBuZvnNhlZIAbNV3wtkqqw/6vdRST5+HdljlMuHRen+XfBlsUlwyUdQMhctHnEMQ3iPvIdxnIV57ghJazJMTDqHhQw0dW1QnhTfJa5fndYTXSZgRXHWigushKpnxsMRrM5CsexaapmPTyrsQCdG+aoYllhhzy3hMDM4/nqT1EwiLYuqe+R7lLvX+rmuPULvcS7EnK/PvyAS9330roR87nyZlPFeLcH4BbKvbjh+cdyumr52E9eZ6IE/zrCbBfa44r7wfGl4enYonaHJfGMw75puOyfuzwfuvoOADBd7bhEfMnz1pytDS6f7TWE8vcbFojPOnvrULtC7sHKHjQVA5wlnUzCj3AfeFqNSqkwui7CoImvf0iY/eWh4p3bt+5DMYZKQvTvnv6ulCZDcw/YkmdDTtRqAmgj98fAnOT5+CmS9PwEtPLqH8SnQ/Ovas90oJaJg0metmesv2yQtqKL+YanAUX3Ik21eEa6yQsXI+crpjuPyGVlnee9N8n4NqxPUp/z58TC//p/93f5lvHKvG2apa1Q6gzXx0Ceq2bka2ed9jBmXGjcfkF55Hakc15lbVqjZWFo4uQyF3FBy7/lBX5TVsLpJ1zyIQ6kTr2lvh2PFDXaExs21123HduTdh+tpJaNpZnSMHwiKZEJo31WJy6zhMah2HrbP3zMWsWtVeq1ZFtg6SjXR+d78QrxGEX/xeVOV9LSfYr3KVCuK+5aLMupEPV7A7L8pxZCS+kiOeWYPSRdmbBx3Y9uOfopDPQ0fZkyuKSC57t12Om5QfIJRKOD7JWvLEhhgpqxTMyLEnP8+owUCGPJt19Q0AgERS0DWvd9Z2XTT+8xFMvf8ebD7pVLjBMGC7SnFOPJaCvoiJB96CeKMLKISjKB29EJOfXobGpmmwSyZk9HI58vw5Sg2NOSCMxgR9IiCCUAlPSdTODJ9HNhwV/hGPiSYcFfEm+7zQjlcRTb4Ph0U5jf7OsLqhxeUW+Iy/oEdK3bBiShb42FKAPeJSdznOpGIm8feCksRDMU/fFJlrIm0QRcSy6iWjeQlGFRVSZXFfefsuqPhsNM9i4r1WKIaou/nVU3SUSjpc14VtuwoVEpgxwqqLIa6PqCeGeR3I+k2nCen90UziI1zQTkiXIHyZdD+yUeFkaIpDE4954zOJopwgGzJXhF9VWWY5zhzPB3auCkfRdQS5pToIgiWfgnhJm3PMg1PIFvdBjBGxYqkEXdcQiYaQSETVPK3hNdvbT/MpmiBPfX09BzdiLzZPKzBdqOyJdwFoeciuJQqmjnC0WPFG1gt0L3KrK9KlFwHT4FsXgzgK8Pwt+QQFdZU5w+tYoUsoz1PD4DVo+NBq7vs87wlFUS8MMorCnRCI+GLw+daybvh4OFzneNz7IuXCQU3Dc3BdDSufvBORcMJznawn2RPl5EA0QfkYos55gHgbw8Yh4s9ijub3jvWrAADpPlpPergJHbEufON912P+5lkIbyrABvHfahNUV+lTP/dElDyF1xbj8dMCND9NVv0zHCrbYLU+0WKV9SR0SptRzN4s1bonR+uitonUB2vr6CVQkzHjA4oBnREznTlb3GoLvIeYVA9B4qScfJ6PGfKeZQYE0ZJ1zVzbgHB0vc8Srit8aOHkeu8LQd4ra+P0fVeauJb9roZCPgcnVotQvBFhVkt85SU6tuka5XVw8rs/AABI1ZOS4oHm/YyWezXW9Thwcb3234ZbW4P490OgYpV/H05tOtBWfdmq2uFjM3xnFF7jVvPiC2ifNQel6PBcrdFaPplCtrYO9bldACaNRfWqdohs23YTzy0L4wufHRsv7q746wdNGCsrTJiwx9+jyYcRSz6MgSpXa0T7TvfxQ3zroqbhOQTDXVj55J2wrdfuHJzyq2MBAK1nblLfbWnYhppMEhM7x6MTmw9V1d5QVrszgdUnr8fUjRNx3Mpxh7o6VavamFr1ZesQWznWldf7tzfmP8o+klqh3/ta9krtZdwInzd3OA6XP57XoPgWvstEGSmeonPpsSTzo1hFEEpxT1TgyEMb5uCX8RpKn8mwp5+5Xtl+VufqJSkBQSiEE5NMkXe+rqFO1UU86RL/RGI75Vi5TTyKeT57n6oh7240HkPIdRBIxKHX1w5CD4V3JByp8nFz8vYKCiNxs3RdhwtAs0rIDmQhvSn1E46HUkPjDD3KiqhQKxTVKFFnE/IWD0YYXnlgQcxC7IEX/odSIXS8HiyJjSWfwsHRFCeG2mU54qUXfhUjbBUEb5fng3BVJL6aUqNkpTvhhmhKVY3TKwRLYsBQWfF4gv9m/pEo1AmPwRb+mMX5sBpc0IsESd8ISiHojvDaCsyrM80A2jtMPPKvKH5/x24cM68LuQGgs4P4R4L+zJ03g8uhsWvdNJvzF28x9WF9XQ33JY8B8yVq62j+B4ImcrwWXJRjNwm6VGBVRzn7L/kZnE8+V749SNwoWZuCtuUYFRPlQptRZCtLbS5zuRi1E08/T1NReCz5OH7leUmVN5MpxOJJdWE+51V6jDM/KRKnenR8iYjxpiYKjILgmojEn0T9+G9ioO9c2MUUAEdxDEOKW8ZQmCOcSomf5OVR6Jpv71P8Ji/RyWCPv2PIXJMYVzzfOVdB2ASJMCrQq0HIk+HlQokipFqbfJ0gsoJgCpdL5qegyiGO31UqeZVIp4HmkMbodKlUQrL+RViWg6cfuol5fN1q/saDCa4wz0tuayJJ8y8YKYtnVNrw9x//0Q1BH0fLgvDySGQf6G2n2AmhLVTfcJSOevdkSui38ygVCuju3IWQXkZ44xHv/A8xCu1qst8J5064UYx2M0cKDnOnSnRCIqjLvOc+l/2Sx7h3gH7v7meuY4zuTTWMJBsSuFiURlnV1inQ6Q2dVQFl3ViuKFkKl1LuN1QvUWLVuV6pOO+VUS9SpfnGxGKubV4dTuE9kblpEm9PwlOKSmEkwLEFMz1ABjhi+TTc+x8PoznyCczbPAvZTkq4adVyiE0/aiHVie/XAXWP845z5ckdOs2wbxysg2cjcaf8JvN/aJ7UvpuXC7Z3Kom+Z8tBffg68aTvg1U5W1U7bEy/zYB+mzFywiGs+aYb0fKTG8e4Rvtudfffi8jaNSi0jJ2HLh+LY0J2K05sXzpmeVbt4Nr2nQG8+50ZvOXU0auCrXj2ZKx49uQDWKvD25p37sY/P34+ehvr8Z6b78B7br5jv/ILJ55BIXc0HKthjGr4xrNwbAdWL7sEVun1F/xvZ+0u3PXme9C0veZQV+UNZ/H+GCZsasaa6a8e6qpUrWpjalVk6wCb4ksNkvEZOn2l92DEc7HllHsse6S6HS6mL2FE4jI+L668v+S5Ulwb4XeI9zdgIrBtG6Dr0AMGYknyVKZq6WEq7XYDAPIDfH5dAglz3Ka+Ljo3nhkQrkNZhS3KMvCm8MhizCVhZCvDHC7xSKdqkmh86C8Yd+ev0H3OO+BEo4DrVnA92DvscHwVbtPHZj7MbaG2GoagOFSObdsoBQJYHlmA7616B/ILIlhef6KKuSN9IVwtpZLInnPhZllFm8ul/BPMn3Ac4WYJ+ileYEEa6DPAnCpHvF3srhHVNEtxwkRdkc/qh0WBTHgdPIdt8QgzzyMoKnRlZEvxuXTheHi5Ra5ScKPvhf8jcaNEYUs4J8KryDOqKEiQKMWVkTCeb5b0qcQN8iJsBiNGgkqLYp+gF5Kv47hwXReG4ZD6pMTCYSTJ5Lhv0o6Jk5s8fdnR0c35UTnxBPOx2Ave0ET8jYCMRckBapIwTAO19bVweCwGst44BjIHolEa23ze6w0Hyn0t6EiJkdeQxFljz76gehFGmf1qnab6LMdnAoCBjMwrul4UEpErYFJ7J2xdwx++9UVccf3PkEhnsHFjD+cjaB55uWNJaQtdL7HZnJLEm7MA5KG5OjRUcKZEkY898tJy4bWVvbv8g/r0oy7s+Vcop6yjIl9mcTma93p1n6A/FadtoDxWsjYMk/pc1k6ZB6p52l7mZYqynXAJpUjeP3XvvJb1In/f1bwVAPCp3lkAiMvX6FrQEIShm0gk6YUrwutAIctcb4k9GFCo5ljxNKTPpnm/HY6rxd8X83RKoaOVHugnuIsAALarYXvNTnzn3Tdg5vrJSG7KwkInmiveySNh4bYK0sv7l5wk4LYbEebDsaqs7JNOkU5XwM5xPt792Fa8U8qPgV84Ou2bzY2sPhgX3iWPKe+RpRzl7+YJLReEyrYZqWWkzTBk3XrVY1VMS4m7aHrnqe14EQvhbvGUQbHEJy5kTpVkjgmX2Xt9Las6FvmenM+mYReLKGglFAs2AoyS9nSVj3JuWrEMADB+Gs3HpPDWhphXP7RuLJ/AGRZtGRsbSY1wcDyw0Z0kGmm9jHVzBu11e3c1fw6NcEme5RMCbxyrvmxVrWpjaI0PPYDxd/0Pus95B+xksvxWMoKd1iTHJCJ7TNdvpvBI6h04tutpLK8/cT9rW7XXgkUTbfSPDnpAuuKCB/mXNw53b3zrTnS2NKFtQgsS6zaMmL7p8ssBAG0/vdnzfTS1FLGaR5Hvr3K1RmuPRXcCkJctF00TXoZjm8hmDg9ejWP/aEzy2V6zE99+502YuX4yxu1qwgC2jEm+Vds7S+2KY8VpqzBnw0wcvZ/crZmYMWKImqpV7WBY9WXrAJvyZjjKnQig8szz8Dash8SfDl7vgevzuiqvwn7uOfvrESqrIpIN52kShMD10iPKSnqcPF/g8+WGBtu2ocOFXcjD5dOxBnuCQ6zIFmYlNcMQvgXlI17xSJyOjVgVfCGdPXtTptKDbQfzawSx0biz6+rr0bx0CSbdeTs6zz4HhWAYyBdV24IhOVfOHj5uRICRARiCTHm90BJrLJ+14DouXMeFpekwQWQWUfzy31DEK22XCp7vxcMaZO+4lK/p3rhHiu/BHkeLkQzxpCouCbdf+kN4I1KQ49CneN+lPLlekAyb+zzE34cqVNhEXU9ikIlylqjzyXgJGiLKkcI/CDOXJCLIDfN9Cv30e6HgjUeUy0lMGkH5yISvFmIVtQFWAxQFsShzYeR61y14ri8FdJSKIdAKsBSHqrFRvIBUfm8Pe6cdaveiU/4IAGjd/CkAQJHXwY4dxDkhDh+wZXMrt4fKTySSKBXCqg7C5xPELhiSuHPkJZd1I3zBgYEBiCkOim9LUmgIXyOoiCCuMlZ9vdSmfI76LsmKj2HuyzpGFyX2k8RAKrGHPV8owHZdPP2mBVg9bRKO+29qe4CvD4REVY3SK/U0ro9VtBBLPYvmqd9Cuvsd0FAPaJXcKOYXqQMIgprwfFbBAgUd8q5XxacyvcegLVvqI3uK7IFeBExT9wnhjAmXqyJWkCboOP0mMQBFlVLQg1hM4l8JEszpeR0JJ1HGTuO2y9qVfVFiqEkbM+kBNI5fDTMAPL34FtTWEPKaqqf9M8rxDeUepzOXMhgW1HB0rvLhEILBcbbUL3vMT1LLHtOzm4KBd7TRS+RE/QS8Om0DvnLedZjfOhvRzRaK6EVtwoveAGWUPRaWkwNcA1Fj5b41TEad+dO1iEPllGislOqk4+XHCPepb4C+7x6gchL1hN4IOi+xzgTVlhMNsIiPHNC9cRxLNiNNvP/K/BPV0PJzCe/DSiSX09nev2XdBFitMMxIHlhNVyFjmnddBQP0j0jIi3DneS53pjMwO4A5L83Eb9//v/hM8YOYu2EGguGyAEvrWlIobFtIQbZjyRMor4B37ZUfg/wngfbPRntiaPDzmxcWLyNI+5bfILVCXzbDhRUb/NzlQ+UV2C5/C5pbmYuX11muk/rX0IW/ge2Nh+VVrWoHyBqffQr9xx4Hm4Mm7409tutoPLbr6ANQq6odLra7PYgVLyfw9rPTY5rvvC2tmLeldUzzPNysbcZUFCMRWMEg+pr2jWuVqH0S+czRsEtVrta+WqJmJ1Y/dzms0mtXfdBvr07bgA/d/jHMb52NyZ17VrGs2sGxRH8cUzZNwMuz1+9XPr/Qb8Mv9NvGqFZVq9q+WxXZOsA22lgJ5ZOuFb8PEv/bT2/BCJ7Fkc8Gj+6M8WjTj3jYWJy97LVz2UtuMG9IKTi6XlxHvGUSR0vUugp58qaXGO0pMH8pyOfQQ+yNj4fKCn5BRkW6u4kvIzygFKu8hfmaUCgEw3EA3YCm6WWuh8rJ6yX2x6P4wwY61nRi7fOetlsVKm0uAAc6oJHn3rYtxU8SJTFBSwQZyDE6IXw38WJLfBWJxSOKenJGXxcES7hg7IDVlVqgt/7C5RH0URTvxJttczmGePK5V4QfJx5e6Z+Qrlyrqi9LrJglfSJ8nzC74iUuluKiqHhrlJegJnJcvK6exlBiHDmO17OXZRXLKM+jGKMxMp9EiU+QJqUWGPByyxzHQntnCE88XYubvr8Op57ownXK6IUo4MkYKU+6UpikPwXl+NODbwEAfOaTLwMAPthKxwyzmqCIHB8s340eaLBKFtp27UYyRU6AlHDU2NMvHMhCnsrPMTJY5kYCLquQyRoJM3clnxdFQy9CJJw726d0p9aBr6/j8Sj3IY1FWSE0hS3NDUinErjsx7/Cfe8+Ew6A5maJc0doSpIdHAVRN2QUp6OtAwBghkzUlUoIRgw4mlax33Lt1RfCUfQiDsrb60h8MR9CJWMlexL3rawz4e64tiDJ3vh6wyFlKrYaKhEq6tO+fuJzybxWyoYu9UGcuVIKJTcl7hWjc9J4QTx5f/XHRJN1FImGoetAqqYBoWA9IrwuzIDM86Kn7TUxGhvDh/aN1kZ7vzPN9wMALOueIX+XdZVLE7ravoW4WlbBwu54N6767fvx/r+/DxtrXkE3elFg3lNTPa/HIZ6SfFQ7xWUaKFBbo4zEmBCElfYS4TqK2qAMguRn80mAjIjUGtSHNbVeXpLs+8IZc4qEaKFEXEYd9HvJYd6oQesjEOI4X3KyQPaAEq3jPMceq4kIb9obf1HuD8JNU2grI1pBjoflstqshK0rFb2IWIhRKLmeDwWgK0176sBABqVCEZYBuFoY8bryccJsx2oAwLZX6Oj9xFnzqU4Br5NT0zQ8oi+BC+By5zKUkZu9e04ZiTs/kg3/DLivCNlwtud8954r6edbaUP8Nty1g89feT/feFZFtqpWtf2whuefwdQ/34Wpv/oZYps3otjQeMDKOqH2RWwcmIaXSkcdsDKqNvbW3hnCw/9qwXXXrMdbTu3Z7/y6emrQ1fPGUUrbVV+Ld97zD9T09h/qqryBzUVt4wo4TgCFfMuhrsyY2eqWzYjbUfTN7DzUVamaz5Ltcbx05Bq8PGvdoa5K1aq231ZFtg6QDauINAoVwuFsr5GjMbaxUvNRcbd8MWrcad58az5FD5RHdR/rKVc3TOx8+1b0vIk8kHXLmxBuOw+aDkz58swKLzG51Z79r8cAEBfsqLvehPBOcqOVY+eQl63v2F60nr0R4XgMkV1RzPjNHKWmNtmWuFT0ueOKVqSW343Jd96OUvJMmJkm2NE7UPPsZE8brHgH+t50l+Jm1C35HLXF5yEPdc9AKdquPEWRXUehYes7lacbAGYCuC++EZ/svwKxyI+h6xosy8KFaydiXN7LO5K+Xd7Qj0dm9CCXy6FlIIQL103k370IkwsXv5/Xhu1heqB99/YWLGiPK2TKqfBu7Y4X8ceFHTwmwBcenzCE944+H5nejZUtAzB0A0e1RXHWxjq+zqu+pQG48fjNChF5z2MRNGX83n/6XDMhj0dn9yMUDqCx38R7/50YMp1lWfj13O3oNAnlOHl9EAva4wp9KSvNuehIWrj7TYRexqJhXL6kcVBsJeE8PTY3gzUTC4jHYzhqVxRnbeSYN4IaVigtXXfcAJ58OoGf/2gTPvRcI8wHJpbXsaJxOsif2o/MRwmhCm+PofGmKSpB+AeERL337g8CAG7XbFghC5FIGNP/eQQG+ujo04wdwq+gevekunDPRevg6jqga7j6yqkAyvG7pP1wXSz9ZAZPHb0bAHDk0jDOvb8Ztl0W4FDjD+DqbyxX8bT+6445mNAWg8nuf5kvmq5j+fF9+PsHieM4bnsIF94yUbVJUECZr3/8ajvap5RQskp4+931WPDUeMpH03DZzVG8/am34pRnTsLi85LYXdOGFCsxfvTB/6A2MXIWZJ5mdF0CxeY8IlFCdxpXNqM+XQttxxwE//Ifg+IEZf/wS/pTcxH6+vuhbxnaaVJ8yyoULlwK1wH0zY1IXPthb4IKXmruu3+CMZsQB/P202A+Olclk/XnQoM7rQv56++lfrZtxD5xKSLC6XHLCJvjuMh87GGUTllJbV16JBrvOVfNJ8PHq+u541YAQKFUQv0PPo6GbU2esmVvKb5lFdIfewSxWATGlibUXPdRqSWV892N+PikLYgP3MiWXQAAIABJREFUBLDp0XuAOhMagJo/NSP+XEohZxJz0DRNWFNKMG4V9EODeX5wWD++c6kF9228Dzysw/jl8I8l1r1ltNW4KgBtkwbtGkbhry2fSHDOsuFcxgqsa0sIfS2GQIbmzJQMcX2m6idj43kuwtOeQyFfQF83vXAlQ8I7pLkUDJbXs/DZLNs7jwWpDEUYTeR7il2k/VRj1E9oRbohnEDOj7laTCdFvkT51dQQoiWKjxLbzxZ1TY7bpRcoQLrhMI+UEbUSI6lgVT+Jr+VX9hVES+f8IgFZ7zz/lKIq9zXzPSFKwRr1ranz/crgUwaiastzQ/EARc1R1otw3jgeXrGQh9mh4ai1c/GbD9+FC/7n7Zi/bhqlsamT2rdtpD5LUx/HEqJ0W+ZVVs45zT8D/ZQlnw33rKZ+H0ktegRVzOHRIS+SNNrnLXfQM6T3Oj9CNVz+7jANr0w3/PPq0J1aFl+tIltVq9ohN+uHJVg/LO3TtcVxl6A07pIxrtHwVr/0Xky4+/+h/cy3ITfhA7CSl8M1D7w63ImBDK4ILMWzuTcd8LKqtn+2sqDh/r/W4MbvbsEZbz5wqMy3rkrhW1elhvytsbcfmuti7dxZ+L8fD2Px2cM/9L6eLTzlMRhveQjuS9V1s7c2fedEnFXTjdx3fwGnOPQ8ey3axsmbcMOlN2HKjjeOqudrzWrSKSx66Wj8zweWYNWczYe6OlWr2j6bdrjFWtpfc5xRam0fYBOvuHhsKhEEoMLLsD/xBnzqfuWvh/G4jFHPjNrTMsxZ5RHPSHNnpVnB7KXHnwYAWKxwlGRvn8kxqWLM9xBkIV8Q/hCrdfVRPr1dhMYIAUm4P05JuAqslFfBkwiyp1JiLemajkn/XIy5d/0e7WefgxJzpCQ+j3iLZZwl5pJMAFEPlGEXx/VF//4SAOC2kygwc5Y5Kz3MFZO+q62twf0rTsPKwtGInDlZxYQSZUaJbyRcD1H78/OVAtx3otam4mLZ3rP6iu/EfSrtSCS9BHkZGzXGjneei6qiIIP+uEKW4j1JuWWeh+KfKXVB8s5KfCjhL0hdBd0YYJW+tl0d/Dv1fR2rp8Xifpl9r9dNvL5SpwHmAykkgbkoUg/FtdKA9g4Df1+cwE++vw1vPomODoZ8HBdRzrN5/glyBgg3h9pbM57Q0BVPfh0A8NVryTP/o+8QwnHlAuIsfP3RpwAADvNHOnaTtzsbj2HJsfMxUCpi7awZqHcczGtrR5DV4oRXVeK51NfX7/mkurIKG/OAZH7IfEmlargP/GikcFZKnvTCERRekShyZXMSx4v5lKEQnpgzAx/766OYs3UHbnj7qQCAD/7sTgDA0cceAwCYv2Aelc+cEu2fjwAAcqeehmTdM5g+75vo7z4Htk3cD+nqwewtqbggS959WpRQZd7KXFNIbcm7TkQhzSrS96L4GIoQv0Q3OSYac8wcUVx1REVROHFlrqCMr/AtxQKcl+yD4k4W1ESNAe+LuRytjySrCMq6UnHtGCnTDQ11LXdh3bJfoZibqPh2Cb5O43JlH65povVlhspKmNRHe8f5Ha0Zwtkq/clTjnA8u9pIfXDDs3TCIZe3sCPVgS+dfwuO6ZiPuo0pTkdISUOCrjMZfUolykhbKCQxyQTZ4j4yaR5bGvVJlveKIOjeU1YH9Hr+5eBCfz/1+e5e6oO8S304ftJUAEBtLdVRIVuyd+QY0SpupzqDyrVBY1LSKS6XGyRUMxCiMZK5ke4n5HX3jq2Uj0X3m3ENonboRcsFFY+ysq8WSHn6QytxHDGH5zvP4xLvccKTlvUvt4Pd3dSe7R2sNBuno6qNjVTvnthuvHTcRsx7aSo+9DM6HdE08QgAwNsu+BoAoHnKdG5aeR69l+fG/R4+n/dkgf+RUd3DfKp8e2sjqRGWbbj8velGjrs16ElwzxUcppzhmju69Tk0sqVOhxxiZEvX9UNWgeoxwqq9Liy4fRt0XUNp0uSRE++DNS1fhtiunYj09mDcs0+h/exzSHXQtka+eIytEImipWsLJrbvxIupYw96+VUb2TZtDuED7+3BWaenUSyMnH5PtnPTZ/fr+mQuj/OfXIaevh4semk1fnnxxzGvrX3/KnWIbMrLo+Nv9B53PACgse4ZTJlzHfq73w6r1KzERqo2WnMRS74A1wmiVDhwfNSDaTtSHfjGu27DMR3zcUTfNHSh+1BXqWojWKovhmkbWtDe0gOg7lBXp2pV22urvmwdIBscw8DrTRn0OcT79rBeAMd70SDP4UjegzFCM0dSWhzkIVIX7jlfQeAUUhFhL12R48kwMiBxgkxDw/hbbwI0DTtu+ikU14CvT6bI+5YfyEjF6DqONTXACBrA6Eylp8uyMemRv2HWn/4H2UmToRsm+t98OoIc90TOnqf70kP2iSBLwhERhEi4KvJZNu/10gdK1cwwYEWjWBObjxueOQc3HXcjVjWcoPpaENViwasOaLD3WdpeYJTIsSXOFX0KMiaTSuIcCfIl3BjT9CJefh6SeGDFOy6t8rc/xJ5SSS+IRuUQiDdV6p7NSXw1UVD0xhqTT4nVFWPkSRTxJGvx9AvKN8AqfPK9OMFEKS/OSJi0VZChQMDLk5MxD4dcuG45DpcolpmaqAyyl9d3vVh2gH7PpgmNSSQonczreIIRXfYS19bRQ8iWzVvok+XgE8xlaGxpRCEahwbyNFrMjyixiqOMjaCMRoUTMMConCjQCS8CjMik08z50Afz1gAlrKgQoLIKmuRHoyLKjwMOeehJMdGFbduwLAtz//pPAIAdpTGLMIIr86eMGDiobXwOU4/8Lna1nobcQBBAD6I8lrGYjCXzOxSH0hv/SNZzgNsTEJ6b4qbxpytcFEbLLUboLPHoesdY8nV8KHte5jb3h17xduhw3jlG/wyet6KIWo4L5z3xoOmM9Fhe3mlZ2Y73PZSRWcrAQrLuRehGHhtW3I1iIQjAhcN9EWZUMhpP8Cf1qYod6LPRco73FUmQuZVnFdGunYTW7NxMiFVfOo+dqQ5c/b6fYUHbHMwcmE4Kr8wBigaoX6KMXuW4XzIDZYdaMCB8T1F05D3FoL5wOE5aJkPrIRZgVb6AIGHCm2HEiLOWuFqZPI1lqp6QYlH/FDRRbo4ux2+Dzfc0vnc5/EgnCJsRJdVOzeB4XxXcSwAoipooc71qmP4aCvH8dLzzMCIx00T5T1Q1S4SQFQu++WsIL9t7GsDhuTaQp3b3y62Z45LFeX0KUu24QAA6iH4q8eC8SM9QTz0z3GlDfCunKoY5aaMQrSEu3QsbWU1waBSofJ030OjIytYjnBgasUF7fm4cHWfLl+MbmKPlt+rLVtWqtgeb9MjfMO2v96PtjLfBjsfLQXnHuJzbT6Hjgz7F6WGtL1CP30z8Eq5c/lX8ZOEPsCxRjdH1RrGTjt9/RcPXu03s+wMmnn4P2lpPQyHXAGCUC6tqbC6SdS8iHN2OD2RnoW/md3DjsusOdaWGNNseHVd3Z6oD337vr7Bg9xzM6JkCDP1OWLXXkf3Y/tGhrkLVqgag+rI19qY8R0O/0Q977lacBqM5UuqL0+ATtxmWG+W9av9ttBysQVwxv4dTfbqe9Ca/2KRqyYvW37kLAFDME4oUUOe+A3DhwrEdDAxklEcoyF5BQVGStXQOfoBRKIlyL55eqyTKTORunPnEUhzxtwew7dTTEUgmyRfHbS3wtdKpBvOBFIKVL3MtgMExa8Tzn80SN0u8y2Wky+U2cFyeClVA6e4N0SNxZ9Pn8cVlX1EIl6jC+blj4okV/lFRIW6itGdz+aJUxmftmbckPA9Bh2xfHCWJnyVxyQLMZZH4WsItE6RLELdMkVyaYUbUxPNZqcKo+C+mxDKiNmXSNI7RmPDmqGyH0YcQc0Zq62jcQwFRH/R69gc4qE1XF8eo4T5oam701EkXBS2eX360xrIqlONsF44NWCUgL3GQVPl0fUF4OjyXQhHmU/D45rnPGsb/hf5OfxIA8JkLiUu1ayd9luNhUfmBIFWsqYnQ1yD3Q01tLXKJGKDriMViKr6YXN/d3VtZvEKxgPL8VPOK+1AQVOmzSIRQREEFcznqW+EMCoIq/DlB3fwIr8zDYtGC4wKaTnzDwLyZAIAWRuMkbpwgsCXHRrLuaUx5xx9QuLoB6YtrAFgYYKRBYosJoipjKzGqxFsO08vF8h9AEJVSSV5SnEbmf/I6ER6cJkqBpvcJ37aFR8XrJCex5Oi6MK8noLwvyloscmwkcdDIfqhinbnSl8wtZEU7u8SIqcSB842pYZhI1q2Abmax8qnfonfBDykd10PicAnfLBilv82wF4Eeyfz3j71FtCTunGudCQAo5gmd6e3YCQBo20zxtHrbu9AW78LVH/oZ5u+ahZl9MwANak5k06xCyiiU1EJQlUoTzqGg6o7OqKIucaZoHOtqeI9g9T5NoRVcd0ZV8kVqg8TnMsN0r5M9K2B67wcyCk5JVA6pDbK/O46oBNJpDlEflDhwfhXCdH8f50PzNxwUpJaykXhaJu/nZpjq5TICVcrS9Rbfk4V7WL5/SZwubm+Bvu/PUD9mClzfEKPvtYToCQ9WcyS/LDQUAViI8DSLJwnJl5MJIyEzYuUTN4IWyofm+RwuzuloEdp9jWtVzlf9a5T5Do10Da7f0PUXtNWvRjgW6FQV4aqqEVatakPazCeWYu6/Hsa2U0+HxfLRh6NtiM7FHeO+gC8s/xrmdz57qKtTNQDtHSZWrorgxOMyIycehaXqn0eq/vkxyasum4PhulhR+9pQldvW1IBsJIxxnfRAvPj8d2Hx+e8aNn2y7mlMmXsdCt9sgLs2NGy6qg1nLpJ1yxGObce6ZTfBKr0+4rm9MGkNmtMNmN51YDi9VTvwVtMbRntjBuvmVuPtVe21Z1Vka4xNeRF83rpRv9lXOiF8l/jjUinOljbMBf46+fMZI+7W3kZSH5ReHEmKcsbnu9kbF0vQg2GxKGfyRZWOvWPpNCzLQqlUwu62NsUnmjCB4g8JpyfG3IIBPiAuik4GewUt5lecfNvNaG7dgvXHvgl6KAjYJeV5Fk+9ePiFsyFlimqhePiE76O4V0qVh9oajZLn8fqVFwAAvrHwD56251nVSjz3ruPAdV3YjgPLsmDbNtYFZ+H22kvxxee/jFtOugmrG0+EaTCyxGiL1LvMp6DODjOvScamUBAul6hGMQfA8iIZIfZ0xliVStILYmWqWFbUjlJRFNRKnvIEIRBkS7gyhXxZVaLIiGMwEPHkqbHiVoD7Sq4RhEl4MnAFJWPOE9e95EM2EwlqSz8jZtJnBvMdRFEuxCilGfRyxXL5PDq7Anj03zX4+hdXoLG2Fa+sA3qZEzh77jRuB3lkLUZ7ihYrlzGyJWijX7lRkIy2dvIu1yUp/QXPPAcA6Mgygsb9UcMvVKIUmGX1uVse/Ce+cdapeC4ew8LePqW0J4qaVqkCVWST+S5clCircCrkVRfOoFwre4wgPTTPRNVM1rx42nM5v9JkAhtSSWxPJXDdvX9FPDcAGGWkZ+Ik4rE1Njdw+igiiWcwfvo30df1NkTWLoeG8ryMcN+aAbq+jLR5x17FqTPEI8/cHLXeJaYUI8BFiQvE3EXmVbnSp5zOCPL8hsxd7gbeCCRdQJBjVnFzK8iLgozG2euf7qfxzGboU9DCct/SZ6qG0BLhPhbzjKbz/A9zmYFgAInaF2EGBrD2ud/DNBphGmUOYoY5rwbzdgK8d0g8KtnbxlrheFhul8SSKjwAANi+gWKz9bWTMl+ml5BqV4vA0U0EEUIwGFU8pO5OUim185Qu3shcTO5GQQgrb1eCIlqMIGkBjn8l/BrmGgrCVeaH8j2Nk8kyyGQpRd6iMahlJcdYQtB65gLagoJTvppNY6i7sk/yetN5b2K1SzMkMSUZ0eI9rZ/7ppilz0TIqcgFED+8IFpGuIbz570wR3taLkNx9FzLG0csm2d+IDe0yPfW3ix95izqt3CS0Pcwq/6GmAeru3yiIi9qjjk0ZoETVjbgzis24YTV4/GdtYRyu5p3r9EqeI5DqxFyj3FjywJ1Xt6x/zlpuOec0aYbrVXGCdvLK/lzaESrXE8/csVXqZh+I9d/ZP5Y1fxWRbaqVrUKm/nvpepFqxjxS4MfOGvNNKM10zyqtAtSa7E+PQVtuXr13frwHNzWeAU+9/zVmNfxzIGq5hvaunqCWLc+iTXrYkhnBrP2OrsC+NvDzfjS5avwllN2H7B6fPfGifjujRPV3+PSaYzjF8TRWG2+gO8teQIb4zEsrzk8Ea4NqSRWNNXj6w8+jPG9o/NkJ+v/goH+RbCKo1tHVas0F4la4mi9uvwW2K8hRCsc/R3C0d8N+/uuRDvuO+phtAw0HcRaVe1AWENvGHO31KO1pW/kxFWr2mFkVWRrjG1/fXqVMc+H432NZMN5Wlz/2d9hVG721/wByP2I1XC/K++cz+MUryFvXySW4lQ0bR1LFM0K7MHWoOkG+jlGVaSbvHYN9eT9DpjkNStxsJw+fkANsTvutF/+HPWbN2DDm46HHYnCAOCwR7GgkKEAt0W4TeyZ9Cm5mRx/JRAU3hjXmVEW4Y5IG5V3Tc7KMxJmmKXKr+E6Lo6p24CbjvkBvv7yF/DWpmfQFO6GpunYFD8Svwt/Hv/1zJfw05NuxuqmkxRHRuJpST0EaVPqcOyBlPgwUh/hPQWUAqQgGez15XqJ51TqLf0gyFrRF89LPsOcXrzyypPvlvlPEpcqwOhIQvgH4jVlxEl4RQX29EuMM+GYCCJmuF4fkwjnhZlzYlnUZkG24rEwdrWFsPTJGpywaBdchLH4n7V45zlZ1NY4MAwDu9sNPPZELW64djMWHdUJwFCcqx3b6cVr/ER6CWhiNCYaJ4QiaPFYy1zgdRJj1FPFpIp4+XvCVYswwtDR2c99SX9H+PirqDKKa62/pw8GgNv+sRRXn34Sno9EcGRHl1IUFPRK0MzKPhK1viwrvol6pYyfoJDCuRDFRnF8Sqw0QQJkjHI87wKBAFrra7G5rga//PczMHv64ALo7CIPelGpH7JnXyvPAdexAD1Ik5LLk/KFYyPzNc17hIrJJmg5z7FwzDsmrl/tkFFxi+NqCWIsqoSOTf2jsVqbIGqWBOqCd90L6iTIWlg4j1Y5yLsoukEXpTdB11g9k9eUcPZ0HwdF1qjlCALAZYdCSNYth24OYMVTv4EZaIQWLKOMElOteRxxGON19CIW51h7xiBe0d7ZaDkwfnNsrzJfgePqSXxFV4tgZ6IdX3zn9ZjXNgctHc0ooIh0mlGZfkK2kiFBznnv4nyzOfo+Hi0/Jgm6CEa0zABzohyaP641wJVjZMuV+IW8n/H8KJWYu8SKo45GfRmLESIl80mpZEqIEUZONUa0ZP67LiOxrIqom8z/9PGPSrwP9/fSsdywSfWur+F55zt5q0k+HEcswxwvK0vXB03ua+4W2TKEutWb4Tmn8X2E1REbonQvj0TlRIMgd6xqalE5usucMrM8BiEEAaOI3o5tAIDWNS9yXhSDL5Kk+TlYHdmvOuh7Phpm2o2amz4iuuO/fv+fFoHB9R5cDR9yN8j2/PtoELvhka4q4iVWRbaq9rqwTRddjHWfumifr5+x9F+o37wBW044BSURKjiM7ZTGF/HxKQ/ilfR0z/cbY0fiNxO/iCue+xLmtT99iGr3+rC+/jC2bqvFqjUJLH60EV/9r2fxpcuX4TtfexkXfGwT/nx/DV5eE8aKl0P4818SuOarW/G2M3oPej0fnHUEHpx1xF5fV5cv4JtPLsOrDYdX3JqNTQ348orVmMwvzaOxWOoZxFLPwyrVj5y4aoMsXrMOryy/Dlbp8EQ698V2Jtrx1bNvwrzdczCze9qhrk7VxshqMxG01abx8sSth7oqVavaqK2KbI2RKUUl5ZkfW7Sosoy9TjfCZcN5LEZS2RlrRGyIggAAYUYA4kny+hWyEmeG3HBFy0Zu/GQAOqIADF1U1siLJ95w8cI3NJJ3Tbxpi274Huo3b8T6hcejaAQ8+uuCbOXYy1nDaklKxYy9yCF44wtJrKYB9rZGooIQCb/Bq1pZPttP15mu5OcdG0EYTNNEMpSHDg2GbkDTZSlr2BibhztbPo/PPf0F/GDhDVhVt6iiXOZQSSwp7mOlsuWL+irpRG1QUJZASJA35i7o3voWC161QlEQFA6AW/LmL0iJ9J+ouNHFnCejEdIW06fsKPGqhIMnXad4MbqgkRJTSTzazGeoQHLaO2N4YeUEHH3kdiQSefz4O5uw8Og8gCTCoTA+/L4uNNRvxRNPJxEImPjFj7tx9pk2gARiPF8d4eds2kz1MoTHE/T8bZRlDT2fZWSLlf5CgibS78L3e7WFSP8XMjds40ZSY+thXoZwblK8fgwOkZPL5qCDEI/+vrRSdxSLRgYLTCiunfS9IFTiyta86SzFi2RF0CTxJhWixVwthbC6hL8X27vQ3t4FjbmQzeOIjxNljuDceUcCAGprkogmn8PEWV9BT/sZsAoJANag2IPC58szJ7Gzk5CyWlYobWoi1EaQOz+nStySgqYLcivzXpRPNfCelOOx1GV9cH+pvYX3CTUXfeUqDlx5j5V5G2LOlCBLfpRZxs1xZS1SX8t6CHN8Qs3lGHc67UKum4RhmIpfJyj+Bf2foPJSNHYp5gIKmjk85+PAerVl75S5aIbISZYrGNgR343PnX09jmqfgxk90wC9HE+xZzfFn4sGaL7XJAQBlFMAgkZ5VdoAwBAky5S4VTSvXItQ5VyWkBmNES3hf4lQo5yEyGQZoc3y+LPyocwT4ZsqhV7h4TGCpjGCpunMW3NZOVSPcfmsOlssxwgDAKtI15eYC9WQ4H3Z8J2sCHIMP0bwHIvVdUvMoTLlfsEooFIZ5FMjWY7HyOqFNfV0hDPBqJPMFbtA/WblaT1qnL8geI7GJ0KcsjJqbakGp6wP4Lp334vj18zARfdzn/C9aNaxJwMAIvEk4LrQNI3XcVn3mC6QP0eEhvjrPc/n0T8PDadquOf8BytZC0KtUgyZfvB6HK6eo2/fyCiev65Vq75sVe0NbVMf+QfqN2/ElhNORtF4/QRe2Rg9En9t+CDetv0+rKpbdKir85qw7p4QevqCSGdiWPNKC666fDGOnLUL06dPATD4FvWuc7rxrnO6lbjCgTooYBUnjpxoHy1RKMC0bayZNhlmtPxAYxZLaOrtO+iHQFrra5ELBtCcHr2SY23zvUj3HItSoUW9iPb++m30Y9/YKEK+fs1FonY5bCsK2x4a0X9L5jRK+Ro5B7MjvhtfOf0HOKp9Do7omVaNsPY6tKZ0CnO2jseWcR2HuipVq9qorPqyNVbmi8w+ko9jr5RrnBHS6n4PydDomu5/dPL9Ocgzo3hEPhTGzwUbwaMzgsNmiJhjXs+TxI4KsrJfXw95vyR+ka4ZGPfQ/YAGtJ17nuJDObp4C7k5jBCkOIbJrG9+BYk1q7D15NPgRGOAqM/pFU8Vvpgc4om2eEwKJUauwuTpjMfpwVvimOQ4jlaQvcmCDAmXqoxqcB1FlYzRG5vL0TkOljxMuvyfAxe26wDiwBQ1NNdFxg0BrkNoGfeprrxjlNxg77VSq2IkSiFcgmQw90Sc1wo15HhH/rkm7SrHCWMEhJGsaNyrYijtF2W1TKaMskQYzZA+KUlMsgjzDJhbIopwjkJVJCYOo3eWNyaYKC2auoZtO8J4/Nl6nHx8H5JJ4MrL12LOjBCAqeodqq6RvLPdHXRUcEMrxfGZNJmU8eob+TieLqpvVJ8EK/dFlfKj7UlnsjdbkDaHlb1kLmS6vsydyh0i64Lns6BGzS2E2ApAF9hF/VXgMRLuWiJBc3Xd6lcAAFfeegcWn/VmZASF1HTsmjEV+XQG0zZuIVU/Hp8wq5vJ+KZ5nIRbImu1n2PZydgIqlhQKIsovdFnvlBE54Rx2Flfi49+7ya09vShFcCsubMAANNmEHr31VZC7VrGswiGa0PTdZRyBorFouLriFqiKPGJSmjCkThgvM5EqTQW8tTfZi5WKc9cEovVBhmpMkOiSMmcTI6fJXNLZ36orCtBruTTUIqaXrVDGVxRN7UDZbTVZjhY+GdRroNCxRW66F27uvrTi0qGwkHEa1YgGO7H+pV/RChE6yzH/DVRFA2wsmkiRYiWimun9kkv+jKSh3705kWWpP6yZ/T3EBoSidGe0b5jB3ZFO/DZs7+F+btnY/zOZgwgizyjTUVWzktF6O9kTJAxKq1Y8KLwvDUq1B8AeIlCcyVuIHNROV6gxfu+ovgZ3jdU4ZkKV8tmdLGuhhCfUEj2Wcfz6TAHDDYrQkLiugl/jx0lrNjqv6dKHLh0fye1zaAxDgW9TyyawRzHYNLzvSBakaDUS+LbcZywHH2mizQ3kg2ERKfqmC8tMoV8msRiBUg720blcbsE2XMDfJzVoD3VCMRVWwyO5RfSBqAZJRRY6falJx7hvqA+nbPoJLhRBzB0uHAGO45EadTHGVd/HeATPMOqbA4C2uSeLT+M1n3gnXsH/CRS1fZo1Zetqr0urHb5CwBctJ173qivSaxdg67TTkcpcOgRrTePW7nX18xNbcZP1n4Cc5Kb0BjqOQC1emPYth1hLH60CXfcugbHLeyHZdHNbWD0An+vaUulM/jQfX/D7vZ2AEDADGAgEcOd11wFyzSR6u1TDwB6sYRajnk11rZzxhS84zd/RMOu3UA4PGSaifwigER8yN+rtncWr1mDV1/8M+zS8Ly9x+KPAwDOxbkHq1r7bEsnPYPx/c04onsqssiPfEHVXrOWyiawcso6rJ+6A0dsmTBkmkuKF8EMHfr7e9WqVn3ZGiMrg0nDeSsOnFdheJRMq/j/yHUadIa4HHBCvhimnKHz21crqyeSqXhbzDnZlicOjM3KZ7F4mL23GoJBXXnBdPbIRiLshWbvmqPq6cINh6E5Xs9sZeuCSi2PvhWG9nm+AAAgAElEQVQVPUPUAtkTZ/hiPYlHUrgc4skXTlaRz84Lj+xDkx6i75nrJF5l3dfXoioYCAZwbO1a/Oi4W3HNiktwRtMzaAz3KsTMdV3AJV5QOBRSqmx+D7uc6RfulKiiCYop3CnDYERP4oixh1bFESoTpKj+7BaW310/8sv9aPEYSmwsQQSdCt6cIFBSN5mXgnDJNdJ2SaerWEeCFsgYCAyoY/vOMJ58tg6337wWJ59QABBCiBGzCCOpEjtKuCxB5umlmDMj6F5nB73wypg7RXpba24W5a1oZRcpcxRa6fXgiwlSoDMacu03WFbex9UR5cha5tQUWfGsPMbUT1FWPIszUtHe2cP9wohgMQ89m8fF1/4I/3rfO1EKBmGyQ2Ln1IlIZbIo5nLQAOR5vgtXT9pWFBRCrS2JUUZ9E2d0RPo0nU4DmoYwc/camVcJmxUlef3F47ReurjOfX19SDQOwHVcFAuW4t013PAUXX7jGQCAAJNnBFloaCB0Gw6riBYYobPYAy9bHqN9gmwFIsRbEkRLFDJVTDdfjEBD1hmrMIpyZpD7S5QjTRXXy4tkBLUyb84MChLKHmveU8KMqudEGbUiRh2V4eVWKb5dwIAGF2akGUYoKqC4UqwTLtj/NP0JAPBh+6N0nVIfHJ3tq9qg32RP7d29AwCw7oVlAIDcwH8CAGy3iELRgpYnRc2uTkJNNIucA3Vxuj4a4nXB8z3Pc0bAl3BIeFNU72yxjBDIPhc26MRCgcdVlEtjYd6D+MlK+JJyIiBfYDXPgsSxIjQxySEYZH1IDDGlVsuQmmuluW4Sd5H3V0M4ucLXkxpznMU8IUf5gR7uC25HSNBx5sFGaF24GiOrhV4ul9ppaNJnlG9PmjloRWrH/2fvuwPsuKtzv6m3b2/qxb3IvdBsx8YmFJsXICThPXgkoYQa4Bkw3ZBAMKEEh5ZAQugklAAJxAnNdGzL2LJlS7ZlWZIlrbbX26e9P8535u5cab2rYq0k3/PP3Xt35je/PjPnO993sh2CaPUMDEg/qMJjjQqxFYb9VWUPc8h5M4iqwpV1H1jSHyZVDGM1RwDFIlVijTZc9NC5+MSf/gcufeBcPPfzZwEA7v+drP3lJ52GS3E+upctR4TokPlDR06NMGmHvA7mfd7T8g4OkTuUeiz07Lg/v6yFqrVetlr2hLT2b/0bEEUI0xmgvHjVs2PNnr78TmybXYUf7rkYv5e+c6mrc1zZnsE0fvSzHnz241tx0fmzAJMkH2vWueINAIDp4U8CANatVfGQx5dEkyuWcN2X5UG7rU0ewqZsC1941UsA30fH2CQqaRf5oZFDvsZUPouK62K0PY96OoW28cdGaL8+IKGcz90hiWs7ezajq3cz9u16SuI4e7c8lO6fnrllatn8XQiCAqJwfyGU49GGCqP44Wm/wJq9y5e6Ki07StY704Mzdp+ER5bvBnDWUlenZS2b11ovW4dp8/GjDvb8A3lF4rJjYOmxuVvNSojNilyLrYtaM6oyH0TW7PmJP7Xc5vxeCyBk+5VPD2sblQCVs1Cr08NlZgHDgGmaSGdzKJbk9wl6v3P0olt0Nw688dXI3n0XRq5+BkLbjCkO6vGN5sTox5wlVeEjN0PzoMTKdorUkI+j/CFFPRQB85SPY6qinKAjO2bkIbLPeCRRF+UpaR9oT+p1YQZot6fFbW3M5YRFMEwTpmUhlU7H3JQa1di0PTXy3krMc+Q6mh+MKFLsaWe7lBaiSpG2cgQURWI9Nb+X8qfoLQ/jPFtEsvT3ptw/tjUnt42paIGiAczJxc6YZD41RVHcTvm/8h9SDCPR82q1Ogb3ZfCbOzrw/nf8Gietq2NyCnD6RDa8RNXDKhUobaIqXV1Jj3eeoWw1tmGKuaD6ewU56u+R61VrRBI015OiIOzbOhX7FLBQzoGiOrqeZmdljDJUo3OoGLZGlfFsRYAFfekk0jHJdRDaiirx/8xfF3jbpZ2sn87Z0RHhd0glOC9sFy/+xJfwP//ralSzGUyecSoKlRoCiml4fL3RrahGj7aqV2aZVycMgd09XXhkRR9OHhpFVz3Ci7/8LWw4TSTsV65ZJXWiSlsb+/rnRBvPfmg7+pY/gCue/RE8/MB5mBz3AYyhSqRhJftEUZ4694oqHSuqPJdJkc+neeDiPHREpG3N/6YILdddDOQuoLoV/6x5ltg/YXTA4xqcSCK8QeM45bPoqbqWYg6im8xxp2tI91+dp4VsGunsnbDtCex79PuwXaoaunJcCoImaA4k5bGpymujpc3qg0kOF+Y5rsHtajpsHo6WfhanZX09QORicJcgXE66GyNt43jrtTdh3a6VcO4rYhRFuIYo3XUx4jSfJbJNJEtzAOp1Uxny8bjP6F4XzUEXdU9RzhOI2GqURV3vhZp3UFX++H1mVq5ZrbOPuVYVlY7vpfF+yM+I+Q8NOloi5Q4TseXatprULzU/5PS4OERsyPzPxYiW7DUu815FBnMNeoqEyfEh96gUcx5OUnVwbFaOL3TKC25nj6h66v0mrj85WWZ9NNmODHNiZQQJM135Xq/I9SYnZA+anW44YZRDVyhI6KvZZiEsRMh3ipBRhfe0saFB/Kr9dgx4a3BN8HS4KY0sSM5DtSiepwd2Yi02oudgj1vs+ftb83o7svU4GNNzGxEOLSSr2VovWy17wln27rswe/UzEOSPHd7Hh+6XUJiPnv3ugz735MKj2FFcjrPbO9CbPvp5no43G9yXwa2/7Mf73/lrbDhrHEBhqat0UPYvX5UHmlf+mbwUvn9CFbmOjlxcplzBtV/+dwDAYK2K77/zLxH6PgqDw/HN1kaEwpyXtWJHO7x0Ch7FTmptBWxf3of3fuMHWDExjdkiJZ+7OxdVh77lD+Bpv/9JPPzAeZid6kZDIaZlC1k6uxFuahsGd30fYdC71NU5bDv16V/F1EmbsG7HSqzeuxyz2LPUVWrZMWL/2v8dZN0Crqk8famr0rInuLVetg7XmtGcg1EZPEhbMM+Degbjqh1cjPH+XJEDn79QPWLPUVyv5OfB9kwDSZCH4gK5W3WiNNVKBWEgqmRBBJSpIKb9ociIMdfzk8021Ohs9Q4S0ZrDSTCsJCqhFiMyQRKRSTPmPs7Hwzwomk9Iiy60Ka8syc1yyI1RpEdr7DqKNMkvqrpmhBHO63wAf3X23+Gmra/Glf23J164DNOE5TgNxbLYm5v00KfJPYnzYim/g32jXuA6kTlVmdN2KzchZI6aCvPINOrBfmR5Znx5VUmU7ypkpqqOQEPRsMo+rHtSVoHzobOzi3UIWDciWbaiFKqICDy628Htv8vjM3/3AE49qQ6gEI9ZjCyxMqPkYCkKqYqM2uYM69hF3t0ykGfkU5msJF7vXEGU82J+TywPx05QTzs4b5X+Eyb7sEJU5tZfyHX1ZUtN15Xm3zK1nEh5cVSE5LpR9LWL6pxtBVlXY0Toxqn6CQBOUdrU1ycIrCrShVMRXvypL+L7112NWj4X8yEnVwzArdeRmylhdM1KjJ2yDsv3DCJgH6RqdbztS9/BqloVsAwsWy6KjgPL5eG/d7lcxyR3pDRDRbm6Bzc1i997zkex+5GL4dd6kMkAY2Py/9FR8eArUtVAsogekqNl6stZSO5lWtpjK6JFpchIFwK96dWKXEdzOtlz5pacl9wnGuuVKqEsR7lgkSLj8f2DXB3mF/KCRr45M97PWHXlX3Itxznw3OT8V6SrVq+ho/teWHYRu7d/D5Y9ANMCjCaASnmkipAasXLk4fIvtI2LjGjg9ZRrOLhjGwBgbFAUKauegbH2SXSedgdOKaXQubmGWexAR0rWRXteuZqKlrOfmjic9XryDqXcT12nGbcRXuw6itQQ9Takb9ti1XyNAFDlRL0G+WZF8uxyzO/WL/M8k9E8bRyMUNE3Qab8OvNqeSqHyPnpyJ5jpwWVV6RK1TeLM1T9qwpvrZt+Jc37qBwtg2h6aUaOCzy5ns2NuspqjU9Jvaarcr5ytLr7BJlKxeqzbD8RsqgujheL6zC0qXaYGmBzZA/X+9Mk1/Hk2G45zJq7DsSmxwS5LHa5qBYqqPuaf04aueWuTSj2zwAw8MhDW7D2NMnNl+b81pKaZ/PBProtOkLnEBGk+blZTb8u8tnzqOVJbVnCWi9bLTshrDKwLBYmeCzL//u3ydVKJ5IXH+/29H4JrXnPfW/CtSt+jm53EkPucrxw5GtYP3EvdnSds8Q1XHp7dLeDW37Ujk9/VDhaMzNLXaMTw9LlKq74+88DaISbPviHz8Z911yB03+9ETN9PVi9cxcuvP136Glrx2m7B4GQLyX5zAHLdFLb4Tj74pBLw6SgTO4KFNr3YPfDF6M024sW8Xphc1PDMEwP2bY9yOZ3Y3Dn9xH4vbBOgLv/r8/ZhAtrDtKVluJcy1rWsmPXToDtdmntaHoHYs/FfJyno1SVg/bMNKkixskx58nf1ez41P+niKa0M9Ro6FEJF/F8Dw/92cuQyxeAajX2QqfokdRY7J7XvwaZOzeieN0fwHBTsPmy5bj0/Kuq3RzlI0UfVK2v7slDXxhSJYreT43l52FxTq8sHyYr5EQ1UnjJ+bOzJPKzLrWmXFH6u+YtUt5RKq2Ke/TSOg5+f+VG2PYn8P77XoGr+m+HkTbwtd6X480/exk+fOXn5YVLETqWqyiIT25YmUhAjJxxLGpsmPZDjOCxf3TI4jxDZpLjYtnJ+HKfeYz0/+rRVI6acnykjhlemx56coocW8bLcdWjr8pwVI5kmeVyFXsHU/jtxjw+9bEHccrafZieAqamBQHs7hKvqkcPdyYrXtfeXrneoztlnj1KUYZecrvK5D/YfTIWWaoYan6tgC8eKn7oU7ZcuWc226oqmerFDhUF0b41krwlRU9CetFf0ife5S8PPSoXMpN8vxx5TuPj4q0uzsh11At92unCk9r2kPAFVWFt1UpBmwCgTsSyViFSxLrNzsoba0R4pO7VsO1ZV+Gu5z0ba354KzzPx4o77sLwpRfiP593HerZLDpmi/jibXfCBGAQpimzb9LZNNo6f4tVJ70Lgd/bQHj5mXdPRb3Wjlq5C7YVIAxkLhRyzOtmydjY1iTrKWNh0UNvp3Rtk4dEFbRMjtwR9p3yehShtshNVNhR51bgNfLaAYCTSuYVU26WqpAqwmXaSWRZ102g+wrRGNNv8Ee1LqGtSBP/ofcDVTh0lVtlIFvYCMcdRK26Fr4/gIfu+TBSqW4AYYyoKj/M4f6a5nyx3aQyo5oiXWoLc04We78wEp8Rx3Z6WNCNoR3CLSxXpLxd2x/A1IZRGL6P0K+gk+9bbVmuL1M5WooWyndVE1XEy3WkvAp5QlWWn2M+utQch4AipAFVWjXfoM4XBcFYNMrMP7VvTP5fDmS+LesXREoTomseKkXTPF+5YLIutI99yB5gp+Qe6OYECTapaqh7zsSYqP1VpoTX1lWQerYTgnNymr9K2qZ5rxzuaYah+z/5sqxXkVQ1OyP17x8QyfVcTuqlzpbQJ9erLAiVEch3zZ9lZpax3rLXav69mXFRkER1n5TfTuQw13iZ1nvvdEnOKfqzQFTDyL6HAQCprAhljAyNo1arwx8fw+23/gQOkd81p8v/FQXc3w6NQ7VY1c35uVQLIVKLO27+WKLHRrSOJOL1eER2He/Wetlq2RPC2v/je8jcuRGz1z0XERNInoh2zbLbAADv2PR6PGf5z3Ff/kL8d/fz8ewH/xmfevLNS1y7pbG9gyn89Bc9+PTfPYQLzy9itpWS7HG1e17yQqz6yS/hzpaAVAqWH+C0zVsBAKlCAb+45DwM5rJYWdpfBbSt87dYfcpfozR7LQJ/AHU+hNX5klfrmz8f1FwrPqn7CLXmeLMItiNIViq1F256F7Zt+iYCvws+5eQXEQCQsO/6334c6nn4NtVdwuYn7YLptR7snsiWmrUw2+9hcO0Ylu/sWerqtKxlB7TWy9ZhWuxDOExvQLOCHzC/d2BB7tZBqg8umRdigfxdzeqLigR0MAfP8F7xglmW8odU5Y1eQHrZlv2/N6Kw6W7MPPe5CNvbYSrSZqo6nMZucwzChjfZpwe/SP5NhaiKhizmSfhXj2SZD5CaP0gRIOUHGBF5OSy3UlYPKT17RLo0V1KOOXSCIKmkpByvMFbWoifSsXH1wG8RnhPhb+5/JZ4+cAemrQ6sCgbh1esx/0Hzn7j0Zoch1dqIrNmxGiIRAH7XHFbarliHjH2peWKyOam35h0rE9lTJSkj7mtVO5RyIpux/nNCPLVvO7u72WdS1sw04wDZl13MnaS50Or1OvYNZbBxUyc+/sHNOO/sKgKvMd4EGTC4jwIT7NO+fvEWd3XJGKg64aRymZjU19LcNvSQRp1UvWSum0pN+naCx9tEUJebwtNIZ1RlkXAoOVox/4d8perMHwEA3FRShVH5PgaaPaqaQ81jO4kucozKVem/bEbqm3Z1zOR7Z7c4I7o4BwFgeFjavm9Q1pzOA51POj+yuQxgmihEEexMusEfosu/I5eGE0UodBTQmXKQJrIKw0Ku7VdYcdI7MTv1LPiVdgAVeGWOcSAu9bV18dRniCBYmrcro9xCohMvJgIQKBKnmwz7jGNmKedK9wKqudlUXbM4/3U+au4+RctjpIrtV4XAZpXC2Gus6zfmhSa9zroujFiBs3GLVhQtiJEaJI4VNdbbYLuD8L01iIIBjO76R2So+FatK3ePiFZN0XP53tkhKIPTlAR2Ia7Wwqpniztf91+NMJge2gUAeHiThEhPDgvaMbxnGya7Svjce/4LKx5MIb8CgBUinyG6yC4zTR0z9djL75qzKVYK1HqYet/QaAb5PT1HWc3gC6vuOZGqRcbcPCmzXJXv4zMyj2qR9G1Hj6DQHUTTVRU2It8UyuHzlXfMeUBOlpGWvcm2eT/gPNYxLVK1b3ZMUO6sI/eTQl7WmZNpY59QTbfOPFqe8DMtk/cTdo3uHSUiWqHNvaGLHC1NPq7Ev5BIXJkIVV32PsMVHpWTXSnXT0k5OhbTU4LETYxKvfvapB5tOXIq51Ah9dbQRQ6tVfSR3pTDl6+/Bafc2onnfkfuPevWr4dp2vDrFZQmJ/Hg3RsBAD3LpA75TvbpfvNXIwo0OiP538ebo9V8/n6i0PH3/dhmvF7zcfPZgVn0h1LvBVVZW9Z62WrZiWFnvf/dsCwL2/76pv3+V7jrLkxccw3M9hMX0Wq2a5b9FgDwrnv/Eqd13ouz3S1LXKOlsXvu78b/e+3DOP+caQDHZz6hevmpS12Fg7LOPfuw78xT0bF3H2wmS/WYWHyypwueZaLLS4p/5Np+hWVr343i1LMQeAMAvOZiAQA3Dv0TgMZDaMvUIqSzt8FJ7cDwrv9BGHbFydpPNKXGya4SPveGW7HiwRSWb0sBK+oLn9SyE9r6hlwsswwMnVUEvrPUtWlZy/a31svWIVqsBKXKRfMcdzhZx+c7d74SDzcj+UK/P15ei/2yj+v14+QzVOGipynHPEGaQ2d8cgr1uod0xkZk2EgTbZqZpCpfGKJkmCgoekIvmXql6+rx9ZJcGTmGHkzWIZ8lGsBrpGMvsPx/uqwx9vKr8mbMOA8V1dXKUndFtN50ymcBAK7mwyJvRvlKbe3ikVQuF5q4IA0+k5SbyWTwzJV3IJ35R7x345/j5I6dsG077kNFfzQvkXrcFYlQ756qEbpEDZV7lWY/xNyUQNUTOVaWIgQO+7GYaJcqQFpx7qkoUX9rjtdZQ8k0D46qq+nvir7NzMzyDFUfMxFFQD4zidnpGeTy0oee8ivY1jJD1LTc0ZHRRB/lyKtQVcSA/CWTbcwxhYDlkK8D6Zuqz74lamiTnxSQj6Evf3GutrjcpLpcrPTIoV+1ospyFIFVNJBKd1QfVJTHj3lHmgNNvg9R1S3FfujsZL4lQ/gUU1MNVUvlbHRTubDM/D2K7CpPqK+/C6u/9wN887pnorh2FQzNR8eXraxl4WsPPIwO6RAApiBa69+CqdFrUCtnAEzD5MuWqqGZmiOH3ux6jbmkOL90HYRVGUt3l9Q9XEP1S1XVJA/I43GmLfXSPElBxBcTrpNURuofK5YGimiRu0NVQStW/ku+JOr60C0uRoLn5T0d2MsMAC4RyBgFmaPul8nfjsiYxYP3fgu5fAeAEDmiGS5zpOVNmf+KMisi1kFEM0uuVoyY8dr/z7weAPCx8MNI2mJVz5D43B8pCxMHlGdEuW7bnT8EAAw/KmjHTMnBRPsMbr7hFqx4OIsN+wDkPWydVlVZRQMV6dNipdx6/ILPvbhJjc40ksiY5SicMuc+2NT3psX9jr8GXKSlqtShGlKxtE+4Tb0DsrYy3D/1XhOFmm+QarCqgmswaoNOC62zrukKVX5mqTrokyPVnpL5nS/I+SmqH+pE9KuCVEd+iZ/aN0kusnII6yHvQ52CaLVREVh7xmMeu6giCFXEfFrg/c7KiCKrIlzKZVT1w/IMEXOqDup9UPc0o0F2bvDI2OnKk8tWApTMEBMjOwEAK1auwSu+9n9FybAADO0RpHRsn3AAs3S+Wk1KMY21mES4Fprvh8uFaix1RYkWOL4pGqpRz2bO1n41nef/h/58F0fcmM11aJla62WrZSe0rfjFTxFZJiLbWfjgJbRVGXnw9Q7s0D9ke9bKjbBni3jL5htx7e77UZ4TGnai29BIBtOzLnq6K0tdlcOyVFbCqCrFpwAA3vNWzSNkzXPG0lq2UsX//TfJw9VFqfiTT14HAOjupsTznON7V3wa0xOXwav3ATgyY9X5t8IRG//UhUekvGPZDKOKTPZebN30IwT+4vKUHYw9Yuw44mUeqt16ySZ070th5cM5IC3OlR/toYOoBXY+oS1dNDHb42PnJcPIzLhYVZhGx+wT537XsmPbWi9bh2jKNYl5T/vxJg6ONxV/n/P3wSJJj3f+hIPleB0uJ2y/SH/+kMkp2iNeMtt2YNsWbNtCrpBDpSwHXvCxD6L7vnsxdOVVgOM0lPPCJG8ori8/5+bKUS5Hlh71kJXw6oJOuPR+qhphvpCN6yTn05NI1MSlF01RO/WYZ+hBr5DzVSFyMEV0znaoIEeOSsydImKgfREamouHqmqej2ed+zBQvRnvuf31+P3z7kF5xUB8XYVLtLyOTvI7yOtRkK/Bf6CiF1EePU/Xgw61Ir6aG0vngqIoiFUcpT015n6qzEr7Fa2SKqoHXxULzUSbFYFSJCadyWB0LIdN9/XhXW/6JbKpUUxPAQQh4hxnNVa2m6ih8tSUw2LTZZoleuMyB9OuHeJpL1Mh0uWYqGKfqkXNlHxeTx6AuzqlHEWsYKbZdunr4rScn0lJ+xxX2ts28A0AwOzkJQAAgzmYYo6ieqOVTxQm+6lAFcMgzt0m3vVdjyh/T8rp7aWSH/t+crKhJNLRKX3URxW1IvNuKaKquZkGlgmnpKevk+dJmZ3kv1mW5h0imlwrA/BRLUbwatMxZyRFdTObKmsG2/bC3CsAAJ/b+1Epj7cwm8haPQamiMhSdS0kHy7yZI7UKjOJPotz7rBvoUguuzhez6y/ZShiq2i4HBdxPdWqimZKAbpfhJyEquqpfL84X13YtCfN2ctjbpaRRFyiMEQEG/A7YQEwOP/qRNnLRUEZXKpsOswplmuXMUnF+d8W4l0sdh8/OG5X4/+K2ku9azWZY6Ylc2tsdBDlagluMUDklZDlc3QqFeOFAOaqyfJ+qOtBh9bU/UQ/5Xfl1ea5bux0Mq8eK5eoq/5LnWQ+kaCqTyS3XdZaTz8RLe7Xir75nnL04srx/9yLNG9hReZPrSx7TrUsHCszZK49chPbyAPt6OS9Md6fifwyf1YUqKouUXNF19l1NdZrhvm0UgVBtApdzOulCqqqllhlAvMauVqqQpsTRM9MU/GVwGCZScxnJuR4O5J2ZQsW+0k5kDrHG2Og46em6pIDJRfmPcBvXnEfYAD/3XYXzr3nbPz5T14EAChOyL49vFtUV5efdLrUsQnZaoz3QlzEpB1tvlIYJefgwSNVi0Om49JbebkOy1ovWy07Ya3n3k3Ye/mVCNqOfe/WV3c8CwDw/L7HR/nrig0P42/qH8Fb7n0HznCmkM0kN07bsZHN+HDdYJ4Sjh8bHcvhtt+txbuv/yU2nDEav2SdqPan0xNLXYWWLZlFSOc2I/SP/T3ucG2qs4Qt5+7GwNbkQ2BfWh7sR6rmgU5r2RPI+oZcGA8zXPbCHDZv2IJvGP+BP/rxc5e4Zi17olvrZesgLX671/jzA4fa73/eEXB6NCsWHmlPyqGicWqLVulpOj06SE+o5mByU+T7RCG9OwZM04xj7w1EMDo6kcmKd1w9WFqu35TU2IzVhxovHM3x0IrMxKp6iuSwT1TRTZXqVJ3MpFqTejQLealTlbmibpu4CADwZ6f+SI6nB71UEg95qSgoQ5oIgsb8O8qpItIUq6LF8n7yEfghrun7DW6K3o+bht8Gy9b60VNrGhgdy+Kpl46hr6ca8zZ8L5kPSPOGNbgoMcEj0S91cq/0u15PkTAdQz2/Sg6Noi/mnBwoyptTVKBOfk1cNuvS0dmJ4ZEMNt3Xj/e8+dc4+4wxqTgbU6SqYI5jpGOQzYpnP6VeZ+VmaVvIDZyiZrwiURGD4UaHR9jnSNRLUciQbdR8W7p+LE+9ti7rJwdMTUn7FGHtXM7fJ6T+b3j7uQCAL/yDeGp/b1Z+v7XQgX9pb5/DOUxuTp/btVPam3HxgZUrsfOMU6W+rJj27+nuo3jmfQ8gl8tipKMd37jyqfAUmdXxI0zwop/fhoGZWXR2deA/T1mHf10hHnzlMClncX3g470jY4iIWvzF2pXsswDZ1GfgL8sjCl2YpomXlW/FMxm69mPnTHw29bQYfojVK+nx9rmuXNbHdTSkjAgBkbF6STzniqDahnyaEflLSOYwU/pDrcq5xrxYOqYxTy5GBGTMHaJEHnNy268AACAASURBVOd/nQiXImCG7kFm8sUgVsqrq1rpASTFFNlSuC0CUpnfwjCmsWfbN5FpQr3rNVlT1bImR5L5ne8UlEH3DEW05rM52FpTnefj9Db/Pk+5zVEd7MOZSUE9JqbIa42yGC9M4xN/8X0s29GJzt1FBAjigv9kvbTvE1tlrBUcDDzl15GL5bL/Yr4V95qGrCPrq7kClW/b2Iv8UDlTnH+ch3V+lirczzwZ5y6q9WWouqnqljrgeu2QDwjK+aoUBXmtlqQvvCrVAkMiQFQwtbmPpjKCZKUp0+mwbUFd5kC5rAiY3o/ka7WmaLxct+pb/KSKblYQrWxe89dpnjkiYzVx9ERVCYM3yU+NUv38ZFirSYSN+RVLs9KeoCZ7aocsP6TcJKKse6pGDczts2ZlXlWXtJV7V7QQmAGG8yMoz1bh16WwwZ2CbJ1O5V+3KTdeY54fnLrffJE8i0eE5kOW53k+Mpuvs1iO2SFGGs2pV3NbG9tZC/2az1ovWy07IcysVWH6IVIPPgBUSsht3YLQshDZrSk+157ZdivSLz8zljefnZVQnXQmhd/d24+b/v7JuOqyIXS2H2Hy2ONo5bKNas3CTNHBHXf1413X/xobzhzdT7K3ZS07kcwwynDTd2HXlp8gDLpPWMrSeGEaf/PHX8CynZ1Yub0bIYpLXaWWtaxlLTsoaz2JHqTpG33Y7JXbz/2xOHfIYwnONMps+l3LXuTD5NGKvZ2v3FBzx2h9FvlYMF95sdc8xXwaN7wF7Vu2IkynsfJ1r4RhGIgcG9PPuhbpXLbhsYrzucQVSVwnRgTCA1y3aaAUwXKcZKy9IgCVknq0mTuJCnH1Gj2MIL+G/AvtE81booiWKi4qx0NroV7pOmPmyyVFtCIeTz4OvdyWacA0DASIEEYhxsbGeRw97qaBs0/bjffdkMEHb96Ap15ioL+3BtdVZEvql6NimXZeHPNPz6wbqzPK76ouGJFPoWOneboUEUgz51PYdBzQyMVSYrIXz1M1QQeDQxnctrEP/b1VOA5w8we3Yu2KaQAuLKqTaSocVfJqoHPaNPUoqjtVPkaYf6tcKrIPpU5teeUfJc+bpEde+XCdncpbkk+PiNjYuHhzTZv8oXqQ6EtVVZwYF6/xSWdJH46O0NvNOfHglocAAN09glRc2l3HpSMj8IlQGYqmsj7jE1K/vXv24gVbtmD5CuFTWGz/2IjwJ7Zv34tJiBJZx8gIXvlv34lVK1etEkSqnXy56UoJcExYpok/2L4LL9wtZfQw+XB7G1UEESAC4NelLz+99U4AQBA5WH/uX2B68gx49S5YNucFUcarwy24urYlRhnVOVCraU4yLmI3Of90h9G5onnyqkVZF3kCVFEg3yMqROq+bto6vxXi1THi/7kfBKEqY8rYOlQMVBQ9JMLtUE1ROWJ6nKqAIr6vMM+Rl7we0FDHMy1yrIwIUeTAdlYATgNlqxDFmx6XschwzXYvE9QxSzVXRc8bFjZ9P/B9I74HNkUGWHOTIc05X/lNC6neeiTcjQxKPq1KNcJ4YQY3vvQLWD+8EoUHLZlFvGwQJMtVVKjejGg1PeXE611bnRRDhEGFQZvrOjIa4kqVOlHyWY4P+1xRaz/eLokW12XNzc4QRc+16VXleJ6oHF1V57MC2SMcg6qfNpVRszK/UznZg0xHFURZqid7hFeVdaL3HZMqm1XNuaeqtIqk1aSASiB7Y65D9ob2TnHKqSqnIlp+WThapieovhFQCdZhvVLC7bJsKU/HqMy5WZ6RvbUtJfXKZ/Q+qIihIsbkQNbnhrdLXR1yXz0vTHw63JdV89W0LGQyabiG7EljQ4LCTY9JG9qYv1G5tvMjscnvRyqy6NA5kvMhy4d6vcXbQkqJLdvfWi9bLTvubfn9m7HtaVcgvXI1ACBFYQNzv5t/yxaySy4Yw9vfsBk3fuh8XH35EHp7jm0lv4139eBdb96Cy58yBpsPoWOjS1ypli3asm33wHZHEQTnL3VVjjtzUvchDB9/rtYzwqsf92vMZ/9zyR1YNtmLU/atxRB2L1k9WtaylrXscKz1snWQ1uBsPbaXTp0SB+tDOJD3r5mjFTX9Zz6k6FjL5h3X+zA5X4pUpcnFMsIQfr4Ql1uPeQ/i21K1LQqdxXwJ9eoFTV60YI7+uubxaeSDYhnalFDVpOS7T+9suajx4OoVlaU2RfRD463bOjoTbVf1Q+X9aJs6VDlM8xWRZ2SZqo7IPEE8T9sU18+QShumCcdxGl5cUxE5zdfl4fwN+/DX7zDwgY9twJWXT2NZfz321Ov8jFEhM6me5bjaX5p/i1yGory0qSpjqagIX8R+knbZrnw28pc1UL0ilQrVXCeFMDTQWZjEzGQFti3HVclP6Oxmn9GTXycaoh59VdurVuT3tevXsC+psEfVNptoRJX8nfGxKbZBvMd55tlStM7jGMxMz7BP7MRxqaxcb2payinOlHg+uQOcC/193ewL5paiop2iOmOjMpd0Ulr09Cqvb7bIfFyhesWlfl1UnMzweqq2GHESb98piEgjbxnQy/xaytmoEnktkw9UnBVvsYanLnPEs41QOYeCpGqeLDPdhUz+d1i2/m0YG7oMtWoaQAjQA1+myprOO1UvDJRfpjnF4vWn81A+p955MQBgemqGbZGxStkyph7V2QyOtWmxrVS+U7TSIQcsivkbyeupMqByM5V3pOtBd5JYjZS52GLOlt5OuKHEnEuuG9eek19IVfQCH6nMRljWGIb3fC/mgXlU71OlxUxOxrufaGQmr7y0ZkTrsb3UrwlfnfjeQIIX55Hfj5s1z/dYoW5YXqoK2QJM10ahloVlGvHeVq7I3jZMscy6L9ebnIkLBABYRjJfnc4N3TM1QkQ5oYqA20SwQ03IaDYekwwzyVk0HK69mBcm59jkQlWoBDk9K+vATVMlUNVdIfPaCImeE4/JZjTSgSimI2s2XZBPva8EdWl0WJW9JCLypOvE4pzRtsfRJRy7uif1na3KdfLdRLS6+tkecmu5LoOKoEFRheknInJtTdlDTFc4Xk6KCFcc8SHtmp0eZ72n2Z7kM4wCuR75rMrDyucaY6CIZnMQkSJT0xXuEaqIaJlIZ1OwsoLsDu0R9HBsWNqw4qSTWPdm5+yBCflH/7lqvustPbrUoGwfW8+ax6K1XrZadkJYfmQY6VIJ1eUrlroqJ4RdetE4XveKB/C5L52GFzx3bKmrc0DbN5xGtWqhLV9f6qo8PhYGyA0PY8d3Re48xxcam6GZhWF5Kcr68sCTqukDnTw4pcs1+G3tCCj9fiyYZU/CtItIF8bQt/r9GBu6DNXKMhzpB4dgLcO1ml7QTwQzjBLSmbsw+OivEQZ9aGnwtaxlLWvZsW2tl61FWnO8erM1x4HHPpEmz2Vzec0BwnNRquYcXvOGyS7SqXCwXK351aYOzhYb3rsfR22e66lnNl9oi3/r2b0Ltuti6qSTYi+yIhkBOSwRlaQcch805junD6MM3q/4Da1wVRFTLkeKHsLAlwf8apXzIs6/5SXKzlI1sFymSpOheURUVVA8gmvaRlkFrStV1uhZzJFnlGvyTmvX6vdarIJWT9Q7m8kiCkJYhoGU42B0VF6gFDFI5xTloJqi62D5QBFhaMI07XjstXxVhHLjHD3aL/Toao4ffqpX2ov7VuqlaE5ApAExwpdGbEZSqQtRhNHxPDZv7cb73nYHCm01+CFQJlrmsm9znB8pIlQueQ+qMDc7Qz4Z+2hokF7oafG6as4x9c4qV2p6VrzJMWpSlAd6RYyUJ6dzZ2SI/I4+cg1UQYx9VzFLPF7q1dPbAcP3ceHrXgV7ZAQguqqcwr6S5Id51s0fYfck4da5e4hRq+KRj38M5Q1nI0Olsmy6j+dpXi7OEc6Bri5phz2HN7d2zSqWLX2haFxIVCDHc5evZNmh9FVxXDgddc9Dvmsz1p//IYRhGoCN8uxlKJfaAUTxvFL+mE0ELGhS/VT1zRrHIka8pn22IcfzlBMj80rHRPvcZ/63MKBqJlXbTAWilafDTy8m/ikiZSeuYxqNuSn1VagKie9mPJeTKnCqQqjrR/PkmQnFMUVi6ggjF7VSO4BaPE4VKrwp56hv9ToAQKatjWXNF1b92Pv6tuhhAMApxkmJ3xt1S3JeF52HkZ+6rkvkmE0N7wIA1KM2+H6AMAjgex5sKpT6hqBDQ9PSZxXyYHcMk1fqSD06skQHHaI7igzGY0Oki0Mdesp3JSetJp+ZVKPffNZV80xFOi/IwcqkmaNLRQeZa88OZK8wfEFQHdYlk1ElPbAuso7ctCBDdoZ7ShzFQd5qWfaqoDbF35P7ahgm52NA7mGNinwEplH0pNw884F1dsv6VUQroHpgFFIN0ZMxsqjmCYuczMxyOS8nyLYR55PUOStj5ROBy7pEllkv3h7hunqPTs6hYI5ek867WJWQQRA6jzzlVwYB7LqFMx85DYEfIpNnPkVH7g8jg6Lmqsq5yqOM6faKZs/DeW+e54eP7iz0oNRc/pFVG5z3qgeU3F4I3W5Zs7VetlrWsmPA/urirwMA5rzntWweGx3PY+Pda/G+t92Jc86aOBaiKQ7PwhDZsdFGeGytjDX//FkYYYjJF/1JLNZQZWLTF+7YBAAYXPkcAECKyVdtOgJshr6FEeDs3o21b3sndt70AUSXXHD02kSz7BmYdhnpjh1YfdZnMDl6JbzaANy0Cq3MPub5h2r5Lz8AAJh57omHdKcyDyEMckftem+x3woA+G7w+OQAnM+mcrO4f+0jWDO8/DGP+9vbtS+O942gZUfaUpUUrrrrsqWuRsta1nrZWqw1c7UWeqNf6H1/MR6BhVQEj5RX4VjLDN7M7Zq3nXN+NwwDhmnCdp2Y99BIn0L+EAsOWK7D8zVnVcg3Ha/aEIVQjxzotVXUTFXOoB5oXnOGqEchpw+TyguT4207dp0nfo94fqVMXo4iU+o51bxBPN+L6wUeR1SuouqE4qnP5TT3TIgIEYIgQKVcacxP7QvlffB8u6OD3vUIYRDCJG9BEYJmflyFrkn10BeZ+6lG5EHr0cw7VPW4WJWLSJhXa7gyVU3PdWyMjGVxz/0D+MtX3oLzNkifFOi53/3oXpYp32fJkxgepuofy1S+hfaVT0/o6DCVwDgWY8PCL1DulfInOjul/HVrVvJ88iPIL9DylF+XYhs9cq4mJ1RtcBym5+Ha978HqanJ2B1uGAb8gX5UnvNMOJaFzPN/JeV/+6kAgD/YsIs9Q+SNXnEj3qOIMEQ+wjXLUDMuxfo3XY+9n/w7VM87B7MMrZvlGGmOqo4Oqe+qlb3sx9XxGOSpaKfqfDPT5FTx3IlxQUqnRoUHYeQNFLrvxfqnfARR6CKCheLkkxH5q2BbALsKbSy35qgamVgYz0v1LpP7QfVARZKUn1erUX2TKGD7r5j353lUT6QKnCpUjs8q3435tpi3yLWJLPM6AbkmigIqsKVKfDXuFQZVBDOc5ybHUvcFI4a4wHKSyHQE5VySQ2YoUt3wvjiuiXT2LtjuCAa3fz0e53pZ+D6eJ3UZWCbcwyyR3UbenYVsvn1W/1joPvHY0R/7F0sUhoiuT4TKtiNM5kp4+0u+htWj/VgxvQKwgJ4+QV3yXO/T07KOdpdlPodUAJyuyu9BwLBaR3mm/FSOLhtmO0nkXLtL9wmNhACAPNFhnxEKHrlZSNHRYSnqImX1p/T+QI5fo/HywdxnPrg/poSnWegQzmOkXCnmoypPiVJjQNVBjcawebNTRE33olqdqGGJSqdl7n2RrLvOfkGsu7q55oloKXcy9GQPjGpEtIisRQ7XU1ZehM2scLxUfVA5lb6vUQTklHkyVvlsss9VEVIVJHVPizmMc3Jfkoq3n8qw5s2MGgRIGABcIlbKg9Z75dTYsFyTir5AI1KGBeNgbD7E6+BtsSFMRxtV2r9eLWRr8dZ62WpZy1p2XNjIWBa/3bgKr3/FLTj95H0AjlPUIgiQnhhHbmICF379y4hsC7uecx3ybfLApZyr+AGtZ2beohZj/uqVqDz9Cix789ux7yMfRPGkUw+v/ouwQve9WHPOpzA99FR4tR6YDN05YZNBHQUzzCLSubux+8FbEPh9J3Rffvvijeif6sQZe9fuF4LfspYt1gIrxHD7CPqn+5a6Ki17glvrZWux1hTHGzYRkebnUzWzuA7ewsbFE3VYyKuwkIdxobwnUXy9x7Yj59Hh9ZqqZTT9Q9Gg0uycEKRYIavhdY5zSDWhKWWiLRkiD46T5Ic0I2byP/WaSZkau69qZSkiPpk0Hyrpw9TYeZeIlHIxtI7K7XrpT18PAPjwWe8EANRqRJgs9a4yf5CidvRqKxqniJCiMso3Uk6UAUO4HbaDQqEQ/z7GXCOaQ0o5ZpVSCbWKgyiK4HlezFFQtLBapaLelCAEZXqXdW4qaqT9p+3V73FOHg5KQ+1RuWEN0QsnCDE6kcfmrcvw9jf8AiuX7517aqw2ph58RdVizhEnsiogqtdUUQRF5arlOuvCvFSj4tUtleS8NnrUYy+sp/w8+WFkQry3hQ7J59JFNUR1Zw/t2wfTq+MZ77oBqelJhIaJUk8PJi+7HK5pxlwuNCFUsdogK/4/O4SzdeXK+xL1VY98zJ2Zw9sIVq9EDQZWvO5NCD/xcVTP3YBA1wkRt5BKZlnymrLtDVlx5RZq1eI+B8c55PxJBWjv3Yz1F9yMmbHLYdjrIGKMykGSSir6F4+JKsTFapdEsghwKq+ieV4Z5MoooqX5g9Qj3tEh68BJJRHZcl5+V56OYcocCEkOMYg0KdLrEKGwm5BsRcW9ailRfx0MRYT1u/LjGoqAikgw9FMVUXUPToBSIaIwDdNY0+CWASjx2h1EJ9q7uthHSURrIb7x/KZj09hj5/4+5wpxPedeb77yY84WcwLqfE9nLISpEO3lDAz4sIj+pNPCV1VeXi4n36/s2AYA+O5OQVdKRTl+apzo5pSMaT+rkUkpEqJ8KZ27nNPca92MKqvOqbTDPvU4nqpwSJ6c5vhSZMm2lYOq84HqfnQ+2BlBskxX5qNhExmlWmFQkf01qgj3MajN8DpUVtUx5jTzyTNTRGuS+Z8rHu91ablOX6e8fHRwrmgfICByVRNOmFEXJE1VRQNb+HJWRjheSMn5Ede3cg59Rl7o3jkzKeXZJlFMznPdB9pyiurr+pHvel+I8z0CqNY4vxhdon1b4e9+pCi0iUq+iq9e8W288XuvQcjnAa9CBcWarN3GvV3XZoyv89No+kTi+PkikA7/eSh53SP9nLVYO1D+sRagdfDWEjJqWctadszbpvtW47V/fjvOPn1kqatyyGZ6dTz57z+KwHWw/ZnX4aGrn4G9513QiE1bpH1u8xX43OYrDvr6/upVqDz997DiLW9D5p57D/r8xdr6cz+H2fGnwa+3vMlH0tz0doRhZuEDj3ObzJRw3/I9SHvuwgcDuKhnGhf1TD/OtWpZy1rWskO3FrK1gC2UV2s+28/7YCS9E/sdH8NWc/4/zyWXLFJ3ibhdjT5LesOULwTMjd82YxXCwT3ilSsyH1JKVeCI6uTy4kVU73RVFcrmxq3QExlSLU8903XlGFG0wFT1QSrhaY4P9VQr36dIT77mxdI+1TZqHiPl+ShHKpPRvFrkCtADqWpsmoNJ25LJSj0a6oAVOPU6TN+P+wNoqE7p8eoxTds2AANRJJykOpEm5aioWIP+HiNXnJ2KFmq74/YRbdL2KYKVJsrY0SFoSqWqcfRSdhiZOOO0KnK5DEoV6cNpcqkK5P20E4kplqR96qHUPF36mWEM//S0HFehNJdXUySUfBlVauSYqkd9hv3nqwKY5lBiX3Z1i7e6i17jmleDUa/hknffgNB1MfHUy5A2TWSMVKKPTHpzVZnPtmOoSj7oaFWlyhjN5Dw2lQgFRXdSifPDMECwZg3KkYmVr3sT7M/9A2oXnI+Qc8TU3FOmKvg14BPlOvlEISLmwcpT8a39NAlNNJ0cbCdEzVuGCGlUSzo/iARz/NXzPT0laKDOb/1/pN7luO7krvjJsWzsm+Q8ViqJPtI9I84rxD2jzjbbUNXBJFfLMBRZdRPnN+++mtssVBTVSHqB1TOvIaHK77NDIhxN/k4jRsSkAB2DVPou2M4+jO79TlyHYnGSdZDvXf2C7JjKq9zvFvTY96DFWuP0wyyHyLJfI+fKr2PMmcTr/uhLWDPdjTUznYAVwmAf63W1b3Jc98qtauPeoXNJ19HEjDho0q6MeTrFPcjV6AMpN9D1xWXtxLBi4zHJpHRhZKjaHhEmHuq6imRpRITyh2QPSWeFi2WniSilyIXkxYOa8s1kXYRVqtTWZc9R5EfRBj9S8Rz5LNfIvY34Uu4KEtXVLXnyCm0F1tNO1FtVDcMqnVl1ZobX+5hNtDQtiJaRUtRb88IpOqQ5BuXld2Sf5EwzfYkSaGvjeuTZet/WvSvOB2YmH03nTuWYx6wcPP7T8zUih9EgtgMYBgxTojpUjVPvTWrz5X1btKrmAghX3IbDhIOWmh81tzktZOvgrYVsteyEsImrn4Hic65b6moc0+a7Lrr27EJuYnxRxxfydRSLNiYmF+dhfrxsdDwLPzCRSR+fUo1GvYZT3vMuhI6LoYufdNBI1pE2f9VKlK64HD3vee+S1qNli7NU+i646c0Y3ft1BP6ypa7O42ZjziReeua7sGa6G+cPrV74hJa1rGUtO06shWwdou3nZZiP/xT/O+n92M+bciAvYRNH60ipBi7E1Yovf5CXe/xjipP8KT9oxHE7KbfB96H3enRM1OWGBoXjo0hBGxEQzSkVN1tj+tONHE95IkWKhqm3VNGOWG2MHmnlfRUZq67IVFeXeBbTafluKepC9CTODUbETPNXZbPJsCHNexLyOoowqaqTIl3q/Y2RrUoFlXQWbm8/nvW378MtN9yIUlc3Mjkpv8A+0fr7foDe7lm84sW/xJe/dQmefOEgOtprMaKgx6lnPyJHQHly6tHXT0W0lCtmcSy8uhw/S2UxLU9dZ6PjWWzavBzvu+EurFsniJHDvplhriftu7FxzR3mzy0C2axcc/XaFewbjhX5OqP7xtmXREU4HzQnWG+vKNr19Mj1B/cJYjo2IvNLcyetW7cWABByW52eLcKo13HRa1+O0HExc9VVyJtm7Ilvzo8Vc1ji3D1R4vdYbYvfVaXRp/KXoUp9/L+ireolVr6fY5swlg/A3Hwf0tlsjOYofwkRx7jWCM2aovpgmSqZHrkpqppmucJnm5yaRsicZ2HgN/LAsZG1svLpiODGOcmCRCfoPLZiTozmrZP5OkUejqqeaX6eelVQkvqKJFqtfRojTqoKGvM0tW/5Qh/pOpTrphWhVfU0JJFcldtvcBSVC6Z5l6Qcvym3gx6vCLOuiwZtLwfH3YOxoR8D5nJYLlCcnEq0vbdPFOHcDBXtoCSjg71fHJij8mHvQ4mj9vfYx/85YNsa5xEl4WdpQtCTyX3bMGZP4tpzXoeTyytwzmiXACaBjGXky/o1HeYAZF/qHqpzI88chD73mG7ujR6TfXvMcaVDwG0k5mTpFKxxbqdjnmnDORKZKl4j4+24yfxWlt6rlZuVkjGx07J3pHJcL+ShhZGqXkodi5PCM7NC5s9iHriYB8chKteIbla5PlyiegW5TpbX1XyOev9yiIIGVK6MmPcqKBHR8rjmtf6KZLly/7K5zpVTGHC/13x2paKUNznKBOyRRB+0Z8lR5pgpqth88w2JJrrc2xTJDudgW6k0UUWusZqnXG72VOOxIL5GFPgNRcM46kSjVZpP0A05qSB6vNpCz41LjZg9UayFbLXsuLconYa74xEYtVqDUd+yA9ro6nUYX7YC53/vm4s6/kkX7sQLr7sbGzc9dq6bx8NGx7P47cbVuOEv78UF5ywOjTvWbNl//wCIIow95WmHjGh5W1bD23JkPf2R68KcnYVz991HtNxjxSbefgEm3n7084odSXPcO5HNfxnjI99EGBz99ad2Mk7CyThp4QMPw25e8RWsqvbhkqkzHtfrtKxlLWvZUlgL2TpIayjbHV487sHEz8eI0SFe60Qx7Sr1Gmu/7PnCV7DiZS+F+bOfIbItlM+9EMUVq2NUSfkSypdS5TxFWzSG2+HxqsgHNGLR24xkTqcUPYaau0MD/rVs9VSrN7dKDpKiLKpCqLHt6vEukQ+Uo5dWOVjqvVVulCJLKbpnY486f4/V/Jq4UrZto9bZhXS9hnQ6DZf8hpB+l4jluI6qvRlYv3ocdS/CzEwxrqeigoqupFPSrioUeWMOIPLntP4a069jp4qQOqW1P886fR8+/g+X4/rX/BynnTSJUglo78gn2q58Ft9n3hTyf0rFSqKv1JMZ8bxKVeqofKF4/NmWOnlJKfJ5enu7En2apwqa5garxUp5lcRnENbRMzWFcls7Kp6HNPtM0VCtt/KgNAeb/q5ozNQtp7IPFc1h3xLBjflwJlHJ+gyPl+NMmy58NSJd5adejK7//RLs+9QHUdtwOkJyaFRZzPMaMmxDwzJPg4jzkMcMjkherRUr5GUgnXJgGILghmGq4YrXfECxCiX3NKJ85bKiiklPt6LYipg6tq4rztN0kpemSLEiwzVFTqlQqaqeqixpmcJhMcExY4q9oK6IQnJd1cnR0fWk+ZQU2Yhz9RFN0fWh815zS8U8vBi9bPau52E7j2Js6N8QBgMAQlSIlntEQbr6RH0w2yaog7Hfy7zeJw58r4pVZ+OIBBySLfZ8RSJmxiRn08Mb/xsAML1nE0byD6Hg1jAzvg1mRB5sMz8vNyCfFvmoQfKC2teqsql57tJU0vS9EuupvDqiUUR7LOWZ2rK+baJDMOZwfAyibER4VDUv7gOTIdcWES1HyrJcqbPmi9Nx1/lghrLv2xHzUXEiaj7HClUGZ6uyfqYq5IARKese4PojghUjvqoiy70h5N4QlARVekn9lAAAIABJREFUjDy5nkWUJ3RkPSAl4jYWuWUR+yCCcjdlnut9bXaK0QGzgmgVbGlPnoEZikKG8T08mR+sHupYkrvJ/aXKvVVVHgEg43L/ZBu9OvmXVIS0jORaisIQnu+hXpc+nZqRulkZ8iiD+cLTm0JejhlrfmY8OvWb+9z5BH0EPSxrIVstO+6tdtZZqFx0MaqXXYaRb/w7lm38LQx9CTpO7Pn938Hz+79zVK4VOA7a9+5GZnJiUcdnM3VUqynMFo+OEtrYeBYf/4fL8dqX/Robzhw6Ktd8PMz0PPRu2YzATS188BKYv3oFKk+7FL3v/chSV6Vlc8xx70Qm9yVMjn5rSREttU+bn8Gnzc8sdTXmtZF6DiP13FJXo2XHoOVKWfzxrc9f6mq0rGUtZGshO1yeVCMlyaG7Aswj5Lk42NjdQ237Ys+bD6ELF+AaxOfxOvVaDVEYwnJdOBddBBgGOtryWLFK4s0tep/37hHu1vT0VKKcri6Jc8/T252ew9nq7hbPXpbcJo2Bj/NvVZgviLk7FPnJ5RroGADMUPlO+8alR79UFB7BeZmfAQBselVzBXl4sOiZVP6QevhLRaJzzI+i6J16DLUeyj9TQCEIApQ6OlFcthxX/9U78PMPfhTVrm7MEOWJuVZUuBvoH8BAP/DKl9yGr/77BTh9/Rbkc+XYs6lIgl63StTIdVQRrSlHR5wfiRwbIgiKVj3poiLe/7HT8PY3bcYF5wQAemP0QMvWPlCbZb61HNUCU/QiK7q2c/ujAIC2dunbiF7UydEplkeEyGjmVUr5+/YNs67S1m6qDa5ZI6F900QnFUm1TXnRuurdNyCyLIxd/nvImCZsInF6vWnl3rDtaeZoU75dzD3rlePqg9K+T1z0AQCAX9ccatKXDvlMhk1VTXqtQ59qb+RmKXJl2jn47Q5SlSoCvwYnKwiJSW+8UWusz2BU6jJDr3A7leDgc0w4No4ZAVEE36sjDAxwWsZotKJxqiCmfDLlQCoqEdaVOyV948SoX5KPp3mGPNbDJjox8LpfAQC23yShhOqBV36dR4+5RQ6lrUmXyQvyPeV30CMfq2wSIeZnSFRSOWCmoqNxPjAiXszfpZPK93i8pTmBlGOZQTqzC2P7/g1h0IvZSeEhSt9Jmf1EMfLMpaccRL2WccguVOWLJdG6H1k/BgC8Jnz1Y549n/pajO6XZJ1u3/QbAMCjWzbxRB+eF6EW+SiXanANmWMu89cZ5M9RgBV+xHlqy1h9behsAI3cVnrXTdHJkU4zn1KoXEmijKo6GyV5d3aO/KR0J7ul8ZgUp4HSNUQkKOSeYpKLpfm09DOK5yuPozJeFKsQyh5ihlxPiugS5S5WOK8g96NenQMF3rO4fjQPZLy+AunzsKxIFvN2ETWMiMRZWUFJrVQ3fyefuUltEGDkBLmR0+PM/1WRPbIjLehRPq3cReU2Mh8eOYmzZenIbEauk24TzpmhSCFRyMD3E58AQHA9LjvF3GdRRsos1RURrcP0gZ6JbgQIUadaYWhIm6sV5Z/WkLQk6qzcrfmeSpqR4ubnmiMXiZTMB7ZQ+VF0ZOuRPH9plKmPZ2shWy074SxKpeDu2b3U1TimbeLkUzG1dh2e8oEbkRkbhen7B2AWN+xpl+zAH157D7ZsO/WI1yUM5WFldDyH93/sQtzw+rtxwTmLQ92ORTM9D5d88qOILAujT7nssNUH+/5sE/r+bNMRql3SItuGUakitfXhI1am7xeQzu47YuU9Ucx270Su8BWMDf0rwuDEVR1sttlMDduXj8P1W48jLWtZy05MayFb89hC+bXm9RE0Kwii2Vt+6B6BE42rdajqharspTH6UxOTWFb3kM5kYNsmJr76DXS97KUY2HAuqqvXxt5E5VFtf3g7ACCg1zBDFa/+PslTk52DSuXy6jGkB1Lz5LCsOj3kU0Q3FF2JVf2Iwig3SXN7KZdFPeV3zDwZAHBV3wMAGiptzfNPPfnKz9B4c4cewaRvt4GIaZ9pfpVUOoXS2RtgPrAVV13/ehhRBC+XxU9v/DAq3b0Y3Cueyr5+8XiGYYhT1o4gCM/heOnYsR6e5mZKJeqvXnatryIUgSqpdd2Pz37lOni+jZTr4+1v/B02nDmK4swcT6Yqv7FRPb3dib7es2eQbZZrdPeIR3pmVvgJRSrgzcyQr0AulKJ+ukYVdVEuWIMbJWOcy4sXW7l95SY0M5VOwfQ9XPXuNyOybOy84CKgUoERozlSP0W09DNFdEXnjKKn+l2V+pR3pAibIrCap8ulV9ohSuP7zM0TK+zpmMXueUQpB5XLLsXK170b41/9IrwNZ8PjQ2+NiBgALFspD/+pcZnnNeYmayuQ30KeRHl6EltuezPOfNKN2LF1A3r6iczoPNH8VuxjRUBdIrRhzEVU9bUkPy3kPNO1r/mMND+bGatZItG3qlCq5eh6iDgPa5yntqE8NS0nTBzvcP2oY1dReOX72Zwbuh4UzdH3bUVf/DqRaZcIQtiOVGYXBnd8EYHfieKUzGmPqnEA0LdC1DQLVDY17GRdFmKYHH5+rWa1woWOV1RP+nhy3w4AwMiurQCAdOdazKbLuOFFn0H/TDf6JnsRmgZq7BszEijLNpXDpSi49GndlDFPtwvKY7qyHhRhVjRG0cNQNyMi5b5yvnyObV5QIpPKgYal6M6cfjOVB6nzg2qA5DRZjvKEOT95aqDIJssK2JawLmu6Vpa1qrn+pmbk+CI5WnClTp29qwA01GOVO6iotVeW3GuGL3tdFMh3hIQFmXvPTAnXy0jL/m5n2lk7RdyIrms+Seb0K84yGqAi61pVEws57nFsZaWu60LKSbOe2j8F3ifcrPS5w+9+Teodsn8M5TpGDUeg3vPUN6gontXE2Sp7dVRSVfzonFtxxcanwuIi1FyYDvMJxkSyeVZQtMDKmk9perHf57cmxepFLt9DXeZHOi9Yy5LWetlq2Qln3oZzMPH5L6H7Bc/FvheuWOrqLMq+Pfg8AMBVKz94VK87fdoZmD7tDEQR0L7tAVz2oRvxq7e+FxORuV/oazrtoVZ3USxn4LpNJOTowJ+Y5/coAoZG0vjWbc/GK1/8fZx3liBZvf19R7qJR81M38PTv/gZRJaFwYsvPfS73gJ283YJ57rhrH85IuX5a1ejEoTofMObMfLT/z7s8soza/GbW96Iy677EAYfvhphuLR52o5diwBEcNOb4Lh7MD70DQR++4JnnUj25Sf/GN2ldpyz5xT4mF74hAPYG9f8DgDwqeGrjmTVWnYCmOf62HrSQ7hi41OXuiote4Jb62VrHouVmvi9+R3faPolbOZ7zDkycd4C3oIDeR+jJrhivvxXR4pzdai2UC4xtQUzrS9wHc1F09EtnIXtWx9AvV6D59UxNTGJbLYAXHAhYJpwHTvOv6KqcxXyKfbtlVCnChUEVZ1OkQ0x8W6W6dnTkU2rp41V7+zoSNQxjFXUxHuWzjTUAIEGGpIlWqIckHRTXq14nmleE81vZWoceTKvj+MogiCnqZpTZ0bqp55+VcSrarsiYGztySjUPDzjhtcCUYRaOoNf/PVHUOntQ61SRSFTxQuf/UN88we/jyBsKNUdqmXSHl7xv3+AU9fvQxSKV/qBLeL1VpVFACgUpI9UCVLRiXKZebWoEtjeJuM8OiY8gn3DIq6RzUlZXk36bmhIULt0JomyKWKUIz+vt09e/EZGhO8wyjxehS7py3JJvNGVcgWW7+Mlf38zQsvC3ic/DTBMGPSwqud1YlTOn5qYTlxX54pFHocq5oVh0/rh190lUWUrkqumvLkceVT5vJ5P3gh5FjBTiXLUexz6ddT7upD+3WbhztC7Pj01G19a61KcIjroybxJ63yjWlhADlO9chICP43ICBFGjbYZRBVMM7kelC8TxbmNuIeE5KBwviv3KogVxLgeCnPXbEP5TtdZhetA8w0p/69aYU4lIs81cl4sjk06pYp1cn2zSU1O2xWPlKH8H0VHNQ8RETvl5RkpdC37RwARvNpqbLn9/fBqU6jXZM7myGFZsWZt3KZCt6ARyguL3R1NfKD5bH5uR1KVcH7T4x67vOZyffKDpkaFM+tVmFMv14WK66Ov1AvTSsFMyTr3A1lfdc2NRqVIyyCqCUGDNG2S9rH+oKhnQ9FS+XdN9xlF2zOyr9hZWe+mk2Nro/1OM8jBUhVCRbBA9Mzip6oMal7EWJUz7jP5v96LxsblHpQyVXFUjvIhdevsEvQuQyVUfQjwNE9WRfYo1MlHZq68UOenJciYS/VCJ9PNemsEgu7nRF45/5UbPD4sYxd54hQrZKj66Ug9bJIzAz+5XrJ5qu+myUF25TOtXDBfyqkVRc1QVTyVp6e5MedGYis6rjy5MHmLhGUqb7mRR8v36vG9VfcO/a57z+HakUO0kuU1I1yLRcQWu04Xsjgd5MEmXm1ZwlovWy07IWxkw3lw16xc6moctr3qtzcAkAenf7qsoRL315tegkeL/XFomz6gR4jw5O678Cervg8AeLS0DH+79eWN4yJ9CZOHgBsv/BrWFuRl4wsPXo1b95yVuH4YhkAPsMzdi5uy78DTbnovfv22G3Hj568FAHi+h1PX70xIzl9zxYM4ec02AMDd9y3DL247J35h1ZdIfVh+31vvACAvKP/01XPxk1+dh5/86rz4oVVl18867VFcfuk9AIDh0TZ8/btPisvS0Et9AXjxC+7EQL+8+PzXj0/C7XddDACoUVBAX0w72ybwnKt+FLf1K9/5EwCNsELtM8excem5d6K3T0Jwtu04Gbffc3F8PQ1f1BDRl177VTzvu19BaFl4rftpDN++Jh4b7SMAeFLXnfiTNf8FANhTXYFP7nwN+4bS05a+gFh4+zlfxKqsPHh/9pt/jp/cfiVKDyjqMZ9U8bFlgZdBJjeK4vSqpa7KMWWZwma46TE8ev93UPMkdNmrHRqqczxbMVXBzu59WD+xdqmr0rKWtaxlj6u1Xrbmsf28ffNAXPHPRyi+dW45C6nbNHsiF6s2+HgjXguVf7DXb26/Prj3MORs+9YHseMZz8JEZwF4+GGcdtbZeiZs24TNQVPP76pV8vBXrYjXcWZavPXj4+K1U2UnAEgxD5W+XFi25i2ROtiOr5UEANToMTctVeEj/4WedfXMK2jhUilLPZl2E0e8xNxgQRAiDMM5L1ENZC0MgjmefiIH9DSqkqXWt1aro+rU4PkBqtVqjK40wv344hEF2Nu/HJZt4fJ3vwUYuAq+48aIgfLfHNtBf38fVq6Ul53f3RsgisI4z4tJ5SctV/lPqXQKlm3FL07aP7EyYBjGHuvu7k6kUm6slKi5uGrsS8uIYBsR+no7UMhnYiRJ+WHKp0mlMujq6o69r5rDSedXI5dZBD/w4zbkCzm4joMg1L5RL3UEI4rw8i/8PULTxM5zLoCxzWr0vVYk5m2E8H0fhiHTJc4DpmNkNdDLSrmC6fo06xMiiqJ4rGLEgC976rkfH5tkO8RrnXKUH8jyYyyEypXKfYiMWJktiiK4KSceI7Ud23ZKXxKtayuQc6FKYCy7TE99FJm4+xevxUVP/zB2PHgplq0mP81KIlD6gqltKTHfll5b66xIUSaTZ19RfTBO28X5xbxuusNo+e3kuGTpza7Tg16ryvGlkn4X1KWdtM10lBxD5R81cjUlww7mqqbJefSy16gIWQfynYPY8sv3wKuV4IePyHk8rnuZKFwOrDlZ6ptvhBUaMYqmiE8y+qIZNTlStj5apxdI/N7gcD329bTPAvLPvHoVpXQN17/wi+icyCKzy8UUpmIeUqZdnGaRJwiX78u8Ni0/cd0wMBOX199NOxkCogp9jq1qbuBxzOlUkBdezSkFQ3MC6v4wd1NWrhbRFS2sCcHSeaecLq1D41ZG7i2R2bSCK00gnMP8hRnmCotVK+mU8kozvL7cJ2IEOa3KolT5I6KkucMMrkPdO7wqyyNKXuZ9Z3xUuINRXZCnjizXf96c29z43mql6TBKyzpNU9lRr1chNw3M9xUxZ5zHdah7q7bTtpJqoNImomgcinKVKB8pWCqcGEayUgzD4N6ue4S0MdsmPNQ0OduNx5JmROrAvy/WFhvhM+cE+X8T73+xXMnFH3fg+uzP3Tqk4lrWZK2XrZadsBa5DuzBfUDfwFJXZUG7+YK/AoA45NFueut6x9lfANAIddOXk6jpgX11bh8+edFfNcJCeLPXRM16HgC8aO0teOGqHwCY+0DEmy9DMMZWr4MZhvh+5Vp8+0WvRo3XP+fcDQAawgSMwMSZp+zEmafsRHubhASt4IttyIfmWoPvj1e99H5MjsuJKq8+MS439d7+7vi45QMl3Pjm25DlA8csk7sODwny093ZCOF8wXV7sOH0HQCAYkkecLUu5VJS4vePn/NlAA0ZZu2rOPEsetimXTjzlF2o8YWg0C6hPd7MLJ799c8jtEw8fMa5sEwT15/2OXT3ygOGEvVVhGF4aDS+9sr0Xrxv3fUAGqIL7THpXeqjQ/XyF/wzXv6Cf8b9b5U+1xf2Y11MdmZiLX59y/W4/LqbMLTrOZLk+CjZ9B+vP2rXWqy19zyMdH4KW371doR+51JXZ9H20eDDAOY+9B2eldI1/M3/+SE6J7I4ZesyGKnW01zLWtayE9taL1sLWIODdXTQoGSW7sXF4B8qUnS0OV3z2WLrE0cws1ty5OiccubpcB59FKM7H0Fl2TKUZsUTOvb5L6LnVa+Ed+FFqK9cFZ+oioDtfFGYpCpcpcIM85OTcyonV+1fJi9smgtJ48HVszlLT+AUy8rlxCPZR4VDRUnivCGaXyVI8oX0Zcg05XzNKeXTc6oKePpylUqRg2UmPevZfDIevUrEYWamwcOZU0ycr8uyFWVp5P8p9vSi6+GHEMFENptPHD8xMcE+lD6LVdtS8v+h4RGWJ+V2dciLShtfgNJEMHyiWAPL+hL9AAAlvjSpt9hR5Ih11zGo0jtqs+555nBpcPLEq6qcKB2DFJEcl2pmJSrIad8rGrJqraAOxdkiTM/DMz/xQYSmhZ3nXgjbNONcbNo3en4Y54aSemdYnh9zTaT+itRVFUUhkrb95pN4vvyuY91Qe6NiH/tshlwrRZ9SbjI3lI6tT96VZadg0OtvW078Qp2dk28uz7ZZyqFSITdfkR5yqsiL81m3obEe1Kpp1Otl+F4DEc2Re6LnjY3JS7auRVXBzJOHps4DT/k37IxMVnON0btNPt/MBik/xePz+WTS24gvqpmMzAWP7TAjclhAhEzzbHEszLAp143yGJRTGSOzRCGJHtbKVbiZUfzm23+KWnkS6TYZi+4V8lLYu2otAKCjhyiLm8zTB8xBVJssxta0SuaB99ND3++bIysWx/FqKLjKfApqZcw4Zbz1L/4dvdMZrL4nBQNjmC5SNZNzobdPnBx2jjmsfEGcTEMRLa5z5feZMmd8ItYeUcTJCZlTflX2pvaMdhD5VUR/9NOw1RlA1DIOapnbziTapQqocT6paG4Jjb5StDtG5UJpgyL7bW0yP8szdZ7PvSMoJ9rkurJ/al43ZJlrDQXWVcykIqlpKUdX68m9hl6v0qz0fbGoaojkZNa5h7iyR+TaWC6SDimNmHAJzblZOowyXYn2BhW5T0T6SfVE3dOUJh1yvXm+8v2SKI+0pUm4ySXSpbke67ovNpDfMIzie60qHLZ3yx7jptJzi5uzthcXUbRYrvx+3C39/QCKAAc6LtoPaWveD5qdbwde//PmN23a2yxNkniE8rw+0e3Ydo22rGWLtIGP/i1O+ZfPJ36rn38Bxv7hs+j42U9haIxByw7aQstCfmYahanjN/fVkTTT83D55z6B0LSw7YyzDzuP1kJW3ZtBdW9m4QOPUfM9F5nc+FJXY8ks3/kgVp52N+74/p+iVi4sdXWW1D5+9rfQNZPGOdt7D/CQ2bKWHVkzfQM9E11LXY2Wtaz1stWyE9vq518AmBYQHB+iAsei1XN53HHZNfjDL33mCfvCZXkeLvm7m/Ccl/8f/NH1r4bvprDtjLMRPc4vWieC/fy//hR9KzYh3zZ41K7ZdvsY2m4fO2rXm8/ynQ8i176LL1ptS12dQ7Ln2S/A8+wXHJGyZp0yBiZzR/RF68fja/Dj8TVHrLyWnTiWnnHx/FuuXepqtKxlrTDCZptXrjM+wkDTD4d1nbjUA0C788HTi4WpF7KDlWhvtkMNS9EwwP0IqPtdr6mPmn5WedmV61YinU0DUYDlq1ZiZJ9Iug+sWhef6NguIoa4qWBGR6eEj7SNS5iJhmGpHC8AQBPPppKy2Y4jZWUZqtaQ724K8QpVql2OVyELTVSrxylvSMP99P+aVLIaCw9ok5LJVlXcQQU6LJKAXVUN1ISOVNKLwxo1LIumIUjaXiUTY6aI8UIHnvGdr+L7r3pzLJWtcTMa9uezH6o1huiRt5Tl8TbDX2osN0UxEiXHV8oUyvAb5K6HHnoIALB8ucgfr18voVdr1q7hORJiM7hX5IknJkVYoqe7O9FnpdII6yZlZxgSmiJ53GO4Uwc5YKtWy/WypoULPvoBpCbGsOOaZ2NmdhahZSH0PSCKkGWom0sRBxU1aYwZ1y1DeDQkrlCQNmuIqIbAqSx6Oi3l9f4v4aDt/ebyRHmNJMXyVUPYZhkqakTSHqtNBTJs1kNDoTQxsAPD8BFFEaanKyjOyJxvI38QANop4TwzKS/bUxMM7dRkpbaMc4rE+AI5giLwsBy3//QDuOTK92Db/e0I/FRMYs/xOFXLbKO8v4aw6BpvJDLnOilq3zK8kfNfQ226vrUTALD1XCnPTakcvlzXjEUQNOm4zPcM88eF9WRoW3Ofa2hZwHDiOUoBAIB6pYxs2/2wrBH89j/fAq+ehmkDBYYu9a87AwDQvXytXJfpDWIp8TjfR2MPjKXIkfyXihM09uv57i1R0+d8joID32cWvr+omIiKLsgYzVLyfbyyEzuze3HKqA3XqKKnnfN3Wvp6ZnIPgEbiZ12HFsP7Ar0uv1vcA++alLGtMEStWpb1X50VjmR3TtZ7d4fMlXRekI5Um+RgNB2GtP5/9t480JarLhP9atjzcMY75843IyEhA0lAEiBCeIiNA/Z7jq0++ynY+BQBxQl9KIpCkKaVqduh1R60Rdv2KTYy2zIESAhkguTmJjc3d75n3HPtXdV//L6v9qk6Z99z7pQb7qnfH3fffXbVqlVrrVpV9fvW931uUrxF4a5wsw8jLQFmlWSyHVsDaEmWkny66UlgiRLxBTvHqMolvVzCCwpfFELaS8zZHNBtW92LFZs7ZCUQX4euxgKX3XatXHFw2+S7tluL/G6fIefbelmiQFaNUkGu9JSE59I8CdYMQGn3mi3/znHpsa6foHmK5dOo2uHySC0B15yYehbo9qz92rSh8JYktaplqeIklxx2uhy3jo2PcrkMz2vAY10dWgdU6vb75stsWbjPZYTLnndSQhXLrAPOUijDjW1bksdZFstshFZ73lptee/K9R29vDA9r2RxLpGlZbPIIos1xamJKRR5s14v4QY93Hj32xFUKjhy060IczmEvv+MSjSN3zKD8Vu+uRHFhZl9CHq1WFHuUo9y/UGUqvvx5X98PXrt9WVUvFLMu4t408v+E55/ZC82zT1zQilZZJFFFs+GyJCtVIxEedKyt2dY3ij59gsRq5lXnu/jrAWlS9Qj3XojN0/KLo/4FX4+D9d1kS+WML31Mhw+bAjGgW/sBwDsiouQ+IPlGDZtNjK6zGFlcrwU7Rn0Q27TSnwXmlEj8V6fOWbeJXgRG41KBIGIjjdi+ZlMWJt8qRESFMuZk0lcjBEBij1wP49CB12iJDkiXVLGU9+EoWTOZb7c53Z6EBKxmzLghQL8cIDi4jy8Y0fR2WMqg0IipqeN1D5FxGyGMvoBz/tUm+fjWgZUSEOfBHChQvufMinsanXIbdm4wfppgRnww4dNhXCSptYyjBWiVKtVE8dYWLBjtCgrLoNpj1LrExMk4vN4Ve5f9n3c+J53IH/qBE7u3Bujhh0iaUJR+rEQhtWjzeMMJdpJzGafa2xoaAhpk2y5xCPCTlJEpcXjqs+E5sigV2TyYtE+W5zdK0QVcx5RG5LvHRmRDkI4jgOn1UbwwIPwKATS7kiMBWi1aCTLOpcqRPOIgC42ezwXq8v4NOXn+Xs4iBCFRVSrC1jo19FYtMy9ONhSZFRoPESEwPpIIrFDCwTwXKwtNH6FlIm4L2n3IQKt44mIz5fAUGbN9HKLZNrcT+wnkr76QHNKa3EelbGH4flHcc9H3opicRuKRWB8q7XpxCa7bip1QyhGGqqumExXpjm1aVrEacQ8H6WQ0NUjpfYwaqtQQhjWRq2GIaOnnjCfvP0H/wk/97I/Rxh0UJxdoMVBBF8WHnwX9WkSPnPc5u1O08aQRHni+wrRdCG3Vxdt3v7yLAWQckSox2leW6IYT91EjvJVQxc9ik04buoxSEI0ztAKQhGLCHCy0LwpJFbjLm46inFobpG1heZ/h4iwX7Y6FUMqkzqGyvkRkSnK5jfbTwEAWm2bAxuw8suc00o0ag8jouxNrZTQfcc+S0TcyiVJrVv9hGT5uSQaGkmQSasBKhy/RbUh58IWzYmbM4njxogwJ5BBqE/eZ1LiP7mc7o8yQx/eL9UdMlJfbPEe3bU2qI3ZuOlXi2hNPIn/8AN/gjf87U+i27A2G6cp/ebttjLC9zwsjWW2DrEthrY4s+eoMzUzXn4U7ZcUxFi+CmtlAZ30Bbzac6CQNzdu8/P73LheI0O2ssgiizVFt1TGl29/Gb77j38PhVMXnw9zIcMNerjxXb+BoFLF4Rtvu+AiGBc7onweT7z+Z3D1z78BhacOXpBjfP2+N2Lz9q+gWj9yQcp/NkRl7GGUa4/jK598M3qd8dV3uMRjwWvi517257j65Fbc9MTGCyKK8epds3j1rtnVN8wiiyzf3uCGAAAgAElEQVSyuEiRIVtxCPuIln6NP6MzvEeMymacLT9qjUflv2m51GRGcLj56dfknin3K51hjalYy4CslLRuOlO7xkTKcDtmmX0fxWoNUxsMZXnkaw9Z+Z4HHDuKwRZbo69MbIES3ONTxt1aWOD6+NYwo6/Ms7I8Qcy1IkIkE0aee5sog5rcYyt0KSsvbpOQJnGa/L6XKCeWeZY8OTP/kg0vENmKpeFZL2XahepE8br2PrdPStbL8FcIhQyD1QZC1qo1Q+4GgwFaGzbheb/yZnzqDb+EzmVmQJoTJ0Z+XUw/Fsg7qrO+rrKIPM/5OeNXiC8Xke+xuESiXvwwtVmRct8T7DchSjqHGvkvkkdWlnbTJsvGjo3XllYBdSJbhby1bT2fx7Xv+DX4p05iZtdeNBvWd65r56Q+6BE97JKbFY8Btl1PbS1+EvlyOq4k7SX/nBNdhzu0iYApmx4bfTIbnp6j5L+ly6lSLfDnpI+Y65NvxzGtsRA+8QTmdu7G5T/707jvbb+B2Ymh19nCjKEVk4QhZDkgZDVsWh/Ux+wcNY50TZUKRcye3IdH7v23uPKGtyBfuB7t5mUocVyIoxiGbVaVJtw9GdlaW2oMxJLThaQ5q/xnxe0ap9VAkxyvVivJfSwWdR2Sc6MMPBEJcVSKetmm/Lg4Z8rId9ttlOsPwPOP475P/w5qG64CAGzaYbzR6piNVT9HDmXMWwXrM2LSW/LnNGd16Kec5mLp93PjmIysjMrlNb54yhCDw4/bfHvgEUO05ua/hLf/4GeBTgAcOR6b0OY4BwQySC/Y90mf8vsgZza0cp2O9Y0WHOis8jnu79oY2cR32wLRFrdgY8sr2JjNlawPcrzOxdEa8vHsQ/xZXXddGv4u/X/MnRVHymXdybmLDc1TvBdJurupvnI9uyYLFbvm8kTjXFoQhD2i9l377BF11hyEAVcOxJYiVn7FJZJLMdN8LskDErdWEvZdokUR0T7ZpLh5q0+uqBUHvK+0bF7oteeT9aIFRCfQs4BQdCLJ7EuPc6rPVQYFmaSHQmtkej5srwYR/F7Xtm32eA+l3Hx9wlDCeZ8rEMI++t0GgoahbjuuvBwAML7BkE7NNSOfg1LfndSKm7U+G6afe+LyR+6/tgeh4dwx6jkuWd7q88DK80kW5xaXdro2i3UTwW//Djq/+Y4Vf5t70Ysx/plPIn/00s2oP5NxYs8+PH77nXjJ774dxZlLS9Lb7fVw7Tt+DX1ytC51RCsdC7v24MD3/QBueOsvo3L4/KsHNheuxtfvewc2bPk8SpVD5738ixXl+gMoVh7DA597K3rdTGq6me/g7T/4WVx+aALXPzqRybxnkUUW6zoyZGtZaG2xvq98kzhbvtKZKAaePccqfQ46ePL3ZWqA5xix6lqctVU2L/n7+b7tOgCwdy+YJMM0kS0pmD3yxrdg7M6X45pf+Xkc+a7/E8pT5mmoWx+zTOimzZYRO35s+RK5mMelLBifwYfcEaIOhCfy+WTWVIa8xWLy7MX1UIY0JCesQk5MmWp9ylJLyU7I0dAUWWbIVPJiRl9KTFK6E/dkEMg806LGNlB5C3O2LEeIQ2wgrPPtdDBXH8fzf/2X8Hev/RlsuPEGO28iFROTWqvP8smDanUMuQioyqjjl7nfju3GaTlw4Km4jbo922frVuN7yeg2RiJZZo1GyXNzczyW1WFqgpnt3BTrYtsFbIOgb7Wo5yLc8N7fQX7mFOb2Xo72YpPnPGAdS2yjZCZR/AsZg56iuqUypkJjpFgmQ2yhfAWqYfXIz9AF6XvJtfNCQYVi9lmvAsex01XWXSgnETPyLOAmlfMcIl5+XA+iRsdPYGHPPtzym2/DF97yy2hu2YpSkWqAPPO2uCAFoXlUM6PR+OQUOR1E4fo92358ogbgFhx5/I+xZc9PYHF2F6KwggFVB8WFErogJFgZfCGx4nhp7hLCG8RIGHiOVq6ucYVQwBJR0yK5KrouZHTqF8nFzAslJAJHY90g6KEy9hD83Al87Z9+F5PT1wEANuw0xUxdD7ouY7wjpRC4DOFa4f6z7N7ipPfFiNAPZ5c4eN3gx1Pl6HjWFo2Tdq0+9eW/BgAcfvxB/NGPHkAQtOGc8LDIOU0G0g4/+1SSzBfEkbQTKdXUhyuro8FNK2BaX45t3mc/52iETdVCKf+5OfFW48k7WTr/LjPcfmoVg21DVE7m8QWNC0VavZKotMzehaDG/BtdUepLIajF5Pei3dNyRHhLoeZxuz66NLt3yIF1iBD3OZ5lrO6T06v6SplX96E828qnqmi+SuNntnVEs+P2nCUu5+eMe9kiX8rJ2VzruNYuAa9r3YdCXqfireo6CrUipKm7s+olTuQSpUiZUpOfNj5u12iJJtiI+5Hm9L0m5o8/hjKR/iuuvwkAUJba6more1Z5FjzfsXxVVPq6G8XJRGq/5Pe0mvWoZ9U06p7F+Yn1lbbNYt3G/A03IfI8OP31oYb2TMTRHbvxyG0vwqs+8J5veg6XG/Rww91vR1Cp4vitL3xWIVrtQ0W0DxWf0WMu7t6Db3z3v8St7/gNVI6cf4Sr234uBsFGOE5n9Y3PIo7+3u04+nu3X5Cyl0Zl7CGUawfw8Bd+HcElimi9IroLr4juOqN95usBthwpZIhWFllkkQUyZCuOZdmC+B6hDNTK63pHZwdOny05l/XzQwuWJDdreApucjvVKf4DUZRVKF1nHCkk60zLG6pN2UfcVmsox/vA++EBGLz2dSgRRRFHZoFIR8QyxSsKpArH8n1PWcdhxCpszC7VclKyU0YymX0SIiXVwC4z6F358vDYQjmUsRdaoox6uUz+UZ0eUMwIHjtO3xIOy2JeHiJsByIDceaQCnfDoZHMcsUqWr54ClY/qWppTKU5YUFg59U5cRzHyxVc95Y34C9/9HXYfuttPL+kkpdUGI8fPQYAqDKrKE8z1VeDcnZ2KHVeZxuoLoefPso6UL2PHK6lqmHAkPsk/s5mIpfKVM/P27hoz87izj98H3IL8zi+fSdC1kl1dmMVwWRWVm1doLdMrBbIbHae2ViNCd8Xb4EoDMtfZN9q/BeLUvCz83v03bv5O5X5YvKKxgwz+ClfFilaDgaUe2NfC2WSrZDrCHmzduqzXcszJ7Gweze+5Vd/CV/69V9Ha+tW9OnbU6xamUJ+8k1yEYtJfl2lKtVMohexz1uECHm43kn0g/FYyU6KWuIK5nJJbuIyPx55mfGchSZKXVCqnEKIdY6FvFQ+OT47hkpKFDFXSHIjfSHVobiZLVTGHkK+eBIPff692HDZLQCAiU1buX+ZjYtELJ/KUmM25eO4TLkVS+en1bga6XvV6Y89iqORvjeqj/pdG+/tBfPR8vv2WZ5qYGGqi00nSnCdEANxENs2RnzyiPpEKOpEbYo1oSLpG5dQT/kr6Xyk6PeElVuycpz0PE6UVL5yQ9W2JMdZKFCLqK1UCqX8CgwRnjzR6Zjvo+QM69aLVQq54oGIWCy/iVQd5H3nJe8n0RCu4LkUWQ8iP+RS+SX1EbmLIVcyUA1QHnxScFRxJTe/tNrxygkhbkKAO7M2b+cjmzObRPFPLlIdt24rEiamTDlW9z/dT5Z5AnIO1JStlRldjhEhbbHaZ1yvYR8MlXU5d7DMFr3Duv4coihENOhi0D6GK28zc+PNO4iAerlEOSMRo1U45env4SifO13TIx79ll9n6RVI55dDdaarsrI4t8hetrK4JML92McA2MtWFs9sPLVlG46MT+AHf/9uhH9mLPUwCtGr1vHFn/hptDZsvMg1HB1u0MOdf/g+dEtlzO+7whCtQbj6juskFnbuAgDc8Ju/ift+8RexsGHDeSt75sivYNPOH0UU5dEPtp63cp+JqIw/iHL1AB76/HsRdKdW3+GbOP6n848AgFdEL19121a+j9/63qdw/TcqyM89e9DhLNZnFNs5vPAzey52NbLIInvZimPZW378v9SnNj87hGo1dcLzmr1IZ8XOMNZ6bsPsGz9GnMLI8kb+eeU1y6uFlPGkMnf8kPluwXXhz83C32QqRLHnDlGmKjk/Ja5DB4AFenDlmKlUm0oBzyHSpRpKWc51pKok9SVun1JuVAawFHM7bL9yxTLrOaIhQlmUoSwyUy/kq8hzlneSfIXE1RqboEKXZ9s1Fi0z6XSV2e8m9lNGcYiiEK3JiQdBXgTrG7XbeOC6G1Hi+Xiuh/rxY3jRb/8aPvGzb4Gz2254ymgu8vhBL/li02xYe09MTMR/GxuzfqmU7Vw1nuWhNGDfPPmkSZaLVzZF3posYwpUrutSKcsNArzw99+D/Nwsjl22I0a0YvW/VCZdfeDE5RUS2ysrXK/ZcX2ig0JTxOnqdZMqg/oU2qlssrLiGltSbBTHS33ej5Um+SnPtbj+SdXBiNlm8TgGfSr1EZ1qNgyxkGJaa3ojgl4PN/3Kr+C//PpvAQB2TwhF8BJ1FAKqtiqVhdSmVD17PbQXr8NDX3onrrzhl9CYfzkG/Qq8nJTnkh5jul70PUYd+XchtCEz/ht++ysAgEM/fQ0AoC01ULatOFQ9IrSNeUNSp6ftZVLIlLgm6vP+oI9i5X647gnc96l3YGLTtQCAqc32suhT6W4Vi8DTTM0rc7lW2uJcOSTpskfdej7gfRAAcGfrxQCA1qK11YGvfREAcGr/P9uGQQPv/fbHMPAjTLR89H3OlalzjZXnfPZhJPVXygk6msuSfB0hWRqvaqM/nHuJ/U7ELEa8YjQo6aM0PFFeX7weurFfHVF8P+mLBwCeVoUIgU1x8XSNakWE1C45BSxBn+XXlfSNW9alQoZU45izq3lT3Cbed3xxm6gW6ot7qHNVGyGxf4z28XNA1LLfol9ig+JSVF1ste14hZop/E5utPFf4PnGqrpUDgx6mlN0/ryfEvErEc2vlJJzauzTteRK0ikOBvZbj3XsE50OhdxXOsj3HNzVuR3YA+y99vlWx1Ilce5xS5wjgpR+DkqXu1Y+/7LyzjHOtJwM4bowkb1sZbFuYubm2zD9z5/B8Tteiu70+cvQZ2HRKxThUnDA93yc3F3F4etvwF2/+asIxu1BKgj66BWL+PT3/gjmaVb8TIbb7eDad9+N2sEDcJtNnLz8Shzecv2zGtG67t0PAwC+/Pq9F60Os1u3YdsDXzvv5Tbmr0WvswGu28UAldV3WGPknmqet7KWRrFyP4rlb+DeT/zWJcvROpc4We9h15EiE2WZdHQWWWSRBbCuX7a0JlrqPClka5W9z9gN/HxwtViGuwraFn/XViPWCp+vtcBp1cE05yoda/YsS2eH11hNIQRTXPI0d8I8QJ781bdj7gufxd5f+wUcf833wisJTWLxTMGWy0MxAqEXUkVbmDfkRap+hQJd68fJYWHaLe2Dojrlc0lfoKG6Gv2KlFlkRtNhYrNIRbnNW2xJnto25n4x0y+uVb5AxTpxC3g+HaEz/C6kQZn/DrO7MSoiNUJmecVdcWmaoyxwnmptsWCYPKFmZ/DYTbegnFfG1UX5xDF824f+Lf72x34KjU221n9szNpPin/KDNu50rOFdaxQ8U6fJ6geWSTiI/RMfj49ntPsoaO47ffehfz8PI5ccTXarS465Yql3sNB7Oc16Cd5Q2ob1UkKduKIaZirLaW8KJ7BgPUfcAyluVlDHgOVJQNlc8UTSvI3RGkR8tbnGAtY715PXme2nfpc2+V9tg85KULe1OcxzwLLXz7la5WLld1snyr9eHrMSDfZZjn6rKkuTSKa4h6eOn4KVwV98imH41mNKtQyVnIkb07lSKFRCLFQuV6svimUgpl/T+UPuL1dz50OVdGkDhdzcYQIRPDzB+D5T+Ohz/475IubkS8C09t3WvkFjX9NUuLTshxl9FNzY/q+MLw/rDQ3JzlGSGy55PsaM+TidMX3QKlUOsm/63o68qihhccOPAAAeOzeTwIAijDUI8gt4GSli80DD2EYIZ8nSl/SYwaRLiHHDhHejo2FHlF35OlJRpTQj9swxf+JVQl9lhskWiRG3bUagRxIoUlCwNQOUs4cKuCp3KGokuZZocmarzTfiWuUy/HaD7jCoMNxLKSU2w/63eQxxGUaUJ2P5zRUnLS2C2KUnXXP25zkUoHR8YQkc76Wmh+v12UUdaF/4pZp9QC9z5y8eHdEAQd276zS61D3Hd0XQTVE9e2ga/fgfiSFR52P+kocSnGC2Q7sq2jJKG9HSQXHXld+WlIKZRUGIXq5Ab52xVHccPAK5CunVx+M2yImWqaea5D4cxwxRyv9HLRKrNWL9Uyfz86Wi7VWBC6Ls4t1/LKVxXqM+VtfiMjPwe11AU2+WVzQCEpl9LgsEnDRq9fx8L6r8V3vvxutsXEE+SLu/b9fj8XN2876GH6rhZf90ftQmzkV38ndWFGQQhKdDk5eeTVO7r0CcBx0nHbi9yyyOF247iIWTt2EoDcFvRdkYdHJD/COHz6I6x6rYnzhmeVqvbryeQDAf1+86Rk9bhbP/uiU+/jItV/ADQevuNhVyWKdR/ay9QzFaqqF52N97rIMySoPkedb3WZkpP22zvDhNm6j2LI9+XcsKd1xnBhRGJ+0ZT5Tm2y5mpCDyHGA2VmEYxOJcgL5Hy2R/dZa8hbRBaEcsZ9WURk927fdtCybOCVdqrcps+1XiRAJkdJ+9IoSvyFWYyOiVJTKGzPo4hHECnnM4DuefZfvkRQWlf3NaWk+yxOPqdGUp5Rt0GG9xUEoEQWMYNtJ6U49IOVHN87YSg3L6jM7a5lNZUBLQR8PX3cTCq6D6twMXvy7b8Mnfurn4e3axfMc8ixaDTvWqZO2Nn+R/leNBtts5hTu+MB74CDCyb1XxJwl9au3hFfUqdTgBELjyPmSmlXqetA5Kpss7zT1ZYMoinyq+inFvHanmdgvF2e1kxySTqx4aaG+Fnrkpvy6lLEXCikkTvXX/lJ81NgMyZNwqUgmRCvPLHwxn/zeaQ+5KlWivVvodaaMs7at8Fge5fzqRPfk3SX/qxb9gHxyqzZt3QjfL6Ja76HXKccZf23v58Q7EypCbzGpfXKcNltCZntLN48z5AVyQXQ9Lc5axt0nejc1bRw0z5eKmpApq09/ECDvziHCRsDLY/Nue3grluw8ozgLnuKBYLVYO49j2XwtdGzEvqvN7/KZO3HMOK3ygJqcMsGPgbzEQmvjpx74DACgfdyQrapn+wX5Jn7nhx5HLxdiquXBLwgpjc+CxxNqb3/tUyk1DI0j2yEa2e5b35TK1rb1MY4tojZSoxvw8WUC9AQcJBGrtFpvmqslr8J+IM6lkF6qGcZw0vB+oGst5oUJZo4VE8FzJzcx5kXq3sV7DOyz17F5MSQChpDjN9QKBHG7xGHqJz7l8RdxXIdsk95Ac0ZyLhFyFfPhclz2TbVQCBnj+fgF+i92rI19r8HjEj3vC01k8eI20v8rCsTVChMbDLlnSHwHFSNd3l+R8rEEgJxv95pYlbAgv0TOv1QMHTiHADhoNhbx9QcfwParHgEAVLmKIlYMjeue5MjGzysX6DHp7DlaK3PZl/PwVkbPs7g4kb1sZXFJRLRn95q3nb3pFkz/r09jtlJF/1mslHepR69UQpTPo1Or4+mbX4CXv/s30JqWPPvwRiIhk+EyJz3Y0Ox3YR4Hn3sDgkoVcJxlMuGSfn+mcgtZnFk88fXX4pqbfgFhWMCgf9nFrs6KUSzfj3zhII4/9QsXuyrPqmjn+/itH3oc204UMNlwM1+tLLLIIosVYt2/bA2zF+lFzMtkgVLfL8xSidN5Sq31RqYkkBsTBPiRPse0n8kayz3TSO/mrvU8lJkZwTVbGoN3vmvZ77VxQ66277a+O0xVwoff9CuYuuezuPqdb8PR7/geBMySx75bS7o29uthBn3oO6UHeiJP5AsFRE1UiBNnUa0O8v2pCb1wlUXVMjuqAxJRkkKWsrBC1IRslcjlqpAz00/5eKmp5mbm+Hs/US9xxJT5LJdT3Bdmn4cvMFaeuGtCXQrkbJXIYZD6XEBOV4vbz8/Zp7ynlAEe7H8MX7vqufCJXOg8AaDAuqkOg5SKpLvdR7dci9tK6KOQpFrdsrN5Ijdqm6G/jrxcmBEk6iLvFy8m9SX5beKrlYn6pbkufkrN0GVfSy1L9ZO6oOoz9JhK+smIk6VilcnVuNXYFJpUp7qmth9obGraF38jHgtExmLenFTihgqJp04YulifIr+LXItTHF/yRKtXiMC2I56LnePEpKEmHj3OBv0BgvYtOHbwg9i4/afRWPhORGENDsmKffa10DlxrLopjmFPfVGWrxcRNipZui77mlzKYoH1KtgcUaoq2y0EmUhAFCFfug+u+xQe/tL7UKpchVIFqE3wPFIoZXqOluqcE0/sab/GM59UV85rLznmSI5Wkk/Wph/R0Sf3AwDGpyzRUWIbnKCZ9Xz9BADgyOP3AwAmq+QeuiHe912Pou0PMDbnAa5jJWt8BkledIt8HzeVBGnw7w7V5HI+/eqahqa0B+JS0WOKY6k3sHK6VSLdM1bfHL3f5JUmvpL4QGr6cJCcw4VqSsG1H6t6Dm8IuYK4T0K2xHMUAsNz5D5FIqr9jqF3Qcs+Pdj1NOjZOUex75RQCC2FtsN1u+RqkY9ZLJAj5kph1PYXosTLAx1XcyHbnAX6OXHMuPKBberRt8sr0POMvDmX14nLtlH9Ow3z3+rJj45zmpcj+lTYxZYTyggeV9ws+ZXJ15H1FDLNOVjcYW4MABjEwKP4xEnUrFhehOMcQRD0MT/fwBc/YxzDLTtNGXfDZTvYhulnubSqYBLxirdaY/buTDlTo8qNEVvEAzjxexg/o65tbhkiXio/jellcT5j3b9sZbE+49QtQ+5WGIs3ZHExo1MsxUvktKQJAEI+/MUG0H29kPHG7iUfeLP45otO8xb0e5fBdVsYhLVzLq9x2/lBrPOl+5AvPoCH73k/gt4GFEur73OpxVv+/ocAAD18edlvRye72HuwlCFaWWSRRRaniXX7shWjJmGS75CO4brt9A/L/nBWx1/yBx1w+d8uUCyvg6qQzOScdQYnztTw65lWMF3cKsdN19PjS1SVfks1cn3yQjZcF36jgYaXvAzK5aEEdYl+VgsLizxWErGSb0+jIdSEqAQz4yUiOGn0ocG6KJtUJcdF/lpCJxrkKy0SadJ+yrb6G3kuzAjOLxgHwBfPh+jIAjOqQihiFStml8Xz8ekRNTFhUu3yuIq5XNy/xO07UmlcoIcUM5WFwlTifIe+SEnOmlCqmDPG75PT9NzBEHHKpV+uUoitssJerCaWVNfrdoeqYvY7FbeYrRaaJt6P+Bht8oyEZKnvxRvypdTIvu+T6yK1QfHp0nONeHU6vsalELxO334/9N+22O9C+JhxV3lCYcJQPlwae+JrWLmLs+ThEXEokh+hfKhUC8V9qRMRBABnbgaR48SoHmaJihwzhKrZtP6fuOZKK5Np54B1LBatL3L04am51r/i7bTbbQxCB44zjyjcENc5RrTIheyR2yhOizgwvqfZwep+5NX00qN/Vp6Z/IJn9anWLHNfqhmv09F1S4TW8xzkS/fB857E/q/+McJwEp4PTG6xZY7q61XvG+f4EpIoP6asnu19geptbMOZw08BAPpN68PGwP6+eMz+/sC9Jjxx8omvAgC2baRKK9GPer0Jz3VQLPkoh7lY+VFzhVYk9OilJ6E6XfsFljMIpcRqvzse+ajkMWlOKxZtzNU4rnviQXEs9JtPW3ldm7+jqs1B4h15McIFfnIeoXegEJEIK6saAsNVGUr8aB7OEQ0PtbKAnl8g363ft3HYbRha53Lc5jytZLD9Gi1yEotWbqVM/hur4OSS97oBrzPZbs036bPYo9Kuz5UP4mZB87jNt/1A9wO2ccGu43KF97u8cRn9orVlnshsNTBEq901ft3CCSLFFdu+VLE2d3h8j/fYISpLJJDfVX8h1j2uJOm0rZ6d5lIrB6lkqgyrU33c6lgqkuNHFRs/V0ZtYidOHrJxfWj/owCAyc02r7pS0mUsf47RR7LtV0eikjzOkddtClAaWe4qz2HD/ZzU97Xtl3G6LmxkFu9ZXBLhv+a74b/mNWe0z8KNN2Pynz6JwuzMBapVFlmce8x8fhIzn794nk65Vgt7vvQlHL3yygt6nBOHfhLl2mfg5w6nfhlgy/b7sOuKT+Py534R9YkTF7QewBDReuKR96IfZLzOLLLIIosszj4yZGuN2w+zGvpLypPkLDOYQ4Bs+f5nm78cxftKZzpGbZdumyheb32O6N2IzImLlTMwo1Sk0hmiKIpWTProaD4RgbEJy7a1fcveHX3H3Wh+6hPY9qu/iEPf9ip0memU5xUAlMmFKsxZ9kuZfSkXFsgn0PGlPCe0Yeg/Ytu3mkmESsiS2kbcrpwv5bqkMlYY+3NZnkTeSVrc36WCXI9tlBuzcsSRiv2KiI50mOXutDuJz01bDBko5qVWSC5AK4mMCRETAigUqcc0ttCgYlFtKr4GURyiKVJ/k+JeOBh26DxRM5/pXc9N8iWEMugce7HvVJLjpYx2m1ykPtu6XLa+LTvkbJAH5KZ4GbGnGsdErHinPlCelj8s0gtKSFWRbaQ2azQaifpqvLsxSpNco98h10s8JV1O1Wo5Ub9i7IVF1FL+YYHVu9uWwhmz9G0rr09OmLyr+giAKMKOz30O99z5cjx42wvgEYmqT1qb1emhNDlpSJF85ITkqpJCRD3WSf2sNm7PNjA/8zy4j70bW3b/IjrNl2AQbIPrRRif/jROHB3HPZ/+v1DIncBtL/8LONHz0G3X4raKl5gyU+8/bpn5aAfHJfl2Ts3QlFzRPn2qe/p5oRsu8sV74XtP4dCjH0a7WQAQYtNlOwEAlVrSLmJUNniZAlgqe72qF45QnhXmtbXeF9LHkLrg0YMHAAAPf/lzAIB+21BvKeIF/I6FJwEAn/jhh6blndwAACAASURBVAAAr/vcnfbnBsdzGCEMjYPluQ6cHBXxksJzcYU7PftPp299n/cMBSmU05xHeqCR19doH2Ux9vdSkYguUZ6HFq3v8j6RWakMdsRrIrfTrSZ+1z3bTXGXY76r+Lb9ISKua0TXvHigg5A8IvkaOlQY7ZkHYBQYchQNyNVSI0W6tjlv8nNo20bkTNBWrHIoDjDbtMdyYOhObaPZaAjNK3DOccQJVp8TOdL3nvywutb2bs7atD611epB5KpKYl7v+NM8PzvPkPe3VoccYpeehJH8JTkXs82FrIlzFtF3TP5kUm0Me0PVQwGNLvux2YnYJrbN9AY79zAMMdao41//6fcDZeD4SUO2nnr86wCAq296vp1TrNR4ls9wq+0Xq2KO+jkNbZ2+HF1Qyzn04oOmy135u7ZTX2TI1oWNdfuylUUWALD4kjsxyOfhdTtAsbL6Dllk8QzHxK22VOfIp5758emEIfxOGw/e9oJn5HitxVtw5MBvYtu+NyDsT6I81sKgX8c/feS1CEMfUW8r9l37BeTyLXTbo7lduz54EACw/+1nhsbli/ciX/gaDj36lxj0NwOUFV/PcWyitfpGFzE+fszGQUa9zSKLLJ6tse5etobeA2e2n1zC014GS0pe8e9rdfM+F8+rM/VRWLPDeFr2KsUrO18eYSPVs0bkcFeqr+OM7lNxccanbCmWsnzAKe4MeM0m/Aqz3UuQLanrKYMeDITYUAmOiJWOoToLgXILw4w5MOTT5PLiDyhTaRnEBWZzpbhUrYgfQb8TZjTDGJmyzGCtbshClajLIFU/tfEYPUYU8tpROS3yiNpEuIScNYkGibMmZEKoidQQF8ltE8dGSF98XHadkLsukT35eqm9+0uyyUK5CvkKi0gjoElUrMA2X1i0uki5URwqoWhSRVOWuiVFMSadpVIl9FGfys7qeDEHS3wmKWqJA+JHifI8jiUhUPp7mV5lOV/cMcvybvseW1Z3+JP7rI1KGr9IHF9/L5H3p75SW7r0pSlQPVEcN6k4DlUTJTjSB+DAiSJsRIhOrY6BkMuenavDzHVt0sZngQimy7aanbWXFSkbyjcrVltjpj5fEPcwRHPhZhzd/1fwckfRDxx0mtdh3xXkmPSaKFcr6HU8FEslOA45YUQYhtxAO4M8uTT5ojgsPHdXioxu/JEv3gffP4jDB/4K8/MVAE2M0YqgTu+poSLY2ji7y1H4FTdDJF+v0yjEnuksu2yelLIjx6kbEoXheG93qMLXtGXV03UhSPZ7Mcf9qArYjwpolPtwIgdR5AwRBx6WU2B8nem6m2vweq3bWKnwOoj6nGPItSyUbc5oEa2fY718Xk+1Cq9P8p4ifgpV9WHXfyifPSnvFYRwJS0hInGABsmWFtIFIFbJFE9TvRIjueRoDQIb9wHrLMSmkBPXinNGx8rz2GiT4+SBekLVuD3kIYZEnQNxXjs2txXH7R6n+4auVyd+fuHcQ384qXAOejbOWwu2RLexaIhVJTT0vbtwyI4b0o+uZJzL4hjL7xqy5YJKreT/NahG2mgOEuetMUGbSriOVmzY90JVfDm2U3fYJ7xlIU8k1SU/7tictXWpMjk8Vwco695J5OfUCVMlltps0m3rdHGW3PVVdoufo5ZR3ld5vlqGiK38DJrFsyMyzlYW6z5mn3MtNnz+88jPZVnsLLJYGpHn4dSVV+Guu+/GS9/3+7jjj/4IJQoWXLBwAtSm/hT16Q9hYtO/R7Hy1Qt7PAjRegBHD/5HDPpbLvjxvtmj5/Xxtu+4F1cfGcd46+JCShuLfWws9lffMIt1F41SE3/58r+92NXIIov1h2wNI7mONs4JrOLqrW/usu2ShqurZRec1IL2tNLNaWu+io/KMm7W2SJeMcEAqb8nP0fFascd8t1GnfPpfz+dJ9lKIXU6KQS2qXB07//7Rmz+wudw3Qd+D0de9Wr4xSGyJWRGGefxCcsEbtq0CQAwc9KyabP0GarVpIRk6bduR2v4rbycvJ5ivyz7XeOpQwRAa/JzVMpShlJKe1Lta0sdkHygSN4bjtax9xPbhwM7Z6Ezfa6Vr5HLMskMfhhKZp31yCc9oVpNqSmKM0N0RCgTuTuqV+xtxTEmDpvQmBo9ocRxWwoBCK3Qn6RaJn6YPoU8yXumQtUyqaS1yU3S2n4vVhu0NvA9cZ2SnCchWPH1oGtcCK+UH4moheSpeURVBgP2daA+tO9VIllS5BKiJaQrfR3HqoncToiU0CIhtkKmYvSzZX019GYjL46QxtCTTd43tp+UMBuX7UAuX4Q36GOq0cCr3vlOfObt70R3fALtjm1byBPh5DnF/ml9ux7CuD/VF0ROydkQbyCfy2Hrnl9EsfwEeu3nwvGa2LL3J9Hp/C6aCzeiMegCjotcroBBsRxfR30ibZ6f5PHly5aBd6hM1uMzeZ/Ia7lSQalyP3z/aRw7+LeYORoCOB730QSvB9/XnJAkUw1zyam5aq3eOssEx1Jz+Eq/rVLmqHlfnkWnjhoX68RRcqFC8uz02eZ4JkoDefFRybFUL+NtL/oo5sYCXD+7EZ5nbR/PKaTXeLFKJ9XjeOH2+rouVGH7GHTI++nzuDlDKGpj5vHUJ8ozS+VLcS7feI3Nvb/3mAmZyDsw4hwWdOb4dztuQcitpzlTPmDij/I86ZGl6wvAEmXCGA6zbVzORV3WrWOrJvo9G2dSQo2FVFPouuYKIVppvpu4Wf2Y06sVEfZ7L6SvHH2xYv8vwkBBi76IjtRshfLZ9SGfrfKYcXVbLaGJh3g8zvcRebBciVGtW984VJQctO28PbZDGKOnnCdymtvsfMS/1UKGQZRsF6Gk/pILJeYGxoqMurex7bhpsVxG6EdoXNbGZXt24fhTD9sP0el59ulrL+6K1KW9nJI+At1OI1YjnluWzQWrXOirqhyOjOT8kHG1npnIkK0ssgBw9NYXYFAowtNSsCyyyCKORr2O+YlJHL38Csxu2YoX/PZvoHCekWDHCbB171sAJ0Jr/hXo97aj17kKrfmXY+eVv4BK/d7zdqzxqcdw2e7/hfrk/0Cx/CBOHP5TDAabz1v5l3rsn5jB9Uen12xQn0UWWWSxnmMdIVvKRBGBWqK1ByxNRJ5+Lf6qyNcqyNTyrKPSJSp/pZ3WhlQN+Wgr10mZEn2uFU1LH2/Njuhq8jXej0eVm87wp88HAPqvfa2lmpb8LX1+w/3s72WiKTsuN0d51/dQ8Vw41aEQgRCYnbu2AwAq1SrrZHmKkye0xj2pLCevogqVtvKxQhwziikUo1wmwkNu0zDrZPUQF0rIgZT3GuQlCYUQoqByW8124jyEWnSl7hQlXedrNSIT/GsnoAphRx5OrCcRPGUVW3xJ5VfklVllO2iRjzg6UnyM+USOlAaT/ChgqN4X++CII0UlRV3LMjlW24sfIN8stYGuOXGzhLLU68k+ihEzoYmpy0THERImdKbDRhDfQlwVnVN8uXF7T0qULE8/x1wxHr9O9FGDYqgwmeSWOcTKum2hmPLlItoZCFKgMhiz6i6z3QWeT6c9RHg1vhcXm1jcsBl7omO44xffjL9+06+iXR/DItU11a95mlLLG6xQYht5ymxznPIzGnSxdd/dyBX3Y+7ES5HPOwBCuK6Dfm8b5jq3Ytc1P4OTJ34JrncKweAyhI6DQpnIGfOGLtXbIqJ0hcpEok2DfoDJDV9HrT6HJx59PcYnN6DTvhbdBQ/AKQQdO8/Nl18DACiW06IkyxEnYMkcmkqDn2nWOM5ux9flkoz+GZW0ZL7jOJ45ZijFV+/5LADg2NOG+NSnzDvMI5+o1SKXj3OOEASpAQ5Cz6rl5eF4RThEwBwhC67mIHG1qJQa6O+5xAnFPFddJ5GNpSDg9ZE3xGp6g/GK+gG5XPQHCwa2umBuUXOmlVOM+Uq8rtpUBnTIN61aeW5OyrE2ZtrtIFmvJffHdPfEvlqgoidRtH7Q4jnJC4rIFPlGQv8Keea7eUl2OtyeBxL6nkY1ZTHWZF911LZ+kkeqCAPrSy88YuXwWtdMkK9RbTAvhMu4WccWDKlqcMXFOFdsRG2770ktMFcyBDhXYcLCtUSM17fPQsHqEyNbPG2h/eKehVRIDcm/45CEv5TLyP4dxAKFRMWpKCrV2k63iyiK0Ot0cPLwEQT0hKyO1Xmu5ArGflgWw0vZSf6e4kQto2aN4MIvex5LP3/pGXT5pLLifkuOwH/dpV9XtGxdKdIrKLK4sLGOXrayuJQjuuuu0ezzNUbnxptR/fg/ol0fQzg9fZ5qlkUWl14c23M5AOCVH3g3PvLanwW2nTvPqVTdj+b89Ri+6g+j19mK2eMvwU23vx0Ls3vQbZ8dCjW54esYn3wC93/hDxD0ppHPq5yFs6/4JR43Hpi42FXIIosssvimjnXzshUrDi3LGJ6eL7S8nORa/fMXy0tMJ0tH1WXNmYkzRLDWHGrbs/TjWjNStpo6zyivmjQyx09l4aXkd+Rd70X1I3+HTW/7ZbS+8zUIp6YxPmlr2sfI1VK29vhRUzQqk5Mk9ESqVMrcK7PZbFCdr5BUzCtXpHYoREf8IGYsyVcatrFFiUiYEn4L9KIS4qRzbjRWXhaZIwpSoiqVsoEhU65CSeTTkifvokefpbxko3j8NMKldgrINRDvSW0utCpW8VJEQl+Gviriq5Wpojf0MrMMpRArKSrG2WQiW01yPDQMxHuTv0o+5qOJn+cmypVCo5Ak/S4VQyFG6Ux9jHjFfZvkrUkxUry7GCmT+pkTp0B5vrlE/SscO3F5A/Hs7LPLtlU9apWk0qN4GS7T5EV6ZjnkjZQrQ52uiOiYuHmeG+Hkvn3YdOBxfNfdb8M9v/t+9CYmMTNDg3AmW6enjXdTqXGcE3EqFu27DIWiqAPXc+G4rqFfjtCOMD63dnMDuu1XIgzzcD0fjgP02ccD+Wh5Vt7Jn7uBbU+ErVhAtX4/cvlZ3P+5/4BKbR9QAQZd69u5k8esvlstw1+dYLLFGbXSPsV3iLPKK68qGLUiYvW58lzuNLyWqIR3/CnzF5o5auqWuTzVWcuGmIrjxKkMg561/SvvsRdpZ0yqlcZ26fou4BQQOUIIiF/zlHqBrmX73uX3If+UaLZ4qT5RdYf8osj6ZrFpKIpfNPSkQgW9fEmIt3HP5jtE2/v0MFy0E6lxGBcLnKMWDOHK58s8Pj/j1QZJiCCKyWVY8tggtJrXamBlaw5yBlpBI/SaqDaL7pLXudASksX5kvzOMEomHIRWizenUbNAZAu55P0mTI87csuk+ucKtRPqx/36Ef0jeV/Ll6ytmx27f1XK5HmyPkHbrvew3+b2hhZ6JXtBz5FLFjmWzHBdzevizUrdlu0koI/16XSTfmR2jsmVCf2B7VSk4qjPaz4IGkAUoR8EaM7PYsDxPb3FrnFxbFXy8PlCR0pfm2f3fDQS4TrHp8h0fZ0U4jbqOSnjal2cyDhbWVwS4Xz0o3A++tFzLqfxylehc/tLUP7vH4Z76uR5qFkWWZxbPP7W5+Pxtz7/YldjxTix70rMb7sMN/3aLyA/O3OBjxahXDuIXGFu1S2DHVUEO4YGxNX6/ShXv4EHvng3et0MtT7X+L6v3YRPbX8Us4VntwdXFllkkcWzIdYRspVGpE7/Vp/OOJ4vT6mYIxZ/O3eMbDV1wnQMMznp/5y+fH267srv6HFmJS42yUsbxXM4V3+wKIrgfeADcAD0X37XyP21fawnJR8loi3HDhtaNffzv4rJ578A29/3HnS/6zWIyhXklygUAkNPpG3bje/w1JPGh1iYtwyefKSEighRXST3RWjKBtcygVUiUhGSKoAlekMJjWhz7XyZSlkF/j4hmSu2cq8nLpT4OFTqC6VAtzKK021b/QIiWotE5IQSiTOmDK78tIS2lIhY5WJlQGYdmUUUZ0ekB9W/VBL6k+R7AEN0T2UJEdK4Vd2FMHXIwVJbSEEy9tUib01HyDM7HRC1c4rygrLf+4Okp5lQOmWR+30pTiqlKP4EURxm4JUhV1/G45Hn1eN5SsFRbSrvNCEB4uAIwdLfdT7arz+QKmIyS95q2nnI20x9E/B70JM64XAf+Z+J1xK3XTGP5nOfi/w3vo7b3vhvcO/7PoRgcmrYV6zr/Mxsos3iNuE48PM+oshBoRDCcwrxvCi0rlDIoTrxWSAKUB3bj+NP34xuexpincS8InmccXxHUYSxyQeRL5zCI/f+KXL+NHL+EMFtUqlRPKLxTYbiSOVQMZyrkDj/NOKcjlU5vqmp70wVVk8XasMez/HUkQMAgC6V6SoTtoSyzL7tEGXx6FvEYYJ7A+Pt3B5Yn/lhHy97bC+C0MO/v+UzeOH+zRhrF+GFQoztpHo9jvcY5RGHjBxC9r2U8fwivfjaNocWPM49RLh6fXuZHwSca+jD5ROhntpkc3Gva/udPG7zeXfe5rQNE3b8Gl8QpX7oElnzclZesZicG5eq1kndNSJSxGkYg5BlkuOqK04Kn13Ox0JhegP7e6PLcy8YKlOZMLRRqMsgniuQaDutCBgrC5VOonPpO+qQdyaeTmolRcwbDZdsBeSkPtvS3Jn0IixRhREBeXbiyRGFzJftfHJFKkp2zTYi7Fkfi+sm70HNbWHqOtEcZ3UlYiqvsi5XBJT9VFkhckEO+x66DO1WI76mpzZvY1slz31YfrxEwb6nvfKGWyb/PuJ5ZnhNJzlay46n6yOmhqW5ZKefHEY/T6XmrgzRuiixbl62ssjiTGLmzruw+b/9ZzgLi4iWkeSzyCKLpTF/zbVABFz/pp9B48qrhj8UCzj0Iz8GbFmdYzVz9AewZdfb0Q+2xn8bWmq0ACfEg5/7j6iOPYg9z/0lHH3qdnTbG1csq/6fvgEA8H56gNr4fnz9vj9Dv7fh/L7NrJP48GsskXT7x7Yl/n7n/qsRORH+3Qs/hm99ZCcmmxejdsCfHLr64hw4i2d9lDoFvPCfb7jY1cgii+xl60zX4Z4twjVco78KEesC1mWtaobp8tfMqVrTVucPJTzX/YUA1MaNs1CftMzmg/c9BADYG/SxcPAgGp0etu2wBw1xroK+/KyYxaWfSbNhWdQclZF0DCeFwvg5qfL5ie3ElcoRIcrnkgp2QmUGS3kEGKIXTaoS9vtJDyVlt5RFTqMzQ6QspwLtoyUfMD30InF8IVviBY2Pj/F7inMghTJmKPNEtIridwiJE2q6ZMyp7aTYqDX78t+Sf4+Q1ZgrFXu1OMm2SKn/VajAKJW+MOZ1WsgLLIpVBa2cDtWtgtjrLOktpmx2wLEhsE6Z19jDLc5gJq8LoXub/vX9AIATf/g8thUVwQYpjgw5ZOKiqQmFmPXFE0mhqxpb3V6H36ke1xny5qRcWGUfKMM/gKEOpbKH2auvwfi2bch1O3GlvMNH8Nwf/zF85f0fQm/DRiwS+R0fs2tOlkf5QR7d9u1wog8il3865kp1iTb2ewEWZ26Diwpa87fikS+/FZc/73cwd/KF6HU2xn3puNY3tS8ch/e9CwhrY3jsa3+OXG4zcrkl/nHcPmQjbdyxAwBQrtSRaNRUDJW+0nPP2ubU1X4/E77rKF9FRY9qnUcPPAIAaJw0rpb6rkv+nWhpUmmbP2Uo+5GGOF9EyDh3uaHNMc1uCbc9cA3a7QH+7PbP4iUPbUIx8JEnWuF7GsfW1tWS1bPF8ThzyhAz8Vfl1QZyyYTiVEosr2fjttu1cjocp4c9cbfseOrDLdus3CZNuFs9+3Rb4p4ZUlZks+WrVi/P1xiw6A+GfSIUO+frb0SeIiuzzMLk+dRs2nUz3+R9AjY3FMhpmh6zuSdfsL+XqF4rr7w0GqHkg/iimqt0LWvFQjweWY6QXin4aXbWXBoF8gHLJbbX96Cv8jR3cc5yYzK8lU/uFqj8mBNXzbfzbfbkx2V9V9LtaaDVL07ieC2iq2rXpecmZGsAevyRf+xJEbVQgOt5GFAZskol4YkpW00iXvXaV9jEkFPinIdA1AgUO4VUYcT2MZI1gnO1vH4rb798zkkiZxln6+JE9rKVRRYj4rG7XoUb/vgDeOK22wFsW3X7LLK4EOFvWrzYVVhz9LbpOuEL7c5dCItFXPvGn8Hic66NhU9keh3lfBz5/u9HtGe37d++Dr32dfEbQItPW0EnKfQyd/JmPPqVn8dVN78N3daWZYIAubedgLOjj8ce+i/oBxuQT64CzuI8xh2PXIW/v+F+NAoBikH2SJHFsycG7gCnpucxdXLsYlcli3Ue62BmjBKf8bv8GnlKo72fVuYtrQa2PBPZhLV6f8Vrh0dk1pfxCVbxHBtVj3Q558rVio+/5M/n0qpCQsRLue++L9tnsYx/2nUlfuSzn8FCqYBgbAzTlIRfnLcHYPlstYhodajaJKTLc5O+WlK028plVZMTlvFTUxSIiAVEGZq9lA8VESytmVcmsBf7aA1YD6EtVl6LfAyVI7UnoUPlMo/LrHc+R78VZlrFHei0u4n9ikSo6vQsE7+o1Uy2g8M+LJalSif1LCIMRBqG/KUhqiLUK5cjosNs7AL7QOia1PrEwVK2V2KBQnaEIg59p1R+0v8n5oKx7soiq+0U8qYpSsFLKldOh21gbVYS94rZZqGPBKLiFwahjZUlaoAA0CJfL5Q3GREyn+VJPVB8jB6Rtw5fWOQfVlzWLlZeoaAsOMdCMERPhZoJmfSolqZx0euKz0auyZKyO3suR7VWh9duQ3l3sC+Kp5q45id/Ek//l/+KYMeOuM7djpXboE+cuBxjRMQmCjUgfAmeeGAbCuXHY5RRfbzjH/87+veMofsLZQBNtIgGDjhuc1Tgq03a9TexaTPPfeVb4iiPm/OyRGHpcaLk/WotxY+a75uzxpPb/8BXAQCDLpEijhOh5xrPJWb+q2NUksvLs8kq0eX+5YG19XjNfveLm5HPFTAoFuH1augN2MacoEsFIgg1chx5vNmmIVsnjVqFet2OWyL/KAqtj3LksYJjQGPNJar67TvMO+rvD2/hflwVwLFY3LQJANBpWXmLc/RGpJLe1MBQmDFy1dwSUVKf6Gs0vNcXPK0QICdVKDm30TUtBImUXfQdK2ts0pbIVqqmcptGodPzs9Dt2J8OXnI7ottS4FO9NK/qMUVzUthPovoh5zjPT/Kx075ew9UATuI8NRUOFzJo6YONgV7T2rYdib/nJX7vy4ExdTyVq1UL/SULOVr0QWt27Jwnpqx/q+MTrKPm9R4Wiw389as+ge985wtwzfXPAQCMT03xlEZdXEKsopX+vATeZp+kn09GcaZSv6/+jLm256v09sv/nvw9Q7QuTqyDl60ssjj7+BTJtD/9yY/j6Zd+K5D5b2WRxRlHZzMfhPldt/teLodBuYKtP/6v0b71VkSOg5kf+kF0N60NSe60rkCndQUaTVvaJrPuLR/95/NZ/SxWidc8+i14940fxrd+/QpMPMPcredN2EulXrayyCKLLJ5tccm/bKUzhcvW1Y7Yb/W3/9NnRda62+n5S0mFrZFFjvJxWI2jtXKVhuWd9qinQZzOELFaTbHrfEe6vfRdXJylSmTlUhH37N6LR175Cuz7j3+AQ90eevU6HnrgYQDAqROWuZMynDKKcCxz53PN+2TVsmkbN9nL2uS0fS8T7RCKMkcew9yMZV/F8Rufsv3kMbO4aCjHLLPXQobCgdASohhEkhxmSCP+vkBulzgAWrvfaFjW2OtIga+XKDeIzzPJCUsrVHpUFSxS5c1n6rNNHy4vVh3U34laCYXJxxhInD1uLFqd0/03VOlLIlBDLhQSdY79rHiMfozOWMZeHmBAepwks77yw9L2RUmTCaUk0qamkcdUzJEKxLGy7YRMddhGg1Sfhsxi6zh59rGb4gUKOZMXmtpa4boa3+K4qQ+TGdtqbSgMQ6uyGO2S74/Grca9+qofklfD8aOypEIozskgDNHZuQvR5Di82Tl4i4vY8a9+GA++70Pobt8ec2RK9OXKC40hujIgYlUgyuf6QgCYqQ9tu3nylUL6/mzg9bRhy5ZEuVE6Cz0ihtytVTYcuf+IOe4cy10aOSJEUl/zybXaMG9zxxxRw/lZm2tCnTvbcuAIJSHKwjr3ND6FXI2P41XH7kR0P/Ch53wEtz22CfVOATl6K+Vz5Km6Gp/sKypJNho2h57gIBufNpSxWjXuVr9PFJyqhC4V8gol41aJh1osU9FVHM4ohv+tHmyPqmN9vjgnxM4QrqBln27PjhNSndBxhwizn6e3XShkl4hWZNdwh0qJkNplh+dcsLKEaAlpEkKlARf2k0i/rkVXy3LFlZQqolB4QmlxcULKNO/LT4sI0/KVOUkkNYq9Cmm6xu9SmNQF4HIMDHjd5XNC4sB6kh/n9lPlEnXvC7Xk/cTTGLE/F/Pu0p+tzJCrH8jVmuA4KdFnqxsj+i1EUYQwHKDXaWH7vitsO6La6Rit6pz8rrZb6yqp83Ixn6bY5fVbGVnL4uLGJf+ylcX6iP6H/+qCln/0pd8KALjy/e/Fky+844IeK4ss1lsEW7Yi2GIPPINqFVe96Q34+rvejc70hotdtSzWGK988vmIEOF3r/8wvvWR3Sh2L3aNssgiiyyeHbEOXrai03w7l0jyNhyt65YATZx1SKq4nYna1BBhSh4LUTorpWMl1WhiQEzHHpVMjddLpzhZZ9lYy53SV47VVAnj2qR/PsdOHHW8Gvkgr/rufxH/7YZbbgYAbNyyCeH3fz/+/tH9uPNTH0V34GLW9eMMZIEqhR7X1Icp9GTDRnto3LzZ1pcLCVucNYPWNr1vGvNzqiQAoFq3jKjUqsTRajG7LO+mghSYeDyPaEkazfEIs4grJuRLyl/Hj5Jr1Uvyk6KYr2TbjY9ZvfqBEDCrj9AU+W3JTytIZWSFbOTy4gD0eV52/ArrBQxVpNod1oHZX19+UrEfTpQoS0vKpCZY4KfQNdUh9phR9lY8Mx6/EHOwlJG3EMdKDml4pQAAIABJREFUaJ8fCK2Tkl6XTUBEICKPoS9+nfgWRKJ4HL9m47DXk18Y6yFPMioCKmvtuBpz5OH1xBekzxdRIYlTtNnGGjPyFVJ04nYZzjPKLJ+aNbSiUhYHRMiSldVpEzHlrWWIAEnFzLYTmqfrRIqJg0GIzvZdCIIBrn7dT+BLH/wjBBMTSOPweWaxOUxjdK9aoy/djp3WFkRLgo71xebdJsSxZYd9FslJFCSg6ysasRJiVKTnyigNfY1QGEtvP+TNxr+s6fgrRali1832vVdaSfSVGp+kd1LXEK2I47Y9L/TE2sp1rA9f81fbAQBlA2Xi8X74sKHwzYHNBXv2XYbvmX0VvPv7+MC1H8WLH9+A8W4B/a6NGaE2ZaoSbiYi1WjL18uuyy55PvmCIXKFks2duSI92uTLJdVRjvMC1eg0V/U4FgNyHaWwVyAy5k2abUDQtPPpdImc92wudlyrTz8qxG1a5AqFUtVQtcghb40c1xKVELuLSS5UGKPPQsQkC5i8l2se1rgRUizl0VAeZRA3jGqI8coFeRKyQG4fdhdZnsZlUv024v5DpJrINREzgfalotB9rWxIrh6IeU7inwqVj6h2KFTdEZLFZ5UwWY44n0Lve73hddDn84+Xp2oky3TEJ/Xlx9hDFEUoV6rYfcXluPw519kx88n5brUVOstW/qS+h6tco248p5z+eKurD64czrIHpfQckiwv42xdnFgHL1tZZHH+4sFrrwcAfMff/RX+pljHqfNMkM8ii3S0vrLpYlfhGY/m3n2oPv4YyoeewjwTA2cSJ372jfafkwfPc83WX0wf55P2+Nq2f9XBGwEAd1//N/i2R3egmiFcWWSRxTqPdfuydb68np6JWK2u6SxsOkuadih/ti7hXX6eyXqfrq+8N70JADB417vO+vhCoa56ztCUdd+Vl1u5zMruuWIf2lfsw79/7HH8q8cfxle370ajUMLEpD2JLC5YFvfpp56yeslfiuc2S05WY9EQrHq9zmNbhrQ+aZnTPNEI1xOfht5ObUph97TWXX1NNIIZ1IE4McxUNuitJDRGaIfLzKZUC3NET6Q6KF8xKYCpT6R+6BEREJIln5cYdRok+VMxr4nlKPNZZAazkK8lztf+n2zDyJXyl7K8Oif5cElpURysQmJ/pfz0u9DAXOxVw8x5idnflG+XsslS6NOnssRCngrFpC+YzlWIkrYXL8ljlrhSVRtYdZsfu5rnYd+FJg4Vy5Q1l0KZssVUluTx5M8llFNZ614vyUXrBeJVDBMJvUCeYfZJcBBRKK6I+F8Rj2ltOEYEwPXzPFdxR6R+pnGQRILCwQBOv4/FRhOzswsY9I3zVSKvzSeiEIuUiSTCvgvZt1Kq3LjbruNtV1hb5omCxH5Z8Ry51mzyGnm0qxQ3OqvO39dUm1HB64YoYKFic9T4lL289nvGUeq0zH+qKwSHbVkt0zuvTo5gQUp4RFLnDAk6dcLKuWyHKe0FqOGugy9G1FvAB2/4LF7y8CTKgQ/HESLNw9A7qUh0e6Jm9V2ghF9j8WmrZ2D8unLFxoAQjBBJDmSM1nDOjPJ2PI33KOZw8bogwhUODOGSD5eQuLwnZLoxbFIhNA4VTMvWlp5v86lXMP5QsED/Qc/aqIekmqfaIOQ12A8kW2j7ic8WLIMn+MFrPadxIi5t7L3HFQnkRjkDq4c8qEQtFkKW5h9pzpIqrM/yxMkSj1zA3EDzfOr60fWt9hKfNkd+aAzs8bvUDgOtrOD3dnu4uqfZs/E4tZnjopxUgfXFUe07cBygNjaG59x0M6a2XMYSkuPmTIGeaIX/rRTLi02h5TEIuPLz22rPpmudg9a6fRYXNtbty1YWl1Y4Bx5/Ro/36U02cb/usQfwuZ37sOa0bxZZZJGMKELtkYfhNxbjxxev1QQQYW7nnotZsywAfOJFRwEAVzy184z2+/bHr8FH9j6MuXKA8vyFe9Q41qtesLKz+OaK+cICHp14DADwZO1p7PjGRvzEwe+7yLXKIotL+mVrbdmBdJzp23/swTPCFyXmeYwsVlmNtSkPAkDkJDlc8T6xAlHKKyNuAmelj2EmJZWpuViZkOUI3YUtP/13oTJL/x8y+3rzC24BAPTIAfny5z+PW//mL3Bs50706mPoMCsr1MFhpnF2xrK/DaY0a1Jno4JWl15STJzCVeaRGctuxzKTc+R4Lcxb9lXjSnyesvy2hPoIVRHphtt3iFQF5CdJLVBDQD5aQkOUMZV6ojKYQ54TM7eusob6tN9jbyu2eYftVyiK82BTUT82VBn2jeog5S43pWwY89F4DKkTxh5QvaRflj5L9MWSGl9fPDsiWTkeJx9ng6nkFfmJGsrfy4/VAcXfVNsLSZJnmrLCUg0kYhD7fzEjz7YobG2i+qInUdx7KlFPxfE/uA7B0Sp8P4exVz6K8g3HrJ5qSfXp4RKO/8F1sUriZb/8hcR2sUKk42L+H/bi2D9ZAqF283Fs+7b91iYp9cnBoI/H33pjjHBte+03kN/ajvvCickjDlpf2Yzep20Zbm5zA2Pf/wU4jgN/dgZRFKE3vSHuyyN/8SIcvOI7MPBz2HXl32PjlvusLTjOVX63sxWHD/xM3Bc7rng9AKD4wAMAgK0vNZS6VK2i0/pR5Au3sa0/Bs//IEZFv/dhq7XjwPPfBMdJJnN0vDB8OcLwdUSw9sP335zYbik23++/E8Ae1v/9cN2PAek5F0AU7UG//zvx3/zc94ys52Dw44jCu/jto/BzHxqihkQTqnVDbJqLPwoAKJY3YO9N/wP5oi2xDHr0KBvYuDj8xJV4+Is3wnULmNzUxCu+1RCma04R4SGXa2cD+OSHn4O5GUOIprb+HSY2Pzw0mA4DvHt8Bl4lxMJYD//5cfpnYYDXXz6zAqJgf/jYkQoemC8iCpu4YbqLl22x44f8Xei553l4+4PPwQcX7SWwXKZaIbmZ8r+LIO8+Q40GKXRVfCu/RK5kx/hNC/PGaeu0hshWkfPmgN5cZc4x5TFTUMwT6apOCAE7BABo0WvPjegRRoXDSPM8eWJu365xFx22SPrezGtUKx5iXnc/2ZJx1oJjQTy1vM3fXVolxBWIVThTzytcYdDsEGmj+mKZ3C0n9cyR9uoUslXwkpxfqRLGXod9zc1WXs4Xh2yQOL5tY/dMzd8xF7fUxSd2fwavfugujHVqqH7jW3D1E3vwgm9/qZVZkFps+plwBCtrFDc+/YyX4qWuFvFzBz/iPgyTzztrRcWHzzPpHZJ9kCFbFzcu4ZetLLK48PHELd8CALjlL/4Eh1744otcmywuxZj64XsvdhUuWPizM3B6PSxc9zxEnhcvUzxyx50ImjWg3VmlhCyezbGhVceBsWMI2oXVN84ii3OImdIMpttT+KGvWHLiyMH9F7lGWWQxDOebgbN0JhFysbEy6vE67VSc+Vv+ylmDYbZ85fKcVHZheXtHic+1IFvhcJE6/02pz6Qy+GfqRJ7e71wzIssyQeny0pmhlHKXMkenG6v+a74bwOkl4M9lrGvPPlGSpw5YVviJx54EAEz+w0dw3V/+J3ymNonFfBGHDtnfhZKM1Uyxq1azrNwEXeyFUszPLSS2lwJeKVbQs4fOBv2xhJbUqNQnZEgoTJMKXOLCDIiqiCdUH7f6TG+wevRS3C7xMgKiSuIVjU8Y2iHUSBwyoUmlojyg8olyhUqJD6X6Cz3S33tBErUBhiideARFomEtoojNhp2r+GXiwfWplCcVvjgjLkSJ2yvUZkJNdBxxrNqxqlkSwVJGMvYa0/iNOVVJjllHnmIx8sVPzlVl8tqEyCnLLO+0MAWiLyws4ZRgqBQpZb1Ox/pIPCpxGhqNdqKeuTzPm2Ov3QmGhfJgZY7HVjOJjA7Y1j65F5WKbbdAP7g2uR9T0xv5exXjX7oHju/j0d9+DxZ4mBPHySMi8ql5U+N3z+W7AABbtlI0hJl5zYltKtrteOMbAADdv/hzAEBtfIKnoYx8cg5aa7Y6vUhgtUgn0cNlKy6Sc216BcRa5izxMlsNXrscb6eOGBr35P2fsr8POjwiOXk9277bMpRmcZGKoIEhPAeePAIA+Os3mUH0ez9mqGTfMXTkoSdsvExsMK7Wzr27AQD5Mj0BSzbe/uvYh/FHz/0Mbn1kHPVOHgXf+sh31XdItIFOuUP10cWmbddqs63o3dftW/nimlUqVu9J2gWUyPHyPClf2vn1e5wb++QxEf0pEAkbEJVvtMVPHF4H3bYhUF5oaOFkjTzLMXJta4ZwCdzuNgxl7jXNDzFwbP6MfNvez9ncEgVWXtS2NncG9t11OYfo1ugmEeP0ONKHFjJE5CflSlS1rUyzXnbFBQOuaCiZ91goFVG21bGjVp+FEzaWtk1bwdWS0HjWS7WIq6GVD7yPhPLh4obkqrW6vP9x7BV4PxCPjwsscGpheGE4RWvjjVsN0axxvjsw9gQO1g/h/3v/vwEAbNi0Gf//VR/HrquuxI+1fgS1WGhntecaPVclTcvSvDahje4aJ4NhT6XQ7BGXeJiaG1aPlZE4zaHu6OVV6ybci9gIK/dOFllkcUZx8LY78NXv+QHcceRJPPfUUXxLv4uJES/6WWSxriOKMP7le5CfOYVHf/s9CKsZ5+ZSjm/ffwN+9Gt34OPXHsZCsXexq5PFJRhzhXncu+l+7Jrfnvj7vdsewCeLn75Itcoii2FcwssIV85erBXdWPb6m0p9hmmfrfOkbni6LMZyDpMyH8tKOac6jDzuKtlgFyu3wTIPmlUyO6NacDU/jFExUsUxlY47rQdavL7fLpmNzKzPzVoG8ujhI3jouufh0zfdgV3zM5jvHcB3dBr4SBTilONido6cLa6VnyWSlfbBkqJeqWRr+uV7kmMGVMpLQms81kdoi/hNWuveJaohhLc6zQxsbshLA4AKuVjiM3SpRihelMZUg0jF0IJJ15l982Jwhxl8pq0HkB9Z0utGiIWyeELExAUDhsjWMClFHgARmC5REykolkr2XSqEQgv7/STarfLEE9P4leeT2q5el3KdMoRC6ZKqVlIJHPKVkm089OsS38mO22a9B31522hMkA8nHy+eR9r/RR5vMU2DYyL2uAnFFeNYYf3lZRb7jA2EvHUT5wEM/diEeHbIMWkSaS2xX0Nl4HmOQgVVuXazga2PPYr2IMRfvf6NKB89BuBYzAVrEaXssk92791h5bAvCxynOSJscYac11We2xV5/RTGJxP1WS1Geeso1rpaYK3hID2nn8F9RKqa9E07tP9R+zNRxsZJW0Y1aB4GABTHmNknv27Aa7O8wXhk49P2vUnPvzC0cS8Et0k/qmLNxsDOywylBDlPTx80fpLjG6/0qqv2AgCmtu7BD7f3oPBgHx+8+p/x4icmMdbNIwyszzpd8Y3s3KV4J4+q8TrR+Ir4PURDGuRiSimViFVAxNaNDEXyC3be4maJVzoYcG4jijQIxGul/5xj51+oD8WPAiYGWos2Duebx/nLqaWngHxlAz+tjXTd9OeIcGmucO13r0DfLh2nJTTc2sgFvfM8jb/+0sMtQVt4bqGQL85RVOf0irxvEMXrNa0NPEeoIfePVWvtOlp0pSZqbS0U3tU0vZScCMR8p0jIM+e2UNwu8ZW4eYFoO6euGKnuUJWwOxguQ52qGpKl1RLzzjw+vvNT+IF/+Da84MHrsThnXLsbXvhClMpluJ6PUrWG9FU90tdqGYddlU3y1EY9qKz6nHKeFpMte25KP4+l65vFRY1L+GUri/UU4ctefrGrAAB4YMNWPLBhK75wagEP+QX8+uIJfNgvxMuksshivcfYieP4u//npxAUS6tvnMUlE9/5pJnK3n3tx3D5TA3OIMC+k2UUMh+uLM4hTpVnMNmawAsevP5iVyWLLEbGunvZWnNGMpXhHJUFWfXva04rrD39MDrreYZqOKNKGVHnkVndWJHxTGpxmojXfSfXoZ8uwte9zur3DHEQSxV7UNy+25YtHHrCfLV27rR15DnfxwKAd335n/FTR5/A/3SAGdeLUQf5aqktxW3qEFURl0vqTWN1y+YJ4RLHKUce0hAlEZeG/AtmvbV9hZwxIQVptFTZsB65OGGKd6TwPPGH+ol6DDlZ8moiahQbqjiJ31Xv2PiFCJj4SsAQTRRaIcRmcbHJEq3MKhUexUESF0p1iqKkQqM4VKpDviBVwiRS1iskuVsa/kKyHDeJVKl+Q3VQnoef9IGJ/bXYNvkC0SM3iYyFfaGXQrYitpH1kcaS+lJokzzNhGCpPrFanNbyO1ISs+MMyKVZ2ufi7nk5cgnL6gvbtkqO1oDjptPh9q64GuKL5eBGEcY3TsPfuCFW4xS6mMsRyeX4rI9Zxn96o/zn2AYQn4ccRtZz4yZDCjRmBm5y3K0dHV9ZsWzUdD4q2Z1G8ZdHmkO29vkr4j5C+aa3Gnfq+EGTvu4uGtoi5LNQoJJoZG3YJkrhcdx5RH7q08aJqUwZj2dH52sAgPmO9XmRnoIVojcn57g0kONVnKgjhw7Y/jttjixVt+L7Tm3F9JeKeGT8OGajY/j4vqfxosfGMdbJodsRP1TKdfKl8/jJscTO1nVU6+u+JH4TVw0QMeuRt+qUbQw5Hq9jz8ZeRIQtjGw/zxUyZn8P6L8FACEmWBfbN3CtDXqRrVwodgy50rhzSuRmEeEqED3rL1jfdOaJWpPnlisQTaSfXJ+8urDPz9DmpCAQ+kx1Qo1zIlAelRWF6EYhlVt5nQ15p9xNMIk8yoRsUfHP4dzV6dmYKavNfa1gYANpztMn/5Dz7LPdHiS+xyg7gepuj6qHLK/RYr384VLjHMer6tjuLCLs9fHUow8CAK667iYAwNbdO1Eol+C6TnwPOF2k/T3TPLRlz4Lp55Q1lz/i7+frwSn1fYjqPzPPRlmsHOvuZSuLLJ7J+PiY3UTf/PRj+JtiDc2LXJ8ssrhoEUXY+PDDGOTzaE1NX9BD9X/8xwGc7wXV6zN+5BO3AgA6eOq8lHfH0T244+geBAsHcPnsGN51y/244nglfhHQg7oeQj3Pwc6ZAjb28qOKzGKdxmKxgYd3P45rHt97sauSRRanjUvuZSvtpZPORK6GSC0rL97g9BnRYXE67spr8VcoYcTfR8dIftioJcHpzc6SxzZcE8xzi7ROPKnOsywzNJQb5H4jyl9FRfG0qOT+/Xa8vXvXzss7U2mxJSE0YIJZ3ufdbEsYAiIyO/YYwvW8598MAPiHz38a/+KT/4Anr7wcnWoNJaENrMP8nGVPTxw3ZbCFBcuytohUKUMoLteQR2Gvb0KChHbkU2hHmZnSWr3G73Z8oTtdqr955CGNTRiSJo6VUB55Ugk5aNGjJ6TqlNQP1aRD/y6H5ViGVaiKkDqPmU4hJVG4xDeGvAMhSQ3yesRpqlTt3KSE6LJuad+SQpHIVS/JY4s9w/pCpuxTynvDYa0ssZAzpl9jDzNxwKT8SPRxBNdKHK3GAj122AbyB1JGMucnfcPUVvHvUn7sKuud5I6ViHAN1RLV1uT8dMTLs9AYWHq5dTmuBm15MiXROyGzTaKNfSJc+bgvBtj55BOIfB9//+Y3o1KmF5IvxIvIKzkx49OGIGzYNM1zsePIE6rL8e5T3mxig21XJnKL/+MVdlxhXuo7nk96DlpuvZOcg4aKeSkPw2VzWrTk39VzyTFPNPZKXHv2Wd3j+9b/41ThcxyiAw0zI26fsP5tLRqXKs9xHeUNdQnJrwk41wxC67tKzfhum7dfDgA4Ti8nr2jHaXZ5XQ6sJhunDTlzIZTS/t5ctLlsQAW7fIk8pVwV/3L2uRj/X2N4cPpkXD+hNlKkC8sh/uGKWbzkiXFMt3LwfSGy7IMur+PYT8jaRSjMoGflDvLibBHVydlcKIRZnyW3k6i/EwzVPkPNdz4VD8vWRvJH7PbI4YrsM6ICpFsytNAnGljgsJw/qe2sjzpNm3edApFc8s3yVfYV+Xj9ll1nQjcHGj48t1yxwnqIUNpk/ewzF4oDJribCqmh7sFCnuRdaGOsG9jvLdLkqryN9Yl0aVoo5u27S3XSkGROIVeQJ6EbJfYn/Xb4GVmfjY2TH4ih6mS70MBnr/4iXv3h23DLPVcCY3bwK2+ye265Ps7VAM5ZEZfSiNNwFUhyHj9bvn48R5xtRmi5dGnq63lba5TFeYhL7mUri/UZ/s+ZmejppN//N3tvGmbJeVYJnoi777lV1r5LslbbshZvyBgsy2ymwWaZaXZo2zJumDHeoWlMM9DGkumGYcayn4fuZnqgAWO7h27Alg0NNGAb74tk2VJJtWdVVuV+9yVifrznjZsR90ZG3MyblVWl7/yoqHsj4tvii8gb7/nOeXcSj918B+C6ePUn/hu+edcLgbzRqxhc53Bd7Lp4AalOB7l6DblGAx9/17vQ4RJEAwMAuO/cAdx37gAunT8JAKjXJPA0WZKXwHLRwp1zRfzr+0/htvl8P9UJf0t2dZlg3y0Ce1fSKDHZssH1icvFRUxXJ+RFKwTHnKOxzXEMDLYT1+3LVtQa+FGjEdHHh6zH9f4z/vWyg3mwLN8mSqcA/2H9tclBvZp3YMhY9hvkLygYUfGYq8DXYeWNCJFsRY/zZlwNw66/rn3fe3g/AOBeftb8W05bI+su8OIX4sTtt+LGD/4uLk2+FJ2JSc8FcIIM2TQj9AuXZU3/+bOS50Rz6Xj5sxw/s6CalzQd77TcMpkszael+g1P5wO/fimb8u9vsrxVm/lluKY/Q+1Mj9FgzUmibJOyNPrDyE76/+CFOSXpOGfW5cBSBmZlRX6EaQ6mHPUEqpVS9iWlLm38rBqqEl0FU2l1MWz52qr6B42Qe66EHdVGpXg8WTxGgTX/lUXdWU/zGDmqEdNcM35NlzJoykT1GKFPa/CX5Wr+H2XUXEabM+y/RqMz7FfCUpdEOnmxHxkvBxqdAxlV7vWYt4iubj22R+cE0NfPqPQuz7ph5zlWZLy6qptJ4tjpE0gCOH30OJpuD597/p0oOi5QraFQlOMLZY3ESx/zZLZKU9QoMtdZY1Wu/cqKsBRFarmmd4srqOZU8ubVo4/KGDzwgGzZj/BbPLjSwQ589p9oB/McxZVcRS07GAHBZ5G6VZanhAWYPXwLAOAS52GvQ0aY96rTERa9uiguhsocd3ucz9TJ/Pqr/wwA8I657wAANDoy9mnq7WaYOylDusZ2NR+d1FOvUT/apCMpb207QXYzK6sAcrtkLi01ZbliL0l6I9HBy89U8O6PZPHFwyve2KeSypbTbVPZTzj4xB0LuKPjYHYpA8eR9rgteaaqDtZOST+sNLWersw5zc+XoNVe0rPcA7JJ5o3rijbL6Uqb01me26SjZ1MZK6mzQyookZP5mqV+LJWnG2tTHPQ6DcnLVaXLbZrHFSvy90HZ9lyReePYabfnZ9u7Hf1bS9bPVXZcjm81pPxsSq6J5fD5nuR9R31oV8tXSRefjdmMMl/yvZUik8V29H9+8Th+UWTuNWVzOhRnaT4tZaBrbS4hJbOXL/Q1W3prtjp1uJ0eOk3pyz3f/t0AgEM33cq+pPBw72FYW8zAEvwNt1kn0sGVSFtjnKJWZwV11gY7i+v2ZcvA4GrEpW99BQDgxt9+CKvPuRnpbAatQ0fQKZhcQwbXOFwXuy9dRKrbQbFeQ67ZxB++7k1oZ7KoN2Up2ZWa5fYjjwAAenzZMrj2cefpCu48XfGWMuf4g39pSZN2M0jS6eHepyr4Vz/0JI6fKcBm4t5kmi9vdhUz1RJ2t8pXuAcGW0UtW8e53RfgWi6enDmJW58+utNNMjCIhevuZSuSgdokw9SX9wSdavyr8wdYpsCnreThio6o+DUqqqXyxiSgneq3LchI+Yrrr00O5qkIlaFpffwYPDCwBjoYFQ7TlG2kNdtoWKPGfKP9cRlQ1ZzsPSBr84uMtJ86IQzXqWdOAgByjTxW7rgL7i++G5WvfBGJVAKVRz+O1P33ozezy8vFpMyBasAuzEnEUxkEzYnUz4Uk7ZwhM7Z//162y5/rqUldhjJgSTJVvYREOFW3kCZLovlh9Jo2WX+zpVoygeZd0bX3aXX8YiRUWSDbDsxJZTsd1Ts5vu+Bfh4tZc1yZDsy/NFlc+ytwHzX2dLXZMiYKSPmOTe2lSljXi6OSceiW6Ctjl+qdXJ85Xl94mBkUn4dko6dMmV9zZecn6d+qdWkEx/PK5Kd1PpVV6csk46Qjpn2t6HsJ69JXxcn5aYz/rFXpk+vkUsmsU3Ni7RZ5keSjGZHrz91Lb1OBweeeAydTgenDhzCfDaLz9/7EmSnJ5AEUCxrHXL8Wk36YlGvlldtIdlHh/l5upznbbIu5UmJdM/sEYYglVUHx+FRXI+hCtG3KjRvYv9ZOVrUOUyjNfD84NbWOWrHVXcNYvDZJJ+TdIyc3i/5s1LMabe2JEzWwrlvsEa9J5ljj1qrZpvayFU64GnTE8KS9yzZTk+J+2E/35zqLXlf8QU7zWeL6n+qzNdVrcscSHO+V8qyOmD/cWFzssqWMMdUj66BVoJsOvPpZchcKcvSbHRx2zzwGx+exT/eOOcx46ofrLUd/M87volbnq5iz0IZeT6r03yugFo07YcnyEL/3u11W9yl94iMSYJs2dqazOt2W1wKc1lhXywyXw5dDAslOb5O+iVrL3IsqcWlRnK1Jd+3C8JwZYuiFcswD5Y+47y/D3y2qPRV5T05Ho+kPhOFKU5AxhBkP7UfNp8ZqtmyyNKrE6RtK3OmjLb/PvSeVa7q7PSFWFl1v1ZxZU3mSrUt12SKLrx2IoFqroZ/uuOLeNETz0e2ncFz/2IXbv/yIew7LvP8OS8QrVaO+uRx5ZeyAj9TBs2Yg1qpmAxYwAk47PdU3PIGdKQmwdZVhevuZcvA4FrA0gtfjKUXvhh7D+5F894XYtcvvRPN598JR5ddtDto7d23w600MNgArovK2dNIdDrILCyr2BKmAAAgAElEQVQg3WzgP/4vP4V2JuMZYBjVjMFO4ea5Sdw8N4kef9iX6C9+aaWHl3x9P371R/4eR8/NIJ+g9b3lYqpRwB6T9+uqQzVXw2fu+DxuOnUcP/nJ1wIA5p7+SuR5r03/IADgw+0PbWv7DAyicN2+bPXf6jdetxpknNaLbP3YWOezWYe/UTBymcogBb8IOzzINmwyMDKCodaGx4dFjMaNcUaANMJenpLI4LGkRN3SFCrMnxOGyiEbUVtroPaSl6Pzm7+F/Kf+wWMx0Gxi5q8/ic4L7kFrasaLLs9fEIexNte0FxiVVa3L3gPCaJUrEmnVSGKDLoAN6ia61ICpjkdzL3U71BW5/lw3yYSfIVPtjNPVPEuMDjOqrjeSZ+OsYnZPB6T3WzBHlRs4rq9pUq2R6rlUq6TsX4fR3VRbtVV+Rkr73ODErtXqvu/VAdHx9Eka1Q2KGsHjyARwTPM0PfEi/Wy/ugj2mWK/ni0RGAO3o/m3+Hh2NApMHQPrV81ZMpFi88i4sV2dtuYRY9Rc3RVVR5fwsz6plGrRZFso8FpiHevFsWm32jj0zSdgJ1O4dOQ4Onv34bFveyUmPW2H/CfJsVf2oMWxV62VsjDKruXJ5hUrzIHEegvUaJWp5VJmtv+MU/oFPnhuhB6GP69tJAKHBej2MB3qQOkh4q1o0diW4bFxgQdquy73/tpl0X+66mqZpvNdQralEq8V74NJUOOX/TwAYNcBamFSdDadEJZR2ZRWSxlVXpuUsC856j8dOu6hLiyPaiFXqnzWcJHpvgMSZMp4LKr0Z7rI+1nzaZFxyleohyLbkgs4ApMchUU3xbXEPG5vAr/6xwfxd7c9hjTnvYUO/vb4k3guSjiyWMSwKeWxfB5TQ1ZdrysZIJt5uFo1eU5mmT/OTghb2KszRx81Uuqw52QSLFdYyApZvU5Pzqsxb+Jl5unS3HyJhDSsVlOnVZ3nnqhKNtPMoUbNV09tBekA6TTX2A9lh8iW8v6srSgzTSY6K+XrAgp9pOizqtHSZyrZRS/HoJ/Z0nxajY48o6ZmZA7M7t6NtWwVX7jxK/jpz/wovv3Jl+H80hdlTPm8ff5Lvw0AMLFLnilW0KVvTIj7OyGu0/WQE2Wj5wVdD4OHhxRrGK2rE9fty5aBwbWE2re8DLVveZm3hKzT7qD20vuw951vxfLNt8JZWcNyeWKHW2lgAMB1cfgbTyDTqOMv3/kr6Gay3ks5Go2NzzUwuEpw9NIsjv7NLEolvvC7VbzqG7fgzd/7ISzn28h1upisp7Bnxfx43SmsZav4+1s+g5/+zI/g25982U43x8Bg03gWvGzFe1D2gwFh3njjYVU2m5NhU3UF3AlHdV5UhEVqQsuLGLJxtWM9uu9978jlx0Ecvdgw6PGFskTqj98iSRf37JPo2yLdBpcXxNVK80+VyhLBLxQLWHnJfVj9tfdg6h/+Do2zc7j961/FYqGChXQWReaW2rtXyitPSIQ0x7xYjZq6FgrL0WBEtLomEdK1Jam/SI1MWnPQWLomn3mPCvI5lfRrt3o9skRNiYxWyDio1kzdEVVn5FqqiVEXN7I6CY10SgS00/GXC/TzVPVdB+mcSFZuZVn6Uq81eLxqk+S8qYmyr09ugMlR5qlNZyxtQzLJPF7UAKgoS10CVS+nx+uU0PcO/b7LditUg6Zso2qkNHdUju1X10VlD5VtLOWZQ8fL68X91ENl6eynLmwa6VWGr58sNuH7rPqMVku1N/05rxo+p9fD3q9+Ca1sFn/++jchk8vK2gEeOjEhEXrLY0al7OKUaFSO7BddjuZ9W1yU+a/Xpsf5qixFJpvz7U8kgysVwp7X3KuUakgYuK/vC5wXKM8KsEV9ompAwDG0HeF/hsbH3ltk8botmVeXzojL4NlvfgkAUK+KDihfFl1nlmyjQ3ZB8765Xc0zR4dHso8TM8KKKLujTHKXz4I6NViqGVQNpDJKtk3bwqTMz2ZTrv0E788snx2tbpbtVe2jfM5Qe5agTrBRl2eZlSXD7eockn6US5pHS/Y3qZnM75I5WOB4aS7B2uocjrZuxv/5Zy7+/JbHYTuL+Ntjl3D72QyOLTD3nfTAcwHUrULZ6GSKfejK5wb1mLZFRsuWtuu1SmZkzFJZCagVysIKOm1hARNdPtuof8tRvwaL5/H5XEr5ta8dstrVutw3q8vqZCpjYKXkud2jU2NC2UeHujgyd3kyb7VVuW9Xamw/n12lPMeDl1ifga7mcOM10LnT9vJpyRfVtsyV4qQwWjO7hNH64k1fxYNf+Ak875+OYA3npU66zD7/pS8HABy88SYZQzooRiFM2xTlUhyXMdp0HtOo/SFuhkardW3gWfCyZfCswPHrM4P86l33YPWue/CPf/dpnHjObfiuP/oP+FppEolOA4s5k6/I4ArCdbH3q19GulbDn/3LN6ObySATfZbBNY4fOvs9O92EK4pjS9P4uX+8D9nOE/j+x/bj9a/5nHy/YBSIVwpr2Sr+8bbP4sEv/CRe+fTLMY+TO90kA4MtwbxseQhGA6I+D49DRDrfecUFohKB74ftC4vADLgNelvH/zHokBiTZRudjduY2howJxwTETVyBvcYAaCR9Wch0SbNxVSZYb4UMl6TM7J2fumSRBaraxKxrNdk2yO7MVnOYeWuF+A/Xb6I5508gXypgBc/8TguH9qP5vQ02qp/WJLIpGqwNNqXoK5nckoipl0e32R0uEZ2KM+lit0Oczi5/v7kqPvJ8kVP84xNz0q0PE19hrJMykIlPcdA5nhi9FyZB9W6tcgGOevG3VJ3QO6r06HLY5RUu6VMkuatUic7sijJlNYJ39jYCR7HtnpJU3mclzvMc1KU71Vf5yb9ebd6HpNl+dqnc0HzaymL2Oxpjirmw0r7c92s0TVRmQtlA5U1UlfFPJMFp2iB7fIaZMkOKTvTImuo11BzqjnqZkc9lGrZACCdzWLmc/8Et1TClx7+Hezr0SGOrOAq561qqYocc72OKUbGi5PsG1nFVFVzm8mBWerEMmTnlNW0PQZBNVh+Rip4m2pycy+nGfU9ngZF9XAIPjv5bfDhEHA77M+RADPVFwH72+UtMtjKw84vgPQc50gTtPmsWLkoeapOf120VvVl0Q0ls3LvJzNyjyfIvuTy1ECShVAmNkmG9UWX7wEAdDh/+vnbqNWiw96Fi8JUpZn/anZ2lsfTccJS/Z7MjUkyWgm6fnZbcn51Webn4irvp460a9esuBT22XrpV6GU57CQRSJjvMi506jSOTMhc6tUkWeuPpNUY5YrHpDv07xfV5dwvLYbj/xJHW/+/m/g5U/P4pmiOCwmlOlXfZCyxh4TSh2lJW2r8R5NJZhLL6k0uLLS4jbYIYOljo/NNutxpLwU75OikttQaN5C2d8ms+XUpfws+7TWlOd9dZUsZ0HZR7rP9vRaiHbL5lzJMTVJZVo0wdWlcwAk1xUA5Ho6N6Q1ypJqu9RdtE5tVq3F+ykh5RYm5NpOz8yimqvhy895DK/73I/hlr/bj7N4EvXlea+nz3/RiwEAt9/7UulbgOkPQ5Dxic0AeXaEQZZ8uEYy7NmgCD5aolYIuf0DAycGDjeM1lUN87JlcF3Afv/7AbjoPfjGnW7KtuLJfQfw5L4DOH78KA4+9U1853/5z1h8zs1oW0CjMoGu/uExMBgVjoPcyWcA2lY765Y/VpYXkazX8YX3/BacXA6otsNKMTC4rnBsIY9/99Hn4M3f/w3cdiaLo5cMwzUuNItdVGdbSJIiXyu18c1DT+N1n/sx3H/iZbhgGC2D6wTWldAOXUk4jnOFOjQ8LXnout/g/hAGJNa5oWB0yfJHmYKRmNBAypgcFTXQE3a+MxBFHl5/sB0bMWzJ14odbPfDH46/RnoEZitqbEKjWFHXl/vVAc9z1tNtx6/vaVKLpTlj8p//LEp/9mdwnR4K//PvUb3vPnT27fOYImUGgjmfuix/+bK4Xp0/fVLaQVeqMjU2jq1aHeqXSvIypzohdQic3jWlHQIAtKlL6vAHu2oKbEY6VVNWq1Z5vPx4r9E5zR1yG3uaLUbUnUC+qXbbn6eqVJbosGq7epqLpuNnOVqsW3PEZLPKBtLdjGxevkC2z3NOpOtfz69J0XxC6vbX9eqTdvYZuB7bTVZyVaLmyihUJiSqrGyhsiLaP4uaq1pVxrJQKrJ+qXdlRcpTDVuxQAZDo+90WyyUSoDjIHnqJNJnz2Jl/wH2p8/m2JOTuPAv3oACXQQvzUukuce+9Lp+NmRiim1X50iObdf169eyyoTRfVBdNZU5sDw3WY0ihzBbIbe8zhGNrPdZSXWRIzsZJLKCKxliOpx5Tq6hfwf8fzeinhvroUxtjU6gF0+dAAAszYvDaXNNvm/XLwEAHM73fFl0MKUpYSXSynRyaD0to0MWoi+4AQD8deEfAAAvWWQeIzJh3v3He3VV5y+ZrQKZ1jr1PXpNPe0g+9Osy8v94oXTAIBUSu7vy0J0odaU+2/3Pmm/5pRymAerxHmvLqD6rFSN2qoGD7pSb7kk7KrL+1WZLs2RmE5IubU56TdWxWL86ak1vPnVn8XP/o8DODHJ+ZM7KH1KSRvUhU9Z4eUFuU9qy8IETZepy/TMNP058vQ52enKtWh29VmiY84VBvkkjwfrk2eIMmcK1aE26V67uKaMkvS5Mi33cwLUjjkyZkm6HKYLst+xmAuQ7P/Fc8KeVpfFHTeXavv6o9D73qHbZ4saNitZRqPSxOmXXMKNJ46gkJK/K5bl4nknb8adX71Bxq0hc+qOu+/2yrz9HmG2dBXGYG7T/r36qP0JAMADzisjf1/0oZSSX+uqPwaCz6Sg42nUMykuszWqlky3+tw2TNcgbHubrCpjwDBbBgbXMBr33IvGPfei5zjIf+bT2P/zP4fa3XcDFJOrZbtn8w0LzvQ0MDW9Qy022HH0esifOwfNp5vJZpE+dRLt2T048f7fw2W+AOsLPdBPsHytIPHWtwIAnHXGOQabw58e/nMA/ZetZyuOLZbw0J/eiLf9wJO4+ew0Dl8u7XSTrjk0i13UdrXhpno4f/tl/NB//R7c+eXbMbtbgnu2xQAUqmOp7wHnlWMpx8BgqzAvW5vG8PxdVpBVUrbJ2/I47/gRGC5PmwXfOeuO4A5r/af+117ujbDzN65XEalLC641HjggVrWDp21Te73ztoETjYwuaTQqoS5Rsk1rTiS2aQL++RGMoFuWBRw7ivbBA8j9/u+H1+e6SH/sL5H81pfDveEGTMzIS5des8tzEoFdY5S6RIZLc11pTp0Juh9qrhOd38rI6ecy3Q412uZpaJTJ6yiTx9w/HIdEun9/9SN2bCRTwahbX9KLmPvrUCdEZa48DVfLf55G9m1G5D3NFbUpDbJtWr6er+V5roTUW+SohVL3NNXPqQ5Ic0oBqmWRqHWSDJbnBKkarJS6BoL1S38Slr/fHgPOQGvPcymUbSGXApweyufnkFpcROOAROU7ySQaL3oJ5h98E5BJI+9I+yZnlK0EUinVUkkbK45ExtVJUW+eXpv6mBRdyKgBybIveS5zzaj2jxF0T0NlBZ5dQZ1pMKocFvV95mnf2ASZKmW0rIH6hiPO89lXXlhUui/qGlq+Qh31Os2+lf7inOTJeuLL/wQAOPX4FwAATTI35YqMbTYn1yhXkns3q9uCP0eZp+/pyDVTt8tghFzvE2W0kinVdrGtfDZUKur+R5aD8zNBVkZZ8K6ngSRznJfzCnRizdiiH60pU2croyAVTnNeKoNlaY4nT5/KAXOlX0XOOc1np0yaa0u7MiyPtxlSGeZ4S5Pdp64IAG5YKuF9H7kZv/Cab+K+b87g9F7tq8U28F51tI90PHVlu1pXV0IpL5lQDSHHUlc6uHJcIeNnZhtkH9fWVEObZtv9v0dsXtssn6PplF5T2T+/LGPQaMicqFD3Bs4F71nalpcelxqzXFbGYnavuBnmOLY1spfttub+k/qU2c5kc1gt1nD6lqdw4zOHYDlJvOKjL8NLz94FTAFJV85fXhKmbHq3sOt3v/zVAIADN9zk9S2n7rAIMjjbRVqEsej6TLB9n6N+bgz8ztCVQBGMV/C8oM5U/w4ZRuvqhHnZMjC4juB8y31of8t98J7gmtNy3Yt493OfQ+a7vhO9F70YSS4zzFflj+/kkqzd6XZ7aGUzAF+2DK49WL0eKpfnYXMuFFazKJw+jebhQ3j8oYfR4w+nQtH/QmxgYBCOYwt5/Pof34lf+uEv4tDSXuTbGVRcC7saU9EnP0vQKLZQnWj2A2HZJL557DR+5CPfgzsfuxk99YjfZnLwUftRAMADzgPbW5GBQQTMy9bY4WePYp+1iWhE1DlxXQbH1ab4a6K3Vs+oGEdus3H1IY7+DBhkJfvRM399cXV8vm/uvhutv/wYkv/X7yLNKHOCOW6SZGUWFxZw/KmnsJzKYPXQYRSKzPtCzUCGooNEIHdVmgyI5s1SVinDCKeyRhr5bdJZUJ0A1VFv/dLq/kuA1FGlRkl7pvobMJraadORkXVlyaKolkolKSsr8oKpurbpabq0qcsgy+90lSmTvjTUDZF91L6p9kpz0yjDpG6Bei11SZ7H4vEHyUxqiudrPi86N9J1TgvQ7zVMXaSOThtcq9Vg9XrYdf4M0s0GmnSF6yWSmL/rHpz5iZ+E6wA5jkeS5TTJ2GXIfKjWDejrZNaWJO+P6t9srw+cD3R8yzDineO8yrPPSbbdY5ZC9A0BaevA96PS48H7p19eTMZqpNpGh94PyhItXpII/8knHvOOuXTuLACgS0e53XuEXWhW5LpVqHvrdGT+Z3LCFOXzsrUD7KGyy958Y74pXXrsevvZRubL4qXH6oq0Y5VzYnp6ylf+8qI47BWKWZZP/R7vIyupTDQrSMkv73pNzsslRT+0SIb6ySflfp6lbjCfo1Mlqa35urKA/rmV4zMlnVKmjc6n1DGlmGOwx/PafMYl09IeJ7PuJaonGtdjFxv4t//lRvy/L67Dsdv4zOGv4Mc+9V1Y2MXcdhyDDO+hNFluzafYyTCPHJknXbGrBFVSc+N5dAbzz5HlqzNvF8iu67NA2UYb/munTFMuo0wvn898NrlFdXSU4zV/mM1nY6su18Qle59NyX2doZtumfpS17WwmF/C5458CbfNPQdJzUdmOXjnp74DL1g5ChwAVhZFV7g4L7mzehVh2G55wV0AgBue+0IAwOQuudbJ1PqfqsM1WsPu4UcSHwQAvMp9lffdqCtkBsuNp9eOi375/tVPUYj77DK4OmBetgwMnoVw77oLnf/wH9e99Mgf0VMnZPnV5z/zGUxcuIB/9tv/DslmE+7EJHr5PBpTMzvWZgM/rG4XuYtzA8tLEs0WJs+cwvzeA/j4jz+I0pT82J7mNp2Kl/zTwMAgHEcu5fFz/11eDs4fnsWvvfqDuHnhOI4uH9zhlm0flrM1rGZrsBJqtiMvU5rcuGP38NUDj+PNf/U63HP6echkA+k1sLIDrTYw2HmYl61tRzD64t87sC43xOVwWIlB7VZYHon+/jDnq2DJEfXHZdQ8rUrwgGCB8erbiBVyjx3duJBh5W4iIBWa42xETce4MVTDhfUal5D2MCKqmpqjz5G18W2yNv8tkcLzP/YXKLkuJj7/WbSe+1y0brrZi5J7TnvajkB0TjU9y0uiv1AXRLiaf0Xmey4vkd8iNV6qi2KneCx1CDw2VxC2RF0I24zSqg5MXfg0kq0aEm1dq9X0jYXm02r0mvxMti7td19LeKYj/vL0e81/tUQ3QM/NkPo21b95WhjuzzHS790+niscq1EjsWQCVqeD8jceh+U4aFYmfMcnLBdzL7gbX/ru70MpkehH9FlfsynR9yyXD6pjmI4jmsIozNWX+oPjXSeZJ+rgVpqSbdrLu6bsAV3H7GB02K8rjdR/bjF6O677rb8Md/j+UGfT/kOaBQ0vQO+DC+dOAQAe+/SnAADV5UXvmFm68U0dkwTuqqPrUGeTtKWM1UVhxdp0u4TFfFzqxun69WDK7CZs1VPyNG8Nsj5LyAx7KQHIzpC9VJ1Zu6vOosIcVybkPlW3z1RaGWbebw26LNZlW1+Sdiqvqk569bo8E+bnhV2amZL5m8vK3FtelPlaIkuT9VhytpPHJelCuHxWXBzPnxV2xabmK18my5OQdjvJSShc/t+ypS0pR+rcN3cAv/SnP4xf/8E/wYueeS7OF4W56evI+AyhdqvRUqaKEydDzW6GGq6k/2+op/Xm57y6Gdpd7uc9rLdwy2Xf5XNRLpGX907vz5Sy/nz29DjWnuaMx9lwcLG8is8eOYlbz+wGuvpMkX7ptc04Fn7x0f8Vdzw9A+CclyeswblAgg3lXbI8/eAtt8r4HZO/O7sPHgIAZHPqTqjP2EFsv1ZrNGx1BU3/GRP2Oy3wvbfq5erov8HGMC9bBtcFeg89vNNNuC6xvHcv/uanfgbHj96I3JnTuOstPwe73oA7PQ0nn4czM7vTTbzuYXU6yF2a75up2DbK33gCS3c8D994479ER+3N+YKsltdupze8QAMDg7HjwOIu/NrHfh6//B2/g5suHsGRxf073aRNYzlXx1qmiWRWXpyr2SV8+dBZ/KsPvRK3n94Lh+YiubIaLKmhE5dowuThMzBYD/OytcMYYKOGRGn6RNHwyEb/uM1FgfuHj3Ze3FxT4fWORxM26vnjzC232TEYtS9RWi8v543rZ1nilqtQFufoDRI9X6Tu4uTTz8jxD/02jv7B7yO5tIziZz6N3k23oH7jTR6D4bkqenof+X5tVSKbnVbb930/D1jAWc9n1sAoLekDZYY0Yq6o0ZVNGSpNLba6KtoS1VaVqHFSVzVPa5VQ/YScWK/R7cxSZz119/OEDb7P6pKlboR5tiOvTByjyOqSqCxgnt8HGetWswWr3Ubp8cfg2ja6dGtLJBKY//b7cfZHfhxp20a3XudYyhjO7pGlno7mVNN2FIocBxnzXFE0KS3mRHO60i6bDEe+3Hdhm54V7USJbUilpM22DvLI3hrbYP25Ds79Yvkc95kYdZzHLIR8H1pe4LgBl1rOnRXmu3vyS1+U9pOCuOn2O70yi3T7U+dG1Sp1O3L91R0zkxems7UsZS4uSq6nYl60R0lef3Xz7PWUbZbvO15eOKnn33/p3QCAal3uI9VATk3LD+0G75Pl5WWeL+Xt3iPshT4L1D1QnfN0bNQ9VPuTzUo/E2SYrQRZIGXgErItlKQ/qlXTZ0iT7VwmK9ikvqnMvHuUEcF1pf+1ZWG2qsvM+VbmKok0+2f3lwV2HSnbzkrbck155liuMFmHlm/Dr33sjfjX3/kI7pu7F08nhKlMJIVaciDPoFZXzk8zHsJVdkikhuuEdD51KMry2HqOoj7zVIdWV9Kez8wMy9Uce5oTUJ8FLueQnUjgwuQqvnrDRdxy6ZBOCaStEt77t2/EjWvTwGRfk9tgRe32KttDTRivYX5CrtHsIcmbteeQjG1lVljaLJ9JqbTq74IPkvh/Jzf79z3svLiuxsHzHc+J0h66f1SE67r9rqGG4bq6YV62DAwMYqN+4BAee8cvI5PJInvuDJ77c68HADSe85wdbtnOI9lqIr+6ggwF9/pHV1/y1IDA9uzxBZn0cA2V3e6g8vjXcOHOu/HYT/wL70eymk4kzN/WUDhvfONON8HgWYpDy3vwG3/1VrzrFQ/j+PkDOHR53043KRIruTrq2RYaqSq+dvgCHvqr1+HWy4dRmJC2t6ry4lrH8k4208DgmoV52brK4A4LEXtrc3mMF+kIbgV9l6lwl5715QTXPsdlayKjxd42qEvb2q/EYe1Jvva1AIDuhz8cef5WIk2j5vAKq2vsUa4xR7XUDvy5d0pk/ev21wAA586eAQBkyWw0fvO3cde73wnH6aF6/EYkqDVIUaugk1bLaycZTWdkVPujkU112lOXQ6CvEdHoreoNOmSkNMqqEfdSiQwAy6jqsjrWVakIOzOVkKjrwsKCr+58Tt3L1JWPCaJTymRJe7pejikL6VoNRx//iuSuYk4cT7+kzmBsb9ZLrMIOUp8W1N3ZvR4Wvvt7ceq1P4yiZcFxVc9BF0FG6CfzNC1xlSHQaHeH46P6EL8bo+brUmfJyV1HpP9kvNLst/Tdnxx7k2S4B28aW4FnmOt/FvWP3zjqHF3faAzXAKzgx42fqd5n+K+pJ8tQvRIZ33NPPQUASNNZc98NErzI5PrsrTp0plLUydiqm6HepifzyOnK/O525PouLArrkEnLPdizNAhA3Q4d7lT7tbQs98ulefmBPcH7pZD33w967TpkRPPcn+N81LxcTWrDWgwyJFUnxPtJtZVeLj/qgZJUbTldMVVYW9X7RMZhcZFsOed3j4zamXOixVKW3aVOKtOW4yw68c2QGU9xydvKgpyXSMv3pUl5PrTRvwaJFJPvuqtso5zjOMIidpryLDm0fBS/8cm34F2veBgvPXsv2iVpe5P3XIOOiy51aBo4SaVkTNVkUO95W51WO7zW1GR1u7wGPX7v0P2PbEc+T2dUzp0unVV1DiVsB3NTi3j8yEkcn5tFJlXEez/2M3j10Z8CDgCl2T3SDur9mtUVtoPMVq3G9pJV5XwtlIVd7T9L6Faqc3dg5UWItjMGorTqmy7HDjynI47fLoT95oj6fWdwdcG8bBkYGGwajX378fl3vwcvfMfPw2630J2WHyMpsjn6R9PmC4qyOvoCpT9G9eUqnUzCTSbR27V70E0mAvlaFel2q7/Min/QU2pvzD9SBS9xp5TvrMkPp1RdXrayGVkqpC8paf1holbVfKlRAw3bdbD/sa/g1M88iAvf/b3ei2ZBlxVyGaG+qHjLTfSliu3XH4tar2cZX62ONA4GAE6ckO3x4zvbjusAH7j7DwAAv/D4T+9wS64tHF7Zj3/zl2/Gr3znv8eeuWmU6nk0O00UV7LRJ1wPhC8AACAASURBVG8TVgsdNDI9tBi46k528fjh0/iVP3w1bpjbjclZSSaM0f2mrkp8tBsdfDUwuBIwL1vXIILRn8E1w72Q40fTE7madGPL7dTqN7cmOrJcyO/yMUqxYiOqD5FakJiNjirHi3Kp+1tEZDAuIzcxKRHKO++9GwBwdvY0AOCJrz4OADh1UrRcK+/8VTzvT/8Q6YvihNYNZLNXlidl+V84unzpUhYqmUwgdfoU0pNTWLvnhYBleWXo2vRSiS5kdPdLVesozZ3D7FNfx8rho3DphtZrSrQ1pwYS3ObbOlaM/mpbOd/deo1tZ/4hZZb15UqT4eh9Ahdn/7dfQOP7vg8VAF3PSbHnGwPVsuhLVc9VDRjv264yZtLuTlvKUZIwk5X+6pVV5iqV8bOB3lxgNFzzG6XSGlX2O1Aqg5VIqfPYYHRZnUzDo6hRdnyBowPmfkGyPuo9O+p+SL79bQCA7oc/MvS8fjvivdD3mSm/Y9hA77xgONsX1GjxmldXhSE4840nAACNNfk8w9xZ6azfSW/9//X57nJ+BQdPr3MhoFGqMCdS16GuxuJ8oztlp8kgBDTIIH2dKwl7o8ZwXc7LpRpzSpG59e5L5tXy3DN5f1X4LNF+9Mi8FUuSY2n/ITlu7qzsX5qXJWtpOvVNlOl6yBeFpUXZX2UwQpk31ZolqEua3SMmPhWOR53sjAUdRzl+bU3KSeVlmyCznUz2882lSqI16tWk7a4r92CiJWW2aidlP5n/o90Z/B8ffxN+7wX/Fc3JNp45dhGv+ev7cWZGVgjU1sTNcIV6NsebJ1KfMld6hdtksJiqzGt70WOQZH/SlnalyTTZ6QzOTC3iawfncXR+2rNuTyWy+K2//t/xgsnnAZPA3htuBgDMHJC3LZ1LCmX7FOpu6N0ets4tZcD9jG4UYxWWX2/jc4bf0+NiuHT0w1k33S+f4uqlo+qPWsVi2SMMksGOw7xsGRgYbBnV3XvwD2/6Bc+OPZun8DmlPwa4ZIcid32hqPIHW2WiwuPysFeWcfD7vgulz3wKrcNHPAG9/vHpMXlpJkst1KUFzD7xNfz9L/86Vo4c9+zl9Qdt3UucLL9Qjt9wTNrCpS1ecmO+nLSb+pIj+2dnha1Ta2y1ntd1fMpE7Vy82sDA4GrFoZW9+MW/eB0A4HE8hff96O9j7zNT2HduetvrXs030Ux30Sit4GsHzuHf/tH349ilGaQK8gKaopsgChsUYmBgsGWYl63rAv5ITiJSOR/XtTCepiv07IE8W5Zvcy1AJSRxc3KNHCkf03FevVaAjQwkANpslC/PJXHHbhZXqZld8kf69DPitnXmtERqz184J/Uw6F7keWXqPiYZ3c6QTSkVyE7xxaXT6QL5Ir7wyH/C8d95H1LnzsJy/LqunHZB3rnQRA+f+dX3oH3jrcgBOL84B6D/EnT8Jnm50gi4xeWABebj0RdBXe5Xo3uhsm7FEvNjKWOm2jE2Q2+3dksa5LryIpli9LjRkhdKl/1QLUAiKSdm09KOTCbj2w/VepFSSPJF1WM7vEiqsoK6n0wdGaz+8Ruv8d8wohqVPy7EjtBjxwduID+1pUxsUOO0VRfBcWOA4Qprj/cNWVXeEGuL4lr31Ne+AgCoMxfb9G758ZulXtCbXevGzXH9OersHpfB9siyUIukDGe+KPecavLUoCVraT44ap2oxykxX1upLOVOTjKHGtmNPJnQpQVhY2oNqffIEWHjklxu2+Ty1wTP6/WU4ZW+LK8Ic9zi+bP75PxiWfq1a1a+r68Jc5XkWNd4f2mOqqlyn3HiYAEAZmZEM1ZnUCabkfs6m+bPnRwDPgzKdJkiIZmW8lI8zuL4lCbLXg3JpASF6jrdyRq7q8LwZ2ui3XJWPw8A6ECYoC4k+HRzoox3f+Sf49+89g/xreeei1PTdCdsy5i1vBx/XKqsOkylJ/nsypN1TPB5n0qqnlO2pYkZnJ5awBOH53BD7RByyTw+dPLduOV58vzWuZHOl9hn6lKzuuSZWq8BB2Q/a5OIZFcinhshLFLc84dh/TPhLYm3wnWB9/UeGqhzdPdBvbf14of8OAhNujdeeOyh0WxdEzAvWwYGBlcduqUyvvFLvwqgLyqfZSJMXXanf+jPnJEXva0t3jAwMDDYfuxfmsYvfPQH8fBr/gQv/vTt21bPVw+ewe987Zdw9/JtKMyI0YWLrUkDrjWcsJ5BXPmEgcF2wrxsXYeIjgbHLilW+dFuOf7vA8ZcO4bQSL419L9Xtg1EWOQ+/Lx4kcS4mq0gVFs1tVuYrcqURMOP3XwTAGCJebkuXZTcPrVVidzXqYc4dfJpAP2osrpVaURfc1RlaG8OrDPbUK2Uq9om2ZaZ+0ndzjS/j2pIlHpqeZoU6Xt1eYmdlU2nKwxXT40xVAtFzUiBegXVTmn+INVMqeGGxyxrHq6eX0PpMU9ebjK/1ioYKe1HUkNunCBzHEDo8yBKyrn+PhgoIyoi7T9vcK9qUcjeBVjv+Pfd1iLhm70P4qJN/d6lOWF8n3nsSwCA6pK41u09eAQAkCYr6Tp+dmp99T0GGZQstMlGdLt+LaAywJks14ZZsnW4dLdHJsxieEJZa70n5y9K29bWhJF17pD5u0rnxCeekHu4MjHB8qixImOll6RApiqtjK0yb54xjGxrdAttUYikeeFmyPb1WGwxL/26XJXnweKKMFdrZKL1fpqenvK1f406qmOH5YWjtibMdzoh9aSV0UrKOLRUS6YOfuveTwoF6bOyX/n8jTI2FyUP3dq5LwAAOnVhMO2m1I0260rJs+PgkgvX6qCYkc7l6QzZ69CBUfMmQnV6quvUaydbZa0zOXnWVXZJHyuzB2CnHsPdN7wKR50jSATSS9iW/xkVhu16TYmr/YzDXA/+TVv3O2P9/R3QW1pW4Lka0pZBF+iN2xy/nfGOH6zGaLauRZiXLYPrAr03PDjWZMUGBgYGBgbbgXw7hYRj4am9C5is5uDwxdfpqpmP/i3jUlE1v+ILs7646ktTKsOAUk4CSKczVXStLqYcv6GFgYHBzsC63n6gOv2nlMEWEcz7E8SoboJh5YXpoUadm+POXQXE14wEjx9X26NyamxHn4dhVC1az8uNJVuN8K8ti2nFCnUf1TWJll84d57HMTqfXBeJZQQvS0YpwX0dRqDVnU1ZN3XbU81Uk4yW/lBRfViK+X5m94vD2OS0sHWqncpkNfcXXfy0fHv4WvkwF6zgdrvW2EexoAPHByK2G+kS7eAaTVfHgB9DlydxTALsnB4fOQ9df+R9kIXWev31aN693kf8boRjQ1hUWdvH7RLdOb/0D38DAGjQtGX3AUkWW5nQpbGqzeG4JjSX1rqyPVfOhO/YVbJkYJ6tYoV55qhVUoc4K+Auq7m+VFfXIbP1+GPfBACsrQnr8qX7Jcfed3/9FThXuIj33fR7APpaQTWq6Xa7+JnP/nPc1D0EAPgf93wKfz/xWW/+qQ7JcXo40NiLN335xwEA1WoLv/Kyh/upFtJ+pvfbP3sXXnDmFljdNXzh8JP4/275NACg2er6xiWVSuJ1f/AjXtLv3/+WP8Hi9LKnZSzSJdHpNnDX2Zvwz776XADA15OX8Z9f/kl0umTiNGk4nyNv+MKPYl9VGKO/e9Fn8Y+Vf0Iy7Wezm9VVHGjM4k2f+jbpa/My3vmKjwAOc4M5qreTzfd8/iBm17L43fsfx2KhhaWCOpjCdxwA7Fsoeh8vV+poJx2PlbG8uZBAySliryXPMtgWssiijDKG4aHue3DclbQI7098AJ+wPzn0uKPuUTzc+U3v82vTPzT0OAB4sPd6vMp9AADwcetRPJL4YOixH+l8SNpvWXhL4u142npm6HGvdO7HzzqSoPwpnMDbkm8fPIjX/+Hub+IGHAfg4v+2H8GjVr9PH+1+eAh/5X8mec6JgWdJ/9kWotmKCU+PGjw75p9ifV7rfb9V18NnI2x75+hAw2wZGBgYGFxX6L73vQB2fqny9YAfOPUdAIAGOjvckusLhxdKeM8f3YvPHb2E/36npNTwfnfzP45r4V1/fA+6NEP5f77ja7gwWUeCL+Ppghh2ZAoVvKz6Qrw5/RYAwJnCJbw9/a4r1hcDA4ONYZgtg5ERjKCPymh5rmwx64nTHuvRR+X/DzwQflxwCXTQRGiYmCywzttzdItg44J12SFr0cM+B78fF7O12ft9XGyMG4j8d7sSnW7QOaxFBqxZr3vnNPj/XqfLc3raKNlQI6WMlNrLq+5FI/BqQ6+fNf+U5pvSXGCenGHEtfhhmislFEZdqx9XTxSZjyVkzkQxW+vPCwYEBwimQJjWDYkSB5mtoN5s4B6MdNMM1BNznkYy1lHPCr3UwWvguRHKtk490qknJJ9Wjzmt8nTCTHBcupzbmnvN8hwl118DshicULVV0R6trghLXCyLC195aobHK/tBLaGnC5O2KdusKRHyedF2VavCNnfYpmJB7qsOXQCXmd9q7rzokmjmhw7zvh3YK2zdkaOSIFc1UCvLwjDn6ECqKReWl0XXOTMt7ocFMlAWx+IbTzwl7VoUBm9qQvavNGQcVlfJHrkyPtm8MuByn08wrcREWe732hpzAbblmbOw2OA4CSO456C0W3Wk61NNTc7Isrx9R8XVL5GWOi+fFWamvihlV5fk5amzJoy925V5kExTi2r7c4J1Okw3oc+slLoC0q2VLGX1slxzKyXX6sgLhEmbOijaMU1XsRnt0/rj4mL0vwthrPvof1/C63YDW/0UZMn9olUreLx3kwfqDfYh7NkVcryXgy/iGg1cCR6eCOSwNIgPw2wZGGwRiQ98AADQ3eBly8DAwMDAwMDAwOBKwrxsGYyM+M54IdDIekh5cetdHwmy1kWat87WDmnPJqNIXptDWIO47MW4o1hbdSXcar2qI0kzSqeOZcPa4zExwRxMIVHS+PPJ+1+sNoe1a/BzcOuPqI6LfVHY9saOYkMK5n/iX/tIaZVH/AajxbpfDwgWFBLZjn0LD38mJB55PwCg9+AbA+0KtEdL2eI877OaXgXSDrKl5QlhbVpVYZc0Z5bm31INkNP2z3Gn229ngo51XTJRrbowQvkcXQVzQsE4dCUEmSzVLqr74BqZq0UyVHkyOBUyRtO7smwDdWRq3kDNVYrufS77vLQkrE2tJltlmFWjtbwoboELC1LfrM2cYuxzgS6D5XLe13etf89uYerOtIQZ61D/tH+fMFHppCYxl/qLZLYKJdlv03Xw4sWLbM8i26/59uTa2GSbWtSCTc3k2K4+tVWhQ6JeL2XgU2SU7KRsS9OHZQzoXlhbE1bOTslYZgqiD01nRFO1RtbOTujKCTmuTb1pKiltabSFMUuqG2FSdXmqcd3cyocrt8IpeJ9tB9HgfwaFMU7RxQTVVSGMU/DvQMh+7+9T3GsUZMgMk3VNY8S/0gYGBgYGBlc37E9+EvYnh4v+DQwMDAwMriQMs2UwNsSOvNjKqsjHPg8QjDZ7//NtMBBFj9mGMF2UbofYA4XpdsI0HQMR7rCmBAgvL4Z2lSkOo9b6b9ZhL+q89d9Hlb1pHZsVGP3gRY2Jgb6ElBPb0XFgzb9uQ7RXYY6YYXN0oGQ9L7ptg0Rt0KELwz9b/nt+/ZFXAoMuhsOZKG93FNvpTZ1gVJuOe3ThbKwI+7S2IMyFS0fMJJ0uk0lhTVSH0WnT2tvTI/bH0bblz7VD7VYqQ3OErLLCsn9tRZikZErKLk5Q49GTtjapj5ybE6Zn7549vvKDsgZ1++yRadK8d/v2ynmzs9Jm1V6llaXj2OToVlgpCzuTTVtst3zO51VLJec3GsLmFIrcz+2Bg/vYDqlvZkb6PzkjbJNLDVazSQdU5v/KsL2dlpR/mZrPREZ0T1OzotHSXudyMp65vIxHebpvn54nW1ZfE1fJxXnRaK1cFMaptiCfp/aII2M6L2OUTUhbe2rdTibKgbRtar9owIoVOW6JLFyyIdfShs4b2b/r8HOkPZPCkFkR+bIU42awtuqwuumcU7HqDmqrgs8Ar6Ch5/X/Fm/tGeX2H+CBHX7tbOQzZ5tWuRhcGRhmy8DAwMDAwMDAwMDAYBtgmC2DbcdA/qEQvVBUXq/gCuqo+sK+H6xnDPoNbz12SCNja6MCdF9ktf4+bbc2Ja7z5GbrubJRuzD90GiIG1mNfV7YaRu4BW4Goa2OVW6I41fo/BjPWF8pbDp/HfvpMVs10fQ4qn/SKDaL1+NIOiFJjRcs2SbSWa9sZZhADVU6W+Ix1GTxnCSZoxT1QdoXrXtiQnRCN98sDnaFQlHKoRNekm6ePdbXpYZJ66/XRfOFnubFkvpLpQK/9ufYyxXybJcyXg777PqOW2UOvh7zfykjlWXeq737hYFKZrW/8J2foN6pSWasWWuwfZoTS68BdVNFcU3M5GU8LFrbZ9LSrmJF2p3Ny/gAQH1JnB+XFy7xG46td2GljnZLrnsiJ9eoOLUbANClA6SOZa4sdU/NSn4sT7tKs861BbJ0HPODt98LANh16GZpa45ts/RvGsaKUXNsbpfGdzPoNz1Eoxo5Vtv8jAr+Zgiu9NnmvIwGVxaG2TIwMDAwMDAwMDAwMNgGGGbL4IojMv/PiIwXAPQ+8tHIevtrp1m/PzH80IzuYTKeAUfGIOswEMgPuq0NZ7AGpSUbR7W2ugY/rt4pLqM1KsYRvdt0Ge7mdA5xNWRXOodhVG43JzApB3SGcerwzvHnzRoX4jKzYfnsojSPYXq2zSI499QZUh8tHTIZLnVCVlLZJtnvMM8cEsKqqG7DTuhxymb19T5QzVZWmJcuv0+AzoYJMlJkfLLMH5VQxzw6IU4XCzxe3fYc1tlmn6SRmQyd7tiWdJY5oCzN+9Vjs+T4boeDS7ZHc4gVS8LCtFpSfrMh20ZNxijNXFLJdJL1ap4rtk+ZrHaH9XEO6lgyf14mJ2xRis6AmpevUBLXwWm6Obo8P5GRrWrWpneLRku1YJcvzEPRagjD1GW+NEevCS/oxOxBAMDuI9RgTe9hn4Sd67aFdVtbFoZMr6HOn7UFqau2JJotdZyszAgzVtl7VOp1pM31NdF05XgtlZ3cKeZ48PlwJeqM67gY/N0RwcLrwyRUdDUcYTn5IvXPIStsjFbr+oB52TIwMDAwuK7gHj22000wMDAwMDAAYF62DK4ixGa8HH4OLHKOZF8C9QTrHRp52qZgUty18HHPj6tT2yriskijsk3j1JZtN7O0WZZvxyKTAW3AOMZlsIztGeuwa+l9H1Jv7+GH5bhtaVX0GAZZcssOPGPg11V1e8LuaG6qdMqf60pOknPzExVfJcsXhQ3ptIVtYXotTyMFMjh2in/uyb6lyCR5ebS60oZuV5gjdUjUtur0zZClabd77KK0sVGvsVxha5RtUX2SjonTkOMXF5e4Zb6vvLRnMidbL28XNVq2Lf1vNf25rXqOlJyg1iuZ9Of5ssn2ZIvCrDWrwho1GlJ/uiD1TdGVcWq3bFUPNbmOAU/Yuzk2HFuvU9RuccxSzF1mB5imFJ0j03kZm+aK6NQuPPUYAKC+dF7K5xhmy3RCZD6thXPPSNs5Ninq9nYdEPdDFXvZdLnM5P16vGsNG91n2+2AuFl4jq0h1Yxav2G2rg8YzZbBdQH7rW9B4q1v3elmGBgYGBgYGBgYGHi4NsMdBs8qDLoZelRW/5hnngFcF8nXvsZ3rvvKV8J548/KMSeeQuJtbwutp/PQQ8Dx43AB2O9/P+xPfGJoZNw9dgy9972PTXCRfM1rQiPovTc8CPeBB6T+Rx9F4gOP+MvyuuCi86cf9r5Pvu1tsJ55emiZzv33o/P6NwAA7KefRuqd7wjtU/c33wv3+HEAQOKRR5D4q+GJXt2jR9F570PeGKd/4AeGHwcX3de9Hg77ZH/iE0h98IOh9bc+9CHv/6l3vB32M88MPa73ivvRe/BBAIB14sQIfXp/aPJa9+gxdB96qF//D7w2tMze69/Q79OjjyLxwQ+EHjt4nYb3ybn/fjhvfKN8OHECyXe8PbTM7ntl7gH9uReExT4pawPAN9+Dbp3Ogw/CfeBVsABYH/84rEfeH17/Rz/qRVwTb30rrKf9c89jxdbdT4i4nwb69MnBPiGiTwNlvv4Nvvsp/QG9ToNuh90Pf7ifwyZKU6nfBzRdUc6oQb2nRYZD9aDJhF/LlaL+KJFkPY6wSF7+JcY/HeqM3GT/yZKnc93E7CyPdVmH/BlfYs4ntEVX1K7Jtl4TjdLMXslTlSsIG2Kxk25P9vfIbHmheWrDel2Hx2uf2Makfk82h8yZMluplDBgys7VV6U9yljlySg5jjB1jYbU325z8LxmMP8XxyHB+vu6O4vtJINmd1kvD2Bxbk/bS41bWsqZ2rWLW2Gt0jnqn5inrDw9gwGQReuRBQQ1SolUyvdZJ4hL/VynJce3yALWVxalz00yVZwfqkdrrUp+tvqiXFvPeTEtjJXq0zTP18LZE3Iec4ztOXIbAGAvl9UmVf8WE2HMctz8i2HljQOj1hF3xcPAccF8jFHt8grS/2zMaQxIwwyuSxhmy8DAwMDAwMDAwMDAYBtgXWnHrO2G4zjXV4cMBhDXtTAseh0arR4SWYqtTdrkrIvjtDgMDiOrcddzj1p+lCvhTuTRulrXrMdtV2z9WpgDZsQl9FgcnRMBt8FItmYjfYTqdjZuQqyytoK4bQ/2Oe79OfJYcWOrGyG/6NFx78KpkwCAVeZnCmO22m1hdZTZSqaEHXLXaW3ydPMLMltrC8KOBJmtTocaLIhOKMhsaZtBZqvbbeogSBvScp5DZqtHJz1Fmy6DFt0Im6rZyk1IPXn2IcBsLS8LW6Oaquqa5MNSZqtc1txRsn8XmSdKt9Bmvyzqppyen0VS9sZj5MgqutTFrV16EgDQIuO1+/DtAICpPTI+aeYdS1ITNhQxmS0rktmSsVi+eFKO78lYqObKy1nW7fg+K7NVmBQ2LpmUesbNbCnis0gbO/ddiWf42JmtLcLdJLMVdDjVrcHmYXsJ8a48zDJCg2sOcY00+qsNA4Ya3gkbl78hRlzCsNllFWEvlNuNcb1MXYn2Xm3JHze79GZc9YZ9HvV8X/s9q/VAHSPVsHVcqWSqoyYh18+apLjOH9P6QqFmE0k1qeDDSWODKf2Rzl9c3Y7ar/f7pZbreqzFJYoTs7LMTZcDzj15CgCwxpeawoz80FZrc0WPtvMOf8irlbsmHe7yhbHncNkd255kOTbt6jstLgvMy0tcjS8Uzaa8BNqesRHNP/gikS5wSzOQ+Us8nvVMVLhULpvk6doOOc9b9pry2+m7HDt9ydPwa7exwp7LuM3sPwoAmD0s45OhaYU3q1lgV+350bfyV4v21fmzMiZMRjyxR6zf++YjUlanLi9Rc+fn5PwVMQUpF+WFtNGWutTuPpniS3eGfec86nZkftWaXGa6JMmV3ZaYftQvS3vatN+/wPlUnpE5Upme9vcxJsb1AnK1PauHYfN9vHr7ZLDzMK/KBgYGBgYGBgYGBgYG2wDDbBlcNwhdUufZLevHELZoo4hWQAgfjH4ORNyDSwLgjwwG93vmBmOyiw1iq5HJ+Ikjx89kbZah2ako7JavVczTw5YN9gsarV0DJhLrCnBCROL6ycZ4xnxURF4bvU0DDFRo4lH9wu/R0D/OexAMZ9iaDVlqt3BRGIdWUz6TNBqo0GMsyJ64jpo9sAHdflLjlQVZipgtCAOTpkV6uylsS60qzE2rIUxTIi37i9Oy7NBm8uI2WRaXyY29lTWe8QSTFXOQErpEThMte0vipJxeh8cxGXEqpSyMfN+hVXs+J4YZaoNfI/unU6ZMAxC1wwct4x0u/9PlgLaaiOj9qcsEOWS9nn9pnzJvuqyyvEcYrT1HbgEAZNUwRJ8brLddl2WPq7SmB4Aal0I2a/Jdl0mOGzVhEbs0GUlwrJXVU1bRpjmHJmpuNvSzXNNcLs0xSLEvrNiS/6QS0slyjuU6Ul+rJ9c6Q3bR5hpJZfNW5sVSvqCJrMm87RQbE3cp3yjnbpjCZcj3Y3tWMTVAv/xAuwYaqucFvg5+DjzfDa5tGGbLwMDAwMDAwMDAwMBgG2CYLYPrHlFalo10UUG9V39fPGMKr5x+5es3oW0I4koxU1H1xy3/SkTjNmP0MAqu1oii164QQbXCGwXPwjjkOG+OB7B+HCOGInLMvSYHGN54xfeL2eR9sFV21OP1AvXagZZ3aHTRpO267rWTZIvIwiiT1SIr1eoIG1MoTwIAyjNkW9bprHpqca6mCdyqNuvk178o31cvAwAm94p+yOoKA7U0vwoAaJONUZOOYkXqzObFgj2dLbDP1AXRxEP1aN2OsnXStgTU9IMW8JaeJ9qpJI0y0tQ1gUYbqTaZp66MaZpJmPuMF5kyJlFOU6tl2cp8cVxaytTJZ0uTHXfU+EPaP7VXEv9O75d0BMoQej4hPK6xJmxQ9aIYjrTbUg7QZwsr02pSIgYVDhkrlxb+Dq9nryusXkvnRUsamWfCZM9unyYjquFT2/pe112/26snnVNbfRmzZFHGqpQXM5FGlUmyydItnhMdX6Eo7OHUfhkLa9N+AWHaZO71dgf/tgZKGVHjvBHi6qK3+uyISug+WHyAaYt6VAZW6Fytf4cMRoNhtgwMDAwMDAwMDAwMDLYBhtkyeNZjI+Yr6HAYtHwO04ENlBURnNKIt1q6e+fvkBZmVGzVvfBacKkKw6is3rj76o1hWD2MXkfVNuDWOcZL0Wd2detvU+j940XK2cd4weHo9gRZwYgCPWabn21tV4AZSGeEfVHXQXX0S1LD0yXjsbYmLFMqRxe7SXGLm57dAwDIl4XZcnt9zVaLDEsqK+foM6NYEkZq3+GbAAC1lQnWLaxKY0WYri5ZF2XCVOuUyQvbUUz7rc6VydKt2pgn6CZoWdQVUV9WrTXZTqnX7Up78yxfkyTb6sxIJkuJqhqTLydTP6eSXAAAIABJREFUypTJfpc/U7QezwGbY6oW8No+ZRdb1FVN7BZL99nDNwAAUkxarBezXRUmbW1RdHZtMmsOWaFUVvVNQILOiX2tLvtChslN0AmRrF+3K/sbK2Q6OfGyOTJSXuJo6sToStio09GxIdukxa2nh+P9Y7McjkUiI4xXpyfXAHSGrK+KC+LC3BkAQGmXzLP0ur7FQf95HWR7nMBn7388zyshcNzwZ+E4dVXbteqiX27wx8DmOAxvSI1W67qEYbYMDAwMDAwMDAwMDAy2AYbZMjDYAFEOh/3g1nC3ts3WF1z4PXYHpasMo0TxrvQYjDuR80A+uFHdDgNKp3Hp+Aad964couZ3mK5sqxquuOf1CTk64g1cMyknySTESbrJtehOqA539TXJJdVtC+Nw4KYbAQCFCdFNpcjmqDMg3P6f6ERamR5/H3JlYbaO3HGP1NmsAgAuPP0YAKDTEE1TqTLBMqWE+XlhvJRFmWBEvuc5JGriXvjOS1LrpanBVDyl2qg6Ga4kkxK3E5qwGSyf2iiOTZbsSi5PDViSyZQ7Wi6d9zyTQn5WBoA7qlVxa9SEwXm6G04eOAwASJPRUhKmQXZx4fQz8plujtmcaMxS1K4l1ic3Zi4z1cupxsqhLk51acr6KfOZKwjjVM4wYTLHsEf2cXVV2nLqlFyTFOtcXpQ2FTk2Bw4KI1UqSnnqEOlogmnOz7Q6OmqeN7Zndf6cbBeOAACm9u4HsM6RMn7a8i3ujzj7KmK0otuycbmx6w0IWA2zdX3BMFsGBgYGBgYGBgYGBgbbAMNsGRhsBgFXwaC2KkyLEvW5v/xbdTghmjGvGRs7FkXlHNkqtuomNY7oY3AMtpv5Co5pXFZmbO0MSAS8ryPcCYPtCcIKlrhB+wbyxMUN3o6YXyeoIwvr05ZZR49QHrBLk41fkjKYU0dFX2QIMllhHlp1zUUl7E67KZ9TaWVzivysOqiBi9j/v5dPKqDrVA0U9yfSwnRN7jsKAGiuCjsyMSssRmVW9EPZCWE5MqrV4kXU8lIZZU+ENdEcYqoV69FRUXVoBboOdtp05KPTnuYSq9fqLM9m14RtUR1UKk22py3HX5ynhorar70HRHulroUgQ9aqr7J8YfSmqEcqz4hTYJbOf3ppmzzu0umTAIDasjBiaWrhXDpA9jjOiXVTQvvSohZKc3dZbp194hjSmVH1O2kdSzJOPToyNupy/qV50ZddmLso50OOW1leY83SiFZXyt9NNjLF3GYtMqUTFemrDTpIklFNk61bWTwLADj/5OMA1jlRFtSBMu79FvwcT4s1WM72sTdx/7ZseWWA63+uj9oObz+fHXp/GWbr+oJhtgwMDAwMDAwMDAwMDLYBhtkyMBgj4ub0Ckb+gi6E29Wenc5BtZn2bJYlGxc2m6ctKtq71cilF4XeajkBh804iHLvi6wzpMlR13BUnVtct8voPGEeVy0f4f+sjn3VJeZoWpGt5m5qU0dVX5NtflJYlC4FRNmBdoXbLob1JfgMKTMXVJG5u2w65HU6wq5N7RYGqMNcX6pDUrfBRFrdA+l6qCItsiWqjaKRHlIpHkd9Uq/jZ4iWFsQF0abGqlwRTVXSc+6T41Y5RmvUMfU4Rq6jWq0Ex4H6KTagQkfHGeaQSpE11H6rm+HKJcmfpYxWviTtsFVvl6FWiwyf66hoDaiTqTxz5jz7LNfxwP5Z9k3KcC2ONR0knR61ey6dEhvSx+qalPf0CWEZL87Ny1jwWjSbHFxe6iQZ0MvU27XIkNWbsr3xhiMAgBtulDHIMR9Xy1YWUVwu1y7L+XW6JGbISm71WaINtQL3y04i7Hk7tr8XlupJQxisAefGjZ2LDaN1fcIwWwYGBgYGBgYGBgYGBtsAw2wZGFxBhEWv+nmE/FFchZffx95cfCRYbxSTFpk3LGZ94zhu2yKS24ywtfpb1RIM5NWKyfaMOm7Djt/uqGtc5mqzDNeox3lj4H3tZ5x0f7chjMXieWE81sjiWK6wIvUVyXOUKYkj4MGbbpbPdOIL74818D91PAxen+CzwWNm6HDYWBGm6Kkvf57lyPGTMwcAAA6Zn6QrbEqyRzaETFSCjFKbznedthynz6o2NVrqTqjPGHVkdDpyfMel1irDHFHUN9lkg1RnNDM7DQAoVkSDVqCuqE22qMN25CtyXL4krI3m0VLdnN4fTbKNtRVxhMyVhPnKFvLsh4yw5vfyLvW6Z7G6C5bKck6GLJgeokxmdbXOrbB/abKEiwvCJJ08eRrrUa0Kw9Xh+YWilNtqr3GMZGyKdCFc4bU8d1ZYOmUls9QCTk5PAQAO7Jd2ciogm5cxajWkfUvzMl8LUzIvR827FY6dY7Zia6S2WO66PRFnxtOtGT7r+oZhtgwMDAwMDAwMDAwMDLYBhtkyMLgK4EW3NBodWAduMarmMVLBPF8hroiKuNG+cTnm6TL1MG3POJyhrrQLoWLT+bFiark8eAyWXycUpXeK1Cm53gksd/sR1uaB+bFF5ixYnjd2W9QYDtxPvA9rK+Iit3zhPLdnAAA9Oui168JMtJpy3L6bbgUATO4WpzzVCQ1imOXk5pw79bgUmaTK1KSvjfmyMDyrl4XxWVsWF0B1qvPyTHnsjbAoPboQunQF1PnUowNfjXms1JivTKe8BeaOOnVKxuzwkYNSX0nYnBK3ml9LnRodard6PWFlsmR/pvfsleOywuKorsklw9auCbt0+dxJAECrKZ/LE7s4PrbveNdp68DJ1u6Pc5plz+6a5tiQmSS11aiLFmtpQfRgzYbqyuiweEHG+NK87N+7V7ReMzPT7Ktco4kJ0ZGVytLWJNuyZ1babCfkuIvzUl6aE6XdorshtV85knT5vLQ7XxKWMM25sDgnOcZyZAV3HRIHy2Qq7k/DcCZ22OdxaH2v+pUN3sNOn99y7cM0XP2/Y8aF8HqGYbYMDAwMDAwMDAwMDAy2AYbZMjC4CqHagGDuI9VlBF0NPRYjGNmPyP0U2Y4tMlDbGaWLcglUjHsN/3b1aYA90frsjfsVxZSFfY7bjp1A3Gu0WZZxs1AGo74kbm5nnvgSAGD1smhnbGou2/VlboXpqOw5DgCYOiDMQUIZrchrsk4vFDEmUfM/yTxSh259nnxPnU+S7oPqKticE+aozvxc6uYX1Hvqs6nF3GHanBR1TOqEp0yRwwj/PPNnLS/L2OzbL8xUu93y1aPzvtFo8HtqtErSj8q0sEHZorAyiVTa1+8WmbX5Z74JAFiZlxxTRbo02mTsdBR71Ir12urKqLmy1ulb6UyoWrykrWye5sWSsdN8XF3q1C6cl/nSZH6uUlFYPnVk7PWkPM0t1unImB3aL7nRWvys86YQOH+ZLphPPXNK6menMjnp4+GD4jyZTNBpMsl+sGsLZ0RDlqWDY4XMq+r+ojF87ilbE4ZR8+6Ngrg5KMPq2vxzUO9p/ehfhTKQz9Crf5PVGVwTMMyWgYGBgYGBgYGBgYHBNsAwWwYG1xAio3WORtHoCBbCfMWNike1Y903Um5fEDS8farl0n4E2hOHfdl6W68sgnqlYGt0/6h5uEZ17It0N9wBRitSf8Ym2aEugYHvN3mp445BuyXOepfOngQArF54GgDgOMJopKkb6pAysHOikZk9egcAIF+eYknKUG/sCrrRNR5oc0ArorRFn/2W7zO5or8gnj57UHIzTcxIvqrGsrBzl+eE9aiSKQJZHGXE1J3Qq9cWhqqQp1MfGTO3K8dNTooWbHJCHPAsuh92OLbeDWJL+Tm6EJZ3yXmlCdUdyVhbtp996ZIhu3Di67J9+qs8T/RO6iBoB3SvFt0QdfWAujA6qkkDYEH64PL6aX41zSXWInOlY11hWxsN+X75lOTTqtXUZVCOyzI3meraFCtLmgtM3Qmlbw7HMksNmWrC9CddtS5MWKtD3RvHylsZkRDGK18WdrDNnGnnn3pSjs/lOWYVr+e+jTf3MFZs5Vm91VUcYW3Z8nPRVS2WFqzXKkrvZnA9wTBbBgYGBgYGBgYGBgYG2wDDbBkYXEfoa70kKmt5UW8eoIyBRjidYPR7VMbLH023gl+7w48eKOUKsithTo07zYCNy90w7Divnoj6NroWUTqxwcIG/jMW9PPS+b8fN2M72C+6gnaFhVHTNpdsT5PsjJMSRmDfsdsAALsOHwMAJBL6Jzdeu9ZX75mZDSf1BvrghmlDgg5xfGbYZEmS1D6pfic3Kbqg+rKwLGvM8eQyYt9hHi1lpixG7nscozY1XdrgqekSO6LugtSAJYXdKdCJr1gRFrDAPFvpXJbt1WcX9VJkl7TfXeqf6rUVX3uyRWHSQCe/HtkhzaulrI+WZ5PZSmZy3li5PEbzYcHLQSZ1VCbppNhizjJe79VV1YeRAWuS/SNrl87JmM/MqFOktOHUM6Iz62jeNq8lwbbKt9M8/yB1cAl1ZOxIfWmkfGOlrKC6GC5eljGrzO6T9pVL7KafPQy93a+iVQfjcLwdJ/r1+t1lvb/Zhti6rmGYLQMDAwMDAwMDAwMDg22AYbYMDK5jeNG9AMOgegXNIaMOY47HhGmeL54VGgwcrtHyjh+of8R2D6txzJHJ2HmvYiJKNzQuJs1jqDgcTiCnVHCcbI2kBvurW71UHnPSPy4qb1sQQW1eGAbcM4NMlbI5bKUdMZGidGlxEVaO5nBKkZFo0W3OJsvi2MIG7b9BHP/2HL8ZAJChBkZHu1/+8Hjn0PYOpN7S643ADjJFZJ48vZsdyPcTAu9wuvGpzixHZmhiN/VANdGpLV0UJ8baMnOLteT7am2Rn4XhyueFJSlOiRtgoSwsTDIrzFG2LIyWjlUy5WdhggjmUNNtOi0M2O5DN8qBZM7sNK8BtWCqybKT1F+R6dJylDVaTzm4Wpbtz4mkmq0ymSDVp7WbMiYWWbxpsoQOc5R1uc2S2UqnpE11ft9qy7bDz5mMMGRT08L21enUWGrKfCyQjcwX5LgM5+v8RXFD1NlWzMtPvxTro2wO1apcq/k5yYG2+5jo+DLJICO7OYe/K4GRmf7tbmNQo8X70svfZnsPy+1th8GOwjBbBgYGBgYGBgYGBgYG2wDDbBkYPAvRZ7xkm2Ck1g7RbgW1XfAIsAiHu6ATXzA3lpYfg+0ZlV0ZNW9K3PK2mpcrbvwyckwCcrxNy6LcAcrkqocbZF5DHByVgRgXVMdTnhZNy4WCsDSNNdG67L3hudyS0aIjX79VGzMCo0TZVfPRn43D9WXBez12+cGxpG7HppOdl4OJkfkCcz61m5I/q0OGq8scUWq8qA540/uPAACSZFesEa+Vtk/bEZwTLeqQalVpT6YoTJo6CLrMAdXXzsjnlOYTYznKWkmf1DFRaslkhEWDQ81eU9k9Oc6lfkyZq+mZMuuSOk6dPCN1zstPsVwhz7ZrOXL+BJ0bE2Th0tTVzZ07x0bK8Zr3Sxm4Epm2xUXR2+kIVypyDTJ5aX8mJ/O0x8HT/HDtesvfT2K72KDN5LoKY6rGvWJh3IjrOmtwfcAwWwYGBgYGBgYGBgYGBtsAw2wZGBh4CI0KBqzQPJ2PMl76OcB8DWhygrqivjVeeJtCdD3BXExBbJapGmCiYuapWlfzun+HlBOSgyy8vLDjNFamzMXGOZuC+qfguIXr8oaUFczhNabgbFQbHE9QBl/93vnbHCXW8kvUHd1w530AgHZLtDMTu3cDANJZdbCLey1Hb3d/OgZ1kcGbb1waR84vXmybLn6FirAu+VKZ7SJz5M0zugZ2VQMlLFAqnQq0Ox4GWXf5rPonzYtVZ16wRk1Ymh4d+fqclcBzMwwwhQ5ZKaxz4rMS1HcxeViLTNbKkuSpmjt/CQCwzBxlzWadRch5u/fuAQDsPyiaK2Wuzs2J7u3ciVMA+lqrXTOSG2xmlzBRNWq0zp2X4xt1YdCyOXU79N+PHW/Mpf4puhUWyXjpWNi8Jjnm+1pdlTxgK4viglio0JXQ9rOIm73/tqK7DT6P4z8vrxCDFPocDtyXluE6nk0wV9vAwMDAwMDAwMDAwGAbYJgtAwODSAR1H57WKsiAOf5oun6OYnM2wnZlRQnmFgt3PRsRgTGKiv5uWivmsY3+hgbHOshWjtPN0Strh3QHV8pZLFiu6oQmZ2d97VDmw5sDO5LSx7s7Q77H0P3hY+cp44Z+9s5Thz74nfo8XWhq+PwNrTXmPO2RZVq+vOD7fnKX5JpqNYSl6XT8eirbkp8/blfqSdJxT5k5PT7hprwyNU+abi9dkDq//tiTAIDampxTXROmq81cYy6EwWo0hHVLJIW5qjCHWIdtqJOparelnNVVzWlG10tLjxPGLJcT98FMNsXPwkzVqrL/zOk5AMDUtLCOhUKW7ddRZ58dspV2imMi9TVrNe4nW0NmK+5tFnf1wDgQVwN1Jdi3jev3u4QazdazA4bZMjAwMDAwMDAwMDAw2AYYZsvAwGDTGGBtEn62xbX97FFYtHCjKKLH1GgA3VVdgj/SHoyixo1MhjJaAQ3MqPHHUbUEUUzbwHHws0pR3Q1KeAacIjc4P4oVC7Y5IK0azJ8VwojtDBMUjYHIvG49NofHBfvpzZ3RZs9GbGu4Ps4fKbcQdBANRNID2pJwHmzjtsd1g9usG2IUK6JOqoWS6Ioc2h6m02SNyGTNnz7Bz6J7ymQKQ+tVNl5ZpG675e1TzZI6MPa6UletJmWurQmjtEYHxMkJacPUtGil5udF05VISJtmJiWHWYpMaTEnzNNl5jBrWVJuW7Vf7Hohn2M5/lxkti0/6XqOMGmqR9McYqo16zqq1ZLzmhyjHmR/Kp3hWDV95diab8ubnwHdaACbfQZvOP9H1GqNyqpt1m02+jy97/jMsBMbHGtwvcEwWwYGBgYGBgYGBgYGBtsAw2wZGBiMH55B2sbr0oNszrDo4ID7WJhmRL/1IveB810MPT7UZdCrbzjC+rRZFiNq/6D2SvcrQ7GDtFBQ1qNfB9wrFdulUxhwSbxCmq4weA53Ee0aJ0bV0fWZsIjyYpazdQy/v0PvUzJbuZIwVQ5ZG80VlST7o2xNIjmcUVC3RK0mkdTcUn1mS9vS8yRMor2amBTmqtEUBqm+QEZoseerU/uwa9cu9lQ+5/JSTj4vbQSZqUJW+lRda7B8KffMGcmvVSiKZuvI0WMAgBI1YK2mHN/tNDhGynzZvrFwPIYrxf10L+Rx7bY6PAYd9jbH2oftj/v9euz0vR3WjjCYvFrPbhhmy8DAwMDAwMDAwMDAYBtgmC0DA4MdQ2herw0YLjd4TICxGojs+zehbQh+7pe/vYzRqO5Zg2MTEjUO6qZiMl/DNEEDObmCY7ZxUwaO0/IGNE5jCvqG6TqiouGbZZy8+kbUN4VCWdktjQfncaBMHfy4RYflNRpVOxNdD3zlrtsTq30KzY91+fwZAECL+inXiy1rriw5zu359Ucee0WHQNU7AR7hg+qKMEary0sAgEpZGCbNe9XpiEtlihqny5cXfXXOzgqz1Wy1uF/KqdbEhXCCWq8kc5m1yDBNM+/WWlVcAut1acfFC5J3q0b3wF5Xjr/11hsAADMzUh7IgndaHV+fbbJ/doo5x6gn0vpt25s8IVsWH5PB3cqc2aq76nayyusR9ndF2UXDcD27YJgtAwMDAwMDAwMDAwODbYBhtgwMDK46rI/6aU6jUH0Xt85AHird+DUpcTVSCo1EDhwX5t82YsAySrew2UhssN0DrE5IsR7rtMG5ozgZDtvvDKtko/PDxiiEcdNrs1n2Je5YRZ0XF4Nsqldgv+zAsRGmhAOMb7gbZcTYBBhlj9PYJMMVl/Xo7w40vH/k8OZSX7S2JGzRpQvCcJXK4vxnp/OyZS4rW3Nnsd4BxmtdteqAmmI+NVV/uR1hinIZ0UKViqK1Uhc/3VbJss2dPw+gz1Qpc6X5rxJ2mseLC2GHjNTk1DQA4ODBQwCA1dUVAMDS8irPl76UqF/L5kV3lkoxPxYdKi3mGEtSS5ZKsu9kBTtkxlQP6rkOBuZWXHfZ2DrZgUsaPadGZV7H5TY4MjPFw/ssocGzCYbZMjAwMDAwMDAwMDAw2AYYZsvAwOCaQJS+y4pyNozQE4ysLxhTJD+KGRiV4RpbOevbGOuMncdA30J0QFfCFXAYoqLjG0XLY8fDQ5whw0uM0JmN6eqPrlEJjlVg78DtLV80qWMCdUd7Dh0HAJQnhRWqLgkL1KDuKZMj05WV45Uh9xiI3rqKXYlPZ7LCPOWywmSdPClMVa0pbFmd2illjipFqUMZsXRazlfGqVyW/U5PyltdlTZOzYjLYZfM2OnTp3ieaKkq5TIAYDfdDSsT8nlyusJ20nWQNGaxKPtT2Tz7RiaLLJ/SnT1+rq9JOzQ/12YR/Yzzjgycp/vjz52oezp0pUJEfsbNaqyCWq2Rlz4YXBcwzJaBgYGBgYGBgYGBgcE2wDBbBgYG1zSiGC9vawUil8HUMWHMU1/8EqsdUfu3yqbELWdUXdUodUaVNc66ffUGr/Emg8SRkfY+JRarnLDPW8X68rbqXrbZsfL0OgiJ/Hs6OX7cNBMW1GoNR/h+2VFdFa3WxTPCAh297XYAQGVa2J8Oc2G1G+Ic2KU+KdUTtsmT1Gi+rnbDqyGVTLOpbARFW822uArWqLFSZDM8nsxUOS0/ufYf/P/bu7cmN470TMAJ9IEn8SBqRlJIM+HDhsO7G3uxseEL//+fsLe+WDtix15JI1oiRfHUBPYiM6saWUjUAchmk3yeCzcbKGQlqtHtyXr15fddnHGqC7u8OE+HxXPeuRcTqTspAXuZUri//CUmaM+exff44OHDEEII3/wxpnaX5/FndZX6cb18nmrAHscarhcvYs3Y+rf4nu6n2rJt+nBsU4K1SnVrb17F8+a08DInYif+vTvm12Z5neT+GsCp/yVC+f3YfwFh98HPm2QLAACgAckW8EkaTbzWRfJVPN+/IA943Dym7pY1t+ZqTt3PsabO4VR1PqWp9W3l8WPjDcYZTVduvort1H2t5o+7/3M2te9beb5xh5Pqch75a66Hukyp0puXMW3aXMXU5stvvgkhhPDoSayH+i31ynr3Znd3wq7WJu00GEIIb9/GxCj37FqnPlpfpT5Wr7q0LJ7r5e8x8cr1Y7lm668/xb5bFynRunMZk6zcj+vntJPinbS74b3790IIIbxP1+TR4yfx+5SEbVNMfzfVn+WE6ov7Mbn64kFMwJ49+yXOMyVV316kBO1OrAHLtVnv3sfnX/0a3/tP/xH7eH2Rznt2vvs/HY/eqa9/5d5H9yW8R9fcjpxTEsUpSbYAAAAakGwBn5Va4hXSblFdv65K/65T9VI6VSI1tQdVbR5Zruk5lOr09W/FmCNzXFovNNfc9Kc7vujF9jEYu6ZTP07dteqSo/T4xH5Ag2vdTWze78nY79Xo70/+mua9TTvt/fB//iWEEMK7VMf0h+9ij6pHT2Oy9fjiDyGEEH76v7Ee6ir1vLq4G3tUnV/c7c6RyrjCm5QMvfo91kClVoDh6io+fp5ru9L97Ge//poGiMnR40cxcXr0OKZsvz6PtVE//vRzCKHvx5V3RDxPCdeXT56k9xLn+CwlYas07p2/iQnV11/HnmL3HnwRT5t2Uby8czdfpPR4fF0K4sKb1zEFvLwfk7pv//TnEEIID1MKuJ6YHI/3UDu8M+yh39/T10nmueTx5v0VqM81//+ZnGnINj5nfvoAAAANSLYAQuhubZZ3b1eVO6ljfVnK4+unnVoLs//4U+nPN57yDNOM/c+P1nadrNajmM6RP5NTv26pY67H3JSv24FxpGBt+LPfrXms7UY4t09c7fhan6ScqF3kHlapx9Sbd7EW669/+dcQQgjPfvyPEEII//A//ymEEMLTb+POgOf3Yurz8tnP6USp39bZRXeKy3uxdipfgfVZqpVKydPjRzFJev8uRkUvfos1W++v4tff0q6CXz55nL6PCdZf/v3/7cz9m6+/DiGE8ColTa9SPdlVqh/78ccf4pwv4vEPH8S5//77y3SN4u6EPz+LydejNK8v0nGrR7GGK4cuedfBX35Ox6e+XX/3j/89vr+06+E2X/sT/R6c4vep2ndx8X8pkMfZfXzq3+PuuPzrlC6yGrDPm2QLAACgAckWwAFjtVW1pOvU6cnYndFaDVbNKuwmCOsJFUtd6lCee7R+aN6OX6fqSVaa3SPn2PN1d8n3X+Pu+Vw30rV0W+08nwaJz+XkcWavs5pNKkTqEt2yrqZIOofj5uNyrePhe7ibokamloTN/gyk1OXBo1hf9I//65/jw2mcN69iivQ6pUuPn8b05yLVMX31/Xc78/nt2V/j68/6N5x3DTy/iEVa7zfp+/P49Wnq5ZV3Cfz11xfpPaTvnz0PIYRwmcbZpqv69FFMuq5yUVjqy/Xk22/St/H7/0y7FL5/HxOuTRr3XUrOzi/ieHlXwW2qyXqd6tXuXMZ5n6drdfU2vv7353Geb97EcZ9+E6/FvZRonV/06d4x5qb8/ePXx8gNElfF18NjHDhrGnfmy7r5HP78SrQIQbIFAADQhGQL4Aij/bwWJl1jd0Tn7uQ1SHVmzWaZpXd1W9dGlYnW1FnO7eM1eF2ZXNXmt6e5W3fsidK46ueh2jdr3vkG12buDpEL3995qnt68seYCvUJbqyD2mziLoXrdfqfP6mm5sGDuEPgxZ/jboV378eeVa+e/2c3du7FdZb6ZuX6sXdXKWkKue9VdJESoacpRXv1Mu5W+Px5TLgep90Fv/vuQZprfOXLFzGF26RLkPt35WvzKNVc3bkba8jupXqzu3cv01uKx92/H79//TrVjL2Mj19exnm9T/VsP//wb/F1KaF78m28Vmdpm8Xa35ib6v12/fT9Y0d+HkPxN6BSqzU877R6UHkW10m2AAAAGpBsATQwlniV5qY5Y+OM3m0un84lN338Mms+H8LipCl/HQltpo5XrduovLyshxoeMJzkisKEAAAYMklEQVRWl9CcuH/V6Ov7CaQv251ntt289qeE/c8ov26TjptXgzgujdsNu3svOc/jbH0Z9koJ1537MS366u73IYQQrp4+7Q558Uvsl/UypV2bVzGhWoWYlr2/iv+Tap3Okd/B26v4/P2HMcF6kXYN/PGHH0MIITxJfazup3O/Tr2+fvjxpzjnlDCdpZ0Rv0/J09ffxBqxJ18+3vmaE7X1+Tp9n/pqpd0MX7+ICdubV7u7Hf7Nf/2HEEIID1JyVvsbMFb7ODvxrYyz/9zHJlrZuni+/GOw7O92+XdfzRYhSLYAAACakGwB3KC5O/Dl3eKm1mKNPT51PjfZUWruTotj49TuvHfHhY/4rvPS/kHF6wd1a5XHh9dyd9x99WXXX19+kub2levPW9v1rftX+czB8a6NvHfAnCat7z/onnpyEWuazs7jMf/+L/87hBDC1btYE/Xlt38XQgjhMiVJF+dxjIcP76X38G5nzndSfdn2fUy+nj//JYQQwquUOOW07uIip3Fxrg8fx75Z334Ta75yfdnZRfyfdKtUU3b1Jo6Td2I8W6VxUr3ak+//HEII4U//7X+EEEL46rtv47zu3g1LHJvOn7pn1vXXzq+dXfoXMCe8sgx6Pg0AAAANSLYAbpHyLm7e8SxbWoMzmh4VCcWUe8nH1gNNTbTm3tkeS0vyo+uJSdjU823KFOeE8WBfWTJS71XRHb/d+dKPXyZdZYKVny+KuEZnMXIR5tbC1JK2wc51M2t7avNcXfv9O7uM/5Pp7sOYLD1MfbXevo41WE/++IcQQgjv3sT+Vu+ex8e/SMevUlL193//t3G887Qr4Nu02+AmzuGrL2Ni9TbtFpjlvlpfpufvfRETqLzD4vZ9PP5V2n3wfUrczu/ERO6rb/8UQgjhQaoRe/iHWI9250FMxvLfmrk7nZ7akvPO/VtR252wtvvm5PrQVPv3MdS8cnMkWwAAAA2sWvczuWmbzebTekMAe9RqEKbuFDZWA3Z4R7Blu/Sd6s743B0eBy2f0tcy2Tq25qQMU5YmW/v6cHUVUHlXwEGpUXFNRuZSC34GyVa3OVv6x6ZMAEbMvAj9NS2ThdpxtYEm3ksezK/+mc3nfJ9qrF7/9iKEEML6LNVoXcYE6fXvMan69ae/hhBCePsyJlyv09e3afe/PN7V27g74Lu0W+AmBmPhItV0rbt+V/HxdaoFu7iMX3/7NdZ6/f7iZZppTMyefBN3Lfz+v/xtCCGEL1PylnuRrVNt19wQ8Kbka1+m+/scvevmyN+q8b85qdbvPO9IeXbUfDi99Xr9wT7pki0AAIAGJFsAn6Cx5GtqwvUhLa2/GH5f9L7p6p72H18bZ/nOZstcTxzGrsUgoFl4E3dst8yQ6oaO3a+y9vnre5Dle8FllDexvm5qslWqnOeQ2hyuUlL1/m2snXr3Kn79/UXcHfC3X2K/rrfp+U2KtK5yX677sd/V3S9izdd52m0w11jduRdrtt7n/lkvY0KWdyN88DC+/jLXZJ3tvya34Xf9kOvJ1qn/XtV3uZy3a+wq1WrlOryPcqfTT5xkCwAA4BMj2QL4jNRSmdzPa8prs1Z3b5eOW0/xdsdd9QcsGnfs8aZqtVblE+V7LUyt06ntTpiTn253xBx8TUwKpl+7/f26pr6uT+Sm9fMqP3rlDpMhjIeGg9+x/PkLuzVfV29T8pV+98ob7+vUDyvXaK3WZUJb3C/f7v5Mus/AxF5mY+/nph2q2Tp1jVbt3FN1fdnOLhbPibYkWwAAAJ8YfbYAPiOr4m53+fi+hKu2o+HSFKM2h1Prx99NX1a7gcPHpTbp8lJ2KUd6eum1ruwOWCZOY0nB8iTiuNd1qWaYmvJM6jB38NnBtV7t/mO9iunH5fmJU5Au8Trt71VtJ9NT9fwb+zuy5Dw33SNMjRaHSLYAAAAakGwB0N2ZzbUH15VJVq2+a+pOh+XxY3Mac+pxph5/7B3+0fkcmEZO57o5jPXVGuziVxzf/aNIHbrX1d7jWL+rHCfuP752zft0prL7XJGo9clVOe/d83TjDxuJpS/FcXt/CMf9vKd+blp/vuaqpeFT5zc30ZqjXbI6Iu1C2H2FPXw6AAAAGpBsAXBQWWNVu6Ndq+W6qXqJY+9ez53nqZKJwR3/MEx7BmPM3E0wBzT1vlTdiXaOX/Vb6S3UnTid5vDOjv01K0YZ/GzKdLV43XD7xHymnXnU65vGnl/+uZt6/KnTmHqPqP31mnN7Wp0qiV6iVlc2du6xXnpj1t0OkbIL6nw6AAAAGpBsATDL2G6CtYRrbBfD2jjleWvfTx1nM5LWVEORmWa/z64NzHBi1WtdPN+NVTm+Nk5+dLPdpHHK4ydelG1xD3dVJFCVYUbr+8oka1v0ESvPU7X/Gpe1X3OivGMTrttSIzh3Hseep0XN1tzX1urIxsY51AMMSj4lAAAADUi2ADipqclXWSNy6tqXuUnAMN1oa1irdRsUSdbCS9HvCjjNIMWs7UKYkrdVuldc+9GOBhwn6LV20zWCU193bP+r1rsftqzZOvacc3sE3tTfCj5uki0AAIAGJFsA3Kiyp1dZyzW1tmtsd7Vj76DXas4m14rlHf1G6q1K+47vzj2opaqMWSRLY3VoZR1b7Y79qrtHm65xV0uVX7/ZncdEXY1YTqy6CW92hq8PsJvI9bVs5Xmm7Va3v19X/hkMe9HtTPJURX+Vud0Wp07CxhLxY861NOUee7z1Tqt8GiRbAAAADUi2APigane0lyZcx979DkV6VEtDxpK1ufnOobvkfY3IfkuzhX73wtmvXHae6uOnSgiKhCuPX5x+POHKw11/4bSrf9MJ1NS0Zey4pXVNS/txjX0mWtSQzZ1r7fWrvAuhYIsJJFsAAAANSLYAuJWm7mpYe7z82mr3t+r5u5BlYQ+gAzfbt5WhqilhJYkaPNq1/CpPkGuhpvaz2j+vbrTqNck1Wvnx/feEB/Pu+mzlBDDvVng4sRj9bFzrGzY8Ztk1uald/6q2xU6Ok3uUzTO3n9bSpG3OOY+2Wqfz5Lo90RbjJFsAAAANSLYA+CiN1VCVfbyWGqsqqqYiE296H7Oj2dTXTt65cbCDYk5vps6xrF+qzXd0e8Hi+/2pUvXVDZKNYxPSVvOYX7M499qUiVN69ESXofY+lmi1W2F+fr1e73wPU0i2AAAAGpBsAfBJGevjlXXfbw4nAttw+FZ+rq3qyowqOwd2xxW9oOYY6921dEfH7vXDWVcer8yv6LtV1k7109jt09UlC9dGio/vfFutM1qVdUjhcAq1ZAfL2u6Up6g1OoXJyVBRDFhNPfPPqFYgWPZmOzKZug19xMY+L1N6gUFJsgUAANCAZAuAT9p4ArF/98JardbgDnzRymnsrneXEo3cHJ/S4al7/sh0pQjlhnPZbg8+Xx/x8POrVZF8dYlYcf6RGq7a291WCoy225SozdhNrlqzVSSW1TlMHL9mbn1eOe7sXTWLf3Wv74aZVn/XIvmbXIN4YhItlpBsAQAANCDZAuCz1N2lPtutsSrviuddDYeJVuO759duoo+lE2PPj+62NlKb1Y+brsWgJqsfaYp+Pruvyqep1lJ1P6R594prqdNg2GL6+3qdjfZvO9Qg7QTG0pWxmrLa8XueSScMu19nj7PrJtKhUydcarU4hmQLAACgAckWAFxT3r2u7mpY1njl/l4j6dEp5jT2+Ng4tVqXLlkqCtH60qfdBGxbph+l7f5xy/q22k543a6FRyYUg7BpZMfIfQZ1ZcVWiXNDj7nv6djjl9Z8tXJM37Lhe+ueSc8ffv3Uvlp5vL6/loyC+XxqAAAAGpBsAcAEY7sadnfqK4lXWTZUu7s+5Y7/6I6HIzvAlc+vBjvL7d+LsUy4hscPZlJ8v39Xwb7PVnneNinLUaMWPcHWI4O13iHv1KbW/00d51THHZ7D4d0qF6d1Y9t0wgSSLQAAgAYkWwBwhNE+XmUtV9nHq0g+WtTMVM/RTalI14rn+3Hyw5uw94ByO7/8cJeIFfd4V2X6dzjRqqaKxeHrSq3X4PULNhIcO+bYBGtprdXccaceXz3/4OJ1T6Rvd3/W/WfmeOXctkVtYDelI+vU8udVrRbH8OkBAABowGILAACgAf8ZIQA00Dcnjl/P0uPVhr0Tnz/JnMaPjHNY5U0/8uNzN8TYPW//n3+lUbb5Py1btiHGvgbQ16fXchvz4SYh04z9XMtr1fI/L50yjwlHhhD6n2X/smmbuJz2c77/PyfMxn7nBhvHrM/S47IJlvPpAQAAaECyBQA3qLahRnYo2Tp52rV/H4xrSVaZ3uw2NS6V4/SbIuzfQr5MtPKeC+UmFKNb3c+8LLXzDI6bcL1PvcX53PRlfMCRXUC2ZZpTHL542/TyPJXDTtDUeOzxueP2TYxt+c7xJFsAAAANSLYA4BY5lHzVGiAvre8ZrR/qJzVpvDK+6F/WtQAuzvuBk4O+eGzxS0OT2qO6pQlXv/1++cz+grex8Qfvd7X7eItQaOwa156fe62638EP/fnkkyDZAgAAaECyBQAficFuaZVUZeqOh9XHa01eR8KbYYJwtvPdtki+Kj2Qh/MaKTsa29muq9FK36/LGrLy+D3NkvNjZ11R07LdCE9ttAlyd7Fy4+hi/quy2fC0RKvPJssmxjm9rDS+PsLSGqrpaWD6HOX3omaLE5BsAQAANCDZAoCP3KkSr/K4PWe69n/r5x+rnemfbZsKjfXhWjTWLTE3tezmv909rnxbY0nZsf3FjrmOx44xtcfZbftZ83GTbAEAADQg2QKAT1QtlSiTr+lJ1/5dBOfuxNcFTqvd3Qmrqczh1lB9t66JtWaDWrEZOwqu1uW1mGq9+7Kilupkuxl2b263mVg3/lihXKrpGk0fi/MMjy/mEd7vzGOszu7gFCe+Zu6OipItWpBsAQAANCDZAoDPTO0O/tQ+XktLrQbjD/py7dYD5T5HS1Ofwfvb86+943d9lvYZqUerpXPdq09Vpza3dqrybsr55uSpG33sZ76bZE2t6ZraE6tl/7J6PRqcjmQLAACgAckWABBCWL6r4XbTbXE373zVcqDdOqBVmcos3F2we1lRvnTKNKWacJX9rqa+bnhkGmak+Vg2tZlZ+bJuupU6uFyC1vXT2q1J62vbws7jH1Lt2q7Xce6r/FXCxQlJtgAAABqQbAEAB40mXqvdhKus8+nyhBPV37TOHfaNP7e/VC2pGq3tmpyyLetzNXa+GQPG1xe7EfZ1fct6YrWs0aqzCyHtSLYAAAAakGwBAIt0SUDeva+r49mt6erLlSq7G849b6WGq+zhlA37cnUvqJ4hftn0j4y9JJ9rcs+ypXKaOPHo0Qkvrema18PqQ6rOpfv85uxBssXpSbYAAAAakGwBACdV6+NVS7b6r92BB8c/NjXpXl2rw+oPuHbO2mjH9QIb09d4Hff63s0kToP08RZb24WQhiRbAAAADUi2AICbUSReXa5UqeHqHn+/CVMMarUqjw9Dl8oOgNdO29VsDVKw4r00So5W6f740Qla2Y+r1kersiviWO+1vo5v2fRquzeeYqzSaiXRoj3JFgAAQAOSLQDgg6rVePV9vOLjm0EfryJdGQx87MT6EevdrnZTt0ECtdqf2i2e0kjCdvz4p+qLNa8v2YewrtUWwglJtgAAABqQbAEAt1LZx+us0scrG3t8MG5h0B9sQipT9t+6qfZS/VtYFV/3G69fmpbu1K7l3P5iS8+3z9xkqktS1xIt2pNsAQAANCDZAgA+KtU+Xkmtj1dN9fm9dVD7+1Z1FUpdnVexO99grKL+bNK5r51pTy+wQ/oE6rT32auJ1Xbny7B0q0gEB++r3DVxwhzGE66clJ6l42UOtOdTBgAA0IBkCwD4pIzubjjx++upUf9crfZof6LVpy75/nZOV3L0s7ubYX+eiSnNTK123hu71nm+fY3bZufxU2xaODXh6p9Xs0V7ki0AAIAGJFsAwGehTDzK9OlgrVf+5+ZwX6ncZ6sPutI5u9vbm93HixqqcpPBU/XnqhlPpPZbOq/+Zet0/vT4qky68nW5dp6JdVxjCddYzR+ckmQLAACgAckWAPBZm1Lj1f17dXinw+rGhmXN18TdBKf2sTqVpedbmhL113X/OMe86/I9rNfr9FWixc2RbAEAADQg2QIA2ON6ytIlPquir9Ym1hr1/aSKxCvXeG2P2wFvuLvhzSZQtXHG6qJq8xsmWLvJX//9teNyHVfRy2zunO1CyE2SbAEAADQg2QIAmGiwo+HZ2c73XS3XJic0m93HQ5F8LSxKmpwYLaz16pKp/P3C8WoJV5/QheLxWcPPmkOu2bILITdJsgUAANCAZAsA4ES6WqazlOis9ydN+esm1Xzl2q5Wuw7OTXO6eZZlTvn9zZzm6Pm35f3/GfMtJ9n17MoPx/Rxtd5NIeEmSLYAAAAakGwBADQyqPEqvs91RN2uhkXN16ban2u/WjJW7mI4KidY3e6AU9WOLM+7e1ye1nD+S+qrDl9zuEmSLQAAgAYkWwAAH0hf47V/V8P1SI1XefzJ5lX8q9+dMCdsxfnGel9ti3SpWvRVfx+rnBFUU7Ddc9mFkNtAsgUAANCAZAsA4JbpEq9qjdf+xGs7s8ZrwkR2v02x0nZVG39qelT235pRq7WdcEyoX0O4SZItAACABiRbAAAfibKPV7ZOfarKPl55l8O+1Kqo9RoNfYpdA2tBVFEnNVpDlo/vBs7zOzCx8phwOLmSbHEbSLYAAAAakGwBAHzkainOdr2beIUu+UrfhmKXw9r4ebyRxGr+roiHU6lDY1cTq/Twyi6E3AKSLQAAgAYkWwAAn6ixuqWun1eRgJW7G564jdee+eR57p/f/tfsPzYnWuszmQIfnk8hAABAA5ItAIDPVC35KncVnLq7Yfn6rEudZtZPTandKo9dTe71Be1JtgAAABqQbAEAsCPXcGVdspVruza7iVcoE7AiyZraf2tyn649x+bv13Yh5BaRbAEAADQg2QIA4KBBbVe6Xd8nW/HLZpt2MczJV//EpPPM6dNVS89Wa4kWt4dkCwAAoAHJFgAAi3RJV/pyFs7yP0II12q43sfEa1PsajgnyaqpJVxwG0i2AAAAGpBsAQDQRJc2nceoa9XtVph2NRz08Spqva4nX5UQbJvDtTO7EHL7SLYAAAAakGwBAHAjxuqqhknXpn9uM62XF9wmki0AAIAGJFsAANwKw35efS6Qk6xNZSdDyRa3kWQLAACggdUp+hvcJqvV6tN6QwAAwGLb7faDxZ6SLQAAgAYstgAAABqw2AIAAGjAYgsAAKABiy0AAIAGLLYAAAAasNgCAABowGILAACgAYstAACABiy2AAAAGrDYAgAAaMBiCwAAoAGLLQAAgAYstgAAABqw2AIAAGjAYgsAAKABiy0AAIAGLLYAAAAasNgCAABowGILAACgAYstAACABiy2AAAAGrDYAgAAaMBiCwAAoAGLLQAAgAYstgAAABqw2AIAAGjAYgsAAKABiy0AAIAGLLYAAAAasNgCAABowGILAACgAYstAACABiy2AAAAGrDYAgAAaMBiCwAAoAGLLQAAgAYstgAAABqw2AIAAGjAYgsAAKABiy0AAIAGLLYAAAAasNgCAABowGILAACgAYstAACABiy2AAAAGrDYAgAAaMBiCwAAoAGLLQAAgAYstgAAABqw2AIAAGjAYgsAAKABiy0AAIAGLLYAAAAasNgCAABowGILAACgAYstAACABiy2AAAAGrDYAgAAaMBiCwAAoAGLLQAAgAYstgAAABqw2AIAAGjAYgsAAKABiy0AAIAGLLYAAAAasNgCAABowGILAACgAYstAACABiy2AAAAGrDYAgAAaMBiCwAAoAGLLQAAgAYstgAAABpYbbfbDz0HAACAT45kCwAAoAGLLQAAgAYstgAAABqw2AIAAGjAYgsAAKABiy0AAIAGLLYAAAAasNgCAABowGILAACgAYstAACABiy2AAAAGrDYAgAAaMBiCwAAoAGLLQAAgAYstgAAABqw2AIAAGjAYgsAAKABiy0AAIAGLLYAAAAasNgCAABowGILAACgAYstAACABiy2AAAAGrDYAgAAaMBiCwAAoAGLLQAAgAYstgAAABqw2AIAAGjAYgsAAKABiy0AAIAGLLYAAAAasNgCAABowGILAACgAYstAACABiy2AAAAGrDYAgAAaMBiCwAAoAGLLQAAgAYstgAAABqw2AIAAGjAYgsAAKABiy0AAIAGLLYAAAAasNgCAABo4P8DThJM75xxtjEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": { + "id": "z7DxbSpwBxzm", + "outputId": "2f6b9dea-c19d-4973-d661-d1c462d1bc73" + }, + "outputs": [], "source": [ "results = model.detect([original_image], verbose=1)\n", "plt.figure(figsize=(20,20))\n", "\n", "r = results[0]\n", + "print(np.sum(r['rois']))\n", + "print(np.sum(r['masks']))\n", + "\n", "visualize.display_instances(original_image, r['rois'], r['masks'], r['class_ids'], \n", " dataset_val.class_names, r['scores'], figsize=(15, 15))#ax=get_ax()" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "TmOYlMxnBxzp" + }, "source": [ "## Evaluation" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": { + "id": "qVDrXwoqBxzp", "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n", - "section_masks_0\n", - "{'source': 'brain', 'height': 2512, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_0.jpg', 'id': 0, 'width': 2780}\n", - "['section_masks_0_m_1.png', 'section_masks_0_m_2.png', 'section_masks_0_m_3.png', 'section_masks_0_m_7.png', 'section_masks_0_m_8.png']\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Asfandyar\\AppData\\Roaming\\Python\\Python35\\site-packages\\scipy\\ndimage\\interpolation.py:616: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.\n", - " \"the returned array has changed.\", UserWarning)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "section_masks_1\n", - "{'source': 'brain', 'height': 2457, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_1.jpg', 'id': 1, 'width': 2745}\n", - "['section_masks_1_m_1.png', 'section_masks_1_m_2.png', 'section_masks_1_m_3.png', 'section_masks_1_m_7.png', 'section_masks_1_m_8.png']\n", - "2\n", - "section_masks_2\n", - "{'source': 'brain', 'height': 2400, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_2.jpg', 'id': 2, 'width': 2707}\n", - "['section_masks_2_m_1.png', 'section_masks_2_m_2.png', 'section_masks_2_m_3.png', 'section_masks_2_m_7.png', 'section_masks_2_m_8.png']\n", - "3\n", - "section_masks_3\n", - "{'source': 'brain', 'height': 2339, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_3.jpg', 'id': 3, 'width': 2665}\n", - "['section_masks_3_m_1.png', 'section_masks_3_m_2.png', 'section_masks_3_m_3.png', 'section_masks_3_m_7.png', 'section_masks_3_m_8.png']\n", - "4\n", - "section_masks_4\n", - "{'source': 'brain', 'height': 2276, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_4.jpg', 'id': 4, 'width': 2621}\n", - "['section_masks_4_m_1.png', 'section_masks_4_m_2.png', 'section_masks_4_m_3.png', 'section_masks_4_m_7.png', 'section_masks_4_m_8.png']\n", - "5\n", - "section_masks_5\n", - "{'source': 'brain', 'height': 2210, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_5.jpg', 'id': 5, 'width': 2573}\n", - "['section_masks_5_m_1.png', 'section_masks_5_m_2.png', 'section_masks_5_m_3.png', 'section_masks_5_m_7.png', 'section_masks_5_m_8.png']\n", - "6\n", - "section_masks_6\n", - "{'source': 'brain', 'height': 2141, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_6.jpg', 'id': 6, 'width': 2522}\n", - "['section_masks_6_m_1.png', 'section_masks_6_m_2.png', 'section_masks_6_m_3.png', 'section_masks_6_m_7.png', 'section_masks_6_m_8.png']\n", - "7\n", - "section_masks_7\n", - "{'source': 'brain', 'height': 2069, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_7.jpg', 'id': 7, 'width': 2468}\n", - "['section_masks_7_m_1.png', 'section_masks_7_m_2.png', 'section_masks_7_m_3.png', 'section_masks_7_m_7.png', 'section_masks_7_m_8.png']\n", - "8\n", - "section_masks_8\n", - "{'source': 'brain', 'height': 1996, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_8.jpg', 'id': 8, 'width': 2411}\n", - "['section_masks_8_m_1.png', 'section_masks_8_m_2.png', 'section_masks_8_m_3.png', 'section_masks_8_m_7.png', 'section_masks_8_m_8.png']\n", - "9\n", - "section_masks_9\n", - "{'source': 'brain', 'height': 1919, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_9.jpg', 'id': 9, 'width': 2351}\n", - "['section_masks_9_m_1.png', 'section_masks_9_m_2.png', 'section_masks_9_m_3.png', 'section_masks_9_m_7.png', 'section_masks_9_m_8.png']\n", - "10\n", - "section_masks_10\n", - "{'source': 'brain', 'height': 1840, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_10.jpg', 'id': 10, 'width': 2288}\n", - "['section_masks_10_m_1.png', 'section_masks_10_m_2.png', 'section_masks_10_m_3.png', 'section_masks_10_m_7.png', 'section_masks_10_m_8.png']\n", - "11\n", - "section_masks_11\n", - "{'source': 'brain', 'height': 1919, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_11.jpg', 'id': 11, 'width': 2351}\n", - "['section_masks_11_m_1.png', 'section_masks_11_m_2.png', 'section_masks_11_m_3.png', 'section_masks_11_m_7.png', 'section_masks_11_m_8.png']\n", - "12\n", - "section_masks_12\n", - "{'source': 'brain', 'height': 1996, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_12.jpg', 'id': 12, 'width': 2411}\n", - "['section_masks_12_m_1.png', 'section_masks_12_m_2.png', 'section_masks_12_m_3.png', 'section_masks_12_m_7.png', 'section_masks_12_m_8.png']\n", - "13\n", - "section_masks_13\n", - "{'source': 'brain', 'height': 2069, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_13.jpg', 'id': 13, 'width': 2468}\n", - "['section_masks_13_m_1.png', 'section_masks_13_m_2.png', 'section_masks_13_m_3.png', 'section_masks_13_m_7.png', 'section_masks_13_m_8.png']\n", - "14\n", - "section_masks_14\n", - "{'source': 'brain', 'height': 2141, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_14.jpg', 'id': 14, 'width': 2522}\n", - "['section_masks_14_m_1.png', 'section_masks_14_m_2.png', 'section_masks_14_m_3.png', 'section_masks_14_m_7.png', 'section_masks_14_m_8.png']\n", - "15\n", - "section_masks_15\n", - "{'source': 'brain', 'height': 2210, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_15.jpg', 'id': 15, 'width': 2573}\n", - "['section_masks_15_m_1.png', 'section_masks_15_m_2.png', 'section_masks_15_m_3.png', 'section_masks_15_m_7.png', 'section_masks_15_m_8.png']\n", - "16\n", - "section_masks_16\n", - "{'source': 'brain', 'height': 2276, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_16.jpg', 'id': 16, 'width': 2621}\n", - "['section_masks_16_m_1.png', 'section_masks_16_m_2.png', 'section_masks_16_m_3.png', 'section_masks_16_m_7.png', 'section_masks_16_m_8.png']\n", - "17\n", - "section_masks_17\n", - "{'source': 'brain', 'height': 2339, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_17.jpg', 'id': 17, 'width': 2665}\n", - "['section_masks_17_m_1.png', 'section_masks_17_m_2.png', 'section_masks_17_m_3.png', 'section_masks_17_m_7.png', 'section_masks_17_m_8.png']\n", - "18\n", - "section_masks_18\n", - "{'source': 'brain', 'height': 2400, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_18.jpg', 'id': 18, 'width': 2707}\n", - "['section_masks_18_m_1.png', 'section_masks_18_m_2.png', 'section_masks_18_m_3.png', 'section_masks_18_m_7.png', 'section_masks_18_m_8.png']\n", - "19\n", - "section_masks_19\n", - "{'source': 'brain', 'height': 2457, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_19.jpg', 'id': 19, 'width': 2745}\n", - "['section_masks_19_m_1.png', 'section_masks_19_m_2.png', 'section_masks_19_m_3.png', 'section_masks_19_m_7.png', 'section_masks_19_m_8.png']\n", - "20\n", - "section_masks_20\n", - "{'source': 'brain', 'height': 3111, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_20.jpg', 'id': 20, 'width': 3780}\n", - "['section_masks_20_m_1.png', 'section_masks_20_m_2.png', 'section_masks_20_m_3.png', 'section_masks_20_m_4.png', 'section_masks_20_m_5.png', 'section_masks_20_m_6.png', 'section_masks_20_m_7.png', 'section_masks_20_m_8.png']\n", - "21\n", - "section_masks_21\n", - "{'source': 'brain', 'height': 3028, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_21.jpg', 'id': 21, 'width': 3747}\n", - "['section_masks_21_m_1.png', 'section_masks_21_m_2.png', 'section_masks_21_m_3.png', 'section_masks_21_m_4.png', 'section_masks_21_m_5.png', 'section_masks_21_m_6.png', 'section_masks_21_m_7.png', 'section_masks_21_m_8.png']\n", - "22\n", - "section_masks_22\n", - "{'source': 'brain', 'height': 2941, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_22.jpg', 'id': 22, 'width': 3709}\n", - "['section_masks_22_m_1.png', 'section_masks_22_m_2.png', 'section_masks_22_m_3.png', 'section_masks_22_m_4.png', 'section_masks_22_m_5.png', 'section_masks_22_m_6.png', 'section_masks_22_m_7.png', 'section_masks_22_m_8.png']\n", - "23\n", - "section_masks_23\n", - "{'source': 'brain', 'height': 2851, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_23.jpg', 'id': 23, 'width': 3667}\n", - "['section_masks_23_m_1.png', 'section_masks_23_m_2.png', 'section_masks_23_m_3.png', 'section_masks_23_m_4.png', 'section_masks_23_m_5.png', 'section_masks_23_m_6.png', 'section_masks_23_m_7.png', 'section_masks_23_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "24\n", - "section_masks_24\n", - "{'source': 'brain', 'height': 2757, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_24.jpg', 'id': 24, 'width': 3620}\n", - "['section_masks_24_m_1.png', 'section_masks_24_m_2.png', 'section_masks_24_m_3.png', 'section_masks_24_m_4.png', 'section_masks_24_m_5.png', 'section_masks_24_m_6.png', 'section_masks_24_m_7.png', 'section_masks_24_m_8.png']\n", - "25\n", - "section_masks_25\n", - "{'source': 'brain', 'height': 2660, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_25.jpg', 'id': 25, 'width': 3569}\n", - "['section_masks_25_m_1.png', 'section_masks_25_m_2.png', 'section_masks_25_m_3.png', 'section_masks_25_m_4.png', 'section_masks_25_m_5.png', 'section_masks_25_m_6.png', 'section_masks_25_m_7.png', 'section_masks_25_m_8.png']\n", - "26\n", - "section_masks_26\n", - "{'source': 'brain', 'height': 2560, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_26.jpg', 'id': 26, 'width': 3513}\n", - "['section_masks_26_m_1.png', 'section_masks_26_m_2.png', 'section_masks_26_m_3.png', 'section_masks_26_m_4.png', 'section_masks_26_m_5.png', 'section_masks_26_m_6.png', 'section_masks_26_m_7.png', 'section_masks_26_m_8.png']\n", - "27\n", - "section_masks_27\n", - "{'source': 'brain', 'height': 2456, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_27.jpg', 'id': 27, 'width': 3453}\n", - "['section_masks_27_m_1.png', 'section_masks_27_m_2.png', 'section_masks_27_m_3.png', 'section_masks_27_m_4.png', 'section_masks_27_m_5.png', 'section_masks_27_m_6.png', 'section_masks_27_m_7.png', 'section_masks_27_m_8.png']\n", - "28\n", - "section_masks_28\n", - "{'source': 'brain', 'height': 2350, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_28.jpg', 'id': 28, 'width': 3389}\n", - "['section_masks_28_m_1.png', 'section_masks_28_m_2.png', 'section_masks_28_m_3.png', 'section_masks_28_m_4.png', 'section_masks_28_m_5.png', 'section_masks_28_m_6.png', 'section_masks_28_m_7.png', 'section_masks_28_m_8.png']\n", - "29\n", - "section_masks_29\n", - "{'source': 'brain', 'height': 2241, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_29.jpg', 'id': 29, 'width': 3321}\n", - "['section_masks_29_m_1.png', 'section_masks_29_m_2.png', 'section_masks_29_m_3.png', 'section_masks_29_m_4.png', 'section_masks_29_m_5.png', 'section_masks_29_m_6.png', 'section_masks_29_m_7.png', 'section_masks_29_m_8.png']\n", - "30\n", - "section_masks_30\n", - "{'source': 'brain', 'height': 2128, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_30.jpg', 'id': 30, 'width': 3248}\n", - "['section_masks_30_m_1.png', 'section_masks_30_m_2.png', 'section_masks_30_m_3.png', 'section_masks_30_m_4.png', 'section_masks_30_m_5.png', 'section_masks_30_m_6.png', 'section_masks_30_m_7.png', 'section_masks_30_m_8.png']\n", - "31\n", - "section_masks_31\n", - "{'source': 'brain', 'height': 2241, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_31.jpg', 'id': 31, 'width': 3321}\n", - "['section_masks_31_m_1.png', 'section_masks_31_m_2.png', 'section_masks_31_m_3.png', 'section_masks_31_m_4.png', 'section_masks_31_m_5.png', 'section_masks_31_m_6.png', 'section_masks_31_m_7.png', 'section_masks_31_m_8.png']\n", - "32\n", - "section_masks_32\n", - "{'source': 'brain', 'height': 2350, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_32.jpg', 'id': 32, 'width': 3389}\n", - "['section_masks_32_m_1.png', 'section_masks_32_m_2.png', 'section_masks_32_m_3.png', 'section_masks_32_m_4.png', 'section_masks_32_m_5.png', 'section_masks_32_m_6.png', 'section_masks_32_m_7.png', 'section_masks_32_m_8.png']\n", - "33\n", - "section_masks_33\n", - "{'source': 'brain', 'height': 2456, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_33.jpg', 'id': 33, 'width': 3453}\n", - "['section_masks_33_m_1.png', 'section_masks_33_m_2.png', 'section_masks_33_m_3.png', 'section_masks_33_m_4.png', 'section_masks_33_m_5.png', 'section_masks_33_m_6.png', 'section_masks_33_m_7.png', 'section_masks_33_m_8.png']\n", - "34\n", - "section_masks_34\n", - "{'source': 'brain', 'height': 2560, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_34.jpg', 'id': 34, 'width': 3513}\n", - "['section_masks_34_m_1.png', 'section_masks_34_m_2.png', 'section_masks_34_m_3.png', 'section_masks_34_m_4.png', 'section_masks_34_m_5.png', 'section_masks_34_m_6.png', 'section_masks_34_m_7.png', 'section_masks_34_m_8.png']\n", - "35\n", - "section_masks_35\n", - "{'source': 'brain', 'height': 2660, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_35.jpg', 'id': 35, 'width': 3569}\n", - "['section_masks_35_m_1.png', 'section_masks_35_m_2.png', 'section_masks_35_m_3.png', 'section_masks_35_m_4.png', 'section_masks_35_m_5.png', 'section_masks_35_m_6.png', 'section_masks_35_m_7.png', 'section_masks_35_m_8.png']\n", - "36\n", - "section_masks_36\n", - "{'source': 'brain', 'height': 2757, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_36.jpg', 'id': 36, 'width': 3620}\n", - "['section_masks_36_m_1.png', 'section_masks_36_m_2.png', 'section_masks_36_m_3.png', 'section_masks_36_m_4.png', 'section_masks_36_m_5.png', 'section_masks_36_m_6.png', 'section_masks_36_m_7.png', 'section_masks_36_m_8.png']\n", - "37\n", - "section_masks_37\n", - "{'source': 'brain', 'height': 2851, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_37.jpg', 'id': 37, 'width': 3667}\n", - "['section_masks_37_m_1.png', 'section_masks_37_m_2.png', 'section_masks_37_m_3.png', 'section_masks_37_m_4.png', 'section_masks_37_m_5.png', 'section_masks_37_m_6.png', 'section_masks_37_m_7.png', 'section_masks_37_m_8.png']\n", - "38\n", - "section_masks_38\n", - "{'source': 'brain', 'height': 2941, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_38.jpg', 'id': 38, 'width': 3709}\n", - "['section_masks_38_m_1.png', 'section_masks_38_m_2.png', 'section_masks_38_m_3.png', 'section_masks_38_m_4.png', 'section_masks_38_m_5.png', 'section_masks_38_m_6.png', 'section_masks_38_m_7.png', 'section_masks_38_m_8.png']\n", - "39\n", - "section_masks_39\n", - "{'source': 'brain', 'height': 3028, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_39.jpg', 'id': 39, 'width': 3747}\n", - "['section_masks_39_m_1.png', 'section_masks_39_m_2.png', 'section_masks_39_m_3.png', 'section_masks_39_m_4.png', 'section_masks_39_m_5.png', 'section_masks_39_m_6.png', 'section_masks_39_m_7.png', 'section_masks_39_m_8.png']\n", - "40\n", - "section_masks_40\n", - "{'source': 'brain', 'height': 3432, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_40.jpg', 'id': 40, 'width': 4197}\n", - "['section_masks_40_m_1.png', 'section_masks_40_m_2.png', 'section_masks_40_m_4.png', 'section_masks_40_m_5.png', 'section_masks_40_m_6.png', 'section_masks_40_m_7.png', 'section_masks_40_m_8.png']\n", - "41\n", - "section_masks_41\n", - "{'source': 'brain', 'height': 3339, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_41.jpg', 'id': 41, 'width': 4161}\n", - "['section_masks_41_m_1.png', 'section_masks_41_m_2.png', 'section_masks_41_m_4.png', 'section_masks_41_m_5.png', 'section_masks_41_m_6.png', 'section_masks_41_m_7.png', 'section_masks_41_m_8.png']\n", - "42\n", - "section_masks_42\n", - "{'source': 'brain', 'height': 3242, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_42.jpg', 'id': 42, 'width': 4120}\n", - "['section_masks_42_m_1.png', 'section_masks_42_m_2.png', 'section_masks_42_m_4.png', 'section_masks_42_m_5.png', 'section_masks_42_m_6.png', 'section_masks_42_m_7.png', 'section_masks_42_m_8.png']\n", - "43\n", - "section_masks_43\n", - "{'source': 'brain', 'height': 3142, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_43.jpg', 'id': 43, 'width': 4074}\n", - "['section_masks_43_m_1.png', 'section_masks_43_m_2.png', 'section_masks_43_m_4.png', 'section_masks_43_m_5.png', 'section_masks_43_m_6.png', 'section_masks_43_m_7.png', 'section_masks_43_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "44\n", - "section_masks_44\n", - "{'source': 'brain', 'height': 3037, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_44.jpg', 'id': 44, 'width': 4023}\n", - "['section_masks_44_m_1.png', 'section_masks_44_m_2.png', 'section_masks_44_m_4.png', 'section_masks_44_m_5.png', 'section_masks_44_m_6.png', 'section_masks_44_m_7.png', 'section_masks_44_m_8.png']\n", - "45\n", - "section_masks_45\n", - "{'source': 'brain', 'height': 2929, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_45.jpg', 'id': 45, 'width': 3967}\n", - "['section_masks_45_m_1.png', 'section_masks_45_m_2.png', 'section_masks_45_m_4.png', 'section_masks_45_m_5.png', 'section_masks_45_m_6.png', 'section_masks_45_m_7.png', 'section_masks_45_m_8.png']\n", - "46\n", - "section_masks_46\n", - "{'source': 'brain', 'height': 2817, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_46.jpg', 'id': 46, 'width': 3906}\n", - "['section_masks_46_m_1.png', 'section_masks_46_m_2.png', 'section_masks_46_m_4.png', 'section_masks_46_m_5.png', 'section_masks_46_m_6.png', 'section_masks_46_m_7.png', 'section_masks_46_m_8.png']\n", - "47\n", - "section_masks_47\n", - "{'source': 'brain', 'height': 2702, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_47.jpg', 'id': 47, 'width': 3841}\n", - "['section_masks_47_m_1.png', 'section_masks_47_m_2.png', 'section_masks_47_m_4.png', 'section_masks_47_m_5.png', 'section_masks_47_m_6.png', 'section_masks_47_m_7.png', 'section_masks_47_m_8.png']\n", - "48\n", - "section_masks_48\n", - "{'source': 'brain', 'height': 2583, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_48.jpg', 'id': 48, 'width': 3771}\n", - "['section_masks_48_m_1.png', 'section_masks_48_m_2.png', 'section_masks_48_m_4.png', 'section_masks_48_m_5.png', 'section_masks_48_m_6.png', 'section_masks_48_m_7.png', 'section_masks_48_m_8.png']\n", - "49\n", - "section_masks_49\n", - "{'source': 'brain', 'height': 2461, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_49.jpg', 'id': 49, 'width': 3696}\n", - "['section_masks_49_m_1.png', 'section_masks_49_m_2.png', 'section_masks_49_m_4.png', 'section_masks_49_m_5.png', 'section_masks_49_m_6.png', 'section_masks_49_m_7.png', 'section_masks_49_m_8.png']\n", - "50\n", - "section_masks_50\n", - "{'source': 'brain', 'height': 2336, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_50.jpg', 'id': 50, 'width': 3616}\n", - "['section_masks_50_m_1.png', 'section_masks_50_m_2.png', 'section_masks_50_m_4.png', 'section_masks_50_m_5.png', 'section_masks_50_m_6.png', 'section_masks_50_m_7.png', 'section_masks_50_m_8.png']\n", - "51\n", - "section_masks_51\n", - "{'source': 'brain', 'height': 2461, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_51.jpg', 'id': 51, 'width': 3696}\n", - "['section_masks_51_m_1.png', 'section_masks_51_m_2.png', 'section_masks_51_m_4.png', 'section_masks_51_m_5.png', 'section_masks_51_m_6.png', 'section_masks_51_m_7.png', 'section_masks_51_m_8.png']\n", - "52\n", - "section_masks_52\n", - "{'source': 'brain', 'height': 2583, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_52.jpg', 'id': 52, 'width': 3771}\n", - "['section_masks_52_m_1.png', 'section_masks_52_m_2.png', 'section_masks_52_m_4.png', 'section_masks_52_m_5.png', 'section_masks_52_m_6.png', 'section_masks_52_m_7.png', 'section_masks_52_m_8.png']\n", - "53\n", - "section_masks_53\n", - "{'source': 'brain', 'height': 2702, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_53.jpg', 'id': 53, 'width': 3841}\n", - "['section_masks_53_m_1.png', 'section_masks_53_m_2.png', 'section_masks_53_m_4.png', 'section_masks_53_m_5.png', 'section_masks_53_m_6.png', 'section_masks_53_m_7.png', 'section_masks_53_m_8.png']\n", - "54\n", - "section_masks_54\n", - "{'source': 'brain', 'height': 2817, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_54.jpg', 'id': 54, 'width': 3906}\n", - "['section_masks_54_m_1.png', 'section_masks_54_m_2.png', 'section_masks_54_m_4.png', 'section_masks_54_m_5.png', 'section_masks_54_m_6.png', 'section_masks_54_m_7.png', 'section_masks_54_m_8.png']\n", - "55\n", - "section_masks_55\n", - "{'source': 'brain', 'height': 2929, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_55.jpg', 'id': 55, 'width': 3967}\n", - "['section_masks_55_m_1.png', 'section_masks_55_m_2.png', 'section_masks_55_m_4.png', 'section_masks_55_m_5.png', 'section_masks_55_m_6.png', 'section_masks_55_m_7.png', 'section_masks_55_m_8.png']\n", - "56\n", - "section_masks_56\n", - "{'source': 'brain', 'height': 3037, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_56.jpg', 'id': 56, 'width': 4023}\n", - "['section_masks_56_m_1.png', 'section_masks_56_m_2.png', 'section_masks_56_m_4.png', 'section_masks_56_m_5.png', 'section_masks_56_m_6.png', 'section_masks_56_m_7.png', 'section_masks_56_m_8.png']\n", - "57\n", - "section_masks_57\n", - "{'source': 'brain', 'height': 3142, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_57.jpg', 'id': 57, 'width': 4074}\n", - "['section_masks_57_m_1.png', 'section_masks_57_m_2.png', 'section_masks_57_m_4.png', 'section_masks_57_m_5.png', 'section_masks_57_m_6.png', 'section_masks_57_m_7.png', 'section_masks_57_m_8.png']\n", - "58\n", - "section_masks_58\n", - "{'source': 'brain', 'height': 3242, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_58.jpg', 'id': 58, 'width': 4120}\n", - "['section_masks_58_m_1.png', 'section_masks_58_m_2.png', 'section_masks_58_m_4.png', 'section_masks_58_m_5.png', 'section_masks_58_m_6.png', 'section_masks_58_m_7.png', 'section_masks_58_m_8.png']\n", - "59\n", - "section_masks_59\n", - "{'source': 'brain', 'height': 3339, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_59.jpg', 'id': 59, 'width': 4161}\n", - "['section_masks_59_m_1.png', 'section_masks_59_m_2.png', 'section_masks_59_m_4.png', 'section_masks_59_m_5.png', 'section_masks_59_m_6.png', 'section_masks_59_m_7.png', 'section_masks_59_m_8.png']\n", - "60\n", - "section_masks_60\n", - "{'source': 'brain', 'height': 3116, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_60.jpg', 'id': 60, 'width': 3929}\n", - "['section_masks_60_m_1.png', 'section_masks_60_m_2.png', 'section_masks_60_m_4.png', 'section_masks_60_m_5.png', 'section_masks_60_m_6.png', 'section_masks_60_m_7.png', 'section_masks_60_m_8.png']\n", - "61\n", - "section_masks_61\n", - "{'source': 'brain', 'height': 3026, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_61.jpg', 'id': 61, 'width': 3900}\n", - "['section_masks_61_m_1.png', 'section_masks_61_m_2.png', 'section_masks_61_m_4.png', 'section_masks_61_m_5.png', 'section_masks_61_m_6.png', 'section_masks_61_m_7.png', 'section_masks_61_m_8.png']\n", - "62\n", - "section_masks_62\n", - "{'source': 'brain', 'height': 2933, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_62.jpg', 'id': 62, 'width': 3865}\n", - "['section_masks_62_m_1.png', 'section_masks_62_m_2.png', 'section_masks_62_m_4.png', 'section_masks_62_m_5.png', 'section_masks_62_m_6.png', 'section_masks_62_m_7.png', 'section_masks_62_m_8.png']\n", - "63\n", - "section_masks_63\n", - "{'source': 'brain', 'height': 2836, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_63.jpg', 'id': 63, 'width': 3827}\n", - "['section_masks_63_m_1.png', 'section_masks_63_m_2.png', 'section_masks_63_m_4.png', 'section_masks_63_m_5.png', 'section_masks_63_m_6.png', 'section_masks_63_m_7.png', 'section_masks_63_m_8.png']\n", - "64\n", - "section_masks_64\n", - "{'source': 'brain', 'height': 2736, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_64.jpg', 'id': 64, 'width': 3783}\n", - "['section_masks_64_m_1.png', 'section_masks_64_m_2.png', 'section_masks_64_m_4.png', 'section_masks_64_m_5.png', 'section_masks_64_m_6.png', 'section_masks_64_m_7.png', 'section_masks_64_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "65\n", - "section_masks_65\n", - "{'source': 'brain', 'height': 2632, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_65.jpg', 'id': 65, 'width': 3735}\n", - "['section_masks_65_m_1.png', 'section_masks_65_m_2.png', 'section_masks_65_m_4.png', 'section_masks_65_m_5.png', 'section_masks_65_m_6.png', 'section_masks_65_m_7.png', 'section_masks_65_m_8.png']\n", - "66\n", - "section_masks_66\n", - "{'source': 'brain', 'height': 2525, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_66.jpg', 'id': 66, 'width': 3683}\n", - "['section_masks_66_m_1.png', 'section_masks_66_m_2.png', 'section_masks_66_m_4.png', 'section_masks_66_m_5.png', 'section_masks_66_m_6.png', 'section_masks_66_m_7.png', 'section_masks_66_m_8.png']\n", - "67\n", - "section_masks_67\n", - "{'source': 'brain', 'height': 2415, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_67.jpg', 'id': 67, 'width': 3626}\n", - "['section_masks_67_m_1.png', 'section_masks_67_m_2.png', 'section_masks_67_m_4.png', 'section_masks_67_m_5.png', 'section_masks_67_m_6.png', 'section_masks_67_m_7.png', 'section_masks_67_m_8.png']\n", - "68\n", - "section_masks_68\n", - "{'source': 'brain', 'height': 2303, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_68.jpg', 'id': 68, 'width': 3564}\n", - "['section_masks_68_m_1.png', 'section_masks_68_m_2.png', 'section_masks_68_m_4.png', 'section_masks_68_m_5.png', 'section_masks_68_m_6.png', 'section_masks_68_m_7.png', 'section_masks_68_m_8.png']\n", - "69\n", - "section_masks_69\n", - "{'source': 'brain', 'height': 2187, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_69.jpg', 'id': 69, 'width': 3499}\n", - "['section_masks_69_m_1.png', 'section_masks_69_m_2.png', 'section_masks_69_m_4.png', 'section_masks_69_m_5.png', 'section_masks_69_m_6.png', 'section_masks_69_m_7.png', 'section_masks_69_m_8.png']\n", - "70\n", - "section_masks_70\n", - "{'source': 'brain', 'height': 2068, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_70.jpg', 'id': 70, 'width': 3428}\n", - "['section_masks_70_m_1.png', 'section_masks_70_m_2.png', 'section_masks_70_m_4.png', 'section_masks_70_m_5.png', 'section_masks_70_m_6.png', 'section_masks_70_m_7.png', 'section_masks_70_m_8.png']\n", - "71\n", - "section_masks_71\n", - "{'source': 'brain', 'height': 2187, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_71.jpg', 'id': 71, 'width': 3499}\n", - "['section_masks_71_m_1.png', 'section_masks_71_m_2.png', 'section_masks_71_m_4.png', 'section_masks_71_m_5.png', 'section_masks_71_m_6.png', 'section_masks_71_m_7.png', 'section_masks_71_m_8.png']\n", - "72\n", - "section_masks_72\n", - "{'source': 'brain', 'height': 2303, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_72.jpg', 'id': 72, 'width': 3564}\n", - "['section_masks_72_m_1.png', 'section_masks_72_m_2.png', 'section_masks_72_m_4.png', 'section_masks_72_m_5.png', 'section_masks_72_m_6.png', 'section_masks_72_m_7.png', 'section_masks_72_m_8.png']\n", - "73\n", - "section_masks_73\n", - "{'source': 'brain', 'height': 2415, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_73.jpg', 'id': 73, 'width': 3626}\n", - "['section_masks_73_m_1.png', 'section_masks_73_m_2.png', 'section_masks_73_m_4.png', 'section_masks_73_m_5.png', 'section_masks_73_m_6.png', 'section_masks_73_m_7.png', 'section_masks_73_m_8.png']\n", - "74\n", - "section_masks_74\n", - "{'source': 'brain', 'height': 2525, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_74.jpg', 'id': 74, 'width': 3683}\n", - "['section_masks_74_m_1.png', 'section_masks_74_m_2.png', 'section_masks_74_m_4.png', 'section_masks_74_m_5.png', 'section_masks_74_m_6.png', 'section_masks_74_m_7.png', 'section_masks_74_m_8.png']\n", - "75\n", - "section_masks_75\n", - "{'source': 'brain', 'height': 2632, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_75.jpg', 'id': 75, 'width': 3735}\n", - "['section_masks_75_m_1.png', 'section_masks_75_m_2.png', 'section_masks_75_m_4.png', 'section_masks_75_m_5.png', 'section_masks_75_m_6.png', 'section_masks_75_m_7.png', 'section_masks_75_m_8.png']\n", - "76\n", - "section_masks_76\n", - "{'source': 'brain', 'height': 2736, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_76.jpg', 'id': 76, 'width': 3783}\n", - "['section_masks_76_m_1.png', 'section_masks_76_m_2.png', 'section_masks_76_m_4.png', 'section_masks_76_m_5.png', 'section_masks_76_m_6.png', 'section_masks_76_m_7.png', 'section_masks_76_m_8.png']\n", - "77\n", - "section_masks_77\n", - "{'source': 'brain', 'height': 2836, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_77.jpg', 'id': 77, 'width': 3827}\n", - "['section_masks_77_m_1.png', 'section_masks_77_m_2.png', 'section_masks_77_m_4.png', 'section_masks_77_m_5.png', 'section_masks_77_m_6.png', 'section_masks_77_m_7.png', 'section_masks_77_m_8.png']\n", - "78\n", - "section_masks_78\n", - "{'source': 'brain', 'height': 2933, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_78.jpg', 'id': 78, 'width': 3865}\n", - "['section_masks_78_m_1.png', 'section_masks_78_m_2.png', 'section_masks_78_m_4.png', 'section_masks_78_m_5.png', 'section_masks_78_m_6.png', 'section_masks_78_m_7.png', 'section_masks_78_m_8.png']\n", - "79\n", - "section_masks_79\n", - "{'source': 'brain', 'height': 3026, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_79.jpg', 'id': 79, 'width': 3900}\n", - "['section_masks_79_m_1.png', 'section_masks_79_m_2.png', 'section_masks_79_m_4.png', 'section_masks_79_m_5.png', 'section_masks_79_m_6.png', 'section_masks_79_m_7.png', 'section_masks_79_m_8.png']\n", - "80\n", - "section_masks_80\n", - "{'source': 'brain', 'height': 3193, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_80.jpg', 'id': 80, 'width': 3934}\n", - "['section_masks_80_m_1.png', 'section_masks_80_m_2.png', 'section_masks_80_m_4.png', 'section_masks_80_m_5.png', 'section_masks_80_m_6.png', 'section_masks_80_m_7.png', 'section_masks_80_m_8.png']\n", - "81\n", - "section_masks_81\n", - "{'source': 'brain', 'height': 3105, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_81.jpg', 'id': 81, 'width': 3901}\n", - "['section_masks_81_m_1.png', 'section_masks_81_m_2.png', 'section_masks_81_m_4.png', 'section_masks_81_m_5.png', 'section_masks_81_m_6.png', 'section_masks_81_m_7.png', 'section_masks_81_m_8.png']\n", - "82\n", - "section_masks_82\n", - "{'source': 'brain', 'height': 3014, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_82.jpg', 'id': 82, 'width': 3864}\n", - "['section_masks_82_m_1.png', 'section_masks_82_m_2.png', 'section_masks_82_m_4.png', 'section_masks_82_m_5.png', 'section_masks_82_m_6.png', 'section_masks_82_m_7.png', 'section_masks_82_m_8.png']\n", - "83\n", - "section_masks_83\n", - "{'source': 'brain', 'height': 2919, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_83.jpg', 'id': 83, 'width': 3822}\n", - "['section_masks_83_m_1.png', 'section_masks_83_m_2.png', 'section_masks_83_m_4.png', 'section_masks_83_m_5.png', 'section_masks_83_m_6.png', 'section_masks_83_m_7.png', 'section_masks_83_m_8.png']\n", - "84\n", - "section_masks_84\n", - "{'source': 'brain', 'height': 2820, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_84.jpg', 'id': 84, 'width': 3775}\n", - "['section_masks_84_m_1.png', 'section_masks_84_m_2.png', 'section_masks_84_m_4.png', 'section_masks_84_m_5.png', 'section_masks_84_m_6.png', 'section_masks_84_m_7.png', 'section_masks_84_m_8.png']\n", - "85\n", - "section_masks_85\n", - "{'source': 'brain', 'height': 2718, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_85.jpg', 'id': 85, 'width': 3724}\n", - "['section_masks_85_m_1.png', 'section_masks_85_m_2.png', 'section_masks_85_m_4.png', 'section_masks_85_m_5.png', 'section_masks_85_m_6.png', 'section_masks_85_m_7.png', 'section_masks_85_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "86\n", - "section_masks_86\n", - "{'source': 'brain', 'height': 2613, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_86.jpg', 'id': 86, 'width': 3668}\n", - "['section_masks_86_m_1.png', 'section_masks_86_m_2.png', 'section_masks_86_m_4.png', 'section_masks_86_m_5.png', 'section_masks_86_m_6.png', 'section_masks_86_m_7.png', 'section_masks_86_m_8.png']\n", - "87\n", - "section_masks_87\n", - "{'source': 'brain', 'height': 2504, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_87.jpg', 'id': 87, 'width': 3608}\n", - "['section_masks_87_m_1.png', 'section_masks_87_m_2.png', 'section_masks_87_m_4.png', 'section_masks_87_m_5.png', 'section_masks_87_m_6.png', 'section_masks_87_m_7.png', 'section_masks_87_m_8.png']\n", - "88\n", - "section_masks_88\n", - "{'source': 'brain', 'height': 2392, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_88.jpg', 'id': 88, 'width': 3543}\n", - "['section_masks_88_m_1.png', 'section_masks_88_m_2.png', 'section_masks_88_m_4.png', 'section_masks_88_m_5.png', 'section_masks_88_m_6.png', 'section_masks_88_m_7.png', 'section_masks_88_m_8.png']\n", - "89\n", - "section_masks_89\n", - "{'source': 'brain', 'height': 2278, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_89.jpg', 'id': 89, 'width': 3474}\n", - "['section_masks_89_m_1.png', 'section_masks_89_m_2.png', 'section_masks_89_m_4.png', 'section_masks_89_m_5.png', 'section_masks_89_m_6.png', 'section_masks_89_m_7.png', 'section_masks_89_m_8.png']\n", - "90\n", - "section_masks_90\n", - "{'source': 'brain', 'height': 2160, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_90.jpg', 'id': 90, 'width': 3400}\n", - "['section_masks_90_m_1.png', 'section_masks_90_m_2.png', 'section_masks_90_m_4.png', 'section_masks_90_m_5.png', 'section_masks_90_m_6.png', 'section_masks_90_m_7.png', 'section_masks_90_m_8.png']\n", - "91\n", - "section_masks_91\n", - "{'source': 'brain', 'height': 2278, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_91.jpg', 'id': 91, 'width': 3474}\n", - "['section_masks_91_m_1.png', 'section_masks_91_m_2.png', 'section_masks_91_m_4.png', 'section_masks_91_m_5.png', 'section_masks_91_m_6.png', 'section_masks_91_m_7.png', 'section_masks_91_m_8.png']\n", - "92\n", - "section_masks_92\n", - "{'source': 'brain', 'height': 2392, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_92.jpg', 'id': 92, 'width': 3543}\n", - "['section_masks_92_m_1.png', 'section_masks_92_m_2.png', 'section_masks_92_m_4.png', 'section_masks_92_m_5.png', 'section_masks_92_m_6.png', 'section_masks_92_m_7.png', 'section_masks_92_m_8.png']\n", - "93\n", - "section_masks_93\n", - "{'source': 'brain', 'height': 2504, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_93.jpg', 'id': 93, 'width': 3608}\n", - "['section_masks_93_m_1.png', 'section_masks_93_m_2.png', 'section_masks_93_m_4.png', 'section_masks_93_m_5.png', 'section_masks_93_m_6.png', 'section_masks_93_m_7.png', 'section_masks_93_m_8.png']\n", - "94\n", - "section_masks_94\n", - "{'source': 'brain', 'height': 2613, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_94.jpg', 'id': 94, 'width': 3668}\n", - "['section_masks_94_m_1.png', 'section_masks_94_m_2.png', 'section_masks_94_m_4.png', 'section_masks_94_m_5.png', 'section_masks_94_m_6.png', 'section_masks_94_m_7.png', 'section_masks_94_m_8.png']\n", - "95\n", - "section_masks_95\n", - "{'source': 'brain', 'height': 2718, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_95.jpg', 'id': 95, 'width': 3724}\n", - "['section_masks_95_m_1.png', 'section_masks_95_m_2.png', 'section_masks_95_m_4.png', 'section_masks_95_m_5.png', 'section_masks_95_m_6.png', 'section_masks_95_m_7.png', 'section_masks_95_m_8.png']\n", - "96\n", - "section_masks_96\n", - "{'source': 'brain', 'height': 2820, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_96.jpg', 'id': 96, 'width': 3775}\n", - "['section_masks_96_m_1.png', 'section_masks_96_m_2.png', 'section_masks_96_m_4.png', 'section_masks_96_m_5.png', 'section_masks_96_m_6.png', 'section_masks_96_m_7.png', 'section_masks_96_m_8.png']\n", - "97\n", - "section_masks_97\n", - "{'source': 'brain', 'height': 2919, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_97.jpg', 'id': 97, 'width': 3822}\n", - "['section_masks_97_m_1.png', 'section_masks_97_m_2.png', 'section_masks_97_m_4.png', 'section_masks_97_m_5.png', 'section_masks_97_m_6.png', 'section_masks_97_m_7.png', 'section_masks_97_m_8.png']\n", - "98\n", - "section_masks_98\n", - "{'source': 'brain', 'height': 3014, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_98.jpg', 'id': 98, 'width': 3864}\n", - "['section_masks_98_m_1.png', 'section_masks_98_m_2.png', 'section_masks_98_m_4.png', 'section_masks_98_m_5.png', 'section_masks_98_m_6.png', 'section_masks_98_m_7.png', 'section_masks_98_m_8.png']\n", - "99\n", - "section_masks_99\n", - "{'source': 'brain', 'height': 3105, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_99.jpg', 'id': 99, 'width': 3901}\n", - "['section_masks_99_m_1.png', 'section_masks_99_m_2.png', 'section_masks_99_m_4.png', 'section_masks_99_m_5.png', 'section_masks_99_m_6.png', 'section_masks_99_m_7.png', 'section_masks_99_m_8.png']\n", - "100\n", - "section_masks_100\n", - "{'source': 'brain', 'height': 2616, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_100.jpg', 'id': 100, 'width': 3101}\n", - "['section_masks_100_m_1.png', 'section_masks_100_m_2.png', 'section_masks_100_m_3.png', 'section_masks_100_m_7.png', 'section_masks_100_m_8.png']\n", - "101\n", - "section_masks_101\n", - "{'source': 'brain', 'height': 2550, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_101.jpg', 'id': 101, 'width': 3071}\n", - "['section_masks_101_m_1.png', 'section_masks_101_m_2.png', 'section_masks_101_m_3.png', 'section_masks_101_m_7.png', 'section_masks_101_m_8.png']\n", - "102\n", - "section_masks_102\n", - "{'source': 'brain', 'height': 2480, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_102.jpg', 'id': 102, 'width': 3037}\n", - "['section_masks_102_m_1.png', 'section_masks_102_m_2.png', 'section_masks_102_m_3.png', 'section_masks_102_m_7.png', 'section_masks_102_m_8.png']\n", - "103\n", - "section_masks_103\n", - "{'source': 'brain', 'height': 2408, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_103.jpg', 'id': 103, 'width': 2999}\n", - "['section_masks_103_m_1.png', 'section_masks_103_m_2.png', 'section_masks_103_m_3.png', 'section_masks_103_m_7.png', 'section_masks_103_m_8.png']\n", - "104\n", - "section_masks_104\n", - "{'source': 'brain', 'height': 2333, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_104.jpg', 'id': 104, 'width': 2958}\n", - "['section_masks_104_m_1.png', 'section_masks_104_m_2.png', 'section_masks_104_m_3.png', 'section_masks_104_m_7.png', 'section_masks_104_m_8.png']\n", - "105\n", - "section_masks_105\n", - "{'source': 'brain', 'height': 2254, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_105.jpg', 'id': 105, 'width': 2913}\n", - "['section_masks_105_m_1.png', 'section_masks_105_m_2.png', 'section_masks_105_m_3.png', 'section_masks_105_m_7.png', 'section_masks_105_m_8.png']\n", - "106\n", - "section_masks_106\n", - "{'source': 'brain', 'height': 2173, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_106.jpg', 'id': 106, 'width': 2865}\n", - "['section_masks_106_m_1.png', 'section_masks_106_m_2.png', 'section_masks_106_m_3.png', 'section_masks_106_m_7.png', 'section_masks_106_m_8.png']\n", - "107\n", - "section_masks_107\n", - "{'source': 'brain', 'height': 2090, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_107.jpg', 'id': 107, 'width': 2813}\n", - "['section_masks_107_m_1.png', 'section_masks_107_m_2.png', 'section_masks_107_m_3.png', 'section_masks_107_m_7.png', 'section_masks_107_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "108\n", - "section_masks_108\n", - "{'source': 'brain', 'height': 2004, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_108.jpg', 'id': 108, 'width': 2757}\n", - "['section_masks_108_m_1.png', 'section_masks_108_m_2.png', 'section_masks_108_m_3.png', 'section_masks_108_m_7.png', 'section_masks_108_m_8.png']\n", - "109\n", - "section_masks_109\n", - "{'source': 'brain', 'height': 1915, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_109.jpg', 'id': 109, 'width': 2699}\n", - "['section_masks_109_m_1.png', 'section_masks_109_m_2.png', 'section_masks_109_m_3.png', 'section_masks_109_m_7.png', 'section_masks_109_m_8.png']\n", - "110\n", - "section_masks_110\n", - "{'source': 'brain', 'height': 1824, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_110.jpg', 'id': 110, 'width': 2636}\n", - "['section_masks_110_m_1.png', 'section_masks_110_m_2.png', 'section_masks_110_m_3.png', 'section_masks_110_m_7.png', 'section_masks_110_m_8.png']\n", - "111\n", - "section_masks_111\n", - "{'source': 'brain', 'height': 1915, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_111.jpg', 'id': 111, 'width': 2699}\n", - "['section_masks_111_m_1.png', 'section_masks_111_m_2.png', 'section_masks_111_m_3.png', 'section_masks_111_m_7.png', 'section_masks_111_m_8.png']\n", - "112\n", - "section_masks_112\n", - "{'source': 'brain', 'height': 2004, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_112.jpg', 'id': 112, 'width': 2757}\n", - "['section_masks_112_m_1.png', 'section_masks_112_m_2.png', 'section_masks_112_m_3.png', 'section_masks_112_m_7.png', 'section_masks_112_m_8.png']\n", - "113\n", - "section_masks_113\n", - "{'source': 'brain', 'height': 2090, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_113.jpg', 'id': 113, 'width': 2813}\n", - "['section_masks_113_m_1.png', 'section_masks_113_m_2.png', 'section_masks_113_m_3.png', 'section_masks_113_m_7.png', 'section_masks_113_m_8.png']\n", - "114\n", - "section_masks_114\n", - "{'source': 'brain', 'height': 2173, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_114.jpg', 'id': 114, 'width': 2865}\n", - "['section_masks_114_m_1.png', 'section_masks_114_m_2.png', 'section_masks_114_m_3.png', 'section_masks_114_m_7.png', 'section_masks_114_m_8.png']\n", - "115\n", - "section_masks_115\n", - "{'source': 'brain', 'height': 2254, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_115.jpg', 'id': 115, 'width': 2913}\n", - "['section_masks_115_m_1.png', 'section_masks_115_m_2.png', 'section_masks_115_m_3.png', 'section_masks_115_m_7.png', 'section_masks_115_m_8.png']\n", - "116\n", - "section_masks_116\n", - "{'source': 'brain', 'height': 2333, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_116.jpg', 'id': 116, 'width': 2958}\n", - "['section_masks_116_m_1.png', 'section_masks_116_m_2.png', 'section_masks_116_m_3.png', 'section_masks_116_m_7.png', 'section_masks_116_m_8.png']\n", - "117\n", - "section_masks_117\n", - "{'source': 'brain', 'height': 2408, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_117.jpg', 'id': 117, 'width': 2999}\n", - "['section_masks_117_m_1.png', 'section_masks_117_m_2.png', 'section_masks_117_m_3.png', 'section_masks_117_m_7.png', 'section_masks_117_m_8.png']\n", - "118\n", - "section_masks_118\n", - "{'source': 'brain', 'height': 2480, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_118.jpg', 'id': 118, 'width': 3037}\n", - "['section_masks_118_m_1.png', 'section_masks_118_m_2.png', 'section_masks_118_m_3.png', 'section_masks_118_m_7.png', 'section_masks_118_m_8.png']\n", - "119\n", - "section_masks_119\n", - "{'source': 'brain', 'height': 2550, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_119.jpg', 'id': 119, 'width': 3071}\n", - "['section_masks_119_m_1.png', 'section_masks_119_m_2.png', 'section_masks_119_m_3.png', 'section_masks_119_m_7.png', 'section_masks_119_m_8.png']\n", - "120\n", - "section_masks_120\n", - "{'source': 'brain', 'height': 2739, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_120.jpg', 'id': 120, 'width': 3332}\n", - "['section_masks_120_m_1.png', 'section_masks_120_m_2.png', 'section_masks_120_m_3.png', 'section_masks_120_m_5.png', 'section_masks_120_m_7.png', 'section_masks_120_m_8.png']\n", - "121\n", - "section_masks_121\n", - "{'source': 'brain', 'height': 2666, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_121.jpg', 'id': 121, 'width': 3303}\n", - "['section_masks_121_m_1.png', 'section_masks_121_m_2.png', 'section_masks_121_m_3.png', 'section_masks_121_m_5.png', 'section_masks_121_m_7.png', 'section_masks_121_m_8.png']\n", - "122\n", - "section_masks_122\n", - "{'source': 'brain', 'height': 2589, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_122.jpg', 'id': 122, 'width': 3269}\n", - "['section_masks_122_m_1.png', 'section_masks_122_m_2.png', 'section_masks_122_m_3.png', 'section_masks_122_m_5.png', 'section_masks_122_m_7.png', 'section_masks_122_m_8.png']\n", - "123\n", - "section_masks_123\n", - "{'source': 'brain', 'height': 2510, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_123.jpg', 'id': 123, 'width': 3232}\n", - "['section_masks_123_m_1.png', 'section_masks_123_m_2.png', 'section_masks_123_m_3.png', 'section_masks_123_m_5.png', 'section_masks_123_m_7.png', 'section_masks_123_m_8.png']\n", - "124\n", - "section_masks_124\n", - "{'source': 'brain', 'height': 2427, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_124.jpg', 'id': 124, 'width': 3191}\n", - "['section_masks_124_m_1.png', 'section_masks_124_m_2.png', 'section_masks_124_m_3.png', 'section_masks_124_m_5.png', 'section_masks_124_m_7.png', 'section_masks_124_m_8.png']\n", - "125\n", - "section_masks_125\n", - "{'source': 'brain', 'height': 2341, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_125.jpg', 'id': 125, 'width': 3146}\n", - "['section_masks_125_m_1.png', 'section_masks_125_m_2.png', 'section_masks_125_m_3.png', 'section_masks_125_m_5.png', 'section_masks_125_m_7.png', 'section_masks_125_m_8.png']\n", - "126\n", - "section_masks_126\n", - "{'source': 'brain', 'height': 2253, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_126.jpg', 'id': 126, 'width': 3097}\n", - "['section_masks_126_m_1.png', 'section_masks_126_m_2.png', 'section_masks_126_m_3.png', 'section_masks_126_m_5.png', 'section_masks_126_m_7.png', 'section_masks_126_m_8.png']\n", - "127\n", - "section_masks_127\n", - "{'source': 'brain', 'height': 2162, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_127.jpg', 'id': 127, 'width': 3044}\n", - "['section_masks_127_m_1.png', 'section_masks_127_m_2.png', 'section_masks_127_m_3.png', 'section_masks_127_m_5.png', 'section_masks_127_m_7.png', 'section_masks_127_m_8.png']\n", - "128\n", - "section_masks_128\n", - "{'source': 'brain', 'height': 2068, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_128.jpg', 'id': 128, 'width': 2988}\n", - "['section_masks_128_m_1.png', 'section_masks_128_m_2.png', 'section_masks_128_m_3.png', 'section_masks_128_m_5.png', 'section_masks_128_m_7.png', 'section_masks_128_m_8.png']\n", - "129\n", - "section_masks_129\n", - "{'source': 'brain', 'height': 1971, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_129.jpg', 'id': 129, 'width': 2928}\n", - "['section_masks_129_m_1.png', 'section_masks_129_m_2.png', 'section_masks_129_m_3.png', 'section_masks_129_m_5.png', 'section_masks_129_m_7.png', 'section_masks_129_m_8.png']\n", - "130\n", - "section_masks_130\n", - "{'source': 'brain', 'height': 1872, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_130.jpg', 'id': 130, 'width': 2864}\n", - "['section_masks_130_m_1.png', 'section_masks_130_m_2.png', 'section_masks_130_m_3.png', 'section_masks_130_m_5.png', 'section_masks_130_m_7.png', 'section_masks_130_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "131\n", - "section_masks_131\n", - "{'source': 'brain', 'height': 1971, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_131.jpg', 'id': 131, 'width': 2928}\n", - "['section_masks_131_m_1.png', 'section_masks_131_m_2.png', 'section_masks_131_m_3.png', 'section_masks_131_m_5.png', 'section_masks_131_m_7.png', 'section_masks_131_m_8.png']\n", - "132\n", - "section_masks_132\n", - "{'source': 'brain', 'height': 2068, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_132.jpg', 'id': 132, 'width': 2988}\n", - "['section_masks_132_m_1.png', 'section_masks_132_m_2.png', 'section_masks_132_m_3.png', 'section_masks_132_m_5.png', 'section_masks_132_m_7.png', 'section_masks_132_m_8.png']\n", - "133\n", - "section_masks_133\n", - "{'source': 'brain', 'height': 2162, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_133.jpg', 'id': 133, 'width': 3044}\n", - "['section_masks_133_m_1.png', 'section_masks_133_m_2.png', 'section_masks_133_m_3.png', 'section_masks_133_m_5.png', 'section_masks_133_m_7.png', 'section_masks_133_m_8.png']\n", - "134\n", - "section_masks_134\n", - "{'source': 'brain', 'height': 2253, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_134.jpg', 'id': 134, 'width': 3097}\n", - "['section_masks_134_m_1.png', 'section_masks_134_m_2.png', 'section_masks_134_m_3.png', 'section_masks_134_m_5.png', 'section_masks_134_m_7.png', 'section_masks_134_m_8.png']\n", - "135\n", - "section_masks_135\n", - "{'source': 'brain', 'height': 2341, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_135.jpg', 'id': 135, 'width': 3146}\n", - "['section_masks_135_m_1.png', 'section_masks_135_m_2.png', 'section_masks_135_m_3.png', 'section_masks_135_m_5.png', 'section_masks_135_m_7.png', 'section_masks_135_m_8.png']\n", - "136\n", - "section_masks_136\n", - "{'source': 'brain', 'height': 2427, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_136.jpg', 'id': 136, 'width': 3191}\n", - "['section_masks_136_m_1.png', 'section_masks_136_m_2.png', 'section_masks_136_m_3.png', 'section_masks_136_m_5.png', 'section_masks_136_m_7.png', 'section_masks_136_m_8.png']\n", - "137\n", - "section_masks_137\n", - "{'source': 'brain', 'height': 2510, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_137.jpg', 'id': 137, 'width': 3232}\n", - "['section_masks_137_m_1.png', 'section_masks_137_m_2.png', 'section_masks_137_m_3.png', 'section_masks_137_m_5.png', 'section_masks_137_m_7.png', 'section_masks_137_m_8.png']\n", - "138\n", - "section_masks_138\n", - "{'source': 'brain', 'height': 2589, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_138.jpg', 'id': 138, 'width': 3269}\n", - "['section_masks_138_m_1.png', 'section_masks_138_m_2.png', 'section_masks_138_m_3.png', 'section_masks_138_m_5.png', 'section_masks_138_m_7.png', 'section_masks_138_m_8.png']\n", - "139\n", - "section_masks_139\n", - "{'source': 'brain', 'height': 2666, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_139.jpg', 'id': 139, 'width': 3303}\n", - "['section_masks_139_m_1.png', 'section_masks_139_m_2.png', 'section_masks_139_m_3.png', 'section_masks_139_m_5.png', 'section_masks_139_m_7.png', 'section_masks_139_m_8.png']\n", - "140\n", - "section_masks_140\n", - "{'source': 'brain', 'height': 3297, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_140.jpg', 'id': 140, 'width': 4148}\n", - "['section_masks_140_m_1.png', 'section_masks_140_m_2.png', 'section_masks_140_m_3.png', 'section_masks_140_m_4.png', 'section_masks_140_m_5.png', 'section_masks_140_m_6.png', 'section_masks_140_m_7.png', 'section_masks_140_m_8.png']\n", - "141\n", - "section_masks_141\n", - "{'source': 'brain', 'height': 3202, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_141.jpg', 'id': 141, 'width': 4117}\n", - "['section_masks_141_m_1.png', 'section_masks_141_m_2.png', 'section_masks_141_m_3.png', 'section_masks_141_m_4.png', 'section_masks_141_m_5.png', 'section_masks_141_m_6.png', 'section_masks_141_m_7.png', 'section_masks_141_m_8.png']\n", - "142\n", - "section_masks_142\n", - "{'source': 'brain', 'height': 3104, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_142.jpg', 'id': 142, 'width': 4080}\n", - "['section_masks_142_m_1.png', 'section_masks_142_m_2.png', 'section_masks_142_m_3.png', 'section_masks_142_m_4.png', 'section_masks_142_m_5.png', 'section_masks_142_m_6.png', 'section_masks_142_m_7.png', 'section_masks_142_m_8.png']\n", - "143\n", - "section_masks_143\n", - "{'source': 'brain', 'height': 3002, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_143.jpg', 'id': 143, 'width': 4039}\n", - "['section_masks_143_m_1.png', 'section_masks_143_m_2.png', 'section_masks_143_m_3.png', 'section_masks_143_m_4.png', 'section_masks_143_m_5.png', 'section_masks_143_m_6.png', 'section_masks_143_m_7.png', 'section_masks_143_m_8.png']\n", - "144\n", - "section_masks_144\n", - "{'source': 'brain', 'height': 2896, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_144.jpg', 'id': 144, 'width': 3993}\n", - "['section_masks_144_m_1.png', 'section_masks_144_m_2.png', 'section_masks_144_m_3.png', 'section_masks_144_m_4.png', 'section_masks_144_m_5.png', 'section_masks_144_m_6.png', 'section_masks_144_m_7.png', 'section_masks_144_m_8.png']\n", - "145\n", - "section_masks_145\n", - "{'source': 'brain', 'height': 2787, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_145.jpg', 'id': 145, 'width': 3942}\n", - "['section_masks_145_m_1.png', 'section_masks_145_m_2.png', 'section_masks_145_m_3.png', 'section_masks_145_m_4.png', 'section_masks_145_m_5.png', 'section_masks_145_m_6.png', 'section_masks_145_m_7.png', 'section_masks_145_m_8.png']\n", - "146\n", - "section_masks_146\n", - "{'source': 'brain', 'height': 2674, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_146.jpg', 'id': 146, 'width': 3886}\n", - "['section_masks_146_m_1.png', 'section_masks_146_m_2.png', 'section_masks_146_m_3.png', 'section_masks_146_m_4.png', 'section_masks_146_m_5.png', 'section_masks_146_m_6.png', 'section_masks_146_m_7.png', 'section_masks_146_m_8.png']\n", - "147\n", - "section_masks_147\n", - "{'source': 'brain', 'height': 2558, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_147.jpg', 'id': 147, 'width': 3826}\n", - "['section_masks_147_m_1.png', 'section_masks_147_m_2.png', 'section_masks_147_m_3.png', 'section_masks_147_m_4.png', 'section_masks_147_m_5.png', 'section_masks_147_m_6.png', 'section_masks_147_m_7.png', 'section_masks_147_m_8.png']\n", - "148\n", - "section_masks_148\n", - "{'source': 'brain', 'height': 2439, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_148.jpg', 'id': 148, 'width': 3761}\n", - "['section_masks_148_m_1.png', 'section_masks_148_m_2.png', 'section_masks_148_m_3.png', 'section_masks_148_m_4.png', 'section_masks_148_m_5.png', 'section_masks_148_m_6.png', 'section_masks_148_m_7.png', 'section_masks_148_m_8.png']\n", - "149\n", - "section_masks_149\n", - "{'source': 'brain', 'height': 2317, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_149.jpg', 'id': 149, 'width': 3691}\n", - "['section_masks_149_m_1.png', 'section_masks_149_m_2.png', 'section_masks_149_m_3.png', 'section_masks_149_m_4.png', 'section_masks_149_m_5.png', 'section_masks_149_m_6.png', 'section_masks_149_m_7.png', 'section_masks_149_m_8.png']\n", - "150\n", - "section_masks_150\n", - "{'source': 'brain', 'height': 2192, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_150.jpg', 'id': 150, 'width': 3616}\n", - "['section_masks_150_m_1.png', 'section_masks_150_m_2.png', 'section_masks_150_m_3.png', 'section_masks_150_m_4.png', 'section_masks_150_m_5.png', 'section_masks_150_m_6.png', 'section_masks_150_m_7.png', 'section_masks_150_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "151\n", - "section_masks_151\n", - "{'source': 'brain', 'height': 2317, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_151.jpg', 'id': 151, 'width': 3691}\n", - "['section_masks_151_m_1.png', 'section_masks_151_m_2.png', 'section_masks_151_m_3.png', 'section_masks_151_m_4.png', 'section_masks_151_m_5.png', 'section_masks_151_m_6.png', 'section_masks_151_m_7.png', 'section_masks_151_m_8.png']\n", - "152\n", - "section_masks_152\n", - "{'source': 'brain', 'height': 2439, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_152.jpg', 'id': 152, 'width': 3761}\n", - "['section_masks_152_m_1.png', 'section_masks_152_m_2.png', 'section_masks_152_m_3.png', 'section_masks_152_m_4.png', 'section_masks_152_m_5.png', 'section_masks_152_m_6.png', 'section_masks_152_m_7.png', 'section_masks_152_m_8.png']\n", - "153\n", - "section_masks_153\n", - "{'source': 'brain', 'height': 2558, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_153.jpg', 'id': 153, 'width': 3826}\n", - "['section_masks_153_m_1.png', 'section_masks_153_m_2.png', 'section_masks_153_m_3.png', 'section_masks_153_m_4.png', 'section_masks_153_m_5.png', 'section_masks_153_m_6.png', 'section_masks_153_m_7.png', 'section_masks_153_m_8.png']\n", - "154\n", - "section_masks_154\n", - "{'source': 'brain', 'height': 2674, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_154.jpg', 'id': 154, 'width': 3886}\n", - "['section_masks_154_m_1.png', 'section_masks_154_m_2.png', 'section_masks_154_m_3.png', 'section_masks_154_m_4.png', 'section_masks_154_m_5.png', 'section_masks_154_m_6.png', 'section_masks_154_m_7.png', 'section_masks_154_m_8.png']\n", - "155\n", - "section_masks_155\n", - "{'source': 'brain', 'height': 2787, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_155.jpg', 'id': 155, 'width': 3942}\n", - "['section_masks_155_m_1.png', 'section_masks_155_m_2.png', 'section_masks_155_m_3.png', 'section_masks_155_m_4.png', 'section_masks_155_m_5.png', 'section_masks_155_m_6.png', 'section_masks_155_m_7.png', 'section_masks_155_m_8.png']\n", - "156\n", - "section_masks_156\n", - "{'source': 'brain', 'height': 2896, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_156.jpg', 'id': 156, 'width': 3993}\n", - "['section_masks_156_m_1.png', 'section_masks_156_m_2.png', 'section_masks_156_m_3.png', 'section_masks_156_m_4.png', 'section_masks_156_m_5.png', 'section_masks_156_m_6.png', 'section_masks_156_m_7.png', 'section_masks_156_m_8.png']\n", - "157\n", - "section_masks_157\n", - "{'source': 'brain', 'height': 3002, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_157.jpg', 'id': 157, 'width': 4039}\n", - "['section_masks_157_m_1.png', 'section_masks_157_m_2.png', 'section_masks_157_m_3.png', 'section_masks_157_m_4.png', 'section_masks_157_m_5.png', 'section_masks_157_m_6.png', 'section_masks_157_m_7.png', 'section_masks_157_m_8.png']\n", - "158\n", - "section_masks_158\n", - "{'source': 'brain', 'height': 3104, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_158.jpg', 'id': 158, 'width': 4080}\n", - "['section_masks_158_m_1.png', 'section_masks_158_m_2.png', 'section_masks_158_m_3.png', 'section_masks_158_m_4.png', 'section_masks_158_m_5.png', 'section_masks_158_m_6.png', 'section_masks_158_m_7.png', 'section_masks_158_m_8.png']\n", - "159\n", - "section_masks_159\n", - "{'source': 'brain', 'height': 3202, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_159.jpg', 'id': 159, 'width': 4117}\n", - "['section_masks_159_m_1.png', 'section_masks_159_m_2.png', 'section_masks_159_m_3.png', 'section_masks_159_m_4.png', 'section_masks_159_m_5.png', 'section_masks_159_m_6.png', 'section_masks_159_m_7.png', 'section_masks_159_m_8.png']\n", - "160\n", - "section_masks_160\n", - "{'source': 'brain', 'height': 3385, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_160.jpg', 'id': 160, 'width': 4301}\n", - "['section_masks_160_m_1.png', 'section_masks_160_m_2.png', 'section_masks_160_m_4.png', 'section_masks_160_m_5.png', 'section_masks_160_m_6.png', 'section_masks_160_m_7.png', 'section_masks_160_m_8.png']\n", - "161\n", - "section_masks_161\n", - "{'source': 'brain', 'height': 3286, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_161.jpg', 'id': 161, 'width': 4270}\n", - "['section_masks_161_m_1.png', 'section_masks_161_m_2.png', 'section_masks_161_m_4.png', 'section_masks_161_m_5.png', 'section_masks_161_m_6.png', 'section_masks_161_m_7.png', 'section_masks_161_m_8.png']\n", - "162\n", - "section_masks_162\n", - "{'source': 'brain', 'height': 3183, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_162.jpg', 'id': 162, 'width': 4234}\n", - "['section_masks_162_m_1.png', 'section_masks_162_m_2.png', 'section_masks_162_m_4.png', 'section_masks_162_m_5.png', 'section_masks_162_m_6.png', 'section_masks_162_m_7.png', 'section_masks_162_m_8.png']\n", - "163\n", - "section_masks_163\n", - "{'source': 'brain', 'height': 3077, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_163.jpg', 'id': 163, 'width': 4192}\n", - "['section_masks_163_m_1.png', 'section_masks_163_m_2.png', 'section_masks_163_m_4.png', 'section_masks_163_m_5.png', 'section_masks_163_m_6.png', 'section_masks_163_m_7.png', 'section_masks_163_m_8.png']\n", - "164\n", - "section_masks_164\n", - "{'source': 'brain', 'height': 2966, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_164.jpg', 'id': 164, 'width': 4146}\n", - "['section_masks_164_m_1.png', 'section_masks_164_m_2.png', 'section_masks_164_m_4.png', 'section_masks_164_m_5.png', 'section_masks_164_m_6.png', 'section_masks_164_m_7.png', 'section_masks_164_m_8.png']\n", - "165\n", - "section_masks_165\n", - "{'source': 'brain', 'height': 2852, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_165.jpg', 'id': 165, 'width': 4095}\n", - "['section_masks_165_m_1.png', 'section_masks_165_m_2.png', 'section_masks_165_m_4.png', 'section_masks_165_m_5.png', 'section_masks_165_m_6.png', 'section_masks_165_m_7.png', 'section_masks_165_m_8.png']\n", - "166\n", - "section_masks_166\n", - "{'source': 'brain', 'height': 2734, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_166.jpg', 'id': 166, 'width': 4038}\n", - "['section_masks_166_m_1.png', 'section_masks_166_m_2.png', 'section_masks_166_m_4.png', 'section_masks_166_m_5.png', 'section_masks_166_m_6.png', 'section_masks_166_m_7.png', 'section_masks_166_m_8.png']\n", - "167\n", - "section_masks_167\n", - "{'source': 'brain', 'height': 2614, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_167.jpg', 'id': 167, 'width': 3977}\n", - "['section_masks_167_m_1.png', 'section_masks_167_m_2.png', 'section_masks_167_m_4.png', 'section_masks_167_m_5.png', 'section_masks_167_m_6.png', 'section_masks_167_m_7.png', 'section_masks_167_m_8.png']\n", - "168\n", - "section_masks_168\n", - "{'source': 'brain', 'height': 2490, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_168.jpg', 'id': 168, 'width': 3911}\n", - "['section_masks_168_m_1.png', 'section_masks_168_m_2.png', 'section_masks_168_m_4.png', 'section_masks_168_m_5.png', 'section_masks_168_m_6.png', 'section_masks_168_m_7.png', 'section_masks_168_m_8.png']\n", - "169\n", - "section_masks_169\n", - "{'source': 'brain', 'height': 2362, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_169.jpg', 'id': 169, 'width': 3840}\n", - "['section_masks_169_m_1.png', 'section_masks_169_m_2.png', 'section_masks_169_m_4.png', 'section_masks_169_m_5.png', 'section_masks_169_m_6.png', 'section_masks_169_m_7.png', 'section_masks_169_m_8.png']\n", - "170\n", - "section_masks_170\n", - "{'source': 'brain', 'height': 2232, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_170.jpg', 'id': 170, 'width': 3764}\n", - "['section_masks_170_m_1.png', 'section_masks_170_m_2.png', 'section_masks_170_m_4.png', 'section_masks_170_m_5.png', 'section_masks_170_m_6.png', 'section_masks_170_m_7.png', 'section_masks_170_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "171\n", - "section_masks_171\n", - "{'source': 'brain', 'height': 2362, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_171.jpg', 'id': 171, 'width': 3840}\n", - "['section_masks_171_m_1.png', 'section_masks_171_m_2.png', 'section_masks_171_m_4.png', 'section_masks_171_m_5.png', 'section_masks_171_m_6.png', 'section_masks_171_m_7.png', 'section_masks_171_m_8.png']\n", - "172\n", - "section_masks_172\n", - "{'source': 'brain', 'height': 2490, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_172.jpg', 'id': 172, 'width': 3911}\n", - "['section_masks_172_m_1.png', 'section_masks_172_m_2.png', 'section_masks_172_m_4.png', 'section_masks_172_m_5.png', 'section_masks_172_m_6.png', 'section_masks_172_m_7.png', 'section_masks_172_m_8.png']\n", - "173\n", - "section_masks_173\n", - "{'source': 'brain', 'height': 2614, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_173.jpg', 'id': 173, 'width': 3977}\n", - "['section_masks_173_m_1.png', 'section_masks_173_m_2.png', 'section_masks_173_m_4.png', 'section_masks_173_m_5.png', 'section_masks_173_m_6.png', 'section_masks_173_m_7.png', 'section_masks_173_m_8.png']\n", - "174\n", - "section_masks_174\n", - "{'source': 'brain', 'height': 2734, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_174.jpg', 'id': 174, 'width': 4038}\n", - "['section_masks_174_m_1.png', 'section_masks_174_m_2.png', 'section_masks_174_m_4.png', 'section_masks_174_m_5.png', 'section_masks_174_m_6.png', 'section_masks_174_m_7.png', 'section_masks_174_m_8.png']\n", - "175\n", - "section_masks_175\n", - "{'source': 'brain', 'height': 2852, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_175.jpg', 'id': 175, 'width': 4095}\n", - "['section_masks_175_m_1.png', 'section_masks_175_m_2.png', 'section_masks_175_m_4.png', 'section_masks_175_m_5.png', 'section_masks_175_m_6.png', 'section_masks_175_m_7.png', 'section_masks_175_m_8.png']\n", - "176\n", - "section_masks_176\n", - "{'source': 'brain', 'height': 2966, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_176.jpg', 'id': 176, 'width': 4146}\n", - "['section_masks_176_m_1.png', 'section_masks_176_m_2.png', 'section_masks_176_m_4.png', 'section_masks_176_m_5.png', 'section_masks_176_m_6.png', 'section_masks_176_m_7.png', 'section_masks_176_m_8.png']\n", - "177\n", - "section_masks_177\n", - "{'source': 'brain', 'height': 3077, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_177.jpg', 'id': 177, 'width': 4192}\n", - "['section_masks_177_m_1.png', 'section_masks_177_m_2.png', 'section_masks_177_m_4.png', 'section_masks_177_m_5.png', 'section_masks_177_m_6.png', 'section_masks_177_m_7.png', 'section_masks_177_m_8.png']\n", - "178\n", - "section_masks_178\n", - "{'source': 'brain', 'height': 3183, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_178.jpg', 'id': 178, 'width': 4234}\n", - "['section_masks_178_m_1.png', 'section_masks_178_m_2.png', 'section_masks_178_m_4.png', 'section_masks_178_m_5.png', 'section_masks_178_m_6.png', 'section_masks_178_m_7.png', 'section_masks_178_m_8.png']\n", - "179\n", - "section_masks_179\n", - "{'source': 'brain', 'height': 3286, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_179.jpg', 'id': 179, 'width': 4270}\n", - "['section_masks_179_m_1.png', 'section_masks_179_m_2.png', 'section_masks_179_m_4.png', 'section_masks_179_m_5.png', 'section_masks_179_m_6.png', 'section_masks_179_m_7.png', 'section_masks_179_m_8.png']\n", - "180\n", - "section_masks_180\n", - "{'source': 'brain', 'height': 3423, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_180.jpg', 'id': 180, 'width': 4324}\n", - "['section_masks_180_m_1.png', 'section_masks_180_m_2.png', 'section_masks_180_m_4.png', 'section_masks_180_m_5.png', 'section_masks_180_m_6.png', 'section_masks_180_m_7.png', 'section_masks_180_m_8.png']\n", - "181\n", - "section_masks_181\n", - "{'source': 'brain', 'height': 3324, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_181.jpg', 'id': 181, 'width': 4292}\n", - "['section_masks_181_m_1.png', 'section_masks_181_m_2.png', 'section_masks_181_m_4.png', 'section_masks_181_m_5.png', 'section_masks_181_m_6.png', 'section_masks_181_m_7.png', 'section_masks_181_m_8.png']\n", - "182\n", - "section_masks_182\n", - "{'source': 'brain', 'height': 3221, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_182.jpg', 'id': 182, 'width': 4255}\n", - "['section_masks_182_m_1.png', 'section_masks_182_m_2.png', 'section_masks_182_m_4.png', 'section_masks_182_m_5.png', 'section_masks_182_m_6.png', 'section_masks_182_m_7.png', 'section_masks_182_m_8.png']\n", - "183\n", - "section_masks_183\n", - "{'source': 'brain', 'height': 3114, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_183.jpg', 'id': 183, 'width': 4213}\n", - "['section_masks_183_m_1.png', 'section_masks_183_m_2.png', 'section_masks_183_m_4.png', 'section_masks_183_m_5.png', 'section_masks_183_m_6.png', 'section_masks_183_m_7.png', 'section_masks_183_m_8.png']\n", - "184\n", - "section_masks_184\n", - "{'source': 'brain', 'height': 3004, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_184.jpg', 'id': 184, 'width': 4165}\n", - "['section_masks_184_m_1.png', 'section_masks_184_m_2.png', 'section_masks_184_m_4.png', 'section_masks_184_m_5.png', 'section_masks_184_m_6.png', 'section_masks_184_m_7.png', 'section_masks_184_m_8.png']\n", - "185\n", - "section_masks_185\n", - "{'source': 'brain', 'height': 2890, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_185.jpg', 'id': 185, 'width': 4113}\n", - "['section_masks_185_m_1.png', 'section_masks_185_m_2.png', 'section_masks_185_m_4.png', 'section_masks_185_m_5.png', 'section_masks_185_m_6.png', 'section_masks_185_m_7.png', 'section_masks_185_m_8.png']\n", - "186\n", - "section_masks_186\n", - "{'source': 'brain', 'height': 2772, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_186.jpg', 'id': 186, 'width': 4055}\n", - "['section_masks_186_m_1.png', 'section_masks_186_m_2.png', 'section_masks_186_m_4.png', 'section_masks_186_m_5.png', 'section_masks_186_m_6.png', 'section_masks_186_m_7.png', 'section_masks_186_m_8.png']\n", - "187\n", - "section_masks_187\n", - "{'source': 'brain', 'height': 2651, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_187.jpg', 'id': 187, 'width': 3993}\n", - "['section_masks_187_m_1.png', 'section_masks_187_m_2.png', 'section_masks_187_m_4.png', 'section_masks_187_m_5.png', 'section_masks_187_m_6.png', 'section_masks_187_m_7.png', 'section_masks_187_m_8.png']\n", - "188\n", - "section_masks_188\n", - "{'source': 'brain', 'height': 2526, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_188.jpg', 'id': 188, 'width': 3925}\n", - "['section_masks_188_m_1.png', 'section_masks_188_m_2.png', 'section_masks_188_m_4.png', 'section_masks_188_m_5.png', 'section_masks_188_m_6.png', 'section_masks_188_m_7.png', 'section_masks_188_m_8.png']\n", - "189\n", - "section_masks_189\n", - "{'source': 'brain', 'height': 2399, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_189.jpg', 'id': 189, 'width': 3853}\n", - "['section_masks_189_m_1.png', 'section_masks_189_m_2.png', 'section_masks_189_m_4.png', 'section_masks_189_m_5.png', 'section_masks_189_m_6.png', 'section_masks_189_m_7.png', 'section_masks_189_m_8.png']\n", - "190\n", - "section_masks_190\n", - "{'source': 'brain', 'height': 2268, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_190.jpg', 'id': 190, 'width': 3776}\n", - "['section_masks_190_m_1.png', 'section_masks_190_m_2.png', 'section_masks_190_m_4.png', 'section_masks_190_m_5.png', 'section_masks_190_m_6.png', 'section_masks_190_m_7.png', 'section_masks_190_m_8.png']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "191\n", - "section_masks_191\n", - "{'source': 'brain', 'height': 2399, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_191.jpg', 'id': 191, 'width': 3853}\n", - "['section_masks_191_m_1.png', 'section_masks_191_m_2.png', 'section_masks_191_m_4.png', 'section_masks_191_m_5.png', 'section_masks_191_m_6.png', 'section_masks_191_m_7.png', 'section_masks_191_m_8.png']\n", - "192\n", - "section_masks_192\n", - "{'source': 'brain', 'height': 2526, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_192.jpg', 'id': 192, 'width': 3925}\n", - "['section_masks_192_m_1.png', 'section_masks_192_m_2.png', 'section_masks_192_m_4.png', 'section_masks_192_m_5.png', 'section_masks_192_m_6.png', 'section_masks_192_m_7.png', 'section_masks_192_m_8.png']\n", - "193\n", - "section_masks_193\n", - "{'source': 'brain', 'height': 2651, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_193.jpg', 'id': 193, 'width': 3993}\n", - "['section_masks_193_m_1.png', 'section_masks_193_m_2.png', 'section_masks_193_m_4.png', 'section_masks_193_m_5.png', 'section_masks_193_m_6.png', 'section_masks_193_m_7.png', 'section_masks_193_m_8.png']\n", - "194\n", - "section_masks_194\n", - "{'source': 'brain', 'height': 2772, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_194.jpg', 'id': 194, 'width': 4055}\n", - "['section_masks_194_m_1.png', 'section_masks_194_m_2.png', 'section_masks_194_m_4.png', 'section_masks_194_m_5.png', 'section_masks_194_m_6.png', 'section_masks_194_m_7.png', 'section_masks_194_m_8.png']\n", - "195\n", - "section_masks_195\n", - "{'source': 'brain', 'height': 2890, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_195.jpg', 'id': 195, 'width': 4113}\n", - "['section_masks_195_m_1.png', 'section_masks_195_m_2.png', 'section_masks_195_m_4.png', 'section_masks_195_m_5.png', 'section_masks_195_m_6.png', 'section_masks_195_m_7.png', 'section_masks_195_m_8.png']\n", - "196\n", - "section_masks_196\n", - "{'source': 'brain', 'height': 3004, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_196.jpg', 'id': 196, 'width': 4165}\n", - "['section_masks_196_m_1.png', 'section_masks_196_m_2.png', 'section_masks_196_m_4.png', 'section_masks_196_m_5.png', 'section_masks_196_m_6.png', 'section_masks_196_m_7.png', 'section_masks_196_m_8.png']\n", - "197\n", - "section_masks_197\n", - "{'source': 'brain', 'height': 3114, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_197.jpg', 'id': 197, 'width': 4213}\n", - "['section_masks_197_m_1.png', 'section_masks_197_m_2.png', 'section_masks_197_m_4.png', 'section_masks_197_m_5.png', 'section_masks_197_m_6.png', 'section_masks_197_m_7.png', 'section_masks_197_m_8.png']\n", - "198\n", - "section_masks_198\n", - "{'source': 'brain', 'height': 3221, 'path': 'D:\\\\Romesa_Work\\\\scene_parsing\\\\MaskRCNN_dataset\\\\dataset_6\\\\mrcnn_val_blurred_images_sigma_4/section_img_198.jpg', 'id': 198, 'width': 4255}\n", - "['section_masks_198_m_1.png', 'section_masks_198_m_2.png', 'section_masks_198_m_4.png', 'section_masks_198_m_5.png', 'section_masks_198_m_6.png', 'section_masks_198_m_7.png', 'section_masks_198_m_8.png']\n", - "mAP: 0.8430577694317832\n" - ] - } - ], + "outputs": [], "source": [ "# Compute VOC-Style mAP @ IoU=0.5\n", "# Running on 10 images. Increase for better accuracy.\n", "\n", - "#image_ids = np.random.choice(dataset_val.image_ids, 10) \n", + "image_ids = np.random.choice(dataset_val.image_ids, 30) \n", "APs = []\n", - "for image_id in range(0,199):#for image_id in image_ids:\n", + "for image_id in image_ids:#for image_id in image_ids:\n", " # Load image and ground truth data\n", " image, image_meta, gt_class_id, gt_bbox, gt_mask =\\\n", " modellib.load_image_gt(dataset_val, inference_config,\n", " image_id, use_mini_mask=False)\n", " molded_images = np.expand_dims(modellib.mold_image(image, inference_config), 0)\n", " # Run object detection\n", - " results = model.detect([image], verbose=0)\n", + " results = model.detect([image], verbose=1)\n", " r = results[0]\n", " # Compute AP\n", " AP, precisions, recalls, overlaps =\\\n", " utils.compute_ap(gt_bbox, gt_class_id, gt_mask,\n", " r[\"rois\"], r[\"class_ids\"], r[\"scores\"], r['masks'])\n", " APs.append(AP)\n", + " print(precisions)\n", " \n", "print(\"mAP: \", np.mean(APs))\n" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "id": "sfrsj1vABxzq" + }, "source": [ "# plotting APs\n", "# .\n", @@ -27950,30 +882,50 @@ }, { "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.8430577694317832" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": { + "id": "uN_g7T2jBxzq" + }, + "outputs": [], "source": [ "np.mean(APs)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "JQeChv4jBxzr" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EzLupP9aBxzr" + }, + "outputs": [], + "source": [] } ], "metadata": { + "colab": { + "collapsed_sections": [ + "DCwqjDHzBxzX", + "tpFQNxtLBxzd", + "Acto-lZNBxzj", + "x72_ZFpeBxzm", + "TmOYlMxnBxzp" + ], + "name": "SeBRe_training_Ch01.ipynb", + "provenance": [] + }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python [conda env:bstreg] *", "language": "python", - "name": "python3" + "name": "conda-env-bstreg-py" }, "language_info": { "codemirror_mode": { @@ -27985,9 +937,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.6.3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 1 } diff --git a/Supp_figure_1.png b/Supp_figure_1.png deleted file mode 100644 index 5fb07e4..0000000 Binary files a/Supp_figure_1.png and /dev/null differ diff --git a/__pycache__/config.cpython-36.pyc b/__pycache__/config.cpython-36.pyc new file mode 100644 index 0000000..3603c7c Binary files /dev/null and b/__pycache__/config.cpython-36.pyc differ diff --git a/__pycache__/model.cpython-36.pyc b/__pycache__/model.cpython-36.pyc new file mode 100644 index 0000000..f5edeaf Binary files /dev/null and b/__pycache__/model.cpython-36.pyc differ diff --git a/__pycache__/utils.cpython-36.pyc b/__pycache__/utils.cpython-36.pyc new file mode 100644 index 0000000..83087fd Binary files /dev/null and b/__pycache__/utils.cpython-36.pyc differ diff --git a/__pycache__/visualize.cpython-36.pyc b/__pycache__/visualize.cpython-36.pyc new file mode 100644 index 0000000..065f47b Binary files /dev/null and b/__pycache__/visualize.cpython-36.pyc differ diff --git a/_config.yml b/_config.yml deleted file mode 100644 index c419263..0000000 --- a/_config.yml +++ /dev/null @@ -1 +0,0 @@ -theme: jekyll-theme-cayman \ No newline at end of file diff --git a/cells_dataset.tgz b/cells_dataset.tgz deleted file mode 100644 index f2a6458..0000000 Binary files a/cells_dataset.tgz and /dev/null differ diff --git a/download_svg.ipynb b/download_svg.ipynb new file mode 100644 index 0000000..da5798b --- /dev/null +++ b/download_svg.ipynb @@ -0,0 +1,107 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Credit: Script from Lydia Ng at https://gist.github.com/lydiang/12d04cd4ed750f4b24cfc72d67d14387\n", + "# (Adapted for Python3 and project-specific use)\n", + "\n", + "import urllib.request, json\n", + "import os\n", + "\n", + "# \n", + "# Example python code to download atlas svg files\n", + "#\n", + "# Read the Allen Brain Atlas API documentation:\n", + "# http://help.brain-map.org/display/api/Atlas+Drawings+and+Ontologies\n", + "#\n", + "# In the table find the atlas that you looking for.\n", + "# Take note of the \"Atlas ID\" and \"GraphicGroupLabels\"\n", + "#\n", + "\n", + "# Specify output directory for files\n", + "output_directory = \"allen_svg\"\n", + "\n", + "# Specify downsample factor \n", + "downsample = 1\n", + "\n", + "# Copy \"Atlas ID\" here\n", + "atlas_id = 1\n", + "\n", + "# Copy \"GraphicGroupLabels\" here\n", + "group_labels = [28,159226751]\n", + "\n", + "# RMA query to find images for atlas\n", + "query_url = \"http://api.brain-map.org/api/v2/data/query.json?criteria=model::AtlasImage\"\n", + "query_url += \",rma::criteria,[annotated$eqtrue]\"\n", + "query_url += \",atlas_data_set(atlases[id$eq%d])\" % (atlas_id)\n", + "query_url += \",rma::options[order$eq'sub_images.section_number'][num_rows$eqall]\"\n", + "\n", + "response = urllib.request.urlopen(query_url)\n", + "images = json.loads(response.read())['msg']\n", + "\n", + "# make output directory\n", + "if not os.path.exists( output_directory ) :\n", + " os.makedirs( output_directory )\n", + "\n", + "# loop through each image\n", + "for i in images[70:len(images)-1] :\n", + "\n", + " print (i['section_number'])\n", + " \n", + " # download svg \n", + " svg_url = \"http://api.brain-map.org/api/v2/svg_download/%d?\" % (i['id'])\n", + " svg_url += \"groups=%s\" % ( \",\".join([str(g) for g in group_labels]))\n", + " svg_url += \"&downsample=%d\" % (downsample)\n", + " svg_path = os.path.join( output_directory, '%04d_%d.svg' % (i['section_number'],i['id']) )\n", + " urllib.request.urlretrieve(svg_url, svg_path)\n", + "\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "svg_url = \"http://api.brain-map.org/api/v2/svg_download/%d?\" % (i['id'])\n", + "svg_url += \"groups=%s\" % ( \",\".join([str(g) for g in group_labels]))\n", + "svg_url += \"&downsample=%d\" % (downsample)\n", + "svg_path = os.path.join( output_directory, '%04d_%d.svg' % (i['section_number'],i['id']) )\n", + "urllib.request.urlretrieve(svg_url, svg_path)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python py36", + "language": "python", + "name": "py36" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/environment.yml b/environment.yml new file mode 100644 index 0000000..a54d888 --- /dev/null +++ b/environment.yml @@ -0,0 +1,400 @@ +name: base +channels: + - defaults +dependencies: + - _ipyw_jlab_nb_ext_conf=0.1.0=py39haa95532_0 + - alabaster=0.7.12=pyhd3eb1b0_0 + - anaconda=2022.10=py39_0 + - anaconda-client=1.11.0=py39haa95532_0 + - anaconda-navigator=2.3.1=py39haa95532_0 + - anaconda-project=0.11.1=py39haa95532_0 + - anyio=3.5.0=py39haa95532_0 + - appdirs=1.4.4=pyhd3eb1b0_0 + - argon2-cffi=21.3.0=pyhd3eb1b0_0 + - argon2-cffi-bindings=21.2.0=py39h2bbff1b_0 + - arrow=1.2.2=pyhd3eb1b0_0 + - astroid=2.11.7=py39haa95532_0 + - astropy=5.1=py39h080aedc_0 + - atomicwrites=1.4.0=py_0 + - attrs=21.4.0=pyhd3eb1b0_0 + - automat=20.2.0=py_0 + - autopep8=1.6.0=pyhd3eb1b0_1 + - babel=2.9.1=pyhd3eb1b0_0 + - backcall=0.2.0=pyhd3eb1b0_0 + - backports=1.1=pyhd3eb1b0_0 + - backports.functools_lru_cache=1.6.4=pyhd3eb1b0_0 + - backports.tempfile=1.0=pyhd3eb1b0_1 + - backports.weakref=1.0.post1=py_1 + - bcrypt=3.2.0=py39h2bbff1b_1 + - beautifulsoup4=4.11.1=py39haa95532_0 + - binaryornot=0.4.4=pyhd3eb1b0_1 + - bitarray=2.5.1=py39h2bbff1b_0 + - bkcharts=0.2=py39haa95532_1 + - black=22.6.0=py39haa95532_0 + - blas=1.0=mkl + - bleach=4.1.0=pyhd3eb1b0_0 + - blosc=1.21.0=h19a0ad4_1 + - bokeh=2.4.3=py39haa95532_0 + - boto3=1.24.28=py39haa95532_0 + - botocore=1.27.28=py39haa95532_0 + - bottleneck=1.3.5=py39h080aedc_0 + - brotli=1.0.9=h2bbff1b_7 + - brotli-bin=1.0.9=h2bbff1b_7 + - brotlipy=0.7.0=py39h2bbff1b_1003 + - bzip2=1.0.8=he774522_0 + - ca-certificates=2022.07.19=haa95532_0 + - certifi=2022.9.14=py39haa95532_0 + - cffi=1.15.1=py39h2bbff1b_0 + - cfitsio=3.470=h2bbff1b_7 + - chardet=4.0.0=py39haa95532_1003 + - charls=2.2.0=h6c2663c_0 + - charset-normalizer=2.0.4=pyhd3eb1b0_0 + - click=8.0.4=py39haa95532_0 + - cloudpickle=2.0.0=pyhd3eb1b0_0 + - clyent=1.2.2=py39haa95532_1 + - colorama=0.4.5=py39haa95532_0 + - colorcet=3.0.0=py39haa95532_0 + - comtypes=1.1.10=py39haa95532_1002 + - conda=22.9.0=py39haa95532_0 + - conda-build=3.22.0=py39haa95532_0 + - conda-content-trust=0.1.3=py39haa95532_0 + - conda-env=2.6.0=haa95532_1 + - conda-pack=0.6.0=pyhd3eb1b0_0 + - conda-package-handling=1.9.0=py39h8cc25b3_0 + - conda-repo-cli=1.0.20=py39haa95532_0 + - conda-token=0.4.0=pyhd3eb1b0_0 + - conda-verify=3.4.2=py_1 + - console_shortcut=0.1.1=4 + - constantly=15.1.0=pyh2b92418_0 + - cookiecutter=1.7.3=pyhd3eb1b0_0 + - cryptography=37.0.1=py39h21b164f_0 + - cssselect=1.1.0=pyhd3eb1b0_0 + - curl=7.84.0=h2bbff1b_0 + - cycler=0.11.0=pyhd3eb1b0_0 + - cython=0.29.32=py39hd77b12b_0 + - cytoolz=0.11.0=py39h2bbff1b_0 + - daal4py=2021.6.0=py39h757b272_1 + - dal=2021.6.0=h59b6b97_874 + - dask=2022.7.0=py39haa95532_0 + - dask-core=2022.7.0=py39haa95532_0 + - dataclasses=0.8=pyh6d0b6a4_7 + - datashader=0.14.1=py39haa95532_0 + - datashape=0.5.4=py39haa95532_1 + - debugpy=1.5.1=py39hd77b12b_0 + - decorator=5.1.1=pyhd3eb1b0_0 + - defusedxml=0.7.1=pyhd3eb1b0_0 + - diff-match-patch=20200713=pyhd3eb1b0_0 + - dill=0.3.4=pyhd3eb1b0_0 + - distributed=2022.7.0=py39haa95532_0 + - docutils=0.18.1=py39haa95532_3 + - entrypoints=0.4=py39haa95532_0 + - et_xmlfile=1.1.0=py39haa95532_0 + - fftw=3.3.9=h2bbff1b_1 + - filelock=3.6.0=pyhd3eb1b0_0 + - flake8=4.0.1=pyhd3eb1b0_1 + - flask=1.1.2=pyhd3eb1b0_0 + - fonttools=4.25.0=pyhd3eb1b0_0 + - freetype=2.10.4=hd328e21_0 + - fsspec=2022.7.1=py39haa95532_0 + - future=0.18.2=py39haa95532_1 + - gensim=4.1.2=py39hd77b12b_0 + - giflib=5.2.1=h62dcd97_0 + - glob2=0.7=pyhd3eb1b0_0 + - greenlet=1.1.1=py39hd77b12b_0 + - h5py=3.7.0=py39h3de5c98_0 + - hdf5=1.10.6=h1756f20_1 + - heapdict=1.0.1=pyhd3eb1b0_0 + - holoviews=1.15.0=py39haa95532_0 + - hvplot=0.8.0=py39haa95532_0 + - hyperlink=21.0.0=pyhd3eb1b0_0 + - icc_rt=2022.1.0=h6049295_2 + - icu=58.2=ha925a31_3 + - idna=3.3=pyhd3eb1b0_0 + - imagecodecs=2021.8.26=py39hc0a7faf_1 + - imageio=2.19.3=py39haa95532_0 + - imagesize=1.4.1=py39haa95532_0 + - importlib-metadata=4.11.3=py39haa95532_0 + - importlib_metadata=4.11.3=hd3eb1b0_0 + - incremental=21.3.0=pyhd3eb1b0_0 + - inflection=0.5.1=py39haa95532_0 + - iniconfig=1.1.1=pyhd3eb1b0_0 + - intake=0.6.5=pyhd3eb1b0_0 + - intel-openmp=2021.4.0=haa95532_3556 + - intervaltree=3.1.0=pyhd3eb1b0_0 + - ipykernel=6.15.2=py39haa95532_0 + - ipython=7.31.1=py39haa95532_1 + - ipython_genutils=0.2.0=pyhd3eb1b0_1 + - ipywidgets=7.6.5=pyhd3eb1b0_1 + - isort=5.9.3=pyhd3eb1b0_0 + - itemadapter=0.3.0=pyhd3eb1b0_0 + - itemloaders=1.0.4=pyhd3eb1b0_1 + - itsdangerous=2.0.1=pyhd3eb1b0_0 + - jdcal=1.4.1=pyhd3eb1b0_0 + - jedi=0.18.1=py39haa95532_1 + - jellyfish=0.9.0=py39h2bbff1b_0 + - jinja2=2.11.3=pyhd3eb1b0_0 + - jinja2-time=0.2.0=pyhd3eb1b0_3 + - jmespath=0.10.0=pyhd3eb1b0_0 + - joblib=1.1.0=pyhd3eb1b0_0 + - jpeg=9e=h2bbff1b_0 + - jq=1.6=haa95532_1 + - json5=0.9.6=pyhd3eb1b0_0 + - jsonschema=4.16.0=py39haa95532_0 + - jupyter=1.0.0=py39haa95532_8 + - jupyter_client=7.3.4=py39haa95532_0 + - jupyter_console=6.4.3=pyhd3eb1b0_0 + - jupyter_core=4.11.1=py39haa95532_0 + - jupyter_server=1.18.1=py39haa95532_0 + - jupyterlab=3.4.4=py39haa95532_0 + - jupyterlab_pygments=0.1.2=py_0 + - jupyterlab_server=2.10.3=pyhd3eb1b0_1 + - jupyterlab_widgets=1.0.0=pyhd3eb1b0_1 + - keyring=23.4.0=py39haa95532_0 + - kiwisolver=1.4.2=py39hd77b12b_0 + - lazy-object-proxy=1.6.0=py39h2bbff1b_0 + - lcms2=2.12=h83e58a3_0 + - lerc=3.0=hd77b12b_0 + - libaec=1.0.4=h33f27b4_1 + - libarchive=3.6.1=hebabd0d_0 + - libbrotlicommon=1.0.9=h2bbff1b_7 + - libbrotlidec=1.0.9=h2bbff1b_7 + - libbrotlienc=1.0.9=h2bbff1b_7 + - libcurl=7.84.0=h86230a5_0 + - libdeflate=1.8=h2bbff1b_5 + - libiconv=1.16=h2bbff1b_2 + - liblief=0.11.5=hd77b12b_1 + - libpng=1.6.37=h2a8f88b_0 + - libsodium=1.0.18=h62dcd97_0 + - libspatialindex=1.9.3=h6c2663c_0 + - libssh2=1.10.0=hcd4344a_0 + - libtiff=4.4.0=h8a3f274_0 + - libwebp=1.2.2=h2bbff1b_0 + - libxml2=2.9.14=h0ad7f3c_0 + - libxslt=1.1.35=h2bbff1b_0 + - libzopfli=1.0.3=ha925a31_0 + - llvmlite=0.38.0=py39h23ce68f_0 + - locket=1.0.0=py39haa95532_0 + - lxml=4.9.1=py39h1985fb9_0 + - lz4=3.1.3=py39h2bbff1b_0 + - lz4-c=1.9.3=h2bbff1b_1 + - lzo=2.10=he774522_2 + - m2-msys2-runtime=2.5.0.17080.65c939c=3 + - m2-patch=2.7.5=2 + - m2w64-libwinpthread-git=5.0.0.4634.697f757=2 + - markdown=3.3.4=py39haa95532_0 + - markupsafe=2.0.1=py39h2bbff1b_0 + - matplotlib=3.5.2=py39haa95532_0 + - matplotlib-base=3.5.2=py39hd77b12b_0 + - matplotlib-inline=0.1.6=py39haa95532_0 + - mccabe=0.6.1=py39haa95532_2 + - menuinst=1.4.19=py39h59b6b97_0 + - mistune=0.8.4=py39h2bbff1b_1000 + - mkl=2021.4.0=haa95532_640 + - mkl-service=2.4.0=py39h2bbff1b_0 + - mkl_fft=1.3.1=py39h277e83a_0 + - mkl_random=1.2.2=py39hf11a4ad_0 + - mock=4.0.3=pyhd3eb1b0_0 + - mpmath=1.2.1=py39haa95532_0 + - msgpack-python=1.0.3=py39h59b6b97_0 + - msys2-conda-epoch=20160418=1 + - multipledispatch=0.6.0=py39haa95532_0 + - munkres=1.1.4=py_0 + - mypy_extensions=0.4.3=py39haa95532_1 + - navigator-updater=0.3.0=py39haa95532_0 + - nbclassic=0.3.5=pyhd3eb1b0_0 + - nbclient=0.5.13=py39haa95532_0 + - nbconvert=6.4.4=py39haa95532_0 + - nbformat=5.5.0=py39haa95532_0 + - nest-asyncio=1.5.5=py39haa95532_0 + - networkx=2.8.4=py39haa95532_0 + - nltk=3.7=pyhd3eb1b0_0 + - nose=1.3.7=pyhd3eb1b0_1008 + - notebook=6.4.12=py39haa95532_0 + - numba=0.55.1=py39hf11a4ad_0 + - numexpr=2.8.3=py39hb80d3ca_0 + - numpy=1.21.5=py39h7a0a035_3 + - numpy-base=1.21.5=py39hca35cd5_3 + - numpydoc=1.4.0=py39haa95532_0 + - olefile=0.46=pyhd3eb1b0_0 + - openjpeg=2.4.0=h4fc8c34_0 + - openpyxl=3.0.10=py39h2bbff1b_0 + - openssl=1.1.1q=h2bbff1b_0 + - packaging=21.3=pyhd3eb1b0_0 + - pandas=1.4.4=py39hd77b12b_0 + - pandocfilters=1.5.0=pyhd3eb1b0_0 + - panel=0.13.1=py39haa95532_0 + - param=1.12.0=pyhd3eb1b0_0 + - paramiko=2.8.1=pyhd3eb1b0_0 + - parsel=1.6.0=py39haa95532_0 + - parso=0.8.3=pyhd3eb1b0_0 + - partd=1.2.0=pyhd3eb1b0_1 + - pathlib=1.0.1=pyhd3eb1b0_1 + - pathspec=0.9.0=py39haa95532_0 + - patsy=0.5.2=py39haa95532_1 + - pep8=1.7.1=py39haa95532_1 + - pexpect=4.8.0=pyhd3eb1b0_3 + - pickleshare=0.7.5=pyhd3eb1b0_1003 + - pillow=9.2.0=py39hdc2b20a_1 + - pip=22.2.2=py39haa95532_0 + - pkginfo=1.8.2=pyhd3eb1b0_0 + - platformdirs=2.5.2=py39haa95532_0 + - plotly=5.9.0=py39haa95532_0 + - pluggy=1.0.0=py39haa95532_1 + - powershell_shortcut=0.0.1=3 + - poyo=0.5.0=pyhd3eb1b0_0 + - prometheus_client=0.14.1=py39haa95532_0 + - prompt-toolkit=3.0.20=pyhd3eb1b0_0 + - prompt_toolkit=3.0.20=hd3eb1b0_0 + - protego=0.1.16=py_0 + - psutil=5.9.0=py39h2bbff1b_0 + - ptyprocess=0.7.0=pyhd3eb1b0_2 + - py=1.11.0=pyhd3eb1b0_0 + - py-lief=0.11.5=py39hd77b12b_1 + - pyasn1=0.4.8=pyhd3eb1b0_0 + - pyasn1-modules=0.2.8=py_0 + - pycodestyle=2.8.0=pyhd3eb1b0_0 + - pycosat=0.6.3=py39h2bbff1b_0 + - pycparser=2.21=pyhd3eb1b0_0 + - pyct=0.4.8=py39haa95532_1 + - pycurl=7.45.1=py39hcd4344a_0 + - pydispatcher=2.0.5=py39haa95532_2 + - pydocstyle=6.1.1=pyhd3eb1b0_0 + - pyerfa=2.0.0=py39h2bbff1b_0 + - pyflakes=2.4.0=pyhd3eb1b0_0 + - pygments=2.11.2=pyhd3eb1b0_0 + - pyhamcrest=2.0.2=pyhd3eb1b0_2 + - pyjwt=2.4.0=py39haa95532_0 + - pylint=2.14.5=py39haa95532_0 + - pyls-spyder=0.4.0=pyhd3eb1b0_0 + - pynacl=1.5.0=py39h8cc25b3_0 + - pyodbc=4.0.34=py39hd77b12b_0 + - pyopenssl=22.0.0=pyhd3eb1b0_0 + - pyparsing=3.0.9=py39haa95532_0 + - pyqt=5.9.2=py39hd77b12b_6 + - pyrsistent=0.18.0=py39h196d8e1_0 + - pysocks=1.7.1=py39haa95532_0 + - pytables=3.6.1=py39h56d22b6_1 + - pytest=7.1.2=py39haa95532_0 + - python=3.9.13=h6244533_1 + - python-dateutil=2.8.2=pyhd3eb1b0_0 + - python-fastjsonschema=2.16.2=py39haa95532_0 + - python-libarchive-c=2.9=pyhd3eb1b0_1 + - python-lsp-black=1.0.0=pyhd3eb1b0_0 + - python-lsp-jsonrpc=1.0.0=pyhd3eb1b0_0 + - python-lsp-server=1.3.3=pyhd3eb1b0_0 + - python-slugify=5.0.2=pyhd3eb1b0_0 + - python-snappy=0.6.0=py39hd77b12b_3 + - pytz=2022.1=py39haa95532_0 + - pyviz_comms=2.0.2=pyhd3eb1b0_0 + - pywavelets=1.3.0=py39h2bbff1b_0 + - pywin32=302=py39h2bbff1b_2 + - pywin32-ctypes=0.2.0=py39haa95532_1000 + - pywinpty=2.0.2=py39h5da7b33_0 + - pyyaml=6.0=py39h2bbff1b_1 + - pyzmq=23.2.0=py39hd77b12b_0 + - qdarkstyle=3.0.2=pyhd3eb1b0_0 + - qstylizer=0.1.10=pyhd3eb1b0_0 + - qt=5.9.7=vc14h73c81de_0 + - qtawesome=1.0.3=pyhd3eb1b0_0 + - qtconsole=5.2.2=pyhd3eb1b0_0 + - qtpy=2.2.0=py39haa95532_0 + - queuelib=1.5.0=py39haa95532_0 + - regex=2022.7.9=py39h2bbff1b_0 + - requests=2.28.1=py39haa95532_0 + - requests-file=1.5.1=pyhd3eb1b0_0 + - rope=0.22.0=pyhd3eb1b0_0 + - rtree=0.9.7=py39h2eaa2aa_1 + - ruamel_yaml=0.15.100=py39h2bbff1b_0 + - s3transfer=0.6.0=py39haa95532_0 + - scikit-image=0.19.2=py39hf11a4ad_0 + - scikit-learn=1.0.2=py39hf11a4ad_1 + - scikit-learn-intelex=2021.6.0=py39haa95532_0 + - scipy=1.9.1=py39he11b74f_0 + - scrapy=2.6.2=py39haa95532_0 + - seaborn=0.11.2=pyhd3eb1b0_0 + - send2trash=1.8.0=pyhd3eb1b0_1 + - service_identity=18.1.0=pyhd3eb1b0_1 + - setuptools=63.4.1=py39haa95532_0 + - sip=4.19.13=py39hd77b12b_0 + - six=1.16.0=pyhd3eb1b0_1 + - smart_open=5.2.1=py39haa95532_0 + - snappy=1.1.9=h6c2663c_0 + - sniffio=1.2.0=py39haa95532_1 + - snowballstemmer=2.2.0=pyhd3eb1b0_0 + - sortedcollections=2.1.0=pyhd3eb1b0_0 + - sortedcontainers=2.4.0=pyhd3eb1b0_0 + - soupsieve=2.3.1=pyhd3eb1b0_0 + - sphinx=5.0.2=py39haa95532_0 + - sphinxcontrib-applehelp=1.0.2=pyhd3eb1b0_0 + - sphinxcontrib-devhelp=1.0.2=pyhd3eb1b0_0 + - sphinxcontrib-htmlhelp=2.0.0=pyhd3eb1b0_0 + - sphinxcontrib-jsmath=1.0.1=pyhd3eb1b0_0 + - sphinxcontrib-qthelp=1.0.3=pyhd3eb1b0_0 + - sphinxcontrib-serializinghtml=1.1.5=pyhd3eb1b0_0 + - spyder=5.2.2=py39haa95532_1 + - spyder-kernels=2.2.1=py39haa95532_0 + - sqlalchemy=1.4.39=py39h2bbff1b_0 + - sqlite=3.39.3=h2bbff1b_0 + - statsmodels=0.13.2=py39h2bbff1b_0 + - sympy=1.10.1=py39haa95532_0 + - tabulate=0.8.10=py39haa95532_0 + - tbb=2021.6.0=h59b6b97_0 + - tbb4py=2021.6.0=py39h59b6b97_0 + - tblib=1.7.0=pyhd3eb1b0_0 + - tenacity=8.0.1=py39haa95532_1 + - terminado=0.13.1=py39haa95532_0 + - testpath=0.6.0=py39haa95532_0 + - text-unidecode=1.3=pyhd3eb1b0_0 + - textdistance=4.2.1=pyhd3eb1b0_0 + - threadpoolctl=2.2.0=pyh0d69192_0 + - three-merge=0.1.1=pyhd3eb1b0_0 + - tifffile=2021.7.2=pyhd3eb1b0_2 + - tinycss=0.4=pyhd3eb1b0_1002 + - tk=8.6.12=h2bbff1b_0 + - tldextract=3.2.0=pyhd3eb1b0_0 + - toml=0.10.2=pyhd3eb1b0_0 + - tomli=2.0.1=py39haa95532_0 + - tomlkit=0.11.1=py39haa95532_0 + - toolz=0.11.2=pyhd3eb1b0_0 + - tornado=6.1=py39h2bbff1b_0 + - tqdm=4.64.1=py39haa95532_0 + - traitlets=5.1.1=pyhd3eb1b0_0 + - twisted=22.2.0=py39h2bbff1b_1 + - twisted-iocpsupport=1.0.2=py39h2bbff1b_0 + - typing-extensions=4.3.0=py39haa95532_0 + - typing_extensions=4.3.0=py39haa95532_0 + - tzdata=2022c=h04d1e81_0 + - ujson=5.4.0=py39hd77b12b_0 + - unidecode=1.2.0=pyhd3eb1b0_0 + - urllib3=1.26.11=py39haa95532_0 + - vc=14.2=h21ff451_1 + - vs2015_runtime=14.27.29016=h5e58377_2 + - w3lib=1.21.0=pyhd3eb1b0_0 + - watchdog=2.1.6=py39haa95532_0 + - wcwidth=0.2.5=pyhd3eb1b0_0 + - webencodings=0.5.1=py39haa95532_1 + - websocket-client=0.58.0=py39haa95532_4 + - werkzeug=2.0.3=pyhd3eb1b0_0 + - wheel=0.37.1=pyhd3eb1b0_0 + - widgetsnbextension=3.5.2=py39haa95532_0 + - win_inet_pton=1.1.0=py39haa95532_0 + - win_unicode_console=0.5=py39haa95532_0 + - wincertstore=0.2=py39haa95532_2 + - winpty=0.4.3=4 + - wrapt=1.14.1=py39h2bbff1b_0 + - xarray=0.20.1=pyhd3eb1b0_1 + - xlrd=2.0.1=pyhd3eb1b0_0 + - xlsxwriter=3.0.3=pyhd3eb1b0_0 + - xlwings=0.27.15=py39haa95532_0 + - xz=5.2.6=h8cc25b3_0 + - yaml=0.2.5=he774522_0 + - yapf=0.31.0=pyhd3eb1b0_0 + - zeromq=4.3.4=hd77b12b_0 + - zfp=0.5.5=hd77b12b_6 + - zict=2.1.0=py39haa95532_0 + - zipp=3.8.0=py39haa95532_0 + - zlib=1.2.12=h8cc25b3_3 + - zope=1.0=py39haa95532_1 + - zope.interface=5.4.0=py39h2bbff1b_0 + - zstd=1.5.2=h19a0ad4_0 +prefix: C:\Users\dal4019\Anaconda3 diff --git a/filter_masks.ipynb b/filter_masks.ipynb new file mode 100644 index 0000000..d16d708 --- /dev/null +++ b/filter_masks.ipynb @@ -0,0 +1,329 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import shutil\n", + "import glob\n", + "from natsort import natsorted, ns \n", + "import numpy as np\n", + "import skimage\n", + "from skimage import io\n", + "import shutil\n", + "\n", + "ROOT_DIR = 'Users/Dana/Desktop/Research/BSt'\n", + "\n", + "def resetDataDir():\n", + " while os.getcwd() != \"/\":\n", + " os.chdir('..')\n", + "\n", + " # Replace the following with the entire path to your data\n", + " os.chdir(ROOT_DIR)\n", + " \n", + " \n", + " \n", + "resetDataDir()\n", + "\n", + "TRAIN_MASKS_DIR = \"MASKS/BW-MASKS-SMALL/A1-TRAIN-TEST\"\n", + "VAL_MASKS_DIR = \"MASKS/BW-MASKS-SMALL/A1-VAL-TEST\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Checking folder section_masks_0\n", + "Checking folder section_masks_1\n", + "Checking folder section_masks_2\n", + "Checking folder section_masks_3\n", + "Checking folder section_masks_4\n", + "Checking folder section_masks_5\n", + "Checking folder section_masks_6\n", + "Checking folder section_masks_7\n", + "Checking folder section_masks_8\n", + "Checking folder section_masks_9\n", + "Checking folder section_masks_10\n", + "Checking folder section_masks_11\n", + "Checking folder section_masks_12\n", + "Checking folder section_masks_13\n", + "Checking folder section_masks_14\n", + "Checking folder section_masks_15\n", + "Checking folder section_masks_16\n", + "Checking folder section_masks_17\n", + "Checking folder section_masks_18\n" + ] + } + ], + "source": [ + "def get_class_label(file_name):\n", + " tmp = file_name.split(\"_\")\n", + " return tmp[3]\n", + "\n", + "# Removes masks from mask folders if they don't meet the minimum threshold \n", + "INCLUDE_CLASSES = [\"SC\", \"PAG\", \"MRN\", \"PRN\"]\n", + "resetDataDir()\n", + "os.chdir(VAL_MASKS_DIR)\n", + "all_mask_folders = natsorted(glob.glob(\"*\"))\n", + "for folder in all_mask_folders:\n", + " resetDataDir()\n", + " os.chdir(VAL_MASKS_DIR)\n", + " os.chdir(folder)\n", + " all_masks = natsorted(glob.glob(\"*\"))\n", + " print(\"Checking folder \" + folder)\n", + " for mask in all_masks:\n", + " if (mask == \"Users\"):\n", + " shutil.rmtree('Users')\n", + " print(\"Removing Users folder\")\n", + " else:\n", + " if (get_class_label(mask) not in INCLUDE_CLASSES):\n", + " os.remove(mask)\n", + "# else:\n", + "# mask_mat = skimage.io.imread(mask) \n", + "# if (\"CU\" in mask and np.sum(mask_mat) < 3000):\n", + "# print(\"Deleting CU mask from masks for image \" + folder)\n", + "# os.remove(mask)\n", + "# elif (\"MARN\" in mask and np.sum(mask_mat) < 3000):\n", + "# print(\"Deleting MARN mask from masks for image \" + folder)\n", + "# os.remove(mask)\n", + "# elif (\"III\" in mask and np.sum(mask_mat) < 3000):\n", + "# print(\"Deleting III mask from masks for image \" + folder)\n", + "# os.remove(mask)\n", + "# elif (\"V\" in mask and np.sum(mask_mat) < 3000):\n", + "# print(\"Deleting V mask from masks for image \" + folder)\n", + "# os.remove(mask)\n", + "# elif (np.sum(mask_mat) < 2000):\n", + "# print(\"Deleting mask \" + mask)\n", + "# os.remove(mask)\n", + "# elif (np.sum(mask_mat) < 100000):\n", + "# print(\"Deleting mask \" + mask)\n", + "# os.remove(mask)\n", + "\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Checking folder section_masks_0\n", + "Checking folder section_masks_1\n", + "Checking folder section_masks_2\n", + "Checking folder section_masks_3\n", + "Checking folder section_masks_4\n", + "Checking folder section_masks_5\n", + "Checking folder section_masks_6\n", + "Checking folder section_masks_7\n", + "Checking folder section_masks_8\n", + "Checking folder section_masks_9\n", + "Checking folder section_masks_10\n", + "Checking folder section_masks_11\n", + "Checking folder section_masks_12\n", + "Checking folder section_masks_13\n", + "Checking folder section_masks_14\n", + "Checking folder section_masks_15\n", + "Checking folder section_masks_16\n", + "Checking folder section_masks_17\n", + "Checking folder section_masks_18\n", + "Checking folder section_masks_19\n", + "Checking folder section_masks_20\n", + "Checking folder section_masks_21\n", + "Checking folder section_masks_22\n", + "Checking folder section_masks_23\n", + "Checking folder section_masks_24\n", + "Checking folder section_masks_25\n", + "Checking folder section_masks_26\n", + "Checking folder section_masks_27\n", + "Checking folder section_masks_28\n", + "Checking folder section_masks_29\n", + "Checking folder section_masks_30\n", + "Checking folder section_masks_31\n", + "Checking folder section_masks_32\n", + "Checking folder section_masks_33\n", + "Checking folder section_masks_34\n", + "Checking folder section_masks_35\n", + "Checking folder section_masks_36\n", + "Checking folder section_masks_37\n", + "Checking folder section_masks_38\n", + "Checking folder section_masks_39\n", + "Checking folder section_masks_40\n", + "Checking folder section_masks_41\n", + "Checking folder section_masks_42\n", + "Checking folder section_masks_43\n", + "Checking folder section_masks_44\n", + "Checking folder section_masks_45\n", + "Checking folder section_masks_46\n", + "Checking folder section_masks_47\n", + "Checking folder section_masks_48\n", + "Checking folder section_masks_49\n", + "Checking folder section_masks_50\n", + "Checking folder section_masks_51\n", + "Checking folder section_masks_52\n", + "Checking folder section_masks_53\n", + "Checking folder section_masks_54\n", + "Checking folder section_masks_55\n", + "Checking folder section_masks_56\n", + "Checking folder section_masks_57\n", + "Checking folder section_masks_58\n", + "Checking folder section_masks_59\n", + "Checking folder section_masks_60\n", + "Checking folder section_masks_61\n", + "Checking folder section_masks_62\n", + "Checking folder section_masks_63\n", + "Checking folder section_masks_64\n", + "Checking folder section_masks_65\n", + "Checking folder section_masks_66\n", + "Checking folder section_masks_67\n", + "Checking folder section_masks_68\n", + "Checking folder section_masks_69\n", + "Checking folder section_masks_70\n", + "Checking folder section_masks_71\n", + "Checking folder section_masks_72\n", + "Checking folder section_masks_73\n", + "Checking folder section_masks_74\n", + "Checking folder section_masks_75\n", + "Checking folder section_masks_76\n", + "Checking folder section_masks_77\n", + "Checking folder section_masks_78\n", + "Checking folder section_masks_79\n", + "Checking folder section_masks_80\n", + "Checking folder section_masks_81\n", + "Checking folder section_masks_82\n", + "Checking folder section_masks_83\n", + "Checking folder section_masks_84\n", + "Checking folder section_masks_85\n", + "Checking folder section_masks_86\n", + "Checking folder section_masks_87\n", + "Checking folder section_masks_88\n", + "Checking folder section_masks_89\n", + "Checking folder section_masks_90\n", + "Checking folder section_masks_91\n", + "Checking folder section_masks_92\n", + "Checking folder section_masks_93\n", + "Checking folder section_masks_94\n", + "Checking folder section_masks_95\n", + "Checking folder section_masks_96\n", + "Checking folder section_masks_97\n", + "Checking folder section_masks_98\n", + "Checking folder section_masks_99\n", + "Checking folder section_masks_100\n", + "Checking folder section_masks_101\n", + "Checking folder section_masks_102\n", + "Checking folder section_masks_103\n", + "Checking folder section_masks_104\n", + "Checking folder section_masks_105\n", + "Checking folder section_masks_106\n", + "Checking folder section_masks_107\n", + "Checking folder section_masks_108\n", + "Checking folder section_masks_109\n", + "Checking folder section_masks_110\n", + "Checking folder section_masks_111\n", + "Checking folder section_masks_112\n", + "Checking folder section_masks_113\n", + "Checking folder section_masks_114\n", + "Checking folder section_masks_115\n", + "Checking folder section_masks_116\n", + "Checking folder section_masks_117\n", + "Checking folder section_masks_118\n", + "Checking folder section_masks_119\n", + "Checking folder section_masks_120\n", + "Checking folder section_masks_121\n", + "Checking folder section_masks_122\n", + "Checking folder section_masks_123\n", + "Checking folder section_masks_124\n", + "Checking folder section_masks_125\n", + "Checking folder section_masks_126\n", + "Checking folder section_masks_127\n", + "Checking folder section_masks_128\n", + "Checking folder section_masks_129\n", + "Checking folder section_masks_130\n", + "Checking folder section_masks_131\n", + "Checking folder section_masks_132\n", + "Checking folder section_masks_133\n", + "Checking folder section_masks_134\n", + "Checking folder section_masks_135\n", + "Checking folder section_masks_136\n", + "Checking folder section_masks_137\n", + "Checking folder section_masks_138\n", + "Checking folder section_masks_139\n", + "Checking folder section_masks_140\n", + "Checking folder section_masks_141\n", + "Checking folder section_masks_142\n", + "Checking folder section_masks_143\n", + "Checking folder section_masks_144\n", + "Checking folder section_masks_145\n", + "Checking folder section_masks_146\n" + ] + } + ], + "source": [ + "# Removes masks from mask folders if they don't meet the minimum threshold \n", + "resetDataDir()\n", + "os.chdir(TRAIN_MASKS_DIR)\n", + "all_mask_folders = natsorted(glob.glob(\"*\"))\n", + "for folder in all_mask_folders:\n", + " resetDataDir()\n", + " os.chdir(TRAIN_MASKS_DIR)\n", + " os.chdir(folder)\n", + " all_masks = natsorted(glob.glob(\"*\"))\n", + " print(\"Checking folder \" + folder)\n", + " for mask in all_masks:\n", + " if (mask == \"Users\"):\n", + " shutil.rmtree('Users')\n", + " print(\"Removing Users folder\")\n", + " else:\n", + " mask_mat = skimage.io.imread(mask) \n", + " if \"PAG\" not in mask:\n", + " os.remove(mask)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python burke2", + "language": "python", + "name": "burke2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/model.py b/model.py index 46de6e3..c4a0580 100644 --- a/model.py +++ b/model.py @@ -2010,7 +2010,7 @@ def load_weights(self, filepath, by_name=False, exclude=None): exlude: list of layer names to excluce """ import h5py - from keras.engine import topology + from keras.engine import saving if exclude: by_name = True @@ -2032,9 +2032,9 @@ def load_weights(self, filepath, by_name=False, exclude=None): layers = filter(lambda l: l.name not in exclude, layers) if by_name: - topology.load_weights_from_hdf5_group_by_name(f, layers) + saving.load_weights_from_hdf5_group_by_name(f, layers) else: - topology.load_weights_from_hdf5_group(f, layers) + saving.load_weights_from_hdf5_group(f, layers) if hasattr(f, 'close'): f.close() @@ -2555,4 +2555,4 @@ def batch_pack_graph(x, counts, num_rows): outputs = [] for i in range(num_rows): outputs.append(x[i, :counts[i]]) - return tf.concat(outputs, axis=0) + return tf.concat(outputs, axis=0) \ No newline at end of file diff --git a/model_softnms.py b/model_softnms.py new file mode 100644 index 0000000..9703258 --- /dev/null +++ b/model_softnms.py @@ -0,0 +1,2559 @@ +# Developing Brain Atlas through Deep Learning +# Asim Iqbal, Romesa Khan, Theofanis Karayannis +# This code is optimized from the Mask RCNN (Waleed Abdulla, (c) 2017 Matterport, Inc.) repository + +import os +import sys +import glob +import random +import math +import datetime +import itertools +import json +import re +import logging +from collections import OrderedDict +import numpy as np +import scipy.misc +import tensorflow as tf +import keras +import keras.backend as K +import keras.layers as KL +import keras.initializers as KI +import keras.engine as KE +import keras.models as KM + +import utils + +# Requires TensorFlow 1.3+ and Keras 2.0.8+. +from distutils.version import LooseVersion +assert LooseVersion(tf.__version__) >= LooseVersion("1.3") +assert LooseVersion(keras.__version__) >= LooseVersion('2.0.8') + + +############################################################ +# Utility Functions +############################################################ + +def log(text, array=None): + """Prints a text message. And, optionally, if a Numpy array is provided it + prints it's shape, min, and max values. + """ + if array is not None: + text = text.ljust(25) + text += ("shape: {:20} min: {:10.5f} max: {:10.5f}".format( + str(array.shape), + array.min() if array.size else "", + array.max() if array.size else "")) + print(text) + + +class BatchNorm(KL.BatchNormalization): + """Batch Normalization class. Subclasses the Keras BN class and + hardcodes training=False so the BN layer doesn't update + during training. + + Batch normalization has a negative effect on training if batches are small + so we disable it here. + """ + + def call(self, inputs, training=None): + return super(self.__class__, self).call(inputs, training=False) + + +############################################################ +# Resnet Graph +############################################################ + +# Code adopted from: +# https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py + +def identity_block(input_tensor, kernel_size, filters, stage, block, + use_bias=True): + """The identity_block is the block that has no conv layer at shortcut + # Arguments + input_tensor: input tensor + kernel_size: defualt 3, the kernel size of middle conv layer at main path + filters: list of integers, the nb_filters of 3 conv layer at main path + stage: integer, current stage label, used for generating layer names + block: 'a','b'..., current block label, used for generating layer names + """ + nb_filter1, nb_filter2, nb_filter3 = filters + conv_name_base = 'res' + str(stage) + block + '_branch' + bn_name_base = 'bn' + str(stage) + block + '_branch' + + x = KL.Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a', + use_bias=use_bias)(input_tensor) + x = BatchNorm(axis=3, name=bn_name_base + '2a')(x) + x = KL.Activation('relu')(x) + + x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', + name=conv_name_base + '2b', use_bias=use_bias)(x) + x = BatchNorm(axis=3, name=bn_name_base + '2b')(x) + x = KL.Activation('relu')(x) + + x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', + use_bias=use_bias)(x) + x = BatchNorm(axis=3, name=bn_name_base + '2c')(x) + + x = KL.Add()([x, input_tensor]) + x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) + return x + + +def conv_block(input_tensor, kernel_size, filters, stage, block, + strides=(2, 2), use_bias=True): + """conv_block is the block that has a conv layer at shortcut + # Arguments + input_tensor: input tensor + kernel_size: defualt 3, the kernel size of middle conv layer at main path + filters: list of integers, the nb_filters of 3 conv layer at main path + stage: integer, current stage label, used for generating layer names + block: 'a','b'..., current block label, used for generating layer names + Note that from stage 3, the first conv layer at main path is with subsample=(2,2) + And the shortcut should have subsample=(2,2) as well + """ + nb_filter1, nb_filter2, nb_filter3 = filters + conv_name_base = 'res' + str(stage) + block + '_branch' + bn_name_base = 'bn' + str(stage) + block + '_branch' + + x = KL.Conv2D(nb_filter1, (1, 1), strides=strides, + name=conv_name_base + '2a', use_bias=use_bias)(input_tensor) + x = BatchNorm(axis=3, name=bn_name_base + '2a')(x) + x = KL.Activation('relu')(x) + + x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', + name=conv_name_base + '2b', use_bias=use_bias)(x) + x = BatchNorm(axis=3, name=bn_name_base + '2b')(x) + x = KL.Activation('relu')(x) + + x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + + '2c', use_bias=use_bias)(x) + x = BatchNorm(axis=3, name=bn_name_base + '2c')(x) + + shortcut = KL.Conv2D(nb_filter3, (1, 1), strides=strides, + name=conv_name_base + '1', use_bias=use_bias)(input_tensor) + shortcut = BatchNorm(axis=3, name=bn_name_base + '1')(shortcut) + + x = KL.Add()([x, shortcut]) + x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) + return x + + +def resnet_graph(input_image, architecture, stage5=False): + assert architecture in ["resnet50", "resnet101"] + # Stage 1 + x = KL.ZeroPadding2D((3, 3))(input_image) + x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x) + x = BatchNorm(axis=3, name='bn_conv1')(x) + x = KL.Activation('relu')(x) + C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x) + # Stage 2 + x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) + x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') + C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') + # Stage 3 + x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') + x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') + x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') + C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') + # Stage 4 + x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') + block_count = {"resnet50": 5, "resnet101": 22}[architecture] + for i in range(block_count): + x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i)) + C4 = x + # Stage 5 + if stage5: + x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') + x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') + C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') + else: + C5 = None + return [C1, C2, C3, C4, C5] + + +############################################################ +# Proposal Layer +############################################################ + +def apply_box_deltas_graph(boxes, deltas): + """Applies the given deltas to the given boxes. + boxes: [N, 4] where each row is y1, x1, y2, x2 + deltas: [N, 4] where each row is [dy, dx, log(dh), log(dw)] + """ + # Convert to y, x, h, w + height = boxes[:, 2] - boxes[:, 0] + width = boxes[:, 3] - boxes[:, 1] + center_y = boxes[:, 0] + 0.5 * height + center_x = boxes[:, 1] + 0.5 * width + # Apply deltas + center_y += deltas[:, 0] * height + center_x += deltas[:, 1] * width + height *= tf.exp(deltas[:, 2]) + width *= tf.exp(deltas[:, 3]) + # Convert back to y1, x1, y2, x2 + y1 = center_y - 0.5 * height + x1 = center_x - 0.5 * width + y2 = y1 + height + x2 = x1 + width + result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out") + return result + + +def clip_boxes_graph(boxes, window): + """ + boxes: [N, 4] each row is y1, x1, y2, x2 + window: [4] in the form y1, x1, y2, x2 + """ + # Split corners + wy1, wx1, wy2, wx2 = tf.split(window, 4) + y1, x1, y2, x2 = tf.split(boxes, 4, axis=1) + # Clip + y1 = tf.maximum(tf.minimum(y1, wy2), wy1) + x1 = tf.maximum(tf.minimum(x1, wx2), wx1) + y2 = tf.maximum(tf.minimum(y2, wy2), wy1) + x2 = tf.maximum(tf.minimum(x2, wx2), wx1) + clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes") + clipped.set_shape((clipped.shape[0], 4)) + return clipped + + +class ProposalLayer(KE.Layer): + """Receives anchor scores and selects a subset to pass as proposals + to the second stage. Filtering is done based on anchor scores and + non-max suppression to remove overlaps. It also applies bounding + box refinement deltas to anchors. + + Inputs: + rpn_probs: [batch, anchors, (bg prob, fg prob)] + rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))] + + Returns: + Proposals in normalized coordinates [batch, rois, (y1, x1, y2, x2)] + """ + + def __init__(self, proposal_count, nms_threshold, anchors, + config=None, **kwargs): + """ + anchors: [N, (y1, x1, y2, x2)] anchors defined in image coordinates + """ + super(ProposalLayer, self).__init__(**kwargs) + self.config = config + self.proposal_count = proposal_count + self.nms_threshold = nms_threshold + self.anchors = anchors.astype(np.float32) + + def call(self, inputs): + # Box Scores. Use the foreground class confidence. [Batch, num_rois, 1] + scores = inputs[0][:, :, 1] + # Box deltas [batch, num_rois, 4] + deltas = inputs[1] + deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4]) + # Base anchors + anchors = self.anchors + + # Improve performance by trimming to top anchors by score + # and doing the rest on the smaller subset. + pre_nms_limit = min(6000, self.anchors.shape[0]) + ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True, + name="top_anchors").indices + scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y), + self.config.IMAGES_PER_GPU) + deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y), + self.config.IMAGES_PER_GPU) + anchors = utils.batch_slice(ix, lambda x: tf.gather(anchors, x), + self.config.IMAGES_PER_GPU, + names=["pre_nms_anchors"]) + + # Apply deltas to anchors to get refined anchors. + # [batch, N, (y1, x1, y2, x2)] + boxes = utils.batch_slice([anchors, deltas], + lambda x, y: apply_box_deltas_graph(x, y), + self.config.IMAGES_PER_GPU, + names=["refined_anchors"]) + + # Clip to image boundaries. [batch, N, (y1, x1, y2, x2)] + height, width = self.config.IMAGE_SHAPE[:2] + window = np.array([0, 0, height, width]).astype(np.float32) + boxes = utils.batch_slice(boxes, + lambda x: clip_boxes_graph(x, window), + self.config.IMAGES_PER_GPU, + names=["refined_anchors_clipped"]) + + # Filter out small boxes + # According to Xinlei Chen's paper, this reduces detection accuracy + # for small objects, so we're skipping it. + + # Normalize dimensions to range of 0 to 1. + normalized_boxes = boxes / np.array([[height, width, height, width]]) + + # Non-max suppression + def nms(normalized_boxes, scores): + indices, scores = tf.image.non_max_suppression_with_scores( + normalized_boxes, scores, max_output_size=1, + iou_threshold=0.1, score_threshold=0.1, + soft_nms_sigma=0.5, name="rpn_non_max_suppression") + proposals = tf.gather(normalized_boxes, indices) + # Pad if needed + padding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0) + proposals = tf.pad(proposals, [(0, padding), (0, 0)]) + return proposals + proposals = utils.batch_slice([normalized_boxes, scores], nms, + self.config.IMAGES_PER_GPU) + return proposals + + def compute_output_shape(self, input_shape): + return (None, self.proposal_count, 4) + + +############################################################ +# ROIAlign Layer +############################################################ + +def log2_graph(x): + """Implementatin of Log2. TF doesn't have a native implemenation.""" + return tf.log(x) / tf.log(2.0) + + +class PyramidROIAlign(KE.Layer): + """Implements ROI Pooling on multiple levels of the feature pyramid. + + Params: + - pool_shape: [height, width] of the output pooled regions. Usually [7, 7] + - image_shape: [height, width, channels]. Shape of input image in pixels + + Inputs: + - boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized + coordinates. Possibly padded with zeros if not enough + boxes to fill the array. + - Feature maps: List of feature maps from different levels of the pyramid. + Each is [batch, height, width, channels] + + Output: + Pooled regions in the shape: [batch, num_boxes, height, width, channels]. + The width and height are those specific in the pool_shape in the layer + constructor. + """ + + def __init__(self, pool_shape, image_shape, **kwargs): + super(PyramidROIAlign, self).__init__(**kwargs) + self.pool_shape = tuple(pool_shape) + self.image_shape = tuple(image_shape) + + def call(self, inputs): + # Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords + boxes = inputs[0] + + # Feature Maps. List of feature maps from different level of the + # feature pyramid. Each is [batch, height, width, channels] + feature_maps = inputs[1:] + + # Assign each ROI to a level in the pyramid based on the ROI area. + y1, x1, y2, x2 = tf.split(boxes, 4, axis=2) + h = y2 - y1 + w = x2 - x1 + # Equation 1 in the Feature Pyramid Networks paper. Account for + # the fact that our coordinates are normalized here. + # e.g. a 224x224 ROI (in pixels) maps to P4 + image_area = tf.cast( + self.image_shape[0] * self.image_shape[1], tf.float32) + roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area))) + roi_level = tf.minimum(5, tf.maximum( + 2, 4 + tf.cast(tf.round(roi_level), tf.int32))) + roi_level = tf.squeeze(roi_level, 2) + + # Loop through levels and apply ROI pooling to each. P2 to P5. + pooled = [] + box_to_level = [] + for i, level in enumerate(range(2, 6)): + ix = tf.where(tf.equal(roi_level, level)) + level_boxes = tf.gather_nd(boxes, ix) + + # Box indicies for crop_and_resize. + box_indices = tf.cast(ix[:, 0], tf.int32) + + # Keep track of which box is mapped to which level + box_to_level.append(ix) + + # Stop gradient propogation to ROI proposals + level_boxes = tf.stop_gradient(level_boxes) + box_indices = tf.stop_gradient(box_indices) + + # Crop and Resize + # From Mask R-CNN paper: "We sample four regular locations, so + # that we can evaluate either max or average pooling. In fact, + # interpolating only a single value at each bin center (without + # pooling) is nearly as effective." + # + # Here we use the simplified approach of a single value per bin, + # which is how it's done in tf.crop_and_resize() + # Result: [batch * num_boxes, pool_height, pool_width, channels] + pooled.append(tf.image.crop_and_resize( + feature_maps[i], level_boxes, box_indices, self.pool_shape, + method="bilinear")) + + # Pack pooled features into one tensor + pooled = tf.concat(pooled, axis=0) + + # Pack box_to_level mapping into one array and add another + # column representing the order of pooled boxes + box_to_level = tf.concat(box_to_level, axis=0) + box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1) + box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range], + axis=1) + + # Rearrange pooled features to match the order of the original boxes + # Sort box_to_level by batch then box index + # TF doesn't have a way to sort by two columns, so merge them and sort. + sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1] + ix = tf.nn.top_k(sorting_tensor, k=tf.shape( + box_to_level)[0]).indices[::-1] + ix = tf.gather(box_to_level[:, 2], ix) + pooled = tf.gather(pooled, ix) + + # Re-add the batch dimension + pooled = tf.expand_dims(pooled, 0) + return pooled + + def compute_output_shape(self, input_shape): + return input_shape[0][:2] + self.pool_shape + (input_shape[1][-1], ) + + +############################################################ +# Detection Target Layer +############################################################ + +def overlaps_graph(boxes1, boxes2): + """Computes IoU overlaps between two sets of boxes. + boxes1, boxes2: [N, (y1, x1, y2, x2)]. + """ + # 1. Tile boxes2 and repeate boxes1. This allows us to compare + # every boxes1 against every boxes2 without loops. + # TF doesn't have an equivalent to np.repeate() so simulate it + # using tf.tile() and tf.reshape. + b1 = tf.reshape(tf.tile(tf.expand_dims(boxes1, 1), + [1, 1, tf.shape(boxes2)[0]]), [-1, 4]) + b2 = tf.tile(boxes2, [tf.shape(boxes1)[0], 1]) + # 2. Compute intersections + b1_y1, b1_x1, b1_y2, b1_x2 = tf.split(b1, 4, axis=1) + b2_y1, b2_x1, b2_y2, b2_x2 = tf.split(b2, 4, axis=1) + y1 = tf.maximum(b1_y1, b2_y1) + x1 = tf.maximum(b1_x1, b2_x1) + y2 = tf.minimum(b1_y2, b2_y2) + x2 = tf.minimum(b1_x2, b2_x2) + intersection = tf.maximum(x2 - x1, 0) * tf.maximum(y2 - y1, 0) + # 3. Compute unions + b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1) + b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1) + union = b1_area + b2_area - intersection + # 4. Compute IoU and reshape to [boxes1, boxes2] + iou = intersection / union + overlaps = tf.reshape(iou, [tf.shape(boxes1)[0], tf.shape(boxes2)[0]]) + return overlaps + + +def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config): + """Generates detection targets for one image. Subsamples proposals and + generates target class IDs, bounding box deltas, and masks for each. + + Inputs: + proposals: [N, (y1, x1, y2, x2)] in normalized coordinates. Might + be zero padded if there are not enough proposals. + gt_class_ids: [MAX_GT_INSTANCES] int class IDs + gt_boxes: [MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates. + gt_masks: [height, width, MAX_GT_INSTANCES] of boolean type. + + Returns: Target ROIs and corresponding class IDs, bounding box shifts, + and masks. + rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates + class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. Zero padded. + deltas: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (dy, dx, log(dh), log(dw))] + Class-specific bbox refinements. + masks: [TRAIN_ROIS_PER_IMAGE, height, width). Masks cropped to bbox + boundaries and resized to neural network output size. + + Note: Returned arrays might be zero padded if not enough target ROIs. + """ + # Assertions + asserts = [ + tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals], + name="roi_assertion"), + ] + with tf.control_dependencies(asserts): + proposals = tf.identity(proposals) + + # Remove zero padding + proposals, _ = trim_zeros_graph(proposals, name="trim_proposals") + gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes") + gt_class_ids = tf.boolean_mask(gt_class_ids, non_zeros, + name="trim_gt_class_ids") + gt_masks = tf.gather(gt_masks, tf.where(non_zeros)[:, 0], axis=2, + name="trim_gt_masks") + + # Handle COCO crowds + # A crowd box in COCO is a bounding box around several instances. Exclude + # them from training. A crowd box is given a negative class ID. + crowd_ix = tf.where(gt_class_ids < 0)[:, 0] + non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0] + crowd_boxes = tf.gather(gt_boxes, crowd_ix) + crowd_masks = tf.gather(gt_masks, crowd_ix, axis=2) + gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix) + gt_boxes = tf.gather(gt_boxes, non_crowd_ix) + gt_masks = tf.gather(gt_masks, non_crowd_ix, axis=2) + + # Compute overlaps matrix [proposals, gt_boxes] + overlaps = overlaps_graph(proposals, gt_boxes) + + # Compute overlaps with crowd boxes [anchors, crowds] + crowd_overlaps = overlaps_graph(proposals, crowd_boxes) + crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1) + no_crowd_bool = (crowd_iou_max < 0.001) + + # Determine postive and negative ROIs + roi_iou_max = tf.reduce_max(overlaps, axis=1) + # 1. Positive ROIs are those with >= 0.5 IoU with a GT box + positive_roi_bool = (roi_iou_max >= 0.5) + positive_indices = tf.where(positive_roi_bool)[:, 0] + # 2. Negative ROIs are those with < 0.5 with every GT box. Skip crowds. + negative_indices = tf.where(tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0] + + # Subsample ROIs. Aim for 33% positive + # Positive ROIs + positive_count = int(config.TRAIN_ROIS_PER_IMAGE * + config.ROI_POSITIVE_RATIO) + positive_indices = tf.random_shuffle(positive_indices)[:positive_count] + positive_count = tf.shape(positive_indices)[0] + # Negative ROIs. Add enough to maintain positive:negative ratio. + r = 1.0 / config.ROI_POSITIVE_RATIO + negative_count = tf.cast(r * tf.cast(positive_count, tf.float32), tf.int32) - positive_count + negative_indices = tf.random_shuffle(negative_indices)[:negative_count] + # Gather selected ROIs + positive_rois = tf.gather(proposals, positive_indices) + negative_rois = tf.gather(proposals, negative_indices) + + # Assign positive ROIs to GT boxes. + positive_overlaps = tf.gather(overlaps, positive_indices) + roi_gt_box_assignment = tf.argmax(positive_overlaps, axis=1) + roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment) + roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment) + + # Compute bbox refinement for positive ROIs + deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes) + deltas /= config.BBOX_STD_DEV + + # Assign positive ROIs to GT masks + # Permute masks to [N, height, width, 1] + transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1) + # Pick the right mask for each ROI + roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment) + + # Compute mask targets + boxes = positive_rois + if config.USE_MINI_MASK: + # Transform ROI corrdinates from normalized image space + # to normalized mini-mask space. + y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1) + gt_y1, gt_x1, gt_y2, gt_x2 = tf.split(roi_gt_boxes, 4, axis=1) + gt_h = gt_y2 - gt_y1 + gt_w = gt_x2 - gt_x1 + y1 = (y1 - gt_y1) / gt_h + x1 = (x1 - gt_x1) / gt_w + y2 = (y2 - gt_y1) / gt_h + x2 = (x2 - gt_x1) / gt_w + boxes = tf.concat([y1, x1, y2, x2], 1) + box_ids = tf.range(0, tf.shape(roi_masks)[0]) + masks = tf.image.crop_and_resize(tf.cast(roi_masks, tf.float32), boxes, + box_ids, + config.MASK_SHAPE) + # Remove the extra dimension from masks. + masks = tf.squeeze(masks, axis=3) + + # Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with + # binary cross entropy loss. + masks = tf.round(masks) + + # Append negative ROIs and pad bbox deltas and masks that + # are not used for negative ROIs with zeros. + rois = tf.concat([positive_rois, negative_rois], axis=0) + N = tf.shape(negative_rois)[0] + P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0) + rois = tf.pad(rois, [(0, P), (0, 0)]) + roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)]) + roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)]) + deltas = tf.pad(deltas, [(0, N + P), (0, 0)]) + masks = tf.pad(masks, [[0, N + P], (0, 0), (0, 0)]) + + return rois, roi_gt_class_ids, deltas, masks + + +class DetectionTargetLayer(KE.Layer): + """Subsamples proposals and generates target box refinement, class_ids, + and masks for each. + + Inputs: + proposals: [batch, N, (y1, x1, y2, x2)] in normalized coordinates. Might + be zero padded if there are not enough proposals. + gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs. + gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized + coordinates. + gt_masks: [batch, height, width, MAX_GT_INSTANCES] of boolean type + + Returns: Target ROIs and corresponding class IDs, bounding box shifts, + and masks. + rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized + coordinates + target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]. Integer class IDs. + target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, + (dy, dx, log(dh), log(dw), class_id)] + Class-specific bbox refinements. + target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width) + Masks cropped to bbox boundaries and resized to neural + network output size. + + Note: Returned arrays might be zero padded if not enough target ROIs. + """ + + def __init__(self, config, **kwargs): + super(DetectionTargetLayer, self).__init__(**kwargs) + self.config = config + + def call(self, inputs): + proposals = inputs[0] + gt_class_ids = inputs[1] + gt_boxes = inputs[2] + gt_masks = inputs[3] + + # Slice the batch and run a graph for each slice + # TODO: Rename target_bbox to target_deltas for clarity + names = ["rois", "target_class_ids", "target_bbox", "target_mask"] + outputs = utils.batch_slice( + [proposals, gt_class_ids, gt_boxes, gt_masks], + lambda w, x, y, z: detection_targets_graph( + w, x, y, z, self.config), + self.config.IMAGES_PER_GPU, names=names) + return outputs + + def compute_output_shape(self, input_shape): + return [ + (None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # rois + (None, 1), # class_ids + (None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # deltas + (None, self.config.TRAIN_ROIS_PER_IMAGE, self.config.MASK_SHAPE[0], + self.config.MASK_SHAPE[1]) # masks + ] + + def compute_mask(self, inputs, mask=None): + return [None, None, None, None] + + +############################################################ +# Detection Layer +############################################################ + +def clip_to_window(window, boxes): + """ + window: (y1, x1, y2, x2). The window in the image we want to clip to. + boxes: [N, (y1, x1, y2, x2)] + """ + boxes[:, 0] = np.maximum(np.minimum(boxes[:, 0], window[2]), window[0]) + boxes[:, 1] = np.maximum(np.minimum(boxes[:, 1], window[3]), window[1]) + boxes[:, 2] = np.maximum(np.minimum(boxes[:, 2], window[2]), window[0]) + boxes[:, 3] = np.maximum(np.minimum(boxes[:, 3], window[3]), window[1]) + return boxes + + +def refine_detections_graph(rois, probs, deltas, window, config): + """Refine classified proposals and filter overlaps and return final + detections. + + Inputs: + rois: [N, (y1, x1, y2, x2)] in normalized coordinates + probs: [N, num_classes]. Class probabilities. + deltas: [N, num_classes, (dy, dx, log(dh), log(dw))]. Class-specific + bounding box deltas. + window: (y1, x1, y2, x2) in image coordinates. The part of the image + that contains the image excluding the padding. + + Returns detections shaped: [N, (y1, x1, y2, x2, class_id, score)] where + coordinates are in image domain. + """ + # Class IDs per ROI + class_ids = tf.argmax(probs, axis=1, output_type=tf.int32) + # Class probability of the top class of each ROI + indices = tf.stack([tf.range(probs.shape[0]), class_ids], axis=1) + class_scores = tf.gather_nd(probs, indices) + # Class-specific bounding box deltas + deltas_specific = tf.gather_nd(deltas, indices) + # Apply bounding box deltas + # Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates + refined_rois = apply_box_deltas_graph( + rois, deltas_specific * config.BBOX_STD_DEV) + # Convert coordiates to image domain + # TODO: better to keep them normalized until later + height, width = config.IMAGE_SHAPE[:2] + refined_rois *= tf.constant([height, width, height, width], dtype=tf.float32) + # Clip boxes to image window + refined_rois = clip_boxes_graph(refined_rois, window) + # Round and cast to int since we're deadling with pixels now + refined_rois = tf.to_int32(tf.rint(refined_rois)) + + # TODO: Filter out boxes with zero area + + # Filter out background boxes + keep = tf.where(class_ids > 0)[:, 0] + # Filter out low confidence boxes + if config.DETECTION_MIN_CONFIDENCE: + conf_keep = tf.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[:, 0] + keep = tf.sets.set_intersection(tf.expand_dims(keep, 0), + tf.expand_dims(conf_keep, 0)) + keep = tf.sparse_tensor_to_dense(keep)[0] + + # Apply per-class NMS + # 1. Prepare variables + pre_nms_class_ids = tf.gather(class_ids, keep) + pre_nms_scores = tf.gather(class_scores, keep) + pre_nms_rois = tf.gather(refined_rois, keep) + unique_pre_nms_class_ids = tf.unique(pre_nms_class_ids)[0] + + def nms_keep_map(class_id): + """Apply Non-Maximum Suppression on ROIs of the given class.""" + # Indices of ROIs of the given class + ixs = tf.where(tf.equal(pre_nms_class_ids, class_id))[:, 0] + # Apply NMS + class_keep, scores = tf.image.non_max_suppression_with_scores( + tf.to_float(tf.gather(pre_nms_rois, ixs)), tf.gather(pre_nms_scores, ixs), + max_output_size=1, + iou_threshold=0.1, score_threshold=0.1, + soft_nms_sigma=0.5, name="rpn_non_max_suppression") + # Map indicies + class_keep = tf.gather(keep, tf.gather(ixs, class_keep)) + # Pad with -1 so returned tensors have the same shape + gap = config.DETECTION_MAX_INSTANCES - tf.shape(class_keep)[0] + class_keep = tf.pad(class_keep, [(0, gap)], + mode='CONSTANT', constant_values=-1) + # Set shape so map_fn() can infer result shape + class_keep.set_shape([config.DETECTION_MAX_INSTANCES]) + return class_keep + + # 2. Map over class IDs + nms_keep = tf.map_fn(nms_keep_map, unique_pre_nms_class_ids, + dtype=tf.int64) + # 3. Merge results into one list, and remove -1 padding + nms_keep = tf.reshape(nms_keep, [-1]) + nms_keep = tf.gather(nms_keep, tf.where(nms_keep > -1)[:, 0]) + # 4. Compute intersection between keep and nms_keep + keep = tf.sets.set_intersection(tf.expand_dims(keep, 0), + tf.expand_dims(nms_keep, 0)) + keep = tf.sparse_tensor_to_dense(keep)[0] + # Keep top detections + roi_count = config.DETECTION_MAX_INSTANCES + class_scores_keep = tf.gather(class_scores, keep) + num_keep = tf.minimum(tf.shape(class_scores_keep)[0], roi_count) + top_ids = tf.nn.top_k(class_scores_keep, k=num_keep, sorted=True)[1] + keep = tf.gather(keep, top_ids) + + # Arrange output as [N, (y1, x1, y2, x2, class_id, score)] + # Coordinates are in image domain. + detections = tf.concat([ + tf.to_float(tf.gather(refined_rois, keep)), + tf.to_float(tf.gather(class_ids, keep))[..., tf.newaxis], + tf.gather(class_scores, keep)[..., tf.newaxis] + ], axis=1) + + # Pad with zeros if detections < DETECTION_MAX_INSTANCES + gap = config.DETECTION_MAX_INSTANCES - tf.shape(detections)[0] + detections = tf.pad(detections, [(0, gap), (0, 0)], "CONSTANT") + return detections + + +class DetectionLayer(KE.Layer): + """Takes classified proposal boxes and their bounding box deltas and + returns the final detection boxes. + + Returns: + [batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] where + coordinates are in image domain + """ + + def __init__(self, config=None, **kwargs): + super(DetectionLayer, self).__init__(**kwargs) + self.config = config + + def call(self, inputs): + rois = inputs[0] + mrcnn_class = inputs[1] + mrcnn_bbox = inputs[2] + image_meta = inputs[3] + + # Run detection refinement graph on each item in the batch + _, _, window, _ = parse_image_meta_graph(image_meta) + detections_batch = utils.batch_slice( + [rois, mrcnn_class, mrcnn_bbox, window], + lambda x, y, w, z: refine_detections_graph(x, y, w, z, self.config), + self.config.IMAGES_PER_GPU) + + # Reshape output + # [batch, num_detections, (y1, x1, y2, x2, class_score)] in pixels + return tf.reshape( + detections_batch, + [self.config.BATCH_SIZE, self.config.DETECTION_MAX_INSTANCES, 6]) + + def compute_output_shape(self, input_shape): + return (None, self.config.DETECTION_MAX_INSTANCES, 6) + + +# Region Proposal Network (RPN) + +def rpn_graph(feature_map, anchors_per_location, anchor_stride): + """Builds the computation graph of Region Proposal Network. + + feature_map: backbone features [batch, height, width, depth] + anchors_per_location: number of anchors per pixel in the feature map + anchor_stride: Controls the density of anchors. Typically 1 (anchors for + every pixel in the feature map), or 2 (every other pixel). + + Returns: + rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax) + rpn_probs: [batch, H, W, 2] Anchor classifier probabilities. + rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be + applied to anchors. + """ + # TODO: check if stride of 2 causes alignment issues if the featuremap + # is not even. + # Shared convolutional base of the RPN + shared = KL.Conv2D(512, (3, 3), padding='same', activation='relu', + strides=anchor_stride, + name='rpn_conv_shared')(feature_map) + + # Anchor Score. [batch, height, width, anchors per location * 2]. + x = KL.Conv2D(2 * anchors_per_location, (1, 1), padding='valid', + activation='linear', name='rpn_class_raw')(shared) + + # Reshape to [batch, anchors, 2] + rpn_class_logits = KL.Lambda( + lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 2]))(x) + + # Softmax on last dimension of BG/FG. + rpn_probs = KL.Activation( + "softmax", name="rpn_class_xxx")(rpn_class_logits) + + # Bounding box refinement. [batch, H, W, anchors per location, depth] + # where depth is [x, y, log(w), log(h)] + x = KL.Conv2D(anchors_per_location * 4, (1, 1), padding="valid", + activation='linear', name='rpn_bbox_pred')(shared) + + # Reshape to [batch, anchors, 4] + rpn_bbox = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 4]))(x) + + return [rpn_class_logits, rpn_probs, rpn_bbox] + + +def build_rpn_model(anchor_stride, anchors_per_location, depth): + """Builds a Keras model of the Region Proposal Network. + It wraps the RPN graph so it can be used multiple times with shared + weights. + + anchors_per_location: number of anchors per pixel in the feature map + anchor_stride: Controls the density of anchors. Typically 1 (anchors for + every pixel in the feature map), or 2 (every other pixel). + depth: Depth of the backbone feature map. + + Returns a Keras Model object. The model outputs, when called, are: + rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax) + rpn_probs: [batch, W, W, 2] Anchor classifier probabilities. + rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be + applied to anchors. + """ + input_feature_map = KL.Input(shape=[None, None, depth], + name="input_rpn_feature_map") + outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride) + return KM.Model([input_feature_map], outputs, name="rpn_model") + + +############################################################ +# Feature Pyramid Network Heads +############################################################ + +def fpn_classifier_graph(rois, feature_maps, + image_shape, pool_size, num_classes): + """Builds the computation graph of the feature pyramid network classifier + and regressor heads. + + rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized + coordinates. + feature_maps: List of feature maps from diffent layers of the pyramid, + [P2, P3, P4, P5]. Each has a different resolution. + image_shape: [height, width, depth] + pool_size: The width of the square feature map generated from ROI Pooling. + num_classes: number of classes, which determines the depth of the results + + Returns: + logits: [N, NUM_CLASSES] classifier logits (before softmax) + probs: [N, NUM_CLASSES] classifier probabilities + bbox_deltas: [N, (dy, dx, log(dh), log(dw))] Deltas to apply to + proposal boxes + """ + # ROI Pooling + # Shape: [batch, num_boxes, pool_height, pool_width, channels] + x = PyramidROIAlign([pool_size, pool_size], image_shape, + name="roi_align_classifier")([rois] + feature_maps) + # Two 1024 FC layers (implemented with Conv2D for consistency) + x = KL.TimeDistributed(KL.Conv2D(1024, (pool_size, pool_size), padding="valid"), + name="mrcnn_class_conv1")(x) + x = KL.TimeDistributed(BatchNorm(axis=3), name='mrcnn_class_bn1')(x) + x = KL.Activation('relu')(x) + x = KL.TimeDistributed(KL.Conv2D(1024, (1, 1)), + name="mrcnn_class_conv2")(x) + x = KL.TimeDistributed(BatchNorm(axis=3), + name='mrcnn_class_bn2')(x) + x = KL.Activation('relu')(x) + + shared = KL.Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2), + name="pool_squeeze")(x) + + # Classifier head + mrcnn_class_logits = KL.TimeDistributed(KL.Dense(num_classes), + name='mrcnn_class_logits')(shared) + mrcnn_probs = KL.TimeDistributed(KL.Activation("softmax"), + name="mrcnn_class")(mrcnn_class_logits) + + # BBox head + # [batch, boxes, num_classes * (dy, dx, log(dh), log(dw))] + x = KL.TimeDistributed(KL.Dense(num_classes * 4, activation='linear'), + name='mrcnn_bbox_fc')(shared) + # Reshape to [batch, boxes, num_classes, (dy, dx, log(dh), log(dw))] + s = K.int_shape(x) + mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x) + + return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox + + +def build_fpn_mask_graph(rois, feature_maps, + image_shape, pool_size, num_classes): + """Builds the computation graph of the mask head of Feature Pyramid Network. + + rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized + coordinates. + feature_maps: List of feature maps from diffent layers of the pyramid, + [P2, P3, P4, P5]. Each has a different resolution. + image_shape: [height, width, depth] + pool_size: The width of the square feature map generated from ROI Pooling. + num_classes: number of classes, which determines the depth of the results + + Returns: Masks [batch, roi_count, height, width, num_classes] + """ + # ROI Pooling + # Shape: [batch, boxes, pool_height, pool_width, channels] + x = PyramidROIAlign([pool_size, pool_size], image_shape, + name="roi_align_mask")([rois] + feature_maps) + + # Conv layers + x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), + name="mrcnn_mask_conv1")(x) + x = KL.TimeDistributed(BatchNorm(axis=3), + name='mrcnn_mask_bn1')(x) + x = KL.Activation('relu')(x) + + x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), + name="mrcnn_mask_conv2")(x) + x = KL.TimeDistributed(BatchNorm(axis=3), + name='mrcnn_mask_bn2')(x) + x = KL.Activation('relu')(x) + + x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), + name="mrcnn_mask_conv3")(x) + x = KL.TimeDistributed(BatchNorm(axis=3), + name='mrcnn_mask_bn3')(x) + x = KL.Activation('relu')(x) + + x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), + name="mrcnn_mask_conv4")(x) + x = KL.TimeDistributed(BatchNorm(axis=3), + name='mrcnn_mask_bn4')(x) + x = KL.Activation('relu')(x) + + x = KL.TimeDistributed(KL.Conv2DTranspose(256, (2, 2), strides=2, activation="relu"), + name="mrcnn_mask_deconv")(x) + x = KL.TimeDistributed(KL.Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"), + name="mrcnn_mask")(x) + return x + + +############################################################ +# Loss Functions +############################################################ + +def smooth_l1_loss(y_true, y_pred): + """Implements Smooth-L1 loss. + y_true and y_pred are typicallly: [N, 4], but could be any shape. + """ + diff = K.abs(y_true - y_pred) + less_than_one = K.cast(K.less(diff, 1.0), "float32") + loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5) + return loss + + +def rpn_class_loss_graph(rpn_match, rpn_class_logits): + """RPN anchor classifier loss. + + rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, + -1=negative, 0=neutral anchor. + rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG. + """ + # Squeeze last dim to simplify + rpn_match = tf.squeeze(rpn_match, -1) + # Get anchor classes. Convert the -1/+1 match to 0/1 values. + anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32) + # Positive and Negative anchors contribute to the loss, + # but neutral anchors (match value = 0) don't. + indices = tf.where(K.not_equal(rpn_match, 0)) + # Pick rows that contribute to the loss and filter out the rest. + rpn_class_logits = tf.gather_nd(rpn_class_logits, indices) + anchor_class = tf.gather_nd(anchor_class, indices) + # Crossentropy loss + loss = K.sparse_categorical_crossentropy(target=anchor_class, + output=rpn_class_logits, + from_logits=True) + loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) + return loss + + +def rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox): + """Return the RPN bounding box loss graph. + + config: the model config object. + target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))]. + Uses 0 padding to fill in unsed bbox deltas. + rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, + -1=negative, 0=neutral anchor. + rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))] + """ + # Positive anchors contribute to the loss, but negative and + # neutral anchors (match value of 0 or -1) don't. + rpn_match = K.squeeze(rpn_match, -1) + indices = tf.where(K.equal(rpn_match, 1)) + + # Pick bbox deltas that contribute to the loss + rpn_bbox = tf.gather_nd(rpn_bbox, indices) + + # Trim target bounding box deltas to the same length as rpn_bbox. + batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1) + target_bbox = batch_pack_graph(target_bbox, batch_counts, + config.IMAGES_PER_GPU) + + # TODO: use smooth_l1_loss() rather than reimplementing here + # to reduce code duplication + diff = K.abs(target_bbox - rpn_bbox) + less_than_one = K.cast(K.less(diff, 1.0), "float32") + loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5) + + loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) + return loss + + +def mrcnn_class_loss_graph(target_class_ids, pred_class_logits, + active_class_ids): + """Loss for the classifier head of Mask RCNN. + + target_class_ids: [batch, num_rois]. Integer class IDs. Uses zero + padding to fill in the array. + pred_class_logits: [batch, num_rois, num_classes] + active_class_ids: [batch, num_classes]. Has a value of 1 for + classes that are in the dataset of the image, and 0 + for classes that are not in the dataset. + """ + target_class_ids = tf.cast(target_class_ids, 'int64') + + # Find predictions of classes that are not in the dataset. + pred_class_ids = tf.argmax(pred_class_logits, axis=2) + # TODO: Update this line to work with batch > 1. Right now it assumes all + # images in a batch have the same active_class_ids + pred_active = tf.gather(active_class_ids[0], pred_class_ids) + + # Loss + loss = tf.nn.sparse_softmax_cross_entropy_with_logits( + labels=target_class_ids, logits=pred_class_logits) + + # Erase losses of predictions of classes that are not in the active + # classes of the image. + loss = loss * pred_active + + # Computer loss mean. Use only predictions that contribute + # to the loss to get a correct mean. + loss = tf.reduce_sum(loss) / tf.reduce_sum(pred_active) + return loss + + +def mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox): + """Loss for Mask R-CNN bounding box refinement. + + target_bbox: [batch, num_rois, (dy, dx, log(dh), log(dw))] + target_class_ids: [batch, num_rois]. Integer class IDs. + pred_bbox: [batch, num_rois, num_classes, (dy, dx, log(dh), log(dw))] + """ + # Reshape to merge batch and roi dimensions for simplicity. + target_class_ids = K.reshape(target_class_ids, (-1,)) + target_bbox = K.reshape(target_bbox, (-1, 4)) + pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4)) + + # Only positive ROIs contribute to the loss. And only + # the right class_id of each ROI. Get their indicies. + positive_roi_ix = tf.where(target_class_ids > 0)[:, 0] + positive_roi_class_ids = tf.cast( + tf.gather(target_class_ids, positive_roi_ix), tf.int64) + indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1) + + # Gather the deltas (predicted and true) that contribute to loss + target_bbox = tf.gather(target_bbox, positive_roi_ix) + pred_bbox = tf.gather_nd(pred_bbox, indices) + + # Smooth-L1 Loss + loss = K.switch(tf.size(target_bbox) > 0, + smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox), + tf.constant(0.0)) + loss = K.mean(loss) + loss = K.reshape(loss, [1, 1]) + return loss + + +def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks): + """Mask binary cross-entropy loss for the masks head. + + target_masks: [batch, num_rois, height, width]. + A float32 tensor of values 0 or 1. Uses zero padding to fill array. + target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded. + pred_masks: [batch, proposals, height, width, num_classes] float32 tensor + with values from 0 to 1. + """ + # Reshape for simplicity. Merge first two dimensions into one. + target_class_ids = K.reshape(target_class_ids, (-1,)) + mask_shape = tf.shape(target_masks) + target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3])) + pred_shape = tf.shape(pred_masks) + pred_masks = K.reshape(pred_masks, + (-1, pred_shape[2], pred_shape[3], pred_shape[4])) + # Permute predicted masks to [N, num_classes, height, width] + pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2]) + + # Only positive ROIs contribute to the loss. And only + # the class specific mask of each ROI. + positive_ix = tf.where(target_class_ids > 0)[:, 0] + positive_class_ids = tf.cast( + tf.gather(target_class_ids, positive_ix), tf.int64) + indices = tf.stack([positive_ix, positive_class_ids], axis=1) + + # Gather the masks (predicted and true) that contribute to loss + y_true = tf.gather(target_masks, positive_ix) + y_pred = tf.gather_nd(pred_masks, indices) + + # Compute binary cross entropy. If no positive ROIs, then return 0. + # shape: [batch, roi, num_classes] + loss = K.switch(tf.size(y_true) > 0, + K.binary_crossentropy(target=y_true, output=y_pred), + tf.constant(0.0)) + loss = K.mean(loss) + loss = K.reshape(loss, [1, 1]) + return loss + + +############################################################ +# Data Generator +############################################################ + +def load_image_gt(dataset, config, image_id, augment=False, + use_mini_mask=False): + """Load and return ground truth data for an image (image, mask, bounding boxes). + + augment: If true, apply random image augmentation. Currently, only + horizontal flipping is offered. + use_mini_mask: If False, returns full-size masks that are the same height + and width as the original image. These can be big, for example + 1024x1024x100 (for 100 instances). Mini masks are smaller, typically, + 224x224 and are generated by extracting the bounding box of the + object and resizing it to MINI_MASK_SHAPE. + + Returns: + image: [height, width, 3] + shape: the original shape of the image before resizing and cropping. + class_ids: [instance_count] Integer class IDs + bbox: [instance_count, (y1, x1, y2, x2)] + mask: [height, width, instance_count]. The height and width are those + of the image unless use_mini_mask is True, in which case they are + defined in MINI_MASK_SHAPE. + """ + # Load image and mask + image = dataset.load_image(image_id) + mask, class_ids = dataset.load_mask(image_id) + shape = image.shape + print('original image shape: ',shape) + + image, window, scale, padding = utils.resize_image( + image, + min_dim=config.IMAGE_MIN_DIM, + max_dim=config.IMAGE_MAX_DIM, + padding=config.IMAGE_PADDING) + mask = utils.resize_mask(mask, scale, padding) + + +####### for generating full resolution images for run-time mask prediction (comment out utils.resize operation above): +# h, w = image.shape[:2] +# window = (0, 0, h, w) + + + # Random horizontal flips. + if augment: + if random.randint(0, 1): + image = np.fliplr(image) + mask = np.fliplr(mask) + + # Bounding boxes. Note that some boxes might be all zeros + # if the corresponding mask got cropped out. + # bbox: [num_instances, (y1, x1, y2, x2)] + bbox = utils.extract_bboxes(mask) + + # Active classes + # Different datasets have different classes, so track the + # classes supported in the dataset of this image. + active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32) + source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]] + active_class_ids[source_class_ids] = 1 + + # Resize masks to smaller size to reduce memory usage + if use_mini_mask: + mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE) + + # Image meta data + image_meta = compose_image_meta(image_id, shape, window, active_class_ids) + + return image, image_meta, class_ids, bbox, mask + + +def build_detection_targets(rpn_rois, gt_class_ids, gt_boxes, gt_masks, config): + """Generate targets for training Stage 2 classifier and mask heads. + This is not used in normal training. It's useful for debugging or to train + the Mask RCNN heads without using the RPN head. + + Inputs: + rpn_rois: [N, (y1, x1, y2, x2)] proposal boxes. + gt_class_ids: [instance count] Integer class IDs + gt_boxes: [instance count, (y1, x1, y2, x2)] + gt_masks: [height, width, instance count] Grund truth masks. Can be full + size or mini-masks. + + Returns: + rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] + class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. + bboxes: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (y, x, log(h), log(w))]. Class-specific + bbox refinements. + masks: [TRAIN_ROIS_PER_IMAGE, height, width, NUM_CLASSES). Class specific masks cropped + to bbox boundaries and resized to neural network output size. + """ + assert rpn_rois.shape[0] > 0 + assert gt_class_ids.dtype == np.int32, "Expected int but got {}".format( + gt_class_ids.dtype) + assert gt_boxes.dtype == np.int32, "Expected int but got {}".format( + gt_boxes.dtype) + assert gt_masks.dtype == np.bool_, "Expected bool but got {}".format( + gt_masks.dtype) + + # It's common to add GT Boxes to ROIs but we don't do that here because + # according to XinLei Chen's paper, it doesn't help. + + # Trim empty padding in gt_boxes and gt_masks parts + instance_ids = np.where(gt_class_ids > 0)[0] + assert instance_ids.shape[0] > 0, "Image must contain instances." + gt_class_ids = gt_class_ids[instance_ids] + gt_boxes = gt_boxes[instance_ids] + gt_masks = gt_masks[:, :, instance_ids] + + # Compute areas of ROIs and ground truth boxes. + rpn_roi_area = (rpn_rois[:, 2] - rpn_rois[:, 0]) * \ + (rpn_rois[:, 3] - rpn_rois[:, 1]) + gt_box_area = (gt_boxes[:, 2] - gt_boxes[:, 0]) * \ + (gt_boxes[:, 3] - gt_boxes[:, 1]) + + # Compute overlaps [rpn_rois, gt_boxes] + overlaps = np.zeros((rpn_rois.shape[0], gt_boxes.shape[0])) + for i in range(overlaps.shape[1]): + gt = gt_boxes[i] + overlaps[:, i] = utils.compute_iou( + gt, rpn_rois, gt_box_area[i], rpn_roi_area) + + # Assign ROIs to GT boxes + rpn_roi_iou_argmax = np.argmax(overlaps, axis=1) + rpn_roi_iou_max = overlaps[np.arange( + overlaps.shape[0]), rpn_roi_iou_argmax] + # GT box assigned to each ROI + rpn_roi_gt_boxes = gt_boxes[rpn_roi_iou_argmax] + rpn_roi_gt_class_ids = gt_class_ids[rpn_roi_iou_argmax] + + # Positive ROIs are those with >= 0.5 IoU with a GT box. + fg_ids = np.where(rpn_roi_iou_max > 0.5)[0] + + # Negative ROIs are those with max IoU 0.1-0.5 (hard example mining) + # TODO: To hard example mine or not to hard example mine, that's the question +# bg_ids = np.where((rpn_roi_iou_max >= 0.1) & (rpn_roi_iou_max < 0.5))[0] + bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] + + # Subsample ROIs. Aim for 33% foreground. + # FG + fg_roi_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO) + if fg_ids.shape[0] > fg_roi_count: + keep_fg_ids = np.random.choice(fg_ids, fg_roi_count, replace=False) + else: + keep_fg_ids = fg_ids + # BG + remaining = config.TRAIN_ROIS_PER_IMAGE - keep_fg_ids.shape[0] + if bg_ids.shape[0] > remaining: + keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) + else: + keep_bg_ids = bg_ids + # Combine indicies of ROIs to keep + keep = np.concatenate([keep_fg_ids, keep_bg_ids]) + # Need more? + remaining = config.TRAIN_ROIS_PER_IMAGE - keep.shape[0] + if remaining > 0: + # Looks like we don't have enough samples to maintain the desired + # balance. Reduce requirements and fill in the rest. This is + # likely different from the Mask RCNN paper. + + # There is a small chance we have neither fg nor bg samples. + if keep.shape[0] == 0: + # Pick bg regions with easier IoU threshold + bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] + assert bg_ids.shape[0] >= remaining + keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) + assert keep_bg_ids.shape[0] == remaining + keep = np.concatenate([keep, keep_bg_ids]) + else: + # Fill the rest with repeated bg rois. + keep_extra_ids = np.random.choice( + keep_bg_ids, remaining, replace=True) + keep = np.concatenate([keep, keep_extra_ids]) + assert keep.shape[0] == config.TRAIN_ROIS_PER_IMAGE, \ + "keep doesn't match ROI batch size {}, {}".format( + keep.shape[0], config.TRAIN_ROIS_PER_IMAGE) + + # Reset the gt boxes assigned to BG ROIs. + rpn_roi_gt_boxes[keep_bg_ids, :] = 0 + rpn_roi_gt_class_ids[keep_bg_ids] = 0 + + # For each kept ROI, assign a class_id, and for FG ROIs also add bbox refinement. + rois = rpn_rois[keep] + roi_gt_boxes = rpn_roi_gt_boxes[keep] + roi_gt_class_ids = rpn_roi_gt_class_ids[keep] + roi_gt_assignment = rpn_roi_iou_argmax[keep] + + # Class-aware bbox deltas. [y, x, log(h), log(w)] + bboxes = np.zeros((config.TRAIN_ROIS_PER_IMAGE, + config.NUM_CLASSES, 4), dtype=np.float32) + pos_ids = np.where(roi_gt_class_ids > 0)[0] + bboxes[pos_ids, roi_gt_class_ids[pos_ids]] = utils.box_refinement( + rois[pos_ids], roi_gt_boxes[pos_ids, :4]) + # Normalize bbox refinements + bboxes /= config.BBOX_STD_DEV + + # Generate class-specific target masks. + masks = np.zeros((config.TRAIN_ROIS_PER_IMAGE, config.MASK_SHAPE[0], config.MASK_SHAPE[1], config.NUM_CLASSES), + dtype=np.float32) + for i in pos_ids: + class_id = roi_gt_class_ids[i] + assert class_id > 0, "class id must be greater than 0" + gt_id = roi_gt_assignment[i] + class_mask = gt_masks[:, :, gt_id] + + if config.USE_MINI_MASK: + # Create a mask placeholder, the size of the image + placeholder = np.zeros(config.IMAGE_SHAPE[:2], dtype=bool) + # GT box + gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[gt_id] + gt_w = gt_x2 - gt_x1 + gt_h = gt_y2 - gt_y1 + # Resize mini mask to size of GT box + placeholder[gt_y1:gt_y2, gt_x1:gt_x2] = \ + np.round(scipy.misc.imresize(class_mask.astype(float), (gt_h, gt_w), + interp='nearest') / 255.0).astype(bool) + # Place the mini batch in the placeholder + class_mask = placeholder + + # Pick part of the mask and resize it + y1, x1, y2, x2 = rois[i].astype(np.int32) + m = class_mask[y1:y2, x1:x2] + mask = scipy.misc.imresize( + m.astype(float), config.MASK_SHAPE, interp='nearest') / 255.0 + masks[i, :, :, class_id] = mask + + return rois, roi_gt_class_ids, bboxes, masks + + +def build_rpn_targets(image_shape, anchors, gt_class_ids, gt_boxes, config): + """Given the anchors and GT boxes, compute overlaps and identify positive + anchors and deltas to refine them to match their corresponding GT boxes. + + anchors: [num_anchors, (y1, x1, y2, x2)] + gt_class_ids: [num_gt_boxes] Integer class IDs. + gt_boxes: [num_gt_boxes, (y1, x1, y2, x2)] + + Returns: + rpn_match: [N] (int32) matches between anchors and GT boxes. + 1 = positive anchor, -1 = negative anchor, 0 = neutral + rpn_bbox: [N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. + """ + # RPN Match: 1 = positive anchor, -1 = negative anchor, 0 = neutral + rpn_match = np.zeros([anchors.shape[0]], dtype=np.int32) + # RPN bounding boxes: [max anchors per image, (dy, dx, log(dh), log(dw))] + rpn_bbox = np.zeros((config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4)) + + # Handle COCO crowds + # A crowd box in COCO is a bounding box around several instances. Exclude + # them from training. A crowd box is given a negative class ID. + crowd_ix = np.where(gt_class_ids < 0)[0] + if crowd_ix.shape[0] > 0: + # Filter out crowds from ground truth class IDs and boxes + non_crowd_ix = np.where(gt_class_ids > 0)[0] + crowd_boxes = gt_boxes[crowd_ix] + gt_class_ids = gt_class_ids[non_crowd_ix] + gt_boxes = gt_boxes[non_crowd_ix] + # Compute overlaps with crowd boxes [anchors, crowds] + crowd_overlaps = utils.compute_overlaps(anchors, crowd_boxes) + crowd_iou_max = np.amax(crowd_overlaps, axis=1) + no_crowd_bool = (crowd_iou_max < 0.001) + else: + # All anchors don't intersect a crowd + no_crowd_bool = np.ones([anchors.shape[0]], dtype=bool) + + # Compute overlaps [num_anchors, num_gt_boxes] + overlaps = utils.compute_overlaps(anchors, gt_boxes) + + # Match anchors to GT Boxes + # If an anchor overlaps a GT box with IoU >= 0.7 then it's positive. + # If an anchor overlaps a GT box with IoU < 0.3 then it's negative. + # Neutral anchors are those that don't match the conditions above, + # and they don't influence the loss function. + # However, don't keep any GT box unmatched (rare, but happens). Instead, + # match it to the closest anchor (even if its max IoU is < 0.3). + # + # 1. Set negative anchors first. They get overwritten below if a GT box is + # matched to them. Skip boxes in crowd areas. + anchor_iou_argmax = np.argmax(overlaps, axis=1) + anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax] + rpn_match[(anchor_iou_max < 0.3) & (no_crowd_bool)] = -1 + # 2. Set an anchor for each GT box (regardless of IoU value). + # TODO: If multiple anchors have the same IoU match all of them + gt_iou_argmax = np.argmax(overlaps, axis=0) + rpn_match[gt_iou_argmax] = 1 + # 3. Set anchors with high overlap as positive. + rpn_match[anchor_iou_max >= 0.7] = 1 + + # Subsample to balance positive and negative anchors + # Don't let positives be more than half the anchors + ids = np.where(rpn_match == 1)[0] + extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2) + if extra > 0: + # Reset the extra ones to neutral + ids = np.random.choice(ids, extra, replace=False) + rpn_match[ids] = 0 + # Same for negative proposals + ids = np.where(rpn_match == -1)[0] + extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE - + np.sum(rpn_match == 1)) + if extra > 0: + # Rest the extra ones to neutral + ids = np.random.choice(ids, extra, replace=False) + rpn_match[ids] = 0 + + # For positive anchors, compute shift and scale needed to transform them + # to match the corresponding GT boxes. + ids = np.where(rpn_match == 1)[0] + ix = 0 # index into rpn_bbox + # TODO: use box_refinement() rather than duplicating the code here + for i, a in zip(ids, anchors[ids]): + # Closest gt box (it might have IoU < 0.7) + gt = gt_boxes[anchor_iou_argmax[i]] + + # Convert coordinates to center plus width/height. + # GT Box + gt_h = gt[2] - gt[0] + gt_w = gt[3] - gt[1] + gt_center_y = gt[0] + 0.5 * gt_h + gt_center_x = gt[1] + 0.5 * gt_w + # Anchor + a_h = a[2] - a[0] + a_w = a[3] - a[1] + a_center_y = a[0] + 0.5 * a_h + a_center_x = a[1] + 0.5 * a_w + + # Compute the bbox refinement that the RPN should predict. + rpn_bbox[ix] = [ + (gt_center_y - a_center_y) / a_h, + (gt_center_x - a_center_x) / a_w, + np.log(gt_h / a_h), + np.log(gt_w / a_w), + ] + # Normalize + rpn_bbox[ix] /= config.RPN_BBOX_STD_DEV + ix += 1 + + return rpn_match, rpn_bbox + + +def generate_random_rois(image_shape, count, gt_class_ids, gt_boxes): + """Generates ROI proposals similar to what a region proposal network + would generate. + + image_shape: [Height, Width, Depth] + count: Number of ROIs to generate + gt_class_ids: [N] Integer ground truth class IDs + gt_boxes: [N, (y1, x1, y2, x2)] Ground truth boxes in pixels. + + Returns: [count, (y1, x1, y2, x2)] ROI boxes in pixels. + """ + # placeholder + rois = np.zeros((count, 4), dtype=np.int32) + + # Generate random ROIs around GT boxes (90% of count) + rois_per_box = int(0.9 * count / gt_boxes.shape[0]) + for i in range(gt_boxes.shape[0]): + gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[i] + h = gt_y2 - gt_y1 + w = gt_x2 - gt_x1 + # random boundaries + r_y1 = max(gt_y1 - h, 0) + r_y2 = min(gt_y2 + h, image_shape[0]) + r_x1 = max(gt_x1 - w, 0) + r_x2 = min(gt_x2 + w, image_shape[1]) + + # To avoid generating boxes with zero area, we generate double what + # we need and filter out the extra. If we get fewer valid boxes + # than we need, we loop and try again. + while True: + y1y2 = np.random.randint(r_y1, r_y2, (rois_per_box * 2, 2)) + x1x2 = np.random.randint(r_x1, r_x2, (rois_per_box * 2, 2)) + # Filter out zero area boxes + threshold = 1 + y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= + threshold][:rois_per_box] + x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= + threshold][:rois_per_box] + if y1y2.shape[0] == rois_per_box and x1x2.shape[0] == rois_per_box: + break + + # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape + # into x1, y1, x2, y2 order + x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) + y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) + box_rois = np.hstack([y1, x1, y2, x2]) + rois[rois_per_box * i:rois_per_box * (i + 1)] = box_rois + + # Generate random ROIs anywhere in the image (10% of count) + remaining_count = count - (rois_per_box * gt_boxes.shape[0]) + # To avoid generating boxes with zero area, we generate double what + # we need and filter out the extra. If we get fewer valid boxes + # than we need, we loop and try again. + while True: + y1y2 = np.random.randint(0, image_shape[0], (remaining_count * 2, 2)) + x1x2 = np.random.randint(0, image_shape[1], (remaining_count * 2, 2)) + # Filter out zero area boxes + threshold = 1 + y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= + threshold][:remaining_count] + x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= + threshold][:remaining_count] + if y1y2.shape[0] == remaining_count and x1x2.shape[0] == remaining_count: + break + + # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape + # into x1, y1, x2, y2 order + x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) + y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) + global_rois = np.hstack([y1, x1, y2, x2]) + rois[-remaining_count:] = global_rois + return rois + + +def data_generator(dataset, config, shuffle=True, augment=True, random_rois=0, + batch_size=1, detection_targets=False): + """A generator that returns images and corresponding target class ids, + bounding box deltas, and masks. + + dataset: The Dataset object to pick data from + config: The model config object + shuffle: If True, shuffles the samples before every epoch + augment: If True, applies image augmentation to images (currently only + horizontal flips are supported) + random_rois: If > 0 then generate proposals to be used to train the + network classifier and mask heads. Useful if training + the Mask RCNN part without the RPN. + batch_size: How many images to return in each call + detection_targets: If True, generate detection targets (class IDs, bbox + deltas, and masks). Typically for debugging or visualizations because + in trainig detection targets are generated by DetectionTargetLayer. + + Returns a Python generator. Upon calling next() on it, the + generator returns two lists, inputs and outputs. The containtes + of the lists differs depending on the received arguments: + inputs list: + - images: [batch, H, W, C] + - image_meta: [batch, size of image meta] + - rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral) + - rpn_bbox: [batch, N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. + - gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs + - gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] + - gt_masks: [batch, height, width, MAX_GT_INSTANCES]. The height and width + are those of the image unless use_mini_mask is True, in which + case they are defined in MINI_MASK_SHAPE. + + outputs list: Usually empty in regular training. But if detection_targets + is True then the outputs list contains target class_ids, bbox deltas, + and masks. + """ + b = 0 # batch item index + image_index = -1 + image_ids = np.copy(dataset.image_ids) + error_count = 0 + + # Anchors + # [anchor_count, (y1, x1, y2, x2)] + anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, + config.RPN_ANCHOR_RATIOS, + config.BACKBONE_SHAPES, + config.BACKBONE_STRIDES, + config.RPN_ANCHOR_STRIDE) + + # Keras requires a generator to run indefinately. + while True: + try: + # Increment index to pick next image. Shuffle if at the start of an epoch. + image_index = (image_index + 1) % len(image_ids) + if shuffle and image_index == 0: + np.random.shuffle(image_ids) + + # Get GT bounding boxes and masks for image. + image_id = image_ids[image_index] + image, image_meta, gt_class_ids, gt_boxes, gt_masks = \ + load_image_gt(dataset, config, image_id, augment=augment, + use_mini_mask=config.USE_MINI_MASK) + + # Skip images that have no instances. This can happen in cases + # where we train on a subset of classes and the image doesn't + # have any of the classes we care about. + if not np.any(gt_class_ids > 0): + continue + + # RPN Targets + rpn_match, rpn_bbox = build_rpn_targets(image.shape, anchors, + gt_class_ids, gt_boxes, config) + + # Mask R-CNN Targets + if random_rois: + rpn_rois = generate_random_rois( + image.shape, random_rois, gt_class_ids, gt_boxes) + if detection_targets: + rois, mrcnn_class_ids, mrcnn_bbox, mrcnn_mask =\ + build_detection_targets( + rpn_rois, gt_class_ids, gt_boxes, gt_masks, config) + + # Init batch arrays + if b == 0: + batch_image_meta = np.zeros( + (batch_size,) + image_meta.shape, dtype=image_meta.dtype) + batch_rpn_match = np.zeros( + [batch_size, anchors.shape[0], 1], dtype=rpn_match.dtype) + batch_rpn_bbox = np.zeros( + [batch_size, config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4], dtype=rpn_bbox.dtype) + batch_images = np.zeros( + (batch_size,) + image.shape, dtype=np.float32) + batch_gt_class_ids = np.zeros( + (batch_size, config.MAX_GT_INSTANCES), dtype=np.int32) + batch_gt_boxes = np.zeros( + (batch_size, config.MAX_GT_INSTANCES, 4), dtype=np.int32) + if config.USE_MINI_MASK: + batch_gt_masks = np.zeros((batch_size, config.MINI_MASK_SHAPE[0], config.MINI_MASK_SHAPE[1], + config.MAX_GT_INSTANCES)) + else: + batch_gt_masks = np.zeros( + (batch_size, image.shape[0], image.shape[1], config.MAX_GT_INSTANCES)) + if random_rois: + batch_rpn_rois = np.zeros( + (batch_size, rpn_rois.shape[0], 4), dtype=rpn_rois.dtype) + if detection_targets: + batch_rois = np.zeros( + (batch_size,) + rois.shape, dtype=rois.dtype) + batch_mrcnn_class_ids = np.zeros( + (batch_size,) + mrcnn_class_ids.shape, dtype=mrcnn_class_ids.dtype) + batch_mrcnn_bbox = np.zeros( + (batch_size,) + mrcnn_bbox.shape, dtype=mrcnn_bbox.dtype) + batch_mrcnn_mask = np.zeros( + (batch_size,) + mrcnn_mask.shape, dtype=mrcnn_mask.dtype) + + # If more instances than fits in the array, sub-sample from them. + if gt_boxes.shape[0] > config.MAX_GT_INSTANCES: + ids = np.random.choice( + np.arange(gt_boxes.shape[0]), config.MAX_GT_INSTANCES, replace=False) + gt_class_ids = gt_class_ids[ids] + gt_boxes = gt_boxes[ids] + gt_masks = gt_masks[:, :, ids] + + # Add to batch + batch_image_meta[b] = image_meta + batch_rpn_match[b] = rpn_match[:, np.newaxis] + batch_rpn_bbox[b] = rpn_bbox + batch_images[b] = mold_image(image.astype(np.float32), config) + batch_gt_class_ids[b, :gt_class_ids.shape[0]] = gt_class_ids + batch_gt_boxes[b, :gt_boxes.shape[0]] = gt_boxes + batch_gt_masks[b, :, :, :gt_masks.shape[-1]] = gt_masks + if random_rois: + batch_rpn_rois[b] = rpn_rois + if detection_targets: + batch_rois[b] = rois + batch_mrcnn_class_ids[b] = mrcnn_class_ids + batch_mrcnn_bbox[b] = mrcnn_bbox + batch_mrcnn_mask[b] = mrcnn_mask + b += 1 + + # Batch full? + if b >= batch_size: + inputs = [batch_images, batch_image_meta, batch_rpn_match, batch_rpn_bbox, + batch_gt_class_ids, batch_gt_boxes, batch_gt_masks] + outputs = [] + + if random_rois: + inputs.extend([batch_rpn_rois]) + if detection_targets: + inputs.extend([batch_rois]) + # Keras requires that output and targets have the same number of dimensions + batch_mrcnn_class_ids = np.expand_dims( + batch_mrcnn_class_ids, -1) + outputs.extend( + [batch_mrcnn_class_ids, batch_mrcnn_bbox, batch_mrcnn_mask]) + + yield inputs, outputs + + # start a new batch + b = 0 + except (GeneratorExit, KeyboardInterrupt): + raise + except: + # Log it and skip the image + logging.exception("Error processing image {}".format( + dataset.image_info[image_id])) + error_count += 1 + if error_count > 5: + raise + + +############################################################ +# MaskRCNN Class +############################################################ + +class MaskRCNN(): + """Encapsulates the Mask RCNN model functionality. + + The actual Keras model is in the keras_model property. + """ + + def __init__(self, mode, config, model_dir): + """ + mode: Either "training" or "inference" + config: A Sub-class of the Config class + model_dir: Directory to save training logs and trained weights + """ + assert mode in ['training', 'inference'] + self.mode = mode + self.config = config + self.model_dir = model_dir + self.set_log_dir() + self.keras_model = self.build(mode=mode, config=config) + + def build(self, mode, config): + """Build Mask R-CNN architecture. + input_shape: The shape of the input image. + mode: Either "training" or "inference". The inputs and + outputs of the model differ accordingly. + """ + assert mode in ['training', 'inference'] + + # Image size must be dividable by 2 multiple times + h, w = config.IMAGE_SHAPE[:2] + if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6): + raise Exception("Image size must be dividable by 2 at least 6 times " + "to avoid fractions when downscaling and upscaling." + "For example, use 256, 320, 384, 448, 512, ... etc. ") + + # Inputs + input_image = KL.Input( + shape=config.IMAGE_SHAPE.tolist(), name="input_image") + input_image_meta = KL.Input(shape=[None], name="input_image_meta") + if mode == "training": + # RPN GT + input_rpn_match = KL.Input( + shape=[None, 1], name="input_rpn_match", dtype=tf.int32) + input_rpn_bbox = KL.Input( + shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32) + + # Detection GT (class IDs, bounding boxes, and masks) + # 1. GT Class IDs (zero padded) + input_gt_class_ids = KL.Input( + shape=[None], name="input_gt_class_ids", dtype=tf.int32) + # 2. GT Boxes in pixels (zero padded) + # [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in image coordinates + input_gt_boxes = KL.Input( + shape=[None, 4], name="input_gt_boxes", dtype=tf.float32) + # Normalize coordinates + h, w = K.shape(input_image)[1], K.shape(input_image)[2] + image_scale = K.cast(K.stack([h, w, h, w], axis=0), tf.float32) + gt_boxes = KL.Lambda(lambda x: x / image_scale)(input_gt_boxes) + # 3. GT Masks (zero padded) + # [batch, height, width, MAX_GT_INSTANCES] + if config.USE_MINI_MASK: + input_gt_masks = KL.Input( + shape=[config.MINI_MASK_SHAPE[0], + config.MINI_MASK_SHAPE[1], None], + name="input_gt_masks", dtype=bool) + else: + input_gt_masks = KL.Input( + shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None], + name="input_gt_masks", dtype=bool) + + # Build the shared convolutional layers. + # Bottom-up Layers + # Returns a list of the last layers of each stage, 5 in total. + # Don't create the thead (stage 5), so we pick the 4th item in the list. + _, C2, C3, C4, C5 = resnet_graph(input_image, "resnet101", stage5=True) + # Top-down Layers + # TODO: add assert to varify feature map sizes match what's in config + P5 = KL.Conv2D(256, (1, 1), name='fpn_c5p5')(C5) + P4 = KL.Add(name="fpn_p4add")([ + KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5), + KL.Conv2D(256, (1, 1), name='fpn_c4p4')(C4)]) + P3 = KL.Add(name="fpn_p3add")([ + KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4), + KL.Conv2D(256, (1, 1), name='fpn_c3p3')(C3)]) + P2 = KL.Add(name="fpn_p2add")([ + KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3), + KL.Conv2D(256, (1, 1), name='fpn_c2p2')(C2)]) + # Attach 3x3 conv to all P layers to get the final feature maps. + P2 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p2")(P2) + P3 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p3")(P3) + P4 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p4")(P4) + P5 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p5")(P5) + # P6 is used for the 5th anchor scale in RPN. Generated by + # subsampling from P5 with stride of 2. + P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5) + + # Note that P6 is used in RPN, but not in the classifier heads. + rpn_feature_maps = [P2, P3, P4, P5, P6] + mrcnn_feature_maps = [P2, P3, P4, P5] + + # Generate Anchors + self.anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, + config.RPN_ANCHOR_RATIOS, + config.BACKBONE_SHAPES, + config.BACKBONE_STRIDES, + config.RPN_ANCHOR_STRIDE) + + # RPN Model + rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE, + len(config.RPN_ANCHOR_RATIOS), 256) + # Loop through pyramid layers + layer_outputs = [] # list of lists + for p in rpn_feature_maps: + layer_outputs.append(rpn([p])) + # Concatenate layer outputs + # Convert from list of lists of level outputs to list of lists + # of outputs across levels. + # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]] + output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"] + outputs = list(zip(*layer_outputs)) + outputs = [KL.Concatenate(axis=1, name=n)(list(o)) + for o, n in zip(outputs, output_names)] + + rpn_class_logits, rpn_class, rpn_bbox = outputs + + # Generate proposals + # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates + # and zero padded. + proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"\ + else config.POST_NMS_ROIS_INFERENCE + rpn_rois = ProposalLayer(proposal_count=proposal_count, + nms_threshold=config.RPN_NMS_THRESHOLD, + name="ROI", + anchors=self.anchors, + config=config)([rpn_class, rpn_bbox]) + + if mode == "training": + # Class ID mask to mark class IDs supported by the dataset the image + # came from. + _, _, _, active_class_ids = KL.Lambda(lambda x: parse_image_meta_graph(x), + mask=[None, None, None, None])(input_image_meta) + + if not config.USE_RPN_ROIS: + # Ignore predicted ROIs and use ROIs provided as an input. + input_rois = KL.Input(shape=[config.POST_NMS_ROIS_TRAINING, 4], + name="input_roi", dtype=np.int32) + # Normalize coordinates to 0-1 range. + target_rois = KL.Lambda(lambda x: K.cast( + x, tf.float32) / image_scale[:4])(input_rois) + else: + target_rois = rpn_rois + + # Generate detection targets + # Subsamples proposals and generates target outputs for training + # Note that proposal class IDs, gt_boxes, and gt_masks are zero + # padded. Equally, returned rois and targets are zero padded. + rois, target_class_ids, target_bbox, target_mask =\ + DetectionTargetLayer(config, name="proposal_targets")([ + target_rois, input_gt_class_ids, gt_boxes, input_gt_masks]) + + # Network Heads + # TODO: verify that this handles zero padded ROIs + mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\ + fpn_classifier_graph(rois, mrcnn_feature_maps, config.IMAGE_SHAPE, + config.POOL_SIZE, config.NUM_CLASSES) + + mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps, + config.IMAGE_SHAPE, + config.MASK_POOL_SIZE, + config.NUM_CLASSES) + + # TODO: clean up (use tf.identify if necessary) + output_rois = KL.Lambda(lambda x: x * 1, name="output_rois")(rois) + + # Losses + rpn_class_loss = KL.Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")( + [input_rpn_match, rpn_class_logits]) + rpn_bbox_loss = KL.Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")( + [input_rpn_bbox, input_rpn_match, rpn_bbox]) + class_loss = KL.Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")( + [target_class_ids, mrcnn_class_logits, active_class_ids]) + bbox_loss = KL.Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")( + [target_bbox, target_class_ids, mrcnn_bbox]) + mask_loss = KL.Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")( + [target_mask, target_class_ids, mrcnn_mask]) + + # Model + inputs = [input_image, input_image_meta, + input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks] + if not config.USE_RPN_ROIS: + inputs.append(input_rois) + outputs = [rpn_class_logits, rpn_class, rpn_bbox, + mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask, + rpn_rois, output_rois, + rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss] + model = KM.Model(inputs, outputs, name='mask_rcnn') + else: + # Network Heads + # Proposal classifier and BBox regressor heads + mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\ + fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, config.IMAGE_SHAPE, + config.POOL_SIZE, config.NUM_CLASSES) + + # Detections + # output is [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in image coordinates + detections = DetectionLayer(config, name="mrcnn_detection")( + [rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta]) + + # Convert boxes to normalized coordinates + # TODO: let DetectionLayer return normalized coordinates to avoid + # unnecessary conversions + h, w = config.IMAGE_SHAPE[:2] + detection_boxes = KL.Lambda( + lambda x: x[..., :4] / np.array([h, w, h, w]))(detections) + + # Create masks for detections + mrcnn_mask = build_fpn_mask_graph(detection_boxes, mrcnn_feature_maps, + config.IMAGE_SHAPE, + config.MASK_POOL_SIZE, + config.NUM_CLASSES) + + model = KM.Model([input_image, input_image_meta], + [detections, mrcnn_class, mrcnn_bbox, + mrcnn_mask, rpn_rois, rpn_class, rpn_bbox], + name='mask_rcnn') + + # Add multi-GPU support. + if config.GPU_COUNT > 1: + from parallel_model import ParallelModel + model = ParallelModel(model, config.GPU_COUNT) + + return model + + def find_last(self): + """Finds the last checkpoint file of the last trained model in the + model directory. + Returns: + log_dir: The directory where events and weights are saved + checkpoint_path: the path to the last checkpoint file + """ + # Get directory names. Each directory corresponds to a model + dir_names = next(os.walk(self.model_dir))[1] + key = self.config.NAME.lower() + dir_names = filter(lambda f: f.startswith(key), dir_names) + dir_names = sorted(dir_names) + if not dir_names: + return None, None + # Pick last directory + dir_name = os.path.join(self.model_dir, dir_names[-1]) + # Find the last checkpoint + checkpoints = next(os.walk(dir_name))[2] + checkpoints = filter(lambda f: f.startswith("mask_rcnn"), checkpoints) + checkpoints = sorted(checkpoints) + if not checkpoints: + return dir_name, None + checkpoint = os.path.join(dir_name, checkpoints[-1]) + return dir_name, checkpoint + + def load_weights(self, filepath, by_name=False, exclude=None): + """Modified version of the correspoding Keras function with + the addition of multi-GPU support and the ability to exclude + some layers from loading. + exlude: list of layer names to excluce + """ + import h5py + from keras.engine import saving + + if exclude: + by_name = True + + if h5py is None: + raise ImportError('`load_weights` requires h5py.') + f = h5py.File(filepath, mode='r') + if 'layer_names' not in f.attrs and 'model_weights' in f: + f = f['model_weights'] + + # In multi-GPU training, we wrap the model. Get layers + # of the inner model because they have the weights. + keras_model = self.keras_model + layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ + else keras_model.layers + + # Exclude some layers + if exclude: + layers = filter(lambda l: l.name not in exclude, layers) + + if by_name: + saving.load_weights_from_hdf5_group_by_name(f, layers) + else: + saving.load_weights_from_hdf5_group(f, layers) + if hasattr(f, 'close'): + f.close() + + # Update the log directory + self.set_log_dir(filepath) + + def get_imagenet_weights(self): + """Downloads ImageNet trained weights from Keras. + Returns path to weights file. + """ + from keras.utils.data_utils import get_file + TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/'\ + 'releases/download/v0.2/'\ + 'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5' + weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5', + TF_WEIGHTS_PATH_NO_TOP, + cache_subdir='models', + md5_hash='a268eb855778b3df3c7506639542a6af') + return weights_path + + def compile(self, learning_rate, momentum): + """Gets the model ready for training. Adds losses, regularization, and + metrics. Then calls the Keras compile() function. + """ + # Optimizer object + optimizer = keras.optimizers.SGD(lr=learning_rate, momentum=momentum, + clipnorm=5.0) + # Add Losses + # First, clear previously set losses to avoid duplication + self.keras_model._losses = [] + self.keras_model._per_input_losses = {} + loss_names = ["rpn_class_loss", "rpn_bbox_loss", + "mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"] + for name in loss_names: + layer = self.keras_model.get_layer(name) + if layer.output in self.keras_model.losses: + continue + self.keras_model.add_loss( + tf.reduce_mean(layer.output, keep_dims=True)) + + # Add L2 Regularization + # Skip gamma and beta weights of batch normalization layers. + reg_losses = [keras.regularizers.l2(self.config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32) + for w in self.keras_model.trainable_weights + if 'gamma' not in w.name and 'beta' not in w.name] + self.keras_model.add_loss(tf.add_n(reg_losses)) + + # Compile + self.keras_model.compile(optimizer=optimizer, loss=[ + None] * len(self.keras_model.outputs)) + + # Add metrics for losses + for name in loss_names: + if name in self.keras_model.metrics_names: + continue + layer = self.keras_model.get_layer(name) + self.keras_model.metrics_names.append(name) + self.keras_model.metrics_tensors.append(tf.reduce_mean( + layer.output, keep_dims=True)) + + def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1): + """Sets model layers as trainable if their names match + the given regular expression. + """ + # Print message on the first call (but not on recursive calls) + if verbose > 0 and keras_model is None: + log("Selecting layers to train") + + keras_model = keras_model or self.keras_model + + # In multi-GPU training, we wrap the model. Get layers + # of the inner model because they have the weights. + layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ + else keras_model.layers + + for layer in layers: + # Is the layer a model? + if layer.__class__.__name__ == 'Model': + print("In model: ", layer.name) + self.set_trainable( + layer_regex, keras_model=layer, indent=indent + 4) + continue + + if not layer.weights: + continue + # Is it trainable? + trainable = bool(re.fullmatch(layer_regex, layer.name)) + # Update layer. If layer is a container, update inner layer. + if layer.__class__.__name__ == 'TimeDistributed': + layer.layer.trainable = trainable + else: + layer.trainable = trainable + # Print trainble layer names + if trainable and verbose > 0: + log("{}{:20} ({})".format(" " * indent, layer.name, + layer.__class__.__name__)) + + def set_log_dir(self, model_path=None): + """Sets the model log directory and epoch counter. + + model_path: If None, or a format different from what this code uses + then set a new log directory and start epochs from 0. Otherwise, + extract the log directory and the epoch counter from the file + name. + """ + # Set date and epoch counter as if starting a new model + self.epoch = 0 + now = datetime.datetime.now() + + # If we have a model path with date and epochs use them + if model_path: + # Continue from we left of. Get epoch and date from the file name + # A sample model path might look like: + # /path/to/logs/coco20171029T2315/mask_rcnn_coco_0001.h5 + regex = r".*/\w+(\d{4})(\d{2})(\d{2})T(\d{2})(\d{2})/mask\_rcnn\_\w+(\d{4})\.h5" + m = re.match(regex, model_path) + if m: + now = datetime.datetime(int(m.group(1)), int(m.group(2)), int(m.group(3)), + int(m.group(4)), int(m.group(5))) + self.epoch = int(m.group(6)) + 1 + + # Directory for training logs + self.log_dir = os.path.join(self.model_dir, "{}{:%Y%m%dT%H%M}".format( + self.config.NAME.lower(), now)) + + # Path to save after each epoch. Include placeholders that get filled by Keras. + self.checkpoint_path = os.path.join(self.log_dir, "mask_rcnn_{}_*epoch*.h5".format( + self.config.NAME.lower())) + self.checkpoint_path = self.checkpoint_path.replace( + "*epoch*", "{epoch:04d}") + + def train(self, train_dataset, val_dataset, learning_rate, epochs, layers): + """Train the model. + train_dataset, val_dataset: Training and validation Dataset objects. + learning_rate: The learning rate to train with + epochs: Number of training epochs. Note that previous training epochs + are considered to be done alreay, so this actually determines + the epochs to train in total rather than in this particaular + call. + layers: Allows selecting wich layers to train. It can be: + - A regular expression to match layer names to train + - One of these predefined values: + heaads: The RPN, classifier and mask heads of the network + all: All the layers + 3+: Train Resnet stage 3 and up + 4+: Train Resnet stage 4 and up + 5+: Train Resnet stage 5 and up + """ + assert self.mode == "training", "Create model in training mode." + + # Pre-defined layer regular expressions + layer_regex = { + # all layers but the backbone + "heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", + # From a specific Resnet stage and up + "3+": r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", + "4+": r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", + "5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", + # All layers + "all": ".*", + } + if layers in layer_regex.keys(): + layers = layer_regex[layers] + + # Data generators + train_generator = data_generator(train_dataset, self.config, shuffle=True, + batch_size=self.config.BATCH_SIZE) + val_generator = data_generator(val_dataset, self.config, shuffle=True, + batch_size=self.config.BATCH_SIZE, + augment=False) + + # Callbacks + callbacks = [ + keras.callbacks.TensorBoard(log_dir=self.log_dir, + histogram_freq=0, write_graph=True, write_images=False), + keras.callbacks.ModelCheckpoint(self.checkpoint_path, + verbose=0, save_weights_only=True), + ] + + # Train + log("\nStarting at epoch {}. LR={}\n".format(self.epoch, learning_rate)) + log("Checkpoint Path: {}".format(self.checkpoint_path)) + self.set_trainable(layers) + self.compile(learning_rate, self.config.LEARNING_MOMENTUM) + + # Work-around for Windows: Keras fails on Windows when using + # multiprocessing workers. See discussion here: + # https://github.com/matterport/Mask_RCNN/issues/13#issuecomment-353124009 + if os.name is 'nt': + workers = 0 + else: + workers = max(self.config.BATCH_SIZE // 2, 2) + + self.keras_model.fit_generator( + train_generator, + initial_epoch=self.epoch, + epochs=epochs, + steps_per_epoch=self.config.STEPS_PER_EPOCH, + callbacks=callbacks, + validation_data=next(val_generator), + validation_steps=self.config.VALIDATION_STEPS, + max_queue_size=100, + workers=workers, + use_multiprocessing=True, + ) + self.epoch = max(self.epoch, epochs) + + def mold_inputs(self, images): + """Takes a list of images and modifies them to the format expected + as an input to the neural network. + images: List of image matricies [height,width,depth]. Images can have + different sizes. + + Returns 3 Numpy matricies: + molded_images: [N, h, w, 3]. Images resized and normalized. + image_metas: [N, length of meta data]. Details about each image. + windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the + original image (padding excluded). + """ + molded_images = [] + image_metas = [] + windows = [] + for image in images: + # Resize image to fit the model expected size + # TODO: move resizing to mold_image() + molded_image, window, scale, padding = utils.resize_image( + image, + min_dim=self.config.IMAGE_MIN_DIM, + max_dim=self.config.IMAGE_MAX_DIM, + padding=self.config.IMAGE_PADDING) + molded_image = mold_image(molded_image, self.config) + # Build image_meta + image_meta = compose_image_meta( + 0, image.shape, window, + np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) + # Append + molded_images.append(molded_image) + windows.append(window) + image_metas.append(image_meta) + # Pack into arrays + molded_images = np.stack(molded_images) + image_metas = np.stack(image_metas) + windows = np.stack(windows) + return molded_images, image_metas, windows + + def unmold_detections(self, detections, mrcnn_mask, image_shape, window): + """Reformats the detections of one image from the format of the neural + network output to a format suitable for use in the rest of the + application. + + detections: [N, (y1, x1, y2, x2, class_id, score)] + mrcnn_mask: [N, height, width, num_classes] + image_shape: [height, width, depth] Original size of the image before resizing + window: [y1, x1, y2, x2] Box in the image where the real image is + excluding the padding. + + Returns: + boxes: [N, (y1, x1, y2, x2)] Bounding boxes in pixels + class_ids: [N] Integer class IDs for each bounding box + scores: [N] Float probability scores of the class_id + masks: [height, width, num_instances] Instance masks + """ + # How many detections do we have? + # Detections array is padded with zeros. Find the first class_id == 0. + zero_ix = np.where(detections[:, 4] == 0)[0] + N = zero_ix[0] if zero_ix.shape[0] > 0 else detections.shape[0] + + # Extract boxes, class_ids, scores, and class-specific masks + boxes = detections[:N, :4] + class_ids = detections[:N, 4].astype(np.int32) + scores = detections[:N, 5] + masks = mrcnn_mask[np.arange(N), :, :, class_ids] + + # Compute scale and shift to translate coordinates to image domain. + h_scale = image_shape[0] / (window[2] - window[0]) + w_scale = image_shape[1] / (window[3] - window[1]) + scale = min(h_scale, w_scale) + shift = window[:2] # y, x + scales = np.array([scale, scale, scale, scale]) + shifts = np.array([shift[0], shift[1], shift[0], shift[1]]) + + # Translate bounding boxes to image domain + boxes = np.multiply(boxes - shifts, scales).astype(np.int32) + + # Filter out detections with zero area. Often only happens in early + # stages of training when the network weights are still a bit random. + exclude_ix = np.where( + (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0] + if exclude_ix.shape[0] > 0: + boxes = np.delete(boxes, exclude_ix, axis=0) + class_ids = np.delete(class_ids, exclude_ix, axis=0) + scores = np.delete(scores, exclude_ix, axis=0) + masks = np.delete(masks, exclude_ix, axis=0) + N = class_ids.shape[0] + + # Resize masks to original image size and set boundary threshold. + full_masks = [] + for i in range(N): + # Convert neural network mask to full size mask + full_mask = utils.unmold_mask(masks[i], boxes[i], image_shape) + full_masks.append(full_mask) + full_masks = np.stack(full_masks, axis=-1)\ + if full_masks else np.empty((0,) + masks.shape[1:3]) + + return boxes, class_ids, scores, full_masks + + def detect(self, images, verbose=0): + """Runs the detection pipeline. + + images: List of images, potentially of different sizes. + + Returns a list of dicts, one dict per image. The dict contains: + rois: [N, (y1, x1, y2, x2)] detection bounding boxes + class_ids: [N] int class IDs + scores: [N] float probability scores for the class IDs + masks: [H, W, N] instance binary masks + """ + assert self.mode == "inference", "Create model in inference mode." + assert len( + images) == self.config.BATCH_SIZE, "len(images) must be equal to BATCH_SIZE" + + if verbose: + log("Processing {} images".format(len(images))) + for image in images: + log("image", image) + # Mold inputs to format expected by the neural network + molded_images, image_metas, windows = self.mold_inputs(images) + if verbose: + log("molded_images", molded_images) + log("image_metas", image_metas) + # Run object detection + detections, mrcnn_class, mrcnn_bbox, mrcnn_mask, \ + rois, rpn_class, rpn_bbox =\ + self.keras_model.predict([molded_images, image_metas], verbose=0) + # Process detections + results = [] + for i, image in enumerate(images): + final_rois, final_class_ids, final_scores, final_masks =\ + self.unmold_detections(detections[i], mrcnn_mask[i], + image.shape, windows[i]) + results.append({ + "rois": final_rois, + "class_ids": final_class_ids, + "scores": final_scores, + "masks": final_masks, + }) + return results + + def ancestor(self, tensor, name, checked=None): + """Finds the ancestor of a TF tensor in the computation graph. + tensor: TensorFlow symbolic tensor. + name: Name of ancestor tensor to find + checked: For internal use. A list of tensors that were already + searched to avoid loops in traversing the graph. + """ + checked = checked if checked is not None else [] + # Put a limit on how deep we go to avoid very long loops + if len(checked) > 500: + return None + # Convert name to a regex and allow matching a number prefix + # because Keras adds them automatically + if isinstance(name, str): + name = re.compile(name.replace("/", r"(\_\d+)*/")) + + parents = tensor.op.inputs + for p in parents: + if p in checked: + continue + if bool(re.fullmatch(name, p.name)): + return p + checked.append(p) + a = self.ancestor(p, name, checked) + if a is not None: + return a + return None + + def find_trainable_layer(self, layer): + """If a layer is encapsulated by another layer, this function + digs through the encapsulation and returns the layer that holds + the weights. + """ + if layer.__class__.__name__ == 'TimeDistributed': + return self.find_trainable_layer(layer.layer) + return layer + + def get_trainable_layers(self): + """Returns a list of layers that have weights.""" + layers = [] + # Loop through all layers + for l in self.keras_model.layers: + # If layer is a wrapper, find inner trainable layer + l = self.find_trainable_layer(l) + # Include layer if it has weights + if l.get_weights(): + layers.append(l) + return layers + + def run_graph(self, images, outputs): + """Runs a sub-set of the computation graph that computes the given + outputs. + + outputs: List of tuples (name, tensor) to compute. The tensors are + symbolic TensorFlow tensors and the names are for easy tracking. + + Returns an ordered dict of results. Keys are the names received in the + input and values are Numpy arrays. + """ + model = self.keras_model + + # Organize desired outputs into an ordered dict + outputs = OrderedDict(outputs) + for o in outputs.values(): + assert o is not None + + # Build a Keras function to run parts of the computation graph + inputs = model.inputs + if model.uses_learning_phase and not isinstance(K.learning_phase(), int): + inputs += [K.learning_phase()] + kf = K.function(model.inputs, list(outputs.values())) + + # Run inference + molded_images, image_metas, windows = self.mold_inputs(images) + # TODO: support training mode? + # if TEST_MODE == "training": + # model_in = [molded_images, image_metas, + # target_rpn_match, target_rpn_bbox, + # gt_boxes, gt_masks] + # if not config.USE_RPN_ROIS: + # model_in.append(target_rois) + # if model.uses_learning_phase and not isinstance(K.learning_phase(), int): + # model_in.append(1.) + # outputs_np = kf(model_in) + # else: + + model_in = [molded_images, image_metas] + if model.uses_learning_phase and not isinstance(K.learning_phase(), int): + model_in.append(0.) + outputs_np = kf(model_in) + + # Pack the generated Numpy arrays into a a dict and log the results. + outputs_np = OrderedDict([(k, v) + for k, v in zip(outputs.keys(), outputs_np)]) + for k, v in outputs_np.items(): + log(k, v) + return outputs_np + + +############################################################ +# Data Formatting +############################################################ + +def compose_image_meta(image_id, image_shape, window, active_class_ids): + """Takes attributes of an image and puts them in one 1D array. + + image_id: An int ID of the image. Useful for debugging. + image_shape: [height, width, channels] + window: (y1, x1, y2, x2) in pixels. The area of the image where the real + image is (excluding the padding) + active_class_ids: List of class_ids available in the dataset from which + the image came. Useful if training on images from multiple datasets + where not all classes are present in all datasets. + """ + meta = np.array( + [image_id] + # size=1 + list(image_shape) + # size=3 + list(window) + # size=4 (y1, x1, y2, x2) in image cooredinates + list(active_class_ids) # size=num_classes + ) + return meta + + +def parse_image_meta_graph(meta): + """Parses a tensor that contains image attributes to its components. + See compose_image_meta() for more details. + + meta: [batch, meta length] where meta length depends on NUM_CLASSES + """ + image_id = meta[:, 0] + image_shape = meta[:, 1:4] + window = meta[:, 4:8] # (y1, x1, y2, x2) window of image in in pixels + active_class_ids = meta[:, 8:] + return [image_id, image_shape, window, active_class_ids] + + +def mold_image(images, config): + """Takes RGB images with 0-255 values and subtraces + the mean pixel and converts it to float. Expects image + colors in RGB order. + """ + return images.astype(np.float32) - config.MEAN_PIXEL + + +def unmold_image(normalized_images, config): + """Takes a image normalized with mold() and returns the original.""" + return (normalized_images + config.MEAN_PIXEL).astype(np.uint8) + + +############################################################ +# Miscellenous Graph Functions +############################################################ + +def trim_zeros_graph(boxes, name=None): + """Often boxes are represented with matricies of shape [N, 4] and + are padded with zeros. This removes zero boxes. + + boxes: [N, 4] matrix of boxes. + non_zeros: [N] a 1D boolean mask identifying the rows to keep + """ + non_zeros = tf.cast(tf.reduce_sum(tf.abs(boxes), axis=1), tf.bool) + boxes = tf.boolean_mask(boxes, non_zeros, name=name) + return boxes, non_zeros + + +def batch_pack_graph(x, counts, num_rows): + """Picks different number of values from each row + in x depending on the values in counts. + """ + outputs = [] + for i in range(num_rows): + outputs.append(x[i, :counts[i]]) + return tf.concat(outputs, axis=0) \ No newline at end of file diff --git a/mouse_dataset.tgz b/mouse_dataset.tgz deleted file mode 100644 index 967b09a..0000000 Binary files a/mouse_dataset.tgz and /dev/null differ diff --git a/rename_images.ipynb b/rename_images.ipynb new file mode 100644 index 0000000..d33649b --- /dev/null +++ b/rename_images.ipynb @@ -0,0 +1,73 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import glob #for selecting png files in training images folder\n", + "from natsort import natsorted, ns #for sorting filenames in a directory\n", + "import skimage\n", + "from skimage import io\n", + "import numpy as np\n", + "import skimage.transform\n", + "import matplotlib.pyplot as plt\n", + "import math\n", + "import multiprocess\n", + "\n", + "def resetDataDir():\n", + " while os.getcwd() != \"/\":\n", + " os.chdir('..')\n", + "\n", + " # Replace the following with the entire path to your data\n", + " os.chdir('Users/Dana/Desktop/Research/BSt')\n", + " \n", + "resetDataDir()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "resetDataDir()\n", + "color_mask_dir = \"IMAGES/NISSL-SMALL/A1-TRAIN\"\n", + "os.chdir(color_mask_dir) \n", + "all_masked_sections = natsorted(glob.glob('*'))\n", + "for section_num,section_fold in enumerate(all_masked_sections):\n", + " os.rename(section_fold, \"section_img_\"+str(section_num)+\".png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python burke", + "language": "python", + "name": "burke" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.13" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/rename_masks.ipynb b/rename_masks.ipynb new file mode 100644 index 0000000..6aae381 --- /dev/null +++ b/rename_masks.ipynb @@ -0,0 +1,160 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import glob #for selecting png files in training images folder\n", + "from natsort import natsorted, ns #for sorting filenames in a directory\n", + "import skimage\n", + "from skimage import io\n", + "import numpy as np\n", + "import skimage.transform\n", + "import matplotlib.pyplot as plt\n", + "import math\n", + "import multiprocess\n", + "\n", + "def resetDataDir():\n", + " while os.getcwd() != \"/\":\n", + " os.chdir('..')\n", + "\n", + " # Replace the following with the entire path to your data\n", + " os.chdir('Users/Dana/Desktop/Research/BSt')\n", + " \n", + "resetDataDir()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'PG': 1, 'TRN': 2, 'V': 3, 'PCG': 4, 'DTN': 5, 'CS': 6, 'PRN': 7, 'LDT': 8, 'LC': 9, 'PB': 10, 'SOC': 11, 'NLL': 12, 'PSV': 13, 'SC': 14, 'IC': 15, 'PBG': 16, 'MEV': 17, 'PAG': 18, 'III': 19, 'MRN': 20, 'SN': 21, 'RN': 22, 'AT': 23, 'IPN': 24, 'DR': 25, 'VTA': 26, 'ND': 27, 'CN': 28, 'SPV': 29, 'CU': 30, 'NTB': 31, 'ECU': 32, 'XII': 33, 'AP': 34, 'VNC': 35, 'NTS': 36, 'VII': 37, 'MARN': 38, 'AMB': 39, 'IO': 40, 'GRN': 41, 'IRN': 42, 'PARN': 43, 'MV ': 44, 'SUV': 45, 'LAV': 46, 'PGRNd': 47, 'PGRNl': 48, 'PRP': 49, 'SPIV': 50, 'VI - dot': 51, 'MDRNv': 52, 'MDRNd': 53, 'GR': 54, 'PPY': 55, 'LRNm': 56, 'X': 57, 'DMX': 58, 'LIN': 59, 'RM ': 60, 'RO': 61, 'TH': 62, 'ZI': 63, 'HY': 64}\n" + ] + } + ], + "source": [ + "import pandas\n", + "\n", + "RGB_MAPPINGS_DIR = 'rgb_mappings.csv'\n", + "\n", + "resetDataDir()\n", + "\n", + "RGB_MAPPINGS = pandas.read_csv(RGB_MAPPINGS_DIR, usecols = ['Label', 'R', 'G', 'B']).dropna()\n", + "RGB_MAPPINGS_INDEX = RGB_MAPPINGS.index.values\n", + "RGB_MAPPINGS_LABELS = RGB_MAPPINGS[\"Label\"]\n", + "\n", + "NUM_LABELS = len(RGB_MAPPINGS_INDEX)\n", + "\n", + "class_id=1\n", + "CLASS_NAME_ID_MAP = {}\n", + "for label in RGB_MAPPINGS_LABELS:\n", + " CLASS_NAME_ID_MAP[label] = class_id\n", + " class_id += 1\n", + "print(CLASS_NAME_ID_MAP)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PG\n" + ] + }, + { + "data": { + "text/plain": [ + "'section_masks_62_PG_m10.png'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test = \"section_masks_62_PG_m0.png\"\n", + "def get_class_label(file_name):\n", + " tmp = file_name.split(\"_\")\n", + " return tmp[3]\n", + "\n", + "print(get_class_label(test))\n", + "\n", + "def replace_class_id(file_name, new_class_id):\n", + " tmp = file_name.split(\"_\")\n", + " new_class_id = str(new_class_id)\n", + " return \"_\".join(tmp[0:4]) + \"_m\" + new_class_id + \".png\"\n", + "\n", + "replace_class_id(test,10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Rename masks to start from 0 and go up consecutively by 1\n", + "resetDataDir()\n", + "color_mask_dir = \"MASKS/BW-MASKS-SMALL/A1-VAL\"\n", + "os.chdir(color_mask_dir) \n", + "all_masked_sections = natsorted(glob.glob('*'))\n", + "for section_num,section_fold in enumerate(all_masked_sections):\n", + " resetDataDir()\n", + " os.chdir(color_mask_dir)\n", + " os.chdir(section_fold)\n", + " for filename in glob.glob(\"*\"):\n", + " new_mask_id = CLASS_NAME_ID_MAP[get_class_label(filename)]\n", + " new_filename = replace_class_id(filename, new_mask_id)\n", + " os.rename(filename, new_filename)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python burke2", + "language": "python", + "name": "burke2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/rgb_mappings.csv b/rgb_mappings.csv new file mode 100644 index 0000000..37f53de --- /dev/null +++ b/rgb_mappings.csv @@ -0,0 +1,58 @@ +Sub-region,Label,R,G,B +"Pons, motor related",PG,200,100,0 +vary G value,TRN,200,100,20 +,,,, +"Pons, behavioral related",CS,220,120,20 +vary B value,PRN,220,120,40 +,LC,220,140,0 +,,,, +"Pons, sensory related",PB,220,140,20 +vary R value,SOC,220,140,40 +,NLL,220,140,60 +,PSV,220,160,0 +,,,, +Midbrain,SC,100,0,180 +"Midbrain, sensory related",IC,100,0,200 +vary R value,,,, +,,,, +"Midbrain, motor related",PAG,100,20,180 +vary G value,III,100,20,200 +,MRN,100,20,220 +,SN,100,20,240 +,RN,100,40,180 +,,,, +"Midbrain, behavioral related",DR,100,40,240 +vary B value,VTA,100,60,180 +,,,, +"Medulla, sensory related",CN,220,0,120 +vary R value,SPV,220,0,140 +,CU,220,0,160 +,NTB,220,0,180 +,ECU,220,0,200 +,,,, +"Medulla, motor related",XII,220,20,120 +vary G value,AP,220,20,140 +minimum 135,VNC,220,20,160 +,NTS,220,20,180 +,VII,220,20,200 +,MARN,220,40,120 +,AMB,220,40,140 +,IO,220,40,160 +,GRN,220,40,180 +,IRN,220,40,200 +,PARN,220,60,120 +,PGRNd,220,60,200 +,PGRNl,220,80,120 +,PRP,220,80,140 +,SPIV,220,80,160 +,VI,220,80,180 +,MDRNv,220,80,200 +,MDRNd,220,100,120 +,GR,220,100,140 +,,,, +Other motor related,LRNm,220,100,180 +vary B value,,,, +,,,, +"Medulla, behavioral related",RM,240,0,180 +,RO,240,0,200 +vary B value,,,, diff --git a/rgb_mappings_hindbrain.csv b/rgb_mappings_hindbrain.csv new file mode 100644 index 0000000..a8bbdf3 --- /dev/null +++ b/rgb_mappings_hindbrain.csv @@ -0,0 +1,13 @@ +Sub-region,Label,R,G,B +"Pons, motor related",PG,200,100,0 +vary G value,TRN,200,100,20 +,V,200,100,40 +,,,, +"Pons, behavioral related",CS,220,120,20 +vary B value,PRN,220,120,40 +,LC,220,140,0 +,,,, +"Pons, sensory related",PB,220,140,20 +vary R value,SOC,220,140,40 +,NLL,220,140,60 +,PSV,220,160,0 diff --git a/rgb_mappings_medulla.csv b/rgb_mappings_medulla.csv new file mode 100644 index 0000000..b4df90a --- /dev/null +++ b/rgb_mappings_medulla.csv @@ -0,0 +1,32 @@ +Sub-region,Label,R,G,B +"Medulla, sensory related",CN,220,0,120 +vary R value,SPV,220,0,140 +,CU,220,0,160 +,NTB,220,0,180 +,ECU,220,0,200 +,,,, +"Medulla, motor related",XII,220,20,120 +vary G value,AP,220,20,140 +minimum 135,VNC,220,20,160 +,NTS,220,20,180 +,VII,220,20,200 +,MARN,220,40,120 +,AMB,220,40,140 +,IO,220,40,160 +,GRN,220,40,180 +,IRN,220,40,200 +,PARN,220,60,120 +,PGRNd,220,60,200 +,PGRNl,220,80,120 +,PRP,220,80,140 +,SPIV,220,80,160 +,VI,220,80,180 +,MDRNv,220,80,200 +,MDRNd,220,100,120 +,GR,220,100,140 +,,,, +Other motor related,LRNm,220,100,180 +vary B value,,,, +,,,, +"Medulla, behavioral related",RM,240,0,180 +,RO,240,0,200 \ No newline at end of file diff --git a/rgb_mappings_medulla_v2.csv b/rgb_mappings_medulla_v2.csv new file mode 100644 index 0000000..d214a46 --- /dev/null +++ b/rgb_mappings_medulla_v2.csv @@ -0,0 +1,30 @@ +Sub-region,Label,R,G,B +"Medulla, sensory related",CN,220,0,120 +,SPV,220,0,140 +,CU,220,0,160 +,NTB,220,0,180 +,ECU,220,0,200 +,,,, +"Medulla, motor related",XII,220,20,120 +,AP,220,20,140 +,VNC,220,20,160 +,NTS,220,20,180 +,VII,220,20,200 +,MARN,220,40,120 +,AMB,220,40,140 +,IO,220,40,160 +,RetN,220,40,180 +,PGRNd,220,60,200 +,PGRNl,220,80,120 +,PRP,220,80,140 +,,,, +,VI,220,80,180 +,GR,220,100,140 +,,,, +Other motor related,PPY,220,100,160 +,LRNm,220,100,180 +,X,220,100,200 +,DMX,240,0,120 +,,,, +"Medulla, behavioral related",RM ,240,0,180 +,RO,240,0,200 \ No newline at end of file diff --git a/rgb_mappings_midbrain.csv b/rgb_mappings_midbrain.csv new file mode 100644 index 0000000..2509115 --- /dev/null +++ b/rgb_mappings_midbrain.csv @@ -0,0 +1,13 @@ +Sub-region,Label,R,G,B +Midbrain,SC,100,0,180 +"Midbrain, sensory related",IC,100,0,200 +vary R value,,,, +,,,, +"Midbrain, motor related",PAG,100,20,180 +vary G value,III,100,20,200 +,MRN,100,20,220 +,SN,100,20,240 +,RN,100,40,180 +,,,, +"Midbrain, behavioral related",DR,100,40,240 +vary B value,VTA,100,60,180 \ No newline at end of file diff --git a/split_data.ipynb b/split_data.ipynb new file mode 100644 index 0000000..73da6d5 --- /dev/null +++ b/split_data.ipynb @@ -0,0 +1,185 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import shutil\n", + "import glob\n", + "from natsort import natsorted, ns \n", + "\n", + "ROOT_DIR = 'Users/Dana/Desktop/Research/BSt'\n", + "\n", + "def resetDataDir():\n", + " while os.getcwd() != \"/\":\n", + " os.chdir('..')\n", + "\n", + " # Replace the following with the entire path to your data\n", + " os.chdir(ROOT_DIR)\n", + " \n", + " \n", + "resetDataDir()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Move images to validation folder\n", + "resetDataDir()\n", + "os.chdir(\"IMAGES/NISSL-16/A3-TRAIN\")\n", + "for i in range(0, len(natsorted(glob.glob(\"*\")))):\n", + " resetDataDir()\n", + " if (i % 10 == 0):\n", + " try:\n", + " resetDataDir()\n", + " os.chdir(\"IMAGES/NISSL-16\")\n", + " shutil.move('A3-TRAIN/section_img_'+str(i), 'A3-VAL/section_img_'+str(i)+'.png')\n", + " except FileNotFoundError:\n", + " print(\"Skipped moving file with index \" + str(i) + \" because file was not found.\")\n", + " continue" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Move masks to validation folder\n", + "resetDataDir()\n", + "os.chdir(\"MASKS/BW-MASKS-16/A3-TRAIN\")\n", + "index = 0\n", + "for i in range(0, len(natsorted(glob.glob(\"*\")))):\n", + " resetDataDir()\n", + " if (i % 10 == 0):\n", + " try:\n", + " resetDataDir()\n", + " os.chdir(\"MASKS/BW-MASKS-16\")\n", + " shutil.move('A3-TRAIN/section_masks_'+str(i), 'A3-VAL/section_masks_'+str(index))\n", + " index += 1\n", + " except FileNotFoundError:\n", + " continue" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Rename images in training folder\n", + "resetDataDir()\n", + "os.chdir(\"IMAGES/NISSL-16/A3-VAL\")\n", + "for index, section_fold in enumerate(natsorted(glob.glob(\"*\"))):\n", + " os.rename(section_fold, \"section_img_\" + str(index) + \".png\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Rename masks in training folder\n", + "resetDataDir()\n", + "os.chdir(\"MASKS/BW-MASKS-16/A3-TRAIN\")\n", + "for index, section_fold in enumerate(natsorted(glob.glob(\"*\"))):\n", + "\n", + " \n", + " # Rename masks in folder\n", + " resetDataDir()\n", + " os.chdir(\"MASKS/BW-MASKS-16/A3-TRAIN\")\n", + " os.chdir(section_fold)\n", + " for image in glob.glob(\"*\"):\n", + " parts = image.split(\"_\")\n", + " del parts[2]\n", + " parts.insert(2, str(index))\n", + " new_image_id = \"_\".join(parts)\n", + " os.rename(image, new_image_id)\n", + " \n", + " # Rename folder\n", + " resetDataDir()\n", + " os.chdir(\"MASKS/BW-MASKS-16/A3-TRAIN\")\n", + " os.rename(section_fold, \"section_masks_\" + str(index))\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Rename images in validation folder\n", + "resetDataDir()\n", + "os.chdir(\"IMAGES/NISSL-SMALL/A1-VAL\")\n", + "for index, section_fold in enumerate(natsorted(glob.glob(\"*\"))):\n", + " os.rename(section_fold, \"section_img_\" + str(index) + \".png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Rename masks in validation folder\n", + "resetDataDir()\n", + "os.chdir(\"MASKS/BW-MASKS-SMALL/A1-VAL\")\n", + "for index, section_fold in enumerate(natsorted(glob.glob(\"*\"))):\n", + " \n", + " # Rename masks in folder\n", + " resetDataDir()\n", + " os.chdir(\"MASKS/BW-MASKS-16/A1-VAL\")\n", + " os.chdir(section_fold)\n", + " for image in glob.glob(\"*\"):\n", + " parts = image.split(\"_\")\n", + " del parts[2]\n", + " parts.insert(2, str(index))\n", + " new_image_id = \"_\".join(parts)\n", + " os.rename(image, new_image_id)\n", + " \n", + " # Rename folder\n", + " resetDataDir()\n", + " os.chdir(\"MASKS/BW-MASKS-SMALL/A1-VAL\")\n", + " os.rename(section_fold, \"section_masks_\" + str(index))\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python burke2", + "language": "python", + "name": "burke2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/utils.py b/utils.py index ec4a051..c07a241 100644 --- a/utils.py +++ b/utils.py @@ -187,8 +187,8 @@ def box_refinement_graph(box, gt_box): dy = (gt_center_y - center_y) / height dx = (gt_center_x - center_x) / width - dh = tf.log(gt_height / height) - dw = tf.log(gt_width / width) + dh = tf.math.log(gt_height / height) + dw = tf.math.log(gt_width / width) result = tf.stack([dy, dx, dh, dw], axis=1) return result @@ -454,11 +454,15 @@ def minimize_mask(bbox, mask, mini_shape): for i in range(mask.shape[-1]): m = mask[:, :, i] y1, x1, y2, x2 = bbox[i][:4] - m = m[y1:y2, x1:x2] - if m.size == 0: - raise Exception("Invalid bounding box with area of zero") - m = scipy.misc.imresize(m.astype(float), mini_shape, interp='bilinear') - mini_mask[:, :, i] = np.where(m >= 128, 1, 0) + + # Skip minimize mask if they don't exist on this image, ie. bbox is empty for the class region + if (np.sum(bbox[i][:4])) > 0: + m = m[y1:y2, x1:x2] + if m.size == 0: + raise Exception("Invalid bounding box with area of zero") + m = scipy.misc.imresize(m.astype(float), mini_shape, interp='bilinear') + mini_mask[:, :, i] = np.where(m >= 128, 1, 0) + return mini_mask diff --git a/visualize.py b/visualize.py index 59ab86f..e4e91ab 100644 --- a/visualize.py +++ b/visualize.py @@ -55,13 +55,11 @@ def display_images(images, titles=None, cols=4, cmap=None, norm=None, plt.subplot(rows, cols, i) plt.title(title, fontsize=25) plt.axis('off') -# plt.imshow(image.astype(np.uint8), cmap=cmap, -# norm=norm, interpolation=interpolation) plt.imshow(image, cmap=cmap, norm=norm, interpolation=interpolation) i += 1 -# plt.show() + plt.show() @@ -75,7 +73,6 @@ def random_colors(N, bright=True): hsv = [(i / N, 1, brightness) for i in range(N)] colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)) random.shuffle(colors) -# print(colors) return colors @@ -92,7 +89,7 @@ def apply_mask(image, mask, color, alpha=0.5): def display_instances(image, boxes, masks, class_ids, class_names, scores=None, title="", - figsize=(40, 40), ax=None): + figsize=(40, 40), ax=None, colors=[]): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [height, width, num_instances] @@ -106,37 +103,11 @@ def display_instances(image, boxes, masks, class_ids, class_names, if not N: print("\n*** No instances to display *** \n") else: - assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] + assert boxes.shape[0] == masks.shape[-1] if not ax: _, ax = plt.subplots(1, figsize=figsize) - - # Generate random colors -# colors = random_colors(N) -# print(colors) - - # Generate colors corresponding to Allen P14 reference atlas: - colors = [] - for cls in class_ids: - if cls ==1: - colors.append(tuple((242/255, 25/255, 60/255)))# cortex - if cls ==2: - colors.append(tuple((255/255, 72/255, 101/255)))#mpall - if cls ==3: - colors.append(tuple((229/255, 135/255, 36/255)))#cspall - if cls ==4: - colors.append(tuple((255/255, 237/255, 100/255)))#thalamus - if cls ==5: - colors.append(tuple((255/255, 244/255, 164/255)))#prethalamus - if cls ==6: - colors.append(tuple((23/255, 179/255, 23/255)))#midbrain - if cls ==7: - colors.append(tuple((238/255, 93/255, 255/255)))#hindbrain - if cls ==8: - colors.append(tuple((237/255, 152/255, 92/255)))#telA - #print(colors) - - + # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) @@ -145,13 +116,24 @@ def display_instances(image, boxes, masks, class_ids, class_names, ax.set_title(title) masked_image = image.astype(np.uint32).copy() - for i in range(N): - color = colors[i] + for i in range(0, len(class_ids)): + if i not in class_ids: + continue + try: + color = colors[i] + except IndexError: + print("Failed to get color for class id " + str(i)) + continue # Bounding box - if not np.any(boxes[i]): - # Skip this instance. Has no bbox. Likely lost in image cropping. - continue +# try: +# if not np.any(boxes[i]): +# # Skip this instance. Has no bbox. Likely lost in image cropping. +# continue +# except IndexError: +# print("Skipped " + str(i) + " because no bbox found.") +# continue + y1, x1, y2, x2 = boxes[i] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", @@ -159,13 +141,13 @@ def display_instances(image, boxes, masks, class_ids, class_names, ax.add_patch(p) # Label - class_id = class_ids[i] + class_id = i+1 # offset by 1 to account for background channel. score = scores[i] if scores is not None else None label = class_names[class_id] x = random.randint(x1, (x1 + x2) // 2) caption = "{} {:.3f}".format(label, score) if score else label ax.text(x1, y2, caption, #x1,y1+8 - color='k', size=25, backgroundcolor="none")#color='k',size = 15 + color='#FFFFFF', size=25, backgroundcolor="none")#color='k',size = 15 # Mask mask = masks[:, :, i] @@ -277,10 +259,12 @@ def display_top_masks(image, mask, class_ids, class_names, limit= None): #limit= # titles.append("H x W={}x{}".format(image.shape[0], image.shape[1])) # Pick top prominent classes in this image unique_class_ids = np.unique(class_ids) - mask_area = [np.sum(mask[:, :, np.where(class_ids == i)[0]]) - for i in unique_class_ids] + mask_area = [np.sum(mask[:, :,i]) + for i in range(0, len(unique_class_ids))] + top_ids = [v[0] for v in sorted(zip(unique_class_ids, mask_area), key=lambda r: r[1], reverse=True) if v[1] > 0] + # Generate images and titles for i in range(limit): class_id = top_ids[i] if i < len(top_ids) else -1 @@ -289,7 +273,7 @@ def display_top_masks(image, mask, class_ids, class_names, limit= None): #limit= m = np.sum(m * np.arange(1, m.shape[-1] + 1), -1) to_display.append(m) titles.append(class_names[class_id] if class_id != -1 else "-") - display_images(to_display, titles=None, cols=limit + 1, cmap=None) #titles=titles,cmap="Blues_r" + display_images(to_display, titles=titles, cols=limit + 1, cmap=None) #titles=titles,cmap="Blues_r" def plot_precision_recall(AP, precisions, recalls):